Recall: We defined the d-olimensional torus T_M* to be Spec(C[M]) for $M \subseteq \mathbb{Z}^d$.

Multiplication is defined in terms of comultiplication $\tilde{u}: C[M] \to C[M] \otimes_{\mathbb{C}} C[M]$,

which reduces to usual multiplication in $(C^*)^d$ on closed points.

Two lattices associated to T_{M^+} = Spec(C[M]) play a central role in toric geometry. We have already seen the character lattice M. Here is an alternative description of this lattice:

Def: Let T be a torus. The character lattice of T is $Hom_{Alg} g_{Fsch}(T, \mathbb{C}^{*})$. Here \mathbb{C}^{*} is shorthand for Spec(C[L]), where L is a mark 1 lattice. So we are looking at ring homomorphisms $C[L] \xrightarrow{\varphi} C[M]$ that respect the comultiplication.

So Homalage sch (T, C*) = Homa (L, M) = M.

Exercise: It's common practice to think in more classical terms when doing toric geometry. So, working with, say, complex Lie groups rather than affine algebraic group schools, can you show that $Hom((C^*)^d, C^*) \cong \mathbb{Z}^d$?

Hint: Try viewing C^* as exp(C). Then what is $(C^*)^d$? Can you interpret the homomorphisms as certain linear maps between complex vector spaces?

The other lattice that plays a central role is the dual of the character lattice.

Def: The cocharacter lattice of T is Homalage sch (C*, T).

Note that if N is the cocharacter lattice of T, then the closed points of T are identified with $N \otimes_{\mathbb{Z}} \mathbb{C}^*$ by evaluation: $\mathbb{Z}^n \otimes X \mapsto \mathbb{Z}^n(X)$.

For this reason, it is common to denote this torus by Tp.

optional, but common, requirements

Def: A boric variety is a normal, finite-type variety X together with an open dense algebraic torus TcX such that the action of T on itself (multiplication) extends to an action of T on X. If X is also an affine schene, the boric variety is called an affine foric variety.

Def: A scheme is normal if all of its local rings are integrally closed domains.

A scheme (over Spec (C)) is finite type if it has a finite cover of affine open subschemes Spec (R:) where each R: is a finitely generated C-algebra.

Non-example of normal 5cheme: (Cuspidal cubic plane curve) Let $X = Spec(C[X,y]/(x^2-y^2))$. You will show in the problem set that X fails to be normal. It is in fact an example of a non-normal toric variety.

Construction of affine foric varieties:

Let TN be a d-dimensional torus. Write NR:= NozR, M:=N*, and MR:=MozR.

Def: A convex rational polyhedral cone (henceforth shortened to "cone") in NIR is a subset of the form

where I is a finite (possibly empty) indexing set.

(The adjective "national" refers to the insistence that nich nather than simply NIR.)
If or does not contain a line, it is said to be strongly convex.

Exercise: Can you give an equivalent definition involving an intersection of half spaces?

Def: Let or be a cone in N_R. The dual cone is ov:= {m∈M_R: <n, m>≥0 ∀n∈o}.

Def: A semigroup is a set 5 equipped with an associative binary operation and an identity dement.

Warning: You may have called this a monoid in your algebra classes, and possibly dropped the stentity element requirement when using the term "semi-group".

Def: Let σ be a strongly convex cone in N_R. The commutative semigroup S_{σ} is $S_{\sigma} := \sigma^{V} \cap M$.

The affine toric variety Us is the spectrum of the semigroup algebra C[So]: $U_{\sigma} := Spec(C[So])$.

Question: How do you describe TN in this framework?

Answer: set o = {03. Then o' = M and Uo = Spec(CEMJ) =: TN.

Question: We'd like to recover To as an open subschene of Us by localiting in some way. This works it the group completion of the semigroup So is $S_{\sigma}^{2r} = M$. How do we know this holds?

Answer: This holds if and only if or is full dimensional. Full dimensionality of or follows from strong convexity of o.

The torus action on No:

We have claimed that Tp acts on Uo. This means the multiplication action of Tp on itself should extend to an action $T_{N} \times U_{\sigma} \to U_{\sigma}$, or on the level of C-algebras the analtiplication $\tilde{\mathcal{M}}: \mathbb{C}[M] \to \mathbb{C}[M] \otimes_{\mathbb{C}} \mathbb{C}[M]$ should restrict to a $\mathbb{Z}^m \mapsto \mathbb{Z}^m \otimes_{\mathbb{C}} \mathbb{Z}^m$

C-algebra homomorphism CISO] -> C[M] & C[So], which it clearly does.

Normality of Uo:

Def: A scheme (X, ∂_X) is integral if for every open sot $U \in X$, the ring $\partial_X (U)$ is an integral domain.

Lemma: If V = Spec(R) is an integral orifine scheme, V is normal it and only if R is integrally closed.

Proof: First, note $R = \bigcap_{p \in V} V_{p}$. To see this, take $s \in \bigcap_{p \in V} V_{p}$ and let $I_s := \{r \in R : r s \in R\}$. For any $p \in V$, $s \in O_{V,p} = R_p$, so there must be some $t \in R \setminus p$ such that $t s \in R$. Then $t \in I_s$ and $I_s \not\in p$. In particular, I_s is an ideal not contained in any maximal ideal. $I_s = R$ and $s \in R$.

Now suppose each Rp is integrally closed. If x is integral over R, it is also integral over Rp, so in Rp for all peV. Then $x \in \bigcap_{p \in V} Rp = R$.

Next suppose R is integrally closed. If $x \in Frac(R)$ is integral over Rp, we can write

$$\chi^{\eta} + \frac{r_{\eta,1}}{s_{\eta-1}} \chi^{\eta-1} + \dots + \frac{r_{1}}{s_{1}} \chi + \frac{r_{0}}{s_{0}} = 0$$

where si6R\p. Then

$$\left(5_{n-1}\cdots 5_{o}\right)^{n}\chi^{n}+\left(5_{n-1}\cdots 5_{o}\right)^{n}\frac{r_{n-1}}{5_{n-1}}\chi^{n-1}+\cdots+\left(5_{n-1}\cdots 5_{o}\right)^{n}\frac{r_{o}}{5_{o}}=0$$

and somesox is integral over R, hence in R. So x e Rp.

You will complete the proof of normality of up in the problem set.

Open tonic subvarieties:

It may seem odd that we don't start directly with o'. But or gives us a nice picture of the (toric) open subschemes of Uo. Observe that the boundary of or is a complex of lower dimensional cones.

Example: The boundary of a 3-dimensional simplicial come consists of:

- · Three 2-dimensional cones
- · Three 1-dimensional cones
- · One O-dimensional cone

These boundary comes are called the faces of σ . For each face τ of σ , we have $\sigma' \in \tau'$, $S_{\sigma} \in S_{\tau}$, and $U_{\tau} \in U_{\sigma}$. So inclusion of comes corresponds to inclusion of toric subvarieties.

You will describe Us and each up in the problem set.

A distinguished point:

Proposition: Let $G \subset N_R$ be full dimensional. Then the C-algebra homomorphism defined by $C[S_0] \xrightarrow{\varphi} C$ $Z^m \mapsto S_0^1$ if $m \in S_0^\perp$ O otherwise

determines a closed point xeello which is fixed by the TN-action.

Proof: By definition, x_{σ} is the prime ideal $Q^{1}(0)$ in $\mathbb{C}[S_{\sigma}]$. Since σ is full dimensional, σ^{\vee} is strongly convex and $\sigma^{\perp} = \{0\} \subset M_{\mathbb{R}}$. That is, $\mathbb{P}(z^{\circ}) = 1$ while $\mathbb{P}(z^{m}) = 0$ for $m \neq 0$, and x_{σ} is the **maximal** ideal of non-invertible elements in $\mathbb{C}[S_{\sigma}]$ it is a closed point.

Tune in next week for torus action!

(And find out what new cliff-hanger will leave you in suspense for the following week...)