1. Blokea: Sistema Eragileak

Informazio-Sistemen Arkitektura

Telekomunikazio Teknologiaren Ingeniaritzako Gradua (3. Maila)

1. Blokea - Edukiak

- Ordenagailuen Arkitekturako kontzeptuak
- 2. Sistema Eragileak. Sarrera.
- 3. Prozesuak
 - Prozesuak eta hariak
 - Prozesuen arteko komunikazioa
 - Komunikazio eta Sinkronizazio Mekanismoak
 - Planifikazioa
- 4. Sarrera/Irteera
- Memoriaren Kudeaketa
 - Memoria birtuala edo alegiazko memoria
 - Orrikapena eta Segmentazioa
 - Ordezkapeneko algoritmoak
- 6. Fitxategi Sistema
 - Fitxategiak eta direktorioak
 - Fitxategi Sistemaren antolaketa

4. Gaia – Edukiak SARRERA/IRTEERA

- 1. S/I-ren sailkapena
- 2. Konexio-motak
- 3. S/I-ren arkitektura
- 4. Kontrolatzaileak
 - 4.1 Diskoak
 - 4.2 Erlojua
 - 4.3 Terminala

4. SARRERA/IRTEERA

4.1 SARRERA/IRTEERAREN SAILKAPENA

- Ordenagailuaren bihotza PUZa da, hala ere, ordenagailuak gorputz-adarrak behar ditu ibiltzeko.
 - Biltegiratze sekundarioko gailuak (diskoak) eta hirugarren mailako biltegiratzea (backup sistemak).
 - Gailu periferikoak, erabiltzailearekin interakzioa errazteko.
 - Orokorrean konputagailutik kanpokoak, baina konektatuta.
 - Teklatuak, saguak, mikrofonoa, kamara, digitalizagailuak...

- S/I eragiketetan kontuan izan beharreko ezaugarriak:
 - S/I eragiketak asinkronoak dira
 - S/I gailuen abiadura
 - PUZ-aren abiaduraren desberdinak eta motelagoak.
 - Gailu motaren arabera desberdinak.
 - Aplikazioak gero eta interaktiboagoak, S/I gehiago → botila-lepoa.
 - Formatu eraldaketak
 - Gailu motaren arabera desberdinak
 - Serie edo paralelo

EBAZPEN DESBERDINAK

- Hiru multzo nagusi:
 - Periferikoak. Erabiltzailearen eta PUZ-aren arteko komunikazioa ahalbidetzen dutenak: Sarrerakoak (sagua, teklatua...) eta irteerakoak (inprimagailua, pantaila, etab.
 - Biltegiratze-gailuak. Datuei eta memoriari biltegiratze ezhegakorra eskaintzeko. PUZ-ean exekuzioan ari diren prozesuei datuak hornitu eta biltegiratzea eskaini. Kapazitatearen eta hurbiltasunaren arabera biltegiratze sekundario (diskoak eta disketeak!) eta tertziarioa (zintak, backup sistemak).
 - Komunikazio-gailuak. Konputagailua sarearen bidez beste konputagailuekin lotzeko. Modemak, sare-txartelak.

- S/I sistema erabiltzaileari eta SE-aren beste atal batzuei (Fitxategi-sistemari) ikuspegi logiko sinplifikatua eskaintzen dien SE-aren atala da.
- S/I sistemaren helburuak ondokoak dira:
 - Gailu periferikoen erabilera erraztu eta sinpleagotu.
 - SE-aren S/I eragiketak optimizatzea bere prestazioak hobetuz.
 - Gailu birtualen kudeaketa, edozein motako gailua konektatu ahal izateko.
 - Gailu berriak modu automatikoan beroan konektatzeko aukera eskaintzea plug&play.

- S/I sistemaren ikuspegi desberdinak:
 - Programatzailea: kanpoko gailuetan irakurtzeko eta idazteko funtzionaltasunak ematen duen kutxa beltz bat.
 - Fabrikatzaileak: osagai elektroniko edo elektro-mekanikoz osatutako gailua.
 - SE-aren diseinatzaileak tarteko esparrua:
 - Programatzailearen funtzionalitatea baino detaile-maila altuagoa.
 - Interfaze fisikoaren ezagutza atzipena optimizatu ahal izateko.

- Gailu periferikoen ereduan bi elementu bereiz daitezke:
 - Periferikoak edo S/I gailua.
 - Konputagailura konektatzen den osagai mekanikoa.
 - PUZ-era Sarrera/Irteera unitateen bidez konektatzen diren elementuak.
 - Gailuaren kontroladorea edo S/I unitatea.
 - Osagai elektronikoa da.
 - Memoria nagusiaren eta periferikoaren arteko informaziotransferentziaz arduratzen da. Busaren kontrola, datuak biltegiratu eta erroreak ere detektatu.

 Konputagailuaren buserako (sistemaren busa) konexioa edo zubia du alde batetik eta bestetik S/I gailu

- Kontroladorearen erregistroak
 - S.E.-aren programaziorako erabiliak
 - Motak:
 - Datuak: datuen elkartrukerako erabilia
 - Egoera:
 - Datua irakur edo idaz daitekeen
 - Arazorik egon bada
 - Kontrola: egin beharreko eragiketak adierazteko

- Era askotarikoak dira kontroladoreak, ia S/I gailu-motak bezain ugariak
 - Batzuek, diskoenak esate baterako, gailu bi edo gehiago kontrola ditzakete.
 - Beste batzuk, S/I kanalek esate baterako, PUZ propioa dute.

- Estandarizazio ahalegin handia egin da arlo honetan.
 - Kontroladore berak fabrikatzaile desberdinen gailuak kontrola ditzake (adibideak: Small Computer System Interface SCSI, Integrated Drive Electronics IDE, Universal Serial Bus USB...).

- S/I gailuak mota desberdinetan sailkatzeko ezaugarri desberdinak hausnartu behar dira
- Atxipen mota
 - Ausaz
 - Datuak gailuaren edozein kokapenetan irakur eta idaz daitezke, gordetako ordena kontuan izan gabe.
 - Adib: RAM gailuak, SSD diskoak...
 - Sekuentziala
 - Datuak orden sekuentzialean irakurri eta idatzi behar dira, datuen hasieratik amaieraraino. Beraz, gordetako ordenean egin beharreko eragiketak dira.
 - Adib: Inprimagailuak...

- Datuak memoria eta gailuen artean ze eratan partekatzen diren kontuan izanik:
 - Bloke-gailuak:
 - Tamaina jakineko blokeak atzitzen dira, bai sekuentziaz bai ausaz
 - Blokerako kokapeneko eragiketak daude
 - Memorian proiektaturiko fitxategien bidez ere atzigarriak
 - Adibideak: diskoak, disketeak, USB memoriak
 - Karaktere-gailuak:
 - Atzipena karaktereka egiten da, bai sekuentziaz bai ausaz
 - Adibideak: terminalak, inprimagailuak...
 - Sare-gailuak:
 - Pakete transferentzia
 - "Dena fitxategi bat da" betetzen ez duten bakarrak

- S/I eragiketak egiteko kontroladorearen erregistroak idatzi eta irakurri behar dira. Erregistro hauen kokapenaren arabera (1/2):
 - Ataka bidez atzitzen diren erregistroen eredua. (Intel arkitekturetan. Windowseko gailu-kudeatzailea ikusi)
 - Gailu bat instalatzen denean kontroladoreari S/I atakak esleitzen zaizkio, HW etendura bat eta etendura-bektore bat.
 - PUZ-etik S/I eragiketak egiteko portin() eta portout() egiten dira gailuaren ataketan parametro egokiak jarriz.
 - S/I agindu bereziak programatu beharra
 - Ataka fisiko edo birtualak izan daitezke
 - Fisikoak: Sistemaren busean edo hedapen busean fisikoki konektaturiko interfazeak
 - Birtualak: Loopback, Kernelarekin komunikatzeko, Makina Birtualetan erabiliak,...

- S/I eragiketak egiteko kontroladorearen erregistroak idatzi eta irakurri behar dira. Erregistro hauen kokapenaren arabera (2/2):
 - Memorian proiektatutako erregistroen eredua.
 - Gailua instalatzen denean RAM helbide-barruti bat esleitzen zaio, erregistroak bertan kokatzeko.
 - Kasu honetan ez dago S/I eragiketak egiteko deirik, zuzenean memoria helbideak atzitzen baitira.
 - Memoria-helbideen mapa bakarra dago.
 - Memoria fisikoaren esparruak gordetzen dira S/I helbideetarako.
 - PUZaren efizientzia handiagotzen du
 - Adib: Disko gogorra

- Sarrera/Irteera eta konkurrentzia
 - PUZ eta S/I-ren arteko konkurrentzia
 - S/I programatua: konkurrentziarik ez
 - Etenduren bidezko S/I: konkurrentzia
 - DMA bidezko S/I: konkurrentzia maximoa

4. SARRERA/IRTEERA

4.2 KONEXIO-MOTAK

Sarrera/Irteera programatua (Itxaronaldi aktiboa)

Etenduren bidezko S/I (Itxaronaldi pasiboa)

/*PUZ->S/I*/
/*PUZa libre*/
/*Etendura->desblokeatuta*/

DMA: Begizta ere HW bidez.

- DMA bidezko S/I:
 - Blokeen S/I azkartzeko PUZ erabili gabe
 - DMA kanala behar du
 - PUZ-a libre:
 - konkurrentzia maximoa

Urratsak →

Etenduren S/I Programatua **DMA** bidezko S/I PUZ S/I PUZ S/I PUZ **DMAC** DMAC eragiketa eskarea, etena S/I eragiketa S/I eragiketa aktibatuz. eskarea, etena eskarea. -Norantza aktibatuz. -S/I helbidea Kontrol erreg. Egoera erreg. -Memoria helbidea -Datu kopurua Datu-S/I eragiketa S/I eragiketa transferentzia egiten du egiten du Itxaronaldi Beste agindu Beste agindu Busaz aktiboa batzuk batzuk iabetuz Eragiketa exekutatzen. Egoera erreg. exekutatzen. amaiera Eten eskaera Eten eskaera Egoera erreg. **Atentzio** Atentzio errutinan Datuerrutinan Transferentzia transferentzia Datuzuzen edo gaizki PUZ-ak transferentzia burutu da? Datu erreg. PUZ-ak DMAC egoera Datu erreg.

20

1.Blokea SE

erreq.

ISA 23-24

- Helburuak:
 - Garatutako SWa gailuarekiko independentea izatea
 - Edozein gailutan dauden fitxategiak erabiltzeko gai diren programak erraz idazteko aukera egon behar da, gailu desberdinen ezaugarrietara moldatzeko aldaketa-premiarik barik.
 - Izendapen uniformea (gailuarekiko independentea)
 - Fitxategi eta gailu guztiak era berean helbideratzen dira, direktorio izenetik abiatuta, gailuaren motarekin zerikusirik izan gabe.
 - Erroreen kudeaketa
 - Gertatu diren lekutik hurren zuzendu behar dira.
 - Transferentzia asinkronoak sinkronoak bihurtu
 - Etendurek aktibaturiko eragiketak erabiltzaileen programentzat blokeatu moduan agertzea.
 - Gailuen sailkapena
 - Ardura bakarreko gailuak eta partekatutakoak denbora berean kudeatu

- S/I kudeketarako Swaren lau Erabiltzailearen geruza nagusiak:
 - Erabiltzaile-mailako SWa
 - Interfaze sinplea, bateratua
 - Gailuarekiko SW independentea
 - Zerbitzu orokorrak
 - Gailuaren kontrolatzailea edo driverra
 - HW berezitasunak ezkutatu
 - Etenduraren kudeaketa
 - Kontrolatzailea desblokeatu

1.Blokea SE

- Etenduren kudeaketa
 - Etenduren errutinek bi atal izaten dituzte:
 - Generikoa edo orokorra, etendura bektorean.
 - Gailuaren partikularra (gailuaren kontrolatzailea), blokeatuta egoten dena.
 - Etendura gertatzean ondoko pasuak betetzen dira:
 - 1. Etendura zenbakia jaso.
 - 2. Prozesadorearen egoera prozesuaren PKB-an gorde.
 - 3. Etendura zenbakiari dagokion errutina generikoa exekutatu.
 - 4. Zati generikoak zati partikularra desblokeatuko du.
 - Signal semaforoan
 - Send mezuak erabiliz gero…
 - 5. Planifikatzaileak normalean zati partikularra hautatuko du
 - 6. Hautatutako prozesuaren PKB-ko egoera berreskuratu.
 - 7. Etenduraren kontrola itzuli (RETI).

- Kontrolatzaile edo driverrak
 - Gailuaren mendeko S/I-ko softwarea
 - Gailu mota bakoitzak → Kontrolatzailea edo Driverra
 - Driverrak kontroladorearen erregistroak eta gailuen ezaugarriak ezagutzen ditu. Betebeharrak:
 - Goiko geruzako SW aginduak onartu, agindu zehatz jakinetara itzuli eta hauek burutu.
 - Behin bere komandoa(k) igorrita, beharrezkoa bada, autoblokeatu egingo da dagokion etendura heldu arte (une horretan desblokeatuz).
 - Akatsak egon diren ala ez egiaztatuko du eta SW independentera pasatuko du erantzuna.

Kontrolatzaile abstraktu bat MINIXen

```
/ * mezuak erabiltzen dira komunikatzeko/sinkronizatzeko */
message mess;
void io task( void )
 int rcode, caller;
 initialize();
                                 /* inizializazioa behin egiten da */
 while (TRUE) {
      receive(ANY, &mess);
                                /* zati independentetik etorriko diren eskarien zain blokeatu */
     caller = mess.source;
                                /* eskaria nondik etorri den identifikatu */
     switch(mess.type) {
                                /* ohiko eskari biak*/
          case READ:
                                rcode = dev read(&mess); break;
           case WRITE:
                                 rcode = dev write(&mess); break;
          /* Gainerako kasuak hemen. Adib: IOCTL */
          default:
                                rcode = ERROR;
      mess.type = TASK REPLY; /* erantzun-mezua */
      mess.status = rcode; /* eskariaren emaitza */
      send(caller, &mess); /* eskaria egin duenari erantzun */
```


- Gailuarekiko software independentea
 - Gailu guztietarako komun diren S/I atazak burutzen ditu:
 - Erabiltzaile mailari interfaze bateratua eskaini.
 - Gailu bat izendatzen denean dagokion driverra esleitzen dio.
 - Gailuetara baimenik gabeko sarbideei aurre hartzen dio.
 - Bloke tamaina bera erabiltzen duten gailu abstraktuen kudeaketa ahalbidetzen du, sektorearen benetako tamaina fisikoarekiko independentea.
 - Biltegiratze arazoen kudeaketa, bai bloke bai karaktere gailuetan.
 - Sortuko diren artxibo berriei espazioa eman.
 - Gailuaren arabera tratamendu egokia egiten da, ardura bakarrekoa edo partekatua.
 - Beheragoko geruzetan zuzendu ezin izan diren akatsak kudeatu
 - Fitxategi sisteman garatuko da.

- Erabiltzaile-mailako S/I-ko softwarea
 - S/I-ko software gehiena SE-aren barnean egon arren, parte txiki bat hortik kanpo, erabiltzaile-mailan exekutatzen da:
 - Liburutegietako errutinen bidez betetzen diren sistema deien interfazea.
 - Liburutegi azpi-errutina bidez inplementatzen diren funtzio batzuk, printf eta scanf adibidez.
 - Ardura bakarreko gailu dedikatuak inprimagailua adibidez erabiltzaile mailan exekutatzen dira (*lpr* demonioa edo programa egoiliarra)

4. SARRERA/IRTEERA 4.4 KONTROLATZAILEAK

- Diskoak
 - Egitura fisikoa
 - Egitura logikoa
 - Kontrolatzailea
 - Planifikazioa
 - Erroreen kudeaketa
 - Fidagarritasuna
 - Diskoak memorian
- Erlojua
 - Hardwarea
 - Softwarea
- Terminala
 - Hardwarea
 - Softwarea

- Diskoak
 - Datu-biltegiratze masiboa eta ez-hegakorra.
 - Memoria birtualaren trukerako euskarria.
 - Elektro/opto/magneto/mekanikoak, bloke logiko mailan atzitzen dira.
 - Disko mota desberdinen egitura fisiko eta logikoak oso antzerakoak dira.
 - Kontroladorearen interfazearen arabera: IDE (Integrated Drive Electronics), SCSI (Small Computers System Interface), SATA (Serial Advanced Technology Attachment), SAS (Serial Attached SCSI)...

- Diskoen egitura fisikoa
 - Disko edo xafla ferromagnetikoz eta buru irakurle elektromagnetikoz osatuta.
 - Gainazalak zilindrotan banatuta daude, buruko pista banaz eta pistako sektore-kopuru aldakorraz (kanpokoak gehiago).
 Sektoreak 512bytekoak dira.
 - Edukiera = zilindroak * buruak * sektoreak * 512
 - Atzipen denbora:
 - Bilatze denbora (seek time) +
 - Biraketa denbora (latency time) * ½ +
 - Transferentzia denbora (transmission time)

- Diskoen egitura logikoa
 - Bloke logikoen arrai erraldoiak bezala kudeatzen dira. Blokea transferentzia-unitate minimoa da.
 - Diskoaren kudeatzaileak ez dauka fitxategien berri, bakarrik partizio eta blokeetaz ulertzen du.
 - Bloke logikoen bektorea diskoen sektoreen gainean proiektatzen da:
 - 0 sektorea: kanpoko zilindroaren lehenengo pistaren lehenengo sektorea
 - 0 sektorean partizioen taula gordetzen da.
 - Blokeen mapa lehenengo pista honetan hasten da, gero hurrengo pistetara eta gero gainerakoetara
 - Blokeak fitxategi artean nola banatzen diren eta fitxategiak eta direktorioak diskoan nola antolatzen diren, Fitxategi-Sistema irakasgaian ikusiko da.

- Diskoaren kontrolatzailearen ardura nagusiak
 - Blokeen S/I eskarien zain egon.
 - 2. Formatu logikotik kontroladorearen agindu zehatzetara itzuli.
 - 3. Eskaria gailuaren ilaran sartu eta jarritako planifikazio-politika exekutatu (FIFO, SSF, SCAN, CSCAN, EDF, etab.).
 - 4. Kontroladorearen erregistroak programatu, DMA erabiliz.
 - S/I-ren zain blokeatuta itxaron.
 - 6. Etendura heltzen denean eragiketa egiaztatu.
 - Erroreak egonez gero kudeatu eta ahal den neurrian erroreak konpondu.
 - 8. S/I-ren gaineko atalari (zati independenteari) eskariaren amaieraren egoeraren berri eman.

- Diskoaren planifikazioa
 - Helburuak:
 - Transferitutako byteak / transferentzia-denbora erlazioa hobetzea
 - Zerbitzu determinista ematea
 - Bilatze denbora gutxitzea (bilatze-distantziaren proportzionala)
 - Politikak:
 - FCFS (first come first serve), SCAN(igogailua), CSCAN(ziklikoa), SSF(shortest seek first), EDF (earliest deadline first),
 - Adibidea, eskari-ilarara: 98, 183, 37, 122, 14, 124, 65, 67

Buruaren hasierako kokapena: 53 0 14 37 53 6

FCFS edo FIFO: 640 mugimendu

1.Blokea SE 33

SSF Shortest seek first: 236

CSCAN igogailu ziklikoa: 183 (+199)

- Diskoaren planifikazioa
 - Ataza bakarreko sistemetan edota erabiltzaile bakarrekoetan (MINIX) FCFS erabiltzen da
 - CSCAN erabiliena da (UNIX, Linux eta Windows)
 - Denbora errealeko sistemetan SCAN-EDF edo SCAN-RT erabiltzen da

- Erroreen kudeaketa
 - Behin-behineko erroreak
 - Hautsa diskoaren azalean, gora beherea elektrikoak, kalibrazioarazoak...
 - ECC kodeak antzematen ditu eta eragiketa errepikatu egiten da.
 - Ez bada konpontzen, kaltetutako sektore bezala markatu eta goiko mailari erantzun.
 - Behin-betiko erroreak
 - Aplikazioaren erroreak: SE-ak ez dauka zeregin handirik.
 - Kontroladorearen errorea: kontroladorea berrabiarazi.
 - Gailuaren azalerako errorea: ordezko bloke batez ordeztu.

4. SARRERA/IRTEERA 4.4 KONTROLATZAILEAK. DISKOAK

- Fidagarritasuna
 - Diskoa galtzea gainerako sistema galtzea baino galera handiagoa izan daiteke
 - Babes-kopiak egin.
 - Read eta write eragiketa fidagarriak (bikoiztuak), disko ispiluetan.
 Biltegiratzearen edukiera %50 galtzen da bikoizketan.
 - RAID (Redundant Array of Inexpensive Disks) sistemak.
 - Disko bakarra balitz moduan lan egiten duen disko-multzo bat kontroladore bakar batekin.

Datuak eta paritate-kodeak errepikatuta eta sakabanatuta diskoetan.
 Diskoren bat hondatuz gero, gainerako diskoetatik berreskuratu daiteke informazioa

4. SARRERA/IRTEERA 4.4 KONTROLATZAILEAK. DISKOAK

- Diskoak memorian
 - Hiru mota nagusi:
 - RAM Diskoa
 - RAM memoria nagusi zati bat disko bezala antolatzen da.
 - Bloke eragiketa arruntak: read, write...
 - Memoria hegakorra.

Disko solidoak

- RAM memoria bateriaz elikatuta mantentzen duten txartelak.
- Bibrazio edo golpe handiak dituzten sistema industrialetan.

Flash ROM

- Aurrekoen aldaera pilarik gabeak.
- Gero eta erabiliagoak eramangarrietan, telefonoetan, etab.
- Formatu desberdinak: Smart card, memory stick...

- Erlojuaren hardwarea.
 - Hiru ikuspuntu:
 - Prozesadorearen erlojua, makina aginduak exekutatzeko
 - Kontagailua: data eta ordua
 - Bateriadun hardwareak mantentzen duena
 - SE-ak finkatzen duena
 - Etendura periodikoa, Tick.
 - Lehentasun mailarik altueneko etendura
 - Maiztasuna programagarria
 - SE-aren kontrolpean
 - S/I-rekin batera ikasten da, antzerako programazioa duelako
 - Erregistroak eta etendurak

- Erlojuaren softwarea.
 - Etenduraren maiztasuna orekatzeko premia:
 - Handiegia: Etenduren tratamenduan denbora asko galdu.
 - Txikiegia: Denboraren neurrian prezisio gutxi
 - Balio tipikoa: 100 Hz (10 milisegundoro)
 - Etendura errutinaren lana gutxitzea komeni da:
 - Lehentasunik altuena duenez, bitartean gainerako etendurak atzeratu egiten baitira
 - Ohiko ebazpena: Erlojuaren etendurarekin loturiko lana zatitu
 - Premiazkoenak etendura errutinak burutzen ditu
 - Gainerakoak: etenduratik kanpora erloju atazan
 - Erlojuaren lanak:
 - 1) Data eta ordua mantendu
 - 2) Tenporizadoreak kudeatu
 - 3) Kontabilitatea eta estatistikak
 - 4) Prozesuen planifikaziorako euskarria

- Data eta orduan mantendu
 - SE-a pizterakoan tenporizadorea programatu eta ordua irakurtzen du
 - Hortik aurrera <u>etendura bakoitzean</u> SE-ak ordua gaurkotzen du:
 - Nola gorde data eta ordua?
 - Iraganeko data batetatik igarotako denbora-unitateak
 - UNIX: segs. edo µsegs. 1970-1-1etik
 - Windows: 1601-1-1etik
 - Zenbat toki data eta ordua gordetzeko:
 - SE-a etorkizun luzean erabiltzeko gai izan beharko litzateke
 - Herrialdeen arteko denbora-aldeak:
 - SE-ak UTC (Universal Coordinated Time) bakarrik kudeatzen du, itzulpena liburutegien ardurapean gelditzen da
 - SE-ak ordua irakurri eta aldatzeko (supererabiltzailearik soilik) zerbitzuak eskaintzen ditu

- 2) Tenporizadoreak kudeatu
 - Erabiltzaileen programak denbora batez itxaron behar badute:
 - SE-ak zerbitzuak eskaintzen dizkie
 - SE-ak berak ere tenporizadoreak behar ditu
 - Adib. Komunikazioetako moduluan edota disketearen driverrak
 - SE-ak tenporizadore desberdinak sortzen ditu HW tenporizadore bakarrean oinarrituta
 - Piztuta dauden tenporizadoreen zerrenda (programenak edo SEaren barnekoak)
 - Osagaiak: epea (ticketan) + bukatzean exakutatu beharreko funtzioa
 - Adibidez: temp1 5 tick, temp2 8 tick eta temp3 8 tick:
 - [temp1 5] → [temp2 3] → [temp3 0]
 - Tenporizadoreen kudeaketak denbora behar izaten duenez, etenduran barik, erloju atazan exekutatzen da.
 - Tenporizadoreak PKB sarreretan gordetzen dira sarritan (gogoratu MINIXeko prozesuen taula).

- 3) Kontabilitatea eta estatistikak
 - <u>Etendura gertatzen</u> den bakoitzean
 - Prozesu bakoitzak kontsumitutako PUZaren kontabilitatea
 - Etendura gertatzean exekuzioan zegoen prozesuari ticka zenbatu
 - Prozesuaren PKB-an tick bat gehitu PUZ erabileran
 - Erabiltzaile modua edo sistema modua bereizten da
 - Exekuzio profila
 - Programaren atalek zenbat PUZ kontsumitzen duten jakiteko
 - Etenduraren errutinak etendako prozesuaren pc-aren lagina jasotzen du programaren exekuzio puntua jakiteko
 - Horrela programaren exekuzioaren histograma osotu daiteke.

- 4) Prozesuen planifikaziorako euskarria
 - Planifikazio algoritmo gehienetan denborak garrantzia dauka:
 - Round-Robin edo txandaketa algoritmoan:
 - Etendura bakoitzean kuantuari tick bat kentzen zaio
 - Zerora iristerakoan → Txandaketa
 - Lehentasuna dinamikoki kalkulatzen dutenetan
 - Erabilitako PUZaren alderantzizko proportzioan

- Terminalaren hardwarea
 - 3 mota desberdin SE-arekiko komunikatzeko moduaren arabera:
 - Memorian proiektatutako terminala → Bideo-RAMa PUZaren helbideratze espazioaren zatia da, gainerako RAM memoria bezala
 - RS-232 terminala → serie komunikazioa
 - Sareko interfazedun terminala → Xterminala

- Terminalaren lana
 - Antzerakoa terminal mota-guztietan
 - Aldeak: HW-z zer egiten den eta SW-z zer
 - Independentzia nahiko handia dago sarrera eta irteeraren artean.
 - Sarrera
 - Teklaren kodea → ASCII karakterea
 - Kontuan hartzen dira modu-teklak (ctrl, alt,...)
 - Irteera
 - Pantaila: Bideo-RAMeko pixel-matrizea
 - Bideo-kontroladoreak memoria irakurri eta pantaila freskatzen du
 - Pantailan idazteko bideo-RAMean idatzi beharko da
 - ASCII karaktereak → Pixel-patroia
 - Ihes sekuentziak escape sequences:
 - Pantaila kontrolatzeko efektuak (pantaila ezabatu, kurtsorea kokatu, koloreak, etb.)

- Memorian proiektaturiko terminalaren hardwarea
 - Terminala bi gailu independentek osatzen dute
 - Teklatuak tekla sakatu/askatzean etendurak sortzen ditu
 - SE-ak kodea irakurtzen du teklatuaren kontroladoretik
 - ASCII itzulpena egiten du modu-teclak kontuan hartuz
 - Bideo-memoria PUZ-tik atzigarri
 - Bideo-kontroladorea kurtsorea mugitzeko, scroll, etc.
 - Lan egiteko 2 modu:
 - Alfanumerikoa:
 - Bideo-memorian ASCII kodeak+koloreak
 - Bideo-kontroladoreak pixel-patroiak sortzen ditu
 - Grafikoa:
 - Bideo-memorian pixel-matrize bat dago
 - SW-ak idatzi behar du ASCII kodearen pixel-patroia
 - Ihes-sekuentziak SW-ez kontrolatuta

1.Blokea SE

47

- Serie-atakako terminalaren hardwarea
 - Terminala: gailu bakar bat serie-ataka batez lotua (UART)
 - Barne prozesadorea dauka
 - SE-ak UART-aren parametroak programatu behar ditu
 - Sarrera etenduren bidez
 - UART-k ASCII karaktereen helduera ohartarazten du
 - ASCII itzulpena terminalean
 - Irteera: karaktereak → UART
 - Terminalak sortzen du pixel-patroia
 - Terminalak kudeatzen ditu ihes-sekuentziak
 - Etendurak erabiltzen dira

- Sarrerako softwarea
 - Etenduren bidez kontrolatuta
 - Proiektatutako terminalean
 - ASCII itzulpena eta modu-tekla kontrolatzailearen menpe
 - Malgutasun gehiago itzulpen honetan
 - Kontrolatzaileak "aurretiaz tekleatutakoa" (type ahead) gordetzen du
 - Erabiltzailean informazio behar baino lehenago idazten duenean
 - Kontrolatzaileak tarteko biltegiratzea beharko du
 - Tekleatutakoaren idazketa kontrolatzailearen ala aplikazioaren ardurapean?
 - Programa gehienek edizio sinplea behar dute
 - Prozesu gehienei edizio bateratua eskaintzea komeni zaie
 - Zenbait aplikazioek berriz, edizio berezia behar dute

- Sarreraren softwarea
 - Ohiko irtenbidea:
 - Besterik adierazi ezean, kontrolatzaileren edizio sinplea
 - Sarrera lerrotan oinarritutako modua (tarteko biltegiratzea du)
 - UNIXen modu landua edo kanoniko izenez ezaguna
 - Edo desaktibatu kontrolatzailearen edizioa
 - Sarrera karakteretan oinarritutako modua
 - Edizioa aplikazioaren ardurapean
 - UNIXen modu gordina edo ez-kanoniko izenez ezaguna
 - Kasu honetan kontuan hartu kasu bereziak: del karakterea, cr eta lf

- Irteeraren softwarea
 - Irteera ez da sarrerarekiko guztiz independentea
 - Kontrolatzaileak sartutako karaktereen oihartzuna egiten du
 - Pantailan programaren irteera eta sarreraren oihartzuna nahastatzen dira
 - Oihartzuna desaktibatu egin daiteke
 - Irteerako softwarea sinpleagoa serie-atakako terminalekin
 - HW-ak funtzio gehiago betetzen ditu

- Serie-atakako terminalen irteera
 - Etenduren bidez
 - Programak karaktere-kate bat idatzi behar duenean:
 - Kontrolatzaileak tarteko biltegiratzean kopiatzen du
 - UART-eko erregistroan lehenengo karakterea jarri eta bidali
 - Etendura jasotzean, hurrengo karakterea bidali.
 - Terminalak prozesamendu guztia egiten du:
 - Patroia lortu eta bistaratu
 - Karaktere bereziak (adib ^G edo bell)
 - Kurtsorearen kokapenaren kontrola
 - Ihes-sekuentzien itzulpena

- Memorian proiektatutako terminalen irteera
 - Programak karaktere-kate bat idatzi nahi duenean:
 - Kontrolatzaileak erabiltzailearen memoria-espazioko karaktereak irakurri
 - Prozesatu egiten ditu eta bideo-memorian idazten du emaitza:
 - Modua alfanumerikoa bada, karakterea idatzi
 - Modu grafikoa bada, dagokien pixel-patroia idazten du
 - Ez dago etendurarik, ezta tarteko biltegiratzerik ere
 - Kontrolatzaileak karaktere berezien aurkezpena egiten du:
 - Tabuladorea izanez gero, kurtsora kontrolatu
 - ^G bell bada, bozgorailua aktibatu
 - Ezabatzeko karakterea, aurreko posizioan karaktere zuria idatzi
 - Lerro jausiak pantailaren desplazamendua (scroll) ekar dezake
 - Hies-sekuentziak kontrolatzailearen ardurapean