Lecture 6: Conditional Distributions & Total Probability

21 March, 2018

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

Example 6.1 Let X and Y be two random variables having the joint probability density function

$$f(x,y) = \begin{cases} 2 & \text{if } 0 < x < y < 1 \\ 0 & elsewhere \end{cases}$$

Then find the conditional probability $P\left(X \leq \frac{2}{3} \middle| Y = \frac{3}{4}\right)$.

Solution: We are suppose to use the following definition

$$P(X \in B|Y = y) = \int_{B} f_{X|Y}(x|y)dx,$$

i.e., we need to compute the conditional density $f_{X|Y}\left(x\left|\frac{3}{4}\right.\right)$ and for this we need to compute $f_Y\left(\frac{3}{4}\right)$.

$$f_Y\left(\frac{3}{4}\right) = \int_{-\infty}^{\infty} f\left(x, \frac{3}{4}\right) dx = \int_0^{\frac{3}{4}} f\left(x, \frac{3}{4}\right) dx = \int_0^{\frac{3}{4}} 2dx = 2 \times \frac{3}{4} = \frac{3}{2}.$$

Since $f_Y\left(\frac{3}{4}\right) > 0$, therefore

$$f_{X|Y}\left(x\left|\frac{3}{4}\right.\right) = \begin{cases} \frac{f\left(x,\frac{3}{4}\right)}{f_Y\left(\frac{3}{4}\right)} = \frac{2}{\frac{3}{2}} = \frac{4}{3} & \text{if} \quad 0 < x < \frac{3}{4} \\ 0 & \text{elsewhere} \end{cases}$$

Hence

$$P\left(X \le \frac{2}{3} \middle| Y = \frac{3}{4}\right) = \int_{-\infty}^{\frac{2}{3}} f_{X|Y}\left(x \middle| \frac{3}{4}\right) dx$$
$$= \int_{0}^{\frac{2}{3}} \frac{4}{3} dx$$
$$= \frac{8}{9}$$

Example 6.2 Let X and Y be independent continuous random variables with pdf f_X and f_Y respectively. Let Z = X + Y. Determine conditional density of Z given X.

Solution: Basically we first determine the conditional distribution function of Z given X, i.e., $P(Z \le z | X = x)$. Then we have the relation

$$P(Z \le z | X = x) = \int_{-\infty}^{z} f_{Z|X}(t|x)dt$$

Now

$$P(Z \le z | X = x) = P(X + Y \le z | X = x)$$

$$= P(x + Y \le z | X = x)$$

$$= P(x + Y \le z) \quad (\because X, Y \text{ are indepedent})$$

$$= P(Y \le z - x)$$

$$= \int_{-\infty}^{z - x} f_Y(y) dy$$

$$= \int_{-\infty}^{z} f_Y(t - x) dt \quad \text{(put } y = t - x\text{)}$$

Hence $f_{Z|X}(z|x) = f_Y(z-x)$.

Remark 6.3 In Example 6.2, if we try to compute conditional density of X + Y given X by definition then we require to compute the joint density of X + Y and X. This type of problem we have not studied.

Rather than going by definition, we adopt the technique of finding pdf of a real-valued function of two random variables. We first compute the conditional distribution function and differentiate it to obtain the conditional density.

Example 6.4 Suppose that X and Y are independent, identically distributed, geometric random variables with parameter p. Find the conditional pmf of Y given X + Y = n where n > 2.

Solution: Since range of X and Y is \mathbb{N} , hence the range of the random variable Z := X + Y is $\{2, 3, \dots\}$. Let $n \geq 2$ be given. So if X + Y = n then Y can only assume values in $\{1, 2, \dots, n-1\}$. Therefore

$$P(Y = y|Z = n) = 0$$
, for $y = n, n + 1, n + 2, \cdots$

For $y \in \{1, 2, \dots, n-1\}$

$$\begin{split} P(Y=y|Z=n) &= \frac{P(Y=y,X+Y=n)}{P(X+Y=n)} \\ &= \frac{P(Y=y,X=n-y)}{\sum_{n=1}^{n-1} P(X=k,Y=n-k)} \quad \text{(By Total Probability theorem)} \\ &= \frac{P(Y=y)P(X=n-y)}{\sum_{n=1}^{n-1} P(X=k)P(Y=n-k)} \quad (\because X,Y \text{ are independent }) \\ &= \frac{p(1-p)^{y-1}p(1-p)^{n-y-1}}{\sum_{k=1}^{n-1} p(1-p)^{k-1}p(1-p)^{n-k-1}} \\ &= \frac{p^2(1-p)^{n-2}}{\sum_{k=1}^{n-1} p^2(1-p)^{n-2}} \\ &= \frac{1}{n-1} \end{split}$$

This shows that

$$f_{Y|X+Y}(y|n) = \begin{cases} \frac{1}{n-1} & \text{if } y = 1, \dots, n-1, \\ 0 & \text{if } y \ge n \end{cases}$$

Hence Y is geometrically distributed in the original universe, but in the new universe determined by the event X + Y = n, Y is uniformly (discrete) distributed over the set $\{1, 2, \dots, n-1\}$.

Remark 6.5 Again in Example 6.4, if we go by pmf definitions $\frac{f(z,y)}{f_Z(z)}$ where f the joint pmf of Z = X + Y and Y and f_Z is the pmf of Z, then we need to compute both the quantities. Where as if choose the conditional probability definition, then our job is much easier.

Law of Total Probability

Recall

Theorem 6.6 (Total Probability Theorem) Let (Ω, P) be a probability space and $\{A_1, A_2, \dots, A_N\}$ be a at most countable partition (either $N \in \mathbb{N}$ or $N = \infty$) of Ω such that $P(A_i) > 0$ for all i. Then for any event B,

$$P(B) = \sum_{i=1}^{N} P(B|A_i)P(A_i).$$

Proposition 6.7 (Law of total probability) Let Y be a discrete random variable on the sample space Ω . Then for any event B,

$$P(B) = \sum_{y \in R_Y} P(B|Y = y) f_Y(y), \tag{6.1}$$

where f_Y is the pmf of Y.

Proof: If Y is a discrete random variable with range $R_Y \subset \mathbb{R}$, then the collection of events $\{\{Y=y\}\}_{y\in R_Y}$ form a partition of the sample space Ω . Thus, we can use the total probability theorem.

$$P(B) = \sum_{y \in R_Y} P(B|Y = y)P(Y = y) = \sum_{y \in R_Y} P(B|Y = y)f_Y(y).$$