Feuille d'exercices nº 26 : correction

Exercice 10. Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables aléatoires réelles indépendantes. On suppose que X_i suit une loi de Bernoulli de paramètre p_i . Démontrer que pour tout $\varepsilon > 0$:

$$\lim_{n \to +\infty} P\left(\left| \frac{X_1 + \dots + X_n}{n} - \frac{1}{n} \sum_{i=1}^n p_i \right| < \varepsilon \right) = 1$$

Solution. On pose $Y_n = \frac{X_1 + \dots + X_n}{n}$. Par linéarité : $E(Y_n) = \frac{1}{n} \sum_{i=1}^n p_i$. De plus, par indépendance

$$V(Y_n) = \frac{1}{n^2}V(X_1 + \dots + X_n) = \frac{1}{n^2}(V(X_1) + \dots + V(X_n)) = \frac{1}{n^2}\sum_{i=1}^n p_i(1 - p_i).$$

Soit $\varepsilon>0.$ En appliquant l'inégalité de Bienaymé-Tchebychev :

$$P(|Y_n - E(Y_n)| \ge \varepsilon) \le \frac{V(Y_n)}{\varepsilon^2} \le \frac{1}{n^2 \varepsilon^2} \sum_{i=1}^n 1 = \frac{1}{n\varepsilon^2}$$

car $p_i(1-p_i) \leq 1$. D'après le théorème des gendarmes, la probabilité précédente tend vers 0 donc la probabilité de l'événement complémentaire tend vers 1 *i.e.*

$$\lim_{n \to +\infty} P(|Y_n - E(Y_n)| < \varepsilon) = 1.$$