

● 1. 考虑上下文无关文法,终结符号集合为 {(,),;,a,EOF}:

(1) 把文法转换为一个 LL(1) 文法

	S' o S EOF
[1]	$S \to (L)$
[2]	S o a
[3]	$L \rightarrow L$; S
[4]	$L \rightarrow S$

	$S' \to S EOF$
[1]	$S \to (L)$
[2]	S o a
[3]	$L \rightarrow SL'$
[4]	$L' o \epsilon$
[5]	$L' \rightarrow ; SL'$

2024 年春季学期 《编译原理》 北京大学计算机学院

● 1. 考虑上下文无关文法,终结符号集合为 {(,),;,a,EOF}:

(2)构造适用于表驱动的 LL(1) 分析的分析表

[0]
$$S' \rightarrow S$$
 EOF
[1] $S \rightarrow (L)$
[2] $S \rightarrow a$
[3] $L \rightarrow SL'$
[4] $L' \rightarrow \epsilon$
[5] $L' \rightarrow ; SL'$

$$FIRST(S') = \{(,a\}$$

$$FIRST(S) = \{(,a\}$$

$$FIRST(L) = \{(,a\}$$

$$FIRST(L') = \{;, \epsilon\}$$

FIRST(S') = {(,a) | FOLLOW(S') = {}
FIRST(S) = {(,a) | FOLLOW(S) = {EOF,), ;}
FIRST(L) = {(,a) | FOLLOW(L) = {)}
FIRST(L') = {;,
$$\epsilon$$
}

分析栈\向前看	()	;	а	EOF
$\beta S'$	展开 [0]			展开 [0]	
βS	展开[1]			展开 [2]	
βL	展开[3]			展开[3]	
eta L'		展开 [4]	展开 [5]		
β (匹配				
eta)		匹配			
eta ;			匹西己		
eta a				匹配	
EOF					接受
ϵ					

2024年春季学期 《编译原理》 北京大学计算机学院

● 2. 考虑上下文无关文法,终结符号集合为 {id,*,assign,EOF}:

(1) 构造适用于 LALR(1) 的识别分析栈模式的确定性有限自动机

2024 年春季学期 《编译原理》 北京大学计算机学院

● 2. 考虑上下文无关文法,终结符号集合为 {id,*,assign,EOF}:

(2)构造适用于表驱动的 LALR(1) 分析的分析表

ACTION

GOTO

状态\向前看	id	*	assign	EOF	S	
0	移进7	移进5			1	
1				接受		
2			移进6	归约 [5]		
3				归约 [2]		
4			归约[5]	归约 [5]		
5	移进7	移进5				
6	移进7	移进5				
7			归约 [4]	归约 [4]		
8			归约[3]	归约[3]		
9				归约[1]		

L	R
2	3
4	8
4	9
	L 2 4 4

	S' o S EOF
[1]	S o L assign R
[2]	$S \to R$
[3]	$L \to {}^*R$
[4]	$L o ext{id}$
[5]	$R \to L$

● 3. 考虑上下文无关文法,终结符号集合为 {0,1,.}:

该文法生成了含小数点的二进制数。设计一个L属性的文法(即L属性的 SDD)来计算S. val,表示对应终结符号串的十进制数值。

产生规则	属性计算规则
$S \rightarrow L_1 . L_2$	$L_1 . \mathrm{side} = 0 L_2 . \mathrm{side} = -1 S . \mathrm{val} = L_1 . \mathrm{val} + L_2 . \mathrm{val}$
$S \to L$	$L. \operatorname{side} = 0$ $S. \operatorname{val} = L. \operatorname{val}$
$L \to L_1 B$	$\begin{array}{l} \text{if L.} \text{side} \geq 0 \text{ then} \\ L_1. \text{side} = L. \text{side} + 1 \qquad L. \text{other_side} = L_1. \text{other_side} \\ L. \text{val} = L_1. \text{val} + B. \text{val} \times 2^{L. \text{side}} \\ \text{else} \\ L_1. \text{side} = L. \text{side} \qquad L. \text{other_side} = L_1. \text{other_side} - 1 \\ L. \text{val} = L_1. \text{val} + B. \text{val} \times 2^{L. \text{other_side}} \end{array}$
L o B	$L.$ other_side $=L.$ side $L.$ val $=B.$ val $ imes 2^{L.}$ side
B o 0	$B. extsf{val} = 0$
$B \rightarrow 1$	$B. extsf{val} = 1$

S ::= L . L | L L ::= L B | B B ::= 0 | 1

2024 年春季学期 《编译原理》 北京大学计算机学院