Monetary Policy, Imperfect Information, and the Zero Lower Bound

Chris Gust, Ed Herbst, and David López-Salido Federal Reserve Board

February 9, 2018

The views expressed here should not be interpreted as reflecting the views of the Federal Reserve Board or Federal Reserve System.

Motivation

- Communication about future path of FFR was important aspect of Fed policy during financial crisis/ELB epsiode.
- Effectiveness of FG depends on how it was interpreted by the public.
 Open to alternative interpretations:
 - Provided info about FOMC's forecasts.
 - Or, consistent with perception of a new, more accommodative reaction function.
- It's hard to distinguish between alternatives.
 - FOMC's reaction function is not observed.
 - Despite this, macro models typically assume agents observe it.
- Main Idea: Study FG in estimated model in which agents face uncertainty about CB's reaction function.

Key Questions

- 1. Was there a regime change in the reaction function when the FOMC was providing FG?
- 2. If so, did the public perceive a change in the reaction function and how quickly did they learn it?
- 3. How costly was any lack of credibility in terms of output and inflation outcomes?

What We Do

- Estimate a NK model with:
 - (Markov) regime changes in interest-rate rules.
 - imperfect committment to a given rule/regime.
 - FG regime keeps desired interest rate lower for longer than other regimes.
 - Private agents uncertain about current policy regime.
 - Do not observe the policy regime but must infer it.
 - Update their beliefs using observed data and Bayes rule.
 - ZLB constraint.
 - Affects economic outcomes and how agents learn.
 - At ZLB, agents no longer observe changes in policy rate, making inferences about policy regime more difficult.

Very Tentative Findings

- 1. There is evidence of switch to FG regime beginning in 2010 or so that lasts through 2015.
 - Requires the hindsight of having all the data through 2016 to identify the FG regime that early.
- 2. In real time, difficult to identify the switch to the FG regime.
 - Agents only begin to believe in new FG regime in 2013 or 2014.
 - ZLB constraint confounds agents' ability to learn about the FG regime.
- 3. Imperfect credibility of FG regime costly:
 - Output gap about substantially lower, on average, during the ZLB period.

Related Literature

- Papers on FG:
 - Engen, Laubach, and Reifschneider (2015) provide evidence that FOMC's perceived reaction function changed over 2008-2015.
 - Campbell et al. (2017) evaluate effectiveness of FOMC FG using estimated DSGE model.
 - Also, Del Negro et al. (2015), De Graeve et al. (2014), Cole (2015).
- Papers with Bayesian learning in estimated DSGE models: Schorfheide (2005), Matthes (2015), Bianchi and Melosi (2017).

Imperfect Information about Monetary Policy

• Policy rate, R_t , satisfies ZLB constraint:

$$R_t = \max\left[0, f_R(X_t, j_t) + e_{Rt}\right].$$

- Interest-Rate reaction function depends on:
 - Observed data: R_t and $X_t = (R_{t-1}, \pi_t, \hat{y}_t)'$.
 - Unobserved regime: $j_t \in \{1, 2, 3\}$ follows a Markov process.
 - Unobserved innovation: $e_{Rt} \sim N(0, \sigma_R)$.
- For today:

$$f_R(X_t, j_t) = \rho_R R_{t-1} + (1 - \rho_R) \left[\bar{r} + \bar{\pi} + \gamma_\pi \left(\pi_t - \bar{\pi} \right) + \gamma_y \hat{y}_t \right] + \gamma_0(j_t).$$

Properties of Policy Regimes

Time-varying, unobserved intercept:

$$\gamma_0(j_t) = \begin{cases}
0 & j_t = 1 \\
-\bar{\gamma}_0 & j_t = 2 \\
-2\bar{\gamma}_0 & j_t = 3, \quad \bar{\gamma}_0 > 0
\end{cases}$$

• $j_t \in \{1, 2, 3\}$ follows a Markov process with transition matrix, P:

$$P_{ij} = Prob(j_t = j | j_{t-1} = i).$$

- Description of Regimes:
 - $j_t = 1$: "Normal" Regime. Prior for P is such that it is persistent and occurs frequently.
 - $j_t = 2$: Easing Regime. Allows for easing cycles with sharp cuts in FFR. Prior implies transitory and infrequent.
 - j_t = 3: FG Regime. Allows FFR to be lower for longer than other regimes. Prior implies persistent and very infrequent.

Bayesian Learning

- Regimes are imperfectly credible as agents' beliefs can differ from truth.
- Agents enter period t with prior beliefs about regime j:

$$p_{j,t|t-1} = \mathsf{Prob}(j_t = j | \Omega_{t-1})$$

where Ω_{t-1} includes all variables at date t-1 and earlier except j_t and e_{Rt} and their lags.

• Beliefs are updated using observed data and Bayes rule:

$$p_{j,t|t} \propto \mathcal{L}(R_t, X_t|j_t = j)p_{j,t|t-1}$$

• Likelihood function, $\mathcal{L}(R_t, X_t | j_t = j)$, highlights novel and key feature of analysis — the interaction of the ZLB with BL.

The ZLB and the Likelihood Function

 Like a Tobit model, the likelihood function is a mixture of two distributions:

$$\mathcal{L}(R_t, X_t | j_t = j) = \underbrace{\left[\frac{1}{\sigma_R} \phi\left(\frac{R_t - f_R(X_t, j)}{\sigma_R}\right)\right]^{\mathbb{I}_t}}_{\text{Away From ZLB}} \times \underbrace{\left[1 - \Phi\left(\frac{f_R(X_t, j)}{\sigma_R}\right)\right]^{1 - \mathbb{I}_t}}_{\text{At ZLB}}$$

- If $R_t > 0$, $\mathbb{I}_t = 1$: Compute the location of $\hat{e}_{Rt}(j) = R_t f_R(X_t, j)$ on normal pdf to determine likelihood of regime j.
- If $R_t = 0$, $\mathbb{I}_t = 0$: No longer observe notional rate. Determine likelihood by a regime's probability to induce negative notional rate.
- Prior work on Bayesian learning has focused on $\mathbb{I}_t = 1 \ \forall t$.

Evolution of Beliefs

- Bayes rule describes updating $p_{j,t|t-1}$ to $p_{j,t|t}$.
- Update current beliefs to next period's using transition matrix, P:

$$p_{j,t+1|t} = P'p_{j,t|t}$$

- P distinguishes easing and FG regimes as $\gamma_0(j_t) \in \{0, \bar{\gamma_0}, 2\bar{\gamma_0}\}.$
- Regime 1=Normal, Regime 2=Easing, Regime 3=FG with

$$P = \left(\begin{array}{ccc} P_{11} & 1 - P_{11} & 0 \\ P_{21} & P_{22} & 1 - P_{21} - P_{22} \\ \frac{1 - P_{33}}{2} & \frac{1 - P_{33}}{2} & P_{33} \end{array} \right)$$

- Priors imply P₂₂ << P₃₃.
- Different restrictions lead to somewhat different results.

Rest of the Model

- We use 3-equation New Keynesian model with:
 - Price rigidities with lagged inflation indexation and markup shocks.
 - Habits in consumption.
 - Household preferences for risk-free bonds as in Fisher (2015) to allow for risk premium shocks.
- Learning influences the model's dynamics through its effect on expectations.
 - Expectations of all future variables involves weighting by p_{i,t|t}.
 - Through expectations, these beliefs (and their evolution) matter for current outcomes.
 - Learning about regimes harder at ZLB since do not observe notional rate.

Solution and Estimation

- We need to estimate the model's parameters as well as filtered and smoothed model objects.
- To do so, we follow an approach similar to Gust et. al. (2017):
 - Because of nonlinearities (ZLB and learning), we use a projection method to solve the model.
 - We estimate it using Bayesian methods (similar to our agents).
- Econometrician and agents' filtering problem for the rule similar.
 - They use same data (nominal rate, output gap, and inflation) to make inferences about regimes and policy innovation.
 - Unlike agents, econometrician uses particle filter (PF) to compute likelihood.
- Depart from Gust et. al. (2017) by using tempered PF.
 - Tempered PF of Herbst and Schorfheide (2017) keeps measurement error very small relative to standard implementation.

Data and Estimation

- Estimate the model over 1992-2016 with 3 observables:
 - core PCE inflation, CBO output gap, and FFR.
- We estimate the learning and full information versions of the model with 3 regimes and 3 shocks:
 - Markup, risk-premium, and monetary.
- Plan to incorporate forward rates in model and re-estimate with 4 observables.
- We also compare DSGE estimates to nonlinear single-equation estimation.
 - Interest rate rule with regimes s.t. ZLB.

Data

Posterior Distributions of Selected Parameters

	Full Information		Learning	
	Mean	[05,95]	Mean	[05,95]
ρ_r	0.82	[0.79, 0.84]	0.83	[0.80, 0.86]
γ_{π}	1.74	[1.49, 2.00]	1.78	[1.57, 2.08]
γ_{x}	0.37	[0.30, 0.43]	0.39	[0.28, 0.47]
$ar{\gamma}_0$	0.09	[0.07, 0.12]	0.17	[0.16, 0.20]
P_{11}	0.96	[0.94, 0.98]	0.94	[0.93, 0.96]
P_{22}	0.46	[0.21, 0.63]	0.47	[0.23, 0.64]
P_{33}	0.92	[0.82, 0.98]	0.94	[0.91, 0.98]
P ₂₁	0.34	[0.21, 0.40]	0.42	[0.23, 0.50]

- Intercept estimates $\bar{\gamma}_0$ much smaller under full information model.
- Rule estimates for DSGE model differ from single-equation (not shown): endogenous feedback important.

Estimated Regime Probabilities

Evidence for Regime Switches

- How much should we take from previous figure?
- Marginal Data Density measure of overall model fit:

No switching	-233.46
Regime Switching, Full Information	-228.33
Regime Swtiching, Learning	-225.22

- Moderate evidence in favor of 3 state model versus 1 state model.
- Improved fit concentrated during ZLB period.
- Not trivial to get a better fit: similar paper pre-ZLB, Schorfheide (2005), finds overwhelming evidence in favor FI model.

Comparison with Statement-Based FG Index

FG Experiment

- Suppose FG regime is announced in 2009Q1 when hit ZLB.
- What are differences in outcomes under learning and full information?
- To address this question, we simulate the model forward through 2015Q4:
 - Use the filtered model states in 2008Q4.
 - Assume regime lasts until 2015Q4.
 - Compute the difference in output and inflation under full info and learning.

Outcome Differences in FG Experiment

• Large improvements in output and inflation.

Evolution of Beliefs in FG Experiment

Role of ZLB

- What happens when we eliminate the ZLB's role in learning?
- Show the agents the notional rate, drop Tobit from the likelihood function?
- Agents learn extremely quickly, differences between learning and full information disappear.

FG Experiment: Role ZLB for learning

• Differences between learning and full information vanish!

Learning Rates – Role of ZLB

Conclusion

- Find evidence of regime switches in US Monetary Policy.
- Interaction of Learning and ZLB extremely important.
- Much more work to be done:
 - Matching expectations data.
 - Interaction of forward guidance with other unconventional policies.
- Thanks!