2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Problem 4

The elliptic curve $Y^2 = X^3 + 2$ has six mod 5 points including ∞ . Five of them are ∞ , (2,0), (3,3), (4,1), (4,4). Find the sixth mod 5 point.

Finding and counting mod P points on elliptic curves is a very important problem (both theoretically and practically).

Problem 4

Find integers S,T (0 \leq S, T \leq 4) satisfying $T^2 \equiv S^3+2 \pmod{5}$.

♦
$$S^3+2 \pmod{5}$$

 $0^3+2\equiv 2$ $1^3+2\equiv 3$ $2^3+2\equiv 0$
 $3^3+2\equiv 4$ $4^3+2\equiv 1$

T² (mod 5) 0²≡0 1²≡1 2²≡4 3²≡4 4²≡1

Problem 4

• 0 ≡ T² ≡ S³+2 ⇒ S ≡ 2, T ≡ 0
• 1 ≡ T² ≡ S³+2 ⇒ S ≡ 4, T ≡ 1 or 4
• 4 ≡ T² ≡ S³+2 ⇒ S ≡ 3, T ≡ 2 or 3
The mod 5 points are

$$\infty$$
, (2,0), (4,1), (4,4), (3,2), (3,3)
The sixth point is (3,2).

Answer
$$S = 3$$
, $T = 2$