6/23/24, 7:11 PM README

兰州大学数学物理方法2小课题

Github web address

通用理论

1. (非)均匀齐次Helmholtz方程的有限差分法(Finite Difference Method)(1st B.C.)

a. 1-dimension

对于非均匀的Helmholtz方程:

$$-f(x)\Delta u(x) = k^2 u(x)$$

我们可以采用差分的形式来表示,如上图1:

$$\begin{split} \frac{\partial u}{\partial x}|_{i} &= \frac{u|_{i+\frac{1}{2}} - u|_{i-\frac{1}{2}}}{\delta x} \\ so, &\frac{\partial^{2} u}{\partial x^{2}}|_{i} &= \frac{\frac{u|_{i+1} - u|_{i}}{\delta x} - \frac{u|_{i} - u|_{i-1}}{\delta x}}{\delta x} \\ &= \frac{u|_{i+1} + u|_{i-1} - 2 * u|_{i}}{(\delta x)^{2}} \end{split}$$

因此非均匀Helmholtz方程可以写为:

$$-f|_i*rac{u|_{i+1}+u|_{i-1}-2*u|_i}{(\delta x)^2}=k^2*u|_i$$

考虑边界条件我们可以得到:

$$egin{aligned} u|_0 &= u|_{N+1} = 0 \ so & rac{\partial^2 u}{\partial x^2}|_1 &= rac{u|_2 - 2*u|_1}{(\delta x)^2} \ and & rac{\partial^2 u}{\partial x^2}|_N &= rac{u|_{N-1} - 2*u|_N}{(\delta x)^2} \end{aligned}$$

综上,我们可以得到N个线性无关的线性方程组,写成矩阵形式即为:

$$\frac{1}{\delta x^2}\begin{bmatrix}2f_1 & -f_1 & & & \\ -f_2 & 2f_2 & -f_2 & & & \\ & & \ddots & & \\ & & -f_{N-1} & 2f_{N-1} & -f_{N-1} \\ & & & -f_N & 2f_N\end{bmatrix}\begin{bmatrix}u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N\end{bmatrix} = k^2 * \begin{bmatrix}u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N\end{bmatrix}$$

通过这个方程的本征解我们可以得到非线性(线性)Helmholtz方程本征解的近似解。这种方法我们称为有限差分法。

b. 2-dimension

对于二维的非线性(线性)Helmholtz方程:

$$-f(x,y)\Delta u(x,y) = k^2 u(x,y)$$

重复上面的操作,我们可以得到:

$$-f|_{ij}*(\frac{u|_{i+1,j}+u|_{i-1,j}-2*u|_{i,j}}{(\delta x)^2}+\frac{u|_{i,j+1}+u|_{i,j-1}-2*u|_{i,j}}{(\delta y)^2})=k^2*u|_{ij}$$

我们同样可以写成矩阵方程的形式,只不过会比较大,这里只给出向量参数的形式:

$$\begin{pmatrix} u_{11} & u_{12} & \dots & u_{1N} & u_{21} & \dots & u_{2N} & \dots & u_{N1} & \dots & u_{NN} \end{pmatrix}^{ op}$$

以上就是有限差分法的基本原理,处理具体问题的时候还需要一定的计算技巧。

2. 一维有限区域齐次Helmholtz方程的解(1st B.C.)

$$\Delta u(x) + k^2 u(x) = 0, x \in [a, b]$$

 $u(a) = u(b) = 0$

这是一个可解问题,PDE理论有完美的解释。其对应的本征多项式为 $\lambda^2+k^2=0 o \lambda=\pm ik$ 。通解可以表示为:

$$u = C_1 e^{ik(x-a)} + C_2 e^{-ik(x-a)}$$

如果我们只考虑实数域上的,上面的通解可以转换为:

$$u = C_1 \cos k(x-a) + C_2 \sin k(x-a)$$

将边界条件代入我们可以得到:

$$u(a) = C_1 = 0$$

 $u(b) = C_1 \cos k(b-a) + C_2 \sin k(b-a) = 0$

即

$$u = C \sin \frac{n\pi}{b-a} (x-a), \quad n = 0, \pm 1, \pm 2, \dots$$

3. 二维圆形区域齐次Helmholtz方程的解(1st B.C.)

$$(\Delta + k^2)u(\rho, \varphi) = 0, \quad \rho < b; \varphi \in [0, 2\pi)$$

 $u(b, \varphi) = 0$

将上面的式子展开并考虑物理的情况:

$$\begin{split} &\frac{1}{\rho}\frac{\partial}{\partial\rho}(\rho\frac{\partial u}{\partial\rho})+\frac{1}{\rho^2}\frac{\partial^2 u}{\partial\varphi^2}+k^2u=0\\ &u(b,\varphi)=0, u(\rho,\varphi)|_{\rho=0}$$
有限
$$&u(\rho,\varphi)=u(\rho,\varphi+2\pi) \end{split}$$

6/23/24, 7:11 PM README

令 $u(
ho, arphi) = R(
ho) \Phi(arphi)$, 轴向方程为 :

$$rac{d^2\Phi(arphi)}{darphi^2}+m^2\Phi(arphi)=0; \ \Phi(arphi)=\Phi(arphi+2\pi)$$

在实数域中,其通解可以表示为:

$$\varphi(m) = \cos m\varphi, \sin m\varphi \quad m = 0, \pm 1, \pm 2, \dots$$

径向方程可以表示为:

$$rac{1}{
ho}rac{d}{d
ho}(
horac{dR(
ho)}{d
ho})+(k^2-rac{m^2}{
ho^2})R(
ho)=0 o Bessel Equation \ R(b)=0,R(0)$$
有限

Bessel方程的解为:

$$R^{(m)}(\rho) = C_m J_m(k\rho) + D_m N_m(k\rho)$$

将边界条件和物理条件代入可得:

$$R(0)$$
有限 $\rightarrow D_m = 0$
 $R(b) = 0 \rightarrow J_m(k\rho) = 0$

因此,这个问题的本征值和本征解为:

$$egin{align} [k_n^{(m)}]^2 &= [rac{x_n^{(m)}}{b}]^2, \quad n=1,2,3,\dots \ R_n^{(m)}(
ho) &= J_m(rac{x_n^{(m)}}{b}*
ho), \quad n=1,2,3,\dots \ \end{array}$$

4. (非)均匀齐次Helmholtz方程的谱方法(Spectral Method)(1st B.C.)

a. 1-dimension

$$(f(x)\Delta + k^2)u(x) = 0 \
ightarrow - f(x)\Delta(x) = k^2u(x)$$

设
$$(\Delta+k^2)u(x)=0$$
的本征解为 $\{arphi_n,n=1,2,\dots\}$,对应的的本征值为 $\widetilde{k_n}$ 。令 $u(x)=\sum_n c_n arphi(x)$ 。

左侧:
$$-f(x)\Delta u(x)=-f(x)\sum_n c_n\widetilde{k_n^2}\varphi_n(x)$$

右侧: $k^2\sum_n c_n\varphi_n(x)$

分别与 φ_m 做内积:

由上面的推到我们可以得到:

6/23/24, 7:11 PM

$$egin{aligned} &-\sum_n M_{mn} \widetilde{k_n^2} c_n = k^2 N_m c_m \ &\Rightarrow -\sum_n rac{M_{mn} \widetilde{k_n^2}}{N_m} c_n = k^2 c_m \ &\Rightarrow \sum_n \widetilde{M}_{mn} c_n = k^2 c_m \end{aligned}$$

这又是一个矩阵方程,我们可以通过对角化的方式求出对应的特征值和特征向量:

$$(\widetilde{M}_{mn}) = \widetilde{M}, (c_1, c_2, \dots, c_n)^{\top} = C$$

 $\widetilde{M}C = k^2C$
 $\Rightarrow \widetilde{M}C_{\alpha} = \lambda_{\alpha}C_{\alpha}, \alpha = 1, 2, \dots$

综上,非线性(线性)齐次Helmholtz方程的解为:

$$egin{aligned} k_lpha^2 &= \lambda_lpha, k_lpha &= \sqrt{\lambda_lpha}, C_lpha &= (c_{lpha_1}, c_{lpha_2}, \dots, c_{lpha_n})^ op \ u_lpha(x) &= \sum_n c_{lpha n} arphi_n(\lambda) \end{aligned}$$

补充内容

1. Romeberg积分方法

在谱方法中我们需要用到数值积分公式,由于我们使用的是C语言,没有现成的函数供我们使用,因此决定自己编写目前最具效率的积分方法——Romberg积分。这里只给出伪代码;推导过程可以在任何一本数值积分教材中找到(下面的伪代码来自《数值计算方法与算法》),具体的程序会有一些技巧,以具体程序为准。例如,在判断是否退出循环前至少需要迭代几次,大部分情况都是没问题的,但也有少部分特殊情况;不要问我怎么知道的管理管理管

step1 输入区间端点 a, b, 精度控制值 e, 循环次数 M, 定义函数 f(x),

取
$$n=1$$
, $h=b-a$

step 2
$$R_{1,1} = (f(a) + f(b))h/2$$

step 3 for
$$k=2$$
 to M

$$\{R_{k,1} = \left(R_{k-1,1} + h_{k-1} \sum_{i=1}^{2^{k-2}} f(a + (2i-1)h_k)\right) / 2 \quad ! h_k = h/2^{k-1}$$

for
$$j=2$$
 to k

$$\{R_{k,j} = R_{k,j-1} + (R_{k,j-1} - R_{k-1,j-1})/(4^{j-1} - 1)\}$$
if $|R_{k,k} - R_{k-1,k-1}| < e$ 退出循环

}

step 4 输出 $R_{k,k}$.

2. packages

a. LAPACK

程序会涉及到矩阵的对角化,我们使用矩阵运算库LAPACK。访问官网请点击here。

b. GNU Scientific Library

这个库应该比较强大,除了涉及一些特殊函数外还有很多其他的东西,但我暂时没有时间爱你深究,引入它是因为我们需要用到柱函数的解;也就是Bessel函数,其他功能以Bessel函数的使用方法可以参考官网上的Docs。

3.Bessel 函数及其导数的零点

在第一类边界条件、二维圆区域问题中,Helmholtz方程的本征值实际上就是Bessel函数的零点,下面我们给出Bessel函数零点的参考值,引自 $^{[1]}$ 。

6/23/24, 7:11 PM README

first 700 zeros of bessel functions — $J_l(x)$ and $J'_l(x)$ 691

TABLE

TABLE					
	Mode* l-m	Value†		Mode* <i>l−m</i>	Value†
1	TE 1-1	1.841184	(48	TM 1-4	13.323692
2	TM 0-1	2.404826	(49	TE 0-4	13.323692
$\frac{2}{3}$	TE 2-1	3.054237	`50	TM 9-1	13.354300
(1	TM 1-1	3.831706	51	TM 6-2	13.589290
(5	TE 0-1	3.831706	52	TE 12-1	13.878843
(4 (5 6 7	TE 3-1	4.201189	53	TE 5-3	13.987189
7	TM 2-1	5.135622	54	TE 8-2	14.115519
8	TE 4-1	5.317553	55	TM 4-3	14.372537
$\check{9}$	TE 1-2	5.331443	56	TM 10-1	14.475501
10	TM 0-2	5.520078	57	TE 3-4	14.585848
ii	TM 3-1	6.380162	58	TM 2-4	14.795952
12	TE 5-1	6.415616	59	TM 7-2	14.821269
13	TE 2-2	6.706133	60	TE 1-5	14.863589
(14	TM 1-2	7.015587	61	TE 13-1	14.928374
(15	TE 0-2	7.015587	62	TM 0-5	14.930918
16	TE 6-1	7.501266	63	TE 6-3	15.268181
17	TM 4-1	7.588342	64	TE 9-2	15.286738
18	TE 3-2	8.015237	65	TM 11-1	15.589848
19	TM 2-2	8.417244	66	TM 5-3	15.700174
20	TE 1-3	8.536316	67	TE 4-4	15.964107
21	TE 7-1	8.577836	68	TE 14-1	15.975439
22	TM 0-3	8.653728	69	TM 8-2	16.037774
23	TM 5-1	8.771484	70	TM 3-4	16.223466
24	TE 4-2	9.282396	71	TE 2-5	16.347522
25	TE 8-1	9.647422	72	TE 10-2	16.447853
26	TM 3-2	9.761023	(73	TM 1-5	16.470630
27	TM 6-1	9.936110	(74	TE 0-5	16.470630
28	TE 2-3	9.969468	75	TE 7-3	16.529366
(29	TM 1-3	10.173468	76	TM 12-1	16.698250
(30	TE 0-3	10.173468	77	TM 6-3	17.003820
31	TE 5-2	10.519861	78	TE 15-1	17.020323
32	TE 9-1	10.711434	79	TM 9-2	17.241220 17.312842
33	TM 4-2	11.064709	80	TE 5-4	17.600267
34	TM 7-1	11.086370	81	TE 11-2 TM 4-4	17.605267
35	TE 3-3	11.345924	82	TM 4-4 TE 8-3	17.774012
36	TM 2-3	11.619841	83	TE 3-5	17.788748
37	TE 1-4	11.706005	84 85	TM 13-1	17.801435
38	TE 6-2	11.734936		TM 2-5	17.959819
39	TE 10-1	11.770877	86 87	TE 1-6	18.015528
40	TM 0-4	11.791534	88	TE 16-1	18.063261
41	TM 8-1	12.225092 12.338604	89	TM 0-6	18.071064
42	TM 5-2 TE 4-3	12.681908	90	TM 7-3	18.287583
43		12.826491	91	TM 10-2	18.433464
44	TE 11-1	12.820491	92	TE 6-4	18.637443
45	TE 7-2 TM 3-3	13.015201	93	TE 12-2	18.745091
46	TM 3-3 TE 2-4	13.170371	94	TM 14-1	18.899998
47	1E 2-4	10.110011		1 2 472 1	10.00000

^{*} TM designates a zero of $J_l(x)$; TE designates a zero of $J'_l(x)$; in each case l corresponds to the order of the Bessel function and m is the number of the root. \dagger 5 in last place indicates higher value and 5 indicates lower value in rounding off for fewer decimal places.

^{1.} Beattie, C. L. (1957). Table of first 700 zeros of Bessel functions -JI(x) and J'I(X). \leftarrow