Метод Марквардта

(~)

Теоретические сведения. Численные методы второго порядка ("высокая" траектория)

МЕТОД МАРКВАРДТА

постановка задачи

и имеющая непрерывные частные производные во всех его точках. Требуется найти локальный минимум функции f(x) на множестве допустимых решений $X=R^n$, т.е. найти такую точку $x^*\in R^n$, что $f(x^*)=$ $= \min_{x \in \mathbb{R}^n} f(x), \ f(x) \in \mathbb{C}^2.$

Теоретические сведения. Численные методы второго порядка ("высокая" траектория)

Пусть дана функция f(x), ограниченная снизу на множестве R^n

(7.7)

СТРАТЕГИЯ ПОИСКА

Стратегия метода Марквардта [D. W. Marquardt] состоит в построении последовательности точек $\{x^k\}$, k=0,1,..., таких, что $f(x^{k+1}) < f(x^k)$, k=0,1,...Точки последовательности $\{x^k\}$ вычисляются по правилу

 $x^{k+1} = x^k - [H(x^k) + \mu^k E]^{-1} \nabla f(x^k), k = 0, 1, ...,$

где точка x^0 задается пользователем; E — единичная матрица; μ^k — последовательность положительных чисел таких, что матрица $[H(x^k) + \mu^k E]^{-1}$ положи-

тельно определена. Как правило, число μ^0 назначается как минимум на поря-

док больше, чем самый большой элемент матрицы $H(x^0)$, а в ряде стандартных программ полагается $\mu^0 = 10^4$ [36]. Если $f(x^k - (H(x^k) + \mu^k E)^{-1} \nabla f(x^k)) < f(x^k)$, то $\mu^{k+1} = \frac{\mu^k}{2}$. В противном случае $\mu^{k+1} = 2\mu^k$. Легко видеть, что алгоритм Марквардта в зависимости от величины μ^k на каждом шаге по своим свойствам либо приближается к алгоритму Ньютона, либо к алгоритму градиентного спуска. Построение последовательности $\{x^k\}$ заканчивается, когда либо $\|\nabla f(x^k)\| < \varepsilon_1$,

либо число итераций $k \ge M$, где ε_1 — малое положительное число, а M — предельное число итераций. Вопрос о том, может ли точка x^k рассматривается как найденное приближение искомой точки минимума, решается путем проведения дополнительного исследования, которое описано ниже.

Шаг 1. Задать x^0 , $\varepsilon_1 > 0$, M — предельное число итераций. Найти градиент $\nabla f(x)$ и матрицу Гессе H(x).

АЛГОРИТМ

Шаг 2. Положить k = 0, $\mu^k = \mu^0$. *Шаг* 3. Вычислить $\nabla f(x^k)$.

Шаг 4. Проверить выполнение условия $\|\nabla f(x^k)\| \le \varepsilon_1$: а) если неравенство выполнено, то расчет окончен, $x^* = x^k$;

б) если нет, перейти к шагу 5.

Шаг 5. Проверить выполнение условия $k \ge M$: а) если неравенство выполнено, расчет окончен, $x^* = x^k$;

б) если нет, перейти к шагу 6.

Шаг 6. Вычислить $H(x^k)$. *Шаг* 7. Вычислить $H(x^k) + \mu^k E$.

Шаг 8. Вычислить $[H(x^k) + \mu^k E]^{-1}$.

Шаг 9. Вычислить $d_k = -[H(x^k) + \mu^k E]^{-1} \nabla f(x^k)$.

Шаг 10. Вычислить $x^{k+1} = x^k - [H(x^k) + \mu^k E]^{-1} \nabla f(x^k)$. *Шаг 11.* Проверить выполнение условия $f(x^{k+1}) < f(x^k)$: а) если неравенство выполняется, то перейти к шагу 12;

б) если нет, перейти к шагу 13.

 $extit{Шаг 12.}$ Положить $k=k+1,\; \mu^{k+1}=\frac{\mu^k}{2}\;$ и перейти к шагу 3. $2\mu^k = 2\mu^k$ и перейти к шагу 7. **ПРОЦЕДУРА РЕШЕНИЯ ЗАДАЧИ**

няется по крайней мере один критерий окончания расчетов.

2. Так как $f(x) \in C^2$, то осуществить проверку выполнения достаточных условий минимума $H(x^k) > 0$. Если условие выполнено, то точка x^k может рассматриваться как найденное приближение точки минимума x^* . Проверку вы-

1. Используя алгоритм Марквардта, построить точку x^k , в которой выпол-

полнения достаточных условий минимума можно заменить проверкой функции f(x) на выпуклость. Замечания 7.3. 1. Метод Марквардта за счет выбора μ^k обеспечивает построение последовательности $\{x^k\}$ такой, что $f(x^{k+1}) < f(x^k), k = 0, 1, ... [29].$ **2.** В окрестности точки минимума x^* метод Марквардта обладает скоростью сходимости, близкой к квадратичной [29].

 \square I. Определение точки x^k , в которой выполняется по крайней мере один критерий окончания расчетов. 1. Зададим $x^0 = (0,5;1)^T$; $\varepsilon_1 = 0,1; M = 10$. Найдем градиент функции $\nabla f(x) = 0$

Пример 7.3. Найти локальный минимум функции $f(x) = 2x_1^2 + x_1x_2 + x_2^2$.

 $H(x) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}.$ 2. Положим k = 0, $\mu^0 = 20$.

4°. Проверим выполнение условия $\|\nabla f(x^0)\| \le \varepsilon_1$: $\|\nabla f(x^0)\| = 3,9 > 0,1$. Перехо-

 5^{0} . Проверим выполнение условия $k \geq M$: k = 0 < 10. Переходим к шагу 6.

$$6^{0}$$
. Вычислим $H(x^{0})$:
$$H(x^{0}) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}.$$

 7^{0} . Вычислим $H(x^{0}) + \mu^{0}E$:

дим к шагу 5.

 $= (4x_1 + x_2; x_1 + 2x_2)^T$ и матрицу Гессе

 3^{0} . Вычислим $\nabla f(x^{0})$: $\nabla f(x^{0}) = (3; 2, 5)^{T}$.

$$\mu^0 E]^{-1}$$
:

 $H(x^0) + \mu^0 E = \begin{pmatrix} 24 & 1 \\ 1 & 22 \end{pmatrix}.$

 8° . Вычислим $[H(x^{\circ}) + \mu^{\circ}E]^{-1}$: $[H(x^0) + \mu^0 E]^{-1} = \begin{bmatrix} 0.0417 & -0.0019 \\ -0.0019 & 0.0455 \end{bmatrix}.$

9°. Вычислим
$$d^0 = -[H(x^0) + \mu^0 E]^{-1} \nabla f(x^0)$$
: $d^0 = (-0,119;-0,108)^T$. 10°. Вычислим $x^1 = x^0 - [H(x^0) + \mu^0 E]^{-1} \nabla f(x^0)$: $x^1 = (0,381;0,892)^T$. 11°. Проверим выполнение условия $f(x^1) < f(x^0)$: $f(x^1) = 1,438 < 2 = f(x^0)$.

12°. Полагаем $k=1,\ \mu^1=\frac{\mu^0}{2}=10$ и переходим к шагу 3.

 3^1 . Вычислим $\nabla f(x^1)$: $\nabla f(x^1) = (2,41;2,16)^T$. 4¹. Проверим выполнение условия $\|\nabla f(x^1)\| < \varepsilon_1$: $\|\nabla f(x^1)\| = 3,18 > 0,1$. Пере-

 5^1 . Проверим выполнение условия $k \ge M$: k = 1 < 10. Переходим к шагу 6. 6^{1} . Вычислим $H(x^{1})$:

 $H(x^1) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.

7¹. Вычислим $H(x^1) + \mu^1 E$:

$$H(x^1) + \mu^1 E = \begin{pmatrix} 14 & 1 \\ 1 & 12 \end{pmatrix}$$
.

8¹. Вычислим $[H(x^1) + \mu^1 E]^{-1}$:

ходим к шагу 5.

9¹. Вычислим
$$d^1 = -[H(x^1) + \mu^1 E]^{-1} \nabla f(x^1)$$
: $d^1 = (-0,160; -0,168)^T$. 10¹. Вычислим $x^2 = x^1 - [H(x^1) + \mu^1 E]^{-1} \nabla f(x^1)$:

 $[H(x^1) + \mu^1 E]^{-1} = \begin{bmatrix} 0.072 & -0.0059 \\ -0.0059 & 0.084 \end{bmatrix}.$

 $x^2 = (0,381;0,892)^T - (0,160;0,168)^T = (0,221;0,724)^T$. 11¹. Проверим выполнение условия $f(x^2) < f(x^1)$: $f(x^2) = 0.791 < 1.438 = f(x^1).$

12¹. Полагаем $k=2,\ \mu^2=\frac{\mu^1}{2}=5$ и переходим к шагу 3.

 3^2 . Вычислим $\nabla f(x^2)$: $\nabla f(x^2) = (1,60;1,67)^T$. 4². Проверим выполнение условия $\|\nabla f(x^2)\| < \varepsilon_1$: $\|\nabla f(x^2)\| = 2,31 > 0,1$. Пере-

ходим к шагу 5. 5^2 . Проверим выполнение условия $k \ge M$: k = 2 < 10. Переходим к шагу 6. 6^2 . Вычислим $H(x^2)$:

 $H(x^2) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$. 7^2 . Вычислим $H(x^2) + \mu^2 E$: $H(x^2) + \mu^2 E = \begin{pmatrix} 9 & 1 \\ 1 & 7 \end{pmatrix}.$

$$8^2$$
. Вычислим $[H(x^2) + \mu^2 E]^{-1}$:
$$[H(x^2) + \mu^2 E]^{-1} = \begin{pmatrix} 0.113 & -0.016 \\ -0.016 & 0.145 \end{pmatrix}.$$

9². Вычислим $d^2 = -[H(x^2) + \mu^2 E]^{-1} \nabla f(x^2)$: $d^2 = (-0.155; -0.217)^T$. 10². Вычислим $x^3 = x^2 - [H(x^2) + \mu^2 E]^{-1} \nabla f(x^2)$:

$$x^3 = (0,221;0,724)^T - (0,155;0,217)^T = (0,07;0,51)^T.$$
 112. Проверим выполнение условия $f(x^3) < f(x^2)$:

 $f(x^3)=0,3<0,791=f(x^2).$ 12². Полагаем $k=3,\ \mu^3=rac{\mu^2}{2}=2,5\$ и переходим к шагу 3. 3³. Вычислим $\nabla f(x^3)$: $\nabla f(x^3) = (0,79; 1,09)^T$.

4³. Проверим выполнение условия $\|\nabla f(x^3)\| < \varepsilon_1$: $\|\nabla f(x^3)\| = 1,34 > 0,1$. Переходим к шагу 5. 5^3 . Проверим выполнение условия $k \ge M$: k = 3 < 10. Переходим к шагу 6. 6^3 . Вычислим $H(x^3)$:

 $H(x^3) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}.$ 7^3 . Вычислим $H(x^3) + \mu^3 E$:

8³. Вычислим $[H(x^3) + \mu^3 E]^{-1}$: $[H(x^3) + \mu^3 E]^{-1} = \begin{pmatrix} 0.159 & -0.035 \\ -0.035 & 0.23 \end{pmatrix}.$

$$10^3$$
. Вычислим $x^4=x^3-[H(x^3)+\mu^3E]^{-1}\nabla f(x^3)$:
$$x^4=(0,07;0,51)^T-(0,078;0,22)^T=(-0,008;0,29)^T.$$

 $f(x^4) = 0.082 < 0.3 = f(x^3).$

9³. Вычислим $d^3 = -[H(x^3) + \mu^3 E]^{-1} \nabla f(x^3)$: $d^3 = (-0.078; -0.22)^T$

 $H(x^3) + \mu^3 E = \begin{pmatrix} 6.5 & 1 \\ 1 & 4.5 \end{pmatrix}$

12³. Полагаем $k=4,\ \mu^4=\frac{\mu^3}{2}=1,25$ и переходим к шагу 3. 3^4 . Вычислим $\nabla f(x^4)$: $\nabla f(x^4) = (0,26;0,57)^T$.

ходим к шагу 5.

 6^4 . Вычислим $H(x^4)$:

8⁴. Вычислим $[H(x^4) + \mu^4 E]^{-1}$:

11³. Проверим выполнение условия $f(x^4) < f(x^3)$:

4⁴. Проверим выполнение условия $\|\nabla f(x^4)\| < \varepsilon_1$: $\|\nabla f(x^4)\| = 0.62 > 0.1$. Пере- 5^4 . Проверим выполнение условия $k \ge M$: k = 4 < 10. Переходим к шагу 6.

 $H(x^4) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$. 7^4 . Вычислим $H(x^4) + \mu^4 E$:

9⁴. Вычислим
$$d^4=-[H(x^4)+\mu^4E]^{-1}\nabla f(x^4)$$
: $d^4=(-0,017;-0,17)^T$. 10^4 . Вычислим $x^5=x^4-[H(x^4)+\mu^4E]^{-1}\nabla f(x^4)$:

 $[H(x^4) + \mu^4 E]^{-1} = \begin{pmatrix} 0.203 & -0.0623 \\ -0.0623 & 0.327 \end{pmatrix}.$

 $H(x^4) + \mu^4 E = \begin{pmatrix} 5,25 & 1 \\ 1 & 3,25 \end{pmatrix}.$

10⁴. Вычислим $x^5 = x^4 - [H(x^4) + \mu^4 E]^{-1} \nabla f(x^4)$: $x^5 = (-0.008; 0.29)^T - (0.017; 0.17)^T = (-0.025; 0.12)^T.$ 11⁴. Проверим выполнение условия $f(x^5) < f(x^4)$:

3⁵. Вычислим $\nabla f(x^5)$: $\nabla f(x^5) = (0,02;0,22)^T$.

$$f(x^5)=0,012<0,082=f(x^4).$$
 124. Полагаем $k=5,\ \mu^5=rac{\mu^4}{2}=0,625$ и переходим к шагу 3.

4⁵. Проверим выполнение условия $\|\nabla f(x^5)\| < \varepsilon_1$: $\|\nabla f(x^5)\| = 0.22 > 0.1$. Пере-

ходим к шагу 5. 5⁵. Проверим выполнение условия $k \ge M$: k = 5 < 10. Переходим к шагу 6. 6^5 . Вычислим $H(x^5)$:

 $H(x^5) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}.$ 7⁵. Вычислим $H(x^5) + \mu^5 E$:

 $H(x^5) + \mu^5 E = \begin{pmatrix} 4.625 & 1 \\ 1 & 2.625 \end{pmatrix}.$ 8⁵. Вычислим $[H(x^5) + \mu^5 E]^{-1}$:

 $[H(x^5) + \mu^5 E]^{-1} = \begin{pmatrix} 0.236 & -0.09 \\ -0.09 & 0.416 \end{pmatrix}.$

9⁵. Вычислим
$$d^5 = -[H(x^5) + \mu^5 E]^{-1} \nabla f(x^5)$$
: $d^5 = (0,015;-0,090)^T$. 10⁵. Вычислим $x^6 = x^5 - [H(x^5) + \mu^5 E]^{-1} \nabla f(x^5)$:

 $x^6 = (-0.025; 0.12)^T - (0.015; -0.09)^T = (-0.01; 0.03)^T.$

точки минимума x^* , так как функция $f(x) = 2x_1^2 + x_1x_2 + x_2^2$ является строго вы-

 $f(x^6) = 0.0006 < 0.012 = f(x^5).$ 12⁵. Полагаем $k=6,\ \mu^6=\frac{\mu^5}{2}=0,311$ и переходим к шагу 3.

36. Вычислим $\nabla f(x^6)$: $\nabla f(x^6) = (-0.01; 0.05)^T$. 4^6 . Проверим выполнение условия $\|\nabla f(x^6)\| < \varepsilon_1$: $\|\nabla f(x^6)\| = 0.051 < 0.1$. Рас-

чет окончен. II. Анализ точки x^6 . Точка $x^6 = (-0.01; 0.03)^T$ (см. рис. 7.2) является найденным приближением

11⁵. Проверим выполнение условия $f(x^6) < f(x^5)$:

пуклой (см. пример 7.1). На рисунке 7.2 полученная траектория спуска изображена штриховой линией. Вопросы

◀ ВТ. Сравнительный анализ эффективности численных методов первого

порядка для поиска безусловного экстремума

Перейти на...

ВТ. Задание №13. Метод Ньютона ▶

СЛЕДУЮЩИЙ ЭЛЕМЕНТ КУРСА

Политика допустимого использования

ПРЕДЫДУЩИЙ ЭЛЕМЕНТ КУРСА

© 2010-2023 Центр обучающих систем

Контакты +7(391) 206-27-05