Cardinality, starter pack

We will use our defined notion of, "counting numbers" or "inductive numbers", \mathbb{N} to *count* other sets. This is *cardinality*. In this section, we fix sets X, Y.

Definition 0.1. A function $f: X \to Y$ is

- injective if ???
- *surjective* if ???
- bijective if ???

Definition 0.2. Two sets X, Y have equal cardinality if there is a bijection

$$X \simeq Y$$

• A set is said to have cardinality n if

$$\{i \in \mathbb{N} : 1 \le i \le n\} \simeq X$$

In this case, we say X is finite. Otherwise, X is infinite.

• A set X is countably infinite¹ if it has same cardinality with \mathbb{N} .

Definition 0.3. We denote the cardinality of a set X by |X|.

Historically, some take *cardinal numbers* as i.e. the equivalence class of bijective sets as the primitive notion.

Definition 0.4. Let X, Y be sets: We denote

- $|X| \leq |Y|$ if there is an injection from X to Y.
- |X| = |Y| if there is a bijection between X and Y.

One of the beautiful results in Set theory is the Schroeder Bernstein theorem.

Theorem 0.5. The \leq relation on cardinality, is reflexive: if $|X| \leq |Y|$ and $|Y| \leq |X|$ then |X| = |Y|.

Problems on next page:

¹Or countable. Sometimes countable means (finite and countably infinite).

²This definition does *not make sense yet!*. What if a set has two cardinality? Let us assume this is well-defined first. See question 2.

³why is this not obvious?