TABLE 1 shows that the IO/JG2/1 clone expressed Von Willebrand's factor, the REC-1 antigen, the ICAM-1 antigen (the expression of which can also be induced by treatment with 100 U/ml of IFN γ or TNF α for 24 hr (TABLE 1; FIG. 4; and FIG. 6)), and the VCAM-1 antigen, after induction by the above-mentioned cytokines (200 U/ml of IFN γ or TNF α for 24 hr or 48 hr) (cf. TABLE 1).

- (5) Expression of endothelial markers specific for the CNS. TABLE 1 also shows that the IO/JG2/1 clone constitutively expressed a number of markers specific for the endothelial cells of the CNS, especially P-glycoprotein, GLUT-1 and the transferrin receptor (cf. TABLE 1). However, the IO/JG2/1 clone did not express some of the antigens specific for the cerebral endothelial cells, especially the 1A8B and 2A4 antigens. This characteristic makes it possible to differentiate the IO/JG2/1 clone from the cerebral endothelium (TABLE 2 below).
- (6) Comparison of the expression of the endothelial antigens in the primary cultures and the lines with the peripheral endothelial cells. As described above, the primary cultures of retinal endothelium and the derived clones expressing the T-antigen showed a constitutive expression of the markers specific for the endothelial cells of the CNS, namely P-glycoprotein, GLUT-1 and the transferrin receptor (TABLE [2] 1), whereas the aortic endothelium does not express these antigens but does express the OX-43 antigen, which is considered to be specific for the peripheral endothelial cells. The OX-43 antigen was effectively not expressed either by the primary cultures or by the cultures of cerebral cells with extended life-span and the cultures of retinal endothelial cells with extended life-span (TABLE 1).