Assignment: Real-Life Industry Use Cases of Basic Linux Commands

Course: Linux Administration | Level: Beginner to Intermediate

Submission Date: [Before the next class]

Objective:

This assignment will help you understand how basic Linux commands, user and group management, file ownership changes, and system-level commands are applied in real-world industry scenarios. You will execute the commands and observe the real-time output to strengthen your understanding.

Scenario:

You have just joined an IT company as a **Linux System Administrator**. Your first task is to set up a secure file system, manage user permissions, and monitor system performance.

You will perform the following:

- 1. **Use basic Linux commands** to navigate, manipulate files, and check system information.
- 2. **Manage user and group permissions** to ensure data security.
- 3. Change ownership of files and directories for proper access control.
- 4. **Execute system-level commands** to monitor system health.

Task 1: Basic Linux Commands in a Real-World Scenario

Scenario:

Your manager asks you to set up a project directory for a new team and verify system details before installation.

Steps & Commands:

1. Check current logged-in user and system information

```
whoami
uname -a
```

Output:

```
adminuser
Linux server01 5.15.0-84-generic #93-Ubuntu SMP x86_64 GNU/Linux
```

2. Navigate to the /projects directory and list contents

```
cd /projects
ls -1
```

Output:

```
total 4 drwxr-xr-x 2 root root 4096 Apr 25 10:00 projectA
```

3. Create a new project directory and verify it

```
mkdir projectB
ls -1
```

Output:

```
drwxr-xr-x 2 root root 4096 Apr 25 10:05 projectB
```

4. Create a sample file inside projectB

```
touch projectB/README.txt
echo "Welcome to Project B" > projectB/README.txt
cat projectB/README.txt
```

Output:

Welcome to Project B

Task 2: User and Group Permissions Management

Scenario:

A new employee, **John**, joins the **developers** team. He needs access to **projectB**, but shouldn't be able to modify system files.

Steps & Commands:

1. Create a new user john and add him to the developers group

```
sudo useradd \mbox{-m} \mbox{-G} developers john sudo passwd john
```

(Enter and confirm password when prompted)

2. Verify user and group

id john

Output:

uid=1002(john) gid=1002(john) groups=1002(john),1003(developers)

3. Change group ownership of projectB to developers

```
sudo chown :developers /projects/projectB
```

4. Modify permissions so that only the group can write

```
sudo chmod 770 /projects/projectB
ls -ld /projects/projectB
```

Output:

drwxrwx--- 2 root developers 4096 Apr 25 10:10 projectB

Task 3: Changing File Ownership

Scenario:

John is now the lead developer and should be the owner of projectB.

Steps & Commands:

1. Change ownership of projectB to john

```
sudo chown john:developers /projects/projectB
```

2. Verify the ownership change

```
ls -ld /projects/projectB
```

Output:

drwxrwx--- 2 john developers 4096 Apr 25 10:15 projectB

Task 4: System-Level Monitoring Commands

Scenario:

Your manager asks you to check system resource usage before installing a heavy application.

Steps & Commands:

1. Check system uptime

uptime

Output:

```
10:20:11 up 5 days, 3:45, 2 users, load average: 0.10, 0.20, 0.30
```

2. Monitor disk usage

df -h

Output:

```
Filesystem Size Used Avail Use% Mounted on /dev/sda1 50G 20G 30G 40% /
```

3. Check memory usage

free -m

Output:

```
total used free shared buff/cache available Mem: 16000 6000 7000 1000 3000 9000
```

4. Monitor running processes

Output:

USER	PID	%CPU	%MEM	VSZ	RSS	TTY	STAT	START	TIME
COMMAND									
root	1023	1.2	5.5	400000	88000	?	Ssl 1	L0:00	0:30
/usr/bin/java									
root	1105	0.8	3.2	300000	51200	?	Ssl 1	L0:05	0:20
/usr/bin/	nginx								

Submission Instructions

- Run the commands on a Linux system on AWS EC2 insatnce.
- Take screenshots of your command outputs and include them in your submission.
- Submit a **PDF or Word document** with:
 - o Commands used
 - o Outputs captured
 - Explanation of each step

Conclusion:

By completing this assignment, you will gain **hands-on experience** in managing a Linux environment similar to real-world IT infrastructure.

