Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра інформаційних систем та технологій

Лабораторна робота №1

з дисципліни «Програмування інтелектуальних інформаційних систем»

Виконав:

студент групи ІП-11

Лисенко Андрій

Завдання

- 1. Створити стовпчикову і звичайну бд (приклад застосунку)
- 2. Розрахувати сумарну затримку по містах
- 3. Порахувати кількість польотів по містах
- 4. Знайти місто з найменшою і найбільшою затримкою
- 5. Знайти всі польоти з затримкою більше за середній час затримки
- 6. Заміряти вбудованими методами об'єм БД та швидкість виконання запитів. Порівняти звичайну і стовпчикову

Скрипт створення баз\таблиць

Використав скрипт з github репозиторію

Запити

1. Розрахувати сумарну затримку по містах

```
SELECT
    a.city AS City,
    SUM(f.late_aircraft_delay) AS TotalDelay
FROM
    flights f

JOIN
    airports a ON f.dest = a.iata_code
GROUP BY
    a.city
ORDER BY
    TotalDelay DESC;
```

2. Порахувати кількість польотів по містах

```
SELECT
    a.city AS City,
    COUNT(*) AS FlightCount
FROM
    flights f
JOIN
    airports a ON f.dest = a.iata_code
GROUP BY
    a.city
ORDER BY
    FlightCount DESC;
```

3. Знайти місто з найменшою і найбільшою затримкою

```
WITH CityDelays AS (
    SELECT
          a.city AS City,
          COALESCE(SUM(f.late_aircraft_delay), 0) AS TotalDelay
FROM
    flights f
```

```
JOIN
        airports a ON f.dest = a.iata_code
       a.city
)
SELECT
   City,
   TotalDelay,
    'Minimum' AS DelayType
FROM
   CityDelays
WHERE
   TotalDelay = (
       SELECT
            COALESCE(MIN(TotalDelay), 0)
       FROM
           CityDelays
    )
UNION ALL
SELECT
   City,
   TotalDelay,
   'Maximum' AS DelayType
FROM
   CityDelays
WHERE
   TotalDelay = (
       SELECT
            COALESCE(MAX(TotalDelay), ∅)
       FROM
            CityDelays
    );
```

4. Знайти всі польоти з затримкою більше за середній час затримки

```
SELECT *
FROM flights
WHERE flights.late_aircraft_delay > (
    SELECT AVG(late_aircraft_delay)
```

```
FROM flights
);
```

Метрики

Об'єм баз даних

Використано вбудовані методи, для отримання об'ємів баз даних:

```
call columnstore_info.table_usage('columnstore_bts', NULL);
SELECT table_name, (data_length + index_length) / (1024 * 1024) "Size in MB"
FROM information_schema.tables WHERE table_schema = 'innodb_bts';
```

☐ TABLE_SCHEMA		☐ DATA_DISK_USAGE \$	□ DICT_DATA_USAGE \$	☐ TOTAL_USAGE \$
1 columnstore_bts	airlines	240.00 KB	216.00 KB	456.00 KB
2 columnstore_bts	airports	840.00 KB	872.00 KB	1.67 MB
3 columnstore_bts	flights	6.59 MB	2.41 MB	9.00 MB

	☐ table_name	\$	☐ `Size in MB` ÷
1	flights		0.1719
2	airports		0.0313
3	airlines		0.0313

database	size (MB)	
columnstore	11.126	
innodb	0.2345	

Швидкість виконання запитів

query	columnstore (ms)	innodb (ms)
1	267	317
2	172	123
3	453	233
4	563	492