Math Prep Course Day Three

Ashhad Shahzad

September 2025

1 Graph sketching

Question 1.1

Find the quadratic function that passes through the points (0,0), (1,1) (3,-1)

A quadratic function is of the form $ax^2 + bx + c$. Utilizing the three points given we can establish the following system of equations

$$a(0)^2 + b(0) + c = 0 (1)$$

$$a(1)^2 + b(1) + c = 1 (2)$$

$$a(3)^2 + b(3) + c = -1 \tag{3}$$

From equation (1) we obtain c=0. Subtracting $3 \times Eq(2)$ from (3) we obtain 6a=-4, $a=-\frac{2}{3}$ and via resubstitution get $b=\frac{5}{3}$. Our resulting equation is therefore

$$f(x) = -\frac{2}{3}x^2 + \frac{5}{3}x$$

Question 1.2

Find the quadratic function passing through the points (-1,1), (1,-2), (3,4)

Again, we set up the following system of equations

$$a(-1)^2 + b(-1) + c = 1 \tag{1}$$

$$a(1)^2 + b(1) + c = -2 \tag{2}$$

$$a(3)^2 + b(3) + c = 4 (3)$$

Subtracting equation (1) from equation (2) we obtain 2b=-3, so $b=-\frac{3}{2}$. Subtracting equation (1) from equation (3) we obtain 8a+4b=3, which after simplifying becomes $a=\frac{9}{8}$. Substituting the value of a and b into any of the equations we can recover $c=-\frac{13}{8}$. Our equation is this

$$f(x) = \frac{9}{8}x^2 - \frac{3}{2}x - \frac{13}{8}$$

Question 1.3

Sketch the graph of the function $f(x) = x^2 - 3x + 4$ on the interval (-3,5)

The maximum value of the graph is at x = -3, therefore

$$(-3)^2 - 3(-3) + 4 = 9 + 9 + 4 = 22$$

The minimum value is indicated on the graph.

Question 1.4

Draw the graph of the function $f(x) = -2x^2 + 11x - 4$

Question 1.5

Let f(x) = ax + b be an arbitrary linear function. Prove that f(f(x)) is also linear.

By definition, a linear function is one whose only power in the variable is one. No higher or lower or fractional powers are allowed. Let us compute f(f(x))

$$f(f(x)) = f(ax + b)$$

$$= a(ax + b) + b$$

$$= a^{2}x + ab + b$$

$$= a'x + b'$$

$$\therefore let a^{2} = a', ab + b = b'$$

Note that we can perform the last step since a and b are constants. The power of x is still one in the final expression. Therefore the composition of two linear functions is linear.

Question 1.6

For the following functions

$$f(z) = \sqrt{4 - z^2}$$
$$g(x) = 2x + 3$$

Find the domain of y = f(g(x)) for which y is well defined.

We first immediately note that both the domain and range of g(x) are the entirety of \mathbb{R} . The only restriction then comes from f(z). To find the domain of f(z) we must find the interval for which the square root is non-negative

$$4 - z^2 \ge 0$$

$$z^2 \le 4$$

$$z \le |2|$$

Now that we know the domain of f(z), we now have to find the interval such that $-2 \le g(x) \le 2$. Since g is a monotone function and nicely invertible, we can find the inverse of g and plug in the values 2 and -2 to obtain

the interval for our required domain.

$$g(x) = 2x + 3$$

$$g^{-1}(x) = \frac{x - 3}{2}$$

$$g^{-1}(-2) = \frac{-2 - 3}{2}$$

$$= \frac{-3}{2}$$

$$g^{-1}(2) = \frac{2 - 3}{2}$$

$$= \frac{-3}{2}$$

Thus the domain of our function y = f(g(x)) is $\left[-\frac{5}{2}, -\frac{1}{2}\right]$

Question 1.7

Find the inverse of $f(x) = \sqrt{x} + \sqrt{x-1}$ and its applicable domain.

By observation we see that f(x) has a domain $[1,\infty)$. Since it is a monotone increasing function we can find its range via plugging in the endpoints of the domain

$$f(1) = \sqrt{1} + \sqrt{1 - 1} = \sqrt{1}$$
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \sqrt{x} + \lim_{x \to \infty} \sqrt{x - 1} = \infty$$

Therefore our range is $[1,\infty)$ as well and this will be the domain of our inverse function. To find the inverse function itself we must do some rather annoying algebraic manipulation

$$y = \sqrt{x} + \sqrt{x} - 1$$

$$y^{2} = x + x - 1 + 2(\sqrt{x})(\sqrt{x} - 1)$$

$$y^{2} - 2x + 1 = 2\sqrt{x}\sqrt{x} - 1$$

$$y^{4} - 4y^{2}x + 2y^{2} + 4x^{2} - 4x + 1 = 4x^{2} - 4x$$

$$y^{4} - 4y^{2}x + 2y^{2} + 1 = 0$$

$$x = \frac{y^{4} + 2y^{2} + 1}{4y^{2}}$$

$$x = \left(\frac{y^{2} + 1}{2y}\right)^{2}$$

Question 1.8

Find the solution for $\frac{x+1}{x-2} \le \frac{x+2}{x+3}$.

$$\frac{x+1}{x-2} - \frac{x+2}{x+3} \le 0$$

$$\frac{(x+1)(x+3) - (x+2)(x-2)}{(x-2)(x+3)} \le 0$$

$$\frac{x^2 + 4x + 3 - x^2 + 4}{(x-2)(x+3)} \le 0$$

$$\frac{4x+7}{(x-2)(x+3)} \le 0$$

The domain splits of the above function are $(-\infty, -3)$, (-3, -1.75], [-1.75, 2), $(2, \infty)$. We can again use a table to find out the final signature results of our function

Interval	4x+7	x-2	x+3	Sign
$(-\infty, -3)$				
[-3, -1.75]			+	+
[-1.75, 2)	+		+	
$(2,\infty)$	+	+	+	+

Therefore our solution set is $(-\infty, -3) \cup [-1.75, 2)$

Question 1.9

Find the solution of $\frac{3x}{x^2+2} \ge \frac{1}{x-1}$

$$\frac{3x}{x^2+2} - \frac{1}{x-1} \ge 0$$

$$\frac{3x(x-1) - (x^2+2)}{(x^2+2)(x-1)} \ge 0$$

$$\frac{2x^2 - 3x - 2}{(x^2+2)(x-1)} \ge 0$$

$$\frac{(2x+1)(x-2)}{(x^2+2)(x-1)} \ge 0$$

Since $x^2 + 2$ is always positive, we don't need to split the domain with respect to that term, for the rest we obtain $\left(-\infty, -\frac{1}{2}\right]$, $\left[-\frac{1}{2}, 1\right)$, (1,2], $[2,\infty)$. The table looks like

Interval	2x+1	x-2	x-1	Sign
$\left[-\infty, -\frac{1}{2}\right]$				
$\left[-\frac{1}{2},1\right)$	+			+
(1,2]	+		+	
$[2,\infty)$	+	+	+	+

For positivity, our required intervals are $\left[-\frac{1}{2},1\right)\cup [2,\infty)$