NOIP 模拟赛

题目名称	袋鼠	黎明卿	三角形	历史
目录	algebra	bondorudo	delta	history
可执行文件名	algebra	bondorudo	delta	history
输入文件名	algebra.in	bondorudo.in	delta.in	history.in
输出文件名	algebra.out	bondorudo.out	delta.out	history.out
每个测试点时限	1秒	1秒	1秒	2 秒
题目类型	传统	传统	传统	传统
内存上限	256M	256M	256M	512M
-O2	有	有	有	有

提交源程序须加后缀:

对于 Pasca	1 语言	algebra.pas	bondorudo.pas	delta.pas	history.pas
对于 C	语言	algebra.c	bondorudo.c	delta.c	history.c
对于 C++	语言	algebra.cpp	bondorudo.cpp	delta.cpp	history.cpp

袋鼠 (algebra)

【题目描述】

你知道吗?乌拉圭的人口有345.7万,同时,仅澳大利亚就有4700万只袋鼠。

袋鼠决定入侵乌拉圭。袋鼠们将在平原上布阵,平原被划分成 $n \times m$ 的网格。每个格子里至多有一只袋鼠。

为了抵御袋鼠的入侵,你需要预测敌人的阵型。具体地,你需要计算袋鼠阵型的数目,满足平原网格中每行、每列的袋鼠数目之和均为 K.

如果袋鼠入侵了乌拉圭,那么每一个乌拉圭人都要打 14 只袋鼠。你不知道,你不在乎,你只会在这里写这道无聊的题,你只关心你自己。

【输入格式】

从文件 algebra.in 中读入数据。 一行,三个整数 n, m, K.

【输出格式】

输出到文件 algebra.out 中。 输出一行,一个整数,表示答案。

【样例1输入输出】

algebra.in	algebra.out
3 3 1	6

【样例1解释】

满足样例输入的矩阵共有 6 个,其中之一为 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

【样例 2 输入输出】

algebra.in	algebra.out
4 4 3	24

【数据范围和提示】

本题采用捆绑测试。对于所有数据,满足 $1 \le n, m \le 9, 0 \le K \le \min(n, m)$.

子任务见下表:

子任务编号	$\max(n, m)$	分值
1	≤ 3	
2	\leq 4	10
3	≤ 5	10
4	≤ 6	
5	≤ 7	
6	≤ 8	20
7	≤ 9	

黎明卿 (bondorudo)

【题目描述】

作为开启黎明的白笛,黎明卿波多尔多具有令人胆寒的实力。

黎明卿的一项重要能力是精神隶属机 (Zoaholic)。在第五层基地内有n位祈手,黎明卿将他们编号为1,2,...,n。每个祈手都是黎明卿潜在的灵魂容器:黎明卿在某一时刻附身在其中一人上,同时,黎明卿可以随时将灵魂转入与当前被附身对象不同的、满足某类条件的某位祈手的躯壳中。

起初,所有祈手之间都相斥,这意味着黎明卿无法进行灵魂转移。黎明卿将对祈手们进行 m 次改造:每次,他会选择一对相斥的祈手,使这对祈手间的关系变为相容,亦即,在改造后,如果黎明卿附身在其中一位祈手身上,它可以随时将灵魂转移到另一名祈手上。

不幸的是,当战争来临时,一些祈手可能被入侵者破坏。聪明的入侵者们会 选择消灭最少数量的祈手,使得黎明卿的阵型被破坏:在破坏结束后,无论黎明 卿当前附身于哪一个未被消灭的祈手,他都无法直接或间接地将灵魂转移到所有 未被消灭的祈手身上。

为了使自己的能力最大化,黎明卿希望得出一种改造方案,使得:在由这一方案改造而成的阵型下,若入侵者们想要破坏这一阵型,需要消灭的祈手的数量最大。

【输入格式】

从文件 bondorudo.in 中读入数据。

一行,两个整数 n.m.

输入存在一些限制,详见数据范围。

【输出格式】

输出到文件 bondorudo.out 中。

输出的第一行,一个整数,表示祈手们破坏阵型需要消灭祈手的数目。

以下m行,每行两个以空格隔开的整数x,y,表示一次改造,使祈手x,y间的状态转为相容。

若有多解,任意输出一组即可。

【样例输入输出】

bondorudo.in	bondorudo.out
5 6	2
	1 2
	2 3
	3 4

4 5
5 1
1 4

【样例解释】

黎明卿一种改造方案如上:两个点(祈手)间有边意味着它们的关系变为相容。入侵者最少消灭的祈手数目为2——将1和4号祈手消灭,这样,若黎明卿附身于5号,则他无法将灵魂转移到2、3号祈手身上;若他附身于2号或3号祈手,则5号亦无法被直接或间接地附身。可以证明,不存在一种改造方案,使入侵者最少需要消灭3个或以上的祈手才能破坏阵型。

【数据范围和提示】

本题采用捆绑测试。

对于所有数据,满足 $5 \le n \le 50$, $n-1 \le m \le 2n-1$. 子任务见下表:

子任务编号	n	m	分值
1	= 5		10
2	≤ 10	-	30
3	/ [0	$\leq n$	10
4	≤ 50	-	50

三角形 (delta)

【题目描述】

马老师驾驶着袋鼠入侵了乌拉圭。作为开启黎明的白笛,黎明卿波多尔多需要保卫他的祖国。

马老师指挥着袋鼠进行了变阵。(n+1)(m+1) 只袋鼠分别位于 $n \times m$ 的网格的顶点上,每个顶点恰有一只袋鼠。

黎明卿的祈手十分棘手,但马老师有他的高招。在网格中,如果三只袋鼠可以组成一个面积为 *K* 的整数倍的非退化三角形,则它们形成了一个马氏三角杀。

现在,请你帮助黎明卿计算袋鼠阵中马氏三角杀的数目,以挽救乌拉圭的345.7万人民。

【输入格式】

从文件 delta.in 中读入数据。 一行,三个整数 n, m, K.

【输出格式】

输出到文件 delta.out 中。

输出一行,一个整数,表示答案对109+7取模后的值。

【样例1输入输出】

delta.in	delta.out
456	146

【样例 2 输入输出】

delta.in	delta.out
12 34 5	2071928

【数据范围和提示】

本题采用捆绑测试。

对于所有数据,满足 $1 \le n, m \le 10^6$, $1 \le K \le 100$.

子任务见下表:

子任务编号	$\max(n, m)$	K	分值
1	≤ 20		15
2	≤ 100	-	5
3	$\leq 10^{3}$	= 1	20
4	≥ 10°	= 2	5
5	$\leq 10^{5}$	= 1	ס
6	≥ 10°	≤ 100	10
7		= 1	5
8	- 106	≤ 10	ס
9	$\leq 10^6$	≤ 40	10
10		≤ 100	20

历史 (history)

【题目描述】

在历史上,有这样一个国家,这个国家由n个村庄组成。第i个村庄有 a_i 个人。由于每个村庄都实行严格的计划生育,在整个历史的过程中,每个村庄的人数都没有变化。

这n个村庄线性排列在一条线上,并且只有相邻的村庄能互通。也就是说,对于所有的 $1 \le i < n$,村庄i和i+1存在一条边。除了这些边外,其他村庄之间不能同行。换句话说,对于i < j,如果想要从i走到j,那么必须经过i,i+1,...,j-1,j这些村庄。

村庄之间经常会闹矛盾,小矛盾可能不久后会解决,但是大矛盾就危险了,如果村庄i,i+1之间闹大矛盾,那么这两个村庄就会断绝来往,并且破坏之间的道路。这样一来,村庄之间就不连通了。

一个国家一旦不连通是非常致命的,所以这个国家的领导者会放弃这个国家 (???),并且在剩下的两个连通块中选择村庄数较多的一个,把它作为自己 的新国家。如果左右两个连通块的村庄数相同,那么他会选择右边的(村庄编号 大的)连通块。

当然,另一个被放弃的连通块也不会消失,他们会举行一次选举,选出新的领导者。这次选举每个人都有选举权,所以每个人都有一张选票。因此,这次选举需要制作连通块内村庄人数之和的选票。

在经过这样的操作后,一个国家就会分裂成两个国家了。

然而,村庄之间的矛盾并不会消除,只要两个村庄还在一个国家中,之后还会有村庄之间闹大矛盾。因此,这些村庄还会变成三个,四个,直到最后变成n个国家。

不过值得庆幸的是,发生大矛盾的概率很低,所以在历史的长河中,需要隔很久才会发生一次国家的分裂,并且每条边分裂的概率相等。

尽管如此,最后这些村庄还是分裂成了n个国家。

"听完这个故事,你有什么感想?"小H说。

"这个故事有任何寓意吗?不对,这是个故事吗?"宫水三叶说。

"是吗?那我问你,从一个国家到n个国家,期望制作了多少张选票?当然,我问的是对 998244353 取模后的值。"小 H 说。

【形式化题意】

给定一个长度为n的链,第i个点的点权为 a_i ,其中对于所有的 $1 \le i < n$,点i和点i+1相连。

总共有n-1次操作,每次操作等概率会选择一条还未断开的边,然后把它断开。此次操作的权值为剩下两部分中**点数较少**的部分的**点权之和**,如果两部分点数相等,权值为**点编号较小**的那部分的**点权之和**。

【输入格式】

从文件 history.in 中读入数据。

第一行一个整数n。

第二行n个整数,第i个数表示 a_i ,即第i个村庄的人数。

【输出格式】

输出到文件 history.out 中。

输出一行,表示期望的选票数量对998244353取模后的结果。

【样例1输入输出】

history.in	history.out
3	499122180
1 2 3	

【样例1解释】

如果先断开 (1,2) , 再断开 (2,3) , 那么权值为 1+2=3 。 如果先断开 (2,3) , 再断开 (1,2) , 那么权值为 3+1=4 。 因此期望值为 $\frac{3+4}{2}=\frac{7}{2}$ 。

【样例 2、3】

见选手目录下的 history/history*.in 和 history/history*.ans。

【数据范围和提示】

本题采用捆绑测试。对于所有数据,满足 $1 \le n \le 2 \times 10^6$, $0 \le s_i \le 10^9$ 。子任务见下表:

子任务编号	n	特殊性质	分值
1	≤ 10		5
2	≤ 20	无	5
3	≤ 300		20
4	< 2000		20
5	≤ 2000		
6	$\leq 5 \times 10^4$	$s_{i} = 1$	10
7	$\leq 2 \times 10^6$		
8	$\leq 2 \times 10^{\circ}$	无	20