1 Bioequivalence

Bioequivalence.jl is a package for performing bioequivalence analysis part of the PumasAI ecosystem for pharmaceutical science (e.g. Pumas.jl: the simulation engine for PKPD, PBPK, QSP, and other models).

The documentation provides a how-to and technical details for performing bioequivalence analysis using various designs.

1.1 Setup

Using JuliaPro,

1.1.1 Installing

```
using Pkg;
Pkg.add("Bioequivalence")
```

1.1.2 Loading

using Bioequivalence

1.2 API

Return a bioequivalence study

Arguments

- data: must have id, sequence, period, and an endpoint.
- id (e.g., 1)
- sequence (e.g., RT which means first R and T in the second period)
- period (e.g, 1:4)
- endpoint: which variable is the endpoint?
- id: which variable is the subject id?

- sequence: which variable is the sequence?
- period: which variable is the period?
- reference: which formulation is the reference?

For example, in a design with RTTR|TRRT one can specify 'R' to be the reference. By default, the reference is taken to be the first character (alphabetically).

- nonparametric: use nonparametric method for analysis of the endpoint?
- reml: if the design uses a linear mixed model should it optimize REML instead of ML?

Each bioequivalence study has the following fields:

- data: data used for the study
- design: number of subjects in each sequence
- model: statistical models used for the analysis
- result: result based on previous components

Current designs include:

- Parallel (e.g., R|T, A|B|C)
- 2x2 (e.g., RT|TR)
- Balaam (e.g., RR|RT|TR|TT)
- Dual (e.g., RTT|TRR)
- 2S4P1 (e.g., RTTR|TRRT)
- 2S4P2 (e.g., RTRT|TRTR)
- WD3F (e.g., ABC|ACB|BAC|BCA|CAB|CBA)
- WD4F (e.g., ABCD|CADB|DCBA|BDAC)

1.3 Designs

1.3.1 Housekeeping

Loading a few packages to showcase the features provided by Bioequivalence using CSV, DataFrames, StatsBase, Bioequivalence

1.3.2 Nonparametric

Nonparametric designs are included for analysis of endpoints such as Tmax.

	id	sequence	period	Tmax
	Int64	String	Int64	Float64
1	1	RT	1	0.5
2	1	RT	2	0.5
3	2	TR	1	1.0
4	2	TR	2	1.0
5	3	TR	1	0.5
6	3	TR	2	0.5

The average bioequivalence analysis can be requested through BioequivalenceStudy

```
Tmax = read_be(PJ31, :Tmax)
```

Design: RT|TR

Sequences: RT|TR (2) Periods: 1:2 (2)

Subjects per Sequence: (RT = 17, TR = 15)

Average Bioequivalence

lnLB lnUB LB UB

```
T - R -0.202733 0.346574 0.816497 1.41421
```

When the name of the endpoint matches some form of Tmax (case insensitive) it defaults to nonparametric.

Otherwise, it will attempt a parametric design. This can be overwriten through the nonparametric argument.

Nonparametric analysis uses the Wilcoxon signed rank test.

Tmax.model

```
1-element Array{HypothesisTests.ApproximateSignedRankTest{Float64},1}:
   Approximate Wilcoxon signed rank test
```

Population details:

parameter of interest: Location parameter (pseudomedian)

95% confidence interval: (-0.2027, 0.3466)

Test summary:

outcome with 95% confidence: fail to reject h_0

two-sided p-value: 0.8774

Details:

number of observations: 32
Wilcoxon rank-sum statistic: 182.0

```
rank sums: [182.0, 169.0]
```

adjustment for ties: 1848.0

normal approximation (μ , σ): (6.5, 38.88122940443113)

Other endpoints can potentially be analyzed through a nonparametric method as well

	id	sequence	period	AUC	Cmax
	Int64	String	Int64	Float64	Float64
1	1	DCAB	1	2942.0	563.6
2	1	DCAB	2	2525.0	658.1
3	1	DCAB	3	278.0	55.6
4	1	DCAB	4	359.0	73.0
5	2	ADBC	1	484.0	108.4
6	2	ADBC	2	4190.0	818.0

NP = read_be(PJ46, nonparametric = true)

Design: ADBC|BACD|CBDA|DCAB

Sequences: ADBC|BACD|CBDA|DCAB (4)

Periods: 1:4 (4)

Subjects per Sequence: (ADBC = 7, BACD = 7, CBDA = 7, DCAB = 7)

Average Bioequivalence

	1nLB	lnUB	LB	UB
D - A	2.03582	2.11813	7.65856	8.31556
В - А	-0.0734472	0.0543133	0.929185	1.05582
C - A	2.05093	2.14861	7.7751	8.57292

1.3.3 Parallel

Consider a parallel design dataset with balance between treatment groups such as Clayton and Leslie (1981).

	id	sequence	period	AUC
	Int64	String	Int64	Float64
1	1	Τ	1	2.52
2	2	${ m T}$	1	8.87
3	3	${ m T}$	1	0.79
4	4	${ m T}$	1	1.68
5	5	${ m T}$	1	6.95
6	6	${ m T}$	1	1.05

The bioequivalence analysis can be requested through BioequivalenceStudy or its alias read be.

notice it defaults to the AUC endpoint
Parallel = read be(ClaytonandLeslie1981)

Design: R|T

Sequences: R|T (2) Periods: 1:1 (1)

Subjects per Sequence: (R = 9, T = 9)

Average Bioequivalence

PE SE lnLB lnUB GMR LB UB

T - R -0.721906 0.333328 -1.31755 -0.126258 0.485825 0.267789 0.881387

The output shows the design, statistical model, and result.

One can access the statistical model directly through

Parallel.model

1-element Array{HypothesisTests.UnequalVarianceTTest,1}:

Two sample t-test (unequal variance)

Population details:

parameter of interest: Mean difference

value under h_0:

point estimate: -0.7219063401460275 95% confidence interval: (-1.4507, 0.0069)

Test summary:

outcome with 95% confidence: fail to reject h_0

two-sided p-value: 0.0519

Details:

number of observations: [9,9]

t-statistic: -2.1657564404915037 degrees of freedom: 11.633717042877814 empirical standard error: 0.3333275739825092

The results can be accessed through

Parallel.result

	Parameter	PE	SE	lnLB	lnUB	GMR	LB	UB
	String	Float64	Float64	Float64	Float64	Float64	Float64	Float64
$\overline{1}$	T - R	-0.721906	0.333328	-1.31755	-0.126258	0.485825	0.267789	0.881387

or calling coeftable on the object

coeftable(Parallel)

PE SE 1nLB 1nUB GMR LB UB
T - R -0.721906 0.333328 -1.31755 -0.126258 0.485825 0.267789 0.881387

Notice that the results are validated with those reported in Fuglsang, Schütz, and Labes (2015). The Geometric Means Ratio (GMR) has a point estimate of (48.58) and a 90% confidence interval of (26.78, 88.14). These are the values reported in the study obtained with various statistical packages with the Welch correction.

1.3.4 Crossover

The most common bioequivalence design is perhaps the 2x2 crossover (RT|TR). Consider a dataset from Schütz, Labes, and Fuglsang (2014) which has been simulated with an extreme range in raw data, outliers, and imbalance between sequences and a large number of subjects.

	id	period	sequence	AUC
	Int64	Int64	String	Float64
1	1	1	TR	168.407
2	1	2	TR	210.919
3	2	1	TR	131.031
4	2	2	TR	67.4314
5	3	1	TR	151.737
6	3	2	TR	85.1296

The bioequivalence analysis can be requested through BioequivalenceStudy

notice it defaults to the AUC endpoint
Crossover = read_be(SLF2014)

Design: RT|TR

Sequences: RT|TR (2) Periods: 1:2 (2)

Subjects per Sequence: (RT = 288, TR = 429)

Average Bioequivalence

PE SE lnLB lnUB GMR LB UB

T - R -0.0680309 0.044609 -0.141501 0.00543947 0.934232 0.868054 1.00545

As with other designs one can access the specific elements of the models use in the analysis.

loglikelihood(Crossover.model.model)

-1265.3503174162302

The results are obtained through,

Crossover.result

	Parameter	PE	SE	lnLB	lnUB	GMR	LB	UB
	String	Float64	Float64	Float64	Float64	Float64	Float64	Float64
1	T - R	-0.0680309	0.044609	-0.141501	0.00543947	0.934232	0.868054	1.00545

Crossover 2x2 designs are validated with Schütz, Labes, and Fuglsang (2014) and Patterson and Jones (2006). In this example, the estimate for the GMR is (93.42) with a 90% confidence interval of (86.81, 100.55).

1.3.5 Balaam

The Balaam design (RR|RT|TR|TT) is explored with a dataset from Chow and Liu (2009).

	id	sequence	period	AUC
	Int64	String	Int64	Int64
1	1	TT	1	280
2	1	TT	2	482
3	2	TT	1	219
4	2	TT	2	161
5	3	TT	1	230
6	3	TT	2	99

The data has the same specification as other crossover studies.

The analysis follows similarly as well.

```
# notice it defaults to the AUC endpoint
Balaam = read_be(ChowandLiu2009)
```

Design: RR|RT|TR|TT

Sequences: RR|RT|TR|TT (4)

Periods: 1:2 (2)

Subjects per Sequence: (RR = 6, RT = 6, TR = 6, TT = 6) Regulatory constant for reference-scaled estimates: 0.10 Auxiliary parameter for reference-scaled estimates: 1.11

Average Bioequivalence

	PE	SE	lnLB	lnUB	GMR	LB	UB	scLB
scUB	Varratio	VarLB	VarUB					

```
T - R -0.129419 0.0936591 -0.290245 0.0314075 0.878606 0.74808 1.03191 0.75401 1.32624 6.49813 3.871 10.9082
```

We can also obtain the results for the intra-subject variabilities through

Balaam.model. σ

0.2294170516947747

Designs with repeated measures include rescaled parameter estimates and variance analysis.

The rescaled parameter estimates are especially of interest when the reference drug is a highly variable drug (HVD) or a narrow therapeutic index (NTI) drug (Haidar et al. 2008).

The default values are:

- regulatory constant for reference-scaled estimates: 0.1
- auxiliary parameter for reference-scaled estimates: 1.11

These maybe be overwriten by passing the keyword arguments (see the docstring of read_be for more details).

1.3.6 Dual

Consider the example 4.1 in Patterson and Jones (2006)

first(PJ41, 6)

	id	sequence	period	AUC	Cmax
	Int64	String	Int64	Float64	Float64
1	101	TRR	1	12.26	0.511
2	101	TRR	2	16.19	0.688
3	101	TRR	3	11.34	0.533
4	102	TRR	1	397.98	13.27
5	102	TRR	2	267.63	7.933
6	102	TRR	3	487.55	12.952

Dual = read_be(PJ41, :Cmax)

Design: RTT|TRR

Sequences: RTT|TRR (2)

Periods: 1:3 (3)

Subjects per Sequence: (RTT = 47, TRR = 48)

Regulatory constant for reference-scaled estimates: 0.10 Auxiliary parameter for reference-scaled estimates: 1.11

Average Bioequivalence

PE SE lnLB lnUB GMR LB UB scLB scUB Varratio VarLB VarUB

T - R -0.0565121 0.0685313 -0.169803 0.0567792 0.945055 0.843831 1.05842 0.57774 1.73088 1.23391 1.03853 1.46604

1.3.7 2S4P Designs

For 2S4P designs both RRTT|TTRR and RTRT|TRTR are supported

PJ43 = CSV.read(string(dirname(pathof(Bioequivalence)), "/../data/2S4P/PJ2006_4_3.tsv"))

first(PJ43, 6)

	id	sequence	period	AUC	Cmax
	Int64	String	Int64	Int64	Int64
1	1	RTTR	1	10671	817
2	1	RTTR	2	12772	1439
3	1	RTTR	3	13151	1310
4	1	RTTR	4	11206	1502
5	2	TRRT	1	6518	1393
6	2	TRRT	2	6068	1372

Inner = $read_be(PJ43)$

Design: RTTR|TRRT

Sequences: RTTR|TRRT (2)

Periods: 1:4 (4)

Subjects per Sequence: (RTTR = 8, TRRT = 9)

Regulatory constant for reference-scaled estimates: 0.10 Auxiliary parameter for reference-scaled estimates: 1.11

Average Bioequivalence

PE SE lnLB lnUB GMR LB UB scLB scUB Varratio VarLB VarUB

T - R 0.0356935 0.0226361 -0.00230475 0.0736918 1.03634 0.997698 1.07647 0.908307 1.10095 1.29984 0.962939 1.7546

PJ44 = CSV.read(string(dirname(pathof(Bioequivalence)), "/../data/2S4P/PJ2006_4_4.tsv"))

first(PJ44, 6)

	id	sequence	period	AUC	Cmax
	Int64	String	Int64	Float64	Float64
1	1	RTRT	1	812.6	99.85
2	1	RTRT	2	1173.7	204.09
3	1	RTRT	3	889.1	170.94
4	1	RTRT	4	620.1	112.78
5	2	TRTR	1	216.3	29.06
6	2	TRTR	2	338.0	50.48

Outer = read_be(PJ44, :Cmax)

Design: RTRT|TRTR

Sequences: RTRT|TRTR (2)

Periods: 1:4 (4)

Subjects per Sequence: (RTRT = 27, TRTR = 27)

Regulatory constant for reference-scaled estimates: 0.10 Auxiliary parameter for reference-scaled estimates: 1.11

Average Bioequivalence

PE SE lnLB lnUB GMR LB UB scLB scUB Varratio VarLB VarUB

T - R 0.413998 0.0745634 0.29061 0.537386 1.51285 1.33724 1.71153 0.566073 1.76656 0.937014 0.79558 1.10359

1.3.8 Williams

Consider a 3 formulations Williams design

	id	sequence	period	AUC	Cmax
	Int64	String	Int64	Int64	Int64
1	1	SRT	1	7260	1633
2	1	SRT	2	6463	1366
3	1	SRT	3	8759	2141
4	2	RTS	1	3457	776
5	2	RTS	2	6556	2387
6	2	RTS	3	4081	1355

 $W3F = read_be(PJ45)$

Design: RST|RTS|SRT|STR|TRS|TSR

Sequences: RST|RTS|SRT|STR|TRS|TSR (6)

Periods: 1:3 (3)

Subjects per Sequence: (RST = 9, RTS = 11, SRT = 11, STR = 10, TRS = 11, TSR = 10)

Average Bioequivalence

PE SE 1nLB 1nUB GMR LB UB

S - R 0.341072 0.0378374 0.278325 0.403819 1.40645 1.32092 1.49753

T - R 0.149693 0.0378182 0.086978 0.212408 1.16148 1.09087 1.23665

Imagine for a moment that the reference formulation is actually S instead of R. One can pass such a parameter as following.

W3F = read_be(PJ45, reference = 'S')

Design: RST|RTS|SRT|STR|TRS|TSR

Sequences: RST|RTS|SRT|STR|TRS|TSR (6)

Periods: 1:3 (3)

Subjects per Sequence: (RST = 9, RTS = 11, SRT = 11, STR = 10, TRS = 11, TSR = 10)

Average Bioequivalence

PE SE 1nLB 1nUB GMR LB UB

R - S -0.341072 0.0378374 -0.403819 -0.278325 0.711008 0.667765 0.757051

T - S -0.191379 0.0380271 -0.254441 -0.128318 0.825819 0.77535 0.879574

Williams designs for four formulations are available as well

PJ46 = CSV.read(string(dirname(pathof(Bioequivalence)), "/../data/Williams/PJ2006_4_6.tsv"))

first(PJ46, 6)

	id	sequence	period	AUC	Cmax
	Int64	String	Int64	Float64	Float64
1	1	DCAB	1	2942.0	563.6
2	1	DCAB	2	2525.0	658.1
3	1	DCAB	3	278.0	55.6
4	1	DCAB	4	359.0	73.0
5	2	ADBC	1	484.0	108.4
6	2	ADBC	2	4190.0	818.0

 $W4F = read_be(PJ46)$

Design: ADBC|BACD|CBDA|DCAB

Sequences: ADBC|BACD|CBDA|DCAB (4)

Periods: 1:4 (4)

Subjects per Sequence: (ADBC = 7, BACD = 7, CBDA = 7, DCAB = 7)

Average Bioequivalence

	PE	SE	lnLB	lnUB	GMR	LB	UB
D - A	0.00468645	0.0342341	-0.0523004	0.0616733	1.0047	0.949044	1.06361
В - А	2.09353	0.0342341	2.03654	2.15052	8.11351	7.66407	8.5893
C - A	2.05738	0.0342341	2.0004	2.11437	7.82546	7.39198	8.28436

1.4 References

Chow, Shein-Chung, and Jen-pei Liu. 2009. Design and Analysis of Bioavailability and Bioequivalence Studies. 3rd ed. Chapman & Hall/CRC Biostatistics Series 27. Boca Raton: CRC Press.

Clayton, D, and A Leslie. 1981. "The Bioavailability of Erythromycin Stearate versus Enteric-Coated Erythromycin Base When Taken Immediately before and after Food." Journal of International Medical Research 9 (6): 470-77. DOI:10.1177/030006058100900608.

Fuglsang, Anders, Helmut Schütz, and Detlew Labes. 2015. "Reference Datasets for Bioequivalence Trials in a Two-Group Parallel Design." The AAPS Journal 17 (2): 400-404. DOI:10.1208/s12248-014-9704-6.

Haidar, Sam H., Fairouz Makhlouf, Donald J. Schuirmann, Terry Hyslop, Barbara Davit, Dale Conner, and Lawrence X. Yu. 2008. "Evaluation of a Scaling Approach for the Bioequivalence of Highly Variable Drugs." The AAPS Journal 10 (3): 450-54. DOI:10.1208/s12248-008-9053-4.

Patterson, Scott D, and Byron Jones. 2006. Bioequivalence and Statistics in Clinical Pharmacology. Boca Raton: Chapman & Hall/CRC. ISBN: 9781420034936.

Schütz, Helmut, Detlew Labes, and Anders Fuglsang. 2014. "Reference Datasets for 2-Treatment, 2-Sequence, 2-Period Bioequivalence Studies." The AAPS Journal 16 (6): 1292-97. DOI:10.1208/s12248-014-9661-0.