No English title available.	
Patent Number:	DE29704393U
Publication date:	1997-07-17
Inventor(s):	
Applicant(s):	AESCULAP WERKE AG (DE)
Requested Patent:	☐ <u>DE29704393U</u>
Application Number:	DE19972004393U 19970311
Priority Number(s):	DE19972004393U 19970311
IPC Classification:	A61B17/34; A61B17/32; A61B19/00; A61B6/03
EC Classification:	A61B5/107, A61B17/15, A61B19/00N
Equivalents:	
Abstract	
Data supplied from the esp@cenet database - 12	

(19) BUNDESREPUBLIK **DEUTSCHLAND**

® Gebrauchsmuster ® DE 297 04 393 U 1

(51) Int. Cl.6: A 61 B 17/34 A 61 B 17/32 A 61 B 19/00

A 61 B 6/03

PATENTAMT

297 04 393.5 ②1 Aktenzeichen: 11. 3.97 Anmeldetag: 17. 7.97 Eintragungstag:

Bekanntmachung im Patentblatt:

28. 8.97

③ Inhaber:

Aesculap AG, 78532 Tuttlingen, DE

(74) Vertreter:

Höger, Stellrecht & Partner, 70182 Stuttgart

(A) Vorrichtung zur präoperativen Bestimmung der Positionsdaten von Endoprothesenteilen

A 53 813 u u-234 5. Juni 1997 AESCULAP AG Am Aesculap-Platz 78532 Tuttlingen

VORRICHTUNG ZUR PRÄOPERATIVEN BESTIMMUNG DER POSITIONSDATEN VON ENDOPROTHESENTEILEN

Die Erfindung betrifft eine Vorrichtung zur präoperativen Bestimmung der Positionsdaten von Endoprothesenteilen eines mittleren Gelenkes relativ zu den das mittlere Gelenk ausbildenden Knochen.

Bei chirurgischen Operationen, bei denen Gelenke zwischen zwei Knochen durch Endoprothesen ersetzt werden müssen, ist es äußerst wichtig, daß die Endoprothesenteile relativ zu den Knochen exakt positioniert werden, Abweichungen in der Größenordnung von mehr als 2° stellen den Erfolg einer solchen Operation bereits infrage.

Es ist bekannt, zur Vorbereitung von chirurgischen Operationen die Lage von Knochen im Körper und die relative Positionierung der an das zu ersetzende Gelenk angrenzenden Knochen durch verschiedene Verfahren zu bestimmen, um vor der Operation bereits planen zu können, wie die Endoprothesenteile relativ zu den Knochen eingesetzt werden müssen. Beispielsweise ist es bekannt, die Außenkontur der an das zu ersetzende Gelenk angrenzenden Knochen durch Computertomographieaufnahmen zu bestimmen, anhand der so gewonnenen Daten lassen sich

A 53813 u u-234

- 2 -

Datensätze erstellen, die den Außenkonturen der Knochen entsprechen und die dann zur Planung der Orientierung der Prothesenteile benutzt werden können (M. Fadda et al "Computer-Assisted Knee Arthoplasty at Rizzoli Institute"; MRCAS 94, Medical Robotics and Computer Assisted Surgery, Pittsburgh, 1994, Seiten 26 bis 31; T. C. Kienzle III et al "A Computer-Assisted Total Knee Replacement Surgical System Using a Calibrated Robot", MIT Press, Cambridge, MA, 1996, Seiten 409 bis 416).

Dies setzt eine komplizierte Untersuchung des Patienten vor Beginn der Operation voraus, die häufig nicht am eigentlichen Operationsort und daher in der Regel auch nicht zeitgleich mit der Operation durchgeführt werden kann. Außerdem muß der Patient dabei einer hohen Strahlendosis ausgesetzt werden, schließlich sind für diese Untersuchung teure apparative Ausstattungen notwendig.

Es ist bereits bekannt, die Lage der Knochen vor und nach der Operation dadurch miteinander zu vergleichen, daß an den Knochen Markierungselemente befestigt werden, deren Position im Raum durch geeignete kameraähnliche Vorrichtungen bestimmt werden kann (US-A-5,249,581). Mit einer solchen Vorrichtung kann das Ergebnis der Operation geprüft werden, denn der Operateur kann die Orientierung der Knochen vor und nach der Operation vergleichen. Es ist jedoch mit diesem Verfahren nicht möglich, präoperativ die Positionsdaten der einzusetzenden Prothesenteile zu bestimmen, auch bei diesem Verfahren muß die Lage der Prothesenteile am Knochen präoperativ dadurch bestimmt werden, daß zum Bei-

A 53813 u u-234

- 3 -

spiel durch Computertomographie-Aufnahmen die genaue Lage der Knochen im Körper und ihre Relativpositionierung zueinander bestimmt werden.

Es ist Aufgabe der Erfindung, eine Vorrichtung anzugeben, mit der präoperativ die Lage der Prothesenteile relativ zu dem Knochen bestimmt werden kann, ohne daß dazu komplizierte Untersuchungsverfahren des Patienten notwendig werden, insbesondere sollen CT-Aufnahmen oder ähnliche Untersuchungsverfahren überflüssig werden.

Die oben angegebene Aufgabe wird bei einer Vorrichtung zur präoperativen Bestimmung der Positionsdaten von Endoprothesenteilen eines mittleren Gelenkes relativ zu den das mittlere Gelenk ausbildenden Knochen mit an den Knochen festlegbaren Markierungselementen, einer Meßeinrichtung zur Bestimmung der Lage der Markierungselemente im Raum und mit einer Datenverarbeitungsanlage, der von der Meßeinrichtung den Positionsdaten der Markierungselemente entsprechende Signale zugeführt werden, erfindungsgemäß dadurch gelöst, daß mindestens je ein Markierungselement für die beiden das mittlere Gelenk ausbildenden Knochen sowie für die beiden an diese anschließenden, mit diesen über ein äußeres Gelenk verbundene Knochen vorgesehen ist.

Die beschriebene Vorrichtung läßt sich an allen Körperteilen einsetzen, bei denen die das zu ersetzende Gelenk bestimmenden Knochen an ihrem anderen Ende ebenfalls über ein Gelenk mit weiteren Knochen verbunden sind. Nachfolgend wird das zu ersetzende Gelenk als

A 53813 u u-234

- 4 -

"mittleres Gelenk" bezeichnet, die außenseitig anschließenden Gelenke als "äußere Gelenke". Bei dem beschriebenen Verfahren werden nun die äußeren Gelenke dazu verwendet, präoperativ Informationen über die Lage der am mittleren Gelenk anschließenden Knochen zu liefern. Es werden nämlich die an den beiden äußeren Gelenken zusammenkommenden Knochen gegeneinander bewegt, und durch diese Bewegung wird die Lage der äußeren Gelenke bestimmt, genauer Gelenkpunkte größer Invarianz. Dies wird am Beispiel des Beines deutlich, obwohl das beschriebenen Verfahren auch an allen anderen Gliedern verwendet werden kann, bei denen mittlere und äußere Gelenke vorhanden sind, beispielsweise am Arm.

Beim Bein wird das mittlere Gelenk durch das Kniegelenk gebildet, die beiden äußeren Gelenke durch das Hüftgelenk und durch das Fußgelenk. Das Hüftgelenk ist ein Kugelgelenk, so daß durch Bewegung des Oberschenkels gegenüber dem Hüftknochen der Mittelpunkt dieses Kugelgelenks bestimmt werden kann, also ein Gelenkpunkt größter Invarianz, das heißt ein bei der Bewegung der beiden Knochen gegeneinander unbeweglicher Gelenkpunkt.

In ähnlicher Weise läßt sich auch beim Fußgelenk ein solcher Punkt größter Invarianz bestimmen. Zwar ist das Fußgelenk im wesentlichen ein Gelenk, das nur eine Verschwenkung um eine Querachse ermöglicht, in geringem Umfange ist aber auch eine Drehung um die Längsachse möglich, so daß durch die Überlagerung dieser beiden Schwenkbewegungen ein Punkt bestimmt werden kann, der

A 53813 u u-234

- 5 -

bei jeder Bewegung des Fußgelenkes im wesentlichen unbewegt bleibt.

Im Bereich des Knies werden zusätzlich in ähnlicher Weise Gelenkpunkte bestimmt, wobei dafür dem Chirurgen verschiedene Methoden zur Verfügung stehen können.

Wenn das Kniegelenk intakt ist und noch normale Bewegungen ermöglicht, können auch die knienahen Gelenkpunkte durch eine Bewegung der beiden angrenzenden Knochen um dieses Gelenk bestimmt werden. Zwar beschreibt das Kniegelenk eine relativ komplizierte Abroll- und Gleitbewegung, trotzdem lassen sich bei Ausführung dieser komplizierten überlagerten Bewegung und außerdem bei einer Drehung des Unterschenkels um die senkrechte Achse Punkte bestimmen, bei denen die Bewegung beim Beugen des Knies minimal wird, ein solcher Punkt maximaler Invarianz wird als Gelenkpunkt definiert.

Gemäß einer bevorzugten Ausführungsform ist die Datenverarbeitungsanlage so ausgebildet, daß sie aus den Signalen bei der Bewegung der Knochen um die beiden äußeren Gelenke die Punkte größter Invarianz als Gelenkpunkte bestimmt.

Vorzugsweise ist weiterhin vorgesehen, daß die Datenverarbeitungsanlage aus den Signalen bei der Bewegung der Knochen um das mittlere Gelenk zusätzlich den Punkt größter Invarianz als Gelenkpunkt des mittleren Gelenkes bestimmt.

A 53813 u u-234

- 6 -

Gemäß einer bevorzugten Ausführungsform ist vorgesehen, daß der Datenverarbeitungsanlage ein Tastinstrument zugeordnet ist, das seiner Positionierung entsprechende Signale an die Datenverarbeitungsanlage liefert. Dieses Tastinstrument kann beispielsweise verwendet werden, um einen bestimmten Punkt an der Gelenkfläche des eröffneten Gelenkes zu ertasten und dessen Lage im Raum an die Datenverarbeitungsanlage weiterzugeben. Mit diesem Tastinstrument lassen sich weiterhin eine größere Anzahl von Punkten auf der Gelenkfläche bestimmen, so daß der gesamte Verlauf einer abgetasteten Gelenkfläche an die Datenverarbeitungsanlage weitergegeben werden kann, die daraus einen Datensatz bestimmen kann, aus dem sich der gesamte Verlauf der Gelenkfläche ergibt. Schließlich läßt sich das Tastinstrument auch einsetzen, um an verwendeten Orientierungsgeräten, beispielsweise Sägeschablonen, den Verlauf der Anlagefläche für ein Sägeblatt zu bestimmen.

Die Datenverarbeitungsanlage ist so ausgebildet, daß sie aus der Lage der zwei Gelenkpunkte der beiden an das mittlere Gelenk anschließenden Knochen je eine charakteristische Richtung für den Knochen bestimmt.

Dabei ist es vorteilhaft, wenn die Datenverarbeitungsanlage zur Orientierung der Endoprothesenteile als Anlageflächen für diese dienende Sägeebenen bestimmt, die relativ zur der charakteristischen Richtung eine vorbestimmte Orientierung einnehmen, insbesondere senkrecht auf dieser charakteristischen Richtung stehen.

A 53813 u u-234

- 7 -

Bei einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß sie eine Antriebsvorrichtung zur Bewegung der Knochen relativ zu den äußeren Gelenken und gegebenenfalls zur Bewegung relativ zum mittleren Gelenk umfaßt. Dadurch erfolgt die Bewegung der Knochen um die jeweiligen Gelenke maschinell und ermöglicht eine vollautomatische kinematische Bestimmung der Gelenkpunkte.

Die Markierungselemente und die Meßeinrichtung können als Strahlungssender beziehungsweise Strahlungsempfänger ausgebildet sein.

Der Vorrichtung kann weiterhin ein Roboter zugeordnet sein, der eine Werkzeugschablone oder ein Werkzeug relativ zu der charakteristischen Richtung ausrichtet.

Es kann weiterhin vorgesehen sein, daß einem Werkzeug oder einer Werkzeugschablone ein Markierungselement zugeordnet ist, dessen Orientierung von der Meßeinrichtung bestimmt wird, so daß dieser Orientierung entsprechende Signale an die Datenverarbeitungsanlage übertragen werden. Die Datenverarbeitungsanlage erhält somit sowohl die Positionssignale der Knochen als auch die Positionssignale des Werkzeugs oder der Werkzeugschablone, so daß die Relativpositionierung überwacht und gegebenenfalls gesteuert werden kann.

Weitere bevorzugte Ausführungsformen der erfindungsgemäßen Vorrichtung ergeben sich aus den Unteransprüchen.

A 53813 u u-234

- 8 -

Die nachfolgende Beschreibung bevorzugter Ausführungsformen der Erfindung dient im Zusammenhang mit der Zeichnung der näheren Erläuterung. Es zeigen:

Figur 1: eine schematische Ansicht einer Vorrichtung zur Bestimmung der charakteristischen Richtung eines Oberschenkelknochens und eines Unterschenkelknochens;

Figur 2: ein in einen Knochen eingesetztes Markierungselement;

Figur 3: eine schematische Ansicht der durch Gelenkpunkte CA, CP und CB definierten charakteristischen Richtungen eines Oberschenkels und eines Unterschenkels mit
jeweiligen Sägeflächen;

Figur 4: eine schematische Ansicht eines mit einem Markierungselement versehenen Knochens mit einer ebenfalls mit einem Markierungselement versehenen Sägeschablone;

Figur 5: eine bildlich Darstellung einer Orientierungshilfe für eine Werkzeugschablone und

Figur 6 : ein anderes Ausführungsbeispiel einer bildlichen Orientierungshilfe für eine Werkzeugschablone.

A 53813 u u-234

- 9 -

In Figur 1 ist ein auf einem Operationstisch 1 liegender Patient 2 schematisch dargestellt, bei dem in einem Bein 3 das Kniegelenk 4 durch eine Endoprothese ersetzt werden soll.

Zur Vorbereitung dieser Operation ist es notwendig, die Orientierung der zu verwendenden Prothesenteile relativ zu den Knochen zu bestimmen, also relativ zum Oberschenkelknochen 5 und zum Unterschenkelknochen 6.

Zu diesem Zweck werden sowohl in den Oberschenkelknochen 5 als auch in den Unterschenkelknochen 6 durch kleine Einschnitte im umgebenden Gewebe hindurch Markierungselemente 7 beziehungsweise 8 eingesetzt, wie sie in Figur 2 dargestellt sind. Diese Markierungselemente 7, 8 umfassen einen in den Knochen einschraubbaren Fuß 9 in Form einer Knochenschraube und einen Tförmigen Aufsetzkörper 10, der an seinem parallel zum Fuß 9 verlaufenden Steg 11 im Abstand zueinander zwei Strahlungssender 12, 13 und an seinem an den Steg 11 anschließenden Quersteg 14 ebenfalls zwei Strahlungssender 15, 16 trägt. Diese Strahlungssender können beispielsweise Ultrarotdioden sein oder Ultraschallsender. Der Aufsetzkörper 10 kann lösbar auf den Fuß 9 aufgesetzt sein, der allerdings nur in einer ganz bestimmten Position relativ zum Fuß 9 aufgesetzt werden kann, so daß auch nach der Abnahme und nach dem Wiederaufsetzen eines solchen Aufsetzkörpers 10 die Strahlungssender 12, 13, 15, 16 relativ zum Knochen exakt dieselbe Position einnehmen wie vor dem Abnehmen.

A 53813 u u-234

- 10 -

Derartige Markierungselemente 17 und 18 werden nicht nur am Oberschenkel 5 und am Unterschenkel 6 festgelegt, sondern auch am Hüftknochen 19 und am Fußknochen 20.

An einer Konsole 21 sind im Abstand zueinander drei Empfangseinrichtungen 22, 23, 24 angeordnet, die die Strahlung empfangen, die von den Strahlungssendern 12, 13, 15, 16 ausgesandt werden. Beim Empfang von Strahlung erzeugen die Empfangseinrichtungen elektrische Signale, die einer Datenverarbeitungsanlage 25 zugeführt werden. Aufgrund der unterschiedlichen Orientierung von Markierungselementen und Empfangseinrichtungen ergeben sich Laufzeitunterschiede zwischen Aussenden und Empfangen der Strahlung, und aufgrund dieser Laufzeitunterschiede kann die Datenverarbeitungsanlage 25 bei jedem Markierungselement 7, 8, 17, 18 dessen Lage im Raum vollständig bestimmen und diese Lagedaten speichern. Es ist dadurch möglich, in der Datenverarbeitungsanlage Datensätze zu erzeugen, die der Lage der Markierungselemente und damit der fest mit ihnen verbundenen Knochen zu bestimmten Zeiten entsprechen.

Die Empfangseinrichtungen 22, 23, 24 können in unterschiedlicher Weise ausgebildet sein, sie können, wie beschrieben, die Orientierung der Markierungselemente durch Laufzeitunterschiede feststellen, grundsätzlich möglich wäre auch die Bestimmung der Orientierung durch geometrische Messung der Strahlrichtung von Strahlung, die von den Strahlungssendern 12, 13, 15, 16 ausgesandt wird. Bei anderen Ausgestaltungen können auch Markie-

A 53813 u u-234

- 11 -

rungselemente verwendet werden, die keine Strahlungssender aufweisen, sondern Reflexionsflächen, an denen von der Empfangseinrichtung ausgesandte Strahlung reflektiert wird. Diese Reflexionsflächen können beispielsweise Kugelform haben.

Wesentlich ist lediglich, daß es aufgrund der Verwendung von mehreren Empfangseinrichtungen und mehreren Sendern oder Reflexionsflächen an den Markierungselementen möglich ist, die Lage jedes Markierungselementes im Raum eindeutig zu bestimmen.

Wenn zwei Knochen gegeneinander bewegt werden, so kann diese Bewegung somit von der Datenverarbeitungsanlage 25 in entsprechende Datensätze umgesetzt werden, die die Bahnen der Markierungselemente und dabei der Knochen bei der Bewegung bestimmen. Die Datenverarbeitungsanlage kann aus diesen Bahnen Punkte bestimmen, die bei einer solchen Bewegung von zwei Knochen relativ zu einem Gelenk unbewegt bleiben oder sich nur minimal bewegen, diese Punkte werden als Punkte maximaler Invarianz bezeichnet und als Gelenkpunkte der entsprechenden Gelenke definiert.

Im Fall des Hüftgelenkes ergibt sich ein solcher Gelenkpunkt automatisch als Mittelpunkt des als Kugelgelenk ausgebildeten Hüftgelenks, im Fall des Fußgelenkes ergibt sich ein solcher Gelenkpunkt als Schnittpunkt der Schwenkachsen des Fußgelenkes um eine quer zum Bein verlaufende Achse und um eine längs zum Bein verlaufende Achse, im Falle des Kniegelenkes ist die Situation

A 53813 u u-234

- 12 -

komplizierter, da das Kniegelenk weder ein Kugelgelenk noch ein Scharniergelenk ist. Es ergeben sich aber beim Beugen des Knies und beim Drehen des Unterschenkels um dessen Längsachse Kurven, auf denen die Punkte maximaler Invarianz liegen, also im wesentlichen Kurven maximaler Invarianz, und diese nähern sich sehr stark an. Der Punkt maximaler Annäherung dieser Kurven läßt sich als Gelenkpunkt definieren, der sich bei der beschriebenen Bewegung des Oberschenkelknochens gegenüber dem Unterschenkelknochen finden läßt. Auch eine solche Berechnung wird durch die Datenverarbeitungsanlage 25 durchgeführt, so daß auf diese Weise die Datenverarbeitungsanlage sowohl im Bereich des Fußgelenkes als auch im Bereich des Hüftgelenkes als schließlich auch im Bereich des Kniegelenkes derartige Gelenkpunkte bestimmen kann.

Weiterhin berechnet die Datenverarbeitungsanlage 25 eine charakteristische Richtung für den Unterschenkel, die sich aus einer geradlinigen Verbindung des Gelenkpunktes im Knie und des Gelenkpunktes im Fußgelenk ergibt, in gleicher Weise wird für den Oberschenkel eine charakteristische Richtung bestimmt, die sich aus der geradlinigen Verbindung des Gelenkpunktes im Knie und des Gelenkpunktes in der Hüfte ergibt. Diese charakteristischen Richtungen müssen nicht unbedingt mit dem tatsächlichen Verlauf des Knochens zusammenfallen, sondern es handelt sich um virtuelle Richtungen, die sich allein aus den kinematischen Daten ergeben.

A 53813 u u-234

- 13 -

In Figur 3 ist der Verlauf dieser charakteristischen Richtungen schematisch dargestellt. Für den Oberschenkel ergibt sich diese aus der geradlinigen Verbindung des hüftnahen Gelenkpunktes CA und des knienahen Gelenkpunktes CP, für den Unterschenkel durch die geradlinige Verbindung des fußnahen Gelenkpunktes CB und des knienahen Gelenkpunktes CP.

Anhand dieser beiden, allein durch eine Bewegung des Beines des Patienten gewonnenen charakteristischen Richtungen läßt sich nun präoperativ die Orientierung einer Sägeebene bestimmen, längs welcher der Oberschenkel beziehungsweise der Unterschenkel abgetrennt werden müssen, um an dieser Sägefläche anliegend die Prothesenteile zu implantieren.

Die Datenverarbeitungsanlage bestimmt aus den so gewonnenen charakteristischen Richtungen die Orientierung dieser Sägeebenen 26, 27, die vorzugsweise senkrecht auf den charakteristischen Richtungen stehen. Dies ist in Figur 3 schematisch angedeutet. Die Orientierung der Sägeebenen wird dabei relativ zur Orientierung der Markierungselemente 7 und 8 berechnet, die wiederum stellvertretend für die Orientierung des Oberschenkels 5 und des Unterschenkels 6 sind.

Zur Vorbereitung der Operation können die in dieser Weise gewonnenen Daten der Sägeebene nun verwendet werden, um beispielsweise eine Sägeschablone 28 relativ zu einem Knochen auszurichten. In Figur 4 wird dies anhand des Oberschenkelknochens 5 schematisch dargestellt. Der

A 53813 u u-234

- 14 -

Oberschenkelknochen 5 trägt das Markierungselement 7, so daß seine Lage im Raum in der beschriebenen Weise festgestellt werden kann.

Eine Sägeschablone 28 trägt ebenfalls ein Markierungselement 29, so daß auch die Lage der Sägeschablone 28 im Raum jederzeit über die Datenverarbeitungsanlage 25 bestimmbar ist. Die Sägeschablone 28 weist eine ebene Führungsfläche 30 für ein Sägeblatt 31 auf, die Lage der Führungsfläche 30 relativ zum Markierungselement 29 läßt sich in einfacher Weise dadurch bestimmen, daß mit einem geeichten, handgeführten Tastelement die Führungsfläche 30 abgebildet wird. Dazu wird dieses Tastelement mit seiner Spitze an der Führungsfläche 30 entlanggeführt, ein mit dem Tastinstrument verbundenes Markierungselement meldet dabei alle Positionsdaten des Tastelementes zur Datenverarbeitungsanlage, die auf diese Weise die Daten der Fläche aufnehmen kann, die von der Spitze des Tastelementes abgefahren werden. Nach einer solchen Kalibrierung stehen der Datenverarbeitungsanlage die Daten zur Verfügung, um aus der Orientierung des Markierungselementes 29 die Orientierung der Führungsfläche 30 zu berechnen.

Zur richtigen Orientierung der Sägeschablone 28 muß nunmehr die Führungsfläche 30 so orientiert werden, daß sie senkrecht auf der charakteristischen Richtung des Oberschenkelknochens steht, und dies läßt sich relativ einfach dadurch bewerkstelligen, daß von der Datenverarbeitungsanlage 25 ein Differenzsignal erzeugt wird, welches der Abweichung der Orientierung der Führungs-

A 53813 u u-234

- 15 -

fläche 30 von der Orientierung der berechneten Sägeebene 26 entspricht. Ein solches Differenzsignal kann in verschiedener Weise für den Operateur wahrnehmbar gestaltet werden.

Zu diesem Zweck ist beispielsweise auf der Konsole 21 ein Monitor 32 angeordnet, auf dem graphische Darstellungen abgebildet werden, die ein Maß für dieses Differenzsignal sind. Ein mögliches Differenzsignal kann beispielsweise durch die Neigung von zwei geraden Linien 33, 34 gegeneinander wiedergegeben werden (Figur 5), wobei vorzugsweise der Neigungswinkel der beiden Linien dem Abweichungswinkel der Sägeebene 26 von der Führungsfläche 30 in einer Richtung entspricht. Sobald die Führungsfläche 30 so orientiert ist, daß die beiden sich schneidenden Linien 33 und 34 sich decken, ist die Führungsfläche in der entsprechenden Richtung wunschgemäß orientiert.

Bei einer anderen graphischen Darstellungsmöglichkeit wird das Differenzsignal durch den Abstand von zwei parallelen Linien 35, 36 repräsentiert (Figur 6). Wenn sich diese beiden Linien 35, 36 decken, existiert kein Differenzsignal mehr, dann sind Führungsfläche 30 und Sägeebene 26 in der entsprechenden Richtung wunschgemäß orientiert. Es ist dabei vorteilhaft, wenn die Anzeige gemäß Figur 5 und die Anzeige gemäß Figur 6 kombiniert werden, die Anzeige gemäß Figur 5 und die Anzeige gemäß Figur 6 geben dann die Neigung der Sägeebene 26 relativ zur Führungsfläche 30 in senkrecht aufeinander stehenden Richtungen an. Wenn in beiden nebeneinander ange-

A 53813 u u-234

- 16 -

ordneten Darstellungen das Differenzsignal verschwunden ist, ist die Sägeschablone 28 wunschgemäß orientiert, diese Orientierung kann dann beispielsweise durch eingeschlagene Führungsstifte 37 fixiert werden.

Die beschriebene manuelle Orientierung der Sägeschablone 28 kann selbstverständlich bei einer anderen Ausführungsform der Erfindung auch durch einen Roboter erfolgen, der von der Datenverarbeitungsanlage 25 gemäß den dort vorhandenen Datensätzen so gesteuert wird, daß die Führungsfläche 30 parallel zur Sägeebene 26 verläuft.

Damit ist die Vorbereitung der Operation beendet, der Chirurg kann nunmehr durch Führung des Sägeblattes 31 längs der Führungsfläche 30 den Knochen mit der gewünschten Orientierung abtrennen, so daß dadurch eine Anlagefläche für ein in der Zeichnung nicht dargestelltes Prothesenteil entsteht. Dieses Prothesenteil nimmt bei Anlage an dieser Anlagefläche die gewünschte Orientierung relativ zum Knochen ein, so daß auf diese Weise eine sehr exakte Positionierung von Prothesenteilen am Knochen möglich wird.

Grundsätzlich wäre es natürlich auch möglich, daß der Sägeschnitt selbst durch den Roboter durchgeführt wird, wobei dieser dann ebenfalls durch die Datensätze gesteuert wird, die in der Datenverarbeitungsanlage 25 erzeugt werden und dort zur Verfügung stehen.

In gleicher Weise wird bei beiden an das zu ersetzende Gelenk anschließende Knochen vorgegangen, so daß beide

A 53813 u u-234

- 17 -

Prothesenteile in der gewünschten Weise positioniert werden können. Es ist dadurch sichergestellt, daß nach dem Einbau der Prothesenteile die Knochen die gewünschte Orientierung einnehmen, beispielsweise in der Weise, daß die charakteristischen Richtungen beider Knochen bei gestrecktem Bein eine durchgehende gerade Linie bilden.

3

A 53813 u u-234

- 18 -

Schutzansprüche

- Vorrichtung zur präoperativen Bestimmung der Po-1. sitionsdaten von Endoprothesenteilen eines mittleren Gelenkes relativ zu dem das mittlere Gelenk ausbildenden Knochen mit an den Knochen festlegbaren Markierungselementen, einer Meßeinrichtung zur Bestimmung der Lage der Markierungselemente im Raum und mit einer Datenverarbeitungsanlage, der von der Meßeinrichtung den Positionsdaten der Markierungselemente entsprechende Signale zugeführt werden, dadurch gekennzeichnet, daß mindestens je ein Markierungselement (7, 8, 17, 18) für die beiden das mittlere Gelenk (4) ausbildenden Knochen (5, 6) sowie für die beiden an diese anschließende, mit diesen über ein äußeres Gelenk verbundene Knochen (19, 20) vorgesehen ist.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Datenverarbeitungsanlage (25) aus den Signalen bei der Bewegung der Knochen (6, 20; 5, 19) und die beiden äußeren Gelenke die Punkte größter Invarianz als Gelenkpunkte bestimmt.

A 53813 u u-234

- 19 -

- 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Datenverarbeitungsanlage (25) aus den Signalen bei der Bewegung der Knochen (5, 6) um das mittlere Gelenk (4) zusätzlich den Punkt größter Invarianz als Gelenkpunkt bestimmt.
- 4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Datenverarbeitungsanlage (25) ein Tastinstrument zugeordnet ist, das seiner Positionierung entsprechende Signale an die Datenverarbeitungsanlage (25) liefert.
- 5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Datenverarbeitungsanlage (25) aus einer Vielzahl derartiger Signale, die durch Anlage des Tastinstruments an einer Gelenkfläche des an das mittlere Gelenk (4) anschließenden Knochens (5, 6) erzeugt worden sind, einen den Verlauf der Gelenkfläche beschreibenden Datensatz erzeugt.
- 6. Vorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Datenverarbeitungsanlage (25) aus der Lage der zwei Gelenkpunkte (CA, CP; CB, CP) der beiden an das mittlere Gelenk (4) anschließenden Knochen (5, 6) je eine charakteristische Richtung für den Knochen bestimmt.

A 53813 u u-234

- 20 -

- 7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Datenverarbeitungsanlage (25) zur Orientierung der Endoprothesenteile als Anlageflächen für diese dienende Sägeebenen (26, 27) bestimmt, die relativ zu der charakteristischen Richtung eine vorbestimmte Orientierung einnehmen.
- 8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Sägeebenen (26, 27) senkrecht auf der charakteristischen Richtung stehen.
- 9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Sägeebenen (26, 27) in einem bestimmten Abstand von dem für den jeweiligen
 Knochen (5, 6) bestimmten Gelenkpunkt (CP) am
 mittleren Gelenk (4) angeordnet sind.
- 10. Vorrichtung nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß sie eine Antriebsvorrichtung zu Bewegung der Knochen relativ zu den äußeren Gelenken und gegebenenfalls zur Bewegung relativ zum mittleren Gelenk umfaßt.
- 11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Markierungselemente (7, 8, 17, 18) und die Meßeinrichtung (22,

A 53813 u u-234

- 21 -

23, 24) als Strahlungssender oder reflektierende Fläche beziehungsweise Strahlungsempfänger ausgebildet sind.

- 12. Vorrichtung nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, daß ihr ein Roboter zugeordnet ist, der eine Werkzeugschablone oder ein Werkzeug relativ zu der charakteristischen Richtung ausrichtet.
- 13. Vorrichtung nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, daß einem Werkzeug oder einer Werkzeugschablone (28) ein Markierungselement (29) zugeordnet ist, dessen Orientierung von der Meßeinrichtung (22, 23, 24) bestimmt wird, so daß dieser Orientierung entsprechende Signale an die Datenverarbeitungsanlage (25) übertragen werden.
- 14. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Datenverarbeitungsanlage (25) die Orientierung des Werkzeuges oder der Werkzeugsschablone (28) relativ zu der charakteristischen Richtung bestimmt.
- 15. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Datenverarbeitungsanlage (25)

A 53813 u u-234

- 22 -

zur Beobachtung der Abweichung der Orientierung der Sägeschablone (28) zur charakteristischen Richtung Differenzsignale erzeugt, die bei zutreffender Orientierung minimal sind, und daß sie diese Differenzsignale optisch oder akustisch anzeigt.

- 16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Differenzsignale durch gegeneinander geneigte Linien (33, 34) angezeigt werden, die bei zutreffender Orientierung parallel
 zueinander verlaufen.
- 17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß die Linien (33, 34) sich schneiden.
- 18. Vorrichtung nach Anspruch 15, 16 oder 17, dadurch gekennzeichnet, daß man die Differenzsignale durch den Abstand von zwei parallelen Linien (35, 36) anzeigt, deren Abstand bei zutreffender Orientierung verschwindet.
- 19. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Differenzsignale durch Töne mit
 variierender Lautstärke oder Frequenz dargestellt
 werden.

A 53813 u u-234

- 23 -

20. Vorrichtung nach einem der Ansprüche 15 bis 19, dadurch gekennzeichnet, daß sie zwei getrennte Differenzsignale für Winkelabweichungen in senkrecht zueinander stehenden Ebenen erzeugt.

latt 1 Blatt

FIG.2

FIG. 3

FIG.5

FIG.6

