











# 1. Stav ramennej sústavy po výstavbe VD Gabčíkovo

- Pokles prietokov v pôvodnom koryte odklon do derivačného kanála
- Okamžitá degradácia ramennej sústavy na SK aj HU strane
- Vybudovanie vpustov do ramennej sústavy z derivačného kanála a zablokovanie prepojení s pôvodným korytom



# 1. stav ramennej sústavy po výstavbe VD Gabčíkovo





prehradenia na ramennej sústave





Ramenná sústava na topografických mapách z roku 1955-1961 ( modrá farba) a na ortofotomape z roku 2020 ( žltá farba)

## 2. Hodnotenie zmien

- Porovnanie topografickej mapy z roku 1955-1964
- Hlavne porovnávanie vývoja po spustení VD do prevádzky (po 1992)
  - Ortofotomapa 1995 (Eurosense©),
  - Ortofotomapa 2002 (Eurosense©),
  - Ortofotomapa 2015 (@mapy.cz),
  - Ortofotomapa 2020 (©GKÚ, s RGB a NIR)



### 2. Hodnotenie zmien

- Automatizovaná klasifikácia
- Deep learning pomocou neurónových sietí CNN Unet
  - identifikácia zmien korýt
  - tried zarastania korýt ramennej sústavy (2020):
  - 1 voda
  - 2 trstinové porasty
  - 3 vodné rastliny a makrofyty -rôzne asociácie
  - 4 stromy, 5 vlhkomilné trávy
  - 6 mrtve drevo



## 3. Zmeny 1992-2022 za 30 rokov degradácie

- Zarastanie trstinovými porastmi široké osídľovanie plytkých dien
- Usadzovanie sedimentov hlavne pri prehrádzkach
  - kolmatácia dna, neprirodzené zapĺňanie dien ramennej sústavy
- Zrýchlená degradácia nástup urýchlenej vodnej sukcesie hydrosérie na plytčinách
- Od roku 2018 simulácia záplav so zvýšeným prísunom vody v máji
  - aspoň 60-90 (max 120) m³/sek
- iné zásahy už prebiehajúca revitalizácia ramien Dunajské kriviny (BROZ), revitalizácie prehrádzok (SVP)







# 3. Zmeny 1992-2022 za 30 rokov degradácie

#### 1995 vs 2004

- 1995 zmeny po spustení VD Gabčíkovo
- Ihneď sa prejavuje vysychanie okrajových častí ramennej sústavy
- 2004 prvotné zmeny po povodni 2002 (50-ročná voda)
  - kulminačný prietok 10 170 m³
- Rozširovanie plytčín niektoré z nich sú pôvodné Dunajské ostrovy

#### 2004 vs 2015

- Obmedzené prúdenie v ramennej sústave
- sukcesia do trstinových porastov
- Dočasné obnovenie niektorých ramien

#### 2015 vs 2020

Popri opätovnom náraste trstinových porastov

• zvýšený makrofytov - iniciálne štádium na sedimentačných nánosoch







# 3. Zmeny 1992-2022 za 30 rokov degradácie

Súčasný stav
Ortofotomapa z 2020



### Automatizovaná detekcia zmien



## Automatizovaná detekcia zmien





#### Training data: Principal Component Analysis



#### Three Principal Components



## 4. Diskusia a Záver

- Nutné overenie súčasného stavu akumulácie jemnozrnných sedimentov
  - geofyzikálnym výskumom
- Degradácia ramennej sústavy nastáva:
  - na miestach zvýšenej sedimentácie pred prechádzkami
  - v okrajových častiach ramennej sústavy
  - V pôvodne aktívnych korytách Dunaja kde momentálny prietok nedosahuje takej významnosti – následok úprav pred výstavbou VD
  - Na pôvodných zvyškoch tzv. Dunajských ostrovov











