EXAMEN DE FIN D'ÉTUDES SECONDAIRES

Session 2016

ÉPREUVE ÉCRITE	Branche: MATHÉMATIQUES 2
Sections : C et D	N° d'ordre du candidat :
Date de l'épreuve : 2, juin 2016	Durée de l'épreuve : 2h45

Exercice 1 10 + 8 = 18 points

a) Résolvez dans $\mathbb R$ et donnez l'ensemble de solution :

1)
$$2e^{-x} - 12e^x = 5$$

2)
$$\log_5(1+x) - \log_{\sqrt{5}}(1-2x) \ge \log_{\frac{1}{8}}(3+4x)$$

b) Calculez les intégrales suivantes:

1)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{2 \sin x \cdot \cos x}{(3 + \cos(2x))^2} dx$$

$$2) \quad \int \frac{3}{\sqrt{9-4x^2}} dx$$

Exercice 2 17 + 6 = 23 points

Soit f la fonction définie par $f(x) = x^2 \cdot ln\left(\frac{x}{4}\right)$ et C_f sa représentation graphique.

- a) Faites l'étude complète de f contenant :
 - domaines de définition et de dérivabilité
 - limites aux bornes et asymptotes éventuelles
 - · dérivée et extrema éventuels
 - dérivée seconde et points d'inflexion éventuels
 - tableau(x) de variation et de concavité
 - représentation de C_f dans un repère orthonormé (unité 1 cm)
- b) Calculez l'aire $A(\lambda)$ de la partie du plan délimitée par C_f , l'axe des abscisses et les deux droites d'équations $x = \lambda$ et x = 4 où $0 < \lambda < 4$. Calculez ensuite $A = \lim_{\lambda \to 0} A(\lambda)$.

Exercice 3

8 + 2 = 10 points

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{3x \cdot e^x + 3}{e^x}$ et C_f sa représentation graphique.

- a) Déterminez pour $\,C_{\,f}\,$ les asymptotes horizontales ou obliques éventuelles.
- b) Déterminez la position de C_f par rapport à ses asymptotes éventuelles.

Exercice 4

5 + 4 = 9 points

On considère la fonction f définie sur $\mathbb{R} - \{2\}$ par $f(x) = \frac{7x^2 - 7x + 11}{(x^2 + 1)(x - 2)}$.

- a) Déterminez les réels a, b et c tels que pour tout $x \in \mathbb{R} \{2\}$, $f(x) = \frac{ax+b}{x^2+1} + \frac{c}{x-2}$.
- b) Déterminez la primitive F de f sur l'intervalle $I =]-\infty; 2[$ pour laquelle $F(0) = \ln 16$. Donnez l'expression algébrique de F(x) sans valeur absolue.