Real Analysis: Measure Theory, Integration, and Hilbert Spaces

Elias M. Stein & Rami Shakarchi

January 12, 2020

Contents

1	Measure Theory		
	1.1	Preliminaries	2
	1.2	The exterior measure	3
	1.3	Measurable sets and the Lebesgue measure	7

1 Measure Theory

1.1 Preliminaries

The **norm** of x is denoted by |x| and is defined to be the standard Euclidean norm given by

$$|x| = (x_1^2 + \dots + x_d^2)^{1/2}$$

The **distance** between two points x and y is then simply |x-y| The **distance** between two sets E and F is defined by

$$d(E, F = \inf|x - y|)$$

where the infimum is taken over all $x \in E$ and $y \in F$

The **open ball** in \mathbb{R}^d centered at x and of radius r is defined by

$$B_r(x) = \{ y \in \mathbb{R}^d : |y - x| < r \}$$

A subset $E \subset \mathbb{R}^d$ is **open** if for every $x \in E$, there exists r > 0 with $B_r(x) \subset E$. A set is **closed** if its complement is open.

A set E is **bounded** if it's contained in some ball of finite radius. A bounded set is **compact** if it's also closed. Compact sets enjoy the Heine-Borel covering property:

• Assume E is compact, $E \subset \bigcup_{\alpha} \mathcal{O}_{\alpha}$, and each \mathcal{O}_{α} is open. Then there are finitely many of the open sets $\mathcal{O}_{\alpha_1}, \ldots, \mathcal{O}_{\alpha_N}$ s.t. $E \subset \bigcup_{j=1}^N \mathcal{O}_{\alpha_j}$

Lemma 1.1. If R, R_1, \ldots, R_N are rectangles, and $R \subset \bigcup_{k=1}^N R_k$, then

$$|R| \le \sum_{k=1}^{N} |R_k|$$

Theorem 1.2. Every open subset \mathcal{O} of \mathbb{R} can be written uniquely as a countable union of disjoint open intervals

Proof. For every $x \in \mathcal{O}$, let

$$a_x = \inf\{a < x : (a, x) \subset \mathcal{O}\}$$
 $b_x = \sup\{b > x : (x, b) \subset \mathcal{O}\}$

and $I_x=(a_x,b_x)$. Then $\mathcal{O}=\bigcup_{x\in\mathcal{O}}I_x$. Now suppose that two intervals I_x and I_y intersects. Then $(I_x\cup I_y)\subset I_x$ and $(I_x\cup I_y)\subset I_x$. This can happen only if $I_x=I_y$. Therefore any two disjoint intervals in the collection $\mathcal{I}=\{I_x\}_{x\in\mathcal{O}}$. Since every open interval I_x contains a rational number. \square

Theorem 1.3. Every open subset \mathcal{O} of \mathbb{R}^d , $d \geq 1$, can be written as a countable union of almost disjoint closed cubes.

1.2 The exterior measure

Definition 1.4. If *E* is any subset of \mathbb{R}^d , the **exterior measure** of *E* is

$$m_*(E) = \inf \sum_{j=1}^{\infty} |Q_j|$$

where the infimum is taken over all countable coverings $E \subset \bigcup_{j=1}^{\infty} Q_j$ by closed cubes .

Example 1.1. The exterior measure of a point is zero. This is clear once we observe that a point is a cube with volume zero.

Example 1.2. The exterior measure of a closed cube is equal to its volume. Indeed suppose Q is a closed cube in \mathbb{R}^d . Since Q covers itself, we must have $m_*(Q) \leq |Q|$. Therefore, it suffices to prove the reverse inequality.

We consider an arbitrary covering $Q\subset\bigcup_{j=1}^\infty Q_j$ by cubes, and note that it suffices to prove that

$$|Q| \le \sum_{j=1}^{\infty} |Q_j|$$

For a fixed $\epsilon>0$ we choose for each j an open cube S_j which contains Q_j and s.t. $\left|S_j\right|\leq (1+\epsilon)\left|Q_j\right|$. From the open covering $\bigcup_{j=1}^\infty S_j$ of the compact set Q, we may select a finite subcovering which, after possibly renumbering the rectangles, we may write as $Q\subset\bigcup_{j=1}^N S_j$. We may apply Lemma 1.1 to conclude that $|Q|\leq\sum_{j=1}^N \left|S_j\right|$. Consequently,

$$|Q| \le (1 + \epsilon) \sum_{j=1}^{N} |Q_j| \le (1 + \epsilon) \sum_{j=1}^{\infty} |Q_j|$$

Since ϵ is arbitrary, the inequality holds; thus $|Q| \leq m_*(Q)$

Example 1.3. If Q is an open cube, the result $m_*(Q) = |Q|$ still holds. Since Q is covered by its closure \overline{Q} and $\left|\overline{Q}\right| = |Q|$, we immediately see that $m_*(Q) \leq |Q|$. Note that if Q_0 is a closed cube contained in Q, then $m_*(Q_0) \leq m_*(Q)$, since any covering of Q by a countable number of closed cubes is also a covering of Q_0 . Hence $|Q_0| \leq m_*(Q)$, and since we can choose Q_0 with a volume as close as we wich to |Q|, we must have $|Q| \leq m_*(Q)$

Example 1.4. The exterior measure of a rectangle R is equal to its volume. To obtain $|R| \leq m_*(R)$, consider a grid in \mathbb{R}^d formed by cubes of side length

1/k. Then if $\mathcal Q$ consists of the (finite) collection of all cubes entirely contained in R, and $\mathcal Q'$ the (fintie) collection of all cubes that intersect the complement of R, we first note that $R \subset \bigcup_{Q \in (\mathcal Q \cup \mathcal Q')} Q$. Also a simple argument yields

$$\sum_{Q \in \mathcal{Q}} |Q| \le |R|$$

Moreover, there are $O(k^{d-1})$ cubes in \mathcal{Q}' and these cubes have volume k^{-d} , so that $\sum_{Q \in \mathcal{Q}'} |Q| = O(1/k)$. Hence

$$\sum_{Q\in\mathcal{Q}\cup\mathcal{Q}'}|Q|\leq |R|+O(1/k)$$

and letting k tend to infinity yields $m_*(R) \leq |R|$

Example 1.5. The exterior measure of \mathbb{R}^d is infinite. This follows from the fact that any covering of \mathbb{R}^d is also a covering of any cube $Q \subset \mathbb{R}^d$ hence $|Q| \leq m_*(\mathbb{R}^d)$.

Example 1.6. The Cantor set \mathcal{C} has exterior measure 0. From the construction of \mathcal{C} , we know that $\mathcal{C} \subset C_k$, where each C_k is a dijoint union of 2^k closed intervals, each of length 3^{-k} . Consequently, $m_*(\mathcal{C}) \leq (2/3)^k$ for all k, hence $m_*(\mathcal{C}) = 0$

Proposition 1.5. For every $\epsilon > 0$, there exists a covering $E \subset \bigcup_{j=1}^{\infty} Q_j$ with

$$\sum_{j=1}^{\infty} m_*(Q_j) \le m_*(E) + \epsilon$$

Proposition 1.6 (Monotonicity). *If* $E_1 \subset E_2$, then $m_*(E_1) \leq m_*(E_2)$

Proposition 1.7 (Countable sub-additivity). If $E = \bigcup_{j=1}^{\infty} E_j$, then $m_*(E) \le \sum_{j=1}^{\infty} m_*(E_j)$

Proof. First we may assume that each $m_*(E_j) < \infty$ for otherwise the inequality clearly holds. For any $\epsilon > 0$ the definition of the exterior measure yields for each j a covering $E_j \subset \bigcup_{k=1}^{\infty} Q_{k,j}$ by closed cubes with

$$\sum_{k=1}^{\infty} |Q_{k,j}| \le m_*(E_j) + \frac{\epsilon}{2^j}$$

Then, $E \subset \bigcup_{j,k=1}^{\infty} Q_{k,j}$ is a covering of E by closed cubes and therefore

$$m_*(E) \le \sum_{j,k} |Q_{k,j}| = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |Q_{k,j}|$$
$$\le \sum_{j=1}^{\infty} (m_*(E_j) + \frac{\epsilon}{2^j})$$
$$= \sum_{j=1}^{\infty} m_*(E_j) + \epsilon$$

Proposition 1.8. If $E \subset \mathbb{R}^d$, then $m_*(E) = \inf m_*(\mathcal{O})$ where the infimum is taken over all open sets \mathcal{O} containing E

Proof. By monotonicity, it is clear that $m_*(E) \leq \inf m_*(\mathcal{O})$ holds. For the reverse inequality, let $\epsilon > 0$ and choose cubes Q_j s.t. $E \subset \bigcup_{j=1}^{\infty} Q_j$ with

$$\sum_{j=1}^{\infty} |Q_j| \le m_*(E) + \frac{\epsilon}{2}$$

Let Q_j^0 denote an open cube containing Q_j , and s.t. $\left|Q_j^0\right| \leq \left|Q_j\right| + \frac{\epsilon}{2^{j+1}}$. Then $\mathcal{O} = \bigcup_{j=1}^\infty Q_j^0$ is open, and by Proposition 1.7

$$m_*(\mathcal{O}) \le \sum_{j=1}^{\infty} m_*(Q_j^0) = \sum_{j=1}^{\infty} \left| Q_j^0 \right|$$

$$\le \sum_{j=1}^{\infty} \left| Q_j \right| + \frac{\epsilon}{2^{j+1}}$$

$$\le \sum_{j=1}^{\infty} \left| Q_j \right| + \frac{\epsilon}{2}$$

$$\le m_*(E) + \epsilon$$

Proposition 1.9. *If* $E = E_1 \cup E_2$ *and* $d(E_1, E_2) > 0$ *, then*

$$m_*(E) = m_*(E_1) + m_*(E_2)$$

Proof. By Proposition 1.7, we already know that $m_*(E) \leq m_*(E_1) + m_*(E_2)$. First select $d(E_1, E_2) > \delta > 0$. Next we choose a covering $E \subset \bigcup_j = 1^\infty Q_j$ by closed cubes with $\sum_{j=1}^\infty \left|Q_j\right| \leq m_*(E) + \epsilon$. We may, after subdividing the cubes Q_j , assume that each Q_j has a diameter less than δ . In this case, each Q_j can intersect at most one of the two sets E_1 or E_2 . If we denote by J_1 and J_2 the sets of those indices j for which Q_j intersects E_1 and E_2 , respectively, then $J_1 \cap J_2$ is empty, and we have

$$E_1 \subset \bigcap_{j \in J_1}^{\infty} Q_j$$
 as well as $E_2 \subset \bigcap_{j \in J_2}^{\infty} Q_j$

Therefore,

$$m_*(E_1) + m_*(E_2) \le \sum_{j \in J_1} |Q_j| + \sum_{j \in J_2} |Q_j|$$
$$\le \sum_{j=1}^{\infty} |Q_j|$$
$$\le m_*(E) + \epsilon$$

Proposition 1.10. If a set E is the countable union of almost disjoint cubes $E = \bigcup_{j=1}^{\infty} Q_j$, then

$$m_*(E) = \sum_{j=1}^{\infty} |Q_j|$$

Proof. Let \tilde{Q}_j dentoe a cube strictly contained in Q_j s.t. $|Q_j| \leq |Q_j| + \epsilon/2^j$, where ϵ is arbitrary but fixed. Then for every N, the cubes $\tilde{Q}_1, \ldots, \tilde{Q}_N$ are disjoint, hence at a finite distance from one another, and repeated applications of Proposition 1.9 imply

$$m_*(\bigcup_{j=1}^N \tilde{Q}_j) = \sum_{j=1}^N |\tilde{Q}_j| \ge \sum_{j=1}^N (|Q_j| - \epsilon/2^j)$$

Since $\bigcup_{j=1}^{N} \tilde{Q}_j \subset E$, we conclude that for every integer N,

$$m_*(E) \ge \sum_{j=1}^N |Q_j| - \epsilon$$

In the limit as N tends to infinity we deduce $\sum_{j=1}^{\infty} \left| Q_j \right| \leq m_*(E) + \epsilon$ for every $\epsilon > 0$

1.3 Measurable sets and the Lebesgue measure

Definition 1.11. A subset E of \mathbb{R}^d is **Lebesgue measurable** or simply **measurable**, if for any $\epsilon > 0$ there exists an open set \mathcal{O} with $E \subset \mathcal{O}$ and

$$m_*(\mathcal{O} - E) \le \epsilon$$

If E is measurable, we define its **Lebesgue measure** (or **measure**) m(E) by

$$m(E) = m_*(E)$$

Proposition 1.12. Every open set in \mathbb{R}^d is measurable

Proof.
$$m_*(E-E) = 0 \le \epsilon$$

Proposition 1.13. If $m_*(E) = 0$, then E is measurable. In particular, if F is a subset of a set of exterior measure 0, then F is measurable.

Proof. By proposition 1.8, for every $\epsilon > 0$ there exists an open set \mathcal{O} with $E \subset \mathcal{O}$ and $m_*(\mathcal{O}) \leq \epsilon$. Since $(\mathcal{O} - E) \subset \mathcal{O}$, monotonicity implies $m_*(\mathcal{O} - E) \leq \epsilon$

As a consequence, the Cantor set \mathcal{C} is measurable.

Proposition 1.14. A countable union of measurable sets is measurable

Proof. Suppose $E = \bigcup_{j=1}^{\infty} E_j$ where each E_j is measurable. Given $\epsilon > 0$, we may choose for each j an open set \mathcal{O}_j with $E_j \subset \mathcal{O}_j$ and $m_*(\mathcal{O}_j - E_j) \leq \epsilon/2^j$. Then the union $\mathcal{O} = \bigcup_{j=1}^{\infty} \mathcal{O}_j$ is open, $E \subset \mathcal{O}$ and $\mathcal{O} - E \subset \bigcup_{j=1}^{\infty} (\mathcal{O}_j - E_j)$, so monotonicity and sub-additivity of the exterior measure imply

$$m_*(\mathcal{O} - E) \le \sum_{j=1}^{\infty} m_*(\mathcal{O}_j - E_j) \le \epsilon$$

Proposition 1.15. *Closed sets are measurable*

Proof. First we observe that it suffices to prove that compact sets are measurable. Indeed any closed set F can be written as the union of compact sets, say $F = \bigcup_{k=1}^{\infty} F \cap B_k$, where B_k denotes the closed ball of radius k centered at the origin; then Proposition 1.14 applies.

So suppose F is compact (so that in particular $m_*(F) < \infty$), and let $\epsilon > 0$. By Proposition 1.8 we can select an open set \mathcal{O} with $F \subset \mathcal{O}$ and

 $m_*(\mathcal{O}) \leq m_*(F) + \epsilon$. Since F is closed, the difference $\mathcal{O} - F$ is open, and by Theorem 1.3 we may write this difference as countable union of almost disjoint cubes

$$\mathcal{O} - F = \bigcup_{j=1}^{\infty} Q_j$$

For a fixed N, the finite union $K = \bigcup_{j=1}^N Q_j$ is compact; therefore d(K,F) > 0. Since $(K \cup F) \subset \mathcal{O}$

$$m_*(\mathcal{O}) \ge m_*(F) + m_*(K)$$

= $m_*(F) + \sum_{j=1}^{N} m_*(Q_j)$

Hence $\sum_{j=1}^{N} m_*(Q_j) \leq m_*(\mathcal{O}) - m_*(F) \leq \epsilon$, and this also holds in the limit as N tends to be infinite. Hence

$$m_*(\mathcal{O} - F) \le \sum_{j=1}^{\infty} m_*(Q_j) \le \epsilon$$

Lemma 1.16. If F is closed, K is compact, and these sets are disjoint, then d(F,K) > 0

Proof. Since F is closed, for each point $x \in K$, there exists $\delta_x > 0$ so that $d(x,F) > 3\delta_x$. Since $\bigcup_{x \in K} B_{2\delta_x}(x)$ covers K, and K is compact, we may find a subcover, which we denote by $\bigcup_{j=1}^N B_{2\delta_j}(x_j)$. If we let $\delta = \min(\delta_1,\ldots,\delta_N)$, then we must have $d(K,F) \geq \delta > 0$. Indeed, if $x \in K$ and $y \in F$, then for some j we have $|x_j - x| \leq 2\delta_j$ and by construction $|y - x_j| \geq 3\delta_j$. Therefore

$$|y - x| \ge |y - x_j| - |x_j - x| \ge 3\delta_j - 2\delta_j \ge \delta$$

Proposition 1.17. *The complement of a measurable set is measurable*

Proof. If E is measurable, then for every positive integer n we may choose an open set \mathcal{O}_n with $E \subset \mathcal{O}_n$ and $m_*(\mathcal{O}_n - E) \leq 1/n$. The complement \mathcal{O}_n^c is closed, hence measurable, which implies that the union $S = \bigcup_{n=1}^{\infty} \mathcal{O}_n^c$ is also measurable. Now we simply note that $S \subset E^c$ and

$$(E^c - S) \subset (\mathcal{O}_n - E)$$

s.t. $m_*(E^c - S) \le 1/n$ for all n. Therefore $m_*(E^c - S) = 0$ and $E^c - S$ is measurable. Hence $E^c = S \cup (E^c - S)$ is measurable

Proposition 1.18. A countable intersection of measurable sets is measurable

Proof.

$$\bigcap_{j=1}^{\infty} E_j = (\bigcup_{j=1}^{\infty} E_j^c)^c$$