Titanic Survival Prediction using Machine Learning

Data Analysis & Random Forest Classifier

Presented by: **Udit Sharma**

Millan

Problem & Dataset

• Goal: Predict if a passenger survived the Titanic disaster.

• **Dataset:** Titanic dataset from Seaborn.

• **Target:** Survived (1 = Yes, 0 = No)

• **Key Features:** Age, Sex, Fare, Embarked, Family, Alone, etc.

sollapse (survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0 0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True
5	0	3	male	NaN	0	0	8.4583	Q	Third	man	True	NaN	Queenstown	no	True
6	0	1	male	54.0	0	0	51.8625	S	First	man	True	Е	Southampton	no	True

Data Cleaning & Preprocessing

- Dropped irrelevant columns (embark_town, class, who, adult_male, deck, alive).
- Filled missing values:
 - Age → mean
 - Embarked → mode
- Converted categorical values:
 - Sex → male=1, female=0
 - Alone → integer
- Scaled features using **StandardScaler**.

```
Data columns (total 9 columns):
     Column
               Non-Null Count
                              Dtype
    survived 891 non-null
                               int64
                               int64
     pclass
               891 non-null
                               object
               891 non-null
     sex
                               float64
               891 non-null
     age
               891 non-null
                               int64
     sibsp
               891 non-null
                               int64
     parch
                               float64
6
     fare
               891 non-null
     embarked
               891 non-null
                               object
     alone
               891 non-null
                               bool
```

```
data['age'].fillna(data['age'].mean(), inplace=True)
data['age'].fillna(data['age'].mean(), inplace=True)
data['sex'] = data['sex'].map({'male':1,'female':0})
data['alone'] = data['alone'].astype(int)
```

Exploratory Data Analysis (EDA)

- **Gender Distribution:** More males than females.
- Alone Distribution: Many passengers were traveling alone.
- Heatmap & Pairplot: Found correlations among features.

Model Building

- Model: Random Forest Classifier
- Train-Test Split: 80% training, 20% testing
- Input: Encoded + Scaled features
- Output: Survival prediction (0 or 1)

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

model = RandomForestClassifier()
model.fit(X_train, y_train)

y_predict = model.predict(X_test)

Accuracy = accuracy_score(y_test, y_predict)
report = classification_report(y_test, y_predict)
```

Results

- Accuracy: ~0.79 (example replace with your exact score)
- Classification Report: Good balance of precision/recall.
- Confusion Matrix: Visualizes correct vs wrong predictions.

Conclusion & Next Steps

- Survival strongly linked to **Gender & Family status**.
- Random Forest performed well with good accuracy.
- Next Steps:
 - Try other ML models (Logistic Regression, XGBoost).
 - Tune hyperparameters for improvement.
 - Deploy model as a web app.