1 Задача 1

Построить конечный автомат, распознающий язык:

1. L =
$$\left\{w \in \left\{a, b, c\right\} * ||w|_c = 1\right\}$$

2. L = $\{w \in a, b*||w|_a \le 2, |w|_b \ge 2\}$ Рассмотрим как прямое произведение двух автоматов: $|w|_b \ge 2$

 $|w|_a \le 2$

$$\sum_{S = ad} = \{a, b\}$$

$$S = ad$$

$$T = \langle cd, ce, cf \rangle$$

3. L = $\{w \in \{a, b\} * ||w|_a \neq |w|_b\}$ Рассмотрим L как $L=Q_1\cup Q_2$, где $Q_1=\left\{w\in \{a,b\}*||w|_a<|w|_b\right\}$, а $Q_2 = \{w \in \{a,b\} * ||w|_a > |w|_b\}$ Q_1 и Q_2 не являются регулярными и следовательно L не регулярный и его

нельзя описать с помощью конечного автомата.

4. $L = \{ w \in a, b * | ww = www \}$ Если расмотреть относительно длины слова, то |ww| = |www| только в том случае когда $w=\lambda$. L описывает пустые слова.

Задача 2 2

Построить автомат используя прямое произведение.

1. $L = \{w \in \{a, b\} * ||w|_a \ge 2 \land |w|_b \ge 2\}$ Опишем два языка один их которых задает $|w|_a \ge 2$, а второй $|w|_b \ge 2$. Их произведение даст нам искомых язык.

Автомат которые описывает язык для которого $|w|_a \ge 2$

Автомат которые описывает язык для которого $|w|_b \geq 2$

$$\begin{split} &\sum \left\{a,b\right\} \\ &Q = \left\{ad,ae,af,bd,be,bf,cd,ce,cf\right\} \\ &s = < ad > \\ &T = < cf > \\ &\text{Прямое произведение:} \end{split}$$

2. $L = \{w \in \{a,b\} * ||w| \ge 3 \land |w| odd\}$ Опишем два языка которые описывают |w| - нечетное и $|w| \ge 3$

Прямое произведение:

$$\sum \{a, b\}$$

$$Q = \{ae, af, ag, be, bf, bg, ce, cf, cg, de, df, dg\}$$

$$s = \langle ae \rangle$$

$$T = \langle df \rangle$$

Результат прямого произведения. Как видно содержит ветви, не выходящие из начального состояния - можно отбросить.

Результат в итоге:

3. $L = \{w \in \{a, b\} * ||w|_a even \land |w|_b divisible 3\}$