1. Introduzione ai Linguaggi Formali

(Fanizzi - Carofiglio)

17 marzo 2016

- Definizioni Preliminari
 - Alfabeti e Stringhe
 - Potenze e Chiusure
 - Linguaggi
- 2 Grammatiche Generative
 - Definizione
 - Derivazioni
 - Linguaggio Generato da una Grammatica
 - Correttezza di una Grammatica
- 3 Esercizi

Alfabeti e Stringhe

• Un alfabeto è un insieme X finito e non vuoto di simboli

es.
$$X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Una parola (o stringa) w su un alfabeto X
 è una sequenza finita di simboli x₁, x₂,...,x_n tale che

$$\forall i = 1, \ldots, n \colon x_i \in X$$

La *lunghezza* di w è pari ad n e si denota con |w|.

es.
$$X = \{0, 1\}$$
 $w = 0010110 |w| = 7$.

La parola vuota, denotata con λ , è la parola priva di simboli (quindi $|\lambda|=0$)

• Si denota con X^* l'insieme di tutte le stringhe su X.

es.
$$X = \{0,1\} \Rightarrow X^* = \{\lambda, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$$

osservazione: $\forall X : \lambda \in X^*$

Concatenzaione o prodotto

• Date $\alpha, \beta \in X^*$ tali che $\alpha = x_1 \cdots x_m$ e $\beta = x_1' \cdots x_n'$ la concatenazione (o prodotto) di α e β è data dalla stringa $\alpha\beta$ (denotata anche $\alpha \cdot \beta$) di lunghezza m+n con i primi m simboli uguali a quelli di α e gli ultimi n uguali a quelli di β :

$$\gamma = \alpha\beta = x_1 \cdots x_m x_1' \cdots x_n'$$

- La concatenzazione su X é una operazione binaria su
 ·: X* × X* → X*
 - ullet ha per elemento neutro λ
 - gode della proprietà associativa: $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$
 - non è commutativo
- Ogni parola w su X si puó scrivere come prodotto di parole di lunghezza unitaria

Prefisso, suffisso e sottostringa

Data la stringa

$$\delta = \alpha \beta \gamma$$

tale che $\alpha, \beta, \gamma \in X^*$, α è un **prefisso** di δ , γ è un **suffisso** di δ e β è una **sottostringa** di δ

es.
$$\delta = 00110$$

- prefissi di δ : λ , 0, 00, 001, 0011 e δ
- suffissi di δ : λ , 0, 10, 110, 0110 e δ
- sottostringhe di δ : λ , 0, 1, 00, 01, 10, 11, 001, 011, 110, 0011, 0110 e δ

Potenze e Chiusure

• Data $\alpha \in X^*$, la **potenza** k-esima di α è definita con:

$$\alpha^k = \left\{ \begin{array}{ll} \lambda & \mathsf{k} = 0 \\ \alpha \alpha^{k-1} & \mathsf{k} > 0 \end{array} \right.$$

Dunque la potenza k-esima è un caso speciale di concatenamento

Potenze e Chiusure

- La potenza di un alfabeto è definita come segue:
 - $X^1 = X$,
 - $X^2 = X \cdot X = \{x_1 x_2 | x_1, x_2 \in X\},\$
 - $X^3 = X \cdot X \cdot X = \{x_1 x_2 x_3 | x_1, x_2, x_3 \in X\}$...etc.

$$X^k = \begin{cases} \{\lambda\} & k=0 \\ X \cdot X^{k-1} & k>0 \end{cases}$$

- L'insieme $X^+ = \bigcup_{k>0} X^k$ è chiusura transitiva di X.
- Si osservi che X* = X⁺ ∪ {λ} è la chiusura riflessiva e transitiva di X

Linguaggi

Un **linguaggio** L su un alfabeto X è un sottinsieme di X^* :

$$L \subseteq X^*$$

Es. Linguaggio delle parentesi ben formate
$$L \subseteq \{(,)\}^*$$
:
$$(())() \in L \text{ e } ()(()()) \in L$$
 mentre
$$(()() \notin L$$

Linguaggi

I linguaggi possono essere riguardati sotto due punti di vista:

Descrittivo-Generativo: come generare le parole w di L?

L potrebbe essere infinito (estensione) ma enumerabile mediante un numero finito di regole (intensione).

Riconoscitivo: come decidere se $w \in L$?

E' il punto di vista dei compilatori e traduttori in fase d'analisi

Esempio

Esempio. $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -\}$

L linguaggio dei numeri relativi

Usando il formalismo di Backus-Naur:

$$w = -375 < S > \Rightarrow -375$$

Grammatica Generativa

Una grammatica generativa è una quadrupla G = (X, V, S, P):

- X alfabeto terminale;
- V alfabeto non terminale (NT), tale che $X \cap V = \emptyset$
- $S \in V$ simbolo di partenza o distintivo
- P insieme delle produzioni (α, β) denotate anche $\alpha \longrightarrow \beta$ dove $\alpha \in (X \cup V)^+$ contiene almeno un non terminale e $\beta \in (X \cup V)^*$ (puó essere anche λ)

La notazione $\alpha \longrightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$ riassume le produzioni:

$$\begin{array}{c} \alpha \longrightarrow \beta_1 \\ \alpha \longrightarrow \beta_2 \\ \dots \\ \alpha \longrightarrow \beta_n \end{array}$$

Derivazioni

- Data la grammatica G = (X, V, S, P) e due stringhe y e z su $X \cup V$ tali che $y = \gamma \alpha \delta \in (X \cup V)^+$ e $z = \gamma \beta \delta \in (X \cup V)^*$ con $\alpha, \beta, \gamma, \delta \in (X \cup V)^*$, y deriva direttamente z sse $a \longrightarrow \beta \in P$. Ció è denotato con $y \Longrightarrow z$
- y deriva z, denotato con $y \stackrel{*}{\Longrightarrow} z$, sse
 - y = z oppure
 - $\exists w_1 = y, w_2, \dots, w_{n-1} \in (X \cup V)^+$ e $w_n = z \in (X \cup V)^*$ tali che: $w_i \Longrightarrow w_{i+1} \quad \forall i = 1, \dots, n-1$
- $\stackrel{n}{\Longrightarrow}$ denota una derivazione in *n* passi (*n lunghezza della derivazione*)
- Dato un ordinamento su P, \Longrightarrow_i denota una derivazione diretta usando la produzione i-esima

Linguaggio Generato da una Grammatica

• Data la grammatica G = (X, V, S, P), il **linguaggio generato dalla grammatica** G, denotato con L(G) è l'insieme delle stringhe di simboli terminali derivabili da S:

$$L(G) = \{ w \in X^* | S \stackrel{*}{\Longrightarrow} w \}$$

- $w \in (X \cup V)^*$ è una forma di frase di G sse: $S \stackrel{*}{\Longrightarrow} w$ Alle forme di frase si applicano gli stessi operatori usati fin qui per le stringhe.
- Due grammatiche G e G' sono equivalenti sse L(G) = L(G')

Esempio

Data la grammatica
$$G = (X, V, S, P)$$
, dove $X = \{a, b\}$ $V = \{S\}$ $P = \{S \rightarrow aSb, S \rightarrow ab\}$

Determiniamo L(G)

Esempio

- la stringa $ab \in L(G)$ (dato che esiste la produzione $S \to ab$ $(S \Rightarrow ab)$)
- la stringa $a^2b^2 \in L(G)$ (poichè $S \Rightarrow_1 aSb \Rightarrow_2 aabb = a^2b^2$)
- la stringa $a^3b^3 \in L(G)$ (poichè $S \Rightarrow_1 aSb \Rightarrow_1 aaSbb \Rightarrow_2 aaSbb = a^3b^3$)
- ..

$$\{a^nb^n|n>0\}\subseteq L(G)$$

Inoltre tutte le stringhe generate da S in G sono del tipo a^nb^n , ovvero

$$L(G) \subseteq \{a^n b^n | n > 0\}$$

$$L(G) = \{a^n b^n | n > 0\}$$

Correttezza di una grammatica

In generale, dati un linguaggio L ed una grammatica G, non esiste un algoritmo in grado di dimostrare che L = L(G):

Teorema. Il problema generale di dimostrare la correttezza di una grammatica è irresolubile per via algoritmica

- In molti casi specifici, questo si puó dimostrare per induzione
 - $L \subseteq L(G)$, i.e. G genera solo stringhe di L
 - $L(G) \subseteq L$, i.e. L contiene solo stringhe generabili da G

Esercizi

- ① Determinare la grammatica che genera il linguaggio $L = \{a^n b^n | n > 0\}.$
- ② Determinare la grammatica che genera il linguaggio $L = \{a^n b^{n+1} | n > 0\}.$
- ① Data la grammatica G = (X, V, S, P)con $X = \{0, 1\}$, $V = \{S, A, B\}$ e $P = \{S \rightarrow 0B \mid 1A, A \rightarrow 0 \mid 0S \mid 1AA, B \rightarrow 1 \mid 1S \mid 0BB\}$ determinare il linguaggio L(G).
- ① Determinare la grammatica che genera il linguaggio $L = \{a^n b^{2n} \mid n > 0\}.$

Esercizi

- ① Determinare la grammatica che genera il linguaggio $L = \{a^k b^n c^{2k} \mid n, k > 0\}.$
- 2 Dimostrare induttivamente che è vuoto il linguaggio L(G) generato dalla grammatica

$$G = (X, V, S, P)$$
, con $X = \{a, b, c\}$, $V = \{S, A, B\}$
 $P = \{S \rightarrow aBS \mid bA, aB \rightarrow Ac \mid a, bA \rightarrow S \mid Ba\}$

Esercizio 1

Esercizio 1. Determinare la grammatica per $L = \{a^n b^n \mid n > 0\}$

$$G = (\{a, b\}, \{S\}, \{S \xrightarrow{1} aSb, S \xrightarrow{2} ab\})$$

Occorre dimostrare: $L \subseteq L(G)$ and $L(G) \subseteq L$

$L(G) \subseteq L$

Sia $w \in \{a, b\}^*$ tale che: $S \stackrel{*}{\Longrightarrow} w$ Per induzione sulla lunghezza n della derivazione di w da S.

base
$$n = 1$$
 $S \stackrel{*}{\Longrightarrow} ab \ e \ ab \in L$
passo Dimostriamo che:

$$\forall n > 1$$
SE $(w' \in L(G) \land S \stackrel{n-1}{\Longrightarrow} w')$ implica $w' \in L$
ALLORA $da (w \in L(G) \land S \stackrel{n}{\Longrightarrow} w)$ consegue $w \in L$

$L(G) \subseteq L$

- Sia $w \in L(G)$ e $S \stackrel{n}{\Longrightarrow} w$, cioè: $\exists w_1, w_2, \dots, w_l : S \Longrightarrow w_1 \Longrightarrow w_2 \Longrightarrow \dots \Longrightarrow w_n = w$
- Necessariamente: $w_1 = aSb \stackrel{n-1}{\Longrightarrow} w_n = w$
- Per ipotesi di induzione: É vero che $\forall n \ (w' \in L(G) \land S \stackrel{n-1}{\Longrightarrow} w')$ implica $w' \in L$. Dunque $S \stackrel{n-1}{\Longrightarrow} w' = a^k b^k \text{ con } k > 0$.
- ma $S \stackrel{k}{\Longrightarrow} w' = a^k S b^k \text{ con } k > 0$ Dungue $w' = a^{n-1} b^{n-1}$
- allora la stringa: $aw'b = aa^{n-1}b^{n-1}b = a^nb^n$ é ancora una stringa di L ed é inoltre derivabile da S in n passi infatti: $S \stackrel{1}{\Longrightarrow} aSb \stackrel{n-1}{\Longrightarrow} aw'b = a^nb^n = w$

$$C.V.D L(G) \subseteq L$$

$L \subseteq L(G)$

Sia $w \in L$

Per induzione sulla lunghezza |w| della parola $w \in L$

base
$$|w| = 2$$

 $\exists S \Longrightarrow ab = w \in W \in L$

oss: |W| minima è 2 perché devo applicare almeno una regola di derivazione.

passo Dimostriamo che:

$$\begin{array}{c} \forall n \\ \text{SE } w' \in L, |w'| = 2(n-1) \text{ implica } S \stackrel{*}{\Longrightarrow} w' \\ \text{ALLORA } w \in L, |w| = 2n \text{ implica } S \stackrel{*}{\Longrightarrow} w. \end{array}$$

$L \subseteq L(G)$

- Sia w ∈ L, |w| = 2n, n > 1:
 l'unica parola di L di tale lunghezza è w = aⁿbⁿ
 Nella derivazione dovremo necessariamente applicare la produzione (1) come primo passo: S ⇒₁ aSb
- Per ipotesi di induzione: É vero che $\forall w' \in L$, |w'| = 2(n-1): $S \stackrel{*}{\Longrightarrow} w'$ Quindi anche $S \stackrel{*}{\Longrightarrow} a^{n-1}b^{n-1} = w'$
- Unendo i due risultati si ottiene: $S \Longrightarrow_1 aSb \stackrel{*}{\Longrightarrow} aw'b = aa^{n-1}b^{n-1}b = a^nb^n = w$

$$C.V.D. L \subseteq L(G)$$

Esercizio 2

Determinare la grammatica per $L = \{a^n b^{n+1} \mid n > 0\}$

$$G = (\{a, b\}, \{S, A\}, \{S \xrightarrow{1} Ab, A \xrightarrow{2} aAb, A \xrightarrow{3} ab\})$$

Occorre dimostrare: $L \subseteq L(G)$ and $L(G) \subseteq L$

... la dimostrazione del tutto uguale alla precedente è lasciata come esercizio.

Esercizio 2, seconda pagina

Dimostrare induttivamente che è vuoto il linguaggio L(G) generato dalla grammatica

$$G = (X, V, S, P)$$
, con $X = \{a, b, c\}$, $V = \{S, A, B\}$
 $P = \{S \rightarrow aBS \mid bA, aB \rightarrow Ac \mid a, bA \rightarrow S \mid Ba\}$

Dovremmo provare che:

- $L(G) \subset \emptyset$
- $\emptyset \subseteq L(G)$

Ovviamente è sufficiente provare che $L(G) \subseteq \emptyset$.

$L(G) \subseteq \emptyset$

Sia
$$w \in L(G)$$
.
se $\forall n \ S \stackrel{n}{\Longrightarrow} w$ allora $w = \alpha N\beta$, con $\alpha, \beta \in (X \cup V)^*$ e $N \in V$

Per induzione sulla lunghezza n della derivazione

base
$$n=1$$

le uniche derivazioni possibili sono:

a.
$$S \Longrightarrow aBS$$

b.
$$S \Longrightarrow bA$$

entrambe presentano almeno un non terminale

$L(G) \subseteq \emptyset$: cenni

passo Dimostriamo che:

```
\forall n > 1
SE S \stackrel{n-1}{\Longrightarrow} w' implica \exists N \in V : w' = yNz, con y, z \in (V \cup X)^*
ALLORA S \stackrel{n}{\Longrightarrow} w' implica \exists N \in V : w' = yNz, con y, z \in (V \cup X)^*
```

$L(G) \subseteq \emptyset$: cenni

- Consideriamo una qualunque derivazione in G di n passi: $S \stackrel{n}{\Longrightarrow} w$
- Per definizione: $\exists w_1, ..., w_n = w$ tali che: $S \stackrel{n-1}{\Longrightarrow} w_{n-1} \Longrightarrow w_n = w$
- Per ipotesi di induzione: ogni stringa derivabile da S in n-1 passi presenta un non terminale Dunque anche w_{n-1} presenta un non terminale.
- Si hanno le seguenti possibilità:
 - in w_{n-1} compare il non terminale S: allora....
 - in w_{n-1} compare il non terminale A: allora.....
 - in w_{n-1} compare il non terminale B: allora.....