Table 1: Various Sets

Table 1. Vallous bells				
Set	Definition	Theorem	Example	Counter Example
Recursive Set	$c_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$ is computable.	 ① Recursive Function Theorems ② Closure: A,B are r. ⇒ Ā, A ∪ B, A ∩ B are r. ③ Rice Theorem: Ø ⊊ ℬ ⊊ ℋ₁ ⇒ 'φ_x ∈ ℬ' is undecidable. ④ Any Theorems for Decidable Predicates. 	$\mathbb{N}, \mathbb{Z}, \mathbb{E}, \mathbb{O}, \mathbb{P}$ Any finite set	$ \begin{cases} x \mid \phi_x \text{ is total} \\ \{x \mid x \in W_x\} \\ \{x \mid \phi_x = 0\} \end{cases} $
Recursively Enumerable Set (r.e. set)	$\chi_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ \uparrow, & \text{if } x \notin A. \end{cases}$ is computable.	① Index \leftrightarrow ② Listing $\begin{cases} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	all recursive set non-recursive r.e. set $ \{x \mid x \in W_x\} $ $ \{x \mid \phi_x(x) = 0\} $ $ \{x \mid W_x \neq \varnothing\} $ $ \{x \mid x \ 7's \ \text{in} \ \pi\} $	$ \{x \mid x \notin W_x\} $ $ \{x \mid \phi_x \text{ is total}\} $ $ \{x \mid \phi_x \text{ is not total}\} $
Productive Set	$A ext{ is productive if } \exists ext{ total}$ $g \in \mathscr{C}_1 ext{ s.t. } \forall W_x \subseteq A,$ $g(x) \in A \setminus W_x$	 ① Reduction Theorem A is productive and A ≤_m B ⇒ B is productive ② Quasi-Rice Theorem B ⊆ C₁, f_∅ ∈ B ⇒ {x φ_x ∈ B} is productive ③ Quasi-Listing Theorem Productive set has r.e. subset 	$ \begin{cases} x \mid \phi_x(x) \neq 0 \\ \{x \mid c \notin W_x \} \\ \{x \mid c \notin E_x \} \\ \{x \mid \phi_x \text{ is not total} \} \end{cases} $	① r.e. set ② doesn't have r.e. subset
Creative Set	$\begin{cases} \frac{A}{A} \text{ is r.e.;} \\ \hline A \text{ is productive.} \end{cases}$	① Quasi-Rice Theorem $\mathscr{A} \subseteq \mathscr{C}_1, A = \{x \mid \phi_x \in \mathscr{A}\}.$ If A is r.e., $A \neq \varnothing$, \mathbb{N} , then A is creative	$\begin{cases} x \mid \phi_x(x) = 0 \\ \{x \mid c \in W_x \} \\ \{x \mid c \in E_x \} \end{cases}$	simple set
Simple Set	$\begin{cases} \frac{A \text{ is r.e.;}}{\overline{A} \text{ is infinite;}} \\ \overline{A} \text{ contains no infinite r.e. subset.} \end{cases}$	 ① Characteristic Theorem (A simple set is neither recursive nor creative) ② Existence Theorem (There is a simple set) 	If A , B are simple: $A \oplus B$ is simple $A \otimes B$ is not simple $\overline{A} \otimes \overline{B}$ is simple	Any recursive set Any creative set