

# Deconstructing the Internet of Things



SAP Event Stream Processor (Edge)

SAP SQL Anywhere | Ultralite

SAP SQL Anywhere MobiLink

SAP Event Stream Processor | Smart Streaming

Partner Value Chain: Important contributors to delivering device data.

# **Illustrative Solution Recipes**

# **IoT Connector | Streaming** HANA \_Alerts, Actions streaming HANA IoT (3rd ESP Edge Party) Server Connector device device device





# Agenda

### **HANA Platform**

**HANA Smart Streaming** 

**SQL** Anywhere

**HANA Cloud Platform** 

**IoT Solutions** 

**IoT Security & Research** 

#### **SAP HANA Database**

# Multi-Engine for Different Application Needs



# **SAP HANA Technology & Features**

### Combined in one DBMS Platform

#### **In-memory DBMS**

Exploit SSD/disk for spilling, aging/archiving, durability/fault-tolerance

#### Standard RDBMS features

- SQL, stored procedures
- ACID, MVCC with snapshot isolation, logging and recovery

#### Focus on column store

- Late materialization and decompression
- Row store capability, e.g. for system catalogs

#### **High Performance**

- Efficient compression techniques
- Parallelization at multiple levels
- Scanning operations co-optimized with hardware

#### **Reduced TCO and administration**

Avoid indexes, aggregates and materialized views, with exceptions (like primary key indexes)

# **In-Memory Computing – Data Structures**

| Order | Country | Product | Sales |
|-------|---------|---------|-------|
| 456   | France  | corn    | 1000  |
| 457   | Italy   | wheat   | 900   |
| 458   | Italy   | corn    | 600   |
| 459   | Spain   | rice    | 800   |





SAP HANA: column order

**Typical Database** 

SELECT Country, SUM(sales) FROM SalesOrders WHERE Product = 'corn' GROUP BY Country

# **SAP HANA: Dictionary Compression**





# **Additional Compression Technologies**



#### **SAP HANA Column Store**

#### Column Main: Read-optimized store for immutable data

- High data compression
- Efficient compression methods (dictionary and run-length, cluster, prefix, etc.)
  - Dictionary values for main are sorted in same order as data
- Heuristic algorithm orders data to maximize secondary compression of columns
- Compression works well, speeding up operations on columns (~ factor 10)

#### Column Delta: Write-optimized store for inserts, updates and deletes

- Less compression of data
- Data is appended to delta to optimize write performance
- Unsorted dictionary on delta helps speed write performance
- Delta is merged with main periodically, or when thresholds are exceeded
  - Delta merge for a table partition is done on-line, in background
  - Enables highly efficient scan of Main again

### **SAP HANA: Multi-Core Parallelization**



### **Parallelization at All Levels**

- Multiple user sessions
- Concurrent operations within a query (... T1.A ... T2.B...)
- Data partitioning on one or more hosts
- Horizontal segmentation, concurrent aggregation
- Multi-threading at Intel processor core level
- Vector processing



#### **HANA Core Platform**

#### ONE platform for simple and efficient data processing



# Agenda

**HANA Platform** 

# **HANA Smart Data Streaming**

**SQL** Anywhere

**HANA Cloud Platform** 

**IoT Solutions** 

IoT Security & Research

# Event stream processing uses continuous queries



# Smart data streaming extends the capabilities of the SAP HANA Platform

## Stream capture

- Capture data arriving as individual events at potentially high speeds
  - Hundreds of thousands or millions of events per second
  - Micro-batching and parallel processing to optimize load speeds
- Capture events that are published from streaming sources
  - e.g. message bus
- Filter, transform or enrich the data on the way in
  - Capture only the data you want, in the form you need it
- Prioritize data
  - Capture high value data in HANA and direct other data into Hadoop

# **Continuous analysis, Immediate Response**

- Monitor incoming event streams
  - Watch for trends or patterns
  - Monitor correlations
  - Detect missing events
  - Continuously update and monitor aggregate statistics
- Generate alerts, notifications
- Initiate immediate response

# **Complex Event Processing extracts insight from events**



Sensor readings – 10's of thousands per second

# **CCL:** Continuous Computation Language – Some examples

| Input Stream:                   | Filter:                      | Aggregate:                     | Join:                      |  |
|---------------------------------|------------------------------|--------------------------------|----------------------------|--|
| CREATE INPUT<br>STREAM EventsIn | CREATE OUTPUT STREAM Filter1 | CREATE OUTPUT WINDOW MovAvg    | CREATE OUTPUT STREAM Join1 |  |
| SCHEMA (                        | AS SELECT *                  | PRIMARY KEY DEDUCED            | AS SELECT                  |  |
| ID INTEGER,                     | FROM EventsIn                | AS SELECT EventsIn             | Dev2.ID ID ,               |  |
| Value integer ,                 | WHERE EventsIn.Value > 28;   | .ID ID ,                       | Dev2.Temp Temp ,           |  |
| TS msdate )                     |                              | avg ( EventsIn.Value ) Value , | MovAvg.Value Value,        |  |
|                                 |                              | EventsIn.TS TS                 | MovAvg.TS TS               |  |
|                                 |                              | FROM EventsIn KEEP 3 MIN       | FROM Dev2 INNER JOIN       |  |
|                                 |                              | GROUP BY EventsIn.ID;          | MovAvg                     |  |
|                                 |                              |                                | ON Dev2.ID = MovAvg.ID ;   |  |

# IoT – ESP Lite on the Edge & Scalable Cloud Platform



# Agenda

**HANA Platform** 

**HANA Smart Streaming** 

# **SQL** Anywhere

**HANA Cloud Platform** 

**IoT Solutions** 

**IoT Security & Research** 

# **SQL** Anywhere and MobiLink Overview

#### **SQL Anywhere**

- Highly embeddable (~20 MB) enterprise caliber database with rich feature set (complex SQL, spatial, full text search)
- Broad platform support including Linux ARM (e.g. Raspberry Pi) and x86 (Intel Edison)

#### **MobiLink**

- Session based, bi-directional synchronization between multiple remote SQL Anywhere databases and a back-end database
- Can optionally be horizontally scaled behind load balancer to support large installations (> 100,000 remote databases)
- Support for slow, unreliable and intermittently connected networks

# **SQL** Anywhere and MobiLink Architecture



# **SQL Anywhere and MobiLink are Complementary**

#### MobiLink is <u>not</u> real-time, it is on-demand session-based synchronization (e.g. when connection becomes available)

Synchronization frequency is determined by remote application and can range from several times an hours, to once a month or less

#### **SQL** Anywhere and MobiLink are useful for environments that require:

- Complex data processing and analytics capabilities at the edge/gateway
- Durable storage of complex data for eventual transmission to core/cloud when connection is available
- Secure, bi-directional synchronization of structured including sending metadata/reference data from core to gateway
- An enterprise caliber database for applications/control logic running on the gateway

SQL Anywhere provides a complementary data plane to other real-time data collection technologies (e.g. streaming)

# Agenda

HANA Platform

HANA Smart Streaming

**SQL** Anywhere

**HANA Cloud Platform** 

**IoT Solutions** 

**IoT Security & Research** 

# **SAP IoT Offering**



# Agenda

**HANA Platform** 

**HANA Smart Streaming** 

**SQL** Anywhere

**HANA Cloud Platform** 

## **IoT Solutions**

**IoT Security & Research** 

# **Enabling the Internet of Things with SAP solutions**











IoT Predictive Maintenance & Service

IoT Connected Manufacturing

loT Connected Logistics

IoT Augmented Reality

IoT Innovation Bundle

### **Predictive Maintenance**



Graph from <a href="http://reliabilitycenteredenergymanagement.com/wp-content/uploads/2011/10/P-F-Curve.jpg">http://reliabilitycenteredenergymanagement.com/wp-content/uploads/2011/10/P-F-Curve.jpg</a>

# **Building Blocks**



**Public** 

# **SAP Predictive Maintenance and Service Process**



## **Smart Green Roof**



# Agenda

**HANA Platform** 

**HANA Smart Streaming** 

**SQL** Anywhere

**HANA Cloud Platform** 

**IoT Solutions** 

**IoT Security & Research** 

#### Sensor devices and Wireless networks

- CPU, RAM, battery restriction
- □ No direct application of traditional processing or security approaches
- Unreliability of Sensor Devices
- Unreliability of Wireless Sensor Networks
- Large diversity of sensors
- Lack of inter operability with business applications

# Past and present security research projects

- Context aware security policies Extension to XACML for service discovery in ubiquitous networks
- Secure handshake A protocol that allows user's to mutually verify another's property without revealing their identity.
- Trust assessment of sensor data
- Privacy preserving for asset tracking in supply chain
- Secure alerting in supply chain
- Secure exchange of RFID tracking data
- Privacy in cyber physical systems
- Multi-tenancy of sensors used in an office building
- Predictive analytics for pipeline integrity

# Foreseen security challenges – Predictive analytics for Pipleline Integrity

#### **Need for sensor data anonymisation**

#### **End to end security**

Efficient aggregation on encrypted data
Full or partial homomorphic encryption for sensor devices
Efficient secure alerting on encrypted data
Order Preserving Encryption for sensor devices

# Efficient and scalable security solution for big sensor network (million of devices)

secure event stream processing Deal with untrusted gateways

#### **Key management of encryption key**

Secure storage of cryptographic material on sensor Key distribution on sensor Key revocation

Sensor device authentication and identity management

# Infrastructure, Cloud, Applications – Past and present security projects

- Privacy-Preserving Benchmarking in the Cloud
- Secure collaborative supply chain management
- Resilient reputation systems
- Searching over encrypted data

# Searchable over encrypted data (SEEED)



# **Performance measurement**

| Test Case                |                                    | SEEED | Plain | Impact |
|--------------------------|------------------------------------|-------|-------|--------|
| Server-                  | Exact Search                       | 2.0   | 1.7   | 1.2 x  |
| Side<br>Only             | Equi-Join                          | 49.7  | 33.3  | 1.5 x  |
| Offiny                   | Grouping with<br>Aggregation (Sum) | 674.1 | 57.8  | 11.7 x |
| Incl.<br>Client-<br>Side | Order by<br>Aggregate (Sum)        | 870.1 | 56.3  | 15.4 x |
| TPCH                     | Q4                                 | 2,402 | 235   | 10.2 x |
|                          | Q5                                 | 1,373 | 207   | 6.6 x  |

# **Challenges**

- □ Improving the performance of aggregation queries
- □ Reducing the number of columns with lower encryption schemes
- Reduce the time taken to initially encrypt the database
- □ Re-encrypting the database due to lost/stolen master keys without taking the database offline

#### **SAP HANA Collaborative Research**

#### Research overview: <a href="http://scn.sap.com/docs/DOC-27051">http://scn.sap.com/docs/DOC-27051</a>

- Publications: <a href="http://scn.sap.com/docs/DOC-26787">http://scn.sap.com/docs/DOC-26787</a>
- Academic partners: <a href="http://scn.sap.com/docs/DOC-26786">http://scn.sap.com/docs/DOC-26786</a>
- Students and alumni: <a href="http://scn.sap.com/docs/DOC-26824">http://scn.sap.com/docs/DOC-26824</a>

#### **University collaborators at PhD level include:**

- TU Dresden
- University of Mannheim
- TU München
- ETH Zürich
- EPFL
- HPI
- DHBW Mannheim
- TU Ilmenau
- TU Karlsruhe
- University of Heidelberg
- University of Toronto
- University of Waterloo
- More including conversations with others in-progress



vivek.kandiyanallur@sap.com @thedataneer anil.goel@sap.com