三(0) 尺(5) 三

©François Carrel, EMF, décembre 2021

1. Masse et matière

La masse d'un objet est liée à la quantité de matière qui le constitue

Remarques

- la masse d'un objet est invariable, quelle que soit la position de l'objet dans l'univers
- la masse d'un objet est égale à la somme des éléments qui le constituent

$$\text{masse} = \sum_{i=1}^{1-n} m_i$$

La masse *m* d'un objet est égale à la somme des éléments qui le constituent

$$\text{masse} = \sum_{i=1}^{i=n} m_i$$

2. Masse et mouvement

La masse rend compte de la difficulté que l'on éprouve à modifier le mouvement d'un objet

Remarques

- On appelle inertie la résistance au mouvement d'un corps
- La masse inerte est identique à la masse pesante

Pour déterminer la masse m
d'un objet, on la compare,
habituellement au moyen
d'un balance, à la masse
d'un objet étalon qui fixe
l'unité de mesure

L'unité de masse est le kilogramme [kg]

MASSE VOLUMIQUE

La masse volumique ρ (rhô) d'une matière est égale au quotient de sa masse m par le volume V que cette matière occupe

$$\rho = \frac{m}{V}$$

ρ: masse volumique [kg·m-3]

m: masse [kg] V: volume [m³]

DENSITÉ

La densité d'une matière est calculée en faisant le rapport de sa masse volumique à celle d'une matière de référence.

Pour les solides et les liquides, la masse volumique de référence est celle de l'eau, pour les gaz, on prend celle de l'air aux conditions TPN.

$$d = \frac{\rho_{matière}}{\rho_0}$$

d: sans unité

ρ₀: 1'000 kg·m⁻³ (solides et liquides)

 ρ_0 : 1,29 kg·m⁻³ (gaz - conditions TPN)

Une force \vec{F} est une grandeur physique qui se définit par ses effets :

- elle peut déformer un objet
- elle peut modifier le mouvement d'un objet

L'unité de l'intensité d'une force est le newton [N]

Une force \vec{F} est une grandeur physique vectorielle. Pour la décrire, il faut connaître:

- sa droite d'action;
- son sens;
- son intensité;
- son point d'application.

1ère loi de Newton:

(loi d'inertie)

Lorsque la résultante des forces agissant sur un corps est nulle $(\Sigma \vec{F} = \vec{0})$, celui-ci conserve son état de repos ou de mouvement rectiligne uniforme (vitesse constante). Le corps est alors en équilibre statique (cas particulier de la $2^{\text{ème}}$ loi de Newton).

2ème loi de Newton:

(loi fondamentale de la dynamique)

La résultante des forces agissant sur un corps de masse m lui fournit une accélération telle que :

$$\sum \vec{F} = m \cdot \vec{a}$$

Remarque : L'accélération est dirigée dans le même sens

que la résultante des forces

3ème loi de Newton:

(loi d'action - réaction)

Lorsqu'un corps rigide A exerce une force \vec{F}_{AB} sur un second corps rigide B, celui-ci exerce en retour une force \vec{F}_{BA} égale mais opposée

$$\vec{F}_{AB} = -\vec{F}_{BA}$$

Remarque : la 3^{ème} loi de Newton traite des forces de contact entre deux corps différents

Force et mouvement

$$\sum \vec{F} = m \cdot \vec{a}$$

dynamique 12 l'objet accélère

$$\sum \vec{F} = \vec{0}$$

équilibre (statique ou cinétique) :

- 1. l'objet est immobile $\rightarrow V=0$
- 2. il se déplace à vitesse constante $\rightarrow V=cste$

Force de rappel d'un ressort

$$F = k \cdot d$$
 Loi de Hooke

F: force de rappel du ressort [N]

k: constante de déformation ou *raideur* [N.m⁻¹]

d: élongation [m]

FORCE DE GRAVITATION

Gravitation universelle

FORCE DE GRAVITATION

Gravitation universelle

$$F_1 = F_2 = G \cdot \frac{m_1 \cdot m_2}{d^2}$$

G: constante de gravitation universelle $G = 6,67\cdot10^{-11} [N\cdot m^2\cdot kg^{-2}]$

FORCE DE GRAVITATION

Gravitation terrestre

$$F_p = G \cdot \frac{m_{corps} \cdot m_{Terre}}{r^2_{Terre}}$$

$$F_p = m_{corps} \cdot g_{Terre}$$

$$g_{Terre} = G \cdot \frac{m_{Terre}}{r^2_{Terre}}$$

g: constante de gravitation terrestre $g = 9.81 [N \cdot kg^{-1}]$

Force de pesanteur

$$\vec{F}_p = m \cdot \vec{g}$$

m: masse de l'objet [kg]

g: constante de gravitation terrestre [N·kg-1]

Le plan incliné

Force de pesanteur dans le plan incliné

$$F_{p_{//}} = m \cdot g \cdot \sin \alpha$$

$$F_{p_{\perp}} = m \cdot g \cdot \cos \alpha$$

Forces de frottement (glissement)

$$F_s = \mu_0 \cdot F_N$$
 ou: $F_c = \mu \cdot F_N$

 F_s : force de frottement statique [N]

 F_c : force de frottement cinétique [N]

 μ_0 : coefficient de frottement statique

 μ : constante de frottement cinétique

 F_N : force normale [N]

Force centripète

$$F_c = m \cdot \frac{v^2}{r}$$

 F_c : intensité de la force centripète [N]

m: masse de l'objet [kg]

v: vitesse linéaire [m.s⁻¹]

r: rayon [m]