431 Class 22

Thomas E. Love

2018-11-15

Today's Agenda

- Regression Comparison of Means, with Covariate Adjustment
- Project Study 2 Demonstration

Today's R Setup

```
library(Hmisc); library(magrittr); library(broom)
library(readxl) # to read in .xlsx file
library(tidyverse) # always load tidyverse last
```

Thomas E. Love 431 Class 22 2018-11-15 3 / 46

Data Source:

http://www.countyhealthrankings.org/app/ohio/2018/downloads

```
ohio18 <- read xlsx("data/ohio 2018 rankings.xlsx") %>%
  mutate(behavior = cut2(rk behavior, g = 4),
         clin care = cut2(rk clin care, g = 3)) %>%
  mutate(behavior = fct recode(behavior,
            "Best" = "[ 1,23)", "High" = "[23,45)",
            "Low" = "[45.67)", "Worst" = "[67.88]")) %>%
  mutate(clin care = fct recode(clin care,
            "Strong" = "[ 1,31)", "Middle" = "[31,60)",
            "Weak" = "[60,88]")) %>%
  mutate(density = factor(density)) %>%
  select(FIPS, state, county, outcomes,
         behavior, clin_care, density, income)
```

Resulting Data Set / Tibble

We want the response / outcome data in one column, and the grouping factor as another column.

```
ohio18 %>% select(county, outcomes, behavior) %>% head()
```

Health Outcomes (Normally Distributed?)

Health Outcomes by Clinical Care Groups

Source: http://www.countyhealthrankings.org/app/ohio/2018/downloads

Numerical Summary of outcomes by behavior

```
mosaic::favstats(outcomes ~ behavior, data = ohio18)
  behavior min
                     Q1 median
                                    Q3
                                        max
     Best -0.12 0.6075 0.885 1.3150 2.27
     High -0.54 -0.0550 0.135 0.5825 1.24
3
       Low = 1.54 = 0.6225 = 0.310 = 0.1700 = 0.76
4
    Worst -1.88 -1.2725 -0.960 -0.6125 0.01
                   sd n missing
       mean
  0.9718182 0.5734992 22
2 0.2531818 0.4549347 22
3 -0.2777273 0.6506914 22
4 -0.9477273 0.5236314 22
```

- Can we rank from strongest outcomes to weakest outcomes?
- How does the assumption of equal variances look?

Linear Model that will yield our ANOVA

```
model unadj <- lm(outcomes ~ clin care, data = ohio18)
tidy(model unadj)
# A tibble: 3 x 5
            estimate std.error statistic
                                   p.value
 term
 <chr>
            <dbl>
                      <dbl>
                              <dbl>
                                    <dbl>
1 (Intercept) 0.305 0.146 2.09 3.99e-2
3 clin careWeak -0.898 0.208 -4.31
                                   4.33e-5
glance(model unadj)
```

```
model unadj <- lm(outcomes ~ clin care, data = ohio18)
tidy(anova(model unadj))
# A tibble: 2 x 6
             df sumsq meansq statistic p.value
 term
 <chr> <int> <dbl> <dbl> <dbl> <dbl>
1 clin_care 2 15.2 7.61 11.9 0.0000276
2 Residuals 85 54.3 0.639 NA NA
tukey unadj <- tidy(TukeyHSD(aov(model unadj),
                        ordered = TRUE.
                        conf.level = 0.90)
```

Tukey HSD results, unadjusted ANOVA

Estimated Effects, with Tukey HSD 90% Confidence Intervals Comparing Outcomes by Clinical Care Group, Ohio18 data

Companson between Clinical Care Groups

Our New Question

• Do groups of counties defined by clinical care still show meaningful differences in average health outcomes, after adjustment for differences in their median income levels?

Income by Clinical Care Groups

Thomas E. Love 431 Class 22 2018-11-15 13 / 46

Income vs. Outcome

Thomas E. Love 431 Class 22 2018-11-15 14 / 46

Income (on the Log scale) vs. Outcome

Health Outcomes Scores rise with Median Income Ohio's 88 counties, 2018 County Health Rankings

Source: http://www.countyhealthrankings.org/app/ohio/2018/downloads

```
ohio18 <- ohio18 %>%
  mutate(incK = income/1000)

model_adj1 <- lm(outcomes ~ incK + clin_care, data = ohio18)
anova(model_adj1)</pre>
Applymin of Variance Table
```

Analysis of Variance Table

Thomas E. Love 431 Class 22 2018-11-15 16 / 46

Interpreting the ANOVA table with a covariate

```
anova(lm(outcomes ~ incK + clin_care, data = ohio18)) %>%
tidy() %>% knitr::kable(digits = 3)
```

term	df	sumsq	meansq	statistic	p.value
incK	1	44.349	44.349	161.727	0.000
clin_care	2	2.163	1.082	3.945	0.023
Residuals	84	23.035	0.274	NA	NA

- This ANOVA table tests the predictors, in order.
- The incK p value tests H_0 : incK adds no predictive value to the model, as compared to a model with an intercept alone.
 - Compares the [intercept only] model to the incK model.
- The clin_care F and p value tests H₀: clin_care adds no incremental predictive value to the model that already includes incK.
 - Compares the incK to the incK and clin_care model.

What if we reverse the order in which we create the model?

This ANOVA table is sequential

```
anova(lm(outcomes ~ clin_care + incK, data = ohio18)) %>%
tidy() %>% knitr::kable(digits = 3)
```

term	df	sumsq	meansq	statistic	p.value
clin_care	2	15.221	7.610	27.752	0
incK	1	31.292	31.292	114.111	0
Residuals	84	23.035	0.274	NA	NA

- Notice the change in p value for clin_care. That p value now compares [intercept only] to clin_care, ignoring the covariate.
 - We saw that result last time, in our ANOVA modeling.
- The incK test now assesses the incremental value of one predictor (incK) after you already have the other (lin_care) in the model.
- Either way, though, it looks like both incK and clin_care are useful. How much of the variation do they explain, together?

```
summary(model_adj1)
```

```
Residual standard error: 0.5237 on 84 degrees of freedom Multiple R-squared: 0.6688, Adjusted R-squared: 0.657 F-statistic: 56.54 on 3 and 84 DF, p-value: < 2.2e-16
```

What % of the variation in outcomes do incK and clin_care explain?

Unadjusted vs. Adjusted Model

```
glance(lm(outcomes ~ clin_care, data = ohio18)) %>%
knitr::kable(digits = 3)
```

	r.squared	adj.r.squared	sigma	statistic	p.value	df	logLik
value	0.219	0.2	0.799	11.907	0	3	-103.644

```
glance(lm(outcomes ~ clin_care + incK, data = ohio18)) %>%
  knitr::kable(digits = 3)
```

	r.squared	adj.r.squared	sigma	statistic	p.value	df	logLik
value	0.669	0.657	0.524	56.539	0	4	-65.892

Does incK add a substantial amount of predictive value?

Predict the outcome at the average level of the covariate for each group

At the mean level of incK, 52.474, predict the values of outcomes for counties in each clin_care category.

```
new_dat <- data_frame(
  clin_care = c("Strong", "Middle", "Weak"),
  incK = rep(mean(ohio18$incK), 3))
new_dat</pre>
```

Predict the outcome at the average level of the covariate for each group, using a 90% prediction interval

clin_care	incK	fit	lwr	upr
Strong	52.474	-0.056	-0.943	0.831
Middle	52.474	0.219	-0.667	1.105
Weak	52.474	-0.161	-1.050	0.727

Tukey HSD after covariate adjustment?

tukey_adj %>% knitr::kable(digits = 3)

```
tukey_adj <- TukeyHSD(
  aov(outcomes ~ incK + clin_care, data = ohio18),
  which = "clin_care", ordered = TRUE, conf.level = 0.9) %>%
  tidy()

Warning in replications(paste("~", xx), data = mf):
non-factors ignored: incK
```

term	comparison	estimate	conf.low	conf.high	adj.p.value
_	Strong-Weak	0.070	-0.213	0.354	0.864
clin_care	Middle-Weak	0.359	0.073	0.645	0.029
clin_care	Middle-Strong	0.289	0.005	0.572	0.093

Tukey HSD results, after adjustment for income

Adjusted Effect, with Tukey HSD 90% Confidence Intervals Comparing Outcomes by Clinical Care adjusting for Income, Ohio18 data

Checking Regression Assumptions

On the next slide, we'll build two quick plots. . .

- If the residuals vs. fitted values plot looks like a fuzzy football, with no
 particular pattern or trend, then we're in good shape for the moment
 with the assumption of linearity.
- If the Normal Q-Q plot of standardized residuals looks like a straight line (so we'd assume a Normal model held for the residuals), then we're in good shape with the assumption of Normality.

How do these plots look?

```
par(mfrow = c(1,2))
plot(model_adj1, which = 1:2)
```



```
model adj2 <- lm(outcomes ~ log(income) + clin care,
                data = ohio18
anova (model adj2)
Analysis of Variance Table
Response: outcomes
           Df Sum Sq Mean Sq F value Pr(>F)
log(income) 1 48.290 48.290 204.1115 < 2e-16 ***
clin care 2 1.384 0.692 2.9245 0.05918 .
Residuals 84 19.873 0.237
```

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Signif. codes:

Impact of Transforming income data

```
par(mfrow = c(1,2))
plot(model_adj2, which = 1:2)
```


Can we predict these health outcomes with a combination of income data and the county's density (defined as either Urban or Rural)?

```
model3 <- lm(outcomes ~ incK + density, data = ohio18)
tidy(model3) %>% knitr::kable(digits = 3)
```

estimate	std.error	statistic	p.value
-3.796	0.300	-12.637	0.000
0.073	0.006	12.820	0.000
-0.382	0.159	-2.398	0.019
	-3.796 0.073	-3.796 0.300 0.073 0.006	-3.796 0.300 -12.637 0.073 0.006 12.820

```
summary(model3)
```

Residual standard error: 0.5269 on 85 degrees of freedom Multiple R-squared: 0.6606, Adjusted R-squared: 0.6527 F-statistic: 82.74 on 2 and 85 DF, p-value: < 2.2e-16

ANOVA of our model3

```
anova(model3) %>% tidy() %>% knitr::kable(digits = 3)
```

term	df	sumsq	meansq	statistic	p.value
incK	1	44.349	44.349	159.725	0.000
density	1	1.597	1.597	5.752	0.019
Residuals	85	23.601	0.278	NA	NA

- The total Sum of Squares is 44.349 + 1.597 + 23.601 = 69.547.
 - \bullet Together, incK and density account for 44.349 + 1.597 = 45.946.
 - That is 66.06%, the same as the Multiple R² for the model.
- The residual mean square here (0.278) is the square of the residual standard error (0.5269) from the previous slide, and the degrees of freedom attributed to residuals there was also 85.
- The ANOVA F test on the previous screen (F = 82.74 on 2 and 85 df) combines the impact of both predictors.

Checking Regression Assumptions

The assumptions behind a linear regression model are, in order of importance:

- Linearity
- Homoscedasticity (constant variance)
- Independence
- O Normality

We build residual plots to check assumptions 1, 2, and 4. If the data are ordered in time or space, we will also think a bit about the independence assumption.

There are many ways to build residual plots using ggplot2 but for now, we'll stick to base R and show you a very simple way to generate five plots of potential interest.

$$par(mfrow = c(1,2)); plot(model3, which = 1:2)$$

Thomas E. Love 431 Class 22 2018-11-15 33 / 46

What county is County 21?

```
ohio18 %>% slice(21) %>% select(-FIPS, -state, -income) %>%
 knitr::kable()
```

county	outcomes	behavior	clin_care	density	incK
Delaware	2.27	Best	Strong	Urban	102.99

ohio18 %>% select(outcomes, income, density) %>% summary

```
outcomes
                       income
                                    density
Min. :-1.8800000
                                   Rural:74
                   Min. : 38131
                   1st Qu.: 45230 Urban:14
1st Qu.:-0.6125000
Median : 0.0150000
                   Median : 51157
Mean :-0.0001136
                   Mean : 52474
3rd Qu.: 0.6575000
                   3rd Qu.: 56821
Max. : 2.2700000
```

Where is Delaware County?

Max. :102990

Where is Delaware County?

Northern suburbs of Columbus

Augmenting the data with our model's results

```
mod3_aug <- augment(model3) %>%
 bind_cols(ohio18 %>% select(county)) %>%
  select(county, everything())
slice(mod3 aug, c(18, 21)) %>% print.data.frame(digits=3)
   county outcomes incK density .fitted .se.fit
1 Cuyahoga -0.38 46.7 Urban -0.746 0.157
2 Delaware 2.27 103.0 Urban 3.391 0.290
  .resid .hat .sigma .cooksd .std.resid
1 0.366 0.0885 0.528 0.0171 0.727
2 -1.121 0.3035 0.509 0.9438 -2.549
```

$$par(mfrow = c(1,2)); plot(model3, which = c(1,3))$$

Cook's Distance and Influence Plot

$$par(mfrow = c(1,2)); plot(model3, which = 4:5)$$

Thomas E. Love 431 Class 22 2018-11-15 38 / 46

Running the Model without Delaware County

```
model4 <- ohio18 %>% filter(county != "Delaware") %$%
   lm(outcomes ~ incK + density)

tidy(model4) %>% knitr::kable(digits = 3)
```

term	estimate	std.error	statistic	p.value
(Intercept)	-4.228	0.334	-12.678	0.000
incK	0.082	0.006	12.804	0.000
${\sf densityUrban}$	-0.330	0.155	-2.123	0.037

Call: lm(formula = outcomes ~ incK + density)

```
summary(model4)
```

```
Residuals: Min 10 Median 30
                                   Max
        -1.121 -0.305 0.094 0.358 0.932
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.228 0.334 -12.678 <2e-16 ***
     0.082 0.006 12.804 <2e-16 ***
incK
densityUrban -0.330 0.155 -2.123 0.0367 *
Residual standard error: 0.5094 on 84 degrees of freedom
Multiple R-squared: 0.6612, Adjusted R-squared: 0.6531
```

F-statistic: 81.97 on 2 and 84 DF, p-value: < 2.2e-16

Model 4 ANOVA (no Delaware County)

anova(model4) %>% tidy() %>% knitr::kable(digits = 3)

term	df	sumsq	meansq	statistic	p.value
incK	1	41.368	41.368	159.425	0.000
density	1	1.170	1.170	4.508	0.037
Residuals	84	21.797	0.259	NA	NA

Residuals vs. Fitted, Normal Q-Q Plot

$$par(mfrow = c(1,2)); plot(model4, which = 1:2)$$

Residuals vs. Fitted and Scale-Location Plot

$$par(mfrow = c(1,2)); plot(model4, which = c(1,3))$$

Cook's Distance and Influence Plot

$$par(mfrow = c(1,2)); plot(model4, which = 4:5)$$

Study 2 Demonstration Project

- See github site for this.
- Also posted at my RPubs site: http://rpubs.com/TELOVE

Our Next Steps

- Homework 7 due Friday at noon
- Building and Using a Scatterplot Matrix (review)
- Comparing Models, by splitting our data into training (model development) and test samples
 - Assessing training sample performance with adjusted R², AIC and BIC
 - Assessing test sample prediction errors with MAPE and MSPE
- Making good decisions when building regression models

Have a nice break.

Get your project moving along. Thanks.