ECM304 CIRCUITOS ELÉTRICOS

4

■ Potência COMPLEXA

- Definições
- Diagrama de ímpedâncias e de potências
- Conservação das potências ativa e reativa
- Máxima transferência de potência em RPS
- Energia

Sendo:
$$\begin{cases} v(t) = \sqrt{2} V_{ef} \cos (\omega t + \theta) & \Rightarrow \dot{V} = V_{ef} | \underline{\theta} \\ i(t) = \sqrt{2} I_{ef} \cos (\omega t + \psi) & \Rightarrow \dot{I} = I_{ef} | \underline{\psi} \end{cases}$$

Definição de potência complexa: $\dot{P} = \dot{V} \dot{I}^*$ [VA]

$$\dot{P} = \dot{V} \dot{I}^* \quad [VA]$$

onde:

$$\dot{I}^* = I_{ef} \mid \underline{-\psi} \rightarrow \dot{V} \dot{I}^* = V_{ef} I_{ef} \mid \underline{\theta - \psi} = V_{ef} I_{ef} \mid \underline{\varphi}$$

$$\varphi = \theta - \psi = \mid \underline{\dot{Z}} \rightarrow \text{Chamado ÂNGULO DE POTÊNCIA}$$

3

Note que:

$$\dot{P} = \dot{V} \dot{I}^* = V I \cos \varphi + j V I \sin \varphi = P + j Q = |\dot{P}| |\underline{\varphi}|$$
$$|\dot{P}| = \sqrt{P^2 + Q^2} = P_{ap} = S$$

Mas:

$$\left|\dot{P}\right| = \sqrt{P^2 + Q^2} = P_{ap} = S$$

Logo:

$$\dot{P} = P_{ap} \mid \varphi \quad [VA]$$

Diagrama de potências

$$\dot{P} = P_{ap} | \underline{\varphi} [VA]$$

$$tg \varphi = \frac{Q}{P}, cos\varphi = FP = \frac{P}{Pap}$$

$$P = Re [\dot{P}]$$

$$Q = Im [\dot{P}]$$

5

Relembrando

Bipolo Capacitivo	Corrente Adiantada	φ<0, Q<0
Bipolo Indutivo	Corrente Atrasada	φ>0, Q>0

6

Diagrama de Impedâncias Complexas

7

Diagrama de Potências Complexas

- Nota determinação das potências em função das componentes reativa e resistiva da impedância:
 - a potência ativa consumida em um bipolo RPS determina-se multiplicando a parte resistiva de sua impedância pelo quadrado do valor eficaz da corrente;
 - a potência reativa absorvida pelo bipolo obtém-se multiplicando o quadrado do valor eficaz da corrente pela parte reativa.

Determinando pela corrente

$$\dot{P} = \dot{V} \dot{I}^* \quad \text{e} \quad \dot{V} = \dot{Z} \dot{I} \quad \Rightarrow \quad \dot{P} = \dot{Z} \dot{I} \dot{I}^* = \dot{Z} |\dot{I}|^2 = \dot{Z} I_{ef}^2$$

$$\dot{Z} = R + jX \quad \Rightarrow \quad \dot{P} = R I_{ef}^2 + j X I_{ef}^2 = P + j Q$$

$$P = R I_{ef}^2$$
 \Rightarrow Potência ativa útil

$$P = R I_{ef}^{2}$$
 \Rightarrow Potência ativa útil $Q = X I_{ef}^{2}$ \Rightarrow Potência reativa

Determinando pela tensão

$$\dot{P} = \dot{V} \dot{I}^* = \dot{V} \frac{\dot{V}^*}{\dot{Z}^*} \implies \dot{P} = \frac{V_{ef}^2}{\dot{Z}^*} = \frac{V_{ef}^2}{\dot{Z}^*} \frac{\dot{Z}}{\dot{Z}} \implies \dot{P} = \frac{V_{ef}^2 \dot{Z}}{\left|\dot{Z}\right|^2}$$

$$\dot{P} = \frac{V_{ef}^2}{\left|\dot{Z}\right|^2} R + j \frac{V_{ef}^2}{\left|\dot{Z}\right|^2} X = P + j Q$$

$$P = \frac{V_{ef}^2}{|\dot{Z}|^2} R \qquad e \qquad Q = \frac{V_{ef}^2}{|\dot{Z}|^2} X$$

Em resumo

	R	L	C
Potência Ativa P	$R I_{ef}^{2}$; $\frac{V_{ef}^{2}}{R}$	0	0
Potência Reativa Q	0	$X_L I_{ef}^2$; $\frac{V_{ef}^2}{X_L}$	$X_C I_{ef}^2$; $\frac{V_{ef}^2}{X_C}$

$$X_L = \omega L$$
 ; $X_C = -\frac{1}{\omega C}$

- Conservação das Potências Ativa e Reativa no RPS
 - A soma das potências complexas nos bipolos receptores é igual à soma das potências complexas fornecidas pelos geradores;
 - A soma algébrica das potências ativas nos bipolos receptores é igual à soma algébrica das potências ativas fornecidas pelos bipolos geradores;
 - A soma algébrica das potências reativas recebidas pelos bipolos receptores é igual à soma algébrica das potências fornecidas pelos geradores.

Conservação das Potências Ativa e Reativa no RPS

13

 Exemplo 1 – Cargas em paralelo: é a forma de ligação da maioria das cargas industriais.

Conservação das Potências Ativa e Reativa no RPS

Exemplo 1

Corrente no gerador: $I_T = \sum_{i=1}^n I_i$

$$\dot{I}_T = \sum_{i=1}^n \dot{I}_i$$

A potência complexa fornecida pela linha e dada por:

$$\dot{P}_T = \dot{V} \, \dot{I}_T^* = \sum_{i=1}^n \left(\dot{V} \, \dot{I}_i^* \right) = \sum_{i=1}^n \dot{P}_i$$

(soma das potências complexas de cada bipolo)

Conservação das Potências Ativa e Reativa no RPS

15

Exemplo 1

Como:

$$\dot{P} = P + jQ$$
 \Rightarrow $\dot{P}_T = \sum_{i=1}^n P_i + j \sum_{i=1}^n Q_i$

Então:

Potência Ativa Total:

$$P_T = \sum_{i=1}^n P_i$$

Potência Reativa Total:

$$Q_T = \sum_{i=1}^n Q_i$$

Conservação das Potências Ativa e Reativa no RPS

Exemplo 1

Corrente no gerador:

$$\dot{I}_T = \sum_{i=1}^n \dot{I}_i$$

Potência ativa total:

$$P_T = \sum_{i=1}^n P_i$$

■ Potência reativa total: $Q_T = \sum_{i=1}^n Q_i$

$$Q_T = \sum_{i=1}^n Q_i$$

Conservação das Potências Ativa e Reativa no RPS

17

Exemplo 2

$$\dot{P}_{GERADOR} = \dot{V} \ \dot{I}^* = \left(\dot{V}_1 + \dot{V}_2\right) \dot{I}^* = \ \dot{V}_1 \ \dot{I}^* + \dot{V}_2 \left(\dot{I}_2^* + \dot{I}_3^*\right) = \ \dot{V}_1 \ \dot{I}_1^* + \dot{V}_2 \ \dot{I}_2^* + \dot{V}_3 \ \dot{I}_3^*$$

$$\dot{P}_{GERADOR} = \dot{P}_1 + \dot{P}_2 + \dot{P}_3$$

$$P = P_1 + P_2 + P_3$$

$$Q = Q_1 + Q_2 + Q_3$$

Máxima Transferência de Potência em RPS

18

Supõe-se bipolo passivo e linear

Sendo:

$$\dot{Z}_G = R_G + j X_G$$
 e $\dot{Z} = R + j X$

$$P = R I_{ef}^2$$
 e $I_{ef}^2 = \frac{\left| \dot{E}_G \right|^2}{(R + R_G)^2 + (X + X_G)^2}$

$$P = \frac{R}{(R + R_G)^2 + (X + X_G)^2} |\dot{E}_G|^2$$

Máxima Transferência de Potência em RPS

19

Para maximizar a potência, devemos inicialmente impor

$$\rightarrow X = -X_G$$
, logo:

$$P = \frac{R}{(R + R_G)^2} \left| \vec{E}_G \right|^2$$

□ Determinando o máximo em função de R ⇒ R=RG para a máxima transferência de potência:

$$\dot{Z} = \dot{Z}_G^*$$

Nessa condição:

$$P_{MAX} = \frac{\left| \vec{E}_G \right|^2}{4R_G}$$
 \Rightarrow Máxima potência disponível

ENERGIA

A energia absorvida durante um intervalo de tempo (t-t₀) é dada por:

$$W(t, t_0) = \int_{t_0}^{t} P(\tau) d\tau \implies \text{Dado em kWh} (= 3, 6. 10^6 \text{ J})$$

Medidor de energia elétrica ⇒ calcula a integral desde o momento de sua instalação até o momento de sua leitura.

