Naive Bayes Classifier

Learning Type: Supervised, Task: Classification, Algorithm: Naive Bayes Classifier

Bayes' theorem calculates the probability of the event using prior knowledge and likelihood based on new information. The Naive Bayes classifier is based on Bayes' theorem

$$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

for k-classes classification:

 $A \to y \in y_1, y_2, ..., y_k \text{ and } B \to X = x_1, x_2, ..., x_n$

$$P(y \mid X) = \frac{P(X \mid y) \times P(y)}{P(X)}$$

if features $X = x_1, x_2, ..., x_n$ are i.i.d, that is $P(x_1, x_2, x_3, ... | y) = P(x_1 | y)P(x_2 | y)...P(x_n | y)$

$$P(y|x_1, x_2...x_n) = \frac{\prod_{i=1}^{n} P(x_i | y) \times P(y)}{\prod_{i=1}^{n} P(x_i)}$$

Since $\prod_{i=1}^{n} P(x_i)$ is constant therefore

$$score(y) = \operatorname{argmax}_{y} \prod_{i=1}^{n} P(x_i \mid y) \times P(y)$$

 $Posterior_probability = \frac{\textit{Likelihood} \times \textit{Prior_probability}}{\textit{Evidence}}$

Illustration of Naive Bayes Classifier using Venn Diagram

Tennis Play Example

\mathbf{x}_1	\mathbf{x}_2	X ₃	X ₄	у	Prior probability P(y)					
sunny	hot	high	weak	no	P(y = yes) = 6/10 = 0.6 $P(y = no) = 4/10 = 0.4$					
sunny	hot	high	strong	no	Likelihood P(X y)					
overcast	hot	high	weak	yes	X ₁	yes	no	X_2	yes	no
rain	mild	high	weak	yes	sunny	1/6	3/4	hot	1/6	2/4
rain	cool	normal	weak	yes	overcast	2/6	0/4	mild	2/6	1/4
rain	cool	normal	strong	no	rain	3/6	1/4	cool	3/6	1/4
overcast	cool	normal	strong	yes						
sunny	mild	high	weak	no	X ₃	yes	no	X ₄	yes	no
sunny	cool	normal	weak	yes	high	2/6	3/4	weak	5/6	2/4
rain	mild	normal	weak	yes	normal	4/6	1/4	strong	1/6	2/4

$$x_1 = \text{Outlook}, x_2 = \text{Temperature}, x_3 = \text{Humidity}, x_4 = \text{Wind}, y = \{\text{yes, no}\}\$$

New example: $x_1 = \text{sunny}, x_2 = \text{cool}, x_3 = \text{high and } x_4 = \text{strong}$

$$score(yes) = P\left(sunny \mid yes\right) P\left(cool \mid yes\right) P\left(high \mid yes\right) P\left(strong \mid yes\right) \times P(yes)$$

$$score(yes) = 0.167 \times 0.5 \times 0.333 \times 0.167 \times 0.6 = 0.002786$$

$$score(no) = P\left(sunny \mid no\right) P\left(cool \mid no\right) P\left(high \mid no\right) P\left(strong \mid no\right) \times P(no)$$

$$score(no) = 0.75 \times 0.25 \times 0.75 \times 0.5 \times 0.4 = 0.0281 \quad \text{(No Tennis)}$$

For any mistake/query: alishafique3@gmail.com

For references and updates: Website, Github