Verification of Distributive Laws of Boolean Algebra Using ARM Processor-VAMAN Board

*

Meer Tabres Ali and G V V Sharma

October 20, 2022

1

1

1

1

1

 $\mathbf{2}$

Contents

1	Problem statement

2	Abstract		

7 SOFTWARE

8 CONCLUSION

X	Y	\mathbf{Z}	Y+Z	X(Y+Z)	XY	XZ	XY+XZ
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Table 1: Truth Table for Distributive Law1

2 4 Considerations

As per given data, the following table has been prepared.

1 Problem statement

Verification of **Distributive Law**of Boolean Algebra using **ARM** Processor-**VAMAN** Board

2	Δ	hs	tra	ct

Distributive laws of Boolean Algebra is expressed by the following expression.

Distributive Law: X.(Y+Z) = X.Y + X.Z

In this program, Two LEDs are used for checking the output. The outputs of both RHS and LHS parts of above expression must be same with the random inputs.

3 Truth Table for Distributive Laws

Truth Table for Distributive Law: X.(Y+Z) = X.Y + X.Z

Symbol/Device	Value	Description
X, Y, Z	Pin 2, 4, 6	Input Variables
A,B	Pin 18, 21	Output Variables
VAMAN Board	1	
LEDs	2	For Output
Connecting wires	10	For Output

Table 2: Considerations

5 Logic diagram of gates

Logic diagram of gates is shown in the figure 1.

Figure 1: Logic diagram of gates

^{*}Meer Tabres Ali as an intern with FWC IIT Hyderabad. *The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

6 Solution

- 1. Apply the inputs X, Y, and Z (either HIGH or LOW) to the Pin no.s 2, 4 and 6 of **Vaman Board(Pigmy side)** as per the Truth tables.
- 2. Randomly vary the inputs and note the the results.

7 SOFTWARE

1. Download the codes given in the link below and execute them.

 $https://github.com/meertabresali-FWC-IITH/project/blob/main/\\ Asgn 9. Arm/codes/src/main.c$

8 CONCLUSION

1. Distributive law is expressed by

X(Y+Z)=XY+XZ with LHS = X(Y+Z), RHS = XY+XZ, and

- 2. Codes are written for both Distributive laws and are executed using Vaman Board(Arm processor).
- 3. Result has been displayed on LEDs (i.e. LED1, LED2).
- $4.\ \, \mathrm{LED1}$ is assigned for LHS of the Boolean expression of Distributive Law.
- 5. LED2 is assigned for RHS of the Boolean expression of Distributive Law.
- 6. For random digital inputs X, Y and Z as per Truth tables (at Vaman Board(Pigmy side) pins 2, 4 and 6), it has been noticed that, the output pins (18 and 21) of Vaman Board are at the same level.