

R Package for indicator performance validation

Time [e.g. Indicator time series [IND]

A B C D E

A B C D E

A. Modeling IND trends

Each IND is modelled as a function of time using GAMs (using *mgcv*::gam()).

m_trend <- model_trend(ind_tbl = IND, time = YEAR)

Creates a tibble incl. GAM outputs, the model object, and predicted time series per IND.

Model diagnostics

pd <- plot_diagnostics(m_trend\$model)

Creates a tibble with individual and combined plots (ggplot2 objects).

Trend visualization

pt <- plot_trend(m_trend)

Creates a list with all IND trends from input tibble (ggplot2 objects).

The plot can be

additional applot2

modified with

themes.

pt\$IND_A

B. Modeling IND responses to pressures based on Generalized Additive Models (GAMs)

1. Initialization

All 3 data objects are combined to one tibble with defined training and test observations (as default 10% of last observations are kept as test data). All IND are combined with all PRESS provided as input.

dat_init <- ind_init(ind_tbl = IND, press_tbl = PRESS, time = YEAR)

Creates a tibble (IND x PRESS rows) including all training and test data.

Visualization of model results

p <- plot_model(init_tbl = dat_init, mod_tbl = m_all)

Creates a tibble with 4 individual and 1 combined plot (ggplot2).

View plots

p\$all_plots[[1]]

Alternatively: \$\frac{1}{2} \text{sponse_plot, \$predict_plot, \$deriv_plot, \$thresh_plot}\$

Generate 1 plot for multiple models:

gridExtra::grid.arrange(nrow=2, grobs=p\$response_plot[1:4])

Save plots

ml <- gridExtra::grid.arrange(grobs = p\$all_plots)

Creates >1 page for many models: ml <- gridExtra::marrangeGrob(grobs=p\$response_plot, nrow=2, ncol=3)

ggplot2::ggsave('File.pdf', ml,
height = 8, width = 10)

2a. Simple GAMs

A simple GAM is applied to all IND~PRESS combinations using the training observations.

m_gam <- model_gam(init_tbl = dat_init)

Creates a tibble incl. model outputs, diagnostics and model objects.

Model diagnostics

plot_diagnostics(model_list = m_gam\$model)

m_gam\$ks_test P-value from Kolmogorov-Smirnoff normality test.

m_gam\$pres_outlier Index of identified outlier.

m_gam\$tac Logical vector whether temporal autocorrelation (TAC) is significant.

Solutions Het

But and a second of the second

Heterogeneity or non-normality?

Transform original data OR change distribution:

model_gam(..., family=poisson())

Exclude outlier

Exclude outlier: model_gam(..., excl_outlier = m_gam\$pres_outlier)

Apply simple GAMMs (step 2b)

2b. Simple GAMMs

Inclusion of AR and ARMA correlation structures (using *mgcv*::gamm) for all IND~PRESS GAMs or those with sign. TAC (using the filter argument).

m_gamm <- model_gamm(init_tbl = dat_init, filter = m_gam\$tac, excl_outlier = NULL) Creates a tibble with 6 GAMMs for each selected

Model diagnostics

plot_diagnostics(model_list = m_gamm\$model)

m_gamm\$ks_test

IND~PRESS.

m_gamm\$pres_outlier

m_gamm\$tac

Selection of best corr structure

Manual or automatic selection based on the AIC using the select_model() function:

best_gamm <- select_model(gam_tbl = m_gam, gamm tbl = m_gamm)

2c. Model merging

Merges any 2 model output tibbles (can also be 2 GAM tibbles).

3. Derivatives of non-linear responses

Calculates for sign. GAM(M)s with edf > 1.5 (default setting) the 1st derivative of the smoothing function. The proportion of pressure range in which the IND response is significant is determined by a conditional bootstrap.

Output is input tibble with few additional variables, incl. the mean and confidence interval of smoothing functions and derivatives from bootstrapped GAMs:

m_calc\$prop

Proportion of effective pressure range, i.e. where slope of function is sign. different from zero - needed for subcriterion 10.2.

4. Pressure interactions

For each significant GAM(M) a selection of pressure variables is used to test whether these modify the IND response to the original pressure variable using a threshold-GAM formulation.

it <- select_interaction(mod_tbl = m_calc)

Output is input tibble with few additional variables:

\$interaction Logical vector indicating whether any threshold-GAM was better than the GAM(M)

\$thresh_model List of better performing threshold-GAMs

Model diagnostics m_all\$thresh_model %>% purrr::flatten %>% purrr::keep(~is.list(.x)) %>% plot diagnostics()

C. Score-based IND performance

Output from trend models

Output from pressure models

Scoring based on model outputs

Additional tibble provided by the user that lists the pressure type of each pressure needed for criterion C11 (link to management) and the visualisation [PRESS_TYPE].

crit |subcrit |score | weight | condition condition var

The package provides the full criteria template ("crit scores tmpl") described in the underlying framework (Otto et al., 2018, Ecol. Ind.), which is set as default in the scoring-related functions. It contains the scores and weights for each (sub-)criterion, the variables from the model output tibbles on which each(sub)criterion is based on as well as the condition to determine the actual score. The user can modify the weights, scores, conditions or remove specific (sub-)crits.

scores <- scoring(trend tbl = m trend, mod tbl = m all. press_type = PRESS_TYPE, crit_scores = crit_scores_tmpl)

Remove single criteria, e.g.trend criterion C8 (no trend model output needed anymore): scoring(mod_tbl = m_all, press_type =PRESS_TYPE, crit_scores = crit_scores_tmpl[crit_scores_tmpl\$crit_id > 1,])

scores <- expect_resp(mod_tbl = m_all, scores_tbl = scores) Runs a SHINY APP to modify the score for the sub-criterion 10.1 (IND response as expected) based on the response curves (default score 1 for neutral / no expectation).

Cluster analysis

sum_sc <- summary_sc(scores_tbl = scores)</pre>

Provides a user-friendly summary of the scoring output tibble.

Score visualization

spie <- plot spiechart(sum sc)

scores dist <- dist sc(sum_sc\$scores_matrix)

scores_dist <- dist_sc_group(list sc mat)

scores_clust <- clust_sc(scores dist)

plot_clust_sc(scores_clust) applot2 that can be modified with additional themes.

Calculates a (Euclidean) distance matrix based on all scores.

Calculates a distance matrix averaged across list of sub matrices: list_sc_mat <- list(sum_sc\$scores_matrix[,1:2],..)

Returns a hclust object and prints the Gower distance and Cophonetic correlation coefficient.

Selection of best performing and complementary IND suite

D. State assessment based on IND suite

Two approaches based on trajectories in state space are implemented in the package to determine the current state of the system in comparison to an earlier reference period using a selected IND suite (state space = n-dimensional space of possible locations of IND variables).

Euclidean distance in state space

Calculation of the Euclidean distance in state space of any dimensionality between each single year and a defined reference year.

IND_sub <- IND[, c(1,2,4)] (indicator selection)

ed <- statespace ed(x = IND sub, time = YEAR, ref time = YEAR[1])

plot_statespace_ed(ed)

Convex hull of state space

Given the identification of a reference domain in state space, more recent observations might lie within or outside this domain. The convex hull is a multivariate measure derived from computational geometry representing the smallest convex set containing all the reference points in Euclidean plane or space. For visualization, only 2 dimensions considered (dimension reduction through e.g. Principal Component Analysis suggested).

State space of 2 INDs

ch <- statespace_ch(x = IND\$A, y = IND\$B, time = YEAR, period ref = 1979:1983, period current = 2004:2008)

State space of first 2 principal components

pca <- vegan::rda(IND sub, scale = TRUE) pca sc <- vegan::scores(pca, scaling = 0)

ch <- statespace_ch(x = pca_sc\$sites[,1], y = pca_sc\$sites[,2], time = YEAR, period ref = 1979:1983. period_current = 2004:2008)

plot_statespace_ch(ch) + ggplot2::xlab("PC1") + ggplot2::ylab("PC2")

Final output tibble from all modeling functions (m_all)

CC BY · Saskia Otto · saskia.otto@uni-hamburg.de