НИУ ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

Выполнила студентка 19ФПЛ1 Шханукова Милана Научный руководитель: Шадрина Елена Викторовна

2020-2021

Описание

Задача error detection в предложениях на английском языке относительно их представлений в виде токенов и синтаксического дерева.

Цель:

Проанализировать способы детектирования ошибки в предложении и их влияние на общее качество детекции.

Задачи:

- 1. Выбрать несколько типов представления предложения как последовательности.
- 2. Построить архитектуру нейронной сети.
- 3. Сделать независимое сравнение результатов согласно выбранным представлениям предложений.

Описание

Объект - обнаружение грамматических ошибок в предложении Предмет - использование нейронных сетей при анализе предложения

Основные методы:

- 1. Синтаксический анализ.
- 2. Статистический анализ.
- 3. Компьютерное моделирование.

Гипотеза

Для обнаружения ошибки в предложении достаточно лишь его синтаксической структуры или грамматических показателей каждого элемента из заданной последовательности.

токенизирование выполнено с помощью библиотеки Spacy

PRP - personal pronoun,

PRP\$ - possesive pronoun

VBP - Verb non-3rd person singular present forms

NN - common nouns

nsubj - nominal subject

poss - modifier

dobj - direct object

npadvmod - noun phrase as adverbial modifier

Лингвистическая направленность гипотезы

«Языковая компетенция» - как полное знание о родном языке, которое позволяет «идеальному говорящему-слушающему» судить о правильности и осмысленности высказываний. (Н. Хомский)

Это знание описывается грамматикой, включающей в себя **набор правил**, регулирующих порождение всех возможных в данном языке структур предложений путем

преобразования исходной конструкции, а также описание <u>грамматических</u> отношений в самих предложениях и между ними.

1	Rei и Yannanakoadakis (2016) embeddings, biLSTM	•	•	•	
	«Context is Key: Grammatical Error	•	•	٠	
2	Detection with Contextual Word Representations» Samuel Bell,	•	•	•	
	Yannakoudakis, Marek Rei, 2020	•	•	•	
	«Lex-Pos Feature-Based Grammar Error Detection System for the	•	•	•	
3	English Language» Nancy Agarwal, Mudasir Ahmad Wani * and Patrick	•	•	•	
	Bours		•	•	

Предыдущие работы

В курсовой работе рассмотрены исследования, которые отражают специфику поставленной проблемы.

Модель

В данной структуре отражены лишь главные составляющие алгоритма

Подготовка данных, формат conll-u-format Embedding layer, dimension: 200 biLSTM, 4 stacked layers, hidden_dim: 128 Linear layer 128 - 3 CrossEntropyLoss

Данные

Общее число предложений 484297, короче 20 слов 403317

Корпуса:

- 1. Lang 8
- 2.FCE
- 3. Write and Improve

0.36% неверных предложений во всем датасете
0.43% неверных предложений использовано при обучении

Метрика и функция потерь

•

Loss

CrossEntropyLoss - количественная оценка разницы между двумя распределениями вероятностей.

F1 - гармоническое среднее между precision и recall. Является оценкой алгоритма и позволяет раскрыть его качество.

• • • •

Train на токенах

График не сходится, loss не уменьшается равномерно.

обучение только на токенах, 50 эпох, lr = 0.001. batch_size = 32

F1 на токенах

Также нет единого увеличения f1-метрики, сходимость нарушена.

Train на синтаксическом дереве

График не сходится, на каждой эпохе loss сильно различается с предыдущим.

F1 на синтаксическом дереве

F1 метрика только на 4 эпохах превышает вероятность 0.5, что говорит о неадекватности модели.

обучение только на токенах, 50 эпох, Ir = 0.001. batch_size = 32

Результаты

Модель не смогла сойтись, метрики не превысили 0.528 для f1

	Обучение на токенах	Обучение на синтаксическом дереве
Train loss (min)	0.537	0.569
F1 (max)	0.528	0.519

Заключение

- 1. Гипотеза опровергнута
- 2. Модель показала невозможность сходимости на абстракции предложений
- 3. Без представлений слов невозможно сделать предсказания

Причины несходимости:

- 1. Повторение токенов на разных местах в предложении
 - 2. Маленький словарь токенов
 - 3. Нехватка информации с токенов.
 - 4. Ошибки в токенизации Spacy