115712 SIDUR-12 5124 208048+54 ,275 ,817 16K1 - 81 - 5 5.57 JER 1 XEIR 12 12 Requirelization (1 11117 C1 12 15 16CC. MIND L'UT 1/24 D'OUGUS 1200 LT MO) (a.d. 2-0 reco) Kilge prost cet -1 Ax (x1/x+x1/(x1/x) 242 & = Ax = Ax = 12 22 (2) פתחן: כתראד שינו כי $\omega_{\lambda} = (x^{T}X + \lambda I)^{-1} \times^{T} Y$ $\mathcal{L} = X^{+}Y = V \mathcal{Z}^{+}U^{T}Y, \quad V, \mathcal{U}$ $\mathcal{L} = \chi^{+}Y = V \mathcal{Z}^{+}U^{T}Y, \quad V, \mathcal{U}$ $\mathcal{L} = \chi^{+}Y = V \mathcal{L}^{+}U^{T}Y, \quad \mathcal{L}^{+}Y = \mathcal{L}^{+}$ X JUSVT Ax ce = (x + x + x I) - 1(x Tx). c = = (X T x + > [) · (UE "U"UZ V T UE + U"Y/ 117-01 x 12-2-27 160

4 1-20122 NIC (XTX+XI) -7 SK ADD-1 111-5~ 714 CIO CI X X 1500 IL PS , XTX et te 1281 72.7. Ei 3,774 8,3 3 Jrs ('C D 26 2.31 ver (L): ver (A, et): = Ax Var(al. Ax = Ax. o2(xTx1. Ax). = 0 A1 (x x 1 A) T Bias- resign (6 Jus 2 Mos 160 2180) (9 CEIL'S OF K. 0 11.00 4 2KULD :120 MSE = IE[119-9112] = Bias(912 + ver(91) MSF= Bias (4) 1 + Vas (4) = $= F \left[\frac{1}{\sqrt{3}} \right]^{2} + G^{2} A_{\lambda} \left(x^{T} x \right)^{-1} A_{\lambda}^{T} =$ E[A, w] - A, E(w) = A,~

1/2 MSF (2/2) 12.0:

:05 1.01 J.167

(6

Bies 1/2, 1: 11/5[2,]-15(2)1 = 70000 pm = 11 (A) - I) ~ 11 = ~ (A) - I) (A) - I) ~

11.5-1 LINGS LIST SOID D 24 N.C. 12 1200 NOS (12) = IE [112] - [11] = 1200 1.500 2151)

= tre(p(ver(ce,1)= 02 to (Ax(x x 1 A, T)

d)

d)

dies(x1)= d = 2 (Ax-11, ce. 2 | 1x=0)

= 2 2 (2 (A)-I), 4; \$\frac{4}{3} \gamma (A)-I), (e) = 0

! \(\infty \) \(\inft

 $\frac{1}{3} \text{ Var}(\alpha_{1}) = 0^{2} \frac{1}{3} + (A_{1} \times X^{T} \times A_{1}^{T})$ $\frac{1}{3} \text{ Var}(\alpha_{1}) = 0^{2} \frac{1}{3} + (A_{1} \times X^{T} \times A_{1}^{T})$ $\frac{1}{3} \text{ Var}(\alpha_{1}) = 0^{2} \frac{1}{3} + (A_{1} \times X^{T} \times A_{1}^{T})$ 237 /2 2/20 $\frac{d}{d\lambda} \operatorname{Var}(u_{\lambda}) = \underbrace{\sum_{i,j} d \operatorname{Var}(u_{\lambda})}_{d(A_{\lambda})_{i,j}} \cdot \underbrace{d(A_{\lambda})_{i,j}}_{d(A_{\lambda})_{i,j}} \cdot \underbrace{d(A_{\lambda})_{i,j}}_{d(A_{\lambda})_{i,j}}$ $= TP \left(\frac{J \sqrt{e} J \left(\frac{e}{d} \right)}{J A_{\lambda}} \cdot \frac{J A_{\lambda}}{J \lambda} \right)_{\lambda > 0}$ $= -2c^{2}Tr((x^{T}x)^{-1}x^{T}x)^{-1}) < 0$ 16515 '8-4 SIE YEE -3 YUNI O 18015 F त्र 1784 4X Q 775619 CEX 7128 13 812 14 7:01 (F アイ、アマット はと アン アクトロー えっと・コ ブラ ハア المادد در دروه ال -> محدد در جار در الا ودالاد ود هور الدر 8259 10 DEN 17 " WARO TO 2014 122 15.50 => Leigh 1625.

HEIN DUCIT LEVEL (M 25/4/5) C 20 Y Y C 16/4 LEVEL (M 25/4/5) C 20 LEVEL (M 25/4/5) C 20

· PCA

4) 50011 (2) 60012 (2) 60112 (2) 130 (2) 130 (2)

 $|V|_{2} = 1, \quad V \in \mathbb{R}^{d}$ $|V|_{2} = 1, \quad V \in \mathbb{R}^{d}$

var (vtx) = Ex((vtx;-/Ex[vtx])?)=

= 1/2 = (vTx; - VTX)2-

= 1/4 = [v (x; -x)]==

= 1/n = (v (x,-x))(v (x,-x)) =

 $= \int_{\mathcal{M}} \langle x | \nabla^{T}(x, -\bar{x}) (x, -\bar{x})^{T} U =$

= VT Z (x,-x|(x,-x|TV =

= v75 U

V = aggrax v 15 V

1 13-15 73716=

17/11 Porto 17 (aggagge rechtiplies -2 25t) 9(VI= 1- V+V L = V 1V + Ag(v) # 11-2 DU - 270 = 0 265 11 J 412 512 62772 (2) 2.02 2 12.7 € 5. 401 € 1000 Br.52 142 6/06 8! 19 1111 TL 7-107-1- 7710 JUST HO PE 7572 7100 0500 28 15 1281 C= VTX 103/2, 8/24 F

:KERRE15

~ (2,2')= f(x).)(x,2'). f(x') 1.71 PSO Day 11.2

 $f(x) = \begin{cases} \int \int |f(x)|^{2} & h(x,t) \geq 0 \\ -\int \int |f(x)|^{2} & \text{else} \end{cases}$

:671 701 (=

K(x,x/20 $K(x,x) = f(x)K(x,x) \cdot f(x) =$ = 1/K(x,x) -1/1

1(x,x)10 7 12

 $|\lambda(x,x)| = \frac{1}{\sqrt{+\lambda(x,x)}} |\lambda(x,x)| \cdot \frac{1}{\sqrt{+\lambda(x,x)}} = \frac{1}{\sqrt{+\lambda(x,x)}}$

TESTS IN 1915 5 19150 17

1557 (4515 JOT 5 (0) (2 PSO NIL PERE CON D DEDI S. (0.1) 20 715.63 1 = e (1x-y112) $k = \begin{pmatrix} 1 & e^2 \\ e^2 & 1 \end{pmatrix}$ V=(-1) 71, PSO 65 L. 1225 VThu: (2+e2-28+1) (-2): -7(-2+e2) -2+71 =4-4+7+5-4p2 EJLE 5-49 (0 <= 8 >2 € (8575 / 620

1(x,x)coi) 2<1 18/27 <5 (6 いくっしゅつ りないりないの りょいって いし つかつい アレーアコ Ky(x,7)= ((x,7)+-5)3 K2(x,2/=(<x,2>40)2 K(0,0) = K,(0,0) - K,(0,0) = -5= 1.7m Eng (02) 1.7m Eng (02) 15cl (12) B CHIC LCILLS - P 70 P.2.51 P.D77 Ka.K. 1.7. -2017 51 8.500 De sei K= Ka+KL $\lambda = \left[\frac{k\alpha}{\kappa_6}\right] \lambda \in \mathbb{R}^{d-1}$ 1) SC C ki, = |(a, +)(6), i) Ic(X,X) = x /c x T = X (ha + 166) x T

DINO JOLD MXM SIN FING CHI TO DILO 50160 1.181 (F JUEPE

X = Xa+Xi rs riches

X/cX'= (xa*+x6*)1c(xa*+x6*)= = xakxa + Xb x x =

= Xat (Kathol Xat + Xt [hat ky) st 10 20 1 10000 1.6000 1-200 2 300000 C=

=) Xakakaka+0+ of X61666*T: Por = xukaxa + xbk6x6 >0 1.Jex resir Th

1.71 JUSI PSO CÍA E

1. להלן הפלטים עבור סט הנתונים בהינתן קלטים שונים

2. להלן הפלטים בהינתן התרחישים השונים (תושבה משולבת עבור סעיפים 4,5):

Q2, noise = 10, n=1500

נתבונן בתוצאות שקיבלנו, נשים לב למספר אבחנות:

- ראשית כאשר כמעט ואין רעש שגיאת האימון מתלכדת עם שגיאת הולידאטציה אבחנה שנובעת ישירות מן העבודה כי כל הנקודות מייצגות את המציאות, כאשר אין משמעות אמיתית לאימון המודל על חלקים שונים (רועשים יותר או פחות) כאשר הרעש עולה ההפך מתקבל, שוב אבחנה לה אנו מצפים.
 - כמו כן, מנגנון הבקרה שלנו עובד כאשר ניתן לראות כי שגיאת הולידאציה גדולה לרוב משגיאת הסט האימון כמו כן דבר שנרצה לראות.
- נשים לב כי תחת שינוי דרגות הפולינום השגיאות גם מתנהגות בצורה קוהרנטית, כאשר שדרגת הפולינום מתקרבת לדרגה האמיתית השגיאות הן מזעריות ביחס bias לקצוות האחרים נשים לב כי שתי המדידות מקיימות גם את עיקרון variance variance
- לבסוף נראה כי גם כאשר אנו מעלים את מספר המדידות שלנו למרות שהרעש גדול, המודל מצליח להתמודד ולספק תחזית טובה. זאת אנו מסוגלים להפיק תחת שימוש ב-cross validation, בכל שלב מבצעים אימון על חלק אחר בסט האימון שלנו ובודקים שוב ושוב כך שהמודל נחשף לכמה שיותר מן המידע. באופן זה אנו מקטינים את ה-over fit שיכול להתקיים בהתאמת פולינומים תחת רעש גבוהה ומחזקים את השימוש בחוק המספרים הגדולים שגם תחת הרעש מספר רב של דגימות ישאף לתצורה האמיתית (נשאף לתוחלת, אשר 0) ולכן נוכל עדין לקבל פרדיקציה טובה.
 - 3. להלן דרגות הפולינום אשר המודל חזה עם הטעויות שקיבלנו עבור שימוש בדרגה זו:
 - k = 4, MSE = 16.57 5 במקרה עבור 100 במקרה שניור במקרה במקרה במקרה במקרה במקרה שליים במקרה במקרה במקרה שליים במקרה במקרה במקרה שליים במקרה שליים במקרה שליים במקרה במקרה במקרה שליים במקרה של
 - k = 5, MSE = 1.35 סבמקרה עבור 100 דגימות ורעש
 - k = 4, MSE = 98.89 במקרה עבור 1500 דגימות ורעש

7. להלן הפלטים עבור $\lambda \in [0,1]$ אשר נלקחו 500 נקודות במרחק שווה. אציין כי ע"מ להגיע לטווח $\lambda \geq 4 \geq 4$ ולכן זה, ראשית התחלתי עם טווח גדול $\lambda \geq 4$ ניתן היה לראות כי השגיאה מתקבעת ב- $\lambda \geq 4$ ולכן צמצמתי את הטווח עד לקבלת מדידה שאפשרה לקבל ערך מינימלי.

שוב ניתן לראות את הבדל הניכר בין השגיאות על סט האימון וסט הואלידציה, כאשר הפער היה שוב ניתן לראות את הבדל הניכר בין השגיאה כמו כן, ניתן לראות את מגמת השגיאה כמגמה שראינו מעט גדול יותר עבור השימוש ב-Ridge.

בכיתה – לפיה השימוש בנורה l2 מייצרת פונקציה גזירה ב-0 ולכן עקומת רידגי מעט מזכירה יותר בכיתה – לפיה השימוש בנורה ברבולה אשר דומה יותר לפונקצית הערך המוחלט.

כמו כן, ניתן לראות כי הוספת ערך הרגולריזציה השפיע יותר בהתחלה על Lasso מאשר על בכולת להוריד את השגיאה תחת סט הולידאציה.

8. להלן תוצאות השגיאה שהתקבלו עבור שלושת המודלים:

Ridge achieved 3249.69 with lambda of 0.024

Lasso achieved 3641.16 with lambda of 0.597

Basic linear regression achieved 3612.25

ניתן לראות כי במקרה זה Ridge הוא זה שהשיג את השגיאה הקטנה ביותר, תחת שימוש בפרמטר רגולריזציה מאוד קטן, כ-0.02 אך על סט האימון הקטן הנ״ל גרר שיפור משמעותי (מעל 10%) בשגיאה.