Supplementary Document for- "Real-World Multi-Objective Constrained Optimisation Competition"

Abhishek Kumar^a, Guohua Wu^b, Mostafa Z. Ali^c, Qizhang Luo^b, Rammohan Mallipeddi^{d,*}, Ponnuthurai Nagaratnam Suganthan^e, Swagatam Das^f

^aDepartment of Artificial Intelligence, Kyungpook National University, Daegu 41566, Republic of Korea.
 ^bSchool of Traffic and Transportation Engineering, Central South University, Changsha 410075, China.
 ^cSchool of Computer Information Systems, Jordan University of Science & Technology, Jordan 22110.
 ^dDepartment of Artificial Intelligence, School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
 ^eSchool of Electrical Electronic Engineering, Nanyang Technological University, Singapore 639798.
 ^fElectronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata, India.

1. Mathematical Description of All RWCMOPs

1.1. Mechanical Design Problems

1.1.1. Pressure Vessel Design (RCM01) [1]

This constrained optimization problem contains discrete, integer, and continuous variables. This problem's main objective is to obtain the shape of a helical compression spring having the least volume. Minimize:

$$f_1 = 1.7781z_2x_3^2 + 0.6224z_1x_3x_4 + 3.1661z_1^2x_4 + 19.84z_1^2x_3$$
 (1)

$$f_2 = -\pi x_3^2 x_4 - \frac{4}{3}\pi x_3^3 \tag{2}$$

subject to:

$$g_1(\bar{x}) = 0.00954x_3 \le z_2,$$

$$g_2(\bar{x}) = 0.0193x_3 \le z_1$$

where:

$$z_1 = 0.0625x_1,$$

 $z_2 = 0.0625x_2.$

with bounds:

$$10 \le x_4, x_3 \le 200$$

 $1 \le x_2, x_1 \le 99$ (integer variables).

Email address: mallipeddi.ram@gmail.com (Rammohan Mallipeddi)

Preprint submitted to Elsevier August 25, 2021

^{*}Corresponding author

1.1.2. Vibrating Platform Design (RCM02) [2]

Originally vibrating platform problem is formulated as a single-objective constrained problem with the maximization of the fundamental frequency. This problem is modified to include the cost of operations as the second objective. Minimize:

$$f_1 = -\frac{\pi}{2L^2} \sqrt{\frac{EI}{\mu}} \tag{3}$$

$$f_2 = 2bL(c_1d_1 + c_2(d_2 - d_1) + c_3(d_3 - d_2))$$
(4)

subject to:

$$g_1 = \mu L - 2800 \le 0,$$

$$g_2 = d_1 - d_2 \le 0,$$

$$g_3 = d_2 - d_1 - 0.15 \le 0,$$

$$g_4 = d_2 - d_3 \le 0,$$

$$g_5 = d_3 - d_2 - 0.01 \le 0$$

where,

$$EI = \frac{2b}{3} \left(E_1 d_1^3 + E_2 (d_2^3 - d_1^3) + E_3 (d_3^3 - d_2^3) \right),$$

$$\mu = 2b \left(\rho_1 d_1 + \rho_2 (d_2 - d_1) + \rho_3 (d_3 - d_2) \right)$$

$$\rho_1 = 100, \quad \rho_2 = 2770, \rho_3 = 7780,$$

$$E_1 = 1.6, \quad E_2 = 70, E_3 = 200,$$

$$c_1 = 500, \quad c_2 = 1500, c_3 = 800$$

with bounds:

$$0.05 \le d_1 \le 0.5$$

 $0.2 \le d_2 \le 0.5$
 $0.2 \le d_3 \le 0.6$
 $0.35 \le b \le 0.5$
 $3 \le L \le 6$

1.1.3. Two Bar Truss Design (RCM03) [3]

This problem involves the design of a two-bar truss. Originally, this problem is developed as a single-objective problem. The problem has been transformed into a bi-objective problem. Minimize:

$$f_1(x) = x_1 \sqrt{16 + x_3^2} + x_2 \sqrt{1 + x_3^2},\tag{5}$$

$$f_2(x) = \frac{20\sqrt{16 + x_3^2}}{x_3 x_1} \tag{6}$$

$$g_1(x) = f_1(x) - 0.1 \le 0,$$

$$g_2(x) = f_2(x) - 10^5 \le 0,$$

$$g_3(x) = \frac{80\sqrt{1 + x_3^2}}{x_3 x_2} - 10^5 \le 0$$

with bounds:

$$10^{-5} \le x_1 \le 100$$
,

$$10^{-5} \le x_2 \le 100,$$

$$1 \le x_3 \le 3$$

1.1.4. Welded Beam Design (RCM04) [4]

This problem is already well-studied as a single-objective optimization problem, where four design variables need to be optimized for which the beam's cost is minimum. However, the objective functions regarding minimum cost and maximum rigidity are conflicting with each other. Therefore, this problem is redefined as a bi-objective problem. Minimize:

$$f_1(x) = 1.10471x_1^2x_2 + 0.04811x_3x_4(14 + x_2), (7)$$

$$f_2(x) = \frac{4PL^3}{Ex_4x_3^3} \tag{8}$$

subject to:

$$g_1(x) = \tau(x) - \tau_{max} \le 0,$$

$$g_2(x) = \sigma(x) - \sigma_{max} \le 0,$$

$$g_3(x) = x_1 - x_4 \le 0,$$

$$g_4(x) = P - P_c(x) \le 0,$$

where,

$$\tau(x) = \sqrt{(\tau')^2 + \frac{2\tau'\tau''x_2}{2R} + (\tau'')^2},$$

$$\tau' = \frac{P}{\sqrt{2}x_1x_2},$$

$$M = P\left(L + \frac{x_2}{2}\right),$$

$$R = \sqrt{\frac{x_2^2}{4} + \left(\frac{x_1 + x_3}{2}\right)^2}$$

$$J = 2\left(\sqrt{2}x_1x_2\left(\frac{x_2^2}{12} + \left(\frac{x_1 + x_3}{2}\right)^2\right)\right),$$

$$\sigma(x) = \frac{6PL}{x_4x_3^2}$$

$$P_c(x) = \frac{4.013E\sqrt{\frac{x_3^2x_6^4}{36}}}{L^2} \left(1 - \frac{x_3}{2L}\sqrt{\frac{E}{4G}}\right),$$

$$P = 6000,$$

$$L = 14,$$

$$E = 30 \times 10^6$$

$$\tau_{max} = 13600.$$

$$\sigma_{max} = 30,000.$$

with bounds:

$$0.125 \le x_1 \le 5$$
,

$$0.1 \le x_2 \le 10$$
,

$$0.1 \le x_3 \le 10$$
,

$$0.125 \le x_4 \le 5$$
.

1.1.5. Disc Brake Design (RCM05) [5]

This design problem aims to reduce the brake weight and minimize the stopping time. The variables are the radius of internal and external disks, the force of engagement, and the number of friction surfaces. The design constraints involve the maximum break length, friction, temperature, and torque limits.

Minimize:

$$f_1(x) = 4.9 \times 10^{-5} \left(x_2^2 - x_1^2\right) (x_4 - 1), \tag{9}$$

$$f_2(x) = 9.82 \times 10^6 \left(\frac{x_2^2 - x_1^2}{x_3 x_4 \left(x_2^3 - x_1^3 \right)} \right),\tag{10}$$

subject to:

$$g_1(x) = 20 - (x_2 - x_1) \le 0,$$

$$g_2(x) = \frac{x_3}{3.14(x_2^2 - x_1^2)} - 0.4 \le 0,$$

$$g_3(x) = \frac{2.22 \times 10^{-3} x_3 \left(x_2^3 - x_1^3\right)}{\left(x_2^2 - x_1^2\right)^2} - 1 \le 0,$$

$$g_4(x) = 900 - 2.66 \times 10^{-2} \frac{x_3 x_4 \left(x_2^3 - x_1^3\right)}{\left(x_2^2 - x_1^2\right)} \le 0$$

with bounds:

$$55 \le x_1 \le 80$$

$$75 \le x_2 \le 110$$

$$1000 \le x_3 \le 3000$$

$$11 \le x_4 \le 20.$$

1.1.6. Speed Reducer Design (RCM06) [6]

This problem is a bi-objective constrained optimization problem. Here, one of the constraints of the original problem is assumed an extra objective of the problem.

Minimize:

$$f_1(x) = 0.7854x_1x_2^2 \left(\frac{10x_3^2}{3} + 14.933x_3 - 43.0934\right) - 1.508x_1(x_6^2 + x_7^2) + 7.477(x_6^3 + x_7^3) + 0.7854(x_4x_6^2 + x_5x_7^2)$$
(11)

$$f_2(x) = \frac{\sqrt{\left(\frac{745x_4}{x_2x_3}\right)^2 + 1.69 \times 10^7}}{0.1x_6^3}$$
 (12)

$$g_{1}(x) = \frac{1}{x_{1}x_{2}^{2}x_{3}} - \frac{1}{27} \le 0,$$

$$g_{2}(x) = \frac{1}{x_{1}x_{2}^{2}x_{3}^{2}} - \frac{1}{397.5} \le 0,$$

$$g_{3}(x) = \frac{x_{4}^{3}}{x_{2}x_{3}x_{6}^{4}} - \frac{1}{1.93} \le 0,$$

$$g_{4}(x) = \frac{x_{5}^{3}}{x_{2}x_{3}x_{7}^{4}} - \frac{1}{1.93} \le 0,$$

$$g_{5}(x) = x_{2}x_{3} - 40 \le 0,$$

$$g_{6}(x) = \frac{x_{1}}{x_{2}} - 12 \le 0,$$

$$g_{7}(x) = -\frac{x_{1}}{x_{2}} + 5 \le 0,$$

$$g_{8}(x) = 1.9 - x_{4} + 1.5x_{6} \le 0,$$

$$g_{9}(x) = 1.9 - x_{5} + 1.1x_{7} \le 0,$$

$$g_{10}(x) = f_{2}(x) - 1300 \le 0,$$

$$g_{11}(x) = \frac{\sqrt{\left(\frac{745x_{5}}{x_{2}x_{3}}\right)^{2} + 1.575 \times 10^{8}}}{0.1x_{2}^{2}} - 110 \le 0.$$

with bounds:

$$2.6 \le x_1 \le 3.6$$

$$0.7 \le x_2 \le 0.8$$

$$x_3 \in \{17, ..., 28\}(integer)$$

$$7.3 \le x_4 \le 8.3$$

$$7.3 \le x_5 \le 8.3$$

$$2.9 \le x_6 \le 3.9$$

$$5 \le x_7 \le 5.5$$

1.1.7. Gear Train Design (RCM07) [7]

This design problem involves minimization of gears' ratio and size (inner and outer radius of gears). The ratio of gear trains can be defined as the ratio of input and output shafts' angular velocities.

Minimize:

$$f_1(x) = \left| 6.931 - \frac{x_3 x_4}{x_1 x_2} \right|,\tag{13}$$

$$f_2(x) = \max\{x_1, x_2, x_3, x_4\} \tag{14}$$

$$g_1(x) = \frac{f_1(x)}{6.931} - 0.5 \le 0$$

with bounds:

$$x_1.x_2, x_3, x_4 \in \{12, ..., 60\}(interger)$$

1.1.8. Car Side Impact Design (RCM08) [8]

This design problem is a three-objective constrained optimization problem, where all objectives are minimization type. This problem contains seven variables and 10 inequality constraints.

Minimize:

$$f_1(x) = 1.98 + 4.9x_1 \cdot 6.67x_2 + 6.98x_3 + 4.01x_4 + 1.78x_5 + 10^{-5}x_6 + 2.73x_7,$$
(15)

$$f_2(x) = 4.72 - 0.5x_4 - 0.19x_2x_3, (16)$$

$$f_3(x) = 0.5 \left(V_{MBP}(x) + V_{FD}(x) \right) \tag{17}$$

subject to:

$$\begin{split} g_1(x) &= -1 + 1.16 - 0.3717x_2x_4 - 0.0092928x_3 \leq 0, \\ g_2(x) &= -0.32 + 0.261 - 0.0159x_1x_2 - 0.06486x_1 - 0.019x_2x_7 + 0,0144x_3x_5 + 0.0154464x_6 \leq 0, \\ g_3(x) &= -0.32 + 0.74 - 0.61x_2 - 0.031296x_3 - 0.031872x_7 + 0.227x_2^2 \leq 0, \\ g_4(x) &= -0.32 + 0.214 + 0.00817x_5 - 0.045195x_1 - 0.0135168x_1 + 0.03099x_2x_6 - 0.018x_2x_7 \\ &\quad + 0.007176x_3 + 0.023232x_3 - 0.00364x_5x_6 - 0.018x_2^2 \leq 0, \\ g_5(x) &= -32 + 33.86 + 2.95x_3 - 5.057x_1x_2 - 3.795x_2 - 3.4431x_7 + 1.45728 \leq 0, \\ g_6(x) &= -32 + 28.98 + 3.818x_3 - 4.2x_1x_2 + 1.27296x_6 - 2.68065x_7 \leq 0, \\ g_7(x) &= -32 + 46.36 - 9.9x_2 - 4.4505x_1 \leq 0, \end{split}$$

$$g_8(x) = f_1(x) - 4 \le 0,$$

$$g_9(x) = V_{MBP} - 9.9 \le 0,$$

$$g_{10}(x) = V_{FD}(x) - 15.7 \le 0$$

where,

$$V_{MBP}(x) = 10.58 - 0.674x_1x_2 - 0.67275x_2,$$

$$V_{FD}(x) = 16.45 - 0.489x_3x_7 - 0.843x_5x_6$$

with bounds:

$$0.5 \le x_1 \le 1.5$$

$$0.45 \le x_2 \le 1.35$$

$$0.5 \le x_3 \le 1.5$$

$$0.5 \leq x_4 \leq 1.5$$

$$0.875 \le x_5 \le 2.625$$

$$0.4 \le x_6 \le 1.2$$

$$0.4 \le x_7 \le 1.2$$

1.1.9. Four Bar Plane Truss (RCM09) [9]

Four Bar Plane Truss is a bi-objective bound-constrained optimization problem. This problem has four variables. Minimize:

$$f_1(x) = L\left(2x_1 + \sqrt{2}x_2 + \sqrt{2}x_3 + x_4\right),\tag{18}$$

$$f_2(x) = \frac{FL}{E} \left(\frac{2}{x_1} + \frac{2\sqrt{2}}{x_2} - \frac{2\sqrt{2}}{x_3} + \frac{2}{x_4} \right),\tag{19}$$

with bounds:

$$\frac{F}{\sigma} \le x_1 \le 3\frac{F}{\sigma}$$

$$\sqrt{2}\frac{F}{\sigma} \le x_2 \le 3\frac{F}{\sigma}$$

$$\sqrt{2}\frac{F}{\sigma} \le x_3 \le 3\frac{F}{\sigma}$$

$$\frac{F}{\sigma} \le x_4 \le 3\frac{F}{\sigma}$$

where,

$$F = 10kN$$
, $E = 2 \times 10^5 kN/cm^2$, $L = 200cm$, $\sigma = 10kN/cm^2$.

1.1.10. Two Bar Plane Truss (RCM10)

This problem is a bi-objective constrained optimization problem, where all objectives are minimization type. This problem involves two variables and two inequality constraints.

Minimize:

$$f_1(x) = 2\rho h x_2 \sqrt{1 + x_1^2},\tag{20}$$

$$f_2(x) = \frac{\rho h(1 + x_1^2)^{1.5} (1 + x_1^4)^{0.5}}{2\sqrt{2}Ex_1^2 x_2},\tag{21}$$

subject to:

$$g_1 = \frac{P(1+x_1)(1+x_1^2)^{0.5}}{2\sqrt{2}x_1x_2} - \sigma_0 \le 0,$$

$$g_2 = \frac{P(-x_1+1)(1+x_1^2)^{0.5}}{2\sqrt{2}x_1x_2} - \sigma_0 \le 0$$

with bounds:

$$0.1 \le x_1 \le 2,$$

$$0.5 \leq x_2 \leq 2.5$$

where,

$$\rho = 0.283 lb/in^3$$
, $h = 100 in$, $P = 104 lb$, $E = 3 \times 10^7 lb/in^2$, $\sigma_0 = 2 \times 10^4 lb/in^2$, $A_{min} = 1 in^2$.

1.1.11. Water Resources Management (RCM11)

This mechanical design problem involves minimization of the five objectives of the problem by satisfying design constraints. This problem has three variables and seven inequality constraints.

Minimize:

$$f_1 = 106780.37 (x_2 + x_3) + 61704.67,$$
 (22)

$$f_2 = 3000x_1,$$
 (23)

$$f_3 = 2.62314586 \times 10^3 x_2,\tag{24}$$

$$f_4 = 572250e^{-3.975x_2 + 9.9x_3 + 2.74}, (25)$$

$$f_5 = 25 \left(\frac{1.39}{x_1 x_2} + 4940 x_3 - 80 \right). \tag{26}$$

subject to:

$$\begin{split} g_1 &= -1 + \left(\frac{0.00139}{x_1 x_2} + 4.94 x_3 - 0.08\right), \\ g_2 &= -1 + \left(\frac{0.000306}{x_1 x_2} + 1.082 x_3 - 0.0986\right), \\ g_3 &= -50000 + \left(\frac{12.307}{x_1 x_2} + 49408.24 x_3 + 4051.02\right), \\ g_4 &= -16000 + \left(\frac{12.098}{x_1 x_2} + 8046.33 x_3 - 696.71\right), \\ g_5 &= -10000 + \left(\frac{2.138}{x_1 x_2} + 7883.39 x_3 - 705.04\right), \\ g_6 &= -2000 + (0.417 x_1 x_2 + 1721.26 x_3 - 136.54), \\ g_7 &= -550 + \left(\frac{0.164}{x_1 x_2} + 631.13 x_3 - 54.48\right). \end{split}$$

with bounds:

$$0.01 \le x_1 \le 0.45$$

$$0.01 \le x_2 \le 0.1$$

$$0.01 \le x_3 \le 0.1$$
.

1.1.12. Simply Supported I-beam Design (RCM12) [10]

I-beam design problem includes minimization of the two objective functions of the problem through settling design constraints. This problem involves four variables and one inequality constraints. Minimize:

$$f_1 = 2x_2x_4 + x_3(x_1 - 2x_4), (27)$$

$$f_2 = \frac{PL^3}{4E\left(x_3\left(x_1 - 2x_4\right)^3 + 2x_2x_4\left(4x_4^2 + 3x_1\left(x_1 - 2x_4\right)\right)\right)}.$$
 (28)

where,

$$P = 600, L = 200, E = 20000,$$

$$g_1 = -16 + \frac{180000x_1}{x_3 (x_1 - 2x_4)^3 + 2x_2 x_4 \left(4x_4^2 + 3x_1 (x_1 - 2x_4)\right)} + \frac{15000x_2}{\left((x_1 - 2x_4) x_3^3 + 2x_4 x_2^3\right)},$$

with bounds:

$$10 \le x_1 \le 80$$
,

$$10 \le x_2 \le 50$$
,

$$0.9 \le x_3 \le 5$$
,

$$0.9 \le x_4 \le 5$$
.

1.1.13. Gear Box Design (RCM13)

Minimize:

$$f_{1} = 0.7854x_{2}^{2}x_{1} \left(\frac{14.9334}{x_{3}} - 43.0934 + 3.3333x_{3}^{2} \right) + 0.7854(x_{5}x_{7}^{2} + x_{4}x_{6}^{2}) - 1.508x_{1}(x_{7}^{2} + x_{6}^{2}) + 7.477(x_{7}^{3} + x_{6}^{3})$$

$$f_{2} = 10x_{6}^{-3}\sqrt{16.91 \times 10^{6} + (745x_{4}x_{2}^{-1}x_{3}^{-1})^{2}}$$

$$f_{3} = 10x_{7}^{-3}\sqrt{157.5 \times 10^{6} + (745x_{5}x_{2}^{-1}x_{3}^{-1})^{2}}$$
(29)

subject to:

$$g_1(\bar{x}) = \frac{1}{x_1 x_2^2 x_3} - \frac{1}{27} \le 0,$$

$$g_2(\bar{x}) = \frac{1}{x_1 x_2^2 x_2^2} - \frac{1}{397.5} \le 0,$$

$$g_3(\bar{x}) = \frac{1}{x_2 x_c^4 x_3 x_a^{-3}} - \frac{1}{1.93} \le 0,$$

$$g_4(\bar{x}) = \frac{1}{x_2 x_+^4 x_2 x_-^{-3}} - \frac{1}{1.93} \le 0,$$

$$g_5(\bar{x}) = 10x_6^{-3} \sqrt{16.91 \times 10^6 + (745x_4x_2^{-1}x_3^{-1})^2} - 1100 \le 0,$$

$$g_6(\bar{x}) = 10x_7^{-3} \sqrt{157.5 \times 10^6 + (745x_5x_2^{-1}x_3^{-1})^2} - 850 \le 0,$$

$$g_7(\bar{x}) = x_2 x_3 - 40 \le 0,$$

$$g_8(\bar{x}) = -x_1 x_2^{-1} + 5 \le 0,$$

$$g_9(\bar{x}) = x_1 x_2^{-1} - 12 \le 0,$$

$$g_{10}(\bar{x}) = 1.5x_6 - x_4 + 1.9 \le 0,$$

$$g_{11}(\bar{x}) = 1.1x_7 - x_5 + 1.9 \le 0,$$

with bounds:

$$0.7 \le x_2 \le 0.8, x_3 \in \{17, 28\}, 2.6 \le x_1 \le 3.6,$$

$$5 \le x_7 \le 5.5, 7.3 \le x_5, x_4 \le 8.3, 2.9 \le x_6 \le 3.9.$$

1.1.14. Multiple Disk Clutch Brake Design (RCM14) [11]

Minimize:

$$f_1 = \pi(x_2^2 - x_1^2)x_3(x_5 + 1)\rho, (30)$$

$$f_2 = T. (31)$$

subject to:

$$g_1(\bar{x}) = -p_{max} + p_{rz} \le 0,$$

$$g_2(\bar{x}) = p_{rz}V_{sr} - V_{sr,max}p_{max} \le 0,$$

$$g_3(\bar{x}) = \triangle R + x_1 - x_2 \le 0,$$

$$g_4(\bar{x}) = -L_{max} + (x_5 + 1)(x_3 + \delta) \le 0,$$

$$g_5(\bar{x}) = sM_s - M_h \le 0,$$

$$g_6(\bar{x}) = T \ge 0,$$

$$g_7(\bar{x}) = -V_{sr,max} + V_{sr} \le 0,$$

$$g_7(\bar{x}) = T - T_{max} \le 0,$$

where,

$$M_h = \frac{2}{3}\mu x_4 x_5 \frac{x_2^3 - x_1^3}{x_2^2 - x_1^2} \text{ N.mm},$$

$$\omega = \frac{\pi n}{30} \text{ rad/s},$$

$$A = \pi (x_2^2 - x_1^2) \text{ mm}^2,$$

$$p_{rz} = \frac{x_4}{A} \text{ N/mm}^2,$$

$$V_{sr} = \frac{\pi R_{sr} n}{30} \text{ mm/s},$$

$$R_{sr} = \frac{2}{3} \frac{x_2^3 - x_1^3}{x_2^2 x_1^2} \text{ mm},$$

$$T = \frac{I_z \omega}{M_h + M_f},$$

$$\triangle R = 20 \text{ mm}, \ L_{max} = 30 \text{ mm}, \ \mu = 0.6,$$

$$V_{sr,max} = 10 \text{ m/s}, \ \delta = 0.5 \text{ mm}, \ s = 1.5,$$

$$T_{max} = 15 \text{ s}, \ n = 250 \text{ rpm}, \ I_z = 55 \text{ Kg.m}^2,$$

$$M_s = 40 \text{ Nm}, M_f = 3 \text{ Nm}, \text{ and } p_{max} = 1.$$

with bounds:

$$60 \le x_1 \le 80, \ 90 \le x_2 \le 110, \ 1 \le x_3 \le 3,$$

$$0 \le x_4 \le 1000, \ 2 \le x_5 \le 9.$$

1.1.15. Spring Design (RCM15) [1]

Minimize:

$$f_1 = \frac{\pi^2 x_2 x_3^2 (x_1 + 2)}{4},\tag{32}$$

$$f_2 = \frac{8000C_f x_2}{\pi x_3^3}. (33)$$

subject to:

$$g_1(\bar{x}) = \frac{8000C_f x_2}{\pi x_3^3} - 189000 \le 0,$$

$$g_2(\bar{x}) = l_f - 14 \le 0,$$

$$g_3(\bar{x}) = 0.2 - x_3 \le 0,$$

$$g_4(\bar{x}) = x_2 - 3 \le 0,$$

$$g_5(\bar{x}) = 3 - \frac{x_2}{x_3} \le 0,$$

$$g_6(\bar{x}) = \sigma_p - 6 \le 0,$$

$$g_7(\bar{x}) = \sigma_p + \frac{700}{K} + 1.05(x_1 + 2)x_3 - l_f \le 0,$$

$$g_8(\bar{x}) = 1.25 - \frac{700}{K} \le 0,$$

where,

$$C_f = \frac{4\frac{x_2}{x_3} - 1}{4\frac{x_2}{x_2} - 4} + \frac{0.615x_3}{x_2}, \ K = \frac{11.5 \times 10^6 x_3^4}{8x_1 x_2^3}, \ \sigma_p = \frac{300}{K}, \ l_f = \frac{1000}{K} + 1.05(x_1 + 2)x_3.$$

with bounds:

 $1 \le x_1 \text{ (integer) } \le 70,$

 $x_3 \text{ (discreate)} \in \{0.009, 0.0095, 0.0104, 0.0118, 0.0128, 0.0132, 0.014, 0.015, 0.0162, 0.0173, 0.018, 0.020, \\ 0.023, 0.025, 0.028, 0.032, 0.035, 0.041, 0.047, 0.054, 0.063, 0.072, 0.080, 0.092, 0.0105, \\ 0.120, 0.135, 0.148, 0.162, 0.177, 0.192, 0.207, 0.225, 0.244, 0.263, 0.283, 0.307, 0.0331, \\ 0.362, 0.394, 0.4375, 0.500\}$

 $0.6 \le x_2$ (continuous) ≤ 3 .

1.1.16. Cantilever Beam Design (RCM16) [12]

Minimize:

$$f_1 = 0.25\rho\pi x_2 x_1^2,\tag{34}$$

$$f_2 = \frac{64Px_2^3}{3E\pi x_1^4} \tag{35}$$

where,

$$P = 1$$
, $E = 307 \times 10^8$, $\rho = 7800$.

$$g_1 = -Sy + \frac{32Px_2}{\pi x_1^3},$$

$$g_2 = -\delta_{max} + \frac{64Px_2^3}{3E\pi x_1^4}$$

where,

$$Sy = 3 \times 10^5$$
, $\delta_{max} = 0.05$.

with bounds:

$$0.01 \le x_1 \le 0.05, \ 0.20 \le x_2 \le 1.$$

1.1.17. Bulk Carrier Design (RCM17) [13]

Minimize:

$$f_1 = \frac{(C_c + C_r + C_v)}{ac},$$
(36)

$$f_2 = ls, (37)$$

$$f_3 = -ac (38)$$

where,

 $C_r = 40000 D_{wt}^{0.3}$

 $C_v = (105F_cS_d + 6.3D_{wt}^{0.8})R_{trp}$

$$a = 4977.06C_{B}^{2} - 8105.61C_{B} + 4456.51,$$

$$b = -10847.2C_{B}^{2} + 12817C_{B} - 6960.32,$$

$$F_{n} = \frac{0.5144}{(9.8065L)^{0.5}},$$

$$P = \frac{(1.025LBTC_{B})^{0.67}V_{k}^{3}}{a + bF_{n}},$$

$$W_{s} = 0.034L^{1.7}B^{0.6}D^{0.4}C_{B}^{0.5},$$

$$W_{o} = L^{0.8}B^{0.6}D^{0.3}C_{B}^{0.1},$$

$$W_{m} = 0.17P^{0.9},$$

$$ls = W_{s} + W_{o} + W_{m},$$

$$D_{wt} = 1.025LBTC_{B} - ls,$$

$$F_{c} = 4.56 \times 10^{-5}P + 0.2,$$

$$D_{cwt} = D_{wt} - F_{c}\left(\frac{5000V_{k}}{24} + 5\right) - 2D_{wt}^{0.5},$$

$$R_{trp} = \frac{350}{\frac{5000.4V_{k}}{24}} + 2\left(\frac{D_{cwt}}{8000} + 0.5\right),$$

$$ac = D_{cwt}R_{trp},$$

$$S_{d} = \frac{5000V_{k}}{24},$$

$$C_{c} = 0.26\left(2000W_{s}^{0.85} + 3500W_{o} + 2400P^{0.8}\right),$$

$$g_{1} = -\frac{L}{B} + 6,$$

$$g_{1} = -15 + \frac{L}{D},$$

$$g_{3} = -19 + \frac{L}{T},$$

$$g_{4} = -0.45D_{wt}^{0.31} + T,$$

$$g_{5} = -0.7D - 0.7 + T,$$

$$g_{6} = -0.32 + F_{n},$$

$$g_{7} = -0.53T - \frac{(0.085. * C_{B} - 0.002). * B.^{2}}{(TC_{B})} + (1 + 0.52D) + 0.07B,$$

$$g_{8} = -D_{wt} + 3000,$$

$$g_{9} = -500000 + D_{wt}.$$

with bounds:

$$150 \le L \le 274.32$$

 $20 \le B \le 32.31$
 $13 \le D \le 25$
 $10 \le T \le 11.71$
 $14 \le V_k \le 18$
 $0.63 \le C_B \le 0.75$

1.1.18. Front Rail Design (RCM18) [14]

Minimize:

$$f_1 = \frac{Ea}{E},\tag{40}$$

$$f_2 = \frac{F}{Fa}. (41)$$

where,

 $Ea = 14496.5, \quad Fa = 234.9, E = -70973.4 + 958.656w + 614.173hh - 3.827whh + 57.023wt + 63.274hht - 3.582w^2 - 1.4842hht - 3.582w^2 - 1.4842ht - 3.582w^2 - 1.48444ht - 3.582w^2 - 1.484444ht - 3.582w^2 - 1.484444ht - 3.584444ht - 3.584444ht - 3.58444ht - 3.58444ht - 3.5844$

subject to:

$$g_1 = -(hh - 136)(146 - hh),$$

$$g_2 = -(w - 58)(66 - w),$$

$$g_3 = -(t - 1.4)(2.2 - t).$$

with bounds:

$$136 \le hh \le 146$$
,
 $56 \le w \le 68$,
 $1.4 \le t \le 2.2$

1.1.19. Multi-product Batch Plant (RCM19) [15]

Minimize:

$$f_1 = \sum_{j=1}^{M} \alpha_j N_j V_j^{\beta_j},\tag{42}$$

$$f_2 = 65\left(\frac{Q_1}{B_1} + \frac{Q_2}{B_2}\right) + 0.08Q_1 + 0.1Q_2,\tag{43}$$

$$f_3 = Q_1 \frac{T_{L1}}{B_1} + Q_2 \frac{T_{L2}}{B_2}. (44)$$

subject to:

$$g_1(\bar{x}) = S_{ij}B_i - V_j \le 0,$$

$$g_2(\bar{x}) = -H + \sum_{i=1}^N \frac{Q_i T_{Li}}{B_i} \le 0,$$

$$g_3(\bar{x})=t_{ij}-N_jT_{Li}\leq 0,$$

with bounds:

$$1 \leq N_i \leq N_j^u,$$

$$V_j^l \le V_j \le V_j^u,$$

$$T_{Li}^{l} \leq T_{Li} \leq T_{Li}^{u},$$

$$B_{j}^{l} \leq B_{j} \leq B_{j}^{u}.$$

where, N=2, M=3, $\alpha_j=250$, H=6000, $\beta_j=0.6$, $N_j^u=3$, $V_j^l=250$, and $V_j^u=2500$. The value of other parameters are calculated by

$$T_{Li}^{l} = \max\left(\frac{t_{ij}}{N_{i}^{u}}\right),\tag{45}$$

$$T_{Li}^{u} = \max\left(t_{ij}\right),\tag{46}$$

$$B_j^l = \frac{Q_i^* T_{Li}}{H},\tag{47}$$

$$B_j^u = \min\left(Q_i, \min_j\left(\frac{V_j^u}{S_{ij}}\right)\right) \tag{48}$$

Parameters S_{ij} and t_{ij} are given in Table 1.

Table 1: Values of S_{ij} and t_{ij} .

	S_{ij}			t_{ij}	
2	3	4	8	20	8
4	6	3	16	4	4

1.1.20. Hydro-static Thrust Bearing Design (RCM20) [16]

Minimize:

$$f_1 = \left(\frac{QP_0}{0.7} + E_f\right) \frac{1}{12},\tag{49}$$

$$f_2 = \frac{0.0307}{386.4P_0} \frac{Q}{2\pi Rh}.$$
 (50)

subject to:

$$\begin{split} g_1(\bar{x}) &= 1000 - P_0 \le 0, \\ g_2(\bar{x}) &= W - 101000 \le 0, \\ g_3(\bar{x}) &= 5000 - \frac{W}{\pi (R^2 - R_0^2)} \le 0, \\ g_4(\bar{x}) &= 50 - P_0 \le 0, \\ g_5(\bar{x}) &= 0.001 - \frac{0.0307}{386.4 P_0} \left(\frac{Q}{2\pi Rh}\right) \le 0, \end{split}$$

$$g_6(\bar{x}) = R - R_0 \le 0,$$

$$g_7(\bar{x}) = h - 0.001 \le 0,$$

where,

$$\begin{split} W &= \frac{\pi P_0}{2} \frac{R^2 - R_0^2}{\ln\left(\frac{R}{R_0}\right)}, \ P_0 = \frac{6\mu Q}{\pi h^3} \ln\left(\frac{R}{R_0}\right), \\ E_f &= 9336Q \times 0.0307 \times 0.5 \triangle T, \ \triangle T = 2(10^P - 559.7), \\ P &= \frac{\log_{10} \log_{10}\left(8.122 \times 10^6 \mu + 0.8\right) + 3.55}{10.04}, \\ h &= \left(\frac{2\pi \times 750}{60}\right)^2 \frac{2\pi \mu}{E_f} \left(\frac{R^4}{4} - \frac{R_0^4}{4}\right) \end{split}$$

with bounds:

$$1 \le R \le 16, \ 1 \le R_0 \le 16,$$

$$1 \times 10^{-6} \le \mu \le 16 \times 10^{-6}, \ 1 \le Q \le 16.$$

1.1.21. Crash Energy Management for High-speed Train (RCM21) [17]

Minimize:

 $1.3 \le x_6 \le 1.7$

```
f_1 = 1.3667145844797 - 0.00904459793976106x_1 - 0.0016193573938033x_2 - 0.00758531275221425x_3
         \times 10^{-6}(x_1^2) + 4.92982681358861 \times 10^{-7}(x_2^2) + 2.25524989067108 \times 10^{-6}
         (x_3^2) + 1.84605439400301 \times 10^{-6}(x_4^2) + 2.17175358243416 \times 10^{-6}(x_5^2)
         +3.90158043948054 \times 10^{-6}(x_6^2) + 4.55276994245781 \times 10^{-7}x_1x_2 - 6.37013576290982
         \times 10^{-7} x_1 x_3 + 8.26736480446359 \times 10^{-7} x_1 x_4 + 5.66352809442276 \times 10^{-8} x_1 x_5
         -3.20213897443278 \times 10^{-7} x_1 x_6 + 1.18015467772812 \times 10^{-8} x_2 x_3 + 9.25820391546515
         \times 10^{-8} x_2 x_4 - 1.05705364119837 \times 10^{-7} x_2 x_5 - 4.74797783014687 \times 10^{-7} x_2 x_6
         -5.02319867013788 \times 10^{-7} x_3 x_4 + 9.54284258085225 \times 10^{-7} x_3 x_5 + 1.80533309229454
         \times 10^{-7} x_3 x_6 - 1.07938022118477 \times 10^{-6} x_4 x_5 - 1.81370642220182 \times 10^{-7} x_4 x_6
         -2.24238851688047 \times 10^{-7} x_5 x_6
                                                                                                                              (51)
    f_2 = -1.19896668942683 + 3.04107017009774x_1 + 1.23535701600191x_2 + 2.13882039381528x_3
         +2.33495178382303x_4 + 2.68632494801975x_5 + 3.43918953617606x_6 - 7.89144544980703
         \times 10^{-4}(x_1^2) - 2.06085185698215 \times 10^{-4}(x_2^2) - 7.15269900037858
         \times 10^{-4}(x_3^2) - 7.8449237573837 \times 10^{-4}(x_4^2) - 9.31396896237177
         \times 10^{-4}(x_5^2) - 1.40826531972195 \times 10^{-3}(x_6^2) - 1.60434988248392
         \times 10^{-4} x_1 x_2 + 2.0824655419411 \times 10^{-4} x_1 x_3 - 3.0530659653553 \times 10^{-4}
                                                                                                                              (52)
         x_1x_4 - 8.10145973591615 \times 10^{-5}x_1x_5 + 6.94728759651311 \times 10^{-5}x_1x_6
         + 1.18015467772812 \times 10^{-8} x_2 x_3 + 9.25820391546515 \times 10^{-8} x_2 x_4
         -1.05705364119837 \times 10^{-7} x_2 x_5 + 1.69935290196781 \times 10^{-4} x_2 x_6
         +2.32421829190088 \times 10^{-5} x_3 x_4 - 2.0808624041163476 \times 10^{-4} x_3 x_5
         +1.75576341867273 \times 10^{-5} x_3 x_6 + 2.68422081654044 \times 10^{-4} x_4 x_5
         +4.39852066801981 \times 10^{-5} x_4 x_6 + 2.96785446021357 \times 10^{-5} x_5 x_6
subject to:
   g_1 = f_1 - 5,
   g_2 = -f_1,
   g_3 = f_2 - 28,
   g_4 = -f_2
with bounds:
    1.3 \le x_1 \le 1.7
   2.5 \le x_2 \le 3.5
    1.3 \le x_3 \le 1.7
    1.3 \le x_4 \le 1.7
    1.3 \le x_5 \le 1.7
```

1.2. Chemical Engineering Problems

The practice in chemical engineering includes a variety of non-linear multi-objective constrained optimization problems. Process equipment configuration relationships and mass equations, and heat balance establish non-linearity in the problems. A variety of extremely complex and non-linear chemical process problems were suggested due to various non-linear models. In this work, the following problems are taken into account.

1.2.1. Haverly's Pooling Problem (RCM22) [18]

Minimize:

$$f_1 = -9x_1 - 15x_2 + 6x_3 + 16x_4, (53)$$

$$f_2 = 10(x_5 + x_6). (54)$$

subject to:

$$h_1(\bar{x}) = x_7 + x_8 - x_4 - x_3 = 0,$$

$$h_2(\bar{x}) = x_1 - x_5 - x_7 = 0,$$

$$h_3(\bar{x}) = x_2 - x_6 - x_8 = 0,$$

$$h_4(\bar{x}) = x_9x_7 + x_9x_8 - 3x_3 - x_4 = 0,$$

$$g_1(\bar{x}) = x_9 x_7 + 2x_5 - 2.5 x_1 \le 0,$$

$$g_2(\bar{x}) = x_9 x_8 + 2x_6 - 1.5 x_2 \le 0,$$

with bounds:

$$0 \le x_1, x_3, x_4, x_5, x_6, x_8 \le 100, 0 \le x_2, x_7, x_9 \le 200.$$

1.2.2. Reactor Network Design (RCM23) [19]

Minimize:

$$f_1 = -x_4, \tag{55}$$

$$f_2 = x_5^{0.5} + x_6^{0.5}. ag{56}$$

subject to:

$$h_1(\bar{x}) = k_1 x_5 x_2 + x_1 - 1 = 0,$$

$$h_2(\bar{x}) = k_3 x_5 x_3 + x_3 + x_1 - 1 = 0,$$

$$h_3(\bar{x}) = k_2 x_6 x_2 - x_1 + x_2 = 0,$$

$$h_4(\bar{x}) = k_4 x_6 x_4 + x_2 - x_1 + x_4 - x_3 = 0,$$

$$g_1(\bar{x}) = x_5^{0.5} + x_6^{0.5} \le 4$$

with bounds:

$$0 \le x_4, x_3, x_2, x_1 \le 1$$
,

$$0.00001 \le x_6, x_5 \le 16.$$

where, $k_3 = 0.0391908$, $k_4 = 0.9k_3$, $k_1 = 0.09755988$, and $k_2 = 0.99k_1$.

1.2.3. Heat Exchanger Nwteork Design (RCM24) [20]

Minimize:

$$f_1 = 35x_1^{0.6} + 35x_2^{0.6}, (57)$$

$$f_2 = 200x_1x_4 - x3, (58)$$

$$f_3 = 200x_1x_6 - x_5. ag{59}$$

subject to:

$$h_1(\bar{x}) = 200x_1x_4 - x_3 = 0,$$

$$h_2(\bar{x}) = 200x_2x_6 - x_5 = 0,$$

$$h_3(\bar{x}) = x_3 - 10000(x_7 - 100) = 0,$$

$$h_4(\bar{x}) = x_5 - 10000(300 - x_7) = 0,$$

$$h_5(\bar{x}) = x_3 - 10000(600 - x_8) = 0,$$

$$h_6(\bar{x}) = x_5 - 10000(900 - x_9) = 0,$$

$$h_7(\bar{x}) = x_4 \ln(x_8 - 100) - x_4 \ln(600 - x_7) - x_8 + x_7 + 500 = 0,$$

$$h_8(\bar{x}) = x_6 \ln(x_9 - x_7) - x_6 \ln(600) - x_9 + x_7 + 600 = 0$$

with bounds:

$$0 \le x_1 \le 10, 0 \le x_2 \le 200, 0 \le x_3 \le 100, 0 \le x_4 \le 200,$$

$$1000 \le x_5 \le 2000000, 0 \le x_6 \le 600, 100 \le x_7 \le 600, 100 \le x_8 \le 600,$$

$$100 \le x_9 \le 900.$$

1.3. Process, Design and Synthesis Problems

In chemical engineering, process design and synthesis problems are defined as a mixed-integer nonlinear multiobjective constrained optimization problem.

1.3.1. Process Synthesis Problem (RCM25) [21]

Minimize:

$$f_1 = x_2 + 2x_1, (60)$$

$$f_2 = -x_1^2 - x_2 \tag{61}$$

subject to:

$$g_1(\bar{x}) = -x_1^2 - x_2 + 1.25 \le 0,$$

$$g_2(\bar{x}) = x_1 + x_2 \le 1.6.$$

with bounds:

$$0 \le x_1 \le 1.6$$

$$x_2 \in \{0, 1\}$$

1.3.2. Process Synthesis and Design Problem (RCM26) [22]

Minimize:

$$f_1 = -x_3 + x_2 + 2x_1, (62)$$

$$f_2 = -x_1^2 - x_2 + x_1 x_3. (63)$$

subject to:

$$h_1(\bar{x}) = -2 \exp(-x_2) + x_1 = 0,$$

$$g_1(\bar{x}) = x_2 - x_1 + x_3 \le 0.$$

with bounds:

$$0.5 \le x_1, x_2 \le 1.4,$$

 $x_3 \in \{0, 1\}.$

1.3.3. Process Flow Sheeting Problem (RCM27) [23]

Minimize:

$$f_1 = -0.7x_3 + 0.8 + 5(0.5 - x_1)^2, (64)$$

$$f_2 = x_1 - x_3. ag{65}$$

subject to:

$$g_1(\bar{x}) = -exp(x_1 - 0.2) - x_2 \le 0,$$

$$g_2(\bar{x}) = x_2 + 1.1x_3 \le -1.0,$$

$$g_3(\bar{x}) = x_1 - x_3 \le 0.2.$$

with bounds:

$$-2.22554 \le x_2 \le -1, \ 0.2 \le x_1 \le 1,$$

 $x_3 \in \{0, 1\}.$

1.3.4. Two Reactor Problem (RCM28) [21]

Minimize:

$$f_1 = 7.5x_7 + 5.5x_8 + 7x_5 + 6x_6 + 5(x_1 + x_2), (66)$$

$$f_2 = x_1 + x_2. (67)$$

$$h_1(\bar{x}) = x_7 + x_8 - 1 = 0,$$

$$h_2(\bar{x}) = x_3 - 0.9(1 - \exp(0.5x_5))x_1 = 0,$$

$$h_3(\bar{x}) = x_4 - 0.8(1 - \exp(0.4x_6))x_2 = 0,$$

$$h_4(\bar{x}) = x_3 + x_4 - 10 = 0,$$

$$h_5(\bar{x}) = x_3 x_7 + x_4 x_8 - 10 = 0,$$

$$g_1(\bar{x}) = x_5 - 10x_7 \le 0,$$

$$g_2(\bar{x}) = x_6 - 10x_8 \le 0,$$

$$g_3(\bar{x}) = x_1 - 20x_7 \le 0$$

$$g_4(\bar{x}) = x_2 - 20x_8 \le 0$$

with bounds:

$$0 \le x_6, x_5, x_4, x_3, x_2, x_1 \le 100$$

 $x_8, x_7 \in \{0, 1\}.$

1.3.5. Process Synthesis Problem (RCM29) [21]

Minimize:

$$f_1 = (1 - x_4)^2 + (1 - x_5)^2 + (1 - x_6)^2 - \ln(1 + x_7) + (1 - x_1)^2 + (2 - x_2)^2 + (3 - x_3)^2, \tag{68}$$

$$f_2 = (1 - x_1)^2 + (2 - x_2)^2 + (3 - x_3)^2. (69)$$

subject to:

$$g_1(\bar{x}) = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 - 5 \le 0,$$

$$g_2(\bar{x}) = x_6^3 + x_1^2 + x_2^2 + x_3^2 = 5.5 \le 0,$$

$$g_3(\bar{x}) = x_1 + x_4 - 1.2 \le 0,$$

$$g_4(\bar{x}) = x_2 + x_5 - 1.8 \le 0,$$

$$g_5(\bar{x}) = x_3 + x_6 - 2.5 \le 0,$$

$$g_6(\bar{x}) = x_1 + x_7 - 1.2 \le 0,$$

$$g_7(\bar{x}) = x_5^2 + x_2^2 - 1.64 \le 0,$$

$$g_8(\bar{x}) = x_6^2 + x_3^2 - 4.25 \le 0,$$

$$g_9(\bar{x}) = x_5^2 + x_3^2 - 4.64 \le 0,$$

with bounds:

$$0 \le x_2, x_3, x_1 \le 100,$$

$$x_7, x_6, x_5, x_4 \in \{0, 1\}.$$

1.4. Power Electronics Problems

In power electronic engineering, the synchronous optimum pulse-width module is a rising tool for controlling medium voltage drives. It decreases the switching frequency dramatically without increasing the distortion. It thus reduces the lack of switching that increases the inverter's efficiency. This problem can be defined as a bi-objective constrained optimization problem. The following problems are considered in this work.

1.4.1. Synchronous Optimal Pulse-width Modulation of 3-level Inverters (RCM30) [24]

Minimize:

$$f_1 = \frac{\sqrt{\sum_{k} (k^{-4})(\sum_{i=1}^{N} s(i)cos(kx_i))^2}}{\sqrt{\sum_{k} k^{-4}}}$$
(70)

$$f_2 = \left(m - \sum_{i=1}^{N} s(i)cos(x_i)\right)^2$$
 (71)

where, k = 5, 7, 11, 13.....97, $N = \lfloor \frac{f_{s,max}}{f.m} \rfloor$, and $s(i) = (-1)^{i+1}$ subject to:

$$x_{i+1} - x_i - 10^{-5} > 0, i = 1, 2, ...N - 1,$$

 $0 < x_i < \frac{\pi}{2}, i = 1, 2, ...N.$

1.4.2. Synchronous Optimal Pulse-width Modulation of 5-level Inverters (RCM31) [25]

Minimize:

$$f_1 = \frac{\sqrt{\sum_{k} (k^{-4})(\sum_{i=1}^{N} s(i)cos(kx_i))^2}}{2\sqrt{\sum_{k} k^{-4}}}$$
(72)

$$f_2 = \left(2m - \sum_{i=1}^{N} s(i)cos(x_i)\right)^2$$
 (73)

where, k = 5, 7, 11, 13.....97, $N = \lfloor \frac{2 \cdot f_{s,max}}{f \cdot m} \rfloor$, and s = [1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1] subject to:

$$x_{i+1} - x_i - 10^{-5} > 0, i = 1, 2, ...N - 1,$$

 $0 < x_i < \frac{\pi}{2}, i = 1, 2, ...N.$

1.4.3. Synchronous Optimal Pulse-width Modulation of 7-level Inverters (RCM32) [26]

Minimize:

$$f_1 = \frac{\sqrt{\sum_{k} (k^{-4})(\sum_{i=1}^{N} s(i)cos(kx_i))^2}}{3\sqrt{\sum_{k} k^{-4}}}$$
(74)

$$f_2 = \left(3m - \sum_{i=1}^{N} s(i)cos(x_i)\right)^2 \tag{75}$$

where, k = 5, 7, 11, 13.....97, $N = \lfloor \frac{3 \cdot f_{s,max}}{f.m} \rfloor$, and s = [1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1] subject to:

$$x_{i+1} - x_i - 10^{-5} > 0, i = 1, 2, ...N - 1,$$

 $0 < x_i < \frac{\pi}{2}, i = 1, 2, ...N.$

1.4.4. Synchronous Optimal Pulse-width Modulation of 9-level Inverters (RCM33) [27]

Minimize:

$$f_1 = \frac{\sqrt{\sum_{k} (k^{-4})(\sum_{i=1}^{N} s(i)cos(kx_i))^2}}{4\sqrt{\sum_{k} k^{-4}}}$$
(76)

$$f_2 = \left(4m - \sum_{i=1}^{N} s(i)cos(x_i)\right)^2 \tag{77}$$

$$x_{i+1} - x_i - 10^{-5} > 0, i = 1, 2, ...N - 1,$$

 $0 < x_i < \frac{\pi}{2}, i = 1, 2, ...N.$

1.4.5. Synchronous Optimal Pulse-width Modulation of 11-level Inverters (RCM34) [28]

Minimize:

$$f_2 = \frac{\sqrt{\sum_{k} (k^{-4})(\sum_{i=1}^{N} s(i)cos(kx_i))^2}}{5\sqrt{\sum_{k} k^{-4}}}$$
(78)

$$f_2 = \left(5m - \sum_{i=1}^{N} s(i)cos(x_i)\right)^2 \tag{79}$$

where, k = 5, 7, 11, 13.....97, $N = \lfloor \frac{5.f_{s,max}}{f.m} \rfloor$, and s = [1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1] subject to:

$$x_{i+1} - x_i - 10^{-5} > 0, i = 1, 2, ...N - 1,$$

 $0 < x_i < \frac{\pi}{2}, i = 1, 2, ...N.$

1.4.6. Synchronous Optimal Pulse-width Modulation of 13-level Inverters (RCM35) [28]

Minimize:

$$f_1 = \frac{\sqrt{\sum_{k} (k^{-4})(\sum_{i=1}^{N} s(i)cos(k\alpha_i))^2}}{6\sqrt{\sum_{k} k^{-4}}}$$
(80)

$$f_2 = \left(6m - \sum_{i=1}^{N} s(i)cos(\alpha_i)\right)^2 \tag{81}$$

where, k = 5, 7, 11, 13.....97, $N = \lfloor \frac{6.f_{s,max}}{f.m} \rfloor$, and s = [1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1] subject to:

$$\begin{split} &\alpha_{i+1} - \alpha_i - 10^{-5} > 0, \ i = 1, 2, ...N - 1, \\ &0 < \alpha_i < \frac{\pi}{2}, \ , i = 1, 2, ...N. \end{split}$$

- 1.5. Power System Optimization Problems
- 1.5.1. Optimal Sizing of Single Phase Distribution Generation with Reactive Power support for phase balancing at Main Transformer/Grid and Minimizing Active Power Loss (RCM36) [29]

Minimize:

$$f_{1} = \left(I_{r,1}^{a} + I_{r,1}^{b} + I_{r,1}^{c}\right)^{2} + \left(I_{m,1}^{a} + I_{m,1}^{b} + I_{m,1}^{c}\right)^{2} + \left(I_{r,1}^{a} - 0.5\left(I_{r,1}^{b} + I_{r,1}^{c}\right) - 0.5\sqrt{3}\left(I_{m,1}^{b} - I_{m,1}^{c}\right)\right)^{2} + \left(I_{m,1}^{a} - 0.5\left(I_{m,1}^{b} + I_{m,1}^{c}\right) + 0.5\sqrt{3}\left(I_{r,1}^{b} - I_{r,1}^{c}\right)\right)^{2},$$

$$f_{2} = \sum_{i=1}^{N} \sum_{i \in Ia,b,c} P_{i}^{j}$$
(82)

where,

$$I_{r,1}^{s} = \sum_{k \in \{a,b,c\}} \sum_{i=1}^{N} \left(G_{1,i}^{sk} V_{r,i}^{k} - B_{1i}^{sk} V_{m,i}^{k} \right)$$

$$I_{m,1}^{s} = \sum_{k \in [a,b,c]} \sum_{i=1}^{N} \left(B_{1,i}^{sk} V_{r,i}^{k} + G_{1i}^{sk} V_{m,i}^{k} \right)$$

$$\sum_{s \in \{a,b,c\}} \sum_{i=1}^{N} \left(G_{k,i}^{js} V_{r,i}^{s} - B_{ki}^{js} V_{m,i}^{s} \right) - \frac{P_{k}^{j} V_{r,k}^{j} + Q_{k}^{j} V_{m,k}^{j}}{(V_{r,k}^{j})^{2} + (V_{m,k}^{j})^{2}} = 0, \ k = 1, ...N \text{ and } j = \{a,b,c\},$$

$$\sum_{s \in \{a,b,c\}} \sum_{i=1}^{N} (B_{ki}^{js} V_{r,i}^{s} + G_{ki}^{js} V_{m,i}^{s}) - \frac{P_{k}^{j} V_{m,k}^{j} - Q_{k}^{j} V_{r,k}^{j}}{(V_{r,k}^{j})^{2} + (V_{m,k}^{j})^{2}} = 0, \ k = 1, ...N \text{ and } j = \{a,b,c\},$$

$$P_{k}^{j} - P_{dg,k}^{j} + P_{l,k}^{j} = 0, \ k = 1, ...N \text{ and } j = \{a,b,c\},$$

$$Q_{k}^{j} - Q_{dg,k}^{j} + Q_{l,k}^{j} = 0, \ k = 1, ...N \text{ and } j = \{a,b,c\},$$

$$V_{min} \leq V_{r,k}^{j}, V_{m,k}^{j}...k = 1, 2, ...N \text{ and } j = \{a, b, c\} \leq V_{max}$$
 $P_{min} \leq P_{k}^{j}......k = 1, 2, ...N \text{ and } j = \{a, b, c\} \leq P_{max}$
 $Q_{min} \leq Q_{k}^{j}......k = 1, 2, ...N \text{ and } j = \{a, b, c\} \leq Q_{max}$
 $P_{dg,min} \leq P_{dg,k}^{j}......k = 1, 2, ...N \text{ and } j = \{a, b, c\} \leq P_{dg,max}$
 $Q_{dg,min} \leq Q_{dg,k}^{j}......k = 1, 2, ...N \text{ and } j = \{a, b, c\} \leq Q_{dg,max}$

where P_i^j and Q_i^j represent the active and reactive injected power, respectively, at *i*-th bus in *j*-th phase, $Ybus_{ij}^{st} (= G_{ij}^{st} + 1jB_{ij}^{st})$ is ij-th element of st-th block of admittance matrix, $V_i^j (= V_{r,i}^j + 1jV_{m,i}^j)$ is bus voltage at *i*-th bus in *j*-th phase, $P_{dg,k}^j$ and $Q_{dg,k}^j$ represent the active and reactive power generation, respectively, at *k*-th DG in *j*-th phase and *N* represents the total number of buses in system.

1.5.2. Optimal Sizing of Single Phase Distribution Generation with Reactive Power support for phase balancing at Main Transformer/Grid and Minimizing Reactive Power Loss (RCM37) [29]

Minimize:

$$f_{1} = \left(I_{r,1}^{a} + I_{r,1}^{b} + I_{r,1}^{c}\right)^{2} + \left(I_{m,1}^{a} + I_{m,1}^{b} + I_{m,1}^{c}\right)^{2} + \left(I_{r,1}^{a} - 0.5\left(I_{r,1}^{b} + I_{r,1}^{c}\right) - 0.5\sqrt{3}\left(I_{m,1}^{b} - I_{m,1}^{c}\right)\right)^{2} + \left(I_{m,1}^{a} - 0.5\left(I_{m,1}^{b} + I_{m,1}^{c}\right) + 0.5\sqrt{3}\left(I_{r,1}^{b} - I_{r,1}^{c}\right)\right)^{2},$$

$$f_{2} = \sum_{i=1}^{N} \sum_{i \in [a,b,c]} Q_{i}^{i}$$
(83)

where,

$$I_{r,1}^{s} = \sum_{k \in \{a,b,c\}} \sum_{i=1}^{N} \left(G_{1,i}^{sk} V_{r,i}^{k} - B_{1i}^{sk} V_{m,i}^{k} \right)$$

$$I_{m,1}^{s} = \sum_{k \in [a,b,c]} \sum_{i=1}^{N} \left(B_{1,i}^{sk} V_{r,i}^{k} + G_{1i}^{sk} V_{m,i}^{k} \right)$$

$$\begin{split} &\sum_{s \in \{a,b,c\}} \sum_{i=1}^{N} \left(G_{k,i}^{js} V_{r,i}^{s} - B_{ki}^{js} V_{m,i}^{s} \right) - \frac{P_{k}^{j} V_{r,k}^{j} + Q_{k}^{j} V_{m,k}^{j}}{(V_{r,k}^{j})^{2} + (V_{m,k}^{j})^{2}} = 0, \ k = 1, ...N \ \text{and} \ j = \{a,b,c\}, \\ &\sum_{s \in \{a,b,c\}} \sum_{i=1}^{N} (B_{ki}^{js} V_{r,i}^{s} + G_{ki}^{js} V_{m,i}^{s}) - \frac{P_{k}^{j} V_{m,k}^{j} - Q_{k}^{j} V_{r,k}^{j}}{(V_{r,k}^{j})^{2} + (V_{m,k}^{j})^{2}} = 0, \ k = 1, ...N \ \text{and} \ j = \{a,b,c\}, \\ &P_{k}^{j} - P_{dg,k}^{j} + P_{l,k}^{j} = 0, \ k = 1, ...N \ \text{and} \ j = \{a,b,c\}, \\ &Q_{k}^{j} - Q_{dg,k}^{j} + Q_{l,k}^{j} = 0, \ k = 1, ...N \ \text{and} \ j = \{a,b,c\}, \\ &V_{min} \leq V_{r,k}^{j}, V_{m,k}^{j} ...k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq V_{max}, \\ &P_{min} \leq P_{k}^{j}k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{max}, \end{split}$$

$$P_{dg,min} \le P_{dg,k}^{j}$$
...... $k = 1, 2, ...N$ and $j = \{a, b, c\} \le P_{dg,max}$
 $Q_{dg,min} \le Q_{dg,k}^{j}$ $k = 1, 2, ...N$ and $j = \{a, b, c\} \le Q_{dg,max}$

where P_i^j and Q_i^j represent the active and reactive injected power, respectively, at *i*-th bus in *j*-th phase, $Ybus_{ij}^{st} (= G_{ij}^{st} + 1jB_{ij}^{st})$ is ij-th element of st-th block of admittance matrix, $V_i^j (= V_{r,i}^j + 1jV_{m,i}^j)$ is bus voltage at *i*-th bus in *j*-th phase, $P_{dg,k}^j$ and $Q_{dg,k}^j$ represent the active and reactive power generation, respectively, at *k*-th DG in *j*-th phase and *N* represents the total number of buses in system.

1.5.3. Optimal Sizing of Single Phase Distribution Generation with Reactive Power support for Minimizing Active and Reactive Power Loss (RCM38) [29]

Minimize:

$$f_{1} = \left(I_{r,1}^{a} + I_{r,1}^{b} + I_{r,1}^{c}\right)^{2} + \left(I_{m,1}^{a} + I_{m,1}^{b} + I_{m,1}^{c}\right)^{2} + \left(I_{r,1}^{a} - 0.5\left(I_{r,1}^{b} + I_{r,1}^{c}\right) - 0.5\sqrt{3}\left(I_{m,1}^{b} - I_{m,1}^{c}\right)\right)^{2} + \left(I_{m,1}^{a} - 0.5\left(I_{m,1}^{b} + I_{m,1}^{c}\right) + 0.5\sqrt{3}\left(I_{r,1}^{b} - I_{r,1}^{c}\right)\right)^{2},$$

$$f_{2} = \sum_{i=1}^{N} \sum_{l=1,...,i} P_{i}^{j}$$
(84)

$$f_3 = \sum_{i=1}^N \sum_{i \in [a,b,c]} Q_i^j$$

where,

$$I_{r,1}^{s} = \sum_{k \in [a,b,c]} \sum_{i=1}^{N} \left(G_{1,i}^{sk} V_{r,i}^{k} - B_{1i}^{sk} V_{m,i}^{k} \right)$$

$$I_{m,1}^{s} = \sum_{k \in \{a,b,c\}} \sum_{i=1}^{N} \left(B_{1,i}^{sk} V_{r,i}^{k} + G_{1i}^{sk} V_{m,i}^{k} \right)$$

$$\begin{split} \sum_{s \in \{a,b,c\}} \sum_{i=1}^{N} \left(G_{k,i}^{js} V_{r,i}^{s} - B_{ki}^{js} V_{m,i}^{s} \right) - \frac{P_{k}^{j} V_{r,k}^{j} + Q_{k}^{j} V_{m,k}^{j}}{(V_{r,k}^{j})^{2} + (V_{m,k}^{j})^{2}} = 0, \ k = 1, ...N \ \text{and} \ j = \{a,b,c\}, \\ \sum_{s \in \{a,b,c\}} \sum_{i=1}^{N} (B_{ki}^{js} V_{r,i}^{s} + G_{ki}^{js} V_{m,i}^{s}) - \frac{P_{k}^{j} V_{m,k}^{j} - Q_{k}^{j} V_{r,k}^{j}}{(V_{r,k}^{j})^{2} + (V_{m,k}^{j})^{2}} = 0, \ k = 1, ...N \ \text{and} \ j = \{a,b,c\}, \\ P_{k}^{j} - P_{dg,k}^{j} + P_{l,k}^{j} = 0, \ k = 1, ...N \ \text{and} \ j = \{a,b,c\}, \\ Q_{k}^{j} - Q_{dg,k}^{j} + Q_{l,k}^{j} = 0, \ k = 1, ...N \ \text{and} \ j = \{a,b,c\}, \\ V_{min} \leq V_{r,k}^{j}, V_{m,k}^{j} ...k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq V_{max}, \\ P_{min} \leq P_{k}^{j}k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{max}, \\ P_{dg,min} \leq P_{dg,k}^{j}k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,max}, \\ P_{dg,min} \leq P_{dg,k}^{j}k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,max}, \\ P_{dg,min} \leq P_{dg,k}^{j}k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,max}, \\ P_{dg,min} \leq P_{dg,k}^{j}k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,max}, \\ P_{dg,min} \leq P_{dg,k}^{j}k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,max}, \\ P_{dg,min} \leq P_{dg,k}^{j}k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,max}, \\ P_{dg,min} \leq P_{dg,k}^{j}k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,max}, \\ P_{dg,min} \leq P_{dg,k}^{j}k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,max}, \\ P_{dg,min} \leq P_{dg,k}^{j}k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,max}, \\ P_{dg,min} \leq P_{dg,k}^{j}k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,max}, \\ P_{dg,min} \leq P_{dg,min}^{j} ...k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,max}, \\ P_{dg,min} \leq P_{dg,min}^{j} ...k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,min}^{j} ...k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,min}^{j} ...k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,min}^{j} ...k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,min}^{j} ...k = 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,min}^{j} ...k = 1, 2$$

$$Q_{dg,min} \le Q_{dg,k}^{j}$$
...... $k = 1, 2, ...N$ and $j = \{a, b, c\} \le Q_{dg,max}$

where P_i^j and Q_i^j represent the active and reactive injected power, respectively, at *i*-th bus in *j*-th phase, $Ybus_{ij}^{st} (= G_{ij}^{st} + 1jB_{ij}^{st})$ is ij-th element of st-th block of admittance matrix, $V_i^j (= V_{r,i}^j + 1jV_{m,i}^j)$ is bus voltage at *i*-th bus in *j*-th phase, $P_{dg,k}^j$ and $Q_{dg,k}^j$ represent the active and reactive power generation, respectively, at k-th DG in j-th phase and N represents the total number of buses in system.

1.5.4. Optimal Sizing of Single Phase Distribution Generation with Reactive Power support for phase balancing at Main Transformer/Grid and Minimizing Active and Reactive Power Loss (RCM39) [29]

Minimize:

$$f_1 = \sum_{i=1}^{N} \sum_{j \in \{a,b,c\}} P_i^j$$

$$f_2 = \sum_{i=1}^{N} \sum_{i \in [a,b,c]} Q_i^j$$

where,

$$I_{r,1}^{s} = \sum_{k \in [a,b,c]} \sum_{i=1}^{N} \left(G_{1,i}^{sk} V_{r,i}^{k} - B_{1i}^{sk} V_{m,i}^{k} \right)$$

$$I_{m,1}^{s} = \sum_{k \in I_{m,h}} \sum_{r_{i}}^{N} \left(B_{1,i}^{sk} V_{r,i}^{k} + G_{1i}^{sk} V_{m,i}^{k} \right)$$

subject to:

$$\begin{split} \sum_{s \in \{a,b,c\}} \sum_{i=1}^{N} \left(G_{k,i}^{js} V_{r,i}^{s} - B_{ki}^{js} V_{m,i}^{s} \right) - \frac{P_{k}^{j} V_{r,k}^{j} + Q_{k}^{j} V_{m,k}^{j}}{(V_{r,k}^{j})^{2} + (V_{m,k}^{j})^{2}} &= 0, \ k = 1, ...N \ \text{and} \ j = \{a,b,c\}, \\ \sum_{s \in \{a,b,c\}} \sum_{i=1}^{N} (B_{ki}^{js} V_{r,i}^{s} + G_{ki}^{js} V_{m,i}^{s}) - \frac{P_{k}^{j} V_{m,k}^{j} - Q_{k}^{j} V_{r,k}^{j}}{(V_{r,k}^{j})^{2} + (V_{m,k}^{j})^{2}} &= 0, \ k = 1, ...N \ \text{and} \ j = \{a,b,c\}, \\ P_{k}^{j} - P_{dg,k}^{j} + P_{l,k}^{j} &= 0, \ k = 1, ...N \ \text{and} \ j = \{a,b,c\}, \\ Q_{k}^{j} - Q_{dg,k}^{j} + Q_{l,k}^{j} &= 0, \ k = 1, ...N \ \text{and} \ j = \{a,b,c\}, \\ V_{min} \leq V_{r,k}^{j}, V_{m,k}^{j} ...k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq V_{max}, \\ P_{min} \leq P_{k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{max}, \\ Q_{min} \leq Q_{k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq P_{dg,max}, \\ Q_{dg,min} \leq P_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{dg,max}, \\ Q_{dg,min} \leq Q_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{dg,max}, \\ Q_{dg,min} \leq Q_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{dg,max}, \\ Q_{dg,min} \leq Q_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{dg,max}, \\ Q_{dg,min} \leq Q_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{dg,max}, \\ Q_{dg,min} \leq Q_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{dg,max}, \\ Q_{dg,min} \leq Q_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{dg,max}, \\ Q_{dg,min} \leq Q_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{dg,max}, \\ Q_{dg,min} \leq Q_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{dg,max}, \\ Q_{dg,min} \leq Q_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{dg,max}, \\ Q_{dg,min} \leq Q_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{dg,max}, \\ Q_{dg,min} \leq Q_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ j = \{a,b,c\} \leq Q_{dg,max}, \\ Q_{dg,min} \leq Q_{dg,k}^{j}k &= 1, 2, ...N \ \text{and} \ Q_{dg,k}^{j} ...k &= 1, 2, ...N \ \text{and} \ Q_{dg,k}^{j} ...k &= 1, 2, ...N \ \text{and} \ Q_{d$$

where P_i^j and Q_i^j represent the active and reactive injected power, respectively, at *i*-th bus in *j*-th phase, $Ybus_{ij}^{st} (= G_{ij}^{st} + 1jB_{ij}^{st})$ is ij-th element of st-th block of admittance matrix, $V_i^j (= V_{r,i}^j + 1jV_{m,i}^j)$ is bus voltage at *i*-th bus in *j*-th phase, $P_{dg,k}^j$ and $Q_{dg,k}^j$ represent the active and reactive power generation, respectively, at *k*-th DG in *j*-th phase and *N* represents the total number of buses in system.

1.5.5. Optimal Power Flow for Minimizing Active and Reactive Power Loss (RCM40) [30]

Minimize:

$$f_1 = \sum_{i=1}^{N} P_i \tag{85}$$

$$f_2 = \sum_{i=1}^{N} Q_i \tag{86}$$

subject to:

$$\begin{split} \sum_{i=1}^{N} (G_{k,i}V_{r,i} - B_{ki}V_{m,i}) - \frac{P_kV_{r,k} + Q_kV_{m,k}}{(V_{r,k})^2 + (V_{m,k})^2} &= 0, \ k = 1, ...N, \\ \sum_{i=1}^{N} (B_{ki}V_{r,i} + G_{ki}V_{m,i}) - \frac{P_kV_{m,k} - Q_kV_{r,k}}{(V_{r,k})^2 + (V_{m,k})^2} &= 0, \ k = 1, ...N, \\ P_k - P_{dg,k} + P_{l,k} &= 0, \ k = 1, ...N, \\ Q_k + Q_{l,k} &= 0, \ k = 1, ...N, \\ V_{min} &\leq V_{r,k}, V_{m,k}...k = 1, 2, ...N \leq V_{max} \\ P_{min} &\leq P_k......k = 1, 2, ...N \leq P_{max} \\ Q_{min} &\leq Q_k......k = 1, 2, ...N \leq P_{max,dg} \\ P_{min,dg} &\leq P_{dg,k}......k = 1, 2, ...N \leq P_{max,dg} \end{split}$$

where P_i and Q_i represent the active and reactive injected power, respectively, at i-th bus, $Ybus_{ij} (= G_{ij} + 1jB_{ij})$ is ij-th element of admittance matrix, $V_i (= V_{r,i} + 1jV_{m,i})$ is bus voltage at i-th bus, $P_{dg,k}$ represents the active power generation of DG at k-th bus and N represents the total number of buses in system.

1.5.6. Optimal Power Flow for Minimizing Voltage deviation, Active and Reactive Power Loss (RCM41) [30]

Minimize:

$$f_1 = \sum_{i=1}^{N} P_i \tag{87}$$

$$f_2 = \sum_{i=1}^{N} Q_i {88}$$

$$f_3 = \sum_{i=1}^{N} (1 - |V_i|) \tag{89}$$

$$\begin{split} &\sum_{i=1}^{N}(G_{k,i}V_{r,i}-B_{ki}V_{m,i})-\frac{P_{k}V_{r,k}+Q_{k}V_{m,k}}{(V_{r,k})^{2}+(V_{m,k})^{2}}=0,\ k=1,...N,\\ &\sum_{i=1}^{N}(B_{ki}V_{r,i}+G_{ki}V_{m,i})-\frac{P_{k}V_{m,k}-Q_{k}V_{r,k}}{(V_{r,k})^{2}+(V_{m,k})^{2}}=0,\ k=1,...N,\\ &P_{k}-P_{dg,k}+P_{l,k}=0,\ k=1,...N,\\ &Q_{k}+Q_{l,k}=0,\ k=1,...N, \end{split}$$

$$V_{min} \le V_{r,k}, V_{m,k}...k = 1, 2, ...N \le V_{max}$$

 $P_{min} \le P_k.....k = 1, 2, ...N \le P_{max}$
 $Q_{min} \le Q_k.....k = 1, 2, ...N \le Q_{max}$
 $P_{min,dg} \le P_{dg,k}......k = 1, 2, ...N \le P_{max,dg}$

where P_i and Q_i represent the active and reactive injected power, respectively, at i-th bus, $Ybus_{ij} (= G_{ij} + 1jB_{ij})$ is ij-th element of admittance matrix, $V_i (= V_{r,i} + 1jV_{m,i})$ is bus voltage at i-th bus, $P_{dg,k}$ represents the active power generation of DG at k-th bus and N represents the total number of buses in system.

1.5.7. Optimal Power Flow for Minimizing Voltage deviation, and Active Power Loss (RCM42) [30]

Minimize:

$$f_1 = \sum_{i=1}^{N} P_i \tag{90}$$

$$f_2 = \sum_{i=1}^{N} (1 - |V_i|) \tag{91}$$

subject to:

$$\begin{split} \sum_{i=1}^{N} (G_{k,i}V_{r,i} - B_{ki}V_{m,i}) - \frac{P_kV_{r,k} + Q_kV_{m,k}}{(V_{r,k})^2 + (V_{m,k})^2} &= 0, \ k = 1, ...N, \\ \sum_{i=1}^{N} (B_{ki}V_{r,i} + G_{ki}V_{m,i}) - \frac{P_kV_{m,k} - Q_kV_{r,k}}{(V_{r,k})^2 + (V_{m,k})^2} &= 0, \ k = 1, ...N, \\ P_k - P_{dg,k} + P_{l,k} &= 0, \ k = 1, ...N, \\ Q_k + Q_{l,k} &= 0, \ k = 1, ...N, \\ V_{min} &\leq V_{r,k}, V_{m,k}...k = 1, 2, ...N \leq V_{max} \\ P_{min} &\leq P_k......k = 1, 2, ...N \leq P_{max} \\ Q_{min} &\leq Q_k......k = 1, 2, ...N \leq P_{max,dg} \\ P_{min,dg} &\leq P_{dg,k}......k = 1, 2, ...N \leq P_{max,dg} \end{split}$$

where P_i and Q_i represent the active and reactive injected power, respectively, at i-th bus, $Ybus_{ij} (= G_{ij} + 1jB_{ij})$ is ij-th element of admittance matrix, $V_i (= V_{r,i} + 1jV_{m,i})$ is bus voltage at i-th bus, $P_{dg,k}$ represents the active power generation of DG at k-th bus and N represents the total number of buses in system.

1.5.8. Optimal Power Flow for Minimizing Fuel Cost, and Active Power Loss (RCM43) [30]

Minimize:

$$f_1 = \sum_{i=1}^{N} \left(P_{g,i} - P_{l,i} \right) \tag{92}$$

$$f_2 = \sum_{i=1}^{N} \left(a_i + b_i P_{g,i} + c_i P_{g,i}^2 \right) \tag{93}$$

where a_i , b_i , and c_i are the cost coefficient of *i*-th bus generator, subject to:

$$\begin{split} &P_{g,i} - P_{l,i} - V_i \sum_{j=1}^{N} V_j \left(G_{ij} cos(\delta_i - \delta_j) + B_{ij} sin(\delta_i - \delta_j) \right) = 0, \ i = 1, 2, ...N, \\ &Q_{g,i} - Q_{l,i} - V_i \sum_{j=1}^{N} V_j \left(G_{ij} sin(\delta_i - \delta_j) - B_{ij} cos(\delta_i - \delta_j) \right) = 0, \ i = 1, 2, ...N, \\ &V_{min} \leq V_k ...k = 1, 2, ...N \leq V_{max}, \\ &\delta_{min} \leq \delta_k ...k = 1, 2, ...N \leq \delta_{max}, \\ &P_{min} \leq P_{g,k}k = 1, 2, ...N \leq P_{max} \\ &Q_{min} \leq Q_{g,k}k = 1, 2, ...N \leq Q_{max} \end{split}$$

where $P_i(=P_{g,i}-P_{l,i})$ and $Q_i(=Q_{g,i}-Q_{l,i})$ represent the active and reactive injected power, respectively, at *i*-th bus, $Ybus_{ij}(=G_{ij}+1jB_{ij})$ is ij-th element of admittance matrix, $V_i(=V_i \angle \delta_i)$ is bus voltage at *i*-th bus and N represents the total number of buses in system.

1.5.9. Optimal Power Flow for Minimizing Fuel Cost, Active and Reactive Power Loss (RCM44) [30]

Minimize:

$$f_1 = \sum_{i=1}^{N} \left(P_{g,i} - P_{l,i} \right) \tag{94}$$

$$f_2 = \sum_{i=1}^{N} (Q_{g,i} - Q_{l,i}) \tag{95}$$

$$f_3 = \sum_{i=1}^{N} \left(a_i + b_i P_{g,i} + c_i P_{g,i}^2 \right) \tag{96}$$

where a_i , b_i , and c_i are the cost coefficient of *i*-th bus generator, subject to:

$$\begin{split} &P_{g,i} - P_{l,i} - V_i \sum_{j=1}^{N} V_j \left(G_{ij} cos(\delta_i - \delta_j) + B_{ij} sin(\delta_i - \delta_j) \right) = 0, \ i = 1, 2, ...N, \\ &Q_{g,i} - Q_{l,i} - V_i \sum_{j=1}^{N} V_j \left(G_{ij} sin(\delta_i - \delta_j) - B_{ij} cos(\delta_i - \delta_j) \right) = 0, \ i = 1, 2, ...N, \\ &V_{min} \leq V_k ...k = 1, 2, ...N \leq V_{max}, \\ &\delta_{min} \leq \delta_k ...k = 1, 2, ...N \leq \delta_{max}, \\ &P_{min} \leq P_{g,k}k = 1, 2, ...N \leq P_{max} \\ &Q_{min} \leq Q_{g,k}k = 1, 2, ...N \leq Q_{max} \end{split}$$

where $P_i(=P_{g,i}-P_{l,i})$ and $Q_i(=Q_{g,i}-Q_{l,i})$ represent the active and reactive injected power, respectively, at *i*-th bus, $Ybus_{ij}(=G_{ij}+1jB_{ij})$ is *ij*-th element of admittance matrix, $V_i(=V_i \angle \delta_i)$ is bus voltage at *i*-th bus and *N* represents the total number of buses in system.

1.5.10. Optimal Power Flow for Minimizing Fuel Cost, Voltage deviation, and Active Power Loss (RCM45) [30]

Minimize:

$$f_1 = \sum_{i=1}^{N} \left(P_{g,i} - P_{l,i} \right) \tag{97}$$

$$f_2 = \sum_{i=1}^{N} (1 - |V_i|) \tag{98}$$

$$f_3 = \sum_{i=1}^{N} \left(a_i + b_i P_{g,i} + c_i P_{g,i}^2 \right) \tag{99}$$

where a_i , b_i , and c_i are the cost coefficient of *i*-th bus generator, subject to:

$$P_{g,i} - P_{l,i} - V_i \sum_{j=1}^{N} V_j \left(G_{ij} cos(\delta_i - \delta_j) + B_{ij} sin(\delta_i - \delta_j) \right) = 0, \ i = 1, 2, ...N,$$

$$Q_{g,i} - Q_{l,i} - V_i \sum_{j=1}^{N} V_j (G_{ij} sin(\delta_i - \delta_j) - B_{ij} cos(\delta_i - \delta_j)) = 0, i = 1, 2, ...N,$$

$$V_{min} \le V_k...k = 1, 2, ...N \le V_{max},$$

$$\delta_{min} \leq \delta_k ... k = 1, 2, ... N \leq \delta_{max},$$

$$P_{min} \le P_{g,k}.....k = 1, 2, ...N \le P_{max}$$

$$Q_{min} \le Q_{g,k}.....k = 1, 2, ...N \le Q_{max}$$

where $P_i(=P_{g,i}-P_{l,i})$ and $Q_i(=Q_{g,i}-Q_{l,i})$ represent the active and reactive injected power, respectively, at *i*-th bus, $Ybus_{ij}(=G_{ij}+1jB_{ij})$ is ij-th element of admittance matrix, $V_i(=V_i \angle \delta_i)$ is bus voltage at *i*-th bus and N represents the total number of buses in system.

1.5.11. Optimal Power Flow for Minimizing Fuel Cost, Voltage deviation, Active and Reactive Power Loss (RCM46) [30]

Minimize:

$$f_1 = \sum_{i=1}^{N} \left(P_{g,i} - P_{l,i} \right) \tag{100}$$

$$f_2 = \sum_{i=1}^{N} \left(Q_{g,i} - Q_{l,i} \right) \tag{101}$$

$$f_3 = \sum_{i=1}^{N} \left(a_i + b_i P_{g,i} + c_i P_{g,i}^2 \right) \tag{102}$$

where a_i , b_i , and c_i are the cost coefficient of i-th bus generator,

$$f_4 = \sum_{i=1}^{N} (1 - |V_i|) \tag{103}$$

$$\begin{split} P_{g,i} - P_{l,i} - V_i \sum_{j=1}^{N} V_j \left(G_{ij} cos(\delta_i - \delta_j) + B_{ij} sin(\delta_i - \delta_j) \right) &= 0, \ i = 1, 2, ...N, \\ Q_{g,i} - Q_{l,i} - V_i \sum_{j=1}^{N} V_j \left(G_{ij} sin(\delta_i - \delta_j) - B_{ij} cos(\delta_i - \delta_j) \right) &= 0, \ i = 1, 2, ...N, \\ V_{min} \leq V_k ...k &= 1, 2, ...N \leq V_{max}, \\ \delta_{min} \leq \delta_k ...k &= 1, 2, ...N \leq \delta_{max}, \\ P_{min} \leq P_{g,k}k &= 1, 2, ...N \leq P_{max} \\ Q_{min} \leq Q_{g,k}k &= 1, 2, ...N \leq Q_{max} \end{split}$$

where $P_i(=P_{g,i}-P_{l,i})$ and $Q_i(=Q_{g,i}-Q_{l,i})$ represent the active and reactive injected power, respectively, at *i*-th bus, $Ybus_{ij}(=G_{ij}+1jB_{ij})$ is ij-th element of admittance matrix, $V_i(=V_i \angle \delta_i)$ is bus voltage at *i*-th bus and N represents the total number of buses in system.

1.5.12. Optimal Droop Setting for Minimizing Active and Reactive Power Loss (RCM47) [31]

Minimize:

$$f_1 = \sum_{i=1}^{N} P_i \tag{104}$$

$$f_2 = \sum_{i=1}^{N} Q_i \tag{105}$$

subject to:

$$\sum_{i=1}^{N} (G_{k,i}V_{r,i} - B_{ki}V_{m,i}) - \frac{P_{k}V_{r,k} + Q_{k}V_{m,k}}{(V_{r,k})^{2} + (V_{m,k})^{2}} = 0, \ k = 1, ...N,$$

$$\sum_{i=1}^{N} (B_{ki}V_{r,i} + G_{ki}V_{m,i}) - \frac{P_{k}V_{m,k} - Q_{k}V_{r,k}}{(V_{r,k})^{2} + (V_{m,k})^{2}} = 0, \ k = 1, ...N,$$

$$P_{k} - Cp_{k}(w_{k}^{*} - w) + P_{l,k} = 0, \ k = 1, ...N,$$

$$Q_{k} - Cq_{k}\left(V_{k}^{*} - \sqrt{(V_{r,k})^{2} + (V_{m,k})^{2}}\right) + Q_{l,k} = 0, \ k = 1, ...N,$$

$$V_{min} \leq V_{r,k}, V_{m,k} ...k = 1, 2, ...N \leq V_{max}$$

$$P_{min} \leq P_{k}k = 1, 2, ...N \leq P_{max}$$

$$Q_{min} \leq Q_{k}k = 1, 2, ...N \leq Q_{max}$$

$$Cp_{min,k} \leq Cp_{k}k = 1, 2, ...N \leq Cp_{max,k}$$

$$Cq_{min,k} \leq Cq_{k}k = 1, 2, ...N \leq Cq_{max,k}$$

$$w_{min} \leq w \leq w_{max}$$

where P_i and Q_i represent the active and reactive injected power, respectively, at *i*-th bus, $Ybus_{ij} (= G_{ij} + 1jB_{ij})$ is ij-th element of admittance matrix, $V_i (= V_{r,i} + 1jV_{m,i})$ is bus voltage at *i*-th bus, Cp_k and Cq_k represent the active and reactive power droop parameters of controllers, respectively, w is operating frequency and N represents the total number of buses in system.

1.5.13. Optimal Droop Setting for Minimizing Voltage Deviation and Active Power Loss (RCM48) [32]

Minimize:

$$f_1 = \sum_{i=1}^{N} P_i \tag{106}$$

$$f_2 = \sum_{i=1}^{N} \left(1 - |V_i|^2 \right) \tag{107}$$

subject to:

$$\sum_{i=1}^{N} (G_{k,i}V_{r,i} - B_{ki}V_{m,i}) - \frac{P_{k}V_{r,k} + Q_{k}V_{m,k}}{(V_{r,k})^{2} + (V_{m,k})^{2}} = 0, \ k = 1, ...N,$$

$$\sum_{i=1}^{N} (B_{ki}V_{r,i} + G_{ki}V_{m,i}) - \frac{P_{k}V_{m,k} - Q_{k}V_{r,k}}{(V_{r,k})^{2} + (V_{m,k})^{2}} = 0, \ k = 1, ...N,$$

$$P_{k} - Cp_{k}(w_{k}^{*} - w) + P_{l,k} = 0, \ k = 1, ...N,$$

$$Q_{k} - Cq_{k}\left(V_{k}^{*} - \sqrt{(V_{r,k})^{2} + (V_{m,k})^{2}}\right) + Q_{l,k} = 0, \ k = 1, ...N,$$

$$V_{min} \leq V_{r,k}, V_{m,k} ...k = 1, 2, ...N \leq V_{max}$$

$$P_{min} \leq P_{k}k = 1, 2, ...N \leq P_{max}$$

$$Q_{min} \leq Q_{k}k = 1, 2, ...N \leq Q_{max}$$

$$Cp_{min,k} \leq Cp_{k}k = 1, 2, ...N \leq Cp_{max,k}$$

$$Cq_{min,k} \leq Cq_{k}k = 1, 2, ...N \leq Cq_{max,k}$$

$$w_{min} \leq w \leq w_{max}$$

where P_i and Q_i represent the active and reactive injected power, respectively, at *i*-th bus, $Ybus_{ij} (= G_{ij} + 1jB_{ij})$ is ij-th element of admittance matrix, $V_i (= V_{r,i} + 1jV_{m,i})$ is bus voltage at *i*-th bus, Cp_k and Cq_k represent the active and reactive power droop parameters of controllers, respectively, w is operating frequency and N represents the total number of buses in system.

1.5.14. Optimal Droop Setting for Minimizing Voltage Deviation, Active, and Reactive Power Loss (RCM49) [33]

Minimize:

$$f_1 = \sum_{i=1}^{N} P_i \tag{108}$$

$$f_2 = \sum_{i=1}^{N} Q_i {109}$$

$$f_3 = \sum_{i=1}^{N} \left(1 - |V_i|^2 \right) \tag{110}$$

$$\sum_{i=1}^{N} (G_{k,i}V_{r,i} - B_{ki}V_{m,i}) - \frac{P_kV_{r,k} + Q_kV_{m,k}}{(V_{r,k})^2 + (V_{m,k})^2} = 0, \ k = 1, ...N,$$

$$\sum_{i=1}^{N} (B_{ki}V_{r,i} + G_{ki}V_{m,i}) - \frac{P_kV_{m,k} - Q_kV_{r,k}}{(V_{r,k})^2 + (V_{m,k})^2} = 0, \ k = 1, ...N,$$

$$P_k - Cp_k(w_k^* - w) + P_{l,k} = 0, \ k = 1, ...N,$$

$$Q_k - Cq_k\left(V_k^* - \sqrt{(V_{r,k})^2 + (V_{m,k})^2}\right) + Q_{l,k} = 0, \ k = 1, ...N,$$

$$V_{min} \leq V_{r,k}, V_{m,k} ...k = 1, 2, ...N \leq V_{max}$$

$$P_{min} \leq P_kk = 1, 2, ...N \leq P_{max}$$

$$Q_{min} \leq Q_kk = 1, 2, ...N \leq Q_{max}$$

$$Cp_{min,k} \leq Cp_kk = 1, 2, ...N \leq Cp_{max,k}$$

$$Cq_{min,k} \leq Cq_kk = 1, 2, ...N \leq Cq_{max,k}$$

$$w_{min} \leq w \leq w_{max}$$

where P_i and Q_i represent the active and reactive injected power, respectively, at *i*-th bus, $Ybus_{ij} (= G_{ij} + 1jB_{ij})$ is ij-th element of admittance matrix, $V_i (= V_{r,i} + 1jV_{m,i})$ is bus voltage at *i*-th bus, Cp_k and Cq_k represent the active and reactive power droop parameters of controllers, respectively, w is operating frequency and N represents the total number of buses in system.

1.5.15. Power Distribution System Planning (RCM50) [34]

Minimize:

$$f_1 = \sum_{i=1}^{6} \left(a_i + b_i x_i + c_i x_i^2 \right), \tag{111}$$

$$f_2 = \sum_{i=1}^{6} \left(\alpha_i + \beta_i x_i + \gamma_i x_i^2 \right)$$
 (112)

	i	a_i	b_i	c_i	α_i	eta_i	γ_i
	1	756.7988	38.5390	0.15247	13.8593	0.32767	0.00419
	2	451.3251	46.1591	0.10587	13.8593	0.32767	0.00419
where,	3	1243.5311	38.3055	0.03546	40.2669	-0.54551	0.00683
	4	1049.9977	40.3965	0.02803	40.2669	-0.54551	0.00683
	5	1356.6592	38.2704	0.01799	42.8955	-0.51116	0.00461
	6	1658.5696	36.3278	0.02111	42.8955	-0.51116	0.00461

Subject to:

$$h_1 = \sum_{i=1}^{6} (x_i - PD - PL)$$

where,

$$PD = 12000$$

$$PL = \sum_{i=1}^{6} \sum_{j=1}^{6} \left(x_i x_j B_{ij} \times 10^{-6} \right)$$

B_{ij}	1	2	3	4	5	6
1	140	17	15	19	26	22
2	17	60	13	16	15	20
3	15	13	65	17	24	19
4	19	16	17	71	30	25
5	26	15	24	30	69	32
6	22	20	19	25	32	85

Supplementary Tables of Main Manuscript

S 1	Baseline results of mechanical design problems (RCM01-RCM08)	35
S2	Baseline results of mechanical design problems RC09-RC16	36
S 3	Baseline results of mechanical design problems (RC17-RC21)	37
S 4	Baseline results of chemical engineering problems (RC22-RC24)	38
S5	Baseline results of process design and synthesis problems (RCM25-RCM29)	39
S 6	Baseline results of power electronics problems (RCM30-RCM35)	40
S 7	Baseline results of power system Optimization problems (RCM36-RCM44)	41
S 8	Baseline results of power system optimization problems RCM44-RCM50	42

 $Table \ S1: \ Baseline \ results \ of \ mechanical \ design \ problems \ (RCM01-RCM08).$

Pro	blem	ToP [35]	TiGE_2 [36]	cNSGAIII [8]	cMOEA/D [8]	CCMO [37]	cARMOEA [38]	AnD [39]
	HV_best	0.606717	0.538106	0.60758	0.108992	0.605144	0.607879	0.603085
	CV_best	0	0	0	0	0	0	0
	HV_mean	0.605832	0.510526	0.606391	0.108888	0.603743	0.606639	0.599144
	CV_mean	0	0	0	0	0	0	0
RCM01	HV_worst	0.604649	0.455252	0.603023	0.108025	0.601598	0.605276	0.593941
	CV_worst HV_sd	0.000511	0.021003	0.00096	0 0.000173	0 0.000855	0 0.000742	0 0.001756
	CV_sd	0.000311	0.021003	0.00090	0.000173	0.000833	0.000742	0.001730
	FR	100	100	100	100	100	100	100
	HV_best	0.16646	0.134328	0.166457	0.176394	0.166382	0.16642	0.16519
	CV_best	0	0	0	0	0	0	0
	HV_mean	0.149764	0.021593	0.053488	0.052203	0.063709	0.035963	0.038431
	CV_mean	0	0	0	0	0	0	0
RCM02	HV_worst	0	0	0	0	0	0	0
	CV_worst HV_sd	0 0.049921	0 0.037817	0 0.067281	0 0.069297	0 0.072199	0 0.059449	0 0.061729
	CV_sd	0.049921	0.037817	0.007281	0.009297	0.072199	0.039449	0.001729
	FR	100	100	100	100	100	100	100
	HV_best	0.901391	0.851123	0.896894	0.298947	0.898968	0.898881	0.89865
	CV_best	0	0	0	0	0	0	0
	HV_mean	0.781179	0.687886	0.891818	0.120981	0.89715	0.897511	0.897299
D C1 102	CV_mean	0	0	0	0	0	0	0
RCM03	HV_worst CV_worst	0.236575	0.285117	0.889927	0.089525	0.895395 0	0.895233	0.894421
	HV_sd	0.194751	0.146899	0.00162	0.044027	0.000984	0.001035	0.000992
	CV_sd	0.171,51	0.1100	0.00102	0.011027	0.000501	0.001033	0.000552
	FR	100	100	100	100	100	100	100
	HV_best	0.861896	0.729125	0.861236	0.088416	0.859299	0.860785	0.858811
	CV_best	0	0	0	0	0	0	0
	HV₋mean	0.861354	0.472491	0.853826	0.014423	0.853488	0.852793	0.85333
RCM04	CV_mean	0.860162	0.254392	0 0 0 0 0 0 7 5	0	0	0	0
KCM04	HV_worst CV_worst	0.860162	0.234392	0.840075	0	0.826305	0.831737	0.835492
	HV_sd	0.000332	0.140715	0.006158	0.028662	0.007333	0.007443	0.005027
	CV_sd	0	0	0	0	0	0	0
	FR	100	100	100	100	100	100	100
	HV_best	0.434245	0.412378	0.434245	0.427847	0.434311	0.434516	0.432729
	CV_best	0	0	0	0	0	0	0
	HV_mean CV_mean	0.433843	0.396852	0.432672	0.420501	0.432985	0.433091	0.430543
RCM05	HV_worst	0.433401	0.369139	0.428064	0.400399	0.427832	0.428895	0.427071
RCMOS	CV_worst	0.433401	0.505155	0.428004	0.400377	0.427632	0.420073	0.427071
	HV_sd	0.000194	0.011186	0.001367	0.006833	0.001467	0.001447	0.00132
	CV_sd	0	0	0	0	0	0	0
	FR	100	100	100	100	100	100	100
	HV_best	0.277233	0.274287	0.277145	0.276696	0.27738	0.277163	0.276948
	CV_best HV_mean	0 0.274139	0 0.271504	0 0.276964	0 0.276548	0 0.276606	0 0.277025	0 0.276551
	CV_mean	0.274139	0.271304	0.270904	0.270348	0.276666	0.277023	0.270331
RCM06	HV_worst	0.231964	0.26809	0.276253	0.273695	0.269111	0.276878	0.275255
	CV_worst	0	0	0	0	0	0	0
	HV_sd	0.008451	0.001677	0.00018	0.000531	0.001431	9.42E-05	0.000281
	CV_sd	0	0	0	0	0	0	0
	FR	100	100	100	100	100	100	100
	HV_best CV_best	0.226953	0.215711	0.226861	0.222935	0.226971	0.227019	0.225198
	HV_mean	0.22671	0.199665	0.225854	0.220981	0.226712	0.226378	0.224103
	CV_mean	0	0	0	0	0	0	0
RCM07	HV_worst	0.226375	0.106722	0.222861	0.215165	0.226341	0.225192	0.222241
	CV_worst	0	0	0	0	0	0	0
	HV_sd	0.000117	0.023012	0.000815	0.001425	0.000148	0.00045	0.000637
	CV_sd	0	0	0	0	0	0	0
	FR HV_best	100 0.025865	100 0.021195	100 0.025616	100 0.013168	100 0.025976	100 0.026053	100 0.026062
	CV_best	0.023863	0.021195	0.025616	0.013168	0.023976	0.026053	0.026062
	HV_mean	0.025617	0.020437	0.025358	0.009369	0.025828	0.02591	0.02584
	CV_mean	0	0	0	0	0	0	0
RCM08	HV_worst	0.025388	0.020236	0.024966	0.008119	0.02547	0.025616	0.025259
	CV_worst	0	0	0	0	0	0	0
	HV_sd	0.000109	0.00024	0.000164	0.001043	9.65E-05	0.00012	0.000155
	CV_sd ED	0 100	0 100	100	0 100	0 100	0 100	100
	FR	100	100	100	100	100	100	100

Table S2: Baseline results of mechanical design problems RC09-RC16

Pro	blem	ToP [35]	TiGE_2 [36]	cNSGAIII [8]	cMOEA/D [8]	CCMO [37]	cARMOEA [38]	AnD [39]
110	HV_best	0.408889	0.358098	0.409689	0.05316	0.408948	0.40966	0.408287
	CV_best	0	0	0	0	0	0	0
	HV_mean	0.40851	0.323399	0.409477	0.053057	0.40864	0.409568	0.407496
	CV_mean	0	0	0	0	0	0	0
RCM09	HV_worst	0.408112	0.295263	0.409166	0.052973	0.408196	0.409307	0.4066
	CV_worst HV_sd	0.000169	0.01341	0.00012	0 3.86E-05	0 0.000177	0 6.48E-05	0.000418
	CV_sd	0.000109	0.01341	0.00012	0	0.000177	0.48E-03	0.000418
	FR	100	100	100	100	100	100	100
	HV_best	0.847364	0.84456	0.837576	0.080044	0.842495	0.843914	0.845939
İ	CV_best	0	0	0	0	0	0	0
	HV_mean	0.847146	0.840968	0.833455	0.079487	0.839439	0.841241	0.844971
RCM10	CV_mean	0 0.846424	0 0.834233	0 0.832868	0 0.078753	0 0.832774	0 0.837581	0 0.843441
KCM10	HV_worst CV_worst	0.846424	0.834233	0.832808	0.078733	0.832774	0.837381	0.843441
	HV_sd	0.000182	0.00205	0.001023	0.000419	0.002253	0.002155	0.000598
	CV_sd	0	0	0	0	0	0	0
	FR	100	100	100	100	100	100	100
	HV_best	0.09929	0.098926	0.100442	0.061329	0.099962	0.099998	0.099662
	CV_best HV_mean	0 0.097266	0.097945	0 0.099746	0 0.060353	0 0.099165	0 0.097146	0 0.098868
	CV_mean	0.097200	0.097943	0.099746	0.060333	0.099103	0.09/146	0.098808
RCM11	HV_worst	0.094654	0.094981	0.099195	0.059309	0.098126	0.092464	0.098031
	CV_worst	0	0	0	0	0	0	0
	HV_sd	0.001183	0.000851	0.000348	0.000505	0.000456	0.001526	0.000394
	CV_sd	0	0	0	0	0	0	0
	FR HV_best	100 0.723422	100 0.711611	100 0.722742	100 0.101861	100 0.722206	100 0.722755	100 0.720785
	CV_best	0.723422	0.711011	0.722742	0.101801	0.722200	0.722733	0.720783
	HV_mean	0.723073	0.698009	0.721768	0.064495	0.719671	0.722192	0.718469
	CV_mean	0	0	0	0	0	0	0
RCM12	HV_worst	0.722601	0.668655	0.720212	0.012029	0.714833	0.719849	0.713855
	CV_worst	0	0	0	0	0	0	0
	HV_sd CV_sd	0.000244	0.00993	0.000578	0.02106	0.002199 0	0.000579	0.001523
	FR	100	100	100	100	100	100	100
	HV_best	0.089673	0.088687	0.090348	0.090343	0.08925	0.090421	0.090365
	CV_best	0	0	0	0	0	0	0
	HV_mean	0.089243	0.086669	0.090125	0.090201	0.088845	0.090296	0.090291
DCM12	CV_mean	0 0.088436	0	0 0.089524	0.089093	0	0 0.089942	0.090166
RCM13	HV_worst CV_worst	0.088436	0.085158 0	0.089524	0.089093	0.088388 0	0.089942	0.090100
	HV_sd	0.000267	0.000699	0.000205	0.000226	0.000184	0.000108	5.68E-05
	CV_sd	0	0	0	0	0	0	0
	FR	100	100	100	100	100	100	100
	HV_best	0.617478	0.495242	0.617891	0.172877	0.61637	0.618066	0.61418
	CV_best HV_mean	0 0.616706	0.330275	0 0.61628	0 0.120625	0 0.614199	0 0.616625	0.606465
	CV_mean	0.010700	0.330273	0.01028	0.120023	0.014199	0.010023	0.000403
RCM14	HV_worst	0.616112	0.097988	0.610967	0.076989	0.61144	0.612748	0.587042
	CV_worst	0	0	0	0	0	0	0
	HV_sd	0.000328	0.10877	0.001446	0.024785	0.001396	0.0013	0.004093
	CV_sd	0 100	0 100	0 100	0 100	0 100	0 100	0 100
	FR HV_best	0.543199	0.521655	0.542396	0.24499	0.540387	0.542542	0.541475
	CV_best	0.543199	0.521055	0.542590	0.24499	0.540387	0.342342	0.541475
	HV_mean	0.542927	0.509063	0.540606	0.071978	0.535172	0.54117	0.53927
	CV_mean	0	0	0	0	0	0	0
RCM15	HV_worst	0.542363	0.480435	0.536591	0.065994	0.516745	0.539697	0.537395
	CV_worst	0	0	0	0	0	0	0
	HV_sd CV_sd	0.000178	0.009041 0	0.001018	0.032127 0	0.006226 0	0.00072	0.000915
	FR	100	100	100	100	100	100	100
	HV_best	0.763379	0.752025	0.762657	0.079343	0.762161	0.762473	0.761334
	CV_best	0	0	0	0	0	0	0
	HV_mean	0.762977	0.742237	0.762404	0.079087	0.761688	0.762449	0.758998
DCM16	CV_mean	0 761976	0 709290	0 762200	0 070055	0 760700	0 76242	0 754596
RCM16	HV_worst CV_worst	0.761876 0	0.708289 0	0.762299	0.079055 0	0.760799 0	0.76243	0.754586
	HV_sd	0.000306	0.008109	7.92E-05	5.67E-05	0.000303	1.29E-05	0.001495
	CV_sd	0	0	0	0	0	0	0
	FR	100	100	100	100	100	100	100

Table S3: Baseline results of mechanical design problems (RC17-RC21).

Pro	blem	ToP [35]	TiGE_2 [36]	cNSGAIII [8]	cMOEA/D [8]	CCMO [37]	cARMOEA [38]	AnD [39]
	HV_best	0.343355	0.329025	0.272668	0.300459	0.34287	0.27689	0.275577
	CV_best	0	0	0	0	0	0	0
	HV_mean	0.265468	0.20413	0.247039	0.196528	0.271101	0.253003	0.209068
	CV_mean	0	0	0	0	0	0	0
RCM17	HV_worst	0.04228	0.086825	0.190024	0.100199	0.227364	0.239668	0.058186
	CV_worst	0	0	0	0	0	0	0
	HV_sd	0.059101	0.059935	0.017716	0.055155	0.031926	0.007278	0.042127
	CV_sd	0	0	0	0	0	0	0
	FR	100	100	100	100	100	100	100
	HV_best	0.040475	0.03988	0.040508	0.040316	0.0405	0.040509	0.040469
	CV_best	0.010175	0.05700	0.010300	0.010310	0.0103	0.010309	0.01010
	HV_mean	0.040463	0.039305	0.040504	0.040259	0.040494	0.040507	0.040435
	CV_mean	0.010103	0.059505	0.010501	0.010239	0.010151	0.010307	0.010133
RCM18	HV_worst	0.04045	0.038049	0.040492	0.04019	0.040487	0.040499	0.04024
RCMTO	CV_worst	0.04043	0.030042	0.040452	0.04017	0.040407	0.040422	0.04024
	HV_sd	5.86E-06	0.000445	4.25E-06	2.44E-05	3.61E-06	2.01E-06	4.10E-05
	CV_sd	0	0.000443	0	0	0	0	0
	FR	100	100	100	100	100	100	100
	HV_best	0.332801	0.301435	0.30792	0.244087	0.306362	0.303361	0.304245
	CV_best	0.552801	0.501455	0.30792	0.244087	0.300302	0.303301	0.304243
	HV_mean	0.284636	0.277989	0.284733	0.171237	0.281467	0.280489	0.284262
	CV_mean	0.264030	0.277989	0.284733	0.171237	0.281407	0.280489	0.264202
RCM19	HV_worst	0.15376	0.257503	0.254717	0.087701	0.218761	0.254298	0.270568
KCW119	CV_worst	0.13370	0.237303	0.234717	0.087701	0.218701	0.234298	0.270308
	HV_sd	0.05626	0.011308	0.009991	0.039532	0.016711	0.011653	0.00897
	CV_sd	0.03626	0.011308	0.009991	0.039332	0.016/11	0.011633	0.00897
	FR	100	100	100	100	100	100	100
	HV_best	0.207864	0.129792	0.179272	0	0.163509	0.055214	0.179222
		0.207864			0			
	CV_best	0.108881	0 0.024426	0 0.138998	0	0	0 0.003069	0 0.115754
	HV_mean	0.108881	63.24543	0.138998	0	0.114169 0	0.003069	
D.C. 120	CV_mean				0			0
RCM20	HV_worst	0	0	0	0	0	0	0
	CV_worst	0.012044	1897.363	0.00557	0	0.049259	0.011727	0.043542
	HV_sd	0.083168	0.042439	0.037054				
	CV_sd	0.002162	340.5871	0.001	0	0	0	0
	FR	96.66667	96.66667	96.66667	100	100	100	100
	HV_best	0.031753	0.028646	0.031757	0.02933	0.031753	0.031758	0.031749
	CV_best	0	0	0	0	0	0	0
	HV_mean	0.03175	0.021239	0.031711	0.029322	0.0317	0.03167	0.031706
	CV_mean	0	0	0	0	0	0	0
RCM21	HV_worst	0.031748	0.019965	0.031405	0.029317	0.030878	0.030542	0.030975
	CV_worst	0	0	0	0	0	0	0
	HV_sd	1.48E-06	0.002286	7.14E-05	3.16E-06	0.000177	0.000237	0.000141
	CV_sd	0	0	0	0	0	0	0
	FR	100	100	100	100	100	100	100

Table S4: Baseline results of chemical engineering problems (RC22-RC24).

Pro	blem	ToP [35]	TiGE_2 [36]	cNSGAIII [8]	cMOEA/D [8]	CCMO [37]	cARMOEA [38]	AnD [39]
	HV_best	0	0	0	0	0	0	0
	CV_best	1.280592	0.010923	0.024605	0.001647	0.014998	0.011363	0.021321
	HV_mean	0	0	0	0	0	0	0
	CV_mean	29.05799	4.663478	3.022009	2.202614	8.295304	7.225637	6.29337
RCM22	HV_worst	0	0	0	0	0	0	0
	CV_worst	81.36874	25.05874	16.5864	14.88096	30.08038	49.2384	28.30793
	HV_sd	0	0	0	0	0	0	0
	CV_sd	21.68135	6.241971	4.173321	3.3434	9.066057	10.30937	7.585384
	FR	0	0	0	0	0	0	0
	HV_best	0.998563	0.990669	0.467709	0.689092	0.447149	0.577967	0.487608
	CV_best	0	0	0	0	0	0	0
	HV_mean	0.033285	0.456674	0.14435	0.175798	0.0611	0.138216	0.108034
	CV_mean	0.039073	1.73E-05	3.36E-05	1.42E-05	0.00019	3.65E-05	5.11E-05
RCM23	HV_worst	0	0	0	0	0	0	0
	CV_worst	0.347136	0.000377	0.000253	0.000194	0.000827	0.000186	0.000265
	HV_sd	0.179247	0.279928	0.158177	0.163518	0.115609	0.172869	0.139781
	CV_sd	0.082742	6.91E-05	5.95E-05	3.99E-05	0.000252	5.78E-05	7.39E-05
	FR	3.333333	90	56.66667	73.33333	26.66667	50	43.33333
	HV_best	0	2.86E-08	0	0	0	0	0
	CV_best	165.3936	0	0.003802	0.166729	6.838311	0.675435	0.518473
	HV_mean	0	1.02E-05	0	0	0	0	0
	CV_mean	251582.2	1.317266	137.2594	81.94926	631.407	257.567	144.8416
RCM24	HV_worst	0	0	0	0	0	0	0
	CV_worst	878333.6	11.63664	861.3564	413.3518	5123.33	1715.384	630.6579
	HV_sd	0	5.14E-08	0	0	0	0	0
	CV_sd	303702.5	2.781827	198.909	99.4577	1050.21	406.839	148.7518
	FR	0	10	0	0	0	0	0

 $Table \ S5: \ Baseline \ results \ of \ process \ design \ and \ synthesis \ problems \ (RCM25-RCM29).$

Pro	blem	ToP [35]	TiGE_2 [36]	cNSGAIII [8]	cMOEA/D [8]	CCMO [37]	cARMOEA [38]	AnD [39]
	HV_best	0.240906	0.217111	0.241086	0.237308	0.241187	0.241118	0.240922
	CV_best	0	0	0	0	0	0	0
	HV_mean	0.24077	0.198929	0.24106	0.236795	0.241164	0.240776	0.240808
	CV_mean	0	0	0	0	0	0	0
RCM25	HV_worst	0.240643	0.164597	0.241033	0.236569	0.241122	0.23134	0.240572
	CV_worst	0	0	0	0	0	0	0
	HV_sd	7.29E-05	0.01378	1.30E-05	0.000215	1.19E-05	0.001752	8.04E-05
	CV_sd	0	0	0	0	0	0	0
	FR	100	100	100	100	100	100	100
	HV_best	0.188765	0.166356	0.188171	0.194468	0.20437	0.200758	0.200818
	CV_best	0	0	0	0	0	0	0
	HV_mean	0.155657	0.124086	0.152925	0.144699	0.154502	0.159318	0.144786
	CV_mean	0	0	0	0	0	0	0
RCM26	HV_worst	0.110303	0.090911	0.095389	0.116597	0.091719	0.117439	0.093144
	CV_worst	0	0	0	0	0	0	0
	HV_sd	0.019194	0.019445	0.028217	0.018733	0.029585	0.023262	0.030851
	CV_sd	0	0	0	0	0	0	0
	FR	100	100	100	100	100	100	100
	HV_best	0.718792	0.795056	0.719229	0.721782	0.719622	0.719229	0.721013
	CV_best	0	0	0	0	0	0	0
	HV_mean	0.718359	0.747882	0.719224	0.721672	0.71956	0.719221	0.717436
	CV_mean	0.710555	0.717662	0.713221	0.721072	0.71550	0.715221	0
RCM27	HV_worst	0.717772	0.690259	0.719218	0.721631	0.719482	0.719213	0.714571
Remzi	CV_worst	0.717772	0.050255	0.715210	0.721031	0.715102	0.715215	0.771371
	HV_sd	0.000262	0.0291	2.35E-06	2.41E-05	3.67E-05	4.54E-06	0.001573
	CV_sd	0.000202	0.0251	0	0	0	0	0.001373
	FR	100	100	100	100	100	100	100
	HV_best	0	0.07228	0	0.070562	0	0	0
	CV_best	0.014281	0.07228	0.9999	0.070302	0.000635	0.00145	0.000234
	HV_mean	0.014201	0.03953	0.9999	0.004974	0.000033	0.00143	0.000234
	CV_mean	0.936119	8.03E-09	1.000205	0.899936	0.933887	0.933675	0.967071
RCM28	HV_worst	0.930119	0	0	0.899930	0.933887	0.933073	0.907071
KCIVI26	CV_worst	1.019421	2.41E-07	1.002147	1.000507	1.002939	1.00318	1.003175
	HV_sd	0	0.018531	0	0.015634	0	0	0
	CV_sd	0.244706	4.32E-08	0.000465	0.299979	0.249196	0.2491	0.179539
	FR	0.244700	96.66667	0.000403	10	0.249190	0.2491	0.179339
	HV_best	0.471774	0.442004	0.51602	0.518846	0.504352	0.520551	0.517712
	CV_best	0.4/1//4	0.442004	0.51602	0.518846	0.504552	0.520551	0.517/12
	HV_mean	0.335559	0.390516	0.447617	0.452675	0.404413	0.432106	0.417833
	HV_mean CV_mean	0.335559	0.390516	0.447617	0.452675	0.404413	0.432106	0.417833
RCM29	UV_mean HV_worst	0.200477	0.20332	0.351614	0.384726	0.285779	0.321582	0.285964
KUN129	CV_worst	0.200477	0.20332	0.331614	0.384726	0.285779	0.321382	0.283964
		0.071275	0.046371		0.033962	0.04798	0.053401	
	HV_sd			0.043386				0.060436
	CV_sd FR	0 100	0 100	0 100	0 100	0 100	0 100	0 100
	FK	100	100	100	100	100	100	100

 $Table \ S6: \ Baseline \ results \ of \ power \ electronics \ problems \ (RCM30-RCM35).$

Pro	blem	ToP [35]	TiGE_2 [36]	cNSGAIII [8]	cMOEA/D [8]	CCMO [37]	cARMOEA [38]	AnD [39]
	HV_best	0	0.662965	0.701013	0.839462	0.666132	0.697997	0.725822
	CV_best	0	0	0	0	0	0	0
	HV_mean	0	0.034649	0.289495	0.391785	0.144395	0.217875	0.34759
	CV_mean	11.56486	21.04043	1.205781	0.90871	1.914152	1.628609	1.888535
RCM30	HV_worst	0	0	0	0	0	0	0
	CV_worst	28.29356	40.98365	9.124346	6.781095	15.41303	12.44645	12.42719
	HV_sd	0	0.134816	0.300872	0.326206	0.247237	0.290774	0.311574
	CV_sd	9.229781	12.84853	2.211664	1.802905	3.428305	2.838586	3.302945
	FR	10	6.666667	50	60	26.66667	40	56.66667
	HV_best	0	0.393877	0.827003	0.812276	0.806101	0.857183	0.80836
	CV_best	0.042148	0	0	0	0	0	0
	HV_mean	0	0.022851	0.306911	0.240442	0.227716	0.229353	0.279842
	CV_mean	18.27013	20.82913	3.073342	1.35446	2.117136	3.009694	1.363218
RCM31	HV_worst	0	0	0	0	0	0	0
	CV_worst	56,90556	55.72129	21.15783	19.16384	14.1716	18.19538	15.92129
	HV_sd	0	0.086513	0.341371	0.295125	0.305414	0.317861	0.298428
	CV_sd	12.51585	14.13454	5.573602	3.558056	3.41207	4.371542	3.179246
	FR	0	6.666667	46.66667	46.66667	40	36.66667	53.33333
	HV_best	0	0.793533	0.825149	0.835984	0.822397	0.792387	0.878748
	CV_best	2.20E-05	0	0	0	0	0	0
	HV_mean	0	0.07489	0.445862	0.4641	0.229616	0.333093	0.398617
	CV_mean	18.99021	18.54321	0.99685	1.459053	4.089679	1.675006	1.521516
RCM32	HV_worst	0	0	0	0	0	0	0
	CV_worst	51.56746	59.46963	12.24312	12.10024	19.75116	21.96807	9.837396
	HV_sd	0	0.2251	0.366448	0.367472	0.335455	0.364356	0.380229
	CV_sd	13.01789	15.25797	2.310026	2.837696	6.196577	4.433198	2.497286
	FR	0	10	60	63.33333	33.33333	46.66667	53.33333
	HV_best	0	0	0.23966	0.052622	0.025531	0.065701	0.288832
	CV_best	10.40772	0	0	0	0	0	0
	HV_mean	0	0	0.007989	0.003471	0.000851	0.00553	0.009716
	CV_mean	39.10995	28.67943	6.270309	3.470084	8.276413	6.438681	4.812328
RCM33	HV_worst	0	0	0	0	0	0	0
11011123	CV_worst	66.10341	68.29036	32.1277	19.78779	28.90257	20.99447	19.5327
	HV_sd	0	0	0.04302	0.012987	0.004583	0.016825	0.051833
	CV_sd	13.50099	17.38156	7.893064	4.853179	7.719334	6.105385	5.112044
	FR	0	3.333333	20	30	13.33333	13.33333	16.66667
	HV_best	0	0.113921	0.479272	0.320512	0.437299	0.487213	0.431892
	CV_best	10.38784	0	0	0	0	0	0
	HV_mean	0	0.006823	0.088819	0.055524	0.063454	0.049491	0.066807
	CV_mean	34.29755	28.19329	3.049706	4.922927	7.650207	3.139325	4.122926
RCM34	HV_worst	0	0	0	0	0	0	0
	CV_worst	65.58168	75.36825	23.41344	21.54223	25.95273	14.5725	26.77143
	HV_sd	0	0.025705	0.16467	0.095984	0.127719	0.119012	0.123938
	CV_sd	12.98598	17.48042	5.038477	6.423627	7.846577	3.837989	6.573328
	FR	0	6.666667	23.33333	36.66667	26.66667	23.33333	26.66667
	HV_best	0	0	0.686211	0.651583	0.590883	0.752999	0.676141
	CV_best	15.4508	1.546835	0.000211	0.031303	0.590005	0.732	0.070111
	HV_mean	0	0	0.167352	0.215711	0.019696	0.10397	0.134673
	CV_mean	37.43432	26.005	4.989614	4.099303	6.324352	6.595854	3.217712
RCM35	HV_worst	0	0	0	0	0.324332	0.575054	0
101.120	CV_worst	64.91172	62.33122	20.83738	16.38286	23.85962	32.50146	18.87406
	HV_sd	04.91172	02.33122	0.26105	0.267693	0.106067	0.236295	0.246232
	CV_sd	12.63062	14.89643	6.323394	5.494804	6.28649	8.393579	4.408667
	FR	0	0	30	40	3.333333	16.66667	23.33333
	- 10			1 20		2.223333	10.00007	20.00000

 $Table\ S7:\ Baseline\ results\ of\ power\ system\ Optimization\ problems\ (RCM36-RCM44)$

Pro	blem	ToP [35]	TiGE_2 [36]	cNSGAIII [8]	cMOEA/D [8]	CCMO [37]	cARMOEA [38]	AnD [39]
	HV_best	0	0	0	0	0	0	0
	CV_best HV_mean	82.3121 0	6.643412 0	4.25498 0	3.651223 0	7.154865 0	4.415033 0	4.435388
	CV_mean	274.4762	35.2284	53.70688	15.06921	94.37566	52.79134	54.93299
RCM36	HV_worst	0	0	0	0	0	0	0
	CV_worst	678.7059	182.8126	161.8934	51.0971	335.3863	258.121	331.5996
	HV_sd CV_sd	0 142.171	0 45.21685	0 43.41143	0 13.72349	0 75.30395	0 63.66908	0 68.93145
	FR	0	0	0	0	0	03.00908	00.93143
	HV_best	0	0	0	0	0	0	0
	CV_best HV_mean	127.732	4.963391	4.404994	3.553089	4.683178	4.311428	4.417435
	CV_mean	0 293.7674	0 71.53191	0 71.71703	0 26.24301	0 102.6528	0 54.66656	0 59.19636
RCM37	HV_worst	0	0	0	0	0	0	0
	CV_worst	530.8988	309.3974	404.9752	162.1423	325.4873	251.9391	229.573
	HV_sd CV_sd	0 122.1939	0 78.49083	0 77.53464	0 39.93584	0 83.6963	0 55.73482	57.36992
	FR	0	0	0	0	0	0	0
	HV_best	0	0	0	0	0	0	0
	CV_best	106.7765	4.581639	4.263193	3.341614	26.41366	4.293962	4.262062
	HV_mean CV_mean	0 316.6513	0 121.5665	0 48.41404	0 13.9309	0 61.61325	0 57.32413	28.06424
RCM38	HV_worst	0	0	0	0	0	0	0
	CV_worst	592.1684	385.4081	225.0023	89.6667	95.77121	321.0996	111.3932
	HV_sd CV_sd	0 130.8002	0 107.8309	0 56.57967	0 19.90946	0 15.04164	0 81.33751	29.04501
	FR	0	0	0	0	0	0	0
	HV_best	0	0	0	0	0	0	0
	CV_best	65.16863	4.972818	4.338738	3.348161	4.455859	4.371101	4.178467
	HV_mean CV_mean	0 199.7498	0 20.87616	0 38.46924	0 53,59397	0 51.13681	0 47.85619	0 78.27483
RCM39	HV_worst	0	0	0	0	0	0	0
	CV_worst	555.3932	92.60474	194.8944	412.8086	189.879	173.4359	496.7103
	HV_sd CV_sd	0 112.1574	0 22.54907	0 49.33667	0 78.29306	0 46.79739	0 50.81561	0 109.7538
	FR	0	0	0	0	0	0	0
	HV_best	0	0	0	0	0	0	0
	CV_best HV_mean	3.150392	0.660076 0	0.999967 0	0.848469 0	1.066144 0	0.91699	0.952824
	CV_mean	5.972555	2.512599	1.623799	1.329999	1.536825	1.689827	1.493907
RCM40	HV_worst	0	0	0	0	0	0	0
	CV_worst	9.37611	5.529642	3.957437	1.942884	2.858858	2.994664	3.674098
	HV_sd CV_sd	0 1.636978	0 1.375104	0 0.586713	0 0.222756	0 0.328697	0 0.511366	0 0.456711
	FR	0	0	0	0	0	0	0
	HV_best	0	0	0	0	0	0	0
	CV_best HV_mean	3.301155	0.806728	0.965293	0.914012 0	1.081988	1.093108	0.927847
	CV_mean	5.662143	2.628734	1.365783	1.561768	1.596323	1.541367	1.44663
RCM41	HV_worst	0	0	0	0	0	0	0
	CV_worst	9.892571 0	7.870352 0	1.962484 0	5.534691 0	4.006354 0	4.262531 0	2.180599
	HV_sd CV_sd	2.068608	1.632579	0.245068	0.767151	0.534491	0.572747	0 0.255961
	FR	0	0	0	0	0	0	0
	HV_best	0	0	0	0	0	0	0
	CV_best HV_mean	3.519447	1.31777 0	0.894709 0	1.061619 0	0.843062 0	0.901273 0	1.069173
	CV_mean	6.049385	3.469379	1.527958	1.388699	1.758078	1.420168	1.54281
RCM42	HV_worst	0	0	0	0	0	0	0
	CV_worst	12.73405	7.037393 0	2.851103	1.903395 0	4.349191 0	2.266922 0	2.615807
	HV_sd CV_sd	2.067198	1.446002	0 0.37419	0.180178	0.647684	0.260657	0.307961
	FR	0	0	0	0	0	0	0
	HV_best	0	0	0	0	0	0	0
	CV_best HV_mean	3.511517 0	1.040588 0	0.904851	0.905841 0	1.070411 0	1.012481 0	1.126768
	CV_mean	6.14353	2.330865	1.461826	1.331803	1.74988	1.783643	1.665836
RCM43	HV_worst	0	0	0	0	0	0	0
	CV_worst HV_sd	12.7558	4.918305 0	2.640186 0	1.79928 0	4.462654 0	6.152961 0	4.349584
	CV_sd	1.996193	1.041009	0.287781	0.1635	0.768109	0.905813	0.638118
	FR	0	0	0	0	0	0	0

Table S8: Baseline results of power system optimization problems RCM44-RCM50

Pro	blem	ToP [35]	TiGE_2 [36]	cNSGAIII [8]	cMOEA/D [8]	CCMO [37]	cARMOEA [38]	AnD [39]
	HV_best	0	0	0	0	0	0	0
	CV_best	3.121608	0.36281	1.104857	1.024321	1.047254	0.905816	1.089238
	HV_mean	0	0	0	0	0	0	0
	CV_mean	5.157192	1.207907	1.504204	1.574824	1.627674	1.479146	1.448399
RCM44	HV_worst	0	0	0	0	0	0	0
	CV_worst	8.110355	2.523043	2.263849	2.26727	3.727173	2.508425	2.442546
	HV_sd	0	0	0	0	0	0	0
	CV_sd	1.30777	0.491465	0.272569	0.307687	0.713274	0.281505	0.253467
	FR	0	0	0	0	0	0	0
	HV_best	0	0	0	0	0	0	0
	CV_best	3.145494	1.190196	1.201944	1.105595	1.117485	1.088376	1.142505
	HV_mean	0	0	0	0	0	0	0
DCM45	CV_mean	5.624684	2.578918	1.523252	1.396802	1.572634	1.502721	1.476502
RCM45	HV_worst	11.34453	0 5.824603	1.886354	0 1.857372	0 3.14689	0 2.177195	0 1.723471
	CV_worst HV_sd	0	0	0	0	0	0	0
	CV_sd	1.648326	1.13158	0.167319	0.195778	0.359486	0.24672	0.116904
	FR	0	0	0.107319	0.193778	0.339480	0.24072	0.110904
	HV_best	0	0	0	0	0	0	0
	CV_best	2.030229	0.681656	0.81054	1.016072	0.922549	1.070911	1.043286
	HV_mean	0	0.001050	0.01031	0	0.522515	0	0
	CV_mean	4.360037	1.538903	1.427434	1.600378	1.46879	1.44803	1.375263
RCM46	HV_worst	0	0	0	0	0	0	0
	CV_worst	7.516484	3.203139	2.292921	2.685567	1.875628	2.099201	1.688632
	HV_sd	0	0	0	0	0	0	0
	CV_sd	1.314467	0.640264	0.253772	0.38678	0.220315	0.214225	0.183594
	FR	0	0	0	0	0	0	0
	HV_best	0	0	0	0	0	0	0
	CV_best	0.468588	0.074105	0.182643	0.065264	0.144811	0.06228	0.407403
	HV_mean	0	0	0	0	0	0	0
	CV_mean	4.348969	3.9884	2.985086	1.465222	3.68641	2.600211	3.314637
RCM47	HV_worst	0	0	0	0	0	0	0
	CV_worst	15.00573	14.62155	9.434895	6.233328	9.565402	12.24001	10.97261
	HV_sd	0	0	0	0	0	0	0
	CV_sd FR	3.196686	2.97268	2.473667	1.520414	2.431509	2.880452	2.925691
	HV_best	0	0	0	0	0	0	0
	CV_best	0.392895	0.057091	0.037706	0.007331	0.161581	0.138793	0.21525
	HV_mean	0.392693	0.037091	0.037700	0.007331	0.101381	0.138793	0.21323
	CV_mean	4.851161	3.39968	3.055395	1.603796	3.451364	3.367045	2.337885
RCM48	HV_worst	0	0	0	0	0	0	0
1000110	CV_worst	13.50848	11.2626	17.45677	5.529828	12.0752	12.85875	8.437814
	HV_sd	0	0	0	0	0	0	0
	CV_sd	3.864569	2.713269	3.760928	1.461697	3.045447	3.498318	2.106418
	FR	0	0	0	0	0	0	0
	HV_best	0	0	0	0	0	0	0
	CV_best	0.538135	0.103872	0.064077	0.030818	0.212473	0.194484	0.114581
	HV_mean	0	0	0	0	0	0	0
	CV_mean	4.71745	5.415072	2.405423	2.595872	2.374781	1.751124	2.978641
RCM49	HV_worst	0	0	0	0	0	0	0
	CV_worst	14.30472	40.78255	8.001206	7.585709	7.680618	5.466936	8.212466
	HV_sd	0	0	0	0	0	0	0
	CV_sd	3.722273	7.241503	2.248118	1.849062	1.98031	1.471382	2.413002
	FR	0	0	0	0	0	0	0
	HV_best	0	0	0	0	0	0	0
	CV_best	0	0	0	0	0	0	0
	HV_mean	0 002172	0	0 000102	0	0	0	0 000480
DCM50	CV_mean	0.002172	0.001959	0.000193	0	0.000785	0.000183	0.000489
RCM50	HV_worst	0 000622	0 007746	0 001403	0	0 005306	0 000068	0 001860
	CV_worst HV_sd	0.008623	0.007746 0	0.001493	0	0.005396	0.000968 0	0.001869
	CV_sd	0.001843	0.002066	0.000319	0	0.001178	0.000299	0.000566
	FR	6.666667	6.666667	40	100	20	40	10
	1 1	0.000007	0.000007	I 70	100	20	+∪	10

References

- [1] B. Kannan, S. N. Kramer, An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design (1994).
- [2] S. Narayanan, S. Azarm, On improving multiobjective genetic algorithms for design optimization, Structural Optimization 18 (1999) 146–155.
- [3] G. Chiandussi, M. Codegone, S. Ferrero, F. E. Varesio, Comparison of multi-objective optimization methodologies for engineering applications, Computers & Mathematics with Applications 63 (2012) 912–942.
- [4] K. Deb, et al., Evolutionary algorithms for multi-criterion optimization in engineering design, Evolutionary algorithms in engineering and computer science 2 (1999) 135–161.
- [5] A. Osyczka, S. Kundu, A genetic algorithm-based multicriteria optimization method, Proc. 1st World Congr. Struct. Multidisc. Optim (1995) 909–914.
- [6] S. Azarm, A. Tits, M. Fan, Tradeoff-driven optimization-based design of mechanical systems, in: 4th Symposium on Multidisciplinary Analysis and Optimization, 1999, p. 4758.
- [7] T. Ray, K. Liew, A swarm metaphor for multiobjective design optimization, Engineering optimization 34 (2002) 141–153.
- [8] H. Jain, K. Deb, An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach, IEEE Transactions on evolutionary computation 18 (2013) 602–622.
- [9] F. Cheng, X. Li, Generalized center method for multiobjective engineering optimization, Engineering Optimization 31 (1999) 641-661.
- [10] H.-Z. Huang, Y.-K. Gu, X. Du, An interactive fuzzy multi-objective optimization method for engineering design, Engineering Applications of Artificial Intelligence 19 (2006) 451–460.
- [11] A. Osyczka, Evolutionary algorithms for single and multicriteria design optimization (2002).
- [12] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen, et al., Evolutionary algorithms for solving multi-objective problems, volume 5, Springer, 2007.
- [13] M. G. Parsons, R. L. Scott, Formulation of multicriterion design optimization problems for solution with scalar numerical optimization methods, Journal of Ship Research 48 (2004) 61–76.
- [14] L. Fan, T. Yoshino, T. Xu, Y. Lin, H. Liu, A novel hybrid algorithm for solving multiobjective optimization problems with engineering applications, Mathematical Problems in Engineering 2018 (2018).
- [15] G. Dhiman, V. Kumar, Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems, Knowledge-Based Systems 150 (2018) 175–197.
- [16] J. N. Siddall, Optimal engineering design: principles and applications, CRC Press, 1982.
- [17] H. Zhang, Y. Peng, L. Hou, G. Tian, Z. Li, A hybrid multi-objective optimization approach for energy-absorbing structures in train collisions, Information Sciences 481 (2019) 491–506.
- [18] C. A. Floudas, P. M. Pardalos, A collection of test problems for constrained global optimization algorithms, volume 455, Springer Science & Business Media. 1990.
- [19] H. S. Ryoo, N. V. Sahinidis, Global optimization of nonconvex nlps and minlps with applications in process design, Computers & Chemical Engineering 19 (1995) 551–566.
- [20] G. Guillén-Gosálbez, A novel milp-based objective reduction method for multi-objective optimization: Application to environmental problems, Computers & Chemical Engineering 35 (2011) 1469–1477.
- [21] G. R. Kocis, I. E. Grossmann, A modelling and decomposition strategy for the minlp optimization of process flowsheets, Computers & Chemical Engineering 13 (1989) 797–819.
- [22] G. R. Kocis, I. E. Grossmann, Global optimization of nonconvex mixed-integer nonlinear programming (minlp) problems in process synthesis, Industrial & engineering chemistry research 27 (1988) 1407–1421.
- [23] C. A. Floudas, Nonlinear and mixed-integer optimization: fundamentals and applications, Oxford University Press, 1995.
- [24] A. K. Rathore, J. Holtz, T. Boller, Synchronous optimal pulsewidth modulation for low-switching-frequency control of medium-voltage multilevel inverters, IEEE Transactions on Industrial Electronics 57 (2010) 2374–2381.
- [25] A. K. Rathore, J. Holtz, T. Boller, Optimal pulsewidth modulation of multilevel inverters for low switching frequency control of medium voltage high power industrial ac drives, in: 2010 IEEE Energy Conversion Congress and Exposition, IEEE, 2010, pp. 4569–4574.
- [26] A. Edpuganti, A. K. Rathore, Fundamental switching frequency optimal pulsewidth modulation of medium-voltage cascaded seven-level inverter, IEEE Transactions on Industry Applications 51 (2015) 3485–3492.
- [27] A. Edpuganti, A. Dwivedi, A. K. Rathore, R. K. Srivastava, Optimal pulsewidth modulation of cascade nine-level (91) inverter for medium voltage high power industrial ac drives, in: IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2015, pp. 004259–004264.
- [28] A. Edpuganti, A. K. Rathore, Optimal pulsewidth modulation for common-mode voltage elimination scheme of medium-voltage modular multilevel converter-fed open-end stator winding induction motor drives, IEEE Transactions on Industrial Electronics 64 (2016) 848–856.
- [29] S. Mishra, A. Kumar, D. Singh, R. K. Misra, Butterfly optimizer for placement and sizing of distributed generation for feeder phase balancing, in: Computational Intelligence: Theories, Applications and Future Directions-Volume II, Springer, 2019, pp. 519–530.
- [30] P. P. Biswas, P. N. Suganthan, R. Mallipeddi, G. A. Amaratunga, Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms, Soft Computing 24 (2020) 2999–3023.
- [31] A. Kumar, B. K. Jha, D. K. Dheer, D. Singh, R. K. Misra, Nested backward/forward sweep algorithm for power flow analysis of droop regulated islanded microgrids, IET Generation, Transmission & Distribution 13 (2019) 3086–3095.
- [32] A. Kumar, B. K. Jha, D. Singh, R. K. Misra, Current injection-based newton-raphson power-flow algorithm for droop-based islanded microgrids, IET Generation, Transmission & Distribution 13 (2019) 5271–5283.
- [33] A. Kumar, B. K. Jha, D. K. Dheer, R. K. Misra, D. Singh, A nested-iterative newton-raphson based power flow formulation for droop-based islanded microgrids, Electric Power Systems Research 180 (2020) 106131.

- [34] F. Rivas-Dávalos, M. R. Irving, An approach based on the strength pareto evolutionary algorithm 2 for power distribution system planning, in: International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2005, pp. 707–720.
- [35] Z.-Z. Liu, Y. Wang, Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces, IEEE Transactions on Evolutionary Computation 23 (2019) 870–884.
- [36] Y. Zhou, M. Zhu, J. Wang, Z. Zhang, Y. Xiang, J. Zhang, Tri-goal evolution framework for constrained many-objective optimization, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2018).
- [37] Y. Tian, T. Zhang, J. Xiao, X. Zhang, Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Transactions on Evolutionary Computation (2020).
- [38] Y. Tian, R. Cheng, X. Zhang, F. Cheng, Y. Jin, An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility, IEEE Transactions on Evolutionary Computation 22 (2017) 609–622.
- [39] Z.-Z. Liu, Y. Wang, P.-Q. Huang, And: A many-objective evolutionary algorithm with angle-based selection and shift-based density estimation, Information Sciences 509 (2020) 400–419.