UNCLASSIFIED 404 907

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

I GE/Tempo RM GITMP -32 TINDO

TECHNICAL LIBRARY
755 63
of the
1 MAY 1963
DEFENSE ATOMIC
SUPPORT AGENCY

THREE-DIMENSIONAL RAY TRACE

COMPUTER PROGRAM FOR ELECTROMAGNETIC

WAVE PROPAGATION STUDIES

RM 61TMP-32 DASA 1232

GENERAL (5) ELECTRIC

化自转换性 医自身免疫病 化二氯甲基甲基磺基甲基

\$12.50

THREE-DIMENSIONAL RAY TRACE COMPUTER PROGRAM
FOR ELECTROMAGNETIC WAVE PROPAGATION STUDIES,

H)-RM 61 TMP-32

(p) Walter F. Dudziak

ONA ONA ONA ONA

BNA

16NA

(1) NA

SOL

ØNA

Submitted to: Defense Atomic Support Agency Washington 25, D. C.

4.6

Under Contract: DA 49 146-XZ-038

1 May 1961

TECHNICAL MILITARY PLANNING OPERATION GENERAL ELECTRIC COMPANY SANTA BARBARA, CALIFORNIA

ABSTRACT

 $\sqrt{}$

A computer program is described for use on the IBM-704/7090 electronic data processing machine or any large computer accepting FORTRAN. The necessary modifications for use on these two computers are simple and self-evident. The computer program permits the computation of detailed ray patterns portraying the spatial distribution of rays emitted from a transmitter whose geographic coordinates with respect to the center of the earth are known. This program deals with the solution of the differential equations, given by Hamiltonian optics, for ray paths in non-isotropic, three-dimensionally nonhomogeneous media whose complex phase refractive index is given by the Appleton-Hartree formula.

This report is to be considered as a first attempt in presenting an account of the current status of the development of this program, which has yielded many useful results. Presented also are sample calculations as well as some results that have been obtained by using this program.

* 1. 1 . 1 . 1 .

::TABLE OF CONTENTS

			Page
	ABSTRACT		iii
	LIST OF ILLUSTRA	ATIONS	vii
	LIST OF TABLES		ix
	SECTION		
	ı	INTRODUCTION	1
	II	COMPUTATIONAL PROCEDURE	3
		A. Ray Trace Equations	3
		B. List of Useful Formulae for Ray Tracing	11
		C. Coordinate Transformation	17
		D. Model lonosphere	31
•		E. Model of Earth's Magnetic Field	33
		F. Model of Atmospheric Collision Frequency	35
ì		G. Computational Results	36
	III	COMPUTER PROGRAM FOR THREE- DIMENSIONAL RAY-TRACING	41
		A. Main Program RAY TRACE	45
		B. Function SLANTR	65
		C. Function QATAN	69
•		D. Function ARCOS	73
		E. Subroutine COORD	77
•		F. Subroutine DAUX	82

RM 61TMP-32

SECTION			Page
III	G.	Subroutines INT and INTM	86
	н.	Subroutine RINDEX	112
	ı.	Subroutine ELECTX	129
	J.	Subroutine BIGR	133
	κ.	Subroutine MAGY	137
	L.	Subroutine COLFRZ	141
	M.	Subroutine RCOORD	145
	N.	Subroutine OUTONE	150
	0.	Subroutine OUTPUT	154
	P.	INPUT-OUTPUT	159
ACKNOWLEDG	EMENTS		167
REFERENCES			169

LIST OF ILLUSTRATIONS

Figure	Title	Page
i a	Geometry of Coordinate Transformation	18
16	Geometry of Coordinate Transformation	19
1c	Geometry of Coordinate Transformation	21
1 d	Geometry of Coordinate Transformation	22
2	Geometry for Starting Point and Geomag- netic Coordinate System	28
3	Geometry for Refraction by Spherically Stratified Region	37
4	Radar Propagation Paths Through Spher- ically Ionized Region	43
5	Elevation and Azimuth Errors for Propaga- tion through a Spherical Model - f = 1k Mc	44
6	Block Diagram of Three-Dimensional Ray- Tracing Program	44 a

LIST OF TABLES

Table	Title	Pag
1	Comparison of Total Ray Bending Angle	38
2	Nomenclature describing the V and W Vectors	48
3	Nomenclature Describing the R Vector	113
4	Input Data for a Spherical Ionosphere	160
5	Output Data on Tape 6 for Debugging Purposes	161
6	Output Data From Tane 10	143

SECTION I

What is customarily referred to as reflection in electromagnetic wave propagation, is actually the result of an integrated effect of a phenomenon of refraction (i. e., the gradual changing of the direction of the electromagnetic energy transport vector). Insofar as the phenomenon of refraction is concerned it is well established that the spatial gradient of electron density plays a crucial role in controlling the propagation behavior of an electromagnetic wave. Although this is well known, propagation studies so frequently incorporate a curious mixture of simple refraction phenomena (in the use of Snell's law) and of mirror-like reflection. Hence, in these studies they omit an accounting of these spatial gradients of electron density as well as their variation. As generally known, these oversimplified studies derive from Snell's law the condition for reflection. that being, that at the spatial point of reflection, the electron density must attain the value of 1.24 x 10^4 f² cos² I electron/cc, where f is the propagation frequency in Mc/sec and I is the angle of incidence of the ray upon the first layer of the assumed stratified ionosphere. Such a simplified approach is necessary because of the difficult task that leads to a numerical solution of a propagation problem which incorporates these electron density gradients in its solution.

With increasing use of transmitters in satellites, as well as, for the understanding of the behavior of wave propagation under severly abnormal atmospheric conditions, it becomes important to take a realistic account of the spatial gradient of the electron density in electromagnetic wave propagation studies. Only in this manner will it become possible to usefully utilize the new satellite propagation techniques in studies designed toward the understanding of the atmospheric ionization-deionization phenomena and through this the detailed structure of the ionosphere.

Within the last ten years some effort has been made in constructing analogue computers for the study of ray propagation which accounted for spatial electron density gradients (as for example D. F. Hartree, et al., Manchester, England; M.S. Wong, AFCRL, Bedford, Mass.).

Some of these analogue computers were and still are limited to spatial electron density gradients in a particular direction thus forcing the propagation problem into a two-dimensional plane, or to the study of the behavior of refraction on wave propagation. These constraints are built into the analogue computer and are not easily changed.

One approach that avoids these constraints is the use of a large electronic data processing system where the ordered logical flow controlling any calculation, is easily varied. Combining such a programmed computer with Hamiltonian optics, which give the desired ray tracing equations for a nonhomogeneous, non-isotropic mediu, and the Appleton-Hartree formula for the complex refractive indes, permits in addition to three dimensional ray tracing, the simultaneous study of numerous other variables of the propagation problem. Such an approach to the ray trace propagation problem is presented in its present state of development. A great deal of improvement in some of the routines is possible. As a result, the writer would like to encourage correspondence concerning these matters. In addition, it should be stated, that a computer program for solving the threedimensional ray trace problem has also been written for the Ferranti Mercury Computer at Manchester University by C. B. Haselgrove and J. Haselgrove. 2

SECTION II COMPUTATIONAL PROCEDURE

A. RAY TRACE EQUATIONS

When electromagnetic waves are propagated through a medium whose dielectric constant or index of refraction is a varying function of the path, the waves undergo a change in direction, or refractive bending, and a retardation in the velocity of propagation. The spatial relationship expressing this angular bending of a ray of an electromagnetic wave can be determined by basing the theory of rays and waves on a variational principle (Fermat's) in space. By a ray is meant the path travelled by the transport vector of electromagnetic wave energy between the transmitter and an associated electromagnetic field-intensity point in space. This Hamilton Theory starts from the variational principle $\delta \int \mu ds = 0$, where μ is a medium function or index of refraction, depending on position and direction. From this principle the theory constructs the properties of systems of rays and the waves associated with them (i.e., extremals and transversals, in the language of the calculus of variations). Because of the stationarity in time, the theory may be regarded as a statical one, the rays being fixed curves in space and the waves fixed surfaces. Neither wave-length nor frequency is involved. Likewise the waves form a continuous set of surfaces, not distinguished as crests and troughs. This theory, whether in the form preferred by Hamilton or otherwise, has been the subject of many books under the general title "Geometric Optics".

Thus, applying Hamiltonian optics leads to the general Hamilton's Equations¹ for ray paths of electromagnetic waves in a three-dimensional non-isotropic nonhomogeneous medium. From them Haselgrove² has derived the following set of equations for ray paths in a spherical coordinate system in a format suitable for numerical integration on high speed computers:

$$\frac{d\mathbf{r}}{d\tau} = \frac{1}{\mu^2} \left(\sigma_{\mathbf{r}} - \mu \frac{\partial \mu}{\partial \sigma_{\mathbf{r}}} \right) \tag{1}$$

$$\frac{d\theta}{d\tau} = \frac{1}{r\mu^2} \left(\sigma_{\theta} - \mu \frac{\partial \mu}{\partial \sigma_{\theta}} \right) \tag{2}$$

$$\frac{d\phi}{d\tau} = \frac{1}{\mu^2 r \sin \theta} \left(\sigma_{\phi} - \mu \frac{\partial \mu}{\partial \sigma_{\phi}} \right)$$
 (3)

$$\frac{d\sigma_{r}}{d\tau} = \frac{1}{\mu} \frac{\partial \mu}{\partial r} + \sigma_{\theta} \frac{d\theta}{d\tau} + \sin \theta \sigma_{\phi} \frac{d\phi}{d\tau}$$
 (4)

$$\frac{d\sigma_{\theta}}{d\tau} = \frac{1}{r} \left[\frac{1}{\mu} \frac{\partial \mu}{\partial \theta} - \sigma_{\theta} \frac{dr}{d\tau} + r \cos \theta \sigma_{\phi} \frac{d\phi}{d\tau} \right]$$
 (5)

$$\frac{d\sigma_{\varphi}}{d\tau} = \frac{1}{r \sin \theta} \left[\frac{1}{\mu} \frac{\partial \mu}{\partial \varphi} - \sin \theta \, \phi \, \frac{dr}{d\tau} - r \cos \theta \, \sigma_{\varphi} \, \frac{d\theta}{d\tau} \right] \tag{6}$$

In these equations r, θ , and Φ are the spatial coordinates of a spherical system; μ is the arbitrary index of refraction; $\vec{\sigma}$ is a vector directed normal to the phase fronts of the ray of magnitude μ with σ_r θ , and σ_{ϕ} its respective components in the r, θ , and Φ directions; τ is the time of phase travel along the ray path (i.e., $f\Delta\tau/c$ = the number of wavelengths in the medium along the ray path, where f is the electromagnetic wave frequency and c the velocity of light in vacuum).

It is noteworthy that the partial derivatives of μ appear explicitly in Equations 1 to 6, in accordance with the fact that the gradients of μ play crucial roles in determining the spatial ray paths.

This closed set of first-order partial differential equations which will describe the propagation behavior of an electromagnetic wave

under geometric optics conditions, can be integrated simultaneously by a point-by-point numerical process if expressions can be developed for the necessary derivatives of the phase refractive index μ . The quantity μ and its derivatives are obtained by using the Appleton-Hartree formula 3 as the definition of the complex phase refractive index M.

The derivatives are derived under the conditions of ray optics, that is, that the imaginary part of M² is very much smaller than the real part. As an aid for computer use and comparison with published works of others², ⁴, the Appleton-Hartree formula is written as:

$$M^{2} = (\mu - j\kappa)^{2} = 1 - \frac{2X(1 - X - jZ)}{D}$$
 (7)

$$D = 2(1 - X - jZ)(1 - jZ) - Y^{2} \sin^{2} \psi + S$$
 (8)

$$S = \pm \left[(Y \sin \psi)^4 + 4Y^2 (1 - X - jZ)^2 \cos^2 \psi \right]^{1/2}$$
 (9)

where

M = the complex phase refractive index

X = a scalar quantity representing the normalized electron density

$$\frac{4\pi Ne^2}{m\omega^2} = \frac{\omega p^2}{\omega^2}$$

 $\omega_{\rm p}$ = plasma frequency at the spatial point

 ω = angular wave frequency = $2\pi f$

m, e = mass and charge of an electron

N = electron density at a spatial point

Y = normalized magnitude of the earth's magnetic field vector \vec{Y} =

$$\frac{\overrightarrow{eH}}{mc\omega} = \frac{\overrightarrow{\omega}_c}{\omega}$$

ω = magnitude of the gyromagnetic frequency of the electron about the earth's magnetic field

Z = normalized collision frequency = (v/ω)

v = collision frequency at a spatial point in collisions per second

 ψ = angle defined by the inner product of the vectors $\vec{\sigma}$ and \vec{Y} =

$$\cos^{-1}\left[\frac{\sigma_{r}Y_{r} + \sigma_{\theta}Y_{\theta} + \sigma_{\phi}Y_{\phi}}{(\mu Y)}\right]$$

 $\kappa = \frac{ck}{\omega} = \text{imaginary part of the complex phase refractive index}$

c = velocity of light in vacuum

k = absorption coefficient of the wave per unit length of path (it is proportional to the conductivity of the medium)

It is noted that there are two possible values for the complex index of refraction M corresponding to the plus and minus sign on S which represent two different modes of ionospheric propagation. These are commonly called "ordinary" and 'extraordinary modes for the plus and minus sign respectively. Also, the Appleton-Hartree formula (Equations 7 to 9) is notable in that it presents μ , which actually is a spatial function of six variables, in the form containing purely algebraic operations on factors or terms each of which is a function of at most three variables, that is, either of r, θ , φ or σ_{θ} , σ_{φ} . This reduces the representation of μ to a numerical problem, easily solvable to current computer techniques.

If i represents any one of the spatial spherical coordinates r, θ , and Φ , then the partial derivatives of μ with respect to the components of the wave normal, $\hat{\sigma}$, can be easily shown to be

$$\frac{\partial \mu}{\partial \sigma_{i}} = \frac{\partial \mu}{\partial \Psi} \frac{\partial \Psi}{\partial \sigma_{i}} = \frac{\partial \mu}{\partial \Psi} \left(\frac{\sigma_{i} Y \cos \Psi - \sigma Y_{i}}{\sigma^{2} Y \sin \Psi} \right)$$
 (10)

This useful transformation also enjoys the following property:

When
$$\psi \to 0$$
, $\frac{\partial \mu}{\partial \psi} \to 0$, $\frac{\partial \psi}{\partial \sigma_i} \to \infty$ but $\frac{\partial \mu}{\partial \sigma_i} \to 0$ (11)

To evaluate $\partial \mu / \partial \sigma_i$; the necessary partial derivative is:

$$\frac{\partial \mu}{\partial \Psi} = \operatorname{Re} \frac{\partial M}{\partial \Psi} = \operatorname{Re} \left\{ \frac{(M^2 - 1) (Y^2 \sin \Psi \cos \Psi)}{MD} \left[1 - \frac{1}{S} \left[(Y \sin \Psi)^2 - 2(1 - X - jZ)^2 \right] \right] \right\}$$

$$\therefore \frac{\partial \mu}{\partial \Psi} = \left\{ - Y^2 \sin \Psi \cos \Psi \left[a_0 (a_2 a_5 - b_2 b_5) - b_0 (a_2 b_5 + b_2 a_5) \right] \right\}$$
(12)

where a_0 , b_0 and all following a_j , b_j are defined in the List of Useful Formulae. The partial derivatives of the real part of the phase refractive index with respect to the spatial coordinates (i = r, θ , or Ψ) are similarly obtained by use of the relationship

$$\frac{\partial \mu}{\partial i} = \frac{\partial \mu}{\partial X} \frac{\partial X}{\partial i} + \frac{\partial \mu}{\partial Y} \frac{\partial Y}{\partial i} + \frac{\partial \mu}{\partial Z} \frac{\partial Z}{\partial i} + \frac{\partial \mu}{\partial Y} \frac{\partial Y}{\partial i}$$
(13)

where

$$\frac{\partial \mu}{\partial X} = \text{Re} \frac{\partial M}{\partial X} = \text{Re} \left\{ \frac{1}{\text{MD}} \left[2X - 1 + jZ + (M^2 - 1) \left(1 - jZ + \frac{2Y^2 (1 - X - jZ) \cos^2 \psi}{S} \right) \right] \right\}$$

$$\therefore \frac{\partial \mu}{\partial X} = \left\{ a_0 \left[(2X - 1) - (a_4 a_5 - b_4 b_5) \right] + b_0 \left[Z + a_5 b_4 + b_5 a_4 \right] \right\}$$
(14)

$$\frac{\partial \mu}{\partial Y} = \operatorname{Re} \frac{\partial M}{\partial Y} = \operatorname{Re} \left\{ \frac{(M^2 - 1)}{MD} Y \left[(\sin \psi)^2 - \frac{1}{S} \left[Y^2 \sin^4 \psi + 2(1 - X - jZ)^2 \cos^2 \psi \right] \right] \right\}$$

$$\therefore \frac{\partial \mu}{\partial Y} = Y \left\{ (a_0 a_5 - b_0 b_5) \left[a_6 - (\sin \beta)^2 \right] - b_6 (a_0 b_5 + b_0 a_5) \right\}$$
(15)

$$\frac{\partial \mu}{\partial Z} = \text{Re} \frac{\partial M}{\partial Z} = -\text{Im} \left\{ \frac{1}{\text{MD}} \left[X + (M^2 - 1) \left(2 - X - 2jZ + \frac{2Y^2 (1 - X - jZ)}{S} \cos^2 \psi \right) \right] \right\}$$

$$\frac{\partial \mu}{\partial Z} = \left[b_0 (X - a_5 a_7 + b_5 b_7) - a_0 (b_5 a_7 + a_5 b_7) \right]$$
(16)

and where Re and Im represent, respectively, the real and imaginary part of the complex expression. The partial derivative of the angle Ψ (which is the angle defined by the inner product of the normalized geomagnetic field vector \vec{Y} and the wave normal vector $\vec{\theta}$), with respect to the spatial coordinates r, θ , and Ψ , measures the change in spatial direction of the earth's magnetic field since the calculation is made holding $\vec{\theta}$ constant. The partial derivatives $\partial X/\partial i$, $\partial Y/\partial i$ and $\partial Z/\partial i$ are obtainable from the analytical expressions for the spatial variation of the electron density, geomagnetic field and collision frequency. Examples of these will be considered later.

In addition to Equations 1 to 6, which define the spatial ray path, it is usually desirable to calculate the optical path length s, the time of travel T, as well as, the one way absorption A, of the energy of an electromagnetic pulse. The equation describing the differential optical path is given by

$$\frac{\mathrm{d}s}{\mathrm{d}\tau} = \frac{1}{\mu^2} \left[\mu^2 + \left(\frac{\partial \mu}{\partial \Psi} \right)^2 \right]^{1/2} \tag{17}$$

In determining the time of travel T, a distinction must be made between two electromagnetic wave velocities. The phase velocity, $\mathbf{v}_p = \mathbf{c}/\mu$, is defined as the spatial velocity with which a point of constant phase moves. Group velocity, $\mathbf{v}_g = \mathbf{d}\omega/\mathbf{d}~(\omega/\mathbf{v}_p)$, is the spatial velocity of electromagnetic energy travel; put into other words, it is the velocity of a "Maxwell Demon" who remains at the same point on the envelope of the advancing wave. From these two definitions it can be easily shown that the time (in seconds) of energy pulse travel can be written as:

$$\frac{dT}{d\tau} = \frac{1}{c} \left[1 + \frac{\omega}{\mu} \frac{\partial \mu}{\partial \omega} \right]; \tag{18}$$

where

$$\frac{\partial \mu}{\partial \omega} = \operatorname{Re} \frac{\partial M}{\partial \omega} =$$

$$- \operatorname{Re} \left\{ \frac{1}{MD\omega} \left[X(2X + jZ) + (M^2 - 1) \left[2 - 2jZ - jZX + \frac{2(Y\cos\psi)^2}{S} (1 - X - jZ)(1 + X) \right] \right\}$$

$$\therefore \frac{\partial \mu}{\partial \omega} = - \frac{1}{\omega} \left[a_0 (2X^2 - a_5 a_8 + b_5 b_8) + b_0 (XZ + b_5 a_8 + b_8 a_5) \right]$$
(19)

The one-way absorption, A (in nepers), suffered by the energy of an electromagnetic pulse is determined by

$$\frac{dA}{d\tau} = -\frac{\omega}{c}\frac{\kappa}{\mu}A = -\frac{k}{\mu}A \tag{20}$$

where k (which is proportional to the spatial conductivity) is the absorption of the wave per unit length of path.

The solution of this set of first order partial differential equations will describe the propagation characteristics of an electromagnetic wave in a heterogeneous anisotropic medium.

B. LIST OF USEFUL FORMULAE FOR RAY TRACING

As an aid for the computer solution of these differential equations the following list of formulae are found to be very useful. As before, Re and Im respectively represent the real and imaginary parts of the complex quantity.

$$ReS = S_1 = R_S \cos \theta_S \tag{21}$$

$$ImS = S_2 = R_S \sin \theta_S$$
 (22)

$$R_{S} = \left\{ \left[(Y \sin \psi)^{4} + (2Y \cos \psi)^{2} \left[(1 - X)^{2} - Z^{2} \right] \right]^{2} + \left[(2Y \cos \psi)^{2} \left[2(1 - X)Z \right] \right]^{2} \right\}$$

$$(23)$$

$$\theta_{S} = \frac{1}{2} \tan^{-1} \left\{ \frac{(2Y \cos \psi)^{2} [2(X-1)Z]}{(Y \sin \psi)^{4} + (2Y \cos \psi)^{2} [(1-X)^{2} - Z^{2}]} \right\}$$
(24)

ReD =
$$d_1 = \left\{ 2 \left[(1 - X) - Z^2 \right] - (Y \sin \psi)^2 + S_1 \right\}$$
 (25a)

ImD =
$$d_2 = [S_2 - 2Z(2 - X)]$$
 (25b)

$$ReM = m_1 = \mu = R_m \cos \theta_m \tag{26}$$

$$ImM = m_2 = -\kappa = R_m \sin \theta_m \tag{27}$$

$$R_{m} \left\{ \left(1 - \frac{2x \left[(1 - x)d_{1} - Zd_{2} \right]^{2}}{d_{1}^{2} + d_{2}^{2}} \right)^{2} + \left(\frac{2x \left[Zd_{1} + (1 - x)d_{2} \right]}{d_{1}^{2} + d_{2}^{2}} \right)^{2} \right\}^{1/4}$$
(28)

$$\theta_{m} = \frac{1}{2} \tan^{-1} \left\{ \frac{2X' \left[Zd_{1} + (1 - X)d_{2} \right]}{d_{1}^{2} + d_{2}^{2} - 2X \left[(1 - X)d_{1} - Zd_{2} \right]} \right\}$$
(29)

$$a_{o} = \frac{(m_{1}d_{1} - m_{2}d_{2})}{(m_{1}d_{1} - m_{2}d_{2})^{2} + (m_{1}d_{2} + m_{2}d_{1})^{2}}$$
(30)

$$b_{o} = \frac{(m_{1}d_{2} + m_{2}d_{1})}{(m_{1}d_{1} - m_{2}d_{2})^{2} + (m_{1}d_{2} + m_{2}d_{1})^{2}}$$
(31)

$$a_1 = \left\{ 2 \left[(1 - X)^2 - Z^2 \right] - (Y \sin \psi)^2 \right\}$$
 (32)

$$b_1 = 4Z(1 - X)$$
 (33)

$$a_2 = \left[1 + \frac{(a_1S_1 - b_1S_2)}{S_1^2 + S_2^2}\right]$$
 (34)

$$b_2 = \left[\frac{s_1 b_1 + a_1 s_2}{s_1^2 + s_2^2} \right]$$
 (35)

$$a_{4} = \left\{ 1 + \frac{2(Y\cos\psi)^{2}}{S_{1}^{2} + S_{2}^{2}} \left[S_{1}(1-X) - ZS_{2} \right] \right\}$$

$$b_{4} = \left\{ Z + \frac{2(Y\cos\psi)^{2}}{S_{1}^{2} + S_{2}^{2}} \left[S_{2}(1-X) + ZS_{1} \right] \right\}$$
(36)

$$b_4 = \left\{ Z + \frac{2(Y\cos\psi)^2}{S_1^2 + S_2^2} \left[S_2(1-X) + ZS_1 \right] \right\}$$
 (37)

$$a_5 = \frac{2X \left[(1 - X)d_1 - Zd_2 \right]}{d_1^2 + d_2^2} = (1 + m_2^2 - m_1^2)$$
 (38)

$$b_5 = \frac{2X \left[Zd_1 + (1 - X)d_2 \right]}{d_1^2 + d_2^2} = 2m_2$$
 (39)

$$a_{6} = \frac{S_{1} \left\{ (Y \sin^{2} \psi)^{2} + 2 \cos^{2} \psi \left[(1 - X)^{2} - Z^{2} \right] \right\} - S_{2} \left[(2 \cos \psi)^{2} Z (1 - X) \right]}{S_{1}^{2} + S_{2}^{2}}$$
(40)

$$b_{6} = \frac{S_{2} \left\{ (Y \sin^{2} \psi)^{2} + 2 \cos^{2} \psi \left[(1 - X)^{2} - Z^{2} \right] \right\} + S_{1} \left[(2 \cos \psi)^{2} Z (1 - X) \right]}{S_{1}^{2} + S_{2}^{2}}$$
(41)

$$a_7 = \left\{ (2 - X) + \frac{2(Y \cos \psi)^2}{S_1^2 + S_2^2} \left[S_1(1 - X) - S_2 Z \right] \right\}$$
 (42)

$$b_7 = \left\langle 2Z + \frac{2(Y \cos \psi)^2}{s_1^2 + s_2^2} \left[s_1 Z + s_2 (1 - X) \right] \right\rangle$$
 (43)

$$a_8 = 2 \left\{ 1 + \frac{(Y \cos \psi)^2}{S_1^2 + S_2^2} \left[(1 - X^2)S_1 - S_2 Z(1 + X) \right] \right\}$$
 (44)

$$b_8 = \left\{ Z(2 + X) + \frac{2(Y \cos \psi)^2}{S_1^2 + S_2^2} \left[S_1 Z(1 + X) + S_2(1 - X^2) \right] \right\}$$
 (45)

Nomenclature	Used	in Ray	Trace	Equations

r, θ, φ	spatial coordinates of a spherical system
र्दे	wave normal or refractive index vector
$\sigma_{\mathbf{r}}$, $\sigma_{\boldsymbol{\theta}}$, $\sigma_{\boldsymbol{\phi}}$	vector components (ਰੋ)
τ	time of phase travel (in units of length)
μ	real part of complex phase refractive index
f	electromagnetic wave frequency
С	velocity of light in vacuum
m, e	mass and charge of an electron
Re	real part of the complex expression
Im ·	imaginary part of the complex expression
M	complex phase refractive index
x	scalar quantity representing normalized electron density
ω _p	plasma frequency at the spatial point
w	angular wave frequency
N	electron density at spatial point
Y	normalized magnitude of the earth's magnetic field vector $\overrightarrow{\overline{Y}}$
ω _c	magnitude of the gyromagnetic frequency of the electron about the earth's magnetic field
z	normalized collision frequency (v/ω)
٧	collision frequency at spatial point in collisions/sec
*	angle defined by inner product of vectors $\vec{\sigma}$ and \vec{Y}

*	imaginary part of the complex phase refractive index
k	absorption coefficient of the wave per unit length of path (proportional to the conductivity of the medium)
i	represents each of the spatial spherical coordinates $r,\;\theta,\phi$
Т	time of travel (seconds)
s	optical path length (km)
A	one-way absorption (nepers)
v _p	spatial velocity with which a point of constant phase moves
v _g	group velocity - spatial velocity of electromag- netic energy travel

C. COORDINATE TRANSFORMATION

If one takes three orthogonal planes intersecting at a point, one knows that the position of any point S in space is uniquely determined by the three perpendiculars from S on these planes, each with its proper sign. However, the problem of selecting the most useful orientation of such an orthogonal system is difficult since the usefulness of a coordinate system partially depends on the problem definition and the application of its solution. This ray trace program is designed as a sub-set of a much larger computer programming effort where the earth's geomagnetic field plays an important part. To minimize the number of computer transformations in the design of the over-all program, an earth centered spherical coordinate system (r, θ, φ) was chosen, whose z-component is coincident with the magnetic dipole axis.

This selection permits the application of the computer program to a great many studies of ray path problems because it accounts for the earth curvature and accepts for solution any electromagnetic radiating source whose transmitter location specifications of elevation, E, and azimuth, A, angles, as well as, geographic latitude, ϕ_R , geographic longitude, λ_R , and position with respect to the surface of the earth are known. Because the usefulness of this computer program can be extended by modification to other coordinate systems, as for example, an earth centered geographic system, or a radar coordinate system, the necessary coordinate transformations from the radar to the earth centered geomagnetic coordinate system will be described in detail.

For the discussion of this coordinate transformation, it is assumed that the electromagnetic wave transmitter is earth bound (i.e., fixed to the surface of the earth) at a geographic latitude ϕ_R and a geographic longitude λ_R . It is assumed that the radar is positioned so that the transmitting direction is described by the elevation angle, E, with respect to the tangent plane to the earth surface at the radar location, and an azimuth angle, A, measured from the radar coordinate that is tangent to a great circle passing through the north geographic pole. The azimuth angle is plus when measured counter-clockwise from the coordinate axis, ζ , whose positive direction points in the direction of geographic north. It is further assumed that S is a spatial point on the non-deviated portion of the ray a distance, R, from the electromagnetic wave transmitter. This is the spatial starting

point at which the numerical methods necessary for solution of the differential equations, must be initialized.

A transformation is required from the spherical radar coordinate system to the magnetic coordinate system whose origin is at the center of the earth.

The necessary matrices which are required to transform R, A, E coordinates to r, θ , ϕ coordinates can be arrived at by a series of simple matrix transformations.

1. Let ϵ , η , ζ be a set of orthogonal coordinates with origin on the surface of the earth. Let ϵ -axis be perpendicular to the earth's surface while ζ is directed (geographically) northward and η to the east. As stated above R is the slant range; E is the elevation angle; and A is the azimuth angle. Hence going from R, E, A to ϵ , η , ζ

Figure 1a. Geometry of Coordinate Transformation

2. Let x_1 , y_1 , z_1 equal an orthogonal coordinate system with origin on the earth's axis of rotation. The x_1 -axis is in the latitude plane of the radar site and passes through the radar site. The z_1 -axis is coincident with the north geographic coordinate w. A translation and rotation is required in going from ε , η , ζ to x_1 , y_1 , z_1 .

$$\begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{y}_{1} \\ \mathbf{z}_{1} \end{pmatrix} = \begin{pmatrix} \cos \varphi_{R} & 0 & -\sin \varphi_{R} \\ 0 & 1 & 0 \\ \sin \varphi_{R} & 0 & \cos \varphi_{R} \end{pmatrix} \begin{pmatrix} \varepsilon \\ \eta \\ \zeta \end{pmatrix} + \begin{pmatrix} \mathbf{r}_{o} \cos \varphi_{R} \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{y}_{1} \\ \mathbf{z}_{1} \end{pmatrix} = (\mathbf{b}_{ij}) \begin{pmatrix} \varepsilon \\ \eta \\ \zeta \end{pmatrix} + (\mathbf{b}_{i})$$

$$(47)$$

where r_{o} equals the earth's radius.

Figure 1b. Geometry of Coordinate Transformation

3. Let x_2 , y_2 , z_2 equal the orthogonal coordinate system with origin at the earth's center. Let the x_2 -axis be parallel to the x_1 -axis and z_2 coincide with w, hence also with z_1 . Then going from x_1 , y_1 , z_1 to x_2 , y_2 , z_2 by translation

$$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ r_0 \sin \varphi_R \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + (c_i)$$
(48)

4. Let x_3 , y_3 , z_3 represent an orthogonal coordinate system with origin at the earth's center such that the x_3 -axis intersects the zero degree longitudinal geomagnetic meridian while the z_3 -axis coincides with w. Hence going from x_2 , y_2 , z_2 to x_3 , y_3 , z_3 by rotation about the z_2 -axis yields,

$$\begin{pmatrix} \mathbf{x}_{3} \\ \mathbf{y}_{3} \\ \mathbf{z}_{3} \end{pmatrix} = \begin{pmatrix} \cos(\lambda_{\mathbf{M}} - \lambda_{\mathbf{R}}) & \sin(\lambda_{\mathbf{M}} - \lambda_{\mathbf{R}}) & 0 \\ -\sin(\lambda_{\mathbf{M}} - \lambda_{\mathbf{R}}) & \cos(\lambda_{\mathbf{M}} - \lambda_{\mathbf{R}}) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x}_{2} \\ \mathbf{y}_{2} \\ \mathbf{z}_{2} \end{pmatrix}$$

$$\begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix} = \begin{pmatrix} d_{ij} \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$$
(49)

where as before λ_{M} and Ψ_{M} represent the geographic longitude and latitude of the geomagnetic north pole M.

Figure 1c. Geometry of Coordinate Transformation

5. Let x, y, z represent an orthogonal coordinate system with origin at the earth's center. Let the x-axis pass through the great circle connecting the geographic and geomagnetic poles while the z-axis passes through the geomagnetic pole M. In going from x_3 , y_3 , z_3 to x, y, z by a rotation one obtains

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} \sin \varphi_{\mathbf{M}} & 0 & -\cos \varphi_{\mathbf{M}} \\ 0 & 1 & 0 \\ \cos \varphi_{\mathbf{M}} & 0 & \sin \varphi_{\mathbf{M}} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{3} \\ \mathbf{y}_{3} \\ \mathbf{z}_{3} \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = (e_{ij}) \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix}$$
 (50)

Figure 1d. Geometry of Coordinate Transformation

Hence by matrix multiplication one can transform from radar coordinates R, E, A to the earth centered coordinates x, y, z where the magnetic dipole axis of the earth coincides with the z-axis. From this coordinate system one can simply transform to the desired spherical coordinate system r, θ , Φ .

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = (\mathbf{e}_{ij}) \begin{pmatrix} \mathbf{x}_3 \\ \mathbf{y}_3 \\ \mathbf{z}_3 \end{pmatrix} = (\mathbf{e}_{ij}) (\mathbf{d}_{ij}) \begin{pmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \\ \mathbf{z}_2 \end{pmatrix} = (\mathbf{e}_{ij}) (\mathbf{d}_{ij}) \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \\ \mathbf{z}_1 \end{pmatrix} + (\mathbf{c}_i)$$

$$= (\mathbf{e}_{ij}) (\mathbf{d}_{ij}) \begin{pmatrix} \mathbf{\epsilon} \\ \mathbf{\eta} \\ \mathbf{\zeta} \end{pmatrix} + (\mathbf{b}_i + \mathbf{c}_i)$$

$$(51)$$

$$(g_{ij}) = (e_{ij}) (d_{ij}) (b_{ij}) = (f_{ij}) (b_{ij})$$
 (52)

$$(f_{ij}) = \begin{pmatrix} \sin \varphi_{M} \cos(\lambda_{M} - \lambda_{R}) & \sin \varphi_{M} \sin(\lambda_{M} - \lambda_{R}) & -\cos \varphi_{M} \\ -\sin(\lambda_{M} - \lambda_{R}) & \cos(\lambda_{M} - \lambda_{R}) & 0 \\ \cos \varphi_{M} \cos(\lambda_{M} - \lambda_{R}) & \cos \varphi_{M} \sin(\lambda_{M} - \lambda_{R}) & \sin \varphi_{M} \end{pmatrix}$$
(53)

$$g_{ij} = \begin{pmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{pmatrix}$$
(54)

$$g_{11} = \left[\cos \varphi_{R} \sin \varphi_{M} \cos(\lambda_{M} - \lambda_{R}) - \cos \varphi_{M} \sin \varphi_{R}\right]$$

$$g_{12} = \sin \varphi_{M} \sin(\lambda_{M} - \lambda_{R})$$

$$g_{13} = \left[-\sin \varphi_{R} \sin \varphi_{M} \cos(\lambda_{M} - \lambda_{R}) - \cos \varphi_{R} \cos \varphi_{M}\right]$$

$$g_{21} = -\sin(\lambda_{M} - \lambda_{R}) \cos \varphi_{R}$$

$$g_{22} = \cos(\lambda_{M} - \lambda_{R})$$

$$g_{23} = \sin \varphi_{R} \sin(\lambda_{M} - \lambda_{R})$$

$$g_{31} = \left[\cos \varphi_{R} \cos \varphi_{M} \cos(\lambda_{M} - \lambda_{R}) + \sin \varphi_{M} \sin \varphi_{R}\right]$$

$$g_{32} = \cos \varphi_{M} \sin(\lambda_{M} - \lambda_{R})$$

$$g_{33} = \left[-\sin \varphi_{R} \cos \varphi_{M} \cos(\lambda_{M} - \lambda_{R}) + \sin \varphi_{M} \cos \varphi_{R}\right]$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = R (g_{ij}) \begin{pmatrix} \sin E \\ \cos E \sin A \\ \cos E \cos A \end{pmatrix} + r_{o} (g_{i1}) = r \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{pmatrix}$$
(55)

By use of these matrix transformations the Cartesian coordinates, (x, y, z), and from them the spherical coordinates, (r, θ, ϕ) , of the earth centered geomagnetic coordinate system can be determined for the spatial starting point S and the earth bound transmitter R. These can be expressed as:

$$\mathbf{x}_{S} = \left[\cos(\lambda_{M} - \lambda_{R}) \sin\phi_{M} \cos\phi_{R} - \cos\phi_{M} \sin\phi_{R}\right] \quad (R \sin E + r_{o})$$

$$+ \left[\sin(\lambda_{M} - \lambda_{R}) \sin\phi_{M}\right] \quad R \cos E \sin A \qquad (56)$$

$$- \left[\cos(\lambda_{M} - \lambda_{R}) \sin\phi_{M} \sin\phi_{R} + \cos\phi_{M} \cos\phi_{R}\right] \quad R \cos E \cos A$$

$$y_{S} = \left[-\sin(\lambda_{M} - \lambda_{R})\cos\phi_{R}\right] \left(R\sin E + r_{o}\right) + \left[\cos(\lambda_{M} - \lambda_{R})\right] R\cos E \sin A$$

$$+ \left[\sin(\lambda_{M} - \lambda_{R})\sin\phi_{R}\right] R\cos E \cos A \qquad (57)$$

$$z_{S} = \left[\cos(\lambda_{M} - \lambda_{R})\cos\phi_{M}\cos\phi_{R} + \sin\phi_{M}\sin\phi_{R}\right] \quad (R \sin E + r_{o})$$

$$+ \left[\sin(\lambda_{M} - \lambda_{R})\cos\phi_{M}\right] \cdot R \cos E \sin A \qquad (58)$$

$$- \left[\cos(\lambda_{M} - \lambda_{R})\cos\phi_{M}\sin\phi_{R} - \sin\phi_{M}\cos\phi_{R}\right] \cdot R \cos E \cos A$$

When R = 0, that is, for a point on the surface of the earth,

$$\mathbf{x}_{\mathbf{R}} = \mathbf{r}_{\mathbf{O}} \left[\cos(\lambda_{\mathbf{M}} - \lambda_{\mathbf{R}}) \sin \phi_{\mathbf{M}} \cos \phi_{\mathbf{R}} - \cos \phi_{\mathbf{M}} \sin \phi_{\mathbf{R}} \right]$$
 (59)

$$y_{R} = -r_{0} \sin(\lambda_{M} - \lambda_{R}) \cos \varphi_{R}$$
 (60)

$$z_{R} = r_{o} \left[\cos(\lambda_{M} - \lambda_{R}) \cos\phi_{M} \cos\phi_{R} + \sin\phi_{M} \sin\phi_{R} \right]$$
 (61)

From simple trigonometric considerations (Figure 2a) it can be shown that the radar slant range, R, measured from the transmitter to the spatial starting point S is given by

$$R = -r_{o} \sin E + \sqrt{(r_{o} + h_{S})^{2} - r_{o}^{2} \cos^{2}E}$$
 (62)

where h_S is the vertical height of the starting point above its projection, (point P) on the surface of the earth.

Equations 1 through 6 point out that in addition to these transformations, the components of the directed normal to the phase fronts, $\vec{\sigma}$, at the starting point S are to be determined in this coordinate system. From spherical and plane trigonometric considerations, (Figure 2), it can be shown that these components are given by

$$\sigma_r = \sigma \cos e$$
 (63)

$$\sigma_{\Omega} = \sigma \sin e \cos \alpha$$
 (64)

$$\sigma_{\varphi} = -\sigma \sin \alpha \tag{65}$$

Angle e can be evaluated directly by employing the law of sines. This yields

$$e = \sin^{-1} \left(\frac{r_0 \cos E}{r_0 + h_S} \right)$$
 (66)

Angle a is the geomagnetic bearing angle (Figure 2) measured positive in a clockwise direction from geomagnetic north. By use of spherical trigonometry it is expressible by

$$a = \tan^{-1} \left[\frac{\sin(\bar{\Phi}_{S} - \bar{\Phi}_{R})\sin\theta}{\cos\theta_{S}\sin\theta_{R}\cos(\bar{\Phi}_{S} - \bar{\Phi}_{R}) - \sin\theta_{S}\cos\theta_{R}} \right]$$
(67)

where Φ_R , θ_R , and Φ_S , θ_S are the geomagnetic longitudes and colatitudes, respectively, of the radar transmitter, R, and the spatial starting point, S. The geomagnetic angles are obtained from the following expressions

$$\Phi_{R} = \tan^{-1} \left(\frac{y_{R}}{x_{R}} \right) = \tan^{-1} \left(\frac{g_{21}}{g_{11}} \right)$$

$$= \tan^{-1} \left[\frac{-\sin(\lambda_{M} - \lambda_{R})\cos\phi_{R}}{\cos(\lambda_{M} - \lambda_{R})\sin\phi_{M}\cos\phi_{R} - \cos\phi_{M}\sin\phi_{R}} \right] (68)$$

$$\theta_{R} = \cos^{-1} \left(\frac{z_{R}}{r_{R}} \right) = \cos^{-1} (g_{31})$$

$$= \cos^{-1} \left[\cos(\lambda_{M} - \lambda_{R}) \cos \phi_{M} \cos \phi_{R} + \sin \phi_{M} \sin \phi_{R} \right]$$
 (69)

$$\Phi_{S} = \tan^{-1}\left(\frac{y_{S}}{x_{S}}\right) \tag{70}$$

$$\theta_{S} = \cos^{-1} \frac{z_{S}}{r_{o} + h_{S}} \tag{71}$$

One additional useful expression can be obtained from these algebraic relations. The parameter is the angle \forall at the spatial starting point S which is defined by the inner product of the magnetic field vector and the wave normal. By the application of the sine and cosine laws to the geometry of Figure 2-a, it can be shown that

$$\Psi = \cos^{-1} \left[-(\cos e \sin I + \sin e \cos I \cos a) \right]$$
 (72)

where angle I is the magnetic inclination angle. The inclination angle 9 is only a function of the geomagnetic latitude at the particular point in question.

$$I = \tan^{-1} \left[2 \cot \theta_{S} \right]$$
 (73)

Expressions arising from the inverse coordinate transformation, that is, transformation from the geomagnetic coordinates (r, θ, ϕ) to the radar coordinates R, E, A can be easily developed from these formulae. Although used in the computer program they will not be presented here.

Figure 2. Geometry for Starting Point and Geomagnetic Coordinate System

r, θ,φ	spatial point in an earth centered spherical co- ordinate system
E	radar elevation angle
A	radar azimuth angle
^φ R, M	geographic latitude of point R or M, respectively
λ _{R, M}	geographic longitude of point R or M, respectively
S	spatial starting point on nondeviated portion of ray
R	distance from electromagnetic wave transmitter to starting point
ε, η,ζ	set of orthogonal coordinates with origin on the surface of the earth at radar site
x ₁ , y ₁ , z ₁	orthogonal coordinate system with origin on the earth's axis of rotation
*2', y2', z	orthogonal coordinate system with origin at earth's center
*3', y3', z3	orthogonal coordinate system with origin at earth's center
w	z component of the geographic coordinate system (u, v, w)
^h S	height of starting point above its projection on the surface of the earth
ro	radius of earth
α	geomagnetic bearing angle
Φ _R , Φ _S	geomagnetic longitudes of points R and S

RM 61TMP-32

θ_{R}, θ_{S}	geomagnetic co-latitudes of points R and S
σ _r , σ _θ ,σ _φ	physical components of a vector of length μ , that is directed normal to the phase front
Ψ	angle between magnetic field vector and the wave normal
I	angle of magnetic inclination

D. MODEL IONOSPHERE

As shown under Computational Procedure, the refractive index M and its spatial derivatives are dependent on the normalized density, X, and its spatial gradients, $\partial X/\partial r$, $\partial X/\partial \theta$, and $\partial X/\partial \phi$. For an evaluation of these quantities an analytic model ionosphere can be chosen. One such ionospheric model that was found useful, is a spherical electron distribution as measured from a point in space. A reason for its selection is presented under Computational Results. Other uses as well as other ionospheric models are covered elsewhere 7, 11.

Let r_b , θ_b , ϕ_b represent the spatial location, B, of the center of the selected spherical ionosphere in the geomagnetic spherical coordinate system (r, θ, ϕ) . The values of these coordinates are obtainable from the specified geographic latitude, longitude and height above the earth surface of point B, in an analogous procedure as described for the transformation of coordinates of the spatial starting point S. Then the electron density at a spatial point r, θ , ϕ for an assumed spherical ionosphere can be written as:

N(r,
$$\theta$$
, Ψ , r_b , θ_b , Ψ_b) = $\frac{A}{\mathcal{C}^n}$ (74)

where

$$\mathcal{L} = \left\{ \left(\mathbf{r}_{b} \sin \theta_{b} \cos \phi_{b} - \mathbf{r} \sin \theta \cos \phi \right)^{2} + \left(\mathbf{r}_{b} \sin \theta_{b} \sin \phi_{b} - \mathbf{r} \sin \theta \sin \phi \right)^{2} + \left(\mathbf{r}_{b} \cos \theta_{b} - \mathbf{r} \cos \theta \right)^{2} \right\}^{1/2} = \left\{ \mathbf{x} \mathbf{P}^{2} + \mathbf{y} \mathbf{P}^{2} + \mathbf{z} \mathbf{P}^{2} \right\}$$
(75)

For this discussion A and n are appropriately chosen constants which give the desired electron density N (electrons/cc). By use of Equations 74 and 75, it is easily shown that the spatial electron density gradients can be expressed in the following manner,

$$\frac{\partial N}{\partial r} = \frac{nA}{\varphi^{n+2}} \left[XP \sin \theta \cos \varphi + YP \sin \theta \sin \varphi + ZP \cos \theta \right]$$
 (76)

$$\frac{\partial N}{\partial \theta} = \frac{nAr}{\rho^{n+2}} \left[XP \cos \theta \cos \phi + YP \cos \theta \sin \phi - ZP \sin \theta \right]$$
 (77)

$$\frac{\partial N}{\partial \varphi} = \frac{nAr}{e^{n+2}} \left[-XP \sin \theta \sin \varphi + YP \sin \theta \cos \varphi \right]$$
 (78)

Some results obtained by use of such a spherical ionospheric model will be discussed later.

E. MODEL OF EARTH'S MAGNETIC FIELD

Because magneto-ionic effects on the propagation of electromagnetic waves through an ionized medium are taken into account in the derivation of the equations under Computational Procedure, it is necessary to specify the normalized external magnetic field of the earth, \vec{Y} , its components Y_r , Y_θ , Y_θ and its spatial derivatives $\partial Y/\partial r$, $\partial Y/\partial \theta$, $\partial Y/\partial \varphi$. It is known that the earth's magnetic field can be approximated by an earth centered magnetic dipole with its axis displaced such that the geographic longitude $\lambda_M = 70.1^\circ W$ and the geographic latitude $\bar{\Phi}_M = 78.6^\circ N$. The magnetic potential, V, at a distant point from such a dipole is related to the magnetic moment, \mathcal{M} , by the expression

$$V(r,\theta) = -\frac{M\cos\theta}{r^2} = -\frac{(Y_e r_o^3)\cos\theta}{r^2}$$
 (79)

where r, θ are the geomagnetic coordinates of the spatial point irrespective of the coordinate Ψ and as before, r_0 = radius of the earth. In this equation Y_e is the magnitude of the normalized magnetic field at the earth's surface on the magnetic equator. By use of this algebraic equation all the desired quantities can be derived. They are

$$Y = Y_e \left(\frac{r_o}{r}\right)^3 (1 + 3 \cos^2 \theta)^{1/2}$$
 (80)

where, as previously defined, Y is the normalized magnitude of the earth's magnetic field vector \vec{Y} = (eH/mc ω) = ω_c/ω

$$Y_{r} = 2 Y_{e} \left(\frac{r_{o}}{r}\right)^{3} \cos \theta = \frac{Y}{\sqrt{1 + \frac{1}{4} \tan^{2} \theta}}$$
 (81)

$$Y_{\theta} = Y_{e} \left(\frac{r_{o}}{r}\right)^{3} \sin \theta = \frac{1}{2} Y_{r} \tan \theta$$
 (82)

$$Y_{\varphi} = \frac{\partial Y}{\partial \varphi} = 0 \tag{83}$$

$$\frac{\partial Y}{\partial r} = -\frac{3Y}{r} \tag{84}$$

$$\frac{\partial Y}{\partial \theta} = -\frac{3Y \sin \theta \cos \theta}{\left[1 + 3 \cos^2 \theta\right]} \tag{85}$$

F. MODEL OF ATMOSPHERIC COLLISION FREQUENCY

For some of the trial calculations the atmospheric collision frequency was found from assumed exponential variations of collision frequency with height. The atmosphere was radially stratified and an approximate exponential equation was curve-fitted to measured experimental data for each stratified region. Hence, for each region the following relations were used to obtain Z and $\delta Z/\delta r$, $\delta Z/\delta \theta$, $\delta Z/\delta \phi$ that are required by the ray trace equations.

$$Z = \frac{v}{\omega} = ae^{-b(r - r_0)}$$
 (86)

$$\frac{\partial Z}{\partial r} = -bZ \tag{87}$$

$$\frac{\partial Z}{\partial \theta} = \frac{\partial Z}{\partial \Psi} = 0 \tag{88}$$

The dependence of collision frequency on a localized temperature distribution and degree of ionization⁷ complicates these simple relations. These complications (as derived by D. Archer) as well as their effects will not be discussed at this time.

G. COMPUTATIONAL RESULTS

The preceding equations are only a summary of the required set which will permit the detailed calculation of a ray path in three-dimensional space. Because of this, it becomes clear that the only realistic approach to the solution of this problem is the utilization of computer techniques, otherwise, the welter of data that must be handled through use of numerical methods, is beyond effective human handling capacity. However, the development of a computer program which can perform countless number of calculations, poses the very difficult task of determining the correctness of a computed result. To simplify this "debugging" task the classical idea of elastic collision between charged particles was borrowed from nuclear physics. It has been shown 10 that if the electron density falls off as the inverse square of the distance from the center of a spherical electron distribution (N = A/ \mathcal{R}^2), various exact expressions can be obtained, since the ray equations at zero azimuth are integrable.

The geometry of such a distribution, as well as, three ray paths computed by use of the computer program are shown in Figure 3. In the figure the center of the sphere is located by the fixed coordinates (R_0, β_0) with respect to the radar. The derivations are made in two dimensions, hence only the two-dimensional coordinate system (ξ, ζ) is used. The ray path has an initial elevation angle E_1 and its distance of closest approach to the center of the refracting sphere is denoted by \mathcal{K}_0 . The coordinates of any point on the ray path with respect to the center of the sphere are (\mathcal{K}, β) and with respect to the radar (R, E). Angle δ represents the amount of ray bending experienced by the ray passing through the refractive medium. Under these conditions Archer 10 has shown that the angle δ is given by

$$\delta = \pi - 2 \left[\gamma_o + \mu \left(\mathcal{X}_o \right) \cos^{-1} \left(\frac{\mathcal{X}_o}{R_o} \right) \right]$$
 (89)

The three plotted rays have actually a small third dimensional component. Because of this, the accuracy of these plotted rays is approximately (+3, -2) percent.

As shown by the tabulated results in Table 1, the computed deviation angle δ_c , arising from ray trace results, agrees very well with the calculated angle, δ , obtained by use of Equation 89. These computer

Figure 3. Geometry for Refraction by Spherically Stratified Region

calculations were performed under a large error upper bound condition ($E = 10^{-3}$, see description of Subroutine INT). The agreement is improved by a variation of this error condition. Additional results will not be presented here. Presented elsewhere 12 is the influence of E on computed results using these numerical methods as applied to the study of ionization-deionization phenomena.

Radar Elevation Angle - E Degrees	Bending Angle - 8 from Equation 89 Degrees	Bending Angle - δ _C Ray Trace Program Degrees
60	19. 5	20
70	35. 2	37
80	77.5	78

Table 1

Comparison of Total Ray Bending Angle

As an additional illustration, refractive errors through a particular spherical ionized region have been computed in detail to illustrate the concepts discussed and to indicate the kinds of refractive errors that could arise. The electron density contours of this ionization model are defined by Equation 74 where $A = 10^{33}$ and n = 12. The distance from the center of the spherical ionosphere is measured in kilometers. The center of the model is located at an elevation angle, E, of 30 degrees, zero degree azimuth angle, and 564 kilometers slant range as measured from the radar site.

Figure 4 shows the relation between the radar and ionization model in the plane of zero azimuth. Also shown are the ray paths for rays leaving the radar at several elevation angles. A frequency of one kilomegacycle was used in determining the refraction of the electromagnetic wave propagation vector. Because the electron density increases rapidly near the center of the model, there is significant bending of the ray path.

The refraction becomes so severe as the elevation angle of radar rays approach the elevation angle of the ionization center with respect to the radar, that there is a region (shown by half tones) into which no radar ray penetrates, hence, radar "blackout" is achieved. In three dimensions this blackout region is a cone in which a target is shielded from the radar. Because rays near this region intersect each other, two elevation angle paths to the same target exist, so multiple targets may be visible.

If the ray path is not in the zero azimuth plane, the amount of elevation error, or azimuth error, is a function of the location of the target. The elevation and azimuth errors for a target located at a slant range of 1200 kilometers have been computed as a function of radar elevation and azimuth angles. These are summarized in Figure 5, in which contours of constant elevation error, ΔE , in one quadrant and constant azimuth error, ΔA , in another quadrant as a function of the ray direction at the radar site are given. The contours have been terminated at a total bearing error of about 10 degrees. Due to symmetry the errors in the other quadrants are just the mirror image of the quadrants shown.

RM 61TMP-32

Nomenclature Used for Computational Results

E	initial elevation angle made by ray path
\mathscr{L}_{\circ}	distance of closest approach between ray path and center of sphere
(L, B)	coordinates of any point on the ray path with respect to the center of the sphere
(R, E)	coordinates of any point on the ray path with respect to the radar
Ro	distance between the radar and center of the sphere
Yo	apparent bearing angle

SECTION III

COMPUTER PROGRAM FOR THREE-DIMENSIONAL RAY-TRACING

Figure 6 schematically describes the computer program that was developed for three-dimensional ray tracing. As illustrated, the computer program is a composite of a group of subprograms. Because each subroutine is an entity in itself, the improvement of the entire program can be performed by the variation of each subprogram.

For the creation of this program the FORTRAN language 13 was used wherever possible. FORTRAN is an automatic coding.system for the IBM-704/709/7090 Data Processing Computer System that was designed for scientific application. Although there are limitations to FORTRAN, nevertheless, 1) it is at present the only language for scientific use, that is accepted by most existing large computer systems, and 2) it is simple and therefore without much effort, permits the elimination of the programmer, thus leaving the design of logical computer decisions, to the formulator of the scientific problem. The program has been written to operate "in or out" of the FORTRAN MONITOR CONTROL SYSTEM.

Except for the RINDEX subroutine the program has been divided into small, simple Functions and Subroutines to facilitate understanding. In the development of the program, concentration was mainly on obtaining a correct working program, as soon as possible, and not on optimization or clarity of output results. These tasks are left for future development.

The computer program consists of the following parts:

1)	Main Program	RAY TRACE
2)	Function	SLANTR
3)	Function	QATAN
4)	Function	ARCOS

5)	Subroutine	COORD
6)	Subroutine	DAUX
7)	Subroutines	INT and INTM
8)	Subroutine	RINDEX
9)	Subroutine	ELECTX
10)	Subroutine	BIGR
11)	Subroutine	MAGY
12)	Subroutine	COLFRZ
13)	Subroutine	RCOORD
14)	Subroutine	OUTONE

15) Subroutine

These functions and subroutines are used to obtain numerical values for those variables which cannot be defined by only one arithmetic statement. In addition to these subprograms certain statements in the FORTRAN language cause the inclusion in the object program of the necessary input and output routines, as well as, various library functions and subroutines in relocatable binary form that are available on the FORTRAN MASTER LIBRARY TAPE. The names and locations of these necessary routines are given in the "storage map" of the arrangement of storage location in the object program that is compiled from a FORTRAN source program. These "maps" follow the listings of each source program. These added routines will not be discussed in this report. Following a brief description of the function of the main program and its associated subprograms, the necessary input data for a sample calculation is given with a description of the output. Some of the results listed in this output led to the graphical results presented in Figures 3, 4 and 5.

OUTPUT

Figure 4. Radar Propagation Paths through Spherically Ionized Region

Figure 5. Elevation and Azimuth Errors for Propagation through a Spherical Model – $f=1~\mathrm{kMc}$

Figure 6. Block Diagram of a Possible Computer Program

A. MAIN PROGRAM RAY TRACE

The main program's function is to act as a master control of the logical flow necessary for the execution of the numerical methods. In addition, it is responsible for obtaining the necessary data, initializing the required starting conditions, performing the desired controlled printouts of computed results, and determining the condition for termination of the given computations. For initializing the starting conditions the main program requires the reading into storage of the following information in the format illustrated under INPUT, Table 4.

CARD 1

RECORD: This can be any desired information consisting of 72 alphanumeric characters that will serve to identify the calculations.

CARD 2

Contains the values of ID, KWIT. ID is an integer that can be used for identifying the calculation if the same CARD 1 is used. KWIT: On completion of the calculations in progress, the computer will check if additional problems are to be performed. Thus if KWIT=59 the computer will want to read a new W vector (CARD 3 --- onward); if KWIT=66, the computer will want to read a new CARD 1, CARD 2, and new W vector (CARD 3 --- onward); if KWIT equals any other integer the computer will PAUSE 44444.

CARD 3 onward

This card and all following cards describe the value of each component of the W vector that is not zero. As shown under INPUT, the first three columns of the card are for the integer that describes the W vector component. The next fourteen columns of the card are for the value of the W vector component. The number of these cards is variable since on completion of one calculation, often only one component of the W vector

RM 61TMP-32

CARD 3 (continued)

is to be changed for the next computation. The W vector can be read in any order.

LAST DATA CARD

This card follows the last card describing the W vector. It is any negative integer listed in the first three columns o a card. It transfers the computer out of the read mode to the location beginning the ray trace calculations.

SENSE SWITCH 1

The program is designed to calculate first the ordinary ray path and then the extraordinary ray path. SENSE SWITCH 1 DOWN will eliminate the calculation of the extraordinary ray path.

SENSE SWITCH 2

In DOWN position will permit the calculation of the extraordinary ray path and eliminate the calculation of the ordinary ray path.

SENSE SWITCH 3

Placing this SENSE SWITCH 3 DOWN will terminate the calculation on completion of the ray path calculations in progress.

SENSE SWITCH 4

Placing SENSE SWITCH 4 DOWN will cause the computer to check if SENSE SWITCH 6 is DOWN. If it is down the computer will terminate calculations immediately.

SENSE SWITCH 6

It is desirable to follow the course of any calculation on a computer. SENSE SWITCH 6 DOWN will print on-line, the total number of numerical integrations completed up to this point, integration mesh size, length of independent variable τ , height above surface of the earth (km), θ , Ψ (in degrees), σ_r , σ_θ , σ_{φ} , μ , π , distance from the ion source center (km), value of the normalized electron density X.

SENSE LIGHT 2

When SENSE SWITCHES 1 and 2 are DOWN, then both ordinary and extraordinary ray paths are being calculated. When SENSE LIGHT 2 is ON, then the calculation is determining the ordinary ray path. When it is OFF, then the extraordinary ray path is being calculated.

PAUSE 17171

If the computer halts with this octal number in the address field of the STORAGE REGISTER it signifies that SENSE SWITCHES 1 and 2 are in the UP position and the problem is undefined. SENSE SWITCHES 1 or 2, or 1 and 2 are to be placed DOWN depending if only the ordinary, the extraordinary, or both ray paths are to be calculated. Following the definition of the problem, pushing START key will cause calculations to resume.

PAUSE 66666

The computer halts with this octal number in the STORAGE REGISTER just prior to beginning calculations. If the MONITOR system is used it permits the operator to know when it has left the MONITOR system and the SENSE SWITCHES can be changed as needed by the problem.

PAUSE 44444

The computer halts with this octal number in the STORAGE REGISTER on completion of all the necessary calculations specified by the INPUT data. It permits the operator to reset the desired sense switches for the MONITOR system. Pressing START will cause the computer to exit from the program to the MONITOR system.

Table 2 contains the nomenclature that describes some of the components of the V vector and the components of the W vector.

V(2)	independent variable τ
V(3)	initial step size input $\Delta \tau$
V(4)	radius from center of earth r
V(5)	variable angle θ
V(6)	variable angle Φ
V(7)	$\sigma_{\mathbf{r}}$
V(8)	σ _θ
V(9)	$\sigma_{oldsymbol{\phi}}$
V(10)	optical path length one way s
V(11)	time one way T
V(12)	A absorption
V(13)	dr/dŢ
V(14)	dθ/dτ
V(15)	dφ/dτ
V(16)	dσ _r /dτ
V(17)	dσ _θ /dτ
V(18)	dσ _φ /dτ
V(19)	ds/dT
V(20)	dT/dT
V(21)	dA/dT

Table 2. Nomenclature Describing the V and W Vectors. (Page 1 of 6)

W(1)	refractive index μ
W(2)	imaginary part of complex phase refractive index *
W(3)	radar transmitter angular frequency ω
W (4)	ôμ/ôσ _r
W (5)	ðμ/ðσ _θ
W(6)	дн /дα ^ф
W (7)	ðµ/ðr
W (8)	θμ/θθ
W (9)	ФФ/ 46
W(10)	a⊬/a ∜
W(11)	ω6\μ6
W(12)	unassigned for this program
W(13)	geographic longitudinal angle $\lambda_{\mathbf{M}}$ of geomagnetic north pole measured east of Greenwich Meridian (degrees)
W(14)	angle λ_R measured as W(13) in degrees
W(15)	angle Ψ_{M} geographic latitude of geomagnetic northpole measured plus from geographic equator north
W(16)	angle φ_R geographic latitude of radar (degrees)
W(17)	radar elevation angle E (degrees)
W(18)	radar azimuth bearing angle angle A (degrees)
W(19)	r _o radius of the earth (km)
W(20)	hs height of starting point above surface of earth
	Table 2. Nomenclature Describing the V and W Vectors. (Page 2 of 6)

W(21)	angle $\phi_{\mbox{\footnotesize B}}$ of ionization source measured as W(15) (degrees)
W (22)	longitudinal angle λ_{B} of source measured as W(13)
W (23)	$\mathbf{h}_{\mathbf{B}}$ height of ionization source center above earth surface
W (24)	Δau initial mesh size of variable
W (25)	$\mathbf{Y}_{\mathbf{e}}$ normalized equator magnetic field on earth's surface at the geomagnetic equator
W (26)	a constant determining collision frequency
W (27)	b constant in exponent determining collision frequency
W (28)	range (km) = distance from ionization source center to spatial point (r, θ, φ) =
W(29)	cosine of angle makes with the vertical through center of the ionizing source
W(30)	R _b radial distance from earth's center to center of ionizing source
W(31)	x geomagnetic coordinate of source
W(32)	y geomagnetic coordinate of source
W(33)	z geomagnetic coordinate of source
W(34)	A = constant in A/Rn determining electron density
W (35)	$n = exponent in A/R^n$ equation
W(36)	unassigned for this program
W(37)	unassigned for this program
W (38)	plasma angular frequency cycles/sec

Table 2. Nomenclature Describing the V and W Vectors. (Page 3 of 6)

1	W(39)	Ne in ion pairs/cc
1	W (40)	maximum $r = V(4)$ to be considered in this calculation
	W(41)	A1 = vector in INTM routine
I		If $W(41) = 0$ routine will use predictor corrector with variable $V^{r}(24)$
•		If W(41) = 2 will use Runge-Kutta with fixed W(24)
I		If W(41) = 2 will use predictor-corrector with fixed W(24)
l		If $W(41) = 1$ or 2 then $W(42)$ through $W(47)$ are ignored but must have some value.
=		If W(41) = 0 they are not ignored
í I	W (42)	A2 = E upper bound on truncation error. See upper bound Equation (10) Appendix A in the INT and INTM subroutine
	W(43)	A3 = M is value from which lower bound E is calculated LBE = UBE/M in subroutine INT
1	W (44)	A4 = A as used in truncation error test EQ (10) in subroutine INT
•	W(45)	A5 = upper bound on mesh size (If = 0 no upper bound as long as within error range)
•	W (46)	A6 = lower bound on mesh size (If = 0 lower bound = 0)
ļ	W (47)	A7 = β , that is, 0 is less than β less than 1. It is used to decrease or increase mesh size by dividing or multiplying current integration mesh being used
1	W (48)	smallest attenuation to be considered
	W(49)	initial refraction index = W(1)
	W (50)	initial absorption kappa x = W(2)

Table 2. Nomenclature Describing the V and W Vectors. (Page 4 of 6)

W(51)	initial attenuation = A
W(52)	x_R (km) (Radar coordinate in geomagnetic coordinate system)
W(53)	y_R (km) (Radar coordinate in geomagnetic coordinate system
W(54)	z_R (km) (Radar coordinate in geomagnetic coordinate system
W(55)	$R = \sqrt{(x_R - x)^2 + (y_R - y)^2 + (z_R - z)^2 (km)}$
W (56)	$\Delta R = c\tau - W(55) = (2.99791 \times 10^5)[V(11)] - W(55) \text{ km}$
W(57)	new elevation angle E in degrees
W (58)	$\Delta E = W(57) - W(17)$ degrees
W (59)	$2[(W(1))(W(2))]/W(1)^{2}-W(2)^{2}$
W(60)	slant range at r, θ, ϕ
W(61)	angle A at r, θ,Φ
W(62)	elevation angle E at r, θ,φ
W (63)	assigned value to k; if 1 then control is on radius; if 2 then control is on range W(28); if 3 then control is on slant range W(60)
W(64)	value of Z
W(65)	value of Y
W (66)	value of X
W(67)	location of sign which determines the calculation for ordinary or extraordinary ray
W (68)	value of V(4) above which RINDEX is to print R vector

Table 2. Nomenclature Describing the V and W Vectors. (Page 5 of 6)

W(69)	value W(1) below which R vector is printed if W(68) = 0
W(70)	number of performed integrations
W(71)	a in COLFRZ 100-200 km
W (72)	b in COLFRZ 100-200 km
W(73)	a in COLFRZ 200-300 km
W(74)	b in COLFRZ 200-300 km
₩(75)	a in COLFRZ 300-400 km
W (76)	b in COLFRZ 300-400 km
W(77) to W(25	50) unassigned in this program

Table 2. Nomenclature Describing the V and W Vectors.
(Page 6 of 6)

```
SWITCH I DOWN CALCULATE EXTRA-ORDINARY RAY ONLY
SENSE SWITCH 2 DOWN CALCULATE EXTRA-ORDINARY RAY
SENSE SWITCH 3 DOWN WILL EXIT AFTER COMPLETING THIS RAY
SENSE SWITCH 4 WITH SENSE SWITCH 6 DOWN WILL EXIT
SENSE SWITCH 4 WITH SENSE SWITCH 6 DOWN WILL EXIT
FROGESS INT, V(3), V(2), V(4)-RO, V(5), V(5), V(6), V(7), V(8), V(9), W(1), W(2), W(6), W(2), W(6), V(7), V(8), V(9), W(1), W(1), W(1), W(1), V(1), V(2), V(4)-RO, V(5), V(6), V(6), V(1), W(1), W(1), W(1), V(1), V(2), V(4)-RO, V(1), V(2), V(4), V
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DEGRMAT (GMO INT. 4HDELV. 5X. 4HVC2), 4X. THVC4)-RQ. 3X. 5HTHETA. 5X. 3HPHI. 15X. 4HSIGR. 3X. 8HSIGTHETA. 6X. 6HSIGPHI. 5X. 4HBC1). 6X. 4HBC2), 5X. 5HRANGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FORMAT (46MO SET 351 AND SS2 FOR PROBLEM BEING CONSIDERED)
FORMAT(54MO SET ALL SENSE SWITCHES IN POSITION DURING EXECUTE)
FORMAT(48MO SET SENSE SWITCHES FOR MONITOR + READY TO EXIT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   01F - (-y-13) + (y-14) + (y-15) + (y-16) + (x-17) + (x-18) + (x-21) + (x-22)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 , 1P3E9.23
18M-7090
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 .1PE9.2.1H ,1PE9.2,2H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PERO INPUT TAPE 5.67. (PECOROCID, I=1,12)
                                                                                                                                                                                                                                                                                                                                                                                                                               DIMENSION RECORD (12). VC1110, WC250)
DIMENSION XNC70. VNC70, ZNC80, GC3.30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               PERO INPUT TAPE 5:13.ID.KWIT PERO IMPUT TAPE 5:60:K.DATA FORMAT (13:E14.7.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DPG1R | SINF( W(13) - W(14))
DRG1R | SINF( W(13) - W(14))
DRG1R | SINF(W(13) - W(14))
DRG1R | SINF(W(13))
DRG6R | SINF(W(16))
DRG6R | SINF(W(16))
DRG8R | COSF(W(13))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SENSE LIGHT 0
IF (SENSE SWITCH 17 102:106
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF (SENSE SWITCH 2) 104-107
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        104,1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DRIG = DRIG 57.29578
HOND = DRIG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Ñ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IFCSENSE SHITCH
SENSE LIGHT 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SENSE LIGHT :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      COMMITTERSON
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        PAINT 111
PAUSE GGGGG
PRINT 114
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PAUSE 17171
50 TO 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1FOK 100-6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PRINT 110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      128698 H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            OFORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      163.64
         TIGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        6. (2) +- 64
(6) (2) (2) (2)
         0000000000000
```

1

```
(XSP, YSP, ZSP, ARGIR, ARG2R, ARG3M, ARG4M, ARG5R, ARG6R, ARG7R,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            20. ARG18, ARG28, ARG3M, ARG4M, ARG58, ARG68, ZERO,
                                                            - ARGGRAARGAM
- ARGAM*ARGSR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SRSP = SLANTR CARGTR, ARGSR, WC19), WC20)
```

```
INT = MC70>
PPINT 115.INT.UC35.VC25.TE3.TE1.TE2.VC75.VC85.VC95.HC15.WC25.4C285
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CALL DUTOMECSIGN.ID:
CALL INT CU. M. NR. "MC+22" MC+33" MC+43" MC+53" MC+53" WC+63" WC+73"
FFCUC+2" - MC193231-31-34
                                                                                                                          PMS = SQRTF( 1.0- QR*QR)

MS = TERMS* SINF(TERM*)

MM7 = WSP*TEPMS*COSF(TERM$) - (SQRTF(1.0 -TERM2))*QR

MM9 = WATHER WSPTERM7, TERMS)

MM9 = SQRTF(1.0-ARGSE**2)

MM9 = SQRTF(1.0-ARGSE**2)
                                                                                                                                                                                                             GGMMB = ANGLPH - PI
SIGTHE = CW(1) * ARGSE) * COSF(GAMMA)
SIGPHI= - C(N(1) * ARGSE) * SINF(GAMMA) * W(41)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             15 NEGRIIVE OR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F CSENSE SWITCH 60116,117
                                                                                                                                                                                                                                                                                          34
                                                                                                                                                                                                                                                                                                                                        IFCSENSE LIGHT 25 35,200
                                                                                                                                                                                                                                                                                          CSENSE LIGHT 15 32.
                                                                                                                                                                                                                                                                                                                                                                       FISENSE SWITCH 35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             MORRED COMMENT MOTOR
 へかけい 第十八のもり 禁止へのかいき
                                THETE I BECOSCOBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CALL CUTPUT
                                                                                                                                                                                                                                                                                                          S1GN = 1.0
                                                                                                                                                                              " MAJETE
                                                                                                                                                                                                                                                                                                                                                         SIGH #
ŗ-
                                                                                                                                                                                                                                         8 Q
N 8
                                                                                                                                                                                                                                                                                         - UM THON MAN
                                                                                                                                                                                                                                                                                                                                                                                                                                      2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          in
Li
```

0CT 8 7726		20000	7 00035	88	3 6	85 00510	00	8 4 3 5	88	2	8 6	6	8			76 0123				; ·		່ບໝ	5 00005 4 00004	,	EC 0CT 862 01536_	Ψ,			-			_
DEC 32438	,	IFN	i	;		;	1	_	_				_		-,-	-			1			DE	. = .		D							
3	LOCATIONS	EFN 112	99	62	101	2	()	* =	- 10	91	25	9 67	39	4.	4	96	200					14000 1	SIN	SENTENCES	. IB0	PRGG	ARG3M 005100	E	CS (010 TE	TERM	×
0CT 77445	OCTAL LOC	207	00000	00103	00177	00221	00540	00562	00634	00712	00737	01000	01061	01077	01111	01140	01257						00000	COMMON S	0.5	5	01525	55	9	56	Ö	Ċ
DEC 32549	O ONE	IFN	- 2			જું *			3 5	121	126	33	4 60	152	157	9 5	28					DEC	? <u>=</u> 0	9	DEC							
. •	A NUMBERS	EFN	- 52	19	100	105	•	~ ;		00	24	29	r co n m	*	84	15.	204		1			. 0	QRTRN CFPT3	EQUIVALENCE	3 2 0	ARG1R	ARG4M	0 CZ	O	SIGPHI	TERMG	5
0CT 77461 76655	NAL FORMULA	LOC	00000			00206					00731						EC110		RAM		VECTOR		2 00002 2 00002 2 00002	DIMENSION,					-	_		
DEC 32561 32173	INTERNAL	IFR	2 °			K 4			•		_	-,		-	-:	-	180		Y.PROGRAM		TRANSFER	DEC		ĭ	_		924					
RECORD ZN	ORRESPONDING	Z	-:	6 B	63	104	® ₩ -	4	2;		23	28	33	4 4	74	53	118		NOT USED BY		NAMES IN TR		EXIT OUTPUT CFIL)	APPEARING			ARGSB	ARGIE	- C	SIG	168E	
0CT 76674 76664	WITH CORR	201	0000	00000 00066	00173	00204	00214	00457	00370	90624 00624	00726	00763	01037	01034	01105	01126	01155		510296	00T. 76634	()	130	00017 00015 00011	ABLES NOT	0	56		29	<u> </u>	9	o c	,
0EC 32188 32180	MBERS	H	n į	, ,	33	%	99 GC	86	86	9:	7.	129	137	2 00	500	163	- - - - - - - - - - - - - - - - - - -	•		DEC 32156	OCATIONS	OEC	N. H. O. W.	REALU	0		3 3 3 3 3 3 3 3					
22	FORMULA NUM	la.	ø,	- 5	**	103	כי	• • •	6.	2;	25.	26	35	37	9	53	218				-		INTM OUTONE SORT	OCATIONS FOR	,		AND	~	* 0 1 1 0	i iii		
0CT 76645 76673	XTERNAL		00000	00000	00170	00203	00214	00337	00370	00624	00655	00763	01035	01047	01103	01116	01152	01271		0CT 01543		50	0000	ORBIGE LO	, p	5	01535	5	56	5 5	5	5
DEC 32165 32187	ũ	7	•	•	90	33	8 Y	0 0	16	10°	113	28	136	4 4		139	90	183		0EC 867		0 E C		2	DEC							
u z		Ž.	•	۳ <u>ز</u>	0 M	102		4 4	•	2	- ć	8 8	3	8) Y	8		201					ARCOS LANTR CSPHO	ı		H	DRGSE DRG6B	aRG2R	E E	. 4SO	GTHE	PHMS.

812 0EC 617	27 00033 807 01447 773 01405 798 01436	59RT					
20	05601 C261 8336 15	COORD					
813 01455 PROGRAM DEC OCT	119 00167 808 01450 764 01374 795 01433	SLANTR					
<u> </u>	ED6 CD63 CD63 80.34 80.15 60	FROM LIBRARY. COS OUTPUT				•	
01456 01451 EARING	696 01270 130 00202 555 01053 763 01373 797 01435 2767 7777	NOT OUTPUT SIN INTM					
YR ZSP SYNBOLS N	69 69 69 69 69 69 69 69 69 69 69 69 69 6	SUBROUTINES CRTHO INT		1			
815 01457 810 01452 LOCATIONS FOR DEC OCT	126 00176 139 00213 28 0034 740 01344 792 01433 716 01314	POINTS TO CTSHOOUTONE					
~ w	E) 108 E) C D) 401 8) 35 3) 3E	ENTR' (FIL) EXIT					
1 01453	13 01051 18 01044 22 01264 31 01333 32 01276	(SPH) ORTON	:				
	E)20J 553 E)M 548 D)40V 692 8)3N 731 8)3F 783 2)	CFPT)					

RM	61 TMP-32					
5 5 1 1	6					
7.00 MPV 10+2 TPL 598 TRB 298 SXD C061,1		SXD C)G3,2 PSE 97 TSE 114 TSE 98 PSE 98 TRA 41A PSE 114		TRA 31A TRA 8-12 FSB 8-13 BSS 8-13 TSX 51N.4 TSX 0RG1R CLA 8-13		STO DRG3M CLD M-14 BSS COS, 4 STO ARG4M CLG M-15 BSS IN, 4 STO ARG5R
00161 00161 00163 00164 2781 00165 00167 E)6	00171 00172 00173 29A 00175 30A 00175 ED 108 00177 31A 00200 32A	00202 E59 00203 33A 00204 34A 00205 00205 35A 00207 36A 00210 37A		00220 408 00221 418 00222 00223 00224 628	00227 00230 00231 438	00233 00234 448 00235 00235 00237 458 00240
	SXD 65+4,4 15X (RTN),4 LXD 65+4,4 CLR K 17E 278 17P 278 CLR K	SUB 25-8 STO 10-1 CLA K STO 10-2 STO 10-2 SUB 20-6 STO 10-3	CLA K ST0 12+5 CLA K ST0 12+6 ST0 12+5 CLA K SUB 23+3	STO 13+6 CLA K . STO 13+7 CLA K SUB 23+1 STO 13+8		20 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
00067 25A 511 000073 0000073 000073 000073 000073 0000073 0000073 000073 000073 000070	264 2641 278			G-255455		n or cennannan
CSPUS (FIL) (TSM) (ATM) (SIM MS) (COS SLONTR	150RT 100RC0S 100DT0M 10UT0M 11NT 11NT 11NT 11NT	3 - 205 4) - 205 (SPH) - 4 8) 3 F CFIL) - 4 28086	(SPN).4 8)31 (FIL).4 (FIL).4 (C)61.4	65-44-4 CTSND-4 69023 65-44-4 20-11-1	9+1,1,1 60+4,4 60+4,4 60+4,4 60+4,4	50 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +
		10000000000000000000000000000000000000	00 15XX	325555		23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
<u> </u>	was mo min ov		00031 00031 00032 00033 00034 00035	,		00053 00055 00055 00055 00060 00061 00063

									_		_		_																								KΛ	N (ים	IN	VL.		2				
	1		1							1	•	:	Ī	1 1 1 1	!		-		:		ļ	1					:		•					1	!				:			:		:			1
1	1 1 1		:		1			1									1		į				:						1		!	:		1 1	;		1			,				: : : : : : : : : : : : : : : : : : : :			
										r									_										:										•			1		:			,
	1		1 1 1 1 1 1		1			3 1 1		1																			:					•			1							,	٠		
G-8		6-7	71-18 1-18	? -	9-NA			-	۳.	۷,	<u> </u>	- 1	· (-		ņ	£-3	153	- .	4-		ر ا	81-18	. 7	9-K-2	7-1-7 7-1-4	2+1	Ţ	8-9	15+2	2N- 3	۳÷ (Z-112	ۆ ۆۈ	ZN-1	6-7	£+4	- °	2-5 2-4-6 2-4-6	**	5+3	>+2			F-12		SLANTR, 4	KG /K
حږی	i i						FIFE G	STO 2N						•	£	T0 ZN	-5 007	ن و ا	510 ZN	9 d	STO ZN				100	ST0 12		_		5 A	10.01	2 00	<u> </u>	2 2						FS8 1	-	8					
T. W		L (. vs			v		ш,		:		:	_	•	_; ;	L			LU				_, ,	. VI		u.	υι	Ju	. vi					UI .			. u.	_	L		,, c	•			
7 m	4 74A	ın ·	7.750	-		2 76A			5 77A	91		H8/ D +	- ^	3 799	*	ņ	6 80A	٠ جا	•	5	4 M	4 82R			48 83H	- ·	8	m	4 1	ng vi	جا (<u> ç</u>	4 100	.	şo :	ا م	~ <u>c</u>	-	2	ñ	_; ± ;	9	Ď,	85A		_
00422	00424	0042	00426	0042	0043	0043	00433	00434	00435	00436	00437	00000	000	00	0044	0044	0044	0044	000	00400	00453	00454	0045	00456	00457	00461	00462	00463	0046	0046	00467	0047	00471	00473	0047	0047	00476	7 400	00500	00502	0020	000		00300	,	00310	2
												1 1		•			1						,	,					:													:		1			
:							•							,			:						•						,															•		•.	
: α		œ		4 م	£	¥			Ę	~	1		Ř	2	œ		×																														
			10+1	7777 0700		ARG4				ARG1	5	DRG3H OBG4D		- 4			ARG41		- (۵ را ا		_	6	Z.	ם פ	X	9-9		<u> </u>	ی د	X	5 (Z	1	G	Ž.	ט פ) <u>-</u>		_	>	9 -	>	9	6-2	25
STO	207	FE	200		XCD	Q.	FRO	S T0	20	FIF	210		F 7	000	S. S.	XCA	J.	CHS))		510	200	d i	ST0		510	9		ב פרי	Ē	STO	35	E L	200	FE	STO		STO	200	F	STO		F 2	3		ľ
	39A								60A		,	61B								9	N Z N		63A		(I C		6 3 A	•	0	E O		67A		68₽		;	69A		70A		,	7. B		72A		
00330		333	334	220	1337	00340	341	00342		00344	n ·	. D P	- CO	00331	00352	00353	00334	0355	0336	~ 6	00300	00362	_	00364		۰.	00370		00372	00373				00400		-		00403	00400			0412	00413	0414 V	00416	00417	0070
88	8	8	56	5 č	šä	ă	6	ŏ	ŏ	5	8	56	5 č	šä	88	8	ŏ	ŏ	8	5 2	3 Z	68	8	5	8	5 ā	5	5	ŏ ;	5	5 6	5	86	5 6	ŏŏ	5	5 (ŏĕ	5 č	; 5	ŏ	ŏ	ōċ	5 6	ō	ō	į
	,																																											•			
*	6 R	9	4	. 0	<u>.</u>	•	*	80	_		*	¥6.		•	108	W-62			:			Ņ			I (MRCUR 17+1		32R		63H	•	# E	H.	6-3 8668		1>+1	28	ž,	DPG 3H	į	-		E (HEGGE	_	PRG2R	
	O ARGE			000000			COS	986	A W-17			0 PRG9R							Ġ				8							æ :	-ੇ ਯ	_							•			9-9 0		- 1			
855 15X	S	2		À È	5		5	51	3	S	2	5	3	1 2 X	5.7	ับ	5	5	Ē:	3	410	ž	3	S	3	Ĭ	3	E	×;		25	3	£ ;	28	35	5	3	E 3		: 3	¥.	5	51	5 2	STO	ರ	
		47₽			480				494			9	Š			518	ı						528		33P							4		9							1		3 65	:		57 A	
10243	00244	10245	7700	0000	2		10251	10252	00253		30234	00255	10226	10287	30260	30261	30262	00263	90264	20265	99200	30270	30271	30272	00273	00274	00276	00277	00300	00301	20200	*0000	90305	90500	00310	00311	00312	00313	1500	90316	90317	00320	00321	222	8 4 2 4 3 8	90325	1
Ū		•	,		,	•	_	_	_		_	•		_	_	_	_	_	_	_ `		-	_	_	_	•		_	- :		:						-		;		!	•	_				
,																													;		i		:	:			;		1		:	3					

_	_		S.		6	_	_	R	N	1	6	1	Ti	M	P	_ ਹ	32	2	_	_	3																																									_		_			_
			4 1 1 1 1 1 1 1 1															1 2 2			1 1 1 1 1 1 1 1							1 1 1 1 1 1 1	•						1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									 						1							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			1 ! !															1																															1				1 1 1 1 1 1						1								
			,		:																					1 1 1 1 1 1 1 1 1 1 1 1 1									1											† † †			1																		
200	HKG4H	ARGSB	ARGEB		CERU	2 E K0	ZERO	1000	2 1 2 1	ZERO	-18	0	0	4-22	1-29		7	2	98	}	, 20000	44CO244	98	THETB		DOTON. 4		,	5	PHIB	20	0		-29	U-3 2	8	1-18	1-20	77.7		2.	20	-29	1-31	PHISP	HIR	TERM4	0R	~	i	2747		S. TOOS	- W M C M	JENSON.	4		51N, 4	12+1	TERMS	15+1	TERMS	N + C	THOMO	CHIL	100	SQRT, 4
			TSX				TSX						¥.			•			270		•		2							570					210			Ī.				5					STO			Ž.	1				•		,		210	3		510		100		n (
1								ı				C Y	Į.				E O			170	0				19A	200	:				1210	•	1			22A				240	K 0.4	-		1	24B	•		25B							18	H97						:	270				
0000	1664	00665	3666) (c)	0000	6 70	00671	643	7	00673	00674			92900	77,700			107.00	00702	-	1 20200	3	00704		-	1 2020	•	2	00710	00711	1	21100		*L.00		00716 1	71100	7.00	00721	;•	77700	148	00724	1	00726 1	727	00730	-		733	77.4	,	22.00	25.00	i	00757		00.740	00741	10440	4.4	00744		1	2	1	141
ś	ฮ	8	ö	66	57	ŏ	ö	; ;	3	5	ă	č	3	8	2	, è	38	5	ä	,		3 8	8	8		5	č	5	8	8	1	3 8	3	3	8	8	00	5	38	3 8	3 6	3	8	8	8	8	8	00	00	G	38	3	<u> </u>	3 8	3	3	1	3	8	ဗ္ဗ	C	00		86	3		8
								•										1 1 1			1					;																																								1 1 1 1	
					•	¥							1 1 1 1 1									,	•				4	2.7												!						;							1						-		4	•				:	
200	X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ARG7R	ARGBR	9000	AVOUE OCCUPA	MRC10F	ZERO	1		ZR	113	9	¥.	×	15-1	9	¥ 5	70-	ZR	F 53-1	,		HRCOS,	ă	THETR	1 ! !	MOTON		×	œ >-	PHIP	9		Š	BEGBR	ARGSE	OSP	ayo	TEPMS		7 .	(2:	;	SIN.	ARG18	112	W-21		cos , 4	ARG2B	M-20	}	A.N.	4000		07-8		cus, •	ARG6B		COORD	0	5		000	2000	AKC ZB
C :						Š	TSX	7	٠ •	ב	9	, C) 	ם	STD	5	֓֞֞֝֞֜֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֞֝֓֓֓֡֓֞֓֓֡֓֞	2	5	STO	0		XS.	ž	S T0	B SS	76.	Č,	Z	1 8×	STO	; c		5	£	510	9	Ž.	A TO			2	825	Z I		2	F58	855	TSX	510	a 2	(V				֓֞֞֞֝֞֞֞֜֞֝֞֞֜֞֞֜֞֞֜֞֓֓֓֓֓֓֞֝֓֓֓֓֓֞֝֓֓֓֞֝֓֡֓֡֝֝֓֡֓֡֝֝֓֡֓֡֝֡֡֓֡֓֡֝֡֡֝֡֓֡֝֡֡֝	700	×	210	888	75%	X V	Y Y	ž		i	×
								,	•	77.				100A		10	E .	:	1028		020	2 (1			9	9701				•	920					108A			000	E O			٠		10A					a 1	:			. •	H 7			;	30	4.0			į			
00633	5	602	00633	40200		00603	00636	1607		,	00611	613	•	m	00614	. y	٠,			00620	•		12900	229	623	_	00624		22900	00626	00627	00620		15000	00632	633			00636					00641		m	00644	;	00643	00646	00647 1		00643	0000		769	;	00655	634	•-	655 1	656	14.7	00660	00000		00662
5 6	5	ŏ	ŏ	č	5 6	5	ŏ	č	5 6	5	ŏ	č	5	5	ă	; ;	5 è	5	ŏ	ā		•	5	5	ŏ		č	5	5	ă	ā	č	Ş	5	5	ă	ŏ	č	ĕ	.	5 6	5	,	5	8	8	ŏ	:	ŏ	ă	č	5	č	šč	.	5		5	8 :		ŏ	ă	` `	č	ćč	5 6	ร
ı																		,					+					:					•									•				,							,		:		i		:								
İ							*									!		,	•	_				¥				:					:					•		:	•	:					*		۰		4	•	•						*							•	
	-	SESP	22+9	2	2		C0080	ay X		۲ ۲	756	90		NA COLL	REGAR	14000		MCD M	PRGGR	GPG7R	90090		THE CAR		SRSP	-	760			<u>-</u>	927			746	N.	×	12+2	1	•	1000		, ,		KSL	a S a	:	PRC05	920	THETSP		DOTON	d V		9110		7100			COOKO	×	2	28	915		200.78		HKC4 H
5	X 1	510	3	610		200	××	7		KA-	-ISX	7	C	XS	7SX	2	() ()	Ś	7 8	XX	Ž		Ä	×	ž	ISX	2	3 1		5 10	8	3		2	3	È	8	9	15 V) i	(C				570	828	7 8	•		BSS	12		Ž	. F		3 6	210			7 8X	7SX	X		Ž	i i		火 へ
1			87B		9	100	890	1								•											age						:										1		;	92B	938			4	950	}			0.76	I 9	1	1/2	30					-		1	
	1000		00516				00520			77500	00523	4080	1000	9529	0526	14.37		200	5331	00532	22500	7	1000	00535	00536	00537	_	٠.	00241	00542	0.054.3	4400			00346	00547	00520	00551	•		7 8 8 6 6			00333				2560	00561		l	00563	7	744	77000				00220	57	572	00573	1474	00575	00476	0000	27.5
38	5	ล์	ŏ	ĕ	5.		5	ē	òò	5	õ	č	5 (ð	ŏ	ē ļ	ò	5	ŏ	ŏ	č	Ò	5 d	5	ð	ð	č	.	5	ਰ ਂ		č	Č	5 (5	Õ.	õ	đ	•	2	č	5 (5 6	5	ð		ŏ	ŏ	ŏ		ă	ă	. č	č	ò	š č		,	5	ŏ	ŏ	ŏ	ð	ă	ŏ	č	5
					,													,										:		1	1		:		•							:		i				1							:											:	

```
CSPH),4
8)3N
                                                                             EDN
1688
16891
                                                                                                                                                                                           1618
                                                              01036
01057
                                                       01055
                                                                                                                                   SIGTHE
134B
                                                        1 30A
                                                                                        01000
01001
01001
01004
01004
                                                                                                               01006
01007
01010
01011
01013
01013
```

					-			R	M	6	1	۲Ņ	ΜF) _	32	2					, 																											_													
	•				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						•	P. 1	•	10				N. 1				***************************************		11 11 11 11 11 11 11 11 11 11 11 11 11					*1***						\$ 3 · · · · · · · · · · · · · · · · · ·								1							- •			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		111111111111111111111111111111111111111
TNT	Q 70	040	1 (216)	EXIT	1DV T0	1 - REA	TONITOR	1 FOR M	11TCHES	INSE SM			1CITE)	ING EXE	1000	OCTATION	071701	יייייייייייייייייייייייייייייייייייייי	4 6367	16.581.	1L SENS	1SET AL	1 C54H0	1RED>	10NSIDE	TEING C	18LEM B	10R PRO	1 552 F	151 BND	CFT C	4 (4640	1)	1514.7	1 (13.) 	1 (1206								-								1								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a C		֚֚֚֓֞֝֞֜֜֝֓֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֜֜֓֓֓֓֡֓֜֜֝֓֡֓֡֓֡֓֡֓֡֓	2	80 80	80	800	800	80	80	800	808	5	֓֞֞֝֞֝֞֝֓֞֝֟֓֓֓֓֓֓֓֓֓֞֟֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓		3 6	3 0	2 6	36	3 (800	00	800	800	800	800	800	800	800		ָ מַ מַ	֓֞֝֞֝֟֓֞֝֓֓֓֓֟֝֓֓֓֓֟֟֓֓֓֓֓֟֟֓֓֓֓֓֓֓֓֓֓֓			800	28				:				;						1		:		1		!				
		200			:					:		25.0		-		1						:	8) 3F						•			20,00	ò		21.0	}	8)23	}			1 1 1 1		1		:		1						1 1 1 1 1				1				
01 272		~ ,	_	•	01376	01377	01400	01401	_	01403				10410			;	71710	;	Ţ.	7	4		•				01424					7710		01627	•	3								1		1 1 1 1		1 1 1		:						i				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
000001600000	+00001200000	+0000000000000000000000000000000000000	+000050005000+	+000021000000	+000022000000	+000025000000	+00002600000	+000011000000	+000002000000	+000001000000	+000073000000	+0001020000	4206712272407	+20026920134216 +20026920134226	0.76110778707		*201 *00000000	-023000000000	+23300000000	+00000000+	+0000000000000	+000001000000	+0000000000000	1805	1 OR ZE	1GAT I VE	第 51 七	1 1000	1 C28H0	169.2)	1 102		10.100		1 18	19.2.3H	15.1976	10110	S C C	1.7X.1H	TODONCE		1 AUDO	37 677	20:7:20		14V- cuc	10010010 1101010	1 OUGTG		Tight 35	108,480	John Mile	SCO. MIL	1, 0H I ME.	1-R0, 5X	17HVC42	12) . 4X.	TX. 4HVC	IDELV, 5	1 1 1 1 1
Į	5 6	3 8	3	<u>0</u>	<u>6</u>	엉	00	20	OCT	DCT.	00.7	7	غ خ	֓֞֜֞֜֞֜֜֞֜֞֜֜֞֜֜֞֜֞֜֜֞֜֞֜֜֞֜֜֞֜֞֜֓֓֡	3 6	֚֓֞֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֓֡֓֡֓֡	3 8	֓֞֞֜֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֡֓֓֓֓֡֓֜֝֡֓֡֓֡֓֡֡֡֓֡֓֡֡֡֡֡֡֡	3	5	2	20	င်	800	800	800	80.0	800				֓֞֞֜֜֞֜֜֞֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֓֡֓֜֜֜֓֓֓֓֡֓֜֜֜֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡֓֡֓֡֓֡֓֡֡֡֡֓֡֓֡֡֡֡֡֓֡֡֡֡	3 6	֪֞֝֟֝֟֝֟֓֓֓֓֟֝֟֓֓֓֓֟֟֓֓֓֓֟֟	Ş	800			2		į	֓֞֝֞֝֞֜֜֝֓֓֓֓֞֜֜֜֜֓֓֓֓֓֓֓֓֓֡֓֜֜֜֜֓֓֓֓֡֓֜֜֡֓֡֓֡֓֡֓	֚֓֞֝֞֜֜֝֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֓֡֓֡֓֓֡֓֡֓֡֓֡		3 2		֓֞֝֞֝֞֝֞֜֝֓֓֓֓֓֓֓֓֓֓֞֜֜֓֓֓֓֓֓֡֓֞֜֜֓֓֓֓֞֜֓֡֓֡֓֡֓֡֓֡	֓֞֝֞֜֜֞֜֜֞֜֜֞֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֜֜֓֓֓֓֡֓֜֜֡֓֓֡֓֡֓֡֓֡	3 6	3 6	200	֚֚֚֚֚֝֞֝֟֝֟֝֟֝֟֝֟֝֟֝֓֓֓֓֟֝֓֓֓֓֓֓֟֝֓֓֓֓֟֝֓֓֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֝֡֡֓֡֓֡֡֡֓֡֓֡֡֡֡֡֓֡֡֡֡֡֡	֚֝֟֝֝֟֝֟֝֟֝֟֝֟֝֓֟֝֟֝֓֟֝֟֝֟ ֓֓֓֓֓֞֞֓֓֞֞֓֞֞֞֞֞֓֓֞֞֞֞֞֞֞֞֞֞	ב ב ב ב ב			800			3	
	į							•					2	,				(ş					•					33.3N		:		:		•		:	23.3.1	}				:				,		:				1 1 1				;		:		
01.200			_	01303	01304	01305	01306	_	-	-	2			7		?	- 1210	25.0	17510	01322	01323	01324	01325	01326	01327	01330	01331	01332	01333	0134	A 2 C	01600	0.550	01240	24.10	01342	0.1343	1 245	1245	01346	77.00	C 10 C	200		7000	200	7 7 7 6	00000	• •		_ ,		~ .		, .	- ,	-		01370	01371	
100 753	-		LDQ 1E1		DQ TE2	STR	9-0 00	STR	7-0 00		8-0 CL		X				:	, , , , , , , , , , , , , , , , , , ,		C9-# 00			SX (FIL).4		SX OUTPUT.4		- 14	P. 1420		1780	0.0	K-D- KK-	171 - 1901 1-12 - 1-12		•	100 1360		CI D M-27		T75 1460		800 Jul		2		75 100H	17C 136M	- (-		204CZ 900	ZE 24H			UB 25+13				001 +000000000000		
-	J	n.	ı	S	ī	'n	Ī	S	· -	ı tr	- ۱	16	Λ <u>.</u>		n .	. . (n.	ינ	Λ.	· هــ	S	6 0		176A B		177A P		•	5 803	a	r	- •	1790		17901		. -	1809	2	18091		- +		R	7 14.00	È	- 1					T THEAT!				18301 T	- 1		52 0	3	
61010	- 0	11310	01212	01213	04	1	•	11	01220	1 (1	0100	• •	940	٠.	1		44.0		٠,		(4		01234		01235	64	01237	N	4		# P			1 4	11	a 6.	ľ	, ,	1	10) ¥	1 1	10	- C	9 .	0.40	79710	9 4		3	2		2	7	7/7	273	01274	2	01276	11210	

B. FUNCTION SLANTR

This function is used to calculate the non-deviated ray path between the transmitter, R, and the starting point, S, (See Figures 1 and 2) from the given input data describing the problem under consideration. The input data should be designed in a manner that this assumption is true.

R/	M 61 TMP-32	J 1 1	<u> </u>	1 : : 1	: : 1 :
.ห-7090 มหติล**2)					
22.1960138-7090 RG:2.98G137 9RG:1277**2 ARG3** RH:)					
FUNCTION SLANTE DECEMBER 22-19 FUNCTION SLANTR (ARG. ARG. ARG. 23 TERMI SORTF (C. 0+ CARG. 3-ARG. 23 SLANTR = ARG. 2+ C-ARG. + TERMI) RETURN END. 1.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.					
ON SLANTRON SARTE COI					
ł					
o = cam o					

Formula Numbers 1" Current French Formula Numbers Formula			· · · · · · · · · · · · · · · · · · ·	RM 61 TMP-32
LE FORWULA NUMBERS SITY CURRESPONDING STERNAL FORMULA NUMBERS AND DOTAL LOCATION EFY IEN LOC 2 7,00022 2 7,00041 DEC COT 10004TIONS FOR WRANGE IN TRANSFER VECTOR DEC COT 10004TIONS FOR WRANGE NOT SPEARING IN DURENSION, FOULY GREEN END COT 2 2 2,0005 ENTRY POINTS TO STANDES NOT SPEARING IN SOURCE PROGRAM 2 2 2,0005 ENTRY POINTS TO STANDES NOT SPEARING IN SOURCE PROGRAM 2 3,0005 ENTRY POINTS TO STANDES NOT SPEARING IN SOURCE PROGRAM 2 4,0005 ENTRY POINTS TO STANDES NOT CUITAL FROM LIBRARY.	Σ. Σ.	DEC		
PEN IFN LOC STORHGE NOT BEC OCT BECOMENDED BECOOK BECOME TOWN BECOME T	LOCATION	DEC OCT ENCE OR COMMON SENTENC DEC OCT E PROGRAM	2	
LOCATIONS FOR WARIES HOLD OUT 32255; 77461 LOCATIONS FOR WARIESES HOLD OEC CUT TERM! 52 00065 STORAGE LOCATIONS FOR WARIESES HOLD OEC CUT STORAGE LOCATIONS FOR WARIESES FOR WARIE		ANSFER VECTOR DEC OCT IN DIMENSION, EQUIVAL DEC OCT NOT AFPERRING IN SOURCE	S NOT CUTPUT FROM LIBR	
aL FORM		51 77461 TIONS OF NG C CCT C CCT C CCT C CCT C CCT C CCT	POINTS TO	
	SKIZRHAL FORMULA NUMBEL + LOC EFN IN	6	2 25 ENTI	

C. FUNCTION QATAN

Function QATAN permits the evaluation of the value of the arctangent of an angle with proper quadrant allocation.

	RM 61TMP-32	_			
			: : :	: : 1 : :	1 : : 1 :
703					
18/1-7090					
; i ,					
22 - 39 c		.0.0,0.0			
2		0.0			
e		6			
E (4 a	ā.	6.6			
900 40 900 900 900 900 900	9 7	2			
	A 64.	6 6 0.0			
100000 100000		0			
27.1882	< 4.8 P. 3.44 0 < 4.8 P. 3.44 0	6. 48. 0 0			
00 · LL H	ဖုိင်္ကု မိုင်ငံ မိုင်ငံ မောင်ငံ ကျော်များကို သည်သည်။				
一つの非確確確 一名語の最後に 一名語の最後に	50. 70 6 50. 70 6 50. 70 6 10.000 4.13.5 10.000 10.13.5 10.00.100.100 10.000 10.100 10	929829249 : FRENCERCOV ! PROMOTORIA			
b. b. a. ⊶ ⊷ ©	បាយម៉េល់សេខាម៉ាធិធិធិធិ បាយម៉េល់សេខាម៉ាធិធិធិធិធិ	ំ ណំ។ស៊ីមីស៊ីស្គាស់ខ្ល			
	ា មាយជាល់ស្គ្រាល់				
14		•	*		
			,		4 2

EFN 1FN L0C 3 9 000-46 14 22 00112 14 22 00112 DEC 0CT	100	
£ 20 4 H		
iū jū	236	
EF SENTENCES		
FN L00 8 00343 13 00362 21 00107 DEC 0CT DEC 0CT	130	
113 213 214 8 0EC 0EC	ROGRAM	
EQUIVALENCE	IN SYMBOLS NOT SPEERING IN SOURCE PROGRAM 60 DEC CCT 60 90 00132 503ROUTINES NOT OUTPUT FROM LIBRARY.	
	NG IN S	
1FN LOC 6 40037 12 00036 12 00103 25 00117 PROGRAM INSFER VECTOR DEC GCT IN DIMENSION, DEC OCT	UL SPEEGRIN OFC GCT NOT GUTPUT	
17 6 19 19 19 19 19 19 19 19 19 19 19 19 19	NES NO.	
LJC SFN IFN L 0031		
0.031 0.033 0.033 0.033 0.015 0.0115 0.01 0.01 0.01 0.01 0.01 0	DEC OCT STORE FOR WAR POINTS TO STORE T	
1FN LDC 1 0.0031 17 0.0033 17 0.0033 24 00115 25 00115 05 001 06 001 06 001 96 00140	DEC 0CT 85 C0125 RV POINTS TO	
C & E	37 ENT	
OC# 113		
1FN LOC 1 00000 15 00051 15 00052 23 00114 38 00142 38 00142 50 0000 510RAGE LOCATIONS 50 00141	0012	
- 0 0	0 m	
- + 0 m	C. Saran	

D. FUNCTION ARCOS

Function ARCOS permits the evaluation of the value of the arccosine of an angle. Presently no quadrant allocation is made.

	RM 61TM	P-32		·				· · · ·							
		1	<u> </u>	1	!!!	1 i	<u>:</u>	! '	:	1					
					i		t ;		1	!					
				:			•		1	:					
			1		*		•	:	;	1		1			
				;			ŧ								
		;	1 '	1	i i	1			- 1						
1 :					:			;	1	1		1			
	i				•		ŧ								
1				:				1 4				1			
		;		:		1			. :		!!!				
					i		•	1				•			
				1	:		1					i			
			1	į						;					
		1 1		:			i	1	•						
				į			i	1		;					
			1	;			1								
1		•	: 1	;			;		. :	;		1			
		1 1	: :	:					:						
			1 :	;			į		. :	i	1				
		;		! .					•	1		į			
; ;		1	· '	;	,		1								
		•		!					1						
i		: :		i					1	•		•			
•		i :	•	•	1		!		i		! !	;			
		; ;	٠.	1			:		. :	:					
			1	•	:		1		, ;	· ·					
;		,	: .	1			•								
:	:0				1					į					
,	0.0.0.0		:		•				•	•	1				Ì
•	0.0		:		:	. :	•	: :	:	:	1 !	:			
m	્તું કું		•		•				٠,	;	1	;			
ą.	0.5 0.5 0.5			,	•		÷	; ;		•	1 1	:		· •	
~ (g)				,		:				;					
- m	9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		: :		į			: :	,	;					
0.00		:	: :	•	•		1	;		į					
	F.G.D.	•	٠,	•			i		· :			•			
ည္ႏိုင္ငံ ဝင္ေက			. ;		1					į				į	
	NAME O		; ;		:		į			:		•		į	
E LEG	81= 0+2 82= SCPTF(1,0/8) -1.02 6400S = ATBNF(82) IF400S = 3.1415927 - APCOS RETURN END(0:1.0.1:0:0:0:0:0:0:0:0	; i	!		•		'		:	:		į			
	,				1	;			:	'				:	
e- 64	m 1 m 0 t- 00				1	•		1			i :		1		•
	1										1			1	

RM	- 1	TAA		20
KM	ΛI	IM	P-	-52

	i				
	184 100 3 30016 9 00045	Ministration of the state of th	### 1FN LOC 3 6 CF026 3 11 0CU50	EFP 1-1 LOS 4 7 00031	EFN IFN LOC
	· Broggerom city,	大田の大田の	NOT USED BY PROGRAM		
	DEC CCT 58.00072	30561,77561			
,		LOCATIONS OF NA	NAMES IN TRANSFER VECTOR		
Z-	ATAM 1 00001	0000 330 TAGE	DEC CCT	DEC OCT	DEC OCT
	STORAGE LOCATIONS FOR	JARI-TLES NOT	APPEARING IN DIMENSION, E	APPEARING IN DIMENSION, EQUIVALENCE OR COMMON SENTENCES	ES
6	0EC 0CT	0€0 001 81 ₹6 00070	DEC 0CT ARCOS 75 00067	DEC OCT	DEC OCT
		STORAGE LOCHITCHS_EDR	SYMBAS. N	SOURCE PROGRAM	
	060 0CT	35 0EC 901	6) DEC CCT 50 00062	DEC. OCT	DEC OCT
FACS	ETPN	ENTRY POINTS TO S	SUBROUTINES NOT CUTPIT FROM LIBRARY	LIBRARY.	
	*				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
•	* * * * * * * * * * * * * * * * * * *				
t	***************************************				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
í			e vers en en emper e mandre de des mandres de des des des des des des des des de		
	***************************************				# # # # # # # # # # # # # # # # # # #
1	9 E T T T T T T T T T T T T T T T T T T	1			
1					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		• •		9 1 1 1 1 1 1 1 1 1 1 1 1 1

, ,	4	i,	,	61		1		.	F.		-															,								1	
		; ;						į	-			1	1				1				1			1	!			!	1		1	! !	!		
									-			1 1	į			:								:				:			,		1		
		! !		!					•	١		1				-		-		!	:			1	1			1			,	!	-		
		:															į			:	1	i		:					!		,	1	-	1	
					1			!	1								ļ				į								į		į	į !	į		
					1			1	1				-			-	;					i		ĺ		١								١	
				1	1					-		1	-			-				-					i				-		1	:	į	1	
				•						ĺ		-				:	-			-					:			!	-) 		1	
				1				į	į												-			1	-	i		;	-	Ì					
		-		-	1												į			-	į			!	-			:							
	! !	!		1			ŀ										į	ı			-			-	:			1	ì				- 1		
	i !	:		:	1			-		İ		:				į						į		1						-					
	; !				1				1			;					}								į				-				į		
	•				1			1	-				1			-																			
	} } 6	:		;								1								:				1	*	ļ			1						
	•	;		;				į				-								;				:	:	ĺ			:				į		
		!		į				;					į					j				İ		-	i			!	-		ı				
			1	;					:																				1	Ì	i I			l	
	:	•		:				}	-								;					İ			Ì			:					į		
	:	!		;	į							:				-					į			:				:					į		
		:		-				i							ļ	-	-			-	i	Ì		:				:	i		ĺ		i		
	i ,	-															:			-				;	;			:	1				i		
		:		1					;							į	i			-	-			:	:			-					į		
				;	!			:	:			:	i				i			İ		İ							:		ĺ				
	:	,			;			:				:			İ	;	i				į					ļ			i			į	į		
•	:	•		:	!			;	;			:	:			;	-		ļ		i	į					i	•					į		
		:	i	:				:			, , 1	:	:		;	;	;				į	:		:			!					-			
1	:	•														:	;			:	:	,		;	;			:		១២	m c	9		~ 0	0.6
į	•							;	i		İ	!				•				:	•	•	•		;			:		000 000 000 000 000	735	735	CO	777	8
!		:	ļ	:					;		1	•	:			:	;			:	-	,		;				-	11		207	75 125 125	0	000	100
RETA		ARCOS	hi			တင္	9	:	1		: - C	3	:		.4	;	4	•		•	Z	S			6	S 0	9	4 +		200	916	25.7	30		Ö
			1,14	M -	E	00 + 00 M M	Ä	C*		I (I	40.6	I :	- 5	(1) (C)	jes I			10	6	u.	Œ.		C C						ci	5 -	+201622077323	***	Ç	ō ō	Ō
000 E	OK U	000	Š	() () () ()	CE LIN	1 d 1 d 1 d	T.	T A	10	ار از از از از		1 0 1	G	(L) (L)	3	n di N C	m L	n >: n : i u : i	5	1 16 119 120	, (in		12.5	, a	7.38	n c 5 a	3	33	3	901	100	20	OC.	001	500
L'ELEN CERT		•		:	,			a).		- t	l t	1	et.		a K	:	;			7	:	1		46		1				a A			65		
000000 000001 000001 000001		t in a		o -	- 44	m 4		Pri	,		**			<u>.</u>		ra Pri	*	b'	124				in Maria		انوب	- - -		i M			00087	2		ey •€ •0 •0	50
888		58.5	3	55	5	Ģ.	ιō	៊ូរ៉ូ		្នំខ្ល	, ,	33		၁ ပ		ပ္ပင	-	- 53	9	3.	2	ုံစွဲ	Ž.	ခွဲ့ရှိ	ģ	ġέ		9	8	000	ġ,	ွှဲတို့	Š	gŏ	(၁)

E. SUBROUTINE COORD

This subroutine is used to transform the problem from the radar system to an earth centered geomagnetic spherical coordinate system.

Ļ

	E. TERREL	HITERNA FORMU A YUNBTRS AND OCTAL LOCATIONS	
Z: 14. 10	1FN .00	EF 1FN LOC EFN 1FN LOC EFN 1FN LOC EFN 1FN LOC 2 6 00316 6 5 6 00316 6 5 8 00240 8 5 100316 6 6 00316 6 6 00316 6 6 00316 6 6 00316 6 6 00316	
	050 007 22+ 003+0	DEC 3CT 3 351 77 61	
	, ,		
	0EC 0CT 215 00330	2) 21: 0;322 6) 211 00323	
	• • •		
,			
	•		
	•		
:			
		R	P
		M 61T	M AIT
į		MP-	MP-
: :		32	32
i			

14 Sty 1600

Color	0 + + + + + + + + + + + + + + + + + + +	:	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	V (30+104	00164	e i	ARG11
1,000 1,00			6,000	ST.	MD+114	00166	X N N	02
Section Sect			60075	70	4.64	00167	570	<u>.</u>
The control of the	19 -	•	9 A CO	ET.	3A+28	00170	2	3,43
1.00 1.00	1		0000	1 0	30++00 30++00	00171		<u>*</u>
1944 1944	•	:	10:22	9	13.4	00173	i Q	000
19	d in		00102	Œ.	3B+21	00174	F	<u> </u>
14.4 0.00176 FED 124 14.4 0.00176 FED 124 14.4 0.00176 FED 124 14.4 0.00176 FED 124 14.4 0.00176 FED 124 14.4 0.00177			90100	STB	39+30	00175	FSB	2
19 19 19 19 19 19 19 19	+ (T		Ξ,	STA	39+99	00176	FR	±
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	* .			G C	4.4	00177	573	
3.4.2 0.0107 513 38+90 0.0201 FMP ARG 3.4.2 0.011 514 38+90 0.0202 XCH 3.4.2 0.011 514 38+90 0.0202 XCH 3.4.4 0.011 514 38+102 0.0206 FMP ARG 5.4.4 0.011 514 38+113 0.0206 FMP ARG 3.4.4 0.012 514 38+113 0.0216 FMP ARG 3.4.4 0.012 514 38+113 0.0217 FMP ARG 3.4.4 0.012 514 38+123 0.0217 FMP ARG 3.4.4 0.012 514 38+124 0.0217 FMP ARG 3.4.4 0.012 514 58 517 114 517 114 3.4.4 0.012 514 58 517 114 517 114 3.4.4 0.012 514 5	+110	•	_	3TE	3A+24	00200 4A	LDO	ARG
19 19 19 19 19 19 19 19	*		<u>ت</u> .	STA	3A+33	00201	4	12/4
37.9 34.95 00203 FMP 36.95 00112 578 34-52 00206 FMP 36.95 00114 578 38-10 00206 FMP 5.9 578 38-10 00206 FMP 5.9 578 38-10 00206 FMP 3.9 571 34-10 00207 FMP 3.9 571 34-10 00212 FMP 3.9 571 34-10 00213 FMP 3.9 571 34-10 00213 FMP 3.9 572 34-10 00213 FMP 3.9 570 17-1 570 17-1 00214 FMP 3.9 570 17-1 570 17-1 00215 FMP 3.9 570 17-1 570 17-1 00223 FMP 3.9 570 17-1 570 17-1	+ I	,	001100	STA	3D+40	00200	XCA	
1990 1990	# 1 1 1 1		- -	STR	Sin-an	00203	O.	4
384-67 CULT STR 344-71 G0205 ENP 54-107 CULT STR 344-102 00206 ENP 54-107 CULT STR 344-102 00206 ENP 34-40 CULT STR 34-40 00210 ENP 34-40 CULT STR ENP STR ENP STR 34-40 CULT ENP ENP ENP STR ENP STR ENP STR ENP STR ENP <	N+15	•	50112	STA	39+52	00204	510	_
38+107 00114 STR 38+102 00206 FMP 38+107 00115 STR 38+11 00207 KCR 38+16 00117 CLR 13-48 00212 KCR 38+16 00122 STR 38+86 00212 KCR 38+6 00122 STR 38+86 00216 FMP 38+6 00122 STR 38+86 00216 FMP 38+6 00122 STR 38+86 00216 FMP 38+13 00122 STR 38+86 00216 FMP 38+13 00122 STR 58 00216 FMP 38+13 00122 STR 58 00217 FMP 38+13 00132 STR 58 00226 FMP 38+10 00132 STR 58 STR 58 STR 58	3B+6		M 1,00	STB	30+71	00205	0	G
\$14.4 \$14.4	17 th		41100	STA	38+10	00206	0	å
384-16 371-384-113 300210 First 384-114 3184-16 3184	¥,	•	00113	STE	30+1	10000	5	É.
38+16 36+16 36+16 36+16 36+16 36+17 36+18 36+19	† CEM		0110	atr	70-11	0000		ç
34+67 CC 120 STR 34+9 OOZ13 KCR 34+63 CC 123 STR 34+9 OOZ14 FMP 54+63 CC 123 STR 34+9 OOZ16 FMP 54+6 CC 123 STR 34+9 OOZ16 FMP 34+19 CC 124 CC 125 FMP FMP 34+19 CC 124 CC 126 FMP FMP 34+19 CC 127 FMP FMP FMP 34+19 CC 127 FMP FMP FMP 34+17 CC 147 FMP	30+1			֖֖֖֖֖֖֖֡֞֟֝֞֝֟֝֟֝֟ ֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞	, a	0.000		ľ
36+93 CO 121 STA 38+46 CO 214 KCA 36+93 CO 122 STA 38+46 CO 214 KCA 36+19 CO 122 STO 10+1 CO 214 KCA 36+19 CO 124 FMP 46 CO 214 FMP 56 36+19 CO 125 FMP 66 CO 216 FMP 56 36+19 CO 126 FMP 66 CO 226 FMP 76 36+19 CO 127 FMP 66 CO 227 KCA 36+17 CO 22 FMP 76 CO 226 FMP 76 36+17 CO 32 FMP 76 CO 227 KCA 36+17 CO 32 FMP 76 CO 226 FMP 76 36+17 CO 32 FMP 76 CO 226 FMP 76 36+17 CO 35 FMP 76 CO 226 FMP 76 36+18 CO 35 FMP 76 CO 226 FMP 76 36+19 CO 35 FMP 76 CO 226 FMP 76 36+11 CO 35 FMP 76 CO 35 FMP 76	4		- (- (- (- (- (- (- (- (- (- (- (- (- (-	E (# 60 C	11700	T (1
34+93 36+94 36+4 36+4 36+4 36+4 36+4 36+4 36+4 36+		: .)	T C	5 L C	00212	4	¥
State	100		17:00	N .	SH+#6	00213	Š	
134-4 134-4 134-4 134-13 134-13 134-13 134-13 134-13 134-13 134-14 134-14 134-15 1	, I		70177	CE CE	3A+86	00214	O.	DAG.
1948 1948	4		60123 33	2	PRG4	00215	STO	<u></u>
34+13 00125 570 1+1 00217 FRP 1-1 1-1 00220 1-1 1-1 1-1 00220 1-1 1-1 1-1 00220 1-1 1-1 1-1 00220 1-1 1-	31+0		(N)	a. E. L.	DROW	00216	001	C C
34+31 34+37 34+37 34+37 34+37 34+37 34+39 34+39 34+39 34+12 34+12 34+12 34+12 34+12 34+12 34+13	417		200	570	10+1	00217	9	ů.
34+37 34+37 00:27 34+89 00:22 34+89 00:22 34-89 00:23 34-12 00:22 34-12 36+12 36+12 36+12 36+12 36+12 36+12 36+12 36+12 36+12 36+13 36+13 36+23 36+33 36+33 36+33 36+33 36+33 36+34 36+34 36+33 36+34	37+3		0	Š	ARGE	00230	œ X	•
34+89 7.4 00131 FYP PR3 00223 XCH 34+83 36+83 36+83 CC 35 FYP PR3 100224 ST0 10+1 00224 ST0 10+2 00225 FYP PR3 36+109 CC 35 FYP PR3 36+109 CC 35 FYP PR3 36+109 CC 35 FYP PR3 36+109 CC 35 FYP PR3 36+109 CC 35 FYP PR3 36+109 CC 35 FYP PR3 36+109 CC 35 FYP PR3 36+109 CC 35 FYP PR3 36+109 CC 35 FYP PR3 36+109 CC 35 FYP PR3 36+109 CC 36 FYP PR3 50024 FYP	1440		5	Į.	ARG2	00221	Q L	.0
7.4 7.4 17	30 4 10 10 10 10 10 10 10 10 10 10 10 10 10		ö	œ	!	00222	i C	-
34-12	÷		013	ę. L	DX03	00223	Q Q	ayar.
34+12 34+12 34+12 34+13 35	•••		2.0	1/ L	17+1	00226	L (07.4
34.432	30+1			2		P 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.6	27.0
34+109 34+109 30-36 30-3	40) Pr • • (1)	2 6	1 to 0	00000	3	I KG
34+109 00227 XCR ASS STO 12+2 00227 XCR ASS Sto 12+3 00230 KR ASS Sto 12+4 00231 XCR ASS Sto 12+4 00232 KR ASS Sto 12+4 00232 KR ASS STO 12+4 00232 KR ASS STO 12+4 00232 KR ASS STO 12+4 00232 KR ASS STO 12+4 00232 KR ASS STO 12+4 00232 KR ASS STO 12+4 00232 KR ASS STO 12+4 00232 KR ASS STO 12+4 00232 KR ASS STO 12+4 00232 KR ASS STO 12+4 00232 KR ASS STO 12+4 00242 KR ASS	2	•)		71EVA	00226	Ē	ERG1
8.4 (197 L29 RR34 00233 KCH RRG 8.4 (197 L29 RR34 00233 KCH RRG 8.4 (197 L29 RR34 00233 KCH RRG 8.4 (197 L29 RR34 00233 KCH RRG 8.4 (197 L29 RR35 00233 KCH RRG 8.4 (197 L29 RR32 00233 KCH RRG 9.4 (197 L29 RR32 00234 KR3 10235	20102		9 e 3 e		14 · · · · · · · · · · · · · · · · · · ·	00227		
36+15 (C.94) FMP GR3+ 00231 XCA 36+15 (C.94) FMP GR3+ 00232 FMP GR3 36+15 (C.94) FMP GR32 00232 FMP GR3 36+15 (C.94) FMP GR32 00235 FR0 10+ 36+15 (C.94) FMP GR32 00235 FR0 10+ 36+13 (C.94) FMP GR33 00235 FMP GR33 00235 FMP GR33 00235 FMP GR33 00235 FMP GR33 00241 FMP GR33 00242 FMP GR33 00243 FMP GR33 00243 FMP GR33 00243 FMP GR33 00245 FMP GR33 00245 FMP GR33 00245 FMP GR33 00245 FMP GR33 00245 FMP GR33 00245 FMP GR33 00245 FMP GR33 00245 FMP GR33 00245 FMP GR33 00245 FMP GR33 00245 FMP GR33 00252 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP 10+ 36+26 FMP GR33 00252 FMP 10+ 36+26 FM) 	•		2 :	7.4.5	00230		ARGE
34+15 34+15 34+15 34+15 36			**) *** (() ()	10 XI	00231	X	
34+15 34+15 34+15 34+16 34	- T	:	9	<u>a</u>	1.00 mg/s/2000	00232		
39+53 39+53 39+78 301+4 301+4 301+4 301+4 301+4 301+3 301-3 301+3 30	4119		400	STO	10+01	00273		
34+78	いきほう		4	900	re ad	******	0 0	
34.92	70+7				2000	10000	i (
9.4 9.4 30.45 30.55 30.45 30.05 30.55 40.15	2340		• • • •	L (1447 1447	00233	I	
9.44 9.44 9.44 9.44 9.44 9.44 9.44 9.44	E (:	•	I,		00236	ini,	
38+3 38+13 38+13 38+13 38+13 38+13 38+13 38+13 38+13 38+20 38+20 38+20 38+30 38+30 38+30 38+30 38+30 38+31 38+13 38+	•		₹	Q.E.	Œ	00237	STO	:
34+13 34+13 34+45 34+69 34+69 34-69 36-90 36	**		4 .	CT.	-	00240 5A	ed J	经验的
34+95 CC150 LD0 ARG10 D0242 ST0 12+ 34-60 CC151 NP 12+5 D0243 LD0 ARG10 34-60 CC152 NP ARG11 D0244 EMP ARG11 10-4 CC154 NCA EMP ARG11 D0245 EMP ARG11 34-37 CC154 NCA EMP ARG11 D0246 EMP ARG11 34-37 CC154 EMP ARG11 D0246 EMP ARG11 34-13 CC154 EMP ARG11 D0250 EMP ARG11 34-26 CC164 NCA EMP ARG11 D0250 EMP ARG11 34-37 CC164 NCA EMP ARG11 D0250 EMP ARG11 34-38 CC164 NCA EMP ARG11 D0250 EMP ARG11 34-38 CC164 NCA EMP ARG11 D0250 EMP ARG11 34-38 CC164 NCA EMP ARG11 D0250 EMP ARG11 34-38 CC164 NCA EMP ARG11 D0250 EMP ARG11	37+1		5	510	-	00041	Q.E.	0000
34+69 CC151 FMP 10+5 CO2+3 LD 10-10-10-10-10-10-10-10-10-10-10-10-10-1	4117		if	00	· c		. (200
30-30	2); ;	3 (3 (7676	5 7	12*1
34+90	1		n .	E.	_	002+3	CO	9996
30+90	17			. XCB.	- [00244	Q.	JR62
10.4 36+37 36+37 36+66 36+15 00.55 11.4 36+26 36+26 36+26 36+26 36+26 36+26 36+26 36+26 36+26 36+26 36+26 36+26 56:52 56	WD+0		9	e F	æ	00245	g X	
36+37	4.01		10	a CX		0.400		•
38+16 38+113 38+113 11,4 11,4 11,4 12,4 13+26 13+26 13+26 14,4 15,4 16,6 17,7 18,6	40.4			9	ė	2000		ĸ,
24-15 00250 510 12-5 25-415 00157 LDG ARG9 00251 LDG A 11.4 A 0150 FMP ARG1 00252 FMP 11.4 34-26 00161 XCA 00253 5T0 1 34-26 00253 LDG A) - (K	74700		1+0
34+115 00251 LDQ ARG9 00251 LDQ ARG1 00252 FMP 134-26 00253 STO 134-26 00253 STO 134-35 00253 STO 1	9		9)i - 1	510	≾	00250		10+2
11.4 34-26 00161 XCA 00253 FMP 134-25 34-35 50162 FMP 8863 00254 LDG A	30+11		0.13	Ç	524	00251		
39+26 00161 XCA 00283 STO 1	-		•9	Q.	200	0100		100
00.00 00.00	344.2		-	- 0JX		7,400		
H BOT FORON	7347				6	9100		9+7-
				.	•	00254		13 March

```
ARG11
               5900
10+7
10+7
10+7
```

RM 61TMP-32

F. SUBROUTINE DAUX

Subroutine DAUX is used to define the differential equations that are to be numerically integrated. As a result the previously described ray trace equations are defined in this subroutine.

CONTROL DECEMBER 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	The state of the s
. XD&O 321100880S 1	
O SMIT TO A COMPANY OF THE COMPANY O	
CARACOURG TORROOM TORROOM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Naccourt Theory	
COUNTY CONTRACT III WINDOW	
· (000000000000000000000000000000000000	
6 TER3 =COSF(V(5))	7
2	
17 7562 11 1.0510	u
8 VC130 H (1.071ER1) #CUC70 + BC10+BC400	'
9 V(14) H (1.0/(V(4)+1M21) + (V(8) 1 4010+4000)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 COM CINO H CI O CO CO CO ATERNO ATERNO CO CO CO CO CO CO CO CO CO CO CO CO CO	
11 VC16) # (1.0/BC1))# BC7) # VC3)# VC14> +UC9)# VC15># TER2	
12. 09(17) A (1-0/9(40)) C (1-0/4(1)) A 4(8) A 0(8) A 0(13) A 0(4) A (0)	•
へ PCMC + CDC)つ ー	
13 . GUG182. # . GL=0.CUC42# . TER222* # CC122# . # C32 + . V C13 + . TER2	K
1 - UCADA UCBDA UCIADA TERBO	
14 V(19) = £(1,0/TER1) + (50RTF (TER) + #(10)++2 >>>	
15 VC20) # (1.0/ 3.0E3) * *(1.0 + (E(3)/#C1)) # E(11) }	\$1
16 UC212 H I CRCGV/CW-DEN D # C #CHOV	
20 REITURN	
ENG(9, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	
	•
•	

! 12

	8		1000 1000 1000 1000 1000 1000 1000 100	egas (Sa San A)	Maria San		100 0		2000		8									
	DEC	SNOTEBORT	本 (10mm) 10mm 10mm 20mm 20mm 20mm 20mm 20mm 20mm		ı		DEC	SENTENCES	jiga		90	•				*				1 2
STRIEBENTS	DEC OCT W 32438 77266	AND OCTAL	1FN L3C 6 8 00322 0 13 00361 5 18 00233				0EC 0CT 3 00003	OR COMMON	DÉC ÓCT	PROGRAM	DEC OCT 156 00234	 	i			•		,		
702 VARIABLES APPEARING IN COMMON STATEMENTS	27445 B	INTERNAL FORMULA NUMBERS	F-10 N		•	VECTOR	OCT COOUT SORT	SION, EQUIVALENCE	Ç∓ 2 4 6	RING IN SOURCE	007 00231 62	HOT CUTPUT FROM LIBRARY	:		;		;	* * * * * * * * * * * * * * * * * * *	;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ARIABLES APPEA	DEC 0		EFN IFN LOC 5 7 COUT 9 12 OCG4	USED BY PROGRAM		NAMES IN TRANSFER VE	DEC OC	APPEARING IN DIMENSION,	DEC 0CT TER3 166 00246	SYMBOLS NOT AFPEARING	9EC	SUBROUTINES HOT CUTA			;			4. 曹重重新を発送を発送をサイナー まって	***	1
OCAT1 ONS	1001	114 CO228	### 0 # # # 0 0 0 0 0 0 0	STORAGE NOT U	. ccr r 76573	LOCATIONS OF NAMES	100 100 100 100 100 100 100 100 100 100	BASINELES NOT APPE	5 502.47	MAS FOR ENGLISHED	: 2CT 35	POINTS TO SUBRO SURT	:	•	:	1		1. 上海電車を乗りた。 1. 中では、東京では、1. たっからは、1.		
STORAGE L	000 0000000000000000000000000000000000	FORMULA MUMBERS	# 00 to 24 to 44		32187	LOCAT	DEC RINDEX	ROF R	DEC 7ER2 167	STORAGE 100	0EC 20 152	ENTRY P							1	
ι	DBC DCH	EXTERNAL F	00000000000000000000000000000000000000		080 007 169 00251		00000 TOO	SHOPHGE LOCATIONS	3£0 001 168 00250		350 361 161 06241	NIS		:				* : : : : : : : : : : : : : : : : : : :	e a commissione de maria	
•	ž		# ##N				60 (1)		7. 1.		្គ	RINDE			:	,	· •	;	!	

							•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									1												1 1 1										i 				
12+1	15+3	28.5	+6	33+1	277	2-1-2	ر بن	9		SQRT, 4	37+1	TERI	1>+1	V-18	-5	-10) -	-	(+)	1)+1	19	1	13+1	Ņ	3254 13+1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V-20	1.2	2.4	. 4 2000000000000000000000000000000000000	+146527461670	2014DDDDDDDDDD	223444760000	735UUUUUUUSS	0000000000000	00000100000	000000000000						
ESB 13		FMP TER2							855						ביב נוני		, ~,				STO V	3,3			FIFE 13	•				TRA	007			130			13			1			
ч	ω .		v	C (u	·	ا <i>ت</i> ـ	<u> </u>	. 20	<u>-</u>	ni C	14		l		-	. L	S (- L	S	3	. 4	SI	1	ی	v -]	, -4) — C	0	٩	•	20	, 0	0	7						
	~ .	7	10	. 01			2 17A	M 4		10.	2		-	Ы	3 18A		9	~		- ~	P)	<u> </u>	. 4	~ () -	2	₩, 4	1	و ,		38		, m,	3	D 49	7							
0016	00162	\$4(U)	59100	9016	79100	2100	00172	7100		00175	4/100	0050	00201	00200	00203	50200	0020	00201	00210	0021	00213	90219	00215	0021	00221	00222	0022	00225	00220	00227	00231	22200	00233	00234	0023 0023	00237	00240		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
V-3		15#Z	32+1	15+2	***		8-7	11-14			V=13				15+2			V-3				12+1			-32+1	٠,		12.5	•		7.7.5		V-3	0-13				TER2		.y-12			
3	ž į	Ę	3	8	H		*	8	STO	3	F.E	9	9	E	£ 5	į		SE L	8	Š	œ.	98	F. E. E.	STO		2	25 S		3	2	STO	1	Œ.	8	F S		Ħ	2 1	Ş	F	519 619	è	1
7	Ď	J	. 10	•	6	7 14B	0		4 15	•	0.4	<u>ب</u> د	0	-	7,	٠. •	5.0	9	7	2 =	7	~	e ic	ي و		13	21	M 4	· vc	و و	5 5	150	7 1	<u> </u>	全 约	9	7	2:	12	73	15	8	
00067	0000	72000	2000	42000	0000	000	00100	10000	00103	00100	C0100	0100	00110	100	1100	1100	000	91:00	100	00120	2100	00123	00125	00126	00127	100	00132	000 34	0013	00136	20137	g	00142	100 100	55	00146	74100	00150	00152	100	48100 48100	00156	
IRINDEX	SIN	1505 1500 T				5. 1	\$+1,2	\$+2,4	RINDEX.4			. •		N. 4	TER2		4.8	TER3	IER2				3) TEB2		F -	9	1>+1	Del	1241	V-12			-1	1+1	E-3	13+2	241	15+2	L2#1.		ម្នា	•	•
1CD 1R				e (SXD S+	,			F. 10					- X - W - W - W - W - W - W - W - W - W			- 1		TZE 118	- 1	CLA 33 STN TF	ı	=	FB0_V-6	i			,		1				ST0 ::				- :		F8 V-	
RINDEX BO		C05		ATH.		5 6	ŝ	₩.		69		2		1				is .	8	ЙÚ	20.			118) la	in		. 44.		129	C	•	5	J 6	5	9		į	128L			•
00000		00002		0000	2000		00011	00012	00013		90015			00000	00021	7200	0023	00024	00025	00026	000030	00031	000032	00034	000 35 000 35 000 35	0037	00040		00043	9000		DD042	0020	ğ	202	150 8	0000	95000	<u> </u>	PALL	7 7 8 8	38	

G. SUBROUTINES INT AND INTM

This is a generally available SHARE program which permits the numerical integration of a chosen set of first order non-linear differential equations. It can be operated in three possible numerical integration modes (a) Runge-Kutta with a fixed integration mesh size, (b) fourth order Adams-Moulton with a fixed integration mesh size, and (c) fourth order Adams-Moulton with a variable integration mesh size that is controlled by an error sensing routine. Because no FORTRAN source program listing is available, a SHARE description of this routine is given along with a SAP listing.

IDENTIFICATION

RW INT, Adams-Moulton, Runge-Kutta Integration 704 - FORTRAN SAP Language Subroutine Space Technology Laboratories, Robert Causey and Werner L. Frank, November 30, 1958

ABSTRACT

FORTRAN version of RW-DE2F which integrates a system of N simultaneous, first order, ordinary differential equations. Option of using either 4th order Runge-Kutta method or 4th order predictor-corrector method (Adams-Moulton) is provided. Also option of automatic error control with variable step-size is provided. Input and output are single precision but double precision is used internally to control round-off errors. Requires 12N + 3 cells for data and 693 words for program.

PURPOSE

This FORTRAN subprogram integrates a set of N simultaneous, first order differential equations. It is the FORTRAN version of the standard subroutine RW-DE2F.

RESTRICTIONS

This program has two distinct entries, one for set up and the second for performing the integration steps. The user must supply a FORTRAN subprogram (with the name DAUX) which evaluates the derivatives y^{\prime} .

METHOD

The user has the option of using either a fourth order Runge-Kutta method or the fourth order Adams-Moulton method with a fixed stepsize. There is also a variable step-size mode.

While input and output to this routine are single precision, double precision is used internally to control round-off errors. Truncation error is controlled either by choosing an appropriate step-size, or by using the variable step-size mode of operation.

For details of the method see RW-DE2F.

USAGE

a. Calling Sequence for set up (performed prior to initiating the integration).

CALL INT (V, N, A1, A2, A3, A4, A5, A6, A7)

Where V is a region of at least dimension 12N + 3

N is the number of equations

Al is the option word

A2 is E

A3 is M

A4 is A

A5 is hmax

A6 is hmin

A7 is B

For meaning of A1 - A7 see Appendix A and B of RW-DE2F.

Region V contains the following information prior to Set Up entry.

V(2) = x, initial value of independent variable

V(3) = h, value of step-size

$$\begin{array}{c} V(4) = y_1 \\ \vdots \\ V(3+N) = y_N \end{array}$$
 values of dependent variables y_1

$$\begin{cases}
V(4+N) = y_1' \\
\vdots \\
V(3+2N) = y_N'
\end{cases}$$
 values of the derivatives y_i to be supplied by the auxiliary DAUX.

Note: This region and the parameter N should be placed in COMMON since it is necessarily referred to in the main program and in the auxiliary. The cell V (1) is set up by the subprogram RW INT and will contain N scaled at 35.

b. Calling Sequence for integrating one step.

CALL INTM

No arguments are required for this statement.

SPACE REQUIRED

693 cells

CHECKOUT

This routine has been extensively tested on several check problems. In all cases the errors were approximately equal to their expected values, and there were no indications that round-off errors accumulate rapidly.

METHOD

References:

1. S. D. Conte and J. Titus, An interpretive floating point sub-routine for the solution of systems of ordinary differential equations, Appendix I, Proc. Math. Committee of Univac Scientific Exchange Meeting, Nov. 21-22, 1957 (Obtainable from Remington Rand Univac, St. Paul, Minnesota).

2. E. K. Blum, A modification of the Runge-Kutta fourth-order method, Appendix H, Proc. Math. Committee of Univac Scientific Exchange Meeting, Nov. 21-22, 1957.

In this routine the user is allowed an option of using either the Runge-Kutta classical fourth-order method as modified by E. K. Blum [Ref. (2)] or the Adams-Moulton predictor-corrector method using the Runge-Kutta method for starting the process. Let the system of equations to be solved be given in the form

(1)
$$\begin{cases} y_i' = f_i(x, y_1, y_2, ..., y_N) \\ y_i(x_0) = y_{i0} \end{cases}$$
 $i = 1, 2, ..., N.$

Let y_{in} be the value of y_i at $x = x_n$ and f_{in} the derivation of y_i at $x = x_n$ and let h be the increment (step-size) of the independent variable x. The classical Runge-Kutta fourth-order method uses the formulas

$$k_{i1} = h f_i \left(x_n, y_{in} \right) ,$$

$$k_{i2} = h f_i \left(x_n + \frac{1}{2} h , y_{in} + \frac{1}{2} k_{i1} \right) ,$$

$$k_{i3} = h f_i \left(x_n + \frac{1}{2} h , y_{in} + \frac{1}{2} k_{i2} \right) ,$$

(2)
$$k_{i4} = h f_{i} \left(k_{n} + h, y_{in} + k_{i3} \right),$$
$$y_{i, n+1} = y_{n} + \frac{1}{6} \left(k_{i1} + 2k_{i2} + 2k_{i3} + k_{i4} \right),$$

The following formulas (we omit the subscript i for notational simplicity) were derived by E. K. Blum to control the growth of round-off errors.

off errors.

$$\begin{cases}
z_{o} = y_{n}, \\
q_{o} = q_{4n}
\end{cases}$$

$$\begin{cases}
P_{o} = h f(x_{n}, z_{o}) \\
r_{1} = L^{(1)}R^{(1)} \left[\frac{1}{2}P_{o} - q_{o}\right], \\
z_{1} = z_{o} + r_{1}, \\
q_{1} = 3r_{1} - \left[\frac{1}{2}P_{o} - q_{o}\right], \\
\end{cases}$$

$$\begin{cases}
P_{1} = h f(x_{n} + \frac{1}{2}h, z_{1}), \\
r_{2} = L^{(2)}R^{(2)} \left[\frac{1}{2}P_{1} - \frac{1}{2}q_{1}\right], \\
z_{2} = z_{1} + r_{2}, \\
q_{2} = -r_{2} - \frac{1}{3}q_{1} + \frac{1}{2}P_{1}, \\
\end{cases}$$

$$\begin{cases}
P_{2} = h f(x_{n} + \frac{1}{2}h, z_{2}), \\
r_{3} = L^{(3)}R^{(3)} \left[P_{2}\right], \\
z_{3} = z_{2} + r_{3}, \\
q_{3} = -r_{3} + q_{2},
\end{cases}$$
(6)

(7)
$$\begin{cases} P_3 &= h f(x_n + h, z_3) + 2 P_2, \\ r_4 &= L^{(4)} R^{(4)} \left[\frac{1}{6} P_3 + q_3 \right], \\ y_{n+1} &= z_4 = z_3 + r_4, \\ q_{4, n+1} &= 3 \left[r_4 - \left(\frac{1}{6} P_3 + q_3 \right) \right], \end{cases}$$

where R^(m), L^(m) denote operators which shift right m places or left m places respectively and q₄₀ is taken to be zero to start the computation. (See Ref (2) for a complete description of this method.) Formulas (3) - (7) are those used in this routine.

The Adams-Moulton predictor-corrector formulas for the system (1) are

(8)
$$y_{i, n+1}^{(p)} = y_{in} + \frac{h}{24} \left[55 f_{in} - 59 f_{i, n-1} + 37 f_{i, n-2} - 9 f_{i, n-3} \right]$$

(9)
$$y_{i, n+1}^{(c)} = y_{in} + \frac{h}{24} \left(9 f_{i, n+1}^{(p)} + 19 f_{in} - 5 f_{i, n-1} + f_{i, n-2} \right)$$
.

The corrector formular (9) is applied only once so that only two derivative evaluations are needed for each Adams-Moulton integration step. The starting values needed in (8) are obtained using the Runge-Kutta-Blum (RKB) method.

The Adams-Moulton method may be used either with a fixed step-size or with a variable step-size. The step-size to be used in the variable mode is determined as follows. Let

$$E_{n+1} = \max_{i} \frac{\begin{vmatrix} y_{i,n+1}^{(p)} - y_{i,n+1}^{(c)} \\ \frac{14D_{i}}{1} \end{vmatrix}}{14D_{i}},$$

$$D_{i} = \max_{i} \left\{ \begin{vmatrix} y_{i,n+1}^{(c)} \\ y_{i,n+1}^{(c)} \end{vmatrix}, A \right\},$$

where A>0. The user will specify an upper bound \overline{E} on the truncation error estimate E_{n+1} . This is equivalent to specifying the number of significant figures which the user desires to preserve locally throughout the integration. There must also be specified a constant M>0

from which a lower bound $E = M^{-1} \overline{E}$ is obtained. M should normally range from 50 to 150. The interval will then be decreased, left as it is, or increased according as the following inequalities hold:

(11a) If
$$E_{n+1} \ge \overline{E}$$
, the interval is reduced to βh (0 < β <1

(11b) If
$$\underline{E} \leqslant \underline{E}_{n+1} < \overline{\underline{E}}$$
, the interval size is kept fixed.

(11c) If
$$E_{n+1} < E$$
 for 3 successive steps, the step-size is increased to $\frac{1}{\beta}$ h.

Normally, the routine will take $\beta = 1/2$, unless β is otherwise specified. The constant A in (10) is used to prevent unnecessary reductions in |h| whenever $|y_{i,n+1}|$ is small. Normally the routine

will set A=1. However, some other value for A may be specified by the user if he desires to use some other characteristic length for A. While the test based on (10) will guarantee that the local error does not exceed \overline{E} , the cumulative error will usually exceed \overline{E} . Hence, \overline{E} should be chosen small enough to allow for an accumulation of truncation error. Normally \overline{E} should be in the range $10^{-8} \leqslant \overline{E} \leqslant 10^{-3}$.

After an interval is increased, the program prevents increasing again until 6 more points have been completed. However, the program may decrease the interval as often as necessary.

Starting values for the Adams-Moulton formulas are always obtained using the RKB method whenever the interval size is changed, just as at the beginning of an integration. Consider the following diagram of the axis of the independent variable x

If the values of the y_i are computed at the points p_1 , p_2 , and p_3 using the RKB method and the truncation error test (11) calls for decreasing |h| at the point p_4 , then the routine returns to the point p_0 and again computes three new points with the RKB method using the decreased value of |h|. If on the other hand (11a) holds at p_4 and the y_i at p_3 had been computed using the AM method, then the routine returns to the point p_3 for a new start. If the inequality in

(11c) is not satisfied at p_1 , but is satisfied at p_2 , p_3 , and p_4 , then a new start is initiated at p_4 with the increased value of |h|.

The user must provide a starting value for h and he may, if desired, specify a maximum value of |h| beyond which the routine will not increase |h| and a minimum value of |h| below which it will not decrease |h|. Negative values of h may be supplied for backward integration.

Both the RKB method and the AM method incorporate round-off control features. This is performed in the RKB method by carrying the q's in formula (3)-(7). In the AM method this is done by keeping the y_{in} in double precision forming the sums $y_{in} + \nabla y_{in}$ in (8) and (9) in double precision. The derivative calculations are all performed in single precision. Both procedures have shown to be very effective in controlling the growth of round-off errors.

USAGE AND CODING INFORMATION (APPENDIX B)

There are two entries to this routine. The first must be used once at the beginning to set up the routine for integration of a given set o N differential equations. The second entry may be used any number of times after the first to integrate all y_i from x to x + h. The first entry has the following calling sequence.

Loc.	Instruction	Comment
A1-2	TSX DE2F, 4	Setup entry
A1-1	PZE T, O, V	Parameter word with addresses
Al	(Binary integer)	Option word (= 0 or 1 or 2)
A2	(Floating-point number)	E Truncation error testing
A3	(Floating-point number)	M information
A4	(Floating-point number)	A
A 5	(Floating-point number)	h]
A 6	(Floating-point number)	h Bounds on h, if any
A7	(Floating-point number)	β - Increase or decrease h factor
A7 +1	Return	

The eight parameter words have the following meaning, (A1-1): V is the address of the first word of a block of 12N + 3 cells, reserved by the user, with the arrangement

Loc.	Contents	
v	N	Fixed point binary integer, point at right
V + 1	x	Value of independent variable in floating point
V + 2	h	Value of step size in floating point
V + 3	Υı]	•
V + 4	y ₂	
•	• 1	
•	. }	Values of the y _i in floating point
•		
V + N + 2	yΝ	

Loc.	Contents
V + N + 3	y_1'
V + N + 4	y 2
•	}
•	1
V + 2N + 2	y _N
V + 2N + 3	-
etc.	}

Locations where the user's auxiliary subroutine must place the derivatives y_1^{i} .

10 N cells of temporary storage

Note: If the Runge-Kutta only option (see under Al below) is used, it is only necessary to reserve a block of 4N + 3 cells.

Before executing the setup entry, the user must have already placed the appropriate numbers in cells V through V + N + 2.

The address V in the entry point of an auxiliary subroutine which the user must provide to evaluate the derivatives y_i and store them in cells V + N + 3 through V + 2N + 2 as shown above. This auxiliary subroutine is entered by the calling sequence

Loc.	Instruction
A1-2	TSX V, 4
A1-1	Return

The setup entry uses the auxiliary subroutine to evaluate the derivatives for the initial data.

(A1): The option word may have any one of three values which designate three different modes of operation for RWINT

Al = 0 designates the predictor-corrector variable h mode

Al = 1 designates the fixed h Runge-Kutta only mode

A1 = 2 designates the fixed h predictor-corrector mode

For A1 = 1 or 2, the contents of A2 through A7 may be arbitrary.

(A2): This cell contains the upper bound E>0 for the truncation error testing done in the predictor-corrector variable h mode. $(10^{-8} < E < 10^{-3})$

(A3): This cell contains the number M>0 from which the lower bound E is calculated. If A3 = 0, M is set equal to 100.

(A4): This cell contains the number A>0 used to designate a fixed-point truncation error test as described in Appendix A. If A4=0, A is set equal to 1.

(A5): This cell may contain the upper bound $h_{max} > 0$ for |h|. If A5 = 0, this means that there is to be no upper bound for |h|.

(A6): This cell may contain the lower bound $h_{min} > 0$ for |h|. If A6 = 0, this means that there is to be no lower bound for |h|.

(A7): This cell may contain the factor $1 > \beta > 0$ used to increase or decrease |h|. If A7 = 0, β is set equal to 1/2.

The integration entry is quite simple and has the calling sequence

Loc.	Instruction
A1-2	TSX DE2F + 1, 4 Integration entry
A1-1	Return

Ordinarily, after execution of the integration entry, all y_i assume new values, x will have been advanced to the value x + h and h will be unchanged. However, in the variable h mode, three other things can happen. (1) if the truncation error test indicates that h should be increased, h will have been changed to $\beta^{-1}h$ unless $\beta^{-1}h > h_{max}$. If the truncation error test indicates that h should be decreased, then h will have been changed to $\beta^{-1}h$ unless $\beta h < h_{min}$ and either (2) y_i and x will remain as they were before entry or (3) x will be changed to x - 3h and the corresponding y_i values will occupy calls V + 3 through V + N + 2. Case (3) can only happen when successive decreases in h are called for. On exit the values y_i in V + N + 3 etc. are always those which correspond to the x and y_i in V + 1 and V + 3 etc.

The integration entry must be used for each integration step. In the variable h mode, a particular integration step may involve either AM or RKB integration but not both. In the fixed h predictor-corrector mode, the first three integration entries involve RKB integration and all subsequent ones involve AM integration.

Whenever an integration step involves AM integration, the truncation error estimate E_{n+1} is in the accumulator on exit. Zero is always placed in the accumulator if the step involved RKB integration.

The setup entry may be used again at any time to set up another problem or to change the mode of operation.

In addition to the auxiliary subroutine for derivative evaluation and the 12N + 3 cells for data storage, the storage requirements are 693 words for RWINT plus 2 words of COMMON.

```
INT 0001
      ORG 0
                                                                            INT 0002
DAUX BCD 1DAUX
                                                                            NT 0003
      HTR
                                                                            INT 0004
      HTR
                                                                            INT 0005
      HTR
                                                                            INT 0006
INT
      SXD INT-3,4
                                                                            INT 0007
      SXD INT-2.2
                                                                            INT 0008
      5XD INT-1+1
                                                                            INT 0009
      CLA 1,4
                                                                            INT 0010
      STA REV1+1
                                                                            INT 0011
      STA REV1+2
                                                                             INT 0012
      STA A2
                                                                             INT 0013
      CLA 2+4
                                                                             INT 0014
      STA A1
                                                                             INT 0015
A1
      CLA
                                                                             INT 0016
      ARS 18
                                                                             INT 0017
AZ
      STO
                                                                             INT 0018
      ALS 2
                                                                             INT 0019
      STO C
                                                                             INT 0020
      ALS 1
                                                                             INT 0021
                             -12N
      ADD C
                                                                             INT 0022
      ADD C1
                              12N+2
                                                                             INT 0023
      STO C
                                                                             INT 0024
      CLA 1.4
                                                                             INT 0025
      SUB C
                                                                             INT 0026
      STA PARI
                                                                             INT 0027
      CLA C
                                                                             INT 0028
      ARS 1
                                                                             INT 0029
       STO C
                                                                             INT 0030
       ADD PARL
                                                                             INT 0031
       STA REVI
                                                                             INT 0032
       STA REV1+3
                                                                             INT 0033
      LXA CZ+1
                                                                             INT 0034
      CLA 3.4
A4
                                                                             INT 0035
       STA A5
                                                                             INT 0036
A5
       CLA
                                                                             INT 0037
       STO PAR8+1+1
                                                                             INT 0038
       TX1 A6.4.-1
                                                                             INT 0039
       TIX A4.1.1
A6
                                                                             INT 0040
       CLA PARZ
                                                                             INT 0041
INT 0042
      LRS 18
STO PAR2
                                                                             INT 0043
       CLA DAUX
                                                                             INT 0044
       STA AUX+2
                                                                             INT 0045
       TSX REV.4
                                                                             INT 0046
       TSX DE2F+4
                                                                             INT 0047
     PZE 0.0.AUX
PAR1
                                                                             INT 0048
PAR2 PZE
                                                                             INT 0049
     PZE
PAR3
                                                                             INT 0050
     PZE
PAR4
                                                                             INT 0051
PAR5
      PZE
                                                                             INT 0052
      PZE
PAR6
                                                                             INT 0053
PART PZE
```

```
PARS PZE
                                                                           1NT 0054
       TSX REV.4
                                                                           INT 6055
       LXD INT-2.2
                                                                           INT 0056
       LXD INT-1.1.
                                                                           INT 0057
       LXD 1NT-3.4
                                                                           INT 0058
       TRA 10.4
                                                                           INT 0059
 INTM SXD INT-3:4
                                                                           INT 0060
       SXD INT-2.2
                                                                           INT 0061
       SXD INT-1+1
                                                                           INT 0062
       TSX REV+4
                                                                           INT 0063
       TSX DE2F+1.4
                                                                           INT 0064
       TSX REV.4
                                                                           INT 0065
       LXD INT-3.4
                                                                           INT 0066
       LXD INT-2.2
                                                                           INT 0067
       LXD INT-1.1
                                                                           1NT 0068
       TRA 1.4
                                                                           INT 0069
REV
       LXA C+1
                                                                           INT 0070
       LXD C1.2
                                                                           INT 0071
 REV1
       CLA 0.1
                                                                           INT 0072
       LDQ 0.2
                                                                           INT 0073
       STO 0.2
                                                                           INT 0074
       STO 0.1 -
                                                                           INT 0075
       TX1 REV3.2.1
                                                                           INT 0076
REV3
       TIX REV1.1.1
                                                                           INT 0077
       TRA 1.4
                                                                           INT 0078
AUX
       SXD C3.4
                                                                           INT 0079
                                                                           INT 0080
       TSX REV.4
       T5X 0.4
                                                                           INT 0081
       TSX REV.4
                                                                           INT 0082
       LXD C3.4
                                                                           INT 0083
       TRA 1,4
                                                                           INT 0084
                                                                           INT 0085
       PZE
C
                                                                           INT 0086
C1
       DEC 2
                                                                           INT 0087
       DEC 7
 C2
                                                                           INT 0088
       REM FLOATING POINT ADAMS-MOULTON. RUNGE-KUTTA INTEGRATION
                                                                           INT 0089
                              SETUP ENTRY
DE2F
       TRA DE2F+0293
                                                                           INT 0090
       SXD DE2F+0240+1
                                    INTEGRATION ENTRY
                                                                           INT 0091
       SXD DE2F+0241+2
                                                                           INT 0092
       SXD DE2F+0242+4
                                                                           INT 0093
                              SWITCH 1
       TRA DE2F+0005
                                                                            INT 0094
       CLA DE2F+0285
                              3 TO ACC
                                                                            INT 0095
       CAS DE2F+0228
                              TEST ALPHA
                                                                            INT 0096
       TRA DE2F+0186
                                                                            INT 0097
       TRA DE2F+0175
                                                                            INT 0098
       LXA DE2F+0229+1
                                 Y PRIMES TO D
                                                                            INT 0099
                                                                            INT 0100
       CLA #+1
                                                                            INT 0101
       STO #.1
                                  AND
                                                                            INT 0102
       CLA *+1
                                 DOUBLE PRECISION
                                                                           INT 0103
       STO *.1
                                                                           INT 0104
       CLA *.1
                                  YS TO TS2
                                                                            INT 0105
       STO *.1
                                                                           INT 0106
                                     END 3F LOOP
       TIX DE2F+0010+1+1
```

LXA DEZF	+0229•1			INT		
LDQ DE2F	+0223		•	INT		
FMP *+1		D3 SUB I		INT		
STO COMM	ON+000			INT	0110	•
CLA *+1		PLANT Y SUB	1	INT		-
STO DEZF	+0267 IN	SFA .		INT	0112	!
CLA *+1		SUBROUTINE		INT	0113	,
STO DE2F	+0268			INT	0114	
LDQ DE2F				INT	0115	•
FMP *,1		D2 SUB 1		INT	0116	5
FAD COMM	ON+000 ·			INT	0117	•
STO COMM				INT	0118	3
LDQ DE2F				INT	0119)
FMP *•1		D1 SUB I		INT	0120)
FAD COMM	ION+000			INT	0121	L
STO COMM				INT	0122	2
LDQ DE2F				INT	0123	3
FMP +.1	. 0220	D SUB I		INT	0124	+
FAD COMM	40N+000			INT	0129	5
STO COMM				INT	0126	5
LDQ *	LO	AD. H		INT	0127	7
FMP COMM	T1	LTA YI UPPER P		INT	012	3
	+0269+2	ADD TO YI		INT	0129	9
\$70 #.1	+020312	STORE IN TS1		INT	0130	0
• • • • • • • • • • • • • • • • • • • •	+0018+1+1	END OF LOOP		INT	013	1
	400184141			INT	013	2
CLA * FAD *	X4	М		INT	013	3
	~ ~	•		INT	013	4
STO #	F+0220.1			INT	013	5
• • • • • • • • • • • • • • • • • • • •	F+0229•1		•	INT	013	6
CLA *+1				INT	013	7
STO *,1		END OF LOOF		INT	013	8
, , , , , , , , , , , , , , , , , , , ,	F+0046+1+1	ALUATE DERIVATIV		INT		
TSX 0.4		ACONIC DENIUNITI		INT	014	0
	F+0229+1			•	014	-
LDQ DE2	+40221	D2 SUB I			014	_
FMP +,1		02 300 1		INT	014	3
STO COM	MON+OOO	YI FROM TS2			014	
CLA *+1	T. 0047	11 PROF 102			014	
STO DE2		DP EXT.	•	INT		
CLA ++1	_	OF EATS			014	
STO DE2					014	
LDQ DE2		D1 SUB1			014	
FMP +.1		01 3091			015	
FAD COM					015	_
STO COM				•	015	
LDQ DE2		D #1100			015	
FMP +.1		D SUBI			019	
	MON+000				01:	
	MON+000				01:	
TDO DES		-			01:	
FMP +,1		Y PRIME SUBI		•	01	
,	MON+000			• • • •	01	
STO COM	MON+000			144	AT:	, 7

		1		
LDQ	#	LOAD H	INT	0160
FMP	COMMON+000	DELTA YI UPPER C		0151
TSX	DE2F+0269+2	ADD TO Y I	INT	0162
STO	*,1			0163
STO	*.1			0164
	DE2F+0051+1+1	END OF LOOP	_	0165
	DE2F+0230			0166
	DE2F+0229+1			0167
CLA				0168
	DE2F+0243			0169
CLA			-	0170
	DE2F+0244		-	0171
-	DE2F+0246+2		-	0172
		END OF LOOP		0172
	DE2F+0078+1+1 DE2F+0085	SWITCH 2		0174
		SWITCH 2		
	DE2F+0234			0175
	DE2F+0230		-	0176
• .	DE2F+0090			0177
•	DE2F+0089	ACADE 4 C	_	0178
	DE2F+0115	DECREASE H SWITCH		0179
	DE2F+0235		-	0180
	DE2F+0230			0181
		INCREASE H SWITCH		0182
	DE2F+0211			0183
	DE2F+0211		-	0184
_	DE2F+0229 • 1			0185
	*,1			0186
	*•1	D2 TO D3		0187
	*•1	·		0188
	**1	D1 T0 D2		0189
	* •1			0190
STO	* • 1	D TO D1		0191
TIX	DE2F+0096 • 1 • 1	END OF LOOP	_	0192
CLA	DE2F+0228		_	0193
ADD	DE2F+0284	ALPHA PLUS ONE		0194
STO	DE2F+0228		-	0195
TSX	0.4	EVALUATE DERIVATIVES		0196
CLA	DE2F+0230			0197
FDP	DE2F+0290	E	INT	0198
STO	COMMON+000		INT	0199
CLA	COMMON+000	GET E IN ACC	INT	0200
LXD	DE2F+0240+1		INT	0201
LXD	DE2F+0241+2		INT	0202
LXD	DE2F+0242+4		INT	0203
TRA	1,4	EXIT	INT	0204
CLA	•		INT	0205
SSP			INT	0206
	DE2F+0238	TEST H WITH HMIN	INT	0207
	DE2F+0121		INT	0208
-	DE2F+0121		INT	0209
	DE2F+0211		INT	0210
LDQ			INT	0211
_		STORE OLD H	INT	0212
	- · -	_		

```
1NT 0213
         FMP DE2F+0239
                                BETA TIMES H
                                                                             INT 0214
         STO *
                                                                             INT 0215
         CLA DE2F+0285
                                TEST ALPHA
                                                                             INT 0216
         CAS DE2F+0228
                                                                             INT 0217
         HTR DE2F+0127
                                                                             INT 0218
         TRA DE2F+0130
                                                                              INT 0219
         TRA DE2F+0144
         LDQ DE2F+0289
                                                                             INT 0220
         FMP DE2F+0233
                                4H
                                                                              INT 0221
                                                                             INT 0222
         CHS
                                X-4H
                                                                              INT 0223
         FAD *
                                                                             INT 0224
         STO *
         LXA DE2F+0229+1
                                                                             INT 0225
                                                                             INT 0226
         CLA * 1
١
                                                                             INT 0227
         STO #+1
                                                                             INT 0228
         CLA * + 1
                                                                             INT 0229
         STO * 1
                                                                             INT 0230
         CLA * 1
                                                                              INT 0231
         sto *.1
                                    END OF LOOP
                                                                              INT 0232
         TIX DE2F+0136+1+1
                                JUMP TO SET ALPHA
                                                                              INT 0233
         TRA DE2F+0161
                                                                              INT 0234
         CLA DE2F+0233
                                                                              INT 0235
         CHS
                                                                              INT 0236
         FAD #
                                X-H
                                                                              INT 0237
         STO #
                                                                              INT 0238
         LXA DE2F+0229+1
                                                                              INT 0239
         CLA * . 1
                                                                              INT 0240
                                    D TO YI PRIME
         STO *.1
                                                                              INT 0241
                                    TS2 TO YI
         CLA *.1
                                                                              INT 0242
         STO *.1
                                                                              INT 0243
         CLA *+1
                                                                              INT 0244
         510 *.1
                                                                              INT 0245
         TIX DE2F+0149+1+1
                                                                              INT 0246
         LXA DE2F+0229+1
                                                                              INT 0247
                                CONVERT DP YI
         LDQ DE2F+0291
                                                                              INT 0248
                                    TO YI. QI
         FMP # . 1
                                                                              INT 0249
         STO * 1
                                     END OF LOOP
                                                                              INT 0250
         TIX DE2F+0157+1+1
                                                                              INT 0251
         STZ DE2F+0228
                                                                              INT 0252
         STZ DE2F+0231
                                                                              INT 0253
         TRA DE2F+0107
                                                                              INT 0254
         CLA *
                                                                              INT 0255
         SSP
                                TEST H WITH HMAX
                                                                              INT 0256
         CAS DE2F+0237
                                                                              INT 0257
                                GO TO SHIFT DS
         TRA DE2F+0095
                                                                              INT 0258
         TRA DE2F+0213
                                                                              INT 0259
         TRA DE2F+0213
                                                                              INT 0260
         CLA #
                                H DIVIDED BY BETA
                                                                              INT 0261
         FDP DE2F+0239
                                                                              INT 0262
         STO #
                                EVALUATE DERIVATIVES
                                                                              INT 0263
         TSX 0.4
         TRA DE2F+0156
                                                                              INT 0264
                                                                              tht 0265
         LXA DE2F+0229,1
```

ŧ

```
CLA *,1
                                                                     INT 0266
                                                                      INT 0267
FDP DE2F+0291
                      QI DIVIDED BY -3
                                                                     INT 0268
CLA *,1
                                                                     INT 0269
STQ COMMON+000
                                                                     INT 0270
FAD COMMON+000
                                                                     INT 0271
STO *.1
STQ * , 1
                                                                     INT 0272
TIX DE2F+0176 . 1 . 1
                                                                     INT 0273
TRA DE2F+0009
                                                                     INT 0274
                           DUMMY ORDER
                                                                     INT 0275
STO * 1
                                                                     INT 0276
LDQ DE2F+0229
                                                                     INT 0277
MPY DE2F+0228
                                                                      INT 0278
STQ COMMON+000
CLA COMMON+000
                                                                      INT 0279
ADD DE2F+0185
                                                                      INT 0280
                                                                      INT 0281
STO DE2F+0194
LXA DE2F+0229+1
                                                                      INT 0282
                                                                      INT 0283
CLA *,1
                       STORE DERIVATIVES
                                                                      INT 0284
STO 0
TIX DE2F+0193 • 1 • 1
                                                                      INT 0285
CLA DE2F+0228
                                                                      INT 0286
                                                                      INT 0287
TNZ DE2F+0204
                                                                      INT 0288
LXA DE2F+0229.1
                                                                      INT 0289
CLA *+1
                                                                      INT 0290
STO * + 1
CLA * . 1
                                                                      INT 0291
STO * .1
                                                                      INT 0292
TIX DE2F+0199+1+1
                                                                      INT 0293
CLA DE2F+0228
                                                                      INT 0294
                                                                      INT 0295
                       ALPHA PLUS ONE
ADD DE2F+0284
                                                                      INT 0296
STO DE2F+0228
                                                                      INT 0297
                         RUNGA-KUTTA ENTRY
TSX DE2F+0454,4
                                                                      INT 0298
STZ COMMON+000
                                                                      INT 0299
                       ZERO TO ACC
CLA COMMON+000
                                                                      INT 0300
TRA DE2F+0111
                                                                      INT 0301
STZ DE2F+0231
                                                                      INT 0302
TRA DE2F+0095
                                                                      INT 0303
CLA DE2F+0231
                                                                      INT 0304
                       R+1
ADD DE2F+0284
                                                                      INT 0305
STO DE2F+0231
                                                                      INT 0306
CAS DE2F+0292
                                                                      INT 0307
HTR DE2F+0217
                                                                      INT 0308
TRA DE2F+0170
                                                                      INT 0309
TRA DE2F+0095
                                                                      INT 0310
DEC 2.291666667
                                                                      INT 0311
DEC -2.458333333
                                                                      INT 0312
DEC 1.541666667
                                                                      INT 0313
DEC -3.75E-1
                                                                      INT 0314
DEC 3.75E-1
                                                                      INT 0315
DEC 7.916666667E-1
                                                                      INT 0316
DEC -2.083333333E-1
                                                                      INT 0317
DEC 4.166666667E-2
                                                                      INT 0318
BSS 4
```

```
BSS 8
                                                                     INT 0319
                                                                     INT 0320
855 3
                       HI UPPER C
                                                                     INT 0321
HTR
                       YI UPPER P
                                                                    INT 0322
HTR
HTR
                       DIVISOR
                                                                    INT 0323
CLA DE2F+0243
                       ENTRY
                                                                     INT 0324
SSP
                                                                    INT 0325
CAS DE2F+0236
                       TEST FOR DIVISOR
                                                                    INT 0326
TRA DE2F+0254
                                                                     INT 0327
TRA DE2F+0254
                                                                     INT 0328
CLA DEZF+0236
                                                                     INT 0329
STO DE2F+0245
                                                                     INT 0330
TRA DE2F+0255
                                                                     INT 0331
STO DE2F+0245
                                                                    INT 0332
                                                                    INT 0333
CLA DE2F+0244
FSB DE2F+0243
                                                                    INT 0334
SSP
                                                                    INT 0335
FDP DE2F+0245
                                                                    INT 0336
STQ COMMON+000
                                                                    INT 0337
CLA DE2F+0230
                                                                    INT 0338
CAS COMMON+000
                                                                    INT 0339
TRA 1.2
                                                                    INT 0340
                                                                   · INT 0341
TRA 1.2
                                                                    INT 0342
CLA COMMON+000
                                                                    INT 0343
STO DE2F+0230
TRA 1.2
                                                                    INT 0344
                                                                    INT 0345
HTR
                       A1
                                                                    INT 0346
HTR
                       A2
                       ENTRY.
                                                                    INT 0347
INT 0348
UFA DE2F+0267
STO DE2F+0267
                                                                     INT 0349
                       SPECIAL
STQ COMMON+000
CLA COMMON+000
                       FLOATING
                                                                     INT 0350
                                                                     INT 0351
                       ADDITION
UFA DE2F+0268
                                                                     INT 0352
FAD DE2F+0267
                       SUBROUT INE
                                                                     INT 0353
TRA 1.2
                                                                     INT 0354
TRA DE2F+0005
                       SWITCH 1. A LEG
                       SWITCH 1. B LEG
                                                                     INT 0355
TRA DE2F+0207
                                                                     INT 0356
                       SWITCH 2. A LEG
TRA DE2F+0085
                       SWITCH 2. B LEG
                                                                     INT 0357
TRA DE2F+0095
                       DECREASE H SWITCH. TEST LEG
                                                                     INT 0358
TRA DE2F+0115
                       DECREASE H SWITCH. NO TEST LEG
                                                                     INT 0359
TRA DE2F+0121
                       INCREASE H SWITCH. TEST LEG
                                                                     INT 0360
TRA DE2F+0164
                       INCREASE H SWITCH. NO TEST LEG
                                                                     INT 0361
TRA DE2F+0213
                                                                     INT 0362
DEC 1
DEC 3
                                                                     INT 0363
                                                                     INT 0364
DEC 1.
DEC 5E-1
                       ONE HALF
                                                                     INT 0365
DEC 100.
                                                                     INT 0366
                                                                     INT 0367
DEC 4.
DEC 14.
                                                                     INT 0368
                                                                     INT 0369
DEC -3.
                       SPECIAL TEST NO. FOR R
                                                                     INT 0370
DEC 3
                                                                     INT 0371
SXD DE2F+0241.2
```

CYD	DE2F+0242+4			0372
	DE2F+0276		INT	0373
	DE2F+0004	SET	INT	0374
	DE2F+0278	SWITCHES	INT	0375
	DE2F+0084	10	INT	0376
	DE2F+0280	NORMAL	INT	0377
		POSITIONS	INT	0378
	DE2F+0089	F03111(M3		0379
	DE2F+0282			0380
-	DE2F+0092		-	0381
CLA			•	0382
PAX		ARI RET ARTIAN		0383
	DE2F+0308+2	SELECT OPTION		0384
	DE2F+0346	OPTION 2		0385
	DE2F+0343	OPTION 1	•	0386
LDQ		OPTION 0		0387
	DE2F+0290	14E (UPPER)	_	0388
	DE2F+0234			0389
CLA				0390
TNZ	DE2F+0314	TEST BETA	•	0391
	DE2F+0287	•		
STO	DE2F+0239	STORE BETA		0392
CLA	4,4		•	0393
TNZ	DE2F+0318		•	0394
CLA	DE2F+0288		-	0395
STO	DE2F+0235	STORE M	•	0396
-	DE2F+0234		-	0397
	DE2F+0235			0398
	DE2F+0235	STORE 14E (LOWER)	-	0399
• -	5,4		_	0400
	DE2F+0325	TEST A	•	0401
–	DE2F+0286		•	0402
•	DE2F+0236	STORE A		0403
	6,4		-	0404
	DE2F+0331	TEST.H MAX	INT	0405
	DE2F+0283		INT	0406
	DE2F+0092		INT	0407
• • •			INT	0408
	DE2F+0335 DE2F+0237		INT	0409
• • •			INT	0410
	DE2F+0239		INT	0411
	DE2F+0237	STORE BETA (H MAX)	INT	0412
	DE2F+0237	STOKE DEIN IN MANT	INT	0413
	7,4	TEST H MIN	INT	0414
	DE2F+0340	IESI U MIN	INT	0415
	DE2F+0281		-	0416
	DE 2F+0089			0417
	DE2F+0348			0418
	DE2F+0239		-	0419
	DE2F+0238			0420
	DE2F+0348			0421
	DE2F+0277		-	0422
	DE2F+0004			0423
	DE2F+0348		_	0424
CLA	DE2F+0279		A 14 (. • •

			INT 0425
	5TO DE2F+0084		INT 0426
	CLA 1+4		INT 0427
	STO DE2F+0232		INT 0428
	STO DE2F+0352	ATTIO BY CURRALITINE	INT 0429
	TSX DE2F+0453+4	SETUP RK SUBROUTINE	INT 0430
	PZE	PAR METER WORD	INT 0431
,	STZ DE2F+0228	SET ALPHA TO ZERO	INT 0432
•	STZ DE2F+0231	R O	INT 0433
	CLA DE2F+0232		INT 0434
	STA DE2F+0357		INT 0435
i	CLA 0	CTARP N	INT 0436
•	STO DE2F+0229	STORE N	INT 0437
	CLA DE2F+0232		INT 0438
	ARS 18	A.C. 115	INT 0439
1	STA DE2F+0049	SETUP	INT 0440
	STA DE2F+0106	DERIVATIVE	INT 0441
	STA DE2F+0173	EVALUATIONS	INT 0442
	CLA DE2F+0232		INT 0443
!	ADD DE2F+0284	T=1	INT 0444
•	STA DE2F+0042		INT 0445
	STA DE2F+0044	•	INT 0446
1	STA DE2F+0133	·	INT 0447
ł	STA DE2F+0134		INT 0448
•	STA DE2F+0146		INT 0449
	STA DE2F+0147		. INT 0450
1	ADD DE2F+0284	T=2	INT 0450
	STA DE2F+0037		INT 0452
•	STA DE2F+0043		INT 0452
	STA DE2F+0070		INT 0454
1	STA DE2F+0115		1NT 0455
	STA DE2F+0121		INT 0456
_	STA DE2F+0124		INT 0457
_	STA DE2F+0164		INT 0458
	STA DE2F+0170		INT 0459
•	STA DE2F+0172	= _	INT 0460
	ADD DE2F+0284	T=3 EQUALS D	INT 0461
_	ADD DE2F+0229	D=N	INT 0462
	STA DE2F+0010		INT 0463
ı	STA DE2F+0021		INT 0464
	STA DE2F+0047		INT 0465
_	STA DE2F+0073		INT 0466
	STA DE2F+0078		INT 0467
	STA DE2F+0139		INT 0468
	STA DE2F+0152		INT 0469
•	STA DE2F+0178		INT 0470
	STA DE2F+0181		INT 0471
	STA DE2F+0199		INT 0472
	ADD DE2F+0229	D+2N	INT 0473
	STA DE2F+0012		INT 0474
	STA DE2F+0067		INT 0475
•	STA DE2F+0137		INT 0476
	STA DE2F+0150		INT 0477
6	STA DE2F+0193		THÍ ÔML
	-		

ADD DE2F+0229	D+3N	INT	0478
STA DE2F+0014		INT	0479
STA DE2F+0023		INT	0480
STA DE2F+0056			0481
STA DE2F+0074			0482
STA DE2F+0141		- ·	
			0483
STA DE2F+0154		-	0484
STA DE2F+0158		INT	0485
STA DE2F+0159		INT	0486
STA DE2F+0176		INT	0487
STA DE2F+0182		- ' ' '	0488
STA DE2F+0201			0489
ADD DE2F+0229	D+4N		0490
	DTAN	=	
STA DE2F+0040		- :	0491
STA DEZF+0046			0492
STA DE2F+0080		-	0493
ADD DE2F+0229	D+5N	INT	0494
STA DE2F+0011		INT	0495
STA DE2F+0054		INT	0496
STA DE2F+0151			0497
ADD DE2F+0229	D+6N		0498
STA DE2F+0015	D 1011		0499
STA DE2F+0153			0500
ADD DE2F+0229	D+7N	=	0501
STA DE2F+0138			0502
STA DE2F+0200		=	0503
ADD DE2F+0229	D+8N	, INT	0504
STA DE2F+0140		INT	0505
STA DE2F+0202		INT	0506
ADD DE2F+0229	D+9N	INT	0507
STA DE2F+0019	• • • • •	INT	0508
STA DE2F+0097		- `	0509
STA DE2F+0136		-	0510
			0511
STA DE2F+0185		-	
ADD DE2F+0229	D+10N		0512
STA DE2F+0026		-	0513
STA DE2F+0052		•	0514
STA DE2F+0096			0515
STA DE2F+0099		INT	0516
ADD DE2F+0229	D+11N	INT	0517
STA DE2F+0030		INT	0518
STA DE2F+0059		INT	0519
STA DE2F+0098		INT	0520
STA DE2F+0101		INT	0521
ADD DE2F+0229	D+12N		0522
STA DE2F+0013	D. 154		0523
		_	0524
STA DE2F+0034			
STA DE2F+0063		INT	-
STA DE2F+0100		•	0526
STA DE2F+0149		INT	
LXD DE2F+0241+2		INT	0528
LXD DE2F+0242+4		INT	0529
TRA 9.4	EXIT	INT	0530

TRA DE2F+0562	TO SETUP REGION	INT 0531 INT 0532
SXD DE2F+0553+1	SAVE INDEX REGISTERS	INT 0532
SXD DE2F+0554+2	FROM	INT 0534
SXD DE2F+0555+4	MAIN PROGRAM	INT 0535
CLA		INT 0536
FDP DE2F+0520	CALCULATE	INT 0537
STQ DE2F+0525	H DIVIDED BY 2	1NT 0538
STQ DE2F+0541		INT 0539
LXA DE2F+0551+2	SET PARAMETER INDEX	INT 0540
LXA DE2F+0556+1	SET N INDEX.	INT 0541
LDQ 1		INT 0542
FMP DE2F+0551+2		INT 0543
STO •1		INT 0544
LDQ	CALCULATE NEW	INT 0545
FMP +1	VALUE OF P	INT 0546
FAD +1		INT 0547
STO •1		INT 0548
FDP DE2F+0552+2		INT 0549
STO COMMON+000		INT 0550
LDQ •1	CALCULATE NEW	INT 0551
FMP DE2F+0553+2	VALUE OF R	INT 0552
FAD COMMON+000		INT 0553
STO COMMON+000		INT 0554
TZE DE2F+0492		INT 0555
ARS 27		INT 0556
STO COMMON+001	TEST VALUES	INT 0557
CLA +1		INT 0558
TZE DE2F+0492	TO	INT 0559
SSP	DETERMINE	INT 0560
ARS 27	DETERMINE	INT 0561
SBM COMMON+001	IF SHIFTING	INT 0562
TM1 DE2F+0492	It Suit time	INT 0563
TZE DE2F+0492	IS NECESSARY	INT 0564
STA DE2F+0489		INT 0565
STA DE2F+0490 CLA COMMON+000		INT 0566
		INT 0567
ARS ALS		INT 0568 INT 0569
STO COMMON+000		• • • • • • • • • • • • • • • • • • • •
CLA +1	CALCULATE NEW	INT 0570
FAD COMMON+000	VALUE OF Z	INT 0571 INT 0572
STO 11		INT 0573
TRA DE2F+0558+2		INT 0574
LDQ +1		INT 0575
FMP DE2F+0556+2	CALCULATE	INT 0576
STO +1		INT 0577
LDQ +1	NEW VALUE	INT 0578
FMP DE2F+0555+2		INT 0579
FAD +1	A. A.	INT OSSO
STO +1	OF 9	INT 0581
LDQ COMMON+000		INT 0582
FMP DE2F+0554+2		INT 0583
FAD +1		

```
INT 0584
STO .1
TIX DE2F+0463.1.1
                           TEST N
                                                                    INT 0585
                                                                    INT 0586
CLA
                           INCREASE X
                                                                    INT 0587
FAD DE2F+0557+2
                                                                    INT 0588
STO
SXD DE2F+0557+2
                                                                    INT 0589
                       FIND DERIVITIVES
                                                                    INT 0590
TSX +4
                                                                    INT 0591
LXD DE2F+0557+2
                           TEST PASS NO.
                                                                    INT 0592
TIX DE2F+0462+2+8
                           RESTORE
                                                                    INT 0593
LXD DE2F+0553.1
                                                                    INT 0594
LXD DE2F+0554.2
                          INDEX
                                                                    INT 0595
LXD DE2F+0555.4
                          REGISTERS
                                                                    INT 0596
TRA 1,4
                                                                    INT 0597
DEC 0
DEC 2.
                                                                    INT 0598
DEC -1.
                                                                    INT 0599
                                                                    INT 0600
DEC 3.
                                                                    INT 0601
DEC -.5
                                                                    INT 0602
DEC 1.
                                                                    INT 0603
DEC
                                                                    INT 0604
TRA DE2F+0496
                                                                    INT 0605
DEC 0
DEC 2.
                                                                    INT 0606
                                                                    INT 0607
DEC -.5
                                                                    INT 0608
DEC -1.
                                                                    INT 0609
DEC -5
                                                                    INT 0610
DEC -3.
                                                                    INT 0611
DEC 0
                                                                    INT 0612
TRA DE2F+0558
                                                                    INT 0613
DEC -.5
                                                                    INT 0614
DEC 1.
                                                                    INT 0615
DEC 0
                                                                    INT 0616
DEC -1.
                                                                    INT 0617
DEC 0
                                                                    INT 0618
DEC 1.
                                                                    INT 0619
DEC
                                                                    INT 0620
TRA DE2F+0496
                                                                    INT 0621
DEC 2.
                                                                    INT 0622
DEC 6.
                                                                    INT 0623
DEC 1.
                                                                    INT 0624
DEC 3.
                                                                    INT 0625
DEC --5
                                                                    INT 0626
DEC -3.
                                                                    INT 0627
DEC 0
                                                                    INT 0628
TRA DE2F+0496
                                                                    INT 0629
PZE 32 ..
                                                                    INT 0630
PZE 1 ..
                                                                    INT 0631
BSS 5
                                                                    INT 0632
CLA .1
                                                                    INT 0633
FDP DE2F+0556+2
                                                                    INT 0634
STQ .1
                                                                    INT 0635
TRA DE2F+0499
                           SAVE INDEX REGISTERS
                                                                    INT 0636
SXD DE2F+0553.1
```

```
INT 0637
                               FROM MAIN PROGRAM
      SXD DE2F+0555.4
                                                                           INT 0638
      CLA 1,4
                                                                           INT 0639
      STA DE2F+0553
                                                                           INT 0640
      STA DE2F+0570
                                                                           INT 0641
      ARS 18
                                                                           INT 0642
                             SET ADDRESS OF
      STA DE2F+0512
                             DERIVITIVE ROUTINE
                                                                           INT 0643
      STA DE2F+0603
                                                                           INT 0644
                             STORE VALUE
      CLA
                                                                           INT 0645
                             OF N
      STO DE2F+0556
                                                                           INT 0646
      CLA DE2F+0553
                                                                           INT 0647
      ADD DE2F+0552
                                                                           INT 0648
                             STORE ADDRESS
      STA DE2F+0508
                                                                           INT 0649
                             OF X
      STA DE2F+0510
                                                                           INT 0650
      ADD DE2F+0552
                                                                           INT 0651
                             STORE ADDRESS
      STA DE2F+0466
                                                                           INT 0652
                             OF H
      STA DE2F+0457
                                                                           INT 0653
      ADD DE2F+0552
                                                                           INT 0654
      ADD DE2F+0556
                                                                           INT 0655
      STA DE2F+0479
                              STORE ADDRESS
                                                                           INT 0656
                             OF Y
      STA DE2F+0492
                                                                           INT 0657
      STA DE2F+0494
                                                                           INT 0658
                              STORE ADDRESS
      ADD DE2F+0556
                                                                           INT 0659
      STA DE2F+0467
                              OF DERIVITIVE
                                                                           INT 0660
      ADD DE2F+0556
                                                                           INT 0661
      STA DE2F+0605
                                                                           INT 0662
                              STORE
      STA DE2F+0560
                                                                           INT 0663
      STA DE2F+0558
                                                                           INT 0664
                              ADDRESS
      STA DE2F+0472
                                                                           INT 0665
      STA DE2F+0496
                                                                           INT 0666
                              OF
      STA DE2F+0498
                                                                           INT 0667
      STA DE2F+0501
                                                                           INT 0668
                              0
      STA DE2F+0502
                                                                            INT 0669
       STA DE2F+0505
                                                                            1NT 0670
       STA DE2F+0506
                                                                            INT .0671
       ADD DE2F+0556
                                                                            INT 0672
       STA DE2F+0463
                                                                            INT 0673
                              STORE ADDRESS
       STA DE2F+0465
                                                                            INT 0674
       STA DE2F+0468
                                                                            INT 0675
                              OF P
       STA DE2F+0469
                                                                            INT 0676
       STA DE2F+0499
                              FIND INITIAL DERIVITIVES
                                                                            1NT 0677
       TSX +4
                                                                            INT 0678
       LXA DE2F+0556+1
                                                                            INT 0679
                              SET ORGINAL O
       STZ +1
                                                                            INT 0680
                                  TO ZERO
       TIX DE2F+0605+1+1
                                                                            1NT 0681
                                   RESTORE INDEX
       LXD ~E2F+0553+1
                                                                            INT 0682
                                 REGISTERS
       LXD DE2F+0555+4
                                                                            INT 0683
       TRA 2.4
                                                                            INT 0684
COMMON BSS 2
                                                                            INT 0685
       END
```

H. SUBROUTINE RINDEX

This subroutine permits the calculation of the refractive index, its spatial derivatives, and the absorption coefficient, all as functions of the local atmosphere and its state of ionization. This subroutine also permits the output of "debugging data" which is called the R vector whose components are defined in Table 3. See subroutine OUTPUT for additional information.

$$R(2) = PXR = \frac{\partial X}{\partial r}$$

$$R(3) = PXTHET = \frac{\partial X}{\partial \theta}$$

$$R(4) = PXPHI = \frac{\partial X}{\partial \phi}$$

$$R(5) = Y$$

$$R(6) = YR = Y_r$$

$$R(7) = YTHETA = Y_{\theta}$$

$$R(8) = YPHI = Y_{\phi}$$

$$R(9) = PYR = \frac{\partial Y}{\partial r}$$

$$R(10) = PYTHET = \frac{\partial Y}{\partial \theta}$$

$$R(11) = PYPHI = \frac{\partial Y}{\partial \phi}$$

$$R(12) = Z$$

$$R(13) = PZR = \frac{\partial Z}{\partial r}$$

$$R(14) = PZTHET = \frac{\partial Z}{\partial \theta}$$

$$R(15) = PZPHI = \frac{\partial Z}{\partial \phi}$$

$$R(16) = COSPSI = \cos \psi$$

$$R(17) = SINPSI = \sin \psi$$

$$R(18) = YSI = Y \sin \psi$$

$$R(19) = YCI = Y \cos \psi$$

R(1) = X

Table 3. Nomenclature Describing the R Vector.
(Page 1 of 4)

$$R(21) = TE2 = (YSI)^{4} + 4TE1(YCI)^{2}$$
 $R(22) = TE3 = 8(YCI)^{2} Z(1 - X)$
 $R(23) = R2S = R_{S}^{2}$
 $R(24) = R1S = R_{S}$
 $R(25) = THET2S = 2\theta_{S}$
 $R(26) = THET1s = \theta_{S}$
 $R(27) = S1 = S_{1}$
 $R(28) = S2 = S_{2}$
 $R(29) = D1 = d_{1}$
 $R(30) = D2 = d_{2}$
 $R(31) = TE4 = d_{1}^{2} + d_{2}^{2}$
 $R(32) = TE5 = 2X[Zd_{1} + (1 - X)d_{2}]/TE4$
 $R(33) = TE6 = 1 - [2X(1 - X)d_{1} - Zd_{2}]/TE4$
 $R(34) = R2M = R_{M}^{2}$
 $R(35) = R1M = R_{M}$
 $R(36) = THET2M = 2\theta_{M}$
 $R(37) = THET1M = \theta_{M}$
 $R(38) = AM1 = M_{1}$
 $R(39) = AM2 = M_{2}$
 $R(40) = TE7 = M_{1}d_{1} - M_{2}d_{2}$

Table 3. Nomenclature Describing the R Vector. (Page 2 of 4)

R(41) = TE8 =
$$M_1d_2 + M_2d_1$$

R(42) = AO = a_0
R(43) = BO = b_0
R(44) = TE9 = $S_1^2 + S_2^2$
R(45) = A4 = a_4
R(46) = B4 = b_4
R(47) = A5 = a_5
R(48) = B5 = b_5
R(49) = PNPX = $\partial \mu / \partial X$
R(50) = TE10 = $(\sin \psi)^2 (YSI)^2 + 2TE1 \cos^2 \psi$
R(51) = TE11 = $4Z(1 - X)\cos^2 \psi$
R(52) = A6 = a_6
R(53) = B6 = b_6
R(54) = PNPY = $\partial \mu / \partial Y$
R(55) = A7 = a_7
R(56) = B7 = b_7
R(57) = PNPZ = $\partial \mu / \partial Z$
R(58) = A8 = a_8
R(59) = B8 = b_8
R(60) = TE13 = $1/(2\cos^2 \theta + \frac{1}{2}\sin^2 \theta)$

Table 3. Nomenclature Describing the R Vector. (Page 3 of 4)

R(61) = A1 = a₁
R(62) = B1 = b₁
R(63) = A2 = a₂
R(64) = B2 = b₂
R(65) = TE12 =
$$(W_1)^2$$
 YSI
R(66) = PPSIPT = $\partial \psi / \partial \theta$
R(67) = PPSIPR = $\partial \psi / \partial \tau$
R(68) = PPSIPP = $\partial \psi / \partial \phi$
R(69) = TE14 = $\sqrt{\sigma_r^2 + \sigma_\theta^2 + \sigma_\phi^2}$

Table 3. Nomenclature Describing the R Vector. (Page 4 of 4)

```
##ILV 080*0X+0*40*40*40*****
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    070*0X-0*10+ 10*20*X*0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ;;
•
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         = THETIS
RIS+ COSF CTHETIS>+SIGN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + C1.0-X>+520/TE9
| TEH+05
                                                                                                                                                                                 C275 = 51
2 = R15* SIMFCTHET152*SI3N
C28) = 52
1 = 2.0*(1.0-2-2*2) - TEE *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .0*X*(TEC-Z*D2)/TE4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4 14 (0:41-10:41:4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           · 1987年

1987年 - 1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年

1987年
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          + 05*TEG/TE9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .,
```

119

 $\|\cdot\|$

```
+ PNPC*PVR + FNFC#PZR + GC100*PPSCBR
ET + PNPC*PFTVET + PNPC#PZTAET + GC100*FFSIPPT
I + FNPC*FVPVR + PNPC#PZHAI + GC100*FFSIPP
                                                                                                                                                                                                                                                                                                                                 TE OUTPUT TOPE 6,128, CRCID-1=1,690
                                                                                                                                                                                                                                                                                                                                                                                 C102+X3/TE12
SHYTHETE - VC92+YR
                                                                                                                                                                                                                                                                                                                                                      70>-1.0>130-131,(31
= BO*CTAC+TAD>
                                                                        * THETR
                                                                                                                                                                                                                    TE13
                                                                                                                                                                                                             M(6)= 0.0
                          TE12 = R(65) =
             600
                                                                                                                                                     0-40400000
6-40400000
                                                                                                                                                                                                                              ò
                                                                                                                                                                                                                                                                              8000
                                                                                                                                                                                                                                                                                                       222222
                                                                                                                                                                                                                                                                                                                                                     28
                                                                                                                                                                                                                                                                                                                                                                        8
            4
                         ŝ
                                                                                    117
                                                                                                               10
10
                                                           4
```

### TOP-AGE LCGAT 1046 748 ARRIAGES AFFERATING TH COMMON STATEWERITS Dec	in in	007 75674 RECO	FORMUL FORMUL	11	, , ,				8			. ,					-	- (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	•	3	• • • • • • • • • • • • • • • • • • • •		20000 00000 00000	STOREGE LOCATION	0001 00018	ORAGE LOCATIONS F	2007	••	4 64	2115		2076	207
131	ROUT MERKA	080 32551	12 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10	7. L		1.3 (1.4)	i i	• ; • ii.	;;; 	in to his si		•	1. T. E.		11 13 10 10		# # • i	1 (4) 14 (7) 14 (8) 14 (1)	j - lai	080		立の対象の	0.00 0.00 0.00 0.00 0.00	8 138 VAR	H	· 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	DEC 1120 (61 C		130	1000	967 900	10-0
NEW STATEMENTS NEW	80 6 80 70 70 70	5 ∮	Hillering T	li.	000		gri Prod mr Pr	# 1 # # 14# # 14#		. Į .(n • - ,)	65 48 28	i - •	il	,		πι (β (Β) (Β) (Β) (Β) (Β)	i di e i di e i di e	SEUTON ACHA	;-;; };) - 0	明明を作用 上の	10.0 10.0 10.0 10.0	SERVICE CAL	s 1	BACK TON S	. S	m y	9 ***	+	a. Po	10	nn) Fa
### EARING IN COMMON STATEMENTS	A81.≅5	C. Id	,):: UN	,															? >- 10			TRANSF	Di Di	77	 	 V	ω	·-		٠-		• ••	
COMMON STATEMENTS DEC	FERRING	100 P	NAL FORMUL	•	100) () (400	4 M	000	(,)	55	50	Š	in c	9 69	55	E.			EK VECT	120 4 90000 E	IKENSION	(g (1)	MENGION.	CC CS 31	4 62 a	55	(3) X			111
### ##################################	COMMON		P NUMBER	u		۱۰. <u>:</u>	4 (1)	8	16) 6 6) 6	9) 19 (4) 10	o in Original	#1 i	ω≀ ተ⊭	5 (14 3 (2)	(-)	(4 + 1 - 6 7	- 19 - 19 - 19	NA HA					MAG: CHIRO	EQUIVALE		SUIVALEMO	no ma	(A) (II)	er G	- aru	まなど ひこう	- (3	E !
### ##################################	HTEME	(3) (i) (a) (i)	ş.	i.	w						0 1	10	(i) (i) (ii) (ii) (ii) (ii) (ii) (ii) ((ii)	1 - 1	ا ما	·	ផ្លូវ						91 .11		ir.	ω - , , , , , ld + , ,	N 60	10	a (ο μ Το (2) Ο (2)	100	1
		128	Tale at	0	6.4		1.00	1.4	м.	0.0		***	m		۴-		きゅつ						888	SEE SE	13	10 10 10	001 013	0 0 0 0	1 64	1:2			
					р	•••••	1 1	. 1	:: :	.; d	1 *** 1 ***	1	1 K	- 103 4 10	**; }	h ())	1 15	127					T T			iu	(CE)	e je Austr	ā	i i i			tig s s== 1 td.

.

1

							R/	M	6	17	MP	-3	2		
1067	1062	1057	1052	1047	TED 1942 02022	1037	1032	1927		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3		1008 01760		CETH) CHIES
	1063	1058	1053	1048	TEC 1043 02023	1038	1033		1023	1	N SOURCE PROGRAM		35 999 01747		NIS
	1064	1059	1054	1049	TEB 1044 02024	1039	10.34	1029	1024		SYMBOLS NOT APPERRING IN		DEC 001	A THE TOWN SANITHOOD	SOS COLUMN DE CO
•	5	1060			1000	40	1 (a) 1 (b) 1 (c)	0.01	10000 MAO 110	1020	800 9701 400 BROKEL B		1010 011		no page
•	1 · · · · · · · · · · · · · · · · · · ·	٠	,		, 13 1 '1		. 1111								; ; ; ;

DA	4 4	17/	AD	-32
-			W P	

				Ì				9	8		17	Ì	4													•														1			
																						4																				4	
85	43A 30+3	1	Ŧ,	J N		32+1		1	12+1	11	E	TE!	- LU	155	TEE	KCI	124	TE1	32+4		E .	100	TEE		127	R-20	×	4	1)+1	STO TEB	2		TEA	1E3	R-21	TE3	<u>-</u>	IEZ	<u> </u>	R45	R45	SORT.	P25
	- U	:	E S		. ST0							5			l	. !		,		XCP	4	607	OH H		9	ST0	528	ols S		570		X					STO	100	7 G	510	CLA	855 75X	STS.
1904	410		42A	I CI		440						45A	460	-		47A		480			-				498	9					218			528		538					34A		
	00161	00163	00164	00165	00167	00170	00171	71100	00174	00175	00176	00177	00200	00202	00203	00204	00205	00202	00210	0021	00212	00214	00215	00216	00220	00221	00223	00224	00225	00227	00230	00231	00233	00235	00236	00237	00241	90242	00243	00245	00246	7400	2000
		•	X PZTHET		R-11	A PZR	0 R-12	e Pather	0 K-13			0 11-65	٠,٠	+9-P 0	0 4-63					0 13+2			20 V-6	Э (FRO 15+3		A COSPSI	0 P-15	LDG COSPSI	CHS	E90_32+1	55 5x SDRT, 4								•		STO R-18	2 81
BSS	15X	46	15	(S)	15	613	ST	3	ה כ	510	7	510	ਰ <u>।</u>	S 20	15	2	E	510	ü	es S	54	Œ V					!			5	E	10	S								_		
238	C+2 07000	00072	52,000	00074	92000	00077 268	00100	00191_27R	00102	1	00105_29A		ACE_ 50100	00110		00113 328	00114	21.5	901.6	00120	00121	00122	00124	00125	00126	00130	00131		00134 34A	00136	00137	34100	100	A22_358	00143	:	4000		00151 38A	00152	00154 396	00155	00156
IELECTX	IMAGY	JCOLFRZ	IOATON	1005	חופו	1 CSTHO	1(F1L)			1 D T MOSY	5.1	\$+1,2	(40	e e		F. SCTX. 4		PX8	PXTHET	XXXX	œ	PXR	K-1 PXTMET	2-2	IHAXA	N-46	Star	4. v9an	>	VX			I RANG	7				• 5		e!		7-	Part
BCD	8						2	HIE	E :	H		Š	- 1			7 7	75	15X	18	X	210	3		STO	ชาว	35			ğ	ă Z	3	ž.	Ä	3	25	E	3		ES	9	S S	E	3
FLECTX	MAGV	COLF82.	OP T GO	500		STS.								3	۶	Į,		•		8		100	919		128	130		-						16A		-1/4-	9	9		208		•	22
0000		00002			90000	7000	000	90012	0013	1000	0000	00017	0000	00021	00022	.5.	00024	99925	00026	00027	00031	00032	00033	00035	20036	~0000 0000	14600	24000	900	2000 2100 2100 2100 2100 2100 2100 2100	0000	00047	2000	90052	00051	2000 2000 2000 2000	75000	2000	- - - - - - - - - - - - - - - - - - -	38	ğ	***	9000

				* * * * * * * * * * * * * * * * * * * *								: : : : : : : : :											1										, 6 5 6 6 7 7 1 1 1					:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
		LDG TES	FEP 161	LDG TE6			SID RAM	BSS ***	TSX SaRT, 4	STO RZM	CLA K2M STO R-33	CLA RZM		15X 5681.4		BSS TSK DATON:4	TSX TE6	TSX TES					CLS RIM		LUG 33+6			STO R-34			•	CLA THETIM BSS		510 12+1	FEP 1>+1	STO AMI	CLA AMI	510 R-67	BSS	TSX SIN, 4	570 1>+1	LUM KIR	STO ANZ		
79A		80A				00440	010	I O		l	82H	00447 83A		00450	6,5	# 0 0 0 0				86A	1020	904	00462 87R		00464 88H		00467 89A		90 H	918		92A	• • • • • • • • • • • • • • • • • • •	22400			00505 938	0.40	•				00511	95A	
FSB TEE	FAD S1	ST0 01	CLA DI	CLA X	F58 33+7	ST0 1>+1	LUM 37+7	7 25 25 25 25 25 25 25 25 25 25 25 25 25		F.P.O. 52	ST0 02 CLB 02	ST0 R-29	LDQ 02	FEP D2					CLA TE4		CLA 35+1	A BCT	FIRE D2	ST0 13+2	7 60 5		1	×			STO TES		CLA 33+1				7 00 7			i	× 201		FIG 154		
00237	00340		00342 70A	00344 718		94200	74500	00331	00352	00253	00000 00000 000000	•	D0257 73A		00361	00362	00.364		00366 74A	- 1	00570 759	00377	00273	00374	00275	00277	00400	00401	20000	00400	•	60406 76A	00410 778	11400	00413		00415 788	00416	00420	00421	00422	00923	00424	00426	F 47 00
CLA R25	STO R-22	CLA R25	8 55	STO RIS	CLS TE3	\$70 1>+1	100 00 00 00 00 00 00 00 00 00 00 00 00			STO THET25	CLA PI	609	TPL 61A	CLS R15	STO RIS	35.46 71673	STO THETIS	RIS	•			CTR 188113	CLA THETIS	•	٧ŀ		FIRE RIS			CLA SI		CLA THETIS		ST0 12+1		i		ST0 S2		L00 Z		- 1	× 6	ST0 1>+1	1
00251 55A	00252	00253 SeA	***************************************	00255	00256 S7A	00257	00000		00262		00264 598 00265	00266 5941		00270 609	00271		00274	00275 62A		00277 63A		00301 641	00303 658	•	00304	00309	00307	00310	00311	00313 66A	00314	00315 67A	00316	00317	00321	00322	99323	00324	00326	00327 69A		00331	00332	00334	1-1-1

00610
хсв
00702
LDQ A4

i	_			-		,	!		•		_	7	S.		1	····	į	:		ŀ			<u> </u>	<u> </u>	;	-		1	!	!		<u>'</u> 1	RM ;	0	1/\	nr.	-34 	<u> </u>	<u> </u>	<u> </u>	
		FWP D+1	CH5 A10 11-9				•	FMP YSI			9-A -007	510 X1		FIND VR	510 XZ	FSB X2	1	CLA #12			CMD UCT		LDQ W		FSB X2	ST0 X3	CLA 4-9 FDP TE12		LDG V-8		510 X1	FMP VPHI	:	ESB X2	SIU X3 CLA W-9	- :		CD0 C-7	-		FMP VTHETA
				1878			1888		1890		190A	-	1918	i	000	H761		193A			174		195A		¥ .		197 B		198A		1990		200A		2018			202A		1	
01431	01432	01633	01434	01436	01437	01440	01441	01442	01444	01445	01446	01450	01451	01452	56410	01404	01456	01457	01460	01462	01463	01465	01466	01470	01472	22310	01474	01476	01500	10210	01502	01504		01507			01515	01515	01316	01520	01521
R-60	33+4	TEB	- E	R-61	B1	25	12+1	= 0	1>+1	TE9	D+2	13+2	A2	A2	78.5	52	1>+1	51	15+1	TE9	82 82	R-63	A2 04	Тая	85	TAB	A2 B3	TAC	85	IBO	TOR	13+1	1>+1	IRE	TAD	15+1	1741	TRF	VCI	0.1	IRE
510	3		א ב ב	STO	8		S.	3 9	8	B	STO	38	570	38	7		ş	3	E	8	אם אם				į	STO	8	ST0	E	San	5 5	88	È	B	3 <u>8</u>	ous.	3	E	38	E S	3
	1738	:	1740		1758									176A	97.5	I					1780		179A	9	ופחש-		1818	0001			183H			070					1839		186A_
01337	01340	01393		01344	01345	01346	01347		01352	01253	40,10	01333	01357	01360		797	01364	01355	01366	01370	0177	01373	01374	01376	01400			01404	01406	•		01412	01414			01420	01422	01423	01424	1	01427
- 1	5	200		•	•	1>+2	×		•			15+1			1		# # # # # # # # # # # # # # # # # # #	H-10	*	C05.4			SIN.4			8		35+7	10	- 4	83 D+1			.K-37			1716				. Bi
FBD	570	3	STO	9	2	STO	31	£ 8	8	513	3!	570.	601			Š	SSS	בואריים מינים	BSS	TX:	212	222	ž č	3!	Ϋ́	2	512 150	E S	2	200		28	3		38	2	3	Š	31	2	EX.
	•	.16.3A		•					*		164B) ; ; ;	007			1660			1678							16.80		169	946	5	.000,	173031		171 B 171		900
님	01230	ōi	01253	ž	S	ž	2	3,7	262	263	3	766 266	267	270	q£	273	01274		27	01277	Ş		01302	10000	Ä	2	01310	01312	1	2	317	01320	22	Š	22.	22	žS Ž	H	22	91210	

I. SUBROUTINE ELECTX

The whole process of determining the free normalized electron density and its spatial derivatives at any point in space is explored in this subroutine. For the case under consideration this is a simple sphere where the values in Equation 74 are represented by the following components of the W vector

$$W(28) = \mathcal{L}; W(34) = A; W(35) = n$$

J. (r) (D)	RM 611	MP-32	N							
18M-7090										
ie+*N DEC. 22, 1960 From Radius = W(36)					T+28RP>					
TX GIVEN BY NESP/RUNGESSN HAVING NE = CONSTRNT FROM F (X, PXR, PXTHET, PXPH I) (2), UCITY, #C250)	/#(3)>+3,184983E9 ,11 (5)>				*XBRP+5T*5P*YBRP+CT*ZBRP>	12.24.1464	W(3)+5@RTF(X)	0.0.0.0.0.0.0		
E SPHERE ELECTX INNER SPHERE UTINE ELECTX SION RECORD. V. W.	TER! = (CBC34) /BC3) /BC3) /BC3 /BC3 /BC36) /BC36 /BC36) /	FYPHI = 0.0 GO TO 40 ST = SIMF (V(S))	# COSF (V(5)) # SIMF (V(6)) # COSF (V(6)) # V(4) = 1			in bill	FXM = IRSEPANTM FXTMET = TR3-PFRTT PXPMI = TR3-PFRTP W(36) = CX-W(3)/3, 184983E9	RETURN DDC0, 1,0, 1,0,0,0,0,0,0,0,0		
SIMPL SUBRO SUBRO COMMO				1 :	: 1	26 X X X X X X X X X X X X X X X X X X X		i		

FEN LEU LOC EFN LEN LEN LEN LEN LEN LEN LEN LOC EFN LEN LEN LOC EFN LEN LEN LOC EFN LEN LEN LEN LEN LEN LEN LEN LEN LEN LE	TERNOL FORMULA NIL 23	EFN LEG LOC 5 7 00042 11 13 00044 12 13 00103 21 28 00206 40 33 00220 27 28 00206 40 33 00220 USED BY PROGROM IN TRANSFER VECTOR BIGR 0 00000 GRRUMG JU DIMENSLOW FRI 190 00276 TER2 183 00271 FIN 169 00251 DEC OCT FORTP 195 00303 EST 190 00276 TER2 185 00271 DEC OCT 50 169 00251		DEC OCT JEM LOC 1 000000 1 000000 1 000000 1 000000 21 001140 24 00073 21 001140 26 00170 26 00170 27 00022 31 00222 31 00222 31 00222 31 00222 31 00222 31 00222 31 00222 51 000000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 00000 51 000000 51 000000 51 000000 51 000000 51 000000 51 000000 51 0000000 51 0000000 51 0000000 51 000000 51 000000 51 000000 51 000000 51 000000 51 0000000 51 0000000 51 0000000 51 000000 51 000000 51 000000 51 000000 51 000000 51 000000 51 000000 51 000000 51 0000000 51 000000 51 000000 51 000000 51 000000 51 0000000 51 0000000 51 000000 51 000000 51 000000 51 000000 51 000000 51
RNBL FORMULA 1 LOC 7 00042 8 00103 3 00122 8 00206 3 00230 3 00230 0 00000 MEDSLOD LEQU 0 0021 5 0027 5 0027 9 0025 9 0025 0 0017 PPEGRING IN SC	TERNAL FORMULA 10. LOC. 13. 00042 13. 00042 13. 00103 23. 00122 28. 00206 28. 00206 29. 00200 DIMENSION. EQUIPMENSION IN SC. C. OCT. 95. 00303 99. 00271 69. 00271 69. 00271 71. OUTPUT FROM I	MIERN 23 28 28 28 28 28 28 28 28 28 28 28 28 28	EFN 1EU 13 11 13 13	UMBERS WITH CORRULABLE SELLOCATIONS OF NAME OF CORPUS OF STATE OF NAME OF CORPUS OF NAME OF CORPUS OF NAME OF CORPUS OF NAME OF CORPUS OF NAME OF CORPUS OF NAME OF CORPUS OF NAME OF CORPUS OF NAME O

		-	8		R/	<u> </u>	61	TA	M F	9-; 	32	1		K			-			•					-	1			-				-					1					-			-	* * * * * * * * * * * * * * * * * * * *	
							• • • • • • • •	1									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																,															
1.5	Ψ.	_	12+3	T	•	4	RTT	42	RSTSP	-	٦.	RSTCP		72	2+2	PORTP	1-27	34		EXP(3,4 TED2	10	TER2		1-27	27	=	=	TR3	5	X X	M	RII	PXTHET	PTP	PHI		DT. 4	· -	2	11	37		2		2	6-38		*
FRD 1>+2	:	LDQ RC	-1			FMP 15+4	•					FIP RS		710 174				•		SX EXPO	1	-	1		FIFE 65-2			STO TR	L09 TR	STO PX		FWP. PA	STO PX	FIRE PO	STO PX	x SCP X	#55 TCV CODT				ST0 8-37	X 900					- X - X X - X - X - X - X - X - X -	
								26A									27A		•		280			298				! !	308		318		200	24.0		330						348	1			Š	**************************************	
00157	00160	00161	00162	00163	00164	90165	00167	00170	00171	00172	00173	42100	00175	901/6	0000	00201	00202	00203		00204	2000	00207	00210	00211	00212	00213	00214	00216		00220	00222	00223	00224	00226	00227	00230	*******	00232	00233	00234	00235	90236	00240	00241	00242	00243	00244	C+700
		• • • • • • • • • • • • • • • • • • •							 														! ! ! ! ! ! !					! ! ! !																				
	C05.4	CT	V-5		51N.4	N 2		C05, 4	9	V-3	ST	RST	RST		RSILT Pot	92	RSTSP	V-3	CT	RCT 120	27.00	XBRP	H-31	RSTSP.	VBRP		7000	CT	ZBRP	1>+1	25		SP	12+4	ST		3	2+5	1>+3	H-34	1>+3	PARIR.	KS! 7RPP	<u>∓</u>	VBRP	B,	12+2	XBKF
BSS			2			510 0 10			510				8		2 6	9		•			3		9					8	F	5 5 5	£	X	<u>.</u>	28		S S S	2	3 8	570	9	ė.	23	B 9	570	100	di i	g	3
			1.5A			•	E C			17A	1	:	18A		9	1		209		•			228			EF?		24B											-		_	•	25A		·	_		_
	0000	00071	00072		00073	0000	27000	000076	00077	00100	10100	00102	00103	00104	00100	00107	00110	11100	00112	00113	100	00119	00117	00120	00121	00122	00123	00125	90125	00127	00131	00132	00133	00134	00136	00137	96190	14100	00143	00144	00145	96100	00147	15100	00152	00153	90159	00153
				 														•	1									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																				
EXPCS	N L	ارود	SORT					K +1.2	\$+2.4	•	11:05	5A+109	SE+113	50+125	500+131	401.0	50+118	4.5	50+21	54+121		SH+23		BIGR. 4		2-2	\$	3	TERI	₩-27	28	F F	H-35	H-34	EXPC3.	- - - -	1681		200		35:1	PXTHEL	33+1	338	4-7		SM:	ょ
		5			H	HTR				9	STA		•	•			STB			STA		8 T B						2		!	*	įĘ	3	3	32	S E	9	2	20	35	3	\$10	38	18	7	255	2	570
F. P. ?	S NIS	ÇOV	COPT	•									† ; ; ;										q.	;	3					ā	701	È	9						8		20a		<u> </u>	128	S			
10000		• • • • •		,	90000	00000	0000	- 2000	× 1000	000	00013	00016	41000	00050	00021	27000	00024	00023	00026	00027	0000	00031			00034	00035	00036	0000		•	2000		9000	29000	05000	- 5003	99052	2000 2000 2000 2000		9000	00057	99000	2000	00063	0000		900	3000
		,					:				1		•	1		!		1		i ;			-		1	1		•					•	1			•		:					•			***************************************	

J. SUBROUTINE BIGR

This subroutine is used to calculate the distance from the center of the ionizing source to the spatial point r, θ , Ψ at which the electron density and spatial gradients are desired. For the simple sphere this distance is $W(28) = \mathcal{H}$. In addition to this it calculates the angle that \mathcal{H} makes with respect to the vertical distance passing through the center of the ionizing source.

2**2) 3**2)	3**23	3**23	2** 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5;	3**2) 3**2)	RM 61TMP-32

Î	.	, , , , , ;					RM 61 TMP-32
	0CT	00035 00143 00143		700	00226	0CT	
	DEC 5	EFN IFN 8 13 13 16 19		DEC	DEC 150	330	
STATEMENTS	2438_77266 6ND OCTAL LOCATIONS			2 00002 COMMON SENTENCES	11 00227	0CT	
COMMON	505 505 505 505 505 505 505 605 6			SORI SORI EQUIVALENCE OR	RSTSP 151 N SOURCE PROGRAM	DEC 65 139 OM LIBRARV.	
ES APPERRING IN	DEC 0CT 32549 77445 INTERNOL FORMIL	1EN 10C 6 00021 11 00115 16 00150	NJI USGO BV. PROGRAM HAGO IN TRANSFER VECTOR	DEC OCT C GOODO H DIMENSION		DEC 0CT 135 00207 1 NOT OUTPUT FROM	
FOR VARIABLES	U SNICKOGERCESS		NOT USED BY	SIN			
LOCATIONS	7.00	2000	STORMGE 1 0EC 0CT 32187 76673 LOCATIONS OF 4	DEC 001 1.00003 1.00003	DEC 101 157 00231 148 00234 LOCATIONS FOR	701 00206 NTS TU ABCUS	
STORAGE	000 000 000 000 000 000 000 000 000 00	7 6 +	£ 100	DOCATIONS FOR A	5109 6831	DE 2) 1 ENTRY SORT	
		1 LOC 1 00000 2 00143 14 00143 20 00143	00233	EC OCT (1.00.201)		00220 00220 035	
	32 38 # 32 38 # 32 3 38 # 32 3 38 # 32 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	W + W + CE	080 - 38	0€C 3109	16 60 2 60 2 7	(† † † † † † † † † † † † † † † † † † †	

ĺ	`	C1		6		7		777 # 1 1 1 1 1 1 1 1 1 1		<u> </u>	3;													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1			1		-												
TET 8104	ST0 10+2			100 0-3	0 TO BE	FCB 10+1	FSB 10+2	FDP 15+1	STQ TE2	LD0 TE2	7 TMT 102	FBD 37+3	853	TSX SORT, 4	810 IES	TSX ARCCS.4	TSX TE3	570 W-56	LAU D.	LXD 8+2-2-4	TRA 1,4	CCT +300062000000	OCT +202400600000 OCT +131655376246	0cT +000000000000	OCT +2014000UC000	001 +233000000000 001 +200000003333	OCT +05000000000	CCT +300001000000	+							4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7									
90100	00157	00160	00161	20100	2000	00165	90166	00167	;	00171 17B	7) 100	00174		00175	a/ 100	- -	00200	•	20.00 0.00	00204	00205	00206 2)	00207 35	00211		00213 65	00215	00216	00217							*******************				**************************************					1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	(E) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C		9 6		1.00	7	<u> </u>	1	œ;		- -	: 2	3	ω. ·	518 138 13	·i-	FAD 1>+2	2		5T #-5			XOR FXP 8-27	570 1>+1	~				ST0 10+3		F90.12+3					TZE 13A			TR9 16A	CLS TERM!	STO #-28	F-20 41.21	XCA	FNP 14-18	-;:
	99000 0000	10	~	3000	2 1000 2 1000	000.74	6000	000.76	06/77	00100	00000	20103		0105	00.00	ni io	11100	00112	-	00114	•						. 1 👡			00131	90:32	00133	00135	CO136 12H	00137	00141 1231	7	00143 139	'n	00196 15A	~ 0	100000	00:52	00153	\$0100
	200	2:) E					+	1 +7	5	100	; =	3	\mathbb{C}_{i}^{k}	e Min O Te O Te		8	10+11 10-11-11-11-11-11-11-11-11-11-11-11-11-1	۲,۰	in Oz	3		5 6 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PST	1+1	F 0 1		K C05,4	0 40+1 0 6-4	100	RCT	2 = 1 4 5 0 0 1 4 5	7.00	7.1.2	200	13	RSTSP		-1-	\cong	38 0	2 -	-	≘:	-,-
1	900	- F () () () () () () () () () (0) I 4	•				•		ı P					0 1	•			:		[[Z					d a	00	5	F G	1	37	ng To	57	01	E F	70	15			•					
)))) () () ()	9 G 2 G 3 G	9 G		0.0	000	00010	3	် ဝ	5			S		7 4 (4 3 (7) 2 (7)		700	M 7000	4 f (100	$\frac{1}{2}$		7) (*) (*)	000	M () ()	() ()	;	90036	0.000 37	0000	4000	000.43	0000	00046	74000 74000	00001	2000	000034	000055	00026	000037	00061	00062	00063	

K. SUBROUTINE MAGY

The normalized earth's magnetic field and its spatial derivatives are calculated in this subroutine. In this program it is represented by an assumed magnetic dipole field with the dipole located at the center of the earth.

RM 61TMP-32

_	 		 -
и	- A I	IA	 -37

130	1			!	į	- 1	-				
DEC				DEC OCT		DEC OCT 102 00146		DEC DCT			
DEC	W 32438 77266			DEC OCT	EQUIVALENCE OR COMMON SENTENCES	DEC OCT TERMS 103 00147 TEPM9	SOURCE PROGRAM	6) 95 00137	LIBRARY.		
,	1	USED BY PROBREM	LOCAYIONS OF NAMES IN TRANSFER VECTOR	DEC OCT SORT 2 00002	NOISH:	DEC OCT TERN7 104 00150	.ochyions for sombals not apperring in source program	32 00133	POINTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY.		
120 23		SIUKHUE NUI 0EC 0CT 32187 76673	LOCATIONS OF NAM	DEC OCT SIN 0 00000	5	DEC OCT TERMID 105 00151	STOKACK COCATIONS FOR	2) DEC OCT 2) 89 00131	SERT POINTS TO SU		
DEC 06T	N 32188 76674	DEC OCT 107 00153		COS 1 00001	STORAGE LOCA	DEC OCT		1> DEC 001	. Sun , cos		

00002 SORT BCD 150RT 00003 S HTR 000006 BCD 1HAGY 000012 SXD S-1.2 000113 SXD S-1.2 000113 SXD S-1.2 000114 SXD S-1.2 000115 SXD S-1.2 000115 SXD S-1.2 000116 SXD S-1.2 000117 SXD S-1.2 000118 SYD SA-4 00022 CLR S-4 00023 SYD SA-4 00023 SYD SA-4 00023 SYD SA-4 00023 SYD SA-4 00033 SYD SYD SYD SA-4 00033 SYD SYD SYD SYD SYD SYD SYD SYD SYD SYD	00071 00072 00073 00077 00077 00077 00100 00102 00111 00111 00111 00111 00112 00112 00120 00120 00122	
* 28 28 28 28 28 28 28 28 28 28 28 28 28		
	00075 00076 00076 00000 138 00102 148 00106 00110 00111 00111 00111 00120 00120 00120 00123 168	
	00076 00076 00100 00100 00103 00103 00110 00111 00111 001115 00120 00120 00121 00122	
8	00100 138 00103 148 00103 148 00105 00110 00111 00111 00115 00120 00122 00122 00123 168	
2.	00101 00102 00103 00105 00105 00110 00111 00113 00115 00120 00120 00123 00123 00123	
2	00102 148 00103 00105 00106 00110 00111 00113 00115 00120 00121 00122 00122 00123 16A	
2	00103 00105 00105 00106 00110 00111 001115 00117 00120 00122 00123 00123 00123	
	00105 00105 00106 00117 00111 00115 00115 00120 00122 00122 00123 00123	
	00105 00106 00107 00110 00112 00115 00120 00122 00123 00123 00123	
	00106 00110 00111 00112 00113 00115 00120 00122 00122 00123 00123 16A	
	00107 158 00110 00112 00113 00115 00110 00120 00122 00123 168 00123 178	
8 9 8 8 9 8 8 9 8 8 8 9 8 8 8 8 8 8 8 8	00111 00111 00112 00115 00116 00120 00122 00123 00123 16A	
26 - 27 - 27 - 27 - 27 - 27 - 27 - 27 -	00112 00113 00114 00116 00116 00120 00122 00123 00123 16A	
8 98 88 88 88 88 88 88 88 88 88 88 88 88	00112 00113 00115 00117 00120 00122 00123 16A 00123 17A	
8	00114 00115 00115 00120 00122 00123 00123 16A 00125 178	
8	00114 00115 00117 00120 00122 00123 16A 00128 178	
8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00115 00117 00120 00121 00122 00123 16A 00128 178	
2	00116 00117 00120 00122 00123 16A 00124 178	
2	00120 00121 00122 00123 16A 00124	
# 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00120 00122 00122 00123 16A 00124	
	00121 00123 00124 00125 00125	
	00122 00123 16A 00124 00125 178	
5	00124 00125 00125 178	
2		
# 2 2 2 2 2 E		ı
2 2 2 E	00126	1
25 ST	00127	LXB \$42.4
21. E	00130	1858 08.4
	00131 25	
	00132	i '
	00133 32	٠,
3	00134	
00044 FM 1>+1	00135	951 +28499900990
2	00136	•
7 1000	78-76100	74.1 *A334U4U4U4U
ALKEN CHA		•
2	00162	1
	00141 M4100	001 +0000000000
STO		٠
26		
00054 LAS 35		
7		
1 018		
47-0 MT3 XXXXX		
90		
STO		
60066 11A LOG YERRA		

L. SUBROUTINE COLFRZ

The normalised collision frequency and its derivatives at a spatial point are determined in this subroutine. In this presentation it is assumed that collision frequency varies exponentially with height. One should refer to the definition of the W vector where the required coefficients for the height stratifications are defined.

WILTER 20 A 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z Z	2002	
Mark Mark	¥3:	7. PZPHI)	***************************************
# # WCC70 TENT = # ACCCO, # ACCCO TENT = # ACCCO, # ACCCO TENT = # ACCCO T	584	IMENSION SELECTORIAL VALUES OF THE STATE OF	
TEN 10.00 (10.0) -4(19) TEN 10.00 TO 10	3 C 1	= #C27	
2. # Margher (TRM1) / W(3.) 1. # Margher (TRM1) / W(3.) 1. # Margher (TRM1) / W(3.) 1. # Margher (TRM1) / W(3.) 2. # Margher (TRM2) / W(3.) 3. # Margher (TRM2) / W(3.) 4. # Margher (TRM2) / W(3.) 5. # Margher (TRM2) / W(3.) 6. # Margher (TRM2) / W(3.) 7. # Margher (TRM2) / W(3.) 8. # Margher (TRM2) / W(3.) 9. # Margher (TRM2) / W(3.) 9. # Margher (TRM2) / W(3.) 9. # Margher (TRM2) / W(3.) 9. # Margher (TRM2) / W(3.) 9. # Margher (TRM2) / W(3.) 9. # Margher (TRM2) / W(3.) 9. # Margher (TRM2) / W(3.) 9. # Margher (TRM2) / W(3.) 9. # Margher (TRM2) / W(3.) 9. # Margher (TR	. [ii	# #C26> 開発第1 # - 40+CV(4)#(19)>	1 1 1 2 7 5 1 1
PZTHE 1 0.0 0.0 70 7	N	THE BENEFIT OF THE PROPERTY OF	
	. a. į	0.0	
IF (V(4) - 6.5569112E3712.10 B = W(72) G0 T0 3 IF (V(4) - 6.6569112E3713.13.11 B = W(74) - 6.7569112E3714.14.15 B = W(74) - 6.7569112E3714.14.15 B = W(75) B = W(75) B = W(75) C = 0.0 PZR = 0.0 FZR = 0.0 FZR = 0.0 FZR = 0.0 FZR = 0.0 FZR = 0.0 FZR = 0.0 FZR = 0.0	ĽĞ	9 -	11******
# # # # # # # # # # # # # # # # # # #	≕ (
G0 T0 3 IF (V.4.) - 6.6569112E3)13.13.11 B = W(7.3.) G0 T0 3 IF (V.4.) - 6.7369112E3)14.14.15 B = W(7.5.) B = W(7.5.) G0 T0 3 Z = 0.0 G0 T0 3 RETURN END(0.1.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		# W(72)	
6 = W(73) 60 T0 3 15 W(74) = 6.7569112E3314.14.15 16 W(75) 16 W(75) 17 W(75) 18 = W(75) 19 T0 3 19 T0 3 RETURN END(0.1.0.1.0.0.0.0.0.0.0.0.0.0.0.0	≖ ق		
GO TO 3 IF (V(4) = 6.7569112E3)14.14.15 B = W(75) G TO 3 Z = 0.0 PZR = 0.0 GO TO 5 RETURN END(0.1.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0			1
# COCA5 = 6, 7369112E3514,14,15 B = WC755 B = WC755 G0 T0 3 Z = 0.0 G0 T0 3 RETURN END C0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0			
60 TO 3 C = 0.0 SO TO 3 PER = 0.0 SO TO 5 PREVIOUS END CO. 1.0. 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	= 0		
2 = 0.0 F.Z = 0.0 F.Z = 0.0 G. T. 3 RETURN ENDCO.1.0.1.0.0.0.0.0.0.0.0.0.0.0		(9L)A = 1	
FZR = 0.0 50 T0 S RETURN ENDCO.1.0.1.0.0.0.0.0.0.0.0.0.0.0		0 TO J	
ENDCO. 1.0. 1.0. 0.0.0.0.0.0.0.0.0.0.0.0.0.0.		ZR = 0.0	
	3 ec ;		
	w .	_	\$ 5 \$ 7 \$ 6 \$ \$ 7 1
			1
	:		1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1
	:		1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	, , ,		
	-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	;	1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	
		· · · · · · · · · · · · · · · · · · ·	

	6-	m u ii			1 1	1 : :	1 : :	RM 61TMP-3	:
DEC 001	3H01	EFH 1FN LOC 5 11 00053 13 19 00075		SENTENCES	DEC 001	DEC OCT			
STATEM	32549 77645 MITERAGE FORMULA DUMBERS AND OCTAL COCATIONS	EFN IFN LOC 4 10 00047 10 18 00071 7 29 00120		DEC OCT.	SOURCE PROGRAM	6) 90 00132 LIBRARY.			
FOR VARIABLES APPEARING IN COMMON	LI U 32549 77445 CURRESPONDING LITERNAL FORMULA	:	JSED BY PROGRAM S IN TRANSFER VECTOR	DEC CCT.	TERMI 97 CO141	3) 85 00125 67 SUBROUTINES NOT CUTPUT FROM LIBRARY			
OCAT10NS	DEC OCT RECORD 32561,77461 FORMULA NUMBERS MITA GORREÑ	3 0 0 0 0 0 0 0 0 0 0 0	STORAGE NOT DEC 0CT 32187 76673	OCT	001 8 00142 0110NS F3R	00124 01NTS TO SU			
	DEC OCT 32138 76674 External for		DEC OCT 100 00144	DEC DCT DEC O 00000 STORMER	DEC OCT 99 001+3	0EC 0CT 95 00137			
	Z	M N	•	ė. X		2			

```
8-13
18648686486
4864864864864864
          1391
                        98
   00075
     00.01
                      LUMNTERDER
LUMINGRERER
OHHUDWON
                      \bar{a}
```

M. SUBROUTINE RCOORD

This subroutine permits the transformation from the earth centered geomagnetic spherical coordinate system, to the radar coordinate system.

SUBR	SUBROUTINE RCOORD JANUARY 18,1361 IBM-7090
COMM	7, 4
DIME RST	MS 10N
= dA	RST#SINF CUCE.
EPSN 1XP*XX	= XP*XNC1) + ZP*XNC2) + VP*XNC3) -CZP*XNC4) + VP*XNC5) + (65)
ETBN 129+V	XP*VNC25
2ETA 1VP+2	ZETRH = ZP+ZNC1) + YP+ZNC2) + XP+ZNC3) - C XP+ZNC4) + ZP+ZNC5) + 1VP+ZNC6)
ETA	= EPSN/ZN(8) = ETAN/ZN(8)
ZETA RCE2	
RCE =	וו דט
IFCE 10 DNGF	302510.40.10
	IF (REE) 20, 40, 20
HOULE 1908	W(61) = ANGA+57,29578
#(62	1
C183M) = (WC17) - ANGE) + 57, 29578
#(82) #(83)	() = V(10)- W(60) () = 2.99791E5+V(11) - W(60)
40 RETURN	1.0.1.0.0.0.0.0.0.0.0.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CI	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
8	

PAA	Al	TAA	P-32
MIT.	91	164	T - U4

0CT 3 77266		L0C 00252	,	1	1	0CT	,	00.1 00.305 00.300	:	967	1
DEC 32438		IFN 31		:	1	DEC	•	DEC 197 192	1	DEC	:
33	AT TONS	EFN 40		•	1 1		NTENCES	ANGE XP		,	:
0CT 77445	כדמר נסכ	L0C 00220	ı		1 1	2 00002	OMNON SE	0CT 00306 00301	:	EC 0CT	
DEC 32549	ONE	IFN 24		;	1	DEC 2	98 0	198 198 193	ROGRAM	0	:
>	A NUMBERS	EFN 20			1	SORT	EQUIVALENCE OR COMMON SENTENCES	EPSN RST ZP	SOURCE PI	G	ENTRY POINTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY.
0CT 77461 76655	INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS	LOC 00215	M.C.		VECTOR	000000	ENSION, E	0CT 00307 00302 00275	NOT APPEARING IN SOURCE PROGRAM	0CT 00257	UTPUT FRO
DEC 32561 32173	INTERN	1FN 23	PROGR		NSFER	DEC	N DIM	DEC 199 194 189	JT APP	DEC - 73	NOT 0
RECORD	WITH CORRESPONDING	EFN 20	STORAGE NOT USED BY PROGRAM		LOCATIONS OF NAMES IN TRANSFER VECTOR	NIS	APPEARING IN DIMENSION,	EPS RCE ZETA	SYMBOLS NO	3	BROUTINES
0CT 76674 76664	ITH CORRE	L0C 00210	TORAGE NO	OCT 76634	NS OF NAM	00003	JARIABLES NOT A	0CT 00310 00303 00276	LOCATIONS FOR	00256	NTS TO SU
DEC 32188 32180		IFN 21	v	DEC 32156	CATIO	DEC 3	PRIAB	DEC 200 195 195	LOCAT	DEC 174	7. P01
z z	EXTERNAL FORMULA NUMBERS	EFN 13		•••	ĭ	ARCOS		ETAN RCE2 ZETAN	STORAGE	8	ENT
0CT 76645 76673	TERNAL FO	FN LOC 20 00205		EC 0CT 202 00312		DEC 0CT	STORAGE LOCATIONS FOR	0CT 00311 00304 00277		OCT 00266	Č
DEC G 32165 (N 32187	Ä	1FN 20		DEC 202		DEC	STOR	DEC 0CT 201 00311 196 00304 191 00277		DEC 182 (
υz		E:3				503		ETA ANGA VP		<u>_</u>	į
						,			:	- ,	:

- 15	- ,		,		۲,	R۸	A	61	T۸	٨F)_; 	32		_	_			_	_																			_						<u>.</u>						
		1	1				1		1	1								1		:] :		1 1 1 1 1 1 1 1 1	1		:				* * * * * * * * * * * * * * * * * * * *	!				1 1 1 1 1	!		1				!	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		• •	1) 	!				:		,		:											:		1													1		1				
			1		1		1		1									:		:				:					i		1					1					1							į		
			1						1					1				:							,						1			:					•							:		,		
z	=		!				1			,	*			;		4	t.							5,4							:	5,4														:				•
VETON	ZN-7	ZETA	ZETA	ZETA	7	ETR		RCE2				RCE		EPS	KCEZ	C007			200	, a	1 1		•	ARCO	15+1	ANGE	SCE SCE	318	1 T	# C		ARCOS	1>+1	PINGR		9-P	AMGE	3	19-1		į	£	F-79	H-16	ANGE		3	9	H-59	1 6
2	7 G	STO	207	F	510			570	2	855	TSX	510	3	E.		400	- C		1 1	ָ מַ	F 6	, v	855	Z	TSX	510	2	TZE	38	ָ בַּלַ בַּלַ	855	TSX	TSX.	210		570	9	di L	510	5	7 X		510	3	FSB	X		ה מ מ	A S	į
980	<u> </u>	!	168						178				18A					901	1001	200				218	•	,	22A	22A1	73H		1	24B			T C	1	26A			Z7H	1			78H		1 1 1 1		a	14	
	0162	0163	0164	00165	0166	00167		00172	00173		00174	0175	0176	00177	0200	1000	0000	7070	2000	2020	2000	00700	}	0210	021.1	0212	0213	0214	6120	00216		0220	0221	0222	0223	0225	0226	0227	0230	0231	0232	72.00	0235	0236	0237	0240	0241	7470	774	1000
	Ö	Õ	Õ	0	5	ÖĞ	ŠČ	ōō	ō		ō	ō	ö	ō	Ď	č	5 č	5 č	č	č	ĕ	č	•	5	ō	ŏ	ō :	ōċ	5 6	5 č	•	ō	ŏ	5	5 č	5 6	ō	ō	ō, i	ÖÖ	5 č	ŏč	Ö	Ö	Ō	Ö	56) C) C	
		1	!				1		:					;				:													#								;		,			;						
;		:																i						1 1 1 1												•			1							***				:
2	. Ş	1 1 1 1 1	*	1>+3	EPSH	ZP	1	- A	★-N-	1)+2	F	7H-3	7+5	∓. _:	۶ ۲) 1 1 1 1	7 7	- - - >	, i			. Z	S+0	1	5+4	ETAN	ا و :	S-N-2	- - - - -	7 Z	12+2	9	2H-3	2+5	- 24	2 A	ZN-2	**	٠ ا	- HZ	C+C1	į	1>+3	*	12+3	ZETAN	N S I	, V 0.	FIE	
2 2	L C	6	- :	FSB						ST0	007	_		_						10			F 00	j	FSB	_	a		25.		570		_	_			F		9		28		•		'		5	56		
•		1			,	Œ	;																	:			Œ									1										*	Œ		9	
0 F	. 0	71	72	73	*	120	0 1	. 00	010	20	03	40	03	96	50	2:	- :	2 2	2 4		2 4) r	20	21	22	23	24 12	23	910	, C	3.5	32	33	# I	55 25 25 25 25 25 25 25 25 25 25 25 25 2	0 M	. Ç	=	42	M .	: ;	7 4) <u>-</u>	B	31	32	7	, y	39	} [
36		8	000	00073	000		0000	90	00101	00102	00103	90124	00105	00106	5	3			3 6	Š		2 5	0	8	00	9	00	000	5		8	9	9	8		00137	8	9	5		38	Š	8	8	8	8	88		38	;
		1 1	:																					:															į											
		•				_	: :					,																											: : :		,									:
E15	SORT	ARCOS			1	RCOORD •			*		¥.E	-	Ņ	-	<u>-</u> •	n	7	•			- Y	•	10	.:	4,5	_ 	.	Ŧ,	م	•		C05.4	15+1	.	. 1	: L.		r S	- -	•	: :	•	7	>+2	<u>.</u>)+4	· 1	7 7	!	.•
		BC0 18		HTR		8C0 18	,				TSX SIN	ST0_15+					אר טייט טייט	77 57		TO YOU				855	TSX SIN		_		FSB YN-		258			7-7 001	٠	77 Z	ž S		_	\$				_	_	٦,	\$ \$ 5 1			; } {
				.	Ξ.		n u	יט וי	:	&	<u>-</u>	S	_		v (ه د	•	- V	n _	. L		. 0	יט		-	v	ا و_	4. 1		<i>n</i> C		-	vı				_		v i.			7 -	_			•		. •	٠	•
	2 SORT			In :	: م	~ (· > -	. ~	3 6A		•	en.	vo.	· ·	<u> </u>	₹	•		٠.) ·	۰.	80		_	~	m	•	n •	g 4 4		٥	_	~	•		6 10a	_	0	- (7	, •	'n	•	_	0	- (; y p	, 4	
	0000	0000	0000	0000	90000	0000		00012	00013		0001	000	00016	00017	00020	7000	,,,	27000	1000	0000	2000		000030		00031	00032	0003	00034	00033	00036	3	4000	000	00042			90046	8	00	B			8	8000	8	3			100	į
											:	i										ı		1 1 1 1 1		1	•					i						i	•				1	,				i		
					į							i		1				1								1			;		-			:		!			-		-				!	:		1		:

ı L		·		RM 61TMP-32
			= 	1 1 : 1 : 1
	: 1			
	. !			
	1			
	· 1			
!	: : !			
	i			
1				
t •				
1	•			
:	į			
T.				
	•			
	:			
,	;	:		
•				
		ı		
		!		
1		· !		
•		1		
		;		
		. ! !		
÷				
		0 - 0 0 -	999	
		25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	888	
		1.4 +0000200000 +206712273407 +23344607400 +233000000000 +0000000077777_		
	. ~ *	82488	58	
30+1 0-10 8-59		*887786 677786		
352	ובצבא	# 100 CT	55	
Œ	a			
308	319	88 3		
246 247 250	00251 00252 00253 00254	00255 00256 00257 00260 00261		
888	8888	888888		
	;			

N. SUBROUTINE OUTONE

In this presentation this subroutine is used to list the input data and the initial conditions that define the ray tracing problem on Tape Unit 6. Table 5-1 illustrates this output by the statement of the input RECORD and the next ninety-one words of data which define in order the first 70 components of the W vector, followed by the first 21 components of the V vector. This subroutine can be greatly improved.

CETIONS	EFN 1FN LOC 2 8 00016 6 21 00047		DEC OCT	0EC 0CT 60 00074		
W 32438 77266	EFN IFN LOC 9 6 00000 6 16 00035		DEC OCT SOURCE PROGRAM	22 DEC OCT 23 58 00072 H LIBRARY.		
77461 U 32549 77445 W 32438 77266	EFN IFN LOC 7 5 60000 5 15 00034 17 USED BY PROGRAM	IES IN TRANSFER VECTOR	OCT DEC OCT DEC OCT DEC TO SOURCE PROGRAM	00111 824 BG 00120 22 NTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY.		
RECORD 32561 77461	EFN 1FN LOC 4 4 00000 3 14 00033 8 29 00065 STORAGE NOT	0EC 0CT 32187 76673 LOCATIONS OF NAMES	DEC OCT CSTRS 0 00000	8)7 73 00111 ENTRY POINTS TO SE		
	EFN 1FN LOC 3 3 9 00021 8 22 00050	0EC 0CT 81 00121	CFIES DEC 0CT	8>9 67 00103 67 00103 787A5 (F1L)		

Ĭ		-			Ī		Ī	,		Î	Ì	1		#		ı		į	1	}	۱		ļ		:	1		1	!		ı			;		l	;		!	ı	i	i	i	ı	
												1																	-		l			i			-						-		
- 1		į			١											l															l			!						İ				1	
İ		!			١							į		İ				İ	į		ļ					١			į		l			į						ı			i	İ	
												ļ		-				i		 	١				! !	l			į			i					-							١	
		į			١		-			į						ŀ			į		١											!								ı	į			1	
					1		1		İ	1		į		İ		l		į					İ			ı			į			į								ı				ı	
		;			١		-		į			İ				ı		İ	į		١					l					l	į								ı					
							-					į		İ		ı			į		ı					I			į			į								ı	į			İ	
ı										1		į				ı			į		İ					١					l			į			ļ			ļ					
١					١									-		l		 					-	1				ļ	i			į		-			ļ				į			ı	
					1		ŀ			١						l					ı					ı			į		l									ļ					
Ì			į									į		į		l			į		١		į			ı			į		l	İ									į			1	
					l					ı		i		i					į										İ		l														
					l							į		-					į					į		۱		į	į		l	į									į				
		İ			l				!			-		-		ŀ			ļ		١					l			i		l	i												١	
																					I					İ			-															ı	
ı							777	000	900	읭				İ					i		İ		İ	į										İ			İ			ı	į		İ		
		-	,	Š	-00000100000000000000000000000000000000	+233006600000	770	00	+000001000000	8				Ì					į				į						į									į		ı	ļ			١	
	4	2	•	Š		000	8	8	8	8	ζ.	1PBE1	į	, 4H0/	<u>.</u> • >	Ş.	쭝	Ξ	i	<u>~</u>		¥ 5	泛	Ξ											٠			į		l				١	
	E 1	Š	S +2	40		233	00	Ş	Ş	릵	4.		5:	*! •!_	RA.	Ž		I C22H1	ଔ	116.12A	2		EXTE	C25H1					į		l	į								1	1			١	
- 1	3 3				П							2 2	Rf	3 5	•	1	-	_	-		~[8	_	}				į			i								ı				1	
8		בונ		= 2	5 č	5 6	ŏ	8	ŏ	ğ	6 6	6	o à	ă	ă	ĕ	8	8	æ	ĕ	ř (è	ő à		96											١										
£65	200	E .		5		9	1						60					857			l		-	824																					
Į,		•	2		1		•	92	11	s	5			s ig	900	5			12	M :	•	2 2	7	20		ı			i						١		İ				į			١	
	0006	00067	00070	88		000074	8	000	000	릵	8	96			9	8	9	901	8	58		38	00117	00120		l			İ			į			ı		į	į			į			l	
							-										_	_	_					_		l			į					l							į		!	ı	
																			•										į			į												I	
					İ									-						•						l			į			7										_			
2	2		;	¥	ļ	4 🕳				ı	~	į		i		:	į			20+1,1		:	1.12		*	l		*	į		-	RCORD+1	•	190.1.12		*		7	-	┨		- 2	25+1.1		•
STE	CFIL			10UTONE		7	4,-	æ	2.4	쓁	80+18	5	g (2		CSTHD. 4	8>4			25	3	-	128.1.1	į	GIE.	4		CSTID	7		23+1,	2	-	9	ŀ	e J	j	STID.		1		24 D	<u> </u>	3	
٦١'		e (ex					-	9	9	9	ÖÖ (wic Wic	W -	1	1 Ni 1							÷ ××	-	Š			- 1		•		•	7					7						•	ı	
		Ξ	Ξ	9	₩	Š	ರ	ST	ರ	ᅜ	5	<u>ان</u>	21	-10	BSS	¥	P 2	3	2	3	Ť	- ×	Z	3	Z t	10	2	7 2	7:	3 E	ž	9	N 2	Z	4	r S		3	N 2	13	13	× ×	3	¥	}
STE	3		1									!	_					Œ		C c		ā	62	4							æ	یے	ā	52	ا	đ			ď	_		= 2	æ		ë
							: :					5	5	8				10A		E :					•					•		12	į	1982	₹			į		12			g X		210
00000	200	8	0000	00000	6000	250	=	012	00013	빎	5	91000	200	0000	;	22000	023	024	2	250	k	35	90032		00033	000		90036	3 3	3	25	3	1	3		9004	Ž	ğ	9982	器	8	8 8	9000	裁	
8	9 6	8	8	8 8	3 8	88	8	8	8	8	8	8	3 6		3	8	8	8	0	000	3 6	38	8		86	38	•	8	3,5	8	8	8	88	18	İ	88	Ž	8	88	18	8	88	8	\$	\$ \$
		:	•											!									•						į			į					İ								
			:				1					!					:		•										•		ĺ	•		i			i	į					:		
1		:					•	-		_				<u>.</u>		•					_		<u>:</u>			<u> </u>			:		<u>'</u>			<u>.</u>	_		÷			_	<u>ن</u> ــــــــــــــــــــــــــــــــــــ	15	<u>. </u>	4	

O. SUBROUTINE OUTPUT

This subroutine will presently yield the output data on Tape Unit 6 that is summarized in Tables 5 and 6. Following the information that is the result of subroutine OUTONE, Tables 5-1 and 5-2 illustrate the information obtainable after each integration. Beginning with the first word this information has the following meaning:

Integration number W(70)
Vector components V(2), V(3)
Height above earth surface (km)
Angle \theta in degrees
Angle \theta in degrees
Vector components V(7) through V(21)
Vector components W(1) through W(11)
Vector components W(28), W(29), W(38), W(39)
Vector components W(55) through W(70)
Vector components W(80) through W(90)

Under certain conditions of vector components W(68) and W(69) the R vector described in subroutine RINDEX will be listed between each of these sets of data for each time that the RINDEX subroutine is entered.

In addition to this data, the data summarized in Table 6 is listed on Tape Unit 10.

oʻ	SUBROUTINE OUTPUT JANUARY 21, 1961	18M-7090	Andre de la cineta del cineta de la cineta del cineta de la cineta del cineta de la		
-					(.1
•	COMMON RECORD, V. B. N. XN. VN. ZN. G DIMENSION RECORD(12), V(1)11, V(250)				
	COLL PCORPD) 1 1 1 1 1 1 1 1 1 1 1 1 1	(F)
•	IFCUCTOS 3.3.4			į	7
•	W(70) = W(70) + 1.0				(U
	(0) no (0) n = 1	700			
m	TE1 = V(5)+57,29578	(Z++ (Z)A - ;			
•	TE2 = V(6)+57.29578				Ï
	163 H V(4)-8(19) M(56)-(2,9979)65+U(11))-8(55)				•
					:7
1					
• •• •	BRITE OUTPUT TAPE 6,8,8(70),V(2),V(3),TE	,, V(2),, V(3), TE3, TE1, TE2, V(7), V(8)			1
<u> </u>	•				
9		•			ı
•		(), I=9,21), CWCI), I=1,11), WC28), WC29),			t
	18(55), 8(57), (8(1), 1809, 70), (8(1), 1860, 90) 1F(11) 10, 10, 30	2			
<u>.</u>	1PE 10.11, CR	S			
:	WRITE OUTPUT TAPE 6,11, (RECORD(I), I=1,12)	23		•	;
•	WRITE OUTPUT TAPE 10.12				
12	FORMATCHO IN.SX. SHSLANTR, 6X. 4HV(2), 6	R, 6X,4HV(2),6X,13HV(11)+C-4(60),4X, F,9X,6M3; T-E,7X,7M9M6; F,0,7X,6M6; T-0)		•	
30					
31	UTPUT TRPE 10.32. IN.	#C60>, V(2), #(83), #(82), #(62), #(81), #(61	,		
32	FORMOTCH . 14.1P0E14.70				
	IF(II-50>40, 33, 33		• • • • • • • • • • • • • • • • • • •		!
# ?					;
	END(0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0)				
			441	• • • • • • • • • • • • • • • • • • •	!
				,	!
				. 1	1
	•				

	2 0CT		2000	18 00052	42 00167 57 00253	1			C 0CT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EC 0CT 229 00345	1	C 0CT			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DEC W 32438	TONS	4	j	33				DEC	ENCES	DEC TE3 22		878 225			
ENTS	0CT 77445	OCTAL LOCATIONS			00163				100	EQUIVALENCE OR COMMON SENTENCES	0CT 00346	, E	001 00335 0 00276			
COMMON STATEMENT	0EC v 32549	문	EFN IFN	- 5	9 31 34)))	VALENCE OR	DEC TE2 230	SOURCE, PROGRAM	8)8 221 6) 190	IBRORY		
APPERRING IN CO	77461 76655	INTERNAL FORMULA NUMBERS	707	00 000 00 020	00124 00220	ROM		VECTOR	00001	IN DIMENSION. EQUI	0CT 00347	MOT GPPEARING IN SO	0CT 00332 00272	not. Qutput .erom l. Jbrorx		
FOR VARIABLES APP	DEC RECORD 32561 ZN 32173		F		3. 28	USED BY PROGRAM		IN TRANSFER	OEC CSTH)	APPEARING IN DI	DEC 133	SYMBOLS NOT RP!	B)C 218	SUBROUTINES NOT		
LOCATIONS FOR VA	DCT 76674 RE 76664	WITH CORRESPONDING	201	00000 00016	00077	STORAGE NOT US		NAMES			00150	OCATIONS FOR SYM	00305 00305 00261	.POJNTSTQ.SUBROI		
STORAGE LOCK	DEC N 32168 VN 32160	ULA HUMBERS U	IFR	10 M	30 24	S	DEC 32156		DEC	OR VARING	DEC 11 232	-4	DEC 197	EBTRY POJ		
ST		FORMULA	EFX		i			1	GIL	CATIONS F		STORAGE	6 510	Ğ.		
	EC 0CT 165 76645 187 76673	EXTERMAL	15N	- 4	23 00074 46 00174		DEC OCT 234 D0352		DEC OCT 0 00000	STORAGE LOCATIONS FOR VARIABLES NOT	DEC 0CT 233 00351		DEC OCT 222 00336 226 00342	CSTIO		
	DEC G 32165 km 32187	;		; - c	, r o	?	ō``	:	RCOORD D	i	5		0 1100	RCOORD		

```
30B
3011
     3
000337
000337
000337
000337
00037
00037
                                                                                                                                                              $210
                                     E
                                                  STR
                                                                                                                 H
00240
00241
00241
00243
00244
```

P. INPUT-OUTPUT

Table 4 illustrates the format that is necessary for the input data. Tables 5 and 6 illustrate the format of the output data that is currently obtained by use of Subroutines OUTONE and OUTPUT. These two subroutines can be easily modified. As they are presented in this report their primary purpose was to collect "debugging" data.

Table 4. Input Data for a Spherical lonospher

ì	•	•	 Ĭ	•	• ;	5	= 1	S	 {	 -	<u> </u>	RM 61TMP-32	
.0	10 7.2082097E-01	22 1.0000000E 00	02-4.6394721E 03	1.200000E 03	1 6.	0.	00 0.	2.28020518 00	IS 2, 2802051E 00	0.	.3278773E-01-8.98 590 70E-01	2 1,2639290E-04 6,380000E-09 1,3316441E-20 11 5,5473943E-03 18 5,4883252E-11 15-2,2964180E-03	
· o	.6059238E 00 1.5707963E 00	4.6059238E 00 3.0000000E	6.6569111E 03-4.9581701E 0	0.	5.00000000	55717E 03 0.	3.000000E	0.	9865271E-01-2.3434196E-08	.0	2.6389999E G2 4.3878773E-0	4.387379E-01-1.4132452E-04-4.9081066E-12 1.2639230E-09-09-09-09-09-09-09-09-09-09-09-09-09-	•
0.	5.	7.9412480E-31	6.65	0.	.0.0	02-4.7486789E 33 4.195571	·0.	0 9.9999€9E-05 0.	4.3866078E-01-3.	0.	4.8673434E ():	3. 2802163E 00- 2. 00000000E 00- 3. 2802163E 00- 3. 0000000E	
000 6 09 0.	0	112E 03 1.00053333E 00	Ö	0.00 0.00	330E 01 1.0003000E 00	-5.074=736E 0	0	code 00-1.0000000E 00	302E-01 4.6059233E 00	0.	000E_00_1.43835+5E_00	917E-05 0, 3333333E-06 0000E 00 3, 3333333E-06 00 3, 3333333E-06 00 0000 0000 000 000 000 000 000 000	
5.280000	9	6.3360	. 0.	. 0000000E 33] 2000000	≶.999998E-06 5.000000	j.). 	3579108E G3 8.496530		0. 2.2802051E 00 1.0.02020	08 3,2802031E CO 1,0839917 05-1,2951176E-12 1,0000000 110-3,4459441E-19 8,272174 02-3,459443E-01 5,7859963 03-1,0000000E OC 9,999999 03-1,0000000E OC 9,999999	
1.55000000E 00 0	· · · ·	+.5378560E- 1 0	5.4677431E U1 3	+.7480446E 53 1	9	1.6665300 E 30 3	ō	.0.	1.0000000E 00 C	7.60068 37£- 0310	0. 1. CCD0200E 20 3	-2.3425490E-08-3.2802051E 6.2011474E-05-1.2893176E- 5.0457822E-19-2.4638431E- 5.601182E 02-3.6324448E- 1.0000000E 00-1.0000000E 0.0.00000E	

Output Data for "Debugging" Purposes from Tage 6.

RM 61TMP-32		
SYMPLE SPHERE 10#433/R4412 Z = 0.0 V VERV SHALL FEB. 3:1961 E=2603	0934917E-05 0. 4.3916866E-01- 0934917E-05 0. 333333E-06 0. 7141767E-28-4.8977747E-13 5.318962E-09- 9745170E 04 1.1203736E 00 6.2802376E 00- 9745170E 04 1.1203736E 00 6.2802376E 00- 9795959E-05 4.000000E 00 0. 0000000E 00 3.1945190E 00 4.8641053E 01- 0000000E 00 3.133333E-06 0. 6.392959E-05 0. 11452417E 00 7.280249E 00- 0000000E 00 3.333333E-06 0. 0000000E 00 3.6333333E-06 0. 0000000E 00 3.6333333E-06 0. 0000000E 00 3.6333333E-06 0. 0000000E 00 3.6333333E-06 0. 0000000E 00 3.6333333E-06 0. 0000000E 00 3.6333333E-06 0. 0000000E 00 3.6333333E-06 0. 0000000E 00 3.6333333E-06 0.	8.2802662E 00 0. 2.5957436E 01 3.00000CUE UIJ U. 2.5632419E-03-6.1035156E-03-5.005-5
		0

Table 5-2. Output Data for "Debugging" Purposes from Tape 6.

Î			6		Ī	d	P	,	0		Ì	-		F									-							1 1 1 1 1 1				-										-3	
DELY-A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																•		•		
	o'c	. .	c	Ö	b	Ö	o	ö	O	ö	þ	Ö	o	o	o ·	ď	j c	Š	Š C		Ö	þ	0	o o	Š	ā	P		0 0) 	0	ľ	0	0 (⊃¦¢	0	10	0	0	0	0 (ľ	> C	910	•
ANGLE A		•	1 1 1 1 1 1 1 1 1										: : : : : : : : : : : : : : : : : : :										1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										1						i i i i i						
	0				1			6		6	ŀ	0	ö	0	6	6		5	; c			6	0	0			6	0	90			9	0	0	⊃¦c		d		0	0	0 0		2 c) C	;
3-1-130	8753E	7068	604330E-0	. 23921 /2E-U3	U-3617622	M -	2614505E-0	2123586E-03	01385626-03	. 4662153E-04	2559911E-04	.5377716E-04	. 5527127E-04	.5452598E-04	. 4556136E-04	. 4556488E-04	.5143281E	4150946E-U4	. 9903422E-0	31071704	. 2560968E	8932431E-04	.6605897E-04	1.6243043E-04	4684907E-U	2742577F-04	10777136-0	.0287972E-0	7.4705193E-0	7.5985854E-U	. 4246466E-0	. 1685145E-0	.1461911E-0	1.1461911E-0	3.8163682E-U	1.36473/ZE-U.	14619116-04	1258964E-0	8163682E	878189E-0	.37116056-0	711605E-0	9096	0 20440 C34	
	01.5	* '	ا ا		۲ ا	7 -	; =	5 5		- 6	10	5	5	5	5	킮	5	5	58	5 6	35	10	5	5	5 8	56	ᇙ	5	5	5.	55	5 6	5	5	5	56	į۶	55	5	5	5		5 6	5 6	5
ANGLE E	94864E	629E	96.39	. 5996760E	2270135E	100 100 100 100 100 100 100 100 100 100	1008778F	1001000	100000E	5999053F	\$999174E	\$999346E	5999345E	.5999445E	. 5999454E	.5999654E	5999548E	5999658E	3999701E	3555575E	3999774F	399981 DE	5999834E	2.5999837E	. 5999853E	. 3477884E	3999889E	5999897E	5999925E	5999924E	399995DE	5999938E	5999885E	5999885E	3999618E	. 5998635E 4992744F	32227 400000	6	39	29	3	3	. 199	2.5997131E	
9C105-#C605	87	. 2823296E-05	•	84531E	. 3728628-UJ	n w	77440E-05		801770E-03	19298E-06	64551E-05	862228E-05	54880E-05	96649E-05	ĸ	78601E-05	60553E-05	89948E-05	. 1484833E-05	02E-06	8881846-03	7 41549685	444092E-05	757202E-05	1.1444092E-05	.29425U3E-U3	1923340E-05	6239624E-05	2.6702881E-05	4.19616706-05	- ·	4.9591064E-05	•		ď	3.8146973E-06 2.	"[:	ŗα	17578E-0	.8146973E-0	.6702881E-0	.6702881E-	32275E-	1.9073486E-05	604001E
(11) *C-1(60)	2964180E-03-1	ŏ	12570	4077635E-03-	2263	6919		0.00E-0	0.3287E-0.	ζ:	0-300E-0			7668E-0	24686E-0	95245E	97141E-0	36940E	37487E-02-	75951E-02-	20613E	10047	• (N	50848E-02-	.7742081E-02-	94012E-01-	04662E-01-	49960E-01-	78316E-01-	08960E-01-	340736-0		6113	61130E	04398E-	28873E-	14000	- 10 27 27	06.30SE	03036E	22006E-	.7322006E-01	.6126362E-01	.4251938E-01-	. 1312332E-01
120	0-2	9-2.	9-3	÷1		9		× 0	<u> </u>				-	-2	2-2	1-2	1-3	2-3	+-	† ! = :		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	2-7	02-3.66	02-9	25.	122	22	02-1	02-1	2-2	12	02-2	02-2	02-2	25-2	770	7 - 7	02-2	02-2	02-2	02-2	02-2	22.2	7-70
UC25	3.2802051E	1.2802051E	3.2802051E	5. 2802051E	7.2802051E	3.2802051E	1.0280205E	1. 2280205E	1.4280205E	1.6280205E	1.8280203E	4.050000E	2.8280203E	3,2280205E	3.6280205E	4.0280204E	4.4280205E	5.2280204E	6.0280204E	6.8230205E	7.6280205E	8.4280203E	1.0828020E	1.2428020E	1.4028020E	1.5628020E	1.7228020E	2.2028020E	2.5228020E	2.8428020E	3.16280206	3.4828020E	3. 5028020C	4.1228020	4.28280206	4.4428020	4.6028020	4.1228020	4.2828020	4.3628020	4.4428020	4.44280206	4.4828020	4.5228020	4.5628020
- 1	0	0	0	0	0	о •	-	-	-		'+			=	: =	=	=	=	Ξ	= :	= :					-	7	7 2	: ::	~		11:		Ö	ö	6	51	Ьè	š:c	ö	0	Ö	0	Ö.	0
ST DHTE	1 3.2802163E	2 4.2801423E	3 5.2802443E	4 6.2802376E	5 7.2802491E	6 8.2802662E	7 1.0280153E	8 1.2280224E	9 1.4280193E	10 1.6280214E	1.828024ZE	30010070.7 T	3 4.440044E	3 2 2 8 0 2 2 4 F	A 7. 4280154E	7 4.0280238E	8 4.4280252E	19 5.2280149€	10 6.0235247E			:		25 1.24280276 (_ L	~ -		-		- i -	^ -	~ 'm	•	\sim	41 4.6043275	42 4.1228375E		45 4 36299126	46 4.4431644	47 4.4431644	48 4.48331131	49 4.5235268	30 4.363842
	-								•	~ •			. •	•	-		,•-		•	•					,							!				1			1		;			•	

Table 6-1. Output Data from Tape 10.

0. V(10)-W(60) ANGLE E DELT-E ANGLE ANGLE E C. 1 6.4849954E-05 2.5993686E 01 6.3133561E-03 0. E-02 1.4499856E-04 2.5990346E 01 9.6538320E-03 0. E-02 1.4499850E-04 2.5990346E 01 9.6538320E-03 0. E-02 2.2388194E-04 2.5990346E 01 9.6538320E-03 0. E-02 2.2388194E-04 2.5990346E 01 1.5116489E-02 0. E-02 2.2388194E-04 2.5980895E 01 1.5103486E-02 0. E-03 1.177064E-04 2.5980895E 01 1.5103496E-02 0. E-03 1.177064E-03 2.5980895E 01 1.9103399E-02 0. E-03 3.492710E-02 0. E-03 3.492710E-03 2.5980895E 01 3.4666189E-02 0. E-03 3.492710E-03 2.5980895E 01 4.1081667E-02 0. E-03 3.4927100E-03 2.5980895E 01 4.1081667E-02 0. E-03 3.492710E-03 2.5980895E 01 4.1081667E-02 0. E-03 3.4927100E-03 2.5980895E 01 4.1081667E-02 0. E-03 3.4927100E-03 2.5980895E 01 4.1081667E-02 0. E-03 3.228150E-03 2.5980895E 01 4.1081667E-02 0. E-03 3.492710E-03 0. E-03 3.228150E-03 2.5980895E 01 4.1081667E-03 0. E-03 3.228150E-03 2.5980895E 01 1.0980730E-03 0. E-03 3.228150E-03 2.5980895E 01 1.0980730E-03 0. E-03 3.228150E-03 2.5980895E 01 1.6990730E-03 0. E-03 3.228150E-03 2.5980895E 01 1.6990730E-03 0. E-03 3.2280896E 01 2.5980895E 01 1.6990730E-03 0. E-03 3.238089E-03 2.58808075E 01 1.6990730E-03 0. E-03 3.238089E-03 2.5880875E 01 2.8460416E-03 0. E-03 3.238089E-03 2.588660E-03 0. 2.8460416E-03 0. E-03 3.238089E-03 2.588660E-03 0. 2.8460416E-03 0. E-03 3.228669E-03 2.588689E 01 2.411571E-03 0. E-03 3.228669E-03 2.588689E 01 2.24680E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.4220480E-03 0. E-03 3.422089E 01 4.7001114E-03 0. E-03 3.422089E 01 4.7001114E-03 0. E-03 3.422089E 01 4.7001114E-03 0. E-03 3.422089E 01 4.7001114E-03 0. E-03 3.422089E 01 4.7001114E-03 0. E-03 3.422089E 01 4.7001114E-03 0. E-03 3.422089E 01 5.762298E-03 0. E-03 3.762288E-03 0. E-03 3.422208E-03 0. E-03 3.422208E-03 0. E-03 3.42220										,					1 1 1 1 1 1 1						1		-				1					1 1 1 1 1 1		1 1 1 1 1				1 : 1					
02 4/628020E 02-1674943E-02 1/49389EE-05 2.999368E 01 6.336541E-05 3.40139E-03 0. 4628020E 02-1674943E-02 1.449389EE-05 2.999368E 01 6.336541E-03 0. 4628020E 02-9.549991E-02 1.449389EE-05 2.999368E 01 1.203436EE-03 0. 4628020E 02-9.549991E-02 1.203436E-01 1.203436EE-02 0. 4628020E 02-4.773102E-02 2.28898EE-04 2.599368E 01 1.203436EE-02 0. 4628020E 02 2.108982E-01 1.744589E-04 2.5984883E 01 1.5116489E-02 0. 4773102E-02 1.2026402E-01 1.747369EE-04 2.598689E 01 1.5116489E-02 0. 47738020E 02 2.108982E-01 1.747569EE-04 2.598689E 01 1.5116489E-02 0. 47628020E 02 2.108982E-01 1.77765EE-03 2.598689E 01 4.108167E-02 0. 47628020E 02 2.108982E-01 1.44689E-03 2.598689E 01 1.5116489E-02 0. 47628020E 02 2.108982E-01 1.747669E-03 2.598699E 01 4.108167E-02 0. 47628020E 02 2.108982E-01 1.747669E-03 2.598699E 01 4.108167E-02 0. 47628020E 02 2.108982E-01 1.741689E-03 2.598699E 01 4.108167E-02 0. 47628020E 02 2.108982E-01 1.741689E-03 2.598699E 01 4.108167E-02 0. 47628020E 02 2.108982E-01 1.741689E-03 2.598699E 01 4.108167E-02 0. 47628020E 02 2.108982E-01 1.446802E-02 2.598599E 01 1.408167E-02 0. 47628020E 02 2.1087012E-01 3.4022100E-03 2.598599E 01 1.408167E-02 0. 47628020E 02 2.1087012E-01 3.4022100E-03 2.598599E 01 1.408167E-02 0. 47628020E 02 2.1087012E-01 3.289626E 01 1.408626E-01 0. 47628020E 02 1.778692E-01 0. 48628020E 02 1.778692E-01 0.289626E-01 0.289626E 02 1.778692E-01 0. 48628020E 02 1.778692E-01 0. 48628020E 02 1.778692E-01 0. 48628020E 02 1.778692E-01 0. 48628020E 02 1.5462904E-01 0. 48628020E 02 1.5462904E-01 0. 48628020E 02 1.5462904E-01 0. 48628020E 02 1.5462904E-01 0. 48628020E 02 1.5462904E-01 0. 48628020E 02 1.5462904E-01 0. 48628020E 02 1.5462904E-01 0. 48628020E 02 1.5462904E-01 0. 48628020E 02 1.5462904E-01 0. 48628020E 02 1.5462904E-01 0. 48628020E 02 1.5462904E-01 0. 48628020E 02 1.5462904E-01 0. 48628020E 02 1.7462802E-01 0. 48628020E 02 1.7462802E-01 0. 48628020E 02 1.7462802E-01 0. 48628020E 02 1.7462802E-01 0. 48628020E 02 1.7462802E-01 0. 48628020E 02 1.7462802E-01 0. 48628020E 02 1.7462802E-01 0. 48							•		_•	•	•	•				•	•	•		•		•		•					•		•						•		•				
V(11)*C-94(60) V(11)*C-94(60) V(11)*C-94(60) V(11)*C-94(60) V(12)*C-94(60) V(11)*C-94(60) V(10)*C-94(60) V(11)*C-94(60) V(10)*C-94(194)*E-01 (449994€-05 2.5993686 01 9.6338320E-03 02 4.628020E 02-9.5439911E-02 1.44939950E-04 2.5990346E 01 9.6338320E-03 02 4.628020E 02-9.5439911E-02 1.44939950E-04 2.5990346E 01 9.6338320E-03 02 4.628020E 02-9.5439911E-02 1.28990346E 01 9.0538320E-03 02 4.628020E 02 1.2289402€-04 2.5990346E 01 1.3116499E-02 02 4.628020E 02 1.2289402E-01 7.479248E-04 2.5990346E 01 1.3116499E-02 02 4.728020E 02 1.2289029E-02 1.349089E-03 2.599736E 01 1.3116499E-02 02 4.728020E 02 1.2289020E-01 7.479248E-04 2.598089E-01 1.3116499E-02 02 4.728020E 02 2.498620E-01 1.445064E-02 02 4.728020E 02 2.498620E-01 1.445064E-02 02 4.728020E 02 2.498620E-01 4.6280262E-02 2.5958918E 01 4.1081667E-02 02 4.728020E 02 5.4196620E-01 4.6280262E-03 2.5958918E 01 4.1081667E-02 02 4.728020E 02 5.4196620E-01 4.6280262E-03 2.5958918E 01 4.1081667E-02 02 4.728020E 02 5.4196620E-01 4.6280262E-03 2.5958918E 01 4.1081667E-02 02 4.728020E 02 5.4196620E-01 4.6289262E-03 2.5958918E 01 4.1081667E-02 02 4.728020E 02 5.4196620E-01 4.6289262E-03 2.5958918E 01 4.1081667E-02 02 4.728020E 02 5.4196620E-01 4.6289262E-03 2.5958918E 01 4.1081667E-02 02 4.728020E 02 5.419620E-01 4.6289262E-03 2.59583918E 01 4.1081667E-02 02 4.728020E 02 5.419620E-01 4.6289262E-03 2.59583918E 01 4.1081667E-02 02 4.728020E 02 5.419620E-01 4.6289262E-02 2.59903392E-01 4.62903392E-01 4.6390372E-01 4.8358020E 02 2.4293946E 00 2.64164E-02 2.5816020E 02 2.4293946E 00 2.542930E-02 2.5816020E 02 2.5290496E-01 4.4355072E-01 4.8478020E 02 2.525946E-01 4.4466416E-01 4.8478020E 02 2.525946E-01 2.5526000E-01 2.5526469E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526449E-01 2.5526549E-01 2.5526549E-01 2.5526549E-01 2.5526549E-01 2.5526549E-01 2.5526549E-01 2.5526549E-01 2.55) · · · · · · · · · · · · · · · · · · ·	·						0	, CI	_	٠	0		•	2:0	2	0	.	Ö	0	200	3 C		9	0	0	0	9	0	0	00	5	0 6) (2	96	3	Ö		Ö
V(2) V(1)×C-W(6D) V(10)×G-W(6D) V(10) W(6D) V(2D) V(10)×C-W(6D) V(10) W(6D) V(2D) V(10)×C-W(6D) V(10) W(6D) V(2D) V(10)×C-W(6D) V(10)×G-W(6D)	1	667E-02	70 33 66 66	081667E-02	266189E-02	26.75.00	2005-02	24 (E-U4	472E-02	€13E-02	585171E-01	383171E-01	273E-01	275E-01	0735-01	7 205-01		10-37+77	;	10-31/01/1	4004166-01	.846U416E-U1	10000000	. 4320142E-01	229416F-01	0011146-01	80E-01	ē	ē	672985E-01	.0448710E-01	2975DE	-3997450E-	1000	7.1430992E-01 0.		7.07.156E-01.0.		4 70 70 KNE - 01	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3. 16339043E-01 0.	3. 4254191E-01 0	٠.
V(2) V(1)>+C-N(60) V(10)-9(6 02 4.6028020E 02-9.5439911E-02 1.44958506 03 4.6428020E 02-9.5439911E-02 1.44958506 04 4.6428020E 02-9.5439911E-02 1.44958506 02 4.6628020E 02 1.9802094E-02 2.28881346 02 4.7028020E 02 1.9802094E-01 7.2479248 03 4.7428020E 02 2.1018982E-01 1.91709538 03 4.728020E 02 2.1018982E-01 1.97709538 03 4.728020E 02 3.5182571E-01 3.40271000 03 4.728020E 02 3.5182571E-01 3.40271000 03 4.728020E 02 3.5182571E-01 3.40271000 03 4.728020E 02 3.5182571E-01 3.40271000 03 4.728020E 02 3.5182571E-01 3.40271000 04 7928020E 02 1.77513924E 00 3.32398999 05 4.8128020E 02 1.7513924E 00 1.2409210E 05 4.8128020E 02 1.7513924E 00 1.2409210E 05 4.8128020E 02 1.7513924E 00 1.2409210E 05 4.8128020E 02 1.7513924E 00 1.2409210E 05 4.8128020E 02 1.7513924E 00 3.252988999 06 4.8378020E 02 1.755320E 00 3.252958999 07 4.8378020E 02 1.755320E 00 3.25296400E 07 4.8528020E 02 4.8191681E 00 2.5856400E 08 4.8758020E 02 4.8191681E 00 3.2129659E 09 4.8758020E 02 4.8191681E 00 3.2129659E 00 4.8778020E 02 8.5133842E 00 1.7445759E 01 4.8778020E 02 8.5133842E 00 1.1283607E 02 4.8778020E 02 8.6133842E 00 1.1283607E 03 4.8778020E 02 8.6133842E 00 1.2757263E 04 8778020E 02 8.6133842E 00 1.2757263E 05 4.8778020E 02 8.6133842E 00 1.2757263E 07 4.8778020E 02 8.6133842E 00 1.2757263E	10.000000000000000000000000000000000000	1 2.5958918E					300000000000000000000000000000000000000	4.020000	Z. 5925401E	Z. 5911684E	2.5894148E	140E	437E	2.5671027E	2.5856449E	2 35 3	100	11000	17.00	1000	3000	10.40	1000	0041E	ناأ	-	2.547795	2,547795	2.5450830E	3270E	5513E 01	7.02E 01	2.334UUZ3E 01 0	100	2.3283499E 01 2.8288767E 01	2 4222460		104	0 100	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2.5083744F 31	2.5037438F 01	0 4990F45F 01
02 4.6028020E 02-1.6741943E 02 4.6028020E 02-9.5439911E 02 4.6028020E 02-9.5439911E 02 4.6028020E 02-9.5439911E 02 4.728020E 02-1.0268402E 02 4.728020E 02-1.0268402E 02 4.728020E 02-2.1018982E 02 4.728020E 02-3.4186630E 02 4.728020E 02-3.4186630E 02 4.728020E 02-3.4186630E 02 4.7828020E 02-3.4186630E 02 4.7828020E 02-1.4322914E 02 4.8128020E 02-1.4322915E 02 4.8378020E 02-1.4322815E 02 4.8378020E 02-1.4322815E 02 4.8378020E 02-1.555060E 02 4.8378020E 02-1.555060E 02 4.8378020E 02-1.555060E 02 4.8378020E 02-1.555060E 02 4.8378020E 02-1.555060E 02 4.8378020E 02-1.555060E 02 4.8378020E 02-1.555060E 02 4.878020E 02-4.095568E 02 4.878020E 02-4.095568E 02 4.8778020E 02-5.51705139E 02 4.8778020E 02-5.513842E 02 4.8778020E 02-5.513842E 02 4.8778020E 02-6.3705139E 02 4.8778020E 02-7.0464859E 02 4.8778020E 02-7.0464859E 02 4.8778020E 02-9.0341530E 02 4.8778020E 02-9.0341530E 03 4.8778020E 02-9.0341530E	100000	27100E		2 2 2 2 2 2	2629E	200	77761945-0		4077106	030887	8402106	91021g	2198E				4000E		7605	43735E	1000		1,1	27185E-	279365-	Į ų			57263E	352684E	1.6060143E 00	Э,	2 170867E 00	00 100000000000000000000000000000000000	2.57.8576E UU	2 7876472F OD	۰-) M	7. 4214194F 00	3.64901255	4.0866089F DO	4.5249557E 00	4.9630165E DO
02 4 628020E 02 4 628020E 02 4 628020E 02 4 628020E 02 4 628020E 02 4 728020E 02 4 7428020E 02 4 7428020E 02 4 7428020E 02 4 7428020E 02 7 8 788020E 02 7 8 8 788020E 02 7 8 8 788020E 02 7 8 8 788020E 02 7 8 8 788020E 02 7 8 8 788020E 02 7 8 8 788020E 02 7 8 8 788020E 02 7 8 8 788020E 02 7 8 8 788020E 02 7 8 8 788020E 02 7 8 8 788020E 03 7 8 8 788020E 04 8 8 788020E 05 7 8 8 788020E 05 7 8 8 788020E 05 7 8 8 788020E 05 7 8 8 788020E 05 7 8 8 788020E 05 7 8 8 788020E	10642014	◆186630E		4186630	6185760E-	03707126	7220016		1706001	30187754	44765 IC	-	4	2	422	726	ě) \ \		90	0	0 to 1	77766	37051	046485	80015	2 8.6133842E 00	6133	34	ρ (Φ (2860	900			9 0		2 1.2738235E 01	31163	Q.	384	455	2 1.5231567E 01	1.5885216E 01
	74200205	4.7628020E	1620000	4. 1628020E	4.7728020E	4.7828020E	4.7928020F		4.004004064	4.01.000.00	4.84.8UZUE	300000000	4.827802CE	4.8328020E	4.8378020E	4.8428020E	4.8478020F	4 200000	44004004004	4.86.280.20F	10000000	# . A 6 1 30 20 1	4.8678020F	4.8703020E	4.8728020E	4.8753020E	4.8778020E	4.8778020E	4.879052CE	*. 8803020E	4.8813320E	4.00400406	4.8853020F	4 004RA20F	4.8878020F	4.8890520E	4.8903020E	4.8915520E	4.8928020E	4.8940520E	4.8965520E	4.8990520E	4.9015520E
ଡୁଞ୍ଚନନ୍ତ୍ରବର୍ତ୍ତର ବର୍ଷ ବର୍ଷ ବର୍ଷ ବର୍ଷ ବର୍ଷ ବର୍ଷ ବର୍ଷ ବର୍	4 7710944F	4.7710944E	4 77100446	4.17.0%	4.7821606E	4. 7933971E	4.80484875	9 01 C R 2 - R P	400000	1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1966600 C	# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.0473242E	4.8538543E	4.360552E	4.8674426E		10 4 4 6 1 0 0 · 4	HOUNDON'S T	MOSEMMON A	I WELL TO THE	4.90133735	4,90528566	#. 90904×9E	4.9125068E	4.915756SE	4.9184014E	4.9184014E	はないののののです。	4. VO 404	4.744.73%E	4.24-75-76 4.50-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6	4.02298326	A 92 23947E	4.9235436E	4.9237142E	4.9238144E	4.9238521E	4.9238352E	4.9237704E	4.9235157E	4.9231305E	4.9226385E

		<u> </u>	WHOTIM	-02
DELT-H			911701E-03	9117916193
ANGLE A		်ဝင်စ်စ်စ်စ်စ် စ်ခံခံခံ		911771E-03-9.8
111E	23.00	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3295£ 01 9.8.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2044 100 100 100 100 100 100 100 100 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2	े.स १८६
G007 APP G00 2.440 BE 00 2.4865 TE 00 2.4865 TE 00 2.4824 TE 00 2.4824 TE 00 2.4824 TE 00 2.48746	00 2, 46, 25, 66, 25, 66, 27,		20 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	92 1, 29 93 1, 13
COD COLONE	6 01 1 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	01 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	14.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	E_02 1.466493 E_02 1.563069
70(11)#C-#(6 02 1.7130016 02 1.7724888 02 1.8304085 02 1.84204085	002 2.1518730 002 2.1518730 002 2.3487330 002 2.4421440 002 2.5440874 002 2.7723933 002 2.888334 002 2.8883348	2 4 2 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3	2. 964867 0. 6. 273528 0. 6. 273528 0. 6. 2691314 0. 7. 996404 0. 7. 9969130 0. 7. 9990130 0. 8. 9791607 0. 1. 0038538 0. 1. 1078929 0. 1. 1078929 0. 1. 1179928 0. 1. 1179928 0. 1. 1179928 0. 1. 1179928 0. 1. 1179928 0. 1. 1179928 0. 1. 1179928	02 1.61021161 02 1.70673351
1	. ,			
5LHNTR - 9214+6E 0; - 9207153E 0; - 91839687E 0; - 9165636E 0;	9148904E 9148904E 9111629E 9092530E 9073193E 901420E 89014326E	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.8111172E 02 4.8111172E 02 4.8038703E 02 4.7828773E 02 4.7828773E 02 4.7687538E 02 4.7687538E 02 4.7582598E 02 4.759058E 02 4.759058E 02 4.669104E 02 4.669104E 02 4.669104E 02 4.669104E 02 4.669104E 02 4.669104E 02 4.669104E 02 4.669104E 02 4.669104E 02 4.669104E 02 4.669104E 02 4.6675640E 02	4,5896591E_0.
100 100 100 100 100 100	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			150

V VERV SMALL FEB. 3,1961 E=2600

0.0 , III 'n

10**33/R**12

SPHERE

SIMPLE

: - (4)	ត្រូវជាជា សេត្តស្រ ស្រួសស្រ សេត្តស	**************************************	. 4 1 1	+ 115) in the primary primary	2 \$ - 1 1 60	••	er en e	- •													
5578519	5106232E 4953725E 4857310E 4818833E	40000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1000 1000 1000 1000 1000 1000 1000	4 30 0 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4018750	9 10 - 9 10 10 10 10 10 10 10 10 10 10 10 10 10		4 9 4 0 0					ı			:			!		
02 6.1 02 6.2	002 002 002 002 002 002 002 002 002 002	O WILL	קיפי נייונ		100	46.	4 M	2 N O	n -			•					; ;			•		
65520E 65520E 65520E	365520E 965520E 565520E 165520E	765520E 965520E 165520E	3653500 3653500 3633190	2464 2464 2464 2464 2464 2464 2464 2464	556552E	83655E	1 - 60 0 LP 30 6 50 0 1 P	676462 946462 146463	#*C296#					,			<u>:</u>			•		1
	8920 4039 7354 7324	W W W W	4.899618	4.00000	6. 36561 14. 36561	5.673210	5.067626 6.067626	6.199121	•728cc.o								:					
0.0	2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4	0000	0000				00	000	5		•			· :	,				•	, I		
.6583028E	2.0255327E 2.2007836E 2.3703752E 2.5342726E	6924607E 9917554E 2685715E	7575679E 9717800E	5036583E	.2260904E	5342812E	. 760 0017E	.0628677E	37339E	٠										:		
252	0000	922	20,85 20	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200	02 5	9	9 20			į	•		:								
•	. 5553746E . 5553746E . 5174736E					.2635686E	8943 9612	- m	86586											,		
5.8	888	888	5505	555	55.	2-16	01-3.	01-3. 01-4.	01-4.		!	:.		-		1					•	
DEL 1-E 5417756E 7407436E	2. 1444625E 2. 3482526E 2. 3482526E	0356381E 6341610E	6269197E 9843011E	8798959E	9712850E	. 4417752E	438 126	9170285E	9 80			:							1			
55	0000	5555	888	885	្រំ 5 0 8	55		010	_ ;	; ; ;					:			1			:	
HANGLE H				(2) 1 (0) E-0		,	,		:			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:		1 4 4 1 1 E			:	1 1 1 1 1	:		

ACKNOWLEDGEMENTS

This problem has been discussed with numerous groups interested in its solution. Special mention should be made of Dr. Milford Davis and Dr. Stanley Greenfield of RAND Corporation with whom countless hours were spent (in the early part of 1959) in mutual search for the best approach to a more general problem of which this one is a subset. During that time discussions with Dr. I. Yabroff and Dr. J. Brandstatter from Stanford Research Institute were also helpful, for they introduced the writer to Haselgrove's published papers. But most of all the writer would like to express his gratitude to Dr. Jennifer Haselgrove, Manchester University, England, for the private communications through which he had access to her then unpublished works.

Because this effort could never have been possible without financial support the writer would like to express his gratefulness to General Electric Company, whose research funds permitted the initiation of this work, and to the government agencies ARPA, through AFCRL, and DASA whose funding has carried this problem to its present state of development.

REFERENCES

- Synge, J. L. (a) Hamilton's Method in Geometrical Optics, Chapter 2, University of Maryland, Institute of Fluid Dynamics and Applied Mathematics, Lecture Series 9 (1951); (b) Geometrical Mechanics and de Broglie Waves, Chapter 2, Cambridge University Press, London (1954).
- 2. Haselgrove, J. (a) Ray Theory and a New Method for Ray
 Tracing, Report on Conference on "Physics of the Ionosphere," p. 355, The Physical Society, London, (1955);
 (b) Proceedings of Physical Society, London B, LXX, 653;
 (c) With C. B. Haselgrove, Twisted Ray Paths in the Ionosphere I, preprint of paper to be published and sent in
 private communication to the writer (1959).
- 3. Mitra, S. K. The Upper Atmosphere, The Asiatic Society Monograph Series, p. 184.
- 4. Yabroff, I. Computation of Whistler Ray Paths. SRI Project.
 2241, Menlo Park, California: Stanford Research Institute,
 December 1959.
- Hartree, D. R., Michel, J. G. and Nicolson, P. Report on Conference on "Meteorological Factors in Radio Propagation", London: The Physical Society, p. 161, 1946.
- 6. Wong, M. S. Proceedings of the Institute of Radio Engineers, New York, p. 1628, 1958.
- 7. Dudziak, W. F. The Time Dependent Blackout Problem, SP-123
 Santa Barbara, California: Technical Military Planning Operation, General Electric Company. 31 March 1961. S/RD
- 8. Millman, G. H. "The Geometry of the Earth's Magnetic Field at Ionospheric Heights." Journal of Geophysical Research, Vol. 64, p. 717, July 1959.

- 9. Chapman, S. The Earth's Magnetism. Methuen and Company. 1951.
- 10. Archer, D. H. Position and Rate Errors Due to Refraction
 Through Ionized Regions. RM 59TMP-26, Santa Barbara,
 California: Technical Military Planning Operation, General
 Electric Company, December 31, 1959.
- 11. DASA 1229, "Electromagnetic Blackout Guide," Parts I and II.

 (Effects of High Altitude Nuclear Bursts on Electromagnetic
 Waves). RM 61TMP-14, Santa Barbara, California: Technical
 Military Planning Operation, General Electric Company,
 S/RD
- 12. Dudziak, W. F. Computer Solution of Transient and Quasi-Equilibrium Atmospheric Deionization Equations. RM 61TMP-33, Santa Barbara, California: Technical Military Planning Operation, General Electric Company, May 1, 1961.
- 13. Reference Manual 709/7090 FORTRAN Programming System, C28-6054-2, International Business Machines Corporation, White Plains, New York.