tail ratio approx. for $pstable(\alpha = 1, \beta = 0.5)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_{P}(x, .)) / \overline{F}_{P}(x, .)$

tail ratio approx. for pstable $(\alpha = 1.1, \beta = 0.25)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_P(x, .))/\overline{F}_P(x, .)$

tail ratio approx. for $pstable(\alpha = 0.99, \beta = 0.992)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_P(x, .)) / \overline{F}_P(x, .)$

tail ratio approx. for pstable $(\alpha = 1.2, \beta = 0.5)$

tail ratio approx. for $pstable(\alpha = 0.7, \beta = 0.9)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_{P}(x, .)) / \overline{F}_{P}(x, .)$

tail ratio approx. for pstable $(\alpha = 1.7, \beta = 0.6)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_{P}(x, .)) / \overline{F}_{P}(x, .)$

tail ratio approx. for pstable $(\alpha = 0.1, \beta = 0.5)$

$$\varepsilon(x) = (\overline{F}(x, .) - \overline{F}_{P}(x, .)) / \overline{F}_{P}(x, .)$$

tail ratio approx. for pstable($\alpha = 0.2$, $\beta = 0.9$) $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_{P}(x, .)) / \overline{F}_{P}(x, .)$

tail ratio approx. for $pstable(\alpha = 0.5, \beta = 0.6)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_{P}(x, .)) / \overline{F}_{P}(x, .)$

