Fine-Tuning Language Models & Managing Large Codebases in Limited Context Windows

By: Khushi Malik

My previous research: https://github.com/khushimalik3122/llm_research/tree/main

Part 1: Fine-Tuning Language Models

Aspect	Explanation	Example
What is Fine-Tuning?	Training a pre-trained LLM further on a specific dataset.	Training GPT-4 on legal documents to make it a legal assistant.
Why Fine-Tune?	To make the model better at specific tasks or domains.	A fine-tuned model can summarize patient notes better than a general one.
Instruction-Tuning	A type of fine-tuning where the model learns to follow instructions.	Instruction: "Translate to Spanish" → Input: "Hello" → Output: "Hola"
Transfer Learning	Uses what the model already knows to learn new tasks with less data.	Uses language knowledge from pretraining to learn medical summaries quickly.
Trade-Off:	Fine-tuning may hurt general	A medical model may forget
Specialization vs.	abilities (catastrophic	how to write fiction or answer
Generalization	forgetting).	trivia.
Behavior Adaptation	Fine-tuning changes not just facts, but how the model reasons.	A model trained with QLoRA on medical data can suggest treatments.
Small Data, Big Impact	Fine-tuning doesn't need as much data as pretraining, thanks to transfer learning.	Just thousands of labeled examples can significantly improve performance.

Full Fine-Tuning vs. Parameter-Efficient Fine-Tuning (PEFT)

Method	How It Works	Pros	Cons	Best Use Cases
Full Fine-Tuning	Updates all model parameters using a new dataset.	- Maximum performance- Complete control over behavior	- Very expensive (requires powerful GPUs and time)- Not scalable for multiple tasks- Risk of forgetting old skills	Building a single, highly-specialized copilot for one domain (e.g., bioinformatics code generation)
LoRA (Low-Rank Adaptation)	Freezes base model and adds small trainable low-rank matrices inside layers.	- Much cheaper than full fine-tuning- High performance with limited compute	- May forget pretraining knowledge- Switching tasks is slow due to cache recomputation	Adding domain-specific skills (e.g., ReactJS patterns, API generation) to your coding assistant
QLoRA	Combines LoRA with 4-bit quantization for lower memory usage.	- Can fine-tune large models on standard GPUs- Maintains high performance- Low cost	- Requires quantization setup- May still forget general knowledge	Building affordable copilots for startups or small teams (e.g., local development assistants)
Adapter Tuning	Adds small, trainable modules between Transformer layers; base model stays frozen.	- Only a small percentage of the model is trained-Supports continual learning-Reduces forgetting	- May offer less flexibility for deeply changing behavior	Training a copilot across multiple languages or domains over time without starting from scratch

Concern	Insight
Forgetting	LoRA and QLoRA can forget general skills if not properly tuned. Adapter tuning is more robust for continual learning.
Cost	Full fine-tuning is expensive. PEFT methods like QLoRA make fine-tuning accessible for smaller teams and individuals.
Efficiency	PEFT allows reuse of the base model and separate modules per task, making it ideal for multi-skill copilots.
Continual Learning	Adapter tuning is best when the copilot needs to be updated regularly with new skills or domains.

When to Fine-Tune vs. Prompt Engineer or Use RAG

Method	How It Works	Pros	Cons	How to Handle Cons (Coding Copilot)
Prompt Engineering	Carefully designing prompts or few-shot examples to guide the LLM without changing its weights.	- Fast to implement- No training needed- Cost-effective	- Limited control-Inconsistent results- Poor for complex logic/code generation	- Use structured prompts/templates- Combine with few-shot examples- Escalate to RAG/fine-tuning for complex tasks

RAG(Retrieval-A ugmented Generation)	Retrieves relevant context from external sources and feeds it into the LLM during inference.	- Access to real-time/project- specific info- Reduces hallucination- Transparent (can cite sources)	- Depends on retrieval quality- Can struggle with code structure & state- Slower due to extra retrieval step	- Use smart chunking (e.g., function-level)- Optimize embeddings for code- Cache frequent queries- Use LLMs that are trained to handle RAG context
Fine-Tuning	Updates the LLM's internal parameters using labeled training data.	- Deep task adaptation- Precise code formatting or reasoning- Ideal for instruction-follow ing	- Expensive- Needs labeled data- Risk of overfitting or forgetting	- Use PEFT methods (e.g., QLoRA)- Train with diverse, real-world code tasks- Combine with RAG for dynamic knowledge

Real-World Challenges in Fine-Tuning Large Models

Challenge	Impact	Mitigation Strategies	Best Practices for Coding Copilot
Compute Cost	- Very high GPU/memory requirements- Long training times- Expensive cloud bills	- Use PEFT methods (LoRA, QLoRA)- Mixed-precision (16-bit/8-bit) training- Spot instances & off-peak scheduling- Smaller task-specific models	- Use QLoRA to fine-tune on coding data using a single 24GB GPU- Train smaller language models for different coding domains (e.g., frontend vs backend)
Catastrophic Forgetting	- Model forgets general capabilities after task-specific tuning- Reduces overall versatility	- Mix general data with domain data (rehearsal)- Use synthetic SFT-like data- Apply adapter scaling or model merging- Experience replay	- Fine-tune using a mix of coding tasks (e.g., data science, DevOps, frontend)- Use adapters or LoRA modules per task, with careful merging for final deployment
Data Quality	- Poor-quality data leads to hallucinations, bugs, and bias- High annotation costs and legal concerns	- Rigorous data filtering and deduplication- Use trusted sources (open-source repos, docs)-Data augmentation & labeling standards-MLOps pipelines with freshness checks	- Curate clean, labeled code snippets (e.g., from GitHub stars >100)- Set up auto-refresh pipelines with linted and tested code data- Add timestamp/version control for code compatibility

Part 2: Fitting Large Codebases in Context Window

Aspect	Details
What is a Context Window?	The maximum number of tokens an LLM can process in one input. It acts like the model's short-term memory.
Early Limits	GPT-2/GPT-3: 2K-4K tokens \rightarrow only handled short text (few pages).
Modern Advances	- GPT-4 (2023): 32K tokens- GPT-4.1 (2025): 1M tokens- Claude 2/3: Up to 100K tokens- Gemini 1.5: 2M tokens- LLaMA 4 Scout: Pushing toward 10M tokens
Why It Matters	Long context enables tasks like summarizing legal documents, analyzing full codebases, or multi-turn conversations without forgetting earlier input.
Key Challenges	- Quadratic compute (O(n²)) → higher cost as tokens increase- Performance drops beyond trained length- Models struggle with long-range reasoning and needle-in-haystack tasks
Technical Constraints	- Longer context = more memory + slower response- Many models weren't trained on long-context data- Perplexity may spike when exceeding pre-trained context
Solutions in Progress	- Sparse Attention- Sliding Windows- Hierarchical Memory- Efficient Transformers (e.g., Longformer, FlashAttention)
Best Practices (Coding Copilot)	- Keep relevant code snippets close together in the prompt- Use retrieval (RAG) to inject only the needed functions/files- Trim unnecessary tokens (comments, logs)- Use models fine-tuned for long-context (e.g., Claude, Gemini, GPT-4.1)
Key Insight	Bigger context windows don't guarantee better performance—attention efficiency and data quality still drive output quality.

For Coding Copilots: Strategy to Handle Long Contexts

Problem	Suggested Strategy
Code too long for context window	Use RAG to fetch only relevant chunks (e.g., functions, imports, class defs)
Model misses critical code details	Implement context-aware ranking of retrieved code (prioritize nearest calls or relevant dependencies)
Model slows down on large files	Use models with sparse or sliding attention and token-pruning techniques
Forgetting previous code interactions	Integrate conversation memory or session history summarization

Techniques to Fit Large Codebases in Context Window

Technique	Description	Pros	Challenges	Use in Coding Copilots
1. Chunking	Splitting code into smaller parts	Enables fitting into context	May split logic mid-function	Use AST-based or semantic chunking to preserve structure
- Naïve Chunking	Fixed-size splits (e.g., every 256 tokens)	Simple & fast	Breaks syntax/logic	Avoid for complex tasks
- AST-Based Chunking	Splits by function/class/module using parsers	Preserves logic & syntax	Requires language-spec ific tools	Recommended default for code ingestion
- Semantic Chunking	Splits based on topic shifts using NLP	Coherent, meaningful chunks	Hard to implement in code	Combine with AST for better results

- LLM/Expert Chunking	Manual or LLM-guided splits	Human-aligned logic	Time-consumi ng or costly	Use for critical sections or new projects
2. Sliding Window & Overlapping	Adds overlapping tokens between chunks	Retains flow across chunks	Increases total token usage	Use chunk_overlap of 10–20% for continuity
3. RAG Pipelines	Fetches relevant code from a vector DB	Dynamically injects relevant code	Needs good chunking + retrieval quality	Core for copilots handling large projects
4. Hierarchical Attention	Mimics memory layers (short/long-term)	Handles massive input sizes	Needs advanced model support	Use with custom LLM backends for better recall
5. Vector Databases	Stores embedded code for semantic search	Fast and scalable	ANN search tuning is critical	Use tools like FAISS, Weaviate, or Pinecone
6. Summarization & Code Folding	Summarizes functions or files to reduce tokens	Improves comprehension, saves space	Risk of info loss	Summarize less-relevant sections in prompts
7. File-Tree Aware Prompting	Includes project structure and file paths	Preserves hierarchy & relationships	Needs formatting conventions	Use @workspace, #filename tags for scoped queries
8. Code Graphs (Emerging)	Graph-based code representation	Captures deep semantic dependencies	Early-stage & complex	Future copilots may use this for multi-hop reasoning

Recommended Strategy for Coding Copilots

Goal	Approach
Fit large codebase in prompt	Use AST-based chunking + overlap (10–20%)
Provide relevant code on request	Implement RAG pipeline with a vector DB
Maintain logic across files	Add file tree references or structure-aware tags
Avoid hallucinations	Retrieve verified internal code + documentation
Speed up response	Cache frequently used embeddings + summaries
Improve answer precision	Summarize folded code or large files before sending
Handle ambiguous queries	Use vector search + file structure to scope intent

Part 3: Limitations & Research Gaps

Challenge	Description	Impact	Suggested Copilot Strategy
1. Token Limits &	Even with million-token	Causes reasoning gaps in large	Use hierarchical memory or
Long-Range	windows, LLMs struggle to	codebases; reduced accuracy in	agent-based chunking; allow model
Dependency Loss	connect distant code elements	tasks requiring global context.	to request additional context on
	(e.g., helper functions or		demand.
	dependencies defined far apart).		
2. RAG Limitations	RAG fails to fully capture	Leads to incomplete responses,	Enhance RAG with file-tree
for Code	inter-file relationships, global	errors in cross-module	awareness, dependency graphs, and
	state, and logical flow in	understanding.	structured prompts. Consider
	repositories; retrieval based on		code-specific retrievers instead of
	surface similarity misses		generic embeddings.
	structural intent.		
3. Semantic Loss from	Naïve chunking breaks code	Reduces effectiveness of	Prefer AST-based chunking +
Plain Chunking	logic (e.g., splitting functions	retrieval and reasoning;	LLM-assisted logical partitioning.
	mid-body), losing syntactic and	incoherent or partial responses.	Track metadata (e.g.,
	semantic coherence.		class/function/file scope).
4. Evaluation	Existing benchmarks fail to	Inflated performance	Incorporate real-world test cases. Use
Deficiencies in	capture real-world complexity	assumptions; poor alignment	LongCodeBench or create
Long-Context Tasks	(cross-file logic, debugging,	with user expectations in	domain-specific long-context
	repair, etc.). Accuracy sharply	complex coding tasks.	benchmarks. Track reasoning chains,
	drops with longer contexts.		not just exact matches.

5. Syntax-Semantics	LLMs often process code as	Misunderstanding of type	Embed code structure as graphs, not
Gap	plain text, failing to internalize	systems, data flow, inheritance;	just text (e.g., function call graphs,
	its executable logic or structural	hallucinations of invalid	ASTs). Use symbol-aware or
	constraints.	patterns.	type-aware LLM backends.
6. Passive Context	Current LLMs consume context	Limits scalability and leads to	Move toward agentic copilots: models
Consumption	passively rather than managing	inefficient memory use;	that can request, cache, and prune
	it actively; they cannot fetch,	requires manual prompt	context based on task need and
	prioritize, or summarize context	engineering.	codebase state. Implement memory
	themselves.		modules + planning logic.

Summary of Best Practices

When to Use Fine-Tuning vs. Smarter Prompting/RAG

Approach	Use Cases	Benefits	Copilot Implementation Tips
Fine-Tuning	- Deep domain expertise (e.g., medical, legal)- High-accuracy code generation- Instruction or safety alignment	- Internalizes domain knowledge- Consistent outputs- Custom behavior control	Use QLoRA for low-cost adaptationStart with small models (7B) if resources are constrained
Prompting / RAG	- Real-time knowledge needs- Rapid prototyping- Resource-limited environments- Traceable answers	- No training required- Transparent outputs- Fast iteration	Use smart prompts, few-shot examplesIntegrate vector database for RAG with metadata

Technique	Description	Best Practice
Code-Aware Chunking	Break code by structure (function, class, module)	Use ASTs or LLM-guided chunking to preserve logic
Overlapping Windows	Include slight overlap between chunks	Use 10-20% overlap to retain cross-boundary context
Metadata Enrichment	Add file paths, function names, module types to each chunk	Store as metadata fields in the vector DB
Hierarchical Prompting	Reflect codebase architecture in prompts (tree, file paths)	Implement file-aware layouts or structured prompts
Hybrid Retrieval	Combine semantic + keyword + reranking	Avoid retrieval gaps from relying on a single method
Iterative Refinement	Continuously test & evolve your strategy	A/B test retrieval quality, chunk granularity, overlap ratio

The table below provides a structured decision matrix to guide the choice between fine-tuning, prompt engineering, and RAG, incorporating key considerations and relevant code context management techniques.

Best Practices Decision Matrix

Strategy	Best For	Key Considerations	Code Context Management Techniques
Fine-Tuning	Deep Domain Specialization, Superior Performance, Behavioral Alignment	High Compute Cost, Catastrophic Forgetting, Data Quality	PEFT (LoRA, QLoRA), Data Curation & Augmentation, Rehearsal Methods
Prompt Engineering	Rapid Prototyping, General Tasks, Cost-Sensitive Scenarios	Performance Limitations, Lack of Deep Adaptation	Structured Prompts, In-context Learning (Few-shot)
Retrieval-Augmented Generation (RAG)	Dynamic/Fresh Knowledge, Factual Accuracy, Domain-Specific Data (without retraining)	Retrieval Quality, Latency, Cross-File References, Global State	Code-Aware Chunking, Overlapping Chunks, Vector Databases, Re-rankers

Emerging Methods & Future Outlook

Method	What It Is	Benefits	Relevance to Code Copilots	Implementation Notes
Mixture-of -Experts (MoE)	An architecture that activates only a subset of model parameters ("experts") per input	- High capacity with lower compute cost- Efficient inference- Modular reasoning	Enables scalable understanding of diverse code types, languages, or domains	Can specialize experts for front-end, back-end, testing, etc.
Persistent Memory	Embeds a long-term memory pool in the LLM that updates over time	- Continuously learns from evolving codebases- Retains long-term context- Bypasses static training limitations	Maintains awareness of codebase history, changes, and team coding patterns	Ideal for live projects with frequent code updates
Flash Attention 2	Optimized attention algorithm to reduce compute/memory overhead in transformers	- 2x speedup over v1- 55% less GPU memory usage- Enables long-context processing	Makes it practical to feed entire files or multiple files into the model at once	Supports more efficient large-context Copilot usage with lower latency

Coding Copilot: Practical Context Management in Action

Technique	What It Does	Practical Benefits	Typical Usage Example
Slash Commands (/doc, /explain, /fix, /optimize, /tests, etc.)	Let the user state intent and task scope in one token.	Fast, unambiguous task setup; lowers prompt-engineering friction.	/fix selected code block to auto-suggest a patch.
File / Symbol References (#File.cs, #MethodName, #File.cs:66-72)	Target exact files, functions, or line ranges.	Reduces noise; LLM sees only relevant code.	#AddItemToBasket to focus suggestions on that method.
Workspace Awareness (@workspace, @github)	Gives the LLM visibility over the whole project (or repo).	Global context for cross-file refactors, dependency fixes.	@workspace then "Suggest type-safe migration from v1 to v2".
Output-Log Referencing	Paste build/runtime logs into the prompt.	Enables error triage and debug explanations.	Insert test failure stack trace, ask "Why is this flaking?"
Prompt Files / Templates	Pre-saved, well-crafted prompts for recurring tasks.	Consistent instructions; team-wide standardization.	prompt:generate-rest-e ndpoint.txt to scaffold endpoints.
Visual Inputs	Attach UI screenshots or diagrams.	UI-to-code, layout fixes, accessibility checks.	Drop a screenshot; ask for matching React component.
Context Summarization / Trimming	Auto-compress long chat history when nearing token limit.	Keeps long sessions coherent without manual pruning.	Claude auto-summarizes prior steps after ~100 KB context.
Multi-Agent Back-End (implicit)	Sub-agents tackle sub-tasks in isolated windows.	Parallel, focused reasoning for complex jobs.	One agent parses logs; another writes unit tests; results merged.

How to Apply These Ideas to Your Copilot

- 1. Adopt clear slash commands so users can declare intent in a single word.
- 2. Expose file/symbol selectors in the IDE to feed only pertinent code chunks.
- 3. **Maintain a workspace index** (file tree + embeddings) so the model can answer repo-wide questions.
- 4. Accept runtime artifacts (logs, traces) as first-class context objects.
- 5. Ship prompt templates for repetitive chores—unit-test stubs, docstrings, optimizations.
- 6. Auto-summarize long chats to stay within context limits while preserving key decisions.
- 7. Consider a lightweight agent layer if tasks often decompose into independent subtasks (e.g., linting, refactor, doc gen).

The table below illustrates practical examples of how GitHub Copilot utilizes various context management techniques.

GitHub Copilot Context Management Examples

Command/Reference	Usage Example	Context Provided to LLM
/explain	/explain the AddItemToBasket method in BasketService.cs	AddItemToBasket method in BasketService.cs
#MyFile.cs	Where are the tests in #BasketService.cs?	Entire BasketService.cs file
#MyFile.cs: 66-72	What is the purpose of #MyFile.cs: 66-72?	Exact code section from lines 66-72 of MyFile.cs
@workspace	Is there a delete basket method in this @workspace	Current solution open in the IDE (all open files, projects, configurations)
#output	Check my output logs and help me fix this error.	Content of the active output logs (e.g., build errors)
/doc	select desired code and enter /doc	Selected code snippet

Conclusions

Focus Area	Key Insight	Practical Takeaway
Fine-Tuning	PEFT (LoRA, QLoRA) enables deep domain adaptation at reduced compute cost.	Use for domain-heavy tasks or when behavior consistency is critical (e.g., internal tooling, compliance-sensitive code).
Fine-Tuning Risk	Catastrophic forgetting remains a key issue.	Mitigate using rehearsal techniques, adapter scaling, and memory replay strategies.
Prompting & RAG	RAG fills external knowledge gaps dynamically, with less training cost.	Best for general-purpose tools, real-time info, and limited-resource environments. Combine with fine-tuning for hybrid solutions.
Chunking Code	Code requires structure-aware chunking (AST, function-level, semantic).	Avoid fixed-size splits. Use LLM-aware partitioning or AST parsers to preserve logic.
Long Context Use	Larger context windows ≠ better understanding. Performance often drops with length.	Focus on selective summarization, overlap strategies, and structured memory use.
Context Engineering	Intelligent pre-processing (chunk overlap, metadata, vector search) is essential.	Treat context as a design artifact, not just a size constraint.
Knowledge Graphs for Code	Trend: move from flat text to graphs capturing code structure and dependencies.	Enables reasoning over imports, class hierarchies, and architectural patterns.
Agentic LLM Behavior	Future LLMs will <i>manage their own context</i> : select, summarize, retrieve, and adapt.	Develop LLMs as active agents , not passive engines.
Emerging Innovations	MoE, Persistent Memory, Flash Attention 2 → better compute scaling, continual learning, and faster inference.	Invest in or monitor these for long-horizon capabilities in live, evolving codebases.
Future of LLMs for Code	LLMs are evolving into dynamic assistants that can grow with a codebase.	Anticipate tools that understand full project histories and architect-level abstractions.

Works cited

- 1. Fine-Tuning Large Language Models for Specialized Use Cases PMC, accessed July 5, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11976015/
- 2. Prompt Engineering or Fine-Tuning: An Empirical Assessment of LLMs for Code arXiv, accessed July 5, 2025, https://arxiv.org/html/2310.10508v2
- 3. arXiv:2502.08130v2 [cs.CL] 20 Feb 2025, accessed July 5, 2025, https://arxiv.org/pdf/2502.08130
- Improved Supervised Fine-Tuning for Large Language Models to Mitigate Catastrophic Forgetting - arXiv, accessed July 5, 2025, https://arxiv.org/html/2506.09428v2
- 5. Lightweight Clinical Decision Support System using QLoRA-Fine-Tuned LLMs and Retrieval-Augmented Generation arXiv, accessed July 5, 2025, https://arxiv.org/html/2505.03406v1
- 6. LoRA vs Full Fine-tuning: An Illusion of Equivalence arXiv, accessed July 5, 2025, https://arxiv.org/html/2410.21228v2
- 7. LoRA vs Full Fine-tuning: An Illusion of Equivalence arXiv, accessed July 5, 2025, https://arxiv.org/html/2410.21228v1
- 8. What is the cost of training large language models? CUDO Compute, accessed July 5, 2025, https://www.cudocompute.com/blog/what-is-the-cost-of-training-large-language-models
- What is the cost of fine-tuning LLMs? | by The Educative Team | Jul, 2025 -Medium, accessed July 5, 2025, https://medium.com/educative/what-is-the-cost-of-fine-tuning-llms-f5801c00b 06d
- 10. Parameter-Efficient Transfer Learning for NLP arXiv, accessed July 5, 2025, https://arxiv.org/pdf/1902.00751
- 11. Adapter-X: A Novel General Parameter-Efficient Fine-Tuning Framework for Vision arXiv, accessed July 5, 2025, https://arxiv.org/html/2406.03051v2
- 12. Activated LoRA: Fine-tuned LLMs for Intrinsics arXiv, accessed July 5, 2025, https://arxiv.org/html/2504.12397v3
- 13. QLORA: Efficient Finetuning of Quantized LLMs arXiv, accessed July 5, 2025, https://arxiv.org/abs/2305.14314
- 14. A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications arXiv, accessed July 5, 2025, https://arxiv.org/html/2402.07927v2
- 15. Retrieval-Augmented Generation for Large Language ... arXiv, accessed July 5, 2025, https://arxiv.org/abs/2312.10997
- 16. Get Experience from Practice: LLM Agents with Record & Replay arXiv, accessed July 5, 2025, https://arxiv.org/html/2505.17716v1
- 17. Common RAG challenges in the wild and how to solve them | by The Educative Team, accessed July 5, 2025,

- https://learningdaily.dev/common-rag-challenges-in-the-wild-and-how-to-solve-them-5713bd7ad35c
- 18. CodeRAG: Supportive Code Retrieval on Bigraph for Real-World Code Generation arXiv, accessed July 5, 2025, https://arxiv.org/html/2504.10046v1
- 5 Problems Encountered Fine-Tuning LLMs with Solutions -MachineLearningMastery.com, accessed July 5, 2025, https://machinelearningmastery.com/5-problems-encountered-fine-tuning-llms-with-solutions/
- 20. Mitigating Catastrophic Forgetting in Continual Learning Using the ..., accessed July 5, 2025, https://thesai.org/Downloads/Volume16No4/Paper_14-Mitigating_Catastrophic_F orgetting in Continual Learning.pdf
- 21. Improved Supervised Fine-Tuning for Large Language Models to Mitigate Catastrophic Forgetting arXiv, accessed July 5, 2025, https://arxiv.org/html/2506.09428v1
- 22. Analyzing Mitigation Strategies for Catastrophic Forgetting in End-to-End Training of Spoken Language Models arXiv, accessed July 5, 2025, http://arxiv.org/pdf/2505.17496
- 23. LLM Data Quality: Old School Problems, Brand New Challenges Gable.ai, accessed July 5, 2025, https://www.gable.ai/blog/llm-data-quality
- 24. Long-Context Windows in Large Language Models: Applications in ..., accessed July 5, 2025, https://medium.com/@adnanmasood/long-context-windows-in-large-language-models-applications-in-comprehension-and-code-03bf4027066f
- 25. Context Engineering LangChain Blog, accessed July 5, 2025, https://blog.langchain.com/context-engineering-for-agents/
- 26. LLM Maybe LongLM: SelfExtend LLM Context Window Without Tuning arXiv, accessed July 5, 2025, https://arxiv.org/html/2401.01325v3
- 27. Extending Language Model Context Up to 3 Million Tokens on a Single GPU arXiv, accessed July 5, 2025, https://arxiv.org/html/2502.08910v1
- 28. Sliding Window Attention Training for Efficient Large Language ..., accessed July 5, 2025, https://arxiv.org/abs/2502.18845
- 29. Xnhyacinth/Awesome-LLM-Long-Context-Modeling: Must-read papers and blogs on LLM based Long Context Modeling GitHub, accessed July 5, 2025, https://github.com/Xnhyacinth/Awesome-LLM-Long-Context-Modeling
- 30. Evaluating Long Range Dependency Handling in Code Generation LLMs arXiv, accessed July 5, 2025, https://arxiv.org/html/2407.21049v2
- 31. LongCodeBench: Evaluating Coding LLMs at 1M Context Windows arXiv, accessed July 5, 2025, https://arxiv.org/html/2505.07897v2
- 32. Can LLMs Replace Humans During Code Chunking? arXiv, accessed July 5, 2025, https://arxiv.org/html/2506.19897v1
- 33. Optimizing Chunking, Embedding, and Vectorization for Retrieval ..., accessed July 5, 2025, https://medium.com/@adnanmasood/optimizing-chunking-embedding-and-vectorization-for-retrieval-augmented-generation-ea3b083b68f7

- 34. Chunking Strategy for LLM Application: Everything You Need to Know AlVeda, accessed July 5, 2025,
 - https://aiveda.io/blog/chunking-strategy-for-llm-application
- 35. Chunking strategies for RAG tutorial using Granite IBM, accessed July 5, 2025, https://www.ibm.com/think/tutorials/chunking-strategies-for-rag-with-langchain-watsonx-ai
- 36. MoC: Mixtures of Text Chunking Learners for Retrieval-Augmented Generation System, accessed July 5, 2025, https://arxiv.org/html/2503.09600v1
- 37. Vision-Guided Chunking Is All You Need: Enhancing RAG with Multimodal Document Understanding arXiv, accessed July 5, 2025, https://arxiv.org/html/2506.16035
- 38. Advanced Chunking/Retrieving Strategies for Legal Documents: r/Rag Reddit, accessed July 5, 2025, https://www.reddit.com/r/Rag/comments/1jdi4sg/advanced_chunkingretrieving_strategies_for_legal/
- 39. SLIDE: Sliding Localized Information for Document Extraction, accessed July 5, 2025, https://arxiv.org/abs/2503.17952
- 40. RAG for Code Generation: Automate Coding with AI & LLMs Chitika, accessed July 5, 2025, https://www.chitika.com/rag-for-code-generation/
- 41. arXiv:2503.09089v2 [cs.SE] 29 Apr 2025, accessed July 5, 2025, https://arxiv.org/pdf/2503.09089
- 42. Towards Reliable Vector Database Management Systems: A Software Testing Roadmap for 2030 arXiv, accessed July 5, 2025, https://arxiv.org/html/2502.20812v1
- 43. HMT: Hierarchical Memory Transformer for Efficient Long Context ..., accessed July 5, 2025, https://arxiv.org/pdf/2405.06067
- 44. [1602.03218] Learning Efficient Algorithms with Hierarchical Attentive Memory arXiv, accessed July 5, 2025, https://arxiv.org/abs/1602.03218
- 45. Daily Papers Hugging Face, accessed July 5, 2025, https://huggingface.co/papers?q=vector%20database%20retrieval
- 46. Vector Databases: Tutorial, Best Practices & Examples Nexla, accessed July 5, 2025, https://nexla.com/ai-infrastructure/vector-databases/
- 47. What is Vector Embedding? | IBM, accessed July 5, 2025, https://www.ibm.com/think/topics/vector-embedding
- 48. Vector Databases: Data Storage, Querying, and Embeddings The ByteDoodle Blog, accessed July 5, 2025, https://blog.bytedoodle.com/vector-databases-data-storage-querying-and-embeddings/
- 49. When Large Language Models Meet Vector Databases: A Survey arXiv, accessed July 5, 2025, https://arxiv.org/html/2402.01763v1
- 50. Hierarchical Repository-Level Code Summarization for Business Applications Using Local LLMs arXiv, accessed July 5, 2025, https://arxiv.org/html/2501.07857v1
- 51. Context-aware Code Summary Generation arXiv, accessed July 5, 2025, https://arxiv.org/html/2408.09006v1

- 52. Introducing "Files to LLM Prompt" A VSCode Extension to ... Reddit, accessed July 5, 2025,
 - https://www.reddit.com/r/PromptEngineering/comments/1imp2xu/introducing_files_to_llm_prompt_a_vscode/
- 53. Introducing "Files to LLM Prompt" A VSCode Extension to Streamline Prompting Claude with Your Code: r/ClaudeAI Reddit, accessed July 5, 2025, https://www.reddit.com/r/ClaudeAI/comments/1ih1tlg/introducing_files_to_llm_prompt_a_vscode/
- 54. Tips & Tricks for GitHub Copilot Chat in Visual Studio Learn Microsoft, accessed July 5, 2025, https://learn.microsoft.com/en-us/visualstudio/ide/copilot-chat-context?view=vs-2022
- 55. DesignCoder: Hierarchy-Aware and Self-Correcting UI Code Generation with Large Language Models arXiv, accessed July 5, 2025, https://arxiv.org/html/2506.13663
- 56. Advanced Retrieval for RAG on Code Reddit, accessed July 5, 2025, https://www.reddit.com/r/Rag/comments/1irf4yh/advanced_retrieval_for_rag_on_code/
- 57. Context Switching and LLMs A Cognitive Parallel | David Lozzi, accessed July 5, 2025, https://davidlozzi.com/2025/05/19/context-switching-and-llms-a-cognitive-parallel/
- 58. Chain of Agents: Large language models collaborating on long-context tasks, accessed July 5, 2025, https://research.google/blog/chain-of-agents-large-language-models-collaborating-on-long-context-tasks/
- 59. Synergizing RAG and Reasoning: A Systematic Review arXiv, accessed July 5, 2025, https://arxiv.org/html/2504.15909v1
- 60. NoLiMa: Long-Context Evaluation Beyond Literal Matching Finally a good benchmark that shows just how bad LLM performance is at long context. Massive drop at just 32k context for all models. Reddit, accessed July 5, 2025, https://www.reddit.com/r/LocalLLaMA/comments/1io3hn2/nolima_longcontext_evaluation_beyond_literal/
- 61. Large Language Models (LLMs) for Source Code Analysis: applications, models and datasets arXiv, accessed July 5, 2025, https://arxiv.org/html/2503.17502v1
- 62. CodeTree: Agent-guided Tree Search for Code ... ACL Anthology, accessed July 5, 2025, https://aclanthology.org/2025.naacl-long.189.pdf
- 63. [2506.09351] DIVE into MoE: Diversity-Enhanced Reconstruction of Large Language Models from Dense into Mixture-of-Experts arXiv, accessed July 5, 2025, https://arxiv.org/abs/2506.09351
- 64. A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications arXiv, accessed July 5, 2025, https://arxiv.org/html/2503.07137v1
- 65. MemoryLLM: Towards Self-Updatable Large Language Models arXiv, accessed July 5, 2025, https://arxiv.org/html/2402.04624v2
- 66. Dao-AlLab/flash-attention: Fast and memory-efficient exact ... GitHub, accessed

- July 5, 2025, https://github.com/Dao-AlLab/flash-attention
- 67. A Novel Round-Level Attention Mechanism to Accelerate LLM Inference arXiv, accessed July 5, 2025, http://arxiv.org/pdf/2502.15294
- 68. Here's how I use LLMs to help me write code Simon Willison's Weblog, accessed July 5, 2025, https://simonwillison.net/2025/Mar/11/using-llms-for-code/
- 69. GitHub Copilot deep dive: Model selection, prompting techniques & agent mode YouTube, accessed July 5, 2025, https://www.youtube.com/watch?v=0Oz-WQi51aU&pp=0qcJCfwAo7VqN5tD