第14章 单位根与协整

14.1 非平稳序列

如果时间序列不平稳,则称为**非平稳序列**(non-stationary time series),主要包括以下三种情形。

(1) 确定性趋势:如果时间序列有确定性趋势(deterministic trend),则为非平稳序列。考虑以下模型:

$$y_t = \beta_0 + \beta_1 t + \varepsilon_t \tag{14.1}$$

其中,t为时间趋势(time trend),而 $\beta_1 t$ 为时间趋势项。

对上式两边取期望可得

$$E(y_t) = \beta_0 + \beta_1 t$$
 (14.2)

 $E(y_t)$ 随时间而改变,故不是平稳序列。

对于这种非平稳序列,只要把时间趋势去掉,就变成平稳序列, 故称为**趋势平稳**(trend stationary)序列。

对于趋势平稳序列,通常的处理方法是,直接将时间趋势(t)作为解释变量放入回归方程(14.1),然后照常使用大样本 OLS 理论进行统计推断。

(2) 结构变动(structural break): 如果一个时间序列存在结构变动 (structural break),则为非平稳序列。考虑如下模型:

$$y_{t} = \begin{cases} \alpha_{1} + \beta_{1}x_{t} + \varepsilon_{t}, & \stackrel{\text{Z}}{=} t < \overline{t} \\ \alpha_{2} + \beta_{2}x_{t} + \varepsilon_{t}, & \stackrel{\text{Z}}{=} t \ge \overline{t} \end{cases}$$
(14.3)

其中, \overline{t} 为给定时间(常数)。

如果 $\alpha_1 \neq \alpha_2$ 或 $\beta_1 \neq \beta_2$,则存在结构变动。

此时, $E(y_t)$ 在 $t=\overline{t}$ 处存在跳跃,故为非平稳序列。

对于结构变动,可进行邹检验。

如果发现存在结构变动,可定义如下虚拟变量:

$$D_{t} = \begin{cases} 1, & \text{若 } t \ge \overline{t} \\ 0, & \text{其他} \end{cases}$$
 (14.4)

然后将虚拟变量 D_{i} 引入以下回归方程:

$$y_{t} = \alpha_{1} + \beta_{1}x_{t} + \gamma D_{t} + \delta D_{t}x_{t} + \varepsilon_{t} \quad (14.5)$$

方程(14.5)与方程(14.3)等价; 其中, $\alpha_2 = \alpha_1 + \gamma$,而 $\beta_2 = \beta_1 + \delta$ 。

在方程(14.5)中,所有参数都不随时间而变(就此方程而言,不再有结构变动),故可照常进行回归。

(3) 随机趋势:另一种导致非平稳的趋势为**随机趋势**(stochastic trend)。比如,**随机游走**模型(random walk):

$$y_t = y_{t-1} + \varepsilon_t \tag{14.6}$$

其中, $\{\varepsilon_t\}$ 为白噪声。假设时间开始于t=0,则

$$y_1 = y_0 + \varepsilon_1$$

$$y_2 = y_1 + \varepsilon_2 = y_0 + \varepsilon_1 + \varepsilon_2$$

$$y_3 = y_2 + \varepsilon_3 = y_0 + \varepsilon_1 + \varepsilon_2 + \varepsilon_3$$
(14.7)

•

$$y_t = y_{t-1} + \varepsilon_t = y_0 + \varepsilon_1 + \dots + \varepsilon_t = y_0 + \sum_{s=1}^t \varepsilon_s$$

如果 ε_1 增加一个单位,所有 $\{y_1, y_2, \cdots, y_t, \cdots\}$ 都将增加一个单位。

来自 $\{\varepsilon_t\}$ 的任何扰动对 $\{y_t\}$ 都具有永久的效应(permanent effect),其影响力不随时间而衰减,故称 $\{\varepsilon_t\}$ 为此模型的"随机趋势"。

在上式最后一个方程的两边,同时求方差可得

$$\operatorname{Var}(y_t) = \operatorname{Var}\left(\sum_{s=1}^t \varepsilon_s\right) = \sum_{s=1}^t \operatorname{Var}(\varepsilon_s) = t\sigma_\varepsilon^2 \qquad (14.8)$$

其中, σ_{ε}^2 为扰动项 ε_{s} 的方差。

当 $t \to \infty$ 时, $Var(y_t) \to \infty$ (方差发散),故 $\{y_t\}$ 为非平稳序列。

在方程(14.6)中,如果包含常数项,则为带漂移的随机游走 (random walk with drift):

$$y_{t} = \beta_{0} + y_{t-1} + \varepsilon_{t}$$
 (14.9)

其中, $\beta_0 \neq 0$ 为每个时期的平均**漂移**(drift),因为 $E(y_t) = \beta_0 + y_{t-1}$ 。

随机游走是 AR(1)的特例。

对于 AR(1)模型, $y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t$,如果 $\beta_1 = 1$,则为随机游走。

在方程(14.9)中,将右边的 y_{t-1} 移项到左边可得

$$\Delta y_t = \beta_0 + \varepsilon_t \tag{14.10}$$

因此,对于随机游走,只要对其进行一阶差分,即可得到平稳序列,故称为"差分平稳"(difference stationary)序列。

定义 称平稳的时间序列为零阶单整(Integrated of order zero),记为 I(0)。如果时间序列的一阶差分为平稳过程,则称为**一阶单整** (Integrated of order one),记为 I(1),也称为单位根过程(unit root process)。更一般地,如果时间序列的 d 阶差分为平稳过程,则称为 d 阶单整(Integrated of order d),记为 I(d)。

对于 I(0)序列,由于它是平稳的,故长期而言有回到其期望值的 趋势。

这种性质被称为均值回复(mean-reverting)。

非平稳的 I(1)序列则会"到处乱跑"(wander widely),没有上述性质。

比如,随机游走的方差越来越大,趋向无穷。

- I(0)序列对于其过去的行为只有有限的记忆,即发生在过去的扰动项对未来的影响随时间而衰减。
- I(1)序列则对过去的行为具有无限长的记忆,即任何过去的冲击都将永久性地改变未来的整个序列。

例 如果 $\{GDP_t\}$ 为 I(1),则任何货币政策或财政政策的调整都将对未来 GDP 产生永久影响。

定义 如果时间序列 $\{y_t\}$ 的 d 阶差分为平稳的 ARMA(p, q)过程,则称 $\{y_t\}$ 为 ARIMA(p, d, q)过程。

最常见的为 ARIMA(p, 1, q),即经过一次差分就得到平稳的 ARMA(p, q)。

14.2 ARMA 的平稳性

在什么情况下,ARMA(p,q)才平稳呢?

MA(q)是平稳的,因为它是有限个白噪声的线性组合。

ARMA(p,q)的平稳性仅取决于 AR(p)的部分。

首先, 考虑 AR(1)模型:

$$y_{t} = \beta_{0} + \beta_{1} y_{t-1} + \varepsilon_{t}$$
 (14.11)

如果 $|\beta_1|$ <1,则 $\{y_t\}$ 为平稳过程。

上式其实是一阶随机差分方程,其稳定性与对应的以下确定性 差分方程是一样的:

$$y_{t} = \beta_{0} + \beta_{1} y_{t-1}$$
 (14.12)

只要考虑一阶差分方程(14.12)是否有稳定解即可。

方程(14.12)是一个非齐次的差分方程(含常数项 β_0),它的解又取决于相应的齐次差分方程(不含常数项):

$$y_{t} = \beta_{1} y_{t-1} \tag{14.13}$$

此齐次差分方程的通解为

$$y_{t} = y_{0} \beta_{1}^{t} \tag{14.14}$$

由于此通解的形式为指数函数,故 AR(1)模型(14.11)的稳定性条件为 $|\beta_1|$ <1。

考虑 AR(p)模型:

$$y_{t} = \beta_{0} + \beta_{1} y_{t-1} + \dots + \beta_{p} y_{t-p} + \varepsilon_{t}$$
 (14.15)

此 AR(p)模型的稳定性条件取决于相应的确定性齐次差分方程:

$$y_t = \beta_1 y_{t-1} + \dots + \beta_p y_{t-p}$$
 (14.16)

仍然假设差分方程(14.16)的解形式为指数函数,即

$$y_t = z^{-t} = (1/z)^t$$
 (14.17)

其中, z的取值待定。将表达式(14.17)代入差分方程(14.16)可得

$$z^{-t} - \beta_1 z^{-(t-1)} - \dots - \beta_p z^{-(t-p)} = 0(14.18)$$

上式两边同乘以 z^t 可得 AR(p)模型的**特征方程**(characteristic equation):

$$\phi(z) = 1 - \beta_1 z - \dots - \beta_p z^p = 0 \qquad (14.19)$$

此p阶多项式方程(14.19)在复数域中一定有p个根(包括重根),比如(z_1, z_2, \dots, z_p)。

与此对应,齐次差分方程(14.16)也有p个形如 $(1/z)^t$ 的解,而其通解则是这p个解的线性组合:

$$y_t = k_0 + k_1 (1/z_1)^t + k_2 (1/z_2)^t + \dots + k_p (1/z_p)^t$$
 (14.20)

其中, (k_0, k_1, \dots, k_p) 为待定常数,取决于初始条件 $\left\{y_0, y_1, \dots, y_{p-1}\right\}$ 。

如果要求 $\{y_t\}$ 收敛于一个稳定值,则在方程(14.20)中,所有 $(1/z_i)^t$ $(j=1,\cdots,p)$ 均应收敛到 0。

由于 z_j 为复数,这意味着,特征方程所有解的范数 $\|z_j\|$ (即在复平面上 z_j 离原点的距离)都必须大于 1。特征方程的所有解必须都落在复平面上的单位圆之外(参见图 14.1)。

如果特征方程的某个根落在单位圆之内,则为爆炸式增长的非平稳过程。

如果某个根正好落在单位圆之上,则称为**单位根**(unit root),比如随机游走的情形。

例 对于 AR(1),其特征方程为 $1-\beta_1 z = 0$,故 $z = 1/\beta_1$ 。因此, $||z|| = |z| > 1 \Leftrightarrow |\beta_1| < 1$ 。由此可见,有关 AR(p)平稳性的结论是 对 AR(1)情形的推广。

图 14.1 复平面上的单位圆

14.3 VAR 的平稳性

AR(p)的平稳性条件可推广到多维 VAR(p)的情形。

考虑以下 VAR(p)模型:

$$\mathbf{y}_{t} = \boldsymbol{\Gamma}_{0} + \boldsymbol{\Gamma}_{1} \mathbf{y}_{t-1} + \dots + \boldsymbol{\Gamma}_{p} \mathbf{y}_{t-p} + \boldsymbol{\varepsilon}_{t}$$
 (14.21)

其中, ε ,为向量白噪声过程。如果特征方程

$$\left|\mathbf{I}_{n}-\boldsymbol{\varGamma}_{1}z-\cdots-\boldsymbol{\varGamma}_{p}z^{p}\right|=0 \quad (14.22)$$

的所有根都落在复平面的单位圆之外(即||z|| > 1),则此 VAR(p)为平稳过程,其中 $|\cdot|$ 表示行列式。

此平稳性的等价条件为伴随矩阵(companion matrix)

$$\tilde{\boldsymbol{\Gamma}} = \begin{pmatrix} \boldsymbol{\Gamma}_1 & \boldsymbol{\Gamma}_2 & \cdots & \boldsymbol{\Gamma}_p \\ \mathbf{I}_n & \mathbf{0} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_n & \mathbf{0} \end{pmatrix}_{np \times np}$$
(14.23)

的所有特征值都落在单位圆之内。

14.4 单位根所带来的问题

对于 AR(1)模型,一般从理论上认为,不太可能出现自回归系数 $|\beta_1| > 1$ 的情形;否则任何对经济的扰动都将被无限放大。

经济学家通常只担心存在单位根的情形,即 $\beta_1 = 1$ 。

如果时间序列存在单位根,则非平稳,可能带来以下问题。

(1) 自回归系数的估计值不服从渐近正态分布,t检验失效 (2)

考虑以下 AR(1)模型:

$$y_{t} = \beta_{0} + \beta_{1} y_{t-1} + \varepsilon_{t}$$
 (14.24)

假设真实值 $\beta_1 = 1$,故为单位根过程。

对上式进行 OLS 回归,可得 eta_1 的 OLS 估计量 \hat{eta}_1 。

由于存在单位根(β_1 的真实值为 1), $\hat{\beta}_1$ 不服从渐近正态分布,甚至不是对称分布(即使是在大样本中),而是向左偏向于 0(分布左边有很长的尾巴)。

由于{y_t}不是平稳序列,故中心极限定理不再适用。

虽然 $\underset{n\to\infty}{\text{plim}} \hat{\beta}_1 = \beta_1$ (仍为一致估计),但在有限样本下可能存在较大偏差。

由于 $\hat{\beta}_{l}$ 不是渐近正态分布,故t统计量也不服从渐近标准正态分布,无法进行传统的区间估计与假设检验。

建立于平稳性假设基础之上的大样本理论不再适用。

下面通过蒙特卡罗法考察 $\hat{\beta}_1$ 的大样本分布。考虑不带漂移项的随机游走:

$$y_t = y_{t-1} + \varepsilon_t \tag{14.25}$$

其中,扰动项 ε ,为 iid,且服从标准正态分布。

假设
$$y_0=0$$
,则 $y_1=\varepsilon_1$, $y_2=\varepsilon_1+\varepsilon_2$, … ,
$$y_t=\varepsilon_1+\dots+\varepsilon_t=\sum_{s=1}^t\varepsilon_s$$
。

假设样本容量为 1000, 首先从标准正态分布随机抽取 1000个扰动项的观测值 $\{\varepsilon_1, \dots, \varepsilon_{1000}\}$, 由此生成 y_t 的 1000个观测值 $\{y_1, \dots, y_{1000}\}$, 然后根据方程(14.24)进行 OLS 回归,得到自回归系数估计值 $\hat{\beta}_1$ 。

重复此过程 1,000 次,即可得到 1,000 个 $\hat{\beta}_{l}$,由此获得 $\hat{\beta}_{l}$ 的大样本分布。

在 Stata 中首先定义一个叫"randwalk"的程序来产生随机游走,进行一阶自回归,并得到一个自回归系数 $\hat{\beta}_i$:

```
program randwalk,rclass (定义程序"randwalk",并以r()形式储存结果) drop _all (删去内存中已有数据) set obs 1000 (确定样本容量为 1000) gen eps=rnormal()(产生服从标准正态分布的扰动项\varepsilon_t) gen y=sum(eps) (假设y_0=0,定义随机游走y_t=\sum_{s=1}^t \varepsilon_s) gen t=_n (定义时间变量,第t期即第i个观测值)
```

tsset t (将数据设为时间序列,以便使用滞后算子) reg y L.y (回归 $y_t = \beta_0 + \beta_1 y_{t-1} + error$) return scalar b1=_b[L.y] (记OLS系数 $\hat{\beta}_1$ 为b1) end (程序结束)

然后,使用命令"simulate"来执行"randwalk"程序 1,000 遍,得到 $\hat{\boldsymbol{\beta}}_1$ 的大样本分布,并画其经验的概率密度图(结果参见图 14.2)。

- . simulate beta=r(b1), seed(10101) reps(1000):
 randwalk
 - . kdensity beta

命令"kdensity"表示kernel density,即画核密度图。

直方图为对概率密度函数的不连续估计,而核密度图则为对概率密度函数的连续估计。

图 14.2 在单位根情况下 $\hat{\beta}_1$ 的大样本分布

即使在样本容量为 1000 的情况下, OLS 估计量 $\hat{\beta}_l$ 的分布也不对称, 向左偏向于 0, 与对称的正态分布相去甚远。

(2) 两个相互独立的单位根变量可能出现伪相关或伪回归

单位根变量还可能出现的另一严重后果是,即使两个单位根变量相互独立,根据样本数据进行相关分析或回归分析,却可能发现二者有显著的关系,这被称为**伪相关**(spurious correlation)或**伪回**归(spurious regression)。

考虑以下两个单位根过程:

$$y_t = y_{t-1} + u_t; \quad x_t = x_{t-1} + v_t$$
 (14.26)

其中, u_{t} , v_{t} 均为 iid 且相互独立。

因此, y_t 与 x_t 也是相互独立的。

考虑以下 OLS 回归:

$$y_{t} = \alpha + \beta x_{t} + \varepsilon_{t} \qquad (14.27)$$

由于 y_t 与 x_t 相互独立,故在上式中真实参数 $\beta = 0$ 。

如果样本容量足够大,则期待 OLS 估计值 $\hat{\beta} \approx 0$, $R^2 \approx 0$,但 实际结果并非如此,因为扰动项 $\varepsilon_t = y_t - \alpha - \beta x_t$ 非平稳。

这一现象最初由 Granger and Newbold (1974)通过蒙特卡罗模拟发现。

下面在 Stata 中模拟此过程。

假设
$$y_0 = 0$$
, $x_0 = 0$,则 $y_t = \sum_{s=1}^t u_s$, $x_t = \sum_{s=1}^t v_s$ 。

假设样本容量为 10,000,首先在 Stata 中生成相互独立的单位根变量 y_t 与 x_t ,然后进行 OLS 回归。

. gen u=rnormal() (产生服从标准正态分布的扰动项
$$u_i$$
)

. gen y=sum(u) (定义随机游走
$$y_t = \sum_{s=1}^t u_s$$
)

. gen v=rnormal() (产生服从标准正态分布的扰动项
$$v_t$$
)

. gen x=sum(v) (定义随机游走
$$x_t = \sum_{s=1}^t v_s$$
)

SS	df	MS	Numb	Number of obs		10,000
			— F(1,	9998)	=	866.95
2406934.55	1	2406934.5	55 Prob	> F	=	0.0000
27757621.9	9,998	2776.3174	45 R-sq	uared	=	0.0798
			— Adj	R-squared	=	0.0797
30164556.4	9,999	3016.7573	32 Root	MSE	=	52.691
Coefficient	Std. err.	t	P> t	[95% coi	nf.	interval]
4000392	.0135864	-29.44	0.000	4266713	3	3734071
-55.43203	1.104488	-50.19	0.000	-57.5970	5	-53.26701
	2406934.55 27757621.9 30164556.4 Coefficient 4000392	2406934.55 1 27757621.9 9,998 30164556.4 9,999 Coefficient Std. err. 4000392 .0135864	2406934.55	F(1, 2406934.55	F(1, 9998) 2406934.55	F(1, 9998) = 2406934.55

尽管 y_t 与 x_t 相互独立(因为使用了不同的随机数种子,故 u_t 与 v_t 相互独立),但 y_t 对 x_t 的回归系数却在 1%水平上显著(t值为-29.44),而且 R^2 达到 0.08,故存在"伪回归"。

进一步,把 u_t 与 v_t 回归。

. reg u v

Source	SS	df	MS	Numb	er of obs	=	10,000
				- F(1,	9998)	=	0.49
Model	.500659016	1	.50065901	6 Prob	> F	=	0.4819
Residual	10121.5297	9,998	1.0123554	4 R-sq	uared	=	0.0000
				— Adj	R-squared	=	-0.0001
Total	10122.0304	9,999	1.0123042	7 Root	MSE	=	1.0062
'							
u	Coefficient	Std. err.	t	P> t	[95% conf		interval]
V	0070983	.0100937	-0.70	0.482	0268841		.0126874
_cons	009079	.0100624	-0.90	0.367	0288033		.0106452

 u_t 对 v_t 的回归系数高度不显著(p值高达 0.482, R^2 为 0.0000); 但由 u_t 与 v_t 所产生的随机游走过程 y_t 与 x_t 却显著相关。

看一下 y_t 与 x_t 的时间趋势图,结果参见图 14.3。

- . gen $t=_n$ (定义时间变量t)
- . line $y \times t, lp(dash)$

图 14.3 伪相关示意图

尽管 y_t 与 x_t 相互独立,但因为二者都是单位根过程,故存在相似的时间趋势而出现伪相关与伪回归,从而误导统计推断。

如何避免伪相关或伪回归?

方法之一, 先对 I(1)变量作一阶差分, 得到平稳的 I(0)序列, 再作回归。

方法之二为"协整"(cointegration)。

但首先必须检验是否存在单位根。

14.5 单位根检验

1. Dickey-Fuller 单位根检验(Dickey and Fuller,1979)

考虑如下 AR(1)模型:

$$y_{t} = \beta_{0} + \beta_{1} y_{t-1} + \gamma t + \varepsilon_{t}$$
 (14.28)

其中, ε_t 为白噪声, γt 为时间趋势(如不含时间趋势,则 $\gamma = 0$)。

考虑以下单边检验:

$$H_0: \beta_1 = 1$$
 vs $H_1: \beta_1 < 1$ (14.29)

其中,替代假设为" H_1 : β_1 <1",因为理论上认为不可能出现 β_1 >1(爆炸式增长)的情形。

如果 H_0 成立,则 y_t 为带漂移项 β_0 的随机游走;如果不带漂移项,可令 $\beta_0 = 0$ 。

但我们通常希望检验参数是否等于0。

在原方程两边同时减去 火一 可得

$$\Delta y_t = \beta_0 + \delta y_{t-1} + \gamma t + \varepsilon_t \qquad (14.30)$$

其中, $\delta \equiv \beta_1 - 1$ 。对应的原假设与替代假设变为

$$H_0: \delta = 0$$
 vs $H_1: \delta < 0$ (14.31)

对方程(14.30)作 OLS 回归,可得估计量 $\hat{\delta}$ 及相应t统计量(使用普通标准误)。

此t统计量称为 DF 统计量(Dickey-Fuller statistic, 简记 DF), 在 Stata 中记为Z(t)。

33

但Z(t)并不服从渐近正态分布,其临界值须通过蒙特卡罗模拟获得。

Z(t)越小(绝对值很大的负数),则越倾向于拒绝原假设。

故 DF 检验是左边单侧检验,其拒绝域只在分布的最左边。

2. Augmented Dickey-Fuller 单位根检验(Dickey and Fuller,1981)

DF 检验使用一阶自回归来检验单位根,但要求扰动项 $\{\varepsilon_t\}$ 为白噪声,故扰动项无自相关。

如果 $\{\varepsilon_t\}$ 存在自相关,可在方程(14.30)中以引入被解释变量 Δy_t 的高阶滞后项(即滞后差分项),以保证扰动项 $\{\varepsilon_t\}$ 为自噪声:

$$\Delta y_{t} = \beta_{0} + \delta y_{t-1} + \gamma_{1} \Delta y_{t-1} + \gamma_{2} \Delta y_{t-2} + \dots + \gamma_{p-1} \Delta y_{t-p+1} + \gamma t + \varepsilon_{t}$$
(14.32)

而原假设与替代假设依然为

$$H_0: \delta = 0 \quad vs \quad H_1: \delta < 0 \quad (14.33)$$

对此方程使用 OLS 可得估计量 $\hat{\delta}$ 及相应的t统计量(使用普通标准误)。

此 t 统 计 量 称 为 增 广 DF 统 计 量 (Augmented Dickey-Fuller statistic,简记 ADF),Stata 仍记其为Z(t)。

ADF 检验是最常用的单位根检验。

与 DF 检验一样, ADF 检验也是左边单侧检验, 其拒绝域只在分布的最左边。

ADF 统计量的临界值也要通过蒙特卡罗模拟得到。

ADF 统计量的临界值取决于真实模型(H_0)是否带漂移项,以及用于检验的回归方程(14.32)是否包含常数项或时间趋势。

Stata 手册(Stata Manual)总结了以下四种情形,参见表 14.1。

表 14.1 ADF 检验的四种情形

情	真实模型 (H_0)	对回归方程(14.32)	Stata 选择项
形		的约束	
1	不带漂移项	$\beta_0 = 0$, $\gamma = 0$	noconstant
2	不带漂移项	$\gamma = 0$	默认值
3	带漂移项	$\gamma = 0$	drift
4	不带或带漂移项	无约束	trend

对于表 14.1 中的情形 2,虽然真实模型不包含漂移项(即无常数项),但在 ADF 检验的回归方程中依然包括了常数项。

情形 2 与情形 3 对回归方程的约束相同,故检验统计量也相同,但临界值不同(因为真实模型不同)。

ADF 检验的 Stata 命令为

. dfuller y,lags(p) $\underline{reg}ress$ $\underline{nocon}stant$ $\underline{dr}ift$ $\underline{tr}end$

选择项"lags(p)"表示包含p阶滞后差分项,默认为"lags(0)",对应于DF检验。

选择项"regress"表示显示回归结果。

选择项 "<u>nocon</u>stant drift <u>tr</u>end" (三者最多选一项,不能并用)的含义参见表 14.1。

关于常数项与时间趋势项

在作 ADF 检验时,是否应该带常数项或时间趋势项,首先应从理论上考虑。

比如,考察 GDP 对数是否有单位根,一般应包含时间趋势项; 而利率、汇率等则不应有时间趋势项。

也可通过画时间序列图来大致判断有无长期趋势。

在作 ADF 检验时,使用选择项"<u>reg</u>ress",可以看到常数项或时间趋势项是否显著。

如果无从判断,为了稳健起见,可以把各种情况都进行检验。

并将结果以(c,t,p)格式列表,其中"c=1"表示带常数项,"c=0"表示不带常数项;"t=1"表示带趋势项,"t=0"表示不带趋势项;而p表示滞后阶数。

关于滞后阶数 p 的确定

在进行 ADF 检验时,如何确定滞后阶数p是个实际问题。

ADF 检验的结果常常对滞后阶数p 很敏感。

如果p太小,则扰动项 $\{\varepsilon_t\}$ 可能存在自相关,使得检验出现偏差。

如果p太大,则会降低检验的功效(power)。

Schwert (1989)建议,取最大滞后阶数为

$$p_{\text{max}} = [12 \cdot (T/100)^{1/4}] \qquad (14.34)$$

其中,T为样本容量, $[\cdot]$ 表示取整数部分,然后使用由大到小的序贯t规则,看 ADF 检验中最后一阶回归系数是否显著。

也可使用信息准则,比如 AIC 或 BIC。

3. 单整阶数(order of integration)的确定

对时间序列 $\{y_t\}$ 进行单位根检验后,如果认为 $\{y_t\}$ 为非平稳,则要进一步判断其为 I(1)或 I(2)。

此时,可对一阶差分 $\{\Delta y_t\}$ 进行单位根检验,如果 $\{\Delta y_t\}$ 为平稳,则 $\{y_t\}$ 是 I(1)。

否则,要继续对二阶差分 $\left\{\Delta^2 y_t \equiv \Delta y_t - \Delta y_{t-1}\right\}$ 进行单位根检验。

如果 $\{\Delta^2 y_t\}$ 为平稳,则 $\{y_t\}$ 为 I(2),以此类推。

在经济变量中, I(0)与 I(1)最为常见, 而 I(2)很少见。

14.6 单位根检验的 Stata 实例

例 Nelson and Plosser (1982)使用 ADF 检验考察 1860-1970 年, 美国 14 个年度宏观时间序列,结果发现只有其中一个变量可拒绝 单位根的原假设,而其余 13 个变量均可视为单位根变量。此文一 出,引起经济学界对单位根的广泛关注。 以数据集 nelson_plosser.dta 为例,包括美国的年度宏观经济变量,取自 Nelson and Plosser (1982)。

检验其中的两个变量,即 lrgnp (实际 GNP 对数)与 lun (失业率 对数),是否含有单位根。

首先,看一下这两个变量的时间趋势图(结果参见图 14.4):

- . use nelson_plosser.dta,clear
- . tsline lrgnp lun if year>=1890,lp(dash)
 xlabel(1890(10)1970)

其中,变量 *lrgnp* 的取值始于 1909年,而变量 *lun* 的取值始于 1890年,故使用条件语句"if year>=1890"来限制画图的范围(使之更加美观)。选择项"xlabel(1890(10)1970)"表示,在横轴从 1890年至 1970年,每 10 年做个标注(label)。

图 14.4 实际 GNP 对数与失业率对数的时间趋势

实际 GNP 对数(以虚线表示)有明显的上升时间趋势;而且较为 光滑,这意味着当期值强烈地依赖于上期值,即自回归系数接近 于1,故可能为单位根过程。

失业率对数则看不出有什么时间趋势,而且较不光滑,即自回归系数明显小于1,故不太可能为单位根过程。

对于实际 GNP 对数,首先考虑带常数项与时间趋势项的 DF 检验:

. dfuller lrgnp, trend

Dickey-Fuller test for unit root Number of obs = 61 Variable: lrgnp Number of lags = HO: Random walk with or without drift Dickey-Fuller Test critical value statistic 1% 5% 10% Z(t) -2.026-4.126-3.489-3.173MacKinnon approximate p-value for Z(t) = 0.5871.

DF 检验的 5%临界值为-3.489。由于 DF 统计量 Z(t)为-2.026 > -3.489(左 边单侧检验),故可在 5%的水平上接受"存在单位根"的原假设。

由于扰动项可能存在自相关,考虑更高阶的 ADF 检验。

首先,计算 Schwert (1989) 建议的最大滞后阶数 $p_{\text{max}} = [12 \cdot (T/100)^{1/4}]$:

. dis 12*(62/100)^(1/4) 10.648273

其中,样本容量为62。

这表明, $p_{\text{max}} = 10$ 。

下面, $\hat{p} = 10$, 进行 ADF 检验:

. dfuller lrgnp, lags(9) trend reg

Augmented Dickey-Fuller test for unit root

Variable: lrgnp Number of obs = 52

Number of lags = 9

HO: Random walk with or without drift

		Dickey-Fuller				
	Test		- critical value			
	statistic	1%	5%	10%		
Z(t)	-2.308	-4.146	-3.498	-3.179		

MacKinnon approximate p-value for Z(t) = 0.4296.

Regression table

D.lrgnp	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
lrgnp						
L1.	2431874	.1053744	-2.31	0.026	456157	0302179
LD.	.4268154	.1533028	2.78	0.008	.1169789	.736652
L2D.	.1299825	.1591474	0.82	0.419	1916663	.4516314
L3D.	.0148792	.1601745	0.09	0.926	3088455	.3386039
L4D.	.0074853	.1591925	0.05	0.963	3142547	.3292252
L5D.	0628515	.1517327	-0.41	0.681	3695147	.2438117
L6D.	.1135881	.1488912	0.76	0.450	1873321	.4145084
L7D.	.1157849	.1470971	0.79	0.436	1815095	.4130792
L8D.	0360994	.1474121	-0.24	0.808	3340302	.2618315
L9D.	1339387	.1441335	-0.93	0.358	4252433	.157366
_trend	.0083664	.003355	2.49	0.017	.0015856	.0151471
_cons	1.091761	.4663261	2.34	0.024	.1492807	2.034241
	I					

时间趋势项(_trend)很显著(p值为 0.017),但最后一阶滞后项(L9D.)在 5%的水平上并不显著(p值为 0.358)。

依次令 $\hat{p}=9,\dots,3$,进行 ADF 检验,最后一阶滞后项仍不显著 (过程略)。

下面,令 $\hat{p}=2$,再进行 ADF 检验。

. dfuller lrgnp, lags(1) trend reg

Augmented Dickey-Fuller test for unit root

Variable: lrgnp Number of obs = 60

Number of lags = 1

HO: Random walk with or without drift

		Dickey-Fuller					
	Test		- critical value				
	statistic	1%	5%	10%			
Z(t)	-2.994	-4.128	-3.490	-3.174			

MacKinnon approximate p-value for Z(t) = 0.1338.

Regression table

D.lrgnp	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
lrgnp L1. LD.	1753423 .4188865	.0585665 .1209448	-2.99 3.46	0.004	2926651 .1766048	0580195 .6611681
_trend _cons	.0056465 .8134145	.0018615 .2679888	3.03 3.04	0.004	.0019174 .2765684	.0093757

最后一阶滞后项(LD.)在1%的水平上显著地不等于0。

ADF 统计量 Z(t) 为—2.994 > —3.490,故无法在 5%的水平上拒绝存在单位根的原假设,即可认为实际 GNP 对数 lrgnp 含有单位根。

"麦金农的近似*p*值"(MacKinnon approximate p-value) 为 0.1338,与此结论一致。

进一步检验是否 lrgnp 的一阶差分为平稳过程。根据序贯t规则,选择 $\hat{p}=1$,进行 DF 检验。

由于 $\Delta lrgnp$ 已不存在时间趋势(读者可自行画图考察),故检验时不带时间趋势项。

. dfuller d.lrgnp

Dickey-Fuller test for unit root Number of obs = 60Variable: D.lrqnp Number of lags = H0: Random walk without drift, d = 0Dickey-Fuller critical value Test statistic 1% 5% 10% Z(t) -5.322-3.566-2.922-2.596MacKinnon approximate p-value for Z(t) = 0.0000.

ADF 统计量 Z(t) 为—5.322 < —3.566,故可在 1%的水平上拒绝存在单位根的原假设,即认为 Δ lrgnp 为平稳过程。由此可知,lrgnp 为 I(1)过程。

下面考察失业率对数 lun 是否含有单位根。

根据序贯t规则,选择 $\hat{p}=4$,进行不带时间趋势的ADF检验:

. dfuller lun, lags(3) reg

Augmented Dickey-Fuller test for unit root

Variable: lun Number of obs = 77

Number of lags = 3

HO: Random walk without drift, d = 0

			Dickey-Fulle	er
	Test		- critical valu	ıe ———
	statistic	1%	5%	10%
Z(t)	-3.588	-3.542	-2.908	-2.589

MacKinnon approximate p-value for Z(t) = 0.0060.

Regression table

D.lun	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
lun						
L1.	2908167	.0810476	-3.59	0.001	4523821	1292513
LD.	.3824999	.1099181	3.48	0.001	.1633822	.6016177
L2D.	2030521	.1033701	-1.96	0.053	4091166	.0030123
L3D.	.2431095	.1041622	2.33	0.022	.0354659	.4507531
_cons	.4898167	.1476383	3.32	0.001	.1955051	.7841283

ADF 统计量 Z(t) 为-3.588 < -3.542,故可在 1%的水平上拒绝存在单位根的原假设,即认为失业率对数 lun 为平稳过程。麦金农近似 p 值为 0.0060,与此结论一致。

14.7 协整的思想与初步检验

对于有单位根的变量,传统的处理方法是先进行一阶差分得到 平稳序列,然后再对平稳序列建模。

但一阶差分后变量的经济含义与原序列并不相同,而有时仍希望用原序列进行回归。

如果多个单位根变量之间由于某种经济力量而存在**长期均衡关** 系(long-run equilibrium),则有可能进行这种回归。 其基本思想是,如果多个单位根序列拥有**共同随机趋势**(common stochastic trend),则可以对这些变量作适当的线性组合而消去此随机趋势,从而得到平稳序列。

例 短期利率与长期利率可能都是单位根过程,而且二者的走势也很相似。

从经济理论上来看,长期利率是未来预期短期利率的平均值与"风险溢价"(risk premium)之和(持有长期资产面临更大风险),故存在长期均衡关系。

以数据集 macro_3e.dta 为例,该数据集包含美国 1957q1-2005q1 的季度宏观变量,时间变量为 *time*。

打开此数据集后,考察 fygm3 (3 个月国库券利率)与 fygt1 (1 年期国库券利率)的时间趋势,结果参见图 14.5。

- . use macro_3e.dta,clear
- . tsset time
- . tsline fygm3 fygt1,lp(dash)

图 14.5 美国 3 月与 1 年期国库券利率的时间趋势 3 个月国库券利率(虚线)与 1 年期国库券利率(实线)的时间趋势十分接近,故二者很可能存在协整关系。

例(非正式) 当你遛狗时,假设你与狗的每一步位置为随机游走 (带漂移项),均为单位根过程。由于你与狗之间有一根皮带相连 ("长期均衡关系"),故你与狗的位置不会相离太远(尽管二者都 是单位根过程)。

假设两个 I(1)过程 $\{y_t\}$, $\{x_t\}$ 可以分别表示为

$$\begin{cases} y_t = \alpha + \beta w_t + \varepsilon_t \\ x_t = \gamma + \delta w_t + u_t \end{cases}$$
 (14.35)

其中, w_t 为随机游走, $w_t = w_{t-1} + v_t$; 而 ε_t , u_t , v_t 均为白噪声。

由于 $\{y_t\}$ 与 $\{x_t\}$ 拥有共同的随机趋势 w_t ,故二者的如下线性组合为平稳过程:

$$\delta y_{t} - \beta x_{t} = (\alpha \delta - \beta \gamma) + (\delta \varepsilon_{t} - \beta u_{t}) \quad (14.36)$$

其中, $(\alpha\delta - \beta\gamma)$ 为常数,而 $(\delta\varepsilon_t - \beta u_t)$ 为白噪声的线性组合。

可把协整向量 $(\delta, -\beta)$ 标准化为 $(1, -\beta/\delta)$ 。

对于两个 I(1)变量,只可能存在一个协整关系。

对于n个 I(1)变量,最多可能存在(n-1)个协整关系。

一组 I(1)变量之间协整关系的个数被称为**协整秩**(cointegration rank), 即线性无关的协整向量的个数。

如何判断一组 I(1)变量间是否存在协整关系呢?

首先,这些变量必须在理论上可能存在长期均衡关系;否则,进行协整分析将没有意义。

其次,如果只有两个变量,则可以直接画图,看二者的时间趋势是否有相似性。

但此法不严格,也不适用于两个以上的变量。

Engle and Granger (1987)提出如下 EG-ADF 检验。

不失一般性,考虑两个单位根变量 $\{y_t, x_t\}$ (此检验也适用于多个单位根变量)。

原假设为 $\{y_t, x_t\}$ 存在协整关系,且协整系数为 $\{1, -\theta\}$ 。

如果原假设成立,则 $\{z_t \equiv y_t - \theta x_t\}$ 为平稳过程。

如果 θ 已知(比如,通过经济理论而知),则可用 ADF 检验来确定 $\{z_t\}$ 是否平稳。

如果接受" $\{z_t\}$ 为平稳",则认为 $\{y_t, x_t\}$ 存在协整关系。

但通常我们不知道 θ ,故 EG-ADF 检验分两步进行。

第一步 用 OLS 估计协整系数 θ ,即

$$y_t = \phi + \theta x_t + z_t \tag{14.37}$$

在 " $\{y_t, x_t\}$ 存在协整关系"的原假设下,虽然 $\{y_t, x_t\}$ 为非平稳的 I(1)过程,但 $\{z_t\}$ 为平稳过程,故 OLS 的估计量 $\hat{\phi}$ 与 $\hat{\theta}$ 是一致估计量。

第二步 对残差序列 $\left\{\hat{z}_t \equiv y_t - \hat{\phi} - \hat{\theta}x_t\right\}$ 进行 ADF 检验,确定其是否平稳。

如果检验结果确认 $\{\hat{z}_t\}$ 为平稳,则接受" $\{y_t, x_t\}$ 存在协整关系"的原假设。估计出的协整关系" $y_t = \hat{\phi} + \hat{\theta}x_t$ "即为 $\{y_t, x_t\}$ 之间的长期均衡关系。

反之,如果检验结果认为 $\{\hat{z}_t\}$ 不平稳,则拒绝原假设,认为不存在协整关系。

由于协整系数 $\hat{\theta}$ 是估计出来的,不一定是真实的协整系数,故 EG-ADF 统计量的临界值与普通的 ADF 检验不同,参见表 14.2。

表 14.2 EG-ADF 检验的临界值

方程 (14.37) 中解释变量 x_t 的个数	10%	5%	1%
1	-3.12	-3.41	-3.96
2	-3.52	-3.80	-4.36
3	-3.84	-4.16	-4.73
4	-4.20	-4.49	-5.07

资料来源: Stock and Watson (2012, p. 696)。

表 14.2 中的临界值取决于方程(14.37)中解释变量x,的个数。

如果考察两个变量之间的协整关系,则 x_t 的个数为 1。

如果考察三个变量之间的协整关系,则x,的个数为 2;以此类推。

比如,当只有 $1 \land x_t$ 时,显著性为 10%的临界值为-3.12, 5%的临界值为-3.41,而 1%的临界值为-3.96。

然后进行左边单侧检验, 即拒绝域在临界值的左边。

无论是否有漂移项(常数项),表 14.2 中的临界值都适用。

EG-ADF 法的缺点是,不能处理同时存在多个协整关系(即协整 秩大于 1)的情形。 由于 EG-ADF 法分两步进行,第一步估计的误差被带到第二步中,故不是最有效率的方法。

比 EG-ADF 法更有效率的方法是 MLE,同时估计所有参数。

14.8 协整的最大似然估计

假设 $\{y_{1t}, \dots, y_{nt}\}$ 都是单位根变量,其中变量个数 $n \ge 2$ 。

记随机向量 $\mathbf{y}_t = (y_{1t} \cdots y_{nt})'$,则 \mathbf{y}_t 的每个分量都为单位根过程。

考虑 \mathbf{y}_{t} 的向量自回归模型:

$$\mathbf{y}_{t} = \boldsymbol{\alpha} + \boldsymbol{\Phi}_{1} \mathbf{y}_{t-1} + \boldsymbol{\Phi}_{2} \mathbf{y}_{t-2} + \dots + \boldsymbol{\Phi}_{p} \mathbf{y}_{t-p} + \boldsymbol{\varepsilon}_{t} \quad (14.38)$$

根据与 ADF 检验类似的推导,可得此 VAR 模型对应的**向量误 差修正模型**(Vector Error Correction Model, 简记 VECM):

$$\Delta \mathbf{y}_{t} = \boldsymbol{\alpha} + \boldsymbol{\Gamma}_{0} \mathbf{y}_{t-1} + \boldsymbol{\Gamma}_{1} \Delta \mathbf{y}_{t-1} + \dots + \boldsymbol{\Gamma}_{p-1} \Delta \mathbf{y}_{t-p+1} + \boldsymbol{\varepsilon}_{t}$$
(14.39)

其中, $\Gamma_0 \mathbf{y}_{t-1}$ 为误差修正项。当 \mathbf{y}_{t-1} 偏离长期均衡关系时, $\Gamma_0 \mathbf{y}_{t-1}$ 即为 $\Delta \mathbf{y}_t$ 将要作出的调整(即误差修正)。

矩阵 Γ_0 的秩即为协整秩。

如果 $rank(\Gamma_0) = 0$,则不存在协整关系。

如果 $rank(\Gamma_1)=1$,则存在一个协整关系;以此类推。

假设协整秩为h,且扰动项服从n维正态分布。

Johansen (1988)使用 MLE 来估计此 VECM 模型。

在满足 "rank(Γ_0) = h" 的条件下,最大化样本数据 $\{\mathbf{y}_1, \dots, \mathbf{y}_T\}$ 的对数似然函数。

为求解此约束极值问题,须先确定协整秩h。首先进行以下检验:

$$H_0: \operatorname{rank}(\boldsymbol{\Gamma}_0) = 0$$
 vs $H_1: \operatorname{rank}(\boldsymbol{\Gamma}_0) > 0$ (14.40)

其中,原假设为协整秩为 0,即不存在协整关系;而替代假设为协整秩大于 0,即存在协整关系。

当协整秩为h时,系数矩阵 Γ_0 有h个自由(线性无关)的行向量。

协整秩h越大,则对矩阵 Γ_0 的约束越少,其对应的似然函数最大值应该越大。

据此可进行似然比检验,由于此检验统计量涉及矩阵的迹(主对角线元素之和),故称为**迹统计量**(trace statistics),记为 λ_{trace} 。

由于**迹检验**(trace test)是似然比检验,故为单边右侧检验,即 λ_{trace} 越大,则越倾向于拒绝原假设。

如果接受" H_0 : rank(Γ_0) = 0",则认为不存在协整关系。

反之,则继续检验是否存在多个协整关系:

$$H_0: \operatorname{rank}(\boldsymbol{\Gamma}_0) = 1$$
 vs $H_1: \operatorname{rank}(\boldsymbol{\Gamma}_0) > 1$ (14.41)

其中,原假设为协整秩为1,即仅存在一个协整关系;而替代假设为协整秩大于1,即存在多个协整关系。

依此顺序不断进行检验,直到接受 H_0 ,确认协整秩h为止。

Johansen (1988)还考虑了另一类检验:

$$H_0: \operatorname{rank}(\boldsymbol{\Gamma}_0) = h$$
 vs $H_1: \operatorname{rank}(\boldsymbol{\Gamma}_0) = h+1$ (14.42)

其中,原假设为协整秩为h,即存在h个协整关系;而替代假设为协整秩等于(h+1),即存在(h+1)个协整关系。

此检验的统计量为最大特征值统计量(maximum eigenvalue statistics),记为 λ_{max} ,称为最大特征值检验(maximum eigenvalue test)。

一般认为, 迹检验的效果比特征值检验更好, 故前者为 Stata 的默认方法。

确认协整秩h后,即可在给定"rank(Γ_0)=h"的条件下,使用MLE 估计 VECM 模型。如果存在时间趋势与季节效应(为季度数据或月度数据),则 VECM 模型变为:

$$\Delta \mathbf{y}_{t} = \boldsymbol{\alpha} + \boldsymbol{\Gamma}_{0} \mathbf{y}_{t-1} + \boldsymbol{\Gamma}_{1} \Delta \mathbf{y}_{t-1} + \dots + \boldsymbol{\Gamma}_{p-1} \Delta \mathbf{y}_{t-p+1} + \boldsymbol{\delta} t + \mathbf{w}_{1} s_{1} + \dots + \mathbf{w}_{m} s_{m} + \boldsymbol{\varepsilon}_{t}$$
(14.43)

其中, δt 为时间趋势项,而 $\{s_1, \dots, s_m\}$ 为季节虚拟变量。

仍可进行条件 MLE 估计。

14.9 协整分析的 Stata 实例

协整分析的起点是所有相关变量都是单位根变量,为此首先须进行 ADF 检验。

如果确定所有变量都为单位根过程,则可进一步检验这些 I(1) 变量是否存在协整关系。

(1) 检验协整秩

检验协整秩的 Stata 命令为(假设变量为x, y, z)

. vecrank x y z,lags(#) max trend(none)
trend(trend)

选择项"lags(#)"表示对应的 VAR 模型(14.38)中滞后的阶数, 默认为"lags(2)"。

选择项"max"表示也进行最大特征值检验,默认仅进行迹检验。

选择项"trend(none)"表示不包括常数项或时间趋势。

选择项"trend(trend)"表示包括常数项与时间趋势;默认包括常数项,但不包括时间趋势。

命令 vecrank 的输出结果将列出" $h=0, 1, \dots, n-1$ "的一系列检验,并以星号(*)标出所接受h值,即协整秩。

(2) 估计协整关系

在作完协整秩检验后,如果确定h=0,则认为这些变量不存在协整关系。

反之,如果确定 $h \ge 1$,则可对 VECM 模型进行最大似然估计(也可使用 Engle-Granger 两步法,但效率更低,且在 $h \ge 2$ 的情况下无法使用)。

使用 MLE 估计 VECM 模型的 Stata 命令为

. vec x y z,lags(#) rank(#) trend(none)
trend(trend) sindicators(varlist)

选择项"lags(#)"表示对应的 VAR 模型(14.38)中滞后的阶数, 默认为"lags(2)"。

选择项 "rank(#)"表示协整秩的阶数,默认为 "rank(1)"。 选择项 "trend(none)"表示不包括常数项或时间趋势。

选择项"trend(trend)"表示包括常数项与时间趋势,默认包括常数项,但不包括时间趋势。

选择项 "sindicators(varlist)"表示加入季节虚拟变量。

(3) 诊断性检验

估计完 VECM 模型后,应对模型的假设进行诊断性检验 (diagnostic checking),主要包括残差有无自相关,以及模型的平稳性。

. veclmar

此命令对残差是否存在自相关进行LM检验。

. vecstable, graph

此命令检验 VECM 系统是否为平稳过程。如果所有特征值都在单位圆内部,则为平稳过程。

选择项"graph"表示画出特征值的几何分布图。

(4) 脉冲响应函数与预测

估计完 VECM 模型后,也可计算脉冲响应函数或进行预测,其命令与 VAR 模型相同。

对于协整分析而言,一般主要关注长期的均衡关系(即协整关系),而不太关心短期的调整过程。

以数据集 mpyr.dta 为例,对美国的货币需求函数进行协整分析。

该数据集包含了美国 1900-1989 年的以下年度宏观变量: logp(价格水平的对数), logy(名义净国民生产总值的对数), logm1(M₁的对数), logmr(实际货币的对数,即 <math>logm1-logp),以及 r(名义利率)。

从经济理论出发, 可将货币需求函数写为

$$logmr_{t} = \beta_{0} + \beta_{1}logy_{t} + \beta_{2}r_{t} + \varepsilon_{t}$$
 (14.44)

其中, β 为货币需求的收入弹性,一般认为接近于 1

 β ,为货币需求的利率"半弹性"(semielasticity),一般为负。

假定以上变量均为单整 I(1)过程(参见习题), 故应进行协整分析。

首先,从图形上大致考察(logmr, logy, r)是否存在协整关系(参见图 14.6):

- . use mpyr.dta,clear
- . tsline logmr logy r,lp(solid dash shortdash) xlabel(1900(10)1990)

选择项"lp(solid dash shortdash)"表示分别用实线、虚线与短虚线来画图。

选择项 "xlabel(1900(10)1990)" 表示,在横轴从1900-1990 年,每隔 10 年做个标注(label)。

图 14.6 实际货币与收入的时间趋势

实际货币对数与收入对数的时间走势比较接近,而名义利率似乎与实际货币对数呈反向变动。

(logmr, logy, r)可能存在长期均衡关系,即为协整系统。

这三个变量似乎都存在时间趋势。

首先,需要确定此系统的协整秩,即究竟有多少个线性无关的协整关系。

对于这个三个变量的系统,可能的协整秩为0,1或2。

在使用命令 vecrank 进行协整秩检验时,需要指定相应 VAR 模型的滞后阶数。

先检验该系统所对应的 VAR 模型的滞后阶数:

. varsoc logmr logy r

Lag-order selection criteria

Sample: 1904 thru 1989

Number of obs = 86

Lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-251.056				.073876	5.90827	5.94272	5.99388
1	132.578	767.27	9	0.000	.000012	-2.80415	-2.66632	-2.46168*
2	148.293	31.429	9	0.000	.00001*	-2.96029*	-2.7191*	-2.36098
3	151.979	7.3723	9	0.598	.000012	-2.83672	-2.49215	-1.98055
4	162.506	21.054*	9	0.012	.000011	-2.87222	-2.42429	-1.75921

* optimal lag

Endogenous: logmr logy r

Exogenous: _cons

上表中打星号者为根据不同准则所选择的滞后阶数。其中,AIC 准则选择滞后二阶,而 BIC 准则选择滞后一阶。 为了保守起见,在此选择滞后二阶。

下面进行协整秩检验:

. vecrank logmr logy r, lags(2) trend(trend) max

选择项"lags(2)"表示对应的 VAR 模型滞后二阶(也是默认值)。

选择项"trend(trend)"表示既包括常数项,也包括时间趋势项。

选择项"max"表示显示最大特征值统计量。

Johansen	tests fo	r cointegrat	ion							
	Trend: Linear Number of obs = 88									
Sample: 1902 thru 1989 Number of 1										
					Critical					
Maximum				Trace	value					
rank	Params	${ m LL}$	Eigenvalue	statistic	5%					
0	15	138.03791	•	46.3731	34.55					
1	20	153.13651	0.29047	16.1759*	18.17					
2	23	160.58579	0.15575	1.2773	3.74					
3	24	161.22445	0.01441							
					Critical					
Maximum			Eige	nvalue	value					
rank	Params	${ m LL}$		Maximum	5%					
0	15	138.03791	•	30.1972	23.78					
1	20	153.13651	0.29047	14.8985	16.87					
2	23	160.58579	0.15575	1.2773	3.74					
3	24	161.22445	0.01441							
* select	* selected rank									

迹检验(trace statistic)结果表明,只有一个线性无关的协整向量(上表中打星号 "*"者)。

最大特征值检验(max statistic)表明,可以在 5%的水平上拒绝"协整秩为 0"的原假设(30.1972 > 23.78),但无法拒绝"协整秩为 1"的原假设(14.8985 > 16.87)。

因此,选择协整秩为1。

使用 Johansen 的 MLE 方法估计该系统的向量误差修正模型 (VECM):

.vec logmr logy r,lags(2) rank(1)

选择项"lags(2)"表示对应的 VAR 模型滞后二阶(也是默认值)

选择项 "rank(1)"表示协整秩为1(也是默认值)。

Vector error-c	correction mod	lel					
Sample: 1902 t		Number c	of obs	=	88 -3.037506		
Log likelihood Det(Sigma_ml)				HQIC SBIC		=	-2.8447 -2.55893
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
D_logmr D_logy D_r	5 5 5	.050841 .056773 1.1287	0.2758 0.3483 0.2133	31.61646 44.35204 22.50845	0.0000 0.0000 0.0004		
	Coefficient	Std. err.	z	P> z	[95% cc	onf.	interval]
D_logmr _cel L1.	0533601	.0410678	-1.30	0.194	133851	.5	.0271314
logmr LD.	.2079032	.1107256	1.88	0.060	009114	.9	.4249214
logy LD.	.0086587	.101984	0.08	0.932	191226	3	.2085438
r LD.	0063968	.0052854	-1.21	0.226	016755	19	.0039624
_cons	.0186333	.0064766	2.88	0.004	.005939	3	.0313273

D_logy						
_cel L1.	.0298268	.0458591	0.65	0.515	0600554	.119709
logmr LD.	.2666361	.1236437	2.16	0.031	.0242989	.5089733
logy LD.	.2330244	.1138823	2.05	0.041	.0098191	.4562296
r LD.	0145323	.005902	-2.46	0.014	0261001	0029646
_cons	.0157173	.0072323	2.17	0.030	.0015424	.0298923
D_r						
_cel	-3.482578	.9117297	-3.82	0.000	-5.269536	-1.695621
logmr LD.	2.663613	2.458173	1.08	0.279	-2.154318	7.481544
logy LD.	.6533844	2.264106	0.29	0.773	-3.784182	5.09095
r LD.	.294868	.1173386	2.51	0.012	.0648885	.5248475
_cons	0001509	.1437852	-0.00	0.999	2819648	.281663

Cointeg	grating	equations							
Equation	on	Parms	chi2	P>chi2					
_ce1		2 '	794.1155	0.0000					
Identification: beta is exactly identified Johansen normalization restriction imposed									
	beta	Coefficient	Std. err	. Z	P> z	[95% conf.	interval]		
_cel									
	logmr	1		•		•	•		
	logy	9754246	.0346169	-28.18	0.000	-1.043273	9075767		
	r	.1124051	.0097191	11.57	0.000	.093356	.1314542		
	_cons	.7299535	•	•	•	•	•		

此表上部为误差修正模型(Vector error-correction model),下部为协整方程(Cointegrating equation),以"_cel"来表示。

我们主要对货币需求函数感兴趣,即协整方程所代表的长期均衡关系。

根据此协整方程,协整向量为(1, -0.98, 0.11),其中 logmr 的系数被标准化为 1,故其标准误为缺失;而其他两个变量(logy 与 r)的协整系数均在 1%水平上显著。

将协整向量移项,可将估计的货币需求函数写为

$$\widehat{logmr_t} = -0.73 + 0.98 \ logy_t - 0.11 \ r_t \qquad (14.45)$$

其中,货币需求的收入弹性为 0.98,而货币需求的利率半弹性 为-0.11,均符合经济理论的预期。 下面检验 VECM 模型的残差是否存在自相关。如果存在自相关,则需增加滞后阶数。

. veclmar

Lagrang	Lagrange-multiplier test										
lag	chi2	df	Prob > chi2								
1	6.6260	9	0.67599								
2	12.5541	9	0.18384								

HO: no autocorrelation at lag order

可以接受"无自相关"的原假设。

下面检验此 VECM 系统是否稳定,结果如图 14.7:

. vecstable, graph

Eigenvalue stability condition

Eigenvalue	Modulus
1	1
.4092107 + .4061819 <i>i</i>	.576574
.40921074061819 <i>i</i>	.576574
.2217304 + .07266624 <i>i</i>	.233334
.221730407266624 <i>i</i>	.233334

The VECM specification imposes 2 unit moduli.

图 14.7 VECM 系统稳定性的判别图

除了 VECM 模型本身所假设的单位根之外(The VECM specification imposes 2 unit moduli),伴随矩阵的所有特征值均落在单位圆之内,故是稳定的系统。

作为对比,下面用 OLS 估计此长期均衡关系(EG-ADF 两步法):

. reg logmr logy r

Source	SS	df	MS	Numbe	er of obs	=	90
				- F(2,	87)	=	1169.93
Model	41.216226	2	20.608113	3 Prob	> F	=	0.0000
Residual	1.53248421	87	.017614761	l R-sq	uared	=	0.9642
				- Adj 1	R-squared	=	0.9633
Total	42.7487102	89	.48032258	7 Root	MSE	=	.13272
	'						
logmr	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
logy	.9418376	.0196178	48.01	0.000	.90284	51	.9808302
r	0832229	.0053829	-15.46	0.000	09392	19	0725239
_cons	7737089	.0426886	-18.12	0.000	85855	72	6888606

OLS 系数估计值与 Johansen 的 MLE 估计结果比较接近。从理论来说, MLE 估计更有效率。