

低功耗二氧化碳传感器

(型号: MG-812)

使用说明书

版本号: 1.3

实施日期: 2017-03-06

郑州炜盛电子科技有限公司 Zhengzhou Winsen Electronic Technology Co., Ltd

声明

本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可,本 说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音 等任何手段进行传播。

感谢您使用本公司的系列产品。为使您更好地使用本公司产品,减少因使用不当造成的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。如果您没有依照本说明书使用或擅自去除、拆解、更换传感器内部组件,本公司不承担由此造成的任何损失。

您所购买产品的颜色、款式及尺寸以实物为准。

本公司秉承科技进步的理念,不断致力于产品改进和技术创新。因此,本公司保留任何产品改进而不预先通知的权力。使用本说明书时,请确认其属于有效版本。同时,本公司鼓励使用者根据其使用情况,探讨本产品更优化的使用方法。

请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。

郑州炜盛电子科技有限公司

MG-812 低功耗二氧化碳传感器

产品描述

MG-812 是采用固体电解质电池原理来检测 CO₂ 的半导体氧化物化学传感器。当传感器保持在一定的工作温度,置于 CO₂气氛中时,电池正负极发生电极反应,传感器敏感电极和参考电极之间产生电动势,输出信号电压与 CO₂ 浓度的对数成反比例线性关系,通过测试信号电压的变化,可检测到 CO₂ 浓度的变化。

传感器特点

MG-812 气体传感器,具有较小的体积,较低的功耗,对 CO_2 有较高的灵敏度和良好的选择性,受温湿度的变化影响较小,传感器信号具有良好的稳定性和重复性。

主要应用

应用于空气质量控制系统,发酵过程控制系统和温室等场所的 CO_2 浓度检测。

技术指标

表1

424 14H 14	· • • • • • • • • • • • • • • • • • • •
产品型号	MG-812
标准封装	金属外壳
检测气体	二氧化碳
检测范围	0~10000ppmCO ₂
加热电压 V _H	5.0±0.1 V
加热电阻 R _H	60.0±5Ω
加热电流 I _H	85±10mA
加热功耗 P _H	420±50mW
使用温度 Tao	-20∼50°C
储存温度	-20∼70°C
零点 EM F	200~400mV(在
	400ppmCO ₂ 中)
输出信号ΔEM F	≧ 20mV
	EMF (400ppmCO ₂) -EMF
	(1000ppmCO ₂)

基本电路

90.0°

图1 传感器结构图

图 2 传感器测试电路 测试电路中,运放的内阻应大于 $100G\Omega$, 否则会影响传感器性能

传感器特性描述

340 320 400pmsCO2 400pmsCO2 400pmsCO2 200 200 100 20 30 40 50 60 X 时间 /s

图 3 传感器灵敏度特性曲线

图 4 传感器响应恢复特性曲线

注意事项

1 必须避免的情况

1.1 暴露于可挥发性硅化合物蒸气中

传感器要避免暴露于硅粘接剂、发胶、硅橡胶、腻子或其它存在可挥发性硅化合物的场所。如 果传感器的表面吸附了硅化合物蒸气,传感器的敏感材料会被硅化合物分解形成的二氧化硅包裹, 抑制传感器的敏感性,并且不可恢复。

1.2 高腐蚀性的环境

传感器暴露在高浓度的腐蚀性气体(如 H_2S , SO_x , Cl_2 ,HC1 等)中,不仅会引起加热材料及传感器引线的腐蚀或破坏,并会引起敏感材料性能发生不可逆的劣变。

1.3 碱、碱金属盐、卤素的污染

传感器被碱金属尤其是盐水喷雾污染后,或暴露在卤素如氟利昂中,也会引起性能劣变。

1.4 接触到水

以诚为本、信守承诺 创造完美、服务社会

溅上水或浸到水中会造成传感器敏感特性下降。

1.5 结冰

水在传感器敏感材料表面结冰会导致敏感层碎裂而丧失敏感特性。

1.6 施加电压过高

如果给传感器或加热器施加的电压高于规定值,即使传感器没有受到物理损坏或破坏,也会造成引线和/或加热器损坏,并引起传感器敏感特性下降。

1.7 电压加错管脚

对 4 脚型的传感器, 1、3 为加热电极, 不分正负极; 2、4 为测试用电极, 具有方向性, 2 为信号电压的正极, 4 为信号电压的负极。如果外加电源直接加在测试电极上, 会导致传感器损坏; 如果外加电源一端加在测试电极, 另一端加在加热电极, 则取不到信号。(见图 1)

2 尽可能避免的情况

2.1 凝结水

在室内使用条件下,轻微凝结水对传感器性能会产生轻微影响。但是,如果水凝结在敏感层表面并保持一段时间,传感器特性则会下降。

2.2 处于有机气体中

无论传感器是否通电,在有机气体中(如酒精、丙酮等)长期放置,均会影响传感器特性。

2.3 长期贮存

传感器在不通电情况下长时间贮存,会产生可逆性漂移,这种漂移与贮存环境有关。传感器应 贮存在不含可挥发性硅化合物的密封袋中。经长期贮存的传感器,在使用前需要更长时间通电以使 其达到稳定。贮存时间及对应的老化时间建议如下表所示。

表	2

贮存时间	建议老化时间
1 个月以下	不低于 48 小时
1-6 个月	不低于 72 小时
6 个月以上	不低于 168 小时

2.4 长期暴露在极端环境中

无论传感器是否通电,长时间暴露在极端条件下,如高湿、高温或高污染等极端条件,传感器性能将受到严重影响。

2.5 振动

频繁、过度振动会导致传感器内部引线产生共振而断裂。在运输途中及组装线上使用气动改锥/ 超声波焊接机会产生此类振动。

2.6 冲击

如果传感器受到强烈冲击或跌落会导致其引线断裂。

- 2.7 使用条件:
- 2.7.1 对传感器来说手工焊接为最理想的焊接方式,建议焊接条件如下:
 - 助焊剂:含氯最少的松香助焊剂
 - 恒温烙铁
 - 温度: 250℃
 - ●时间: 不大于3秒
- 2.7.2 使用波峰焊时应满足以下条件:
 - 助焊剂:含氯最少的松香助焊剂
 - 速度: (1-2) 米/分钟
 - 预热温度: (100±20) °C
 - 焊接温度: (250±10) °C
 - ●1次通过波峰焊机
 - 违反以上使用条件将使传感器特性下降。

郑州炜盛电子科技有限公司

地址: 郑州市高新技术开发区金梭路 299 号

电话:0371-60932955/60932966/60932977

传真:0371-60932988 微信号:winsensor

E-mail:sales@winsensor.com

Http://www.winsensor.com

