

ADS AD VIDEO COSOUN

www.aduni.edu.pe

QUÍMICA

CÁLCULOS EN QUÍMICA I Semana 17

www.aduni.edu.pe

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

- 1. Realizar cálculos con el peso atómico para determinar el peso fórmula.
- 2. Utilizar la mol como unidad de la cantidad de sustancia y determinar la masa molar de las sustancias químicas.
- Establecer la relacion entre la cantidad de sustancia (n) y la cantidad de materia(m), para elementos y compuestos.
- 4. Interpretar el porcentaje de pureza de una muestra quimica.

II. INTRODUCCIÓN

El ser humano en su interacción con la materia muestra interés por su constitución, por el número de partículas que contiene, por la masa de esas partículas, etc.

1)

Si la lámina de aluminio contiene 1,2x10²⁴ átomos. ¿Qué masa tendrá la lámina de aluminio?

2)

Si el volumen de agua en el vaso es de 90 mL. ¿Será posible conocer el número de moléculas de agua presente y la masa de oxígeno presente?

III. CONCEPTO

Los cálculos en química se refiere a la relación que existe entre la masa y la cantidad de sustancia que corresponden a elementos o compuestos químicos, en forma de átomos, moléculas o iones, presentes en una porción de materia.

La masa (m), es una magnitud escalar, que indica la cantidad de materia contenida en un cuerpo. En el SI, la unidad de medida es el kilogramo, pero también hay otras unidades de medida.

En química a la masa suele llamarse peso.

Equivalencias:

1 kg= 1000 g ; 1 tm= 1 t= 1000 kg

m = 55 kg

La **unidad de masa** depende de la cantidad de cuerpo material presente.

EJEMPLO:

La masa de un autobús urbano lo expresamos en toneladas.

¿ En que unidad se debe expresar la masa de partículas subatómicas?

IV. UNIDAD DE MASA ATÓMICA (uma)

Es la unidad de masa para partículas muy pequeñas (átomos, moléculas, iones), por convención una uma se define como la doceava parte de la masa de un átomo de C-12 <> ¹²C.

Convención realizado el año 1961:

$$1 uma = \frac{1}{12} masa_{6}^{12}C$$

Equivalencias:

$$1 uma = 1,66x10^{-24} g$$

$$1 g = 6,022x10^{23} uma$$

Tener en cuenta que la unidad de masa en el sistema internacional es el **kilogramo**, (kg), y no la **unidad de masa atómica** (uma).

IV. MASA ATÓMICA O PESO ATÓMICO (PA)

Considerando que la mayoría de los elementos se presentan en la naturaleza como mezcla de sus isótopos.

El peso atómico es la masa promedio ponderado de las masas de los isótopos estables de un elemento.

El PA representa la masa atómica promedio de 1 átomo del elemento.

Veamos:

Isótopos naturales estables del cobre

ISÓTOPOS	MASA ISOTÓPICA (uma)	ABUNDANCIA	
⁶³ Cu	62,93	69,1%	
⁶⁵ Cu 64,93		30,9%	

ANUAL SAN MARCOS 2021

$$PA(Cu) = 62,93x69,1\% + 64,93x30,9\%$$

$$PA(Cu) = \frac{62,93x69,1}{100} + \frac{64,93x30,9}{100}$$

$$PA(Cu) = \frac{62,93x69,1 + 64,93x30,9}{100}$$

$$PA(Cu) = 63,548uma \approx 63,5 uma$$

Este valor representa un promedio de la masa de los isótopos naturales estables del cobre.

PESOS ATÓMICOS APROXIMADOS DE ALGUNOS ELEMENTOS

ELEMENTO	PESO ATÓMICO (uma)		
Н	1		
C ACADEMIA	12		
AN	14		
0	16		
He	4		
CI	35,5		
S	32		
Mg	24		
Ca	40		
Fe	56		
Al	27		
Cu	63,5		

VI. MASA MOLECULAR O PESO MOLECULAR (PM)

Representa la **masa promedio** de 1 molécula de una sustancia covalente (elemento poliatómico o compuesto covalente), está expresado en uma.

Datos: fórmula química y PA

$$PM = \sum PA$$

Constitución del aire contaminado:

Elemento	С	Н	Н О	
PA(uma)	12	1	16	14

$$H_2O \Rightarrow PM = 2(1) + 1(16) = 18 \ uma$$

$$NO_2 \Rightarrow PM = 1(14) + 2(16) = 46 \text{ } uma$$

$$CO_2 \Rightarrow PM = 1(12) + 2(16) = 44 \ uma$$

$$CH_4 \Rightarrow PM = 1(12) + 4(1) = 16 \ uma$$

$$O_2 \Rightarrow PM = 2(16) = 32 \ uma$$

$$O_3 \Rightarrow PM = 3(16) = 48 \ uma$$

$$N_2 \Rightarrow PM = 2(14) = 28 \ uma$$

VII. MASA FÓRMULA O PESO FÓRMULA (PF)

Indica la masa promedio de una unidad estructural (átomo, molécula, ion...) expresada en uma. Se halla sumando los PA.

$$PF = \sum PA$$

El peso fórmula es un concepto general, que a la vez puede ser peso atómico, (PA), o peso molecular, (PM).

EJEMPLO

Determinemos el PF de las siguientes sustancias: He, O_3 , H_2O , H_2SO_4 , CaO; C_3H_8 .

ELEMENTO	Н	He	0	S	Ca
PA (uma)	1	4	16	32	40

RESOLUCIÓN:

$$He \Rightarrow PF = 4 uma$$

$$O_3 \Rightarrow PF = 3(16) = 48 \ uma$$

$$H_2O \Rightarrow PF = 2(1) + 1(16) = 18 uma$$

$$H_2SO_4 \Rightarrow PF = 2(1) + 1(32) + 4(16) = 98 \text{ } uma$$

$$CaO \Rightarrow PF = 1(40) + 1(16) = 56 \text{ } uma$$

$$C_3H_8 \Rightarrow PF = 3(12) + 8(1) = 44 \ uma$$

VIII. EL MOL

En química, se emplea la definición de mol para indicar el número de unidades estructurales o unidades fórmula (átomos, moléculas, iones, etc.) presente en una muestra material.

Según la IUPAC, el mol es la cantidad de sustancia que contiene tantas unidades estructurales (átomos, moléculas, iones...) como átomos hay en 12 g de ¹²C.

$N_A = N$ úmero de Avogadro = 6,022x10²³ $\approx 6x$ 10²³

¿Qué tan grande es una mol?

Si tuvieras una fortuna de 6,022x10²³ dólares, que es el número de Avogadro de dólares, podrías gastar mil millones de dólares cada segundo durante toda tu vida y esa fortuna sólo habría disminuido en 0,001%.

ANUAL SAN MARCOS 2021

EJEMPLOS

- 1mol de átomos = 6x10²³ átomos
- 0,25 mol de átomos= 0,25(6x10²³)átomos
 =1,5x10²³ átomos
- 0,75 mol de iones Na⁺= 0,75($6x10^{23}$) iones Na⁺ =4,5 $x10^{23}$ iones Na⁺
- 1mol Mg= 1mol átomos Mg= 6x10²³ átomos Mg
 = N_Δ átomos Mg
- 1 mol $H_2O=1$ mol moléculas H_2O = $6x10^{23}$ moléculas $H_2O=N_A$ moléculas H_2O

Tener en cuenta:

1mol Zn

1mol H₂O

En una mol de una sustancia, está presente el N_A unidades estructurales.

IX. MASA MOLAR (M)

Es la masa en gramos de una mol de unidades estructurales (átomos, moléculas, iones).

1. Para elementos químicos monoatómicos: $\overline{\mathbf{M}}(E) = PA(E)$ g/mol

$$\overline{\mathbf{M}}(\mathbf{E}) = \mathrm{PA}(\mathbf{E}) \, \mathrm{g/mol}$$

Ejemplo:

1 mol de átomos de carbono (C)

INTERPRETACIÓN

1mol o 6,022x10²³ átomos de carbono pesan 12 g

$$\overline{M}(E) = PA(E) \text{ g/mol} \xrightarrow{\text{Es la masa} \atop \text{de}} \underbrace{6,022 \times 10^{23}}_{\text{1mol}} \text{ átomos de E}$$

- $\overline{M}(Mg) = PA(Mg) g/mol = 24 g/mol$
- $\overline{M}(Ca) = PA(Ca) g/mol = 40 g/mol$

2. Para compuestos químicos y no metales poliatómicos:

$$\overline{\mathbf{M}}(\mathbf{X}) = \mathrm{PF}(\mathbf{X}) \; \mathrm{g/mol}$$

EJEMPLO:

 1 mol de moléculas de agua (H₂0)

INTERPRETACIÓN

1mol o 6,022x10²³ moléculas de agua pesan 18 g

En general:

$$\overline{M}(X) = PF(X) \text{ g/mol} \xrightarrow{\text{Es la masa} \atop \text{de}} \underbrace{6,022x10^{23} \text{ moléculas de X}}_{\text{mol}}$$

- $\overline{M}(CO_2) = PF(CO_2) g/mol = 44 g/mol$
- $\overline{M}(HNO_3) = PF(HNO_3) g/mol = 63 g/mol$

EJERCICIO 1

¿Cuántas moles hay en 54 g de moléculas de agua (H_2O) ? PA(uma): H = 1, O = 16

Resolución

$$n = \frac{m}{\overline{M}(H_2O)} = \frac{54 \text{ g}}{18 \text{ g/mol}} = 3 \text{ mol}$$

EJERCICIO 2

¿Cuántas moles de metano (CH $_4$) hay en un balón que contiene 4,8 x 10^{24} moléculas de CH $_4$? N $_4$ = 6 x 10^{23}

Resolución

$$1 \text{mol (X)} \xrightarrow{\text{contiene}} 6 \times 10^{23} \text{ moléculas de X}$$

$$1 \text{mol (CH}_4) \longrightarrow 6 \times 10^{23} \text{ moléculas de CH}_4$$

$$"n" \longrightarrow 4,8 \times 10^{24} \text{ moléculas de CH}_4$$

$$n = \frac{\text{número de moléculas}}{\overline{M}(H_2O)} = \frac{4.8 \times 10^{24}}{6 \times 10^{23}} = 8 \text{ mol}$$

Concluimos que:

Número de moles
$$(n) = \frac{m}{\overline{M}} = \frac{\text{número de moléculas}}{N_A}$$

CONCLUSION

ADUNI

Usando la masa molar \overline{M} para cada sustancia relacionamos la masa (m) en gramos con la cantidad de unidades estructurales.

X. PORCENTAJE DE PUREZA DE UNA MUESTRA QUÍMICA (%P)

En la naturaleza, las sustancias se encuentran formando mezclas. Por ello debemos conocer qué parte de toda la muestra, en porcentaje, representa la sustancia de interés. A ese porcentaje se le llama pureza (%P).

$$Pureza = \frac{Cantidad\ pura}{Cantidad\ de\ la\ muestra} x100\%$$

EJEMPLO

La calcopirita es un mineral que contiene al compuesto CuFeS₂ al 75 % de pureza . En una muestra de 250 kg del mineral. ¿Qué masa de CuFeS₂ se puede extraer?

SOLUCIÓN

mineral: 250 kg

La calcopirita tiene una parte pura (CuFeS₂) e impurezas.

$$250 \ kg \longrightarrow 100\%$$

$$m(CuFeS_2) \longrightarrow 75\%$$

$$m(\text{CuFeS}_2) = \frac{75x250}{100} = 187.5 \text{ kg}$$

También:

$$\Rightarrow 75\% = \frac{m(\text{CuFeS}_2)}{250 \text{ kg}} x 100\% \Rightarrow m(\text{CuFeS}_2) = 187.5 \text{ kg}$$

XI. BIBLIOGRAFÍA

- Química, colección compendios académicos UNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Química esencial; Lumbreras editores.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición

www.aduni.edu.pe

