

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH - IT - Semester - III

SUBJECT: (IT 301) Design of Digital Circuits

Examination: Third Sessional Seat No. :

INSTRUCTIONS:

- 1. Figures to the right indicate maximum marks for that question.
- 2. The symbols used carry their usual meanings.
- 3. Assume suitable data, if required & mention them clearly.
- 4. Draw neat sketches wherever necessary.

Q.1	 Do as directed. (a) Convert S-R flip-flop to J-K flip-flop. (b) What are decade counters? Show block diagram of BCD counter which counts 0 to 9999. (c) "Asynchronous counters are faster than synchronous counters". State T/F with justification. (d) Why Flip Flop is called a single-bit register? (e) Construct a mod 11-counter using MSI circuit. Give two alternatives. (f) Design a 3-bit Ripple counter using D Flip-flop. 	[12] [2] [2] [1] [1] [3] [3]
Q.2	Attempt following questions. (a) Reduce the state of state table given in Table-1 below. Also provide the binary state assignment to reduce states.	[12] ate [6]
	(b) Design a Johnson counter with attached AND gates require for outputs to generate 12 timi signals.	ng [6]
	OR	
	(b) Design a circuit which generates Timing signals (8-timing sequence) for parallel mode operation. Also represent the sequence of 8 timing signals.	of [6]
Q.3	Attempt following questions	[12]
Q.S	(a) Using MSI of 4-bit counter with parallel load, construct a binary counter that counts from to binary 64.	
	(b) Design a serial adder using sequential logic procedure.(use T Flip-flop)	[4]
	(c) Design a sequential circuit whose state diagram is shown in Figure-A below. The type flip-flop to be use is RS.	
	OR	
Q.3	Attempt following questions	[12]
	(a) Obtain characteristic Table and Excitation table of RS flip-flop.	[2]
	(b) Draw and explain basic memory cell used in Random Access Memory.	[4]
	(c) Design a counter with the following binary sequence: 0,3,4,2,7 and repeat. Use JK flip-flop	s. [6]

Present State	Next State		Output	
Fresent State	X=0	X=1	X=0	X=1
A	В	C	0	0
В	D	E	0	0
С	F	G	0	0
D	H	I	0	0
E	J	K	0	0
F	L	M	0	0
G	N	P	0	0
H	A	A	0	0
I	A	A	0	0
J	A	A	0	1
K	A	A	0	0
L	A	A	0	1
M	A	A	0	0
N	A	A	0	0
P	A	A	0	0

Table - 1

Figure-A