Jump seq analysis

February 25, 2017

Contents

1	Bac	ckground	3
2	Mo	deling number of reads at every position	3
3	Mo	deling every read	4
	3.1	Likelihood	5
	3.2	EM algorithm	5
4	Pea	ak window calling for 5hmC	6
	4.1	Simple peak calling with GC content	6
		4.1.1 One minus strand	8
		4.1.2 New Jump-seq data	13
		4.1.3 Consistency among replicates	14
	4.2	Realignment without mismatches	17
	4.3	FDR via Benjamini-Hochberg procedure	17
5	Pea	ak window calling for 5mC	29

5.1 Two 5mc samples	29
---------------------	----

1 Background

Problem: There are a huge amount of cytosine in the whole genome. 5-methylcytosine (5mC) is important for normal development and impacts a variety of biological functions. 5-hydroxymethylcytosie (5hmC) is discovered to be another cytosine modification in embryonic stem cells (ESCs) and the protein TET is responsible for the conversion of 5mC to 5hmC. 5hmC was found to be widespread in many tissues and cell types, but with diverse levels of abundance. The goal is to infer the relative abundance of 5hmC at single-base resolution in a probabilistic way, ideally at the whole genome-wide scale, where these 5hmC's could be in millions.

2 Modeling number of reads at every position

Look at a region with K cytosines. Assuming at each base, the number of reads starting from this base follows Poisson distribution. Specifically, denote N_k by the number of reads with start position at base k, $N_k = 0, 1, \cdots$.

$$N_k \sim Pois(\theta_k), k = 1, 2, \cdots, K.$$

The interest is on the inference of θ_k , which provides the information about the abundance level of 5hmC. One potential problem is that cytosine with high θ_k also has large variance. Assuming independence of generating reads among different positions, each θ_i can be estimated individually by the read information at site i. Then a natural estimate is $\hat{\theta}_k = n_k$, where n_k is the observed number of reads starting at k. Because of the randomness in generating the reads, let C_i denotes the source 5hmC generating read i, $C_i = 0, 1, \dots, K$. When $C_i = 0$, read i is a noisy read, i.e., not from any cytosine. Denote $\pi_k = P\{C_i = k\}$, then $\sum_k \pi_k = 1$. In fact, $N_k = \#\{C_i : C_i = k\}$. This way of modeling does not capture the bimode pattern of reads distribution.

3 Modeling every read

Suppose look at the one region (it could be the whole genome if it is large enough). Assuming there are K cytosines whose relative 5hmC level are $\theta_k, k = 1, 2, \dots, K$. θ_k specifies the normalized relative abundance of 5hmC at site k. The idea behind is each C has certain amount of chance of being hydroxylmethylated, not like a switch on-off mechanism. The relative abundance involves much richer information than absolute enrichment determined mainly by number of reads.

The abundance level is characterized with the profiling of reads. Assume there are I reads in total with R_i indexing the ith read. Let C_i denotes the source 5hmC generating read R_i . So C_i is a latent variable and could be any possible site of K sites. $\theta_k = P(C_i = k)$. Set $C_i = 0, 1, 2, \dots, K$ with $C_i = 0$ meaning read R_i is generated not from any cytosines which is a "noisy" read. S_i denotes the distance of its start position to source site C_i , $S_i = 0, 1, \dots, J$. The empirical distribution of start positions of reads shows the bi-mode pattern which may not be symmetric, with the true 5hmC in the "valley" between the two modes. These motivate the use of multinomial distribution to model the distribution of start positions with distance to the source 5hmC. Assume $P(S_i = j|C_i) = \pi_j$ such that $\pi_j \geq 0, \sum_j \pi_j = 1$. In fact, the distribution of start position of ONE READ is categorical distribution with probability mass function of

$$P(S_i|C_i) = \prod_i \pi_j^{[S_i=j]}$$

This says that how the start sites are located only depends on the distance, not on the site i. The observed data is the start positions of all reads. The interest is on the inference of θ_k . Q: what is appropriate range of value of J? For the noisy read, it is assumed to be uniformly distributed as

$$P(S_i|C_i=0) = \frac{1}{J+1}$$

How to incorporate various errors, e.g. sequence errors.

3.1 Likelihood

Let $\mathbf{R} = (R_1, \dots, R_I)$ denotes all reads sample, $\mathbf{\pi} = (\pi_0, \dots, \pi_J)$, $\mathbf{\theta} = (\theta_0, \theta_1, \dots, \theta_K)$. Assuming independence in generating the reads, the observed data likelihood function is

$$L(\boldsymbol{\pi}|\boldsymbol{R}) = \prod_{i} P(R_{i}|\boldsymbol{\pi})$$

$$= \prod_{i} \sum_{C_{i}} P(R_{i}, C_{i}|\boldsymbol{\pi})$$

$$= \prod_{i} \sum_{k} P(J_{i}|C_{i} = k, \boldsymbol{\pi})P(C_{i} = k|\boldsymbol{\pi})$$

$$= \prod_{i} \sum_{k} \theta_{k} \prod_{j} \pi_{j}^{[S_{i}=j]}$$

$$(1)$$

3.2 EM algorithm

We use EM algorithm to find the MLE of parameter θ_k . Use binary variable $Z_{ik} = 1$ to indicate read i is from k 5hmC and $Z_{ik} = 0$ otherwise. The complete likelihood is

$$P(\boldsymbol{R}, \boldsymbol{Z} | \boldsymbol{\pi}, \boldsymbol{\theta}) = P(\boldsymbol{R} | \boldsymbol{Z}, \boldsymbol{\pi}, \boldsymbol{\theta}) \times P(\boldsymbol{Z} | \boldsymbol{\pi}, \boldsymbol{\theta})$$

$$= \prod_{i} \prod_{k} P(R_{i} | Z_{ik}, \boldsymbol{\pi}, \boldsymbol{\theta}) \times P(Z_{ik} | \boldsymbol{\pi}, \boldsymbol{\theta})$$

$$= \prod_{i} \prod_{k} \theta_{k}^{Z_{ik}} (1 - \theta_{k})^{1 - Z_{ik}} \prod_{i} \pi_{j}^{[S_{i} = j]}$$

• E step: suppose parameter estimates at current step are $\theta^{(t)}$, $\pi^{(t)}$, the Q function is

$$Q(\boldsymbol{\pi}, \boldsymbol{\theta} | \boldsymbol{\pi^{(t)}}, \boldsymbol{\theta^{(t)}}) = E_{\boldsymbol{Z}|\boldsymbol{R}, \boldsymbol{\pi^{(t)}}, \boldsymbol{\theta^{(t)}}} log P(\boldsymbol{R}, \boldsymbol{Z} | \boldsymbol{\pi}, \boldsymbol{\theta})$$

$$= \sum_{i} \sum_{k} \left\{ E(Z_{ik} | \boldsymbol{R}, \boldsymbol{\pi^{(t)}}, \boldsymbol{\theta^{(t)}}) log(\theta_{k}) + (1 - E(Z_{ik} | \boldsymbol{R}, \boldsymbol{\pi^{(t)}}, \boldsymbol{\theta^{(t)}})) log(1 - \theta_{k}) \right\} \sum_{j} [S_{i} = j] log(\pi_{j})$$

$$E(Z_{ik}|\mathbf{R}, \boldsymbol{\pi^{(t)}}, \boldsymbol{\theta^{(t)}}) = P\{Z_{ik} = 1 | R_i, \boldsymbol{\pi^{(t)}}, \boldsymbol{\theta^{(t)}} \}$$

$$= \frac{P(R_i, \boldsymbol{\pi^{(t)}}, \boldsymbol{\theta^{(t)}}, Z_{ik} = 1)}{P(R_i, \boldsymbol{\pi^{(t)}}, \boldsymbol{\theta^{(t)}})}$$

$$= \frac{P(Z_{ik} = 1 | \boldsymbol{\theta^{(t)}}) P(R_i | \boldsymbol{\pi^{(t)}}, Z_{ik} = 1)}{\sum_k P(Z_{ik} = 1 | \boldsymbol{\theta^{(t)}}) P(R_i | \boldsymbol{\pi^{(t)}}, Z_{ik} = 1)}$$

$$= \frac{\theta_k^{(t)} \prod_j \pi_j^{(t)[S_i = j]}}{\sum_k \theta_k^{(t)} \prod_j \pi_j^{(t)[S_i = j]}}$$

$$= \frac{\theta_k^{(t)}}{\sum_k \theta_k^{(t)}}$$

• M step: update θ , π by maximizing Q function. Introducing Lagrange multiplier to the Q function, taking derivatives and setting to zero yields

$$\widehat{\pi}_j^{(t+1)} = \frac{N_j}{I}$$

where $N_j = \{R_i, i = 1, \dots, I | S_i = j\}$, the number of read starting at j, and I total number of reads

$$\theta_k^{(t+1)} = \frac{1}{I} \sum_i E(Z_{ik} | \mathbf{R}, \, \boldsymbol{\pi^{(t)}}, \, \boldsymbol{\theta^{(t)}})$$

4 Peak window calling for 5hmC

4.1 Simple peak calling with GC content

Since reads are generated from 5hmC's (unknown), it is more appropriate and reasonable to check the distribution of reads over C's (known), rather than over every possible base. To avoid multiple counting of one reads, the 5' end of every reads could be used when calling the coverage, instead of the entire length of the reads. Denote R by the total number of mapped reads, K the total number of C's in the whole genome. Under null hypothesis without 5hmC, the number of reads X, in a window with L C's is binomially distributed

$$X \sim Bin(R, \frac{L}{K})$$

where $\frac{L}{K}$ is the probability of one reads falling in the window. Let O be the observed reads in the window. P value is calculated as $Pr\{X \geq O|null\ distribution\}$ (note R function p value calculated with lower.tail=F as P[X > x]). There are two ways to understand the distribution of number of reads in a window

1. Poisson distribution: Under null, i.e. without 5hmC, R reads are randomly uniformly distributed across K C's. Then the number of reads, X in a window with L C's is Poisson distributed with parameter $\mu = \frac{R}{K}L$, that is

$$X \sim Pois(\frac{R}{K}L), X = 0, 1, \cdots, R.$$

Thus under null, p value is $Pr\{Y \geq O | \mu\}$, where O is the observed number of reads in the window.

2. Binomial distribution: Under null, each reads can be independently aligned to any of C with equal probability. So there are R independent Bernoulli trials. Each trail is defined as a success if it falls in a window with L C's, thus the success probability is naturally defined as $p = \frac{L}{K}$. The number of reads in the window is the number of successful Bernoulli trails of R trials, which is Binomial distributed by definition. Therefore

$$X \sim Binom(R, \frac{L}{K})$$

Under null, p value is $Pr\{Y \geq O|p\}$, where O is the observed number of reads in the window.

3. The relation between these two: when $R \to \infty$; $p \to 0$; $Rp \to \mu$, then $Binom(R, p) \to Pois(\mu)$.

Given a significance level, say 0.05, a cutoff could be determined to obtain the enriched windows. For the selected enriched windows, say M, calculate how many, say N contain bases from Tab-seq data. The ratio of enriched windows is $\frac{N}{M}$. Of more interest is the significance of enrichment. To test the enrichment, we need a control set treated as the

background. There are many ways to construct a control set. One way is to find a large non-enriched windows with loose cutoff (say p value =0.5) and test the enrichment significance enriched windows and non-enriched windows.

4.1.1 One minus strand

Mouse genome mm9.genome has 2654911517 bases, 507439500 (19.11324%) cytosines and 507585491 (19.11873%) Gumines. The minus Tab-seq bed file,

```
GSM882245_H1.all_chr.-.bed
```

has 52826143 bases. For the minus strand

He-lu-6_S6_L006_R1_001.adaptor_removed.minus.sorted.sort.bam

Calculate θ₀: the average probability of one C of being aligned with one read in genome.
 It has 2817845 mapped 5' reads after mapping to whole genome. Thus each C has the chance of 0.005275421 (θ₀) being aligned by one reads. In a window with 50 bps, the maximum number of reads is, assuming all bases are C's, 50*0.005275421=0.2637711.
 The largest P value (assuming all bases are C's) of a window with one reads is

```
> pbinom(1, 50, prob=0.005275421, lower.tail=F)
[1] 0.0288388 (<0.05)</pre>
```

In other words, if one window has less than 50 C's or more than one reads, its p value is going to be smaller than 0.03, thus all windows with (≥ 1) reads are enriched if significant level 0.05 is used.

In the minus Tab-seq bed file, there are 52826143 bases, of which 1836216 ($\sim 3.4760\%$) are overlapped with "enriched window" (reads ≥ 1).

• overlaps with Tab-seq data at base level. For each window with reads (effective windows), calculate p values of Binomial test, select windows with p values less than cutoffs

Table 1: Percentage of enriched windows and bases for minus strand jump-seq sample with varying p value cutoffs: In every case, windows with at least one reads are kept and called effective windows. The third column is #enriched window #effective window, and the fourth #bases overlappped with enriched window #ell bases in Tab-seq.

Length of window (bps)	p value	% enriched windows	% bases
20	< 0.1	100%	1.4206%
	< 0.01	100%	1.4206%
	< 0.001	97.7053 %	1.3880%
50	< 0.1	100%	3.4760%
	< 0.01	99.9078%	3.4728%
	< 0.001	43.5370%	1.5110%
100	< 0.1	100%	6.5835%
	< 0.01	85.0017%	5.5910%
	< 0.001	25.3482%	1.6717%

(enriched windows), compute how many bases from Tab-seq data are overlapped with selected enriched windows (see Table 1).

- overlaps with Tab-seq at windows level: For each window with reads (effective windows), calculate p values of Binomial test, select windows with p values less than cutoffs (enriched windows), compute how many windows are overlapped with Tab-seq data. (see Table 2).
- Choose background from effective window: randomly select 10,000 windows from effective windows ($reads \ge 1$), and calculate how often they are overlapped with tab-seq data. The probability (p_0) of a window overlapping with tab-seq is 0.2574, 0.4663, 0.6389 with window length of 20 bps, 50 bps, 100 bps, respectively. Use p_0 as background probability to see if there is enrichment for selected enriched windows by binomial test, Binomial.test(enriched window, effective window, p_0) under every scenario (Table 2), e.g.

Table 2: Enrichment analysis of selected windows with all tab-seq bases by Fisher exact test. Effective windows are those with at lease one reads and overlapped windows are those having overlapping bases with Tab-seq. Use windows with p value in interval (0.001, 0.1) as background. (1) 20 bps window: OR=0.9926, p value=0.4438 (2) 50 bps window: OR=0.9970, p value=0.2139 (3) 100 bps window: OR=1.0020, p value=0.4329.

win lgth	p value	# select win	# ovlp win	p_0	p value (p_0)	p_0^*	p value (p_0^*)	95% CI
20				0.2574		0.2461		
	effe win	2322689	585988		2.2e-16		2.2e-16	(0.2517, 0.2528)
	[0.001, 0.1)	53298	13545		0.08562		1.754 e - 05	(0.2504, 0.2579)
	$< 10^{-3}$	2269391	572443		2.2e-16		2.2e-16	(0.2517, 0.2528)
	$< 10^{-4}$	925185	233032		2.2e-16		2.2e-16	(0.2510, 0.2528)
	$< 10^{-5}$	455004	114547		2.2e-16		2.2e-16	(0.2505, 0.2530)
	$< 10^{-6}$	292179	73367		5.943e-15		$3.744e ext{-}10$	(0.2495, 0.2527)
	$< 10^{-7}$	195012	48737		3.514e-14		2.2e-16	(0.2480, 0.2518)
50				0.4673		0.4578		
	effe win	2207068	1042413		2.2e-16		2.2e-16	(0.4716, 0.4730)
	[0.001, 0.1)	1246176	589341		2.2e-16		2.2e-16	(0.4720, 0.4738)
	[0, 0.001)	960892	453072		2.2e-16		2.2e-16	(0.4705, 0.4725)
	$< 10^{-4}$	433526	204588		1.993e-09		2.2e-16	(0.4703, 0.4733)
	$< 10^{-5}$	162573	76682		0.000405		2.2e-16	(0.4692, 0.4741)
	$< 10^{-6}$	86843	41011		0.003525		2.2e-16	(0.4689, 0.4756)
	$< 10^{-7}$	45122	21410		0.002234		8.409e-13	(0.4699, 0.4791)
100				0.6389		0.6248		
	effe win	2070203	1329731		2.2e-16		2.2e-16	(0.6417, 0.6430)
	[0.001, 0.1)	1545444	992164		1.153e-15		2.2e-16	(0.6412, 0.6427)
	[0, 0.001)	524759	337567		3.836e-11		2.2e-16	(0.6420, 0.6446)
	$< 10^{-4}$	199225	128062		0.0002872		2.2e-16	(0.6407, 0.6449)
	$< 10^{-5}$	102304	65792		0.005127		2.2e-16	(0.6402, 0.6460)
	$< 10^{-6}$	44881	28880		0.04343		$2.404 e ext{-}16$	(0.6390, 0.6479)
	$< 10^{-7}$	24541	15813		0.07603		2.261e-10	(0.6383, 0.6503)

```
> binom.test(585988, 2322689, 0.2574)
```

Exact binomial test

- Choose background from genome: randomly select 100,000 windows from the whole genome, no matter it has reads or not and see how often they are overlapped with Tab-seq data. p_0^* is the average probability each window is overlapping with tab-seq data. p_0^* is slightly lower than p_0 , but they are close.
- Choose background with specified GC content: randomly select 10k windows from the whole genome with similar GC content as effective windows (working, not finished yet).
- Investigate overlapping with strong peaks in Tab-seq data.

 use minus strand

```
GSM882244_mESC.hmC_sites.FDR_0.0484.mm9.txt
```

It has 1028854 bases. Extending by one base in both two directions to build a window, then calculate how much they are overlapping with Tab-seq data (Table 3). The probability of a window with small p value overlapping with strong peaks is roughly 10 times higher than a randomly selected window from genome, indicating a good enrichment.

Table 3: Enrichment analysis of selected windows with strong peaks in Tab-seq by Fisher exact test. 20 bp windos: $p_0 = 0.068$, $p_0^* = 0.0075$. 50 bp window: $p_0 = 0.1001$, $p_0^* = 0.01802$. 100 bp window: $p_0 = 0.1449$, $p_0^* = 0.03356$. p_0 is the probability of a window selected from effective window (with reads) overlapping with Tab-seq data and p_0^* for windows randomly selected from genome overlapping with Tab-seq data.

win lgth	p value cutoff	# select win	# ovlp win	\widehat{p}	p value (p_0)	p value (p_0^*)	95% CI
20				$p_0^* = 0.0075$			
	effe win	2322689	150178	0.0647		2.2e-16	(0.0643, 0.0650)
	$< 10^{-3}$	2269391	146282	0.0645		2.2e-16	(0.0641, 0.0648)
	$< 10^{-4}$	925185	54902	0.0593		2.2e-16	(0.0589, 0.0598)
	$< 10^{-5}$	455004	34948	0.0768		2.2e-16	(0.0760, 0.0776)
	$< 10^{-6}$	292179	18329	0.0627		2.2e-10	(0.0619, 0.0636)
	$< 10^{-7}$	195012	11217	0.0575		2.2e-16	(0.0565, 0.0586)
50				$p_0^* = 0.01802$			
	effe win	2207068	217995	0.0988		2.2e-16	(0.0984, 0.0992)
	$< 10^{-3}$	960892	90072	0.0937		2.2e-16	(0.0932, 0.0943)
	$< 10^{-4}$	433526	54902	0.1266		2.2e-16	(0.1257, 0.1276)
	$< 10^{-5}$	162573	23377	0.1438		2.2e-16	(0.1421, 0.1455)
	$< 10^{-6}$	86843	14211	0.1636		2.2e-10	(0.1612, 0.1661)
	$< 10^{-7}$	45122	7554	0.1674		2.2e-16	(0.1640, 0.1709)

Table 4: Percentage of enriched windows and bases for minus strand jump-seq sample with varying p value cutoffs: In every case, windows with at least one reads are kept and called effective windows (4036049). The third column is $\frac{\#enriched\ window}{\#effective\ window}$, and the fourth $\frac{\#bases\ overlappped\ with\ enriched\ window}{\#all\ bases\ in\ Tab-seq}$.

Length of window (bps)	p value	% enriched windows	% bases
20	< 0.1	100%	2.4627%
	< 0.001	62.2195 %	1.5308%
	$< 10^{-4}$	31.0952%	0.7673%
	$< 10^{-5}$	21.0537%	0.5194%
	$< 10^{-6}$	14.3345%	0.3533%
	$< 10^{-7}$	12.2815%	0.3021%
50	< 0.1	100%	5.8486%
	< 0.001	34.1348 %	1.9978%
	$< 10^{-4}$	16.2127%	0.9484%
	$< 10^{-5}$	9.8753%	0.5793%
	$ < 10^{-6}$	5.7151 %	0.3356%
	$< 10^{-7}$	3.3675%	0.1975%

4.1.2 New Jump-seq data

Consider the minus strand

He-Lu-6_48ng-S3_L001_R1_001.adaptor_removed.bam.minus.sorted.5prime.bed It has 5767525 mappable 5' reads, about double of previous reads (2817845). $\theta_0=0.01079766$.

- Overlap with Tab-seq data at base level (Table 4).
- Overlap with tab-seq data and strong peaks (Table 5).

Table 5: Enrichment analysis of selected windows with Tab-seq and strong peaks by Fisher exact test. 20 bp windows: $p_0 = 0.24416$, $p_0^* = 0.00782$. p_0 is the probability of a window randomly selected from genome overlapping with Tab-seq data and p_0^* is the one overlapping with strong peaks.

win lgth	p value cutoff	# select win	# ovlp win	\widehat{p}	95% CI	# ovlp win	\widehat{p}	95% CI
20				$p_0 = 0.24416$			$p_0^* = 0.00782$	
	$< 10^{-3}$	2511208	632725	0.2520	(0.2514,0.2525)	146044	0.0582	(0.0579, 0.0584)
	$< 10^{-4}$	1255016	316767	0.2524	(0.2516, 0.2532)	93174	0.0742	(0.0738, 0.0747)
	$< 10^{-5}$	849739	214433	0.2524	(0.2514, 0.2533)	58210	0.0685	(0.0680, 0.0690)
	$< 10^{-6}$	578548	145902	0.2522	(0.2511, 0.2533)	40795	0.0705	(0.0699, 0.0712)
	$< 10^{-7}$	495687	124813	0.2518	(0.2506, 0.2530)	31146	0.0628	(0.0622, 0.0635)
50				$p_0 = 0.46248$			$p_0^* = 0.01769$	
	$< 10^{-3}$	1268238	598992	0.4722	(0.4713, 0.4730)	150324	0.1185	(0.1180, 0.1191)
	$< 10^{-4}$	602365	284732	0.4727	(0.4714, 0.4740)	80607	0.1338	(0.1330, 0.1347)
	$< 10^{-5}$	366905	173582	0.4731	(0.4715, 0.4747)	54884	0.1496	(0.1484, 0.1507)
	$< 10^{-6}$	212339	100566	0.4736	(0.4715, 0.4757)	34987	0.1648	(0.1632, 0.1664)
	$< 10^{-7}$	125116	59140	0.4727	(0.4699,0.4755)	21709	0.1735	(0.1714, 0.1756)

Table 6: Overlapping windows (20 bp) across two replicates in folder 160402. rep 1: $He - lu - 6_S6_L006_R1_001$ Jump - 48ng, rep 2: $He - lu - 7_S9_L006_R1_001$ Jump - 24ng.

p value cutoff	# win in rep 1:minus	# win in rep 2:minus	# win overlap	# win in rep 1:plus	# win in rep 2:plus	# win overlap
$< 10^{-1}$	1128808 (13.0238%)	2066833 (7.1130%)	147014	2233708 (12.8512%)	2066431 (13.8915%)	287059
$< 10^{-3}$	1128808 (12.9592%)	2056412 (7.1136%)	146285	2222939 (12.8778%)	2062893 (13.8769%)	286266
$< 10^{-4}$	895886 (4.6121%)	674043 (6.1300%)	41319	963803 (12.3004%)	893440 (13.2692%)	118552
$< 10^{-5}$	227294 (4.1528%)	237019 (3.9824%)	9439	338535 (8.8068%)	309478 (9.6334%)	29814
$< 10^{-6}$	130071 (4.7274%)	176563 (3.4826%)	6149	303740 (9.2174%)	279127 (10.0302%)	27997
$< 10^{-7}$	87052 (4.5950%)	130127(3.0739%)	4000	247880 (9.6506%)	229286 (10.4333%)	23922

4.1.3 Consistency among replicates

• consider minus strand of

He-lu-6_S6_L006_R1_001.umi_encoded_adaptor_removed.sorted.dedup.bam

. It has 1235702 reads, so $\theta_0 = \frac{1235702}{534146040} = 0.002313416$. Table 6 shows how many windows are overlapping with different p value cutoffs.

Table 7 shows the overlapping of peak windows among 48ng samples.

Table 7: Pairwise overlapping windows (20 bp) among 4 replicates with 48 ng and stringent peaks in Tab-seq. Each replicate has two strands, minus +plus. rep 1: $CHe - Lu - 1_S12_L005_R1_001.umi_encoded_adaptor_removed.sorted.dedup.bam$, rep 2: $He - Lu - 6_48ng - S3_L001_R1_001.umi_encoded_adaptor_removed.sorted.dedup.bam$, rep 3: $He - lu - 6_S6_L006_R1_001.umi_encoded_adaptor_removed.sorted.dedup.bam$, rep 4: $20160601_5hmC_Jump_Seq_48ng.umi_encoded_adaptor_removed.sorted.dedup.bam$. Both plus and minus strand use number of cytosines to calculate p values, i.e. adjust GC content.

p value cutoff	# win in rep 1:minus	# win in rep 2:minus	# win overlap	# win in rep 1:plus	# win in rep 2:plus	# win overlap
# reads	4054586	4552429		4049856	4541469	
< 10 ⁻¹	3602500(17.7475%)	3866837 (16.5342%)	639352	3558180 (17.8080%)	3833480 (16.5290%)	633635
$< 10^{-3}$	190132 (12.9337%)	307873 (7.9874%)	24591	245465 (15.8866%)	377615 (10.3269%)	38996
$< 10^{-4}$	53432 (13.4245%)	98989 (7.2463%)	7173	65964 (14.3487%)	112485 (8.4145%)	9465
$< 10^{-5}$	28292 (11.4661%)	44242 (7.3324%)	3244	40786 (13.5708%)	64676 (8.5580%)	5535
$< 10^{-6}$	12305 (15.3271%)	24418 (7.7238%)	1886	15992 (19.1971%)	35149 (8.7342%)	3070
$< 10^{-7}$	6818 (16.4418%)	10736 (10.4415%)	1121	12326 (13.5729%)	16328 (10.2462%)	1673
$< 10^{-15}$	539 (72.7273%)	639 (61.3459%)	392	658 (55.1672%)	800 (45.3750%)	363
$< 10^{-20}$	374 (83.4225%)	433 (72.0554%)	312	361 (75.6233%)	427 (63.9344%)	273
< 10 ⁻¹⁵	539 (16.8831%)	stringent peaks	91	658 (14.8936%)	stringent peaks	98
$< 10^{-15}$	stringent peaks	639 (18.7793%)	120	stringent peaks	800 (19.8750%)	159
$< 10^{-20}$	374 (15.2406%)	stringent peaks	57	361 (15.2355%)	stringent peaks	55
$< 10^{-20}$	stringent peaks	433 (17.5520%)	76	stringent peaks	427 (18.9696%)	81
p value cutoff	# win in rep 1:minus	# win in rep 3:minus	# win overlap	# win in rep 1:plus	# win in rep 3:plus	# win overlap
# reads	4054586	1235702		4049856	2443372	
$< 10^{-3}$	190132 (3.5044%)	86835 (7.6732%)	6663	245465 (7.1212%)	167452 (10.4388%)	17480
$< 10^{-7}$	6818 (3.3001%)	3145 (7.1542%)	225	12326 (6.8149%)	4651 (18.0606%)	840
$< 10^{-15}$	539 (16.3265%)	118 (74.5763%)	88	658 (42.2492%)	346 (80.3468%)	278
$< 10^{-20}$	374 (21.3904%)	85 (94.1176%)	80	361 (60.6648%)	242 (90.4959%)	219
p value cutoff	# win in rep 1:minus	# win in rep 4:minus	# win overlap	# win in rep 1:plus	# win in rep 4:plus	# win overlap
# reads	4054586	8051052		4049856	8041577	
$< 10^{-3}$	190132 (26.0288%)	374251 (13.2235%)	49489	245465 (32.1162%)	495838(15.8991%)	78834
$< 10^{-7}$	6818 (37.2863%)	23155 (11.0084%)	2549	12326 (37.1248%)	$34220\ (13.3723\%)$	4576
$< 10^{-15}$	539 (89.9815%)	1438 (33.7274%)	485	658 (78.7234%)	2298~(22.5413%)	518
$< 10^{-20}$	374 (97.0588%)	779~(46.5982%)	363	361 (92.7978%)	990 (33.8384%)	335
p value cutoff	# win in rep 2:minus	# win in rep 3:minus	# win overlap	# win in rep 2:plus	# win in rep 3:plus	# win overlap
# reads	4552429	1235702		4541469	2443372	
$< 10^{-3}$	307873(6.1798%)	86835 (21.9105%)	19026	377615 (11.9481%)	167452(26.9438%)	45118
< 10 ⁻⁷	10736 (4.4151%)	3145 (15.0715%)	474	16328(7.6617%)	4651 (26.8974%)	1251
$< 10^{-15}$	639 (14.5540%)	118 (78.8136%)	93	800 (36.8750%)	346 (85.2601%)	295
$< 10^{-20}$	433 (18.9376%)	85 (96.4706%)	82	427 (54.3326%)	242 (95.8678%)	232
p value cutoff	# win in rep 2:minus	# win in rep 4:minus	# win overlap	# win in rep 2:plus	# win in rep 4:plus	# win overlap
# reads	4552429	8051052		4541469	8041577	
$< 10^{-3}$	307873 (13.4734%)	374251(11.0837%)	41481	377615 (18.0523%)	495838 (13.7480%)	68168
$< 10^{-7}$	10736 (19.4206%)	23155 (9.0045%)	2085	16328 (20.2658%)	$34220 \ (9.6698\%)$	3309
$< 10^{-15}$	639 (77.6213%)	1438 (34.4924%)	496	800 (61.7500%)	2298~(21.4970%)	494
$< 10^{-20}$	433 (90.9931%)	779 (50.5777%)	394	427 (81.2646%)	990 (35.0505%)	347
p value cutoff	# win in rep 4:minus	# win in rep 3:minus	# win overlap	# win in rep 4:plus	# win in rep 3:plus	# win overlap
# reads	8051052	1235702		8041577	2443372	
< 10 ⁻³	374251 (3.4656%)	86835 (14.9364%)	12970	495838 (6.2734%)	167452 (18.5760%)	31106
$< 10^{-7}$	23155 (2.0428%)	3145 (15.0398%)	473	34220 (3.7668%)	4651 (27.7145%)	1289
$< 10^{-15}$	1438 (6.8150%)	118 (83.0509%)	98	2298 (13.1854%)	346 (87.5723%)	303
$< 10^{-20}$						

p value cutoff	# win in rep 1:minus	# win in rep 2:minus	# win overlap	# win in rep 1:plus	# win in rep 2:plus	# win overla
# reads	4054586	4552429		4049856	4541469	
$< 10^{-1}$	3602500(17.7475%)	3866837 (16.5342%)	639352	3603099 (17.7325%)	3866639 (16.5239%)	638921
$< 10^{-3}$	190132 (12.9337%)	307873 (7.9874%)	24591	191322 (12.9901%)	307266 (8.0884%)	24853
$< 10^{-4}$	53432 (13.4245%)	98989 (7.2463%)	7173	54190 (13.1279%)	98939 (7.1903%)	7114
$< 10^{-5}$	28292 (11.4661%)	44242 (7.3324%)	3244	28600 (10.9546%)	44078 (7.1079%)	3133
$< 10^{-6}$	12305 (15.3271%)	24418 (7.7238%)	1886	12498 (14.3143%)	24406 (7.3302%)	1789
$< 10^{-7}$	6818 (16.4418%)	10736 (10.4415%)	1121	6992 (14.7168%)	10682 (9.6330%)	1029
$< 10^{-15}$	539 (72.7273%)	639 (61.3459%)	392	487 (70.4312%)	592 (57.9392%)	343
$< 10^{-20}$	374 (83.4225%)	433 (72.0554%)	312	349 (79.6562%)	391 (71.0997%)	278
< 10 ⁻¹⁵	539 (16.8831%)	stringent peaks	91	487 (16.0164%)	stringent peaks	78
$< 10^{-15}$	stringent peaks	639 (18.7793%)	120	stringent peaks	592 (20.6081%)	122
$< 10^{-20}$	374 (15.2406%)	stringent peaks	57	312 (18.5897%)	stringent peaks	58
$< 10^{-20}$	stringent peaks	433 (17.5520%)	76	stringent peaks	349 (20.0573%)	70
p value cutoff	# win in rep 1:minus	# win in rep 3:minus	# win overlap	# win in rep 1:plus	# win in rep 3:plus	# win overla
# reads	4054586	1235702	# win overlap	4049856	2443372	# WIII OVEITE
< 10 ⁻³	190132 (3.5044%)	86835 (7.6732%)	6663	191322 (6.6359%)	164924 (7.6981%)	12696
$< 10^{-7}$	6818 (3.3001%)	3145 (7.1542%)	225	6992 (9.1390%)	3611 (17.6959%)	639
$< 10^{-15}$	539 (16.3265%)	118 (74.5763%)	88	487 (55.2361%)	319 (84.3260%)	269
$< 10^{-20}$	374 (21.3904%)	85 (94.1176%)	80	349 (63.8968%)	245 (91.0204%)	223
				1		
p value cutoff	# win in rep 1:minus	# win in rep 4:minus	# win overlap	# win in rep 1:plus	# win in rep 4:plus	# win overla
# reads	4054586	8051052	10.100	4049856	8041577	****
$< 10^{-3}$	190132 (26.0288%)	374251 (13.2235%)	49489	191322 (26.1685%)	374624 (13.3643%)	50066
$< 10^{-7}$	6818 (37.2863%)	23155 (11.0084%)	2549	6992 (37.7288%)	23255 (11.3438%)	2638
$< 10^{-15}$	539 (89.9815%)	1438 (33.7274%)	485	487 (92.1971%)	1394 (32.2095%)	449
< 10 ⁻²⁰	374 (97.0588%)	779 (46.5982%)	363	349 (96.8481%)	730 (46.3014%)	338
p value cutoff	# win in rep 1:minus	# win in rep 5:minus	# win overlap	# win in rep 1:plus	# win in rep 5:plus	# win overla
# reads	4054586			4049856		
$< 10^{-20}$	374		325	349		298
p value cutoff	# win in rep 2:minus	# win in rep 3:minus	# win overlap	# win in rep 2:plus	# win in rep 3:plus	# win overla
# reads	4552429	1235702		4541469	2443372	
$< 10^{-3}$	307873(6.1798%)	86835 (21.9105%)	19026	307266 (11.8015)	164924(21.9871%)	36262
$< 10^{-7}$	10736 (4.4151%)	3145 (15.0715%)	474	10682 (8.9777%)	3611 (26.5577%)	959
$< 10^{-15}$	639 (14.5540%)	118 (78.8136%)	93	592 (49.6622%)	319 (92.1630%)	294
$< 10^{-20}$	433 (18.9376%)	85 (96.4706%)	82	391 (59.8466%)	245 (95.5102%)	234
p value cutoff	# win in rep 2:minus	# win in rep 4:minus	# win overlap	# win in rep 2:plus	# win in rep 4:plus	# win overla
# reads	4552429	8051052		4541469	8041577	
$< 10^{-3}$	307873 (13.4734%)	374251(11.0837%)	41481	307266 (13.5528)	374624 (11.1160%)	41643
$< 10^{-7}$	10736 (19.4206%)	23155 (9.0045%)	2085	10682 (18.6388%)	23255 (8.5616%)	1991
$< 10^{-15}$	639 (77.6213%)	1438 (34.4924%)	496	592 (75.8446%)	1394 (32.2095%)	449
$< 10^{-20}$	433 (90.9931%)	779 (50.5777%)	394	391 (88.2353%)	730 (47.2603%)	345
p value cutoff	# win in rep 2:minus	# win in rep 5:minus	# win overlap	# win in rep 2:plus	# win in rep 5:plus	# win overla
# reads	4552429			4541469		
$< 10^{-20}$	433		368	391		331
p value cutoff	# win in rep 4:minus	# win in rep 3:minus	# win overlap	# win in rep 4:plus	# win in rep 3:plus	# win overla
# reads	8051052	1235702		8041577	2443372	
< 10 ⁻³	374251 (3.4656%)	86835 (14.9364%)	12970	374624 (6.5084%)	164924 (14.7838%)	24382
< 10 ⁻⁷	23155 (2.0428%)	3145 (15.0398%)	473	23255 (4.1539%)	3611 (26.7516%)	966
$< 10^{-15}$	1438 (6.8150%)	118 (83.0509%)	98	1394 (21.3773%)	319 (93.4169%)	298
$< 10^{-20}$	779(10.7831%)	85 (98.8235%)	84	730 (32.6027%)	245 (97.1429%)	238
	T T			1		
p value cutoff	# win in rep 3:minus	# win in rep 5:minus	# win overlap	# win in rep 3:plus	# win in rep 5:plus	# win overla
# reads	1235702			2443372		
$< 10^{-20}$	85		83	245		232

4.2 Realignment without mismatches

Not allowing mismatch in alignment and see the enrichment in Table 9. Enlarge stringent peaks with cutoff 10^{-20} from 20 bp to 100 bp and see the overlap with all Tab-seq, not stringent Tab-seq peaks in Table 10.

From the overlap of rep 1 with strong Tab-seq peaks in Table 11, increasing overlap with decreasing cutoff is observed.

4.3 FDR via Benjamini-Hochberg procedure

Because we only look at windows with reads, so the number of windows with reads is in fact the number of tests, say m. Each test has its own p value, sort these m p values in ascending order, as $p_1 < p_2 < \cdots < p_m$. Smaller the p value, the more likely this window contains 5hmC. To control FDR at level α

- 1. find the largest k, such that $p_k \leq \frac{k}{m}\alpha$
- 2. pick the windows with p value p_i , $i = 1, \dots, k$.

Table 12 summarizes the overlapping rate of replicates and combined data at different FDR levels with strong Tab-seq data.

To further check the consistency among 5 replicates and the combined data. Every originally called 20 bp windows is extended by 2kbp, 1kbp upstream and 1kbp downstream. Table 15, 16, 17, and 18 present consistency at different p values used to call peak windows. Note that extended windows have overlaps even within one single replicate, so the overlapping windows among replicate 1 and 2 are two different window sets. One is for replicate 1 and the other is for replicate 2.

Table 9: Pairwise overlapping windows (21 bp) among 5 replicates (without mismatches after realignment) with 48 ng and stringent peaks in Tab-seq. Each replicate has two strands, minus+plus. rep 1: $CHe - Lu - 1_S12_L005_R1_001$, rep 2: $He - Lu - 6_48ng - S3_L001_R1_001$, rep 3: $He - lu - 6_S6_L006_R1_001$, rep 4: 20160601_5 $hmC_Jump_Seq_48ng$, rep 5: $He - Lu - lu - 1 - 48ng_S1_L006_R1_001$. Plus strand uses Guanines and minus strand uses cytosines to calculate p values, i.e. adjust GC content. The genome-wide overlapping rate with stringent Tab-seq peaks is 0.0264.

n value autoff	# win in ron 1 minus	# win in ran 2 minus	# win overlan	# win in ron Ludus	# win in ron 2mlus	# win overlan
p value cutoff	# win in rep 1:minus	# win in rep 2:minus	# win overlap	# win in rep 1:plus	# win in rep 2:plus	# win overlap
# reads	719299	3793291		3516149	3781024	
< 10 ⁻¹	3917124 (15.3693%)	3284121 (18.3318%)	602037	3122039 (15.3393%)	3221423 (14.8660%)	478899
< 10 ⁻³	295938 (9.0603%)	258535 (10.3711%)	26813	206482 (9.3103%)	256002 (7.5093%)	19224
< 10-4	289627 (4.3977%)	65098 (19.5659%)	12737	71888 (7.1180%)	64541 (7.9283%)	5117
< 10 ⁻⁵	84008 (4.9662%)	34950 (11.9371%)	4172	27397 (8.0739%)	34701 (6.3745%)	2212
< 10 ⁻⁶	41161 (5.9814%)	14962 (16.4550%)	2462	12455 (9.0486%)	14593 (7.7229%)	1127
< 10 ⁻⁷	22324 (6.6834%)	8230 (18.1288%)	1492	7675 (9.4202%)	7911 (9.1392%)	723
< 10 ⁻¹⁵	964 (40.9751%)	512 (77.1484%)	395	418 (61.0048%)	427 (35.0757%)	255
< 10 ⁻²⁰	524 (59.1603%)	360 (86.1111%)	310	263 (79.4677%)	292 (71.5753%)	209
< 10 ⁻¹⁵	964 (14.0042%)	stringent peaks	135	418 (18.4211%)	stringent peaks	77
< 10 ⁻¹⁵	stringent peaks	512 (19.7266%)	101	stringent peaks	427 (21.3115%)	91
< 10 ⁻²⁰	524 (12.2137%)	stringent peaks	64	263 (19.3916%)	stringent peaks	51
$< 10^{-20}$	stringent peaks	360 (15.5556%)	56	stringent peaks	292 (20.2055%)	59
p value cutoff	# win in rep 1:minus	# win in rep 3:minus	# win overlap	# win in rep 1:plus	# win in rep 3:plus	# win overlap
# reads		2021689			2014714	
< 10 ⁻³	295938 (1.6726%)	47006 (10.5306%)	4950	206482 (1.5561%)	36761(8.7402%)	3213
$< 10^{-7}$	22324 (0.8287%)	976 (18.9549%)	185	7675 (1.6808%)	719 (17.9416%)	129
$< 10^{-15}$	964 (8.9212%)	90 (95.5556%)	86	418 (17.9426%)	81 (92.5926%)	75
$< 10^{-20}$	524 (13.9313%)	79 (92.4051%)	73	263 (25.4753%)	71 (94.3662%)	67
p value cutoff	# win in rep 1:minus	# win in rep 4:minus	# win overlap	# win in rep 1:plus	# win in rep 4:plus	# win overlap
# reads	# win in rep 1.ininus	6995038	# win overlap	# win in rep 1.pius	6982592	# WIII OVERIAD
< 10 ⁻³	295938 (4.6611%)	81879 (16.8468%)	13794	206482 (5.8310%)	81497 (14.7736%)	12040
$< 10^{-7}$	22324 (3.1939%)	3818 (18.6747%)	713	7675 (6.8143%)	3981 (13.1374%)	523
$< 10^{-15}$	964 (12.3444%)		119	418 (21.5311%)	,	90
< 10 -20	, ,	229 (51.9651%)			203(44.3350%)	79
< 10	524 (17.9389%)	133 (70.6767%)	94	263 (30.0380%)	120 (65.8333%)	79
p value cutoff	# win in rep 1:minus	# win in rep 5:minus	# win overlap	# win in rep 1:plus	# win in rep 5:plus	# win overlap
# reads		4754910			4741743	
$< 10^{-15}$	964 (44.0871%)	746 (56.9705%)	425	418 (20.3349%)	165 (51.5152%)	85
$< 10^{-20}$	524 (61.4504%)	423 (76.1229%)	322	263 (29.6578%)	102 (76.4706%)	78
p value cutoff	# win in rep 2:minus	# win in rep 3:minus	# win overlap	# win in rep 2:plus	# win in rep 3:plus	# win overlap
$< 10^{-3}$	258535 (3.9766%)	47006 (21.8717%)	10281	256002 (3.0840%)	36761 (21.4766%)	7895
$< 10^{-7}$	8230 (2.8919)	976 (24.3853%)	238	7911 (2.1995%)	719 (24.2003%)	174
$< 10^{-15}$	512 (16.4063%)	90 (93.3333%)	84	427 (17.5644%)	81 (92.5926%)	75
$< 10^{-20}$	360 (20.8333%)	79 (94.9367%)	75	292 (23.6301%)	71(97.1831%)	69
p value cutoff	# win in rep 2:minus	# win in rep 4:minus	# win overlap	# win in rep 2:plus	# win in rep 4:plus	# win overlap
< 10 ⁻³	258535 (2.9540%)	81879 (9.3272%)	7637	256002 (3.0570%)	81497 (9.6028%)	7826
< 10 ⁻⁷	8230 (3.9004%)	3818 (8.4075%)	321	7911 (3.8933%)	3981 (7.7368%)	308
< 10 ⁻¹⁵	512 (18.9453%)	229 (42.3581%)	97	427 (19.6721%)	203 (41.3793%)	84
< 10-20	360 (24.7222%)	133 (66.9173%)	89	292 (27.3973%)	120 (66.6667%)	80
				,		
p value cutoff $< 10^{-15}$	# win in rep 2:minus			# win in rep 2:plus		# win overlap
< 10 ⁻¹⁰ < 10 ⁻²⁰	512 (70.3125%)	746 (48.2574%)	360	427(20.3747%)	165 (52.7273%)	87
	360 (83.0556%)	423 (70.6856%)	299	292 (27.3973%)	102 (78.4314%)	80
p value cutoff	# win in rep 3:minus	# win in rep 4:minus	# win overlap	# win in rep 3:plus	# win in rep 4:plus	# win overlap
< 10 ⁻³	47006 (8.8053%)	81879 (5.0550%)	4139	36761 (11.3000%)	81497 (5.0971%)	4154
$< 10^{-7}$	976 (17.9303%)	3818 (4.5836%)	175	719 (24.0612%)	3981 (4.3456%)	173
< 10 ⁻¹⁵	90 (90.0000%)	229 (35.3712%)	81	81 (96.2963%)	203 (38.4236%)	78
$< 10^{-20}$	79 (92.4051%)	133 (54.8872%)	73	71 (95.7747%)	120 (56.6667%)	68
p value cutoff	# win in rep 3:minus	# win in rep 5:minus	# win overlap	# win in rep 3:plus	# win in rep 5:plus	# win overlap
$< 10^{-15}$	90 (92.2222%)	746 (11.1220%)	83	81 (95.0617%)	165 (46.6667%)	77
$< 10^{-20}$	79 (96.2025%)	413 (17.9669%)	76	71 (97.1831%)	102 (67.6471%)	69
p value cutoff	# win in rep 4:minus	# win in rep 5:minus	# win overlap	# win in rep 4:plus	# win in rep 5:plus	# win overlap
< 10 ⁻¹⁵	# win in rep 4:minus 229 (48.9083%)		# win overlap	203 (50.2463%)	# Will in Fep 3:plus 165 (61.8182%)	# win overlap
< 10	133 (71.4286%)	746 (15.0134%) 413 (22.4586%)		120 (75.0000%)	103 (61.8182%) 102 (88.2353%)	90
\ 10	100 (11.420070)	413 (22.430070)	$^{95}18$	120 (13.000070)	102 (00.230370)	30

Table 10: Extend the most stringent enriched windows (with p value cutoff of 10^{-20}) of 20 bp to 100 bp, and calculate the overlapping with Tab-seq. The genome-wide overlapping rate (background) is 62.8767%, i.e. randomly pick a number of windows from whole genome and compute how many are overlapping with Tab-seq.

replicate	minus: #overlap win/#all win (ratio)	plus: #overlap win/#all win (ratio)
rep 1	293/524 (55.9160%)	204/263 (77.5665%)
rep 2	267/360 (74.1667%)	230/292 (78.7671%)
rep 3	62/79 (78.4810%)	60/71 (84.5070%)
rep 4	98/133 (73.6842%)	95/120 (79.1667%)
rep 5	312/423 (73.7589%)	86/102 (84.3137%)

Table 11: Overlap of rep 1 with strong tab-seq peaks at large p value cutoffs.

					<u> </u>	
p value cutoff	# win in rep 1:minus	strong peaks	# win overlap	# win in rep 1:plus	strong peaks	# win overlap
# reads	719299			3516149		
< 10 ⁻¹	3917124 (4.0013%)		156734	3122039 (5.0633%)		158078
$< 10^{-3}$	295938 (9.2094%)		27254	206482(10.8077%)		22136
$< 10^{-4}$	289627 (9.2070%)		26666	71888(10.5497%)		7584
$< 10^{-5}$	84008 (9.2813%)		7797	27397 (14.9907%)		4107
$< 10^{-6}$	41161 (13.4545%)		5538	12455 (14.7652%)		1839
$< 10^{-7}$	22324 (12.7800%)		2853	7675 (15.5570%)		1194

Table 12: Overlap of peak windows called at different FDR levels with strong Tab-seq data. Combine data: simply combine 5 replicates together.

replicates at FDR level	# overlap win	#total win	ratio
20160601_5hmC_Jump_Seq_48ng.minus.21.bp.FDR0.001.txt.bed	3672	13448	.27305175490779298036
20160601_5hmC_Jump_Seq_48ng.minus.21.bp.FDR0.01.txt.bed	11075	47555	.23288823467563873409
20160601_5hmC_Jump_Seq_48ng.minus.21.bp.FDR0.05.txt.bed	34377	196590	.17486647337097512589
20160601_5hmC_Jump_Seq_48ng.minus.21.bp.FDR0.1.txt.bed	41088	270292	.15201337812439879833
20160601_5hmC_Jump_Seq_48ng.minus.21.bp.FDR0.5.txt.bed	151673	1883979	.08050673600926549605
20160601_5hmC_Jump_Seq_48ng.minus.21.bp.FDR1e-04.txt.bed	1518	4991	.30414746543778801843
20160601_5hmC_Jump_Seq_48ng.plus.21.bp.FDR0.001.txt.bed	3846	13740	.27991266375545851528
20160601_5hmC_Jump_Seq_48ng.plus.21.bp.FDR0.01.txt.bed	11165	47391	.23559325610347956363
20160601_5hmC_Jump_Seq_48ng.plus.21.bp.FDR0.05.txt.bed	34697	196399	.17666586897081960702
20160601_5hmC_Jump_Seq_48ng.plus.21.bp.FDR0.1.txt.bed	41548	271946	.15278033138931993851
20160601_5hmC_Jump_Seq_48ng.plus.21.bp.FDR0.5.txt.bed	152237	1882239	.08088080206605006059
20160601_5hmC_Jump_Seq_48ng.plus.21.bp.FDR1e-04.txt.bed	1606	5131	.31299941531865133502
CHe-Lu-1_S12_L005_R1_001.minus.21.bp.FDR0.001.txt.bed	42863	261847	.16369482942328917268
CHe-Lu-1_S12_L005_R1_001.minus.21.bp.FDR0.01.txt.bed	47663	295939	.16105683941623104761
CHe-Lu-1_S12_L005_R1_001.minus.21.bp.FDR0.05.txt.bed	279361	3917125	.07131786705811022114
CHe-Lu-1_S12_L005_R1_001.minus.21.bp.FDR0.1.txt.bed	279361	3917125	.07131786705811022114
CHe-Lu-1_S12_L005_R1_001.minus.21.bp.FDR0.5.txt.bed	279361	3917125	.07131786705811022114
CHe-Lu-1_S12_L005_R1_001.minus.21.bp.FDR1e-04.txt.bed	9580	45704	.20960966217398914755
CHe-Lu-1_S12_L005_R1_001.plus.21.bp.FDR0.001.txt.bed	7370	27399	.26898791926712653746
CHe-Lu-1_S12_L005_R1_001.plus.21.bp.FDR0.01.txt.bed	25642	139679	.18357806112586716686
CHe-Lu-1_S12_L005_R1_001.plus.21.bp.FDR0.05.txt.bed	60500	625548	.09671520011254132376
CHe-Lu-1_S12_L005_R1_001.plus.21.bp.FDR0.1.txt.bed	280202	3122041	.08974962212219506406
CHe-Lu-1_S12_L005_R1_001.plus.21.bp.FDR0.5.txt.bed	280207	3122229	.08974581941298988639
CHe-Lu-1_S12_L005_R1_001.plus.21.bp.FDR1e-04.txt.bed	2451	8424	.29095441595441595441
combine.5rep.minus.20.bp.FDR0.001.txt.bed	126613	528589	.23953014534922217450
combine.5rep.minus.20.bp.FDR0.01.txt.bed	221525	1152742	.19217222934533486244
combine.5rep.minus.20.bp.FDR0.05.txt.bed	345967	2265802	.15269074702908727240
combine.5rep.minus.20.bp.FDR0.1.txt.bed	449190	3326524	.13503284509596203123
combine.5rep.minus.20.bp.FDR0.5.txt.bed	946516	13125844	.07211086768972722820
combine.5rep.minus.20.bp.FDR1e-04.txt.bed	78466	293794	.26707829295356610414
combine.5rep.plus.20.bp.FDR0.001.txt.bed	126965	529530	.23976922931656374520
combine.5rep.plus.20.bp.FDR0.01.txt.bed	222223	1163405	.19101086895792952583
combine.5rep.plus.20.bp.FDR0.05.txt.bed	345979	2266487	.15264989386658736626
combine.5rep.plus.20.bp.FDR0.1.txt.bed	450667	3338122	.13500615016467343015
combine.5rep.plus.20.bp.FDR0.5.txt.bed	947575	13132135	.07215696457582868284
combine.5rep.plus.20.bp.FDR1e-04.txt.bed	78431	294642	.26619083497939872794

He-Lu-6_48ng-S3_L001_R1_001.minus.21.bp.FDR0.001.txt.bed	10121	33363	.30336000959146359739
He-Lu-6_48ng-S3_L001_R1_001.minus.21.bp.FDR0.01.txt.bed	28012	119650	.23411617216882574174
He-Lu-6_48ng-S3_L001_R1_001.minus.21.bp.FDR0.05.txt.bed	79335	353150	.22464958233045448109
He-Lu-6_48ng-S3_L001_R1_001.minus.21.bp.FDR0.1.txt.bed	359388	3204908	.11213676024397580211
He-Lu-6_48ng-S3_L001_R1_001.minus.21.bp.FDR0.5.txt.bed	367149	3286094	.11172808811920778894
He-Lu-6_48ng-S3_L001_R1_001.minus.21.bp.FDR1e-04.txt.bed	3917	11558	.33889946357501297802
He-Lu-6_48ng-S3_L001_R1_001.plus.21.bp.FDR0.001.txt.bed	10292	33834	.30419105042265177040
He-Lu-6_48ng-S3_L001_R1_001.plus.21.bp.FDR0.01.txt.bed	29025	123456	.23510400466562986003
He-Lu-6_48ng-S3_L001_R1_001.plus.21.bp.FDR0.05.txt.bed	79290	349400	.22693188322839152833
He-Lu-6_48ng-S3_L001_R1_001.plus.21.bp.FDR0.1.txt.bed	358739	3153811	.11374778006671928026
He-Lu-6_48ng-S3_L001_R1_001.plus.21.bp.FDR0.5.txt.bed	365398	3223339	.11336009026664586008
He-Lu-6_48ng-S3_L001_R1_001.plus.21.bp.FDR1e-04.txt.bed	3859	11177	.34526259282455041603
He-lu-6_S6_L006_R1_001.minus.21.bp.FDR0.001.txt.bed	1495	4607	.32450618623833297156
He-lu-6_S6_L006_R1_001.minus.21.bp.FDR0.01.txt.bed	10529	43142	.24405451763942329980
He-lu-6_S6_L006_R1_001.minus.21.bp.FDR0.05.txt.bed	68556	590877	.11602414715753024741
He-lu-6_S6_L006_R1_001.minus.21.bp.FDR0.1.txt.bed	86769	719312	.12062776653246435482
He-lu-6_S6_L006_R1_001.minus.21.bp.FDR0.5.txt.bed	86769	719312	.12062776653246435482
He-lu-6_S6_L006_R1_001.minus.21.bp.FDR1e-04.txt.bed	341	996	.34236947791164658634
He-lu-6_S6_L006_R1_001.plus.21.bp.FDR0.001.txt.bed	1037	3471	.29876116392970325554
He-lu-6_S6_L006_R1_001.plus.21.bp.FDR0.01.txt.bed	7860	33572	.23412367449064696771
He-lu-6_S6_L006_R1_001.plus.21.bp.FDR0.05.txt.bed	53557	479084	.11179041671189186030
He-lu-6_S6_L006_R1_001.plus.21.bp.FDR0.1.txt.bed	68887	588270	.11710099104152854981
He-lu-6_S6_L006_R1_001.plus.21.bp.FDR0.5.txt.bed	68887	588270	.11710099104152854981
He-lu-6_S6_L006_R1_001.plus.21.bp.FDR1e-04.txt.bed	225	728	.30906593406593406593
He-Lu-lu-1-48ng_S1_L006_R1_001.minus.21.bp.FDR0.001.txt.bed	14389	50552	.28463760088621617344
He-Lu-lu-1-48ng_S1_L006_R1_001.minus.21.bp.FDR0.01.txt.bed	36702	154419	.23767800594486429778
He-Lu-lu-1-48ng_S1_L006_R1_001.minus.21.bp.FDR0.05.txt.bed	107450	508381	.21135723010891437720
He-Lu-lu-1-48ng_S1_L006_R1_001.minus.21.bp.FDR0.1.txt.bed	375240	3595093	.10437560307897459119
He-Lu-lu-1-48ng_S1_L006_R1_001.minus.21.bp.FDR0.5.txt.bed	420195	4006146	.10488759021763061056
He-Lu-lu-1-48ng_S1_L006_R1_001.minus.21.bp.FDR1e-04.txt.bed	7007	21911	.31979371092145497695
He-Lu-lu-1-48ng_S1_L006_R1_001.plus.21.bp.FDR0.001.txt.bed	4163	14587	.28539110166586686775
He-Lu-lu-1-48ng_S1_L006_R1_001.plus.21.bp.FDR0.01.txt.bed	10524	44263	.23776065788581885547
He-Lu-lu-1-48ng_S1_L006_R1_001.plus.21.bp.FDR0.05.txt.bed	32685	157129	.20801379758033208382
He-Lu-lu-1-48ng_S1_L006_R1_001.plus.21.bp.FDR0.1.txt.bed	117369	1142500	.10272997811816192560
He-Lu-lu-1-48ng_S1_L006_R1_001.plus.21.bp.FDR0.5.txt.bed	133782	1283664	.10421886101035785065
He-Lu-lu-1-48ng_S1_L006_R1_001.plus.21.bp.FDR1e-04.txt.bed	1955	6116	.31965336821451929365

Table 13: Number of called windows with specified number of CpG's from combined data at different FDR levels.

plus	10^{-6}	10^{-5}	10^{-4}	10^{-3}
0	23901	40883	69284	138497
1	71962	111009	176153	311038
2	20629	29831	43836	71433
3	2387	3420	4887	7770
4	207	291	422	699
5	23	35	51	78
6	2	3	9	15
minus	10-6	10-5	10^{-4}	10-3
0	20164	35322	61669	126625
1	71809	113766	180954	319252
2	21427	31456	45671	74011
3	2405	3543	4986	7895
4	210	314	459	720
5	18	29	42	66
6	2	6	10	15

Table 14: Pairwise overlapping windows (21 bp) extended by 2kbp, 1kbp upstream and 1kbp downstream among 5 replicates (without mismatches after realignment) with 48 ng. Each replicate has two strands, minus+plus. rep 1: $CHe - Lu - 1_S12_L005_R1_001$, rep 2: $He - Lu - 6_48ng - S3_L001_R1_001$, rep 3: $He - lu - 6_S6_L006_R1_001$, rep 4: 20160601 $_5hmC_Jump_Seq_48ng$, rep 5: $He - Lu - lu - 1 - 48ng_S1_L006_R1_001$. Plus strand uses Guanines and minus strand uses cytosines to calculate p values, i.e. adjust GC content.

.1	//	<i>"</i>	// 1.	//	// · · · · · · · · · · · · · · · · · ·	// 1.
p value cutoff	# win in rep 1:minus	# win in rep 2:minus	# win overlap	# win in rep 1:plus	# win in rep 2:plus	# win overlap
# reads	719299	3793291		3516149	3781024	
< 10 ⁻³	295938 (9.0603%)	258535 (10.3711%)	26813	206482 (9.3103%)	256002 (7.5093%)	19224
$< 10^{-7}$	22324 (6.6834%)	8230 (18.1288%)	1492	7675 (9.4202%)	7911 (9.1392%)	723
$< 10^{-15}$	964 (40.9751%)	512 (77.1484%)	395	418 (61.0048%)	427 (35.0757%)	255
$< 10^{-20}$	524 (59.1603%)	360 (86.1111%)	310	263 (79.4677%)	292 (71.5753%)	209
p value cutoff	# win in rep 1:minus	# win in rep 3:minus	# win overlap	# win in rep 1:plus	# win in rep 3:plus	# win overlap
# reads		2021689			2014714	
$< 10^{-3}$	295938 (1.6726%)	47006 (10.5306%)	4950	206482 (1.5561%)	36761(8.7402%)	3213
< 10 ⁻⁷	22324 (0.8287%)	976 (18.9549%)	185	7675 (1.6808%)	719 (17.9416%)	129
< 10 ⁻¹⁵	964 (8.9212%)	90 (95.5556%)	86	418 (17.9426%)	81 (92.5926%)	75
< 10-20	524 (13.9313%)	79 (92.4051%)	73	263 (25.4753%)	71 (94.3662%)	67
	,					
p value cutoff	# win in rep 1:minus	# win in rep 4:minus	# win overlap	# win in rep 1:plus	# win in rep 4:plus	# win overlap
# reads		6995038			6982592	
< 10 ⁻³	295938 (4.6611%)	81879 (16.8468%)	13794	206482 (5.8310%)	81497 (14.7736%)	12040
< 10 ⁻⁷	22324 (3.1939%)	3818 (18.6747%)	713	7675 (6.8143%)	3981 (13.1374%)	523
< 10 ⁻¹⁵	964 (12.3444%)	229 (51.9651%)	119	418 (21.5311%)	203(44.3350%)	90
< 10 ⁻²⁰	524 (17.9389%)	133 (70.6767%)	94	263 (30.0380%)	120 (65.8333%)	79
p value cutoff	# win in rep 1:minus	# win in rep 5:minus	# win overlap	# win in rep 1:plus	# win in rep 5:plus	# win overlap
# reads		4754910			4741743	
$< 10^{-3}$						
$< 10^{-7}$						
$< 10^{-15}$	964 (44.0871%)	746 (56.9705%)	425	418 (20.3349%)	165 (51.5152%)	85
$< 10^{-20}$	524 (61.4504%)	423 (76.1229%)	322	263 (29.6578%)	102 (76.4706%)	78
p value cutoff	# win in rep 2:minus	# win in rep 3:minus	# win overlap	# win in rep 2:plus	# win in rep 3:plus	# win overlap
< 10 ⁻³	258535 (3.9766%)	47006 (21.8717%)	10281	256002 (3.0840%)	36761 (21.4766%)	7895
< 10 ⁻⁷	8230 (2.8919)	976 (24.3853%)	238	7911 (2.1995%)	719 (24.2003%)	174
< 10 ⁻¹⁵	512 (16.4063%)	90 (93.3333%)	84	427 (17.5644%)	81 (92.5926%)	75
< 10 ⁻²⁰	360 (20.8333%)	79 (94.9367%)	75	292 (23.6301%)	71(97.1831%)	69
				<u> </u>		
p value cutoff	# win in rep 2:minus	# win in rep 4:minus	# win overlap	# win in rep 2:plus	# win in rep 4:plus	# win overlap
< 10 ⁻³	258535 (2.9540%)	81879 (9.3272%)	7637	256002 (3.0570%)	81497 (9.6028%)	7826
< 10 ⁻⁷	8230 (3.9004%)	3818 (8.4075%)	321	7911 (3.8933%)	3981 (7.7368%)	308
< 10 ⁻¹⁵	512 (18.9453%)	229 (42.3581%)	97	427 (19.6721%)	203 (41.3793%)	84
< 10 ⁻²⁰	360 (24.7222%)	133 (66.9173%)	89	292 (27.3973%)	120 (66.6667%)	80
p value cutoff	# win in rep 2:minus	# win in rep 5:minus	# win overlap	# win in rep 2:plus	# win in rep 5:plus	# win overlap
$< 10^{-3}$						
$< 10^{-7}$						
$< 10^{-15}$	512 (70.3125%)	746~(48.2574%)	360	427(20.3747%)	165~(52.7273%)	87
$< 10^{-20}$	360 (83.0556%)	423~(70.6856%)	299	292 (27.3973%)	102~(78.4314%)	80
p value cutoff	# win in rep 3:minus	# win in rep 4:minus	# win overlap	# win in rep 3:plus	# win in rep 4:plus	# win overlap
< 10 ⁻³	47006 (8.8053%)	81879 (5.0550%)	4139	36761 (11.3000%)	81497 (5.0971%)	4154
< 10 ⁻⁷	976 (17.9303%)	3818 (4.5836%)	175	719 (24.0612%)	3981 (4.3456%)	173
< 10 ⁻¹⁵	90 (90.0000%)	229 (35.3712%)	81	81 (96.2963%)	203 (38.4236%)	78
< 10 ⁻²⁰	79 (92.4051%)	133 (54.8872%)	73	71 (95.7747%)	120 (56.6667%)	68
p value cutoff	# win in rep 3:minus	# win in rep 5:minus		1		
< 10 ⁻³	# will ill rep 3:minus	# will in rep 5:minus	# win overlap	# win in rep 3:plus	# win in rep 5:plus	# win overlap
$ <10^{-7}$						
< 10 ⁻¹ < 10 ⁻¹⁵	00 (00 00000)	B40 (11 100000)	1	01 (05 001=27)	105 (10 000=77)	
	90 (92.2222%)	746 (11.1220%)	83	81 (95.0617%)	165 (46.6667%)	77
< 10 ⁻²⁰	79 (96.2025%)	413 (17.9669%)	76	71 (97.1831%)	102 (67.6471%)	69
p value cutoff	# win in rep 4:minus	# win in rep 5:minus	# win overlap	# win in rep 4:plus	# win in rep 5:plus	# win overlap
< 10 ⁻³						
$< 10^{-7}$				i.		
$< 10^{-15}$	229 (48.9083%)	746 (15.0134%)	112	203 (50.2463%)	165~(61.8182%)	102
$< 10^{-20}$	133 (71.4286%)	413 (22.4586%)	95	120 (75.0000%)	102 (88.2353%)	90
			99			

Table 15: overlapping among plus strands at p value of 10^{-3} . Each originally called 20 bp window has been extended by 2kbp, 1kbp upstream and 1 kbp downstream.

		_		1		I
replicates	#.win	#.overlap.win	ratio 1	#.win	#.overlap.win	ratio 2
20160601_5hmC_Jump_Seq_48ngCHe-Lu-1_S12_L005_R1_001.	81497	46017	0.5646466	206482	39860	0.1930435
20160601_5hmC_Jump_Seq_48ngcombine.5rep.plus.p10-3.bed	81497	78335	0.9612010	1181239	229625	0.1943933
20160601_5hmC_Jump_Seq_48ngHe-Lu-6_48ng-S3_L001_R1_001.	81497	49326	0.6052493	256002	48644	0.1900141
20160601_5hmC_Jump_Seq_48ngHe-lu-6_S6_L006_R1_001.	81497	31242	0.3833515	36761	22614	0.6151628
20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001.	81497	47461	0.5823650	72721	45059	0.6196147
CHe-Lu-1_S12_L005_R1_001combine.plus.p10-3.bed	206482	197304	0.9555506	1181239	669610	0.5668709
CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng-S3_L001_R1_001.	206482	125550	0.6080433	256002	142386	0.5561910
CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001.	206482	23964	0.1160585	36761	20046	0.5453062
CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	206482	35471	0.1717874	72721	38573	0.5304245
combine.plus.p10-3.bed.He-Lu-6_48ng-S3_L001_R1_001.	1181239	747015	0.6323995	256002	246000	0.9609300
combine.plus.p10-3.bed.He-lu-6_S6_L006_R1_001.	1181239	143851	0.1217798	36761	35437	0.9639836
combine.plus.p10-3.bed.He-Lu-lu-1-48ng_S1_L006_R1_001.	1181239	214637	0.1817050	72721	69584	0.9568625
He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001.	256002	33339	0.1302295	36761	24216	0.6587416
He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	256002	46450	0.1814439	72721	44529	0.6123266
He-lu-6_S6_L006_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	36761	21492	0.5846413	72721	28073	0.3860370
replicates	#.win	#.overlap.win	ratio 1	#.win	#.overlap.win	ratio 2
20160601_5hmC_Jump_Seq_48ngCHe-Lu-1_S12_L005_R1_001.	81879	50014	0.6108282	295938	46557	0.1573201
20160601_5hmC_Jump_Seq_48ngcombine.minus.p10-3.bed	81879	78695	0.9611134	1179048	229957	0.1950362
20160601_5hmC_Jump_Seq_48ngHe-Lu-6_48ng-S3_L001_R1_001.	81879	49165	0.6004592	258535	48112	0.1860947
20160601_5hmC_Jump_Seq_48ngHe-lu-6_S6_L006_R1_001.	81879	31635	0.3863628	47006	22535	0.4794069
20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001.	81879	47782	0.5835684	237765	45111	0.1897294
CHe-Lu-1_S12_L005_R1_00120160601_5hmC_Jump_Seq_48ng.	295938	46557	0.1573201	81879	50014	0.6108282
CHe-Lu-1_S12_L005_R1_001CHe-Lu-1_S12_L005_R1_001.	295938	241333	0.8154850	295938	241333	0.8154850
CHe-Lu-1_S12_L005_R1_001combine.minus.p10-3.bed	295938	230728	0.7796498	1179048	725730	0.6155220
CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng-S3_L001_R1_001.	295938	147700	0.4990910	258535	155462	0.6013190
CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001.	295938	38133	0.1288547	47006	28898	0.6147726
CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	295938	142020	0.4798978	237765	144462	0.6075831
combine.minus.p10-3.bed.He-Lu-6_48ng-S3_L001_R1_001.	1179048	750374	0.6364236	258535	248000	0.9592512
combine.minus.p10-3.bed.He-lu-6_S6_L006_R1_001.	1179048	193965	0.1645098	47006	45544	0.9688976
combine.minus.p10-3.bed.He-Lu-lu-1-48ng_S1_L006_R1_001.	1179048	720262	0.6108844	237765	228272	0.9600740
He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001.	258535	45140	0.1745992	47006	32110	0.6831043
He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	258535	157200	0.6080415	237765	151260	0.6361744
He-lu-6_S6_L006_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	47006	29019	0.6173467	237765	39326	0.1653986

Table 16: overlapping among plus strands at p value of 10^{-7} . Each originally called 20 bp window has been extended by 2kbp, 1kbp upstream and 1 kbp downstream.

	replicates	#.win	#.overlap.win	ratio 1	#.win	#.overlap.win	ratio 2
2	20160601_5hmC_Jump_Seq_48ngCHe-Lu-1_S12_L005_R1_001.	3981	697	0.1750816	7675	671	0.0874267
3	20160601_5hmC_Jump_Seq_48ngcombine.plus.p10-7.bed	3981	3766	0.9459935	179059	7632	0.0426228
4	20160601_5hmC_Jump_Seq_48ngHe-Lu-6_48ng-S3_L001_R1_001.	3981	511	0.1283597	7911	498	0.0629503
5	20160601_5hmC_Jump_Seq_48ngHe-lu-6_S6_L006_R1_001.	3981	252	0.0633007	719	225	0.3129346
6	20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001.	3981	845	0.2122582	3880	849	0.2188144
9	CHe-Lu-1_S12_L005_R1_001combine.plus.p10-7.bed	7675	6974	0.9086645	179059	16235	0.0906684
10	CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng-S3_L001_R1_001.	7675	1235	0.1609121	7911	1263	0.1596511
11	CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001.	7675	175	0.0228013	719	166	0.2308762
12	$CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.$	7675	449	0.0585016	3880	471	0.1213918
16	$combine.plus.p10-7.bed.He-Lu-6_48ng-S3_L001_R1_001.$	179059	16928	0.0945387	7911	7315	0.9246619
17	$combine.plus.p10-7.bed.He-lu-6_S6_L006_R1_001.$	179059	1312	0.0073272	719	652	0.9068150
18	$combine.plus.p10-7.bed.He-Lu-lu-1-48ng_S1_L006_R1_001.$	179059	6991	0.0390430	3880	3516	0.9061856
23	$\label{eq:he-Lu-6-48ng-S3_L001_R1_001} He-Lu-6_S6_L006_R1_001.$	7911	226	0.0285678	719	206	0.2865090
24	$\label{lem:he-Lu-6-48ng-S3_L001_R1_001} He-Lu-lu-1-48ng_S1_L006_R1_001.$	7911	458	0.0578941	3880	484	0.1247423
30	$\label{eq:he-lu-6-S6-L006-R1-001} He-lu-6-S6-L006-R1-001. He-lu-1-48ng-S1-L006-R1-001.$	719	224	0.3115438	3880	252	0.0649485
	replicates	#.win	#.overlap.win	ratio 1	#.win	#.overlap.win	ratio 2
2	20160601_5hmC_Jump_Seq_48ngCHe-Lu-1_S12_L005_R1_001.	3818	1014	0.2655841	22324	1028	0.0460491
3	20160601_5hmC_Jump_Seq_48ngcombine.minus.p10-7.bed	3818	3604	0.9439497	178221	7121	0.0399560
4	$20160601_5hmC_Jump_Seq_48ngHe-Lu-6_48ng-S3_L001_R1_001.$	3818	511	0.1338397	8230	491	0.0596598
5	$20160601_5hmC_Jump_Seq_48ngHe-lu-6_S6_L006_R1_001.$	3818	258	0.0675746	976	225	0.2305328
6	$20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001.$	3818	818	0.2142483	13920	808	0.0580460
9	CHe-Lu-1_S12_L005_R1_001combine.minus.p10-7.bed	22324	15394	0.6895718	178221	31640	0.1775324
10	CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng-S3_L001_R1_001.	22324	2596	0.1162874	8230	2221	0.2698663
11	CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001.	22324	329	0.0147375	976	294	0.3012295
12	CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	22324	3525	0.1579018	13920	3377	0.2426006
16	$combine.minus.p10-7.bed.He-Lu-6_48ng-S3_L001_R1_001.$	178221	17864	0.1002351	8230	7589	0.9221142
17	combine.minus.p10-7.bed.He-lu-6_S6_L006_R1_001.	178221	2101	0.0117887	976	896	0.9180328
18	combine.minus.p10-7.bed.He-Lu-lu-1-48ng_S1_L006_R1_001.	178221	28078	0.1575460	13920	12792	0.9189655
				0.0000740	076	290	0.2971311
23	He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001.	8230	315	0.0382746	976	290	0.2971311
\vdash	He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001. He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	8230 8230	315 2160	0.0382746	13920	2308	0.1658046

Table 17: overlapping among plus strands at p value of 10^{-15} . Each originally called 20 bp window has been extended by 2kbp, 1kbp upstream and 1 kbp downstream.

	*		_				
	replicates	#.win	#.overlap.win	ratio 1	#.win	#.overlap.win	ratio 2
2	$20160601_5hmC_Jump_Seq_48ngCHe-Lu-1_S12_L005_R1_001.$	203	99	0.4876847	418	93	0.2224880
3	20160601_5hmC_Jump_Seq_48ngcombine.plus.p10-15.bed	203	201	0.9901478	18235	257	0.0140938
4	$20160601_5hmC_Jump_Seq_48ngHe-Lu-6_48ng-S3_L001_R1_001.$	203	95	0.4679803	427	87	0.2037471
5	20160601_5hmC_Jump_Seq_48ngHe-lu-6_S6_L006_R1_001.	203	87	0.4285714	81	79	0.9753086
6	$20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001.$	203	110	0.5418719	165	103	0.6242424
9	CHe-Lu-1_S12_L005_R1_001combine.plus.p10-15.bed	418	408	0.9760766	18235	1098	0.0602139
10	CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng-S3_L001_R1_001.	418	285	0.6818182	427	317	0.7423888
11	CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001.	418	80	0.1913876	81	77	0.9506173
12	CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	418	89	0.2129187	165	88	0.5333333
16	combine.plus.p10-15.bed.He-Lu-6_48ng-S3_L001_R1_001.	18235	917	0.0502879	427	422	0.9882904
17	combine.plus.p10-15.bed.He-lu-6_S6_L006_R1_001.	18235	111	0.0060872	81	80	0.9876543
18	combine.plus.p10-15.bed.He-Lu-lu-1-48ng_S1_L006_R1_001.	18235	205	0.0112421	165	160	0.9696970
23	He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001.	427	79	0.1850117	81	78	0.9629630
24	He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	427	93	0.2177986	165	95	0.5757576
30	He-lu-6_S6_L006_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	81	79	0.9753086	165	82	0.4969697
21	20160601_5hmC_Jump_Seq_48ngCHe-Lu-1_S12_L005_R1_001.	229	125	0.5458515	964	126	0.1307054
31	20160601_5hmC_Jump_Seq_48ngcombine.minus.p10-15.bed	229	228	0.9956332	18335	274	0.0149441
41	20160601_5hmC_Jump_Seq_48ngHe-Lu-6_48ng-S3_L001_R1_001.	229	107	0.4672489	512	100	0.1953125
51	20160601_5hmC_Jump_Seq_48ngHe-lu-6_S6_L006_R1_001.	229	93	0.4061135	90	81	0.9000000
61	20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001.	229	117	0.5109170	746	115	0.1541555
91	CHe-Lu-1_S12_L005_R1_001combine.minus.p10-15.bed	964	763	0.7914938	18335	1610	0.0878102
101	CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng-S3_L001_R1_001.	964	489	0.5072614	512	413	0.8066406
111	CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001.	964	96	0.0995851	90	86	0.955556
121	CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	964	467	0.4844398	746	460	0.6166220
161	combine.minus.p10-15.bed.He-Lu-6_48ng-S3_L001_R1_001.	18335	1347	0.0734660	512	509	0.9941406
171	combine.minus.p10-15.bed.He-lu-6_S6_L006_R1_001.	18335	117	0.0063812	90	90	1.0000000
181	combine.minus.p10-15.bed.He-Lu-lu-1-48ng_S1_L006_R1_001.	18335	1429	0.0779384	746	726	0.9731903
231	He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001.	512	92	0.1796875	90	85	0.944444
241	He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	512	412	0.8046875	746	441	0.5911528
301	He-lu-6_S6_L006_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	90	84	0.9333333	746	93	0.1246649

Table 18: overlapping among plus strands at p value of 10^{-20} . Each originally called 20 bp window has been extended by 2kbp, 1kbp upstream and 1 kbp downstream.

replicates								
20160601.5hmC_Jump_Seq_48ngcombine.plus.p10-20.bed 120		*		" -				
4 20160601.5hmC_Jump_Seq_48ngHe-lu-0.48ng-S3_L001_R1_001. 120 85 0.7083333 292 81 0.2773973 5 20160601.5hmC_Jump_Seq_48ngHe-lu-6.S6_L006_R1_001. 120 75 0.6500000 71 69 0.9718310 6 20160601.5hmC_Jump_Seq_48ngHe-lu-lu-1-48ng_S1_L006_R1_001. 120 94 0.7833333 102 90 0.8823529 9 CHe-Lu-1.S12_L005_R1_001He-lu-6.48ng-S3_L001_R1_001. 263 2261 0.9923954 6624 631 0.0952957 10 CHe-Lu-1.S12_L005_R1_001He-lu-6.48ng-S3_L006_R1_001. 263 229 0.8707224 292 239 0.8184932 11 CHe-Lu-1.S12_L005_R1_001He-lu-6.48ng-S3_L006_R1_001. 263 74 0.2813688 71 69 0.9718310 12 CHe-Lu-1.S12_L005_R1_001He-lu-6.48ng-S3_L006_R1_001. 6624 662 0.0945048 292 291 0.9965753 16 combine.plus.p10-20.bed.He-lu-6.48ng-S3_L006_R1_001. 6624 98 0.0147947 71 71 71 1000000 18 L			-					
5 20160601_5hmC_Jump_Seq_48ngHe-lu-lu-l-48ng_SI_L006_R1_001. 120 78 0.6500000 71 69 0.9718310 6 20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-l-48ng_SI_L006_R1_001. 120 94 0.7833333 102 90 0.8823529 9 CHe-Lu-l_S12_L005_R1_001de-lu-6_48ng_S3_L001_R1_001. 263 261 0.9923954 6624 631 0.0952597 10 CHe-Lu-L_S12_L005_R1_001de-lu-6_48ng_S3_L001_R1_001. 263 229 0.8707224 292 239 0.8184932 11 CHe-Lu-L_S12_L005_R1_001He-lu-6_56_L006_R1_001. 263 81 0.3079848 102 82 0.833216 12 CHe-Lu-1_S12_L005_R1_001He-lu-6_86_L006_R1_001. 6624 626 6094 0.094504 292 291 0.9965753 16 combine-plus.p10-20.bed.He-Lu-6_56_L006_R1_001. 6624 98 0.0147947 71 71 1,000000 18 combine-plus.p10-20.bed.He-Lu-lu-1-48ng_S1_L006_R1_001. 292 75 0.2568493 71 70 0.9859155 24 He-Lu-6_4	3	20160601_5hmC_Jump_Seq_48ngcombine.plus.p10-20.bed	120	120	1.0000000	6624	136	
6 20160601.5hmC.Jump.Seq.48ngHe-Lu-lu-1-48ng.S1.L006.R1.001. 120 94 0.7833333 102 99 0.8823529 9 CHe-Lu-I.S12.L005.R1.001combine.plus.p10-20.bed 263 261 0.9923954 6624 631 0.995297 10 CHe-Lu-I.S12.L005.R1.001He-lu-6.Sel.L006.R1.001. 263 229 0.8707224 292 239 0.8184932 11 CHe-Lu-I.S12.L005.R1.001He-lu-lu-1-48ng.S1.L006.R1.001. 263 74 0.2813688 71 69 0.9718310 12 CHe-Lu-I.S12.L005.R1.001He-lu-lu-1-48ng.S1.L006.R1.001. 263 81 0.3079848 102 82 0.893916 16 combine.plus.p10-20.bed.He-Lu-6.48ng.S3.L006.R1.001. 6624 626 0.9945048 292 291 0.996573 17 combine.plus.p10-20.bed.He-Lu-6.S6.L006.R1.001. 6624 98 0.0147947 71 71 1,000000 18 Combine.plus.p10-20.bed.He-Lu-6.S6.L006.R1.001. 292 75 0.2568493 71 70 0.9859155 24 He-Lu-6.48ng.S3.L001.R1.001He-Lu-lu-1-	4	20160601_5hmC_Jump_Seq_48ngHe-Lu-6_48ng-S3_L001_R1_001.	120	85	0.7083333	292	81	0.2773973
9 CHe-Lu-I.S12_L005_R1_001combine.plus.p10-20.bed 263 261 0.9923954 6624 631 0.0952597 10 CHe-Lu-I.S12_L005_R1_001He-Lu-6_48ng-S3_L001_R1_001. 263 229 0.8707224 292 239 0.8184932 11 CHe-Lu-I.S12_L005_R1_001He-lu-6_48ng-S3_L001_R1_001. 263 74 0.2813688 71 69 0.9718310 12 CHe-Lu-I.S12_L005_R1_001He-lu-la-148ng_S1_L006_R1_001. 6624 626 0.0945048 292 291 0.9965753 17 combine.plus.p10-20.bed.He-lu-6_48ng-S3_L001_R1_001. 6624 98 0.0147947 71 71 1.000000 18 combine.plus.p10-20.bed.He-lu-lu-148ng_S1_L006_R1_001. 6624 98 0.0147947 71 71 1.000000 23 He-Lu-6_48ng-S3_L001_R1_001He-lu-lu-148ng_S1_L006_R1_001. 292 75 0.2568493 71 70 0.9859155 24 He-Lu-6_48ng-S3_L001_R1_001He-lu-lu-148ng_S1_L006_R1_001. 71 70 0.9859155 102 76 0.7450980 21 20160601_5hmC_Jump_S	5	20160601_5hmC_Jump_Seq_48ngHe-lu-6_S6_L006_R1_001.	120	78	0.6500000	71	69	0.9718310
CHe-Lu-1.S12_L005_R1_001_He-Lu-6.48ng-S3_L001_R1_001. 263 229 0.8707224 292 239 0.8184932	6	20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001.	120	94	0.7833333	102	90	0.8823529
CHe-Lu-I.S12_L005_R1.001.He-lu-6_S6_L006_R1.001. 263	9	CHe-Lu-1_S12_L005_R1_001combine.plus.p10-20.bed	263	261	0.9923954	6624	631	0.0952597
12 CHe-Lu-I.S12,L005,R1.001He-Lu-Iu-I-48ng.S1,L006,R1.001. 263 81 0.3079848 102 82 0.8039216 16 combine.plus.p10-20.bed.He-Lu-6.48ng-S3,L001,R1.001. 6624 626 0.0945048 292 291 0.9965753 17 combine.plus.p10-20.bed.He-Lu-6.S6,L006,R1.001. 6624 98 0.0147947 71 71 1.0000000 18 combine.plus.p10-20.bed.He-Lu-lu-1-48ng.S1,L006,R1.001. 6624 130 0.0196256 102 102 1.0000000 23 He-Lu-6.48ng-S3,L001,R1.001He-Lu-lu-1-48ng.S1,L006,R1.001. 292 75 0.2568493 71 70 0.985915 24 He-Lu-6.48ng-S3,L001,R1.001He-Lu-lu-1-48ng.S1,L006,R1.001. 71 70 0.9859155 102 76 0.745080 21 20160601,5hmC,Jump.Seq.48ng.CHe-Lu-1,S12,L005,R1.001. 133 100 0.7518797 523 96 0.1835564 31 20160601,5hmC,Jump.Seq.48ng.He-Lu-6,48ng-S3,L001,R1.001. 133 131 0.9849624 6422 151 0.935129 41 20160601,5hmC,	10	CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng-S3_L001_R1_001.	263	229	0.8707224	292	239	0.8184932
16 combine.plus.p10-20.bed.He-Lu-6.48ng-S3L.001.R1.001. 6624 626 0.0945048 292 291 0.996575 17 combine.plus.p10-20.bed.He-Lu-6.S6.L006.R1.001. 6624 98 0.0147947 71 71 1.000000 18 combine.plus.p10-20.bed.He-Lu-lu-1-48ng.S1.L006.R1.001. 6624 130 0.0196256 102 102 1000000 23 He-Lu-6.48ng-S3.L001.R1.001He-lu-6.S6.L006.R1.001. 292 75 0.2568493 71 70 0.9859155 24 He-Lu-6.48ng-S3.L001.R1.001He-Lu-lu-1-48ng.S1.L006.R1.001. 71 70 0.9859155 102 84 0.8235294 30 He-lu-6.S6.L006.R1.001He-Lu-lu-1-48ng.S1.L006.R1.001. 71 70 0.9859155 102 76 0.7450980 21 20160601.5hmC.Jump.Seq.48ngCHe-Lu-1.S12.L005.R1.001. 133 131 0.9849624 6422 151 0.0235129 41 20160601.5hmC.Jump.Seq.48ngHe-lu-6.S6.L006.R1.001. 133 87 0.6541353 79 74 0.9367089 51 20160601.5hmC.Jump.Seq.48ngHe	11	CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001.	263	74	0.2813688	71	69	0.9718310
17 combine.plus.p10-20.bed.He-lu-6.S6.L006.R1.001. 6624 98 0.0147947 71 71 1.000000 18 combine.plus.p10-20.bed.He-Lu-lu-1-48ng.S1.L006.R1.001. 6624 130 0.0196256 102 102 1.000000 23 He-Lu-6.48ng.S3.L001.R1.001.He-lu-lu-1-48ng.S1.L006.R1.001. 292 75 0.2568493 71 70 0.9859155 24 He-Lu-6.48ng.S3.L001.R1.001.He-Lu-lu-1-48ng.S1.L006.R1.001. 292 83 0.2842466 102 84 0.8235294 30 He-lu-6.56.L006.R1.001.He-Lu-lu-1-48ng.S1.L006.R1.001. 71 70 0.9859155 102 76 0.7450980 21 20160601.5hmC.Jump.Seq.48ngCHe-Lu-1.S12.L005.R1.001. 133 100 0.7518797 523 96 0.183564 31 20160601.5hmC.Jump.Seq.48ngHe-lu-6.48ng.S3.L001.R1.001. 133 131 0.9849624 6422 151 0.0251090 41 20160601.5hmC.Jump.Seq.48ngHe-lu-6.S6.L006.R1.001. 133 87 0.6541353 79 74 0.9367089 51 20160601.5hmC.Jump.Se	12	CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	263	81	0.3079848	102	82	0.8039216
18 combine.plus.p10-20.bed.He-Lu-lu-1-48ng.S1.L006.R1.001. 6624 130 0.0196256 102 102 1.000000 23 He-Lu-6.48ng-S3.L001.R1.001He-lu-6.S6.L006.R1.001. 292 75 0.2568493 71 70 0.9859155 24 He-Lu-6.48ng-S3.L001.R1.001He-Lu-lu-1-48ng.S1.L006.R1.001. 292 83 0.2842466 102 84 0.8235294 30 He-lu-6.S6.L006.R1.001He-Lu-lu-1-48ng.S1.L006.R1.001. 71 70 0.9859155 102 76 0.7450980 21 20160601.5hmC.Jump.Seq.48ngCHe-Lu-1.S12.L005.R1.001. 133 100 0.7518797 523 96 0.1835564 31 20160601.5hmC.Jump.Seq.48ngHe-Lu-6.48ng-S3.L001.R1.001. 133 131 0.9849624 6422 151 0.0235129 41 20160601.5hmC.Jump.Seq.48ngHe-Lu-6.56.L006.R1.001. 133 87 0.6541353 79 74 0.9367089 51 20160601.5hmC.Jump.Seq.48ngHe-Lu-il-148ng.S1.L006.R1.001. 133 102 0.7669173 423 97 0.2293144 91 CHe-Lu-1.S1	16	combine.plus.p10-20.bed.He-Lu-6_48ng-S3_L001_R1_001.	6624	626	0.0945048	292	291	0.9965753
23 He-Lu-6.48ng-S3.L001.R1.001.He-lu-6.S6.L006.R1.001. 292 75 0.2568493 71 70 0.9859155 24 He-Lu-6.48ng-S3.L001.R1.001He-Lu-lu-1-48ng_S1.L006.R1.001. 292 83 0.2842466 102 84 0.8235294 30 He-lu-6.S6.L006.R1.001He-Lu-lu-1-48ng_S1.L006.R1.001. 71 70 0.9859155 102 76 0.7450980 21 20160601.5hmC_Jump_Seq.48ngCHe-Lu-1.S12.L005.R1.001. 133 100 0.7518797 523 96 0.1835564 31 20160601.5hmC_Jump_Seq.48ngCHe-Lu-1.S12.L005.R1.001. 133 131 0.9849624 6422 151 0.0235129 41 20160601.5hmC_Jump_Seq.48ngHe-Lu-6.48ng-S3.L001.R1.001. 133 87 0.6541353 79 74 0.9367089 51 20160601.5hmC_Jump_Seq.48ngHe-Lu-lu-1-48ngS1.L006.R1.001. 133 87 0.6541353 79 74 0.9367089 61 20160601.5hmC_Jump_Seq.48ngHe-Lu-lu-1-48ngS1.L006.R1.001. 133 102 0.7669173 423 97 0.2293144 91 CHe-L	17	combine.plus.p10-20.bed.He-lu-6_S6_L006_R1_001.	6624	98	0.0147947	71	71	1.0000000
24 He-Lu-6.48ng-S3.L001.R1.001He-Lu-lu-1-48ng_S1.L006.R1.001. 292 83 0.2842466 102 84 0.8235294 30 He-lu-6.S6.L006.R1.001He-Lu-lu-1-48ng_S1.L006.R1.001. 71 70 0.9859155 102 76 0.7450980 21 20160601.5hmC_Jump_Seq_48ngCHe-Lu-1.S12.L005.R1.001. 133 100 0.7518797 523 96 0.1835564 31 20160601.5hmC_Jump_Seq_48ngCombine.minus.p10-20.bed 133 131 0.9849624 6422 151 0.0235129 41 20160601.5hmC_Jump_Seq_48ngHe-Lu-6.48ng-S3_L001.R1.001. 133 87 0.6541353 79 74 0.9367089 51 20160601.5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006.R1.001. 133 102 0.7669173 423 97 0.2293144 91 CHe-Lu-1.S12_L005_R1.001combine.minus.p10-20.bed 523 433 0.8279159 6422 1048 0.1631890 101 CHe-Lu-1.S12_L005_R1.001He-Lu-6.48ng-S3_L001_R1.001. 523 353 0.6749522 360 322 0.894444 11 CHe-Lu-	18	combine.plus.p10-20.bed.He-Lu-lu-1-48ng_S1_L006_R1_001.	6624	130	0.0196256	102	102	1.0000000
30 He-lu-6_S6_L006_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 71 70 0.9859155 102 76 0.7450980 21 20160601_5hmC_Jump_Seq_48ngCHe-Lu-1_S12_L005_R1_001. 133 100 0.7518797 523 96 0.1835564 31 20160601_5hmC_Jump_Seq_48ngcombine.minus.p10-20.bed 133 131 0.9849624 6422 151 0.0235129 41 20160601_5hmC_Jump_Seq_48ngHe-Lu-6_48ng-S3_L001_R1_001. 133 87 0.6541353 79 74 0.9367089 51 20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001. 133 87 0.6541353 79 74 0.9367089 61 20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001. 133 102 0.7669173 423 97 0.2293144 91 CHe-Lu-1_S12_L005_R1_001Good	23	He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001.	292	75	0.2568493	71	70	0.9859155
21 20160601.5hmC.Jump.Seq.48ngCHe-Lu-l.S12.L005.R1.001. 133 100 0.7518797 523 96 0.1835564 31 20160601.5hmC.Jump.Seq.48ngcombine.minus.p10-20.bed 133 131 0.9849624 6422 151 0.0235129 41 20160601.5hmC.Jump.Seq.48ngHe-Lu-6.48ng-S3.L001.R1.001. 133 99 0.7443609 360 90 0.2500000 51 20160601.5hmC.Jump.Seq.48ngHe-lu-6.S6.L006.R1.001. 133 87 0.6541353 79 74 0.9367089 61 20160601.5hmC.Jump.Seq.48ngHe-Lu-lu-1-48ng.S1.L006.R1.001. 133 102 0.7669173 423 97 0.2293144 91 CHe-Lu-1.S12.L005.R1.001combine.minus.p10-20.bed 523 433 0.8279159 6422 1048 0.1631890 101 CHe-Lu-1.S12.L005.R1.001He-Lu-6.48ng-S3.L001.R1.001. 523 353 0.6749522 360 322 0.8944444 111 CHe-Lu-1.S12.L005.R1.001He-Lu-lu-1.48ng.S1.L006.R1.001. 523 82 0.1567878 79 74 0.9367089 121 CHe-Lu-1.S12.L005.R1.001He-Lu-6.48ng-S3.L001.R1.001. 6422 926 0.1441918 <t< td=""><td>24</td><td>He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.</td><td>292</td><td>83</td><td>0.2842466</td><td>102</td><td>84</td><td>0.8235294</td></t<>	24	He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	292	83	0.2842466	102	84	0.8235294
31 20160601_5hmC_Jump_Seq_48ngcombine.minus.p10-20.bed 133 131 0.9849624 6422 151 0.0235129 41 20160601_5hmC_Jump_Seq_48ngHe-Lu-6_48ng-S3_L001_R1_001. 133 99 0.7443609 360 90 0.2500000 51 20160601_5hmC_Jump_Seq_48ngHe-lu-6_S6_L006_R1_001. 133 87 0.6541353 79 74 0.9367089 61 20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001. 133 102 0.7669173 423 97 0.2293144 91 CHe-Lu-1_S12_L005_R1_001combine.minus.p10-20.bed 523 433 0.8279159 6422 1048 0.1631890 101 CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng-S3_L001_R1_001. 523 353 0.6749522 360 322 0.8944444 111 CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001. 523 82 0.1567878 79 74 0.9367089 121 CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 523 337 0.6443595 423 347 0.8203310 161 combine.minus.p10-20.bed.He-Lu-6_S6_L006_R1_001. 6422 926 0.1441918 360 <td>30</td> <td>He-lu-6_S6_L006_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.</td> <td>71</td> <td>70</td> <td>0.9859155</td> <td>102</td> <td>76</td> <td>0.7450980</td>	30	He-lu-6_S6_L006_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	71	70	0.9859155	102	76	0.7450980
41 20160601_5hmC_Jump_Seq_48ngHe-Lu-6_48ng-S3_L001_R1_001. 133 99 0.7443609 360 90 0.2500000 51 20160601_5hmC_Jump_Seq_48ngHe-lu-6_S6_L006_R1_001. 133 87 0.6541353 79 74 0.9367089 61 20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001. 133 102 0.7669173 423 97 0.2293144 91 CHe-Lu-1_S12_L005_R1_001combine.minus.p10-20.bed 523 433 0.8279159 6422 1048 0.1631890 101 CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng_S3_L001_R1_001. 523 353 0.6749522 360 322 0.8944444 111 CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001. 523 82 0.1567878 79 74 0.9367089 121 CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 523 337 0.6443595 423 347 0.8203310 161 combine.minus.p10-20.bed.He-Lu-6_48ng-S3_L001_R1_001. 6422 926 0.1441918 360 360 1.000000 171 combine.minus.p10-20.bed.He-Lu-lu-1-48ng_S1_L006_R1_001. 6422 105 0.0163500 <td< td=""><td>21</td><td>20160601_5hmC_Jump_Seq_48ngCHe-Lu-1_S12_L005_R1_001.</td><td>133</td><td>100</td><td>0.7518797</td><td>523</td><td>96</td><td>0.1835564</td></td<>	21	20160601_5hmC_Jump_Seq_48ngCHe-Lu-1_S12_L005_R1_001.	133	100	0.7518797	523	96	0.1835564
51 20160601_5hmC_Jump_Seq_48ngHe-lu-6_S6_L006_R1_001. 133 87 0.6541353 79 74 0.9367089 61 20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001. 133 102 0.7669173 423 97 0.2293144 91 CHe-Lu-1_S12_L005_R1_001combine.minus.p10-20.bed 523 433 0.8279159 6422 1048 0.1631890 101 CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng_S3_L001_R1_001. 523 353 0.6749522 360 322 0.8944444 111 CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001. 523 82 0.1567878 79 74 0.9367089 121 CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 523 337 0.6443595 423 347 0.8203310 161 combine.minus.p10-20.bed.He-Lu-6_48ng-S3_L001_R1_001. 6422 926 0.1441918 360 360 1.000000 171 combine.minus.p10-20.bed.He-Lu-lu-1-48ng_S1_L006_R1_001. 6422 105 0.0163500 79 79 1.000000 181 combine.minus.p10-20.bed.He-Lu-lu-6_S6_L006_R1_001. 6422 865 0.1346932 423<	31	20160601_5hmC_Jump_Seq_48ngcombine.minus.p10-20.bed	133	131	0.9849624	6422	151	0.0235129
61 20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001. 133 102 0.7669173 423 97 0.2293144 91 CHe-Lu-1_S12_L005_R1_001combine.minus.p10-20.bed 523 433 0.8279159 6422 1048 0.1631890 101 CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng_S3_L001_R1_001. 523 353 0.6749522 360 322 0.8944444 111 CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001. 523 82 0.1567878 79 74 0.9367089 121 CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1_48ng_S1_L006_R1_001. 523 337 0.6443595 423 347 0.8203310 161 combine.minus.p10-20.bed.He-Lu-6_48ng_S3_L001_R1_001. 6422 926 0.1441918 360 360 1.000000 171 combine.minus.p10-20.bed.He-Lu-lu-6_S6_L006_R1_001. 6422 105 0.0163500 79 79 1.000000 181 combine.minus.p10-20.bed.He-Lu-lu-1_48ng_S1_L006_R1_001. 6422 865 0.1346932 423 420 0.9929078 231 He-Lu-6_48ng_S3_L001_R1_001He-lu-6_S6_L006_R1_001. 360 82 0.2277778 7	41	20160601_5hmC_Jump_Seq_48ngHe-Lu-6_48ng-S3_L001_R1_001.	133	99	0.7443609	360	90	0.2500000
91 CHe-Lu-1_S12_L005_R1_001combine.minus.p10-20.bed 523 433 0.8279159 6422 1048 0.1631890 101 CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng-S3_L001_R1_001. 523 353 0.6749522 360 322 0.8944444 111 CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001. 523 82 0.1567878 79 74 0.9367089 121 CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1_48ng_S1_L006_R1_001. 523 337 0.6443595 423 347 0.8203310 161 combine.minus.p10-20.bed.He-Lu-6_48ng-S3_L001_R1_001. 6422 926 0.1441918 360 360 1.0000000 171 combine.minus.p10-20.bed.He-lu-6_56_L006_R1_001. 6422 105 0.0163500 79 79 1.000000 181 combine.minus.p10-20.bed.He-Lu-lu-1-48ng_S1_L006_R1_001. 6422 865 0.1346932 423 420 0.9929078 231 He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001. 360 82 0.2277778 79 76 0.9620253 241 He-Lu-6_48ng-S3_L001	51	20160601_5hmC_Jump_Seq_48ngHe-lu-6_S6_L006_R1_001.	133	87	0.6541353	79	74	0.9367089
101 CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng-S3_L001_R1_001. 523 353 0.6749522 360 322 0.8944444 111 CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001. 523 82 0.1567878 79 74 0.9367089 121 CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 523 337 0.6443595 423 347 0.8203310 161 combine.minus.p10-20.bed.He-Lu-6_48ng-S3_L001_R1_001. 6422 926 0.1441918 360 360 1.0000000 171 combine.minus.p10-20.bed.He-lu-6_S6_L006_R1_001. 6422 105 0.0163500 79 79 1.0000000 181 combine.minus.p10-20.bed.He-Lu-lu-1-48ng_S1_L006_R1_001. 6422 865 0.1346932 423 420 0.9929078 231 He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001. 360 82 0.2277778 79 76 0.9620253 241 He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 360 331 0.9194444 423 347 0.8203310	61	20160601_5hmC_Jump_Seq_48ngHe-Lu-lu-1-48ng_S1_L006_R1_001.	133	102	0.7669173	423	97	0.2293144
111 CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001. 523 82 0.1567878 79 74 0.9367089 121 CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 523 337 0.6443595 423 347 0.8203310 161 combine.minus.p10-20.bed.He-Lu-6_48ng-S3_L001_R1_001. 6422 926 0.1441918 360 360 1.0000000 171 combine.minus.p10-20.bed.He-lu-6_S6_L006_R1_001. 6422 105 0.0163500 79 79 1.0000000 181 combine.minus.p10-20.bed.He-Lu-lu-1-48ng_S1_L006_R1_001. 6422 865 0.1346932 423 420 0.9929078 231 He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001. 360 82 0.2277778 79 76 0.9620253 241 He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 360 331 0.9194444 423 347 0.8203310	91	CHe-Lu-1_S12_L005_R1_001combine.minus.p10-20.bed	523	433	0.8279159	6422	1048	0.1631890
121 CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 523 337 0.6443595 423 347 0.8203310 161 combine.minus.p10-20.bed.He-Lu-6_48ng-S3_L001_R1_001. 6422 926 0.1441918 360 360 1.0000000 171 combine.minus.p10-20.bed.He-lu-6_S6_L006_R1_001. 6422 105 0.0163500 79 79 1.0000000 181 combine.minus.p10-20.bed.He-Lu-lu-1-48ng_S1_L006_R1_001. 6422 865 0.1346932 423 420 0.9929078 231 He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001. 360 82 0.2277778 79 76 0.9620253 241 He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 360 331 0.9194444 423 347 0.8203310	101	CHe-Lu-1_S12_L005_R1_001He-Lu-6_48ng-S3_L001_R1_001.	523	353	0.6749522	360	322	0.8944444
161 combine.minus.p10-20.bed.He-Lu-6_48ng-S3_L001_R1_001. 6422 926 0.1441918 360 360 1.0000000 171 combine.minus.p10-20.bed.He-lu-6_S6_L006_R1_001. 6422 105 0.0163500 79 79 1.0000000 181 combine.minus.p10-20.bed.He-Lu-lu-1-48ng_S1_L006_R1_001. 6422 865 0.1346932 423 420 0.9929078 231 He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001. 360 82 0.2277778 79 76 0.9620253 241 He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 360 331 0.9194444 423 347 0.8203310	111	CHe-Lu-1_S12_L005_R1_001He-lu-6_S6_L006_R1_001.	523	82	0.1567878	79	74	0.9367089
171 combine.minus.p10-20.bed.He-lu-6_S6_L006_R1_001. 6422 105 0.0163500 79 79 1.0000000 181 combine.minus.p10-20.bed.He-Lu-lu-1-48ng_S1_L006_R1_001. 6422 865 0.1346932 423 420 0.9929078 231 He-Lu-6_48ng_S3_L001_R1_001He-lu-6_S6_L006_R1_001. 360 82 0.2277778 79 76 0.9620253 241 He-Lu-6_48ng_S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 360 331 0.9194444 423 347 0.8203310	121	CHe-Lu-1_S12_L005_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	523	337	0.6443595	423	347	0.8203310
181 combine.minus.p10-20.bed.He-Lu-lu-1-48ng_S1_L006_R1_001. 6422 865 0.1346932 423 420 0.9929078 231 He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001. 360 82 0.2277778 79 76 0.9620253 241 He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 360 331 0.9194444 423 347 0.8203310	161	combine.minus.p10-20.bed.He-Lu-6_48ng-S3_L001_R1_001.	6422	926	0.1441918	360	360	1.0000000
231 He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001. 360 82 0.2277778 79 76 0.9620253 241 He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 360 331 0.9194444 423 347 0.8203310	171	combine.minus.p10-20.bed.He-lu-6_S6_L006_R1_001.	6422	105	0.0163500	79	79	1.0000000
241 He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 360 331 0.9194444 423 347 0.8203310	181	combine.minus.p10-20.bed.He-Lu-lu-1-48ng_S1_L006_R1_001.	6422	865	0.1346932	423	420	0.9929078
	231	He-Lu-6_48ng-S3_L001_R1_001He-lu-6_S6_L006_R1_001.	360	82	0.2277778	79	76	0.9620253
301 He-lu-6_S6_L006_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001. 79 77 0.9746835 423 86 0.2033097	241	He-Lu-6_48ng-S3_L001_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	360	331	0.9194444	423	347	0.8203310
	301	He-lu-6_S6_L006_R1_001He-Lu-lu-1-48ng_S1_L006_R1_001.	79	77	0.9746835	423	86	0.2033097

Figure 1: Overlapping ratio of 15 minus replicate combinations at different p value levels. x-axis: replicate index as in Table 15, y-axis: ratio 1 and ratio 2 are also found in Table 15, 16, 17, 18.

Figure 2: Overlapping ratio of 15 plus replicate combinations at different p value levels. x-axis: replicate index as in Table 15, y-axis: ratio 1 and ratio 2 are also found in Table 15, 16, 17, 18.

Table 19: Number of reads for two 5mc samples.

two 5mc data sets	# reads
$20160811_5mC_Jump_Seq_48ng.umi_encoded_adaptor_removed_no_mismatch_sorted_dedup.bam.minus$	4270565
$20160811_5mC_Jump_Seq_48ng.umi_encoded_adaptor_removed_no_mismatch_sorted_dedup.bam.plus$	4246992
$\label{prop:condition} He-Lu-6_5mC-jump-48ng-S6_L004_R1_001.umi_encoded_adaptor_removed_no_mismatch_sorted_dedup.bam.minus \\$	5707602
$\label{prop:condition} He-Lu-6_5mC-jump-48ng-S6_L004_R1_001.umi_encoded_adaptor_removed_no_mismatch_sorted_dedup.bam.plus$	5686410

Table 20: overlapping among two 5mc replicates for extended by 2kbp windows from originally called 20 bp window.

minus	10^{-3}	10-7	10^{-15}	10^{-20}
20160811_5mC_Jump_Seq_48ng	140726/237674=0.5921	1453/6068=0.2395	494/550=0.8982	407/429=0.9487
He-Lu-6_5mC-jump-48ng-S6_L004_R1_001	161999/356244=0.4547	1752/13945=0.1256	647/1013=0.6387	523/714=0.7325
plus	10^{-3}	10-7	10^{-15}	10^{-20}
plus 20160811_5mC_Jump_Seq_48ng	10^{-3} $141903/238205 = 0.5957$	10^{-7} $1435/6251=0.2296$	10^{-15} $478/519=0.9210$	10^{-20} $372/390=0.9538$

5 Peak window calling for 5mC

5.1 Two 5mc samples