TP2: Illustration de Théorèmes du cours avec R

Exercice 1 On considère une variable X à valeurs dans $\{0,1,3\}$, distribuée comme suit : P(X=0)=0.5, P(X=1)=0.25, P(X=3)=0.25.

- 1. Proposer une façon de simuler X avec \mathbb{R} . Suggestion : utiliser 2 variables de Bernoulli de paramètre 1/2.
- 2. On considère X_1, X_2, \ldots une suite infinie de variables indépendantes de même loi que X. Soit \overline{X}_n la moyenne empirique des X_i pour $i \in \{1, \ldots, n\}$.
 - (a) Simuler avec R la suite des X_i pour $i \in \{1, ..., 10000\}$.
 - (b) Produire un graphique représentant l'évolution de \overline{X}_n pour n variant de 1 à 10000. Que constate-on? Pouvait-on s'y attendre?
- 3. On désire maintenant approfondir comment \overline{X}_{100} varie autour de sa valeur moyenne.
 - (a) Proposer une transformation affine de \overline{X}_{100} , de la forme $Y = a * (\overline{X}_{100} + b)$, qui suive approximativement la loi $\mathcal{N}(0,1)$.
 - (b) Simuler avec R 10000 réalisations indépendantes de la variable Y. Nous les noterons Y_1, \ldots, Y_{10000} .
 - (c) Confirmer l'approximation gaussienne en réalisant avec Run histogramme des valeurs prises par les Y_j pour $j \in \{1, \dots, 10000\}$, sans oublier de tracer la densité gaussienne correctement renormalisée.
 - Commenter l'écart entre l'histogramme et la densité gaussienne.

Exercice 2 Dans tout l'exercice, pile sera associé à 1, et face à zéro. De plus, on notera θ la probabilité d'avoir pile.

- 1. Réalisez l'expérience aléatoire suivante : lancer n=15 fois une pièce de monnaie équilibrée. Pour ce faire on simulera (à l'aide de R) successivement 15 variables aléatoires de Bernoulli. On note x_i le résultat du ième lancer, où $i=1,\ldots,15$. Indiquer le résultat de l'expérience que vous venez de réaliser et donner la valeur de \overline{x} .
- 2. Faites 20 fois l'expérience aléatoire ci-dessus, et noter à chaque fois la valeur de \overline{x} obtenue.
 - (a) Imaginez un instant que vous ignorez le fait que la pièce est équilibrée. Que représente alors chaque \overline{x} ? Que constatez-vous? Commentez.
 - (b) Faites la moyenne de tous ces \overline{x} , puis comparer cette valeur à 0.5. On constate alors un écart entre ces deux valeurs : commentez cet écart relativement au fait que \overline{X} est un estimateur sans biais de θ .