Seeds Examples Volume I

Seeds: Random effect logistic regression

This example is taken from Table 3 of Crowder (1978), and concerns the proportion of seeds that germinated on each of 21 plates arranged according to a 2 by 2 factorial layout by seed and type of root extract. The data are shown below, where r_i and n_i are the number of germinated and the total number of seeds on the i th plate, i = 1,...,N. These data are also analysed by, for example, Breslow: and Clayton (1993).

	seed O. aegyptiaco 75						seed O. aegyptiaco 73					
	Bean	1	Cucumber				Bean			Cucumber		
r	n	r/n	r	n	r/n	r	n	r/n	r	n	r/n	
10	39	0.26	5	6	0.83	8	16	0.50	3	12	0.25	
23	62	0.37	53	74	0.72	10	30	0.33	22	41	0.54	
23	81	0.28	55	72	0.76	8	28	0.29	15	30	0.50	
26	51	0.51	32	51	0.63	23	45	0.51	32	51	0.63	
17	39	0.44	46	79	0.58	0	4	0.00	3	7	0.43	
			10	13	0.77							

The model is essentially a random effects logistic, allowing for over-dispersion. If p_i is the probability of germination on the i th plate, we assume

$$r_i \sim Binomial(p_i, n_i)$$

$$logit(p_i) = \alpha_0 + \alpha_1 x_{1i} + \alpha_2 x_{2i} + \alpha_{12} x_{1i} x_{2i} + b_i$$

$$b_i \sim Normal(0, \tau)$$

where x_{1i} , x_{2i} are the seed type and root extract of the *i* th plate, and an interaction term $\alpha_{12}x_{1i}x_{2i}$ is included. α_0 , α_1 , α_2 , α_{12} , τ are given independent "noninformative" priors.

Graphical model for seeds example

Examples Volume I Seeds

BUGS language for seeds example

```
model
{
    for( i in 1 : N ) {
        r[i] ~ dbin(p[i],n[i])
        b[i] ~ dnorm(0.0,tau)
        logit(p[i]) <- alpha0 + alpha1 * x1[i] + alpha2 * x2[i] +
            alpha12 * x1[i] * x2[i] + b[i]
    }
    alpha0 ~ dnorm(0.0,1.0E-6)
    alpha1 ~ dnorm(0.0,1.0E-6)
    alpha2 ~ dnorm(0.0,1.0E-6)
    alpha12 ~ dnorm(0.0,1.0E-6)
    tau ~ dgamma(0.001,0.001)
    sigma <- 1 / sqrt(tau)
}
```

```
<u>Data</u> ( click to open )

<u>Inits</u> ( click to open )
```

Examples Volume I

Results

A burn in of 1000 updates followed by a further 10000 updates gave the following parameter estimates:

	mean	sd	MC_error	val2.5pc	median	val97.5pc	start	sample
alpha0	-0.5525	0.1852	0.00402	-0.9312	-0.5505	-0.1879	1001	10000
alpha1	0.08382	0.3031	0.005803	-0.5238	0.09076	0.6794	1001	10000
alpha12	-0.8165	0.4109	0.008128	-1.671	-0.8073	-0.0287	1001	10000
alpha2	1.346	0.2564	0.00553	0.8501	1.34	1.881	1001	10000
sigma	0.267	0.1471	0.007996	0.03842	0.2552	0.5929	1001	10000

We may compare simple logistic, maximum likelihood (from EGRET), penalized quasi-likelihood (PQL) Breslow and Clayton (1993) with the *BUGS* results

	Logisti		maxim		PQL		
variable	regres β	sion SE	likeliho β	SE	β	SE	
α_0	-0.558	0.126	-0.546	0.167	-0.542	0.190	
α_1	0.146	0.223	0.097	0.278	0.77	0.308	
α_2	1.318	0.177	1.337	0.237	1.339	0.270	
α_{12}	-0.778	0.306	-0.811	0.385	-0.825	0.430	
σ			0.236	0.110	0.313	0.121	Ì

Heirarchical centering is an interesting reformulation of random effects models. Introduce the variables

$$\mu_i \ = \alpha_0 + \alpha_1 x_{1i} + \alpha_2 x_{2i} + \alpha_{12} x_{1i} x_{2i}$$

$$\beta_i = \mu_i + b_i$$

the model then becomes

$$r_i \sim Binomial(p_i, n_i)$$

$$logit(p_i) = \beta_i$$

$$\beta_i \sim Normal(\mu_i, \tau)$$

The graphical model is shown below

Examples Volume I Seeds

This formulation of the model has two advantages: the squence of random numbers generated by the Gibbs sampler has better correlation properties and the time per update is reduced because the updating for the α parameters is now conjugate.