Using Satellites to Monitor Air Quality

Eloise Marais

e.a.marais@bham.ac.uk / maraisresearchgroup.co.uk

Resilient Urban Environments

26 June 2018

Spectrometers in Space

Spectrometers in Space

Satellite observations as the Solution

NASA Afternoon-Train (A-Train)

Long record of diverse observations

12+ years of air pollutants and vegetation dynamics from NASA and ESA satellites

- Air pollutants regulated by EU
 - Constraints on regulated air pollutants
 - **Vegetation extent/cover**
 - **Vegetation greenness**

Air Pollution

Nitrogen dioxide (NO₂) in June 2008

(KNMI/NASA OMI sensor)

Air Quality in Africa

Map pollution sources from satellites and compare to state-of-art models

Isoprene: chemical produced and release by trees

Air Quality in Africa

Identify sources that contribute to severe ozone pollution in Nigeria

Current Approach to Air Quality Monitoring

COSTLY to MONITOR

£52,000-£173,000 per monitor

LARGE GAPS

Long-term Changes in Emissions

UK Emissions of NO_x in 2015

Missing information:
long-term changes in pollution sources

[naei.beis.gov.uk]

Tool for Recording and Assessing the City Environment

Online database of air pollution concentrations and vegetation dynamics from EO to evaluate AQ and green space at the city level

Multi-sector Engagement and Support

Engineering and Physical Sciences
Research Council

Data Validation (Birmingham)

UK NO₂ out of compliance with **EU** standards

Consistency between surface and satellite NO₂:

Data analysis by **Karn Vohra**, PhD student at UoB

Application to Birmingham

Decline in NO₂ over Birmingham: 3.4% per year

Apply to cities at different development stages

Target cities on maps of OMI NO₂ in 2005 and 2015

Develop an approach that can be flexibly applied to any city

Early results for Delhi: SO₂

Increase across Delhi, but not significant

1 Dobson Unit = 2.687 × 10¹⁶ molecules cm⁻²

