

Chapter 6 Discrete Equivalents to Continuous Transfer Functions

What is equivalence?

For the same input e(t), does $u_d(t)$ approximate u(t)? What kind of approximation should we seek?

Can the spectrum of $u_d(t)$ be made to approximate that of u(t)? If so, how do we go about constructing D(z) from D(s) such that the two spectra approximate one another?

6.1 Rational Approximation

The relationship between s and z domains is

$$z = e^{sT}$$

which may be approximated by rational functions.

Recall that
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

Then possible approximations are:

3 possible approximations
$$z = e^{sT} \approx 1 + sT$$

$$z = e^{sT} = \frac{1}{e^{-sT}} \approx \frac{1}{1 - sT}$$

$$z = e^{sT} = \frac{e^{sT/2}}{e^{-sT/2}} \approx \frac{1 + sT/2}{1 - sT/2}$$

Apply one of them to make:

$$D(s) \Leftrightarrow D(z)$$

6.2 Numerical Integration

Consider an integrator:

Then
$$u(t) = \int_{0}^{t} e(\tau) d\tau \iff U(s) = \frac{1}{s} E(s)$$

$$u(t+T) = \int_{0}^{t+T} e(\tau) d\tau = u(t) + \int_{t}^{t+T} e(\tau) d\tau$$

 $\begin{array}{c|c}
E(s) & U(s) \\
\hline
 & S
\end{array}$

3 ways to approximate this area

$$\int_{kT}^{(k+1)T} e(t)dt = \begin{cases} Te(kT) \\ Te((k+1)T) \\ \frac{T}{2} \left[e(kT) + e((k+1)T) \right] \end{cases}$$

1st method
$$u(t+T) = u(t) + Te(t)$$

$$zU(z) = U(z) + TE(z)$$

$$\frac{U(z)}{E(z)} = \frac{T}{z-1} \qquad \Rightarrow \frac{U(s)}{E(s)} = \frac{1}{s}$$

$$\frac{1}{s} \approx \frac{T}{z-1}$$
 or $z \approx 1 + sT$

Looks familiar??

This method is also known as the forward rectangular rule or Euler's rule.

$$u(t+T) = u(t) + Te(t+T)$$

$$zU(z) = U(z) + TzE(z)$$

$$\frac{U(z)}{E(z)} = \frac{Tz}{z-1}$$

$$\frac{1}{s} \approx \frac{zT}{z-1}$$
 or $z \approx \frac{1}{1-sT}$

This method is also known as the backward rectangular rule.

$$u(t+T) = u(t) + \frac{T}{2} \{ e(t) + e(t+T) \}$$

$$zU(z) = U(z) + \frac{T}{2} \{ E(z) + zE(z) \}$$

$$\frac{U(z)}{E(z)} = \frac{T}{2} \frac{z+1}{z-1}$$

$$\frac{1}{s} \approx \frac{T}{2} \frac{z+1}{z-1} \quad \text{or} \quad z \approx \frac{1+sT/2}{1-sT/2}$$

This method is also known as the trapezoidal or Tustin's rule or the bilinear rule.

In Summary

Rule	$D \rightarrow C$	$C \rightarrow D$
Forward	z = 1 + sT	$s = \frac{z - 1}{T}$
Backward	$z = \frac{1}{1 - sT}$	$s = \frac{z - 1}{zT}$
Trapezoidal	$z = \frac{1 + sT/2}{1 - sT/2}$	$s = \frac{2}{T} \frac{z - 1}{z + 1}$

How do we make use of this approximations to find approximate discrete transfer functions from continuous time models?

Example:
$$G(s) = \frac{K}{s^2 + s + 1}$$

Forward rule:
$$G_d(z) = \frac{K}{\frac{(z-1)^2}{T^2} + \frac{z-1}{T} + 1}$$

Backward rule:
$$G_d(z) = \frac{K}{\frac{(z-1)^2}{z^2T^2} + \frac{z-1}{zT} + 1}$$

Trapezoidal's rule :
$$G_d(z) = \frac{K}{\left(\frac{2}{T}\right)^2 \frac{(z-1)^2}{(z+1)^2} + \left(\frac{2}{T}\right) \frac{z-1}{z+1} + 1}$$

Which method is better? What are the differences in three z-models? What are their implications?

Stability Analysis

Forward Rectangular rule

Stable s-models map into stable z-models? No. s=-3 to z=-2

Backward Rectangular rule

Stable s-models map into stable z-models? Yes.

$$z = \frac{1}{1 - sT}$$

$$z - \frac{1}{2} = \frac{1}{1 - sT} - \frac{1}{2}$$

$$= \frac{1}{2} \frac{1 + sT}{1 - sT}$$

$$= \frac{1}{2} \frac{1 + sT}{1 - sT}$$

$$|z - \frac{1}{2}| = \frac{1}{2}$$

$$|z - \frac{1}{2}| = \frac{1}{2}$$

Therefore, $s=j\omega$ maps into a circle centered at 0.5 with radius of 0.5.

For
$$s=-\sigma+j\omega$$

$$z - \frac{1}{2} = \frac{1}{2} \frac{1 - \sigma T + j\omega T}{1 + \sigma T - j\omega T}$$

$$\left|z - \frac{1}{2}\right| < \frac{1}{2}$$

Therefore, the left half of s-plane maps into the interior of the circle of z-plane centered at 0.5 with radius 0.5

Trapezoidal rule

Stable s-models map into stable z-models? Yes! Exactly.

Spectrum Analysis

z-transform model

$$G(s) = \frac{1}{2s+1}$$

$$G(s) = \frac{1}{2s+1}$$

$$G(z) = \frac{0.5z}{z - e^{-0.5T}}$$

Three approximation rules

Analysis of Trapezoidal Rule

Continuous System

$$\frac{U(s)}{E(s)} = K \frac{T_1 s + 1}{T_2 s + 1}$$

$$\frac{U(j\omega)}{E(j\omega)} = K \frac{T_1 j\omega + 1}{T_2 j\omega + 1}$$

$$\frac{U(j\omega)}{E(j\omega)} = K$$

Discretized System

$$\frac{U(z)}{E(z)} = K \frac{T_1 \frac{2(1-z^{-1})}{T(1+z^{-1})} + 1}{T_2 \frac{2(1-z^{-1})}{T(1+z^{-1})} + 1}$$

$$= K \frac{T + 2T_1 + (T - 2T_1)z^{-1}}{T + 2T_2 + (T - 2T_2)z^{-1}}$$

$$\frac{U * (j\omega)}{E * (j\omega)} = K \frac{T + 2T_1 + (T - 2T_1)e^{-j\omega T}}{T + 2T_2 + (T - 2T_2)e^{-j\omega T}}$$

(i) At DC,

$$\left. \frac{U^*(j\omega)}{E^*(j\omega)} \right|_{\omega=0} = K$$
, no distortion.

(ii) Assuming fast sampling, then at low frequencies,

$$\frac{U*(j\omega)}{E*(j\omega)}\Big|_{T,\omega T small} \approx K \frac{T+2T_1+(T-2T_1)(1-j\omega T)}{T+2T_2+(T-2T_2)(1-j\omega T)}$$

$$= K \frac{2TT_1 j\omega + 2T - j\omega T^2}{2TT_2 j\omega + 2T - j\omega T^2}$$

$$\approx K \frac{T_1 j\omega + 1}{T_2 j\omega + 1}, \text{ minimal distortion.}$$

(iii) At high frequencies, the distortion becomes significant

6.3 Zero-Pole mapping

G(s) is converted to G(z) using $z=e^{st}$ with the following rules.

- i. If G(s) has a pole at s=-a, then G(z) has a pole at $z=e^{-aT}$; If G(s) has a pole at s=-a+jb then G(z) has a pole at $z=e^{-aT}e^{jbT}$
- ii. All finite zeros are mapped in the same way;
- iii. Static gain matching is imposed:

$$G(s)\Big|_{s=0} = G(z)\Big|_{z=1}$$

Example 1

$$\frac{U(s)}{E(s)} = K \frac{T_1 s + 1}{T_2 s + 1}$$

• One finite zero

$$s = -\frac{1}{T_1} \implies z = e^{sT} = e^{-\frac{1}{T_1}}$$

• One finite pole

$$s = -\frac{1}{T_2} \implies z = e^{sT} = e^{-\frac{T}{T_2}}$$

• Select K' so that dc gains $\frac{U(z)}{E(z)} = K' \frac{z - e^{-\frac{T}{T_1}}}{z - e^{-\frac{T}{T_2}}}$

$$K' \frac{1 - e^{-\frac{T}{T_1}}}{1 - e^{-\frac{T}{T_2}}} = K, K' = \frac{1 - e^{-\frac{T}{T_2}}}{1 - e^{-\frac{T}{T_1}}} K.$$

The original frequency response is almost same as for T=0.1. Some inaccuracies when sampling frequency is low. Overall, not a bad approximation.

Example 2.

$$G(s) = \frac{a}{s+a}$$

Application of rules (i-ii) gives

$$G(z) = K \frac{1}{z - e^{-aT}}$$

Rule (iii) requires

$$1 = K \frac{1}{1 - e^{-aT}}, \qquad K = 1 - e^{-aT}$$

so that

$$G(z) = \frac{1 - e^{-aT}}{z - e^{-aT}}$$

6.4 Zero-Order Hold Equivalent

The controller is a dynamic system like the plant. So the discretization method for the plant with zero-order hold may also work for the controller.

$$\frac{U(s)}{E(s)} = D(s)$$

$$\frac{U(z)}{E(z)} = \left(1 - z^{-1}\right) Z \left\{ \frac{D(s)}{s} \right\}$$

Example 1.
$$G(s) = \frac{1}{s^2}$$

Then $Z\left\{\frac{G(s)}{s}\right\} = Z\left\{\frac{1}{s^3}\right\} = \frac{T^2z(z+1)}{2(z-1)^3}$
and $G(z) = (1-z^{-1})Z\left\{\frac{G(s)}{s}\right\} = \frac{T^2(z+1)}{2(z-1)^2}$
Example 2. $G(s) = \frac{s+2}{s(s+1)}$
Then $Z\left\{\frac{G(s)}{s}\right\} = Z\left\{\frac{2}{s^2} - \frac{1}{s} + \frac{1}{s+1}\right\} = \frac{2Tz}{(z-1)^2} - \frac{z}{z-1} + \frac{z}{z-e^{-T}}$

$$= \frac{(2T+e^{-T}-1)z+1-e^{-T}-2Te^{-T}}{(z-1)^2(z-e^{-T})}z$$
and $G(z) = (1-z^{-1})Z\left\{\frac{G(s)}{s}\right\} = \frac{(2T+e^{-T}-1)z+1-e^{-T}-2Te^{-T}}{(z-1)(z-e^{-T})}$

The Bode plots of Examples 1 and 2

Summary of Discrete equivalents

• Numerical Integration

Rational Approximation

Forward rectangular

$$z = e^{sT} \approx 1 + sT$$

$$z = e^{sT} = \frac{1}{e^{-sT}} \approx \frac{1}{1 - sT}$$

$$z = e^{sT} = \frac{e^{sT/2}}{e^{-sT/2}} \approx \frac{1 + sT/2}{1 - sT/2}$$

• Pole-Zero Mapping

Conversion from s to z

• Hold Equivalence

ZOH discretization

Antenna system

When disturbances such as wind are neglected, the equation of antenna motion is

$$J\ddot{\theta} + B\dot{\theta} = u,$$

Where u is the net torque from the drive motor. Let us define B/J=a and we have the transfer function as follows

$$\frac{\theta(s)}{u(s)} = \frac{1/B}{s(s/a+1)}.$$

Assume the sampling time is T. If the forward rule is used, we have the discrete transfer function:

$$\frac{\Theta(z)}{U(z)} = \frac{1/B}{\left(\frac{z-1}{T}\right)\left(\frac{z-1}{aT}+1\right)} = \frac{aT^2/B}{z^2 + (aT-2)z + 1 - aT}.$$

If the backward rule is used, we have

$$\frac{\Theta(z)}{U(z)} = \frac{1/B}{\left(\frac{z-1}{zT}\right)\left(\frac{z-1}{zTa}+1\right)} = \frac{aT^2z^2/B}{(1+Ta)z^2-(2+Ta)z+1}.$$

If the trapezoidal rule is used, we have

$$\frac{\Theta(z)}{U(z)} = \frac{1/B}{\left(\frac{2}{T}\frac{z-1}{z+1}\right)\left(\frac{2}{aT}\frac{z-1}{z+1}+1\right)} = \frac{aT^2(z+1)^2/B}{(4+2aT)z^2-8z+4-2aT}.$$

If the zero-pole matching method is used, we have

$$\frac{\Theta(z)}{U(z)} = \frac{K}{(z-1)(z-e^{-aT})},$$

Note that since the system has a pole at the origin, the static gain is infinity for both continuous and discrete cases, and thus automatically matched. We then choose to match the velocity constant:

$$sG(s)|_{s=0} = (z-1)G(z)|_{z=1} \to K = \frac{\frac{1/B}{(s/a+1)}}{\frac{1}{(z-e^{-aT})}}|_{z=1,s=0}$$

If the zero-order hold equivalent method is used, we have

$$\frac{\Theta(z)}{U(z)} = K \frac{(z+b)}{(z-1)(z-e^{-aT})},$$

where

$$K = \frac{aT - 1 + e^{-aT}}{aB}, \quad b = \frac{1 - e^{-at} - aTe^{-aT}}{aT - 1 + e^{-aT}}.$$