Dokumentacja – laboratorium nr 4 Wprowadzenie do Sztucznej Inteligencji

Dominika Wyszyńska 318409

14 grudnia 2023

1 Opis treści zadania

Celem zadania było zaimplementowanie algorytmu SVM. Algorytm ten operuje na zasadzie znajdowania optymalnej hiperpłaszczyzny separującej dane, maksymalizującej odległość między klasami. Zbiorem danych w zadaniu mało być Wine Quality Data. Aby dostosować zbiór danych do problemu klasyfikacji binarnej, należało zmienną objaśnianą (jakość wina) zmodyfikować na podstawie ustalonej wartości minimalnej jakości wina. Zakładamy, że wino o jakości powyżej 6 włącznie jest dobrej jakości.

Należało także zbadać wpływ hiperparametrów na działanie implementowanego algorytmu. Do badań wybrano dwie funkcje jądrowe poznane na wykładzie - wielomianowa oraz RBF.

Implementacja programu została umieszczona na gitlabie wydziałowym.

2 Opis planowanych eksperymentów numerycznych

Eksperymenty zostały zaprojektowane w następujący sposób:

- 1. Funkcja jądrowa wielomianowa $f(\mathbf{x}_i, \mathbf{x}_i) = (\mathbf{x}_i^T \cdot \mathbf{x}_i + c)^d$
 - \bullet Badanie wpływu parametrów wielomianu współczynnika coraz stopnia wielomianu parametrd
 - Badanie wpływu hiperparametru C
- 2. Funkcja jądrowa RBF $f(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma ||\mathbf{x}_i \mathbf{x}_j||^2)$
 - Badanie wpływu parametru γ
 - Badanie wpływu hiperparametru C

3 Opis uzyskanych wyników

3.1 Funkcja jądrowa - wielomianowa

ullet Badanie wpływu parametrów c oraz d wielomianu w funkcji jądrowej Na potrzeby eksperymentów ustawiono wartość hiperparametru C na 1.

Współczynnik c	Potęga wielomianu d	Dokładność modelu
1	1	73.4%
4	1	73.4%
2	2	76.9%
2	3	76.9%
2	4	79.1%
6	4	80.9%
1	6	77.2%
2	6	76.9%
1	10	73.8%

Stopień d wielomianu można wykorzystać do kontrolowania złożoności modelu. Im wyższy stopień, tym bardziej skomplikowana i nieliniowa staje się funkcja jądrowa. Wysoki stopień d zaowocuje bardziej złożonym modelem, który może naddopasować dane. Podczas gdy niski stopień d spowoduje prostszy model, który może niedostatecznie dopasować dane. Parametr c kontroluje, jak bardzo funkcja jądrowa jest nieliniowa. W praktyce, dobór wartości c i d zależy od charakterystyki danych i problemu klasyfikacji. Po wykonaniu wielu eksperymentów najlepsze nastawy - najwyższy procent - dokładność modelu jest przy c=6 oraz d=4. Dokładność modelu wynosi wtedy ok. 80.9%.

• Badanie wpływu hiperparametru C Na potrzeby eksperymentów jako parametry w funkcji jądrowej przyjęto c=6 oraz d=4, czyli z poprzedniego podpunktu, gdy dokładność modelu była największa.

Wartość parametru ${\cal C}$	Dokładność modelu
0.001	77.5%
0.1	77.5%
0.5	79.7%
1	80.9%
10	76.3%
100	77.5%
1000	73.4%

Dobór optymalnej wartości parametru C w SVM jest istotny dla uzyskania równowagi między dopasowaniem do danych treningowych a zdolnością modelu do efektywnej generalizacji na nowe dane. Wartość, podobnie jak dla innych parametrów, należy wzynaczać eksperymentalnie. Mała wartość C prowadzi do większego marginesu decyzyjnego, co oznacza, że model jest bardziej tolerancyjny na błędy treningowe i bardziej zgeneralizowany.Natomiast duża wartość C skutkuje niskim błędem treningowym, ponieważ model jest bardziej skłonny do dopasowywania się do każdej pojedynczej próbki z treningowego zbioru danych (może prowadzić do nadmiernego dopasowania). Stąd w podanym przypadku najlepszą wartość dokładności modelu - testowanie na danych testujących - 80.9% otrzymana dla C=1.

3.2 Funkcja jądrowa - RBF (Radial Basis Function)

• Badanie wpływu parametru γ Na potrzeby eksperymentów ustawiono wartość hiperparametru C na 1.

Wartość parametru γ	Dokładność modelu
0.1	75.3%
1	75.3%
5	75.9%
10	76.3%
16	80.0%
20	78.4%
100	70.6%

Jak widać, najlepszy procent dokładności modelu otrzymujemy, gdy $\gamma=16$. Wartość tą należy także dobierać eksperymentalnie. Mała wartość γ prowadzi do bardziej płaskiego modelu, który jest bardziej elastyczny i ma większy margines decyzyjny. Może to prowadzić do gorszego dopasowania do skomplikowanych danych. Natomiast duża wartość γ skutkuje bardziej skomplikowanym modelem, który jest bardziej dopasowany do danych treningowych.

• Badanie wpływu hiperparametru C Na potrzeby eksperymentów jako parametr γ w funkcji jadrowej przyjeto 16, czyli z poprzedniego podpunktu, gdy dokładność modelu była najwieksza.

Wartość parametru C	Dokładność modelu
0.01	64.4%
0.1	70.3%
0.5	78.1%
1	80.0%
10	77.8%
100	76.6%

Wpływ parametru C jest podobny, jak w przypadku funkcji jądrowej - wielomianowej. W przypadku funkcji jądrowej RBF, najlepszym rozwiązaniem jest C=1, gdyż wtedy dokładność modelu jest dokładnie równa 80%, czyli najwięcej z podanych eksperymentów.

4 Podsumowanie i wnioski

Celem tych eksperymentów było zrozumienie wpływu różnych parametrów na zachowanie się algorytmu SVM. Parametr γ w funkcji jądrowej RBF używanej w SVM ma istotny wpływ na kształt decyzyjnej hiperpłaszczyzny. Wartość parametru C wpływa na dopasowanie. Wysoka wartość C - mniejszy margines, nadmierne dopasowanie, niska wartość C - większy margines, lepsza generalizacja. Ogólnie obie funkcje jądrowe dość dobrze sobie poradziły. Przy najlepszych doborach parametrów - dokładność modelu znajduje się w okolicach 80%, co jest dość zadawalającym wynikiem.