Lab 5: FIR Filter Design

Name: Peng Guo GTID: 903424176

1. Tables

a) Resources

i. Slice Logic

Site Type	Used	Fixed	Available	Util%
Slice LUTs LUT as Logic	549 549	0	20800 20800	2.64
LUT as Memory	0	0	9600	0.00
Slice Registers Register as Flip Flop	496 496	0	41600 41600	1.19
Register as Latch F7 Muxes	0 0	0	41600 16300	0.00
F8 Muxes	0	0	8150	0.00

ii. IO and GT Specific

Site Type	Used	Fixed	Available	Util%
Bonded IOB	34	0	106	32.08
IOB Master Pads	16		i	Ì
IOB Slave Pads	17	İ	İ	İ
Bonded IPADs	0	0	10	0.00
Bonded OPADs	0	0	4	0.00
PHY_CONTROL	0	0	5	0.00
PHASER_REF	0	0	5	0.00
OUT_FIF0	0	0	20	0.00
IN_FIF0	0	0	20	0.00
IDELAYCTRL	0	0	5	0.00
IBUFDS	0	0	104	0.00
GTPE2_CHANNEL	0	0	2	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	20	0.00
PHASER_IN/PHASER_IN_PHY	0	0	20	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	250	0.00
IBUFDS_GTE2	0	0	2	0.00
ILOGIC	0	0	106	0.00
OLOGIC	0	0	106	0.00

iii. Primitives

Ref Name	Used	Functional Category
FDRE LUT2 CARRY4 LUT4 LUT3 LUT5 LUT1	496 350 142 69 66 53 53	Flop & Latch LUT CarryLogic LUT LUT LUT LUT LUT LUT
OBUF IBUF BUFG	22 12 1	IO IO Clock

b) Power

+	
Total On-Chip Power (W)	0.077
Dynamic (W)	0.007
Device Static (W)	0.070
Effective TJA (C/W)	5.0
Max Ambient (C)	84.6
Junction Temperature (C)	25.4
Confidence Level	Low
Setting File	***
Simulation Activity File	
Design Nets Matched	NA
+	

Dynamic: 0.007W Static: 0.070W

c) Worst Negative Slack

Design Timin 	g Summary						
WNS(ns)	TNS(ns)	TNS Failing	Endpoints	TNS Total	Endpoints	WHS (n	s) THS(ns)
4.395	0.000		0		972	0.1	58 0.000
THS Failing Endpo	oints THS Tot	tal Endpoints	WPWS(ns)	TPWS(ns)	TPWS Failing	Endpoints T	PWS Total Endpoints
	0	972	4.500	0.000		0	497

2. Question and Answer

Question: Why do you think we need to do right shift operation? And why do we do it at the end? (Answer should not exceed 6 sentences)

Answer: For the convenience of design, we have previously expanded the coefficient by 512 to facilitate the calculation, so finally divide the result by 512, that is, shift 9 bits to the right. If we do the operation in the middle process, it may affect the accuracy of subsequent calculations, and the number in the middle

process may be too small after dividing by 512, which is not convenient for subsequent calculations.