3a. Zadania z analizy funkcjonalnej

- **1.** Udowodnić, że jeśli $x_n \to x$ oraz $y_n \to y$ w przestrzeni unormowanej X, to $x_n + y_n \to x + y$. Pokazać, że jeśli $\lambda_n \to \lambda$, gdzie $\lambda_n, \lambda \in \mathbb{C}$, to $\lambda_n x_n \to \lambda x$.
- 2. Pokazać zupełność przestrzeni $L^p(0,1)$, dla $p\geqslant 1$. Wskazówka: Postępować tak jak w przypadku p=1. Skorzystać z nierówności

$$\|\sum |f_n|\|_p \leqslant \sum \|f_n\|_p.$$

- **3.** W przestrzeni $C_{\mathbb{R}}[0,1]$ znaleźć odległość funkcji x^n od dwuwymiarowej podprzestrzeni $E = \{ax + b : a, b \in \mathbb{R}\}.$
- 4. Pokazać, że dla $0 funkcjonał <math>||(x_n)||_p = (\sum_{n=1}^{\infty} |x_n|^p)^{1/p}$ określony na ciągach dla których szereg występujący w definicji jest zbieżny, nie jest normą, bo nie spełnia warunku trójkąta. Pokazać, że spełnione są nierówności

$$||x+y||_p^p \le ||x||_p^p + ||y||_p^p, \qquad ||x+y||_p \le 2^{1/p-1}(||x||_p + ||y||_p).$$

- 5. Pokazać, że $L^1(0,1)$ zawiera dwie liniowo niezależne funkcje f i g takie, że $||f+g||_1 = ||f||_1 + ||g||_1$. Pokazać, że w normie przestrzeni $L^p(0,1)$, dla 1 , taka sytuacja nie jest możliwa.
- **6.** Pokazać, że jeśli X Y są przestrzeniami unormowanymi z normami $\|\cdot\|_X$, $\|\cdot\|_Y$, to ich suma prosta $X \oplus Y$ jest przestrzenią unormowaną z normą

$$||x \oplus y|| = ||x||_X + ||y||_Y.$$

Pokazać, że jeśli X i Y są zupełne, to również $X \oplus Y$ jest zupełna.

7. Dla ciągu X_n przestrzeni unormowanych z normami $\|\cdot\|_{X_n}$ określamy sumę prostą X

$$X = \left\{ \{x_n\}_{n \in \mathbb{N}} \mid x_n \in X_n, \|\{x_n\}\| = \sum_{n=1}^{\infty} \|x_n\|_{X_n} < \infty \right\}.$$

Pokazać, że X jest przestrzenią unormowaną z normą $\|\{x_n\}\|$. Pokazać, że X jest zupełna jeśli wszystkie X_n są przestrzeniami zupełnymi.

- 8. Udowodnić, że jeśli podzbiory $A \subset B$ przestrzeni metrycznej X spełniają warunek, że A jest gęsty w B oraz B jest gęsty w X, to A jest gęsty w X.
- 9. Wykorzystać poprzednie zadanie aby udowodnić, że wielomiany o współczynnikach wymiernych stanowią gęsty podzbiór przestrzeni $C_{\mathbb{R}}[0,1]$ z normie $\|\cdot\|_{\infty}$. Udowodnić, że ciągi $(x_n)_{n=1}^{\infty}$ o skończenie wielu wyrazach niezerowych takich, że $x_n \in \mathbb{Q} + i\mathbb{Q}$ stanowią gęsty podzbiór każdej przestrzeni ℓ^p dla $1 \leq p < \infty$, w normie $\|\cdot\|_p$.
- *10. Dla domkniętej podprzestrzeni M w przestrzeni Banacha X z normą $\|\cdot\|_X$, określamy przestrzeń ilorazową X/M jako przestrzeń klas równoważności względem relacji w X

$$x \sim y$$
 jeśli $x - y \in M$.

Oznaczając klasę równoważności elementu $x \in X$ przez [x] określamy dodawanie i mnożenie przez skalar wzorem

$$\alpha[x] + \beta[y] = [\alpha x + \beta y].$$

Pokazać, że ta definicja jest poprawna, tzn. prawa strona zależy jedynie od klas równoważności, z których pochodzą x i y, a nie od samych x i y. Określmy

$$||[x]|| = \inf_{m \in M} ||x - m||_X.$$

Pokazać, że ta funkcja ma własności normy. Pokazać, że X/M z tą normą jest przestrzenią Banacha.

Wskazówka: Pokazać, że jeśli $\sum ||[x_n]|| < \infty$, to szereg $\sum [x_n]$ jest zbieżny. W tym celu dla każdego n wybrać $m_n \in M$ tak, aby

$$||x_n - m_n||_X \le 2 \inf_{m \in M} ||x_n - m||_X.$$

Zauważyć, że szereg $\sum (x_n - m_n)$ jest zbieżny w X. Oznaczając jego sumę przez s pokazać, że $[s] = \sum [x_n]$ w X/M.

- **11.** Niech X = C[0,1] i $M = \{f \mid f(0) = f(1) = 0\}$. Pokazać, że X/M można utożsamić z \mathbb{C}^2 , z normą $\|(x_1, x_2)\| = \max\{|x_1|, |x_2|\}$.
- *12. $\{x_n\}_{n=0}^{\infty}$ jest gęstym podzbiorem kuli jednostkowej w przestrzeni Banacha X. Określmy odwzorowanie $J:\ell^1\to X$, wzorem

$$J: \{a_n\}_{n=0}^{\infty} \longmapsto \sum_{n=0}^{\infty} a_n x_n$$

- (a) Pokazać, że J jest ciągłe.
- (b) Pokazać, że kerJ jest domknięte i że J "podnosi" się do ciągłego odwzorowania \hat{J} z przestrzeni ilorazowej $\ell^1/\ker J$ w X.
- (c) Pokazać, że Im $\hat{J}=X$. Wskazówka. Przy ustalonym x, ||x||=1, wybrać indukcyjnie $x_{n(i)}$ tak aby

$$||x - \sum_{i=1}^{k} 2^{-i} x_{n(i)}|| < 2^{-k}.$$

- (d) Zamieniając w (c) liczbę 2 na 3,4, ..., pokazać, że \hat{J} jest izometrią.
- 13. Znaleźć normę operatora identycznościowego z $L^p(a,b)$ w $L^q(a,b)$.
- 14. Rozważamy przestrzeń $X=\mathbb{R}^n$ z normą $\|\cdot\|_2$. Niech A będzie macierzą symetryczną wymiaru $n\times n$ o wyrazach rzeczywistych. Pokazać, że norma operatora liniowego związanego z A z przestrzeni X w siebie, jest równa największej z liczb $|\lambda|$, gdzie λ jest wartością własną macierzy A. Jaka jest norma operatora liniowego związanego z macierzą ortogonalną U, tzn. taką, że $U^T=U^{-1}$.
- 15. Dla jakich funkcji a(x) operator mnożenia przez a(x) jest ciągłym odwzorowaniem z $L^p(0,1)$ w $L^q(0,1)$?
- 16. Obliczyć normę operatora

$$s_n f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(t) f(x-t) dt$$

w przestrzeni $C[-\pi,\pi]$ i w przestrzeni $L^2(-\pi,\pi)$, gdzie $D_n(t) = 1 + 2\cos t + \ldots + 2\cos nt$.