04 Delays und Datenraten

1 Thema des Praktikums

In diesem Praktikum werden zeitliche Aspekte von Netzkomponenten untersucht.

Die Schwerpunkte des Praktikums sind

- Datenraten einer Ethernet-Schnittstelle
- Verzögerungszeiten von Netzkomponenten

Ethernet-Technologien werden oft nach der nominellen Bitrate auf dem Physical Layer benannt (also z.B. 10 Mbit/s, 100 Mbit/s oder 1 Gbit/s). Die nominelle Bitrate steht nur zum Teil für die Nutzdaten zur Verfügung, weil die Frames immer auch einen **Overhead** (Preamble, SFD, Header, Padding und FCS) enthalten. Ausserdem dürfen die Frames nicht unmittelbar aufeinander folgen; es muss eine Pause (Interframe-Gap genannt) von 96 Bit-Zeiten eingehalten werden. Die Nutzdaten im Frame werden als **Payload** bezeichnet. Je kleiner die Payload im Frame ist, desto gravierender wirkt sich der Overhead aus. Im Folgenden bezeichnet die **Nutz-Bitrate** die Anzahl der effektiv übertragbaren Nutzdaten-Bits pro Sekunde.

Im ersten Teil sollen die Ethernet-Datenraten in Funktion der Nutzdaten pro Frame bestimmt werden. Dies soll für je drei Geschwindigkeiten 10 Mbit/s, 100 Mbit/s und 1 Gbit/s theoretisch und mittels Messungen erfolgen.

Hubs und Switches können Frames erst nach einer bestimmten Verzögerungszeit (Delay) weiterleiten. Hubs und Switches arbeiten auf anderen OSI-Layern: Hubs auf Layer 1 und Switches auf Layer 2. Dadurch unterschieden sich auch die Verzögerungszeit grundsätzlich. Im zweiten Teil des Praktikums sollen die Verzögerungszeiten Hubs und Switches in Funktion von Frame-Länge und Bitrate theoretisch berechnet und messtechnisch überprüft werden.

2 Vorbereitung

2.1 Berechnung von Datenraten poladela

Leiten Sie eine Formel her für die maximal mögliche Anzahl Frames pro Sekunde (F = Frame-Rate) bei einer bestimmten Payload, P [Byte] und gegebener Bitrate, B [bit/s]. Diese Formel wird später auch für die Messung benötigt.

3

• Leiten Sie daraus die Formel ab für die Nutz-Bitrate (N) bei einer bestimmten Payload (P).

Nutz-Bitrate (N) =

- Laden Sie das Spreadsheet (kt-04-pra-messungen.xls) auf <u>OLAT</u> herunter. Sie finden es gleich nach dieser Praktikumsanleitung). Es enthält einen theoretischen und eine praktischen Teil. Letzteren füllen Sie im Praktikum aus.
- Ergänzen Sie das Spreadsheet, mit den fehlenden Konstanten und Formeln, so dass die Frame-Länge (inklusive Inter-Frame-Gap), die Frame-Rate, die Nutz-Bit-Rate und die nominelle Bit-Rate berechnet werden.
- Stellen Sie im Spreadsheet den theoretischen Verlauf der Nutz-Bit-Rate in Funktion der Payload dar.

2.2 Berechnung der Verzögerungszeiten von Store-and-Forward-Switches

Abbildung 1 zeigt ein allgemeines Weg-Zeit-Diagramm für die Übertragung eines Frames von einer Knoten A zu einem Switch.

- Der Switch sei ein idealer Store-and-Forward-Switch, dessen interne Verarbeitung keine Zeit benötige. Zeichnen Sie in Abbildung 8 die Position des ausgehenden Frames ein, also vom Switch zum Knoten B.
- Leiten Sie eine Formel her für die Verzögerungszeit t_{delay} eines idealen Store-and-Forward-Switches bei einer bestimmten Frame-Länge und Bitrate.

2 * traster

Müssen der Interfame Gap, die Preamble und der CRC bei der Bestimmung von t_{delay} mitberücksichtigt werden? Das heisst, würde sich die Verzögerungszeit ändern, falls die Grösse dieser Felder variiert würde?

Ja, ist ashing, on du Franclaye

- Berechnen Sie mit obiger Formel die Verzögerungszeiten bei 10 Mbit/s für die Frame-Längen 100, 500, 1000, 1500 und tragen Sie die Resultate in Tabelle 1 ein.
- Berechnen Sie mit obiger Formel die Verzögerungszeiten bei 100 Mbit/s für die Frame-Längen 100, 500, 1000, 1500 und tragen Sie die Resultate in Tabelle 2 ein.
- Übertragen Sie die obigen Werte von Tabelle 1 und Tabelle 2 als Kurve in die Abbildung 8.

3 Messung von Datenraten

- Sie benötigen einen Rechner, eine Embedded Linux Box (ELB) und einen HP-Switch.
- Verbinden Sie COM1 vom Rechner mit der seriellen Schnittstelle der ELB und bauen Sie via Putty eine Verbindung auf.
- Verbinden Sie den Ethernet-Port eth1 der ELB mit einem beliebigen Ethernet-Port am HP-Switch.
- Auf der ELB stellen Sie mit dem Programm ethtool die Übertragungsgeschwindigkeit ein, die für die jeweilige Messung benötigt wird. Für 10 Mbit/s und 100 Mbit/s muss die Autonegotiation ausgeschaltet werden.

10 Mbit/s	ethtool -s eth1 autoneg off
	ethtool -s eth1 speed 10 duplex full advertise 0x002
100 Mbit/s	ethtool -s eth1 autoneg off
	ethtool -s eth1 speed 100 duplex full advertise 0x008
1 Gbit/s	ethtool -s eth1 autoneg on
	ethtool -s eth1 speed 1000 duplex full advertise 0x020

• Messen Sie mit dem Programm sendframes die Sendezeiten für eine bestimmte Anzahl Frames der jeweiligen Payload (zwischen 1 Byte und 1500 Byte).

```
sendframes eth1 -i 0 -c frame count -s payload size
```

Das Sendeintervall wird null gesetzt, da der maximale Durchsatz gewünscht ist. frame_count ist gemäss Spreadsheet: 20'000 Frames bei 10 Mbit/s, 200'000 Frames bei 100 Mbit/s sowie 2'000'000 Frames bei 1000 Mbit/s und so gewählt, damit die Messung mindestens eine Sekunde dauert.

• Fügen Sie die gemessenen Sendedauern im vorbereiten Spreadsheet ein (siehe Abschnitt 2).

Entsprechen die Grafiken der nominelle Bit-Rate und der Nutz-Bit-Rate bei 10 Mbit/s und 100 Mbit/s ihren theoretischen Überlegungen? Falls nicht, wo lag der Fehler?

Wie erklären Sie bei 1000 Mbit/s die Abweichungen der Messungen von den theoretischen Werten?

Zeigen Sie diese Resultate dem Laborbetreuer

4 Messung von Hub und Switch-Delay

• Für diesen Praktikumsteil starten Sie die Rechner A und der Rechner B mit Linux und Rechner C mit Windows. Melden Sie sich am Windows Rechner mit den folgenden Angaben an:

Benutzer: .\ktlabor Kennwort: KT-Praktika

Zur Messung der Verzögerungszeiten müssen Sie die Geräte gemäss Abbildung 2 mit gelben Netzwerkkabeln verbinden. Um die Verzögerungszeiten zu messen, wird vom Rechner A ein Frame mit-definierter Grösse an den Rechner B geschickt. Mit dem netANALYZER werden die Verzögerungszeiten gemessen. Seine beiden TAPs erlauben die Frames aufzuzeichnen, ohne diese dabei zu verzögern.

Der Rechner C dient nur zur Bedienung des netANALYZER und zum Anzeigen der Resultate.

Da die Kommunikation bidirektional auf 2 Kanälen erfolgt, besitzen die beiden TAP je zwei Ports für die Aufzeichnung:

TAP A	TAP B	
Port 0	Port 2	Aderpaar 3/6
Port 1	Port 3	Aderpaar 1/2

Wie Abbildung 3 zeigt, sind die beiden Anschlussstecker eines TAP jeweils gerade durchverbunden. Das heisst, es spielt keine Rolle, an welchem RJ45-Stecker eines TAP eingesteckt wird.

Abbildung 3

Application

- Vor der Inbetriebnahme des netANALYZER kontrollieren Sie bitte, das sein Netzwerk-Port (Anschluss hinten) mit der freien Netzwerkkarte (eth1) des Windows-Rechners C verbunden ist (Abbildung 2).
- Schalten Sie den netANALYZER ein und wenn er betriebsbereit ist (konstantes Leuchten der SYS -LED), starten Sie auf dem Windows-Rechner C die Software netANALYZER:

 netANALYZER.exe
- Wählen Sie dann das angezeigte Gerät mit "Select":

4.1 Messung von Switch-Verzögerungszeiten bei 10 Mbit/s

- Laden Sie die Grundeinstellung des Hirschmann-Switches, indem Sie den USB-Stick einschieben und erst dann den Switch starten.
- Schliessen Sie als Messobjekt einen Hirschmann-Switch gemäss Abbildung 2 an.
- Öffnen Sie auf den Linux Rechnern ein Terminal und konfigurieren Sie die eth1 Schnittstellen für die Rechner A und B, indem Sie mit dem Programm ethtool die Autonegotion ausschalten:
 - ethtool -s eth1 autoneg off
- Erzwingen Sie beim Switch eine fixe Bitrate von 10 Mbit/s, indem sie diese bei den Rechnern A und B manuell einstellen:
 - ethtool -s eth1 speed 10 duplex full advertise 0x002
- Überprüfen Sie im netANALYZER ob alle Ports "UP 10 Mbit/s" anzeigen (Abbildung 4). Andernfalls konfigurieren Sie diese manuell im Menü Settings → PHY Settings. Falls die Links trotz allem nicht «UP» sind, starten Sie den netANALYZER neu (Programm und Hardware).

Abbildung 4

- Senden Sie vom Rechner A Frames (z.B. im Abstand vom 5 ms) mit der gewünschten Länge:
 sendframes eth1 -i 0.005 -l frame length
- Wählen Sie im netANALYZER die "Timing Analysis" und starten Sie die Messung (Abbildung 5).

Abbildung 5

• Bestimmen Sie anhand der Frame-Zähler die aktiven Ports von TAP A und TAP B, also diejenigen welche die übertragenen Frames aufzeichnen (Abbildung 6).

Abbildung 6

• Wählen Sie im Fenster "Timing Analysis" bei From: das aktive Port von TAP A sowie bei To: das aktive Port von TAP B und bestimmen Sie den Mittelwert der Verzögerungszeit (Av. Time in Abbildung 7).

Abbildung 7

• Wählen Sie in einem zweiten Grafikfenster der "Timing Analysis" die umgekehrte Richtung: also bei From: das aktive Ports von TAP B sowie bei To: das aktive Port von TAP B.

Wie interpretieren Sie die Zeit, die Sie nun messen?

 Brechen Sie sendframe ab (<Ctrl> C) und wiederholen Sie die Messung für alle Frame-Längen von Tabelle 1.

Frame-Länge [Byte]	Switch Delay theoretisch [µs]	Switch Delay gemessen [µs]	Abweichung [μs]
100			
500			
1000			
1500			

Tabelle 1: Messung Switch-Delay 10 Mbit/s

- Bestimmen Sie die Abweichungen vom theoretischen Wert.
- Übertragen Sie die Messwerte (Switch Delay) in die Grafik (Abbildung 8).

4.2 Messung von Switch-Verzögerungszeiten bei 100 Mbit/s

• Erzwingen Sie beim Switch eine fixe Bitrate von 100 Mbit/s, indem sie diese bei den Rechnern A und B manuell einstellen:

ethtool -s eth1 speed 100 duplex full advertise 0x008

- Überprüfen Sie im netANALYZER ob alle Ports "UP 100 Mbit/s" anzeigen.
- Führen Sie die Messung durch für alle Frame-Längen der Tabelle 2.

Frame-Länge [Byte]	Switch Delay theoretisch [µs]	Switch Delay gemessen [µs]	Abweichung [μs]
100			
500			
1000			
1500			

Tabelle 2: Messung Switch-Delay mit 100 Mbit/s

- Bestimmen Sie die Abweichungen vom theoretischen Wert.
- Übertragen Sie die Messwerte (Switch Delay) in die Grafik (Abbildung 8).

4.4 Messungen Hub-Verzögerungszeiten (10 Mbit/s)

- Schliessen Sie gemäss Abbildung 2 einen Hub (10 Mbit/s) als Messobject an.
 Hubs arbeiten mit Half Duplex. Dies und die Bitrate stellen Sie auf den Rechnern A und B manuell ein:
 ethtool -s eth1 speed 10 duplex half advertise 0x001
- Überprüfen Sie im netANALYZER ob alle Ports "UP 10 Mbit/s" anzeigen.
- Führen Sie die Messung durch für alle Frame-Längen der Tabelle 3:

Frame-Länge [Byte]	Hub Delay gemessen [μs]
100	
500	
1000	
1500	

Tabelle 3: Messung Hub-Delay mit 10 Mbit/s

• Übertragen Sie die Messwerte (Hub Delay) in die Grafik (Abbildung 8).

4.5 Auswertung / Diskussion

Abbildung 8

•	Welche Aussagen können allgemein über den Delay des Hubs gemacht werden?
•	Wie viele dieser Hubs dürfen in einer Collision Domain hintereinandergeschaltet werden? (Annahme: Alle Kabel sind 100m lang.)
•	Wie verhält sich die Verzögerung in Abhängigkeit von der Packet-Länge beim Hub?
•	Wie ist der Zusammenhang zwischen Verzögerung und Packet-Länge bei Switches?
•	Welchen Einfluss hat die Bitrate auf die Verzögerung bei Switches?
•	Wie weichen die gemessenen Resultate beim Switch von den berechneten ab?
•	Wie erklären Sie die Abweichung der theoretischen Resultate beim Switch von den gemessenen.
•	Kann ein 1000 Mbit/s Switch in Bezug auf die Verzögerungszeiten einen 10 Mbit/s Hub schlagen?

Zeigen Sie diese Resultate dem Laborbetreuer.

5 Mögliche Zusatzaufgaben

Wählen Sie je nach verbleibender Zeit beliebige Zusatzaufgaben.

Vergleich der Verarbeitungszeiten verschiedener Switches

- Führen Sie die Delay-Messungen (100 Mbit/s Full Duplex) mit einem anderen Switch-Typ durch.
- Berechnen Sie die Verarbeitungszeiten des 2. Switches und vergleichen Sie diese mit den Resultaten von Abschnitt 4.2.

Präzise Analyse

 Der netANALYZER erzeugt die Zeitstempel nach dem SFD. Erstellen Sie eine Weg/Zeit-Grafik, die genau aufzeigt, wann/welche Header übertragen werden und wo die Zeitstempeln genommen werden.

Messung der Antwortzeiten eines Rechners

Der Ping-Befehl zeigt an, wie lange es dauert, bis ein Rechner antwortet:

- Ersetzen Sie den Switch durch eine Leitung, damit zwischen den beiden netANALYZER-Ports keine Verzögerung entsteht.
- Öffnen Sie das netANALYZER-Konfigurationsmenu und ändern sie die Filtereinstellung auf: "Ping-Request-Reply – 100 Mbit/s Full Duplex". Damit messen Sie nicht mehr die Durchlaufzeit zwischen den Ports sondern die Antwortzeiten des Rechners (vom Request-Frame zu Reply-Frame). Ein Port misst jeweils eine Richtung.
- Führen Sie nun Messungen durch und vergleichen Sie die Resultate mit den Angaben des Ping-Befehls.
- Erstellen Sie eine Weg/Zeit-Grafik, die genau aufzeigt, wie die Daten zwischen den PC übertragen werden und wo die Zeitstempel beim netANALYZER und auf dem Rechner A (Ping-Befehl) genommen werden.
- Erklären Sie anhand der Grafik die Unterschiede bei den gemessenen Zeiten und bestimmen Sie insbesondere die Stack-Laufzeit der Rechner A und B.