Graph Isomorphism and Related Problems

Graph Isomorphism

Graph Isomorphism

Two graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are *isomorphic* if there is a bijection $\varphi\colon V_1\to V_2$ such that, for all $u,v\in V_1$, $uv\in E_1$ if and only if $\varphi(u)\varphi(v)\in E_2$. Isomorphism of two graphs G_1 and G_2 is denoted as $G_1\simeq G_2$.

Graph Isomorphism – Related Problems

Subgraph Isomorphism

▶ Determine if *G* is isomorphic to a subgraph of *H*.

Largest Common Subgraph

For two given graphs G_1 and G_2 , find the largest graph H such that H is isomorphic to a subgraph of G_1 and to a subgraph of G_2 .

Theorem

There is (probably) no polynomial time algorithm to solve the Subgraph Isomorphism problem.

Centers

- A vertex v is *center* of G, if ecc(v) = rad(G).
- A tree has at most two centers which can be found in linear time. In case of two, both are adjacent.

Finding Ceters in Trees

- Pick an arbitrary vertex v.
- Find a vertex x with d(v, x) = ecc(v).
- Find a vertex y with d(x, y) = ecc(x).
- ▶ Then, ecc(x) = ecc(y) = diam(T) and the vertices in the middle of the path from x to y are centers of T (two vertices if d(x, y) is odd, one vertex if d(x, y) is even).

Note: There is a linear time algorithm to compute the eccentricity of every vertex in a tree.

Rooted Tree

We say (V, E, r) is a tree with root r if (V, E) is a tree and $r \in V$.

Isomorphism of Rooted Trees

Two rooted trees $T_1=(V_1,E_1,r_1)$ and $T_2=(V_2,E_2,r_2)$ are isomorphic if there is a bijection $\varphi\colon V_1\to V_2$ such that, for all $u,v\in V_1$, $uv\in E_1$ if and only if $\varphi(u)\varphi(v)\in E_2$ and $\varphi(r_1)=\varphi(r_2)$.

 T_1 and T_3 are isometric. However, T_2 is not isometric to T_1 and T_3 .

Theorem

If there is an O(f(n)) time algorithm $\mathcal A$ to check if two rooted trees are isomorphic, then there is an O(f(n)) time algorithm $\mathcal A^*$ to check if two ordinary trees are isomorphic.

Proof: We design $\mathcal{A}^*(T_1, T_2)$ as follows: Find the centers of T_1 and T_2 . Then, there are three cases.

- C1 Both have only one center (c_1 and c_2). **RETRUN** $\mathcal{A}(T_1, c_1, T_2, c_2)$
- C2 Both have two centers $(c_1, c'_1, c_2, \text{ and } c'_2)$. **RETRUN** $\mathcal{A}(T_1, c_1, T_2, c_2) \vee \mathcal{A}(T_1, c'_1, T_2, c_2)$
- C3 Different number of centers.

 RETURN FALSE

Therefore, it is enough if we can check rooted trees.

AHO-HOPCROFT-ULLMAN-Algorithm

Let T_1 and T_2 be two rooted trees with corresponding roots r_1 and r_2 . With $F_{i,j}$, we denote the forest created by removing all vertices $v \in T_i$ with $d(v,r_i) \leq j$.

Theorem

 T_1 is isometric to T_2 if and only if, for all i, $F_{1,i}$ is isometric to $F_{2,i}$.

Algorithm Idea

- ► Check bottom-up if $F_{1,i}$ is isometric to $F_{2,i}$.
- Note: The lowest layer contains only leaves.
- ▶ Use that $F_{1,i+1}$ is isometric to $F_{2,i+1}$ when checking $F_{1,i}$ and $F_{2,i}$.

AHO-HOPCROFT-ULLMAN-Algorithm

Input: Two rooted trees T_1 and T_2 with the corresponding roots r_1 and r_2 and with height h.

- 1 Compute the depth of each vertex in T_1 and T_2 .
- 2 To each leaf, assign the integer 0.
- 3 For i = h 1 DownTo 0
- \langle Assign integers to all nodes with depth $i.\rangle$
- 5 T_1 and T_2 are isomorphic if and only if r_1 and r_2 have the same integer assigned.

AHO-HOPCROFT-ULLMAN-Algorithm

1 Procedure AssignIntegers(i)

- For Each $v \in V_i$ (the set of non-leaf vertices with depth i)
- Create a sorted tuple t_v containing the integers assigned to the children of v.
- Let S_1 and S_2 be the sets of tuples created for vertices in T_1 and T_2 with depth i.
- Sort S_1 and S_2 lexicographically and compare them. If $S_1 \neq S_2$, **Stop**. T_1 and T_2 are not isomorphic.
- Assign integers, continuously and beginning with 1, to vertices in V_i such that two vertices have the same integer assigned if and only if they have equal tuples.