ИТОГОВЫЙ КОНСПЕКТ

Tema Nº24

ОШИБКИ

1. ИНИЦИАЛИЗАЦИЯ ПЕРЕМЕННЫХ

МАКСИМУМ ИЗНАЧАЛЬНО ДОЛЖЕН БЫТЬ МИНИМАЛЕН max = -10000(например) МИНИМАЛЕН ИЗНАЧАЛЬНО ДОЛЖЕН БЫТЬ МАКСИМУМ min = 10000(например) СУММА ИЗНАЧАЛЬНО ДОЛЖНА БЫТЬ РАВНА О ПРОИЗВЕДЕНИЕ ИЗНАЧАЛЬНО ДОЛЖНО БЫТЬ РАВНО 1

2. ПОДСЧЕТ СУММЫ ЦИФР/КОЛИЧЕСТВА

К ПРЕДЫДУЩЕМУ ЗНАЧЕНИЮ ДОЛЖНА ПРИБАВЛЯТЬСЯ НОВАЯ ЦИФРА

sum = sum + x

ПРИ ПОДСЧЕТЕ КОЛИЧЕСТВА
К ПРЕДЫДУЩЕМУ ЗНАЧЕНИЮ ДОЛЖНА ПРИБАВЛЯТЬСЯ
ЕДИНИЦА
count = count + 1

3. ВЫВОД

ЧАСТО ВЫВОДИТСЯ НЕ ТО, ЧТО ДОЛЖНО БЫТЬ В УСЛОВИИ

4. УСЛОВНЫЕ ОПЕРАТОРЫ

ЧАСТО ПРИ ПОИСКЕ МАКС/МИН НЕПРАВИЛЬНЫЙ ЗНАК, ТАКЖЕ БЫВАЮТ И ДРУГИЕ МОМЕНТЫ, ПОЭТОМУ ВНИМАТЕЛЬНЕЕ КО ВСЕМ УСЛОВНЫМ ОПЕРАТОРАМ

5. СТРОГОСТЬ ЗНАКОВ

ЧАСТО В УСЛОВИИ И В ПРОГРАММЕ ЗНАКИ ДОЛЖНЫ БЫТЬ ПРОТИВОПОЛОЖНЫМИ!

ИТОГОВЫЙ КОНСПЕКТ

Тема №24 ПРИМЕР ЗАДАНИЯ

Дано целое положительное число А. Требуется вывести такое минимально возможное нечётное натуральное число К, при котором сумма квадратов первых нечётных чисел 1² + 3²+ ... + K² окажется больше А. Для решения этой задачи ученик написал программу, но, к сожалению, его программа — неправильная.

Последовательно выполните следующее.

- 1. Напишите, что выведет эта программа при вводе числа 11.
- 2. Укажите наименьшее значение А, при котором программа выведет верный ответ.
- 3. Найдите в программе все ошибки (их может быть одна или несколько). Для каждой ошибки выпишите строку, в которой она допущена, и приведите эту же строку в исправленном виде.

5<=11 да s:= s + k*k; s = 5 + 9 = 14 k:= k + 1; k = 3+1 = 4 14<=11 нет вышли из цикла печатаем k, TO ECTЬ 4 OTBET: 4 var a, s, k: integer;
begin
 read(A);
 s := 0;
 k := 1;
 while s <= A do begin
 s := s + k*k;
 k := k + 1;
 end;
 writeln(k)
end.</pre>

2.
А) Минимальное значение А, при котором программа работает правильно, равно 1. Так как мы один раз зайдем в цикл, а также так как это пограничное значение! ОТВЕТ: 1

3.

А) Первое, что бросается в глаза k := k + 1; - это неверно (получается идем по всем к, хотя должны только по нечетным!), давайте заменим

Ha

k := k + 2;

Б) Неверный вывод! writeln(k)
Так как мы k увеличиваем после того как меняем s, ответ у нас выводится больше чем нужно! Поэтому стоит поменять на writeln(k-2)

ИТОГОВЫЙ КОНСПЕКТ

Tema Nº24

ПРИМЕР ЗАДАНИЯ

Дано целое положительное число N, не превосходящее 1000. Необходимо определить, является ли это число степенью числа 5. То есть требуется определить, существует ли такое целое число K, что 5^k = N, и вывести это число либо сообщение, что такого числа не существует. Для решения этой задачи ученик написал программу, но, к сожалению, его программа оказалась неверной.

Рутhon

Pascal
var n, k: integer;
begin
read(n);
k := 0;
while k mod 5 = 0 do begin
k := k + 1;
n := n div 5;
end;
if k = 1 then
writeln(k)
else
writeln('He существует')

Python

n = int(input())

k = 0

while k % 5 == 0:

 k = k + 1

 n = n // 5

if k == 1:
 print(k)

else:
 print('He существует')

Последовательно выполните следующее.

- 1. Напишите, что выведет эта программа при вводе числа 25.
- 2. Приведите пример числа, при вводе которого приведённая программа напечатает то, что требуется.
- 3. Найдите в программе все ошибки (их может быть одна или несколько). Для каждой ошибки выпишите строку, в которой она допущена, и приведите эту же строку в исправленном виде.
- 1) Для того чтобы выполнить первое задание, используем ручную прокрутку:

end.

Поскольку после завершения цикла k=1, то для входного числа n=25 будет выведено значение 1.

- 2) Для ответа на второй вопрос обратим внимание, что конечное значение переменной k никак не зависит от n, и программа BCEГДА будет выводить результат 1. Поэтому программа работает правильно только при n=51=5.
- 3) Чтобы исправить программу, нужно понять алгоритм её работы, как задумывал автор (но не реализовал). Очевидно, что k это счётчик, с помощью которого мы считаем степень числа 5. Оператор n := n div 5;

говорит о том, что предполагалось делить исходное число на 5 до тех пор, пока оно делится, и считать, сколько раз нам удалось разделить его на 5 без остатка. Поэтому условие работы цикла должно быть записано как «пока n делится на 5», то есть

while $n \mod 5 = 0$ do begin

end;

Одна ошибка найдена.

4) Если введённое число — это степень числа 5, то оно будет делиться на 5 до тех пор, пока в переменной n не останется 1. Таким образом, условие «число представляет собой натуральную степень числа 5» после цикла запишется в виде

if n = 1 then

Это вторая ошибка.

5) Итак, ответ на третий вопрос таков:

в программе нужно исправить две ошибки Неверное условие цикла:

Было: while k mod 5 = 0 do begin Исправление: while n mod 5 = 0 do begin

Неверное условие в условном операторе:

Было: if k = 1 then Исправление: if n = 1 then

