11. Теорема о независимости функций от независимых случайных величин.

Линейные преобразования случайных величин, применения к гауссовским распределениям.

Независимость функций

Случайные величины $X_1,...X_n$ независимы, если $F_{X_1,...,X_n}(t_1,...,t_n)=F_{X_1}(t_1)...F_{X_n}(t_n).$

Если $ec{X}$ имеет абсолютно непрерывное распределение, то $X_1,...,X_n$ - независимы $\Leftrightarrow f_{X_1,...X_n}(t_1,...,t_n)=f_{X_1}(t_1)...f_{X_n}(t_n).$

Теорема о независимости функций от независимых случайных величин

Теорема 1. Пусть случайные величины X и Y независимы, g и h — функции из \mathbb{R} в \mathbb{R} . Тогда случайные величины g(X) и h(Y) также независимы.

Доказательство. Для любых $B_1 \subset \mathbb{R}$, $B_2 \subset \mathbb{R}$

$$\mathbf{P}(g(X) \in B_1, \ h(Y) \in B_2) = \mathbf{P}(X \in g^{-1}(B_1), \ Y \in h^{-1}(B_2)) =$$

$$= \mathbf{P}(X \in g^{-1}(B_1)) \, \mathbf{P}(Y \in h^{-1}(B_2)) = \mathbf{P}(g(X) \in B_1) \, \mathbf{P}(h(Y) \in B_2),$$
где $g^{-1}(B_1) = \{y : \ g(y) \in B_1\}, \ h^{-1}(B_2) = \{y : \ h(y) \in B_2\}.$

Пусть теперь случайная величина X обладает плотностью распределения $f_X(t)$. Образуем новую случайную величину Y = g(X), где g — некоторая неслучайная функция. Разумеется, Y не обязательно обладает плотностью, достаточно взять $g(t) \equiv C$, чтобы убедиться в этом. Однако если g такова, что $f_Y(t)$ все-таки существует, то как ее найти?

Начнем с рассмотрения функции распределения $F_Y(y)$.

$$F_Y(y) = \mathbf{P}(g(X) < y) = \mathbf{P}(X \in g^{-1}((-\infty, y))) = \int_{g^{-1}((-\infty, y))} f_X(u) du.$$

Теперь задача состоит в том, чтобы преобразовать полученный интеграл к виду

$$\int_{-\infty}^{y} h(t) dt$$

с некоторой подынтегральной функцией h(t), которая и будет являться плотностью для Y в соответствии с определением. Единого подхода здесь не существует, чаще всего помогает преобразовать интеграл к нужному виду подходящая замена переменных.

Линейные преобразования случайных величин

Теорема 25. Пусть ξ имеет функцию распределения $F_{\xi}(x)$ и плотность распределения $f_{\xi}(x)$, и постоянная а отлична от нуля. Тогда случайная величина $\eta = a\xi + b$ имеет плотность распределения

$$f_{\eta}(x) = \frac{1}{|a|} f_{\xi} \left(\frac{x-b}{a} \right).$$

Доказательство. Пусть сначала a > 0.

$$F_{\eta}(x) = \mathsf{P}(a\xi + b < x) = \mathsf{P}\Big(\xi < \frac{x - b}{a}\Big) = F_{\xi}\Big(\frac{x - b}{a}\Big) = \int_{-\infty}^{(x - b)/a} f_{\xi}(t) \ dt.$$

Сделаем замену переменной в последнем интеграле. Переменную t заменим на новую переменную y так: $t=\frac{y-b}{a}$. Тогда $dt=\frac{dy}{a}$, нижняя граница области интегрирования $t=-\infty$ перейдёт в $y=-\infty$, верхняя граница $t=\frac{x-b}{a}$ перейдёт в y=x. Получим

$$F_{\eta}(x) = \int_{-\infty}^{x} \frac{1}{a} f_{\xi}\left(\frac{y-b}{a}\right) dy.$$

Функция под интегралом есть искомая плотность распределения $f_{\eta}(y)$ случайной величины $\eta = a\xi + b$ при a > 0.

Пусть теперь a < 0.

$$F_{\eta}(x) = \mathsf{P}(a\xi + b < x) = \mathsf{P}\Big(\xi > \frac{x - b}{a}\Big) = \int_{(x - b)/a}^{+\infty} f_{\xi}(t) \ dt.$$

Сделаем ту же замену переменной. Но теперь граница интегрирования $t=+\infty$ перейдёт в $y=-\infty$, поскольку a<0. Получим

$$F_{\eta}(x) = \int_{x}^{-\infty} \frac{1}{a} f_{\xi}\left(\frac{y-b}{a}\right) dy = \int_{-\infty}^{x} \frac{1}{|a|} f_{\xi}\left(\frac{y-b}{a}\right) dy.$$

Функция под интегралом — плотность распределения $f_{\eta}(y)$ случайной величины $\eta = a\xi + b$ при a < 0.

Следствие 4. *Если* $\xi \in N_{0,1}$, *то* $\eta = \sigma \xi + a \in N_{a,\sigma^2}$. Доказательство. Действительно,

$$f_{\eta}(x) = \frac{1}{\sigma} f_{\xi}\left(\frac{x-a}{\sigma}\right) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}.$$

Следствие 5. $\mathit{Ecлu}\ \xi \in \ \mathrm{N}_{a,\sigma^2}, \ \mathit{mo}\ \frac{\xi-a}{\sigma} \in \ \mathrm{N}_{0,1}.$

Следствие 6. Если $\xi \in U_{0,1}$, то $a\xi + b \in U_{b,a+b}$ при a > 0.

Следствие 7. Если $\xi \in E_{\alpha}$, то $\alpha \xi \in E_{1}$.