

DIGITAL TALENT SCHOLARSHIP 2019

Program Fresh Graduate Academy Digital Talent Scholarship 2019 | Machine Learning

Clustering: Pengantar

M. Ramli & M. Soleh

- Contoh kasusnya, kita harus mengelompokkan pelanggan berdasarkan karakteristik pelanggan. Dalam kasus ini kita dapat mengelompokkanya kedalam 2 kelas, yaitu 1 dan 0.
- Sehingga perusahaan dapat secara efektif menerapkan strategi bisnis secara spesifik kepada pelanggan atau mengalokasikan dengan optimal sumber daya untuk pemasaran.

Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Address	DebtIncomeRatio	Defaulted
1	41	2	6	19	0.124	1.073	NBA001	6.3	0
2	47	1	26	100	4.582	8.218	NBA021	12.8	0
3	33	2	10	57	6.111	5.802	NBA013	20.9	1
4	29	2	4	19	0.681	0.516	NBA009	6.3	0
5	47	1	31	253	9.308	8.908	NBA008	7.2	0
6	40	1	23	81	0.998	7.831	NBA016	10.9	1
7	38	2	4	56	0.442	0.454	NBA013	1.6	0
8	42	3	0	64	0.279	3.945	NBA009	6.6	0
9	26	1	5	18	0.575	2.215	NBA006	15.5	1

- Customer Group dapat dihasilkan berdasarkan atribut atau sering disebut sebagai fitur data
- Proses segmentasi adalah mencoba untuk menemukan kesamaan dari setiap pelanggan berdasarkan fitur-fitur yang ada, yaitu Age, Edu, Years Employed, Income, Card Debt, Other Debt, Address, dan Debt Income Ratio.

Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Address	DebtIncomeRatio	Defaulted
1	41	2	6	19	0.124	1.073	NBA001	6.3	0
2	47	1	26	100	4.582	8.218	NBA021	12.8	0
3	33	2	10	57	6.111	5.802	NBA013	20.9	1
4	29	2	4	19	0.681	0.516	NBA009	6.3	0
5	47	1	31	253	9.308	8.908	NBA008	7.2	0
6	40	1	23	81	0.998	7.831	NBA016	10.9	1
7	38	2	4	56	0.442	0.454	NBA013	1.6	0
8	42	3	0	64	0.279	3.945	NBA009	6.6	0
9	26	1	5	18	0.575	2.215	NBA006	15.5	1

- Salah satu metode segmentasi clustering
- Clustering bekerja dengan metode tanpa pengawasan (unsupervised learning) berdasarkan kesamaan pelanggan.

Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Address	DebtIncomeRatio	Defaulted
1	41	2	6	19	0.124	1.073	NBA001	6.3	0
2	47	1	26	100	4.582	8.218	NBA021	12.8	0
3	33	2	10	57	6.111	5.802	NBA013	20.9	1
4	29	2	4	19	0.681	0.516	NBA009	6.3	0
5	47	1	31	253	9.308	8.908	NBA008	7.2	0
6	40	1	23	81	0.998	7.831	NBA016	10.9	1
7	38	2	4	56	0.442	0.454	NBA013	1.6	0
8	42	3	0	64	0.279	3.945	NBA009	6.6	0
9	26	1	5	18	0.575	2.215	NBA006	15.5	1

- Misalnya pelanggan dikelompokkan menjadi 3 kelompok
- Setiap kelompok tersebut memiliki demografi (berdasarkan fitur) yang serupa

Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Address	DebtIncomeRatio	Defaulted
1	41	2	6	19	0.124	1.073	NBA001	6.3	0
2	47	1	26	100	4.582	8.218	NBA021	12.8	0
3	33	2	10	57	6.111	5.802	NBA013	20.9	1
4	29	2	4	19	0.681	0.516	NBA009	6.3	0
5	47	1	31	253	9.308	8.908	NBA008	7.2	0
6	40	1	23	81	0.998	7.831	NBA016	10.9	1
7	38	2	4	56	0.442	0.454	NBA013	1.6	0
8	42	3	0	64	0.279	3.945	NBA009	6.6	0
9	26	1	5	18	0.575	2.215	NBA006	15.5	1

Dari hasil pengelompokan, kita dapat membuat profil untuk setiap grup

Akhirnya kita dapat menetapkan data secara individual ke salah satu grup

- Jadi, dari hasil clustering yang kita dapatkan adalah:
 - Preferensi pelanggan secara individu
 - Perilaku pembelian pada berbagai produk
- Kita dapat mengembangakan personal experience untuk masing-masing segmen

Apa itu clustering?

 Clustering adalah menemukan cluster pada dataset tanpa pengawasan (unsupervised)

Apa itu cluster?

Sebuah grup objek yang yang memiliki kesamaan (similar) diantara objek didalam cluster objek, dan memiliki ketidaksamaan (dissimilar) dengan objek di cluster lainnya.

Clustering Vs. Classification

Classification

- Dibimbing/diawasi menggunakan set data berlabel saat dilakukan training (proses pembelajaran)
- Training (proses pembelajaran/pembentukan model) menggunakan attributes dan label.
 Attributes

Clustering Vs. Classification

Clustering

- Proses pemodelan tidak diawasi dengan menggunakan label dataset
- Label hanya digunakan untuk validasi model

+
Φ
S
, co
m
-0
0
a
(I)
ŏ
m
_
1

Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Address	DebtIncomeRatio	Defaulted
4.	41	2	6	19	0.124	1.073	NBACOL	6.3	0
2	47	1	26	100	4.582	8.218	NBA021	12.8	0
3	33	2	10	57	6.111	5.802	NBA013	20.9	1
4	29	2	4	19	0.681	0.516	NBA009	6.3	0
5	47	1	31	253	9.308	8.908	NBA008	7.2	0
6	40	1	23	81	0.998	7.831	NBA016	10.9	1
7	38	2	4	56	0.442	0.454	NBA013	1.6	0
8	42	3	0	64	0.279	3.945	NBA009	6.6	0
9	26	1	5	18	0.575	2.215	NBA006	15.5	1

Clustering Vs. Classification

Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Address	DebtIncomeRatio	Defaulted
4	41	2	6	19	0.124	1:073	NBA001	6.3	0
2	47	1	26	100	4.582	8.218	NBA021	12.8	0
3	33	2	10	57	6.111	5.802	NBA013	20.9	1
4	29	2	4	19	0.681	0.516	NBA009	6.3	0
5	47	1	31	253	9.308	8.908	NBA008	7.2	0
6	40	1	23	81	0.998	7.831	NBA016	10.9	1
7	38	2	4	56	0.442	0.454	NBA013	1.6	0
8	42	3	0	64	0.279	3.945	NBA009	6.6	0
9	26	1	5	18	0.575	2.215	NBA006	15.5	1

Penggunaan Clustering

RETAIL MARKETING

- Mengidentifikasi pola pembelian pelanggan
- Merekomendasikan buku atau film baru kepada pelanggan baru

BANKING

- Deteksi penipuan dalam penggunaan kartu kredit
- Mengidentifikasi kelompok pelanggan (misalnya: Loyal/Tidak Loyal)

INSURANCE

- Fraud detection (Deteksi penipuan) dalam analisis klaim ansuransi
- Risiko asuransi pelanggan

Penggunaan Clustering

PUBLICATION

- Mengelompokkan berita secara otomatis berdasarkan kontennya
- Merekomendasikan artikel berita serupa

MEDICINE

Mengkarakterisasi perilaku pasien

BIOLOGY

Mengelompokkan penanda genetik (genetic markers) untuk mengidentifikasi ikatan keluarga

Mengapa menggunakan clustering?

- Merupakan exploratory data analysis
- Dapat melakukan summary generation
- Dapat melakukan outlier detection
- Dapat menemukan duplikasi data
- Terdapat step pra-pemrosesan

Algoritma Clustering

Partitioned-based Clustering

- Relatively efficient
- E.g., k-Means, k-Median, Fuzzy c-Means

Hierarchical Clustering

- Produces trees of clusters
- E.g. Agglomerative, Divisive

Density-based Clustering

- Produces arbitrary shaped clusters
- E.g. DBSCAN

Program Fresh Graduate Academy Digital Talent Scholarship 2019 | Machine Learning

Clustering: K-Means

M. Ramli & M.Soleh

Apa itu k-Means clustering?

Clustering bekerja pada data yang tidak diawasi berdasarkan kesamaan setiap dataset

Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Address	DebtIncomeRatio	Defaulted
1	41	2	6	19	0.124	1.073	NBA001	6.3	0
2	47	1	26	100	4.582	8.218	NBA021	12.8	0
3	33	2	10	57	6.111	5.802	NBA013	20.9	1
4	29	2	4	19	0.681	0.516	NBA009	6.3	0
5	47	1	31	253	9.308	8.908	NBA008	7.2	0
6	40	1	23	81	0.998	7.831	NBA016	10.9	1
7	38	2	4	56	0.442	0.454	NBA013	1.6	0
8	42	3	0	64	0.279	3.945	NBA009	6.6	0
9	26	1	5	18	0.575	2.215	NBA006	15.5	1

Customer ID	Segment
1	YOUNG AND LOW INCOME
2	AFFULUENT AND MIDDLE AGED
3	AFFULUENT AND MIDDLE AGED
4	YOUNG AND LOW INCOME
5	AFFULUENT AND MIDDLE AGED
6	AFFULUENT AND MIDDLE AGED
7	YOUNG AND LOW INCOME
8	YOUNG AND LOW INCOME
9	AFFULUENT AND MIDDLE AGED

Algoritma K-Means

- K-Means termasuk dalam Partitioning Clustering
- K-Means membagi data menjadi subset (cluster) yang tidak tumpang tindih
- Data dalam sebuah cluster sangat mirip
- Data antar kelompok sangat berbeda

Menentukan similarity atau dissimilarity

- Similarity digunakan untuk dataset dalam internal satu cluster
- Disimilarity digunakan untuk dataset antar cluster

1-dimentional similarity/distance

- 1-dimentional similarity dapat digunakan untuk mengukur jarak dua titik menggunakan 1 nilai.
- Rumus Euclidean Distance dapat digunakan untuk mengukur similarity

Customer 1

Age

54

Customer 2

Age

50

Dis
$$(x_1, x_2) = \sqrt{\sum_{i=0}^{n} (x_{1i} - x_{2i})^2}$$

Dis
$$(x_1, x_2) = \sqrt{(34 - 30)^2} = 4$$

2-dimentional similarity/distance

• 2-dimentional similarity dapat digunakan untuk mengukur jarak dua titik menggunakan 2 nilai atau 2D *matrix space*.

Multi-dimentional similarity/distance

• Dengan demikian metode *Euclidean Distance* dapat digunakan untuk multidimensi dengan menambahkan titik pada rumus.

Customer 1						
Age	Income	education				
54	190	3				

Custi	Custoffier 2							
Age	Income	education						
50	200	8						

Dis
$$(x_1, x_2) = \sqrt{\sum_{i=0}^{n} (x_{1i} - x_{2i})^2}$$

= $\sqrt{(54 - 50)^2 + (190 - 200)^2 + (3 - 8)^2} = 11.87$

Bagaimana k-Means Clustering bekerja?

 Misalkan terdapat data yang memiliki attributes age dan income, dan tersebar dalam matrix 2D space (dapat digambarkan dalam diagram Cartesian)

k-Means clustering – inisialisasi k

 Misal kita inisialisasi k=3, k sebagai centroids yang dipilih secara random

k-Means clustering – inisialisasi k

 Misal kita inisialisasi k=3, k sebagai centroids yang dipilih secara random

k-Means clustering – hitung jarak (distance)

2. Hitung jarak setiap titik dataset dengan 3 centroid yang telah ditentukan seara random

> C_3 d(p1,c2)d(p1, c3)d(p2,c2)d(p2, c3)d(p3,c1)d(p3, c2)d(p3, c3)d(p4,c2)d(p4, c3)d(p4,c1)d(p...,c2)d(p...,c3)d(p...,c1)d(pn, c2)d(pn, c3)d(pn,c1)d(p...,c1)d(p..,c2)d(p...,c3)d(p..,c2)d(p...,c3)d(p...,c1)d(pn, c2)d(pn, c3)d(pn,c1)d(p...,c1)d(p...,c2) d(p...,c3)d(p...,c1) d(p...,c2)d(p...,c3)d(pn, c1)d(pn, c2)d(pn, c3)d(p...,c2)d(p...,c3)d(p...,c1)d(p...,c1)d(p...,c2)d(p...,c3)d(pn, c1)d(pn, c2)d(pn, c3)

k-Means clustering – tetapkan ke centroid

3. Tetapkan setiap titik dataset ke centroid terdekat

k-Means clustering – tetapkan titik ke satu centroid

3. Tetapkan setiap titik dataset ke centroid terdekat, sehingga terbentuk voronoi diagram yang menunjukkan pembatas antar cluster.

k-Means clustering – tetapkan titik ke satu centroid

3. Tetapkan setiap titik dataset ke centroid terdekat, dan hitung SSE. SSE merupakan jumlah error yang terjadi antara titik dataset dengan centroid. Tugas k-Menas adalah mengoptimalkan (memperkecil) nilai SSE disetiap iterasi.

k-Means clustering – compute new centroids

4. Hitung centroid baru dari setiap cluster (C1, C2, dan C3).

5. Ulangi proses 2 sampai dengan 4 sampai dengan nilai SSE tertentu atau tidak ada perubahan label kelas pada masing-masing titik (tidak ada perubahan pada cluster)

5. Ulangi proses 2 sampai dengar 4 sampai dengar nilai SSE tertentu atau tidak ada perubahan label kelas pada masing-masing titik (tidak ada perubahan pada cluster) 35

5. Ulangi proses 2
sampai dengan 4
sampai dengan nilai
SSE tertentu atau
tidak ada perubahan
label kelas pada
masing-masing titik
(tidak ada perubahan
pada cluster)

5. Ulangi proses 2
sampai dengan 4
sampai dengan nilai
SSE tertentu atau
tidak ada perubahan
label kelas pada
masing-masing titik
(tidak ada perubahan
pada cluster)

Algoritma k-Means clustering

- 1. Tempatkan secara acak k centroid, satu untuk setiap cluster
- 2. Hitung jarak setiap titik dari setiap centroid
- 3. Tetapkan setiap titik data (objek) ke pusat centroid terdekatnya (membuat cluster)
- 4. Hitung ulang posisi centroid *k*
- 5. Ulangi langkah 2-4, hingga centroid tidak lagi bergerak

Akurasi k-Means dengan Distance

Pendekatan Eksternal

 Bandingkan dengan prediksi cluster dengan Ground Truth (jika ada)

Pendekatan Internal

 Rata-rata jarak antara titik data dalam sebuah cluster

Memilih k

- Dengan menghitung jarak rata-rata antara titik data ke centroid, maka dapat ditentukan jumlah centroid k yang optimal.
- Jumlah k yang optimal terletak pada elbow point. Hal tersebut dikarenakan setelah adanya penurunan rata-rata jarak yang signifikan berubah menjadi sedikit perubahan (landai).

Bagian 2

Praktikum Lab

ML0101EN-Clus-K-Means-Customer-Seg-py-v1.ipynb

IKUTI KAMI

- digitalent.kominfo
- digitalent.kominfo
- DTS_kominfo
- Digital Talent Scholarship 2019

Pusat Pengembangan Profesi dan Sertifikasi Badan Penelitian dan Pengembangan SDM Kementerian Komunikasi dan Informatika Jl. Medan Merdeka Barat No. 9 (Gd. Belakang Lt. 4 - 5) Jakarta Pusat, 10110

