Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

- (1,5 pt.) Encontre a derivada das funções algébricas usando técnicas de derivação.

 - (a) (0.5 pt.) $f(x) = \frac{x^3 3x^2}{x^2 + 5x 4}$ (c) (0.5 pt.) $F(y) = (1 + 5y^5) \left(\frac{2}{y^2} \frac{4}{y^4}\right)$
 - (b) (0,5 pt.) $q(x) = (\sqrt[3]{x} + 1)$
- 2. (1,0 pt.) Determine a derivada das funções envolvendo funções trigonométricas.

 - (a) $(0.5 \text{ pt.}) F(\theta) = \frac{\cos \theta}{\sin \theta + \cos \theta}$ (b) $(0.5 \text{ pt.}) f(x) = (e^x 1)\sec x + \frac{\sin x}{e^x + 1}$
- 3. (2,5 pt.) Considere a função $g(x) = \begin{cases} -x^2 + 2, & x < 1 \\ 3x 2, & x \ge 1 \end{cases}$
 - (a) (0,5 pt.) Mostre algebricamente que g é uma função contínua em x = 1.
 - (b) (1,0 pt.) A função g é diferenciável em x=1? Justifique usando o conceito de derivadas laterais e comente se há alguma contradição com o item (a).
 - (c) (1,0 pt.) Determine a função g'(x) usando a definição de derivada e esboce os gráficos de q e q' no mesmo sistema de eixos.
- 4. (2,0 pt.) Considere os exercícios a seguir envolvendo funções diferenciáveis.
 - (a) (1,0 pt.) Determine uma equação da reta tangente a $h(x) = \frac{3^{x^2}(x-\sqrt{2})}{2+x^2}$ em x = 0.
 - (b) (1,0 pt.) Calcule o valor aproximado do número $\sqrt[3]{(8,12)^2}$ usando linearização.
- 5. (1,5 pt.) Encontre $\frac{dy}{dx}$ usando a regra da cadeia.
 - (a) (0,5 pt.) $y = \left(\frac{\sin x + 1}{\cos x 1}\right)^{10}$ (b) (0,5 pt.) $y = \sqrt[4]{5x^3 e^x \tan x}$ (c) (0,5 pt.) $y = \sin^3(2x + 1)$
- 6. (1,5 pt.) Determine uma equação da reta tangente à curva $x^2-2y^3=9\sqrt{xy}$ no ponto P = (-4, -1).

¹Coloque o nome completo nas folhas de prova e escreva o resultado final das questões à caneta. Respostas sem resolução e/ou justificativa não serão consideradas. Não é permitido o uso de quaisquer equipamentos eletrônicos. Data da Avaliação: 28/11/2024