2/34 **7:04:48** \*\*\*



### Entity Relationship Model (ERM)

- Basis of an entity relationship diagram (ERD)
- ERD depicts the:
  - Conceptual database as viewed by end user
  - Database's main components
    - Entities
    - Attributes
    - Relationships
- Entity Refers to the entity set and not to a single entity occurrence

92015 Cenesse Learning, All Rights Reserved. May not be scanned, copied or duplicated, or posted to apublicly accessible website, in whole or in pa

### Attributes Characteristics of entities • Required attribute: Must have a value, cannot be • Optional attribute: Does not require a value, can Domain - Set of possible values for a given attribute • Identifiers: One or more attributes that uniquely identify each entity instance

left empty

be left empty

An identifier is also called a KEY, or PRIMARY KEY - this is one of the 'key' concepts in all of database theory!! We'll talk much more about keys later.



#### Attributes

- Composite identifier: Primary key composed of more than one attribute
- **Compound attribute**: Attribute that can be subdivided to yield additional attributes
- Simple attribute: Attribute that cannot be subdivided
- Single-valued attribute: Attribute that has only a single value
- Multivalued attributes: Attributes that have many values

B 2015 Cenesse Learning, All Rights Reserved, May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

FYI - here is a page on the various types of attributes.



In Crow's Foot notation, 'bold' attributes are 'required' (can't be null).

#### Attributes

- Multivalued attributes: Attributes that have many values and require creating:
  - Several new attributes, one for each component of the original multivalued attribute
  - A new entity composed of the original multivalued attribute's components
- Derived attribute: Attribute whose value is calculated from other attributes
  - Derived using an algorithm

92013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in par



## Table 4.2 - Advantages and Disadvantages of Storing Derived Attributes

|              | STORED                                                                                                                                   | NOT STORED                                                                                    |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Advantage    | Saves CPU processing cycles<br>Saves data access time<br>Data value is readily available<br>Can be used to keep track of historical data | Saves storage space<br>Computation always yields current value                                |
| Disadvantage | Requires constant maintenance to ensure<br>derived value is current, especially if any<br>values used in the calculation change          | Uses CPU processing cycles<br>Increases data access time<br>Adds coding complexity to queries |

Cengage Learning © 2015

B 2015 Ceneage Learning, All Rights Reserved, May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in pr

#### Relationships

- Association between entities that always operate in both directions
- Participants: Entities that participate in a relationship
- Connectivity: Describes the relationship classification
- Cardinality: Expresses the minimum and maximum number of entity occurrences associated with one occurrence of related entity

D 2013 Congage Leaming. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

11

### Connectivity vs cardinality



Connectivity: 1:1, 1:M or M:N (three diff ways by which two entities are related).

Cardinality: (min,max) for 1:1, 1:M or M:N (eg. 1:1 can have (1,0) as its cardinality, 1:M can have (0,4) as its cardinality). Sometimes, min is called 'modality' (and max is cardinality). The 'inside' symbols denotes min, and the outside ones, max.

Confusingly, the # rows in a table is ALSO called table's cardinality (and, # of columns is called the table's degree).

Also confusingly, 1:1, 1:M, M:N are called 'cardinality ratios'!

### 'Can I exist apart from you?'



Existence independence implies a strong entity; but, existence dependence (alone, ie. by itself) does NOT imply a weak entity (there needs to be one more condition, based on 'relationship strength', for it to become 'weak').

### Existence dependence

An entity B is "existent dependent" on another entity A, if, a row in B can only exist when its FK is NOT NULL, ie. a corresponding entry exists in A.

Eg. if A is EMPLOYEE and B is DEPENDENT, a dependent (eg. child) in B can only exist if there is a corresponding employee (eg. Dad) in A. THIS ALONE DOES NOT MAKE 'B' A WEAK ENTITY!

### Weak vs strong relationship

#### Relationship Strength

#### Weak (non-identifying) relationship

• Primary key of the related entity does not contain a primary key component of the parent entity

#### Strong (identifying) relationships

 Primary key of the related entity contains a primary key component of the parent entity

© 2015 Cengage Leaming. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

https://bytes.usc.edu/cs585/s21\_DBDS012/lectures/ER/slides.html



So, here, CLASS is \*\*not\*\* a weak entity.

## Strong ("common PK") course-class relation



CLASS is now a weak entity (because: it is existence dependent, AND has a strong relationship).

### Weak entity [two conditions]

#### Weak Entity

- Conditions
  - Existence-dependent
  - Has a primary key that is partially or totally derived from parent entity in the relationship
- Database designer determines whether an entity is weak based on business rules

A weak entity needs to satisfy two conditions: existence dependence, strong (identifying/owning) relationship with a parent.

Note that a weak entity implies existence dependence, but existence dependence does not imply a weak entity!

Note too that a weak entity implies a strong ("owning" or "identifying") relationship.

Removing the controlling (owning) entity's key from a weak entity's PK will result in \*\*duplicates\*\* for remaining PK(s) - THAT is what makes it 'weak'.

### Weak entity - example



Payment cannot exist independent of Loan, AND needs Loan's key to be part of its own key, so it is a weak entity.

### Weak entity



### Weak entity



#### Relationship Participation

#### **Optional participation**

• One entity occurrence does not require a corresponding entity occurrence in a particular relationship

#### Mandatory participation

• One entity occurrence requires a corresponding entity occurrence in a particular relationship

92015 Centrate Learning All Sights Research May not be scanned conjector duplicated or posted to a publicly accessible website in whole or in part

20







#### Relationship Degree

- Indicates the number of entities or participants associated with a relationship
- **Unary relationship**: Association is maintained within a single entity
  - Recursive relationship: Relationship exists between occurrences of the same entity set
- Binary relationship: Two entities are associated
- Ternary relationship: Three entities are associated

D 2013 Congage Leaming. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

24





### **Bridge entities**



- Also known a composite of bridge entities
- Used to represent an M:N relationship between two or more entities
- Is in a 1:M relationship with the parent entities
  - Composed of the primary key attributes of each parent entity
- May also contain additional attributes that play no role in connective process

© 2013 Congage Leaming. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in who is or in part.

27





### Putting together an ERD

#### Developing an ER Diagram

- Create a detailed narrative of the organization's description of operations
- Identify business rules based on the descriptions
- Identify main entities and relationships from the business rules
- Develop the initial ERD
- Identify the attributes and primary keys that adequately describe entities
- Revise and review ERD

2015 Census Leaming All Sights Second May not be cranned conjector duplicated or notted to a publicly accessible website in whole or in part

30



















# List of entities, relationships, connectivities

| ENTITY     | RELATIONSHIP | CONNECTIVITY | ENTITY     |
|------------|--------------|--------------|------------|
| SCHOOL     | operates     | 1:M          | DEPARTMENT |
| DEPARTMENT | has          | 1:M          | STUDENT    |
| DEPARTMENT | employs      | 1:M          | PROFESSOR  |
| DEPARTMENT | offers       | 1:M          | COURSE     |
| COURSE     | generates    | 1:M          | CLASS      |
| PROFESSOR  | is dean of   | 1:1          | SCHOOL     |
| PROFESSOR  | chairs       | 1:1          | DEPARTMENT |
| PROFESSOR  | teaches      | 1:M          | CLASS      |
| PROFESSOR  | advises      | 1:M          | STUDENT    |
| STUDENT    | enrolls in   | M:N          | CLASS      |
| BUILDING   | contains     | 1:M          | ROOM       |
| ROOM       | is used for  | 1:M          | CLASS      |
| ROOM       |              | 1:M          |            |

### The full schema

#### "All together now!"

