

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3F03 Advanced Differential Equations

Instructor: David Earn

Lecture 12
Classification of Planar Linear Systems
2 October 2013

Announcements

Graduate Studies Information Session

TODAY: Wednesday, 2 October 2013, 4:30pm Hamilton Hall 217 and Math Café

Agenda:

- Information about graduate programs at Mac (Mathematics, Statistics, PhiMac, Computational Science and Engineering) and also Teachers College
- 2 Questions from students
- 3 Mac graduate students talk about their experiences and plans for future
- 4 Pizza, refreshments and socializing

Announcements

- Assignment 2 due this Friday 4 October 2013.
- Assignment 1 Results...

Marks Distribution for Assignment 1

- 5% will be added to your mark.
- Check TA comments posted on course wiki.
- Plagiarism is not OK!

Improper cases ($\lambda_1 = \lambda_2$; unique eigendirection)

Quantitative solution derived in instructor's solutions to 2012
 Assignment 2 (Exercise 7, page 58).

$$X(t) = x_0 e^{\lambda t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y_0 e^{\lambda t} \begin{pmatrix} t \\ 1 \end{pmatrix} = e^{\lambda t} \left(x_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y_0 t \begin{pmatrix} 1 \\ \frac{1}{t} \end{pmatrix} \right)$$

If $\lambda = 0$ then

$$X(t) = \begin{pmatrix} x_0 + y_0 t \\ y_0 \end{pmatrix}$$
 "Improper Line"

■ If $\lambda \neq 0$ then asymptotic behaviour (as $t \to \infty$) is

$$X(t) \sim (x_0 + y_0 t)e^{\lambda t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

i.e., motion is asymptotically tangent to the (unique) eigendirection ("Improper Sink or Source").

Case $\lambda_1 = \lambda_2 < 0$, $\exists !$ eigendirection ("Improper Sink")

Canonical coordinates:

$$A = \begin{pmatrix} -2 & 1 \\ 0 & -2 \end{pmatrix}$$

Original coordinates: $A_{\text{orig}} = TAT^{-1}$

$$\mathcal{T} = (V_1 \ V_2) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Case $\lambda_1 = \lambda_2 = 0$, $\exists !$ eigendirection ("Improper line")

Canonical coordinates:

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Original coordinates: $A_{\text{orig}} = TAT^{-1}$

$$T = (V_1 \ V_2) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Classification of Planar Linear Systems

General linear (homogenous) planar system:

$$X' = AX$$
, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2}$, $X = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ (*)

- We have considered all possible eigensystem types.
- Do we have the whole story for planar linear systems? Is there a *qualitative* difference between phase portraits of systems with the same eigensystem type?
- Let's first summarize what we've established so far.

Real Jordan Canonical forms of real 2×2 matrices

Any real 2×2 matrix A can be converted, via a change of basis, to one of the following three forms:

$$\text{(i)} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \qquad \text{(ii)} \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} \qquad \text{(iii)} \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

where $\lambda_1, \lambda_2, \alpha, \beta, \lambda \in \mathbb{R}$, $\beta \neq 0$.

Eigenvalues and Eigenvectors in each case:

- (i) $\lambda_1, \lambda_2 \in \mathbb{R}$ (not necessarily distinct) \exists basis of *real* eigenvectors
- (ii) $\lambda_{\pm} = \alpha \pm i\beta$, $\alpha, \beta \in \mathbb{R}$, $\beta \neq 0$ (distinct, conjugates) \exists basis of *complex* eigenvectors; $\not\exists$ real eigenvectors
- (iii) $\lambda \in \mathbb{R}$ (repeated eigenvalue) $\exists !$ eigendirection (alg(λ) = 2, geom(λ) = 1)

Real Jordan Canonical forms of real 2×2 matrices

Any real 2×2 matrix A can be converted, via a change of basis, to one of the following three forms:

$$\text{(i)} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \qquad \text{(ii)} \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} \qquad \text{(iii)} \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

where $\lambda_1, \lambda_2, \alpha, \beta, \lambda \in \mathbb{R}$, $\beta \neq 0$.

Transforming from original to canonical coordinates:

$$J = T^{-1}AT$$

- (i) $T = (V_1 V_2)$, where $AV_i = \lambda_i V_i$ for i = 1, 2
- (ii) $T = (V_{\Re} V_{\Im})$, where $V = V_{\Re} + iV_{\Im}$ and $AV = (\alpha + i\beta)V$
- (iii) T = (V U), where $AV = \lambda V$ and $AU = \lambda U + V$ (U is called a **generalized eigenvector**)

Example: Calculation of Generalized Eigenvector

$$A_{\text{orig}} = \begin{pmatrix} -\frac{3}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{5}{2} \end{pmatrix}$$

- $p(\lambda) = \det(A_{\text{orig}} \lambda I) = (\lambda + 2)^2 \implies \lambda = -2, \text{ alg}(\lambda) = 2.$
- $A_{\text{orig}}V = -2V \implies V \propto \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (\exists ! eigenvector)
- ullet Find generalized eigenvector to complete basis with V.
- $A_{\text{orig}}U = -2U + V \implies U \propto \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
- Take $V = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $U = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and define T = (V U).
- Then $T = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $T^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, and $A = T^{-1}A_{\text{orig}}T = \begin{pmatrix} -2 & 1 \\ 0 & -2 \end{pmatrix}$

Phase Portrait Types for X' = AX in the Plane

- We can certainly restrict attention to matrices in Real Jordan Canonical Form
 - because all cases are equivalent to these after linear coordinate transformation.
- We considered cases defined by the signs of the real parts and existence of imaginary parts of the eigenvalues.
 - Is this completely comprehensive?
 - For example, is there a qualitative difference in the dynamics of X' = AX for these possible A:

$$\begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix} \qquad \begin{pmatrix} -4 & 0 \\ 0 & -2 \end{pmatrix} \qquad \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$$

- In fact, these are all equivalent topologically (which we'll discuss in greater detail soon)
- Meanwhile, let's consider another classification...

Consider X = AX with arbitrary real 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Characteristic polynomial:

$$p(\lambda) = \det(A - \lambda I) = \det\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$
$$= (a - \lambda)(d - \lambda) - bc$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$
$$= \lambda^2 - (\text{tr}A)\lambda + \det A$$

: Eigenvalues can be written

$$\lambda_{\pm} = rac{1}{2} \Big(\mathrm{tr} A \pm \sqrt{(\mathrm{tr} A)^2 - 4 \det A} \Big) \, ,$$

$$\lambda_{\pm} = \frac{1}{2} \left(\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \operatorname{det} A} \right)$$

$$\implies \lambda_{+} + \lambda_{-} = \operatorname{tr} A$$

$$\lambda_{+} \times \lambda_{-} = \frac{1}{4} \left((\operatorname{tr} A)^2 - [(\operatorname{tr} A)^2 - 4 \operatorname{det} A] \right) = \operatorname{det} A$$

This generalizes to \mathbb{R}^n :

- \blacksquare trA = sum of eigenvalues
- det A = product of eigenvalues

... Lots of qualitative info from trace and determinant.

Examples in the plane:

- det $A < 0 \implies \lambda_- < 0 < \lambda_+ \implies$ saddle
- $\det A > 0$ & $\operatorname{tr} A = 0 \implies \lambda_{\pm} = i \sqrt{|\det A|} \implies \operatorname{centre}$
- $det A > 0 \& (trA)^2 > 4 det A \implies 0 < \lambda_- < \lambda_+ \implies source$

What the trace-determinant plane hides

- Trace-Determinant plane shows a *two-parameter* bifurcation diagram for planar linear system (parameters are tr = a + d and det = ad bc).
- But A has four parameters (a, b, c, d), or tr, det and two others).
- In fact, tr-det plane does not tell the whole story of possible dynamics of linear systems.
- What are we missing in the tr-det plane?

What the trace-determinant plane hides

- tr-det plane suppresses speed of attraction to (or repulsion from) equilibrium.
- tr-det plane does not represent sense of rotation.
- - This has same tr and det $\forall b \in \mathbb{R}$.
 - ∴ Lies in same position on tr-det plane for any $b \in \mathbb{R}$.
 - But \exists bifurcation as b crosses 0 (e.g., number of invariant lines changes from 1 to ∞ to 1).
 - This is a special type of bifurcation, since another condition $(\lambda_1 = \lambda_2 \text{ in this case})$ must already be satisfied.
 - e.g., Go from $(\lambda_1, \lambda_2) = (1, 1 \varepsilon)$ to $(\lambda_1, \lambda_2) = (1, 1 + \varepsilon)$, crossing $\operatorname{tr}^2 = 4 \operatorname{det} \operatorname{curve} \operatorname{at} (\lambda_1, \lambda_2) = (1, 1)$.
 - bifurcation occurs by varying the top-right entry of A while fixing $(\lambda_1, \lambda_2) = (1, 1)$ [i.e., fixing (tr, det) = (2, 1)].

Determining sense of rotation from 2×2 matrix entries

$$X' = AX$$
, $X(0) = X_0$, $A = \begin{pmatrix} a_{12} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

- Suppose A has complex eigenvalues \implies spiral or centre.
- Is rotation clockwise or counter-clockwise?
- Eigenvalues (or tr and det) do *not* tell us.
- Consider fate of initial condition on x-axis, $X_0 = (1,0)$.
- Direction of flow at X_0 is given by the vector field:

$$AX_0 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}.$$

- AX_0 points up if $a_{21} > 0$ and down if $a_{21} < 0$.
- \bullet sign(a_{21}) determines sense of rotation.
- What does *a*₁₁ determine?
- See problem 3 on 2012 Assignment 2 (Exercise 9, page 59).