CS430 HW3 Team "Yamaha Piano"

Malcolm Machesky and Adrian Kirchner

Project Management

Table presented by name of participant and by day

	Wednesday	
Malcolm Machesky	 Modified (Gui.java) (5 min) Worked on instruction ppt and Project management (10 min) Helped combine GUI and sorting algorithms (20 min) Worked on (HeapSort.java) (2hr) Worked on analysis (1hr, 50 min) Total Hours: 4 25 min 	
Adrian Kirchner	 Worked on sorting algorithms in (QuickSort.java) (2 hr) Helped combine GUI and sorting algorithms (20 min) Modified (Gui.java) (5 min) Worked on analysis (2 hr) Total Hours: 4 25 min 	

Algorithm comparison and analysis

Below is a table of results from running our program on various sizes of arrays.

n	quick(ms)	heap(ms)
1000	1	1
10000	1	2
100000	11	17
1000000	95	169
10000000	1112	2954
100000000	12847	42354

Both Quick sort and heap sort both have the run time complexity of $O(n \log(n))$. As you can see they have similar growth as you make the array larger.

Sorting Algorithms Analysis

QuickSort Analysis:

```
public static void sort(int[] array, int start, int end) {
    if (start < end - 1) { // base case: zero elements in array, no pivot
        int mid = partition(array, start, end); // partition array into two and get pivot
        sort(array, start, mid); // recursively sort on either side of the pivot
        sort(array, mid + 1, end);
static int partition(int[] array, int start, int end) {
    int pivot = array[start]; // create pivot
    int i = start + 1; // keeps track of the location the pivot will swap into when done
    for (int j = i; j < end; j++) { // iterates through all of array except the pivot
        if (array[j] <= pivot) { // if element is smaller than pivot</pre>
            array = swap(array, i, j); // swap with the currently tracked pivot position
            i++; // increment pivot position
    array = swap(array, start, i - 1); // swap the pivot into place
static int[] swap(int[] array, int i, int j) { // basic java swap function
    int temp = array[i];
    array[i] = array[j];
    array[j] = temp;
    return array;
```

The partition function runs in O(n) because it has to iterate through the entire length of the array.

The worst-case scenario for sort is that partition always returns the first element of the array as the pivot because that forces sort to be called recursively n-1 times. Therefore, the worst-case time complexity of sort is $O(n^2)$

Line by line breakdown below:

```
public static void sort(int[] array, int start, int end) { // O(n²)
   if (start < end - 1) { // O(n²)
      int mid = partition(array, start, end); // O(n)
      sort(array, start, mid); // O(n²)
      sort(array, mid + 1, end); // O(n²)</pre>
```

```
}

static int partition(int[] array, int start, int end) {
    int pivot = array[start]; // O(1)
    int i = start + 1; // O(1)
    for (int j = i; j < end; j++) { // O(1)
        if (array[j] <= pivot) { // O(1)
            array = swap(array, i, j); // O(1)
            i++; // O(1)
        }
    }
    array = swap(array, start, i - 1); // O(1)
    return i - 1; // O(1)
}

static int[] swap(int[] array, int i, int j) { // O(1)
    int temp = array[i]; // O(1)
    array[i] = array[j]; // O(1)
    array[j] = temp; // O(1)
    return array; // O(1)
}
</pre>
```

HeapSort Analysis:

```
public static void sort(int[] array) {
    // build the heap by going through the heap and heapifing the different
    // subtree's
    for (int i = array.length / 2 - 1; i >= 0; i--) {
       heapify(array, array.length, i);
    // go through the array and move the root node to the top of the heap and
    for (int i = array.length - 1; i >= 0; i--) {
       array = swap(array, 0, i);
        // re heapify
       heapify(array, i, 0);
static void heapify(int[] array, int s, int i) {
    // the root of the tree or of the subtree that is getting heapified
    int root = i;
    int l = 2 * i + 1;
    int r = 2 * i + 2;
   // if the left node is greater then the root node set the root node to the left
   if (1 < s && array[1] > array[root]) {
       root = 1;
   // if the right node is greater then the root node set the root node to the
   if (r < s && array[r] > array[root]) {
       root = r;
    // Swap the nodes then reheapify with the new root node
    if (root != i) {
       array = swap(array, i, root);
       heapify(array, s, root);
public static int[] swap(int[] array, int i, int j) {
    int temp = array[i];
   array[i] = array[j];
    array[j] = temp;
    return array;
```

Heapify mathematical analysis:

$$T(n) = T\left(\frac{n}{2}\right) + C$$

$$F(n) = C$$

$$A = 1, B = 2$$

$$n^{\log_2 1} = 1$$

Since
$$f(n) = \Theta(1)$$
, $T(n) = \Theta(1 * \log(n)) = \Theta(\log(n))$.

In the sort function there are 2 for loops which are each $O(n \log(n))$ because in each of the for loops there is a call to the recursive function heapify which has a runtime complexity of $O(\log(n))$ as shown above. Making the entire function $O(n \log n)$.

Line by like breakdown below:

```
public static void sort(int[] array) {// O(nlog(n))
    for (int i = array.length / 2 - 1; i >= 0; i--) { // O(n \log(n))
        heapify(array, array.length, i); // O(log(n))
    }
    for (int i = array.length - 1; i >= 0; i--) { // O(n log(n))}
        array = swap(array, 0, i); // 0(1)
        // re heapify
        heapify(array, i, 0); // O(log(n))
    }
static void heapify(int[] array, int s, int i) {
   int root = i; // 0(1)
   int l = 2 * i + 1; // 0(1)
   int r = 2 * i + 2; // 0(1)
   if (1 < s && array[1] > array[root]) { // 0(1)
        root = 1; // 0(1)
   if (r < s \&\& array[r] > array[root]) { // 0(1)}
        root = r; // 0(1)
   if (root != i) { // O(log(n))
        array = swap(array, i, root); // O(1)
        heapify(array, s, root); // O(log(n))
```

```
public static int[] swap(int[] array, int i, int j) {// 0(1)
    int temp = array[i]; // 0(1)
    array[i] = array[j]; // 0(1)
    array[j] = temp; // 0(1)
    return array; // 0(1)
}
```