**67.** (b) 
$$BA = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}_{3\times 1} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}_{1\times 3} = \begin{bmatrix} 2 & 4 & 6 \\ 3 & 6 & 9 \\ 4 & 8 & 12 \end{bmatrix}_{3\times 3}$$

$$AB = \begin{bmatrix} 12 & 3 \end{bmatrix}_{1\times 3} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}_{3\times 3} = \begin{bmatrix} 20 \end{bmatrix}_{1\times 1}.$$

So, AB and BA are defined.

- **68.** (d) It is a property.
- **69.** (d) Given, *A* and *B* are square matrices of order  $n \times n$ . We know that  $(A B)^2 = (A B)(A B)$

$$= A^2 - AB - BA + B^2$$

Note that  $AB \neq BA$  in general.

- 70. (a) We know that every identity matrix is a scalar matrix.
- **71.** (b)  $AB = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 12 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$ while  $BA = \begin{bmatrix} 0 & 0 \\ 1 & 12 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 25 & 0 \end{bmatrix} \neq O$ .
- **72.** (c) We know that if all the elements below the diagonal in the matrix are zero, then it is an upper triangular matrix.

**73.** (a) 
$$AA = \begin{bmatrix} -1 & 2i \\ 0 & -1 \end{bmatrix}$$
,  $A^4 = \begin{bmatrix} 1 & -4i \\ 0 & 1 \end{bmatrix}$ .

**74.** (c) 
$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
  $\begin{bmatrix} 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -1 \\ -2 & -1 & 1 \\ 4 & 2 & -2 \end{bmatrix}$ .

- **75.** (c) For subtraction of two matrix, they should be of the same order *i.e.* p = r, q = s.
- **76.** (b)  $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$   $A^{2} = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 4 & 7 \end{bmatrix}$ and  $A^{2} 2A = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$ ,  $det(A^{2} 2A) = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = 25$ .
- 77. (c)  $AB = O \Rightarrow |AB| = 0$   $|A| \cdot |B| = 0$  |A| = 0 or |B| = 0When AB = O, neither A nor B may be O. For example if  $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$  and  $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ , then  $AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ .

**78.** (b) 
$$a_{ij} = \frac{1}{2}(3i - 2j)$$
  
 $a_{11} = 1/2$ ,  $a_{12} = -1/2$  and  $a_{21} = 2$ ,  $a_{22} = 1$   
 $A = [a_{ij}]_{2 \times 2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ 

$$A = \begin{bmatrix} 1/2 & -1/2 \\ 2 & 1 \end{bmatrix}.$$
**9.** (c)  $2X - \begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$ 

**79.** (c) 
$$2X - \begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 0 & -2 \end{bmatrix}$$

$$2X = \begin{bmatrix} 3 & 2 \\ 0 & -2 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix}$$

$$2X = \begin{bmatrix} 4 & 4 \\ 7 & 2 \end{bmatrix} \qquad X = \begin{bmatrix} 2 & 2 \\ 7/2 & 1 \end{bmatrix}.$$

**80.** (a) 
$$A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$$
 and  $A^3 = A^2 A$ .  

$$= \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix}$$
 and so on.  

$$\therefore A^n = \begin{bmatrix} 1 & 2n \\ 0 & 1 \end{bmatrix}.$$

**81.** (c) Given, 
$$kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$$
  $k \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$   
 $2k = 3a, 3k = 2b, -4k = 24$   
 $a = \frac{2k}{3}, b = \frac{3k}{2}, k = -6$   
 $\Rightarrow k = -6, a = -4, b = -9$ .

82. (b) Given, 
$$\begin{vmatrix} 2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5 \end{vmatrix} = 0$$
  
 $(2+x)(5-2) - 3(-5-2x) + 4(1+x) = 0$   
 $6+3x+15+6x+4+4x=0$   
 $13x=-25 \Rightarrow x=-\frac{25}{13}$ .

**83.** (b) 
$$A^{2} = AA = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 6 & 2 \\ 3 & 4 & 1 \end{bmatrix}$$

$$A^{3} = A^{2}A = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 6 & 2 \\ 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 9 & 3 \\ 15 & 19 & 6 \\ 9 & 12 & 4 \end{bmatrix}$$
Here,  $A^{3} - 3A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I A^{3} - 3A^{2} - I = 0$ .

**84.** (a) The given matrix 
$$A = \begin{bmatrix} 2 & \lambda & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
 is non singular, if  $|A| \neq 0$ 

Singular, 
$$|A| = \begin{vmatrix} 2 & \lambda & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{vmatrix} = \begin{vmatrix} 1 & \lambda + 3 & 0 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{vmatrix}, [R_1 \to R_2 + R_1]$$

$$= \begin{vmatrix} 1 & \lambda + 3 & 0 \\ 0 & 1 & 1 \\ 0 & -\lambda - 5 & -3 \end{vmatrix} \qquad \begin{bmatrix} R_2 \to R_2 + R_3 \\ R_3 \to R_3 - R_1 \end{bmatrix}$$



$$= 1(-3 + \lambda + 5) \neq 0$$
$$\Rightarrow \lambda + 2 \neq 0 \Rightarrow \lambda \neq -2.$$

**85.** (b) Given, 
$$A = \begin{bmatrix} 1 & -1 \ 2 & -1 \end{bmatrix}$$
,  $B = \begin{bmatrix} a & 1 \ b & -1 \end{bmatrix}$   

$$A + B = \begin{bmatrix} 1+a & 0 \ 2+b & -2 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & -1 \ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \ 2 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix}$$

$$B^{2} = \begin{bmatrix} a & 1 \ b & -1 \end{bmatrix} \begin{bmatrix} a & 1 \ b & -1 \end{bmatrix} = \begin{bmatrix} a^{2}+b & a-1 \ ab-b & b+1 \end{bmatrix}$$

$$A^{2} + B^{2} = \begin{bmatrix} a^{2}+b-1 & a-1 \ ab-b & b \end{bmatrix}$$
Also,  $(A+B)^{2} = \begin{bmatrix} 1+a & 0 \ 2+b & -2 \end{bmatrix} \begin{bmatrix} 1+a & 0 \ 2+b & -2 \end{bmatrix}$ 

$$(A+B)^{2} = \begin{bmatrix} (1+a)^{2} & 0 \ (2+b)(1+a)-2(2+b) & 4 \end{bmatrix}$$

$$(A+B)^{2} = A^{2} + B^{2}$$

$$\begin{bmatrix} (1+a)^{2} & 0 \ (2+b)(a-1) & 4 \end{bmatrix} = \begin{bmatrix} a^{2}+b-1 & a-1 \ ab-b & b \end{bmatrix}$$

By equating,  $a-1=0 \Rightarrow a=1$  and b=4

**86.** (a) It is obvious.

**87.** (b) 
$$A^2 = A \cdot A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$$
  

$$\Rightarrow A^2 = \begin{bmatrix} 29 & -25 \\ -20 & 24 \end{bmatrix} \text{ and } 5A = \begin{bmatrix} 15 & -25 \\ -20 & 10 \end{bmatrix}$$

$$A^2 - 5A = 14 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 14/.$$

**88.** (d) Given, Matrix 
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

We know that

$$\mathcal{A}^2 = \mathcal{A}.\mathcal{A} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Therefore

$$\mathcal{A}^{16} = (\mathcal{A}^2)^8 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}^8 = \begin{bmatrix} (-1)^8 & 0 \\ 0 & (-1)^8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

**89.** (b) 
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = 2 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A^{3} = 2 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 2^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A^{n} = 2^{n-1} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad A^{100} = 2^{99} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

- **90.** (b) Matrix multiplication distributive and associative not commutative.
- **91.** (d) : On expansion,  $|A| = k^2 + 1$ , which can be never zero. Hence matrix A is invertible for all real k.
- **92.** (a) Given, x+y=4 .....(i) and x-y=0 .....(ii) After solving (i) and (ii), x=2, y=22x+z=7 z=3 and 2z+w=10 w=4.

**93.** (b) Put 
$$a=1$$
; ::  $|A|=\begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 4-4=0$ 

Hence, A is a singular matrix for a = 1.

**94.** (a) 
$$A^2 = A$$
.  $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$   
 $4A - 3I = \begin{bmatrix} 8 & -4 \\ -4 & 8 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$ .

- **95.** (b) First note that PQ must be of order  $3 \times 2$  and its  $(1, 1)^{th}$  entry is (-1) + 0 (1) = 2.
- **96.** (b) Determinants of unit matrix of any order = 1.
- **97.** (c) It is obvious.

**98.** (a) 
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ 

$$AB = \begin{bmatrix} 1 \times 1 + 2 \times 2 + (-1)(0) \\ 3 \times 1 + 0 \times 2 + 2 \times 0 \\ 4 \times 1 + 5 \times 2 + 0 \times 0 \end{bmatrix}$$

$$1 \times 0 + 2 \times 1 + (-1)(1)$$
  $1 \times 0 + 2 \times 0 + (-1)(3)^{-1}$   
 $3 \times 0 + 0 \times 1 + 2 \times 1$   $3 \times 0 + 0 \times 0 + 2 \times 3$   
 $4 \times 0 + 5 \times 1 + 0 \times 1$   $4 \times 0 + 5 \times 0 + 0 \times 3$ 

$$\therefore AB = \begin{bmatrix} 5 & 1 & -3 \\ 3 & 2 & 6 \\ 14 & 5 & 0 \end{bmatrix}.$$

- **99.** (c) Given AB = A, B = I BA = B, A = I. Hence,  $A^2 = A$  and  $B^2 = B$ .
- **100.** (d)  $A^2 = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^2 & 0 \\ \alpha+1 & 1 \end{bmatrix}$ Clearly, no real value of .

**101.** (a) 
$$\begin{bmatrix} 7 & 1 & 2 \\ 9 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 35 \\ 40 \end{bmatrix}; \begin{bmatrix} 35 \\ 40 \end{bmatrix} + \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \begin{bmatrix} 43 \\ 44 \end{bmatrix}.$$

**102.** (a) Let 
$$A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

Check by options

(i) 
$$A^2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

$$A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

(ii) 
$$(-1) I = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \neq A.$$

- (iii)  $|A| = 1 \neq 0 \Rightarrow A^{-1}$  exists.
- (iv) Clearly A, is not a zero matrix.

**103.** (d) We have 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix}$$
 and  $B = \begin{bmatrix} -5 & 7 & 1 \\ 1 & -5 & 7 \\ 7 & 1 & -5 \end{bmatrix}$ 

$$\therefore AB = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} -5 & 7 & 1 \\ 1 & -5 & 7 \\ 7 & 1 & -5 \end{bmatrix}$$

$$AB = \begin{bmatrix} 18 & 0 & 0 \\ 0 & 18 & 0 \\ 0 & 0 & 18 \end{bmatrix} = 18 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$AB = 18 I_3$$
.

**104.** (a) 
$$2X = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$2X = \begin{bmatrix} 2 & 6 \\ 4 & -2 \end{bmatrix} \Rightarrow X = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}.$$

**105.** (c) 
$$2A + 2B = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}$$
,  $A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$ 

On adding, we get  $3A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ 

$$\Rightarrow A = \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 1/3 \end{bmatrix}.$$

**106.** (b) Let 
$$\begin{bmatrix} a & a \\ a & a \end{bmatrix}$$
 be the identity element then

$$\begin{bmatrix} x & x \\ x & x \end{bmatrix} \begin{bmatrix} a & a \\ a & a \end{bmatrix} = \begin{bmatrix} x & x \\ x & x \end{bmatrix}$$

i.e., 
$$2ax = x \Rightarrow a = \frac{1}{2}$$
, (:  $x \neq 0$ )

Identity element =  $\frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ .

**107.** (c) 
$$A^2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$A^3 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$$

$$A^n = \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$$

$$nA = \begin{bmatrix} n & 0 \\ n & n \end{bmatrix}, (n-1)I = \begin{bmatrix} n-1 & 0 \\ 0 & n-1 \end{bmatrix}$$
$$nA - (n-1)I = \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix} = A^n.$$

# Special types of matrices, Transpose, Adjoint and inverse of matrices

1. (c) Let 
$$A = \begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$$
,

then 
$$|A| = \begin{vmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{vmatrix} = 1$$

The matrix of cofactors of A

$$= \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$$

Therefore,  $ad(A) = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}$ 

$$\therefore A^{-1} = \frac{1}{|A|} \cdot adjA = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}, \quad (\because |A| = 1).$$

- **2.** (d)  $(AB)^{-1} = B^{-1}A^{-1}$ .
- 3. (a) The cofactors of  $N = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$  are  $c_{11} = -4, c_{12} = 1, c_{13} = 4; \quad c_{21} = -3, c_{22} = 0, c_{23} = 4$   $c_{31} = -3, c_{32} = 1, c_{33} = 3$   $\therefore adj N = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix} = N.$
- **4.** (b) It is obvious.
- **5.** (a)  $(I A)(I + A) = I A^2 = O$ ,

{Since A is involuntory, therefore  $A^2 = I$ }.

**6.** (b) Let 
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then  $kI = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$ 

$$\Rightarrow adJ(kl) = \begin{bmatrix} k^2 & 0 & 0 \\ 0 & k^2 & 0 \\ 0 & 0 & k^2 \end{bmatrix} = k^2 l.$$

7. (b) We know by the fundamental concept that  $adj(adjA) = |A|^{n-2} A$ .



**8.** (b) For  $A = \begin{bmatrix} i & 0 \\ 0 & i/2 \end{bmatrix}$ ,  $adj(A) = \begin{bmatrix} i/2 & 0 \\ 0 & i \end{bmatrix}$  and  $|A| = -\frac{1}{2}$ .

$$\therefore \quad A^{-1} = \frac{1}{\Delta} (adjA) = \frac{1}{-1/2} \begin{bmatrix} i/2 & 0 \\ 0 & i \end{bmatrix} = \begin{bmatrix} -i & 0 \\ 0 & -2i \end{bmatrix}.$$

- **9.** (c)  $A(adjA) = A \cdot A^{-1} |A| = |A| / .$
- **10.** (b) In  $A^{-1}$ , the element of  $2^{\rm nd}$  row and  $3^{\rm rd}$  column is the  $c_{32}$  element of the matrix  $(c_{ij})$  of cofactors of element of A, (due to transposition) divided by  $\Delta = |A| = -2$ .

.. Required element = 
$$\frac{(-1)^{3+2} M_{32}}{-2} = \frac{-(-2)}{-2} = -1$$
,  
where  $M_{32} = \text{minor of } c_{32} = \text{in}$ 

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} = 0 - 2 = -2.$$

- 11. (c)  $R(s) R(t) = \begin{bmatrix} \cos s & \sin s \\ -\sin s & \cos s \end{bmatrix} \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$   $= \begin{bmatrix} \cos(s+t) & \sin(t+s) \\ -\sin(s+t) & \cos(t+s) \end{bmatrix} = R(s+t).$
- **12.** (b) Since A, B are symmetric  $\Rightarrow A = A'$  and B = B  $\therefore (AB BA)' = (AB)' (BA)' = BA' A'B'$  = -(A'B BA') = -(AB BA)  $\Rightarrow (AB BA) \text{ is skew-symmetric.}$
- **13.** (a) (M'AM)' = M'AM = M'AM {A is symmetric. Hence M'AM is a symmetric matrix).
- **14.** (b) A square matrix is to be orthogonal matrix if A'A = I = AA'  $\Rightarrow A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}, A' = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$   $\Rightarrow AA' = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A'A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\therefore AA' = A'A = I.$$

- **15.** (a)  $A^{-1} = \frac{adjA}{|A|}$ But  $|A| = \begin{vmatrix} a & c \\ d & b \end{vmatrix} = ab - cd$  and  $adjA = \begin{bmatrix} b & -c \\ -d & a \end{bmatrix}$ therefore  $A^{-1} = \frac{1}{ab - cd} \begin{bmatrix} b & -c \\ -d & a \end{bmatrix}$ .
- **16.** (b) It is obvious
- **17.** (a) Let  $A = \begin{bmatrix} 2 & -3 \\ -4 & 2 \end{bmatrix}$ ,  $|A| = \begin{vmatrix} 2 & -3 \\ -4 & 2 \end{vmatrix} = 4 12 = -8$

The matrix of cofactors of the elements of  $\boldsymbol{A}$  viz.

$$\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} 2 & -(-4) \\ -(-3) & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$

.. adjA= transpose of the matrix of cofactors of elements of  $A = \begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix}$ 

$$\therefore A^{-1} = \frac{1}{\Delta} adjA = \frac{1}{-8} \cdot \begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix}.$$

**18.** (d)  $A = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 2 & 0 \\ -1 & 6 & 1 \end{bmatrix}$ 

$$\Rightarrow adJ(A) = \begin{bmatrix} 2 & -5 & 32 \\ 0 & 1 & -6 \\ 0 & 0 & 2 \end{bmatrix}^T = \begin{bmatrix} 2 & 0 & 0 \\ -5 & 1 & 0 \\ 32 & -6 & 2 \end{bmatrix}.$$

**19.** (a)  $A(adjA) = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$ .

**Aliter:** 
$$A(adjA) = A \mid I = 10 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$
.

**20.** (d) Since (A + A')' = A' + A = A + A', so it is symmetric.

$$(AA')' = (A')'A' = AA'$$
, so it is symmetric.  
 $(A'A)' = A'(A')' = A'A$ , so it is symmetric.

But  $(A - A')' = A' - A \neq A - A'$ . Hence it is not symmetric.

**21.** (b) Let  $A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$ 

The matrix of cofactors of the elements of A,

$$= \begin{bmatrix} \cos\alpha & -(-\sin\alpha) \\ -\sin\alpha & \cos\alpha \end{bmatrix}$$

∴ adjA= the transpose of matrix of cofactors

of A

$$= \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$$

$$\therefore AadjA = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \text{ (as given)} \Rightarrow k = 1.$$

- **22.** (a)  $3A^3 + 2A^2 + 5A + I = 0 \Rightarrow I = -3A^3 2A^2 5A$  $\Rightarrow IA^{-1} = -3A^2 - 2A - 5I \Rightarrow A^{-1} = -(3A^2 + 2A + 5I)$
- **23.** (b) It is obvious.
- **24.** (d) All the given statements are true.

**25.** (b) As 
$$\begin{bmatrix} 1 & 3 \\ 3 & 10 \end{bmatrix} \begin{bmatrix} 10 & -3 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

**26.** (a) Let A be a symmetric matrix. Then  $AA^{-1} = I \Rightarrow (AA^{-1})^T = I$  $\Rightarrow (A^{-1})^T A^T = I \Rightarrow (A^{-1})^T = (A^T)^{-1}$ 

$$\Rightarrow (A^{-1})^T = (A)^{-1} , (:: A^T = A)$$

- $\Rightarrow$   $A^{-1}$  is a symmetric matrix.
- **27.** (a) Since *A* is symmetric, therefore  $A^T = A$ . Now  $(A^n)^T = (A^T)^n = (A)^n$ 
  - $\therefore$   $A^n$  is also a symmetric matrix.
- **28.** (d) Since *A* is a skew-symmetric matrix, therefore

$$A^{T} = -A \Rightarrow (A^{T})^{n} = (-A)^{n} \Rightarrow (A^{n})^{T} = \begin{cases} A^{n}, & \text{if } n \text{ is even} \\ -A^{n}, & \text{if } n \text{ is odd} \end{cases}$$

**29.** (a) Since 
$$\begin{bmatrix} -6 & 5 \\ -7 & 6 \end{bmatrix} \begin{bmatrix} -6 & 5 \\ -7 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

**30.** (b) Let, 
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$
;  $adf(A) = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$   
 $\Rightarrow A_{11} = 3, A_{12} = -9, A_{13} = -5$   
 $A_{21} = -4, A_{22} = 1, A_{23} = 3$   
 $A_{31} = -5, A_{32} = 4, A_{33} = 1$   
 $\Rightarrow Adf(A) = \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix}$ .

**31.** (b) Since 
$$\begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 3 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

**32.** (b) Since the given matrix is symmetric, therefore 
$$a_{12} = a_{21} \Rightarrow x + 2 = 2x - 3 \Rightarrow x = 5$$
.

**33.** (a) Let 
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 4 \end{bmatrix} \Rightarrow |A| = 14$$
  

$$\therefore adjA = \begin{bmatrix} 4 & 2 \\ -1 & 3 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} \frac{4}{14} & \frac{2}{14} \\ \frac{-1}{14} & \frac{3}{14} \end{bmatrix}.$$

**35.** (a) 
$$A = \begin{bmatrix} 1 & -2 \\ 5 & 3 \end{bmatrix}$$
,  $A^{T} = \begin{bmatrix} 1 & 5 \\ -2 & 3 \end{bmatrix}$ ,  $A + A^{T} = \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix}$ .

**36.** (a) 
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow |A| = -1(1+0) = -1$$

$$adf(A) = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$

$$\Rightarrow A_{11} = 0, A_{12} = -1, A_{13} = 0$$

$$A_{21} = -1, A_{22} = 0, A_{23} = 0$$

$$A_{31} = 0, A_{32} = 0, A_{33} = -1$$

$$\Rightarrow A^{-1} = \frac{adf(A)}{|A|} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = A.$$

**37.** (a) Since 
$$|adjA| = |A|^{n-2}$$
, therefore  $|A| = 0$   $|adjA| = 0 \Rightarrow adjA$  is also singular.

**38.** (b) Let 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow |A| = 1(1+0) = 1$$

$$AdJ(A) = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$

$$AdJ(A) = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{AdJ(A)}{|A|} = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}.$$

**39.** (c) If A' = A, then order of A' will be same to order of A. So it is a square matrix.

**40.** (c) 
$$A \cdot \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 2I.$$

**41.** (a) Every skew symmetric matrix of odd order is singular. So option (a) is incorrect.

**42.** (b) 
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$$
,  $A_{11} = 1$ ,  $A_{21} = -2$ ,  $A_{31} = 4$   $A_{12} = 4$ ,  $A_{22} = 1$ ,  $A_{32} = -2$   $A_{13} = -2$ ,  $A_{23} = 4$ ,  $A_{33} = 1$   $Adj(A) = \begin{bmatrix} 1 & -2 & 4 \\ 4 & 1 & -2 \\ -2 & 4 & 1 \end{bmatrix}$ .

**43.** (b) It is a concept.

**44.** (c) It is obvious.

**45.** (a) 
$$|A| = 3$$
,  $AdjA = \begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix}$ ;  $\therefore A^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix}$   

$$\Rightarrow (A^{-1})^3 = \frac{1}{27} \begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix}^3 = \frac{1}{27} \begin{pmatrix} 1 & -26 \\ 0 & 27 \end{pmatrix}.$$

**46.** (b) The matrix is not invertible if 
$$\begin{vmatrix} 1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1 \end{vmatrix} = 0$$
  

$$\Rightarrow 1(2-5) - a(1-10) + 2(1-4) = 0$$

$$\Rightarrow -3 + 9a - 6 = 0 \Rightarrow a = 1.$$

**47.** (b) 
$$A(adj A) = A | I \Rightarrow \begin{vmatrix} 10 & 0 \\ 0 & 10 \end{vmatrix} = 10. \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$$
.

**48.** (d)  $a_{ij} = i^2 - j^2$  is a square matrix. For a skew symmetric matrix  $a_{ij} = -a_{ji}$ 

$$a_{ij} = i^2 - j^2$$
 and  $a_{jj} = j^2 - i^2$   
 $a_{ij} + a_{jj} = 0 \Rightarrow a_{ij} = -a_{jj}$ .

Hence,  $a_{ii}$  is a skew symmetric matrix.

**49.** (a) 
$$A^{-1} = \frac{Adf(A)}{|A|}$$
;  $A^{-1} = \begin{bmatrix} 2 & -7 \\ -1 & 4 \end{bmatrix}$ 

**50.** (c) Here, 
$$C_{11} = 1$$
,  $C_{12} = -2$ ,  $C_{13} = -2$ 



$$C_{21} = -1$$
,  $C_{22} = 3$ ,  $C_{23} = 3$   
 $C_{31} = 0$ ,  $C_{32} = -4$ ,  $C_{33} = -3$ 

$$\det A = A = \begin{vmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{vmatrix} = 1$$

$$A^{-1} = \frac{1}{|A|} \cdot (AdjA) = \frac{1}{1} \begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$

Now, 
$$A^2 = \begin{bmatrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\ -2 & 2 & -3 \end{bmatrix}$$

and 
$$A^3 = A^2 \cdot A = \begin{bmatrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\ -2 & 2 & -3 \end{bmatrix} \times \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix} = A^{-1}.$$

- **51.** (b)  $|AdjA| = |A|^{n-1} = d^{n-1}$ .
- **52.** (b) It is obvious.

**53.** (d) Let 
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
  $|A| = 1$ 

$$adf(A) = \begin{bmatrix} 1 & 2 & -1 \\ -2 & 1 & 1 \\ 7 & -2 & 1 \end{bmatrix}^{T}.$$

Hence, 
$$A^{-1} = \frac{adJ(A)}{|A|}$$

$$A^{-1} = \begin{bmatrix} 1 & -2 & 7 \\ 2 & 1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$
. Hence, element

$$A_{13} = 7$$
.

- **54.** (b) We have,  $(AA^T) = (A^T)^T A^T = AA^T$  (by reversal law)  $AA^T$  is symmetric matrix.
- **55.** (b)  $\begin{vmatrix} \lambda & -1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2 \end{vmatrix} \neq 0 \Rightarrow \lambda \neq -17.$
- **56.** (a) It is obvious.
- **57.** (c) As  $I_3I_3 = I_3$ , therefore  $I_3^{-1} = I_3$ .
- $\textbf{58.} \hspace{0.2in} \textbf{(b)} \hspace{0.2in} \textbf{The given matrix is a skew-symmetric matrix} \\$

$$[:: A' = -A].$$

**59.** (b) 
$$AB = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -3 & -2 \\ 10 & 7 \end{pmatrix}$$
$$(AB)^T = \begin{pmatrix} -3 & 10 \\ -2 & 7 \end{pmatrix}.$$

- **60.** (b) adj (A) can be obtained by changing the diagonal element and changing the sign of off diagonal elements. Here,  $adJ(A) = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$ .
- **61.** (b)  $A + A^T$  is a square matrix.  $(A + A^T)^T = A^T + (A^T)^T = A^T + A$  Hence A is a symmetric matrix.
- **62.** (b) |A| = (ad ba) $\therefore A^{-1} = \frac{1}{(ad - ba)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$
- **63.** (d)  $|A| = 1 \neq 0$ , therefore A is invertible. Thus (d) is not correct.
- **64.** (c)  $A^2 A + I = 0$   $I = A - A^2 \Rightarrow I = A(I - A)$  $A^{-1}I = A^{-1}(A(I - A)) \Rightarrow A^{-1} = I - A$ .
- **65.** (a)  $(B^{-1}A^{-1})^{-1} = (A^{-1})^{-1}(B^{-1})^{-1} = AB$  (Reversal law of inverses)  $= \begin{bmatrix} 2 & 2 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}.$
- **66.** (b) When  $a_{ij} = 0$  for  $i \neq j$  and  $a_{ij}$  is constant for i = j, then the matrix  $[a_{ij}]_{n \times n}$  is called a scalar matrix.
- **67.** (b) Given, Square matrices A and B of same order. We know that if A and B are non-singular matrices of the same orders, then  $(AB)^{-1} = B^{-1}A^{-1}$ .

**68.** (b) 
$$A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$   
 $AX = B \Rightarrow X = A^{-1}B$   
 $A^{-1} = \frac{adjA}{|A|}$   
 $A^{-1} = \frac{-1}{3} \begin{bmatrix} -1 & -2 \\ -2 & -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$   
and  $X = A^{-1}B = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ ;  $X = \frac{1}{3} \begin{bmatrix} 5 \\ 7 \end{bmatrix}$ .

**69.** (b)  $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$   $adjA = \begin{bmatrix} -5 & -2 \\ -3 & +1 \end{bmatrix}$ 

$$|A| = \begin{vmatrix} 1 & 2 \\ 3 & -5 \end{vmatrix} = -11$$

$$\therefore A^{-1} = \frac{1}{11} \begin{bmatrix} 5 & 2 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} 5/11 & 2/11 \\ 3/11 & -1/11 \end{bmatrix}.$$

- **70.** (d) Given,  $A = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$ , we know that  $A^{-1} = \frac{adjA}{|A|}$ . Therefore, |A| = [12-12] = 0. Since |A| is zero, therefore inverse of A does not exist.
- **71.** (b)  $A = \begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix}$   $adj \ A = \begin{bmatrix} 4 & -2 \\ -3 & 4 \end{bmatrix}$   $| adjA| = (4 \times 4) (-3 \times -2) = 16 6$  | adjA| = 10.
- **72.** (a) Since  $A^2 = O$  (Zero matrix) and 2 is the least +ve integer for which  $A^2 = O$ . Thus, A is nilpotent of index 2.
- **73.** (d) Since for  $A = \begin{bmatrix} i & 1-2i \\ -1-2i & 0 \end{bmatrix} (\overline{A})^T = -A$ . Thus, A is skew hermitian.
- 74. (b) Let  $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ Then,  $A_{11} = 1, A_{12} = -2, A_{13} = -2$   $A_{21} = -1, A_{22} = 3, A_{23} = 3$   $A_{31} = 0, A_{32} = -4, A_{33} = -3$  $ad(A) = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}.$

**75.** (a) 
$$K = [|A|]^{-1} = \frac{-1}{6}$$

**76.** (b) It is obvious.

77. (a) 
$$A \cdot (adAA) = A \mid I$$
  
Here  $\mid A \mid = \cos^2 x + \sin^2 x = 1$ .  
Hence,  $A \cdot (adAA) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ .

78. (a) 
$$A^{-1} = \frac{ad(A)}{|A|} = \frac{1}{|A|} \cdot ad(A)$$
  

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}; |A| = 0 - 1(1 - 9) + 2(1 - 6) = 8 - 10$$

$$|A| = -2 \neq 0$$

$$Adj A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$

$$A_{11} = (-1)^{1+1}[(2)(1) - (3)(1)] = -1$$

$$A_{12} = 8, A_{13} = -5, A_{21} = 1, A_{22} = -6$$

$$A_{23} = 3$$
,  $A_{31} = -1$ ,  $A_{32} = 2$ ,  $A_{33} = -1$   

$$A^{-1} = \frac{1}{-2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & -1 \\ 5/2 & -3/2 & 1/2 \end{bmatrix}.$$

**79.** (d) From option check  $AA^{-1} = I$ .

**80.** (a) It is obvious.

**81.** (d) 
$$K = |A|$$
;  $|A| = \begin{vmatrix} 3 & 2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{vmatrix} = 11$ .

**82.** (c) 
$$A[adf(A)] = \begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 7 & -4 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = |A| / [ : |A| = 21 - 20 = 1].$$

**83.** (a)  $A^{-1} = A^2$ , because  $A^3 = I$ .

**84.** (d) Since  $A \cdot A = I$ , therefore  $A^{-1} = A$ .

**85.** (a) Let 
$$A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$$
  
 $|A| = 4 + 6 = 10 \neq 0$   
Now,  $A_{11} = 4$ ,  $A_{12} = -3$ ,  $A_{21} = -(-2) = 2$ ,  $A_{22} = 1$   
 $\therefore adJ(A) = \begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix}$   
 $\therefore A^{-1} = \frac{adJ(A)}{|A|} = \frac{1}{10} \begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix}$ .

**Trick**: Check from the options  $AA^{-1} = I$ 

$$AA^{-1} = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} \frac{4}{10} & \frac{2}{10} \\ \frac{-3}{10} & \frac{1}{10} \end{bmatrix} = \begin{bmatrix} \frac{10}{10} & 0 \\ 0 & \frac{10}{10} \end{bmatrix}$$
$$= AA^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I.$$

**86.** (d) Let 
$$A = \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$$
,  $|A| = 1$ 

$$adJ(A) = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$$

$$A^{-1} = \frac{adJ(A)}{|A|} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}.$$

**87.** (a) Given, 
$$\begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix} = 10A^{-1}$$

$$\Rightarrow \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{pmatrix}$$

$$\Rightarrow -5 + \alpha = 0 \Rightarrow \alpha = 5$$

(Equating the element of  $2^{nd}\ \text{row}$  and first column).

**88.** (b) We have, 
$$A(adjA) = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$



or 
$$A(adjA) = 10\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 10I$$
 .....(i)  
and  $A^{-1} = \frac{1}{|A|}(adjA)$   
 $A(adjA) = |A|I$  .....(ii)

 $\therefore$  From equation (i) and (ii), we get |A| = 10.

- **89.** (b) It is obvious that (ABC)' = C'B'A'.
- **90.** (c) By fundamental property,  $ad(\lambda X) = \lambda^{n-1}(adjX)$ . Here n=3  $ad(\lambda X) = \lambda^{3-1}(adjX)$   $ad(\lambda X) = \lambda^2(adjX)$ .

**91.** (c) 
$$X = \begin{bmatrix} -x & -y \\ z & t \end{bmatrix}$$
;  $adj X = \begin{bmatrix} t & y \\ -z & -x \end{bmatrix}$   
Transpose of  $(adj (X)) = \begin{bmatrix} t & -z \\ y & -x \end{bmatrix}$ .

**92.** (a) 
$$A = \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$$
  
 $|A| = 11, A_{11} = 1, A_{12} = -3, A_{21} = 2, A_{22} = 5$   
 $A^{-1} = \frac{1}{11} \begin{bmatrix} 1 & 2 \\ -3 & 5 \end{bmatrix}.$ 

93. (c) Given 
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}$$
,  $A^{-1} = \frac{1}{6} \begin{bmatrix} 6 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 2 & 1 \end{bmatrix}$   

$$A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 5 \\ 0 & -10 & 14 \end{bmatrix}$$

$$cA = \begin{bmatrix} c & 0 & 0 \\ 0 & c & c \\ 0 & -2c & 4c \end{bmatrix}; dI = \begin{bmatrix} d & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d \end{bmatrix}$$

$$\therefore \text{By } A^{-1} = \frac{1}{6} [A^{2} + cA + dI]$$

⇒ 6 = 1 + c + d, (By equality of matrices) (-6,11) satisfy the relation.

**94.** (a) If 
$$Q = PAP^{T}$$
  
 $P^{T}Q = AP^{T}$ , (as  $PP^{T} = I$ )  
 $P^{T}Q^{2005}P = AP^{T}Q^{2004}P$   
 $= A^{2}P^{T}Q^{2003}P = A^{3}P^{T}Q^{2002}P = A^{2004}P^{T}(QP)$   
 $= A^{2004}P^{T}(PA) (Q = PAP^{T} \Rightarrow QP = PA) = A^{2005}$   
 $A^{2005} = \begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$ .

**95.** (d) 
$$|A| = \begin{vmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{vmatrix} = 1[3] + 1[6] + 1[-4] = 5$$

$$B = adj \ A = \begin{bmatrix} 3 & 1 & 1 \\ -6 & -2 & 3 \\ -4 & -3 & 2 \end{bmatrix}$$

$$adj \ B = \begin{bmatrix} 5 & -5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0 \end{bmatrix} = 5A \text{ and } C = 5A$$

$$C = adj \ B; \ |C| = |adj \ B|; \qquad \frac{|adj \ B|}{|C|} = 1.$$

- **96.** (a) If A is a singular matrix of order n, then A(adjA) = (adjA)A = 0 = zero matrix.
- **97.** (c) It is obvious.

#### Relation between determinants and matrices, Rank of matrices and Solution of the equations

- **1.** (a) Since det  $(-A) = (-1)^3 \det A = -\det A$ .
- **2.** (a) We know that if A, B are n square matrices, then |AB| = |A| |B|.

3. (a) 
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ 0 & -6 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \Rightarrow \begin{cases} x + 2y + 3z = 6 \\ 3x + y + 2z = -6 \\ 2x + 3y + z = 0 \end{cases}$$

On Simplification the above equation, we get the required result *i.e.*, x = -4, y = 2, z = 2.

4. (d) Let 
$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \Rightarrow A^{-1} \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} & -1 \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\therefore AX = B \Rightarrow X = A^{-1}B \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} & -1\\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{2}\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix} = \begin{bmatrix} -1\\ 0\\ 2 \end{bmatrix}.$$

Aliter: 
$$\begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
  

$$\Rightarrow \begin{bmatrix} x + 0y + z \\ -x + y + 0z \\ 0x - y + z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \qquad \begin{array}{l} x + z = 1 \\ -x + y = 1 \\ z - y = 2 \end{array}$$

$$\Rightarrow (x, y, z) = (-1, 0, 2).$$

**5.** (a) Let A be a skew-symmetric matrix of odd order, say (2n+1) .Since A is skew-symmetric, therefore  $A^T = -A$ .

$$\Rightarrow |A^{T}| = |-A| \Rightarrow |A^{T}| = (-1)^{2n+1} |A|$$

$$\Rightarrow |A^{T}| = -|A| \Rightarrow |A| = -|A|$$

$$\Rightarrow 2|A| = 0 \Rightarrow |A| = 0.$$

**6.** (a) Here  $|A| \neq 0$ . Hence unique solution.

7. (c) 
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = 2/$$

$$\therefore AB = 2IB = 2B = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & 6 \\ 0 & 0 & 4 \end{bmatrix}$$

Therefore 
$$|AB| = \begin{vmatrix} 2 & 4 & 6 \\ 0 & 2 & 6 \\ 0 & 0 & 4 \end{vmatrix} = 2(8) = 16$$

**Aliter:** 
$$|A| = 2 \times 2 \times 2 = 8$$
,  $|B| = 1 \times 1 \times 2 = 2$ 

$$AB = |AB| = |A||B| = 2 \times 8 = 16.$$

**8.** (b) 
$$|A| = -1$$
,  $|B| = 3 \Rightarrow |AB| = -3$   
 $|3AB| = (3)^3(-3) = -81$ .

**9.** (c) Form (ii) equation, 
$$2(x+y)=3$$
 or  $2.2=3$  or  $4=3$ 

Which is not feasible, so given equation has no solution.

**10.** (c) 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{bmatrix}$$

Let  $c_{ij}$  be co-factor of  $a_{ij}$  in A.

Then co-factor of elements of A are given by

$$C_{11} = \begin{vmatrix} 4 & 9 \\ 8 & 27 \end{vmatrix} = 36, C_{21} = \begin{vmatrix} 2 & 3 \\ 8 & 27 \end{vmatrix} = -30, C_{31} = \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix} = 6$$

$$C_{12} = \begin{vmatrix} 1 & 9 \\ 1 & 27 \end{vmatrix} = -18, C_{22} = \begin{vmatrix} 1 & 3 \\ 1 & 27 \end{vmatrix} = 24, C_{32} = \begin{vmatrix} 1 & 3 \\ 1 & 9 \end{vmatrix} = -6$$

$$C_{13} = \begin{vmatrix} 1 & 4 \\ 1 & 8 \end{vmatrix} = 4, C_{23} = \begin{vmatrix} 1 & 2 \\ 1 & 8 \end{vmatrix} = -6, C_{33} = \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} = 2$$

$$Adj(A) = \begin{bmatrix} 36 & -30 & 6 \\ -18 & 24 & -6 \\ 4 & -6 & 2 \end{bmatrix}$$

|Ad(A)| = 36(48-36) + 30(-36+24) + 6(108-96)|Ad(A)| = 144.

**11.** (c) 
$$|A| \cdot adf(A) = |A|^3$$
 for order  $n$ ,  $DD = D^7$ .

12. (a) 
$$D = \begin{vmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{vmatrix} = 0$$

$$D_1 = \begin{vmatrix} 1 & 1 & -1 \\ -2 & 0 & 2 \\ 3 & -2 & 0 \end{vmatrix} = 14 \Rightarrow D_1 \neq 0$$

 $\therefore$  D=0 and  $D_1 \neq 0$  ,hence the system is inconsistent, so it has no solution.

**13.** (a) 
$$|A| = \begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{vmatrix} = 1(1-0)+0+1(4-3) = 2.$$

**14.** (a) Given 
$$A = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 0 & 1 & 2 & -1 \\ 0 & -2 & -4 & 2 \end{bmatrix}$$
,  $(R_2 \to 2R_2 + R_3)$   

$$A = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & -2 & -4 & 2 \end{bmatrix}$$

Since every minor of order 3 in A is 0 and there exists a minor order 3 *i.e.*  $\begin{bmatrix} 2 & 3 \\ 0 & -2 \end{bmatrix}$  in A which is non-zero. Thus, rank = 2.

**15.** (d) 
$$\Delta = \begin{vmatrix} 2 & 1 & -1 \\ 1 & -3 & 2 \\ 1 & 4 & -3 \end{vmatrix}$$
  
=  $2(9-8)-1(-3-2)-1(4+3)=7-7=0$ 

Hence, number of solutions is zero.

**16.** (b) 
$$A = \begin{bmatrix} 2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15 \end{bmatrix}_{3\times 3}$$

|A| = 0, then rank cannot be 3.

Considering a 
$$2 \times 2$$
 minor,  $\begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix}$  its

determinant is zero.

Similarly considering

$$\begin{bmatrix} 4 & 5 \\ 8 & 10 \end{bmatrix}, \begin{bmatrix} 4 & 8 \\ -6 & -12 \end{bmatrix}, \begin{bmatrix} 8 & 10 \\ -12 & 15 \end{bmatrix}, \begin{bmatrix} 2 & 5 \\ 4 & 10 \end{bmatrix}, \begin{bmatrix} 4 & 10 \\ -6 & -15 \end{bmatrix}$$

their determinants is zero. Each rank can not be 2. Thus rank = 1.

**17.** (a) 
$$|A^3| = 125$$
;  $|A|^3 = 125 = 5^3$   
 $\Rightarrow |A| = 5 \Rightarrow \alpha^2 - 4 = 5 \Rightarrow \alpha = \pm 3$ .

**18.** (d) We have, 
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$$

$$x + y + z = 0$$
.....(i)

$$x+y+z=0$$
 .....(i)  
 $x-2y-2z=3$  .....(ii)  
 $x+3y+z=4$  .....(iii)

On solving 
$$x = 1, y = 2, z = -3$$
 *i.e.*,  $\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ .

**19.** (a) 
$$A \neq O$$
 and  $B \neq O$   
 $\therefore AB = 0$   
Hence, Det  $(A) = 0$  or Det  $(B) = 0$ .

**20.** (b) Let 
$$\frac{x^2}{a^2} = X$$
,  $\frac{y^2}{b^2} = Y$  and  $\frac{z^2}{c^2} = Z$ , then the given system of equations is  $X + Y - Z = 1$ ,  $X - Y + Z = 1$ ,  $-X + Y + Z = 1$ .

The coefficient matrix is 
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$



Clearly  $|A| \neq 0$ . So the given system of equations has unique solution.

- **21.** (b) Since *A* and *B* are square matrix |AB| = |A||B|; |A| = -10, |B| = -10, |AB| = 100.
- **22.** (a) Given |A| = 6 and  $B = 5A^2$  $|B| = 5|A|^2 = 5 \times 36 = 180$ .

**23.** (b) 
$$|A_{i}| = \begin{vmatrix} a^{i} & b^{i} \\ b^{i} & a^{i} \end{vmatrix} = (a^{i})^{2} - (b^{i})^{2}, |a| < 1, |b| < 1$$

$$\sum_{i=1}^{\infty} |A_{i}| = (a^{2} - b^{2}) + (a^{4} - b^{4}) + (a^{6} - b^{6}) + \dots$$

$$= (a^{2} + a^{4} + a^{6} + \dots) - (b^{2} + b^{4} + b^{6} + \dots)$$

$$= \frac{a^{2}}{1 - a^{2}} - \frac{b^{2}}{1 - b^{2}} = \frac{a^{2} - a^{2}b^{2} - b^{2} + a^{2}b^{2}}{(1 - a^{2})(1 - b^{2})}$$

$$= \frac{a^{2} - b^{2}}{(1 - a^{2})(1 - b^{2})}.$$

$$(1-a^{2})(1-b^{2})$$
**24.** (c) 
$$\begin{bmatrix} 4 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, (By R_{3} \to R_{3} - 2R_{2})$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, (By C_{1} \to C_{1} - 4C_{2} - 3C_{3})$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

(Replace  $C_1$  by  $C_2$  and then Replace  $C_2$  by  $C_3$ ) Hence rank of matrix is 2.

**25.** (c) 
$$A^{2} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$$

$$A^{n} = \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$$

$$nA = \begin{bmatrix} n & 0 \\ n & n \end{bmatrix}, (n-1)I = \begin{bmatrix} n-1 & 0 \\ 0 & n-1 \end{bmatrix}$$

$$nA - (n-1)I = \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix} = A^{n}.$$

#### **Critical Thinking Questions**

**1.** (b) 
$$A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix} = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
;  $\alpha = a^2 + b^2$ ;  $\beta = 2ab$ 

**2.** (d) 
$$\Delta = \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix}$$

$$= abc \begin{vmatrix} \frac{1}{a} + 1 & \frac{1}{b} & \frac{1}{c} \\ \frac{1}{a} & \frac{1}{b} + 1 & \frac{1}{c} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} + 1 \end{vmatrix}, \text{ by } C_2 \to \frac{1}{b}C_2$$

$$C_3 \to \frac{1}{c}C_3$$

$$= abc \begin{pmatrix} 1+\sum\frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ 1+\sum\frac{1}{a} & \frac{1}{b}+1 & \frac{1}{c} \\ 1+\sum\frac{1}{a} & \frac{1}{b} & \frac{1}{c}+1 \end{pmatrix}$$
by

$$C_1 \to C_1 + C_2 + C_3$$

$$= ab\left(1 + \sum \frac{1}{a}\right) \begin{vmatrix} 1 & \frac{1}{b} & \frac{1}{c} \\ 1 & \frac{1}{b} + 1 & \frac{1}{c} \\ 1 & \frac{1}{b} & \frac{1}{c} + 1 \end{vmatrix}$$

[By taking  $\sum \frac{1}{a} + 1$  ascommon

$$\Delta = ab\left(1 + \sum \frac{1}{a}\right) \begin{vmatrix} 1 & \frac{1}{b} & \frac{1}{c} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}, \text{ by } \begin{matrix} R_2 \to R_2 - R_1 \\ R_3 \to R_3 - R_1 \end{matrix}$$

$$= ab\left(1 + \frac{1}{a} + \frac{1}{a} + \frac{1}{a} + \frac{1}{a}\right) 1 \text{ (by expansion along)}$$

=  $ab\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$ .1, (by expansion along  $C_1$ )

$$1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$$

But a,b,c are non-zero and hence the product abc cannot be zero. So the only alternative is that  $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = -1$ .

3. (c) 
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = a(bc - a^2) - b(b^2 - ca) + d(ab - c^2)$$
$$= -a^3 - b^3 - c^3 + 3abc = -1[a^3 + b^3 + c^3 - 3abd]$$
$$= -[(a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca)] \quad k = -1.$$

4. (b) 
$$\Delta = \begin{vmatrix} p & b & c \\ p+a & q+b & 2c \\ a & b & r \end{vmatrix} = 0$$
 Applying  $R_2 \to R_2 - R_1$ 

$$= \begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix} = 0$$
Applying  $R_2 \to R_2 - R_1$  and  $R_3 \to R_3 - R_1$ 

$$\begin{vmatrix} p & b & c \\ a-p & q-b & 0 \\ a-p & 0 & r-c \end{vmatrix} = 0$$

On expansion we get,

$$p(q-b)(r-c)-b(a-p)(r-c)-d(q-b)(a-p)=0$$

$$(p-a)(q-b)(r-c)\left[\frac{p}{(p-a)}+\frac{b}{(q-b)}+\frac{c}{(r-c)}\right]=0$$

$$(p-a)(q-b)(r-c)\left[\frac{p}{(p-a)}+\frac{q}{(q-b)}-1+\frac{r}{(r-c)}-1\right]=0$$

 $\therefore p \neq a, q \neq b, r \neq c$ 

$$\therefore \frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 2.$$

5. (b) 
$$\Delta = \begin{vmatrix} 1 & \cos(\beta - \alpha) & \cos(\gamma - \alpha) \\ \cos(\alpha - \beta) & 1 & \cos(\gamma - \beta) \\ \cos(\alpha - \gamma) & \cos(\beta - \gamma) & 1 \end{vmatrix}$$

$$\cos^2 \alpha + \sin^2 \alpha \qquad \cos\beta \cos\alpha + \sin\beta \sin\alpha \qquad \cos\alpha \cos\gamma + \sin\alpha \sin\gamma$$

$$= \cos\alpha \cos\beta + \sin\alpha \sin\beta \qquad \cos^2 \beta + \sin^2 \beta \qquad \cos\beta \cos\gamma + \sin\beta \sin\gamma$$

$$\cos\alpha \cos\gamma + \sin\alpha \sin\gamma \qquad \cos\beta \cos\gamma + \sin\beta \sin\gamma \qquad \cos^2 \beta + \sin^2 \beta$$

$$= \begin{vmatrix} \cos\alpha & \sin\alpha & 0 \\ \cos\beta & \sin\beta & 0 \\ \cos\gamma & \sin\gamma & 0 \end{vmatrix} \begin{vmatrix} \cos\alpha & \sin\alpha & 0 \\ \cos\beta & \sin\beta & 0 \\ \cos\gamma & \sin\gamma & 0 \end{vmatrix} = \begin{vmatrix} \sin\alpha & \cos\alpha & 0 \\ \sin\beta & \cos\beta & 0 \\ \sin\gamma & \cos\gamma & 0 \end{vmatrix}.$$

**6.** (a) Equation given, 
$$\begin{vmatrix} x+\alpha+\beta+\gamma & \beta & \gamma \\ x+\alpha+\beta+\gamma & x+\beta & \alpha \\ x+\alpha+\beta+\gamma & \beta & x+\gamma \end{vmatrix} = 0,$$
$$[C_1 \to C_1 + (C_2 + C_3)]$$

or 
$$(x + \alpha + \beta + \gamma)\begin{vmatrix} 1 & \beta & \gamma \\ 1 & x + \beta & \alpha \\ 1 & \beta & x + \gamma \end{vmatrix} = 0$$

or 
$$(x+\alpha+\beta+\gamma) \begin{vmatrix} 1 & \beta & \gamma \\ 0 & x & \alpha-\gamma \\ 0 & 0 & x \end{vmatrix} = 0$$

$$\begin{bmatrix} R_2 \to R_2 - R_1 \\ R_3 \to R_3 - R_1 \end{bmatrix}$$

or 
$$(x + \alpha + \beta + \gamma)[x^2 - 0] = 0$$

or 
$$x^2(x+\alpha+\beta+\gamma)=0$$

$$x = 0$$
 or  $x = -(\alpha + \beta + \gamma)$ .

7. (d) Given, One root = 5 and equation 
$$\begin{vmatrix} x & 3 & 7 \\ 2 & x & -2 \\ 7 & 8 & x \end{vmatrix} = 0$$
.

Expanding the given equation, we get

$$x[x^2 - (-16)] - 3[2x - (-14)] + 7[16 - 7x] = 0$$

$$x^3 + 16x - 6x - 42 + 112 - 49x = 0$$

$$x^3 - 39x + 70 = 0$$

Since 5 is the one root of given equation, therefore  $x^3 - 5x^2 + 5x^2 - 25x - 14x + 70 = 0$ 

$$x^{2}(x-5)+5x(x-5)-14(x-5)=0$$

$$(x-5)(x^2+5x-14)=0$$

$$(x-5)(x-2)(x+7)=0$$
 or  $x=5,2$  and  $-7$ .

- **8.** (b) We can write the given determinant as a product of two determinants as follows  $\Delta = 0.0 = 0$  (on simplification), which is independent of *a*, *b*, *c* and *d*.
- **9.** (a) Applying  $C_1 \rightarrow C_1 + C_2 + C_3$ , we get

$$\Delta = \begin{vmatrix} 1 + \omega^n + \omega^{2n} & \omega^n & \omega^{2n} \\ 1 + \omega^n + \omega^{2n} & 1 & \omega^n \\ 1 + \omega^n + \omega^{2n} & \omega^{2n} & 1 \end{vmatrix} = \begin{vmatrix} 0 & \omega^n & \omega^{2n} \\ 0 & 1 & \omega^n \\ 0 & \omega^{2n} & 1 \end{vmatrix} = 0,$$

(:  $1 + \omega^n + \omega^{2n} = 0$ , if *n* is not multiple of 3).

**10.** (d) Given, 
$$\Delta = \begin{vmatrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a \end{vmatrix} = 0.$$

Expanding the given determinant, we get  $a(a^2 - 0) - b(0 - b^2) = 0$  or  $a^3 + b^3 = 0$ .

This equation may be written as  $\left(\frac{a}{b}\right)^3 = -1$ .

Therefore,  $\left(\frac{a}{b}\right)$  is one of the cube roots of – 1.

**11.** (a) Given, in 
$$\triangle ABC \begin{vmatrix} 1 & a & b \\ 1 & c & a \\ 1 & b & c \end{vmatrix} = 0$$

$$1(c^2 - ab) - a(c - a) + b(b - c) = 0$$

$$a^2 + b^2 + c^2 - ab - bc - ca = 0$$

$$2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0$$

$$(a^2 + b^2 - 2ab) + (b^2 + c^2 - 2bb) + (c^2 + a^2 - 2cb) = 0$$

$$(a-b)^2 + (b-c)^2 + (c-a)^2 = 0$$

Here, sum of squares of three members can be zero if and only if a = b = c

 $\triangle ABC$  is equilateral  $\angle A = \angle B = \angle C = 60^{\circ}$ 

 $\therefore \operatorname{sirf} A + \operatorname{sirf} B + \operatorname{sirf} C = (\operatorname{sirf} 60^\circ + \operatorname{sirf} 60^\circ + \operatorname{sirf} 60^\circ)$ 

$$=3\times\left(\frac{\sqrt{3}}{2}\right)^2=\frac{9}{4}.$$

12. (a) 
$$\begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix}$$

= 
$$(1 - \log_z y \log_v z) - \log_x y (\log_v x - \log_z x \log_v z)$$

$$+\log_x z(\log_x x \log_z y - \log_z x)$$

$$= (1-1)-(1-\log_x y\log_v x)+(\log_x z\log_z x-1)=0$$

{Since 
$$\log_{\nu} \nu \log_{\nu} x = 1$$
}.

**13.** (d) Let *A* be the first term and *R* be the common ratio of the G.P. then,

$$/=AR^{p-1} \Rightarrow \log/=\log A + (p-1)\log R$$
 ....(i)

$$m = AR^{q-1} \Rightarrow \log m = \log A + (q-1)\log R$$
 .....(ii)



 $n = AR^{r-1} \Rightarrow \log n = \log A + (r-1)\log R$  .....(iii) Multiplying (i), (ii) and (iii) by (q-r),(r-p) and (p-q) respectively and adding we get,  $\log l(q-r) + \log m(r-p) + \log n(p-q) = 0$  $\therefore \Delta = 0$ .

**14.** (d) Given 
$$x^a y^b = e^m, x^c y^d = e^n$$

$$\Rightarrow a \log x + b \log y = m \text{ and } c \log x + d \log y = n$$
By Cramer's rule,  $\log x = \frac{\Delta_1}{\Delta_3}$  and  $\log y = \frac{\Delta_2}{\Delta_3}$ 

$$x = e^{\Delta_1/\Delta_3} \text{ and } y = e^{\Delta_2/\Delta_3}.$$

**15.** (a) 
$$\Delta = -(a^3 + b^3 + c^3 - 3aba)$$
  

$$= -(a+b+c)(a^2 + b^2 + c^2 - ab-bc-ca)$$

$$= -\frac{1}{2}(a+b+c)[(a-b)^2 + (b-c)^2 + (c-a)^2],$$

which is clearly negative because of the given conditions.

**16.** (c) The system of homogeneous equations 
$$x-cy-bz=0$$
$$cx-y+az=0$$
$$bx+ay-z=0$$

has a non-trivial solution (since x, y, z are not all zero)

If 
$$\Delta = \begin{vmatrix} 1 & -c & -b \\ c & -1 & a \\ b & a & -1 \end{vmatrix} = 0$$
  
*i.e.*, if  $(1-a^2) + c(-c - ab) - b(ac + b) = 0$   
*i.e.*, if  $a^2 + b^2 + c^2 + 2abc = 1$ .

- **17.** (a) If *A* is square matrix of order 3, then  $|-2A| = (-2)^3 |A| = -8|A|$ .
- **18.** (c) As the system of equations has a non-trivial solution

$$\Rightarrow \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} a & 1 & 1 \\ 1-a & b-1 & 0 \\ 1-a & 0 & c-1 \end{vmatrix} = 0, \text{ by } \begin{cases} R_2 \to R_2 - R_1 \\ R_3 \to R_3 - R_1 \end{cases}$$

$$\Rightarrow a(b-1)(c-1)-1.(1-a)(c-1)-1.(1-a)(b-1)=0$$

$$\Rightarrow \frac{a}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0$$

$$\Rightarrow \frac{1}{1-a} - 1 + \frac{1}{1-b} + \frac{1}{1-c} = 0$$

$$\Rightarrow \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1.$$

**19.** (d) We know 
$$A.adJ(A) = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix}$$
$$|A| . |adJ(A)| = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix}$$

$$|A|.adj|A| = |A|^3$$

Now question gives |A| = 8

8.ad/
$$|A| = 8^3$$
 or ad/ $|A| = 8^2 = (2^3)^2 = 2^6$ .

**20.** (b,d) 
$$A = \begin{vmatrix} -1 & 2 & 5 \\ 2 & -4 & a-4 \\ 1 & -2 & a+1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & a+6 \\ 0 & 0 & -a-6 \\ 1 & -2 & a+1 \end{vmatrix}$$
  
(Operating  $R_1 \to R_1 + R_3$  and  $R_2 \to R_2 - 2R_3$ )
$$= \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & -a-6 \\ 1 & -2 & a+1 \end{vmatrix}$$
 (Operating  $R_1 \to R_1 + R_2$ )

When 
$$a = -6$$
,  $A = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & -2 & -5 \end{vmatrix}$ ,  $\therefore \rho(A) = 1$ 

Where  $\rho(A)$  = number of non-zero rows

When 
$$a = 6$$
,  $A = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & -12 \\ 1 & -2 & 7 \end{vmatrix}$ ,  $\therefore \rho(A) = 2$   
When  $a = 1$ ,  $A = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & -7 \\ 1 & -2 & 2 \end{vmatrix}$ ,  $\therefore \rho(A) = 2$ 

When 
$$a=2$$
,  $A=\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -8 \\ 1 & -2 & 3 \end{bmatrix}$ ,  $\therefore \rho(A)=2$ .

**21.** (c) Since 
$$A^2 = A$$
.  $A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$ 
$$= \begin{bmatrix} \cos2\alpha & \sin2\alpha \\ -\sin2\alpha & \cos2\alpha \end{bmatrix}.$$

**22.** (d) 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 3 & -1 \\ 3 & 1 & 2 \end{bmatrix}$$
  $AA = A^2 = \begin{bmatrix} 6 & 11 & 7 \\ -11 & 4 & -11 \\ 7 & 11 & 12 \end{bmatrix}$ ,  $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ , then,  $I = \begin{bmatrix} 15 & 11 & 7 \\ -11 & 13 & -11 \\ 7 & 11 & 21 \end{bmatrix}$ .

**23.** (b) 
$$|A| = 1 + \tan^2 \frac{\theta}{2} = \sec^2 \frac{\theta}{2}$$
  
 $AB = I \implies B = IA^{-1}$ 

$$\frac{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan\frac{\theta}{2} \\ \tan\frac{\theta}{2} & 1 \end{bmatrix}}{\sec^2\frac{\theta}{2}} = \cos^2\frac{\theta}{2}.A^T.$$

**24.** (b) 
$$(A-2I)(A-3I) = \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O.$$

**25.** (d) 
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$

$$A^{2} = A. A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 3 & 0 \\ -3 & 2 & -2 \\ 6 & 4 & 5 \end{bmatrix}$$

$$A. A^{2} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & 0 \\ -3 & 2 & -2 \\ 6 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 11 & 1 \\ -9 & -2 & -7 \\ 21 & 11 & 7 \end{bmatrix}$$

$$A^3 - 3A^2 - A + 9I_3 = 0.$$

**26.** (c) 
$$\frac{3X+2Y=I}{2X-Y=O} \Rightarrow \frac{3X+2Y=I}{4X-2Y=O} \Rightarrow \frac{7X=I}{X=\frac{1}{7}I}$$

(Solving simultaneously)

Therefore from (i),  $2Y = I - \frac{3}{7}I = \frac{4}{7}I \Rightarrow Y = \frac{2}{7}I$ .

- **27.** (c) It is obvious.
- **28.** (a)  $A_{3\times 4} \Rightarrow A_{4\times 3}$ ; Now AB defined  $\Rightarrow B$  is  $3\times p$  Again  $B_{3\times p}A_{4\times 3}$  defined  $\Rightarrow p=4$  $\therefore B$  is  $3\times 4$ .

**29.** (c) 
$$A' = [1 2 3]$$

therefore

$$AA' = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}.$$

- **30.** (b) It is a fundamental concept.
- **31.** (c) Since

$$A^{2} = A.A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} = \begin{bmatrix} a^{2} & 0 & 0 \\ 0 & b^{2} & 0 \\ 0 & 0 & c^{2} \end{bmatrix}$$

And 
$$A^3 = \begin{bmatrix} a^3 & 0 & 0 \\ 0 & b^3 & 0 \\ 0 & 0 & c^3 \end{bmatrix}, \dots$$

$$A^{n} = A^{n-1}.A = \begin{bmatrix} a^{n-1} & 0 & 0 \\ 0 & b^{n-1} & 0 \\ 0 & 0 & c^{n-1} \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$

$$= \begin{bmatrix} a^n & 0 & 0 \\ 0 & b^n & 0 \\ 0 & 0 & c^n \end{bmatrix}.$$

**Note:** Students should remember this question as a formula.

**32.** (d) Let 
$$A = \begin{bmatrix} 3 & 5 & 7 \\ 2 & -3 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
,  $|A| = 3(-7) - 5(3) + 7(5) = -1$ 

$$Adj(A) = \begin{bmatrix} -7 & -3 & 26 \\ -3 & -1 & 11 \\ 5 & 5 & -19 \end{bmatrix}$$

$$A^{-1} = \frac{Adj(A)}{|A|}$$

$$A^{-1} = \begin{bmatrix} 7 & 3 & -26 \\ 3 & 1 & -11 \\ -5 & -5 & 19 \end{bmatrix}.$$

**33.** (c) 
$$A(z) = A\left(\frac{x+y}{1+xy}\right) = \left[\frac{1+xy}{(1-x)(1-y)}\right]$$

$$\begin{bmatrix} 1 & -\left(\frac{x+y}{1+xy}\right) \\ -\left(\frac{x+y}{1+xy}\right) & 1 \end{bmatrix}$$

$$\therefore A(x). A(y) = A(z).$$

**34.** (c) 
$$|A| = -20$$

$$\therefore a_{23} = \frac{\text{Cofactorof } 6}{-20} = \frac{-8}{20} = \frac{-2}{5}.$$

**35.** (a) We have

$$F(\alpha) F(-\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

$$F(-\alpha) = [F(\alpha)]^{-1}$$
.

**36.** (b) Given, 
$$B = -A^{-1}BA$$

$$AB = -AA^{-1}BA = -IBA = -BA$$

$$AB = -BA$$

Now 
$$(A + B)^2 = (A + B)(A + B) = A^2 + AB + BA + B^2$$
  
=  $A^2 + B^2$  [:  $BA = -AB$ ]

Thus, 
$$(A + B)^2 = A^2 + B^2$$
.

37. (d) Given, Square matrices of 2 × 2 over the real numbers. We know that as inverse axiom may not exist for all 2 × 2 matrices, therefore the set of all 2 × 2 matrices over the real numbers is not a group.

**38.** (b) 
$$AB = AC \Rightarrow B = C$$

If  $A^{-1}$  exists  $\Leftrightarrow A$  is a non-singular matrix.

**39.** (a) In a skew-symmetrix matrix  $a_{ij} = -a_{ji} + i$ , j = 1, 2, 3 for j = i,  $a_{ij} = -a_{ji}$  each  $a_{ij} = 0$ .

Hence the matrix  $\begin{bmatrix} 0 & 4 & 5 \\ -4 & 0 & -6 \\ -5 & 6 & 0 \end{bmatrix}$  is skew-

symmetric.

**40.** (c)  $(A - A^{T})^{T} = A^{T} - (A^{T})^{T}$ =  $A^{T} - A$  [::  $(A^{T})^{T} = A$ ] =  $-(A - A^{T})$ 

So,  $A - A^T$  is a skew symmetric matrix.

**41.** (c)  $A^2 = A$ .  $A = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$  $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$ 

 $\therefore$  Matrix A is nilpotent of order 2.

**42.** (a) Since for given  $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$ 

 $AA^T = A^TA = I_{(3\times3)}$ . Thus *A* is orthogonal.

**43.** (a) As we know, a square matrix  $A = [a_{ij}]$  is called an upper triangular matrix if  $a_{ij} = 0$  for all i > i.

Such as, 
$$A = \begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 5 & 1 & 3 \\ 0 & 0 & 2 & 9 \\ 0 & 0 & 0 & 5 \end{bmatrix}_{4 \times 4}$$

Number of zeros =  $\frac{4(4-1)}{2} = 6 = \frac{r(n-1)}{2}$ .

**44.** (c) Let  $A = \begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 1 \end{bmatrix}$ 

and 
$$A^T = \begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 1 \end{bmatrix}$$

and 
$$AA^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
,

 $|A| = \pm 1$ 

**45.** (d)  $n = 2 \times 3 \times 4 = 24$ .