readme.md 2024-09-23

Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection

Code of "Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection".

Reproducing the experiments

We provide 2 different experimental set-ups {policy_selection, resource_allocation}, one in each folder.

- For the policy_selection models were trained using the TD3-BC code. We already provide data collected by testing the trained models in the logs\data\collected_data_aggregate.pkl file. Alternatively, models can be trained using the generate_models.py script and then tested. To reproduce figure 1, test.py script and then plot_fig_1.py, similar to evaluate aLTT with different error tolerance levels run test_delta.py followed by plot_fig_2.py. Finally, the betting strategies can be compared by running test_betting.py and then plot_fig_3.py.
- For run the resource_allocation experiment we use the existing code from Nokia Wireless Suite. Testing data is pre-collected and stored in the logs\data\collected_data_aggregate.pkl file. To reproduce the figure on the energy-delay product and queue size trade-off, run the test_high_priority_class.py script followed by plot_energy_delay_product.py. Similarly, for the energy efficiency vs delay plot, run test_single_class.py followed by plot_delay.py.

The collected_data_aggregate.pkl file for the resource_allocation can be downloaded here

Dependencies

To run the code, the following packages are necessary:

- dr4l for offline RL in policy_selection .
- gym for RL algorithms policy_selection and resource_allocation .
- matplotlib to plot the figures.
- numpy for array numerical operations.
- pickle to store and load results.