Математический анализ 1.

Направление 38.03.01 Экономика

Семинар 2.6. Производные и дифференциалы второго порядка

- 1. Найдите якобиан отображения $(x, y) \mapsto (u, v)$:
 - (1) $u = x(x^2 3y^2), v = y(3x^2 y^2);$ (2) $u = (\operatorname{ch} x) \cos y, v = (\operatorname{sh} x) \sin y.$
- 2. Найдите якобиан отображения $(r,\varphi)\mapsto (x,y)$: $x=r\cos^p\varphi,\,y=r\sin^p\varphi,\,n\in\mathbb{N}.$
- 3. Найдите якобиан отображения $(r, \varphi, \psi) \mapsto (x, y, z)$: $x = r(\cos^p \varphi) \cos^q \psi, y = r(\sin^p \varphi) \cos^q \psi, z = r \sin^q \psi, p, q \in \mathbb{N}$.
- 4. Найдите якобиан отображения $(x, y, z) \mapsto (u, v, w)$:
 - (1) u = xyz, v = xy xyz, w = y xy;
 - (2) $u = \frac{x}{\sqrt{1-r^2}}, v = \frac{y}{\sqrt{1-r^2}}, w = \frac{z}{\sqrt{1-r^2}}, r^2 = x^2 + y^2 + z^2 < 1.$
- 5. Найдите якобиан отображения $(x_1, ..., x_n) \mapsto (u_1, ..., u_n)$:

(1)
$$u_i = \frac{1}{i} \sum_{k=1}^{n} (x_k)^i = \frac{1}{i} [(x_1)^i + \dots + (x_n)^i], i = 1, \dots, n;$$

- (2) $u_i = \frac{1}{2}x_i^2 + \sum_{1 \le k \le n, k \ne i} a_k x_k, i = 1, \dots, n.$
- 6. Найдите все частные производные второго порядка функции f(x,y) в точке A:
 - (1) $f(x,y) = x^3 + 3x^2y 2xy^2 + y^3$, A(1,1);
 - (2) $f(x,y) = x^3 2x^2y + 3y^4$, A(1,1).
- 7. Найдите матрицу Гессе и дифференциал 2-го порядка функции f(x, y, z) в точке A:
 - (1) f(x, y, z) = xy + 2yz + 3xz, A(1, 1, 1);
 - (2) $f(x, y, z) = xy^2 + yz^2$, A(1, 2, 3).
- 8. Существует ли функция h(x,y), дважды непрерывно дифференцируемая в некоторой области D, для которой $h'_x(x,y)=x^2y$ и $h'_y(x,y)=2x+y$ в D?
- 9. Найдите дифференциалы 2-го порядка и матрицу Гессе следующих функций:

(1)
$$f(x,y) = 3x^2y + x^2 - y^5$$
; (2) $f(x,y) = \operatorname{arctg} \frac{x}{y}$; (3) $f(x,y) = \sin \frac{x^2 + y^2}{x^3 + y^3}$;

(4)
$$f(x,y) = x^2 \arctan \frac{y}{x} - y^2 \arctan \frac{x}{y}$$
 при $x \neq 0, y \neq 0, f(0,0) = 0;$

- (5) $f(x,y) = \ln(x^2 + y^2)$.
- 10. Найдите дифференциалы 2-го порядка и матрицу Гессе следующих функций:

(1)
$$f(x,y) = x^2y - xy^2 + 3$$
; (2) $f(x,y) = xy - \frac{y}{x}$; (3) $f(x,y) = (x^2 + y^2)^3$;

(4)
$$f(x,y) = (\sin x)^{\cos y}$$
; (5) $f(x,y) = x - 3\sin y$; (6) $f(x,y) = \ln(x^2 + y)$;

(7)
$$f(x,y) = \ln \sqrt{x^2 + y^2}$$
; (8) $f(x,y) = y\sqrt{x} + \frac{x}{\sqrt{y}}$; (9) $f(x,y) = \ln \lg \frac{y}{x}$;

1

(10)
$$f(x,y) = \frac{x}{y}e^{xy}$$
; (11) $f(x,y) = \frac{2x+3y}{x-y}$; (12) $f(x,y,z) = \sqrt{x^2+y^2+z^2}$.

11. Вычислите дифференциалы 1-го и 2-го порядка в точке (2, 1, 1) отображения

$$\mathbf{f} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} xy \\ z/y \end{pmatrix}.$$

12. Найдите дифференциалы 1-го и 2-го порядка отображения

$$\mathbf{f} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} yz \\ zx \\ xy \end{pmatrix}.$$

13. Пусть f, g — дважды дифференцируемые функции одной переменной на \mathbb{R} . Найдите дифференциалы 1-го и 2-го порядка композиции функций:

(1)
$$f(xy)$$
; (2) $\frac{f(x)}{f(y)}$, где $f(y) \neq 0$; (3) $f(x) + g(y)$; (4) $f(x)g(y)$; (5) $f(x-y) + g(x+y)$.

- 14. Пусть f, g, h дважды дифференцируемые функции одной переменной на \mathbb{R} . Найдите дифференциалы 1-го и 2-го порядка композиции функций:
 - (1) f(x+y); (2) $f(x^2+y^2)$; (3) f(x-y)+f(x+y); (4) f(x)+g(y)+h(z);
 - (5) f(x)g(y)h(z).
- 15. Пусть f дважды дифференцируемая функция двух переменных на \mathbb{R}^2 . Найдите дифференциалы 1-го и 2-го порядка композиции функций:
 - (1) f(x+y,x-y); (2) f(x,x); (3) f(x,y) f(y,x).
- 16. Пусть f, g дважды дифференцируемые функции двух переменных на \mathbb{R}^2 . Найдите дифференциалы 1-го и 2-го порядка композиции функций:

(1)
$$f(x,y) + g(y,x)$$
; (2) $f(x,x^2)$; (3) $\frac{f(x,y)}{f(y,x)}$, где $f(y,x) \neq 0$.

- 17. Пусть производство Q на предприятии зависит от количества K вложений капитала (измеряемых в у.е.) и размера L рабочей силы (измеряемой в трудочасах). Объясните экономический смысл частной производной второго порядка $\frac{\partial^2 Q}{\partial K^2}$.
- 18. На определенном предприятии производство составляет $Q=120K^{1/2}L^{1/5}$ единиц, где K вложения капитала, измеряемые в тыс. у.е., а L размер рабочей силы, измеряемый в трудочасах.
 - (1) Найдите знак частной производной 2-го порядка $\frac{\partial^2 Q}{\partial L^2}$ и объясните его экономическое значение.
 - (2) Найдите знак частной производной 2-го порядка $\frac{\partial^2 Q}{\partial K^2}$ и объясните его экономическое значение.

19. Пусть ежедневное производство Q на предприятии зависит от количества K вложений капитала и размера L рабочей силы. Закон убывающей отдачи гласит, что при определенных условиях существует такое значение L_0 , что предельная полезность труда будет возрастать при $L < L_0$ и убывать при $L > L_0$.

Запишите данный закон в терминах знака соответствующей частной производной 2-го порядка.