

Test Report

FCC ID: 2AG8NE-BS-4

Date of issue: Apr. 06, 2017

Sample Description: Cylindrical Lamp Bluetooth speaker

Model(s): E-BS-20170314-4, V60049BT

Applicant: China Etech Groups Ltd

Address: Room 3A15, Floor 4, Block C, Bao Yuan Huafeng

Headquarter, Economy Building, Xixiang Road,

Xixiang Street, Baoan District, Shenzhen.

Date of Test: Mar. 16, 2016 to Apr. 06, 2017

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Table of Contents

Tab	le of Contents	2
1 (General description	5
1.1	Feature of equipment under test (EUT)	5
1.2	Operation channel list	5
1.3	Test Frequency Channel	5
1.4	EUT operation mode	5
1.5	Test conditions	6
1.6	Ancillary equipment list	6
1.7	Measurement uncertainty	6
2 1	Testing site	7
3 L	List of test equipment	8
4 1	Test Result	9
4.1	Antenna requirement	9
4.2	Conducted emission	10
4.3	Peak output power	13
4.4	20dB emission bandwidth	16
4.5	Carrier frequency separation	19
4.6	Number of hopping channel	22
4.7	Time of occupancy (dwell time)	24
4.8	Band edge emission	26
49	Radiated emission	29

- Page 3 of 31 - Report No.: MTi170406E008

Test Result Certification				
Applicant's name:	China Etech Groups Ltd			
Address:	Room 3A15, Floor 4, Block C, Bao Yuan Huafeng Headquarter, Economy Building, Xixiang Road, Xixiang Street, Baoan District, Shenzhen.			
Manufacture's Name:	China Etech Groups Ltd			
Room 3A15, Floor 4, Block C, Bao Yuan Huafeng Hea Economy Building, Xixiang Road, Xixiang Street, Baoa District, Shenzhen.				
Product name:	Cylindrical Lamp Bluetooth speaker			
Trademark:	N/A			
Model name:	E-BS-20170314-4, V60049BT			
Standards:	FCC Part 15.247			
Test Procedure:	ANSI C63.10-2013 FCC public notice DA 00-705			

This device described above has been tested by Shenzhen Toby Technology Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Tested by:	<u>Sang</u>	Sang di Huang		
	Sangdi Huang	Apr. 06, 2017		
Reviewed by:	(ev	chan		
	Leon Chen	Apr. 06, 2017		
Approved by:	tom X	/ne		
	Tom Xue	Apr. 06, 2017		

Summary of Test Result

Item	FCC Part No.	Description of Test	Result
1	15.203	Antenna requirement	Pass
2	15.207	AC power line conducted emission	Pass
3	15.247(b)(1)	Peak output power	Pass
4	15.247(a)(1)	20dB emission bandwidth	Pass
5	15.247(a)(1)	Carrier frequency separation	Pass
6	15.247(a)1	Number of hopping channel	Pass
7	15.247(a)(1)	Time of occupancy (dwell time)	Pass
8	15.247(d)	Band edge spurious emission, conducted spurious emission	Pass
9	15.247(d), 15.205, 15.209	Radiated emission	Pass

1 General description

1.1 Feature of equipment under test (EUT)

Product name:	Cylindrical Lamp Bluetooth speaker
Model name:	E-BS-20170314-4, V60049BT
Tx/Rx frequency range:	Tx/Rx: 2402MHz~2480MHz
Bluetooth version:	V2.1+EDR
Modulation Type:	GFSK, π/4-DQPSK
Power Source:	DC Voltage 3.3V by Serial power supply
Antenna Designation:	PCBA antenna (Antenna Gain: 0dBi)

1.2 Operation channel list

Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz
1	2403MHz	21	2423MHz	41	2443MHz
18	2420MHz	38	2440MHz	77	2479MHz
19	2421MHz	39	2441MHz	78	2480MHz

1.3 Test Frequency Channel

Low	2402MHz
Middle	2441MHz
High	2480MHz

1.4 EUT operation mode

During testing, RF test program provided by the manufacture to control the Tx operation followed the test requirement.

1.5 Test conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 20°C~30°CHumidity: 30%~70%

- Atmospheric pressure: 98kPa~101kPa

1.6 Ancillary equipment list

Equipment	Model	S/N	Manufacturer	Certificate type
Adapter	HW-050200U01	/	HUAWEI	FCC VOC

1.7 Measurement uncertainty

Measurement Uncertainty for a Level of Confidence of 95 %, U=2xUc(y)

RF frequency	1 x 10-7
RF power, conducted	± 1 dB
Conducted emission(150kHz~30MHz)	± 2.5 dB
Radiated emission(30MHz~1GHz)	± 4.2 dB
Radiated emission (above 1GHz)	± 4.3 dB
Temperature	±1 degree
Humidity	±5%

2 Testing site

Test Site Shenzhen Toby Technology Co., Ltd.	
Test Site Location	1 A/F., Bldg.6, Yusheng Industrial Zone The National Road No.107 Xixiang Section 467, Shenzhen, Guangdong, China
FCC Registration No.:	811562
CNAS Registration No.:	CNAS L5813

3 List of test equipment

For AC power line conducted emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
LISN	R&S	ENV216	101313	2017.12.06
LISN	SCHWARZBECK	NNLK 8129	8129245	2017.12.25
Pulse Limiter	SCHWARZBECK	VTSD 9561F	9716	2017.12.25
Test Cable	N/A	N/A	C01	2017.12.06
EMI Test Receiver	R&S	ESCI	101160	2017.12.06

For Radiated emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Log-Bicon Antenna	MESS-ELEKTRO NIK	VULB 9160	3058	2017.12.11
Horn Antenna	Schwarzbeck	BBHA 9120D	631	2017.12.05
Horn Antenna	Schwarzbeck	BBHA 9170	373	2017.12.05
Test Cable	United Microwave	57793	1m	2017.12.05
Test Cable	United Microwave	A30A30-5006	10m	2017.12.05
Microwave Pre-amplifier	Agilent	8449B	3008A01714	2017.12.05
Pre-Amplifier	Anritsu	MH648A	M09961	2017.12.05
EMI Test Receiver	R&S	ESPI-7	101318	2017.12.05
Spctrum analyzer	Agient	E4470B	MY41441082	2017.06.01

For RF conducted emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
EMI Test Receiver	R&S	ESCI	101160	2017.12.06

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4 Test Result

4.1 Antenna requirement

4.1.1 Requirement defined in FCC 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

4.1.2 EUT antenna description

The Bluetooth antenna of EUT is an PCBA antenna (Internal antenna), the maximum gain is 0 dBi. So the antenna meets the requirement of this part.

4.2 Conducted emission

4.2.1. Limit

Frequency	Lir	nit
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

Note: Decreases with the logarithm of the frequency from 0.15MHz to 0.5MHz.

4.2.2. Test method

- 1. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- 2. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 3. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 4. LISN is at least 80 cm from nearest part of EUT chassis.
- 5. The resolution bandwidth of EMI test receiver is set at 9kHz.

4.2.3. Test Result

Ten	nperat	ure:	26°	C Y		F	Relativ	/e Hum	idity:		45%	
⊃re:	ssure:		10 ⁻	1kPa		F	Polariz	zation:			L	
Tes	t volta	ge:	AC	AC 120V/60Hz			Test mode:			Transmitting		
100	0.0 dBu\	/										
90												
80												
70												
60								FCCP	art15 Cla	ssB A(Conduction(QP)	
50			_					FCCPa	rt15 Clas	sB AC	Conduction(AVG)	
50	M	19 mg	do MH	. کید	OI.					ر المعامل المن	11 	
40		/ <u> </u>		~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	hald the year, and who	WALLA !	Marinaly	(MANAMANA)	t-vyphan	N T 17	12	why
30	Λ	~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		* '	10 10		white/tr_			WAY WAY	W. W.	<u> </u>
20		<i>J</i> ' '	MW Y	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	he sames a month	My W	M M		Nother Comme		and have	boy by peak
												<u> </u>
10												AVG
0.0 C	U D.150		0.5			(MHz)		5				30.000
_			Reading	Correct	Measure-	1 ::4	0					
_	No. Mk	. Freq.	Level dBuV	Factor dB	ment dBuV	Limit dBuV	Over	Detector	Corr	nment		
-	1	0.2524	47.46	-0.03	47.43		-14.25	QP		mont		
-	2	0.2524	37.36	-0.03	37.33	51.68	-14.35	AVG				
_	3	0.3341	45.59	-0.03	45.56	59.35	-13.79	QP				
	4	0.3341	34.81	-0.03	34.78	49.35	-14.57	AVG				
	5	0.5140	40.02	-0.03	39.99		-16.01	QP				
	6	0.5140	31.30	-0.03	31.27		-14.73	AVG				
_	7	0.6157	38.45	-0.03	38.42		-17.58	QP			<u> </u>	
_	8 *	0.6157	32.47	-0.03	32.44		-13.56	AVG				
_	9	1.3150	39.71	-0.04	39.67		-16.33	QP				
_	10	1.3150	30.68	-0.04	30.64		-15.36	AVG				
_	11	10.4303	44.69	-0.10	44.59		-15.41	QP				
	12	10.4303	32.96	-0.10	32.86	EO 00	-17.14	AVG				

Ter	mpera	ture:	26	°C		l	Relativ	e Hum	idity:	45%	
Pre	essure	:	10	1kPa		I	Polariz	zation:		N	
Tes	st volta	age:	AC	AC 120V/60Hz		-	Test mode:		Transmitting		
100).OdBu	v									
90											
30											
80											
70											
60								FCCPa	rt15 ClassB A	C Conduction(QP)	
	-							FCCPart	15 ClassB AC	Conduction(AVG)	
50			+								
40	m	<i>γ</i> Λ * Ν ΛΛ		MANIMANNA PARA	man hana	Why May	, polyn	ALL MA		hability talka garage and while	
30		√ ↓ √	1 1 1 1			· " 'WW	Mm. M	10	12		<u>. </u>
20	$\sqrt{\Lambda}$	MM		\^\\^ ? \	^~~\\	WWW.	AND THE RESERVENCE	Mary Mary	- Andrew Strategic	and the company of the commendation of the com	My Marie
		4 Y	' ' '			إسلابور				Car. In	peak
10											- Jan
0.1	0 0.150		0.5			(MHz)		5			30.000
_			Reading	Correct	Measure-						
_	No. Mi		Reading Level	Factor	ment	Limit	Over				
-	No. Mi	MHz	Level dBuV	Factor dB	ment dBuV	Limit dBuV	dB	Detector	Comment		
-	No. Mi	MHz 0.2535	dBuV 40.19	Factor dB -0.03	ment dBuV 40.16	dBuV 61.64	dB -21.48	Detector QP	Comment		
-	No. Mi	MHz	Level dBuV	Factor dB	ment dBuV	dBuV 61.64 51.64	dB	Detector	Comment		
	No. MI	MHz 0.2535 0.2535	dBuV 40.19 28.06	dB -0.03 -0.03	ment dBuV 40.16 28.03	dBuV 61.64 51.64 56.00	dB -21.48 -23.61	Detector QP AVG	Comment		
- - - -	No. Mi	MHz 0.2535 0.2535 0.5825 0.5825 0.8407	dBuV 40.19 28.06 36.83 29.28 37.11	Factor dB -0.03 -0.03 -0.03 -0.03 -0.03	ment dBuV 40.16 28.03 36.80 29.25 37.08	Limit dBuV 61.64 51.64 56.00 46.00 56.00	dB -21.48 -23.61 -19.20 -16.75 -18.92	Detector QP AVG QP AVG QP	Comment		
	No. Mi	MHz 0.2535 0.2535 0.5825 0.5825 0.8407 0.8407	dBuV 40.19 28.06 36.83 29.28 37.11 27.11	Factor dB -0.03 -0.03 -0.03 -0.03 -0.03	ment dBuV 40.16 28.03 36.80 29.25 37.08 27.08	Limit dBuV 61.64 51.64 56.00 46.00 46.00	dB -21.48 -23.61 -19.20 -16.75 -18.92 -18.92	Detector QP AVG QP AVG QP AVG	Comment		
	No. Mh	MHz 0.2535 0.2535 0.5825 0.5825 0.8407 0.8407 1.4596	Level dBuV 40.19 28.06 36.83 29.28 37.11 27.11 36.13	Factor dB -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.04	ment dBuV 40.16 28.03 36.80 29.25 37.08 27.08 36.09	Limit dBuV 61.64 51.64 56.00 46.00 46.00 56.00	dB -21.48 -23.61 -19.20 -16.75 -18.92 -19.91	Detector QP AVG QP AVG QP AVG QP AVG	Comment		
- - - - - -	No. MH 1 2 3 4 5 6 7	MHz 0.2535 0.2535 0.5825 0.5825 0.8407 0.8407 1.4596 1.4596	Level dBuV 40.19 28.06 36.83 29.28 37.11 27.11 36.13 25.87	Factor dB -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04	ment dBuV 40.16 28.03 36.80 29.25 37.08 27.08 36.09 25.83	Limit dBuV 61.64 51.64 56.00 46.00 56.00 46.00 46.00	dB -21.48 -23.61 -19.20 -16.75 -18.92 -18.92 -19.91 -20.17	Detector QP AVG QP AVG QP AVG QP AVG	Comment		
- - - - - - -	No. MI 1 2 3 4 5 6 7 8 9 *	MHz 0.2535 0.2535 0.5825 0.5825 0.8407 0.8407 1.4596 1.4596 3.5577	Level dBuV 40.19 28.06 36.83 29.28 37.11 27.11 36.13 25.87 39.44	Factor dB -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 -0.05	ment dBuV 40.16 28.03 36.80 29.25 37.08 27.08 36.09 25.83 39.39	Limit dBuV 61.64 51.64 56.00 46.00 56.00 46.00 56.00 56.00	dB -21.48 -23.61 -19.20 -16.75 -18.92 -18.92 -19.91 -20.17 -16.61	Detector QP AVG QP AVG QP AVG QP AVG QP AVG	Comment		
- - - - - - -	No. MH 1 2 3 4 5 6 7	MHz 0.2535 0.2535 0.5825 0.5825 0.8407 0.8407 1.4596 1.4596	Level dBuV 40.19 28.06 36.83 29.28 37.11 27.11 36.13 25.87	Factor dB -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04	ment dBuV 40.16 28.03 36.80 29.25 37.08 27.08 36.09 25.83	Limit dBuV 61.64 51.64 56.00 46.00 56.00 46.00 56.00 46.00 46.00	dB -21.48 -23.61 -19.20 -16.75 -18.92 -18.92 -19.91 -20.17	Detector QP AVG QP AVG QP AVG QP AVG	Comment		

4.3 Peak output power

4.3.1 Limits

Conducted peak output power limit is 125mW (21dBm)

4.3.2 Test Method

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured

VBW ≥RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.

4.3.3 Test Result

GFSK

Frequency (MHz)	Peak output power (dBm)	Limit (dBm)
2402	-3.49	21
2441	-2.99	21
2480	-3.0	21

π/4-DQPSK

Frequency (MHz)	Peak output power (dBm)	Limit (dBm)
2402	-2.42	21
2441	-2.03	21
2480	-2.04	21

Test plots as below

GFSK

π /4-DQPSK

4.4 20dB emission bandwidth

4.4.1 Test method

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

4.4.2 Test result

GFSK

Frequency (MHz)	20dB emission bandwidth (MHz)		
2402	0.808		
2441	0.86		
2480	0.844		

$\pi/4$ -DQPSK

Frequency (MHz)	20dB emission bandwidth (MHz)		
2402	1.228		
2441	1.236		
2480	1.232		

Test plots as below

GFSK

π/4-DQPSK

4.5 Carrier frequency separation

4.5.1 **Limits**

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

4.5.2 Test method

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video Bandwidth (VBW) ≥ RBW Sweep = auto Detector function = peak Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

4.5.3 Test result

GFSK

Channels (MHz)	Separation (MHz)	Limit (MHz)
2402-2403	1.002	0.539
2441-2442	1.002	0.573
2479-2480	1.002	0.563

π/4-DQPSK

Channels (MHz)	Separation (MHz)	Limit (MHz)
2402-2403	1.002	0.819
2441-2442	1.002	0.824
2479-2480	1.002	0.821

GFSK

π/4-DQPSK

4.6 Number of hopping channel

4.6.1 Limits

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

4.6.2 Test method

The EUT must have its hopping function enabled. Use the following spectrum analyser settings:

Span = the frequency band of operation RBW ≥1% of the span VBW ≥RBW Sweep = auto Detector function = peak Trace = max hold

Allow the trace to stabilize. It

4.6.3 Test Result

GFSK

π/4-DQPSK

4.7 Time of occupancy (dwell time)

4.7.1 Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.7.2 Test method

The EUT must have its hopping function enabled. Use the following spectrum analyser settings:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

VBW ≥RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

Use the marker-delta function to determine the dwell time.

4.7.3 Test Result

GFSK

Packet type	Pulse Duration (ms)	Dwell time (s)	Limit (s)					
DH5	2.912	0.311	0.4					
Ref 10 dBm	* VBW	1 MHz Delta 1 [T1] 1 MHz -0.0 8 ms 2.91200						
10 Offset 1 dB -0 -10 -20 -30 -40 -50	*Att 25 dB SWT	Marker 1 [T1 -65 7 4.608#0	2 dBm					
Date: 31.MAR.2017								

Note: for the worst mode of DH5 packet type, in normal hopping mode, hopping rate is 1600hops/s with 6 slots in 79 hopping channel

π/4-DQPSK

Note: for the worst mode of DH5 packet type, in normal hopping mode, hopping rate is 1600hops/s with 6 slots in 79 hopping channel

4.8 Band edge emission

4.8.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

4.8.2 Test method

Use the following spectrum analyser settings:

Set RBW =100 kHz. VBW ≥ 3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.

4.8.3 Test Result

Band edge (GFSK mode)

Band edge (π/4-DQPSK mode)

4.9 Radiated emission

4.9.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency (MHz)	Field strength µV/m	Field strength dBµV/m	Detector	Measurement distance
30-88	100	40	QP	
88-216	150	43.5	QP	
216-960	200	46	QP	2
960-1000	500	46	QP	3m
Above 1000	500	54	AV	
Above 1000	5000	74	PK	

Restricted bands defined in FCC 15.205:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

4.9.2 Test method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, VBW \ge RBW, Sweep = auto, Detector function = peak, Trace = max hold

- 4. Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 3MHz, Detector = RMS for AV value, while maintaining all of the other instrument settings.
- 6. The three orthogonal axis (x, y, z) are pre-tested, only the worst emission were reported.

4.9.3 Test Result

- Page 31 of 31 - Report No.: MTi170406E008

Radiated emission (GFSK mode)

Transmitter chann					
Frequency	Ant. Polarization	Emission level	Limits	Detector	Result
(MHz)	H/V	dBµV/m	dBµV/m		
289.6	V	32.7	46	QP	Pass
289.6	Н	33.4	46	QP	
2390	V	47.23	74	PK	
2390	Н	48.46	74	PK	
4804	V	51.69	74	PK	
4804	Н	52.57	74	PK	
Transmitter chann	nel: 2441MHz				
Frequency	Ant. Polarization	Emission level	Limits	Detector	Pass
(MHz)	H/V	dBµV/m	dBµV/m		
289.6	V	32.3	46	QP	
289.6	Н	33.1	46	QP	
4882	V	51.46	74	PK	
4882	Н	52.67	74	PK	
Transmitter chann	nel: 2480MHz				
Frequency	Ant. Polarization	Emission level	Limits	Detector	Pass
(MHz)	H/V	dBµV/m	dBµV/m		
289.6	V	32.9	46	QP	
289.6	Н	34.2	46	QP	
2483.5	V	44.36	74	PK	
2483.5	Н	45.52	74	PK	
4960	V	50.54	74	PK	
4960	Н	51.48	74	PK	

Note:

If the PK measured values lower than average mode limit, the EUT shall be deemed to meet average limits and then no additional average mode measurement performed. all three modes (GFSK, π /4-DQPSK modes of EUT have been tested, only the data of worst case GFSK mode is reported.

----END OF REPORT----