Identification of normal modes in underwater acoustic propagation using convolutional neural networks

Costas Smaragdakis, Ioannis Maris, Michael Taroudakis

Motivation

- Introduce a student into applications of Acoustical Oceanography
- Background : Mathematical Modeling, Acoustics, Inverse Problems
- Problem : Of practical interest

Given Problem

 Concept Use of modal dispersion as the characteristic feature of an acoustic signal to be exploited for inversions

 Question: How we can identify the dispersion characteristics of a measured signal in order for them to be used for inversion purposes

Objectives

- Suggest a scheme for an automatic identification of the dispersion characteristics (dispersion curves) for a limited number of modes.
- Test the scheme with synthetic data.

Theory

Short time Fourier Transform

$$STFT_h(s;\tau,f) = \int_{-\infty}^{\infty} s(t)h(t-\tau)e^{-i2\pi ft}dt$$

Spectrogram

$$SP_h(s,\tau,f) = \left| STFT_h(\tau,f) \right|^2$$

• Dispersion curves :

$$t_n(f) = \frac{r}{v_{g,n}(f)}, \quad v_{g,n}(f) = \frac{\partial \omega}{\partial k_n}\Big|_{\omega = 2\pi f}$$

Solution

- Use Convolutional Neural Networks for the dispersion identification.
- Model the dispersion curves with an appropriate function.
- Train the CNN with a set of synthetic signals. (Training set)
- Evaluate the model with an independent set of signals. (Testing set)

Modelling the dispersion curves

Polynomial of 5th order

$$\hat{t}_n(f) = a_5^{(n)} f^5 + a_4^{(n)} f^4 + a_3^{(n)} f^3 + a_2^{(n)} f^2 + a_1^{(n)} f + a_0^{(n)}$$

$$\hat{t}_n(f) = a_5^{(n)} f^5 + a_4^{(n)} f^4 + a_3^{(n)} f^3 + a_2^{(n)} f^2 + a_1^{(n)} f + \varepsilon a_0^{(n)}, \quad \varepsilon = 0.1$$

 The Neural Network should estimate the vector of the polynomial parameters for the three first orders of modes.

$$\mathbf{a}^{(n)} = \left(a_0^{(n)}, a_1^{(n)}, a_2^{(n)}, a_3^{(n)}, a_4^{(n)}, a_5^{(n)}\right)$$

The convolutional neural network

Input: log(SP+1)

Output: $(a_i^{(n)})$, i = 1,...,6 n = 1,2,3

Implementation

4096 random samples

80% training set

20% testing set

Implementation

A signal is chosen among
the testing set to be used as
the reference (measured) signal

No noise is added

Its spectrogram

Implementation

The spectrogram is given in discrete sets of time and frequency

Determination of the CNN output

$$a_*^{(n)} = \arg\min \sum_i (\hat{t}^{(n)}(f_i) - t^{(n)}(f_i))^2$$

Results

Mode	a_0	a_1	a_2	a_3	a_4	a_5	
1	0.1925,	-0.0279,	0.0731,	-0.1039,	0.0727,	-0.0201	
2	0.3702,	-1.1324,	3.1526,	-4.5516,	3.3233,	-0.9606	"Measured"
3	0.3857,	-0.8043,	1.6648,	-1.9313,	1.1617,	-0.2713	
1	0.1725,	-0.0277,	0.0753,	-0.1055,	0.0752,	-0.0215	" -
2	0.3739,	-1.3339,	3.7522,	-5.4873,	4.0550,	-1.1950	"Estimated"
3	0.4067,	-1.1110,	2.5854,	-3.3142,	2.2223,	-0.6082	

Mode 1

Mode 1

Mode 2

Mode 2

Mode 3

Mode 3

An attempt to use the estimated dispersion curves for environmental parameters estimation

Discretize the curves and compare them with those associated with the signals of the data sets.

Use a simple least square norm of their distance to determine the closest (most similar) signal.

Signal associated with estimated dispersion curves

Comparison between the environmental/operational parameters associated with the "measured" signal and

the "closest" signal

Reference

Closest signal

r(km)
$c_{w1} \left(m/s \right)$
$c_{w2} \ (m/s)$
$c_{w3} \ (m/s)$
z_{min} (m)
$h_1(m)$
$h_2(m)$
$z_s(m)$
$z_r(m)$
$c_b (m/s)$
$c_{sb} (m/s)$

18.834	
1500	
1485	
1506	
23	
112	
133	
48	
20	
1653	
1812	

18.994
1503
1488
1505
24
105
126
43
31
1659
1780

Conclusions

- •The students under appropriate supervision can produce interesting results to be used as the basis of further research.
- The identification of the modal packets of an underwater acoustic signal in the time-frequency domain using Artificial Neural Network seems feasible.

Future projects

- For realistic applications there is a need to increase the training set.
- Application in inverse problems of ocean acoustic tomography or geoacoustic inversion, based on the identification of the dispersion characteristics of the propagating modes.
- We need to identify higher order modal packets.
- Try splines instead of polynomials

Thank you for your attention

Ευχαριστώ για την προσοχή σας

관심을 가져주셔서 감사합니다.