

Introduction

WHY IS THIS DEVICE IMPORTANT?

- 1) Telecommunications Industry 4) Optical Sensor
- 2) Photometers (Spectroscopy) Technology
- 3) Accelerometers

Voltage difference across central probe

Task

Find the BiStable actuation force

Setup Properties

- 1) Silicon (as material)
- 2)Young's Modulus: 169 Gpa
- 3) Poissin ratio :- 0.3

Boundry Conditions

- 1) Fixed Supports at the end surfaces
- 2) Force acting in –Y direction

Case Setup

In Static Stuctural Standalone

Material :- Silicon

Sizing –Element size 2.5 µm

Steps:-6 (Force added in various steps)

Large Deflection :- On (For non-linear analysis)

Threshold Transverse Force≈1300 µN

Conclusion

- 1) For a Silicon mem device with geometry of length 200 μ m, clamped at both ends with a central probe , having 169 GPa Young's Modulus and 0.3 Poisson Ratio, the bistable actuation force obtained is in the range of 1300 μ N to 1500 μ N, deflecting the geometry to nearly 18-19 μ m.
- 2) A force above this range causes a negligible deflection.

Refrences

- [1] http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1472577
- [2] Marc Sulfridge, Taher Saif, Norman Miller, and Keith O'Hara, Optical Actuation of a Bistable MEMS
- [3] Ansys Troubleshooter