§4.2: DETERMINING DISTANCE TRAVELED FROM VELOCITY

Dr. Mike Janssen

April 2, 2021

ANNOUNCEMENTS

PREVIEW ACTIVITY DISCUSSION

FIRST: SIGMA NOTATION

Intent: develop a compact way of writing a sum of many terms.

FIRST: SIGMA NOTATION

Intent: develop a compact way of writing a sum of many terms.

Examples:

$$\sum_{k=1}^{100} k = 1 + 2 + 3 + \dots + 99 + 100$$

FIRST: SIGMA NOTATION

Intent: develop a compact way of writing a sum of many terms.

Examples:

$$\sum_{k=1}^{100} k = 1 + 2 + 3 + \dots + 99 + 100$$

$$\textstyle \sum_{n=1}^{50} \frac{n(n+1)}{2} = \frac{1(1+1)}{2} + \frac{2(2+1)}{2} + \cdots + \frac{49(49+1)}{2} + \frac{50(50+1)}{2}$$

ACTIVITY 4.2.2

Riemann Sums

BERNHARD RIEMANN

- 1826-1866
- Son of a German Lutheran pastor; saw mathematics as a service to God
- Riemannian geometry is the foundation of general relativity
- First to suggest dimensions greater than 3 or 4 to describe Creation
- Riemann Hypothesis most famous unsolved math problem

GOAL: CALCULATE THE AREA UNDER A CURVE

Why?

GOAL: CALCULATE THE AREA UNDER A CURVE

Why?

Create an approximation via rectangles.

GOAL: CALCULATE THE AREA UNDER A CURVE

Why?

Create an approximation via rectangles.

Suppose we want to approximate the area under a general (positive) curve given by y = f(x) on the interval [a, b]. How do we start? equal width

• Left Riemann sum:
$$L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x$$

- Left Riemann sum: $L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x$
- Right Riemann sum: $R_n = \sum_{i=1}^n f(x_i) \Delta x$

- Left Riemann sum: $L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x$
- Right Riemann sum: $R_n = \sum_{i=1}^n f(x_i) \Delta x$
- Middle Riemann sum: $M_n = \sum_{i=1}^n f(\overline{x}_i) \Delta x$, where $\overline{x}_i = \frac{x_i + x_{i+1}}{2}$

- Left Riemann sum: $L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x$
- Right Riemann sum: $R_n = \sum_{i=1}^n f(x_i) \Delta x$
- Middle Riemann sum: $M_n = \sum_{i=1}^n f(\overline{x}_i) \Delta x$, where $\overline{x}_i = \frac{x_i + x_{i+1}}{2}$

Another option: choose random points in the subintervals. This is more useful for theoretical discussions/proofs, while the above formulae are more useful in practice.

ACTIVITY 4.2.3

Helpful: The applet at https://www.gvsu.edu/s/a9

WHAT IF THE FUNCTION IS NEGATIVE?

WHAT IF THE FUNCTION IS NEGATIVE?

This is the **net signed area bounded by** f **over the interval** [a, d].

ACTIVITY 4.2.4

Name:	Section:

Math 152 Base Grade Progress

	Level 1		Level 2					
	Interpret, Approximate		Interpret, Approximate		Calculate			
А	Last two I/A Targets:	Last U-Target: ——	One more I/ A-Target: —	Last U- Target:	CD @ 80%	The other of RH, RB:	≥ 88: □	[0.92,1]
В	— —		One more I/A Target:	One more U- Target:			≥ 77: □	[0.8,0.92)
С	One more I/A Target —		Two I/A Targets: ,	Two U- Targets:			≥ 66: □	[0.67,0.8)
D	Two I/A Targets:	Three U- Targets: ,,	Χ	Χ	CD @ 50%	One of RH , RB :	≥ 55: □	[0.55,0.67)

	I-targets		A-targets	U-targets		
Level 2	ID 🗆	II 🗆	AD 🗆 AI 🗆 AG 🗆	UF 🗆 UM 🗆 UC 🗆 UR 🗆		
Level 1	ID 🗆	II 🗆	AD 🗆 AI 🗆 AG 🗆	UF UM UC UR		