Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

 $\begin{tabular}{ll} \textbf{Reaction scoring formula:} & TUNNEL_COEF*FGI_COEF*STEP*20+1000\\ 0000*(CONFLICT+NON_SELECTIVITY+FILTERS+PROTECT)\\ \end{tabular}$

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

4 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 215.43

Figure 1: Outline of path 1

2.1.1 Appel Reaction

Substrates:

 $1. \ 1 \text{H-1,2,3-triazol-4-ylmethanol} - \quad \textit{available at Sigma-Aldrich}$

Products:

1. 4-bromomethyl-1h-[1,2,3]triazole

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1021/ja800574m and 10.1016/j.tet.2012.05.010 and

10.1016/j.tet.2004.09.021 (experimental)

Retrosynthesis ID: 9990037

2.1.2 Suzuki alkyl-alkyl coupling

Substrates:

1. 4-bromomethyl-1h-[1,2,3]triazole

2. Propene - available at Sigma-Aldrich

Products:

1. 4-butyl-1h-[1,2,3]triazole

Typical conditions: 1.9BBN-H or pinB-Bpin.Cu 2.[Pd].ligand.base

Protections: none

Reference: 10.1021/ja074008l and 10.1021/ja011306o and 10.1002/1521-3773(20011217)40:24<4544::AID-ANIE4544>3.0.CO;2-N and <math>10.1021/ol300575d

2.1.3 Iodination of aromatic compounds

Substrates:

1. 4-butyl-1h-[1,2,3]triazole

Products:

1. CCCCc1nn[nH]c1I

Typical conditions: I2 or other iodinating agent e.g. NIS

 ${\bf Protections:}\ {\rm none}$

Reference: DOI: 10.1039/C5SC00964B and 10.1016/j.tetlet.2005.05.117 and

10.1007/s11178-005-0256-1

Retrosynthesis ID: 10697

2.1.4 Synthesis of aryl Grignard reagents

Substrates:

1. Magnesium - available at Sigma-Aldrich

2. CCCCc1nn[nH]c1I

Products:

1. CCCCc1nn[nH]c1[Mg]Br

Typical conditions: iPrMgCl.LiCl.THF or other conditions Mg.THF or

tBuLi.MgBr2

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/j00000574 and

WO2014123793 p.137 and 10.1021/jm400491x and 10.3762/bjoc.12.36

Retrosynthesis ID: 10011460

2.1.5 Grignard-Type Reaction

Substrates:

 $1. \ CCCCc1nn[nH]c1[Mg]Br$

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

1. CCCCc1nn[nH]c1C1(O)C=CCCC1

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jm061429p or 10.1016/j.bmc.2012.11.015 or

10.1016/j.tetasy.2012.05.024

2.1.6 Ring-opening of epoxides or thiiranes with alkoxides

Substrates:

- 1. CCCCc1nn[nH]c1C1(O)C=CCCC1
- 2. Oxirane available at Sigma-Aldrich

Products:

 $1. \ \ CCCCc1nn[nH]c1C1(OCCO)C=CCCC1$

Typical conditions: NaH.THF or K2CO3.DMF.110 C

Protections: none

Reference: 10.1021/acs.orglett.7b00756 SI p. S4, S5 and 10.1021/jm401625b p.

873, 878

Retrosynthesis ID: 833

2.1.7 Appel Reaction

Substrates:

1. CCCCc1nn[nH]c1C1(OCCO)C=CCCC1

Products:

 $1. \ \ CCCCc1nn[nH]c1C1(OCCBr)C=CCCC1$

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1021/ja800574m and 10.1016/j.tet.2012.05.010 and

10.1016/j.tet.2004.09.021 (experimental)

Retrosynthesis ID: 9990037

2.1.8 N-alkylation of heterocycles

Substrates:

1. CCCCc1nn[nH]c1C1(OCCBr)C=CCCC1

Products:

 $1. \ CCCCc1nnn2c1C1(C=CCCC1)OCC2$

Typical conditions: NaH. DMF

Protections: none

Reference: 10.1016/j.ejmech.2010.11.014 or 10.1039/C6OB01149G (SI) or 10.1246/cl.2005.442 or 10.1021/ol403570z (SI) or 10.1016/S0040-4020(01)00360-X

Retrosynthesis ID: 10000414

2.2 Path 2

Score: 225.18

Figure 2: Outline of path 2

2.2.1 One-pot synthesis of triazoles from alkyl halides

Substrates:

- 1. Potassium azide available at Sigma-Aldrich
- 2. vinylene chloride
- 3. 1-Hexyne available at Sigma-Aldrich

Products:

1. CCCCc1cn(C=CCl)nn1

 $\textbf{Typical conditions:} \ \mathrm{Cu(II).sodium\ ascorbate.DMF/H2O}$

 ${\bf Protections:}\ {\rm none}$

Reference: DOI: 10.1021/ol048859z

2.2.2 Homogenous Reduction of C=C Double Bond

Substrates:

1. CCCCc1cn(C=CCl)nn1

Products:

1. CCCCc1cn(CCCl)nn1

Typical conditions: $\mathrm{H2.Pd/C}$ or $\mathrm{Pd(OH)2/C}$

Protections: none

Reference: DOI: 10.1021/ja0629110 and 10.1021/jo0602367 and 10.1021/jo980467g and 10.1021/o1702231j (SI, page SI 22) and 10.1002/anie.200503303 and 10.1021/ja011338b (Pt/C tez)

2.2.3 Bromination of aromatic compounds

${\bf Substrates:}$

1. CCCCc1cn(CCCl)nn1

Products:

 $1. \ \ CCCCc1nnn(CCCl)c1Br$

Typical conditions: Br2.Fe

Protections: none

Reference: 10.1021/acs.accounts.6b00120

Retrosynthesis ID: 7777000

2.2.4 Br/Li exchange

Substrates:

1. n-BuLi - available at Sigma-Aldrich

2. CCCCc1nnn(CCCl)c1Br

Products:

1. [Li]c1c(CCCC)nnn1CCCl

Typical conditions: nBuLi.or.tBuLi.THF.-78C

Protections: none

Reference: 10.1002/ejoc.201101490 and 10.1016/j.tet.2012.03.058 and 10.1016/j.tetlet.2015.01.032 and 10.1021/ja0541175 and 10.1016/j.tetlet.2016.06.123

Retrosynthesis ID: 30672

2.2.5 Addition of electrophiles to lithiated arenes/heteroarenes

Substrates:

 $1. \ [Li]c1c(CCCC)nnn1CCCl$

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

1. CCCCc1nnn(CCCl)c1C1(O)C=CCCC1

Typical conditions: THF.-78 \deg C

Protections: none

Reference: 10.1021/ml300335r and 10.1021/acs.jmedchem.6b00866

2.2.6 Alkylation of tertiary alcohols

Substrates:

1. CCCCc1nnn(CCCl)c1C1(O)C=CCCC1

Products:

 $1. \ \ CCCCc1nnn2c1C1(C=CCCC1)OCC2$

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

Retrosynthesis ID: 31010930

2.3 Path 3

Score: 225.18

Figure 3: Outline of path 3

2.3.1 Synthesis of bromoacetylenes

Substrates:

1. hex-1-yn-3-one - available at Sigma-Aldrich

Products:

1. CCCC(=O)C#CBr

Typical conditions: NBS.acetone

Protections: none

Reference: 10.1021/ja5004747 Retrosynthesis ID: 5325

2.3.2 Synthesis of triazoles from azides and haloalkynes

Substrates:

 $1. \ 1-azido-2-chlor-aethan$

2. CCCC(=O)C#CBr

Products:

1. CCCC(=O)c1nnn(CCCl)c1Br

 $\textbf{Typical conditions:} \ \mathrm{CpRuCl}(\mathrm{cod}). A C N$

Protections: none

Reference: 10.1002/chem.201402559

Retrosynthesis ID: 31456

2.3.3 Clemmensen Reduction

Substrates:

 $1. \ CCCC(=O)c1nnn(CCCl)c1Br$

Products:

 $1. \ CCCCc1nnn(CCCl)c1Br \\$

Typical conditions: Zn(Hg).HCl.H2O.EtOH.65 C

 ${\bf Protections:}\ {\bf none}$

Reference: 10.1016/j.bmc.2014.09.022 p. 5873, 5879 and 10.1007/s00044-017-

2105-5 p. 828, 819

2.3.4 Br/Li exchange

Substrates:

1. n-BuLi - available at Sigma-Aldrich

2. CCCCc1nnn(CCCl)c1Br

Products:

 $1. \ [\mathrm{Li}] \mathrm{c1c}(\mathrm{CCCC}) \mathrm{nnn1CCCl}$

Typical conditions: nBuLi.or.tBuLi.THF.-78C

Protections: none

Reference: 10.1002/ejoc.201101490 and 10.1016/j.tet.2012.03.058 and 10.1016/j.tetlet.2015.01.032 and 10.1021/ja0541175 and 10.1016/j.tetlet.2016.06.123

Retrosynthesis ID: 30672

2.3.5 Addition of electrophiles to lithiated arenes/heteroarenes

Substrates:

- $1. \ [Li]c1c(CCCC)nnn1CCCl$
- $2. \ \, \hbox{$2$-Cyclohexen-1-one} \ \, \quad \ \, \textit{available at Sigma-Aldrich}$

Products:

 $1. \ \ CCCCc1nnn(CCCl)c1C1(O)C=CCCC1$

Typical conditions: THF.-78 deg C

Protections: none

Reference: 10.1021/ml300335r and 10.1021/acs.jmedchem.6b00866

Retrosynthesis ID: 31008139

2.3.6 Alkylation of tertiary alcohols

Substrates:

1. CCCCc1nnn(CCCl)c1C1(O)C=CCCC1

Products:

 $1. \ CCCCc1nnn2c1C1(C=CCCC1)OCC2$

 ${\bf Typical\ conditions:}\ {\rm K2CO3.acetone.heat}$

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

Retrosynthesis ID: 31010930

2.4 Path 4

Score: 225.18

Figure 4: Outline of path 4

2.4.1 Huisgen Cycloaddition

Substrates:

- 1. 2-azidoethanol Enamine
- 2. 1-Hexyne available at Sigma-Aldrich

Products:

1. CCCCc1cn(CCO)nn1

Typical conditions: Cu(I).H2O

Protections: none

Reference: 10.1039/PS9610000357 and 10.1016/S1359-6446(03)02933-7 and

10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

2.4.2 Synthesis of alkyl chlorides from alcohols

Substrates:

1. CCCCc1cn(CCO)nn1

Products:

 $1. \ \ CCCCc1cn(CCCl)nn1$

Typical conditions: cyanuric chloride.DMF.DCM.RT

Protections: none

Reference: DOI: 10.1021/ol017168p

2.4.3 Friedel-Crafts Acylation

Substrates:

- 1. CCCCc1cn(CCCl)nn1
- 2. Acryloyl chloride available at Sigma-Aldrich

Products:

 $1. \ C{=}CC({=}O)c1c(CCCC)nnn1CCCl$

Typical conditions: Lewis Acid.solvent

Protections: none

Reference: 10.1021/jo00085a052 and 10.1039/C00B01107J

Retrosynthesis ID: 8722

2.4.4 Grignard-Type Reaction

Substrates:

- $1. \ C{=}CC({=}O)c1c(CCCC)nnn1CCCl$
- 2. pent-4-enylmagnesiumbromid

Products:

1. C=CCCCC(O)(C=C)c1c(CCCC)nnn1CCCl

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/j0010494y or 10.1016/j.steroids.2015.09.009 or

10.1021/jo061349t or 10.1021/ja056165v (SI page 19)

Retrosynthesis ID: 25134

2.4.5 Alkylation of tertiary alcohols

Substrates:

1. C=CCCCC(O)(C=C)c1c(CCCC)nnn1CCCl

Products:

1. C=CCCCC1(C=C)OCCn2nnc(CCCC)c21

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

2.4.6 Ring-Closing Metathesis

Substrates:

 $1. \ C{=}CCCCC1(C{=}C)OCCn2nnc(CCCC)c21$

Products:

1. CCCCc1nnn2c1C1(C=CCCC1)OCC2

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

 $10.1021/jo0264729 \ \ {\rm and} \ \ 10.1021/ja072334v \ \ {\rm and} \ \ 10.1002/ejoc.201001102$