

Statistik I

Einheit 3: Statistische Kennwerte (2)

30.04.2025 | Prof. Dr. Stephan Goerigk

Wiederholung Einheit 2 - Was können wir schon?

- Kenntnis der Skalenniveaus
- Kenntnis univariater Maße der zentralen Tendenz

Kompetenzen:

- Berechnen von absoluten/relativen Häufigkeiten und Darstelltung in Häufigkeitstabelle
- Berechnen von Summen und Notation mit **Summenzeichen**.
- Berechnen von Modus, Mittelwert (mehrere Gruppen, aus Häufigkeitstabelle), Median.

Agenda für Heute:

Ziel: Effiziente Beschreibung einer Variablen (univariate Statistik)

Was wir danach wissen werden:

• Kenntnis weiterer univariater statistischer Kennwerte

Was wir danach können werden:

• Berechnung von **Streuungsmaßen**

Statistische Kennwerte

Wozu statistische Kennwerte?

- Bestimmte Eigenschaften einer Verteilung numerisch wiedergeben
- Aus vielen Einzelwerten wenige Werte bilden, die gesamte Verteilung beschreiben
- Werte idealerweise so bestimmen, dass Verteilung aus den Kennwerten rekonstruiert werden könnte

Zwei häufige Arten statistischer Kenntwerte:

- 1. Maße der zentralen Tendenz (Lagemaße)
 - o repräsentieren alle Einzelwerte der Verteilung zusammenfassend
- 2. **Streuungsmaße** (Dispersionsmaße)
 - o geben Auskunft über Variation der Messwerte

Statistische Kennwerte

Zentrale Tendenz und Streuung

Unterschiedliche Lagemaße, gleiche Streuung

Gleiche Lagemaße, unterschiedliche Streuung

Statistische Kennwerte

Streuungsmaße:

- Maße der zentralen Tendenz können Verteilung nicht vollständig beschreiben
- Sehr unterschiedliche Verteilungen können das selbe Maß der zentralen Tendenz haben
- Streuungsmaße beschreiben, wie stark die einzelnen Werte einer Verteilung von der zentralen Tendenz abweichen
- Sind unimodale Verteilungen mit gleichem Mittelwert in ihrer Form verschieden, dann muss dies an der unterschiedlich starken Streuung der Variablen liegen

Statistische Kennwerte

Streuungsmaße:

Gleiche Lagemaße, unterschiedliche Streuung

Darstellung der Einzelpersonen

Statistische Kennwerte

Streuungsmaße:

Spannweite R (aka Variationsbreite, *engl. range*):

- Größe des Bereichs in dem die Messwerte liegen
- Differenz aus größten und kleinsten Wert

Beispiel: Spannweite einer Variable X mit (N=10)

- stark von Ausreißern beeinflusst
- nur für **metrische** Variablen sinnvoll

$$R=x_n-x_1$$

$$R = 12 - 8 = 4$$

Statistische Kennwerte

Streuungsmaße:

Varianz s^2 **bzw.** σ^2 (engl. variance):

- wichtigstes Streuungsmaß in der Psychologie
- (wie Mittelwert) nur für metrische Daten
- Summe der Abweichungen um den Mittelwert
- Abweichungen werden vor dem summieren **quadriert** (2 Gründe)
 - 1. Positive und negative Werte heben sich nicht auf
 - 2. Größere Abweichungen werden stärker berücksichtigt (Potenzfunktion)
- Varianz nimmt größere Werte an, je stärker Messwerte vom Mittelwert abweichen
- Problem der Varianz: Durch das Quadrieren geht ursprüngliche Einheit der Variable verloren

Statistische Kennwerte

Streuungsmaße:

Varianz (s^2) :

Beispiel: Varianz einer Variable **erinnerte Items** in Gedächtnisaufgabe (N=15)

ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Items	9	10	13	10	10	13	11	7	9	9	12	11	11	10	9

$$\sigma^2 = rac{\sum\limits_{i=1}^n (x_i - ar{x})^2}{n}$$

$$s^2=rac{\sum\limits_{i=1}^n(x_i-ar{x})^2}{n-1}$$

Statistische Kennwerte

Streuungsmaße:

Varianz (s^2) :

Beispiel: Varianz einer Variable **erinnerte Items** in Gedächtnisaufgabe $\left(N=15\right)$

ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Items	9	10	13	10	10	13	11	7	9	9	12	11	11	10	9

$$s^2 = rac{\sum\limits_{i=1}^{n}(x_i - ar{x})^2}{n-1}$$

Statistische Kennwerte

Streuungsmaße:

Varianz (s^2) :

Beispiel: Varianz einer Variable **erinnerte Items** in Gedächtnisaufgabe (N=5)

Lösungsweg:

$$ar{x} = rac{9+10+13+10+10}{5} = rac{52}{5} = 10.4$$
 $s^2 = rac{(9-10.4)^2+(10-10.4)^2+(13-10.4)^2+(10-10.4)^2+(10-10.4)^2}{5-1} = rac{9.2}{4} = 2.3$

Statistische Kennwerte

Streuungsmaße:

Standardabweichung s **bzw.** σ (engl. standard deviation):

- positive Wurzel aus der Varianz
- gibt Streuung in Einheit der Variable an (Vorteil gegenüber Varianz)
- Abstand des Mittelwerts zum **Wendepunkt** einer Normalverteilung (für NV siehe Folgevorlesung)
- zeigt ebenfalls wie stark Messwerte um Mittelwert streuen
- (wie Varianz und Mittelwert) nur für **metrische** Variablen
- Ausreißer beeinflussen die Varianz stark, da Bezugsgröße der Mittelwert ist
- s = 0 bedeutet, dass es keinerlei Unterschiede zwischen Messwerten gibt

Statistische Kennwerte

Streuungsmaße:

Standardabweichung (s):

Statistische Kennwerte

Streuungsmaße:

Standardabweichung (s):

68 - 95 - 99.7 Faustregel (gilt bei annähernd normalverteilten Daten):

- 68% aller Daten liegen innerhalb 1 Standardabweichung vom Mittelwert
- 95% aller Daten liegen innerhalb 2 Standardabweichungen vom Mittelwert
- 99.7% aller Daten liegen innerhalb 3 Standardabweichungen vom Mittelwert

ightarrow Bei normalverteilten Daten reicht also ein kurzer Blick auf den Mittelwert und die Standardabweichung, um eine Vorstellung davon zu erhalten, in welchen Bereich sich die meisten Daten bewegen

Statistische Kennwerte

Streuungsmaße:

Beispiel - Standardabweichung:

Standardabweichung einer Variable **erinnerte Items** in Gedächtnisaufgabe $\left(N=5\right)$

$$\sigma = \sqrt{rac{\sum\limits_{i=1}^{n}(x_i-ar{x})^2}{n}}$$

$$s = \sqrt{rac{\sum\limits_{i=1}^{n}(x_i - ar{x})^2}{n-1}}$$

Statistische Kennwerte

Streuungsmaße:

Beispiel - Standardabweichung:

Standardabweichung einer Variable **erinnerte Items** in Gedächtnisaufgabe (N=5)

Lösungsweg:

$$\bar{x} = \frac{9 + 10 + 13 + 10 + 10}{5} = \frac{52}{5} = 10.4$$

$$s^2 = \frac{(9 - 10.4)^2 + (10 - 10.4)^2 + (13 - 10.4)^2 + (10 - 10.4)^2 + (10 - 10.4)^2}{5 - 1} = \frac{9.2}{4} = 2.3$$

$$s = \sqrt{2.3} = 1.52$$

Statistische Kennwerte

Streuungsmaße:

Quartilabstand:

- so wie der Median **robust** gegenüber Ausreißern (dann geeignetes Streuungsmaß)
- Berechnung des Quartilabstandes ist sinnvoll für mindestens **rangskalierte** Variablen
- Zwischen dem unteren und oberen Quartil liegen 50% aller Werte

$$q_A = ilde{x}_{0.75} - ilde{x}_{0.25}$$

Statistische Kennwerte

Streuungsmaße:

Quartilabstand:

Berechnung der Quantile:

- Der Median ist das Quantil mit α = 0.50 (50% Quantil)
- ullet Die Quantile mit lpha=0.25 und lpha=0.75 heißen unteres bzw. oberes Quartil

$$\widetilde{x}_{\alpha} = \left\{ egin{array}{ll} x_{(I)} & \text{falls} & n \cdot \alpha & \text{keine ganze Zahl ist;} \\ I = \text{die auf } n \cdot \alpha & \text{folgende ganze Zahl} \\ \frac{x_{(I)} + x_{(I+1)}}{2} & \text{falls} & n \cdot \alpha & \text{eine ganze Zahl ist;} \\ I = n \cdot \alpha & \end{array} \right.$$

Statistische Kennwerte

Streuungsmaße:

Beispiel - Quartilabstand: Stunden Smartphonenutzung pro Woche $\left(N=15\right)$

ID 1	1 2	3	1	5	6	7	Q	٥	10	11	12	12	1/	15
Stunden 9	_					-	_							

Lösungweg:

$$egin{align*} x_{sortiert} = 6; 8; 9; 9; 9; 10; 11; 11; 12; 12; 13; 13; 16; 17; 18 \ & n \cdot lpha = 15 \cdot 0.25 = 3.75
ightarrow I_{0.25} = 4 \ & n \cdot lpha = 15 \cdot 0.75 = 11.25
ightarrow I_{0.75} = 12 \ & q_{0.25} = x_{(I_{0.25})} = x_{(4)} = 9 \ & q_{0.75} = x_{(I_{0.75})} = x_{(12)} = 13 \ & q_A = \tilde{x}_{0.75} - \tilde{x}_{0.25} = 13 - 9 = 4 \ & \end{cases}$$

Statistische Kennwerte

Streuungsmaße:

Beispiel: Quartilabstand Stunden Smartphonenutzung pro Woche $\left(N=20\right)$

ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Stunden	9	10	17	11	12	18	13	6	8	9	16	12	13	11	9	18	13	3	14	9

Lösungweg:

$$egin{align*} x_{sortiert} &= 3;6;8;9;9;9;9;10;11;11;12;12;13;13;13;14;16;17;18;18 \ &\quad n \cdot lpha = 20 \cdot 0.25 = 5
ightarrow I_{0.25} = 5 \ &\quad n \cdot lpha = 20 \cdot 0.75 = 15
ightarrow I_{0.75} = 15 \ &\quad q_{0.25} = rac{x_{(I_{0.25})} + x_{(I_{0.25}+1)}}{2} = rac{x_{(5)} + x_{(6)}}{2} = rac{9+9}{2} = 9 \ &\quad q_{0.75} = rac{x_{(I_{0.75})} + x_{(I_{0.75}+1)}}{2} = rac{x_{(15)} + x_{(16)}}{2} = rac{13+14}{2} = 13.5 \ &\quad q_A = ilde{x}_{0.75} - ilde{x}_{0.25} = 13.5 - 9 = 4.5 \ &\quad q_A = 20 \cdot 0.75 - 20 \cdot 0.25 = 13.5 - 9 = 13.5 -$$

Statistische Kennwerte

Eingipfelige vs. mehrgipfelige Verteilung

Statistische Kennwerte

Schiefe (engl. curtosis):

- Die Schiefe g_1 ist eine Maßzahl, die uns angibt, in welche Richtung eine Häufigkeitsverteilung schief ist.
- Ist $g_1 = 0$, so ist die Verteilung symmetrisch.
- Je stärker negativ/positiv g_1 ist, desto linksschiefer/rechtsschiefer ist die Verteilung.
- Die Schiefe ist sinnvoll für eingipfelige Verteilungen.
- ACHTUNG: Muss in Prüfung nicht berechnet werden.

$$g_1 = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{\sqrt{(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2)^3}}$$

Statistische Kennwerte

Schiefe (engl. curtosis):

SYMMETRISCHE VERTEILUNG

Statistische Kennwerte

Wegweiser Maße der zentralen Tendenz:

Statistische Kennwerte

Wegweiser Streuungsmaße:

Übung: Erstellen einer Stichprobenbeschreibungstabelle (Tabelle 1 eines Papers)

Muster Datenmatrix:

ID	1	2	3	4	5	6
Geschlecht	weiblich	weiblich	weiblich	weiblich	männlich	weiblich
Alter	42	55	66	19	23	41
BDI	8	12	41	20	14	2
Behandlungsgruppe	Α	Α	Α	В	В	В

Muster Stichprobenbeschreibungstabelle (zusammengefasste Daten):

Charakteristik	A (N=3)	B (N=3)	Total (N=6)
Geschlecht, w, n (%)	3 (100)	2 (66.67)	5 (83.33)
Alter, m (SD)	54.33 (12.01)	27.67 (11.72)	41 (18.06)
BDI, m (SD)	20.33 (18.01)	12 (9.17)	16.17 (13.57)

Übung: Erstellen einer Stichprobenbeschreibungstabelle (Tabelle 1 eines Papers)

Datenmatrix:

ID	1	2	3	4	5	6
Geschlecht	männlich	männlich	weiblich	weiblich	männlich	weiblich
Alter	63	52	19	31	54	32
BDI	44	2	3	55	12	41
Behandlungsgruppe	В	В	В	Α	Α	В

Aufgabe: Erstellen Sie für gegebene Datenmatrix eine Stichprobenbeschreibungstabelle!

(BDI = Beck Depression Inventory; Fragebogen zur Messung depressiver Symptomatik)

Take-aways

- Streuungsmaße geben Variation der Messwerte um Maß der zentralen Tendez an.
- Varianz wichtigstes aber unpraktisches Maß der Streuung um den Mittelwert.
- Standardabweichung ist Wurzel aus Varianz und kann in Einheit der Variable interpretiert werden.
- Varianz und Standardabweichung nur bei metrischen Daten ohne Ausreißer sinnvoll.
- Bei Vorliegen von ordinal skalierten Daten und Ausreißern berechnen wir den Quartilabstand.
- Die erste Tabelle eines Papers ist i.d.R. eine **Stichprobenbeschreibung**. Diese enthält für kategoriale Variablen absolute/relative Häufigkeiten und für numerische Variablen Lagemaße/Streuungsmaße.