

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

ÁLGEBRA LINEAL 2024-2DO (LM - PM - LCC)

Práctica 4: Espacios vectoriales con producto interno. Ortogonalidad.

- 1. Verificar en cada caso que el producto definido es un producto interno en V.
 - a) Sea $V = \mathbb{R}^n$, un vector $v \in V$ lo pensamos como $v = (v_1, \dots, v_n)^t$. Definiendo

$$\langle u,v\rangle=u^tv=\sum_{i=1}^nu_iv_i.$$

Resulta $\langle u, v \rangle$ así definido un producto interno en V.

b) Sea $V = \mathbb{C}^n$. Definiendo

$$\langle u,v\rangle=u^t\bar{v}=\sum_{i=1}^nu_i\bar{v}_i.$$

donde \bar{v} es el vector de \mathbb{C}^n cuyas componentes son los conjugados de las componentes del vector v. Estos productos internos definidos en \mathbb{K}^n se conoce como *producto interno canónico*.

c) En $V = \mathbb{R}^2$ podemos considerar para $u = (u_1, u_2)$ y $v = (v_1, v_2)$

$$\langle u,v\rangle = u_1v_1 - u_2v_1 - u_1v_2 + 4u_2v_2.$$

d) Sean t_0, \dots, t_n escalares distintos. Sea V el espacio vectorial de los polinomios sobre $\mathbb K$ de grado menor o igual a n. Para $p, q \in V$ definimos

$$\langle p,q\rangle=p(t_0)\overline{q(t_0)}+\cdots+p(t_n)\overline{q(t_n)}.$$

e) Sea V el espacio vectorial de las funciones reales continuas en el intervalo [0,1]. Para $f,g\in V$ sea

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt,$$

esto define un producto interno.

- *f*) Verificar que $f \times g = \int_1^e \log(x) f(x) g(x) dx$ es un producto interno en C([1,e]), espacio de las funciones continuas a valores reales en el intervalo [1,e].
- 2. Sean que para $A = (a_{ij}), B = (b_{ij}) \in V = \mathcal{M}_{n \times n}(\mathbb{K}),$

$$\langle A,B\rangle = \sum_{i,j} a_{ij} \overline{b_{ij}}$$

- a) Comprobar que es un producto interno (conocido como producto de Frobenius).
- b) Dada una matriz $B=(b_ij)$ su matriz adjunta está dada por $B^*=\bar{B}^t$, es decir $b_{ij}^*=\overline{b_{ji}}$

$$\langle A, B \rangle = tr(AB^*) = tr(B^*A).$$

- *c*) Probar que $\langle AB, C \rangle = \langle B, A^*C \rangle$.
- 3. Determinar en cada caso si el producto definido es un producto interno en \mathbb{R}^n . En caso de no serlo determinar cual es el axioma que no se verifica.

a)
$$\langle u, v \rangle = \sum_{i=1}^n u_i |v_i|.$$

b)
$$\langle u, v \rangle = \left| \sum_{i=1}^{n} u_i v_i \right|$$
.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

ÁLGEBRA LINEAL 2024-2DO (LM - PM - LCC)

c)
$$\langle u, v \rangle = \sum_{i=1}^n u_i \sum_{i=1}^n v_i$$
.

$$d) \langle u, v \rangle = \left(\sum_{i=1}^n u_i^2 \, v_i^2 \right)^{\frac{1}{2}}.$$

- 4. Dados $u, v \in V$ espacio vectorial con producto interno, probar que u = v si y sólo si $\langle u, w \rangle = \langle v, w \rangle$ para todo $w \in V$.
- 5. Dar un ejemplo en \mathbb{R}^2 de dos vectores linealmente independientes que no sean ortogonales y un ejemplo de dos vectores que sean ortogonales y que no sean linealmente independientes.
- 6. Demostrar las siguientes proposiciones.
 - *i*) Un vector $v \in W^{\perp}$ si y solo si v es ortogonal a todo vector en un conjunto que genere a W.
 - ii) W^{\perp} es un subespacio vectorial de V.
- 7. Dados los vectores

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ -2 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 4 \\ 0 \\ 4 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix}, v_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix},$$

determinar que par de vectores son ortogonales.

8. Dada la matriz

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4 \end{bmatrix}$$

calcular

- a) un vector no nulo x ortogonal al espacio fila de A
- b) un vector no nulo y ortogonal al espacio columna de A
- c) un vector no nulo z ortogonal al espacio nulo de A
- 9. Sea $W \subseteq V$, V e.v. con producto interno. Probar que $(W^{\perp})^{\perp} = W$.
- 10. Sea $\mathbb{R}^{n \times n}$ con el producto interno definido en el ejercicio 2.
 - *a*) Hallar una base ortogonal para $\mathbb{R}^{n \times n}$ para dicho producto interno.

b) Hallar
$$W^{\perp}$$
, si $W = gen \left\{ \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\} \subset \mathbb{R}^{2 \times 2}$.

c) Ídem b) para
$$W = \left\{ \begin{bmatrix} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, a, b, c \in \mathbb{R} \right\}.$$

- 11. Sea C([1,e]), con el producto interno definido en el ejercicio 1f.
 - a) Calcular ||f|| para $f(x) = \sqrt{2}$.
 - b) Hallar un polinomio de grado uno que sea ortogonal a g(x) = 1.
- 12. Sea $v = \begin{pmatrix} a \\ b \end{pmatrix}$. Describir el conjunto H de vectores $\begin{pmatrix} x \\ y \end{pmatrix}$ que son ortogonales a v.
- 13. Sea $W = \langle \{v_1, \dots, v_p\} \rangle$. Mostrar que si x es ortogonal a todo v_j , para $1 \leq j \leq p$, luego x es ortogonal a todo vector en W.
- 14. Mostrar que si $x \in W \cap W^{\perp}$, entonces x = 0.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

ÁLGEBRA LINEAL 2024-2DO (LM - PM - LCC)

15. En cada caso, mostrar que $\{u_1, u_2\}$ o $\{u_1, u_2, u_3\}$ es una base ortogonal para \mathbb{R}^2 o \mathbb{R}^3 respectivamente, y luego expresar a x como combinación lineal de la base correspondiente.

a)
$$u_1 = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$, $x = \begin{pmatrix} 9 \\ -7 \end{pmatrix}$.

b)
$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$, $u_3 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$, $x = \begin{pmatrix} 8 \\ -4 \\ -3 \end{pmatrix}$.

- 16. Suponer que W es un subespacio de \mathbb{R}^n generado por n vectores ortogonales distintos de cero. Explicar por qué $W = \mathbb{R}^n$.
- 17. Una matriz cuadrada $A n \times n$ sobre \mathbb{R} es una matriz ortogonal si $A^{-1} = A^t$. Demostrar.
 - a) Sean *U, V* matrices ortogonales. Luego *UV* es una matriz ortogonal.
 - *b*) Tanto el conjunto de los vectores columna de una matriz ortogonal, como el conjunto de vectores filas son conjuntos ortonormales.
 - c) El determinante de una matriz ortogonal es 1 o -1.
 - *d*) Sea *U* una matriz ortogonal entonces para $x, y \in \mathbb{R}^n$ vale: *i*) ||Ux|| = ||x||, *ii*) $\langle Ux, Uy \rangle = \langle x, y \rangle$ (con el producto interno canónico).
- 18. Sea $\{u_1, u_2\}$ un conjunto ortogonal de vectores distintos de cero, y c_1, c_2 escalares no nulos. Mostrar que $\{c_1u_1, c_2u_2\}$ también es ortogonal.
- 19. Verificar la ley del paralelogramo para los vectores $u, v \in \mathbb{R}^n$:

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$

20. Dado $0 \neq u \in \mathbb{R}^n$, sea $L = \langle \{u\} \rangle$. Para $y \in \mathbb{R}^n$, la reflexión de y en L se define como

$$refl_L y = 2proy_L y - y$$
.

- a) Graficar en \mathbb{R}^2 para observar que la $refl_L y$ es la suma de $\hat{y} = proy_L y$ con $\hat{y} y$.
- b) Mostrar que la aplicación que $y \mapsto refl_L y$ es una transformación lineal.
- 21. Sean

$$u_1 = \begin{pmatrix} 0 \\ 1 \\ -4 \\ -1 \end{pmatrix}, u_2 = \begin{pmatrix} 3 \\ 5 \\ 1 \\ 1 \end{pmatrix}, u_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ -4 \end{pmatrix}, u_4 = \begin{pmatrix} 5 \\ -3 \\ -1 \\ 1 \end{pmatrix}, x = \begin{pmatrix} 10 \\ -8 \\ 2 \\ 0 \end{pmatrix}.$$

Escribir x como suma de dos vectores, uno en $\langle \{u_1, u_2, u_3\} \rangle$ y el otro en $\langle \{u_4\} \rangle$.

- 22. Sea W el subespacio generado por $v_1 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 1 \end{pmatrix}$, y $v_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$.
 - a) Si $y = (3, 1, 5, 1)^t$, escribirlo como la suma de un vector en W y uno en W^{\perp} .
 - b) Si $y = (3, -1, 1, 13)^t$, encontrar el punto más cercano a y en W.
 - c) Si $y = (2,4,0,1)^t$, encontrar la mejor aproximación a y mediante vectores de la forma $c_1v_1 + c_2v_2$. Hallar la distancia de y a W.
- 23. Sean $y = (4, 8, 1)^t$, $u_1 = \left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)^t$, $u_2 = \left(-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)^t$ y $W = \langle \{u_1, u_2\} \rangle$.
 - a) Sea $U = [u_1u_2]$. Calcular U^tU y UU^t .
 - b) Calcular $proy_W y y (UU^t)y$.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

ÁLGEBRA LINEAL 2024-2DO (LM - PM - LCC)

- 24. Sea A una matriz $m \times n$. Demostrar que todo vector $x \in \mathbb{R}^n$ puede escribirse en la forma x = p + u, donde p está en Fil(A) y $u \in nul(A)$. Mostrar que si la ecuación Ax = b es consistente, entonces hay una única p en Fil(A) tal que Ap = b.
- 25. Sea W un subespacio de \mathbb{R}^n con una base ortogonal $\{w_1, \cdots, w_p\}$ y sea $\{v_1, \cdots, v_q\}$ una base ortogonal
 - a) Explicar por qué $\{w_1, \dots, w_p, v_1, \dots, v_q\}$ es un conjunto ortogonal.
 - b) Explicar por qué el conjunto definido en el ítem anterior genera \mathbb{R}^n .
 - *c*) Demostrar que dim $W + \dim W^{\perp} = n$.
- 26. Siendo $u = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}$ y $v = \begin{pmatrix} 8 \\ 5 \\ -6 \end{pmatrix}$, utilizar el proceso de Gram-Schimdt para producir una base ortogonal
- 27. Sea

$$A = \begin{bmatrix} 1 & 2 & 5 \\ -1 & 1 & 4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1 \end{bmatrix}.$$

Encontrar una base ortogonal para el espacio columna de A.