STA 674

Regression Analysis And Design Of Experiments

Measuring Association between Two Variables – Lecture 3

STA 674, RADOE:

Measuring Association between Two Variables

- What is it?
 - Correlation

Correlation—definition:

$$R_{X,Y} = \frac{\sum_{i=1}^{n} [(x_i - \bar{x})(y_i - \bar{y})]}{(n-1)s_X s_Y}$$

• Where:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

And

$$s_X = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

• Example: Average January temperature in US cities

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = -1001.7$$

$$R_{X,Y} = \frac{\sum_{i=1}^{n} [(x_i - \bar{x})(y_i - \bar{y})]}{(n-1)s_X s_Y}$$

$$=\frac{-1001.7}{(10-1)(7.0)(16.9)}$$

$$=-0.94$$

City		Latitude	Average Jan Temp
Louisville,	KY	39	27
Key West,	FL	25	65
New Orleans,	LA	30.8	45
Atlanta,	GA	33.9	37
Charlotte,	NC	35.9	34
Harrisburg,	PA	40.9	24
Omaha,	NE	41.9	13
Detroit,	MI	43.1	21
Burlington,	VT	45	7
Spokane,	WA	48.1	19
Means		38.4	29.2
Standard deviations		7	16.9

- Interpretation—first, sign.
- Look at R: $R_{X,Y} = \frac{\sum_{i=1}^{n} [(x_i \bar{x})(y_i \bar{y})]}{(n-1)s_X s_Y}$
- Most of the factors are always positive: (n-1), s_X , s_Y .
- So need to look at product: $(x_i \bar{x})(y_i \bar{y})$.
 - When is an individual term positive? $+\times+$ or $-\times-$ (meaning?)
 - When is it negative? $+\times-$ or $-\times+$ (ditto?)

- Interpretation sign.
- The product, $(x_i \bar{x})(y_i \bar{y})$, is

positive if

$$x_i > \bar{x}$$
 and $y_i > \bar{y}$

or if

$$x_i < \bar{x}$$
 and $y_i < \bar{y}$

- Interpretation sign.
- The product, $(x_i \bar{x})(y_i \bar{y})$, is

negative if

$$x_i > \bar{x}$$
 and $y_i < \bar{y}$

or if

$$x_i < \bar{x}$$
 and $y_i > \bar{y}$

- Interpretation, finally:
- Sign of $R_{X,Y} = \frac{\sum_{i=1}^{n} [(x_i \bar{x})(y_i \bar{y})]}{(n-1)s_X s_Y}$ will be **positive** if most of the data falls in the **upper-right** or **lower-left** quadrants relative to the mean.

- Interpretation:
- Sign of $R_{X,Y}$ will be **negative** if most of the data falls in the **lower-right** or **upper-left** quadrants relative to the mean.

- Interpretation:
- The correlation, $R_{X,Y}$, will be close to zero if most of the data is evenly distributed to all four quadrants.

