NONNEGATIVE MATRIX FACTORIZATION

ANALYSING FRUIT SPECTOGRAMS

CHRISTOPH LANGE

JUNE 5, 2020

FRUIT SPECTROGRAM APPROXIMATION

FRUIT PUREE SPECTROGRAMS

Fruit puree dataset contains

- *N* = 983 fruit spectrograms
- p = 235 frequencies per spectrogram
- labels "Strawberry" or "NON-Strawberry"

NONNEGATIVE MATRIX FACTORIZATION

We represent *n* spectrograms by

$$X \in \mathbb{R}^{nxp}$$
 $x_{ij} \geq 0$

with one row x_i being one spectrogram and approximate them.

$$X \approx W \cdot H$$
 $W \in \mathbb{R}^{n \times r}, H \in \mathbb{R}^{r \times p}$ $w_{ij} \geq o, h_{ij} \geq o$

Remarks:

- \blacksquare each row $x_i = (x_{i1}, x_{i2}, \dots, x_{ip})$ is one spectogram
- \blacksquare rows of H, $h_i = (h_{i,1}, \dots, h_{i,p})$ $i \in \{1, \dots, r\}$, form an r dimensional basis
- \blacksquare rows of W, $w_i = (w_{i1}, \dots, w_{ir})$ are the coordinates
- $\blacksquare x_i \approx \sum_{j=1}^r w_{ij}h_j$
- \blacksquare $(W \cdot H)^T = H^T \cdot W^T$, i.e. we can swap the roles of W and H

EXAMPLE FACTORIZATION

Steps

- \blacksquare choose r = 4 dimensions
- find W and H such that $X \approx W \cdot H$ for training set
- plot $\{h_1, h_2, h_3, h_4\}$

EXAMPLE FACTORIZATION

Pick one spectrogram x_i and compare

$$x_i \approx \sum_{j=1}^r w_{ij} h_j = w_i \cdot H$$

The right hand side is the i-th row of $W \cdot H$.

HOW DOES NONNEGATIVE MATRIX FACTORIZA-

- **TION APPROXIMATE?**

HOW DOES NMF APPROXIMATE?

Each spectrogram $x_i \in R^p$ should be close to it approximation $w_i H \in \mathbb{R}^p$, i.e. the distance

$$d(x_i, w_i H) = ||x_i - w_i H||$$

between both should be small for all $i \in \{1, ..., n\}$. Hence we minimize the sum of squared distances

$$\sum_{i=1}^{n} \|x_i - w_i H\|^2 = \|X - WH\|_F^2$$

which is the Frobenius norm of both matricies.

MINIMIZATION PROBLEM

Choose *r* components and minimize

$$\min_{W,H} ||X - WH||_F^2$$

How close is good enough?

USE NMF FOR STRAWBERRY DETECTION

We do not want to minimize

$$\min_{W,H} ||X - WH||_F^2$$

but perform well on the classification task

$$\min_{r} - \sum_{i} \sum_{j=1}^{2} y_{i} \log(\hat{y}_{i})$$

r = 21 might be optimal, but we choose r = 15 for illustrative purposes.

STRAWBERRY BASIS VECTORS

Take a look at all basis vectors h_i where the model thinks

$$\hat{y}(e_i) > 1 - \hat{y}(e_i)$$

 h_i is a Strawberry.

- spectrograms *h_i* capture distinct characteristica
- \blacksquare many frequencies $h_{ij} = o$

PROPERTIES OF NMF

advantages

- \blacksquare filters noise X WH
- \blacksquare basis vectors h_i capture joint phenomena
- \blacksquare basis vectors h_i can be interpreted to draw conclusions about the dataset
- imposing $WW^T = I$ makes NMF equivalent to K-means clustering

disadvantages

- Finding coordinates W requires solving $\min_{W,H} ||X WH||_F^2$.
- limited to nonnegative matricies

Thank you Questions?

REFERENCES

NICOLAS GILLIS.

THE WHY AND HOW OF NONNEGATIVE MATRIX FACTORIZATION, 2014.

J K HOLLAND, E K KEMSLEY, AND R H WILSON.

USE OF FOURIER TRANSFORM INFRARED SPECTROSCOPY AND PARTIAL LEAST SQUARES REGRESSION FOR THE DETECTION OF ADULTERATION OF STRAWBERRY PURÉES. *Journal of the Science of Food and Agriculture*, 76(2):263–269, 1998.

NON STRAWBERRY BASIS VECTORS

BAYESIAN APPROACH

The NMF solution W, H that minimizes

$$||X - WH||_F^2$$

is the maximum likelihood estimator assuming Gaussian noise

$$X \sim N(WH, \sigma^2)$$

Bayesian approach enables

$$P(W, H \mid X) \propto P(X \mid W, H)P(W, H)$$

incorporating domain knowledge about P(H).