### Diversidade Funcional

### Manutenção dos serviços ecossistêmicos



### The Influence of Functional Diversity and Composition on Ecosystem Processes

David Tilman,\* Johannes Knops, David Wedin, Peter Reich, Mark Ritchie, Evan Siemann



# Diferentes espécies podem contribuir de forma diferenciada no funcionamento dos ecossistemas

### The Influence of Functional Diversity and Composition on Ecosystem Processes

David Tilman,\* Johannes Knops, David Wedin, Peter Reich, Mark Ritchie, Evan Siemann



# Diferentes espécies podem contribuir de forma diferenciada no funcionamento dos ecossistemas

O número de grupos funcionais representantes em um ecossistema está mais fortemente associado aos processos que o número de espécies per se





Riqueza de espécies

O efeito positivo do aumento da **riqueza** sobre a produtividade vai depender de **quais espécies** estão presentes em determinada comunidade





Riqueza de espécies

O efeito positivo do aumento da **riqueza** sobre a produtividade vai depender de **quais espécies** estão presentes em determinada comunidade

As diferenças entre as espécies são fundamentais para melhor entendermos como a biodiversidade pode afetar o funcionamento dos ecossistemas

**ATRIBUTOS** 

### **ATRIBUTOS**



### **ATRIBUTOS**





#### Diversidade Funcional

Medição da diversidade dos atributos funcionais dos organismos de uma comunidade

#### Diversidade Funcional

Medição da diversidade dos atributos funcionais dos organismos de uma comunidade

#### Atributo funcional

Componente do fenótipo de um organismo que influencia os processos a nível do ecossistema

### Como uma característica individual pode afetar os processos ecossistêmicos?

## Como uma característica individual pode afetar os processos ecossistêmicos ?



### A importância dos atributos

Determinam onde as espécies podem viver

Como as espécies interagem entre si

Contribuição para o funcionamento dos ecossistemas

### Processo de formação das assembleias



### Filtros ambientais



### Filtros ambientais







## Filtros promovem assembleias com espécies fenotipicamente mais similares



### Competição



Competição e a similaridade limitante promove a formação de assembleias com espécies fenotipicamente mais divergentes







Mensura a quantidade do espaço do nicho ocupado pelas espécies em uma comunidade





Baixos valores podem indicar que nem todos os recursos disponíveis estão sendo utilizados



Mensura a regularidade na distribuição da abundância no espaço de nicho dentro de uma comunidade



### Equitabilidade





Tamanho do corpo



Mensura o grau no qual a distribuição da abundância no espaço de nicho maximiza a divergência dos caracteres funcionais da comunidade

Divergência





Tamanho do corpo



Alta divergência indica elevado grau de diferenciação de nicho – baixa competitividade

### Abordagens baseadas em:



Medição da diversidade baseada na relação evolutiva entre as espécies de uma assembleia

### Medição da diversidade baseada na relação evolutiva entre as espécies de uma assembleia



### Medição da diversidade baseada na relação evolutiva entre as espécies de uma assembleia



#### A) ÁRVORE ENRAIZADA E ULTRAMÉTRICA



#### B) <u>ÁRVORE NÃO ENRAIZADA</u>



#### C) ÁRVORE NÃO ULTRAMÉTRICA





Issues

More Content ▼

Submit ▼

Purchase

Alerts

About ▼

All Jou



Volume 9, Issue 2 April 2016 EDITOR'S CHOICE

An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure •

Hong Qian ™, Yi Jin

Journal of Plant Ecology, Volume 9, Issue 2, 1 April 2016, Pages 233-239,

https://doi.org/10.1093/jpe/rtv047

Published: 15 June 2015 Article history ▼



https://treeoflife.kew.org/

OME

TREE OF LIFE

DECIES

NES

ORF V

ACCESS DATA

Data release 3.0 (April 2023): 10,699 angiosperm specimens from 64 orders, 413 families, 8,336 genera and 10,377 species View release history

#### Kew Tree of Life Explorer

The Kew Tree of Life Explorer is the gateway to Kew's research and data on the plant tree of life. We are building a comprehensive evolutionary tree of life for flowering plants and are sharing our results and data here.

View All Species

View Tree of Life







#### Citations

#### Mammals:

- Upham, N. S., J. A. Esselstyn, and W. Jetz. 2019. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biology, https://doi.org/10.1371/journal.pbio.3000494
- Upham, N. S., J. A. Esselstyn, and W. Jetz. 2019. Ecological causes of speciation and species richness in the mammal tree of life. bioRxiv:504803. https://doi.org/10.1101/504803v3



Elevação





Elevação



Elevação



Elevação

| Related to ecology |                      | Unexplained |     |
|--------------------|----------------------|-------------|-----|
|                    | Related to phylogeny |             |     |
| [a]                | [b]                  | [c]         | [d] |

Espécies não são unidades independentes

Tamanho do corbo

Elevação



#### Filogenia Atributo



Sinal filogenético

#### Filogenia Atributo



Sem Sinal filogenético

#### Sinal filogenético

Blomberg's K (Blomberg et al. 2003)

Pagel's λ (Pagel 1999)

K = 0 (sem sinal)

K = 1 (Movimento Browniano)

K > 1 (elevada similaridade)

 $\lambda = 0$  (sem sinal)

K = 1 (Movimento Browniano)

### Sinal filogenético



#### Filtros ambientais





#### Filtros ambientais





#### Filtros ambientais





Padrão agrupado (clustering)

#### Similaridade limitante





#### Similaridade limitante





Padrão disperso (overdispersed)

#### Filtros ambientais





#### Filtros ambientais





Padrão agrupado (clustering)

Padrão disperso (overdispersed)

#### Silimaridade limitante





Padrão disperso (overdispersed)

aleatório

|                                                                                        | Ecological traits phylogenetically |                      |
|----------------------------------------------------------------------------------------|------------------------------------|----------------------|
|                                                                                        | Conserved                          | Convergent           |
| Dominant ecological force:                                                             |                                    |                      |
| Habitat filtering (phenotypic attraction) Competitive exclusion (phenotypic repulsion) | Clustered<br>Overdispersed         | Overdispersed Random |



## Agrupamento funcional e filogenético

Atributos conservados e filtro ambiental



## Dispersão funcional e filogenética

Atributos conservados e similaridade limitante



# Dispersão funcional e agrupamento filogenético

Evolução dos atributos e radiação adaptativa



## Agrupamento funcional e dispersão filogenética

Evolução dos atributos e filtro ambiental

## ECOLOGY LETTERS

Ecology Letters, (2010) 13: 1085-1093

doi: 10.1111/j.1461-0248.2010.01509.x

## IDEA AND PERSPECTIVE

Margaret M. Mayfield<sup>1</sup>\* and Jonathan M. Levine<sup>2</sup>

Opposing effects of competitive exclusion on the phylogenetic structure of communities



#### Similaridade limitante



Padrão de dispersão

#### Similaridade limitante



Padrão de dispersão

#### Similaridade limitante



Padrão de agrupamento



#### Diversidade Filogenética de Faith (PD Faith 1992)

Comprimento total dos ramos que ligam as espécies de uma assembleia



### Diversidade Filogenética de Faith (PD Faith 1992)

Valor diretamente relacionado com o número de espécies da assembleia

Faz-se necessário padronizar o valor para comparar entre assembleias

### Diversidade Filogenética de Faith (PD Faith 1992)

Valor diretamente relacionado com o número de espécies da assembleia

Faz-se necessário padronizar o valor para comparar entre assembleias

Standardized Effect Size

SES = (observado – média distribuição nula) desvio-padrão nula

### Distância média par-a-par (MPD)

Mede a distância filogenética média da combinação de todas as espécies par-a-par

#### Distância média par-a-par (MPD)

Mede a distância filogenética média da combinação de todas as espécies par-a-par



### Distância média par-a-par (MPD)

Mede a distância filogenética média da combinação de todas as espécies par-a-par

### Distância média do vizinho mais próximo (MNTD)

Mede a distância média separando cada espécie da assembleia de seu parente mais próximo

### Distância média par-a-par (MPD)

Mede a distância filogenética média da combinação de todas as espécies par-a-par

### Distância média do vizinho mais próximo (MNTD)

Mede a distância média separando cada espécie da assembleia de seu parente mais próximo (ramos terminais)



Quando medimos a estrutura filogenética de uma assembleia, precisamos avaliar o quanto do valor observado difere do esperado de um modelo nulo evolutivo e de formação de assembleias

Quando medimos a estrutura filogenética de uma assembleia, precisamos avaliar o quanto do valor observado difere do esperado de um modelo nulo evolutivo e de formação de assembleias

**Standardized Effect Size** 

SES = (observado – média distribuição nula) desvio-padrão nula

### SES<sub>MPD</sub> (NRI)

Mede o quão os taxons da assembleia são mais agrupados ou dispersos do que o esperado ao acaso

### SES<sub>MNTD</sub> (NTI)

Mede o quão os taxons da assembleia são mais agrupados ou dispersos do que o esperado ao acaso, nos ramos terminais

### SES<sub>MPD</sub> (NRI)

Mede o quão os taxons da assembleia são mais agrupados ou dispersos do que o esperado ao acaso

### SES<sub>MNTD</sub> (NTI)

Mede o quão os taxons da assembleia são mais agrupados ou dispersos do que o esperado ao acaso, nos ramos terminais

### SES<sub>MPD ou MNDT</sub>

> 0: dispersão

< 0: agrupado

### SES<sub>MPD</sub> (NRI)

Mede o quão os taxons da assembleia são mais agrupados ou dispersos do que o esperado ao acaso

### SES<sub>MNTD</sub> (NTI)

Mede o quão os taxons da assembleia são mais agrupados ou dispersos do que o esperado ao acaso, nos ramos terminais

### SES<sub>MPD ou MNDT</sub>

> 0: dispersão

< 0: agrupado

#### **NRI ou NTI**

> 0: agrupado

< 0: dispersão

#### BIOLOGICAL REVIEWS

Cambridge Philosophical Society

Biol. Rev. (2017), **92**, pp. 698–715. doi: 10.1111/brv.12252

698

## A guide to phylogenetic metrics for conservation, community ecology and macroecology

Caroline M. Tucker<sup>1,\*</sup>, Marc W. Cadotte<sup>2,3</sup>, Silvia B. Carvalho<sup>4</sup>, T. Jonathan Davies<sup>5,6</sup>, Simon Ferrier<sup>7</sup>, Susanne A. Fritz<sup>8,9</sup>, Rich Grenyer<sup>10</sup>, Matthew R. Helmus<sup>11,12</sup>, Lanna S. Jin<sup>13</sup>, Arne O. Mooers<sup>14</sup>, Sandrine Pavoine<sup>15,16</sup>, Oliver Purschke<sup>17,18,19</sup>, David W. Redding<sup>20</sup>, Dan F. Rosauer<sup>21</sup>, Marten Winter<sup>17</sup> and Florent Mazel<sup>22</sup>