

Olatz Arbelaitz: olatz.arbelaitz@ehu.eus www.aldapa.eus

- 1.- Introduction. Machine Learning for LNP
- 2.- Learning with WEKA software:
 - 2.1.-Introduction
 - 2.2.-Preprocessing Attribute (feature) selection
 - 2.3.-Evaluation
 - 2.4.- Basic ML algorithms: Naive Bayes, K-NN, Decision Trees, Rules, ...

Evaluation

to get a corpus

-0-0-

l.hl

Classification

Evaluation

Classification process

- Division of the corpora (*Test options*)
 - train / test
 - Cross-validation
- Classifier (Classify)
 - Set parameters
- Evaluation (Classifier Output)
 - Confusion matrix
 - Precision/recall
 - Microaveraging/macroaveraging

Division of the corpora

After learning → Make decisions, obtain results

Is the obtained result good?

Test→ to measure the quality of the built classifier

Evaluation

Division of the Corpus

Division of the corpus:

Train / Test

- Train: % 80 % 66 of the corpus → for training (learning)
- Develop/validate part of the trainining → for tunning
- Test: % 20 % 33 of the corpus → for testing (error rate of the last model)

i	Train (%66)		Test (% 33)
	Training set	Develop/validation set	Test set

Once: hold out

Evaluation

Learning Process

Learning process train/test:

- 1. Divide the available data into training, validation and test set
- 2. Select architecture and training parameters
- 3. Train the model using the training set
- 4. Evaluate the model using the validation set
- 5. Repeat steps 2 through 4 using different architectures and training parameters
- 6. Select the best model and train it using data from the training and validation set
- 7. Assess this final model using the test set

If Cross Validation is used in the learning process, steps 3 and 4 must be repeated in K folds.

Division of the Corpus

- Division in *k* folds (10)
- k-1 train and 1 test
- Learn *k* times
- Average error rate: errors in the k iterations/k

10-folds or 2 times 5-folds

5-folds (when the corpus is small)

Exp. 1					Test set
Exp. 2				Test set	
Exp. 3			Test set		
Exp. 4		Test set			
Exp. 5	Test set	·	-		-

Division of the Corpus

Leave-one-out cross-validation:

- Similar to the previous but in each of the parts an example is left out for testing and the rest are used for training
- K = number of examples → number of iterations
- All the examples are used for training and for testing
- Used in sparse databases

Building a single classifier with all the training data can lead to overfitting. The use of cross-validation can reduce it (train classifiers with different

Overfitting

Evaluation

Division of the Corpus

How many cross-validation folds

When the corpus is divided in many folds:

- + Error bias is small
- Error variance is big
- High computational cost

When the corpus is divided in few folds:

- + Low computational cost
- + Error variance is small
- Error bias is big

In practice, the number of folds is selected according to the dataset

- In big datasets 3-Fold Cross Validation can be enough
- In sparse datasets leave-one-out can be used to train for most of the
- Usually: K-Fold Cross Validation K=10

Evaluation

Evaluation

Division of the Corpora

To divide the corpora:

Test options:

Use training set: use all the examples used for learning \rightarrow

NO

- Supplied test set: provide test file
 - press Set and select file
- Cross validation (fold indicate number of folds)
- Percentage split (percentage used for learning)

WEKA: preprocessing

Filters

Unsupervised

Instances

Remove (delete)

RemoveFolds: delete a fold

RemoveMisclassified: delete wrongly

classified

(requires selecting classifier)

RemovePercentage: delete %

→ for train/test division

RemoveRange: which instances to delete

13

Evaluation

For train/test division

RemovePercentage: for dividing train/test

- training set:
 - Open complete file
 - Select RemovePercentage filter
 - Write percentage desired for division
 - Apply filter
 - Save the generated dataset as a new file
- test set:
 - Open complete file (or use undo)
 - Select RemovePercentage filter
 - Activate invertSelection in the filter
 - Apply filter
 - Save the generated dataset as a new file

The class is not taken into account in the division!

14

WEKA: preprocessing

Eilter... Remove filter Close

Filters

Supervised

Instances

(re)sampling

Delete instances to maintain distribution when the number of examples in the categories is unbalanced, *sampling*

 StratifiedRemoveFolds (for crossvalidation)

Evaluation

For train/test division

To divide taking into account the class

Resample

training set:

- Open complete file
- Select Resample (supervised) filter
- Write desired percentage
- Select BiasToUniformClass
- noReplacement: true
- Apply filter
- Save the generated dataset as a new file

test set:

- Open complete file (or undo)
- Select invertSelection in filter
- Apply filter
- Save the generated dataset as a new file

WEKA: preprocessing

Filters. Resample

Cancel

WEKA: preprocessing

Filters. Resample

▼ Visualize All

Erasmus

For Crossvalidation

For train/test division Assignment

-Divide ReutersGrain-train.arff into **train** (70%) and **development** (30%) sets maintaining the original class distribution.

distri	distribution.					
		N. Inst	N. Feat	Class(0)	Class(1)	
	Train					
	Dev					
-Tran	Transform into BoW					
		N. Inst	N. Feat	Class(0)	Class(1)	
	Train					
	Dev					

Evaluation

For train/test division Assignment

- Do both options have the same number of features?

- Is it possible to train/test with different features?

How can the development or test set be generated with the same dictionary?

Evaluation

For train/test division Assignment

- How can the development or test set be generated with the same dictionary?
- -Save dictionary in :

Filter/Unsupervised/Attribute/StringtoWordVector

 Use the dictionary and same options in Filter/Unsupervised/Attribute/FixedDictionaryStringtoWordVector

- And then, what happens if we select features?

Feature selection and test

How to select features and then test? Attribute Selected Classifier

- selection based on *train* file - Compatible *test* file required
- Done when classifying:

AttributeSelectedClassifier (meta)

- Classifier
- Evaluator (features)
- Search

Try with iris

misc.ImputMappedClassifier

threshold (in the control of the contr

26

Evaluation

How to evaluate? Confusion Matrix

Binary classifier:

Real→ C = 1 positive class C = 0 negative class

Prediction \rightarrow C_M = 1 positive class predicted and C_M = 0 negative class predicted

Real class

Predicted Class

	C = 1	C = 0
$C_M = 1$	TP	FP
C _M = 0	FN	TN

TP = True Positive. The example was postive and classified as postive

TN = True Negative. The example was negative and classified as negative

FP = False Positive. The example was negative and classified as postive

FN = False Negative. The example was postive and classified as negative

Evaluation

How to evaluate?

Binary classifier:

Hit rate (accuracy): proportion of examples with correct prediction among the tested examples.

Accuracy(AC) =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Precision taking into account the examples classified as being of the positive class, number of hits among them

$$Precision = \frac{TP}{TP + FP}$$

Recall: number of hits among the examples of the positive class which where tested,

Re call =
$$\frac{TP}{TP + FN}$$

Evaluation How to evaluate?

Binary classifier:

 $\mathbf{F_1} ext{-score}$ (F-measure): Harmonic mean of the precision and

$$F_{_{1}} = \frac{2 \times precision \times recall}{precision + recall}$$

Error: proportion of examples with wrong prediction among the tested examples

$$Error(1-AC) = \frac{FP + FN}{TP + TN + FP + FN}$$

How to evaluate?

4features, 100 instances, class={good, bad}

Classifier: rules JRip

- Test options: Percentage split (% 66) → 34 instan.

Classifier Output

=== Run information ===

weka.classifiers.rules.JRip -F 3 -N 2.0 -O 2 -S 1 Scheme:

weather Relation: Instances: 100

Attributes: 5 outlook, temperature, humidity, windy, play

Test mode: split 66.0% train, remainder test

Evaluation

How to evaluate?

Correctly Classified Instances 82.3529 % Incorrectly Classified Instances 17.6471 %

percentage

28*100/34 6*100/34

=== Confusion Matrix ===

a b classified as

18 1 a = good 5 10 b = bad

Category		classified as	
		YES	NO
real	YES	TP	FN
	NO	FP	TN

category; good

TP = true positive = 18 FN = false negative = 1

FP = false positive = 5 TN = true negative = 10

Correctly Classified Instances = TP + TN = 18 + 10 =

Incorrectly Classified Instances = FN + FP = 1 + 5 = 6

How to evaluate?

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precisio	n Recall	F-Measure	ROC Area	Class
	0.947	0.333	0.783	0.947	0.857	0.811	good
	0.667	0.053	0.909	0.667	0.769	0.811	bad
Weighted Avg.	0.824	0.209	0.838	0.824	0.818	0.811	

=== Confusion Matrix ===

b classified as

18 1 a = good

5 10 b = bad

Category		classified as	
		YES	NO
real	real YES		FN
	NO	FP	TN

TP Rate = TP/(TP+FN) = 18/(18+1) = 0.947FP Rate = FP/(FP+TN) = 5/(5+10) = 0.333

 $^{^{\}psi}$ the probability of falsely rejecting the null hypothesis for a particular test.

Evaluation

How to evaluate?

Category good		classified as	
		YES	NO
real	YES	18	1
	NO	5	10

Category bad		classified as	
		YES	NO
real	YES	10	5
NO		1	18

TP = true positive = 18 FN = false negative = 1 FP = false positive = 5 TN = true negative = 10 TP = true positive = 10 FN = false negative = 5 FP = false positive = 1 TN = true negative = 18

Weighted Average:

TP Rate = [TP Rate (good) * 19 + TP Rate (bad) * 15] / 34 FP Rate = [FP Rate (good) * 19 + FP Rate (bad) * 15] / 34

Evaluation How to evaluate?

Category good		classi	fied as
		YES	NO
real	YES	18	1
	NO	5	10

	NO	5		
TP = tr	ue positive	e = 18		
FN = fa	FN = false negative = 1			

FP = false positive = 5

TN = true negative = 10

Category bad		classil	HAPALAF
İ		YES	NO
real	YES	10	5
	NO	1	18

TP = true positive = 10 FN = false negative = 5 FP = false positive = 1 TN = true negative = 18

=== Detailed Accuracy By Class ===

				F-Measure			Class
0.947	0.333	0.783	0.947	0.857	0.811	good	
0.667	0.053	0.909	0.667	0.769	0.811	bad	
				0.818			

Precision (good) = [TP / (TP + FP)] = 18 / (18 + 5) = 0,783Recall (good) = [TP / (TP + FN)] = 18 / (18 + 1) = 0,947F-measure (good) = $[2 \cdot Pr \cdot Rc / (Pr + Rc)] = 0,857$

Evaluation

How to evaluate?

TP = true positive = 18
FN = false negative = 1
FP = false positive = 5
TN = true negative = 10

TP = true positive = 10 FN = false negative = 5 FP = false positive = 1 TN = true negative = 18

=== Detailed Accuracy By Class ===

1					F-Measure			Class
	0.947	0.333	0.783	0.947	0.857	0.811	good	
	0.667	0.053	0.909	0.667	0.769	0.811	bad	
Weighted Avg.	0.824	0.209	0.838	0.824	0.818	0.811		

Precision (bad) = [TP / (TP + FP)] = Recall (bad) = [TP / (TP + FN)] = F-measure (bad) = $[2 \cdot Pr \cdot Rc / (Pr + Rc)]$ =

Evaluation

Weighted Avg.

How to evaluate?

Multiclass classifier:

Real \rightarrow C = {y ₁ ,	y ₂ y _e }	Real class		
		C = y _j	$C = y_i$	
Predicted	$C_M = y_j$	TPj	FP _j	
class	$C_M = y_i$	FN _i	TN _i	

Confusion matrix for class y_i

$$\begin{aligned} & \text{Pr} \, ecision_{\,j} = \frac{TP_{\,j}}{TP_{\,j} + FP_{\,j}} \\ & \text{Re} \, call_{\,j} = \frac{TP_{\,j}}{TP_{\,i} + FN_{\,j}} \end{aligned} \qquad F_{1} \ = \frac{2 \times precision \times recall}{precision + recall}$$

Evaluation

How to evaluate?

Example: iris.arff NaiveBayes

How to evaluate?

--- Confusion Matrix ---

===	Comusic	m iviatr	IX ===	
а	b	С	classified as	(
50	0	0	a = Iris-setosa	
0	48	(2)	b = Iris-versicolor	Rea
0	4	46	c = Iris-virginica	
	\vee			,

Cate	gory	Classified as		
	Ci	Yes	No	
Real	Real Yes		FNi	
	No	FPi	TNi	

Iris-setosa

$$TP = 50$$
, $PP = 0$, $PN = 0$, $TN = 48 + 2 + 4 + 46 = 100$

Iris-versicolor

$$TP = 48$$
, $FP = 4$, $FN = 2$, $TN = 50+46 = 96$

Iris-virginica

$$TP = 46$$
, $FP = 2$, $FN = 4$, $TN = 50+48 = 98$

Evaluation

How to evaluate?

- When evaluating we take into account:
 - Precision: taking into account the examples classified into a category, number of hits among them
 - Recall: among the examples of a category, number of hits
 - Combination of both metrics (F-score/F-measure)
- Which is more important?
 - precision: what the system says is always correct (→ although it might say it fewer times)
 - recall: although with some mistakes to say it more

Evaluation

How to evaluate?

Microaveraging global addition

$$\widehat{\mathbf{R}}\mathbf{e}^{\mu} = \frac{TP}{TP + FN} = \frac{\sum_{i=1}^{m} TP_i}{\sum_{i=1}^{m} (TP_i + FN_i)}$$

$$\widehat{\mathbf{P}}\mathbf{r}^{\mu} = \frac{TP}{TP + FP} = \frac{\sum_{i=1}^{m} TP_i}{\sum_{i=1}^{m} (TP_i + FP_i)}$$

Macroaveraging: precision and recall are locally calculated for each category and then added

$$\widehat{\mathbf{P}}\mathbf{r}^{M} = \frac{\sum_{i=1}^{m} \widehat{\mathbf{P}}\mathbf{r}_{i}}{m} \qquad \qquad \widehat{\mathbf{R}}\mathbf{e}^{M} = \frac{\sum_{i=1}^{m} \widehat{\mathbf{R}}\mathbf{e}_{i}}{m}$$

Note: classifiers that are good for categories with many test instances will obtain good microaverage values

Evaluation

How to evaluate?

- What is more interesting, high Precision (Pr) or high Recall (Re)?
 - Both
 - Medicine: does she/he have cancer?
 - When we diagnose it as positive, to be true (Pr): precision
 - To diagnose cancer when it exists (Rc): recall
 - Classify texts from newspapers
 - The classifier is not used on its own. The classifier helps but final classification is manual
 - Web page classification in search engines
 - Wrong classifications are not that important
 - ...

Assignment

==	COI	ırus	31	on Matrix ===	
a	b	С		< classified	as
5	0	0	١	a = soft	
0	3	1	1	b = hard	
1	2	12	I	c = none	

- -Which is the most trustful category?
- -If we take randomly an example of each category which will the one correctly classified with higher probability?

Class	TP	FP	FN	TN	Pr	Rc	F-Measure	
soft								
hard								
none								
	Micro							
			1acro			Eras		

Evaluation

How to know which are the done errors?

- Visualize classifier errors
- More Options: Output predictions

Evaluation

Visualize classifier errors

- •Instance distribution in the space.
- •It is possible to select attributes in axes X and Y.
- Information about errors

Visualize classifier errors

