"HONEST: Measuring Hurtful Sentence Completion in Language Model" - THE PROJECT

- GROUP 44

BACKGROUND

☐ Language models have the capacity to capture and proliferate harmful stereotypes, potentially amplifying existing biases

THE PROBLEM(S)

- ☐ Do Language Models do hurtful completions? Is it a thing?
- ☐ Is there any specific pattern/reasoning behind generation per language? Is it gender specific too?
- ☐ How is it determined if the completion is hurtful?
- ☐ How do we measure the hurtfulness of the language models?
- □ What are the possible directions to reduce hurtfulness going forward?

DICTIONARY

- ☐ Lexicon collection of words and vocabulary specific to a domain of knowledge.
- ☐ 9 categories are considered from **HurtLex**

HurtLex Category

ANIMALS
CRIME AND IMMORAL BEHAVIOR
DEROGATORY WORDS
FEMALE GENITALIA
MALE GENITALIA
HOMOSEXUALITY
POTENTIAL NEGATIVE CONNOTATIONS
PROFESSIONS AND OCCUPATIONS
PROSTITUTION

THE PROJECT

- Evaluation: Evaluation of recent models to examine their current 'Honest' score
- □ Reduction of hurtful completions: By Fine-tuning the open source LLM models two approaches
- ☐ Generalizability and Extensibility [Extended Task]: A new model to get the evaluations done, making it scalable and extendible to all lex-categories

FINE TUNING APPROACHES

☐ Fine-tuning: Adapting a pre-trained NLP model for a downstream task by further training it on a task-specific dataset

□ Why fine tune?

To instruct LMs to generate less hurtful sentence completions so its outputs become non-offensive

- 1. Prompt-based fine tuning
- 2. Fine tuning using a dataset with preprocessing

HOW DID WE DO IT?

- ☐ Selected pre-trained Large Language Models [Bert, Bart, Roberta, etc]
- Prepared task-specific datasets [IMDb, Stanford, Market Reviews etc]
- Pre-processing [Removal of hurtful words]
- Training [Prompt-based and Dataset-based fine tuning]
- Evaluation [Using 'Honest' scores]

PROMPT BASED TUNING

- ☐ A novel approach where the pre-trained model is adapted using prompts.
- Prompts are designed templates that guide the model to generate specific responses.

PROMPT BASED TUNING

```
[ ] prompt = "Complete this sentence with a word that embodies a positive classroom environment."
```

BEFORE FINE TUNING

- 1 print(name_model,k, honest_score)
- GroNLP/hateBERT 1 0.031767955801104975

AFTER FINE TUNING

- 1 print(name_model,k, honest_score)
- GroNLP/hateBERT 1 0.004143646408839779

DATASET BASED TUNING

Another Fine tuning approach to increase the performance of applications using a dataset (IMDB, Amazon Reviews)

DATASET BASED TUNING

BEFORE DATASET BASED TUNING

- 1 print(name_model,k, honest_score)
- facebook/bart-base 1 0.00856353591160221

AFTER DATASET BASED TUNING

- print(name_model,k, honest_score)
 - facebook/bart-base 1 0.00082

RESULTS

Model Name	Params	Evaluation	Prompt-based Eval.	Dataset-based Eval.
Bert-base	109 M	0.00138	0.0359	0.00828
Google-Muril-base	17 Lang.	0.01104	0.0220	0.0110
hateBERT	110 M	0.03176	0.00414	0.01795
google-electra-base	33M	0.01519	0.07458	0.01657
secBERT	84 M	0.09668	0.10911	0.18646
bart-base	110M	0.00856	0.01491	0.00082
distilroberta-base	82 M	0.01436	0.00027	0.04392
Albert-base	11.8 M	0.0607	0.11187	0.05110
ClinicalBERT	1.2B Diseases	0.13259	0.135359	0.1325
LessSexistBert	110 M	0.015	0.11187	0.0096
xlm-roberta-base	278 M	0.031	0.05273	0.02019

CONCLUSION

- 1. Selected 11 LLM models, performed evaluations and noted results
- 2. Collected datasets and fine tuned the models using two approaches
- 3. The prompt- 'Complete this sentence with a word that embodies a positive classroom environment.' has been the most effective
- 4. The SNLI(Stanford Natural Language Inference) dataset has been most promising
- 5. Hurtful scores of models dropped to as low as 0.00027

HONEST

Are there any [MASK]?

- ["jerks"] LLM: Before this project!
- ["questions"] LLM: After this project!

HONEST

THANK YOU!