# Facial Expression Recognition

# Malak Gaballa & Masa Tantawy

# The American University in Cairo



# Introduction

Given images of human faces showing different expressions, the model should be able to categorize each image into one of 7 categories. 0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral.

- Model input: image vector of pixels for a 48x48 pixel grayscale image
- Model output: A number from 0 to 6 indicating the facial expression
- Evaluation: weighted accuracy metric to account for class imbalance in the data.



# **Datasets**

**Baseline Model** 

The VGGNet model, short for Visual Geometry Group Network was

trained on FER2013 dataset achieving an accuracy of 73.28%. The

It is a classical CNN consisting of 4 convolutional stages (for feature

• Convolutional stage: 2 convolutional blocks & a max-pooling layer

• Convolution block: consists of a convolutional layer, a ReLU activation,

The first 2 fully connected layers are followed by a ReLU activation.

The third fully connected layer is for classification.

extraction, dimension reduction, and non-linearity) and 3 fully connected

FER2013 Dataset

- Selected Dataset: **FER2013** 
  - 35,887 facial grayscale images (48x48 pixels), 63 MBs

• 7 categories (highly imbalanced) Has a test-train split.

# Other Datasets

AffectNet

- 12,809 images, 5 GBs
- 8 categories
- Slightly balanced ExpW

Expression in-the-Wild Dataset

• 91,793 images, 8 GBs

framework of the model is **PyTorch**.

layers (for classification).

7 categories

# **Baseline Model - Performance**

### • PyTorch:

Original model, but the hyperparameters cannot be modified. Epochs = 350

- Top- 1 Accuracy: 73.27%
- Top- 2 Accuracy: 86.45%





### • Keras TensorFlow:

Using epochs = 180 instead of 350 due to GPU limit

- Top-1 Accuracy: 65.76%
- Top- 2 Accuracy: 79.91%





# Methodology

# Hyperparameters Tuning

Different regularizers and optimizers with varying learning rates were experimented. The final modifications to the baseline model were:

- Adam Learning Rate = 0.0001 instead of 0.001
- Early Stopping with patience = 10

# • Data Imbalance Handling

The oversampling techniques - Random Over Sampling and SMOTE were used in addition to oversampling followed by undersampling techniques - Smote + Tomek and Smote + ENN were used.





ROS and SMOTE A total of 62,923 images

SmoteTomek A total of 62,675 images

Before being added to the model, each dataset was split in the same ratio as the original data (80% train, 10% test, 10% validation).

# Data Augmentation

A random balanced subset of the dataset has undergone different combinations (none, one, or multiple) of horizontal flipping, rotation, and gaussian noise addition with different ratios from given set ranges.

# Auxiliary Data

The AffectNet Dataset was used. It originally contained 8 categories of 96x96 coloured images. Before being added to the model, only the common 7 categories were selected, images were converted to grayscale and resized to 48x48.

# Results

### Hyperparameters Tuning

Training stopped after 54 epochs.

- Top-1 Accuracy: 66.15%
- Top-2 Accuracy: 82.22%
- Top-3 Accuracy: 90.89%





All extra training (balanced data, augmented data, and auxiliary data) was done on the hyper tuned model.

# • Extra training on balanced data

|                | Random Over<br>Sampling | SMOTE  | SmoteTomek |
|----------------|-------------------------|--------|------------|
| Top-1 Accuracy | 85.97%                  | 87.18% | 82.88%     |
| Top-2 Accuracy | 92.71%                  | 93.88% | 91.82%     |
| Top-3 Accuracy | 96.49%                  | 96.84% | 95.64%     |

## • Extra training on augmented data

|                | Random Over<br>Sampling | SMOTE  | SmoteTomek |
|----------------|-------------------------|--------|------------|
| Top-1 Accuracy | 59.74%                  | 60.88% | 58.29%     |
| Top-2 Accuracy | 79.91%                  | 78.99% | 77.46%     |
| Top-3 Accuracy | 88.63%                  | 89.22% | 86.77%     |

# • Extra training on auxiliary data

|                | Random Over<br>Sampling | SMOTE  | SmoteTomek |
|----------------|-------------------------|--------|------------|
| Top-1 Accuracy | 29.51%                  | 30.31% | 29.17%     |
| Top-2 Accuracy | 45.33%                  | 44.58% | 42.71%     |
| Top-3 Accuracy | 53.41%                  | 54.25% | 51.96%     |

# None of the models showed overfitting.

**Note:** The model zoo for each model has been saved for next steps.

# Discussion

Since the addition of auxiliary and augmented data declined the model's performance, an ensemble model of 3 distinct VGGNet models trained on balanced datasets generated through the different aforementioned resampling techniques was created.

Each model was individually trained on the dataset, loaded as a trained model then defined as a component of the ensemble. By combining the outputs of these models and averaging them, ensemble's final output was generated.

# **Final model – Ensemble:**

Facial Expression = Average of ROS, SMOTE, SmoteTomek (augmented and auxiliary data excluded as they deteriorated the model)

- Top-1 Accuracy: 97.18%
- Top-2 Accuracy: 99.58%
- Top-3 Accuracy: 99.72%

# Final model – Ensemble: Confusion Matrix



A real-time application was developed allowing classification using the camera or from an uploaded image, offering high generalizability in facial expression recognition.



# **Conclusion & Future Work**

# Lessons Learnt

- Data imbalance handling significantly enhances the performance of the
- Constructing an ensemble model using multiple VGGNet models trained on balanced datasets further optimized performance.
- It is also concluded that extra training on auxiliary or augmented data may lead to worse performance of the model instead of enhancing it.
- The confusion matrix highlights Angry, Fear, and Neutral as the most challenging expressions to classify. This difficulty may arise from subtle facial differences or dataset imbalances.

# Future Recommendations

- It is suggested to train the model on a more diverse and generalized database of facial expressions, such as Exp-W.
- Considering the inclusion of an 8<sup>th</sup> category of facial expression, such as contempt as seen in the AffectNet Dataset.
- Lastly, transitioning from grayscale to RGB images for input might yield better results.

# References

1. FER2013 Dataset: <a href="https://www.kaggle.com/c/challenges-in-">https://www.kaggle.com/c/challenges-in-</a> representation-learning-facial-expression-recognition-challenge/data 2. AffectNet Dataset:

https://www.kaggle.com/datasets/noamsegal/affectnet-training-data

- 3. VGGNet Repository: <a href="https://github.com/usef-kh/fer">https://github.com/usef-kh/fer</a>
- 4. VGGNet Research Paper: <a href="https://arxiv.org/pdf/2105.03588v1.pdf">https://arxiv.org/pdf/2105.03588v1.pdf</a>
- 5. Keras Tensorflow Model Source Code:
- https://colab.research.google.com/drive/1XiJ-
- sa5Kg324mpq\_XG\_JMWOlfj\_DvZFv#scrollTo=FCly4\_J8uwyv

and a batch normalization layer.