Overview

- 1. Data Integration Scenarios
 - Data Warehouse
 - Federated Databases
- 2. Materialized
 - Data Warehouse
- 3. Virtual
 - Mediator Wrapper System
- 4. Comparison
 - Flexibility
 - Response time
 - Currency
 - etc.

Data Warehouse vs. Mediator

Materialized Integration – Data Flow

- Push
- Initial population
 - Data cleansing
- Periodical Import
 - Hourly/ daily/ weekly
 - Materialized views/ View updates
- Redundant data storage
- Aggregation und deletion of old data
 - The older the more aggregated

Materialized View – Query processing

- Like "normal" DBMS
 - Oblivious to apriori ETL
- Specials
 - Star schema
 - Aggregation
 - Decision Support

Materialized Integration – Schema

- Bottom-Up design
- Schema integration
- Star-Schema
 - Fact-Table
 - Dimension Tables

Virtual Integration — Data flow

- Pull
- Data remains in sources
- Only query related data is transmitted
- Data cleansing only online (on demand)

Virtual Integration — Query Processing

- Optimization is difficult
 - Depends on sources
- Many possible plans
 - Redundant sources
 - Redundant plans
- Dynamically adapt to missing sources

Virtual Integration - Schema

- Top-Down design
- Easy to extend
 - Global: find new sources
 - Local: Only change one mapping.
- Schema mapping instead of integration (later)

Dimensions of the comparison

- Currency
- Response time
- Flexibility/ maintenance
- Complexity
- Autonomy
- Query processing / Expressiveness
- Read / Write
- Size / Storage requirements
- Resources
- Completeness
- Data cleansing
- Information quality

Currency (up-to-date-ness)

- Materialized integration
 - Depends on update frequency
 - In companies usually daily (over night)
 - Example SwissProt
 - Daily updates
 - But releases are monthly

- Virtual integration
 - Always up-to-date
 - Solely depends on currency of autonomous systems
 - Sometimes: caching

Response Time

- Materialized integration
 - Pretty good
 - Local access
 - Similar to DBMS
 - Optimization
 - Materialized views
 - Indices
 - ..
 - Usually queries are very complex

Virtual integration

- Problematic
- Data is in remote autonomous DBMS
 - Transmission through network
- Source response time
- Hard to optimize
- Complex operations have to be carried out in a naïve manner
- Data cleansing has to be applied during query time or afterwards

Flexibility / Maintenance

- Materialized integration
 - Hard
 - Removing/ Updating/ Adding of sources can affect the whole integration
 - Local maintenance of a growing huge databases
 - With Indices etc.
 - Daily integration is needed

- Virtual integration
 - Easier
 - Removing/ Updating/ Adding of sources can affect only the specific source
 - Sources have to perform maintenance on their own
 - Backups, DBMS maintenance etc.

Complexity

- Materialized integration
 - Like DBMS
 - Complex queries
 - Query planning is easy (global as view)
 - Sources are often similar to each other
 - Often they are DBMS

- Virtual integration
 - Modelling sources is important
 - Expressiveness of sources
 - Query planning is hard (local as view)
 - Often very different sources
 - Web services
 - HTML forms
 - Flat files
 - ..

Autonomy

- Materialized integration
 - Sources less autonomous
 - No communication autonomy
 - Low execution autonomy
 - Low design autonomy
 - Must allow bulk-read
 - Update notifications

- Virtual integration
 - Sources very autonomous
 - Full design autonomy
 - Nearly full communication autonomy
 - Some communication is necessary otherwise system cannot be part of IIS
 - Nearly full execution autonomy
 - Only: Queries have to be answered at some point

Query planning / Expressiveness

- Materialized integration
 - Query planning similar to a DBMS
 - Expressiveness like a global system
 - E.g., Full SQL expressiveness

- Virtual integration
 - Query planning is complex
 - Distribution
 - Autonomy
 - Heterogeneity
 - Limited expressiveness has to be compensated on global level
 - But also: Special expressiveness of sources can be exploited:
 - Image retrieval
 - Text index

Read / Write

- Materialized integration
 - Read is always possible
 - DW: Write often not allowed but possible
 - Can lead to inconsistencies with sources

- Virtual integration
 - Read is often possible
 - Availability!
 - Write often not possible
 - In terms of redundancy: Where to write
 - Transactions are hard
 - Autonomy

Size / Memory consumption

- Materialized integration
 - High
 - Redundant data storage
 - DW: Historical data
 - Growth
 - Continuous
 - Footprint: like DBMS

- Virtual integration
 - Low
 - Meta data
 - Cache
 - Intermediate results
 - Footprint: like DBMS

Resource Consumption

- Materialized integration
 - Network load can be predicted
 - All data is being transmitted
 - Depending on query
 - Aggregation
 - Pre-Aggregation

- Virtual integration
 - Potentially high network load
 - Data is transmitted multiple times
 - Cache can help.
 - Only needed data is transmitted

Je nach Workload. Spannendes Optimierungsproblem!

Completeness

- Materialized integration
 - Good
 - Assumption: Materialization is complete

- Virtual integration
 - Only when all sources are available
 - Query can be left unanswered or partly answered
 - Fuzzy query semantic:
 - All tuples?
 - All attributes?
 - Definition of completeness
 - Open World Assumption
 - Closed World Assumption

Data Cleansing

- Materialized integration
 - Many methods
 - Still tedious
 - Offline (during night)

- Virtual integration
 - Online cleansing is hard
 - tedious
 - No expert sourcing is possible

Information Quality

- Materialized integration
 - High
 - Verified
 - Can be improved over time

- Virtual integration
 - Depends on sources
 - Often problematic
 - Autonomy

Summary

	Materialized	Virtual
Currency	- (Cache)	+
Response time	+	-
Flexibility	- (GaV)	+ (LaV)
Complex query planning	-	
Source autonomy	-	+
Expressiveness	+	-
Read/Write	+/+	+/-
Size	-	+
Resource consumption	? (workload)	? (workload)
Completeness	+	? (OWA, CWA)
Data cleaning	+	-
Information quality	+	-

Hybrid Solution

- Subset of the data can be materialized
 - □ Popular subsets (cache)
 - □ Data that is available as bulks
 - Dump Files
 - SQL access
 - **–** ..
- Subset has to stay in the sources
 - $\ \square$ Often updated data
 - □ Data with limited access
 - At least one bound variable
 - Limited licenses
- Optimization prefers local data
 - ☐ Checking whether data up-to-date

Overview

1. Data Integration Scenarios

- Data Warehouse
- Federated Databases

2. Materialized

- Data Warehouse
- 3. Virtual
 - Mediator Wrapper System

4. Comparison

- Flexibility
- Response time
- Currency
- etc.

Literature

- [BKLW99] Busse, Kutsche, Leser, Weber, Federated Information Systems: Concepts, Terminology and Architectures. Forschungsbericht 99-9 des FB Informatik der TU Berlin, 1999.

 Online: http://www.informatik.hu-berlin.de/~leser/publications/tr_terminology.ps
- [DD99] <u>Ruxandra Domenig</u>, Klaus R. Dittrich: An Overview and Classification of Mediated Query Systems. <u>SIGMOD Record 28(3)</u>: 63-72 (1999)