

FACULTY OF INFORMATION TECHNOLOGY

Programming 621

1st SEMESTER ASSIGNMENT

Name & Surname: Tawana Kombora ICAS/ITS No: 402202621

Qualification: BSc I.T **Semester:** 1st **Module Name:** Programming 621

Submission Date: 31st May 2023

Submission Date: 31 May 2023							
	MARK	EXAMINER	MODERATOR				
ASSESSMENT CRITERIA	ALLOCATION	MARKS	MARKS				
MARKS FOR CONTENT							
QUESTION ONE	30						
QUESTION TWO	30						
QUESTION THREE	30						
TOTAL MARKS	90						
MARKS FOR TECHNICAL ASPECTS							
1. TABLE OF CONTENTS							
Accurate numbering according to the	2						
numbering in text and page numbers.							
2. LAYOUT AND SPELLING							
Font – Calibri 12	3						
Line Spacing – 1.0	5						
Margin should be justified.							
3. REFERENCE	_						
According to the Harvard Method	5						
TOTAL MARKS	10						
TOTAL MARKS FOR ASSIGNMENT	100						
Examiner's Comments:							
Na devete de Como entre							
Moderator's Comments:							
_							
Signature of Examiner: Signature of Moderator:							

Table of Contents

QUESTION ONE	3
QUESTION TWO	6
QUESTION THREE	11

QUESTION ONE

```
• • •
    #include <iostream>
#include <set>
   using std::cout;
using std::endl;
using std::set;
      int currentNumber = array[row][col];
bool presentInSet = false;
              if (num == currentNumber)
```

```
#include <iostream>
#include <set>
/*
```

* These statements make the specified class available to this program

```
using std::cin;
using std::cout;
using std::endl;
using std::set;
int checkConditions(int array[][4], int rowSize, int colSize, set<int> conditions);
int main(void)
{
 int row, col;
 set<int> conditions = {1, 2, 3, 4, 5, 6, 7, 8};
 int arr[3][4] = \{\{1, 2, 3, 4\},
           {3, 4, 5, 6},
           {5, 6, 7, 8}};
 cout << checkConditions(arr, 3, 4, conditions) << endl;</pre>
 return 0;
}
* The function takes:
 - an array of integers (array),
 - row size (rowSize),
 - column size (colSize),
 - a set of integers (conditions)
* It iterates over each element of the array using nested loops.
* For each element, it assigns the current number to the variable currentNumber.
```

- * It then checks if currentNumber is present in the set by iterating through the conditions set using a ranged-based for loop.
- * If a match is found, it sets the presentInSet flag to true and breaks the loop.
- * After the inner loop completes, it checks the value of presentInSet.
- * If it is false, it means the number was not found in the set, so the function returns -1.

* If all numbers pass the condition check, the function returns 0, indicating that all numbers in the array are contained in the set.

```
*/
int checkConditions(int array[][4], int rowSize, int colSize, set<int> conditions)
{
 for (int row = 0; row < rowSize; row++)
 {
  for (int col = 0; col < colSize; col++)
  {
   int currentNumber = array[row][col];
   bool presentInSet = false;
   for (int num : conditions)
   { // range-based for loop. for each number in the set conditions do some action
    if (num == currentNumber)
    {
      presentInSet = true;
     break;
    }
   }
   if (!presentInSet)
   {
    return -1; // Number not found in the set, return -1
   }
  }
 }
 return 0; // All numbers in the array are contained in the set
}
```

QUESTION TWO

```
#include <iostream>
   using std::cin;
   using std::cout;
8 using std::endl;
10 class Customer
   public:
      float base_charge;
      float item_charge;
      int items:
      Customer() : base_charge(0), item_charge(0), items(0){};
      bool membersEmpty()
        return (base_charge == 0 || item_charge == 0 || items == 0);
      float computeCharge()
        float final_charge = base_charge + (items * item_charge);
        return final_charge;
    int main()
      Customer person1, person2, person3;
      while (person1.membersEmpty())
        cout << "[1]: Enter the base charge: ";</pre>
        cin >> person1.base_charge;
        cout << "[1]: Enter the number of items: ";</pre>
        cin >> person1.items;
        cout << "[1]: Enter the item charge: ";</pre>
        cin >> person1.item_charge;
        cout << "[1]: Charge: R" << person1.computeCharge() << "\n"</pre>
             << endl;
      cin.ignore(); // Clear the input buffer
      while (person2.membersEmpty())
        cout << "[2]: Enter the base charge: ";</pre>
        cin >> person2.base_charge;
        cout << "[2]: Enter the number of items: ";</pre>
        cin >> person2.items;
        cout << "[2]: Enter the item charge: ";</pre>
        cin >> person2.item_charge;
        cout << "[2]: Charge: R" << person2.computeCharge() << "\n"</pre>
      cin.ignore(); // Clear the input buffer
      while (person3.membersEmpty())
        cout << "[3]: Enter the base charge: ";</pre>
        cin >> person3.base_charge;
        cout << "[3]: Enter the number of items: ";</pre>
        cin >> person3.items;
        cout << "[3]: Enter the item charge: ";</pre>
        cin >> person3.item_charge;
        cout << "[3]: Charge: R" << person3.computeCharge() << endl;</pre>
```

```
#include <iostream>
```

```
/*
* These statements make the specified class available to this program
*/
using std::cin;
using std::cout;
using std::endl;
class Customer
{
public:
 float base_charge;
 float item_charge;
 int items;
 // initializes the base_charge, item_charge, and items member variables of the Customer class to
0
 Customer(): base_charge(0), item_charge(0), items(0){};
 bool membersEmpty()
  // Check if any member variable is not equal to 0
  return (base_charge == 0 || item_charge == 0 || items == 0);
 }
 float computeCharge()
 {
  // Calculate the total charge for the customer
  float final charge = base charge + (items * item charge);
  return final_charge;
```

```
}
};
int main()
{
 Customer person1, person2, person3;
 // Get input and compute charge for person1
 while (person1.membersEmpty())
 {
  cout << "[1]: Enter the base charge: ";
  cin >> person1.base_charge;
  cout << "[1]: Enter the number of items: ";
  cin >> person1.items;
  cout << "[1]: Enter the item charge: ";</pre>
  cin >> person1.item_charge;
  cout << "[1]: Charge: R" << person1.computeCharge() << "\n"
     << endl;
 }
 cin.ignore(); // Clear the input buffer
 // Get input and compute charge for person2
 while (person2.membersEmpty())
 {
  cout << "[2]: Enter the base charge: ";
  cin >> person2.base_charge;
  cout << "[2]: Enter the number of items: ";
  cin >> person2.items;
  cout << "[2]: Enter the item charge: ";
  cin >> person2.item_charge;
```

```
cout << "[2]: Charge: R" << person2.computeCharge() << "\n"</pre>
     << endl;
 }
 cin.ignore(); // Clear the input buffer
 // Get input and compute charge for person3
 while (person3.membersEmpty())
 {
  cout << "[3]: Enter the base charge: ";</pre>
  cin >> person3.base_charge;
  cout << "[3]: Enter the number of items: ";</pre>
  cin >> person3.items;
  cout << "[3]: Enter the item charge: ";</pre>
  cin >> person3.item_charge;
  cout << "[3]: Charge: R" << person3.computeCharge() << endl;</pre>
 }
 return 0;
}
```

QUESTION THREE

```
#include <iostream>
    using std::cout;
using std::endl;
    class Temperature
      double temperature;
      Temperature() : temperature(0.0){};
      void setTemperature(double temp)
         temperature = temp;
      double getTemperature()
         return temperature;
40 class TempConverter : public Temperature
    public:
        double inputFahrenheit;
        cout << "Enter a temperature in Fahrenheit: ";
cin >> inputFahrenheit;
         setTemperature((inputFahrenheit - 32.0) * 5.0 / 9.0); // Convert Fahrenheit to Celsius using the formula
        double inputCelsius;
cout << "Enter a temperature in Celsius: ";</pre>
         cin >> inputCelsius;
         setTemperature((inputCelsius * 9.0 / 5.0) + 32.0); // Convert Celsius to Fahrenheit using the formula
    int main()
       int numConversions, choice;
      cout << "Enter the number of temperature conversions to perform: ";</pre>
      cin >> numConversions;
      cout << "Select the conversion type:" << endl;</pre>
      cout << "Enter 1: Converts Celsius to Fahrenheit" << endl;</pre>
      cout << "Enter 1: Converts Celtars to Large to Colsius" << endl;
cout << "\nEnter your choice: ";</pre>
      cin >> choice:
       for (int i = 1; i <= numConversions; i++)</pre>
         TempConverter converter;
         if (choice == 1)
          cout << "Fahrenheit temperature: " << converter.getTemperature() << endl;</pre>
         else if (choice == 2)
          converter.toCelsius();
          cout << "Celsius temperature: " << converter.getTemperature() << endl;</pre>
          cout << "Invalid choice -- Skipping conversion." << endl;</pre>
      return 0;
```

```
#include <iostream>
* These statements make the specified class available to this program
*/
using std::cin;
using std::cout;
using std::endl;
/*
* Stores a temperature value
* Modifies the temperature value
* Manages access to the temperature value
*/
class Temperature
{
protected:
 double temperature;
public:
 Temperature() : temperature(0.0){};
 void setTemperature(double temp)
 {
  temperature = temp;
 }
 double getTemperature()
 {
  return temperature;
 }
};
```

```
/*
* Converts the stored temperature value.
* Supported temp conversions:
* | to celsius
* | to fahrenheit
*/
class TempConverter: public Temperature
{
public:
 void toCelsius()
 {
  double inputFahrenheit;
  cout << "Enter a temperature in Fahrenheit: ";
  cin >> inputFahrenheit;
  setTemperature((inputFahrenheit - 32.0) * 5.0 / 9.0); // Convert Fahrenheit to Celsius using the
formula
 }
 void toFahrenheit()
  double inputCelsius;
  cout << "Enter a temperature in Celsius: ";
  cin >> inputCelsius;
  setTemperature((inputCelsius * 9.0 / 5.0) + 32.0); // Convert Celsius to Fahrenheit using the
formula
 }
};
int main()
{
```

```
int numConversions, choice;
cout << "Enter the number of temperature conversions to perform: ";</pre>
cin >> numConversions;
cout << "Select the conversion type:" << endl;</pre>
cout << "Enter 1: Converts Celsius to Fahrenheit" << endl;
cout << "Enter 2: Converts Fahrenheit to Celsius" << endl;
cout << "\nEnter your choice: ";</pre>
cin >> choice;
for (int i = 1; i <= numConversions; i++)
{
 TempConverter converter;
 cout << "\nConversion " << i << ":" << endl;
 if (choice == 1)
  converter.toFahrenheit();
  cout << "Fahrenheit temperature: " << converter.getTemperature() << endl;</pre>
 }
 else if (choice == 2)
 {
  converter.toCelsius();
  cout << "Celsius temperature: " << converter.getTemperature() << endl;</pre>
 }
 else
 {
  cout << "Invalid choice -- Skipping conversion." << endl;</pre>
  continue;
```

```
}
return 0;
}
```

References

Malik, D.S 2018. C++ Programming: Program Design including Data Structures. Eighth Edition.

United Kingdom: Cengage Learning