Data base management system (DBMS)

Decomposition

Closure of attribute.

Liset of all attributes which can be functional derived from the attribute.

$$F = \{A \rightarrow B, B \rightarrow c\}$$

F + = { 3 2. Application of clusure.

$$F + = \begin{cases} A + = \{A, B, C\} \\ B^{\dagger} = \{B, C\} \end{cases}$$

$$C^{\dagger} = \{C\} \\ (AB)^{\dagger} = \{A, B, C\} \end{cases}$$

$$(Bc)^{+} = \{B, c\}$$

$$(AC)^{+} = \{A, C, B\}$$

$$(ABC)^{+} = \{A, B, c\}$$

$$(ABC)^{+} = \{A, B, c\}$$

$$A \rightarrow A \qquad A \rightarrow B \qquad A \rightarrow C$$

$$B \rightarrow B \qquad B \rightarrow C$$

$$C \rightarrow C$$

$$AB \rightarrow A \qquad AB \rightarrow B \qquad AB \rightarrow C$$

$$BC \rightarrow B \qquad BC \rightarrow C$$

$$AC \rightarrow A \qquad AC \rightarrow B \qquad AC \rightarrow C$$

$$ABC \rightarrow A \qquad ABC \rightarrow B \qquad ABC \rightarrow C$$

$$A \rightarrow ABC$$

$$A \rightarrow AB$$

$$A \rightarrow AC$$

AB - BC

Main goal of normalization is to reduce redundancies

			1			\neg
A	B	\subset		A 1	C	
1	7	3		1	3 Y	
Ą	2	Ч			5	
1	2	5			6	
	2	6			7	
]	2	7			8	
7	2	8		<u> </u>	Llo	
	2	9		A	10	
1	2	[D		1	B 0	
					2	

Lossless decomposition

			1		
	A	B		C	
	Q 1	Ь1		C 1	
	92	62	(C1	
	a2 b3		C2		
	V	1.		,	→ Decomposition
1	7-1		3	C	- N
-	a 1		b/	Cl	
	a2		62	<u>c1</u>	
			<i>b</i> 3	C2	

Joining tables

Joining tables

Toining tables

Then Cartisien product.

Joining B A 6 abl C1C 1 3 Spurious al b3 CQaz 61 0 C 1 a2 **b**3 C2

>How to perform decomposition.

1- Both the tables should have at least one common attribute

2. The common attribute(s) should be a candidate key of at least one of the relations.

ABC AB α 6 a2 b2 az c1 a2 c2 a2 b3proper decomposition attribute (A here) is not Not Common condadate AB C A 6 b) C1 a2 b2 c1 b) a 2 **b**3 Candidate key Candidate Key

) Joining B B al 6 bl c1 $\alpha!$ <u>ز ا</u> 62 c 2 21 I b3 52 02 <u>C1</u> 62 a2 Cl 62 22 b2 b3 C2 b3 92 DI ان 63 0,2 c122 c2 63 92 *b*3

LOSSLESS	B	A	\mathcal{L}	
DECOMP	41	a1	c1	NO
-OSITION /	b2	a2	<u> </u>	-> spurious
	63	a 2	C2	tuples
	-			 -

Problem on lossless Decomposition g. R(ABC) FD'S:{A + B, B + C, L => A? Let R, (AB) and R2 (BC) be decompositions of R(ABC). Check whether it is a lossless decomposition (or) not? Ans R(ABC)
R(ABC) $R_2(BC)$

Bt= { B, c, A} B is candidate key of this relation.

Common attribute = B Is candidate key or not? Yes. ... It is a lossess decomposition.

Q. R (ABC) FD's of R1 F= {A >B, B>C, C>A? R, (AB) and $R_2(BC)$ be decompositions of R Is the decomposition of R into R1 1. Loss less? 2. Attribute preserving?
3. Dependency preserving?

Ans 1. Yes. [same as previous question] 2. Attribute preseving La All the attributes are present in atleast one of the relations.

3. Dependency preserving?

La Functional dependency

F = (F, UF2) +

 $R(ABC) \Rightarrow C + = \{B,C,A\}$ $R(ABC) \Rightarrow C + = \{C,A,B\}$ $R(ABC) \Rightarrow C + = \{C,A$ BAA $F \subseteq (F_1 \cup F_2)^+$ $F_1 \rightarrow B \rightarrow A$ $F_1 \cup F_2)^{\dagger}$ $= B \rightarrow A$ $C \rightarrow A$ $C \rightarrow A$ $C \rightarrow A$ $C \rightarrow A$ (FIUF2)+ Fy UFg closure is set of all dependencies which we can velate further. $(C)^{+}=FC,A,B^{2}$ (B) = { B, C,A } : Decomposition is dependency preserving

Decomposition Problems on R(ABCD) F = { A -> B , B+C, C-> D, D->A 7 $D = \{AB, BC, CD\}$ Ans. -> Attribute preserving

-> dose less?

AB BC -> Common attribute B

> Cuck wether & is candidate key one ABC CD of the relation: yes

ABCD.

Lis candidate

Key

Losseless decomposition Common c+={c,p,A,B} = R(ABCD) > D+={D,A,B,C} Fa (AB) $F_2(CD)$ F1 (BC) A>B $B \rightarrow C \qquad C \rightarrow D$ $C \rightarrow B \qquad D \rightarrow C$ yes. FD preserving or not? To prove: D = { _ , A } DT= {DCBA $(F_1 \cup F_2 \cup F_3)^+ = ($

F={MN-0, MO -> N, MP+Q, N⇒P, NO⇒P, Q→R3 D(MNO, MNPQ, QR3 Dry. 1. Attribute poeserving $m \rightarrow v$ 2. $m \rightarrow v$ $m \rightarrow$ $M \sim 0$ MNOPRR : Lossless decomposition 3. R(MNOPQR) 1 R(QR) 3 R(MNO) R(MNPQ) $mN \rightarrow 0$ f $mp \rightarrow 0$ f_2 $N0 \rightarrow p \sim$ F3 87 R $(F, \cup F_2 \cup F_3)^+ \longrightarrow \begin{pmatrix} N \to P \\ NO \to P \end{pmatrix}$ $F \subseteq (F_1 \cup F_2 \cup F_3)^{\dagger}$.: Dependency Preservision NO > {N, U, P}

Problema: K(MNDPQR)

Problem 3: R(MNOP) F = EMN + OP, P+M3 D= EMP, NOP3 Ans: Attribute Preserving V wesless V Pam Nop MNDP Preserving R(MNDP) R2(NOP) (MN) + = {M,N, } Functional Dependency is not preserved

