\mathbf{CS}	409M	:	Introduction	\mathbf{to}	Cryptograp.	hy
---------------	------	---	--------------	---------------	-------------	----

Fall 2024

Quiz III

Full Marks: 20, Time: 1 hour (+ 15 minutes)

Roll Number:

Name:

- 1. Answer each question on a new page of the answer booklet.
- 2. Do not use pencils. Pens only!
- 3. Write complete reductions/hybrids to get full marks. Intuitions and wordy answers will only get you part points (if correct).

Problem 1: [4 marks]

Let $\Pi = (\mathsf{Gen^{td}}, f, \mathsf{Inv})$ be a trapdoor permutation family with its hard-core predicate hc. Consider the following encryption scheme:

- $\operatorname{\mathsf{Gen}}(1^n)$: Generate $I, td \leftarrow \operatorname{\mathsf{Gen}^{\mathsf{td}}}(1^n)$ and output pk = I, sk = td.
- $\mathsf{Enc}(pk, m)$: For bit $m \in \{0, 1\}$, choose $r \in_R \{0, 1\}^n$ and output $(f_I(r), \mathsf{hc}_I(r) \oplus m)$.
- $\mathsf{Dec}(sk,(c_1,c_2))$: Compute the inverse $r=\mathsf{Inv}_{td}(c_1)$, and output $c_2 \oplus \mathsf{hc}_I(r)$.

Is this an IND-CPA secure public key encryption? If yes, give a formal proof of security, else show an attack.

Problem 2: [4 marks]

Let factoring be hard relative to GenModulus, where GenModulus(1^n) \rightarrow (N, p, q), such that N = pq and p and q are n-bit primes. Assuming that factoring is hard, prove that the following is a trapdoor permutation family:

$$f_N(x) := x^2 \pmod{N}, \ \forall x \in QR(\mathbb{Z}_N^*),$$

i.e., $x \in \mathbb{Z}_N^*$ such that x is a quadratic residue modulo N.

Problem 3: [9 marks (3+3+3)]

Are the following functions one-way? If yes, prove it, else show an attack:

- 1. $f(x_1, x_2) = (g(x_1), x_2)$, where $|x_1| = |x_2|$ and g is a one-way function.
- 2. $f(x,y) = F_x(y)$, where |x| = |y| and F is a length-preserving pseudorandom permutation.
- 3. Is this a one-way function family? (Prove or show an attack): $f_n(x) := pk$, for $(pk, sk) \leftarrow \mathsf{Gen}(1^n; x)$, where $(\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ is an IND-CPA secure public key encryption.

Problem 4: [3 marks]

Let $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ be an IND-CCA secure public key encryption for 1-bit messages. Consider the following encryption scheme $\Pi' = (\mathsf{Gen}, \mathsf{Enc}', \mathsf{Dec}')$ for message space $\mathcal{M} = \{0, 1\}^{\ell}$, with the same Gen algorithm:

- $\operatorname{Enc}'_{pk}(m) := \operatorname{Enc}_{pk}(m_1), \operatorname{Enc}_{pk}(m_2), \dots, \operatorname{Enc}_{pk}(m_\ell), \text{ for } m = m_1, m_2, \dots, m_\ell,$ with $m_i \in \{0, 1\}, \forall i \in \{1, 2, \dots, \ell\}.$
- $\mathsf{Dec}'_{sk}(c) := \mathsf{Dec}_{sk}(c_1), \mathsf{Dec}_{sk}(c_2), \dots, \mathsf{Dec}_{sk}(c_\ell), \text{ where } c = (c_1, c_2, \dots, c_\ell)$

Is Π' IND-CCA secure? If yes, prove it. Else, show an explicit attack.

Problem 5 (bonus): [4 marks]

Let \mathcal{G} be a polynomial-time algorithm that, on input 1^n , outputs a prime p and a generator g of \mathbb{Z}_p^* . The discrete logarithm problem is believed to be hard for \mathcal{G} . This means that the function (family) $f_{p,g}$ where $f_{p,g}(x) := [g^x \pmod{p}]$ is one-way. Let lsb(x) denote the least-significant bit of x. Show that lsb is not a hard-core predicate for $f_{p,g}$.