MEMORANDUM
RM-6150-PR
NOVEMBER 1969

EXTERNAL RADIATION FIELDS FOR ISOTROPICALLY SCATTERING FINITE ATMOSPHERES BOUNDED BY A LAMBERT LAW REFLECTOR

J. Casti, H. Kagiwada and R. Kalaba

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

MEMORANDUM RM-6150-PR NOVEMBER 1969

EXTERNAL RADIATION FIELDS FOR ISOTROPICALLY SCATTERING FINITE ATMOSPHERES BOUNDED BY A LAMBERT LAW REFLECTOR

J. Casti, H. Kagiwada and R. Kalaba

This research is supported by the United States Air Force under Project RAND. Contract No. F44620-67-C9645 monitored by the Directorate of Operational Requirements and Development Plans, Deputy Chief of Staff, Research and Development, Hq USAF, Views or conclusions contained in this study should not be interpreted as representing the official opinion or policy of the United States Air Force.

DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

This study is presented as a competent treatment of the subject, worthy of publication. The Rand Corporation vouches for the quality of the research, without necessarily endorsing the opinions and conclusions of the authors.

Published by The RAND Corporation

PREFACE

The determination of diffusely transmitted and reflected radiation fields for an atmosphere of finite thickness is a basic problem in radiative transfer. This Memorandum presents methods of calculating these fields for a model planetary atmosphere, where the surface of the planet is assumed to scatter incident radiation according to Lambert's law of scattering. Scattering in the atmosphere is assumed to be isotropic, and curvature, polarization, and frequency dependence are not considered. The Memorandum also provides numerical results and checks.

SUMMARY

This Memorandum provides formulas for obtaining the diffusely transmitted and reflected radiation fields for a planetary, isotropically scattering atmosphere of finite thickness in terms of the solution to the problem with no planetary surface. Numerical results show that these reflected and transmitted fluxes are essentially the same whether isotropic or Rayleigh scattering laws are assumed.

CONTENTS

PREŁ ACE	iii
SUMMARY	v
Section	•
I. INTRODUCTION	1
II. DERIVATION OF THE EQUATIONS	2
III. THE COMPUTATIONAL SCHEME	6
IV. NUMERICAL RESULTS	10
V. COMPUTATIONAL CHECKS	24
REFERENCES	27

I. INTRODUCTION

A fundamental problem in radiative transfer studies of a finite atmosphere illuminated by sunlight is the determination of the intensities of the diffusely reflected and transmitted radiation (i.e., the radiation reaching the surface). In a recent paper [1], Kahle studied this problem for the case of a plane-parallel atmosphere bounded by a reflecting surface obeying a Lambert law of reflection. A Rayleigh law of scattering was assumed in the atmosphere, and reflection and transmission functions were obtained via the solution of the appropriate singular integral equations.

This Memorandum presents an alternate approach to a related planetary problem. Isotropic rather than Ravleigh scattering is assumed in the atmosphere. Aside from the intrinsic interest of the problem, a major goal of this work is to ascertain the differences in reflected and transmitted fluxes caused by these two scattering laws. This Memorandum's conclusion is that virtually no difference exists.

II. DERIVATION OF THE EQUATIONS

To derive an appropriate system of ordinary differential equations for the reflected and transmitted intensities in the case of a plane-parallel atmosphere, define the function

$$r(v,u,x) = R(v,u,x)/4v$$

intensity of radiation reflected in a direction arc cos v due to parallel rays of incident radiation of net flux " in a direction arc cos u (with respect to the inward directed normal) for an isotropically scattering atmosphere of optical thickness x having no reflector at the bottom.

The functions t(v,u,x) and T(v,u,x) for the diffusely transmitted intensities are defined similarly. Also introduce the functions $r^*(v,u,x,A)$ and $t^*(v,u,x,A)$ to represent the reflected and transmitted intensities, respectively, for the case of an atmosphere bounded by a Lambert law reflector having albedo A.

Reference 2 shows that the functions R and T satisfy the system of differential equations:

$$\frac{d}{dx} R(v,u,x) = -\left(\frac{1}{u} + \frac{1}{v}\right) R(v,u,x)$$

$$+ \left[1 + \frac{1}{2} \int_{0}^{1} R(v',u,x) du'/u'\right]$$

$$+ \left[1 + \frac{1}{2} \int_{0}^{1} R(v',u,x) dv'/v'\right]$$

$$0 \le v, u \le 1$$

$$x > 0$$

$$R(\mathbf{v},\mathbf{u},0) = 0 , \qquad (2)$$

$$\frac{d}{dx} T(v,u,x) = -\frac{1}{v} T(v,u,x)$$

$$+ \lambda \left[1 + \frac{1}{2} \int_{0}^{1} R(v,u',x) du'/u' \right]$$

$$\times \left[e^{-x/u} + \frac{1}{2} \int_{0}^{1} T(v',u,x) dv'/v' \right],$$
(3)

(4)

The parameter \(\) represents the albedo for single scattering.

To obtain equations for r^* and t^* , let I(u,x,A) be the constant intensity of radiation reflected from the bottom surface of albedo A, the incident direction being arc $\cos u$ and the optical Chickness being x [3]. Then using the conservation law that at the bottom surface

(upward flux) = $\Lambda \cdot$ (downward flux) ,

the equation

T(v,u,0) = 0.

$$= I(\mathbf{u}, \mathbf{x}, \mathbf{A}) = \mathbf{A} \begin{bmatrix} -\mathbf{u}e^{-\mathbf{x}/\mathbf{u}} + \int_{0}^{1} \frac{T(\mathbf{v}', \mathbf{u}, \mathbf{x})}{4\mathbf{v}'} & 2\mathbf{v}\mathbf{v}'d\mathbf{v}' \\ 0 & 0 \end{bmatrix} + \int_{0}^{1} I(\mathbf{u}, \mathbf{x}, \mathbf{A}) \int_{0}^{1} \frac{P(\mathbf{v}', \mathbf{u}', \mathbf{x})}{4\mathbf{v}'} & 2\mathbf{v}\mathbf{v}'d\mathbf{v}' \end{bmatrix}$$
(5)

for the function I is obtained. Solving for I yields

$$I(u,x,A) = \frac{A \left[ue^{-x/u} + \frac{1}{2} \int_{0}^{1} T(v',u,x) dv' \right]}{1 - A \int_{0}^{1} \int_{0}^{1} R(v',u',x) du' dv'}.$$
 (6)

Viewing the function I(u,x,A) as a new source of radition incident on the bottom of the atmosphere leads to the relations

$$t^{*}(v,u,x,A) = T(v,u,x)/4v + \frac{I(u,x,A)}{\pi} \int_{0}^{1} \frac{R(v,u',x)}{4v} 2\pi du',$$
(7)

=
$$T(v,u,x)/4v$$
 (8)
+ $\frac{1}{2}I(u,x,A) \int_{0}^{1} R(v,u',x)du'/v$,

$$r^{*}(v,u,x,A) = R(v,u,x)/4v + I(u,x,A)e^{-x/v}$$

$$+ \frac{I(u,x,A)}{\pi} \int_{0}^{1} \frac{T(v,u',x)}{4v} 2\pi du',$$

$$= R(v,u,x)/4v$$

$$+ I(u,x,A) \left[e^{-x/v} + \frac{1}{2} \int_{0}^{1} T(v,u',x) du'/v\right].$$
(10)

The above equations clearly exhibit the fact that knowledge of the radiation fields for the nonplanetary problem is sufficient for obtaining the radiation fields for the planetary problem with a Lambert-law reflecting surface [3].

III. THE COMPUTATIONAL SCHEME

For the purposes of numerical calculation of the quantities $r^*(v,u,x,A)$, $t^*(v,u,x,A)$, and the reflected and transmitted fluxes, finite sums replace all integrals appearing in Eqs. (1), (3), (6), (7), and (9). If z_1,z_2,\ldots,z_N represent the nodes and w_1,w_2,\ldots,w_N the weights of an N point quadrature scheme, the above differential integral equations reduce to the system of ordinary differential equations

$$\frac{d}{dx} R_{ij}(x) = -\left(\frac{1}{z_i} + \frac{1}{z_j}\right) R_{ij}(x)$$

$$+ \lambda \left[1 + \frac{1}{2} \sum_{k=1}^{N} R_{ik}(x) w_k / z_k\right]$$

$$\times \left[1 + \frac{1}{2} \sum_{k=1}^{N} R_{kj}(x) w_k / z_k\right],$$
(11)

$$R_{ij}(0) = 0$$
 , (12)

$$\frac{d}{dx} T_{ij}(x) = -\frac{1}{z_{i}} T_{ij}(x)$$

$$+ \lambda \left[1 + \frac{1}{2} \sum_{k=1}^{N} R_{ik}(x) w_{k}/z_{k} \right]$$

$$\times \left[e^{-x/z_{j}} + \frac{1}{2} \sum_{k=1}^{N} T_{kj}(x) w_{k}/z_{k} \right],$$
(13)

$$T_{ij}(0) = 0$$
, $i,j=1,2,...,N$, (14) $x \ge 0$.

Here the convention

$$R_{ij}(x) = R(z_{i}, z_{j}, x)$$
, (15)

$$T_{ij}(x) = T(z_i, z_j, x)$$
,

is used. Knowledge of the functions R $_{\mbox{ij}}$ and T $_{\mbox{ij}}$ allows calculation of the functions r * and t * via the formulas

$$r_{ij}^{\star}(x,A) = R_{ij}(x)/4z_{i} + I(z_{j},x,A)$$
 (16)

$$\times \left[e^{-x/z}i + \frac{1}{2}\sum_{k=1}^{N}T_{ik}(x)w_{k}/z_{i}\right],$$

$$x > 0, 0 \le A \le 1,$$

$$t_{ij}^{*}(x,A) = T_{ij}(x)/4z_{i}$$

$$+ \frac{1}{2} I(z_{j},x,A) \sum_{k=1}^{N} R_{ik}(x)w_{k}/z_{i},$$

$$x > 0, 0 \le A \le 1.$$

The quantity $I(z_{i},x,A)$ is calculated by

$$I(z_{j},x,A) = \frac{A \left[z_{j}e^{-x/z_{j}} + \frac{1}{2} \sum_{k=1}^{N} T_{kj}(x)w_{k} \right]}{N N}.$$

$$1 - A \sum_{k=1}^{N} \sum_{m=1}^{R_{km}} (x)w_{k}w_{m}$$
(18)

The reflected, transmitted, and global transmitted fluxes, defined by the equations

$$\rho(u,x,A) = 2\pi \int_{0}^{1} r^{*}(z,u,x,A) z dz , \qquad (19)$$

$$\tau(u,x,A) = 2\pi \int_{0}^{1} t^{*}(z,u,x,A)z dz$$
, (20)

and

$$\tau_{q}(u,x,A) = \pi e^{-x/u} + \tau(u,x,A)$$
 (21)

are computed by replacing the integra's with sums and by using the intensity functions $r_{ij}^*(x,A)$ and $t_{ij}^*(x,A)$ in the formulas

$$\rho(z_{j},x,A) = 2\pi \sum_{i=1}^{N} r_{ij}^{*}(x,A)z_{i}^{w}_{i}, \qquad (22)$$

$$\tau(z_{j},x,A) = 2\pi \sum_{i=1}^{N} t_{ij}^{*}(x,A) z_{i}^{w_{i}}, \qquad (23)$$

and

$$\tau_{g}(z_{j},x,A) = \pi e^{-x/u}j + \tau(u_{j},x,A)$$
 (24)

The following steps summarize the numerical procedure:

- 1) Integrate Eqs. (11) and (13) with the initial conditions of Eqs. (12) and (14) from x = 0 to $x = x_d$, the desired thickness.
- 2) At $x = x_d$, for a fixed value of A, compute I(u,x,A) from Eq. (18).
- 3) Using the computed value of I(u,x,A) and the solutions of step 1, calculate the reflected and transmitted intensities from Eqs. (16) and (17).
- 4) Calculate reflected and transmitted fluxes from Eqs. (21) and (22) using previously computed intensities of step 3.

Note: Since the parameter A occurs only in the calculation of I(u,x,A), the set of intensities and fluxes for a range of A values may be obtained by recalculating only I(u,x,A) for the desired values of A.

IV. NUMERICAL RESULTS

The basic numerical calculation consisted of producing the reflected and transmitted intensities and fluxes for surface albedos $A=0,1,2,\ldots,1.0$, optical thickness 0-100, and conservative, isotropic scattering $(\lambda=1)$. The integration step size used was $\Delta=.005$ with Gaussian quadrature of order N=7. A check calculation involving changing the step size to $\Delta=.01$ and varying the order of the quadrature from N=3 to N=5 was run to a thickness of 1 resulting in, at most, a change of one unit on the fourth significant figure. All calculations were performed on a CDC 6600 computer using a fourth-order Adams-Moulton predictor-corrector integration scheme. Execution time for the basic calculations was about 7 min.

One primary objective of the computational study was to evaluate the differences, if any, in the reflected and transmitted intensities and fluxes when both Rayleigh and isotropic scattering laws were assumed. Reference 1 has examined the case of Rayleigh scattering by solving the problem via singular integral equations. Comparison of Figs. 1, 2, and 3 (depicting reflected diffusely transmitted, and global transmitted fluxes) with the analogous graphs in Kahle's paper leads to this conclusion: as far as reflected and transmitted fluxes are concerned, virtually no quantitative difference exists between the reflected and transmitted fluxes for the two scattering laws for any optical thickness in the range 0-100 and any surface albedo $0 \le A \le 1$ for normal incidence.

Tables 1 to 9 present the intensities and fluxes of the reflected and diffusely transmitted radiation for slab thicknesses .2, 10, and 100 and surface albedos A=0, .5, and 1.0. These tables have been excerpted from the main calculations that output intensities and fluxes at 61 optical

thicknesses in the range 0-100 for $A=0.0,0.1,0.2,\ldots,1.0$. The incident angle is constant across a row in the tables. It takes on one of eight different angles as indicated. The tables give intensities for seven outgoing angles, and list fluxes in the last column.

Fig. 1--Reflected Flux at Normal Incidence for Various Values of A

Fig. 2--Diffusely Transmitted Flux at Normal Incidence for Various Values of A

Fig. 3--Global Flux Absorbed versus Ground Reflectivity for Thickness τ = 0.2, 10, and 100, normal incidence

REFLECTED AND DIFFUSELY TRANSMITTED INTENSITIES AND FLUXES FUR A Table 1

AND SUPFACE ALBEDO 0.0

SLAB WITH COMSERVATIVE ISOTROPIC SCATTERING, THICKNESS 0.2,

			REF	REFLECTED INT NSITIES	"SSITIES				
Inc.	3,6	2 2 2 7	00000						Reflected
NICK TO	7. X3.7	1(20.7)	(4.78)	35.72.72	7(00.07	5(45.3)	6(29.5)	7(13.0)	Flux
~ ◄	(88.5)	.139.	.0503	.0251	.0156	.0114	.0093	.0083	.0463
~1	(82.6)	2555	.1356	7880.	.0588	.0437	0.0360	.0325	.1682
المار	(72.7)	6767	2002	.1246	.0825	.0616	.0510	09:0.	.2340
4	(60.03)	. 5773	.2276	.1368	0928	5690.	.0575	9150.	.2626
ω,	(45.3)	9816.	15:37	.1459	7760.	.0732	90907	.0548	.2762
·c	(58.5)	1716.	77477	.14:4	.1001	.0751	0622	.0562	.2830
6 .	(13.9)	.:186	.2450	0151.	.1012	.0759	6290.	8950.	.2861
Normal	(0.00)	eate.	6645.	.1513	.1015	.0761	0630	0250.	.2867
			¢-	TRAKSHITTED	INTENSITIES	ĽS			
Inc.	(562.)	1(88.5)	किंद्य)ह	502.10	4(60.0)	5 (45.3)	6(29.5)	7(13.0)	Transmitted Flux
	(88.8)	0078	.0292	.1168	.9123	9600	1800.	2700.	.0336
7	(82.6)	.1927	.1157	.9786	0.544	: 156.	4550.	.0312	.1514
رم:	(72.7)	.1956	1806	.1169	9670.	1090*	6650.	2350.	.2233
1	(60.00)	9157	2103	.1346	8040	.0684	.0568	.0514	£882.
د٦	(4.5. 9)	.2645	1757	.1422	3960	,0724	1996	.05.3	.2707
2	(29.5)	.2761	.:319	.1464	6860.	.0744	7190	3550.	.2784
, .	(13.9)	S18::	2352	.1483	.1062	.0753	.0625	.0565	.2820
Normal	(00.00)	. 2823	.2360	.1487	.1004	.0755	.0427	.0567	.2827

Table 2

REFLECTED AND DIFFUSELY TRANSMITTED INTENSITIES AND FLUXES FOR A SLAB WITH CONSERVATIVE ISOTROPIC SCATTERING, THICKNESS 0.2, AND SURFACE ALBEDO 0.0

•			REFI	REFLECTED INTENSITIES	NSITIES				
Inc.	()	00%	() (0) (6			,		Reflected
AUKTE	The State	1100.27	7(87.6)	3772.72	4(60.0)	5(45.3)	6(29.5)	7(13.0)	Flux
-7	(88.5)	.1418	.0537	.0294	.0205	.0164	.0145	.0136	.0618
7	(82.6)	.2727	.1795	.1204	.0929	.0795	.0727	9690.	.2774
٣	(72.7)	.3435	.2767	.2142	.1827	.1670	.1589	.1551	.5551
4	(0.09)	.4020	.3595	.3075	.2803	.2665	.2594	.2561	.8633
'n	(45.3)	.4537	.4325	.3951	.3747	.3642	.3588	.3563	1.1634
9	(29.5)	9767.	0067.	.4657	.4517	.4445	.4407	.4389	1.4093
7	(13.0)	.5194	. 5249	.5090	.4992	0767	.4912	0067.	1.5607
Normal	(00.00)	.5255	. 5333	.5195	.5108	.5061	.5036	.5025	1.5978
,			TRANS	TRANSMITTED INTENSITIES	ENSITIES				
Inc. Angle	(Deg.)	1(88.5)	2(82.6)	3(72.7)	(0.09)7	5(45.3)	6(29.5)	7(13.0)	Transmitted Flox
1	(88.5)	.0112	0226	0187	0133	010	7000	92.90	
·		1 1) 		0010.	.010	/000.	6/00.	.0363
7	(82.6)	.1265	.1327	.0888	.0612	7970.	.0387	.0350	.1708
m	(72.7)	.2653	.2305	.1470	7660.	.0752	.0624	.0564	.2803
4	(0.09)	.3721	.3036	.1904	.1285	9960.	.0801	72.20.	.3620
2	(45.3)	.4572	.3625	.2256	.1518	.1140	5760.	.0854	.4283
9	(29.5)	.5208	.4058	.2522	.1695	.1272	.1054	.0953	7877
7	(13.0)	.5584	.4332	.2681	.1800	.1351	.1119	.1012	. 5083
Normal	(0.00)	.5675	.4395	.2719	.1826	.1370	.1135	.1026	.5156

Table 3

REFLECTED AND DIFFUSELY TRANSMITTED INTENSITIES AND FLUXES FOR A SLAB WITH CONSERVATIVE ISOTROPIC SCATTERING, THICKNESS 0.2, AND SURFACE ALBEDO 1.0

(B8.5) (88.5) (82.6) (72.7) (60.0) (45.3) (29.5) (13.0) (00.0)	1(88.5) .1447 .2930 .4031 .5135 .6184 .7036 .7560	2(82.6) .0577 .2078 .3598 .5148 .6619 .7812 .8544 .8723	REFLECTED INTENSITIES 1.6) 3(72.7) 4(60.0) 1.50 1.31 1.50 1.31 1.50 1.31 1.50 1.31 1.50 1.50 1.31 1.50	4(60.0) .0261 .0261 .3308 .5012 .7008 .8658 .9677 .9677	5(45.3) .0224 .1217 .2910 .4985 .7069 .8795 .9862	6(29.5) .0206 .1159 .2860 .4971 .7099 .8864 .9957	7(13.0) .0197 .1133 .2837 .4965 .7113 .8896 1.0000	Reflacted .0799 .4060 .9333 1.5708 2.2083 2.7356 3.0616
7	1(38,5)	2(82.6)	3(72.7)	4(60.0)	5(45.3)	6(29.5)	7(13,0)	Flux
.5)	.0151	.0254	.0199	.0144	.0111	,0094	.0085	.0395
9:	.1′544	.1526	.1009	.0693	.0525	.0436	.0395	.1937
.7.	.3475	.2892	.1826	.1234	.0929	.0770	7690.	.3474
6.	.5258	.4135	.2569	.1728	.1298	.1075	.0972	, 4876
.3)	.6842	.5247	, 3238	.2173	.1630	.1350	.1220	.6138
.5)	.8090	.6128	.3769	.2526	.18a4	.1568	.1417	.7340
(13.0)	.8845	.6662	.4091	.2741	.2055	.1701	.1537	.7749
(00.00)	.9029	.6793	.4170	,2793	.2034	.1733	,1567	1881.

Table 4

REFLECTED AND DIFFUSELY TRANSMITTED INTENSITIES AND FLUXES FOR A SLAB WITH CONSERVATIVE ISOTROPIC SCATTERING, THICKNESS 10.0, AND SURFACE ALBEDO 0.0

(Deg.) (88.5)	1(88.5)	REFI 2(82.6) .0571	REFLECTED INTENSITIES 6) 3(72.7) 4(60.0 1 .0338 .0250	4(60.0) 4(60.0)	5(45.3)	6(29.5)	7(13.0)	Reflected Flux
_	.2901	.2092	.1563	.1278	.1121	.1033	0660.	.3791
$\overline{}$.3941	.3592	.3175	.2856	.2639	.2503	.2432	.8561
_	.4915	7767.	.4807	.4621	.4452	.4326	.4254	1.4110
\bigcirc	.5782	.6095	.6245	.6259	.6205	.6136	.6087	1.9427
(29.5)	.6451	.6962	.7338	.7535	.7601	.7601	.7585	2.3652
<u> </u>	.6847	6972.	6161.	.8291	.8440	.8489	.8496	2.6186
(00.00)	.6943	.7590	.8133	.8474	.8642	.8704	.8717	2.6798
		TRANS	TRANSMITTED INTENSITIES	ENSITIES				
(Deg.)	1(88.5)	2(82.6)	3(72.7)	4(60.0)	5(45.3)	6(29.5)	7(13.0)	Transmitted Flux
(88.5)	9000°	8000.	.0010	.0012	.0014	.0016	.0017	.0043
9	.0040	.0048	.0061	.0075	.0088	6600.	.0106	.0269
(.0115	.0139	.0174	.0214	.0253	.0285	.0305	.0772
(0.09)	.0237	.0288	.0361	.0443	.0524	0650.	.0631	.1598
3	.0394	6240.	6650.	.0737	.0871	.0981	.1048	.2656
2	.0549	.0668	.0836	.1028	.1215	.1368	.1461	.3704
6	.0657	6620.	.1000	.1229	.1453	.1635	.1747	.4430
(0.00)	.3685	.0833	.1042	.1281	.1514	.1704	.1821	.4617

Table 5

REFLECTED AND DIFFUSELY TRANSMITTED INTENSITIES AND FLUXES FOR A SLAB WITH CONSERVATIVE ISOTROPIC SCATTERING, THICKNESS 10.0, AND SURFACE ALBEDO 0.5

	Reflected	YPT I	09/0.	.3820	.8641	1.4277	1.9705	2,4039	7.6649	2.7281		Transmitted	r tux	.0078	.0481	.1383	6286	7007.	.4/5/	.6634	.7934	.8269
	7(13 0)	2181	.oro.	1002	.2464	.4320	.6197	.7738	.8679	8068°		, 10 01/2	70.517	.0028	.0171	.0493	1020	0301.	.1093	.2364	.2827	.2947
	6(29.5)	0100	0610.	.1044	. 2533	.4388	.6239	.7744	.8660	.8882		(20 5)	77-77-	.0027	.0165	.0475	7860	1635	0001	.2280	.2727	.2842
	5(45.3)	02.01	1130	0511.	0007.	.4507	. 6296	.7728	.8591	.8800		(8,3)	7000	. 0025	.0155	.0447	.0925	.1537	7750	. 4144	.2564	.2672
ENSITIES	4(60.0)	.0251	1286	0011.	0/07.	/ 400 /	. 6336	.7642	.8420	.8607	ENSITIES	(0.09)4	660	.0023	.0143	.0412	.0853	.1417	1076	0/67.	.2364	.2463
REFLECTED INTENSITIES	3(72.7)	.0339	.1569	.3194	7787	1 0007	9000	.7425	.8084	. 0242	TRANSMITTED INTENSITIES	3(72.7)	0021	1700.	.0131	.0376	.0778	.1294	1804		.2158	.2249
REF	2(82.6)	.0572	.2097	.3607	7267	617.5	(410.	. 7032	.7553	.7678	TRANS	2(82.6)	0019	\ \ \ \ \	.0120	.0345	.0714	.1186	.1654		8/61.	.2062
	1(88.5)	.1441	.2905	.3953	0767	5824	1400	6000	.6916	.7014		1(88.5)	.0018		.0112	.0323	.0668	.1110	.1548	1961	1601.	.1930
	(Deg.)	(88.5)	(82.6)	(72.7)	(60.0)	(45.3)	(30 E)	(6.67)	(13.0)	(00.0)		(Deg.)	(88.5)		(9.70)	(7.2.7)	(0.09)	(45.3)	(29.5)	(13.0)	(0)(2)	(00.00)
Inc.	Angle	-1	7	က	4	'n	4	י כ	_	Normal	Inc.	Angle	႕	r	۰ ۱	n .	4	S	9	7		TRILION

Table 6

REFLECTED AND DIFFUSELY TRANSMITTED INTENSITIES AND FLUXES FOR A SLAB WITH CONSERVATIVE ISOTROPIC SCATTERING, THICKNESS 10.0, AND SURFACE ALBEDO 1.0

700	Flux	.0799	0907	.9333	1.5708	2.2083	2.7356	3.0617	3.1416	Transmitted	Flux	.0372	.2300	9199.	1.3690	2.2751	3.1730	3.7952	3.9555
			.1096					1.0244	1.0540		7(13.0)	6116.	.0732	.2106	.4358	.7242	1.0100	1.2080	1.2590
	6(29.5)	.0205	.1132	.2789	.4917	.7117	6968.	1.0125	1.0409		6(29.5)	.0119	.0732	.2106	.4358	.7242	1.0100	1.2080	1.2590
	5(45.3)	.0224	.1209	.2893	9267	.7076	.8816	.9893	1.0157		5(45,3)	6110.	.0732	.2106	.4358	.7242	1.0100	1.2081	1.2591
NSITIES	4(60.0)	.0262	.1352	.3070	. 5064	9669.	.8562	.9521	.9755	NSITIES	(0.09)4	.0119	.0732	.2106	.4358	.7242	1.0100	1.2081	1.2591
REFLECTED INTENSITIES	3(72.7)	.0347	.1623	.3350	.5167	.6844	.8174	.8979	.9175	TRANSMITTED INTENSITIES	3(72.7)	.0119	.0732	.2106	.4358	.7242	1.0100	1.2081	1.2591
REFI	2(82.6)	.0579	.2140	.3,32	.5232	.6574	.7630	.8268	.8423	TRANS	2(82.6)	.0119	.0732	.2106	.4358	.7242	1.0100	1.2081	1,2591
	1(88.5)	.1447	.2941	9507	.5152	9/19.	.7001	.7505	.7628		1(88.5)	6110.	.0732	.2106	.4358	.7242	1.0100	1.2081	1.2591
	(Deg.)	(88.5)	(82.6)	(72.7)	(0.09)	(45.3)	(29.5)	(13.0)	(0.00)		(Deg.)	(88.5)	(82.6)	(72.7)	(0.09)	(45.3)	(29.5)	(13.0)	(00.00)
,	Inc. Angle	-	2	٣	4	٥	9	۲	Normal	<u>,</u>	Angle	7	2	٣	4	5	9	7	Normal

Table 7

REFLECTED AND DIFFUSELY TRANSMITTED INTENSITIES AND FLUXES FOR A SLAB AITH CONSERVATIVE ISOTROPIC SCATTERING, THICKNESS 100.0, AND SURFACE ALBEDO 0.0

	Reflected Flux	2010	6/0.	.4030	. 9246	1.5528	2.1784	2.6939	3.0117	3.0896		Transmitted	Flux	.0005	.0030	.0087	.0180	.0299	.0417	6670	.0520
	7(13.0)	0194.	1000	.1084	.2703	4814	/10/.	2888.	1.004/	1.0334		(0 61)2	70.517	2000.	.0012	.0034	200.	.0118	.0165	.0197	.0205
	6(29.5)	.0203	1101	1711.	1012.	7007	9007.	0700	1,001	1170-1		(5 6/39	76:63	7000.	1100.	.0032	9900.	.0110	.0154	.0184	.0192
	5(45.3)	.0222	1199	2864	7107	6978	07.00	6756.	9800	0066		5(45.3)	0000	2000.	1000	6200.	6500.	8600.	.0137	.0138	.0171
ENSITIES	4(60.0)	.0261	.1344	3046	. 5014	.6913	2778	.9382	.9610		NSITIES	4(60.0)	.0001	8000	7200	1700	0000	.0083	.0116	.0138	.0144
REFLECTED INTENSITIES	3(72.7)	.0346	.1616	.3330	.5127	.6777	.8080	.8866	.9057		TRANSMITTED INTENSITIES	3(72.7)	.0001	.0007	.0020	.0041	Z100	7000.	.0094	.0113	.9117
REF	2(82.6)	.0578	.2135	.3716	.5199	.6520	.7555	.8178	.8329		TRANSM	2(82.6)	.0001	.0005	.0016	.0032	7500	1 1000	5700.	0600.	.0094
	1(88.5)	.1446	.2936	.4043	.5125	.6132	.6939	.7431	.7550			1(88.5)	.0001	.0004	.0013	.3027	7700	0062	7900.	4,00.	//00.
	(Deg.)	(000)	(82.6)	(72.7)	(0.09)	(45.3)	(58.5)	(13.0)	(00.00)			(Deg.)	(88.5)	(82.6)	(72.7)	(0.09)	(45.3)	(29.5)	(2)	(0.61)	(0.00)
Inc.	Angle	4	7	m	4	2	9	7	Normal		Inc.	Angle	-	2	m	7	٧	v	, ,	` ;	Normal

Table 8

REFLECTED AND DIFFUSELY TRANSMITTED INTENSITIES AND FLUXES FOR A SLAB WITH CONSERVATIVE ISOTROPIC SCATTERING, THICKNESS 100.0, AND SURFACE ALBEDO 0.5

			REF	REFLECTED INTENSITIES	NSITIES				•
Inc.	(Deg.)	1(88,5)	2(82,6)	3(72,7)	4(60,0)	5(45,3)		7(13.0)	Reflected Flux
-1	(88.5)	.1446	.0578	.0346	.0261	.0222	.0203	7610.	.0795
2	(82.6)	.2936	.2135	.1617	.1344	.1199		.1085	.4030
m	(72.7	.4043	.3716	,3330	3046	.2864		.2703	.9247
4	(0.09)	.5126	. 5200	.5127	. 5015	8167		.4815	1,5530
5	(45.3)	.6132	.6521	.5778	7169.	6269		.7019	2.1788
9	(29.5)	0769.	.7556	.8081	8778	.8681		.8884	2.6944
7	(13.0)	.7432	.8179	.8868	.9384	.9731		1,0050	3.0124
Normal	(00.00)	.7551	.8331	6506.	.9612	8866		1,0337	3,0902
			TRAN	TRANSMITTED INTENSITIES	TENSITIES				
Inc. Angle	(Deg.)	1(88.5)	2(82,6)	3(72.7)	4(60.0)	5(45,3)	6(29,5)	7(13.0)	Transmitted Flux
1	(88.5)	.0002	.0002	.0003	.0003	.0003	.0003	.0003	0000
2	(82.6)	.0014	.0015	.0016	.0018	.0019	.0021	.0021	0900.
m	(72.7)	0700.	.0043	.0047	.0051	.0055	6500*	.0061	.0172
4	(0.09)	.0083	6800.	.0097	0100	.0115	.0122	.0127	.0355
٠,	(45.3)	.0138	.0147	.0161	.0176	.0191	.0203	.0210	0550
9	(29.5)	.0192	.0205	.0224	.0245	.0266	.0283	.0293	.0823
7	(13.0	.0230	.0246	.0268	.0293	.0318	.0339	.0351	\$860.
Normal	(00.00)	.0239	.0256	.0279	.0306	.0332	.0353	.0366	.1026

Table 9

REFLECTED AND DIFFUSELY TRANSMITTED INTENSITIES AND FLUXES FOR A SLAB WITH CONSERVATIVE ISOTROPIC SCATTERING, THICKNESS 100.0, AND SURFACE ALBEDO 1.0

	Keilected Flux	6620	77.07	9333	1 5708	2,2083	2.7356	3.0616	3,1416		Transmitted	0372	.2300	. 6613	1.3686	2 2763	3 1719	3.7940	3,9542
						.7135													1.2587
	6(29,5)	.0205	1132	2789	4917	7117	6968	1,0125	1,0409		6(29,5)	.0119	,0732	.2105	,435	7239	1,0096	1,2077	1,2587
	5(45,3)	.0224	1209	.2893	9167	.7076	.8816	.9892	1,0156		5(45,3)	.0119	.0732	.2105	.4356	.7239	1,0096	1,2077	1,2587
SITIES	4(60.0)	.0262	.1352	.3070	, 5064	9669*	.8562	.9521	.9755	NSITIES	4(60.0)	.0119	.0732	.2105	.4356	.7239	1,0096	1,2077	1,2587
REFLECTED INTENSITIES	3(72,7)	.0347	, 1623	,3350	.5167	7789.	.8174	6468.	.9175	TRANSMITTED INTENSITIES	3(72.7)	6110.	.0732	.2105	.4356	.7239	1,0096	1,2077	1,2587
REFLI	2(82,6)	6250.	.2140	.3732	,5232	.6574	.7630	.8268	.8423	TRANSM	2(82,6)	.0119	.0732	,2105	.4356	.7239	1,0096	1,2077	1,2587
	1(88,5)	.1447	.2941	4056	,5152	.6176	.7001	.7505	.7628		1(88,5)	.0119	.0732	.2105	.4356	.7239	1,0096	1,2077	1.2587
	(Deg.)	(88.5)	(82,6)	(72.7)	(0.09)	(45.3)	(29.5)	(13.0)	(00.00)		(Deg.)	(88.5)	(82,6)	(72,7)	(0.09)	(62,3)	(29.5)	(13.0)	(0.00)
Inc.	Angle	,1	2	М	4	\$	9	7	Normal	Inc.	Angle	, . 4	2	m,	t	~	9	7	Normal

V. COMPUTATIONAL CHECKS

Checks on the numerical results may be divided into two categories: 1) internal checks on the consistency of the numerical scheme; and 2) external checks using other sources and independent methods.

entioned previously, the internal checks consist of changing the integration step size from $\Delta=.005$ to $\Delta=.01$ and varying the order of the quadrature scheme from N = 7 to N = 3 and 5. In all cases, the optical thickness ranged from 0 to 1; and the results changed by no more than one unit in the fourth significant figure.

The first external check considered is restricted to the case $\Lambda=0$. Reference 2 presents tables similar to Tables 1 through 9 for optical thicknesses 1-50. In all cases, the current results agree perfectly with those earlier calculations.

A second check, for the case A = 1, normal incidence, is the conservation relation that the reflected flux must equal the incident flux. At normal incidence, the reflected flux is 3.1416 and at an angle of incidence of 60° it is 1.5708 \approx $\pi/2$. As Tables 3, 6, and 9 exhibit, this is the case for all optical thicknesses.

An independent check is the calculation of reflected and transmitted intensities by generalized X and Y functions as outlined in Ref. 3. Both the cases u=0.0, $v=\cos 88.5^{\circ}$, and u=0.5, $v=\cos 88.5^{\circ}$ for A=.8 and optical thickness x=0.8 have been computed by this method giving results that agree exactly with those calculated by the initial-value procedure.

The final check compares qualitatively the results of the initial-value method to Kahle's results [1]. Even though Kahle assumed Rayleigh scattering, both sets of calculations should be qualitatively the same. Comparing Figs. 1 through 3 to the analogous figures in Kahle's paper bears out this conjecture.

An interesting property of the solution of the planetary problem with a Lambert-law reflector is obtained by comparing this solution with that presented in Ref. 4 for the case when the reflecting surface is a perfect specular reflector. It is observed for the conservative case $\lambda = 1$, A = 1 that the transmitted and reflected fluxes are virtually the same (to three figures) for all optical thicknesses ≥ 3 . Thus, even the properties of the reflecting surface have little effect on fluxes for moderately thick media.

REFERENCES

- 1. Kahle, A. B., "Global Radiation Emerging from a Rayleigh-Scattering Atmosphere of Large Optical Thickness," Astrophys. J., Vol. 151, February 1968, pp. 637-645.
- Kagiwada, H. H., R. E. Kalaba, and R. L. Segerblom,
 "Flux Equivalence Among Rayleigh, Isotropic and
 Other Scattering Models," J. of Computational
 Physics, Vol. 3, No. 2, October 1968, pp. 159-166.
- 3. Chandrasekhar, S., Radiative Transfer, Dover Publications, New York, 1960.
- 4. Casti, J. L., R. E. Kalaba, and S. Ueno, "Reflection and Transmission Functions for Finite Isotropically Scattering Atmospheres with Specular Reflectors,"

 J. Quant. Spec. Rad. Tran., Vol. 9, 1969, pp. 537-552.