# Fast, Adaptive Methods for Gaussian Process Regression



Adam Lee, Dr. Peter Green, Prof. Vassil Alexandrov, Robert Allison

EPSRC Centre for Doctoral Training in Distributed Algorithms, University of Liverpool, Liverpool, UK

# Gaussian Process Regression

Gaussian Process regression is an extension of Bayesian linear regression to the space of functions, allowing for non-parametric model estimation representing non-linear relationships between variables.

$$f(\mathbf{x}) \sim \mathcal{GP}(0, \kappa(\mathbf{x}, \mathbf{x}')) \Rightarrow \mathbf{f} \sim \mathcal{N}(0, K_{nn}),$$
 (1)

where f is our underlying function &  $\mathbf{f}$  are noise-free realisations of this function. We then assume our observed data are our  $\mathbf{f}$  with added noise such that  $\mathbf{y} \sim \mathcal{N}(0, K_{nn} + \sigma^2 I)$ . Training this model involves optimizing the model negative log-likelihood and its gradient with respect to a vector of model hyperparameters  $\boldsymbol{\theta}$ 

$$\mathcal{L} = \log p(\mathbf{y}|X, \boldsymbol{\theta}) \propto -\mathbf{y}^{\mathrm{T}} \hat{K}_{XX}^{-1} \mathbf{y} - \log |\hat{K}_{XX}|, \qquad (2)$$

$$\frac{d\mathcal{L}}{d\boldsymbol{\theta}_i} = \mathbf{y}^{\mathrm{T}} \hat{K}_{XX}^{-1} \frac{d\hat{K}_{XX}}{d\boldsymbol{\theta}_i} \hat{K}_{XX}^{-1} \mathbf{y} + \mathrm{Tr}\left(\hat{K}_{XX}^{-1} \frac{d\hat{K}_{XX}}{d\boldsymbol{\theta}_i}\right). \tag{3}$$

which is traditionally executed using the Cholesky factorisation of  $\hat{K}_{nn} = K_{nn} + \sigma^2 I$ . Alternatively, iterative system of linear algebraic equation (SLAE) solvers are used, namely the Conjugate Gradients algorithm.



Figure 1: A simple one-dimensional Gaussian Process posterior on a non-linear function.

# Conjugate Gradients and Iterative GPs

The Conjugate Gradients (CG) algorithm is an iterative routine for computing the solution to a positive-definite SLAE requiring n lots of matrix-vector products between the system itself and an iteratively updated solution vector  $\mathbf{x}_i$  for the system  $\hat{K} \in \mathbb{R}^{n \times n}$ . Slight modifications to the standard algorithm result in the ability to compute both the system's solution and the log-determinant  $\log |\hat{K}_{nn}|$ . In practice, we truncate the work done by terminating CG after m < n iterations, resulting in estimations for the required GP training quantities computed in more desirable time. The use of system preconditioners improves the rate of convergence for CG.

# Algorithms

Algorithm 1: Pseudocode for Gaussian Process Training

1: Define objective function

$$\mathcal{L}_0 = -\mathbf{y}^{\mathrm{T}} \hat{K}_{XX|\boldsymbol{\theta}_0}^{-1} \mathbf{y} - \log |\hat{K}_{XX|\boldsymbol{\theta}_0}|$$

- 2: Define optimisation algorithm (SGD, Adam, L-BFGS-B) and gradients
- 3: i = 0
- 4: while  $\mathcal{L}_i < -\epsilon \; \mathbf{do}$
- 5:  $i \leftarrow i + 1$
- 6:  $\boldsymbol{\theta}_i \leftarrow \boldsymbol{\theta}_{i-1} + \Delta_i$ , using optimiser with PCG
- 7: Calculate  $\mathcal{L}_i$
- 8: end while
- 9:  $\hat{\boldsymbol{\theta}} = \boldsymbol{\theta}_i$  is our MLE of hyper-paramters

#### Algorithm 2: Pseudocode for computing training quantities

- 1: Draw i.i.d  $\mathbf{z}_i \sim \mathcal{N}(0, I_n)$  for  $i = 1, \dots, t$
- 2: Use a modified **PCG** to compute

$$[\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_t] = \hat{K}_{XX}^{-1}[\mathbf{y}, \mathbf{z}_1, \dots, \mathbf{z}_i],$$

and partial tridiagonalisations

$$\widetilde{T}_1$$
  $\widetilde{T}_4$ 

3: 
$$\operatorname{Tr}\left(\hat{K}_{XX}^{-1} \frac{d\hat{K}_{XX}}{d\boldsymbol{\theta}_i}\right) \approx \frac{1}{t} \sum_{j=1}^{t} \left(\mathbf{z}_j^{\mathrm{T}} \hat{K}_{XX}^{-1}\right) \left(\frac{d\hat{K}_{XX}}{d\boldsymbol{\theta}_i} \mathbf{z}_j\right)$$

4: 
$$\det |\hat{K}_{XX}| \approx \frac{1}{t} \sum_{j=1}^{t} \mathbf{e}_1^{\mathrm{T}} \tilde{T}_j \mathbf{e}_1$$

Algorithm 3: Pseudocode for modified, batch Preconditioned Conjugate Gradients

- Input: func: mmp\_A(),  $n \times t$  system rhs B, func:  $P^{-1}()$
- Output:  $A^{-1}B, \tilde{T}_1, \ldots, \tilde{T}_t$ 
  - 1:  $U_0, R_0, Z_0, D_0 \leftarrow \mathbf{0}, mmp\_A(U_0) B, P^{-1}(R_0), Z_0$
  - 2:  $\tilde{T}_1, \ldots, \tilde{T}_t \leftarrow \mathbf{0}, \ldots, \mathbf{0}$
  - 3: j = 0
  - 4: for  $j \leftarrow 0$  to t do
  - 5:  $j \leftarrow j + 1$
  - Perform standard conjugate gradients for search directions  $D_{i-1}$
  - 7: Convergence check with  $R_i$
  - 8: For all i, compute  $\left[\tilde{T}_i\right]_{j-1:j,j-1:j}$  using gradients in 6:
- 9: **end for**

# Preconditioning

The need for preconditioning arises from the convergence analysis of Conjugate Gradients which suggests the number of iterations j for a CG solve to converge scales like the system's condition number

$$j = \mathcal{O}(\varkappa), \tag{4}$$

$$\varkappa = \frac{\max_s(\lambda_s)}{\min_t(\lambda_t)}.$$
 (5)

Preconditioning a system  $A \in \mathbb{R}^{n \times n}$  with preconditioner  $P \approx A^{-1}$  in the context of CG involves simply multiplying our preconditioner with various column vectors. A common choice for a preconditioner for Gaussian Process systems is the incomplete/pivoted Cholesky decomposition, which computes the first k columns of the full Cholesky decomposition of K. An inverse matrix-vector product is then performed using the Woodbury inversion lemma. This project's current work involves the exploration of a family of potential preconditioning strategies developed from Gaussian Process approximation methods, such as the Nystrom method and structured kernel interpolation (SKI) method.



Figure 2: A comparison of the decay in condition number of a system before and after preconditioning





