05.08.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 6月20日

REO'D & 6 AUG 2004

出 願 番 号 Application Number:

特願2003-177272

WIPO POT

[ST. 10/C]:

[JP2003-177272]

出 願 人
Applicant(s):

シャープ株式会社

大野 英男 川崎 雅司

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 7月15日

【書類名】

特許願

【整理番号】

03102300

【提出日】

平成15年 6月20日

【あて先】

特許庁長官 殿

【国際特許分類】

H01L 29/00

【発明者】

【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株

式会社内

【氏名】

杉原 利典

【発明者】

【住所又は居所】 宮城県仙台市泉区桂3-33-10

【氏名】

大野 英男

【発明者】

【住所又は居所】 宮城県仙台市青葉区川内元支倉35番地1-101

【氏名】

川崎 雅司

【特許出願人】

【持分】

050/100

【識別番号】

000005049

【氏名又は名称】

シャープ株式会社

【特許出願人】

【持分】

025/100

【識別番号】

501356721

【氏名又は名称】 大野 英男

【特許出願人】

【持分】

025/100

【識別番号】

501122377

【氏名又は名称】 川崎 雅司

【代理人】

【識別番号】 100080034

【弁理士】

【氏名又は名称】 原 謙三

【電話番号】 06-6351-4384

【選任した代理人】

【識別番号】 100113701

【弁理士】

【氏名又は名称】 木島 隆一

【選任した代理人】

【識別番号】 100116241

【弁理士】

【氏名又は名称】 金子 一郎

【手数料の表示】

【予納台帳番号】 003229

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】 要約書 1

【包括委任状番号】 0208489

【プルーフの要否】 要

【発明の名称】 半導体装置および電子デバイス

【特許請求の範囲】

【請求項1】

Z n O またはM g $_{\rm X}$ Z n $_{\rm 1-x}$ O の 多結晶状態、アモルファス状態または多結晶状態とアモルファス状態とが混在する状態である半導体から成り、 I 族、 III族、 I V族、 V族または VII 族の元素が添加されている活性層と、

前記活性層を、前記活性層において可動電荷が移動する領域が雰囲気の影響を 受けない範囲で雰囲気から隔絶する隔絶体とを備えていることを特徴とする半導 体装置。

【請求項2】

前記元素が、窒素、リン、砒素、アンチモンまたはこれらのうち2種類以上であることを特徴とする請求項1に記載の半導体装置。

【請求項3】

前記隔絶体が異なる隔絶層から成ることを特徴とする請求項1または2に記載の半導体装置。

【請求項4】

前記隔絶層のうち少なくとも 1つが、 SiO_2 、 Al_2O_3 、 Al_N 、MgO、 Ta_2O_5 、 TiO_2 、 ZrO_2 、 $stab-ZrO_2$ 、 CeO_2 、 K_2O 、 Li_2O 、 Na_2O 、 Rb_2O 、 In_2O_3 、 La_2O_3 、 Sc_2O_3 、 Y_2O_3 、 $KNbO_3$ 、 $KTaO_3$ 、 $BaTiO_3$ 、 $CaSnO_3$ 、 $CaZrO_3$ 、 $CdSnO_3$ 、 $SrHfO_3$ 、 $SrSnO_3$ 、 $SrTiO_3$ 、 $YScO_3$ 、 $CaHfO_3$ 、 $MgCeO_3$ 、 $SrCeO_3$ 、 $SrCeO_3$ $SrCeO_3$

【請求項5】

前記活性層に接続される2つの電極以外で前記活性層と界面を形成する前記隔 絶層のうち、前記活性層における可動電荷の移動を制御する制御電極と前記活性

層との間を絶縁する隔絶層と界面を形成する領域以外で前記活性層と界面を形成する前記隔絶層が、 SiO_2 、 Al_2O_3 、 Al_N 、MgO、 Ta_2O_5 、 TiO_2 、 ZrO_2 、 $stab-ZrO_2$ 、 CeO_2 、 K_2O 、 Li_2O 、 Na_2O 、 Rb_2O 、 In_2O_3 、 La_2O_3 、 Sc_2O_3 、 Y_2O_3 、 $KNbO_3$ 、 $KTaO_3$ 、 $BaTiO_3$ 、 $CaSnO_3$ 、 $CaZrO_3$ 、 $CdSnO_3$ 、 $SrHfO_3$ 、 $SrSnO_3$ 、 $SrTiO_3$ 、 $YScO_3$ 、 $CaHfO_3$ 、 $MgCeO_3$ 、 $SrCeO_3$ 、 $BaCeO_3$ 、 $SrZrO_3$ 、 $BaZrO_3$ 、 $LiGaO_2$ 、 $LiGaO_2$ 0混晶系($Li_{1-(x+y)}$ 0 a_xK_y)($Ga_{1-z}Al_z$) O_2 またはこれらのうち少なくとも2つを含む固溶体により形成されていることを特徴とする請求項4に記載の半導体装置。

【請求項6】

前記隔絶層のうち少なくとも1つが樹脂により形成されていることを特徴とする請求項3に記載の半導体装置。

【請求項7】

前記活性層に接続される2つの電極以外で前記活性層と界面を形成する前記隔 絶層のうち、前記活性層における可動電荷の移動を制御する制御電極と前記活性 層との間を絶縁する隔絶層と界面を形成する領域以外で前記活性層と界面を形成 する前記隔絶層が樹脂により形成されていることを特徴とする請求項6に記載の 半導体装置。

【請求項8】

前記活性層における可動電荷の移動を制御するゲート電極と、

前記活性層と前記ゲート電極との間を絶縁する前記隔絶層としてのゲート絶縁 層と、

前記活性層に接続されるソース電極およびドレイン電極とを備え、

前記隔絶層のうち少なくとも 1 つが、SiO₂、Al₂O₃、AlN、MgO、Ta₂O₅、TiO₂、ZrO₂、stab-ZrO₂、CeO₂、K₂O、Li₂O、Na₂O、Rb₂O、In₂O₃、La₂O₃、Sc₂O₃、Y₂O₃、KNbO₃、KTa₂O₃、BaTiO₃、CaSnO₃、CaZrO₃、CdSnO₃、SrHfO₃、SrSnO₃、SrTiO₃、YScO₃、CaHfO₃、MgCeO₃、SrCeO₃、BaCeO₃、SrZrO₃、BaZrO₃、LiGaO₂、LiGaO₂の混

晶系($Li_{1-(x+y)}Na_xK_y$)($Ga_{1-z}Al_z$)O2またはこれらのうち少なくとも 2 つを含む固溶体により形成されていることを特徴とする請求項3に記載の半導体装置。

【請求項9】

前記ゲート電極および前記ドレイン電極以外で前記活性層と界面を形成する前記隔絶層のうち、前記ゲート絶縁層と界面を形成する領域以外で前記活性層と界面を形成する前記隔絶層が、SiO2、Al2O3、AlN、MgO、Ta2O5、TiO2、ZrO2、stab-ZrO2、CeO2、K2O、Li2O、Na2O、Rb2O、In2O3、La2O3、Sc2O3、Y2O3、KNbO3、KTaO3、BaTiO3、CaSnO3、CaZrO3、CdSnO3、SrHfO3、SrSnO3、SrTiO3、YScO3、CaHfO3、MgCeO3、SrCeO3、BaCeO3、SrZrO3、BaZrO3、LiGaO2、LiGaO2の混晶系(Lil-(x+y)NaxKy)(Gal-zAlz)O2またはこれらのうち少なくとも2つを含む固溶体により形成されていることを特徴とする請求項8に記載の半導体装置

【請求項10】

前記活性層における可動電荷の移動を制御するゲート電極と、

前記活性層と前記ゲート電極との間を絶縁する前記隔絶層としてのゲート絶縁 層と、

前記活性層に接続されるソース電極およびドレイン電極とを備え、

前記隔絶層のうち少なくとも1つが樹脂により形成されていることを特徴とする請求項3に記載の半導体装置。

【請求項11】

前記ゲート電極および前記ドレイン電極以外で前記活性層と界面を形成する前 記隔絶層のうち、前記ゲート絶縁層と界面を形成する領域以外で前記活性層と界 面を形成する前記隔絶層が樹脂により形成されていることを特徴とする請求項1 0に記載の半導体装置。

【請求項12】

請求項1ないし11のいずれか1項に記載の半導体装置をスイッチング素子と

【請求項13】

前記スイッチング素子が、絵素電極への画像信号の書き込みまたは読み出しの ために絵素電極に接続されていることを特徴とする請求項12に記載の電子デバイス。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、酸化亜鉛系の活性層を有する半導体装置に係り、電子デバイスに用いられるスイッチング素子に好適な半導体装置およびそれを用いた電子デバイスに関するものである。

[0002]

【従来の技術】

従来、酸化亜鉛(ZnO)は可視光領域において透明であり、また低温での作製においても比較的良い物性を示す半導体である。そのため、近年盛んに研究が行われ、種々の技術が報告されている。

[0003]

例えば、学術的には、非特許文献1ないし3の論文が発表されている。これらの論文は、いずれもZnOを活性層とした薄膜トランジスタが性能良く動作すること示している。

[0004]

また、特許出願においては、特許文献1ないし3にZnOを半導体に利用した 技術が開示されている。

[0005]

特許文献1には、トランジスタのチャネル層に酸化亜鉛等の透明半導体を使用 し、ゲート絶縁層にも透明絶縁性酸化物を使用して、トランジスタを透明にする ことが記載されている。

[0006]

特許文献 2 には、酸化亜鉛と下地膜との格子不整合を下地膜の材料を選択する

[0007]

特許文献3には、酸化亜鉛等の透明チャネル層を有するトランジスタのオン・オフ比特性や移動度特性を改善するために、酸化亜鉛に3d遷移金属をドープする等の方法が記載されている。

[0008]

以上に記した論文および特許文献により酸化亜鉛を用いたトランジスタの有効性が示されている。

[0009]

しかしながら、特許文献4に開示されたように、酸化亜鉛は雰囲気に対して感受性が高く、酸化亜鉛を用いたデバイスの特性が大きく変化するため、実用性においては保護層(絶縁物)により酸化亜鉛を雰囲気から隔絶する必要がある。特許文献4は、酸化亜鉛をチャネル層に用いた縦型電界効果トランジスタをガスセンサーとして利用することが記載されている。

[0010]

上記の非特許文献1、2および3では、構造において保護層の付与は無く、保護層付与による影響に関しては論じられてはいない。また、特許文献1、2および3では、構造において雰囲気からの隔絶の例示もされているが、保護層(ここではゲート絶縁層がそれに対応する)の付与の影響に関して論じられていない。

[0011]

【特許文献1】

特開2000-150900号公報(公開日:2000年5月30日)

[0012]

【特許文献2】

特開2000-277534号公報(公開日:2000年10月6日)

[0013]

【特許文献3】

特開2002-76356号公報(公開日:2002年3月15日)

【特許文献4】

特開昭63-101740号公報(公開日:1988年5月6日)

[0015]

【非特許文献1】

R.L.Hoffman, B.J.Norris and J.F.Wager, "ZnO-based transparent thin-fi lm transistors" APPLIED PHYSICS LETTERS VOLUME 82, NUMBER 5, 3 FEBRUARY 2003, pp733-735

[0016]

【非特許文献2】

P.F.Carcia, R.S.McLean, M.H.Reilly and G.Nunes, Jr. "Transparent ZnO th in-film transistor fabricated by rf magnetron suputtering" APPLIED PHYSI CS LETTERS VOLUME 82, NUMBER 7, 17 FEBRUARY pp1117-1119

[0017]

【非特許献3】

Junya NISHII et al., "High Performance Thin Film Transistors with Transparent ZnO Channels" Jpn. Appl. Phys. Vol. 42. (2003) pp L1-L3

[0018]

【発明が解決しようとする課題】

酸化亜鉛を活性層に用いたトランジスタにおいて、実用上、その特性には安定性が求められ、雰囲気に対して感受性が高い酸化亜鉛を用いる場合、雰囲気からの隔絶が絶対条件となる。この意味において、保護層の付与による影響に関しては論じる必要があり、そのことについて以下に説明する。

[0019]

図14(a)は、保護層が付与されないトランジスタ50を示している。このトランジスタ50は、逆スタガ構造を成しており、ガラス基板52上にTaで形成されるゲート電極53の上に、A12O3で形成されるゲート絶縁層54を介して意図的にドーピングを行っていない酸化亜鉛が半導体層55として積層され、この半導体層55の上にA1で構成されるソース電極56とドレイン電極57と

が形成されている。

[0020]

図14(b)は、保護層が付与されたトランジスタ51を示している。このトランジスタ51は、上記のトランジスタ50において、さらに半導体層55、ソース電極56およびドレイン電極57の一部を覆うように、保護層58がA1203で形成される構造を成している。

[0021]

図15は、酸化亜鉛を活性層(半導体層55)に用いた同一の電界効果トランジスタで保護層の有無についてのId-Vg特性を示す。

[0022]

図15からわかるように、保護層の有無により、しきい値電圧が大幅に変化している。保護層が付与されたトランジスタのしきい値電圧は、保護層が付与されていないトランジスタの閾値に比べて大きくマイナス側にシフトしており、実用不可能な大きな負の値となっている。

[0023]

このような現象が起こることは、以下のように説明できる。酸化亜鉛はもともと酸素空孔を生じやすく、その酸素空孔から自由電子が生成され、n型の伝導性を示す半導体である。しかし、酸化亜鉛がその表面に有する表面準位により、酸化亜鉛表面のフェルミ準位は押し下げられると、その結果、空乏層が、酸化亜鉛内部に拡がってチャネル層を形成するゲート絶縁層界面まで達し、自由電子を排除するため、酸化亜鉛が高抵抗化する。高抵抗な酸化亜鉛では可動電荷である自由電子が少なく、この自由電子を排除するために必要なゲート電圧は小さくなるため、しきい値電圧の絶対値が小さくなる。この状態が、保護層の無い状態である。

[0024]

酸化亜鉛に保護層としてA 1_2O_3 を付与すると、酸化亜鉛の表面準位が減少する。このことは、第 5_0 回応用物理学会関係連合講演会、 2_9 p - F - 8(2_0 0 3_3)で、酸化亜鉛とA 1_2O_3 の整合性が良く、欠陥準位が少ないという報告から理解できる。この表面準位の減少のため、酸化亜鉛表面のフェルミ準位は

酸化亜鉛が本来持っている自由電子の濃度により決まる位置に復元し、その結果、酸化亜鉛内部への空乏層の拡がりが無くなる。このため、酸化亜鉛が本来のn型伝導性を示し、低抵抗化、つまり自由電子の多い状態になる。この多数存在する自由電子を排除するためには、大きなマイナスのゲート電圧が必要となり、その結果、しきい値電圧が負の大きな値となる。

[0025]

図16は、 $A1_2O_3$ 保護層の有無による酸化亜鉛の抵抗率の変化を示しており、 $A1_2O_3$ 保護層付与により、酸化亜鉛の抵抗率が約1/6400に減少することを示している。このことからも、上記の機構が裏付けられる。

[0026]

上記のように、酸化亜鉛を活性層に用いた電界効果トランジスタにおいて、保 護層の付与によってトランジスタとしての特性が大きく変化することを発見し、 論じたのは初めてである。

[0027]

酸化亜鉛を活性層に使用した電界効果トランジスタにおいては、酸化亜鉛の雰囲気に対する敏感性から、保護層が必要不可欠である。しかし、上記のように、保護層の付与された電界効果トランジスタは、しきい値電圧がマイナスの大きな電圧となるため、実使用が不可能となる。

[0028]

本発明は、上記の問題に鑑みてなされたものであって、酸化亜鉛を活性層に用い、かつ活性層を雰囲気と隔絶する保護層の付与された、実使用が可能である半導体装置およびそれを備えた電子デバイスを提供することを目的としている。

[0029]

【課題を解決するための手段】

本発明の半導体装置は、上記の課題を解決するために、ZnOまたは $Mg_XZn_{1-x}O$ の多結晶状態、アモルファス状態または多結晶状態とアモルファス状態とが混在する状態である半導体から成り、I族、III族、IV族、V族またはVII族の元素が添加されている活性層と、前記活性層を、前記活性層において可動電荷が移動する領域が雰囲気の影響を受けない範囲で雰囲気から隔絶する隔絶体とを

[0030]

上記の構成において、隔絶体は、活性層を雰囲気から隔絶できれば良く、保護層や絶縁層だけでなく電極等を含んでいても良い。また、活性層のすべてが隔絶体によって隔絶されていても良いが、少なくとも活性層において可動電荷が移動する領域(例えば、薄膜トランジスタのチャネル部分)が雰囲気の影響を受けない範囲で雰囲気から隔絶されておれば良く、これを満たせば活性層の一部が隔絶層から雰囲気に露出していても構わない。

[0031]

このように、雰囲気に対して敏感なZnOまたはMg $_x$ Zn $_{1-x}$ Oからなる活性層を隔絶体によって雰囲気から隔絶することにより、半導体装置の素子特性を安定化させることが可能である。また、保護層等の隔絶体によって結果的に発生する活性層の可動電荷を、活性層に I族、III族、IV族、V族またはVII族の元素が添加されることにより減少させることができる。これは、保護層等を形成することで例えば ZnOの表面準位が減少し、ZnO内部への空乏層の拡がりが解消され、ZnOは本来の抵抗値を示す n型半導体となり、自由電子が過剰な状態になる。例えば V族元素の窒素は ZnOに対してアクセプタ不純物として働くので、窒素の添加により過剰な自由電子が減少し、フェルミ準位がバンドギャップ中央付近に押し下げられる。これにより、過剰な自由電子を排除するためのゲート電圧が低下するので、しきい値電圧が高まる。このように、トランジスタの重要な特性の 1 つであるしきい値電圧を実使用可能な電圧に制御することが可能となる

[0032]

前記半導体装置においては、前記元素が、窒素、リン、砒素、アンチモンまたはこれらのうち2種類以上であることが好ましい。これらの元素が活性層に添加されることにより、添加量に応じてしきい値電圧を比較的大きい範囲で精度良く制御することができる。

[0033]

前記半導体装置においては、前記隔絶体が異なる隔絶層から成ることが好まし

[0034]

前記半導体装置においては、前記隔絶層のうち少なくとも1つが、SiO $_2$ 、 $A1_2O_3$ 、A1N、MgO、 Ta_2O_5 、 TiO_2 、 ZrO_2 、 $stab-ZrO_2$ 、 CeO_2 、 K_2O 、 Li_2O 、 Na_2O 、 Rb_2O 、 In_2O_3 、 La_2O_3 、 Sc_2O_3 、 Y_2O_3 、 $KNbO_3$ 、 $KTaO_3$ 、 $BaTiO_3$ 、 $CaSnO_3$ 、 $CaZrO_3$ 、 $CdSnO_3$ 、 $SrHfO_3$ 、 $SrSnO_3$ 、 $SrTiO_3$ 、 $YScO_3$ 、 $CaHfO_3$ 、 $MgCeO_3$ 、 $SrCeO_3$ 、 $BaCeO_3$ 、 $SrZrO_3$ 、 $BaZrO_3$ 、 $LiGaO_2$ 、 $LiGaO_2$ の混晶系($Li_{1-(x+y)}Na_xK_y$)($Ga_{1-z}Al_z$) O_2 またはこれらのうち少なくとも2つを含む固溶体により形成されていることが好ましい。これらの材料は、ZnOおよび $Mg_xZn_{1-x}O$ との整合性が良好であるため、活性層と直接界面を形成する隔絶層に適している。

[0035]

この半導体装置においては、前記活性層に接続される 2 つの電極以外で前記活性層と界面を形成する前記隔絶層のうち、前記活性層における可動電荷の移動を制御する制御電極と前記活性層との間を絶縁する隔絶層と界面を形成する領域以外で前記活性層と界面を形成する前記隔絶層が、 SiO_2 、 Al_2O_3 、 Al_N 、 $MgO、Ta_2O_5$ 、 TiO_2 、 ZrO_2 、 $stab-ZrO_2$ 、 CeO_2 、 K_2O 、 Li_2O 、 Na_2O 、 Rb_2O 、 In_2O_3 、 La_2O_3 、 Sc_2O_3 、 Y_2O_3 、 $KNbO_3$ 、 $KTaO_3$ 、 $BaTiO_3$ 、 $CaSnO_3$ 、 $CaZrO_3$ 、 $CdSnO_3$ 、 $SrHfO_3$ 、 $SrSnO_3$ 、 $SrTiO_3$ 、 $YScO_3$ 、 $CaHfO_3$ 、 $MgCeO_3$ 、 $SrCeO_3$ 、 $SrCeO_3$ 、 $SrCeO_3$ 、

絶層)を介したその上に活性層が形成される。ここでは、ゲート絶縁層と界面を形成する領域以外で活性層と界面を形成する隔絶層は、活性層における、ソース電極およびドレイン電極間に現れる上端面ならびに一部の側端面と界面を形成する隔絶層である(図1 (a) ないし(c)の保護層 8 に相当)。このような半導体装置に必須の電極や絶縁層以外で活性層を雰囲気から隔絶する保護層としての役割を果たす隔絶層が設けられている構成においては、前記のようにZn OおよびMg $_xZ$ n $_{1-x}O$ との整合性が良好な上記の材料により、活性層の上記の領域と直接界面を形成する隔絶層を形成することにより、半導体装置の素子特性を安定させることができる。

[0036]

前記半導体装置においては、前記隔絶層のうち少なくとも1つが樹脂により形成されていることが好ましい。隔絶層として樹脂を用いることで、樹脂による隔絶層の形成に既存の樹脂形成装置を用いることが可能である。それゆえ、隔絶層を形成するために複雑な成膜プロセスを用いることなく、半導体装置の製造をより容易にすることができることから、半導体装置の製造コストを低減することが可能である。また、樹脂を用いることにより、半導体装置の柔軟性を高めることができ、半導体装置の基板としてフレキシブル基板を用いた場合には特に好適である。

[0037]

この半導体装置においては、前記活性層に接続される2つの電極以外で前記活性層と界面を形成する前記隔絶層のうち、前記活性層における可動電荷の移動を制御する制御電極と前記活性層との間を絶縁する隔絶層と界面を形成する領域以外で前記活性層と界面を形成する前記隔絶層が樹脂により形成されていることが好ましい。例えば、薄膜トランジスタにおいては、活性層に接続される2つの電極は、ソース電極およびドレイン電極に相当し、制御電極はゲート電極に相当する。逆スタガ型の薄膜トランジスタでは、前述のように、ゲート絶縁層と界面を形成する領域以外で活性層と界面を形成する隔絶層は、活性層における、ソース電極およびドレイン電極間に現れる上端面ならびに一部の側端面と界面を形成する隔絶層である(図1(a)ないし(c)の保護層8に相当)。このような半導

[0038]

本発明の電子デバイスは、前記のいずれかの半導体装置をスイッチング素子として備えている。このように、透明なZnOおよび $Mg_xZn_{1-x}O$ を活性層に用いた性能の良い半導体装置をスイッチング素子として備えることにより、電子デバイスの性能を容易に向上させることができる。

[0039]

前記電子デバイスにおいては、前記スイッチング素子が、絵素電極への画像信号の書き込みまたは読み出しのために絵素電極に接続されていることが好ましい。電子デバイスとしてのアクティブマトリクス型の表示装置(例えば、液晶表示装置や有機EL表示装置)では、駆動回路から絵素電極に画像信号を書き込む際にスイッチング素子をONさせる。また、電子デバイスとしてのイメージセンサのような画像読取装置では、絵素電極に取り込まれた画素信号を読み出す際にスイッチング素子をONさせる。このように、画像表示や画像読み取りのための電子デバイスに半導体装置をスイッチング素子として用いることにより、これらの電子デバイスの高性能化を容易に図ることができる。

[0040]

【発明の実施の形態】

〔実施形態 1〕

本発明の第1の実施形態について、図1ないし図5に基づいて説明すれば、以下の通りである。

$[0\ 0\ 4\ 1]$

図1 (a) は、本実施の形態に係る薄膜トランジスタ1の平面図を示している。また、図1 (b) は図1 (a) のA-A線矢視断面図を示し、および図1 (c) は図1 (a) のB-B線矢視断面図を示している。なお、図1 (a) においては、図の単純化のため、図1 (b) および (c) に示す保護層8の表面中央部分

[0042]

図1(a)ないし(c)に示すように、半導体装置としての薄膜トランジスタ 1は、絶縁性基板2上に形成されたゲート電極3の上に、ゲート絶縁層4を介し て半導体層5が積層され、この半導体層5の上に電極部としてのソース電極6と ドレイン電極7とが形成され、さらに半導体層5、ソース電極6およびドレイン 電極7の一部を覆う保護層8が形成され、逆スタガ型の構造を成している。

[0043]

また、この薄膜トランジスタ1が表示装置(例えば、実施形態4のアクティブマトリクス型液晶表示装置)に用いられる場合は、ドレイン電極7が絵素電極に接続されるか、もしくはドレイン電極7と絵素電極とが透明導電膜で一体的に形成される。このため、ドレイン電極7の一部は保護層8から引き出されている。

[0044]

ゲート絶縁層 4 は、絶縁物としてZ n OおよびM g $_X$ Z n $_{1-x}$ Oとの整合性の良好な SiO $_2$ 、 A 1 $_2$ O $_3$ 、 A 1 N、 M g O、 T a $_2$ O $_5$ 、 TiO $_2$ 、 Z r O $_2$ 、 stab-Z r O $_2$ 、 CeO $_2$ 、 K $_2$ O、 Li $_2$ O、 N a $_2$ O、 Rb $_2$ O、 I n $_2$ O $_3$ 、 La $_2$ O $_3$ 、 S c $_2$ O $_3$ 、 Y $_2$ O $_3$ 、 K N b O $_3$ 、 K T a O $_3$ 、 B a TiO $_3$ 、 C a S n O $_3$ 、 C a Z r O $_3$ 、 C d S n O $_3$ 、 S r H f O $_3$ 、 S r S n O $_3$ 、 S r T i O $_3$ 、 Y S c O $_3$ 、 C a H f O $_3$ 、 M g C e O $_3$ 、 S r C e O $_3$ 、 B a C e O $_3$ 、 S r Z r O $_3$ 、 B a Z r O $_3$ 、 Li G a O $_2$ 、 Li G a O $_2$ 0元混晶系(Li $_{1-(x+y)}$ N a $_x$ K $_y$)(G a $_{1-z}$ A 1 $_z$) O $_2$ またはこれらのうち少なくとも 2 つを含む固溶体を用いて形成されている。また、ゲート絶縁層 4 は前記の絶縁物が複数積層されていても良い。例えば、図 2 に示すように、ゲート絶縁層 4 は、第 1 絶縁層 4 a および第 2 絶縁層 4 b の 2 層の積層により構成される。このような構造では、第 1 絶縁層 4 a を 半導体層 5 との界面特性が良好な絶縁物(A 1 $_2$ O $_3$ 、 A 1 N、 M g O)で形成し、第 2 絶縁層 4 b を絶縁性の良好な絶縁物(S i O $_2$)で形成することにより、絶縁性基板 2 上で信頼性の高いゲート絶縁層 4 を得ることができる。

[0045]

活性層としての半導体層5は、I族、III族、IV族、V族またはVII族元素が添

[0046]

保護層 8 は、半導体層 5 における、ソース電極 6 およびドレイン電極 7 が形成される部分(両電極 6 , 7 により覆われる部分)以外の部分で、かつゲート絶縁層 4 と界面を形成していない部分(両電極 6 , 7 間の部分および半導体層 5 の周辺の側端面)を覆っている。この保護層 8 は、S i O₂、A l₂O₃、A l N、MgO、Ta₂O₅、T i O₂、Z r O₂、stab-Z r O₂、CeO₂、K₂O、Li₂O、Na₂O、Rb₂O、In₂O₃、La₂O₃、Sc₂O₃、Y₂O₃、KNbO₃、KTaO₃、BaTiO₃、CaSnO₃、CaZrO₃、CdSnO₃、SrHfO₃、SrSnO₃、SrTiO₃、YScO₃、CaHfO₃、MgCeO₃、SrCeO₃、BaCeO₃、SrZrO₃、BaZrO₃、LiGaO₂、LiGaO₂の混晶系(Li_{1-(x+y)}Na_xK_y)(Ga_{1-z}A l_z)O₂またはこれらのうち少なくとも2つを含む固溶体を用いて形成されている。

[0047]

あるいは、保護層 8 は、アクリル等の樹脂により形成されていても良い。保護層 8 を樹脂で形成することにより、既存の樹脂形成装置を用いることが可能である。それゆえ、保護層 8 を形成するために複雑な成膜プロセスを用いることなく、薄膜トランジスタ 1 の製造をより容易にすることができることから、薄膜トランジスタ 1 の製造コストを低減することが可能である。また、樹脂を用いることにより、薄膜トランジスタ 1 の柔軟性を高めることができ、絶縁性基板 2 としてフレキシブル基板を用いた場合には特に好適である。

[0048]

また、保護層8も、前記の絶縁物が複数積層されていても良い。例えば、図2

[0049]

薄膜トランジスタ1においては、ゲート絶縁層4、ソース電極6、ドレイン電極7および保護層8により隔絶体が形成され、それぞれが隔絶層を形成している。

[0050]

ここで、上記のように構成される薄膜トランジスタ1の製造方法を、図3 (a) ないし(e) の製造工程図を用いて以下に説明する。

[0051]

まず、絶縁性基板 2 に、ゲート電極 3 となるゲート電極材としてT a ϵ 3 0 0 n m程度の厚さでスパッタリングによって積層し、この上にフォトリソグラフィ 工程にて所定の形状にレジストパターンを作製する。このレジストパターンを用いてゲート電極材にC F_4 + O_2 ガスによってドライエッチングを施し、その形状にパターニングされたゲート電極 3 およびこれに接続されるゲート配線(図示せず)を形成する(図 3 (a))。絶縁性基板 2 としては、ガラス基板、石英、プラスチック等が用いられ、ゲート電極材にはT a のほかにA 1 、C r などが用いられる。

[0052]

次に、ゲート絶縁層 4 として、例えば、A 1_2O_3 をパルスレーザー堆積法によって5 0 0 n m程度積層する。A 1_2O_3 薄膜の成膜時の基板温度は3 0 0 $\mathbb C$ 、成膜雰囲気が減圧の酸素雰囲気で、レーザーパワーが3. 0 $\mathbb J/\mathfrak c$ m^2 、繰り返し周波数が1 0 H $\mathbb Z$ である(図 3 (b))。ここでは、ゲート絶縁膜4 の材料としてA 1_2O_3 を用いたが、それ以外に前述の絶縁物を用いても良い。

[0053]

A 1 2 O 3を堆積後、連続して半導体層 5 を形成するために、例えば、窒素がド

[0054]

半導体層 5 となる Z n O の積層後、フォトリソグラフィ工程にて所定の形状にレジストパターンを形成する。このレジストパターンを用いて、硝酸、酢酸等によるウェットエッチングを行うことにより、所望の形状の半導体層 5 を得る(図 3 (c))。

[0055]

続いて、スパッタリング法によりA1を200nm程度成膜する。そして、そのA1の層をフォトリソグラフィおよびC12ガスを用いてドライエッチングによりパターンニングすることによりソース電極6およびドレイン電極7を形成する(図3(d))。

[0056]

さらに、パルスレーザー堆積法により $A1_2O_3$ を200nm程度成膜する。その $A1_2O_3$ の層を、フォトリソグラフィにより作製した所定のレジストパターンを用いて、イオンミリング等により不要部の $A1_2O_3$ を除去することで、保護層8を形成し、薄膜トランジスタ1が完成する(図3(e))。ここでは、保護層8のための材料(絶縁物)として $A1_2O_3$ を用いたが、それ以外に前述の絶縁物を用いても良い。また、保護層8として、前記の絶縁物が複数積層されていても良い。

[0057]

図4は、上記のようにして得られた薄膜トランジスタ1のIdーVg特性を示

[0058]

ZnOに窒素をドープすることでしきい値電圧Vthが制御されることは、以下のように理解される。保護層の形成でZnOの表面準位が減少し、ZnO内部に空乏層が拡がるバンドベンディングが解消され、ZnOは本来持っている抵抗値を示すn型半導体となり、自由電子が過剰な状態になる。V族元素の窒素はZnOに対してアクセプタ不純物として働くので、窒素をドープすることで過剰な自由電子が減少し、フェルミ準位がバンドギャップ中央付近に押し下げられる。これにより、過剰な自由電子を排除するためのゲート電圧が低下するので、しきい値電圧が0V付近となる。

[0059]

[0060]

また、Z n O またはM g $_{x}$ Z n $_{1-x}$ O の多結晶状態、アモルファス状態または多結晶状態とアモルファス状態とが混在する状態である半導体に I 族、III族、IV 族またはVII族元素をドープしても、同様にしきい値電圧V t h を制御すること

ができる。

[0061]

なお、図1 (a) に示す構造では、半導体層5がすべて保護層8の下に覆われているが、薄膜トランジスタ1の半導体層5におけるチャネル部分(キャリア(可動電荷)が移動する領域)に雰囲気による影響が及ばなければ、半導体層5がすべて保護層8に覆われる必要はない。例えば、図5に示すように、半導体層5がチャネル幅方向に長く延びてその両端部が保護層8から雰囲気に露出している構造では、その両端部は雰囲気の影響を受けるが、チャネル部分がその影響の及ばない程度に両端部から離間していれば、図1 (a) ないし (c) に示すように、半導体層5のすべてが保護層8やゲート絶縁膜4に覆われていなくても良い。

[0062]

〔実施形態2〕

本発明の第2の実施形態について、図6ないし図8に基づいて説明すれば、以下の通りである。

[0063]

図 6 (a) は、それぞれ本実施の形態に係る薄膜トランジスタ 11 の平面図を示している。また、図 6 (b) は図 6 (a) のC-C 線矢視断面図を示し、図 6 (c) は図 6 (a) のD-D 線矢視断面図を示している。なお、図 6 (a) においては、図の単純化のため、図 6 (b) および (c) に示す保護層 19 の表面中央部分の凹凸については、その記載を省略している。

[0064]

図6 (a) ないし(c) に示すように、半導体装置としての薄膜トランジスタ 1 1 は、絶縁性基板 1 2 上に形成された下地絶縁層 1 3 上にソース電極 1 4 とドレイン電極 1 5 が間隔をおいて形成され、それらの上に半導体層 1 6、ゲート絶縁層 1 7、ゲート電極 1 8 が順次積層され、さらに半導体層 1 6、ゲート絶縁層 1 7 およびゲート電極 1 8 を覆う保護層 1 9 が形成され、スタガ型の構造を成している。この薄膜トランジスタ 1 1 において、半導体層 1 6、ゲート絶縁層 1 7 およびゲート電極 1 8 は、同じ形状(図 6 (a) に示す半導体層 1 6 の形状)にパターンニングされて積層されている。

この薄膜トランジスタ11が表示装置(例えば、実施形態4のアクティブマトリクス型液晶表示装置)に用いられる場合は、ドレイン電極15が絵素電極に接続されるか、もしくはドレイン電極15と絵素電極とが透明導電膜で一体的に形成される。

[0066]

下地絶縁層 13 は、絶縁物としてのSiO2、A12O3、A1N、MgO、Ta2O5、TiO2、ZrO2、stab-ZrO2、CeO2、K2O、Li2O、Na2O、Rb2O、In2O3、La2O3、Sc2O3、Y2O3、KNbO3、KTaO3、BaTiO3、CaSnO3、CaZrO3、CdSnO3、SrHfO3、SrSnO3、SrTiO3、YScO3、CaHfO30、MgCeO3、SrCeO3 、SrCeO3 、

[0067]

あるいは、下地絶縁層13は、アクリル等の樹脂により形成されていても良い。下地絶縁層13を樹脂で形成することにより、既存の樹脂形成装置を用いることが可能である。それゆえ、下地絶縁層13を形成するために複雑な成膜プロセスを用いることなく、薄膜トランジスタ11の製造をより容易にすることができることから、薄膜トランジスタ11の製造コストを低減することが可能である。また、樹脂を用いることにより薄膜トランジスタ11の柔軟性を高めることができ、絶縁性基板12としてフレキシブル基板を用いた場合には、特に好適である

[0068]

また、下地絶縁層13は、前記の絶縁物が複数積層されていても良い。例えば、図7に示すように、下地絶縁層13は、第1絶縁層13aおよび第2絶縁層13bの2層の積層により構成される。このような構造では、第1絶縁層13aを

[0069]

なお、絶縁性基板 12 がガラスまたは石英から成る場合には、下地絶縁層 13 を形成しなくても、半導体層 16 は、ガラスまたは石英の成分である S i O_2 あるいは S i O_2 を含む絶縁物により覆われ、雰囲気と隔絶される。

[0070]

活性層としての半導体層 16 は、 I 族、 III族、 IV族、 V 族または V 以下表 V 族または V が 添加された V の V または V の V 多結晶状態と V を

[0071]

ゲート絶縁層 1 7 は、半導体層 1 6 と界面を形成し、絶縁物としてのSiO2、A 1 2 O3、A 1 N、M g O、T a 2 O5、T i O2、Z r O2、s t a b - Z r O2、C e O2、K 2 O、L i 2 O、N a 2 O、R b 2 O、I n 2 O3、L a 2 O3、S c 2 O3、Y 2 O3、K N b O3、K T a O3、B a T i O3、C a S n O3、C a Z r O3、C d S n O3、S r H f O3、S r S n O3、S r T i O3、Y S c O3、C a H f O3、M g C e O3、S r C e O3、B a C e O3、S r Z r O3、B a Z r O3、L i G a O2、L i G a O2の混晶系(L i 1 - (x+y) N a x K y)(G a 1 - z A 1 z)O2 またはこれらのうち少なくとも 2 つを含む固溶体を用いて形成されている。また、ゲート絶縁層 1 7 は前記絶縁物が複数積層されていても良い。例えば、図7に示すように、ゲート絶縁層 1 7 は、第1 絶縁層 1 7 a および第2 絶縁層 1 7 b の 2 層の積層により構成される。このような構造では、第1 絶縁層 1 7 a を半

導体層 16 との界面特性が良好な絶縁物($A1_2O_3$ 、A1N、MgO)で形成し、第 2 絶縁層 17 b を絶縁性の良好な絶縁物(SiO_2)で形成することにより、半導体層 16 とゲート電極 18 との間で信頼性の高いゲート絶縁層 17 を得ることができる。

[0072]

保護層 19 は、積層された半導体層 16、ゲート絶縁層 17 およびゲート電極 18 を覆うように、絶縁物としてのS i O_2 、A l $_2O_3$ 、A l $_1N$ 、M g O、T a $_2O_5$ 、T i O_2 、Z r O_2 、S t $_2O_5$ t $_2O_5$ 0、S t $_2O_5$ 0 S t $_2O_5$ 0 S0 S1 S1 S2 t $_2O_5$ 0 S2 t $_2O_5$ 0 S3 t $_2O_5$ 0 S4 t $_2O_5$ 0 S5 t $_2O_5$ 0 S

[0073]

あるいは、保護層19も下地絶縁層13と同様、アクリル等の樹脂により形成されていても良い。これにより、下地絶縁層13を樹脂で形成する場合と同様の利点がある。

[0074]

保護層19の側壁部は、特に、下地絶縁層13、ソース電極14およびドレイン電極15と界面を形成する半導体層16の下端面、およびゲート絶縁層17と界面を形成する半導体層16の上端面以外の側端面を覆っている。また、保護層19は、前記の絶縁物が複数積層されていても良い。例えば、図7に示すように、保護層19は、第1保護層19aおよび第2保護層19bの2層の積層により構成される。このような構造では、第1保護層19aを半導体層16との界面特性が良好な絶縁物(Al2O3、AlN、MgO)で形成し、第2保護層19bを雰囲気との隔絶性の良好な絶縁物(SiO2)で形成することにより、信頼性の高い保護層19を得ることができる。

[0075]

[0076]

ここで、上記のように構成される薄膜トランジスタ11の製造方法を、図8(a)ないし(d)の製造工程図を用いて以下に説明する。

[0077]

まず、絶縁性基板 12 に下地絶縁層 13 として、 $A1_2O_3$ を 100 n m程度の厚さでパルスレーザー堆積法により堆積する(図 8 (a))。堆積の条件は、堆積時の基板温度が 300 C、成膜雰囲気が減圧の酸素雰囲気で、レーザーパワーが 3.0 J/c m²、繰り返し周波数が 10 H z である。ここでは、下地絶縁層 13 の材料として $A1_2O_3$ を用いたが、それ以外に前述の絶縁物を用いても良い

[0078]

続いて、下地絶縁層13上にスパッタリング法等によりA1を150nm程度 堆積する。そして、フォトリングラフィにより、所定の形状にパターニングした レジストを用いてドライエッチングでA1層の不要部を除去する。これにより、 ソース電極14およびドレイン電極15が形成される(図8(b))。

[0079]

[0080]

[0081]

その後、ゲート電極18としてA1等をスパッタリング法等により200nm程度積層する。そして、フォトリングラフィにより、所定の形状にパターニングしたレジストを用いてイオンミリング等でA1層、ゲート絶縁層17、半導体層16の不要部を除去することで、半導体層16およびゲート絶縁層17上にゲート電極18を形成する(図8(c))。ここで、ゲート電極18、ゲート絶縁層17および半導体層16の側端面は絶縁性基板12の上端面に対して垂直であるが、保護層19のカバレージを良くするため、ゲート電極18から半導体層16側に拡がっていく順テーパー形状であっても良い。

[0082]

[0083]

[0084]

さらに他のV族元素のP、AsまたはSbについても、実施形態1で述べたようにドーピングを行うことにより、同様にしきい値電圧Vthを0V付近に制御できる。

[0085]

また、ZnOまたは $Mg_xZn_{1-x}O$ の多結晶状態、アモルファス状態または多結晶状態とアモルファス状態とが混在する状態である半導体にI族、III族、IV族またはVII族元素をドープしても、同様にしきい値電圧Vthを制御することができる。

[0086]

なお、図6(a)ないし(c)に示す構造では、半導体層16がすべて、下地 絶縁層13、ソース電極14、ドレイン電極15、ゲート絶縁膜17および保護 層19に覆われているが、薄膜トランジスタ11の半導体層16におけるチャネ ル部分(キャリアが移動する領域)に雰囲気による影響が及ばなければ、半導体 層16がすべて覆われる必要はない。例えば、図6(a)に二点鎖線で示すよう に、半導体層16と、半導体層16と同一形状を成すゲート絶縁層17およびゲート電極18とがチャネル幅方向に長く伸びてその両端部が保護層19から雰囲 気に露出している構造では、その両端にある半導体層16の側端面は雰囲気の影響を受けるが、チャネル部分がその影響の及ばない程度に両端部から離間していれば、半導体層16のすべてが覆われていなくても良い。

[0087]

〔実施形態3〕

本発明の第3の実施形態について、図9ないし図11に基づいて説明すれば、 以下の通りである。

図9 (a) は、本実施の形態に係る薄膜トランジスタ21の平面図を示している。また、図9 (b) は図9 (a) のE-E線矢視断面図を示し、図9 (c) は図9 (a) のF-F線矢視断面図を示している。

[0089]

図9(a)ないし(c)に示すように、半導体装置としての薄膜トランジスタ21は、絶縁性基板22上に形成された下地絶縁層23上にソース電極24とドレイン電極25が形成され、その上に半導体層26、第1のゲート絶縁層27を形成する。この半導体層26と第1のゲート絶縁層27は第2のゲート絶縁層28で覆われ、第2のゲート絶縁層28は半導体層26の保護層も兼ねている。第2のゲート絶縁層28の上にゲート電極29が形成され、薄膜トランジスタ21を成している。

[0090]

また、この薄膜トランジスタ21が表示装置(例えば、実施形態4のアクティブマトリクス型液晶表示装置)に用いられる場合は、ドレイン電極25が絵素電極に接続されるか、もしくはドレイン電極25と絵素電極とが透明導電膜で一体的に形成される。

[0091]

下地絶縁層 23 は、絶縁物としての SiO_2 、 $A1_2O_3$ 、A1N、MgO、 Ta_2O_5 、 TiO_2 、 ZrO_2 、 $Stab-ZrO_2$ 、 CeO_2 、 K_2O 、 Li_2O 、 Na_2O 、 Rb_2O 、 In_2O_3 、 La_2O_3 、 Sc_2O_3 、 Y_2O_3 、 $KNbO_3$ 、 $KTaO_3$ 、 $BaTiO_3$ 、 $CaSnO_3$ 、 $CaZrO_3$ 、 $CdSnO_3$ 、 $SrHfO_3$ 、 $SrSnO_3$ 、 $SrTiO_3$ 、 $YScO_3$ 、 $CaHfO_3$ 、 $MgCeO_3$ 、 $SrCeO_3$ 、 $SrCeO_3$ 、 $SrZrO_3$ 、 $SrZrO_3$ 0、 $SrZrO_3$ 00、 $SrZrO_3$ 00 $SrZrO_3$ 00 $SrZrO_3$ 00 $SrZrO_3$ 0 $SrZrO_3$ 0

[0092]

あるいは、下地絶縁層23は、アクリル等の樹脂により形成されていても良い。下地絶縁層23を樹脂で形成することにより、既存の樹脂形成装置を用いるこ

[0093]

この下地絶縁層23は、半導体層26の下端面におけるソース電極24およびドレイン電極25と界面を形成する領域以外の領域と界面を形成している。また、下地絶縁層23は、前記の絶縁物が複数積層されていても良い。例えば、図10に示すように、下地絶縁層23は、第1絶縁層23aおよび第2絶縁層23bの2層の積層により構成される。このような構造では、第1絶縁層23aを絶縁性基板22との界面特性が良好な絶縁物(SiO2)で形成し、第2絶縁層23bを半導体層26との界面特性が良好な絶縁物(Al2O3、AlN、MgO)で形成することにより、絶縁性基板22上で信頼性の高い下地絶縁層23を得ることができる。

[0094]

なお、絶縁性基板 22 がガラス基板、石英から成る場合には、下地絶縁層 23 を形成しなくても半導体層 26 は、ガラスまたは石英の成分である SiO_2 あるいは SiO_2 を含む絶縁物により覆われ、雰囲気と隔絶される。

[0095]

半導体層 2.6 は、 I 族、 III族、 IV族、 V 族または V III族元素が添加された Z n O または M g_x Z n_{1-x} O の 多結晶状態、 P モルファス状態または 多結晶状態と P モルファス状態とが混在する状態である 半導体を 用いて形成されている。 添加される元素としては、 I 族および V 族元素が 好ましい。 例えば、 半導体層 2.6 は、 窒素、 1 ン、 砒素、 1 アンチモンまたは 1 これらの 1 種類以上を含む 1 の 1 の 1 の 1 の 1 の 1 多結晶状態、 1 アモルファス状態または 1 多結晶状態と 1 である 1 半導体に 1 の 1 が混在する状態である 1 半導体に 1 の 1 形成されている。

[0096]

第1のゲート絶縁層27は、半導体層26と界面を形成し、絶縁物としてのS

i O_2 、 $A 1 2 O_3$ 、A 1 N、M g O、 $T a 2 O_5$ 、 $T i O_2$ 、 $Z r O_2$ 、 $s t a b - Z r O_2$ 、 $C e O_2$ 、 $K_2 O$ 、L i 2 O、N a 2 O、R b 2 O、 $I n 2 O_3$ 、 $L a 2 O_3$ 、 $S c 2 O_3$ 、 $Y 2 O_3$ 、 $K N b O_3$ 、 $K T a O_3$ 、 $B a T i O_3$ 、 $C a S n O_3$ 、 $C a Z r O_3$, $C d S n O_3$, $S r H f O_3$, $S r S n O_3$, $S r T i O_3$, $Y S c O_3$, $C a H f O_3$, $M g C e O_3$, $S r C e O_3$, $B a C e O_3$, $S r Z r O_3$, $B a Z r O_3$, $L i G a O_2$, $L i G a O_2$ の混晶系($L i_{1-(x+y)} N a_x K_y$)($G a_{1-z} A I_z$) O_2 またはこれらのうち少なくとも2つを含む固溶体を用いて形成されている。また、第1のゲート絶縁層27は、前記の絶縁物が複数積層されていても良い。例えば、図10に示すように、ゲート絶縁層27は、第1絶縁層27aおよび第2絶縁層27bの2層の積層により構成される。このような構造では、第1絶縁層27a を半導体層26との界面特性が良好な絶縁物($A 1 2 O_3$ 、A 1 N、M g O)で形成し、第2絶縁層27bを絶縁層27bを絶縁性の良好な絶縁物($S i O_2$)で形成することにより、半導体層26と第2のゲート絶縁層28との間で信頼性の高いゲート絶縁層27を得ることができる。

[0097]

第2のゲート絶縁層 28は、積層された半導体層 26 および第1のゲート絶縁層 27を覆うように、絶縁物としての SiO_2 、 Al_2O_3 、 Al_N 、MgO、 Ta_2O_5 、 TiO_2 、 ZrO_2 、 $stab-ZrO_2$ 、 CeO_2 、 K_2O 、 Li_2O 、 Na_2O 、 Rb_2O 、 In_2O_3 、 La_2O_3 、 Sc_2O_3 、 Y_2O_3 、 $KNbO_3$ 、 $KTaO_3$ 、 $BaTiO_3$ 、 $CaSnO_3$ 、 $CaZrO_3$ 、 $CdSnO_3$ 、 $SrHfO_3$ 、 $SrSnO_3$ 、 $SrTiO_3$ 、 $YScO_3$ 、 $CaHfO_3$ 、 $MgCeO_3$ 、 $SrCeO_3$ 、 $BaCeO_3$ 、 $SrZrO_3$ 、 $BaZrO_3$ 、 $LiGaO_2$ 、 $LiGaO_2$ 0混晶系($Li_{1-(x+y)}Na_xK_y$)($Ga_{1-z}Al_z$) O_2 またはこれらのうち少なくとも2つを含む固溶体を用いて形成されている。

[0098]

あるいは、第2のゲート絶縁層28も下地絶縁層23と同様、アクリル等の樹脂により形成されていても良い。これにより、下地絶縁層23を樹脂で形成する場合と同様の利点がある。

[0099]

[0100]

また、第2のゲート絶縁層28は、前記の絶縁物が複数積層されていても良い。例えば、図10に示すように、第2のゲート絶縁層28は、下部絶縁層28 a および上部絶縁層28bの2層の積層により構成される。このような構造では、第1絶縁層28aを半導体層26との界面特性の良好な絶縁物($A1_2O_3$ 、A1N、MgO)で形成し、第2絶縁層28bを隔絶性が良好な絶縁物(SiO_2)で形成することにより、第1のゲート絶縁層27とゲート電極29との間で信頼性の高い第2のゲート絶縁層28を得ることができる。

[0101]

薄膜トランジスタ21においては、下地絶縁層23、ソース電極24、ドレイン電極25、第1のゲート絶縁層27および第2のゲート絶縁層29により隔絶体が形成され、それぞれが隔絶層を形成している。

[0102]

ここで、上記のように構成される薄膜トランジスタ21の製造方法を、図11 (a) ないし(d) の製造工程図を用いて以下に説明する。

$[0\ 1\ 0\ 3\]$

まず、絶縁性基板 12 に下地絶縁層 23 として、例えば、A 12O3を 100 n m程度の厚さでパルスレーザー堆積法により堆積する(図 11 (a))。堆積の条件は、基板温度が 300 C、成膜雰囲気が減圧の酸素雰囲気で、レーザーパワーが 3.0 1 c 1 c 1 c 1 c 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1 と 1 2 の 1

[0104]

[0105]

[0106]

半導体層 260 の堆積後、連続して第100 がート絶縁層 27 を積層する。第100 がート絶縁層 27 として、例えば、A $12O_3$ をパルスレーザー堆積法によって 50 nm程度積層する。A $12O_3$ 薄膜の成膜時の条件は、基板温度が 300 ℃、成膜雰囲気が減圧の酸素雰囲気で、レーザーパワーが 3.0 J/c m 2 、繰り返し周波数が 10 Hz である。ここでは、第100 が一ト絶縁膜 270 が料としてA $12O_3$ を用いたが、それ以外に前述の絶縁物を用いても良い。また、第100 が一ト絶縁膜 27 として、前記の絶縁物が複数積層されていても良い。

[0107]

その後、フォトリソグラフィにより、所定の形状にパターニングしたレジストを用いてイオンミリング等で不要部を除去することで、第1のゲート絶縁層27 および半導体層26を形成する(図11(c))。ここで、第1のゲート絶縁層 27および半導体層26の側端面は絶縁性基板22の上端面に対して垂直であるが、第2のゲート絶縁層28のカバレージを良くするため、第1のゲート絶縁膜27から半導体層26側に拡がっていく順テーパー形状であっても良い。

[0108]

続いて、第2のゲート絶縁膜28を積層する。第2のゲート絶縁層28としては、例えば、パルスレーザー堆積法により $A1_2O_3$ を450nm程度成膜する。成膜条件は、基板温度が300℃、成膜雰囲気が減圧の酸素雰囲気で、レーザーパワーが3.0 J/c m^2 、繰り返し周波数が10 Hz である。ここでは、第2ゲート絶縁膜28の材料として $A1_2O_3$ を用いたが、それ以外に前述の絶縁物を用いても良い。また、第2のゲート絶縁膜28として、前記の絶縁物が複数積層されていても良い。

[0109]

その後、ゲート電極29を形成するために、A1等をスパッタリング法等により200nm程度積層する。そして、フォトリソグラフィにより、所定の形状にパターニングしたレジストを用いてイオンミリング等でゲート電極29および第2のゲート絶縁膜28の不要部を除去することで、薄膜トランジスタ21が完成する(図11(d))。

[0110]

上記のようにして得られた薄膜トランジスタ110Id-Vg特性は、図4に示す特性と同様であり、そのしきい値電圧Vthが0V付近に制御される。このように、薄膜トランジスタ21においては、半導体層26をZnOに窒素をドープした半導体により形成することで、しきい値電圧Vthを実用上問題のない電圧に制御できる。

[0111]

さらに他のV族元素のP、AsまたはSbについても、実施形態1で述べたようにドーピングを行うことにより、同様にしきい値電圧Vthを0V付近に制御できる。

[0112]

また、ZnOまたは $Mg_xZn_{1-x}O$ の多結晶状態、アモルファス状態または多

[0113]

なお、図9(a)ないし(c)に示す構造では、半導体層26がすべて、下地 絶縁層23、ソース電極24、ドレイン電極25、第1のゲート絶縁膜27およ び第2のゲート絶縁層28に覆われているが、薄膜トランジスタ21の半導体層 26におけるチャネル部分(キャリアが移動する領域)に雰囲気による影響が及 ばなければ、半導体層26がすべて覆われる必要はない。例えば、図9(a)に 二点鎖線で示すように、半導体層26と第1のゲート絶縁層27とがチャネル幅 方向に長く伸びてその両端部が第2のゲート絶縁層28から雰囲気に露出してい る構造では、その両端部にある半導体層26の側端面は雰囲気の影響を受けるが 、チャネル部分がその影響の及ばない程度に両端部から離間していれば、半導体 層26のすべてが覆われていなくても良い。

[0114]

〔実施形態4〕

本発明の第4の実施形態について、図12および図13に基づいて説明すれば、以下の通りである。なお、本実施の形態において、前述の実施の形態1および3における構成要素と同等の機能を有する構成要素については、同じ符号を付記してその説明を省略する。

[0115]

図12に示すように、本実施の形態に係る表示装置は、アクティブマトリクス型の液晶表示装置であって、絵素アレイ31と、ソースドライバ32と、ゲートドライバ33と、制御回路34と、電源回路35とを備えている。

[0116]

絵素アレイ31、ソースドライバ32およびゲートドライバ33は、基板36 上に形成されている。基板36は、ガラスのような絶縁性かつ透光性を有する材料により形成されている。絵素アレイ31は、ソースラインSL…と、ゲートラインGL…と、絵素37…とを有している。

絵素アレイ31においては、多数のゲートライン GL_j , L_{j+1} …と多数のソースライン SL_i , SL_{i+1} …とが交差する状態で配されており、隣接する2本のゲートラインGL,GLと隣接する2本のソースラインSL,SLとで包囲された部分に絵素(図中、PIXにて示す)37が設けられている。このように、絵素37…は、絵素アレイ31内でマトリクス状に配列されており、1列当たりに1本のソースラインSLが割り当てられ、1行当たりに1本のゲートラインGLが割り当てられている。

[0118]

[0119]

トランジスタTのゲートは、ゲートライン GL_j に接続されている。また、液晶容量 C_L および補助容量CS の一方の電極は、トランジスタTのドレインおよびソースを介してソースライン SL_j に接続されている。ドレインに接続される液晶容量 C_L の電極は、絵素電極 3 7 a を形成している。液晶容量 C_L の他方の電極は、液晶セルを挟んで対向電極に接続され、補助容量 C_S の他方の電極は、全絵素に共通の図示しない共通電極線(C_S on Common構造の場合)、または隣接するゲートラインGL(C_S on Gate構造の場合)に接続されている。

[0120]

多数のゲートライン GL_j , GL_{j+1} …は、ゲートドライバ33に接続され、多数のデータ信号線 SL_i , SL_{i+1} …は、ソースドライバ32に接続されている。また、ゲートドライバ33およびソースドライバ32は、それぞれ異なる電源電

[0121]

ソースドライバ32は、制御回路34により与えられた画像信号DATを制御回路34からの同期信号CKSおよびスタートパルスSPSに基づいてサンプリングして各列の画素に接続されたソースラインSL $_i$, SL $_{i+1}$ …に出力するようになっている。ゲートドライバ33は、制御回路34からの同期信号CKG・GPSおよびスタートパルスSPGに基づいて各行の絵素37…に接続されたゲートラインGL $_i$, GL $_{i+1}$ …に与えるゲート信号を発生するようになっている。

[0122]

電源回路 35 は、電源電圧 V_{SH} , V_{SL} , V_{GH} , V_{GL} 、接地電位 COM および電 EV_{BB} を発生する回路である。電源電圧 V_{SH} , V_{SL} は、それぞれレベルの異なる電圧であり、ソースドライバ 32 に与えられる。電源電圧 V_{GH} , V_{GL} は、それぞれレベルの異なる電圧であり、ゲートドライバ 33 に与えられる。接地電位 COM は、基板 36 に設けられる図示しない共通電極線に与えられる。

[0123]

トランジスタTは、ゲートドライバ33からゲートラインGL $_{j}$ を介して与えられるゲート信号によってONすると、ソースドライバ32からソースラインSL $_{i+1}$ を介して与えられる画像信号を絵素37(絵素電極37a)に書き込む。また、トランジスタTは、前述の実施の形態1ないし3における薄膜トランジスタ1,11,21(図1(a)、図6(a)、図9(a)参照)である。薄膜トランジスタ1,11,21は、前述のように、しきい値電圧Vthを実用上問題のない電圧に制御が可能であることから、上記のような液晶表示装置に適用する場合、適切なしきい値電圧が0~3V程度であるので、ドーピング量により、最適なしきい値電圧を設定することができる。したがって、この薄膜トランジスタ1,11,21を絵素37を駆動するトランジスタTに実用上問題なく用いることができる。

[0124]

また、ソースドライバ32およびゲートドライバ33を構成する回路素子のう ち、トランジスタで構成される回路において、各トランジスタとして前述の薄膜

[0125]

また、絵素37のトランジスタTと駆動回路のトランジスタとを同じトランジスタ1,11,21で構成することによって、これらのトランジスタを同一の基板36上に同じプロセスを用いて同時に作製することが可能になる。それゆえ、マトリクス表示装置の製造工程が削減されるので、マトリクス表示装置の低コストかを図ることができる。

[0126]

以上のように、絵素37用のトランジスタTおよび駆動回路用のトランジスタ として薄膜トランジスタ1,11,21を用いても、しきい値が適正に制御され るので、動作の安定したマトリクス表示装置を提供することが可能になる。

[0127]

以上、本実施の形態および前記の他の実施の形態において、幾つかの例を示したが、本発明は、上記の各実施の形態に限定されることなく、同様の概念に基づく全ての構成に適用される。

[0128]

[0129]

また、実施形態4では、電子デバイスとしてアクティブマトリクス型の液晶表示装置について例示したが、他の表示装置、例えば有機EL表示装置やフレキシブル表示装置についても、同様に薄膜トランジスタ1,11,21をスイッチング素子として用いていれば、本発明の適用が可能である。

[0130]

さらに、本発明が適用可能な表示装置以外の電子デバイスとしては、薄膜トラ

ンジスタ1,11,21をイメージ読み出し用のスイッチング素子として用いた、ライン型イメージスキャナ、マトリクス型イメージスキャナ、X線イメージセンサ等が挙げられる。このようなスキャナやセンサでは、電荷蓄積容量に蓄積された電荷を読み出すために絵素電極とソースラインとの間に接続されたスイッチング素子をゲートラインに付与されたゲート電圧(走査信号)でONする。図12に示す液晶表示装置の絵素37における液晶容量 C_L および補助容量 C_S を電荷蓄積容量に置き換えることにより、トランジスタTをスイッチング素子として備えるスキャナやセンサにおける画像信号を読み出す部分を構成することができる。この構成では、ソースドライバ32が、絵素から読み出された画像信号の入力回路に置き換えられる。また、ライン型のスキャナでは絵素を1ライン分用いればよい。

[0131]

【発明の効果】

以上のように、本発明の半導体装置は、ZnOまたは $Mg_xZn_{1-x}O$ の多結晶状態、アモルファス状態または多結晶状態とアモルファス状態とが混在する状態である半導体から成り、I 族、III 族、IV 族、V 族またはVII 族の元素が添加されている活性層と、前記活性層を、前記活性層において可動電荷が移動する領域が雰囲気の影響を受けない範囲で雰囲気から隔絶する隔絶体とを備えている構成である。

[0132]

このように、雰囲気に対して敏感なZ n O またはM g $_{X}$ Z n $_{1-x}$ O を隔絶体によって雰囲気から隔絶し、かつ I 族、III族、IV族、V 族またはVII族の元素をZ n O またはM g $_{X}$ Z n $_{1-x}$ O に添加することで、隔絶体によって活性層に発生する可動電荷を減少させることができる。これにより、素子特性が雰囲気により左右されず安定し、かつ実用可能な範囲にしきい値電圧を制御可能となるZ n O または M g $_{X}$ Z n $_{1-x}$ O を用いた半導体装置を提供することができるという効果を奏する

【図面の簡単な説明】

【図1】

【図2】

第1の実施形態に係る薄膜トランジスタの他の構成を示す断面図である。

【図3】

(a) ないし(e) は図1の薄膜トランジスタの製造工程を示す断面図である

【図4】

第1ないし第3の実施形態に係わる薄膜トランジスタの I d - V g 特性を示す 図である。

【図5】

第1の実施形態に係る薄膜トランジスタのさらに他の構成を示す平面図である

【図6】

(a) は本発明の第2の実施形態に係る薄膜トランジスタの構成を示す平面図であり、(b) は(a) のC-C線矢視断面図であり、(c) は(a) のD-D 線矢視断面図である。

【図7】

第2の実施形態に係る薄膜トランジスタの他の構成を示す断面図である。

【図8】

(a) ないし(d) は図6の薄膜トランジスタの製造工程を示す断面図である

【図9】

(a)は本発明の第3の実施形態に係る薄膜トランジスタの構成を示す平面図であり、(b)は(a)のE-E線矢視断面図であり、(c)は(a)のF-F線矢視断面図である。

【図10】

第3の実施形態に係る薄膜トランジスタの他の構成を示す断面図である。

【図11】

(a) ないし(d) は図9の薄膜トランジスタの製造工程を示す断面図である

0

【図12】

本発明の第4の実施形態に係るアクティブマトリクス型の液晶表示装置の概略 構成を示すブロック図である。

【図13】

図12の液晶表示装置における絵素の構成を示す回路図である。

【図14】

(a) 従来の保護層を有していない薄膜トランジスタの構成を示す断面図であり、(b) 従来の保護層を有している薄膜トランジスタの構成を示す断面図である。

【図15】

保護層の有無による薄膜トランジスタのId-Vg特性を示す図である。

【図16】

保護層の有無による酸化亜鉛薄膜の電圧-抵抗率の特性を示す図である。

【符号の説明】

			•
1,	11,	2 1	薄膜トランジスタ(半導体装置)
2,	12,	2 2	絶縁性基板
3,	18,	2 9	ゲート電極
4,	1 7		ゲート絶縁層 (隔絶層)

5, 16, 26 半導体層(活性層)

6,14,24 ソース電極(隔絶層)

7, 15, 25 ドレイン電極(隔絶層)

8,19 保護層(隔絶層)

13,23 下地絶縁層(隔絶層)

27 第1のゲート絶縁層(隔絶層)

28 第2のゲート絶縁層(隔絶層)

3 7 絵素

特願2003-177272

ページ: 38/E

3 7 a 絵素電極

 GL_i ゲートライン

T トランジスタ (スイッチング素子)

【書類名】 図面

【図1】

【図4】

【図5】

【図10】

【図15】

【図16】

【要約】

【課題】 酸化亜鉛を活性層に用い、かつ活性層を雰囲気と隔絶する保護層の付与された半導体装置の実使用を可能にする。

【解決手段】 薄膜トランジスタ1において、絶縁性基板2上のゲート電極3の上に、ゲート絶縁層4を介して半導体層5が積層され、その上にソース電極6とドレイン電極7とが形成され、さらにその上を覆う保護層8が形成されて、半導体層5を雰囲気から隔絶している。半導体層5(活性層)は、例えばV族元素が添加されたZnOの多結晶状態の半導体を用いて形成される。ZnOは、保護層8により表面準位が減少し、内部への空乏層が拡がりが解消されるので、本来の抵抗値を示すn型半導体となり、自由電子が過剰な状態になる。添加された元素はZnOに対してアクセプタ不純物として働くので、過剰な自由電子が減少する。これにより、過剰な自由電子を排除するためのゲート電圧が低下するので、しきい値電圧が0V付近となる。

【選択図】 図1

特願2003-177272

出願人履歴情報

識別番号

[000005049]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月29日

理由] 新規登録

大阪府大阪市阿倍野区長池町22番22号

シャープ株式会社

特願2003-177272

出願人履歴情報

識別番号

[501356721]

1. 変更年月日 [変更理由]

[変更理由] 住 所 氏 名 2001年 9月10日

新規登録

宫城県仙台市泉区桂3-33-10

大野 英男

出願人履歴情報

識別番号

[501122377]

1. 変更年月日

2002年11月26日

[変更理由]

住所変更

住 所

宮城県仙台市青葉区川内元支倉35番地1-101

氏 名

川崎 雅司