#### Turing's Thesis

#### Turing's thesis (1930):

Any computation carried out by mechanical means can be performed by a Turing Machine

#### Algorithm:

An algorithm for a problem is a Turing Machine which solves the problem

The algorithm describes the steps of the mechanical means

This is easily translated to computation steps of a Turing machine

When we say: There exists an algorithm

We mean: There exists a Turing Machine that executes the algorithm

## Variations of the Turing Machine

#### The Standard Model

#### Infinite Tape

#### Control Unit



Deterministic

#### Variations of the Standard Model

- Turing machines with: Stay-Option

  - Semi-Infinite Tape
  - Off-Line
  - Multitape
  - Multidimensional
  - Nondeterministic

Different Turing Machine Classes

# Same Power of two machine classes: both classes accept the same set of languages

We will prove:

each new class has the same power with Standard Turing Machine

(accept Turing-Recognizable Languages)

Same Power of two classes means:

for any machine  $\,M_1\,$  of first class

there is a machine  $M_2$  of second class

such that:  $L(M_1) = L(M_2)$ 

and vice-versa

#### Simulation:

A technique to prove same power.

Simulate the machine of one class with a machine of the other class

First Class
Original Machine

 $M_1$ 

Second Class
Simulation Machine



simulates M

# Configurations in the Original Machine $M_1$ have corresponding configurations in the Simulation Machine $M_2$

 $M_1$ Original Machine: Simulation Machine:  $d_0' \succ d_1' \succ \cdots \succ d_n'$ 

#### Accepting Configuration

Original Machine:

$$d_f$$

Simulation Machine:

$$d_f'$$

the Simulation Machine and the Original Machine accept the same strings

$$L(M_1) = L(M_2)$$

#### Turing Machines with Stay-Option

The head can stay in the same position

Left, Right, Stay

L,R,S: possible head moves —



#### Example:

#### Time 1



#### Time 2



$$q_1 \xrightarrow{a \to b, S} q_2$$

Theorem:

Stay-Option machines have the same power with Standard Turing machines

#### Proof:

- 1. Stay-Option Machines simulate Standard Turing machines
- 2. Standard Turing machines simulate Stay-Option machines

1. Stay-Option Machines simulate Standard Turing machines

Trivial: any standard Turing machine is also a Stay-Option machine

2. Standard Turing machines simulate Stay-Option machines

We need to simulate the stay head option with two head moves, one left and one right

#### Stay-Option Machine



#### Simulation in Standard Machine

For every possible tape symbol

 $\mathcal{X}$ 

## For other transitions nothing changes Stay-Option Machine



#### Simulation in Standard Machine

$$\underbrace{q_1} \xrightarrow{a \to b, L} \underbrace{q_2}$$

Similar for Right moves

#### example of simulation





#### Simulation in Standard Machine:



END OF PROOF

#### Multiple Track Tape

A useful trick to perform more complicated simulations





track 1 track 2

b $\Diamond$ a $\boldsymbol{a}$  $\Diamond$ d d  $\Diamond$  $\boldsymbol{\mathcal{C}}$  $(4, \alpha) \longrightarrow (6, \alpha) L$  $q_2$ 

track 1 track 2

$$\underbrace{q_1} \xrightarrow{(b,a) \to (c,d),L} \underbrace{q_2}$$

#### Semi-Infinite Tape

The head extends infinitely only to the right



- Initial position is the leftmost cell
- When the head moves left from the border, it returns to the same position

Theorem: Semi-Infinite machines have the same power with Standard Turing machines

**Proof:** 1. Standard Turing machines simulate Semi-Infinite machines

2. Semi-Infinite Machines simulate Standard Turing machines

### 1. Standard Turing machines simulate Semi-Infinite machines:



Standard Turing Machine

a. insert special symbolat left of input string

b. Add a self-loop to every state (except states with no outgoing transitions)



### 2. Semi-Infinite tape machines simulate Standard Turing machines:



Squeeze infinity of both directions in one direction

#### Standard machine



#### Semi-Infinite tape machine with two tracks

Right part 
$$\# \ d \ e \ \Diamond \ \Diamond \$$
 Left part  $\# \ c \ b \ a \ \Diamond \$ 

#### Standard machine



#### Semi-Infinite tape machine



#### Standard machine



#### Semi-Infinite tape machine

Right part 
$$q_1^R \xrightarrow{(a,x) \to (g,x), R} q_2^R$$

$$\underbrace{q_1^L} \xrightarrow{(x,a) \to (x,g),L} \underbrace{q_2^L}$$

For all tape symbols X

#### Time 1



Semi-Infinite tape machine

Right part  $\# d e \lozenge \lozenge \lozenge$ Left part  $\# c b a \lozenge \lozenge$ 

#### Time 2



#### Semi-Infinite tape machine



#### At the border:

#### Semi-Infinite tape machine

Right part

$$\underbrace{q_1^R} \xrightarrow{(\#,\#) \to (\#,\#), R} \underbrace{q_1^L}$$

Left part

$$\overbrace{q_1^L} \xrightarrow{(\#,\#) \to (\#,\#), R} \overbrace{q_1^R}$$

#### Semi-Infinite tape machine

#### Time 2

Right part Left part

| #   | d | e | $\Diamond$ | $\Diamond$ | $\Diamond$ |  |
|-----|---|---|------------|------------|------------|--|
| #   | C | b | g          | $\Diamond$ | $\Diamond$ |  |
| A D |   |   |            |            |            |  |

**END OF PROOF** 

#### The Off-Line Machine

Input File read-only (once)



Input string
Appears on
input file only

Theorem: Off-Line machines have the same power with Standard Turing machines

Proof: 1. Off-Line machines simulate Standard Turing machines

2.Standard Turing machines simulate Off-Line machines

1. Off-line machines simulate Standard Turing Machines

#### Off-line machine:

- 1. Copy input file to tape
- 2. Continue computation as in Standard Turing machine

#### Standard machine



#### Off-line machine



1. Copy input file to tape

# 

### Off-line machine



2. Do computations as in Turing machine

# 2. Standard Turing machines simulate Off-Line machines:

Use a Standard machine with a four-track tape to keep track of the Off-line input file and tape contents

### Off-line Machine

Input File



Tape



Standard Machine -- Four track tape

| <b>a</b> |   |            |   |             |   |  |
|----------|---|------------|---|-------------|---|--|
| (        | ( | <i>  a</i> | b | $C_{\cdot}$ | d |  |
|          | # | 0          |   | 1           | 0 |  |
|          |   | e          | f | g           |   |  |
|          |   | 0          | 1 | 0           |   |  |
|          |   |            |   |             |   |  |

Input File
head position
Tape
head position

# Reference point (uses special symbol #)



Input File
head position
Tape
head position

## Repeat for each state transition:

- 1. Return to reference point
- 2. Find current input file symbol
- 3. Find current tape symbol
- 4. Make transition



# Multi-tape Turing Machines



Input string



$$\underbrace{q_1}^{(b,f) \to (g,d),L,R} \underbrace{q_2}$$

Theorem: Multi-tape machines have the same power with Standard Turing machines

Proof: 1. Multi-tape machines simulate Standard Turing machines

2. Standard Turing machines simulate Multi-tape machines

1. Multi-tape machines simulate Standard Turing Machines:

Trivial: Use just one tape

# 2. Standard Turing machines simulate Multi-tape machines:

#### Standard machine:

 Uses a multi-track tape to simulate the multiple tapes

 A tape of the Multi-tape machine corresponds to a pair of tracks

### Multi-tape Machine



# Standard machine with four track tape

| a   | M     | С   |   | Tape 1        |
|-----|-------|-----|---|---------------|
| 10/ | 10    | 0   |   | head position |
| e   | fix . | 89  | h | Tape 2        |
| 0   | 0     | 1/0 | Ø | head position |
| A   | 1     |     |   | •             |

### Reference point

|     | '       |   |   |   | -    | 4          |
|-----|---------|---|---|---|------|------------|
| #   | a       | b | C |   | Tap  | e 1        |
| #   | 0       | 1 | 0 |   | head | d position |
| #   | e       | f | g | h | Tap  | e 2        |
| # / | 0       | 0 | 1 | 0 | head | d position |
|     | <b></b> |   |   |   |      | •          |

### Repeat for each state transition:

- 1. Return to reference point
- 2. Find current symbol in Tape 1
- 3. Find current symbol in Tape 2
- 4. Make transition

# Same power doesn't imply same speed:

$$L = \{a^n b^n\}$$

Standard Turing machine:  $O(n^2)$  time Go back and forth  $O(n^2)$ times to match the a's with the b's

- 2-tape machine: O(n) time
  - 1. Copy  $b^n$  to tape 2 (O(n) steps)
  - 2. Compare  $a^n$  on tape 1 and  $b^n$  tape 2 (O(n) steps)

# Multidimensional Turing Machines



MOVES: L,R,U,D

J: up D: down

HEAD

Position: +2, -1

Theorem: Multidimensional machines have the same power with Standard Turing machines

Proof: 1. Multidimensional machines simulate Standard Turing machines

2. Standard Turing machines simulate Multi-Dimensional machines

# 1. Multidimensional machines simulate Standard Turing machines

Trivial: Use one dimension

# 2. Standard Turing machines simulate Multidimensional machines

#### Standard machine:

- Use a two track tape
- Store symbols in track 1
- Store coordinates in track 2



#### Standard machine:

Repeat <u>for each</u> transition followed in the 2-dimensional machine:

- 1. Update current symbol
- 2. Compute coordinates of next position
- 3. Go to new position

# Nondeterministic Turing Machines



Allows Non Deterministic Choices

### Time 0



### Time 1



### Choice 1



#### Choice 2



# Input string W is accepted if there is a computation:



There is a computation:



Theorem: Nondeterministic machines have the same power with Standard Turing machines

#### Proof:

- 1. Nondeterministic machines simulate Standard Turing machines
- 2. Standard Turing machines simulate Nondeterministic machines

1. Nondeterministic Machines simulate Standard (deterministic) Turing Machines

Trivial: every deterministic machine is also nondeterministic

2. Standard (deterministic) Turing machines simulate Nondeterministic machines:

#### Deterministic machine:

• Uses a 2-dimensional tape (which is equivalent to 1-dimensional tape)

• Stores all possible computations of the non-deterministic machine on the 2-dimensional tape

# All possible computation paths



# The Deterministic Turing machine simulates all possible computation paths:

simultaneously

•step-by-step

•in a breadth-first search fashion

#### NonDeterministic machine



#### Deterministic machine

| # | #                       | # | #                          | # | # |  |
|---|-------------------------|---|----------------------------|---|---|--|
| # | a                       | b | $\boldsymbol{\mathcal{C}}$ | # |   |  |
| # | <i>q</i> <sub>1</sub> # |   |                            | # |   |  |
| # | #                       | # | #                          | # |   |  |
|   |                         |   |                            |   |   |  |

current configuration

### NonDeterministic machine



### Deterministic machine

|   | #         | #  | #          | #                          | # | # |                |
|---|-----------|----|------------|----------------------------|---|---|----------------|
| # | <b>\$</b> | b  | b          | $\boldsymbol{\mathcal{C}}$ | # |   | Computation 1  |
| # | $q_2$     |    |            |                            | # |   | —oomparanon i  |
| # |           | C. | <i>b</i> - | C                          | # |   | Computation 2  |
| # |           |    | $q_3$      |                            | # |   | —Computation 2 |

# Deterministic Turing machine

# Repeat

For each configuration in current step of non-deterministic machine,

if there are two or more choices:

- 1. Replicate configuration
- 2. Change the state in the replicas

Until either the input string is accepted or rejected in all configurations

# If the non-deterministic machine accepts the input string:

The deterministic machine accepts and halts too

The simulation takes in the worst case exponential time compared to the shortest length of an accepting path

# If the non-deterministic machine does not accept the input string:

1. The simulation halts if all paths reach a halting state

OR

2. The simulation never terminates if there is a never-ending path (infinite loop)

In either case the deterministic machine rejects too (1. by halting or 2. by simulating the infinite loop)

END OF PROOF