Network QoS 371-2-0213

Lecture 7

Gabriel Scalosub

Outline

- Competitive Bounded-Delay Buffer Management & Scheduling
 - Basic Model
 - Upper Bounds
 - Lower Bounds

2 Aftermath and Other Models

- A scheduling problem
 - non-FIFO
 - doesn't focus on buffer management / overflows
- Delay-minded model
 - managing multiple AF PHBs / EF classes
 - packets have weights
 - delay considerations affect schedule
 - packets have deadlines

- A scheduling problem
 - non-FIFO
 - doesn't focus on buffer management / overflows
- Delay-minded model
 - managing multiple AF PHBs / EF classes
 - packets have weights
 - delay considerations affect schedule
 - packets have deadlines
- System model: slotted time
- Traffic model
 - uniform size packets (WLOG, size is 1)
 - for each packet p we have
 - a(p): arrival time
 - w(p): packet weight
 - $\ell(p)$: packet slack
 - $s_A(p)$: forwarding/delivery time by algorithm A
 - $a(p) + \ell(p) = d(p)$: packet deadline

- Queue model
 - unbounded buffer space
 - service rate r
 - deadline of an enqueued packet expires
 - if p is not forwarded by d(p), p is dropped at d(p) + 1
 - cut-through:
 - packet p can be scheduled at a(p)

- Queue model
 - unbounded buffer space
 - service rate r
 - deadline of an enqueued packet expires
 - if p is not forwarded by d(p), p is dropped at d(p) + 1
 - cut-through:
 - packet p can be scheduled at a(p)

Goal

Maximize overall weight of forwarded packets

- Queue model
 - unbounded buffer space
 - service rate r
 - deadline of an enqueued packet expires
 - if p is not forwarded by d(p), p is dropped at d(p) + 1
 - cut-through:
 - packet p can be scheduled at a(p)

Goal

Maximize overall weight of forwarded packets

- Same question as last time:
 - What algorithm would you pick?

- Queue model
 - unbounded buffer space
 - service rate r
 - deadline of an enqueued packet expires
 - if p is not forwarded by d(p), p is dropped at d(p) + 1
 - cut-through:
 - packet p can be scheduled at a(p)

Goal

Maximize overall weight of forwarded packets

- Same question as last time:
 - What algorithm would you pick?
- Answer not so obvious
 - have to balance (possibly) conflicting goals
 - goal 1: deliver highest weight first
 - goal 2: deliver most urgent first
 - very different from managing FIFO
 - or is it?

The Static Priority Algorithm

- Assumptions and notation:
 - $\mathcal{B}_A(t)$: set of packets still available for algorithm A at time t
 - p not yet sent by A
 - $d(p) \leq t$
 - $S_A(t)$: set of packets sent by algorithm A at time t
 - w(P): overall weight of set of packets P
 - i.e., $w(P) = \sum_{p \in P} w(p)$
 - for simplicity, assume r = 1

Algorithm 1 SP: at time t

- 1: send $arg max \{w(q) \mid q \in \mathcal{B}_{SP}(t)\}$ \triangleright
 - b ties broken arbitrarily
 - Notation (given some arrival sequence):
 - $\bullet~\mathrm{SP} \colon$ set of packets forwarded by SP
 - OPT: set of packets forwarded by some optimal schedule

Competitive Analysis of Static Priority - Upper Bound

Theorem

Algorithm SP is 2-competitive

Competitive Analysis of Static Priority - Upper Bound

Theorem

Algorithm SP is 2-competitive

Proof.

- Consider any $p \in OPT \setminus SP$
- Let $t = s_{\mathrm{OPT}}(p)$ and $p' = S_{\mathrm{SP}}(t)$
 - ullet i.e., the packet forwarded by SP when OPT forwards p
- Definition of t + feasibility of OPT: p is available for SP at t $\Rightarrow w(p) \le w(p')$
- Implies a 1-1 mapping from OPT \ SP to SP $\Rightarrow w(OPT \setminus SP) \le w(SP)$
- Hence

$$w(\text{Opt}) \le w(\text{Opt} \setminus \text{SP}) + w(\text{SP}) \le 2w(\text{SP})$$

- The analysis of SP is essentially tight:
 - let $\varepsilon > 0$ and consider 2 packets arriving at time t = 0:
 - $p: \ell(p) = 0, w(p) = 1$
 - p': $\ell(p') = 1$, $w(p') = 1 + \varepsilon$
 - SP would only schedule p'
 - OPT would schedule both packets
 - ratio:
 - $\frac{w(\text{OPT})}{w(\text{SP})} = \frac{2+\varepsilon}{1+\varepsilon}$
 - arbitrarily close to 2

- The analysis of SP is essentially tight:
 - let $\varepsilon > 0$ and consider 2 packets arriving at time t = 0:

•
$$p$$
: $\ell(p) = 0$, $w(p) = 1$

•
$$p'$$
: $\ell(p') = 1$, $w(p') = 1 + \varepsilon$

- SP would only schedule p'
- OPT would schedule both packets
- ratio:

•
$$\frac{w(\text{OPT})}{w(\text{SP})} = \frac{2+\varepsilon}{1+\varepsilon}$$

- arbitrarily close to 2
- Can one do better than SP?

- The analysis of SP is essentially tight:
 - let $\varepsilon > 0$ and consider 2 packets arriving at time t = 0:

•
$$p: \ell(p) = 0, w(p) = 1$$

• $p': \ell(p') = 1, w(p') = 1 + \varepsilon$

- SP would only schedule p'
- OPT would schedule both packets
- ratio:

•
$$\frac{w(\text{OPT})}{w(\text{SP})} = \frac{2+\varepsilon}{1+\varepsilon}$$

- arbitrarily close to 2
- Can one do better than SP?
- Candidate algorithms:
 - prefer urgent packets
 - Earliest-Deadline-First (EDF)

- The analysis of SP is essentially tight:
 - let $\varepsilon > 0$ and consider 2 packets arriving at time t = 0:

•
$$p: \ell(p) = 0, w(p) = 1$$

• $p': \ell(p') = 1, w(p') = 1 + \varepsilon$

- SP would only schedule p'
- OPT would schedule both packets
- ratio:

•
$$\frac{w(\text{OPT})}{w(\text{SP})} = \frac{2+\varepsilon}{1+\varepsilon}$$

- arbitrarily close to 2
- Can one do better than SP?
- Candidate algorithms:
 - prefer urgent packets
 - Earliest-Deadline-First (EDF)

- The analysis of SP is essentially tight:
 - let $\varepsilon > 0$ and consider 2 packets arriving at time t = 0:

•
$$p: \ell(p) = 0, w(p) = 1$$

• $p': \ell(p') = 1, w(p') = 1 + \varepsilon$

- SP would only schedule p'
- OPT would schedule both packets
- ratio:

•
$$\frac{w(\text{OPT})}{w(\text{SP})} = \frac{2+\varepsilon}{1+\varepsilon}$$

- arbitrarily close to 2
- Can one do better than SP?
- Candidate algorithms:
 - prefer urgent packets
 - Earliest-Deadline-First (EDF)
 - cannot be completely "local":
 2L vs. L²
 - make best plan possible

- Restricted adversaries/models
 - s-bounded model
 - for every packet p, $\ell(p) \in \{0, \ldots, s-1\}$
 - s-uniform model
 - for every packet p, $\ell(p) = s 1$
 - agreeable deadlines
 - if $a(p) \le a(p')$ then $d(p) \le d(p')$
- In what follows, we focus on the 2-bounded model

- Restricted adversaries/models
 - s-bounded model
 - for every packet p, $\ell(p) \in \{0, \ldots, s-1\}$
 - s-uniform model
 - for every packet p, $\ell(p) = s 1$
 - agreeable deadlines
 - if $a(p) \le a(p')$ then $d(p) \le d(p')$
- In what follows, we focus on the 2-bounded model
- Observations (P: set of packets)
 - the offline problem: solvable in polynomial time (matching)

- Restricted adversaries/models
 - s-bounded model
 - for every packet p, $\ell(p) \in \{0, \ldots, s-1\}$
 - s-uniform model
 - for every packet p, $\ell(p) = s 1$
 - agreeable deadlines
 - if $a(p) \le a(p')$ then $d(p) \le d(p')$
- In what follows, we focus on the 2-bounded model
- Observations (P: set of packets)
 - the offline problem: solvable in polynomial time (matching)
 - P is scheduleable iff it is EDF-schedulable
 - there exists an EDF-schedule of P

- Restricted adversaries/models
 - s-bounded model
 - for every packet p, $\ell(p) \in \{0, \ldots, s-1\}$
 - s-uniform model
 - for every packet p, $\ell(p) = s 1$
 - agreeable deadlines
 - if $a(p) \le a(p')$ then $d(p) \le d(p')$
- In what follows, we focus on the 2-bounded model
- Observations (P: set of packets)
 - the offline problem: solvable in polynomial time (matching)
 - P is scheduleable iff it is EDF-schedulable
 - there exists an EDF-schedule of P
 - P is EDF-scheduleable \Rightarrow P is EDF-SP-schedulable
 - for identical deadlines, use highest-weight-first

- Restricted adversaries/models
 - s-bounded model
 - for every packet p, $\ell(p) \in \{0, \ldots, s-1\}$
 - s-uniform model
 - for every packet p, $\ell(p) = s 1$
 - agreeable deadlines
 - if $a(p) \le a(p')$ then $d(p) \le d(p')$
- In what follows, we focus on the 2-bounded model
- Observations (P: set of packets)
 - the offline problem: solvable in polynomial time (matching)
 - P is scheduleable iff it is EDF-schedulable
 - there exists an EDF-schedule of P
 - P is EDF-scheduleable $\Rightarrow P$ is EDF-SP-schedulable
 - for identical deadlines, use highest-weight-first
 - WLOG, OPT is an EDF-SP-schedule
 - ties broken as we want

The β -EDF Algorithm

- Notation:
 - E_A(t): set of *eligible* packets for algorithm A at t
 non-expired, not yet sent
 - OFF(X): optimal offline schedule given X
 - X: set of packets
- Let $\beta \in [0, 1]$

Algorithm 2 β -EDF: at time t

1:
$$F \leftarrow \text{Off}(E_{\beta\text{-EDF}}(t))$$

▷ optimal offline at t

2:
$$p \leftarrow S_F(t)$$

▷ packet sent at t by Off

3:
$$p' \leftarrow S_F(t+1)$$

4: **if** $w(p) < \beta \cdot w(p')$ **then**

riangle packet sent at t+1 by OFF

5: forward p'

 $\triangleright p'$ pushes out p

6: **else**

7: forward p

8: end if

- Observations:
 - 0-EDF: follow OFF locally
 - 1-EDF: SP

Observations:

• 0-EDF: follow OFF locally

• 1-EDF: SP

Theorem

Algorithm $\frac{1}{\phi}\text{-EDF}$ has competitive ratio $\phi pprox 1.618$ (Golden Ratio)

- Observations:
 - 0-EDF: follow OFF locally
 - 1-EDF: SP

Theorem

Algorithm $\frac{1}{\phi}\text{-EDF}$ has competitive ratio $\phi pprox 1.618$ (Golden Ratio)

Define a mapping $m: \mathcal{S}_{\mathrm{OPT}} o \mathcal{S}_{eta\mathrm{-EDF}}$ (for $eta = \frac{1}{\phi}$)

Let
$$p = S_{\text{OPT}}(t)$$

- ullet If $p = S_{eta ext{-}\mathrm{EDF}}(t-1)$ or $p = S_{eta ext{-}\mathrm{EDF}}(t)$
 - m(p) = p
- ullet Else $raket{p = S_{eta ext{-}\mathrm{EDF}}(t+1) ext{ or } p \in S_{\mathrm{OPT}} \setminus S_{eta ext{-}\mathrm{EDF}}}$
 - $m(p) = S_{\beta\text{-EDF}}(t)$

- Observations:
 - 0-EDF: follow OFF locally
 - 1-EDF: SP

Theorem

Algorithm $\frac{1}{\phi}\text{-EDF}$ has competitive ratio $\phi pprox 1.618$ (Golden Ratio)

Define a mapping $m: \mathcal{S}_{\mathrm{OPT}} o \mathcal{S}_{eta\mathrm{-EDF}}$ (for $eta = \frac{1}{\phi}$)

Let
$$p = S_{\text{OPT}}(t)$$

Else

$$ullet$$
 If $p = S_{eta ext{-}\mathrm{EDF}}(t-1)$ or $p = S_{eta ext{-}\mathrm{EDF}}(t)$

 $(\mathsf{Type}\ 1)$

•
$$m(p) = p$$

$$\triangleright p = S_{\beta\text{-EDF}}(t+1)$$
 or $p \in S_{\text{OPT}} \setminus S_{\beta\text{-EDF}}$

•
$$m(p) = S_{\beta\text{-EDF}}(t)$$

Type 2

- The mapping is well defined
 - In type 2, $S_{\beta ext{-}\mathrm{EDF}}(t)$ exists
 - p is eligible for β -EDF at t but $p \neq S_{\beta$ -EDF}(t)
 - $\exists p' \neq p \text{ s.t. } p' = S_{\beta\text{-EDF}}(t)$
- The mapping is a bijection over $\{p \in S_{\mathrm{OPT}} \mid m(p) \neq p\}$

Upper Bounds

Lower Bounds

Competitive Analysis of β -EDF - Upper Bound

- The mapping is well defined
 - In type 2, $S_{\beta\text{-EDF}}(t)$ exists
 - p is eligible for β -EDF at t but $p \neq S_{\beta$ -EDF}(t)
 - $\exists p' \neq p \text{ s.t. } p' = S_{\beta\text{-EDF}}(t)$
- The mapping is a bijection over $\{p \in S_{\mathrm{OPT}} \mid m(p) \neq p\}$

Lemma

if
$$p = S_{\mathrm{OPT}}(t)$$
 is mapped to $p' \neq p$, then $w(p) \leq \frac{1}{\phi} \cdot w(p')$

- The mapping is well defined
 - In type 2, $S_{\beta\text{-EDF}}(t)$ exists
 - p is eligible for β -EDF at t but $p \neq S_{\beta$ -EDF}(t)
 - $\exists p' \neq p \text{ s.t. } p' = S_{\beta\text{-EDF}}(t)$
- The mapping is a bijection over $\{p \in S_{\mathrm{OPT}} \mid m(p) \neq p\}$

Lemma

if
$$p = S_{\mathrm{OPT}}(t)$$
 is mapped to $p' \neq p$, then $w(p) \leq \frac{1}{\phi} \cdot w(p')$

Proof of Theorem.

$$\begin{array}{ll} w(\textsc{Opt}) & \leq & w(S_{\textsc{Opt}} \setminus S_{\frac{1}{\phi}\text{-EDF}}) + w(S_{\frac{1}{\phi}\text{-EDF}}) \\ & \leq & w(\{p \in S_{\textsc{Opt}} \mid m(p) \neq p\}) + w(S_{\frac{1}{\phi}\text{-EDF}}) \\ & \leq & \frac{1}{\phi} \cdot w(S_{\frac{1}{\phi}\text{-EDF}}) + w(S_{\frac{1}{\phi}\text{-EDF}}) \\ & = & (1 + \frac{1}{\phi})w(S_{\frac{1}{\phi}\text{-EDF}}) \\ & = & \phi \cdot w(S_{\frac{1}{\phi}\text{-EDF}}) \end{array}$$

Competitive Analysis - Deterministic Lower Bounds

- Lower bounds use 2-bounded adversaries
 - actually an infinite series of adversaries

Competitive Analysis - Deterministic Lower Bounds

- Lower bounds use 2-bounded adversaries
 - actually an *infinite series* of adversaries
- Each adversary proves increasingly stronger lower bounds

Lemma (weak lower bound)

No det. algorithm has competitive ratio better than $\sqrt{2} \approx 1.414$

Competitive Analysis - Deterministic Lower Bounds

- Lower bounds use 2-bounded adversaries
 - actually an infinite series of adversaries
- Each adversary proves increasingly stronger lower bounds

Lemma (weak lower bound)

No det. algorithm has competitive ratio better than $\sqrt{2} \approx 1.414$

Lemma (stronger lower bound)

No det. algorithm has competitive ratio better than $\frac{3}{2}=1.5$

Competitive Analysis - Deterministic Lower Bounds

- Lower bounds use 2-bounded adversaries
 - actually an infinite series of adversaries
- Each adversary proves increasingly stronger lower bounds

Lemma (weak lower bound)

No det. algorithm has competitive ratio better than $\sqrt{2} \approx 1.414$

Lemma (stronger lower bound)

No det. algorithm has competitive ratio better than $\frac{3}{2} = 1.5$

• How far can we go?

Lower Bound Proofs – $\sqrt{2}$

Lemma (weak lower bound)

No det. algorithm has competitive ratio better than $\sqrt{2} \approx 1.414$

Lower Bound Proofs – $\sqrt{2}$

Lemma (weak lower bound)

No det. algorithm has competitive ratio better than $\sqrt{2} \approx 1.414$

Proof.

Lower Bound Proofs – $\sqrt{2}$

Lemma (weak lower bound)

No det. algorithm has competitive ratio better than $\sqrt{2} \approx 1.414$

Proof.

• Consider time t = 0

Lower Bound Proofs – $\sqrt{2}$

Lemma (weak lower bound)

No det. algorithm has competitive ratio better than $\sqrt{2} \approx 1.414$

Proof.

- Consider time t = 0
- If ALG forwards high-weight packet
 - sequence ends
 - $w(ALG) = 1 + \sqrt{2}$
 - $w(OPT) = 2 + \sqrt{2}$
 - ratio:

•
$$\frac{w(\text{OPT})}{w(\text{ALG})} = \frac{2+\sqrt{2}}{1+\sqrt{2}} = \sqrt{2}$$

Lower Bound Proofs – $\sqrt{2}$

Lemma (weak lower bound)

No det. algorithm has competitive ratio better than $\sqrt{2} \approx 1.414$

Proof.

- Consider time t = 0
- If ALG forwards low-weight packet
 - high-weight packet arrives at t=1
 - at t = 1 at least one high-weight packet expires
 - $w(ALG) = 2 + \sqrt{2}$
 - $w(OPT) = 2(1 + \sqrt{2})$
 - ratio:

•
$$\frac{w(\text{OPT})}{w(\text{ALG})} = \frac{2(1+\sqrt{2})}{2+\sqrt{2}} = \sqrt{2}$$

Basic Model Upper Bounds Lower Bounds

Lower Bound Proofs – 1.5

Lemma (stronger lower bound)

No det. algorithm has competitive ratio better than 1.5

Lower Bound Proofs - 1.5

Lemma (stronger lower bound)

No det. algorithm has competitive ratio better than 1.5

Proof.

Lower Bound Proofs – 1.5

Lemma (stronger lower bound)

No det. algorithm has competitive ratio better than 1.5

Proof.

- Consider t=0
- If ALG forwards high-weight packet (2)
 - sequence ends
 - low-weight (1) packet expires

•
$$w(ALG) = 2$$

•
$$w(OPT) = 1 + 2 = 3$$

ratio:

•
$$\frac{w(\text{OPT})}{w(\text{ALG})} = \frac{3}{2}$$

optional(1)

Assume ALG forwards low-weight packet (1)

Lower Bound Proofs - 1.5

Lemma (stronger lower bound)

No det. algorithm has competitive ratio better than 1.5

Proof.

- At t = 1: optional(1) arrives
- If ALG forwards high-weight packet (5)
 - sequence ends
 - low-weight (2) packets expire

•
$$w(ALG) = 1 + 5 = 6$$

•
$$w(OPT) = 2 + 2 + 5 = 9$$

• ratio:

•
$$\frac{w(OPT)}{w(ALG)} = \frac{9}{6} = \frac{3}{2}$$

optional(1)

• Assume ALG forwards low-weight packet (2)

Lower Bound Proofs - 1.5

Lemma (stronger lower bound)

No det. algorithm has competitive ratio better than 1.5

Proof.

- Consider t=2
 - optional(2) arrives
 - at t = 2 at least one high-weight (5) packet expires
 - w(ALG) = 1 + 2 + 5 = 8
 - w(OPT) = 2 + 5 + 5 = 12
 - ratio:

•
$$\frac{w(\text{OPT})}{w(\text{ALG})} = \frac{12}{8} = \frac{3}{2}$$

optional(1)

• Proof generalizes the previous two lower bounds

• Proof generalizes the previous two lower bounds

- Solve N+1 equations (maximal c_N , $x_0=1$)
 - $x_0 + x_1 > c_N \cdot x_1$
 - $x_1 + \ldots + x_{k-1} + x_k + x_k + x_{k+1} \ge c_N \cdot (x_0 + \ldots + x_{k-1} + x_{k+1})$
 - $x_1 + \ldots + x_{N-1} + x_N + x_N \ge c_N \cdot (x_0 + \ldots + x_{N-1} + x_N)$
- ullet Lower bound obtained by having $N o \infty$

• Proof generalizes the previous two lower bounds

- Solve N+1 equations (maximal c_N , $x_0=1$)
 - $x_0 + x_1 \ge c_N \cdot x_1$
 - $x_1 + \ldots + x_{k-1} + x_k + x_k + x_{k+1} \ge c_N \cdot (x_0 + \ldots + x_{k-1} + x_{k+1})$
 - $x_1 + \ldots + x_{N-1} + x_N + x_N \ge c_N \cdot (x_0 + \ldots + x_{N-1} + x_N)$
- Lower bound obtained by having $N \to \infty$
- Some values of c_N (for the "right" values of x_i -s):

ſ	N	1	2	3	4	 20	 40	
	cN	1.414	1.5	1.539	1.562	 1.617	 1.618	

Basic Model Upper Bounds Lower Bounds

Competitive Analysis - Strong Lower Bound

Theorem

No det. algorithm has competitive ratio better than $\phi \approx 1.618$

Theorem

No det. algorithm has competitive ratio better than $\phi \approx 1.618$

- Somewhat simpler proofs exist
 - knowing c in advance helps finding simpler proofs
 - "guessing" is useful!!
- Requires multiple values of packets
 - ullet not just 1 and lpha>1

Theorem

No det. algorithm has competitive ratio better than $\phi \approx 1.618$

- Somewhat simpler proofs exist
 - knowing c in advance helps finding simpler proofs
 - "guessing" is useful!!
- Requires multiple values of packets
 - not just 1 and $\alpha > 1$
- Corollaries (for 2-bounded model)
 - ullet the analysis of $eta ext{-}\mathrm{EDF}$ is tight
 - ullet $\beta ext{-}\mathrm{EDF}$ is optimal for the 2-bounded model

Aftermath

- Above results are due to:
 - SP & lower bounds: Hajek (2001)
 - β-EDF: Kesselman, Lotker, Mansour, Patt-Shamir, Schieber, Sviridenko (2001)

Aftermath

- Above results are due to:
 - SP & lower bounds: Hajek (2001)
 - β -EDF: Kesselman, Lotker, Mansour, Patt-Shamir, Schieber, Sviridenko (2001)
- Many papers addressed the question
 - many algorithms!!
 - mostly in restricted models
 - still a very active field of research!!
- What about randomized algorithms?
 - strictly better than deterministic...

	determin	randomized		
restriction	upper	lower	upper	lower
General	2			
			1.582	
	1.939			
	1.854			
	1.893			
	1.828			
		1.618		1.25
				1.33
s-bounded	$2 - \frac{2}{s} + o(\frac{1}{s})$			
4-bounded	1.732			
3-bounded	1.618			
2-bounded	1.618			
		1.17^{\dagger}		
		1.414		
		1.618		
				1.25
			1.25	
				1.33
			1.33	
agreeable		1.618		1.25
deadlines				1.33
	1.838			
	1.618			
			1.33	
s-uniform	1.618		1.33	
		1.377		
				1.25
2-uniform	1.434			
		1.11		
		1.25		
	1.414			
		1.366		
		1.414		1.17
	1.377			
		1.377		
				1.2
			1.25	
	I	1	1.33	1

Related Models

- Resource augmentation
 - \bullet comparing online with capacity W to offline with capacity 1
- limited information
 - order of deadlines is known
 - exact deadlines are unknown
 - generalizes the bounded-delay model
- bounded-delay + bounded-buffer
 - combined scheduling / buffer management problem
- Latency-sensitive FIFO
 - FIFO model where value decreases as packet is delayed
- And more... (later in the course)