

NTDS 2017 Project

Exploring the Crunchbase Dataset to detect high potential startups

Motivation

- New startups are appearing every day
- Venture Capitalists seek to invest in the most profitable ones
- Crunchbase 2013 Snapshot:
 - 200,000 companies
 - o 80,000 investments

Goal: Advise investors thanks to Data Science!

Data exploration

Agents: companies, financial organizations, persons (angel investors).

Data exploration

42 categories

How can we find successful companies to invest

- Find good companies to invest in.
 - o Good means that we can sell our shares with a large capital gain (high ROI).
- We have many features in our dataset but:
 - Many of them are irrelevant or difficult to exploit
 - Some of them are raw and we should combine them.
- We added these features to our dataset:
 - Return on investment (acquisition/total funding)
 - Latitude and longitude via the Google Maps Geocoding API
- What are our important features:
 - Return on investment (it is known for the some companies)
 - Number of common investors
 - Total funding of the company
 - Location maybe has some effect

Geographical distribution

Data cleaning

- Remove companies with missing information:
 - Total funding
 - Location
- Also remove the ones with insufficient funding

From the 80,902 initial investments, 40,963 are kept.

Company Life Cycle and Investment Requirements

Source: www.slideshare.net/manishvirgo/introduction-to-private-equity-venture-capitalist-fund-42180988

Graph creation

Too few features to create similarity graph. **Instead:**

- 1. Bipartite graph: link each investor to the companies he invested in
- Investment graph: link the companies with a common investor, edge weight is the # of common investors

Solely the investment graph is used in the data exploitation.

Investments Graph

investor

company

Giant component

Some companies are isolated.

Focus on the connections => keep only giant component

- Diameter 8
- Nb edges 473,351
- **Nb nodes** 5,933

Obtain the Return On Investment (ROI)

Depends on the status of the company:

- Acquired Get ROI directly from total funding and acquisition price
- Closed ROI set to 0
- Operating Set to a risk factor (arbitrary set to 1 for now)
- Initial Public Offering (IPO)

Valuation obtained with:

- CSV files provided by Crunchbase
- Call of the API of "Intrinio"

Data exploitation

Goal: Predict companies with a high return on investment.

Assumptions:

- we know a few companies that have a high return on investment;
- someone who invested in a company acquired with a high ROI has a good insight on the market, i.e. the other investments (s)he made might be good too.

Idea: Use the Graph Fourier transform to spread onto the graph a signal first localized on successful companies.

Heat propagation

- Signal at time t=0
 Sum of weighted deltas localized on 5 vertices corresponding to companies with the highest ROI.
- Diffusion with a heat kernel:

$$\hat{g}(\lambda_{\ell}) = \exp\left(\frac{-\tau\lambda_{\ell}}{\lambda_{\max}}\right), \quad \tau = 50.$$

- From a given vertex, the signal propagates more towards neighbors with many common investors.
- Advise investing in the companies (here 100)
 where the signal is the strongest.

Picked companies on the graph

• **Red** Starting companies (high ROI)

Green Chosen companies being neighbor of one of the starting companies

Yellow Chosen companies being not direct

neighbor of a starting company

Blue Neighbors of a starting companies

that are not chosen

Results

Results

Distribution on the entire dataset

operating acquired ipo dosed 93 % 1.5 % 0.5 %

Distribution on the selected companies

Some "discovered" companies

Tuning the hyperparameters

Number of starting companies

Tuning the hyperparameters

Scaling parameter of the heat kernel

Tuning the hyperparameters

Number of selected companies

=> Average number of investments per investor: 40

Returns On Investment for different scenarios

Nb. selected companies Nb. starting companies	10	40	100
1	4.3	4.0	3.2
5	4.3	4.1	3.2
30	4.3	4.1	3.0

Risky!

Conclusion

- Graph built from a low number of features, edges/weights come from the investments.
- Use of Graph Fourier transform to look for potentially successful companies. Promising results but...
 - Other kernel could be considered in the future;
 - Method evaluated on a snapshot of the market;
 - A lot of other factors have to be considered by VCs.

