MATH 318, Assignment 4

Kyle Rubenok, 260667187

October 2019

1. 1) The atoms of B are as follows:

$p \wedge q \wedge r$	$p \wedge q \wedge \neg r$
$\neg p \wedge \neg q \wedge r$	$\neg p \land \neg q \land \neg r$
$p \wedge \neg q \wedge r$	$p \wedge \neg q \wedge \neg r$
$\neg p \land q \land r$	$\neg p \land q \land \neg r$

- 2) From the 8 atoms above, we have that there are 2^8 elements in B.
- 2. 1) Take $B = \mathcal{P}$. Each of the atoms in B makeup the singleton set with every non-empty set in B containing a singleton. This means that for every nonzero $b \in B$, there is an atom $a \in B$ with $a \le b$.
 - 2) Yes, take B as any boolean algebra without atoms. Additionally let B' be the algebra 2. From this, $B \times B'$ has exactly one atom, (0,1).

3.