\ Step	Cost of each execution	Total # of times executed
1	1	1
2	1	n+1
3	1	$\sum_{i=0}^{n-1} (n-i+1) = n(n+3)/2$
4	1	$\sum_{i=0}^{n-1} (n-i) = n(n+1) / 2$
5	1	(After solving nested summation) $n(n+1)(n+2) / 6$
6	5	(After solving nested summation) $n(n-1)(n+1) / 6$
7	7	$\sum_{i=0}^{n-1} (n-i) = n(n+1) / 2$
8	2	1

$$T_{1}(n) = 4 + n + n(n+3)/2 + n(n+1)/2 + n(n+1)(n+2)/6 + n(n-1)(n+1)/6 + n(n+1)/2$$

$$= 4 + n + n^{2}/2 + 3n/2 + n^{2}/2 + n/2 + (n^{2} + n)(n+2)/6 + (n^{2} - n)(n+1)/6 + n^{2}/2 + n/2$$

$$= 4 + n^{2} + 3n + (n^{3} + 2n^{2} + n^{2} + 2n)/6 + (n^{3} + n^{2} - n^{2} - n)/6 + n^{2}/2 + n/2$$

$$= 4 + n^{2} + 3n + n^{3}/6 + 3n^{2}/6 + 2n/6 + n^{3}/6 - n/6 + n^{2}/2 + n/2$$

$$= 4 + n^{2} + 3n + 2n^{3}/6 + n^{2} = 4 + 2n^{2} + 3n + 2n^{3}/6 + 4n/6$$

$$= 24 + 12n^{2} + 22n + 2n^{3} = 2n^{3} + 12n^{2} + 22n + 24$$

Order of Complexity (c): $O(n^3)$

Step	Cost of each execution	Total # of times executed
1		
	1	1
2	I	n+1
3	1	n
4	1	$\sum_{i=0}^{n-1} (n-i+1) = n(n+3)/2$
5	4	$\sum_{i=0}^{n-1} (n-i) = n(n+1) / 2$
6	6	$\sum_{i=0}^{n-1} (n-i) = n(n+1) / 2$
7	2	1

$$\begin{split} &T_2(n) = 4 + 2n + n^2/2 + 3n/2 + 4(n^2/2 + n/2) + 6(n^2/2 + n/2) \\ &= 4 + 2n + n^2/2 + 3n/2 + 2n^2 + 2n + 3n^2 + 3n \\ &= 4 + 7n + 5n^2 + n^2/2 + 3n/2 = 8 + 14n + 10n^2 + n^2 + 3n \\ &= 11n^2 + 17n + 8 \end{split}$$

Order of Complexity (c): $O(n^2)$

Step	Cost of each execution	Total # of times executed			
1	4	1			
2	9	1			
	Steps executed when input is a base case: 1 and 2				
	$T(0) = 4$; $T(1) = 9 \rightarrow Assume T(1)$.				
3	5	1			
4	2	1			
5	1	n / 2 + 1			
6	4	n / 2			
7	6	n / 2			
8	2	1			
9	1	n / 2 + 1			
10	5	n / 2			
11	6	n / 2			
12	4	1			
13	1	1			
14	1	1			
15	14	1			
	Steps executed when input is NOT a base case: 3 - 15	1			

$$T(n > 1) = 2(T(n/2)) + 23n/2 + 31$$
Simplified $T(n > 1) = 2(T(n/2)) + 23n/2 + c$

Using recursion tree method:

Based on the cost of each level and the number of levels, Order of Complexity (c): $O(n\log(n))$.

Step	Cost of each execution	Total # of times executed
1	1	1
2	1	1
3	1	n+1
4	9	n
5	6	n
6	2	1

 $T_4(n) = 16n + 5$ Order of Complexity (c): O(n)