

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	`«Информатика и системы управления»
КАФЕДРА _	«Программное обеспечение ЭВМ и информационные технологии»

Отчёт к лабораторной работе №4 по курсу: «Функциональное и логическое программирование»

Тема: Определение функций пользователя

Студент группы ИУ7-62Б	А.П. Сорокин	
	(И.О. Фамилия)	
Преподаватель	Н.Б. Толпинская	
	(И.О. Фамилия)	

СОДЕРЖАНИЕ

1 Цели и з		и и задачи	2	
2	Teop	ретическая часть	2	
3	Пра	ктическая часть	4	
	3.1	Задание 7	4	
	3.2	Задание 8	4	
	3.3	Задание 9	5	
	3.4	Задание 10	6	

1 Цели и задачи

Цель работы: приобрести навыки создания и использования функций пользователя в Lisp.

Задачи работы: изучить способы создания и использования именованных и неименованных функций пользователя для обработки списков.

2 Теоретическая часть

Базис - это это минимально необходимый набор конструкций, с помощью которого можно реализовать задачу.

Классификация функций:

- чистые (математические): принимают строго определённое число аргументов и возвращают одно значение
- формы: могут принимать разное число аргументов, в зависимости от чего по-разному себя ведёт
- функционалы: принимают функциональные описания.

Классификация базовых функций Lisp:

- функции-селекторы (функции доступа к данным): car, cdr
- функции-конструкторы: cons
- функции-предикаты: atom, Null, lisp и т. д.
- функции-сравнения: eq, eql, =, equal, equalp

Списки в оперативной памяти представляются с помощью списковых ячеек. В списковой ячейке хранится два указателя: один указывает на голову (car), другой - на хвост (cdr).

Функции CAR и CDR являются базовыми функциями-селекторами. **CAR** принимает в качестве аргумента точечную пару или пустой список. В первом случае функция вернёт первый элемент, во втором - nil.

CDR также принимает в качестве аргумента точечную пару или пустой список. Функция возвращает список, состоящий из всех элементов списка-аргумента,

кроме первого. Если в списке меньше двух элементов, то функция возвращает nil.

Функции LIST и CONS являются функциями-конструкторами, причём функция CONS является базовой, а LIST - нет.

CONS создает списочную ячейку и устанавливает два указателя на принимаемые два аргумента.

LIST принимает переменное число аргументов и возвращает список, элементами которого являются аргументы функции.

Пример использования функций CONS и LIST для создания списка (a b c):

```
Листинг 1 – Создание списка (a b c)

1 (cons 'a (cons 'b (cons 'c nil)))

2 (list 'a 'b 'c)
```

3 Практическая часть

3.1 Задание 7

Функция, которая переводит температуру в системе Фаренгейта в температуру по Цельсию:

```
Листинг 2 — Функция перевода температуры

(defun f-to-c (temp) (/ (* 5 (- temp 320)) 9.0))
```

Примеры работы:

Листинг 3 – Примеры работы функции f-to-c 1 (f-to-c 451) 2 > 72.77778 3 (f-to-c 320) 4 > 0.0 5 (f-to-c 220) 6 > -55.555557

3.2 Задание 8

Результаты вычисления выражений представлены в таблице 1.

Таблица 1 – Выражения и результаты их вычислений задания 8

No	Выражение	Результат
1	(list 'cons t NIL)	(cons T NIL)
2	(eval (list 'cons t NIL))	T
3	(eval (eval (list 'cons t NIL)))	function T is undefined
4	(apply #'cons '(t NIL))	(T)
5	(eval NIL)	NIL
6	(list 'eval NIL)	(eval NIL)
7	(eval (list 'eval NIL))	NIL

3.3 Задание 9

Функция, вычисляющая катет по заданной гипотенузе и другому катету прямоугольного треугольника:

Листинг 4 – Функция вычисления гипотенузы

(defun cath (hyp leg) (sqrt (- (* hyp hyp) (* leg leg))))

Диаграмма вычисления функции:

- \longrightarrow (cath c b)
 - вычисление с к с
 - вычисление b к b
- \implies применение cath к c, b
 - создание переменной hyp со значением с
 - создание переменной leg со значением b

$$\longrightarrow$$
 (sqrt (- (* hyp hyp) (* leg leg)))

$$\longrightarrow$$
 (- (* hyp hyp) (* leg leg))

- \longrightarrow (* hyp hyp)
 - вычисление hyp к с
 - вычисление hyp к с
- \Longrightarrow применение * к с, с
- $\implies c^2$
- \longrightarrow (* leg leg)
 - вычисление leg к b
 - вычисление leg к b
- \Longrightarrow применение * к b, b
- $\implies b^2$
- \Longrightarrow применение к $c^2,\,b^2$
- $\implies c^2 b^2$
- \Longrightarrow применение sqrt к c^2-b^2

$$\implies \sqrt{c^2 + b^2}$$

$$\implies \sqrt{c^2 - b^2}$$

3.4 Задание 10

Функция, вычисляющая площадь трапеции по ее основаниям и высоте:

Листинг 5 – Функция вычисления объёма параллелепипеда

(defun sq_trapez (base1 base2 height) (/ (* (+ base1 base2) height)
2.0))

Диаграмма вычисления функции:

- \longrightarrow (sq trapez a b h)
 - вычисление а к b
 - вычисление b к b
 - вычисление h к h
- ⇒ применение sq_trapez к a, b, h
 - создание переменной base1 со значением а
 - создание переменной base2 со значением b
 - создание переменной height со значением h

$$\longrightarrow$$
 (/ (* (+ base1 base2) height) 2.0))

$$\longrightarrow$$
 (* (+ base1 base2) height)

$$\longrightarrow$$
 (+ base1 base2)

- вычисление base1 к a
- вычисление base2 к b

$$\implies$$
 применение + к a, b

$$\implies a+b$$

- вычисление height к h
- \implies применение * к a+b, h

$$\implies (a+b) \cdot h$$

• вычисление 2.0 к 2.0

$$\Longrightarrow$$
 применение / к $(a+b) \cdot h$, 2

$$\Longrightarrow \frac{(a+b)}{2} \cdot h$$

$$\implies \frac{(a+b)^2}{2} \cdot h$$