

Integer Programming

- Prior linear programs have decision variables that are naturally integer-valued
- Optimal solutions are commonly not integer-valued
- Simply rounding up or down could lead to non-optimal solutions or could lie in an infeasible region
- Algorithms exist to handle this common problem
- Models where some/all the variables are required to be integer-valued are known as integer programming models

Integer Programming

- Total integer models are linear programming models where all the decision variables must be integer-valued
- o-1 integer models are linear programming models where all the decision variables must take the values o or 1
- Mixed integer models are linear programming models where some of the decision variables must be integer valued while others do not

Total Integer Model

- $x_1 = Dollars invested in municipal bonds$
- $x_2 = Dollars$ invested in CDs
- $x_3 = Dollars$ invested in Treasury Bills
- $x_4 = Dollars invested in Growth Stock$

• Linear program

Maximize
$$0.085x_1 + 0.05x_2 + 0.065x_3 + 0.13x_4$$

Subject to
$$x_1 + x_2 + x_3 + x_4 = 70000$$

$$x_1/(x_1 + x_2 + x_3 + x_4) \le 0.2$$

$$x_2 \le x_1 + x_3 + x_4$$

$$(x_2 + x_3)/(x_1 + x_2 + x_3 + x_4) \le x_1 + x_3 + x_4$$

$$(x_2 + x_3)/(x_1 + x_4) \ge 1.2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

0-1 Integer Model

- $x_1 = Dollars invested in municipal bonds$
- $x_2 = Dollars$ invested in CDs
- $x_3 = Dollars$ invested in Treasury Bills
- $x_4 = Dollars invested in Growth Stock$

Linear program

Maximize
$$0.085x_1 + 0.05x_2 + 0.065x_3 + 0.13x_4$$

Subject to
$$x_1 + x_2 + x_3 + x_4 = 70000$$

$$x_1/(x_1 + x_2 + x_3 + x_4) \le 0.2$$

$$x_2 \le x_1 + x_3 + x_4$$

$$(x_2 + x_3)/(x_1 + x_2 + x_3 + x_4) \le x_1 + x_3 + x_4$$

$$(x_2 + x_3)/(x_1 + x_4) \ge 1.2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Mixed Integer Model

- $x_1 = Dollars$ invested in municipal bonds
- $x_2 = Dollars$ invested in CDs
- $x_3 = Dollars$ invested in Treasury Bills
- $x_4 = Dollars invested in Growth Stock$

Linear program

Maximize
$$0.085x_1 + 0.05x_2 + 0.065x_3 + 0.13x_4$$

Subject to
$$x_1 + x_2 + x_3 + x_4 = 70000$$

$$x_1/(x_1 + x_2 + x_3 + x_4) \le 0.2$$

$$x_2 \le x_1 + x_3 + x_4$$

$$(x_2 + x_3)/(x_1 + x_2 + x_3 + x_4) \le x_1 + x_3 + x_4$$

$$(x_2 + x_3)/(x_1 + x_4) \ge 1.2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Linear program in standard form

Maximize
$$0.085x_1 + 0.05x_2 + 0.065x_3 + 0.13x_4$$

Subject to
$$x_1 + x_2 + x_3 + x_4 = 70000$$

$$0.8x_1 - 0.2x_2 - 0.2x_3 - 0.2x_4 \le 0$$

$$-x_1 + x_2 - x_3 - x_4 \le 0$$

$$0.3x_1 - 0.7x_2 - 0.7x_3 + 0.3x_4 \le 0$$

$$1.2x_1 - x_2 - x_3 + 1.2x_4 \le 0$$

$$x_1, x_2, x_3, x_4 \ge 0$$

- Download Investment-1.xlsx from course website from link Sheet 1
- Optimal solution $(x_1, x_2, x_3, x_4) = (0,0,38181,3181.18)$

Variable (Cells					
		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$15	Municipal bonds = (\$)	0	-0.045	0.085	0.045	1E+30
\$B\$16	CDs = (\$)	0	-0.015	0.05	0.015	1E+30
\$B\$17	Treasury bills = (\$)	38181.81818	0	0.065	0.065	0.015
\$B\$18	Growth stock = (\$)	31818.18182	0	0.13	1E+30	0.045

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$F\$7	Total investment Usage	70000	0.094545455	70000	1E+30	70000
\$F\$8	Constraint 1 Usage	-14000	0	0	1E+30	14000
\$F\$9	Constraint 2 Usage	-70000	0	0	1E+30	70000
\$F\$10	Constraint 3 Usage	-17181.81818	0	0	1E+30	17181.81818
\$F\$11	Constraint 4 Usage	6.54836E-11	0.029545455	0	37800	70000

Created variables

1	1	1	1	Edit Name		?	×
0.8	-0.2	-0.2	-0.2	<u>N</u> ame:	А		
-1	1	-1	-1		Workbook	×.	
0.3	-0.7	-0.7	0.3	C <u>o</u> mment:			^
1.2	-1	-1	1.2				
				<u>R</u> efers to:	=Sheet1!\$B\$8:\$E\$11		<u>*</u>
					ОК	Cano	

Created variables

Workbook

=Sheet1!\$H\$8:\$H\$11

OK

Cancel

Edit Name

Name:

Scope:

Comment:

Refers to:

• Usage of variables

Products:	Municipal bonds	CDs	Treasury bills	Growth stock			
	(\$)	(\$)	(\$)	(\$)			
Return:	0.085	0.05	0.065	0.13			
Constraints:					Usage	Constraint	R.H.S.
Total investment	1	1	1	1	0	=	70000
Constraint 1	0.8	-0.2	-0.2	-0.2	=MMULT(A,	<)	0
Constraint 2	-1	1	-1	-1	0	<=	0
Constraint 3	0.3	-0.7	-0.7	0.3	0	<=	0
Constraint 4	1.2	-1	-1	1.2	0	<=	0
Production:							
Municipal bonds =	0						
CDs =	0						
Treasury bills =	0						
Growth stock =	0						
Return =	0						

• Usage of variables

• Q: What other variable was created and how is it being used?

- Best Boy retail chain ships televisions from 3 of its distribution warehouses to three of its retail stores monthly
- Each warehouse has a fixed supply per month and fixed demand per month
- Q: How many TVs should be shipped from each warehouse to each store to minimize the total cost of transportation?
- Supply (700 TVs) and Demand (600 TVs)

Warehouse	Supply (TVs)	Store	Demand (TVs)
 Cincinnati 	300	A. New York	150
2. Atlanta	200	B. Dallas	250
Pittsburgh	200	C. Detroit	200

• Shipping cost per TV for each route

Warehouse

- 1. Cincinnati
- 2. Atlanta
- 3. Pittsburgh

Store

- A. New York
- B. Dallas
- C. Detroit

	To Store			
From Warehouse	Α	В	C	
1	\$16	\$18	\$11	
2	14	12	13	
3	13	15	17	

Visual of all routes (supply > demand)

- Decision variables
 - Need to have one for each of the 9 routes
 - x_{ij} = number of televisions from warehouse i to store j
 - i = 1,2,3 & j = A,B,C
- Linear program in standard form

Minimize
$$16x_{1A} + 18x_{1B} + 11x_{1C} + 14x_{2A} + 12x_{2B} + 13x_{2C} + 13x_{3A} + 15x_{3B} + 17x_{3C}$$

Subject to
$$x_{1A} + x_{1B} + x_{1C} \le 300$$
 (Cincinnati supply)

$$x_{2A} + x_{2B} + x_{2C} \le 200$$
 (Atlanta supply)

$$x_{3A} + x_{3B} + x_{3C} \le 200$$
 (Pittsburgh supply)

$$x_{1A} + x_{2A} + x_{3A} \ge 150$$
 (New York demand)

$$x_{1B} + x_{2B} + x_{3B} \ge 250$$
 (Dallas demand)

$$x_{1C} + x_{2C} + x_{3C} \ge 200$$
 (Detroit demand)

- Download Transportation-1.xlsx from course website from link Sheet 2
- Sheet called Standard contains the standard linear program format and the sheet called Alternative contains a more compact form of the same linear program
- Focus on Alternative sheet

\mathbb{Z}	Α	В	С	D	Е	F	G
4	Warehouse	New York	Dallas	Detroit	TV sets shipped	Constraint	Supply
5	Cincinatti	0	0	200	200	<=	300
6	Altanta	0	200	0	200	<=	200
7	Pittsburgh	150	50	0	200	<=	200
8	TV sets shipped	150	250	200			
9	Constraint	>=	>=	>=			
10	Demand	150	250	200			
11	Cost (\$)	7300					
12							
13							
14	Warehouse	New York	Dallas	Detroit			
15	Cincinatti	16	18	11			
16	Altanta	14	12	13			
17	Pittsburgh	13	15	17			

	А	В	С	D
4	Warehouse	New York	Dallas	Detroit
5	Cincinatti	0	0	200
6	Altanta	0	200	0
7	Pittsburgh	150	50	0
8	TV sets shipped	150	250	200
9	Constraint	>=	>=	>=
10	Demand	150	250	200
11	Cost (\$)	7300		
12		=SUMPI	RODUCT(B5:	D7,B15,D17)
13				
14	Warehouse	New York	Dallas	Detroit
15	Cincinatti	16	18	11
16	Altanta	14	12	13
17	Pittsburgh	13	15	17

Ex: Scheduling

• Download Multischedule-1.xlsx from course website from link Sheet 3

- $x_1 = Number\ of\ Boxes\ of\ Sweatshirts\ -F$
- $x_2 = Number\ of\ Boxes\ of\ Sweatshirts B/F$
- $x_3 = Number\ of\ Boxes\ of\ T shirts F$
- $x_4 = Number\ of\ Boxes\ of\ T shirts B/F$
- Consider the following table showing resource requirements, unit costs, and profit of every dozen (box) of shirts

	Processing time (hr.) per dozen	Cost per dozen	Profit dozen
Sweatshirt - F	0.10	\$36	\$90
Sweatshirt - B/F	0.25	48	125
T-shirt - F	0.08	25	45
T-shirt - B/F	0.21	35	65

- Objective Function
 - Goal: Maximize profit on shirts
 - $Z = 90x_1 + 125x_2 + 45x_3 + 65x_4$
- Constraints
 - Only have 72 hours of processing time to produce all items: $0.1x_1 + 0.25x_2 + 0.08x_3 + 0.21x_4 \le 72$
 - Company has a budget of \$25,000: $36x_1 + 48x_2 + 25x_3 + 35x_4 \le 25,000$
 - Trailer truck will pick up shirts and can accommodate 1,200 standard-size boxes where each standard-size box holds 12 T-shirts and a box of 12 sweatshirts is 3 times the size of the standard-size box:
 - $3(x_1 + x_2) + x_3 + x_4 \le 1,200$
 - They have 500 dozens of blank sweatshirts: $x_1 + x_2 \le 500$
 - They have 500 dozens of blank T-shirts: $x_3 + x_4 \le 500$
 - Nonnegativity: x_1 , x_2 , x_3 , $x_4 \ge 0$

- Download ProductMix.xlsx from website link called Sheet 2
- Before Excel solver

A product mix							
Products:	Sweatshirt-F	Sweatshirt-B/F	T-shirt-F	T-shirt-B/F			
	(dozen)	(dozen)	(dozen)	(dozen)			
Profit per dozen:	90	125	45	65			
Resources:					Usage Constraint	Available	Left over
Processing time	0.1	0.25	0.08	0.21	0 <=	72	72
Cost	36	48	25	35	0 <=	25000	25000
Truck capacity	3	3	1	1	0 <=	1200	1200
Blank sweatshirts	1	1	0	0	0 <=	500	500
Blank T-shirts	0	0	1	1	0 <=	500	500
Production:							
Sweatshirts-F =	0						
Sweatshirts-B/F =	0						
T-shirt-F =	0						
T-shirt-B/F =	0						
Profit =	0						

• After Excel solver

A product mix								
Products:	Sweatshirt-F	Sweatshirt-B/F	T-shirt-F	T-shirt-B/F				
Troducts.	(dozen)	(dozen)	(dozen)	(dozen)				
Profit per dozen:	90	, ,	,	,				
Resources:					Usage	Constraint	Available	Left over
Processing time	0.1	0.25	0.08	0.21	72	<=	72	0
Cost	36	48	25	35	21593.333	<=	25000	3406.6667
Truck capacity	3	3	1	1	1200	<=	1200	0
Blank sweatshirts	1	1	0	0	233.33333	<=	500	266.66667
Blank T-shirts	0	0	1	1	500	<=	500	0
Production:								
Sweatshirts-F =	175.55556							
Sweatshirts-B/F =	57.77778							
T-shirt-F =	500							
T-shirt-B/F =	0							
Profit =	45522.222							

- $x_1 = 175.56$
- $x_2 = 57.78$
- $x_3 = 500$
- $x_4 = 0$
- Sensitivity report for objective function coefficients

Variable (Cells						
		Final	Reduced		Objective	Allowable	Allowable
Cell	Name	Value	Cost	(Coefficient	Increase	Decrease
\$B\$15	Sweatshirts-F = (dozen)	175.555556		0	90	11.92307692	40
\$B\$16	Sweatshirts-B/F = (dozen)	57.7777778		0	125	13.21428571	11.92307692
\$B\$17	T-shirt-F = (dozen)	500		0	45	1E+30	4.111111111
\$B\$18	T-shirt-B/F = (dozen)	0	-10.3333333	3	65	10.33333333	1E+30

• Sensitivity report for constraint quantities

Constrain	nts					
		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$F\$10	Blank sweatshirts Usage	233.3333333	0	500	1E+30	266.6666667
\$F\$11	Blank T-shirts Usage	500	4.111111111	500	185.7142857	500
\$F\$7	Processing time Usage	72	233.3333333	72	26.33333333	8.666666667
\$F\$8	Cost Usage	21593.33333	0	25000	1E+30	3406.666667
\$F\$9	Truck capacity Usage	1200	22.2222222	1200	260	316

- Linear program with 4 decision variables and 4 constraints requires more time to insert formulas in Excel
- Understanding of linear algebra can make this a more efficient process
- The object $\mathbf{x} = [x_1, x_2, x_3, x_4]$ is a row vector in \mathbb{R}^4

• The object
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
 is a column vector in \mathbb{R}^4

• The transpose of a vector \mathbf{x} , denoted \mathbf{x}' , transforms a row vector into a column vector and vice versa

- The dimension of a matrix, denoted dim(A), describes its number of rows and number of columns (in that order)
- Based on above example, $\dim(\mathbf{A})$ is 3×4
- A row vector in \mathbb{R}^m is a matrix in $\mathbb{R}^{1\times m}$
- A column vector in \mathbb{R}^n is a matrix in $\mathbb{R}^{n\times 1}$
- Typically, all vectors are by default column vectors

- For matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, we can define their product $\mathbf{M} = \mathbf{AB}$, which will be a matrix in $\mathbb{R}^{m \times p}$
- For $\mathbf{A} \in \mathbb{R}^{3 \times 4}$ and $\mathbf{B} \in \mathbb{R}^{4 \times 2}$, matrix $\mathbf{M} = \mathbf{A}\mathbf{B}$ can be expressed as

$$\mathbf{M} = \mathbf{A}\mathbf{B} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \\ b_{41} & b_{42} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \\ m_{31} & m_{32} \end{bmatrix}$$

where

$$m_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{j3} + a_{i4}b_{4j}$$
 for $i = 1,2,3$ and $j = 1,2$

- In order to compute, $\mathbf{M} = \mathbf{A}\mathbf{B}$, the number of columns in \mathbf{A} must equal the number of rows in \mathbf{B}
- In above example, the matrix $\mathbf{M} = \mathbf{B}\mathbf{A}$ does not exist

• Let
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 2 & 5 \\ 7 & 1 \end{bmatrix}$

$$\mathbf{AB} = \begin{bmatrix} 1 \times 2 + 3 \times 7 & 1 \times 5 + 3 \times 1 \\ -2 \times 2 + 0 \times 7 & -2 \times 5 + 0 \times 1 \end{bmatrix} = \begin{bmatrix} 23 & 8 \\ -4 & -10 \end{bmatrix}$$

$$\mathbf{BA} = \begin{bmatrix} 2 \times 1 + 5 \times -2 & 2 \times 3 + 5 \times 0 \\ 7 \times 1 + 1 \times -2 & 7 \times 3 + 1 \times 0 \end{bmatrix} = \begin{bmatrix} -8 & 6 \\ 5 & 21 \end{bmatrix}$$

• Let $\mathbf{x} = [x_1, x_2, x_3, x_4]'$ and $\mathbf{y} = [y_1, y_2, y_3, y_4]'$ be column vectors in \mathbb{R}^4 $\mathbf{x}'\mathbf{y} = x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4 = \mathbf{y}'\mathbf{x}$

- MMULT Function in Excel
 - The MMULT Function in Excel is used to multiply arrays (matrices) that have compatible dimensions and returns an array (matrix)
 - Syntax: MMULT(array1,array2)
 - Example: Vector Multiplication

	А	В	С	D	Е	F
1	Vector a	1	2	3		Vector b
2						3
3						2
4						1
5						
6	MMULT(a,b)	10				
7	MMULT(b,a)	3	6	9		
8		2	4	6		
9		1	2	3		

- MMULT Function in Excel
 - The MMULT function in Excel is used to multiply arrays (matrices) that have compatible dimensions and returns an array (matrix)
 - Syntax: MMULT(array1,array2)
 - Example: Vector Multiplication

\mathbf{Z}	А	В	С	D	Е	F
1	Vector a	1	2	3		Vector b
2						3
3						2
4						1
5						
6	MMULT(a,b)	10	=MMULT	(B1:D1,F2	:F4)	
7	MMULT(b,a)	3	6	9		
8		2	4	6		
9		1	2	3		

- MMULT Function in Excel
 - The MMULT Function in Excel is used to multiply arrays (matrices) that have compatible dimensions and returns an array (matrix)
 - Syntax: MMULT(array1,array2)
 - Example: Vector Multiplication

	А	В	С	D	Е	F
1	Vector a	1	2	3		Vector b
2						3
3						2
4						1
5						
6	MMULT(a,b)	10				
7	MMULT(b,a)	3	6	9	=MMUL	Γ(F2:F4,
8		2	4	6		B1:D1)
9		1	2	3		

- MMULT Function in Excel
 - Example: Matrix Multiplication

	А	В	С	D	Е	F	G
1	Matrix A	1	2	3		Matrix B	
2		4	5	6		1	2
3						3	4
4							
5	MMULT(A,B)	#VALUE!					
6	MMULT(B,A)	9	12	15			
7		19	26	33			

- MMULT Function in Excel
 - Example: Matrix Multiplication

	А	В	С	D	Е	F	G
1	Matrix A	1	2	3		Matrix B	
2		4	5	6		1	2
3						3	4
4							
5	MMULT(A,B)	#VALUE!	=MMULT	(B1:D2,F2	:G3)		
6	MMULT(B,A)	9	12	15			
7		19	26	33			

- MMULT Function in Excel
 - Example: Matrix Multiplication

\mathbf{Z}	А	В	С	D	Е	F	G
1	Matrix A	1	2	3		Matrix B	
2		4	5	6		1	2
3						3	4
4							
5	MMULT(A,B)	#VALUE!					
6	MMULT(B,A)	9	12	15	=MMUL7	(F2:G3,B1	.:D2)
7		19	26	33			

- SUMPRODUCT Function in Excel
 - The SUMPRODUCT function in Excel is used to multiply arrays (matrices) element-wise and then returns the sum of their products
 - In mathematics, this is often referred to as a cross-product or vector-product when the arrays are vectors
 - Syntax: SUMPRODUCT(array1,array2)
 - Ex: Cross-product

	Α	В	C	D	Е	F
1	Vector a	1	2	3		Vector c
2	Vector b	3	2	1		4
3						5
4						6
5						
6	SUMPRODUCT(a,b)	10				
7	SUMPRODUCT(a,c)	#VALUE!				

- SUMPRODUCT Function in Excel
 - The SUMPRODUCT function in Excel is used to multiply arrays (matrices) element-wise and then returns the sum of their products
 - In mathematics, this is often referred to as a cross-product or vector-product when the arrays are vectors
 - Syntax: SUMPRODUCT(array1,array2)
 - Ex: Cross-product

	А	В	С	D	Е	F
1	Vector a	1	2	3		Vector c
2	Vector b	3	2	1		4
3						5
4						6
5						
6	SUMPRODUCT(a,b)	10	=SUMPR	ODUCT(B	1:D1,B2:D	2)
7	SUMPRODUCT(a,c)	#VALUE!				

- SUMPRODUCT Function in Excel
 - The SUMPRODUCT function in Excel is used to multiply arrays (matrices) element-wise and then returns the sum of their products
 - In mathematics, this is often referred to as a cross-product or vector-product when the arrays are vectors
 - Syntax: SUMPRODUCT(array1,array2)
 - Ex: Cross-product

	А	В	С	D	Е	F
1	Vector a	1	2	3		Vector c
2	Vector b	3	2	1		4
3						5
4						6
5						
6	SUMPRODUCT(a,b)	10				
7	SUMPRODUCT(a,c)	#VALUE!	=SUMPR	ODUCT(B	1:D1,F2:F	4)

Both MMULT and CROSSPRODUCT can be used in Excel to make the creation of formulas and constraints of linear programs considerably easier

Made up example for practice

	Α	В	С		D	Е		F					
1	Profit	3	4							Solv	er		
2				Tota	al	Constrain	t Ma	X	п				
3	Metal	2	1		3	<=		30	П				
4	Plastic	0	4		4	<=		50	ш				
5													
6					1	4	3	C		D	Е	F	
7	Swag 1	1		1	Profi	t	3		4				
8	Swag 2	1		2						Total	Constraint	Max	
9	Total	7		3	Meta	ı	2		1	30	<=		30
				4	Plast	ic	0		4	50	<=		50
				5									
				6									
				7	Swag	1	8.75						
				8	Swag		12.5						
				9	Total		76 25						

Creating EXCEL variable for easy referencing

Usage of created variable in establishing constraints and objective function

\mathbb{Z}	А	В	С	D	Е	F
1	Profit	3	4			
2				Total	Constraint	Max
3	Metal	2	1	30	<=	30
4	Plastic	0	4	50	<=	50
5				=MMUL	T(B4:C4,x)	
6						
7	Swag 1	8.75				
8	Swag 2	12.5				
9	Total	76.25	=MMULT(B1:C1,x)		

Another option for specification

SU	M	•	× ✓	<i>f</i> x = N	/MULT(B3:C	4,B7:B8)
4	А	В	C	D	Е	F
1	Profit	3	4			
2				Total	Constraint	Max
3	Metal	2	1	B8)	<=	30
4	Plastic	0	4	4	<=	50
5						
6						
7	Swag 1	1				
8	Swag 2	1				
9	Total	7				

Another option for specification

- Try using MMULT and SUMPRODUCT in cell formulas
- Try using vectors/matrices in specification of constraints
- Download Lecture6WS.xlsx from course website from link Sheet 2 for all examples seen in this lecture

The End

