Announcements

- New WebWorK due Wednesday!
- Lab tonight for Group B!
 - Already posted for you to print on the website
 - Meet in Collins 324
- Poll: rembold-class.ddns.net

APOD!

Review Question

Halley's comet has a period of 76 years. At it's closest approach, it is about 0.6 AU from the Sun. What is the maximum distance Halley's comet reaches from the Sun? (Hint: You can "undo" a cubed by taking the cube root or raising it to the 1/3 power)

- A. 17.94 AU
- B. 35.28 AU
- C. 35.88 AU
- D. 75.4 AU

Review Question

Halley's comet has a period of 76 years. At it's closest approach, it is about 0.6 AU from the Sun. What is the maximum distance Halley's comet reaches from the Sun? (Hint: You can "undo" a cubed by taking the cube root or raising it to the 1/3 power)

- A. 17.94 AU
- B. 35.28 AU
- C. 35.88 AU
- D. 75.4 AU

Enter Galileo!

Kepler

- Derived entirely from Brahe's naked eye observations
- Only "proof" was that they explain everything nice and simple

Galileo

- Strongly believed in Copernicus's heliocentric solar system
- Wanted to prove that the Earth orbited the Sun
- Did not invent the telescope, but was almong the first to use it to study the heavens
- Widely published his findings

The Observations of Galileo

Sunspots!

More Modern Phases of Venus

Luke! Use the Force! September 10, 2018 Jed Rembold

- Disputed "classical" Aristotle physics
- Made large strides in how we think about:

- Disputed "classical" Aristotle physics
- Made large strides in how we think about:
 - Relative Motion

- Disputed "classical" Aristotle physics
- Made large strides in how we think about:
 - Relative Motion
 - Inertia

- Disputed "classical" Aristotle physics
- Made large strides in how we think about:
 - Relative Motion
 - Inertia
 - Falling bodies

- Disputed "classical" Aristotle physics
- Made large strides in how we think about:
 - Relative Motion
 - Inertia
 - Falling bodies
 - Projectiles

Kepler and Galileo

- Around during the same time period
 - Keplers first Laws published in 1609
 - Galileo's first telescope observations 1610
- Despite church resistance, the heliocentric model gain acceptance over the next 50 years

Kepler: 1571-1630

Kepler and Galileo

- Around during the same time period
 - Keplers first Laws published in 1609
 - Galileo's first telescope observations 1610
- Despite church resistance, the heliocentric model gain acceptance over the next 50 years

Galileo: 1564-1642

Good Sir Isaac

Isaac Newton: 1642-1727

- Was able to relate the behavior of orbiting bodies to the behavior of bodies on Earth
- Short and Succinct: Summarized everything in four sentences...

Newton's First Law

Newton's First Law

A body continues in a state of rest or uniform motion in a straight line unless acted on by a force.

- Implications for astronomy?
 - A object that falls when released must be feeling a force
 - An object moving in a circle must have a force acting upon it, else it would travel in a straight line
- Generally thought of as the inertia law

Newton's Second Law

The force on an object is equal to the mass of the object multiplied by its acceleration.

$\mathsf{F} = \mathsf{ma}$

- An acceleration is analogous to a change in motion
- Such a change in motion depends only on the force applied and the mass of the object
- The change in motion is in the same direction as the force!

Force Examples

A ball dropping must feel a force to accelerate downwards!

A ball curving at a constant speed must still feel a force turning it!

Basic Units

- To compare our equations and answers, we really need a standard way of measuring things.
- In science (or if you live anywhere besides the US or England) this is the SI metric system
 - Meters for distance
 - Seconds for time
 - Kilograms for mass
- All other SI units are defined in terms of these base units

$$1\,\mathrm{N}=1\,\mathrm{kgm/s^2}$$

- For most physics formula:
 - SI Units In = SI Units Out
 - Non-SI Units In = IT IS A MYSTERY Out

Luke! Use the Force! September 10, 2018 Jed Rembold 14 / 3

The Standards

Meters

- Originated in France
- 1/10 millionth of the equator to North Pole distance
- Now defined officially by the wavelength of the orange-red light of burning Krypton

Second

- Defined as 1/86400 of a solar day
- Irregularies in Earth's rotation made this tricky
- Now defined in terms of atomic vibrations in Cesium atoms

Kilogram

 The mass of this cylindrical block of metal:

The Newton

- The SI unit for force is the Newton (N)
 - A 1 N force accelerates a 1 kg mass by 1 m/s each second

Circular Motion

- Of particular interest to us is circular motion, since such motion largely describes the motion of the planets
- Newton tells us that, even if our planets are moving at a constant speed, a force must be present to keep them moving in a circular orbit

- Of particular interest to us is circular motion, since such motion largely describes the motion of the planets
- Newton tells us that, even if our planets are moving at a constant speed, a force must be present to keep them moving in a circular orbit

Circular Motion

- Of particular interest to us is circular motion, since such motion largely describes the motion of the planets
- Newton tells us that, even if our planets are moving at a constant speed, a force must be present to keep them moving in a circular orbit

Luke! Use the Force! September 10, 2018 Jed Rembold 17 / 2

- Gravity! The universal attractor
 - Anything with mass attracts anything else with mass
 - Strength of force depends on the masses involved
 - Strength of the force diminished rapidly with distance

The Gravitational Constant G

- What is the gravitational force between:
 - Two 1 kg masses (say pineapples)
 - 1 meter apart?

The Gravitational Constant G

- What is the gravitational force between:
 - Two 1 kg masses (say pineapples)
 - 1 meter apart?

- What is the gravitational force between:
 - Two 1 kg masses (say pineapples)
 - 1 meter apart?

- G indicates the scale of the gravitational force in your units
- $G = 6.67 \times 10^{-11} \,\mathrm{Nm^2/kg^2}$
- You must be using standard units to match G!

Luke! Use the Force! September 10, 2018 Jed Rembold 19 / 2

Gravitational Force on You!

Example

Let's find the force of gravity between you, an average 70 kg individual, and the Earth, with its 5.97×10^{24} kg mass. The Earth has an average radius of 6378 km. What acceleration do you experience?

Example

Let's find the force of gravity between you, an average 70 kg individual, and the Earth, with its 5.97×10^{24} kg mass. The Earth has an average radius of 6378 km. What acceleration do you experience?

$$F_{\rm g} = (6.67 \times 10^{-11}) \frac{(5.97 \times 10^{24})(70)}{(6378000)^2} = 685.2 \,\mathrm{N}$$

Example

Let's find the force of gravity between you, an average 70 kg individual, and the Earth, with its 5.97×10^{24} kg mass. The Earth has an average radius of 6378 km. What acceleration do you experience?

$$F_g = (6.67 \times 10^{-11}) \frac{(5.97 \times 10^{24})(70)}{(6378000)^2} = 685.2 \,\mathrm{N}$$

$$F_g = ma = 685.2 \,\mathrm{N} = (70)a \quad \Rightarrow a = 9.79 \,\mathrm{m/s^2}$$