Warming Up - Logistic Regression

Most of this material is from Prof. Andrew Ng'and Chang's slides

Binary Classification

 \rightarrow 1 (cat) vs 0 (non cat)

Binary Classification

 $\longrightarrow 1 \text{ (cat) vs 0 (non cat)}$

input feature vector:

$$x = \begin{bmatrix} 255 \\ 231 \\ \vdots \end{bmatrix}$$

if $64 \times 64 \times 3 = 12288$ dimension of $x = n_v = 12288$

Notation

• single training example

$$(x, y)$$
 $x \in \mathbb{R}^{n_x}, y \in \{0, 1\}$

• m training examples

$$\left\{\left(x^{(1)},y^{(1)}\right),\left(x^{(2)},y^{(2)}\right),\dots,\left(x^{(m)},y^{(m)}\right)\right\}$$

• more compact notation using matrix

$$\mathbf{X} = \begin{bmatrix} | & | & | \\ x^{(1)} & x^{(2)} & \cdots & x^{(m)} \end{bmatrix} \uparrow_{n_x} \qquad \mathbf{X} \in \mathbb{R}^{n_x \times m}$$

$$\mathbf{Y} = \begin{bmatrix} y^{(1)} & y^{(2)} & \cdots & y^{(m)} \end{bmatrix} \qquad \qquad \mathbf{Y} \in \mathbb{R}^{1 \times m}$$

Logistic Regression

- Given $x \in \mathbb{R}^{n_x}$, we want to estimate $\hat{y} = P(y = 1|x)$ We want \hat{y} to be probability: $0 \le \hat{y} \le 1$
- (Model) Parameters: $w \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$
- (Model) Output: $\hat{y} = \sigma(w^T x + b)$
 - Sigmoid function $\sigma(z)$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

If z is large positive number: $\sigma(z) \approx \frac{1}{1+0} = 1$

If z is large negative number: $\sigma(z) \approx \frac{1}{1+\infty} \approx 0$

Linear Regression vs Logistic Regression

Logistic Regression

- Given $x \in \mathbb{R}^{n_x}$, we want to estimate $\hat{y} = P(y|x)$
 - We want \hat{y} to be probability: $0 \le \hat{y} \le 1$
- (Model) Parameters: $w \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$
- (Model) Output: $\hat{y} = \sigma(w^T x + b)$
- The goal of logistic regression
 - try to learn the parameters w and b so that \hat{y} becomes a good estimate of the probability of y

Logistic Regression

- Given $x \in \mathbb{R}^{n_\chi}$, we want to estimate $\hat{y} = \mathrm{P}(y|x)$
 - We want \hat{y} to be probability: $0 \le \hat{y} \le 1$
- (Model) Parameters: $w \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$
- (Model) Output: $\hat{y} = \sigma(w^T x + b)$
- The goal of logistic regression
- Notational convention

$$-x_0=1, x\in\mathbb{R}^{n_x+1}$$

$$-\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_{n_w} \end{bmatrix} \xrightarrow{b} w \qquad \hat{y} = \sigma(\theta^T x)$$

Logistic Regression Cost Function

- Model: $\hat{y} = \sigma(w^T x + b)$, where $\sigma(z) = \frac{1}{1 + e^{-z}}$
- Given training set $\{(x^{(1)},y^{(1)}),\dots,(x^{(m)},y^{(m)})\}$, we want $\ \hat{y}^{(i)} pprox y^{(i)}$

Logistic Regression Cost Function

• Model:

$$\hat{y}^{(i)} = \sigma(w^T x^{(i)} + b)$$
, where $\sigma(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}}$ and $z^{(i)} = w^T x^{(i)} + b$

• Given training set $\{(x^{(1)},y^{(1)}),\dots,(x^{(m)},y^{(m)})\}$, we want $\ \hat{y}^{(i)} pprox y^{(i)}$

Logistic Regression Cost Function

• Model:

$$\hat{y}^{(i)} = \sigma(w^T x^{(i)} + b)$$
, where $\sigma(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}}$ and $z^{(i)} = w^T x^{(i)} + b$

- Given training set $\{(x^{(1)},y^{(1)}),\dots,(x^{(m)},y^{(m)})\}$, we want $\hat{y}^{(i)}\approx y^{(i)}$
- Loss (error) function:

$$-\mathcal{L}(\hat{y},y) = \frac{1}{2}(\hat{y}-y)^2 \rightarrow \text{non-convex and multiple local optima}$$

Logistic Regression Cost Function

• Model:

$$\hat{y}^{(i)} = \sigma(w^T x^{(i)} + b)$$
, where $\sigma(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}}$ and $z^{(i)} = w^T x^{(i)} + b$

- Given training set $\{(x^{(1)},y^{(1)}),\dots,(x^{(m)},y^{(m)})\}$, we want $\ \hat{y}^{(i)} \approx y^{(i)}$
- Loss (error) function:

$$-\mathcal{L}(\hat{y},y) = \frac{1}{2}(\hat{y}-y)^2 \rightarrow \text{non-convex and multiple local optima}$$

$$-\mathcal{L}(\hat{y},y) = -(y\log\hat{y} + (1-y)\log(1-\hat{y}))$$
: cross-entropy loss

$$\text{If } y \to 1 : \mathcal{L}(\hat{y}, y) = -y \log \hat{y} \qquad \to \text{ want } \log \hat{y} \text{ large} \qquad \to \text{ want } \hat{y} \text{ large} \to \text{ want } \hat{y} \approx 1$$

If
$$y \to 0$$
: $\mathcal{L}(\hat{y}, y) = -\log(1 - \hat{y}) \to \text{want } \log(1 - \hat{y}) \text{ large} \to \text{want } \hat{y} \text{ small} \to \text{want } \hat{y} \approx 0$

Logistic Regression Cost Function

• Model:

$$\hat{y}^{(i)} = \sigma \big(w^T x^{(i)} + b \big), \text{ where } \sigma \big(z^{(i)} \big) = \frac{1}{1 + e^{-z^{(i)}}} \text{ and } z^{(i)} = w^T x^{(i)} + b$$

- Given training set $\{(x^{(1)},y^{(1)}),\dots,(x^{(m)},y^{(m)})\}$, we want $\hat{y}^{(i)}\approx y^{(i)}$
- Loss (error) function:
 - $\mathcal{L}(\hat{y},y) = \frac{1}{2}(\hat{y}-y)^2 \rightarrow \text{non-convex and multiple local optima}$
 - $\mathcal{L}(\hat{y}, y) = -(y \log \hat{y} + (1 y) \log(1 \hat{y})) : \text{ cross-entropy loss}$

If
$$y=1$$
: $\mathcal{L}(\hat{y},y)=-y\log\hat{y}$ \rightarrow want $\log\hat{y}$ large \rightarrow want \hat{y} large \rightarrow want $\hat{y}\approx 1$
If $y=0$: $\mathcal{L}(\hat{y},y)=-\log(1-\hat{y})$ \rightarrow want $\log(1-\hat{y})$ large \rightarrow want \hat{y} small \rightarrow want $\hat{y}\approx 0$

• Cost function:

$$-J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})]$$

Recap

- · Logistic regression model
- · Loss function (cross-entropy loss)
 - $\,-\,$ measures how well your parameters w and b are doing on a single training example
- Cost function
 - measures how well your parameters w and b are doing on your entire training set
- Now let's investigate how to use the gradient descent algorithm to train the parameters w and b on your training set

Gradient Descent

- Model: $\hat{y}^{(i)} = \sigma(w^T x^{(i)} + b)$, where $\sigma(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}}$ and $z^{(i)} = w^T x^{(i)} + b$
- Cost function:

$$-|J(w,b)| = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)})]$$
function of parameters (w, b)

• We want to find w, b that minimize J(w,b)

Gradient Descent

- Model: $\hat{y}^{(i)} = \sigma(w^T x^{(i)} + b)$, where $\sigma(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}}$ and $z^{(i)} = w^T x^{(i)} + b$
- Cost function:

$$-\frac{1}{J}(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\big(\hat{y}^{(i)},y^{(i)}\big) = -\frac{1}{m} \sum_{i=1}^{m} \big[y^{(i)} \log \hat{y}^{(i)} + \big(1-y^{(i)}\big) \log \big(1-\hat{y}^{(i)}\big)\big]$$
 function of parameters (w, b)

• We want to find w, b that minimize J(w,b)

Computation Graph

- Computation of neural network
 - Forward propagation: we compute the output of the neural network
 - Backward propagation: we compute gradients (derivatives)
- Computation graph explains why it is organized in this way

Computation Graph

- We're trying to compute a function J of three variables
- J(a,b,c) = 3(a+bc)
 - Computing this function has three distinct steps u = bc → v = a+u → J = 3v
 - Computation graph:

Computation Graph

- We're trying to compute a function J of three variables
- J(a,b,c) = 3(a+bc)
 - Computing this function has three distinct steps u = bc → v = a+u → J = 3v
 - Computation graph:

 a

 b

 u = bc

 Forward pass to compute cost function

 V = a+u

 J = 3v

Computation Graph

- We're trying to compute a function J of three variables
- J(a,b,c) = 3(a+bc)
 - Computing this function has three distinct steps u = bc → v = a+u → J = 3v

- Computation graph:

a

b

u = bc

c

Backward pass to compute derivatives

• dJ/dv = ?

Derivatives with a Computation Graph

• dJ/dv = 3

- dJ/dv = 3
- dJ/da = ?

Derivatives with a Computation Graph

- dJ/dv = 3
- $dJ/da = dJ/dv \cdot dv/da = 3 \cdot 1 = 3$ ("chain rule" in calculus)

- dJ/dv = 3
- $dJ/da = dJ/dv \cdot dv/da = 3 \cdot 1 = 3$ ("chain rule" in calculus)

NOTE: dJ/d(var) is usually simplified into d(var) in implementing code

Derivatives with a Computation Graph

- dJ/dv = 3
- $dJ/da = dJ/dv \cdot dv/da = 3 \cdot 1 = 3$
- $dJ/du = dJ/dv \cdot dv/du = 3 \cdot 1 = 3$

$$da = 3$$

$$a = 5$$

$$db = 6$$

$$b = 3$$

$$c = 2$$

$$du = bc$$

$$dv = 3$$

$$dv = 3$$

$$dv = 3$$

- dJ/dv = 3
- $dJ/da = dJ/dv \cdot dv/da = 3 \cdot 1 = 3$
- $dJ/du = dJ/dv \cdot dv/du = 3 \cdot 1 = 3$
- $dJ/db = dJ/dv \cdot dv/du \cdot du/db = 3 \cdot 1 \cdot c = 3 \cdot 1 \cdot 2 = 6$

Derivatives with a Computation Graph

- dJ/dv = 3
- $dJ/da = dJ/dv \cdot dv/da = 3 \cdot 1 = 3$
- $dJ/du = dJ/dv \cdot dv/du = 3 \cdot 1 = 3$
- $dJ/db = dJ/dv \cdot dv/du \cdot du/db = 3 \cdot 1 \cdot c = 3 \cdot 1 \cdot 2 = 6$
- $dJ/dc = dJ/dv \cdot dv/du \cdot du/dc = 3 \cdot 1 \cdot b = 3 \cdot 1 \cdot 3 = 9$

Exercise

$$\frac{\partial J}{\partial x}$$
 ?

Recap

- Logistic regression model
- Loss function (cross-entropy loss)
 - $-\,$ measures how well your parameters w and b are doing on a single training example
- Cost function
 - measures how well your parameters w and b are doing on your entire training set
- Gradient descent
 - how to minimize the cost function by using gradient (derivatives)
 - gradient: how does a variable affect the value of the cost?
- Computing gradient
 - backpropagation with respect to computation graph

- We will investigate how to compute derivatives for you to implement gradient descent for logistic regression
- Logistic regression:

```
-z = w^T x + b \rightarrow linear function
```

$$-\hat{y} = a = \sigma(z) \rightarrow \text{nonlinear function}$$

$$-\mathcal{L}(a,y) = -(y \log a + (1-y) \log(1-a)) \rightarrow \text{loss for one example}$$

Logistic Regression Derivatives

- We will investigate how to compute derivatives for you to implement gradient descent for logistic regression
- Logistic regression:

```
-z = w^T x + b \rightarrow linear function
```

$$-\hat{y} = a = \sigma(z) \rightarrow \text{nonlinear function}$$

$$-\mathcal{L}(a, y) = -(y \log a + (1 - y) \log(1 - a)) \rightarrow \text{loss for one example}$$

- We will investigate how to compute derivatives for you to implement gradient descent for logistic regression
- Logistic regression:
 - $-z = w^T x + b \rightarrow linear function$
 - $-\hat{y} = a = \sigma(z) \rightarrow \text{nonlinear function}$
 - $-\mathcal{L}(a,y) = -(y \log a + (1-y) \log(1-a)) \rightarrow \text{loss for one example}$

Logistic Regression Derivatives

Logistic Regression Derivatives

$$dw_1 = \frac{d\mathcal{L}(a, y)}{dw_1} = \frac{dz}{dw_1} \cdot \frac{d\mathcal{L}}{dz} = x_1 \cdot dz = x_1 \cdot (a - y)$$

$$dw_2 = \frac{d\mathcal{L}(a, y)}{dw_2} = \frac{dz}{dw_2} \cdot \frac{d\mathcal{L}}{dz} = x_2 \cdot dz = x_2 \cdot (a - y)$$

$$db = \frac{d\mathcal{L}(a, y)}{db} = \frac{dz}{db} \cdot \frac{d\mathcal{L}}{dz} = dz = (a - y)$$

$$dw_1 = \frac{d\mathcal{L}(a, y)}{dw_1} = \frac{dz}{dw_1} \cdot \frac{d\mathcal{L}}{dz} = x_1 \cdot dz = x_1 \cdot (a - y)$$

$$dw_2 = \frac{d\mathcal{L}(a, y)}{dw_2} = \frac{dz}{dw_2} \cdot \frac{d\mathcal{L}}{dz} = x_2 \cdot dz = x_2 \cdot (a - y)$$

$$db = \frac{d\mathcal{L}(a, y)}{db} = \frac{dz}{db} \cdot \frac{d\mathcal{L}}{dz} = dz = (a - y)$$

Gradient Descent Algorithm

$$w_1 \leftarrow w_1 - \alpha \cdot dw_1$$

$$w_2 \leftarrow w_2 - \alpha \cdot dw_2$$

$$b \leftarrow b - \alpha \cdot db$$

Logistic Regression on *m* Examples

- $J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(a^{(i)}, y^{(i)})$ where $a^{(i)} = \hat{y}^{(i)} = \sigma(z^{(i)}) = \sigma(w^T x^{(i)} + b)$
- Derivatives:

$$\frac{\partial}{\partial w_1} J(w, b) = \frac{1}{m} \sum_{i=1}^m \frac{\partial}{\partial w_1} \mathcal{L}(a^{(i)}, y^{(i)})$$

$$dw_1^{(i)} \text{ for } (x^{(i)}, y^{(i)})$$

Logistic Regression on *m* Examples

```
J = 0; \ dw_1 = 0; \ dw_2 = 0; \ db = 0;
For i = 1 to m
z^{(i)} = w^T x^{(i)} + b
a^{(i)} = \sigma(z^{(i)})
J += -[y^{(i)} \log a^{(i)} + (1 - y^{(i)}) \log(1 - a^{(i)})]
dz^{(i)} = a^{(i)} - y^{(i)}
dw_1 += x_1^{(i)} dz^{(i)}
dw_2 += x_2^{(i)} dz^{(i)}
db += dz^{(i)}
J \neq m
dw_1 \neq m; \ dw_2 \neq m; \ db \neq m;
```

Logistic Regression on m Examples

```
J = 0; dw_1 = 0; dw_2 = 0; db = 0;
For i = 1 to m
          z^{(i)} = w^T x^{(i)} + b
                                                                       forward
          a^{(i)} = \sigma(z^{(i)})
                                                                       propagation
         J += -[y^{(i)} \log a^{(i)} + (1-y^{(i)}) \log(1-a^{(i)})]
          dz^{(i)} = a^{(i)} - y^{(i)}
         dw_1 += x_1^{(i)} dz^{(i)}
                                                                       backward
                                                                       propagation
         dw_2 += x_2^{(i)} dz^{(i)}
          db += dz^{(i)}
J /= m
                                                gradient
                                                computation
dw_1 /= m; dw_2 /= m; db /= m;
```

Logistic Regression on m Examples

$$\begin{split} J &= 0; \ dw_1 = 0; \ dw_2 = 0; \ db = 0; \\ \text{For } i &= 1 \ \text{to } m \\ & z^{(i)} = w^T x^{(i)} + b \\ & a^{(i)} = \sigma \big(z^{(i)} \big) \\ & J +\! = - \big[y^{(i)} \log a^{(i)} + \big(1 - y^{(i)} \big) \log \big(1 - a^{(i)} \big) \big] \\ & dz^{(i)} = a^{(i)} - y^{(i)} \\ & dw_1 \ +\! = \ x_1^{(i)} dz^{(i)} \\ & dw_2 \ +\! = \ x_2^{(i)} dz^{(i)} \\ & db \ +\! = \ dz^{(i)} \end{split}$$

$$w_1 \leftarrow w_1 - \alpha \cdot dw_1$$
 $w_2 \leftarrow w_2 - \alpha \cdot dw_2$
 $b \leftarrow b - \alpha \cdot db$

parameter update

 $J \neq m$ $dw_1 \neq m$; $dw_2 \neq m$; $db \neq m$;

gradient computation

Logistic Regression by Gradient Descent Algorithm $y = \frac{1}{1 + e^{-(w_1 x_1 + w_2 x_2 + b)}}$

when $w_1,\,w_2,\,\mathrm{and}\;b$ are (randomly) initialized

when w_1 , w_2 , and b are converged by their sufficient updates