Particle Swarm Optimization (1)

Winter 2011

Learning from Creatures

Swarm Intelligence

- Swarm of creatures could achieve things that no individual could
 - No central control
 - Cooperation and self-organization
 - Simple, and yet powerful rule for individual

Introduction

- First described in 1995 by James Kennedy and Russell Eberhart
- Implement the underlying rules that enable large numbers of organisms (birds, fishes, herds) to move synchronously, often changing direction suddenly, scattering and regrouping
- Attractiveness: <u>simplicity</u>, implement in little code; few parameters to adjust

PSO Theory (1)

- Each particle iteratively moves across the search space
- Attracted to the position (location) of the best fitness (evaluation of the objective function) historically achieved by the particle itself (local best; pBest) and by the best among the neighbors of the particle (global best; gBest).

PSO Theory (2)

- In essence, each particle continuously focuses and refocuses the effort of its search according to both local and global best.
- This behavior mimics the cultural adaptation of a biological agent in a swarm: it evaluates its own position based on certain fitness criteria, compares with others, and imitates the best in the entire swarm

Basic PSO Flow (1)

- Initialize a population of particles in the search space
 - Provide each particle with a random location and a random velocity within the N-dimensional space
- Evaluate each particle's fitness, based on the objective value
- If the fitness is better than the particle's best experience (pBest), save the location vector for the particle as pBest

Basic PSO Flow (2)

- If the fitness is better than the best in the entire population (gBest), save the location vector for the particle as gBest
- Update the particle's velocity and location based on pBest and gBest

Update the Velocity

$$\vec{v}_i(t+1) = w \times \vec{v}_i(t) + r_1 c_1 (\vec{x}_{pBest} - \vec{x}_i(t)) + r_2 c_2 (\vec{x}_{gBest} - \vec{x}_i(t))$$

- w is an inertia weight to control influence of the previous velocity; usually between 0 and 1
- r_1 and r_2 are two random numbers uniformly distributed in the range of (0,1);
- c_1 and c_2 are two acceleration constants; usually between 1~4.

Update the Location

Further Discussion

- PSO models the "<u>learning from own</u> <u>experience (cognition)</u>" behavior of individual particles whereas reflects the "<u>social</u> <u>interaction</u>" phenomenon among particles.
- These two terms are stochastically weighted by r_1c_1 and r_2c_2 . The <u>randomness</u> provides the possibility to reach the global optimal solution without being trapped at local optimal solutions (exploration).

PSO in Pseudocode (1)

```
FOR each particle
   Initialize particle randomly
WHILE maximum iteration or convergence criteria is not met
   FOR each particle
      Calculate fitness value F(i,t) corresponded to location X(i,t)
        % i,t: particle i at iteration t
      IF F(i,t) is better than pbest
            \mathbf{pBest} = \mathbf{F}(i,t)
                                        \rightarrow \vec{x}_{pbest}
            pBestLoc = X(i,t)
      END
   END
```

PSO in Pseudocode (2)

Choose the particle i^* with the best fitness

gBest =
$$F(i^*,t)$$

gBestLoc = $X(i^*,t)$ $\rightarrow \vec{x}_{gbest}$

FOR each particle

Calculate particle velocity

Update particle location

END

END WHILE

Return gBest

Numerical Example

- Maximize $f(x,y) = x^{0.5} 1/y$; $0 \le (x,y) \le 5$
- We will use this example to illustrate a PSO algorithm

Numerical Example (1)

Randomly initialize locations and velocities

Intelligence in Engineering

Numerical Example (2)

Iteration 1: Calculate Fitness

Location

X	У	Fitness
1	2	0.500
4.5	4	1.871
3	0.5	-0.268

Numerical Example (3)

Iteration 1: Update pBest and pBestLoc

This is the first iteration, so pBest will be the current fitness

```
pBest

x y Fitness

1 2 0.500

4.5 4 1.871

3 0.5 -0.268
```

Numerical Example (4)

Iteration 1: Determine gBest and gBestLoc

Numerical Example (5)

Iteration 1: Calculate velocities

Location		ppest		
X	у	X	у	Fitness
1	2	1	2	0.500
4.5	4	4.5	4	1.871
3	0.5	3 0).5	-0.268
Velocity				
X	у	gBest		
0.83	-0.51	X	у	Fitness
-0.67	0.94	4.5	4	1.871
0.45	0.89	4.3	4	1.071

Application of Computational Intelligence in Engineering

Numerical Example (6)

Iteration 1: Calculate locations

New Locati	ion	-	Location			Velocity	
X	У		X	у		X	у
4.49	3.01	=	1	2	+	3.49	1.01
3.83	4.94		4.5	4		-0.67	0.94
4.86	4.68		3	0.5		1.86	4.18

Numerical Example (7)

Application of Computational Intelligence in Engineering

Numerical Example (8)

Iteration 2: Calculate fitness

Location

X	У	Fitness
4.49	3.01	1.787
3.83	4.94	1.755
4.86	4.68	1.991

Numerical Example (9)

Iteration 2: Update pBest and pBestLoc

Numerical Example (10)

Iteration 2: Determine gBest and gBestLoc

gBest		
X	У	Fitness
4.49	3.01	1.787
4.5	4	1.871
4.86	4.68	1.991

Constrained Velocity and Location

- If the velocity would lead the particle to move beyond boundaries, what should we do?
- First, the velocity may be limited
- Second, whether the location is allowed to move outside the boundary needs special caution

Damping Limit for Velocity

• To prevent undesired oscillations (i.e., the velocity may expand wider and wider until approaching infinity), the velocity is often dampened by an upper limit v^{max}

$$v(i,t) = \frac{v(i,t)}{|v(i,t)|} v^{\text{max}} \quad \text{if } |v(i,t)| > v^{\text{max}}$$

 v^{max} is smaller than the domain of the search space

Treatment for Boundary Violation

- Do not allow any particle to move outside, infeasible solutions
- Force particle to stick to the boundary; repair the location if necessary
- There are some other alternatives; we will address them next time
- Let's continue iteration 2 of the numerical example to repair the location

Numerical Example (11)

Recap

Velocity		Locat	tion	
X	у	X	y	Fitness
3.49	1.01	4.4	9 3.01	1.787
-0.67	0.94	3.8	3 4.94	1.755
1.86	4.18	4.8	6 4.68	1.991

pBest			gBest		
X	у	Fitness	X	у	Fitness
4.49	3.01	1.787	4.86	4.68	1.991
4.5	4	1.871			
4.86	4.68	1.991			

Numerical Example (12)

Iteration 2: Calculate velocities

Velocity
$$\vec{v}_i(t+1) = w \times \vec{v}_i(t) + r_1 c_1 (\vec{x}_{pBest} - \vec{x}_i(t)) + r_2 c_2 (\vec{x}_{gBest} - \vec{x}_i(t))$$

3.482 ---> 1×(3.49,1.01) + 0.17×2×[(4.49,3.01)-(4.49,3.01)]
+ 0.74×2×[(4.86,4.68)-(4.49,3.01)]

0.151 0.286 ---> 1×(-0.67,0.94) + 0.29×2×[(4.5,4)-(3.83,4.94)]
+ 0.21×2×[(4.86,4.68)-(3.83,4.94)]

1.860 4.180 ---> 1×(1.86,4.18) + 0.68×2×[(4.86,4.68)-(4.86,4.68)]
+ 0.11×2×[(4.86,4.68)-(4.86,4.68)]

Numerical Example (13)

Iteration 2: Velocity damping; e.g., $v^{max} = 2$

Velocity		Damped Velocity			
X	У	X	У		
4.038	3.482	2	2		
0.151	0.286	0.151	0.286		
1.860	4.180	1.860	2		

Numerical Example (14)

Iteration 2: Repair locations, e.g., ≤5

New Locat	ion		Location			Velocity	
X	у		X	у		X	у
6.490	5.01	=	4.49	3.01	+	2	2
3.981	5.226		3.83	4.94		0.151	0.286
6.720	6.680		4.86	4.68		1.860	2

Repaired Location

X	У
5.000	5.000
3.981	5.000
5.000	5.000

Application of Computational Intelligence in Engineering

Numerical Example (15): End of Iteration 2

Still need velocity limit?

- If we will constrain the location after all, why do we need to set the damping limit for velocity?
- Because it will influence the velocity in the subsequent iterations