

Implementierung eines MPFSS Algorithmus

Leonie Reichert · April 15, 2019

Was ist Multi-Point Function Secret Sharing?

Was ist Secret Sharing?

Was ist Secret Sharing?

Was ist Secret Sharing?

Was ist Function Secret Sharing?

- Grundidee: Function Secret Sharing
 - ► Zerlege f(x) so dass: $f(x) = f_0(x) + f_1(x)$

Was ist Function Secret Sharing?

- Grundidee: Function Secret Sharing
 - ► Zerlege f(x) so dass : $f(x) = f_0(x) + f_1(x)$
 - ightharpoonup Teilfunktionen verschleiern f(x)
 - $f_0(b)$ und $f_1(b)$ für beliebiges b berechenbar
 - ⇒ Keine zusätzliche Kommunikation
- Zentral oder verteilt berechenbar

Was ist eine Multi-Point Function?

$$f(x) = \begin{cases} 1 & \text{wenn } x = 2\\ 0 & \text{sonst} \end{cases}$$

Was ist MPFSS?

- $f(x) \neq 0$ an t Stellen ("Indices")
- ► Eine oder keine Partei kennt die Indices

Was ist MPFSS?

- $f(x) \neq 0$ an t Stellen ("Indices")
- ► Eine oder keine Partei kennt die Indices
- ► Nehme Intervall aus den natürlichen Zahlen

$$\Rightarrow t_i \in [0, n]$$

Was ist MPFSS?

- $f(x) \neq 0$ an t Stellen ("Indices")
- ► Eine oder keine Partei kennt die Indices
- ▶ Nehme Intervall aus den natürlichen Zahlen $\Rightarrow t_i \in [0, n]$
- Ergebnis: Zwei Vektoren ("Shares") $\vec{v_0}$, $\vec{v_1}$
 - $\vec{v}_0 \text{ xor } \vec{v}_1 = \vec{v}$
 - $\vec{v} \neq 0$ an den t Indices

Distributed Point Funtion

- ► Distributed Point Function (DPF)
 - ▶ Implementierung von FSS für Point Functions
- Zwei Parteien Protokoll

Existierende Implementierungen

- Implementierung DPF existiert ¹
 - ► In Obliv-C geschrieben
 - ⇒ Darauf aufbauen

¹Doerner and Shelat: "Scaling ORAM for Secure Computation"

²Zahur and Evans: "Obliv-C: A Language for Extensible Data-Oblivious Computation"

Existierende Implementierungen

- ► Implementierung DPF existiert ¹
 - ► In Obliv-C geschrieben
 - ⇒ Darauf aufbauen
- ► Obliv-C²
 - ► Framework für Secure Multi-Party Computation
 - Abstrahiert und Vereinfacht Kommunikation zwischen Parteien
 - ▶ Übersetzt C-Code in Yao Garbled Circuits

¹Doerner and Shelat: "Scaling ORAM for Secure Computation"

²Zahur and Evans: "Obliv-C: A Language for Extensible Data-Oblivious Computation"

- ► Single-Point Function zu Multi-Point Function?
 - ⇒ Führe DPF t mal aus
- ▶ Jede Partei verxodert die entstehenden t Vektoren

- ► Single-Point Function zu Multi-Point Function?
 - ⇒ Führe DPF t mal aus
- ▶ Jede Partei verxodert die entstehenden t Vektoren
- ▶ Problem: Jede DPF geht einmal über gesamtes Inputintervall
 - \Rightarrow Kosten: $\mathcal{O}(t \cdot n)$

- ► Single-Point Function zu Multi-Point Function?
 - ⇒ Führe DPF t mal aus
- ▶ Jede Partei verxodert die entstehenden t Vektoren
- ▶ Problem: Jede DPF geht einmal über gesamtes Inputintervall
 ⇒ Kosten: O(t · n)
- Vorteil: Verschleierte Indices möglich

MPFSS mit Batch Codes

MPFSS mit Batch Codes

► Ziel: Laufzeit verbessern

³Boyle et al.: "Compressing Vector OLE"

MPFSS mit Batch Codes

- Ziel: Laufzeit verbessern
- ► Idee: Mache Intervall für DPFs kleiner
- ▶ Verwende Grundidee von Combinatorial Batch Codes ³
 - ⇒ Zerlegen des Inputintervalls

³Boyle et al.: "Compressing Vector OLE"

Batch Codes: Schritte

- 1. Nehme Inputintervall, teile auf m Buckets auf
 - ▶ Jeder Wert wird *d* mal zufällig eingefügt

Batch Codes: Schritte

- 1. Nehme Inputintervall, teile auf *m* Buckets auf
 - ▶ Jeder Wert wird *d* mal zufällig eingefügt
- 2. Ordne Indices zu Buckets

Batch Codes: Schritte

- 1. Nehme Inputintervall, teile auf *m* Buckets auf
 - ▶ Jeder Wert wird *d* mal zufällig eingefügt
- 2. Ordne Indices zu Buckets
- 3. Führe pro Bucket einmal DPF aus
 - Input für DPF deutlich kürzer
 - ▶ Durchschnittliche Länge: $\frac{d \cdot n}{m}$

Batch Codes: Buckets erstellen

- Ordne die t Indices Buckets zu
 - ⇒ Index muss in Bucket vorkommen

- Ordne die t Indices Buckets zu
 - ⇒ Index muss in Bucket vorkommen
- ▶ Problem: Einer muss die Zuordnung machen

- Ordne die t Indices Buckets zu
 - ⇒ Index muss in Bucket vorkommen
- ▶ Problem: Einer muss die Zuordnung machen
 - Eine Partei muss die Indices kennen
 - Abschwächung des allgemeinen MPFSS
 - Für viele Zwecke ausreichend

► Ziel: Zuordnung finden, wenn möglich

- Ziel: Zuordnung finden, wenn möglich
- ► Erfolgswahrscheinlichkeit nach Boyle et al. (2018):

$$\Rightarrow P = 1 - t^{-2d+2}$$

Zuordnung als bipartites Matching betrachten

Zuordnung als bipartites Matching betrachten

- ► Finde maximales Matching M von Buckets zu Indices
- ► Wenn |M| < t, dann gibt es keine Lösung

Zuordnung als bipartites Matching betrachten

- ► Finde maximales Matching M von Buckets zu Indices
- ► Wenn |M| < t, dann gibt es keine Lösung

- Greedy Ansatz
 - Schlägt oft fehl, auch wenn Zuordnung theoretisch möglich

Batch Codes: Zuordnung der Indices

- Greedy Ansatz
 - Schlägt oft fehl, auch wenn Zuordnung theoretisch möglich
- ► Flow Graphen
 - ► Füge Quelle und Senke zu bipartiten Graphen
 - ► Finde maximalen Fluss

Batch Codes: Zuordnung der Indices

- Greedy Ansatz
 - Schlägt oft fehl, auch wenn Zuordnung theoretisch möglich
- ► Flow Graphen
 - ► Füge Quelle und Senke zu bipartiten Graphen
 - ► Finde maximalen Fluss
 - ► Hopcroft-Karp

$$\Rightarrow \mathcal{O}((E+V)\cdot\sqrt{V}) = \mathcal{O}((m+t+t\cdot d)\cdot\sqrt{m+t})$$

Batch Codes: DPF ausführen

- Pro Bucket einmal DPF ausführen
 - ► Benötige Position von Index *t_i* in Bucket *i* (verschleiert!)

Batch Codes: DPF ausführen

- Pro Bucket einmal DPF ausführen
 - ▶ Benötige Position von Index *t_i* in Bucket *i* (verschleiert!)
- ► Erhalte *m* DPF Output Vektoren
 - ▶ Benötigt $\mathcal{O}(\frac{n \cdot d}{m}m)$
- ➤ Xor über alle Output Vektoren ergibt MPFSS Vektor mit Länge *n*
 - ▶ Benötigt $\mathcal{O}(n \cdot d)$

Batch Codes: Parameterwahl

- ► Frei wählbare Parameter
 - ► Anzahl Buckets m
 - ► Dopplungsfaktor *d*

Batch Codes: Parameterwahl

- ► Frei wählbare Parameter
 - ► Anzahl Buckets *m*
 - ▶ Dopplungsfaktor d
- ▶ Boyle et al.(2018) schlagen Parameter vor

Batch Codes: Parameterwahl

- ► Frei wählbare Parameter
 - ► Anzahl Buckets m
 - Dopplungsfaktor d
- ▶ Boyle et al.(2018) schlagen Parameter vor
- Erfolgswahrscheinlichkeit $P = 1 t^{-2d+2}$
 - ⇒ Parameter so, dass *P* maximal
- Probleme
 - Paper nicht eindeutig
 - Versteckte Konstanten

MPFSS mit Batch Codes: Parameterwahl

▶ Berechnung für n = 1.000.000 und $P = 1 - 10^{-25}$

Indices t	100	200	400	800	1600	5000
Dopplungsfaktor d	7,25	6,43	5,80	5,31	4,9	4,40
Buckets m (Wert $\cdot 10^6$)	0,13	0,58	2,41	9,53	35,94	292,54

MPFSS mit Batch Codes: Parameterwahl

- ▶ Berechnung für n = 1.000.000 und $P = 1 10^{-25}$
- ► Für jede DPF: Setup Kosten
 - ⇒ Beachtlicher Overhead (wollen wir eigentlich minimieren)

Indices t	100	200	400	800	1600	5000
Dopplungsfaktor d	7,25	6,43	5,80	5,31	4,9	4,40
Buckets m (Wert $\cdot 10^6$)	0,13	0,58	2,41	9,53	35,94	292,54

Vergleich der Algorithmen

- ▶ MPFSS naive
 - ▶ DPF ausführen: $\mathcal{O}(n \cdot t)$
 - ► MPFSS Vektor erstellen

- ► MPFSS naive
 - ▶ DPF ausführen: $\mathcal{O}(n \cdot t)$
 - ► MPFSS Vektor erstellen
- MPFSS Batch Codes
 - ▶ Buckets erstellen
 - \Rightarrow Vernachlässigbar

- ► MPFSS naive
 - ▶ DPF ausführen: $\mathcal{O}(n \cdot t)$
 - ► MPFSS Vektor erstellen
- MPFSS Batch Codes
 - Buckets erstellen
 - ⇒ Vernachlässigbar
 - Zuordnung finden

- MPFSS naive
 - ▶ DPF ausführen: $\mathcal{O}(n \cdot t)$
 - MPFSS Vektor erstellen
- MPFSS Batch Codes
 - Buckets erstellen
 - ⇒ Vernachlässigbar
 - ► Zuordnung finden
 - ▶ DPF ausführen: $\mathcal{O}(\frac{n \cdot d}{m}m)$

- MPFSS naive
 - ▶ DPF ausführen: $\mathcal{O}(n \cdot t)$
 - MPFSS Vektor erstellen
- MPFSS Batch Codes
 - Buckets erstellen
 - \Rightarrow Vernachlässigbar
 - ► Zuordnung finden
 - ▶ DPF ausführen: $\mathcal{O}(\frac{n \cdot d}{m}m)$
 - ► MPFSS Vektor erstellen

Ergebnis und Aussicht

- ► Einige Kosten und Schritte in Paper nicht erwähnt
- Versteckte Konstanten können Laufzeitabschätzung kaputt machen
- Man müsste bessere Parameter finden
- Laufzeitmessungen wären notwendig

Ergebnis und Aussicht

- ► Einige Kosten und Schritte in Paper nicht erwähnt
- Versteckte Konstanten können Laufzeitabschätzung kaputt machen
- Man müsste bessere Parameter finden
- Laufzeitmessungen wären notwendig
- Bessere Ansätze?
 - ⇒ Hashing zum Erstellen der Buckets und für Zuordnung

Danke für die Aufmerksamkeit. Fragen?

Quellen

- Boyle et al. Compressing vector OLE. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages 896912. ACM, 2018.
- Boyle et al. Function secret sharing: Improvements and extensions. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages 12921303. ACM, 2016.
- Doerner and Shelat. Scaling ORAM for secure computation. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 523535. ACM, 2017.
- 4. Zahur and Evans. Obliv-C: A Language for Extensible Data-Oblivious Computation. *IACR Cryptology ePrint Archive*, 2015.
- Gilboa and Ishai. Distributed point functions and their applications. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 640658. Springer, 2014.
- 6. Hopcroft and M Karp. An $n^{5/2}$ algorithm for maximum matchings in bipartite graphs. *SIAM Journal on computing*, 2(4):225231, 1973.

Backup Slides

Was ist Secret Sharing?

- MPFSS naive
 - ▶ DPF ausführen: $\mathcal{O}(n \cdot t)$
 - ▶ MPFSS Vektor erstellen: $\mathcal{O}(n \cdot t)$
- MPFSS Batch Codes
 - ▶ Buckets erstellen: $\mathcal{O}(n \cdot t)$
 - ⇒ Vernachlässigbar
 - ▶ Zuordnung finden: $\mathcal{O}((m+2t) \cdot \sqrt{m+t})$
 - ▶ DPF ausführen: $\mathcal{O}(\frac{n \cdot d}{m}m)$
 - ▶ MPFSS Vektor erstellen: $\mathcal{O}(n \cdot d)$