91258 Natural Language Processing

Lesson 12. word2vec

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

07/11/2023

Table of Contents Introduction Introduction Word Vectors Computing word2vec representations Chapter 6 of Lane et al. (2019)

Previously

Introduction to neural networksFirst Keras neural network

► Considerations when building/training a network

Introduction

Previously

BoW Each token represents one dimension

TF-IDF Document- and corpus-level statistics

LSA Dimensional reduction for a dense representation

Drawbacks

- ► They ignore the (nearby) context of a word
- ► They ignore the overall meaning of a statement

Word Vectors

Introduction

Word vectors. Numerical vector representations of word semantics, or meaning, including literal and implied meaning (Lane et al., 2019, p. 182)

Math with words

q = "She was a key physics figure in Europe in the early 20th century"

Even better:

Word Vectors

Intuition

Word2vec (Mikolov et al., 2013)

- ► Learns the *meaning* of words by processing a large corpus¹
- ► The corpus is not labeled
 - $\rightarrow \textbf{unsupervised}$

Can we train a NN to predict word occurrences near a target word w?

We don't care about the prediction (that's handy, but not important here). We care about the resulting **internal representation**

¹For instance, 100B words from the Google News Groups

Word Vectors

Vector Algebra (again)

- word2vec transforms token-occurrence vectors into lower-dimensional vectors
- ► The dimension is usually in the 100s (e.g., 100, 200, 300)

Typical process

Input: Text
Output: Text

- 1. Compute vectors
- 2. Do algebra
- 3. Map back to text

Word Vectors

Some "typical" operations/properties

Gender $king + woman - man \rightarrow queen$

PI/Sg $\vec{x}_{coffee} - \vec{x}_{coffees} \approx \vec{x}_{cup} - \vec{x}_{cups} \approx \vec{x}_{cookie} - \vec{x}_{cookies}$

Locations San Francisco - California + Colorado \rightarrow Denver

Culture tortellini — Bologna + Valencia \rightarrow paella ?

Word Vectors

Vector Algebra (again)

Word2vec "knows" that

Mist/Doutland Doutland Timbous)

Computing word2vec representations

The grand canal of Venice (Claude Monet, 1908)

Alternatives to Build word2vec Representations

skip-gram

Input one (target) word
Output context words

CBOW (continuous bag-of-words)

Input context words

Output one target word

Skip-Gram

Neural Network Structure

- ightharpoonup n is the number of vector dimensions in the model
- ightharpoonup M is the number of input/output neurons; M = |vocabulary|
- ► The output activation function is a **softmax** Typical in multi-class problems; $\sum_{M} = 1.0$

(Lane et al., 2019, p. 193)

Skip-Gram

Definition Skip-grams are *n*-grams that contain gaps (skips over intervening tokens)

Input: one word
Output: context words

(Lane et al., 2019, p. 192)

Skip-Gram

Learning the Representations (1/3)

► Window size: 2 words → 5-grams

▶ **Input**: the token at time t: w_t

▶ Output: all context tokens on the left and right, one at a time

 $s = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_{10}$

$$[\ldots] w_{t-2} w_{t-1} \underline{w_t} w_{t+1} w_{t+2} [\ldots]$$

Skip-Gram

Learning the Representations (2/3)

Example: "Claude Monet painted the Grand Canal of Venice in 1908."

input	expected output				
W_t	W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}	
Claude			Monet	painted	
Monet		Claude	painted	the	
painted	Claude	Monet	the	Grand	
the	Monet	painted	Grand	Canal	
Grand	painted	the	Canal	of	
Canal	the	Grand	of	Venice	
of	Grand	Canal	Venice	in	
Venice	Canal	of	in	1908	
in	of	Venice	1908		
1908	Venice	in			

(Lane et al., 2019, p. 194)

Skip-Gram

Outcome

- ► The output layer can be *ignored*²
- ► Semantically similar words end up with similar vectors
 —they were trained to **predict similar contexts**
- ► The weights from input to hidden layer are used to compute embeddings

$$wv_w = dot(one\ hot_w, W)$$

Skip-Gram

Learning the Representations (3/3)

Training

- ► Both input and output are a one-hot vector
- ▶ n-1 iterations when using n-grams:

$$[\ldots] w_{t-2} w_{t-1} w_t w_{t+1} w_{t+2} [\ldots]$$

i	input	output	i	input	output	i	input	output
0	W_t	W_{t-2}	4	w_{t+1}	w_{t-1}	8	W_{t+2}	W_t
1	W_t	w_{t-1}	5	w_{t+1}	W_t	9	W_{t+2}	w_{t+1}
2	W_t	w_{t+1}	6	w_{t+1}	W_{t+2}	10	W_{t+2}	W_{t+3}
3	W_t	W_{t+2}	7	w_{t+1}	W_{t+3}	11	W_{t+2}	W_{t+4}

► To simplify the loss calculation, the softmax is converted to one-hot

Skip-Gram

Embedding Computation

²Tweaking this procedure could result in a language model

CBOW

Definition Continuous bag-of-words

Input: context words

Output: target (centre) word

CBOW

Learning the Representations (2/3)

(Lane et al., 2019, p. 196)

Example: "Claude Monet painted the Grand Canal of Venice in 1908."

	inp	expected output		
w_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}	$ w_t $
		Monet	painted	Claude
	Claude	painted	the	Monet
Claude	Monet	the	Grand	painted
Monet	painted	Grand	Canal	the
painted	the	Canal	of	Grand
the	Grand	of	Venice	Canal
Grand	Canal	Venice	in	of
Canal	of	in	1908	Venice
of	Venice	1908		in
Venice	in			1908
				I
(Lane et al.	, 2019, p. 1	94)		

CBOW

Learning the Representations (1/3)

Window size: 2 words \rightarrow 5-grams

Input: multi-hot vector (sum of all context one-hot vectors)

Output: one-hot vector

 $s = W_1 W_2 W_3 W_4 W_5 W_6 W_7 W_8 W_9 W_{10}$

 $[\ldots] w_{t-2} w_{t-1} w_t w_{t+1} w_{t+2} [\ldots]$

CBOW

Learning the Representations (3/3)

Training

► The input is a multi-hot vector:

$$w_{t-2} + w_{t-1} + w_{t+2} + w_{t+2}$$

ightharpoonup The output is a one-hot vector w_t

Final Remarks

Skip-gram

- ► Works well with small corpora
- ► High-frequency [2,3]-grams can be added as single terms (e.g., New_York, Atlanta_Braves)
- \blacktriangleright High-frequency tokens are subsampled (\sim to IDF over stopwords)
- ► Negative sampling. Not all weights are updated given a pair, just a few negative samples (much cheaper; roughly the same result)

CBOW

- ► Higher accuracy for frequent words
- ► Much faster to train

References

Lane, H., C. Howard, and H. Hapkem

2019. Natural Language Processing in Action. Shelter Island,

NY: Manning Publication Co.

Mikolov, T., K. Chen, G. Corrado, and J. Dean

 $2013. \ Efficient \ estimation \ of word \ representations \ in \ vector$

space. In Arxiv.

Г			