about groups

4 Groups

4.1 basic definitions

group

•
$$G = (S, \circ)$$

$$S \text{ set }, \circ : S \times S \rightarrow S$$

identity

$$\exists e \in S. \ \forall a \in S. \ e \circ a = a \circ e = e$$

associativity

$$(a \circ b) \circ c = a \circ (b \circ c)$$

inverse elements

$$\forall a \in S$$
. \exists unique $b \in S$. $a \circ b = b \circ a = e$

The inverse of a is often denoted by a^{-1} .

• group is *abelian* if commutative law holds

$$a \circ b = b \circ a$$

4 Groups

4.1 basic definitions

group

• $G = (S, \circ)$

$$S \text{ set }, \circ : S \times S \rightarrow S$$

identity

$$\exists e \in S. \ \forall a \in S. \ e \circ a = a \circ e = e$$

associativity

$$(a \circ b) \circ c = a \circ (b \circ c)$$

inverse elements

$$\forall a \in S$$
. \exists unique $b \in S$. $a \circ b = b \circ a = e$

The inverse of a is often denoted by a^{-1} .

• group is *abelian* if commutative law holds

$$a \circ b = b \circ a$$

4.2 group for modular addition

$$(\mathbb{Z}_n, +_n)$$
, $\mathbb{Z}_n = [0: n-1]$, $a +_n b = (a+b) \mod n$

• neutral element:

$$e = 0$$

• inverse of a

$$-a = n - a$$

$$(a + (n - a)) \mod n = n \mod n = 0$$

• abelian

$$(Z_n^*, \cdot_n)$$
, $a \cdot_n b = a \cdot b \mod n$

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n : \gcd(a, n) = 1 \}$$

$$(Z_n^*, \cdot_n)$$
, $a \cdot_n b = a \cdot b \mod n$

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n : \gcd(a, n) = 1 \}$$

- abelian (if it is a group)
- neutral element

$$e=1$$

• $\cdot_n: \mathbb{Z}_n^* \times \mathbb{Z}_n^* \to \mathbb{Z}_n^*$

$$a, b \in \mathbb{Z}_n^* \to gcd(a, n) = gcd(b.n) = 1$$

$$gcd(ab,n) = 1 \text{ (lemma 3)}$$

$$\exists x,y \in Z : 1 \text{ } abx + ny = 1 \text{ (lemma 1)}$$

$$q = \lfloor ab/n \rfloor$$

$$1 = abx - qnx + qnx + ny$$

$$= (ab - qn)x + n(qx + y)$$

$$= (ab \text{ mod } n) + n(qx + y)$$

 $gcd(ab \mod n, n) = 1 \pmod{1}$

$$(Z_n^*, \cdot_n)$$
, $a \cdot_n b = a \cdot b \mod n$

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n : \gcd(a, n) = 1 \}$$

- abelian (if it is a group)
- neutral element

$$e=1$$

• $\cdot_n: \mathbb{Z}_n^* \times \mathbb{Z}_n^* \to \mathbb{Z}_n^*$

$$a, b \in \mathbb{Z}_n^* \to gcd(a, n) = gcd(b.n) = 1$$

$$gcd(ab,n) = 1 \quad (\text{lemma 3})$$

$$\exists x,y \in Z : 1 \ abx + ny = 1 \quad (\text{lemma 1})$$

$$q = \lfloor ab/n \rfloor$$

$$1 = abx - qnx + qnx + ny$$

$$= (ab - qn)x + n(qx + y)$$

$$= (ab \mod n) + n(qx + y)$$

$$gcd(ab \mod n, n) = 1 \quad (\text{lemma 1})$$

• inverse of a

$$gcd(a,n) = 1$$

 $\exists x, y \in Z : ax + ny = 1 \text{ (lemma 1)}$
 $ax \equiv 1 \text{ mod } n$
 $a \cdot_n x = 1$

$$(Z_n^*, \cdot_n)$$
, $a \cdot_n b = a \cdot b \mod n$

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n : \gcd(a, n) = 1 \}$$

- abelian (if it is a group)
- neutral element

$$e=1$$

• $\cdot_n: \mathbb{Z}_n^* \times \mathbb{Z}_n^* \to \mathbb{Z}_n^*$

$$a, b \in \mathbb{Z}_n^* \to gcd(a, n) = gcd(b.n) = 1$$

$$gcd(ab,n) = 1 \text{ (lemma 3)}$$

$$\exists x,y \in Z : 1 \text{ } abx + ny = 1 \text{ (lemma 1)}$$

$$q = \lfloor ab/n \rfloor$$

$$1 = abx - qnx + qnx + ny$$

$$= (ab - qn)x + n(qx + y)$$

$$= (ab \text{ mod } n) + n(qx + y)$$

$$gcd(ab \text{ mod } n, n) = 1 \text{ (lemma 1)}$$

• inverse of a

$$gcd(a,n) = 1$$

$$\exists x, y \in Z : ax + ny = 1 \text{ (lemma 1)}$$

$$ax \equiv 1 \text{ mod } n$$

$$a \cdot_n x = 1$$

• uniqueness of inverse: later (lemma 23)

$$\varphi(n) = |\mathbb{Z}_n^*|$$
 cardinality, number of elements)

Lemma 6.

$$gcd(n,m) = 1 \rightarrow \varphi(nm) = \varphi(n) \cdot \varphi(m)$$

$$\varphi(n) = |\mathbb{Z}_n^*|$$
 cardinality, number of elements)

Lemma 6.

$$gcd(n,m) = 1 \rightarrow \varphi(nm) = \varphi(n) \cdot \varphi(m)$$

$$\varphi(n) = |\mathbb{Z}_n^*|$$
 cardinality, number of elements)

Lemma 6.

$$gcd(n,m) = 1 \rightarrow \varphi(nm) = \varphi(n) \cdot \varphi(m)$$

Proof. transscribed from a *great* (!!) YouTube video of Michael Penn. However a few details were added, because in the video only $\varphi(nm) \ge \varphi(n) \cdot \varphi(m)$ is shown, and one has also to show, that the elements outside the identified set are not in \mathbb{Z}_{mn}^* . Arrange elements of

$$\mathbb{Z}_{mn} = \{ \ell m + k : k \in \mathbb{Z}_m , \ell \in \mathbb{Z}_n \}$$

in an $n \times m$ -table as shown in table 2.

		 C(k)	
0	1	 k	 m-1
m	m+1	 m+k	 2m-1
:			
$m\ell$	$m\ell+1$	 $m\ell + k$	 $m(\ell+1)-1$
:			:
m(n-1)		m(n-1)+k	mn-1

Table 2: Arranging \mathbb{Z}_{mn} in a table of n rows and m columns

For $k \in \mathbb{Z}_m$ collect elements in column k into the set

$$C(k) = \{ m\ell + k : \ell \in \mathbb{Z}_n \}$$

 $\varphi(n) = |\mathbb{Z}_n^*|$ cardinality, number of elements)

Lemma 6.

$$gcd(n,m) = 1 \rightarrow \varphi(nm) = \varphi(n) \cdot \varphi(m)$$

Proof. transscribed from a *great* (!!) YouTube video of Michael Penn. However a few details were added, because in the video only $\varphi(nm) \ge \varphi(n) \cdot \varphi(m)$ is shown, and one has also to show, that the elements outside the identified set are not in \mathbb{Z}_{mn}^* . Arrange elements of

$$\mathbb{Z}_{mn} = \{\ell m + k : k \in \mathbb{Z}_m , \ell \in \mathbb{Z}_n \}$$

in an $n \times m$ -table as shown in table 2.

		 C(k)	
0	1	 k	 m-1
m	m+1	 m+k	 2m-1
:			:
$m\ell$	$m\ell+1$	 $m\ell + k$	 $m(\ell+1)-1$
:			 :
m(n-1)		m(n-1)+k	mn-1

Table 2: Arranging \mathbb{Z}_{mn} in a table of n rows and m columns

For $k \in \mathbb{Z}_m$ collect elements in column k into the set

$$C(k) = \{ m\ell + k : \ell \in \mathbb{Z}_n \}$$

• For elements $a = m\ell + k \in C(k)$

$$gcd(a,m) = gcd(m\ell + k, m)$$

= $gcd(m, m\ell + k \mod m)$ (lemma 4)
= $gcd(m, k)$

$$\varphi(n) = |\mathbb{Z}_n^*|$$
 cardinality, number of elements)

Lemma 6.

$$gcd(n,m) = 1 \rightarrow \varphi(nm) = \varphi(n) \cdot \varphi(m)$$

Proof. transscribed from a *great* (!!) YouTube video of Michael Penn. However a few details were added, because in the video only $\varphi(nm) \ge \varphi(n) \cdot \varphi(m)$ is shown, and one has also to show, that the elements outside the identified set are not in \mathbb{Z}_{mn}^* . Arrange elements of

$$\mathbb{Z}_{mn} = \{ \ell m + k : k \in \mathbb{Z}_m , \ell \in \mathbb{Z}_n \}$$

in an $n \times m$ -table as shown in table 2.

		 C(k)	
0	1	 k	 m-1
m	m+1	 m+k	 2m-1
:			:
$m\ell$	$m\ell+1$	 $m\ell + k$	 $m(\ell+1)-1$
:			:
m(n-1)		m(n-1)+k	mn-1

Table 2: Arranging \mathbb{Z}_{mn} in a table of *n* rows and *m* columns

For $k \in \mathbb{Z}_m$ collect elements in column k into the set

$$C(k) = \{ m\ell + k : \ell \in \mathbb{Z}_n \}$$

• For elements $a = m\ell + k \in C(k)$

$$gcd(a,m) = gcd(m\ell + k, m)$$

= $gcd(m, m\ell + k \mod m)$ (lemma 4)
= $gcd(m, k)$

• For $k \notin \mathbb{Z}_m^*$ and element $a = m\ell + k \in C(k)$

$$1 < \gcd(k, m) = \gcd(a, m) \le \gcd(a, mn) , a \notin \mathbb{Z}_{mn}^*$$
$$\mathbb{Z}_{mn}^* \subseteq \bigcup_{k \in \mathbb{Z}_m^*} C(k)$$

This excludes elements outside of $\varphi(m)$ columns.

 $\varphi(n) = |\mathbb{Z}_n^*|$ cardinality, number of elements)

Lemma 6.

$$gcd(n,m) = 1 \rightarrow \varphi(nm) = \varphi(n) \cdot \varphi(m)$$

Proof. transscribed from a *great* (!!) YouTube video of Michael Penn. However a few details were added, because in the video only $\varphi(nm) \ge \varphi(n) \cdot \varphi(m)$ is shown, and one has also to show, that the elements outside the identified set are not in \mathbb{Z}_{mn}^* . Arrange elements of

$$\mathbb{Z}_{mn} = \{ \ell m + k : k \in \mathbb{Z}_m , \ell \in \mathbb{Z}_n \}$$

in an $n \times m$ -table as shown in table 2.

		 C(k)	
0	1	 k	 m-1
m	m+1	 m+k	 2m-1
:			:
$m\ell$	$m\ell+1$	 $m\ell + k$	 $m(\ell+1)-1$
:			•
m(n-1)		m(n-1)+k	mn-1

Table 2: Arranging \mathbb{Z}_{mn} in a table of n rows and m columns

For $k \in \mathbb{Z}_m$ collect elements in column k into the set

$$C(k) = \{ m\ell + k : \ell \in \mathbb{Z}_n \}$$

• For elements $a = m\ell + k \in C(k)$

$$gcd(a,m) = gcd(m\ell + k, m)$$

= $gcd(m, m\ell + k \mod m)$ (lemma 4)
= $gcd(m, k)$

• For $k \notin \mathbb{Z}_m^*$ and element $a = m\ell + k \in C(k)$

$$1 < \gcd(k, m) = \gcd(a, m) \le \gcd(a, mn) , a \notin \mathbb{Z}_{mn}^*$$
$$\mathbb{Z}_{mn}^* \subseteq \bigcup_{k \in \mathbb{Z}_m^*} C(k)$$

This excludes elements outside of $\varphi(m)$ columns.

• For $k \in \mathbb{Z}_m^*$, $a \in C(k)$

$$gcd(a,m) = gcd(a,k) = 1$$

 $\varphi(n) = |\mathbb{Z}_n^*|$ cardinality, number of elements)

Lemma 6.

$$gcd(n,m) = 1 \rightarrow \varphi(nm) = \varphi(n) \cdot \varphi(m)$$

Proof. transscribed from a *great* (!!) YouTube video of Michael Penn. However a few details were added, because in the video only $\varphi(nm) \ge \varphi(n) \cdot \varphi(m)$ is shown, and one has also to show, that the elements outside the identified set are not in \mathbb{Z}_{mn}^* . Arrange elements of

$$\mathbb{Z}_{mn} = \{\ell m + k : k \in \mathbb{Z}_m , \ell \in \mathbb{Z}_n \}$$

in an $n \times m$ -table as shown in table 2.

		 C(k)	
0	1	 k	 m-1
m	m+1	 m+k	 2m-1
:			:
$m\ell$	$m\ell+1$	 $m\ell + k$	 $m(\ell+1)-1$
:			•
m(n-1)		m(n-1)+k	mn-1

Table 2: Arranging \mathbb{Z}_{mn} in a table of n rows and m columns

For $k \in \mathbb{Z}_m$ collect elements in column k into the set

$$C(k) = \{ m\ell + k : \ell \in \mathbb{Z}_n \}$$

• For elements $a = m\ell + k \in C(k)$

$$gcd(a,m) = gcd(m\ell + k, m)$$

= $gcd(m, m\ell + k \mod m)$ (lemma 4)
= $gcd(m, k)$

• For $k \notin \mathbb{Z}_m^*$ and element $a = m\ell + k \in C(k)$

$$1 < \gcd(k,m) = \gcd(a,m) \le \gcd(a,mn) , a \notin \mathbb{Z}_{mn}^*$$

$$\mathbb{Z}_{mn}^* \subseteq \bigcup_{k \in \mathbb{Z}_m^*} C(k)$$

This excludes elements outside of $\varphi(m)$ columns.

• For $k \in \mathbb{Z}_m^*$, $a \in C(k)$

$$gcd(a,m) = gcd(a,k) = 1$$

• For $k \in \mathbb{Z}_m^*$ and elements $m\ell + k, m\ell' + k \in C(k)$ solve

$$m\ell + k \equiv m\ell' + k \mod n$$

 $m(\ell - \ell') \equiv 0 \mod n \quad \text{(subtracting right hand side)}$
 $n \mid (\ell - \ell') \quad \text{(because } n \not \mid m)$
 $\ell = \ell' \quad (\ell - \ell' \in [-n+1:n-1])$

		 C(k)	
0	1	 k	 m-1
m	m+1	 m+k	 2m-1
:			:
$m\ell$	$m\ell+1$	 $m\ell + k$	 $m(\ell+1)-1$
:			:
m(n-1)		m(n-1)+k	mn-1

Table 2: Arranging \mathbb{Z}_{mn} in a table of n rows and m columns

$$gcd(a,m) = gcd(m\ell + k, m)$$

= $gcd(m, m\ell + k \mod m)$ (lemma 4)
= $gcd(m, k)$

• For $k \notin \mathbb{Z}_m^*$ and element $a = m\ell + k \in C(k)$

$$1 < \gcd(k, m) = \gcd(a, m) \le \gcd(a, mn) , a \notin \mathbb{Z}_{mn}^*$$
$$\mathbb{Z}_{mn}^* \subseteq \bigcup_{k \in \mathbb{Z}_m^*} C(k)$$

This excludes elements outside of $\varphi(m)$ columns.

• For $k \in \mathbb{Z}_m^*$, $a \in C(k)$

$$gcd(a,m) = gcd(a,k) = 1$$

• For $k \in \mathbb{Z}_m^*$ and elements $m\ell + k, m\ell' + k \in C(k)$ solve

$$m\ell + k \equiv m\ell' + k \mod n$$

 $m(\ell - \ell') \equiv 0 \mod n$ (subtracting right hand side)
 $n \mid (\ell - \ell')$ (because $n \not \mid m$)
 $\ell = \ell' \quad (\ell - \ell' \in [-n+1:n-1])$

		 C(k)	
0	1	 k	 m-1
m	m+1	 m+k	 2m-1
:			:
$m\ell$	$m\ell+1$	 $m\ell + k$	 $m(\ell+1)-1$
•			:
m(n-1)		m(n-1)+k	mn-1

Table 2: Arranging \mathbb{Z}_{mn} in a table of n rows and m columns

$$gcd(a,m) = gcd(m\ell + k, m)$$

= $gcd(m, m\ell + k \mod m)$ (lemma 4)
= $gcd(m, k)$

• For $k \notin \mathbb{Z}_m^*$ and element $a = m\ell + k \in C(k)$

$$1 < \gcd(k, m) = \gcd(a, m) \le \gcd(a, mn) , a \notin \mathbb{Z}_{mn}^*$$
$$\mathbb{Z}_{mn}^* \subseteq \bigcup_{k \in \mathbb{Z}_m^*} C(k)$$

This excludes elements outside of $\varphi(m)$ columns.

• For $k \in \mathbb{Z}_m^*$, $a \in C(k)$

$$gcd(a,m) = gcd(a,k) = 1$$

• For $k \in \mathbb{Z}_m^*$ and elements $m\ell + k, m\ell' + k \in C(k)$ solve

$$m\ell + k \equiv m\ell' + k \mod n$$

 $m(\ell - \ell') \equiv 0 \mod n \quad \text{(subtracting right hand side)}$
 $n \mid (\ell - \ell') \quad \text{(because } n \not \mid m)$
 $\ell = \ell' \quad (\ell - \ell' \in [-n+1:n-1])$

now a counting argument

$$C'(k) = \{ m\ell + k \bmod n : \ell \in \mathbb{Z}_n \} \subseteq \mathbb{Z}_n$$

as elements in C'(k) are mutually distinct

$$|C'(k)| = n$$
, $C'(k) = \mathbb{Z}_n$

		 C(k)	
0	1	 k	 m-1
m	m+1	 m+k	 2m-1
:			:
$m\ell$	$m\ell+1$	 $m\ell + k$	 $m(\ell+1)-1$
:			:
m(n-1)		m(n-1)+k	mn-1

Table 2: Arranging \mathbb{Z}_{mn} in a table of *n* rows and *m* columns

$$gcd(a,m) = gcd(m\ell + k, m)$$

= $gcd(m, m\ell + k \mod m)$ (lemma 4)
= $gcd(m, k)$

• For $k \notin \mathbb{Z}_m^*$ and element $a = m\ell + k \in C(k)$

$$1 < \gcd(k, m) = \gcd(a, m) \le \gcd(a, mn) , a \notin \mathbb{Z}_{mn}^*$$
$$\mathbb{Z}_{mn}^* \subseteq \bigcup_{k \in \mathbb{Z}_m^*} C(k)$$

This excludes elements outside of $\varphi(m)$ columns.

• For $k \in \mathbb{Z}_m^*$, $a \in C(k)$

$$gcd(a,m) = gcd(a,k) = 1$$

• For $k \in \mathbb{Z}_m^*$ and elements $m\ell + k, m\ell' + k \in C(k)$ solve

$$m\ell + k \equiv m\ell' + k \mod n$$

 $m(\ell - \ell') \equiv 0 \mod n \quad \text{(subtracting right hand side)}$
 $n \mid (\ell - \ell') \quad \text{(because } n \not\mid m)$
 $\ell = \ell' \quad (\ell - \ell' \in [-n+1:n-1])$

now a counting argument

$$C'(k) = \{ m\ell + k \bmod n : \ell \in \mathbb{Z}_n \} \subseteq \mathbb{Z}_n$$

as elements in C'(k) are mutually distinct

$$|C'(k)| = n$$
, $C'(k) = \mathbb{Z}_n$

• for $\ell m + k \mod n \notin \mathbb{Z}_n^*$

$$1 < \gcd(m\ell + k \bmod n, n)$$

$$= \gcd(m\ell + k, n) \text{ (lemma 4)}$$

$$\leq \gcd(m\ell + k, nm)$$

$$m\ell + k \notin \mathbb{Z}_{mn}^*$$

This excludes $n - \varphi(n)$ elements in each of the remaining $\varphi(m)$ columns.

		 C(k)	
0	1	 k	 m-1
m	m+1	 m+k	 2m-1
:			:
$m\ell$	$m\ell+1$	 $m\ell + k$	 $m(\ell+1)-1$
:			:
m(n-1)		m(n-1)+k	mn-1

Table 2: Arranging \mathbb{Z}_{mn} in a table of *n* rows and *m* columns

$$gcd(a,m) = gcd(m\ell + k, m)$$

= $gcd(m, m\ell + k \mod m)$ (lemma 4)
= $gcd(m, k)$

• For $k \notin \mathbb{Z}_m^*$ and element $a = m\ell + k \in C(k)$

$$1 < \gcd(k, m) = \gcd(a, m) \le \gcd(a, mn) , a \notin \mathbb{Z}_{mn}^*$$
$$\mathbb{Z}_{mn}^* \subseteq \bigcup_{k \in \mathbb{Z}_m^*} C(k)$$

This excludes elements outside of $\varphi(m)$ columns.

• For $k \in \mathbb{Z}_m^*$, $a \in C(k)$

$$gcd(a,m) = gcd(a,k) = 1$$

• For $k \in \mathbb{Z}_m^*$ and elements $m\ell + k, m\ell' + k \in C(k)$ solve

$$m\ell + k \equiv m\ell' + k \mod n$$

 $m(\ell - \ell') \equiv 0 \mod n \quad \text{(subtracting right hand side)}$
 $n \mid (\ell - \ell') \quad \text{(because } n \not\mid m)$
 $\ell = \ell' \quad (\ell - \ell' \in [-n+1:n-1])$

now a counting argument

$$C'(k) = \{ m\ell + k \bmod n : \ell \in \mathbb{Z}_n \} \subseteq \mathbb{Z}_n$$

as elements in C'(k) are mutually distinct

$$|C'(k)| = n$$
, $C'(k) = \mathbb{Z}_n$

• for $\ell m + k \mod n \in \mathbb{Z}_n^*$

$$1 = \gcd(m\ell + k \bmod n, n)$$

$$= \gcd(m\ell + k, n) \quad (\text{lemma 4})$$

$$1 = \gcd(m\ell + k, m) \quad (\text{shown above for } k \in \mathbb{Z}_m^*)$$

$$1 = \gcd(m\ell + k, mn) \quad (\text{lemma 3})$$

$$m\ell + k \in \mathbb{Z}_{mn}^*$$

This identifies $\varphi(n)$ elements in each of the remaining $\varphi(m)$ columns as elements of \mathbb{Z}_{mn}^* .

powers of primes:

Lemma 7.

$$n = p^k$$
, p prime $\rightarrow \varphi(n) = n(1 - \frac{1}{p})$

Proof.

$$F = \{a \in \mathbb{Z}_n : gcd(a,n) > 1\}$$

= \{1p,2p,3p,\dots,p^{k-1}p\}

$$\varphi(n) = n - |F|$$

$$= p^k - p^{k-1}$$

$$= p^k (1 - \frac{1}{p})$$

powers of primes:

Lemma 7.

$$n = p^k$$
, $p \text{ prime } \rightarrow \varphi(n) = n(1 - \frac{1}{p})$

Proof.

$$F = \{a \in \mathbb{Z}_n : gcd(a,n) > 1\}$$

= \{1p,2p,3p,\dots,p^{k-1}p\}

$$\varphi(n) = n - |F|$$

$$= p^k - p^{k-1}$$

$$= p^k (1 - \frac{1}{p})$$

special case for k = 1

Lemma 8.

$$p \ prime \rightarrow \varphi(p) = p-1$$

Proof.

$$\varphi(p) = p \cdot (1 - \frac{1}{p}) = p - 1$$

powers of primes:

Lemma 7.

$$n = p^k$$
, $p \text{ prime } \rightarrow \varphi(n) = n(1 - \frac{1}{p})$

Proof.

$$F = \{a \in \mathbb{Z}_n : gcd(a,n) > 1\}$$

= \{1p,2p,3p,\dots,p^{k-1}p\}

$$\varphi(n) = n - |F|$$

$$= p^k - p^{k-1}$$

$$= p^k (1 - \frac{1}{p})$$

special case for k = 1

Lemma 8.

$$p \ prime \rightarrow \varphi(p) = p-1$$

Proof.

$$\varphi(p) = p \cdot (1 - \frac{1}{p}) = p - 1$$

general case:

Lemma 9.

$$\varphi(n) = n \cdot \prod_{p|n,p \ prime} (1 - \frac{1}{p})$$

Proof. Let the prime factorization of *n* be

$$n=p_1^{k_1}\dots p_s^{k_s}$$

Then

$$\varphi(n) = \prod_{i} \varphi(p^{k_i}) \quad \text{(lemma 6)}$$

$$= \prod_{i} n \cdot (1 - \frac{1}{p_i}) \quad \text{(lemma 7)}$$

$$= n \cdot \prod_{p|n,p \text{ prime}} (1 - \frac{1}{p})$$

subgroups:

Let $G = (S, \circ)$ be a group, $S' \subseteq S$

$$a \circ' b = a \circ b$$
 for all $a, b \in S'$

Then G' is a *subgroup* of G iff

$$a \circ b \in S'$$
 for all $a, b \in S'$

examples:

- let $\mathbb{Z}_{even} = \{2z : z \in \mathbb{Z}\}$ be the set of even integers. Then $(\mathbb{Z}_{even}, +)$ is subgroup of $(\mathbb{Z}, +)$.
- let $S' = \{0, 2, 4\}$. Then $(S', +_6)$ is subgroup of $(\mathbb{Z}_6, +_6)$.

subgroups:

Let $G = (S, \circ)$ be a group, $S' \subseteq S$

$$a \circ' b = a \circ b$$
 for all $a, b \in S'$

Then G' is a *subgroup* of G iff

$$a \circ b \in S'$$
 for all $a, b \in S'$

examples:

- let $\mathbb{Z}_{even} = \{2z : z \in \mathbb{Z}\}$ be the set of even integers. Then $(\mathbb{Z}_{even}, +)$ is subgroup of $(\mathbb{Z}, +)$.
- let $S' = \{0, 2, 4\}$. Then $(S', +_6)$ is subgroup of $(\mathbb{Z}_6, +_6)$.

convention:

If \circ is clear we speak of

- group S instead of (S, \circ)
- subgroup S' instead of (S', \circ')

now along the lines of https://crypto.stanford.edu/pbc/notes/group/

subgroups:

Let $G = (S, \circ)$ be a group, $S' \subseteq S$

$$a \circ' b = a \circ b$$
 for all $a, b \in S'$

Then G' is a *subgroup* of G iff

$$a \circ b \in S'$$
 for all $a, b \in S'$

examples:

- let $\mathbb{Z}_{even} = \{2z : z \in \mathbb{Z}\}$ be the set of even integers. Then $(\mathbb{Z}_{even}, +)$ is subgroup of $(\mathbb{Z}, +)$.
- let $S' = \{0, 2, 4\}$. Then $(S', +_6)$ is subgroup of $(\mathbb{Z}_6, +_6)$.

convention:

If \circ is clear we speak of

- group S instead of (S, \circ)
- subgroup S' instead of (S', \circ')

now along the lines of https://crypto.stanford.edu/pbc/notes/group/

definition:

For subgroups H of G and $r \in G$ one defines right hand cosets

$$Hr = \{h \circ r : h \in H\}$$

subgroups:

Let $G = (S, \circ)$ be a group, $S' \subseteq S$

$$a \circ' b = a \circ b$$
 for all $a, b \in S'$

Then G' is a *subgroup* of G iff

$$a \circ b \in S'$$
 for all $a, b \in S'$

examples:

- let $\mathbb{Z}_{even} = \{2z : z \in \mathbb{Z}\}$ be the set of even integers. Then $(\mathbb{Z}_{even}, +)$ is subgroup of $(\mathbb{Z}, +)$.
- let $S' = \{0, 2, 4\}$. Then $(S', +_6)$ is subgroup of $(\mathbb{Z}_6, +_6)$.

convention:

If \circ is clear we speak of

- group S instead of (S, \circ)
- subgroup S' instead of (S', \circ')

now along the lines of https://crypto.stanford.edu/pbc/notes/group/

definition:

For subgroups H of G and $r \in G$ one defines right hand cosets

$$Hr = \{h \circ r : h \in H\}$$

Lemma 10.

$$|Hr| = |H|$$

The mapping

$$b: H \to G$$
, $b(h) = h \circ r$

is injective:

$$h \circ r = h' \circ r \quad || \circ r^{-1}$$

$$\to h = h'$$

subgroups:

Let $G = (S, \circ)$ be a group, $S' \subseteq S$

$$a \circ' b = a \circ b$$
 for all $a, b \in S'$

Then G' is a *subgroup* of G iff

$$a \circ b \in S'$$
 for all $a, b \in S'$

examples:

- let $\mathbb{Z}_{even} = \{2z : z \in \mathbb{Z}\}$ be the set of even integers. Then $(\mathbb{Z}_{even}, +)$ is subgroup of $(\mathbb{Z}, +)$.
- let $S' = \{0, 2, 4\}$. Then $(S', +_6)$ is subgroup of $(\mathbb{Z}_6, +_6)$.

convention:

If \circ is clear we speak of

- group S instead of (S, \circ)
- subgroup S' instead of (S', \circ')

now along the lines of https://crypto.stanford.edu/pbc/notes/group/

definition:

For subgroups H of G and $r \in G$ one defines right hand cosets

$$Hr = \{h \circ r : h \in H\}$$

Lemma 10.

$$|Hr| = |H|$$

The mapping

$$b: H \to G$$
, $b(h) = h \circ r$

is injective:

$$h \circ r = h' \circ r \mid | \circ r^{-1}$$

$$\to h = h'$$

Lemma 11.

$$Hr = Hs \leftrightarrow rs^{-1} \in H$$
, otherwise $Hr \cap Hs = \emptyset$

For subgroups H of G and $r \in G$ one defines right hand cosets

$$Hr = \{h \circ r : h \in H\}$$

Lemma 10.

$$|Hr| = |H|$$

The mapping

$$b: H \to G$$
, $b(h) = h \circ r$

is injective:

$$h \circ r = h' \circ r \quad || \circ r^{-1}$$

$$\to h = h'$$

Lemma 11.

$$Hr = Hs \leftrightarrow rs^{-1} \in H$$
, otherwise $Hr \cap Hs = \emptyset$

• if $rs^{-1} = h \in H$

$$H = Hh = (Hr)s^{-1} || \circ s$$

$$Hs = Hr$$

For subgroups H of G and $r \in G$ one defines right hand cosets

$$Hr = \{h \circ r : h \in H\}$$

Lemma 10.

$$|Hr| = |H|$$

The mapping

$$b: H \to G$$
, $b(h) = h \circ r$

is injective:

$$h \circ r = h' \circ r \quad || \circ r^{-1}$$

$$\to h = h'$$

Lemma 11.

$$Hr = Hs \leftrightarrow rs^{-1} \in H$$
, otherwise $Hr \cap Hs = \emptyset$

• if $rs^{-1} = h \in H$

$$H = Hh = (Hr)s^{-1} || \circ s$$

$$Hs = Hr$$

• if Hr = Hs

$$e \in H, r = er \in Hr$$

$$r = h's$$
 with $h' \in H$ $|| \circ s^{-1}|$
 $rs^{-1} = h' \in H$

• assume $h_1r = h_2s$ with $h_1, h_2 \in H$

$$h_1 r = h_2 s ||h_1^{-1} \circ r = h_1^{-1} h_2 s || \circ s^{-1}$$

 $r = h_1^{-1} h_2 s || \circ s^{-1}$
 $r = h_1^{-1} h_2 \in H$

For subgroups H of G and $r \in G$ one defines right hand cosets

$$Hr = \{h \circ r : h \in H\}$$

Lemma 10.

$$|Hr| = |H|$$

The mapping

$$b: H \to G$$
, $b(h) = h \circ r$

is injective:

$$h \circ r = h' \circ r \mid \mid \circ r^{-1}$$

 $\rightarrow h = h'$

Lemma 11.

$$Hr = Hs \leftrightarrow rs^{-1} \in H$$
, otherwise $Hr \cap Hs = \emptyset$

Lagrange's theorem:

Lemma 12. If H is a subgroup of finite group G, then |H| divides |G|.

For subgroups H of G and $r \in G$ one defines right hand cosets

$$Hr = \{h \circ r : h \in H\}$$

Lemma 10.

$$|Hr| = |H|$$

The mapping

$$b: H \to G$$
, $b(h) = h \circ r$

is injective:

$$h \circ r = h' \circ r \mid | \circ r^{-1}$$

$$\to h = h'$$

Lemma 11.

$$Hr = Hs \leftrightarrow rs^{-1} \in H$$
, otherwise $Hr \cap Hs = \emptyset$

Lagrange's theorem:

Lemma 12. If H is a subgroup of finite group G, then |H| divides |G|.

Exhaust G by i = 1; P(1) = H;

while $\exists s_i \in G \setminus H(i)$

$$P = P \cup Hs_i; i = i + 1$$

As G is finite this terminates with some finite $i = n \le |G|$.

$$G = \bigcup_{i=1}^{n} Hs_i$$

By lemma 11 the union is disjoint.

$$|G| = \sum_{i=1}^{n} |Hs_i|$$

$$= n \cdot |H| \text{ (lemma 10)}$$

For subgroups H of G and $r \in G$ one defines right hand cosets

$$Hr = \{h \circ r : h \in H\}$$

Lemma 10.

$$|Hr| = |H|$$

The mapping

$$b: H \to G$$
, $b(h) = h \circ r$

is injective:

$$h \circ r = h' \circ r \mid | \circ r^{-1}$$

$$\to h = h'$$

Lemma 11.

$$Hr = Hs \leftrightarrow rs^{-1} \in H$$
, otherwise $Hr \cap Hs = \emptyset$

Lagrange's theorem:

Lemma 12. If H is a subgroup of finite group G, then |H| divides |G|.

Exhaust G by i = 1; P(1) = H;

while $\exists s_i \in G \setminus H(i)$

 $P = P \cup Hs_i; i = i + 1$

As G is finite this terminates with some finite $i = n \le |G|$.

$$G = \bigcup_{i=1}^{n} Hs_i$$

By lemma 11 the union is disjoint.

$$|G| = \sum_{i=1}^{n} |Hs_i|$$

$$= n \cdot |H| \text{ (lemma 10)}$$

Lemma 13. If H is a proper subroup of finite group g, then $|H| \le |G|/2$