증폭기의 주파수 응답특성 트랜지스터의 정격 및 방열대책

실제 증폭기의 이득은 회로를 구성하는 결합 커패시터와 부하 커패시터 그리고 트랜지 스터 내부의 기생 정전용량 성분들에 의해 영향을 받으며, 신호의 주파수에 따라 출력이 달라지는 주파수 응답특성을 갖는다.

E-mail: hogijung@hanyang.ac.kr http://web.yonsei.ac.kr/hgjung

결합 커패시터의 영향

(a) 결합 커패시터 C_c 를 갖는 공통 이미터 증폭기

(b) 소신호 등가회로

$$V_o = \frac{-g_m R_C R_i}{R_s + R_i + \frac{1}{sC_C}} V_s = \frac{A_m}{1 + \omega_L/s} V_s$$

결합 커패시터의 영향

$$V_{o} = \frac{-g_{m}R_{C}R_{i}}{R_{s} + R_{i} + \frac{1}{sC_{C}}}V_{s} = \frac{A_{m}}{1 + \omega_{L}/s}V_{s}$$

- (c) 주파수 응답특성
- [그림 8-2] 증폭기의 저주파 응답특성 예
- 하측 차단주파수(lower cutoff frequency): 출력전압이 -3 dB 만큼 감소하는 하측 주파수, $f_L = 1/[2\pi(R_s + R_i)C_C]$
- $\rightarrow C_C$ 값이 클수록 하측 차단주파수 f_L 이 작아짐

부하 커패시터의 영향

(a) 부하 C_L 을 갖는 공통 이미터 증폭기

(b) 소신호 등가회로

$$V_{o} = \frac{\frac{1}{sC_{L}}}{R_{o} + \frac{1}{sC_{L}}} A_{m}V_{s} = \frac{A_{m}}{1 + s/\omega_{H}} V_{s}$$

부하 커패시터의 영향

$$V_{o} = \frac{\frac{1}{sC_{L}}}{R_{o} + \frac{1}{sC_{L}}} A_{m}V_{s} = \frac{A_{m}}{1 + s/\omega_{H}} V_{s}$$

(c) 주파수 응답특성

- 상측 차단주파수(upper cutoff frequency) : 출력전압이 -3 dB 만큼 감소하는 상측 주파수, $f_H=1/(2\pi R_o C_L)$
- $\rightarrow C_L$ 값이 클수록 상측 차단주파수 f_H 가 작아짐

기생 커패시터의 영향

• BJT 내부의 기생 커패시턴스 C_M 의 영향 : C_M 이 클수록 상측 f_H 가 작아짐

보드 선도 (Bode Plot)

- 증폭기 전달함수의 크기와 위상각을 신호 주파수에 대해 그린 그래프
- 증폭기 전달함수의 일반식

$$A(j\omega) = K \times \frac{(1+j\omega/z_1)(1+j\omega/z_2)\cdots}{(1+j\omega/p_1)(1+j\omega/p_2)\cdots}$$
(8.3)

- *K* : 중대역 이득(mid-band gain)
- z₁, z₂ : 영점(zero) 주파수
- *p*₁, *p*₂ : 극점(pole) 주파수

보드 선도 (Bode Plot): 크기에 대한 점근 보드 선도

- KdB : 수평 직선
- 영점(zero) 주파수 z_i 의 크기 보드 선도
 - 영점 주파수 이하: 0 dB의 직선으로 근사화
 - 영점 주파수 이상 : +20 dB/dec의 기울기를 갖는 직선으로 근사화
- 극점(pole) 주파수 p_1 의 크기 보드 선도
 - 극점 주파수 이하: 0 dB의 직선으로 근사화
 - 극점 주파수 이상 : -20 dB/dec의 기울기를 갖는 직선으로 근사화

(a) $K_{\rm dB}$ 의 보드 선도

(b) $|1+j\omega/z_1|_{\rm dB}$ 의 보드 선도

E-mail: hogijung@hanyang.ac.kr http://web.yonsei.ac.kr/hgjung

보드 선도 (Bode Plot): 위상에 대한 점근 보드 선도

영점(zero) 주파수 z_1 의 위상 보드 선도 : $0.1z_1, z_1, 10z_1$ 의 세 점을 중심으로 그려짐

- $-0.1z_{t}$ 이하의 주파수 : 0° 의 직선으로 근사화
- $0.1z_1 \sim 10z_1$ 의 주파수 : $+45^{\circ}/\text{dec}$ 의 기울기를 갖는 직선으로 근사화
- $-10z_{i}$ 이상의 주파수 : 90° 의 직선으로 근사화됨

극점(pole) 주파수 p_1 의 위상 보드 선도 : 동일한 원리가 적용됨

 $-0.1p_1 \sim 10p_1$ 의 주파수 범위에서는 $-45^{\circ}/\text{dec}$ 의 기울기를 가짐

(b) $-\tan^{-1}(\omega/p_1)$ 의 보드 선도

보드 선도 (Bode Plot): 예제 8-1

다음 전달함수의 크기와 위상각에 대한 점근 보드 선도를 그려라.

$$A(s) = \frac{100s}{(1+s/10^2)(1+s/10^6)}$$

(a) 크기에 대한 점근 보드 선도

[그림 8-7] [예제 8-1]의 점근 보드 선도

<u>보드 선도 (Bode Plot): 예제 8-1</u>

(b) 위상각에 대한 점근 보드 선도

[그림 8-7] [예제 8-1]의 점근 보드 선도

주파수 응답특성 파라미터

- 하측 차단주파수(lower cutoff frequency) f_L : 주파수가 <mark>감소</mark>함에 따라 증폭기의 이득이 기준값(중대역 이득)에 비해 -3 dB 만큼 감소하는 주파수
- → 출력전력이 1/2로 감소하는 주파수, 하측 반전력(half-power) 주파수
- → 증폭기의 저주파 응답특성을 나타냄
- → 결합 및 바이패스 커패시턴스에 영향을 받음

[그림 8-8] 증폭기의 주파수 응답특성 파라미터

주파수 응답특성 파라미터

- 상측 차단주파수(upper cutoff frequency) f_H : 주파수가 증가함에 따라 증폭기의 이득이 기준값(중대역 이득)에 비해 -3 dB 만큼 감소하는 주파수
- → 출력전력이 1/2로 감소하는 주파수, 상측 반전력(half-power) 주파수
- → 증폭기의 고주파 응답특성을 나타냄
- → 내부의 기생 커페시턴스에 영향을 영향을 받음
- 대역폭(bandwidth) BW : 주파수에 무관하게 증폭기의 이득이 일정한 값을 갖는 주파수 영역(즉, f_L 과 f_H 사이)

$$BW = f_H - f_L \tag{8.6}$$

$$BW \simeq f_H \tag{8.7}$$

- 중대역 이득(midband gain) $|A_{dm}|_{dB}$: 증폭기의 기준 이득값
- → 주파수에 무관하게 일정한 값을 가짐
- → 모든 커페시턴스의 영향이 무시될 수 있을 정도로 작은 주파수 영역에서의 이득
- 이득-대역폭 곱(gain-bandwidth product) GBP :

$$GBP = A_m f_H \tag{8.8}$$

→ 주어진 증폭기에 대해 일정한 값을 가짐. 이득과 대역폭 사이에 교환조건이 존재

<u>주파수 응답특성 파라미터</u>

예제 8-2

[그림 8-10] [예제 8-2] 보드 선도의 파라미터 값

BJT의 고주파 등가모델

[그림 8-11] BJT의 기생 정전용량 성분

MOSFET의 고주파 등가모델

[그림 8-16] MOSFET의 기생 정전용량 성분

10.2.1 트랜지스터의 정격

- 트랜지스터가 동작할 수 있는 전압, 전류 및 전력소비의 한계치
- 정격값이 초과되면 트랜지스터의 정상 동작이 보장되지 않거나 소자가 치명적인 손상을 받을 수 있으므로, 회로설계 시에 고려되어야 함
- 제조회사에서 제공하는 규격표(data sheet)에 명시됨
- BJT의 정격 파라미터
 - 컬렉터-이미터 항복 전압 (V_{CEO})
 - 컬렉터-베이스 항복 전압 (V_{CBO})
 - 이미터-베이스 항복 전압 (V_{EBO})
 - 최대 컬렉터 전류 $(I_{C.max})$
 - 최대 소비전력 $(P_{D.max})$

[표 10-1] 바이폴라 트랜지스터의 정격

구분	소신호 증폭 및 스위칭용		전력 증폭기용	
파라미터	2N2222A	2N3904	2N3055	2N6275
$V_{\it CEO}$ [Vdc]	40	40	60	120
$I_{C,max}$ (continuous) [Adc]	0.6	0.2	15	50
$P_{D,max}$ @ T_A =25°C [W]	0.5	0.625		
$P_{D,max}$ @ T_C =25°C [W]	1.8	1.5	115	250
Thermal resistance θ_{JA} [°C/W]	300	200	_	-
Thermal resistance θ_{JC} [°C/W]	83.3	83.3	1,52	0.7
f_T [MHz]	300	300	2,5	30
eta_{DC} (DC 전류이득)	35~100	30~100	5~20	10~50

□ 안전동작영역 (Safe Operation Area, SOA)

- 트랜지스터가 안전하게 동작할 수 있는 영역
- 컬렉터 정격전류 $I_{C,max'}$ C-E 항복유지전압 $V_{CEO(sus)'}$ 최대 정격전력 $P_{D,max'}$ 2 차 항복(second breakdown) 등에 의해 결정됨

[그림 10-4] 트랜지스터의 안전동작영역

10.2.2 방열대책

- 트랜지스터에 전류가 흐르면 $P_D = V_{CE} I_C$ 에 의한 전력소비가 발생함
- 전력소비는 열로 발생되어 소자의 온도가 상승함
- 온도 상승 \rightarrow 전류 증폭률 β_0 증가 \rightarrow 전류 증가 \rightarrow 온도 상승의 정귀환 작용에 의해 소자의 온도가 계속 상승하는 **열폭주(thermal runaway)** 현상이 발생되며, 이는 소자에 치명적인 손상을 유발함
- 온도 상승에 의한 소자의 손상을 방지하기 위해 허용 가능한 소자(접합) 온 도의 최대치가 규정됨
- 실리콘 트랜지스터의 최대 접합온도는 150~200°C 정도

□ 전력저하곡선(power derating curve)

- 온도에 따른 최대 전력소비 특성을 나타내는 그래프
- 대기 온도 또는 케이스 온도를 기준으로 표시됨
- 전력저하계수(power derating factor) : $T_{A0}=25$ $^{\circ}$ 에서 $T_{J,max}$ 사이의 기울기 $-1/\theta_{JA}$ 로 정의됨
- 열저항(thermal resistance) : 접합에서 발생된 열이 대기 중으로 방출되는 열전도의 방해(저항) 정도를 나타냄 (전력저하계수의 역수 θ_{IA} 로 정의됨)

• 대기온도 $T_A > T_{AO}$ 에서 트랜지스터가 견딜 수 있는 최대 전력소비

$$P_{D,max} = \frac{T_{J,max} - T_A}{\theta_{JA}} \tag{10.1}$$

• 접합과 대기 사이의 열저항 (통상, T_{AO} = $25\,{
m C}$)

$$\theta_{JA} = \frac{T_{J,max} - T_{A0}}{P_{D0}} \tag{10.2}$$

• TR의 소비전력이 P_D 인 경우에, 접합온도 T_J 와 대기온도 T_A 사이의 관계

$$T_J - T_A = \theta_{JA} P_D \tag{10.3}$$

$$\rightarrow V_2 - V_1 = R \cdot I$$
와 유사성이 있음

• 접합과 대기 사이의 열저항

$$\theta_{JA} = \theta_{JC} + \theta_{CA}$$

• 방열기구가 부착된 경우의 열저항

$$\theta_{JA} = \theta_{JC} + \theta_{CS} + \theta_{SA}$$

- *θ_{JC}*: 접합과 케이스(패키지) 사이의 열저항
- ullet $heta_{CA}$: 케이스와 대기 사이의 열저항
- 방열기구가 부착된 트랜지스터의 열전달 모델

$$T_I - T_A = (\theta_{IC} + \theta_{CS} + \theta_{SA})P_D$$

방열기구: heat Sink

(b) 열저항, 소비전력, 온도의 관계

 $\frac{\text{http://cafe.naver.com/audioparts.cafe?iframe_url=/ArticleRead.nhn\%3Farticleid=12148\&topReferer=http://cafeblog.search.naver.com\%26imgsrc=data37/2009/6/25/253/\%C5\%A9\%B1\%E2\%BA\%AF\%C8\%AF_lm4702_\%B9\%E6\%BF\%AD\%C6\%C7_doikkim0301.jpg$

[그림 10-14] 2N3094 BJT의 패키지 형태에 따른 전력저하(대기온도-전력소비) 곡선

SOT-23

TO-92

SOT-223

http://www.national.com/en/packaging/index.html

