CS 471/571 (Fall 2023): Introduction to Artificial Intelligence

Lecture 20: Bayes Nets - Inference

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Announcement & Reminder

- Written assignment 4: Bayes Nets
 - Will be posted tomorrow
 - Deadline: Nov 29th, 2023 (Extended)
- Programming project 3
 - Deadline: Nov 20th, 2023

Thanh H. Nguyen 11/13/23

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Bayes' Nets

- **✓**Representation
- **✓**Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data

Structure Implications

• Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

• This list determines the set of probability distributions that can be represented

Computing All Independences

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Inference

 Inference: calculating some useful quantity from a joint probability distribution

• Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$

Inference by Enumeration

• General case:

 $E_{1} \dots E_{k} = e_{1} \dots e_{k}$ Q $H_{1} \dots H_{r}$ $X_{1}, X_{2}, \dots X_{n}$ $All \ variables$ Evidence variables:

• Query* variable:

Hidden variables:

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k})$$

$$X_1, X_2, \dots X_n$$

We want:

* Works fine with *multiple query* variables, too

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Example: Alarm Network

Α	J	P(J A)
+a	+j	0.9
+a	ij	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

Ш	P(E)
+e	0.002
φ	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

normalization

$$= \sum_{e,a} P(B, e, a, +j, +m)$$

Sum-out hidden variables

$$= \sum P(B)P(e)P(a|B,e)P(+j|a)P(+m|a) \\ \text{Select entries consistent with evidences}$$

$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$=P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

Inference by Enumeration?

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

First we'll need some new notation: factors

Factor Zoo

Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)
- Number of capitals = dimensionality of the table

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Factor Zoo II

- Single conditional: $P(Y \mid x)$
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

- Family of conditionals:
 - $P(Y \mid X)$
 - Multiple conditionals
 - Entries $P(y \mid x)$ for all x, y
 - Sums to |X|

P(W|T)

Т	W	Р
hot	sun	0.8
hot	rain	0.2
cold	sun	0.4
cold	rain	0.6

P(W|hot)

P(W|cold)

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

P(rain|T)

Т	W	Р	
hot	rain	0.2	ho P(rain hot)
cold	rain	0.6	$\left rac{1}{r} P(rain cold) ight $

Factor Zoo Summary

- In general, when we write $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are $P(y_1 \dots y_N \mid x_1 \dots x_M)$
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

Random Variables

R: Raining

T: Traffic

L: Late for class!

D	1	7	7	1
$oldsymbol{arGamma}$	ĺ	I	l	J

+r	0.1
-r	0.9

P(T|R)

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(L|T)

+t	+	0.3
+t	- 1	0.7
-t	+	0.1
-t	7	0.9

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P	(R)
	•	_

+r	0.1
-r	0.9

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$$P(T|R)$$
 $P(L|T)$

+t	+	0.3
+t	_	0.7
-t	+	0.1
-t	-1	0.9

- Any known values are selected
 - E.g. if we know $L=+\ell$ the initial factors are

+r	0.1
-r	0.9

$$P(+\ell|T)$$

+t	+	0.3
-t	+	0.1

• Procedure: Join all factors, eliminate all hidden variables, normalize

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

0.08

0.02

0.09

0.81

• Example: Join on R

• Computation for each entry: pointwise products $\forall r, t$: $P(r, t) = P(r) \cdot P(t|r)$

Example: Multiple Joins

Example: Multiple Joins

P(T|R)

+r |

+t 0.8

-t 0.2

+t | 0.1

-t 0.9

Join R

Dl	D	T	1
$I \subset \{$	$(I\iota,$	1	J

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

P(R,T,L)

+r	+t	+	0.024
+r	+t	-1	0.056
+r	-t	+	0.002
+r	-t	-1	0.018
-r	+t	+	0.027
-r	+t	-1	0.063
-r	-t	+	0.081
-r	-t	-	0.729

P(L|T)

		_
+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

P(L|T)

+t	+	0.3
+t	-	0.7
-t	7	0.1
-t	- -	0.9

Operation 2: Eliminate

 Second basic operation: marginalization

Take a factor and sum out a variable

• Shrinks a factor to a smaller one

A projection operation

• Example:

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

sum R

P(T)

+t	0.17
-t	0.83

Multiple Elimination

(R, T, L)

P(R,T,L)

+r	+t	+1	0.024
+r	+t	-	0.056
+r	-t	+1	0.002
+r	-t	-	0.018
-r	+t	+1	0.027
-r	+t	-	0.063
-r	-t	+	0.081
-r	-t	-	0.729

T, L

Sum

out R

P(T,L)

	+t	+	0.051
	+t	-1	0.119
	-t	+	0.083

Sum

out T

P(L)

0.747

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

