"数学外卖"高数组定积分讲义

王衡字 李长浩 戴云舒 薛冰 黄博琳 吴天昊 2024 年 12 月 7 日

例 1. 求下列极限.

(1)
$$\lim_{n \to \infty} \frac{1}{2n} \left(\sin \frac{\pi}{n} + \dots + \sin \frac{n-1}{n} \pi + \sin \frac{n}{n} \pi \right)$$

(2)
$$\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \dots + \frac{1}{2n^2} \right)$$

$$(3) \lim_{n \to \infty} n \frac{1^{\alpha} + \dots + n^{\alpha}}{1^{\alpha+1} + \dots + n^{\alpha+1}} \quad (\alpha > 0)$$

(4)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{n^2 + k^2 + 1}$$

(5)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \sin \frac{k}{n} \sin \frac{k}{n^2}$$

例 2. 计算下列定积分.

(1)
$$\int_0^1 \arcsin x \, \mathrm{d}x$$

$$(2) \int_{1}^{e} \sin(\ln x) \, \mathrm{d}x$$

$$(3) \int_1^{\sqrt{2}} \frac{\mathrm{d}x}{x\sqrt{1+x^2}}$$

(4)
$$\int_0^{\pi} \cos^n x \, \mathrm{d}x$$

$$(5) \int_1^e x \ln^n x \, \mathrm{d}x$$

$$(6) \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} \, \mathrm{d}x$$

(7)
$$\int_{-\pi}^{\pi} \frac{6x(x^2 + \sin x)}{1 + \cos^2 x} \, \mathrm{d}x$$

$$(8) \int_0^{8\pi} x\sqrt{1-\cos^2 x} \,\mathrm{d}x$$

(9)
$$\int_0^1 \frac{\ln(1+x)}{1+x^2} \, \mathrm{d}x$$

(10)
$$\int_0^{\frac{\pi}{2}} \frac{f(\sin x)}{f(\cos x) + f(\sin x)} \, \mathrm{d}x$$

例 3. 计算下列极限.

(1)
$$\lim_{x \to 0} \frac{x^2}{\int_{\cos x}^1 e^{-u^2} du}$$

(2) 设
$$f$$
 为连续函数且 $f(1) = 1$,求 $\lim_{x \to 1} \frac{\int_{1}^{x} \left(\int_{t}^{1} (t - u) f(u) du \right) dt}{(x - 1)^{3}}$.

(3)
$$\[\mathcal{G} f(x) \]$$
 连续, $f(0) = 0$, $f'(0) \neq 0$,求极限 $\lim_{x \to 0} \frac{\int_0^x t f(x-t) dt}{\int_0^x x f(x-t) dt}.$

例 4. 设 $(0,+\infty)$ 上连续函数 f(x) 满足 $f(x) = \ln x - \int_{1}^{e} f(x) dx$, 求 $\int_{1}^{e} f(x) dx$.

例 5. 证明下列等式.

(1)
$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx;$$

(2)
$$f$$
 在 $(0, +\infty)$ 上连续, $\int_{1}^{4} f\left(\frac{x}{2} + \frac{2}{x}\right) \frac{\ln x}{x} dx = \ln 2 \int_{1}^{4} f\left(\frac{x}{2} + \frac{2}{x}\right) \frac{1}{x} dx$.

例 6. 计算下列定积分.

(1)
$$n$$
 为大于 1 的正整数,求 $\int_{0}^{n} (x - [x]) dx$.

(2)
$$\int_{-2}^{2} \min\left\{\frac{1}{|x|}, x^2\right\} dx$$
.

(3)
$$\int_0^2 |1-x| \, \mathrm{d}x$$
.

例 7. 已知
$$f'(x) = \arctan[(x-1)^2]$$
, 且 $f(0) = 0$, 求 $\int_0^1 f(x) dx$.

例 8. 计算下列反常积分.

$$(1) \int_0^{+\infty} e^{-3x} \cos 2x \, dx$$

$$(2) \int_{2}^{+\infty} \frac{1}{x \ln^{p} x} \, \mathrm{d}x$$

$$(3) \int_0^{\frac{\pi}{2}} \ln \sin x \, \mathrm{d}x$$

(4)
$$\int_0^{\frac{\pi}{2}} \frac{\ln(1+\tan x)}{(\cos x + \sin x)^2} \, \mathrm{d}x$$

例 9. 面积原理:

(1) 利用定积分证明:
$$\ln n + 1 \ge \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \ge \ln(n+1)$$
.

(2) 计算极限:
$$\lim_{n \to \infty} \sum_{i=1}^{n^2} \frac{n}{n^2 + j^2}$$
.

例 10. 设 f(x) 是连续函数. 由 $a \le x \le b, 0 \le y \le f(x)$ 所表示的区域绕 y 轴旋转一周所成旋转体体积为

$$V = 2\pi \int_a^b x f(x) \, \mathrm{d}x.$$

例 11. f(x) 是 \mathbb{R} 上的正值可微函数. f(-x) = f(x). 令 $g(x) = \int_{-a}^{a} |x - t| f(t) \, \mathrm{d}t, x \in [-a, a], (a > 0)$, 解决下列问题.

- (1) 求证 g'(x) 在 [-a,a] 严格单增;
- (2) 求 g(x) 在 [-a,a] 上的最小值点;
- (3) 若 g(x) 在 [-a,a] 上最小值为 $f(a) a^2 1$,求 f(x).

例 12. 设 n, k 为正整数,且 $1 \le k \le n$,证明:

$$(1) \frac{2}{n} \ln \left(1 + \frac{k-1}{n} \pi \right) \leqslant \int_{\frac{k-1}{n}\pi}^{\frac{k}{n}\pi} \left| \sin nx \right| \ln(1+x) \, \mathrm{d}x \leqslant \frac{2}{n} \ln \left(1 + \frac{k}{n} \pi \right);$$

(2)
$$\lim_{n\to\infty} \int_0^{\pi} |\sin nx| \ln(1+x) \, \mathrm{d}x.$$

例 13. 设 f(x) 为 $[0,2\pi]$ 上的单调增函数,证明: $\forall n \in \mathbb{N}$,

$$\int_0^{2\pi} f(x) \sin nx \, \mathrm{d}x \geqslant 0.$$

例 14. 设 f 在 $[0,2\pi]$ 上连续. 证明:

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) |\sin nx| \, dx = \frac{2}{\pi} \int_0^{2\pi} f(x) \, dx.$$

例 15. 设函数 f(x) 在 [0,a] 二阶可导 (a>0),且 $f''(x) \ge 0$. 证明:

(1)
$$\int_0^a f(x) dx \ge af\left(\frac{a}{2}\right);$$

(2)
$$\int_0^a f(x^2) \, \mathrm{d}x \geqslant f\left(\frac{a}{3}\right).$$

例 16. 设 f(x) 在 $[0,\pi]$ 上连续,且 $\int_0^\pi f(x) \sin x \, dx = \int_0^\pi f(x) \cos x \, dx$,证明: f(x) 在 $(0,\pi)$ 中至少有两个零点.

感谢参加我们的讲座!麻烦填写一下反馈问卷,帮助我们之后更好地开展活动,谢谢!

外卖讲座反馈问卷

外卖官网: shuxuewaimai.top Bilibili: 一题 _ 撬动数学