Расскажите о понятиях множества и функции (отображения). Что такое инъекция, сюръекция, биекция, обратное отображение? Расскажите об операциях с множествами. Приведите примеры.

- **Множество** (набор неупорядоченных элементов) математическая абстракция, задающаяся набором аксиом (например, аксиомами Цермело-Френкеля).
- Отображение из X в Y это бинарное отношение $\mathcal R$ между X и Y такое, что $(x \mathcal R y_1) \wedge (x \mathcal R y_2) \implies (y_1 = y_2)$.
- Сюръекция из X в Y это отображение $f: X \to Y$ такое, что $\forall y \in Y \ \exists x \in X : f(x) = y$.
- Инъекция из X в Y это отображение $f: X \to Y$ такое, что $(f(x_1) = f(x_2)) \implies (x_1 = x_2)$.
- **Биекция** из X в Y это отображение $f: X \to Y$, являющееся одновременно инъективным и сюръективным.
- Отображение $f^{-1}: B \to A$ называется обратным для отображения $f: A \to B$, если $\begin{cases} \forall a \in A & f^{-1}(f(a)) = a \\ \forall b \in B & f(f^{-1}(b)) = b \end{cases}$.

 $\mathbf{2}$

Расскажите об аксиомах поля действительных чисел: сформулируйте аксиомы сложения, умножения, порядка, аксиомы связи сложения (умножения) и порядка, и аксиому полноты (непрерывности).

Множество

плобой природы называется полем действительных чисел, если для его элементов выполнен следующий комплекс условий:

• Аксиомы сложения.

- 1_+ Определена внутренняя бинарная операция $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.
- 2_+ Операция + ассоциотивна $\forall a, b, c \in \mathbb{R} \ (a+b) + c = a + (b+c)$.
- 3_+ Существует 0 (нейтральный элемент) ($\exists 0 \in \mathbb{R} : \forall a \in \mathbb{R} \ 0 + a = a + 0 = a$).
- 4_+ Для каждого элемента существует противоположный ему элемент ($\forall a \in \mathbb{R} \ \exists (-a) \in \mathbb{R} : a + (-a) = (-a) + a = 0$).
- 5_+ Операция + коммутативна ($\forall a, b \in \mathbb{R} \ a+b=b+a$).

• Аксиомы умножения.

- 1. Определена внутренняя бинарная операция $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.
- 2. Операция ассоциотивна $\forall a, b, c \in \mathbb{R} \ (a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- 3. Существует 1 (нейтральный элемент) ($\exists 1 \in \mathbb{R} : \forall a \in \mathbb{R} \ 1 \cdot a = a \cdot 1 = a$).
- 4. Для каждого элемента существует противоположный ему элемент $(\forall a \in \mathbb{R} \ \exists a^{-1} \in \mathbb{R} : a \cdot a^{-1} = a^{-1} \cdot a = 1).$
- 5. Операция коммутативна $(\forall a, b \in \mathbb{R} \ a \cdot b = b \cdot a)$.
- Операция умножения **дистрибутивна** относительно операции сложения $(\forall a, b, c \in \mathbb{R} \ a \cdot (b+c) = a \cdot b + a \cdot c)$.

• Аксиомы порядка.

 $1 < \text{ Между элементами } \mathbb{R}$ есть отношение порядка \leq , то есть $\forall x,y \in \mathbb{R}$ либо выполнено $x \leq y$, либо нет.

- $2 \le \forall x \in \mathbb{R} \ x \le x.$
- $3 \le (x \le y) \land (y \le x) \implies y = x.$
- $4 \le (x \le y) \land (y \le z) \implies x \le z.$

$$5 \le \forall x, y \in \mathbb{R} \implies \begin{bmatrix} x \le y \\ y \le x \end{bmatrix}$$

- Связь сложения и порядка: если $x,y,z\in\mathbb{R}$ и $x\leq y$, то $x+z\leq y+z$.
- Свзяь умножения и порядка: если $x, y \in \mathbb{R}$ и $x \ge 0 \land y \ge 0$, то $x \cdot y \ge 0$.
- Аксиома полноты: если X и Y непустые подмножества \mathbb{R} , причем $\forall x \in X, \ \forall y \in Y \ x \leq y$, то $\exists c \in \mathbb{R} : x \leq c \leq y$.

Докажите, что в множестве действительных чисел:

- 1. имеется только один нулевой элемент;
- 2. у каждого элемента имеется единственный противоположный элемент;
- 3. уравнение a + x = b имеет, и притом единственное, решение x = b + (-a).
- 1. Если 0_1 и 0_2 нули в \mathbb{R} , то $0_1 = 0_1 + 0_2 = 0_2 + 0_1 = 0_2$.
- 2. Если $x_1, x_2 \in \mathbb{R}$ противоположные к $x \in \mathbb{R}$, то $x_1 = x_1 + 0 = x_1 + (x + x_2) = (x_1 + x) + x_2 = 0 + x_2 = x_2$.
- 3. $(a+x=b) \iff ((x+a)+(-a)=b+(-a)) \iff (x+(a+(-a))=b+(-a)) \iff (x+0=b+(-a)) \iff (x=b+(-a))$.

4

Расскажите о методе математической индукции. Докажите неравенство Бернулли. Расскажите о биноме Ньютона.

- Принцип математической индукции: пусть для последовательности утверждений $A_1,\ A_2,\ A_3,\ \dots\ A_n,\ \dots$ верны утверждения:
 - База индукции: A_1 истинно.
 - Шаг индукции: A_n истинно $\implies A_{n+1}$ истинно для любого n

Тогда A_n истинно для любого n.

- Неравенство Бернулли: для $x \in \mathbb{R}, \ n \in \mathbb{N}$ таких, что $x \ge -1 \land n \ge 1$, верно, что $(1+x)^n \ge 1 + nx$. Доказательство по индукции.
 - База: пусть (n = 1), тогда 1 + x = 1 + x.
 - Шаг: пусть неравенство верно для некоторого n, докажем, что оно верно и для n+1:

$$(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+nx) \ge 1+nx+x = 1+(n+1)x$$

• Бином Ньютона: для произвольных $a,b\in\mathbb{R},\ n\in\mathbb{N}$ верно, что $(a+b)^n=\sum_{k=0}^n\binom{n}{k}a^kb^{n-k}$.

5

Расскажите об ограниченных множествах вещественных чисел. Дайте два определения верхней и нижней грани множества $E \subset \mathbb{R}$. Докажите теорему о существовании и единственности верхней (нижней) грани. Приведите примеры.

- Некоторое подмножество $E \subset \mathbb{R}$ ограничено сверху (снизу), если $\exists c \in \mathbb{R} : \forall x \in E \ x \leq c \ (c \leq x)$. При этом число с называется верхней границей (нижней границей) множества X.
- Множество ограниченное сверху и снизу называется ограниченным.
- Наибольшее (наименьшее) из чисел, ограничивающих множество E сверху, называется **точной верхней (нижней) гранью** E (обозначается как $\sup E$ ($\inf X$)).
- Всякое непустое ограниченное сверху множество $E \subset \mathbb{R}$ имеет единственную точную верхнюю грань. Доказательство.
 - 1. Предположим, что есть две минимальных верхних грани x и y, в силу аксиомы антисимметричности ($x \le y$) \wedge ($y \le x$) $\implies x = y$.
 - 2. Положим $Y = \{ y \in \mathbb{R} : \forall x \in E \implies (x \leq y) \}.$
 - 3. По условию Y и E не пусты.
 - 4. Тогда по аксиоме полноты $\exists c \in \mathbb{R} : \forall x \in E, \ \forall y \in Y \implies (x \leq c \leq y)$. Другими словами, такое число c (существование которого гарантировано аксиомой полноты) является для E мажорантой, а для Y минорантой.
 - 5. Будучи мажорантой $E, c \in Y$; в то же время, как миноранта $Y, c = \min Y = \sup E$.

Дайте определения ограниченной (сверху, снизу) функции; верхней и нижней грани функции; монотонной функции; суперпозиции функций. Расскажите об обратной функции. Приведите примеры.

- Функция $f: X \to Y$ называется **ограниченной сверху** (снизу) на множестве $E \subset X$, если $\exists M \in E: \forall x \in X \ f(x) \leq M \ (f(x) \geq m)$. При этом число M называется **верхней (нижней) гранью** функции f(x) на множестве E.
- Функция $f: X \to Y$ называется **ограниченной** на множестве $E \subset X$, если $\exists A \in E: \forall x \in X \ |f(x)| \leq A$.
- Функция $f:X \to Y$ называется монотонной, если

$$\begin{cases} \forall x_1, x_2 \in \mathbb{X} \ x_1 < x_2 \iff f(x_1) \le f(x_2) \\ \forall x_1, x_2 \in \mathbb{X} \ x_1 < x_2 \iff f(x_1) \ge f(x_2) \end{cases}$$

- Пусть даны две функции $f:A \to B, g:B \to C$. Их композицией $f \circ g$ называется функция g(f(a)).
- Если функция $f:A\to B$ биективна, то к ней можно определить **обратную** функцию $f^{-1}:B\to A$: $\begin{cases} \forall a\in A \quad f^{-1}(f(a))=a \\ \forall b\in B \quad f(f^{-1}(b))=b \end{cases}$

7

Дайте определение числовой последовательности. Что такое монотонная последовательность? Что такое ограниченная (сверху, снизу) последовательность? Приведите примеры. Исследуйте на монотонность и ограниченность последовательность $x_n = \frac{n+2}{2n+1}$.

- Числовая последовательность множества E это функция вида $f:\mathbb{N} \to E$.
- Числовая последовательность $\{x_n\}$ называется **монотонной**, если

$$\begin{cases} \forall n_1, n_2 \in \mathbb{N} \ n_1 < n_2 \iff x_{n_1} \leq x_{n_2} \\ \forall n_1, n_2 \in \mathbb{N} \ n_1 < n_2 \iff x_{n_1} \geq x_{n_2} \end{cases}$$

• Числовая последовательность $\{x_n\}$ множества E называется ограниченной сверху (снизу), если

$$\exists A \in E : \forall n \in \mathbb{N} \ x_n \le A \ (x_n \ge A)$$

• Докажем, что $\frac{x_{n+1}}{x_n} < 1$.

$$\frac{x_{n+1}}{x_n} = \frac{(n+3)(2n+1)}{(2n+3)(n+2)} = \frac{2n^2 + 7n + 3}{2n^2 + 7n + 6} < 1$$

8

Дайте определение пределов $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} x_n = \infty$, $+\infty$, $-\infty$. Приведите примеры. Докажите теорему о единственности конечного предела последовательности. Сформулируйте критерий Коши сходимости последовательности. Докажите, что если последовательность сходится, то она является фундаментальной.

- $\lim_{n \to \infty} x_n = A \iff \forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n > N \ |x_n A| < \varepsilon.$
- $\lim_{n \to \infty} x_n = \infty \iff \forall M > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n > N \ |x_n| > M.$
- $\lim_{n \to \infty} x_n = +\infty \iff \forall M > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n > N \ x_n > M.$
- $\lim_{n \to \infty} x_n = -\infty \iff \forall M > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n > N \ x_n < -M.$

- Последовательность $\{x_n\}$ множества E может иметь только один конечный предел. Доказательство.
 - 1. Пусть у последовательности есть два предела: A и B.
 - 2. По определению $\begin{cases} \forall \varepsilon > 0 \ \exists N_1(\varepsilon) \in \mathbb{N} : \forall n > N_1 \ |x_n A| < \varepsilon \\ \forall \varepsilon > 0 \ \exists N_2(\varepsilon) \in \mathbb{N} : \forall n > N_2 \ |x_n B| < \varepsilon \end{cases}$
 - 3. Положим $N=\max\{N_1,N_2\}$. Тогда $\forall n>N \ |B-A|\leq |x_n-B|+|x_n-A|<2\varepsilon \implies |B-A|\to 0 \implies B=A$.
- Числовая последовательность $\{x_n\}$ называется $\mathbf{ф}\mathbf{y}\mathbf{н}\mathbf{д}\mathbf{a}\mathbf{m}\mathbf{e}\mathbf{n}\mathbf{t}\mathbf{a}\mathbf{n}\mathbf{b}\mathbf{h}\mathbf{o}\ddot{\mathbf{u}},$ если

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n, m > N \ |x_m - x_n| < \varepsilon$$

- **Критерий Коши:** Последовательность сходится \iff последовательность фундаментальная. Доказательство.
 - $1. (1) \implies (2)$
 - (a) Пусть $\lim_{n\to\infty} x_n = A$. То есть $\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n > N \ |x_n A| < \frac{\varepsilon}{2}$.
 - (b) Из (1) получим, что $\forall n,m \in \mathbb{N} \ |x_n-x_m|=|(x_n-a)+(a-x_m)| \leq |x_n-a|+|x_m-a| < \frac{\varepsilon}{2}+\frac{\varepsilon}{2} < \varepsilon \implies \{x_n\}$ фундаментальная.
 - $2. (2) \iff (1)$
 - (a) Пусть x_n фундаментальная \implies (по лемме 2) $\{x_n\}$ ограничена.
 - (b) По теореме Больцано-Вейерштрасса из $\{x_n\}$ можно выделить подпоследовательность $\{x_{k_n}\}$ такую, что $\lim_{n\to\infty}x_{k_n}=A$.
 - (c) Докажем, что $\lim_{n\to\infty}x_{k_n}=A$. Зададим произвольное $\varepsilon>0$. Рассмотрим ε и $\frac{\varepsilon}{2}$ окрестности точки A.
 - (d) Начиная с некоторого номера N_1 все члены подпоследовательности x_{k_n} лежат в $\frac{\varepsilon}{2}$ -окрестности точки A.
 - (e) Начиная с некоторого номера N_2 все члены последовательности отстоят друг от друга не более, чем на $\frac{\varepsilon}{2}$ (так как $\{x_n\}$ фундаментальна).
 - (f) Положим $N=\max\{N_1,N_2\}$. Тогда $\forall n>N\ x_n\in U_\varepsilon(A)\implies \lim_{n\to\infty}x_n=A$.

9

Докажите, что всякая последовательность, имеющая конечный предел, ограничена. Покажите на примере, что обратное утверждение неверно. Докажите теорему Вейерштрасса о пределе монотонной последовательности.

- Последовательность $\{x_n\}$ имеет конечный предел $A\implies$ она ограничена.
 - Доказательство.
 - 1. Положим $\varepsilon=1$. Тогда по определению $\exists N\in\mathbb{N}: \forall n>N \ |x_n-A|<1 \Longrightarrow |x_n|<|A|+1$.
 - 2. Возьмем $M > \max\{|x_1|, \dots |x_n|, |A|+1\}$. Получии, что $\forall n \in [N] |x_n| < M$.