Homozygous Standard Workflow – Non-Essential genes [**NE1**] **Bsd** first wt/wt -> tm1 -> tm1a -> tm1/tm1a

FEP: SEP:

Diagram:			0—1 Bsd 1—0	o Bsd o Neo Neo	O Neo Neo	O Bsd O Neo Neo	o Neo Neo
Genotype:		wt/wt	tm1/wt	tm1/tm1a	wt/tm1a	tm1/tm1e	wt/tm1e
LOA CRIT	- OHT	2	1	1	2	1	1
LOA TAM	+ OHT	2	1	0	1	1	1
LOA DEL	- OHT	2	1	0	1	0	1
NEO		0	0	1	1	1	1
BSD		0	1	1	0	1	0

FEP:

tm1/wt is what you want

wt/wt is total failure of electroporation

- * No final loxp site with Bsd vector so no benefit in doing + OHT assay
- ** No Neo resistance in cassette so no benefit in doing Neo assay

SEP:

tm1/tm1a is what you want

wt/tm1a is best possible control but rare

tm1/wt is second best control and very likely

wt/wt is total failure of both electroporations but still a useful control

<u>Homozygous Standard Workflow – Non-Essential genes [**NE1a**]</u> **Neo** first wt/wt -> tm1a -> tm1a/tm1

FEP: SEP:

Diagram:			o Neo	o Neo	o Neo Neo Bsd III	o Neo Bsd O	o—————————————————————————————————————		
Genotype:		wt/wt	tm1a/wt	tm1e/wt	tm1a/tm1	tm1e/tm1	wt/tm1	tm1a/off target Bsd	off target Neo/tm1
LOA CRIT	- OHT	2	2	2	1	1	1	2	1
LOA TAM	+ OHT	2	1	2	0	1	1	1	1
LOA DEL *	- OHT	2	1	1	0	0	1	1	1
NEO		0	1	1	1	1	0	1	1
BSD **		0	0	0	1	1	1	1	1

<u>FEP:</u> tm1a/wt is what you want	<u>SEP:</u> tm1a/tm1 is what you want
tm1e/wt is where most of the cassette goes in but the final loxp does not	wt/tm1 is best possible control but rare
·	tm1a/wt is second best control and very likely
wt/wt is total failure of electroporation	wt/wt is total failure of both electroporations
* LOA DEL assay not always done at FEP	but still a useful control
** No Bsd resistance in cassette so no benefit	off target affects suggested by data, may not
to performing the Bsd assay at FEP stage	be real

Homozygous Standard Workflow – Essential genes [E] Neo first wt/wt -> tm1a -> (Dox) -> tm1 -> tm1c/tm1

FEP:

Diagram:		(°	o Neo Neo		Neo Neo	
Genotype:		wt/wt	tm1a/wt	tm1c/wt	tm1e/wt	tm1f/wt
LOA CRIT	- OHT	2	2	2	2	2
LOA TAM	+ OHT	2	1	1	2	2
LOA DEL *	- OHT	2	1	1	1	1
NEO		0	1	0	1	0
BSD **		0	0	0	0	0

FEP:

tm1c/wt is what you want.

tm1a/wt is where the Dox does not excise the Neo resistance.

tm1f/wt is where the Dox does excise the Neo resistance but the final loxp site was not inserted.

tm1e/wt is where the Dox does not excise the Neo resistance and the final loxp was not inserted.

wt/wt is total failure of electroporation.

^{*} LOA DEL assay not always done.

^{**} No Bsd resistance in cassette so no benefit to doing Bsd assay

Homozygous Standard Workflow – Essential genes [E] Neo first wt/wt -> tm1a -> (Dox) -> tm1 -> tm1c/tm1

SEP:

Diagram:		0 Bsd 1 D	o Neo Bsd -	o Bsd o	o Neo Bsd —	0 Bsd 0		
Genotype:		wt/tm1	tm1a/tm1	tm1c/tm1	tm1e/tm1	tm1f/tm1	tm1a/off target Bsd	off target Neo/tm1
LOA CRIT	- OHT	1	1	1	1	1	2	1
LOA TAM	+ OHT	1	0	0	1	1	1	1
LOA DEL	- OHT	1	0	0	0	0	1	1
NEO		0	1	0	1	0	1	1
BSD		1	1	1	1	1	1	1

SEP:

tm1c/tm1 is what you want

tm1c/wt shows the SEP failed and is a good control

wt/tm1 is also a good control

off target affects suggested by data, may not be real

<u>Heterozygous Cre Knockin Standard Workflow – No Dre [CreKi]</u> wt/wt -> tm1 -> tm1/wt

EP:

Diagram:		o Cre Puro
Genotype:	wt/wt	tm1/wt
CRE	0	1
LOA DEL	2	1
PURO	0	1

FEP:

tm1/wt is what you want

wt/wt is total failure of electroporation

In addition to these tests they must all pass chromosome tests Chry and Chr8, and if the LOA DEL test fails then LRPCR primer bands can be checked

<u>Heterozygous Cre Knockin Standard Workflow – Dre [CreKiDre]</u> wt/wt -> tm1 -> (Dre) -> tm1.1/wt

EP:

Diagram:	0-1-0	o Cre Puro	o Cre
Genotype:	wt/wt	tm1/wt	tm1.1/wt
CRE	0	1	1
LOA DEL	2	1	1
PURO	0	1	0

EP:

tm1.1/wt is what you want

tm1/wt is a failure of the *Dre* recombinase step

wt/wt is total failure of electroporation

In addition to these tests they must all pass chromosome tests Chry and Chr8, and if the LOA DEL test fails then LRPCR primer bands can be checked