Boolean algebra exercises

Peter Rowlett

1. Use truth tables to check whether the following are correct.

(a)
$$p \wedge (\neg p \vee q) = p \wedge q$$
;

(b)
$$p \lor (\neg p \land q) = p \lor q$$
.

2. Are these formulae tautologies, contradictions, or neither?

(a)
$$p \lor (q \lor \neg p)$$
;

(b)
$$p \land \neg (q \lor \neg q);$$

(c)
$$p \vee \neg (q \vee \neg q)$$
.

3. Use Boolean algebra to find simpler formulae equivalent to:

(a)
$$\neg p \lor (p \land q)$$
;

(f)
$$(p \wedge q) \vee (p \wedge \neg q)$$
;

(b)
$$p \lor (q \land \neg p)$$
;

(g)
$$\neg (p \land \neg q) \lor (\neg p \land q);$$

(c)
$$r \lor (p \land \neg q \land \neg r);$$

(h)
$$\neg(\neg p \lor q) \lor (p \land \neg r)$$
;

(d)
$$\neg (p \lor (q \land \neg r)) \land q;$$

(i)
$$\neg(\neg p \land q) \lor (p \land \neg r)$$
.

(e)
$$\neg(\neg p \land \neg q)$$
;

4. Find a formula using the connectives
$$\wedge$$
 and \neg that is equivalent to $p \vee q$.

5. Find a formula involving the connectives \wedge , \vee , and \neg that has the following truth table:

$$\begin{array}{cccc} p & q & ???\\ \hline 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 1\\ 1 & 1 & 1 \end{array}$$

6. Find a formula involving the connectives \wedge , \vee , and \neg that has the following truth table:

$$\begin{array}{c|cccc} p & q & ???? \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$