3 Détection de la langue par comptage des lettres

Formalisation simplifiée du problème

Un message s est une suite de N caractères pris dans un alphabet \mathcal{A} composé de α caractères : s_1, \cdots, s_N avec $s_j \in \mathcal{A}$ (par exemple $\mathcal{A} = \{A, B, ..., Z\}$, $\alpha = 26$, les espaces entre mots ne sont pas pris en compte dans cette approche.). L'espace Ω des messages de longueur N contient α^N éventualités dont la probabilité dépend de la langue. On observe un message $\mathbf{m} = m_1, \cdots, m_N$; l'objectif est de déterminer, avec un taux d'erreur minimum, la langue de ce message.

Le message est écrit dans une langue l avec $l \in \{0,1\}$. Les différentes hypothèses pour la langue sont notées H_l : sous l'hypothèse H_l , le message est écrit dans la langue l et ses caractères ont des probabilités $a\ priori\ \left\{p_c^{(l)}\right\}_{c\in A}$ supposées connues.

 $f_c(\mathbf{m})$, la fréquence empirique du caractère c dans le message \mathbf{m} , est l'estimation de cette loi obtenue par comptage des différents caractères dans le message observé \mathbf{m} . La fréquence empirique de chaque caractère $c \in \mathcal{A}$ est donnée par :

$$f_c(\mathbf{m}) = \frac{1}{N} \sum_{j=1}^{N} \mathbb{1}_{m_j = c}, c \in \mathcal{A}$$

Remarques:

- Lorsque la longueur de message tend vers l'infini, pour un message \mathbf{m} écrit dans la langue l, cette estimation $\{f_c(\mathbf{m})\}_{c\in\mathcal{A}}$ tend vers $\left\{p_c^{(l)}\right\}_{c\in\mathcal{A}}$ (loi des grands nombres).
- $f_c(\mathbf{m})$ est le nombre d'occurrences du caractère c dans le message \mathbf{m} divisé par N.

La probabilité a priori (avant observation d'un message) pour que le message soit écrit dans la langue l est notée \mathcal{P}_{H_l} (probabilité a priori de la langue l). Les \mathcal{P}_{H_l} sont supposées connues (sans a priori on choisit $\mathcal{P}_{H_0} = \mathcal{P}_{H_1} = 1/2$).

On note $\widehat{H_{\lambda}}$ l'hypothèse décidée sur la langue et H_l l'hypothèse effective pour le message observé.

On note $\Pr\left[\widehat{H_{\lambda}}|H_l\right]$ la probabilité de décider la langue λ (décider l'hypothèse H_{λ}) sachant que la langue l est utilisée (hypothèse H_l effective). La probabilité d'erreur s'écrit :

$$P_e = \mathcal{P}_{H_0} \Pr\left[\widehat{H}_1 | H_0\right] + \mathcal{P}_{H_1} \Pr\left[\widehat{H}_0 | H_1\right]$$
 (Probabilité d'erreur.) (1)

Le but de ce TD est de répondre à deux questions :

- Dans un message donné, comment détecter la langue (avec un taux d'erreur minimum) à partir de la fréquence empirique d'apparition des différents caractères?
- Quelle est la fiabilité (probabilité d'erreur P_e) de cette décision?

L'idée consiste à partitionner l'espace Ω en 2 régions de décision D_0 et D_1 de telle sorte que :

- si le message \mathbf{m} observé appartient à D_i on décide l'hypothèse H_i .
- les régions D_j sont choisies de sorte que la probabilité d'erreur P_e soit minimale. $\{D_j\}_{j\in\{0,1\}}$ est l'ensemble des messages pour lesquels on décide H_j .

Questions:

Pour simplifier la démarche, on modélise les caractères comme des variables aléatoires indépendantes de même loi.

En notant $\Pr\left[\mathbf{z}|H_l\right] = P_l(\mathbf{z})$ la probabilité du message \mathbf{z} sous l'hypothèse H_l :

$$\Pr\left[\widehat{H}_{\lambda}|H_l\right] = \sum_{\mathbf{z}\in D_{\lambda}} \Pr\left[\mathbf{z}|H_l\right].$$

- 1. Proposer une solution pratique pour la détection de la langue qui n'utilise que l'histogramme empirique des caractères dans le message et les histogrammes *a priori* des deux langues en concurence.
- 2. Exprimer la probabilité d'erreur P_e en fonction de \mathcal{P}_{H_0} , $\mathcal{P}_{H_1}=1-\mathcal{P}_{H_0}$, $P_0(\mathbf{z})$ et $P_1(\mathbf{z})$ en sommant sur les ensembles D_0 et D_1 ; puis seulement sur l'ensemble D_1 .
- 3. En déduire que la région D_1 à choisir pour que la probabilité d'erreur soit minimale est

$$D_1 = \{ \mathbf{z} \in \Omega / \mathcal{P}_{H_0} P_0(\mathbf{z}) - \mathcal{P}_{H_1} P_1(\mathbf{z}) < 0 \}.$$

- 4. Combien y-a-t-il d'éléménts dans Ω ? On considère un algorithme qui précalcule \mathcal{D}_1 pour tester ensuite l'appartenance d'un mot à \mathcal{D}_1 . Quel est son coût? Qu'en pensez-vous?
- 5. Les caractères du message étant supposés indépendants, exprimer le test d'appartenance du message $\mathbf m$ observé à la région D_1 en fonction de $\mathcal P_{H_0}$, $\mathcal P_{H_1}$ et des $p_{m_k}^{(0)}$, $p_{m_k}^{(1)}$?
- 6. Réécrire le test établi à la question précédente en fonction des fréquences empiriques $f_c(\mathbf{m})$ des caractères dans le message observé \mathbf{m} .
- 7. Réécrire le test en fonction des deux divergences de Kullback $D\left(f_c(\mathbf{m})||p_c^{(1)}\right)$ et $D\left(f_c(\mathbf{m})||p_c^{(0)}\right)$.

Commentez le cas sans $a\ priori\ \mathcal{P}_{H_1}=\mathcal{P}_{H_0}$ et la manière dont l' $a\ priori\ impacte le test.$

- 8. Donner un algorithme implémentant ce test et donner son nombre d'opération arithmétiques. Comparer au coût du test précédent (question 3).
- 9. Que devient le test lorsque deux langues ont des caractères distribués selon la même loi de probabilité $a\ priori$? Et si, de plus, $\mathcal{P}_{H_1}=\mathcal{P}_{H_0}$?
- 10. Si la performance obtenue s'avère insuffisante par rapport à l'objectif souhaité, quelle possibilité d'amélioration proposer?
- 11. En supposant les caractères indépendants, montrer que la probabilité d'erreur s'écrit

$$P_e = \frac{1}{2} - \frac{1}{2} \sum_{\mathbf{z} \in \Omega} \left| \mathcal{P}_{H_1} \prod_{c \in \mathcal{A}} p_c^{(1)Nf_c(\mathbf{z})} - \mathcal{P}_{H_0} \prod_{c \in \mathcal{A}} p_c^{(0)Nf_c(\mathbf{z})} \right|$$

Que peut-on dire de l'utilisation pratique de ce résultat?