Ensemble methods

Fraida Fund

Contents

Ensemble methods	2
Recap: decision trees	2
Ensemble methods - the idea	2
Ensemble methods - types (1)	2
Ensemble methods - types (2)	2
Bagging	2
Bagging - background	2
Bootstrapping	2
Bootstrap aggregation	2
Bagging trees	2
Correlated trees	3
Random forests	3
Bagged trees illustration	3
A note on computation	3
Boosting	4
Boosting - training	4
AdaBoost (Adaptive Boosting)	4
AdaBoost algorithm	4
AdaBoost algorithm (inner loop)	4
AdaBoost algorithm (final step)	4
Boosting - algorithm for regression tree (1)	4
Boosting - algorithm for regression tree (inner loop)	-
Doosting algorithm for regression tree (finite toop)	5
Boosting - algorithm for regression tree (final step)	5
Boosting - algorithm for regression tree (tuning)	5
Gradient Boosting	5
Summary of (selected) ensemble methods	5

Ensemble methods

Recap: decision trees

- · Let trees grow deep low bias, high variance
- Don't let trees get deep: low variance, high bias

Ensemble methods - the idea

Combine multiple **weak learners** - having either high bias or high variance - to create an **ensemble** with better prediction

Ensemble methods - types (1)

- Combine multiple learners with high variance in a way that reduces their variance
- · Combine multiple learners with high bias in a way that reduces their bias

Ensemble methods - types (2)

- Averaging methods: build base estimators independently and then average their predictions. Combined estimator is usually better than any single base estimator because its variance is reduced.
- **Boosting methods**: build base estimators *sequentially* and each one tries to reduce the *bias* of the combined estimator.

Bagging

Bagging - background

- Designed for, and most often applied to, decision trees
- · Name comes from bootstrap aggregation

Bootstrapping

- · Basic idea: Sampling with replacement
- Each "bootstrap training set" is same size as full training set, and is created by sampling with replacement
- Some samples will appear more than once, some samples not at all

Bootstrap aggregation

- Create multiple versions $1, \dots, B$ of training set with bootstrap
- Independently train a model on each bootstrap training set: calculate $\hat{f}_1(x)\dots,\hat{f}_B(x)$
- Combine output of models by voting (classification) or averaging (regression):

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}(x)$$

Bagging trees

- Construct B trees using B bootstrapped training sets.
- · Let the trees grow deep, no pruning.
- Each individual tree has low bias, high variance.
- · Average the prediction of the trees to reduce variance.

Correlated trees

Problem: trees produced by bagging are highly correlated.

- Imagine there is one feature that is strong predictor, several moderate predictors
- Most/all trees will split on this feature
- Averaging correlated quantities does not reduce variance as much.

Random forests

Grow many decorrelated trees:

- Bootstrap: grow each tree with bootstrap resampled data set.
- **Split-variable randomization**: Force each split to consider *only* a subset of m of the p predictors.

Typically $m=rac{p}{3}$ but this should be considered a tuning parameter.

Bagged trees illustration

Figure 1: Identical data, bootstrapped data, and bootstrapped data with split variable randomization.

A note on computation

- Bagged trees and random forests can be fitted in parallel on many cores!
- · Each tree is built independently of the others

Boosting

Boosting - training

Iteratively build a succession of models:

- Train a weak model. Typically a very shallow tree.
- In training set for bth model, focus on errors made by b-1th model.
- Use (weighted) model output
- · Reduces bias and variance!

AdaBoost (Adaptive Boosting)

Adjust weights so that each successive model focuses on more "difficult" samples.

Consider classification problem, where sign of model output gives estimated class label and magnitude gives confidence in label.

AdaBoost algorithm

- 1. Let $w_i=\frac{1}{N}$ for all i in training set. 2. For $m=1,\ldots,M$, repeat:

AdaBoost algorithm (inner loop)

- Fit a tree \hat{f}^m , compute weighted error err_m using weights on training samples w_i :

$$err_{m} = \frac{\sum_{i=1}^{N} w_{i} 1(y_{i} \neq \hat{f}^{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}}$$

- Compute coefficient $\alpha_m = \log\left(\frac{1 err_m}{err_m}\right)$
- Update weights: $w_i \leftarrow w_i e^{\alpha_m \mathbb{1}(y_i \neq \hat{f}^m(x_i))}$

AdaBoost algorithm (final step)

3. Output boosted model:

$$\hat{f}(x) = \mathrm{sign}\left[\sum_{m=1}^{M} \alpha_m \hat{f}^m(x)\right]$$

Boosting - algorithm for regression tree (1)

- 1. Let $\hat{f}(x)=0$ and $r_i=y_i$ for all i in training set. 2. For $b=1,\dots,B$, repeat:

The idea is: we fit trees to the residuals, not the outcome y.

Boosting - algorithm for regression tree (inner loop)

- Fit a tree \hat{f}^b with d splits (d+1 leaf nodes) on training data (X,r).
- Update \hat{f} with a shrunken version of new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x)$$

· Update residuals:

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x)$$

Boosting - algorithm for regression tree (final step)

3. Output boosted model:

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x)$$

Boosting - algorithm for regression tree (tuning)

Tuning parameters to select by CV:

- Number of trees B
- Shrinkage parameter λ , controls learning rate
- ullet d, number of splits in each tree. (d=1 o tree is called a stump)

Gradient Boosting

- General goal of boosting: find the model at each stage that minimizes loss function on ensemble (computationally difficult!)
- AdaBoost interpretation (discovered years later): Gradient descent algorithm that minimizes exponential loss function.
- Gradient boosting: works for any differentiable loss function. At each stage, find the local gradient of loss function, and take steps in direction of steepest descent.

Summary of (selected) ensemble methods

- Can use a single estimator that has poor performance
- Combining the output of multiple estimators into a single prediction: better predictive accuracy, less interpretability