عنوان ارائه: سامانه کنترل روشنایی خودکار

موضوع ارائه:

پروژه سیستم روشنایی هوشمند مبتنی بر STM32

ارائەدھندە:

پویا خاتمی و سهیل صدفی

استاد:

استاد محمدزاده

تاريخ ارائه:

14.4/.7/11

دانشگاه:

دانشگاه تبریز

فهرست مطالب

۱.معرفی پروژه ۲.اهداف و ضرورت اجرا ۳.مشخصات فنی سیستم ۴.اجزای سختافزاری ۵.طراحی مدارات ۶.نرمافزار سیستم ۷.تست و ارزیابی

2/22

۱. معرفی پروژه

١-١. چکيده

سیستم روشنایی هوشمند طراحی شده در این پروژه، یک راهحل جامع برای مدیریت خودکار روشنایی محیطهای مسکونی، اداری و صنعتی ارائه میدهد. این سیستم با ترکیب دو سنسور حرکت و صدا، الگوریتم هوشمندی برای کنترل روشنایی پیادهسازی کرده است.

۱–۲. مزایای سیستم

- صرفهجویی تا ۶۰٪ در مصرف انرژی روشنایی
- افزایش عمر مفید لامپها با کاهش ساعات کارکرد غیرضروری
 - رابط کاربری ساده با امکان کنترل از طریق صدا
 - ایمنی بالا با جداسازی کامل بخش قدرت و کنترل
 - قابلیت تنظیم برای محیطهای مختلف

۲. اهداف و ضرورت اجرا

۲-۱. اهداف اصلی

- طراحی سیستم کنترل روشنایی چندمنظوره
- پیادهسازی الگوریتم تشخیص دابل کلاپ با دقت ۹۵٪
 - کاهش مصرف انرژی با زمانبندی هوشمند
- ایجاد سیستم مستقل با قابلیت کارکرد بدون اینترنت

5/22

۲-۲. ضرورت اجرا

با توجه به آمارهای جهانی:

- ۲۰٪ از مصرف انرژی جهان مربوط به روشنایی است
- •۳۵٪ از انرژی روشنایی در ساختمانها به هدر میرود
- •سیستمهای هوشمند می توانند تا ۶۰٪ در مصرف انرژی صرفه جو یی کنند

۳. مشخصات فنی سیستم

۳-۱. پارامترهای کلیدی

مشخصه	مقدار	توضيحات
ولتاژ کاری	5V DC	تغذيه مدار كنترل
ولتاژ كنترل	240V AC	ماكزيمم ولتاژ قابل سوئيچ
جریان مصرفی	15mA	در حالت عادی
دمای کاری	-۱۰ تا ^۰ ۶۰ تا ۲۰	محدوده دمایی مجاز
برد سنسور حرکت	۷ متر	زاویه ۳۶۰ درجه
زمان پاسخگویی	<100ms	تاخیر در فعالسازی

۴. اجزای سختافزاری

Blue Pill: Top view

Blue Pill: Bottom view

4-1. ماژول کنترل مرکزی میکروکنترلر (Blue Pill) STM32F103C8T6

- •هسته ARM Cortex-M3با فرکانس ARM
 - •حافظه فلش ۴-RAM 20KB ها، RAM عافظه
 - 37پین GPIOبا قابلیتهای متنوع
 - •مبدل آنالوگ به دیجیتال ۱۲ بیتی
 - •تایمرهای متعدد برای مدیریت زمانبندی

9/22

۲-۴. سنسورها

سنسور حركت RCWL-0516

•فناوری مایکروویو دایلر GHz۳.۲

•برد تشخیص ۵-۷ متر

•زاویه تشخیص ۳۶۰ درجه

•خروجي ديجيتال HIGH/LOW

سنسور صدا KY-037

- •ماژول تشخیص صدای محیط
- •دارای خروجی دیجیتال و آنالوگ
- پتانسیومتر مالتی ترن تنظیم حساسیت
 - •ولتاژ کاری ۳.۳–۷۵

ماژول قدرت رله حالت جامد SSR-2DA

•ولتاژ کنترل: ۳-DC۳۲

•ولتاژ سوئیچ: ۲۴-۲۲۴

•جریان مجاز: A۲

•زمان پاسخ: <۱۰ ms

۴–۴. منبع تغذیه مدار تبدیل ACبه DC

- •ترانسفورماتور کاهنده ۲۴۰ Vبه ۷۱۲
 - •پل ديود يکسوساز
 - •رگولاتور خطی LM7805
 - •خازنهای فیلتراسیون

۵. طراحی مدارات

۵-۲. اتصالات ترمینال

AC+ → ADAPTOR•

 $AC- \rightarrow ADAPTOR \bullet$

 $AC+ \rightarrow R1^{\bullet}$

 $AC+ \rightarrow R2^{\bullet}$

۵-۲. اتصالات سنسورها

سنسور حرکت:

 $VCC \rightarrow 5V^{\bullet}$

 $GND \rightarrow GND^{\bullet}$

 $OUT \rightarrow PA1^{\bullet}$

سنسور صدا:

 $VCC \rightarrow 5V^{\bullet}$

 $GND \rightarrow GND^{\bullet}$

 $DO \rightarrow PA0^{\bullet}$

رله:

 $VCC \rightarrow 3.3V^{\bullet}$

 $GND \rightarrow GND^{\bullet}$

 $CH1 \rightarrow PA2^{\bullet}$

Δ -۳. شماتیک پروتئوس

۶. نرمافزار سیستم۱-۶. الگوریتم کلی

۶-۲. توابع اصلی

تشخیص دابل کلاپ:

- •تشخيص لبه بالارونده سيگنال صدا
- •زمانبندی بین دو کلاپ ۵۰۰–۱۵۰۰
 - •فیلتر نویز با تاخیر ۱۰۰۰ msمدیریت فعالیت:
- •تایمر ۱۰ دقیقهای برای عدم فعالیت
- •ریست تایمر با هر بار تشخیص حرکت

۷. تست و ارزیابی

۷-۱. تستهای انجام شده

شرايط	نتيجه
فاصله ۵ متر	موفق ۹۸٪
محیط نویزی	موفق ۹۲٪
فعالسازى	80ms
حالت عادی	12mA
	فاصله ۵ متر محیط نویزی فعالسازی

۸. نتیجه گیری و پیشنهادات

۸-۱. دستاوردهای پروژه

- پیادهسازی موفق سیستم با دقت عملکرد ۹۵٪
- کاهش ۶۰٪ مصرف انرژی در تستهای میدانی
- هزینه تمام شده پایین با استفاده از قطعات استاندارد
 - قابلیت توسعه برای کاربردهای صنعتی

Λ -۲. پیشنهادات برای توسعه

- اضافه کردن ارتباط WiFiبرای مانیتورینگ
- پیادهسازی یادگیری ماشین برای تنظیم خودکار حساسیت
 - طراحی PCB اختصاصی برای تولید انبوه

پیوستها

- شماتیک کامل مدار در پروتئوس
- فایل کد نوشته شده برای پردازنده ARM
 - دیاگرام پروژه
 - دیتاشیت پردازنده اصلی پروژه

