Sprawozdanie - Laboratorium nr 1

Rozwiązywanie Układów Algebraicznych Równań Liniowych metodami bezpośrednimi - metoda Gaussa-Jordana

Hubert Wdowiak, 29.02.2018

1. Wstęp Teoretyczny

Podczas trwania zajęć podjęliśmy próbę rozwiązania układu równań, opisujących drgania oscylatora harmonicznego. W naszych rozważaniach korzystaliśmy z wzorów:

$$d^{2}x(t) / dt^{2} = -k/m * x(t) = -\omega^{2}x(t),$$
 (1)

$$d^{2}x(t) / dt^{2} \approx (x(t + \Delta t) - 2x(t) + x(t - \Delta)) / (\Delta t)^{2},$$
 (2)

$$x_{i+1} + (\omega^2 h^2 - 2)x_i + x_{x-1} = 0$$
 (3)

dzięki którym doszliśmy do wniosku, że posiadając odpowiednie dane dotyczące położenia sygnału, w dwóch następujących po sobie momentach (różnica między nimi to Δt), jesteśmy w stanie wyliczyć położenie wychylonego obiektu w następnej (oddalonej o Δt) chwili.

2. Wyliczenie wartości na podstawie danych początkowych

2.1. Opis problemu

Podczas trwania laboratorium naszym zadaniem było zobrazowanie na wykresie drgań oscylatora harmonicznego, przy określonych uprzednio wartościach początkowych. Aby wykonać polecenie wykorzystaliśmy wzór:

$$A*\overrightarrow{x} = \overrightarrow{b}$$

oraz funkcję:

void gaussj (float **a, int n, float **b, int m),

należącej do biblioteki "numerical_recipes" (wykonuje ona operacje na wierszach, dzięki którym możliwe jest otrzymanie macierzy jednostkowej a następnie rozwiązanie układu równań). Uprzednio jednak potrzebowaliśmy uzupełnić macierz, oraz wektor, na których chcieliśmy wywołać funkcję.

Poznawszy zadane dane początkowe (N=400, Δt =0.1, k/m=1, v_0 =0, a=1) i zauważywszy odpowiednie zależności, wypełniliśmy trzy przekątne \searrow macierzy **A**.

Główną przekątną \:

- wszystkie wartości to 1 poniższą przekątną >:
 - pierwsza wartość to -1,
 - resztę wyraża wzór " $(\omega^2 h^2 2)$ " wynikający z wzoru (3).

trzecią, najniższą przekątną >:

wszystkie wartości to 1.

Wektor b:

- pierwsza wartość to początkowe wychylenie (a),
- druga wartość to początkowa prędkość pomnożona przez krok czasowy,
- reszta wartości to 0.

Na tak przygotowanych danych, zastosowaliśmy funkcję *gassj*, której wyniki zostały zapisane wewnątrz wektora b.

2.2. Wyniki

Otrzymane wyniki przedstawiliśmy na wykresie za pomocą skryptu przygotowanego w Gnuplot'cie. Dla porównania dodaliśmy również wykres funkcji cosinus.

Na wykresie 1 widać, że oscyloskop rozpatrywany na zajęciach laboratoryjnych pokrył się z funkcją cosinus. Co więcej dane pochodzące z wyliczeń są oznaczone na wykresie jako punkty, przeciwnie do wykresu funkcji cosinus, która jest ciągła. Wynika to z faktu, że położenie wyliczane jest dla odpowiednich chwil oddalonych od siebie o Δt większe od 0.

3. Wnioski

Posiadając przynajmniej 2 dane opisujące poziom wychylenia obiektu, oraz znając jego prędkość początkową, przy określonej wartości współrzędnych k/m (wzór 1), stosując eliminację Gaussa-Jordana, jesteśmy w stanie obliczyć jego wychylenie w dowolnym czasie w przyszłości. Zmniejszając krok czasowy jesteśmy w stanie otrzymywać dokładniejsze dane wynikowe, jednak otrzymany wykres nigdy nie będzie ciągły.