BRL Seminar

(2024. 11. 12. Tue.)

Channel Identification in Time Series

통합과정 9학기 이승한

Contents

- 1. Preliminaries
- 2. Paper 1) Channel-Aware Low-Rank Adaptation in Time Series Forecasting
- Paper 2) From Similarity to Superiority: Channel Clustering for Time Series
 Forecasting
- 4. Conclusion

(1) Time Series (TS)

Shape: (B,C,L)

- B: Batch size (# of TS)

- C: # of Channels

- L: Length of TS

(2) Time Series Forecasting Model

(2) Time Series Forecasting Model

Step 3) Projection layer

$$(B,C,L) \rightarrow (B,C,D)$$

Step 1) Tokenization layer (= Patch Embedding)

(3) Channel Independence (CI) vs. Channel Dependence (CD)

CI: Ignores dependencies btw channels

- **<u>High Robustness</u>** & Low Capacity

CD: Considers dependencies btw channels

Low Robustness & <u>High Capacity</u>

(4) Channel Identification

Does the model have ability to distinguish btw channels?

(1) Abstract

- To balance CI & CD, propose "C-LoRA"
- Channel-aware low-rank adaptation (C-LoRA)
 - Condition CD models on <u>identity-aware individual components</u>
 - Plug-and-play method
- Improve the performance of both CI & CD models

(1) Abstract

(In 1. Preliminaries)

Figure 1: The proposed channel-aware low-rank adaptation.

07/30

(2) Low-rank Adaptation

Figure 1: Our reparametrization. We only train A and B.

Pretrained weights

$$W_0 \in \mathbb{R}^{d imes k}$$

Constrain its update with ...

$$W_0 + \Delta W = W_0 + BA$$
 (Freeze) $B \in \mathbb{R}^{d imes r}$ $A \in \mathbb{R}^{r imes k}$ $r \ll \min(d,k)$ 08/30

(3) C-LoRA

General backbone

$$\overline{X} = Normalization(X),$$

$$\mathbf{z}_{c}^{(0)} = \text{TokenEmbedding}(\overline{\mathbf{X}}_{:,c}), \forall c = 1, \dots, C,$$

(Optional):
$$\mathbf{Z}^{(\ell+1)} = \text{ChannelMixing}(\mathbf{Z}^{(\ell)}), \forall \ell = 0, \dots, L,$$

$$\widehat{\mathbf{Y}} = \text{Projection}(\mathbf{Z}^{(L+1)}),$$

- 2. The nonstationarity of time series, TOKENEMBEDDING: $\mathbb{R}^T \mapsto \mathbb{R}^D$ ries Forecasting
- and Projection : $\mathbb{R}^D \mapsto \mathbb{R}^H$ are usually implemented by MLPs to process temporal features, and ChannelMixing : $\mathbb{R}^{C \times D} \mapsto \mathbb{R}^{C \times D}$ is optional for CD models by Transformer blocks or MLPs.

General backbone

$$\overline{X} = Normalization(X),$$

$$\mathbf{z}_{c}^{(0)} = \text{TokenEmbedding}(\overline{\mathbf{X}}_{:,c}), \forall c = 1, \dots, C,$$

(Optional):
$$\mathbf{Z}^{(\ell+1)} = \text{ChannelMixing}(\mathbf{Z}^{(\ell)}), \forall \ell = 0, \dots, L,$$

$$\widehat{\mathbf{Y}} = \text{Projection}(\mathbf{Z}^{(L+1)}),$$

(3) C-LoRA

Naive option to reflect channel identity

- Individual tokenization for each channel
 - => Computationally expensive!!

$$\mathbf{z}_{c}^{(0)} = \operatorname{MLP}_{c}\left(\overline{\mathbf{X}}_{,c}; heta_{c}
ight), orall c = 1, \ldots, C$$

Still, can utilize it as a baseline method for comparison.

(3) C-LoRA

C-LoRA: Channel-wise adaptation in a CD model

- Model the individual channels in a parameter-efficient way
- Components

intrinsic rank

- (1) Low-rank adapter (for each channel): $\phi^{(c)} \in \mathbb{R}^{r imes D}$
- (2) Linear layer: $\mathbf{W} \in \mathbb{R}^{r \times d}$ adaptation dimension

Result: Channel-specific parameters
$$ilde{\phi}^{(c)} = \mathrm{ReLU}\left(\phi^{(c),\mathrm{T}}\mathbf{W}
ight) \in \mathbb{R}^{D imes d}$$

Channel adaptation
$$\mathbf{z}_{c,\phi}^{(0)} = \mathbf{z}_c^{(0)} ^{\mathrm{T}} \widetilde{\phi}^{(c)} \in \mathbb{R}^d$$

Aggregate
$$\mathbf{z}_{\phi}^{(0)} = \left\{\mathbf{z}_{c,\phi}^{(0)}\right\}_{c=1}^{C} \in \mathbb{R}^{C imes d}$$

$$\textbf{Concat} \quad \mathbf{Z}^{(0)} = \left[\underline{\mathrm{MLP}(\overline{\mathbf{X}}; \theta)} \| \mathbf{Z}_{\phi}^{(0)} \right] \in \mathbb{R}^{C \times (D+d)}$$

$$\mathbf{z}_{c}^{\left(0
ight)}= ext{MLP}\left(\overline{\mathbf{X}}_{:,c}; heta
ight)$$

- (1) Low-rank adapter (for each channel): $oldsymbol{\omega}\phi^{(c)}\in\mathbb{R}^p$
- (2) Linear layer: $\mathbf{W} \in \mathbb{R}^{r imes d}$ adaptation dimension

Result: Channel-specific parameters
$$\left| ilde{\phi}^{(c)} = \mathrm{ReLU}\left(\phi^{(c),\mathrm{T}}\mathbf{W}
ight) \in \mathbb{R}^{D imes d}
ight.$$

Channel adaptation
$$\mathbf{z}_{c,\phi}^{(0)} = \mathbf{z}_c^{(0)} ^{\mathrm{T}} \widetilde{\phi}^{(c)} \in \mathbb{R}^d$$

Aggregate
$$\mathbf{z}_{\phi}^{(0)} = \left\{\mathbf{z}_{c,\phi}^{(0)}
ight\}_{c=1}^{C} \in \mathbb{R}^{C imes c}$$

$$\textbf{Concat} \quad \mathbf{Z}^{(0)} = \left\lceil \mathrm{MLP}(\overline{\mathbf{X}}; \theta) \| \mathbf{Z}_{\phi}^{(0)} \right\rceil \in \mathbb{R}^{C \times (D+d)}$$

(3) C-LoRA

(4) Experiments

a) TS Forecasting

- Various CI & CD Models
- Plug-and-play method
- Improvement in TS forecasting

Table 1: Results of the LTSF benchmarks. We report the forecast error of different models under different prediction lengths. The input sequence length is set to 96 for all methods. *IMP* shows the average percentage of MSE/MAE improvement of C-LoRA.

														_
Models	w/ C-LoRA	ΓSMixer	w/ C-LoRA	RMLP	w/ C-LoRA	FreTS	w/ C-LoRA I	EDformer	w/ C-LoRA	utoforme	w/ C-LoRA	Informer	w/ C-LoRA	MP
Metric MSE MAE		ISE MAE	MSE MAE	ISE MAE	MSE MAE N	SE MAE	MSE MAE	ISE MAE	MSE MAE	ISE MAE	MSE MAE	ISE MAI	MSE MAE	%
	0.331 0.367	332 0.370	0.317 0.356	337 0.374	0.321 0.360	840 0.376	0.330 0.369	379 0.419	0.375 0.422	505 0.475	0.512 0.480	672 0.57	0.577 0.542	.23
	0.373 0.390		0.358 0.377											.67
336 0.418 0.415 720 0.481 0.451	0.409 0.414 (0.479 0.449 (0.389 0.400 0 0.455 0.436 0									212 0.87	0.982 0.756 1.121 0.794	.68
720 0.401 0.431	-		-				-		-		-		-	
1 01	0.398 0.405		-				-				-		0.850 0.682	.59
96 0.390 0.406 192 0.442 0.436			0.396 0.409									912 0.717	0.874 0.715 1.044 0.775	.90 .84
F 336 0.485 0.459														.30
720 0.493 0.485	0.486 0.477		0.498 0.480									230 0.883	1.170 0.869	.88
Avg 0.453 0.447	0.450 0.444	461 0.450	0.460 0.447	471 0.453	0.452 0.438 0	180 0.468	0.480 0.460	440 0.460	0.431 0.453	496 0.487	0.489 0.485	074 0.800	1.059 0.801	.28
96 0.148 0.240	0.139 0.234	177 0.278	0.155 0.256	201 0.287	0.168 0.258 0	320 0.403	0.165 0.262	195 0.309	0.193 0.307	203 0.318	0.193 0.307	329 0.40	0.329 0.412	0.55
192 0.162 0.253	0.160 0.254		0.172 0.270								0.222 0.330			.53
192 0.162 0.253 336 0.178 0.269 720 0.225 0.317	0.171 0.266		0.191 0.289								0.266 0.370		0.352 0.434	0.29
-:-	0.195 0.289		0.230 0.321								0.299 0.389			0.24
Avg 0.178 0.270	0.166 0.261	211 0.310	0.187 0.284	228 0.313	0.195 0.283 0	358 0.430	0.193 0.287	223 0.334	0.222 0.333	.256 0.353	0.245 0.349	357 0.43	0.356 0.433	.95
96 0.174 0.214			0.158 0.206								0.234 0.312		0.265 0.348	.35
H 192 0.221 0.254 336 0.278 0.296	0.209 0.251 (0.268 0.294 (0.207 0.249 0 0.266 0.292 0								0.282 0.344 (0.357 0.395 (0.381 0.427	.74
0	0.349 0.346		0.348 0.345								0.415 0.424	059 0.74	0.792 0.651	.47
	0.248 0.275	260 0.285	0.245 0.273	273 0.292	0.245 0.272 0	258 0.303	0.246 0.297	312 0.366	0.315 0.365	338 0.382	0.322 0.369	634 0.548	0.488 0.484	.76
	0.175 0.219		0.182 0.272								0.603 0.545	236 0.279	0.214 0.245	0,96
	0.211 0.259		0.207 0.275								0.682 0.563		0.241 0.290	.64
336 0.248 0.273	0.222 0.261		0.212 0.272							941 0.723	0.739 0.588	262 0.310	0.246 0.307	.54
	0.203 0.263	267 0.293	0.201 0.262	273 0.316	0.244 0.291 0	286 0.326	0.281 0.322	357 0.427	0.304 0.410	882 0.717	0.801 0.642	329 0.35	0.279 0.329	0.05
Avg 0.233 0.262	0.203 0.251	255 0.294	0.201 0.270	261 0.313).235 0.289 0	268 0.319	0.263 0.315	292 0.381	0.255 0.361	885 0.711	0.706 0.585	264 0.308	0.245 0.293	.65
	0.124 0.237		0.111 0.220							.553 0.583	0.398 0.471	123 0.23	0.125 0.236	6.60
S 192 0.182 0.290	0.162 0.266		0.127 0.235								0.502 0.546			2.48
5 192 0.182 0.290 336 0.186 0.291 720 0.242 0.332	0.166 0.268 (0.203 0.298 (0.134 0.242 0 0.148 0.259 0								0.672 0.645 (0.879 0.747 (3.12 4.83
1 1	-		-	_										-
	0.164 0.267		0.130 0.239				0.248 0.344				0.613 0.602			4.86
96 0.169 0.276	0.109 0.216		0.124 0.239 0 0.151 0.256 0								0.444 0.508			9.24
	0.137 0.239 (0.148 0.243 (0.151 0.256 0								0.616 0.596 (0.716 0.648 (0.35 7.27
720 0.235 0.320	0.186 0.277		0.225 0.308								0.901 0.733		0.238 0.316	
Avg 0.197 0.293	0.145 0.244	322 0.384	0.168 0.267	330 0.402	0.247 0.330 0	330 0.404	0.278 0.365	341 0.404	0.342 0.404	067 0.802	0.669 0.621	211 0.305	240 297	830
1 01													/	~

(4) Experiments

b) Parameter Efficiency

CM: Standard CD

CI: Standard CI

Clnd: Standard CI + Projection layer per channel

Figure 2: Parameter comparison of different strategies.

2. Channel-Aware Low-Rank Ad

(4) Experiments

c) Channel Identity Permutation

- Model Performance with Randomly Shuffled Channels

 Original Original (shuffled)

 W/ CLoRA (shuffled)

 Original W/ CLoRA (shuffled)

 Original Shuffled)

 W/ CLoRA (shuffled)

 Original Shuffled

 W/ CLoRA (shuffled)

 Figure 5: randomly shuffling the order of channels (Solar).
- By randomly shuffling the order of channels

- w/o C-LoRA w/ C-LoRA
- => To evaluate the importance of channel identity
- Result)
 - (1) Both CI and CD models show a **performance drop** after shuffling
 - (2) Models with C-LoRA have more pronounced error increases.
 - => With C-LoRA, can better preserve the channel identity information!

3. From Similarity to Superiority:

Channel Clustering for Time Series Forecasting

(1) Abstract

- Lack of channel strategy that balances ...
 - (1) Individual channel treatment
 - (2) Interaction btw channels
- Propose Channel Clustering Module (CCM)
 - Clusters the channels (based on intrinsic similarity)
 - Leverage cluster identity (instead of channel identity)
 - => Combining the best of CD and CI worlds

(2) Toy Experiment

Random shuffling the channels

- Compare the performance gap between
 - (1) w/ shuffling vs. (2) w/o shuffling

Table 1. Averaged performance gain from a channel identity information $(\Delta \mathcal{L}(\%))$ and Pearson Correlation Coefficients (PCC) between $\{\Delta \mathcal{L}_{ij}\}_{i,j}$ and $\{\text{SIM}(X_i,X_j)\}_{i,j}$. The values are averaged across all test samples.

Base Model Channel Str	-	TSMixer CD	DLinear CI	PatchTST CI	TimesNet CD
ETTh1	$\Delta\mathcal{L}(\%)$ PCC	2.67 - 0.67	1.10 - 0.66	11.30 - 0.61	18.90 - 0.66
ETTm1	$\Delta\mathcal{L}(\%)$ PCC	4.41 - 0.68	5.55 - 0.67	6.83 - 0.68	14.98 - 0.67
Exchange	$\Delta\mathcal{L}(\%)$ PCC	16.43 - 0.62	19.34 - 0.62	27.98 - 0.47	24.57 - 0.49

(2) Toy Experiment

Random shuffling the channels

- Compare the performance gap between
 - (1) w/ shuffling vs. (2) w/o shuffling
- Findings:

Table 1. Averaged performance gain from a channel identity information $(\Delta \mathcal{L}(\%))$ and Pearson Correlation Coefficients (PCC) between $\{\Delta \mathcal{L}_{ij}\}_{i,j}$ and $\{\text{SIM}(X_i,X_j)\}_{i,j}$. The values are averaged across all test samples.

Base Model Channel Str		TSMixer <i>CD</i>	DLinear CI	PatchTST CI	TimesNet <i>CD</i>	
ETTh1	$\Delta\mathcal{L}(\%)$ PCC	2.67 - 0.67	1.10 - 0.66	11.30 - 0.61	18.90 - 0.66	
ETTm1	$\Delta\mathcal{L}(\%)$ PCC	4.41 - 0.68	5.55 - 0.67	6.83 - 0.68	14.98 - 0.67	
Exchange	$\Delta\mathcal{L}(\%)$ PCC	16.43 - 0.62	19.34 - 0.62	27.98 - 0.47	24.57 - 0.49	

- (1) Shuffling degrades the performance => Importance of channel identity
- (2) Correlation btw a) Degradation & b) Channel similarity
 The Higher similarity btw channels, the less degradation similarity
 - => Importance of channel clustering

(2) Toy Experiment

Random shuffling the channels

(1) w/ shuffling vs/

Compare the performance gap between

Table 1. Averaged performance gain from a channel identity information $(\Delta \mathcal{L}(\%))$ and Pearson Correlation Coefficients (PCC) between $\{\Delta \mathcal{L}_{ij}\}_{i,j}$ and $\{\text{SIM}(X_i,X_j)\}_{i,j}$. The values are averaged across all test samples.

Base Mod Channel S		TSMixer <i>CD</i>	DLinear CI	PatchTST CI	TimesNet CD
ETTh1	$\Delta\mathcal{L}(\%)$ PCC	2.67 - 0.67	1.10 - 0.66	11.30 - 0.61	18.90 - 0.66
N 000 4	$\Delta \mathcal{L}(\%)$	4.41	5.55	6.83	14.98
_	X	_ X.	$ ^2$	9.68 .98	- 0.67 24.57 - 0.49

- Findings:

- (1) Shuffling <mark>deg</mark>ı

 $ext{SiM}\left(X_i,X_j
ight) = \exp\left(rac{-\|X_i-X_j\|^2}{2\sigma^2}
ight)$

- (2) Correlation btw a) Degradation & b) Channel similarity

The Higher similarity btw channels, the less degradation similarity

=> Importance of channel clustering

(3) Channel Clustering Module (CCM)

(3) Channel Clustering Module (CCM)

a) Cluster Assigner

- Assigns the cluster for each channel
- Cluster centroid = Prototype

b) Cluster-Aware FFN

- Models channels "independently" + Cluster information
- Cluster information= Weighted average of (Linear layer x C)

(3) Channel Clustering Module (CCM)

Notation

$$X_{[:,i]} \in \mathbb{R}^T \ (X_i ext{ for simplicity})$$

- Input TS: $X = [x_1, \dots x_T] \in \mathbb{R}^{T imes C}$
- Output TS: $Y = igl[\hat{m{x}}_{T+1}, \dots, \hat{m{x}}_{T+H}igr] \in \mathbb{R}^{H imes C}$
- Model
 - Cl model: $f^{(i)}: \mathbb{R}^T o \mathbb{R}^H ext{ for } i=1,\cdots,C,$
 - CD model: $f: \mathbb{R}^{T imes C}
 ightarrow \mathbb{R}^{H imes C}$

(3) Channel Clustering Module (CCM)

- a) Cluster Assigner
 - (1) TS embedding (for each channel): $X_i \in \mathbb{R}^T o h_i \in \mathbb{R}^d$
 - (2) Cluster embeddings: $\{c_1,\cdots,c_K\}, ext{ where } c_k \in \mathbb{R}^d$

Cluster-aware Feed Forward Feed Forward Temporal Modules Modules Normalization

(3) Channel Clustering Module (CCM)

- a) Cluster Assigner
 - (1) TS embedding (for each channel): $X_i \in \mathbb{R}^T o h_i \in \mathbb{R}^d$
 - (2) Cluster embeddings: $\{c_1,\cdots,c_K\},\, ext{where}\,\,c_k\in\mathbb{R}^d$

Cosine similarity btw (1) & (2):
$$p_{i,k}= ext{ Normalize }\left(egin{array}{c|c} c_k h_i \\ \|c_k\| \|h_i\| \end{array}
ight)\in [0,1]$$
 ensures that $\sum_k p_{i,k}=1$

(3) Channel Clustering Module (CCM)

- a) Cluster Assigner # of channels # of clusters
 - (3) Clustering membership matrix: $\mathbf{M} \in \mathbb{R}^{|C| imes |K|}$

where $\mathbf{M}_{ik} pprox \mathrm{Bernoulli}\left(p_{i,k}
ight)$

Cluster-aware Feed Forward

Normalization

Temporal

Modules

Feed Forward

Temporal Modules

Normalization

Feed Forward Cluster-aware Feed Forward Temporal Modules Normalization Channel Clustering Prototype Learning

 $p_{i,k} = ext{Normalize}\left(rac{c_k^{+}h_i}{\|c_k\|\,\|h_i\|}
ight) \in [0,1]$

(3) Channel Clustering Module (CCM)

- a) Cluster Assigner
 - (4) Prototype embedding: $\widehat{\mathbf{C}} \in \mathbb{R}^{K imes d}$
 - Updated cluster embedding for <u>subsequent clustering probability</u>
 - Via cross-attention

$$\widehat{\mathbf{C}} = ext{Normalize} \left(\exp\left(rac{\left(W_Q \mathbf{C}
ight) \left(W_K \mathbf{H}
ight)^ op}{\sqrt{d}}
ight) \odot \mathbf{M}^ op
ight) W_V \mathbf{H}$$

(3) Channel Clustering Module (CCM)

b) Cluster-aware FFN

Notation

- Linear layer for the k-th cluster: $h_{ heta_k}(\cdot)$
- Embedding of i-th channel before the last layer: Z_i

Prediction = Average across the outputs of all Cluster-aware FFN

$$Y_i = \sum_k p_{i,k} h_{ heta_k}\left(Z_i
ight)$$

For computational efficiency, it is equivalent to

$$Y_i = h_{ heta^i}\left(Z_i
ight)$$
 with avg weights $heta^i = \sum_k p_{i,k} heta_k$ 25/30

Training Phase | Garage | Gar

(3) Channel Clustering Module (CCM)

- c) Cluster Loss
 - Designed for the clustering quality
 - Considers both intra-similarity & inter-dissimilarity

$$\mathcal{L}_C = - \boxed{ \mathrm{Tr} \left(\mathbf{M}^ op \mathbf{S} \mathbf{M}
ight) + \mathrm{Tr} \left(\left(\mathbf{I} - \mathbf{M} \mathbf{M}^ op \right) \mathbf{S}
ight) }$$

 $\mathbf{S} \in \mathbb{R}^{C imes C}: ext{ Channel similarity matrix with } \mathbf{S}_{ij} = ext{Sim}\left(X_i, X_j
ight)$

$$\mathcal{L} = \mathcal{L}_F + \beta \mathcal{L}_C$$

(4) Experiments

a) TS Forecasting

- Various CI & CD Models
- Plug-and-play method
- Improvement in TS forecasting

Table 4. Long-term forecasting results on 9 real-world datasets in terms of MSE and MAE, the lower the better. The forecasting horizons are {96, 192, 336, 720}. The better performance in each setting is shown in **bold**. The best results for each row are <u>underlined</u>. The last column shows the average percentage of MSE/MAE improvement of CCM over four base models.

mn sh	nn shows the average percentage of MSE/MAE improvement of CCM over four base models.																	
M	lodel	TSN	/lixer	+ C	CM	DLi	near	+ C	CCM	Patcl	hTST	+ 0	CCM	Time	sNet	+ C	CM	TO FTO (CF)
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	IMP(%)
	96	0.361	0.392	0.365	0.393	0.375	0.399	0.371	0.393	0.375	0.398	0.371	0,396	0.384	0.402	0.380	0.400	0.539
Ę	192	0.404	0.418	0.402	0.418	0.405	0.416	0.404	0.415	0.415	0.425	0.414	0.424	0.436	0.429	0.431	0.425	0.442
ЕТТЫ	336	0.422	0.430	0.423	0.430	0.445	0.440	0.438	0.443	0.422	0.440	0.417	0.429	0.491	0.469	0.485	0.461	0.908
×	720	0.463	0.472	0.462	0.470	0.489	0.488	0.479	0.497	0.449	0.468	0.447	0.469	0.521	0.500	0.520	0.493	0.333
	96	0.285	0.339	0.283	0.337	0.299	0.343	0.298	0.343	0.294	0.351	0.289	0.338	0.338	0.375	0.335	0.371	1.123
ETTm1	192	0.339	0.365	0.336	0.368	0.335	0.365	0.334	0.365	0.334	0.370	0.333	0.363	0.374	0.387	0.373	0.383	0.482
Ε	336	0.361	0.406	0.359	0.393	0.370	0.386	0.365	0.385	0.373	0.397	0.370	0.392	0.410	0.411	0.412	0.416	0.716
內	720	0.445	0.470	0.424	0.421	0.427	0.423	0.424	0.417	0.416	0.420	0.419	0.430	0.478	0.450	0.477	0.448	1.852
107	96	0.284	0.343	0.278	0.338	0.289	0.353	0.285	0.348	0.278	0.340	0.274	0.336	0.340	0.374	0.336	0.371	1.371
2	192	0.339	0.385	0.325	0.393	0.384	0.418	0.376	0.413	0.341	0.382	0.339	0.355	0.402	0.414	0.400	0.410	1.806
ETTh2	336	0.361	0.406	0.361	0.399	0.442	0.459	0.438	0.455	0.329	0.384	0.327	0.383	0.452	0.452	0.449	0.445	0.823
B	720	0.445	0.470	0.438	0.464	0.601	0.549	0.499	0.496	0.381	0.424	0.378	0.415	0.462	0.468	0.457	0.461	4.370
-	96	0.171	0.260	0.167	0.260	0.167	0.260	0.166	0.258	0.174	0.261	0.168	0.256	0.187	0.267	0.189	0.270	0.860
ETTm2	192	0.221	0.296	0.220	0.296	0.284	0.352	0.243	0.323	0.238	0.307	0.231	0.300	0.249	0.309	0.250	0.310	3.453
Ξ	336	0.276	0.329	0.277	0.330	0.369	0.427	0.295	0.358	0.293	0.346	0.275	0.331	0.321	0.351	0.318	0.347	6.012
$\mathbf{\Xi}$	720	0.420	0.422	0.369	0.391	0.554	0.522	0.451	0.456	0.373	0.401	0.374	0.400	0.408	0.403	0.394	0.391	7.139
	96	0.089	0.209	0.085	0.206	0.088	0.215	0.085	0.214	0.094	0.216	0.088	0.208	0.107	0.234	0.105	0.231	2.880
ang	192	0.195	0.315	0.177	0.300	0.178	0.317	0.171	0.306	0.191	0.311	0.185	0.309	0.226	0.344	0.224	0.340	3.403
Exchange	336	0.343	0.421	0.312	0.405	0.371	0.462	0.300	0.412	0.343	0.427	0.342	0.423	0.367	0.448	0.361	0.442	5.875
亞	720	0.898	0.710	0.847	0.697	0.966	0.754	0.811	0.683	0.888	0.706	0.813	0.673	0.964	0.746	0.957	0.739	5.970
	24	1.914	0.879	1.938	0.874	2.215	1.081	1.935	0.935	1.593	0.757	1.561	0.750	2.317	0.934	2.139	0.936	4.483
E	36	1.808	0.858	1.800	0.851	2.142	0.977	1.938	0.942	1.768	0.794	1.706	0.780	1.972	0.920	1.968	0.914	2.561
=	48	1.797	0.873	1.796	0.867	2.335	1.056	2.221	1.030	1.799	0.916	1.774	0.892	2.238	0.940	2.229	0.937	1.602
	60	1.859	0.895	1.810	<u>0.876</u>	2.479	1.088	2.382	1.096	1.850	0.943	1.735	0.880	2.027	0.928	2.041	0.930	2.491
	96	0.149	0.198	0.147	0.194	0.192	0.250	0.187	0.245	0.149	0.198	0.147	0.197	0.172	0.220	0.169	0.215	1.729
Weather	192	0.201	0.248	0.192	0.242	0.248	0.297	0.240	0.285	0.194	0.241	0.191	0.238	0.219	0.261	0.215	0.257	2.539
Vea.	336	0.264	0.291	0.244	0.281	0.284	0.335	0.274	0.324	0.244	0.282	0.245	0.285	0.280	0.306	0.274	0.291	2.924
-	720	0.320	0.336	0.318	0.334	0.339	0.374	0.320	0.357	0.320	0.334	0.316	0.333	0.365	0.359	0.366	0.362	1.476
Þ	96	0.142	0.237	0.139	0.235	0.153	0.239	0.142	0.247	0.138	0.233	0.136	0.231	0.168	0.272	0.158	0.259	2.480
Electricity	192	0.154	0.248	0.147	0.246	0.158	0.251	0.152	0.248	0.153	0.247	0.153	0.248	0.184	0.289	0.172	0.262	3.226
ect	336	0.163	0.264	0.161	0.262	0.170	0.269	0.168	0.267	0.170	0.263	0.168	0.262	0.198	0.300	0.181	0.284	2.423
豆	720	0.208	0.300	0.204	0.299	0.233	0.342	0.230	0.338	0.206	0.296	0.210	0.301	0.220	0.320	0.205	0.309	1.417
	96	0.376	0.264	0.375	0.262	0.411	0.284	0.411	0.282	0.360	0.249	0.357	0.246	0.593	0.321	0.554	0.316	1.488
ij	192	0.397	0.277	0.340	0.279	0.423	0.287	0.422	0.286	0.379	0.256	0.379	0.254	0.617	0.336	0.562	0.331	3.175
Traffic	336	0.413	0.290	0.411	0.289	0.438	0.299	0.436	0.297	0.401	0.270	0.389	0.255	0.629	0.336	0.579	0.341	2.120
	720	0.444	0.306	0.441	0.302	0.467	0.316	0.471	0.318	0.443	0.294	0.430	0.281	0.640	0.350	0.587	0.366	19457

(4) Experiments

b) Comparison with other methods

- Predict Residuals with Regularization (PRReg).
 - Designed to address the non-robustness of the CD strategy.
 - Just another plug-and-play method...
 Not related to channel identification

		CD	CI	+PRReg	+CCM*
ETYPL 1	Linear	0.402	0.345	0.342	0.342
ETTh1	Transformer	0.861	0.655	0.539	0.518
ETTm1	Linear	0.404	0.354	0.311	0.310
Elimi	Transformer	0.458	0.379	0.349	0.300
Weather	Linear	0.142	0.169	0.131	0.130
weather	Transformer	0.251	0.168	0.180	0.164
TIT	Linear	2.343	2.847	2.299	2.279
ILI	Transformer	5.309	4.307	3.254	3.206
Electricity.	Linear	0.195	0.196	0.196	0.195
Electricity	Transformer	0.250	0.185	0.185	0.183

(4) Experiments

c) Ablation study on # of clusters

Cluster ratio 0.0 => C clusters

Cluster ratio 1.0 => 1 cluster

Figure 4. Ablation Study on Cluster Ratios in terms of MSE loss with four base models. The forecasting horizon is 96. (*left*: ETTh1 dataset; *right*: ETTm1 dataset)

4. Conclusion

4. Conclusion

- Capturing channel identity is crucial for TS forecasting
- Desiderata
 - (1) Simple & Effective
 - (2) Plug-and-play method for any TS backbone models
 - (3) Capture/Interpret the relationships btw the channels (i.e., clustering)
- ~ing: Channel identification with channel-wise layer normalization

Thank you!