Question 1 (20%)

Restore the parentheses and dots in the following:

(a) $\lambda f \lambda g \lambda h \lambda x.(f(g(hx)))$

Solution: $(\lambda f.(\lambda g.(\lambda h.(\lambda x.(f(g(hx)))))))$

(b) *xxxx*

Solution: (((xx)x)x)

(c) $\lambda x.x\lambda y.y$

Solution: $(\lambda x.(x(\lambda y.y)))$

(d) $\lambda x.(x\lambda y.yxx)x$

Solution: $(\lambda x.(x(\lambda y.((yx)x)))x)$

Question 2 (20%)

Simplify the parentheses and dots in the following:

(a) (xy)

Solution: xy

(b) (x(yz))

Solution: x(yz)

(c) ((xy)z)

Solution: *xyz*

(d) $(\lambda x.x)$

Solution: $\lambda x.x$

(e) $(\lambda y.(\lambda x.x))$

Solution: $\lambda y \lambda x.x$

(f) $(\lambda z.(x(\lambda y.(yz))))$

Solution: $\lambda z.x(\lambda y.yz)$

(g) $(x(\lambda z.(\lambda y.(yz))))$

Solution: $x\lambda z\lambda y.yz$

(h) $(x(\lambda x.x))$

Solution: $x\lambda x.x$

(i) $((\lambda y.(\lambda x.x))(\lambda x.x))$

Solution: $(\lambda y \lambda x.x) \lambda x.x$

(j) $(((\lambda y.(\lambda x.x))(\lambda x.x))(xy))$

Solution: $(\lambda y \lambda x.x)(\lambda x.x)(xy)$

(k) ((x(yz))((xy)z))

Solution: x(yz)(xyz)

(1) $(\lambda x.(\lambda y.(\lambda z.((xz)(yz)))))$

Solution: $\lambda x \lambda y \lambda z.xz(yz)$

 $\pmod{(((ab)(cd))((ef)(gh)))}$

Solution: ab(cd)(ef(gh))

(n) $(\lambda x.((\lambda y.(yx))(\lambda v.v)z)u)(\lambda w.w)$

Solution: $(\lambda x.(\lambda y.yx)(\lambda v.v)zu)(\lambda w.w)$

Question 3 (20%)

Reduce the following:

(a) $(\lambda f.fx)g$

Solution: *gx*

(b) $(\lambda f.fx)ga$

Solution: gxa

(c) $(\lambda f.fx)(ga)$

Solution: gax

(d) $(\lambda f \lambda x. f x) g a$

Solution: ga

(e) $(\lambda x \lambda y \lambda z. x(yz)) f$

Solution: $\lambda y \lambda z. f(yz)$

(f) $(\lambda x.mx)j$

Solution: *mj*

(g) $(\lambda y.yj)m$

Fall 2021 due Nov 21, Sunday

Solution: *mj*

(h) $(\lambda x.\lambda y.y(yx))jm$

Solution: m(mj)

(i) $(\lambda y.yj)(\lambda x.mx)$

Solution: *mj*

(j) $(\lambda x.xx)(\lambda y.yyy)$

Solution: This gets exponentially bigger and bigger as you reduce.

Question 4 (20%)

Reduce the following:

(a) $(\lambda p.p.john')(\lambda x.sleeps'x)$

Solution: sleeps' john'

(b) $(\lambda p \lambda q. \forall x. p'x \rightarrow q'x)(\lambda x. student'x)(\lambda x. sleeps'x)$

Solution: $\forall x.student'x \rightarrow sleeps'x$

(c) $(\lambda p \lambda x.think' px)((\lambda p.p.john')(\lambda x.sleeps'x))alice'$

Solution: *think'*(*sleeps' john'*) *alice'*

(d) $(\lambda p \lambda q. \exists x. px \land qx)(\lambda x. student'x)((\lambda p \lambda x. think' px)((\lambda p. pjohn')(\lambda x. sleeps'x)))$

Solution: $\exists x.student'x \land think'(sleeps'john')x$

Question 5 (20%)

What should α be in the following reductions?

(a) $\alpha(\lambda x.walks'x) john' \equiv_{\beta} slow'(walks' john')$

Solution: $\lambda p \lambda x.slow'(px)$

(b) $\alpha(\lambda x.walks'x)john' \equiv_{\beta} slow'walks'john'$

Solution: $\lambda p \lambda x.slow' p x$ Note that, first one obtains: $slow'(\lambda x.walks' x) john'$

then, after η -reduction, you get:

slow'walks' john'

(c) $\alpha mary' john'(\lambda x.walks'x) \equiv_{\beta} walks' john' \wedge walks' mary'$

Solution: $\lambda x \lambda y \lambda p. py \wedge px$

 $(d) \ \alpha(\lambda \textit{x.talks'x})(\lambda \textit{x.smiles'x}) \textit{john'} \equiv_{\beta} \textit{smiles'} \textit{john'} \land \textit{talks'} \textit{john'}$

Solution: $\lambda p \lambda q \lambda x. qx \wedge px$