Real Analysis

Real Analysis Modern Techniques and Their Applications, Gerald B. Folland Summary by Ari Feiglin

Contents

1	Measures	1
	1.1 σ -Algebras	1
2	Index	4

1.1 σ -Algebras

1.1.1 Definition

Let X be a nonempty set, then an **algebra** of sets on X is a nonempty collection $A \subseteq \mathcal{P}(X)$ which is closed under finite unions and complements. Meaning if $E_1, \ldots, E_n \in A$ then $\bigcup_{i=1}^n E_i \in A$ and if $E \in A$ then $E^c \in A$. If A is closed under countable unions, then it is called a σ -algebra.

Notice that since $\bigcap_{i\in I} E_i = \left(\bigcup_{i\in I} E_i^c\right)^c$, algebras (respectively σ -algebras) are closed under finite (respectively countable) intersections. And if \mathcal{A} is an algebra then since it is non-empty, there exists some $E \in \mathcal{A}$ and so $E \cap E^c = \emptyset \in \mathcal{A}$ and $\emptyset^c = X \in \mathcal{A}$.

Further notice that if \mathcal{A} is an algebra, it is sufficient for it to be closed under countable *disjoint* unions in order for it to be a σ -algebra. Suppose $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{A}$ then let us define

$$F_k = E_k \cap \left(\bigcup_{i=1}^{k-1} E_i\right)^c$$

then $\{F_k\}_{k=1}^{\infty}$ are disjoint and and $\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} F_i$ and since $F_k \in \mathcal{A}$ since it is an algebra, and \mathcal{A} is closed under countable disjoint unions, the union is in \mathcal{A} . So \mathcal{A} is a σ -algebra.

Some trivial examples of σ -algebras are $\mathcal{P}(X)$ and $\{\varnothing, X\}$. If X is uncountable then

$$\mathcal{A} = \{ E \subseteq X \mid E \text{ is countable or cocountable} \}$$

(cocountable meaning its complement is countable.) \mathcal{A} is obviously closed under complements and is nonempty. If $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{A}$ then if all E_i are countable then $\bigcup_{i=1}^{\infty} E_i$ is also countable and in \mathcal{A} . Otherwise if any E_i is cocountable, so is the union.

Notice that if $\{A_i\}_{i\in I}$ is an arbitrary family of σ -algebras on X, then so is $\bigcap_{i\in I} A_i$. This is nonempty since it contains \emptyset ; if $E\in\bigcap_{i\in I} A_i$ then $E\in A_i$ and so $E^c\in A_i$ for every $i\in I$, meaning $E^c\in\bigcap_{i\in I} A_i$; and similarly if $\{E_j\}_{j=1}^\infty\subseteq\bigcap_{i\in I} A_i$ then $\{E_j\}_{j=1}^\infty\subseteq A_i$ and so $\bigcup_{j=1}^\infty E_j\in A_i$ for every $i\in I$, and so $\bigcup_{j=1}^\infty E_j\in\bigcap_{i\in I} A_i$ as required. Thus if $\mathcal E$ is an arbitrary family of subsets of X, we can discuss the smallest σ -algebra containing $\mathcal E$:

$$\mathcal{M}(\mathcal{E}) := \bigcap \{ \mathcal{A} \mid \mathcal{A} \text{ is a } \sigma\text{-algebra containing } \mathcal{E} \}$$

We will often use the following argument:

1.1.2 Lemma

If $\mathcal{E} \subseteq \mathcal{M}(\mathcal{F})$ then $\mathcal{M}(\mathcal{E}) \subseteq \mathcal{M}(\mathcal{F})$.

Since $\mathcal{M}(\mathcal{F})$ is a σ -algebra containing \mathcal{E} , it must contain $\mathcal{M}(\mathcal{E})$.

1.1.3 Definition

If X is a topological space (in particular a metric space), then the σ -algebra generated by the set of open sets in X (the topology) is called the **Borel** σ -algebra on X, and is denoted \mathcal{B}_X . Members of \mathcal{B}_X are called **Borel** sets.

Examples of Borel sets are open and closed sets, countable intersections of open sets, countable unions of closed sets, etc. In general a countable intersection of open sets is called a G_{δ} set, a countable union of closed sets is a F_{σ} set, a countable union of G_{δ} sets is a $G_{\delta\sigma}$ set, a countable intersection of F_{σ} sets is a $F_{\sigma\delta}$ set, and so on. This is called the Borel hierarchy.

The Borel σ -algebra on \mathbb{R} plays a foundational role in what is to come.

1.1.4 Proposition

 $\mathcal{B}_{\mathbb{R}}$ can be generated by each of the following:

- (1) the open intervals: $\mathcal{E}_1 = \{(a, b) \mid a < b\},\$
- (2) the closed intervals: $\mathcal{E}_2 = \{ [a, b] \mid a < b \},$
- (3) the half open intervals: $\mathcal{E}_3 = \{(a, b] \mid a < b\}$ or $\mathcal{E}_4 = \{[b, a) \mid a < b\}$,
- (4) the open rays: $\mathcal{E}_5 = \{(a, \infty)\}\$ or $\mathcal{E}_6 = \{(-\infty, a)\},$
- (5) the closed rays: $\mathcal{E}_7 = \{[a, \infty)\}\$ or $\mathcal{E}_8 = \{(-\infty, a]\}.$

 \mathcal{E}_1 generates $\mathcal{B}_{\mathbb{R}}$ since every open set is the countable union of open intervals, and so $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}(\mathcal{E}_1) \subseteq \mathcal{B}_{\mathbb{R}}$: the first inclusion is due to lemma 1.1.2 and the second is since \mathcal{E}_1 contains only open sets. Elements of \mathcal{E}_j for all j are either G_δ or F_δ sets, for example $(a,b] = \bigcap_{n=1}^{\infty} (a,b+n^{-1})$, and so $\mathcal{M}(\mathcal{E}_j) \subseteq \mathcal{B}_{\mathbb{R}}$ by lemma 1.1.2. It is readily verifiable that open intervals can be generated by any \mathcal{E}_j and so $\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\mathcal{E}_1) \subseteq \mathcal{M}(\mathcal{E}_j)$ for every other j, and so all \mathcal{E}_j generate $\mathcal{B}_{\mathbb{R}}$. For example, $(a,b) = \bigcup_{n=1}^{\infty} [a+n^{-1},b-n^{-1}]$.

1.1.5 Definition

If $\{X_{\alpha}\}_{{\alpha}\in A}$ is a collection of nonempty sets, let $X=\prod_{{\alpha}\in A}X_{\alpha}$ be their direct product and $\pi_{\alpha}: X\longrightarrow X_{\alpha}$ be the coordinate maps: $(x_a)_{a\in A}\mapsto x_{\alpha}$. If \mathcal{M}_{α} is a σ -algebra on X_{α} for each $\alpha\in A$, then we define their **product** σ -algebra to be the σ -algebra generated by

$$\left\{\pi_{\alpha}^{-1}(E_{\alpha}) \mid E_{\alpha} \in \mathcal{M}_{\alpha}, \alpha \in A\right\}$$

This is denoted by $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$.

1.1.6 Proposition

If A is countable then $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$ is the σ -algebra generated by $\mathcal{E} = \{ \prod_{\alpha \in A} E_{\alpha} \mid E_{\alpha} \in \mathcal{M}_{\alpha} \}.$

If $E_{\alpha} \in \mathcal{M}_{\alpha}$ then $\pi_{\alpha}^{-1}(E_{\alpha}) = \prod_{\beta \in A} E_{\beta}$ where $E_{\beta} = X_{\beta}$ for $\beta \neq \alpha$, and so elements of the generating set of the product algebra are in \mathcal{E} so $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha} \subseteq \mathcal{M}(\mathcal{E})$. Conversely $\prod_{\alpha \in A} E_{\alpha} = \bigcap_{\alpha \in A} \pi_{\alpha}^{-1}(E_{\alpha})$ which is a countable union and is therefore in $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$. So by lemma 1.1.2, $\mathcal{M}(\mathcal{E}) \subseteq \bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$.

1.1.7 Proposition

If \mathcal{M}_{α} is generated by \mathcal{E}_{α} for every $\alpha \in A$ then $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$ is generated by $\mathcal{F}_{1} = \{\pi_{\alpha}^{-1}(E_{\alpha}) \mid E_{\alpha} \in \mathcal{E}_{\alpha}, \alpha \in A\}$. If A is countable and $X_{\alpha} \in \mathcal{E}_{\alpha}$ for all $\alpha \in A$ then $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$ is generated by $\mathcal{F}_{2} = \{\prod_{\alpha \in A} E_{\alpha} \mid E_{\alpha} \in \mathcal{E}_{\alpha}, \alpha \in A\}$.

Obviously $\mathcal{M}(\mathcal{F}_1) \subseteq \bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$. Conversely, $\{E \subseteq X_{\alpha} \mid \pi_{\alpha}^{-1}(E) \in \mathcal{M}(\mathcal{F}_1)\}$ is easily seen to be a σ -algebra on X_{α} which contains \mathcal{E}_{α} and therefore $\mathcal{M}(\mathcal{E}_{\alpha}) = \mathcal{M}_{\alpha}$. Thus $\pi_{\alpha}^{-1}(E) \in \mathcal{M}(\mathcal{F}_1)$ for all $E \in \mathcal{M}_{\alpha}$, which means that $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha} \subseteq \mathcal{M}(\mathcal{F}_1)$ as required. The second assertion follows from the first.

1.1.8 Proposition

Let X_1, \ldots, X_n be metric spaces and let $X = \prod_{i=1}^n X_i$ be equipped with the product metric (maximum). Then $\bigotimes_{i=1}^n \mathcal{B}_{X_i} \subseteq \mathcal{B}_X$. If the X_i s are separable then $\bigotimes_{i=1}^n \mathcal{B}_{X_i} = \mathcal{B}_X$.

By the above proposition, $\bigotimes_{i=1}^n \mathcal{B}_{X_i}$ is generated by the sets $\pi_i^{-1}(U_i)$ for $1 \leq i \leq n$ where U_i is open in X_i . Since these sets are open X, $\bigotimes_{i=1}^n \mathcal{B}_{X_i} \subseteq \mathcal{B}_X$. Now suppose C_i is countably dense in X_i and let \mathcal{E}_i be the collection of balls in X_i centered around points in C_i with rational radii. Every open set in X_i is a union of elements of \mathcal{E}_i , a countable union since \mathcal{E}_i is countable, so \mathcal{B}_{X_i} is generated by \mathcal{E}_i . Furthermore, the set of points in X whose ith coordinate is in C_i for all i is a countable dense subset of X. Balls of radius r in X are simply products of balls of radius r in the X_i so X is generated by $\{\prod_{i=1}^n \mathcal{E}_i \mid \mathcal{E}_i \in \mathcal{E}_i\}$ which also generated $\bigotimes_{i=1}^n \mathcal{B}_{X_i}$ by the above proposition.

1.1.9 Corollary

$$\mathcal{B}_{\mathbb{R}^n} = \bigotimes_{i=1}^n \mathcal{B}_{\mathbb{R}}.$$

1.1.10 Definition

An elementary family on X is a collection \mathcal{E} of subsets of X such that

- $\varnothing \in \mathcal{E}$,
- if $E, F \in \mathcal{E}$ then $E \cap F \in \mathcal{E}$,
- if $E \in \mathcal{E}$ then E^c is a finite disjoint union of members of \mathcal{E} .

1.1.11 Proposition

If \mathcal{E} is an elementary family then the collection \mathcal{A} of finite disjoint unions of members of \mathcal{E} is an algebra.

If $A, B \in \mathcal{E}$ and $B^c = \bigcup_{i=1}^I C_i$ where $C_i \in \mathcal{E}$ are disjoint, then $A \setminus B = \bigcup_{i=1}^I (A \cap C_i) \in \mathcal{E}$ and $A \cup B = (A \setminus B) \cup B$. Thus $A \setminus B, A \cup B \in \mathcal{A}$. By induction if $A_1, \ldots, A_n \in \mathcal{E}$, $\bigcup_{i=1}^n A_i \in \mathcal{A}$: we can assume that A_1, \ldots, A_{n-1} are disjoint (since their union is in \mathcal{A} which is the set of disjoint unions), and then $\bigcup_{i=1}^n A_i = A_n \cup \bigcup_{i=1}^{n-1} (A_i \setminus A_n)$ which is a disjoint union (of disjoint unions of elements in \mathcal{E}) and so is in \mathcal{A} .

To show that \mathcal{A} is closed under complements, suppose $A_1, \ldots, A_n \in \mathcal{E}$ are disjoint and $A_m^c = \bigcup_{j=1}^{J_m} B_m^j$ then

$$\left(\bigcup_{m=1}^{n} A_{m}\right)^{c} = \bigcap_{m=1}^{n} \bigcup_{j=1}^{J_{m}} B_{m}^{j} = \bigcup \left\{B_{1}^{j_{1}} \cap \cdots \cap B_{n}^{j_{n}} \mid 1 \leq j_{m} \leq J_{m}, 1 \leq m \leq n\right\}$$

which is a disjoint union of elements in \mathcal{E} , and so is in \mathcal{A} .

${\bf 4} \quad \sigma\text{-}Algebras$

2 Index

Algebra: 1 Borel hierarchy: 1

Borel set: 1

See also: Borel $\sigma\text{-algebra}$

Elementary family: 3 Sigma-algebra: 1

Borel: 1