CH 101

Lecture 9

Dr. Akshai Kumar A. S

Department of Chemistry,

Indian Institute of Technology Guwahati
Guwahati – 781039, Assam, INDIA

Email: akshaikumar@iitg.ernet.in

Tel: +91-8133036890

Metal complexes that obey 18-Electron Rule;

 \diamondsuit Works well with small ligands (particularly with π -acceptors and also with H)

Both CO and H result in a large Δ (CO strongly "pulls down" the d_{π} orbitals & H-"pushes up" the d_{σ} orbitals to a great extent)

 $Mn(CO)_6^+$, $Cr(CO)_6$, $V(CO)_6^-$, $Ti(CO)_6^{2-}$ (??)

Fe(CO)₄H₂, Rh(PPh₃)₃H₃, Ir(PPh₃)₂H₅

Exceptions to the 18e rule

- → Paramagnetic complexes V(CO)₆, Cp₂Fe⁺, Cp₂Ni
- \Leftrightarrow CpFe(η^6 -arene) powerful 1e reductant
- ♦ Lanthanides and actinides (U(cot)₂, Cp₂LuMe)
- \Rightarrow Early metals and d0 { W(OMe)₆ 12e or 24e?} Cp₂TiCl₂?

18e rule less useful

Exceptions to the 18e rule

 \Rightarrow π donating ligands $(PR_3)_2Ir(H)_2CI - 16e$ or 18e??

→ Bulky Ligands Pt(PPh₃)₃ Vs Pt(PMe₃)₄

Square-planar Complex

16e rule prevails; d⁸ metals

Group				
8	9	10	11	
Fe(0) ^a	Co(I)b	Ni(II)	Cu(III)	
$Ru(0)^a$ $Rh(I)^b$		Pd(II)	-	
$Os(0)^a$	$Ir(I)^b$			

^aThese metals prefer 18e to 16e.

RhClL₃, IrCl(CO)L₂, PdCl₂L₂

^bThe 16e configuration is more often seen, but 18e complexes are common.

^cA rare oxidation state.

Ligand	Type	Covalent Model	Ionic Model
Me, Cl, Ph, Cl, η^1 -allyl, NO (bent) ^a	Х	1e	2e
Lone-pair donors: CO, NH ₃	L	2e	2e
π-Bond donors: C ₂ H ₄	L	2e	2e
σ -Bond donors: (H ₂)	L	2e	2e
M-Cl (bridging)	L	2e	2e
η^3 -Allyl, κ^2 -acetate	LX	3e	4e
NO (linear) ^a		3e	$2e^a$
η^4 -Butadiene	L_2^b	4e	4e
=O (oxo)	${f L_2}^b \ {f X_2}$	4e	2e
η^5 -Cp	L_2X	5e	6e
η^6 -Benzene	L_3	6e	6e

 $Co(C_2H_4)_4$,

RhH₃(PR₃) and RhH₃(PR₃)

 $(\eta^5\text{-Cp})W(CO)_3Ph$

Bridging ligands (denoted as μ)

Bridging ligands (Cl⁻, RS⁻, RO⁻, R₂P)

Covalent Model; 1e donor to M and 2e donor to M'

Ionic model; 2e donor to both Metals

$$L_nM-Cl: + M'L_n \longrightarrow L_nM^{Cl} \longrightarrow L_nM^{Cl} \longrightarrow L_nM^{+} Cl \longrightarrow M'L_n$$

Bridging ligands (CO, Methylene and oxo)

Covalent Model; 1e donor to each Metal Ionic model; 1e donor to both Metals

M—
$$\eta^1$$
- allyl

X

Covalent Model; 1e donor ionic model; 2e donor No. of ligating atoms = 1

LX

Covalent Model; 3e donor ionic model; 4e donor No. of ligating atoms = 3

$$M = 0$$

 κ^2 – acetate

Can one predict the reactivity pattern based on 18e rule?

$$^{\bullet}Mn(CO)_5$$
 is like $^{\bullet}CH_3$
 $^{\bullet}Mn(CO)_5$ + XR \longrightarrow XMn(CO)_5 + $^{\bullet}R$
 $^{\bullet}Mn(CO)_5$ + $^{\bullet}R$ \longrightarrow RMn(CO)_5
 $^{\bullet}Mn(CO)_5$ + $^{\bullet}e^ \longrightarrow$ [Mn(CO)_5]
 $^{-}$
Is [Mn(CO)_5] $^{-}$ like \overline{CH}_3
[Mn(CO)_5] $^{-}$ + XR \longrightarrow RMn(CO)_5 + \overline{X}
[Mn(CO)_5] $^{-}$ + H+ \longrightarrow HMn(CO)_5

Bonding in Metal Carbonyls

Metal-carbonyls: Bonding Modes

 $: O \equiv C : \longrightarrow M$

		al Mode ral donor	μ ₂ -bridging 2e neutral d	mode onor	μ ₃ -bridgii 3e neutral	ng mode I donor	
4	5	6	7	8	9	10	11
Τ̈́	V(CO) ₆	Cr(CO) ₆	Mn ₂ (CO) ₁₀	Fe(CO) ₅ Fe ₂ (CO) ₉ Fe ₃ (CO) ₁₂	Co ₂ (CO) ₈ Co ₄ (CO) ₁₂	Ni(CO) ₄	Cu
Zr	Nb	Mo(CO) ₆	Te ₂ (CO) ₁₀	Ru(CO) ₅ Ru ₃ (CO) ₁₂	Rh ₄ (CO) ₁₂ Rh ₆ (CO) ₁₆	Pd	Ag
Hf	Та	W(CO) ₆	Re ₂ (CO) ₁₀	Os(CO) ₅ Os ₃ (CO) ₁₂	Ir ₄ (CO) ₁₂	Pt	Au

Metal-carbonyls: Evidence for Bonding

General observation is in line with model

Weakened C-O bond Lower carbonyl stretching frequency (compared to free CO) Point to decrease in C-O bond order

C-O bond C=O 1.13 Å
$$H_2C=C=O \quad 1.17 \text{ Å}$$

$$M=C=O \quad 1.13-1.16 \text{ Å}$$

Metal-carbonyls: Evidence for Bonding

Fe-propyl =
$$2.20 \text{ Å}$$

Fe-CO = 1.75 Å

Covalent bond radius; $C(sp^3) = 0.77 \text{ Å}$ and C(sp) = 0.70 Å

Confirms the formation of M-C multiple bond

Chemische Berichte **1975**, *108*, 1373-83.

Carbonyl IR Stretching Frequencies

- 1. The **position** of the carbonyl bands in the IR depends mainly on the bonding mode of the CO (terminal, bridging) and the amount of electron density on the metal being pi-backbonded to the CO.
- 2. The **number** (and intensity) of the carbonyl bands one observes depends on the **number of CO ligands present** and the **symmetry** of the metal complex.

Metal-carbonyls: Evidence for Bonding

IR Data
$$v_{\rm CO} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu_{\rm co}}}$$

k and hence \mathbf{v} is a measure of bond strength

Molecule
$$v_{CO}$$

H₃C−O−CH₃ 1000 cm⁻¹

C=O 1720 cm⁻¹

C≡O 2143 cm⁻¹

H₃B←C≡O 2165 cm⁻¹

Bonding Modes:

As one goes from a terminal CO-bonding mode to μ_2 -bridging and finally μ_3 -bridging, there is a relatively dramatic drop in the CO stretching frequency seen in the IR.

(for neutral metal complexes)

Bridging carbonyls tend to have weaker and broader IR bands.

Effect of Electron Density on Metal in Homoleptic Complexes

Weaking	of the CO	bond c	an be	correlated	to	the	back-
donation	of metal e d	ensity to	o CO				
Molecule	$v_{ m CO}$		Mol	lecule	$v_{ m CO}$		
Mn(CO) ₆ +	2090 cm	₁ -1	free	CO	2143	3	
			ΓΛ/ 🔿	· ^ \1.	222	A	

 $V(CO)_{6}$

 $Ti(CO)_6^{2-}$

 $Ni(CO)_4$

 $Co(CO)_4$

 $Fe(CO)_4^{2-}$

1860 cm⁻¹

1750 cm⁻¹

2046 cm⁻¹

1883 cm⁻¹

1788 cm⁻¹

donation of	metal e density	to CO		
Molecule	$ u_{ m CO}$	Molecule	$ u_{ m CO}$	
$Mn(CO)_6^+$	2090 cm ⁻¹	free CO	2143	
Cr(CO) ₆	2000 cm ⁻¹	[Ag(CO)]+	2204	

Ni(CO)4

2060

18

Ligand Donation Effects:

Ligands that are *trans* to a carbonyl can have a particularly large effect on the ability of the CO to effectively pi-backbond to metal.

Two trans π -backbonding ligands will partially compete for same d-orbital electron density and weakens each others net M-L bond

Trans σ -backbonding ligands strengthens the M-CO bond

Pyridines and amines – Weak σ -donors and worse π -acceptors CO

Woulding Gadii Guiloig Hot III E Boila				
Complex	$ u_{\text{CO}}\ \text{cm}^{\text{-1}}$			
$Mo(CO)_3(PF_3)_3$	2090, 2055			
$Mo(CO)_3(PCI_3)_3$	2040, 1991			
$Mo(CO)_3[P(OMe)_3]_3$	1977, 1888			
$Mo(CO)_3(PPh_3)_3$	1934, 1835			
$Mo(CO)_3(NCCH_3)_3$	1915, 1783			
Mo(CO) ₃ (triamine) ₃	1898, 1758			
$Mo(CO)_3(pyridine)_3$	1888, 1746			

worse π -acceptors. CO has no competition for π -acceptance

Based on CO IR stretching frequencies, the following ligands can be ranked from **best** π -acceptor to **worst**:

$$NO^+ > CO > PF_3 > RN \equiv C > PCl_3 > P(OR)_3 > PR_3 > RC \equiv N > NH3$$