Taller de Matlab #1 - Series de Taylor

Andrés Fernando Aranguren Silva - afarangurens@unal.edu.co

1. Marco Teórico.

1.1 Serie de Taylor

En matemáticas, una serie de Taylor es una aproximación de funciones mediante una serie de potencias o suma de potencias enteras de términos como $(x-a)^n$ llamado también el n-ésimo polinomio de Taylor, dicha suma se calcula a partir de las derivadas de la función para un determinado valor a suficientemente derivable sobre la función.

1.2 Definición formal de una Serie de Taylor:

La serie de Taylor se define matemáticamente como una serie de potencias:

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots$$
, donde:

- n!es el factorial de n.
- $f^n(a)$ denota la n-ésima derivada de fpara el valor a de la variable respecto de la cual se deriva.

Se puede reescribir de una forma más compacta con la notación sigma de la siguiente manera:

•
$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

1.3 Serie de Taylor para determinar ln(x)

Se desea calcular el valor de ln(x) a través de una aproximación de función con series de Taylor. Para poder realizar esto se debe conocer un punto x_0 en el cual se pueda calcular facilmente l_n y todas sus derivadas. El punto más intuitivo a utilizar es 1, pues el l_n de este punto es fácilmente calculable ya que ln(1) = 0, por tanto escogemos $x_0 = 1$.

$$f(x) = ln(x)$$

$$f(x) = \ln(x) = \frac{f^0(x_0)}{0!} + \frac{f'(x_0)}{1!}(x - x_0)^1 + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!}(x - a)^n$$

Cálculo de las primeras 4 derivadas para encontrar un patrón y poder intuir la fórmula:

- $f^{0}(x) = f(x) = \ln(x)$ $f'(x) = x^{-1}$ $f''(x) = (-1)x^{-2}$ $f'''(x) = (-2)(1)x^{-3}$ $f^{0}(x_{0}) = \ln(x_{0}) = \ln(1) = 0$ $f''(x_{0}) = x_{0}^{-1} = 1^{-1} = 1 = 0!$ $f'''(x_{0}) = (-1)x_{0}^{-2} = (-1)1^{-2} = -1!$ $f'''(x_{0}) = (-2)(1)x_{0}^{-3} = (-2)(1)1^{-3} = 2!$
- $f^n(x) = [-(n-1)]...(-2)(-1)x^{-n} \rightarrow f^n(x_0) = [-(n-1)]...(-2)(-1)x_0^{-n} = (-1)^{n-1}(n-1)!$

Entonces:

$$f(x) = ln(x) = \sum_{n=0}^{\infty} \frac{f^n(x_0)}{n!} (x - x_0)^n$$
 y debido a que $f^0(x_0) = 0$ el n empieza desde 1, por tanto:

=
$$\sum_{n=1}^{\infty} \frac{f^n(x_0)}{n!} (x-x_0)^n$$
, como $x_0=1$, la expresión queda:

$$f(x) = \ln(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^n$$

2. Obtención de Polinomios de Taylor.

Ahora se deben obtener los polinomios de Taylor de grado 2, 5, 8 y 15:

- clc clear close all $x_0 = 1$
- x_0 =
- syms x $p2 = Pol(x_0, 2)$
 - p2 =

$$x - \frac{(x-1)^2}{2} - 1$$

$$p5 = Pol(x_0, 5)$$

$$p5 = x - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \frac{(x-1)^5}{5} - 1$$

$$p8 = Pol(x_0, 8)$$

$$p8 = x - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \frac{(x-1)^5}{5} - \frac{(x-1)^6}{6} + \frac{(x-1)^7}{7} - \frac{(x-1)^8}{8} - 1$$

$$p15 = Pol(x_0, 15)$$

$$p15 = x - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \frac{(x-1)^5}{5} - \frac{(x-1)^6}{6} + \frac{(x-1)^7}{7} - \frac{(x-1)^8}{8} + \frac{(x-1)^9}{9} - \frac{(x-1)^{10}}{10} + \frac{(x-1)^{11}}{11} - \frac{(x-1)^{12}}{12} + \frac{(x-1)^{13}}{13} - \frac{(x-1)^{14}}{14} + \frac{(x-1)^{15}}{15} - 1$$

Para esto se crean 3 funciones una para manejar cada uno de los términos de la expresión, uno para calcular la n-ésima derivada, otro para calcular el factorial, y la última para calcular e imprimir los n primero polinomios de la expresión, estos se encuentran al final del archivo.

3. Gráficas.

A continuación se grafica los polígonos obtenidos en el punto anterior, para así poder contrastar como los polígonos se van acercando cada vez más a la función ln(x) a medida que aumenta el grado del polígono.

```
figure(1)
hold on
title('Aproximaciones vs. Función')
xlabel('x')
ylabel('y')
xlim([0 2.5])
ylim([-2 2])
fplot(log(x))
fplot(Pol(x_0,1), 'r')
fplot(Pol(x_0, 2), 'b')
fplot(Pol(x_0, 5), 'm')
fplot(Pol(x_0, 8), 'k')
fplot(Pol(x_0, 15), 'k--')
fplot(0, 'k--')
legend('Función Base', 'Polinomio Grado 2', 'Polinomio Grado 5', 'Polinomio Grado 8', 'Polinomio Grado 15', 'Location', 'southeast')
hold off
```


4. Determinación del Valor de Aproximación.

Ahora se debe calcular el valor de la función ln(x) para x=2, para cada uno de los polígonos obtenidos en el punto **3.** Adicional a esto se compara el nivel de aproximación mediante errores absolutos y se despliegan en forma de tabla.

```
M = zeros(4,3);
x = 2;
yRef = log(x);
```

```
disp(['Valor de Referencia: ' num2str(yRef)]);
```

Valor de Referencia: 0.69315

```
M(:,1) = [2, 5, 8, 15];
M(:,2) = [eval(p2), eval(p5),eval(p8),eval(p15)];
M(:,3) = [ERAbs(M(1,2),log(x)),ERAbs(M(2,2),log(x)),ERAbs(M(3,2),log(x)),ERAbs(M(4,2),log(x))];
T = array2table(M,"VariableNames",["Grado del Polinomio",'Valor Evaluado','Error Absoluto'])
```

$T = 4 \times 3$ table

	Grado del Polinomio	Valor Evaluado	Error Absoluto
1	2	0.500000000000000	0.193147180559945
2	5	0.783333333333333	0.090186152773388
3	8	0.634523809523809	0.058623371036136
4	15	0.725371850371850	0.032224669811905

```
figure(2)
hold on
title('Error Absoluto')
xlabel('Grado de Polinomio')
ylabel('Error de Aproximación')
plot(M(:,1), M(:,3), 'r')
hold off
```



```
figure(3)
hold on
title('Aproximación')
xlabel('Grado del Polinomio')
ylabel('Valor de Aproximación')
plot(M(:,1), M(:,2), 'r')
hold off
```


5. Análisis Gamma y Resto de Taylor.

Se utiliza el teorema del resto de Taylor para determinar el valor máximo de error de la aproximación, en este caso para el polinomio de grado 15 (n = 15). Este se calcula de la siguiente forma:

 $R_n(x) = \frac{f^{n+1}(z)}{(n+1)!}(x-c)^{n+1}$, donde para el caso de este ejercicio $c=x_0=1$, x=2 y z es un número donde la derivada $f^{n+1}(z)$ sea máxima para n=15, entre c. y x

```
format long

fRes = RES(1,2,15)

fRes = -\frac{1}{16 y^{16}}
yRefPol = M(4,2)
```

yRefPol = 0.725371850371850

```
figure(4)
hold on
title('Resto')
xlabel('Gamma')
ylabel('Resto de Taylor')
xlim([1 2])
fplot(fRes, 'r')
hold off
```



```
m = 150;
t = abs(1 - 2) / (m);

for i = 1:m
    y = 1 + (i*t);
    Y(i, 1) = eval(fRes);
end
Residuo = max(abs(Y)) % Valor del error máximo
```

Residuo = 0.056196466049649

yDWN =

0.669175384322201

Una vez calculado el residuo del resto, se calculan los intervalos de acotación para ln(2), los cuáles se encuentran sumando y restando el residuo al valor de referencia, el cual en este caso es la aproximación al valor de ln(2) con un polinomio de grado 15.

```
% Intervalo superior
yUP = yRefPol + abs(Residuo)

yUP =
    0.781568316421499

yRef

yRef =
    0.693147180559945

% Intervalo inferior
yDWN = yRefPol- abs(Residuo)
```

5. Grado Óptimo del Polinomio según Tolerancia.

A partir de una tolerancia $1x10^{-6}$ se determina a continuación el grado del polinomio óptimo para aproximar el valor ln(2), para esto usamos la fórmula del error: $E_n(x) = \frac{f^{n+1}(z)}{(n+1)!}(x-c)^{n+1}$

```
tolerancia = 0.000001;
res = 1;
n = 1;
A = zeros(2);
while res >= tolerancia
    res = abs((dfN(n,x_0) * (x-x_0)^(n+1))/FRL(n+1));
    A(n,1) = n;
    A(n,2) = res;

n = n + 1;
end
```

K = array2table(A, "VariableNames",["Grado", "Residuo"])

	Grado	Residuo
1	1	0.5000000000000000
2	2	0.166666666666666
3	3	0.0833333333333333
4	4	0.0500000000000000
_	5	0.03333333333333333
5		
6	6	0.023809523809524
7	7	
8	8	0.0138888888888
9	9	0.01111111111111
10	10	0.009090909090909
11	11	0.007575757575758
12	12	0.006410256410256
13	13	0.005494505494505
14	14	0.004761904761905
15	15	0.004166666666667
16	16	0.003676470588235
17	17	0.003267973856209
18	18	0.002923976608187
19	19	0.002631578947368
20	20	0.002380952380952
21	21	0.002164502164502
22	22	0.001976284584980
23	23	0.001811594202899
24	24	0.0016666666666667
	25	0.001538461538462
25		0.001424501424501
26	26	
27	27	0.001322751322751
28	28	0.001231527093596
29	29	0.001149425287356
30	30	0.001075268817204
31	31	0.001008064516129
32	32	0.000946969696970
33	33	0.000891265597148
34	34	0.000840336134454
35	35	0.000793650793651
36	36	0.000750750750751
37	37	0.000711237553343
38	38	0.000674763832659
39	39	0.000641025641026
40	40	0.000609756097561
41	41	0.000580720092915
42	42	0.000553709856035
43	43	0.000528541226216
44	44	0.000505050505051
45	45	0.000483091787440
46	46	0.000462534690102
	47	0.000443262411348
47	48	0.000443202411348
48		
49	49	0.000408163265306
50	50	0.000392156862745
51	51	0.000377073906486
52	52	0.000362844702467
		0.000040400000700
53	53	0.000349406009783

	Grado	Residuo
55	55	0.000324675324675
56	56	0.000313283208020
57	57	0.000302480338778
58	58	0.000292226767972
59	59	0.000282485875706
60	60	0.000273224043716
61	61	0.000264410364886
62	62	0.000256016385049
63	63	0.000248015873016
64	64	0.000240384615385
65	65	0.000233100233100
66	66	0.000226142017187
67	67	0.000219490781387
68	68	0.000213128729753
69	69	0.000207039337474
70	70	0.000201207243461
71	71	0.000195618153365
72	72	0.000190258751903
73	73	0.000185116623473
74	74	0.000180180180180
75	75	0.000175438596491
76	76	0.000170881749829
77	77	0.000166500166500
78	78	0.000162284972412
79	79	0.000158227848101
80	80	0.000154320987654
81	81	0.000150557061126
82	82	0.000146929180135
83	83	0.000143430866322
84	84	0.000140056022409
85	85	0.000136798905609
86	86	0.000133654103181
87	87	0.000130616509927
88	88	0.000127681307457
89	89	0.000124843945069
90	90	0.000122100122100
91	91	0.000122100122100
	92	0.000119443771020
92	93	0.000110877043340
93	93	0.000114390299703
94		
95	95	0.000109649122807
96	96	0.000107388316151
97	97	0.000105196717862
98	98	0.000103071531643
99	99	0.000101010101010
100	100	0.000099009900990

El resultado da, que para el polinomio de grado 170, el error se hace igual a la tolerancia dada en el ejercicio.

6. Funciones utilizadas.

```
function fact = FRL(n)
    k = n;
    fact = 1;
    for i = 1:k
        fact = fact * i;
    end
end
function der = dfN(n,x0)
```

```
der = (-1)^(n-1) * FRL(n-1) * (x0)^(-1*n);
end

function pol = Pol(x0,n)
    syms x
    pol = 0;
    for i = 1:n
        pol = pol + (dfN(i,x0)*((x-x0)^i)/FRL(i));
    end
end

function eAbs = ERAbs(POL,F)
    eAbs = abs(POL-F);
end

function rest = RES(x0, x, n)
    syms y
    k = n+1;
    rest = dfN(k,y)*((x-x0)^k) / FRL(k);
end
```

7. Referencias

- $\hbox{[1]} \ \underline{https://www.youtube.com/watch?v=IY0LzJXTgeo\&ab_channel=TheOrganicChemistryTutor}\\$
- [2] T. Flórez. Métodos Numéricos para Estudiantes de Ingeniería. Publicaciones Facultad de Ingeniería.
- [3] https://la.mathworks.com/help/matlab/index.html?s_tid=CRUX_topnav
- [4] Montoria_Series.pdf, Juan Manuel Rubio Vanegas.