r I	Lecturer:	(Date)	1	Approved by:	(Date	:)	_	 	
Γ I	(Signature & Fullname)		1	(Signature, Position & Fullname)					
l			1						
L			-1-					 	

(The above part must be hidden when copying for exam)

•	MIDTERM	Semester/AY	1	2020-2021		
BK		Date	Oct	ober 2020		
••	Course name	Computer Architecture				
Ho Chi Minh City University of Technology	Course ID	CO2007				
Faculty of Computer Science and Engineering	Duration	60 minutes	\mathbf{Code}	201m1		

Notes:

- Write you answers right after every question;
- Students are allowed to use materials printed/written on **ONE** A4 paper (2 pages);
- All pages of this question sheet MUST be returned. Any missing page will let you get 0 mark!

Student's name: SOLUTIONS	
Student's ID:	

Learning outcomes - Questions mapping:

- L.O.1 Estimate performance of a computer under given parameters: 1 10;
- L.O.2 Explain basic instructions in the instruction sets: 11 30

Questions for the midterm test are started from here:

1. Contemporary computers can be categorized into classes:

Answer: Embedded computers, personal computers, server computers, and super computers

2. Is "throughput" or "response time" affected when the current processor is replaced by a faster one?

Answer: Both

- 3. To improve system performance, which below approaches can we do?
 - A Using an another programming language to reduce machine instructions
 - B Changing the algorithm to reduce the cycles required by the application
 - C Reducing cycle time of processors

Answer: A, B, and C

Following data is used for questions from 4 to 7:

A program consists of 1000 assembly instructions of which 30% are load/store instructions, 10% are jump instructions, 20% are branch instructions while the rest are arithmetic instructions. CPI for load/store, jump, branch, and arithmetic instructions is 2.5, 1, 1.5, and 2, respectively. Assume that the processor has a 2 GHz clock rate.

4. What is the execution time of the above program?

Answer: 975 ns/ 0.975×10^{-6} s

5. By how much must we improve the CPI of L/S instructions if we want the program to run $1.5 \times$ faster?

Answer: newCPI(L/S) = 0.33/reduce by 2.17/reduce by 86,6%

6. What is the weight average CPI of the above program?

Answer: 1.95

7. What is speed-up of the above program if CPI of load/store instructions is reduced by a factor of 2?

Answer: ≈ 1.24

8. According to the Moore's Law, how long does it take for the number of transistors integrated into a chip to get double?

Answer: 18 - 24 months

9. A clock signal becomes logic 0 in total 2×10^9 times per second, what is the rate of the clock?

Answer: 2 GHz

10. Is the MIPS instruction **sb** \$t1, 0x2020(\$t0) legal?

Answer: Yes

11. Given the following MIPS instruction

What will this instruction do?

Answer: This instruction is not a standard MIPS instruction

12. Given the following MIPS sequence:

Assume that the \$s3 register stores a base address of an integer array. What will we get in \$s1 after the sequence gets executed?

Answer: The sequence causes a runtime error

13. To assign value 12345678 to the \$t0 register, which standard MIPS instructions should be executed?

Answer:

lui \$t0, 0x00BC
ori \$t0, \$t0, 0x614E

Following data is used for questions from 14 to 16:

Given the following memory locations/cells used in a standard MIPS-based system:

address:	8	9	10	11
	0x12	0x34	0x56	0x78
	0x9A	0xBC	0xDE	0xF0
address:	12	13	14	15

Assume that the \$50 register stores value of 8.

14. What is the value of the \$t0 register after the instruction **1h** \$t0, 6(\$s0) is executed?

Answer: 0xffffDef0

15. What is the value of the \$t0 register after the instruction lw \$t0, 6(\$s0) is executed?

Answer: The instruction causes a runtime error

16. What will be changed after the instruction **sw** \$t1, 4(\$s0) is executed? Assume that the \$t1 register stores value of 0x00000000.

Answer: Memory cells: 12, 13, 14, and 15

17. What is (are) NOT (an) operand(s) for standard MIPS instructions among: Integer numbers, Real numbers, Memory cells, and Registers

Answer: Real numbers

Following data is used for questions from 18 to 19:

Assume that the \$s0 and \$s1 registers store values of 12345678 and 0xFACECAFE, respectively.

18. What is the value of the \$s2 register after the following instruction is executed?

Answer: 0x00000144

19. What is the value of the \$s2 register after the following MIPS instructions are executed?

Answer: 0xFAFEEBFE

20. Which is the machine instruction of the add \$t0, \$s1, 2020 MIPS instruction?

Answer: Instruction is not correct

21. Which is the MIPS instruction according to the following machine instruction? 0000 0000 0001 0000 0101 0000 1100 0000 $_2$

Answer: sll \$t2, \$s0, 3

22. Which is the machine instruction of the **lw** \$t0, -32(\$s1) MIPS instruction (written in hexadecimal)?

Answer: 0x8E28FFE0

23. What is stored in the Program counter (PC) register in the context of the MIPS architecture:

Answer: Address of the next instruction

Following MIPS instructions are used for questions from 24 to 26:

Assume that the following sequence of instructions is executed by a standard MIPS processor. The pseudo instruction **la** will assign the base address of an array to a register.

Code 201m1

```
.data
        array: .word 2020, 20, -20
.text
main:
        la
                 $t0,
                      array
        lhu
                 $s0, 2($t0)
        1h
                 $s1, 6($t0)
        addu
                 $s3, $s1, $s0
        sb
                 $s3, 8($t0)
                 $s4, 10($t0)
        1h
```

24. What is value of the \$50 register?

Answer: 0x000007E4

25. What is value of the \$s1 register?

Answer: 0x00000014

26. What is value of the \$\$4 register?

Answer: 0xffffffec

The following sequence of MIPS instructions is used for questions from 27 to 28:

27. What is value of the \$\footnote{1}\$ register after the above sequence is executed?

Answer: \$t1 = 5

28. Assume that the above sequence is executed by a 10 MHz MIPS processor. The processor can process 1 instruction per cycle. What is the execution time of the above sequence?

Answer: 1.7 μ sec

The following sequence of MIPS instructions is used for questions from 29 to 30:

29. What is the offset (16 bit) of the **bne** \$t0,\$t1,exit instruction:

Answer: 0x0001

30. Given that the **bne** \$t0, \$t1, exit instruction is stored at memory location 0xCAFECOOC. Which is the offset field (26 bit) of MIPS instruction j label?

Answer: 0x2BFB001

— The test consists of **30** questions printed on **4** pages —