

Elektrotechnische Grundlagen der Informatik (LU 182.692)

Protokoll der 2. Laborübung: "Filter" "Transiente Vorgänge und Frequenzverhalten" b) Messungen

Gruppennr.: 22 Datum der Laborübung: 19.05.2017

Matr. Nr.	Kennzahl	Name
1614835	033 535	Jan Nausner
1633068	033 535	David Pernerstorfer

Kontrolle		
Verhalten eines Filters 1. Ordnung		
Verhalten eines RL-Filters		
Dynamisches System 2. Ordnung		

Contents

1	Messung des Verhaltens eines RC-Filters 1. Ordnung	3
2	Messung des Verhaltens eines RL-Filters 1. Ordnung	6
3	Messung des Verhaltens eines dynamischen Systems 2. Ordnung	8

Materialien

Oszilloskop: Agilent InfiniiVision MSO-X 3054A

• Frequenzgenerator: Agilent 33220A

• Multimeter: Amprobe 37XR-A

1 Messung des Verhaltens eines RC-Filters 1. Ordnung

1.1 Aufgabenstellung

Die charakteristischen Eigenschaften eines RC-Tiefpassfilters mit realen Bauteilen sollen untersucht werden.

1.2 Schaltplan

Figure 1: RC Tiefpassfilter 1.Ordnung

1.3 Durchführung

Die Schaltung wurde gemäß Schaltplan mit einem Widerstand $R=22k\Omega$ und einem Kondensator C=10nF aufgebaut. Um die Sprungantwort aufzuzeichnen wurde am Eingang ein periodisches Rechtecksignal mit $1V_{PP}$, Offset 0,5V, 50% Duty Circle und Frequenz 250Hz, angelegt. Die Eingangs- und Ausgangsspannung wurden mit dem Oszilloskop im Zeitbereich aufgezeichnet (siehe Abbildung 2). Die Zeitkonstante wurde mit den gemessenen Bauteilwerten ($R=21,75k\Omega$, C=10,28nF) berechnet und ergibt einen Wert von $\tau=RC=226,16\mu s$. Die Zeitkonstante wurde aus der Sprungantwort ausgelesen indem der Zeitpunkt gemessen wurde, an dem das Signal der Sprungantwort 632,75mV (entspricht zirka 63% der Eingangsspannung) betrug (Vergleich siehe Tabelle 1).

Am Eingang wurde nun ein Sinussignal mit $1V_{PP}$, Offset 0V angelegt. Die Eingangs- und Ausgangsspannung bzw. die Phasenverschiebung wurden mit dem Oszilloskop gemessen. Der Frequenzbereich von 10Hz bis 1MHz mit 5 Frequenzmesspunkten pro Dekade wurden abgetastet. Weiters wurde ein Frequenzmesspunkt an der Grenzfrequenz gesetzt. Die Messpunkte wurden in tabellarischer Form aufgezeichnet und in ein doppelt logarithmisches

Diagramm eingetragen (siehe Abbildung 3). Ab der Frequenz von rund 20kHz konnte die Phasenverschiebung nicht mehr gemessen werden, da der Messwert am Oszilloskop sehr schwach war und dadurch zu stark schwankte.

1.4 Ergebnis & Diskussion

Figure 2: Sprungantwort RC Tiefpass

Die Sprungantwort der RC-Filterschaltung lässt auf einen Tiefpass 1.Ordnung schließen, da bei niedriger Frequenz die Dämpfung 0dB ist und bei hoher Frequenz eine starke Dämpfung zu erkennen ist.

	berechnet	gemessen	Abweichung
Zeitkonstante $ au$	$226, 16 \mu s$	$230\mu s$	+1,70%

Table 1: Vergleich Zeitkonstante τ berechnet und bemessen

Die Zeitkonstante τ wurde bei einem Spannungswert von 632,75mV (63% der Eingangsspannung) gemessen und beträgt $230\mu s$. Die Abweichung von +1,70% kommt daher, dass es sich um reale Bauteile handelt.

Figure 3: Amplitudengang RC-Tiefpass durch Messungen

Figure 4: Phasengang RC-Tiefpass durch Messungen

In Abbildung 3 und Abbildung 4 sind Amplituden- und Phasengang des RC-Tiefpassfilters anhand der gemessenen Werte dargestellt. Der Graph entspricht der erwarteten Form aus der Simulation. Bei der Grenzfrequenz (723Hz) wurde am Ausgang eine Spannung von 750mV und eine Phasenverschiebung von -46° gemessen. Diese Werte sind plausibel, da lt. Berechnung und Simulation die Ausgangsspannung $\frac{1V}{\sqrt{2}} \approx 707, 11mV$ und die Phasenverschiebung -45° sind. Bis zur Frequenz von rund 10kHz hat der Amplitudengang, wie erwartet, eine Filtersteilheit von -20db/Dekade. Bei idealen Bauteilen wäre der Spannungswert ab einer gewissen Frequenz 0V. Bei realen Bauteilen jedoch wird diese Dämpfung (0V) nie erreicht, stattdessen geht die Dämpfung, wie in Abbildung 3 zu erkennen, asymptotisch gegen 0V.

2 Messung des Verhaltens eines RL-Filters 1. Ordnung

2.1 Aufgabenstellung

2.2 Schaltplan

Figure 5: RL Hochpassfilter 1.Ordnung

2.3 Durchführung

Die Schaltung wurde gemäßSchaltplan mit einem Widerstand $R=47\Omega$ und einem Kondensator L=1mH aufgebaut. Um die Sprungantwort aufzuzeichnen wurde am Eingang ein periodisches Rechtecksignal mit $1V_{PP}$, Offset 0,5V, 50%DutyCircle und Frequenz 2,5kHz, angelegt. Die Eingangs- und Ausgangsspannung wurden mit dem Oszilloskop im Zeitbereich aufgezeichnet (siehe Abbildung 6). Die Zeitkonstante wurde mit den gemessenen Bauteilwerten ($R=46,83k\Omega$, C=1,075mH) berechnet und ergibt einen Wert von $\tau=\frac{L}{R}=22,96\mu s$. Die Zeitkonstante wurde aus der Sprungantwort ausgelesen indem der Zeitpunkt gemessen wurde, an dem das Signal der Sprungantwort 37% der Eingangsspannung betrug.

Am Eingang wurde nun ein Sinussignal mit $1V_{PP}$, Offset 0V angelegt. Die Eingangs- und Ausgangsspannung bzw. die Phasenverschiebung wurden mit dem Oszilloskop gemessen. Der Frequenzbereich von 10Hz bis 1MHz wurde mit 5 Frequenzmesspunkten pro Dekade abgetastet. Weiters wurde ein Frequenzmesspunkt an der Grenzfrequenz gesetzt. Die Messpunkte wurden in tabellarischer Form aufgezeichnet und in eine doppelt logarithmischen Diagrammm eingetragen (siehe Abbildung 7 und Abbildung 8).

2.4 Ergebnis & Diskussion

Figure 6: Sprungantwort RL Hochpass

Die Sprungantwort der RL-Filterschaltung lässt auf einen Hochpassfilter 1.Ordnung schließen, da bei niedriger Frequenz die Dämpfung der Spannungsamplitude stark ist und bei hoher Frequenz auf 0dB zurück geht. Ein Hochpassfilter kann auch mit einem RC-Glied realisiert werden, wobei die Ausgangsspannung am Widerstand abgenommen wird.

Figure 7: Amplitudengang RL-Hochpass durch Messungen

Figure 8: Phasengang RL-Hochpass durch Messungen

In Abbildung 6 sind Amplituden- und Phasengang des RL-Hochpassfilters anhand der gemessenen Werte dargestellt. Der Graph entspricht der erwarteten Form aus der Simulation. Die Eingangsspannung wird durch die Reflexion der Spule beeinträchtigt. Je höher die Frequenz, desto stärker wurde die Verstärkung der Eingangsspannung. Bis zur Frequenz von 1kHz konnte kaum eine Veränderung festgestellt werden, bei der Frequenz von 60kHz war die gemessene Eingangsspannung bereits doppelt so groß. Das Verhähtnis von Eingangs- und Ausgangsspannung verhielt sich jedoch wie in der Simulation. Bei der Grenzfrequenz (7480) wurde am Eingang $U_e=650mV$, am Ausgang $U_a=470mV$ und eine Phasenverschiebung von 43° gemessen.

3 Messung des Verhaltens eines dynamischen Systems 2. Ordnung

3.1 Aufgabenstellung

Die Sprungantwort sowie das Frequenzverhalten eines RLC-Systems 2. Ordnung soll untersucht werden.

3.2 Schaltplan

Figure 9: RLC-System 2.Ordnung

3.3 Durchführung

Die Schaltung wurde gemäß Schaltplan mit den Bauteilwerten $L=1mH,\,C=100nF$ und $R=22\Omega$ aufgebaut. Um die Sprungantwort des Systems mit dem Oszilloskop aufzuzeichnen, wurde als Eingangssignal eine periodische Rechteckschwingung mit 1Vpp, Offset 0,5V und Frequenz 2,5kHz (Periodendauer $400\mu s$) angelegt. Weiters wurde das Frequenzbzw. Dämpfungsverhalten des Systems mit einem Sinussignal (1Vpp) ermittelt. Hierbei wurde zuerst die Resonanzfrequenz durch Variation der Frequenz des Eingangssignals bestimmt. Diese ist erreicht, wenn Eingangs- und Aussgangsignal eine Phasenverschiebung von -90° zueinander aufweisen. Um den Amplitudengang des Systems zu ermitteln, wurden Eingangs- und Ausgangspannung an verschiedenen Frequenzmesspunkten im lograithmischen Maßstab ermittelt. Im Bereich der Resonanzfrequenz wurden zusätzlich Messpunkte gewählt, um die Genauigkeit zu erhöhen. Die oben beschriebene Vorgangsweise wurde mit den Widerstandswerten $R=183\Omega$ (in der Angabe wurden 180Ω verlangt, es gibt jedoch keinen Normwiderstand mit diesem Wert, darum wurden hier ein 150Ω und ein 33Ω in Serie geschalten) und $R=1k\Omega$ wiederholt.

3.4 Ergebnis & Diskussion

Die Resonanzfrequenz des Systems ergibt sich aus folgender Formel:

$$f_R = \sqrt{f_H * f_L} = \frac{1}{2\pi\sqrt{LC}} \approx 15916Hz$$

Figure 10: Sprungantwort bei $R=22\Omega$

Durch den kleinen Widerstand ($R=22\Omega$) kommt es zu gut sichtbaren Überschwingungen des LC-Glieds (Resonanzfall). Die Spule verursacht Schwingungen der Eingangsspannung.

Figure 11: Bode-Diagramm (Amplitudengang) bei $R=22\Omega$

Die gemessene Resonanzfrequenz beträgt hier $\sim 15,8kHz$ (Abweichung -0,7%). Im Bereich von f_R erkennt man am Bode-Diagramm, dass hier tatsächlich eine Verstärkung des Eingangsignals stattfindet. Dies lässt sich durch die kleine Dämpfung bei $R=22\Omega$ erklären, wodurch sich das LC-Glied im Resonanzfall befindet, es kommt zu Überschwingungen. Nach dem die Resonanzfrequenz erreicht wurde ist die Dämpfung sehr stark, danach lässt sich

die typische Filtersteilheilt eines Tiefpassfilters 2. Ordnung von -40dB/Dekade gut erkennen.

Figure 12: Sprungantwort bei $R=183\Omega$

Bei $R=183\Omega$ sind gerade keine Überschwingungen sichtbar (aperiodischer Grenzfall). Die Sprungantwort zeigt das typische Tiefpassverhalten.

Figure 13: Bode-Diagramm (Amplitudengang) bei $R=183\Omega$

Die gemessene Resonanzfrequenz beträgt hier $\sim 15,5kHz$ (Abweichung -2,61%). Das System befindet sich im aperiodischen Grenzfall. Auch hier lässt sich die typische Filtersteilheit von -40dB/Dekade aus dem Diagramm ablesen.

Figure 14: Sprungantwort bei $R = 1k\Omega$

Durch den großen Widerstand von $R=1k\Omega$ ist die Zeitkonstante des Systems sehr groß. Dadurch wird in der Folge die anliegende Rechteckspannung stark verschliffen.

Figure 15: Bode-Diagramm (Amplitudengang) bei $R=1k\Omega$

Die Grenzfrequenz des Kondensators liegt bei:

$$f_C = \frac{1}{2\pi RC} = \frac{1}{2\pi * 1k\Omega * 100nF} = 1591Hz$$

Die Grenzfrequenz der Spule liegt bei:

$$f_L = \frac{R}{2\pi L} = \frac{1k\Omega}{2\pi * 1mH} = 159155Hz$$

Durch den großen Widerstand wird die Grenzfrequenz des Kondensators f_C (orange) früher erreicht, sie liegt laut Messung bei $\sim 1,6kHz$. Die Grenzfrequenz der Spule f_L (grün) wird laut Messung erst bei $\sim 145kHz$ erreicht. Der Filter beginnt hier sehr früh zu Dämpfen, jedoch wird im Bereich zwischen f_C und f_L nur eine Filtersteilheit von -20dB/Dekade erreicht.

Der Widerstand hat aus rein mathematischer Sicht keinen Einfluss auf die Resonanzfrequenz, wie man an obenstehender Formel sehen kann. Bei den Messungen zeigen sich jedoch leichte Abweichungen von der berechneten Resonanzfrequenz, diese sind auf die Eigenschaften realer Bauteile zurückzuführen.

Im Vergleich zu den Simulationen lässt sich sagen, dass das simulierte Verhalten des Filters mit verschiedenen Widerständen im Labor sehr gut messbar und nachvollziehbar war. Es zeigen sich jedoch einige Ungenauigkeiten, die auf reale Bauteile und Messfehler zurückzuführen sind.

Die Übertragungsfunktion des Systems lautet:

$$\frac{U_a}{U_e} = \frac{Z_C}{Z_R + Z_L + Z_C} = \frac{\frac{1}{j\omega C}}{R + j\omega L + \frac{1}{j\omega C}} = \frac{1}{j\omega CR - \omega^2 CL + 1} = \frac{1}{s^2 CL + sCR + 1}$$

Figure 16: PN-Diagramm der Übertragungsfunktion (violett: $R=22\Omega$, blau: $R=180\Omega$, grün: $R=1k\Omega$)