Compiler Construction

Chapter 8: Introduction to optimization

Dittaya Wanvarie

Department of Mathematics and Computer Science Chulalongkorn University

Second semester, 2024

1/30

Dittaya Wanvarie (CSCU) 13016226

Introduction

Common goals of optimization

- Less runtime
- Less memory/register requirement
- Shorter codes
- Less energy consumption

Concern

- Safety: the transformed program MUST produce the same result
- Profit: the transformed program must have an improvement from the original program

Source of optimization

- Contextual knowledge
- Target machine architecture

Array-address calculation

m(i,j) with column-major ordering

- $\bullet \ \mathsf{Row} \ \mathsf{i} \in \mathsf{start_row..end_row}$
- \bullet column $j \in start_col..end_col$

```
for i in start_row .. end_row:
   for j in start_col .. end col:
        .. m(i,j) ..
```

- The index is starting from 1
- $m_1 + (j low_2(m)) \times (high_1(m) low_1(m)) + 1) \times w + (i low_1(m)) \times w$
- $m_1 + (j-1) \times hw + (i-1) \times w$
- ullet $low_i(m)$ and $high_i(m)$ are the lower and upper bounds of m's ith dimension
- ullet w is the size of an element of m

Strength reduction: from multiplication to addition

Improving a loop nest

 $y + x \times m$ for vectors x and y, and matrix m

```
subroutine dmxpy (n1, y, n2, 1dm, x, m)
                                                 double precision v(*), x(*), m(1dm.*)
                                                 jmin = j+16
                                                 do 60 j = jmin, n2, 16
                                                    do 50 i = 1. n1
                                                     do 60 j = 1, n2
                                                        + x(i-15)*m(i.i-15)) + x(i-14)*m(i.i-14))
       do 50 i = 1, n1
                                                        + x(j-13)*m(j,j-13)) + x(j-12)*m(j,j-12))
         y(i) = y(i) + x(j) * m(i,j)
                                                        + x(j-11)*m(i,j-11)) + x(j-10)*m(i,j-10))
                                                        + x(j-9)*m(i,j-9)) + x(j-8)*m(i,j-8))
50
       continue
                                                        + x(j-7)*m(i,j-7)) + x(j-6)*m(i,j-6))
60 continue
                                                        + x(i-5)*m(i.i-5)) + x(i-4)*m(i.i-4))
                                                        + x(j-3)*m(i,j-3)) + x(j-2)*m(i,j-2))
                                                        + x(j-1)*m(i,j-1)) + x(j) *m(i,j)
                                            50
                                                    continue
                                                 continue
```

- Loop unrolling: replicates the loop body for distinct iterations and adjusts the index calculations to match
- Utilize the target machine resource: keep some addresses in registers to eliminate load instructions

Opportunities for optimization

- Reducing the overhead of abstraction
 - ► E.g. array-address calculation
- Taking advantage of special cases
- Matching the code to system resources
 - E.g. eliminating loads instructions, fetching multiple elements into registers

Scope of optimization

- Local methods: a basic block
- Regional methods: a control-flow graph
 - An extended basic block: a set of blocks with one incoming edge
 - A dominator: all paths from the root block to the dominated block.
- Global methods: intraprocedural methods
 - An entire procedure
- Interprocedural methods: a whole-program method

Local optimization

- Local scope a basic block
- Remove redundancy in the blocks
- E.g. value numbering and tree-height balancing

Local value numbering


```
a = b + c
b = a - d
c = b + c
d = a - d
```

- The expression b+c in the first and the third lines are NOT redundant since we redefine b in the second line
- The expression a-d in the second and the forth lines are redundant since a and d are not redefined between these two operations

We have to perform lifetime analysis of each definition (assignment)

Local value numbering algorithm


```
    for i ← 0 to n-1, where the block has n operations "T<sub>i</sub> ← L<sub>i</sub> Op<sub>i</sub> R<sub>i</sub>"
    get the value numbers for L<sub>i</sub> and R<sub>i</sub>
    construct a hash key from Op<sub>i</sub> and the value numbers for L<sub>i</sub> and R<sub>i</sub>
    if the hash key is already present in the table then replace operation i with a copy of the value into T<sub>i</sub> and associate the value number with T<sub>i</sub>
    else

            insert a new value number into the table at the hash key location record that new value number for T<sub>i</sub>
```

- Assign a distinct number to each value that the block computes
- Use a hash table to find defined values (L_i and R_i)
- Insert a new value L_i Op R_i to the hash table

LVN example

From the original code block, the value numbering becomes

b_4 and d_4 refer to the same value (number 4)

Then, we can re-write the block as follows

$$a = b + c$$
 $b = a - d$
 $c = b + c$
 $d = b$

Extending the algorithm

We may use LVN to perform several other local optimizations

- Commutative operations: $a \times b$ and $b \times a$ should receive the same value number.
- Constant folding: find the evaluated expression in the hash table
- ullet Algebraic identities: e.g. x+0 and x should receive the same value number. However, we need a set of rules to test for these identities

Example rules

Extending the algorithm

- for $i \leftarrow 0$ to n-1, where the block has n operations " $T_i \leftarrow L_i$ Op $_i$ R_i "
 - 1. get the value numbers for L_i and R_i
 - 2. if L_i and R_i are both constant then evaluate L_i Op_i R_i , assign the result to T_i , and mark T_i as constant
 - 3. if L_i Op_i R_i matches an identity in Figure 8.3, then replace it with a copy operation or an assignment
 - 4. construct a hash key from $0p_i$ and the value numbers for L_i and R_i , using the value numbers in ascending order, if $0p_i$ commutes
 - if the hash key is already present in the table then replace operation i with a copy into T_i and associate the value number with T_i
 - else

insert a new value number into the table at the hash key location record that new value number for \mathcal{T}_i

The role of naming

$$a_3 = x_1 + y_2$$

 $b_3 = x_1 + y_2$
 $a_4 = 17_4$
 $c_3 = x_1 + y_2$

We can see that $x_1 + y_2$ are redundant.

- We can rewrite b = x + y with b = a since they receive the same value number
- However, we cannot rewrite c = x + y with c = a because a does not have value number 4 at the forth line

We may remove the name from the list if it is redefined

The role of naming

Another solution is the static single-assignment form (SSA)

$$a_0_3 = x_0_1 + y_0_2$$

 $b_0_3 = x_0_1 + y_0_2$
 $a_1_4 = 17_4$
 $c_0_3 = x_0_1 + y_0_2$

We will also assign (definition) number to each name apart from the value number.

Tree-height balancing

Parallel processing

Ideas

- Write dependence graph
- Larger candidate trees provide more opportunities for rearrangement

Tree-height balancing algorithm

- Identify candidate expression tress in the block
- For each candidate tree, assign operands with rank and insert the tree into a priority queue

Algorithm example

$$t_1 \leftarrow a \times b$$
 $t_2 \leftarrow c - d$
 $y \leftarrow t_1 + t_2$
 $z \leftarrow t_1 \times t_2$
Short Basic Block

- ullet Uses(T) is the set of blocks that need (use) the definition of T
- \bullet UEVar(b) is the set of variables whose values are necessary to block b

Finding the root

- If the name is used more than once, then the (operation) node must be marked as a root to ensure that the value is available for all of its uses
- If the name is used just once in another operation but the operators are not the same, then the name must be the root

Finding the root


```
// Rebalance a block b of n operations, each of form "T; ← L; Op; R;"
// Phase 1: build a queue, Roots, of the candidate trees
Roots ← new queue of names
for 1 ← 0 to n-1
   Rank(T_i) \leftarrow -1:
    if Op, is commutative and associative and
       (|Uses(T_i)| > 1 \text{ or } (|Uses(T_i)| = 1 \text{ and } 0p_{Uses(T_i)} \neq 0p_i)) \text{ then}
          mark T<sub>i</sub> as a root
          Enqueue(Roots, Tr. precedence of Opr)
// Phase 2: remove a tree from Roots and rebalance it
while (Roots is not empty)
    var + Dequeue(Roots)
               // Create balanced tree from its root. T, in "T, ← L, Op, R,"
Balance(root)
    if Rank(root) > 0
       then return // have already processed this tree
    a ← new queue of names
                                                // First, flatten the tree
    Rank(root) \leftarrow Flatten(L_{i}, q) + Flatten(R_{i}, q)
    Rebuild(a.Op.)
                                                //Then, rebuild a balanced tree
Flatten(var.q) // Flatten computes a rank for var & builds the queue
    if var is a constant
                                                // Cannot recur further
       then
          Rank(var) \leftarrow 0
          Enqueue(q.var.Rank(var))
       else if var∈UEVAR(b)
                                                // Cannot recur past top of block
              then
                  Rank(var) - 1
                  Enqueue(q.var.Rank(var))
              else if var is a root
                      then
                                                // New queue for new root
                                                // Recur to find its rank
                         Balance(var)
                         Enqueue(q.var,Rank(var))
                                                // var is T, in jth op in block
                                                // Recur on left operand
                         Flatten(Li.g)
                         Flatten(Ri.q)
                                                // Recur on right operand
    return Rank(var)
```

Rebuilding the tree


```
Rebuild(a.op)
                                                 // Build a balanced expression
    while (q is not empty)
                                                 // Get a left operand
       NL ← Dequeue(q)
       NR ← Dequeue(q)
                                                 // Get a right operand
       if NL and NR are both constants then
                                                // Fold expression if constant
          NT ← Fold(op. NL. NR)
          if a is empty
             then
                Emit("root ← NT")
                Rank(root) = 0:
             else
                Enqueue(q.NT.0)
                Rank(NT) = 0:
       else
                                                 // op is not a constant expression
          if a is empty
                                                 // Get a name for result
             then NT ← root
             else NT ← new name
          Emit("NT ← NL op NR")
          Rank(NT) \leftarrow Rank(NL) + Rank(NR)
                                                // Compute its rank
          if a is not empty
                                                 // More ops in g \Rightarrow add NT to g
             then Engueue(a, NT, r)
```

Example of tree-height balancing

Example of tree-height balancing

Regional optimization

Superlocal value numbering

 Create scope for B₀ 2. Apply LVN to Bn 3. Create scope for B₁ 4. Apply LVN to B₁ 5. Add Be to WorkList 6. Delete B₁'s scope 7. Create scope for B2 8. Apply LVN to Bo 9. Create scope for B₃ 10. Apply LVN to B3 11. Add Bs to WorkList 12. Delete B3's scope 13. Create scope for B₄ 14. Apply LVN to B₄ Delete B₄'s scope 16. Delete B2's scope 17. Delete Bo's scope 18. Create scope for Bs 19. Apply LVN to Bs 20. Delete Bs's scope 21. Create scope for B_R 22. Apply LVN to B6 23. Delete B6's scope

(d) Scope Manipulations

Global optimization

Data-flow analysis: Live analysis

- ullet LiveOut(n) is the set of variables (names) that are live on exit from block n
- $\mathbf{UEVar}(m)$ is the set of variables whose values are necessary to block m
- \bullet $\mbox{VarKill}(m)$ is the set of variables (names) that are killed (redefined) in block m
- ullet succ(n) is the set of successor blocks of n

$$\mathsf{LiveOut}(n) = \cup_{m \in succ(n)} (\mathsf{UEVar}(m) \cup (\mathsf{LiveOut}(m) \cap \overline{\mathsf{VarKill}(m)}))$$

Live analysis

$$\mathsf{LiveOut}(n) = \cup_{m \in \mathit{succ}(n)} (\mathsf{UEVar}(m) \cup (\underline{\mathsf{LiveOut}(m)} \cap \overline{\mathsf{VarKill}(m)}))$$

A backward data-flow problem: a variable \boldsymbol{v} is live on entry to \boldsymbol{m} under two conditions

- $\blacksquare \ \, \text{It is used in} \,\, m \,\, \text{before it is redefined in} \,\, m \to v \in \mathbf{UEVar}(m)$
- lt is live on exit from m and pass through m without any new definition $\to v \in \operatorname{LiveOut}(m) \cap \overline{\operatorname{VarKill}(m)}$


```
\mathsf{LiveOut}(n) = \cup_{m \in \mathit{succ}(n)} (\mathsf{UEVar}(m) \cup (\mathsf{LiveOut}(m) \cap \overline{\mathsf{VarKill}(m)}))
```

```
// of form "x ← y op z"
                                              // assume CFG has N blocks
for each block b
                                              // numbered 0 to N-1
   Init(b)
                                               for i \leftarrow 0 to N-1
                                                  LiveOut(i) \leftarrow \emptyset
Init(b)
   UEVAR(b) \leftarrow \emptyset
                                              changed ← true
   VARKILL(b) ← Ø
                                              while (changed)
   for i \leftarrow 1 to k
                                                  changed ← false
      if v ∉ VARKILL(b)
                                                  for i ← 0 to N-1
          then add v to UEVAR(b)
                                                     recompute LiveOut(i)
      if Z ∉ VARKILL(b)
          then add z to UEVAR(b)
                                                     if LiveOur(i) changed then
      add x to VARKILL(b)
                                                         changed ← true
```

(b) Solving the Equations

(a) Gathering Initial Information

Live analysis example

$$\mathsf{LiveOut}(n) = \cup_{m \in succ(n)} (\mathsf{UEVar}(m) \cup (\mathsf{LiveOut}(m) \cap \overline{\mathsf{VarKill}(m)}))$$

a)	Example	Control-Flow	Graph

	UEVAR	VARKILL	
B ₀	Ø	{i}	
B_1	{i}	Ø	
B_2	Ø	{s}	
B_3	{s.i}	{s,i}	
B_4	{s}	Ø	

(b) Initial Information

	LIVEOUT(n)						
Iteration	B ₀	B ₁	B ₂	B ₃	B4		
Initial	Ø	Ø	Ø	Ø	Ø		
1	{i}	{s,i}	{s,i}	{s,i}	Ø		
2	{s,i}	{s,i}	{s,i}	{s,i}	Ø		
3	{s,i}	{s,i}	{s,i}	{s,i}	Ø		

(c) Progress of the Solution

Global code placement

Fall-through branch

Code placement

Greedy algorithm

Interprocedural optimization

Inline substitution

Interprocedural optimization

Procedure placement

ullet If procedure p calls q, we would like p and q to occupy adjacent locations in memory.

