

Algorithms and Complexity

Introduction to complexity analysis

Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Complexity Analysis

- Definition
 - Forecast of resources (memory, time) needed by the algorithm for execution
- Features

initial conditions

- Machine-independent
- Assumption
 - Sequential single-processor model (traditional architecture)

no parelle computing

➤ Independent of the input data of a particular instance of the problem

worst case sema

Complexity Analysis

- It depends on the size n of the problem
- A lower complexity may compensate hardware efficiency
- Examples
 - ➤ Integer multiplication: Number of bits of the operands
 - > Sorting algorithm: Number of data to sort
 - **>** ...
- Output
 - > T(n): execution time
 - > S(n): memory occupation

A Simple Counting Problem

- Write a program able to
 - > Read an integer value N
 - \blacktriangleright Print-out the number M of ordered couples (i, j) such that i and j are integer values and $1 \le i \le j \le N$

Example

- ➤ Input: N=4
- > Generated couples
 - **(**1,1)(1,2)(1,3)(1,4) (2,2)(2,3)(2,4) (3,3)(3,4)(4,4)
- ➤ Output: M = 10

```
int count_ver1 (int N) {
  int i, j, sum;
                                                It generates all pairs:
                                                   1 \le i \le j \le N
  sum = 0;
  for (i=0; i<=N; i++) {
    for (j=i; j<=N; j++) {
                                                It counts-them up
       sum++;
  return sum;
                                                It returns the result
```

```
int count_ver1 (int N) {
  int i, j, sum;
  sum = 0;
                                              1 + (N + 1) + N
  for (i=0; i<=N; i++) {
                                           \sum_{i=1}^{N} \frac{\text{checking part increase}}{(N-i+2)+(N-i+1]}
     for (j=i; j<=N; j++) {</pre>
                                       outer loop
        sum++;
                                               (N-i+1)
  return sum;
```

$$T(N) = 4 + 2N + \sum_{i=1}^{N} (5 + 3N - 3i)$$

$$T(N) = 4 + 2N + \sum_{i=1}^{N} (5) + \sum_{i=1}^{N} (3N) - \sum_{i=1}^{N} (3i)$$

 $3N^2$

$$T(N) = 4 + 7N + 3N^2 - 3\sum_{i=1}^{N} i$$

$$T(N) = 4 + 7N + 3N^2 - 3\frac{N(N+1)}{2}$$

$$T(N) = 1.5N^2 + 5.5N + 4$$

$$1$$

$$1 + (N+1) + N$$

$$\sum_{i=1}^{N} [1 + (N-i+2) + (N-i+1])$$

$$\sum_{i=1}^{N} (N-i+1)$$
1

Finite arithmetic progression $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$

```
int count_ver2 (int N) {
  int i, sum;

sum = 0;

for (i=1; i<=N; i++) {
  sum = sum + (N-i+1);
  }

return sum;
}</pre>
```

```
int count_ver1 (int N) {
   int i, j, sum;
   sum = 0;
   for (i=0; i<=N; i++) {
      for (j=i; j<=N; j++) {
            sum++;
      }
    }
   return sum;
}</pre>
```

It generates all pairs: $1 \le i \le j \le N$

$$T(N)=6N+4$$

$$1$$

$$1 + (N+1) + N$$

$$\sum_{i=1}^{N} (4) = 4N$$

The for cycle computes

```
int count_ver2 (int N) {
  int i, sum;

sum = 0;

for (i=1; i<=N; i++) {
  sum = sum + (N-i+1);
  }

return sum;
}</pre>
```

$$\sum_{i=1}^{N} (N - i + 1) =$$

$$= N^{2} + N - \sum_{i=1}^{N} i =$$

$$= N(N + 1) - \frac{N(N+1)}{2}$$

$$= \frac{N(N+1)}{2}$$

which can be used to substitute the entire cycle

The for cycle computes

```
 > \sum_{i=1}^{N} (N-i+1) = \frac{N(N+1)}{2}
```

> which can be used to substitute the entire cycle

```
int count_ver3 (int N) {
  return N * (N+1) / 2;
}
```

```
int count_ver2 (int N) {
  int i, sum;
  sum = 0;
  for (i=1; i<=N; i++) {
    sum = sum + (N-i+1);
  }
  return sum;
}</pre>
```

It generates all pairs: $1 \le i \le j \le N$

- The for cycle computes
 - $\sum_{i=1}^{N} (N-i+1) = \frac{N(N+1)}{2}$
 - > which can be used to substitute the entire cycle

```
int count_ver3 (int N) {
  return N * (N+1) / 2;
}
T(N) = 4
```

3 Tradus

Summary

Algorithm	T(N)	Order of T(N)	
Version 1	$1.5N^2 + 5.5N + 4$	N^2	
Version 2	6N + 4	N	
Version 3	4	constant	

Algorithm Classification

	Asymptotic behavior	Algorithm Class	
_	1	Constant	
	log n	Logarithmic	ا
	n	Linear	
	n log n	Linearithmic	
	n ²	Quadratic	l
	n3	Cubic	
	2 ⁿ	Exponential	

Summary

Hypothesis

> 1 operation = 1 nsec = 10^{-9} sec

Wall-clock (elapsed) time

Asymptotic behavior	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷
N	1μs	10 μs	100μs	1ms	10ms
20 n	20μs	200μs	2ms	20ms	200ms
n log n	9.96µs	132μs	1.66ms	19.9ms	232ms
20 n log n	199μs	2.7ms	32ms	398ms	4.6sec
n ²	1ms	100ms	10s	17min	1.2day
20 n ²	20ms	2s	3.3min	5.6h	23day
N^3	1s	17min	12day	32years	32 millenium

Some more examples

Discrete Fourier Transform

- Decomposition of a N-sample waveform into periodic components
- > Applications: DVD, JPEG, astrophysics,
- > Trivial algorithm: Quadratic (N²)
- > FFT (Fast Fourier Transform): Linearitmic (N log N)

Simulation of N bodies

- Simulates gravity interaction among N bodies
- > Trivial algorithm: Quadratic (N²)
- Barnes-Hut algorithm: Linearitmic (N log N)

Worst-case Asymptotic Analysis

Goal

- Guess an upper-bound for T(n) for an algorithm on n data in the worst possible case
- > Asymptotic
 - For small n, complexity is irrelevant
 - Understand behaviour for $n \to \infty$
- Why worst-case analysis?
 - Conservative guess
 - Worst case is very frequent
 - Average case
 - Either it coincides with the worst case
 - It is not definable, unless we resort to complex hypotheses on data

O Asymptotic Notation

Definition

$$T(n) = O(g(n)) \Leftrightarrow \exists c>0, \exists n_0>0 \text{ such that } \forall n \geq n_0$$

 $0 \leq T(n) \leq cg(n)$

g(n) = loose upper bound

O Asymptotic Notation

Examples

- ightharpoonup T(n) = 3n+2 = O(n)
 - c=4 and $n_0=2$
- $ightharpoonup T(n) = 10n2+4n+2 = O(n^2)$
 - $c=11 \text{ and } n_0=5$
- $ightharpoonup T(n) = 3n+3 = O(n^2)$
 - c=3 and $n_0=2$

Theorem

- \rightarrow If T(n) = $a_m n^m + + a_1 n + a_0$
- \rightarrow Then T(n) = O(n^m)

Ω Asymptotic Notation

Definition

$$T(n) = \Omega(g(n)) \Leftrightarrow \exists c>0, \exists n_0>0 \text{ such that } \forall n \geq n_0$$
$$0 \leq c \ g(n) \leq T(n)$$

g(n) = loose lower bound for T(n)

Ω Asymptotic Notation

Examples

$$T(n) = 3n+3 = \Omega(n)$$

•
$$c=3$$
 and $n_0=1$

$$ightharpoonup T(n) = 10n^2 + 4n + 2 = \Omega(n^2)$$

•
$$c=1$$
 and $n_0=1$

Theorem

$$ightharpoonup If T(n) = a_m n^m + + a_1 n + a_0$$

$$ightharpoonup$$
 Then T(n) = $\Omega(n^m)$

⊙ Asymptotic Notation

Definition

$$T(n) = \Theta(g(n)) \Leftrightarrow \exists \ c_1, c_2 > 0, \ \exists \ n_0 > 0 \ \text{such that} \ \forall n \geq n_0 \\ 0 \leq c_1 \ g(n) \leq T(n) \leq c_2 \ g(n)$$

g(n) = tight asymptotic bound for T(n)

⊙ Asymptotic Notation

Examples

- > $T(n) = 3n+2 = \Theta(n)$ • c1=3, c2=4 and n0=2
- $ightharpoonup T(n) = 3n+2 \neq \Theta(n2)$
- $T(n) = 10n2+4n+2 \neq \Theta(n)$

Theorem

- $ightharpoonup ext{If } T(n) = a_m n^m + + a_1 n + a_0 ext{ then } T(n) = \Theta(n^m)$
- Given two functions g(n) and T(n)
- $ightharpoonup T(n) = \Theta(g(n)) \Leftrightarrow$

$$T(n) = O(g(n))$$
 and $T(n) = \Omega(g(n))$