

# **Tutorial**

# Analyzing Differentially Expressed Genes and Differential Binding Sites

Presented by: Eric Arezza



# Prerequisite

- Familiarity with processed files (.bam, .bed)
  - This tutorial proceeds from outputs of the previously presented ngs\_processing\_pipeline.py
  - Scripts found in lab Github
     Downstream\_Analysis/DifferentialGeneExpression/
- Familiarity with programming in R



## Preface

Main DEG analysis tools used here include:

- DESeq2
  - "Differential expression analysis for sequence count data" https://bioconductor.org/packages/release/bioc/html/DESeq2.html
- edgeR
  - "Empirical Analysis of **D**igital **G**ene **E**xpression Data in **R**" https://bioconductor.org/packages/release/bioc/html/edgeR.html
- DiffBind
  - "Differential Binding Analysis of ChIP-Seq Peak Data" https://bioconductor.org/packages/release/bioc/html/DiffBind.html
  - Bundles DESeq2 and edgeR when performing analysis



## **Preface**

Prior to running any "analyze\_degs" scripts, some files need to be manually prepared – tables that define the comparisons to be made between samples

- Sample info (.csv) for RNA-Seq analysis
- DiffBind samplesheet (.csv) for peaks analysis



# Learning Goals

#### **DEG Analysis:**

#### 1) Bulk RNA-Seq Analysis:

- Count matrix creation and sample sheet file preparation
- Normalization and DESeq2 + edgeR
- Computation of DEGs
- Annotations and figures

#### 2) DiffBind Peaks Analysis:

- Sample sheet file preparation
- Consensus peaksets
- Occupancy analysis
- Affinity analysis



# Bulk RNA-Seq Analysis – Preface

- At least 2 replicates required for each sample
- Alignment files (.bam + .bai) with duplicates should be used for RNA-Seq
  - Retains natural transcript expression without bias
    - Shorter transcripts and highly expressed genes would be falsely reduced otherwise



# RNA-Seq Analysis – Count Matrix Creation

A <u>count matrix</u> must first be generated from the alignment files

#### Common tools:

- htseq-count
- featureCounts (usable in R script, also a standalone program)
  - Found in Rsubread package, install first to use featureCounts https://bioconductor.org/packages/release/bioc/html/Rsubread.html



# RNA-Seq Analysis – Count Matrix Creation

## Using featureCounts in R:

- 1) Copy all .bam and .bai files (\*Mapped.MAPQ10\*) into a folder, bams/
- 2) Run the following lines:

```
bam_files <- list.files(path="bams/", full.names=TRUE)[c(TRUE, FALSE)]</p>
bamcounts <- featureCounts(bam_files, annot.inbuilt="mm10", countMultiMappingReads=FALSE, ignoreDup=FALSE, isPairedEnd=TRUE, strandSpecific=0, nthreads=4, verbose=TRUE)</p>
rownames(bamcounts$counts) <- mapIds(org.Mm.eg.db, keys=rownames(bamcounts$counts), column="SYMBOL", keytype="ENTREZID")</p>
bamcounts$counts <- bamcounts$counts[!(is.na(rownames(bamcounts$counts))), ]</p>
for (n in names(bamcounts)){
write.table(bamcounts[[n]], file=paste(getwd(), "/", n, ".csv", sep=""), sep=",", quote=F, col.names=NA)
}
```



# RNA-Seq Analysis – Count Matrix Creation

Alternatively, run the *get\_rnaseq\_counts.R* script

See input options and defaults for use.

 Custom featureCounts options will require modification/manually performing the code shown in the previous slide



# RNA-Seq Analysis – Count Matrix

Genes (rows) x Samples (columns)

e.g. counts.csv

Modify column names as desired\*

|       | WT_1 | WT_2 | WT_A | WT_B | KO_1 | KO_2 | KO_A | KO_B |
|-------|------|------|------|------|------|------|------|------|
| Gene1 | 0    | 0    | 3    | 8    | 20   | 20   | 22   | 23   |
| Gene2 | 10   | 11   | 12   | 5    | 10   | 15   | 16   | 13   |
| Gene3 | 14   | 13   | 12   | 11   | 0    | 0    | 2    | 0    |
| Gene4 | 0    | 2    | 2    | 1    | 30   | 30   | 37   | 23   |
| Gene5 | 400  | 230  | 150  | 300  | 50   | 100  | 55   | 66   |

# RNA-Seq Analysis – Sample Info File

## Sample info file (.csv)

Sample info names <u>MUST</u> match column names in counts matrix

| 1 |        |           |       |
|---|--------|-----------|-------|
|   | Sample | Condition | Group |
|   |        |           |       |
|   | WT_1   | WT_1-2    | 1     |
|   | WT_2   | WT_1-2    | 1     |
|   | \A/T A | \A/T A D  | 2     |
|   | WT_A   | WT_A-B    | 2     |
| _ | WT_B   | WT_A-B    | 2     |
|   |        |           |       |
|   | KO_1   | KO_1-2    | 3     |
|   | KO_2   | KO 1-2    | 3     |
|   | _      | _         |       |
|   | KO_A   | KO_A-B    | 4     |
|   | KO_B   | KO_A-B    | 4     |
|   | _      | _         |       |

|       |      |      | Count matrix (.csv) |      |      |      |      |      |
|-------|------|------|---------------------|------|------|------|------|------|
|       | WT_1 | WT_2 | WT_A                | WT_B | KO_1 | KO_2 | KO_A | KO_B |
| Gene1 | 0    | 0    | 3                   | 8    | 20   | 20   | 22   | 23   |
| Gene2 | 10   | 11   | 12                  | 5    | 10   | 15   | 16   | 13   |
| Gene3 | 14   | 13   | 12                  | 11   | 0    | 0    | 2    | 0    |
| Gene4 | 0    | 2    | 2                   | 1    | 30   | 30   | 37   | 23   |
| Gene5 | 400  | 230  | 150                 | 300  | 50   | 100  | 55   | 66   |

# RNA-Seq Analysis – Overview





# RNA-Seq Analysis – Setup

## Required files:

- 1) Sample info file (.csv)
  - Manually created by you
  - Defines conditions/replicates for comparison
- 2) Count matrix (.csv)
  - Can generate within script (commented section)
    - Requires .bam files for all samples

Currently supports mm10, hg38, and rn6 assembly:

 Genome annotation (.gtf) file required if other assembly needed and not built-in with functions



# RNA-Seq Analysis – Options

Rscript analyze\_rnaseq\_degs\_DESeq2.R and/or

Rscript analyze\_rnaseq\_degs\_edgeR.R

- --countsfile (required)
- --sampleinfo (required)
- --organism (default: mouse)
- --result\_dir (default: DEG\_Analysis/)
- --filter (default: FALSE)
- --min\_count (default: 1)
- --min basemean (default: 10)
- --lfc (log2foldchange, default: 0.585)
- --pvalue (default: 0.05)

# RNA-Seq Analysis – Overview





# RNA-Seq – Filter Counts

- Remove genes with 0 counts across samples
  - Removes irrelevant genes
  - Reduces biases (variance+means) in computing DEGs
- Most genes have little-to-no expression



# RNA-Seq Analysis – Overview



# (Gene length bias) Sample A Reads

# RNA-Seq – Normalizing Counts

## Example *within-sample* comparison:

- Comparing gene X and gene Y
- Sequenced to same depth
- Gene X has more reads mapped due to gene length
- May appear that gene X is enriched more than gene Y

## Normalize using TPM:

 Counts per length of transcript (kb) per million mapped reads

(Sequence depth bias)





Example <u>between</u>-sample comparison:

- Comparing gene X for Sample A and Sample B
- Sample A sequenced ~2x deeper than Sample B
- Appears that treatment for Sample A enriches gene X expression

Normalize using CPM/TPM:

 Divides gene counts by total number of reads



Example <u>between</u>-sample (DEG Analysis):

- Dividing gene counts by total reads for each sample
  - Gene X, Y, Z in Sample A divided by larger value due to DE gene
  - X, Y, Z would appear to be expressed less in Sample A
- CPM/TPM normalization not exactly appropriate here



## DESeq2

Median of ratios

## edgeR

Trimmed mean of M values (TMM)

Since comparing DEGs between samples (gene-to-gene, same genome), these assume gene length is constant. Thus, does not (no need to) account for gene length.

#### ${\sf sample 1/pseudo-reference\ sample}$

## DESeq2

Median of ratios



| Gene | Sample A<br>Counts | Sample B<br>Counts | Pseudo-<br>reference<br>sample | Sample<br>A/reference<br>Ratio | Sample<br>B/reference<br>Ratio | Median of<br>Ratios A    | Median<br>of Ratios<br>B     | Normalized<br>Sample A      | Normalized<br>Sample B      |
|------|--------------------|--------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------|------------------------------|-----------------------------|-----------------------------|
| ABC1 | 1489               | 906                | sqrt(1489*906)<br>=1161.48     | 1489/1161.48<br>=1.28          | 906/1161.48<br>=0.78           | Median<br>(1.28,         | Median<br>(0.78,             | 1489/1.3<br>= <b>1145.4</b> | 906/0.77<br>= <b>1246.8</b> |
| DEF2 | 22                 | 13                 | sqrt(22*13)<br>=16.91          | 22/16.91<br>=1.30              | 13/16.91<br>=0.77              | 1.30,<br>1.39)<br>=1.3   | 0.77,<br>0.72)<br>=0.77      | 22/1.3<br>= <b>16.9</b>     | 13/0.77<br>= <b>16.9</b>    |
| XYZ3 | 793                | 410                | sqrt(793*410)<br>=570.20       | 793/570.20<br>=1.39            | 410/570.20<br>=0.72            | 1.3<br>1.3<br>1.3<br>1.3 | 0.77<br>0.77<br>0.77<br>0.77 | 793/1.3<br>= <b>610</b>     | 410/0.77<br>= <b>532.5</b>  |
|      |                    |                    |                                |                                |                                |                          |                              |                             |                             |

\_2



## edgeR

- Trimmed mean of M values (TMM)
  - Trimmed mean of log expression, assumes most genes are not differentially expressed
  - Removes extreme outliers and computes mean counts relative to library size
  - New scaling factor created for effective library size between samples

# RNA-Seq Analysis – Overview





# RNA-Seq – Obtain DEGs

Differentially expressed genes (DEGs) are identified based on statistical metrics at defined thresholds

#### Metrics:

- log<sub>2</sub>(fold-change), log<sub>10</sub>(fold-change) where fold-change = value2/value1
- p-value, adjusted p-value a.k.a false-discovery rate (FDR) a.k.a q-value

| Metric                         | Purpose                                     | Example<br>Value | Interpretation                                                              |
|--------------------------------|---------------------------------------------|------------------|-----------------------------------------------------------------------------|
| log <sub>2</sub> (fold-change) | Magnitude of difference in gene expression  | 1                | Sample2 expresses twice that of Sample1                                     |
| adjusted p-value               | Confidence in difference of gene expression | 0.05             | 95% certainty that DEG isn't just random, only 5 false positive in 100 true |



# RNA-Seq – Obtain DEGs

#### With normalized counts:

- Compute baseMean of each gene (average of normalized counts across samples)
- Compute log2FoldChange of gene
  - log<sub>2</sub>(mean(condition 2) / mean(condition 1))
  - Standard error associated
- Compute p-value for each gene
  - Null hypothesis = no difference between conditions
  - Compute adjusted p-value (sort p-values, (rank/n)\*FDR)

# RNA-Seq Analysis – Overview





# RNA-Seq – Filter DEG Results

### Magnitude:

- Up-regulated genes: logFoldChange > 1.5
- Down-regulated genes: logFoldChange < -1.5</li>

#### Confidence:

Statistically significant: (adjusted) p-value <= 0.05</li>

These values are chosen at your discretion as input parameters.

Note: p-value used as input in case not enough data points for genes to compute adjusted p-value.

# RNA-Seq – Filter DEG Results

#### Control vs Med12-467

DESeq2 Results



Total = 14104 genes Control = 350 DEGs Med12-467 = 139 DEGS

# RNA-Seq Analysis – Overview





# RNA-Seq – Annotate Results

- 1. Gene Ontology (GO):
  - Cellular Component (CC)
  - Molecular Function (MF)
  - Biological Process (BP)

- 2. Kyoto Encyclopedia of Genes and Genomes (KEGG):
  - High-level functional pathways associated with genes



# RNA-Seq – Annotate Results

- Take list of genes from DEG results
- Take database with functional information about genes
- Annotate DEG results with term of functional information
  - GeneRatio: genes in list with term / genes in list
  - BgRatio: all known genes with term / genes in database
  - p-value, padj, etc...

#### RNA-Seq – Annotate Results GO (ALL) - Med12-467 GO (ALL) - Med12-467 log2FoldChange BP - viral life cycle BP - positive regulation of stem cell differentiation -0.2 BP - regulation of viral genome BP - dendrite arborization -0.4BP - dendrite arborization BP - neuron projection arborization -0.6 GeneCount BP - viral process BP - cellular response to tumor necrosis factor 3.5 3.0 BP - viral genome replication BP - response to tumor necrosis BP - positive regulation of stem cell differentiation BP - viral life cycle GenePercentage GO BP - viral process BP - regulation of viral life Term BP - regulation of viral process BP - neuron projection arborization BP - regulation of viral life BP - cellular response to tumor necrosis factor BP - regulation of viral genome BP - regulation of viral process BP - viral genome replication BP - response to tumor necrosis -Gene (Most Frequent in Top Terms) 3.2 3.6 -log(p.adjust)

# RNA-Seq Analysis – Overview





# Learning Goals

#### **DEG Analysis:**

- 1) Bulk RNA-Seq Analysis:
  - Count matrix creation and sample sheet file preparation
  - Normalization and DESeq2 + edgeR
  - Computation of DEGs
  - Annotations and figures

#### 2) DiffBind Peaks Analysis:

- Sample sheet file preparation
- Consensus peaksets
- Occupancy analysis
- Affinity analysis



# Peaks Analysis – Preface

- At least 2 replicates required for each sample
- Alignment files (.bam + .bai) without duplicates should be used for peaks analysis
  - However, program will automatically remove duplicates if .bam files with duplicates are provided
  - Retains library complexity without PCR duplication artifacts
- Similar to RNA-Seq, but relies on peaks files instead of a counts matrix



# Peaks Analysis – Options

Rscript analyze\_peaks\_degs.R

- --file (required)
- --fragmentsizes (default: NULL)
- --organism (default: mouse)
- --result\_dir (default: Peaks\_Analysis/)
- --database (default: ucsc)
- --min\_count (default: 1)
- --add\_replicates (default: FALSE)
- -- lfc (log2foldchange, default: 0.585)
- --fdr (default: 0.05)





## Peaks Analysis – Sample sheet

DiffBind sample sheet (.csv) – create manually

|              |           | •         | (                      |            |            | ,                      |         |
|--------------|-----------|-----------|------------------------|------------|------------|------------------------|---------|
| SampleID     | Condition | Replicate | Peaks                  | PeakCaller | PeakFormat | bamReads               | Factor  |
| WT-1-SEACR   | WT        | 1         | WT-1.stringent.bed     | bed        | bed        | WT-1.Mapped.MAPQ10.bam | SEACR   |
| WT-1-MACS    | WT        | 1         | WT-1_peaks.narrowPeak  | bed        | bed        | WT-1.Mapped.MAPQ10.bam | MACS    |
| WT-1-GoPeaks | WT        | 1         | WT-1_gopeaks_peaks.bed | bed        | bed        | WT-1.Mapped.MAPQ10.bam | GoPeaks |
| WT-2-SEACR   | WT        | 2         | WT-2.stringent.bed     | bed        | bed        | WT-2.Mapped.MAPQ10.bam | SEACR   |
| WT-2-MACS    | WT        | 2         | WT-2_peaks.narrowPeak  | bed        | bed        | WT-2.Mapped.MAPQ10.bam | MACS    |
| WT-2-GoPeaks | WT        | 2         | WT-2_gopeaks_peaks.bed | bed        | bed        | WT-2.Mapped.MAPQ10.bam | GoPeaks |
| KO-1-SEACR   | КО        | 1         | KO-1.stringent.bed     | bed        | bed        | KO-1.Mapped.MAPQ10.bam | SEACR   |
| KO-1-MACS    | КО        | 1         | KO-1_peaks.narrowPeak  | bed        | bed        | KO-1.Mapped.MAPQ10.bam | MACS    |
| KO-1-GoPeaks | КО        | 1         | KO-1_gopeaks_peaks.bed | bed        | bed        | KO-1.Mapped.MAPQ10.bam | GoPeaks |
| KO-2-SEACR   | КО        | 2         | KO-2.stringent.bed     | bed        | bed        | KO-2.Mapped.MAPQ10.bam | SEACR   |
| KO-2-MACS    | КО        | 2         | KO-2_peaks.narrowPeak  | bed        | bed        | KO-2.Mapped.MAPQ10.bam | MACS    |
| KO-2-GoPeaks | КО        | 2         | KO-2_gopeaks_peaks.bed | bed        | bed        | KO-2.Mapped.MAPQ10.bam | GoPeaks |



## Peaks Analysis – File info

Peak regions are loaded from files defined in samplesheet. E.g.

340,487 unique sites (ignoring overlapping intervals)

```
Raw peaksets:
> db0bi
12 Samples, 340487 sites in matrix:
                   ID Factor Condition Replicate Intervals
     Ac-TRF2-1-SEACR
                        SEACR
                                Ac-TRF2
                                                       74911
      Ac-TRF2-1-MACS
                         MACS
                                Ac-TRF2
                                                        1402
   Ac-TRF2-1-GoPeaks GoPeaks
                                Ac-TRF2
                                                          87
     Ac-TRF2-2-SEACR
                        SEACR
                                Ac-TRF2
                                                       95329
      Ac-TRF2-2-MACS
                         MACS
                                Ac-TRF2
                                                        2449
   Ac-TRF2-2-GoPeaks GoPeaks
                                Ac-TRF2
      Ac-IqG-1-SEACR
                        SEACR
                                 Ac-IqG
                                                       92869
       Ac-IqG-1-MACS
                         MACS
                                 Ac-IqG
                                                        5162
    Ac-IgG-1-GoPeaks GoPeaks
                                 Ac-IgG
                                                         190
      Ac-IqG-2-SEACR
                        SEACR
                                 Ac-IqG
                                                      131290
       Ac-IqG-2-MACS
                         MACS
                                 Ac-IqG
                                                        6413
    Ac-IqG-2-GoPeaks GoPeaks
                                 Ac-IgG
                                                         146
```





## Peaks Analysis – Filter Blacklisted Regions

Remove sites known to be problematic artifacts in sequencing/alignment

```
> db0bi.noblacklist
12 Samples, 46401 sites in matrix (332718 total):
                      Factor Condition Replicate Intervals
                       SEACR
     Ac-TRF2-1-SEACR
                                Ac-TRF2
                                                       72388
      Ac-TRF2-1-MACS
                        MACS
                                Ac-TRF2
                                                        1145
   Ac-TRF2-1-GoPeaks GoPeaks
                                Ac-TRF2
     Ac-TRF2-2-SEACR
                       SEACR
                                Ac-TRF2
                                                       92280
      Ac-TRF2-2-MACS
                         MACS
                                Ac-TRF2
                                                        2124
   Ac-TRF2-2-GoPeaks GoPeaks
                                Ac-TRF2
                                                          16
      Ac-IqG-1-SEACR
                       SEACR
                                 Ac-IqG
                                                       90005
       Ac-IqG-1-MACS
                         MACS
                                 Ac-IqG
                                                        4753
    Ac-IqG-1-GoPeaks GoPeaks
                                 Ac-IgG
                                                          87
      Ac-IgG-2-SEACR
                       SEACR
                                 Ac-IgG
                                                      127624
       Ac-IqG-2-MACS
                         MACS
                                 Ac-IqG
                                                        5875
    Ac-IgG-2-GoPeaks GoPeaks
                                 Ac-IqG
                                                          31
```





Reads processing pipeline uses 3 peak callers:

- MACS (.narrowPeak file)
- SEACR (.stringent.bed file)
- GoPeaks (gopeaks\_peaks.bed file)

Consolidating resulting peak regions called by these tools provides more validation in each peak called (or not called).

Likewise, replicates also provide additional validation.





Steps to build consensus:

- 1) Caller consensus:
  - Merge peaks found in 2/3 peak callers for each replicate
- 2) Replicate consensus:
  - Merge peaks found in at least 2 replicates' caller consensus or (if very few sites resulted...)
  - Combine peaks from all replicates' caller consensus



Final consensus sites are used for occupancy + affinity analysis (differential binding analysis)

```
Consensus between peak callers...
> dbObj.caller consensus
4 Samples, 12112 sites in matrix:
                        Factor Condition Replicate Intervals
1 Ac-TRF2:1 SEACR-MACS-GoPeaks
                                 Ac-TRF2
                                                        1131
2 Ac-TRF2:2 SEACR-MACS-GoPeaks
                                 Ac-TRF2
                                                        2108
  Ac-IqG:1 SEACR-MACS-GoPeaks
                                                        4672
                                  Ac-IqG
  Ac-IqG:2 SEACR-MACS-GoPeaks
                                  Ac-IqG
                                                         5798
Consensus between replicates...
> db0bj.consensus
2 Samples, 1065 sites in matrix:
                      Factor Condition Replicate Intervals
1 Ac-TRF2 SEACR-MACS-GoPeaks
                               Ac-TRF2
                                             1-2
                                                       119
2 Ac-IqG SEACR-MACS-GoPeaks
                                Ac-IqG
                                                      1009
                                             1-2
```





## Peaks Analysis – Occupancy Analysis

### DiffBind's occupancy analysis:

- Strictly considers binding site regions in peakset
- Does not consider information about numbers of mapped reads at each region

Peaks over Genome

## Peaks Analysis – Occupancy Analysis







## Peaks Analysis – Affinity Analysis

### DiffBind's affinity analysis:

- Performs DESeq2 and edgeR on regions defined in consensus peaksets
- Output here is similar to the RNA-Seq scripts
  - Annotations
  - Plots
  - Differential binding analysis result files

## Peaks Analysis – Affinity Analysis DE Binding Sites Identified by Method Contrast: Ac-TRF2 vs. Ac-IgG [344 FDR<=0.050] 10.0 12.5 15.0 17.5 -log(p.adjust) edgeR DESeq2 **Binding Sites** Ac-TRF2 vs. Ac-IgG Legend FDR >0.05 34 233 111 FDR<=0.05</li> log2 Fold Change

53





## Notes on Files

### Conventions:

- "DESeq2" and "edgeR" in name for their respective outputs
- Pairwise comparisons, conditions are color-coded (mostly) for figures
  - Figures are generated from respective .tsv or .csv files
    - All detailed info is there, more genes may exist than in figure
  - Condition in filename for respective genes that are up-regulated compared to other condition
  - "DEG" in filename for all genes with logfoldchange > |1.5|



## Troubleshooting

If certain files aren't generated:

- No DEGs were found
  - Try relaxing constraints
- Dataset may require different handling
  - Double-check counts files, sample info files, samplesheets, alignment files, peaks files, etc...
  - Try running step-by-step in Rstudio to see where problem exists
  - Contact earezza@ohri.ca

Trouble running script:

- Double-check R version and packages installed
- Double-check input options and relative filepaths



## Questions?

Contact: earezza@ohri.ca