

	C-127			1-1-1	5	ubje	et Co	de: 1	SAS	203
Roll No:										

BTECH (SEM II) THEORY EXAMINATION 2024-25 **ENGINEERING MATHEMATICS-II**

TIME: 3 HRS

M.MARKS: 70

Printed Page: 1 of 3

Note: Attempt all Sections. In case of any missing data, choose suitably. All the symbols have their usual meaning.

SECTION A

1.	Attempt all questions in brief.	02 x	7 = 14
Q no.	Question	CO	Level
a.	Find the general solution of the following differential equation: निम्नलिखित अवकल समीकरण का व्यापक हल ज्ञात कीजिए: $\frac{d^3y}{dx^3} + \frac{dy}{dx} = 0$	1	К3
b.	Find the Particular Integral for the following differential equation: निम्न अवकल समीकरण का विशेषस माकलज्ञातकरें: $y'' - 8y' + 16y = e^{4x}$	1	К3
c.	Find Laplace Transform of f(t) = sin 2t cos 3t f(t) = sin 2t cos 3tकालाप्लास रूपांतरण ज्ञात करें.	2	К3
1.	Find inverse Laplace Transform of $F(s) = \frac{s-1}{s^2+3s+2}$. $F(s) = \frac{s-1}{s^2+3s+2}$ काइन्वर्स लाप्लास रूपांतरण ज्ञातकरें.	2	K3
Э.	Test the convergence of the following sequence: निम्न अनुक्रम की अभिसरणता की जांच करें: $a_n = \begin{cases} 1 & \text{if } n = 2^p \text{ for some } p \in N \\ \frac{1}{n} & \text{otherwise} \end{cases}$		K4
•	Show that the following function is harmonic: सिद्धकरेंकिनिम्नलिखितफलनहार्मोनिकहै: $h(x,y) = x^2 + xy - y^2$	4	K4
	Find the residue at the simple pole of the following function: निम्नलिखितफलनकेसाधारणध्रुवपरअवशेषज्ञातकरें: $f(z) = \frac{8z^3}{(z-1)(z+1)^3}$	5	K5

SECTION B

2.	Attempt any three of the following:	07 x	3 = 21
a.	Find the general solution of the differential equation	1	K2
a de la companya de l	अवकल समीकरण का सामान्य हल ज्ञात कीजिए	NO.	
	$y'' - 2y' + 2y = x + e^x \cos x$		
b.	Solve the following differential equations using Laplace Transform	2	K3
	लाप्ला सट्रांसफॉर्म का उपयोग करके निम्नलिखित अवकलस मीकरणों को		
	हल करें		
	$\frac{d^3y}{dt^3} + 2\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0; y(0) = 1, y'(0) = y''(0) = 2$	g.	

Roll No:

M.MARKS: 70

BTECH (SEM II) THEORY EXAMINATION 2024-25 ENGINEERING MATHEMATICS-II

TIME: 3	HRS	-
		Committee from the committee of the comm

TIME: 3	HRS	3	K4
c.	Test the convergence of the following series निम्रलिखित श्रंखला के अभिसरण का परीक्षण करें		
	$\sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots (2n)} x^{2n}$		
d.	If $f(z) = u + iv$ is analytic, and $u - v = \frac{e^v - \cos x + \sin x}{\cosh y - \cos x}$, find $f(z)$	4	K5
	such that $f\left(\frac{\pi}{2}\right) = \frac{3-i}{2}$.		
	यदि $f(z) = u + iv$ विश्लेषणात्मक है, और $u - v = \frac{e^y - \cos x + \sin x}{\cosh y - \cos x}$		
	,ऐसा $f(z)$ खोजेंकि $f\left(\frac{\pi}{2}\right) = \frac{3-i}{2}$.	5	K5 (
e.	Evaluate the following integral using contour integration. समोच्च एकीकरण का उपयोग करते हुये निम्नालेखित समाकलका मूल्यांकन	3	
	करें $\int_{C} \frac{12z-7}{\left(z-1\right)^{2}\left(2z+3\right)} dz$ where, c is the circle $ z =2$ जहाँ, c वृत्त $ z =2$ है.		5 .
	where, c is the circle $ z =2$. जहाँ, c वृत्त $ z =2$ है.	The state of the s	

SECTION C

•	Attempt any one part of the following:	0/ X	I = 07
3.	Find the general solution of the differential equation.	1	K5
a.	अवकल समीकरण का सामान्य हल ज्ञात कीजिए:	1,15	
	$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 4y = x \sin(\log x).$		
	Solve the following set of simultaneous linear differential equations:	1	K5
b.	युग्म रेखिक अवकल समीकरणों के निम्नलिखित सेट को हल करें:		
	$\frac{dx}{dt} = 3x + 8y$		
	$\frac{dt}{dy} = -x - 3y$		
	at		

_	4	Attempt any one part of the following:	07 x	1 = 07
_	4. <i>P</i>	Attempt any one part of the following.	2	K5
	a.	Find the Laplace Transform of the following function:	4	
	-	निम्न फ़ंक्शन का लाप्लास ट्रांसफ़ॉर्म ज्ञात करें:		
		$cte^t \sin t$		
		$\int_0^{\infty} \frac{dt}{t} dt$.		ral.
1		마음보다 그 아이들이 나는 아이들이 그리를 걸음을 다 먹는 생각이다.		
				Janes Janes

	-	Section Contract			Sı	ıbjec	t Co	de: I	BASZ	203
Roll No:										

Printed Page: 3 of 3

BTECH (SEM II) THEORY EXAMINATION 2024-25

	ENGINEERING MATHEMATICS-II			
TIME:		M.	MARK	S: 70
b.	Use convolution theorem to evaluate निम्न का मूल्यांकन करने के लिए कन्वोल्यूशन प्रमेय का उपयोग करें $L^{-1}[\frac{p^2}{(p^2+4)(p^2+9)}]$	2	K5	
5.	Attempt any one part of the following:	07 x	1 = 07	
a.	Examine the convergence of the following series: निम्नतिखित श्रृंखला के अभिसरण की जाँच करें:	3	K4	
b.	$1 + \frac{\alpha + 1}{\beta + 1} + \frac{(\alpha + 1)(2\alpha + 1)}{(\beta + 1)(2\beta + 1)} + \frac{(\alpha + 1)(2\alpha + 1)}{(\beta + 1)(2\beta + 1)} \cdot \frac{(3\alpha + 1)}{(3\beta + 1)} + \cdots$ Obtain the Fourier series for the function $f(x) = x^2, -\pi \le x \le \pi$. Hence, or otherwise show that	3	K5	
	फ़ंक्शन $f(x)=x^2, -\pi \leq x \leq \pi$ के लिए फ़्रियर श्रृंखला प्राप्त करें। अतः /अन्यथा दिखाओ: $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$		C-	(2)
6.	Attempt any <i>one</i> part of the following:	07 x	1 = 07	_
a.	ार्ग यदि $f(z) = \begin{cases} \frac{x^3y^5(x+iy)}{x^6+y^{10}}; z \neq 0, \\ 0; z = 0 \end{cases}$ show that $f(z)$ is not analytic at $z = 0$ even if Cauchy-Riemann equations are satisfied at origin. दिखाएँ कि $z = 0$ पर $f(z)$ विश्लेषणात्मक नहीं है, भले ही कॉशी-रीमैन समीकरण संतष्ट होरहीहों।	\$	K 4	
b.	Show that $f(z) = z z $ is nowhere analytic. दिखाएँ कि $f(z) = z z $ कहीं भी विश्लेषणात्मक नहीं है।	4	K4	
7.	Attempt any one part of the following:		1 = 07	
a.	State Cauchy's Integral Theorem. Verify Cauchy's theorem for $f(z) = e^{iz}$ integrated along the boundary of the rectangle $1-i, 1+i, -1+i, -1-i$ in counterclockwise direction. a a a b a b a a b a		K4	
b.	Use contour integral to evaluate: कंटूर इंटीग्रल का उपयोग कर के मूल्यांकन करें: $\int_0^{2\pi} \frac{\cos 2\theta d\theta}{5 + 4\cos \theta}$	5	K5	