Безконтекстни граматики

Иво Стратев

9 юни 2020 г.

Въведение

Нека Σ и Γ са крайни азбуки, такива че $\Sigma \cap \Gamma = \emptyset$. Нека $S \in \Gamma$ и нека $R \in \mathcal{P}(\Gamma \times (\Sigma \cup \Gamma)^*)$. Тогава $\langle \Gamma, \Sigma, S, R \rangle$ е безконтекстна граматика. Σ ще наричаме множество на терминалите или символна азбука, а Γ множество на нетерминалите или множество на променливите. R ще наричаме множеството от правилата на граматиката. S начален нетерминал или начална променлива.

Съкращения

Ако $\langle V, \alpha \rangle \in \Gamma \times (\Sigma \cup \Gamma)^*$, то ще пишем $V \to \alpha$ и ще казваме, че V може да се замени с α . Ако $V \in \Gamma$, α , β , $\omega \in (\Sigma \cup \Gamma)^*$ и $\langle V, \alpha \rangle$, $\langle V, \beta \rangle$, $\langle V, \omega \rangle \in R$, то ще пишем $V \to \alpha \mid \beta \mid \omega$, което ще ни казва, че V може да бъде заменена с коя да е от думите α , β и γ .

Език на безконтекстна граматика

Нека M е непразно множество и $t \in \mathbb{N}$ тогава със $\operatorname{seq}(t,M)$ ще означаме множеството на функциите от $\{1,2,\ldots,t\}$ в M (крайните редиците от t на брой елемента от M).

Нека $G=\langle \Gamma, \Sigma, S, R \rangle$. С рекурсия по естествените числа дефинираме релации $\stackrel{\mathfrak{n}}{\underset{G}{\longleftrightarrow}}$ между Γ и $(\Sigma \cup \Gamma)^*$. Като идеята ни е следната искаме $V \stackrel{\mathfrak{n}}{\underset{G}{\longleftrightarrow}} \alpha$ ТСТК има извод на думата α от променливата V с височина n

по граматиката G. Дефинираме

$$\stackrel{0}{\underset{G}{\longleftrightarrow}} := \mathrm{Id}_{\Gamma} = \{ \langle V, V \rangle \mid V \in \Gamma \}$$

Следвайки идеята ни с височина 0 от една промнелива можем да изведем самата променлива, защото няма как да приложим правило.

$$\begin{split} &\operatorname{Ako} V \in \Gamma, \, k \in \mathbb{N}, \, \alpha \in \operatorname{seq}(k+1, \Sigma^*), \, \beta \in \operatorname{seq}(k, (\Sigma \cup \Gamma)^*), \, E \in \operatorname{seq}(k, \Gamma), \\ &V \to \left(\prod_{i=1}^k \alpha(i).E(i)\right).\alpha(k+1) \in R, \, l \in \operatorname{seq}(k, \mathbb{N}), \\ &n = \max\{l(i) \mid i \in \{1, 2, \dots, k\}\} \text{ if } (\forall i \in \{1, 2, \dots, k\})(E(i) \overset{l(i)}{\underset{G}{\longleftrightarrow}} \beta(i)), \\ &\operatorname{to} V \overset{n+1}{\underset{G}{\longleftrightarrow}} \left(\prod_{i=1}^k \alpha(i).\beta(i)\right).\alpha(k+1). \end{split}$$

Тоест всеки път когато имаме променлива V, редица от k променливи: $E(1), E(2), \ldots, E(k)$, редица от k+1 думи над $\Sigma \cup \Gamma$: $\alpha(1), \alpha(2), \ldots, \alpha(k+1)$, редица от k думи над $\Sigma \cup \Gamma$: $\beta(1), \beta(2), \ldots, \beta(k)$, правило $V \to \alpha(1).E(1).\alpha(2).E(2).\alpha(3)...\alpha(k).E(K).\alpha(k+1)$ в граматиката, редица от k естесвени числа $l(1), l(2), \ldots l(k)$ и n е максималното число в крайната редица l и имаме, че от променливата E(i) се извежда думата $\beta(i)$ с височина l(i) за i от l до l, то от променливата l се извежда думата l се извежда l се из

Накрая дефинираме $\stackrel{\star}{\underset{G}{\hookrightarrow}}$ като $\bigcup_{s\in\mathbb{N}}\stackrel{s}{\underset{G}{\hookrightarrow}}$. Така $V\stackrel{\star}{\underset{G}{\hookrightarrow}}$ α ТСТК от променливата V е изводима думата α по граматиката G. Помислите защо $\stackrel{\star}{\underset{G}{\hookrightarrow}}$ реално играе ролята на **рефлексивното** и **транзитивно** затваряне на релацията определена от множеството R.

Пример

Нека
$$\Gamma = \{S, D, B\}, \Sigma = \{d, b\}$$
 и

 $R = \{S \to BDS \mid B, D \to dDb \mid d, B \to bdB \mid b\}.$ Разглеждаме граматиката $\langle \Gamma, \Sigma, S, R \rangle$. Имаме $B \stackrel{1}{\leadsto} b$ и $D \stackrel{1}{\leadsto} d$. Значи $B \stackrel{1}{\leadsto} b$ и $D \stackrel{1+1}{\leadsto} ddb$. На диаграма:

Фигура 1: Дърво на извод за думата ddb

Вижда се, че в дясната част на правилото $D \to dDb$ сме заменили D с d. Тоест за извода на думата ddb от промеливата D сме приложили последователно правилата $D \to dDb$ и $D \to d$.

Имаме правило $S \to B$ и $B \stackrel{1}{\leadsto} b$ следователно $S \stackrel{2}{\leadsto} b$. Така имаме $B \stackrel{1}{\leadsto} b$, $D \stackrel{2}{\leadsto} ddb$, $S \stackrel{2}{\leadsto} b$ и правило $S \to BDS$, получаваме $S \stackrel{1+\max(1,2,2)}{\leadsto} b(ddb)b$.

До тук имаме $B \stackrel{1}{\leadsto} b$, $D \stackrel{2}{\leadsto} ddb$, $S \stackrel{3}{\leadsto} bddbb$ и правило $S \to BDS$, получаваме $S \stackrel{1+\max(1,2,3)}{\leadsto} b(ddb)(bddbb)$. Тоест $S \stackrel{4}{\leadsto} bddbbddbb$. Получихме, че от S с височина на извода 4 се извежда думата bddbbddbb.

Фигура 2: Дърво на извод за думата bddbbddbb

Дефиниция (език на променлива)

Нека $G = \langle \Gamma, \Sigma, S, R \rangle$ е безконтекстна граматика. Нека $V \in \Gamma$. Тогава езикът на V спрямо G е $\{\omega \in \Sigma^* \mid V \overset{\star}{\underset{G}{\longleftrightarrow}} \omega\}$. Ще го белжим с $\mathcal{CFL}_G(V)$. Така $\mathcal{CFL}_G(V)$ е множеството на думите над символната азбука, които са изводими по граматиката G от променливата V.

Дефиниция (език на безконтекстна граматика)

Тогава езикът на G е точно $\mathcal{CFL}_G(S)$ и ще го бележим с $\mathcal{CFL}(G)$. Тоест езикът на граматиката G е езикът на началната променлива на граматиката.

Дефиниция (крайна апроксимация на език на променлива)

Нека $G = \langle \Gamma, \Sigma, S, R \rangle$ е безконтекстна граматика. Нека $V \in \Gamma$. Нека $l \in \mathbb{N}$ и нека $\mathcal{CFL}_G^l(V) := \{\omega \in \Sigma^* \mid (\exists s \in \mathbb{N})(s \leq l \& V \overset{s}{\underset{G}{\longleftrightarrow}} \omega) \}$. Множеството $\mathcal{CFL}_G^l(V)$ е l-тата крайна апроксимация на езика $\mathcal{CFL}_G(V)$. Това са думите над символната азбука, изводими от V с височина на извода не по-голяма от l. Понеже с височина на извода 0 от V се извежда само V и $V \notin \Sigma$, то $\mathcal{CFL}_G^l(V) = \emptyset$.

Основна задача:)

Нека $G = \langle \Gamma, \Sigma, S, R \rangle$ е безконтекстна граматика. Нека $V \in \Gamma$. Тогава

$$\mathcal{CFL}_G(V) = \bigcup_{\mathfrak{n} \in \mathbb{N}} \mathcal{CFL}_G^\mathfrak{n}(V)$$

Доказателство:

$$\begin{split} \mathcal{CFL}_G(V) \\ &= \{\omega \in \Sigma^* \mid V \ \stackrel{\star}{\underset{G}{\overset{\star}{\hookrightarrow}}} \ \omega \} \\ &= \left\{\omega \in \Sigma^* \mid V \bigcup_{k \in \mathbb{N}} \stackrel{k}{\underset{G}{\overset{\star}{\hookrightarrow}}} \ \omega \right\} \\ &= \{\omega \in \Sigma^* \mid (\exists k \in \mathbb{N})(V \ \stackrel{k}{\underset{G}{\overset{\star}{\hookrightarrow}}} \ \omega)\} \\ &= \bigcup_{k \in \mathbb{N}} \{\omega \in \Sigma^* \mid V \ \stackrel{k}{\underset{G}{\overset{\star}{\hookrightarrow}}} \ \omega \} \\ &= \bigcup_{k \in \mathbb{N}} \{\omega \in \Sigma^* \mid (\exists l \in \mathbb{N})(l \leq k \ \& \ V \ \stackrel{l}{\underset{G}{\overset{\star}{\hookrightarrow}}} \ \omega)\} \\ &= \bigcup_{k \in \mathbb{N}} \{\omega \in \Sigma^* \mid \omega \in \mathcal{CFL}_G^k(V)\} \\ &= \bigcup_{k \in \mathbb{N}} \mathcal{CFL}_G^k(V) \end{split}$$

Индуктивен принцип

Нека $G = \langle \Gamma, \Sigma, S, R \rangle$ е безконтекстна граматика. Нека P е свойство на думите над Σ . Тоест P е предикат над Σ^* . Тогава е в сила следната импликация (индуктивен принцип)

$$((\forall k \in \mathbb{N})(\forall \omega \in \mathcal{CFL}_G^k(V)) \ P(\omega)) \implies ((\forall \omega \in \mathcal{CFL}_G(V)) \ P(\omega))$$

Доказателство: Нека е в сила предпоставката на импликацията. Тоест нека $(\forall k \in \mathbb{N})(\forall \omega \in \mathcal{CFL}_G^k(V))$ $P(\omega)$ е истина. Ще докажем, че е истина и $(\forall \omega \in \mathcal{CFL}_G(V))$ $P(\omega)$. Нека $\omega \in \mathcal{CFL}_G(V)$. Тогава по основната задача $\omega \in \bigcup_{n \in \mathbb{N}} \mathcal{CFL}_G^n(V)$. Нека тогава $n \in \mathbb{N}$ е такова, че $\omega \in \mathcal{CFL}_G^n(V)$. Тогава $P(\omega)$ от предпостаката. Обобщаваме и получаваме $(\forall \omega \in \mathcal{CFL}_G(V))$ $P(\omega)$.

Следствие:

Искаме да докажем, че $\mathcal{CFL}_G(V)\subseteq L$. Тогава вземаме свойство $P(\omega) \ensuremath{\iff}\ensuremath{def}\ensuremath{\omega} \in L$. Доказваме по индукция

$$(\forall k \in \mathbb{N})(\forall \omega \in \mathcal{CFL}_G^k(V))(\omega \in L)$$

От където от индуктивният принцип получаваме $(\forall \omega \in \mathcal{CFL}_G(V))(\omega \in L)$. Тоест $\mathcal{CFL}_G(V) \subseteq L$.

Два основни примера за безкрайни безконтекстни езици

Пример 1. Всевъзжмони конкатенации (итерации) на дума / звезда на Клини на език от една дума

Нека Σ е азбука. Нека $\alpha \in \Sigma^*$. Нека $S \notin \Sigma$. Нека $G = \langle \{S\}, \Sigma, S, \{S \to \alpha.S, \ S \to \epsilon\} \rangle$. Твърдим, че $\mathcal{CFL}(G) = \{\alpha\}^*$.

 C индукция ще докажем, че $(\forall k \in \mathbb{N})(\mathcal{CFL}_G^k(S) \subseteq \{\alpha\}^*)$, доказвайки $(\forall k \in \mathbb{N})(\forall \omega \in \mathcal{CFL}_G^k(S))(\omega \in \{\alpha\}^*)$.

Имаме следната рекуретна връзка

$$\begin{split} \mathcal{CFL}_G^0(S) = \emptyset \\ (\forall n \in \mathbb{N}) (\mathcal{CFL}_G^{n+1}(S) = \{\alpha\} \cdot \mathcal{CFL}_G^n(S) \cup \{\epsilon\}) \end{split}$$

База:

$$\mathcal{CFL}_G^0(S)=\emptyset\subseteq\{\alpha\}^*.$$

И.Х.

Нека $k \in \mathbb{N}$ и нека $(\forall \omega \in \mathcal{CFL}_G^k(S))(\omega \in \{\alpha\}^*)$. Тоест нека $\mathcal{CFL}_G^k(S) \subseteq \{\alpha\}^*$.

и.с.

Нека $\omega \in \mathcal{CFL}_G^{k+1}(S)$. Тогава от връзката следва, че $\omega \in \{\alpha\} \cdot \mathcal{CFL}_G^k(S) \cup \{\epsilon\}$. Възможи са два случая. Ако $\omega \in \{\epsilon\}$, то $\omega = \alpha^0 \in \{\alpha\}^*$. Ако $\omega \in \{\alpha\} \cdot \mathcal{CFL}_G^k(S)$, то $\omega \in \{\alpha\} \cdot \{\alpha\}^* = \{\alpha\}^+ \subseteq \{\alpha\}^*$. Така получихме, че $\omega \in \{\alpha\}^*$. Обобщаваме и получаваме $(\forall \omega \in \mathcal{CFL}_G^{k+1}(S))(\omega \in \{\alpha\}^*)$.

Заключение:

 $(\forall k \in \mathbb{N})(\forall \omega \in \mathcal{CFL}_G^k(S))(\omega \in \{\alpha\}^*)$. Така от следствивето на индукционни принцип получаваме $\mathcal{CFL}_G(S) \subseteq \{\alpha\}^*$.

Сега ще докажем обратното включване. Тоест $(\forall \omega \in \{\alpha\}^*)(\omega \in \mathcal{CFL}_G(S))$. Понеже $\{\alpha\}^* = \{\alpha^n \mid n \in \mathbb{N}\}$ ще докажем $(\forall n \in \mathbb{N})(\alpha^n \in \mathcal{CFL}_G(S))$. Като вземем предвид, че $\mathcal{CFL}_G(S) = \{\omega \in \Sigma^* \mid S \stackrel{*}{\leadsto} \omega\}$, което е еквивалетно с $(\forall n \in \mathbb{N})(\exists k \in \mathbb{N})(S \stackrel{k}{\leadsto} \alpha^n)$.

База:

Имаме правило $S \to \varepsilon$ следователно $S \stackrel{1}{\leadsto} \alpha^0$. Следователно $\alpha^0 \in \mathcal{CFL}_G(S)$.

и.х.

Нека $n \in \mathbb{N}$ и нека $\alpha^n \in \mathcal{CFL}_G(S)$ т.е. $S \stackrel{*}{\leadsto} \alpha^n$.

и.с.

Щом $S \stackrel{*}{\leadsto} \alpha^n$, то нека $l \in \mathbb{N}$ е такова, че $S \stackrel{l}{\leadsto} \alpha^n$. Имаме правило $S \rightarrow \alpha S$. Следователно $S \stackrel{l+l}{\leadsto} \alpha.\alpha^n$. Така $S \stackrel{l+l}{\leadsto} \alpha^{n+1}$. Следователно $S \stackrel{*}{\leadsto} \alpha^{n+1}$. Следователно $\alpha^{n+1} \in \mathcal{CFL}_G(S)$.

Заключение:

 $(\forall n \in \mathbb{N})(\alpha^n \in \mathcal{CFL}_G(S))$. Следователно $\{\alpha\}^* \subseteq \mathcal{CFL}_G(S)$. Така $\mathcal{CFL}(G) = \mathcal{CFL}_G(S) = \{\alpha\}^*$.

Пример 2. Основен безконтекстен

Нека Σ е азбука. Нека $\alpha, \beta \in \Sigma^*$. Нека $S \notin \Sigma$. Нека $G = \langle \{S\}, \Sigma, S, \{S \to \alpha.S.\beta, S \to \epsilon\} \rangle$. Твърдим, че $\mathcal{CFL}(G) = \{\alpha^n \beta^n \mid n \in \mathbb{N}\}$. Нека $L = \{\alpha^n \beta^n \mid n \in \mathbb{N}\}$. Трябва да покажем $\mathcal{CFL}_G(S) \subseteq L$ и $L \subseteq \mathcal{CFL}_G(S)$.

С индукция ще докажем, че $(\forall k \in \mathbb{N})(\mathcal{CFL}_G^k(S) \subseteq L)$, доказвайки $(\forall k \in \mathbb{N})(\forall \omega \in \mathcal{CFL}_G^k(S))(\omega \in L)$.

Имаме следната рекуретна връзка

$$\begin{split} \mathcal{CFL}_G^0(S) = \emptyset \\ (\forall n \in \mathbb{N}) (\mathcal{CFL}_G^{n+1}(S) = (\{\alpha\} \cdot \mathcal{CFL}_G^n(S) \cdot \{\beta\}) \cup \{\epsilon\}) \end{split}$$

База:

$$\mathcal{CFL}_G^0(S)=\emptyset\subseteq L.$$

и.х.

Нека $k \in \mathbb{N}$ и нека $(\forall \omega \in \mathcal{CFL}_G^k(S))(\omega \in L)$. Тоест нека $\mathcal{CFL}_G^k(S) \subseteq L$.

и.с.

Нека $\omega \in \mathcal{CFL}_G^{k+1}(S)$. Тогава от връзката следва, че $\omega \in (\{\alpha\} \cdot \mathcal{CFL}_G^k(S) \cdot \{\beta\}) \cup \{\epsilon\}$. Възможи са два случая. Ако $\omega \in \{\epsilon\}$, то $\omega = \alpha^0 \beta^0 \in L$. Ако $\omega \in \{\alpha\} \cdot \mathcal{CFL}_G^k(S) \cdot \{\beta\}$, то $\omega \in \{\alpha\} \cdot L \cdot \{\beta\} = \{\alpha^{n+1} \beta^{n+1} \mid n \in \mathbb{N}\} \subseteq L$. Така получихме, че $\omega \in L$. Обобщаваме и получаваме $(\forall \omega \in \mathcal{CFL}_G^{k+1}(S))(\omega \in L)$.

Заключение:

 $(\forall k \in \mathbb{N})(\forall \omega \in \mathcal{CFL}_G^k(S))(\omega \in L)$. Така от следствивето на индукционни принцип получаваме $\mathcal{CFL}_G(S) \subseteq L$.

Сега ще докажем обратното включване. Тоест $(\forall \omega \in L)(\omega \in \mathcal{CFL}_G(S))$.

Понеже $L = \{\alpha^n \beta^n \mid n \in \mathbb{N}\}$ ще докажем $(\forall n \in \mathbb{N})(\alpha^n \beta^n \in \mathcal{CFL}_G(S))$. Като вземем предвид, че $\mathcal{CFL}_G(S) = \{\omega \in \Sigma \mid S \stackrel{*}{\leadsto} \omega\}$, което е еквивалетно с $(\forall n \in \mathbb{N})(\exists k \in \mathbb{N})(S \stackrel{k}{\leadsto} \alpha^n \beta^k)$.

База:

Имаме правило $S \to \varepsilon$ следователно $S \stackrel{1}{\leadsto} \alpha^0 \beta^0$. Следователно $\alpha^0 \beta^0 \in \mathcal{CFL}_G(S)$.

и.х.

Нека $n \in \mathbb{N}$ и нека $\alpha^n \beta^n \in \mathcal{CFL}_G(S)$ т.е. $S \stackrel{*}{\leadsto} \alpha^n \beta^n$.

и.с.

Щом $S \stackrel{*}{\leadsto} \alpha^n \beta^n$, то нека $l \in \mathbb{N}$ е такова, че $S \stackrel{l}{\leadsto} \alpha^n \beta^n$. Имаме правило $S \to \alpha S \beta$. Следователно $S \stackrel{l+l}{\leadsto} \alpha(\alpha^n \beta^n) \beta$. Така $S \stackrel{l+l}{\leadsto} \alpha^{n+1} \beta^{n+1}$. Следователно $S \stackrel{*}{\leadsto} \alpha^{n+1} \beta^{n+1}$. Следователно $\alpha^{n+1} \beta^{n+1} \in \mathcal{CFL}_G(S)$.

Заключение:

$$(\forall n \in \mathbb{N})(\alpha^n \beta^n \in \mathcal{CFL}_G(S))$$
. Следователно $L \subseteq \mathcal{CFL}_G(S)$. Така $\mathcal{CFL}(G) = \mathcal{CFL}_G(S) = L = \{\alpha^n \beta^n \mid n \in \mathbb{N}\}.$

Операции с граматики

Сума на граматики

```
Нека G_1 = \langle \Gamma_1, \Sigma_1, S_1, R_1 \rangle и G_2 = \langle \Gamma_2, \Sigma_2, S_2, R_2 \rangle са КСГ и \Gamma_1 \cap \Gamma_2 = \emptyset. Нека S = \langle \Gamma_1, \Gamma_2 \rangle очевидно S \notin \Gamma_1 \cup \Gamma_2 и G_1 \oplus G_2 := \langle \Gamma_1 \cup \Gamma_2 \cup \{S\}, \ \Sigma_1 \cup \Sigma_2, \ S, \ R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\} \rangle. Тогава \mathcal{CFL}(G_1 \oplus G_2) = \mathcal{CFL}(G_1) \cup \mathcal{CFL}(G_2). G_1 \oplus G_2 е сумата на граматиките G_1 и G_2. Очевидно G_2 \oplus G_1 \neq G_1 \oplus G_2, защото \langle \Gamma_1, \Gamma_2 \rangle \neq \langle \Gamma_2, \Gamma_1 \rangle, но \mathcal{CFL}(G_2 \oplus G_1) = \mathcal{CFL}(G_1 \oplus G_2)!
```

Произведение на граматики

```
Нека G_1 = \langle \Gamma_1, \Sigma_1, S_1, R_1 \rangle и G_2 = \langle \Gamma_2, \Sigma_2, S_2, R_2 \rangle са КСГ и \Gamma_1 \cap \Gamma_2 = \emptyset. 
Нека S = \langle \Gamma_1, \Gamma_2 \rangle очевидно S \notin \Gamma_1 \cup \Gamma_2 и G_1 \odot G_2 := \langle \Gamma_1 \cup \Gamma_2 \cup \{S\}, \ \Sigma_1 \cup \Sigma_2, \ S, \ R_1 \cup R_2 \cup \{S \to S_1S_2\} \rangle. 
Тогава \mathcal{CFL}(G_1 \odot G_2) = \mathcal{CFL}(G_1) \cdot \mathcal{CFL}(G_2). G_1 \odot G_2 е произведението на граматиките G_1 и G_2.
```

Звезда (итерация) на безконтекстна граматика

```
Нега G = \langle \Gamma, \Sigma, S, R \rangle.

Нека P = \Gamma, очевидно P \notin \Gamma.

Нека G^{\circledast} := \langle \Gamma \cup \{P\}, \Sigma, P, R \cup \{P \to S.P, P \to \epsilon\} \rangle.

Тогава \mathcal{CFL}(G^{\circledast}) = \mathcal{CFL}(G)^*.
```

Пример 1

Нека $L = \{a^n.b^k.c^s \mid n \in \mathbb{N} \& k \in \mathbb{N} \& s \in \mathbb{N} \& n+k \leq s\}$. Искаме да покажем, че L е безконтекстен език. За да си цел трябва да построим безконтекстна граматика, която го генерира.

Преди да строим граматика ще изразим L в удобен за генериране вид. Възползваме се от практическото правило, че лесно се правят правила за генерира от вън на вътре!

```
\begin{split} L = & \{a^n.b^k.c^{n+k+t} \mid n \in \mathbb{N} \ \& \ k \in \mathbb{N} \ \& \ t \in \mathbb{N}\} \\ L = & \{a^n.b^k.c^k.c^n.c^t \mid n \in \mathbb{N} \ \& \ k \in \mathbb{N} \ \& \ t \in \mathbb{N}\} \\ L = & \{a^n.b^k.c^k.c^n.\omega \mid n \in \mathbb{N} \ \& \ k \in \mathbb{N} \ \& \ \omega \in \{c\}^*\} \\ L = & \{a^n.(b^k.c^k).c^n \mid n \in \mathbb{N} \ \& \ k \in \mathbb{N}\} \cdot \{c\}^* \end{split} Нека T = & \{a^n.b^k.c^k.c^n \mid n \in \mathbb{N} \ \& \ k \in \mathbb{N}\}. Тогава L = T \cdot \{c\}^*. Нека G_1 = \langle \{A,B\}, \{a,b\}, A, \{A \to aAc, A \to B, B \to bBc, B \to \epsilon\} \rangle. Тогава \mathcal{CFL}_{G_1}(B) = \mathcal{CFL}_{\langle \{B\}, \{b,c\}, B, \{B \to bBc, B \to \epsilon\} \rangle}(B) = \{b^k.c^k \mid k \in \mathbb{N}\}. Така получаваме (\forall n \in \mathbb{N})(\mathcal{CFL}_{G_1}^n(B) = \{b^s.c^s \mid s \in \mathbb{N} \ \& \ s < n\} \subseteq \{b^k.c^k \mid k \in \mathbb{N}\} \subseteq T). \end{split}
```

В сила е следната рекуретна връзка между крайните апроксимации на $\mathcal{CFL}_{G_1}(A).$

$$\mathcal{CFL}^0_{G_1}(A)=\emptyset$$
 $(\forall n\in\mathbb{N})(\mathcal{CFL}^{n+1}_{G_1}(A)=(\{a\}\cdot\mathcal{CFL}^n_{G_1}(A)\cdot\{c\})\cup\mathcal{CFL}^n_{G_1}(B))$ С индукция ще докажем, че $(\forall h\in\mathbb{N})(\mathcal{CFL}^h_{G_1}(A)\subseteq T=\{a^n.b^k.c^k.c^n\mid n\in\mathbb{N}\ \&\ k\in\mathbb{N}\}).$

База:

Имаме $\mathcal{CFL}^0_{G_1}(A) = \emptyset \subseteq T$.

И.Х.

Нека $h \in \mathbb{N}$ и $\mathcal{CFL}_{G_1}^h(A) \subseteq T = \{a^n.b^k.c^k.c^n \mid n \in \mathbb{N} \ \& \ k \in \mathbb{N}\}.$

И.С.

Нека $\omega \in \mathcal{CFL}_{G_1}^{h+1}(A)$. Възможни са два случая.

Случай 1. $\omega \in \{\alpha\} \cdot \mathcal{CFL}_{G_1}^h(A) \cdot \{c\}$

Тогава нека $\beta \in \mathcal{CFL}^h_{G_1}(A)$ и $\omega = \mathfrak{a.\beta.c.}$ От хипотезата получаваме $(\exists n \in \mathbb{N})(\exists k \in \mathbb{N})(\beta = \mathfrak{a}^n.b^k.c^k.c^n)$. Нека тогава $n,k \in \mathbb{N}$ и са такива, че $\beta = \mathfrak{a}^n.b^k.c^k.c^n$. Така $\omega = \mathfrak{a.\beta.c} = \mathfrak{a}^{n+1}.b^k.c^k.c^{n+1} \in \mathsf{T}$.

Случай 2. $\omega \in \mathcal{CFL}^h_{G_1}(B)$

Тогава $\omega \in \{b^k.c^k \mid k \in \mathbb{N}\} \subseteq T$.

Следователно $\omega \in T$ и значи $\mathcal{CFL}_{G_1}^{h+1}(A) \subseteq T.$

Заключение:

 $(\forall k \in \mathbb{N})(\forall \omega \in \mathcal{CFL}_{G_1}^k(A))(\omega \in \mathsf{T})$. Така от следствивето на индукционни принцип получаваме $\mathcal{CFL}_{G_1}(A) \subseteq \mathsf{T}$.

Сега ще покажем обратното включване чрез индукция по дължината на думата (брой букви \mathfrak{a}). Твърдението, което ще докажем е $(\forall n \in \mathbb{N})(\forall k \in \mathbb{N})(\mathfrak{a}^n.b^k.c^k.c^n \in \mathcal{CFL}(G_1)).$

База:

Нека $k \in \mathbb{N}$. Имаме $B \stackrel{k+1}{\leadsto} b^k.c^k$. Имаме правило $A \to B$. Следователно $A \stackrel{1+k+1}{\leadsto} b^k.c^k$. Следователно $a^0.b^k.c^k.c^0 \in \mathcal{CFL}_{G_1}(A)$. Следователно $(\forall k \in \mathbb{N})(a^0.b^k.c^k.c^0 \in \mathcal{CFL}_{G_1}(A))$.

И.Х.

Нека $n \in \mathbb{N}$ и нека $(\forall k \in \mathbb{N})(\alpha^n.b^k.c^k.\alpha^n \in \mathcal{CFL}(G_1)).$

И.С.

Стъпка. Нека $k \in \mathbb{N}$. От хипотезата $\mathfrak{a}^n.\mathfrak{b}^k.\mathfrak{c}^k.\mathfrak{c}^n \in \mathcal{CFL}(\mathsf{G_1})$. Нека тогава $\mathfrak{l} \in \mathbb{N}$ е такова, че $A \stackrel{\mathfrak{l}}{\leadsto} \mathfrak{a}^n.\mathfrak{b}^k.\mathfrak{c}^k.\mathfrak{c}^n$. Имаме правило $A \to \mathfrak{a}A\mathfrak{c}$, следователно $A \stackrel{\mathfrak{l}+\mathfrak{l}}{\leadsto} \mathfrak{a}^{n+1}.\mathfrak{b}^k.\mathfrak{c}^k.\mathfrak{c}^{n+1}$. Следователно $(\forall k \in \mathbb{N})(\mathfrak{a}^{n+1}.\mathfrak{b}^k.\mathfrak{c}^k.\mathfrak{c}^{n+1} \in \mathcal{CFL}(\mathsf{G_1}))$.

Заключение:

$$(\forall n \in \mathbb{N})(\forall k \in \mathbb{N})(a^n.b^k.c^k.c^n \in \mathcal{CFL}(G_1)).$$
 Следователно $\mathsf{T} \subseteq \mathcal{CFL}(G_1)$. Следователно $\mathcal{CFL}(G_1) = \mathsf{T}$.

Конструиране на граматика

Нека
$$G_2=\langle\{C\},\{c\},C,\{C\to cC,\ C\to \epsilon\}\rangle$$
. Тогава $\mathcal{CFL}(G_2)=\{c\}^*$. Нека $G=G_1\odot G_2$. Тогава $\mathcal{CFL}(G)=\mathcal{CFL}(G_1\odot G_2)=\mathcal{CFL}(G_1)\cdot\mathcal{CFL}(G_2)=\mathsf{T}\cdot\{c\}^*=\mathsf{L}$. Следователно L е безконтекстен.

Пример 2

Нека $L = \{a^n.b^k.c^s \mid n \in \mathbb{N} \& k \in \mathbb{N} \& s \in \mathbb{N} \& n+k \geq s\}$. Ще докажем, че L е безконтекстен. Първо ще изразим L в удобен за генериране вид като отново следваме правилото: Лесно се генерира от вън на вътре.

В сила е и следната рекуретна връзка

 $\{a\}^* \cdot \{b\}^* \cdot \{b^k \cdot c^k \mid k \in \mathbb{N}\} = M \subset L$

$$\begin{split} \mathcal{CFL}_G^0(S) = \emptyset \\ (\forall n \in \mathbb{N}) (\mathcal{CFL}_G^{n+1}(S) = \{\alpha\} \cdot \mathcal{CFL}_G^n(S) \cdot \{c\} \cup \mathcal{CFL}_G^n(I)) \end{split}$$

C индукция ще докажем, че $(\forall h \in \mathbb{N})(\mathcal{CFL}_G^h(S) \subseteq L).$

База:

Имаме $\mathcal{CFL}_G^0(S) = \emptyset \subseteq L$.

И.Х.

Нека $h \in \mathbb{N}$ и $\mathcal{CFL}_G^h(S) \subseteq L$.

и.с.

Нека $\omega \in \mathcal{CFL}_G^{h+1}(S)$. Възможни са два случая.

Случай 1.
$$\omega \in \{\alpha\} \cdot \mathcal{CFL}_G^h(S) \cdot \{c\} \subseteq \{\alpha\} \cdot L \cdot \{c\}$$

Но $L = \{a^n.b^k.c^s \mid n \in \mathbb{N} \& k \in \mathbb{N} \& s \in \mathbb{N} \& n+k \geq s\}$ и $\{a\} \cdot L \cdot \{c\} = \{a^{n+1}.b^k.c^{s+1} \mid n \in \mathbb{N} \& k \in \mathbb{N} \& s \in \mathbb{N} \& n+1+k \geq s+1\} \subset L$.

Случай 2. $\omega \in \mathcal{CFL}^h_G(I)$

Тогава $\omega \in M \subseteq L$.

Следователно $\omega \in L$ и значи $\mathcal{CFL}_G^{h+1}(S) \subseteq L.$

Заключение:

 $(\forall k \in \mathbb{N})(\forall \omega \in \mathcal{CFL}_G^k(S))(\omega \in L)$. Така от следствивето на индукционни принцип получаваме $\mathcal{CFL}_G(S) \subseteq L$.

Имаме $L = \{a^n.\omega.c^n \mid n \in \mathbb{N} \& \omega \in M\}$. Сега ще покажем $L \subseteq \mathcal{CFL}_G(S)$) като по индукция докажем $(\forall n \in \mathbb{N})(\forall \omega \in M)(a^n.\omega.c^n \in \mathcal{CFL}_G(S))$.

База.

Нека $\omega \in M$. Тогава $\omega \in \mathcal{CFL}(G_4)$. Нека тогава $k \in \mathbb{N}$ е такова, че $I \overset{k}{\underset{G_4}{\longrightarrow}} \omega$. Тогава $I \overset{k}{\underset{G}{\longrightarrow}} \omega$. Имаме правило $S \to I$. Следователно $S \overset{1+k}{\underset{G}{\longrightarrow}} \omega$.

Следователно $a^0.\omega.c^0 \in \mathcal{CFL}(G)$. Следователно $(\forall \omega \in M)(a^0.\omega.c^0 \in \mathcal{CFL}(G))$.

И.Х.

Нека $n \in \mathbb{N}$ и нека $(\forall \omega \in M)(\alpha^n.\omega.c^n \in \mathcal{CFL}(G)).$

и.с.

```
Нека \omega \in M. От хипотезата \mathfrak{a}^n.\omega.c^n \in \mathcal{CFL}(G). 
Нека тогава j \in \mathbb{N} е такова, че S \overset{j}{\underset{G}{\longleftrightarrow}} \mathfrak{a}^n.\omega.c^n. 
Имаме правило S \to \mathfrak{aSc}, следователно S \overset{j+j}{\underset{G}{\longleftrightarrow}} \mathfrak{a}^{n+1}.\omega.c^{n+1}. 
Следователно (\forall \omega \in M)(\mathfrak{a}^{n+1}.\omega.c^{n+1} \in \mathcal{CFL}(G)).
```

Заключение.

```
(\forall n \in \mathbb{N})(\forall \omega \in M)(\mathfrak{a}^n.\omega.\mathfrak{c}^n \in \mathcal{CFL}_G(S)). Следователно L \subseteq \mathcal{CFL}(G). Значи \mathcal{CFL}(G) = L. Следователно L е безконтекстен.
```

Пример 3

```
Нека L = \{\alpha \# \beta \mid \alpha, \beta \in \{\alpha, b\}^+ \& (\exists i \in \mathbb{N}) (\alpha_i \neq \beta_i) \}. Ще покажем, че L е безконтекстен. Започваме с анализ на езика. 
Нека flip : \{\alpha, b\} \rightarrow \{\alpha, b\} е такава, че flip(\alpha) = b и flip(b) = \alpha.
```

Ако $\alpha, \beta \in \{a, b\}^+$ и $(\exists i \in \mathbb{N})(\alpha_i \neq \beta_i)$, то съществуват $\rho \in \{a, b\}^*$ и $u \in \{a, b\}$ такива, че $\rho.u$ е префикс на α и $\rho.flip(u)$ е префикс на β , тоест има позиция, на която буквите са различни. Но също така е вярно и, че ако $\alpha, \beta \in \{a, b\}^+$ и $(\exists i \in \mathbb{N})(\alpha_i \neq \beta_i)$, то съществуват $\gamma, \omega \in \{a, b\}^*$ и $u \in \{a, b\}$ такива, че $|\gamma| = |\omega|$ и $\gamma.u$ е префикс на α и $\omega.flip(u)$ е префикс на β . Тоест ако α и β са различни думи, то трябва да се различават поне на някоя позиция. Ще го докажем формално. Тоест ще докажем, че $L = \{\alpha\#\beta \mid \alpha, \beta \in \{a, b\}^+ \& \{a, b\}^+ \& (\exists i \in \mathbb{N})(\alpha_i \neq \beta_i)\} = \{(\alpha.u.\gamma\#\beta).flip(u).\omega \mid \alpha, \beta, \gamma, \omega \in \{a, b\}^* \& u \in \{a, b\} \& |\alpha| = |\beta|\}.$

Първо включването ⊆

```
Нека \alpha, \beta \in \{a, b\}^+ и нека (\exists i \in \mathbb{N})(\alpha_i \neq \beta_i). Нека тогава i = \min\{k \in \{1, 2, \dots \min(|\alpha|, |\beta|)\} \mid \alpha_i \neq \beta_i\}. Тогава (\forall j \in \{1, 2, \dots, i-1\})(\alpha_j = \beta_j). Нека тогава \gamma е префикса на \alpha с дължина i-1. Нека означим с x буквата \alpha_i. Тогава нека \rho и \omega са
```

суфиксите на α и β с дължини $|\alpha|-i$ и $|\beta|-i$ съответно. Тогава понеже $x=\alpha_i\neq\beta_i$ и $\beta_i\in\{a,b\}$, то $\beta_i=\mathrm{flip}(x)$. Така $\alpha\#\beta=\gamma.x.\rho\#\gamma.\mathrm{flip}(x).\omega$. Понеже $|\gamma|=|\gamma|$, то $\alpha\#\beta$ е във втория език.

Включването \supseteq

Нека $\alpha, \beta, \gamma, \omega \in \{a, b\}^*$, нека $u \in \{a, b\}$ и нека $|\alpha| = |\beta|$, тогава $|\alpha.u.\gamma| \ge |u| = 1$ и $|\beta.flip(u).\omega| \ge 1$. Следователно $\alpha.u.\gamma$, $\beta.flip(u).\omega \in \{a, b\}^+$. Нека $n = |\alpha| + 1$. Но тогава $(\alpha.u.\gamma)_n = u \ne flip(u) = (\beta.flip(u).\omega)_n$ и $n \in \mathbb{N}$. Следователно $\alpha.u.\gamma\#\beta.flip(u).\omega \in L$.

Схематично са възможни две ситуации за думите от L представен по втория начин.

Фигура 3: Случай $\mathfrak{u}=\mathfrak{a}$

Фигура 4: Случай $\mathfrak{u}=\mathfrak{b}$

Променливата S ще е начална, A и B ще служат за генериране на лявата част на думата, тази в която има някаква връзка и да помним, която буква сме избрали за позицията, в която се различават думите разделени от #. Променливата F ще служи за генериране на дума от $\{a,b\}^*$. Нека $G=\langle \{S,A,B,F,X\}, \{a,b\}, S,R\rangle$, където R е множеството от правила

$$S \rightarrow AbF \mid BaF$$

$$A \rightarrow XAX \mid aF\#$$

$$B \rightarrow XBX \mid bF\#$$

$$X \rightarrow a \mid b$$

$$F \rightarrow XF \mid \epsilon$$

Ясно е, че $\mathcal{CFL}_G(X) = \{a,b\}$ и $\mathcal{CFL}_G(F) = \{a,b\}^*$ също така $\mathcal{CFL}_G^0(X) = \emptyset$ и $(\forall n \in \mathbb{N})(\mathcal{CFL}_G^{n+1}(X) = \{a,b\})$. Нека $\text{var}: \{a,b\} \to \{A,B\}$ е такава, че var(a) = A и var(b) = B. Нека $u \in \{a,b\}$ и нека V = var(u). Ще докажем, че $\mathcal{CFL}_G(V) = \bigcup_{k \in \mathbb{N}} \{a,b\}^k \cdot \{u\} \cdot \{a,b\}^* \cdot \{\#\} \cdot \{a,b\}^k$. Нека $L_V^k = \{a,b\}^k \cdot \{u\} \cdot \{a,b\}^* \cdot \{\#\} \cdot \{a,b\}^k$ и $L_V = \bigcup \{L_V^k \mid k \in \mathbb{N}\}$. По индукция доказваме, че $(\forall n \in \mathbb{N})(\mathcal{CFL}_G^n(V) \subseteq L_V)$. Като ползваме, че $(\forall k \in \mathbb{N})(L_V^k \subseteq L_V)$.

В сила е следната рекуретна връзка

$$\mathcal{CFL}^0_G(V)=\emptyset$$
 $(\forall n\in\mathbb{N})(\mathcal{CFL}^{n+1}_G(V)=(\mathcal{CFL}^n_G(X)\cdot\mathcal{CFL}^n_G(V)\cdot\mathcal{CFL}^n_G(X))\cup(\{u\}\cdot\mathcal{CFL}_G(F)\cdot\{\#\}))$ След заместване получаваме

$$\mathcal{CFL}_G^0(V)=\emptyset$$

$$\mathcal{CFL}_G^1(V)=\emptyset$$

$$(\forall n\in\mathbb{N})(\mathcal{CFL}_G^{n+2}(V)=(\{\alpha,b\}\cdot\mathcal{CFL}_G^{n+1}(V)\cdot\{\alpha,b\})\cup(\{u\}\cdot\mathcal{CFL}_G^{n+1}(F)\cdot\{\#\}))$$
 Правим индукцията.

База.

Нека $n \in \{0, 1\}$. Тогава $\mathcal{CFL}^n_G(V) = \emptyset \subseteq L_V$.

И.Х.

Нека $n \in \mathbb{N}$ и $n \geq 1$. Нека $\mathcal{CFL}_G^n(V) \subseteq L_V$.

И.С.

$$\begin{split} \mathcal{CFL}_G^{n+1}(V) &= \{a,b\} \cdot \mathcal{CFL}_G^n(V) \cdot \{a,b\} \cup \{u\} \cdot \mathcal{CFL}_G^n(F) \cdot \{\#\} \subseteq \\ &\{a,b\} \cdot \left(\bigcup_{k \in \mathbb{N}} \{a,b\}^k \cdot \{u\} \cdot \{a,b\}^* \cdot \{\#\} \cdot \{a,b\}^k \right) \cdot \{a,b\} \cup \{u\} \cdot \{a,b\}^* \cdot \{\#\} \subseteq \\ &\left(\bigcup_{k \in \mathbb{N}} \{a,b\}^{k+1} \cdot \{u\} \cdot \{a,b\}^* \cdot \{\#\} \cdot \{a,b\}^{k+1} \right) \cup \{\epsilon\} \cdot \{u\} \cdot \{a,b\}^* \cdot \{\#\} \cdot \{\epsilon\} \subseteq \\ &L_V \cup L_V^0 \subseteq L_V \cup L_V = L_V. \text{ Следователно } \mathcal{CFL}_G^{n+1}(V) \subseteq L_V. \end{split}$$

Заключение.

 $(\forall n \in \mathbb{N})(\forall \omega \in \mathcal{CFL}_G^n(V))(\omega \in L_V)$. Така от следствивето на индукционни принцип получаваме $\mathcal{CFL}_G(V) \subseteq L_V$.

За да докажем $L_V \subseteq \mathcal{CFL}_G(V)$ по индукция ще докажем, че $(\forall k \in \mathbb{N})(L_V^k \subseteq \mathcal{CFL}_G(V)).$

База.

Тогава
$$L_V^0 = \{a,b\}^0 \cdot \{u\} \cdot \{a,b\}^* \cdot \{\#\} \cdot \{a,b\}^0 = \{u\} \cdot \{a,b\}^* \cdot \{\#\}.$$
 Нека тогава $\omega \in \{a,b\}^*$. Искаме да покажем, че $V \overset{*}{\leadsto} u.\omega.\#$. Но $\omega \in \mathcal{CFL}_G(F)$. Нека тогава $t \in \mathbb{N}$ е такова, че $F \overset{t}{\leadsto} \omega$. Имаме правило $V \to uF\#$. Следователно $V \overset{1+k}{\leadsto} u\omega\#$. Следователно $u\omega\# \in \mathcal{CFL}_G(V)$. Следователно $L_V^0 \subseteq \mathcal{CFL}_G(V)$.

И.Х.

Нека $k \in \mathbb{N}$. Нека $L_V^k \subseteq \mathcal{CFL}_G(V)$.

И.С.

$$\begin{split} \mathsf{L}_V^{k+1} &= \{\mathfrak{a}, \mathfrak{b}\}^{k+1} \cdot \{\mathfrak{u}\} \cdot \{\mathfrak{a}, \mathfrak{b}\}^* \cdot \{\#\} \cdot \{\mathfrak{a}, \mathfrak{b}\}^{k+1} = \{\mathfrak{a}, \mathfrak{b}\} \cdot \mathsf{L}_V^k \cdot \{\mathfrak{a}, \mathfrak{b}\}. \\ &\text{ Нека тогава } \omega \in \mathsf{L}_V^k \text{ и нека } x, y \in \{\mathfrak{a}, \mathfrak{b}\}. \text{ Тогава } x.\omega.y \in \mathsf{L}_V^{k+1}. \\ &\text{ Тогава от И.Х. } \omega \in \mathcal{CFL}_G(V). \text{ Нека тогава } m \in \mathbb{N} \text{ е такова, че } V \overset{\mathfrak{m}}{\leadsto} \omega. \\ &\text{ Но } X \overset{1}{\leadsto} x, y \text{ и имаме правило } V \to XVX. \\ &\text{ Следователно } V \overset{1+\max(1,\mathfrak{m},1)}{\leadsto} x\omega y. \text{ Следователно } x\omega y \in \mathcal{CFL}_G(V). \end{split}$$

Заключение.

$$\begin{split} (\forall k \in \mathbb{N}) (L_V^k \subseteq \mathcal{CFL}_G(V)). \\ & \text{Следователно } L_V = \bigcup_{s \in \mathbb{N}} L_V^s \subseteq \mathcal{CFL}_G(V). \\ & \text{Следователно } \mathcal{CFL}_G(V) = L_V. \\ & \text{Следователно } \mathcal{CFL}_G(A) = \bigcup_{k \in \mathbb{N}} \{a,b\}^k \cdot \{a\} \cdot \{a,b\}^* \cdot \{\#\} \cdot \{a,b\}^k \\ & \text{и } \mathcal{CFL}_G(B) = \bigcup_{k \in \mathbb{N}} \{a,b\}^k \cdot \{b\} \cdot \{a,b\}^* \cdot \{\#\} \cdot \{a,b\}^k. \end{split}$$

В сила е рекурентната връзка.

$$\mathcal{CFL}_G^0(S) = \emptyset$$

$$(\forall n \in \mathbb{N})(\mathcal{CFL}_G^{n+1}(S) = (\mathcal{CFL}_G^n(A) \cdot \{b\} \cdot \mathcal{CFL}_G^n(F)) \cup (\mathcal{CFL}_G^n(B) \cdot \{a\} \cdot \mathcal{CFL}_G^n(F)))$$

```
Диреткно ще покажем, че \mathcal{CFL}_G(S) \subseteq \{(\alpha.u.\gamma\#\beta).\text{flip}(u).\omega \mid \alpha,\beta,\gamma,\omega\in\{a,b\}^* \& u\in\{a,b\} \& |\alpha|=|\beta|\}=L. Нека \omega\in\mathcal{CFL}_G(S). Тогава от основната задача следва, че (\exists n\in\mathbb{N})(\omega\in\mathcal{CFL}_G^n(S)). Нека тогава n\in\mathbb{N} е такова, че \omega\in\mathcal{CFL}_G^n(S). Понеже \mathcal{CFL}_G^0(S)=\emptyset, то n>0. Нека тогава k=n-1. Тогава k\in\mathbb{N} и n=k+1. Тогава u\in\{a,b\},\ V=var(u) и \omega\in\mathcal{CFL}_G^k(V)\cdot\{\text{flip}(u)\}\cdot\mathcal{CFL}_G^k(F). Тогава \omega\in\bigcup_{k\in\mathbb{N}}\{a,b\}^k\cdot\{u\}\cdot\{a,b\}^*\cdot\{\#\}\cdot\{a,b\}^k\}\cdot\{\text{flip}(u)\}\cdot\{a,b\}^* = \{(\alpha.u.\gamma\#\beta).\text{flip}(u).\sigma\mid\alpha,\beta,\gamma,\sigma\in\{a,b\}^* \& |\alpha|=|\beta|\}\subseteq L. След обобщение получаваме (\forall\omega\in\mathcal{CFL}_G(S))(\omega\in L). Следователно \mathcal{CFL}_G(S)\subseteq L.
```

Сега с индукция ще докажем, че $L \subseteq \mathcal{CFL}_G(S)$. Доказвайки $(\forall n \in \mathbb{N})(\forall u \in \{a,b\})(\forall \alpha,\beta,\gamma \in \{a,b\}^*)(|\alpha|=n \Longrightarrow \alpha.u.\beta\#\alpha.flip(u).\gamma \in \mathcal{CFL}_G(S))$. Тоест ще използваме първото наблюдение за думите от L в индукцията понеже там по-лесно се параметризира дължината на думата.

База.

```
Трябва да покажем, че  (\forall u \in \{a,b\})(\forall \beta,\gamma \in \{a,b\}^*)(u\beta\# flip(u)\gamma \in \mathcal{CFL}_G(S)).  Нека u \in \{a,b\}. Нека \beta,\gamma \in \{a,b\}^* = \mathcal{CFL}_G(F).  Нека m,t \in \mathbb{N} са такива, че F \overset{s}{\leadsto} \beta и F \overset{t}{\leadsto} \gamma.  Нека V = var(u). Тогава имаме правило V \to uF\#.  Следователно V \overset{1+s}{\leadsto} u\beta\#.  Имаме правило S \to V.flip(u).F.  Следователно S \overset{1+max(1+s,t)}{\leadsto} (u\beta\#).flip(u).\gamma.  Имаме правило S \to V.flip(u).F.  Следователно U \to U. U \to U.
```

И.Х.

Нека $n \in \mathbb{N}$ и нека

```
(\forall \mathfrak{u} \in \{\mathfrak{a},\mathfrak{b}\})(\forall \alpha,\beta,\gamma \in \{\mathfrak{a},\mathfrak{b}\}^*)(|\alpha|=\mathfrak{n} \implies \alpha.\mathfrak{u}.\beta\#\alpha.\mathsf{flip}(\mathfrak{u}).\gamma \in \mathcal{CFL}_G(S))
```

И.Х.

```
Нека u \in \{a,b\}. Нека \alpha,\beta,\gamma \in \{a,b\}^*. Нека |\alpha|=n+1. Нека тогава y,z \in \mathbb{N} и нека \rho,\xi \in \Sigma^* са такива, че \rho.y=\alpha=z.\xi. Така \alpha.u.\beta\#\alpha.flip(u).\gamma=(z.\xi).u.\beta\#(\rho.y).flip(u).\gamma. Имаме |\xi|=|\rho| и значи \xi.u.\beta\#\in \mathcal{CFL}_G(var(u)). Нека V=var(u) и нека m\in\mathbb{N} е такова, че V\overset{\mathfrak{m}}{\leadsto}\xi.u.\beta\#\rho. Имаме правило V\to XVX и значи V\overset{1+\max(1,m,1)}{\leadsto}z\xi.u.\beta\#\rho.y. Имаме \gamma\in\{a,b\}^*=\mathcal{CFL}_G(F). Нека тогава t\in\mathbb{N} е такова, че F\overset{\mathfrak{t}}{\leadsto}\gamma. Имаме правило S\to V.flip(u).F. Нека h=1+\max(1+\max(1,m),t). Така S\overset{h}{\leadsto}\alpha.u.\beta\#\alpha.flip(u).\gamma=(z.\xi).u.\beta\#(\rho.y).flip(u).\gamma. Следователно \alpha.u.\beta\#\alpha.flip(u).\gamma\in\mathcal{CFL}_G(S).
```

Заключение.

```
От индукцията получаваме (\forall \omega \in L)(\omega \in \mathcal{CFL}_G(S)).
Следователно L \subseteq \mathcal{CFL}_G(S). Следователно \mathcal{CFL}_G(S) = L.
Следователно \mathcal{CFL}(G) = L и значи L е безконтекстен.
```