7	A. providing a hydrogen containing fuel to the anode
8	and an oxygen containing oxidant to the cathode
9	to generate, for a first period of time, an
10	electric current within the external circuit for
11	operating the primary electricity using device,
12	the cell operating conditions being selected such
13	that, during the course of said first period of
14	time, the cathode potential is maintained above
15	0.66 volt and cell performance decreases;
16	B. regenerating the cell after Step A by
17	a) providing a hydrogen containing fuel to the
18	anode while operating said cell using procedures
19	selected to reduce the cathode potential to below
20	0.50 volt, said procedures including the steps of
21	i) disconnecting the primary electricity using
22	device from the external circuit and leaving the
23	circuit open, and ii) stopping the flow of
24	oxidant to the cell and allowing the oxidant
25	remaining within the cell to be consumed at the
26	cathode; and, b) maintaining the cathode
27	potential below the said 0.50 volt for a second
28	period of time sufficient to essentially restore
29	the cell performance decrease which occurred
30	during the course of Step A; and,
31	C. sequentially repeating Steps A and B to reduce
32	the decrease in cell performance over time.
1	21. A method of operating a fuel cell having a PEM as the
2	electrolyte, an anode on one side of the PEM, a

cathode on the other side of the PEM, an external

electric circuit connecting the anode and cathode,

3

5	and a primary electricity using device within the
6	external circuit, comprising the steps of
7	A. providing a hydrogen containing fuel to the anode
8	and an oxygen containing oxidant to the cathode
9	to generate, for a first period of time, an
10	electric current within the external circuit for
11	operating the primary electricity using device,
12	the cell operating conditions being selected such
13	that, during the course of said first period of
14	time, the cathode potential is maintained above
15	0.66 volt and cell performance decreases;
16	B. regenerating the cell after Step A by
17	a) providing a hydrogen containing fuel to the
18	anode while operating said cell using procedures
19	selected to reduce the cathode potential to below
20	0.50 volt, said procedures including the steps of
21	i) disconnecting the primary electricity using
22	device from the external circuit, and ii) with an
23	auxiliary resistive load connected across the
24	cell, stopping the flow of oxidant to the cell
25	and allowing the oxidant remaining within the
26	cell to be consumed at the cathode creating a
27	current flow through the auxiliary resistive
28	load; and, b) maintaining the cathode potential
29	below the said 0.50 volt for a second period of
30	time sufficient to essentially restore the cell
31	performance decrease which occurred during the
32	course of Step A; and,
33	C. sequentially repeating Steps A and B to reduce
34	the decrease in cell performance over time.

In compliance with 37 CFR 1.173(c), attached hereto is a statement of status and support for claims 20 and 21.

Respectfully submitted,

Stephen E. Revis Reg. No. 26,609

Stephen E. Revis 1 Abbottsford

Avon, CT 06001-3953 Tel.: (860) 674-1835

Date: January 12, 2004