Follow-up data with the Epi package

Spring 2009.

Michael Hills Retired

Highgate, London

Martyn Plummer International Agency for Research on Cancer, Lyon

plummer@iarc.fr

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark

& Department of Biostatistics, University of Copenhagen

bxc@steno.dk

www.pubhealth.ku.dk/~bxc

Contents

1	Follow-up data in the Epi package	1
2	Timescales	1
3	Splitting the follow-up time along a timescale	4
4	Splitting time at a specific date	7
5	Competing risks — multiple types of events	10
6	Multiple events of the same type (recurrent events)	12

1 Follow-up data in the Epi package

In the Epi-package, follow-up data is represented by adding some extra variables to a dataframe. Such a dataframe is called a Lexis object. The tools for handling follow-up data then use the structure of this for special plots, tabulations etc.

Follow-up data basically consists of a time of entry, a time of exit and an indication of the status at exit (normally either "alive" or "dead"). Implicitly is also assumed a status *during* the follow-up (usually "alive").

Figure 1: Follow-up of two persons

2 Timescales

A timescale is a variable that varies deterministically within each person during follow-up, e.g.:

- Age
- Calendar time
- Time since treatment
- Time since relapse

All timescales advance at the same pace, so the time followed is the same on all timescales. Therefore, it suffices to use only the entry point on each of the time scale, for example:

- Age at entry.
- Date of entry.
- Time since treatment (at treatment this is 0).
- Time since relapse (at relapse this is 0)...

In the Epi package, follow-up in a cohort is represented in a Lexis object. A Lexis object is a dataframe with a bit of extra structure representing the follow-up. For the nickel data we would construct a Lexis object by:

2 Timescales

The entry argument is a named list with the entry points on each of the timescales we want to use. It defines the names of the timescales and the entry points. The exit argument gives the exit time on one of the timescales, so the name of the element in this list must match one of the neames of the entry list. This is sufficient, because the follow-up time on all time scales is the same, in this case ageout - agein. Now take a look at the result:

```
look at the result:
> str( nickel )
'data.frame':
                     679 obs. of 7 variables:
 $ id
                 3 4 6 8 9 10 15 16 17 18 ...
           : num
 $ icd
                  0 162 163 527 150 163 334 160 420 12 ...
           : num
 $ exposure: num 5 5 10 9 0 2 0 0.5 0 0 ...
 $ dob
           : num
                 1889 1886 1881 1886 1880 ...
                 17.5 23.2 25.2 24.7 30 ...
 $ age1st
           : num
 $ agein
           : num
                 45.2 48.3 53 47.9 54.7 ...
                 93 63.3 54.2 69.7 76.8 ...
 $ ageout
          : num
> str( nicL )
Classes 'Lexis' and 'data.frame':
                                         679 obs. of 14 variables:
 $ per
           : num
                  1934 1934 1934 1934 . . .
 $ age
                  45.2 48.3 53 47.9 54.7 ...
           : num
 $ tfh
           : num 27.7 25.1 27.7 23.2 24.8 ...
 $ lex.dur : num 47.75 15 1.17 21.77 22.1 ...
 $ lex.Cst : num 0 0 0 0 0 0 0 0 0 ...
 $ lex.Xst : num  0 1 1 0 0 1 0 0 0 0 ...
 $ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
           : num 3 4 6 8 9 10 15 16 17 18 ...
 $ id
 $ icd
           : num 0 162 163 527 150 163 334 160 420 12 ...
 $ exposure: num 5 5 10 9 0 2 0 0.5 0 0 ...
 $ dob
           : num
                 1889 1886 1881 1886 1880 ...
 $ age1st
           : num
                 17.5 23.2 25.2 24.7 30 ...
           : num 45.2 48.3 53 47.9 54.7 ...
 $ agein
 $ ageout : num 93 63.3 54.2 69.7 76.8 ...
 - attr(*, "time.scales")= chr
                                "per" "age" "tfh"
 - attr(*, "breaks")=List of 3
  ..$ per: NULL
  ..$ age: NULL
  ..$ tfh: NULL
```

> head(nicL)

```
tfh lex.dur lex.Cst lex.Xst lex.id id icd exposure
       per
               age
1 1934.246 45.2273 27.7465 47.7535
                                           0
                                                                           5
2 1934.246 48.2684 25.0820 15.0028
                                           0
                                                   1
                                                           2
                                                              4 162
                                                                           5
3 1934.246 52.9917 27.7465
                                           0
                                                   1
                                                           3
                                                              6 163
                                                                           10
4 1934.246 47.9067 23.1861 21.7727
                                           0
                                                   0
                                                           4
                                                              8 527
                                                                           9
5 1934.246 54.7465 24.7890 22.0977
                                           0
                                                   0
                                                           5
                                                              9 150
                                                                           0
6 1934.246 44.3314 23.0437 18.2099
                                           0
                                                   1
                                                           6 10 163
                                                                           2
            age1st
                      agein
                             ageout
1 1889.019 17.4808 45.2273 92.9808
2 1885.978 23.1864 48.2684 63.2712
3 1881.255 25.2452 52.9917 54.1644
4 1886.340 24.7206 47.9067 69.6794
5 1879.500 29.9575 54.7465 76.8442
6 1889.915 21.2877 44.3314 62.5413
```

The Lexis object nicL has a variable for each timescale which is the entry point on this timescale. The follow-up time is in the variable lex.dur (duration).

There is a summary function for Lexis objects that list the numer of transitions and records as well as the total follow-up time:

```
> summary( nicL )
```

```
Transitions:
```

To

```
From 0 1 Records: Events: Risk time: Persons: 0 542 137 679 137 15348.06 679
```

Rates:

То

```
From 0 1 Total 0 0 0.01 0.01
```

We defined the exit status to be death from lung cancer (ICD7 162,163), i.e. this variable is 1 if follow-up ended with a death from this cause. If follow-up ended alive or by death from another cause, the exit status is coded 0, i.e. as a censoring.

Note that the exit status is in the variable lex.Xst (eXit status. The variable lex.Cst is the state where the follow-up takes place (Current status), in this case 0 (alive).

It is possible to get a visualization of the follow-up along the timescales chosen by using the plot method for Lexis objects. nicL is an object of class Lexis, so using the function plot() on it means that ${\bf R}$ will look for the function plot.Lexis and use this function.

```
> plot( nicL )
```


Figure 2: Lexis diagram of the nickel dataset, left panel the default version, the right one with bells and whistles. The red lines are for persons with exposure> 0, so it is pretty evident that the oldest ones are the exposed part of the cohort.

The function allows a lot of control over the output, and a points.Lexis function allows plotting of the endpoints of follow-up:

The results of these two plotting commands are in figure 2.

3 Splitting the follow-up time along a timescale

The follow-up time in a cohort can be subdivided by for example current age. This is achieved by the splitLexis (note that it is *not* called split.Lexis). This requires that the timescale and the breakpoints on this timescale are supplied. Try:

```
> nicS1 <- splitLexis( nicL, "age", breaks=seq(0,100,10) )
> summary( nicL )
```

Transitions:

To

From 0 1 Records: Events: Risk time: Persons: 0 542 137 679 137 15348.06 679

Rates:

To

From 0 1 Total 0 0 0.01 0.01

> summary(nicS1)

Transitions:

To

From 0 1 Records: Events: Risk time: Persons: 0 2073 137 2210 137 15348.06 679

Rates:

То

From 0 1 Total 0 0 0.01 0.01

So we see that the number of events and the amount of follow-up is the same in the two datasets; only the number of records differ.

To see how records are split for each individual, it is useful to list the results for a few individuals:

> round(subset(nicS1, id %in% 8:10), 2)

	lex.id	per	age	tfh	lex.dur	lex.Cst	lex.Xst	id	icd	exposure	dob
11	4	1934.25	47.91	23.19	2.09	0	0	8	527	9	1886.34
12	4	1936.34	50.00	25.28	10.00	0	0	8	527	9	1886.34
13	4	1946.34	60.00	35.28	9.68	0	0	8	527	9	1886.34
14	5	1934.25	54.75	24.79	5.25	0	0	9	150	0	1879.50
15	5	1939.50	60.00	30.04	10.00	0	0	9	150	0	1879.50
16	5	1949.50	70.00	40.04	6.84	0	0	9	150	0	1879.50
17	6	1934.25	44.33	23.04	5.67	0	0	10	163	2	1889.91
18	6	1939.91	50.00	28.71	10.00	0	0	10	163	2	1889.91
19	6	1949.91	60.00	38.71	2.54	0	1	10	163	2	1889.91

age1st agein ageout

- 11 24.72 47.91 69.68
- 12 24.72 47.91 69.68
- 13 24.72 47.91 69.68
- 14 29.96 54.75 76.84
- 15 29.96 54.75 76.84
- 16 29.96 54.75 76.84

```
17
    21.29 44.33
                  62.54
    21.29 44.33
                  62.54
18
    21.29 44.33
                  62.54
```

The resulting object, nicS1, is again a Lexis object, and so follow-up may be split further along another timescale. Try this and list the results for individuals 8, 9 and 10 again:

```
> nicS2 <- splitLexis( nicS1, "tfh", breaks=c(0,1,5,10,20,30,100) )</pre>
> round( subset( nicS2, id %in% 8:10 ), 2 )
```

```
lex.id
                            tfh lex.dur lex.Cst lex.Xst id icd exposure
                                                                                dob
               per
                     age
13
        4 1934.25 47.91 23.19
                                    2.09
                                                0
                                                        0
                                                            8 527
                                                                          9 1886.34
14
        4 1936.34 50.00 25.28
                                    4.72
                                                0
                                                        0
                                                           8 527
                                                                          9 1886.34
15
        4 1941.06 54.72 30.00
                                    5.28
                                                0
                                                        0
                                                           8 527
                                                                          9 1886.34
16
        4 1946.34 60.00 35.28
                                   9.68
                                                0
                                                        0
                                                           8 527
                                                                          9 1886.34
17
        5 1934.25 54.75 24.79
                                   5.21
                                                0
                                                        0
                                                           9 150
                                                                          0 1879.50
        5 1939.46 59.96 30.00
                                                           9 150
                                    0.04
                                                0
                                                        0
                                                                          0 1879.50
18
        5 1939.50 60.00 30.04
                                                           9 150
                                                                          0 1879.50
19
                                   10.00
                                                0
                                                        0
        5 1949.50 70.00 40.04
20
                                    6.84
                                                0
                                                        0
                                                           9 150
                                                                          0 1879.50
21
        6 1934.25 44.33 23.04
                                    5.67
                                                0
                                                        0 10 163
                                                                          2 1889.91
22
        6 1939.91 50.00 28.71
                                    1.29
                                                0
                                                        0 10 163
                                                                          2 1889.91
        6 1941.20 51.29 30.00
23
                                    8.71
                                                0
                                                        0 10 163
                                                                          2 1889.91
24
        6 1949.91 60.00 38.71
                                    2.54
                                                        1 10 163
                                                                          2 1889.91
                                                0
```

```
age1st agein ageout
```

22

If we want to model the effect of these timescales we will for each interval use either the value of the left endpoint in each interval or the middle. There is a function timeBand which returns these. Try:

```
> timeBand( nicS2, "age", "middle" )[1:20]
```

62.54

```
[1] 45 45 55 65 75 85 95 45 55 65 55 45 55 55 65 55 65 75
```

^{24.72 47.91} 13 69.68

^{24.72 47.91} 69.68

¹⁵ 24.72 47.91 69.68

^{24.72 47.91} 69.68 16

^{29.96 54.75} 76.84 17

^{29.96 54.75} 18 76.84

^{29.96 54.75} 76.84 19

^{29.96 54.75} 20 76.84

^{21.29 44.33} 62.54 21 21.29 44.33

²³ 21.29 44.33 62.54

^{21.29 44.33} 24 62.54

```
> # For nice printing and column labelling use the data.frame() function:
> data.frame( nicS2[,c("id","lex.id","per","age","tfh","lex.dur")],
               mid.age=timeBand( nicS2, "age", "middle" ),
+
               mid.tfh=timeBand(nicS2, "tfh", "middle"))[1:20,]
   id lex.id
                                    tfh lex.dur mid.age mid.tfh
                   per
                           age
    3
           1 1934.246 45.2273 27.7465
1
                                         2.2535
                                                      45
                                                              25
2
    3
           1 1936.500 47.4808 30.0000
                                         2.5192
                                                      45
                                                              65
3
    3
           1 1939.019 50.0000 32.5192 10.0000
                                                      55
                                                              65
4
    3
           1 1949.019 60.0000 42.5192 10.0000
                                                      65
                                                              65
5
    3
           1 1959.019 70.0000 52.5192 10.0000
                                                      75
                                                              65
6
    3
           1 1969.019 80.0000 62.5192 10.0000
                                                      85
                                                              65
7
    3
           1 1979.019 90.0000 72.5192
                                         2.9808
                                                      95
                                                              65
8
    4
           2 1934.246 48.2684 25.0820
                                                      45
                                                              25
                                         1.7316
9
    4
           2 1935.978 50.0000 26.8136
                                                      55
                                         3.1864
                                                              25
    4
           2 1939.164 53.1864 30.0000
10
                                         6.8136
                                                      55
                                                              65
11
    4
           2 1945.978 60.0000 36.8136
                                         3.2712
                                                      65
                                                              65
12
    6
           3 1934.246 52.9917 27.7465
                                         1.1727
                                                      55
                                                              25
           4 1934.246 47.9067 23.1861
13
    8
                                         2.0933
                                                      45
                                                              25
14
    8
           4 1936.340 50.0000 25.2794
                                         4.7206
                                                      55
                                                              25
    8
           4 1941.060 54.7206 30.0000
                                                      55
15
                                         5.2794
                                                              65
           4 1946.340 60.0000 35.2794
    8
                                         9.6794
                                                      65
                                                              65
16
17
    9
           5 1934.246 54.7465 24.7890
                                         5.2110
                                                      55
                                                              25
18
    9
           5 1939.457 59.9575 30.0000
                                         0.0425
                                                      55
                                                              65
19
    9
           5 1939.500 60.0000 30.0425 10.0000
                                                      65
                                                              65
20
           5 1949.500 70.0000 40.0425
                                         6.8442
                                                      75
                                                              65
```

Note that these are the midpoints of the intervals defined by breaks=, not the midpoints of the actual follow-up intervals. This is because the variable to be used in modelling must be independent of the consoring and mortality pattern — it should only depend on the chosen grouping of the timescale.

4 Splitting time at a specific date

If we have a recording of the date of a specific event as for example recovery or relapse, we may classify follow-up time as being before of after this intermediate event. This is achieved with the function cutLexis, which takes three arguments: the time point, the timescale, and the value of the (new) state following the date.

Now we define the age for the nickel vorkers where the cumulative exposure exceeds 50 exposure years:

```
5 1934.246 54.7465 24.7890 22.0977
                                                  0
                                          0
                                                         5 9 150
                                                                          0
6 1934.246 44.3314 23.0437 18.2099
                                          0
                                                  1
                                                         6 10 163
                                                                          2
       dob age1st
                     agein ageout
4 1886.340 24.7206 47.9067 69.6794
5 1879.500 29.9575 54.7465 76.8442
6 1889.915 21.2877 44.3314 62.5413
> agehi <- nicL$age1st + 50 / nicL$exposure</pre>
> nicC <- cutLexis( data=nicL, cut=agehi, timescale="age",
                     new.state=2, precursor.states=0 )
> subset( nicC, id %in% 8:10 )
                          tfh lex.dur lex.Cst lex.Xst lex.id id icd exposure
          per
                  age
5
     1934.246 54.7465 24.7890 22.0977
                                             0
                                                     0
                                                            5
                                                               9 150
                                                                             0
                                                                             2
     1934.246 44.3314 23.0437
                                             0
                                                     2
                                1.9563
                                                            6 10 163
                                             2
4100 1934.246 47.9067 23.1861 21.7727
                                                     2
                                                            4 8 527
                                                                             9
     1936.203 46.2877 25.0000 16.2536
                                             2
                                                     1
                                                            6 10 163
                                                                             2
          dob age1st
                        agein ageout
5
     1879.500 29.9575 54.7465 76.8442
     1889.915 21.2877 44.3314 62.5413
4100 1886.340 24.7206 47.9067 69.6794
680 1889.915 21.2877 44.3314 62.5413
```

(The precursor.states= argument is explained below). Note that individual 6 has had his follow-up split at age 25 where 50 exposure-years were attained. This could also have been achieved in the split dataset nicS2 instead of nicL, try:

> subset(nicS2, id %in% 8:10)

	lex.id	per	age	tfh	lex.dur	lex.Cst	lex.Xst	${\tt id}$	icd	exposure	
13	4	1934.246	47.9067	23.1861	2.0933	0	0	8	527	9	
14	4	1936.340	50.0000	25.2794	4.7206	0	0	8	527	9	
15	4	1941.060	54.7206	30.0000	5.2794	0	0	8	527	9	
16	4	1946.340	60.0000	35.2794	9.6794	0	0	8	527	9	
17	5	1934.246	54.7465	24.7890	5.2110	0	0	9	150	0	
18	5	1939.457	59.9575	30.0000	0.0425	0	0	9	150	0	
19	5	1939.500	60.0000	30.0425	10.0000	0	0	9	150	0	
20	5	1949.500	70.0000	40.0425	6.8442	0	0	9	150	0	
21	6	1934.246	44.3314	23.0437	5.6686	0	0	10	163	2	
22	6	1939.915	50.0000	28.7123	1.2877	0	0	10	163	2	
23	6	1941.203	51.2877	30.0000	8.7123	0	0	10	163	2	
24	6	1949.915	60.0000	38.7123	2.5413	0	1	10	163	2	
	d	ob age1st	t ageir	n ageout	t						
10	1006 2	10 01 700	2 47 006	7 60 670	1						

13 1886.340 24.7206 47.9067 69.6794

14 1886.340 24.7206 47.9067 69.6794

15 1886.340 24.7206 47.9067 69.6794

```
16 1886.340 24.7206 47.9067 69.6794
17 1879.500 29.9575 54.7465 76.8442
18 1879.500 29.9575 54.7465 76.8442
19 1879.500 29.9575 54.7465 76.8442
20 1879.500 29.9575 54.7465 76.8442
21 1889.915 21.2877 44.3314 62.5413
22 1889.915 21.2877 44.3314 62.5413
23 1889.915 21.2877 44.3314 62.5413
24 1889.915 21.2877 44.3314 62.5413
> agehi <- nicS2$age1st + 50 / nicS2$exposure</pre>
> nicS2C <- cutLexis( data=nicS2, cut=agehi, timescale="age",</pre>
                       new.state=2, precursor.states=0 )
+
> subset( nicS2C, id %in% 8:10 )
     lex.id
                                  tfh lex.dur lex.Cst lex.Xst id icd exposure
                 per
                          age
17
          5 1934.246 54.7465 24.7890
                                                     0
                                                             0
                                                                 9 150
                                       5.2110
                                                                              0
                                                                9 150
          5 1939.457 59.9575 30.0000
                                                                              0
18
                                       0.0425
                                                     0
                                                             0
19
          5 1939.500 60.0000 30.0425 10.0000
                                                     0
                                                             0
                                                                 9 150
                                                                              0
20
          5 1949.500 70.0000 40.0425
                                       6.8442
                                                     0
                                                             0
                                                                9 150
                                                                              0
                                                             2 10 163
                                                                              2
21
          6 1934.246 44.3314 23.0437
                                       1.9563
                                                     0
          4 1934.246 47.9067 23.1861
                                                     2
                                                             2
                                                                8 527
                                                                              9
3142
                                       2.0933
                                                     2
                                                             2
                                                                              9
3143
          4 1936.340 50.0000 25.2794
                                       4.7206
                                                                8 527
                                                     2
                                                                              9
3144
          4 1941.060 54.7206 30.0000
                                       5.2794
                                                             2
                                                                8 527
          4 1946.340 60.0000 35.2794
                                                     2
                                                                              9
3145
                                       9.6794
                                                             2
                                                                8 527
3150
          6 1936.203 46.2877 25.0000
                                       3.7123
                                                     2
                                                             2 10 163
                                                                              2
3151
          6 1939.915 50.0000 28.7123
                                       1.2877
                                                     2
                                                             2 10 163
                                                                              2
                                       8.7123
3152
          6 1941.203 51.2877 30.0000
                                                     2
                                                             2 10 163
                                                                              2
          6 1949.915 60.0000 38.7123
                                                     2
                                                                              2
3153
                                       2.5413
                                                             1 10 163
               age1st
                         agein ageout
          dob
     1879.500 29.9575 54.7465 76.8442
17
     1879.500 29.9575 54.7465 76.8442
18
19
     1879.500 29.9575 54.7465 76.8442
20
     1879.500 29.9575 54.7465 76.8442
21
     1889.915 21.2877 44.3314 62.5413
3142 1886.340 24.7206 47.9067 69.6794
3143 1886.340 24.7206 47.9067 69.6794
3144 1886.340 24.7206 47.9067 69.6794
3145 1886.340 24.7206 47.9067 69.6794
3150 1889.915 21.2877 44.3314 62.5413
3151 1889.915 21.2877 44.3314 62.5413
3152 1889.915 21.2877 44.3314 62.5413
3153 1889.915 21.2877 44.3314 62.5413
```

Note that follow-up subsequent to the event is classified as being in state 2, but that the final transition to state 1 (death from lung cancer) is preserved. This is the point of the

precursor.states= argument. It names the states (in this case 0, "Alive") that will be over-witten by new.state (in this case state 2, "High exposure"). Clearly, state 1 ("Dead") should not be updated even if it is after the time where the persons moves to state 2. In other words, only state 0 is a precursor to state 2, state 1 is always subsequent to state 2.

Note if the intermediate event is to be used as a time-dependent variable in a Cox-model, then lex.Cst should be used as the time-dependent variable, and lex.Xst==1 as the event.

5 Competing risks — multiple types of events

If we want to consider death from lung cancer and death from other causes as separate events we can code these as for example 1 and 2.

```
> data( nickel )
> nicL <- Lexis( entry = list( per=agein+dob,
                                age=agein,
                                tfh=agein-age1st),
                   exit = list( age=ageout ),
           exit.status = (icd > 0) + (icd %in% c(162,163)),
+
                   data = nickel )
> summary( nicL )
Transitions:
     To
From 0
          1
                 Records:
                           Events: Risk time:
   0 47 495 137
                      679
                                632
                                      15348.06
                                                     679
Rates:
     To
From O
          1
               2 Total
   0 0 0.03 0.01 0.04
> subset( nicL, id %in% 8:10 )
                       tfh lex.dur lex.Cst lex.Xst lex.id id icd exposure
               age
4 1934.246 47.9067 23.1861 21.7727
                                          0
                                                  1
                                                            8 527
5 1934.246 54.7465 24.7890 22.0977
                                                  1
                                                         5
                                          0
                                                            9 150
                                                                          0
6 1934.246 44.3314 23.0437 18.2099
                                          0
                                                  2
                                                         6 10 163
                                                                          2
            age1st
       dob
                     agein ageout
4 1886.340 24.7206 47.9067 69.6794
5 1879.500 29.9575 54.7465 76.8442
6 1889.915 21.2877 44.3314 62.5413
```

If we want to label the states, we can enter the names of these in the states parameter, try for example:

> summary(nicC, scale=1000)

```
> nicL <- Lexis( entry = list( per=agein+dob,</pre>
                                 age=agein,
                                 tfh=agein-age1st),
                   exit = list( age=ageout ),
           exit.status = (icd > 0) + (icd \%in\% c(162,163)),
                   data = nickel,
                 states = c("Alive", "D.oth", "D.lung") )
> summary( nicL )
Transitions:
     To
        Alive D.oth D.lung Records:
From
                                       Events: Risk time:
                                                            Persons:
  Alive
           47
                137
                        495
                                  679
                                            632
                                                  15348.06
                                                                  679
Rates:
     Tο
From
        Alive D.oth D.lung Total
                       0.03 0.04
  Alive
            0 0.01
```

Note that the Lexis function automatically assumes that all persons enter in the first level (given in the states= argument)

When we cut at a date as in this case, the date where cumulative exposure exceeds 50 exposure-years, we get the follow-up *after* the date classified as being in the new state if the exit (lex.Xst) was to a state we defined as one of the precursor.states:

```
> nicL$agehi <- nicL$age1st + 50 / nicL$exposure
> nicC <- cutLexis( data = nicL,
                     cut = nicL$agehi,
               timescale = "age",
               new.state = "HiExp"
        precursor.states = "Alive" )
> subset( nicC, id %in% 8:10 )
          per
                          tfh lex.dur lex.Cst lex.Xst lex.id id icd exposure
                  age
5
     1934.246 54.7465 24.7890 22.0977
                                        Alive D.lung
                                                           5 9 150
     1934.246 44.3314 23.0437 1.9563
                                                           6 10 163
                                                                            2
                                        Alive
                                                HiExp
4100 1934.246 47.9067 23.1861 21.7727
                                        HiExp D.lung
                                                           4 8 527
                                                                            9
680 1936.203 46.2877 25.0000 16.2536
                                        HiExp
                                                D.oth
                                                           6 10 163
                                                                            2
          dob age1st
                                         agehi
                        agein ageout
     1879.500 29.9575 54.7465 76.8442
5
                                           Inf
     1889.915 21.2877 44.3314 62.5413 46.28770
4100 1886.340 24.7206 47.9067 69.6794 30.27616
680 1889.915 21.2877 44.3314 62.5413 46.28770
```

Transitions:

То

From	Alive	HiExp	D.oth	D.lung	Records:	Events:	Risk time:	Persons:
Alive	39	83	65	279	466	427	10.77	466
HiExp	0	8	72	216	296	288	4.58	296
Sum	39	91	137	495	762	715	15.35	679

Rates (per 1000):

Τо

```
From Alive HiExp D.oth D.lung Total
Alive 0 7.7 6.03 25.90 39.64
HiExp 0 0.0 15.74 47.21 62.94
```

Note that the persons-years is the same, but that the number of events has changed. This is because events are now defined as any transition from alive, including the transitions to HiExp.

Also note that (so far) it is necessary to specify the variable with the cutpoints in full, using only cut=agehi would give an error.

6 Multiple events of the same type (recurrent events)

Sometimes more events of the same type are recorded for each person and one would then like to count these and put follow-up time in states accordingly. Essentially, each set of cutpoints represents progressions from one state to the next. Therefore the states should be numbered, and the numbering of states subsequently occupied be increased accordingly.

This is a behaviour different from the one outlined above, and it is achieved by the argument count=TRUE to cutLexis. When count is set to TRUE, the value of the arguments new.state and precursor.states are ignored. Actually, when using the argument count=TRUE, the function countLexis is called, so an alternative is to use this directly.