Softiwarp

A Software iWARP Driver for OpenFabrics
Bernard Metzler, Fredy Neeser, Philip Frey
IBM Zurich Research Lab

Contents

- Background
- ➤ What is it?
- Do we need Software RDMA?
- > How is it made?
- Some first Test Results
- Feedback: OFED Issues
- Project Status & Roadmap
- Summary

Background

- RDMA (from proprietary to standard):
 - via, Quadrics, Myrinet, .., InfiniBand, iWARP
- Ethernet (from lame to fast):
 - 1,10,100,1000,10000,40000,...MBit
- Unified Wire:
 - Single link, single switch, single tech. or dump adapter

- OpenIB
 - Focused on InfiniBand
- OpenFabrics
 - InfiniBand + iWARP HW
 - + iWARP SW?
- IBM Zurich Research
 - RDMA API standardization
 - IETF work on iWARP
 - Software iWARP stack

Softiwarp: What is it?

- Just another OFED iWARP driver
 - ../hw/cxgb3/, ../hw/siw,
- Purely software based iWARP protocol stack implementation
 - Kernel module
 - Runs on top of TCP kernel sockets
 - Exports OFED Interfaces (verbs, IWCM, management, ...)
- Client support
 - Currently only user level clients
 - libsiw: user space library to integrate with libibverbs, librdmacm
- Current build
 - OFED 1.3
 - Linux 2.6.24
 - ~9000 lines for *.[ch] including comments

OFED and Kernel Integration

Approach: Keep things simple and standard

- TCP interface: Kernel Sockets
 - TCP stack completely untouched
 - Non-blocking write() with pause and resume
 - softirq-based read()
- Linux Kernel Services
 - List-based QP/WQE management
 - Workqueue-based asynchronous sending/CM
 - ...
- OFED interface
 - verbs.
 - Event callbacks,
 - Device registration
- Fast Path
 - No private interface between user lib and kernel module
 - Syscall for each post(SQ/RQ) or reap(CQ) operation

Why RDMA in Software?

- Enable systems without RNIC to speak RDMA
 - Conventional ENIC sufficient
 - Peer with real RNICs
 - Help busy server to offload
 - Speak RDMA out of the Cluster
 - Enable real RNICs(!)
 - Benefit from RDMA API semantics
 - Application benefits
 - Async. comm., parallelism
 - One-sided operations
 - CPU benefits
 - Copy avoidance in tx
 - Named buffers in rx
- Early system migration to RDMA
 - Migrate applications before RNIC avail.
 - Mix RNIC equipped systems with ENICs
- Test/Debug real HW
- RDMA transport redundancy/failover
- Help to grow OFED Ecosystem for Adoption and Usage beyond HPC

RDMA Use Case != HPC

Multimedia Data Dissemination via RDMA

- RNIC-equipped video server, Chelsio t3 10Gb
 - Complete content in Server RAM
 - IBM HS21 BladeServers (4core Xeon 2.33 GHz, 8GB Mem.)
- Up to 1000 VLC clients to pull FullHD (8.7Mbps)
 - VLC client extended for OFED verbs
 - Client may seek in data stream
- HTTP get (Apache w/sendfile()) or RDMA READ
 - Service degradation w/o sendfile
 - Increasing load with sendfile
 - Zero server CPU load for RDMA
- Very simple pull protocol for RDMA
 - Minimum iWARP server state per Client: RDMA READ!

Softiwarp TX Path Design

8

- Syscall through OFED verbs API to post SQ work
- Synchronous send out of user context if socket send space available
- Nonblocking socket operation:
 - Pause sending if socket buffer full
 - Resume sending if TCP indicates sk_writespace()
 - Use Linux workqueue to resume sending
- Lock-free source memory validation on the fly
- sendfile()-semantic possible
- Post work completions onto CQ
- Reap CQE's asynchronously

Softiwarp RX Path Design

- All RX processing done in softirg context:
 - in sk_data_ready() upcall:
 - Header parsing
 - RQ access
 - Immediate data placement
 - CRC
 - No context switch
 - No extra thread
- Lock-free target memory validation on the fly
- Inbound RREQ just posted at SQ + SQ processing scheduled to resume later

First Tests: Softiwarp

- Non-tuned software stack on both sides
- Application level flow control (ping-pong buffers)
- SEND's for synchronization
- 1 connection

Write/read application data: off MPA CRC32C: off MTU = 9000

First Tests: Softiwarp

- Same application level flow control (ping-pong buffers) +
 - 1 Core only
 - MPA CRC off
 - MTU=9000
- Sending CPU on its limit

First Tests: Softiwarp + CRC

- Same application level flow control (ping-pong buffers) +
 - 1 Core only
 - MPA CRC ON
 - MTU=9000
- CRC is killing performance
- Still sending CPU on its limit

First Tests: Softiwarp-Chelsio

- Test 1: Softiwarp peering Chelsio T3
 - Setup:
 - RNIC sends WRITEs to Softiwarp target
 - Target just places data w/o appl. interaction
 - Result:
 - Close to line speed at 8KB
 - Uups some issues at larger buffers
- Test 2: Softiwarp peering Softiwarp
 - Same setup
 - Result:
 - Maximum Bandwidth from 128KB on

Conclusions:

- Promising for first test on non-tuned stack
- Software stack may perform well on client side
- Further improvement with sendfile() possible

Softiwarp: Work in progress

Core Functionality

RDMAP/DDP/MPA	Х
QP/CQ/PD/MR Objects	Х
Send	Х
Receive	Х
RDMA WRITE	Х
RDMA READ	Х
Connection Mgmt (IWCM, TCP)	Х
Memory Management	Х

Features (incomplete)...

MPA CRC	Х
MPA Markers	-
Memory Windows	W
Inline Data	W
Shared Receive Queue	-
Fast Memory Registration	-
Termination Messages	W
Remote Invalidation	-
Stag 0	-
Resource Realloc. (MR/QP/CQ)	-
TCP header alignment	W
Relative adressing (ZBVA)	W

(x): done, (w): work in progress, (-) not done

Softiwarp Roadmap

- Opensource very soon
- Discuss current code base in the community
 - Be open for changes/critics
 - Identify core must-haves which are missing
 - Stability!
 - Invite others to contribute
 - Feedback known issues of OFED core to team
 - Don't touch TCP
- Start compliance testing (OFA IWG) soon
- Investigate private fast path user interface option
- Start working on kernel client support
- Investigate partially offloading of CPU intensive tasks
 - CRC, tx-markers
 - Data placement,...

Feedback: OFED Issues

- Late RDMA Transition
 - Something not part of RNIC integration is now possible
 - Very simple to do with Softiwarp, benefits iSER & Co.
 - Softiwarp allows late RDMA mode transition w/o TCP context migration
- > OFED CM
 - How to coexist with RNIC if SW stack shares link, shall we?
 - Can we exist within OFED w/o full (complex) IWCM support?
 - Current code spends 2000 lines out of 9000 for CM!
- Device Management
 - Wildcard listen on multiple interfaces must be translated to individual wildcard listens on each (port/ipaddr) combination
- Zero based virtual adressing

> ...

Summary

- Software RDMA is useful
- Software RDMA is efficient on client side (at least)
- > RDMA semantics help to use transport efficiently
- Softiwarp helps to grow RDMA/OFED ecosystem
 - Establish RDMA communication model
 - Prepare applications to use RDMA
 - Prepare systems to introduce RDMA HW
 - Peer & thus enable RDMA HW
- Softiwarp is work in progress

Please join.