Satisfiability with Equivalences in Agreement, Part 1

Krasimir Georgiev

September 1, 2016

Overview

Setups

Equivalence Relations

Reductions

Monadic Logics

Setups

- ▶ Use unary predicate symbols to "encode" data at elements of structures. For example, a permutation setup "encodes" a permutation at every element of a structure.
- ightharpoonup bits ightharpoonup bits

Bit Setups

- ▶ A *bit setup* is a predicate signature $B = \langle \boldsymbol{u} \rangle$ consisting of a single unary predicate symbol \boldsymbol{u} .
- ▶ The set of *bits* is $\mathbb{B} = \{0, 1\}$.
- ▶ For any B-structure \mathfrak{A} , define $[u:data]^{\mathfrak{A}}: A \to \mathbb{B}$ by:

$$[\mathbf{u}: data]^{\mathfrak{A}} \mathbf{a} = \begin{cases} 1 & \text{if } \mathfrak{A} \vDash \mathbf{u}(\mathbf{a}) \\ 0 & \text{otherwise.} \end{cases}$$

▶ If $d \in \mathbb{B}$, define the formula [u:eq-d](x) by:

$$[u:eq-d](x) = \begin{cases} u(x) & \text{if } d=1\\ \neg u(x) & \text{otherwise.} \end{cases}$$

• $\mathfrak{A} \models [u:eq-d](a) \text{ iff } [u:data]^{\mathfrak{A}} a = d.$

Bit Setups Formulas

Auxiliary formulas

$$egin{align} & [u ext{:eq}](x,y) = u(x) \leftrightarrow u(y) \ & [u ext{:eq-01}](x,y) =
eg u(x) \wedge u(y) \ & [u ext{:eq-10}](x,y) = u(x) \wedge
eg u(y). \end{split}$$

- ▶ $\mathfrak{A} \models [\mathbf{u}:eq](a,b)$ iff $[\mathbf{u}:data]^{\mathfrak{A}}a = [\mathbf{u}:data]^{\mathfrak{A}}b$.
- ▶ $\mathfrak{A} \models [u:eq-01](a,b)$ iff $[u:data]^{\mathfrak{A}}a = 0$ and $[u:data]^{\mathfrak{A}}b = 1$.
- $ightharpoonup \mathfrak{A} \vDash [u:eq-10](a,b) \text{ iff } [u:data]^{\mathfrak{A}} a = 1 \text{ and } [u:data]^{\mathfrak{A}} b = 0.$

Counter Setups

- ▶ The set of *t-bit numbers* is $\mathbb{B}_t = [0, 2^t 1]$.
- A *t-bit counter setup* is a predicate signature $C = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_t \rangle$ consisting of *t* unary predicate symbols.
- ▶ For any C-structure \mathfrak{A} , define the function $[C:data]^{\mathfrak{A}}: A \to \mathbb{B}_t$ that returns a t-bit number for any $a \in A$ by:

$$[\mathrm{C:data}]^{\mathfrak{A}} a = \sum_{1 \leq i \leq t} 2^{i-1} [u_i : \mathrm{data}]^{\mathfrak{A}} a.$$

Counter Setups Formulas

We can define *small* formulas with the following properties:

- $\mathfrak{A} \models [C:eq-d](a) \text{ iff } [C:data]^{\mathfrak{A}} a = d.$
- ▶ $\mathfrak{A} \models [C:eq](a,b)$ iff $[C:data]^{\mathfrak{A}}a = [C:data]^{\mathfrak{A}}b$.
- ▶ the *t*-bit bitstring a encodes a number less than the *t* bitstring b iff there is a position $j \in [1, t]$ such that $a_j = 0$, $b_j = 1$ and $a_k = b_k$ for $k \in [j+1, t]$.

$$[\text{C:less}](\boldsymbol{x},\boldsymbol{y}) = \bigvee_{1 \leq j \leq t} [\boldsymbol{u}_j : \text{eq-01}](\boldsymbol{x},\boldsymbol{y}) \wedge \bigwedge_{j < k \leq t} [\boldsymbol{u}_k : \text{eq}](\boldsymbol{x},\boldsymbol{y}).$$

- $\mathfrak{A} \models [C:succ](a,b) \text{ iff } [C:data]^{\mathfrak{A}}b = 1 + [C:data]^{\mathfrak{A}}a.$
- ▶ $\mathfrak{A} \models [C:betw-d-e](a)$ iff $d \leq [C:data]^{\mathfrak{A}} a \leq e$.

Vector Setups

- ▶ The set of *n*-dimensional *t*-bit vectors is \mathbb{B}_t^n .
- An *n-dimensional t-bit vector setup* is a predicate signature $V = \langle \boldsymbol{u}_{11}, \boldsymbol{u}_{12}, \dots, \boldsymbol{u}_{nt} \rangle$ of (nt) distinct unary predicate symbols.
- ► The *counter setup* V(p) of V at position $p \in [1, n]$ is $V(p) = \langle \boldsymbol{u}_{p1}, \boldsymbol{u}_{p2}, \dots, \boldsymbol{u}_{pt} \rangle$.
- $[V:data]^{\mathfrak{A}} a = ([V(1):data]^{\mathfrak{A}} a, [V(2):data]^{\mathfrak{A}} a, \dots, [V(n):data]^{\mathfrak{A}} a).$

Vector Setups Formulas

- ▶ $\mathfrak{A} \models [V(pq):eq](a) \text{ iff } [V(p):data]^{\mathfrak{A}} a = [V(q):data]^{\mathfrak{A}} a.$
- $\mathfrak{A} \models [V(pq):less](a) \text{ iff } [V(p):data]^{\mathfrak{A}} a < [V(q):data]^{\mathfrak{A}} a.$
- $ightharpoonup \mathfrak{A} dash [V(pq):succ](a) ext{ iff } [V(q):data]^{\mathfrak{A}} a = 1 + [V(p):data]^{\mathfrak{A}} a.$
- ▶ $\mathfrak{A} \models [V:less](a,b)$ iff $[V:data]^{\mathfrak{A}} a \prec [V:data]^{\mathfrak{A}} b$: antilexicographic ordering, e.g. $(1,1,0) \prec (0,0,1)$.

Permutation Setups

- ▶ The set of permutations of [1, n] is \mathbb{S}_n .
- ▶ Encode an *n*-permutation $\nu \in \mathbb{S}_n$ by the *n*-dimensional *t*-bit vector $(\nu(1), \nu(2), \dots, \nu(n))$, where *t* is the bitsize of *n*.
- An *n-permutation setup* $P = \langle \boldsymbol{u}_{11}, \boldsymbol{u}_{12}, \dots, \boldsymbol{u}_{nt} \rangle$ is just an *n*-dimensional *t*-bit vector.
- ▶ The formula [P:perm] = [P:betw-1-n] \land [P:alldiff] asserts that the vector setup encodes exactly the permutations.

Let E_1, E_2, \ldots, E_n be a sequence of equivalence relations on A.

▶ The sequence is in *refinement* if it forms a chain under inclusion, that is if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n$.

Let E_1, E_2, \ldots, E_n be a sequence of equivalence relations on A.

- ▶ The sequence is in *refinement* if it forms a chain under inclusion, that is if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n$.
- ▶ The sequence is in *global agreement* if it can be rearranged into a chain under inclusion, that is if $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(n)}$ for some permutation ν of [1, n].

Let E_1, E_2, \ldots, E_n be a sequence of equivalence relations on A.

- ▶ The sequence is in *refinement* if it forms a chain under inclusion, that is if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n$.
- ▶ The sequence is in *global agreement* if it can be rearranged into a chain under inclusion, that is if $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(n)}$ for some permutation ν of [1, n].
- ▶ The sequence is in *local agreement* if for every $a \in A$, the sequence of equivalence classes $E_1[a], E_2[a], \ldots, E_n[a]$ can be rearranged into a chain under inclusion, that is if for every $a \in A$ there is some permutation $\nu(a)$ of [1, n] such that $E_{\nu(a)(1)}[a] \subseteq E_{\nu(a)(2)}[a] \subseteq \cdots \subseteq E_{\nu(a)(n)}[a]$.

Let E_1, E_2, \ldots, E_n be a sequence of equivalence relations on A.

- ▶ The sequence is in *refinement* if it forms a chain under inclusion, that is if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n$.
- ▶ The sequence is in *global agreement* if it can be rearranged into a chain under inclusion, that is if $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(n)}$ for some permutation ν of [1, n].
- ▶ The sequence is in *local agreement* if for every $a \in A$, the sequence of equivalence classes $E_1[a], E_2[a], \ldots, E_n[a]$ can be rearranged into a chain under inclusion, that is if for every $a \in A$ there is some permutation $\nu(a)$ of [1, n] such that $E_{\nu(a)(1)}[a] \subseteq E_{\nu(a)(2)}[a] \subseteq \cdots \subseteq E_{\nu(a)(n)}[a]$.
- lacktriangledown refinement \Longrightarrow local agreement

Intuitions

Intuitively,

▶ global agreement = refinement + a permutation.

Intuitions

Intuitively,

- ▶ global agreement = refinement + a permutation.
- ▶ local agreement = refinement + locally agreeing permutations.

Local Agreement - Example

Example of a sequence E_1, E_2, E_3 in local agreement:

Local Agreement - Characterization

Lemma

The sequence E_1 , E_2 of two equivalence relations on A is in local agreement iff $E_1 \cup E_2$ is an equivalence relation on A.

Theorem

The sequence E_1, E_2, \ldots, E_n of equivalence relations on A is in local agreement iff the union of any nonempty subsequence is an equivalence relation on A, that is for any $m \in [1, n]$ and $1 \le i_1 < i_2 < \cdots < i_m \le n$ we have that $E_{i_1} \cup E_{i_2} \cup \cdots \cup E_{i_m}$ is an equivalence relation on A.

Levels

The *level sequence* L_1, L_2, \ldots, L_n of the sequence E_1, E_2, \ldots, E_n of equivalence relations on A in local agreement is defined by:

$$L_m = \bigcap \{E_{i_1} \cup E_{i_2} \cup \dots \cup E_{i_m} \mid 1 \leq i_1 < i_2 < \dots < i_m \leq n\}.$$

Remark

The level sequence is a sequence of equivalence relations on A in refinement.

Example

Permutations

Lemma

Let E_1, E_2, \ldots, E_n be a sequence of equivalence relations on A in local agreement having level sequence L_1, L_2, \ldots, L_n . Suppose that $a \in A$ and that ν is any permutation witnessing the local agreement at a:

$$E_{\nu(1)}[a] \subseteq E_{\nu(2)}[a] \subseteq \cdots \subseteq E_{\nu(n)}[a].$$

Then $L_k[a] = E_{\nu(k)}[a]$ for any $k \in [1, n]$.

Notation

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- \triangleright \mathcal{L} , the ground logic, is the first-order logic with formal equality
- v, if given, bounds the number of allowed variables
- e, if given, specifies the number of builtin equivalence symbols
- a ∈ {refine, global, local}, if given, specifies the agreement condition between the equivalence symbols
- ▶ p, the signature power, specifies constraints on the signature:
 - if p = 0, the signature consists of only constantly many unary predicate symbols
 - ▶ if p = 1, the signature consists of arbitrary many unary predicate symbols
 - ▶ if *p* is not given, the signature consists of arbitrary many unary and binary predicate symbols

Examples

- $\mathcal{L}_0 1E$ is the logic of a single equivalence
- \triangleright \mathcal{L}_1 is the monadic fragment
- $ightharpoonup \mathcal{L}^2 2E_{\text{local}}$ is the two-variable logic featuring unary and binary predicate symbols in addition to two builtin equivalence symbols in local agreement

Strategy

Can we reduce (FIN-)SAT- $\mathcal{L}eE_{\text{global}}$ and (FIN-)SAT- $\mathcal{L}eE_{\text{local}}$ to (FIN-)SAT- $\mathcal{L}eE_{\text{refine}}$?

Strategy

Can we reduce (FIN-)SAT- $\mathcal{L}eE_{global}$ and (FIN-)SAT- $\mathcal{L}eE_{local}$ to (FIN-)SAT- $\mathcal{L}eE_{refine}$? Idea (for local agreement):

- ► Look at the levels
- ► Encode a permutation witnessing the local agreement at each element in a permutation setup
- ▶ Define formulas that recover the original equivalences from the levels and the permutations
- Not every combination of levels and permutations defines local agreement ⇒ need to constrain the permutations

Characteristic Permutations

Consider an $\mathcal{L}e\mathrm{E}_{\mathsf{local}}$ -signature Σ containing the e builtin equivalence symbols $\mathrm{E} = \langle \boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_e \rangle$. Suppose that $\mathfrak A$ is a Σ -structure, let $E_i = \boldsymbol{e}_i^{\mathfrak A}$ and let $a \in A$. The *characteristic permutation* ν at a is the antilexicographically smallest permutation satisfying:

$$E_{\nu(1)}[a] \subseteq E_{\nu(2)}[a] \subseteq \cdots \subseteq E_{\nu(e)}[a].$$

Collect the characteristic permutations in $[\Sigma: \operatorname{chperm}]^{\mathfrak{A}}: A \to \mathbb{S}_e$.

Local Agreement of Permutations

Remark

Let L_1, L_2, \ldots, L_e be the levels of E_i . For any two elements $a, b \in A$, let $\alpha = [\Sigma: \text{chperm}]^{\mathfrak{A}} a$ and $\beta = [\Sigma: \text{chperm}]^{\mathfrak{A}} b$ be their characteristic permutations.

If $(a, b) \in L_k$, then $\alpha(k) = \beta(k)$. That is, if a and b are connected at level k, then their characteristic permutations agree at position k.

Levels and Permutations

Let $L = \langle I_1, I_2, \dots, I_e \rangle + P$ consist of the builtin equivalence symbols I_1 (we intend to interpret them as the levels) together with the permutation setup P (intended to encode the characteristic permutations).

The formula

[L:fixperm] =
$$\forall x \forall y \bigwedge_{1 \leq k \leq e} (I_k(x, y) \rightarrow [P(k):eq](x, y)).$$

encodes the local agreement of permutations.

Recovering

The formulas

$$[\text{L:el-}i](\pmb{x},\pmb{y}) = \bigwedge_{1 \leq k \leq e} ([\text{P}(k):\text{eq-}i](\pmb{x}) o \pmb{I}_k(\pmb{x},\pmb{y})).$$

recover the original equivalences $(i \in [1, e])$.

Remark

Suppose that $\mathfrak A$ is an L-structure satisfying $[P:perm] \wedge [L:fixperm]$ such that the level symbols I_i are interpreted as a sequence of equivalence relations in refinement. Let $L_i = I_i^{\mathfrak A}$ be the interpretation of the levels and let $E_i = [L:el-i]^{\mathfrak A}$. Then E_i is a sequence of equivalence relations in local agreement and $L_k[a] = E_{\alpha(k)}[a]$ for any $a \in A$ and $\alpha = [P:data]^{\mathfrak A}$.

Translation

Let
$$\Sigma' = \Sigma + L$$
 and $L' = \Sigma' - E$.
Translation $\operatorname{ltr} \varphi : \mathcal{L}[\Sigma] \to \mathcal{L}[L']$:

$$\mathsf{ltr}\,\varphi=\varphi'\wedge [\mathsf{L}\mathsf{:locperm}],$$

where [L:locperm] = [P:perm] \land [L:fixperm] and φ' is obtained from φ by replacing all occurrences of $e_i(x, y)$ by [L:el-i](x, y).

Remark

 φ is (finitely) satisfiable over $\mathcal{L}eE_{local}$ iff $ltr \varphi$ is (finitely) satisfiable over $\mathcal{L}eE_{refine}$.

- ▶ If $\mathfrak{A} \models \varphi$, interpret I_i as the levels and encode [Σ:chperm]^{\mathfrak{A}} in the permutation setup P.
- ▶ If $\mathfrak{A}' \models \operatorname{ltr} \varphi$, interpret e_i as [L:el-i].

Translation

The translation just uses polynomially many new unary predicate symbols.

Proposition

- ► The logic LeE_{local} has the finite model property iff the logic LeE_{refine} has the finite model property.
- ► The corresponding satisfiability problems are polynomial-time equivalent.
- ▶ Also works for $\mathcal{L}_1 e E_{local}$ and $\mathcal{L}^2 e E_{local}$.

Results

It is known that:

- $ightharpoonup \mathcal{L}_1$ has the finite model property and (FIN-)SAT- \mathcal{L}_1 is NEXPTIME-complete
- $ightharpoonup \mathcal{L}_01\mathrm{E}$ has the finite model property and (FIN-)SAT- \mathcal{L}_1 is PSPACE-complete
- $ightharpoonup \mathcal{L}_0 ext{2E}$ lacks the finite model property and both (FIN-)SAT- \mathcal{L}_2 are undecidable

Results

It is known that:

- $ightharpoonup \mathcal{L}_1$ has the finite model property and (FIN-)SAT- \mathcal{L}_1 is NEXPTIME-complete
- ▶ $\mathcal{L}_01\mathrm{E}$ has the finite model property and (FIN-)SAT- \mathcal{L}_1 is PSPACE-complete
- $ightharpoonup \mathcal{L}_0 ext{2E}$ lacks the finite model property and both (FIN-)SAT- \mathcal{L}_2 are undecidable
- ▶ How about $\mathcal{L}_1 1E$?

Results

It is known that:

- $ightharpoonup \mathcal{L}_1$ has the finite model property and (FIN-)SAT- \mathcal{L}_1 is NEXPTIME-complete
- ▶ $\mathcal{L}_01\mathrm{E}$ has the finite model property and (FIN-)SAT- \mathcal{L}_1 is PSPACE-complete
- $ightharpoonup \mathcal{L}_0 ext{2E}$ lacks the finite model property and both (FIN-)SAT- \mathcal{L}_2 are undecidable
- ▶ How about $\mathcal{L}_1 1E$?
- We show that $\mathcal{L}_1 1E$ has the finite model property and its (finite) satisfiability problem is N2ExpTIME-complete.
- ▶ In general $\mathcal{L}_1e\mathrm{E}_{\mathsf{refine}}$ has the finite model property and its (finite) satisfiability problem is $\mathrm{N}(e+1)\mathrm{ExpTime}$ -complete.

Cells

Suppose that $\Sigma = \Sigma(u, 1) = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_u, \boldsymbol{e} \rangle$, where the symbols \boldsymbol{u}_i are unary and \boldsymbol{e} is a builtin equivalence symbol. Let \mathfrak{A} be a Σ -structure. A *cell* $C \subseteq A$ is a maximal set of \boldsymbol{e} -equivalent elements satisfying the same \boldsymbol{u} -predicates.

Example

Small Cells

Lemma

Let $r \geq 1$ and suppose that $\mathfrak A$ is a Σ -structure. Then there is a substructure $\mathfrak B \subseteq \mathfrak A$ such that $\mathfrak B \equiv_r \mathfrak A$ and every $\mathfrak B$ -cell has cardinality at most r.

Proof Idea.

For every \mathfrak{A} -cell, if it has less than r elements select them all, otherwise select any r elements. Consider \mathfrak{B} induced by the selected elements. Win the r-round Ehrenfeucht-Fraïssé game as Duplicator: If the challenge has already been played, reply as before. If the challenge is new, choose a new selected element from the same cell. Since the game lasts r rounds, you'll never run out of selected elements.

Few Isomorphic Classes

Lemma

Let $r \geq 1$ and suppose that $\mathfrak A$ is a Σ -structure. Then there is a substructure $\mathfrak B \subseteq \mathfrak A$ such that $\mathfrak B \equiv_r \mathfrak A$ and $\mathfrak B$ -class is isomorphic to at most (r-1) other $\mathfrak B$ -classes.

Combining these and doing the math, we get:

Remark

Let $\mathfrak A$ be a $\Sigma(u,1)$ -structure and let $r\geq 1$. There is some $\mathfrak B\subseteq \mathfrak A$ such that $\mathfrak B\equiv_r \mathfrak A$ and $|B|\leq r^22^u((r+1)^{2^u}-1)$.

Few Isomorphic Classes

Lemma

Let $r \geq 1$ and suppose that $\mathfrak A$ is a Σ -structure. Then there is a substructure $\mathfrak B \subseteq \mathfrak A$ such that $\mathfrak B \equiv_r \mathfrak A$ and $\mathfrak B$ -class is isomorphic to at most (r-1) other $\mathfrak B$ -classes.

Combining these and doing the math, we get:

Remark

Let $\mathfrak A$ be a $\Sigma(u,1)$ -structure and let $r\geq 1$. There is some $\mathfrak B\subseteq \mathfrak A$ such that $\mathfrak B\equiv_r \mathfrak A$ and $|B|\leq r^22^u((r+1)^{2^u}-1)$.

This is doubly exponential with respect to the size of φ , hence (FIN-)SAT- \mathcal{L}_11E is in N2EXPTIME.

Hardness

Reduce the N2ExpTime-complete Square Domino Tiling Problem to (FIN-)SAT- \mathcal{L}_1 1E.

A domino system is a triple D=(T,H,V), where T=[1,k] is a set of tiles and $H,V\subseteq T\times T$ are the horizontal and vertical matching relations. A tiling of the $m\times m$ square for a domino system D with initial condition $c^0=\langle t_1^0,t_2^0,\ldots,t_n^0\rangle$, where $n\leq m$, is a mapping $t:[1,m]\times[1,m]\to T$ such that:

- ▶ $(t(i,j), t(i+1,j)) \in H$ for all $i \in [1, m-1], j \in [1, m]$
- ▶ $(t(i,j), t(i,j+1)) \in V$ for all $i \in [1, m], j \in [1, m-1]$
- ▶ $t(i,1) = t_i^0$ for all $i \in [1, n]$

Domino Problem

There is a domino system D_0 such that the problem of asking if there exists a tiling for D_0 with initial condition c_0 of length n for the $2^{2^n} \times 2^{2^n}$ -square is N2EXPTIME-complete.

Hardness

Main issue: given $\Sigma = \Sigma(u,1) = \langle u_1, u_2, \dots, u_u, e \rangle$, how can we define a doubly exponential grid?

Hardness

Main issue: given $\Sigma = \Sigma(u,1) = \langle u_1, u_2, \dots, u_u, e \rangle$, how can we define a doubly exponential grid? Idea:

- ► Each class can contain exponentially many cells
- If we encode bits in cells, the classes encode doubly exponential numbers

Encoding

- We can ensure that every class contains maximally many 2^u cells
- ▶ A cell containing a single element encodes bit 0:

$$[\Sigma: \mathsf{bit-0}](x) = orall y \, (e(y,x) \wedge [\Sigma: \mathsf{pos-eq}](y,x) o y = x) \, .$$

▶ A cell containing more elements encodes bit 1:

$$[\Sigma: \mathsf{bit-1}](x) = \exists y \, (e(y,x) \land [\Sigma: \mathsf{pos-eq}](y,x) \land y \neq x).$$

Data

Let $\mathfrak A$ be a Σ -structure and let $E=e^{\mathfrak A}$. The number encoded by the bitstring b is $\underline b$.

- ▶ With a bit of work we can define $[\Sigma:Data]^{\mathfrak{A}}: \mathscr{E}E \to \mathbb{B}^{2^u}$ that assigns exponential bitstrings (hence doubly exponential numbers) to the classes of \mathfrak{A} .
- ▶ $\mathfrak{A} \models [\Sigma: \mathsf{Zero}](a) \text{ iff } [\Sigma: \mathsf{Data}]^{\mathfrak{A}} E[a] = 0$
- $\mathfrak{A} \models [\Sigma:Succ](a,b) \text{ iff } [\Sigma:Data]^{\mathfrak{A}}E[b] = 1 + [\Sigma:Data]^{\mathfrak{A}}E[a]$
- etc.

Reduction

Given $D_0=(T,V,H)$, T=[1,k] and $c^0=\langle t_1^0,t_1^0,\ldots,t_n^0\rangle$, consider:

$$\begin{split} & \Sigma = \left\langle \mathbf{u}_1^H, \mathbf{u}_2^H, \dots, \mathbf{u}_n^H; \mathbf{u}_1^V, \mathbf{u}_2^V, \dots, \mathbf{u}_n^V; \mathbf{u}_1^T, \mathbf{u}_2^T, \dots, \mathbf{u}_k^T; \mathbf{e} \right\rangle \\ & \Sigma^{HV} = \left\langle \mathbf{u}_1^H, \mathbf{u}_2^H, \dots, \mathbf{u}_n^H; \mathbf{u}_1^V, \mathbf{u}_2^V, \dots, \mathbf{u}_n^V; \mathbf{e} \right\rangle \\ & \Sigma^H = \left\langle \mathbf{u}_1^H, \mathbf{u}_2^H, \dots, \mathbf{u}_n^H; \mathbf{e} \right\rangle \\ & \Sigma^V = \left\langle \mathbf{u}_1^V, \mathbf{u}_2^V, \dots, \mathbf{u}_n^V; \mathbf{e} \right\rangle \end{split}$$

Reduction

- [Σ^{HV} :pos-full] \wedge [Σ^{HV} :Full] \wedge [Σ^{HV} :Alldiff] defines a full doubly exponential grid
- ▶ $\forall x \left(\bigvee_{1 \leq i \leq k} \left(\boldsymbol{u}_i^T(x) \land \bigwedge_{j \in [1,k] \setminus \{i\}} \neg \boldsymbol{u}_j^T(x)\right)\right)$ asserts that every element has a unique type
- ▶ $\forall x \forall y \Big(e(x, y) \rightarrow \bigwedge_{1 \leq i \leq k} (u_i^T(x) \leftrightarrow u_i^T(x)) \Big)$ asserts that the type is the same in each class

Reduction

- $ightharpoonup orall x \Big([\mathrm{D}^H : \mathsf{Eq} \cdot (j-1)](x) \wedge [\mathrm{D}^V : \mathsf{Zero}](x) o oldsymbol{u}_{t_j^0}^T(x) \Big) ext{ encodes}$ the inital condition
- ▶ $\forall x \forall y ([D^H:Succ](x,y) \land [D^V:Eq](x,y) \rightarrow \bigvee_{(i,j)\in H} u_i^T(x) \land u_j^T(y))$ encodes the horizontal tiling condition