HST.953x Workshop 2.09: Ensemble Methods Exercises

H. David Shea

16 Jul 2021

Contents

	Description	1
	Dataset	1
	Test-Train Split the Data	2
	Initial Tree Model of Median Value versus all other Predictors	2
	Initial Linear Model of Median Value versus all other Predictors	3
	Bagging	4
	Random Forest	5
	Boosting	6
	Results	8
	Linear Model of Median Value versus two most significant predictors from boosting (lstat and rm)	9
N	ote: Updated and modified from "R for Statistical Learning".)	

Description

This section contains examples of ensemble - bagging and boosting - methods.

Dataset

We will be using the Boston dataset from the MASS package for these examples. The dataset contains housing value data for the suburbs of Boston.

- **crim** per capita crime rate by town.
- **zn** proportion of residential land zoned for lots over 25,000 sq.ft.
- indus proportion of non-retail business acres per town.
- **chas** Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
- nox nitrogen oxides concentration (parts per 10 million).
- rm average number of rooms per dwelling.
- age proportion of owner-occupied units built prior to 1940.
- dis weighted mean of distances to five Boston employment centres.
- rad index of accessibility to radial highways.
- tax full-value property-tax rate per \$10,000.
- ptratio pupil-teacher ratio by town.

- black 1000(Bk 0.63)² where Bk is the proportion of blacks by town.
- **lstat** lower status of the population (percent).
- medv median value of owner-occupied homes in \$1000s.

```
base_dir <- here::here("")</pre>
calc_rmse = function(actual, predicted) {
 sqrt(mean((actual - predicted) ^ 2))
str(Boston)
#> 'data.frame':
                  506 obs. of 14 variables:
#> $ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
#> $ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
#> $ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
#> $ chas : int 0 0 0 0 0 0 0 0 0 0 ...
#> $ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
#> $ rm
           : num 6.58 6.42 7.18 7 7.15 ...
#> $ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
#> $ dis : num 4.09 4.97 4.97 6.06 6.06 ...
#> $ rad : int 1223335555...
#> $ tax
         : num 296 242 242 222 222 222 311 311 311 311 ...
#> $ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
#> $ black : num 397 397 393 395 397 ...
#> $ lstat : num 4.98 9.14 4.03 2.94 5.33 ...
#> $ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
```

Test-Train Split the Data

```
set.seed(18)
boston_idx <- sample(1:nrow(Boston), nrow(Boston) / 2)
boston_trn <- Boston[boston_idx,]
boston_tst <- Boston[-boston_idx,]</pre>
```

Initial Tree Model of Median Value versus all other Predictors

Predicted vs Actual: Single Tree, Test Data


```
# RMSE
(tree_tst_rmse <- calc_rmse(boston_tree_tst_pred, boston_tst$medv))
#> [1] 5.051138
```

Initial Linear Model of Median Value versus all other Predictors

Predicted vs Actual: Linear Model, Test Data


```
# RMSE
(lm_tst_rmse <- calc_rmse(boston_lm_tst_pred, boston_tst$medv))
#> [1] 5.016083
```

Bagging

(The reference book used randomForest but this is not yet available for M1 machines. I am trying the cforest function from the party package as a replacement.)

Bagging is actually a special case of a random forest where mtry is equal to the number of predictors - 13 in this case.

```
boston_bag <- cforest(medv ~ ., data = boston_trn, controls = cforest_unbiased(mtry = 13, ntree = 500))
boston_bag
#>
    Random Forest using Conditional Inference Trees
#>
#>
#> Number of trees: 500
#>
#> Response: medv
#> Inputs: crim, zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, lstat
#> Number of observations: 253
boston_bag_tst_pred <- predict(boston_bag, newdata = boston_tst)</pre>
plot(boston_bag_tst_pred,boston_tst$medv,
     xlim = c(0,50), ylim = c(0,50),
     xlab = "Predicted", ylab = "Actual",
    main = "Predicted vs Actual: Bagged Model, Test Data",
     col = "dodgerblue", pch = 20)
grid()
abline(0, 1, col = "darkorange", lwd = 2)
```

Predicted vs Actual: Bagged Model, Test Data


```
(bag_tst_rmse <- calc_rmse(boston_bag_tst_pred, boston_tst$medv))
#> [1] 4.710894
```

Here we see two interesting results. First, the predicted versus actual plot no longer has a small number of predicted values. Second, our test error has dropped dramatically - note, not as dramatically as the original example did using randomForest.

Random Forest

We now try a random forest. For regression, the suggestion for mtry is number of predictors divided by 3 - 4 in this case.

```
boston_forest <- cforest(medv ~ ., data = boston_trn, controls = cforest_unbiased(mtry = 4, ntree = 500
boston_forest
#>
#>
    Random Forest using Conditional Inference Trees
#>
#> Number of trees: 500
#> Response: medv
#> Inputs: crim, zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, lstat
#> Number of observations: 253
boston_forest_tst_pred <- predict(boston_forest, newdata = boston_tst)</pre>
plot(boston_forest_tst_pred, boston_tst$medv,
     xlim = c(0,50), ylim = c(0,50),
    xlab = "Predicted", ylab = "Actual",
    main = "Predicted vs Actual: Random Forest, Test Data",
     col = "dodgerblue", pch = 20)
grid()
abline(0, 1, col = "darkorange", lwd = 2)
```

Predicted vs Actual: Random Forest, Test Data


```
(forest_tst_rmse <- calc_rmse(boston_forest_tst_pred, boston_tst$medv))
#> [1] 5.042991
```

Boosting


```
#> # A tibble: 13 x 2
             rel.inf
#>
     var
#>
      <chr>
               <dbl>
#> 1 lstat
             45.4
#> 2 rm
             25.9
              5.86
#> 3 dis
#> 4 crim
              5.06
              4.90
#> 5 nox
#> 6 black
              3.38
              3.08
#>
  7 age
#> 8 ptratio 2.61
#> 9 tax
              1.96
#> 10 indus
              1.01
#> 11 rad
              0.676
#> 12 zn
              0.127
```

```
#> 13 chas     0.0659

par(mfrow = c(1, 3))
plot(booston_boost, i = "rm", col = "dodgerblue", lwd = 2)
```


plot(booston_boost, i = "lstat", col = "dodgerblue", lwd = 2)


```
plot(booston_boost, i = "dis", col = "dodgerblue", lwd = 2)
```



```
boston_boost_tst_pred = predict(booston_boost, newdata = boston_tst, n.trees = 5000)
(boost_tst_rmse <- calc_rmse(boston_boost_tst_pred, boston_tst$medv))
#> [1] 3.643578
```

Predicted vs Actual: Boosted Model, Test Data

Results

Model	TestError
Single Tree	5.051138
Linear Model	5.016083
Bagging	4.710894
Random Forest	5.042992
Boosting	3.643578

Linear Model of Median Value versus two most significant predictors from boosting (1stat and rm)

Predicted vs Actual: Linear Model, Test Data


```
# RMSE
(lm2_tst_rmse <- calc_rmse(boston_lm_tst_pred, boston_tst$medv))
#> [1] 5.016083
```