

Ch-07 Alternating Current Daily Practice Problem 03

Q1. A coil has an inductance of 1 H. (i) At what frequency will it have a reactance of 3142 Ω ? (ii) What should be the capacity of a capacitor which has the same reactance at that frequency?

Q7. A 200 mH (pure) inductor, and a 5 μF (pure) capacitor, are connected, one by one, across a sinusoidal ac voltage source $V = [70.7 \sin(1000 t)]$ volt. Obtain the expressions for the current in each case.

Q2. Alternating emf, $\epsilon = 220 \sin 100 \pi t$ is to a circuit containing applied inductance of $1/\pi H$. Write an equation for instantaneous current through the circuit. What will be the reading of an a.c. ammeter if connected in the circuit?

Q8. The graphs given below depict the dependence of two reactive impedances X, and X_2 on the frequency of the alternating e.m.f. applied individually to them. We can then say that

Q3. A pure inductance of 1.0 H is connected across a 110 V, 70 Hz source. Find the (a) reactance, (b) current, and (c) peak value of current.

Q4. Calculate the frequency at which the inductive reactance of 0.7 H inductor is 220Ω .

a. X_1 is an inductor and X_2 is a capacitor

Q5. Find the maximum value of current when an inductance of one henry is connected to an a.c. source 200 volts, 50 Hz.

b. X_1 is a resistor and X_2 is a capacitor

c. X_1 is a capacitor and X_2 is an inductor

Q6. A $1.50 \, \mu F$ capacitor is connected to a 220 V, 50 Hz source. Find the capacitive reactance and the current (rms and peak) in the circuit.

d. X_1 is an inductor and X_2 is a resistor

Q9. Voltage and current in an ac circuit are given by $V = 5 \sin \left(100 \pi t - \frac{\pi}{6}\right)$ and I = $4 \sin\left(100\pi t + \frac{\pi}{6}\right)$

- a. Voltage leads the current by 30°
- **b.** Current leads the voltage by 30°
- c. Current leads the voltage by 60°

Phase lead of N over M in radians

 $-\pi/4$

d. Voltage leads the current by 60°

Q10. A capacitor has a capacitance of $1/\pi \, \mu F$. Find its reactance for a frequency of (i) $50 \, Hz$ and (ii) $10^6 \, Hz$.

Q11. Two sinusoidal voltages of the same frequency are shown in the diagram. What

is the frequency, and the phase relationship between th

(b) 2.5	$-\pi/2$
(c) 2.5	$+\pi/2$
(d) 2.5	$-\pi/4$

Frequency in Hz

(a) 0.4

ANSWERS

- **1.** 500 *Hz*; 0.11 μF
- **2.** 2.2 $\sin\left(100 \ \pi t \frac{\pi}{2}\right)$

1.556 A

- **3.** *a*. 440 Ω
- **b**. 0.25 A
- **c**. 0.353 *A*
- **4.** 50 *Hz*

- **5.** 0.9 A
- **6.** 212 Ω, 1.04 *A*, 1.47 *A*
- **7.** $I = 0.3535 \sin\left(1000t \frac{\pi}{2}\right)$

$$I = 0.3535\sin\left(1000t - \frac{\pi}{2}\right)$$

8. c

- **9.** c
- **10.** 10 Ω, 0.5 Ω
- **11.** b

