遅延聴覚フィードバックがもたらす影響の客観的な評価方 法の検討と年齢による影響の変化の分析

理工学研究科電気工学専攻 山下 一樹

1 はじめに

1.1 背景

本節では、ディジタル補聴器の進化と課題につい て解説する. ディジタル補聴器は、ディジタル信号 処理を用いて従来のアナログ補聴器より高度な機 能を実現しているが、利用者からは十分な満足度が 得られていないという問題が報告されている[1]. 性能向上のためには精緻なディジタル信号処理と 周波数帯域の細分化が必要だが、これは音声信号 の長さを増加させ、遅延時間の問題を引き起こす. ところで人は能動的な活動を行う際、活動とそれ おいて重要な示唆を提供することが期待される. に伴う感覚フィードバックを対応付けることで行 動の調整を行っている.この中で,聴覚に関する フィードバックを聴覚フィードバックと呼ぶ [2]. 一般に聴覚フィードバックの遅延時間が 10[ms] を 遅延時間もこの遅延時間に該当し、この遅延時間 バックの下で、一定の時間間隔でボタンを押下す ても違和感を覚えにくいことから、この知見を利 動に与える影響を様々な年代の被験者について調 用して遅延時間を増大させることで、より高度な 査することができる. 被験者がボタンを押す間隔 ディジタル信号処理を実装することが期待される.

1.2 目的

本研究では、若年者と高齢者の聴覚フィードバッ クの遅延時間の許容量の差を調査し, 聴覚フィード バックによる違和感を客観的に評価するため、聴 覚フィードバックの遅延が身体運動に与える影響 を検討する. 遅延聴覚フィードバックの影響を幅 広い年代で比較することを想定して、簡易なボタ ン押し課題を採用する. この課題では、メトロノー 2.2 音響信号への遅延生成アプリケーション ムの合図音に合わせてボタンを押す動作を行い、本研究で使用する音響信号への遅延生成アプリ

覚フィードバックが発話に与える影響について検 討されたが、この研究は主観評価に基づくもので、 個人差が顕著であるという問題があった. そこで, 本研究では,遅延聴覚フィードバックによる影響 を客観的に評価するため、先行研究 [4] で著者らに よって行われた調査のシステムについて改良を行 う. 遅延による影響の大きさを探るため、ボタン押 し課題の最適な条件を検討し、若年者と高齢者を 対象に影響の調査を行う. 本研究は, 聴覚フィー ドバックの遅延が身体運動に与える影響と年齢差 の関係を明らかにし、高齢者向け補聴器の設計に

2 ボタン押し課題のシステム

2.1 ボタン押し課題

本研究で行う客観評価による調査では,被験者が 超えると、発話や身体運動に影響を与えることが知 行う課題にボタン押し課題を採用する.この調査 られている [3]. 特に、ディジタル補聴器における で採用するボタン押し課題は、遅延聴覚フィード を短縮しつつ高度な処理を実現することが困難で る課題を行うというものである.このボタン押し ある. しかし、高齢者は遅延時間が 10[ms] を超え 課題を用いて、遅延聴覚フィードバックが身体運 を記録し、遅延を加えることでそのばらつきがど のように変化するかを調査する. この方法により, 遅延聴覚フィードバックが身体運動に与える影響 を客観的に評価することが可能になる. また, 馴化 による効果を考慮するため、ボタンの押下回数が4 の倍数に到達したときのみ, 聴覚フィードバック の遅延を発生させる. この課題を行うために、被 験者が使用するシステムの構成を図1に示す.

遅延の影響を分析する. 先行研究 [5] では、遅延聴 ケーションは、オーディオドライバに ASIO を使

図1調査システムの構成

図2実験開始直後の音響信号への遅延生成アプリ ケーションの画面

用し、コントローラーのボタンが押下されてから 任意の時間だけ遅延を加えて音響信号を出力する. このアプリケーションの表示例を図2に示す.本 アプリケーションは, 実験者が画面上のコンボボッ クスで指定した時間だけ遅延させる機能や被験者 がボタンを押下する時間間隔を記録する機能を持 つ. 本研究では、このアプリケーションを使用し て、遅延聴覚フィードバックの身体運動への影響 を調査する.

3 評価方法

を用いて行う. この評価方法は、遅延聴覚フィード バックが身体運動に影響を与えている場合, 遅延 が発生する直前のボタン押下間隔と直後のボタン 押下間隔の差が大きくなることを想定している.

4 遅延聴覚フィードバックが身体運動に 与える影響の調査

4.1 調査方法

聴覚フィードバックの遅延時間を多様に設定し, 一定間隔でのボタン押下時の時間間隔のばらつき を調査した. 改良したシステムでは、ボタンの押 下回数が 4 の倍数に達するごとに遅延を発生させ た. 遅延時間は被験者には非公開として、発生させ る遅延時間の順番はランダムとした. 設定した遅 延時間は、実験 A では 20ms 間隔で 10-110ms, 実 験 B では 5ms 間隔で 10-40ms とした. 実験 A の 被験者は若年者(21-25歳)38名と高齢者(60-83 歳)41名,実験Bの被験者は若年者(20-25歳) 34 名と高齢者(60-90歳)41名である。ボタン押 下の間隔は毎分80回、ボタン押下回数は34回と した. 遅延時間の提示順序は、最初に 10[ms] を提 示し、次に 10[ms] 以外の中からランダムに選択し 提示する. その後, 残る遅延時間に 10[ms] を加え たものをランダムに提示する. 得られた結果は, 遅延時間に応じて各被験者の観測値の四分位範囲 (Interquartile Range, IQR) と第一・第三四分位数 を算出し、外れ値を除外するために IQR を 1.5 倍 し、この値を第一四分位数から減算した値より小さ い値と第三四分位数に加算した値より大きい値を 除外した. 3章で述べた評価方法により分析した.

4.2 調査結果

図 4 および図 6 に示した 10[ms] から 40[ms] の 短い遅延時間帯における観察結果から, 若年者の 反応は遅延時間の増加に伴い緩やかに増加する傾 遅延聴覚フィードバックが身体運動に与える影 向にあるが、高齢者の反応には一貫した関係が認 響の評価は、 被験者が行うボタン押下の時間間隔の められないことが示された.このことは、 若年者 分散と遅延が4の倍数に到達したときのみ発生す が遅延に対して敏感であり,一方で高齢者が遅延 る状況を考慮して、4の倍数に到達する直前のボタ 時間に対してある程度の許容度を持っていること ンの押下間隔と直後のボタン押下間隔のデータの を示唆している.一方,図3および図5より,遅延 差の二乗平均(Mean Squared Error, MSE)およ 時間を 10[ms] から 110[ms] に拡大した場合,特に び誤差の中央値 (Median Squared Error, MedSE) 90[ms] を超える長い遅延時間帯における高齢者の

図3 実験 A における若年者と高齢者の正規化後の 図5 実験 A における若年者と高齢者の正規化後の 分散の比較

MSE と MedSE の比較

図4実験Bにおける若年者と高齢者の正規化後の 分散の比較

図6実験Bにおける若年者と高齢者の正規化後の MSE と MedSE の比較

結論 5

5.1 まとめ

反応に大幅な増加が観察され, 高齢者が遅延時間の 増加に対して比較的鈍感であるものの, 90[ms] を 超えるとタスクの一貫性を保つことが困難になる ことが示された. 若年者も長い遅延時間において, 反応の増加を示したが、この増加は高齢者ほど急 激ではなかった. これらの結果は、遅延時間が増 加するにつれて若年者と高齢者の反応の差異が顕 著になることを示し、若年者は短い遅延時間帯で いて特に顕著な反応を示したことを明らかにする. さらに、遅延時間に対する年齢別の感受性の違い ている.

本研究では、文献[4]の調査システムを改良し、 改良後の調査システムを利用したボタン押し課題 を用いて,遅延聴覚フィードバックが身体運動に もたらす影響の客観的な評価方法を検討し, 若年 者と高齢者を対象に調査した. 遅延聴覚フィード バックの影響を観察するため、特定の条件下でボ タン押し課題を行い、その結果を分析した. 若年 も遅延を感じやすく、高齢者は長い遅延時間にお 者と高齢者を対象にした調査から、聴覚フィード バックの遅延時間に対する感受性において年齢に よる違いがあることが明らかになった. 若年者は は、遅延聴覚フィードバックにおける効果を最大 遅延時間に対して敏感である一方で、高齢者は遅 化するための異なるアプローチの重要性を協調し 延時間に対して一定の許容度を持っている可能性 が示唆された.

5.2 今後の課題

今後は、高齢者と若年者の運動能力の差異を考 慮し,遅延聴覚フィードバックの影響を公平に評 価するために, 運動能力に応じた課題の検討が必 要である. また, 遅延聴覚フィードバックが発話 に及ぼす影響の客観評価方法の検討および本研究 で得られたデータとの比較も必要である. これら は、補聴器の設計に役立つ知見を提供することが 期待される.

参考文献

- [1] 西山崇経,新田清一,鈴木大介,岡崎宏,坂本耕二,中村伸太郎, 上野恵,小川郁,"補聴器装用者の満足度に関わる要因の検討"
- Audiology Japan, 57 巻, 3 号, pp.189-194, Jun.2014.
 [2] 河原英紀, "聴覚フィードバックの発話への影響: ヒトは自分の話声を聞いているのか?"日本音響学会誌, 59 巻, 11 号, pp.670-675, Nov. 2003.
- [3] 硲田猛真, 中村陽裕, 福本儀智, 長谷川賢作, 北野博也, "ディレイタ イムの認知閾値" Ausiology Japan, 46 巻, 5 号, pp.465-467, Sep.2007.
- Sep.2007.
 [4] 重松颯人, 丹治寛樹, 村上隆啓, 松本直樹, "遅延聴覚フィードバックが身体運動に与える影響の客観的な評価方法の検討"日本音響学会聴覚研究会資料, pp.499-504, Nov.2019.
 [5] 香山実結花, 山下一樹, 丹治寛樹, 村上隆啓, "若年者と高齢者の聴覚フィードバックにおける遅延時間の許容量の統計的分析による比較"2022 年度電子情報通信学会東京支部学生会研究発表会, pp.112. Mar. 2022. pp.113, Mar.2023.

発表論文

[P1] 山下一樹,安田和生,丹治寛樹,村上隆啓,"若年者と高齢者の遅延 聴覚フィードバックの身体運動への影響の比較" 2023 年度電子情 報通信学会東京支部学生会,Mar.2024.