

Agregacja rozkładów

Wykorzystanie kopuł

Adam Wróbel Risk Modelling & Analytics Specialist

Agenda

Sekcja 1	Ryzyka w bankowości	2
Sekcja 2	Zdefiniowanie problemu	6
Sekcja 3	Wprowadzenie do kopuł	11
Sekcja 4	Wyniki	13

Sekcja 1

Ryzyka w bankowości

Ryzyka

Zagrożenia w perspektywie działalności banków

Banki są narażone na wiele czynników ryzyka:

- krach na giełdzie
- spadek cen nieruchomości
- pogorszenie sytuacji gospodarczej
- zmiany kursu walutowego

Sytuacja na giełdzie - rynki finansowe

Notowania indeksu S&P500 – index 500 największych spółek na amerykańskiej giełdzie

Zależność między czynnikami ryzyka

Indeks giełdowy S&P500 oraz stopy procentowe (IR – interest rate)

Sekcja 2

Zdefiniowanie problemu

Modelowanie rozkładu strat/zysków

Jak może zmienić się wartość naszych pozycji (akcji, obligacji) w ciągu kwartału?

- Cała ekspozycja to akcje spółek notowanych na amerykańskiej giełdzie oraz obligacje rządu USA
- W uproszczeniu możemy przyjąć, że:
 - zmiana wartości danej akcji będzie zależało od zmiany wartości indeksu S&P500
 - zmiana wartości danej obligacji będzie zależała od zmiany stopy procentowej
- Mając modele wyceny (patrz punkt wyżej) możemy wyznaczyć zmianę wartości naszych pozycji (akcji i obligacji) przy danej realizacji czynników ryzyka
- Mając historyczne dane o zmienności czynników ryzyka możemy wysymulować realizacje tych dwóch czynników z uwzględnieniem zależności pomiędzy nimi
- Mając odpowiednio dużo tychże realizacji możemy wyznaczyć rozkład strat/zysków wyceniając wartość pozycji w każdym scenariuszu

Modelowanie rozkładu strat/zysków

Jak może zmienić się wartość naszych pozycji (akcji, obligacji) w ciągu kwartału?

Scenariusz	∆ S&P500	Δ stopy procentowej	zmiana wartości akcji A	zmiana wartości obligacji B	Strata/Zysk
1	5%	0%	20 000\$	0\$	20 000 \$
2	-5%	9%	-20 000\$	-7000\$	-27 000 \$

- Δ kwartalna relatywna zmiana czynnika (simple return): $\Delta x_t = \frac{X_t X_{t-1}}{X_{t-1}}$
- Mając N takich scenariuszy otrzymujemy rozkład strat/zysków

Rozkłady kwartalnych zmian S&P500 i IR

Dopasowane rozkłady normalne

Zależność pomiędzy rozkładami

Próba modelowania zależności przy pomocy wielowymiarowego rozkładu normalnego

Sekcja 3

Wprowadzenie do kopuł

Kopuły

Wprowadzenie

- Wielowymiarowy rozkład normalny jest kopułą Gaussa z normalnymi rozkładami brzegowymi
- Kopuły pozwalają rozdzielić modelowanie na dwa niezależne kroki:
 - Zdefiniowanie rozkładów brzegowych
 - Zdefiniowanie zależności między rozkładami brzegowymi
- Kopuła Gaussa wykorzystuje tą samą strukturę zależności jak w wielowymiarowym rozkładzie normalnym. Czyli potrzebujemy jedynie macierzy korelacji.
- Z matematycznego punktu widzenia zawsze istnieje kopuła łącząca dane rozkłady brzegowe. Jeśli rozkłady brzegowe są ciągłe to jest też to unikalna kopuła (Sklar's theorem).

Kopuły

Budowanie kopuły

- Kopuła definiuje zależność pomiędzy rozkładami jednostajnymi:
 - mając dopasowany rozkład teoretyczny do danych możemy zawsze przetransformować go do jednostajnego
- Kroki budowy modelu:
 - Dopasowanie rozkładów teoretycznych do rozkładów brzegowych (pakiety: fitdistrplu, ghyp)
 - Dopasowanie kopuły (pakiety: CDVine, VineCopula)
- Przykład. Kroki symulacji z kopuły Gaussa z rozkładami brzegowymi t studenta:
 - Symulacja rozkładów brzegowych z dopasowanych rozkładów teoretycznych
 - Transformacja do rozkładów jednostajnych
 - Uzależnienie rozkładów brzegowych wykorzystując macierz korelacji
 - Transformacja do rozkładów jednostajnych
 - Transformacja do dopasowanych na samym początku rozkładów brzegowych
 - > rt %>% pnorm %>% qnorm %*% cholesky_decoposed_cor_matrix %>% pnorm %>% qt

Kopuły - przykłady

Przyjęte rozkłady brzegowe: standardowy normalny

Sekcja 4

Wyniki

Dopasowanie rozkładów

Normal Inverse Gaussian (NIG); pakiet ghyp

Porównanie z historycznymi danymi

Dopasowanie kopuły

Joe copula

Polecana literatura/materialy

- U. Schepsmeier, E. C. Brechmann, Modeling dependence with C- and D-vine copulas: The R package CDVine, 2013
- U. Schepsmeier, E. C. Brechmann, CDVine, 2013 https://cran.r-project.org/web/packages/CDVine/
- H. Joe, Dependence Modeling with Copulas, 2014
 (not yet published on CRAN package CopulaModel copula.stat.ubc.ca)
- C. Genest, A.-C. Favre, Everything You Always Wanted to Know about Copula but Were Afraid to Ask, 2007
- H. Joe, H. Li, A. K. Nikoloulopoulos, Tail dependence functions and vine copulas, 2010
- M. Hofer, M.Machler, Nested Archimedean Copulas Meet R Vignette, https://cran.r-project.org/web/packages/copula/vignettes/nacopula-pkg.pdf

Polecana literatura/materialy

- U. Schepsmeier, E. C. Brechmann, Modeling dependence with C- and D-vine copulas: The R package CDVine, 2013
- U. Schepsmeier, E. C. Brechmann, CDVine, 2013 https://cran.r-project.org/web/packages/CDVine/
- H. Joe, Dependence Modeling with Copulas, 2014
 (not yet published on CRAN package CopulaModel copula.stat.ubc.ca)
- C. Genest, A.-C. Favre, Everything You Always Wanted to Know about Copula but Were Afraid to Ask, 2007
- H. Joe, H. Li, A. K. Nikoloulopoulos, Tail dependence functions and vine copulas, 2010
- M. Hofer, M.Machler, Nested Archimedean Copulas Meet R Vignette, https://cran.r-project.org/web/packages/copula/vignettes/nacopula-pkg.pdf

Informacje kontaktowe

Adam Wróbel Risk Modelling & Analytics Specialist adam.wrobel@ubs.com

www.ubs.com

