MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

25. september 2024

Vsebina

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
- 🜀 Pravokotni koordinatni sistem, linearna funkcija

Section 1

Osnove logike in teorije množice

3/106

- Osnove logike in teorije množice
 - Osnove logike
 - Osnove teorije množic
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- Oeljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
- 🌀 Pravokotni koordinatni sistem, linearna funkcija

Matematična izjava

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

5 / 106

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

5 / 106

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

5/106

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

• izjava je resnična/pravilna, oznaka $R/P/1/\top$;

5/106

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

- izjava je **resnična/pravilna**, oznaka R/P/1/T;
- izjava je **neresnična/nepravilna**, oznaka $N/0/\bot$.

5/106

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

- izjava je **resnična/pravilna**, oznaka R/P/1/T;
- izjava je **neresnična/nepravilna**, oznaka $N/0/\bot$.

Izjave označujemo z velikimi tiskanimi črkami (A, B, C ...).

5/106

Osnove logike

6/106

Ali so naslednje povedi izjave?

Ali so naslednje povedi izjave?

- Danes sije sonce.
- Koliko je ura?
- Piramida je geometrijski lik.
- Daj mi jabolko.
- Število 12 deli število 3.
- Število 3 deli število 10.
- Ali si pisal matematični test odlično?
- Matematični test si pisal odlično.
- Ali je 10 *dl* isto kot 1 *l*?
- Število 41 je praštevilo.

6 / 106

Spodnjim izjavam določite logične vrednosti.

7/106

Spodnjim izjavam določite logične vrednosti.

- A: Najvišja gora v Evropi je Mont Blanc.
- B: Število je deljivo s 4 natanko takrat, ko je vsota števk deljiva s 4.
- C: Ostanek pri deljenju s 4 je lahko 1, 2 ali 3.
- D: Mesec februar ima 28 dni.
- E: Vsa praštevila so liha števila.
- F: Število 1 je naravno število.
- G: Praštevil je neskončno mnogo.

7 / 106

8/106

Jan Kastelic (GAA)

Izjave delimo med:

25. september 2024

Izjave delimo med:

• elementarne/enostavne izjave – ne moremo jih razstaviti na bolj enostavne;

8 / 106

Izjave delimo med:

- elementarne/enostavne izjave ne moremo jih razstaviti na bolj enostavne;
- **sestavljene izjave** sestavljene iz elementarnih izjav, ki jih med seboj povezujejo **logične operacije** (imenovane tudi izjavne povezave oziroma logična vezja).

8 / 106

Izjave delimo med:

- elementarne/enostavne izjave ne moremo jih razstaviti na bolj enostavne;
- sestavljene izjave sestavljene iz elementarnih izjav, ki jih med seboj povezujejo logične operacije (imenovane tudi izjavne povezave oziroma logična vezja).

Vrednost sestavljene izjave izračunamo glede na vrednosti elementarnih izjav in izjavnih povezav med njimi.

8 / 106

Izjave delimo med:

- elementarne/enostavne izjave ne moremo jih razstaviti na bolj enostavne;
- **sestavljene izjave** sestavljene iz elementarnih izjav, ki jih med seboj povezujejo **logične operacije** (imenovane tudi izjavne povezave oziroma logična vezja).

Vrednost sestavljene izjave izračunamo glede na vrednosti elementarnih izjav in izjavnih povezav med njimi.

Pravilnost sestavljenih izjav nazorno prikazujejo resničnostne/pravilnostne tabele.

8 / 106

Jan Kastelic (GAA)

Negacija

Negacija

Negacija izjave A je izjava, ki **trdi nasprotno** kot izjava A.

9/106

Negacija

Negacija izjave A je izjava, ki **trdi nasprotno** kot izjava A.

¬**A Ni res**, da velja izjava A.

9 / 106

Negacija

Negacija izjave A je izjava, ki trdi nasprotno kot izjava A.

¬**A Ni res**, da velja izjava A.

Če je izjava A pravilna, je $\neg A$ nepravilna in obratno: če je $\neg A$ pravilna, je A nepravilna.

Negacija

Negacija izjave A je izjava, ki trdi nasprotno kot izjava A.

¬**A Ni res**, da velja izjava A.

Če je izjava A pravilna, je $\neg A$ nepravilna in obratno: če je $\neg A$ pravilna, je A nepravilna.

Negacija

Negacija izjave A je izjava, ki trdi nasprotno kot izjava A.

¬**A Ni res**, da velja izjava A.

Če je izjava A pravilna, je $\neg A$ nepravilna in obratno: če je $\neg A$ pravilna, je A nepravilna.

Negacija negacije izjave je potrditev izjave. $\neg(\neg A) = A$

Jan Kastelic (GAA) MATEMATIKA

10 / 106

Izjavam določite logično vrednost, potem jih zanikajte in določite logično vrednost negacij.

10 / 106

Izjavam določite logično vrednost, potem jih zanikajte in določite logično vrednost negacij.

- $A: 5 \cdot 8 = 30$
- B: Število 3 je praštevilo.
- C: Največje dvomestno število je 99.
- D: Število 62 je večratnik števila 4.
- E: Praštevil je neskončno mnogo.
- *F*: 7 ≤ 5
- G: Naša pisava je cirilica.

25. september 2024

25. september 2024

Jan Kastelic (GAA)

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z in (hkrati).

11/106

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z **in (hkrati)**.

A ∧ **B** Velja izjava A **in (hkrati)** izjava B.

11/106

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z **in (hkrati)**.

 $A \wedge B$ Velja izjava A in (hkrati) izjava B.

Če sta izjavi A in B pravilni, je pravilna tudi njuna konjunkcija, če je pa ena od izjav nepravilna, je nepravilna tudi njuna konjunkcija.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 11 / 106

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z in (hkrati).

A ∧ **B** Velja izjava A **in (hkrati)** izjava B.

Če sta izjavi A in B pravilni, je pravilna tudi njuna konjunkcija, če je pa ena od izjav nepravilna, je nepravilna tudi njuna konjunkcija.

Α	В	$A \wedge B$
P	Р	Р
P	Ν	Ν
N	Р	Ν
N	Ν	N

25. september 2024

Naloga

Določite logično vrednost konjunkcijam.

Naloga

Določite logično vrednost konjunkcijam.

- Število 28 je večratnik števila 3 in večkratnik števila 8.
- Število 7 je praštevilo in je deljivo s številom 1.
- Vsakemu celemu številu lahko pripišemo nasprotno število in obratno število.
- Ostanki pri deljenju števila s 3 so lahko 0, 1 ali 2, pri deljenju s 5 pa 0, 1, 2, 3 ali 4.
- Število je deljivo s 3, če je vsota števk deljiva s 3, in je deljivo z 9, če je vsota števk deljiva z 9.

12 / 106

Osnove logike

25. september 2024

Disjunkcija izjav A in B nastane s povezavo **ali**.

13 / 106

Disjunkcija izjav A in B nastane s povezavo ali.

A ∨ **B** Velja izjava A **ali** izjava B (lahko tudi obe hkrati).

13 / 106

Disjunkcija izjav A in B nastane s povezavo **ali**.

 $\mathbf{A} \vee \mathbf{B}$ Velja izjava A **ali** izjava B (lahko tudi obe hkrati).

Disjunkcija je nepravilna, če sta nepravilni obe izjavi, ki jo sestavljata, v preostalih treh primerih je pravilna.

13 / 106

Disjunkcija izjav A in B nastane s povezavo **ali**.

 $\mathbf{A} \vee \mathbf{B}$ Velja izjava A **ali** izjava B (lahko tudi obe hkrati).

Disjunkcija je nepravilna, če sta nepravilni obe izjavi, ki jo sestavljata, v preostalih treh primerih je pravilna.

Α	В	$A \vee B$
Р	Р	Р
Р	Ν	Р
Ν	Р	Р
Ν	Ν	Ν

25. september 2024

14 / 106

Naloga

Določite logično vrednost disjunkcijam.

14 / 106

Naloga

Določite logično vrednost disjunkcijam.

- Število 24 je večratnik števila 3 ali 8.
- Število 35 ni večratnik števila 7 ali 6.
- Število 5 deli število 16 ali 18.
- Ploščina kvadrata s stranico a je a^2 ali obseg kvadrata je 4a.
- Ni res, da je vsota notranjih kotov trikotnika 160°, ali ni res, da Pitagorov izrek velja v poljubnem trikotniku.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 14 / 106

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 15 / 106

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

15 / 106

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 15 / 106

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \vee B) \vee C = A \vee (B \vee C)$$

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 15 / 106

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \vee B) \vee C = A \vee (B \vee C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

15 / 106

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 15 / 106

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

De Morganova zakona

25. september 2024

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

De Morganova zakona

• negacija konjunkcije je disjunkcija negacij: $\neg(A \land B) = \neg A \lor \neg B$

15 / 106

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

De Morganova zakona

- negacija konjunkcije je disjunkcija negacij: $\neg(A \land B) = \neg A \lor \neg B$
- negacija disjunkcije je konjunkcija negacij: $\neg(A \lor B) = \neg A \land \neg B$

16 / 106

Naloga

Katere od spodnjih izjav so pravilne in katere nepravilne?

16 / 106

Naloga

Katere od spodnjih izjav so pravilne in katere nepravilne?

- $(3 \cdot 4 = 12) \wedge (12 : 4 = 3)$
- $(a^3 \cdot a^5 = a^{15}) \vee (a^3 \cdot a^5 = a^8)$
- (3|30) ∧ (3|26)
- (3|30) ∨ (3|26)
- $(2^3 = 9) \lor (3^2 = 9)$
- $((-2)^2 = 4) \land \neg (-2^2 = 4)$

16 / 106

17 / 106

Jan Kastelic (GAA) MATEMATIKA

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

17 / 106

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $A \Rightarrow B$ Če velja izjava A, potem velja izjava B. / Iz A sledi B.

17 / 106

Implikacija izjavA in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $\mathbf{A} \Rightarrow \mathbf{B}$ Če velja izjava A, **potem** velja izjava B. / Iz A sledi B.

Izjava A je **pogoj** ali **privzetek**, izjava B pa (logična) posledica izjave A.

17 / 106

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $\mathbf{A} \Rightarrow \mathbf{B}$ Če velja izjava A, **potem** velja izjava B. / Iz A sledi B.

Izjava A je **pogoj** ali **privzetek**, izjava B pa (logična) posledica izjave A.

Implikacija je nepravilna, ko je izjava A pravilna, izjava B pa nepravilna, v preostalih treh primerih je pravilna.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 17 / 106

Implikacija

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $\mathbf{A} \Rightarrow \mathbf{B}$ Če velja izjava A, **potem** velja izjava B. / Iz A sledi B.

Izjava A je **pogoj** ali **privzetek**, izjava B pa (logična) posledica izjave A.

Implikacija je nepravilna, ko je izjava A pravilna, izjava B pa nepravilna, v preostalih treh primerih je pravilna.

Α	В	$A \Rightarrow B$
Р	Р	Р
Р	N	Ν
Ν	Р	Р
Ν	N	Р

Osnove logike

Naloga

Določite, ali so izjave pravilne.

Naloga

Določite, ali so izjave pravilne.

- Če je število deljivo s 100, je deljivo tudi s 4.
- Če je štirikotnik pravokotnik, se diagonali razpolavljata.
- Če je štirikotnik kvadrat, se diagonali sekata pod pravim kotom.
- Če sta števili 2 in 3 lihi števili, potem je produk teh dveh števil sodo število.
- Če je število 18 deljivo z 9, potem je deljivo s 3.
- Če je 7 večkratnik števila 7, potem 7 deli število 43.
- Če je število deljivo s 4, potem je deljivo z 2.

18 / 106

Osnove logike

25. september 2024

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

19 / 106

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 19 / 106

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

Ekvivalenca dveh izjav je pravilna, če imata obe izjavi enako vrednost (ali sta obe pravilni ali obe nepravilni), in nepravilna, če imata izjavi različno vrednost.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 19 / 106

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

Ekvivalenca dveh izjav je pravilna, če imata obe izjavi enako vrednost (ali sta obe pravilni ali obe nepravilni), in nepravilna, če imata izjavi različno vrednost.

Α	В	$A \Leftrightarrow B$
Р	Р	Р
Р	Ν	Ν
Ν	Р	Ν
Ν	Ν	Р

25. september 2024

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

Ekvivalenca dveh izjav je pravilna, če imata obe izjavi enako vrednost (ali sta obe pravilni ali obe nepravilni), in nepravilna, če imata izjavi različno vrednost.

Ekvivalentni/enakovredni izjavi pomenita eno in isto, lahko ju nadomestimo drugo z drugo.

Α	В	$A \Leftrightarrow B$
Р	Р	Р
Р	Ν	Ν
Ν	Р	Ν
Ν	N	Р

19 / 106

Osnove logike

Naloga

Določite, ali so naslednje izjave pravilne.

Naloga

Določite, ali so naslednje izjave pravilne.

- Število je deljivo z 12 natanko takrat, ko je deljivo s 3 in 4 hkrati.
- Število je deljivo s 24 natanko takrat, ko je deljivo s 4 in 6 hkrati.
- Število je praštevilo natanko takrat, ko ima natanko dva delitelja.
- Štirikotnik je kvadrat natanko tedaj, ko se diagonali sekata pod pravim kotom.
- Število je sodo natanko tedaj, ko je deljivo z 2.

20 / 106

Osnove logike

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

negacija,

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,

21 / 106

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,
- implikacija,

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,
- implikacija,
- ekvivalenca.

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,
- implikacija,
- ekvivalenca.

Če moramo zapored izvesti več enakih izjavnih povezav, velja pravilo združevanja od leve proti desni.

21 / 106

Osnove logike

Naloga

V sestavljeni izjavi zapišite oklepaje, ki bodo predstavljali vrstni red operacij. Nato tvorite pravilnostno tabelo za sestavljeno izjavo glede na različne logične vrednosti elementarnih izjav.

Naloga

V sestavljeni izjavi zapišite oklepaje, ki bodo predstavljali vrstni red operacij. Nato tvorite pravilnostno tabelo za sestavljeno izjavo glede na različne logične vrednosti elementarnih izjav.

- $A \lor B \Leftrightarrow \neg A \Rightarrow \neg B$
- $A \lor \neg A \Rightarrow \neg B \land (\neg A \Rightarrow B)$
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$
- $A \land \neg B \Leftrightarrow A \Rightarrow B$
- $C \Rightarrow A \lor \neg B \Leftrightarrow \neg A \land C$
- $\neg A \lor \neg B \Leftrightarrow B \land (C \Leftrightarrow \neg A)$

Jan Kastelic (GAA)

Osnove logike

25. september 2024

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 23 / 106

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

23 / 106

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

23 / 106

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

Kvantifikatorja

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

Kvantifikatorja

• ∀ (beri '(za) vsak') – izjava velja za vsak element dane množice

23 / 106

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

Kvantifikatorja

- ∀ (beri '(za) vsak') izjava velja za vsak element dane množice
- ullet (beri 'obstaja' ali 'eksistira') izjava je pravilna za vsaj en element dane množice

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 23 / 106

Pomen izjav v matematiki

24 / 106

Pomen izjav v matematiki

Aksiomi so najpreprostejše izjave, ki so očitno pravilne in zato njihove pravilnosti ni treba dokazovati.

24 / 106

Pomen izjav v matematiki

Aksiomi so najpreprostejše izjave, ki so očitno pravilne in zato njihove pravilnosti ni treba dokazovati.

Izreki ali **teoremi** so izjave, ki so pravilne, vendar pa njihova pravilnost ni očitna. Pravilnost izreka (teorema) moramo potrditi z dokazom, ki temelji na aksiomih in na preprostejših že prej dokazanih izrekih.

24 / 106

Pomen izjav v matematiki

Aksiomi so najpreprostejše izjave, ki so očitno pravilne in zato njihove pravilnosti ni treba dokazovati.

Izreki ali **teoremi** so izjave, ki so pravilne, vendar pa njihova pravilnost ni očitna. Pravilnost izreka (teorema) moramo potrditi z dokazom, ki temelji na aksiomih in na preprostejših že prej dokazanih izrekih.

Definicije so izjave, s katerimi uvajamo nove pojme. Najpreprostejših pojmov v matematiki ne opisujemo z definicijami (to so pojmi kot npr.: število, premica ipd.); vsak nadaljnji pojem pa moramo definirati, zato da se nedvoumno ve, o čem govorimo.

24 / 106

Jan Kastelic (GAA)

Množica

Jan Kastelic (GAA)

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 25 / 106

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

25 / 106

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

• lahko naštejemo vse njene elemente ali

25 / 106

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

- lahko naštejemo vse njene elemente ali
- poznamo pravilo/skupno lastnost, ki pove, kateri elementi so v množici.

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 25 / 106

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

- lahko naštejemo vse njene elemente ali
- poznamo pravilo/skupno lastnost, ki pove, kateri elementi so v množici.

Označujemo jih z velikimi črkami (A, B, C... ali A, B, C...).

25 / 106

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

- lahko naštejemo vse njene elemente ali
- poznamo pravilo/skupno lastnost, ki pove, kateri elementi so v množici.

Označujemo jih z velikimi črkami $(A, B, C \dots \text{ ali } A, B, C \dots)$.

Univerzalna množica

25 / 106

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

- lahko naštejemo vse njene elemente ali
- poznamo pravilo/skupno lastnost, ki pove, kateri elementi so v množici.

Označujemo jih z velikimi črkami (A, B, C... ali A, B, C...).

Univerzalna množica

Univerzalna množica ali **univerzum** (\mathcal{U}) je množica vseh elementov, ki v danem primeru nastopajo oziroma jih opazujemo.

26 / 106

25. september 2024

Element množice je objekt v množici.

26 / 106

Element množice je objekt v množici.

Označujemo jih z malimi črkami $(a, b, c \dots)$.

26 / 106

Element množice je objekt v množici.

Označujemo jih z malimi črkami $(a, b, c \dots)$.

Elemente množice zapisujemo v zavitem oklepaju (npr. $A = \{a, b, c\}$).

25. september 2024

Element množice je objekt v množici.

Označujemo jih z malimi črkami $(a, b, c \dots)$.

Elemente množice zapisujemo v zavitem oklepaju (npr. $A = \{a, b, c\}$).

Element je lahko vsebovan v množici (npr. $a \in A$) ali pa v množici ni vsebovan (npr. $d \notin A$).

26 / 106

Element množice je objekt v množici.

Označujemo jih z malimi črkami $(a, b, c \dots)$.

Elemente množice zapisujemo v zavitem oklepaju (npr. $A = \{a, b, c\}$).

Element je lahko vsebovan v množici (npr. $a \in A$) ali pa v množici ni vsebovan (npr. $d \notin A$).

Prazna množica

26 / 106

Element množice je objekt v množici.

Označujemo jih z malimi črkami $(a, b, c \dots)$.

Elemente množice zapisujemo v zavitem oklepaju (npr. $A = \{a, b, c\}$).

Element je lahko vsebovan v množici (npr. $a \in A$) ali pa v množici ni vsebovan (npr. $d \notin A$).

Prazna množica

Prazna množica $(\emptyset, \{\})$ je množica, ki ne vsebuje nobenega elementa.

Jan Kastelic (GAA)

Moč množice

Moč množice

Število elementov v množici predstavlja **moč množice**. Oznaka: $\mathbf{m}(\mathcal{A})$ ali $|\mathcal{A}|$.

Množica je lahko:

- **končna množica** vsebuje končno mnogo elementov: $\mathbf{m}(A) = \mathbf{n}$;
- neskončna množica vsebuje neskončno mnogo elementov: $\mathbf{m}(\mathcal{A}) = \infty$.

Če ima množica toliko elementov, kot jih ima množica naravnih števil, je ta števno neskončna. Njeno moč pišemo kot: $m(A) = \aleph_0$.

Za množici, ki imata isto moč, rečemo, da sta **ekvipolentni** oziroma **ekvipotentni**.

Podmnožica

Množica $\mathcal B$ je **podmnožica** množice $\mathcal A$, če za vsak element iz $\mathcal B$ velja, da je tudi element množice $\mathcal A$.

$$\mathcal{B} \subseteq \mathcal{A} \Leftrightarrow \forall x \in \mathcal{B} \Rightarrow x \in \mathcal{A}$$

- $\forall A : A \subseteq A$ Vsaka množica je podmnožica same sebe.
- $\forall A : \emptyset \subseteq A$ Prazna množica je podmnožica vsake množice.

Moč podmnožice \mathcal{B} množice \mathcal{A} je manjša ali enaka moči množice \mathcal{A} :

$$\mathcal{B} \subseteq \mathcal{A} \Rightarrow m(\mathcal{B}) \leq m(\mathcal{A})$$

Množici \mathcal{A} in \mathcal{B} sta **enaki**, če imata iste elemente; sta druga drugi podmnožici.

$$\mathcal{A} = \mathcal{B} \Leftrightarrow (\mathcal{A} \subseteq \mathcal{B}) \wedge (\mathcal{B} \subseteq \mathcal{A})$$

Podmnožica \mathcal{B} množice \mathcal{A} , ki ni enaka množici \mathcal{A} , je **prava podmnožica** množice \mathcal{A} .

Potenčna množica

Potenčna množica množice \mathcal{A} je množica vseh podmnožic množice \mathcal{A} .

Oznaka: $\mathcal{PA} / \mathcal{P}(\mathcal{A})$.

$$\mathcal{P}\mathcal{A} = \{\mathcal{X}; \mathcal{X} \subseteq \mathcal{A}\}$$

$$m(\mathcal{P}\mathcal{A})=2^{m(\mathcal{A})}$$

Potenčna množica ni nikoli prazna – vsebuje vsaj prazno množico.

Section 2

Naravna in cela števila, izrazi, enačbe in neenačbe

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 30 / 106

- Osnove logike in teorije množice
- 💿 Naravna in cela števila, izrazi, enačbe in neenačbe
 - Naravna in cela števila
 - Računanje z naravnimi in celimi števili
 - Izraz, enačba, neenačba
 - Računanje s potencami z naravnimi eksponenti
 - Razčlenjevanje izrazov
 - ullet Razstavljanje izrazov v množici $\mathbb Z$
 - ullet Reševanje linearnih in razcepnih enačb v množici $\mathbb Z$
 - Reševanje linearnih neenačb v množici Z
- Deljivost, izjave, množice

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 31 / 106

Naravna števila

Množica naravnih števil:

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

Naravna števila so števila s katerimi štejemo.

Naravna števila lahko predstavimo s točko na številski premici.

32 / 106

Množico naravnih števil definirajo Peanovi aksiomi:

- Vsako naravno število (n) ima svojega naslednika (n+1).
- Število 1 ni naslednik nobenega naravnega števila.
- Različni naravni števili imata različna naslednika: $(n+1 \neq m+1; n \neq m)$.
- Če neka trditev velja za vsako naravno število in tudi za njegovega naslednika, velja za vsa naravna števila princip popolne indukcije.

V množici $\mathbb N$ sta definirani notranji operaciji: **seštevanje** in **množenje**.

33 / 106

Seštevanje

Poljubnima naravnima številoma a in b priredimo **vsoto** a + b.

Vsota naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a + b \in \mathbb{N}$.

Lastnosti:

- **komutativnost** členov/zakon o zamenjavi členov: a + b = b + a.
- asociativnost členov/zakon o združevanju členov: (a + b) + c = a + (b + c).

34 / 106

Množenje

Poljubnima naravnima številoma a in b priredimo **produkt** $a \cdot b$.

Produkt naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a \cdot b \in \mathbb{N}$.

Lastnosti:

- **komutativnost** faktorjev/zakon o zamenjavi faktorjev: $a \cdot b = b \cdot a$.
- asociativnost faktorjev/zakon o združevanju faktorjev: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- **distributivnost**/zakon o razčlenjevanju: $a \cdot (b + c) = a \cdot b + a \cdot c$.
- zakon o nevtralnem elementu: $a \cdot 1 = a$.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 35 / 106

Cela števila

Množica celih števil:

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$$

Množica celih števil je definirana kot unija treh množic:

$$\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$$

- množica **pozitivnih celih števil** (\mathbb{Z}^+) naravna števila;
- število 0:
- ullet množica **negativnih celih števil** (\mathbb{Z}^-) nasprotna števila vseh naravnih števil.

Nasprotno število število a je -a.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 36 / 106

Poleg seštevanja in množenja je kot notranja operacija množice celih števil definirano še **odštevanje**.

Odštevanje

Poljubnima naravnima številoma a in b priredimo razliko a - b.

Odštevanje definiramo kot prištevanje nasprotne vrednosti: a-b=a+(-b)

Za odštevanje velja zakon **distributivnosti**: $a \cdot (b - c) = a \cdot b - a \cdot c$.

37 / 106

Računski zakoni

Komutativnostni zakon:

$$a+b=b+a$$
 in $a\cdot b=b\cdot a$

Asociativnostni zakon:

$$a + (b + c) = (a + b) + c$$
 in $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Zakon o nevtralnem elementu:

$$a+0=a$$
 in $a\cdot 1=a$

• Zakon o inverznem/nasprotnem elementu:

$$a + (-a) = 0$$

Distributivnostni zakon:

$$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$$

MATEMATIKA

Pravila za računanje s celimi števili

•
$$-(-a) = a$$

- $0 \cdot a = 0$
- \bullet $-1 \cdot a = -a$
- (-a) + (-b) = -(a+b)
- $\bullet (-a) \cdot b = -(a \cdot b) = a \cdot (-b)$
- $(-a) \cdot (-b) = a \cdot b$

39 / 106

Računanje z naravnimi in celimi števili

41 / 106

Izraz, enačba, neenačba

42 / 106

Računanje s potencami z naravnimi eksponenti

Potenca $\mathbf{a}^{\mathbf{n}}$, pri čemer je $n \in \mathbb{N}$, je produkt n faktorjev enakih a.

Pravila za računanje s potencami:

- $\mathbf{a^n} \cdot \mathbf{b^n} = (\mathbf{ab})^\mathbf{n}$ potenci z enakima eksponentoma zmnožimo tako, da zmnožimo osnovi in prepišemo eksponent
- $oldsymbol{a^m}\cdot oldsymbol{a^n}=oldsymbol{a^{m+n}}$ potenci z enako osnovo zmnožimo tako, da osnovo prepišemo in seštejemo eksponenta
- $(a^n)^m = a^{nm}$ potenco potenciramo tako, da osnovo prepišemo in zmnožimo eksponenta

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 43 / 106

Razčlenjevanje izrazov

44 / 106

Razstavljanje izrazov v množici $\mathbb Z$

45 / 106

Reševanje linearnih in razcepnih enačb v množici Z

46 / 106

Reševanje linearnih neenačb v množici Z

47 / 106

Section 3

Deljivost, izjave, množice

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 48 / 106

- 1 Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- Oeljivost, izjave, množice
 - Relacija deljivosti
 - Pravila za deljivost
 - Praštevila in sestavljena števila
 - Največji skupni delitelj in najmanjši skupni večkratnik
 - Osnovni izrek o deljenju
 - Evklidov algoritem in zveza Dv = ab
 - Številski sestavi
 - Izjave
 - Množice

25. september 2024

Relacija deljivosti

MATEMATIKA

Pravila za deljivost

51 / 106

Praštevila in sestavljena števila

52 / 106

Največji skupni delitelj in najmanjši skupni večkratnik

53 / 106

Osnovni izrek o deljenju

54 / 106

Evklidov algoritem in zveza Dv = ab

55 / 106

Številski sestavi

4 D > 4 D > 4 D > 4 D >

Izjave

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Množice

Section 4

Racionalna števila

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- Deljivost, izjave, množice
- 🐠 Racionalna števila
 - Številski ulomki
 - Racionalna števila
 - Urejenost racionalnih števil
 - Algebrski ulomki
 - Računanje z ulomki
 - Potence s celimi eksponenti
 - Pravila za računanje s potencami s celimi eksponenti

25. september 2024

Številski ulomki

61 / 106

Jan Kastelic (GAA) MATEMATIKA 25.

62 / 106

63 / 106

Jan Kastelic (GAA) MATEMATIKA

25. september 2024

Glede na predznak razdelimo racionalna števila v tri množice:

$$\mathbb{Q} =$$

63 / 106

Glede na predznak razdelimo racionalna števila v tri množice:

• množico negativnih racionalnih števil Q-,

$$\mathbb{Q} = \mathbb{Q}^-$$

63 / 106

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil Q⁻,
- množico z elementom nič: $\{\mathbf{0}\}$ in

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\}$$

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil Q⁻,
- množico z elementom nič: $\{\mathbf{0}\}$ in
- množico pozitivnih racionalnih števil: Q⁺.

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

64 / 106

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

64 / 106

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti* $ve\check{c}ji$ (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja natanko ena izmed treh možnosti:

• prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;

64 / 106

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;

64 / 106

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- o ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

64 / 106

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- o ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

Enaka ulomka predstavljata isto racionalno število.

64 / 106

MATEMATIKA

Urejenost racionalnih števil

65 / 106

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

65 / 106

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

$$\mathbb{Q}^ \mathbb{Q}^+$$
negativna števila pozitivna števila

65 / 106

Jan Kastelic (GAA) MATEMATIKA

Slika večjega racionalnega števila $\frac{a}{b}$ je na številski premici desno od slike manjšega racionalnega števila $\frac{c}{d}$.

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

$$\mathbb{Q}^ \mathbb{Q}^+$$
 negativna števila pozitivna števila

V množici ulomkov velja, da je vsak negativen ulomek manjši od vsakega pozitivnega ulomka.

65 / 106

66 / 106

Monotonost vsote

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

66 / 106

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

66 / 106

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

66 / 106

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

66 / 106

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{c}{d} < \frac{e}{f} \quad \Rightarrow \quad \frac{a}{b} < \frac{e}{f}$$

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 66 / 106

Urejenost racionalnih števil

67 / 106

67 / 106

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

67 / 106

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

67 / 106

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad -\frac{a}{b} > -\frac{c}{d}$$

25. september 2024

Urejenost racionalnih števil

< ロト < 個 ト < 重 ト < 重 ト ■ ● へ Q ○

25. september 2024

• prvi ulomek je večji ali enak od drugega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \geq bc$;

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣९○

68 / 106

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \leq bc$;

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 68 / 106

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

68 / 106

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

• $\frac{a}{b} \leq \frac{a}{b}$ - refleksivnost;

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \leq bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{e}{f} \Rightarrow \frac{a}{b} \le \frac{e}{f}$ tranzitivnost.

Algebrski ulomki

Računanje z ulomki

70 / 106

Potence s celimi eksponenti

71 / 106

Pravila za računanje s celimi eksponenti

72 / 106

Premo in obratno sorazmerje

73 / 106

Odstotki

74 / 106

Section 5

Realna števila, statistika

75 / 106

- Osnove logike in teorije množice
- Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- Racionalna števila
- 듌 Realna števila, statistika
 - Realna števila
 - Kvadratni in kubični koren
 - Intervali
 - Absolutna vrednost
 - Sistem linearnih enačb

25. september 2024

Realna števila

Jan Kastelic (GAA) MATEMATIKA

Kvadratni in kubični koren

78 / 106

Jan Kastelic (GAA) MATEMATIKA

Naloga 563

Izračunaj in rezultat delno koreni.

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\check{c}\right)\;\left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\;\left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\left(g\right)\ 8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

(g)
$$8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\;\left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(r)
$$\sqrt{5\sqrt{3}-5} \cdot \sqrt{2\sqrt{3}+2} - (\sqrt{5})^3$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

(č)
$$\left(5\sqrt{3} + 2\sqrt{27}\right)\left(\sqrt{75} - 4\sqrt{12} + \sqrt{147}\right)$$

(g)
$$8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3}) \cdot 3\sqrt{2} - (2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(r)
$$\sqrt{5\sqrt{3}-5} \cdot \sqrt{2\sqrt{3}+2} - (\sqrt{5})^3$$

(u)
$$(\sqrt{17}-3)\sqrt{26+6\sqrt{17}}-\sqrt{2}(\sqrt{2}+\sqrt{6})$$

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo **krajišči intervala**.

80 / 106

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo **krajišči intervala**.

Vključenost krajišč

80 / 106

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo krajišči intervala.

Vključenost krajišč

• Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.

80 / 106

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo krajišči intervala.

Vključenost krajišč

- Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.
- Simbola "(" in ")" označujeta krajišče, ki ne spada k intervalu.

80 / 106

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo **krajišči intervala**.

Vključenost krajišč

- Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.
- Simbola "(" in ")" označujeta krajišče, ki ne spada k intervalu.

Pri zapisu intervalov moramo biti pozorni na zapis vrstnega reda števil, ki določata krajišči.

$$[a,b] \neq [b,a]$$

80 / 106

Jan Kastelic (GAA)

Zaprti interval

Zaprti interval

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Jan Kastelic (GAA) MATEMATIKA

Zaprti interval

$$[\mathbf{a},\mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \le \mathbf{x} \le \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Odprti interval

Jan Kastelic (GAA)

Zaprti interval

$$[\mathbf{a},\mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \leq \mathbf{x} \leq \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Odprti interval

$$(\mathbf{a}, \mathbf{b}) = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} < \mathbf{x} < \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vendar ne vsebuje krajišč a in b.

4 - > 4 - | > 4 - = > 4 - = >

81 / 106

82 / 106

Polodprti/polzaprti interval

Jan Kastelic (GAA)

Polodprti/polzaprti interval

$$[\mathsf{a},\mathsf{b})=\{\mathsf{x}\in\mathbb{R};\mathsf{a}\leq\mathsf{x}<\mathsf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščem a, vendar ne vsebuje krajišča b.

82 / 106

Polodprti/polzaprti interval

Vsebuje vsa realna števila med a in b, vključno s krajiščem a, vendar ne vsebuje krajišča b.

Vsebuje vsa realna števila med a in b, vključno s krajiščem b, vendar ne vsebuje krajišča a.

82 / 106

25. september 2024

Jan Kastelic (GAA) MATEMATIKA

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 83 / 106

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

25. september 2024

- $\bullet \ [\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \mathsf{x} \geq \mathsf{a}\}$
- $\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \mathsf{x} > \mathsf{a}\}$

25. september 2024

- $\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$
- $(\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} > \mathbf{a}\}$
- $\bullet \ (-\infty, \mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \leq \mathbf{b}\}$

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

$$\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \frac{\mathsf{x} > \mathsf{a}\}}{\mathsf{a}}$$

$$\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b} \}$$

b

$$\bullet \ (-\infty, \mathbf{b}) = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} < \mathbf{b} \}$$

b

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

$$\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \frac{\mathsf{x} > \mathsf{a}\}}{\mathsf{a}}$$

$$\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b} \}$$

$$ullet (-\infty, \mathbf{b}) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} < \mathbf{b}\}$$

$$ullet$$
 $(-\infty,\infty)=\{\mathbf{x};\mathbf{x}\in\mathbb{R}\}=\mathbb{R}$

25. september 2024

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

84 / 106

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

84 / 106

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

• Zapiši $I \cap J$ in $I \cup J$.

84 / 106

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 84 / 106

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapiši unijo in presek danih intervalov.

Naloga 423 (Linea nova)

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapiši unijo in presek danih intervalov.

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 84 / 106

Naloga 423 (Linea nova)

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapiši unijo in presek danih intervalov.

- (c) [4,8] in (3,5]
- (f) [-2,4] in $(2,\infty)$

Jan Kastelic (GAA)MATEMATIKA25. september 202484 / 106

Naloga 423 (Linea nova)

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapiši unijo in presek danih intervalov.

- (c) [4,8] in (3,5]
- (f) [-2,4] in $(2,\infty)$
- (g) $(-\infty, 3]$ in (-1, 5]

Jan Kastelic (GAA)

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

85 / 106

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitve linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

85 / 106

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

• na levi in desni strani neenačbe lahko prištejemo (ali odštejemo) isto število;

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 85 / 106

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

- na levi in desni strani neenačbe lahko prištejemo (ali odštejemo) isto število;
- levo in desno stran neenačbe lahko pomnožimo z istim (pozitivnim) številom;

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 85 / 106

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

- na levi in desni strani neenačbe lahko prištejemo (ali odštejemo) isto število;
- levo in desno stran neenačbe lahko pomnožimo z istim (pozitivnim) številom;
- če levo in desno stran neenačbe pomnožimo z negativnim številom, se znak neenakosti obrne.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 85 / 106

Intervali

Reši neenačbo in rešitev zapiši z intervalom.

86 / 106

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

86 / 106

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

86 / 106

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

86 / 106

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

(č)
$$x + 4 \le 8$$
; $5 - x < 8$

86 / 106

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

(č)
$$x + 4 \le 8$$
; $5 - x < 8$

(h)
$$3 - (2 + 4x) < x^2 - (2 - x)^2$$
; $2 - (2 - x)(x + 2) \ge x^2$

86 / 106

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

(č)
$$x + 4 \le 8$$
; $5 - x < 8$

(h)
$$3 - (2 + 4x) < x^2 - (2 - x)^2$$
; $2 - (2 - x)(x + 2) \ge x^2$

(e)
$$5x - 3 \ge 4$$
; $11 - 10x \ge -3$

86 / 106

Intervali

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

87 / 106

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza
$$A = 3 - (2x - 1)^2 + 4x(x + 2)$$
 in $B = 2 - \frac{x+1}{3}$. Za katere x je:

87 / 106

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- o realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza $A=3-(2x-1)^2+4x(x+2)$ in $B=2-\frac{x+1}{3}$. Za katere x je:

vrednost izraza A negativna,

87 / 106

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- o realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- o celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza $A = 3 - (2x - 1)^2 + 4x(x + 2)$ in $B = 2 - \frac{x+1}{3}$. Za katere x je:

- vrednost izraza A negativna,
- vrednost izraza B vsaj -88,

87 / 106

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- o realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza $A = 3 - (2x - 1)^2 + 4x(x + 2)$ in $B = 2 - \frac{x+1}{3}$. Za katere x je:

- vrednost izraza A negativna,
- vrednost izraza B vsaj -88,
- vrednost izraza B za 20 manjša od vrednosti izraza A?

87 / 106

Absolutna vrednost

Jan Kastelic (GAA)

Sistem linearnih enačb

89 / 106

Obravnavanje linearnih enačb, neenačb, sistemov

90 / 106

Absolutna in relativna napaka

91/106

Sredine

25. september 2024

Razpršenost podatkov

93 / 106

Prikazi

Section 6

Pravokotni koordinatni sistem, linearna funkcija

95 / 106

- 1 Osnove logike in teorije množice
- Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- Racionalna števila
- 6 Realna števila, statistika
- 📵 Pravokotni koordinatni sistem, linearna funkcija
 - Pravokotni koordinatni sistem
 - Razdalja med točkama in razpolovišče daljice
 - Ploščina trikotnika
 Jan Kastelic (GAA)

25. september 2024

Pravokotni koordinatni sistem

97 / 106

Razdalja med točkama in razpolovišče daljice

98 / 106

Ploščina trikotnika

99 / 106

Osnovno o funkcijah

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 100 / 106

Linearna funkcija in premica

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 101 / 106

Oblike enačbe premice

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 102 / 106

Presešišče premic

103 / 106

Sistem linearnih neenačb

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 104 / 106

Modeliranje z linearno funkcijo

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 105 / 106

(i) Linearno programiranje

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 106 / 106