

Artificial Intelligence

Speech & Conversational systems

Gabriel Skantze

Professor in Speech Technology
Dept of Speech Music and Hearing
KTH, Stockholm, Sweden

The conversational machine: the vision

2001: A Space Odyssey (1968)

Star Wars (1977)

Her (2013)

Robot and Frank (2012)

"The Turing test" (1950)

Alan Turing

Computing Machinery and Intelligence (1950)

Eliza: What is bothering you?

User: I feel sad all the time

Eliza: Why do you feel sad all the time?

User: I don't get along with my parents

Eliza: Tell me about your <u>parents</u>

User: I don't want to talk about them

Eliza: Why don't you want to talk about them?

Joseph Weizenbaum

Conversational machines today

Mobile devices

Video games

In-car systems

Chatbots

Human-robot interaction

Smart speakers

Advantages of spoken language interaction

- Can be used over distance
- Can be used when eyes and hands are busy
- Comes natural to us
- A large vocabulary always at hand
- Can be used to express complex information
 - "show me hotels in san francisco for tomorrow that are less than \$300 but not less than \$200, and don't include anything that doesn't have wifi."
- Exploitation of context allows for efficiency
 - Will it rain in Paris on the first of July?
 - How about London?
- Has an important social function

A conversational system

Written Language	Spoken Language
Used since 5000 years	Used since at least 100.000 years
Standardized: Words, letters, spaces, punctuation	Highly variable, ambiguous and noisy
Asynchronous communication	Real-time communication
Syntactically well-formed	Disfluent (Repetitions, hesitations, truncuted words, etc)
Exclusively symbolic (what we say)	Non-symbolic components (<i>how</i> we talk: prosody, laughter, breathing, etc)

Speech communication

Speech Production

Source-filter model

Filter:

Vocal Tract

Output:

Speech signal

The speech signal visualized

Words in the speech signal

How do we know which one to choose?

The challenge of variability in the signal

- Language
 - dialect, accent
- Speaking rate
- Bodies
 - sex, size, age
- Channel
 - noise, microphone

Advances in speech recognition

Speech recognition performance

Natural language understanding

When NLU fails

Keyword spotting

Advantages

- Simple to implement and understand
- Some robustness to variability and speech recognition errors

I would like to order a burger with cheese

Can I order a burger and please add some cheese

OrderFood(

type: burger,
topping: cheese)

Disadvantages

- No holistic interpretation or optimisation
- Insensitive to word order
- No structural relations

I would like a burger with cheese and onion

Can I have one burger with cheese and one with onion

Parsing with grammar

Advantages

Captures structural relations

Disadvantages

- Not robust to errors
- Requires linguistic knowledge

Intent/Entity recognition

R

Can you get me a dinner reservation for 4 people tonight at Command Burger?

Intent: Restaurant Reservation

People: 4

Time: August 14th, 2015 at 7pm

Place: Command Burger, San Francisco

- Trained on examples
- Requires little (if any) linguistic knowledge
- Captures some structural relations (but not all!)
- Can be optimised
- Has become a de-facto industry standard for NLU

Dialogue Management

Mirsuku Chatbot (Loebniz winner 2013)

What is biggest, an orange or a grape? I would say an orange is a little bigger than a grape How about apples? Apples? Do you like them? Anaphora = Do you like apples? Do I like what? Apples Ellipsis = Do you like apples? Was that not a good example?

=> Modelling context is a very hard challenge!

Dialog management as form-filling

S: Where are you travelling from?

U: I want to go from **Paris**

S: And where do you want to go?

U: London

S: Which date do you want to leave?

U: On the 13th of January

S: At what time?

U: Three o'clock

S: There are three available flights...

Origin	Paris	
Dest	London	
Date	13th of January	
Time	Three	

Mixed initiative

S: Where are you travelling from?

U: I want to book a trip to **London**

S: And where are you travelling from?

U: I want to leave **Paris** at **three o'clock**

S: On which date?

U: On the 13th of January

S: Thanks for your reservation ...

Origin	Paris	
Dest	London	
Date	13th of January	
Time	Three	

Towards end-to-end learning for conversational systems?

User: How are things?

Meena: They're good. How about you?

User: I'm trying to decide what to watch

Meena: What are some of your favorite shows?

User: I like the Good Place

Meena: I haven't watched that. My favorite shows are Supernatural, and Star Trek: TNG.

User: What is TNG?

Meena: The Next Generation

Evolved Transformer Encoder Block Evolved Transformer Decoder Block **Evolved Transformer Decoder Block** Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block

- How can we do this for domains where we don't have so much data?
 - e.g. Transfer learning
- How can we steer the conversation?
 - e.g. Persona
- How can we apply this to taskoriented dialogue?
 - e.g. Hybrid Code Networks

The Google Meena model has 2.6 billion parameters and is trained on 341 GB of text, filtered from public domain social media conversations.

Speech Synthesis

Speech Synthesis

Challenges in Text Processing

- Abbreviations ("St John St")
- Acronyms ("IBM")
- Numbers ("Boeing 747")
- Homographs ("project")
- Xenophones ("comme il faut")

Multi-modal conversational systems

What the face adds to the conversation

Output

- Attention (gaze)
- Facial expressions
- Lip movements

Input

- Speaker detection
- Speaker recognition
- Facial expressions
- Attention (gaze/headpose)

Giving the machine a face

NAO

Jibo

Sophia

Animated agents

Furhat – a backprojected robot head

Multi-modal sensors

Modelling the situation

Where are the users located?
Where are the users attending?
Where are objects located?
Who is speaking?
Which object is being talked about?

Controlling the robot

Where should Furhat be looking?
When should Furhat speak?
What should Furhat say?
What facial expressions to use?

Example interaction

The End

DT2151 — Project in Conversational Systems (period 2)

DT2112 — Speech Technology (period 3)

DT2140 — Multimodal Interaction and Interfaces (period 2)

DT2119 — Speech and Speaker Recognition (period 4)