<AAAI2020>Generative Adversarial Zero-Shot Relational Learning for Knowledge Graphs

Outline

- Reading
 - Motivation
 - Method
 - Experiment
 - Conclusion
- Reproduce

Reading

Motivation

Knowledge Graph

知识图谱使用图的形式存储实体键关系的结构化数据,大量的关系三元组通过共同的关系和实体建立联系,形成图的形式,提升机器的理解、处理能力,服务于问答系统、推荐引擎、搜索引擎

Knowledge Graph Construction

Motivation

Problem

- 当有新的关系(unseen relation)时如何扩充知识图谱。扩充即为这些unseen relations涉及到的head entity预测对应的tail entity
- 本文只考虑新的关系,不考虑新的实体
- 本篇文章的问题设定集中在处理zero-shot relations,未考虑会出现一些新的实体,即KG中的实体在训练集和测试集中都出现过。换句话说,在测试时,对于KG中已经存在的实体添加了一些zero-shot relations,预测它们是否构成一个完整的三元组。

Supervised Learning

需要标注训练数据,问题是数据成本高和标注数据的时间长,不适应互联网 大规模的数据情况。同时可能存在数据集不均衡问题

Zero-Shot Learning

考虑利用大量已知关系类别三元组的基础上,不借助标注的数据, 就对未知关系的关系三元组识别,也就是零样本学习

- Attribute-based Model
 - 人工归纳重要的特征属性,通过学习属性和实体间转换矩阵,建立转换 媒介
 - 问题是需要人工标注属性,且效果对属性选取敏感
- Text-based Model
 - 通过非结构化的文本描述,生成媒介与表征,完成零样本学习。
 - 本文采用此种方法

Overview

- 采用基于条件的生成对抗网络,通过设置合理的对抗学习目标,让生成器具备通过文本描述生成文本类别表征的能力。
- 通过上述的对抗学习,建立了生成器。对于新的关系类型,如果已知文本描述定义,就可以生成关系类别向量
- 新的类型的识别就可以通过计算余弦相似度完成

Overview

- 首先类别的文本描述中可以提取出类别的表征向量,这是一个知识转移的问题
- 第二unseen和seen的relations具备相同的知识背景
- 因此,如果可以利用seen的relations,很好的学习从文本描述提取表征的能力,就可以对任意的关系建立关系向量表征

- Definition
 - Rs, Ru
 - 两个不同的关系集合: Rs(seen classes), Ru(unseen classes)
 - 不重叠。Rs ∩ Ru = φ
 - E
 - 实体集合。闭集。(这里只考虑新加入的关系,不考虑新加入实体)
 - Background Knowledge Graph G,
 - G包含大量的已知三元组,且所含关系类型均属于已知关系集合Rs
 - 只用于训练集

$$\mathcal{G} = \{(e_1, r_s, e_2) | e_1 \in E, e_2 \in E\}$$

- Ds, Du
 - 训练集和测试集。

$$D_s = \{(e_1, r_s, e_2, C_{(e_1, r_s)}) | e_1 \in E, e_2 \in E\}$$

$$D_u = \{(e_1, r_u, e_2, C_{(e_1, r_u)}) | e_1 \in E, e_2 \in E\}$$

- Framework 对抗学习的结构
 - Text 关系类别的文本描述
 - 通过generator生成表征,认为是虚假的。而相应的标注数据是为real数据
 - 鉴别器区分fake和real的数据

- Text 编码
 - Word embedding 基于词向量的词袋模型,利用文本中每个词的Word embedding
 - TF-IDF 然后采用TF-IDF进行加权
 - 得到文本描述的向量表示
 - Generator输入还引入随机向量z, 0~1高斯分布
 - 然后二者作为生成器输入

- Generator
 - 两层全连接层和一层激活层函数(layer normalization)
 - Generator生成关系的特征表示

- Generator
 - Generator的目标(损失)函数

- · 其中 $G_{ heta}(T_r,z)$ 为生成样本。
- 第一部分GAN的Wasserstein loss,防止模型崩塌(生成样本多样性不足), 第二部分为针对类别分类的训练目标,第三部分为 visual pivot 正则化项, 提供足够的类间区分度(CVPR 2018)

- Feature Encoder
 - Feature Encoder对真实数据编码
 - 这里Feature Encoder的训练在对抗学习前完成,参数在对抗 学习中不变,也就是真实数据不变

Feature Encoder

• 对三元组中的实体对的关系进行建模,其通过已知和未知的标注类别的数据(seen/unseen classes)进行训练。要求不仅给出己知类别的实体对合理的特征表征,也需要给出未知unseen类别实体对的特征标准。传统有监督方法会造成对己知关系类型的过拟合,因此采用基于matching的方法进行训练。

- Feature Encoder
 - 对于某关系r,存在一系列的实体对集合,这些实体对描述了该关系的样本特征分布。对于其中的一对实体(e1,e2),特征编码器首先通过一个entity encoder和一个neighbor encoder捕获这个实体对的蕴含的特征 $x_{(e_1,e_2)}$
 - 随后,对关系r所有的实体对的表示进行聚类可得到关系r的 特征表示
 - 包含两个子编码器 Entity 和Neghbor Encoder

- Feature Encoder
 - Entity Encoder 包含实体对本身的信息。经过线性变换、链接、非线性激活函数(Tanh)得到uep的表征
 - Neighbor Encoder 找到实体对应的周围一跳(one-hop)实体,将这些实体和关系表示为Ne,将一个实体e所有的one-hop三元组拼接,经过全连接层,计算均值,得到ue。这样两个Neighbor Encoder得到两个ue1,ue2
 - 然后实体对对应的表征就由上述三个表征链接得到
 - 对于所涉及实体和关系的初始化表示可由TransE等经典的KG embedding模型得到

$$x_{(e_1,e_2)} = u_{e_1} \oplus u_{e_p} \oplus u_{e_2}$$

Entity Encoder

$$\begin{cases} f_2(v_e) = W_2(v_e) + b_2 \\ u_{ep} = \sigma(f_2(v_{e_1}) \oplus f_2(v_{e_2})) \end{cases}$$

Neighbor Encoder

$$\mathcal{N}_e = \{ (r^n, e^n) | (e, r^n, e^n) \in \mathcal{G} \}$$

$$\begin{cases} f_1(v_{r^n}, v_{e^n}) = W_1(v_{r^n} \oplus v_{e^n}) + b_1 \\ u_e = \sigma(\frac{1}{|\mathcal{N}_e|} \sum_{(r^n, e^n) \in \mathcal{N}_e} f_1(v_{r^n}, v_{e^n}) \end{pmatrix}$$

- Feature Encoder
 - Matching
 - 对于某关系rs,从训练集rs随机选取k个Reference Triple,再从训练集剩余部分抽取一个batch的positive triple。Negative Triple是随机替换positive triple的尾实体得到的。
 - 采用margin loss的损失函数,用于训练Feature Encoder
 - 训练refrerence triple的embedding,计算positive triple的 embedding与refrerence triple的embedding的余弦相似度为 $score_{\omega}^{+}$

Matching-based Traning Objective

Reference Triple:
$$(e_1^*, r_s, e_2^*)$$
Positive Triple: (e_1^+, r_s, e_2^+)
 $score_w^+$
NegativeTriple: (e_1^+, r_s, e_2^-)

$$L_{\omega} = max(0, \gamma + score_{\omega}^{+} + score_{\omega}^{-})$$

- Discriminator
 - 对Real、Fake data鉴别并给出分类。这样提升Generator 生成数据的多样性
 - 首先通过全连接成和非线性激活函数提取特征。
 - 然后两个分支,分别判断时Real/Fake,以及具体的关系 类别

- Discriminator
 - Discriminator的目标(损失)函数

$$L_{D_{\phi}} = \underbrace{\mathbb{E}_{z \sim p_z} \big[D_{\phi} \big(G_{\theta}(T_r, z) \big) \big] - \mathbb{E}_{x \sim p_{data}} \big[D_{\phi}(x) \big]}_{\text{Adversarial}} + \underbrace{\frac{1}{2} L_{cls} \big(G_{\theta}(T_r, z) \big) + \frac{1}{2} L_{cls}(x) + L_{GP}}_{\text{Classification}} + \underbrace{\frac{1}{2} L_{cls}(x) + L_{GP}}_{\text$$

- 第一部分的两项为计算真实样本和生成样本的Wasserstein距离,希望将生成器的表征判为fake,将真实样本表征判为real
- 第二部分两项为分类真实样本和生成样本的分类损失函数
- 第三部分也是用于防止模型崩溃

- Spectral Normalization
- 作者通过实验发现Spectral Normalization方法用于G和D可以 进一步提高GAN的可靠性

- Predicting Unseen Relations
 - 通过之前的GAN,得到G。输入unseen relation的text,就可以生成对应表征(embedding)

$$\tilde{x}_{r_u} \leftarrow G_{\theta}(T_{r_u}, z)$$

- 对于query triple (e1,ru), 计算候选尾实体组成的三元组 (e1,ru,e2)对应的生成表征x(e1,e2)的score.公式为 cosine(xru,x(e1,e2))
- 为了实现更好的泛化能力,采用对关系r生成一组(Ntest 个)特征向量,然后计算score取均值的方法

$$score_{(e_1,r_u,e_2)} = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} score_{(e_1,r_u,e_2)}^i$$

备注:删掉。。。。。余弦值的范围在[-1,1]之间,值越趋近于1, 代表两个向量的方向越接近;越趋近于-1,他们的方向越相反;接 近于0,表示两个向量近乎于正交。

每个测试relation都有一个candidate list,里面有一系列尾实体。0号对应正确的尾实体每个实体计算score,最终根据0号判定的rank(排第几)计算hit10等

Dataset

- 没有现成的,利用大规模且有官方定义的关系类别表述的数据集构建。
- 基于NELL和Wikidata构建了NELL-ZS、Wiki-ZS

Dataset	# Ent.	# Triples	# Train/Dev/Test
NELL-ZS	65,567	188,392	139/10/32
Wiki-ZS	605,812	724,967	469/20/48

Baseline

- 基于现有的TransE, DistMult 和ComplEx算法。
- 这三种算法原本采用随机初始化关系向量。改进为通过 类似于本文Generator结构的前馈网络,也是利用文本 embedding等得到relation向量。
- 这样这三种算法可以对unseen的关系表示预测,同时可以利用各自原有的score function优化
- 改进和命名为ZS-TransE, ZS-DistMult and ZS-ComplEx

Result

Model	NELL-ZS				Wiki-ZS			
	MRR	Hits@10	Hits@5	Hits@1	MRR	Hits@10	Hits@5	Hits@1
ZS-TransE	0.097	20.3	14.7	4.3	0.053	11.9	8.1	1.8
ZS-DistMult	0.235	32.6	28.4	18.5	0.189	23.6	21.0	16.1
ZS-ComplEx	0.216	31.6	26.7	16.0	0.118	18.0	14.4	8.3
ZSGAN _{KG} (TransE)	0.240	37.6	31.6	17.1	0.185	26.1	21.3	14.1
ZSGAN _{KG} (DistMult)	0.253	37.1	30.5	19.4	0.208	29.4	24.1	16.5
$ZSGAN_{KG}$ (ComplEx-re)	0.231	36.1	29.3	16.1	0.186	25.7	21.5	14.5
$ZSGAN_{KG}$ (ComplEx-im)	0.228	32.1	27.0	17.4	0.185	24.8	20.9	14.7

- 尽管NELL和Wiki有不同的规模和实体关系三维组,论文提出的ZSGAN方法都表现出优势。 括号内为Feature encoder 初始化实体和关系的方法
- 说明生成器通过文本描述生成的关系向量表征效果不错
- 三种改进的方法对于KG embedding method很敏感,比如 ZS-DistMult yeilds respectively 0.138 and 12.3% higher performance than ZS-TransE on NELL-ZS dataset.
- 但是ZSGAN表现的相对稳定

- Result
 - 分析过滤噪声的效果
 - a图可以看出NELL-ZS的文本描述比Wiki-ZS长。
 - b图可以看出两个Dataset的文本描述中权重大的词数量范围都在2-5.
 - 因此可以证明通过简单的TF-IDF策略可以过滤文本描述的噪声

Result

• 文章还分析了生成样本的质量。部分关系生成的relation embedding和真实样本的embedding的距离如下

			MRR		Hits@10	
Relations	# Can. Num.	# Cos. Sim.	$ZSGAN_{KG}$	ZS-DistMult	$ZSGAN_{KG}$	ZS-DistMult
animalThatFeedOnInsect	293	0.8580	0.347	0.302	63.4	61.8
automobileMakerDealersInState	600	0.1714	0.066	0.039	15.4	5.1
animalSuchAsInvertebrate	786	0.7716	0.419	0.401	59.8	57.6
sportFansInCountry	2100	0.1931	0.066	0.007	15.4	1.3
produceBy	3174	0.6992	0.467	0.375	65.3	51.2
politicalGroupOfPoliticianus	6006	0.2211	0.018	0.039	5.3	3.9
parentOfPerson	9506	0.5836	0.343	0.381	56.2	60.4
teamCoach	10569	0.6764	0.393	0.258	53.7	39.9

Conclusion

- summary:
 - 利用GAN从文本描述中生成合理的关系embedding。将零样本学习转 换为传统的监督分类问题
- Characteristics:
 - 首次在知识图片扩充中采用ZSL方法
 - model-agnostic 与模型无关。框架不依赖于特定的embedding方法
 - 相比baseline的三种方法,取得了更好的效果

Conclusion

- Need to be Improved:
 - 对于unseen entity的扩展
 - 改进文本描述的编码方式
 - 利用文本描述之外的信息,如实体属性

- Environment
 - Pytorch 1.5.0, tqdm, nltk
 - Python 3.8
 - NVIDIA GeForce RTX 2080 Ti
 - Intel (R) Xeon (R) CPU E5-2678 v3 @ 2.50GHz
- Dataset
 - NELL-ZS
- code
 - github.com/Panda0406/Zero-shot-knowledge-graph-relational-learning

- stages
 - stage 1 pretrain
 train feature encoder. obtain reasonable real data embeddings
 - stage 2 GAN training train Generator and Discriminator
 - stage 3 evaluation
- parameters
 - embed_model 'DistMult', 'TransE', 'ComplEx', 'RESCAL'
 - embedding dimension
 - 'dimension of triple embedding',default=100, type=int
 - 'dimension of word embedding [50, 300]',type=int, default=50
 - 'dimension of entity pair embedding', default=200, type=int
 - 'dimension of noise', default=15, type=int

- parameters
 - feature extractor pretraining related
 - "pretrain_batch_size",default=64, type=int
 - "--pretrain_subepoch", default=20, type=int
 - "pretrain_margin", default=10.0, type=float, 'pretraining margin loss'
 - "pretrain_times", default=16000, type=int, 'total training steps for pretraining'
 - ...View more in arg.py
 - adversarial training related
 - batch size default 256 256 2
 - learning rate
 - "--lr_G", default=0.0001, type=float
 - "--lr_D", default=0.0001, type=float
 - "--lr_E", default=0.0005, type=float
 - training times
 - "--train_times", default=3000, type=int
 - "--D epoch", default=5, type=int
 - "--G_epoch", default=1, type=int
 - ...View more in arg.py

- Reproduction method
 - 由于GAN和feature encoder的优化过程都是随机的,考虑到时间有限,采用每种embedding method 训练三次的结果,取均值来做最后的结果

Screenshots

```
Step: 8500, Feature Extractor Pretraining loss: 0.07
 Step: 9000, Feature Extractor Pretraining loss: 0.07
 Step: 9500, Feature Extractor Pretraining loss: 0.07
 Step: 10000, Feature Extractor Pretraining loss: 0.08
                                                                           ***
                                                                                                                ###########
                                                                                                   test
 Step: 10500, Feature Extractor Pretraining loss: 0.07
                                                                          HITS10: 0.347
 Step: 11000, Feature Extractor Pretraining loss: 0.06
 Step: 11500, Feature Extractor Pretraining loss: 0.07
                                                                          HITS5: 0.287
 Step: 12000, Feature Extractor Pretraining loss: 0.06
                                                                          HITS1: 0.170
 Step: 12500, Feature Extractor Pretraining loss: 0.07
 Step: 13000, Feature Extractor Pretraining loss: 0.07
                                                                          MAP: 0.232
 Step: 13500, Feature Extractor Pretraining loss: 0.07
 Step: 14000, Feature Extractor Pretraining loss: 0.07
                                                                           *******************************
 Step: 14500, Feature Extractor Pretraining loss: 0.06
 Step: 15000, Feature Extractor Pretraining loss: 0.06
 Step: 15500, Feature Extractor Pretraining loss: 0.07
 Step: 16000, Feature Extractor Pretraining loss: 0.06
 SAVE FEATURE EXTRACTOR PRETRAINING MODEL!!!
 Finish Pretraining!
Epoch: 2450, D_loss: -8.19 [12.02, 0.13, -21.31, 0.00], G_loss: 31.61 [21.29, 0.00, 0.15, 3.44]
Epoch: 2500, D_loss: -8.19 [12.17, 0.14, -21.48, 0.00], G_loss: 31.37 [21.54, 0.00, 0.12, 3.28]
Epoch: 2550, D_loss: -8.20 [12.30, 0.14, -21.63, 0.00], G_loss: 31.30 [21.60, 0.00, 0.12, 3.23]
Epoch: 2600, D_loss: -8.13 [12.43, 0.14, -21.69, 0.00], G_loss: 31.45 [21.80, 0.00, 0.13, 3.22]
Epoch: 2650, D_loss: -8.16 [12.50, 0.14, -21.80, 0.00], G_loss: 31.65 [21.76, 0.00, 0.12, 3.30]
Epoch: 2700, D_loss: -8.14 [12.67, 0.14, -21.93, 0.00], G_loss: 31.49 [22.00, 0.00, 0.12, 3.16]
Epoch: 2750, D_loss: -8.20 [12.76, 0.15, -22.11, 0.00], G_loss: 31.56 [22.27, 0.00, 0.14, 3.10]
Epoch: 2800, D_loss: -8.18 [12.97, 0.13, -22.32, 0.00], G_loss: 31.70 [22.24, 0.00, 0.15, 3.16]
Epoch: 2850, D_loss: -8.15 [13.02, 0.13, -22.32, 0.00], G_loss: 31.97 [22.30, 0.00, 0.15, 3.22]
Epoch: 2900, D_loss: -8.16 [13.13, 0.14, -22.49, 0.00], G_loss: 32.12 [22.48, 0.00, 0.11, 3.21]
Epoch: 2950, D_loss: -8.28 [13.15, 0.13, -22.66, 0.00], G_loss: 31.69 [22.52, 0.00, 0.15, 3.06]
##EVALUATING ON TEST DATA
testconcept:leaguecoaches Hits10:0.056, Hits5:0.028, Hits1:0.000 MRR:0.020
testconcept:airportincity Hits10:0.805, Hits5:0.776, Hits1:0.557 MRR:0.656
testconcept:countryoforganizationheadquarters Hits10:0.000, Hits5:0.000, Hits1:0.000 MRR:0.002
testconcept:inverseofarthropodcalledarthropod Hits10:0.472, Hits5:0.327, Hits1:0.141 MRR:0.246
testconcept:agriculturalproductcomingfromvertebrate Hits10:0.048, Hits5:0.024, Hits1:0.000 MRR:0.024
testconcept:cityradiostation Hits10:0.828, Hits5:0.758, Hits1:0.475 MRR:0.609
```

- Results and Comparison
 - results in the paper

	NELL-ZS					
Model	MRR	Hits@10	Hits@5	Hits@1		
ZS-TransE	0.097	20.3	14.7	4.3		
ZS-DistMult	0.235	32.6	28.4	18.5		
ZS-ComplEx	0.216	31.6	26.7	16.0		
ZSGAN _{KG} (TransE)	0.240	37.6	31.6	17.1		
$ZSGAN_{KG}$ (DistMult)	0.253	37.1	30.5	19.4		
$ZSGAN_{KG}$ (ComplEx-re)	0.231	36.1	29.3	16.1		
$ZSGAN_{KG}$ (ComplEx-im)	0.228	32.1	27.0	17.4		

results of my tests

	MRR	HITS10	HITS5	HITS1
ZSGAN(TransE)	0.216	0.353	0.280	0.148
ZSGAN(DistMult)	0.245	0.363	0.305	0.184
ZSGAN(ComplEx-e	0.232	0.347	0.287	0.170
ZSGAN(ComplE	0.231	0.352	0.295	0.168

Thank you!