Laboratorium Podstaw Fizyki

Nr ćwiczenia 29

Temat ćwiczenia Wyznaczanie Współczynnika Rozszerzalności Termicznej Oraz Badanie Procesów Przekazywania Ciepła

Wykonawca:	
Imię i Nazwisko	Bartłomiej Brzozowski
Termin zajęć: dzień tygodnia, godzina	Czwartek, 17:05
Data oddania sprawozdania:	16.03.2023

Zatwierdzam wyniki pomiarów.
Data i podpis prowadzącego zajęcia

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

Spis treści

1. Wprowadzenie	3
1.1 Cele Ćwiczenia	3
1.2 Spis Przyrządów	3
1.3 Schemat Układu Pomiarowego	3
1.4 Oznaczenia	4
2.Pomiary	4
2.1 Wyniki Pomiarów	4
2.2 Opracowanie Wyników	6
2.2.1 Dla pierwszej serii pomiarów (ze Ścianką)	7
2.2.2 Dla drugiej serii pomiarów (bez Ścianki)	12
2.3 Przykładowe obliczenia	17
3. Wnioski	18

1. Wprowadzenie

1.1 Cele Ćwiczenia

- Utrwalenie umiejętności pisania sprawozdania.
- Wyznaczenie współczynnika rozszerzalności liniowej metalu.
- Analiza otrzymanych wyników.

1.2 Spis Przyrządów

- Zasilacz prądu stałego RXN-1505D
- Czujnik mikrometryczny do pomiaru wydłużenia drutu
- Cyfrowy miernik temperatury YC-61N
- Woltomierz (wbudowany w zasilacz RXN-1505D)

1.3 Schemat Układu Pomiarowego

• Układ pomiarowy

Rysunek 1 - Schemat Układu Pomiarowego

1.4 Oznaczenia

- *U* Napięcie [*V*] (Wolt),
- I Natężenie [A] (Amper),
- t Temperatura Drutu [°C] (Celsjusz),
- t_0 Temperatura Początkowa Drutu [°C] (Celsjusz),
- ΔT Przyrost Temperatury Drutu [°C] (Celsjusz),
- L Długość Drutu [mm] (miliMetr = 10^{-3} · Metr),
- L₀ Początkowa Długość Drutu [mm] (miliMetr),
- ΔL Przyrost Długości Drutu [mm] (miliMetr),
- ΔL/L₀ Względne Wydłużenie Drutu,
- P Moc Wydzielona w Drucie [W] (Watt),
- α Współczynnik Rozszerzalności Termicznej Drutu [1/C] (1/Celsjusz).

2.Pomiary

2.1 Wyniki Pomiarów

Wybrano stanowisko pomiarowe numer dwa, po czym spisano wartości początkowe temperatury i długości drutu (Rys.2). Następnie, zgodnie z instrukcją przeprowadzono pomiar temperatury i przyrostu długości druta, oraz napięcia. Poniżej zapisane zostały otrzymane wynik (Rys.3). Każdy pomiar został zmierzony ośmiokrotnie, przy pomocy woltomierza (wbudowanego w zasilaczu RXN-1505D), czujnika mikrometrycznego i cyfrowego termometru (YC-61N). Przy czym zmieniano natężenie prądu na zasilaczu, zawsze o 0,1 [A] w każdym pomiarze. W dalszej kolejności, wyzerowano natężenie prądu na zasilaczu i odczekano do zmniejszenia temperatury drutu. Dalej usunięto przednią ściankę komory pomiarowej. Następnie spisano wartość początkową temperatury druta (Rys.4). Po czym zapisano ponowne wyniki pomiarów temperatury i przyrostu długości druta, oraz napięcia. Przeprowadzono takie samo ośmiokrotne mierzenie, przy użyciu tego samego sprzętu, również za każdym razem zmieniając natężenie na zasilaczu o 0,1 [A]. Po czym otrzymane wyniki zapisano w tabeli (Rys.5).

$$L_0 = (915,0 \pm 4,0) [mm]$$

 $t_0 = 22,7 [^{\circ}C]$

Rysunek 2 - Wartości Początkowe dla Pomiarów ze Ścianką

Nr	<i>I</i> [<i>A</i>]	<i>U</i> [<i>V</i>]	t [°C]	$\Delta L [mm]$
1	0,10	0,5	23,6	0,00
2	0,20	1,2	26,8	0,05
3	0,30	1,9	31,8	0,13
4	0,40	2,6	38,0	0,21
5	0,50	3,2	44,4	0,31
6	0,60	3,9	53,3	0,45
7	0,70	4,6	63,8	0,62
8	0,80	5,2	74,0	0,78

Rysunek 3 - Wyniki Pomiarów ze Ścianką

$$t_0 = 24,4 \ [^{\circ}C]$$

Rysunek 4 - Wartości Początkowe dla Pomiarów bez Ścianki

Nr	I[A]	U[V]	t [°C]	$\Delta L [mm]$
1	0,10	0,6	25,0	0,00
2	0,20	1,3	27,0	0,04
3	0,30	1,9	30,0	0,09
4	0,40	2,6	34,1	0,15
5	0,50	3,3	39,3	0,25
6	0,60	3,9	44,7	0,32
7	0,70	4,6	52,0	0,44
8	0,80	5,2	57,2	0,54

Rysunek 5 - Wyniki Pomiarów bez Ścianki

2.2 Opracowanie Wyników

Po dokonaniu analizy wyników, dokonano obliczeń niepewności pomiarowych. Korzystano w nich z wzorów z poniższej grafiki (Rys.6). Po czym zapisano je w następnych podpunktach. Zgodnie z zasadami zaokrąglano niepewności do dwóch miejsc znaczących w górę. Następnie wpisano je do tabel.

 $\Delta t, \Delta t_0, \Delta U, \Delta I, \Delta (\Delta L), \Delta T$ -Niepewności przyrządu pomiarowego, gdzie

$$\Delta t = 1$$
, $\Delta t_0 = 0.05\% rdg + 0.5$ °C, $\Delta U = 1\% rdg + 1dgt$, $\Delta I = 1\% rdg + 1dgt$, $\Delta (\Delta L) = 0.01 \ mm$, $\Delta T = t_i - t_0$, $i = 1.2,8$.

 $u_A(x)$ - Niepewność standardowa (statyczna) typu A, gdzie

$$u_A(x) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2}, \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

 $u_{B}(x)$ – Niepewność standardowa (szacowana) typu B, gdzie

$$u_B(x) = \sqrt{\frac{\Delta x^2}{3} + \frac{\Delta_e x^2}{3}},$$

 $\Delta_{\rho}x^2$ – niepewność eksperymentatora.

u(x) – Niepewność standardowa całkowita, gdzie

$$u(x) = \sqrt{u_A^2(x) + u_B^2(x)}$$
.

 $u_c(x)$ – Niepewność złożona, gdzie

$$u_c(x) = \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 u^2(x_j)}.$$

2.2.1 Dla pierwszej serii pomiarów (ze Ścianką)

t₀ [°C]	$u(t_0)$ [°C]	$\approx u(t_0)$ [°C]
22,70	0,295228060150115	0,30

Rysunek 7 - Niepewność zerowego pomiaru temperatury

Nr	<i>I</i> [<i>A</i>]	u(I)[A]	$\approx u(I)[A]$
1	0,1000	0,00635085296108588	0,0064
2	0,2000	0,00692820323027551	0,0070
3	0,3000	0,00750555349946514	0,0076
4	0,4000	0,00808290376865476	0,0081
5	0,5000	0,00866025403784439	0,0087
6	0,6000	0,00923760430703401	0,0093
7	0,7000	0,00981495457622364	0,0099
8	0,8000	0,01039230484541330	0,0110

Rysunek 8 - Niepewności Natężenia

Nr	U[V]	u(U)[V]	$\approx u(U)[V]$
1	0,500	0,0606217782649107	0,061
2	1,200	0,0646632301492381	0,065
3	1,900	0,0687046820335655	0,069
4	2,600	0,0727461339178928	0,073
5	3,200	0,0762102355330306	0,077
6	3,900	0,0802516874173580	0,081
7	4,600	0,0842931393016854	0,085
8	5,200	0,0877572409168231	0,088

Rysunek 9 - Niepewność Napięcia

Nr	t [°C]	u(t) [°C]	$\approx u(t)$ [°C]	<i>T</i> [°C]	$u_c(\Delta T)$ [°C]	$\approx u_c(\Delta T)$ [°C]
1	23,60			0,90		
2	26,80			4,10		
3	31,80			9,10		
4	38,00	0,577350269189626	0,58	15,30	0,64845427042571	0,65
5	44,40			21,70		
6	53,30			30,60		
7	63,80			41,10		
8	74,00			51,30		

Rysunek 10 - Niepewność temperatury i przyrostu temperatury

Nr	$\Delta L [mm]$	$u(\Delta L)$ [mm]	$\approx u(\Delta L) [mm]$
1	0,0000		
2	0,0500		
3	0,1300		
4	0,2100	0,00577350269189626	0,0058
5	0,3100		
6	0,4500		
7	0,6200		
8	0,7800		

Rysunek 11 - Niepewność przyrostu długości drutu

Nr	$\Delta L/L_0$	$u_c(\Delta L/L_0)$	$\approx u_c(\Delta L/L_0)$
1	0,0000000	0,00000630983900753689	0,0000064
2	0,0000546	0,00000631435935485799	0,0000064
3	0,0001421	0,00000634033381195925	0,0000064
4	0,0002295	0,00000638910857079898	0,0000064
5	0,0003388	0,00000648133290021620	0,0000065
6	0,0004918	0,00000666606292815777	0,0000067
7	0,0006776	0,00000697054515447660	0,0000070
8	0,0008525	0,00000732813700461851	0,0000074

Rysunek 12 - Niepewność względnego wydłużenia drutu

Następnie dokonano obliczeń za pomocą regresji liniowej w Excelu, współczynnika rozszerzalności liniowej metalu i jego niepewności. Wykonano wykres, który zamieszczono na następnej stronie (Rys.15). Wyniki zaprezentowano w następnych tabelach.

α	$\approx \alpha$	$u(\alpha)$	$\approx u(\alpha)$
0,0000168704061841514	0,00001687	0,0000001551327892943	0,00000016

Rysunek 13 - Wyniki regresji liniowej - współczynnik rozszerzalności liniowej

b	$\approx b$	u(b)	$\approx u(b)$
-0,000018781558844889	-0,0000188	0,0000042706164884447	0,0000043

Rysunek 14 - Wyniki regresji liniowej - wyraz wolny

Rysunek 15 - Wykres zależności względnego wydłużenia drutu od różnicy temperatur

Rysunek 16 – Punkt z niepewnościami

W dalszej kolejności za pomocą poprzednich tabel wyznaczono przedział w którym leży współczynnik rozszerzalności liniowej metalu i jego przybliżenie. Wynik zaprezentowano poniżej.

```
\alpha \in [0,0000167152733948571; 0,0000170255389734457]
\alpha \in [0,00001671; 0,00001703]
\alpha \in [16,71 \cdot 10^{-6}; 17,03 \cdot 10^{-6}]
```

Rysunek 17-Przedział współczynnika rozszerzalności liniowej

Następnie za pomocą bezpośrednich pomiarów, wyznaczono pośrednio moc wydzieloną w drucie i sporządzono wykres zależności mocy od różnicy temperatur. Wyniki pośredniego pomiaru mocy znajduję się w poniższej tabeli, a wykres na kolejnej stronie(Rys.19).

Nr	I[A]	<i>U</i> [<i>V</i>]	<i>P</i> [<i>W</i>]	$u_c(P)[W]$	$\approx u_c(P)[W]$
1	0,10	0,5	0,0500	0,00684348838921594	0,0069
2	0,20	1,2	0,2400	0,01537443765909290	0,0160
3	0,30	1,9	0,5700	0,02506378529538850	0,0260
4	0,40	2,6	1,0400	0,03589391777632160	0,0360
5	0,50	3,2	1,6000	0,04711687595755900	0,0480
6	0,60	3,9	2,3400	0,06013684394778300	0,0610
7	0,70	4,6	3,2200	0,07429688194444410	0,0750
8	0,80	5,2	4,1600	0,08859556046063110	0,0890

Rysunek 18 - Pośredni pomiar mocy wydzielonej w drucie

Rysunek 19 - Wykres Zależności mocy wydzielonej w drucie do przyrostu temperatury druta

2.2.2 Dla drugiej serii pomiarów (bez Ścianki)

t₀ [°C]	$u(t_0)$ [°C]	$\approx u(t_0)$ [°C]
24,40	0,295718807878926	0,30

Rysunek 20 - Niepewność zerowego pomiaru temperatury

Nr	<i>I</i> [<i>A</i>]	u(I)[A]	$\approx u(I)[A]$
1	0,1000	0,00635085296108588	0,0064
2	0,2000	0,00692820323027551	0,0070
3	0,3000	0,00750555349946514	0,0076
4	0,4000	0,00808290376865476	0,0081
5	0,5000	0,00866025403784439	0,0087
6	0,6000	0,00923760430703401	0,0093
7	0,7000	0,00981495457622364	0,0099
8	0,8000	0,01039230484541330	0,0110

Rysunek 21 - Niepewności Natężenia

Nr	<i>U</i> [<i>V</i>]	u(U)[V]	$\approx u(U)[V]$
1	0,600	0,0611991285341003	0,062
2	1,300	0,0652405804184277	0,065
3	1,900	0,0687046820335655	0,069
4	2,600	0,0727461339178928	0,073
5	3,300	0,0767875858022202	0,077
6	3,900	0,0802516874173580	0,081
7	4,600	0,0842931393016854	0,085
8	5,200	0,0877572409168231	0,088

Rysunek 22 - Niepewność Napięcia

Nr	t [°C]	u(t) [°C]	$\approx u(t)$ [°C]	<i>T</i> [°C]	$u_c(\Delta T)$ [°C]	$\approx u_c(\Delta T)$ [°C]
1	25,00			0,60		
2	27,00			2,60		
3	30,00			5,60		
4	34,10	0,577350269189626	0,58	9,70	0,64845427042571	0,65
5	39,30			14,90		
6	44,70			20,30		
7	52,00			27,60		
8	57,20			32,80		

Rysunek 23 - Niepewność temperatury i przyrostu temperatury

Nr	$\Delta L [mm]$	$u(\Delta L) [mm]$	$\approx u(\Delta L) [mm]$
1	0,0000		
2	0,0400		
3	0,0900		
4	0,1500	0,00577350269189626	0,0058
5	0,2500		
6	0,3200		
7	0,4400		
8	0,5400		

Rysunek 24 - Niepewność przyrostu długości drutu

Nr	$\Delta L/L_0$	$u_c(\Delta L/L_0)$	$\approx u_c(\Delta L/L_0)$
1	0,0000000	0,00000630983900753689	0,0000064
2	0,0000437	0,00000631273240271067	0,0000064
3	0,0000983	0,00000632447320869329	0,0000064
4	0,0001639	0,00000635040629820410	0,0000064
5	0,0002731	0,00000642189320467459	0,0000065
6	0,0003496	0,00000649241726029459	0,0000065
7	0,0004809	0,00000665080753383488	0,0000067
8	0,0005902	0,00000681690682737079	0,0000069

Rysunek 25 - Niepewność względnego wydłużenia drutu

Następnie dokonano obliczeń za pomocą regresji liniowej w Excelu, współczynnika rozszerzalności liniowej metalu i jego niepewności. Wykonano wykres, który zamieszczono na następnej stronie (Rys.28). Wyniki zaprezentowano w następnych tabelach.

α	≈ <i>α</i>	$u(\alpha)$	$\approx u(\alpha)$
0,0000179438103821256	0,00001794	0,000000263034566744928	0,00000027

Rysunek 26 - Wyniki regresji liniowej - współczynnik rozszerzalności liniowej

b	$\approx b$	u(b)	$\approx u(b)$
-0,00000592359557506644	-0,0000059	0,000004745815339060580	0,0000048

Rysunek 27 - Wyniki regresji liniowej - wyraz wolny

Rysunek 28 - Wykres zależności względnego wydłużenia drutu od różnicy temperatur

Rysunek 29 – Punkt z niepewnościami

W dalszej kolejności za pomocą poprzednich tabel wyznaczono przedział w którym leży współczynnik rozszerzalności liniowej metalu i jego przybliżenie. Wynik zaprezentowano poniżej.

```
\alpha \in [0,0000176807758153807; 0,0000182068449488705]
\alpha \in [0,00001768; 0,00001821]
\alpha \in [17,68 \cdot 10^{-6}; 18,21 \cdot 10^{-6}]
```

Rysunek 30 - Przedział współczynnika rozszerzalności liniowej

Następnie za pomocą bezpośrednich pomiarów, wyznaczono pośrednio moc wydzieloną w drucie i sporządzono wykres zależności mocy od różnicy temperatur. Wyniki pośredniego pomiaru mocy znajduję się w poniższej tabeli, a wykres na kolejnej stronie(Rys.32).

Nr	I[A]	U[V]	P[W]	$u_c(P)[W]$	$\approx u_c(P)[W]$
1	0,10	0,5	0,0600	0,00720925331316173	0,0073
2	0,20	1,2	0,2600	0,01585475743533570	0,0160
3	0,30	1,9	0,5700	0,02506378529538850	0,0260
4	0,40	2,6	1,0400	0,03589391777632160	0,0360
5	0,50	3,2	1,6500	0,04786265071361320	0,0480
6	0,60	3,9	2,3400	0,06013684394778300	0,0610
7	0,70	4,6	3,2200	0,07429688194444410	0,0750
8	0,80	5,2	4,1600	0,08859556046063110	0,0890

Rysunek 31 - Pośredni pomiar mocy wydzielonej w drucie

Rysunek 32 - Wykres Zależności mocy wydzielonej w drucie do przyrostu temperatury druta

2.3 Przykładowe obliczenia

Przykład obliczeń dla pierwszych wartości zmierzonych w pierwszej serii pomiarów (ze Ścianką)

 Δt , Δt_0 , ΔU , ΔI , $\Delta (\Delta L)$, ΔT – Niepewności przyrządu pomiarowego:

$$\Delta t = 1 \, ^{\circ}\text{C}, \ \Delta t_0 = 0.05\% \cdot 22.7 \ + 0.5 = 0.51135 \, ^{\circ}\text{C},$$

$$\Delta U = 1\% \cdot 0.5 + 1 \cdot 0.1 = 0.105 \, V, \ \Delta I = 1\% \cdot 0.10 + 1 \cdot 0.01 = 0.011 \, A,$$

$$\Delta(\Delta L) = 0.01 \, mm, \ \Delta T = 23.6 - 22.7 = 0.9 \, ^{\circ}\text{C} \, .$$

 $u_A(x)$ - Niepewność standardowa (statyczna) typu A:

 $u_A(x) = 0$, dla pojedynczych pomiarów.

 $u_{B}(x)$ – Niepewność standardowa (szacowana) typu B:

Założenia: $\Delta_e x^2 = 0$ – niepewność eksperymentatora.

$$u_B(x) = \sqrt{\frac{\Delta x^2}{3} + \frac{\Delta_e x^2}{3}}, = \frac{\Delta x}{\sqrt{3}},$$

$$u_B(t) = \frac{\Delta t}{\sqrt{3}} = 0,577350269189626 \approx 0,58 \text{ °C}, u_B(t_0) = \frac{\Delta t_0}{\sqrt{3}} = 0,295228060150115 \approx 0,30 \text{ °C}$$

$$u_B(U) = \frac{\Delta U}{\sqrt{3}} = 0,0606217782649107 \text{ V} \approx 0,061 \text{ V},$$

$$u_B(I) = \frac{\Delta I}{\sqrt{3}} = 0,00635085296108588 \text{ A} \approx 0,0064 \text{ A},$$

$$u_B(\Delta L) = \frac{\Delta(\Delta L)}{\sqrt{2}} = 0,00577350269189626 \text{ }mm \approx 0,0058 \text{ }mm.$$

u(x) – Niepewność standardowa całkowita:

Z tego, że $u_A(x) = 0$, dla pojedynczych pomiarów, wzór prezentuję się następująco:

$$u(x) = \sqrt{u_A^2(x) + u_B^2(x)} = u_B(x).$$

$$u(t) = u_B(t), \ u(t_0) = u_B(t_0), \ u(U) = u_B(U), \ u(I) = u_B(I), \ u(\Delta L) = u_B(\Delta L).$$

 $u_c(x)$ – Niepewność złożona:

$$\begin{split} u_c(x) &= \sqrt{\sum\nolimits_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 u^2(x_j)}, \\ u_c\left(\frac{\Delta L}{L_0}\right) &= \sqrt{\left(\frac{\partial \frac{\Delta L}{L_0}}{\partial \Delta L} \cdot u(\Delta L)\right)^2 + \left(\frac{\partial \frac{\Delta L}{L_0}}{\partial L_0} \cdot u(L_0)\right)^2} = \sqrt{\left(\frac{1}{L_0} \cdot u(\Delta L)\right)^2 + \left(\frac{-\Delta L}{L_0^2} \cdot u(L_0)\right)^2} = 0,00000630983900753689 \\ &\approx 0,00000064 \;, \\ u_c(\Delta T) &= \sqrt{\left(\frac{\partial \Delta T}{\partial t_i} \cdot u(t_i)\right)^2 + \left(\frac{\partial \Delta T}{\partial t_0} \cdot u(t_0)\right)^2} = \sqrt{(1 \cdot u(t_i))^2 + (-1 \cdot u(t_0))^2} = 0,64845427042571 \; \approx 0,65 \; ^{\circ}\mathrm{C} \;, \\ u_c(P_i) &= \sqrt{\left(\frac{\partial P_i}{\partial U_i} \cdot u(U_i)\right)^2 + \left(\frac{\partial P_i}{\partial I_i} \cdot u(I_i)\right)^2} = \sqrt{(I_i \cdot u(U_i))^2 + (U_i \cdot u(I_i))^2} = 0,00684348838921594 \; \approx 0,0069 \; W. \end{split}$$

3. Wnioski

Analizując wartości współczynników rozszerzalności liniowej dla pierwszej i drugiej serii pomiarów, widzimy, że są one różne. Co dalej nasuwa wniosek, że materiał z którego jest zrobiony drut nie został jasno wyznaczony, odpowiada współczynnikowi rozszerzalności leżącej w którymś z przedziałów z (Rys.35). Dla przykładu odczytując wartości współczynników rozszerzalności liniowej z tabeli zbliżonych najbardziej do wartości otrzymanych wyników: współczynnik dla serii pierwszej może odpowiadać drutowi zrobionemu z miedzi, a współczynnik dla serii drugiej może odpowiadać drutowi zrobionemu z brązu.

α ₁ [1/°C]	α ₂ [1/°C]
0,00001687(16)	0,00001794(27)

Rysunek 34 - Porównanie współczynników rozszerzalności

α ₁ [1/°C]	α ₂ [1/°C]	
[$16,71 \cdot 10^{-6}; 17,03 \cdot 10^{-6}$]	$[17,68 \cdot 10^{-6}; 18,21 \cdot 10^{-6}]$	

Rysunek 35 - Porównanie przedziałów współczynników rozszerzalności

Odwołując się do nierówności współczynników dla serii pierwszej i serii drugiej, możemy wnioskować, że niepoprawne było założenie, o zerowej niepewności eksperymentatora. W pomiarach mogło dojść na przykład do błędnego odczyt przyrost długości drutu lub napięcia.

Nr	<i>I</i> [<i>A</i>]	<i>U</i> [<i>V</i>]	t [°C]	$\Delta L [mm]$
1	0,1000(64)	0,500(61)	23,60(58)	0,0000(58)
2	0,2000(70)	1,200(65)	26,80(58)	0,0500(58)
3	0,3000(76)	1,900(69)	31,80(58)	0,1300(58)
4	0,4000(76)	2,600(73)	38,00(58)	0,2100(58)
5	0,5000(81)	3,200(77)	44,40(58)	0,3100(58)
6	0,6000(87)	3,900(81)	53,30(58)	0,4500(58)
7	0,7000(93)	4,600(85)	63,80(58)	0,6200(58)
8	0,8000(99)	5,200(88)	74,00(58)	0,7800(58)

Rysunek 36- Wyniki końcowe dla serii pierwszej (ze Ścianką)

Nr	<i>I</i> [<i>A</i>]	<i>U</i> [<i>V</i>]	t [°C]	$\Delta L [mm]$
1	0,1000(64)	0,600(62)	25,00(58)	0,0000(58)
2	0,2000(70)	1,300(65)	27,00(58)	0,0400(58)
3	0,3000(76)	1,900(69)	30,00(58)	0,0900(58)
4	0,4000(76)	2,600(73)	34,10(58)	0,1500(58)
5	0,5000(81)	3,300(77)	39,30(58)	0,2500(58)
6	0,6000(87)	3,900(81)	44,70(58)	0,3200(58)
7	0,7000(93)	4,600(85)	52,00(58)	0,4400(58)
8	0,8000(110)	5,200(88)	57,20(58)	0,5400(58)

Rysunek 37- Wyniki końcowe dla serii pierwszej (bez Ścianki)