Ludwig-Maximilians-Universität München

 ${\rm WS}~2015/2016$ Martin Hofmann, Ulrich Schöpp

Komplexitätstheorie

Vorlesungsmitschrieb von

Philipp Moers
<p.moers@campus.lmu.de>
<soziflip@gmail.com>

Last updated: 27. Oktober 2015, 17:18

Zusammenfassung

Die Komplexitätstheorie beschäftigt sich mit der Klassifikation von Algorithmen und Berechnungsproblemen nach ihrem Ressourcenverbrauch, z.B. Rechenzeit oder benötigtem Speicherplatz. Probleme mit gleichartigem Ressourcenverbrauch werden zu Komplexitätsklassen zusammengefasst. Die bekanntesten Komplexitätsklassen sind sicherlich P und NP, die die in polynomieller Zeit deterministisch bzw. nicht-deterministisch lösbaren Probleme umfassen.

P und NP sind jedoch nur zwei Beispiele von Komplexitätsklassen. Andere Klassen ergeben sich etwa bei der Untersuchung der effizienten Parallelisierbarkeit von Problemen, der Lösbarkeit durch zufallsgesteuerte oder interaktive Algorithmen, der approximativen Lösung von Problemen, um nur einige Beispiele zu nennen.

Anmerkung

Dies ist ein inoffizieller Vorlesungsmitschrieb. Als solcher erhebt er keinen Anspruch auf (NP-) Vollständigkeit oder Korrektheit. Nutzung, Anmerkungen und Korrekturen sind jedoch durchaus erwünscht!

Vorlesungs-Website: http://www.tcs.ifi.lmu.de/lehre/ws-2015-16/kompl

Inhaltsverzeichnis

1	Einführung							
	1.1	Motivation	4					
	1.2	Literatur	4					
2	Turingmaschinen, Berechenbarkeit und Komplexität							
	2.1	Turingmaschinen	7					
	2.2	Halteproblem	10					
	2.3	Rechenzeit	11					
	2.4	Komplexitätsklassen	13					
	2.5	polynomielle Verifizierbarkeit	17					
3	NP und P							
	3.1	Padding	19					
	3.2	Was wenn $P = NP \dots$	20					
	33	Sogenannte Effizienz	22					

1 Einführung

1.1 Motivation

Theoretische Informatik, Berechenbarkeit und insbesondere Komplexitätstheorie ist <u>der</u> Informatiker-Shit schlechthin. Let's do it!

1.2 Literatur

Die Vorlesung basiert hauptsächlich auf folgendem Buch:

 Bovet, Crescenzi. Introduction to the Theory of Complexity. Prentice Hall. New York. 1994.

Weiterhin ist folgende Literatur gegeben:

- C. Papadimitriou. Computational Complexity. Addison-Wesley. Reading. 1995.
- I. Wegener. Komplexitätstheorie: Grenzen der Effizienz von Algorithmen. Springer. 2003.
- S. Arora und B. Barak. Complexity Theory: A Modern Approach.

Zur Motivation:

- Heribert Vollmer. Was leistet die Komplexitätstheorie für die Praxis? Informatik Spektrum 22 Heft 5, 1999.
- Stephen Cook: The Importance of the P versus NP Question. Journal of the ACM (Vol. 50 No. 1)

Vorlesung vom 12.10.15

2 Turingmaschinen, Berechenbarkeit und Komplexität

2.1 Turingmaschinen

Definition

Eine **Turingmaschine** T mit k Bändern ist ein 5-Tupel

$$T = (Q, \Sigma, I, q_0, F)$$

- Q ist eine endliche Menge von Zuständen
- Σ ist eine endliche Menge von Bandsymbolen, $\square \in \Sigma$
- I ist eine Menge von Quintupeln der Form (q,s,s',m,q') mit $q,q'\in Q$ und $s,s'\in \Sigma^k$ und $m\in \{L,R,S\}^k$
- $q_0 \in Q$ Startzustand
- $F \subseteq Q$ Endzustände
- ☐ ist das Leerzeichen oder Blanksymbol.

T heißt **deterministisch** genau dann, wenn für jedes $q \in Q$ und $s \in \Sigma^k$ genau ein Quintupel der Form $(q, s, _, _, _) \in I$ existiert. Sonst heißt T **nichtdeterministisch**.

Eine Turingmaschine heißt **Akzeptormaschine** genau dann, wenn zwei Zustände $q_A, q_R \in F$ speziell markiert sind. q_A signalisiert Akzeptanz, q_R signalisiert Verwerfen der Eingabe.

Eine Turingmaschine heißt **Transducermaschine** genau dann, wenn ein zusätzliches Band ausgezeichnet ist (das Ausgabeband).

Beispiel

Akzeptormaschine T für Sprache $L=\{0^n1^n|n\geq 0\}$ wobei $\Sigma=\{0,1\},Q=\{q_0,\dots q_4\}$

T wird deterministisch sein. $T=(Q,\Sigma,I,q_0,F),q_A=q_1,q_R=q_2,F=\{q_1,q_2\},k=2$

q	s_1	s_2	s_1'	s_2'	m_1	m_2	q'
q_0					S	S	q_1
q_0	0		0	0	R	R	<i>q</i> ₃
q_0	1		1		S	S	<i>q</i> ₂
q_3			_	_	_	_	<i>q</i> ₂
q_3	0		0	0	R	R	<i>q</i> ₃
<i>q</i> ₃	1		1		S	L	94
q_4	0	0	_	_	_	_	92
q_4	1	0	1	0	R	L	q_4
q_4	0				S	S	q_1
_	_	_	_	_		_	92

Die globale Konfiguration (oder der Zustand) einer Turingmaschine beinhaltet die Beschriftung aller Bänder, den internen Zustand ($\in Q$) und die Positionen aller k

Lese-/Schreibköpfe. Globale Konfigurationen können als endliche Wörter über einem geeigneten Alphabet (z.B. $\{0,1\}$) codiert werden.

Eine Turingmaschine **akzeptiert** eine Eingabe genau dann, wenn eine Berechnungsfolge ausgehend von dieser Eingabe existiert und in einem Zustand aus *F* endet.

Eine Turingmaschine akzeptiert eine Sprache $L\subseteq (\Sigma\setminus\{\Box\})^*$ falls gilt:

Die Turingmaschine akzeptiert $w \Leftrightarrow w \in L$

Eine Turingmaschine **entscheidet** eine Sprache $L\subseteq (\Sigma\setminus\{\Box\})^*$ genau dann, wenn sie sie akzeptiert und eine/die Berechnung in q_A endet.

Vorlesung vom 15.10.15

Zu Mehrband-Turingmaschinen:

Bisher waren die Bänder beidseitig unendlich. Ab jetzt und im Buch sind sie nur noch einseitig unendlich.

Satz

Eine Mehrband-Turingmaschine mit k Bändern kann durch eine Einband-Turingmaschine simuliert werden.

Dies benötigt quadratischen Mehraufwand.

Beweis

Die Beweisidee nutzt für das alte Alphabet Σ das neue Alphabet $\Sigma^k \times \{0,1\}^k$, das die Zeichen auf den Bändern und, ob der Lese-/Schreibkopf an dieser Position steht, speichert.

q.e.d.

Definition

Eine **universelle Turingmaschine** erhält als Eingabe (M, x), wobei M die Beschreibung einer Turingmaschine in geeignetem Binärformat und x die Eingabe für M ist. Sie berechnet dann die Ausführung von M auf x.

2.2 Halteproblem

Definition

Gegeben Turingmaschine und Eingabe (M, x). Das Problem, zu entscheiden, ob M angewendet auf x hält oder nicht, heißt **Halteproblem**.

Satz

Das Halteproblem ist unentscheidbar.

Beweis

Angenommen, es gäbe eine Turingmaschine M_{HALT} , die das Halteproblem entscheidet.

Dann könnten wir auch eine neue Turingmaschine \mathcal{M}_D konstruieren:

Simuliere Eingabe M auf M selbst und schaue, ob sie hält. Falls ja, dann gehe in Endlosschleife. Falls nicht, halte an.

Für $M=M_D$ ergibt sich nun ein Widerspruch: Falls sie hält, hält sie nicht. Falls sie nicht hält, hält sie.

q.e.d.

2.3 Rechenzeit

Definition

Die Rechenzeit definiert man wie folgt:

Gegeben eine Turingmaschine M und Eingabe x.

 $TIME_M(x)$ ist die Dauer (Anzahl der Schritte) der Berechnung von M auf x.

Im Beispiel der Maschine für $L = \{0^n 1^n | n \ge 0\}$ ist $TIME_M(x) = |x|$ (Länge des Strings).

Satz

Das **Speedup-Theorem** besagt, dass zu jeder Turingmaschine M eine äquivalente Turingmaschine M' konstruiert werden kann, sodass

$$TIME_{M'}(x) \le \frac{1}{k} * TIME_{M}(x)$$

wobei $k \in \mathbb{N} \setminus \{0\}$ fest gewählt ist.

Zum Beispiel ist bei k = 7 die neue Turingmaschine siebenmal so schnell.

Beweis

Gegeben M mit Alphabet Σ .

Dann wird M' mit Alphabet Σ^k konstruiert. Ein Symbol von M' repräsentiert k aufeinanderfolgende Symbole von M, d.h. M' kann k Schritte von M ein einem einzigen ausführen.

q.e.d.

Anmerkung:

Die Schritte werden in der Praxis also schon aufwändiger, die definierte Metrik TIME erfasst das nur nicht. No Magic here.

Definition

Sei
$$f: \mathbb{N} \to \mathbb{N}$$
.

Dann definieren wir DTIME(f) als Menge aller Entscheidungsprobleme (oder Berechnungsprobleme) A, zu denen eine <u>deterministische</u> Turingmaschine M existiert, sodass M A entscheidet und die Rechenzeit in $\mathcal{O}(f(n))$ liegt.

 $DTIME(f) = \{A \mid \exists M : M \text{ entscheidet } A \text{ und } \forall x \in \Sigma^* : TIME_M(x) = \mathcal{O}(f(|x))\}$

Satz

Matrixmultiplikation liegt in $\mathcal{O}(n^3)$, also in $DTIME(\sqrt{n}^3)$, wenn die Länge der Matrix auf dem Band n ist. Sie liegt sogar in $\mathcal{O}(n^{2.78})$

Offen ist die Frage, ob sie in $DTIME(\sqrt{n}^2)$ liegt.

2.4 Komplexitätsklassen

Definition

Eine Menge der Form DTIME(f(n)) heißt deterministische Zeitkomplexitätsklasse. Analog heißt NTIME(f(n)) für nichtdeterministische Turingmaschinen nichtdeterministische Zeitkomplexitätsklasse.

Wir betrachten zu gegebener Funktion $f: \mathbb{N} \Rightarrow \mathbb{N}$ durch Turingmaschine M folgenden Algorithmus:

Rechne M auf Eingabe M selbst für f(M) Schritte. Falls M sich bis dahin akzeptiert, verwerfe die Eingabe. Falls sie sich verwirft oder bis dahin nicht gehalten hat, akzeptiere die Eingabe.

Das durch diesen Algorithmus beschriebene Problem

 $K_f = \{M \mid M \text{ akzeptiert sich selbst nicht in höchstens } f(|M|) \text{ Schritten.} \}$

ist "offensichtlich" entscheidbar. Die Rechenzeit für diese Entscheidung muss aber im

allgemeinen f(|M|) übersteigen.

Wäre M_f eine Turingmaschine, die K_f entscheidet und außerdem $TIME_{M_f} \leq f(|x|)$ für alle x, dann führt die Anwendung von M_f auf M_f selbst zum Widerspruch (wie beim Halteproblem).

f muss dazu selbst in Zeit $\mathcal{O}(f(n))$ berechenbar und monoton steigend sein. Man nennt f dann zeitkonstruierbar.

Durch geschickte Ausnutzung dieses Arguments erhält man den Zeit-Hierarchie-Satz:

Satz

Falls $f: \mathbb{N} \to \mathbb{N}$ zeitkonstruierbar ist, dann gilt:

$$DTIME(f(n)) \subset DTIME(f(n) * \log^2(f(n)))$$

wobei ⊂ eine echte Teilmengenbeziehung bezeichnet.

Anmerkung:

"Vernünftige" Funktionen wie 2^n , $\log(n)$, \sqrt{n} etc. sind zeitkonstruierbar.

Satz

Nach Borodin und Trakhtenbrot gilt das Gap-Theorem:

Für eine totale, berechenbare Funktion $g: \mathbb{N} \to \mathbb{N}$ mit $g(n) \ge n$ gibt es immer eine totale, berechenbare Funktion $f: \mathbb{N} \to \mathbb{N}$, sodass gilt:

$$DTIME(f) = DTIME(g \circ f)$$

Es gibt also in der Hierarchie der Komplexitätsklassen beliebig große Lücken.

Definition

Wichtige Komplexitätsklassen:

$$P = \bigcup_{k \ge 1} DTIME(n^k)$$

$$E = \bigcup_{k \ge 1} DTIME(2^{kn})$$

$$EXP = \bigcup_{k \ge 1} DTIME(2^{n^k})$$

Nach dem Zeit-Hierarchie-Satz gilt:

$$P \subset E \subset EXP$$

Vorlesung vom 19.10.15

Definition

Nichtdeterministische Zeitkomplexität Sei T eine nichtdeterministische Turingmaschine.

Für $x \in \Sigma$ ist $NTIME_T(x)$

- 1. definiert genau dann, wenn alle Berechnungen von T auf x halten
- 2. Falls definiert und $x \in L(T)$ (d.h. es gibt eine akzeptierende Berechnung von T auf x) definiert als Länge der kürzesten akzeptierenden Berechnungen von T auf x.
- 3. Falls überhaupt definiert $x \notin L(T)$ so ist $NTIME_{(x)}$ die Länge der kürzesten Berechnung.

Definition

Nichtdeterministische Komplexitätsklassen

$$NTIME(f(n)) = \{L | \exists T \text{ mit } L(T) = L \text{ und } NTIME_T(x) = \mathcal{O}(f(|x|))\}$$

Es gibt einen nichtdeterministischen Zeithierachiesatz.

$$NP = \bigcup_{k \ge 1} NTIME(n^k)$$

 $NE = \bigcup_{k \ge 1} NTIME(2^{kn})$

$$NEXP = \bigcup_{k \ge 1} NTIME(2^{n^k})$$

Nichtdeterminismus kann durch erschöpfende Suche deterministsch simuliert werden. z.B. $NP \subseteq EXP$

Allgemein:

$$NTIME(f(n)) \subseteq DTIME(2^{\mathcal{O}(f(n))})$$

(zeitkonstruierbar)

2.5 polynomielle Verifizierbarkeit

Definition

Charakterisierung von NP durch polynomielle Verifizierbarkeit PV.

$$L\subseteq \Sigma^*.L\in PV \text{ genau dann, wenn}$$

$$\exists L'\in P \text{ sodass gilt } x\in L\Leftrightarrow \exists z \text{ "Loesung" mit } |h|\leq L'$$
 wobei p ein Polynom ist

Satz

$$NP = PV$$

Beweis

"⊆":

 $L \in NP$. Sei T eine nichtdeterministische Turingmaschine für L mit Laufzeit p(n).

 $L' = \{(x,y)|y \text{ codiert eine akzeptierende Berechnung von } T \text{ auf } x\}$

1.
$$x \in L \Leftrightarrow \exists y : |y| \le (p(|x|))^2 . (x,y,) \in L'$$

2. $L' \in P$

"⊇":

Gegeben $L, L' \in P$.

Eine nichtdeterministische Turingmaschine T für L rät zunächst y und prüft dann $(x,y)\in L'$

q.e.d.

EXP im Gegensartz zu NP bzw. PV umfasst auch Probleme mit exponentiell großen Lösungen bzw solchen wo die Verifikation einer Lösung einen exponentiellen Aufwand macht.

3 NP und P

3.1 Padding

Definition

Sei $L \subseteq \Sigma^*$ eine Sprache.

$$padd(L) = \{1^l Ox | x \in L, l = 2^{|x|}\}$$

Satz

Es gilt: $L \in DTIME(f(s^n))$, dann ist

$$padd(L) \in DTIME(f(n))$$

Blase f zeitkonstant und insbesondere $f(n) \geq n$

Beweis

Sei T eine deterministische Turingmaschine für L und $DTIME_T(x) \leq \in xf(2^n)$

Die folgende Maschine T' entscheided padd(L):

Gegeben Eingabe y, schreibe $y+1^lOx$ und prüfe ob $l=2^{|x|}$ geht in Zeit $\mathcal{O}(|y|)$

Aufwand: $cf(2^{|x|}) \le c * f(|y|)$

 $\mathsf{Gesamtaufwand} \colon \leq c * f(|y|) + |y| = \mathcal{O}(f(|y|))$

falls $f(n) \ge n$ (zeitkonstruierbar)

q.e.d.

Satz

Umgekehrt gilt auch:

Wenn $padd(L) \in DTIME(f(n))$ dann $L \in DTIME(f(s^{n+1}))$

Beweis

Sei T eine Turingmaschine für padd(L) mit $DTIME_T(y) \leq cf(|y|)$

Wir bauen eine Maschine für L: Gegeben Eingabe x, bilde $y=1^{2^{|x|}}Ox$.

Aufwand: $\mathcal{O}(2^{|x|})$ Setze T auf y an. Aufwand: $c*f(|y|)=c*f(2^{|x|}+|x|+1)$

Gesamtaufwand: $\mathcal{O}(f(2^{|x|+1}))$

q.e.d.

3.2 Was wenn P = NP

<u>Satz</u>

Folgerung:

$$P = NP \Rightarrow E = NE$$

Beweis

Sei P=NP und $L\in NE$ und T eine Maschine mit Aufwand n^{kk} wobei k fest, n Länge der Eingabe.

 $L \in NTIME(n^{nk}) = NTIME((2^n)^k)$ Also $padd(L) \in NTIME(2^k)$ also $padd(L) \in NP$ und nach Annahme $padd(L) \in P$

Also $padd(L) \in DTIME(n^{k'})$ also $L \in DTIME((2^{n+1})^{k'}) = DTIME(2^{k'n+k'}) = DTIME(2^{k'n}) \subseteq E$

q.e.d.

Slogan: Gleichheit von Komplexitätsklassen vererbt sich nach oben.

Mit anderen Paddingfunktion zeigt man ebenso:

$$P = NP \Rightarrow EXP = NEXP$$

$$E = NE \Rightarrow EXP = NEXP$$

Kontrapositiv ausgedrückt:

$$E \neq NE \Rightarrow P \neq NP$$

etc.

Es koennte sein, dass $P \neq NP$ aber doch E = NE.

Slogan: Trennung von Komplexitätklassen vererbt sich (durch Padding) von oben nach unten.

3.3 Sogenannte Effizienz

P wird gemeinhin gleichgesetzt mit "effizient loesbar".

Wachstumsverhalten:

$$p$$
 Polynom. \Rightarrow

$$\exists c > 0 : p(2n) \le c * p(n)$$

Bei Verdopplung des Inputs wird der Output also ver-c-facht.

Häufig hat eine Bruteforce-Lösung ("stures Durchprobieren") exponentiellen und eine echte algorithmische Lösung hat polynomiellen Aufwand.