

Project 7

Proxy ARP

Date: 2019/05/23 (Thu.)

Deadline: 2019/06/06 (Thu.)

- ■About ARP
- □ Proxy ARP
- ☐ Project 7 Requirements
- Hints

- ■About ARP
- □Proxy ARP
- ☐ Project 7 Requirements
- Hints

Address Resolution Protocol (ARP)

- ☐ To discover Link Layer address (e.g. MAC) with the given Network Layer address (e.g. IPv4)
- ☐ Flooding is used by ARP to discover devices
 - Destination Ethernet address of ARP Request is broadcast address
- ☐ Hosts maintain a ARP table for mapping of IPv4 to MAC address

ARP Request Packet Frame

Hardware Type (Ethernet = 0x0001)		Protocol Type (IPv4 = 0x0800)		
Hardware Length (for Ethernet = 6)	Protocol Length (for IPv4 = 4)	OP Code (ARP request = 1)		
Sender Hardware Address				
Sender Protocol Address				
Target Hardware Address (FF:FF:FF:FF:FF)				
Target Protocol Address				

ARP Reply Packet Frame

Hardware Type (Ethernet = 0x0001)		Protocol Type (IPv4 = 0x0800)		
Hardware Length (for Ethernet = 6)	Protocol Length (for IPv4 = 4)	OP Code (ARP reply = 2)		
Sender Hardware Address				
Sender Protocol Address				
Target Hardware Address				
Target Protocol Address				

Broadcast Storm Issue

- ☐ If a loop exists in the topology
 - ■ARP requests would be repeatedly broadcast!

- About ARP
- □Proxy ARP
- ☐ Project 7 Requirements
- Hints

Proxy ARP (1)

- □h1 sends ARP Request to get MAC address of h2 with h2's IP
 - ■The very first switch sends Packet-In to controller since no matching flow rule is installed

Proxy ARP (2)

- □Controller may not know which host uses the IP
 - ■Controller sends Packet-Out to all edge ports
- Controller learns mapping of IP to MAC address of h1

Proxy ARP (3)

- □h2 and h3 receive ARP Requests
 - ■h2 will sends ARP Reply but h3 won't
- ■Again, the very first switch sends Packet-In because of no matching flow rule

Proxy ARP (4)

- □ Controller learns mapping of requested IP to MAC address of h2
- ■Controller sends Packet-Out of ARP reply to the switch connected to h1

Proxy ARP (5)

- ☐ If h1 sends ARP request with the same IP again
 - ■Since controller has learned the mapping of the IP, it just sends Packet-Out to the switch with ARP Reply

- About ARP
- □Proxy ARP
- ☐ Project 7 Requirements
- Hints

Project 7 Requirements

- ☐ In this project, you need to implement a Proxy ARP application
 - No flow rule should be installed
 - ■If mapping of requested IP to MAC address has already been learned
 - Send Packet-Out of ARP Reply directly
 - ■If no mapping is found
 - > Flood ARP request to all edge ports
 - ■You should not activate other ARP or forwarding applications in the controller

- □Once your application and Mininet are activated, execute this command in Mininet to check ARP functionality
 - mininet> h1 arping h2

Submit to e3

- **□** Files
 - ■All files of your application
- **□**Submit
 - ■Upload ".zip" file to e3
 - -Named: project7_studentID.zip
 - ■Wrong file name or format would not be scored

- About ARP
- □Proxy ARP
- ☐ Project 7 Requirements
- Hints

- ■To use the built-in functions of Ryu controller, run your application with extra argument
 - ryu-manager myapp.py --observe-links
- ■Some useful API can help you find edge ports or hosts easily
 - https://github.com/osrg/ryu/blob/master/ryu/topology/api.py
- ■You have to build packets with protocols such as ARP
 - https://github.com/osrg/ryu/tree/master/ryu/lib/packet
 - https://github.com/osrg/ryu/blob/master/ryu/lib/packet/packet.py

ONOS consists of bunch of powerful services

- http://api.onosproject.org/1.15.0/apidocs/index.html?org/onosproject/net/host/HostService.html
- http://api.onosproject.org/1.15.0/apidocs/index.html?org/onosproject/net/link/LinkService.html

■You have to build packets with protocols such as ARP

- http://api.onosproject.org/1.15.0/apidocs/org/onlab/packet/Ethernet.html
- http://api.onosproject.org/1.15.0/apidocs/org/onlab/packet/ARP.ht
 ml