V354

Gedämpfte und erzwungene Schwingungen

Yanick Sebastian Kind Till Willershausen yanick.kind@udo.edu till.willershausen@udo.edu

Durchführung: 04.05.2021 Abgabe: DATUM

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
2	Durchführung	3
3	Auswertung3.1Bestimmung des Dämpfungswiderstandes	3 5
4	Diskussion	6
Lit	iteratur	

1 Theorie

[1]

2 Durchführung

3 Auswertung

Jegliche Fehlerrechnung wurde mit der python-Bibliothek uncertainties [3] absolviert. Trotz dessen sind die Formeln für die Unsicherheiten in den jeweiligen Abschnitten angegeben. Allgemeine Rechnungen wurden mit der python-Bibliothek numpy [4] automatisiert. Die graphischen Unterstützungen wurden mit Hilfe der python-Bibliothek matplotlib [2] erstellt.

Die Bauteile der verwendeten Schaltung haben folgende Werte:

$$\begin{split} L &= (16,78 \pm 0,09) \, \mathrm{mH} \\ C &= (2,066 \pm 0,006) \, \mathrm{nF} \\ R_1 &= (67,2 \pm 0,2) \, \Omega \\ R_2 &= (682 \pm 1) \, \Omega \; . \end{split}$$

3.1 Bestimmung des Dämpfungswiderstandes

In der Tabelle 1 ist die Spannung mit den dazugehörigen Zeiten aufgetragen. Um den Dämpfungswiderstand zu bestimmen, ist es von Nöten eine Ausgleichsrechung mit dem e-Term der Funktion REFERENZ durchzuführen. Die Parameter der Regressionsfunktion

$$U = U_0 e^{-2\pi\mu t} \tag{1}$$

lassen sich zu

$$U_0 = (17.87 \pm 0.08) \text{ V}$$

$$\mu = (622.51 \pm 0.92) \frac{1}{\text{s}}$$

bestimmen. Mit der Beziehung

$$R_{\text{eff}} = 4\pi\mu L \tag{2}$$

lässt sich der Dämpfungswiderstand R zu

$$R_{\mathrm{eff}} = (131{,}26\pm1{,}09)\,\Omega$$

bestimmen. Aus dem ebend berechneten Dämpfungswiderstand und der Gleichung REFERENZ kann die Abklindauer zu

$$T_{\rm ex} = (255{,}67 \pm 1{,}61)\,\mu{\rm s}$$

Tabelle 1: Gemessene Spannungsamplituden in Abhängigkeit von der Zeit

t / μs	U/V
20	16,5
60	14,0
97	12,5
135	10,5
175	9
212,5	8
$252,\!5$	6,5
290	5,75
330	5,0
367,5	4,0
405	3,5
442,5	3
480,0	2,8
520	2,4
557,5	2
595	1,8
$632,\!5$	1,6
670	1,4
707,5	1,2
745	1
785	0,85
822,5	0,75
860	0,65
897,5	$0,\!55$
935	0,5
972,5	0,4
1010	$0,\!35$
1047,5	0,3
1085	$0,\!26$
1125	$0,\!24$
1162,5	0,2
1200	0,16
1237,5	0,14
1275	0,12
1312,5	0,08

errechnen. Der Fehler für den Dämpfungswiderstand ergibt sich mittels Gaußscher Fehlerfortpflanzung zu

$$\Delta R_{\text{eff}} = 4\pi \sqrt{L^2 (\Delta \mu)^2 + \mu^2 (\Delta L)^2} . \tag{3}$$

Ebenfalls mittels Gaußscher Fehlerfortpflanzung ergibt sich der Fehler der Abklingzeit als

$$\Delta T_{\rm ex} = \frac{2}{R_{\rm eff}} \sqrt{(\Delta L)^2 + \frac{L}{R_{\rm eff}^2} (\Delta R_{\rm eff})^2} . \tag{4}$$

3.2 Bestimmung des Dämpfungswiderstandes bei dem aperiodischen Grenzfall

Während der Messung wurd ein Dämpfungswiderstand, bei dem der aperiodische Grenzfall eintritt, von

$$R_{\rm ap}=4.4\,{\rm k}\Omega$$

gemessen.

3.3

Abbildung 2: Gemessene Spannungsamplituden mit den dazugehörigen Frequenzen

4 Diskussion

Literatur

- [1] TU Dortmund. Versuch zum Literaturverzeichnis. 2014.
- [2] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [3] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [4] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.