

Simulation of the backward facing step

Goal, Challenge & Hypothesis

- Goals:
 - Estimation of the reattachment length at several inlet velocity
 - Velocity profile comparison
- Challenge:
 - Transitional **R**_e
- Influence of turbulence model on the solution
 - Standard *k-ε*
 - RNG *k-ε*
 - *k*-ω SST
 - k-ω SST LM

- Hypothesis
 - Steady, no-combustion (simpleFoam)
 - 2D
 - 2% Inlet turbulent intensity (whynot...)

Mesh sensitivity

- Done with $k-\omega$ SST y^+ < 1 aimed* at the highest speed $U_0 = 22.2 \text{ m.s}^{-1}$
- Reattachment length as the parameter probed at first cell showing $U_x > 0$
- Same wall-treatment Core mesh cell aimed at 2x2/1x1/0.5x0.5 mm² for the 3 meshes
- "Oscillatory" convergence. We select the medium mesh 1x1 mm² for time saving purposes and because it looks good enough

*Low-Reynolds number wall-BC were used for $k-\varepsilon$ based models also later on

Results – Reattachment Length

Evaluated as:

$$\frac{(x/H)_{OF} - (x/H)_{REF}}{(x/H)_{REF}} [\%]$$

U0 (m/s)	REF x/H	k-ε	RNG k-ε	k-ω SST	k-ω SST LM
9,1	6,5	+5,0%	+ 19,0%	+23,0%	+23,3%
13,3	7	-0,8%	+14,7%	+31,3%	+31,5%
22,2	6,8	+3,8%	+19,2%	+26,2%	+24,9%

• $k-\varepsilon$ presents the closest results, followed by **RNG** $k-\varepsilon$. $k-\omega$ models far overestimates the reattachment length.

Results – Velocity profiles – $U_0 = 9.1 \text{ m.s}^{-1}$

Results – Velocity profiles – $U_0 = 13.3 \text{ m.s}^{-1}$

Results – Velocity profiles – $U_0 = 22.2 \text{ m.s}^{-1}$

- Problem is more difficult than it seems at first sight. It requires a good understanding of the physics and CFD. Source of the problem can be anywhere at this point (2D, steady-state, BC, fv* files...) and I let other participants enlighten me on the proper approach ©
- k- ϵ based model are closer to Exp. on the reattachment length. k- ω based models seem to have closer velocity profiles (check especially at x/H = 4-5 at y/H = -1) although it is hard to assess.
- Overall, the results over-estimate the reattachment length, which suggest either too diffusive numerics (1 guess), or simply wrong assumption when creating the fluid domain:
 - Inlet diffuser was neglected.
 - Outlet confuser was neglected > It may be assumed that the confusor at the outlet (close to the step) creates a positive pressure gradient upstream and that the flow is « pushed » down earlier than in our simulations where this feature is absent. This could partially explain our overall overestimated reattachment length.

