Algebra II

Hailey Jay February 6, 2025

Table of Contents

Inf	ormation													ii	İ
13	Field Theory													1	١
	13.1 Extensions													1	L
	13.2 Algebraic Extensi	ions												6)
	13.3 Constructibility.														
	13.4 Splitting Fields .													11	L
	13.4.1 Friday													12)
	13.4.2 Week 4 .													13	;
	13.4.3 Wednesda	ıy												15)
	13.5 Cyclotomic Exter	sions	.		•	•	•		•	•		•	•	16)
14	Second Chapter													17	,
	14.1 First Section													17	7
15	List Of Definitions													19	,
16	List Of Theorems													21	ı

Information

Time & Room	MWF 13:30-14:20, Lockett 232
Exam	Monday May 5, 10:00-12:00
Textbook	Dummit & Foote, Abstract Algebra
Professor	Ng, Richard
Office	Lockett 252
Email	rng@math.lsu.edu
Homepage	http://www.math.lsu.edu/~rng
Office Hours	Monday 12:30-13:20, Tuesday 13:30-1420 (Tentative)

Here's what we're going to cover:

- Chapter 13-14, Field and Galois theory;
- Chapter 15, Commutative algebra and algebras over a field;
- $\bullet\,$ Chapter 10, Basics for modules and their tensor products;
- Chapter 18, Wedderburn's theorem, Maschke's theorem and linear representations of finite groups;
- POSSIBLY Chapter 17, homological algebra.

Grade Distribution

Homework	60%
Midterm	20%
Final	20%

iv Information

Chapter 13

Field Theory

13.1 Extensions

Definition 13.1.1 (Field). A field is a commutative ring in which every nonzero element is invertible.

We denote by $F^{\times} = F \setminus \{0\}$ the set of all invertible elements of the field F.

In general, we denote R^{\times} as the set of all units of the ring R.

Definition 13.1.2 (Characteristic). Let F be a field with identity 1. The characteristic of F is the order of 1 in the group (F, +). If the order of 1 is not finite, we define the characteristic of F to be 0.

We denote the characteristic as ch(F).

We know that $\mathbb{Z}/p\mathbb{Z}$ is a field of order p if p is a prime.

Because \mathbb{Q} has $n1 \neq 0$ for $n \neq 0$, $\operatorname{ch}(\mathbb{Q}) = 0$. Some other fields with characteristic zero are \mathbb{R} , \mathbb{C} , $\mathbb{C}(x)$...

We denote by $\mathbb{Z}_p(x)$ as the field of rational functions over \mathbb{Z}_p . That is, we're adjoining the element x. It is an infinite field with finite characteristic.

Let's say that G is an abelian group. If we write it multiplicatively, $g^n = g \cdots g$ n-many times. If we write it additively, we write g = ng.

Proposition 13.1.3 (Characteristic of a Field). The characteristic of a field is 0 or a prime number.

Proof. Towards a contradiction, let F be a field with $\operatorname{ch}(F) \neq 0$. Then $\operatorname{ch}(F) = nm$ for $1 < n, m < \operatorname{ch}(F)$. Because $n \cdot 1_F := n, m \cdot 1_F := m \in F$, we have that $n \cdot m = nm \cdot 1_F = 0$.

Definition 13.1.4 (Prime Subfield). Let F be a field. The prime subfield of F is the subfield generated by 1.

We follow with examples.

- (a) $\mathbb{Z}_p(x) \geq \mathbb{Z}_p$.
- (b) $\mathbb{R} > \mathbb{Q} > \mathbb{Q}$.

Proposition 13.1.5 (Prime Subfield). Let F be a field and K the prime subfield of F. If $\operatorname{ch}(F)=p\neq 0$, then $K\cong \mathbb{Z}_p$. If $\operatorname{ch}(F)=0$, $K\cong \mathbb{Q}$.

Proof. Define $\varphi : \mathbb{Z} \to F$; $\varphi(n) = n1$. We know that φ is a ring homomorphism; I omit the proof for being rather repetetive. Such a proof is necessary to remember, however.

The kernel of φ is an ideal. In particular, because $\mathbb Z$ is a principal ideal domain, $\ker(\varphi)=(a)$ for some nonnegative integer a. If $a=1,\ \varphi$ is the zero map. If $a=0,\ \varphi$ is injective. In this case, $\mathbb Z\cong\varphi(\mathbb Z)\subset F$. Hence, $\mathbb Q\stackrel{\tilde\varphi}\to F$ (this is to be read $\mathbb Q$ extends to F), so $K\cong\mathbb Q$.

In the case that $a \neq 0$, then a1 = 0. This implies that $\mathrm{ch}(F) = p|a$. Hence $(p) \subset \ker(\varphi) = (a) \subset (p)$; Thus (p) = (a). Thus, a = p. Hence $\varphi(\mathbb{Z}) \cong \mathbb{Z}/(p) = \mathbb{Z}_p$ by the first isomorphism theorem, so $K \cong \mathbb{Z}_p$.

Definition 13.1.6 (Extension). If F contains a subfield K, we call F an extension of K, written as F/K.

In this case, we have the diagram

Additionally, F is a K-vector space.

We denote the dimension or index of the extension $\dim_K F = [F:K]$.

For example, $\mathbb{C} \geq \mathbb{Q}$, so \mathbb{C} is a \mathbb{Q} -linear space of uncountably infinite dimension: $[\mathbb{C} : \mathbb{Q}] = \infty$.

In a particularly obvious case, we have $[\mathbb{C}:\mathbb{R}]=2$ for the extension \mathbb{C}/\mathbb{R} .

Let's take $\mathbb{Q}(i)=\{a+bi|a,b\in\mathbb{Q}\};\ \mathbb{Q}(i)/\mathbb{Q}$ is an extension of degree 2.

Theorem 13.1.7 (Extension Index). Let L/K, K/F be finite extensions. Then L/F is finite and [L:F] = [L:K][K:F].

$$L \\ |[L:K] < \infty$$

$$K \\ |[K:F] < \infty$$

$$F$$

In time, we learn these are tensor products.

Proof. Let $A=\{\alpha_1,\ldots,\alpha_n\}$ be a basis for K over F and $B=\{\beta_1,\ldots,\beta_m\}$ be a basis for L over K. Let $C=\{\alpha_i\beta_j|i\in[n],j\in m\}$. Naturally, |C|=mn. We seek to show that C is a basis. Let $x\in L$; then $x=\sum_{i=1}^n k_i\beta_i$ for some $k_i\in K$. But each k_i can be written as $k_i=\sum_{j=1}^m f_{ij}\alpha_j$. Hence, $x=\sum_{i=1}^n \sum_{j=1}^n f_{ij}\alpha_j\beta_i$. Hence, C spans L over F.

Suppose now that $\sum f_{ij}\alpha_jb_i=0$. Then $\sum_i\left(\sum_j f_{ij}\alpha_j\right)\beta_i=0$. By the independence of B over K, and A over F, $f_{ij}=0$. Thus C is independent and C is a basis.

Theorem 13.1.8 (Finite Subextension). If L/F is finite and K/F is a subextension, that is,

then K/F is finite and [K:F]|[L:F].

A neat consequence of this is: If L/F is finite and [L:F] is prime, L/F has no nontrivial subextensions.

Proposition 13.1.9 (Field to Ring Homomorphism). If $\varphi : F \to R$ is a ring homomorphism with $\varphi(1_F) \to 1_R$ where F is a field and R is a ring. Then φ is injective.

Proof. The only ideals of F are (0) and F. As $\varphi(1) = 1$, $\ker(\varphi) = \neq F$ so $\ker \varphi = 0$ and φ is injective.

Let F be a field and F[x] be a polynomial ring over F. Then, $F[x]^{\times} = F^{\times}$. Let p be irreducible in F[x] and let $K = \frac{F[x]}{(p(x))}$, a field as (p(x)) is maximal.

Then, every element is of the form $\overline{f(x)} = f(x) + (p(x))$. Now, define $\varphi : F \to K$ via $\varphi(\alpha) = \alpha + (p(x))$. Naturally, $\varphi(1) = 1 + (p(x))$, $\varphi(\alpha + \beta) = \varphi(a) + \varphi(b)$, and $\varphi(\alpha\beta) = \varphi(\alpha)\varphi(\beta)$ so it is a ring homomorpism. Therefore, φ is an embedding and $F \cong \varphi(F)$. Identify $F \equiv \overline{F} \subset K$.

Theorem 13.1.10 (Polynomial Extension). Let $p(x) \in F[x]$ be an irreducible polynomial. Then p(x) has a root $\theta = x + (p(x)) \in K$ and $[K:F] = \deg p(x)$. Moreover, the set $\{1, \theta, \dots, \theta^{\deg p(x)-1}\}$ is a basis of K over F.

 $\begin{array}{ll} Proof. & p(\theta)=p(x)+(p(x))=(p(x))=0 \text{ in } K. \text{ We want to show that } \left\{1,\theta,\dots,\theta^{\deg p(x)-1}\right\} \text{ is a basis. For any } \overline{f(x)}\in K,\\ \overline{f(x)}=f(x)+(p(x)). \text{ By the division algorithm, } f(x)//p(x)=r(x) \\ \text{where } \deg r(x)<\deg p(x) \text{ or } r(x)=0. \text{ Let } r(x)=\sum_{i=0}^{n-1}a_ix^i \text{ for some } a_i\in F. \text{ Moreover, } \overline{f(x)}=\overline{r(x)}=a_0\overline{1}+a_1\overline{x}+\dots a_{n-1}\overline{x}^{n-1}=\sum_{i=0}^{n-1}a_i\theta^i \text{ and hence } \left\{1,\theta,\dots,\theta^{\deg p(x)-1}\right\} \text{ spans.} \end{array}$

Linear independence is left to the reader.

We were working on field extensions $K = \frac{F[x]}{(p(x))}$ where p is irreducible over F.

ģ

If $\theta = x + (p(x)) \in K$, then $p(\theta) = 0$. Moreover, $\{1, \theta, \dots, \theta^{n-1}\}$ spans K over F where $n = \deg p(x)$.

We want to show that $\{1, \theta, \dots, \theta^{n-1}\}$ is linearly independent over F.

Suppose $a_0 + a_1 \theta + ... + a_{n-a} \theta^{n-1} = 0$ in K.

Consider the polynomial $g(x) = a_0 + a_1 x + \dots x_{n-1}^{n-1} \in F[x]$. This implies that $g(\theta) = 0$ in K. This means that g(x) + (p(x)) =0. Hence $g(x) \in (p(x))$, so p(x)|g(x). This is a contradiction as $\deg p > \deg g$, unless $g \equiv 0$ and $a_0, \dots, a_{n-1} = 0$.

Therefore, K = F[x]/(p(x)) is an extension in which p(x) has a root.

Theorem 13.1.11 (Existence of Root Extensions). Let $f(x) \in$ F[x] be a nonconstant polynomial. There exists a field extension in which f(x) has a root.

Because F[x] is a PID, we have the unique factorization $f(x) = p_1(x) \cdots p_n(x)$ for some irreducible p_i . By the preceding theorem, there exists a field K in which p_1 has a root. Therefore, f(x) shares this root in K. ģ

Theorem 13.1.12 (Existence of Root Extensions (again)). Let $f(x) \in F[x]$ be a nonconstant polynomial. There exists a field extension in which f(x) splits.

Because F[x] is a PID, we have the unique factorization $f(x) = p_1(x) \cdots p_n(x)$ for some irreducible p_i . By the preceding theorem, there exists a field K in which each p_i has a root. Iterate this process for all i to obtain the field.

For example, take the polynomial $x^2 + x + 1$ over Q. If θ is a root, then it naturally has degree 2 so the extension field K has $[K:\mathbb{Q}]=2.$

Let's do something concrete. We know that $\mathbb{C} \geq \mathbb{Q}$, so if we compute the roots of $p(x) = x^2 + x + 1$, we have the roots of unity of degree 3;

$$\theta = \frac{-1 \pm \sqrt{-3}}{2} = e^{\pm 2\pi i/3}.$$

It turns out that extending by either root induces isomorphic fields.

Definition 13.1.13 (Subfield Generation). Let K/F be an extension and let $\alpha_1, \alpha_2, ... \in K$. $F(\alpha_1, ...)$ denotes the smallest subfield of K containing F and each α_i . We call this construction the subfield of K generated by F and $a_1, ...$

We call $F(\alpha)$ a simple extension when we only extend via one element.

Moreover, note that $F(\alpha_1, \alpha_2) = F(\alpha_1)(\alpha_2)$.

However, we can very bad simple extensions. Take $\mathbb{Q} \leq \mathbb{Q}(x)$, rational functions over \mathbb{Q} .

Let's say that α is a root of $x^2 + x + 1$ in \mathbb{C} . Then $\mathbb{Q}(\alpha) = \{a + b\alpha | a, b \in \mathbb{Q}\}.$

Proposition 13.1.14 (Polynomial Extension Isomorphism). Let K be an extension of F and $\alpha \in K$ is a root of an irreducible polynomial $p(x) \in F[x]$. Then, as a field, $F[\alpha] \cong F[x]/(p(x))$.

Proof. Define $\phi: F[x] \to K$, where $f(x) \mapsto f(\alpha)$. This is naturally a ring homomorphism; we omit the verification. Then, $\ker \phi = (g(x))$ for some $g(x) \in F[x]$. Because $p(\alpha) = 0$, $p(x) \in g(x)$. Hence, g(x)|p(x). Because p is irreducible, g(x), p(x) are associates and (g(x)) = (p(x)). Therefore, by the first isomorphism theorem, $F[x]/(p(x)) \cong \operatorname{im} \phi = F(\alpha)$ (If we were to do every single detail, we'd have to show two-way containment). Moreover, $x + (p(x)) \mapsto \alpha$.

This demonstrates that $F(\alpha)/F$ is a finite extension.

Theorem 13.1.15 (Polynomial Root Extension Isomorphism). Let K/F be an extension and p(x) be irreducible in F[x]. If α_1, α_2 are two roots of p(x) in K, $F(\alpha_1) \cong F(\alpha_2)$ via $\alpha_1 \mapsto \alpha_2$.

13.2 Algebraic Extensions

Definition 13.2.1 (Algebraic Extension). K/F is called an algebraic extension if α is a root of a polynomial f(x) for every $\alpha \in K$. If α is not algebraic, we say that α is transcendental.

For example, $\pi \in \mathbb{C}$ is transcendental over \mathbb{Q} , but $\sqrt{2}$ is algebraic.

A few criteria for extensions to be algebraic:

Lemma 13.2.2 (Finite Extension is Algebraic). If K/F is finite, then K/F is algebraic.

Proof. Interpret K as a finite dimensional vector space over F. Let $n = \deg_F K$. Let $\alpha \in K$. The set $1, \alpha, \dots, \alpha^n$ is dependent, so there are coefficients a_k , not all 0, so that

$$a_0 + a_1 \alpha + \dots + a_k \alpha^n = 0.$$

Then α is a root of $a_0 + a_1 x + ... + a_k x^n$.

Proposition 13.2.3 (Minimal Polynomial). Let $\alpha \in K$ be algebraic over F. Then there exists a unique monic irreducible polynomial $m_{\alpha,F}(x)$ such that α is a root.

Moreover, for any polynomial $f(x) \in F[x]$ such that $f(\alpha) = 0$, $m_{\alpha,F}|f(x)$ in F[x].

Proof. Consider the ring homomorphism $\varphi: F[x] \to K$ defined by $\varphi(f(x)) = f(\alpha)$. The kernel is a principal ideal and hence uniquely generated by a monic polynomial $m_{\alpha,F}$. Clearly, the second statement follows as $f \in (m_{\alpha,F})$. By the first isomorphism theorem, $F[x]/(m_{\alpha,F}) \cong \varphi(F[x] \subset K)$ so it is an integral domain and hence $(m_{\alpha,F})$ is prime. Hence, $m_{\alpha,F}$ is irreducible and we are done.

Theorem 13.2.4 (Intermediate Extension Polynomial Divisibility). Let L/F be an extension and $\alpha \in K$ be algebraic over F. Then $m_{\alpha,L}(x)|m_{\alpha,F}(x)$ in L[x].

Proof. Whence $m_{\alpha,F}(\alpha) \in L[x]$, so $m_{\alpha,L}|m_{\alpha,F}$.

<u>Q</u>

Theorem 13.2.5 (Isomorphism of Extensions). Let $\alpha \in K$ be algebraic over F. Then $F(\alpha) \cong F[x]/(m_{\alpha,F})$ and $\{1,\alpha,\ldots,\alpha^{n+1}\}$ is a basis of $F(\alpha)$ over F, where $n = \deg(m_{\alpha,F})$

Theorem 13.2.6 (Algebraic Subfield). An element $\alpha \in K/F$ is algebraic over F if and only if $F(\alpha)/F$ is finite. The set \overline{F} of all algebraic elements in K/F is a subfield of K.

Proof. The first statement follows immediately. Let $\alpha, \beta \in K$ be algebraic over F. Then $F(\alpha, \beta)$ is finite. Thus, the sum and product of α, β are in $F(\alpha, \beta)$ and $\alpha^{-1} \in F(\alpha, \beta)$. Thus, \overline{F} is a subfield.

Proposition 13.2.7 (Transitivity of Extensions). If L/K, K/F are algebraic, then L/F is algebraic.

Proof. Let $\alpha \in L$. Then α is algebraic over K, so α is a root of $a_0 + a_1x + \ldots + a_nx^n \in K[x]$. Since $[F(a_0,\ldots,a_n)(\alpha):F(a_0,\ldots,a_n)] < \infty$, and each a_k is algebraic over F, $[F(a_0,\ldots,a_n,\alpha):F] < \infty$ implying that α is algebraic over F.

ģ

Definition 13.2.8 (Product Field). Let K_1, K_2 be subfields of K. We denote by K_1K_2 the subfield of K generated by K_1 and K_2 .

Proposition 13.2.9 (Product Field Properties). Let K_1, K_2 be subfields of K. Suppose K_1, K_2 are finite extensions over F.

- (a) K_1K_2/F is finite.
- $(b)\ [K_1K_2:F] \leq [K_1:F][K_2:F].$
- (c) $lcm([K_1, F], [K_2 : F])|K_1K_2 : F$.

Proof. Let $\{\alpha_1,\ldots,\alpha_n\}$ be a basis of K_1 over F and $\{\beta_1,\ldots,\beta_m\}$ be a basis of K_2 over F. Then $K_1K_2=F(\alpha_1,\ldots,\alpha_n,\beta_1,\beta_n)$ and $K_1K_2=K_1(\beta_1,\ldots,\beta_m)$ implies $[K_1K_2:K_1]\leq m$ so $[K_1K_2:F]=[K_1K_2:K_1][K_1][F]\leq mn$. Moreover, this final relationship implies that $[K_i:F][[K_1K_2:F]$ for each i, proving the final statement.

13.3 Constructibility

Definition 13.3.1 (Constructibility). An $\alpha \in \mathbb{R}$ is called constructible if $|\alpha|$ can be constructed by straightedge and compass. We call the set of all constructible numbers \mathbb{F} and assume that $\mathbb{Z} \subset \mathbb{F}$.

Proposition 13.3.2 (Subfield of Constructible Numbers). Let $\alpha, \beta \in$ F. Sums and differences are easy to construct by using a straight line through the origin, a segment of length β , and a compass of length α .

To construct products, take a triangle with one side β and foot 1, and construct a similar triangle with foot α . The corresponding side of β will have length $\alpha\beta$.

To show inverses, take a triangle of one side α and foot 1. Construct a similar triangle where the one side has length 1. The foot will have length α^{-1} .

Because $\operatorname{ch} \mathbb{F} = 0$, the prime subfield of \mathbb{F} is \mathbb{Q} . However, as $\sqrt{2} \in \mathbb{F}, \mathbb{F} \supset \mathbb{Q}.$

Take $\alpha \in \mathbb{F}$. Draw a circle from $-\alpha$, 1, with centre on the x-axis. Construct a triangle to i by $-\alpha i1$. Then, $x/1 = \alpha/x$ so $x^2 = \alpha$ and $\sqrt{\alpha} \in \mathbb{F}$.

Theorem 13.3.3 (Degree 2 Extension Closure). Let $F \subset \mathbb{F}$ and $K \subset \mathbb{R}$ with [K : F] = 2. Then, $K \subset \mathbb{F}$.

Proof. Let $\alpha \in K \setminus F$. Then α is a root of a degree 2 polynomial $p(x) = x^2 + bx + c$. Therefore, $p(x) = m_{\alpha,\mathbb{F}}(x)$. Whence $\alpha =$ $\frac{-b\pm\sqrt{b^2-4c}}{2}$ we have $F(\alpha)=F(\sqrt{b^2-4c})$. Because $\alpha\in\mathbb{R},\,b^2-4c>$ 0. However, we know already that $\sqrt{b^2 - 4c} \in \mathbb{F}!$ Thus $K \subset \mathbb{F}$. **Definition 13.3.4** (Constructible Points (\mathbb{F}^2) in \mathbb{R}^2). We call $(x,y) \in \mathbb{R}^2$ constructible if $x,y \in \mathbb{F}$. Moreover, we could switch out for $x+iy \in \mathbb{C}$ if $x,y \in \mathbb{F}$. The constructible points of \mathbb{C} make a field.

We construct these points via intersections of the following objects.

- (a) Straight lines through two points in \mathbb{F}^2 ;
- (b) If $(h, k) \in \mathbb{F}^2$ and $r \in \mathbb{F}$, $(x h)^2 + (y k)^2 = r^2$.

We call ax + by + c = 0 an F-line if $a, b, c \in F \subset \mathbb{F}$; similarly, we infer the notion of an \mathbb{F} circle.

Intersecting two F lines cannot "escape" F. A circle and line give quadratic extensions, and two circles, surprisingly, intersect on an \mathbb{F} -line and give also a quadratic extension. The proof requires solving the system and seeing that all of the quadratic terms cancel.

Theorem 13.3.5 (Power Two Necessity). If $\alpha \in \mathbb{R}$ is constructible, there exists an extension $\mathbb{Q} \subset K \subset \mathbb{R}$ such that $K = \mathbb{Q}(\alpha)$ $[K : \mathbb{Q}] = 2^k$ for some k.

Proof. If α is constructible, there exists a finite sequence of constructible points (x_n,y_n) so that $\alpha\in\mathbb{Q}(x_1,y_1,\ldots,x_n,y_n)$ and $[\mathbb{Q}(x_1,\ldots,x_\ell):\mathbb{Q}(\ldots,y_{\ell-1})]\leq 2$. Therefore $[K:\mathbb{Q}]$ is a two-power.

Theorem 13.3.6 (Trisecting the Angle). Angles, in general, cannot be trisected by compass and straightedge.

Proof. We consider the angle $60\deg=3\theta$. Then $(x,y)=e^{3\theta i}=\sqrt[3]{\cos\theta+i\sin\theta}^3$ is constructible. $\cos3\theta$ is constructible, so we have that $(4\cos\theta)^3-3\cos\theta=1$. Let $\alpha=\cos3\theta$, yielding the equation $1=4\alpha^3-3\alpha$. Let $\beta=2\alpha$. Then $0=\beta^3-3\beta-1$, an irreducible monic polynomial. Then $\mathbb{Q}(\beta)=\mathbb{Q}(\alpha)$ would be a cubic extension, a contradiction by the previous, so the angle cannot be trisected.

Theorem 13.3.7 (Doubling the Cube). A cube may not be doubled.

Proof. If it were so, doubling the unit cube would yield sides of length $\sqrt[3]{2}$, a root of a degree three irreducible polynomial. As three divides no power of two, such a cube is not constructible.

Theorem 13.3.8 (Square with Area π). A swuare with area π cannot be constructed.

Proof. This would mean that $\sqrt{\pi}$ would be constructible. However, $[\mathbb{Q}(\sqrt{\pi}):\mathbb{Q}(\pi)]=[\mathbb{Q}(\sqrt{\pi}):\mathbb{Q}(\pi)][\mathbb{Q}(\pi):\mathbb{Q}]=2\infty=\infty$ divides no power of two.

13.4 Splitting Fields

Definition 13.4.1 (Splitting Field). Let $f(x) \in F[x]$ be a nonconstant polynomial. We call E/F a splitting field for f if f factors over E and f splits in no subfield of E.

Theorem 13.4.2 (Roots to Splitting Field). Let $\alpha_1, \ldots, \alpha_n$ be the roots of $f(x) \in E$. Then, $F(\alpha_1, \ldots, \alpha_n) \subset E$ and so we have equality.

Example. Take $f(x)=x^3+x+1$ in $\mathbb{F}_2[x]$. Let α be a root of f(x) in some extension K/\mathbb{Z}_2 . Then, $f(\alpha)=0$ and $f(\alpha^2)=(\alpha^2)^3+\alpha^2+1=(\alpha^3)^2+\alpha^2+1=(\alpha+1)^2+\alpha^2+1=0$, so α^2 is also a root. The other root is $\alpha^2+\alpha$.

Splitting fields for degree n polynomials have, in general, degree n!.

Theorem 13.4.3 (Splitting Degree). Every polynomial $f(x) \in F[x]$ of positive degree n splits in a field of degree at most n!.

Proof. It suffices to show that there is an extension K/F such that $[K/F] \leq n!$ where f(x) splits. Induction. Let degree f(x) = 1. Then f(x) splits in F. Assume that the statement holds up to some n-1. Let α be a root of f in some field E. We know α has degree at most n, so $f(x)/(x-\alpha)$ has degree n-1 in $F(\alpha)$ where $[F(\alpha):F] \leq n$. Then, f splits in $K/F(\alpha)$, so $[K:F] = [K:F(\alpha)][F(\alpha):F] \leq (n-1)!n = n!$.

13.4.1 Friday

Reminder: If we have a positive degree $f(x) \in F[x]$, we can always find a splitting field E/F of f(x) such that $[E:F] \leq (\deg f)!$.

Lemma 13.4.4 (Isomorphism Extension). If $\alpha \in E/F$ a root of an irreducible $f(x) \in F[x]$, then there is an isomorphism ϕ from $F \to \overline{F}$. We define $\overline{f} = \phi(f)$. Then, we may extend to an isomorphism $\widetilde{\phi} : F(\alpha) \to K$ such that $\widetilde{\phi}|_F = \phi$; there are exactly k such extensions, where k is the number of distinct roots of \overline{f} in \overline{E} .

Proof. Let $\overline{\alpha} \in \overline{E}$ be a root of $\overline{f}(x)$. Then, because $\overline{F}(\overline{\alpha}) \cong \overline{F}[x]/(\overline{f}) \cong F[x]/(f(x)) \cong F(\alpha)$, we formally have the map

$$\widetilde{\phi}: F(a)\overline{\eta^{-1}} \to F[x]/(f(x))\overline{\phi} \to \overline{F}[x]/(\overline{f}(x))\overline{\overline{\eta}} \to \overline{F}(\overline{\alpha}).$$

Hence, $\phi: \alpha \mapsto \overline{\alpha}$, so the number of such extensions is the number of distinct roots $\overline{\alpha}$ of $\overline{f}(x)$

Theorem 13.4.5. Let $\phi: a \to \overline{a}$ be an isomorphism of a field F onto \overline{F} . Say that $f(x) \in F[x]$ has image \overline{f} , and let E and \overline{E} be splitting fields for the two polynomials over their respective fields. Then, ϕ can be extended to an isomorphism $\widetilde{E} \to \overline{E}$. The number of such extensions is less than or equal to [E:F].

The equality holds if \bar{f} has no multiple roots in \bar{E} .

Theorem 13.4.6 (Uniqueness of Splitting Field). The splitting field of f(x) over F is unique up to isomorphism.

Proof. Induction on [E:F]. If [E:F]=1, then E=F and f splits completely. Thus, \bar{f} also splits completely so $\bar{E}=\bar{F}$. Assume [E:F]>1. Then f must have a monic irreducible factor of degree greater than 1. Let $\alpha\in E$ such that $g(\alpha)=0$. Then, \bar{g} is a monic irreducible factor of \bar{f} , and there exists $\bar{\alpha}\in\bar{E}$ such that $\bar{g}(\bar{\alpha})=0$. By the preceding lemma, ϕ can be extended to $\bar{\phi}:F(\alpha)\to\bar{E}$. Let $\bar{\alpha}_1,\ldots,\bar{\alpha}_\ell$ be the distinct roots of \bar{g} in \bar{E} . Hence, there are ℓ such extensions. Then, $[E:F(\alpha)]=[E:F]/[F(\alpha):F]$ but $[F(\alpha):F]=\deg g(x)$. By induction, there exist at most $[E:F(\alpha)]$ possible extensions of $\bar{\phi}$ to $\bar{\phi}$. There are at most $\ell[E:F(\alpha)]\leq \deg g(x)[E:F(\alpha)]=[E:F]$ such extensions over ϕ .

If $\bar{f}(x)$ has no multiple roots in \bar{E} , then $\ell = \deg \bar{g}(x)$. Then, by induction, the number of extensions is equal to $[E:F(\alpha)]\deg g(x)=[E:F]$.

Proof. [Corollary] If id: $F \to F$ and $f(x) \in F$ with E, \overline{E} are splitting fields of f(x) over F, then the number of such extensions ϕ of id is less than or equal to [E:F]. Q

Example. For $f(x) = x^3 - 2 \in \mathbb{Q}[x]$, $E = \mathbb{Q}(\sqrt[3]{2}, \zeta_3)$ is the splitting field. Now, how many automorphisms do we have and what are they? Well, we have at most 6 automorphisms. We could take $\sqrt[3]{2} \mapsto \zeta_3^k \sqrt[3]{2}$, and $\zeta_3 \mapsto \overline{\zeta}_3, \zeta_3$.

Week 4 13.4.2

Last time, we learned that, if $f(x) \in F[x]$ has splitting field E and $f(x) \in F[x]$ has splitting field E, then an isomorphism ϕ : $F \to F$ lifts to an isomorphism ϕ . There are at most [E:F] such extensions.

$$E \xrightarrow{\bar{\phi}} \bar{E}$$

$$\downarrow \qquad \qquad \downarrow$$

$$F \xrightarrow{\phi} \bar{F}$$

Definition 13.4.7 (Algebraic Closure). A field \overline{F} is called an algebraic closure of F if \overline{F}/F is algebraic and every $f(x) \in F[x]$ splits completely.

For an example, consider

However, even though $\bar{\mathbb{C}} = \mathbb{C}$, \mathbb{C}/\mathbb{Q} is not algebraic.

Proposition 13.4.8 (Algebraic Closure is Closed). If \bar{F} is an algebraic closure of F, then $\bar{F} = \bar{F}$.

¹Is this really sufficient?

Proof. Let $f(x) \in \overline{F}[x]$ be irreducible. It suffices to show that $\deg f(x) = 1$. Let E/\overline{F} be the splitting field of f.

We know that E/\bar{F} is finite and hence algebraic. Since \bar{F}/F is algebraic, E/F° is algebraic. For any $\alpha \in E$, α is not a root of some irreducible polynomial over F. Since \bar{F} is the algebraic closure of F,

$$E \subset \bar{F} \implies E = \bar{F} \implies \deg f(x) = 1.$$

@

Definition 13.4.9 (Separable). We call $f(x) \in F[x]$ separable if f(x) has no multiple root in a splitting field E of f(x) over F.

Moreover, we say E/F is called separable if every element of E is a root of a separable polynomial over F.

For example, $\mathbb{F}_2(t)(\sqrt{t})/\mathbb{F}_2(t)$ is inseparable.

Theorem 13.4.10. A polynomial $f(x) \in F[x]$ has a multiple root in its splitting field over F if and only if f(x) and f'(x) are not relatively prime.

Proof. Let E be a splitting field of f(x) over F and $\alpha \in E$ a multiple root of f(x). Then $f(x) = (x - \alpha)^m h(x)$ for some $h(x) \in F[x]$ and m > 1. Then $f'(x) = m(x - \alpha)^{m-1} h(x) + (x - \alpha)^m h'(x) = (x - \alpha)^{m-1}$ in E[x]. Let p(x) be the minimal polynomial of α over F. Then p|f, f'.

Assume $\gcd(f(x),f'(x))\neq 1$. Then there exists an irreducible polynomial p(x)|f(x),f'(x). Let α be a root of p(x) in a splitting field E of f(x) over F. Then, we have that $f(\alpha)=0=f'(\alpha)$, so $f(x)=(x-\alpha)g(x)$ for some $g(x)\in E[x]$. Hence,

$$f'(x) = g(x) + (x - \alpha)g'(x) \implies (x - \alpha)|g(x)$$

so $(x-\alpha)^2|f(x)$ in E[x], so α is a multiple root of f(x). In particular, f(x) is nonseparable.

Theorem 13.4.11 (Algebraic Closure). Every field F is contained in an algebraically closed field K and the set of all elements of K algebraic over F is an algebraic closure of F. Moreover, the algebraic closure of F is unique.

Hence, if \mathbb{F} is another algebraically closed field and K is all of the elements of \mathbb{F} algebraic over \mathbb{Q} ,

13.4.3 Wednesday

Let \mathbb{F} be a finite field. Let $f(x) = x^{|\mathbb{F}|} - x$ in $\mathbb{Z}_p[x]$. So, f'(x) = -1. Thus, the greatest common divisor of the two is 1, and f is always separable in \mathbb{F} .

Additionally, for $\alpha \in \mathbb{F}^{\times}$, $\alpha^{|F^{\times}|} = 1$ so α is a root of $x^{|\mathbb{F}|-1} - 1$ and $x^{|F|-1} - 1 = \prod_{\alpha \in \mathbb{F}^{\times}} (x - \alpha)$. However, $x^{|\mathbb{F}|} - x = \prod_{\alpha \in \mathbb{F}} (x - \alpha)$ so. Hm!

Definition 13.4.12 (Perfect Field). A field \mathbb{F} is called perfect if every irreducible polynomial $f(x) \in F[x]$ is separable.

Theorem 13.4.13 (Characteristic 0 Perfection). Every field \mathbb{F} of characteristic 0 is perfect.

Proof. Let $f(x) \in \mathbb{F}[x]$ be irreducible. Then $f'(x) \neq 0$ and $\deg f'(x) < \deg f(x)$. In particular, $f(x) \not| f'(x)$. Since $\gcd(f(x), f'(x)) = 1$, f(x) by irreducibility, f and f' are coprime and f is separable.

Theorem 13.4.14 (Number Fields). Every algebraic extension over a field of characteristic 0 is separable.

Theorem 13.4.15 (Finite Field Perfection). Every finite field is perfect.

Proof. Let $f(x) \in F[x]$ be irreducible and E a splitting field of f over F. In particular, E/F is finite and E is finite itself. Therefore

$$x^{|E|}-x=\prod_{\alpha\in E}(x-\alpha)$$
 and $f(x)|x^{|E|}-x$ in $F[x]$. Therefore, $f(x)$ is a factor of a seperable polynomial and is hence separable.

Definition 13.4.16 (Frobenius Automorphism). The function x^p is called the Frobenius automorphism for fields of characteristic p.

13.5 Cyclotomic Extensions

Let's start with $\mu_n = \left\{e^{2\pi i k/n} = \zeta_n^k \middle| k \in [n-1]\right\}$. This is a finite group under complex multiplication. Hence, $(\mu_n, \cdot) \cong (\mathbb{Z}_n, +)$.

$$\textbf{Definition 13.5.1 (Cyclotomic Polynomial).} \\ \Phi_n(x) = \prod_{\alpha \in \mu_n \ that \ are \ generators} (x - \alpha)$$

is the nth cyclotomic polynomial.

We often call the generators of μ_n the primitive nth roots of unity.

Chapter 14

Second Chapter

14.1 First Section

Appendix A

List Of Definitions

Grade Distribution	III
Field Theory	1
13.1.1: Field	1
13.1.2: Characteristic	1
13.1.4: Prime Subfield	2
13.1.6: Extension	2
13.1.13: Subfield Generation	5
13.2.1: Algebraic Extension	6
13.2.8: Product Field	8
13.3.1: Constructibility	9
13.3.4: Constructible Points (\mathbb{F}^2) in \mathbb{R}^2	10
13.4.1: Splitting Field	11
13.4.7: Algebraic Closure	13
13.4.9: Separable	14
13.4.12: Perfect Field	15
13.4.16: Frobenius Automorphism	16
13.5.1: Cyclotomic Polynomial	16
Second Chapter	17
List Of Definitions	19

List Of Theorems

21

Appendix B

List Of Theorems

Grade Distribution	Ш
Field Theory	1
Proposition 13.1.3: Characteristic of a Field	1
Proposition 13.1.5: Prime Subfield	2
Theorem 13.1.7: Extension Index	3
Corollary 13.1.8: Finite Subextension	3
Proposition 13.1.9: Field to Ring Homomorphism	4
Theorem 13.1.10: Polynomial Extension	4
Corollary 13.1.11: Existence of Root Extensions .	5
Corollary 13.1.12: Existence of Root Extensions	
(again)	5
Proposition 13.1.14: Polynomial Extension Isomorphism	6
Corollary 13.1.15: Polynomial Root Extension Iso-	
morphism	6
Lemma 13.2.2: Finite Extension is Algebraic	6
Proposition 13.2.3: Minimal Polynomial	7
Corollary 13.2.4: Intermediate Extension Polyno-	
mial Divisibility	7
Corollary 13.2.5: Isomorphism of Extensions	7
Corollary 13.2.6: Algebraic Subfield	7
Proposition 13.2.7: Transitivity of Extensions	7

Proposition 13.2.9: Product Field Properties	8
Proposition 13.3.2: Subfield of Constructible Numbers	9
Corollary 13.3.3: Degree 2 Extension Closure	9
Theorem 13.3.5: Power Two Necessity	10
Theorem 13.3.6: Trisecting the Angle	10
Theorem 13.3.7: Doubling the Cube	10
Theorem 13.3.8: Square with Area π	11
Theorem 13.4.2: Roots to Splitting Field	11
Theorem 13.4.3: Splitting Degree	11
Lemma 13.4.4: Isomorphism Extension	12
Theorem 13.4.5	12
Corollary 13.4.6: Uniqueness of Splitting Field	12
Proposition 13.4.8: Algebraic Closure is Closed	13
Theorem 13.4.10	14
Theorem 13.4.11: Algebraic Closure	14
Corollary 13.4.13: Characteristic 0 Perfection	15
Corollary 13.4.14: Number Fields	15
Theorem 13.4.15: Finite Field Perfection	15
Second Chapter	17
List Of Definitions	19
List Of Theorems	21