zusammenfassung.md 2024-03-18

Java-Quelltext übersetzen und ausführen

```
# Projektverzeichnis erstellen.
mkdir projekt
# In Projektverzeichnis wechseln.
cd projekt
# Quelltextdatei erzeugen und editieren. (SPEICHERN!)
notepad MyClass.java
# Quelltextdatei mit Java Compiler übersetzen.
# Erfolgt keine Ausgabe, war die Übersetzung erfolgreich.
javac MyClass.java
# Mit dem Java Launcher eine Klasse starten (deren main-Methode).
java MyClass
```

Wozu brauchen wir Datentypen?

- Ein Datentyp definiert, wie ein Bitmuster im Speicher zu interpretieren ist. Beispiel: Was bedeutet die Bitfolge 011001?
- Ein Datentyp legt fest, wie viel Speicher für eine Variable zu reservieren ist. Beispiel: Eine Variable vom Typ int belegt 32 Bits (also 4 Bytes) im Speicher.
- Ein Datentyp definiert den Wertebereich für eine Variable. Beispiel: Der Datentyp byte lässt nur Werte im Bereich -128 bis +127 zu.
- Ein Datentyp legt fest, welche Operationen mit einer Variablen zulässig sind. Beispiel: Einen int kann man multiplizieren, aber einen String hingegen nicht.
- Ein Datentyp liefert dem Compiler zusätzliche Informationen, damit er die typkonforme Verwendung der Variablen prüfen kann.
- Datentypen legen die Intention f
 ür Variablen fest und f
 ördern damit die Verst
 ändlichkeit des Quelltextes.

In Java gibt es zwei Kategorien von Datentypen:

- Primitive Datentypen
- Referenzdatentypen

Hinweis: Für jeden primitiven Datentyp existiert in Java ein korrespondierender Referenzdatentyp - sogenannte Wrapper-Klassen. Beispiel: byte und Byte, char und Character, double und Double.

Um den Wertebereich eines primitiven Datentyps zu ermitteln, verwende dessen zugehörige Wrapper-Klasse. Beispiel:

```
Byte.MIN_VALUE
Byte.MAX_VALUE
Integer.MAX_VALUE
Integer.MIN_VALUE
```

zusammenfassung.md 2024-03-18

Rundungsfehler bei Datentyp double und float

Mit den Datentypen double und float können wir Zahlen mit Nachkommastellen abspeichern. Hier kann es jedoch zu Rundungsfehlern kommen. Für double gilt: Ungefähr 15 signifikante Ziffern können exakt dargestellt werden. Bei Datentyp float sind es hingegen nur etwa 7.

Die *betragsmäßig* größte Zahl ist bei double etwa 1.8E308 und die betragsmäßig kleinste Zahl ist 4.9E-328. (E-328 bedeutet "10 hoch -328").

Achtung: Manche Dezimalzahlen, z.B. 0.1, sind im Binärsystem nicht exakt darstellbar. Diese können nur gerundet abgespeichert werden.