Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Академічна різниця з дисципліни: «Комп'ютерна логіка» І семестр

Виконав: студент ННІКІТ СП-225 Клокун Владислав

Білет №11

Завдання 1. Опишіть логічні (булеві) функції від двох змінних.

Розв'язання 1. Булева функція від двох змінних — це відображення $f: B^2 \mapsto B$, де $B = \{0,1\}$. Для двох аргументів існує $2^{2^2} = 16$ можливих булевих функцій. Однак, найчастіше використовуються лише декілька. Розглянемо їх за допомогою таблиці істинності.

x	у	$x \wedge y$	$x \lor y$	$x \rightarrow y$	$x \leftrightarrow y$	$x \oplus y$
0	0	0	0	1	1	0
0	1	0	1	1	0	1
1	0	0	1	0	0	1
1	1	1	1	1	1	0

Табл. 1.1: Таблиця істинності основних булевих функцій

Завдання 2. Побудувати таблицю істинності для функції F:

$$F(x, y, z) = (\neg(xy) \to z) \leftrightarrow (x \neg z \to y).$$

Розв'язання 2. Таблиця істинності заданої функції наведена у табл. 2.1.

x	у	Z	F(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Табл. 2.1: Таблиця істинності заданої функції

Завдання 3. Виконайте спрощення логічного виразу L та мінімізацію логічного виразу F, якщо:

$$L = x_3 x_2 \lor x_3 \overline{x_2} \lor \overline{x_1} \lor \overline{x_1} \lor \overline{x_2},$$

$$F = 0 \lor 4 \lor 7 \lor 8 \lor 11 \lor 12 \lor 13 \lor 15.$$

Рис. 3.1: Карта Карно логічного виразу F

Розв'язання 3. Спростимо логічний вираз L, використовуючи закони Де Моргана, подвійного заперечення, ідемпотенції та дистрибутивності.

$$L = x_3 \land x_2 \lor x_3 \land \neg x_2 \lor \neg(\neg x_1 \lor \neg(x_1 \lor x_2))$$

$$= x_3 \land x_2 \lor x_3 \land \neg x_2 \lor \neg(\neg x_1) \land \neg(\neg(x_1 \lor x_2))$$

$$= x_3 \land x_2 \lor x_3 \land \neg x_2 \lor x_1 \land (x_1 \lor x_2)$$

$$= x_3 \land x_2 \lor x_3 \land \neg x_2 \lor x_1 \land x_1 \lor x_1 \land x_2$$

$$= x_3 \land (x_2 \lor \neg x_2) \lor x_1 \lor x_1 \land x_2$$

$$= x_3 \lor x_1 \lor x_1 \land x_2$$

$$= x_3 \lor x_1 \land (1 \lor x_2)$$

$$= x_3 \lor x_1.$$

Мінімізуємо логічний вираз *F*. Для цього представимо його у двійковому вигляді:

$$\begin{split} F &= 0 \lor 4 \lor 7 \lor 8 \lor 11 \lor 12 \lor 13 \lor 15 \\ &= 0000 \lor 0100 \lor 0111 \lor 1000 \lor 1011 \lor 1100 \lor 1101 \lor 1111 \\ &= \neg A \neg B \neg C \neg D \lor \neg AB \neg C \neg D \lor \neg AB \neg C \neg D \lor \neg ABCD \\ &\lor A \neg B \neg C \neg D \lor A \neg BCD \lor AB \neg CD \lor ABCD. \end{split}$$

Побудуемо карту Карно (рис. 3.1). Звідси маємо:

$$F = \neg C \neg D \lor ABD \lor BCD \lor ACD$$
.

Завдання 4. Отримати МДНФ перемикальної функції, що задана діаграмою Вейча (рис. 4.1). Для мінімізації застосувати метод Квайна—МакКласкі. Перемикальну функцію реалізувати в елементному базисі АБО—НЕ.

Рис. 4.1: Діаграма Вейча заданої перемикальної функції

Розв'язання 4. Нехай задана перемикальна функція $f(x_1, x_2, x_3, x_4)$, тоді побудуємо таблицю істинності (табл. 4.1) за діаграмою Вейча заданої функції (рис. 4.1).

x_1	x_2	x_3	<i>x</i> ₄	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	_
0	1	1	0	1
0	1	1	1	_
1	0	0	0	0
1	0	0	1	1
1	0	1	0	
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
_1	1	1	1	_

Табл. 4.1: Таблиця істинності заданої функції $f(x_1, x_2, x_3, x_4)$

Запишемо функцію у вигляді досконалої диз'юнктивної нормальної форми (ДДН Φ) двійкових представлень.

$$f(x_1, x_2, x_3, x_4) = 0100 \lor 0110 \lor 1001 \lor 1100 \lor 1101.$$

Складемо таблицю мінтермів (табл. 4.2). Для виконання мінімізації внесемо до

неї не тільки мінтерми, а й терми, значення яких нас не цікавить (англ. don't-care terms).

Кількість одиниць	Мінтерм	Двійкове представлення
1	m04	0100
2	m06 m09 m12 d05 d10	0110 1001 1100 0101 1010
3	m13 d07	1101 0111
4	d15	1111

Табл. 4.2: Таблиця мінтермів

Побудуємо таблицю для пошуку простих імплікант (табл. 4.3). Прості імпліканти виділені жирним шрифтом.

Кількість одиниць	Мінтерм		2-імпліка	нти	4-імпліканти	
1	m04	0100		-100	(m04,m06,d05,d07) (m04,m12,m13,d05)	01— -10–
2	m06 m09 m12 d05	0110 1001 1100 0101 1010	(m06,d07) (m09,m13) (m12,m13) (d05,m13) (d05,d07)	1–01 110– –101	(m13,d05,d07,d15)	-1-1
3	m13 d07	1101 0111	(m13,d15) (d07,d15)			
4	d15	1111				

Табл. 4.3: Таблиця пошуку простих імплікант

Складаємо таблицю простих імплікант (табл. 4.4). До неї заносимо лише ті виходи функції, які мають значення. Ядрами будуть ті значення, у рядках яких існує лише одне перекриття.

	01	-10-	-1-1	1-01
m04	×	×		
m06	×			
m09				×
m12		×		
m13		X	X	X

Табл. 4.4: Таблиця покриття

Таким чином за методом Квайна — МакКласкі отримали МДНФ такого вигляду:

$$f(x_1, x_2, x_3, x_4) = x_1 \land \neg x_3 \land x_4 \lor x_2 \land \neg x_3 \lor \neg x_1 \land x_2.$$

Переходимо у базис АБО—НЕ:

$$f(x_1, x_2, x_3, x_4) = x_1 \wedge \neg x_3 \wedge x_4 \vee x_2 \wedge \neg x_3 \vee \neg x_1 \wedge x_2$$

= $(\neg x_1 \downarrow \neg x_3) \downarrow (x_1 \downarrow x_2) \downarrow (x_2 \downarrow x_4).$

Реалізуємо отриману перемикальну функцію (рис. 4.2).

Рис. 4.2: Схема отриманої перемикальної функції

Завдання 5. За даним графом автомата (рис. 5.1) виконати синтез керуючого автомата. Для побудови функціональної схеми використати Т-тригери. Елементний базис: I, AБO, HE.

Розв'язання 5. Побудуємо таблицю, що описує заданий автомат (табл. 5.2). Для цього пронумеруємо стани за принципом кодування Грея: $a_1 - 00$, $a_2 - 01$, $a_3 - 11$. Оскільки для побудови функціональної схеми необхідно використати Т-тригери, також наведемо таблицю їх переходів (табл. 5.1).

Рис. 5.1: Граф даного автомата Мілі

Q_t	Q_{t+1}	Т
0	0	0
1	1	0
0	1	1
1	0	1

Табл. 5.1: Таблиця переходів Т-тригера

$(A_1A_2)_t$	$(A_1A_2)_{t+1}$	x_1	y_1y_2	T_1	T_2
00	01	_	01	0	1
01	11	0	00	1	0
11	00	1	00	1	1
11	10	0	10	0	1

Табл. 5.2: Таблиця заданого автомата

Складемо та мінімізуємо функції, що описують залежності станів:

$$\begin{split} T_1(A_1,A_2,x) &= \neg A_1 \wedge A_2 \vee A_2 \wedge x, \\ T_2(A_1,A_2,x) &= \neg A_1 \wedge \neg A_2 \vee A_1 \wedge A_2. \\ y(A_1,A_2,x) &= A_1 \wedge \neg x, \\ y(A_1,A_2,x) &= \neg A_2. \end{split}$$