Apuntes de clase

José Antonio de la Rosa Cubero

Proposición 1. Sea G un grupo finito y N un subgrupo normal propio de G. Entonces:

$$l(G) = l(N) + l(G/N)$$

y

$$fact(G) = fact(N) \cup fact(G/N)$$

Demostración. Como N es un subgrupo normal propio, entonces la serie $1 \leq N \leq G$ es una serie normal propia de G. Por el teorema de Jordan-Hölder se puede refinar hasta una serie de composición de G.

Sea K_i dicho refinamiento, tal que $K_r = N$ para algún r. Entonces K_i es una serie de composición de N para $i \leq r$. Y además K_i/N es una serie de composición de G/N para $i \geq r$.

De esto se deduce el resultado.

Lema 1. Para todo $n \ge 3$ y $x_1, x_2 \in \{1, ..., n\}$ distintos. Entonces:

$$A_n = \langle (x_1 \quad x_2 \quad k) | k \neq x_i, i = 1, 2 \rangle$$

Demostración. Sabemos que A_n está generado por todos los ciclos de longitud 3.

Sea $H = \langle (x_1 \ x_2 \ k) | k \neq x_1, x_2 \rangle$. Demostremos que para cualquier 3-ciclo se verifica que $(i \ j \ k) \in H$.

Como $(x_1 \quad x_2 \quad k) = (x_2 \quad k \quad x_1) = (k \quad x_1 \quad x_2) \in H$ y como el inverso es $(x_1 \quad k \quad x_2) \in H$.

Primer caso, si ambos x_1, x_2 están en $\{i, j, k\}$, tenemos que por la observación anterior está en H.

Segundo caso. $x_1 \in \{i, j, k\}$ pero x_2 no. Supongamos $i = x_1$. Entonces:

$$(x_1 \quad j \quad k) = (x_1 \quad x_2 \quad k)^{-1} (x_1 \quad x_2 \quad i)(x_1 \quad x_2 \quad k) \in H$$

y rotando podemos ver los casos en los que sea $j, k = x_1$.

Tercer caso: se procede de forma análoga al caso 2 y se concluye $\alpha \in H$.

Cuarto caso, $x_1, x_2 \notin \{i, j, k\}$.

$$(i \ j \ k) = (x_1 \ x_2 \ i)(x_2 \ j \ k)(x_1 \ x_2 \ i)^{-1} \in H$$

Teorema 1 (Teorema de Abel). Para cada $n \geq 5$ el grupo A_n es un grupo simple.

Demostración. Sea $n \geq 5$ y sea $1 \neq N \leq A_n$. Vamos a demostrar que $N = A_n$.

Como $N \neq 1$ elegimos en N un $\alpha \in N$ no trivial que mueve el menor número de elementos. Veamos que α es un 3-ciclo, es decir, mueve exactamente tres elementos.

Supongamos que no es un 3-ciclo.

Caso 1: α mueve exactamente 4 elementos. Entonces, por paridad: $\alpha = (x_1 \ x_2)(x_3 \ x_4)$ pues los ciclos de longitud 4 son permutaciones impares.

Sea x_5 otro elemento distinto y $\beta=(x_3 \ x_4 \ x_5)\in A_n$. Como N es normal, tenemos que $\beta^{-1}N\beta\leq N$ por normalidad. En particular $\beta^{-1}\alpha^{-1}\beta\in N$. Entonces $\sigma=\beta^{-1}\alpha^{-1}\beta\alpha\in N$.

Resulta que σ mueve menos elementos que α , en contra de la elección de α .

$$\sigma = (x_3 \quad x_4 \quad x_5)$$

Caso 2: α mueve 5 o más elementos. Elegimos 5 elementos x_i movidos por α . Suponemos que $\alpha(x_1) = x_2$.

Consideramos $\beta = (x_3 \quad x_4 \quad x_5)$. Como en el caso anterior, se tiene que $\sigma = \beta^{-1}\alpha^{-1}\beta\alpha \in N$. Veamos que σ mueve menos elementos que α o equivalentemente, deja fijo más elementos.

En efecto, si $j \in \{1, ..., n\}$ tal que $\alpha(j) = j$, entonces $j \neq x_i$, y $\sigma(j) = j$. Solo tenemos que ver cuánto es $\sigma(x_1) = \beta^{-1}\alpha^{-1}\beta\alpha(x_1) = x_1$, con lo que σ mueve menos elementos que α , lo cual es una contradicción con la elección de α .

Consecuentemente $\alpha = (x_1 \ x_2 \ x_3) \in N$. Sea $k \neq x_i$ con i = 1, 2, 3 y sea $\gamma = (x_1 \ x_2)(x_3 \ k) \in A_n$. Entonces $\gamma N \gamma^{-1} \leq N$ por ser $N \leq A_4$ y entonces $\gamma \alpha^{-1} \gamma^{-1} \in N$. Es fácil ver que $\gamma \alpha^{-1} \gamma^{-1} = (x_1 \ x_2 \ k) \in N$.

Entonces $\{(x_1 \quad x_2 \quad k) : k \neq x_1, x_2\} \subseteq N$ y por tanto $\langle (x_1 \quad x_2 \quad k) : k \neq x_1, x_2 \rangle = N$.

Corolario 1. Para cada $n \geq 5$ la longitud de S_n es 2 y los factores de S_n son $\{A_n, C_2\}$

Demostración. Por el teorema de Abel, la serie

$$1 \leq A_n \leq S_n$$

es una serie de composición de S_n pues sus factores son $S_n/A_n \,\cong\, C_2$ y $A_n/1 \cong A_n$ y por tanto simples. Entonces la longitud es dos, y sus factores son esos.