

明細書

用時分散型製剤

技術分野

本発明は少量の水に溶いた場合でも適度な粘性と流動性とを兼ね備え、NGチューブによる投与も容易な用時分散型製剤に関する。

従来技術

腸溶性、苦味マスク、安定性確保等の機能を付与する必要のある薬剤を製剤化する際には、通常は、コーティング処理した錠剤、コーティング処理した顆粒剤（コーティング顆粒剤）、コーティング顆粒を詰めたカプセル剤が広く用いられている。

小児用の製剤としては、液剤、水溶性の顆粒剤、散剤等が広く用いられているが、これらの製剤では（1）上述の通り、腸溶性、苦味マスク、安定性確保等の機能を付与することが困難なこと、及び（2）小児の場合には錠剤やカプセル剤では服用し難いことから、コーティング顆粒剤が広く用いられている。

このコーティング顆粒剤は、水と共に服用するもので、ある程度成長した小児（例えば2歳以上）であれば、成人の場合と同様に予めコーティング顆粒剤を口の中に含ませてその後に水を飲ませたり、あるいは、コーティング顆粒剤を水に分散させた後にそのまま飲んだりすることによって問題なく服用させることができる。

発明の開示

しかし、乳幼児の場合には、予めコーティング顆粒剤を口の中に含ませてその後に水を飲ませるのは困難である。また、コーティング顆粒剤を水を用いて用時溶解又は分散して服用する場合には、以下のようないくつかの問題が発生する。

（1）コーティング顆粒は水の底に顆粒が沈んでしまうため、投与しづらい。

(2) コーティング顆粒を服用させる際に加える水の量が少ない場合には流動性が悪いため服用させにくい。

(3) コーティング顆粒を服用させる際に加える水の量が多い場合には、流動性の問題は解決されるが、乳幼児は胃内の容量が小さく、加えることのできる水の量は限られてしまう。

(4) また、生後約1ヶ月以内の乳幼児に対して、鼻に通したNGチューブ(Nasogastric Tube: 経鼻胃管チューブ)を用いて投与することもあるが、コーティング顆粒を含んだそのまま水に溶いた状態ではサラサラしすぎており、投与しにくい。

そこで、少量の水に溶いた場合でも適度な粘性と流動性とを兼ね備え、NGチューブによる投与も容易な用時分散型製剤が待ち望まれていた。

そこで、本発明の発明者らはかかる課題を解決するべく、鋭意検討し、本発明を完成させた。本発明の目的は、少量の水に溶いた場合でも適度な粘性と流動性とを兼ね備え、NGチューブによる投与も容易な用時分散型製剤を提供することにある。

本発明は、医薬成分を含む平均粒子径2mm以下の主薬顆粒、及び増粘剤を含有する用時分散型製剤であって、服用時に水を加えて分散させ、NGチューブを通して投与することが可能な用時分散型製剤である。

本発明は、医薬成分を含む平均粒子径2mm以下の主薬顆粒及び増粘剤を含有する用時分散型製剤を服用時に水を加えて分散し、NGチューブを通して投与する方法に関する。

発明の詳細な説明

本発明の用時分散型製剤とは、服用時に水を加えて分散させることにより水中に薬剤が分散した状態となる製剤をいう。本発明の用時分散型製剤は、医薬成分を含んだ主薬顆粒と増粘剤とを一定の比率にて混合して分包化したものであり、香料、甘味剤、プラセボ顆粒を加えてもよい。また、用時分散型製剤は、医薬成分を含んだ主薬顆粒と増粘剤を含む粉末・顆粒を別々に分包して、服用

時に合一して服用してもよい。ここで、主薬顆粒とは、医薬成分を含んだ顆粒であり、プラセボ顆粒とは、主薬顆粒の增量剤であり、服用時の取り扱い性を向上させるために用いられる。

本発明に用いられる薬効成分は、固体状、粉末状、結晶状、油状、溶液状など何れの形態のものでもよく、例えば、胃腸薬、滋養強壮保健薬、解熱鎮痛消炎薬、向精神病薬、抗不安薬、抗うつ薬、催眠鎮静薬、鎮痙薬、制酸剤、鎮咳去痰剤、歯科口腔用薬、抗ヒスタミン剤、強心剤、不整脈用剤、利尿剤、血圧降下剤、血管収縮剤、冠血管拡張剤、末梢血管拡張剤、利胆剤、抗生物質、化学療法剤、糖尿病用剤、骨粗しょう症用剤、骨格筋弛緩薬などから選ばれた1種または2種以上の成分が用いられる。胃腸薬には、例えば、プロトンポンプインヒビター、防御因子強化薬、H2プロッカー、ジアスター、含糖ペプシン、ロートエキス、リバーゼAP、ケイヒ油などの健胃消化剤、塩化ベルベリン、耐性乳酸菌、ビフィズス菌などの整腸剤などが含まれる。制酸剤としては、例えば、炭酸マグネシウム、炭酸水素ナトリウム、メタケイ酸アルミニ酸マグネシウム、沈降炭酸カルシウム、合成ヒドロタルサイト、酸化マグネシウムなどが挙げられる。滋養強壮保健薬には、例えば、ビタミンA、ビタミンD、ビタミンE（酢酸d- α -トコフェロールなど）、ビタミンB1（ジベンゾイルチアミン、フルスルチアミン塩酸塩など）、ビタミンB2（酪酸リボフラビンなど）、ビタミンB6（塩酸ピリドキシンなど）、ビタミンC（アスコルビン酸、L-アスコルビン酸ナトリウムなど）、ビタミンB12（酢酸ヒドロキソコバラミンなど）などのビタミン、カルシウム、マグネシウム、鉄などのミネラル、タンパク、アミノ酸、オリゴ糖、生薬などが含まれる。解熱鎮痛消炎薬としては、例えば、アスピリン、アセトアミノフェン、イブプロフェン、エテンザミド、塩酸ジフェンヒドラミン、d-1-マレイン酸クロルフェニラミン、リン酸ジヒドロコデイン、ノスカピン、塩酸メチルエフェドリン、塩酸フェニルプロパノールアミン、カフェイン、セラペプターゼ、塩化リゾチーム、トルフェナム酸、メフェナム酸、ジクロフェナクナトリウム、フルフェナム酸、サリチルアミド、アミノピリン、ケトプロフェン、インドメタシン、ブコローム、

ペントゾシンなどが挙げられる。向精神病薬としては、例えば、アモキサピン、クロルプロマジン、スルピリド、レセルピンなどが挙げられる。抗不安薬としては、例えば、エチゾラム、プロマゼパム、クロルジアゼポキシド、ジアゼパムなどが例示される。抗うつ薬としては、例えば、塩酸イミプラミン、マプロチリン、塩酸クロミプラン、アンフェタミンなどが挙げられる。催眠鎮静薬としては、例えば、フルニトラゼパム、トリアゾラム、エスタゾラム、ニトラゼパム、ジアゼパム、フェノバルビタールナトリウムなどが挙げられる。鎮咳去痰剤としては、例えば、塩酸エプラジノン、塩酸クロペラスチン、臭化水素酸デキストロメトルファン、テオフィリン、グアヤコールスルホン酸カリウム、グアイフェネシンなどが挙げられる。歯科口腔用薬としては、例えば、クロラムフェニコール、オキシテトラサイクリン、トリアムシノロンアセトニド、塩酸クロルヘキシジン、リドカインなどが挙げられる。抗ヒスタミン剤としては、例えば、塩酸アゼラスチン、フマル酸クレマスチン、塩酸ジフェンヒドラミン、プロメタジン、塩酸イソチベンジル、d L-マレイン酸クロルフェニラミンなどが挙げられる。強心剤としては、例えば、ジギトキシン、塩酸エチレフリンなどが挙げられる。不整脈用剤としては、例えば、塩酸メキシレチン、塩酸プロカインアミド、ジソピラミド、塩酸プロプラノロール、ピンドロールなどが挙げられる。利尿剤としては、例えば、トリクロルメチアジド、イソソルビド、フロセミドなどが挙げられる。血圧降下剤としては、例えば、塩酸アロチノロール、塩酸デラブリル、カプトブリル、フマル酸ビソプロロール、臭化ヘキサメトニウム、塩酸ヒドララジン、塩酸ラベタロール、メチルドーパなどが挙げられる。血管収縮剤としては、例えば、メチル硫酸アメジニウム、塩酸フェニレフリンなどが挙げられる。冠血管拡張剤としては、例えば、塩酸カルボクロメン、モルシドミン、塩酸ベラパミルなどが挙げられる。末梢血管拡張剤としては、例えば、シンナリジンなどが例示される。利胆剤としては、例えば、ウルソデスオキシコール酸、デヒドロコール酸、トレピプトンなどが例示される。抗生物質には、例えば、セファクロル、セファレキシン、アモキシシリソル、フアロペネムナトリウム、塩酸ピズメシリナム、塩酸セフオチアムなどのセフェ

ム系、ペネム系およびカルバペネム系抗生物質などが含まれる。糖尿病用剤としては、例えば、グリベンクラミド、トルブタミド、ボグリボーズなどが挙げられる。骨粗しょう症用剤としては、例えば、メナテトレノン、イプリフラボンなどが挙げられる。

本発明において、医薬成分としては、プロトンポンプインヒビターが好ましい。

本発明において特に好ましい医薬成分としては、下記の式1にて表されるプロトンポンプインヒビターと呼ばれるベンズイミダゾール系化合物である。

であり、 R^1 および R^2 は同じかまたは異なっていて、水素、メトキシ及びジフルオロメトキシから選択され、 R^3 は水素およびナトリウムから選択され、 R^4 、 R^5 および R^6 は同じかまたは異なっていて、水素、メチル、メトキシ、メトキシプロポキシおよびトリフルオロエトキシから選択される。

本発明におけるベンズイミダゾール系化合物の好ましい例としては、ラベプラゾール、オメプラゾール及びその光学異性体であるエスマプラゾール、パントプラゾール、ランソプラゾールであり、それら薬理学上許容される塩としては、ナトリウム塩、カリウム塩、マグネシウム塩等を挙げることができる。各化合物の構造式を式2に示す。

本発明において、主薬顆粒とは、医薬成分を含有する顆粒であって、機能性高分子を含有する顆粒である。例えば、医薬成分を含有する顆粒に機能性高分子の皮膜を施したコーティング顆粒、あるいは、機能性高分子と医薬成分とを混合状態で含有する顆粒（マトリックス顆粒）等が挙げられるが、これらに限定される訳ではない。

機能性高分子とはpH、器官、服用後の経過時間などの所望の条件下で溶解または崩壊することによって顆粒中に含まれる医薬成分の放出を制御するための高分子をいい、特に限定されることはない。また、この機能性高分子により被覆された層のことを機能性皮膜という。機能性高分子の一例としては、胃溶性高分子、腸溶性高分子、徐放性高分子などが挙げられる。胃溶性高分子としては、例えばヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアセタールジエチルアミノアセテート、アミノアルキルメタクリレートコポリマーが挙げられるが、本発明ではこれらに限定されることなく任意に選択して用いてもよい。腸溶性高分子としては、例えばヒドロキシプロ

ピルメチルセルロースフタレート、ヒドロキシプロピルメチルセルロースアセテートサクシネット、カルボキシメチルエチルセルロース、メタクリル酸コポリマーL、メタアクリル酸コポリマーLDなどが挙げられるが、本発明ではこれらに限定されることなく任意に選択して用いてもよい。徐放性高分子としては、例えばヒドロキシプロピルメチルセルロースアセテートサクシネット、メタアクリル酸コポリマーS、アミノアルキルメタクリレートコポリマーRS、エチルセルロースなどが挙げられるが、本発明ではこれらに限定されることなく任意に選択して用いてもよい。なお、機能性高分子は単独成分であっても、複合成分を混合して使用してもよい。

本発明における主薬顆粒がコーティング顆粒の場合には、通常の造粒物に機能性高分子をコーティングしたり、核物質(シード)に機能性高分子をコーティングしたりすることにより製造することができる。また、機能性高分子を含有する皮膜を複数コーティングしてもよく、この場合、ある機能性高分子を含有する皮膜上に異なる機能性高分子を含有する皮膜を直接コーティングしても、機能性高分子を含有する皮膜どうしの間に中間皮膜を有していてもよい。

造粒によって製造する際には、医薬成分に賦形剤、安定化剤等の添加剤を混合、造粒、整粒し、これに機能性皮膜をコーティングすることによって得ることができるが、医薬成分を含まない状態で造粒し、その後に医薬成分をコーティングすることによっても得ることができる。

核物質にコーティングして製造する際に用いられる核物質は、その表面に主薬成分、添加剤等を層状に吸着、塗布して顆粒状とするための芯となる物質で、その素材は特に限定されず、市販の球状顆粒を用いてもよいし、種々の添加剤を混合、造粒、整粒した球状顆粒を用いてもよい。シードの成分は、特に限定されないが、マンニトール、クロスボビドン等の主薬等とは反応性の低い物質を用いるのがよい。核物質の形状は通常は球状のものが用いられ、その平均粒子径は約80μm～800μm程度のものであればよく、好ましくは100μm～700μm、より好ましくは100μm～500μm程度がよい。核物質としては、例えばノンパレル103(フロイント社製)ノンパレル108(フ

ロイント社製)、セルフィア(旭化成社製)を用いるのがよい。

本発明における主薬顆粒がマトリックス顆粒である顆粒とは、機能性高分子と医薬成分とを混合状態で存在させた顆粒である。機能性高分子と医薬成分とを混合して、必要に応じて賦形剤、安定化剤等の添加剤を混合して、造粒、整粒しても良いし、圧力等を加えて成型した顆粒でもよい。造粒方法は、例えば、湿式造粒、乾式造粒、押し出し造粒、溶融造粒等が挙げられるが、特に限定されない。

主薬顆粒の粒子径としては、内径が5mmのNGチューブを通過する程度の直径を有していればよく、例えば $50\text{ }\mu\text{m} \sim 4900\text{ }\mu\text{m}$ 程度であればよく、好ましくは $100\text{ }\mu\text{m} \sim 800\text{ }\mu\text{m}$ 、より好ましくは $200\text{ }\mu\text{m} \sim 500\text{ }\mu\text{m}$ 、更に好ましくは $200\text{ }\mu\text{m} \sim 400\text{ }\mu\text{m}$ 程度がよい。

本発明において、主薬成分、機能性皮膜を層積する際には、水溶性高分子、水不溶性高分子、水分散性高分子を使用することができる。水溶性高分子化合物は、特に限定されないが、ヒドロキシプロピルセルロース(HPC)、ヒドロキシプロピルメチルセルロース(HPMC)、メチルセルロース(MC)、ポリビニルアルコール(PVA)等を用いるのがよいが、望ましくはHPCである。HPCは、例えばHPC-L(日本曹達社製)を用いるのがよい。また、本発明では、クロスポビドンを用いることもできる。使用されるクロスポビドンは、例えばCL、CLM(BASF社製)、INF-10、XL-10、XL(アイエスピージャパン社製)があるが、粒径のより細かなポリプラスドンINF-10(アイエスピージャパン社製)または、より過酸化物含有量の少ないクロスポビドンXLを用いるのがよく、酸化の影響を受けやすい主薬には、クロスポビドンXLが良い。

本発明において使用することができる水不溶性高分子としては、例えはエチルセルロース、ブチルセルロース、セルロースアセテート、ポリビニルアセテート、セルロースプロピオネート、ポリビニルブチレート、オイドラギッドRS(ローム・ファーマ社製:アクリル酸エチル・メタクリル酸メチル・メタクリル酸塩化トリメチルアンモニウムエチル重合体)等が挙げられるがこれらには

限定されることなく任意に選択して使用することができる。

本発明における主薬顆粒がマトリックス顆粒である顆粒とは、機能性高分子と医薬成分とを混合状態で存在させた顆粒である。機能性高分子と医薬成分とを混合して、必要に応じて賦形剤、安定化剤等の添加剤を混合して、造粒、整粒しても良いし、圧力等を加えて成型した顆粒でもよい。造粒方法は、例えば、湿式造粒、乾式造粒、押し出し造粒、溶融造粒等が挙げられるが、特に限定されない。

本発明において、増粘剤としては、任意に選択して用いることができ、例えばメチルセルロース、アルギン酸プロピレングリコールエステル (Propylene Glycol Alginate : 製品名キミロイド、株式会社 キミカ製)、キサンタンガム、精製ゼラチン、HPC、HPMC、PVA、ポリビニルピロリドン (PVP)、ポリカルボキシメチルセルロースナトリウム (CMC-Na)、マクロゴール、ポビドンを用いることができるが、これらに限定されるわけではない。HPCはHPC-M, HPC-Lを用いるのがよい。メチルセルロースとしてはメトローズSM (信越化学製) を、CMC-Naとしてはセロゲン (第一工業製薬製) HPMCとしてはメトローズ65SH (信越化学製) をそれぞれ用いることができる。これらの増粘剤のうち、アルギン酸プロピレングリコールエステル、及びメチルセルロースを用いるのが好ましい。甘味剤としては、任意に選択して用いることができるが、例えば、アスパルテーム、ステビア、還元麦芽糖水アメ、キシリトール、グリチルリチン酸二カリウム、グリチルリチン酸二ナトリウム、サッカリン、サッカリンナトリウム、精製白糖、D-ソルビトール、乳糖、白糖又はマルチトールを用いることができる。

本発明においては、主薬顆粒の增量剤として、また服用時の取り扱い性を向上させるために、プラセボ顆粒を混合して用いることができる。プラセボ顆粒としては、特に限定されないが、主薬顆粒と同程度の大きさ・密度を有する顆粒を用いるのが望ましく、その処方は特に限定されず、また、プラセボ顆粒中に増粘剤を含有させてもよい。プラセボ顆粒は、例えば以下のようにして製造することができる。マンニット、クロスポビドン、クエン酸および軽質無水ケ

イ酸を混合・解碎した後、精製水で造粒、乾燥した後、整粒する。

本発明においては、任意の香料を選択して用いることができるが、例えば、ストロベリーフレーバー、オレンジエキス、バニラフレーバー、ミントフレーバー等を用いることができる。

本発明の用時分散型製剤は、1) 主薬顆粒と増粘剤とを混合して、2) 主薬顆粒、プラセボ顆粒及び増粘剤とを混合して調整することができる。顆粒と増粘剤の配分比は、顆粒1重量部に対して増粘剤を0.5～50重量部とするのがよく、好ましくは1～10重量部程度がよい。プラセボ顆粒を混合する際の主薬顆粒とプラセボ顆粒との配合比は、主薬顆粒1重量部に対してプラセボ顆粒を1～400重量部とするのがよく、好ましくは3～300重量部とするのがよい。一包中の用時分散型製剤の量は、通常0.1～20gであり、好ましくは、0.3～10gである。分散のために用いる水の量は、通常は1～100ml、好ましくは2～50ml程度がよい。水に分散させた際の動粘度は、通常は10～1500mPa·s、好ましくは15～1000mPa·s程度、さらに好ましくは50～600mPa·sがよい。

本発明において使用することができる水不溶性高分子としては、例えばエチルセルロース、ブチルセルロース、セルロースアセテート、ポリビニルアセテート、セルロースプロピオネート、ポリビニルブチレート、オイドラギッドRS（ローム・ファーマ社製：アクリル酸エチル・メタクリル酸メチル・メタクリル酸塩化トリメチルアンモニウムエチル重合体）等が挙げられるがこれらには限定されることなく任意に選択して使用することができる。

本発明で用いる主薬顆粒は、医薬成分としてプロトンポンプインヒビターを用いる際には、例えば以下のようにして製造することができるが、これに限定されるものではない。

(1) 核物質にクロスポビドンをコーティングして吸着顆粒とする、(2) 続いて水酸化ナトリウム及びベンズイミダゾール化合物をコーティングして主薬吸着顆粒とする、(3) 続いてエチルセルロース、HPC-L、ステアリン酸マグネシウムをコーティングしアンダーコート顆粒とする、(4) 続いてヒド

ロキシプロピルメチルセルロース、モノグリセライド、タルク、酸化チタンをコーティングし腸溶性顆粒として主薬顆粒を得る。

前記（1）の吸着顆粒を製造する際には、例えば、エタノールまたは水にHPC、HPMCなどの水溶性高分子を溶解させ、クロスボビドンを分散させて分散液とした後、核物質にコーティングする。コーティングする手段としては、例えばCF、流動層造粒コーティング機、ワースター型流動層造粒コーティング機を用いるのがよい。クロスボビドン層を形成させた後の吸着顆粒の粒径としては、通常は50～900μm、好ましくは100～800μm程度がよい。クロスボビドンの量は、特に限定されないが、通常はベンズイミダゾール系化合物1重量部に対して0.1～100重量部であり、好ましくは1～50重量部、更に好ましくは、3～20重量部とするのがよい。なお、前述の通りクロスボビドン顆粒を核物質とすることもできるが、その場合には、本工程は省略することができる。

前記（2）における吸着顆粒から主薬吸着顆粒を製造する際には、水酸化ナトリウムを先にコーティングした後に主薬成分をコーティングしてもよいし、水酸化ナトリウムと主薬成分とを同時にコーティングしてもよい。例えば、エタノールまたは水に水酸化ナトリウムを溶解させた溶液を前記吸着顆粒にコーティングし、その後エタノールまたは水に主薬成分（ベンズイミダゾール系化合物）を溶解させたコーティング液をコーティングする。コーティングする手段としては前述の吸着顆粒製造の際と同様にして行う。水酸化ナトリウムの量はベンズイミダゾール系化合物の量に従って調節することができるが、通常は、ベンズイミダゾール系化合物1重量部に対して0.1～5重量部、好ましくは、0.2～4、更に好ましくは、0.2～3重量部とするのがよい。

前記（3）のアンダーコートは、酸に対して不安定な主薬成分がエンテリックコートの際に使用する酸性物質である腸溶性基剤と直接接触するのを防止するためのコーティングである。アンダーコート皮膜は、水溶性皮膜、水不溶性皮膜または分散性皮膜のいずれでもよい。アンダーコート顆粒を製造する際には、例えば、エタノールまたは水にエチルセルロース、HPC-Lを溶解し、

ステアリン酸マグネシウムを加え分散させたコーティング液を前記主薬吸着顆粒にコーティングする。

前記(4)のエンテリックコートは、胃内のpHでは溶けずに腸内のpHで溶ける腸溶性皮膜である。腸溶性皮膜の主成分である腸溶性基剤としては特に限定されないが、ヒドロキシプロピルメチルセルロースフタレート(HP-55S)、酢酸フタル酸セルロース(CAP)、メタクリル酸コポリマー-type A(オイドラギットL)又はメタクリル酸コポリマー-type C(L-55)等が挙げられる。エンテリックコート顆粒を製造する際には、例えば、エタノールまたは水にHP-55S、モノグリセライドを溶解、タルク、酸化チタンを分散させたコーティング液を前記主薬吸着顆粒にコーティングする。

本発明の主薬顆粒およびプラセボ顆粒は、前述の成分の他に通常の製剤化工程において使用される賦形剤、結合剤、コーティング剤、着色剤、香料等を含んでいてもよい。

実施例1-6で得られた主薬顆粒の特徴は、(1)クロスポビドンを含んだ層、及びそのクロスポビドンを含んだ層に隣接して(2)水酸化ナトリウム及びベンズイミダゾール系化合物またはその薬理学上許容される塩を含んだ層を有する医薬組成物であるが、予想外にも、クロスポビドン層及び水酸化ナトリウムとベンズイミダゾール系化合物とを含んだ層とを分けてコーティングするとクロスポビドンの層に水酸化ナトリウムが吸着され、ベンズイミダゾール系化合物のコーティング効率が良くなることを見出した。

本発明にかかる用時分散型製剤は、服用時に水に分散させることによって流動性に富んだ状態になるため、乳幼児、小児であっても容易に服用することができる。また、本発明によると、主薬顆粒に含有される医薬成分の種類に関わらず、適度な粘性と流動性を有する用時分散型製剤を得ることができる。

図面の簡単な説明

図1は、実施例1の主薬顆粒の溶出プロファイルを示すグラフである。

図2は、実施例2及び実施例3の主薬顆粒の溶出プロファイルを示すグラフ

である。

実施例

以下に、実施例を挙げて本発明を更に詳細に説明するが、本発明がこれらに限定されるわけではない。

実施例 1

コーティング機には、ワースター型流動層造粒乾燥機（MP-01 パウレック社製）を使用した。

（吸着顆粒）

核物質に、エタノールに溶解したHPC-Lと分散したクロスポビドンを吸気温度55°Cでコーティングした。その後、棚式乾燥機にて50°Cで乾燥した。

（主薬吸着顆粒）

エタノールに溶解した水酸化ナトリウムをコーティング後、エタノールに溶解したベンズイミダゾール化合物とHPC-Lを上記の吸着顆粒に吸気温度55°Cでコーティングした。その後、棚式乾燥機にて50°Cで乾燥した。

（アンダーコート顆粒）

エタノールにエチルセルロース、HPC-Lを溶解し、ステアリン酸マグネシウムを加え分散させた溶液を吸気温度55°Cで上記の主薬吸着顆粒にコーティングした。その後、棚式乾燥機にて45°Cで乾燥しアンダーコート顆粒とした。

（エンテリックコート顆粒）

エタノールにHP-55Sとマイバセットを溶解し、タルク、酸化チタンを分散させた溶液を、上記のアンダーコート顆粒に吸気温度55°Cでコーティングし腸溶性顆粒とした。

実施例 2～6（主薬顆粒）

実施例1と同様の操作により、医薬組成物を製造し、主薬顆粒を製造した。製造した主薬顆粒の処方は表1のとおりである。

表 1

		実施例1	実施例2	実施例3	実施例4	実施例5	実施例6
吸着顆粒	ノンパレル103	245.4	223.7	268.3	246.4		
	ノンパレル108					224.7	287.7
	クロスポビドン	50.5	88.8	106.5	88.5	79.7	70.9
	HPC-L	33.7	59.2	71.0	59.0	53.1	47.3
主薬吸着顆粒	ラベプラゾール	20.0	20.0	20.0	20.0	20.0	20.0
	NaOH	5.0	5.0	5.0	5.0	5.0	5.0
	HPC-L			5.0	5.0		
オイドラギットE						70.3	
アンドーコート顆粒	エチルセルロース	56.7	60.2	72.2	62.6	113.2	70.3
	HPC-L	96.2	102.8	123.4	107.0	193.2	238.5
	ステアリン酸Mg	44.8	48.2	57.9	50.2	90.7	111.2
エントリックコート顆粒	HP-55S	221.5	240.0	287.9	252.7	621.5	737.9
	モノグリセライド	22.1	23.9	28.7	25.2	62.2	73.6
	タルク、酸化チタン混合物	32.6	35.3	42.4	37.2	91.5	108.7

HP-55Sは、ヒドロキシプロピルメチルセルロースを示す。

実施例 7 (プラセボ顆粒)

マンニトール、クロスボビドン、クエン酸および軽質無水ケイ酸を混合・解碎した後、精製水で造粒、乾燥した後、整粒して、プラセボ顆粒を得た。これに増粘剤、アスパルテーム及びストロベリー香料を加えて、プラセボ顆粒を含む混合物を得た。表 2 にその処方を示す。

表 2

D-マンニトール	2190
クロスボビドン XL	300
軽質無水ケイ酸	100
クエン酸	10
メチルセルロース	300
アスパルテーム	10
ストロベリー香料	3

実施例 8 (用時分散型製剤)

実施例 1 で得た主薬顆粒と、実施例 7 で得たプラセボ顆粒を含む混合物とを重量比 1 : 3. 4 にて混合して用時分散型製剤を得た。

実施例 9、10

マンニトール、クエン酸、PEG を混合・解碎した後、エタノールで造粒、乾燥した後、整粒して、プラセボ顆粒を得た。これにメチルセルロース又はアルギン酸プロピレングリコールエステル、甘味剤及び香料を加えて、プラセボ顆粒を含む混合物を得た。この実施例で得られるプラセボ顆粒は実施例 7 で得られるプラセボ顆粒とは異なり、増粘剤 (メチルセルロース又はアルギン酸プロピレングリコールエステル) をプラセボ顆粒中に含んだものである。その処方を表 3 に示す。

表 3

	実施例 9	実施例 10
D-マンニトール	1401.5	1341.5
クエン酸	7.0	7.0
PEG8000	130.0	130.0
アルキン酸 プロピレングリコールエステル	160.0	—
メチルセルロース	—	220.0
L-HPC	200.0	200.0
アスパルテーム	60.0	60.0
ストロベリー香料	40.0	40.0

実施例 11-17 (プラセボ顆粒の他の例)

実施例 9, 10 に記載の手順とほぼ同一の手順によって、プラセボ顆粒を含む混合物を得た (実施例 11-17)。その処方を表 4 に示す。

表 4

	実施例 1 1	実施例 1 2	実施例 1 3	実施例 1 4	実施例 1 5	実施例 1 6	実施例 1 7
D-マンニトール	987.5	987.5	987.5	987.5	987.5	987.5	987.5
クロスポビドン	200.0	200.0	200.0	200.0	200.0	200.0	200.0
クエン酸	7.0	7.0	7.0	7.0	7.0	7.0	7.0
PE68000	130.0	130.0	130.0	130.0	130.0	130.0	130.0
軽質無水ケイ酸	70.0	70.0	70.0	70.0	70.0	70.0	70.0
HPC-M	280.0						
メチルセルロースSM-100	—	350.0	—	—	—	—	—
メチルセルロースSM-400	—	—	220.0	—	—	—	—
HPMC 6.5 SH 4.0 0	—	—	—	250.0	—	—	—
HPMC 6.5 SH 5.0	—	—	—	—	410.0	—	—
CMC-Na	—	—	—	—	—	180.0	—
アルキルビニルグリコールエステル	—	—	—	—	—	—	160.0
アスパルテーム	67.0	67.0	67.0	67.0	67.0	67.0	67.0
ストロベリー香料	40.0	40.0	40.0	40.0	40.0	40.0	40.0

(実験例)

上記の実施例にて製造した主薬顆粒および用時分散型製剤について、溶出試験、安定性試験、物性試験を行った。

(溶出試験)

実施例 1 および実施例 2、3 で得られた製剤について、溶出試験を行った。本主薬顆粒は腸溶性顆粒であるため、溶出試験液としては、日本薬局方の崩壊試験に規定された pH が約 6.8 である第 2 液を用いてパドル法（毎分 100 回転）行った。溶出試験の結果をそれぞれ図 1 および図 2 に示す。図 1 および図 2 から明らかなように、本発明の医薬組成物を用いた主薬顆粒はいずれも良好な溶出性を有している。

(安定性試験)

前述の実施例で得られた主薬顆粒を所定の条件下で保存した際ににおける主薬成分の分解に基づく不純物量により、各実施例製剤の主薬の安定性についての評価を行った。実施例 1 で得られた主薬顆粒については 5°C 及び 25°C 相対湿度 60% でそれぞれ 3 ヶ月保管した後における全不純物量を測定した。実施例 2 及び 3 で得られた主薬顆粒については、初期の全不純物量について測定した。結果を表 5 に示す。

表 5

実施例番号	実施例 1			実施例 2	実施例 3
	初期	5°C	25°C 60%RH		
保存条件	初期	5°C	25°C 60%RH	初期	初期
保存期間	-	3M	3M	-	-
全不純物量	0.85	0.84	1.09	0.95	0.81

表 5 より明らかなように、実施例 1 で得られた主薬顆粒は、長期保存後であっても主薬成分の分解はほとんどなく、安定性のよい製剤である。また、実施例 2 及び 3 で得られた主薬顆粒においても、製造直後の不純物量は非常に少なかった。

(物性試験)

実施例 8 で得られた用時分散型製剤について、粉体状態での物性値（かさ密度、タップ密度、Carr index、流動性）および水に分散させた状態での粘度を

測定した。結果を表6に示す。

表6

かさ密度(g/ml)	0.54
タップ密度(g/ml)	0.67
Carr指指数	24
流動性	よい
飲用するのに最低必要な水の量	スプーン5杯
粘度(Pa·s)	0.2652

表6から明らかなようにスプーン5杯の水(約20ml)を加えることにより良好な分散性と粘度を得ることができた。本発明に係る製剤は、内径5mmのNGチューブ(鼻腔に挿入して薬剤を投与するチューブ)を用いて乳児に投与できる程度の流動性を有しており、主薬顆粒は凝集等することなく、適度に分散していた。また、水に分散した後に顆粒の凝集もなく、良好な用時分散型製剤であった。

(粘度測定)

実施例11、12、13及び17で得られたプラセボ顆粒を含有する混合物2gを精製水10mlに溶解し、レオメーターで動粘度を測定した。結果を表7に示す。

表7

実施例	単位:mPa·s			
	実施例11	実施例12	実施例13	実施例17
粘度	754	402	523	359

(NGチューブ通過確認試験)

実施例9で得られたプラセボ顆粒2gと平均粒径約470μmの主薬顆粒300mgを水10mlに分散させた後、これをディスポーザブルのシリングジで吸った。このシリングジの先に内径が1mmのNGチューブ(5Fr)を取り付けて、シリングジに圧力をかけた際に、本願発明の用時分散型製剤がNGチューブから流出するかの試験を行った。その結果、本願発明の用時分散型製剤は、NGチューブを通して流出し、良好な流動性を有していることが確認できた。

請求の範囲

1. 医薬成分を含む平均粒子径 2 mm 以下の主薬顆粒、及び増粘剤を含有する用時分散型製剤であって、服用時に水を加えて分散させ、NGチューブを通して投与することが可能な用時分散型製剤。
2. 前記主薬顆粒が機能性高分子を含有していることを特徴とする、請求項 1 に記載の用時分散型製剤。
3. 前記機能性高分子が、胃溶性高分子、腸溶高分子、徐放性高分子のうちから選ばれる少なくとも一つの高分子であることを特徴とする、請求項 2 に記載の用時分散型性剤。
4. 前記増粘剤がアルギン酸プロピレングリコールエステル、メチルセルロース、ハイドロキシプロピルメチルセルロース、ポリビニルピロリドン、ポリカルボキシメチルセルロースナトリウム及びハイドロキシプロピルセルロースの中から選ばれる少なくとも一つであることを特徴とする、請求項 1 乃至請求項 3 のいずれかに記載の用時分散型製剤。
5. 更に、医薬成分を含まないプラセボ顆粒を含有することを特徴とする、請求項 1 乃至請求項 4 のいずれかに記載の用時分散型製剤。
6. 服用に際して水に分散させた状態での粘度が、10 ~ 1500 mPa·s である、請求項 1 乃至請求項 5 のいずれかに記載の用時分散型製剤。
7. 医薬成分がプロトンポンプインヒビターであることを特徴とする、請求項 1 乃至請求項 6 のいずれかに記載の用時分散型製剤。
8. 前記プロトンポンプインヒビターが、ラベプラゾール、オメプラゾール、エスマプラゾール、ランソプラゾール及びパントプラゾールの中から選ばれる少なくとも一つであることを特徴とする、請求項 7 に記載の用時分散型製剤。

図 1

図 2

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/011515

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl' A61K9/16, 31/4184, 47/04, 47/16, 47/36, 47/38, 47/46, 31/4439, 45/00, A61P1/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl' A61K9/16, 31/4184, 47/04, 47/16, 47/36, 47/38, 47/46, 31/4439, 45/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAPLUS/MEDLINE/EMBASE/BIOSIS (STN), JSTplus (JOIS)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2003-34632 A (Otsuka Pharmaceutical Co., Ltd.), 07 February, 2003 (07.02.03), Claims; Par. Nos. [0016] to [0039]; examples (Family: none)	1-8
Y	JP 11-501950 A (Astra AB.), 16 February, 1999 (16.02.99), Claims; pages 23 to 35 & WO 97/25066 A1	1-8
Y	Akifumi NAKAGAWA et al., "Kokaiyozai Lansoprazole (AG-1749) no Rinsho dai I-so Shiken - Jyoza ni yoru Kento-", Journal of clinical therapeutics & Medicines, 1991, Vol.7, No.1, pages 33 to 50	1-8

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
13 September, 2004 (13.09.04)Date of mailing of the international search report
28 September, 2004 (28.09.04)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1' A61K9/16, 31/4184, 47/04, 47/16, 47/36, 47/38,
47/46, 31/4439, 45/00, A61P1/04

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1' A61K9/16, 31/4184, 47/04, 47/16, 47/36, 47/38,
47/46, 31/4439, 45/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS/MEDLINE/EMBASE/BIOSIS(STN), JSTplus(JOIS)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2003-34632 A (大塚製薬株式会社) 2003. 02. 07, 【特許請求の範囲】, 【0016】 - 【0039】 , 【実施例】 (ファミリーなし)	1-8
Y	JP 11-501950 A (アストラ・アクチエボラーグ) 1999. 02. 16, 【特許請求の範囲】 , 第23-35頁 & WO 97/25066 A1	1-8

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
 「&」同一パテントファミリー文献

国際調査を完了した日

13. 09. 2004

国際調査報告の発送日

28. 9. 2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

川口 裕美子

4C 3127

電話番号 03-3581-1101 内線 3451

C (続き) 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
Y	中川彰史 他, 抗潰瘍剤 Lansoprazole(AG-1749)の臨床第I相試験 —錠剤による検討—, 臨床医薬, 1991, Vol. 7, No. 1, pp. 33-50	1-8