Lingwistyka I – wykład 6

Adam Przepiórkowski i Agnieszka Patejuk

Kognitywistyka UW

28 marca 2017

Funkcje gramatyczne (z poprzedniego wykładu)

Etykiety powinny odróżniać różne podrzędniki tego samego elementu (np. podmiot od dopełnienia bliższego).

Definicje **funkcji gramatycznych** niezależne od języka – bardzo trudne. Różne (często skorelowane) rozumienia **podmiotu** (**SUBJ**):

- jeżeli czasownik uzgadnia się z jednym argumentem, to jest nim podmiot,
- w niektórych językach tylko podmioty wiążą zaimki anaforyczne:
 - ▶ Janek, pokazał Marysi, siebie, $*_{i/*_j}$ (samego/*samą).
 - ▶ Janek; pokazał Marysięj sobie $_{i/*_{j}}$ (samemu/*samej).
- zwykle tylko podmioty są kontrolowane przez argumenty wyższych czasowników:
 - Burza przestraszyła Ariela.
 - Prospero kazał burzy przestraszyć Ariela.
 - *Prospero kazał Arielowi burza przestraszyć.
 - Ariel przestraszył się burzy.
 - Prospero kazał Arielowi przestraszyć się burzy.
 - *Prospero kazał burzy Ariel przestraszyć się.

Funkcje gramatyczne (z poprzedniego wykładu)

Inne funkcje gramatyczne bardziej kontrowersyjne. Tu przyjmiemy (wstępnie) takie:

- dopełnienie bliższe, obj: przechodzi na podmiot w stronie biernej,
- dopełnienia dalsze:
 - ▶ nominalne: **OBL**_{dat}, **OBL**_{gen} itd.,
 - przyimkowe o ustalonym przyimku: OBLNA itd.,
 - ► określone semantycznie: OBL_{adl}, OBL_{abl}, OBL_{temp}, OBL_{manner} itp.,
- dopełnienia zdaniowe: COMP,
- dopełnienia bezokolicznikowe: xcomp.

Do tego:

modyfikatory: ADJ – też z etykietami: ADJ_{adl}, ADJ_{abl}, ADJ_{temp},
 ADJ_{manner} itp.,

Terminologia (niezależnie od konkretnego zestawu etykiet):

- podrzędniki = argumenty + modyfikatory
- argumenty = podmiot + (nieściśle) dopełnienia
- modyfikatory nazywa się też (nieściśle) okolicznikami

Dopełnienie bezokolicznikowe (z poprzedniego wykładu)

Antek obiecał Erykowi iść.

Antek kazał Erykowi iść.

Dopełnienie predykatywne

Antek jest miły.

Antek uczynił Eryka miłym.

Modyfikatory

Dzisiaj Antek szybko idzie.

Modyfikator podlegający kontroli

Antek idzie podskakując.

Przykład z etykietami

Współczesna lingwistyka aspiruje do bycia nauką twardą.

Omówienie pracy domowej

Praca domowa:

Narysuj drzewa zależnościowe dla następujących dwóch zdań:

- 1. Czekam na choćby pięć dobrych drzew zależnościowych!
- 2. Żadne się z tych drzew nie nadaje do pokazania.

Dla każdego z tych zdań narysuj dwa drzewa: w jednym nadrzędniki powinny być wyłonione na podstawie kryterium semantycznego (SEM na slajdach), a w drugim – na podstawie kryteriów morfoskładniowego (MS) i kryterium narzucania określonej wartości kategorii morfoskładniowej (GOV). Rozwiązanie powinno więc zawierać 4 rozwiązania, w następującej kolejności: 1 SEM, 1 MS/GOV, 2 SEM, 2 MS/GOV.

Na podstawie Kübler i in. 2009:

Definicje, notacja:

- dane **wypowiedzenie**: $S = w_1 \dots w_n$
- dany **zbiór etykiet**: $R = \{r_1, \ldots, r_m\}$
- wtedy **drzewo zależnościowe** dla S (przy danym R) to graf $G = \langle V, A \rangle$, gdzie $V = \{w_1, \dots, w_n\}$ (zbiór węzłów) i $A \subseteq V \times R \times V$ (zbiór etykietowanych krawędzi) spełniają następujące warunki:
 - |A| = |V| 1
 - $\exists v_r \in V \ \forall v \in V. \ v_r \to^* v$
- notacja
 - $w_i \rightarrow w_j$ oznacza, że $\langle w_i, r, w_j \rangle \in A$ dla pewnego r
 - ightarrow ightarrow to domknięcie zwrotne i przechodnie relacji ightarrow czyli:
 - w_i →* w_i zachodzi dla każdego w_i
 - ightharpoonup jeżeli $w_i
 ightharpoonup^* w_j$ oraz $w_j
 ightharpoonup w_k$ to $w_i
 ightharpoonup^* w_k$

Definicje (cd.):

- ▶ **krawędź** $\langle w_i, r, w_j \rangle \in A$ drzewa zależnościowego $G = \langle V, A \rangle$ jest **projektywna** wtw., gdy $w_i \rightarrow^* w_k$ dla wszystkich:
 - i < k < j jeżeli i < j, lub
 - j < k < i jeżeli j < i.
- drzewo zależnościowe $G=\langle V,A\rangle$ jest projektywnym drzewem zależnościowym jeżeli wszystkie krawędzie w A są projektywne,
- drzewo zależnościowe $G = \langle V, A \rangle$ jest nieprojektywnym drzewem zależnościowym jeżeli nie jest projektywnym drzewem zależnościowym.

Przykład (nie)projektywnych drzew zależnościowych...

Frankowicze powinni zacząć samodzielnie walczyć o swoje prawa.

Wpłynąłem na suchego przestwór oceanu.

A hearing is scheduled on the issue today.

Kübler S., McDonald R., Nivre J., 2009, Dependency Parsing, Morgan & Claypool.