

Universidad Autónoma del Estado de Hidalgo Instituto de Ciencias Básicas e Ingeniería Área Académica de Matemáticas y Física

Un enfoque computacional de representaciones de grupos en homologías

Tesis que para obtener el título de

LICENCIADO EN MATEMÁTICAS APLICADAS

presenta

Manuel Campero Jurado

bajo la dirección de Dr. Rafael Villarroel Flores Pachuca, Hidalgo. Octubre de 2018.

Resumen

Abstract

Chapter 1

Representaciones de grupos

Sea $GL(n, \mathbb{C})$ el grupo de todas las matrices no singulares de grado n sobre el campo de los números complejos \mathbb{C} . Sea G un grupo. Una representación (matricial) de G es, por definición, un homomorfismo de G en $GL(n, \mathbb{C})$: $A: a \mapsto A(a)$, tal que:

- 1. A(ab)(a)(b),
- 2. A(1) = I (la matriz identidad),
- 3. $A(a^{-1}) = A(a)^{-1}$.

El número n se llama el grado de la representación. Se dice que la representación es fiel, si $\mathbb A$ es inyectiva.

Ejemplo 1.1. El mapeo que a manda cada elemento de G a $1 \in \mathbb{C}$ es una representación de grado 1. Ésta es llamada la representación unitaria de G, y es denotada por 1_G .

Ejemplo 1.2. Dada una representación $a \mapsto A(a)$, el mapeo

$$a \to P^{-1}A(a)P$$

se convierte en una representación de G para cualquier matriz P no singular.

Sean $\mathbb{A}: a \mapsto A(a)$ y $\mathbb{B}: a \mapsto B(a)$ representaciones de G. Si existe una matriz no singular P tal que

$$B\left(a\right) = P^{-1}A\left(a\right)P$$

diremos que \mathbb{A} y \mathbb{B} son equivalentes. Representaciones equivalentes son denotadas por $\mathbb{A} \sim \mathbb{B}$. La relación \sim define una clase de equivalencia de representaciones de G.

Ejemplo 1.3. Sea S_n el grupo simétrico de grado n. Para un elemento

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ s_1 & s_2 & \cdots & s_n \end{pmatrix} \in S_n$$

Sea $A(\sigma)$ la matriz cuyo *i*-ésimo renglón es (0,...,0,1,0,...,0) con 1 en el s_i -ésimo lugar:

$$A(\sigma) = (\alpha_{ij}(\sigma)) \qquad (i, j = 1, 2, ..., n)$$

con

$$\alpha_{ij}\left(\sigma\right) = \begin{cases} 1 & \text{si } j = s_i \\ 0 & \text{otro caso} \end{cases}$$

El mapeo $\sigma \mapsto A(\sigma)$ es una representación fiel de S_n .

Ejemplo 1.4. Sea G un grupo finito que consiste de los elementos $a_1,a_2,...,a_n$ y sea S^G el grupo simétrico en G. El mapeo lleva cada elemento de $a\in G$ a la permutación

$$\begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_1 a & a_2 a & \cdots & a_n a \end{pmatrix} \in S_n^G$$

es un homomorfismo inyectivo de G a S^G . A la permutación anterior, se le asocia la matriz

$$A(a) = (\alpha_{ij}(a))$$

con

$$\alpha_{ij}(a) = \begin{cases} 1 & \text{si } a_i a = a_j \\ 0 & \text{otro caso} \end{cases}$$

como en el ejemplo 1.3. Entonces el mapeo $a\mapsto A\left(\sigma\right)$ convierte una representación fiel de G. Ésta representación es llamada representación regular derecha de G. Sea $\Delta\left(a\right)$

$$\alpha_{ij}(a) = \begin{cases} 1 & \text{si } a = 1 \\ 0 & \text{otro caso} \end{cases}$$

entonces

$$A(a) = \begin{pmatrix} \delta(a_1 a a_1^{-1}) & \delta(a_1 a a_2^{-1}) & \cdots & \delta(a_1 a a_n^{-1}) \\ \delta(a_2 a a_1^{-1}) & \delta(a_2 a a_2^{-1}) & \cdots & \delta(a_2 a a_n^{-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \delta(a_n a a_1^{-1}) & \delta(a_n a a_2^{-1}) & \cdots & \delta(a_n a a_n^{-1}) \end{pmatrix}$$

Si a \neq 1, cada entrada sobre la diagonal es cero.

La representación regular izquierda de G es definida similarmente usando el homomorfismo

$$\begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ aa_1 & aa_2 & \cdots & aa_n \end{pmatrix}$$

concretamente

$$A(a) = \begin{pmatrix} \delta(a_1^{-1}aa_1) & \delta(a_1^{-1}aa_2) & \cdots & \delta(a_1^{-1}aa_n) \\ \delta(a_2^{-1}aa_1) & \delta(a_2^{-1}aa_2) & \cdots & \delta(a_2^{-1}aa_n) \\ \vdots & \vdots & \ddots & \vdots \\ \delta(a_n^{-1}aa_1) & \delta(a_n^{-1}aa_2) & \cdots & \delta(a_n^{-1}aa_n) \end{pmatrix}$$

Sea $\phi: a \mapsto \phi(a)$ un homomorfismo de G en S_n (es decir, una permutación de de G). Expresando la permutación $\phi(a)$ por la matriz A(a) como en el ejemplo 1.3, se obtiene una matriz representación $a \mapsto A(a)$.

Sea \mathbb{A} : $a \mapsto A(a)$ una representación de grado n. Se dice que \mathbb{A} es reducible si existe una matriz no singular, tal que

$$P^{-1}A(a) P = \begin{pmatrix} B(a) & 0 \\ D(a) & C(a) \end{pmatrix}$$

donde B(a), C(a) son matrices cuadradas de grado r, s con $r \ge 1$, $s \ge 1$, r + s = n. Se observa que las representaciones

$$a \mapsto A'(a) = \begin{pmatrix} B(a) & 0 \\ D(a) & C(a) \end{pmatrix}$$

У

$$a \mapsto A^{''}(a) = \begin{pmatrix} C(a) & D(a) \\ 0 & C(a) \end{pmatrix}$$

son equivalentes, porque $Q^{-1}A^{'}(a) Q = A^{''}(a)$, con

$$Q = \begin{pmatrix} 0 & I_R \\ I_S & 0 \end{pmatrix}$$
 $(I_r, I_s \text{ son las matrices identidad de grado } r, s).$

Se dice que \mathbb{A} es irreducible si no es reducible. En el ejemplo 1.3, el mapeo $a\mapsto B\left(a\right)$ y $a\mapsto C\left(a\right)$ convierten representaciones de grado r,s, respectivamente.

Dada una representación de G, \mathbb{A} : $a \mapsto A(a)$, y \mathbb{B} : $a \mapsto B(a)$, con grado n, m, respectivamente, el mapeo.

$$Q = \begin{pmatrix} A(a) & 0 \\ 0 & B(a) \end{pmatrix}, \quad \text{para todo } a \in G$$

convierte en una representación de G de grado n+m. Esta representación es llamada la suma directa de \mathbb{A} y \mathbb{B} , y es denotada por $\mathbb{A} \oplus \mathbb{B}$.

Una representación \mathbb{A} : $a \mapsto A(a)$ de G se dice completamente reducible si \mathbb{A} es equivalente a la suma directa de algunas representaciones irreducibles, es decir, existe una matriz no singular P, tal que

donde cada \mathbb{F}_i : $a \mapsto F_i(a)$ (i = 1, 2, ..., r) es una representación irreducible de G.

Representación por matrices unitarias, y representaciones de completamente reducibles de grupos finitos

Una representación $A: a \mapsto A(a)$ de G se dice unitaria si A(a) es una matriz unitaria para todo $a \in G$, lo cual significa que $\overline{A(a)}^t A(\underline{a}) = I$. Aquí $\overline{A(a)}^t$ denota la transpuesta de $\overline{A} = (\alpha_{ij})$, donde $A = (\alpha_{ij})$, y (α_{ij}) es el complejo conjugado de (α_{ij}) . Se pretende mostrar que cada representación de un grupo finito es equivalente a una representación unitaria y es completamente reducible.

Una matriz se dice hermitiana si $\overline{A^t} = A$, y positiva definida si $\overline{x}^t Ax > 0$ para todo vector columna x (distinto de cero).

Lema 2.1. Para cualquier matriz no singular A, $\overline{A(a)}^t A$ es una matriz hermitiana definida positiva. La suma de matrices hermitianas definidas positivas, también es hermitiana y definida positiva.

Lema 2.2. Para cualquier matriz hermitiana definida positiva A, existe una matriz triangular superior no singular C tal que $\overline{C}^t A C = I$.

Lo anterior es cierto, ya que, sea

$$A(\alpha_{ij})$$
 con $(i, j = 1, 2, ..., n)$.

Entonces

$$\alpha_{ji} = \overline{\alpha_{ij}}$$
 con $(i, j = 1, 2, ..., n)$,

у

$$(\alpha_{ii}) > 0$$
 para $(i = 1, 2, ..., n)$.

Sea

$$A = \begin{pmatrix} \alpha & a \\ \overline{a}^t & B \end{pmatrix}, \quad (\alpha = \alpha_{11} > 0, a = (\alpha_{12}, \alpha_{13}, ..., \alpha_{1n}), B = (\alpha_{ij}) \quad (i, j = 2, ..., n))$$

sea

$$C_1 = \begin{pmatrix} \frac{1}{\sqrt{\alpha}} & -\frac{1}{\alpha} \\ 0 & I \end{pmatrix}$$

entonces,

$$\overline{C_1}^t A C_1 = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{\alpha} \overline{a}^t a + B \end{pmatrix}$$

y $-\frac{1}{\alpha}\overline{a}^t a + B$ es una matriz hermitiana definida positiva. Y la prueba se sigue usando inducción el grado de A veces.

Teorema 2.3. Sea G un grupo finito. Para una representación $\mathbb{B}: a \to F(a)$ de G, entonces existe una matriz triangular superior no singular C, tal que $C_{-1}F(a)$ C es una matriz unitaria para todo $a \in G$.

Sea

$$A = \sum_{b \in G} \overline{F(b)}^{t} F(b)$$

Entonces A es una matriz hermitiana definida positiva por el Lema 2.1. Entonces existe una matriz triangular no singular C, tal que

$$\overline{C}^t A C = I$$
$$A = (\overline{C}^t) C^{-1}$$

Entonces

$$\overline{F\left(a\right)}^{t}AF\left(a\right) = \sum_{b \in G} \overline{F\left(ba\right)}^{t}F\left(ba\right) = A$$

y se obtiene

$$\overline{F(a)}^t (\overline{C}^t)^{-1} C^{-1} F(a) = (\overline{C}^t)^{-1} C^{-1}$$

, es decir

$$\overline{(C_{-1}F(a)C)}^t(C_{-1}F(a)^tC) = I$$

y $C_{-1}F(a)^tC$ es una matriz unitaria.

Teorema 2.4. Una representación de un grupo finito es completamente reducible.

Sea $\mathbb{A}: a \to A(a)$ una representación de un grupo finito de G y sea A(a) descompuesta como

$$A(a) = \begin{pmatrix} A_1(a) & * \\ 0 & A_2(a) \end{pmatrix}$$

Por el teorema anterior, existe una matriz triangular no superior C tal que $C^{-1}A(a)C$ es una matriz unitaria. Sea $U(a)=C^{-1}A(a)C$. Como C es una

matriz triangular superior, U(a) se descompone como

$$U(a) = \begin{pmatrix} U_1(a) & V(a) \\ 0 & U_2(a) \end{pmatrix}$$

Como $\overline{U(a)}^t = U(a)^{-1} = U(a^{-1})$, se obtiene

$$\begin{pmatrix} \overline{U_1(a)} & 0 \\ \overline{V(a)}^t & \overline{U_2(a)}^t \end{pmatrix} = \begin{pmatrix} U_1(a^{-1}) & V(a^{-1}) \\ 0 & U_2(a^{-1}) \end{pmatrix}$$

Lema 3.1. (Lema de Schur) Sea $A: a \mapsto A(a)$ y $\mathbb{B}: a \mapsto B(a)$ representaciones irreducibles de un grupo G con grados m y n respectivamente. Sea P una matriz de $m \times n$ con la propiedad de que A(a)P = PB(a), para todo $a \in G$. entonces

- P = 0
- m = n y P es no singular.

Asumimos $P \neq 0$. Y se quiere mostrar la segunda condición. Supongamos que $m \neq n$, o m = n y P es singular. Entonces existe $Q \in GL(m, \mathbb{C})$ y $R \in GL(n, \mathbb{C})$, tal que

$$QPR = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$
 (I_r, es la matriz identidad de grado r).

con $r < \max\{m,n\}$. Como $QA(a)Q^{-1}(QPR) = QPR(R^{-1}B(a)R)$, y se obtiene

$$\begin{pmatrix} A_{11} & 0 \\ A_{21} & 0 \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ 0 & 0 \end{pmatrix},$$

donde

$$QA(a)A^{-1} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
 (A₁₁, es una matriz cuadrada de grado r).

у

$$R^{-1}B(a)R = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$
 (B₁₁, es una matriz cuadrada de grado r).

Por lo tanto $A_{21} = 0$ si r < m y B_{12} si r < n. De cualquier manera \mathbb{A} o \mathbb{B} es reducible, lo cual es una contradicción.

Teorema 3.2. Sea $A: a \mapsto A(a)$ una representación irreducible de un grupo G. Sea P una matriz con la propiedad A(a)P = PA(a) para todo $a \in G$. Entonces $P = \lambda I$, para algún $\lambda \in \mathbb{C}$.

Sea λ un valor propio de P. Entonces $\det(\lambda I - P) = 0$, y además

$$A(a)(\lambda I - P) = (\lambda I - P)A(a)$$
 (para todo $a \in G$.)

Entonces por el Lema de Schur,

$$\lambda I - P = 0$$

Teorema 3.2. Sea G un grupo abeliano. Entonces cada representación irreducible de G es de grado 1.

Sea $A: a \mapsto A(a)$ una representación irreducible de G. Como A(a) conmuta con A(b), el teorema pasado nos dice que $A(a) = \lambda(a)$ I para algún $\lambda(a) \in \mathbb{C}$. Entonces A es irreducible, y el grado de A debe ser 1.

(Relación ortogonal de caracteres). Desde aquí en adelante, se asumirá que estamos trabajando con grupos finitos.

Caracteres Para una matriz cuadrada $A = \alpha_{ij}$ de grado n, tr A denota la traza de A, es decir

$$tr A = \alpha_{11} + \alpha_{22} + \cdots + \alpha_{nn}$$

Cálculos directos muestran que

Lema 4.1.

- $\operatorname{tr} AB = \operatorname{tr} BA$
- tr $P^{-1}AP = tr A$ para alguna matriz no singular P.

Para una representación \mathbb{A} : $a \mapsto A(a)$ de un grupo G, sea tr $A(a) = \chi(a)$. Entonces $\chi(a)$ es una función que toma valores en \mathbb{C} y es llamada el carácter de \mathbb{A} . Obviamente, $\chi(1)$ es igual al grado de \mathbb{A} . Caracteres de representaciones irreducibles son llamados caracteres irreducibles. Y por el lema 4.1(2), se tiene lo siguiente:

LEMA 4.2. Representaciones equivalentes de un grupo tienen el mismo carácter.

Como
$$A(x^{-1}ax) = A(x)^{-1}A(a)A(x)$$
, se sigue que

$$\chi(x^{-1}ax) = \chi(a)$$

Así χ toma el mismo valor en una clase de conjugación de G. Tal función es llamada función de clase.

La primera relación ortogonal de caracteres. Sea G un grupo de orden g. Sean \mathbb{A} : $a \mapsto A(a) = (\alpha_{ij}(a))$, y \mathbb{B} : $a \mapsto B(a) = (\alpha_{ij}(a))$ representaciones irreducibles de G con grado m, n, respectivamente. Para una matriz arbitraria $U = (\gamma_{ij})$, de mxn, se tiene

$$V = \sum_{x \in G} A(x)UN(x^{-1}).$$

Entonces

$$A(a)V = \sum_{x \in G} A(ax)UN(x^{-1})$$

$$= \sum_{y \in G} A(y)UB(y^{-1}a) \qquad (y = ax)$$

$$= \sum_{y \in G} A(y)UB(y^{-1})B(a).$$

Como y varia sobre G conforme x lo hace, se tiene

$$A(a)V = VB(a).$$

Asumimos que A y B no son equivalentes. Entonces V=0 por el Lema de Schur. La (ij) entrada de V es

$$\sum_{x \in G} \sum_{u,v} \alpha_{iu}(x) \gamma_{uv} \beta_{vj}(x^{-1}) = 0.$$

En particular, para algún par de u,v sea $\gamma_{uv}=1$ y para cualquier otro caso $\gamma_{\rho\sigma}=0$. Lo cual conduce a

$$\sum_{x \in G} \alpha_{iu}(x)\beta_{vj}(x^{-1}) = 0.$$

Ahora, asumimos que $\mathbb{A} = \mathbb{B}$. Entonces para algún $\lambda \in \mathbb{C}$, $V = \lambda I$, y por el Teorema 3.2. La (i, j) entrada de V es

$$\sum_{x \in G} \sum_{u,v} \alpha_{iu}(x) \gamma_{uv} \beta_{vj}(x^{-1}) = \delta_{ij} \lambda,$$

donde $\delta_{ii}=1,\,\delta_{ij}=0\,\,(i\neq j).$ Tomando la traza de

$$\sum_{x \in G} A(x)UA(x^{-1}) = \lambda I$$

y se obtiene

$$g(\gamma_{11} + \gamma_{22} + \dots + \gamma_{nn})$$

donde n es el grado de \mathbb{A} , y g es la cardinalidad de G, de lo cual se sigue $\lambda = \frac{g}{n}(\gamma_{11} + \gamma_{22} + \cdots + \gamma_{nn})$.

Ahora, para algún par de u,v sea $\gamma_{uv}=1$ y para cualquier otro caso $\gamma_{\rho\sigma}=0$. Entonces

$$\sum_{x \in G} \alpha_{iu}(x)\beta_{vj}(x^{-1}) = \delta_{ij}\delta_{uv}\frac{g}{n}.$$

Lo cual nos conduce al siguiente teorema

Teorema 4.3. Sea G un grupo de orden g.

• Sea $A: a \to A(a) = (\alpha_{ij}(a))$ una representación irreducible de G con grado n. Entonces

$$\sum_{x \in G} \alpha_{iu}(x)\alpha_{vj}(x^{-1}) = \delta_{ij}\delta_{uv}\frac{g}{n}.$$

• Sea $\mathbb{B}: b \to B(a) = (\beta_{ij}(a))$ una representación irreducible, la cual no es equivalente a \mathbb{A} , entonces

$$\sum_{x \in G} \alpha_{iu}(x)\beta_{vj}(x^{-1}) = 0.$$

Sean χ , χ' los caracteres de \mathbb{A} , \mathbb{B} . Por el teorema anterior, poniendo a u=i, v=j y tomando la suma sobre i,j, se obtiene lo siguiente:

Teorema 4.4. (La primer relación de ortogonalidad de caracteres) Sea G un grupo de orden g.

• Sea χ un carácter irreducible de G, entonces

$$\sum_{x \in G} \chi(x)\chi(x^{-1}) = g.$$

• Sea χ , χ' caracteres de representaciones irreducibles no equivalentes de G, entonces

$$\sum_{x \in G} \chi(x) \chi^{'}(x^{-1}) = 0.$$

Se observa que $\chi(a^{-1}) = \overline{\chi(a)}$ para todo $a \in G$, porque el Teorema 2.3 dice que \mathbb{A} es equivalente a una representación unitaria \mathbb{U} : $a \mapsto U(a)$, y se por lo tanto

$$\chi(a^{-1}) = trU(a^{-1}) = trU(a)^{-1} = tr\overline{U(a)}^t = \overline{\chi(a)}$$

Sean \mathbb{F}_1 , \mathbb{F}_2 ,... representantes de las clases de equivalencia de las representaciones irreducibles de un grupo G y sea χ_1 , χ_2 ,... los caracteres de \mathbb{F}_1 , \mathbb{F}_2 ,... . Sea C_1 , C_2 ,..., C_k las clases de conjugación de G con $|C_\alpha| = h_\alpha$ ($\alpha = 1, 2, 3, ..., k$) y sea $a_1, a_2, ..., a_k$ los representantes de las clases de conjugación. Como los caracteres son funciones de clases, el Teorema 4.4 se reescribe como sigue

Teorema 4.4'.

$$\sum_{\alpha=1}^{k} h_{\alpha} \chi_{i}(a_{\alpha}) \overline{\chi_{j}(a_{\alpha})} = \delta_{ij} g.$$

Para funciones φ , ψ que toman valores en \mathbb{C} en un grupo G de orden g, se define el producto interno $(\varphi, \psi)_G$ de la siguiente manera

$$(\varphi, \psi)_G = \frac{1}{g} \sum_{x \in G} \varphi(x) \psi(x^{-1})$$

Cuando sea claro que se está hablando del grupo G, se escribirá (φ, ψ) en lugar de $(\varphi, \psi)_G$. Claramente el producto interno cumple las siguientes propiedades

$$(\varphi, \psi) = (\psi, \varphi),$$

$$(\varphi_1 + \varphi_2, \psi) = (\varphi_1, \psi) + (\varphi_2, \psi),$$

$$(\varphi, \psi_1 + \psi_2) = (\varphi, \psi_1) + (\varphi, \psi_2),$$

$$(\lambda \varphi, \psi) = (\psi, \lambda \varphi) = \lambda(\varphi, \psi).$$

Con esta notación la primera relación de ortogonalidad de caracteres es expresada como sigue:

Teorema 4.4". Sean $\chi_1, \chi_2,...$ los caracteres de caracteres de representaciones no equivalentes de un grupo G. Entonces

$$(\chi_i, \chi_j) = \delta_{ij}$$

Multiplicidad de representaciones irreducibles. Sea $\mathbb A$ una representación de un grupo G. Como $\mathbb A$ es completamente reducible, entonces por el Teorema 2.3, $\mathbb A$ es equivalente a

$$\begin{pmatrix}
\mathbb{F}_1 & & & & & & & & \\
& \ddots & & & & & & & \\
& & \mathbb{F}_1 & & & & & \\
& & & \mathbb{F}_2 & & & & \\
& & & & \ddots & & \\
& & & & \mathbb{F}_2 & & \\
0 & & & & \ddots
\end{pmatrix},$$

donde \mathbb{F}_1 , \mathbb{F}_2 ,... son representaciones no equivalentes. El número m_i es llamado la multiplicidad de \mathbb{F}_i en \mathbb{A} ($m_i = 0$ si \mathbb{F}_i no aparece) y se escribe

$$\mathbb{A} \sim m_1 \mathbb{F}_1 + m_2 \mathbb{F}_2 + \cdots$$

Sea χ el carácter de \mathbb{F}_i (i=1,2,...). Entonces

$$\chi = m_1 \chi_1 + m_2 \chi_2 + \cdots$$

Si $m_i \neq 0$, \mathbb{F}_i y χ_i son llamados componentes irreducibles de \mathbb{A} y χ respectivamente.

Teorema 4.5. Sea G un grupo y sea χ el carácter de una representación de G. Sea m_i la multiplicidad de un carácter irreducible χ_i en χ . Entonces

$$m_i = (\chi, \chi_i) = \frac{1}{g} \sum_{x \in G} \chi(x) \overline{\chi_i(x)}$$

Sea

$$\chi = \sum_{j} m_{j} \chi_{j}$$

la suma de caracteres irreducibles con m_j la multiplicidad de χ_j . Entonces

$$(\chi, \chi_i) = \sum_j m_j(\chi_j, \chi_i)$$

Teorema 4.6. Sean \mathbb{A} , \mathbb{B} representaciones de un grupo G, y sean χ , χ' los caracteres de \mathbb{A} , \mathbb{B} respectivamente. Entonces \mathbb{A} , \mathbb{B} son equivalentes si y sólo si $\chi = \chi'$.

Proof. Por el teorema pasado, las multiplicidades de \mathbb{F}_i en \mathbb{A} y \mathbb{B} son determinadas por los caracteres de \mathbb{A} y \mathbb{B} . Como cualquier representación de G es completamente reducible, \mathbb{A} y \mathbb{B} son equivalentes si y sólo si cada representación \mathbb{F}_i tiene la misma multiplicidad en \mathbb{A} y \mathbb{B} . Entonces $\mathbb{A} \sim \mathbb{B}$ si y sólo si $\chi = \chi'$.

Sea π el carácter de la representación regular derecha de un grupo G de orden g. Se observa que

$$\pi(a) = \begin{cases} g & \text{si } a = 1\\ 0 & \text{otro caso} \end{cases}$$

Para el carácter χ_i de cada representación irreducible \mathbb{F}_i , se sigue que

$$(\pi, \chi_i) = \frac{1}{g} \sum_{x \in G} \pi(x) \overline{\chi_i(x)}$$
$$= \frac{1}{g} \pi(1) \chi_i(1)$$
$$= \chi_i(1)$$

donde $\chi_i(1)$ es el grado de \mathbb{F}_i . Y por lo tanto se sigue el siguiente Teorema.

Teorema 4.7. Sea π el carácter de la representación regular derecha. Entonces cada representación irreducible \mathbb{F}_i de G tiene multiplicidad f_i , donde f_i es el grado de \mathbb{F}_i . Así que

$$\pi = \sum_{i} f_i \chi_i,$$

donde la suma es sobre todos los caracteres irreducible χ_i de G.

La representación regular derecha e izquierda son equivalentes, ya que el carácter π' de la representación regular satisface lo mimo que π y por ello, $\pi = \pi'$.

Teorema 4.8. Sean $\chi_1, \chi_2, ..., \chi_l$ todos los caracteres irreducibles de un grupo G, que además son distintos entre sí. Sea f_i el grado de χ_i (i = 1, 2, ..., l) y sea g el orden de G. Entonces

$$g = f_1^2 + f_2^2 + \dots + f_l^2$$

y para $a \neq 1$,

$$f_1\chi_1(a) + f_2\chi_2(a) + \dots + f_l\chi_l(a) = 0.$$

Proof. Simplemente se debe evaluar

$$\pi = \sum_{i} f_i \chi_i,$$

recordando 1 \Box

La segunda relación de ortogonalidad de caracteres. Sea G un grupo y sean $\mathbb{C}_1 = \{1\}, \mathbb{C}_2, ..., \mathbb{C}_k$ las clases de conjugación de G. Para una clase de conjugación \mathbb{C}_{α} , se define la suma de los elementos de \mathbb{C}_{α} como:

$$\mathbb{C}_{\alpha} = a_1 + a_2 + \dots + a_{h_{\alpha}} \qquad (h_{\alpha} = |\mathbb{C}_{\alpha}|).$$

Y se define el producto de \mathbb{C}_{α} y \mathbb{C}_{β} por

$$\mathbb{C}_{lpha}\mathbb{C}_{eta} = \sum_{\gamma=1}^{k} t_{lphaeta\gamma}\mathbb{C}_{\gamma}$$

Sea \mathbb{F} : $a \mapsto F(a)$ una representación irreducible de G y sea f el grado de \mathbb{F} . Se define $\mathbb{F}(\mathbb{C}_{\alpha})$ por

$$\mathbb{F}(\mathbb{C}_{\alpha}) = \sum_{a \in C_{\alpha}} \mathbb{F}(a).$$

Entonces

$$F(x)^{-1}F(\mathbb{C}_{\alpha})F(x) = \sum_{a \in C_{\alpha}} F(x^{-1}ax) = F(\mathbb{C}_{\alpha}),$$

ya que $x^{-1}ax$ varia sobre C_{α} mientras a lo hace. Entonces la matriz $\mathbb{F}(\mathbb{C}_{\alpha})$ conmuta con cada F(x), y por el Teorema 3.2, se llega a que,

$$\mathbb{F}(\mathbb{C}_{\alpha}) = w_{\alpha} \mathbf{I}.$$

Y tomando la traza de la expresión anterior, se tiene

$$h_{\alpha}\chi(a_{\alpha}) = w_{\alpha}f,$$

$$w_{\alpha} = h_{\alpha} \chi(a_{\alpha}) / f,$$

donde χ es el carácter de \mathbb{F} y $a_{\alpha} \in C_{\alpha}$, y por 1, se sigue

$$\mathbb{F}(\mathbb{C}_{\alpha})\mathbb{F}(\mathbb{C}_{\beta}) = \sum_{\gamma}^{k} t_{\alpha\beta\gamma}\mathbb{F}(\mathbb{C}_{\gamma}),$$

$$w_{\alpha}w_{\beta} = \sum_{\gamma}^{k} t_{\alpha\beta\gamma}w_{\gamma}.$$

Sustituyendo 1 en la expresión de arriba se llega a

$$\frac{h_{\alpha}\chi(a_{\alpha})}{f}\frac{h_{\beta}\chi(a_{\beta})}{f} = \sum_{\gamma}^{k} t_{\alpha\beta\gamma} \frac{h_{\gamma}\chi(a_{\gamma})}{f},$$

$$\chi(a_{\alpha})\chi(a_{\beta}) = \sum_{\gamma}^{k} t_{\alpha\beta\gamma} \frac{h_{\gamma}}{h_{\beta}h_{\alpha}} f\chi(a_{\gamma}).$$

Sean $\chi_1, \chi_1, ..., \chi_l$ caracteres distintos e irreducibles de G, y sea f_i el grado de χ_i . 1 se es válida para cada χ_i . Y tomando la suma sobre i, se llega a que

$$\sum_{i=1}^{l} \chi_i(a_\alpha) \chi_i(a_\beta) = \sum_{\gamma}^{k} t_{\alpha\beta\gamma} \frac{h_\gamma}{h_\beta h_\alpha} (\sum_i f_i \chi_i(a_\gamma))$$
$$= t_{\alpha\beta\gamma} \frac{1}{h_\beta h_\alpha} g$$
$$= \begin{cases} g/h_\alpha & \text{si } C_B = C_{\alpha'} \\ 0 & \text{otro caso} \end{cases}$$

Y se llega a

$$\sum_{i=1}^{l} \chi_i(a_{\alpha}) \chi_i(a_{\beta}) = \delta_{\alpha\beta} \frac{g}{h_{\alpha}}.$$

El número g/h_{α} es el orden de N(a), que es el centralizador de a_{α} en G. Ya que $\chi_i(a_{\beta'}) = \overline{\chi_i(a_{\beta})}$ por 1, se obtiene lo siguiente:

Teorema 4.9. (La segunda relación de organalidad de caracteres) Sean $\{\chi_i\}$ el conjunto de los distintos caracteres irreducibles de G y sea $\{a_{\alpha}\}$ el conjunto de los representantes de las clases de conjugación de G. Entonces

$$\sum_{i} \chi_i(a_\alpha) \overline{\chi_i(a_\beta)} = \delta_{\alpha\beta} n_\alpha$$

donde n_{α} es el orden de N(a) y lla suma es sobre todos los caracteres irreducibles χ_i de G.

Teorema 4.10. El número de caracteres distintos e irreducibles de G es igual que el de las clases de conjugación de G.

Proof. Se tiene que si A_{mxn} y B_{nxm} son matrices, entonces si el determinante de la matri AB_{mxm} es distinto de cero, se sigue que $m \le n$. Sean $\chi_1, \chi_2, ..., \chi_l$ los distintos caracteres irreducibles de G y sean $a_1, ..., a_k$ los representantes de las clases de conjugación de G. Entonces por el Teorema 4.4.

$$\begin{pmatrix} \chi_1(a_1) & \cdots & \chi_1(a_k) \\ \vdots & & \vdots \\ \chi_l(a_1) & \cdots & \chi_l(a_k) \end{pmatrix} \begin{pmatrix} h_1 \overline{\chi_1(a_1)} & \cdots & h_1 \overline{\chi_l(a_1)} \\ \vdots & & \vdots \\ h_k \overline{\chi_1(a_k)} & \cdots & h_k \overline{\chi_l(a_k)} \end{pmatrix}$$

$$= \begin{pmatrix} g & 0 \\ \ddots \\ 0 & g \end{pmatrix}$$

. Así que $l \leq k$. Por el Teorema 4.9,

$$\begin{pmatrix} \chi_1(a_1) & \cdots & \chi_l(a_1) \\ \vdots & & \vdots \\ \chi_l(a_k) & \cdots & \chi_l(a_k) \end{pmatrix} \begin{pmatrix} \overline{\chi_1(a_1)} & \cdots & \overline{\chi_l(a_1)} \\ \vdots & & \vdots \\ \overline{\chi_1(a_k)} & \cdots & \overline{\chi_l(a_k)} \end{pmatrix},$$

$$= \begin{pmatrix} n_1 & 0 \\ & \ddots & \\ 0 & n_k \end{pmatrix}$$

. Por ello, $k \leq l$. Así que k = l.

Representaciones inducidas

Sea G un grupo de orden g y H un subgrupo de G de orden h. Para una función ψ en G, ψ_H denota la restricción de ψ a H. Si ψ es una función de clase en G, entonces ψ_H también es una función de clase en H. Si ψ es el carácter de una representación de G \mathbb{A} , se sigue que ψ_H es el caráter de \mathbb{A}_H , la restricción de \mathbb{A} a H.

Para una función θ en H, se define la función θ^G de la siguiente manera

$$\theta^G = \frac{1}{h} \sum_{u} x \in G\theta(x^{-1}ax)$$

donde $\theta(x^{-1}ax) = 0$ si $x^{-1}ax$ no está en H. θ^G es una función de clase en G, aun si θ no es una función de clase en H. Si a no es el conjungado de ningún elemento de H, entonces $\theta^G(a) = 0$.

Lema 5.1. Sea ψ una función de clase de G, y sea θ una función de clase en un subgrupo H de G. Entonces

$$(\theta^G, \psi)_G = (\theta, \psi_H)_H.$$

Proof.

$$\begin{split} (\theta^G, \psi)_G &= \frac{1}{g} \sum_{a \in G} \theta^G(a) \psi(a^{-1}) \\ &= \frac{1}{gh} \sum_{a \in G} \sum_{x \in G} \theta(x^{-1}ax) \psi(a^{-1}) \end{split}$$

Solamente los elementos $x^{-1}ax \in H$ aportan algo a la suma. Por lo cual tomando $a = x\tilde{a}x^{-1}$ con $\tilde{a} \in H$, se obtiene

$$(\theta^G, \psi)_G = \frac{1}{gh} \sum_{\tilde{a} \in H} \sum_{x \in G} \theta(\tilde{a}) \psi(x\tilde{a}^{-1}x^{-1})$$

$$= \frac{1}{h} \sum_{\tilde{a} \in H} \theta^G(a) (\sum_{x \in G} \psi(x\tilde{a}^{-1}x^{-1}))$$

$$= \frac{1}{h} \sum_{\tilde{a} \in H} \theta^G(a) \psi(\tilde{a}^{-1})$$

$$= (\theta, \psi_H)_H$$

Si θ es el carácter de una representación de H, se dirá que θ^G es el carácter inducido de G y que θ^G es inducido por θ . Procederemos a demostrar que el carácter inducido es el carácter de alguna representación de G.

Sea $\{a_1, a_2, \dots, a_r\}$ el conjunto de los representantes de las clases laterales izquierdas de H en G:

$$G = Ha_1 \cup Ha_2 \cup \cdots \cup Ha_r$$
.

Para una representación de $H ext{ } ext{$\mathbb{A}$} : \tilde{a} \mapsto A(\tilde{a}) \text{ con } \tilde{a} \in H, \text{ se define la matriz } A^G(a)$ de la siguiente manera

$$\begin{pmatrix} A(a_1 a a_1^{-1}) & A(a_1 a a_2^{-1}) & \cdots & A(a_1 a a_r^{-1}) \\ A(a_2 a a_1^{-1}) & A(a_2 a a_2^{-1}) & \cdots & A(a_2 a a_r^{-1}) \\ \vdots & & \vdots & \\ A(a_r a a_1^{-1}) & A(a_r a a_2^{-1}) & \cdots & A(a_r a a_r^{-1}) \end{pmatrix},$$

donde A(x) = 0 si x no está en H. Lo anterior es una generalización de la representación regular derecha de G. Se desea mostrar que para toda $a \in G$

$$\mathbb{A}^G \colon a \mapsto A^G(a)$$

es una representaicón de G y tiene grado nr, donde r = | G : H | y n es el grado de \mathbb{A} . Para ello sea a_k^{-1} y $x \in G$, entonces $\{a_ixa_k^{-1} \mid i=1,2,\ldots,r\}$ es el conjunto de representantes de las clases laterales izquierdas de H, y para $i=1,2,\ldots,r$ sólo hay una matríz $A(a_iaa_k^{-1})$ que es distinta de cero. Análogamente el conjunto $\{a_ixa_k^{-1} \mid k=1,2,\ldots,r\}$ está formado por los representantes de las clases laterales derechas de H, y para $k=1,2,\ldots,r$ únicamente una matriz $A(a_iaa_k^{-1})$ no es cero. Sea C_{ik} el bloque (i,k) de la matriz $A^G(a)A^G(b)$. Por lo tanto

$$C_{ik} = \sum_{j=1}^{r} A(a_i a a_j^{-1}) A(a_j b a_k^{-1}).$$

Nuestro objetivo es demostrar que $C_{ik} = A(a_i a b a_k^{-1})$. Solamente hay un $s \in \{1, 2, \dots, r\}$ tal que $a_i a a_s^{-1} \in H$, e igual, sólo hay un $t \in \{1, 2, \dots, r\}$ tal que $a_t b a_k^{-1} \in H$. Si s = t, entonces $C_{ik} = A(a_i a a_t^{-1}) A(a_t b a_k^{-1}) = A(a_i a b a_k^{-1})$. Si $s \neq t$, entonces $C_{ik} = 0$ y $A(a_i a b a_k^{-1}) = 0$, ya que $a_i a b a_k^{-1} = a_i a b a_t^{-1} \cdot a_t b a_k^{-1} \notin H$. Por lo cual, de cualquier forma $C_{ik} = A(a_i a b a_k^{-1})$, y ello implica que $A^G(a) A^G(b) = A^G(ab)$. Y ya que $A^G(a) A^G(a^{-1}) = A^G(1) = I$, se sigue que $A^G(a)$ es invertible. Entonces es una representación de G.

Sea θ el carácter de \mathbb{A} y sea χ el carácter de \mathbb{A}^G . Entonces

$$\chi(a) = \sum_{i=1}^{r} \theta(a_i a a_i^{-1}) = \sum_{i=1}^{r} \frac{1}{h} \sum_{\tilde{b} \in H} \theta(\tilde{b} a_i a a_i^{-1} \tilde{b}^{-1})$$
$$= \frac{1}{h} \sum_{x \in G} \theta(x a x^{-1}) \qquad (x = \tilde{b} a_i)$$
$$= \theta^G(a)$$

Entonces se obtiene que $\chi = \theta^G$. Se dirá que \mathbb{A}^G es una representación inducida de G, y diremos que \mathbb{A}^G es inducida por \mathbb{A} . Ésto, nos lleva a lo siguiente:

Teorema 5.2. Sea G un grupo y H un subgrupo de G. Sea \mathbb{A} una representación de H con grado n y sea θ el carácter de \mathbb{A} . Entonces la representación inducida \mathbb{A}^G tiene grado nr con $r = \mid G : H \mid$ y el carácter de \mathbb{A}^G es

$$\theta^G(a) = \sum_{x \in G} \theta(x^{-1}ax)$$

donde h = |H|.

Teorema 5.3. (Reciprocidad de Frobenius) Sea H un subgrupo de G. Y sean x_1, x_2, \ldots, x_r lo caracteres irreducibles de G, y sean $\theta_1, \theta_2, \ldots, \theta_s$ los caracteres irreducibles de H. Entonces

$$(\chi_i)_H = \sum_j r_{ij}\theta_j$$

si y sólo si

$$\theta_j^G = \sum_i r_{ij} \chi_j.$$

Es decir, dadas representaciones irreducibles \mathbb{A} y \mathbb{B} de G y H respectivamente, \mathbb{B} es una componente irreducible de \mathbb{A}_H con multiplicidad r si y sólo si \mathbb{A} es un componente irreducible de \mathbb{B}^G con multiplicidad r.

Proof. Sea $(\chi_i)_H = \sum_l r_{il} \theta_l$ y sea $\theta_j^G = \sum_k s_{kj} \chi_k$. Por el lema 5.1, se sigue que

$$r_{ij} = ((\chi_i)_H, \theta_j)_H$$
$$= (\chi_i, \theta_j^G)_G$$
$$= s_{IJ}$$

Producto de representaciones

Sean A y B matrices cuadradas de grado n, m respectivamente y sea $A = (\alpha_{ik})$. Se define el producto de Kronecker $A \otimes B$ de A y B por

$$\begin{pmatrix} \alpha_{11}B & \cdots & \alpha_{1n}B \\ \vdots & & \vdots \\ \alpha_{n1}B & \cdots & \alpha_{nn}B \end{pmatrix}$$

 $A\otimes B$ es una matriz cuadrada de grado mn. Y sin gran dificultad se puede probar

Lema 6.1.

- 1. $\operatorname{tr}(A \otimes B) = (\operatorname{tr}(A))(\operatorname{tr}(B))$
- 2. Sean A, A' con grado n, y sean B, B' de grado m. Entonces $(A \otimes B)(A' \otimes B') = (AA')(BB')$.

Sea $\mathbb{A}_1: a \mapsto A_1(a)$ y $\mathbb{A}_2: a \mapsto A_2(a)$ representaciones de un grupo G. Por el lema 6.1(2), el mapeo

$$a \mapsto A_1(a) \otimes A_2(a)$$

se transforma en una representación de G. A esta representación se le llama el producto de \mathbb{A}_1 y \mathbb{A}_2 , y es denotado por $\mathbb{A}_1 \otimes \mathbb{A}_2$. Sean χ_1, χ_2, χ los caracteres de \mathbb{A}_1 , \mathbb{A}_2 , $\mathbb{A}_1 \otimes \mathbb{A}_2$ respectivamente. Por el lema 6.1(1),

$$\chi(a) = \chi_1(a)\chi_2(a)$$
$$\chi = \chi_1\chi_2$$

Sea $\mathbb{F}_1, \mathbb{F}_2, \ldots, \mathbb{F}_r$ las representaciones irreducibles de G y sea χ_i por el carácter de \mathbb{F}_i . EL mapeo $a \mapsto \overline{F_i(a)}$ también es una representación irreducible y su carácter es $\overline{\chi_i}$, donde $\overline{\chi_i}(a) = \overline{\chi_i(a)}$. Y lo denotaremos $\overline{\chi_i} = \chi_{i'}$

Teorema 6.2.

Bibliography