אלגוריתמים 2

9 בנובמבר 2015

סיבוכיות של פעולות אריתמטיות

תזכורת: חיבור וחיסור ניתנים לביצוע בזמן $\mathcal{O}(n)$ כאשר n הוא מספר הביטים (ולא גודל המספר). כפל וחילוק ניתנים לחישוב בזמן $\mathcal{O}(n^2)$

חשבון מודולרי

חיבור: $n \geq a, b \in \mathbb{Z}_m$ כאשר $a + b \pmod{m}$ ו באורך $a + b \pmod{m}$ ולכן נקבל זמן ריצה $0 \leq a + b \leq 2m$

$$\mathcal{O}(n)$$
 \ni
$$\begin{cases} a+b & \Leftarrow a+b < m \\ a+b-m & \Leftarrow a+b \ge m \end{cases}$$

נפל: m באורך $n \geq m$ ו $a,b \in \mathbb{Z}_m$ אשר $ab \, (mod \, m)$ כפל: $\mathcal{O} \, (n^2)$ אשר פעולת כפל + פעולת חילוק עם שארית ובסה"כ זמן ריצה

 $a/b\Rightarrow ab^{-1}$ מעלה החופכי באיבר הכפלה משמעותו משמעותו מעל הממשיים מעל החופכי למעשה חילוק: למעשה החילוק מעל הממשיים משמעותו הכפלה לא החופכי כאשר באיבר החופכי משמעותו מעלה הממשיים משמעותו

כך $a'\in\mathbb{Z}_m$ אזי קיים $a'\in\mathbb{Z}_m$ אזי אזי חופכי אבל אם הופכי אבל אזי אזי ממיד אזי מ $a'=1(mod\,m)$ ש

במקרה כזה נאמר ש \mathbb{Z}_m הוא לא רק חוג אלא שדה

GCD האלגוריתם של אוקלידס למציאת

 $a \leq b$ כאשר במהלך היון כעת באלגוריתם gcd(a,b) כאשר באלגוריתם

$$gcd(a,b)=a$$
 אזי $a\mid b$ כלומר $b=0\,mod\,m$ טענה: אם אחרת $gcd(a,b)=gcd(a,a-b)$

 $c|a\wedge c|b-a\Rightarrow c|a+b-a=b$ ומנגד ומנגד בימוק: ומנגד את מרות ל־מותג ומנגד שנרד ומנגד את בצד ימין מיין מיין את מלשוב ושוב עד שנרד מתחת ל־מונקבל את בצד ימין מיין

מסקנה: עבור $gcd(a,b) = gcd(a,b-ka) = gcd(a,b \, mod \, a)$ עבור אלגוריתם רקורסיבי:

: GCD - Euclid(a, b)

- $c = b \mod a$ •
- a אם c=0 אם •
- GCD-Euclid(c,a) אחרת $^{ au}$ נחזיר \bullet

זמן ריצה a,b באורך אמן ריצה זמן ריצה מ

בהתבוננות ראשונית נוכל לשים לב שבכל צעד אחד המספרים לנוכל להסיק שעומק בהתבוננות ראשונית ב $2^n{\geq}max(a,b){\geq}$ הרקורסיה

 $b\,mod\,a \leq rac{b}{a}$ טענה:

- הוכחה: נחלק למקרים

$$b \mod a < a \leq \frac{b}{a}$$
 a $\leq \frac{b}{2}$.1

$$b \, mod \, a = b - a < b - rac{b}{2} = rac{b}{2}$$
 כקבל כי $a > rac{b}{2}$.2