COMP3251 Lecture 12: Kruskal's Algorithm (Chapter 5.1)

Minimum Spanning Tree

Definition: Given a connected undirected graph G = (V, E) in which every edge $e \in E$ is associated with a positive weight w(e), a minimum spanning tree (MST) is a subset of edges $T \subseteq E$ s.t.

- (i) T forms a spanning tree; and
- (ii) the sum of edge weights of T is minimized.

Example:

Two Greedy Algorithms for MST

Prim's algorithm (last lecture)

- Start with some root node s and grow a tree T outward.
- At each step, add the minimum weight outgoing edge.
- This algorithm is almost the same as the Dijkstra's algorithm, except that we add the outgoing edge with the minimum weight, not the one with minimum *T*-distance.

Kruskal's algorithm (this lecture)

- Start with *T* being the empty forest.
- Consider edges in ascending order of cost; insert edge e in T unless doing so would create a cycle.

- 1) Start from an empty forest *T*.
- 2) for all edges e in ascending order of weights:
- 3) insert edge e in T unless doing so would create a cycle.

- 1) Start from an empty forest *T*.
- 2) for all edges e in ascending order of weights:
- 3) insert edge e in T unless doing so would create a cycle.

Initially, T contains no edges.

- 1) Start from an empty forest *T*.
- 2) for all edges e in ascending order of weights:
- 3) insert edge e in T unless doing so would create a cycle.

At step 1, the minimum weight edge we could add has weight 1.

- 1) Start from an empty forest *T*.
- 2) for all edges e in ascending order of weights:
- 3) insert edge e in T unless doing so would create a cycle.

At step 2, the minimum weight edge we could add has weight 3.

- 1) Start from an empty forest *T*.
- 2) for all edges e in ascending order of weights:
- 3) insert edge e in T unless doing so would create a cycle.

At step 3, the minimum weight edge we could add has weight 5.

- 1) Start from an empty forest *T*.
- 2) for all edges e in ascending order of weights:
- 3) insert edge e in T unless doing so would create a cycle.

At step 4, the edge with weight 6 creates a cycle, so we add the edge with weight 7 instead.

Proof by picture:

- Recall that if e is the minimum weight outgoing edge of some subset of vertices S, then the MST must contain e.
- For every edge e we add in the sample run, we will explain the subset of vertices S for which e is the minimum weight outgoing edge of S, certifying e must be in the MST.

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14
	· · · · · · · · · · · · · · · · · · ·

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(h,g) is the minimum weight edge going out from $S = \{h\}$.

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(i,c) is the minimum weight edge going out from $S = \{c\}$.

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(g,f) is the minimum weight edge going out from $S = \{f\}$.

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(a,b) is the minimum weight edge going out from $S = \{a\}$.

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(c,f) is the minimum weight edge going out from $S = \{c, i\}$.

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(c,d) is the minimum weight edge going out from $S = \{d\}$.

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(h,i) cannot be added to the solution because doing so would create a cycle.

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(b,c) is the minimum weight edge going out from $S = \{a, b\}$.

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(a,h) cannot be added to the solution because doing so would create a cycle.

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

(*d*,*e*) is the minimum weight edge going out from $S = \{e\}$.

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	1
(b,h)	12
(d,f)	14

(h,g)	1
(i,c)	2
(g,f)	3
(a,b)	4
(c,f)	5
(c,d)	6
(h,i)	7
(b,c)	8
(a,h)	9
(d,e)	10
(e,f)	11
(b,h)	12
(d,f)	14

We already have |V|-1 edges. So adding any of the remaining edges would create a cycle.

Fact 1. The algorithm adds an edge only if it is in the MST.

Key question: Why we can always find a subset of vertices S such that e is the minimum weight outgoing edge from S?

- Throughout the algorithm, we have a set of subtrees.
- We add an edge e only if it does not create any cycle.
- So the two endpoints of e cannot be in the same subtree. That is, e connects two different subtrees, say T_1 and T_2
- So e is an outgoing edges of T_1 . Further, the algorithm has not processed any outgoing edges of T_1 when we add e.
- Choosing $S = T_1$ suffices because by our choice of e, it must have the minimum edge weight among them.

Fact 2. Each edge in the MST will be added by the algorithm.

Proof: Consider an edge *e* in the MST.

- Since the algorithm checks all edges before it stops, it must have checked edge e.
- Since the only edges added by the algorithm are those in the MST, e cannot create a cycle.
- So the algorithm would have added edge e to the solution.

Implementing Kruskal's Algorithm (A Data Structure for Disjoint Sets)

- 1) Start from an empty forest *T*.
- 2) for all edges e in ascending order of weights:
- 3) insert edge e in T unless doing so would create a cycle.
- Note that log |E| = O(log |V|) because $|E| = O(|V|^2)$.
- Sorting the edges in ascending order takes $O(|E| \log |E|) = O(|E| \log |V|)$ time.
- The for loop has |E| iterations.
- Key questions:
 - How to implement an iteration of the for loop?
 - How to determine if adding an edge creates a cycle?

Observation: During the execution of the algorithm, the set of edges added to the solution (red edges) forms a set of disjoint sub-trees of the MST.

- To determine if adding an edge creates a cycle is the same as to determine if its end points are in the same sub-tree.

In this step, there are 4 disjoint sub-trees.

Observation: During the execution of the algorithm, the set of edges added to the solution (red edges) forms a set of disjoint sub-trees of the MST.

- To determine if adding an edge creates a cycle is the same as to determine if its end points are in the same sub-tree.

In this step, there are 4 disjoint sub-trees.

Observation: During the execution of the algorithm, the set of edges added to the solution (red edges) forms a set of disjoint sub-trees of the MST.

- To determine if adding an edge creates a cycle is the same as to determine if its end points are in the same sub-tree.

In this step, there are 4 disjoint sub-trees.

Observation: During the execution of the algorithm, the set of edges added to the solution (red edges) forms a set of disjoint sub-trees of the MST.

- To determine if adding an edge creates a cycle is the same as to determine if its end points are in the same sub-tree.

In this step, there are 4 disjoint sub-trees.

Observation: During the execution of the algorithm, the set of edges added to the solution (red edges) forms a set of disjoint sub-trees of the MST.

- To determine if adding an edge creates a cycle is the same as to determine if its end points are in the same sub-tree.

In this step, there are 4 disjoint sub-trees.

Idea: Design a data structure that remembers the current set of disjoint sub-trees such that we can efficiently

- 1) find the subtree that a vertex, say, c, belongs to, through a procedure **find-set**(c); and
- 2) merge two subtrees through **union**(**find-set**(*c*), **find-set**(*d*)).


```
    initialize T = { }.
    for all vertices v : initialize a sub-tree for v via make-set(v).
    for all edges (u, v) in ascending order of weights :
    if find-set(u) ≠ find-set(v) :
    add (u, v) to T;
    union(find-set(u), find-set(v)).
```

Running Time:

- # of make-set: |V|; # of find-set: 2|E|; # of union: |V|-1.
- Suppose the data structure implements these subroutine in $O(\log |V|)$ time, then the total running time is $O(|E| \log |V|)$.

A Data Structure of Disjoint Sets

We need to maintain a collection of sets from *n* elements (vertices). Our data structure must support the followings:

- Given any two elements x, y, we need to determine whether find-set(x) = find-set(y), i.e., to determine whether x and y belongs to the same set.
- Given any two sets in the current collection, we need to replace these two sets by its union.

High-Level Approach

Idea: Maintain a tree for the vertices in each set and name each set after the root vertex.

- For **find-set**(*x*), we just trace back to the root.
- To **union** two sets, we append the root of one set to be a child of the root of the other set.

{a} {b} {c} {d} {e} {f} {g}

{a} {b} {c} {d} {e} {f} {g}

union(find(a), find(e))

$$\left(g
ight)$$

{a, e} {b} {c} {d} {f} {g}

{a, e} {b} {c} {d} {f} {g}

{a, e} {b} {c} {d, g} {f}

{a, e} {b} {c} {d, g} {f}

Summary

- To execute **find-set**(*x*), we traverse the parent pointers from *x* up to the root, and the root is used as the name of the set.
- So, find-set(x) = find-set(y) if and only if the root returned by find-set(x) is equal to that returned by find-set(y).
- To execute $union(r_1, r_2)$, we make a root to be the child of the other root.

Question: Which vertex shall be the new root?

- Running time for a **union** operation: *O*(1).
- Running time for a find-set(x):
 the height of the tree containing x, which can be O(n).

- Running time for a **union** operation: *O*(1).
- Running time for a find-set(x):
 the height of the tree containing x, which can be O(n).

- Running time for a **union** operation: *O(1)*.
- Running time for a find-set(x):
 the height of the tree containing x, which can be O(n).

- Running time for a **union** operation: *O(1)*.
- Running time for a find-set(x):
 the height of the tree containing x, which can be O(n).

- Running time for a **union** operation: *O(1)*.
- Running time for a find-set(x):
 the height of the tree containing x, which can be O(n).

- Running time for a **union** operation: *O*(1).
- Running time for a find-set(x):
 the height of the tree containing x, which can be O(n).

- Running time for a union operation: O(1).
- Running time for a find-set(x):
 the height of the tree containing x, which can be O(n).

Can we guarantee small height?

- If we could implement union such that the trees have small height, then find-set would have small running time.
- How? One way to do it is the union-by-size heuristic:
 - To $union(s_1, s_2)$, we make the tree with smaller size the child of the one with larger size.
 - Break ties arbitrarily.
 - Example:

union(find-set(e), find-set(f)), union(find-set(d), find-set(e)), union(find-set(c), find-set(d)), union(find-set(b), find-set(c)), union(find-set(b))

- \bigcirc a
- **b**
- C
- (d)
- e
- f

union(find-set(e), find-set(f)), union(find-set(d), find-set(e)),
union(find-set(c), find-set(d)), union(find-set(b), find-set(c)),
union(find-set(a), find-set(b))

union(find-set(e), find-set(f)), union(find-set(d), find-set(e)), union(find-set(c), find-set(d)), union(find-set(b), find-set(c)), union(find-set(b), find-set(b))

union(find-set(e), find-set(f)), union(find-set(d), find-set(e)), union(find-set(c), find-set(d)), union(find-set(b), find-set(c)), union(find-set(b), find-set(b))

union(find-set(e), find-set(f)), union(find-set(d), find-set(e)), union(find-set(c), find-set(d)), union(find-set(b), find-set(c)), union(find-set(b), find-set(b))

union(find-set(e), find-set(f)), union(find-set(d), find-set(e)), union(find-set(c), find-set(d)), union(find-set(b), find-set(c)), union(find-set(a), find-set(b))

union(find-set(e), find-set(f)), union(find-set(d), find-set(e)), union(find-set(c), find-set(d)), union(find-set(b), find-set(c)), union(find-set(a), find-set(b))

The union-by-size heuristic gives a tree with height 1!

Analyzing the Union-By-Size Heuristic

Claim. If we use union-by-size, then any tree with height h must have at least 2^h nodes.

Proof (by induction).

Base case: h = 0 is true as any tree has at least 1 node.

<u>Inductive hypothesis:</u> The claim is true for trees with height *h*.

<u>Inductive step:</u> We will show it is true for trees with height h+1.

- **Key observation:** We get a tree with height *h*+1 only when we union two trees and one of them has hight *h*.

COMP3251 44 Zhiyi Huang

Analyzing the Union-By-Size Heuristic

Claim. If we use union-by-size, then any tree with height *h* must have at least 2^h nodes.

Corollary. If we use union-by-size, then any tree must have height $h \le \log n$.

Proof.

- Since there are only n nodes, the size of any tree is $\leq n$.
- Together with the above claim, we have $n \ge \text{tree size} \ge 2^h$.
- Equivalently, we have $\log n \ge \log(\text{tree size}) \ge h$.

Summary

- If we implement the Disjoint Sets data structure using the union-by-size heuristic, then
 - find-set runs in time O(log n);
 - **union** runs in time *O(1)*.
- Substitute these bounds in our analysis of the running time, we conclude that Kruskal's algorithm runs in *O(m log n)* time.