CS101 2020-Fall Online Judge ♣ Home # Problems ♥ Contests ♣ Status ♣ Rank ∨ ♠ About ∨

Dynamic tree template

Description

In a dynamic tree, four operations is expected.

- insert a element
- delete a element
- query the rank of a given element.
- query the element by a given rank. (When is does not exist, decrease the rank until it exists.)
- query the size

The 'rank' of an element is defined as the number of elements which are smaller than it. For example, in a tree below

rank(0001)=0, rank(0002)=1, rank(0004)=2, rank(0005)=4, rank(0007)=7

kth(0)=0001, kth(1)=0002, kth(2)=0004, kth(3)=0004, kth(4)=0005, kth(5)=0005, kth(6)=0005, kth(7)=0007

Switch the language below to c++ to see the template.

Input

The pseudo random generator is used for input instead of stdin in order to reduce input time.

First line five integers m, lfsr, A, B, C.

Next 4 lines give a 4x4 matrix, representing the transition probability of a markov chain for generating input.

There are m operations. In each operation, \emph{op} and $\emph{im}m$ are given.

if (op == 0) tree.insert(imm);

if (op == 1) tree.remove(tree.kth(imm % tree.size()));

if (op == 2) tans ^= tree.rank(imm);

if (op == 3) tans ^= tree.kth(imm % tree.size());

For 40% cases, $m \leq 10$

For 60% cases, $m \leq 1e5$

For 100% cases, $m \leq 1e6$

It is guarenteed the input is valid. All remove action will not happen on empty trees.

Output

1000

Output tans, the xor sum of each operation rank and kth.

Sample Input 1 🖹

10 123 1 2 3 0.25 0.25 0.25 0.25 1 0 0 0 1 0 0 0

Sample Output 1

133

