ESTRUCTURAS ALGEBRAICAS. Problemas. 19 de Octubre.

Ejercicio 30. Hoja 2. Sean N y K grupos y θ un homomorfismo $K \to \operatorname{Aut}(N)$. Demostrad que si $N \rtimes_{\theta} K$ es abeliano entonces θ es constante (es decir, $N \rtimes_{\theta} K = N \times K$). ¿Es cierto el recíproco?

Solución:

El grupo $N \rtimes_{\theta} K$ es conmutativo si y solo si para todo $(n_1, k_1), (n_2, k_2) \in N \rtimes_{\theta} K$ se tiene

$$(n_1, k_1) \star (n_2, k_2) = (n_2, k_2) \star (n_1, k_1), \text{ es decir}, (n_1 \theta(k_1)(n_2), k_1 k_2) = (n_2 \theta(k_2)(n_1), k_2 k_1).$$

Esto es equivalente a que para todo $n_1, n_2 \in N$ y para todo $k_1, k_2 \in K$ se cumpla

$$n_1\theta(k_1)(n_2) = n_2\theta(k_2)(n_1)$$
 y $k_1k_2 = k_2k_1$

Observamos que la segunda condición es que el grupo K sea conm
tuativo. Mientras que la primera condición podemos expresar
la como

$$\theta(k_1)(n_2) = n_1^{-1} n_2 \theta(k_2)(n_1).$$

El término de la derecha no depende de k_1 , para ningún $k_1 \in K$. Por lo que, θ es constante y, por ser homomorfismo, debe ser el trivial $\theta(k_1) = \mathrm{id}_N$. Por tanto, la primera condición es equivalente a que θ sea constante y que

$$n_2 = n_1^{-1} n_2 n_1$$
, es decir, $n_1 n_2 = n_2 n_1$ para todo $n_1, n_2 \in N$,

o lo que es lo mismo, θ constante y N conmutativo. Por tanto, el grupo $N \rtimes_{\theta} K$ es conmutativo si y solo si θ es constante y N y K son grupos conmutativos.

Ejercicio 31. Hoja 2. Sea p un número primo. Demostrad que $\mathbb{Z}/p^n\mathbb{Z}$ no se puede escribir como producto semidirecto de dos subgrupos propios.

Solución:

(n=1) Si $\mathbb{Z}/p\mathbb{Z}$ fuera producto semidirecto, existirían dos subgrupos H y K de $\mathbb{Z}/p\mathbb{Z}$ tales que $\mathbb{Z}/p^n\mathbb{Z}=H\rtimes K$. Entonces, tendríamos que

$$p = |\mathbb{Z}/p\mathbb{Z}| = |H \rtimes K| = |H||K|.$$

Como p es primo, tendríamos necesariamente que |H|=1 o |K|=1. Es decir, alguno de los subgrupos que intervienen en el semiproducto es trivial. Por tanto, $\mathbb{Z}/p^n\mathbb{Z}$ solo puede ser producto semidirecto si es trivial.

 $(n \geq 2)$ Supongamos que $\mathbb{Z}/p^n\mathbb{Z}$ es un producto semidirecto no trivial $H \rtimes K$. Entonces, tendríamos que

$$p^n = |\mathbb{Z}/p^n\mathbb{Z}| = |H \rtimes K| = |H||K|.$$

En consecuencia, $|H| = p^{n-k}$ y $|K| = p^k$ para algún $1 \le k \le n-1$. Por ser subgrupos de un grupo cíclico, H y K son cíclicos y son los únicos subgrupos de $\mathbb{Z}/p^n\mathbb{Z}$ con dicho orden. Observamos que:

- Si $k \leq n k$, entonces p^k divide a p^{n-k} . En este caso, existe un subgrupo de H con orden p^k , que a su vez es un subgrupo de $\mathbb{Z}/p^n\mathbb{Z}$. Por lo que, debe coincidir con K, es decir, $K \leq H$. Entonces se tiene que $H \cap K = K \neq \{1\}$.
- Si $k \ge n k$, usando un argumento simétrico, se tiene que $H \cap K = H \ne \{1\}$.

Sin embargo, se tiene que $H \cap K = \{1\}$. Por lo que, lo anterior nos lleva a una contradicción y concluimos que $\mathbb{Z}/p^n\mathbb{Z}$ no puede ser producto semidirecto no trivial.

Ejercicio 33. Hoja 2. Demostrad que $D_8 \cong (C_2 \times C_2) \rtimes C_2 \cong C_4 \rtimes C_2$.

Solución:

 $((\mathsf{C}_2 \times \mathsf{C}_2) \rtimes \mathsf{C}_2)$ Recordamos que $\operatorname{Aut}(C_2 \times C_2) \cong D_6$. Identificamos los posibles homomorfismos $\theta \colon C_2 \to \operatorname{Aut}(C_2 \times C_2)$. Estarán determinados por la imagen del elemento $[1]_2$. Debe cumplirse que $\operatorname{o}(\theta([1]_2))$ divide a $\operatorname{o}([1]_2) = 2$ y a $|D_6| = 6$. Por tanto, se tiene $\operatorname{o}(\theta([1]_2)) \in \{1,2\}$. Las únicas posibilidades son:

$$\theta_0([1]_2) = 1$$
, $\theta_1([1]_2) = s$, $\theta_2([1]_2) = sr$, $\theta_3([1]_2) = sr^2$.

Observamos que θ_0 es el homomorfismo trivial, por lo que, $(C_2 \times C_2) \rtimes_{\theta_0} C_2 \cong C_2 \times C_2 \times C_2$. Por otro lado, tenemos que $(C_2 \times C_2) \rtimes_{\theta_i} C_2$ es un grupo no abeliano de orden 8, si i = 1, 2, 3. En el ejercicio 24, probamos que los únicos grupos no abelianos de orden 8 salvo isomorfismo son Q_8 y D_8 . Pero en el Ejercicio 32, vimos que Q_8 no se puede expresar como producto semidirecto de dos subgrupos propios. Por tanto, $(C_2 \times C_2) \rtimes_{\theta_i} C_2 \cong D_8$ si i = 1, 2, 3.

 $(C_4 \times C_2)$ Recordamos que $Aut(C_4) \cong C_2$. Identificamos los posibles homomorfismos $\rho \colon C_2 \to Aut(C_4)$. Estarán determinados por la imagen del elemento $[1]_2$. Debe cumplirse que $o(\theta([1]_2))$ divide a $o([1]_2) = 2$ y a $|C_2| = 2$. Por tanto, se tiene $o(\theta([1]_2)) \in \{1, 2\}$. Las únicas posibilidades son:

$$\rho_0([1]_2) = id, \quad \rho_1([1]_2) = \sigma.$$

Observamos que ρ_0 es el homomorfismo trivial, por lo que, $C_4 \rtimes_{\rho_0} C_2 \cong C_4 \times C_2$. Por otro lado, tenemos que $C_4 \rtimes_{\rho_1} C_2$ es un grupo no abeliano de orden 8. En el ejercicio 24, probamos que los únicos grupos no abelianos de orden 8 salvo isomorfismo son Q_8 y D_8 . Pero en el Ejercicio 32, vimos que Q_8 no se puede expresar como producto semidirecto de dos subgrupos propios. Por tanto, $C_4 \rtimes_{\rho_1} C_2 \cong D_8$.

Ejercicio 34. Hoja 2. Demostrad que la única estructura de producto semidirecto $(C_2 \times C_2) \rtimes_{\theta} C_5$ es $(C_2 \times C_2) \times C_5$.

Solución:

 $(\operatorname{Aut}(\mathsf{C}_2 \times \mathsf{C}_2))$ Sea $f \in \operatorname{Aut}(\mathsf{C}_2 \times \mathsf{C}_2)$. Recordamos que todo elemento no trivial de $\mathsf{C}_2 \times \mathsf{C}_2$ tiene orden 2. Necesariamente, se tiene $f([0]_2, [0]_2) = ([0]_2, [0]_2)$ y o(f(h)) = 2, para todo $h \in \mathsf{C}_2 \times \mathsf{C}_2$ no trivial. Consideramos el conjunto generador

$${h_1 = ([1]_2, [0]_2), h_2 = ([0]_2, [1]_2)}.$$

Todo homomorfismo f está determinado por la imagen de h_1 y h_2 . Además, para que sea un automorfismo, debe cumplirse $f(h_1) \neq f(h_2)$. Existen 3 elementos de orden 2 en $C_2 \times C_2$. Podemos escoger $\binom{3}{2} = 3$ posibles conjuntos de dos elementos y, por cada uno de ellos, tenemos dos posibles homomorfismos, intercambiando las imágenes de h_1 y h_2 . Por tanto, existen 6 automorfismos distintos de $C_2 \times C_2$.

Definimos dos homomorfismos $f_1, f_2 \in Aut(C_2 \times C_2)$ como

$$f_1(h_1) = h_3 = ([1]_2, [1]_2), \quad f_1(h_2) = h_2, \qquad f_2(h_1) = h_1, \quad f_2(h_2) = h_3.$$

Observamos que

$$(f_1 \circ f_2)(h_1) = f_1(h_1) = h_3 \neq h_2 = f_2(h_3) = (f_2 \circ f_1)(h_1).$$

Por tanto, $f_1 \circ f_2 \neq f_2 \circ f_1$. Entonces el grupo $\operatorname{Aut}(\mathsf{C}_2 \times \mathsf{C}_2)$ no es abeliano. Sabemos que el único grupo, salvo isomorfismo, no abeliano de orden 6 es D_6 . Por lo que, necesariamente se tiene $\operatorname{Aut}(\mathsf{C}_2 \times \mathsf{C}_2) \cong D_6$.

(Producto semidirecto) Identificamos los posibles homomorfismos $\theta \colon \mathsf{C}_5 \to \mathrm{Aut}(\mathsf{C}_2 \times \mathsf{C}_2)$, o lo que es lo mismo, los homomorfismos $\theta \colon \mathbb{Z}/5\mathbb{Z} \to D_6$. Como C_2 es cíclico, generado por $[1]_5$, el homomorfismo θ quedará determinado por $\theta([1]_5)$. Debe cumplirse

$$o(\theta([1]_5)) \mid o([1]_5) = 5$$
 y $o(\theta([1]_5)) \mid |D_6| = 6$.

Como $\operatorname{mcd}(5,6)=1$, la única posibilidad es $\operatorname{o}(\theta([1]_5))=1$. Entonces $\theta([1]_5)=\operatorname{id} y \theta$ es el homomorfismo trivial. Por tanto, el único producto semidirecto posible es isomorfo al producto usual $(\mathsf{C}_2\times\mathsf{C}_2)\times\mathsf{C}_5$.

Ejercicio 35. Hoja 2. Un subgupo $H \leq G$ se dice característico si $\alpha(H) = H$ para todo $\alpha \in \operatorname{Aut}(G)$. Probad los siguientes enunciados.

- (a) H es característico en G si, y solo si, $\alpha(H) \subseteq H$ para todo $\alpha \in \operatorname{Aut}(G)$.
- (b) Si H es característico en G, entonces $H \subseteq G$.
- (c) $\mathbf{Z}(G)$ es característico en G.
- (d) Si H es característico en $N \subseteq G$, entonces $H \subseteq G$.
- (e) Si H cíclico es normal en G, entonces los subgrupos de H son normales en G.

Solución:

- (a) Si H es característico, es claro que $\alpha(H) \subseteq H$ para todo $\alpha \in \operatorname{Aut}(G)$. Recíprocamente, supongamos que $\alpha(H) \subseteq H$. Como $\alpha(H)$ es un subgrupo de G, en particular, $\alpha(H) \leq H$. Como $\operatorname{Aut}(G)$ es un grupo, existe $\alpha^{-1} \in \operatorname{Aut}(G)$ tal que $\alpha \circ \alpha^{-1} = \operatorname{id}_G$. Entonces $\alpha^{-1}(H) \leq H$. Si aplicamos α , tenemos que $H = \alpha \circ \alpha^{-1}(H) \leq \alpha(H)$. Por tanto, $\alpha(H) = H$.
- (b) Para todo $g \in G$, el homomorfismo de conjugación σ_g es un automorfismo. Por tanto, si H es característico, se tiene que $gHg^{-1} = H$, para todo $g \in G$. Es decir, $H \leq G$.
- (c) Veamos que para todo $\alpha \in \operatorname{Aut}(G)$, se tiene $\alpha(\mathbf{Z}(G)) \subseteq \mathbf{Z}(G)$. Para cada $g \in G$, se tiene que $g = \alpha(g')$, para algún $g' \in G$. Por tanto, para todo $h \in \mathbf{Z}(G)$, tenemos

$$\alpha(h) \cdot g = \alpha(h)\alpha(g') = \alpha(hg') = \alpha(g'h) = \alpha(g')\alpha(h) = g \cdot \alpha(h).$$

- (d) Como N es normal en G, la conjugación por cualquier elemento $g \in G$ es un automorfismo de N. Entonces como H es característico en N, tenemos que $gHg^{-1}=H$. Es decir, $H \leq G$
- (e) Sea $H \subseteq G$ cíclico. Veamos que todo subgrupo $K \subseteq H$ es característico en H. Si H es cíclico de orden finito, entonces, K es el único subgrupo de H con dicho orden. Por otro lado, sabemos que los automorfismos preservan el orden de la imagen de los subgrupos. Por tanto, $\alpha(K) = K$, para todo $\alpha \in \operatorname{Aut}(H)$. Si H es cíclico de orden infinito, entonces $H \cong \mathbb{Z}$. Todos los subgrupos de H se identifican con $n\mathbb{Z}$, para cada $n \in \mathbb{N}$. En este caso, $\operatorname{Aut}(H)$ se identifica con $\operatorname{Aut}(\mathbb{Z}) = \{\operatorname{id}_{\mathbb{Z}}, \sigma\}$, donde $\sigma(k) = -k$, para todo $k \in \mathbb{Z}$. De esta forma, se tiene que $\sigma(n\mathbb{Z}) = (-n)\mathbb{Z} = n\mathbb{Z}$. Por tanto, todos los subgrupos son característicos. Ahora, usando el apartado anterior, podemos concluir que $K \triangleleft G$.