CampaignInsight: AUC-Optimized Mail Response Prediction Pipeline

Executive Summary

This project presents a robust and scalable machine learning solution for predicting customer responses to large-scale direct mail marketing campaigns. The pipeline leverages advanced modeling techniques to address the challenges of severe class imbalance, improve model interpretability, and optimize predictive performance for real-world business impact.

1. Objective

The primary objective is to develop a high-performance classification model that can identify potential responders to marketing campaigns with a high degree of precision and recall particularly in the context of highly imbalanced data. The goal is to support smarter targeting strategies that reduce cost and increase campaign ROI.

2. Methodology

2.1 Data Preprocessing

- Removed unnecessary identifiers and cleaned missing or anomalous values.
- Performed one-hot encoding and scaling for compatibility with tree-based classifiers.
- Split the dataset into training, validation, and hold-out test sets to ensure reliable generalization.

2.2 Handling Class Imbalance

- Applied **SMOTE** (**Synthetic Minority Over-Sampling Technique**) to augment minority class samples.
- Used XGBoost's scale_pos_weight parameter and custom class weighting to improve minority class sensitivity.
- Ensured balance between model performance and overfitting control through repeated cross-validation.

2.3 Model Training

• Used **XGBoost**, a gradient-boosted tree ensemble, due to its performance with structured data.

- Hyperparameters were tuned using grid search and early stopping based on validation AUC.
- Saved models and pipelines modularly to ensure reproducibility and reusability.

2.4 Threshold Optimization

- Evaluated model probabilities on validation sets using ROC and Precision-Recall curves.
- Dynamically optimized decision thresholds to maximize **F1-score**, **Precision**, and **Recall** at fixed False Positive Rate.
- Achieved ROC AUC above **0.84** and PR AUC around **0.36** on unseen test data.

3. Evaluation

3.1 Performance on Held-Out Test Set

ROC AUC: 0.8446PR AUC: 0.3632

F1-score (Positive class): 0.42
Precision (Positive class): 0.55
Recall (Positive class): 0.34

3.2 Confusion Matrix

	Predicted No	Predicted Yes
Actual No	8456	30
Actual Yes	71	36

These results demonstrate that the model captures meaningful patterns in customer behavior, while balancing the risks associated with false positives and negatives.

4. Key Outcomes

- Successfully implemented a machine learning pipeline for campaign response prediction.
- Addressed class imbalance challenges using hybrid resampling and cost-sensitive learning.
- Optimized decision thresholds to meet marketing-specific business objectives.
- Delivered a modular and production-ready framework for further experimentation or deployment.

5. Future Work

- Integrate time-based features and campaign metadata for enhanced context.
- Test alternate models such as CatBoost or LightGBM for performance benchmarking.
- Deploy the solution within a live marketing automation environment for closed-loop optimization.

6. Technologies Used

- Python (pandas, scikit-learn, imbalanced-learn, XGBoost)
- Jupyter Notebooks for development and experimentation
- Git for version control

Conclusion

CampaignInsight offers a flexible and reliable solution for predicting customer engagement in direct mail marketing. With a focus on real-world business application and model generalization, this pipeline can serve as a foundation for data-driven decision-making in customer outreach strategies.