MA 523: Homework 6

Carlos Salinas

October 24, 2016

CARLOS SALINAS PROBLEM 6.1

Problem 6.1

For n = 2 find Green's function for the quadrant $U = \{x_1, x_2 > 0\}$ by repeated reflection.

Solution. Taking the hit, set $x' = (x_1, -x_2)$ and $x'' = (-x_1, x_2)$ and define

$$\varphi^{x}(y) := \Phi(x - y) + \Phi(x' - y) - \Phi(x'' - y). \tag{6.1}$$

We claim that φ^x , as defined above, solves

$$\begin{cases} \Delta \varphi^x = 0 & \text{in } U, \\ \varphi^x(y) = \Phi(x - y) & \text{on } \partial U. \end{cases}$$

MA 523: Homework 6 —1 of 3—

CARLOS SALINAS PROBLEM 6.2

Problem 6.2

(Precise form of Harnack's inequality) Use Poisson's formula for the ball to prove

$$\frac{r^{n-2}(r-|x|)}{(r+|x|)^{n-1}}u(0) \le u(x) \le \frac{r^{n-2}(r+|x|)}{(r-|x|)^{n-1}}u(0)$$

whenever u is positive and harmonic in $B(0, r) = \{ x \in \mathbb{R}^n : |x| < r \}.$

Solution.

CARLOS SALINAS PROBLEM 6.3

Problem 6.3

Let $P_k(x)$ and $P_m(x)$ be homogeneous harmonic polynomials in \mathbb{R}^n of degrees k and m respectively; i.e.,

$$P_k(\lambda x) = \lambda^k P_k(x),$$
 $P_m(\lambda x) = \lambda^m P_m(x)$ for every $x \in \mathbb{R}^n$, $\lambda > 0$,
 $\Delta P_k = 0$, $\Delta P_m = 0$ in \mathbb{R}^n .

(a) Show that

$$\frac{\partial P_k}{\partial \nu} = k P_k(x), \qquad \frac{\partial P_m}{\partial \nu} = m P_m(x) \qquad \text{on } \partial B(0, 1)$$

where $B(0, 1) = \{ x \in \mathbb{R}^n : |x| < 1 \}$ and ν is the outward normal on $\partial B(0, 1)$.

(b) Use (a) and Green's formula to prove that

$$\int_{\partial B(0,1)} P_k(x) P_m(x) d\sigma = 0, \quad \text{if } k \neq m.$$

Solution.