T.E. (Computer) (Semester - V) Examination, May/June 2012 (Revised Course) AUTOMATA LANGUAGE AND COMPUTATION

Duration: 3 Hours Max. Marks: 100 Instructions: 1) Answer any five questions, selecting at least one from each Module. 2) Make necessary assumptions if required. MODULE-I a) Design the deterministic finite automation for the following language: $L = \{|x|_0 \mod 2 \text{ and } |x|_1 \equiv 0 \mod 2 |x \in \{0, 1\}^*\}.$ 8 b) Prove the language L (G) = $\{ww \mid w \in \{0, 1\}^*\}$ is not regular. 6 c) Construct a NFA for the language L (G) = $\{x \in \{01\}^* \mid x \text{ is starting with 1 and } |x| \}$ is divisible by 3}. Validate the string 1001110. 6 2. a) Construct a finite state machine that will subtract 2 binary numbers. b) Using the Kleen's Part 2 theorem find the regular expression for the DFA $M = (\{1, 2, 3\}, \{a, b\}, \delta, 1, \{2, 3\})$ where δ is defined as $\delta \ (1,\,a)=2, \ \delta \ (1,\,b)=3, \ \delta \ (2,\,a)=1, \ \delta \ (2,\,b)=3, \ \delta \ (3,\,a)=2, \ \delta \ (3,\,b)=2.$ c) Construct the DFA for the following languages $L_1 = \{w \mid w \text{ has odd number of b's}\}, L_2 = \{w \mid \text{ each b is followed by at least one a }\}.$ Find the $L_1 \cap L_2$, $L_2 - L_1$ for the above two languages. Draw the minimized DFAs. MODULE-II a) Show that L (G) = {w # t | w is a substring of t where w, t ε {a, b} * } is not context-free. b) Construct the CFG for the languages $L = \{a^n b^m c^o d^p \mid n + m = o + p\}$, Convert the CFG to CNF. c) Construct a PDA that accepts the same language generated by the CFG $G = \{\{S, X\}, \{a, b\}, P, S\}$ where $P = \{S \rightarrow XaaX, X \rightarrow aX \mid b X \mid \epsilon\}$. Explain the behaviour the PDA with the help of the string aaab.

6

4	а	Design the pushdown automata that accepts set of strings composed of zeros and ones which are of the form 0 ⁿ 1 ⁿ or 0 ⁿ 12 ⁿ .	4
	b	Construct the GNF for the following CFG	**
		$S \rightarrow S \land S, S \rightarrow (S), S \rightarrow S \lor S, S \rightarrow \neg S, S \rightarrow p$	6
	С	Construct a CFG which accepts the PDA where	0
		$M = (\{1, 2\}, \{a, b\}, \{B, X\}, \delta, 1, B, \phi) \delta$ is given by	
		δ (1, b, B) = (1, XB), δ (1, ϵ , B) = (1, ϵ), δ (1, b, X) = (1, XX), δ (1, a, X) =	
		(2, X) δ (2, b, X) = (2, ϵ), δ (2, a, B) = (1, B).	10
		MODULE-III	
5.	a)	Design a Turing machine which computes 2^n given n as input, where n is non-negative integer. Describe the behaviour of the TM for $n = 3$.	10
	b)	Discuss the power of Turing machine. Construct a TM that insert σ such that the tape contents are changed from yz to y σ z where y ε (Σ U { Δ })*, σ ε (Σ U { Δ }), z ε Σ *, Σ = {a, b}.	10
6.	a)	Design a TM to compute the minimum of two given unary numbers.	6
	b)	Explain the description of a multitape Turing machine for computing factorial of a given non-negative integer.	
	c)		8
		a end those and terminal and MODULE - IV	
7.	a)	Show that recursively enumerable languages are closed under intersection.	6
	b)	Explain the equivalence of LBA's and CSG's.	6
	c)	Construct type 0 for the language $L = \{0^n 1^n 2^n 3^n n > 0 \}$,	6
	d)	Construct type 3 grammar for the language L (G) = $\{a^{2n} n \ge 1\}$.	2
8.	a)	State the properties of recursively enumerable languages.	2
		Construct the type 1 grammar that generates the language $L = \{ww \mid w \in \{0, 1\} + \}$. Show the right most derivation for the string abab. (6+	=
	C)	Explain the following: (4+	
		i) Rice Theorem	~/
		ii) Closure properties of families of languages.	