Primer for Dr. Ryan Wisnesky at the DIF Interop WG

Brent Shambaugh

Verifiable Credentials Lifecycle

Decentralized Identifier Architecture

Data Models

Inspired by: https://www.w3.org/TR/did-core/

Inspired by:

https://www.w3.org/TR/vc-data-model/,

https://identity.foundation/presentation-exchange/spec/v2.0.0/

Proof Mechanisms

JSON Web Tokens [RFC7519] secured using JSON Web Signatures [RFC7515] Data Integrity Proofs [DATA-INTEGRITY]
Camenisch-Lysyanskaya Zero-Knowledge Proofs [CL-SIGNATURES].
JSON Web Proofs - JWTs with Superpowers [JSON Web Proofs]

Signatures require Canonicalization

[DATA-INTEGRITY] Verifiable Credential Data Integrity 1.0, M. Sporny et al.,

https://w3c-ccg.github.io/rdf-dataset-canonicalization/spec/index.html

Cryptographic Signature

Algorithm	EdDSA	ECDSA	Yours
Generate	$\begin{aligned} d_{_{V}} & \text{ private signing key generated from random integer (seed)} \\ d_{_{p}} = d_{_{V}} *G & \text{ public key} \\ r = & hash \left(hash (d_{_{V}} + m)\right) mod q \\ R = & r *G \\ h = & hash \left(R + d_{_{p}} + m\right) mod q \\ s = & hash (r + h *d_{_{V}}) mod q \end{aligned}$	$P=k*G$ $r=P_x$ $s=k^{-1}(hash(m)+d_v*P_x)mod p$ k is a random secret number used once in the range [0p-1] P_x is the x-coordinate of P p is the order of the subgroup of the points generated by p p is the private signing key p is the message p is the generator point p Signature is not deterministic due the random number p	•••
Validate	$h = hash(R + d_v + m) mod q$ $P_1 = s * G$ $P_2 = R + h * d_p$ $P_1 = P_2?$	$s_m\!=\!s^{-1} mod\ p\ \text{ is the modular inverse of }\ s$ $R'\!=\!(hash(m)\!*\!s_m)\!*\!G\!+\!(r\!*\!s_m)\!*\!d_p$ if $R'_x\!=\!P_x\ \text{ the signature is valid}$ $d_p\ \text{ is the public key}$	•••
Source	https://cryptobook.nakov.com/digital-signatures/eddsa-and-ed25519	Real World Cryptography, David Wong, Manning, pg. 143 - 144 https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages https://learn.saylor.org/mod/book/view.php?id=36341&chapterid=18920	

Groups in ECC

$$y^2 = x^3 + ax + b \pmod{p}$$

 F_p p is a large number in a finite integer Field

$$y^2 = x^3 + ax^2 + x \pmod{p}$$

Addition and subtraction are closed within the field

The curves only have integers as points

The points on the curve can form a cyclic group

The total number of points on the curve is called the order, and this is a prime number.

Multiplication of an integer k by a generator G leads to another point on the curve.

$$P = k * G$$

If k is zero, then it is said to resolve to a point at infinity.

Curves can have one or more cyclic subgroups.

$$n=h*r$$

- n order of the curve
- h Curve co-factor
- r Order of the subgroups

Talk about subgroups

Defintion of a Group

A group must have the properties:

Closure: For any a and b, a * b is also in the group

Associativity: For any a,b,c in a group, a*(b*c) = (a*b)*c

Identity Element: For any \mathbf{a} in the group $\mathbf{a} * \mathbf{1} = \mathbf{a}$

Inverse Element: For any **a** in the group, there is an \mathbf{a}^{-1} as well, such that $\mathbf{a} * \mathbf{a}^{-1} = \mathbf{1}$

Quoting, page 92, Real World Cryptography, David Wong, Manning Publications

Groups as Categories

"In particular, a group is a category with one object, in which every arrow is an iso. If G and H are groups, regarded as categories, then we can consider arbitrary functors between them $f: G \to H$. It is obvious that a functor between groups is exactly the same thing as a group homomorphism." pg. 72, chap 4, Category Theory, Steve Adowey

Definition of a Category

A category consists of:

- a collection of objects
- a collection of arrows

Identity:

 $f \circ 1a = f = 1b \circ f$

Associativity:

If morphism $A \rightarrow B$ is $f, B \rightarrow C$ is $g, C \rightarrow D$ is h then $A \rightarrow D$ is $(h \circ g) \circ f = h \circ (g \circ f) = h \circ g \circ f$

Uses of a Category

Definition of a Functor:

'A functor is a transformation from one category to another that "preserves" the categorical structure of its source' pg. 194, The Categorical Analysis of Logic -Goldblatt

Natural Transformations Consider Functors to be Objects pg. 198, Goldblatt

Definition of a Natural Transformation:

Bartosz Milewski, Category Theory 9.1: Natural transformations https://www.youtube.com/watch?v=2LJC-XD5Ffo

Resources to Consider

Syntactic Mapping : [Project Cambria]

Syntactic & Semantic Mapping: [LSA, Hydra]

Architecture: [OCA].

Category Theory w/ RDF & RDF Schema [Benjamin Braatz Thesis]

[Project Cambria] Project Cambria Overview with Geoffrey Litt and Peter van Hardenberg – Fission, https://fission.codes/blog/project-cambria-overview/

[LSA, Hydra] Layered Schema Architecture: https://github.com/cloudprivacylabs/lsa,
Hydra, Transform Your Transformations: https://github.com/CategoricalData/hydra

[OCA] OCA Technical Specification | Overlays Capture Architecture,

https://oca.colossi.network/specification/

[Benjamin Braatz Thesis] Formal Modelling and Application of Graph Transformations in the Resource Description Framework, Benjamin Braatz https://www.semanticscholar.org/paper/Formal-Modelling-and-Application-of-Graph-in-the-Braatz/b8c85a3e7a04020259ec9a58c7e5563033f52844