Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

Кафедра математического анализа

Интерполяция на тетраэдре

Выполнил: студент 2 курса 218 группы

Веселов Андрей Сергеевич

Научный руководитель: Матвеева Юлия Васильевна

Саратов 2023

Цели дипломной работы

- рассмотреть интерполяционные сплайны первой степени одной и двух переменных и оценить погрешность аппроксимации на различных классах функций;
- рассмотреть триангуляции плоских областей и алгоритмы их построения;
- разработать десктопное приложение для построения изученных триангуляций;
- реализовать вычисление аппроксимирующих функций на треугольных сетках, удовлетворяющих условию Делоне, и построение интерполяции в приложении;
- рассмотреть линейную интерполяцию на тетраэдре и оценить погрешность аппроксимации производных.

Сплайны одной переменной

Пусть на [a,b] задано разбиение $\Delta : a = x_0 < x_1 < \ldots < x_N = b.$

Определение

Функция $S_{n,\nu}(x)$ называется сплайном степени п дефекта ν ($\nu\in\mathbb{Z},\ 0\leqslant\nu\leqslant n+1$) с узлами на сетке Δ , если выполняются следующие условия:

a)
$$S_{n,
u}(x)=\sum_{lpha=0}^n a^i_lpha(x-x_i)^lpha$$
 для $x\in [x_i,x_{i+1}],\ i=\overline{0,N-1};$

6)
$$S_{n,\nu}(x) \in C^{n-\nu}[a,b].$$

Теорема

Пусть дана функция $f(x) \in C[a,b]$. Если сплайн первой степени $S_1(x)$ интерполирует функцию f(x) на сетке Δ , то справедлива оценка

$$\|S_1(x) - f(x)\|_{C[a,b]} \leqslant \omega(f). \tag{1}$$

Сплайны двух переменных

Пусть в области $\Omega = [a,b] imes [c,d]$ введена сетка $\Delta = \Delta_{\scriptscriptstyle X} imes \Delta_{\scriptscriptstyle Y}$, где

$$\Delta_x : a = x_0 < x_1 < \ldots < x_N = b, \quad \Delta_y : c = y_0 < y_1 < \ldots < y_M = d,$$

делящая область Ω на прямоугольные ячейки

$$\Omega_{ij} = \{(x,y) \mid x \in [x_i, x_{i+1}], \ y \in [y_j, y_{j+1}]\}, \ \ i = \overline{0, N-1}, \ \ j = \overline{0, M-1}.$$

Определение

Функция $S_{n,m,\nu,\mu}(x,y)$ называется сплайном двух переменных степени п дефекта ν ($\nu\in\mathbb{Z},\ 0\leqslant\nu\leqslant n+1$) по x и степени m дефекта μ ($\mu\in\mathbb{Z},\ 0\leqslant\mu\leqslant m+1$) по y с линиями склейки на сетке Δ , если выполняются следующие условия:

а)
$$S_{n,m,
u,\mu}(x,y)=\sum_{lpha=0}^n\sum_{eta=0}^m a_{lphaeta}^{ij}(x-x_i)^lpha(y-y_j)^eta$$
 для $(x,y)\in\Omega_{ij},$

6)
$$S_{n,m,\nu,\mu}(x,y) \in C^{n-\nu,m-\mu}[\Omega].$$

Теорема

Пусть дана функция $f(x,y) \in C[\Omega]$. Если сплайн первой степени $S_{1,1}(x,y)$ интерполирует функцию f(x,y) на сетке Δ , то справедлива оценка

$$\|S_{1,1}(x,y) - f(x,y)\|_{C[\Omega]} \le 2\omega(f).$$
 (2)

Триангуляции плоских областей

Определение

Триангуляцией называется планарный граф, все внутренние области которого являются треугольниками. Соответствующие элементы триангуляции обычно называют узлами, ребрами и треугольниками.

Определение

Пусть задан конечный набор точек $\{P_i\}_{i=1}^N$ на плоскости \mathbb{R}^2 .

Триангуляцией данного набора точек называется совокупность невырожденных треугольников $\{T_j\}_{j=1}^M$, удовлетворяющих условиям:

- ullet любая точка P_i является вершиной хотя бы одного треугольника T_j ;
- каждый треугольник T_j содержит только три точки из данного набора, являющиеся вершинами этого треугольника.

Построение триангуляций

Пример

Определим область $\Omega = [-20, 20] \times [-10, 10]$, сгенерируем 10 узлов.

Planar Triangula	ion & Approximation & Interpolation (nearsolt)	- 🗆 ×
Number of nodes: Generate nodes	10	☐ Inner triangle visibility ☐ Circumcircle visibility
Set domain of definition	X-Axis: -20,00 • 20,00 • Y-Axis: -10,00 • 10,00 • nX: 101 • nY: 101	Combined graphs
1 (-20, 10)		3 (20, 10)
4 (-17,31; 4,7	\$ (11.47;5.78)	
	6 (3.13), 3.44)	
	5 (6.64-2.59)	
	9 (-0.41, -5.66) 7 (10.38;-5.48)	
0 (-20; -10)		2 (20; -10)

Построение жадной триангуляции

Построение триангуляции Делоне

Построение триангуляции методом измельчения

Аппроксимация функций на нерегулярной сетке

Рассмотрим задачу аппроксимации вещественнозначной функции двух переменных z=f(x,y) по экспериментальным данным, которые представляют собой набор значений $\{z_i\}_{i=1}^N$ в случайно разбросанных по области определения точках (x_i,y_i) , $i=\overline{1,N}$.

Экспериментальные данные обозначим через

$$A = \left\{ XY, Z : XY = \{(x_i, y_i)\}_{i=1}^N, Z = \{z_i\}_{i=1}^N \right\}.$$

Требуется найти такую функцию G(A,x,y), которая в некотором заданном смысле соответствовала бы неизвестной функции f(x,y) и могла быть использована в расчетах вместо нее.

Вычисление аппроксимирующих функций

Пример

Пусть дана функция $f(x,y)=\cos(x)\sin(0.5y)x+y$, определенная в области $\Omega=[4,10]\times[-10,-2]$. Сгенерируем 100 узлов, случайно разбросанных по области определения Ω .

Рис.: График функции f(x, y).

Вычисление аппроксимирующих функций

Максимальное значение погрешности аппроксимации равно 9.641.

Рис.: График $G_{prev}(A, x, y) \in \Omega = [4, 10] \times [-10, -2]$ ($h_x = 0.06$, $h_y = 0.08$).

Вычисление аппроксимирующих функций

Максимальное значение погрешности аппроксимации равно 3.228.

Рис.: График $G(A, x, y) \in \Omega = [4, 10] \times [-10, -2]$ ($h_x = 0.06$, $h_y = 0.08$).

Линейная интерполяция на тетраэдре

Пусть задан некоторый тетраэдр $\bar{T}=(A_i)_{i=1}^4$ с вершинами A_i , $i=\overline{1,4}$. Функция f определена на \bar{T} и непрерывна вместе с любыми своими производными до второго порядка включительно.

Требуется построить полином P=P[f] первой степени, который в вершинах A_i $(i=\overline{1,4})$ тетраэдра \bar{T} интерполирует функцию f:

$$f(A_i) = P(A_i), \quad i = \overline{1,4}.$$

Теорема

Для любой функции $f \in W(M)$ и любого единичного вектора ξ справедлива оценка

$$\left\| \frac{\partial f}{\partial \xi} - \frac{\partial P}{\partial \xi} \right\| \lesssim \frac{MR}{\sin(\varphi)}, \tag{3}$$

где

$$R = \max_{1 \leqslant i \leqslant 4} R_i, \quad \sin(\varphi) = \max_{1 \leqslant i, j \leqslant 4, i \neq j} \sin(\varphi_{ij}).$$

Спасибо за внимание!