Definizione di Indicatori per la Caratterizzazione dello Stile di Guida di Veicoli Leggeri Percorso Forte/Piano

Daniele Bosc - 1029971

Accelerazione

Dati raccolti dall'accelerometro durante una **pedalata forte**. Nel riquadro **rosso** si può vedere quando la bicicletta **accelera**. Nel riquadro **verde** il ciclista **non pedala**. Nel riquadro **giallo** il ciclista **frena**.

Piano/Forte

Misure di accelerazione di una **pedalata piano** (sinistra) e una **pedalata forte** (destra).

Al fine di stabilire se il ciclista sta pedalando forte o piano è sufficiente considerare gli assi X e Y.

Gli indicatori seguenti sono stati ottenuti dai dati appena presentati.

Accelerazione e Media Accelerazione X

Da questa immagine si può notare come all'aumentare della velocità sia sempre più difficile far accelerare la bicicletta.

Accelerazione Media

In blu l'accelerazione media dei 20 dati precedenti (0.8s) e dei 20 dati successivi ad ogni valore di x.

In rosso l'accelerazione media dei 40 dati precedenti (1.6s). I prossimi indicatori saranno tutti presi tenendo in considerazione gli ultimi 40 dati.

Media Accelerazione X

Accelerazione X media degli ultimi 1.6s. Dal grafico si può notare come in caso di pedalata forte i valori di accelerazione si mantengono più alti per un periodo di tempo più lungo.

Oltre a evidenziare l'accelerazione questo indicatore evidenzia anche le frenate.

Media Accelerazione Y

Accelerazione Y media degli ultimi 1.6s. Dal grafico si può notare come questo indicatore non sia particolarmente utile per stabilire se il ciclista sta pedalando piano o forte.

Valor Medio Rettificato X

Come visibile in figura, questo indicatore evidenzia in **egual misura** sia le **accelerazioni** che le **frenate**.

Valor Medio Rettificato Y

Questo indicatore è in grado di evidenziare le **accelerazioni evitando** di mostrare le **frenate**.

Varianza XY

Varianza degli ultimi 1.6s dell'accelerazione lungo X e Y. Dai grafici sì può notare come la varianza in X riesca a evidenziare sia le accelerazioni che le frenate, mentre quella in Y mostra solo le accelerazioni.

Deviazione Standard XY

Scarto Quadratico Medio XY

Kurtosi XY

Per quanto riguarda percorsi dritti la kurtosi non sembra dare informazioni particolarmente interessanti.

Skewness XY

Come per la Kurtosi, anche la Skewness, percorsi dritti, non sembra dare informazioni particolarmente utili.

Max XY

Il massimo degli ultimi 0.4s (10 dati).

Il massimo di X è in grado di evidenziare sia le accelerazioni che le frenate. Queste ultime, al contrario di quanto avveniva per varianza, deviazione standard e scarto quadratico medio, vengono evidenziate con un valore negativo.

Il massimo di Y, invece, evidenzia solo le accelerazioni.

Min XY

Il minimo degli ultimi 0.4s (10 dati).
Il minimo di X evidenzia sia le accelerazioni che le frenate come valori negativi, ma non è possibile distinguere tra le due.
Il minimo di Y, invece, evidenzia solo le accelerazioni.

Distanza Picco-Picco XY

La distanza picco-picco degli ultimi 0.4s (10 dati).

La X è in grado di evidenziare accelerazioni e frenate ma, rispetto al massimo, perde la capacità di distinguere tra i due.

La Y, invece, evidenzia solo le accelerazioni.

Shape Factor XY

Crest Factor XY

Impulse Factor XY

Margin Factor XY

Trasformata e Spettro Accelerazione X

A sinistra la trasformata dell'accelerazione in X, a destra lo spettro. Come si può notare dai grafici durante una pedalata forte si ha un incremento delle frequenze tra i 2 e i 6Hz. In caso di pedalate leggere le frequenze interessate si abbassano.

Trasformata e Spettro Accelerazione Y

A sinistra la trasformata dell'accelerazione in Y, a destra lo spettro. Come si può notare dai grafici durante una pedalata forte si ha un incremento generale delle frequenze, che va a diminuire nel caso di pedalate leggere.

Accelerazione X Filtrata

Accelerazione X filtrata a 0.5Hz tramite filtro passa-basso per rimuovere dalle misure i "disturbi" dovuti alle pedalate.

Accelerazione Y Filtrata

Accelerazione Y filtrata a 0.5Hz tramite filtro passa-basso per rimuovere dalle misure i "disturbi" dovuti alle pedalate.

Mancanti

Average amplitude aa
$$T_{\rm aa}=rac{1}{m}{\sum_{k=1}^m}X(k)$$
 Frequency centroid fc $T_{\rm fc}=rac{1}{m}{\sum_{k=1}^m}f_kX(k)$

Frequency variance fv
$$T_{\mathrm{fv}} = \frac{\sum_{k=1}^{m} \left(f_{k} - T_{\mathrm{fc}}\right)^{2} X(k)}{\sum_{k=1}^{N} X(k)}$$
 Spectral entropy se
$$T_{\mathrm{se}} = -\sum_{k=1}^{m} P(k) \mathrm{log}_{2} P(k)$$

Grafici che devono ancora essere inseriti.