20

25

Brenner, insbesondere für flüssige oder gasförmige Brennstoffe

Die Erfindung betrifft einen Brenner, insbesondere für flüssige oder gasförmige Brennstoffe, mit einer zentral in einem Brennerrohr angeordneten Brennstoffdüse, die von einem ebenfalls in dem Brennerrohr angeordneten Staukörper umgeben ist, der die durch das Brennerrohr zugeführte Verbrennungsluft in einen den Staukörper durchströmenden zentralen Hauptstrom und einen den Staukörper umströmenden Nebenstrom unterteilt, wobei Hauptstrom und Nebenstrom hinter der Brennstoffdüse im Bereich der Brennerflamme wieder zusammengeführt werden.

Bei einem nach dem Stande der Technik (DE 196 10 106 A1) bekannten Brenner der genannten Art ist der Staukörper relativ zu dem Brennerrohr und der Brennstoffdüse verstellbar. Bei dieser Verstellung verändern sich die Querschnitte für den Hauptstrom und den Nebenstrom gleichzeitig, wobei sich außerdem die Lage des Staukörpers relativ zu der Brennstoffdüse verändert. Die gleichzeitige Veränderung der beiden Durchtrittsquerschnitte unter gleichzeitiger Veränderung der Lage des Staukörpers relativ zu der Brennstoffdüse ist ungünstig, weil die in dem Hauptstrom liegende Brennstoffdüse für ihren optimalen Betrieb feste Querschnittsverhältnisse und insbesondere eine unveränderliche räumliche Konstellation zwischen Brennstoffdüse und Staukörper benötigt.

Ist es deshalb Aufgabe der Erfindung, den Brenner der eingangs genannten Art dahingehend weiterzubilden, daß die im Hauptstrom liegende Brennstoffdüse stets unter optimalen Bedingungen arbeitet und die Brennerflamme im wesentlichen durch steuertechnische Eingriffe in den Nebenstrom stabilisiert

15

20

25

30

wird. Durch diese Stabilisierung der Flamme soll eine möglichst vollständige Verbrennung unter gleichzeitiger Vermeidung von NOx-Emissionen erreicht werden.

Zur Lösung dieser Aufgabe schlägt die Erfindung ausgehend von dem Brenner der eingangs genannten Art vor, daß der Staukörper mit Bezug auf die Brennstoffdüse feststehend angeordnet ist, die Form eines doppelten Kegelstumpfmantels hat und für den Hauptstrom einen sich zunächst verengenden und sodann wieder erweiternden Strömungsquerschnitt sowie für den Nebenstrom einen sich zunächst erweiternden und sodann wieder verengenden Strömungsquerschnitt beläßt, wobei die Oberkante und die Unterkante des Staukörpers Steuerkanten bilden und der Staukörper von einer axial in dem Brennerrohr verschiebbaren rohrförmigen Ringdrossel umgeben wird, die zwei nach innen vorstehende, den Steuerkanten des Staukörpers gegenüberliegende Steuerkragen zur Steuerung der Menge der im Nebenstrom geführten Verbrennungsluft aufweisen.

Beim Brenner gemäß der Erfindung bleiben in besonders vorteilhafterweise die geometrischen Verhältnisse im Bereich der Brennstoffdüse ständig gleich. Aufgrund der besonderen Ausbildung des Staukörpers beschleunigt sich der Hauptstrom zunächst, bis er im Bereich der Mitte des doppelten Kegelstumpfmantels, d. h. kurz vor der Brennstoffdüse, seine höchste Geschwindigkeit erreicht. Hierdurch wird der aus der Brennstoffdüse austretende Brennstoff besonders gut verwirbelt und mit Verbrennungsluft durchmischt, so daß sich eine weitgehend stabil brennende Flamme ausbildet, die am Ende des Staukörpers aus diesem austritt. Für die im Nebenstrom geführte Verbrennungsluft ergeben sich umgekehrte Strömungsverhältnisse. Hier stellt sich zunächst zwischen dem einlaufseitigen Steuerkragen der Ringdrossel und der einlaufseitigen Steuerkante des Staukörpers eine hohe Strömungsgeschwindigkeit ein, die sich nachfolgend in dem sich erweiternden Strömungsquerschnitt entsprechend verlangsamt, wodurch sich dort ein höherer statischer Druck aufbaut. Ablaufseitig wird die im Nebenstrom geführte Verbrennungsluft wieder beschleunigt, um zwischen der ablaufseitigen Steuerkante des Staukörpers und dem zugeordneten Steuerkragen der Ringdrossel durchzutreten. Hinter diesem ablaufseitig engsten Querschnitt

10

15

25

30

vermischt sich diese Verbrennungsluft mit der im Hauptstrom geführten Verbrennungsluft und sorgt hier für eine restlose und vollständige Verbrennung.

Bei einer bevorzugten Ausführungsform des Brenners gemäß der Erfindung liegen in der Position "Start" die einlaufseitige Steuerkante des Staukörpers und der einlaufseitige Steuerkragen der Ringdrossel nahe beieinander. Hierdurch wird erreicht, daß in der Position "Start" nahezu die gesamte Verbrennungsluft über den Hauptstrom an die Brennstoffdüse gelangt, so daß sich dort eine besonders intensive Zerstäubung des Brennstoffes ergibt, was die Zündung und den Start des Brenners erleichtert.

Ein weiteres wichtiges Merkmal der Erfindung sieht vor, daß in der Position (Normalbetrieb) die Steuerkanten des Staukörpers und die "geöffnet" gegenüberliegenden Steuerkragen der Ringdrossel etwa gleich große Durchtrittspalte zwischen sich belassen, wobei der einlaufseitige Steuerkragen der Ringdrossel in Strömungsrichtung gesehen vor der einlaufseitigen Steuerkante des Staukörpers liegt. Hierdurch wird es möglich, einen Teil der entstehenden Verbrennungsgase, die weitestgehend inert sind, in den Hauptstrom zu rezirkulieren, was sich günstig auf die Vollständigkeit der Verbrennung auswirkt. Diese Rezirkulation wird möglich, weil sich aufgrund der Querschnittsform des Strömungskanals im Nebenstrom dort Druckverhältnisse ergeben, die die Rezirkulation begünstigen. 20

Ein weiteres wichtiges Merkmal der Erfindung sieht schließlich vor, daß in der Steuerkante der einlaufseitigen der zwischen "Vollast" Position Drosselkörpers und dem zugeordneten Steuerkragen der Ringdrossel belassene Spalt kleiner als der zwischen der ablaufseitigen Steuerkante des Staukörpers und dem zugeordneten Steuerkragen der Ringdrossel belassene Spalt ist, wobei der einlaufseitige Steuerkragen der Ringdrossel in Strömungsrichtung gesehen hinter der einlaufseitigen Steuerkante des Staukörpers liegt. Hierdurch ergibt sich insbesondere bei der Vereinigung von Hauptstrom und Nebenstrom eine besonders intensive Durchmischung, die die Vollständigkeit der Verbrennung insbesondere bei Vollast sicherstellt.

10

15

20

25

4

Ein Ausführungsbeispiel der Erfindung wird im folgenden anhand der Zeichnung näher erläutert. Es zeigen:

Fig. 1:

In einer prinzipiellen Darstellung einen Längsschnitt durch den Brenner gemäß

der Erfindung in der Position "geöffnet"

(Normalbetrieb);

Fig. 2:

In gleicher Darstellung wie Figur 1 den

Brenner gemäß der Erfindung in der

Stellung "Start";

Fig. 3:

In gleicher Darstellung wie Figur 1 den

Brenner gemäß der Erfindung in der

Position "Vollast".

In der Zeichnung ist das im Durchmesser abgestufte Brennerrohr mit dem Bezugszeichen 1 bezeichnet. Zentral in dem Brennerrohr ist eine Brennstoffdüse 2 angeordnet, die von einem zentralen Zuführungsrohr 3 mit flüssigem oder gasförmigem Brennstoff versorgt wird. Das Brennerrohr 1 stützt sich über radial verlaufende Speichen 4 und 5 am zentralen Zuführungsrohr 3 ab.

Die Brennstoffdüse 2 ist mit einem elektrischen Zündmechanismus 6 versehen, der zum Zünden der Brennerflamme dient.

Mit der Brennstoffdüse 2 ist ein Staukörper 7 fest verbunden. Dieser Staukörper 7 hat die Form eines doppelten Kegelstumpfmantels und umgibt die Brennstoffdüse 2 konzentrisch.

Der Staukörper 7 seinerseits ist von einer im wesentlichen zylindrischen Ringdrossel 8 umgeben, die axial verschiebbar im Brennerrohr geführt ist. Zur axialen Verschiebung der Ringdrossel 8 dient ein nicht dargestellter Verschiebeantrieb, der durch eine Öffnung 9 im Brennerrohr hindurchgreift.

Der Hauptstrom der Verbrennungsluft verläuft durch das Innere des Staukörpers und wirkt somit direkt auf den Sprühstrahl der Brennstoffdüse 2 am unteren

Ende des Staukörpers ein. Der Nebenstrom der Verbrennungsluft wird durch den Ringraum zwischen den Staukörper 7 und der Ringdrossel 8 geführt.

Zur Steuerung der Verbrennungsluft im Nebenstrom ist der Staukörper 7 einlaufseitig und auslaufseitig mit Steuerkanten 7a und 7b versehen. Zwischen diesen Steuerkanten 7a und 7b verläuft die Wandung des Staukörpers 7 in Strömungsrichtung gesehen zunächst konisch konvergierend und danach progressiv divergierend. Hierdurch ergibt sich für den Hauptstrom der Verbrennungsluft ein sich zunächst verengender und sodann wieder erweiternder Strömungsquerschnitt.

Der Nebenstrom der Verbrennungsluft verläuft zwischen der Außenseite des Staukörpers 7 und der Innenseite der Ringdrossel 8, die einlaufseitig und auslaufseitig mit radial nach innen vorspringenden Steuerkragen 8a und 8b versehen ist, welche mit den Steuerkanten 7a und 7b des Staukörpers 7 korrespondieren. Aus der besonderen Form des Staukörpers 7 ergibt sich im Zusammenwirken mit der Form der Ringdrossel 8 für den Nebenstrom ein sich zunächst erweiternder und sodann wieder verengender Strömungsquerschnitt dessen Einlauf und Ablauf von den Steuerkanten 7a und 7b und den Steuerkragen 8a und 8b gesteuert wird.

Der Staukörper 7 ist schließlich noch am ablaufseitigen Ende mit einem Kranz von Bohrungen 10 versehen, die der Rezirkulierung von Verbrennungsluft dienen. Diese Rezirkulierung ist in Figur 1 durch den Pfeil 11 veranschaulicht.

Im oberen Ende des Staukörpers 7 befindet sich schließlich noch eine dem Zündmechanismus 6 zugeordnete Brennstoffeinspritzung 12, die den Zündvorgang erleichtert.

In Figur 1 findet sich die Ringdrossel 8 in der Position "geöffnet" (Normalbetrieb) bei der die Steuerkanten 7a und 7b des Staukörpers 7 und die gegenüberliegenden Steuerkragen 8a und 8b der Ringdrossel 8 etwa gleich große Durchtrittsspalte zwischen sich belassen, wobei der einlaufseitige Steuerkragen 8a der Ringdrossel in Strömungsrichtung gesehen vor der einlaufseitigen Steuerkante 7a des Staukörpers 7 liegt. In dieser Position erfolgt

eine besonders intensive Rezirkulation von Verbrennungsluft, wie durch den Pfeil 11 angedeutet ist.

In Figur 2 befindet sich die Ringdrossel 8 in der Position "geschlossen", bei der die einlaufseitige Steuerkante 7a des Staukörpers 7 und der einlaufseitige Steuerkragen 8a der Ringdrossel 8 nahe beieinanderliegen. In dieser Position ist der Nebenstrom nahezu bis auf Null gedrosselt und die gesamte Verbrennungsluft verläuft im Hauptstrom, was zu einer besonders feinen Zerstäubung des Brennstoffes führt, wodurch der Zündvorgang erleichtert wird.

Die Figur 3 schließlich zeigt den Drosselkörper 8 in der Position "Vollast", bei welcher zwischen der einlaufseitigen Steuerkante 7a des Staukörpers 7 und dem zugeordneten Steuerkragen 8a der Ringdrossel 8 belassene Spalt kleiner als der zwischen der ablaufseitigen Steuerkante 7b des Staukörpers 7 und dem zugeordneten Steuerkragen 8b der Ringdrossel 8 belassen Spalt ist, wobei der einlaufseitige Steuerkragen 8b der Ringdrossel 8 in Strömungsrichtung gesehen hinter der einlaufseitigen Steuerkante 7a des Staukörpers 7 liegt. Bei dieser Stellung ergibt sich eine besonders intensive Durchmischung von Haupt und Nebenstrom, so daß auch bei Vollast eine vollständige Verbrennung gewährleistet ist.

5

10

15

10

25

Patentansprüche

- Brenner, insbesondere für flüssige oder gasförmige Brennstoffe, 1. mit einer zentral in einem Brennerrohr (1) angeordneten Brennstoffdüse (2), die von einem ebenfalls in dem Brennerrohr (1) angeordneten Staukörper (7) umgeben ist, der die durch das Brennerrohr (1) zugeführte Verbrennungsluft in einen den Staukörper (7) durchströmenden zentralen Hauptstrom und einen den Staukörper (7) umströmenden Nebenstrom unterteilt, wobei Hauptstrom und Nebenstrom hinter der Brennstoffdüse (2) im Bereich der Brennerflamme wieder werden, zusammengeführt h n e t. e k e n n z e С h dadurc daß der Staukörper (7) in Bezug auf die Brennstoffdüse (2) feststehend angeordnet ist, die Form eines doppelten Kegelstumpfmantels hat und für den Hauptstrom einen sich zunächst verengenden und sodann wieder erweiternden Strömungsquerschnitt sowie für den Nebenstrom einen sich zunächst 15 erweiternden und sodann wieder verengenden Strömungsquerschnitt beläßt, Staukörpers Unterkante des die Oberkante und die wobei Steuerkanten (7a, 7b) bilden und der Staukörper (7) von einer axial in dem Brennerrohr (1) verschiebbaren rohrförmigen Ringdrossel (8) umgeben ist, die zwei nach innen vorstehende, den Steuerkanten (7a, 7b) des Staukörpers (7) 20 gegenüberliegende Steuerkragen (8a, 8b) zur Steuerung der Menge der im Nebenstrom geführten Verbrennungsluft aufweisen.
 - Brenner nach Anspruch 1, dadurch gekennzeichnet, daß in der 2. Position "Start" die einlaufseitige Steuerkante (7a) des Staukörpers (7) und der einlaufseitige Steuerkragen (8a) der Ringdrossel (8) nahe beieinanderliegen.

10

15

- 3. Brenner nach Anspruch 1, dadurch gekennzeichnet, daß in der Position "geöffnet" (Normalbetrieb) die Steuerkanten (7a, 7b) des Staukörpers (7) und die gegenüberliegenden Steuerkragen (8a, 8b) der Ringdrossel (8) etwa gleich große Durchtrittsspalte zwischen sich belassen, wobei der einlaufseitige Steuerkragen (8a) der Ringdrossel (8) in Strömungsrichtung vor der einlaufseitigen Steuerkante (7a) des Staukörpers (7) liegt.
- 4. Brenner nach Anspruch 1, dadurch gekennzeichnet, daß in der Position "Vollast" der zwischen der einlaufseitigen Steuerkante (7a) des Drosselkörpers (7) und dem zugeordneten Steuerkragen (8a) der Ringdrossel (8) belassene Spalt kleiner als der zwischen der ablaufseitigen Steuerkante (7b) des Staukörpers (7) und dem zugeordneten Steuerkragen (8b) der Ringdrossel (8) belassene Spalt ist, wobei der einlaufseitige Steuerkragen (8a) der Ringdrossel (8) in Strömungsrichtung gesehen hinter der einlaufseitigen Steuerkante (7a) des Staukörpers (7) liegt.

(12) NACH DEM VERTKAG ÜBER DIE INTERNATIONALE ZUSAMMENAKBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 18. September 2003 (18.09.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/076846 A1

(51) Internationale Patentklassifikation7:

F23C 7/00,

F23D 11/40

PCT/EP03/02542

(21) Internationales Aktenzeichen: (22) Internationales Anmeldedatum:

12. März 2003 (12.03.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 10 732.7

12. März 2002 (12.03.2002) DE (71) Anmelder und

(72) Erfinder: OEHM, Roland [DE/DE]; Zum Kalkhofen 15, 66679 Losheim am See (DE).

(74) Anwalt: SCHNEIDERS & BEHRENDT; Postfach 10 23 65, 44723 Bochum (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO,

[Fortsetzung auf der nächsten Seite]

(54) Title: BURNER, PARTICULARLY FOR LIQUID OR GASEOUS FUELS

(54) Bezeichnung: BRENNER, INSBESONDERE FÜR FLÜSSIGE ODER GASFÖRMIGE BRENNSTOFFE

(57) Abstract: The invention relates to a burner comprising a fuel nozzle (2) which is centrally disposed inside a burner pipe (2) and is surrounded by a catchment element (7). Said catchment element (7) is also disposed inside the burner pipe (2) and separates the combustion air that is fed through the burner pipe (2) into a central main stream flowing through the catchment element (7) and a side stream flowing around the catchment element (7). In order to burn the entire fuel in such a burner while keeping NOx emission low, the catchment element (7) is arranged stationary relative to the fuel nozzle (2) and is shaped as the shell of a double truncated cone. The upper edge and lower edge of the catchment element (7) form control edges (7a, 7b). The catchment element (7) is surrounded by a pipe-shaped annular throttle (8) that is movable in an axial direction inside the burner pipe (2) and is provided with two control collars (8a, 8b) which protrude towards the inside, are located across from the control edges (7a, 7b) of the catchment element (7), and control the quantity of combustion air that is transported in the side stream.

(57) Zusammenfassung: Die Erfindung betrifft einen Brenner mit einer zentral in einem Brennerrohr (2) angeordneten Brennstoffdüse (2), die von einem ebenfalls in dem Brennerrohr (2) angeordneten Staukörper (7) umgeben ist, der die durch das Brennerrohr (2) zugeführte Verbrennungsluft in einen den Staukörper (7) durchströmenden zentralen Hauptstrom

[Fortsetzung auf der nächsten Seite]

• • • •