32C55

Programmable Peripheral Interface

Review

More on Address decoding
Interface with memory
Introduction to Programmable
Peripheral Interface 82C55

About 82C55

The 82C55 is a popular interfacing component, that can interface any TTL-compatible I/O device to a microprocessor.

It is used to interface to the keyboard and a parallel printer port in PCs (usually as part of an integrated chipset).

Requires insertion of wait states if used with a microprocessor using higher that an 8 MHz clock.

PPI has 24 pins for I/O that are programmable in groups of 12 pins and has three distinct modes of operation.

82C55 : Pin Layout

Group A

Port A (PA7-PA0) and upper half of port C (PC7 - PC4)

Group B

Port B (PB7-PB0) and lower half of port C (PC3 - PC0)

I/O Port Assignments

$\mathbf{A_1}$	$\mathbf{A_0}$	Function		
0	0	Port A		
0	1	Port B		
1	0	Port C		
1	1	Command Register		

Basic Mode Definitions and Bus Int

Programming 82C55

Mode 0 (Basic Input/Output).

This functional configuration provides simple input and output operations for each of the three ports.

No "handshaking" is required, data is simply written to or read from a specified port.

Mode 0 Port definition

-	1	E	3	GRO	UP A GRO		UP B	
D ₄	D_3	D ₁	D ₀	PORT A	PORT C (UPPER)	#	PORT B	PORT C (LOWER)
0	0	0	0	OUTPUT	OUTPUT 0		OUTPUT	OUTPUT
0	0	0	1	OUTPUT OUTPUT		1	OUTPUT	INPUT
0	0	1	0	OUTPUT	OUTPUT 2		INPUT	OUTPUT
0	0	1	1	OUTPUT	OUTPUT	3	INPUT	INPUT
0	1	0	0	OUTPUT	INPUT	4	OUTPUT	OUTPUT
0	1	0	1	OUTPUT	INPUT	5	OUTPUT	INPUT
0	1	1	0	OUTPUT	INPUT	6	INPUT	OUTPUT
0	1	1	1	OUTPUT	INPUT	7	INPUT	INPUT
1	0	0	0	INPUT	OUTPUT	8	OUTPUT	OUTPUT
1	0	0	1	INPUT	OUTPUT	9	OUTPUT	INPUT
1	0	1	0	INPUT	OUTPUT	10	INPUT	OUTPUT
1	0	1	1	INPUT	OUTPUT	11	INPUT	INPUT
1	1	0	0	INPUT	INPUT	12	OUTPUT	OUTPUT
1	1	0	1	INPUT	INPUT	13	OUTPUT	INPUT
1	1	1	0	INPUT	INPUT	14	INPUT	OUTPUT
1	1	1	1	INPUT	INPUT	15	INPUT	INPUT

82C55: Mode 0, Scan Display

82C55: Mode 0, Scan Display

Mode 0 operation causes the 82C55 to function as a buffered input device or as a latched output device.

In previous example, both ports A and B are programmed as (mode 0) simple latched output ports.

Port A provides the segment data inputs to display and port B provides a means of selecting one display position at a time.

Different values are displayed in each digit via fast time multiplexing.

82C55: Mode 0, Scan Key

82C55: Mode 0 Operation

Flow chart of a keyboard-scanning procedure

MODE 1 (Strobed Input/Output)

This functional configuration provides a means for transferring I/O data to or from a specified port in conjunction with strobes or "handshaking" signals.

In mode 1, Port A and Port B use the lines on Port C to generate or accept these "handshaking" signals

Mode 1 Basic functional Definitions

Two Groups (Group A and Group B).

Each group contains one 8-bit data port and one 4-bit control/data port.

The 8-bit data port can be either input or output Both inputs and outputs are latched.

The 4-bit port is used for control and status of the 8-bit data port.

82C55: Mode 1 Strobed Input

STB: The strobe input loads data into the port latch on a 0-to-1 transition.

IBF: Input buffer full is an output indicating that the input latch contain information.

INTR: Interrupt request is an output that requests an interrupts.

INTE: The interrupt enable signal is neither an input nor an output; it is an internal bit programmed via the PC4 (port A) or PC2 (port B) bits.

PC7,PC6: The port C pins 7 and 6 are general purpose I/O pings that are available for any purpose.

82C55: Mode 1 Strobed Input

82C55: Mode 1 Input Exam.

Keyboard encoder debounces the keyswitches, and provides a strobe whenever a key is depressed.

DAV is activated on a key press strobing the ASCII-coded key code into Port A.

82C55: Mode 1 Output Exam.

OBF: Output buffer full is an output that goes low when data is latched in either port A or port B. Goes low on ~ACK.

ACK: The acknowledge signal causes the ~OBF pin return to 0. This is a response from an external device.

INTR: Interrupt request is an output that requests an interrupt.

INTE: The interrupt enable signal is neither an input nor an output; it is an internal bit programmed via the PC6(Port A) or PC2(port B) bits.

PC5,PC4: The port C pins 5 and 4 are general-purpose I/O pins that are available for any purpose.

82C55: Mode 1 Output Exam.

This functional configuration provides a means for communicating with a peripheral device or structure on a single 8-bit bus for both transmitting and receiving data (bidirectional bus I/O).

"Handshaking" signals are provided to maintain proper bus flow discipline in a similar manner to MODE 1.

Interrupt generation and enable/disable functions are also available.

MODE 2 Basic Functional Definitions:

Used in Group A only.

One 8-bit, bi-directional bus port (Port A) and a 5-bit control port (Port C).

Both inputs and outputs are latched.

The 5-bit control port (Port C) is used for control and status for the 8-bit, bidirectional bus port (Port A).

INTR: Interrupt request is an output that requests an interrupt.

~OBF: Output Buffer Full is an output indicating that that output buffer contains data for the bi-directional bus.

ACK: Acknowledge is an input that enables tri-state buffers which are otherwise in their high-impedance state.

~**STB**: The strobe input loads data into the port A latch.

IBF: Input buffer full is an output indicating that the input latch contains information for the external bi-directional bus.

INTE: Interrupt enable are internal bits that enable the INTR pin. BIT PC6(INTE1) and PC4(INTE2).

PC2,PC1,PC0: These port C pins are general-purpose I/O pins that are available for any purpose.

•Timing diagram is a combination of the Mode 1 Strobed Input and Mode 1 Strobed Output Timing diagrams.

Mode 2 Timing Diagram

Mode definition summary

	МО	DE 0		MODE 1		MODE 1		MODE 2	
	IN	OUT		IN	OUT	GROUP A ONLY			
PA ₀	IN	OUT		IN	OUT	€>			
PA ₁	IN	OUT		IN	OUT	←→			
PA ₂	IN	OUT		IN	OUT	←→			
PA ₃	IN	OUT		IN	OUT	←→			
PA ₄	IN	OUT		IN	OUT	←→			
PA ₅	IN	OUT		IN	OUT	←→			
PA ₆	IN	OUT		IN	OUT	←→			
PA ₇	IN	OUT		IN	OUT	←→	<u> </u>		
PB ₀	IN	OUT		IN	OUT	_			
PB ₁	IN	OUT		IN	OUT	_			
PB ₂	IN	OUT		IN	OUT	_			
PB ₃	IN	OUT		IN	OUT	_	MODE 0		
PB ₄	IN	OUT		IN	OUT	_	OR MODE 1		
PB ₅	IN	OUT		IN	OUT	_	ONLY		
PB ₆	IN	OUT		IN	OUT	_			
PB ₇	IN	OUT		IN	OUT	_			
PC ₀	IN	OUT		INTRB	INTRB	1/0			
PC ₁	IN	OUT		IBFB	OBFB	1/0			
PC ₂	IN	OUT		STBB	ACKB	1/0			
PC ₃	IN	OUT		INTRA	INTRA	INTRA			
PC ₄	IN	OUT		STBA	1/0	STBA			
PC ₅	IN	OUT		IBFA	1/0	IBFA			
PC ₆	IN	OUT		I/O	ACKA	ACKA			
PC ₇	IN	OUT		1/0	OBFA	OBFA			

More on interface, next time.

