Licenciatura em Eng. Electrotécnica e de Computadores, Teoria dos Sistemas, 21-Maio-2010

Todas as perguntas devem ser respondidas unicamente na folha de respostas.

Seleccione apenas uma das 4 alternativas assinalando-a na matriz de respostas.

O teste é sem consulta. Duração da prova: 0:30

1. Considere o seguinte diagrama de blocos de um sistema de controlo representado na figura. Sejam s e \mathcal{L} , respectivamente a variável e o operador de Laplace, sejam $R(s) = \mathcal{L}[r(t)], \ E(s) = \mathcal{L}[e(t)], \ M(s) = \mathcal{L}[m(t)]$ e $C(s) = \mathcal{L}[c(t)]$, respectivamente, as transformadas de Laplace do sinais de referência de entrada, erro, acção de controlo e sinal de saída, e sejam K>0, $G(s) = \frac{C(s)}{M(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ respectivamente um controlador proporcional e um sis-

tema de segunda ordem. Para o sistema em malha aberta descrito pela função de tranferência G(s) sabe-se que uma entrada m(t) em degrau unitário produz uma saída c(t) com um tempo de pico $t_p=2$ e uma sobre-elongação $c(t_p)=1,2$. Assim, o sistema em malha fechada, com função de transferência $T\left(s\right)=\frac{C(s)}{R(s)}$, apresenta uma saída c(t) com uma sobre-elongação c=1,3 para uma referência de entrada c(t) em degrau unitário se:

- A) K = 0.623
- B) K = 1.729
- C) K = 0.633
- D) K = 3.458

Formulário:
$$t_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}, \ y(t_p) = 1 + e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}$$

- 2. Considere um sistema cuja função de transferência é constituída pelo polinómio $D(s) = s^4 + 6s^3 + 17s^2 + 20s + 8$. Pelo critério de estabilidade de Routh-Hurwitz sabe-se que o sistema:
- A) Não apresenta quaisquer raízes no semi-plano direito
- B) Apresenta uma raíz no semi-plano direito
- C) Apresenta duas raízes no semi-plano direito
- D) Apresenta três raízes no semi-plano direito

	$\mathrm{Turma}___$	_Aluno Nº:_		
Nome:				

Respostas

	Α	В	С	D	
1.					1.
2.					2.

Licenciatura em Eng. Electrotécnica e de Computadores, Teoria dos Sistemas, 21-Maio-2010

Todas as perguntas devem ser respondidas unicamente na folha de respostas.

Seleccione apenas uma das 4 alternativas assinalando-a na matriz de respostas.

O teste é sem consulta. Duração da prova: 0:30

1. Considere o seguinte diagrama de blocos de um sistema de controlo representado na figura. Sejam s e \mathcal{L} , respectivamente a variável e o operador de Laplace, sejam $R(s) = \mathcal{L}[r(t)], \ E(s) = \mathcal{L}[e(t)], \ M(s) = \mathcal{L}[m(t)]$ e $C(s) = \mathcal{L}[c(t)]$, respectivamente, as transformadas de Laplace do sinais de referência de entrada, erro, acção de controlo e sinal de saída, e sejam K>0, $G(s) = \frac{C(s)}{M(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ respectivamente um controlador proporcional e um sis-

tema de segunda ordem. Para o sistema em malha aberta descrito pela função de tranferência G(s) sabe-se que uma entrada m(t) em degrau unitário produz uma saída c(t) com um tempo de pico $t_p=2$ e uma sobre-elongação $c(t_p)=1,1$. Assim, o sistema em malha fechada, com função de transferência $T\left(s\right)=\frac{C(s)}{R(s)}$, apresenta uma saída c(t) com uma sobre-elongação c=1,3 para uma referência de entrada c(t) em degrau unitário se:

- A) K = 0.623
- B) K = 1.729
- C) K = 0.633
- D) K = 3.458

Formulário:
$$t_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}, \ y(t_p) = 1 + e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}$$

- 2. Considere um sistema cuja função de transferência é constituída pelo polinómio $D(s) = s^4 + 4s^3 + 7s^2 4s 8$. Pelo critério de estabilidade de Routh-Hurwitz sabe-se que o sistema:
- A) Não apresenta quaisquer raízes no semi-plano direito
- B) Apresenta uma raíz no semi-plano direito
- C) Apresenta duas raízes no semi-plano direito
- D) Apresenta três raízes no semi-plano direito

	$Turma___$	Aluno Nº:_		
Nome:				
T TOILLO	 		 	

Respostas

		Α	В	С	D	
	1.					1.
ſ	2.					2.

Licenciatura em Eng. Electrotécnica e de Computadores, Teoria dos Sistemas, 21-Maio-2010

Todas as perguntas devem ser respondidas unicamente na folha de respostas.

Seleccione apenas uma das 4 alternativas assinalando-a na matriz de respostas.

O teste é sem consulta. Duração da prova: 0:30

1. Considere o seguinte diagrama de blocos de um sistema de controlo representado na figura. Sejam s e \mathcal{L} , respectivamente a variável e o operador de Laplace, sejam $R(s) = \mathcal{L}[r(t)], \ E(s) = \mathcal{L}[e(t)], \ M(s) = \mathcal{L}[m(t)]$ e $C(s) = \mathcal{L}[c(t)]$, respectivamente, as transformadas de Laplace do sinais de referência de entrada, erro, acção de controlo e sinal de saída, e sejam K>0, $G(s) = \frac{C(s)}{M(s)} = \frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$ respectivamente um controlador proporcional e um sis-

tema de segunda ordem. Para o sistema em malha aberta descrito pela função de tranferência G(s) sabe-se que uma entrada m(t) em degrau unitário produz uma saída c(t) com um tempo de pico $t_p=2$ e uma sobre-elongação $c(t_p)=1,3$. Assim, o sistema em malha fechada, com função de transferência $T\left(s\right)=\frac{C(s)}{R(s)}$, apresenta uma saída c(t) com uma sobre-elongação c=1,4 para uma referência de entrada c(t) em degrau unitário se:

- A) K = 0.623
- B) K = 1.729
- C) K = 0.633
- D) K = 3.458

Formulário:
$$t_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}, \ y(t_p) = 1 + e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}$$

- 2. Considere um sistema cuja função de transferência é constituída pelo polinómio $D(s) = s^4 + 2s^3 + 2s^2 8s + 16$. Pelo critério de estabilidade de Routh-Hurwitz sabe-se que o sistema:
- A) Não apresenta quaisquer raízes no semi-plano direito
- B) Apresenta uma raíz no semi-plano direito
- C) Apresenta duas raízes no semi-plano direito
- D) Apresenta três raízes no semi-plano direito

	$\mathrm{Turma}___$	_Aluno Nº:_		
Nome:				

Respostas

	Α	В	С	D	
1.					1.
2.					2.

Licenciatura em Eng. Electrotécnica e de Computadores, Teoria dos Sistemas, 21-Maio-2010

Todas as perguntas devem ser respondidas unicamente na folha de respostas.

Seleccione apenas uma das 4 alternativas assinalando-a na matriz de respostas.

O teste é sem consulta. Duração da prova: 0:30

1. Considere o seguinte diagrama de blocos de um sistema de controlo representado na figura. Sejam s e \mathcal{L} , respectivamente a variável e o operador de Laplace, sejam $R(s) = \mathcal{L}[r(t)], \ E(s) = \mathcal{L}[e(t)], \ M(s) = \mathcal{L}[m(t)]$ e $C(s) = \mathcal{L}[c(t)]$, respectivamente, as transformadas de Laplace do sinais de referência de entrada, erro, acção de controlo e sinal de saída, e sejam K>0, $G(s) = \frac{C(s)}{M(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ respectivamente um controlador proporcional e um sis-

tema de segunda ordem. Para o sistema em malha aberta descrito pela função de tranferência G(s) sabe-se que uma entrada m(t) em degrau unitário produz uma saída c(t) com um tempo de pico $t_p=2$ e uma sobre-elongação $c(t_p)=1,1$. Assim, o sistema em malha fechada, com função de transferência $T\left(s\right)=\frac{C(s)}{R(s)}$, apresenta uma saída c(t) com uma sobre-elongação c=1,4 para uma referência de entrada r(t) em degrau unitário se:

- A) K = 0.623
- B) K = 1.729
- C) K = 0.633
- D) K = 3.458

Formulário:
$$t_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}, \ y(t_p) = 1 + e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}$$

- 2. Considere um sistema cuja função de transferência é constituída pelo polinómio $D(s) = s^4 4s^3 + 7s^2 + 4s 8$. Pelo critério de estabilidade de Routh-Hurwitz sabe-se que o sistema:
- A) Não apresenta quaisquer raízes no semi-plano direito
- B) Apresenta uma raíz no semi-plano direito
- C) Apresenta duas raízes no semi-plano direito
- D) Apresenta três raízes no semi-plano direito

	$\mathrm{Turma}__$	Aluno Nº:	
Nome:			

Respostas

	Α	В	С	D	
1.					1.
2.					2.

TESIS, SINITESTE 2, 21- Haio-2010 Abente techada 6220 220 120000

5 ⁴ 1 -8	
5 4 -4 5 ² 8	Une Loca Chaind
5' 0 -> E 50 -8	D'use rais no semiplans déreit
$\int (5+1)^2 + 1 \int (5+2)^2$	723=54252+252-85+16 (Como 3)
54/1 8 16	
5 ³ 2 - 8 ¹ 5 ² 6	Duar Goran de mind
5 -80/6	Lewis laur direit
>+1)(2-1)(2-2)+5	3=5453+752+45-8 [cono4]
57178	Très Cocar de pinel
$\frac{5^2 8}{5!} = 8$	Die saize no semifla
50-8	

•