$$2. (a) (2, 2) (x^{2} + y^{2})^{3} = 4(xy)^{2}$$

$$tun \theta = \frac{y}{x} = \frac{z}{z} = 1$$

(7)
$$r=2$$
 $\theta=\tan^{-1}(-\frac{J_3}{7})=-\frac{7}{3}$

3.
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\sin\theta + \theta \cos\theta}{\cos\theta - \theta \sin\theta}$$
 $f = \theta$ $g = \cos\theta$ $f = 0$ $g = \sin\theta$

When $\theta = \frac{\pi}{2}$ $\frac{dy}{dx}$: $\frac{\sin\frac{\pi}{2} + \frac{\pi}{2}\cos\frac{\pi}{2}}{\cos\frac{\pi}{2} - \frac{\pi}{2}\sin\frac{\pi}{2}}$ by product the $\theta = \frac{\pi}{2}$
 $y - \frac{\pi}{2} = -\frac{2}{\pi}(x - 0)$ polar coordinates $(\frac{\pi}{2}, \frac{\pi}{2})$
 $y - \frac{\pi}{2} = -\frac{2}{\pi}(x - 0)$ polar coordinates $(0, \frac{\pi}{2}, \frac{\pi}{2})$
 $y - \frac{\pi}{2} = -\frac{2}{\pi}(x - 0)$ carterian is $(0, \frac{\pi}{2})$

4. $A(s, \frac{\pi}{2})$ $B(-s, -\pi)$

(20) (a) Lenter of circle = midpt.

(10) $A(s, \frac{\pi}{2})$ $B(-s, -\pi)$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$ $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$
 $A(s, \frac{\pi}{2})$
 $A(s, \frac$

- 5. (a) Westex $(h, k) = (-8, 3)_{11}$ 4p = 8 p = 2 (20) (10) tocas $(h, k+p) = (-8, 5)_{11}$

directix = y = K-P = 1= 4/1

axis of symmetry x=h=-8=X/1

- (b) $\chi^2 = -24(y+1)$ 4p=-24 p=-6

.

- (10) vertex (h,k)=(0,-1)//

tous (h, Ktp) = (0,-7)//

direction y= k-p y=5/

axis of symmetry x=h=0

— y:5 direction

6. (a) center (-6,-5)//

(20) (10) verticles (2,-5), and (-14,-5), (ht a, k)
$$C = \sqrt{64+58}$$

foci (ht c, k) = (-6 ± $\sqrt{122}$,-5)

= $\sqrt{122}$

asymptotes
$$y-k=\pm\frac{b}{a}(x-h)$$

(b)
$$(y-3)^2 - (x-9)^2 = 1$$
 $C = \sqrt{8+6} = \sqrt{14}$
(10) 8 $a = \sqrt{8}$ $b = \sqrt{6}$

$$C = \sqrt{8+6} = \sqrt{14}$$
 $a = \sqrt{8}$
 $b = \sqrt{6}$

asymptotes
$$x-q = \pm \frac{16}{252}(y-3)$$
. $(x-q) = \frac{16}{50}(y-2)$
 $(9,3454)$ foci
 $(9,3)$ (enter
 $(9,3)$ (enter
 $(9,3)$ vertex
 $(3,3)$ (enter
 $(3,3)$ (enter
 $(3,3)$ (enter
 $(3,3)$ (enter
 $(3,3)$ (enter

(x-9)=- [(y-3)