Model

Suppose we conduct an experiment that gives rise to the random variables $\mathbf{y} = (y_1, \dots, y_n)^T$.

1. $\mathbb{E}(y_i)$ is a linear function of the parameters β_1, \dots, β_p with known coefficients. In matrix notation

$$\mathbb{E}(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta},\tag{1}$$

- (a) y is a $n \times 1$ vector with components y_1, \ldots, y_n .
- (b) X is a known nonrandom matrix of order $n \times p$.
- (c) β is the $p \times 1$ vector of parameters β_1, \ldots, β_p .

Model

- 2. $y_i's$ are uncorrelated i.e. $Cov(y_i, y_i) = 0$ for all $i \neq j; i, j \in \{1, ..., n\}.$
- 3. y_i 's are homoscedastic that is $Var(y_i) = \sigma^2$ for all i = 1, ..., n.

Thus,

$$Var(y) = D(y) = \sigma^2 I.$$
 (2)

Model

Another way to write the model is

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},\tag{3}$$

where the vector ϵ satisfies $\mathbb{E}(\epsilon) = 0$ and $\mathrm{D}(\epsilon) = \sigma^2 \mathrm{I}$.

Consider the linear model

$$\mathbb{E}(\mathbf{y}) = X\boldsymbol{\beta}, \ D(\mathbf{y}) = \sigma^2 I.$$
 (4)

Definition 1

Estimability The linear parametric function $l'\beta$ is said to be estimable if there exists a linear function c'y of the observations such that $\mathbb{E}(c'y) = l'\beta$ for all $\beta \in \mathbb{R}^p$.

Result 1: The condition $\mathbb{E}(\mathbf{c}'\mathbf{y}) = \mathbf{l}'\boldsymbol{\beta}$ is equivalent to $\mathbf{c}'\mathbf{X}\boldsymbol{\beta} = \mathbf{l}'\boldsymbol{\beta}$, and since this must hold for all $\boldsymbol{\beta} \in \mathbb{R}^p$, we must have $\mathbf{c}'\mathbf{X} = \mathbf{l}'$. Thus $\mathbf{l}'\boldsymbol{\beta}$ is estimable if and only if $\mathbf{l}' \in \mathcal{R}(\mathbf{X})$.

Example: Consider the following model

$$\mathbb{E}(y_{ij}) = \alpha_i + \beta_i, i = 1, 2; j = 1, 2.$$

In matrix form

$$\mathbb{E} \begin{bmatrix} y_{11} \\ y_{12} \\ y_{21} \\ y_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

Let S be the set of all vectors $\begin{pmatrix} I_1 & I_2 & m_1 & m_2 \end{pmatrix}$ such that $I_1+I_2=m_1+m_2$. Note that if $\mathbf{x}\in\mathcal{R}(\mathbf{X})$, then $\mathbf{x}\in S$. Thus $\mathcal{R}(\mathbf{X})\subset S$. Also, $\dim(S)=3$, and the rank of \mathbf{X} is 3 as well. Therefore, $\mathcal{R}(\mathbf{X})=S$, and we conclude that $I_1\alpha_1+I_2\alpha_2+m_1\beta_1+m_2\beta_2$ is estimable if and only if $I_1+I_2=m_1+m_2$.

Result 1: The following facts concerning generalized inverse are frequently used. For any matrix X, $\mathcal{R}(X) = \mathcal{R}(X'X)$.

Proof: Following Theorem is needed to prove this result.

Theorem 2

Let A be an $m \times n$ matrix of rank r. Then $dim(\mathcal{N}(A)) = n - r$, where $\mathcal{N}(A)$ is the null space of A.

Clearly, $\mathcal{R}(X'X) \subset \mathcal{R}(X)$. Now observe that Xz=0 implies X'Xz=0 for any vector $z \in \mathbb{R}^n$. Next, if X'Xz=0 then z'X'Xz=(Xz)'(Xz)=0 implying that Xz=0. Thus, by Theorem 2, X and X'X have the same rank. and therefore their row spaces have the same dimension. This implies that the spaces must be equal. As a consequence we can write X=MX'X for some matrix M.

Result 2: The matrix AC^-B is invariant under the choice of the g-inverse C^- of C if $\mathcal{C}(B) \subset \mathcal{C}(C)$ and $\mathcal{R}(A) \subset \mathcal{R}(C)$.

Proof: We can write B=CU and A=VC for some matrices U, V. Then

$$AC^{-}B = VCC^{-}CU = VCU,$$

which does not depend on the choice of the g-inverse.

Result 3: The matrix $X(X'X)^-X'X$ is invariant under the choice of the g-inverse. This is immediate from **Result 2**since $\mathcal{R}(X) = \mathcal{R}(X'X)$.

Result 4: $X(X'X)^-X'X = X$ and $X'X(X'X)^-X'$. Than can be shown by writing X = MX'X.

Theorem 3

Let $l'\beta$ be an estimable function and let G be a least squares g-inverse of X. Then l'Gy is an unbiased linear estimate of $l'\beta$ with minimum variance among all unbiased linear estimates of $l'\beta$. l'Gy is said to be BLUE (best linear unbiased estimate) of $l'\beta$. The variance of l'Gy is $\sigma^2l'(X'X)^{-1}$.

Proof: Since $\mathbf{l}'\boldsymbol{\beta}$ is estimable, $\mathbf{l}' = \mathbf{u}' \mathbf{X}$ for some \mathbf{u} . Then

$$\mathbb{E}(\mathbf{l}'\mathbf{G}\mathbf{y}) = \mathbf{u}'\mathbf{X}\mathbf{G}\mathbf{X}\boldsymbol{\beta} = \mathbf{u}'\mathbf{X}\boldsymbol{\beta} = \mathbf{l}'\boldsymbol{\beta},$$

and hence l'Gy is unbiased for $l'\beta$. Any other linear unbiased estimate is of the form (l'G + w')y, where w'X = 0 (why?).

Now

$$Var\{(l'G + w')y\} = \sigma^2(l'G + w')((G'l + w))$$
$$= \sigma^2(u'XG + w')((G'X'u + w))$$

Since G is a least square g-inverse of X,

$$\mathbf{u}' \mathbf{X} \mathbf{G} \mathbf{w} = \mathbf{u}' \mathbf{G}' \mathbf{X}' \mathbf{w} = \mathbf{0}.$$

Therefore,

$$Var\{(\mathbf{l}'G + \mathbf{w}')\mathbf{y}\} = \sigma^2(\mathbf{u}'(XG)(XG)'\mathbf{u} + \mathbf{w}'\mathbf{w})$$

$$\geq \sigma^2\mathbf{u}'(XG)(XG)'\mathbf{u}$$

$$= Var(\mathbf{l}'G\mathbf{y}).$$

Hence, $\mathbf{l}'G\mathbf{y}$ is BLUE of $\mathbf{l}'\boldsymbol{\beta}$.

The variance of l'Gy is $\sigma^2lGG'l$. It is easily seen that for any choice of g-inverse, $(X'X)^-X'$ is a least squares g-inverse of X. Now,

$$\begin{split} 1 & \text{GG'1} &= \mathbf{l'}(\mathbf{X'X})^{-}\mathbf{X'X}\{(\mathbf{X'X})^{-}\}'\mathbf{l} \\ &= \mathbf{u'X}(\mathbf{X'X})^{-}\mathbf{X'X}\{(\mathbf{X'X})^{-}\}'\mathbf{X'u} \\ &= \mathbf{u'}\mathbf{P_X}\mathbf{P_X'}\mathbf{u} \\ &= \mathbf{u'}\mathbf{P_X}\mathbf{u} \\ &= \mathbf{u'X}(\mathbf{X'X})^{-}\mathbf{X'u} \\ &= \mathbf{l'}(\mathbf{X'X})^{-}\mathbf{l}. \end{split}$$

Thus,

$$Var(\mathbf{l}'G\mathbf{y}) = \sigma^2 \mathbf{l}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{l}.$$

g–inverse

In particular, if we choose $G = (X'X)^-X'$ then

► G is a *g*-inverse of X:

$$XGX = X(X'X)^{-}X'X = X$$

► G is a least square *g*-inverse.

$$(XG)' = (X(X'X)^-X')' = P'_X = P_X = XG.$$

g–inverse

Consider the model (1).

- A least square estimator minimizes $S(\beta) = (y X\beta)'(y X\beta)$.
- ▶ Differentiating $S(\beta)$ wrt β result in the normal equations $X'X\beta = X'y$.
- Let $\widehat{\beta}$ is any solution to the normal equations. Then $\widehat{\beta} = (X'X)^{-}Xy$ for some choice of g-inverse.
- \triangleright $\widehat{\beta}$ depends on the choice of g-inverse. Thus $\widehat{\beta}$ is not unique and does not admit any statistical interpretation.

Example: Let us revisit the example we discussed earlier. Consider the following model

$$\mathbb{E}(y_{ij}) = \alpha_i + \beta_j, \ i = 1, 2; \ j = 1, 2.$$

In matrix form

$$\mathbb{E} \begin{bmatrix} y_{11} \\ y_{12} \\ y_{21} \\ y_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

$$X'X = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{bmatrix}$$

and

$$(X'X)^{-} = \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 3 & 1 \\ 0 & -2 & 1 & 3 \end{bmatrix}$$

in one possible *g*-inverse.

$$X(X'X)^{-}X' = \frac{1}{4} \begin{bmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{bmatrix}$$

Now we can compute the BLUE of any estimable function $\mathbf{u}'X\boldsymbol{\beta}$ as $\mathbf{u}'X(X'X)^-X'\mathbf{y}$.

For example, if $\mathbf{u}'=(1,0,0,0)$, then we get the BLUE of $\alpha_1+\beta_1$ as

$$\frac{1}{4}(3y_{11}+y_{12}+y_{21}-y_{22}).$$

The model (2) is said to be a *full-rank model* if X has full column rank, i.e. Rank(X) = p. For a full-rank model the following results can be easily verified.

- (i) $\mathcal{R}(X) = \mathbb{R}^p$, and therefore every function $\mathbf{l}'\boldsymbol{\beta}$ is estimable.
- (ii) X'X is nonsingular.
- (iii) The BLUE of β is $\widehat{\beta} = (X'X)^{-1}X'y$ and the variance matrix of $\widehat{\beta}$ is $Var(\widehat{\beta}) = \sigma^2(X'X)^{-1}$.
- (iv) The BLUE of $l'\beta$ is $l'\widehat{\beta}$ with variance $\sigma^2 l'(X'X)^{-1}l$.

Parts (iii) and (iv) constitute the Gauss-Markov theorem.

RSS

For a linear regression model $y = X\beta + \epsilon$, the aim is to minimize the error i.e. $\epsilon' \epsilon = (y - X\beta)'(y - X\beta) = S(\beta)$.

Theorem 4

The minimum of $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ is attained at $\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y}$.