

Микросборка приемопередатчика по стандарту CAN с гальванической развязкой 2011ВВ034, К2011ВВ034К

ГГ – год выпуска НН – неделя выпуска

Основные характеристики микросборки:

- Напряжение источника питания, Ucc, 5,0 ± 10 % B;
- Выходное напряжение высокого уровня, U_{OH}, на выходе OUT не менее 0.7⋅U_{CC}:
- Выходное напряжение низкого уровня U_{OL}, на выходе OUT не более 0,4 В;
- Выходное напряжение дифференциальное рецессивного состояния, U_{O_DIFF_REC}, на выводах CANH и CANL (без нагрузки) от минус 500 до 50 мВ;
- Выходное напряжение дифференциальное доминантного состояния, Uo_DIFF_DOM, на выводах CANH и CANL не менее 0,25·Ucc;
- Динамический ток потребления, Іосс, не более 170 мА;
- Ток потребления в состоянии пониженного энергопотребления, Ісс, не более 560 мкА;
- Скорость передачи битов данных, V_{DR}, не более 10 Мбит/с;
- Температурный диапазон:

Обозначение	Диапазон
2011BB034	минус 60 – 85 °C
K2011BB034	минус 60 – 85 °C
K2011BB034K	0 – 70 °C

Тип корпуса:

- 20-выводной металлокерамический корпус МК 4140.20-1.

Области применения микросборки

Микросборка 2011BB034 (далее – МСБ) предназначена для использования в аппаратуре специального назначения, в качестве приемопередатчика сигналов цифрового интерфейса CAN. МСБ может использоваться для создания устройств высоковольтной гальванической развязки.

1 Структурная блок-схема

Приемопередатчик по стандарту CAN с гальванической развязкой

Рисунок 1 – Структурная блок-схема МСБ

2 Условное графическое обозначение

Рисунок 2 – Условное графическое обозначение

3 Описание выводов

Таблица 1 — Описание выводов

№ вывода корпуса	Обозначение вывода	Функциональное назначение выводов	
1	NC	Не используется	
2, 3	U _{CC1}	Питание логического интерфейса	
4	IN	Вход приемника логического интерфейса	
5	OUT	Выход приемника логического интерфейса	
6	EN	Вход разрешения работы логического интерфейса	
7, 8	GND1	Общий	
9	NC	Не используется	
10	INIT	Вход выбора начального состояния выхода OUT	
11	NC	Не используется	
12, 13	GND2	Общий	
14	nSHDN	Вход выбора режима. Отключает входы/выходы передатчика CAN (активный низкий уровень сигнала)	
15	RS	Вход выбора режима работы	
16	CANL	Вход приемника CAN / выход передатчика CAN. Инверсный	
17	CANH	Вход приемника CAN / выход передатчика CAN. Прямой	
18, 19	U _{CC2}	Питание интерфейса CAN	
20	NC	Не используется	

4 Указания по применению и эксплуатации

Очищающие растворители, применяемые для очистки МСБ, предназначенных для автоматизированной сборки аппаратуры – по ГОСТ РВ 20.39.412.

МСБ следует устанавливать на печатные платы вплотную с приклейкой к плате без дополнительного крепления с последующей распайкой выводов.

Перечень материалов, рекомендуемых для применения при приклейке МСБ на печатные платы – по ОСТ 11 073.063.

При ремонте аппаратуры и измерении параметров МСБ замену МСБ необходимо проводить только при отключенных источниках питания.

Типовая схема включения МСБ приведена на рисунке 4.

Запрещается подведение каких-либо электрических сигналов (в том числе шин «Питание», «Общий») к выводам микросборок, не используемым согласно таблице 1.

Выводы INIT подключать к шине «Общий» или шине «Питание».

5 Описание функционирования

Функциональная схема приемопередатчика логического интерфейса - интерфейса CAN представлена на рисунке .

Рисунок 3 — Функциональная схема приемопередатчика логического интерфейса — интерфейса CAN

МСБ предназначена для преобразования передаваемого сигнала интерфейса САN в дифференциальный импульсный сигнал, подаваемый на первичную обмотку развязывающего трансформатора, а также преобразования принимаемого импульсного сигнала со вторичной обмотки трансформатора в выходной сигнал интерфейса САN. МСБ используется для создания устройств высоковольтной гальванической развязки передаваемых сигналов с использованием импульсного трансформатора.

МСБ содержит приемопередатчик интерфейса CAN и кодер/декодер трансформаторного интерфейса. При использовании МСБ можно получить гальванически развязанную дуплексную линию связи CAN.

Приемопередатчик имеет систему подтверждения, которая обеспечивает соответствие логических уровней на входе и выходе приемопередатчика после сбоев питания или различных помех. При отключении питания интерфейса CAN Ucc2, выход OUT логического интерфейса, где питание есть, переходит в логическое состояние, соответствующее состоянию на входе INIT.

При подаче питания на МСБ выход OUT устанавливается в логическую «1», выходы CANH и CANL — в рецессивное состояние. При этом на время не более 2 мс или до первого переключения на входе IN или CANH, CANL состояние выхода OUT (CANH, CANL) может не соответствовать состоянию на входе IN (CANH, CANL).

Таблица истинности МСБ приведена в таблице 2.

Таблица 2 – Таблица истинности работы МСБ						
Приемник логического интерфейса – передатчик СА						
Ucca	Ucco	FN	RS	nSHDN		

Приемни	Приемник логического интерфейса – передатчик CAN								
U _{CC1}	U _{CC2}	EN	RS	nSHDN	IN	CANH	CANL		
PU	PU	1	0	1	1	rec	rec		
PU	PU	1	0	1	0	dom	dom		
PU	PU	0	X	X	X	rec	rec		
PU	PU	Х	1	Х	X	rec	rec		
PU	PU	X	Х	0	X	rec	rec		
PD	PU	Χ	Χ	Χ	X	rec	rec		
PU	PD	Х	Х	Х	Х	Z	Z		

Приемни	Приемник CAN – передатчик логического интерфейса									
U _{CC1}	U _{CC2}	EN	RS	nSHDN	INIT	CANH	CANL	OUT		
PU	PU	1	Χ	1	Χ	rec	rec	1		
PU	PU	1	Χ	1	Χ	dom	dom	0		
PU	PU	0	Χ	Х	0	Х	Х	0		
PU	PU	0	Х	Х	1	Х	Х	1		
PU	PU	Χ	Χ	0	0	Х	X	0		
PU	PU	Χ	Χ	0	1	Х	X	1		
PU	PD	Χ	Χ	Х	0	X	Х	0		
PU	PD	Х	Х	Х	1	Х	Х	1		
PD	PU	Χ	Χ	X	Χ	Х	X	Χ		

Примечание – Обозначения в таблице:

Передатчик CAN имеет три режима работы. Условия выбора режимов работы приведены в таблице 3.

В режиме работы «Максимальная скорость» выходы передатчика переключаются с максимальной возможной скоростью, обеспечивая максимальную скорость передачи данных (до 10 Мбит/с).

Таблица 3 – Таблица выбора режимов работы передатчика САМ

Состояние входа RS Наименование режим		
U _{RS} < 0,3 · U _{CC}	«Максимальная скорость»	
0,4 · U _{CC} < U _{RS} < 0,6 · U _{CC} , 24 κOм ≤ R _{RS} ≤ 180 κOм	«Контроль скорости»	
$U_{RS} > 0,75 \cdot U_{CC}$ или не подключен	«Ожидание»	

Для выбора режима «Контроль скорости» необходимо подключить резистор между входом RS и выводом «Общий». В этом режиме номинал резистора определяет величину скорости нарастания/спада выходного сигнала, что необходимо для уменьшения уровня электромагнитных помех, а также отражений при неидеально согласованной шине. Таким образом, обеспечивается стабильная передача информации со скоростью от 40 до 500 Кбит/с.

Величину подключаемого резистора можно рассчитать по формуле

$$R_{RS}$$
 [кОм] = 12 000 / Скорость передачи данных [Кбит/с] (1)

Зависимость скорости передачи данных от сопротивления на выводе RS приведена в таблице 4.

Таблица 4 – Зависимость скорости передачи данных от сопротивления, подключенного к выводу RS

R _{RS} , кОм	Скорость передачи данных, Кбит/с
24	500
47	250
100	125
180	62,5

Х – неопределенное состояние для выходов, любое состояние 0 или 1 для входов;

Z – высокий импеданс на выходе;

гес - рецессивное состояние;

dom – доминантное состояние;

PU – питание подается;

PD – питание отсутствует

6 Типовые схемы включения

Типовая схема включения МСБ приведена на рисунке 4.

Рисунок 4 – Типовая схема включения МСБ с интерфейсом CAN

7 Предельно-допустимые характеристики

Таблица 5 – Предельно-допустимые режимы эксплуатации и предельные электрические режимы

	0 0 7	Норма параметра					
Наименование параметра, единица измерения	Буквенное обозначение параметра	Предельно- допустимый режим		Предельный режим			
	90,00	не менее	не более	не менее	не более		
Напряжение источника питания, В	Ucc	4,5	5,5	_	6		
Входное напряжение высокого уровня, В, на входах nSHDN, IN, EN	U _{IH}	2,0	Ucc	_	U _{CC} + 0,3		
Входное напряжение низкого уровня, В, на входах nSHDN, IN, EN	UıL	0	0,8	- 0,3	_		
Входное напряжение синфазное, В, на выводах CANH, CANL	U _{IS}	- 10	10	– 15	15		
Входное напряжение высокого уровня, В, на входе RS	U _{IHRS}	0,9 · U _{CC}	Ucc	_	_		
Входное напряжение низкого уровня, В, на входе RS	U _{ILRS}	0	0,1 · U _{CC}	_	-		
Входное напряжение дифференциальное высокого уровня, B, на выводах CANH, CANL при CANH > CANL	U _{IDH}	0,9	5	_	15		
Входное напряжение дифференциальное низкого уровня, В, на выводах CANH, CANL при CANH > CANL	U _{IDL}	0	0,5	– 15	1		
Выходной ток низкого уровня, мА, на выходе OUT, OUTA, OUTB	I _{OL}	_	1	_	_		
Выходной ток высокого уровня, мА, на выходе OUT, OUTA, OUTB	Іон	- 1	_	_	_		
Скорость передачи битов данных, Мбит/с	V_{DR}	_	10	_	_		
Сопротивление нагрузки, Ом, на выводах CANH, CANL	R _L	45		-			
Емкость нагрузки, пФ, на выходах OUT, CANH, CANL	CL	_	50	_	200		

8 Электрические параметры

Таблица 6 – Электрические параметры МСБ при приемке и поставке

Наименование параметра,	нное мение метра	-	ома метра	латура ы, °С
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
Выходное напряжение доминантного состояния, В, на выводе CANH	U _{O_CANH_DOM}	0,5·U _{CC}	Ucc	
Выходное напряжение доминантного состояния, В, на выводе CANL	U _{O_CANL_DOM}	0,5	0,5·U _{CC}	
Выходное напряжение дифференциальное доминантного состояния на выводах CANH и CANL, B	U _{O_DIFF_DOM}	0,25·U _{CC}	_	
Выходное напряжение дифференциальное рецессивного состояния на выводах CANH и CANL, мВ, (без нагрузки)	U _{O_DIFF_REC}	- 500	50	
Выходное напряжение высокого уровня, В, на выходе OUT	U _{OH}	0,7·U _{CC}	_	
Выходное напряжение низкого уровня, В, на выходе OUT	U _{OL}	-	0,4	
Входной ток низкого, высокого уровней, мкА, на входах IN, EN, nSHDN, INIT	I _{IH} , I _{IL}	- 10	10	
Входной ток в режиме «Максимальная скорость», мкА, на входе RS	I _{I_RS}			0.5
- при U _{RS} = 0 B		- 500	– 100	25, 85,
- при U _{RS} = U _{CC}		– 10	10	– 60
Ток короткого замыкания в доминантном состоянии, мА, на выводах CANH и CANL, при U _{CANH} = - 10 B, U _{CANL} = 10 B	los	_	250	
Минимальный ток короткого замыкания в доминантном состоянии, мА, на выводах CANH и CANL, при U _{CANH} = 0 B, U _{CANL} = 5 B	Iosmin	50	-	
Ток потребления в состоянии пониженного энергопотребления, мкА, при $U_{nSHDN}=0$ В	Icc	_	560	
Динамический ток потребления, мА, при $U_{RS}=0$ В	locc	_	170	
Время задержки включения, мкс, по сигналу nSHDN	t _{DHL}	_	6	
Время задержки выключения, мкс, по сигналу nSHDN	t _{DLH}	_	6	
Время нарастания, спада сигнала, нс, на выводах CANH, CANL	t _{r1} , t _{f1}	15	80	

Наименование параметра,	нное гчение летра	-	ома метра	эатура ы, °С
единица измерения, режим измерения	Буквенное обозначени параметра	не менее	не более	Температу среды, °(
Время задержки распространения при включении, выключении, нс, от входа IN до выходов CANH, CANL	t _{PHL1} , t _{PLH1}	-	200	
Время задержки распространения при включении, выключении, нс, от входов CANH, CANL до выхода OUT	t _{PHL2} , t _{PLH2}	_	200	25, 85, – 60
Время нарастания, спада сигнала, нс, на выходах OUT	t_{r2}, t_{f2}	_	10	- 60
Время срабатывания сторожевого таймера системы подтверждения, мс	t _{WDT}	0,2	20	

9 Справочные данные

- Значение собственной резонансной частоты 2,7 кГц;
- Рабочее напряжение изоляции 2 кВ при нормальных климатических условиях;
- Температура срабатывания тепловой защиты 160 °C;
- Тепловое сопротивление кристалл-окружающая среда не более 22,6 °C/Вт;
- Значения предельно-допустимых одиночных импульсов напряжения (ОИН) приведены в таблице 7;
- Токи потребления, разделенные по шинам питания U_{CC1}, U_{CC2}, приведены в таблице 8.

Таблица 7 – Предельно-допустимые значения ОИН

Tur purpore	Длительность ОИН, мкс					
Тип вывода	0,1	1,0	10,0			
Предельно-допустимое напряжение ОИН, В						
Входы	1750	400	300			
Выходы	1200	500	300			
Цепь питания	2000	1000	500			
	Предельно	допустимая энергия	ОИН, мДж			
Входы	2,8	1,5	7,7			
Выходы	1,4	2,3	8,0			
Цепь питания	4,1	11	28			

Таблица 8 – Токи потребления, разделенные по шинам питания Ucc1, Ucc2

Наименование параметра,	Буквенное	Норма па	араметра	Температура
единица измерения	обозначение параметра	не менее	не более	среды, °С
Ток потребления в состоянии пониженного энергопотребления, мкА, - по выводу Ucc1; - по выводу Ucc2	lcc ₁	_	280	25, 85, – 60
Динамический ток потребления, мА, - по выводу U _{CC1} ; - по выводу U _{CC2}	locc1	_	50 120	25, 85, – 60

10 Типовые зависимости

Рисунок 5 – Зависимость тока потребления в состоянии пониженного энергопотребления от температуры

Рисунок 6 — Зависимость динамического тока потребления (I_{OCC}) от температуры при R_L = 45 Ом на выходах CANH, CANL, напряжении питания 5,5 В

© АО «ПКК Миландр»

Рисунок 7 – Зависимость времени задержки распространения при включении, выключении от входа In до выходов CANH, CANL от температуры при напряжении питания 4,5 В

Рисунок 8 – Зависимость времени задержки распространения при включении, выключении, от входов CANH, CANL до выхода Out от температуры при напряжении питания 4,5 В

Рисунок 9 – Зависимость выходного напряжения дифференциального доминантного состояния на выводах CANH и CANL от температуры

Рисунок 10 – Зависимость динамического тока потребления (locc) от скорости передачи данных при температуре 25 °C, R_L = 45 Ом, питании 5 В

Рисунок 11 — Зависимость тока потребления в состоянии «Выключено» от значения характеристик 7.И₇(7.С₄)

11 Габаритный чертеж

Рисунок 12 – МСБ в корпусе МК 4140.20-1

12 Информация для заказа

Обозначение МСБ	Маркировка	Тип корпуса	Температурный диапазон
2011BB034	2011BB034	MK 4140.20-1	минус 60 – 85 °C
K2011BB034	K2011BB034	MK 4140.20-1	минус 60 – 85 °C
K2011BB034K	K2011BB034•	MK 4140.20-1	0 – 70 °C

МСБ с приемкой «ВП» маркируются ромбом. МСБ с приемкой «ОТК» маркируются буквой «К».

Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов
1	17.12.2014	0.1.0	Ведена впервые	
2	04.06.2015	2.0.0	Приведение в соответствие с ТУ и КД	По тексту
3	09.06.2015	2.1.0	Введены типономиналы К2011ВВ034, К2011ВВ034К	По тексту
4	17.08.2015	2.2.0	Исправления на рисунке 4	6
5	14.09.2015	2.3.0	Исправлен рисунок 2. Добавлены справочные данные	3 10
6	14.03.2017	2.4.0	Приведение в соответствие с ТУ и КД	По тексту
7	07.12.2017	2.5.0	Уточнение наименований параметров в таблице предельно-допустимых режимов	8
8	02.12.2020	2.6.0	Добавлен раздел Указания по применению и эксплуатации. Исправлен режим параметра Рабочее напряжение изоляции. Исправлен габаритный чертеж на рисунке 12	5 12 17