Сложность вычислений

Вероятностная проверка на простоту без ошибок

Чернис Константин, группа 694

Содержание

1	Введение в сложностные классы	2
2	Алгоритм Миллера-Рабина 2.1 Описание алгоритма	
3	Алгоритм Эдельмана-Хуана	6
4	Алгоритм ЕСРР	6
5	Список литературы	6

В данном проекте доказываются избранные факты вероятностной проверки чисел на простоту, а также проводятся некоторые эксперименты.

1. Введение в сложностные классы

Для начала опишем сложностные классы, затрагиваемые данной задачей:

Определение 1.1. Вероятностной машиной Тьюринга называется детерминированная машина Тьюринга M с двумя аргументами x (аргумент вероятностной машины) и r (случайные биты), где длина r есть некоторая функция от длины x. Результатом работы M на входе x будет вероятностое распределение, индуцированное данным x и равномерным на всех значениях r. Временем работы M на данном x будем считать максимальное время работы M(x,r) для всех r указанной длины. Так же определяется и использованная память.

Определение 1.2. Классом **RP** называется класс языков A, для которых существует полиномиальный в худшем случае вероятностный алгоритм V, такой что:

- ullet если $x\in A$, то $P_r[V(x,r)=1]\geqslant rac{1}{2};$
- если $x \notin A$, то $P_r[V(x,r) = 1] = 0$.

Определение 1.3. Классом **coRP** называется класс языков A, для которых существует полиномиальный в худшем случае вероятностный алгоритм V, такой что:

- если $x \in A$, то $P_r[V(x,r)=1]=1$;
- если $x \notin A$, то $P_r[V(x,r)=1] \leqslant \frac{1}{2}$.

Определение 1.4. Классом **ZPP** называется класс языков A, для которых существует вероятностный алгоритм A, такой что

$$x \in A \iff \forall r \ V(x,r) = 1,$$

а для каждого x ожидаемое по r время работы полиномиально.

Обозначение **ZPP** расшифровывается как "zero-error probabistic polynomial".

Утверждение 1.1. $ZPP = RP \cap coPR$.

Таким образом, для вероятностной проверки чисел на простоту достаточно предоставить алгоритмы проверки чисел на простоту из **RP** и **coRP**, после чего запускать их по очереди до тех пор, пока один из алгоритмов не выдаст ответ, в котором он уверен. Вероятность отсутствия ответа будет уменьшаться минимум в 4 раза после каждой итерации цикла проверки, так что за полиномиальное число шагов вероятность станет экспоненциально малой и можно будет применить детерминированный экспоненциальный алгоритм.

В следующей секции будет описан алгоритм из coRP, а в секции 3-из RP.

2. Алгоритм Миллера-Рабина

Большинство алгоритмов вероятностной проверки на простоту из \mathbf{coRP} опираются на какое-либо свойство простых чисел, то есть проверяют необходимое условие. Наиболее популярным среди них является алгоритм Миллера-Рабина, который гарантирует, что для нечётного составного минимум 75% чисел от 1 до n-1 позволяют определить его непростоту.

Говоря в терминах Определения 1.3, A- множество простых чисел, и для $x \notin A$ $P_r[V(x,r)=1]\leqslant \frac{1}{4}$, где $r\in \overline{1,n-1}$. Кроме того, как будет показано ниже, проверяемое условие действительно является необходимым, то есть для $x\in A$ $P_r[V(x,r)=1]=1$, то есть алгоритм Миллера-Рабина лежит в ${\bf conp}$.

2.1 Описание алгоритма

Заданное нечётное целое число n>1 можно представить в виде $n-1=2^ek$, где $e\geqslant 1$ (т.к. n нечётно) и k нечётное. Применяя к $x^{n-1}-1=x^{2^ek}-1$ формулу разности квадратов, получаем:

$$x^{2^{e_k}} - 1 = \left(x^{2^{e-1}k}\right)^2 - 1$$

$$= \left(x^{2^{e-1}k} - 1\right) \left(x^{2^{e-1}k} + 1\right)$$

$$= \left(x^{2^{e-2}k} - 1\right) \left(x^{2^{e-2}k} + 1\right) \left(x^{2^{e-1}k} + 1\right)$$

$$\vdots$$

$$= \left(x^k - 1\right) \left(x^k + 1\right) \left(x^{2^k} + 1\right) \left(x^{4^k} + 1\right) \dots \left(x^{2^{e-1}k} + 1\right)$$

Если n простое и $a \in \overline{1, n-1}$, то по малой теореме Ферма $a^{n-1}-1 \equiv 0 \mod n$. Используя разложение, полученное выше, имеем

$$(x^k - 1)(x^k + 1)(x^{2k} + 1)(x^{4k} + 1)\dots(x^{2^{e-1}k} + 1) \equiv 0 \mod n$$

Таким образом, для простого n один из множителей должен делиться на n, то есть необходимым условием, нарушение которого означает, что число составное, является

$$a^k \equiv 1 \bmod n$$
 или $a^{2^i k} \equiv -1 \bmod n$ для некоторого $i \in \overline{0, e-1}$.

Определение 2.1. Представим нечётное n>1 в виде $n-1=2^ek$, где e нечётно и выберем $a\in\overline{1,n-1}$. Тогда a называется свидетелем для числа n, если не выполнено необходимое условие, то есть

$$a^k \not\equiv 1 \bmod n$$
 и $a^{2^i k} \not\equiv -1 \bmod n \ \forall i \in \overline{0, e-1}.$

Если же необходимое условие выполнено, то есть

$$a^k \equiv 1 \bmod n$$
 или $a^{2^i k} \equiv -1 \bmod n$ для некоторого $i \in \overline{0, e-1},$

то a не является свидетелем для n.

Отметим, что уже сейчас можно построить вероятностный алгоритм проверки на простоту со сколь угодно малой вероятностью ошибки:

```
Data: проверяемое число n, количество итераций t Result: является ли число n простым for i \in \overline{1,t} do

выбрать случайное a из \overline{1,n-1};

if a является свидетелем для n then

return "n составное";

end

end

return "n простое c вероятностью минимум 1-1/4^t";
```

2.2 Доказательство оценки на число свидетелей

Для начала покажем, что оценка 75% неулучшаема:

Утверждение 2.1. Доля свидетелей для n = 9 составляет 3/4.

Доказательство. $n-1=8=2^3$, так что e=3 и k=1, и для проверки необходимого условия надо перебрать (a,a^2,a^3) . Из приведённой ниже таблицы видно, что свидетелями среди $\overline{1,8}$ являются 2,3,4,5,6,7, что составляет 6/8=1/4, что и требовалось.

$a \mod 9$	1	2	3	4	5	6	7	8
$a^2 \mod 9$	1	4	0	7	7	0	4	1
$a^3 \mod 9$	1	7	0	4	4	0	7	1

Существует также доказательство неулучшаемости оценки при $n \to \infty$, оно приведено в [3].

Теорема 2.1. Пусть n > 1 нечётное составное.

Доля целых чисел среди $\overline{1,n-1}$, являющихся свидетелями числа n, превышает 75%, за исключением n=9, для которого доля составляет 75%.

Другими словами, доля целых чисел среди $\overline{1, n-1}$, не являющихся свидетелями числа n, меньше 25%, за исключением n=9, для которого доля составляет 25%.

Докажем более слабое утверждение:

Теорема 2.2. Если n>1 нечётное и составное, то доля свидетелей числа n превышает 50%. Другими словами, больше 50% из $a\in\overline{1,n-1}$ удовлетворяют $a^k\not\equiv 1 \bmod n$ и $a^{2^ik}\not\equiv -1 \bmod n$ $\forall i\in\overline{0,e-1}$.

Доказательство. Докажем, что доля не свидетелей для n меньше 50%, показав, что они образуют собственную подгруппу группы обратимых чисел mod n. В силу того, что порядок собственной подгруппы составляет максимум половину от порядка группы, множество свидетелей числа n содержит минимум половину обратимых чисел mod n и все необратимые числа mod n среди $\overline{1, n-1}$ (множество необратимых

непусто в силу того, что n составное). Таким образом, доля свидетелей для числа n первышает 50%.

Случай 1: n является степенью простого числа, то есть $n=p^{\alpha}$, где p — нечётное простое и $\alpha\geqslant 2$.

Утверждение 2.2. Если $n=p^{\alpha}$ для простого p и $\alpha\geqslant 1$, то не свидетели для n являются корнями уравнения $a^{p-1}\equiv 1 \mod p^{\alpha}$, которые образуют группу по умножению mod n.

Доказательство. Обоснование приведено в [2].

Согласно Утверждению 2.2 свидетели непростоты образуют группу по умножению mod n. Порядок числа a, являющегося решением уравнения $a^{p-1} \equiv 1 \mod n$, делит p-1, так что он не делится на p. В то же время существуют обратимые mod n числа, порядок которых делится на p: примером такого числа является 1+p, чей порядок mod p^{α} составляет $p^{\alpha-1}$ (этот факт можно показать индукцией по r: база $-1+kp \equiv 1 \mod p$, переход $-(1+kp^r)^p \equiv 1 \mod p^{r+1}$). Таким образом, не свидетели mod n образуют собственную подгруппу в группе обратимых чисел mod n, что заканчивает доказательство этого случая.

Случай 2: n не является степенью простого. Пусть $i_0 \in \overline{0, e-1}$ — максимальное число, такое что $\exists a_0 \in \mathbb{Z}$ такой что $a^{2^{i_0}} \equiv -1 \mod n$. (В силу того, что $(-1)^{2^0} = -1$, требуемый i_0 существует, причём a_0 взаимно прост с n).

Множество

$$G_n = \{ a \in \overline{1, n-1} \mid a^{2^{i_0}k} \equiv \pm 1 \bmod n \}$$

является группой по умножению $\bmod n$ и содержит все a, удовлетворяющие одному из двух условий:

- (1) $a^k \equiv 1 \mod n$,
- (2) $a^{2^ik} \equiv 1 \mod n$ для одного из $i \in \overline{0, e-1}$.

Если $a^k \equiv 1 \mod n$, то $a^{2^{i_0}k} \equiv 1 \mod n$. Если же $a^{2^ik} \equiv 1 \mod n$ для некоторого $i \in \overline{0,e-1}$, то $\left(2^k\right)^{2^i} \equiv -1 \mod n$, причём $i \leqslant i_0$ в силу максимальности i_0 . Таким образом, $a^{2^{i_0}} \equiv -1 \mod n$, если $i=i_0$, и $a^{2^{i_0}} \equiv 1 \mod n$, если $i < i_0$. Отсюда все $a \in \overline{1,n-1}$, удовлетворяющие (1) или (2), лежат в G_n .

Покажем, что G_n является собственной подгруппой обратимых чисел mod n, для чего найдём обратимое число, не лежащее в G_n . Пусть p— простой делитель n, тогда представим n в виде $n = p^{\alpha}n'$, где $\alpha \geqslant 1$ и $p \nmid n'$. p^{α} и n' нечётные и не равны 1 (в силу того, что n не является степенью простого) $\implies p^{\alpha}, n' \geqslant 3$.

Согласно китайской теореме об остатках, $\exists a \in \overline{1,n-1}$, удовлетворяющий следующим двум уравнениям:

$$a \equiv a_0 \mod p^{\alpha}$$
, $a \equiv 1 \mod n'$.

Выше показали, что $(a_0, n) = 1 \implies (a, n) = 1$ (т.к. (a, n') = 1), то есть a является обратимым mod n. Тогда для доказательства того, что подгруппа G_n не является собственной, остаётся показать, что $a \notin G_n$.

$$a^{2^{i_0}k} \equiv a_0^{2^{i_0}k} \equiv (-1)^k \equiv -1 \mod p^\alpha \implies a^{2^{i_0}k} \not\equiv 1 \mod n$$

в силу того, что $-1 \not\equiv 1 \bmod p^{\alpha}$ (т.к. $p^{\alpha} \geqslant 3$). Кроме того,

$$a^{2^{i_0}k} \equiv 1 \mod n' \implies a^{2^{i_0}k} \not\equiv -1 \mod n$$

в силу того, что $-1 \not\equiv 1 \mod n'$ (т.к. $n' \geqslant 3$). Таким образом, $a \notin G_n$, что завершает доказательство данного случая, а с ним и всей теоремы.

Теорема 2.1 доказазывается аналогичным образом, оценка 1/4 на число не свидетелей достигается за счёт двукратного применения приёма с собственной подгруппой. Полное доказательство описано в [2].

3. Алгоритм Эдельмана-Хуана

4. Алгоритм ЕСРР

5. Список литературы

- [1] Д.В. Мусатов. "Сложность вычислений."
- [2] Conrad, Keith. (2017). "The Miller Rabin Test."
- [3] Monier, Louis. (1980). "Evaluation and comparison of two efficient probabilistic primality testing algorithms". Theoretical Computer Science. 12. 97–108.