

Bilgisayar Grafiği HAFTA 2 Genel Bakış

Arş. Gör. Dr. Gülüzar ÇİT
Bilgisayar ve Bilişim Bilimleri Fakültesi
Bilgisayar Mühendisliği Bölümü
gulizar@sakarya.edu.tr

Konu & İçerik

- ➤ Bilgisayar Grafiklerinin tarihçesi
 - ➤ Literatürdeki ilk çalışmalar
 - Dünü, bugünü
- ➤ Kullanım amaçları
- ➤ Donanım elemanları
 - ➤ CRT Ekranlar
 - ➤ Ekran Belleği
- ➤ Yazılım elemanları

➤ "Bilgisayar Grafikleri" terimi ilk olarak 1960 yılında William Fetter tarafından Boeing için kokpit tasarımını insan vücudunun üç-boyutlu bilgisayar modelini ("Boeing Man") oluşturarak gerçekleştirdiği çalışmasında kullanılmıştır.

➤ "Etkileşimli Bilgisayar Grafikleri", 1960'ların başında , Ivan Sutherlands, MIT'de "Sketchpad" isimli doktora çalışmasını yaparken

- ➤ CRT monitör,
- ▶ışık-kalemi
- ➤ fonksiyon-tuş paneli

➤ 1969 yılında, grafiğe özel ilgi duyanlar tarafından "SIGGRAPH" oluşturuldu

- Başlangıç
 - ➤İlk Bilgisayar Grafikleri filmi
 - ➤ Dikdörtgenler prizmasının uzayda dönme simülasyonu
 - **≥**1963
 - ➤ Edward E. Zajac
 - ➤IBM 7090 veya 7094 serisi bilgisayar
 - > FORTRAN

➤ Günümüz...

Face2Face: Real-time Face Capture and Reenactment of RGB Videos

Justus Thies¹, Michael Zollhöfer², Marc Stamminger¹, Christian Theobalt², Matthias Nießner³

> ¹University of Erlangen-Nuremberg ²Max-Planck-Institute for Informatics ³Stanford University

> > CVPR 2016 (Oral)

➤ Günümüz...

➤ Günümüz...

➤ Günümüz...

≻Amaç?

- ➤ Gerçek Zaman
- ➤ Sanal Varlıklar/Ortamlar
- ➤ Görüntüleme/Sunum
- ➤ Algoritma/İçerik Geliştirme

≻Amaç...

- ➤ Sanal Ortamlar/Varlıklar
 - ➤ Bir insanı, yeri veya herhangi bir şeyi sahnelemek
 - Çoğunlukla gerçeğe yakın sahneleme amaçlanır, fakat olmak zorunda değil
 - Simülasyonlar, oyunlar, sanal karakterler, filmler
- ➤ Görüntüleme/Sunum
 - ➤ Veriyi anlamlı bir şekilde görüntüleme
 - Grafikler/tablolar, veri görüntüleme, grafik kullanıcı arayüzleri
- ➤ Her ikisi de amaçlanıyorsa
 - ➤ Bazı nesne ve ortamları sahneleme
 - ➤ Bilgi vurgulanır
 - ➤ CAD/CAM

≻Amaç...

- ➤ Gerçek-zaman
 - ➤ Saniyede minimum 24/30 çerçeve
 - **≻**Oyunlar
- ➤ Aksi halde
 - ➤ Bir çerçeve için saatler harcanabilir
 - Filmler, veri görüntüleme, karmaşık simülasyonlar
- Hız ve kalite arasında ters orantı (görüntü kalitesi, doğruluk, vs.)

≻Amaç...

- ➤ Algoritma/İçerik Geliştirme
 - ➤ Bilgisayar grafikleri API'leri kullanılır
 - ➤ OpenGL, DirectX, VRML, Java2D, Java 3D, ...
 - Programlama dilleri ve donanım arasında arayüz

▶ Donanım

- ≥İşlemci ve ekran kartı
- **≻**Ekranlar
 - ➤ Yüksek çözünürlüklü ekranlar
 - ▶ Projeksiyonlar
 - ➤ Başa takılan ekranlar

≻Yazılım

- ➤ Hazır Programlar
 - ➤ Gravit Designer
 - **≻**Inkscape
 - **>** Photoshop
 - ➤ Google Charts
 - ➤ Visualize.me
 - **≻**PixIR
 - ➤ Paint.net

≻Yazılım...

- ➤ Hazır Programlar...
 - **≻**Catia
 - **≻** Autocad
 - ≥3ds Max
 - **≻**GIMP
 - **≻**Blender
 - **>** Sculptris
 - **≻**SolidWorks
 - **>...**

≻Yazılım...

- ➤ Programlama Dilleri & Kütüphaneler
 - >C/C++
 - **≻**Java
 - **≻**Phyton
 - **≻**OpenGL
 - **➢** DirectX
 - ➤ Direct3D
 - ➤ Unity3D
 - ➤ Vuforia

Ekran Görüntüleme

➢ Görüntüleme Bileşenleri

- ▶Çözünürlük
 - ➤ Tüm ekranda görünen noktalar sayısı
 - ≥640 * 480, 800 * 600 and 1,024*768, vs.
- Ekran Yineleme Hızı
 - Görüntünün yinelenebilmesi için gerekli olan frekans aralığı
 - ≥30Hz, 60 Hz, 80 Hz, vs...
 - > Flicker etkisi
 - ➤ Görüntü dalgalanması
 - ➤ Min. 25 Hz

Ekran Görüntüleme...

➢Görüntüleme Bileşenleri...

- ➤ Ekran Büyüklüğü
 - ► 13, 15, 17, 19, 21, 23, 27, 32, vs. inch
- ➤ Görüş Açısı
 - ► LCD, LED, OLED, Plazma
 - ➤ Yatay ve düşey olarak ekranın görünebilmesi
 - CRT ler tüm açılardan görünür

Ekran Tipleri

➤ CRT – Cathode Ray Tube

- ➤İlk video görüntüleme mekanizması
- ➤ Katod: Elektronların cihaz boyunca ilerlediği bir elektrod (iletken)
- ➤ Katot ışınları: elektron demeti

Elektron tabancası tarafından emilen elektron demeti (catot ışınları), fosforgiydirilmiş ekrandaki belirli bir konum boyunca toplanarak/odaklanarak ve dönerek ilerler. Fosfor daha sonra elektron tabancası tarafından temas edilen tüm konumlardaki ışık noktasını emer. Fosfor tarafından emilen ışık çok hızlı zayıfladığından dolayı, ekran görüntüsünü elde etmek için bazı metotlar gerekir.

➤ CRT – Cathode Ray Tube...

- ▶ Görüntüleme
 - ➤ Satır-taramalı ekran
 - Elektron tabancası ekran boyunca süpürülür
 - ➤ Yukarıdan aşağıya doğru satır satır tarama
 - ➤ Resim yineleme belleği ve çerçeve belleği
 - Tüm ekran elemanları için yoğunluk değerlerini saklayan hafıza alanı
 - Saklanan yoğunluk değerleri yineleme belleğinden alınır ve bir seferde ekranın bir satırı "boyanır"
 - Her ekran noktası piksel olarak adlandırılır
 - ➤ Pixel: Picture element

➤ CRT – Cathode Ray Tube...

- ▶ Görüntüleme
 - ➤ Rasgele-taramalı ekran
 - ➤ Elektron tabancası sadece resmin çizileceği ekran parçalarına yönlendirilir
 - Aynı anda sadece bir doğru çizerek resimleri oluştururlar
 - ➤ Vektör ekran olarak da adlandırılırlar.
 - ➤ Yineleme oranı görüntülenecek çizgi sayısına bağlıdır.
 - ➤ Her saniyede görüntünün tüm doğrularını saniyede 30 veya 60 defa görüntülemeyi hedefler

➤ Satır-taramalı ekran vs. rasgele-taramalı ekran

Satır-taramalı ekran	Rasgele-taramalı ekran
Tüm ekranı çizer	Tüm ekran çizilmez
Sabit yineleme oranı vardır	Sabit yineleme oranı yoktur
Genellikle renklidir	Tek renklidir
Gerçekçi görüntü (gölgeleme, gizli yüzey) verir	Gerçekçi görüntüye ulaşamaz
Hafıza gereksinimi yüksektir	Hafıza gereksinimi nispeten düşüktür
Daha ucuz	Nispeten daha pahalı
Doğrular zig-zaglı çizilir	Elektron tabancası direk doğruyu takip ettiğinden daha pürüzsüz doğrular çizilir

➤ Piksel vs. vektör

piksel	vektör
Piksel-temelli	Şekilleri oluşturan matematiksel hesaplamalar
Fotoğraflar	Resimler
Photoshop	CorelDraw
Ölçeklenince netlik kaybolur	Ölçeklenebilir

➤ Renkli CRT

- Farklı renklerdeki ışığı emen fosforların birleşimi
- Farklı fosforlar tarafından emilen ışıkların birleştirilmesiyle, renk aralıkları elde edilir
- ➤ Renkleri elde etmek için iki farklı metot

▶Işık-Geçirme metodu

- ➤ Rastgele-tarama monitörleri
- İki fosfor katmanı (genellikle kırmızı ve yeşil)
- **>**Ucuz
- >Sadece 4 renk mevcut
- ➤ Görüntü kalitesi düşük

Ekran Tipleri

➤ Renkli CRT...

➤ Renkleri elde etmek için iki farklı metot

▶Gölge-maskeleme metodu

- ➤ Izgara-tarama (raster-scan) sistemleri (renkli TV, vs.)
- ➤ Her piksel konumunda ışığı emen üç farklı fosfor renk noktası (kırmızı, mavi, yeşil)

- Her renk noktası için üç elektron tabancası
- Fosfor giydirilmiş ekranın hemen önünde gölge-maskeleme izgarası
- Üç elektron değişen yoğunluk seviyesine bağlı olarak renk değişimleri elde edilir

Ekran Belleği

- Satır taramalı ekranları gerçeklemek için ekran belleği (frame buffer) adı verilen bir bellek alanı kullanılır.
 - ➤ Her piksel minimum 1 bit (siyah-beyaz, 0-1)

► N-bit gri seviyeli ekran belleği

➤ N=3 ve 512x512'lik ekran için 3x 2¹⁸ bit bellek

➤ Basit renkli ekran belleği

≥24 bit seviyeli renkli ekran belleği

- >Tam renkli
- \triangleright Her renk $2^8 = 256$ renk seviyesi
- $(2^8)^3 = 2^{24}$ olası renk

>SORU

➤ Her pikselin 8 bitlik hafızaya ihtiyaç duyduğu 1024x1024'lük bir ekranda 3 dakikalık siyah-beyaz bir video görüntülemek için gerekli olan çerçeve tamponunun boyutunu hesaplayın. (saniyedeki çerçeve sayısı 32'dir)

≻CEVAP

➤ Süre: 3dk = 180 sn

Ekran boyutu: 1024x1024

➤ Her piksek için gerekli hafıza: 8 bit

➤fps: 32

➤ Hafıza gereksinimi/ çerçeve tamponunun boyutu:

> 1024*1024*8*32*180 = 180*2²⁸ bit

KAYNAKLAR

