第八章 空间群图表的认识与使用

对称操作符号

必考!! P 10-11页

SYMBOLS OF SYMMETRY AXES

Symmetry axes normal to the plane of projection (three dimensions) and symmetry points in the plane of the figure (two dimensions)

Symmetry axis or symmetry point	Graphical symbol	Screw vector of a right-handed screw rotation in units of the shortest lattice translation Prin vector parallel to the axis sym			
Identity	None	None	1		
Twofold rotation axis Twofold rotation point (two dimensions)	•	None	2		
Twofold screw axis: '2 sub 1'	9	$^{1}/_{2}$	21		

Threefold rotation axis Threefold rotation point (two dimensions)	None	3
Threefold screw axis: '3 sub 1'	1/3	31
Threefold screw axis: '3 sub 2'	2/3	32
Fourfold rotation axis Fourfold rotation point (two dimensions)	None	4
Fourfold screw axis: '4 sub 1'	1/4	4 ₁
Fourfold screw axis: '4 sub 2'	1/2	42
Fourfold screw axis: '4 sub 3'	3/4	43

Sixfold rotation axis Sixfold rotation point (two dimensions)	•	None	6
Sixfold screw axis: '6 sub 1'		1/6	61
Sixfold screw axis: '6 sub 2'		1/3	62
Sixfold screw axis: '6 sub 3'	Í	$^{1}/_{2}$	63
Sixfold screw axis: '6 sub 4'		2/3	64
Sixfold screw axis: '6 sub 5'	\(\rightarrow\)	5/6	65

Centre of symmetry,	0	None	1
inversion centre:			
'1 bar'			
Reflection point,			
mirror point			
(one dimension)			
Inversion axis: '3 bar'	lacktriangle	None	3
Inversion axis: '4 bar'	lack	None	4
Inversion axis: '6 bar'		None	6

表 1-3 对称面的符号

(a) **垂直于投影面的对称**面

对称面	图示符号	滑移矢量(以平行于和垂直于投 影面的点阵平移矢量为单位)	印刷符号	
镜 面		无 无	m	
釉 向 滑移面		平行于投影面某方向的 $\frac{1}{2}$	a, b 或 c	
轴 向 滑移面	*********	垂直于投影面方向的 $\frac{1}{2}$	e, b 或 c	
对 角 滑 移 面		平行于投影面某方向的 $\frac{1}{2}$ 加上垂直于投影面方向的 $\frac{1}{2}$	*	
金刚石滑移面	+	平行于投影面某方向的 $\frac{1}{4}$ 加上垂直于投影面方向的 $\frac{1}{4}$ (箭头指示平行于投影面的方向,	d	
(一对面,仅出现 于有心晶胞中)		此时垂直分量为正)		

(b) 平行于投影面的对称面

对称面	图示符号")	滑移矢量(以平行于投影面的点阵 平移矢量为单位)	印刷符号
†# 8 ⊡2	1	无	773
轴向滑移面		衛 头方向的	a, b 或 c
轴向滑移面		任一箭头方向的 1/2	a, b 或 c
对角滑移函		箭头 方向的 <u>1</u>	ю
· 刚石滑移面(一对面, 3现于有心晶胞中)	- 3/8 - 1/8	箭头方向的 $\frac{1}{2}$. 滑移矢量 总是面心矢量或体心矢量之半。 也就是惯用晶胞的 对角 级的 $\frac{1}{4}$	ď

平行于投影面的对称轴的图示符号

立方晶系特有的对称元素的图示符号

P 209页

第八章 空间群图表的认识与使用

P186-187, Cmm2 (35)

P188-189, C2/c (15)

P190-191, C2/c 三种不同的单胞选择

P192-194, Fddd (70)

P196-198, *Fddd* 不同的原点选择

P210, P43m (218)

分发的 *Pbca* (61)

C2 唯一性轴? 简略HM符号

完全HM符号: C121; C211;

C2

 C_2^3

2

Monoclinic

No. 5

C121

Patterson symmetry C12/m1

UNIQUE AXIS b, CELL CHOICE 1

扩展HM符号: C 1 2 1; C 2 1 1 1 2 1 2 1 1

扩展HM符号: C m m 2 b a 2 $D_{\scriptscriptstyle 2h}^{\scriptscriptstyle 15}$

 $P \ 2_1/b \ 2_1/c \ 2_1/a$

mmm

Orthorhombic

Patterson symmetry Pmmm

P403页

附表 7(b) 单斜晶系

空		标准的简略	各种定向和单胞选择的扩展 Hermann-Mauguin 符号						1
空间群序号	Schoen- flies 符号	Hermann- Mauguin 符号	a <u>b</u> c	c ba	, apc	b a č_	abc	₫¢b	唯一性軸 b 唯一性轴 c 唯一性轴 a
3	C1.	P2	P1 2 1	P1 2 1	Pt1 Z	P11 2	P 2 11	P 2 11	
4	C:	P2,	P1 2, 1	P1 2, 1	P11 2,	P11 2,	P 2,11	P 2,11	<u> </u>
5	C ³	C2	C1 2 1	A12 1	A11 2	B11 2	B 2 11	C 2 11	单胞选择 1
	1		A12 1	C12 1	B11 2	A11 2	C 21 L	B 2 11	单胞选择 2
	1		2,	2,	2,	2,	2,	2,	
			/12 1	/1.2 f	711 2	/11 2	/ 211	1 2 11	单胞选择 3
	!		2,	. 2,	2,	2,	2,	2,	

单斜晶系中不同的单胞选择

单胞选择1

C121

单胞选择2

A121

单胞选择3

I121

P4/mbm

 D_{4h}^5

4/mmm

Tetragonal

No. 127

 $P 4/m 2_1/b 2/m$

Patterson symmetry P4/mmm

对称元素配置图

一般等效位置配置图

 $P3_{2}21$

 D_3^6

321

Trigonal

No. 154

 $P3_{2}21$

Patterson symmetry $P\bar{3}m1$

 $P6_3mc$

No. 186

mc C_{6v}^4

6mm

Hexagonal

Patterson symmetry P6/mmm

 $P6_3mc$

 $F\bar{4}3m$

 T_d^2 $F\bar{4}3m$

 $\bar{4}3m$

Cubic

No. 216 F 431

Patterson symmetry $F m \bar{3} m$

不同原点的选择

P192-194, Fddd (70)

Fddd

 D_{2h}^{24}

No. 70

F 2/d 2/d 2/d

ORIGIN CHOICE 1

Origin at 222, at $-\frac{1}{8}$, $-\frac{1}{8}$, $-\frac{1}{8}$ from $\overline{1}$

ORIGIN CHOICE 2 Origin at $\bar{1}$ at ddd, at $\frac{1}{8}$, $\frac{1}{8}$, from 222

P196-198, Fddd 不同的原点选择

8-2-3 无对称单元

空间群的无对称单元是空间中的一部分区域,由它出发施以该空间群的对称操作,就恰好填满了整个空间。因此,无对称单元包含了为充分描述晶体结构

所必需的一切信息,是基本的区域。

8-3-1 对称操作与一般位置坐标

$$G=T+T (W_2, W_2) +T (W_3, W_3) +...+T(W_h, W_h)$$

= $T+ (W_2, W_2) T+ (W_3, W_3) T+...+(W_h, W_h) T$

点群: $P = \{I, W_2, \dots, W_h\}$, 点阵平移群: T

$$t_j = u_j \vec{a} + v_j \vec{b} + w_j \vec{c}, \, \vec{a}, \vec{b}, \vec{c}$$
为惯用胞基矢, $u_j, \, v_j, \, w_j$ 是整数。

适合简单点阵,不适用于有心点阵。

$$U = \{ (/, t_j) \} \quad t_j = u_j \vec{a} + v_j \vec{b} + w_j \vec{c}$$

- (1) 简单点阵P: $T_p = U$
- (2) C心点阵 C: $T_C = U + U(I, \frac{1}{2} \frac{1}{2} 0)$
- (3) 体心点阵/: *T_I= U+ U(1, ½ ½ ½ ½*)

8-3-1 对称操作与一般位置坐标

τ 表示有心平移

点阵
$$n_c$$
 τ_i 体心 2 $0; \frac{1}{2}\frac{1}{2}\frac{1}{2}$ 面心 4 $0; 0\frac{1}{2}\frac{1}{2}; \frac{1}{2}0\frac{1}{2}; \frac{1}{2}\frac{1}{2}0$ C 心 2 $0; \frac{1}{2}\frac{1}{2}0$ R 3 $0; \frac{2}{3}\frac{1}{3}\frac{1}{3}; \frac{1}{3}\frac{2}{3}\frac{2}{3}$

8-3-2 生成操作

Generators selected

例: Cmm2 (1); t(1,0,0); t(0,1,0); t(0,0,1); $t(\frac{1}{2},\frac{1}{2},0)$; (2); (3) 惯用胞平移群U 有心平移 (2)(3)=(4)

平移群T

全部($\mathbf{W}_i, \mathbf{w}_i$)

选生成操作的原则:

- (1)同晶类的空间群尽可能选同类型的生成操作
- (2) 按子群链选
- (3) 仅出现二次幂
 - (4) 有1时必选1

8-4-3 Wyckoff位置

Wyckoff字母(Wyckoff letter) 位置对称性(Site symmetry) 位置的坐标(Coordinates) 反射条件(Reflection conditions)

晶体结构中的原子团 必具有它所在Wyckoff位置 的位置对称性

8-4-2 位置对称性符号

每个Wyckoff位置的对称性可用一个点群来描述

用●标明没有对称元素的方向; 去掉●之后即简略HM点群符号

分发的 *Pbca* (61)

Mu Wy				C	oordinates			Reflection conditions General:
8	c	1	(1) x, y, z (5) $\bar{x}, \bar{y}, \bar{z}$		$-\frac{1}{2}, \bar{y}, z + \frac{1}{2}$ $-\frac{1}{2}, y, \bar{z} + \frac{1}{2}$	(3) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$ (7) $x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$	(4) $x + \frac{1}{2}, \ddot{y} + \frac{1}{2}, \ddot{z}$ (8) $\ddot{x} + \frac{1}{2}, y + \frac{1}{2}, z$	0kl : k = 2n h0l : l = 2n hk0 : h = 2n h00 : h = 2n 0k0 : k = 2n 00l : l = 2n
								Special: as above, plus
4	b	Ĩ	$0,0,\frac{1}{2}$	$\frac{1}{2}$, 0, 0	$0, \frac{1}{2}, 0$	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$		hkl: h+k, h+l, k+l=2n
4	a	ī	0,0,0	$\frac{1}{2}$, 0 , $\frac{1}{2}$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$		hkl: h+k, h+l, k+l=2n

例: Cmm2(35) 4 e m.. 0, y, z $0, \overline{y}, z$

4 d .m. x,0,z $\overline{x},0,z$

4 c ...2 1/4,1/4,z 1/4,3/4,z

Cmm2

Cmm2

Cmm2(35):

对称操作

般位置坐标

$$For(0,0,0) + set$$

- 0,0,z(2)
- (3) m
- x,0,z0, y, z (4)m

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$(1) \quad x, y, z$$

(0, 0, 0) +

$$\begin{pmatrix}
\bar{1} & 0 & 0 \\
0 & \bar{1} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$(2) \quad x, y, z$$

$$(3) \quad \underset{-}{x, y, z}$$

$$(4) \quad x, y, z$$

$$For(\frac{1}{2}, \frac{1}{2}, 0) + set$$

$$(1)'$$
 $t(\frac{1}{2}, \frac{1}{2}, 0)$

$$(2)' \ 2 \ \frac{1}{4}, \frac{1}{4}, z$$

$$(3)'a \quad x, \frac{1}{4}, z$$

$$(4)'b \frac{1}{4}, y, z$$

$$\begin{pmatrix}
1 & 0 & 0 & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & \frac{1}{2} \\
0 & \bar{1} & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\bar{1} & 0 & 0 & \frac{1}{2} \\
0 & \bar{1} & 0 & \frac{1}{2} \\
0 & \bar{1} & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\bar{1} & 0 & 0 & \frac{1}{2} \\
0 & \bar{1} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
3 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & \frac{1}{2} \\
0 & \bar{1} & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & \frac{1}{2} \\
0 & \bar{1} & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\bar{1} & 0 & 0 & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\bar{1} & 0 & 0 & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\bar{1} & 0 & 0 & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\langle
4)' - x + \frac{1}{2}, y + \frac{1}{2}, z$$

$$\langle
4)' - x + \frac{1}{2}, y + \frac{1}{2}, z$$

$$\langle
4)' - x + \frac{1}{2}, y + \frac{1}{2}, z$$

$$(\frac{1}{2}, \frac{1}{2}, 0) +$$

$$(1)'x + \frac{1}{2}, y + \frac{1}{2}, z$$

$$(2)' - x + \frac{1}{2}, -y + \frac{1}{2},$$

$$(3)'x + \frac{1}{2}, -y + \frac{1}{2}, z$$

$$(4)' - x + \frac{1}{2}, y + \frac{1}{2}, z$$

对称操作矩阵

的缩写

- 8-3-3 由简略HM符号求对称操作
- 8-3-4 空间群对称元素配置图的推导
- 8-3-5 立方空间群的对称元素配置图
- 8-3-6 原点移动,对称操作的点对称操作无变化

§ 8-5 x射线反射可能出现的条件

5-3 倒空间 (倒易点阵)

晶向与晶面

倒易点阵

5-3-1 定义
$$\mathbf{a}^* = \frac{b \times c}{V} \qquad \mathbf{b}^* = \frac{c \times a}{V} \qquad \mathbf{c}^* = \frac{a \times b}{V}$$
 单胞体积 $V = \mathbf{a} \cdot (b \times c) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$ $\mathbf{a} \cdot \mathbf{a}^* = \mathbf{k} \mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = 1$ $\therefore \mathbf{k} = 1/V$ 5-3-2 倒易关系

$$a \cdot a^* = ka \cdot b \times c = 1$$
 \therefore k = 1/V

$$\begin{pmatrix} a^* \\ b^* \\ c^* \end{pmatrix} (abc) = \begin{pmatrix} a^* \bullet a & a^* \bullet b & a^* \bullet c \\ b^* \bullet a & b^* \bullet b & b^* \bullet c \\ c^* \bullet a & c^* \bullet b & c^* \bullet c \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I = \begin{pmatrix} a \\ b \\ c \end{pmatrix} (a^*b^*c^*)$$

(2)
$$\overrightarrow{r}*_{hkl} = \overrightarrow{ha}*+\overrightarrow{kb}*+\overrightarrow{lc}*\perp(hkl)$$
面, $r*_{hkl} = \frac{1}{d_{hkl}}$ (hkl)平面族中最靠近原点O但不通过

$$\overrightarrow{OA} = \frac{\overrightarrow{a}}{h}, \overrightarrow{OB} = \frac{\overrightarrow{b}}{k}, \overrightarrow{OC} = \frac{\overrightarrow{b}}{k}$$

原点的平面ABC
$$\overrightarrow{OA} = \frac{\overrightarrow{a}}{h}, \overrightarrow{OB} = \frac{\overrightarrow{b}}{k}, \overrightarrow{OC} = \frac{\overrightarrow{c}}{l}$$

$$\overrightarrow{r} *_{hkl} \bullet \left\{ \overrightarrow{AB} \right\} = 0, \therefore \overrightarrow{r} *_{hkl} \bot (hkl)$$

$$d_{hkl} = ON = OA \bullet \frac{\overrightarrow{r}_{hkl}}{\left| \overrightarrow{r}_{hkl} \right|} = \frac{1}{r_{hkl}^*}$$

(3)
$$v = \frac{1}{v^*}$$
 ,倒易点阵单胞体积 $V^* = a^* \cdot b^* \times c^*$

$$(a \bullet b \times c)(A \bullet B \times C) = \begin{vmatrix} a_x & a_y & a_z & A_x & A_y & A_z \\ b_x & b_y & b_z & B_x & B_y & B_z \\ c_x & c_y & c_z & C_x & C_y & C_z \end{vmatrix}$$
 行列式与

$$= \begin{vmatrix} a_{x} & a_{y} & a_{z} & A_{x} & B_{x} & C_{x} \\ b_{x} & b_{y} & b_{z} & A_{y} & B_{y} & C_{y} \\ c_{x} & c_{y} & c_{z} & A_{z} & B_{z} & C_{z} \end{vmatrix}$$

$$= \begin{vmatrix} a_{x} & a_{y} & a_{z} & A_{z} & B_{z} & C_{z} \\ b_{x} & b_{y} & b_{z} & A_{y} & B_{y} & C_{y} \\ c_{x} & c_{y} & c_{z} & A_{z} & B_{z} & C_{z} \end{vmatrix}$$
矩阵的行列式的积等于
矩阵歌积的行列式

$$= \begin{vmatrix} a \bullet A & a \bullet B & a \bullet C \\ b \bullet A & b \bullet B & b \bullet C \\ c \bullet A & c \bullet B & c \bullet C \end{vmatrix} \Rightarrow (a \bullet b \times c)(a^* \bullet b^* \times c^*) = 1 \exists \exists \forall VV^* = 1$$

$$V^{2} = (a \bullet b \times c)(a \bullet b \times c) = \begin{vmatrix} a \bullet a & a \bullet b & a \bullet c \\ b \bullet a & b \bullet b & b \bullet c \\ c \bullet a & c \bullet b & c \bullet c \end{vmatrix}$$

 $\therefore V = abc\sqrt{1 + 2\cos\alpha\cos\beta\cos\gamma - \cos^2\alpha - \cos^2\beta - \cos^2\gamma}$

5-3-3 度量张量

$$G = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} a & b & c \end{pmatrix} = \begin{pmatrix} a \bullet a & a \bullet b & a \bullet c \\ b \bullet a & b \bullet b & b \bullet c \\ c \bullet a & c \bullet b & c \bullet c \end{pmatrix} = \begin{pmatrix} a^2 & ab \cos \gamma & ac \cos \beta \\ ab \cos \gamma & b^2 & bc \cos \alpha \\ ac \cos \beta & bc \cos \alpha & c^2 \end{pmatrix}$$

倒易度量张量

$$G^{-1} = \frac{a^2b^2c^2}{V^2} \begin{pmatrix} \frac{\sin^2\alpha}{a^2} & \frac{\cos\alpha\cos\beta - \cos\gamma}{ab} & \frac{\cos\alpha\cos\gamma - \cos\beta}{ac} \\ \frac{\cos\alpha\cos\beta - \cos\gamma}{ab} & \frac{\sin^2\beta}{b^2} & \frac{\cos\beta\cos\gamma - \cos\alpha}{bc} \\ \frac{\cos\alpha\cos\gamma - \cos\beta}{ac} & \frac{\cos\beta\cos\gamma - \cos\alpha}{bc} & \frac{\sin^2\gamma}{c^2} \end{pmatrix}$$

表5-5(p.114)作出

倒易点阵的度量张量
$$G^* = \begin{pmatrix} a^* \\ b^* \\ c^* \end{pmatrix} (a^*b^*c^*) = G^{-1} \begin{pmatrix} a \\ b \\ c \end{pmatrix} (a^* \quad b^* \quad c^*) = G^{-1}$$

$$\therefore G^{-1} = G^* = \begin{pmatrix} a^* \bullet a^* & a^* \bullet b^* & a^* \bullet c^* \\ b^* \bullet a^* & b^* \bullet b^* & b^* \bullet c^* \\ c^* \bullet a^* & c^* \bullet b^* & c^* \bullet c^* \end{pmatrix}$$

$$\therefore a^* = \frac{bc\sin\alpha}{V}, b^* = \frac{ca\sin\beta}{V}, c^* = \frac{ab\sin\gamma}{V}$$

$$\cos \alpha^* = \frac{\vec{b}^* \bullet \vec{c}^*}{b^* c^*} = \frac{\cos \beta \cos \gamma - \cos \alpha}{\sin \beta \sin \gamma}, \cos \beta^* = \frac{\cos \gamma \cos \alpha - \cos \beta}{\sin \gamma \sin \alpha}, \cos \gamma^* = \frac{\cos \alpha \cos \beta - \cos \gamma}{\sin \alpha \sin \beta}$$

直接求G⁻的表达式:

由
$$\vec{a} = \frac{\vec{b} \times \vec{c}}{V}$$
 直接可得 $\vec{a}^* = \frac{bc \sin \alpha}{V}$
由 $(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) = \vec{A} \cdot [\vec{B} \times (\vec{C} \times \vec{D})]$

$$= \vec{A} \cdot [\vec{C}(\vec{B} \cdot \vec{D}) - \vec{D}(\vec{B} \cdot \vec{C})] = (\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D}) - (\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C})$$
可得 $\vec{b}^* \cdot \vec{c}^* = \frac{(\vec{c} \times \vec{a})}{V} \cdot \frac{(\vec{a} \times \vec{b})}{V} = \frac{(\vec{c} \cdot \vec{a})(\vec{a} \cdot \vec{b}) - (\vec{c} \cdot \vec{b})(\vec{a} \cdot \vec{a})}{V^2}$

$$= \frac{a^2bc}{V^2}(\cos \beta \cos \gamma - \cos \alpha)$$

表5-6(p.116) ⇒ 倒易点阵与相应的正点 阵属同一Bravais 系,以六角Bravais 系为例

5-3-4

晶体几何学中的计算公式

$$(1) \qquad \frac{1}{d_{hkl}^{2}} = \overrightarrow{r_{hkl}}^{*} \bullet \overrightarrow{r_{hkl}}^{*} = \begin{pmatrix} h & k & l \end{pmatrix} \begin{pmatrix} a^{*} \\ b^{*} \\ c^{*} \end{pmatrix} \begin{pmatrix} a^{*} & b^{*} & c^{*} \end{pmatrix} \begin{pmatrix} h \\ k \\ l \end{pmatrix} = \begin{pmatrix} h & k & l \end{pmatrix} G^{-1} \begin{pmatrix} h \\ k \\ l \end{pmatrix}$$

(2) 点阵平面 $(h_1k_1l_1)$ 与 $(h_2k_2l_2)$ 的夹角 ϕ

$$\cos \varphi = \frac{\overrightarrow{r_{h_{1}k_{1}l_{1}}} \bullet \overrightarrow{r_{h_{2}k_{2}l_{2}}}}{\overrightarrow{r_{h_{1}k_{1}l_{1}}} * \overrightarrow{r_{h_{2}k_{2}l_{2}}}} = \frac{1}{\overrightarrow{r_{h_{1}k_{1}l_{1}}} * \overrightarrow{r_{h_{2}k_{2}l_{2}}}} (h_{1} \quad k_{1} \quad l_{1})G^{-1} \begin{pmatrix} h_{2} \\ k_{2} \\ l_{2} \end{pmatrix}$$

$$(3)\overrightarrow{r_{uvw}}^{2} = (uvw) \begin{pmatrix} a \\ b \\ G \end{pmatrix} (a \quad b \quad c) \begin{pmatrix} u \\ v \\ w \end{pmatrix} = (u \quad v \quad w)G \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

(4)点阵矢量 $[u_1 \quad v_1 \quad w_1]$ 与 $[u_2 \quad v_2 \quad w_2]$ 的夹角 ϕ

$$\cos \phi = \frac{1}{r_{u_1 v_1 w_1} r_{u_2 v_2 w_2}} (u_1 \quad v_1 \quad w_1) G \begin{pmatrix} u_2 \\ v_2 \\ w_2 \end{pmatrix}$$

表5-7(p.117) 习题:2、9、13

坐标系与单胞变化

- 正交变换: 仅基矢方向变。基矢间夹角、基矢长度不变。 P为正交矩阵: PP^t=I
- 线性变换: 基矢改变, 但坐标原点不变。p=0
- 仿射变换: 坐标原点也可移动。

$$\left(\vec{a}', \vec{b}', \vec{c}'\right) = \left(\vec{a}, \vec{b}, \vec{c}\right)P$$

坐标原点位移
$$\overrightarrow{a} \xrightarrow{p_1} \xrightarrow{y'} \xrightarrow{y'} \xrightarrow{y'} \overrightarrow{b} \qquad \overrightarrow{p} = (\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}) \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = (\overrightarrow{a}' \ \overrightarrow{b}' \ \overrightarrow{c}') \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix}$$

$$(a' b' c') = (a b c)P$$

$$(a b c) = (a' b' c')Q$$

$$Q = P^{-1}$$

1.倒易点阵基矢

$$\begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} = P^{t} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
转置
逆
$$\therefore \begin{pmatrix} a^{*} \\ b^{*} \\ c^{*} \end{pmatrix} = Q \begin{pmatrix} a^{*} \\ b^{*} \\ c^{*} \end{pmatrix}$$

因为是单位矩阵,等式左边乘,右边可不乘。

2.点X的坐标x, y, z和正点阵方向指数 $\begin{bmatrix} u & v & w \end{bmatrix}$

$$(a \quad b \quad c)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \vec{r} = (a' \quad b' \quad c')\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \qquad \therefore \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = Q\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$(a' \quad b' \quad c')Q\begin{pmatrix} x \\ y \\ z \end{pmatrix} \qquad \qquad \begin{pmatrix} u' \\ v' \\ w' \end{pmatrix} = Q\begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

[uvw]与a* b* c* 一样变换 3.点阵平面指数(hkl)

$$(h \quad k \quad l) \begin{pmatrix} a^* \\ b^* \\ c^* \end{pmatrix} = \overrightarrow{r} = (h' \quad k' \quad l') \begin{pmatrix} a^* \\ b^* \\ c^* \end{pmatrix}$$

$$\downarrow \begin{pmatrix} a^* \\ a^* \\ \end{pmatrix}$$

$$(h \quad k \quad l)P\begin{pmatrix} a^* \\ b^* \\ c^* \end{pmatrix}$$

$$\therefore (h' \quad k' \quad l') = (h \quad k \quad l)P$$

总结: 线性变换 $\begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} = P^t \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \begin{pmatrix} h' \\ k' \\ l' \end{pmatrix} = P^t \begin{pmatrix} h \\ k \\ l \end{pmatrix}; \begin{pmatrix} a^* \\ b^* \\ c^* \end{pmatrix} = Q \begin{pmatrix} a^* \\ b^* \\ c^* \end{pmatrix}, \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = Q \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

- 4、正交矩阵: 当P为正交矩阵时, PPt=I, ∴Pt=Q 四者都按Q变换。
- 5. 度量张量G和倒易度量张量G-1=G*

$$G' = \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} (a' \quad b' \quad c') = P^{t} \begin{pmatrix} a \\ b \\ c \end{pmatrix} (a \quad b \quad c) P = P^{t} G P$$

$$G^{*'} = \begin{pmatrix} a^{*'} \\ b^{*'} \\ c^{*'} \end{pmatrix} (a^{*'} \quad b^{*'} \quad c^{*'}) = Q \begin{pmatrix} a^* \\ b^* \\ c^* \end{pmatrix} (a^* \quad b^* \quad c^*) Q^t = QG^*Q^t$$

7.点对称操作矩阵W

$$\begin{pmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{z} \end{pmatrix} = W \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} \widetilde{x}' \\ \widetilde{y}' \\ \widetilde{z}' \end{pmatrix} = W' \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

$$Q \begin{pmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{z} \end{pmatrix} = W' Q \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Q W \begin{pmatrix} x \\ y \\ z \end{pmatrix} = W' Q \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\therefore QW = W'Q$$

$$W' = QWP$$

$$trW' = trW$$

$$det W' = det W$$

§5-2-2 六角坐标系与菱面体坐标系的关系(P106页)


```
(a)
```

§ 8-5 x射线反射可能出现的条件

一个电子产生的散射波的振幅: A_e ; \vec{r} 处的电子密度 $\rho(\vec{r}) = \rho(X,Y,Z)$ $\vec{r} = X\vec{a} + Y\vec{b} + Z\vec{c}$; \vec{r} 处dV体积对散射波振幅的贡献: $A_e \cdot \rho(\vec{r}) dV$

r处散射波向对于原点的程差

$$\Delta = AB - OC = \vec{r} \cdot \frac{\vec{k}_0 - \vec{k}}{|k_0|} = -\vec{s} \cdot \vec{r} \lambda$$

相位因子
$$\exp(-\frac{2\pi i\Delta}{\lambda}) = \exp(2\pi i\vec{s}\cdot\vec{r})$$

衍射矢量 $\vec{S} = \vec{k} - \vec{k}_0$ $= h\vec{a}^* + k\vec{b}^* + l\vec{c}^*$ $|\vec{k}| = |\vec{k}_0| = \frac{1}{\lambda}$

结构因子
$$F(hkl) = \frac{- \uparrow hkl}{- \uparrow hkl}$$

 = $\int_{V_s} \rho(\vec{r}) \exp(2\pi i \vec{s} \cdot \vec{r}) dV$

把一个单胞内的电子密度 $\rho(\vec{r})$ 分解成该单胞内N个原子的

电子密度函数
$$\rho_n(\vec{r})$$
之和: $\rho(\vec{r}) = \sum_{n=1}^N \rho_n(\vec{r})$

定义原子散射因子 $f_n = \int \rho_n(\vec{r}) \exp[2\pi i \vec{s} \cdot (\vec{r} - \vec{r}_n)] dV$

则F(hkl) =
$$\sum_{n=1}^{N} f_n \exp(2\pi i \vec{s} \cdot \vec{r}_n) = \sum_{n=1}^{N} f_n \exp[2\pi i (hX_n + kY_n + lZ_n)]$$

$$\vec{k}_0$$
 $\vec{k} - \vec{k}_0$
 \vec{k}

$$\left| \vec{k} - \vec{k}_0 \right| = 2 \left| \vec{k}_0 \right| \sin \theta = 2 \sin \theta / \lambda$$

Bragg散射:
$$\vec{k} - \vec{k}_0 = \vec{g}$$
 (倒格矢) \longrightarrow $2d \sin \theta = \lambda$

$$F(hkl) = \sum_{n=1}^{N} f_n \exp(2\pi i \vec{s} \cdot \vec{r}_n) = \sum_{n=1}^{N} f_n \exp[2\pi i (hX_n + kY_n + lZ_n)]$$

时域和频域

考试时间: 12月7号, 19:00—20:00

考试地点:同上课地点

设:滑移面 \bot [u v w],滑移量为 \vec{w}_g

则:属于[u v w]晶带的hkl反射($\vec{g}_{hkl} \perp$ [u v w]) 可能出现的条件是 $\vec{g}_{hkl} \cdot \vec{w}_g = n$

 $i\mathbb{E} : \ F(hkl) = \sum_{n=0}^{N/2} f_n [\exp 2\pi i (hx_n + ky_n + lz_n) + \exp 2\pi i (hx_n' + ky_n' + lz_n' + \vec{g}_{hkl} \cdot \vec{w}_g)]$

$$= \sum_{n=1}^{N/2} f_n \exp 2\pi i \left(hx_n + ky_n + lz_n\right)$$

 $\left[1 + \exp 2\pi i \left\{ h(x'_n - x_n) + k(y'_n - y_n) + l(z'_n - z_n) + \vec{g}_{hkl} \cdot \vec{w}_g \right\} \right]$

$$\uparrow [uvw] \qquad \bigcirc (x_n, y_n, z_n)$$

$$(x'_n, y'_n, z'_n) \longrightarrow 0 \longrightarrow 0$$

$$W_g$$

曲于
$$[x'_n - x_n, y'_n - y_n, z'_n - z_n]//[uvw],$$

$$F(hkl) = \sum_{n=0}^{N/2} f_n [\exp 2\pi i (hx_n + ky_n + lz_n) [1 + \exp 2\pi i \vec{g}_{hkl} \cdot \vec{w}_g]$$

8-5-3 螺旋轴 系列反射条件 (P223页)

8-5-4 空间群图表所载反射条件

按 整体 → 晶带 → 系列反射条件的顺序 例: p. 188 C12/c1(15) 一般 整体: hk1: $h+k=2n \leftarrow C$ 心 晶带: $\begin{cases} h01: & h, l = 2n \Leftarrow c \\ 0k1: & k = 2n \\ hk0: & h + k = 2n \end{cases} 4a \quad 1 \quad 0, 0, 0 \quad 0, 0, \frac{1}{2} \quad hk1: 1 = 2n \end{cases}$ 系列: $\begin{cases} 0k0 : & k = 2n \\ h00 : & h = 2n \\ 001 : & 1 = 2n \end{cases}$ 4a1特殊位置使c方向 周期减半,故l=2n

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); $t(\frac{1}{2},\frac{1}{2},0)$; (2); (3)

Positions

Multiplicity, Wyckoff letter, Site symmetry Coordinates

 $(0,0,0)+(\frac{1}{2},\frac{1}{2},0)+$

8 f 1

(1) x, y, z

(2) \bar{x}, \bar{y}, z

(3) x, \bar{y}, z

(4) \bar{x}, y, z

4 e m..

0, y, z

 $0, \bar{y}, z$

 $4 \quad d \quad .m$

x, 0, z

 $\bar{x}, 0, z$

c ... 2

 $\frac{1}{4}, \frac{1}{4}, z$

 $\frac{1}{4}, \frac{3}{4}, 2$

2 - l

 $0, \frac{1}{2}, z$

2

a mm2

mm2

0, 0, z

Reflection conditions

General:

hkl: h+k=2n

0kl : k = 2nh0l : h = 2n

hk0: h+k=2n

h00: h = 2n0k0: k = 2n

Special: as above, plus

no extra conditions

no extra conditions

hkl: h=2n

no extra conditions

no extra conditions

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); $t(\frac{1}{2},\frac{1}{2},\frac{1}{2})$; (2); (3); (5); (13)

Positions

Multiplicity,	Coordinates				Reflection conditions
Wyckoff letter, Site symmetry	$(0,0,0)+ (rac{1}{2},rac{1}{2},rac{1}{2})+$				h, k, l cyclically permutable General:
48 h 1	(1) x, y, z (5) z, x, y (9) y, z, x (13) $\bar{x}, \bar{y}, \bar{z}$ (17) $\bar{z}, \bar{x}, \bar{y}$ (21) $\bar{y}, \bar{z}, \bar{x}$	(2) \bar{x}, \bar{y}, z (6) z, \bar{x}, \bar{y} (10) \bar{y}, z, \bar{x} (14) x, y, \bar{z} (18) \bar{z}, x, y (22) y, \bar{z}, x	(3) \bar{x}, y, \bar{z} (7) \bar{z}, \bar{x}, y (11) y, \bar{z}, \bar{x} (15) x, \bar{y}, z (19) z, x, \bar{y} (23) \bar{y}, z, x	(4) x, \bar{y}, \bar{z} (8) \bar{z}, x, \bar{y} (12) \bar{y}, \bar{z}, x (16) \bar{x}, y, z (20) z, \bar{x}, y (24) y, z, \bar{x}	hkl: h+k+l=2n 0kl: k+l=2n hhl: l=2n h00: h=2n

Special: as above, plus

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); $t(0,\frac{1}{2},\frac{1}{2})$; (2); (3)

Positions

Multiplicity,

Coordinates

Wyckoff letter, Site symmetry

 $(0,0,0)+ (0,\frac{1}{2},\frac{1}{2})+$

$$x = f = 1$$

(1) x, y, z

(2) $\bar{x} + \frac{1}{2}, \bar{y}, z$

(3) $\bar{x}, \bar{y}, \bar{z}$

(4) $x + \frac{1}{2}, y, \bar{z}$

 $\frac{1}{4}, 0, z$

 $\frac{3}{4}, 0, \bar{z}$

 $d \bar{1}$

 $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$

 $0, \frac{3}{4}, \frac{1}{4}$

1 0

 $0, \frac{1}{4}, \frac{1}{4}$

 $\frac{1}{2}$, $\frac{3}{4}$, $\frac{1}{4}$

1 6

ī

ī

1

 $0, 0, \frac{1}{2}$

0,0,0

 $\frac{1}{2}$, 0, $\frac{1}{2}$

 $\cdot \mid a$

 $\frac{1}{2}$, 0, 0

Reflection conditions

General:

hkl: k+l=2n

hk0: h, k = 2n

0kl: k+l=2nh0l: l=2n

00l: l = 2n

h00: h = 2n0k0: k = 2n

Special: as above, plus

no extra conditions

hkl: h+k=2n

hkl: h+k=2n

hkl: h=2n

hkl: h=2n

§8-7 特殊投影的对称性

8-7-2 有心单胞和对称元素的投影(P233页) 对称元素及投影方向 投影中的对称元素

$\bar{1}$	2
n $\begin{cases} $	n
n n n n n n n n n n	m
(n=3)	1
沿轴方向	m
n_m (含有2(4 ₂ ,6 ₂ ,6 ₄)	n
n_{m} $\Big\{ egin{align*} & ext{ a} = 1 \\ ext{ a}$	g
	4
(/ //// //	m
	6
3(上轴向	2
$\int // m$	m
$m \begin{cases} // \ m \\ \perp \ m \end{cases}$	1
$g \begin{cases} // g \begin{cases} // w_g \\ // // w_g \end{cases}$ $\perp g$	m
$g^{\prime\prime} \delta \left(\pi / w_g \right)$	g
$ig oldsymbol{oldsymbol{igs}}$	平移t

Symmetry of special projections

Along [001] c2mm $\mathbf{a}' = \mathbf{a}$ $\mathbf{b}' = \mathbf{b}$ Origin at 0, 0, z Along [100] p 1 m 1 $\mathbf{a}' = \frac{1}{2}\mathbf{b}$ $\mathbf{b}' = \mathbf{c}$ Origin at x, 0, 0 Along [010] $p \, 1 \, 1 \, m$ $\mathbf{a}' = \mathbf{c}$ $\mathbf{b}' = \frac{1}{2} \mathbf{a}$ Origin at 0, y, 0

沿[001]方向投影

Symmetry of special projections

Along [001] c 2mm $\mathbf{a}' = \mathbf{a} \qquad \mathbf{b}' = \mathbf{b}$ Origin at 0, 0, z Along [100] $p \, 1 \, m \, 1$ $\mathbf{a}' = \frac{1}{2} \mathbf{b} \qquad \mathbf{b}' = \mathbf{c}$ Origin at x, 0, 0 Along [010] p 1 1 m $\mathbf{a}' = \mathbf{c}$ $\mathbf{b}' = \frac{1}{2} \mathbf{a}$ Origin at 0, y, 0

沿[100]方向投影

Symmetry of special projections

Along [001] c 2mm $\mathbf{a}' = \mathbf{a}$ $\mathbf{b}' = \mathbf{b}$ Origin at 0, 0, z Along [100] p 1 m 1 $\mathbf{a}' = \frac{1}{2}\mathbf{b}$ $\mathbf{b}' = \mathbf{c}$ Origin at x, 0, 0 Along [010] $p \, 1 \, 1 \, m$ $\mathbf{a}' = \mathbf{c}$ $\mathbf{b}' = \frac{1}{2} \mathbf{a}$ Origin at 0, y, 0

沿[010]方向投影

 $G \supset H$: $G \not\supseteq H$ 的母群,H是G的子群

不存在满足条件 $G \supset M \supset H$ 的 $M:G \in H$ 的最小母群

H是G的最大子群

空间群的子群有三种类型:

*C*112

(I)t子群(同平移子群): $Cmm2 \supset C1m1$

*Cm*11

(II)k子群(同晶类子群):

(IIa)母子群的惯用胞相同,

Pmm2

Cmm2 ⊃ Pba2 Pbm2

Pma2

子群H失去了G的有心平移

最大不同构子群的个数是有 限

(IIb) H的惯用晶胞比 G大,但H与G不同构

Ccc2; Cmc2₁; Imm2; Ibm2; Ccm2₁; Iba2; Ima2

(IIc)H的惯用胞比G大,且H与G同构(同一种

空间群或互相对映的空间群)
$$Cmm2(abc) \supset Cmm2 \begin{pmatrix} a' = 3a \\ \vec{x}b' = 3b \\ \vec{x}c' = 2c \end{pmatrix} \quad \vec{x}$$

$$a' = (2n+1)a$$
或b' = $(2n+1)b$
或c' = nc
素数

最低指数的最大同构子群

$$P23(a,b,c) \supset P23(a'=3a,b'=3b,c'=3c)$$

 $(\Box P23(a,b,c) \supset I23(a'=2a,b'=2b,c'=2c) \supset P23(a'=2a,\cdots)$

不是最大子群

8-8-1 空间群的子群

Pba2

Cmm2
$$b' = 3b$$

Cmm2

 $C_{2\nu}^{11}$

mm2

Orthorhombic

No. 35

Cmm2

Patterson symmetry Cmmm

```
Maximal non-isomorphic subgroups
```

```
[2] C1m1(Cm, 8)
                                     (1; 3)+
                                     (1; 4)+
       [2] Cm11 (Cm, 8)
                                     (1; 2)+
       [2] C 1 1 2 (P2, 3)
       [2] Pba2 (32) 1; 2; (3; 4) + (\frac{1}{2}, \frac{1}{2}, 0) [2] Pbm2 (Pma2, 28) 1; 3; (2; 4) + (\frac{1}{2}, \frac{1}{2}, 0)
Ha
       [2] Pba2 (32)
                                     1; 4; (2; 3) + (\frac{1}{2}, \frac{1}{2}, 0)
       [2] Pma2 (28)
                                     1: 2: 3: 4
       [2] Pmm2 (25)
IIb
       [2] Ima2(c'=2c) (46); [2] Ibm2(c'=2c) (Ima2, 46); [2] Iba2(c'=2c) (45); [2] Imm2(c'=2c) (44); [2] Cc2(c'=2c) (37);
       [2] Cmc2, (c' = 2c)(36); [2] Ccm2, (c' = 2c)(Cmc2, 36)
```

Maximal isomorphic subgroups of lowest index

```
IIc [2] Cmm2 (c' = 2c) (35); [3] Cmm2 (a' = 3a \text{ or } b' = 3b) (35)
```

Minimal non-isomorphic supergroups

```
I [2] Cmmm (65); [2] Cmme (67); [2] P4mm (99); [2] P4bm (100); [2] P4_2cm (101); [2] P4_2nm (102); [2] P\bar{4}2m (111); [2] P\bar{4}2_1m (113); [3] P6mm (183)

II [2] Fmm2 (42); [2] Pmm2 (\mathbf{a}' = \frac{1}{2}\mathbf{a}, \mathbf{b}' = \frac{1}{2}\mathbf{b}) (25)
```

Cm

 C^3

m

Monoclinic

No. 8

A11m

Patterson symmetry A112/m

Origin on mirror plane m

Asymmetric unit $0 \le x \le 1$; $0 \le y \le 1$; $0 \le z \le \frac{1}{4}$

$$0 \le x \le 1$$
;

$$0 \le y \le 1$$
;

$$0 \le z \le \frac{1}{4}$$

Symmetry operations

For (0,0,0)+ set

(2)
$$m x, y, 0$$

For $(0, \frac{1}{2}, \frac{1}{2})$ + set

(1)
$$t(0,\frac{1}{2},\frac{1}{2})$$

(2)
$$b x, y, \frac{1}{4}$$

(III)H是G的子群,但他们的平移群和晶类都不相同Hermann定理(1929)

$$G \supset M \supset H$$

同平移 同晶类

8-8-4 空间群图表所载关于母子群的信息

H是G的最大不同构子群

G是H的最小不同构母群

最低指数的最大同构子群

最低指数的最小同构母群

8-6-2 patterson函数

一维:
$$P(x) = a \int_{0}^{1} \rho(X) \rho(X + x) dX$$

Patterson函数是 原子对相关函数, 其峰不代表原子位置, 代表原子对间的位矢

三维:
$$P(\vec{r}) = \int_{V_c} \rho(\vec{R}) \rho(\vec{R} + \vec{r}) d\vec{R}$$

$$P(x, y, z) = V_c \int_0^1 dX \int_0^1 dY \int_0^1 dZ \rho(X, Y, Z) \rho(X + x, Y + y, Z + z)$$
把(8-25b)代入,得 $P(x, y, z) = \frac{1}{V_c} \sum_{i,j} \sum_{k} \sum_{l} \sum_{i} \sum_{k} \sum_{l} \sum_{k} \sum_{l} \sum_{k} \sum_{l} \sum_{k} \sum_{l} \sum_{l} \sum_{k} \sum_{l} \sum$

$$\int_{0}^{1} dX \int_{0}^{1} dY \int_{0}^{1} dZ \exp\{-2\pi i [(h'+h)X + (k'+k)Y + (l'+l)Z]\}$$

$$= \frac{1}{V_{c}} \sum_{h} \sum_{k} \sum_{l} |F(hkl)|^{2} \exp[-2\pi i (hx + ky + lz)]$$

Patterson 函数是可实验测定的 $|F|^2$ 的Fourier变换

8-6-3 Patterson函数的对称性

晶体结构的 空间群符号

(1)变成点式空间群;(2)加1

Patterson

空间群符号

第八章习题: 1,4(1-2),13(1-2),14,20,23,24

https://crystalsymmetry.wordpress.com/

The Fascination of Crystals and Symmetry

Crystals are fascinating objects.

HOME ABOUT CRYSTALLOGRAPHY NETS & TOPOLOGY YOUTUBE CHANNEL LEHRBUCH TEXTBOOK