2021年度 東京成徳大学 特別講座 補助資料 東京工科大学コンピュータサイエンス学部 福西広晃

第04回補助資料

1. データの見える化(可視化)の重要性

国内企業におけるデータ分析の実態

- 国内企業のデータ分析は「業務データ」の「見える化 (可視化)」がスタート
- ◆ 分析に活用しているデータとして「顧客データ」、「経理データ」の割合が高くなっています。
 - いずれも意図的に取得したデータではなく、自然に集まる業務 データとなっています。
- データ分析の活用方法として、最も割合が高いのは 「データ分析による見える化(可視化)」の67%です
 - 「見える化(可視化)」とは、図表作成などを行うことでデータを 分かりやすく示すことを指しています。

データ分析の活用方法(複数回答)

【出所】ビッグデータの流通量の推計及びビッグデータの活用実態に関する調査研究 [総務省 (調査委託先:株式会社 情報通信総合研究所)] に基づき作成

データの可視化とは

- データ可視化はデータサイエンスの一領域
- 「可視化」とは人が直接見ることのできない現象、事象、関係性を見れるようにすること (画像・グラフ・図・表など)
- 最新のデータ可視化は、 以下に分類される
 - データビジュアライゼーション(グラフ等)
 - インフォグラフィックス
- 視覚表現の方法
 - 「長さ」「大きさ」「角度」「色」

データビジュア	数字や単語が並んだデータをプログラムによって <mark>統計処</mark>
ライゼーション	理し、意味ある情報を見つけ出しやすくするもの
インフォグラ	既に見つかっている意味ある情報を整理し、わかりやす
フィックス	く多くの人に興味を持ってもらうために表現するもの

インフォグラフィックの事例

既に見つかっている意味ある情報を整理し、わかりやす く多くの人に興味を持ってもらうために表現するもの

WordCloudによるテキストデータの 単語頻度図

(高い単語ほど大きな文字で表示)

日刊スポーツのプロ野球一球速情報 (**日刊スポーツサイトより**)

5

なぜデータの可視化が重要か

- 専門家ではない人々(例えば、ビジネスでは経営層) に直感的にデータの特徴を伝えることができる
- データによるエビデンス (証拠) を効率的かつ効果的 に把握することが可能になり、意思決定 (判断) のス ピードが高まる
- トレンドの洞察を得られ、予測が立てられる

見る/する:80%

読む:20%

聞く:10%

注目されるデータストーリーテラー

- データストーリーテリングは、事実を提示するだけではなく、「物語」として伝えることで、相手により強い印象を与えることができる手法
- データストーリーテリングにおいてデータ可視化は有用な手段。冷たい数字とファクトを多彩な色、図形、 チャートに表示することで、メッセージの共感度が高まると考えられている
- データストーリーテラーはデータストーリーテリングの プロ。データサイエンスが社会に浸透した近年において、 データストーリーテラーの役割が注目されている
 - ビジネス領域では経営層へデータ分析の価値を訴える役割

データストーリーテリングで意識すべきこと

- 実現すべきゴールを明確にする
- データを伝わるように表現する

クリック率と成約率からどのサイトに広告を出すかを検討し、 あなたは上司にAがよいことを伝えたい。 どの表現が伝わりやすいでしょうか?

	クリック率	成約率
Α	6.00%	0.65%
В	3.00%	0.75%
С	7.00%	0.20%

2. データの可視化方法

データ可視化方法の分類

①大きさによる可視化	特定の図形の長さ、高さまたは面積によって、異なる指標に対応する数値と数値間の 差を表現 棒グラフ、円グラフ、折れ線グラフなど
②色による可視化	データの強弱や密度を色や濃淡として表現 ヒットマップなど
③画像による可視化	実際の意味を持つ画像やアイコンを用いれば、データとチャートをよりリアルに表現
④地図による可視化	地域間のデータを比較する場合に有効 GIS(Geographic Information System) とも呼ばれる

大きさによる可視化のためのグラフの種類

グラフの種類	使う場面
棒グラフ	棒の高さで、量の大小を比較
折れ線グラフ	量の増減の変化の推移を見たい
円グラフ	全体の中での構成比を見る
帯グラフ	構成比を比較
レーダーチャート	複数の指標をまとめる
散布図	2種類のデータの関係(相関)を見る
ヒストグラム(密度プロット)	データの散らばり具合を見る
箱ひげ図	データの散らばり具合を見る(比較)

統計解析の観点では、データ間の関係やデータの分布(散らばり)を確認することは重要

グラフイメージ(1)

グラフイメージ②:箱ひげ図

散布図と相関

- 散布図とは、2つの変数の間の関係を見るために、 縦軸と横軸に目盛りを設けてデータをプロットした図
- 相関関係性が強いほど直線状に点が並ぶ(相関がある)

14

相関係数

• 直線的な相関関係の強さを表す指標

• 相関係数 r_{xy} の範囲: $-1 \le r_{xy} \le 1$

2つの要素xとyの相関係数

$$r_{xy} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2} \times \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

分母:xとyの共分散(2変数の関係を表す)

分子:xの標準偏差×yの標準偏差(単位の違いを調整)

相関係数	相関の強さ	解釈
$0.7 < r_{xy} \leq 1.0$	強い 正 の相関	xが増加すれば
$0.4 < r_{xy} \leq 0.7$	適度な 正 の相関	<i>y</i> も増加する関係
$0.2 < r_{xy} \leq 0.4$	弱い 正 の相関	
$-0.2 < r_{xy} \le 0.2$	相関はほぼなし	xと y の間に関係性はない
$-0.4 < r_{xy} \le -0.2$	弱い 負 の相関	xが増加すれば
$-0.7 \le r_{xy} \le -0.4$	適度な 負 の相関	yは減少する関係
$-1.0 \le r_{xy} \le -0.7$	強い 負 の相関	

ヒストグラムとデータ分布

二年 米石

• 縦軸に度数、横軸に階級をとった統計グラフで、 データの分布を視覚的に読み取るもの

	階級	
	得点(点)	人数(人)
_ [以上 未満 90~100	10(100点も含む)
	80~90	15
=1(70~80	21
階級数=10個 人	60~70	23
。 	50~60	28
	40~50	20
	30~40	17
	20~30	12
	10~20	4
	0~10	0
	†å†	150

7比477

階級幅 (ビン) =10

データの分布を見ることの重要性

• 以下のようなヒストグラムから何が読み取れるか

参考:世帯所得の統計値

ヒストグラムの読み取り方

データの分布の仕方によって、代表値(データの特徴を 表す指標)は異なる

図表1 主な代表値

ヒストグラムの作図の注意: 階級幅・階級数

- 階級幅の取り方によって見た目の印象が大きく変わることに注意
- 階級幅が大きすぎても、逆に小さすぎてもデータの分布が分かり づらくなる
- 階級幅の決め方に決まったルールはないが、 困った場合はスタージェスの公式で決めた階級数から階級幅を決める方法がある

スタージェスの公式: 階級数 = 1 + log2N (N:データ数)

階級幅=200

階級幅=18

