

Overview

- 1. Retrieval study
- 2. Ablation testing
- 3. Extracting Rational from Context
- 4. Full explainability pipeline overview
- 5. Explainability
- 6. Completeness

I. Retrieval study

Retrieval study

- Previously we used just cosine
 - -> no ensurance about diversity
- Solution: implementing SVM to satisfy diversity

- Least distance to decision boundary can satisty
 - Similarity
 - Diversity

II. Ablation testing

Ablation testing

- Ablation testing = Context sensitivity via perturbation
- See the impact of a missing chunk from the context on the generated response
- Algorithm :
 - Generate response based on query + full context -> response_0
 - o At each time,
 - remove one chunk from the context
 - Generate response based on query + remaining chunks in context
 - Calculate similarity between response_0 and response_i
 - -> lowest similarity correspond to most impactful chunk

III. Rational extraction

Rational extraction

- Input: query, context, answer
- Ask an LLM as a judge to extract most impactful chunks from context for answer generation
- -> Ensure sourcing of answer
- -> Give location of the information to answer the question

IV. Full Explanability pipeline

Production System

Question	Context		Answer	Ablation testing	Halucinated words	Rartional Extraction
What is the impact of rising interest rates on corporate investments and real estate?	'Asset: Bitcoin 2023 Start Price: \$16,500 2023 End Price: \$28,400 % Change:	• -0.119 • -0.29 • -0.306 • -0.46 • -0.58	Rising interest rates have increased borrowing costs, leading to reduced corporate investments and slower growth in the real estate sector. This has been evident as the S&P 500 and NASDAQ have shown mixed performance, with technology stocks outperforming while energy and traditional industries lag. The S&P 500 rose 11.8% and NASDAQ gained 72.1% in 2023.	 0.7374 0.6583 0.8115 0.6279 0.578 	['NASDAQ gained 72.1% in 2023.']	- Rising interest rates have affected borrowing costs, influencing real estate and corporate investment s Index: S&P 500 2023 Start: 3,800 2023 End: 4,250 % Change

Question	Context		Answer	Ablation testing	Halucinated words	Rartional Extraction
'How did the S&P 500 and NASDAQ indices perform in 2023?	'Asset: Bitcoin 2023 Start Price: \$16,500	 -0.022 -0.209 -0.224 -0.35 -0.53 	The S&P 500 rose by 11.8% in 2023, while the NASDAQ also saw gains.	 0.8070 0.8592 0.7830 0.6542 0.8726 	the NASDAQ also saw gains	- Index: S&P 500 2023 Start: 3,800 2023 End: 4,250 % Change: 11.8%

V. Explainability

Token attribution

- Get hallucinated (*prompt*, *context*)
- Build contextualized $prompt_{RAG} = (prompt, context)$
- $[token_1, ..., token_k] = prompt_{RAG}$
- Evaluate a reference answer using a language model m : $embed_{ref} = m(prompt_{RAG})$
- For $token_i$ in $prompt_{RAG}$:
 - \circ Evaluate $embed_{-i} = m(prompt_{RAG} token_i)$
 - \circ Compute the cosine similarity $sim_i = cosine sim(embed_{-i}, embed_{ref})$
 - $\bigcirc \text{ Return } Shap_i = \frac{1}{n-1} \sum_{\substack{j=1 \ j \neq i}}^{n} sim_j sim_i$

Hallucination results

Aggregating SHAP values

VI. Completeness

Completeness study for TAT-QA

 Globally the models seem to match despite the sampling being imbalanced

 Exception for some quantitative questions

