Statistical data analysis, Assignment 6

Problem 1. An experiment is conducted to explore the relationship between the electrical conductivity (EC) of the soil and the yield of watermelons (kg/ha). Below are the summary data:

EC level	1.6	3.8	6.0
n_i	4	4	4
\overline{Y}_i	59.5	55.4	50.7
S_i^2	6.7	7.1	6.3

- (a) Constructed the appropriate analysis of variance table.
- (b) At $\alpha = 0.05$, test the hypothesis that there are no effects due to the EC of the soil.

Problem 2. The following is a statistical summary table of the difference test scores of the five groups of students after participating in the competition:

Source	SS	DF	MS	\mathbf{F}
Between	40	(a)	(b)	(c)
Within	(d)	60	5.00	

- (a) Complete (a), (b), (c), (d).
- (b) What is the number of all observations? And, what is the value of total sum of square?
- (c) At significant level $\alpha = 0.01$, is there a difference in the treatment mean?

Problem 3. (R practice) Professor Samuel Oak is studying the discharge current of Pikachu. After research and measurement many times, the discharge data obtained are ordered as follows:

$$1, 3, 7, 8, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 29, 32, 35, 40, 42, 45, 50 (kA)$$

- (a) For drawing Q-Q plot, we need to convert this data into the standard normal quantile, that is, assume that this data obeys Normal distribution, standardizing this data, denoted $Y_{(1)}, Y_{(2)}, ..., Y_{(n)}$ orderly. and compare it with $Z_{(k)}$ with $P(Z < Z_{(k)}) = (k 0.5)/n$, where $Z \sim N(0, 1)$. Please obtaining $Y_{(1)}, Y_{(2)}, ..., Y_{(n)}$.
- (b) Draw the two Q-Q plot of the discharge variable side-by-side to check normality by using the results obtained from part(a) and qqnorm, qqline (note. In comparison, the samples inputed in qqnorm or qqline should be $Y_{(1)}, Y_{(2)}, ..., Y_{(n)}$) in R, respectively. If discharge obeys Normal distribution, the two plots should be nearly identical.

Problem 4. (R practice) For iris data, explore the relationship between Petal Length and Species:

- (a) Draw the boxplots for Sepal.Length to Species. Comment on the difference in Sepal.Length mean across different species.
- (b) At level 0.05, is there a difference in the species group mean? Please report the ANOVA table and explain what statistics you used to do your conclusion.
- (c) Please check these assumption: normality and homogeneity of variance.