2.5.9.2. Электрический физический подуровень

Электрический физический подуровень физического уровня, относящийся к каждой линии (смотри рис. 2.5.10), обеспечивает физический интерфейс к каналу связи. Он содержит дифференциальные передатчик и приемник. Передатчик передает последовательным кодом NRZ исходящие символы на каждую линию и превращает битовый поток в электрические Приемник сигналы co встроенным синхросигналом. обнаруживает электрические сигналы последовательного кода NRZ на каждой линии и генерирует последовательный битовый поток, который преобразуется в символы и подает символьный поток на логический подуровень физического уровня вместе c синхросигналом, восстановленным ИЗ входящего последовательного битового потока

Кроме того, физический подуровень физического уровня содержит в передающей части контур фазовой автоподстройки частоты (PLL), сигнал на выходе которого синхронизирует работу параллельно-последовательного преобразователя и в приемной части контур фазовой автоподстройки частоты (PLL), который синхронизируется по фронтам входящего последовательного символьного потока.

Дифференциальные передатчик и приемник устойчивы к короткому замыканию, что делает их идеально подходящими для горячего подключения и отключения. Канал связи, соединяющий два устройства, поддерживает связь по переменному току. Конденсатор C_{TX} на стороне передатчика (смотри расположение конденсатора C_{TX} в канале связи на рис. 2.5.10) препятствует протеканию постоянного тока. В результате два устройства на разных концах канала связи могут иметь свои собственные гальванически развязанные земли и источники питания. Высокоскоростная LVDS (низковольтная переменная передача сигналов) используется в реализациях передатчика и приемник, рис. 2.5.19.. Характеристическое (волновое) сопротивление канала — 1000м

Рис. 2.5.19. Высокоскоростная LVDS линия

Основные выходные характеристики передатчика приведены в табл. 2.5.18 Основные входные характеристики приемника приведены в табл. 2.5.19.

Глазковый тест

Понятие глазковой диаграммы впервые было предложено Джеймсом Глазковая диаграмма – это график точек сигнала при Эдвардсом. последовательной форме передачи информации, периодически выбранных из псевдослучайной битовой последовательности И отображенных осциллографом. Временное окно наблюдения имеет два битовых периода. Для [PCI Express канала на скорости 2.5 Гбит/с], период равен 400 пс, и временное окно равно 800 пс. Развертка осциллографа внешняя и запускается любой пульсацией синхросигнала. Глазковая диаграмма позволяет исследователю получить наглядное усредненное представление о работе элементов линии связи в желаемой точке (например, на выходе передатчика или входе приемника).

Глазковая диаграмма на рис.2.5.20. иллюстрирует некоторые из параметров, перечисленных в табл. 2.5.18..

Табл. 2.5.18. Основные выходные характеристики передатчика

Значение	Макс.	Мин.	Единицы	Примечания
			измерения	
UI	400.12	399.88	пС	Интервал измерения (время бита, номинально 400 пС)
T _{TX-EYE}		0.7	UI	Минимальная ширина глазковой диаграммы, при этом джиттер $J_T=1$ - $T_{TX\text{-EYE}}$
J_{T}	0.3		UI	Максимальное значение джиттера, смотри рис. 2.5.20
T _{TX-RISE}		0.125	UI	Время нарастания и спада сигнала,
T _{TX-FALL}				измеренная по уровням напряжения 20%/80%
V _{TX-DIFFp-p}	1200	800	мВ	Двойное амплитудное значение дифференциального напряжения сигнала
V _{TX-DC-CM}	3.6	0	В	Уровень синфазного переменного
				напряжения
V_{TX-}	566	505	мВ	Диапазон минимальных напряжений с
DEEMPH-				двойной амплитудой для коррекции
DIFFp-p-MIN				искажений
I _{TX-SHORT}	90		мА	Ток, который может обеспечить
				передатчик, при коротком замыкании
				на землю
$V_{TX ext{-}IDLE ext{-}}$	20	0	мВ	Переменное напряжение при состоянии
DIFFp				электрического ожидания канала связи
T _{TX-IDLE-}		50	UI	Минимальное время, которое
MIN				передатчик может быть в состоянии
				электрического ожидания
$T_{TX-IDLE-}$	20		UI	Время, за которое передатчик должен
SET-TO-IDLE				достичь параметров электрического
				ожидания после отправки
				соответствующего командного набора
T _{TX-IDLE-TO-}	20		UI	Максимальное время, за которое
DIFF-DATA				передатчик должен достичь параметров
				переменной передачи после выхода из

				состояния ожидания
Z _{TX-DIFF-DC}	120	80	Ом	Нижняя граница импеданса
				передатчика. Типичное значение 100 Ом
$Z_{TX\text{-DC}}$		40	Ом	Требуется минимальное значение
				импеданса линии D+ и D- во время
				всех состояний питания
C_{TX}	200	75	нΦ	Разделительный конденсатор,
				располагается близко к передатчику
L _{TX-SKEW}	1.3		нС	Максимальная расфазировка в
				передатчике между двумя линиями

Табл.2.5.19. Основные входные характеристики приемника

Значение	Макс.	Мин.	Единицы	Примечание
			измерения	•
UI	400.12	399.88	пС	Интервал измерения (время бита,
				номинально 400 пС)
T _{RX-EYE}		0.4	UI	Минимальная ширина глазковой
				диаграммы, при которой джиттер $J_T =$
				1 - T _{TX-EYE}
J_{T}	0.6		UI	Максимальная значение джиттера
$V_{RX ext{-DIFFp-p}}$	1200	175	мВ	Двойной амплитудный уровень
				чувствительности приемника по
				переменному току
V _{RX-IDLE-DET-}	175	65	мВ	Пороговое напряжение состояния
DIFFp-p				электрического ожидания. Любое
				напряжение, меньше чем 65 мВ (по
				двойной амплитуде) переводит какал
				связи в состояние ожидания
Z _{RX-DIFF-DC}	120	80	Ом	Импеданс приемника DC в
				переменном режиме
Z_{RXDC}	60	40	Ом	Требуется минимальное значение
				импеданса линии D+ и D- во время во
				время всех состояний питания
Z _{RXHIGH-IMP-}		200k	Ом	Требуется минимальное значение
DC				импеданса линии D+ и D-, когда
				приемник не получает питания
				(например в состоянии L2 или во
				время базового сброса)
L _{RX-SKEW}	20		нС	Расфазирование между линиями,
				которое должен компенсировать
				приемник

Максимальное отклонение амплитуды глазка

Рис.2.5.20. Глазковая диаграмма передатчика.