ure l'Intuition de la multibésolution
88/7 = 12. 84 5714285
Selon la précision désirée, 8817 peut être
approximée come
5,10,12,12.57, etc
(lanne me pyramide de Garssienne) à axultiple résolution
des ondelettes encodent les différences entre les résolutions (nomalement facteur) (ici dans le système
(ici dans le système
décimal impose le facteur 10)
Filo Sproxuntions Différences 10.0 No j=1 2.0 Ng j=2
fz 12
f3 12.5
fy 12.57
Plus on augmente la résolution, plus on attrape les défaits
sais reclarelance
88/7 = 10 + 2 + 0.5 + 0.07 +
It des nombrés décimans perment appronver n'obspete quel nombre

Reconstruction: S= (3,1,0,4,8,6,9,9) fwt(S) = (5, -3, 0, -1, 1, -2, 1, 0)= (a3; d3; d2; d1) On refrouve 3 + x + y = x = a + d = 3Shall eithelle 2 + x + y = x + d =S& = (a3 + d3, a3 - d3; d2; d1) =((2,8);(0,-1;)); -2,1,0)=(02,01) $S^{*}=(\bar{d}_{2}+\bar{d}_{2},\bar{d}_{2}-\bar{d}_{2};d_{1})$ = (Black(2+0), 2-0, 8-1, 8+1; 1, -2,1,0) $=(2,2,7,9;1,-2,1,0)=(a_i;d_i)$ On retrouve finalement S $S = (\vec{a}_1 + \vec{d}_1; \vec{a}_1 - \vec{d}_1)$ = (2+1,2-1,2-2,2+2,7-1,7+4,9+6,8-0) = (3, 1, 0, 4, 8, 6, 9, 9) Ever est nul! S= 5

1909 Dondelette de Haar = & Bren avant la nultirésolution Ancêtre des anclelettes. Fait prement

par construction $\phi(t) = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} dt dt$ ailleurs $\phi(t) = \int_{0}^{\infty} \int_{0}^{\infty} dt dt$ 0\$ < + < 1/2 1/25+4) ailleurs

(1)
$$\psi(t) = \phi(t)_{E0,1/2} + \phi(t)_{L1/2,1/2}$$

$$= \phi(at) - \phi(at-1)$$

$$(1) + (2) \Rightarrow [\psi(t) + \phi(t)] = \phi(2t)$$

$$(20) - (2) \Rightarrow [\psi(t) - \phi(t)] = -2\phi(2t - 1)$$

$$(30) - (2) \Rightarrow [\psi(t) - \phi(t)] = \phi(2t)$$

$$\Rightarrow \left(\phi(2+-1) = \phi(+) - \psi(+) \right)$$

Thm:
$$\phi(2^{i}x - 2k) = \chi(2^{i-1}x - k) + \phi(2^{i}x - k)$$

$$f(2ix - 2k-1) = \phi(2i-k-k) - \chi(2ik-k)$$

& Hartrez-le

W- E //

On s'en va où owec sa? Persons jet et ket C'est quei la version de f, estimée à l'échelle j ? $f_{i}(x) = \sum_{k \in \mathbb{Z}} a_{k} \phi(2^{i}x - k)$ $= \sum_{k} (a_{2k} \phi(2^{i}x - 2k) + a_{2k+1} \phi(2^{i}x - 2k-1)$ = K= Z (azu (\$\phi(2^{j-1}x-k)+\psi(2^{j-1}x-k) + azur (\$\phi(2^{j-1}xk)-\psi(2^{j-1}x-k) \]

() = \(\left(\alpha_{2k+1} \right) \phi \left(\alpha_{2k+1} \right) \phi \left(\alpha_{2k+1} \right) \phi \left(\alpha_{2k+1} \right) \right) \left(\alpha_{2k+1} \right) \left(\alpha_{2k+1} \right) \right) \left(\alpha_{2k+1} \right) \right) \left(\alpha_{2k+1} \right) \right) \left(\alpha_{2k+1} \right) \left(\alpha_{2k+1} \right) \right) \left(\alpha_{2k+1} \right) \right) \left(\alpha_{2k+1} \right) \left(\alpha_{2k+1} \right) \right) \l différence des coefficiers Moyenne des amplitudes Approximation du signal à me échelle + grossière

On confinue avec
$$j-1$$
 $f_{j-1}(x) = \sum_{j=1}^{n} \phi(3^{j}x - k)$
 $= \sum_{j=1}^{n} pune + \sum_{j=2}^{n} pune$
 $= W_{j-2} + f_{j-2}$

(Rappel: $88f_{2} = ... + 0.07 + 0.5 + 2 + 10 + 0$

Ex1: $(\frac{\pi}{2}, \frac{\pi}{2}, 0, -1, \frac{\pi}{2}, \frac{\pi}{2}, 1, 0)$

ao do di d_{2}
 $a_{0} \phi(t) + d_{0}y(t) + d_{1}y(2t) + d_{2}o_{1}y(4t) + d_{2}o_{2}y(4t-a)$
 $+ d_{1}v(2t-1) + d_{2}v(4t-a)$
 $+ d_{2}v(4t-a)$
 $+ d_{2}v(4t-a)$

· inverse marche aussi
Faites-le. It Encare une fois, an prouve tout sa de fac, an trouble dons
5) plest d'à sa version translatére
$\langle \phi(x), \phi(x-k) \rangle = \int_{-\infty}^{\infty} \phi(x) \phi(x-k) dx$ $= 0$ $ [h, k+1]$ $= 0$ $ 0 \text{ ailleurs}$
1 Inn: φ(aix-k) est une base 1 de V;
Thu: p(aix-1e) est une base 1 de V; p généraire une multirésolution
AA On va pouvoir utiliser & pour
approximer a'imparté l'agrelle Forction
7 Onde lesses de Haar

Then de Décomposition de Haar A fi = Nj-1 + fi-1 $W_{j-1} = \sum_{k=1}^{j-1} b_k \gamma(2^{j-1}x - k)$ $f_{j-1} = \sum_{\alpha k} \alpha_k (\alpha_j - k)$ $dn^{j-1} = Q_{2n} + Q_{2n+1}$ $= Q_{2n} + Q_{2n+1}$ axi = azx + azxx, moyenny

* Vous montrez la reconstruction clans votre IP 4.