Matematikai statisztika

October 6, 2024

Tartalom

1	Előa	dás			
	1.1	A statisztika fogalma és ágai			
	1.2	Leíró statisztika alapfogalmak			
	1.3	Csoportosítások, adatok fajtái			
	1.4	Viszonyszámok			
2	Előadás				
	2.1	Tapasztalati eloszlás			
	2.2	Középértékek számítása			
	2.3	Tapasztalati kvantilisek számítása			
	2.4	Nevezetes kvantilisek			
	2.5	Szóródási mutatók számítása			
	2.6	Alakmutatók számítása			
3	Előa	ndás S			
	3.1	Statisztikai mező			
	3.2	Minták típusai			
	3.3	Eloszláscsaládok			
	3.4	Tapasztalati momentumok			
	3.5	Tapasztalati szórásnégyzet			
4	Előa	ndás 13			
	4.1	Becsléselmélet			
	4.2	Likelihood egyenlet			
	4.3	Indikátor példa			
	4.4	Poisson példa			
	4.5	Becslések tulajdonságai			
	4.6	Hatásos becslés egyértelműsége			
	4.7	Mennyi információt hordoz a statisztika			
	4.8	Elégséges statisztika			
	4.9	Elégséges statisztika diszkrét minta esetén			
	4.10	Feltételes várható érték			
	4.11	Indikátor példa			
		Nevman-féle faktorizációs 16			

4.13	Poisson példa	16
4.14	Elégséges statisztika általában	17
4.15	Abszolút folytonos eset	17
4.16	Példa normális eloszlásra	18
4.17	Pédla egyenletes eloszlásra	18
4.18	Maximum likelihood becslés	19
4.19	momentum módszer	19

1.1 A statisztika fogalma és ágai

Statisztika: a valóság tömör, számszerű jellemzésére szolgáló tudományos módszertan, illetve gyakorlati tevékenység. Ágai:

- 1. **Leíró statisztika**: magába foglalja az információk összegyűjtését, összegzését, ábrázolását, tömör, számszerű jellemzését szolgáló módszereket
- 2. **Matematikai statisztika**: matematikai tudomány, adatok feldolgozásáról, érteémezéséről és felhasználásáról szóló tudományos módszertan

1.2 Leíró statisztika alapfogalmak

Statisztikai egység: a statisztikai vizsgálat tárgyát képező egyed.

Statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége, halmaza.

Statisztikai adat: valamely sokaság elemeinek száma vagy a sokaság valamilyen másféle számszerű jellemzője, mérési eredmény.

Statisztikai ismérv: a sokaság egyedeit jellemző tulajdonság.

Ismérvváltozatok: az ismérvek lehetséges kimenetelei.

Minta: a sokaság véges számosságú részhalmaza.

Statisztikai következtetés: a valóságban a teljes sokaságot nem tudjuk vagy akarjuk megfigyelni, ezért csak az egyedek egy szűkebb csoportját figyeljük meg. A viszonylag kisszámú egyedre vonatkozó információk alapján szeretnénk a teljes sokaság egészére, egyes jellemzőire, tulajdonságaira érvényes következtetéseket kimondani.

Példa:

Sokaság	most a teremben lévő homo sapiensek
Statisztikai egység	a teremben lévő oktató
Adat	a legmagasabb hallgató testtömegindexe
Ismérv	nem
Ismérvváltozatok	férfi, nő
Minta	5 véleténül választott hallgató

1.3 Csoportosítások, adatok fajtái

Sokaságok csoportosítása:

- 1. A sokaság egységeinek megkülönböztethetősége szerint:
 - diszkrét: a sokaság egységei elkülönülnek egymástól
 - folytonos: a sokaság egységeit nem tudjuk természetes módon elkülöníteni
- 2. A sokaság időpontra vagy időtartamra értelmezhető-e:
 - álló: csak egy adott időpontra értelmezhető

- mozgó: csak egy adott időtartamra értelmezhető
- 3. A sokaság számossága szerint:
 - véges
 - végtelen

A statisztikai adatok fajtái:

- 1. alapadatok: közvetlenül a sokaságból származnak
- 2. leszármaztatott adatok: alapadatokból műveletek eredményeként adódnak

Az ismérvek típusai:

- 1. minőségi: az egyedek számszerűen nem mérhető tulajdonsága
- 2. mennyiségi: az egyedek számszerűen mérhető tulajdonsága (diszkrét, folytonos)
- 3. időbeli: az egységek időbeli elhelyezésére szolgáló rendezőelvek
- 4. területi: az egységek térbeli elhelyezésére szolgáló rendezőelvek
- 5. közös: tulajdonságok, amik szerint a sokaság egyedei egyformák
- 6. megkülönböztető: azok a tulajdonságok, amik szerint a sokaság egyedei különböznek egymástól

Mérési skálák

- 1. nominális: kódszámok a sokaság egyedeinek azonosítására, pl. utasok neme
- 2. ordinális: valamely tulajdonság alapján való sorbarendezés, pl. az utasosztályok
- 3. intervallumskála: a skálaértékek különbségei is valós információt adnak a sokaság egyedeiről. A skálán a nullpont meghatározása önkényes. Ilyen skálákhoz mértékegység is tartozik. pl. hőmérséklet
- 4. a skálának van valódi nullpontja is. Minden matematikai művelet elvégezhető ezekkel a számokkal. pl. kor, jegy ára

Statisztikai sor: a sokaság egyes jellemzőinek felsorolása. Az ismérvek fajtája szerint beszélhetünk minőségi, mennyiségi, időbeli és területi sorokról.

- 1. Csoportosító sor: a sokaság egy megkülönböztető ismérv szerinti osztályozásának eredménye; az adatok összegezhetők
- 2. Osszehasonlító sor: a sokaság egy részének a sokaságot egy megkülönböztető ismérv szerinti osztályozásának eredménye; az adatok nem összegezhetők
- 3. Leíró sor: különböző fajta, gyakran eltérő mértékegységű statisztikai adatokat tartalmaz **Statisztikai tábla**: a statisztikai sorok összefüggő rendszere.
 - 1. Egyszerű tábla: nem tartalmaz csoportosítást, nincs benne összegző sor
 - 2. Csoportosító tábla: egyetlen csoportosító sort tartalmaz
 - 3. Kombinációs tábla vagy kontingenciatábla vagy kereszttábla: legalább két csoportosító sort tartalmaz

1.4 Viszonyszámok

A statisztikai elemzések egyik legfontosabb eszközei a viszonyszámok (alias: indikátorok). A viszonyszám két statisztikai adat hányadosa. Jelölések:

$$V = \frac{A}{B}$$

ahol V: viszonyszám; A: a viszonyítás tárgya; B: a viszonyítás alapja.

A viszonyítás fajtái:

- 1. megoszlási: a sokaság egy részének a sokaság egészéhez való viszonyítása
- 2. koordinációs: a sokaság egy részének a sokaság egy másik részéhez való viszonyítása
- 3. dinamikus: két idopont vagy időszak adatának hányadosa
- 4. intenzitási: különböző fajta adatok viszonyítása egymáshoz; gyakran a mértékegységük is eltérő

2.1 Tapasztalati eloszlás

Tapasztalati eloszlás: minden megfigyeléshez azonos, $\frac{1}{n}$ súlyt rendelünk. Ez egy diszkrét eloszlás.

Tapasztalati eloszlásfüggvény: a tapasztalati eloszlás eloszlásfüggvénye. Ez egy tiszta ugrófüggvény, értéke minden mintaelem helyén $\frac{1}{n}$ nagyságot ugrik felfelé. A tapasztalati eloszlásfüggvény az x helyen:

$$\frac{I(x_1 < x) + I(x_2 < x) + \dots + I(x_n < n)}{n} = \frac{\sum_{i=1}^n I(x_i < x)}{n}.$$

Azt mutatja meg, hogy a mintaelemek hányad része kisebb x-nél.

2.2 Középértékek számítása

Adott az n elemű $\underline{x} = (x_1, \ldots, x_n)$ tapasztalati minta; osztályközös gyakorisági sor esetén k jelöli az osztályok számát, x_i az ösztályközepeket, f_i pedig a gyakoriságokat.

Mintaátlag: az adatok átlagos értéke.

- számítása közvetlenül az adatokból: $\bar{x} = \frac{x_1 + \dots + x_n}{n}$
- számítása osztályközös gyakorisági sorból: $\bar{x} = \frac{f_1 x_1 + \dots + f_k x_k}{n}$

Módusz: a legtöbbször előforduló ismérvérték. Számítása osztályközös gyakorisági sorból:

$$Mo = x_{mo, a} + \frac{d_a}{d_a + d_f} \cdot h_{mo}$$

- a móduszt tartalmazó osztályköz (MTO): amelyikben egységnyi osztályköz hosszra a legnagyobb gyakoriság jut
- $x_{mo,a}$: a MTO alsó értéke
- h_{mo} : a MTO hossza
- d_a : a MTO korrigált gyakorisága mínusz a móduszt közvetlenül megelőző osztályköz korrigált gyakorisága
- d_f : a MTO korrigált gyakorisága mínusz a móduszt közvetlenül követő osztályköz korrigált gyakorisága

Jelölje $x_1^* \leq x_2^* \leq \cdots \leq x_n^*$ a rendezett tapasztalati mintát.

Medián: azon ismérvérték, amelynél ugyanannyi kisebb vagy egyenlő, mint nagyobb vagy egyenlő ismérvérték fordul elő a mintában. Számítása közvetlenül az adatokból:

$$Me = \begin{cases} x_{\frac{n+1}{2}}^* & \text{ha n páratlan} \\ \frac{x_{\frac{n}{2}}^* + x_{\frac{n}{2}+1}^*}{2} & \text{ha n páros} \end{cases}$$

Számítása osztályközös gyakorisági sorból - két lépésben lineáris interpolációval:

1. Melyik osztályközben van a medián: azon i, amire $f'_{i-1} \leq \frac{n}{2}$ és $f'_i \geq \frac{n}{2}$

2. Me =
$$x_{i,a} + \frac{\frac{n}{2} - f'_{i-1}}{f_i} \cdot h_i$$
, ahol

- $x_{i,a}$: a mediánt tartalmazó osztályköz alsó értéke
- h_i : a mediánt tartalmazó osztályköz hossza
- f_{i-1}' : a mediánt közvetlenül megelőző osztályköz kumulált gyakorisága
- f_i : a mediánt tartalmazó osztályköz gyakorisága

2.3 Tapasztalati kvantilisek számítása

Tapasztalati y-kvantilis: azon ismérvérték, amelynél a mintaelemek y-ad része kisebb vagy egyenlő, míg (1 - y)-ad része nagyobb vagy egyenlő, 0 < y < 1.

Számítása nem egyértelmű, mi mindig az egyik interpolációs módszert alkalmazzuk két lépésben:

- 1. hányadik mintaelem a keresett kvantilis \rightarrow sorszám: s := (n+1)y
- lineáris interpolációval a kvantilis kiszámítása Számítása közvetlenül az adatokból:
 - sorszám: s = e + t (egész + törtrész)
 - $q_y = x_e^* + t(x_{e+1}^* x_e^*)$

Számítása osztályközös gyakorisági sorból:

- melyik osztályközben van az s-edik elem: jelölje ezt i, azaz $f'_{i-1} \leq s$ és $f'_i \geq s$
- $q_y = x_{i,a} + \frac{s f'_{i-1}}{f_i} \cdot h_i$, ahol a szimbólumok ugyanazokat jelöli, mint az előbbiekben

2.4 Nevezetes kvantilisek

A szakirodalomban a tapasztalati és az elméleti értékek között nem tesznek különbséget, mindegyiket nagybetűvel írják. Jelölje q_y a tapasztalati y-kvantilist.

- tercilisek: $T_1 = q_{\frac{1}{3}}, T_2 = q_{\frac{2}{3}}$
- kvartilisek: $\mathbf{Q}_1 = q_{\frac{1}{4}}, \ \mathbf{Q}_2 = \mathrm{Me} = q_{\frac{2}{4}}, \ \mathbf{Q}_3 = q_{\frac{3}{4}}$
- kvintilisek: $K_i = q_{\frac{i}{5}} \quad (i = 1, \ldots, 4)$
- decilisek: $D_i = q_{\frac{i}{10}}$ (i = 1, ..., 9)
- percentilisek: $P_i = q_{\frac{i}{100}}$ $(i = 1, \ldots, 99)$

2.5 Szóródási mutatók számítása

Terjedelem: $R = x_n^* - x_1^*$

Interkvantilis terjedelem: $IQR = \mathbf{Q}_3 - \mathbf{Q}_1$

Tapasztalati szórás:

- számítása közvetlenül adatokból: $s_n = \sqrt{\frac{(x_1 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n}}$

• számítása osztályközös gyakorisági sorból: $s_n = \sqrt{\frac{f_1(x_1-\bar{x})^2+\cdots+f_k(x_k-\bar{x})^2}{n}}$

Korrigált tapasztalati szórás:

- számítása közvetlenül adatokból: $s_n^* = \sqrt{\frac{(x_1 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n-1}}$

• számítása osztályközös gyakorisági sorból: $s_n^* = \sqrt{\frac{f_1(x_1-\bar{x})^2+\cdots+f_k(x_k-\bar{x})^2}{n-1}}$

Relatív szórás vagy szórási együttható:

$$V = \frac{s_n^*}{\bar{x}} \text{ vagy } V = \frac{s_n}{\bar{x}}.$$

2.6 Alakmutatók számítása

A szórást ezeknél is választhatjuk a tapasztalati vagy a korrigált tapasztalati szórásnak egyaránt.

Tapasztalati ferdeség:

- számítása közvetlenül az adatokból: $\frac{(x_1-\bar{x})^3+\cdots+(x_n-\bar{x})^3}{(s_n)^3}$
- számítása osztályközös gyakorisági sorból: $\frac{f_1(x_1-\bar{x})^3+\cdots+f_k(x_k-\bar{x})^3}{(s_n)^3}$

Tapasztalati csúcsosság:

- számítása közvetlenül az adatokból: $\frac{(x_1-\bar{x})^4+\cdots+(x_n-\bar{x})^4}{(s_n)^4}-3$
- számítása osztályközös gyakorisági sorból: $\frac{f_1(x_1-\bar x)^4+\cdots+f_k(x_k-\bar x)^4}{(s_n)^4}-3$

8

3.1 Statisztikai mező

 $(\Omega, \mathcal{A}, P_{\theta}), \theta \in \Theta$ statisztikai mező, ha Θ paraméterhalmaz és $(\Omega, \mathcal{A}, P_{\theta})$ minden paraméter esetén valószínűségi mező.

Definíció.

$$\underline{\xi} = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} : \Omega \to \mathcal{X} \subseteq \mathbb{R}^n$$

valószínűségi vektorváltozót mintának nevezzük.
 n: mintanagyság, ξ_i :
 i. minta
elem.

Definíció. Minta realizációja

$$\underline{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

a konkrét megfigyelt számsorozat.

Definíció. Legyen $\underline{\xi}:\Omega\to\mathbb{R}^n$ minta. Ekkor $\mathcal{X}:=\mathcal{R}_{\underline{\xi}}$. A minta lehetséges értékeinek halmaza. Elemei a mintaértékek.

- n-elemű valós értékű minta esetén: $\mathcal{X} = \mathbb{R}^n$
- n-elemű pozitív egész értékű minta esetén: $\mathcal{X} = \mathbb{N}^n$

3.2 Minták típusai

- Független minta: a mintaelemek függetlenek.
- Független azonos eloszlású minta: a mintaelemek független és azonos eloszlásúak.
- Diszkrét minta: a mintaelemek diszkrétek.
- Abszolút folytonos eloszlású minta: a mintaelemek abszolút folytonosak.

3.3 Eloszláscsaládok

Legyen adott egy $(\Omega, \mathcal{A}, P_{\theta})$ statisztikai mező és $\underline{\xi}: \Omega \to \mathbb{R}^n$ minta. Ekkor legyen a minta eloszlásfüggvénye adott $\theta \in \Theta$ mellett $F_{\theta}: \mathbb{R}^n \to \mathbb{R}$, ahol

$$F_{\theta}(\mathbf{s}) := P_{\theta}(\xi_1 < s_1, \ldots, \xi_n < s_n) \quad (\mathbf{s} \in \mathbb{R}^n).$$

9

Független minta esetén:

$$F_{\theta}(\mathbf{s}) = \prod_{i=1}^{n} P_{\theta}(\xi_i < s_i) \quad (\mathbf{s} \in \mathbb{R}^n).$$

Jelölések:

- E_{θ} : várható érték P_{θ} esetén;
- D_{θ} : szórás P_{θ} esetén;
- f_{θ} sűrűségfüggvény P_{θ} esetén
- $p_{\theta}(s) = P_{\theta}(\xi_i = s), i = 1, ..., n$ diszkrét minta

Definíció. Egy minta függvényét statisztikának nevezzük:

$$T: \mathcal{X} \to \mathbb{R}^k$$
.

Def':: Statisztika:

$$T(\xi)$$
, ha $T: \mathcal{X} \to \mathbb{R}^k$ függvény.

3.4 Tapasztalati momentumok

 $\mathcal{X} = \mathbb{R}^n$

mintaközép:

$$T(\mathbf{x}) = \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}, \quad T(\xi) = \overline{\xi} = \frac{\sum_{i=1}^{n} \xi_i}{n},$$

tapasztalati k. momentum:

$$T(\mathbf{x}) = \frac{\sum_{i=1}^{n} x_i^k}{n}, \quad T(\xi) = \frac{\sum_{i=1}^{n} \xi_i^k}{n}.$$

3.5 Tapasztalati szórásnégyzet

 $\mathcal{X} = \mathbb{R}^n$

$$T(\mathbf{x}) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n},$$

$$T(\xi) = s^2 = \frac{\sum_{i=1}^n (\xi_i - \overline{\xi})^2}{n},$$

4.1 Becsléselmélet

A minta eloszlásának ismeretlen paraméterét közelítjük a minta függvényével.

Becslőfüggvény: $\hat{\theta}: \mathcal{X} \to \Theta$.

Becslés: $\hat{\theta}(\xi)$.

Definíció. A $\underline{\xi} = (\xi_1, \ldots, \xi_n) : \Omega \to \mathbb{R}^n$ független, azonos eloszlású minta likelihood függvénye $L : \mathcal{X} \times \Theta \to \mathbb{R}$, ahol

$$L(\mathbf{x}, \theta) \begin{cases} P_{\theta}(\underline{\xi} = \mathbf{x}) = \prod_{i=1}^{n} P_{\theta}(\xi_{i} = \xi_{i}) & \text{diszkr\'et minta eset\'en} \\ f_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} f_{\theta}(x_{i}) & \text{abszol\'ut folytonos minta eset\'en} \end{cases}$$

ahol f_{θ} , ξ_i sűrűségfüggvénye.

$$l(\mathbf{x}, \theta) = \ln L(\mathbf{x}, \theta)$$

a loglikelihood függvény.

Egy $\hat{\theta} \in \Theta$ maximum likelihood becslése, ha

$$L(\xi, \, \hat{\theta}) = \max_{\theta \in \Theta} L(\xi, \, \theta).$$

4.2 Likelihood egyenlet

Gyakran a loglikelihood függvény maximumhelyét keresik a

$$\partial_{\theta}l(\mathbf{x},\,\theta)=0$$

egyenletet (vagy egyenletrendszert) megoldva. Ez diszkrét minta esetén a

$$\sum_{i=1}^{n} \partial_{\theta} \ln P_{\theta}(\xi_i = x_i) = 0$$

egyenlet (vagy egyenletrendszert) jelenti. Abszolút folytonos minta esetén

$$\sum_{i=1}^{n} \partial_{\theta} \ln P_{\theta}(\xi_i = x_i) = 0.$$

4.3 Indikátor példa

$$L(\mathbf{x}, p) = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i},$$

$$l(\mathbf{x}, p) = \ln L(\mathbf{x}, p) = \left(\sum_{i=1}^{n} x_i\right) \ln p + \left(n - \sum_{i=1}^{n} x_i\right) \ln(1-p).$$

Likelihood egyenlet:

$$\partial_p l(\mathbf{x}, p) = \left(\sum_{i=1}^n x_i\right) \frac{1}{p} - \left(n - \sum_{i=1}^n x_i\right) \frac{1}{1-p} = 0.$$

Ennek megoldása:

$$p = \frac{\sum_{i=1}^{n} x_i}{n}.$$

4.4 Poisson példa

Tegyük fel, hogy $\eta_1, \ldots, \eta_n \sim \text{Poisson}(\lambda)$. Ekkor

$$L(\underline{k}, \lambda) = P_{\lambda}(\eta_{1} = k_{1}, \dots, \eta_{n} = k_{n}) =$$

$$\prod_{i=1}^{n} \frac{\lambda^{k_{i}} e^{-\lambda}}{k_{i}!} = \left(\prod_{i=1}^{n} \frac{1}{k_{i}!}\right) \cdot \left(\prod_{i=1}^{n} \lambda^{k_{i}} e^{-\lambda}\right) = \left(\prod_{i=1}^{n} \frac{1}{k_{i}!}\right) \cdot \left(\lambda^{\sum_{i=1}^{n} k_{i}} e^{-n\lambda}\right)$$

$$l(\underline{k}, \lambda) = \ln L(\underline{k}, \lambda) = \left(\sum_{i=1}^{n} \ln\left(\frac{1}{k_{i}!}\right)\right) + \left(\sum_{i=1}^{n} k_{i}\right) \ln \lambda - n\lambda$$

$$\partial_{\lambda} l(\underline{k}, \lambda) = \frac{\sum_{i=1}^{n} k_{i}}{\lambda} - n = 0 \iff \lambda = \frac{\sum_{i=1}^{n} k_{i}}{n}$$

4.5 Becslések tulajdonságai

Definíció. A paraméter $\hat{\theta}(\xi)$ becslése torzítatlan, ha

$$E_{\theta}(\hat{\theta}(\xi)) = \theta \quad (\theta \in \Theta).$$

Konzisztencia: $\hat{\theta}(\xi) \to \theta$ sztochasztikusan $(n \to \infty)$. Elégséges feltétel: $E_{\theta}(\hat{\theta}_n(\xi)) \to \theta$ és $D_{\theta}^2(\hat{\theta}_n(\xi)) \to 0$

Definíció. Torzítatlan beclésekre: T_1 hatásosabb becslése $h(\Theta)$ -nak a T_2 -nél, ha

$$D_{\theta}^{2}(T_{1}(X)) < D_{\theta}^{2}(T_{2}(X))$$

teljesül minden θ paraméterekre.

ÁTtorzítatlan becslés hatásos, ha minden más torzítatlan becslésnél hatásosabb. Átlagos négyzetes eltérés:

$$E_{\theta}(T(\underline{X}) - \theta)^2$$

- 4.6 Hatásos becslés egyértelműsége
- 4.7 Mennyi információt hordoz a statisztika

Hatásos becslés egyértelműsége

Áll.: Amennyiben T_1 és T_2 hatásos becslései $h(\theta)$ -nak, akkor 1 valószínűséggel megegyeznek minden lehetséges paraméter esetén.

$$\begin{split} E_{\theta}T_{1} &= E_{\theta}T_{2} = h(\theta), \text{tov\'abb\'a} \ D_{\theta}T_{1} = D_{\theta}T_{2}. \ \text{Ebb\'a} \\ D_{\theta}^{2}(T_{1}) &\leq D_{\theta}^{2}\bigg(\frac{T_{1} + T_{2}}{2}\bigg) = \frac{D_{\theta}^{2}(T_{1}) + 2\operatorname{cov}(T_{1}, T_{2}) + D_{\theta}^{2}(T_{2})}{4} = \frac{D_{\theta}^{2}(T_{1}) + \operatorname{cov}(T_{1}, T_{2})}{2} \Rightarrow \\ D_{\theta}^{2}(T_{1}) &\leq \operatorname{cov}(T_{1}, T_{2}) = D_{\theta}T_{1} \square D_{\theta}T_{2} \square R(T_{1}, T_{2}) = D_{\theta}^{2}(T_{1}) \square R(T_{1}, T_{2}) \leq D_{\theta}^{2}(T_{1}) \Rightarrow \\ D_{\theta}^{2}(T_{1}) &= D_{\theta}^{2}(T_{2}) = \operatorname{cov}(T_{1}, T_{2}) \Rightarrow D_{\theta}^{2}(T_{1} - T_{2}) = D_{\theta}^{2}(T_{1}) - 2\operatorname{cov}(T_{1}, T_{2}) + D_{\theta}^{2}(T_{2}) = 0. \\ \operatorname{fgy} E_{\theta}(T_{1} = T_{2}) &= 1 \ \forall \ \theta \in \Theta. \end{split}$$

Mennyi információt hordoz a statisztika?

Példa: $\xi_1,...,\xi_n$ független N(m,1) minta. Ekkor

$$\overline{\xi} = \frac{\sum_{i=1}^{n} \xi_i}{n} \sim N(m, \frac{1}{n}) \text{ eloszlású (függ } m\text{-től!}),$$

miközben

$$s^{2} = \frac{\sum_{i=1}^{n} (\xi_{i} - \overline{\xi})^{2}}{n}$$
 eloszlása nem függ *m*-től!

- 4.8 Elégséges statisztika
- 4.9 Elégséges statisztika diszkrét minta esetén

Elégséges statisztika

- Minden információt (ugyanannyit mint az eredeti minta) tartalmaz az ismeretlen paraméterre vonatkozóan.
- "Elég" az ő értékét ismerni.
- Ismeretében már "nincs bizonytalanság" a mintában (úgy értve, hogy egyértelmű a minta eloszlása, már nem függ az ismeretlen paramétertől).

Elégséges statisztika diszkrét minta esetén

Def.: A diszkrét ξ mintából képzett $T(\xi)$ statisztika elégséges θ —ra, ha a $P_{\theta}(\xi = \mathbf{x}|T(\xi) = t)$ feltételes valószínűség nem függ θ —tól

4.10 Feltételes várható érték

4.11 Indikátor példa

Feltételes várható érték

Legyenek X és Y diszkrét val. változók.

E(X|Y) az a val. változó, ami az $Y = y_k$ eseményen az $E(X|Y = y_k)$ értéket veszi fel.

Tulajdonságok:

- Ha $X \ge 0$, akkor $E(X|Y) \ge 0$
- E(E(X|Y)) = EX (a teljes várható érték tételének általánosítasa)
- Ha X_1, X_2 várható értéke véges, akkor $E(c_1X_1 + c_2X_2|Y) = c_1E(X_1|Y) + c_2E(X_2|Y)$
- Ha X független Y –tól, akkor E(X|Y) = E(X)
- Ha X és h(Y) várható értéke véges, akkor E(h(Y)X|Y) = h(Y)E(X|Y)
- Teljes szórásnégyzet tétele:

$$D^{2}(X) = D^{2}(E(X|Y)) + E(D^{2}(X|Y))$$

Példa (indikátor minta)

Felda (Indikator Infinia)
$$X_{i} = \begin{cases} 1, & p \text{ valószínűséggel} \\ 0, & 1-p \text{ valószínűséggel} \end{cases} \Rightarrow P_{p}\left(X_{i} = x\right) = p^{x}(1-p)^{1-x}, x = 0 \text{ és 1.}$$

$$P_{p}\left(\mathbf{X} = \mathbf{x} \middle| \sum_{i=1}^{n} X_{i} = t\right) = P_{p}\left(X_{1} = x_{1}, ..., X_{n} = x_{n} \middle| \sum_{i=1}^{n} X_{i} = t\right) = \begin{cases} 0 & \sum_{i=1}^{n} x_{i} \neq t \\ P_{p}\left(X_{1} = x_{1}, ..., X_{n} = x_{n}, \sum_{i=1}^{n} X_{i} = t\right) \end{cases} = \begin{cases} 0 & \sum_{i=1}^{n} x_{i} \neq t \\ P_{p}\left(X_{1} = x_{1}, ..., X_{n} = x_{n}\right) & \sum_{i=1}^{n} x_{i} = t \end{cases}$$

$$\begin{cases} 0 & \sum_{i=1}^{n} x_{i} \neq t \\ P_{p}\left(\sum_{i=1}^{n} X_{i} = t\right) & \sum_{i=1}^{n} x_{i} = t \end{cases}$$

$$\begin{cases} 0 & \sum_{i=1}^{n} x_{i} \neq t \\ \frac{p^{\sum_{i=1}^{n} x_{i}} (1-p)^{n-\sum_{i=1}^{n} x_{i}}}{n} & \sum_{i=1}^{n} x_{i} = t \end{cases}$$

$$\begin{cases} 0 & \sum_{i=1}^{n} x_{i} \neq t \\ \frac{p^{\sum_{i=1}^{n} x_{i}} (1-p)^{n-t}}{n} & \sum_{i=1}^{n} x_{i} = t \end{cases}$$

4.12 Neyman-féle faktorizációs

4.13 Poisson példa

Tétel (Neyman-féle faktorizációs):

A diszkrét ξ mintából képzett $T(\xi)$ statisztika pontosan akkor elégséges

Θ-ra, ha $\exists g_{\theta}(t)$ és $h(\mathbf{x})$ úgy, hogy $\forall \theta \in \Theta$ és $\mathbf{x} \in \mathcal{X}$ -ra $P_{\theta}(\xi = \mathbf{x}) = h(\mathbf{x})g_{\theta}(T(\mathbf{x}))$.

Biz.: $\Rightarrow T(\xi) \text{ elégséges, ekkor } P_{\theta}(\xi = \mathbf{x}) = P_{\theta}(T(\xi) = T(\mathbf{x})) \frac{P_{\theta}(\xi = \mathbf{x}, T(\xi) = T(\mathbf{x}))}{P_{\theta}(T(\xi) = T(\mathbf{x}))}$ $= P_{\theta}(T(\xi) = T(\mathbf{x}))P_{\theta}(\xi = \mathbf{x} | T(\xi) = T(\mathbf{x})) = g_{\theta}(T(\mathbf{x}))h(\mathbf{x}).$ $\Leftarrow P_{\theta}(\xi = \mathbf{x} | T(\xi) = t) = 0, \text{ha } t \neq T(\mathbf{x}). \text{ Amennyiben ez teljesül:}$ $P_{\theta}(\xi = \mathbf{x} | T(\xi) = t) = \frac{P_{\theta}(\xi = \mathbf{x}, T(\xi) = t)}{P_{\theta}(T(\xi) = t)} = \frac{P_{\theta}(\xi = \mathbf{x}, T(\xi) = t)}{P_{\theta}(T(\xi) = t)} = \frac{P_{\theta}(\xi = \mathbf{x})}{\sum_{\mathbf{y}: T(\mathbf{y}) = t} P_{\theta}(\xi = \mathbf{y})}$ $= \frac{h(\mathbf{x})g_{\theta}(T(\mathbf{x}))}{\sum_{\mathbf{y}: T(\mathbf{y}) = t} h(\mathbf{y})g_{\theta}(t)} = \frac{h(\mathbf{x})}{\sum_{\mathbf{y}: T(\mathbf{y}) = t} h(\mathbf{y})}.$

Példa (Poisson minta)

Ez nem függ θ -tól!

 η_i – k független λ Poissonok. Ekkor

$$P_{\lambda}\left(\eta_{1}=k_{1},...,\eta_{n}=k_{n}\right)=\prod_{i=1}^{n}\frac{\lambda^{k_{i}}e^{-\lambda}}{k_{i}!}=\left(\prod_{i=1}^{n}\frac{1}{k_{i}!}\right)\lambda^{\sum_{i=1}^{n}k_{i}}e^{-n\lambda}=$$

$$=h(\mathbf{k})g_{\lambda}\left(\sum_{i=1}^{n}k_{i}\right),$$

ahol

$$h(\mathbf{k}) = \prod_{i=1}^{n} \frac{1}{k_i!}, \quad g_{\lambda}(t) = \lambda^t e^{-n\lambda}.$$

4.14 Elégséges statisztika általában

4.15 Abszolút folytonos eset

általánosan!

Elégséges statisztika általában

Def.: A ξ mintából képzett $T(\xi)$ statisztika elégséges Θ -ra, ha minden $\mathbf{x} \in \mathbf{R}^n$ -re a $P_{\theta}(\xi < \mathbf{x} \big| T(\xi) = t) = P_{\theta}(\xi_1 < x_1, ..., \xi_n < x_n \big| T(\xi) = t)$ feltételes eloszlásfüggvény nem függ θ -tól. Probléma: A feltételes valószínűség és várható érték fogalmát nem tanultuk

Abszolút folytonos eset

Definíció a faktorizációval

Def.:

Az abszolút folytonos $\boldsymbol{\xi}$ mintából képzett $T(\boldsymbol{\xi})$ statisztika elégséges Θ -ra, ha $\exists \ g_{\theta}(t)$ és $h(\mathbf{x})$ úgy, hogy $\forall \theta \in \Theta$ és $\mathbf{x} \in \mathcal{X}$ -ra a likelihood függvény felírható a következő alakban: $L(\mathbf{x},\theta) = h(\mathbf{x})g_{\theta}(T(\mathbf{x}))$.

4.16 Példa normális eloszlásra

4.17 Pédla egyenletes eloszlásra

Példa (normális $N(m, \sigma^2)$ minta)

 ξ_i – k független, $N(m, \sigma^2)$ eloszlásúak. Ekkor $\theta = (m, \sigma^2)$

$$L(\mathbf{x},(m,\sigma^2)) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - m)^2}{2\sigma^2}\right) =$$

$$(2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i^2 - 2x_i m + m^2)\right) =$$

$$\left(2\pi\sigma^2\right)^{-n/2}\exp\left(-\frac{1}{2\sigma^2}\left(\sum_{i=1}^n x_i^2 - 2nm\overline{x} + nm^2\right)\right) =$$

$$\left(2\pi\sigma^2\right)^{-n/2}\exp\left(-\frac{1}{2\sigma^2}\left(\sum_{i=1}^n\left(x_i-\overline{x}\right)^2+n\overline{x}^2-2nm\overline{x}+nm^2\right)\right).$$

Ebből következik, hogy $\left(\sum_{i=1}^{n} x_i^2, \overline{x}\right)$ elégséges statisztika.

Hasonlóan
$$\left(\sum_{i=1}^{n} (x_i - \overline{x})^2 / n, \overline{x}\right)$$
 is.

Példa (egyenletes E(0, a) minta)

 ξ_i – k független, E(0, a)eloszlásúak.

Sűrűségfüggvényük

$$f_a(x) = \begin{cases} 1/a0 \le x \le a \\ 0 & \text{különben} \end{cases}$$

$$L(\mathbf{x}, a) = \prod_{i=1}^{n} \frac{1}{a} \chi\{x_i \le a\} = \frac{1}{a^n} \chi\left\{\max_{1 \le i \le n} x_i \le a\right\}$$

 \Rightarrow

 $\max_{1 \le i \le n} x_i$ elégséges!

- 4.18 Maximum likelihood becslés
- 4.19 momentum módszer

Maximum likelihood becslés

- A maximum likelihood becslés mindig az elégséges statisztika függvénye
- E(0,a) minta esetén a ML becslése

$$\max_{1 \le i \le n} \xi_i$$

Momentum módszer

 Ha az eloszlást k db paraméter határozza meg, akkor k db egyenletből kaphatunk rájuk becslést. Az egyenletek a tapasztalati és az elméleti momentumok egybevetéséből adódnak:

$$m_i(\underline{\theta}) = E_{\theta}(X^i)$$

$$m_{i}(\underline{\theta}) = \frac{\sum_{j=1}^{n} (\xi_{j})^{j}}{n}$$