Network on Chips NoC

Bus pros (©) and cons (©)

- Bus latency is zero once arbiter has granted control.
- The silicon cost of a bus is near zero.
- ② Any bus is almost directly compatible with most available IPs, including software running on CPUs.
- The concepts are simple and well understood.
- Every unit attached adds parasitic capacitance, therefore electrical performance degrades with growth.
- Bus timing is difficult in a deep submicron process.
- Bus arbiter delay grows with the number of masters. The arbiter is also instance-specific.
- Bandwidth is limited and shared by all units attached.

Communication Structure: Network-on-Chip

Network-on-Chip: Structural Characteristics and Configuration **Parameters**

NoC (Network-on-Chip)

NoC (Network-on-Chip) ??tail trailer

Communication:

NoC (Network-on-Chip)

Transmit

- Access routing tables
- Assemble packets
- Split into flits
- Receive
 - Synchronize
 - Drop routing information

NoC parameters: Topology (1)

Direct NoC

NoC parameters: Topology (2)

Indirect NoC

Mapping

Sizing

Routing

Arbitration

Arbitrat

configu ration Link width

Topology

Buffers

router

Type:

Flow

Homo/hetero

Buffer sizing

Switch technique

Ports per router

Multi-stage

NoC parameters: Network Type

NoC parameters: **Switch technique** (1)

NoC parameters: Switch technique (2)

1. Circuit switch

NoC parameters: Switch technique (3)

1. Circuit switch

Channels

NoC parameters: **Switch technique** (4)

2. Packet switch

NoC parameters: **Switch technique** (5)

2. 1 Store-and-forward

NoC parameters: **Switch technique** (6)

2. 2 Virtual cut-through

NoC parameters: **Switch technique** (7)

2.3 Wormhole

NoC parameters: Flow Control (1)

Mapping

Sizing

Link width

Switch technique

Routing
strategy

Arbitration
mechanism

Arbitrat
ion
configu
ration

Type:
Homo/hetero

Flow control
Buffer sizing

Buffers per router

Buffers per router

- Resource competition (collisions).
- Decisions about packet management:
 - Discard.
 - Block (receive and store).
 - Deviate.

NoC parameters: Flow Control (2)

Virtual Channel

NoC parameters: **Arbitration Logic**

NoC parameters:

Routing strategy (1)

NoC parameters:

Routing strategy (2)

1. Implementation

- Table
- FSM

2. Routing moment

- Static (compilation)
- Dynamic (execution)
 - Progressive
 - Minimal

3. Routing unit

- Central
- Source
- Distributed

NoC Configuration Parameters

Mapping

Topology

Sizing

Link width

Switch technique

Type:

Homo/hetero

Routing strategy

Flow control

Buffer sizing

Buffers per router

Arbitration configuration

Arbitration mechanism

Ports per router

Huge search space!

NoC local parameters

- Logical parameters
 - Routing strategy (XY, adaptive, west-first, north-last...)
 - Arbitration mechanism and configuration
 - Static: fixed priority (port priority), round-robin (port priority)
 - Dynamic
 - Deadline (arrival time)
 - Switch technique (circuit switch, packet switch)
- Physical parameters
 - Ports per router (2, 3, 4, 5, 6)
 - Buffers per router (1, 2....(n x # ports))
 - Buffers size (# bits, # flits, #words, #packets)
 - Flow control (single queue, slack buffer, virtual channel)
 - Type (homogeneous, heterogeneous)
 - Topology (direct, indirect)
 - Link width (# flits, # bits)

NoC: Good news

- Only point-to-point one-way wires are used, for all network sizes.
- Aggregated bandwidth scales with the network size.
- © Routing decisions are distributed and the same router is re-instanciated, for all network sizes.
- NoCs increase the wires utilization (as opposed to ad-hoc p2p wires)

BUT...

- ② Internal network contention causes (often unpredictable) latency.
- The network has a significant silicon area.
- Bus-oriented IPs need smart wrappers.
- Software needs clean synchronization in multiprocessor systems.
- System designers need reeducation for new concepts.