

Vv186 Recitation

Week 6 By Yahoo

Outline

- Comments on RC last week
- Limit of a Function
- Continuous Function

Comments on RC last week

A wrong proof

Show that
$$\lim c_n = \frac{\lim a_n}{\lim b_n}$$
.

- Step 1: Set $c_n = a_n/b_n$, then $a_n = b_n c_n$
- Step 2: $\lim a_n = \lim b_n c_n = \lim b_n \lim c_n$

• Step 3:
$$\lim c_n = \frac{\lim a_n}{\lim b_n}$$

Pitfall: $\lim \frac{a_n}{b_n}$ does not necessarily exist.

Practice

If a_n converges, then $S_n = \frac{1}{n}(a_1 + \cdots + a_n)$ converges to the same limit.

How to solve?

- Step 1: Suppose $\lim a_n = 0$. Then for any epsilon, there is N so that $|a_n| <$ epsilon for n>N. Then we need to prove there exist N', so that $|\frac{a_1 + \cdots + a_n}{n}| <$ epsilon for n>N'.
- Step 2: Suppose $\lim a_n \neq 0$. Then let $b_n = a_n \lim a_n$. Thus, $\lim b_n = 0$. $S(b_n)$ converges to 0.

Practice

Suppose x_n - $x_{n-2} \to 0$, as $n \to +\infty$, show that $(x_n$ - $x_{n-1})/n \to 0$, as $n \to +\infty$.

Limit of a Function

Limit of a Function as $x \rightarrow \infty$

Let f be a real- or complex-valued function defined on a subset of R that includes some interval (a,∞) . Then f converges to L, as $x \to \infty$

$$\lim_{x \to \infty} f(x) = L \qquad :\Leftrightarrow \qquad \forall \exists \forall |f(x) - L| < \varepsilon.$$

Example

• Show that $f(x) = \frac{1}{x} \rightarrow 0$, as $x \rightarrow \infty$.

Limit of a Function as $x \rightarrow x_0$

Let f be a real- or complex-valued function defined on a subset of R called Ω and let x_0 in the closure of Ω . Then f converges to L, as $x \rightarrow$

$$\lim_{x \to x_0} f(x) = L \quad :\Leftrightarrow \quad \forall \exists \forall |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon.$$

Example

• Show that $f(x) = \sqrt{x} \rightarrow 1$, as $x \rightarrow 1$.

• Show that $f(x) = \frac{x+1}{2x+1} \rightarrow 1$, as $x \rightarrow 1$.

Solution

• Show that
$$f(x) = \sqrt{x} \rightarrow 1$$
, as $x \rightarrow 1$.
 $\delta = \varepsilon$

• Show that
$$f(x) = \frac{x+1}{2x+1} \rightarrow 1$$
, as $x \rightarrow 1$.

$$\delta = \min\{\frac{\varepsilon}{2}, \frac{1}{4}\}$$

Operation on limit

1.
$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$
,

2.
$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \left(\lim_{x \to x_0} f(x) \right) \left(\lim_{x \to x_0} g(x) \right),$$

3.
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$$
 if $\lim_{x \to x_0} g(x) \neq 0$.

These statements remain true if $x_0 = \pm \infty$.

The proof is similar to cases in sequences.

Practice

Calculate the limit of
$$\sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1}$$
 as $x \to +\infty$

One-sided Limits

Let f be a real- or complex-valued function defined on a subset of R called Ω and let x_0 in the closure of Ω . Then

$$\lim_{\substack{x \searrow x_0}} f(x) = L \quad :\Leftrightarrow \quad \forall \quad \exists \quad \forall \quad 0 < x - x_0 < \delta \Rightarrow |f(x) - L| < \varepsilon.$$

$$\lim_{x\nearrow x_0} f(x) = L \quad :\Leftrightarrow \quad \forall \exists \forall 0 < x_0 - x < \delta \Rightarrow |f(x) - L| < \varepsilon.$$

Lemma

 $f(x) \rightarrow L$ as $x \rightarrow x_0$ if and only if $f(x) \rightarrow L$ as $x \supset x_0$ and $f(x) \rightarrow L$ as $x \nearrow x_0$.

Practice

Show that the sign function has not limit as x
 → 0.

$$Sig(x) = 1$$
, if $x > 0$
 $Sig(x) = 0$, if $x = 0$
 $Sig(x) = -1$, if $x < 0$

Limits of Functions using Sequences

Let f be a real- or complex-valued function defined on a subset of R called Ω and let x_0 in the closure of Ω . Then

$$\lim_{x \to x_0} f(x) = L \qquad \Leftrightarrow \qquad \forall \left(a_n \xrightarrow{n \to \infty} x_0 \Rightarrow f(a_n) \xrightarrow{n \to \infty} L \right)$$
$$a_n \in \Omega \setminus \{x_0\}$$

Practice

• Show that $f(x) = \sin(\frac{1}{x})$ does not have a limit as $x \to 0$.

The Big-O Landau Symbol

Let f be a real- or complex-valued function defined on a subset of R called Ω and let x_0 in the closure of Ω . Then

$$f(x) = O(\phi(x))$$

if and only if

$$\exists \exists \forall |x - x_0| < \varepsilon \Rightarrow |f(x)| \le C|\phi(x)|$$

as $X \rightarrow X_0$

The Big-O Landau Symbol

Let f be a real- or complex-valued function defined on a subset of R that includes some interval (L, ∞) . Then

$$f(x) = O(\phi(x))$$
 as $x \to x_0$

if and only if

$$\exists \exists x > M \Rightarrow |f(x)| \le C|\phi(x)|$$

The Little-O Landau Symbol

Let f be a real- or complex-valued function defined on a subset of R called Ω and let x_0 in the closure of Ω . Then

$$f(x) = o(\phi(x))$$
 as $x \to x_0$

if and only if

$$\forall \exists \forall |x - x_0| < \varepsilon \Rightarrow |f(x)| < C|\phi(x)|$$

The Little-O Landau Symbol

Let f be a real- or complex-valued function defined on a subset of R that includes some interval (L, ∞) . Then

$$f(x) = o(\phi(x))$$
 as $x \to x_0$

if and only if

$$\forall \exists x > M \Rightarrow |f(x)| < C|\phi(x)|$$

Example

(i)
$$\frac{1}{x^2} = O\left(\frac{1}{x}\right)$$
 as $x \to \infty$,

(ii)
$$\frac{1}{x} = O\left(\frac{1}{x^2}\right)$$
 as $x \to 0$,

Landau Symbols using Limits

Let f be a real- or complex-valued function defined on a subset of R called Ω and let x_0 in the closure of Ω . If there is $C \ge 0$, and

$$\lim_{x \to x_0} \frac{|f(x)|}{|\phi(x)|} = C,$$

then we have

$$f(x) = O(\phi(x))$$
 as $x \to x_0$

Landau Symbols using Limits

Let f be a real- or complex-valued function defined on a subset of Ω and let x_0 in the closure of Ω , then

$$\lim_{x \to x_0} \frac{|f(x)|}{|\phi(x)|} = 0 \qquad \Leftrightarrow \qquad f(x) = o(\phi(x)) \text{ as } x \to x_0.$$

Proof in assignment.

Continuous Functions

Continuous Function

Let f be a real- or complex-valued function defined on a subset of Ω and let x_0 in the closure of Ω , then f is continuous at x_0 if

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Condition for Continuity

- f needs to have a limit at x_0
- f needs to be defined at x_0
- The value of f must coincide with its limit

Continuous Function

Let f be a real- or complex-valued function defined on a subset of Ω and let x_0 in the closure of Ω . Then the following are equivalent:

- 1. f is continuous at x_0 ;
- 2. for any real sequence (a_n) with $a_n \to x_0$, $\lim_{n \to \infty} f(a_n) = f(x_0)$;
- 3. $\forall \exists \forall : |x x_0| < \delta \implies |f(x) f(x_0)| < \varepsilon$.

Practice

- 1) Suppose that $f(x) \le g(x)$ for all x. Prove that $\lim_{x \to \infty} f(x) \le \lim_{x \to \infty} g(x)$, provided that these limits exist.
- 2) If f(x) < g(x) for all x, does it necessarily follow that lim f(x) < lim g(x)?

Continuous Function

Let f be a real- or complex-valued function defined on a subset of Ω and let x_0 in the closure of Ω . We say that f is continuous from the left or from below at x_0 if

$$\lim_{x\nearrow x_0}f(x)=f(x_0)$$

We say that f is continuous from the right or from above at x_0 if

$$\lim_{x \searrow x_0} f(x) = f(x_0)$$

Continuous Extension

2.5.6. Definition. Let $\Omega \subset \mathbb{R}$ be any set and $\widetilde{\Omega} \supset \Omega$. Suppose that $f: \Omega \to \mathbb{R}$ and $\widetilde{f}: \widetilde{\Omega} \to \mathbb{R}$ are continuous functions. If $\widetilde{f}(x) = f(x)$ for all $x \in \Omega$, we say that \widetilde{f} is a *continuous extension* of f to $\widetilde{\Omega}$.

Operation on Continuous Function

Let f and g be two real functions and x is in dom f and dom g. Assume that both f and g are continuous at x. Then

- (i) f + g is continuous at x and
- (ii) $f \cdot g$ is continuous at x.

Practice

- 1. Show that |f| is continuous if f is continuous
- 2. If f and g are continuous, then max{f, g} and min{f, g} are continuous.
- Prove that every continuous f can be written f = g - h, where g and h re nonnegative and continuous.

Continuity for composition

If f and g are real functions with x in dom g, g(x) in dom f, g is continuous at x and f is continuous at g(x), then the composition $f \circ g$ is continuous at x.

Theorem (Proof)

Let f, g be real functions such that $g(x) \rightarrow L$, as $x \rightarrow x_0$, and f is continuous at L in dom f. Then we have

$$\lim_{x \to x_0} f(g(x)) = f(L)$$

Thank you for your attention!