DSC 214 Topological Data Analysis

Topic 2: Simplicial Complexes

Instructor: Zhengchao Wan

Overview

- Simplicial complex
 - a specific type of topological space commonly used in practice to model data

Notations

Commonly used simplicial complexes from point cloud data (PCD)

Introduction to Simplicial Complex

A (Geometric) Simplex

- Points $\{p_0, p_1, ..., p_d\} \subset \mathbb{R}^N$ are (affinely) independent
 - if vectors $v_i = p_i p_0$, $i \in [0, d]$, are linearly independent
- Geometric *p*-simplex $\sigma = \{ v_0, v_1, ..., v_p \}$
 - Convex combination of p + 1 (affinely) independent points in \mathbb{R}^N

$$\sigma = \{ \sum_{i=0}^{p} a_i v_i \mid a_i \ge 0, \sum_{i=0}^{p} a_i = 1 \}$$

0-simplex

Examples

3-simplex

A (Geometric) Simplex

- ▶ Points $\{p_0, p_1, ..., p_d\}$ $\subset R^N$ are (affinely) independent
 - if vectors $v_i = p_i p_0$, $i \in [0, d]$, are linearly independent
- Geometric *p*-simplex $\sigma = \{ v_0, v_1, ..., v_p \}$
 - Convex combination of p + 1 affinely-independent points in \mathbb{R}^N

$$\sigma = \{ \sum_{i=0}^{p} a_i v_i \mid a_i \ge 0, \sum_{i=0}^{p} a_i = 1 \}$$

- Simplex τ formed by a subset of $\{v_0, v_1, ..., v_p\}$ is called a face of σ , denoted by $\tau \subseteq \sigma$
 - τ is a proper face of σ if $\dim(\tau) = \dim(\sigma) 1$
 - $bd(\sigma) = collection of all proper faces of \sigma$
- For a d-simplex σ
 - $\sigma \cong B^d$, $bd(\sigma) \cong \mathbb{S}^{d-1}$, $int(\sigma) \cong \mathbb{R}^d$

Simplicial complex

- ightharpoonup A geometric simplicial complex K
 - A collection of simplices such that
 - If $\sigma \in K$, then any fact $\tau \subseteq \sigma$ is also in K
 - If $\sigma \cap \sigma' \neq \emptyset$, then $\sigma \cap \sigma'$ is a face of both simplices.
 - \rightarrow dim(K) = highest dim of any simplex in K

Simplicial complex

- ▶ A geometric simplicial complex *K*
 - A collection of simplices such that
 - If $\sigma \in K$, then any fact $\tau \subseteq \sigma$ is also in K
 - ▶ If $\sigma \cap \sigma' \neq \emptyset$, then $\sigma \cap \sigma'$ is a face of both simplices.
 - $ightharpoonup \dim(K) = \text{highest dim of any simplex in } K$

- Subcomplex $L \subseteq K$ and L is a complex
- The *p*-skeleton of *K* consists of all simplices in *K* of dimension at most *p*
- Underlying space |K| of K
 - is the pointwise union of all points in all simplices of K,

i.e,
$$|K| = \bigcup_{\sigma \in K} \{x \mid x \in \sigma\}$$

• Geometric simplicial completes are nice for intuition / having a mental picture. But we are interested in topology

- Distinct geometrically but the same topologically (i.e., they are homeomorphic)
- A graph can be abstractly defined as G = (V, E)

Abstract simplicial complex

- An (abstract) *p*-simplex $\sigma = \{ v_0, v_1, ..., v_p \}$
 - ightharpoonup a set of cardinality p + 1
 - A subset $\tau \subseteq \sigma$ is a face of σ
- An (abstract) simplicial complex $K = (V, \Sigma)$
 - A vertex set *V*
 - ightharpoonup A collection Σ of simplices such that

Abstract simplicial complex

- An (abstract) *p*-simplex $\sigma = \{ v_0, v_1, ..., v_p \}$
 - \triangleright a set of cardinality p + 1
 - A subset $\tau \subseteq \sigma$ is a face of σ
- An (abstract) simplicial complex $K = (V, \Sigma)$
 - A vertex set *V*
 - ightharpoonup A collection Σ of simplices such that
 - If $\sigma \in \Sigma$, then any fact $\tau \subseteq \sigma$ is also in Σ

Abstract simplicial complex

Abstract Simplicial Complex

- ▶ **Geometric realization** of an abstract simplicial complex *K*
 - Is a geometric simplicial complex S whose associated abstract simplicial complex $(V(S), \Sigma(S))$ is the "same" as $(V(K), \Sigma(K))$

Theorem

Any abstract simplicial complex K has a geometric realization. Any two geometric realizations of K have homeomorphic underlying spaces

We use |K| to denote the underlying space of a geometric realization of K and call |K| the underlying space of K.

Theorem

Any abstract simplicial complex K has a geometric realization. Any two geometric realizations of K are homeomorphic to each other.

- ▶ If $V = \{v_0, ..., v_n\}$, embed V into \mathbb{R}^{n+1} by $v_i \mapsto (0, ..., 1 ..., 0) = e_i$
- For each simplex $\sigma = \{v_{i_0}, ..., v_{i_k}\}$, add geometric simplex $cnx\{e_{i_0}, ..., e_{i_k}\}$ to the realization

▶ The recipe in the proof is not efficient in terms of ambient dimension

• Any finite d-dim abstract simplicial complex has a geometric realization in \mathbb{R}^{2d+1}

- ▶ The recipe in the proof is not efficient in terms of ambient dimension
- Any finite d-dim abstract simplicial complex has a geometric realization in \mathbb{R}^{2d+1} but may not have a geometric realization in \mathbb{R}^{2d}
 - A graph (1-d simplicial complex) can be plotted in \mathbb{R}^3 but not necessarily in \mathbb{R}^2

Graphs and Simplicial Complexes

- Any simple graph (without double edge and self-loop) is a simplicial complex
- The 1-skeleton of a simplicial complex is a graph

Graphs and Simplicial Complexes

- Any simple graph (without double edge and self-loop) is a simplicial complex
- The 1-skeleton of a simplicial complex is a graph
- Clique complex induced by a graph

Some notions related to simplicial complexes

Star and links

Star and links

- Given a simplex $\tau \in K$
 - Star: $St(\tau) = \{ \sigma \in K \mid \tau \subset \sigma \}$
 - Closed star: $clSt(\tau) = \bigcup_{\sigma \in St(\tau)} \{ \sigma' \mid \sigma' \subset \sigma \}$
 - $Link: Lk(\tau) = \left\{ \ \sigma \in clSt(\tau) \mid \sigma \cap \tau = \emptyset \ \right\}$

- Intuitively, analogous to continuous maps between topological spaces
- ightharpoonup Given simplicial complexes K and L
 - ▶ a function $f: V(K) \rightarrow V(L)$ is called a simplicial map if
 - for any $\sigma=\{p_0,\ldots,p_d\}\in\Sigma(K),\ f(\sigma)=\Big\{f\big(p_0\big),\ \ldots,\ f\big(p_d\big)\Big\}$ spans a simplex in L, i.e., $f(\sigma)\in\Sigma(L)$.
 - A simplicial map is also denoted $f: K \to L$

- Intuitively, analogous to continuous maps between topological spaces
- Given simplicial complexes K and L
 - ▶ a function $f: V(K) \rightarrow V(L)$ is called a simplicial map if
 - for any $\sigma=\{p_0,...,p_d\}\in\Sigma(K),\ f(\sigma)=\left\{f\left(p_0\right),\ ...,\ f\left(p_d\right)\right\}$ spans a simplex in L, i.e., $f(\sigma)\in\Sigma(L)$.
 - A simplicial map is also denoted $f: K \to L$
- A simplicial map $f: K \to L$ is an **isomorphism**
 - if f is bijective and f^{-1} is a simplicial map

A simplicial map $f: K \to L$ induces a natural continuous function

$$f': |K| \rightarrow |L|$$

s.t
$$f'(x) = \sum_{i \in [0,d]} a_i f(p_i)$$
 for $x = \sum_{i \in [0,d]} a_i p_i \in \sigma = \{p_0, ..., p_d\}$

A simplicial map $f: K \to L$ induces a natural continuous function

$$f': |K| \rightarrow |L|$$

s.t
$$f'(x) = \sum_{i \in [0,d]} a_i f(p_i)$$
 for $x = \sum_{i \in [0,d]} a_i p_i \in \sigma = \{p_0, ..., p_d\}$

- ▶ Theorem:
 - An isomorphism $f:K \to L$ induces a **homeomorphism** $f':|K| \to |L|$

Name	Image	Vertices V	Edges <i>E</i>	Faces	Euler characteristic: V - E + F
Tetrahedron		4	6	4	2
Hexahedron or cube		8	12	6	2
Octahedron		6	12	8	2
Dodecahedron		20	30	12	2
Icosahedron		12	30	20	2

- For the surface of a polyhedron, the Euler Characteristic is defined as $\chi = V E + F$.
- Euler's polyhedron formula:
 - $\lambda = 2$ for surface of convex polyhedron

Name	Image	Vertices V	Edges	Faces	Euler characteristic: V – E + F
Tetrahedron		4	6	4	2
Hexahedron or cube		8	12	6	2
Octahedron		6	12	8	2
Dodecahedron		20	30	12	2
Icosahedron		12	30	20	2

- Given a d-dim simplicial complex K with n_i number of i-simplices
- ▶ the *Euler characteristic* of *K* is defined as:

$$\chi(K) := \sum_{i=0}^{\infty} (-1)^i n_i$$

Euler characteristic is both a topological invariant and a homotopy invariant, meaning that it does not change under homeomorphism or homotopy equivalence.

$$\chi(K) = 5 - 5 = 0$$

$$\chi(\mathbb{S}^1) = 0$$
?

$$\chi(L) = 4 - 4 = 0$$

Triangulation of a manifold

- Given a manifold (with or without boundary) M, a simplicial complex K is a triangulation of M
 - if the underlying space |K| of K is homeomorphic to M

Other complexes

Image Data

triangulation?

Cubical Complex

2-dim cubical complex

CW Complex

CW Complex

- A CW complex *X* is the union of a sequence of topological spaces
 - $\triangleright \varnothing = X_{-1} \subset X_0 \subset X_1 \subset \cdots$
 - Such that X_k is obtained from X_{k-1} by "gluing" k-cells $\{e_{\alpha}^k\}_{\alpha}$, each homeomorphic to \mathbb{D}^k , by continuous maps $\partial e_{\alpha}^k \to X_{k-1}$
 - Each X_k is called the k-skeleton of X

CW Complex

Triangulation of a sphere

CW structure of a sphere

CW Complex

Triangulation of a torus

CW structure of a torus

Common Complexes

Nerves

• Given a finite collection of sets $\mathcal{U}=\{U_\alpha\}_{\alpha\in A}$, its nerve complex $Nrv(\mathcal{U})$ is a simplicial complex

Nerves

- Given a finite collection of sets $\mathcal{U}=\{U_\alpha\}_{\alpha\in A}$, its nerve complex $Nrv(\mathcal{U})$ is a simplicial complex
 - ightharpoonup The vertex set V = A
 - $\{\alpha_0, ..., \alpha_k\} \in \Sigma \text{ iff } \cap_{i=0}^k U_{\alpha_i} \neq \emptyset$

Example

Example

Example

B Coloring by filter value

Nerve Lemma (intrinsic):

- Let \mathcal{U} be an **open** cover of a metric space X such that $\bigcap_{i=1}^k U_{\alpha_i}$ is contractible for any finite elements in \mathcal{U} .
- Then $|Nrv(\mathcal{U})| \simeq X$.

Nerve Lemma (a simplified version):

Let \mathcal{U} be a finite collection of **closed**, **convex** subsets in \mathbb{R}^d . Then $|Nrv(\mathcal{U})| \simeq \bigcup_{\alpha \in A} U_{\alpha} \subset \mathbb{R}^d$.

• Given a set of points $P = \{p_1, ..., p_n\} \subset \mathbb{R}^d$

- Given a set of points $P = \{p_1, ..., p_n\} \subset \mathbb{R}^d$
- Given a real value r > 0, the Čech complex $C^r(P)$ is the nerve of the set $\left\{B\left(p_i,r\right)\right\}_{i \in [1,n]}$, where $B(p,r) = \left\{x \in \mathbb{R}^d \,|\, d(p,x) \leq r\right\}$

- Given a set of points $P = \{p_1, ..., p_n\} \subset \mathbb{R}^d$
- Given a real value r > 0, the Čech complex $C^r(P)$ is the nerve of the set $\left\{B\left(p_i,r\right)\right\}_{i\in[1,n]}$, where $B(p,r)=\{x\in\mathbb{R}^d\,|\,d(p,x)\leq r\}$
 - i.e, $\sigma = \left\{ p_{i_0}, \dots, p_{i_s} \right\} \in C^r(P) \text{ iff } \bigcap_{j \in [0,s]} B\left(p_{i_j}, r\right) \neq \emptyset$

- Given a set of points $P = \{p_1, ..., p_n\} \subset \mathbb{R}^d$
- Given a real value r > 0, the Čech complex $C^r(P)$ is the nerve of the set $\left\{B\left(p_i,r\right)\right\}_{i \in [1,n]}$, where $B(p,r) = \{x \in \mathbb{R}^d \,|\, d(p,x) \leq r\}$

i.e,
$$\sigma = \left\{ p_{i_0}, \dots, p_{i_s} \right\} \in C^r(P)$$
 iff $\bigcap_{j \in [0,s]} B\left(p_{i_j}, r\right) \neq \emptyset$

The definition can be extended to a finite sample P of a metric space (X, d).

- Given a set of points $P = \{p_1, ..., p_n\} \subset \mathbb{R}^d$
- Given a real value r > 0, the Čech complex $C^r(P)$ is the nerve of the set $\left\{B\left(p_i,r\right)\right\}_{i \in [1,n]}$, where $B(p,r) = \{x \in \mathbb{R}^d \,|\, d(p,x) \leq r\}$

i.e,
$$\sigma = \left\{ p_{i_0}, ..., p_{i_s} \right\} \in C^r(P) \text{ iff } \bigcap_{j \in [0,s]} B\left(p_{i_j}, r\right) \neq \emptyset$$

ightharpoonup The definition can be extended to a finite sample P of a metric space (X, d).

- Given a set of points $P = \{p_1, ..., p_n\} \subset \mathbb{R}^d$
- Given a real value r > 0, the Čech complex $C^r(P)$ is the nerve of the set $\left\{B\left(p_i,r\right)\right\}_{i\in[1,n]}$, where $B(p,r)=\{x\in\mathbb{R}^d\,|\,d(p,x)\leq r\}$

i.e,
$$\sigma = \left\{ p_{i_0}, ..., p_{i_s} \right\} \in C^r(P) \text{ iff } \bigcap_{j \in [0,s]} B\left(p_{i_j}, r\right) \neq \emptyset$$

 \blacktriangleright The definition can be extended to a finite sample P of a metric space (X, d).

- Nerve Lemma (a simplified version):
 - Let \mathcal{U} be a finite collection of closed, convex subsets in R^d . Then $|Nrv(\mathcal{U})| \simeq \bigcup_{\alpha \in A} U_\alpha \subset \mathbb{R}^d$.

- Nerve Lemma (a simplified version):
 - Let \mathcal{U} be a finite collection of closed, convex subsets in R^d . Then $|Nrv(\mathcal{U})| \simeq \bigcup_{\alpha \in A} U_\alpha \subset \mathbb{R}^d$.
- Corollary:
 - $|C^r(P)| \simeq \bigcup_{p \in P} B(p, r)$, i.e, $|C^r(P)|$ is homotopy equivalent to the union of r-balls around points in P

- Nerve Lemma (a simplified version):
 - Let \mathcal{U} be a finite collection of closed, convex subsets in R^d . Then $|Nrv(\mathcal{U})| \simeq \bigcup_{\alpha \in A} U_\alpha \subset \mathbb{R}^d$.

- Corollary:
 - $|C^r(P)| \simeq \bigcup_{p \in P} B(p, r)$, i.e, $|C^r(P)|$ is homotopy equivalent to the union of r-balls around points in P

- Nerve Lemma (a simplified version):
 - Let $\mathcal U$ be a finite collection of closed, convex subsets in R^d . Then $Nrv(\mathcal U) \simeq \cup_{\alpha \in A} U_\alpha \subset \mathbb R^d$.

Given a set of points P

approximating a hidden domain M $U^{r}(P) = \bigcup_{p \in P} B(p, r) \text{ approximates M}$

 $ightharpoonup C^r(P)$ approximates $U^r(P)$

- Nerve Lemma (a simplified version):
 - Let \mathcal{U} be a finite collection of closed, convex subsets in R^d . Then $Nrv(\mathcal{U}) \simeq \bigcup_{\alpha \in A} U_\alpha \subset \mathbb{R}^d$.
- Corollary:

 $C^r(P) \simeq \bigcup_{p \in P} B(p, r)$, i.e, $C^r(P)$ is homotopy equivalent to

the union of r-balls around points in P

- Given a set of points P
 - approximating a hidden domain M

$$U^r(P) = \bigcup_{p \in P} B(p, r)$$
 approximates M

 $ightharpoonup C^r(P)$ approximates $U^r(P)$

More on Čech

See Demo by Henry Adams

- Given a set of points $P \subset \mathbb{R}^d$
 - $ightharpoonup C^r(P)$ could have simplex of dimension larger than d
 - In particular, $C^{\infty}(P)$ is the same as n-simplex.
 - often only *d*-skeleton of $C^r(P)$ is needed
 - ightharpoonup as $U^r(P)$ has trivial topology beyond dimension d
- $C^r(P)$ can be huge!! When r is large enough, there exists $O(2^n)$ many simplices!

Alpha complex

Voronoi Diagram

- Given a finite set $P = \{p_1, ..., p_n\} \subset \mathbb{R}^d$, the **Voronoi cell** of p_i is
 - ► $Vor(p_i) = \{x \in \mathbb{R}^d | ||x p_i|| \le ||x p_j||, \forall j \ne i\}$
- ▶ The **Voronoi Diagram** of *P* is the collection of all Voronoi cells.

Alpha complex

- Given a set of points $P = \{p_1, ..., p_n\} \subset \mathbb{R}^d$
- Given a real value r > 0, the *Alpha complex* $Del^r(P)$ is the nerve of the set

 $\{B(p_i,r)\cap Vor(p_i)\}_{i=1}^n$

Alpha complex vs Čech complex

- $ightharpoonup Del^r(P) \subset C^r(P)$
- $|Del^{\infty}(P)| = O(n^{\frac{d}{2}}) \text{ whereas } |C^{\infty}(P)| = O(2^n)$
- $ightharpoonup \dim Del^r(P) \leq d$ for generic P

Alpha complex vs Čech complex

- $ightharpoonup Del^r(P) \subset C^r(P)$
- $|Del^{\infty}(P)| = O(n^{\frac{d}{2}})$ whereas $|C^{\infty}(P)| = O(2^n)$
- $ightharpoonup \dim Del^r(P) \leq d$ for generic P

- Proposition:
 - ▶ $Del^r(P) \simeq C^r(P) \simeq \cup_p B(p,r)$, i.e, $C^r(P)$ and $Del^r(P)$ are homotopy equivalent.

Delaunay Complex

▶ $Del^{\infty}(P)$ is called the **Delaunay complex** of *P*, denote by Del(P)

$$Del(P) = Nrv(\{Vor(p) \mid p \in P\})$$

- ightharpoonup Delaunay complex Del(P)
 - A simplex $\sigma = \left[p_{i_0}, \ p_{i_1}, \ \ldots, \ p_{i_k} \right]$ is in Del(P) if and only if
 - There exists a ball B whose boundary contains vertices of σ , and that the interior of B contains no other point from P.

See Demo by Ondrej Draganov

Delaunay Complex

- Many beautiful properties
 - Connection to Voronoi diagram: given $p \in P$
 - Voronoi cell of p is $Vor(p) := \{x \in \mathbb{R}^d \mid d(x, p) = d(x, P)\}$
 - If points from \mathbb{R}^d are in generic positions, then a geometric simplicial complex in \mathbb{R}^d
- ▶ Foundation for surface reconstruction and meshing in 3D
 - ▶ [Dey, Curve and Surface Reconstruction, 2006],
 - ▶ [Cheng, Dey and Shewchuk, Delaunay Mesh Generation, 2012]
- However,
 - Computationally very expensive
 - in high dimensions

Delaunay Complex

- Many beautiful properties
 - Connection to Voronoi diagram: given $p \in P$
 - Voronoi cell of p is $Vor(p) := \{x \in \mathbb{R}^d \mid d(x, p) = d(x, P)\}$
 - If points from \mathbb{R}^d are in generic positions, then a geometric simplicial complex in \mathbb{R}^d
- ▶ Foundation for surface reconstruction and meshing in 3D
 - ▶ [Dey, Curve and Surface Reconstruction, 2006],
 - ▶ [Cheng, Dey and Shewchuk, Delaunay Mesh Generation, 2012]
- However,
 - Computationally very expensive
 - in high dimensions

Vietoris Rips complex

- Given a set of points $P = \{p_1, ..., p_n\} \subset \mathbb{R}^d$
- Given a real value r > 0, the *Vietoris-Rips (Rips) complex Rips*^r(P) is:

$$\left\{ (p_{i_0}, ..., p_{i_k}) \, | \, B(p_{i_l}, r) \cap B(p_{i_j}, r) \neq \emptyset, \forall l, j = 0, ..., k \right\}.$$

- More generally for P in a metric space (X, d):
 - $Rips^{r}(P) = \left\{ (p_{i_0}, ..., p_{i_k}) \mid d(p_{i_l}, p_{i_j}) \le 2r, \forall l, j = 0, ..., k \right\}.$

- Given a set of points $P = \{p_1, ..., p_n\} \subset \mathbb{R}^d$
- Given a real value r > 0, the *Vietoris-Rips (Rips) complex Rips*^r(P) is:

$$\left\{ (p_{i_0}, ..., p_{i_k}) \, | \, B(p_{i_l}, r) \cap B(p_{i_j}, r) \neq \emptyset, \forall l, j = 0, ..., k \right\}.$$

• More generally for P in a metric space (X, d):

$$Rips^{r}(P) = \left\{ (p_{i_0}, ..., p_{i_n}) \mid d(p_{i_n}, p_{i_n}) \le 2r, \forall l, j = 0, ..., k \right\}.$$

- Given a set of points $P = \{p_1, ..., p_n\} \subset \mathbb{R}^d$
- Given a real value r > 0, the *Vietoris-Rips (Rips) complex Rips*^r(P) is:

$$\left\{ (p_{i_0}, ..., p_{i_k}) \, | \, B(p_{i_l}, r) \cap B(p_{i_j}, r) \neq \emptyset, \forall l, j = 0, ..., k \right\}.$$

More generally for P in a metric space (X, d):

$$Rips^{r}(P) = \{ (p_{i_0}, ..., p_{i_k}) | d(p_i, p_i) \le 2r, \forall l, j = 0, ..., k \}.$$

- The 1-skeleton of $Rips^r(P)$ is the 2r neighborhood graph of P, i.e., $\{p_i,p_i\}\in E$ if $d(p_i,p_i)\leq 2r$
 - Same for Čech
- $ightharpoonup Rips^r(P)$ is the clique complex of its 1-skeleton
 - If $\{\{p_{i_{l}}, p_{i_{l}}\}\}_{k \neq l \in \{0, ..., m\}}$ are edges,
 - ▶ then $d(p_{i_l}, p_{i_l}) \le 2r$ for $k \ne l \in 0,..., m$
 - ▶ Hence $\{p_{i_0}, ..., p_{i_m}\}$ ∈ $Rips^r(P)$

The 1-skeleton of $Rips^r(P)$ is the 2r neighborhood graph of P, i.e., $\{p_i,p_i\}\in E$ if $d(p_i,p_i)\leq 2r$

 $ightharpoonup Rips^r(P)$ is the clique complex of its 1-skeleton

• Computing $Rips^r(P)$ reduces to computing the 2r neighborhood graph and finding its clique complex

 $ightharpoonup C^r(P) \subset Rips^r(P)$

 $C^r(P) \subset Rips^r(P) \subset C^{2r}(P)$

- $ightharpoonup C^r(P) \subset Rips^r(P) \subset C^{2r}(P)$
 - $C^r(P) \subseteq Rips^r(P) \subseteq C^{\sqrt{2}r}(P)$ when $P \subseteq \mathbb{R}^d$

▶ Rips complex approximates the Čech complex

- ▶ Rips complex approximates the Čech complex
 - $ightharpoonup C^r(P) \subset Rips^r(P) \subset C^{2r}(P)$

- ▶ Rips complex approximates the Čech complex
 - $ightharpoonup C^r(P) \subset Rips^r(P) \subset C^{2r}(P)$

- Rips complex approximates the Čech complex
 - $ightharpoonup C^r(P) \subset Rips^r(P) \subset C^{2r}(P)$

Although the size of $Rips^r(P)$ can be still huge $(Rips^{\infty}(P))$ is the n-simplex), it is more efficient to compute Rips complex than Čech complex.

- Rips complex approximates the Čech complex
 - $ightharpoonup C^r(P) \subset Rips^r(P) \subset C^{2r}(P)$

- Although the size of $Rips^r(P)$ can be still huge $(Rips^{\infty}(P))$ is the n-simplex), it is more efficient to compute Rips complex than Čech complex.
 - Computation of $Rips^r(P)$ only depends on pairwise distances whereas the computation of both Čech and alpha complexes depend on dimension of ambient space \mathbb{R}^d

- Rips complex approximates the Čech complex
 - $ightharpoonup C^r(P) \subset Rips^r(P) \subset C^{2r}(P)$

- Although the size of $Rips^r(P)$ can be still huge $(Rips^{\infty}(P))$ is the n-simplex), it is more efficient to compute Rips complex than Čech complex.
 - Computation of $Rips^r(P)$ only depends on pairwise distances whereas the computation of both Čech and alpha complexes depend on dimension of ambient space \mathbb{R}^d
 - Often consider low dimensional (2-3) skeleton of $Rips^r(P)$ in practice

- ▶ Rips complex approximates the Čech complex
 - $ightharpoonup C^r(P) \subset Rips^r(P) \subset C^{2r}(P)$

- Although the size of $Rips^r(P)$ can be still huge $(Rips^{\infty}(P))$ is the n-simplex), it is more efficient to compute Rips complex than Čech complex.
 - Computation of $Rips^r(P)$ only depends on pairwise distances whereas the computation of both Čech and alpha complexes depend on dimension of ambient space \mathbb{R}^d
 - Often consider low dimensional (2-3) skeleton of $Rips^r(P)$ in practice
 - Many optimized packages for Rips complex

FIN