

+	1 1
Examp	1607

Example	e 8 1	100 x 100	atient o	Bage Sid	
SI NO	Age	Im come	Student	Gredit Trating.	Computer
1	(35)	medium)	Yes	Paire	(Yes)
2_	30	High (8)	No -	Average	No
3	140-0	Now A	Yes AA	Good	No
4A bo	35	Medium)	-KO	faire	(yes)
5	45	low	No	faire	yes
6	35 V (A)	High	No	Excellent	Yes
7	(35) (A)	(medium)	No	900d	(NO)
8	25 (8)	Low	No	good	No
9	28 (A)	High	No	Average	No
10	(35)	Medium	Yes	Average	(9)

Decide whether of 35 years and medium income will buy a computer or not using Bayesian classifien.

Ans: Let, hi= customer will buy computer h2 = Customer will not buy computer. D= Customer 35 years and income medium.

$$p(hi) = \frac{5}{10} = 0.5$$
, $p(h2) = \frac{5}{10}$
 $p(D/hi) = \frac{3}{5} = 0.5$
 $p(D/h2) = \frac{1}{5} = 0.2$

mang p(h/b), p(h2/d)} Maximum Probability = max(p(D/hi) p(hi), p(D/hz) p(hz)) = max (0.6 * 0.5, 0.2 * 0.5) = max(0.30, 0.10) tinal output = hi = Customer will buy computer De Naive Bayesian classifier: Conditional independence: p (x/Y,Z) where x depends on y and Z. If it and y are conditionally independence p(x|y,z) = p(x|z) $p(x,y|z) = \frac{p(x,y,z)}{y(x,y)}$ p(x, y, z) * - p(z) $= P(x/y,2) \times P(J(\pm)$ = P(x/2) * (P(y/2) When x and y are conditionally independent for

Number of Attributes $X = X_1 X_2, X_3 - \cdots, X_n$ Number of class/hypothesis C1, C2, C3---- Cm P(x/ei)=P(x1,x2,x3-xy6)=P(x,|ei) P(x2/ei) P(x/c2)=p(x1, x2, x3- xn/c2)=p(x1/c2)(x2/c2) $p(\mathbf{x}/em) = p(n_1, n_2, n_3 - xn/em) = p(n_1/em) - p(n_1/em) - p(n_1/em)$ Maximum probability man (p(e1/x) p(e2/x) --- p(em/x)) mans $\frac{p(x|e_1)p(e_1)}{p(x)}$, $\frac{p(x(e_2)p(e_2)}{p(x)}$ p (r/cm)p(cm) = mansp(x/ei) p(ei), p(x/ez) p(ez)-,--,p(x/em)p(em)

((dul) g. (dul) o Provid

Output = maximum hypothesis

Example-1 Let XI = 35 years old ×2 = medium income c,= will by computer c2 = will not buy computer p(x1/e1) = 4 $P(e_1) = \frac{5}{10} = 0.5$ $P(ez) = \frac{5}{10} = 0.5$ $p(x_1/ez) = \frac{1}{5} = 0.2$ $P(x_2|y) = \frac{3}{5} = 0.6 \quad P(x_2|y) = \frac{1}{5}$ Maximum Probability mons p (x/ci) p(ci), p(x/ez) p(cz) } = maxsp(x1/e1)p(x2/e1)p(e1),p(x1/e2)p(x2/e2)p(e2)} = max (0.8 x 0.6 x 0.5, 0.2 x 0.2 x 0.5) = man(0.24,0.020)

output = C1 = customer will buy computer

= 0.24

Examp	le 2:		·	1 6-39	Eyein
Record	1	Income	Student	Credit Ratine	Buys computer
100	L= 30	High	No	faire	No
Y2	L=-30	High.	Nomi	Excellent	No
83	31 40	High	NO	faire	Yes
84	740	Medium	Nos	faire (Yes
V5	740	Low	425	Faire	Yes
86	740	Low	Ges	Excellent	NO
87	3140	Low	425	Excellent	Yes
re	L=30	Medium.	No	Faire	No
13	L=30	Low 5 -	yes	fair	Yes
20	740	Medium	yes	For	yes
Y.	L=30	medium	yes	Excellent	YRS
V12	3140	Medium	NO	Excellent !	yes
813	3140	Aigh .	yes !	fair	Yes
, r ₁₄	740	Medium	No	Excellent	No
6 3 1 11	10 12 11	11010	(12 a)C 18	1/21/21/201	

Whether customer buys computer or not using the tuple $X = (Age = youth \leq 30, income = medium, student = yes credit_trating = fair)$

Ans:
Let, e= Buys computer

C2 = Will not buy computer

X1 = Age = youth \(\) 30

X2 = income medium

X3 = Customer is a student comostodom = Jes

X4 = Credit_rating = fair.

$$P(e) = \frac{9}{14} \qquad P(e_2) = \frac{5}{14}$$

$$P(x_1/e_1) = \frac{2}{9} \qquad P(x_2/e_2) = \frac{3}{5}$$

$$P(x_2/e_1) = \frac{4}{9} \qquad P(x_2/e_2) = \frac{2}{5}$$

$$P(x_4/e_1) = \frac{6}{9} \qquad P(x_4/e_2) = \frac{1}{5}$$

$$P(x_4/e_1) = \frac{6}{9} \qquad P(x_4/e_2) = \frac{2}{5}$$

$$P(x_4/e_1) = P(x_1,x_2,x_5,x_4/e_1)$$

$$= P(x_1/e_1) P(x_2/e_1) P(x_3/e_2) P(x_4/e_1)$$

$$= P(x_1/e_1) P(x_2/e_2) P(x_3/e_2) P(x_4/e_2)$$

$$= \frac{3}{5} * \frac{4}{5} * \frac{6}{5} * \frac{6}{9}$$

$$= 0.044$$

$$P(x_1/e_2) = P(x_1/e_2) P(x_2/e_2) P(x_3/e_2) P(x_4/e_2)$$

$$= \frac{3}{5} * \frac{2}{5} * \frac{1}{5} * \frac{2}{5}$$

$$= 0.019$$

$$\therefore \text{Max } P(x_1/e_1) = \text{Max } P(x_1/e_1) P(x_1/e_1) P(x_1/e_2)$$

$$\therefore \text{Max } P(x_1/e_1) P(e_1) = \text{Max } P(x_1/e_1) P(e_1)$$

$$= 0.044 * \frac{1}{14} = 0.028$$

$$\text{When } i = 2 * P(x_1/e_1) P(e_1) = \text{Max } P(x_1/e_1) P(x_1/e_2) P(x_1/e_2)$$

$$\therefore \text{Max } P(x_1/e_1) P(e_1) = \text{Max } P(x_1/e_1) P(x_1/e_2) P(x_1/e_2)$$

$$\therefore \text{Max } P(x_1/e_1) P(e_1) = \text{Max } P(x_1/e_1) P(x_1/e_2) P(x_1/e_2)$$

$$\therefore \text{Pacelition: Buys a computer.} = 0.028$$

Naive Bayesian - Connection.

RID	Age	Income	student	Credit	Ci: buy ornot
1.0	Youth	high	No	Fair	NO
2	youth	high	NO	excellent	No
3	Middle	high	No	faire	ye5
43	Senior	Medium	No	faire	yes
5 1	Senior	100	yes	Jain	yes
6	Senior	low	yes	Excellent	No
7-5	Middle	low	yes	Excellent	yes
8	youth	medium	No	faire	No
9	Jouth	100	yes	fair	yes
10	Genion	medium	yes	fair	Jes .
2 12 K	youth	Medium	yes	Excellent	yes
12	middle	Medium	No	Excellent	yes.
13	Middle	high	Jes	Fair	yes
14	senior	Medium	No	Excellent	NO

Decide whether a student with medium income middle aged, and fair credit rating will but a computer or not.

Ans: Let e = will buy computer

CL = will not buy computer

X1 = Student = Jes

X2 = Middle income Aged

X3 = Midium income

X4 = Fair Creedit reating

$$\begin{aligned} & p(c_1) = \frac{9}{14} & p(c_2) = \frac{5}{14} \\ & p(x_1|c_1) = \frac{6}{9} & p(x_1|c_2) = \frac{1}{5} \\ & p(x_2|c_1) = \frac{4}{9} & p(x_2|c_2) = \frac{5}{5} \\ & p(x_3|c_1) = \frac{4}{9} & p(x_3|c_2) = \frac{1}{5} \\ & p(x_4|c_1) = \frac{6}{9} & p(x_4|c_2) = \frac{2}{5} \\ & p(x_4|c_2) = \frac{1}{5} & p(x_4|c_2) = \frac{2}{5} \\ & p(x_1|c_1) & p(x_2|c_1) & p(x_1|c_1) & p(x_2|c_2) & p(x_1|c_2) & p(x_2|c_2) & p(x_1|c_2) & p(x_2|c_2) & p(x$$

Therefore, Laplacian correction is needed for "C2" class.

RID	Age	In come	Student	Gredit	Ci: buy by
	, 1110	9 P (200		= (1)\0	No
16	middle Senior	(c) (q		= (10/4)	NO
17	youth	1900	9	= (1) 100	No

Now,
$$9 = \frac{9}{14+3} = \frac{9}{17}$$
 $P(e_2) = \frac{5+3}{14+3} = \frac{8}{17}$ $P(e_1) = \frac{6}{14+3} = \frac{17}{17}$ $P(x_1/e_1) = \frac{6}{9}$ $P(x_2/e_2) = \frac{1+0}{8}$ $P(x_2/e_2) = \frac{4}{9}$ $P(x_3/e_1) = \frac{4}{9}$ $P(x_3/e_2) = \frac{2}{8}$ $P(x_4/e_2) = \frac{2}{8}$

$$P(4/x) = \frac{p(x/e_1) p(4)}{p(x)}$$

$$\cong p(x/e_1) p(e_1)$$

$$= p(x_{1}x_{2}x_{3}x_{4}|e_{1}) p(e_{1}) i \left[x = x_{1}x_{2}x_{3}x_{4} \right]$$

$$= p(x_{1}|e_{1}) p(x_{2}|e_{1}) p(x_{3}|e_{1}) p(x_{4}|e_{1}) p(e_{1})$$

$$= p(x_{1}|e_{1}) p(x_{2}|e_{1}) p(x_{3}|e_{1}) p(x_{4}|e_{1}) p(e_{1})$$

$$= \frac{6}{9} * \frac{4}{9} * \frac{4}{9} * \frac{6}{9} * \frac{9}{17}$$

$$= 0.0465$$

$$P(e_{1}|x) = \frac{P(x|e_{2}) P(e_{2})}{P(x)}$$

$$= P(x|e_{2}) P(e_{2})$$

$$= P(x_{1}x_{2} x_{3} x_{4}|e_{2}) P(e_{2}) F(x_{2}|x_{1} x_{2} x_{3} x_{4})$$

$$= P(x_{1}|e_{2}) P(x_{2}|e_{2}) P(x_{3}|e_{2}) P(x_{4}|e_{2}) P(e_{2})$$

$$= \frac{1}{8} * \frac{1}{8} * \frac{2}{8} * \frac{2}{8} * \frac{8}{17}$$

$$= 0.00046$$

$$= \max_{1} P(x|e_{1}) P(e_{1}) P(e_{1})$$

$$= \max_{1} P(x|e_{1}) P(e_{1}) P(e_{2})$$

$$= \max_{1} P(x|e_{1}) P(e_{1}) P(e_{2})$$

$$= \max_{1} P(x|e_{1}) P(e_{2}|x_{1}) P(e_{2}|x_{2})$$

$$= \max_{1} P(x|e_{1}) P(e_{2}|x_{2}) P(e_{2}|x_{2})$$

$$= \max_{1} P(x|e_{1}) P(e_{1}) P(e_{2}|x_{2}) P(e_{2}|x_{2})$$

$$= \max_{1} P(e_{1}|x_{2}) P(e_{2}|x_{2}) P(e_{2}|x_{2})$$

$$= \max_{1} P(e_{1}|x_{2}) P(e_{2}|x_{2}) P(e_{2}|x_{2}) P(e_{2}|x_{2})$$

$$= \max_{1} P(e_{1}|x_{2}) P(e_{2}|x_{2}) P(e_{$$

Prediction: A student with medium income, middle aged and fair credit reating will buy a computer.

Anc.

D Test cl	assification	on usin	g Naive	Bayesian	_
classifi		(x)	<u> </u>		
World	sant	bit	Chip	class	
DOCI	42	2.5	7	math	
DOCZ	10	28	45.	comp	
10	Var Aldrica	25	22	Comp.	
DOC3	VI LINES	40	8	Math	į,
DOC 4	33		0	Math	
0005	28	32	9	10(0101	
D0C6	8	22	30	Comp	
		1 /	0000	1 1	

Classify the above documentation Text" based a comentation whether computer or math trelated documentation based on Naive Bayesian dassifier.

This: Let,

$$\chi_{1} = \text{sqrt}$$
 $\chi_{2} = \text{bit}$
 $\chi_{2} = \text{bit}$
 $\chi_{3} = \text{chip}$

$$\rho(\text{comp}) = \frac{3}{6}$$

$$\rho(\text{comp}) = \frac{3}{6}$$

$$\rho(\text{cu}) = \frac{3}{6}$$

$$\rho(\text{vi}) = \frac{3}{$$

$$P(x_{2}/e_{1}) = \frac{45+22+36}{(10+28+45)+(11+25+224)+(8+22+26)}$$

$$= \frac{97}{201} = 0.483$$

$$P(x_{1}/e_{2}) = \frac{42+33+28}{(42+25+7)+(33+80+8)+(28+32+9)}$$

$$= \frac{103}{224} = 0.459$$

$$= \frac{25+40+32}{224}$$

$$= 0.107$$

$$P(x_{2}/e_{2}) = \frac{27}{224}$$

$$= 0.107$$

$$P(x_{1}/e_{1}) = P(x_{1}, x_{2}, x_{3}/e_{1}) = P(x_{2}/e_{1}) P(x_{3}/e_{1})$$

$$= P(x_{1}/e_{1}) P(x_{2}/e_{1}) P(x_{3}/e_{1})$$

$$= 0.144 \times .373 \times 0.483$$

$$P(x_{1}/e_{2}) = P(x_{1}, x_{2}, x_{3}/e_{2})$$

$$= P(x_{1}/e_{2}) P(x_{2}/e_{2}) P(x_{3}/e_{2})$$

$$= P(x_{1}/e_{2}) P(x_{2}/e_{2}) P(x_{3}/e_{2})$$

$$= 0.459 \times 0.433 \times 0.107$$

0.0212

.. Max {p(x/e1) p(e1), p(x/e2) p(c2) } = max $\left(0.0259 * \frac{3}{6}, 0.0212 * \frac{3}{6}\right)$ = man (0.01295, 0.01063) = 0.01295

Prediction: Computer related document

shin a stew polo