CIRCLES - DPP

MATHEMATICS

IF the lines X+2Y-5=0 & 2X-3Y+4=0 lies along diameters of circles of area 1. 9π then equation of the circle is

1)
$$X^2 + Y^2 - 2X - 4Y - 4 = 0$$

3)
$$X^2 + Y^2 + 2X - 4Y - 4 = 0$$

3)
$$X^2 + Y^2 + 2X + 4Y - 4 = 0$$

4)
$$X^2 + Y^2 - 2X + 4Y - 4 = 0$$

The centre of the circle which passes through the vertices of triangle formed by the lines Y = 0, 2. Y = X and 2x + 3y = 10 is

1)
$$\left(-\frac{5}{2}, -\frac{1}{2}\right)$$

$$(2)\left(\frac{5}{2}, -\frac{1}{2}\right)$$

1)
$$\left(-\frac{5}{2}, -\frac{1}{2}\right)$$
 2) $\left(\frac{5}{2}, -\frac{1}{2}\right)$ 3) $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ 4) $\left(\frac{5}{2}, \frac{1}{2}\right)$

4)
$$\left(\frac{5}{2}, \frac{1}{2}\right)$$

The coordinate of the point on the circles $X^2 + Y^2 - 2X - 4Y - 11 = 0$ farthest from 3. the origin are

1)
$$\left(2 + \frac{8}{\sqrt{5}}, 1 + \frac{4}{\sqrt{5}}\right)$$

2)
$$\left(1 + \frac{8}{\sqrt{5}}, 2 + \frac{4}{\sqrt{5}}\right)$$

3)
$$\left(1+\frac{4}{\sqrt{5}},2+\frac{8}{\sqrt{5}}\right)$$

$$4)\left(1-\frac{8}{\sqrt{5}},2+\frac{4}{\sqrt{5}}\right)$$

The Tangent to circle $X^2 + Y^2 = 5$ at (1,-2) also touches the circle $X^2 + Y^2 - 8X + 6Y + 20 = 0$ then 4. coordinate of the corresponding point of contact

1)
$$(7,1)$$

2)
$$(-3,-1)$$
 3) $(3,-1)$

$$(3,-1)$$

4)
$$(5,0)$$

5. If 3X + Y = 0 is a tangent to ole whose centre is (2,-1) then find the equation of other tangent to the circle from the origin is

1)
$$X + 3Y = 0$$

2)
$$Y - 3X = 0$$

3)
$$3X + Y = 0$$
 4) $X - 3Y = 0$

4)
$$X - 3Y = 0$$

- If X+Y+K=0 is a tangent to the circle $X^2+Y^2-2X-4Y+3=0$ then K= 6.
 - 1) ± 20
- 2) -1, -5
- $3) \pm 2$
- 4) 4
- The equation of the normal to the circle $X^2 + Y^2 2X = 0$, parallel to the line X + 2Y = 37.

1)
$$2X - Y + 3 = 0$$

2)
$$X + 2Y - 1 = 0$$

2)
$$X+2Y-1=0$$
 3) $X+2Y-2=0$ 4) $X-2Y+1=0$

4)
$$X - 2Y + 1 = 0$$

	3) $p^2 - q^2 = 0$		4) $p^2 + q^2 = 0$				
10.	The locus of point of intersection of the tangents to the circle $X^2+Y^2=a^2$ at point whose parametric angles differ by 60^0 is						
	1) $3(x^2+y^2)=2a^2$	2) $4(x^2+y^2)=3a^2$	3) $3(x^2+y^2)=4$	a^2 4) $x^2 + y^2 = 3a^2$			
11.	The sum of the minimum & maximum distance of the point (4, -3) to the circle $x^2+y^2+4x-10y-7=0$ is						
	1) 10	2) 12	3) 16	4) 20			
12.	The equation of the tangent to the circle $x^2+y^2+4x-4y+4=0$ which makes equal intercepts on the positive coordinate axes is						
	1) $x+y=2$		2) $x+y=\sqrt{2}$				
	3. $x+y=2\sqrt{2}$		4. $x-y=\sqrt{2}$				
13.	The line $x=y$ touches a circle at the point $(1, 1)$. If the circle also passes through the point $(1, -3)$, then its radius is						
	$(1)^{3\sqrt{2}}$	2) 3	3) $2\sqrt{2}$	4) 2			
14.	Let the tangents drawn to the circle $x^2 + y^2 = 16$ from the point P(0,h) meet the X-axis at point A & B. If the Area of ΔPAB is minimum, then h =						
	1) $4\sqrt{2}$	2) $4\sqrt{3}$	3) $3\sqrt{2}$	4) $3\sqrt{3}$			
15.	The circle touches Y-axis at $(0, 3)$ and makes an intercept of 2 units on the positive X-axis. Intercept made by the circle on the line $\sqrt{10} x - 3y = 1$ in units is						
	1) 3	2) 6	3) $2\sqrt{10}$	4) 10			

The length of the tangent drawn from any point on the circle $x^2 + y^2 + 2gx + 2fy + \alpha = 0$ to the circle $x^2 + y^2 + 2gx + 2fy + \beta = 0$ is

 $2)\sqrt{\alpha-\beta} \qquad \qquad 3)\sqrt{\alpha\beta}$

The tangents drawn from the origin to the circle $x^2 + y^2 - 2px - 2qy + q^2 = 0$ are perpendicular if

2) $p^2 - q^2 = 1$

 $4)\sqrt{\alpha/\beta}$

8.

9.

1) $\sqrt{\beta-\alpha}$

1) $p^2 + q^2 = 1$

16.			from any orbitary points P on the line $2x + y - 4 = 0$ the ass through a fixed point then that point is				
	$1)\left(\frac{1}{4},\frac{1}{2}\right)$	$2)\left(\frac{1}{2},\frac{1}{4}\right)$	$3)\left(\frac{-1}{2},\frac{1}{4}\right)$	$4)\left(\frac{1}{2}, \frac{-1}{4}\right)$			
17.	The equation of the circle which has two normal $(x-1)(y-2) = 0$ and a tangents $3x + 4y = 6$ is						
	1) $x^2 + y^2 - 2x - 4y + 4 = 0$		2) $x^2 + y^2 + 2x - 4y + 5 = 0$				
	3) $(x-1)^2 + (y-2)^2$	= 5	4) $(x-1)^2 + (y-2)^2$	= 4			
18.	If $A\left(\frac{\pi}{3}\right)$, $B\left(\frac{\pi}{6}\right)$ are the points on the circle represented in parametric form with centre (0,0) &						
	radius 12 then the length of chord of AB is						
	$1) 6\left(\sqrt{6}-\sqrt{2}\right)$	$2) \ 6\left(\sqrt{6}-\sqrt{3}\right)$	$3) \sqrt{2} \left(\sqrt{3} - 2 \right)$	4) $6(\sqrt{3}-2)$			
19.	A point moves such that the sum of square of its distance from the sides of square of side unity is equal to 9. The locus of such point is a circle						
	1) Inscribed in a squ	are	2) Circum scribing the square				
	3) Inside the square	;	4) Containing the square				
20.	If two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct points, then find the values of r						
	1) r=2	2) r<2	3) r>84	4) 2 < <i>r</i> < 8			
21.	The centre of a set of circles, each of radius 3, lies on the circle $x^2 + y^2 = 25$ The locus of any point in the set is						
	1) $4 \le x^2 + y^2 \le 64$		2) $x^2 + y^2 \le 25$				
	3) $x^2 + y^2 \ge 25$		$4) \ 3 \le x^2 + y^2 \le 9$				
22.	Given $A(0,6)$, $B(4,0)$, $C(-3,0)$, $D(0,-2)$ con-cyclic points, the orthocentre of $\triangle ABC$ is						
	1) (2,0)	2) (0,-2)	3) (0,2)	4. (2,2)			
23.	If the radius of the c	sircle $(x-1)^2 + (y-2)^2$	$=1$ and $(x-7)^2+(y-1)^2$	$(-10)^2 = 4$ are increasing uniformly			

1) 45 sec

23.

16.

2) 90 sec

3) 11 sec

write to time as 0.3 and 0.4unit/sec .Then they will touch each other at time equal to

4) 135 sec

1-10	0 1	2	2	3	4	2	2	1	3	3
S No	0 1	2	3	4	5	6	7	8	9	10
KEY										
	3) $Y = 4X^2$ 4) $Y^2 = 4X$				$=4X\cup (0,$	$\cup (0,Y), Y \in R$				
	1) $\{X^2 = 4Y, Y \ge O\} \cup \{(0, Y), Y < O\}$				2) <i>X</i> ²	$2) X^2 = Y$				
30.	The locus of center of circle which touches $(Y-1)^2 + X^2 = 1$ externally and also touches X-axis is									
	1) $4\sqrt{3}$		$2) \frac{7}{2} \sqrt{3}$		3) $2\sqrt{3}$	3	4) $\frac{1}{2}$	$\sqrt{3}$		
29.	The Area of the triangle formed by tangent, normal at $(1,\sqrt{3})$ to the circle $X^2 + Y^2 = 4$ and X-axis is									
	1)X + Y = 2		2) $X^2 + Y$	$r^2 = 1$	$3)X^{2}$	$Y^2 = 2$	4) X	X+Y=1		
28.	The locus of the midpoint of the chords of the circle $X^2 + Y^2 = 4$ which is subtends a right angle at the origin is									
	3) $X^2 + Y^2 + PX = 0$				4) X ²	4) $X^2 + Y^2 - 4PX = 0$				
	1) $X^2 + Y^2 + 2PX = 0$				$2)X^2 +$	$2)X^2 + Y^2 - PX = 0$				
27.	The locus of midpoint of chord of the circles $X^2 + Y^2 - 2PX = 0$ passing through the origin is									
	1) 4		2) 6		3) 8		4) 10	0		
26.		If A(2, c) & B(d, 2) are two points such that the polar of one point write to circle $X^2 + Y^2 = 16$ passes through the other than c+d=								
	1) $\frac{9}{2}$		2) $\frac{81}{10}$		3) $\frac{3}{2}$		4) $\frac{8}{4}$	1 1		
25. The Area of the triangle formed by the tangents drawn from P (4, 4) to the circle $x^2 + y^2 - 2x - 2y - 7 = 0$ and the chord of contact of P write to S=0 is										
	1) 4		2) 6		3) 8		4) 1			

11-20

21-30

The Area of the Quadrilateral formed by the tangent from the point (4,5) to the circle

 $x^2 + y^2 - 4x - 2y - 11 = 0$ with a pair of radius joining the points of contact of these tangents is

24.

1. Centre of the circle = point of intersection of the diameters

$$=(1, 2).$$

Let r be radius of circle Area of circles = 9π

- $\bullet \qquad \pi r^2 = 9\pi$
- r=3

Equation of circle $(X-1)^{2} + (Y-2)^{2} = 3^{2}$

2. Given lines Y = 0 (1)

 $Y = X \tag{2}$

2X + 3Y = 10 (3)

Solving 1 & 2 is 0 (0, 0)

Solving 2 & 3 is A (2, 2)

Solving 1 & 3 is B (5, 0) Let $X^2 + Y^2 + 2gx + 2fy + C = 0$ be the equation of the circle passing through 0, A & B

- C = 0, 4+4+4g+4f=0, 25+10g+C=0
- $g = \frac{-5}{2}$, $f = \frac{1}{2}$

3. The required point lies on the normal to the circle through the

Origin, i.e. on the line 2X = Y which gives

$$X^2 + 4X^2 - 2X - 8X - 11 = 0 \implies 5X^2 - 10X - 11 = 0$$
 2. $X = 1 \pm \frac{4}{\sqrt{5}}$ & $Y = 2\left(1 \pm \frac{11}{\sqrt{5}}\right)$

And the coordinates of required point farthest from the origin are

$$\left(1+\frac{4}{\sqrt{5}},2+\frac{8}{\sqrt{5}}\right)$$

4. Equation of tangent to $X^2 + Y^2 = 5$ at (1, -2) is X - 2Y - 5 = 0

Solving second circle, we get $(2Y+5)^2 + Y^2 - 8(2Y+5) + 6Y + 20 = 0$

$$5Y^2 + 10Y + 5 = 0$$

$$(Y+1)^2=0$$

$$Y = -1$$
 $X = -2 + 5 = 3$

The point of contact on second circle is (3, -1)

5. Centre (2, -1)

$$3X + Y = 0$$

$$a = 3, b = 1, c = 0$$

$$r = d = \frac{\left| ax_1 + by_1 + c \right|}{\sqrt{a^2 + b^2}} = \frac{\left| 6 - 1 + 0 \right|}{\sqrt{3^2 + 1}} = \frac{5}{\sqrt{10}}$$

Let Y = MX be to circle than r=d

$$MX - Y = 0$$

$$\frac{5}{\sqrt{10}} = \frac{|2M+1|}{\sqrt{3^2+1^2}}$$

$$\pm 5 = 2M+1$$

$$\pm 5 = 2M + 1$$

$$5 = 2M + 1$$
 $-5 = 2M + 1$ $-5 - 1 = 2M$ $3 = M$ $Y - 3X = 0$

6. Radius = Distance from the center C(1, 2) to X + Y + K = 0

$$r = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

$$= \frac{|1 + 2 + K + 1|}{\sqrt{2}}$$

$$|K + 3| = 2$$

$$K = -1, -5$$

7. Slope of line is $=\frac{-1}{2}$, so slope of normal is $\frac{-1}{2}$ normal passes through the center of the circle here center is (1, 0)

Therefore, equation of normal is $Y - 0 = \frac{-1}{2}(X - 1)$ X + 2Y - 1 = 0 8. Let (h,k) be any point on the first circle, then $h^2 + k^2 + 2gh + 2fk + \alpha = 0$ ____(1)

Length of the tangent from (h,k) to second circle is $\sqrt{h^2 + k^2 + 2gh + 2fk + \beta} = \sqrt{\beta - \alpha}$ (:1)

9. Equation of given circle can be written as

 $(x-p)^2 + (y-q)^2 = p^2$ This has (p,q) as the Centre & P as the radius showing that it touching yaxis. So one of the tangents from the origin to the circle is y-axis

Other tangents from the origin to the circle must be x-axis, which is possible if $q = \pm p$

$$p^2 - q^2 = 0$$

10. Let the points on the circle

be

whose parametric angles differ by 60° $P(a\cos\theta, a\sin\theta)$

$$Q\left(a\cos(\theta+60),a\sin(\theta+60^{\circ})\right)$$

Tangents

at points P and Q intersect at R(h,k) In figure $\frac{|POQ|}{OP = OR \cos 30^{\circ}}$ & $\frac{|POQ|}{OR} = 30^{\circ}$ In triangle OPR

$$a = \sqrt{h^2 + k^2} \frac{\sqrt{3}}{2}$$

$$2a = \sqrt{h^2 + k^2} \sqrt{3}$$

$$SOBS$$

$$4a^2 = 3(h^2 + k^2)$$

11. Let P(4, -3), centre of circle is c (-2, 5),r=6 minimum distance = cp-r=10-6=4

maximum distance = cp+r=10+6=16

sum of minimum

& maximum distance = 20

12. Centre (-2,2) r=2 equation of line having equal intercept on the positive axes is X+Y+K=0, K<0 is a tangent to the circle $\frac{\left|-2+2+k\right|}{\sqrt{2}}=2$ $k=\pm2\sqrt{2}$

 $k = -2\sqrt{2} \qquad (\because k < 0)$

Equation of circle is $x + y = 2\sqrt{2}$

13. The equation of circle with touches the line X-Y=0 at (1, 1) is

$$(X-1)^2 + (Y-1)^2 + \lambda(X-Y) = 0$$
 P.T (1, -3)

$$0+16+\lambda(1+3)=0$$

$$\lambda = -4$$

Equation ole is

$$(X-1)^{2} + (Y-1)^{2} - 4(X-Y) = 0$$
$$X^{2} + Y^{2} - 6X + 2Y + 2 = 0$$
$$r = 2\sqrt{2}$$

14. Equation of tangent to circle $X^2 + Y^2 = 16$ is $y = mx \pm 4\sqrt{1 + m^2}$ equation of tangent is $y = mx \pm h$

This tangent meet X-axis at

is at
$$A\left(\frac{h}{m},0\right) \& B\left(\frac{-h}{m},0\right)$$
 Area of

$$\triangle PAB = \frac{1}{2} \begin{vmatrix} h & \frac{h}{m} & -\frac{h}{m} & 0 \\ h & 0 & 0 & h \end{vmatrix}$$

$$\triangle PAB = \frac{1}{2} \begin{vmatrix} h & \frac{h}{m} & -\frac{h}{m} & 0 \\ h & 0 & 0 & h \end{vmatrix} = \frac{1}{2} \frac{h^2}{m} - \frac{h^2}{m} = \frac{16(1+m^2)}{m} = \frac{16(1+m^2)}{m} = \frac{1}{m} = \frac{16(1+m^2)}{m} = \frac{1}{m} = \frac{16(1+m^2)}{m} = \frac{1}{m} = \frac{1}{$$

$$m = 1$$

Then
$$h = 4\sqrt{1+1} = 4\sqrt{2}$$

CD=3=OE

$$AC = \sqrt{\left(AD\right)^2 + \left(CD\right)^2}$$

$$=\sqrt{1+3^2}$$

$$\therefore C(\sqrt{10},3)$$

hence

The line $\sqrt{10}X - 3Y = 1$ Passing through the centre $C(\sqrt{10}, 3)$ of the circle & diameter & the required intercept is twice the radius the circle

16. Variable pt on line 2X + Y - 4 = 0

 $=\sqrt{10} = CE$

is p(t,4-2t),
$$t \in R$$
 Equation of chord of contact $X^2 + Y^2 - 1$ write to point p is $tX + (4-2t)Y - 1$

of circle

$$X^{2} + Y^{2} = 1$$
 write to point p is $tX + (4-2t)Y = 1$

$$(4Y-1)+t(X-2Y)=0$$
 is a family of straight line

$$4Y - 1 = 0$$

$$X - 2Y = 0$$

$$X = \frac{1}{2}$$

$$Q\left(\frac{1}{2}, \frac{1}{4}\right)$$

17.
$$(X-1)(Y-2)=0$$

X = 1, Y = 2 is centre of circle (1, 2)

 $Y = \frac{1}{4}$

$$r=d$$
 distance from centre $(1,2)$ to $3X+4Y-6=0$
$$r=\left|\frac{3+8-6}{\sqrt{9+16}}\right|=\frac{5}{5}=1$$
 Equation of circle is

$$(X-1)^{2} + (Y-2)^{2} = 1^{2}$$
$$X^{2} + Y^{2} - 2X - 4Y + 4 = 0$$

18.
$$C(0,0), r = 12$$
 $A\left(\frac{\pi}{3}\right) = \left(X_1 + r\cos\theta, Y_1 + r\sin\theta\right)$
 $= \left(6,6\sqrt{3}\right)$
 $B\left(\frac{\pi}{6}\right) = \left(0 + 12.\frac{\sqrt{3}}{2}, 0 + 12.\frac{1}{2}\right) = \left(6\sqrt{3}, 6\right)$ Length of chord
 $AB = \sqrt{\left(6\sqrt{3} - 6\right)^2 + \left(6\sqrt{3} - 6\right)^2}$
 $= 6\left(\sqrt{6} - \sqrt{2}\right)$

19. Let P(X,Y) be a any point on

the locus & OABC be a

the square of side unity

then
$$X^2 + Y^2 + (X - 1)^2 + (Y - 1)^2 = 9$$

$$X^2 + Y^2 - X - Y - \frac{7}{2} = 0$$
Centre
$$\left(\frac{1}{2}, \frac{1}{2}\right) \& \qquad r = 2$$
the circle contains
the square

20. We have circle
$$(X-1)^2 + (Y-3)^2 = r^2$$
 having centre $C_1(1,3) \& r_1 = r$ and circle $X^2 + Y^2 - 8X + 2Y + 8 = 0$ having centre $C_2(4,-1)$, $r_2 = 3$ intersect in two distinct points of $|r_1 - r_2| < c_1 c_2 < r_1 + r_2$ $|r-3| < 5 < r + 3$ $2 < r < 8$

 \bigoplus

any point (X,Y) on

a circle with centre C lying on the circle $X^2 + Y^2 = 25$ and radius 3 from the origin lies between OA & OB Hence $4 \le X^2 + Y^2 \le 64$

22. A(0,6) B(4,0) C(-3,0) D(0,-2) Equation of Altitude through A is X=0 Equation of the Altitude through B is X + 2Y - 4 = 0 Orthocentre of $\triangle ABC$ is (0,2)

$$c_1(1,2), c_2(7,10)$$
 $c_1c_2 = 10$ $c_1c_2 = 10$ $c_1c_2 = 10$ $c_1c_2 > r_1 + r_2 = 3$ Radius of two circles at time 't' are $(1+0.3t)$ and $(2+0.4t)$

For the two circles to touches each other

$$(AB)^{2} = [(1+0.3t)\pm(2+0.4t)]^{2}$$

$$100 = (3+0.7t)^{2} (or) (1+0.1t)^{2}$$

$$t=10.t=90$$

24. Let P(4,5), centre of circle C(2,1) Radius of circle,

r=4

PA=Length of tangent =
$$\sqrt{S_{11}}$$

$$= \sqrt{16 + 25 - 16 - 10 - 11} = 2$$
Area of PACB = 2 (Area of \(\triangle PAC \))
$$= 2 \cdot \frac{1}{2} \times 2 \times 4 = 8$$

25. We have
$$X^2 + Y^2 - 2X - 2Y + 7 = 0$$
, P(4,4)
 $r = 3, S_{11} = 9$

Area of circle =
$$\frac{rs_{11}^{\frac{3}{2}}}{s_{11} + r^2} = \frac{3(3^2)^{\frac{3}{2}}}{9 + 9} = \frac{9}{2}$$

26. A(2,C) B(d,2)
$$X^2 + Y^2 = 16$$

Polar of a passes through B=A,B are conjugate points write to given circle

$$S_{12} = 0$$
 $X_1 X_2 + Y_1 Y_2 = 16$
 $2(d)+C(2)=16$

$$C+d=8$$

27. Let $p(x_1, y_1)$ be a point on a locus equation of mid point of centre of contact is $S_1 = S_{11}$

$$xx_1 + yy_1 - p(x + x_1) = x_1^2 + y_1^2 - 2px_1$$

point (0,0)
$$x_1^2 + y_1^2 - px_1 = 0$$

$$x_1^2 + y_1^2 - px = 0$$

28. Given circle is
$$X^2 + Y^2 = 4$$
 _____(1) (h,k) be a locus

equation of

Let

midpoint of chord of contact is $S_1 = S_{11}$

$$XX_1 + YY_1 - 4 = X_1^2 + Y_1^2 - 4$$

$$\frac{hX + KY}{h^2 + k^2} = 1$$
 (2)

Homogeneous of equation with

help of equation (2)
$$x^2 + y^2 = 4\left(\frac{hx + ky}{h^2 + k^2}\right)^2$$

$$\left[\left(h^2 + k^2 \right)^2 - 4h^2 \right] x^2 - ghkxy + \left[\left(h^2 + k^2 \right) - 4k^2 \right] y^2 = 0$$

$$\theta = 90$$

$$a+b=0$$

$$(h^2 + k^2) - 4h^2 + (h^2 + k^2)^2 - 4k^2 = 0$$

$$h^2 + k^2 = 2 x^2 + y^2 = 2$$

29.
$$x^2 + y^2 = 4$$
 C(0,0), r=2 equation of tangent at

$$A(1,\sqrt{3}) \quad \text{is} \quad x + \sqrt{3}y = 4$$

If the tangent cuts X-axis at P then x=4,y=0 & hence P=(4,0)

$$AP = \sqrt{(1-4)^2 + (\sqrt{3}-0)^2} = \sqrt{12}$$

Area of

$$\Delta OAP = \frac{1}{2}(OA)(AP) = \frac{1}{2}(2)\sqrt{12} = 2\sqrt{3}$$

30. Let C(h,k) be centre $r_1 = r$

&
$$c_2 = (0,1), r_2 = 1$$
 $c_1c_2 = r_1 + r_2$

$$\sqrt{(h-0)^2 + (k-1)^2} = r + 1$$

$$r = |k| \text{ sublines equation}$$

$$\sqrt{h^2 + (k-1)^2} = |k|$$
SOBC
$$h^2 + k^2 + 1 - 2k = k^2 + 1 + 2|k|$$

$$h^2 = 2k + 2|k|$$

$$k < 0 \qquad h^2 = 2k + 2k$$

$$h^2 = 4k \qquad h = 0$$
Case 1.
$$k \ge 0 \qquad \text{Case 2.}$$

$$k \ge 0 \qquad \text{Case 2.}$$

$$k < 0 h^2 = 2k + 2k$$

$$h^2 = 4k h = 0$$

$$(0, y), y < 0$$