HW 5

Robin Baldeo

February 8, 2019

```
library(purrr)
library(tidyr)
library(knitr)
library(invgamma)
2.3
set.seed(6)
b < - seq(0,1, by = .0001)
a_ <- 0
b_ <- 0
#checking a range of values to get the
#appropiate a and b that meets conditions
for(i in 1:length(b)){
  a = (100*b[i]^2)
  med = qgamma(.5,a,b[i])
  if(med%>%round(0) == 75){
      a_= a;b_= b[i]
      break
  }
}
#condition 1, var = 100
var<- a_/b_^2
var
## [1] 100
#condition 2 median = 75
med_<- rgamma(10000, a_, b_)%>%median()
med_%>%round()
## [1] 75
```

The prior that staify both conditions is Gamma (56.175025, 0.7495)

```
2.5
#information given in exercise
c = c(1,1,2,2)
a \leftarrow c(.1,1,.1,1)
#matrix to store values
data<- matrix(.0,nrow = 4, ncol = 9)</pre>
data[,1]<- c
data[,2]<- a
data[,3]<- a
#function to build determine the sse
sse <- function(){</pre>
  x2=15; x=-2; n= 20
  ((1/(n-1))* x2- (x/n)^2)% return()
}
#function for the mean
mean<- function(a, b){</pre>
  n = 20
  ((sse() + b)/(n + 2*a - 2))%>%return()
}
#calcuating the std
for(i in 1:nrow(data)){
  #post A
  data[i,4] = (20/2) + data[i,3]
  #post B
  data[i,5] = (data[i,3] + sse())
  #P(sigma>c)
  data[i,6] = 1- pinvgamma(data[i,1], data[i,4], data[i,5])
  # post mean
  data[i,7] = mean(data[i,3], data[i,3])
  # post std
  data[i,8] = (sse()/(20-1))^{.5}
  #adding random a and b to see what effect the prior had on the posterior
  data[i,9] = mean(10, 10)
}
df2<- as.data.frame(data)</pre>
names(df2)<- c("c", "a", "b", "A", "B", "postProb", "postMean", "postStd",</pre>
"priorTest")
```

```
df2%>%kable(caption = "Results Of Posterior")
```

Results Of Posterior

С	a	b	Α	В	postProb	postMean	postStd	priorTest
1	0.1	0.1	10.1	0.8794737	0.0e+00	0.0483227	0.2025461	0.2836704
1	1.0	1.0	11.0	1.7794737	2.8e-06	0.0889737	0.2025461	0.2836704
2	0.1	0.1	10.1	0.8794737	0.0e+00	0.0483227	0.2025461	0.2836704
2	1.0	1.0	11.0	1.7794737	0.0e+00	0.0889737	0.2025461	0.2836704

The results for $P(\theta > c)$ are in column postProb.

```
#P(sigma>c | c= 1, a=b=0.1) / P(sigma>c | c=1, a=b=1)

r1 <- data[1,6]/data[2,6]

#P(sigma>c | c= 2, a=b=0.1) / P(sigma>c | c=2, a=b=1)

r2 <- data[3,6]/data[4,6]</pre>
```

The ratio when c = 1 the ratio is 0.0095544 and when c = 2 the ratio is 0.0118331. Also, the posterior is very sensative to the prior. This is shown in column priorTest where the prior mean changes greatly when I plug in any value for rate and shape.

Roblem 3 and 4 in chapter 2 of Reich and Ghosh . In addition
to the problems in the book, find the conjugate prior
Por p and derive its posterior assuming
Apr Binomial (u,p)
2/p n Binomial (m,p)
P(X p)
P(p x) x P(r p). P(2 p). P(p)
x (n) ph (1-p) h-y, (m) pt (1-p) m-t M(a+b) pa-1 b y) ph (1-p) h-y, (m) pt (1-p) m-t M(a+b) pa-1 b Ma) + M(b) P (1-p) h
100 3h-10.2 (3h-1 (3h-1)
X h. (1-b) 1 h (1-b) 1
x p Cy+2+a)-1 C1-p Cn-y+m-2+b)-1.
using a Beta prior our posterior is a Beta. Therefore
Beta (y+z+a, n-y+m-z+b).

Y