Mobility Models

Luiz Filipe

Motivation

- Wireless network simulations often involve movements of entities
- Examples
 - Users are roaming on WLAN access points that are installed in buildings (infrastructure mode)
 - Cell phone users are walking a city
 - Cars use car-to-car communication
 - Ad hoc networks in emergency situations, e.g., earthquake or fire
- Mobility of entities plays an important role in such scenarios
- Results may vary significantly if the mobility pattern is changed

Categorization

- Traces and synthetic mobility models
 - Traces: Mobility patterns that are logged from real life situations
 - ▶ **Synthetic mobility models**: Generated by algorithms that specify virtual behavior of users and predict their movements
- Entity and group mobility models
 - Entity models: Movement of a single individual entity, e.g., a human being or an animal.
 - Group models: A group of individual entities, which is moving as a whole.

Categorization

- ▶ Human, animal, and vehicle mobility models
 - Human: Human beings in certain scenarios.
 - Animal: Herds or swarms
 - **Vehicle**: Restricted to traffic rules
- Normal situation and special situation mobility models
 - > **Special**: earthquake

What is Mobile Network? Why is it called Ad Hoc?

- Mobile Ad Hoc Networks (MANET) is a network consisting of mobile nodes with wireless connection (Mobile) and without central control (Ad Hoc)
 - Self-Organized Network
- Each mobile node communicates with other nodes within its transmitting range
- Transmission may be interrupted by nodal movement or signal interference

It seems that something is watching

- Sensor Network is recently a hot topic
- Specified Application in MANET
- Nodes are equipped some observation devices (GPS, Temperature, Intruder Detection and so on)
- Nodes may move spontaneously or passively
- There are more restrictions in Sensor Networks
 - Power
 - Transmission Range
 - Limited Computation Power
 - Moving Speed (if does)

Realistic Mobility Model is better than Proposed Mobility Models

- Although MANET and Sensor Network are being researched for a while, there do not exist many realistic implementation
- ▶ To implement a real MANET or Sensor Network environment for emulation is difficult
 - Signal Interference
 - Boundary
- We will need to evaluate MANET by simulation
- To have useful simulation results is to control factors in simulation
 - Traffic Pattern
 - Bandwidth
 - Power Consumption
 - Signal Power (Transmission Range)
 - Mobility Pattern
 - And so on

How Many Mobility Model are inspected?

Entity Mobility Models

- Random Walk Mobility Model
- Random Waypoint Mobility Model
- Random Direction Mobility Model
- A Boundless Simulation Area Mobility Model
- Gauss-Markov Mobility Model
- A Probability Version of the Random Walk Mobility Model
- City Section Mobility Model

Group Mobility Models

- Exponential Correlated Random Mobility Model
- Column Mobility Model
- Nomadic Community Mobility Model
- Pursue Mobility Model
- Reference Point Group Mobility Model

Random Walk model

- Entities in nature move in unpredictable ways
- Entity moves from its current location to a following location by choosing randomly a new direction and speed
- Every movement is limited to a constant time interval

Random Walk

Parameters:

- Speed =
 [Speed_MIN,Speed_MAX]
- Angle = $[0,2\pi]$
- Traversal Time (t) or Traversal Distance (d)

Random Waypoint Model

- The entity chooses a random destination coordinate
- Then it moves from its current location to the destination location
- After a pause, the new movement is calculated

Random Waypoint

Parameters

- Speed =
 [Speed_MIN,Speed_MAX]
- Destination =
 [Random_X,Random_Y]
- Pause Time >= 0

Random Direction Model

- The entity chooses a random direction and a random speed
- Entity moves towards the boundary of the simulation area
- After a pause, the new movement is calculated

Random Direction

- Parameters:
 - Speed =
 [Speed_MIN,Speed_MAX]
 - Direction = $[0,\pi]$ (Initial $[0,2\pi]$)
 - Pause Time
- Go straight with selected direction until bump to the boundary then pause to select another direction

Boundless Simulation Area

Parameters:

- $v(t+\triangle t) = min\{max[v(t)+\triangle v,0],V_{max}\}$
- $\theta(t+\triangle t) = \theta(t) + \triangle \theta$
- $x(t+\triangle t) = x(t) + v(t) * \cos\theta(t)$
- $y(t+\triangle t) = y(t) + v(t) *$ $cos\theta(t)$
- $\triangle v = [-A_{max}^* \triangle t, A_{max}^* \triangle t]$
- $\triangle \theta = [-\alpha^* \triangle t, \alpha^* \triangle t]$

Gauss-Markov Model

- The entity gets initially assigned a speed and a direction
- At fixed intervals of time, an update of direction and speed is applied
- This model enables movements that are depending on previous movements

Gauss-Markov

Parameters:

$$s_{n} = \alpha s_{n-1} + (1-\alpha)\bar{s} + \sqrt{(1-\alpha^{2})s_{n-1}}$$

$$d_{n} = \alpha d_{n-1} + (1-\alpha)\bar{d} + \sqrt{(1-\alpha^{2})d_{n-1}}$$

When approach the edge, d value will change to prevent the node stocking at the edge

Probability Version of Random Walk

$$P = \begin{bmatrix} P(0,0) & P(0,1) & P(0,2) \\ P(1,0) & P(1,1) & P(1,2) \\ P(2,0) & P(2,1) & P(2,2) \end{bmatrix}$$

X': next x-coordinate Y': next y-coordinate X: current x-coordinate Y: current y-coordinate (0): current location (1): previous location

(2): next location

Manhattan Model

- Entities are bound to streets or highways
- Map with streets and crossings is defined
- Safety distance between entities
- Street changes at crossings happen according to a probability

City Section

Group Mobility

- Exponential Correlated Random Mobility Model
- Column Mobility Model $b(t+1) = b(t)e^{-\frac{1}{\tau}} + \left(\sigma\sqrt{1 \left(e^{-\frac{1}{\tau}}\right)^2}\right)r$
 - Given a reference grid, each node has a reference point on the reference grid
 - Each node can move freely around its reference point (Ex: Random Walk)
- Nomadic Community Mobility Model
 - Similar to Column Mobility Model, but all nodes of a group share a reference point
- Pursue Mobility Model
 - new_pos = old_pos + acceleration(target-old_pos) + random_vector

Reference Point Group Mobility Model

- Group movements are based on the path traveled by a logical center for the group
- ▶ GM: Group Motion Vector
- RM: Random Motion Vector
- Random motion of individual node is implemented by Random Waypoint without Pause

Column Model

- Group mobility model in which each entity follows a reference point
- Reference points are arranged in a line
- The line is moving
- Entities are choosing random point near the reference point to move to
- Example: tanks

Persue Model

- Group of mobile entities are pursuing single reference entity
- The reference entity is using an entity mobility model
- Group entities are pursuing the reference entity while adding small deviations
- Example: Tourists following guide

Nomadic Community Model

- Group of entities are following a single reference point
- All entities are sharing the same reference point
- Each entity is randomly moving around the reference point
- Example: Nomads moving from one place to another

Selection of Models

- ▶ Trade-off between accuracy and costs of the model
 - Detailed models fit into real-life scenarios
 - Realistic models impose high complexity
 - Implementation efforts
 - Performance of calculation
- Simple models are easy to implement and can be calculated fast
- Finding the right model
 - Review available models of the area
 - Start with a simple model that fits best
 - Improve it to the specified scenario
- ▶ Alternatively: Use the same model as it is used in related
- research → comparable results

Simulation Parameters

- Simulation Package: ns-2
- 50 Mobile Nodes
- ▶ 100m Transmission Range
- Simulation Time from 0s ~ 2010s
 - Results is collected from 1010s
- Routing Protocol: Dynamic Source Routing (DSR)
- ▶ Each mobility model has 10 different runs and show with 95% confidence interval
- Simulated Model
 - Random Walk
 - Random Waypoint
 - Random Direction
 - RPGM
 - ▶ 100% Intergroup communication
 - ▶ 50% Intergroup communication, 50% Intragroup communication

What results do different mobility models bring?

Observation of Different Mobility Models

- The performance of an ad hoc network protocol can vary significantly with different mobility models
- The performance of an ad hoc network protocol can vary significantly when the same mobility model is used with different parameters
- Data traffic pattern will affect the simulation results
- Selecting the most suitable mobility model fitting to the proposed protocol

Considerations when Applying Each Mobility Model

Random Walk

- Small input parameter: Stable and static networks
- Large input parameter: Similar to Random Waypoint

Random Waypoint

Scenarios such as conference or museum

Random Direction

- Unrealistic model
- Pause time before reaching the edge → Similar to Random Walk

Boundless Simulation

 Although moving without boundary, the radio propagation and neighboring condition are unrealistic

Gauss-Markov

Most realistic mobility model

Probabilistic Random Walk

Choosing appropriate parameters to fit real world is difficult

City Section

For some protocol designed for city walk

Exponential Correlated Random Mobility Model

Theoretically describe all other mobility models, but selecting appropriate parameter is impossible

Column, Nomadic Community, Pursue Mobility Models

Above three mobility models can be modeled by RPGM with different parameters

RPGM Model

- Generic method for group mobility
- Assigned an entity mobility model to handle groups and individual node

Random Waypoint Considered Harmful

- Yoon has published a paper indicating that network average speed of RWP will decay to zero in simulation
 - Setting the minimum speed larger than zero
- Besides speed decaying, the nodes with RWP tend to cross the center of the area

$$First$$
:
$$\frac{(X_{\max} - X_1) \cdot (Y_{\max} - Y_1)}{X_{\max} \cdot Y_{\max}}$$

Second :
$$\frac{(X_1-0)\cdot(Y_{\text{max}}-Y_1)}{X_{\text{max}}\cdot Y_{\text{max}}}$$

Third:
$$\frac{(X_1-0)\cdot(Y_1-0)}{X_{\max}\cdot Y_{\max}}$$

$$Fourth$$
: $\frac{(X_{\text{max}} - X_{-1}) \cdot (Y_{1} - 0)}{X_{\text{max}} \cdot Y_{\text{max}}}$

Spatial Distribution Comparisons

Cumulate the nodal appearance in the square of 100mx100m (Moving area is 1000mx1000m)

Conclusions

- The defects in RWP are explored by some research and solutions are also proposed
 - Decaying Average Speed
 - Unfair Moving Pattern
- Most proposed solutions target to one of the defects but not both
- To generate different moving pattern within the same speed range is a reasonable requirement but it has not been brought up

Reference

- Tracy Camp, Jeff Boleng, and Vanessa Davies, "A Survey of Mobility Models for Ad Hoc Network Research", Wireless Communication and Mobile Computing (WCMC) 2002
- Guolong Lin, Guevara Noubir, and Rajmohan Raharaman, "Mobility Models for Ad Hoc Network Simulation", INFOCOM 2004