WHAT IS CLAIMED IS:

1	1. A regulator circuit comprising:
2	a circuit control node;
3	a circuit output node to which a load can be connected, a voltage at said circu
4	output node being determined based on a voltage signal at said circuit control node;
5	an amplifier circuit having a first amplifier input and a second amplifier input
6	and further having an amplifier output, said first amplifier input configured for receiving a
7	reference voltage, said amplifier circuit receiving power from a first voltage source;
8	a source follower circuit having a source follower input node and a source
9	follower output, said amplifier output configured drive said source follower input node, said
10	source follower output coupled to said circuit control node; and
11	a feedback circuit coupled between said circuit output node and said second
12	amplifier input.
1	2. The circuit of claim 1 further comprising a current mirror circuit
2	coupled between said amplifier output and said source follower.
1	3. The circuit of claim 2 further comprising a resistor component coupled
2	between a second voltage source and said source follower input node.
1	4. The circuit of claim 3 wherein said first voltage source is substantially
2	the same potential as the second voltage source.
1	5. The circuit of claim 3 wherein said first voltage source is different
2	from the second voltage source.
1	6. The circuit of claim 1 wherein said source follower circuit comprises a
2	transistor element in series connection with a current source.
1	7. The circuit of claim 1 wherein said amplifier circuit comprises a single
2	op amp component.
1	8. The circuit of claim 1 wherein said amplifier circuit comprises two or
2	more op amp components.

- 1 9. The circuit of claim 1 wherein said feedback path comprises a pair of 2 resistor components configured as a voltage divider. 1 10. The circuit of claim 1 wherein a pass element having a control node an 2 can be connected to said circuit control node, wherein a output node of said pass element can 3 be connected to said circuit output node, whereby said pass element can provide a regulated 4 output voltage at its output node to a load connected thereto. 1 11. The circuit of claim 10 wherein a second voltage source different from 2 said first voltage source can be connected to said load via said pass element, thereby 3 providing a voltage to said load that is independent of said first voltage source. 1 12. A circuit comprising: 2 a first circuit node; 3 a second circuit node, wherein a voltage level thereat varies in accordance 4 with a voltage level of said first circuit node; 5 an error amplifier having a first amplifier input configured to be coupled to a 6 reference voltage, having a second amplifier input, and having an amplifier output, said error 7 amplifier configured to receive power from a first voltage source; 8 a gain stage comprising a source follower circuit in electrical communication 9 with said amplifier output and with said first circuit node; 10 a feedback path coupled between said second node and said second circuit
 - 13. The circuit of claim 12 wherein said gain stage comprises a first transistor component in series with a current source and having a control terminal, said amplifier output configured to drive said control terminal.

amplifier input, said feedback path including a pair of resistors configured as a voltage

- 14. The circuit of claim 13 further comprising a resistor component coupled between a second voltage source and said control terminal.
- 1 15. The circuit of claim 13 further comprising a current mirror coupled 2 between said amplifier output and said gain stage.

11

12

1

2

3

1

2

divider.

1	16. The circuit of claim 15 wherein said current mirror comprises a second
2	transistor component and a third transistor component, each having a control node connected
3	to said amplifier output, each having a first terminal at ground potential, said second
4	transistor component having a second terminal connected to said first node, said third
5	transistor component having a second terminal connected to said control node of said first
6	transistor component.
1	17. The circuit of claim 16 further comprising a resistor component
2	coupled between a second voltage source and said control terminal of said first transistor
3	component.
1	18. The circuit of claim 14 wherein said first voltage source and said
2	second voltage source are substantially of equal DC (direct current) voltage levels.
_	second voltage source are substantially of equal De (direct current) voltage levels.
1	19. The circuit of claim 14 wherein said first voltage source and said
2	second voltage source have different DC voltage levels.
ā	
1	20. The circuit of claim 12 wherein said second circuit node provides a
2	feedback voltage that varies with a voltage across an external load that is coupled thereto.
1	21. The circuit of claim 12 wherein a pass element having a control node
2	an can be connected to said first circuit node, wherein a output node of said pass element can
3	be connected to said second circuit node, whereby said pass element can provide a regulated
4	output voltage at its output node to a load connected thereto.
1	22. The circuit of claim 21 wherein a second voltage source different from
2	said first voltage source can be connected to said load via said pass element, thereby
3	providing a voltage to said load that is independent of said first voltage source.
1	23. A method for regulating an output voltage level of a circuit output
2	node of a circuit comprising:

follower output; and

relative to a reference voltage;

3

4 5

6

7

producing an error signal based on a comparison of said output voltage level

controlling a source follower circuit with said error signal to produce a source

detecting said output voltage level;

8	varying said output voltage level based on said source follower output,
9	wherein a bandwidth at said output node has a pole at a frequency greater than
10	the unity gain frequency of said circuit.
1	24. The method of claim 23 further comprising setting a DC operating
2	point of said source follower circuit via a resistor element coupled to a first voltage source.
1	25. The method of claim 24 further comprising controlling a pass circuit
2	with said source follower output to produce said output voltage level.
1	26. The method of claim 25 wherein controlling said pass circuit with
2	includes applying said source follower output to a control node of said pass circuit, said pass
3	circuit being powered by a second voltage source, wherein a pole at said control node of said
4	pass circuit varies with a pole at said circuit output node.
1	27. The method of claim 26 wherein said first voltage level is different
2	from said second voltage level.
1	28. A voltage regulator circuit comprising:
2	first means for detecting said output voltage level;
3	second means for producing an error signal based on a comparison of said
4	output voltage level relative to a reference voltage, said second means couple to a first
5	voltage source; and
6	a source follower circuit in electrical communication with said first means to
7	produce a source follower output,
8	wherein said output voltage level is varied in response to variances in said
9	source follower output,
10	wherein a bandwidth at said output node has a pole at a frequency greater than
11	the unity gain frequency of said circuit.
1	29. The circuit of claim 28 wherein said source follower output can be
2	connected to a pass element that is connected to a second voltage source, wherein an output
3	of said pass element constitutes said output voltage.
1	30. The circuit of claim 28 further comprising a resistor component

2

connected between said first voltage source and said source follower circuit.