《高等数学》单元自测题

第五章 定积分

第六章 定积分的应用

专业		姓名	学号
— 、	真空题:		
1. ∫	$\int_{-\pi}^{\pi} x^4 \sin x dx = \underline{\qquad}.$		
2. ∫	$\int_{0}^{2} f(x)dx = $	$f(x) = \begin{cases} x^2, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \end{cases}$	
3. 利	用定积分的几何意义计算积分 $\int_{-2}^{2} \sqrt{4-4}$	$-x^2 dx = \underline{\hspace{1cm}}$	
4. 正弦曲线 $y = \sin x$ 在 $[0,\pi]$ 上与 x 轴所围成的平面图形绕 x 轴旋转一周所得旋转体的体积为 $V = $			
5. ∫	$\int_{1}^{+\infty} \frac{dx}{x^4} = \underline{\qquad}.$		
	单项选择题 「列说法中正确的是()。		
(A)	f(x)在[a,b]上有界,则 $f(x)$ 在[a,b]	b]上可积;	
(B)	f(x)在[a,b]上连续,则 $f(x)$ 在[a	, b]上可积;	
(C)	f(x)在[a,b]上可积,则 $f(x)$ 在[a,b]	,b]上连续;	
(D)	以上说法都不正确。		
2. i	$ \xi f(x) = \begin{cases} 2, & x \le 1 \\ 2x, & x > 1 \end{cases}, \emptyset \varphi(x) = \int_0^x f(x) dx $	(t)dt 在[0,2]上的表达式为	()。
(A)	$\varphi(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ x^2 + 1, & 1 < x \le 2 \end{cases}; (B) \varphi$	$p(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ x^2, & 1 < x \le 2 \end{cases}$	(C) $2x$; (D) x^2 .
3. 设	改连续函数 $f(x)$ 满足: $f(x) = x + x^2$	$\int_{0}^{1} f(x)dx , \mathbb{H} f(x) = ($).
(A)	$\frac{3}{4}x + x^{2}$; (B) $x + \frac{3}{4}x^{2}$; (C) $\frac{3}{2}x$	$+ x^{2}$; (D) $x + \frac{3}{2}x^{2}$.	
4. 设	$f(u)$ 连续,且 $\int_0^2 x f(x) dx . \neq 0$,若 $k \int$	$\int_{0}^{1} xf(2x)dx = \int_{0}^{2} xf(x)dx,$	则 $k = ($).
$(A)\frac{1}{4}$	(B)1; $(C)2;$	(D)4 。	

5. 下列反常积分中收敛的是(

$$J_1$$

(B)
$$\int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^2}}$$

(A)
$$\int_{1}^{+\infty} \frac{dx}{x}$$
; (B) $\int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^2}}$; (C) $\int_{0}^{1} \frac{1}{(x-1)^2} dx$; (D) $\int_{1}^{2} \frac{dx}{\sqrt{2-x}}$.

(D)
$$\int_{1}^{2} \frac{dx}{\sqrt{2-x}}.$$

三、计算题:

$$1 \cdot \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^3 x dx .$$

2.
$$\int_{0}^{2} x^{3} \sqrt{4-x^{2}} dx$$
.

3.
$$\int_{0}^{1} \ln(1+x^{2}) dx$$
.

$$4. \int_0^{\frac{\pi}{2}} e^{\sin x} \sin x \cos x dx ...$$

5.
$$\lim_{x \to 0} \frac{\int_{0}^{x^{2}} t \cdot e^{-t^{2}} dt}{x^{3} \sin x}$$
..

四、应用题:

1. 求由曲线
$$y = \frac{1}{x}$$
 与直线 $y = x, x = 2$ 所围成平面图形的面积。

2. 求由曲线 $y = x^2$ 与直线 y = x 所围成平面图形绕 x 轴旋转一周所得旋转体的体积。

3. 求由曲线 $r=4\cos\theta~(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2})$ 所围成平面图形的面积。

4. 求曲线 $y = \frac{1}{2}x^2$ 上相应于 x 从 0 到 1 的一段弧的长度。