Mastery Homework 5

Rafael Laya

Fall 2018

Section 2.3

Problem 20

Statement: If nxn matrices E and F have the property that EF = I, then E and F commute. Explain why.

Solution: Because if EF = I then we know by the Invertible Matrix Theorem and by the result or problem 27 solved in fundamental homework that they are inverses of each other and therefore E and F multiply and result on the identity whether it is EF or FE. Let's show this:

Let E and F be two matrices of order nxn. Suppose that EF = I where I is the identity matrix of order nxn. Applying the Invertible Matrix Theorem we know that F is invertible. Consider:

$$EF = I$$

Multiply both sides of the equality above by F^{-1} on the right:

$$(EF)F^{-1} = IF^{-1}$$

 $E(FF^{-1}) = F^{-1}$
 $E(I) = F^{-1}$
 $E = F^{-1}$

Multiply both sides of the equality above by F on the left:

$$E = F^{-1}$$

$$FE = FF^{-1}$$

$$FE = I$$

Therefore,

$$EF = I = FE$$

Which shows that E and F commute.

Problem 32

Statement: Suppose A is a nxn matrix with the property that the equation $A\vec{x} = \vec{0}$ has only trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation $A\vec{x} = \vec{b}$ must have a solution for each \vec{b} in \mathbb{R}^n .

Solution: Simply because if $A\vec{x} = \vec{0}$ has only trivial solution we know that the row reduced echelon form of A must not have a row of zero-es and therefore the system will be consistent for any vector \vec{b} that we use in the augmented column of $\begin{bmatrix} A & \vec{b} \end{bmatrix}$ with this argument in mind:

Let A be a nxn matrix with the property that $A\vec{x} = \vec{0}$ has only trivial solution. Then, due to theorem 2 in chapter 1 we know that the matrix A must not have any free variables since the system is consistent and it has unique solution. Because A has n columns it must have n pivot positions that correspond to n basic variables. A must also have a pivot in every row since it has n pivots and n rows, using theorem 4 from chapter 1 we know that there is a solution for each $\vec{b} \in \mathbb{R}^n$.

Problem 38

Statement: Suppose a linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ has the property that $T(\vec{u}) = T(\vec{v})$ for some pair of distinct vectors \vec{u} and \vec{v} in \mathbb{R}^n . Can T map \mathbb{R}^n onto \mathbb{R}^n ? Why or Why not?

Solution: Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation. Assume $T(\vec{u}) = T(\vec{v})$ for some $\vec{u}, \vec{v} \in \mathbb{R}^n$ with $\vec{u} \neq \vec{v}$. By theorem 10 in chapter 1 we know that there exists a matrix A such that:

$$T(\vec{x}) = A\vec{x}$$

For all $\vec{x} \in \mathbb{R}^n$. By assumption the transformation T is not one-to-one, since $T(\vec{u}) = T(\vec{v})$ with $\vec{u} \neq \vec{v}$. Using the Invertible Matrix Theorem, since T is not one-to-one the linear transformation T does not map \mathbb{R}^n onto \mathbb{R}^n .

Section 3.1

Problem 41

Statement: Let $\vec{u} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Compute the area of the parallelogram determined by $\vec{u}, \vec{v}, \vec{u} + \vec{v}$, and $\vec{0}$, and compute the determinant of $[\vec{u} \quad \vec{v}]$. How do they compare? Replace the first entry of \vec{v} by an arbitrary number x, and repeat the problem. Draw a picture and explain what you find.

Solution: First draw a picture of the parallelogram determined by $\vec{u}, \vec{v}, \vec{u} + \vec{v}, \vec{0}$

Figure 1: Parallelogram determined by $\vec{u}, \vec{v}, \vec{u} + \vec{v}, \vec{0}$

Since the base of the parallelogram is 3 and height 2 its area is $3 \cdot 2 = 6$. Let's calculate the determinant of $[\vec{u} \quad \vec{v}]$

$$\begin{vmatrix} 3 & 1 \\ 0 & 2 \end{vmatrix} = 3(2) - 1(0) = 6$$

They compare by being exactly the same. That is, in this case: $|\vec{u} \cdot \vec{v}| = 6 = \text{Area of the parallelogram spanned by } \vec{v}, \vec{u}, \vec{v} + \vec{u}, \vec{0}$

Replacing the first entry of \vec{v} by a number x we have:

Figure 2: The parallelogram with a few different values of x

Notice that no matter the value of x, the parallelogram is always of base three and height two, therefore its area is always 6. Also:

$$\begin{vmatrix} 3 & x \\ 0 & 2 \end{vmatrix} = 3(2) - x(0) = 6$$

This gives us a hint that the determinant $|\vec{u} \ \vec{v}|$ is closely related to the area of the paralleogram spanned by the vectors \vec{u}, \vec{v} . Namely, $|\vec{u} \ \vec{v}|$ is exactly the area of the parallelogram spanned by \vec{u}, \vec{v} (In reality we have to add absolute value to the determinant because it might turn out negative, using knowledge from Calculus 3).

Section 3.2

Problem 34

Statement: Let A and P be square matrices, with P invertible. Show that $\det(PAP^{-1}) = \det(A)$.

Solution: Suppose A and P are matrices of nxn with P invertible. That is, there exists P^{-1} such that:

$$PP^{-1} = I$$

Where I is the identity matrix of order nxn. We also know that:

$$\det(PP^{-1}) = \frac{1}{\det(P)}$$

Now, using the multiplicative property of determinants:

$$\begin{aligned} \det(PAP^{-1}) &= \det(PA)\dot{\det}(P^{-1}) \\ &= \det(P)\det(A)\frac{1}{\det(P^{-1})} \\ &= \det(A)\left(\det(P)\frac{1}{\det(P^{-1})}\right) \\ &= \det(A)(1) \\ &= \det(A) \end{aligned}$$

Which is precisely what we wanted to show.

Problem 36

Statement: Find a formula for det(rA) when A is a nxn matrix.

Solution: Let $r \in \mathbb{R}$ and A be a matrix of nxn. Then, define R as the diagonal matrix of nxn where the entries in the diagonal are r. Because R is diagonal matrix, by theorem its determinant is the product along the diagonal (a diagonal matrix is also triangular matrix). Because R is of nxn, it has n entries on its diagonal. Therefore $\det(R) = r^n$. Let's denote a_{ij} as the entry in A at row i, column j. Notice, however that rA = RA,

$$\begin{bmatrix} r & 0 & \dots & 0 \\ 0 & r & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & r \end{bmatrix} \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} ra_{11} & \dots & ra_{1n} \\ \vdots & & \vdots \\ ra_{n1} & \dots & ra_{nn} \end{bmatrix} = r \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

Because R is the result of multiplying every row of the identity matrix of order nxn by r. Now, using the multiplicative property of determinants:

$$det(rA) = det(RA)$$
$$= det(R) det(A)$$
$$= r^n det(A)$$

Which is the formula we wanted.