Vorlesung

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Bernhard Beckert

Institut für Informatik

Sommersemester 2007

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 1 / 215

Pumping-Lemma: Anwendung der Umkehrung

Beispiel 15.2

Folgende Sprachen sind **nicht regulär**:

1
$$L_1 := \{a^i b a^i \mid i \in \mathbb{N}_0\}$$

$$2 L_2 := \{ a^p \mid p \text{ ist Primzahl} \}$$

Dank

Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen von

Katrin Erk (gehalten an der Universität Koblenz-Landau)

Jürgen Dix (gehalten an der TU Clausthal)

Ihnen beiden gilt mein herzlicher Dank.

- Bernhard Beckert, April 2007

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 2 / 215

Pumping-Lemma: Anwendung der Umkehrung

$m{\hat{}}$ Beweis der Nichtregularität von L_1

Zu

$$L_1 := \{a^i b a^i \mid i \in \mathbb{N}_0\}$$

Annahme: L_1 ist regulär.

Dann gilt für L_1 das Pumping-Lemma.

Sei *n* die Zahl aus dem Pumping-Lemma.

Dann muss sich das Wort

$$a^nba^n\in L_1$$

aufpumpen lassen (da $|a^nba^n| \ge n$).

Sei $a^nba^n = uvw$ eine passende Zerlegung laut Lemma.

194 / 215

Pumping-Lemma: Anwendung der Umkehrung

Beweis der Nichtregularität von L_1 (Forts.)

1. Fall: $u = a^k, v = a^j, w = a^i b a^n \text{ mit } i, k \ge 0, j > 0 \text{ und } k + j + i = n.$ Einmal aufpumpen (m = 2) ergibt:

$$uv^2w = a^k a^{2j}a^iba^n = a^{k+2j+i}ba^n = a^{n+j}ba^n \notin L_1$$

Widerspruch zum Lemma!

- **2. Fall:** $u = a^n b a^i, v = a^j, w = a^k$ Widerspruch zum Lemma! (analog zu Fall 1)
- **3. Fall:** $u = a^k, v = a^j b a^i, w = a^l \text{ mit } k + j = i + l = n \text{ und } i, j, k, l \ge 0$ Einmal aufpumpen (m = 2) ergibt:

$$uv^2w = a^k a^j ba^i a^j ba^i a^l = a^{k+j} ba^{i+j} ba^{i+l} \notin L_1$$

Widerspruch zum Lemma!

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 196 / 215

Pumping-Lemma: Anwendung der Umkehrung

Beweis der Nichtregularität von L₂

Zu

 $L_2 := \{a^p \mid p \text{ ist Primzahl}\}$

Annahme: L₂ ist regulär.

Dann gilt für L₂ das Pumping-Lemma.

Sei n die Zahl aus dem Pumping-Lemma.

Dann muss sich jedes Wort

$$a^p \in L_2$$
 mit $p \ge n$

aufpumpen lassen.

Sei $a^p = uvw$ eine passende Zerlegung laut Lemma.

Pumping-Lemma: Anwendung der Umkehrung

Beweis der Nichtregularität von L_1 (Forts.)

Also: Annahme falsch.

Also: L₁ nicht regulär.

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007

197 / 215

Pumping-Lemma: Anwendung der Umkehrung

Beweis der Nichtregularität von L_2 (Forts.)

Sei

$$a^p = uvw = a^i a^j a^k$$

also

$$i+j+k=p \ge n$$
 und $0 < j < n$

Pumping-Lemma: Anwendung der Umkehrung

Beweis der Nichtregularität von L_2 (Forts.)

Fall 1: i + k > 1.

Pumpe (i+k) mal:

$$uv^{i+k}w = a^i a^{j(i+k)}a^k$$

Nach Pumping-Lemma liegt dieses Wort in L_2 , d. h.

$$i+j(i+k)+k$$
 prim

Aber Widerspruch:

$$i+j(i+k)+k = i+ij+jk+k$$

= $i(1+j)+(j+1)k$
= $i(1+j)+k(1+j)$
= $(i+k)(1+j)$

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 200 / 215

Pumping-Lemma: Stärkere Variante

Theorem 15.3 (Pumping-Lemma für L₃-Sprachen, stärkere Variante)

Sei $L \in \mathbf{RAT}$.

Dann existiert ein $n \in \mathbb{N}$, so dass:

Für alle

$$x \in L$$
 mit $|x| \ge n$

existiert eine Zerlegung

$$x = uvw$$
 $u, v, w \in \Sigma^*$

mit

- $|v| \ge 1$
- |uv| < n (statt |v| < n)
- $uv^m w \in L$ für alle $m \in \mathbb{N}$

Pumping-Lemma: Anwendung der Umkehrung

Beweis der Nichtregularität von L_2 (Forts.)

Fall 2: i + k = 1.

Pumpe (j+2) mal:

$$uv^{j+2}w = a^i a^{j(j+2)}a^k$$

Nach Pumping-Lemma liegt dieses Wort in L2, d. h.

$$i+j(j+2)+k$$
 prim

Aber Widerspruch!:

$$i+j(j+2)+k = 1+j(j+2)$$

= $1+2j+j^2$
= $(1+j)^2$

Also: Annahme falsch. L_2 nicht regulär.

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 201 / 215

Pumping-Lemma: Anwendung der stärkeren Variante

Beispiel 15.4 (Palindrome)

Die Sprache der Palindrome

$$L = \{ww^{-1} \mid w \in \{a, b\}^*\}$$

ist nicht regulär

- Beweis gelingt nicht mit der schwächeren Variante des PL (die schwächere Version gilt für die Sprache)
- Beweis gelingt mit der stärkeren Varianten des PL

Teil III

- Determinierte endliche Automaten (DEAs)
- 2 Indeterminierte endliche Automaten (NDEAs)
- 3 Automaten mit epsilon-Kanten
- 4 Endliche Automaten akzeptieren genau die Typ-3-Sprachen
- 5 Pumping-Lemma
- 6 Abschlusseigenschaften und Wortprobleme
- Rational = Reguläre Ausdrücke

Abschlusseigenschaften

Lemma 16.1

Seien zwei reguläre Sprachen L, L' gegeben.

Dann kann folgende endlichen Automaten konstruieren:

- A_{\neg} akzeptiert $\overline{L} = \Sigma^* \setminus L$
- A_{\cup} akzeptiert $L \cup L'$
- A_\circ akzeptiert $L \circ L'$
- A_∗ akzeptiert L[∗]
- A_{\cap} akzeptiert $L \cap L'$

Beweis.

An Tafel.

B. Beckert – Grundlagen d. Theoretischen Informatik: Abschlusseigenschaften und Wortprobleme

SS 2007 204 / 215

B. Beckert – Grundlagen d. Theoretischen Informatik: Abschlusseigenschaften und Wortprobleme

SS 2007

205 / 215