SRM Institute of Science and Technology

Faculty of Engineering and Technology

Department of Mathematics

Question Bank- Fourier Transform(Unit-4)

1. If f(x) is piece-wise continuously differentiable and absolutely integrable in $(-\infty, \infty)$ then

(A)
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t)e^{i(x-t)s}dtds$$

(B)
$$f(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t)e^{i(x-t)s}dtds$$

(C)
$$f(x) = \frac{1}{2\pi} \int_{0}^{\infty} \int_{0}^{\infty} f(t)e^{i(x-t)s}dtds$$

(D)
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{0}^{\infty} f(t)e^{i(x-t)s}dtds$$

Answer: (A)

2. If f(x) is piece-wise continuously differentiable and absolutely integrable in $(-\infty,\infty)$ then $f(x)=\frac{1}{2\pi}\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}f(t)e^{i(x-t)s}dtds$.

1

- (A) Fourier integral theorem
- (B) Modulation theorem
- (C) Shifting theorem
- (D) Convolution theorem

Answer: (A)

3. The infinite Fourier transform of a function f(x) is

(A)
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{ist}dt$$

(B)
$$\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(x)e^{ist}dt$$

(C)
$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} f(x)e^{isx}dx$$

(D)
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx}dx$$

Answer: (D)

4. The inversion formula for infinite Fourier transform is

(A)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} F(s)e^{-isx}ds$$

(B)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s)e^{-isx}ds$$

(C)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s)e^{isx}ds$$

(D)
$$f(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} F(s)e^{-isx}ds$$

Answer: (B)

5. The infinite Fourier cosine transform is

(A)
$$F_c(s) = \frac{1}{\sqrt{\pi}} \int_0^\infty f(x) \cos sx dx$$

(B)
$$F_c(s) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} f(x) \cos sx dx$$

(C)
$$F_c(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos sx dx$$

(D)
$$F_c(s) = \frac{2}{\pi} \int_0^{\infty} f(x) \cos sx dx$$

Answer: (C)

6. The inversion theorem for infinite Fourier cosine transform is

(A)
$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_c(s) \cos sx ds$$

(B)
$$f(x) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} F_c(s) \cos sx ds$$

(C)
$$f(x) = \frac{2}{\pi} \int_{0}^{\infty} F_c(s) \cos sx ds$$

(D)
$$f(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} F_c(s) \cos sx ds$$

Answer: (A)

7. The infinite Fourier sine transform is

(A)
$$F_s(s) = \frac{2}{\sqrt{\pi}} \int_0^\infty f(x) \sin sx dx$$

(B)
$$F_s(s) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} f(x) \sin sx dx$$

(C)
$$F_s(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin sx dx$$

(D)
$$F_s(s) = \frac{2}{\pi} \int_0^\infty f(x) \sin sx dx$$

Answer: (C)

8. The inversion theorem for infinite Fourier sine transform is

(A)
$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_s(s) \sin sx ds$$

(B)
$$f(x) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} F_s(s) \sin sx ds$$

(C)
$$f(x) = \frac{2}{\pi} \int_{0}^{\infty} F_s(s) \sin sx ds$$

(D)
$$f(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} F_s(s) \sin sx ds$$

- 9. F[af(x) + bg(x)] =
 - (A) F[f(x)] + bF[g(x)]
 - (B) aF[f(x)] + F[g(x)]
 - (C) aF[f(x)] + bF[g(x)]
 - (D) F[f(x)] + F[g(x)]

Answer: (C)

- 10. If $F\{f(x)\} = F(s)$, then $F\{f(x-a)\} =$
 - (A) $e^{-isa}F(s)$
 - (B) $e^{iax}F(x)$
 - (C) $e^{isa}F(a)$
 - (D) $e^{isa}F(s)$

Answer: (D)

- 11. If $F\{f(x)\} = F(s)$, then $F\{f(x-a)\} = e^{isa}F(s)$.
 - (A) Fourier integral theorem
 - (B) Modulation theorem
 - (C) Shifting theorem
 - (D) Convolution theorem

Answer: (C)

- 12. If $F\{f(x)\} = F(s)$ and a > 0, then $F\{f(ax)\} =$
 - (A) $\frac{1}{a}F(\frac{s}{a})$
 - (B) $\frac{1}{a}F(\frac{a}{s})$
 - (C) $\frac{1}{s}F(\frac{s}{a})$
 - (D) $\frac{1}{s}F(\frac{a}{s})$

Answer: (A)

- 13. If $F\{f(x)\}=F(s)$, then $F\{f(ax)\}=\frac{1}{|a|}F(\frac{s}{a})$ where $a\neq 0$
 - (A) Fourier integral theorem
 - (B) Modulation theorem
 - (C) Change of scale property
 - (D) Convolution theorem

Answer: (C)

14. $F\{e^{iax}f(x)\} =$

- (A) F(s-a)
- (B) F(s+a)
- (C) F(sa)
- (D) $F(\frac{s}{a})$

Answer: (B)

- 15. If $F\{f(x)\} = F(s)$, then $F\{f(x)\cos ax\} =$
 - (A) $\frac{1}{2}[F(s+a)*F(s-a)]$
 - (B) $\frac{1}{2}[F(s+a) F(s-a)]$
 - (C) $\frac{1}{2}[F(s+a) + F(s-a)]$
 - (D) $\frac{1}{2}[F(sa) + F(s+a)]$

Answer: (C)

- 16. If $F\{f(x)\} = F(s)$, then $F\{f(x)\cos ax\} = \frac{1}{2}[F(s+a) + F(s-a)]$
 - (A) Fourier integral theorem
 - (B) Modulation theorem
 - (C) Change of scale property
 - (D) Convolution theorem

Answer: (B)

- 17. If $F\{f(x)\} = F(s)$, then $F\{x^n f(x)\} =$
 - $(\mathbf{A}) \left(-i\right)^n \frac{d^n}{ds^n} F(s)$
 - (B) $(i)^n \frac{d^n}{ds^n} F(s)$
 - (C) $(-i)\frac{d^n}{ds^n}F(s)$
 - (D) $\frac{d^n}{ds^n}F(s)$

Answer: (A)

- 18. The convolution of two functions f(x) and g(x) is defined as f * g =
 - (A) $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)g(x-t)dt$
 - (B) $\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} f(t)g(x-t)dt$
 - (C) $\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(t)g(x-t)dt$
 - (D) $\frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} f(t)g(x-t)dt$

- 19. $F\{f(x) * g(x)\} =$
 - (A) F(s) + G(s)

- (B) F(s) G(s)
- (C) F(s).G(s)
- (D) F(s)/G(s)

Answer: (C)

- 20. If F(s) is the Fourier transform of f(x), then
 - (A) $\int_{0}^{\infty} |f(x)|^{2} dx = \int_{0}^{\infty} |F(s)|^{2} ds$
 - (B) $\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |F(s)|^2 ds$
 - (C) $\int_{-\infty}^{\infty} |f(x)| dx = \int_{-\infty}^{\infty} |F(s)| ds$
 - (D) $\int_{0}^{\infty} |f(x)| dx = \int_{0}^{\infty} |F(s)| ds$

Answer: (B)

- 21. The Fourier transform of $f(x) = e^{-\frac{x^2}{2}}$ is
 - (A) $\frac{1}{e^{x^2}}$
 - (B) $e^{\frac{s^2}{2}}$
 - (C) e^{s^2}
 - (D) $e^{-\frac{s^2}{2}}$

Answer: (D)

- 22. $F_c\{af(x) + bg(x)\} =$
 - (A) $aF_c\{f(x)\} + bF_c\{g(x)\}$
 - (B) $F_c\{f(x)\} + F_c\{g(x)\}$
 - (C) $aF_c\{f(x)\} + F_c\{g(x)\}$
 - (D) $F_c\{f(x)\} + bF_c\{g(x)\}$

Answer: (A)

- 23. $F_s\{af(x) + bg(x)\} =$
 - (A) $aF_s\{f(x)\} + bF_s\{g(x)\}$
 - (B) $F_s\{f(x)\} + F_s\{g(x)\}$
 - (C) $aF_s\{f(x)\} + F_s\{g(x)\}$
 - (D) $F_s\{f(x)\} + bF_s\{g(x)\}$

- 24. $F_s[f(x)\sin ax] =$
 - (A) $\frac{1}{2}[F_c(s-a) + F_c(s+a)]$
 - (B) $\frac{1}{2}[F_c(s-a) F_c(s+a)]$

- (C) $\frac{1}{2}[F_s(s-a) + F_s(s+a)]$
- (D) $\frac{1}{2}[F_s(s-a) F_s(s+a)]$

Answer: (B)

- 25. $F_s[f(x)\cos ax] =$
 - (A) $\frac{1}{2}[F_c(s+a) + F_c(s-a)]$
 - (B) $\frac{1}{2}[F_c(s+a) F_c(s-a)]$
 - (C) $\frac{1}{2}[F_s(s+a) + F_s(s-a)]$
 - (D) $\frac{1}{2}[F_s(s+a) F_s(s-a)]$

Answer: (C)

- 26. $F_c[f(x)\sin ax] =$
 - (A) $\frac{1}{2}[F_s(a+s) + F_s(a-s)]$
 - (B) $\frac{1}{2}[F_s(a+s) F_s(a-s)]$
 - (C) $\frac{1}{2}[F_c(a+s) + F_c(a-s)]$
 - (D) $\frac{1}{2}[F_c(a+s) F_c(a-s)]$

Answer: (A)

- 27. $F_c[f(x)\cos ax] =$
 - (A) $\frac{1}{2}[F_s(s+a) + F_s(s-a)]$
 - (B) $\frac{1}{2}[F_s(s+a) F_s(s-a)]$
 - (C) $\frac{1}{2}[F_c(s+a) + F_c(s-a)]$
 - (D) $\frac{1}{2}[F_c(s+a) F_c(s-a)]$

Answer: (C)

- 28. The Fourier cosine transform of e^{-ax} , a > 0 is
 - (A) $\sqrt{\frac{1}{\pi}} \frac{a}{a^2+s^2}$
 - (B) $\sqrt{\frac{2}{\pi}} \frac{a}{a^2 + s^2}$
 - (C) $\sqrt{\frac{1}{\pi}} \frac{s}{a^2 + s^2}$
 - (D) $\sqrt{\frac{2}{\pi}} \frac{s}{a^2 + s^2}$

- 29. The Fourier sine transform of e^{-ax} , a > 0 is
 - (A) $\sqrt{\frac{1}{\pi}} \frac{a}{a^2+s^2}$
 - (B) $\sqrt{\frac{2}{\pi}} \frac{a}{a^2 + s^2}$
 - (C) $\sqrt{\frac{1}{\pi}} \frac{s}{a^2 + s^2}$

(D) $\sqrt{\frac{2}{\pi}} \frac{s}{a^2 + s^2}$

Answer: (D)

- 30. Under Fourier cosine transform of $f(x) = \frac{1}{\sqrt{x}}$ is
 - (A) cosine function
 - (B) self-reciprocal function
 - (C) inverse function
 - (D) complex function

Answer: (B)

- 31. Under Fourier sine transform of $f(x) = \frac{1}{\sqrt{x}}$ is
 - (A) cosine function
 - (B) self-reciprocal function
 - (C) inverse function
 - (D) complex function

Answer: (B)

- 32. $F_s[xf(x)] =$
 - (A) $\frac{d}{ds}F_s(s)$
 - (B) $-\frac{d}{ds}F_s(s)$
 - (C) $\frac{d}{ds}F_c(s)$
 - (D) $-\frac{d}{ds}F_c(s)$

Answer: (D)

- 33. $F_c[xf(x)] =$
 - (A) $\frac{d}{ds}F_s(s)$
 - (B) $-\frac{d}{ds}F_s(s)$
 - (C) $\frac{d}{ds}F_c(s)$
 - (D) $-\frac{d}{ds}F_c(s)$

Answer: (A)

- 34. The Fourier sine transform of $\frac{1}{x}$ is
 - (A) $\sqrt{\frac{2}{\pi}}$
 - (B) $\sqrt{\frac{1}{\pi}}$
 - (C) $\sqrt{\frac{\pi}{2}}$
 - (D) $\sqrt{\frac{\pi}{4}}$

- 35. $F_c\{f(ax)\}=$
 - (A) $\frac{1}{a}F_c(\frac{s}{a})$
 - (B) $\frac{1}{s}F_c(\frac{s}{a})$
 - (C) $\frac{1}{s}F_c(\frac{a}{s})$
 - (D) $\frac{1}{s}F_c(\frac{1}{a})$

Answer:(A)

- 36. $F_s\{f(ax)\} =$
 - (A) $\frac{1}{a}F_s(\frac{s}{a})$
 - (B) $\frac{1}{s}F_s(\frac{s}{a})$
 - (C) $\frac{1}{s}F_s(\frac{a}{s})$
 - (D) $\frac{1}{s}F_s(\frac{1}{a})$

Answer:(A)

- 37. If $F_c(s)$, $G_c(s)$ are the Fourier cosine transforms of f(x) and g(x) respectively, then $\int_0^\infty f(x)g(x)dx =$
 - (A) $\int_{0}^{\infty} F_c(s)G_c(s)ds$
 - (B) $\int_{-\infty}^{\infty} F_c(s) G_c(s) ds$
 - (C) $\int_{0}^{\infty} G_c(s) ds$
 - (D) $\int_{0}^{\infty} F_c(s) ds$

Answer:(A)

- 38. If $F_s(s)$, $G_s(s)$ are the Fourier cosine transforms of f(x) and g(x) respectively, then $\int_0^\infty f(x)g(x)dx =$
 - (A) $\int_{0}^{\infty} F_s(s)G_s(s)ds$
 - (B) $\int_{-\infty}^{\infty} F_s(s)G_s(s)ds$
 - (C) $\int_{0}^{\infty} G_s(s) ds$
 - (D) $\int_{0}^{\infty} F_s(s) ds$

- 39. If $F_c(s)$ is the Fourier cosine transform of f(x), then
 - (A) $\int_{0}^{\infty} |f(x)|^{2} dx = \int_{0}^{\infty} |F_{c}(s)|^{2} ds$
 - (B) $\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |F_c(s)|^2 ds$

(C)
$$\int_{-\infty}^{\infty} |f(x)| dx = \int_{-\infty}^{\infty} |F_c(s)| ds$$

(D)
$$\int_{0}^{\infty} |f(x)| dx = \int_{0}^{\infty} |F_c(s)| ds$$

Answer: (A)

40. If $F_s(s)$ is the Fourier sine transform of f(x), then

(A)
$$\int_{0}^{\infty} |f(x)|^2 dx = \int_{0}^{\infty} |F_s(s)|^2 ds$$

(B)
$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |F_s(s)|^2 ds$$

(C)
$$\int_{-\infty}^{-\infty} |f(x)| dx = \int_{-\infty}^{-\infty} |F_s(s)| ds$$

(D)
$$\int_{0}^{\infty} |f(x)| dx = \int_{0}^{\infty} |F_s(s)| ds$$