MapReduce Algorithm Design

Based on Jimmy Lin's slides

Midterm – Take Home Exam

- Take Home Exam, Open Books and Notes
- No collaboration is allowed!
- 1 day (24 hours) to complete and submit using Gradescope
- Based on material before the break
 - Lecture Notes and Slides from Jan 22 to March 4
 - Papers and Book Chapters
 - Topics:
 - B-tree and Linear Hashing
 - Spatial databases and Indexing
 - Temporal databases and Indexing
 - Spatio-temporal Databases
 - Time Series

Midterm

- When?
 - One option April 8, Wednesday
 - Second option, April 13, Monday
 - Other days?

 We decided to do a poll for potential days on Piazza...

MapReduce: Recap

Programmers must specify:

```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k', v' \rangle^*
```

- All values with the same key are reduced together
- Optionally, also:
 - **partition** (k', number of partitions) \rightarrow partition for k'
 - Often a simple hash of the key, e.g., hash(k') mod n
 - Divides up key space for parallel reduce operations combine (k', v') → < k', v'>*
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic
- The execution framework handles everything else...

"Everything Else"

- The execution framework handles everything else...
 - Scheduling: assigns workers to map and reduce tasks
 - "Data distribution": moves processes to data
 - Synchronization: gathers, sorts, and shuffles intermediate data
 - Errors and faults: detects worker failures and restarts
- Limited control over data and execution flow
 - All algorithms must expressed in m, r, c, p
- You don't know:
 - Where mappers and reducers run
 - When a mapper or reducer begins or finishes
 - Which input a particular mapper is processing
 - Which intermediate key a particular reducer is processing

Tools for Synchronization

- Cleverly-constructed data structures
 - Bring partial results together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

Preserving State

Scalable Hadoop Algorithms: Themes

- Avoid object creation
 - Inherently costly operation
 - Garbage collection
- Avoid buffering
 - Limited heap size
 - Works for small datasets, but won't scale!

Importance of Local Aggregation

- Ideal scaling characteristics:
 - Twice the data, twice the running time
 - Twice the resources, half the running time
- Why can't we achieve this?
 - Synchronization requires communication
 - Communication kills performance
- Thus... avoid communication!
 - Reduce intermediate data via local aggregation
 - Combiners can help

Shuffle and Sort

Word Count: Baseline

```
1: class Mapper.
       method Map(docid a, doc d)
          for all term t \in \text{doc } d do
3:
               Emit(term t, count 1)
4:
1: class Reducer.
       method Reduce(term t, counts [c_1, c_2, \ldots])
2:
          sum \leftarrow 0
3:
          for all count c \in \text{counts } [c_1, c_2, \ldots] do
4:
               sum \leftarrow sum + c
5:
           Emit(term t, count s)
6:
```

What's the impact of combiners?

Word Count: Version 1

```
1: class Mapper

2: method Map(docid a, doc d)

3: H \leftarrow new AssociativeArray

4: for all term t \in doc d do

5: H\{t\} \leftarrow H\{t\} + 1 \triangleright Tally counts for entire document

6: for all term t \in H do

7: Emit(term t, count H\{t\})
```

Are combiners still needed?

Word Count: Version 2

```
Key: preserve state across input key-value pairs!
1: class Mapper.
       method Initialize
2:
           H \leftarrow \text{new AssociativeArray}
3:
       method Map(docid a, doc d)
4:
           for all term t \in \text{doc } d do
5:
               H\{t\} \leftarrow H\{t\} + 1
                                                               \triangleright Tally counts across documents
6:
       method Close
7:
           for all term t \in H do
8:
               EMIT(term t, count H\{t\})
9:
```

Are combiners still needed?

Design Pattern for Local Aggregation

- "In-mapper combining"
 - Fold the functionality of the combiner into the mapper by preserving state across multiple map calls
- Advantages
 - Speed
 - Why is this faster than actual combiners?
- Disadvantages
 - Explicit memory management required
 - Potential for order-dependent bugs

Combiner Design

- Combiners and reducers share same method signature
 - Sometimes, reducers can serve as combiners
 - Often, not...
- Remember: combiner are optional optimizations
 - Should not affect algorithm correctness
 - May be run 0, 1, or multiple times
- Example: find average of all integers associated with the same key

```
1: class Mapper
       method Map(string t, integer r)
           Emit(string t, integer r)
3:
1: class Reducer.
       method Reduce(string t, integers [r_1, r_2, \ldots])
2:
           sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all integer r \in \text{integers } [r_1, r_2, \ldots] do
5:
               sum \leftarrow sum + r
6:
               cnt \leftarrow cnt + 1
7:
           r_{avg} \leftarrow sum/cnt
8:
           Emit(string t, integer r_{avg})
9:
```

Why can't we use reducer as combiner?

```
1: class Mapper
       method Map(string t, integer r)
           Emit(string t, integer r)
3:
1: class Combiner.
       method Combine(string t, integers [r_1, r_2, \ldots])
           sum \leftarrow 0
3:
     cnt \leftarrow 0
4:
           for all integer r \in \text{integers } [r_1, r_2, \ldots] do
5:
                sum \leftarrow sum + r
6:
               cnt \leftarrow cnt + 1
           EMIT(string t, pair (sum, cnt))

    Separate sum and count

1: class Reducer
       method Reduce(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
2:
           sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2)...] do
                sum \leftarrow sum + s
6:
               cnt \leftarrow cnt + c
7:
           r_{avg} \leftarrow sum/cnt
8:
           Emit(string t, integer r_{avq})
9:
```

Why doesn't this work?

```
1: class Mapper
       method Map(string t, integer r)
            Emit(string t, pair (r, 1))
3:
1: class Combiner.
       method Combine(string t, pairs [(s_1, c_1), (s_2, c_2)...])
2:
            sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
                sum \leftarrow sum + s
6:
                cnt \leftarrow cnt + c
7:
           EMIT(string t, pair (sum, cnt))
8:
1: class Reducer
       method Reduce(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
            sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
                sum \leftarrow sum + s
6:
                cnt \leftarrow cnt + c
7:
           r_{avq} \leftarrow sum/cnt
8:
            Emit(string t, pair (r_{avq}, cnt))
9:
```

```
1: class Mapper
2: method Initialize
3: S \leftarrow \text{new AssociativeArray}
4: C \leftarrow \text{new AssociativeArray}
5: method Map(string t, integer r)
6: S\{t\} \leftarrow S\{t\} + r
7: C\{t\} \leftarrow C\{t\} + 1
8: method Close
9: for all term t \in S do
10: Emit(term t, pair (S\{t\}, C\{t\}))
```

Are combiners still needed?

Algorithm Design: Running Example

- Term co-occurrence matrix for a text collection
 - $-M = N \times N \text{ matrix } (N = \text{vocabulary size})$
 - M_{ij} : number of times *i* and *j* co-occur in some context (for concreteness, let's say context = sentence)

• Why?

- Distributional profiles as a way of measuring semantic distance
- Semantic distance useful for many language processing tasks

MapReduce: Large Counting Problems

- Term co-occurrence matrix for a text collection
 - = specific instance of a large counting problem
 - A large event space (number of terms)
 - A large number of observations (the collection itself)
 - Goal: keep track of interesting statistics about the events
- Basic approach
 - Mappers generate partial counts
 - Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: "Pairs"

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For all pairs, emit (a, b) \rightarrow count
- Reducers sum up counts associated with these pairs
- Use combiners!

Pairs: Pseudo-Code

```
1: class Mapper
      method Map(docid a, doc d)
          for all term w \in \operatorname{doc} d do
3:
              for all term u \in NEIGHBORS(w) do
4:
                 EMIT(pair (w, u), count 1) \triangleright Emit count for each co-occurrence
5:
1: class Reducer
      method Reduce(pair p, counts [c_1, c_2, \ldots])
          s \leftarrow 0
3:
          for all count c \in \text{counts } [c_1, c_2, \ldots] do
4:
                                                              s \leftarrow s + c
5:
          EMIT(pair p, count s)
6:
```

"Pairs" Analysis

- Advantages
 - Easy to implement, easy to understand
- Disadvantages
 - Lots of pairs to sort and shuffle around (upper bound?)
 - Not many opportunities for combiners to work

Another Try: "Stripes"

Idea: group together pairs into an associative array

```
(a, b) \rightarrow 1

(a, c) \rightarrow 2

(a, d) \rightarrow 5

(a, e) \rightarrow 3

(a, f) \rightarrow 2

a \rightarrow \{ b: 1, c: 2, d: 5, e: 3, f: 2 \}
```

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For each term, emit a \rightarrow { b: count_b, c: count_c, d: count_d ... }
- Reducers perform element-wise sum of associative arrays

```
\begin{array}{c} a \rightarrow \{ \text{ b: 1, } \quad \text{d: 5, e: 3} \} \\ + \quad a \rightarrow \{ \text{ b: 1, c: 2, d: 2, } \quad \text{f: 2} \} \\ a \rightarrow \{ \text{ b: 2, c: 2, d: 7, e: 3, f: 2} \} \\ \text{Key: } \quad \text{cleverly-constructed data} \\ \text{brings together partial results} \end{array}
```

Stripes: Pseudo-Code

```
1: class Mapper
       method Map(docid a, doc d)
2:
           for all term w \in \operatorname{doc} d do
3:
               H \leftarrow \text{new AssociativeArray}
4:
               for all term u \in NEIGHBORS(w) do
5:
                  H\{u\} \leftarrow H\{u\} + 1
                                                           \triangleright Tally words co-occurring with w
6:
               Emit(Term w, Stripe H)
7:
  class Reducer
       method Reduce(term w, stripes [H_1, H_2, H_3, \ldots])
           H_f \leftarrow \text{new AssociativeArray}
3:
           for all stripe H \in \text{stripes } [H_1, H_2, H_3, \ldots] do
4:
                                                                            ▷ Element-wise sum
               SUM(H_f, H)
5:
           EMIT(term w, stripe H_f)
6:
```

"Stripes" Analysis

- Advantages
 - Far less sorting and shuffling of key-value pairs
 - Can make better use of combiners
- Disadvantages
 - More difficult to implement
 - Underlying object more heavyweight
 - Fundamental limitation in terms of size of event space

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices

Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

Relative Frequencies

 How do we estimate relative frequencies from counts?

$$f(B|A) = \frac{\text{count}(A, B)}{\text{count}(A)} = \frac{\text{count}(A, B)}{\sum_{B'} \text{count}(A, B')}$$

- Why do we want to do this?
- How do we do this with MapReduce?

f(B|A): "Stripes"

- Easy!
 - One pass to compute (a, *)
 - Another pass to directly compute f(B|A)

f(B|A): "Pairs"

 $(a, *) \rightarrow 32$

Reducer holds this value in memory

$$(a, b_1) \rightarrow 3$$

 $(a, b_2) \rightarrow 12$
 $(a, b_3) \rightarrow 7$
 $(a, b_4) \rightarrow 1$

 $(a, b_1) \rightarrow 3 / 32$ (a, b_2) \rightarrow 12 / 32 (a, b_3) \rightarrow 7 / 32 $(a, b_4) \rightarrow 1/32$

For this to work:

- Must emit extra (a, *) for every b_n in mapper
- Must make sure all a's get sent to same reducer (use partitioner)
- Must make sure (a, *) comes first (define sort order)
- Must hold state in reducer across different key-value pairs

"Order Inversion"

- Common design pattern
 - Computing relative frequencies requires marginal counts
 - But marginal cannot be computed until you see all counts
 - Buffering is a bad idea!
 - Trick: getting the marginal counts to arrive at the reducer before the joint counts
- Optimizations
 - Apply in-memory combining pattern to accumulate marginal counts

Synchronization: Pairs vs. Stripes

- Approach 1: turn synchronization into an ordering problem
 - Sort keys into correct order of computation
 - Partition key space so that each reducer gets the appropriate set of partial results
 - Hold state in reducer across multiple key-value pairs to perform computation
 - Illustrated by the "pairs" approach
- Approach 2: construct data structures that bring partial results together
 - Each reducer receives all the data it needs to complete the computation
 - Illustrated by the "stripes" approach

Secondary Sorting

- MapReduce sorts input to reducers by key
 - Values may be arbitrarily ordered
- What if want to sort value also?
 - E.g., $k \rightarrow (v_1, r), (v_3, r), (v_4, r), (v_8, r)...$

Secondary Sorting: Solutions

• Solution 1:

- Buffer values in memory, then sort
- Why is this a bad idea?

Solution 2:

- "Value-to-key conversion" design pattern: form composite intermediate key, (k, v₁)
- Let execution framework do the sorting
- Preserve state across multiple key-value pairs to handle processing

Recap: Tools for Synchronization

- Cleverly-constructed data structures
 - Bring data together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

Issues and Tradeoffs

- Number of key-value pairs
 - Object creation overhead
 - Time for sorting and shuffling pairs across the network
- Size of each key-value pair
 - De/serialization overhead
- Local aggregation
 - Opportunities to perform local aggregation varies
 - Combiners make a big difference
 - Combiners vs. in-mapper combining
 - RAM vs. disk vs. network

Mapreduce and Databases

Relational Algebra

- Primitives
 - Projection (π)
 - Selection (σ)
 - Cartesian product (×)
 - Set union (\cup)
 - Set difference (–)
 - Rename (ρ)
- Other operations
 - Join (⋈)
 - Group by... aggregation
 - **—** ...

Projection

Projection in MapReduce

- Easy!
 - Map over tuples, emit new tuples with appropriate attributes
 - Reduce: take tuples that appear many times and emit only one version (duplicate elimination)
 - Tuple t in R: Map(t, t) -> (t',t')
 - Reduce (t', [t', ...,t']) -> [t',t']
- Basically limited by HDFS streaming speeds
 - Speed of encoding/decoding tuples becomes important
 - Relational databases take advantage of compression

Selection

Selection in MapReduce

- Easy!
 - Map over tuples, emit only tuples that meet criteria
 - No reducers, unless for regrouping or resorting tuples (reducers are the identity function)
 - Alternatively: perform in reducer, after some other processing
- But very expensive!!! Has to scan the database
 - Better approaches?

Union, Set Intersection and Set Difference

- Similar ideas: each map outputs the tuple pair (t,t). For union, we output it once, for intersection only when in the reduce we have (t, [t,t])
- For Set difference?

Set Difference

- Map Function: For a tuple t in R, produce key-value pair (t, R), and for a tuple t in S, produce key-value pair (t, S).
- Reduce Function: For each key t, do the following.
 - 1. If the associated value list is [R], then produce (t, t).
 - 2. If the associated value list is anything else, which could only be [R, S], [S, R], or [S], produce (t, NULL).

Group by... Aggregation

- Example: What is the average time spent per URL?
- In SQL:
 - SELECT url, AVG(time) FROM visits GROUP BY url
- In MapReduce:
 - Map over tuples, emit time, keyed by url
 - Framework automatically groups values by keys
 - Compute average in reducer
 - Optimize with combiners

Relational Joins

Join Algorithms in MapReduce

- Reduce-side join
- Map-side join
- In-memory join
 - Striped variant
 - Memcached variant

Reduce-side Join

- Basic idea: group by join key
 - Map over both sets of tuples
 - Emit tuple as value with join key as the intermediate key
 - Execution framework brings together tuples sharing the same key
 - Perform actual join in reducer
 - Similar to a "sort-merge join" in database terminology

Example: Join By Map-Reduce

- Compute the natural join $R(A,B) \bowtie S(B,C)$
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

Α	В		В	С		Α	С
a ₁	b_1	M	b_2	C ₁	=	a_3	C ₁
a_2	b_1		b_2	c_2		a_3	c ₂
a_3	b_2		b_3	c_3		a_4	c ₃
a_4	b_3		9		4	J	
			S				
F	₹						

Map-Reduce Join

- Use a hash function h from B-values to 1...k
- A Map process turns:
 - Each input tuple R(a,b) into key-value pair (b,(a,R))
 - Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce process h(b)
 - Hadoop does this automatically; just tell it what k is.
- Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

Map-side Join: Parallel Scans

- If datasets are sorted by join key, join can be accomplished by a scan over both datasets
- How can we accomplish this in parallel?
 - Partition and sort both datasets in the same manner
- In MapReduce:
 - Map over one dataset, read from other corresponding partition
 - No reducers necessary (unless to repartition or resort)
- Consistently partitioned datasets: realistic to expect?

In-Memory Join

- Basic idea: load one dataset into memory, stream over other dataset
 - Works if R << S and R fits into memory
 - Similar to "hash Join" algorithm
- MapReduce implementation
 - Distribute R to all nodes
 - Map over S, each mapper loads R in memory, hashed by join key
 - For every tuple in S, look up join key in R
 - No reducers, unless for regrouping or resorting tuples

In-Memory Join: Variants

Striped variant:

- R too big to fit into memory?
- Divide R into R_1 , R_2 , R_3 , ... s.t. each R_n fits into memory
- Perform in-memory join: $\forall n$, R_n ⋈ S
- Take the union of all join results

Memcached join:

- Load R into memcached
- Replace in-memory hash lookup with memcached lookup

Memcached Join

- Memcached join:
 - Load R into memcached
 - Replace in-memory hash lookup with memcached lookup
- Capacity and scalability?
 - Memcached capacity >> RAM of individual node
 - Memcached scales out with cluster
- Latency?
 - Memcached is fast (basically, speed of network)
 - Batch requests to amortize latency costs

Which join to use?

- In-memory join > map-side join > reduce-side join
 - Why?
- Limitations of each?
 - In-memory join: memory
 - Map-side join: sort order and partitioning
 - Reduce-side join: general purpose

Processing Relational Data: Summary

- MapReduce algorithms for processing relational data:
 - Group by, sorting, partitioning are handled automatically by shuffle/sort in MapReduce
 - Selection, projection, and other computations (e.g., aggregation), are performed either in mapper or reducer
 - Multiple strategies for relational joins
- Complex operations require multiple MapReduce jobs
 - Example: top ten URLs in terms of average time spent
 - Opportunities for automatic optimization