CE 311K: Control flow - Branching and Iterations

Krishna Kumar

University of Texas at Austin krishnak@utexas.edu

- Numerical solution of a sliding block
- 2 Bisection method

What is the optimal angle to pull the statue?

A wall painting from the tomb of Djehutihotep (credit: martinhumanities.com)

Numerical solution of a sliding block: Approximation

What is the optimal angle to pull the block applying the least amount of force?

Numerical solution of a sliding block: Forces

Numerical solution of a sliding block: Forces

$$F = \frac{\mu \cdot mg}{(\cos \theta + \mu \sin \theta)}$$

Numerical solution of a sliding block: Compute force

• Given W = 25kN(2500 kg), $\theta = 45^{\circ}$ and $\mu = 0.75 (35^{\circ})$:

• Given W = 25kN(2500 kg) and $\mu = 0.75$, what's the optimum θ ?

QNumerical solution of a sliding block: Optimal theta?

Given $W=25\,\mathrm{kN}(2500\,\mathrm{kg})$ and $\mu=0.75$, what's the optimum θ ?

Lists

- A list is a sequence of data. (mutable)
- An 'array' in most other languages is a similar concept, but Python lists are more general than most arrays as they can hold a mixture of types.
- A list is constructed using square brackets:

```
>>> a = [0, 10, 20, 30, 40, 50, 60, 70, 80]
>>> print(a)
[0, 10, 20, 30, 40, 50, 60, 70, 80]
>>> type(a)
<class 'list'>
>>> len(a)
10
>>> a.append(90)
>>> print(a)
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
```

Iterating through a list: for loops

Looping over each item in a list (or more generally a sequence) is called 'iterating'. We iterate over the members of the lab group using the syntax:

```
for each item in list do
    print(item)
```

```
for item in list:
    print(item)
```

▲ Indentation matters in python!

np.arange()

We need a new library called 'numpy', we are going to import the new library. import numpy as np The np.arange() returns a sequence of numbers:

```
range(stop)
```

stop: Number of integers (whole numbers) to generate, starting from zero. eg. np.arange(3) yields a sequence of [0, 1, 2].

```
np.arange([start], stop[, step])
```

- *start*: Starting number of the sequence.
- stop: Generate numbers up to, but not including this number.
- step: Difference between each number in the sequence.

Numerical solution of a sliding block: Optimal theta?

Given $W = 25 \, \text{kN}(2500 \, \text{kg})$ and $\mu = 0.75$, what's the optimum θ ?

Identifying optimum requires conditional statements

Comparison on int, float and strings

i and j are variable names and comparisons below evaluate to a Boolean

Logic operators on bools

a and b are variable names with Boolean values

Α	В	${\tt A}$ and ${\tt B}$	A or B
True	True	True	True
True	False	False	True
False	True	False	True
False	False	False	False

Designing a smart window: if condition

 An electric window opener, attached to a rain sensor and a temperature gauge, might be controlled by the following program:

Designing a smart window: if condition

```
# If raining, close the window
if raining:
        close_window()
# If the temperature is over 80 F, open window
elif temperature > 80: # else if
        open_window()
# If the temperature is below 66 F, close window
elif temperature < 66:
        close_window()
```

Otherwise, do nothing and leave window as it is else:

continue

Numerical solution of a sliding block: Optimal theta?

Given $W = 25 \,\mathrm{kN}(2500 \,\mathrm{kg})$ and $\mu = 0.75$, what's the optimum θ ?

Identify optimum with an if conditional statement

- Numerical solution of a sliding block
- 2 Bisection method

Calculate the optimum angle to pull for a given force

• Given $F = 17.5 \, \text{kN} (1750 \, \text{kg})$, $W = 25 \, \text{kN}$ and $\mu = 0.75$, what's θ ?

Calculate the optimum angle to pull for a given force

• Given $F = 17.5 \, \text{kN} (1750 \, \text{kg})$, $W = 25 \, \text{kN}$ and $\mu = 0.75$, what's θ ?

Numerical solution of a sliding block: Friction angles

