

Today's Topics

- · Memory & Memory Organization
- Memory Hierarchy
- Principle of Locality
- Cache Memory
 - Directed-mapped
 - Set-associative
 - Fully-associative
 - Cache configuration

Sharif University of Technology, Spring 2021

Copyright Notice

- · Parts (text & figures) of this lecture adopted from
 - Computer Organization & Design, The Hardware/Software Interface, 3rd Edition, by D. Patterson and J. Hennessey, MK publishing, 2005.
 - "Intro to Computer Architecture" handouts, by Prof. Hoe, CMU, Spring 2009.
 - "Computer Architecture & Engineering" handouts, by Prof. Kubiatowicz, UC Berkeley, Spring 2004.
 - "Intro to Computer Architecture" handouts, by Prof. Hoe, UWisc, Spring 2021.
 - "Computer Arch I" handouts, by Prof. Garzarán, UIUC, Spring 2009.

"Intro to Computer Organization" handouts, by Prof. Mahlke & Prof. Narayanasamy, Winter 2008.
Lecture 9 Sharif University of Technology, Spring 2021

Ideal Memory

- Processors
 - Would run one instruction per cycle if:
 - · Every memory access takes one cycle
 - · Every request to memory is successful
- Our Ideal Memory?
 - Very large
 - Can be accessed in one clock cycle
- · Reality

- Any GB-size memory running at Ghz?

Sharif University of Technology, Spring 2021

Why Memory a Big Deal? Processor-DRAM Memory Gap (latency) 1000 . 60% per yr "Moore's Law" Performance 01 001 (2X/1.5yr) Processor-Memory Performance Gap: (grows 50% / year) Less' Law?' DRAM 9% (2X/10 yrs) Time Sharif University of Technology, Spring 2021

The Law of Storage

- · Bigger is Slower
 - FFs, 512 Bytes, sub-nanosec
 - SRAM, KByte~MByte, ~nanosec
 - DRAM, Gigabyte, ~50 nanosec
 - Hard Disk, Terabyte, ~10 millisec
- Faster is More Expensive (\$ and chip area)
 - SRAM < 10\$ per Megabyte
 - DRAM, < 1\$ per Megabyte
 - Hard Disk < 1\$ per Gigabyte

Note these sample values scale with time

Question is:

- · How to Make Memory?
 - Bigger,
 - Faster, &
 - Cheaper?

Lecture 9

Sharif University of Technology, Spring 2021

Principle of Locality

- · Locality
 - One's recent past is a very good predictor of his/her near future
- · Temporal Locality:
 - If you just did something, it is very likely that you will do same thing again soon
- · Spatial Locality:
 - If you just did something there, it is very likely you will do something similar/related around again

Lecture 9

Sharif University of Technology, Spring 2021

Locality in Memory

- · Locality in Memory
 - A "typical" program has a lot of locality in memory references
 - Programs are sequential and composed of "loops"
- Temporal:
 - A program tends to reference same memory location many times and all within a small window of time
- · Spatial:

- A program tends to reference a cluster of memory locations at a time
- Lecture 9 Sharif University of Technology, Spring 2021

Locality in Memory (cont.)

- Example 1:
 - This sequence of addresses has both types of locality

1, 2, 3, 1, 2, 3, 8, 8, 47, 9, 10, 8, 8 ...

t t t f spatial temporal non-local

Lecture 9

Sharif University of Technology, Spring 2021

Locality in Memory (cont.)

- Example 2:
 - · Data
 - -Reference array elements in succession (spatial)
 - Instructions
 - -Reference instructions in sequence (spatial)
 - -Cycle through loop repeatedly (temporal)

Lecture 9

Sharif University of Technology, Spring 2021

Probability of Reference

Lecture 9

Sharif University of Technology, Spring 2021

Technology Used in Main Memory & Cache Memory

- SRAM (Static Random Access Memory)
 - No refresh (6 transistors/bit vs. 1 transistor)
 - # of transistors per bit: DRAM < SRAM
 - Cycle time: DRAM > SRAM
- DRAM (Dynamic Random Access Memory)
 - Dynamic since needs to be refreshed periodically
 - Addresses divided into 2 halves
 - · Memory as a 2D matrix
 - · RAS or Row Address Strobe
 - · CAS or Column Address Strobe

Sharif University of Technology, Spring 2021

Slow Memory in Pipeline Datapath

· Freeze pipeline in Mem stage:

```
IFO IDO EXO MemO WrO Noop ... Noop
      IF1 ID1 EX1 Mem1 stall ... stall Mem1 Wr1 IF2 ID2 EX2 stall ... stall Ex2 Mem
                                stall ... stall ID3
```

· Stall detected by end of Mem1 stage

CPU Performance

- · CPU Time = (CPU execution clock cycles + memory stall clock cycles) x clock cycle time
- Memory Stall Clock Cycles = (reads x read miss rate x read miss penalty + writes x write miss rate x write miss penalty)
- Memory Stall Clock Cycles = Memory accesses x Miss rate x Miss penalty Sharif University of Technology, Spring 2021

CPU Performance (cont.)

- · Different Measure:
 - Average Memory Access Time (AMAT)
- Expressed in Terms of:
 - Hit time
 - Miss rate
 - Miss penalty

CPU Performance (cont.)

- · Hit Time
 - Time required to access a level of memory hierarchy including time required to determine whether access is hit or miss
- Hit Rate (Hit Ratio)

· AMAT = Hit Time +

- Fraction of memory accesses found in a cache

CPU Performance (cont.)

Miss Rate = 1 - Hit Rate

Sharif University of Technology, Spring 2021

CPU Performance (cont.)

- Miss Penalty:
 - Time required to fetch a block into a level of memory hierarchy from lower level:
 - · Time to access block +
 - · Time to transmit it to higher level +
 - Time to insert it in appropriate block
- Block
 - Minimum unit of information transferred between two levels of memory hierarchy
 - Also called line
 Sharif University of Technology, Spring 2021

(Miss Rate x Miss Penalty)

CPU Performance (cont.)

- · Example 1
 - A memory system consists of a cache and a main memory
 - Cache hit = 1 cycle
 - Cache miss = 100 cycles
 - What is average memory access time if hit rate in cache is 97%?

Lecture 9

Sharif University of Technology, Spring 2021

CPU Performance (cont.)

- Example 2
 - A memory system has a cache, a main memory, and a virtual memory
 - Hit rate = 98%
 - Hit rate in main memory = 99%
 - 2 cycles to access cache
 - 150 cycles to fetch a line from main mem.
 - 100,000 cycles to access virtual memory
 - What is average memory access time?

ture 9 Sharif University of Technology, Spring 2021

Improving Cache Performance

AMAT =

Hit Time + (Miss Rate x Miss Penalty)

- · Options to Reduce AMAT
- Reduce time to hit in cache
 - · Use smaller cache size
- Reduce miss rate
 - · Increase cache size!
- Reduce miss penalty
- Use multi-level cache hierarchy

cture 9 Sharif University of Technology, Spring 2021

Cache Structure

- · Data Bits
- · Tag Bits
- Invalid Bit
- Status Bits (LRU bit, Dirty Bit, ...)

S

Cache Configuration

- Q1:
 - Where can a block be placed in upper level?
 - Block placement
- · Q2:
 - How is a block found if it is in upper level?
 - Block identification

Lecture 9

Sharif University of Technology, Spring 2021

/

Cache Configuration (cont.)

- Q3:
 - Which block should be replaced on a miss?
 - Block replacement

- Write strategy

- Q4:
 - What happens on a write?
 - How to propagate changes?

Lecture 9

Sharif University of Technology, Spring 2021

36

Q1: Where can a block be placed in upper level? Fully associative: Direct mapped: block 12 can go anywhere only into block 4 (12 mod 8) Block 01234567 Block o1234567 Block-frame address Block-frame address Block-frame address

Q2: How is a block found if it is in upper level? Block Address Index Offset Offset Set Select Data Select Identifies a byte/word within a block Index Identifies corresponding set Tag

Sharif University of Technology, Spring 2021

Identifies whether associated block corresponds to a requested word or not

Cache Parameters Cache size = # of sets * block size * associativity Example 1 128 blocks, 32-byte blocks, direct mapped, size = ? Example 2 128 KB cache, 64-byte blocks, 512 sets, associativity = ? Lecture 9 Sharif University of Technology, Spring 2021 41

Direct-Mapped vs. Fully-Associative (cont.)

- Fully-Associative
 - More area compared to direct-mapped
 - · Need one comparator for each line in cache
 - Longer hit time
 - · Too many comparison required
 - Less miss rate vs. direct-mapped
 - · No conflict misses (conflict Miss = 0)
 - No cache index
 - Compare tag with all tags of all cache entries in parallel

Lecture 9

Sharif University of Technology, Spring 2021

Q3: Which block should be replaced on a miss?

- · Easy for Direct Mapped; why?
- · Set Associative or Fully Associative:
 - Random
 - LRU (Least Recently Used): in status bits
 - FIFO

Associativity:

		2-v	2-way		4-way		8-way	
	Size	LRU I	LRU Random		Random	LRU Ro	ındom	
	16 KB				5.3%			
<u> </u>	64 KB	1.9%	2.0%	1.5%	1.7%	1.4%	1.5%	
	256 K	B 1.15% cture 9	1.17% Sharif Un	1.13% liversity of	1.7% 1.13% Technology, Sp	1.12% ring 2021	1.12%	

Q4: What happens on a write?

- Write Through (Allocate/Non-Allocate)
 - Information written to both block in cache and to block in lower-level memory
- · Write Back
 - Information written only to block in cache
 - Modified cache block written to main memory only when it is replaced
 - Inconsistent
 - · Need cache coherency policy for multi-core chips
 - Is block clean or dirty? (status bits)

Lecture 9

Sharif University of Technology, Spring 2021

Write-Through (WT) vs.
Write-Back (WB)
WT Cache
Data

WB Cache
Data

With to main memory
We Cache
Data

When line
We Manual Main Memory
When line
We Sharif University of Technology, Sp. 46

WT Cache

- · Pros
 - Simpler to implement
 - Don't need dirty bit
 - No interface issues with I/O devices
 - · Cache memory consistent with memory

Lecture 9

Sharif University of Technology, Spring 2021

S S

WT Cache (cont.)

- · Cons
 - Less performance vs. WB cache
 - Processor held up on writes unless writes buffered
- · Write Buffer
 - Stores data while waiting to be written to memory

Lecture 9

Sharif University of Technology, Spring 2021

48

WB Cache

- · Pros
 - Tends to have better performance
 - · Repeated writes not sent to DRAM
 - · Processor not held up on writes
 - Combines multiple writes into one line WB
 - Virtual memory systems use write-back
 - · because of huge penalty for going out to disk

Sharif University of Technology, Spring 2021

- · Cons
 - More complex
 - · Read miss may require writeback of dirty data
 - Need to implement cache coherency

WB Cache (cont.)

- Typically requires two cycles on writes
 - · Can't overwrite data and do tag comparison at same time as block may be dirty
 - · Unless using store buffer

Sharif University of Technology, Spring 2021

Write Policy in WT Caches

- Allocate-on-Write (Write Allocate)
 - Fetch line into cache
 - Then perform write in cache
 - Also called, fetch-on-miss, fetch-on-write
- No-Allocate-on-Write (No-Write Allocate)
 - Pass write through to main memory
 - Don't bring line into cache
 - Also called Write-Around or Read-Only

Sharif University of Technology, Spring 2021

Write Policy in WT Caches

- Allocate-on-Write Pros
 - Better performance if data referenced again before it is evicted
- No-Allocate-on-Write Pros
 - Simpler write hardware
 - May be better for small caches if written data won't be read again soon

L1 Cache Configuration

- Split Cache
 - Two independent caches
 - · Instruction cache (IL1)
 - · Data cache (DL1)
- Unified
 - One unified L1 cache
 - Usually better hit ratio (same size); why?
- Question:

- Most processors use split caches; why? Sharif University of Technology, Spring 2021

Practice

- · Consider a 16KB Cache
 - 4-way, 32-bit address, byte-addressable memory, 32-byte cache blocks
- · Q1:
 - How many tag bits?
 - Total tag bits in cache?
- Q2:
 - Where to find word with address = 0x200356A4?

Sharif University of Technology, Spring 2021

Reminder: Improving Cache Performance

AMAT =

Hit Time + (Miss Rate x Miss Penalty)

- · Options to Reduce AMAT
 - Reduce time to hit in cache
 - · Use smaller cache size
 - Reduce miss rate
 - · Increase cache size
 - Reduce miss penalty
 - · Use multi-level cache hierarchy

Sharif University of Technology, Spring 2021

Cache Hit Time

- · Impact on Cycle Time
 - Directly tied to clock rate
 - Increases with cache size
 - Increases with associativity

ecture 9

Sources of Cache Misses

- 3*Cs*
 - Compulsory
 - Capacity
 - Conflict
- · Another source of cache miss
 - Coherence

Lecture 9

Sharif University of Technology, Spring 2021

Sources of Cache Misses

- Compulsory
 - Cold start or process migration
 - First access to a block
 - Compulsory misses are insignificant
 - · When running "billions" of instruction
- Capacity
 - Cache cannot contain all blocks accessed by program
- Solution: increase cache size

Lecture 9

Sharif University of Technology, Spring 2021

72

Sources of Cache Misses

- · Conflict (collision)
 - Multiple memory locations mapped to same cache location
 - Solution 1: increase cache size
 - Solution 2: increase associativity
- · Coherence (Invalidation)
 - Other processes (e.g., I/O or a core in a CMP) updates memory

Lecture 9

Sharif University of Technology, Spring 2021

Reducing Miss Rate Larger Block Size Higher Associativity Prefetching Complier Optimization

Reducing Misses via Larger Block Size 25% 20% 15% 10% 5% 10% Block Size (bytes) Block Size (bytes) Sharif University of Technology, Spring 2021 77

Reducing Misses via Higher Associativity

- · 2:1 Cache Rule:
 - Miss Rate DM cache size N = Miss Rate2-way cache size N/2
- Watch Out
 - Execution time is only final measure!
 - AMAT not always improved by more associativity!

Lecture 9

harif University of Technology, Spring 2021

Reducing Misses by Prefetching

- Instruction Prefetching
- · Data Prefetching
- · HW vs. SW Prefetching

Reducing Miss Penalty

- Faster RAM Technologies
 - Use of faster SRAMs and DRAMs
- · More Hierarchy Levels
 - 1-level → 2-level → 3-level
- Read Priority over Write on Miss
 - Reads on critical path

Lecture 9

Sharif University of Technology, Spring 2021

Lecture 9

Sharif University of Technology Spring 2021