CSE331. Note Title 1/11/2016 Goals Basic data structures & algorithms I data structure provides a way to organize data items. Each data structure has associated operations. linear data structures: insertion/deletion/search exc.

I Algorithms: "a bag of tricks" input algorithm -> output - basic algorithms: sorting searching analytical techniques - asymptotic notation, lower bounds Summay: data strutures & algorithms are practical & basic to computer Science culture (more than just writing code) First problem: Sorting problem Input: a sequence of n numbers (a, a2, --, an) Output: a permutation (re-ordering) (a, az, as, ..., an)

of the input sequence s.t. $a_1 \leq a_2 \leq a_3 \leq \cdots \leq a_n'$ $50 \ 100 \ 1 \ 0 \Rightarrow 0 \ 1 \ 50 \ 100$ $a_1 \ a_2 \ a_3 \ a_4 \ a_1' \ a_2' \ a_3' \ a_4'$ Insertion Sort: basic operation: insertion (insert an element into a sorted list s.t. the final list is still sorted) ⇒ 1 50 55 60 70 80 e.9 input: 5 2 4 6 13

	Insertion Sort	example.	Insertion_Sort(A) // A is the input array of
	j=1 5 2	4 6 1 3	Size n
J=2	5 z	4 6 1 3	1. for j=2 to length[A] 2. do key←A[j]
	2 5	4 6 1 3	3 //insert A [i] to sorted list A [1.j-1]
j=3	2 5	4 6 13	4. $i \leftarrow j-1$ 5 while $i > 0$ and $A[i] > Key$
	2 4	5 6 13	6 do A[i+i] (-A[i])
Ĵ=4	2 4	5 6 13	7
2 -	2 4	5 6 1 3	
J=5	2 2	4 5 6 3	

e-g. 1 2 3 4 5 6 6 5 4 3 2 1