Loris Jautakas

September 10, 2023

Monotone Set Operators 1

Definition 1: [function]/

monotone_set_operator

A monotone set operator $T: X \to X$ is a function such that for all $A, B \subseteq X$:

$$A \subseteq B \implies T(A) \subseteq T(B) \tag{1}$$

Rank 2

Definition 2: [preorder]/

rank

The rank of (X, \prec) is defined as its Mostowski Collapse:

$$\rho_{\prec}(x) \stackrel{\text{def}}{=} \rho_{\prec}(y)|y \prec x \tag{2}$$

Definition 3: [monotone_set_operator]/

T_rank

Let T be a monotone set operator. The T-rank of (X, \prec) is defined as its Mostowski Collapse:

$$\rho_{\prec}^{T}(x) \stackrel{\text{def}}{=} \{ \rho_{\prec}^{T}(y) | y \prec x \} \cup T(\{ \rho_{\prec}^{T}(y) | y \prec x \})$$
(3)

Result 1: [monotone_set_operator]/ knaster_tarski

Let

1. X be a set

2. $T: \mathcal{P}(X) \to \mathcal{P}(X)$ be a monotone set operator

Then

1. For each $A \subseteq X$ there is a smallest $\overline{T}(A) \subseteq X$ such that:

(a)
$$A \subseteq \overline{T}(A) \subseteq T(\overline{T}(A))$$

Proof. Just define:

$$\overline{T}(A) \stackrel{\text{def}}{=} \bigcap \{ B \subseteq A | A \subseteq B, T(B) \subseteq B \}$$

(4)

Definition 4: [monotone_set_operator]/

finite_character

Let $T: \mathcal{P}(X) \to \mathcal{P}(Y)$ be a monotone set operator. We say T is of finite character if everything derived by A is also derived from a finite part of A, i.e.:

$$T(A) = \bigcup_{\substack{F \subseteq A \\ F \text{ finite}}} \tag{5}$$

Definition 5: [monotone_set_operator]/ countable_character

Let $T: \mathcal{P}(X) \to \mathcal{P}(Y)$ be a monotone set operator. We say T is of countable character if everything derived by A is also derived from a countable part of A, i.e.:

$$T(A) = \bigcup_{\substack{F \subseteq A \\ F \text{ countable}}} \tag{6}$$

Result 2: [monotone_set_operator, finite_character, countable_character]/ finite_and_countable_character_stabilization

Let:

- 1. $T: \mathcal{P}(X) \to \mathcal{P}(Y)$ be a monotone set operator that is of finite character.
- 2. $A \subseteq X$ be arbitrary.

Then the sequence:

$$(A_{\alpha})_{\alpha \in \mathbb{ON}} : \mathbb{ON} \mapsto \mathcal{P}(X) \tag{8}$$

$$0 \mapsto A \tag{8}$$

$$s + 1 \mapsto A_s \cup T(A_s) \tag{9}$$

$$\lim_{\beta < l} I \mapsto \bigcup_{\beta < l} A_{\beta} \tag{10}$$

stabilizes at stage ω , meaning:

$$A_{\omega} = A_{\omega+1} = \dots \tag{11}$$

Likewise if T is of countable character, then:

$$A_{\omega_1} = A_{\omega_1 + 1} = \dots \tag{12}$$