Déduction naturelle

Option informatique $\,$ - $\,$ TP n^{o} 4.5 - Olivier Reynet

À la fin de ce chapitre, je sais :

- lire un séquent
- décrire les règles d'introduction et d'élimination
- justifier les principaux raisonnements de la logique classique
- construire un arbre de preuve démontrant une formule simple

A Utilisation des règles d'inférence

Prouver les séquents suivants :

- A1. $\vdash p \rightarrow p$
- A2. $p, \neg p \vdash \bot$
- A3. $p, q \vdash p \land q$
- A4. $p \land q \vdash q \land p$
- A5. $p \lor q \vdash q \lor p$
- A6. $q \vdash p \rightarrow q$
- A7. $p \land q \vdash p \rightarrow q$
- A8. $p, q \land r \vdash p \land q$
- A9. $p \land q, r \land s \vdash p \land s$
- A10. $a \rightarrow \neg a \vdash \neg a$

B Preuves intermédiaires

Prouver les séquents suivants :

- B1. $p \rightarrow q \vdash \neg q \rightarrow \neg p$
- B2. $\neg a \lor b \vdash a \rightarrow b$
- B3. $a \rightarrow b \vdash \neg a \lor b$
- B4. $a \rightarrow (b \rightarrow c) \vdash (a \land b) \rightarrow c$
- B5. $(a \land b) \rightarrow c \vdash a \rightarrow (b \rightarrow c)$
- B6. $a \rightarrow (b \rightarrow c), b \rightarrow a \vdash b \rightarrow c$
- B7. $p \rightarrow (q \lor r), \neg q, \neg r \vdash \neg p$
- B8. $p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$

Option informatique TP nº 4.5

C Preuves plus complexes

Prouver les séquents suivants :

C1.
$$q \rightarrow r, \neg q \rightarrow \neg p \vdash p \rightarrow r$$

C2.
$$(p \land q) \rightarrow r \vdash (p \rightarrow r) \lor (q \rightarrow r)$$