Введение в ЦОС и распознавание речи

14.11.2024

Не забудьте отметиться и оставить отзыв!

О чем поговорим (в рамках 2ух занятий)

- Введение в ЦОС, как представлен звук в памяти компьютера
- Распознавание речи ASR (какую задачу решаем, как оцениваем качество решения)
- Архитектуры моделей для решения задачи ASR (рассмотрим основные подходы, подробнее поговорим про SOTA решения)
- SSL в задаче ASR
- Применение LM для улучшения качества распознавания

Чего не будет на занятиях:

- TTS (text-to-speech)
- KWS (keyword spotting)
- VQE (voice quality enhancement)

План занятия

- Представление звукового сигнала в памяти компьютера
- Введение в ЦОС
- Постановка задачи распознавания речи (ASR)
- Метрики оценки качества
- Подходы к решению задачи ASR
- СТС декодер
- Архитектуры энкодеров

Что такое звук?

Звук (вспомним физику)

Звуковая волна (звуковые колебания) — это передающиеся в пространстве механические колебания молекул вещества (например, воздуха).

Дискретизация и квантование сигнала

массив значений (многомерный вектор) сложно анализировать

Преобразование Фурье

$$u(x) = \int\limits_{-\infty}^{+\infty} U(f) e^{2\pi i f x}, \qquad U(f) = \int\limits_{-\infty}^{+\infty} u(x) e^{-2\pi i f x} dx$$

обратное (f-t)

прямое (t-f)

Основная идея: разложить сигнал на базисные функции для дальнейшего анализа спектра сигнала.

Подробнее тут и тут.

Теорема Котельникова (Найквиста-Шеннона)

Любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой F > 2Fc (Fc - частота семплирования)

Достаточно ли просто знать спектр сигнала?

Достаточно ли просто знать спектр сигнала?

Спектр у этих двух сигналов - одинаковый! Как учесть временную составляющую данных?

Спектрограмма (STFT)

Энергия сигнала(f, T)

Спектрограмма (STFT). Мел шкала.

$$m[mel] = 1127 \ln (1 + rac{f[Hz]}{700})$$
 — Шкала частот (имитирует чувствительность человеческого уха)в

Частоты

Мел спектрограмма

Дополнительно по теме:

- Room Impulse Response (RIR)
- Convolution theorem
- Bandpass filters

Постановка задачи ASR

Метрики оценки качества распознавания

Постановка задачи ASR

- Word Error Rate (WER)
 - ∘ **S** substitutions
 - ∘ **I** − insertions
 - ∘ **D** deletions
 - N reference words

```
WER = \frac{S + I + D}{N}
```

```
ref. = "по дороге домой услышал скрип"
hypo = "а по дороге услышал стук"
```

```
| I | C | C | D | C | S |
|% | по | дороге | домой | услышал | скрип |
|а | по | дороге | # | услышал | стук |
```

- Word Error Rate (WER)
 - ∘ **S** substitutions
 - ∘ **I** − insertions
 - ∘ **D** deletions
 - N reference words

Также, существуют:

- CER character error rate;
- SER sentence error rate;

 $WER = \frac{S + I + D}{N}$

По возрастанию строгости метрик: CER-WER-SER

Различаются только юнитами: символы-слова-предложения

Считаем с помощью алгоритма поиска редакционного расстояния

- Word Error Rate (WER)
 - S substitutions
 - ∘ **I** − insertions
 - ∘ **D** deletions
 - N reference words

Также, существуют:

- CER character error rate;
- SER sentence error rate;

$$WER = \frac{S + I + D}{N}$$

Может ли WER быть > 1?

По возрастанию строгости метрик: CER-WER-SER

Различаются только юнитами: символы-слова-предложения

Считаем с помощью алгоритма поиска редакционного расстояния

Постановка задачи ASR

Задача выравнивания последовательностей (AKA Seq2Seq)

Давайте сегментируем запись и отправим в разметку?

Будем классифицировать каждый чанк??

Давайте сегментируем запись и отправим в разметку?

- Дорого
- Сложно (нужно очень много данных)
- Неустойчивый подход

Back in 2006 Connectionist Temporal Classification (CTC)

CTC

В-преобразование удаление повторов и <BLANK>

привет

Зачем нужен <BLANK> (I) токен

В-преобразование: сначала убираем дубликаты букв, затем удаляем

blank>.

Как обучать? Где взять GT?

CTC

привет

Матрица логитов (IVI x seq_len). Возможный правильный путь.

$$P(|прииивееет|) = y_{\parallel}^{1} \cdot y_{_{\rm II}}^{2} \cdot y_{_{\rm II}}^{3} \cdot y_{_{\rm II}}^{4} \cdot y_{_{\rm II}}^{5} \cdot y_{_{\rm II}}^{6} \cdot y_{_{\rm II}}^{7} \cdot y_{_{\rm II}}^{8} \cdot y_{_{\rm II}}^{9} \cdot y_{_{\rm II}}^{10} \cdot y_{_{\rm II}}^{11} \cdot y_{_{\rm II}}^{12}$$

Матрица логитов (IVI x seq_len). Возможный правильный путь.

П	П	П	П	П	П	П	П	П	П	П	П
p	р	р	р	р	р	р	p	р	р	р	p
И	И	И	И	И	И	И	И	N	И	И	И
В	В	В	В	В	В	В	В	В	В	В	В
е	е	е	е	е	е	е	е	е	е	е	е
T	Т	T	T	Т	T	T	T	T	Т	T	T

$$P(||||||привет) = y_{|}^{1} \cdot y_{|}^{2} \cdot y_{|}^{3} \cdot y_{|}^{4} \cdot y_{|}^{5} \cdot y_{|}^{6} \cdot y_{|}^{7} \cdot y_{|}^{8} \cdot y_{|}^{9} \cdot y_{|}^{10} \cdot y_{|}^{11} \cdot y_{|}^{12}$$

Матрица логитов (IVI x seq_len). Возможный правильный путь.

$$P$$
(приивет||||) = $y_{_{\rm II}}^{} \cdot y_{_{\rm p}}^{} \cdot y_{_{_{\rm I}}}^{} \cdot y_{_{_{\rm I}}}^{} \cdot y_{_{_{\rm B}}}^{} \cdot y_{_{_{\rm B}}}^{} \cdot y_{_{_{\rm B}}}^{} \cdot y_{_{_{\rm I}}}^{} \cdot y_{_{_{\rm I}}^{} \cdot y_{_{_{\rm I}}}^{} \cdot y_{_{_$

CTC Loss

P(привет) = P(|приивееет|) + P(|||||привет) + P(приивет||||) + ...

CTC Loss

$$\mathcal{L}(X,R) = -\log \sum_{C \in B^{-1}(R)} P(C|X) = -\log \sum_{C \in B^{-1}(R)} \prod_{t=1}^T p(c_t|X)$$
 спека GT гипотеза для которых R = B(C)

$$|V| = 7$$
, seq len = 12, possible paths = $7^{12} \sim 14B$

Как считать СТС лосс эффективно

Дополнительно про CTC Loss:

- CTC paper
- Connectionist Temporal Classification Loss
- Sequence Modeling With CTC

Encoders

Энкодеры. Бенчмарки для сравнения.

- <u>Librispeech</u> ~1k часов аудиокниг
- WSJ ~80 часов (чтение текста из Wall Street Journal)
- Лидерборд моделей на НЕ

Read Speech						
Test set	DS1	DS2	Human			
WSJ eval'92	4.94	3.60	5.03			
WSJ eval'93	6.94	4.98	8.08			
LibriSpeech test-clean	7.89	5.33	5.83			
LibriSpeech test-other	21.74	13.25	12.69			

Deep Speech 2

Read Speech						
Test set	DS1	DS2	Human			
WSJ eval'92	4.94	3.60	5.03			
WSJ eval'93	6.94	4.98	8.08			
LibriSpeech test-clean	7.89	5.33	5.83			
LibriSpeech test-other	21.74	13.25	12.69			

Deep Speech 2: End-to-End Speech Recognition in English and Mandarin

2015

<u>Jasper</u>

Доклад ODS

Table 5: LibriSpeech, WER (%)

Model	E2E	LM	dev-clean	dev-other	test-clean	test-other
CAPIO (single) [23]	N	RNN	3.02	8.28	3.56	8.58
pFSMN-Chain [25]	N	RNN	2.56	7.47	2.97	7.5
DeepSpeech2 [26]	Y	5-gram	1721	°=	5.33	13.25
Deep bLSTM w/ attention [21]	Y	LSTM	3.54	11.52	3.82	12.76
wav2letter++ [27]	Y	ConvLM	3.16	10.05	3.44	11.24
LAS + SpecAugment 4 [28]	Y	RNN	-	1. .	2.5	5.8
Jasper DR 10x5	Y	*	3.64	11.89	3.86	11.95
Jasper DR 10x5	\mathbf{Y}	6-gram	2.89	9.53	3.34	9.62
Jasper DR 10x5	Y	Transformer-XL	2.68	8.62	2.95	8.79
Jasper DR 10x5 + Time/Freq Masks ⁴	\mathbf{Y}	Transformer-XL	2.62	7.61	2.84	7.84

Figure 1: Jasper BxR model: B - number of blocks, R - number of sub-blocks.

Jasper: An End-to-End Convolutional Neural

Conformer

Method	#Params (M)	WER Without LM		WER With LM	
		testclean	testother	testclean	testother
Hybrid					
Transformer [33]	-	-	-	2.26	4.85
CTC					
QuartzNet [9]	19	3.90	11.28	2.69	7.25
LAS					
Transformer [34]	270	2.89	6.98	2.33	5.17
Transformer [19]	-	2.2	5.6	2.6	5.7
LSTM	360	2.6	6.0	2.2	5.2
Transducer					
Transformer [7]	139	2.4	5.6	2.0	4.6
ContextNet(S) [10]	10.8	2.9	7.0	2.3	5.5
ContextNet(M) [10]	31.4	2.4	5.4	2.0	4.5
ContextNet(L) [10]	112.7	2.1	4.6	1.9	4.1
Conformer (Ours)					
Conformer(S)	10.3	2.7	6.3	2.1	5.0
Conformer(M)	30.7	2.3	5.0	2.0	4.3
Conformer(L)	118.8	2.1	4.3	1.9	3.9

Дополнительно по теме:

- Golos датасет бенчмарк на русском
- OpenSTT русскоязычные датасеты и бенчмарки
- Swish activation
- GLU activation
- Macaron net
- Depthwise convolution
- <u>Librispeech LB</u>

Decoding

Greedy decoding

<blank></blank>	0.6	0.7
а	0.4	0.3
b	0.4	0.5

$$P("") = 0.7 * 0.6 = 0.42$$

 $P(a) = P(aa) + P(a|) + P(a|) = 0.4 * 0.3 + 0.6 * 0.3 + 0.2 * 0.7 = 0.44$
 $P(a) > P("")$, но при жадном декодировании мы этого никогда не узнаем

Beam Search Decoding

Спасибо за внимание!