50.034 - Introduction to Probability and Statistics

Week 10 - Lecture 18

January-May Term, 2019

Outline of Lecture

▶ t-distribution

▶ t-distribution versus normal distribution

Confidence interval

Unbiased estimation

Example 1

Let $\{X_1, \ldots, X_{100}\}$ be a random sample consisting of 100 **normal** observable R.V.'s with **unknown mean** μ and known variance 25.

Question: Can we find a statistic T of $\{X_1, \ldots, X_{100}\}$ such that $\Pr(T \le \mu) = 0.9$?

- ▶ **Recall:** A statistic is a function of observable R.V.'s.
- ▶ In other words, can we find a R.V. $T = f(X_1, ..., X_{100})$ such that the event $\{T \le \mu\}$ has a 90% probability of occurring, even though μ is unknown to us?
- ▶ The challenge is to find T such that no matter what the value of μ is, there will always be a probability of 90% that the event $\{T \leq \mu\}$ occurs.

Example 1 - Solution

Since X_1, \ldots, X_{100} are normal, here are some facts we know:

- The sample mean \overline{X}_{100} is normal with mean μ and variance $\frac{25}{100} = \frac{1}{4}$. (So the standard deviation of \overline{X}_{100} is $\frac{1}{2}$.)
- ▶ Hence, $\frac{\overline{X}_{100} \mu}{\frac{1}{2}} = 2(\overline{X}_{100} \mu)$ is a standard normal R.V.

Let $\Phi(z)$ be the standard normal cdf. From the standard normal distribution table, the closest value of z satisfying $\Phi(z) = 0.9$ is z = 1.28.

Thus,

$$0.9 = \Pr(2(\overline{X}_{100} - \mu) \le 1.28) = \Pr(\overline{X}_{100} - \mu \le 0.64)$$
$$= \Pr(\overline{X}_{100} - 0.64 \le \mu).$$

Therefore, we can let T be the statistic $\overline{X}_{100} - 0.64$.

Example 2

(Extension of Example 1 to the case of two statistics)

Let $\{X_1, \ldots, X_{100}\}$ be a random sample consisting of 100 **normal** observable R.V.'s with **unknown mean** μ and known variance 25.

Question: Can we find two statistics T_1 , T_2 of $\{X_1, \ldots, X_{100}\}$ such that $Pr(T_1 \le \mu \le T_2) = 0.9$?

In other words, can we find two R.V.'s $T_1 = f_1(X_1, \dots, X_{100})$ and $T_2 = f_2(X_1, \dots, X_{100})$ such that the event

$$\{T_1 \le \mu\} \cap \{T_2 \ge \mu\}$$

has a 90% probability of occurring, even though μ is unknown?

▶ The challenge is to find T_1 and T_2 such that no matter what the value of μ is, there will always be a probability of 90% that the event $\{T_1 \leq \mu\} \cap \{T_2 \geq \mu\}$ occurs.

Example 2 - Solution

As observed in Example 1, $2(\overline{X}_{100} - \mu)$ is a standard normal R.V.

Let $\Phi(z)$ be the standard normal cdf. Given any real number r > 0,

$$\begin{aligned} & \Pr(\overline{X}_{100} - r \le \mu \le \overline{X}_{100} + r) = \Pr(-r \le \overline{X}_{100} - \mu \le r) \\ & = \Pr(-2r \le 2(\overline{X}_{100} - \mu) \le 2r) = \Phi(2r) - \Phi(-2r) \\ & = \Phi(2r) - (1 - \Phi(2r)) = 2 \cdot \Phi(2r) - 1. \end{aligned}$$

So if we equate $\Pr(\overline{X}_{100} - r \le \mu \le \overline{X}_{100} + r) = 0.9$, then it means that $\Phi(2r) = 0.95$.

From the standard normal distribution table, the closest value of z satisfying $\Phi(z)=0.95$ is z=1.64. Hence 2r=1.64, which implies r=0.82.

Therefore, we can let T_1 and T_2 be the statistics $\overline{X}_{100}-0.82$ and $\overline{X}_{100}+0.82$ respectively.

Let $\{X_1, \dots, X_n\}$ be a random sample of **normal** observable R.V.'s with **unknown mean** μ .

Question: Given some 0 , can we find two statistics $T_1, T_2 \text{ of } \{X_1, \dots, X_n\} \text{ such that } \Pr(T_1 \leq \mu \leq T_2) = p?$

Answer: If the variance of each X_i is known, then we can easily adapt the method from Example 2 to find T_1 and T_2 .

What if we do not know the variance of X_i ?

- ▶ Perhaps we could approximate σ by the sample variance $\hat{\sigma}^2$?
 - But $\sigma^2 \approx \hat{\sigma}^2$ only if the sample size *n* is large.
 - ▶ For large n, the law of large numbers already gives $\overline{X}_n \approx \mu$.
 - What if the sample size is small?
- \triangleright Given a fixed p, can we find some statistics T_1 and T_2 such that no matter what the values of μ and σ^2 are, the event $\{T_1 \leq \mu\} \cap \{T_2 \geq \mu\}$ will always occur with probability p?
- \triangleright Can we find such T_1 and T_2 even in the case when the sample size n is small? 4日 > 4周 > 4 目 > 4 目 > 目

Dealing with unknown variance (continued)

Let $\{X_1, \ldots, X_n\}$ be a random sample of **normal** observable R.V.'s with **unknown mean** μ and **unknown variance** σ^2 .

Important Breakthrough in Statistics:

Given any fixed p (0 < p < 1) and any sample size n, it is possible to find statistics T_1 and T_2 that satisfy $\Pr(T_1 \le \mu \le T_2) = p$, no matter what the values of μ and σ^2 are.

- ▶ **Note:** We need the assumption that $X_1, ..., X_n$ are normal!
 - We cannot possibly find T_1 and T_2 if we know absolutely nothing about the random sample other than the value of n.
- $ightharpoonup T_1$ and T_2 will not depend on the values of μ and σ^2 .
- ► **Key Idea:** A new class of distributions called **t-distributions**.

Interpretation: T_1 can be interpreted as an "under-estimate" of μ , and T_2 can be interpreted as an "over-estimate" of μ . Together, the range from T_1 to T_2 would contain μ with probability p.

► Huge practical implications: Many real-world R.V.'s can be modeled as normal, both mean and variance are frequently unknown, and random samples are usually small!

Introduction to t-distribution

The *t* distributions were introduced by W. S. Gosset in 1908.

"t-distribution" is also called "Student's t-distribution"

Interesting Back Story:

- ► Gosset published his research on the *t*-distribution under the pen name "Student".
- ► In 1908, he was the Head Experimental Brewer of Guinness.
 - His role was to test the quality and taste of Guinness beer, as well as invent new beer.

Image source: Jamt9000

- ► For fear of leaking trade secrets (e.g. beer recipe), Guinness did not allow any employee to publish research that contains the words "beer", "Guinness", or the employee's surname.
- ► Gosset actually used *t*-distributions for statistical inference on beer samples.

t-distribution

Let X be a continuous R.V.

Definition 1: We say X has a t-distribution if its pdf is given by:

$$f(x) = \frac{\Gamma(\frac{m+1}{2})}{\sqrt{m\pi} \cdot \Gamma(\frac{m}{2})} \left(1 + \frac{x^2}{m}\right)^{-(m+1)/2} \quad \text{(for all } x\text{)}$$

for some positive integer m.

Definition 2: We say *X* has a *t*-distribution if

$$X = \frac{Z}{\sqrt{\frac{Y}{m}}},$$

for some positive integer m, where $Z \sim N(0,1)$, and $Y \sim \chi^2(m)$.

- ▶ Both definitions are equivalent. (See course textbook for a proof.)
- ▶ The positive integer *m* is called the degree of freedom.
- ▶ We say *X* has the *t*-distribution with *m* degrees of freedom.
 - ightharpoonup We rarely say X is a t R.V., since this could be ambiguous.

Main Use: To model a normal R.V. with unknown mean and unknown variance after some transformation.

Unbiased sample variance

Let $\{X_1, \ldots, X_n\}$ be a random sample of observable R.V.'s.

Definition: The unbiased sample variance of $\{X_1, \ldots, X_n\}$ is

$$s_n^2(X_1,\ldots,X_n) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

- ► Common notation for unbiased sample variance: s_n^2 or S_n^2 .
- $ightharpoonup s_n^2$ is also called the Bessel-corrected sample variance.
- $s_n = \sqrt{s_n^2}$ is called unbiased sample standard deviation.

In comparison, the biased sample variance of $\{X_1, \dots, X_n\}$ (which we saw in Lecture 16) is

$$\hat{\sigma}^2(X_1,\ldots,X_n)=\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X}_n)^2.$$

- $\hat{\sigma} = \sqrt{\hat{\sigma}^2}$ is called biased sample standard deviation.
- ▶ Both $\hat{\sigma}^2$ and s_n^2 are commonly used, so be careful to state whether you mean biased or unbiased sample variance!

Main Theorem on t-distributions

Let $\{X_1, \dots, X_n\}$ be a random sample of observable **normal** R.V.'s with mean μ and variance σ^2 . Let \overline{X}_n and s_n^2 be the sample mean and the unbiased sample variance respectively.

Important Theorem:

 $\sqrt{n(\overline{X}_n-\mu)}$ has the t-distribution with (n-1) degrees of freedom.

▶ In comparison, $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}$ has the standard normal distribution.

Interpretation:

- ▶ If σ^2 is known, then T_1, T_2 satisfying $Pr(T_1 \le \mu \le T_2) = p$ can be found using the standard normal distribution.
- ▶ If σ^2 is unknown, then T_1, T_2 satisfying $Pr(T_1 \le \mu \le T_2) = p$ could still be found using the t-distribution.

Note: (T_1, T_2) and (T_1, T_2) are different pairs of statistics!

- ▶ T_1 , T_2 are computed with **less information** (σ^2 is unknown).
- ▶ However, if $n \to \infty$, then $s_n^2 \xrightarrow{p} \sigma^2$, hence (T_1, T_2) becomes closer to (T_1, T_2) .

Shape of *t*-distribution

Useful properties of *t*-distribution

Suppose Z has the t-distribution with m degrees of freedom. Let f(z) be the pdf of Z, and let F(z) be the cdf of Z.

Fact: The graph of f(z) is symmetric about the point z=0.

Fact: F(-z) = 1 - F(z) for all real numbers z.

- ▶ This follows from the symmetry of the pdf $\phi(z)$.
- ▶ In other words, $Pr(Z \le z) = Pr(Z \ge -z)$ for all $z \in \mathbb{R}$.
- ▶ **Note:** 0 < F(z) < 1 for all real numbers z.

Fact: $F^{-1}(p) = -F^{-1}(1-p)$ for all real numbers 0 .

▶ To see why, let $z = F^{-1}(p)$ in previous fact, and apply F^{-1} .

Remarks on t-distribution

Special Case: *t*-distribution with one degree of freedom

- ► This special case is also called Cauchy distribution.
- ▶ If X has the Cauchy distribution, then $\mathbf{E}[X]$ does not exist!
 - (Lecture 5) For E[X] to exist, the following technical condition must hold:

$$\int_0^\infty x \cdot f(x) \, dx < \infty \quad \text{or} \quad \int_{-\infty}^0 (-x) \cdot f(x) \, dx < \infty \quad \text{(or both)}.$$

But for Cauchy distribution, both integrals are infinite.

In general: If X has the t-distribution with m degrees of freedom, then the moment generating function of X does not exist!

- ▶ The k-th moment of X exists if k < m, but does not exist if k > m.
- For m > 1, the mean $\mathbf{E}[X]$ exists and equals 0.
- For m > 2, the variance var(X) exists and equals $\frac{m}{m-2}$.

t-distribution versus standard normal distribution

Theorem: For each $n \ge 1$, let X_n be the R.V. that has the t-distribution with n degrees of freedom. Then the infinite sequence of R.V.'s X_1, X_2, X_3, \ldots converges in distribution to the standard normal R.V. Z, i.e. $X_n \stackrel{d}{\to} Z$.

▶ In other words, the asymptotic distribution of X_1, X_2, X_3, \dots is standard normal.

Recall: If $\{X_1, \dots, X_n\}$ is a random sample of observable normal R.V.'s with mean μ and variance σ^2 , and if \overline{X}_n and s_n^2 are the sample mean and the unbiased sample variance respectively, then:

- $ightharpoonup \frac{\sqrt{n}(\overline{X}_n \mu)}{c}$ has *t*-distribution with (n-1) degrees of freedom.
- $ightharpoonup \frac{\sqrt{n}(\overline{X}_n \mu)}{\sigma}$ has the standard normal distribution.

Intuition: As $n \to \infty$, the unbiased sample variance s_n^2 approaches the "true" variance σ^2 , so $\frac{\sqrt{n}(\overline{X}_n-\mu)}{s_n}$ would become approximately $\frac{\sqrt{n}(X_n-\mu)}{\sigma}$. Therefore, for a sufficiently large degree of freedom, the t-distribution is approximately standard normal.

Computing the cdf of the *t*-distribution

If X has the t-distribution with m degrees of freedom, then its cdf is

$$F_X(x) = \int_{-\infty}^x \frac{\Gamma(\frac{m+1}{2})}{\sqrt{m\pi} \cdot \Gamma(\frac{m}{2})} \left(1 + \frac{u^2}{m}\right)^{-(m+1)/2} du$$

- ▶ **Problem:** This integral has no closed form formula!
- ▶ Hence, the cdf $F_X(x)$ can only be computed approximately, using integral approximation methods (e.g. trapezoidal rule).

How your calculator/software package "computes" $F_X(x)$ today:

- ▶ Approximations to $F_X(x)$ for various possible x and different degrees of freedom m are calculated beforehand, then stored in the calculator/software package in lookup tables.
- ► For any query, the stored value for the closest value found would be retrieved.
 - ▶ Similar to queries for normal distribution and χ^2 distribution.

Table for values of the t-distribution

(Before there were computers:) Computed values are stored as tables of values. For example, there is a table at the back of the course textbook called the "Table of the χ^2 Distribution".

For example, if X has the t-distribution with 9 degrees of freedom, then the closest value found for x satisfying $F_X(x) = 0.7$ is $x \approx 0.543$.

Table of the t Distribution

If *X* has a *t* distribution with *m* degrees of freedom, the table gives the value of *x* such that $Pr(X \le x) = p$.

m	p = .55	.60	.65	.70	.75	.80	.85	.90	.95	.975	.99	.995
1	.158	.325	.510	.727	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657
2	.142	.289	.445	.617	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925
3	.137	.277	.424	.584	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841
4	.134	.271	.414	.569	.741	.941	1.190	1.533	2.132	2.776	3.747	4.604
5	.132	.267	.408	.559	.727	.920	1.156	1.476	2.015	2.571	3.365	4.032
6	.131	.265	.404	.553	.718	.906	1.134	1.440	1.943	2.447	3.143	3.707
7	.130	.263	.402	.549	.711	.896	1.119	1.415	1.895	2.365	2.998	3.499
8	.130	.262	.399	.546	.706	.889	1.108	1.397	1.860	2.306	2.896	3.355
9	.129	.261	.398	.543	.703	.883	1.100	1.383	1.833	2.262	2.821	3.250
10	.129	.260	.397	.542	.700	.879	1.093	1.372	1.812	2.228	2.764	3.169

Example 3

Let $\{X_1, X_2, X_3, X_4\}$ be a random sample of observable normal R.V.'s with unknown mean μ and unknown variance σ^2 . Let \overline{X}_4 and s_4^2 denote the sample mean and the unbiased sample variance respectively of $\{X_1, X_2, X_3, X_4\}$.

Question: Find two statistics T_1 , T_2 of $\{X_1, X_2, X_3, X_4\}$, in terms of \overline{X}_4 and s_4 , such that $\Pr(T_1 < \mu < T_2) = 0.8$ is satisfied.

Example 3 - Solution

Notice that $Z = \frac{\sqrt{4(X_4 - \mu)}}{s_4} = \frac{2(X_4 - \mu)}{s_4}$ has the *t*-distribution with 3 degrees of freedom. Let F(z) be the cdf of Z. Then:

$$\Pr(\overline{X}_4 - r < \mu < \overline{X}_4 + r) = \Pr\left(-\frac{2r}{s_4} < \frac{2(\overline{X}_4 - \mu)}{s_4} < \frac{2r}{s_4}\right)$$

$$= F\left(\frac{2r}{s_4}\right) - F\left(-\frac{2r}{s_4}\right)$$

$$= F\left(\frac{2r}{s_4}\right) - \left(1 - F\left(\frac{2r}{s_4}\right)\right)$$

$$= 2 \cdot F\left(\frac{2r}{s_4}\right) - 1.$$

Thus, $\Pr(\overline{X}_4 - r < \mu < \overline{X}_4 + r) = 0.8 \Leftrightarrow F(\frac{2r}{s_4}) = 0.9$. From the table, $\frac{2r}{s_4} \approx 1.638$, hence $r \approx 0.819s_4$, therefore we can let T_1 and T_2 be $\overline{X}_4 - 0.819s_4$ and $\overline{X}_4 + 0.819s_4$ respectively.

m	p = .55	.60	.65	.70	.75	.80	.85	.90	.95	.975	.99
1	.158	.325	.510	.727	1.000	1.376	1.963	3.078	6.314	12.706	31.821
	.142										
3	.137	.277	.424	.584	.765	.978	1.250	1.638	2.353	3.182	4.541
4	124	271	414	560	741	0.41	1.100	1 522	2 122	2 776	2 7 4 7

.920

1.156

1.476

2.015

2.571

3.365

.408

.559

Confidence Intervals of Parameters

Let $0 , and let <math>\{X_1, \dots, X_n\}$ be a random sample of observable R.V.'s that depend on some parameter θ .

- ▶ If T_1 and T_2 are statistics of $\{X_1, \ldots, X_n\}$ such that $\Pr(T_1 < \theta < T_2) \ge p$ for all possible values of θ , then we say that the random open interval (T_1, T_2) is a 100p percent confidence interval for θ .
- ▶ If T_1 and T_2 are statistics of $\{X_1, \ldots, X_n\}$ such that $\Pr(T_1 < \theta < T_2) = p$ for all possible values of θ , then the 100p percent confidence interval (T_1, T_2) is called exact.
- After the observed values $X_1 = x_1, \dots, X_n = x_n$ are given, let $T_1 = t_1$ and $T_2 = t_2$ be the corresponding computed values. Then the open interval (t_1, t_2) is called the observed value of the confidence interval.

Important Note: A confidence interval is random! It is a **pair of R.V.'s** forming a random open interval.

▶ Different observed values for $X_1, ..., X_n$ give different actual open intervals.

Interpretation of Confidence Intervals

Example: Let $\{X_1, \ldots, X_n\}$ be a random sample of observable R.V.'s that depend on some parameter θ , and suppose that (T_1, T_2) is a 95% confidence interval for θ .

Interpretation:

- $ightharpoonup T_1, T_2$ are statistics of $\{X_1, \ldots, X_n\}$.
- \triangleright A confidence interval (T_1, T_2) is a random open interval. Different observed values for X_1, \ldots, X_n give different observed values for the confidence interval (T_1, T_2) .
- ▶ By saying that (T_1, T_2) is a 95% confidence interval for θ , it means that 95% of all observed values (t_1, t_2) for (T_1, T_2) are open intervals that actually contain θ .
 - It does **NOT** mean that every observed open interval (t_1, t_2) has a 95% probability of containing θ .
 - ▶ The "95%" relates to the entire estimation procedure, and not to a specific open interval.
 - ▶ 95% of all possible open intervals contain the parameter θ . Each specific (t_1, t_2) either contains θ , or doesn't contain θ .

Unbiased estimators

Let X_1, \ldots, X_n be observable R.V.'s whose joint distribution is parametrized by some parameter θ with parameter space Ω .

- ▶ An estimator of θ is a real-valued function $\delta(X_1, \ldots, X_n)$.
- **Recall:** The sampling distribution of δ is the distribution of δ .
- ▶ This sampling distribution of δ depends on the parameter θ .
- For every possible value θ in the parameter space Ω , the mean of the sampling distribution of δ given $\theta = \theta$, is denoted by $\mathbf{E}_{\theta}[\delta(X_1, \dots, X_n)]$.

Definition: An estimator $\delta(X_1,\ldots,X_n)$ is called an unbiased estimator of θ if $\mathbf{E}_{\theta}[\delta(X_1,\ldots,X_n)] = \theta$ for every possible value θ in the parameter space Ω .

Example: If X_1, \ldots, X_n are normal R.V.'s that are conditionally iid given the mean μ , then the **sample mean** is an unbiased estimator of μ , since the mean of \overline{X}_n given $\mu = \mu_0$ is precisely μ_0 .

If each X_i has mean 5, then the sample mean has mean 5; If each X_i has mean 2, then the sample mean has mean 2, etc.

Biased estimators and bias

Let X_1, \ldots, X_n be observable R.V.'s whose joint distribution is parametrized by some parameter θ with parameter space Ω .

An estimator $\delta(X_1,\ldots,X_n)$ is called a biased estimator of θ if it is not an unbiased estimator of θ , or equivalently, if there is some θ in the parameter space Ω such that $\mathbf{E}_{\theta}[\delta(X_1,\ldots,X_n)] \neq \theta$.

► The bias of an estimator $\delta(X_1, ..., X_n)$ is a function defined on Ω, such that each $\theta \in \Omega$ is mapped to $\mathbf{E}_{\theta}[\delta(X_1, ..., X_n)] - \theta$.

Interpretation: Let $\delta = \delta(X_1, \ldots, X_n)$ be an estimator of some parameter θ with parameter space Ω . If for every possible value θ in Ω , the mean of the estimator is exactly θ , then the bias of δ is the zero function.

Why the unbiased sample variance is unbiased

Theorem: The unbiased sample variance is an unbiased estimator.

Proof: Recall that the unbiased sample variance of $\{X_1, \ldots, X_n\}$ is

$$s_n^2(X_1,\ldots,X_n) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Since $X_i - \overline{X}_n = (X_i - \mu) - (\overline{X}_n - \mu)$ for every i, we get

$$\sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2} = \sum_{i=1}^{n} ((X_{i} - \mu) - (\overline{X}_{n} - \mu))^{2};$$

$$= \sum_{i=1}^{n} (X_{i} - \mu)^{2} - 2(\overline{X}_{n} - \mu) \sum_{i=1}^{n} (X_{i} - \mu) + n(\overline{X}_{n} - \mu)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \mu)^{2} - 2(\overline{X}_{n} - \mu) \cdot n(\overline{X}_{n} - \mu) + n(\overline{X}_{n} - \mu)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\overline{X}_{n} - \mu)^{2}.$$

Why the unbiased sample variance is unbiased (continued)

Consequently,

$$\begin{aligned} \mathbf{E}_{\sigma^2}[s_n^2(X_1,\ldots,X_n)] &= \mathbf{E}\Big[\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X}_n)^2\Big] \\ &= \mathbf{E}\Big[\frac{1}{n-1}\sum_{i=1}^n(X_i-\mu)^2 - \frac{n}{n-1}(\overline{X}_n-\mu)^2\Big] \\ &= \mathbf{E}\Big[\frac{1}{n-1}\sum_{i=1}^n(X_i-\mu)^2\Big] - \mathbf{E}\Big[\frac{n}{n-1}(\overline{X}_n-\mu)^2\Big] \\ &= \frac{n}{n-1}\mathbf{E}\Big[\frac{1}{n}\sum_{i=1}^n(X_i-\mu)^2\Big] - \frac{n}{n-1}\mathbf{E}\Big[(\overline{X}_n-\mu)^2\Big] \\ &= \frac{n}{n-1}\cdot\sigma^2 - \frac{n}{n-1}\cdot\frac{\sigma^2}{n} \\ &= \sigma^2. \end{aligned}$$
Therefore $\mathbf{E}_{\sigma^2}[s_n^2(X_1,\ldots,X_n)] - \sigma^2$ is identically the zero function,

which implies that the bias of $\delta(X_1, \ldots, X_n)$ is zero, i.e. δ is unbiased.

Intuition of unbiased estimation

Let X_1, \ldots, X_n be observable R.V.'s whose joint distribution is parametrized by some parameter θ with parameter space Ω .

Let $\delta(X_1,\ldots,X_n)$ be an estimator of θ .

- ▶ Notice that $X_1, ..., X_n$ are parametrized by θ .
- ▶ For $\delta(X_1, ..., X_n)$ to be a "good" estimator of θ , we want a high probability that the estimator δ given some value θ is close to θ .
- ▶ Hence one useful property for such a "good" estimator is that the mean of δ given θ should equal θ , which is precisely what it means for δ to be unbiased.

Note: "unbiased estimator" is one of several possible ways to define a "good" estimator, but it is not the only way.

• e.g. the M.L.E. of the variance of a random sample of normal R.V.'s is the biased sample variance, which is also a "good" estimator of the variance.

Summary

▶ t-distribution

▶ t-distribution versus normal distribution

Confidence interval

Unbiased estimation

