Calibration Report: Low N Basalt Site

Kaveh Gholamhossein Siah

08 November 2020

Contents

Soil Solution Results
Weathering Results
Soil Organic Matter (SOM) Results
Litter Pool Results
Tree Nutrient Content
Cation Exchange Capacity
Anion Exchange Capacity
Leaching Losses
Analysis 1
Analysis 2
Analysis 3
Analysis 4

Soil Solution Results

Table 1: Average Soil Solution Concentrations of Reliable Months (2005-2006)

		$\sim \$														
Soil Layer	Ca	Mg	K	Na	NO3	NH4	SO4	Cl	PO4	DOC	Al	Si	H+	рН	R	HR
Layer 1	31.4	29.6	12.4	35.4	3.256	1.582	26.6	59.4	1.946	635	0.8598	28.4	12.24	4.91	69.1	21.5
Layer 2	40.2	39.9	15.4	18.4	1.798	0.467	27.4	64.6	2.421	993	2.3579	76.3	22.11	4.66	100.0	41.8
Layer 3	48.1	49.7	15.4	36.7	1.182	0.307	27.5	70.6	1.156	1173	4.5655	83.1	7.39	5.13	134.3	33.4
Layer 4	46.2	22.8	15.4	46.7	1.082	0.466	14.2	63.7	0.592	916	0.2608	72.3	4.12	5.39	109.7	21.2
Layer 5	32.9	33.5	13.2	49.3	0.986	0.535	13.2	63.0	0.307	843	1.2208	68.7	2.14	5.67	106.6	13.9
Layer 6	33.9	20.4	12.8	44.5	0.822	1.127	13.0	66.1	0.394	732	0.0679	69.1	8.72	5.06	81.6	23.0
Layer 7	20.9	33.0	10.0	53.8	0.760	1.528	13.0	70.4	0.371	683	0.3396	70.6	5.36	5.27	79.9	17.8
Layer 8	17.7	33.0	12.1	60.0	0.725	1.550	13.1	72.9	0.284	628	0.2126	72.1	3.59	5.45	76.6	13.0

Figure 1: Figure 1: Monthly Calcium Concentrations by Soil Layer

Figure 2: Figure 2: Monthly Magnesium Concentrations by Soil Layer

Figure 3: Figure 3: Monthly Potassium Concentrations by Soil Layer

Figure 4: Figure 4: Monthly Sodium Concentrations by Soil Layer

Figure 5: Figure 5: Monthly Aluminum Concentrations by Soil Layer

Figure 6: Figure 6: Monthly SiO2 Concentrations by Soil Layer

Figure 7: Figure 7: Monthly Organic Acid Base (R-) Concentrations by Soil Layer

Figure 8: Figure 8: Monthly pH by Soil Layer

Weathering Results

Figure 9: Figure 9: Calcium Weathering by Layer

Figure 10: Figure 10: Magnesium Weathering by Layer

Figure 11: Figure 12: Aluminum Weathering by Layer

Figure 12: Figure 13: Phosphate Weathering by Layer

Figure 13: Figure 14: Silica Weathering by Layer

Figure 14: Figure 15: Sodium Weathering by Layer

Figures

Soil Organic Matter (SOM) Results

Litter Pool Results

Figure 15: Figure 17: Litter Pool Carbon Content Over Simulation Period

Figure 16: Figure 18: Litter Pool Ca Content Over Simulation Period

Figure 17: Figure 19: Litter Pool Mg Content Over Simulation Period

Figure 18: Figure 20: Litter Pool K Content Over Simulation Period

Figure 19: Figure 21: Litter Pool P Content Over Simulation Period

Figure 20: Figure 22: Litter Pool S Content Over Simulation Period

Tree Nutrient Content

Figure 21: Figure 23: Tree Nutrient Content (kg/ha) in the Foliage $\,$

Figure 22: Figure 24: Tree Nutrient Content (kg/ha) in the Bole. Exlcudes Bark

Figure 23: Figure 25: Tree Nutrient Content (kg/ha) in the Bark

Figure 24: Figure 26: Tree Nutrient Content and Biomass (kg/ha) in all Ligneous Material

`summarise()` ungrouping output (override with `.groups` argument)

Figure 25: Litterfall quantity

Cation Exchange Capacity

Not yet complete

Anion Exchange Capacity

Not yet complete

Leaching Losses

Figure 26: Annual Leaching Losses of Divalent Base Cations

Figure 27: Annual Leaching Losses of Monovalent Base Cations

Figure 28: Annual Leaching Losses of N, P, and S

Analysis 1

(a) Net ecosystem calcium retention graphed with bole biomass (b) Net ecosystem calcium retention graphed with foliar biomass index

- (c) Net ecosystem calcium retention with Bark Biomass index
- (d) Net ecosystem calcium retention with Branch Biomass index

Figure 29: Fuck all!

(a) Net ecosystem magnesium retention graphed with bole biomass (b) Net ecosystem magnesium retention graphed with foliar biomass index

(c) Net ecosystem magnesium retention with Bark Biomass index (d) Net ecosystem magnesium retention with Branch Biomass index Figure 30: Net ecosystem Magnesium retention plotted against biomass indexes (kg/ha biomass/10,000)

(a) Net ecosystem potassium retention graphed with bole biomass (b) Net ecosystem potassium retention graphed with foliar biomass index

(c) Net ecosystem potassium retention with Bark Biomass index (d) Net ecosystem potassium retention with Branch Biomass index

Figure 31: Net ecosystem potassium retention plotted against biomass indeces (kg/ha biomass/10,000)

Nutrient depletion as a condition is being analyzed using the following metric:

(Uptake Rate + (neg SOM Mineralization)+ Leaching Loss Rate + Net Uptake) = Ecosystem Output Rate Atmospheric Deposition Rate + Mineral Weathering Rate + Foliar Leaching (K only) = Input Rate Graph rate of

Input-Output = Net nutrient gain Rate (- is loss, + is gain) vs. Biomass Acquisition of each compartment

Analysis 2

Percent biomass reduction from 1st harvest (Biomass at Current Harvest/Biomass achieved 1st harvest)*100= % Reduction/month

Analysis 3

Nutrient buildup in layers over time (Ca should buildup in top layers)

Analysis 4

Fraction of whole ecosystem nutrients lost with harvest

 $(Frac\ Stand\ Harvest^*(Fract.\ Bole+Fract.Branch+Frac.Foliar+Frac.Bark)/(Soil\ CEC+Litter+SOM\ pool+Mineral\ Pool?+Tree)$