Note: The extra question I did was 4.9, 4.13, 4.16, 5.9, 5.22, 5.23

Extra Question:

4.9

Let \sim be the binary relation "is the same size". In other words If $A \sim B$, A and B are the same size. We show that \sim is an equivalence relation. First, \sim is reflexive because the identity function f(x) = x, $\forall x \in A$ is a correspondence $f: A \to A$. Second, \sim is symmetric because any correspondence has an inverse, which itself is a correspondence. Third, \sim is transitive because if $A \sim B$ via correspondence f, and f is a correspondence f. Because f is reflexive, symmetric, and transitive, f is an equivalence relation.

4.13

We observe that $L(R) \subseteq L(S)$ if and only if $\overline{L(S)} \cap L(R) = \phi$. The following TM X decides A.

X = On input (R,S) where R and S are regular expressions:

- 1. Construct DFA E such that $L(E) = \overline{L(S)} \cap L(R)$.
- 2. Run TM T from Theorem 4.4 on input $\langle E \rangle$, where T decides E_{DFA} .
- 3. If T accepts, accept. If T rejects, reject.

4.16

The following TM X decides A.

X = On input < R > where R is a regular expression:

- 1. Construct DFA E that accepts $\sum^* 111 \sum^*$.
- 2. Construct DFA B such that $L(B) = L(R) \cap L(E)$.
- 3. Run TM T from Theorem 4.4 on input $\langle B \rangle$, where T decides E_{DFA} .
- 4. If T accepts, reject. If T rejects, accept.

5.9

Assume T is decidable and let decider R decide T. Reduce from A_{TM} by constructing a TM S as follows:

S: on input $\langle M, w \rangle$

- . 1. create a TM Q as follows:
- On input x:
- 1. if x does not have the form 01 or 10, reject

- 2. if x has the form 01, then accept.
- 3. else(x has the form 10), Run M on w and accept if M accepts w.
- 2. Run R on $\langle Q \rangle$
 - 3. Accept if R accepts, reject if R rejects.

Because S decides A_{TM} , which is known to be undecidable, we then know that T is not decidable.

5.22

 (\Rightarrow) If $A \leq A_{TM}$, then A is Turing-recognizable because A_{TM} is Turing recognizable.

(\Leftarrow) If A is Turing-recognizable then there exists some TM R that recognizes A. That is, R would receive an input w and accept if w is in A (otherwise R does not accept). To show that $A \leq {}_{m}A_{TM}$, we design a TM that does the following: On input w, writes < R, w > on the tape and halts. It is easy to check that < R, w > is in A_{TM} if and only if w is in A. Thus, we get a mapping reduction of A to A_{TM} .

5.23

- (⇒) If A $\leq_m 0^*1^*$, then A is decidable because 0^*1^* is a decidable language.
- (\Leftarrow) If A is decidable, then there exists some TM R that decides A. That is, R would receive an input w and accept if w is in A, reject if w is not in A. To show A \leq , reject if w is not in A. To show A \leq m0*1*, we design a TM Q that does the following: On input w, runs R on w. If R accepts, outputs 01; otherwise, outputs 10. It is easy to check that:

 $w \in A \Leftrightarrow \text{output of } Q \in 0^*1^*.$

Thus, we obtain a mapping reduction of A to 0^*1^* .

Required Question:

4.2

Define the language as $C = \{ \langle M, R \rangle | M \text{ is a DFA and } R \text{ is a regular expression with } L(M) = L(R) \}$

Recall that the proof of Theorem 4.5 defines a Turing machine F that decides the language $EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and B are DFAs and L(A)} = L(B) \}$. Then the following Turing machine T decides C:

T = On input < M, R >, where M is a DFA and R is a regular expression:

- 1. Convert R into a DFA D_R using the algorithm in the textbook.
- 2. Run TM decider F from Theorem 4.5 on input $\langle M, D_R \rangle$.
- 3. If F accepts, accept. If F rejects, reject.

4.3

Let $ALL_{DFA} = \{ \langle A \rangle | \text{ A is a DFA that recognizes } \sum^* \}$. The following TM L decides ALL_{DFA} .

L= On input $\langle A \rangle$ where A is a DFA:

- 1. Construct DFA B that recognizes $\overline{L(A)}$.
- 2. Run TM T from Theorem 4.4 on input $\langle B \rangle$, where T decides E_{DFA} .
- 3. If T accepts, accept. If T rejects, reject.

4.4

Let $A\epsilon_{CFG} = \{ \langle G \rangle | G \text{ is a CFG that generates } \epsilon \}$. The following TM V decides $A\epsilon_{CFG}$.

V = " On input $\langle G \rangle$ where G is a CFG:

- 1. Run TM S from Theorem 4.7 on input $\langle G, \epsilon \rangle$, where S is a decider for A_{CFG}
- 2. If S accepts, accept. If S rejects, reject."

4.6

(a)

No, f is not one-to-one because f(1) = f(3).

(b)

No, f is not onto because there does not exist $x \in X$ such that f(x) = 10.

(c)

No, f is not correspondence because f is not one-to-one and onto.

(d)

Yes, g is one-to-one.

(e)

Yes, g is onto.

(f)

Yes, g is a correspondence.

4.7

Suppose B is countable and a correspondence f: N \rightarrow B exists. We construct x in B that is not paired with anything in N. Let $\mathbf{x} = x_1 x_2 \dots$. Let $x_i = 0$ if $f(i)_i = 1$, and $x_i = 1$ if $f(i)_i = 0$ where $f(i)_i$ is the ith bit of f(i). Therefore, we ensure that x is not f(i) for any i because it differs from f(i) in the ith symbol, and a contradiction occurs.

4.8

We demonstrate a one-to-one f: T \rightarrow N. Let $f(i, j, k) = 2^i 3^j 5^k$. Function f is one-to-one because if $a \neq b$, $f(a) \neq f(b)$. Therefore, T is countable.

5.1

Suppose for a contradiction that EQ_{CFG} were decidable. We construct a decider M for $ALL_{CFG} = \{ \langle G \rangle | G \text{ is a CFG and L}(G) = \sum^* \}$ as follows:

M = "On input < G >:

- 1. Construct a CFG H such that $L(H) = \sum^*$
- 2. Run the decider for EQ_{CFG} on $\langle G, H \rangle$.
- 3. If it accepts, accept. If it rejects, reject."

M decides ALL_{CFG} assuming a decider for EQ_{CFG} exists. Since we know ALL_{CFG} is undecidable, we have a contradiction.

5.2

Here is a Turing Machine M which recognizes the complement of EQ_{CFG} :

 $\mathcal{M} =$ "On input < G, H >:

- 1. Lexicographically generate the strings $x \in \sum^*$.
- 2. For each such string x:
- 3. Test whether $x \in L(G)$ and whether $x \in L(H)$, using the algorithm for A_{CFG} .
- 4. If one of the tests accepts and the other rejects, accept; otherwise, continue."

5.3

$$\left[\frac{ab}{abab}\right] \left[\frac{ab}{abab}\right] \left[\frac{ab}{a}\right] \left[\frac{b}{a}\right] \left[\frac{b}{a}\right] \left[\frac{aa}{a}\right] \left[\frac{aa}{a}\right]$$

5.4

No, For example, define the languages $A = \{0^n 1^n \mid n \ge 0\}$ and $B = \{1\}$, both over the alphabet $\sum = \{0,1\}$. Define the function $f: \sum^* \to \sum^*$ as

$$f(w) = \begin{cases} 1 & \text{if } w \in A \\ 0 & \text{if } w \notin A \end{cases} \tag{1}$$

Observe that A is a context-free language, so it is also Turing-decidable. Thus, f is a computable function. Also, $w \in A$ if and only if f(w) = 1, which is true if and only if $f(w) \in B$. Hence, $A \leq {}_{m}B$. Language A is nonregular, but B is regular since it is finite.