Algebraic Systems

Need to study Algebraic systems:

 Algebraic Model: Real Worlds Situation, Mathematical model, connecting mathematical model with real world situation to get real world solution.

Algebraic Systems or Algebras

- Structure / Definition: An algebra is characterised by specifying 3 components
 - a **set** called **Carrier** of the Algebra
 - Operations defined on the carrier
 - Distinguished elements of the carrier, called constants of the algebra
- Example: let carrier be Set of integers Z and define operation + (addition) on Z
 - it means if a and b are integers, then you can perform a + b
 - this operation is from $I^2 \rightarrow I$, it's a binary operation

- In general, let carrier be S
 - then an operation from S^m -> S
 - here m is called as arity of the operation
 - Example:
 - Binary operations:
 - Multiplication *
 - Subtraction -
 - Unary Operation
 - Negation –
 - absolute value or Mod

- Constants of algebra: elements of the carrier having some special property
 - Example: (I, +, 0)
 - 0 is identity element for addition
 - Example: (R, *, 0, 1)
 - 1 is identity element for Multiplication
 - 0 is Zero element for multiplication
- Fundamental Algebraic Structures: groupoids, semi-groups, monoids, groups, lattices, rings and fields.

Algebras of same signature or from same species

- Algebras are said to have same signature if they have
 - 1. A Carrier
 - 2. Same number of operations with corresponding arity
 - 3. same number of constants
- Example 1:
 - <I, +, *, -, 1, 0>
 - <R, +, *, -, 1, 0>
 - <P(S), U, ∩, ', S, Ø >
- The above algebras have same signatures, or they are from same species

- Example 2:
 - <I, -, 0> and <Q, +, 0>
 - Here the above algebras do have same signature, but they do not have same properties

Axioms

- Axioms are rules that algebras follow.
 - **Example**: Semi groups will follow a set of axioms, groups will follow a set of operations

Closure Property

- **Definition**: let ∘ and Δ be a binary and unary operation on a set T and let T' be a subset of T. T' is closed with respect to ∘ if a, b ∈ T implies a ∘ b ∈ T'. The subset T' is closed with respect to Δ if a ∈ T implies Δ a ∈ T'.
- **Example:** <1, +, 0>
 - Let $S = (x \mid 0 \le x \le 10)$
 - here, 12 + 15 = 27 which does not belong to S
 so, S is not closed wrt +
 - Consider operation max(a, b)
 - here S is closed under max operation

- Example 2: Let If A = {0, 1},
 - We have
 - $0 \times 0 = 0$,
 - $0 \times 1 = 0$,
 - $1 \times 0 = 0$, and
 - $1 \times 1 = 1$
 - so A is closed under multiplication.
 - But A is not closed under the binary operation addition. Since 1 + 1 = 2 does not belong to A.

Groupoid

- ◆ **Definition:** A groupoid is an algebraic structure consisting of non-empty set A and a binary operation *, such that A is closed under *.
- Example: The set of real numbers is closed under addition, therefore (R, +) is a groupoid.
- Example 2: If E denotes the set of even numbers then E is closed under addition. and (E, +) is a groupoid.
- Example 3: Let Z⁺ denotes the set of positive integers and * be a binary operation on Z⁺ defined as

a * b = 3a + 4b
$$\forall$$
a, b \in Z^+ Clearly (Z^+ , *) is a groupoid

Semi-Group

- **Definition:** Let S be a non-empty set and * be a binary operation on S. The algebra (S,*) is called a semi-group if the operation * is associative.
 - In other words, the groupoid is a semi-group

if
$$(a * b) * c = a * (b * c)$$
 for all $a, b, c \subseteq S$

- •Thus, a semi-group requires the following:
 - (i) A set S.
 - (ii) A binary operation * defined on the elements of S.
 - (iii) Closure, a * b whenever a, b \subseteq S
 - (iv) Associativity (a * b) * c = a * (b * c) for all a, b, c \subseteq S
- Example 1: Let N be the set of natural numbers. Then (N, +) and (N, *) are semi-groups.

- Example 2: X be a non-empty set and P (X) denote the power set of X. Then (P(x), U) and $(P(x), \cap)$ are semi-groups.
- Example 3: Let Z be the set of integers and Z_m be the set equivalence classes generated by the equivalence relation "congruent modulo M" for any positive integers m. Then $+_m$ be defined integers of + on Z as follows:

```
For any [i], [j] \in Z_m

[i] +_m [j] = [(i + j) mod m]

The algebraic system (Z_m, + m) is a semi-group
```

Homomorphism of Semi-Groups

• **Definition**: Let (S, *) and (T, o) be any two semi-groups. A mapping $f: S \to T$ such that for any two elements $a, b \in S$

$$f(a * b) = f(a) o f(b)$$

is called a semi-group homomorphism.

• **Definition**: A homomorphism of a semi-group into itself is called a semi-group **endomorphism**.

Isomorphism of Semi-Group

- **Definition:** Let (S, *) and (T, 0) be any two semi-groups. A homomorphism $f: S \to T$ is called a semi-group isomorphism if f is one-to-one and onto.
- If f: S \rightarrow T is an isomorphism then (S, *) and (T, 0) are said to be isomorphic.

• **Definition**: An isomorphism of a semi-group onto itself is called a semi-group automorphism.

Monoid

- **Definition**: A semi-group (M, *) with an identity element with respect to the binary operation * is called a monoid.
- In other words, an algebraic system (M, *) is called a monoid if:
 - (i) $(a * b) * c = a * (b * c) \forall a, b, c \subseteq M$
 - (ii) There exists an element $e \in M$ such that $e * a = a * e = a \forall a \in M$. (i.e. Identity Element)

• Example 1: Let Z be the set of integers (Z, +) is a monoid 0 is the identity element in Z with respect to +.

- Commutative Monoid: Let (M, *) be a monoid. If the operation * is commutative then (M, *) is said to be commutative monoid.
- If $a^i a^j \subseteq M$ we have $a^{i+j} = a^i * a^j = a^j * a^i$ for all $i, j \subseteq M$.
- Cyclic Monoid: A monoid (M, *) is said to be cyclic if there exists an element $a \in M$. Such that every element of M can be expressed as some power of a.
 - If M is a cyclic monoid such that every element is some power of $a \in M$, then a is called the generator of M.
 - A cyclic monoid is commutative and may have more than one generator.

Monoid Homomorphism

• **Definition**: Let (M, *) and (T, 0) be any two monoids e_m and e_t denote the identity elements of (M, *) and (T, 0) respectively. A mapping

```
f: M \rightarrow T
such that for any two elements a, b \in M
f(a * b) = f(a) \circ f(b)
and f(e_m) = e_t
is called a monoid homomorphism.
```

- Monoid homomorphism presents the associativity and identity.
- It also preserves commutative.
- If $a \in M$ is invertible and $a^{-1} \in M$ is the inverse of a in M, then $f(a^{-1})$ is the inverse of f(a), i.e., $f(a^{-1}) = [f(a)]^{-1}$.

Groups

• **Definition:** A group is an algebraic structure (G, *) in which the binary operation * on G satisfies the following conditions:

$$G-1$$
 for all $a, b, c, \subseteq G$
 $a * (b * c) = (a * b) * c (associativity)$

G – 2 there exists an elements e G \subseteq such that for any a G \subseteq a * e= e * a = a (existence of **identity**)

G –3 for every $a \subseteq G$, there exists an element denoted by a^{-1} in G such that

$$a * a^{-1} = a^{-1} * a = e$$

a⁻¹ is called the **inverse** of a in G

- **Example 1:** (Z, +) is a group
 - where Z denote the set of integers.
- **Example 2:** (R, +) is a group
 - where R denote the set of real numbers.

Abelian Group

• **Definition**: Let (G, *) be a group. If * is commutative that is a * b = b * a for all $a, b \in G$ then (G, *) is called an Abelian group.

• Example: (Z, +) is an Abelian group

Finite and Infinite Group

Finite Group

- **Definition**: A group G is said to be a finite group if the set G is a finite set.
- **Example**: $G = \{-1, 1\}$ is a group with respect to the operation multiplication. Where G is a finite set having 2 elements. Therefore, G is a finite group.

Infinite Group

A group G, which is not finite is called an infinite group.

Order of a Finite Group

- **Definition:** The order of a finite group (G, *) is the number of distinct elements in G.
- The order of G is denoted by O(G) or by |G|.

• **Example**: Let $G = \{-1, 1\}$

The set G is a group with respect to the binary operation multiplication and O(G) = 2.

Example 1

- Show that the set $G = \{1, -1, i, -i\}$ where $i = \sqrt{-1}$ is an abelian group with respect to multiplication as a binary operation.
- **Solution**: Let us construct the composition table

•	1	-1	i	<i>−i</i>
1	1	-1	i	<i>−i</i>
-1	-1	1	-i	i
-i	i	-i	-1	1
-i	-i	i	1	-1

• From the table we can say (G, \cdot) is closed under the \cdot operation

- We have to check whether the above algebraic structure (G, ·) satisfies the following axioms
- Associativity

$$1 \cdot (-1 \cdot i) = 1 \cdot -i = -i$$
$$(1 \cdot -1) \cdot i = -1 \cdot i = -i$$
$$\Rightarrow 1 \cdot (-1 \cdot i) = (1 \cdot -1) i$$

- Existence of Identity
 - 1 is identity element of (G, ·) such that $1 \cdot a = a = a \cdot 1 \ \forall \ a \in G$

Existence of inverse

$$1 \cdot 1 = 1 = 1 \cdot 1 \implies 1$$
 is inverse of 1
 $(-1) \cdot (-1) = 1 = (-1) \cdot (-1) \implies -1$ is the inverse of (-1)
 $i \cdot (-i) = 1 = -i \cdot i \implies -i$ is the inverse of i in G .
 $-i \cdot i = 1 = i \cdot (-i) \implies i$ is the inverse of $-i$ in G .

• Thus all the axioms of a group are satisfied.

Commutativity

$$a \cdot b = b \cdot a \quad \forall \ a, b \in G \text{ hold in } G$$

$$1 \cdot 1 = 1 = 1 \cdot 1, -1 \cdot 1 = -1 = 1 \cdot -1$$

$$i \cdot 1 = i = 1 \cdot i; i \cdot -i = -i \cdot i = 1 = 1 \text{ etc.}$$

commutative law is satisfied

• Hence (G, ·) is an abelian group

Example 2

- Prove that $G = \{1, \omega, \omega^2\}$ is a group with respect to multiplication where $1, \omega, \omega^2$ are cube roots of unity.
- Solution: We construct the composition table as follows:

•	1	ω	ω^2
1	1	ω	ω^2
ω	ω	ω^2	$\omega^3 = 1$
ω^2	ω^2	$\omega^3 = 1$	$\omega^4 = \omega$

- The algebraic system is (G, \cdot) where $\omega^3 = 1$ and multiplication \cdot is the binary operation on G.
- The algebraic system (G, \cdot) is closed under multiplication " \cdot ".

- Let us check axioms of groups
 - Associativity
 - from the table we can say · is associative
 - Existence of Identity
 - 1 is identity element of (G, \cdot) such that $1 \cdot a = a = a \cdot 1 \ \forall \ a \in G$
 - Existence of inverse
 - Each element of G is invertible
 - 1 · 1 = 1 \Rightarrow 1 is its own inverse.
 - $\omega \cdot \omega^2 = \omega^3 = 1 \Rightarrow \omega^2$ is the inverse of ω and ω is the inverse of ω^2 in G
- Thus all the axioms of a group are satisfied.
- Commutativity
 - commutative law hold wrt multiplication
- Hence (G, ·) is an abelian group

Example 3

- Example 3: Prove that the set Z of all integers with binary operation * defined by a * b = a + b + 1 \forall \subseteq a b G , is an abelian group.
- Solution: Sum of two integers is again an integer; therefore $a+b \in Z \ \forall \ a,b \in Z$

$$\Rightarrow a+b+1 \in Z \ \forall \ a,b \in Z$$

 \Rightarrow Z is called with respect to *

Associative law for all $a, b, a, b \in G$ we have (a * b) * c = a * (b * c) as

$$(a * b) * c = (a + b + 1) * c$$

= $a + b + 1 + c + 1$
= $a + b + c + 2$

also

$$a * (b * c) = a * (b + c + 1)$$

= $a + b + c + 1 + 1$
= $a + b + c + 2$

Hence $(a * b) * c = a * (b * c) \in a, b \in Z$.

Sub-Group

- **Definition:** Let (G, *) be a group and H, be a non-empty subset of G. If (H, *) is itself is a group, then (H, *) is called sub-group of (G, *).
- Example 1: Let $a = \{1, -1, i, -i\}$ and $H = \{1, -1\}$ G and H are groups with respect to the binary operation, multiplication.
 - H is a subset of G, therefore (H, X) is a sub-group (G, X).
- Example 2: Consider $(Z_6, +_6)$, the group of integers modulo 6.
 - $H = \{0, 2, 4\}$ is a subset of Z_6 and
 - $\{H, +_{6}\}$ is a group.
 - \cdot {H, +₆} is a sub-group.

Ring

- **Definition:** An algebraic system $(R, +, \cdot)$ is called a ring if the binary operations '+' and ' · ' R satisfy the following properties:
 - 1. (R, +) is an abelian group.
 - 2. (R, ·) is a semi-group.
 - 3. The operation '·' is distributive over +, that is for any a, b, $c \subseteq R$, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(b + c) \cdot a = b \cdot a + c \cdot a$

Example

• Example 1: The set of integers Z, with respect to the operations + and × is a ring.

• Example 2: The set of all matrices of the form

$$\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}$$

where, a and b being real numbers, with matrix addition and matrix multiplication is a ring.

Resource

• Discrete mathematics structures – G. Shanakr Rao - 2 Ed