

Co	de	:	15	E	C5	2T
_		•	_	-	\sim	

	 T		 _	_	 and the same of the same of	
Register	 					
Number						

V Semester Diploma Examination, Oct./Nov.-2019

ARM CONTROLLER

Time: 3 Hours]	[Max. Marks : 100
Note: (i) Answer any six questions from PART – A. (ii) Answer any seven full questions from PART – I	3.
PART – A 1. List the special features of ARM processor design.	$6 \times 5 = 30$ 5
2. Explain conditional execution with an example.	
3. Explain register usage in thumb.	5
4. List any five difference between ARM and thumb state.	5
5. Define the following terms with respect to ARM7: (i) Exception (ii) Vector table (iii) Interrupt latency (iv) Exception handler (v) Pre-fetch abort	1×5=5
6. Discuss link register offsets.	5
7. List any five features of LPC – 2148.	5 m
8. Explain power modes in LPC 2148.	5
9. List any five features of GPIO.	5 - 5
PART – B 10. Sketch and explain ARM core data flow model.	$7 \times 10 = 70$ 10
1 of 2	[Turn over

15EC52T 2 of 2

11.	(a)	Explain the role of software components in an embedded system. Explain 3-stage pipeline with example.	5
12.	(i) (ii)	lain the following instructors: RSC R_0 , R_1 , R_2 BIC R_0 , R_1 , #256	$2 \times 5 = 10$
		SWAP R ₀ , R ₁ , [R ₂]	
		CMP, R_0, R_1	
	(v)	$ADD R_0, R_1, R_2$	
13.	(a)	Write the instruction to perform the following operations: (i) Copy a CPSR into R ₁ register.	$1 \times 5 = 5$
		(ii) Add the two register R ₁ & R ₂ content along with carry flog, presult in the R ₃ register.	lacing the
		 (iii) Instruction which causes a software interrupt exception. (iv) To returning from subroutine (v) Copy a complement of 4 into R₁ 	
	(b)	Write a note on MAC unit.	5
14.	(a)	Explain the structure of ARM assembly language format.	5
	(b)	Write an ALP to find factorial of a number.	5
15.	(a)	Explain Non-nested interrupt handler with a neat sketch.	7
	(b)	Distinguish between nested and non-nested interrupt handler.	3
16.		ch memory map of LPC 2148 and explain briefly the features of on chinory and on chip static RAM.	p program 10
17.	Exp	lain the architecture of Timer module.	10
18.	Sket	tch a neat block diagram of PLL and explain.	10
19.	(a)	Write C program to interface LEDs to all pins in Port 0 (P0.0 to P0 repeatedly blink all LEDs high then low then high and soon (introd	luce some
	(b)	delay) Choosing, FOSC = 10 MHz and CCLK = 60 MHz configure PLL.	5 5