LSTM-Bidireccional

Resultados con los hiper parámetros por defecto.

Dropout: 0.3Épocas: 25Batch size: 64

- Learning rate: sin especificar

- Capas LSTM: 100

- Funcion de activacion: sigmoid

Resultados:

Accuracy Score: 0.7076975709887102 Confusion Matrix: [[13773 4545] [3999 6913]] precision recall f1-score support 0 0.77 0.75 0.76 18318 0.60 0.63 0.62 10912 0.71 29230 accuracy macro avg 0.69 0.69 weighted avg 0.71 0.71 0.69 29230 0.71 29230

Resultados con PRIMERA modificación

Dropout: 0.5
Épocas: 15
Batch size: 74
Learning rate: 0.01
Capas LSTM: 120

- Funcion de activacion: sigmoid

Resultados:

Accuracy Score: 0.7316797810468697 Confusion Matrix: [[14997 3321] [4522 6390]] precision recall f1-score support 0.77 0 0.82 0.79 18318 0.66 0.59 1 0.62 10912 0.73 29230 accuracy macro avg 0.71 0.70 weighted avg 0.73 0.73 0.71 29230 0.73 29230 0.73 0.73

Resultados con SEGUNDA modificación

Dropout: 0.5
Épocas: 20
Batch size: 64
Learning rate: 0.01
Capas LSTM: 200

- Funcion de activacion: sigmoid

Resultados:

Conclusión: Se realizaron diversos cambios en los hiperparametros y el mejor resultado que se logró fue un <u>accuracy</u>: 0.7316

Nota: Otras modificaciones no fueron contempladas en este reporte ya que no tenían resultados de mejora.

Naive Bayes

Resultados con los hiper parámetros por defecto.

Alpha: 0.5Fit prior: True

Resultados:

ac = accuracy_score(y_test, y_pred)
ac

0.756689624026194

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.71 0.83	0.87 0.65	0.78 0.73	8835 8879
accuracy macro avg weighted avg	0.77 0.77	0.76 0.76	0.76 0.75 0.75	17714 17714 17714