6a) (i)
$$\frac{\lambda^k e^{-\lambda}}{k!}$$

(ii)
$$\left\{ egin{array}{ll} p & \mbox{if } k=1 \\ 1-p & \mbox{if } k=0 \end{array}
ight.$$

(iii)
$$\binom{n}{k} p^k (1-p)^{n-k}$$

b) (i)
$$X \sim \mathrm{Ber}(\frac{3}{5})$$
 $\mathrm{E}(X) = \frac{3}{5}$ $\mathrm{Var}(X) = \frac{6}{25}$

(ii)
$$Y \sim \mathrm{Hyp}(2000, 50, 1200)$$
 $\mathrm{E}(X) = 30$ $\mathrm{Var}(X) = 12$

(iii)
$$Z \sim ext{Pois}(3)$$
 $ext{E}(X) = 3$ $ext{Var}(X) = 3$

c) (i)

$y \setminus x$	-1	0	+1	P[Y = y]
-1	0	1/4	0	1/4
0	1/4	0	1/4	1/2
+1	0	1/4	0	1/4
P[X = x]	1/4	1/2	1/4	1

(ii)
$$\mathrm{E}[X]=0,\mathrm{E}[Y]=0$$

(iii) Two discrete random variables S and T are independent if for all values a,b:

$$\mathbf{P}[S=a,T=b] = \mathbf{P}[S=a] \cdot \mathbf{P}[T=b]$$

X and Y are not independent above, since for example $\mathrm{P}[X=0,Y=0]\neq\mathrm{P}[X=0]\cdot\mathrm{P}[Y=0]$

(iv) The covariance of two random variables ${\cal S}$ and ${\cal T}$ is:

$$\mathrm{Cov}[S,T] = \mathrm{E}[(S - \mathrm{E}[S]) \cdot (T - \mathrm{E}[T])].$$

X and Y above have a covariance of 0, since one of X or Y is always zero, so $(S-0)\cdot (T-0)$ will always evaluate to zero.