2 Apprentissage non-supervisé

2.1 Introduction à l'apprentissage non-supervisé

□ Motivation – Le but de l'apprentissage non-supervisé est de trouver des formes cachées dans un jeu de données non-labelées $\{x^{(1)},...,x^{(m)}\}$.

 \square Inégalité de Jensen – Soit f une fonction convexe et X une variable aléatoire. On a l'inégalité suivante :

$$E[f(X)] \geqslant f(E[X])$$

2.2 Partitionnement

2.2.1 Espérance-Maximisation

 \square Variables latentes – Les variables latentes sont des variables cachées/non-observées qui posent des difficultés aux problèmes d'estimation, et sont souvent notées z. Voici les cadres dans lesquelles les variables latentes sont le plus fréquemment utilisées :

Cadre	Variance latente z	x z	Commentaires
Mixture de k gaussiennes	$\operatorname{Multinomial}(\phi)$	$\mathcal{N}(\mu_j, \Sigma_j)$	$\mu_j \in \mathbb{R}^n, \phi \in \mathbb{R}^k$
Analyse factorielle	$\mathcal{N}(0,I)$	$\mathcal{N}(\mu + \Lambda z, \psi)$	$\mu_j \in \mathbb{R}^n$

 \square Algorithme – L'algorithme d'espérance-maximisation (EM) est une méthode efficace pour estimer le paramètre θ . Elle passe par le maximum de vraisemblance en construisant un borne inférieure sur la vraisemblance (E-step) et optimisant cette borne inférieure (M-step) de manière successive :

— <u>E-step</u> : Évaluer la probabilité postérieure $Q_i(z^{(i)})$ que chaque point $x^{(i)}$) provienne d'une partition particulière $z^{(i)}$ de la manière suivante :

$$Q_i(z^{(i)}) = P(z^{(i)}|x^{(i)};\theta)$$

— M-step : Utiliser les probabilités postérieures $Q_i(z^{(i)})$ en tant que coefficients propres aux partitions sur les points $x^{(i)}$ pour ré-estimer séparemment chaque modèle de partition de la manière suivante :

