Practice Worksheet

- 1. Write a python code that reads (names,grades) from the file Grades1.dat. Store the names and the grades in two lists. Generate an output file where the grades are written in a descending order in the first column and the corresponding names in the second column.
- 2. Write a python code that generates values of the function $f(x) = exp(\frac{-x^2}{\sigma})$ for 100 values of x uniformly spaced in the domain [-5, 5]. Choose $\sigma = 4$ and store the function values in a list.
 - (A) find the maximum f_{max} from the list containing the values of the function f(x)
 - (B) find the value(s) of x^* for which $f(x^*) \approx \frac{1}{2} f_{max}$.
 - (C) write $\{x, f(x)\}$ in an output file and plot the function in gnuplot. Mark the $\{x^*, f(x^*)\}$ point(s) on the same plot.
- 3. Write a python code that generates values of the function $f(x) = sin(2\pi\omega x)$ for 200 values of x uniformly spaced in the domain [-20, 20]. Write $\{x, f(x)\}$ in an output file and plot the function in gnuplot. Choose ω such that $\{x, f(x)\}$ plot shows ~ 4 cycles .

In gnuplot try to estimate the value of ω from fitting. Compare the numerical estimate of ω with that used in your program.

4. Write a python code to estimate reciprocal Fibonacci constant (Ψ) defined as sum of the reciprocals of the Fibonacci numbers (F_k)

$$\Psi(N) = \sum_{k=1}^{N} \frac{1}{F_k} \approx 3.359885666243...$$
 for $N \to \infty$.

- (A) Determine the number of terms (N^*) required to attain an accuracy in 6th place of decimal.
- (B) Plot $\{N, \Psi(N)\}\$ for $N \in [1, N^*]$ to show the convergence.
- 5. Try to modify/generalize the code in question 1 if there are two or more students with same grades. In that case the names with same grades need to be alphabetically sorted. You may use python built-in functions for alphabet sorting. Test your code with Grades2.dat.

IISER Kolkata