DRIVING FORCE CONTROL DEVICE

Publication number: JP11324751

Publication date: 1999-11-26

Inventor: NAKAJIMA YUKI; KATAKURA SHUSAKU; UCHIDA

MASAAKI

Applicant: NISSAN MOTOR

Classification:

- international: B60K17/04; B60K6/04; B60L11/12; B60L11/14;

B60W10/04; B60W10/06; B60W10/08; B60W10/10; B60W10/12; B60W10/26; B60W20/00; F02D29/00; F02D29/02; F02D29/06; F16H9/00; F16H61/02; F16H61/66; B60K17/04; B60K6/00; B60L11/02; B60L11/14; B60W10/04; B60W10/06; B60W10/08; B60W10/10; B60W10/12; B60W10/26; B60W20/00; F02D29/00; F02D29/02; F02D29/06; F16H9/00; F16H61/02; F16H61/66; (IPC1-7): F02D29/00; B60K6/00; B60K8/00; B60K17/04; B60K41/14; B60L11/14; F02D29/02; F02D29/06; F16H9/00;

F16H61/02

- European: B60K6/04D2; B60K6/04D4; B60K6/04D6; B60K6/04D10;

B60K6/04F; B60K6/04H4B; B60K6/04T4C; B60L11/12

Application number: JP19990063834 19990310

Priority number(s): JP19990063834 19990310; JP19980072409 19980320

Also published as:

园 EP0943475 (A2) 図 US6090007 (A1)

EP0943475 (A3) EP0943475 (B1)

DE69909542T (T2)

Report a data error here

Abstract of **JP11324751**

PROBLEM TO BE SOLVED: To control the fuel consumption, driving force and the like of a hybrid vehicle to the optimum by setting the target motor generator torque and the target engine torque according to the target component torque of an engine and a motor generator based on the accelerator operation amount and the car speed. SOLUTION: In a general control unit 8, the target engine rotating speed tNE is set through the target driving force tT0 according to an accelerator opening APO and the car speed VSP. Subsequently, the target transmission ratio tRI/ O of a continuously variable transmission is calculated and set. On the other hand, the target driving force tTO is divided by a speed ration RI/ O to calculate the target component torque tTI of an engine and a motor generator, and according to the input rotating speed NI, the target motor generator torque tTMG is set. The target input torque tTI- MG is calculated from the target component torque tTI to set the target engine torque tTE according to the calculation result. Thus, favorable fuel cost and the accelerating performance can be made compatible with each other.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A).

(11)特許出願公開番号

特開平11-324751

(43)公開日 平成11年(1999)11月26日

(51) Int.Cl. ⁶	識別記号		FΙ			
F02D 29/00			F02D 2	9/00	С	
B60K 6/00			B60K 1	7/04	G	
8/00			4	1/14		
17/04			B60L 1	1/14		
41/14			F02D 2	9/02	D	
		審査請求	未請求 請求項	質の数13 〇 I	26 頁)	最終頁に続く
(21)出願番号	特顧平11-63834		(71)出願人	000003997		
				日産自動車	株式会社	
(22)出顧日	平成11年(1999)3月10日		神奈川県横浜市神奈川区宝町2番地			
			(72)発明者	中島 祐樹		
(31)優先権主張番号	特願平10-72409			神奈川県横	英市神奈川区宝!	町2番地 日産
(32)優先日	平10(1998) 3月20日		自動車株式会社内			
(33)優先権主張国	日本(JP)		(72)発明者	(72)発明者 片倉 秀策 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内		
			(72)発明者	等 内田 正明 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内		
			(74)代理人	弁理士 森	哲也 (外2:	名)

(54) 【発明の名称】 駆動力制御装置

(57)【要約】

【課題】エンジンとモータジェネレータと無段変速機と を搭載したハイブリッド車両の燃費と加速性とを両立す る

【解決手段】車速とアクセル開度とから目標駆動力を設定して燃費を最適とする目標エンジン回転数を設定し、出力回転数との比から目標変速比を設定し、目標駆動力を変速比で除して目標合成トルクを算出し、入力回転数やバッテリ充電状態から目標モータジェネレータトルクを設定し、目標合成トルクとの差分値から目標エンジントルクを設定する。また、目標駆動力に車速を乗じて目標駆動パワーを設定し、これにバッテリ充電状態に応じた要求モータジェネレータパワーを和して要求エンジンパワーを算出し、バッテリ充電状態に応じた燃費を最適とする目標エンジン回転数及び目標エンジントルクを求め、それらの乗算値と目標駆動パワーとの差分値から目標モータジェネレータトルクを算出する。

【特許請求の範囲】

【請求項1】 トルクを制御可能なエンジンと、トルク を制御可能なモータジェネレータと、変速比を制御可能 な無段変速機とを備え、設定された夫々の制御量を制御 することで駆動力を制御する駆動力制御装置であって、 アクセルペダルの操作量を検出するアクセル操作量検出 手段と、車速を検出する車速検出手段と、前記無段変速 機への入力回転数を検出する入力回転数検出手段と、前 記アクセル操作量検出手段で検出されたアクセル操作量 及び車速検出手段で検出された車速に基づいて目標駆動 力を設定する目標駆動力設定手段と、この目標駆動力設 定手段で設定された目標駆動力に基づいて目標エンジン 回転数を求め、当該目標エンジン回転数及び前記車速検 出手段で検出された車速に基づいて目標変速比を設定す る目標変速比設定手段と、前記目標駆動力設定手段で設 定された目標駆動力及び現在の変速比に基づいてエンジ ン及びモータジェネレータによる目標合成トルクを設定 する目標合成トルク設定手段と、この目標合成トルク設 定手段で設定された目標合成トルク及び前記入力回転数 検出手段で検出された無段変速機への入力回転数に基づ いて目標モータジェネレータトルクを設定する目標モー タジェネレータトルク設定手段と、前記目標合成トルク 設定手段で設定された目標合成トルク及び前記目標モー タジェネレータトルク設定手段で設定された目標モータ ジェネレータトルクの差分値に基づいて目標エンジント ルクを設定する目標エンジントルク設定手段とを備えた ことを特徴とする駆動力制御装置。

【請求項2】 前記目標エンジントルク設定手段は、エンジンから無段変速機までのトルク比に応じて目標エンジントルクを設定することを特徴とする請求項1に記載の駆動力制御装置。

【請求項3】 バッテリの充電状態を検出するバッテリ充電状態検出手段を備え、前記目標モータジェネレータトルク設定手段は、前記バッテリ充電状態検出手段で検出されたバッテリ充電状態に応じて目標モータジェネレータトルクを設定することを特徴とする請求項1又は2に記載の駆動力制御装置。

【請求項4】 バッテリの充電状態を検出するバッテリ充電状態検出手段を備え、前記目標変速比設定手段は、前記バッテリ充電状態検出手段で検出されたバッテリ充電状態に応じて目標エンジン回転数を設定することを特徴とする請求項1乃至3の何れかに記載の駆動力制御装置。

【請求項5】 トルクを制御可能なエンジンと、トルクを制御可能なモータジェネレータと、変速比を制御可能な無段変速機とを備え、設定された夫々の制御量を制御することで駆動力を制御する駆動力制御装置であって、アクセルペダルの操作量を検出するアクセル操作量検出手段と、車速を検出する車速検出手段と、前記無段変速機への入力回転数を検出する入力回転数検出手段と、バ

ッテリの充電状態を検出するバッテリ充電状態検出手段 と、前記アクセル操作量検出手段で検出されたアクセル 操作量及び車速検出手段で検出された車速に基づいて目 標駆動力を設定する目標駆動力設定手段と、この目標駆 動力設定手段で設定された目標駆動力及び前記車速検出 手段で検出された車速に基づいて目標駆動パワーを設定 する目標駆動パワー設定手段と、前記バッテリ充電状態 検出手段で検出されたバッテリ充電状態に基づいて要求 モータジェネレータパワーを設定する要求モータジェネ レータパワー設定手段と、この要求モータジェネレータ パワー設定手段で設定された要求モータジェネレータパ ワー及び前記目標駆動パワー設定手段で設定された目標 駆動パワーに基づいて要求エンジンパワーを設定する要 求エンジンパワー設定手段と、この要求エンジンパワー 設定手段で設定された要求エンジンパワーに基づいて目 標エンジン回転数を求め、当該目標エンジン回転数及び 前記車速検出手段で検出された車速に基づいて目標変速 比を設定する目標変速比設定手段と、前記要求エンジン パワー設定手段で設定された要求エンジンパワーに基づ いて目標エンジントルクを設定する目標エンジントルク 設定手段と、前記要求モータジェネレータパワー設定手 段で設定された要求モータジェネレータパワーを目標モ ータジェネレータパワーとし、当該目標モータジェネレ ータパワー及び前記入力回転数検出手段で検出された無 段変速機への入力回転数に基づいて目標モータジェネレ ータトルクを設定する目標モータジェネレータトルク設 定手段とを備えたことを特徴とする駆動力制御装置。

【請求項6】 トルクを制御可能なエンジンと、トルク を制御可能なモータジェネレータと、変速比を制御可能 な無段変速機とを備え、設定された夫々の制御量を制御 することで駆動力を制御する駆動力制御装置であって、 アクセルペダルの操作量を検出するアクセル操作量検出 手段と、車速を検出する車速検出手段と、前記無段変速 機への入力回転数を検出する入力回転数検出手段と、前 記アクセル操作量検出手段で検出されたアクセル操作量 及び車速検出手段で検出された車速に基づいて目標駆動 力を設定する目標駆動力設定手段と、この目標駆動力設 定手段で設定された目標駆動力及び前記車速検出手段で 検出された車速に基づいて要求駆動パワーを求め、この 要求駆動パワーを要求エンジンパワーとして設定する要 求エンジンパワー設定手段と、この要求エンジンパワー 設定手段で設定された要求エンジンパワーに基づいて目 標エンジン回転数を求め、当該目標エンジン回転数及び 前記車速検出手段で検出された車速に基づいて目標変速 比を設定する目標変速比設定手段と、前記要求エンジン パワー設定手段で設定された要求エンジンパワーに基づ いて目標エンジントルクを設定する目標エンジントルク 設定手段と、この目標エンジントルク設定手段で設定さ れた目標エンジントルク及び前記目標変速比設定手段で 求められた目標エンジン回転数に基づいて目標エンジン パワーを設定する目標エンジンパワー設定手段と、この 目標エンジンパワー設定手段で設定された目標エンジン パワー及び前記要求エンジンパワー設定手段で設定され た要求エンジンパワーの差分値に基づいて目標モータジェネレータパワーを設定する目標モータジェネレータパワー設 アー設定手段と、この目標モータジェネレータパワー設 定手段で設定された目標モータジェネレータパワー及び 前記入力回転数検出手段で検出された無段変速機への入 力回転数に基づいて目標モータジェネレータトルクを設 定する目標モータジェネレータトルクを設 定する目標モータジェネレータトルクを設 たことを特徴とする駆動力制御装置。

【請求項7】 トルクを制御可能なエンジンと、トルク を制御可能なモータジェネレータと、変速比を制御可能 な無段変速機とを備え、設定された夫々の制御量を制御 することで駆動力を制御する駆動力制御装置であって、 アクセルペダルの操作量を検出するアクセル操作量検出 手段と、車速を検出する車速検出手段と、前記無段変速 機への入力回転数を検出する入力回転数検出手段と、バ ッテリの充電状態を検出するバッテリ充電状態検出手段 と、前記アクセル操作量検出手段で検出されたアクセル 操作量及び車速検出手段で検出された車速に基づいて目 標駆動力を設定する目標駆動力設定手段と、この目標駆 動力設定手段で設定された目標駆動力及び前記車速検出 手段で検出された車速に基づいて目標駆動パワーを設定 する目標駆動パワー設定手段と、前記バッテリ充電状態 検出手段で検出されたバッテリ充電状態に基づいて要求 モータジェネレータパワーを設定する要求モータジェネ レータパワー設定手段と、この要求モータジェネレータ パワー設定手段で設定された要求モータジェネレータパ ワー及び前記目標駆動パワー設定手段で設定された目標 駆動パワーに基づいて要求エンジンパワーを設定する要 求エンジンパワー設定手段と、この要求エンジンパワー 設定手段で設定された要求エンジンパワーに基づいて目 標エンジン回転数を求め、当該目標エンジン回転数及び 前記車速検出手段で検出された車速に基づいて目標変速 比を設定する目標変速比設定手段と、前記要求エンジン パワー設定手段で設定された要求エンジンパワーに基づ いて目標エンジントルクを設定する目標エンジントルク 設定手段と、この目標エンジントルク設定手段で設定さ れた目標エンジントルク及び前記目標変速比設定手段で 求められた目標エンジン回転数に基づいて目標エンジン パワーを設定する目標エンジンパワー設定手段と、この 目標エンジンパワー設定手段で設定された目標エンジン パワー及び前記要求エンジンパワー設定手段で設定され た要求エンジンパワーの差分値に基づいて目標モータジ ェネレータパワーを設定する目標モータジェネレータパ ワー設定手段と、この目標モータジェネレータパワー設 定手段で設定された目標モータジェネレータパワー及び 前記入力回転数検出手段で検出された無段変速機への入 カ回転数に基づいて目標モータジェネレータトルクを設

定する目標モータジェネレータトルク設定手段とを備え たことを特徴とする駆動力制御装置。

【請求項8】 トルクを制御可能なエンジンと、トルク を制御可能なモータジェネレータと、変速比を制御可能 な無段変速機とを備え、設定された夫々の制御量を制御 することで駆動力を制御する駆動力制御装置であって、 アクセルペダルの操作量を検出するアクセル操作量検出 手段と、車速を検出する車速検出手段と、前記無段変速 機への入力回転数を検出する入力回転数検出手段と、バ ッテリの充電状態を検出するバッテリ充電状態検出手段 と、前記アクセル操作量検出手段で検出されたアクセル 操作量及び車速検出手段で検出された車速に基づいて目 標駆動力を設定する目標駆動力設定手段と、この目標駆 動力設定手段で設定された目標駆動力及び前記車速検出 手段で検出された車速に基づいて目標駆動パワーを設定 する目標駆動パワー設定手段と、前記バッテリ充電状態 検出手段で検出されたバッテリ充電状態に基づいて要求 モータジェネレータパワーを設定する要求モータジェネ レータパワー設定手段と、この要求モータジェネレータ パワー設定手段で設定された要求モータジェネレータパ ワー及び前記目標駆動パワー設定手段で設定された目標 駆動パワーに基づいて要求エンジンパワーを設定する要 求エンジンパワー設定手段と、この要求エンジンパワー 設定手段で設定された要求エンジンパワーに基づいて目 標エンジン回転数を求め、当該目標エンジン回転数及び 前記車速検出手段で検出された車速に基づいて目標変速 比を設定する目標変速比設定手段と、前記要求エンジン パワー設定手段で設定された要求エンジンパワーに基づ いて目標エンジントルクを設定する目標エンジントルク 設定手段と、この目標エンジントルク設定手段で設定さ れた目標エンジントルク及び前記目標変速比設定手段で 求められた目標エンジン回転数に基づいて目標エンジン パワーを設定する目標エンジンパワー設定手段と、この 目標エンジンパワー設定手段で設定された目標エンジン パワー及び前記目標駆動パワー設定手段で設定された目 標駆動パワーの差分値に基づいて目標モータジェネレー タパワーを設定する目標モータジェネレータパワー設定 手段と、この目標モータジェネレータパワー設定手段で 設定された目標モータジェネレータパワー及び前記入力 回転数検出手段で検出された無段変速機への入力回転数 に基づいて目標モータジェネレータトルクを設定する目 標モータジェネレータトルク設定手段とを備えたことを 特徴とする駆動力制御装置。

【請求項9】 前記目標エンジントルク設定手段は、前記要求エンジンパワー設定手段で設定された要求エンジンパワーが所定値以下であるときに、目標エンジントルクを零に設定することを特徴とする請求項6乃至8の何れかに記載の駆動力制御装置。

【請求項10】 前記目標エンジントルク設定手段は、 前記要求エンジンパワーの所定値を、少なくともバッテ リ及びモータジェネレータ間の効率に応じて変更することを特徴とする請求項9に記載の駆動力制御装置。

【請求項11】 前記要求エンジンパワー設定手段は、前記要求エンジンパワーを設定するにあたり、前記要求モータジェネレータパワー設定手段で設定される要求モータジェネレータパワーに、バッテリ及びモータジェネレータ間で発生可能なパワーの規制をかけることを特徴とする請求項5又は7又は8に記載の駆動力制御装置。

【請求項12】 前記要求エンジンパワー設定手段は、前記要求エンジンパワーを設定するにあたり、前記要求モータジェネレータパワー設定手段で設定される要求モータジェネレータパワーと前記目標駆動パワー設定手段で設定される目標駆動パワーとの和値に、エンジンで発生可能なパワーの規制をかけることを特徴とする請求項5又は7又は8又は10に記載の駆動力制御装置。

【請求項13】 前記要求エンジンパワー設定手段は、前記要求エンジンパワーを設定するにあたり、前記要求モータジェネレータパワー設定手段で設定される要求モータジェネレータパワーに、バッテリ及びモータジェネレータ間の効率を乗じて用いることを特徴とする請求項5又は7又は8又は10又は11に記載の駆動力制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両の駆動力を制御する装置に関するものであり、特に駆動源としてエンジンとモータジェネレータとを併設し、更に変速機構として無段変速機を備えた,所謂ハイブリッド車両にあって、燃費や駆動力等を最適に制御可能とするものである。

[0002]

【従来の技術】従来の駆動力制御装置としては、例えば特開昭62-110536号公報に記載されるものがある。この従来技術は、アクセルペダルと独立してトルクを制御可能なエンジンと、変速比を無段階に調整できる無段変速機とを備えた車両用の駆動力制御装置であり、例えばアクセルペダルの操作量と車速とに基づいて目標とする車両駆動力を求め、例えばエンジンの燃費を最も向上できる最適燃費曲線に従って、当該目標駆動力に応じたエンジン回転数を設定し、このエンジン回転数と車速とが得られる目標変速比を設定すると共に、現在の変速比を前記目標駆動力とから目標とするエンジントルクを設定し、これらの目標値が達成されるように例えば無段変速機の作動流体圧やエンジンのスロットル開度等をフィードバック制御する。

[0003]

【発明が解決しようとする課題】しかしながら、前記従来の駆動力制御装置は、駆動源としてエンジンしか備えていないことから、例えばエンジンとモータジェネレータとを併設した、所謂ハイブリッド車両では、エンジン

トルクとモータジェネレータトルクとを平行して制御することができない。また、このようなハイブリッド車両にあって、エンジンと無段変速機との間に、クラッチやトルクコンバータ等を介在した場合には、エンジントルクを正確に設定できないという問題もある。なお、モータジェネレータとは、一個で電動機と発電機とを兼任できるものを示し、一般的にはステータのコイルに電流を流すことによってロータを回転(力行)すると共に、逆にロータを回転させることによって発電(回生)を可能とする。

【0004】本発明はこれらの諸問題に鑑みて開発されたものであり、駆動源としてエンジンとモータジェネレータとを併設し、更に変速機構として無段変速機を備えたハイブリッド車両にあって、燃費や駆動力等を最適に制御することができる駆動力制御装置を提供することを目的とするものである。

[0005]

【課題を解決するための手段】上記課題を解決するため に、本発明のうち請求項1に記載される駆動力制御装置 は、トルクを制御可能なエンジンと、トルクを制御可能 なモータジェネレータと、変速比を制御可能な無段変速 機とを備え、設定された夫々の制御量を制御することで 駆動力を制御する駆動力制御装置であって、アクセルペ ダルの操作量を検出するアクセル操作量検出手段と、車 速を検出する車速検出手段と、前記無段変速機への入力 回転数を検出する入力回転数検出手段と、前記アクセル 操作量検出手段で検出されたアクセル操作量及び車速検 出手段で検出された車速に基づいて目標駆動力を設定す る目標駆動力設定手段と、この目標駆動力設定手段で設 定された目標駆動力に基づいて目標エンジン回転数を求 め、当該目標エンジン回転数及び前記車速検出手段で検 出された車速に基づいて目標変速比を設定する目標変速 比設定手段と、前記目標駆動力設定手段で設定された目 標駆動力及び現在の変速比に基づいてエンジン及びモー タジェネレータによる目標合成トルクを設定する目標合 成トルク設定手段と、この目標合成トルク設定手段で設 定された目標合成トルク及び前記入力回転数検出手段で 検出された無段変速機への入力回転数に基づいて目標モ ータジェネレータトルクを設定する目標モータジェネレ ータトルク設定手段と、前記目標合成トルク設定手段で 設定された目標合成トルク及び前記目標モータジェネレ ータトルク設定手段で設定された目標モータジェネレー タトルクの差分値に基づいて目標エンジントルクを設定 する目標エンジントルク設定手段とを備えたことを特徴 とするものである。

【0006】また、本発明のうち請求項2に係る駆動力 制御装置は、前記請求項1の発明において、前記目標エ ンジントルク設定手段は、エンジンから無段変速機まで のトルク比に応じて目標エンジントルクを設定すること を特徴とするものである。また、本発明のうち請求項3 に係る駆動力制御装置は、前記請求項1又は2の発明において、バッテリの充電状態を検出するバッテリ充電状態検出手段を備え、前記目標モータジェネレータトルク設定手段は、前記バッテリ充電状態検出手段で検出されたバッテリ充電状態に応じて目標モータジェネレータトルクを設定することを特徴とするものである。

【0007】また、本発明のうち請求項4に係る駆動力制御装置は、前記請求項1乃至3の発明において、バッテリの充電状態を検出するバッテリ充電状態検出手段を備え、前記目標変速比設定手段は、前記バッテリ充電状態検出手段で検出されたバッテリ充電状態に応じて目標エンジン回転数を設定することを特徴とするものである

【0008】また、本発明のうち請求項5に係る駆動力 制御装置は、トルクを制御可能なエンジンと、トルクを 制御可能なモータジェネレータと、変速比を制御可能な 無段変速機とを備え、設定された夫々の制御量を制御す ることで駆動力を制御する駆動力制御装置であって、ア クセルペダルの操作量を検出するアクセル操作量検出手 段と、車速を検出する車速検出手段と、前記無段変速機 への入力回転数を検出する入力回転数検出手段と、バッ テリの充電状態を検出するバッテリ充電状態検出手段 と、前記アクセル操作量検出手段で検出されたアクセル 操作量及び車速検出手段で検出された車速に基づいて目 標駆動力を設定する目標駆動力設定手段と、この目標駆 動力設定手段で設定された目標駆動力及び前記車速検出 手段で検出された車速に基づいて目標駆動パワーを設定 する目標駆動パワー設定手段と、前記バッテリ充電状態 検出手段で検出されたバッテリ充電状態に基づいて要求 モータジェネレータパワーを設定する要求モータジェネ レータパワー設定手段と、この要求モータジェネレータ パワー設定手段で設定された要求モータジェネレータパ ワー及び前記目標駆動パワー設定手段で設定された目標 駆動パワーに基づいて要求エンジンパワーを設定する要 求エンジンパワー設定手段と、この要求エンジンパワー 設定手段で設定された要求エンジンパワーに基づいて目 標エンジン回転数を求め、当該目標エンジン回転数及び 前記車速検出手段で検出された車速に基づいて目標変速 比を設定する目標変速比設定手段と、前記要求エンジン パワー設定手段で設定された要求エンジンパワーに基づ いて目標エンジントルクを設定する目標エンジントルク 設定手段と、前記要求モータジェネレータパワー設定手 段で設定された要求モータジェネレータパワーを目標モ ータジェネレータパワーとし、当該目標モータジェネレ ータパワー及び前記入力回転数検出手段で検出された無 段変速機への入力回転数に基づいて目標モータジェネレ ータトルクを設定する目標モータジェネレータトルク設 定手段とを備えたことを特徴とするものである。

【0009】なお、これ以後、トルクと回転数との積値をパワーと定義する。即ち、パワーは、純然たる出力と

いうことになる。また、本発明のうち請求項6に係る駆 動力制御装置は、トルクを制御可能なエンジンと、トル クを制御可能なモータジェネレータと、変速比を制御可 能な無段変速機とを備え、設定された夫々の制御量を制 御することで駆動力を制御する駆動力制御装置であっ て、アクセルペダルの操作量を検出するアクセル操作量 検出手段と、車速を検出する車速検出手段と、前記無段 変速機への入力回転数を検出する入力回転数検出手段 と、前記アクセル操作量検出手段で検出されたアクセル 操作量及び車速検出手段で検出された車速に基づいて目 標駆動力を設定する目標駆動力設定手段と、この目標駆 動力設定手段で設定された目標駆動力及び前記車速検出 手段で検出された車速に基づいて要求駆動パワーを求 め、この要求駆動パワーを要求エンジンパワーとして設 定する要求エンジンパワー設定手段と、この要求エンジ ンパワー設定手段で設定された要求エンジンパワーに基 づいて目標エンジン回転数を求め、当該目標エンジン回 転数及び前記車速検出手段で検出された車速に基づいて 目標変速比を設定する目標変速比設定手段と、前記要求 エンジンパワー設定手段で設定された要求エンジンパワ ーに基づいて目標エンジントルクを設定する目標エンジ ントルク設定手段と、この目標エンジントルク設定手段 で設定された目標エンジントルク及び前記目標変速比設 定手段で求められた目標エンジン回転数に基づいて目標 エンジンパワーを設定する目標エンジンパワー設定手段 と、この目標エンジンパワー設定手段で設定された目標 エンジンパワー及び前記要求エンジンパワー設定手段で 設定された要求エンジンパワーの差分値に基づいて目標 モータジェネレータパワーを設定する目標モータジェネ レータパワー設定手段と、この目標モータジェネレータ パワー設定手段で設定された目標モータジェネレータパ ワー及び前記入力回転数検出手段で検出された無段変速 機への入力回転数に基づいて目標モータジェネレータト ルクを設定する目標モータジェネレータトルク設定手段 とを備えたことを特徴とするものである。

【0010】また、本発明のうち請求項7に係る駆動力制御装置は、トルクを制御可能なエンジンと、トルクを制御可能なモータジェネレータと、変速比を制御可能な無段変速機とを備え、設定された夫々の制御量を制御することで駆動力を制御する駆動力制御装置であって、アクセルペダルの操作量を検出するアクセル操作量検出する再速検出手段と、前記無段変速が、アリの充電状態を検出する入力回転数検出手段と、が記無段変が、アリの充電状態を検出するバッテリ充電状態を検出するバッテリ充電状態を検出手段で検出されたアクセル操作量及び車速検出手段で検出されたアクセル操作量及び車速検出手段で検出されたアクセル操作量及び車速検出手段で検出された車速に基づいて目標駆動力を設定する目標駆動力及び前記車連検出手段で検出された車速に基づいて目標駆動パワーを設定する目標駆動パワー設定手段と、前記バッテリ充電状態

検出手段で検出されたバッテリ充電状態に基づいて要求 モータジェネレータパワーを設定する要求モータジェネ レータパワー設定手段と、この要求モータジェネレータ パワー設定手段で設定された要求モータジェネレータパ ワー及び前記目標駆動パワー設定手段で設定された目標 駆動パワーに基づいて要求エンジンパワーを設定する要 求エンジンパワー設定手段と、この要求エンジンパワー 設定手段で設定された要求エンジンパワーに基づいて目 標エンジン回転数を求め、当該目標エンジン回転数及び 前記車速検出手段で検出された車速に基づいて目標変速 比を設定する目標変速比設定手段と、前記要求エンジン パワー設定手段で設定された要求エンジンパワーに基づ いて目標エンジントルクを設定する目標エンジントルク 設定手段と、この目標エンジントルク設定手段で設定さ れた目標エンジントルク及び前記目標変速比設定手段で 求められた目標エンジン回転数に基づいて目標エンジン パワーを設定する目標エンジンパワー設定手段と、この 目標エンジンパワー設定手段で設定された目標エンジン パワー及び前記要求エンジンパワー設定手段で設定され た要求エンジンパワーの差分値に基づいて目標モータジ ェネレータパワーを設定する目標モータジェネレータパ ワー設定手段と、この目標モータジェネレータパワー設 定手段で設定された目標モータジェネレータパワー及び 前記入力回転数検出手段で検出された無段変速機への入 力回転数に基づいて目標モータジェネレータトルクを設 定する目標モータジェネレータトルク設定手段とを備え たことを特徴とするものである。

【0011】また、本発明のうち請求項8に係る駆動力 制御装置は、トルクを制御可能なエンジンと、トルクを 制御可能なモータジェネレータと、変速比を制御可能な 無段変速機とを備え、設定された夫々の制御量を制御す ることで駆動力を制御する駆動力制御装置であって、ア クセルペダルの操作量を検出するアクセル操作量検出手 段と、車速を検出する車速検出手段と、前記無段変速機 への入力回転数を検出する入力回転数検出手段と、バッ テリの充電状態を検出するバッテリ充電状態検出手段 と、前記アクセル操作量検出手段で検出されたアクセル 操作量及び車速検出手段で検出された車速に基づいて目 標駆動力を設定する目標駆動力設定手段と、この目標駆 動力設定手段で設定された目標駆動力及び前記車速検出 手段で検出された車速に基づいて目標駆動パワーを設定 する目標駆動パワー設定手段と、前記バッテリ充電状態 検出手段で検出されたバッテリ充電状態に基づいて要求 モータジェネレータパワーを設定する要求モータジェネ レータパワー設定手段と、この要求モータジェネレータ パワー設定手段で設定された要求モータジェネレータパ ワー及び前記目標駆動パワー設定手段で設定された目標 駆動パワーに基づいて要求エンジンパワーを設定する要 求エンジンパワー設定手段と、この要求エンジンパワー 設定手段で設定された要求エンジンパワーに基づいて目

標エンジン回転数を求め、当該目標エンジン回転数及び 前記車速検出手段で検出された車速に基づいて目標変速 比を設定する目標変速比設定手段と、前記要求エンジン パワー設定手段で設定された要求エンジンパワーに基づ いて目標エンジントルクを設定する目標エンジントルク 設定手段と、この目標エンジントルク設定手段で設定さ れた目標エンジントルク及び前記目標変速比設定手段で 求められた目標エンジン回転数に基づいて目標エンジン パワーを設定する目標エンジンパワー設定手段と、この 目標エンジンパワー設定手段で設定された目標エンジン パワー及び前記目標駆動パワー設定手段で設定された目 標駆動パワーの差分値に基づいて目標モータジェネレー タパワーを設定する目標モータジェネレータパワー設定 手段と、この目標モータジェネレータパワー設定手段で 設定された目標モータジェネレータパワー及び前記入力 回転数検出手段で検出された無段変速機への入力回転数 に基づいて目標モータジェネレータトルクを設定する目 標モータジェネレータトルク設定手段とを備えたことを 特徴とするものである。

【0012】また、本発明のうち請求項9に係る駆動力制御装置は、前記請求項6又は7又は8の発明において、前記目標エンジントルク設定手段は、前記要求エンジンパワー設定手段で設定された要求エンジンパワーが所定値以下であるときに、目標エンジントルクを零に設定することを特徴とするものである。また、本発明のうち請求項10に係る駆動力制御装置は、前記請求項9の発明において、前記目標エンジントルク設定手段は、前記要求エンジンパワーの所定値を、少なくともバッテリ及びモータジェネレータ間の効率に応じて変更することを特徴とするものである。

【0013】また、本発明のうち請求項11に係る駆動力制御装置は、前記請求項5又は7又は8の発明において、前記要求エンジンパワー設定手段は、前記要求エンジンパワーを設定するにあたり、前記要求モータジェネレータパワー設定手段で設定される要求モータジェネレータパワーに、バッテリ及びモータジェネレータ間で発生可能なパワーの規制をかけることを特徴とするものである。

【0014】また、本発明のうち請求項12に係る駆動力制御装置は、前記請求項5又は7又は8又は10の発明において、前記要求エンジンパワー設定手段は、前記要求エンジンパワーを設定するにあたり、前記要求モータジェネレータパワー設定手段で設定される要求モータジェネレータパワーと前記目標駆動パワー設定手段で設定される目標駆動パワーとの和値に、エンジンで発生可能なパワーの規制をかけることを特徴とするものである。

【0015】また、本発明のうち請求項13に係る駆動力制御装置は、前記請求項5又は7又は8又は10又は11の発明において、前記要求エンジンパワー設定手段

は、前記要求エンジンパワーを設定するにあたり、前記 要求モータジェネレータパワー設定手段で設定される要 求モータジェネレータパワーに、バッテリ及びモータジェネレータ間の効率を乗じて用いることを特徴とするも のである。

【0016】また、全ての発明において、モータジェネレータとは、前述のように、一個で電動機と発動機とを 兼任できるものを示す。

[0017]

【発明の効果】而して、本発明のうち請求項1に係る駆 動力制御装置によれば、アクセル操作量及び車速に基づ いて目標駆動力を設定し、この目標駆動力に基づいて目 標エンジン回転数を求め、当該目標エンジン回転数及び 車速に基づいて目標変速比を設定すると共に、前記目標 駆動力及び現在の変速比に基づいてエンジン及びモータ ジェネレータによる目標合成トルクを設定し、この目標 合成トルク及び前記無段変速機への入力回転数に基づい て目標モータジェネレータトルクを設定し、更に前記目 標合成トルク及び目標モータジェネレータトルクの差分 値に基づいて目標エンジントルクを設定する構成とした ために、例えば目標駆動力を得ながら燃費を最も向上す る目標エンジン回転数とバッテリ充電状態並びに無段変 速機への入力回転数に応じた目標モータジェネレータト ルクとを同時に設定するようにすれば、燃費や駆動力等 を最適にする目標エンジントルク並びに目標変速比が必 然的に設定されると共に、バッテリ充電状態に応じたモ ータジェネレータトルクを適切に駆動力に付加して、エ ンジンとモータジェネレータとの平行制御が可能とな

【0018】また、本発明のうち請求項2に係る駆動力制御装置によれば、前記請求項1の発明において、エンジンから無段変速機までのトルク比に応じて目標エンジントルクを設定する構成としたために、例えばエンジンと無段変速機との間にクラッチやトルクコンバータを介装した場合でも、それらによるトルク比を補正することで目標エンジントルクを適正に設定することができ、ひいては燃費や駆動力等を最適にすることができる。

【0019】また、本発明のうち請求項3に係る駆動力制御装置によれば、前記請求項1又は2の発明において、バッテリ充電状態に応じて目標モータジェネレータトルクを設定する構成としたために、例えばバッテリ充電状態が十分な充電状態である場合には駆動力に付加される目標モータジェネレータトルクを大きくし、バッテリ充電状態が十分な充電状態でない場合には駆動力に付加される目標モータジェネレータトルクを設定するなど、目標モータジェネレータトルクの更なる適正化を行い、ひいては燃費や駆動力等を最適にすることができる。

【0020】また、本発明のうち請求項4に係る駆動力

制御装置によれば、前記請求項1乃至3の発明において、バッテリ充電状態に応じて目標エンジン回転数を設定する構成としたために、例えばバッテリ充電状態が十分な充電状態である場合には駆動力に付加される目標モータジェネレータトルクを大きくし、バッテリ充電状態が十分な充電状態でない場合には駆動力に付加される目標モータジェネレータトルクを小さくし或いはバッテリを充電するように回生側の目標モータジェネレータトルクを設定するなど、駆動力への目標モータジェネレータトルクの付加分を調整すると、駆動力のうち目標エンジントルクの受持ち分が変化するから、その変化量に応じて例えば燃費が最も向上するように目標エンジン回転数を補正することができ、これに伴って目標変速比を適正化すれば燃費や駆動力等を最適にすることができる。

【0021】また、本発明のうち請求項5に係る駆動力 制御装置によれば、アクセル操作量及び車速に基づいて 目標駆動力を設定し、この目標駆動力及び車速に基づい て目標駆動パワーを設定すると共に、バッテリ充電状態 に基づいて要求モータジェネレータパワーを設定し、こ の要求モータジェネレータパワー及び目標駆動パワーに 基づいて要求エンジンパワーを設定し、この要求エンジ ンパワーに基づいて目標エンジン回転数を求め、その目 標エンジン回転数及び車速に基づいて目標変速比を設定 すると共に、同じく要求エンジンパワーに基づいて目標 エンジントルクを設定し、更に要求モータジェネレータ パワーを目標モータジェネレータパワーとし、その目標 モータジェネレータパワー及び無段変速機への入力回転 数に基づいて目標モータジェネレータトルクを設定する 構成としたために、例えばバッテリ充電状態が十分な充 電状態である場合には駆動力に付加される要求モータジ ェネレータパワーを大きくし、バッテリ充電状態が十分 な充電状態でない場合には駆動力に付加される要求モー タジェネレータパワーを小さくし或いはバッテリを充電 するように回生側の要求モータジェネレータパワーを設 定するなどして要求モータジェネレータパワーを適正化 すれば、その要求モータジェネレータパワーを反映して 要求エンジンパワーを適正に設定することができ、従っ てこの要求エンジンパワーを達成しながら燃費を最も向 上する目標エンジン回転数と目標エンジントルクとを同 時に設定するようにすると共に、前記要求モータジェネ レータパワーを目標モータジェネレータパワーとして無 段変速機への入力回転数に応じた目標モータジェネレー タトルクを設定するようにすれば、燃費や駆動力等を最 適にする目標エンジントルク並びに目標変速比が必然的 に設定されると共に、バッテリ充電状態に応じたモータ ジェネレータトルクを適切に駆動力に付加して、エンジ ンとモータジェネレータとの平行制御が可能となる。

【0022】また、本発明のうち請求項6に係る駆動力 制御装置によれば、アクセル操作量及び車速に基づいて 目標駆動力を設定し、この目標駆動力及び車速に基づい

て要求駆動パワーを求め、この要求駆動パワーを要求エ ンジンパワーとして設定し、この要求エンジンパワーに 基づいて目標エンジン回転数を求め、その目標エンジン 回転数及び車速に基づいて目標変速比を設定すると共 に、同じく要求エンジンパワーに基づいて目標エンジン トルクを設定し、更にこの目標エンジントルク及び目標 エンジン回転数に基づいて目標エンジンパワーを設定し て、この目標エンジンパワー及び要求エンジンパワーの 差分値に基づいて目標モータジェネレータパワーを設定 し、この目標モータジェネレータパワー及び無段変速機 への入力回転数に基づいて目標モータジェネレータトル クを設定する構成としたために、例えば最適な駆動力を 得るための要求エンジンパワーを適正に設定することが でき、従ってこの要求エンジンパワーを達成しながら燃 費を最も向上する目標エンジン回転数と目標エンジント ルクとを同時に設定するようにすると共に、例えば当該 要求エンジンパワーを達成すると燃費が低下するときに は目標エンジントルクを小さく設定するなどして適正化 し、この目標エンジントルクと目標エンジン回転数とか ら設定される目標エンジンパワーと要求エンジンパワー との差分値を目標モータジェネレータパワーとして無段 変速機への入力回転数に応じた目標モータジェネレータ トルクを設定するようにすれば、燃費や駆動力等を最適 にする目標エンジントルク並びに目標変速比が必然的に 設定されると共に、燃費を低下させないようにモータジ ェネレータトルクを適切に駆動力に付加して、エンジン とモータジェネレータとの平行制御が可能となる。

【0023】また、本発明のうち請求項7に係る駆動力 制御装置によれば、アクセル操作量及び車速に基づいて 目標駆動力を設定し、この目標駆動力及び車速に基づい て目標駆動パワーを設定すると共に、バッテリ充電状態 に基づいて要求モータジェネレータパワーを設定し、こ の要求モータジェネレータパワー及び目標駆動パワーに 基づいて要求エンジンパワーを設定し、この要求エンジ ンパワーに基づいて目標エンジン回転数を求め、その目 標エンジン回転数及び車速に基づいて目標変速比を設定 すると共に、同じく要求エンジンパワーに基づいて目標 エンジントルクを設定し、更にこの目標エンジントルク 及び目標エンジン回転数に基づいて目標エンジンパワー を設定して、この目標エンジンパワー及び要求エンジン パワーの差分値に基づいて目標モータジェネレータパワ ーを設定し、この目標モータジェネレータパワー及び無 段変速機への入力回転数に基づいて目標モータジェネレ ータトルクを設定する構成としたために、例えば最適な 駆動力を得るための目標駆動パワーを適正に設定すると 共に、例えばバッテリ充電状態が十分な充電状態である 場合には駆動力に付加される要求モータジェネレータバ ワーを大きくし、バッテリ充電状態が十分な充電状態で ない場合には駆動力に付加される要求モータジェネレー タパワーを小さくし或いはバッテリを充電するように回 生側の要求モータジェネレータパワーを設定するなどし て要求モータジェネレータパワーを適正化すれば、その 要求モータジェネレータパワー及び目標駆動パワーを反 映して要求エンジンパワーを適正に設定することがで き、従ってこの要求エンジンパワーを達成しながら燃費 を最も向上する目標エンジン回転数と目標エンジントル クとを同時に設定するようにすると共に、例えば当該要 求エンジンパワーを達成すると燃費が低下するときには 目標エンジントルクを小さく設定するなどして適正化 し、この目標エンジントルクと目標エンジン回転数とか ら設定される目標エンジンパワーと要求エンジンパワー との差分値を目標モータジェネレータパワーとして無段 変速機への入力回転数に応じた目標モータジェネレータ トルクを設定するようにすれば、燃費や駆動力等を最適 にする目標エンジントルク並びに目標変速比が必然的に 設定されると共に、燃費を低下させないようにバッテリ 充電状態に応じたモータジェネレータトルクを適切に駆 動力に付加して、エンジンとモータジェネレータとの平 行制御が可能となる。

【0024】また、本発明のうち請求項8に係る駆動力 制御装置によれば、アクセル操作量及び車速に基づいて 目標駆動力を設定し、この目標駆動力及び車速に基づい て目標駆動パワーを設定すると共に、バッテリ充電状態 に基づいて要求モータジェネレータパワーを設定し、こ の要求モータジェネレータパワー及び目標駆動パワーに 基づいて要求エンジンパワーを設定し、この要求エンジ ンパワーに基づいて目標エンジン回転数を求め、その目 標エンジン回転数及び車速に基づいて目標変速比を設定 すると共に、同じく要求エンジンパワーに基づいて目標 エンジントルクを設定し、更にこの目標エンジントルク 及び目標エンジン回転数に基づいて目標エンジンパワー を設定して、この目標エンジンパワー及び要求エンジン パワーの差分値に基づいて目標モータジェネレータパワ ーを設定し、この目標モータジェネレータパワー及び無 段変速機への入力回転数に基づいて目標モータジェネレ ータトルクを設定する構成としたために、例えば最適な 駆動力を得るための目標駆動パワーを適正に設定すると 共に、例えばバッテリ充電状態が十分な充電状態である 場合には駆動力に付加される要求モータジェネレータパ ワーを大きくし、バッテリ充電状態が十分な充電状態で ない場合には駆動力に付加される要求モータジェネレー タパワーを小さくし或いはバッテリを充電するように回 生側の要求モータジェネレータパワーを設定するなどし て要求モータジェネレータパワーを適正化すれば、その 要求モータジェネレータパワー及び目標駆動パワーを反 映して要求エンジンパワーを適正に設定することがで き、従ってこの要求エンジンパワーを達成しながら燃費 を最も向上する目標エンジン回転数と目標エンジントル クとを同時に設定するようにすると共に、例えば当該要 求エンジンパワーを達成すると燃費が低下するときには 目標エンジントルクを小さく設定するなどして適正化し、この目標エンジントルクと目標エンジン回転数とから設定される目標エンジンパワーと前記目標駆動パワーとの差分値を目標モータジェネレータパワーとして無段変速機への入力回転数に応じた目標モータジェネレータトルクを設定するようにすれば、燃費や駆動力等を最適にする目標エンジントルク並びに目標変速比が必然的に設定されると共に、燃費を低下させないようにバッテリ充電状態に応じたモータジェネレータトルクを適切に駆動力に付加して、エンジンとモータジェネレータとの平行制御が可能となる。

【0025】また、本発明のうち請求項9に係る駆動力制御装置によれば、前記請求項6又は7又は8の発明において、要求エンジンパワーが所定値以下であるときに、目標エンジントルクを零に設定する構成としたために、例えばこの要求エンジンパワーの所定値を燃費の低下限界値とすれば、要求エンジンパワーがこの所定値以下で、それに応じた目標エンジントルクや目標エンジン回転数が燃費を低下させるものであるときには、目標エンジントルクを零にすることで目標エンジンパワーを零とし、その分だけ要求エンジンパワーを担う目標モータジェネレータパワーを大きくすることができ、結果的に燃費の低下を抑制防止しながら適切な駆動力を得ることができる。

【0026】また、本発明のうち請求項10に係る駆動 力制御装置によれば、前記請求項9の発明において、要 求エンジンパワーの所定値を、少なくともバッテリ及び モータジェネレータ間の効率に応じて変更する構成とし たために、例えばこの要求エンジンパワーの所定値を燃 費の低下限界値とし、要求エンジンパワーがこの所定値 以下では目標エンジントルクを零にすることで目標エン ジンパワーを零とするにしても、例えばバッテリ温度に 応じて変化するバッテリ及びモータジェネレータ間の効 率によっては、要求エンジンパワーを目標モータジェネ レータパワーで担うことができなくなるから、そのよう な場合には前記要求エンジンパワーの所定値を更に小さ くすることで、その分だけ要求エンジンパワーを担う目 標モータジェネレータパワーを小さくすることができ、 若干の燃費の低下があっても適切な駆動力を得ることが できる。

【0027】また、本発明のうち請求項11に係る駆動力制御装置によれば、前記請求項5又は7又は8の発明において、要求エンジンパワーを設定するにあたり、要求モータジェネレータパワーに、バッテリ及びモータジェネレータ間で発生可能なパワーの規制をかける構成としたために、実際に発生し得ない要求モータジェネレータパワーの設定があっても、要求エンジンパワーは、この要求モータジェネレータパワーに規制をかけたものしか反映しないから、当該要求モータジェネレータパワーも要求エンジンパワーも車両特性に応じて適正化するこ

とができる。

【0028】また、本発明のうち請求項12に係る駆動力制御装置によれば、前記請求項5又は7又は8又は10の発明において、要求エンジンパワーを設定するにあたり、要求モータジェネレータパワーと目標駆動パワーとの和値に、エンジンで発生可能なパワーの規制をかける構成としたために、実際に発生し得ないような要求エンジンパワーの設定を回避することができ、当該要求エンジンパワーを車両特性に応じて適正化することができる。

【0029】また、本発明のうち請求項13に係る駆動力制御装置によれば、前記請求項5又は7又は8又は10又は11の発明において、要求エンジンパワーを設定するにあたり、要求モータジェネレータパワーに、バッテリ及びモータジェネレータ間の効率を乗じて用いる構成としたために、このバッテリ及びモータジェネレータ間の効率に応じた実際の要求モータジェネレータパワーが要求エンジンパワーに反映されるから、当該要求モータジェネレータパワーも要求エンジンパワーも車両特性に応じて適正化することができる。

[0030]

【発明の実施形態】以下、本発明の駆動力制御装置を所 謂パラレルハイブリッド型前二輪駆動車両に展開した一 実施形態について添付図面に基づいて説明する。図1は 本発明の一実施形態を示すパワートレーン及びその制御 装置の概略構成図である。この実施形態では、エンジン 1の出力軸を、後述する電磁パウダクラッチを介して、 無段変速機3の入力軸に接続し、この入力軸にモータジ ェネレータ2を取付けてパラレルハイブリッドを構成 し、無段変速機3の最終出力軸で前二輪4FL,4FR を駆動する。また、この実施形態では、後段に詳述する ように、エンジン1,モータジェネレータ2,無段変速 機3の夫々は、夫々、エンジンコントロールユニット 5, モータジェネレータコントロールユニット6, 無段 変速機コントロールユニット7によって独自に電子制御 可能であるが、同時にこれらを統括する統括コントロー ルユニット8があって、この統括コントロールユニット 8から、各コントロールユニット5、6、7に対して、 夫々、目標エンジントルク, 目標モータジェネレータト ルク、目標変速比が指令値として与えられ、それらを達 成するように各コントロールユニット5、6、7が後述 する各制御量を制御する。

【0031】図2には、エンジンコントロールユニット5を含むエンジン1の詳細を示す。このエンジン1は、吸気管内燃料噴射型水冷ツインカムガソリンエンジンであり、アクセルペダルと共に連動するスロットルバルブの開度(以下、単にスロットル開度とも記す)を、当該アクセルペダルの操作量とは個別に調整するためのスロットルアクチュエータ111を備える。そして、エンジンコントロールユニット5は、制御入力として、エアフ

ローメータ101で検出される吸入空気量ASP,スロ ットルセンサ102で検出されるスロットル開度TV 〇、〇2 センサ103で検出される排気中の酸素量VO L,液温センサ104で検出される冷却液温度TMP LLC , ディストリビュータ105の回転状態DBR, 車 速センサ106で検出される車速Vspや、図示されない クランク角センサからのエンジン回転数N_E 及びエンジ ン回転の位相信号等を用いる。また、制御出力として、 前記スロットルアクチュエータ111への吸入空気量制 御信号SASP , 各インジェクター112への空燃比制御 信号SΑ/F 、ディストリビュータ105への点火時期制 御信号SロRR ,燃料ポンプ113への燃料ポンプ制御信 号SFPを出力し、前記点火時期制御信号SRRを入力し たディストリビュータ105から各スパークプラグ11 4に点火信号が出力される。そして、エンジンコントロ ールユニット5は、図示されないマイクロコンピュータ 等の演算処理装置を介装して構成される。つまり、この エンジンコントロールユニット5では、例えば前記エア フローメータ101で検出される吸入空気量ASPと図 示されないクランク角センサで検出されるエンジン回転 数及びエンジン回転の位相とに基づいて、当該吸入空気 量ASPに見合った燃料量とエンジン負荷及びエンジン 回転数に見合った点火時期とを算出し、その燃料量を達 成するように各インジェクタ112への空燃比制御信号 Sa/F を出力すると共に、当該点火時期に応じてディス トリビュータ105への点火時期制御信号SDBR を出力 する。また、前記統括コントロールユニット8から目標 エンジントルクの指令がある場合には、当該目標エンジ ントルクを達成するように前記スロットルアクチュエー タ111への吸入空気量制御信号S_{ASP}を出力する。な お、ガソリンエンジンの代わりにディーゼルエンジンを 用いる場合には、トルクが燃料噴射量に比例することか ら、燃料噴射量を制御することでトルクを制御すること ができる。

【0032】次に、図3にはモータジェネレータコント ロールユニット6及び無段変速機コントロールユニット 7を含むモータジェネレータ2及び無段変速機3の詳細 を示す。まず、無段変速機3の概略構成から説明する。 この無段変速機3は、駆動プーリ301と従動プーリ3 02とにベルト303を巻回してなる、所謂ベルト型無 段変速機であり、各プーリ301,302の可動円錐体 301a, 302aを軸線方向に移動することでベルト 303との接触半径を変更して変速比(減速比)を変更 制御する。また、各プーリ301,302の可動円錐対 301a, 302aの後方には、ベルト303が滑らな いように挟持するための作動流体圧を供給する。なお、 このような作動流体圧の元圧となるのが、所謂ライン圧 であり、夫々作動流体圧制御(電磁ソレノイド)バルブ 304, ライン圧制御(電磁ソレノイド)バルブ305 によって創成される。従って、前記駆動プーリ302に

は、無段変速機3の入力軸3aが延設されており、この入力軸3aとエンジン1の出力軸1aとが電磁パウダクラッチ10によって断続される。この電磁パウダクラッチ10は、所謂走行クラッチとしての役割以外に、例えばエンジン1のトルクを所要としない場合には、エンジン1を停止し且つ電磁パウダクラッチ10を切断して当該エンジン1と駆動系との繋がりを遮断するのにも用いられる。なお、電磁パウダクラッチ10は、既存のものと同様に、スリップリング10aへの供給電流の向きと大きさで係合力を調整することができる。

【0033】そして、無段変速機コントロールユニット

7は、制御入力として、セレクトレバー311による選 択レンジ I NHB, アクセルペダル312の操作量, 即 ちアクセル開度APO, ブレーキペダル313の踏込み 量BST, 入力回転数センサ314で検出される入力軸 回転数N₁,出力回転数センサ315で検出される出力 回転数No等を用いる。また、制御出力として、前記作 動流体圧制御バルブ304への作動流体圧制御信号 S_{PP} , S_{PS} , 前記ライン圧制御バルブ305へのライン 圧制御信号SPL、前記電磁パウダクラッチ10のスリッ プリング10aへのクラッチ係合力制御信号 S_{ca} , S_{cr} が出力される。そして、無段変速機コントロールユニッ ト7は、図示されないマイクロコンピュータ等の演算処 理装置を介装して構成される。つまり、この無段変速機 コントロールユニット7では、例えば前記統括コントロ ールユニット8から目標変速比の指令がある場合には、 前記入力回転数センサ314で検出される入力軸回転数 N_t と出力回転数センサ315で検出される出力回転数 N。との比から得られる変速比が、当該目標変速比に一 致するように前記駆動プーリ301,従動プーリ302 の各可動円錐体301a,302aへの作動流体圧を制 御すべく, 前記作動流体圧制御バルブ304への作動流 体圧制御信号Spp, Spsを出力する。なお、電磁パウダ クラッチの代わりに既存のトルクコンバータを用いるこ とも考えられるが、そのときの詳細については後段に説 明する。また、一般的には、前記出力回転数センサ31 5で検出される信号を車速として用いるが、実際に出力 回転数 N_0 を車速 V_{sp} として用いるためには最終減速比 nを乗ずる必要などがあるため、ここでは出力回転数N 。と車速Vspとは個別のものとして取扱う。但し、両者 はNo = Vsp/nにより容易に変換可能,或いは代用可 能であるものとする。

【0034】一方、前記無段変速機3の入力軸3aにはモータジェネレータ2が直結されている。このモータジェネレータ2は、一個で電動機と発電機とを兼任するものであり、インバータ201を介してバッテリ11に接続されている。そして、前記モータジェネレータコントロールユニット6は、制御入力として、バッテリ11の充電状態SOC、バッテリ温度センサ202で検出されるバッテリ温度TMPBII、前記入力回転数センサ31

4で検出される入力回転数N_I 等を用い、制御出力とし て、前記インバータ201へのモータジェネレータ制御 信号Smgを出力し、当該インバータ201はこの制御信 号Sngに応じてモータジェネレータ2への供給電流 ing の向きと大きさとを制御する。そして、このモータジェ ネレータコントロールユニット6も、図示されないマイ クコンピュータ等の演算処理装置を介装して構成され る。つまり、この無段変速機コントロールユニット7で は、例えば前記統括コントロールユニット8から目標モ ータジェネレータトルクの指令がある場合には、当該モ ータジェネレータトルクがモータジェネレータ2で発生 するようにモータジェネレータ2への供給電流 ingを制 御すべく、前記インバータ201へのモータジェネレー タ制御信号Smgを出力する。なお、モータジェネレータ 2が力行するときの電流はバッテリ11から供給され、 モータジェネレータ2が回生するときの電流はバッテリ 11に充電される。

【0035】また、前記統括コントロールユニット8内にも独自のマイクロコンピュータ等の演算処理装置を介装している。従って、この統括コントロールユニット8内では所定のロジックに従ってシリアルなディジタル処理が行われるのであるが、ここではその演算処理によって得られる数値や情報の様子を、第1実施形態として図4のブロック図に示す。この統括コントロールユニット8内の演算処理装置の構成は、前記アクセル開度APO、車速 V_{SP} ,及び入力回転数 V_{I} と出力回転数 V_{O} との比からなる変速比 $V_{I/O}$ から、目標変速比 $V_{I/O}$ 、目標エンジントルク V_{I} のである。

【0036】この統括コントロールユニット8では、ま ずアクセル開度APO及び車速Vspに基づいて目標駆動 力設定装置12で、例えば図5の制御マップ検索等によ り、目標駆動力 t To を設定する。次に、この目標駆動 力tTo 及び前記アクセル開度APOに基づいて目標エ ンジン回転数設定装置13で、例えば図6の制御マップ 検索等により、目標エンジン回転数tN。を設定する。 次に、乗算器801で、この目標エンジン回転数t Ng に速度比RTノヒ を乗じて無段変速機3への目標入力回転 数 tN_I を算出設定する。この速度比 $R_{I/E}$ とは、前記 エンジン回転数 $N_{\rm E}$ と入力回転数 $N_{\rm I}$ との比である。次 に、除算器802で、前記出力回転数N₀を前記目標入 力回転数tN_I で除して無段変速機3の目標変速比tR I/O を算出設定する。一方、前記目標駆動力 t T_O を、 除算器803で、前記速度比Rエノロ で除すことにより、 エンジン1とモータジェネレータ2との合同による目標 合成トルク tT_I を算出設定する。次に、この目標合成 トルク tT_I 及び入力回転数 N_I に基づいて、目標モー タジェネレータトルク設定装置14で、例えば図7の制 御マップ検索等により、目標モータジェネレータトルク tT_{MG}を設定する。また、減算器804で、前記目標合 成トルク ${\rm t}$ ${\rm T}_{\rm I}$ から前記目標モータジェネレータトルク ${\rm t}$ ${\rm t$

【0037】次に、前記各設定装置で用いられる制御マ ップの説明と合わせて、本実施形態の駆動力制御装置に よって、目標変速比 $tR_{I/0}$, 目標エンジントルクtTg , 目標モータジェネレータトルク $t T_{MG}$ が設定される 作用について説明する。まず、前記目標駆動力設定装置 12では、アクセルペダルの操作量であるアクセル開度 APO及び車速Vspに基づいて目標駆動力tTo が設定 される。つまり、例えば図5の制御マップに示すよう に、アクセル開度APOをパラメータとし、車速Vspに 応じて目標駆動力tToが設定されるのである。即ち、 アクセル開度APOが一定、つまり運転者の要求する加 速度が一定であるとき、車速Vsゥが低いほど車輪の回転 速度が小さいので、大きな駆動力(ここでは駆動トルク と同義)が必要であり、逆に高速では小さくてよい。但 し、風圧を考慮したときには、高速で大きな駆動力が必 要とされることもある。一方、アクセル開度APOが大 きいということは、運転者がより大きな加速度を要求し ているということであるから、全体に駆動力を大きく設 定する必要がある。そこで、この駆動力の状態を纏める と図5のような制御マップとなるから、例えばこれを参 照して目標駆動力tT。を設定すれば、運転者の所望す る加速度を各車速Vsp毎に得ることができる。

【0038】次に、前記目標エンジン回転数設定装置1 3では、前記目標駆動力 t To 及びアクセル開度APO に基づいて目標エンジン回転数 t Ng が設定される。つ まり、例えば図6 aの制御マップに示すように、横軸に 目標エンジン回転数tNgをとり、縦軸に目標駆動力t T₀をとり、これにエンジンの燃費を最適化する燃費最 適線を加え、この燃費最適線上で目標駆動力tToに応 じた目標エンジン回転数tNg を設定すればよい。前述 のように、パワーは駆動力、即ち駆動トルクと回転数と の積値であるから、このような直交座標上には、等パワ 一線が反比例曲線として表れる。一方、この等パワー線 の上には、各エンジン回転数Ng毎に等燃費曲線が表れ る。そして、各等パワー線のうち、最も小さな等燃費曲 線を結んで得られるのが最適燃費曲線である。従って、 この最適燃費曲線上で目標駆動力tT。に対応するエン ジン回転数を目標エンジン回転数 tN_E として設定すれ ば、当該目標エンジン回転数tNgが達成されること で、必要な加速度を得ながら燃費を最適にすることがで きる。

【0039】従って、この目標エンジン回転数tN ϵ に、前記電磁パウダクラッチ10の滑り等を考慮した 速度比 $R_{I/E}$ を乗算器801で乗ずれば目標とする入力回転数 N_I が得られ、この入力回転数 N_I で出力回転数 N_0 を除算器802で除せば目標変速比 $tR_{I/0}$ が得られるのである。つまり、この目標変速比 $tR_{I/0}$ が達成されれば、必要な目標駆動力 tT_0 が供給される限り、燃費を最適化することが可能となる。なお、前述のように出力回転数 N_0 は車速 V_{SP} を最終減速比nで除した値であるから、この目標変速比 $tR_{I/0}$ は目標エンジン回転数 tN_E 及び車速 V_{SP} に基づいて導出したものであるとも言える。

【0040】一方、一般的に変速比R_{I/0} はトルク比の 逆数であるから、前記除算器803では、前記目標駆動 力 tT_0 を変速比 $R_{I/0}$ で除してエンジン1とモータジ ェネレータ2との合同による目標合成トルク t T が算 出設定される。次に、前記目標モータジェネレータトル ク設定装置14では、前記目標合成トルクtTr 及び入 力回転数N_I に基づいて目標モータジェネレータトルク tT_{MG}が設定される。一般的に、エンジン1は低回転領 域でトルクが小さく、或る程度以上の高回転領域でない と、良好な燃費の下で十分なトルクが得られない。逆に 言えば、小さなトルクを燃費良く出力するのは難しい。 一方、モータジェネレータを電動機として力行する場合 には、出力, 即ちパワーが一定であるから、高回転領域 では十分なトルクが得られない。即ち、モータジェネレ ータは小さなトルクを効率よく出力することができる。 勿論、大きなトルクの発揮できるモータジェネレータを 搭載すれば、高回転領域まで大きなトルクを得ることは 可能であるが、そのようなモータジェネレータは一般に 大型で重量も重いというデメリットがある。そこで、図 7 aの制御マップに示すように、横軸に目標合成トルク tT_I をとり、縦軸に目標モータジェネレータトルクt T_{MG} をとり、目標合成トルク t T_{I} が小さな領域では目 標モータジェネレータトルクtTmgがリニアに増加す る,即ち当該目標合成トルク t T を全てモータジェネ レータ2で出力することとし、或る程度以上になったら 目標モータジェネレータトルクtTMGを零とする、即ち 当該目標合成トルク tT_I を全てエンジン1で出力する ようにする。但し、エンジン1のトルク特性には回転数 が介在しているので、入力回転数NTが小さいときには 目標モータジェネレータトルクtTmgの付加領域を広 げ、入力回転数NIが大きいときには目標モータジェネ レータトルクtTmgの付加領域を狭めるようにマップ化 するとよい。そして、この目標モータジェネレータトル ク tT_{MG} が達成されれば、モータジェネレータ2は、最 も効率よく、モータジェネレータトルクを目標合成トル ク tT_{I} , 即ち目標駆動力 tT_{0} に付加することができ る。なお、本来的にはエンジン回転数Ngをパラメータ にするほうが分かりやすいが、実際には後述するトルク 比RRIQ が介在しているので、パラメータは入力回転数 N_T でよい。

【0041】また、前記減算器804では、前記目標合成トルク ${
m t}$ Tru から前記目標モータジェネレータトルク ${
m t}$ t Tru を滅ずることにより、前記無段変速機3の入力軸3 aの入力端部における目標入力トルク ${
m t}$ Tru との速度比 ${
m R}_{I/E}$ は、例えば電磁パウダクラッチ10の滑り等によるものであり、効率が変化しないとすれば、それはトルク比 ${
m t}$ Tru の逆数である。従って、前記トルク比設定装置15では、例えば図8aに示す制御マップに示すように、前記速度比 ${
m R}_{I/E}$ の逆数から、エンジン1の出力軸1aの出力端部から前記無段変速機3の入力軸3aの入力端部までのトルク比 ${
m R}_{IRQ}$ を算出設定することができる。

【0042】そして、前記除算器805では、前記目標入力トルク ${\rm tT_{I-MG}}$ をこのトルク比 ${\rm R_{IRQ}}$ で除すことにより、目標エンジントルク ${\rm tT_B}$ が算出設定される。従って、この目標エンジントルク ${\rm tT_B}$ が達成されれば、前記目標モータジェネレータトルク ${\rm tT_{MG}}$ を得ながら、最適な燃費で目標合成トルク ${\rm tT_I}$,即ち目標駆動力 ${\rm tT_0}$ を発生することができることから、良好な燃費と加速性とを両立することができる。

【0043】以上より、本実施形態は本発明のうち請求 項1及び2に係る発明を実施化したものであり、前記目 標駆動力設定装置12が本発明の駆動力制御装置を構成 し、以下同様に、前記目標エンジン回転数設定装置13 及び乗算器801及び除算器802が目標変速比設定手 段を構成し、前記除算器803が目標合成トルク設定手 段を構成し、目標モータジェネレータトルク設定装置1 4が目標モータジェネレータトルク設定手段を構成し、 前記減算器804及びトルク比設定装置15及び除算器 805が目標エンジントルク設定手段を構成している。 【0044】なお、前述のように電磁パウダクラッチ1 〇に代えてトルクコンバータを用いることも可能であ る。このようにトルクコンバータを用いた場合には、前 記速度比RT/Rに応じたトルク比RTROは、当該速度比 RI/E が小さいほど大きくなる、しかしながらその限界 値は"2"であることから、前記トルク比設定装置15 では、前記図8 aの制御マップに代えて図8 bの制御マ ップを用いればよい。

【0045】次に、本発明の駆動力制御装置の第2実施 形態について図9を用いて説明する。本実施形態のパワートレーン及びその制御装置の構成は、前記第1実施形態の図1乃至図3に示すものと同様である。本実施形態では、前記統括コントロールユニット8内で構成される演算処理装置が、前記第1実施形態の図4のものから図9のものに変更されている。この演算処理装置では、前記目標エンジン回転数設定装置13及び目標モータジェネレータトルク設定装置14で実行される演算処理が異なる。前記目標エンジン回転数設定装置13では、例えば図6の制御マップ検索等により、目標エンジン回転数 tN_g を設定する。また、前記目標モータジェネレータトルク設定装置14では、例えば図7の制御マップ検索等により、目標モータジェネレータトルク tT_{MG} を設定する。

【0046】次に、前記各設定装置で用いられる制御マ ップの説明と合わせて、本実施形態の駆動力制御装置の 作用について説明する。まず、前記目標エンジン回転数 設定装置13では、前記第1実施形態と同様に、前記目 標駆動力 t T₀ 及びアクセル開度APOに基づいて目標 エンジン回転数tNgが設定されるが、更にバッテリ充 電状態SOCをパラメータとして用いる。つまり、例え ば前記第1実施形態における図6aの制御マップはバッ テリ充電状態SOCが "O" であるときのものであると すると、図6bに示すものはバッテリ充電状態SOCが 或る程度大きな正値であるときの制御マップになる。即 ち、例えばモータジェネレータ2を力行できないほどに バッテリ11の要領が減少しているバッテリ充電状態S OCを "0" とし、前述したモータジェネレータ2を力 行して目標合成トルクtT₁ に付加できるモータジェネ レータトルク分の増加に合わせてバッテリ充電状態SO Cを正方向に増加表示するものとすると、前記目標駆動 力 t T。のうち、エンジン1が受け持つトルク成分がバ ッテリ充電状態SOCの増加に伴って小さくなる。する と、図6 b に示すように、制御マップとしては目標駆動 力tT。の零切片が上方にずれたようになり、実質的な 等パワー線が歪む。一方、エンジン単体としての最適燃 費曲線そのものは変わらないから、両者の交点が変わっ てゆくのである。従って、例えばアクセル開度APOを パラメータとして用いたときに選択される等パワー線と 最適燃費曲線との交点に近い目標駆動力tT₀と目標エ ンジン回転数tNg とが再設定可能となる。従って、こ の制御マップ上で目標駆動力tToに対応するエンジン 回転数を目標エンジン回転数tNgとして設定すれば、 当該目標エンジン回転数tNgが達成されることで、バ ッテリ充電状態SOCに応じたモータジェネレータトル クTMGを見込みながら、必要な加速度を得ながら燃費を 最適にすることができる。

【0047】次に、前記目標モータジェネレータトルク設定装置14では、前記第1実施形態と同様に、前記目標合成トルク tT_{I} 及び入力回転数 N_{I} に基づいて目標モータジェネレータトルク $\mathrm{tT}_{\mathrm{MG}}$ が設定されるが、更にバッテリ充電状態SOCをパラメータとして用いる。つまり、前記第1実施形態における図7aの制御マップは基本的に同じであるが、入力回転数 N_{I} を一定としたまさに、バッテリ充電状態SOCに応じて図7bに示すときに、バッテリ充電状態SOCに応じて図7bに示すトリク $\mathrm{tT}_{\mathrm{MG}}$ を設定する。即ち、前述の定義から、バッテリ充電状態SOCが大きいときには、モータジェネレータンを積極的に力行させて燃費を向上させることができるから、エンジン1の受け持つ分を小さくすべく目標合成

トルク t T_I に対する目標モータジェネレータトルク t T_{nG}の付加領域、つまり当該目標モータジェネレータト ルクtT_{ng}が目標合成トルクtT_tと共にリニアに増加 する領域を広げる。同様に、バッテリ充電状態SOCが 中程度であるときには、目標モータジェネレータトルク t Tmgの付加領域を少し狭める。一方、バッテリ充電状 態SOCが小さいときには、若干の燃費の低下を伴って もモータジェネレータ2を回生作動させ、バッテリ11 を充電すべきであるから、目標合成トルク t T_T に係わ らず、目標モータジェネレータトルクtTngを負の一定 値に保持する。従って、この目標モータジェネレータト ルク t T_{MG}が達成されれば、バッテリ11が十分に充電 されているときにモータジェネレータ2は、最も効率よ く、モータジェネレータトルクを目標合成トルクセ T_{τ} , 即ち目標駆動力 $t T_{0}$ に付加することができ、バ ッテリ11が十分に充電されていないときにはモータジ ェネレータ2を発電機として効果的に利用してバッテリ 11の充電回復を計ることができる。

【0048】以上より、本実施形態は本発明のうち請求 項1乃至4に係る発明を実施化したものであり、前記目 標駆動力設定装置12が本発明の駆動力制御装置を構成 し、以下同様に、前記目標エンジン回転数設定装置13 及び乗算器801及び除算器802が目標変速比設定手 段を構成し、前記除算器803が目標合成トルク設定手 段を構成し、目標モータジェネレータトルク設定装置1 4が目標モータジェネレータトルク設定手段を構成し、 前記減算器804及びトルク比設定装置15及び除算器 805が目標エンジントルク設定手段を構成している。 【0049】次に、本発明の駆動力制御装置の第3実施 形態について図10乃至図12を用いて説明する。本実 施形態のパワートレーン及びその制御装置の構成は、前 記第1実施形態の図1乃至図3に示すものと同様であ る。本実施形態では、前記統括コントロールユニット8 内で構成される演算処理装置が、前記第1実施形態の図 4のものから図10のものに変更されている。この演算 処理装置では、まずアクセル開度APO及び車速Vspに 基づいて目標駆動力設定装置21で、例えば前記図5の 制御マップ検索等により、目標駆動力tT₀を設定す る。次に、乗算器811で、この目標駆動力tToに車 速V_{SP}を乗じて目標駆動パワーtP₀を算出設定する。 一方、前記バッテリ充電状態SOCに基づいて要求モー タジェネレータパワー設定装置22で、例えば図11の 制御マップ検索等により、要求モータジェネレータパワ ーt Pmgを設定する。そして、効率乗算器23で、この 要求モータジェネレータパワーt Pngに、バッテリーモ ータジェネレータ間の充電効率(出力効率の逆数)1/ nを乗じ、それを減算器812で前記目標駆動パワーt P₀ から減じて要求エンジンパワーrP_g を算出設定す る。次に、この要求エンジンパワーrP〟に基づいて、 目標エンジン回転数及び目標エンジントルク設定装置2

4で、例えば図1 2の制御マップ検索等により、目標エンジン回転数 $tN_{\rm E}$ と目標エンジントルク $tT_{\rm E}$ とを設定する。次に、乗算器813で、この目標エンジン回転数 $tN_{\rm E}$ に速度比 $R_{\rm I/E}$ を乗じて無段変速機3への目標入力回転数 $tN_{\rm I}$ を算出設定する。次に、除算器814 で、前記出力回転数 N_0 を前記目標入力回転数 $tN_{\rm I}$ で除して無段変速機3の目標変速比 $tR_{\rm I/O}$ を算出設定する。一方、前記要求モータジェネレータパワー $tP_{\rm MG}$ を見なし、除算器815 で、前記入力回転数 $N_{\rm I}$ で除すことにより、目標モータジェネレータトルク $tT_{\rm MG}$ を設定する。なお、本実施形態では、前記要求エンジンパワー $tP_{\rm E}$ は目標エンジンパワー $tP_{\rm E}$ と等しい。

【0050】次に、前記各設定装置で用いられる制御マップの説明と合わせて、本実施形態の駆動力制御装置によって、目標変速比 $\mathrm{R}_{\mathrm{I/0}}$,目標エンジントルク tT_{E} ,目標モータジェネレータトルク $\mathrm{tT}_{\mathrm{RG}}$ が設定される作用について説明する。まず、前記目標駆動力設定装置 21 では、前記第 1 実施形態の目標駆動力設定装置 12 と同様に、例えば前記図5の制御マップに従って、アクセルペダルの操作量であるアクセル開度 APO 及び車速 V_{SP} に基づいて目標駆動力 tT_{O} が設定される。

【0051】そして、次の乗算器811では、この目標駆動力tT。に車速Vspを乗じて目標駆動パワーtPoが算出設定される。前述のようにトルクに回転数を乗じるとパワーになるので、逆に言えば回転数というパラメータを考慮しなくても次元を一致させることができる。従って、本実施形態以後では、力の授受をパワーで統一して考える。

【0052】一方、前記要求モータジェネレータパワー 設定装置22では、例えば図11の制御マップに従っ て、バッテリ充電状態SOCに基づいて要求モータジェ ネレータパワーr Pmgが設定される。つまり、例えば前 記第1実施形態と同様に、例えばモータジェネレータ2 を力行できないほどにバッテリ11の容量が減少してい るバッテリ充電状態SOCを "O" とし、前述したモー タジェネレータ2を力行して目標合成トルクtT₁ に付 加できるモータジェネレータトルク分の増加に合わせて バッテリ充電状態SOCを正方向に増加表示するものと し、図11に示すように横軸にこのバッテリ充電状態S OCをとり、縦軸に要求モータジェネレータパワーrP mgをとると、バッテリ充電状態SOCが大きいときに は、モータジェネレータ2を積極的に力行させて燃費を 向上させることができるから、エンジン1の受け持つ分 を小さくすべく、バッテリ充電状態SOCの増加と共に 要求モータジェネレータパワーrPmgを正方向に増加さ せる。一方、バッテリ充電状態SOCが小さいときに は、若干の燃費の低下を伴ってもモータジェネレータ2 を回生作動させ、バッテリ11を充電すべきであるか ら、バッテリ充電状態SOCの減少に伴って要求モータ

ジェネレータパワー r P_{MG} を負方向に減少させる。つまり、本実施形態ではバッテリ充電状態に応じて、単にモータジェネレータを力行・回生作動させるだけで、後述のようにエンジンは出力し続ける。また、この目的から、バッテリ充電状態が前記以外の中庸状態では要求モータジェネレータパワー r P_{MG} は"0"である。

【0053】次に、この要求モータジェネレータパワー rPmgに効率乗算器23で充電効率1/nを乗じる。このnは、前記インバータ201を介したバッテリ11からモータジェネレータ2への出力効率であるから、モータジェネレータ2を回生作動させて発電機として用いるときには、充電効率が1/nになる。つまり、効率乗算器23の出力は、真にエンジンに付加する或いは要求する要求モータジェネレータパワーrPmgになる。なお、本実施形態以後、単に効率を乗じた数値は、前後で同じ符号並びに名称を用いる。

【0054】そして、前記減算器812で、前記目標駆 動パワーtP。から前記要求モータジェネレータパワー rPngを減じて真に要求する要求エンジンパワーrPg を算出設定する。次に、前記目標エンジン回転数及び目 標エンジントルク設定装置24では、前記要求エンジン パワーrPgに基づいて例えば図12の制御マップに従 って、目標エンジン回転数tNg及び目標エンジントル クtT_E を設定する。この図12の制御マップは、原則 的に前記図6aの制御マップと同様であるから、説明を 簡潔に止めるが、本実施形態では前述した等パワー線の うち、前記設定された要求エンジンパワーr Pg を選出 し、その要求エンジンパワー線rPE と前記燃費最適線 との交点に相当するエンジン回転数とエンジントルクと を、夫々、目標エンジン回転数tNg 及び目標エンジン トルク t T に設定する。なお、目標エンジントルク t Tg には、前記第1実施形態のようにトルク比補正を行 ってもよい。

【0055】次に、前記第1実施形態と同様にして、こ の目標エンジン回転数tNgに、前記電磁パウダクラッ チ10の滑り等を考慮した速度比R_{I/E} を乗算器813 で乗ずれば目標とする入力回転数N_Tが得られ、この入 力回転数N₁ で出力回転数N₀ を除算器814で除せば 目標変速比 t R_{I/0} が得られるのである。一方、前記除 算器815で、前記要求モータジェネレータパワーrP mgを目標モータジェネレータパワーt Pmgと見なして、 それを入力回転数 N_I で除して目標モータジェネレータ トルクtT_{ng}が算出設定される。つまり、この目標変速 比 $tR_{I/0}$, 目標エンジントルク tT_E , 及び目標モー タジェネレータトルク tT_{MG} が達成されれば、バッテリ 11が十分に充電されているときにはモータジェネレー タ2を力行してモータジェネレータトルクT_{MG}を付加す ることにより、必要な目標駆動力tToを得ながら燃費 を向上すると共に、バッテリ11が十分に充電されてい ないときにはモータジェネレータ2を発電機として効果 的に利用してバッテリ11の充電回復を計りながら可及 的に燃費を最適化しつつ必要な目標駆動力 ${\rm tT}_0$ を得る ことができることから、良好な燃費と加速性とを両立す ることができる。

【0056】以上より、本実施形態は本発明のうち請求項5及び13に係る発明を実施化したものであり、前記目標駆動力設定装置21が本発明の駆動力制御装置を構成し、以下同様に、前記乗算器811が目標駆動パワー設定手段を構成し、前記要求モータジェネレータパワー設定装置22が要求モータジェネレータパワー設定手段を構成し、前記効率乗算器23及び減算器812が要求エンジンパワー設定手段を構成し、前記目標エンジン回転数及び目標エンジントルク設定装置24及び乗算器813及び除算器814が目標変速比設定手段を構成し、前記目標エンジントルク設定手段を構成し、前記目標エンジントルク設定手段を構成し、前記目標エンジントルク設定手段を構成し、前記除算器815が目標モータジェネレータトルク設定手段を構成している。

【0057】次に、本発明の駆動力制御装置の第4実施 形態について図13及び図14を用いて説明する。本実 施形態のパワートレーン及びその制御装置の構成は、前 記第1実施形態の図1乃至図3に示すものと同様であ る。本実施形態では、前記統括コントロールユニット8 内で構成される演算処理装置が、前記第1実施形態の図 4のものから図13のものに変更されている。この演算 処理装置では、まずアクセル開度APO及び車速Vspに 基づいて目標駆動力設定装置25で、例えば前記図5の 制御マップ検索等により、目標駆動力tToを設定す る。次に、乗算器816で、この目標駆動力tToに車 速V_{SP}を乗じて目標駆動パワーtP₀のみからなる要求 エンジンパワーrPgを算出設定する。一方、前記バッ テリ温度TMP_{BTT} に基づいてバッテリ充電効率設定装 置26で、例えば図14の制御マップ検索等により、バ ッテリ充電効率1/ヵを設定する。そして、このバッテ リ充電効率1/nをパラメータとし、前記要求エンジン パワーrPgに基づいて、目標エンジン回転数及び目標 エンジントルク設定装置24で、例えば前記図12の制 御マップ検索等により、目標エンジン回転数tN_E と目 標エンジントルク t Tg とを設定する。次に、乗算器8 17で、この目標エンジン回転数 t N_E に速度比R_{I/E} を乗じて無段変速機3への目標入力回転数tN_I を算出 設定する。次に、除算器818で、前記出力回転数No を前記目標入力回転数tN_I で除して無段変速機3の目 標変速比 t R_{I/0} を算出設定する。一方、乗算器 8 1 9 で前記目標エンジントルク t T に目標エンジン回転数 tNg を乗じて目標エンジンパワーtPg を算出設定 し、次に減算器820で前記要求エンジンパワーr Pg からこの目標エンジンパワーtP_E を減じて目標モータ ジェネレータパワーt Pngを算出設定し、次に除算器8 21でこの目標モータジェネレータパワーt Pmgを前記

入力回転数 N_I で除すことにより、目標モータジェネレータトルク $t T_{MG}$ を設定する。なお、本実施形態では、前記要求エンジンパワー $r P_E$ は目標駆動パワー $t P_0$ と等しい。

【0058】次に、前記各設定装置で用いられる制御マップの説明と合わせて、本実施形態の駆動力制御装置の作用について説明する。まず、前記目標駆動力設定装置 25 では、前記第1実施形態の目標駆動力設定装置 12 と同様に、例えば前記図5の制御マップに従って、アクセル開度APO及び車速 V_{SP} に基づいて目標駆動力 tT_0 が設定される。また、次の乗算器811では、前記第3実施形態と同様に、この目標駆動力 tT_0 に車速 V_{SP} を乗じて目標駆動パワー tP_0 のみからなる要求エンジンパワー tP_0 が算出設定される。

【0059】一方、前記バッテリ充電効率設定装置26では、例えば図14の制御マップに従って、バッテリ温度 TMP_{BTT} に基づいて前記バッテリ充電効率1/nが設定される。つまり、例えば一般にバッテリ温度 TMP_{BTT} が低いとバッテリ充電効率1/nは小さくなり、バッテリ温度 TMP_{BTT} が高いとバッテリ充電効率1/nは大きくなるから、これを図14のように制御マップ化して、当該バッテリ温度 TMP_{BTT} に基づいてバッテリ充電効率1/nを設定する。

【0060】そして、前記目標エンジン回転数及び目標 エンジントルク設定装置24では、前記第3実施形態と 同様に、前記要求エンジンパワーrPgに基づいて例え ば前記図12の制御マップに従って、目標エンジン回転 数tNg及び目標エンジントルクtTgを設定するので あるが、本実施形態では前記バッテリ充電効率1/nを パラメータとして用いる。ここでの制御マップは、前記 第3実施形態の要求エンジンパワー線 r P に要求エン ジンパワー最小線rPEMINが加えられている。そして、 この要求エンジンパワー最小線rPEMINは、例えばこれ より小さなパワーをエンジンで出力するとすると、例え ば燃費が大幅に低下してしまうという基準ラインである から、若し要求エンジンパワーr PE がこの要求エンジ ンパワー最小線rPminより小さい場合には、この目標 エンジン回転数及び目標エンジントルク設定装置24が 目標エンジントルク tT_E を "O" にしてしまう。この ように目標駆動パワーtPoのみからなる要求エンジン パワーrPgが小さいときには、一般的に回転数が低 く、エンジン1が最も出力しにくい状況であるから、そ のような場合にはモータジェネレータ2を積極的に力行 して駆動力に変えようとするためである。更に本実施形 態では、前記バッテリ充電効率設定装置26で設定され たバッテリ充電効率1/nが小さければ小さいほど、前 記要求エンジンパワー最小線rPEMINを下げてエンジン 1による駆動力の受け持ち分を増し、バッテリ充電効率 1/nが大きければ大きいほど、前記要求エンジンパワ 一最小線r Prmtnを上げてモータジェネレータ2による

駆動力の付加分を増すように調整する。なお、目標エンジントルクもTg には、前記第1実施形態のようにトルク比補正を行ってもよい。

【0061】次に、前記第3実施形態と同様にして、前 記乗算器817で目標エンジン回転数tNg に速度比R T/F を乗じて入力回転数NT を求め、次の除算器818 でこの入力回転数N_I で出力回転数N₀ を除して目標変 エンジントルク t Tg が補正される可能性があるので、 乗算器819で、前記目標エンジン回転数及び目標エン ジントルク設定装置24で設定された目標エンジントル クtTg に目標エンジン回転数tNg を乗じて目標エン ジンパワーtP_E とする。そして、前記減算器820で 前記要求エンジンパワーァPEからこの目標エンジンパ ワーtP。を減じて目標モータジェネレータパワーtP MGを算出設定し、前記除算器815で、それを入力回転 数 N_I で除して目標モータジェネレータトルク $t T_{MG}$ が 算出設定される。つまり、この目標変速比 t R_{I/0} , 目 標エンジントルク $\operatorname{t} T_{\mathtt{g}}$,及び目標モータジェネレータ トルク t Tmgが達成されれば、エンジン1の燃費が大幅 に低下するようなときにはモータジェネレータ2を力行 してモータジェネレータトルクTmgで目標駆動トルクt To が得られるようにすることから、良好な燃費と加速 性とを両立することができる。

【0062】以上より、本実施形態は本発明のうち請求項6及び9及び10に係る発明を実施化したものであり、前記目標駆動力設定装置25が本発明の駆動力制御装置を構成し、以下同様に、前記乗算器816が要求エンジンパワー設定手段を構成し、前記目標エンジン回転数及び目標エンジントルク設定装置27及び乗算器817及び除算器818が目標変速比設定手段を構成し、前記バッテリ充電効率設定装置26及び目標エンジン回転数及び目標エンジントルク設定手段を構成し、前記乗算器819が目標エンジンパワー設定手段を構成し、前記乗算器820が目標エンジンパワー設定手段を構成し、前記乗算器820が目標モータジェネレータパワー設定手段を構成し、前記除算器821が目標モータジェネレータトルク設定手段を構成している。

【0063】なお、前記要求エンジンパワー最小線 r P EMINの設定については、例えば前記エンジンの冷却液の冷却液温度TMP_{LLC} を考慮してもよい。即ち、冷却液温度TMP_{LLC} が低いと、一般に燃費が低下するので、そのような場合には燃費が低下し過ぎないように、要求エンジンパワー最小線 r P_{EMIN}を上げてモータジェネレータ2による付加分を増加するようにしてもよい。また、両者を同時に考えるときには、燃費の低下分とバッテリの充電効率とを勘案して、燃費が低下する影響の小さい方を選択するとよい。

【0064】次に、本発明の駆動力制御装置の第5実施 形態について図15乃至図17を用いて説明する。本実 施形態のパワートレーン及びその制御装置の構成は、前 記第1実施形態の図1乃至図3に示すものと同様であ る。本実施形態では、前記統括コントロールユニット8 内で構成される演算処理装置が、前記第1実施形態の図 4のものから図15のものに変更されている。この演算 処理装置では、まず前記バッテリ温度TMP_{RT} に基づ いてバッテリ充電効率設定装置28で、例えば前記図1 4の制御マップ検索等により、バッテリ充電効率1/カ を設定する。一方、アクセル開度APO及び車速Vspに 基づいて目標駆動力設定装置29で、例えば前記図5の 制御マップ検索等により、目標駆動力もT。を設定す る。次に、乗算器822で、この目標駆動力tTo に車 速 V_{SP} を乗じて目標駆動パワー tP_0 を算出設定する。 また、これらと平行して前記バッテリ充電状態SOCに 基づいて要求モータジェネレータパワー設定装置30 で、例えば前記図11の制御マップ検索等により、要求 モータジェネレータパワーt P_{MG}を設定する。次に要求 モータジェネレータパワー規制装置31で、例えば図1 6の制御マップ検索等により、この要求モータジェネレ ータパワーrPmgに、バッテリ充電状態SOCに応じた 規制をかけて規制済要求ジェネレータパワーr Pmg-Lmt を設定する。そして、効率乗算器32で、この規制済要 求モータジェネレータパワー t Pmg-LmTに、前記バッテ リ充電効率設定装置28で設定されたバッテリーモータ ジェネレータ間の充電効率1/nを乗じ、それを減算器 823で前記目標駆動パワーtP。から減じて要求エン ジンパワーrPgを算出設定する。次に要求エンジンパ ワー規制装置33で、前記要求エンジンパワー r P g に 規制をかけて規制済要求エンジンパワーrP_{E-LMT} を設 定する。そして、このバッテリ充電効率1/nをパラメ ータとし、前記規制済要求エンジンパワーr Pg-LMT に 基づいて、目標エンジン回転数及び目標エンジントルク 設定装置34で、例えば前記図12の制御マップ検索等 により、目標エンジン回転数 t Ng と目標エンジントル ク tT_E とを設定する。次に、乗算器824で、この目 標エンジン回転数tN_E に速度比R_{I/E} を乗じて無段変 速機3への目標入力回転数tN₁ を算出設定する。次 に、除算器825で、前記出力回転数N₀を前記目標入 カ回転数t N_I で除して無段変速機3の目標変速比tR 1/0 を算出設定する。一方、乗算器826で前記目標工 ンジントルクtTg に目標エンジン回転数tNg を乗じ て目標エンジンパワーtPgを算出設定し、次に減算器 827で前記要求エンジンパワー r P からこの目標エ ンジンパワーtPΕを減じて目標モータジェネレータパ ワーt P_{MG}を算出設定し、次に除算器828でこの目標 モータジェネレータパワーtPmgを前記入力回転数Nt で除すことにより、目標モータジェネレータトルクtT MGを設定する。

【0065】次に、前記各設定装置で用いられる制御マップの説明と合わせて、本実施形態の駆動力制御装置の

作用について説明する。まず、前記バッテリ充電効率設定装置 28 では、前記第 4 実施形態のバッテリ充電効率設定装置 26 と同様に、例えば前記図 14 の制御マップに従ってバッテリ温度 TMP_{BIT} に基づいてバッテリ充電効率 1/n が設定される。

【0066】一方、前記目標駆動力設定装置25では、前記第1実施形態の目標駆動力設定装置12と同様に、例えば前記図5の制御マップに従って、アクセル開度APO及び車速 V_{SP} に基づいて目標駆動力 tT_0 が設定される。また、次の乗算器822では、前記第3実施形態と同様に、この目標駆動力 tT_0 に車速 V_{SP} を乗じて目標駆動パワー tP_0 が算出設定される。

【0067】また、前記要求モータジェネレータパワー 設定装置30では、前記第3実施形態の要求モータジェ ネレータパワー設定装置22と同様に、例えば前記図1 1の制御マップに従って、バッテリ充電状態SOCに基 づいて要求モータジェネレータパワーr Pmgが設定され る。次に、前記要求モータジェネレータパワー規制装置 31では、例えば図16の制御マップに従って、前記バ ッテリ充電状態SOCをパラメータとして要求ジェネレ ータパワーr Pmg に規制をかけて規制済要求ジェネレー タパワーr P_{MG-LMT}を設定する。つまり、要求モータジ ェネレータパワーr Pmgが極めて小さいときには、不感 帯として規制済要求モータジェネレータパワーrP mg-LmTを "O"とする。また、それより要求モータジェ ネレータパワーr PMGが大きいときには、規制済要求モ ータジェネレータパワーrPmg-Lmtはリニアに増加す る。そして、勿論、要求モータジェネレータパワーァP mgが大きい領域では、モータジェネレータ2の機械的な 最大値 Pmg-max で規制する。但し、このモータジェネレ ータ2の機械的な最大値Pmg-maxは、前記バッテリ充電 状態SOCに影響されるので、例えばバッテリ充電状態 SOCが小さいときには最大値Pmg-maxを下げる。な お、実際のパラメータとしては、バッテリ充電状態SO Cを余裕時間tで除した値に影響される。

【0068】次に、前記効率乗算器32では、前記第3実施形態の効率乗算器23と同様に、前記規制済要求モータジェネレータパワーr $P_{\text{MG-LMT}}$ に充電効率1/nを乗じる。但し、本実施形態では、この充電効率1/nに、前記バッテリ充電効率設定装置28で設定されたものを用いている。そして、前記減算器823で、前記第3実施形態の減算器812と同様に、前記目標駆動パワー tP_0 から前記規制済要求モータジェネレータパワーr $P_{\text{MG-LMT}}$ を減じて真に要求する要求エンジンパワーr $P_{\text{RG-LMT}}$ を算出設定する。

【0069】次に、前記前記要求エンジンパワー規制装置33では、例えば図17の制御マップに従って、前記要求エンジンパワー rP_g に規制をかけて規制済要求エンジンパワー rP_{g-LMT} を設定する。つまり、要求エンジンパワー rP_g が極めて小さいときには、不感帯とし

て規制済要求エンジンパワー rP_{E-LMT} を"0"とする。また、それより要求エンジンパワー rP_E が大きいときには、規制済要求エンジンパワー rP_{E-LMT} はリニアに増加する。そして、勿論、要求エンジンパワー rP_E が大きい領域では、エンジン1の機械的な最大値PE-MAX で規制している。

【0070】そして、前記目標エンジン回転数及び目標 エンジントルク設定装置24では、前記第4実施形態と 同様に、前記バッテリ充電効率1/nをパラメータとし て、前記規制済要求エンジンパワーrPgに基づいて例 えば前記図12の制御マップに従って、目標エンジン回 転数tNg及び目標エンジントルクtTgを設定する。 なお、制御マップについては規制済のものでも、そうで なくとも同様である。またここでは、前記モータジェネ レータ2を力行して正値の要求モータジェネレータパワ ーrP_{MG(-LMT)}が付加されるときには、要求エンジンパ ワーrP_{E(-LMI)} が小さくなるので、エンジン1とモー タジェネレータ2との所謂協調制御が行われ易くなる。 【0071】次に、前記第3実施形態と同様にして、前 記乗算器824で目標エンジン回転数tN。に速度比R Ţ/F を乗じて入力回転数NŢ を求め、次の除算器825 でこの入力回転数N_I で出力回転数N₀ を除して目標変 速比 t R_{I/0} を算出設定する。また、乗算器826で、 前記目標エンジン回転数及び目標エンジントルク設定装 置24で設定された目標エンジントルクtTE に目標エ ンジン回転数tNgを乗じて目標エンジンパワーtPg とする。そして、前記減算器827で前記要求エンジン パワーァPょからこの目標エンジンパワーtPょを減じ て目標モータジェネレータパワー t Pmgを算出設定し、 前記除算器828で、それを入力回転数N_Tで除して目 標モータジェネレータトルク t Tng が算出設定される。 つまり、この目標変速比 $tR_{I/0}$, 目標エンジントルク tT_E , 及び目標モータジェネレータトルク tT_{MG} が達 成されれば、バッテリ11が十分に充電されているとき にはモータジェネレータ2を力行してモータジェネレー タトルクTMGを付加することにより、必要な目標駆動力 tTo を得ながら燃費を向上すると共に、バッテリ11 が十分に充電されていないときにはモータジェネレータ 2を発電機として効果的に利用してバッテリ11の充電 回復を計りながら可及的に燃費を最適化しつつ必要な目 標駆動力 t T₀ を得ることができると共に、エンジン1 の燃費が大幅に低下するようなときにはモータジェネレ ータ2を力行してモータジェネレータトルクT_{MG}で目標 駆動トルクtToが得られるようにすることから、良好 な燃費と加速性とを両立することができる。

【0072】以上より、本実施形態は本発明のうち請求項7及び9乃至12に係る発明を実施化したものであり、前記目標駆動力設定装置29が本発明の駆動力制御装置を構成し、以下同様に、前記乗算器822が目標駆動パワー設定手段を構成し、前記要求モータジェネレー

タパワー設定装置30が要求モータジェネレータパワー設定手段を構成し、前記バッテリ充電効率設定装置28及び要求モータジェネレータパワー規制装置31及び効率乗算器32及び減算器823及び要求エンジンパワー規制装置33が要求エンジンパワー設定手段を構成し、前記目標エンジン回転数及び目標エンジントルク設定達置34及び乗算器825が目標変速と設定手段を構成し、前記バッテリ充電効率設定装置28及び目標エンジントルク設定手段を構成し、前記に対している。

【0073】次に、本発明の駆動力制御装置の第6実施 形態について図16乃至図18を用いて説明する。 本実 施形態のパワートレーン及びその制御装置の構成は、前 記第1実施形態の図1乃至図3に示すものと同様であ る。本実施形態では、前記統括コントロールユニット8 内で構成される演算処理装置が、前記第1実施形態の図 4のものから図18のものに変更されている。この演算 処理装置では、まず前記バッテリ温度TMP_{BII} に基づ いてバッテリ充電効率設定装置28で、例えば前記図1 4の制御マップ検索等により、バッテリ充電効率1/n を設定する。一方、アクセル開度APO及び車速Vspに 基づいて目標駆動力設定装置29で、例えば前記図5の 制御マップ検索等により、目標駆動力tToを設定す る。次に、乗算器822で、この目標駆動力tTo に車 速 V_{SP} を乗じて目標駆動パワー tP_0 を算出設定する。 また、これらと平行して前記バッテリ充電状態SOCに 基づいて要求モータジェネレータパワー設定装置30 で、例えば前記図11の制御マップ検索等により、要求 モータジェネレータパワーt Pmgを設定する。次に要求 モータジェネレータパワー規制装置31で、例えば図1 6の制御マップ検索等により、この要求モータジェネレ ータパワーrPmgに、バッテリ充電状態SOCに応じた 規制をかけて規制済要求ジェネレータパワーr Pmg-LMT を設定する。そして、効率乗算器32で、この規制済要 求モータジェネレータパワー t Pmg-Lmr に、前記バッテ リ充電効率設定装置28で設定されたバッテリーモータ ジェネレータ間の充電効率1/nを乗じ、それを減算器 823で前記目標駆動パワーt Po から減じて要求エン ジンパワー r P を算出設定する。次に要求エンジンパ ワー規制装置33で、前記要求エンジンパワー r P に 規制をかけて規制済要求エンジンパワーrPg-LMT を設 定する。そして、このバッテリ充電効率1/ヵをパラメ ータとし、前記規制済要求エンジンパワーrP_{R-LMT} に 基づいて、目標エンジン回転数及び目標エンジントルク 設定装置34で、例えば前記図12の制御マップ検索等 により、目標エンジン回転数 t N_E と目標エンジントル

ク tT_{E} とを設定する。次に、乗算器 824 で、この目標エンジン回転数 tN_{E} に速度比 $\mathrm{R}_{\mathrm{I/E}}$ を乗じて無段変速機 3への目標入力回転数 tN_{I} を算出設定する。次に、除算器 825 で、前記出力回転数 N_{O} を前記目標変速比 tR 力回転数 tN_{I} で除して無段変速機 3の目標変速比 tR $\mathrm{I/O}$ を算出設定する。一方、乗算器 826 で前記目標 E を算出設定する。一方、乗算器 826 で前記目標 E 大いジントルク tT_{E} に目標エンジン回転数 tN_{E} を算出設定し、次に減算器 827 で前記目標 E 歌助パワー tP_{E} を算出設定し、次に減算器 827 で前記目標 E 歌りからこの目標 E ンパワー tP_{E} を減じて目標 E モータジェネレータパワー $\mathrm{tP}_{\mathrm{MG}}$ を前記入力回転数 N_{I} で除すことにより、目標 E モータジェネレータトルク E で除すことにより、目標 E で E 設定する。

【0074】次に、前記各設定装置で用いられる制御マップの説明と合わせて、本実施形態の駆動力制御装置の作用について説明する。まず、前記バッテリ充電効率設定装置28では、前記第4実施形態のバッテリ充電効率設定装置26と同様に、例えば前記図14の制御マップに従ってバッテリ温度TMP_{BIT} に基づいてバッテリ充電効率1/nが設定される。

【0075】一方、前記目標駆動力設定装置25では、前記第1実施形態の目標駆動力設定装置12と同様に、例えば前記図5の制御マップに従って、アクセル開度APO及び車速 V_{SP} に基づいて目標駆動力 tT_0 が設定される。また、次の乗算器822では、前記第3実施形態と同様に、この目標駆動力 tT_0 に車速 V_{SP} を乗じて目標駆動パワー tP_0 が算出設定される。

【0076】また、前記要求モータジェネレータパワー 設定装置30では、前記第3実施形態の要求モータジェ ネレータパワー設定装置22と同様に、例えば前記図1 1の制御マップに従って、バッテリ充電状態SOCに基 づいて要求モータジェネレータパワーrPmgが設定され る。次に、前記要求モータジェネレータパワー規制装置 31では、例えば図16の制御マップに従って、前記バ ッテリ充電状態SOCをパラメータとして要求ジェネレ ータパワーr Pngに規制をかけて規制済要求ジェネレー タパワーr P_{MG-LMT}を設定する。つまり、要求モータジ ェネレータパワーrPmgが極めて小さいときには、不感 帯として規制済要求モータジェネレータパワーrP MG-LMTを"O"とする。また、それより要求モータジェ ネレータパワーr Pmgが大きいときには、規制済要求モ ータジェネレータパワーr Pmg-LmT はリニアに増加す る。そして、勿論、要求モータジェネレータパワーァP mgが大きい領域では、モータジェネレータ2の機械的な 最大値P_{MG-MAX}で規制する。但し、このモータジェネレ ータ2の機械的な最大値Pmg-maxは、前記バッテリ充電 状態SOCに影響されるので、例えばバッテリ充電状態 SOCが小さいときには最大値Pmg-maxを下げる。な お、実際のパラメータとしては、バッテリ充電状態SO Cを余裕時間tで除した値に影響される。

【0077】次に、前記効率乗算器32では、前記第3 実施形態の効率乗算器23と同様に、前記規制済要求モータジェネレータパワー rP_{MG-LMI} に充電効率1/nを乗じる。但し、本実施形態では、この充電効率1/nに、前記バッテリ充電効率設定装置28で設定されたものを用いている。そして、前記減算器823で、前記第3実施形態の減算器812と同様に、前記目標駆動パワー tP_0 から前記規制済要求モータジェネレータパワー rP_{MG-LMI} を減じて真に要求する要求エンジンパワー rP_{KG-LMI} を算出設定する。

【0078】次に、前記前記要求エンジンパワー規制装置33では、例えば図17の制御マップに従って、前記要求エンジンパワーrPgに規制をかけて規制済要求エンジンパワーrPg-LMTを設定する。つまり、要求エンジンパワーrPg が極めて小さいときには、不感帯として規制済要求エンジンパワーrPg が大きいときには、規制済要求エンジンパワーrPg が大きいときには、規制済要求エンジンパワーrPg が大きいときには、規制済要求エンジンパワーrPg が大きい領域では、エンジン1の機械的な最大値Pg-MAX で規制している。

【0079】そして、前記目標エンジン回転数及び目標エンジントルク設定装置24では、前記第3実施形態と同様に、前記規制済要求エンジンパワー r Pg に基づいて例えば前記図12の制御マップに従って、目標エンジン回転数 t Ng 及び目標エンジントルク t Tg を設定する。なお、制御マップについては規制済のものでも、そうでなくとも同様である。またここでは、バッテリ充電効率1/nをパラメータとして用いる必要はない。またここでは、前記モータジェネレータ2を力行して正値の要求モータジェネレータパワー r Pmg(-LMT)が付加されるときには、要求エンジンパワー r Pmg(-LMT)が小さくなるので、エンジン1とモータジェネレータ2との所謂協調制御が行われ易くなる。

【0080】次に、前記第3実施形態と同様にして、前記乗算器824で目標エンジン回転数 tN_E に速度比R $I_{I/E}$ を乗じて入力回転数 N_I を求め、次の除算器825でこの入力回転数 N_I で出力回転数 N_0 を除して目標変速比 $tR_{I/0}$ を算出設定する。また、乗算器826で、前記目標エンジン回転数及び目標エンジントルク設定装置24で設定された目標エンジントルク tT_E に目標エンジン回転数 tN_E を乗じて目標エンジンパワー tP_E とする。そして、前記減算器827で前記目標駆動パワー tP_0 からこの目標エンジンパワー tP_E を滅じて目標モータジェネレータパワー tP_E を滅じて目標モータジェネレータトルク tT_{RE} が算出設定される。つまり、この目標変速比 $tR_{I/0}$,目標エンジントルク tT_{RE} が達成で目標モータジェネレータトルク

【0081】以上より、本実施形態は本発明のうち請求 項8乃至13に係る発明を実施化したものであり、前記 目標駆動力設定装置29が本発明の駆動力制御装置を構 成し、以下同様に、前記乗算器822が目標駆動パワー 設定手段を構成し、前記要求モータジェネレータパワー 設定装置30が要求モータジェネレータパワー設定手段 を構成し、前記バッテリ充電効率設定装置28及び要求 モータジェネレータパワー規制装置31及び効率乗算器 32及び減算器823及び要求エンジンパワー規制装置 33が要求エンジンパワー設定手段を構成し、前記目標 エンジン回転数及び目標エンジントルク設定装置34及 び乗算器824及び除算器825が目標変速比設定手段 を構成し、前記バッテリ充電効率設定装置28及び目標 エンジン回転数及び目標エンジントルク設定装置34が 目標エンジントルク設定手段を構成し、前記乗算器82 6が目標エンジンパワー設定手段を構成し、前記減算器 827が目標モータジェネレータパワー設定手段を構成 し、前記除算器828が目標モータジェネレータトルク 設定手段を構成している。

【0082】なお、前記各実施形態では、各コントロールユニットをマイクロコンピュータで構築したものについてのみ詳述したが、これに限定されるものではなく、演算回路等の電子回路を組み合わせて構成してもよいことは言うまでもない。

【図面の簡単な説明】

【図1】パワートレーン及びその制御装置の一例を示す 概略構成図である。

【図2】エンジンの詳細説明図である。

【図3】モータジェネレータ及び無段変速機の詳細説明 図である。

【図4】本発明の駆動力制御装置の第1実施形態を示す 演算処理装置のブロック図である。

【図5】車速とアクセル開度とから目標駆動力を設定する制御マップである。

【図6】目標駆動力とアクセル開度とから目標エンジン 回転数を設定する制御マップである。

【図7】目標合成トルクと入力回転数及びバッテリ充電 状態から目標モータジェネレータトルクを設定する制御 マップである。

【図8】速度比からトルク比を設定する制御マップである。

【図9】本発明の駆動力制御装置の第2実施形態を示す 演算処理装置のブロック図である。

【図10】本発明の駆動力制御装置の第3実施形態を示す演算処理装置のブロック図である。

【図11】バッテリ充電状態から要求モータジェネレータパワーを設定する制御マップである。

【図12】要求エンジンパワーから目標エンジン回転数 と目標エンジントルクとを設定する制御マップである。

【図13】本発明の駆動力制御装置の第4実施形態を示す演算処理装置のブロック図である。

【図14】バッテリ温度からバッテリ充電効率を設定する制御マップである。

【図15】本発明の駆動力制御装置の第5実施形態を示す演算処理装置のブロック図である。

【図16】要求モータジェネレータパワーを規制する制御マップである。

【図17】要求エンジンパワーを規制する制御マップで ある。

【図18】本発明の駆動力制御装置の第6実施形態を示す演算処理装置のブロック図である。

【符号の説明】

1はエンジン・

2はモータジェネレータ

3は無段変速機

4FL, 4FRは車輪

5はエンジンコントロールユニット

6はモータジェネレータコントロールユニット

7は無段変速機コントロールユニット

8は統括コントロールユニット

10は電磁パウダクラッチ

11はバッテリ

12は目標駆動力設定装置

13は目標エンジン回転数設定装置

14は目標モータジェネレータトルク設定装置

15はトルク比設定装置

21は目標駆動力設定装置

22は要求モータジェネレータパワー設定装置

23は効率乗算器

24は目標エンジン回転数及び目標エンジントルク設定装置

25は目標駆動力設定装置

26はバッテリ充電効率設定装置

27は目標エンジン回転数及び目標エンジントルク設定 装置

28はバッテリ充電効率設定装置

29は目標駆動力設定装置

30は要求モータジェネレータパワー設定装置

31は要求モータジェネレータパワー規制装置

32は効率乗算器

33は要求エンジンパワー規制装置

34は目標エンジン回転数及び目標エンジントルク設定装置

801は乗算器

802は除算器

803は除算器

804は減算器

805は除算器

811は乗算器

812は減算器

813は乗算器

814は除算器

815は除算器 816は乗算器

817は乗算器

818は除算器

819は乗算器

820は減算器

821は除算器

822は乗算器

823は減算器

824は乗算器

825は除算器

826は乗算器

827は減算器

828は除算器

【図3】

【図10】

【図12】

【図13】

【図15】

【図16】

【図18】

フロントページの続き

(51) Int. Cl. ⁶	識別記号	FI		
B60L	11/14	F02D	29/06	Н
F02D	29/02	F16H	9/00	F
	29/06		61/02	
F16H	9/00	B 6 0 K	9/00	Z
	61/02			

•