EES216: Circuit Analysis Quiz 2 — Mock Exam

curated by The Peanuts

Name Nonprawich I ID 6622*772422 Section Seat No.

Conditions: Semi-Closed Book

Directions:

- 1. This exam has 6 pages (including this page).
- 2. Calculators (Casio 991 Series) are allowed.
- 3. Write your name clearly at the top of each page.
- 4. Reading the problem is optional but highly recommended.
- 5. You may bring one A3 sheet of note, which will magically become illegible the moment the exam begins.
- 6. Tears shed on your answer sheet may cause short circuits. Please cry responsibly.

For solution, click here.

Problem 1.1

If $v(t) = 8\cos(4t + 20^\circ) + 5\sin(4t - 45^\circ) = A\cos(4t + \theta)$. Find A and θ by using phasor diagram: = $5\sin(4t - 45 + 135 - 135)$ = $5\cos(4t - 135^\circ)$

$$A = 4.06 \#$$
, $\theta = -11.356 \#$

Problem 1.2

Calculate the rms value of the waveform shown below.

Problem 1.3

If that current (from 1.2) flows through a $10\,\Omega$ resistor, find the average power absorbed by the resistor.

$$P_{alog} = I_{rms}^{2} \cdot R$$

$$P_{alog} = \left(\frac{1}{8} \left[\int_{0}^{2} (st)^{2} dt + \int_{2}^{4} (10)^{2} dt + \int_{4}^{6} (30-5t)^{2} dt + \int_{6}^{8} 0^{2} dt \right] \right) (10) \text{ w } \#$$

$$= 417.216 \text{ w}$$

Problem 1.4

For the circuit shown below, determine the load impedance $\mathbf{Z_L}$ for maximum power transfer (to $\mathbf{Z_L}$). Calculate the maximum power absorbed by the load (P_{max}) .

Problem 2

$$ω = 2πf$$
 $ω = 2π(\frac{5}{π}) = 10 \text{ rad} B$

Use superposition to determine V_o in the circuit. The frequency is $\frac{5}{\pi}$ Hz.

Calculate the average power absorbed by each of the circuit elements.

$$P_{\text{Voltage Source}} = \frac{\text{-36 w}}{}, P_{\text{Current Source}} = \frac{\text{-18 w}}{},$$

$$P_{\text{Capacitor (0.1F)}} = 0$$
, $P_{\text{Inductor (0.1H)}} = 0$

Problem 3

The switch in the circuit has been close for a long time and is opened at t = 0. For the following circuit, find i(t) for t > 0.

$$\frac{1}{50}\frac{d^2I_L}{dt} + \frac{2}{5}\frac{dI_L}{dt} + I_L = 0$$
 (Rearranging the term)

Level 3: Force response I(00) = 3 A

Level 4:

① Complete Response = Natural Response + Transient Response
$$I(t) = A_1e^{-2928t} + A_2e^{-77.07t} + 3$$

