Statistica per la ricerca sperimentale e tecnologica

Corso di Laurea in Informatica, Università di Roma "Tor Vergata"

Anno accademico: 2005-2006 Titolare del corso: Claudio Macci

Simulazione 2

Esercizio 1. Un'urna contiene 3 palline numerate con i numeri 1, 2 e 3. Si estraggono in blocco e sia X la variabile aleatoria che indica la somma dei due numeri estratti.

D1) Calcolare la densità discreta di X.

Esercizio 2. Una moneta equa viene lanciata 3 volte.

- D2) Calcolare la probabilità di ottenere esattamente una volta testa.
- D3) Calcolare la probabilità di ottenere almeno una volta testa.
- D4) Supponiamo ora di considerare un numero di lanci non fissato. Calcolare la probabilità di ottenere per la prima volta testa esattamente al quinto lancio.

Esercizio 3. Sia (X_1, X_2) una variabile aleatoria discreta bidimensionale con la seguente densità congiunta discreta: $p_{(X_1,X_2)}(0,2) = p_{(X_1,X_2)}(0,1) = p_{(X_1,X_2)}(1,0) = 1/3$.

- D5) Trovare la densità discreta marginale di X_1 .
- D6) Calcolare $P(X_1 + X_2 = 1)$.

Esercizio 4. Sia (N_t) un processo di Poisson con intensità $\lambda = 2$ che modellizza le telefonate ricevute da un centralino. Siano (T_n) le variabili aleatorie che indicano i tempi in cui arrivano le telefonate.

- D7) Calcolare $P(N_3 \ge 4)$.
- D8) Calcolare $P(T_1 > 6)$.

Esercizio 5. Sia Z una variabile aleatoria con con densità $f_X(t) = ct^2$ per $t \in [0, 2]$ e $f_X(t) = 0$ altrimenti.

- D9) Verificare che c = 3/8.
- D10) Trovare la densità discreta di W = [Z], dove $[x] = \max\{k \in \mathbb{Z} : k \leq x\}$ è la parte intera di x.

Esercizio 6. Sia W una v.a. normale con media μ e varianza $\sigma^2 = 4$.

D11) Calcolare P(W > 3) nel caso in cui $\mu = 2$.

Poi supponiamo che μ sia incognito. Consideriamo un campione di n=100 osservazioni indipendenti e tutte con la stessa distribuzione di W. La media dei valori osservati è 3.

D12) Trovare l'intervallo di confidenza per μ al livello $1 - \alpha = 0.95$.

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1. Il numero di sottoinsiemi di 2 elementi dell'insieme $\{1,2,3\}$ è costituito da $\binom{3}{2} = 3$ elementi; infatti abbiamo i sottoinsiemi {1,2}, {1,3} e {2,3}. Ciascuno di questi 3 sottoinsiemi ha probabilità 1/3 di essere scelto.

D1) La densità discreta di X si ottiene considerando i possibili valori delle somme; quindi P(X = 1 + 2) = P(X = 1 + 3) = P(X = 2 + 3) = 1/3, cioè $p_X(3) = p_X(4) = p_X(5) = 1/3$.

Esercizio 2. Sia X la variabile aleatoria che conta il numero di teste ottenute su 3 lanci di

- D2) Si ha $P(X=1) = \binom{3}{1}(\frac{1}{2})^1(1-\frac{1}{2})^{3-1} = 3/8.$
- D3) Si ha $P(X \ge 1) = 1 P(X = 0) = 1 {3 \choose 0} (\frac{1}{2})^0 (1 \frac{1}{2})^{3-0} = 7/8.$
- D4) Per la teoria della distribuzione geometrica si ha $(1-\frac{1}{2})^{5-1}(\frac{1}{2})=(\frac{1}{2})^5=1/32$.

Esercizio 3.

- D5) Si ha $p_{X_1}(0) = p_{(X_1, X_2)}(0, 2) + p_{(X_1, X_2)}(0, 1) = 2/3$ e $p_{X_1}(1) = p_{(X_1, X_2)}(1, 0) = 1/3$.
- D6) Si ha $P(X_1 + X_2 = 1) = p_{(X_1, X_2)}(1, 0) + p_{(X_1, X_2)}(0, 1) = 2/3.$

Esercizio 4.

- D7) Si ha $P(N_3 \ge 4) = 1 P(N_3 \le 3) = 1 \sum_{k=0}^3 P(N_3 = k) = 1 \sum_{k=0}^3 \frac{(2\cdot 3)^k}{k!} e^{-2\cdot 3}$, da cui $P(N_3 \ge 4) = 1 \left[\frac{6^0}{0!} + \frac{6^1}{1!} + \frac{6^2}{2!} + \frac{6^3}{3!}\right] e^{-6} = 1 61 \cdot e^{-6}$.
- D8) È noto che T_1 ha distribuzione esponenziale di parametro λ ; allora nel nostro caso si ha $P(T_1 > 6) = 1 - F_{T_1}(6) = 1 - (1 - e^{-2 \cdot 6}) = e^{-12}.$

Esercizio 5.

- D9) Si ha $1 = c \int_0^2 t^2 dt = c[t^3/3]_0^2 = c \cdot 8/3$, da cui c = 3/8.
 D10) La variabile aleatoria W assume con probabilità positiva i valori 0 e 1, e si ha:

$$p_W(0) = P(0 \le Z < 1) = \int_0^1 \frac{3}{8} t^2 dt = \frac{1}{8} [t^3]_0^1 = 1/8$$

$$p_W(0) = P(0 \le Z < 1) = \int_0^1 \frac{3}{8} t^2 dt = \frac{1}{8} [t^3]_0^1 = 1/8;$$

$$p_W(1) = P(1 \le Z < 2) = \int_1^2 \frac{3}{8} t^2 dt = \frac{1}{8} [t^3]_1^2 = 7/8.$$

Esercizio 6.

- D11) La v.a. $Z_W = \frac{W-2}{\sqrt{4}}$ è la standardizzata di W e si ha $P(W>3) = P(\frac{W-2}{\sqrt{4}} > \frac{3-2}{\sqrt{4}}) = P(Z_W > 1/2) = 1 \Phi(1/2) = 1 \Phi(0.5) = 1 0.69146 = 0.30854.$
- D12) L'intervallo di confidenza richiesto è $\left[\overline{x}_n \phi_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \overline{x}_n + \phi_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right]$. Si ha $\overline{x}_n = 3$, $\sigma = \sqrt{4}$, n = 100; inoltre $1 \frac{\alpha}{2} = 0.975$ segue da $1 \alpha = 0.95$ e quindi $\phi_{1-\frac{\alpha}{2}} = 1.96$. In conclusione l'intervallo di confidenza richiesto è [2.608, 3.392].

Commenti.

- D3) Si poteva procedere anche in questo modo: $P(X \ge 1) = p_X(1) + p_X(2) + p_X(3) = \frac{3+3+1}{8} = \frac{7}{8}$. D10) Si ha $p_W(0) + p_W(1) = 1$ e questo è in accordo con la teoria.