TRIGONOMETRY

Exercise 8.1

- 1. In any ∆ ABC, prove that
 - a. $2a \sin \frac{B}{2}$. $\sin \frac{C}{2} = (b + c a) \sin \frac{A}{2}$ b. $ac \cos B bc \cos A = a^2 b^2$

 - c. $a cos^2 \frac{B}{2} + b cos^2 \frac{A}{2} = s$ d. (b + c) cosA + (c + a) cosB + (a + b) cosC = a+b+c
 - e. $2(a \sin^2 \frac{C}{2} + c \sin^2 \frac{A}{2}) = c + a b$

Solution:

a. R.H.S. = (b + c - a) $\sin \frac{A}{2}$ = (2R sinB + 2R sinC - 2R sinA)sin $\frac{A}{2}$

$$= 2R \sin \frac{A}{2} [\sin B + \sin C - \sin A] = 2R \sin \frac{A}{2} \left[2 \sin \left(\frac{B+C}{2} \right) \cdot \cos \left(\frac{B-C}{2} \right) - 2 \sin \frac{A}{2} \cdot \cos \frac{A}{2} \right]$$

$$=2\mathsf{R}\,\sin\!\frac{\mathsf{A}}{2}\!\left[2\cos\frac{\mathsf{A}}{2}.\cos\left(\frac{\mathsf{B}-c}{2}\right)-2\sin\!\frac{\mathsf{A}}{2}.\cos\!\frac{\mathsf{A}}{2}\right]=4\mathsf{R}\,\sin\!\frac{\mathsf{A}}{2}.\cos\!\frac{\mathsf{A}}{2}\!\left[\cos\left(\frac{\mathsf{B}-c}{2}\right)-\sin\!\frac{\mathsf{A}}{2}\right]$$

$$= 2R \times \sin A \left[\cos \left(\frac{B-C}{2} \right) - \cos \left(\frac{B+C}{2} \right) \right] = a \left[2\sin \frac{B}{2} \cdot \sin \frac{C}{2} \right] = 2a \sin \frac{B}{2} \cdot \sin \frac{C}{2}$$

b. L.H.S. =
$$ac cosB - bc cosA = ac \frac{a^2 + c^2 - b^2}{2ac} - bc \frac{b^2 + c^2 - a^2}{2bc}$$

= $\frac{a^2 + c^2 - b^2}{2} - \frac{b^2 + c^2 - a^2}{2} = \frac{a^2 + c^2 - b^2 - b^2 - c^2 + a^2}{2} = \frac{2(a^2 - b^2)}{2} = a^2 - b^2$

c.
$$a\cos^2\frac{B}{2} + b\cos^2\frac{A}{2} = s$$

$$= a. \frac{s(s-b)}{ca} + b. \frac{s(s-a)}{bc} = \frac{s(s-b)}{c} + \frac{s(s-a)}{c} = \frac{s^2 - sb + s^2 - sa}{c} = \frac{2s^2 - s(a+b)}{c}$$

$$= \frac{2s^2 - s(2s-c)}{c} \quad [s = \frac{a+b+c}{2} \Rightarrow 2s-c = a+b]$$

$$= \frac{2s^2 - 2s^2 + sc}{c} = \frac{sc}{c} = s$$

d.
$$(b + c)\cos A + (c + a)\cos B + (a + b)\cos C = a + b + c$$

L.H.S. = $(b + c)\cos A + (c + a)\cos B + (a + b)\cos C$
= $b\cos A + c\cos A + c\cos B + a\cos B + a\cos C + b\cos C = a + b + c$ [using projection law]

e.
$$2\left(a \sin^2 \frac{C}{2} + c \sin^2 \frac{A}{2}\right) = c + a - b$$

L.H.S. =
$$2\left(a \sin^2\frac{C}{2} + c \sin^2\frac{A}{2}\right) = 2\left[a \cdot \frac{(s-a)(s-b)}{ab} + c \cdot \frac{(s-b)(s-c)}{bc}\right]$$

= $2\left[\frac{(s-a)(s-b)}{b} + \frac{(s-b)(s-c)}{b}\right] = \frac{2}{b}(s-b)[s-a+s-c]$
= $\frac{2(s-b)}{b}[2s-a-c] = \frac{2(s-b)}{b} \times [a+b+c-a-c] = \frac{2(s-b)}{b} \times b$
= $2s-2b=a+b+c-2b=a-b+c$

Prove the followings.

a.
$$\frac{b-c}{a}\cos\frac{A}{2} = \sin\frac{B-C}{2}$$

b.
$$\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}$$

c.
$$\frac{a \sin (B-C)}{b^2-c^2} = \frac{b \sin (C-A)}{c^2-a^2} = \frac{c \sin (A-B)}{a^2-b^2}$$

a.
$$\frac{b-c}{a}.\cos\frac{A}{2} = \sin\left(\frac{B-C}{2}\right)$$

L.H.S. =
$$\frac{b-c}{a}.\cos\frac{A}{2} = \frac{2R \sin B - 2R \sin C}{2R \sin A}.\cos\frac{A}{2} = \frac{\sin B - \sin C}{\sin A}.\cos\frac{A}{2}$$

$$= \frac{2\cos\left(\frac{B+C}{2}\right).\sin\left(\frac{B-C}{2}\right)}{\frac{A}{2\sin\frac{A}{2}.\cos\frac{A}{2}}} \times \cos\frac{A}{2} = \frac{\sin\frac{A}{2}.\sin\left(\frac{B-C}{2}\right)}{\sin\frac{A}{2}} = \sin\left(\frac{B-C}{2}\right)$$

b.
$$\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}$$

L.H.S. =
$$\frac{c - b\cos A}{b - c\cos A} = \frac{a\cos B + b\cos A - b\cos A}{a\cos C + c\cos A - c\cos A} = \frac{a\cos B}{a\cos C} = \frac{\cos B}{\cos C}$$

c.
$$\frac{a \sin(B-C)}{b^2-c^2} = \frac{b \sin(C-A)}{c^2-a^2} = \frac{c \sin(A-B)}{a^2-b^2}$$

L.H.S.
$$= \frac{a \sin(B - C)}{b^2 - c^2} = \frac{2R \sin A.\sin(B - C)}{b^2 - c^2} = \frac{2R \sin(B + C).\sin(B - C)}{b^2 - c^2} = \frac{2R(\sin^2 B - \sin^2 C)}{b^2 - c^2}$$

$$= \frac{2R \sin^2 B - 2R \sin^2 C}{b^2 - c^2} = \frac{b \sin B - c \sin C}{b^2 - c^2} = \frac{b \frac{b}{2R} - c \frac{c}{2R}}{b^2 - c^2} = \frac{1}{2R} \times \frac{b^2 - c^2}{b^2 - c^2} = \frac{1}{2R} \times \frac{b^2 -$$

Now, M.H.S.
$$= \frac{b \sin(C - A)}{c^2 - a^2} = \frac{2R \sin B.\sin(C - A)}{c^2 - a^2} = \frac{2R \sin(C + A).\sin(C - A)}{c^2 - a^2}$$

$$= \frac{2R(\sin^2C - \sin^2A)}{c^2 - a^2} = \frac{2R \sin^2C - 2R\sin^2A}{c^2 - a^2} = \frac{c \sin C - a \sin A}{c^2 - a^2} = \frac{c \frac{c}{2R} - a \frac{a}{2R}}{c^2 - a^2} = \frac{1}{2R}$$

Again, R.H.S.
$$= \frac{c \sin(A - B)}{a^2 - b^2} = \frac{2R \sin C.\sin(A - B)}{a^2 - b^2} = \frac{2R \sin(A + B).\sin(A - B)}{a^2 - b^2}$$
$$= \frac{2R(\sin^2 A - \sin^2 B)}{a^2 - b^2} = \frac{2R \sin^2 A - 2R \sin^2 B}{a^2 - b^2} = \frac{a \sin A - b \sin B}{a^2 - b^2} = \frac{a \frac{a}{2R} - b \frac{b}{2R}}{a^2 - b^2} = \frac{1}{2R}$$

Hence, L.H.S. = M.H.S. = R.H.S.

3. a.
$$b \cos^2 \frac{C}{2} + c \cos^2 \frac{B}{2} = \frac{1}{2} (a + b + c)$$
 b. $a \sin (B - C) + b \sin(C - A) + c \sin (A - B) = 0$

c.
$$\sin (A+B)$$
: $\sin (A-B) = c^2$: $(a^2 - b^2)$ d. $1 - \tan \frac{A}{2}$. $\tan \frac{B}{2} = \frac{2c}{a+b+c}$

e.
$$\frac{\sin (B-C)}{\sin (B+C)} = \frac{b^2-c^2}{a^2}$$

a.
$$b \cos^2 \frac{C}{2} + c \cos^2 \frac{B}{2} = \frac{1}{2}(a + b + c)$$

L.H.S. =
$$b cos^2 \frac{C}{2} + c cos^2 \frac{B}{2} = b \cdot \frac{s(s-c)}{ab} + c \cdot \frac{s(s-b)}{ca} = \frac{s(s-c)}{a} + \frac{s(s-b)}{a} = \frac{s^2 - sc + s^2 - sb}{a}$$

= $\frac{2s^2 - s(b+c)}{a} = \frac{2s^2 - s(2s-a)}{a} = \frac{2s^2 - 2s^2 + sa}{a} = \frac{sa}{a} = s = \frac{1}{2}(a+b+c)$

$$= a \sin(B - C) + b \sin(C - A) + c \sin(A - B)$$

$$= 2R \sin A \cdot \sin(B - C) + 2R \sin B \cdot \sin(C - A) + 2R \sin C \cdot \sin(A - B)$$

$$= 2R [\sin(B + C).\sin(B - C) + \sin(C + A).\sin(C - A) + \sin(A + B).\sin(A - B)]$$

$$= 2R[\sin^2 B - \sin^2 C + \sin^2 C - \sin^2 A + \sin^2 A - \sin^2 B] = 2R \times 0 = 0$$

c.
$$sin(A + B) : sin(A - B) = c^2 : (a^2 - b^2)$$

L.H.S. =
$$\sin(A + B) : \sin(A - B) = \frac{\sin(A + B)}{\sin(A - B)}$$

= $\frac{\sin C}{\sin(A - B)} \times \frac{\sin(A + B)}{\sin(A + B)} = \frac{\sin C \times \sin C}{\sin^2 A - \sin^2 B}$
= $\frac{\sin^2 C}{\sin^2 A - \sin^2 B} = \frac{\frac{c^2}{4R^2}}{\frac{a^2}{4R^2} - \frac{b^2}{4R^2}} = \frac{c^2}{a^2 - b^2} = c^2$: $(a^2 - b^2)$

d.
$$1 - \tan \frac{A}{2} \cdot \tan \frac{B}{2} = \frac{2c}{a + b + c}$$

L.H.S. =
$$1 - \tan \frac{A}{2} \cdot \tan \frac{B}{2} = 1 - \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \times \sqrt{\frac{(s-c)(s-a)}{s(s-b)}} = 1 - \sqrt{\frac{(s-a)(s-b)(s-c)^2}{s^2(s-a)(s-b)}}$$

= $1 - \frac{s-c}{s} = \frac{s-s+c}{s} = \frac{c}{\frac{a+b+c}{2}} = \frac{2c}{a+b+c}$

e.
$$\frac{\sin(B-C)}{\sin(B+C)} = \frac{b^2-c^2}{a^2}$$

L.H.S. =
$$\frac{\sin(B-C)}{\sin(B+C)} = \frac{\sin(B-C)}{\sin(B+C)} \times \frac{\sin(B+C)}{\sin(B+C)} = \frac{\sin^2 B - \sin^2 C}{\sin^2 A} = \frac{\frac{b^2}{4R^2} - \frac{c^2}{4R^2}}{\frac{a^2}{4R^2}} = \frac{b^2 - c^2}{a^2}$$

Prove the following:

a.
$$\frac{a+b-c}{a+b+c} = \tan \frac{A}{2} \cdot \tan \frac{B}{2}$$
 b. $\frac{b^2+c^2-a^2}{4 \cot A} = \Delta$

b.
$$\frac{b^2 + c^2 - a^2}{4 \cot A} = \Delta$$

c.
$$\frac{\cos A}{a} + \frac{a}{bc} = \frac{\cos B}{b} + \frac{b}{ca} = \frac{\cos C}{c} + \frac{c}{ab}$$

c.
$$\frac{\cos A}{a} + \frac{a}{bc} = \frac{\cos B}{b} + \frac{b}{ca} = \frac{\cos C}{c} + \frac{c}{ab} d. \quad \frac{a^2 \sin (B-C)}{\sin A} + \frac{b^2 \sin (C-A)}{\sin B} + \frac{c^2 \sin (A-B)}{\sin C} = 0$$

a.
$$\frac{a+b-c}{a+b+c} = \tan \frac{A}{2} \cdot \tan \frac{B}{2}$$

R.H.S. =
$$\tan \frac{A}{2} \cdot \tan \frac{B}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \times \sqrt{\frac{(s-c)(s-a)}{s(s-b)}} = \sqrt{\frac{(s-a)(s-b)(s-c)^2}{s^2(s-a)(s-b)}} = \frac{s-c}{s}$$

$$= \frac{\frac{a+b+c}{2}-c}{\frac{a+b+c}{2}} = \frac{a+b-c}{a+b+c}$$

b.
$$\frac{b^2 + c^2 - a^2}{4 \cot A} = \Delta$$

L.H.S. =
$$\frac{b^2 + c^2 - a^2}{4 \cot A} = \frac{2bc \cos A}{4 \cos A} \times \sin A \left[\cos A = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow 2bc \cos A = b^2 + c^2 - a^2\right]$$

= $\frac{bc \sin A}{2} = \Delta$

c.
$$\frac{\cos A}{a} + \frac{a}{bc} = \frac{\cos B}{b} + \frac{b}{ca} = \frac{\cos C}{c} + \frac{c}{ab}$$

a
$$bc$$
 b ca c ab
L.H.S. = $\frac{\cos A}{a} + \frac{a}{bc} = \frac{b^2 + c^2 - a^2}{2abc} + \frac{a}{bc} = \frac{b^2 + c^2 - a^2 + 2a^2}{2abc} = \frac{a^2 + b^2 + c^2}{2abc}$

Now, M.H.S. =
$$\frac{\cos B}{b} + \frac{b}{ca} = \frac{a^2 + c^2 - b^2}{2abc} + \frac{b}{ca} = \frac{a^2 + c^2 - b^2 + 2b^2}{2abc} = \frac{a^2 + b^2 + c^2}{2abc}$$

Again, R.H.S. =
$$\frac{\cos C}{c} + \frac{c}{ab} = \frac{a^2 + b^2 - c^2}{2abc} + \frac{c}{ab} = \frac{a^2 + b^2 - c^2 + 2c^2}{2abc} = \frac{a^2 + b^2 + c^2}{2abc}$$

Hence, L.H.S. = M.H.S. = R.H.S.

d.
$$\frac{a^2 \sin(B-C)}{\sin A} + \frac{b^2 \sin(C-A)}{\sin B} + \frac{c^2 \sin(A-B)}{\sin C} = 0$$

L.H.S. =
$$\frac{a^2 \sin(B - C)}{\sin A} + \frac{b^2 \sin(C - A)}{\sin B} + \frac{c^2 \sin(A - B)}{\sin C}$$

$$= 2R.a.sin(B-C) + 2R.b.sin(C-A) + 2R.c.sin(A-B)$$

$$= 2R[2R \sin A.\sin(B-C) + 2R \sin B.\sin(C-A) + 2R \sin C.\sin(A-B)]$$

$$= 4R^{2}[\sin(B + C).\sin(B - C) + \sin(C + A).\sin(C - A) + \sin(A + B).\sin(A - B)]$$

$$= 4R^{2}[\sin^{2}B - \sin^{2}C + \sin^{2}C - \sin^{2}A + \sin^{2}A - \sin^{2}B] = 4R^{2} \times 0 = 0$$

Prove the following:

a.
$$\frac{1}{s=a} + \frac{1}{s=b} + \frac{1}{s=c} - \frac{1}{s} = \frac{4R}{\Delta}$$

b.
$$\tan^2 \frac{A}{2} \cdot \tan^2 \frac{B}{2} \cdot \tan^2 \frac{C}{2} = \left(\frac{s-a}{s}\right) \left(\frac{s-b}{s}\right) \left(\frac{s-c}{s}\right)$$

c. $\frac{b^2 - c^2}{a^2} \sin 2A + \frac{c^2 - a^2}{b^2} \sin 2B + \frac{a^2 - b^2}{c^2} \sin 2C = 0$

c.
$$\frac{b^2 - c^2}{a^2}$$
 Sin2A + $\frac{c^2 - a^2}{b^2}$ sin2B + $\frac{a^2 - b^2}{c^2}$ sin2C = 0

a cosA + b cosB + c cosC = 4RsinA. SinB. SinC

e.
$$(b + c -a) \left[\cot \frac{B}{2} + \cot \frac{C}{2}\right] = 2a \cot \frac{A}{2}$$

a.
$$\frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} - \frac{1}{s} = \frac{4R}{\Delta}$$

L.H.S.
$$= \frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} - \frac{1}{s} = \frac{1}{s-a} - \frac{1}{s} + \frac{1}{s-b} + \frac{1}{s-c} = \frac{s-s+a}{s(s-a)} + \frac{s-c+s-b}{(s-b)(s-c)}$$

$$= \frac{a}{s(s-a)} + \frac{a+b+c-c-b}{(s-b)(s-c)} = \frac{a}{\Delta\cot\frac{A}{2}} + \frac{a}{\Delta\tan\frac{A}{2}}$$

Since,
$$\cot \frac{A}{2} = \frac{s(s-a)}{\Delta}$$

$$\tan\frac{A}{2} = \frac{(s-b)(s-c)}{\Delta} = \frac{a}{\Delta} \left[\tan\frac{A}{2} + \frac{1}{\tan\frac{A}{2}} \right] = \frac{a}{\Delta} \left[\frac{1 + \tan^2\frac{A}{2}}{\tan\frac{A}{2}} \right] = \frac{a}{\Delta} \left[\frac{\sec^2\frac{A}{2}}{\tan\frac{A}{2}} \right]$$

$$= \frac{a}{\Delta} \frac{1}{\sin \frac{A}{2} \cdot \sin \frac{A}{2}} = \frac{2a}{\sin A \cdot \Delta} = \frac{2.2R}{\Delta} = \frac{4R}{\Delta}$$

b.
$$Tan^2 \frac{A}{2} tan^2 \frac{B}{2} tan^2 \frac{C}{2} = \left(\frac{s-a}{s}\right) \left(\frac{s-b}{s}\right) \left(\frac{s-c}{s}\right)$$

L.H.S. =
$$Tan^2 \frac{A}{2} tan^2 \frac{B}{2} tan^2 \frac{C}{2}$$

Now,
$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

Then,
$$\tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$$

Again,
$$\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$$

So,
$$\frac{(s-b)(s-c)}{s(s-a)} \times \frac{(s-c)(s-a)}{s(s-b)} \times \frac{(s-a)(s-b)}{s(s-c)} = \frac{(s-a)(s-b)(s-c)}{s^3} = \left(\frac{s-a}{s}\right) \left(\frac{s-b}{s}\right) \left(\frac{s-c}{c}\right)$$

c.
$$\frac{b^2 - c^2}{a^2}.\sin 2A + \frac{c^2 - a^2}{b^2}.\sin 2B + \frac{a^2 - b^2}{c^2}.\sin 2C = 0$$

$$L.H.S. = \frac{b^2 - c^2}{a^2}.\sin 2A + \frac{c^2 - a^2}{b^2}.\sin 2B + \frac{a^2 - b^2}{c^2}.\sin 2C$$

$$= \frac{b^2 - c^2}{a^2}.2\sin A.\cos A + \frac{c^2 - a^2}{b^2}.2\sin B.\cos B + \frac{a^2 - b^2}{c^2}.2\sin C.\cos C$$

$$= 2.\frac{b^2 - c^2}{a^2}.\frac{a}{2R}.\frac{b^2 + c^2 - a^2}{2bc} + \frac{c^2 - a^2}{b^2}.2.\frac{b}{2R}.\frac{a^2 + c^2 - b^2}{2ac} + \frac{a^2 - b^2}{c^2}.2.\frac{c}{2R}.\frac{a^2 + b^2 - c^2}{2ab}$$

$$= \frac{(b^2 - c^2)(b^2 + c^2 - a^2)}{2abcR} + \frac{(c^2 - a^2)(a^2 + c^2 - b^2)}{2abcR} + \frac{(a^2 - b^2)(a^2 + b^2 - c^2)}{2abcR} = \frac{0}{2abcR} = 0$$

e.
$$(b+c-a) \left[\cot \frac{B}{2} + \cot \frac{C}{2}\right] = 2a \cot \frac{A}{2}$$

L.H.S. =
$$(b + c - a) \left[\cot \frac{B}{2} + \cot \frac{C}{2} \right]$$

$$= (a + b + c - 2a) \left[\sqrt{\frac{s(s-b)}{(s-c)(s-a)}} + \sqrt{\frac{s(s-c)}{(s-a)(s-b)}} \right]$$

$$= (2s - 2a) \left[\frac{(s-b)\sqrt{s} + (s-c)\sqrt{s}}{\sqrt{(s-a)(s-b)(s-c)}} \right] = 2(s-a) \sqrt{\frac{s}{(s-a)(s-b)(s-c)}} \cdot [(s-b) + (s-c)]$$

$$= 2\sqrt{\frac{s(s-a)}{(s-b)(s-c)}} .(a+b+c-b-c) = 2\cot\frac{A}{2}.a = 2a\cot\frac{A}{2}$$

A

G

6. In $\triangle ABC$, if $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$ prove that $C = 60^{\circ}$

Given,
$$\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$$

or, $\frac{b+c+a+c}{(a+c)(b+c)} = \frac{3}{a+b+c}$
or, $(a+b+2c)(a+b+c) = 3(a+c)(b+c)$
or, $a^2+ab+ac+ab+b^2+bc+2ac+2bc+2c^2=3[ab+ac+bc+c^2]$
or, $a^2+b^2+2c^2+2ab+3ac+3bc=3ab+3ac+3bc+3c^2$
or, $a^2+b^2-c^2-ab=0$
or, $a^2+b^2-c^2=ab$
or, $a^2+b^2-c^2=ab$
or, $a^2+b^2-c^2=ab$
or, $a^2+b^2-c^2=ab$

 In ∆ABC, if (a + b + c)(a – b – c) + 3bc = 0,find A.

Given,
$$(a + b + c)[a - (b + c)] + 3bc = 0$$

or, $a^2 - (b + c)^2 + 3bc = 0$
or, $a^2 - b^2 - 2bc - c^2 + 3bc = 0$
or, $3bc - 2bc = b^2 + c^2 - a^2$
or, $bc = b^2 + c^2 - a^2$
or, $\frac{2bc}{2} = b^2 + c^2 - a^2$
or, $\frac{b^2 + c^2 - a^2}{2bc} = \frac{1}{2}$
or, $cos A = \frac{1}{2}$

8. If A = 2B, then prove that either b = c or $a^2 = b(c + b)$.

9. If $a^4 + b^4 + c^4 - 2c^2(a^2 + b^2) + a^2.b^2 = 0$ show that $\angle C = 60^\circ$ or 120°

Given,
$$a^4+b^4+c^4-2c^2(a^2+b^2)+a^2.b^2=0$$
 or, $a^2b^2=2c^2a^2+2b^2c^2-a^4-b^4-c^4$ or, $a^2b^2+2a^2b^2=2a^2b^2+2c^2a^2+2b^2c^2-a^4-b^4-c^4$ or, $3a^2b^2=16\Delta^2$

$$\left[\Delta = \frac{1}{4} \sqrt{2a^2b^2 + 2c^2a^2 + 2b^2c^2 - a^4 - b^4 - c^4} \right]$$

or,
$$3a^2b^2 = 16.\left(\frac{1}{2}absinC\right)$$

or, $3a^2b^2 = 16 \times \frac{1}{4} \times a^2b^2sin^2C$

or,
$$\frac{3}{4} = \sin^2 C$$

or, sinC =
$$\pm \frac{\sqrt{3}}{2}$$

10. In $\triangle ABC$ if $\frac{\sin A}{\sin C} = \frac{\sin(A - B)}{\sin(B - C)}$, prove that a^2 , b^2 , c^2 are in AP.

Solution:

Given,
$$\frac{\sin A}{\sin C} = \frac{\sin(A - B)}{\sin(B - C)}$$

or, $\sin A.\sin(B - C) = \sin C.\sin(A - B)$

or, sin(B + C).sin(B - C) = sin(A + B).sin(A - B)

or, $\sin^2 B - \sin^2 C = \sin^2 A - \sin^2 B$

or, $2\sin^2 B = \sin^2 A + \sin^2 C$

or,
$$2.\frac{b^2}{4R^2} = \frac{a^2}{4R^2} + \frac{c^2}{4R^2}$$

or, $2b^2 = a^2 + c^2$

or,
$$b^2 = \frac{a^2 + c^2}{2}$$

Hence, a^2 , b^2 and c^2 are in AP.

11. If $\frac{\sin(A - B)}{\sin(A + B)} = \frac{a^2 - b^2}{a^2 + b^2}$ Prove that the $\triangle ABC$ is either isosceles or right angled triangle.

Solution:

Given,
$$\frac{\sin(A-B)}{\sin(A+B)} = \frac{a^2-b^2}{a^2+b^2}$$

or, $\frac{\sin(A-B)}{\sin(A+B)} \times \frac{\sin(A+B)}{\sin(A+B)} = \frac{a^2-b^2}{a^2+b^2}$
or, $\frac{\sin^2 A - \sin^2 B}{\sin^2 C} = \frac{a^2-b^2}{a^2+b^2}$
or, $\frac{\frac{a^2}{4R^2} - \frac{b^2}{4R^2}}{\frac{c^2}{4R^2}} = \frac{a^2-b^2}{a^2+b^2}$
or, $\frac{\frac{a^2-b^2}{4R^2}}{c^2} = \frac{a^2-b^2}{a^2+b^2}$
or, $\frac{a^2-b^2}{c^2} = \frac{a^2-b^2}{a^2+b^2}$
or, $(a^2-b^2)(a^2+b^2) - (a^2-b^2)c^2 = 0$
or, $(a^2-b^2)(a^2+b^2-c^2) = 0$
Either, $a^2=b^2 \Rightarrow a=b$

This implies the triangle is an isosceles triangle.

Or,
$$a^2 + b^2 - c^2 = 0 \Rightarrow a^2 + b^2 = c^2$$

Which is the Pythagoras theorem with right angled at C.

Which implies the triangle is right angled triangle.

12. In ∆ABC, if a cosA = b cosB show that the triangle is either isosceles or right angled.

or,
$$a \cos A = b \cos B$$

or, $a \cdot \frac{b^2 + c^2 - a^2}{2bc} = b \cdot \frac{a^2 + c^2 - b^2}{2ac}$
or, $a^2(b^2 + c^2 - a^2) = b^2(a^2 + c^2 - b^2)$
or, $a^2b^2 + a^2c^2 - a^4 = a^2b^2 + b^2c^2 - b^4$
or, $a^2c^2 - b^2c^2 - a^4 + b^4 = 0$
or, $c^2(a^2 - b^2) - [(a^2)^2 - (b^2)^2] = 0$
or, $c^2(a^2 - b^2) - [(a^2 + b^2)(a^2 - b^2)] = 0$
or, $(a^2 - b^2)[c^2 - (a^2 + b^2)] = 0$
Either, $a^2 - b^2 = 0 \Rightarrow a = b$.
This implies that the triangle is an isosceles triangle.
or, $c^2 - (a^2 + b^2) = 0 \Rightarrow c^2 = a^2 + b^2$
This is Pythagoras theorem with right angled at C. So, this implies that the triangle is a right angled triangle.

13. If the cosine of two angles of a triangle are proportional to the opposite sides, prove that the triangle is isosceles.

Solution:

Given,
$$\frac{\cos A}{a} = \frac{\cos B}{b}$$

or, $b \cos A = a \cos B$
or, $2R \sin B.\cos A = 2R \sin A.\cos B$
or, $2R[\sin A.\cos B - \cos A.\sin B] = 0$
or, $\sin(A - B) = 0$
or, $A - B = 0$
 $A = B$

It signifies that the triangle is an isosceles triangle.

14. If
$$b - a = mc$$
, prove that cot

$$\left(\frac{B-A}{2}\right) = \frac{1 + m\cos B}{m\sin B}$$

Solution:

Given,
$$b - a = mc \Rightarrow m = \frac{b - a}{c}$$

R.H.S.

$$= \frac{1 + \frac{b - a}{c}.\cos B}{m \sin B} = \frac{1 + \frac{b - a}{c}.\cos B}{\frac{b - a}{c}.\sin B}$$

$$= \frac{c + b \cos B - a \cos B}{(b - a) \sin B}$$

$$= \frac{a \cos B + b \cos A + b \cos B - a \cos B}{(b - a).\sin B}$$

$$= \frac{b[\cos A + \cos B]}{(b - a).\sin B} = \frac{2R[\cos A + \cos B]}{2R(\sin B - \sin A)}$$

$$= \frac{2\cos(\frac{A+B}{2})\cdot\cos(\frac{A-B}{2})}{2\cos(\frac{B+A}{2})\cdot\sin(\frac{B-A}{2})} = \frac{\cos(\frac{B-A}{2})}{\sin(\frac{B-A}{2})} = \cot\left(\frac{B-A}{2}\right)$$

15. In $\triangle ABC$, if a = 3, b = 4 and c = 5 prove that $\sin 2A = \frac{24}{25}$.

Solution:

We know, Sin2A = 2sinA.cosA

or,
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

or,
$$\cos A = \frac{16 + 25 - 9}{2 \times 4 \times 5}$$

or,
$$\cos A = \frac{32}{40}$$

or,
$$\cos A = \frac{4}{5}$$

$$\therefore \quad \sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \frac{3}{5}$$

$$\therefore \sin 2A = 2\sin A \cdot \cos A = 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25}$$

16. In any
$$\triangle ABC$$
 if $\frac{\sin A + \cos A}{\cos B} = \sqrt{2}$, show that $\angle C = 135^{\circ}$

Given,
$$\frac{\sin A + \cos A}{\cos B} = \sqrt{2}$$

or, $\sin A + \cos A = \sqrt{2} \cos B$
squaring both sides, we get
or, $(\sin A + \cos A)^2 = (\sqrt{2} \cos B)^2$
or, $(\sin A + \cos A)^2 = (\sqrt{2} \cos B)^2$
or, $(\sin A + \cos A)^2 = (\sqrt{2} \cos B)^2$
or, $(\sin A + \cos A)^2 = (\sqrt{2} \cos B)^2$
or, $(\sin A + \cos A)^2 = (\sqrt{2} \cos B)^2$
or, $(\sin A + \cos A)^2 = (\sqrt{2} \cos B)^2$
or, $(\sin A)^2 = (\cos A)^2$
or, $(\cos A)^2$

17. In any triangle, if a = 13, b = 14 and c = 15 then find Δ , s, $\sin \frac{A}{2}$, $\cos \frac{A}{2}$, $\tan \frac{A}{2}$.

or,
$$s = \frac{a+b+c}{2}$$

or, $s = \frac{13+14+15}{2}$
 $\therefore s = 21$
or, $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$
or, $\Delta = \sqrt{21 \times (21-13)(21-14)(21-15)}$
or, $\Delta = \sqrt{21 \times 8 \times 7 \times 6}$
or, $\Delta = 84$
Also,
 $\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}} = \sqrt{\frac{(21-14)(21-15)}{14 \times 15}} = \frac{1}{\sqrt{5}}$

Also,
$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}} = \sqrt{\frac{21 \times (21-13)}{14 \times 15}} = \frac{2}{\sqrt{5}}$$

And,
$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \sqrt{\frac{(21-14)(21-15)}{21\times(21-13)}} = \frac{1}{2}$$

Exercise 8.2

1. Solve the triangle: $A = 60^{\circ}$, $B = 45^{\circ}$, $c = 6\sqrt{2}$ Solution:

C = 180 - (60 + 45)° = 75°

$$\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

or, $\frac{a}{\sin 60°} = \frac{b}{\sin 45°} = \frac{6\sqrt{2}}{\sin 75°}$
from (i) and (iii) ratios, we get
or, $a = \frac{6\sqrt{2} \times \sqrt{3} \times 4}{\sqrt{6} + \sqrt{2}}$
or, $a = \frac{12\sqrt{6}}{\sqrt{6} + \sqrt{2}}$
or, $a = \frac{12\sqrt{3}}{\sqrt{3} + 1}$
or, $a = \frac{12\sqrt{3}}{\sqrt{3} + 1} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1}$
or, $a = \frac{12\sqrt{3}(\sqrt{3} - 1)}{3 - 1}$
 $\therefore a = 6\sqrt{3}(\sqrt{3} - 1)$
Again, from (ii) and (iii) ratios, we get
or, $\frac{b}{\sin 45°} = \frac{6\sqrt{2}}{\sqrt{6} + \sqrt{2}}$
or, $b = \frac{6}{\sqrt{6} + \sqrt{2}}$
or, $b = \frac{6 \times 4}{\sqrt{6} + \sqrt{2}}$
or, $b = \frac{24}{\sqrt{2}(\sqrt{3} + 1)} = \frac{24(\sqrt{3} - 1)}{\sqrt{2}(3 - 1)}$
or, $b = \frac{24}{2\sqrt{2}} \times (\sqrt{3} - 1) = 6\sqrt{2}(\sqrt{3} - 1)$

2. Solve $\triangle ABC$, if $a = \sqrt{3} + 1$ and $b = \sqrt{3} - 1$, $C = 60^{\circ}$

We know,
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

or, $\cos 60^\circ = \frac{(\sqrt{3} + 1)^2 + (\sqrt{3} - 1)^2 - c^2}{2(\sqrt{3} + 1)(\sqrt{3} - 1)}$

or, $\frac{1}{2} = \frac{3 + 2\sqrt{3} + 1 + 3 - 2\sqrt{3} + 1 - c^2}{2 \times 2}$

or, $2 = 6 + 2 - c^2$

or, $c^2 = 6$
 $\therefore c = \sqrt{6}$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

or, $b = \frac{c \sin B}{\sin C}$

or, $\sqrt{3} - 1 = \frac{\sqrt{6} \times \sin B}{\sqrt{3}/2}$

or, $\frac{\sqrt{3} - 1}{2\sqrt{2}} = \sin B$

$$\therefore B = 15^\circ$$

or, $\sin A = \frac{a \sin C}{c}$

or, $\sin A = \frac{(\sqrt{3} + 1) \times \frac{\sqrt{3}}{2}}{\sqrt{6}}$

or, $\sin A = \frac{\sqrt{3} + 1}{2\sqrt{2}}$

Solution:

a.
$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

or, $s = \frac{3+5+6}{2} = 7$
or, $\Delta = \sqrt{7 \times 4 \times 2 \times 1}$
or, $\Delta = \sqrt{56}$
 $\Delta = 2\sqrt{14}$

c.
$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \sqrt{\frac{(7-5)(7-6)}{7\times4}} = \sqrt{\frac{2\times1}{28}} = \frac{1}{\sqrt{14}}$$

4. If a = 2, $b = \sqrt{6}$ and $c = \sqrt{3} - 1$. Solve the triangle.

Solution:

or,
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

or, $\cos A = \frac{6 + (\sqrt{3} - 1)^2 - 4}{2 \times \sqrt{6}(\sqrt{3} - 1)}$

or, $\cos A = \frac{2 + 3 - 2\sqrt{3} + 1}{2\sqrt{6}(\sqrt{3} - 1)}$

or, $\cos A = \frac{6 - 2\sqrt{3}}{2\sqrt{6}(\sqrt{3} - 1)}$

or, $\cos A = \frac{2\sqrt{3}(\sqrt{3} - 1)}{2\sqrt{6}(\sqrt{3} - 1)}$

or, $\cos A = \frac{1}{\sqrt{2}}$

$$\therefore A = 45^{\circ}$$

or, $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$

or, $\cos B = \frac{4 + 3 - 2\sqrt{3} + 1 - 6}{22(\sqrt{3} - 1)}$

or, $\cos B = \frac{2 - 2\sqrt{3}}{4(\sqrt{3} - 1)}$

or, $\cos B = \frac{-2(\sqrt{3} - 1)}{4(\sqrt{3} - 1)}$

or, $\cos B = \frac{-2(\sqrt{3} - 1)}{4(\sqrt{3} - 1)}$

or, $\cos B = \frac{-1}{2}$

or, $\cos B = \cos 120^{\circ}$

Now. A + B + C = 180° ∴ C = 15°

 $B = 120^{\circ}$

b. We know,
$$\Delta = \frac{abc}{4R}$$

or, $R = \frac{abc}{4\Delta}$
or, $R = \frac{3 \times 5 \times 6}{4 \times 2\sqrt{14}}$
 $\therefore R = \frac{45}{4\sqrt{14}}$

If three angles of a triangle are in the ratio of 2:3:7 find a:b:c

Solution:

Given, A:B:C = 2:3:7

So, $\frac{A}{2} = \frac{B}{3} = \frac{C}{7} = k \text{ (suppose)}$ A = 2k, B = 3k, C = 7k

We know, A + B + C = 180°

or, 2k + 3k + 7k = 180°

or, 12k = 180°

∴ k = 15°

Hence, A = 30°, B = 45° and C = 105°

We know, from sine law

or, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ or, $\frac{a}{\sin 30°} = \frac{b}{\sin 45°} = \frac{c}{\sin 105°}$ or, $\frac{a}{1/2} = \frac{b}{1/\sqrt{2}} = \frac{c}{\sqrt{3} + 1/2\sqrt{2}}$ or, $\frac{a}{\sqrt{2}} = \frac{b}{2} = \frac{c}{\sqrt{3} + 1}$

∴ a:b:c = $\sqrt{2}:2:\sqrt{3} + 1$

6. In $\triangle ABC$, B = 60°, b : c = $\sqrt{3}$: $\sqrt{2}$. Show that A = 75° Solution:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

or,
$$\frac{b}{c} = \frac{\sin B}{\sin C}$$

or,
$$\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sin 60^{\circ}}{\sin C}$$

or,
$$sinC = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{\sqrt{3}}$$

or,
$$sinC = \frac{1}{\sqrt{2}} = 45^{\circ}$$

We know,

or,
$$A + 60^{\circ} + 45^{\circ} = 180^{\circ} = 75^{\circ}$$

7. a:b:c = 4:5:6 in \triangle ABC, prove that C = 2A.

Solution:

Given, a:b:c = 4:5:6

or,
$$\frac{a}{4} = \frac{b}{5} = \frac{c}{6} = k$$
 (suppose)

or,
$$a = 4k$$
, $b = 5k$, $c = 6k$

or,
$$\cos A = \frac{(5k)^2 + (6k)^2 - (4k)^2}{2.5k.6k}$$

or,
$$\cos A = \frac{45k^2}{60k^2}$$

or,
$$\cos A = \frac{3}{4}$$

So,
$$\cos 2A = 2\cos^2 A - 1$$

$$= 2 \times \frac{9}{16} - 1 = \frac{2}{16} = \frac{1}{8}$$
(i)

Again,
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

or,
$$\cos C = \frac{16k^2 + 25k^2 - 36k^2}{2 \times 5k \times 4k}$$

or,
$$\cos C = \frac{5k^2}{40k^2}$$

or,
$$\cos C = \frac{1}{8}$$
(ii)

from (i) and (ii), we get or, cos2A = cosC i.e. C = 2A 8. If $\cos A = \frac{4}{5}$, $\cos B = \frac{3}{5}$ find a:b:c.

Solution:

Given,
$$\cos A = \frac{4}{5}$$

$$\Rightarrow \sin A = \sqrt{1 - \cos^2 A}$$
$$= \sqrt{1 - \frac{16}{25}} = \frac{3}{5} \cos B = \frac{3}{5}$$

$$\Rightarrow \sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}$$

Now, cos(A + B) = cosA.cosB - sinA.sinB

or,
$$cos(A + B) = \frac{4}{5} \cdot \frac{3}{5} - \frac{3}{5} \times \frac{4}{5}$$

or,
$$cos(A + B) = 0$$

or,
$$cos(A + B) = cos90^{\circ}$$

So,
$$C = 180 - (A + B)$$

or,
$$C = 180 - 90$$

From sine law,

or,
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

or,
$$\frac{a}{\frac{3}{5}} = \frac{b}{\frac{4}{5}} = \frac{c}{1}$$

or,
$$\frac{a}{3} = \frac{b}{4} = \frac{c}{5}$$

Solve the triangle:

a.
$$a = 2$$
, $b = \sqrt{2}$, $c = \sqrt{3} + 1$

c.
$$a = 1$$
, $b = \sqrt{3} C = 30^{\circ}$

Solution:

a = 2, b = $\sqrt{2}$, c = $\sqrt{3}$ + 1 or, cosA = $\frac{b^2 + c^2 - a^2}{2bc}$

or,
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

or,
$$\cos A = \frac{2 + (\sqrt{3} + 1)^2 - 4}{2 \times \sqrt{2}(\sqrt{3} + 1)}$$

or,
$$\cos A = \frac{3 + 2\sqrt{3} + 1 - 2}{2\sqrt{2}(\sqrt{3} + 1)}$$

or,
$$\cos A = \frac{2(\sqrt{3} + 1)}{2\sqrt{2}(\sqrt{3} + 1)}$$

or,
$$\cos A = \frac{1}{\sqrt{2}}$$

Again, cosB =
$$\frac{a^2 + c^2 - b^2}{2ac}$$

or,
$$cosB = \frac{4+3+2\sqrt{3}+1-2}{2.2.(\sqrt{3}+1)}$$

or,
$$\cos B = \frac{6 + 2\sqrt{3}}{4(\sqrt{3} + 1)}$$

or,
$$\cos B = \frac{2\sqrt{3}(\sqrt{3}+1)}{4(\sqrt{3}+1)}$$

or,
$$\cos B = \frac{\sqrt{3}}{2}$$

We know, A + B + C = 180° or, 45° + 30° + C = 180°

d.
$$a = \sqrt{57}$$
, $A = 60^{\circ}$, $\Delta = 2\sqrt{3}$

b. A = 75°, B = 60°, C = 45° We know that when three angles of a triangle are given then no unique solution is possible. Only ratio of sides can be

found not the actual length of sides. or, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

or,
$$\frac{a}{\sin 75^{\circ}} = \frac{b}{\sin 60^{\circ}} = \frac{c}{\sin 45^{\circ}}$$

or,
$$\frac{a}{\frac{\sqrt{3}+1}{2\sqrt{2}}} = \frac{b}{\frac{\sqrt{3}}{2}} = \frac{c}{\frac{1}{\sqrt{2}}}$$

or,
$$\frac{a}{\sqrt{3}+1} = \frac{b}{\sqrt{6}} = \frac{c}{2}$$

$$\therefore$$
 a:b:c = $(\sqrt{3} + 1):\sqrt{6}:2$

c.
$$1a = 1, b = \sqrt{3}, C = 30^{\circ}$$

or, $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$
or, $\cos 30^{\circ} = \frac{1 + 3 - c^{2}}{2 \times 1 \times \sqrt{3}}$
or, $\frac{\sqrt{3}}{2} = \frac{4 - c^{2}}{2\sqrt{3}}$
or, $3 = 4 - c^{2}$
 \therefore $c = 1$
or, $\cos B = \frac{a^{2} + c^{2} - b^{2}}{2ac}$
or, $\cos B = \frac{1 + 1 - 3}{2}$
or, $\cos B = \frac{-1}{2}$
 \therefore $B = 120^{\circ}$
We know, $A + B + C = 180^{\circ}$
or, $A = 180^{\circ} - 120^{\circ} - 30^{\circ}$

 $A = 30^{\circ}$

10. If a = 2, b = $\sqrt{6}$ and c = $\sqrt{3}$ + 1. Find the greatest and least angle of triangle ABC.

Solution:

Greater angle corresponds to greatest side and least angle corresponds smallest sides. Since, c is the largest side, so, 'C' will be larger angle and 'A' will be smallest angle.

or,
$$\cos C = \frac{4+6-(\sqrt{3}+1)}{2\times2\times\sqrt{6}}$$

or, $\csc C = \frac{10-3-2\sqrt{3}-1}{4\sqrt{6}}$
or, $\csc C = \frac{6-2\sqrt{3}}{4\sqrt{6}}$
or, $\csc C = \frac{2\sqrt{3}(\sqrt{3}-1)}{2\cdot2\sqrt{6}} = \frac{\sqrt{3}-2\sqrt{2}}{2\sqrt{2}}$
or, $\csc C = \frac{2\sqrt{3}(\sqrt{3}-1)}{2\cdot2\sqrt{6}} = \frac{\sqrt{3}-2\sqrt{2}}{2\sqrt{2}}$
or, $\csc C = \frac{2\sqrt{3}(\sqrt{3}-1)}{2\sqrt{6}} = \frac{\sqrt{3}-2\sqrt{2}}{2\sqrt{2}}$
or, $\cos C = \frac{6+(\sqrt{3}+1)^2-4}{2\sqrt{6}\times\sqrt{3}+1}$
or, $\cos C = \frac{6+(\sqrt{3}+1)^2-4}{2\sqrt{6}\times\sqrt{3}+1}$
or, $\cos C = \frac{2+3+2\sqrt{3}+1}{2\sqrt{6}(\sqrt{3}+1)} = \frac{1}{\sqrt{2}}$
or, $\cos C = \frac{2\sqrt{3}(\sqrt{3}+1)}{2\sqrt{6}(\sqrt{3}+1)} = \frac{1}{\sqrt{2}}$

11. If a = 2, $b = \sqrt{3} + 1$, $C = 60^{\circ}$, Solve the triangle.

or,
$$\cos C = \frac{b^2 + a^2 - c^2}{2ab}$$

or, $\cos 60^\circ = \frac{(\sqrt{3} + 1)^2 + 4 - c^2}{2 \times 2(\sqrt{3} + 1)}$
or, $\frac{1}{2} = \frac{3 + 2\sqrt{3} + 1 + 4 - c^2}{4(\sqrt{3} + 1)}$
or, $2(\sqrt{3} + 1) = 8 + 2\sqrt{3} - c^2$
or, $2\sqrt{3} + 2 = 8 + 2\sqrt{3} - c^2 \therefore c = \sqrt{6}$
or, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
or, $\frac{2}{\sin A} = \frac{\sqrt{3} + 1}{\sin B} = \frac{\sqrt{6}}{\sin 60^\circ}$
or, $\sin A = \frac{2 \sin 60^\circ}{\sqrt{6}}$
or, $\sin A = \frac{2 \sin 60^\circ}{\sqrt{6}}$
We know, $A + B + C = 180^\circ$
or, $45^\circ + B + 60^\circ = 180^\circ \therefore B = 75^\circ$

12 a. a = 2, $b = \sqrt{3} + 1$, $A = 45^{\circ}$

Solution:

a. a = 2, $b = \sqrt{3} + 1$, $A = 45^{\circ}$.

We know, by sine law

or,
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

or,
$$\frac{2}{\sin 45^{\circ}} = \frac{\sqrt{3} + 1}{\sin B}$$

or,
$$\sin B = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$
 : $B = 75^{\circ}$ or 105°

When B = 75°, C = 60° When B = 105°, C = 30°

When B = 75°, c is given by

or,
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$

or,
$$\frac{2}{\sin 45^{\circ}} = \frac{c}{\sin 60^{\circ}}$$

or,
$$c = 2\sqrt{2} \times \frac{\sqrt{3}}{2}$$

$$\therefore$$
 c = $\sqrt{6}$

When B = 105°, value of c is given by

or,
$$\frac{\dot{a}}{\sin A} = \frac{c}{\sin C}$$

or,
$$\frac{\frac{2}{1/\sqrt{2}}}{\frac{c}{1/2}} = \frac{\frac{c}{1/2}}{\frac{c}{1/2}}$$

or, $c = \sqrt{2}$ the solution are

B = 75°, C = 60°, c =
$$\sqrt{6}$$

B = 105°, C = 30°, c =
$$\sqrt{2}$$

b. a = 3, $b = 3\sqrt{3}$, $A = 30^{\circ}$.

or,
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

or,
$$\frac{3}{\sin 30^{\circ}} = \frac{3\sqrt{3}}{\sin B}$$

or,
$$\sin B = \frac{3\sqrt{3} \times \frac{1}{2}}{3}$$

or,
$$\sin B = \frac{\sqrt{3}}{2}$$
 :: B = 60°, 120°

When B =
$$60^{\circ}$$
, C = 90°
When B = 120° , C = 30°

When
$$B = 60^{\circ}$$

or,
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$

or,
$$\frac{3}{\sin 30^{\circ}} = \frac{c}{\sin 90^{\circ}}$$

or,
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$

or,
$$\frac{3}{\sin 30^\circ} = \frac{c}{\sin 30^\circ}$$
 : $c = 3$