本证明之附件是向本局提交的下列专利申请副本

请 日: 2003.11.28 申

申 请 号: 2003101089743

申请类别: 发明

发明创造名称: 分子筛基纳米复合抗紫外材料、其制备方法和用途

请 人: 上海家化联合股份有限公司 复旦大学 申

发明人或设计人: 张雷、魏少敏、武利民、郭奕光

2004年12月8日

BEST AVAILABLE COPY

- 1. 一种抗紫外材料,其特征在于采用分子筛基主客体纳米复合材料作为紫外吸收剂。
- 5 2. 如权利要求 1 所述的抗紫外材料,其中分子筛基主客体纳米复合材料的主体选自 X, Y, A, STI, ZSM-5 等微孔沸石分子筛, MCM-41, MCM-48, SBA-15 等介孔分子筛中的一种或几种。
 - 3. 如权利要求 1 所述的抗紫外材料,其中分子筛基主客体纳米复合材料的客体选自 TiO₂, ZnO, CeO₂, Fe₂O₃ 金属氧化物纳米团簇中的一种或几种。
- 4. 权利要求 1 所述抗紫外材料的制备方法, 其特征在于,以 TiCl₃、 ZnCl₂、Zn(NO₃)₂、CeCl₃、Ce(NO₃)₃、FeCl₃、Fe(NO₃)₃、FeSO₄中的任何一种 为起始原料,用离子交换的方法合成 TiO₂, ZnO, CeO₂, Fe₂O₃ 金属氧化物纳米 团簇与分子筛复合体的主客体纳米复合材料,以此为紫外吸收剂制得抗紫外材料。
- 5. 根据权利要求 4 所述抗紫外材料的制备方法,其中的离子交换方法包括以下步骤:起始原料溶于水,加入分子筛,静置或搅拌 1~6 小时,过滤,洗涤和干燥,在 400-600℃焙烧 4-24 小时。
 - 6. 根据权利要求 4 所述抗紫外材料的制备方法,其中的离子交换方法包括以下步骤: 起始原料溶于水,加入低硅分子筛,静置 1 小时,过滤,洗涤和 80℃干燥,在 500℃焙烧 12 小时。
 - 7. 权利要求 1 所述抗紫外材料的制备方法, 其特征在于, 以钛酸正丁酯为起始原料, 通过水解反应合成 TiO₂ 团簇与分子筛复合体的主客体纳米复合材料, 以此为紫外吸收剂制得抗紫外材料。
- 8. 根据权利要求 7 所述抗紫外材料的制备方法,其中的水解反应包括 25 以下步骤:将钛酸正丁酯与高硅分子筛在非极性溶剂中混合,惰性气体保护,50-100℃回流搅拌 4-48 小时,产物以醇类溶剂洗涤,60-100℃干燥, 在 400-600℃焙烧 4-24 小时。
 - 9. 如权利要求1所述的抗紫外材料在化妆品中的应用。

20

- 10. 如权利要求 1 所述的抗紫外材料在涂料中的应用。
- 30 11. 如权利要求 1 所述的抗紫外材料在橡胶或塑料工业中的应用。

分子筛基纳米复合抗紫外材料、其制备方法和用途

5 技术领域

本发明涉及抗紫外材料的合成,具体涉及一种以沸石分子筛和介孔分子筛等晶态孔材料为主体,以纳米团簇 TiO₂、ZnO、CeO₂、Fe₂O₃为客体的抗紫外材料,其制备方法和应用。

10 背景技术

15

30

由于现代工业的发展,近年来大气污染加剧,臭氧层的破坏程度日益严重。在相当多的领域抗紫外线已经成为一个迫在眉睫的问题。过度紫外线的危害主要体现在以下几个方面:

- 1: 紫外线照射到生物体时会损害构成蛋白质的肽链,导致自由基的产生。自由基又会进一步与其他肽链作用最终导致组织损伤和基因突变。对人体而言将造成皮肤灼伤和皮肤癌的产生。使用防晒护肤品是解决上述问题的有效方法之一。
 - 2: 紫外线是高能射线,使高分子工业品老化和寿命缩短。因此高分子产品一般都要加入抗紫外剂。
- 20 在国外,防晒化妆品的研究和使用已达到较高水平,如美国、日本和欧州,防晒化妆品已成为护肤化妆品开发的重点,欧美防晒化妆品的年增长率为5-10%。据文献报道,1990年美国防晒化妆品己占化妆品总量的一半。在我国随着人民生活水平的迅速提高,人们审美和保健意识的增强,众多人士已开始重视对紫外线的防护。我国的防晒产品市场增长率从九十25 年代中期起一直保持在20%以上。而在塑料、橡胶和涂料工业中,抗紫外剂的用量也日益增长,尤其在涂料工业中,高效稳定的抗紫外剂一直是研究开发的重点。

目前开发的抗紫外材料分为化学和物理 2 大类。以前者应用居多。化学抗紫外剂一般为有机物,因此与有机相配伍性好,但是普遍具有一定毒性,对皮肤具有刺激性。在直接与人体接触的产品中使用时容易引起过敏

反应,不符合目前人们追求健康的趋势。另外,有机抗紫外剂的光稳定性多数都不够好,在紫外线照射下会分解或氧化。纳米技术的发展为解决上述问题提供了答案。这就是伴随纳米技术发展起来的物理抗紫外剂,即无机纳米抗紫外剂。无机纳米抗紫外剂具有稳定、广谱的特点,在一定程度上弥补了有机抗紫外剂的弱点。但是,无机纳米抗紫外剂的缺点随着应用也日益暴露出来。最典型的就是其表面活性。由于无机纳米粒子具有很高的表面能,在与有机相配伍时极易发生团聚,这将导致抗紫外剂失活。同时,安全性也是纳米粒子应用的潜在问题。

例如纳米 ZnO 和 TiO₂具有光催化活性,在日光作用下会产生自由基,这会对人体 DNA 造成伤害。牛津大学的 John Kownland 等在 TiO₂和 ZnO 的负面影响的研究方面作了充分地研究。他们指出,TiO₂和 ZnO 在光照下产生氧和氢氧自由基。但是和以前人们的认识不同的是,他们的研究表明真正对人体 DNA 造成损伤 的是氢氧自由基,而不是氧自由基。因此通常人们为防护 TiO₂和 ZnO 的伤害而采用的加入氧自由基清除剂的方法是远远不够的。然而以分子筛为主体的纳米团簇组装,可彻底解决上述问题。

分子筛是一类晶态多孔型材料。它的孔道系统具有孔径大小分布窄,微观高度有序的特点。利用分子筛的孔道为模板,将客体分子组装进入孔道中,可以得到高度有序的纳米团簇排列。这一组装技术不仅可以保证纳米团簇的分散,而且可以在很大程度上提高纳米团簇的性能。在这一领域中的研究中,人们开发了许多组装方法。在半导体客体、配合物客体和某些大分子有机客体组装研究中,一种被称为"瓶中造船" (ship in bottom)的技术发展起来。简言之,先将客体的单体小分子引入分子筛孔道中,然后在孔道中引发合成反应的条件使其发生化合反应。而对某些含氮的碱性有机客体组装研究中,采用原位合成的方法往往有相当好的效果。利用上述方法合成的复合材料在表面上表现为宏观颗粒的形貌,但是实质上却具有纳米团簇的特性。而且由于分子筛的孔道的模板作用,客体以微观高度有序的状态存在。这在很大程度上使材料的性质发生了数量级上的变化。

在防晒化妆品、涂料、橡胶和塑料工业中,这类组装体现出很高的应用价值。无论是传统的有机紫外吸收材料,还是新型无机紫外吸收材料,都可以利用这一技术组装入分子筛孔道中以避免纳米粒子团聚,并且可以

最大程度地降低紫外吸收剂的副作用。更重要的是,由于紫外吸收剂处于微观高度有序状态,其紫外吸收性能可以极大提高。

7

本发明的一个目的是提供一种抗紫外材料。

本发明另一个目的是提供此种抗紫外材料的制备方法。

本发明还有一个目的是提供此种抗紫外材料的用途。

发明内容

本发明提供一种抗紫外材料,采用分子筛基主客体纳米复合材料作为紫外吸收剂。其采用的主体为 X, Y, A, STI, ZSM-5, MCM-41 及其系列, SBA-15 及其系列等微孔和介孔分子筛中的一种或几种。采用的客体团簇为 TiO₂、ZnO、Fe₂O₃或 CeO₂中的一种或几种。这种抗紫外材料利用分子筛的微观有序的孔道系统作为模板,利用量子限域效应使客体团簇作高度有序的定向排列。既保证纳米团簇彼此间隔面可以稳定存在,又可以很大程度上提高其性能。

15

20

25

30

10

5

本发明还提供此类抗紫外材料的两种制备方法。

第一种制备方法以 $TiCl_3$ 、 $Ti(NO_3)_3$ 、 $ZnCl_2$ 、 $Zn(NO_3)_2$ 、 $CeCl_3$ 、 $Ce(NO_3)_3$ 、 $FeCl_3$ 、 $Fe(NO_3)_3$ 、 $FeSO_4$ 中的任何一种为起始原料,通过离子交换的方法合成 TiO_2 , ZnO, CeO_2 , Fe_2O_3 金属氧化物纳米团簇与分子筛复合体的主客体纳米复合材料,以此为紫外吸收剂制得抗紫外材料。

此方法具体包括以下步骤:将起始原料溶于水,加入分子筛,室温下 搅拌 3-12 小时,过滤,洗涤,干燥,400-600℃下焙烧 4-24 小时。

或者,将起始原料溶于水,加入低硅分子筛,静置 1 小时,过滤,洗涤和 80℃干燥,在 500℃焙烧 12 小时。

第二种制备方法以钛酸正丁酯为起始原料,通过水解反应合成 TiO₂ 团簇与分子筛复合体的主客体纳米复合材料,以此为紫外吸收剂制得抗紫外材料。

此方法具体包括以下步骤:将钛酸正丁酯与高硅分子筛在非极性溶剂中混合,惰性气体保护,50-100℃回流搅拌 4-48 小时,产物以醇类溶剂洗涤,60-100℃干燥,在400-600℃焙烧 4-24 小时。

本发明进一步提供此类抗紫外材料在化妆品,涂料,橡胶和塑料工业中的应用。

具体实施方式

下面结合实施例对本发明作进一步阐述,但这些实施例不对本发明构成任何限制。

5 实施例 1

X沸石和 ZnO 组装。

- 1)称取 Zn(NO₃)₂ 10.00g 溶于 40ml 去离子水中;
- 2) 再称取 X 沸石 2.00g, 放入上述溶液中混合, 保持 PH=4~5;
- 3)在 40~50℃温度下电磁搅拌 1 小时;
- 10 4) 静置待分层后倒去上层清液,再称取 10.00g Zn(NO₃)₂溶于 40ml 水中,电磁搅拌 1 小时;
 - 5)重复第 4 步三遍,最后一遍用布氏漏斗抽滤,去离子水反复洗涤以去除溶液中的杂质离子,以及沸石分子筛骨架以外的 Zn²⁺,然后放入烘箱中在 60 ℃下烘干 30 分钟左右;
 - 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中, 在 550℃下用马弗炉焙烧 6 小时;
 - 7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙烧 6 小时,即得到产物 H-X-ZnO 粉体。

20 实施例 2

15

Y沸石和 ZnO 组装过程。

- 1)称取 Zn(NO₃)210.00g 溶于 40ml 去离子水中;
- 2)再称取 Y 沸石 2.00g, 放入上述溶液中混合, 保持 PH=4~5;
 - 3)在 40~50℃温度下电磁搅拌 1 小时;
- 25 4) 静置待分层后倒去上层清液,再称取 10.00g Zn(NO₃)₂ 溶于 40ml 水中,电磁搅拌 1 小时;
 - 5)重复第 4 步三遍,最后一遍用布氏漏斗抽滤,去离子水反复洗涤以去除溶液中的杂质离子,以及沸石分子筛骨架以外的 Zn²⁺,然后放入烘箱中在 60 ℃下烘干 30 分钟左右;
- 30 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中,

9

在 550℃下用马弗炉焙烧 6 小时;

7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙烧 6 小时,即得到产物 H-Y-ZnO 粉体。

5 实施例 3

A沸石和 ZnO 组装过程。

- 1)称取 Zn(NO₃)₂10.00g 溶于 40ml 去离子水中;
- 2)再称取 A 沸石 2.00g, 放入上述溶液中混合, 保持 PH=4~5;
- 3)在 40~50℃温度下电磁搅拌 1 小时;
- 10 4) 静置待分层后倒去上层清液, 再称取 10.00g Zn(NO₃)₂ 溶于 40ml 水中, 电磁搅拌 1 小时;
 - 5)重复第 4 步三遍,最后一遍用布氏漏斗抽滤,去离子水反复洗涤以去除溶液中的杂质离子,以及沸石分子筛骨架以外的 Zn²⁺,然后放入烘箱中在 60 ℃下烘干 30 分钟左右;
- 15 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中, 在 550℃下用马弗炉焙烧 6 小时;
 - 7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙烧 6 小时,即得到产物 H-A-ZnO 粉体。

20 实施例 4

STI 沸石和 ZnO 组装过程。

- 1)称取 Zn(NO₃)210.00g 溶于 40ml 去离子水中;
- 2)再称取 STI 沸石 2.00g, 放入上述溶液中混合, 保持 PH=4~5;
- 3)在40~50℃温度下电磁搅拌1小时;
- 25 4) 静置待分层后倒去上层清液, 再称取 10.00g Zn(NO₃)₂ 溶于 40ml 水中, 电磁搅拌 1 小时;
 - 5)重复第 4 步三遍,最后一遍用布氏漏斗抽滤,去离子水反复洗涤以去除溶液中的杂质离子,以及沸石分子筛骨架以外的 Zn²⁺,然后放入烘箱中在 60 ℃下烘干 30 分钟左右:
- 30 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中,

在 550℃下用马弗炉焙烧 6 小时;

7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙烧 6 小时,即得到产物 H- STI-ZnO 粉体。

5 实施例 5

ZSM-5 沸石和 ZnO 组装过程。

- 1)称取 Zn(NO₃)₂10.00g 溶于 40ml 去离子水中;
- 2) 再称取 ZSM-5 沸石 2.00g, 放入上述溶液中混合, 保持 PH=4~5;
- 3)在 40~50℃温度下电磁搅拌 1 小时;
- 10 4) 静置待分层后倒去上层清液,再称取 10.00g Zn(NO₃)₂ 溶于 40ml 水中,电磁搅拌 1 小时;
 - 5)重复第 4 步三遍,最后一遍用布氏漏斗抽滤,去离子水反复洗涤以去除溶液中的杂质离子,以及沸石分子筛骨架以外的 Zn²+,然后放入烘箱中在 60 ℃下烘干 30 分钟左右;
- 15 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中, 在 550℃下用马弗炉焙烧 6 小时;

7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙烧 6 小时,即得到产物 ZSM-5-ZnO 粉体。

20 实施例 6

MCM-41 和 ZnO 沸石组装过程。

- 1)称取 Zn(NO₃)₂10.00g 溶于 40ml 去离子水中;
- 2)再称取 MCM-41 沸石 2.00g, 放入上述溶液中混合, 保持 PH=4~5;
- 3)在 40~50℃温度下电磁搅拌 1 小时;
- 25 4) 静置待分层后倒去上层清液,再称取 10.00g Zn(NO₃)₂ 溶于 40ml 水中,电磁搅拌 1 小时;
 - 5)重复第 4 步三遍,最后一遍用布氏漏斗抽滤,去离子水反复洗涤以去除溶液中的杂质离子,以及沸石分子筛骨架以外的 Zn²⁺,然后放入烘箱中在 60 ℃下烘干 30 分钟左右;
- 30 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中,

在 550℃下用马弗炉焙烧 6 小时;

7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙烧 6 小时,即得到产物 H- MCM-ZnO 粉体。

5 实施例 7

- X沸石和Fe₂O₃组装。
 - 1)称取 FeSO₄ 10.00g 溶于 40ml 去离子水中;
 - 2)再称取 X 沸石 2.00g, 放入上述溶液中混合, 保持 PH=4~5;
 - 3)在40~50℃温度下电磁搅拌1小时;
- 10 4)静置待分层后倒去上层清液,再称取 10.00g FeSO₄溶于 40ml 水中,电磁搅拌 1 小时;
 - 5)重复第 4 步三遍,最后一遍用布氏漏斗抽滤,去离子水反复洗涤以去除溶液中的杂质离子,以及沸石分子筛骨架以外的 Fe²⁺,然后放入烘箱中在 60 ℃下烘干 30 分钟左右;
- 15 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中, 在 550℃下用马弗炉焙烧 6 小时;
 - 7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙烧 6 小时,即得到产物 H-X- Fe₂O₃ 粉体。

20 实施例 8

- Y沸石和 Fe₂O₃组装过程。
 - 1)称取 FeSO₄ 10.00g 溶于 40ml 去离子水中;
 - 2)再称取 Y 沸石 2.00g, 放入上述溶液中混合, 保持 PH=4~5;
 - 3)在 40~50℃温度下电磁搅拌 1 小时;
- 25 4) 静置待分层后倒去上层清液,再称取 10.00g Zn(NO₃)₂ 溶于 40ml 水中,电磁搅拌 1 小时;
 - 5)重复第 4 步三遍,最后一遍用布氏漏斗抽滤,去离子水反复洗涤以去除溶液中的杂质离子,然后放入烘箱中在 60 ℃下烘干 30 分钟左右;
- 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中, 30 在 550℃下用马弗炉焙烧 6 小时;

~15 分钟, 再放入马弗炉中同等条件下焙

7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙烧 6 小时,即得到产物 H-Y- Fe₂O₃ 粉体。

实施例 9

- 5 A 沸石和 Fe₂O₃ 组装过程。
 - 1)称取 FeSO410.00g 溶于 40ml 去离子水中;
 - 2)再称取 A 沸石 2.00g, 放入上述溶液中混合, 保持 PH=4~5;
 - 3)在40~50℃温度下电磁搅拌1小时;
- 4) 静置待分层后倒去上层清液,再称取 10.00g FeSO₄ 溶于 40ml 水中, 10 电磁搅拌 1 小时;
 - 5)重复第五步三遍,最后一遍用布氏漏斗抽滤,去离子水反复洗涤以去除溶液中的杂质离子,然后放入烘箱中在 60 ℃下烘干 30 分钟左右;
 - 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中, 在 550℃下用马弗炉焙烧 6 小时;
- 15 7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙烧 6 小时,即得到产物 H-A- Fe₂O₃ 粉体。

实施例 10

20

STI 沸石和 Fe₂O₃ 组装过程。

- 1)称取 FeSO₄10.00g 溶于 40ml 去离子水中;
- 2)再称取 STI 沸石 2.00g, 放入上述溶液中混合, 保持 PH=4~5;
- 3)在 40~50℃温度下电磁搅拌 1 小时;
- 4)静置待分层后倒去上层清液,再称取 10.00g FeSO₄ 溶于 40ml 水中,电磁搅拌 1 小时:
- 25 5)重复第五步三遍,最后一遍用布氏漏斗抽滤,去离子水反复洗涤以去除溶液中的杂质离子,然后放入烘箱中在 60 ℃下烘干 30 分钟左右;
 - 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中, 在 550℃下用马弗炉焙烧 6 小时;
- 7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙 30 烧 6 小时,即得到产物 H- ZSM- Fe₂O₃ 粉体。

实施例 11

5

10

15

MCM-41 和 Fe₂O₃沸石组装过程。

- 1)称取 FeSO410.00g 溶于 40ml 去离子水中;
- 2)再称取 MCM-41 沸石 2.00g, 放入上述溶液中混合, 保持 PH=4~5;

- 3)在40~50℃温度下电磁搅拌1小时;
- 4)静置待分层后倒去上层清液,再称取 10.00g FeSO₄溶于 40ml 水中, 电磁搅拌 1 小时:
- 5)重复第五步三遍,最后一遍用布氏漏斗抽滤,去离子水反复洗涤以 去除溶液中的杂质离子,然后放入烘箱中在 60 ℃下烘干 30 分钟左右;
 - 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中, 在 550℃下用马弗炉焙烧 6 小时;
 - 7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙烧 6 小时,即得到产物 H- MCM- Fe₂O₃ 粉体。

实施例 12

 CeO_2 纳米团簇在 X, Y, A, ZSM-5, STI, 和 MCM-41 沸石中的 组装

- 1)称取 Ce(NO₃)₃10.00g 溶于 40ml 去离子水中;
- 20 2)再称取沸石(X, Y, A, ZSM-5, STI, 和 MCM-41 中的任何一种) 2.00g, 放入上述溶液中混合, 保持 PH=4~5;
 - 3)在 40~50℃温度下电磁搅拌 1 小时;
 - 4)静置待分层后倒去上层清液,再称取 10.00g FeSO₄溶于 40ml 水中, 电磁搅拌 1 小时:
- 25 5)重复第五步三遍,最后一遍用布氏漏斗抽滤,去离子水反复洗涤以 去除溶液中的杂质离子,然后放入烘箱中在 60 ℃下烘干 30 分钟左右;
 - 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中, 在 550℃下用马弗炉焙烧 6 小时;
- 7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙 30 烧 6 小时,即得到产物。

实施例 13

5

 TiO_2 纳米团簇在 X, Y, A, ZSM-5, STI, 和 MCM-41 沸石中的组装

- 1)称取 TiCl310.00g 溶于 40ml 去离子水中;
- 2)再称取沸石(X, Y, A, ZSM-5, STI, 和 MCM-41 中的任何一种) 2.00g, 放入上述溶液中混合;
 - 3)在室温下静止1小时;
 - 4)抽滤,去离子水反复洗涤以去除溶液中的杂质离子,然后放入烘箱 中在 60 ℃下烘干 30 分钟左右;
- 10 6)得到产物在玛瑙研铂中研磨 10~15 分钟, 然后置于 30ml 坩锅中, 在 550℃下用马弗炉焙烧 6 小时;
 - 7)取出坩锅,将粉体研磨 10~15 分钟,再放入马弗炉中同等条件下焙烧 6 小时,即得到产物。

15 实施例 14

制备丙烯酸一氨基清漆的制备:

		wt%
	丙烯酸树脂(70%固含量)	52.2
	氨基树脂(70%固含量)	22.3
20	Tinnvin 292	0.5
	Tinnvin 1130	0.8
	流干硅剂(10%)	5.0
	醋酸丁酯	5.0
	二甲苯	10.0
25	乙二醇丁醚醋酸酯	2.7
	正丁醇	1.5
	人代士计	

- 合成方法:
- 1 精确称量 丙烯酸树脂、氨基树脂等主要树脂,放入干净的分散容器中
- 2 先加入高沸点的溶剂醋酸丁酯、乙二醇丁醚醋酸酯稀释树脂,逐渐增30 大搅拌速度

- 3 把 Tinuvin272 精确称量至需要数量,用少部分乙酸丁酯或二甲苯稀释后加入分散
 - 4 再把各种助剂,如流干硅剂等称量后用同样方法稀释后加入
 - 5 最后把剩余的各种溶剂按量加入,高速分散 20~30mins,转速 2000~

5 3000rpm

实施例 15

防晒乳的制备:

		wt%
10	A. 精制水	50
	聚乙二醇	12
	聚丙烯酸溶液	2
	月桂醇硫酸钠	0.5
	凯松	0.1
15	B. 十四酸异丙酯 的	. 10
	十六酸异丙酯	10
	乙酰化羊毛脂	. 5
	叔丁基羟基苯甲醚	0.05
	C. 纳米复合抗紫外剂	8
20	云母粉	1
	D. 香精	0.85
	今 战专注。	

合成方法:

将 A, B 分别混合搅拌使其溶解, 将 A, B, C, 进行乳化, 然后加 E, 静止 24 小时。

Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/CN04/001316

International filing date:

19 November 2004 (19.11.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: CN

Number:

200310108974.3

Filing date: 28 November 2003 (28.11.2003)

Date of receipt at the International Bureau: 14 February 2005 (14.02.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.