Petit Memento de logique

11 novembre 2015

La logique des propositions manipule des propositions. Ces propositions prennent des valeurs dans les booléens c'est-à-dire l'ensemble VRAI,FAUX. On peut construire à partir de 2 énoncés, un énoncé plus compliqué grâce à des conneteurs logiques.

Les connecteurs logiques

La négation(¬)

A	$\neg B$
VRAI	FAUX
FAUX	VRAI

La conjonction (\land)

A	В	$A \wedge B$
VRAI	FAUX	FAUX
VRAI	VRAI	VRAI
FAUX	FAUX	FAUX
FAUX	VRAI	FAUX

La disjonction (\vee)

A	В	$A \vee B$
VRAI	VRAi	VRAI
VRAI	FAUX	VRAI
FAUX	VRAI	VRAI
FAUX	FAUX	FAUX

L'implication $(A \Rightarrow B)$

A	В	$A \Rightarrow B$
VRAI	VRAI	VRAI
VRAI	FAUX	FAUX
FAUX	VRAI	VRAI
FAUX	FAUX	VRAI

L'équivalence $(A \Leftrightarrow B)$

A	В	$A \Leftrightarrow B$
VRAI	VRAI	VRAI
VRAI	FAUX	FAUX
FAUX	VRAI	FAUX
FAUX	FAUX	VRAI

Les lois de De Morgan

$$^{\lnot}(A \land B) \Leftrightarrow ^{\lnot}A \lor ^{\lnot}B$$

$$^{\lnot}(A \lor B) \Leftrightarrow ^{\lnot}A \land ^{\lnot}B$$

Variables et quantificateurs

Dans une proposition mathématique, on peut utiliser une variable qui n'a pas de valeur définie. Si la variable est x on peut noté la proposition A(x). On peut lier les variables libres des propositions grâce à des quantificateurs. Il existe deux quantificateurs qui permettent d'utiliser des variables dans les expressions mathématiques :

- 1. "Quel que soit" : $\forall x A(x)$ signifie que la propriété A(x) est vraie pour toutes les valeurs de x
- 2. "Il existe" : $\exists x A(x)$ signifie qu'il existe au moins un x qui satisfait la proposition A(x)

Equivalences :

$$\neg(\exists x A(x)) \Leftrightarrow \forall x \neg A(x)$$