Package 'RLumCarlo'

October 8, 2019

```
Type Package
Title Monte-Carlo Methods for Simulating Luminescence Phenomena
Version 0.1.0.9000-47
Date 2019-10-08
Author Johannes Friedrich [aut, trl] (<a href="https://orcid.org/0000-0002-0805-9547">https://orcid.org/0000-0002-0805-9547</a>),
      Sebastian Kreutzer [aut, trl, cre] (<a href="https://orcid.org/0000-0002-0734-2199">https://orcid.org/0000-0002-0734-2199</a>),
       Vasilis Pagonis [aut] (<a href="https://orcid.org/0000-0002-4852-9312">https://orcid.org/0000-0002-4852-9312</a>),
      Christoph Schmidt [aut] (<a href="https://orcid.org/0000-0002-2309-3209">https://orcid.org/0000-0002-2309-3209</a>)
Maintainer Sebastian Kreutzer < sebastian.kreutzer@u-bordeaux-montaigne.fr>
Description
       A collection of functions to simulate luminescence signals with Monte-Carlo methods in the
       mineral feldspar based on published models.
Contact Package Developer Team <sebastian.kreutzer@u-bordeaux-montaigne.fr>
License GPL-3
BugReports https://github.com/R-Lum/RLumCarlo/issues
Depends R (>= 3.3.0),
      utils,
      magrittr
URL https://CRAN.R-project.org/package=RLumModel
LinkingTo Rcpp,
      RcppProgress,
      RcppArmadillo
Imports abind,
      doParallel,
      foreach,
      parallel,
      methods,
      Rcpp
Suggests R.rsp
Encoding UTF-8
VignetteBuilder R.rsp
RoxygenNote 6.1.1
```

2 plot_RLumCarlo

R topics documented:

plot_RLumCarlo
run_MC_CW_IRSL_DELOC
run_MC_CW_IRSL_LOC
run_MC_CW_IRSL_TUN
run_MC_ISO_DELOC
run_MC_ISO_LOC
run_MC_ISO_TUN
run_MC_LM_OSL_DELOC
run_MC_LM_OSL_LOC
run_MC_LM_OSL_TUN
run_MC_TL_DELOC
run_MC_TL_LOC
run_MC_TL_TUN
summary.RLumCarlo_Model_Output
2

plot_RLumCarlo

Plot results from Monte-Carlo simulations with RLumCarlo

Description

Plot results from Monte-Carlo simulations with RLumCarlo

Usage

Index

```
plot_RLumCarlo(results, times = NULL, plot_uncertainty = TRUE,
    norm = FALSE, add = FALSE, ...)
```

Arguments

further arguments that can be passed to control the plot output. Currently supported are: xlab, xlim, ylim, main, lwd, type, pch, lty,col, grid, legend

Value

This function returns a graphical output

Function version

0.1.0

How to cite

Friedrich, J., Kreutzer, S., 2019. plot_RLumCarlo(): Plot results from Monte-Carlo simulations with RLumCarlo. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, Université Bordeaux Montaigne (France)

run_MC_CW_IRSL_DELOC Run Monte-Carlo simulation for CW-IRSL for GOT model

Description

Runs a Monte Carlo (MC) simulation of constant wave $_$ (CW-IRSL) using the generalized one trap (GOT) model.

Usage

```
run_MC_CW_IRSL_DELOC(A, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

A	numeric (required): The transition probability in cm ³ /s
times	numeric (with default): The number of MC runs
clusters	numeric (with default): The number of clusters.
N_e	integer (with default): The number of electrons.
n_filled	integer (with default): The number of electron traps that are filled at the beginning of the simulation.
R	numeric (with default): The retrapping ratio
method	character (with default):
output	character (with default):
	further arguments

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1-R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_CW_IRSL_DELOC(): Run Monte-Carlo simulation for CW-IRSL for GOT model. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

run_MC_CW_IRSL_LOC

Run Monte-Carlo simulation for CW-IRSL for localised transition

Description

Runs a Monte Carlo (MC) simulation of constant wave infrared stimulated luminesence (CW-IRSL) using the generalized one trap (GOT) model.

Usage

```
run_MC_CW_IRSL_LOC(A, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

```
A numeric (required): The transition probability in cm^3/s

times numeric (with default): The number of MC runs

clusters numeric (with default): The number of clusters.

n_filled integer (with default): The number of electron traps that are filled at the beginning of the simulation.

r numeric (with default): The retrapping ratio
```

```
method character (with default):
output character (with default):
... further arguments
```

Details

$$I_{LOC}(t) = -dn/dt = A * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S., 2019. run_MC_CW_IRSL_LOC(): Run Monte-Carlo simulation for CW-IRSL for localised transition. Function version 0.0.1. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

run_MC_CW_IRSL_TUN

Run Monte-Carlo simulation for CW-IRSL

Description

Run Monte-Carlo simulation for CW-IRSL

Usage

```
run_MC_CW_IRSL_TUN(A, rho, times, clusters = 10, r = NULL, N_e = 200,
  method = "seq", output = "signal", ...)
```

Arguments

A	numeric
rho	numeric
times	vector (with default)
clusters	<pre>numeric (with default):</pre>
r	<pre>numeric (with default)</pre>
N_e	<pre>numeric (with default):</pre>
method	character (with default):
output	character (with default):
•••	further arguments

Value

This function returns a list.

Function version

0.2.0

How to cite

Friedrich, J., Kreutzer, S., 2019. run_MC_CW_IRSL_TUN(): Run Monte-Carlo simulation for CW-IRSL. Function version 0.2.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, Université Bordeaux Montaigne (France)

References

Pagonis 2017

Examples

run_MC_ISO_DELOC

Run Monte-Carlo simulation for ISO for GOT model

Description

##TODO

Usage

```
run_MC_ISO_DELOC(s, E, T = 20, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

```
numeric (required)
s
Ε
                   numeric (required)
Т
                   numeric (with default)
                   numeric (with default)
times
                   numeric (with default):
clusters
                   integer (with default)
N_e
n_filled
                   integer (with default)
R
                   numeric (with default):
method
                   character (with default):
                   character (with default):
output
                   further arguments
```

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1 - R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

8 run_MC_ISO_LOC

How to cite

Kreutzer, S., 2019. run_MC_ISO_DELOC(): Run Monte-Carlo simulation for ISO for GOT model. Function version 0.0.1. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

run_MC_ISO_LOC

Run Monte-Carlo simulation for ITL for localised transition

Description

##TODO

Usage

```
run_MC_ISO_LOC(s, E, T = 20, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

```
s numeric (required)

E numeric (required)

T numeric (with default)

times numeric (with default):

clusters numeric (with default):
```

run_MC_ISO_LOC 9

```
n_filled integer (with default):

r numeric (with default):

method character (with default):

output character (with default):

further arguments
```

Details

$$I_{LOC}(t) = -dn/dt = p(t) * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S., 2019. run_MC_ISO_LOC(): Run Monte-Carlo simulation for ITL for localised transition. Function version 0.0.1. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

run_MC_ISO_TUN

run_MC_ISO_TUN

Run Monte-Carlo simulation for isothermal measurements

Description

Run Monte-Carlo simulation for isothermal measurements

Usage

```
run_MC_ISO_TUN(E, s, T = 200, rho, times, clusters = 10, r = NULL, N_e = 200, method = "par", output = "signal", ...)
```

Arguments

E	numeric (required)
S	numeric (required)
Т	numeric (required)
rho	numeric (required)
times	numeric (with default)
clusters	numeric (with default):
r	numeric (with default)
N_e	numeric (with default)
method	character (with default)
output	character (with default)
	further arguments

Value

This function returns a list.

Function version

0.1.0

How to cite

Friedrich, J., Kreutzer, S., 2019. run_MC_ISO_TUN(): Run Monte-Carlo simulation for isothermal measurements. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Univerité Bordeaux Montaigne (France)

References

Pagonis 2017

Examples

run_MC_LM_OSL_DELOC

Run Monte-Carlo simulation for LM-OSL for GOT model

Description

##TODO

Usage

```
run_MC_LM_OSL_DELOC(A, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

```
numeric (required)
times
                   numeric (with default)
clusters
                   numeric (with default):
N_e
                   integer (with default)
n_filled
                   integer (with default)
                   numeric (with default):
method
                   character (with default):
                   character (with default):
output
                   further arguments
. . .
```

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1 - R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_LM_OSL_DELOC(): Run Monte-Carlo simulation for LM-OSL for GOT model. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

```
##============##
## Example 1: Simulate LM-OSL
##============##
## Not run:
run_MC_LM_OSL_DELOC(
    A = 0.12,
    R = 1,
    times = 0:100) %>%
    plot_RLumCarlo(legend = T)
## End(Not run)
```

run_MC_LM_OSL_LOC

Run Monte-Carlo simulation for LM-OSL for localised transition

Description

##TODO

Usage

```
run_MC_LM_OSL_LOC(A, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

```
Α
                   numeric (required)
                   numeric (with default):
times
                   numeric (with default):
clusters
n_filled
                   integer (with default):
                   numeric (with default):
r
                   character (with default):
method
                   character (with default):
output
                   further arguments
. . .
```

Details

$$I_{LOC}(t) = -dn/dt = A * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S., 2019. run_MC_LM_OSL_LOC(): Run Monte-Carlo simulation for LM-OSL for localised transition. Function version 0.0.1. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

 $run_MC_LM_OSL_TUN$

Run Monte-Carlo simulation for LM-OSL

Description

Run Monte-Carlo simulation for LM-OSL

Usage

```
run_MC_LM_OSL_TUN(A, rho, times, clusters = 10, r = NULL,
  delta.r = 0.1, N_e = 200, method = "par", output = "signal", ...)
```

Arguments

Α	numeric
rho	numeric
times	vector (with default)
clusters	numeric (with default):
r	numeric (with default):
delta.r	numeric (with default):
N_e	numeric (with default):
method	character (with default):
output	character (with default):
	further arguments

Value

This function returns a list.

Function version

0.1.0

How to cite

Friedrich, J., 2019. run_MC_LM_OSL_TUN(): Run Monte-Carlo simulation for LM-OSL. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

References

Pagonis 2017

run_MC_TL_DELOC 15

Examples

```
## Not run:
##TODO: Primary example, should be verified
run_MC_LM_OSL_TUN(A = 10000, rho = 0.0001, times = 1:100, clusters = 10, r = NULL,
delta.r = 0.1,
N_e = 200, method = "par", output = "signal") %>%
plot_RLumCarlo(norm = T)
## End(Not run)
```

 $\verb"run_MC_TL_DELOC"$

Run Monte-Carlo simulation for TL for GOT model

Description

##TODO

Usage

```
run_MC_TL_DELOC(s, E, times, clusters = 10, N_e = 200,
   n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

```
numeric (required)
s
Ε
                   numeric (required)
                   numeric (with default)
times
clusters
                   numeric (with default):
N_e
                   integer (with default)
n_filled
                   integer (with default)
R
                   numeric (with default):
method
                   character (with default):
output
                   character (with default):
                   further arguments
. . .
```

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1-R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

run_MC_TL_LOC

Function version

0.0.1

How to cite

Kreutzer, S., 2019. run_MC_TL_DELOC(): Run Monte-Carlo simulation for TL for GOT model. Function version 0.0.1. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

```
##========##
## Example 1: Simulate TL
##============##
## Not run:
run_MC_TL_DELOC(
    s = 3.5e12,
    E = 1.45,
    R = 1,
    times = 100:450) %>%
        plot_RLumCarlo(legend = T)
## End(Not run)
```

run_MC_TL_LOC

Run Monte-Carlo simulation for TL for localised transition

Description

##TODO

Usage

```
run_MC_TL_LOC(s, E, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

run_MC_TL_LOC 17

Arguments

```
numeric (required)
s
Ε
                   numeric (required)
times
                   numeric (with default)
clusters
                   numeric (with default):
n_filled
                   integer (with default)
                   numeric (with default):
r
                   character (with default):
method
                   character (with default):
output
                   further arguments
. . .
```

Details

$$I_{LOC}(t) = -dn/dt = p(t) * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_TL_LOC(): Run Monte-Carlo simulation for TL for localised transition. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

```
##=========##
## Example 1: Simulate TL
##==================================##
## Not run:
run_MC_TL_LOC(
    s = 3.5e12,
    E = 1.45,
    r = 1,
    times = 100:450) %>%
    plot_RLumCarlo(legend = T)
```

run_MC_TL_TUN

```
## End(Not run)
```

run_MC_TL_TUN

Run Monte-Carlo simulation for TL

Description

Run Monte-Carlo simulation for TL

Usage

```
run_MC_TL_TUN(s, E, rho, r_c, times, clusters = 10, N_e = 200,
  delta.r = 0.1, method = "par", output = "signal", ...)
```

Arguments

```
s
                  list
Ε
                  numeric
rho
                  numeric
                  numeric (with default)
r_c
times
                  vector (with default)
clusters
                  numeric (with default):
N_e
                  numeric (with default):
delta.r
                  numeric (with default):
method
                  character (with default):
                  character (with default):
output
                  further arguments
. . .
```

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.1.0

How to cite

Friedrich, J., 2019. run_MC_TL_TUN(): Run Monte-Carlo simulation for TL. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

References

Pagonis 2017

Examples

```
summary.RLumCarlo_Model_Output
```

Summarize RLumCarlo Modelling Results

Description

Summarize RLumCarlo Modelling results, so that they can be plotted easily

Usage

```
## S3 method for class 'RLumCarlo_Model_Output'
summary(object, ...)
```

Arguments

object list of class RLumCarlo_Model_Output: RLumCarlo simulation output object

produced by all

... further arguments passed to the method

Value

This function returns a data.frame

Function version

0.1.0

How to cite

Friedrich, J., Kreutzer, S., 2019. summary.RLumCarlo_Model_Output(): Summarize RLumCarlo Modelling Results. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-47. https://CRAN.R-project.org/package=RLumModel

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS-Université Bordeaux Montagine (France)

Index

```
array, 3, 5, 7, 9, 11, 13, 15, 17, 18
character, 3, 5-7, 9-11, 13-15, 17, 18
data.frame, 2, 19
integer, 3, 4, 7, 9, 11, 13, 15, 17
list, 18, 19
logical, 2
numeric, 2-4, 6-11, 13-15, 17, 18
plot_RLumCarlo, 2
run_MC_CW_IRSL_DELOC, 3
run_MC_CW_IRSL_LOC, 4
run_MC_CW_IRSL_TUN, 6
run_MC_ISO_DELOC, 7
run_MC_ISO_LOC, 8
\verb"run_MC_ISO_TUN, 10"
run_MC_LM_OSL_DELOC, 11
run_MC_LM_OSL_LOC, 12
run_MC_LM_OSL_TUN, 14
run\_MC\_TL\_DELOC, \color{red}{15}
run_MC_TL_LOC, 16
run_MC_TL_TUN, 18
summary.RLumCarlo_Model_Output, 19
vector, 6, 14, 18
```