Utilization and advantages of skeleton modelling in Catia Environment

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF MECHANICAL ENGINEERING

Outline of presentation

- Skeleton modeling,
- Cava module for Catia
- Using Cava in skeleton model,
- MSC Adams/Car,
- Using skeleton model with MSC Adams/Car,
- ► Conclusion.

Skeleton method in CAD

Definition: The CAD skeleton is collection of specifications, which keeps functional characteristic of entire model.

The specification can be:

- Surface geometry,
- Wireframe geometry (Points, lines, planes),
- Parameters and formulas,
- Axis systems.

Skeleton method in CAD

Main advantages of using skeleton modelling are:

- All information in assembly is stored in one placed and transferred trough product structure.
- Every part or subassembly is constrained only to skeleton part. Assembly does not contain unnecessary constrains. Easy replacing of assemblies.
- Mechanical designers involved in design can work individually, all necessary information are stored in shared skeleton part.

Skeleton method in CAD

Where to use skeleton method:

- Mechanical models with different variations of dimensions but same kinematics function (suspensions, engines, boom arms, etc..)
- Mechanical models with shape variations.

Disadvantage of skeleton modeling:

- Skeleton modeling should be used from beginning of design process.
- Making skeleton for one time project is time consuming.

Skeleton method in Catia

Pseudo skeleton

CAVA

TRANSCAT

CATIA V5 AUTOMOTIVE EXTENSIONS VEHICLE ARCHITECTURE

- Overall Vehicle Architecture,
- Manikin,
- Safety,
- Vision,
- Wiper,
- ► Tools.

CAVA advantages

- Can be used through every step of vehicle design,
- Can be helpfull in process of homologization,
- Contains various standards (SAE, ECE,...),
- Fully parametrical,
- Detailed manual.

CAVA

Wheelbase	Front overhang	Rear overhang	Overal lenght	Front track	Rear track
2575 mm	1000 mm	775 mm	4350 mm	1564 mm	1557 mm

Front pneumatics	Rear pneumatics
POTENZA RE050A 225/40 R 18	POTENZA RE050A 255/35 R 19

CAVA Selected analyses

OVA - Static curb

OVA - Crash barriers

OVA - Slope angle

OVA - Lamp position

CAVA Selected analyses

OVA - Number plates

OVA - Wheel covering

OVA - Side impact

OVA - TCD device

CAVA Selected analyses

Vision - Plan view

Vision - Close range visibility

Vision - CAVA mirror

Vision - Direct view 3D

Using CAVA in skeleton model

Using CAVA in skeleton model

Skeleton model of double wishbone suspension

Skeleton model of double wishbone suspension **Topology variations** f_x 304.4 1 Points\Left points\hpl lca front\X(mm) 2 Points\Left points\hpl Ica front\Y(mm) -400 -400 -281 3 Points\Left points\hpl lca front\Z(mm) 4 Points\Left points\hpl Ica outer\X(mm) -4,67 5 Points\Left points\hpl lca outer\Y(mm) -750 -750 -820,24 200 6 Points\Left points\hpl lca outer\Z(mm) -200 106,94 200 7 Points\Left points\hpl Ica rear\X(mm) 295,6 Design table in Excel file -450 -450 8 Points\Left points\hpl Ica rear\Y(mm) -281 -145 9 Points\Left points\hpl lca rear\Z(mm) 10 Points\Left points\hpl uca outer\X(mm) 40 8,7 -675 -675 -789,5 11 Points\Left points\hpl uca outer\Y(mm) 12 Points\Left points\hpl uca outer\Z(mm) 225 199,3 13 Points\Left points\hpl uca rear\X(mm) 284,5 -490 -490 14 Points\Left points\hpl uca rear\Y(mm) -406 15 Points\Left points\hpl uca rear\Z(mm) 16 Points\Left points\hpl uca front\X(mm) 100 -365-450 -450 17 Points\Left points\hpl uca front\Y(mm) -406 18 Points\Left points\hpl uca front\Z(mm) CATIA V5 - [vehicle.CATProduct] 19 Points\Left points\hpl tierod outer\X(mm) ENOVIA V5 VPM Eile Edit Yiew Insert Tools Analyze Window Geomagic Help 20 Points\Left points\hpl tierod outer\Y (mm) -750 21 Points\Left_points\hpl_tierod_outer\Z(mm) 🛼 CAVA_PK01 (Cava main skeleton) 22 Points\Left points\hpl tierod inner\X(mm) riadenie (riadenie 1) 23 Points\Left_points\hpl_tierod_inner\Y (mm) naprava_p (naprava_p.1) 24 Points\Left points\hpl tierod inner\Z(mm) 25 Points\Left points\hpl wheel centre\X(mm) 26 Points\Left points\hpl wheel centre\Y(mm) 27 Points\Left_points\hpl_wheel_centre\Z(mm) 28 Points\Left points\hpl top mount\X(mm) 29 Points\Left_points\hpl_top_mount\Y (mm) 30 Points\Left points\hpl top mount\Z(mm) **6** 31 Points\Left_points\hpl_lwr_strut_mount\X (mm) 图 多 中 仓 八 向 阳 中 园 谷 -600 32 Points\Left points\hpl | Iwr strut mount\Y (mm) H ← ▶ H Hárok1 / 📜

Select an object or a command

Skeleton model of vehicle

Changing suspension type

Part of software package:

- Adams/View,
- Adams/Car,
- Adams/Chassis,
- Adams/Driveline,
- Adams/Solver,
- Adams/Postprocessor,
- Adams/Flex,
- Adams/Insight.

Procedure of vehicle creation

Template: basic block of vehicle; it defines basic topology of vehicle component, properties of parts, geometry of parts, used types of joint. It cannot be used directly in simulations.

Subsystem: based on template. One template can be used by multiple subsystems. In subsystems it is possible to alter some parametrical values, change properties of spring, dampers, modification of behaviour of vehicle component is not possible.

Assembly: collection of subsystems, which together compose valid suspension or full vehicle assembly. Both types of assemblies have prescribed minimum necessary types and number of subsystem

MSC Adams/Car Suspension assembly Suspension assembly Virtual stend Suspension **Steering** Other

Full vehicle assembly

Template of double wishbone suspension in Adams/Car

Skeleton of double wishbone suspension

Template of double wishbone suspension in Adams/Car

Skeleton of double wishbone suspension

Transfer of data between Catia and Adams/Car

Manual transfer: Directly in Adams/Car, by mouse and menus.

Automatic transfer: By macro in Adams/Car.

Katona, S.: Parametrický model nápravy MacPherson, Strojnícka fakulta, STU v Ba, 2014

Takács, J.: Parametrický model viacprvkového zav<mark>esenia</mark> nápravy automobilu, Strojnícka fakulta, STU v Ba, **2014**

Kiripolský, T.: Parametrický model lichobežníkov<mark>ej nápravy</mark> automobilu, Strojnícka fakulta, STU v Ba, 2014

Šimurka, D.: Parametrický model hrebeňového riadenia automobilu, Strojnícka fakulta, STU v Ba, 2014

Change of Cardan joint position

Change of pinion position on rack

Change of pinion parameters

Thank you for your attention

