PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-021216

(43)Date of publication of application: 23.01.1996

(51)Int.CI.

F01L 3/02 C23C 8/10 C23C 8/80 F01L

(21)Application number : 06-173472

(71)Applicant: AISAN IND CO LTD

(22)Date of filing:

30.06.1994

(72)Inventor: YAMADA SHIGEKI

(54) ENGINE VALVE

(57)Abstract:

PURPOSE: To provide an engine valve wherein abrasion of a valve shaft part to a valve guide is a little, and the processing cost is low. CONSTITUTION: In a titanium alloy-made engine valve wherein a valve head 3 is continuously provided on a valve shaft 2, oxidation layers 8 from which scale oxide is removed are formed on at least a valve face surface part 3A of the valve head 3, a shaft end surface part 2B of the valve shaft 2, the upper slide-contact range 5b with which the upper end of the valve guide is brought in slide-contact, and the lower slide-contact range 5a with which the lower end of the valve guide is brought in slide-contact out of the slide-contact range with which the valve guide of the outer peripheral surface part 2a of the valve shaft 2 is brought in slide-contact, and a small diameter part 6 is provided on the valve shaft 2 part between the upper slide-contact range 5b and the lower slide-contact range 5a.

LEGAL STATUS

[Date of request for examination]

09.11.1999

[Date of sending the examiner's decision of rejection]

24.10.2000

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-21216

(43)公開日 平成8年(1996)1月23日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ	技術表示箇所
F 0 1 L	3/02	J			
C 2 3 C	8/10				
	8/80		•		
F01L	3/20	C.			
				審査請求	未請求 請求項の数2 FD (全 6 頁)
(21)出願番号		特顯平6-173472		(71)出顧人	000116574
					爱三工業株式会社
(22)出願日		平成6年(1994)6	月30日		愛知県大府市共和町一丁目1番地の1
				(72)発明者	山田 茂樹
					愛知県大府市共和町一丁目1番地の1 愛
					三工業株式会社内
				(74)代理人	弁理士 乾 昌雄
į e;					

(54) 【発明の名称】 エンジンパルプ

(57)【要約】

【目的】 弁軸部およびバルブガイドの摩耗が少なく、 加工費も安価で済むエンジンバルブを提供する。

【構成】 弁軸2に弁傘3を連設したチタン合金製のエンジンバルブにおいて、少なくとも弁傘3の弁フェース面部3Aと弁軸2の軸端面部2B、および弁軸2の外周面部2Aのバルブガイドと摺接する摺接範囲のうち、バルブガイドの上端部が摺接する上部摺接範囲5bと、バルブガイドの下端部が摺接する下部摺接範囲5aとに、酸化スケールを除去した酸化層8を形成するとともに、上部摺接範囲5bと下部摺接範囲5aの間の弁軸2部に、細径部6を設けて成る。

【特許請求の範囲】

【請求項1】 弁軸に弁傘を連設したチタン合金製のエ ンジンバルブにおいて、少なくとも前記弁傘の弁フェー ス面部と前記弁軸の軸端面部、および前記弁軸の外周面 部のバルブガイドと摺接する摺接範囲のうち、バルブガ イドの上端部が摺接する上部摺接範囲と、バルブガイド の下端部が摺接する下部摺接範囲とに、酸化スケールを 除去した酸化層を形成するとともに、前記上部摺接範囲 と下部摺接範囲の間の前記弁軸部に、細径部を設けて成 るエンジンバルブ。

【請求項2】 弁軸のバルブガイドおよびオイルシール リップに摺接する外周面部の表面粗さが0.1~5.0 μmRzである請求項1記載のエンジンバルブ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、内燃機関において吸 気弁または排気弁として用いられるエンジンバルブに関 する。

[0002]

【従来の技術】一般に内燃機関の吸排気弁としては、弁 20 軸に弁傘を連設したきのと形のエンジンバルブが用いら れ、その材料としては従来耐熱鋼が一般に用いられてい る。そして最近は、この耐熱鋼よりも軽量で耐熱性にす ぐれたチタン合金が、レーシング仕様車などのエンジン バルブに用いられるようになった。しかしこのチタン合 金は、摺動面部等に耐摩耗性を付与するための表面処理 をおこなう必要があり、この方法として、たとえば特開 昭62-256956号に開示されるように、仕上加工 した製品を酸素を有する炉中で加熱し、製品の表面に高 い硬度を有する酸化表面処理層を形成させる表面処理方 30 法が提案されている。

[0003]

【発明が解決しようとする課題】ところが上記の表面処 理方法においては、同一直径の弁軸部全長にわたって硬 くて脆い酸化スケールを表面部に有する表面処理層を形 成させるので、酸化処理前の弁軸部の仕上加工に手間が かかるうえ、表面処理層の最上面部には硬くて脆い酸化 スケール層があるため、弁軸部が摺接するバルブガイド への攻撃性が著しく、バルブガイドの早期摩耗をひきお こしやすく、これを防止するためには酸化処理後の弁軸 部全長にわたって超仕上などの仕上加工を施す必要があ り加工費がかさむ。またとの酸化スケールはエンジンバ ルブ作動中に剥離してバルブガイドの摩耗や焼付きを発 生させるという問題もある。

【0004】この発明は上記従来の問題点を解決するも のであって、弁軸部およびバルブガイドの摩耗が少な く、加工費も安価で済むチタン合金製のエンジンバルブ を提供しようとするものである。

[0005]

ブは、弁軸に弁傘を連設したチタン合金製のエンジンバ ルブにおいて、少なくとも前記弁傘の弁フェース面部と 前記弁軸の軸端面部、および前記弁軸の外周面部のバル ブガイドと摺接する摺接範囲のうち、バルブガイドの上 端部が摺接する上部摺接範囲と、バルブガイドの下端部 が摺接する下部摺接範囲とに、酸化スケールを除去した 酸化層を形成するとともに、前記上部摺接範囲と下部摺 接範囲の間の前記弁軸部に、細径部を設けて成る。

【0006】この発明におけるチタン合金としては、T 10 i = 6 A I = 4 V, T i = 5. 5 A I = 4 S n = 1 N b-0.3 Mo, Ti-6 A 1-2.75 S n-4 Z r-0. 4 Mo, T i - 6 A 1 - 2 Sn - 4 Zr - 2 Mo, Ti-6Al-2Fe-0. lSiなどの、各種組成の チタン合金を用いることができる。

【0007】またこの発明における酸化層とは、チタン 合金成分と酸素および空気中の窒素等との化合物から成 るTiO。を主体とする化合物層を称し、ビッカース硬 度500以上の硬度を有する硬質層である。酸化雰囲気 中の加熱処理によって、図2に示すように酸化層8は弁 体素材7の上に形成され、その表面は硬くて脆いチタン の酸化物から成る酸化スケール9によって覆われるが、 この発明ではこの酸化スケール9は除去して酸化層8を 露出させて製品とするものである。

【0008】この発明における弁軸のバルブガイドおよ びオイルシールリップに摺接する外周面部の表面粗さ は、十点平均粗さが0.1μmRz未満とするのは加工 費がかさみ、また5.0μmRzを越えるとバルブガイ ドおよびオイルシールリップの摩耗が進行しやすいの で、0.1~5.0µmRzとするのが好ましい。この 表面粗さは、通常、酸化処理前の弁体素材の弁軸太径部 を上記表面粗さに仕上加工することにより得られ、また 酸化処理時の酸化スケールの生成程度によって酸化スケ - ル除去後に表面粗さが劣化した場合は、再度バフ研磨 などによる仕上加工を施すことにより得られる。

[0009]

【作用】との発明のエンジンバルブにおいては、弁軸部 をバルブガイドに挿入してエンジンに組込めば、弁軸の 外周面部の上部摺接範囲および下部摺接範囲に設けた酸 化層が、バルブガイドと摺接して弁軸の摩耗を防止する とともに、酸化層は酸化スケール層で被覆されていない ので、バルブガイドの急速な摩耗をひきおこすこともな

【0010】また弁フェース面部に形成した酸化層が、 エンジン回転時における弁フェース面部のバルブシート との衝突によるたたき摩耗の進行を抑制し、弁軸の軸端 面部に形成した酸化層が、エンジン回転時における軸端 面部のロッカアームやリフタとの衝突によるたたき摩耗 の進行を抑制する。

【0011】また弁軸の上部摺接範囲と下部摺接範囲の 【課題を解決するための手段】この発明のエンジンバル 50 間には細径部がありこの細径部は仕上加工が不要のた

(3)

10

め、酸化処理前および必要に応じて酸化処理後におこな う弁軸の仕上加工が短時間で済む。吸気弁においては、 バルブガイドの上部で弁軸又はバルブガイドの摩耗粉が 発生したり、ブローバイガス等に含まれるカーボンが発 生した場合、これらの異物はバルブガイド内周面と細径 部との間の空所に入るので、弁軸とバルブガイドの固着 事故が防止される。また排気弁においては、バルブガイ ドの上部で弁軸又はバルブガイドの摩耗粉が発生した り、弁傘が開閉する燃焼室において燃焼生成物が発生し た場合、吸気弁と同様にこれらの異物もバルブガイド内 周面と細径部との間の空所に入るので、弁軸とバルブガ イドの固着事故が防止される。

[0012]

【実施例】以下図1乃至図4によりこの発明の一実施例 を説明する。図1および図2において、1は吸気弁の弁 体で弁軸2の一端部に弁傘3を一体に連設したきのこ形 を呈し、チタン合金製である。直径(太径部直径) 6 mm の弁軸2には、エンジンに組込まれた状態で往復開閉運 動によりバルブガイド12(図3.4参照)に摺接する 摺接範囲5 (後述) のうち、バルブガイド12の上端部 1.2 bが摺接する上部摺接範囲5 bと、バルブガイド1 2の下端部12aが摺接する下部摺接範囲5a(いずれ も後述)との間に、直径5.5mmの細径部6を設けてあ る。

【0013】図3および図4は、上記の弁体1をエンジ ンのシリンダブロック11部に組込んだ状態を示し、図 中、12はシリンダブロック11に固設した金属製のバ ルブガイドで、弁体1の弁軸の2の太径部が、少量のす きまをもって嵌込まれている。13はこのバルブガイド 12の上端部にリング13 aにより装着したオイルシー ル、13bはそのオイルシールリップで、弁軸2の外周 面部2A(太径部の外周面部)に摺接する。15は吸気 路、16は弁傘3が着座するバルブシート、17は弁体 1の軸頭部にコッタ18により嵌着したリテーナ、19 はバルブスプリングである。

【0014】図3は弁傘3の弁フェース面部がバルブシ - ト16に着座したバルブ全閉状態を示し、図4は図示 しないカムシャフトにより軸頭4部が押下げられて弁体 1が下降端位置に達したバルブ全開状態を示す。そして 図3(バルブ全閉状態)においてバルブガイド12の下 端面に対応する弁軸2上の位置aから、図4(バルブ全 開状態)においてバルブガイド12の上端面に対応する 弁軸2上の位置bまでの範囲が、弁軸2のバルブガイド 12に摺接する摺接範囲5である。この摺接範囲5のう ち、図4におけるバルブガイド12の下端面より所定距 離Q(この実施例では1mm)だけ弁軸軸端部寄りの弁軸 2上の位置 c から前記位置 a までの範囲が下部摺接範囲 5 a であり、また図3 におけるバルブガイド12の上端 面より所定距離R(との実施例では1mm)だけ弁傘寄り の弁軸2上の位置 d から前記位置 b までの範囲が上部摺

接範囲5 b であって、細径部6 はこれらの上部摺接範囲 5 b と下部摺接範囲 5 a との間に設ければよいが、この 実施例では、上部摺接範囲5bの下端位置dと下部摺接 範囲5aの上端位置cとの間の全範囲21にわたって、 細径部6を設けてある。

【0015】そして上記形状の弁体1の酸化処理前の弁 体素材7の弁軸2の外周面部2Aは、研削加工により表 面粗さが約1.5μmRzとなるように、細径部6を除 く弁軸2部全長にわたって仕上加工してある。 なおとの 仕上加工は少なくとも、下部摺接範囲5aおよび図4 (バルブ全開状態) においてオイルシールリップ13b に対応する弁軸2上の位置eから前記位置dまでの摺接 範囲10(すなわち弁軸2がバルブガイド12およびオ イルシールリップ13bに摺接する上部摺接範囲)に対 しておとなえばよい。

【0016】上記形状に仕上加工した弁体素材7の表面 に後述の酸化処理をおこなって、弁体1の全表面部に酸 化層8を設けてある。この酸化層8の厚さは、5 μm未 満では酸化層(硬化層)が薄くて各部の耐摩耗性が不充 分であり、100 µmを越えると疲労強度および靭性の 低下が大きく、エンジン作動中に弁軸2の切損や弁傘部 3の疲労破壊をひき起す場合があるので、上記の5~1 00 μmとするのが好ましい。

【0017】上記の酸化層8の形成は次のようにしてお こなう。 先ず弁体素材 7 を、大気炉などの酸化雰囲気炉 中で600~900℃の温度で数分乃至数時間の加熱処 理をおこなって、図2に示すように厚さ5~100μm の酸化層8を弁体1の全表面に形成させる。 との酸化層 8の表面には、硬くて脆く剥離しやすいチタンの酸化物 30 から成る厚さ1~10 μm程度の酸化スケール9が形成 される。との酸化スケール9を残したままで弁体1を使 用するとバルブガイド部の摩耗や焼付などを発生させる ので、この発明では酸化処理後に酸化スケール9は除去 し酸化層8を露出させるものとする。この除去方法とし ては、ショットブラストやバフ研磨などがある。また酸 化スケール9除去後の弁軸2の外周面部2Aの酸化層8 に面粗度の劣化が有る場合は、バフ研磨などの仕上加工 をおこなって製品を得る。

【0018】上記の酸化層8の厚さは前記の加熱処理の 温度および処理時間によって決まるものであるが、この うち温度としては、900℃を越えると弁軸2の曲りや 変形を生じるので好ましくなく、また600℃未満では 不働態被膜ができる程度で酸化層5の形成には非能率的 で好ましくない。600~900℃の範囲内では、85 0℃を越えると酸化スケール9が増え、800℃未満で は薄い酸化層8を形成するのに時間がかかりすぎるの で、800~850℃とするのがもっとも好ましい。

【0019】上記の弁体21の弁軸2部をバルブガイド 12に挿入して使用すれば、弁軸2の太径部である上部 50 摺接範囲5 b および下部摺接範囲5 a が、弁体1の上下

動に拘らず常にバルブガイド12の上端部12bおよび 下端部12aの内面に摺接して、弁軸2を芯ずれなく所 定の位置に保持するとともに酸化層8が弁軸2の摩耗を 少量に抑制し、酸化スケール9により被覆されず酸化層 8が露出した外周面部2Aが、バルブガイド12の内周 面およびオイルシールリップ13bの摩耗を少量に抑制 する。また弁傘3の弁フェ-ス面部3Aに形成した酸化 層8が、バルブシート16との衝突による該弁フェース 面部のたたき摩耗の進行を抑制し、弁軸2の軸端面部2 Bに形成した酸化層 8 が、ロッカアームやリフタとの衝 10 突による該軸端面部のたたき摩耗の進行を抑制する。

【0020】またバルブガイド12の上部で弁軸2また はバルブガイド12の摩耗粉が発生したり、ブローバイ ガス等に含まれるカーボンが発生したり弁傘が開閉する 燃焼室において燃焼生成物が発生し (排気弁の場合) バ ルブガイド12内に侵入した場合、これらの異物はバル ブガイド12の内周面と細径部6との間の空所(すき ま)22に入るので、弁軸2とバルブガイド12の固着 事故を防止できるのである。

【0021】 この発明は上記実施例に限定されるもので 20 作動不良もなくなる。 はなく、たとえば弁軸2の細径部6は、図5に示す弁体 31のように、位置cとdの間の一部の範囲21にわた って設けてもよい。また図6に示す弁体32のように、 上部摺接範囲5 bを含む前記摺接範囲10よりも上側の 弁軸部分、および下部摺接範囲5 a よりも下側の弁軸部 分も、細径としてもよく、この場合は弁軸2の仕 L加工 範囲(太径部範囲)が特に小さく、一層短時間で仕上加 工できる。なおとれらの図において、図1と同一部分に は同一符号を付してある。

【0022】また上記実施例では酸化層8は弁体1の全 30 表面部に形成したが、この酸化層8は弁体1の相手部材 と接触する部位、すなわち弁軸2の軸端面部2B、弁傘 3の弁フェース面部3A、弁軸2の下部摺接範囲5a、 および上部摺接範囲5b(前記位置eからdまでの摺接 範囲10とすれば、オイルシールリップ13bの摺接に よる摩耗も確実に防止できるので一層好ましい)のみに 設けてもよい。この場合の酸化層8の形成は、たとえば 酸化雰囲気中でレーザ等の髙密度エネルギの照射や火炎 バーナの吹付けを弁体の必要部位のみに対しておとなう 部分酸化法によって、おこなうことができる。この部分 40 …弁体。 酸化法によれば、酸化処理時の入熱量が少ないので、弁

体の歪み、特に弁軸2の歪みが非常に小さく、バルブガ イド12との摩擦抵抗が小さくエンジンバルブの作動応 答性が向上する。

【0023】またこの発明は内燃機関の排気弁にも適用 できるものである。

[0024]

【発明の効果】以上説明したようにこの発明によれば、 弁軸の外周面部の上部摺接範囲と下部摺接範囲には酸化 スケールに被覆されずに酸化層が露出形成されているの で、バルブガイドとの摺接による弁軸の摩耗およびバル ブガイドの摩耗が少ない。

【0025】また弁軸の上部摺接範囲と下部摺接範囲の 間に細径部があるため、弁軸の仕上加工が短時間で済み 加工費が安価で済むうえ、バルブガイドの上部で弁軸又 はバルブガイドの摩耗粉が発生したり、ブローバイガス 等に含まれるカーボンが発生したり燃焼生成物が発生し た場合、これらの異物はバルブガイド内周面と細径部と の間の空所に入るので、弁軸とバルブガイドの固着事故 が防止され、自動車の長期放置後の再始動時のエンジン

【図面の簡単な説明】

【図1】 この発明の一実施例を示すエンジンバルブの一 部切欠正面図である。

【図2】図1における酸化層の形成工程を示す弁体表面 部の模式断面図である。

【図3】図1のエンジンバルブをエンジンに組込んだ組 込部分の弁全閉状態の縦断面図である。

【図4】図1のエンジンバルブをエンジンに組込んだ組 込部分の弁全開状態の縦断面図である。

【図5】この発明の他の実施例を示すエンジンバルブの 一部切欠正面図である。

【図6】この発明のさらに他の実施例を示すエンジンバ ルブの一部切欠正面図である。

【符号の説明】

1…弁体、2…弁軸、2A…外周面部、2B…軸端面 部、3A…弁フェース面部、5…摺接範囲、5a…下部 摺接範囲、5b…上部摺接範囲、6…細径部、8…酸化 層、12…バルブガイド、12a…下端部、12b…上 端部、13b…オイルシールリップ、31…弁体、32

