TRƯỜNG ĐẠI HỌC BÁCH KHOA TP.HCM Khoa Khoa Học và Kỹ Thuật Máy Tính

----oOo-----

Họ và tên:	 	
MSSV:	 	

ĐỀ THI CUỐI KỲ 2. 2012-2013 Môn: Thiết kế luận lý 1

Thời gian: 90 phút - Ngày: 10/06/2013 (30 câu trắc nghiệm) Được phép sử dung tài liêu giấy

Mã đề 0004

Sinh viên làm phần TỰ LUẬN trực tiếp vào đề thi

PHẦN TRẮC NGHIỆM

Câu 1: Xét các mạch Enable/Disable. Chọn phát biểu đúng:

- **A.** Khi sử dụng cổng OR, ngõ xuất ở mức 0 khi disable.
- **B.** Để ngõ xuất ở mức 0 khi disable, có thể sử dụng cổng OR hoặc cổng AND.
- C. Khi sử dụng cổng NAND, ngõ xuất ở mức 1 khi disable.
- D. Tất cả đều đúng.

Câu 2: Xác định biểu thức tối giản nhất của hàm F với $F = \overline{C.B.A} + C.B + B.\overline{A} + \overline{B.A}$

- $A. \overline{B}.A + B.\overline{A} + C.A$
- **B.** $\overline{B}.A + C.B + \overline{B}.\overline{A}$
- \mathbf{C} . \overline{B} . A + B. $\overline{A} + C$. \overline{B}
- **D.** Tất cả đều sai

Câu 3: Cho một số trong hệ thống bù 2 như sau: 101101. Số thập phân tương đương là:

A. -1

B. 13

<u>C.</u> -19

D. -18

Câu 4: Cho mạch tổ hợp như hình bên dưới. Xác định điều kiện đầy đủ để LED sáng.

- **A.** A=0 hoặc B=0 hoặc (B=0 và C=1)
- **B.** (A=0 hoặc B=0) và C=0

 $\overline{\mathbf{C}}$. (A=1 và B=1) hoặc C=1

D. Tất cả đều đúng.

Câu 5: Giả sử ban đầu ABCD = 0000. Xác định giá trị của bộ đếm sau 10 chu kỳ clock tiếp theo:

Các chân S, R của 4 Flip-Flop đều được nối lên nguồn (**mức 1**)

- **A.** 0000
- **B.** 1111
- **C.** 1100
- **D.** 0111

Câu 6: Chọn bảng sự thật đúng cho sơ đồ mạch điện sau đây (NC = no change):

SET	CLR	CLK	Q
0	0	1	NC
0	1	1	0
1	0	1	1
1	1	1	Invalid

	SET	CLR	CLK	Q
	0	0	\downarrow	NC
	0	1	\downarrow	0
	1	0	\downarrow	1
C.	1	1	\downarrow	Invalid

	SET	CLR	CLK	Q
	0	0	↑	Invalid
	0	1	↑	1
	1	0	↑	0
R	1	1	\uparrow	NC

	SET	CLR	CLK	Q
	0	0	↓	Invalid
	0	1	↓	1
	1	0	↓	0
D.	1	1	↓	NC

Câu 7: Cho hàm $F(D,C,B,A) = \Sigma(0, 5, 8, 10, 11, 12, 14) + d(1, 2, 11, 15)$ với D là MSB và A là LSB. Biểu thức rút gọn (dạng SOP) của hàm F là:

A. $\overline{C}.A + D.C + \overline{D}.\overline{B}.A$ **B.** $\overline{C}.A + D.C + C.\overline{B}.A$ **C.** $\overline{C}.A + D.B + C.\overline{B}.A$ **D.** Cả 3 câu đều đúng

Câu 8: Cho sơ đồ mạch đếm sau

Giả sử trạng thái ban đầu của **DCBA** = **0000**. Xác định chuỗi 5 trạng thái kế tiếp của bộ đếm

A. 0001, 0010, 0011, 0100, 0101

B. 1110, 0011, 1000, 1111, 0001

C. 1111, 1110, 1101, 1100, 1011

D. 1110, 1101, 1011, 0111, 1110

Câu 9: Chọn phát biểu đúng nhất:

- A. Sử dụng phương pháp bìa Karnaugh có thể cho nhiều hơn 1 kết quả tối giản
- **B.** Sử dụng phương pháp bìa Karnaugh luôn cho kết quả tối giản
- C. Sử dung phương pháp bìa Karnaugh cho phép rút gon biểu thức có tối đa 6 biến
- D. Tất cả đều đúng

Sơ đồ mạch dưới đây sử dụng cho các câu từ 10 đến 11

Các chân J, K của 4 Flip-Flop đều được nối lên nguồn (**mức 1**)

Câu 10: . Giả sử ban đầu DCBA = 1111. Xác định chuỗi 5 trạng thái kế tiếp của bộ đếm:

A. 0010, 0011, 0100, 0101, 0110

B. 1110, 1101, 1100, 1011, 1010

C. 0000, 0001, 0010, 0011, 0100

D. 0010, 0011, 0010, 0011, 0010

Câu 11: . Giả sử ban đầu DCBA = 0111. Xác định chuỗi 5 trạng thái kế tiếp của bộ đếm:

A. 0010, 0011, 0100, 0101, 0110

B. 1000, 1001, 1010, 1011, 1100

<u>C.</u> 0010, 0011, 0010, 0011, 0010

D. 0110, 0101, 0100, 0010, 0010

Câu 12: Chọn phát biểu đúng:

- **A.** Để hiện thực truyền dữ liệu song song, chỉ có thể sử dụng D Flip-Flop, không thể dùng J-K Flip Flop.
- **B.** J-K Flip Flop có thể được dùng như 1 S-C Flip Flop. (Ngõ nhập J tương đương với S. Ngõ nhập K tương đương với C)
- C. S-C Flip Flop có thể được dùng như 1 J-K Flip Flop. (Ngõ nhập J tương đương với S. Ngõ nhập K tương đương với C)
 - **D.** Tất cả đều đúng.

Câu 13: Cho mạch phát hiện cạnh clock như hình dưới đây:

Chon phát biểu đúng.

- A. Mạch tạo ra xung thấp (LOW) khi có cạnh xuống.
- **B.** Mạch tạo ra xung cao (HIGH) khi có cạnh xuống.
- C. Mạch tạo ra xung cao (HIGH) khi có cạnh lên.
- **D.** Mạch tạo ra xung thấp (LOW) khi có cạnh lên.

Sơ đồ mạch dưới đây sử dụng cho các câu từ 14 đến 17

Các chân J, K của 4 Flip-Flop đều được nối lên 5V (**mức 1**)

Câu 14: . Chon phát biểu đúng về sơ đồ mạch đếm với ngõ xuất DCBA:

- A. Mạch đếm lên bất đồng bộ MOD-11
- **B.** Mạch đếm lên bất đồng bộ MOD-10
- C. Mạch đếm xuống bất đồng bộ MOD-12
- D. Mạch đếm xuống bất đồng bộ MOD-7

Câu 15: . Xác định *Duty cycle* (*mức 1*) cho ngõ xuất C của mạch đếm:

- **A.** 50 %
- **B.** 43 %
- **C.** 33 %
- **D.** 27 %

Câu 16: . Giả sử các Flip-Flop có thời gian trễ $t_{pd} = 25$ us. Xác định tần số tối đa của xung CLK để mạch vẫn hoạt động đúng:

- **A.** 10 KHz
- **B.** 5 KHz
- **C.** 25 KHz
- **D.** 40 KHz

Câu 17: . Xác định tín hiệu bị xung gai của mạch đếm:

- A. Tín hiệu B
- **B.** Tín hiệu C
- C. Tín hiệu D
- **D.** Tín hiệu A

Sơ đồ mạch dưới đây sử dụng cho các câu từ 18 đến 19

Câu 18: . Xác định số MOD của bộ đếm:

A. 144

B. 100

C. 160

D. 90

Câu 19: . Xác định Duty cycle (mức 1) của ngõ xuất TCU của U1:

A. 95%

B. 3.125 %

C. 93.75 %

D. Tất cả đều sai

OUTPUT

OUTPUT

Câu 20: Sơ đồ thiết kế mạch nào sau đây thỏa mãn điều kiện $\mathbf{f}_{\text{OUTPUT}} = \mathbf{f}_{\text{CLK}}/24$ và Duty cycle của ngõ xuất OUTPUT bằng 50%

Sơ đồ mạch dưới đây sử dụng cho các câu từ 21 đến 25. Cho tần số tín hiệu CLK = 10 KHz

Câu 21: . Xác định số MOD của bô đếm:

A. 55

B. 50

<u>C.</u> 44

D. 36

Câu 22: . Tần số của ngõ xuất Q3 của U2 là:

A. 200 Hz

B. 250 Hz

<u>C.</u> 227 Hz

D. 333 Hz

Câu 23: . Tần số của ngõ xuất Q1 của U1 là:

A. 1 KHz

B. 2.5 KHz

C. 10 KHz

D. 1.25 Hz

Câu 24: . Xác định tín hiệu bị xung gai của bộ đếm:

A. Q2 của U1

B. Q1 của U2

C. Q0 của U1

D. Q3 của U2

Câu 25: . Xác định *Duty cycle* (*mức 1*) cho ngõ xuất Q2 của U2:

A. 33.33%

B. 36.36%

C. 30%

D. 40%

Câu 26: Một mạch tổ hợp có 4 ngõ nhập (D, C, B, A) và 1 ngõ xuất (X). Ngõ xuất X=1 khi số DCBA (D là MSB và A là LSB) là một số BCD. Ngược lại, X=0. Biểu thức đại số Bool của mạch là:

A. $D + \overline{C}.\overline{B}$

 $\underline{\mathbf{B}}. \overline{D} + \overline{C}.\overline{B}$

C. $\overline{D} + C.\overline{B}$

D. Tất cả đều đúng

Câu 27: Cho bìa Karnaugh 4 biến như hình bên. Xác định biểu thức đại số Bool tối giản nhất:

	$\bar{B}\bar{A}$	$\bar{B}A$	BA	$Bar{A}$
$\bar{D}\bar{C}$	0	0	X	X
$\overline{D}C$	1	0	1	1
DC	X	X	1	0
DŌ	0	0	0	0

A. $\overline{D}.B + C.B.A + C.\overline{B}.\overline{A}$ **C.** 2 câu A và B đều đúng **B.** $\overline{D}.B + C.B.A + \overline{D}.C.\overline{A}$

D. Tất cả đều sai

Câu 28: Giả sử ban đầu AB = 00. Xác định chuỗi trang thái của bô đếm:

Các chân S, R của 3 Flip-Flop đều được nối xuống đất (**mức 0**)

 $\mathbf{A.}\ 00,\ 10,\ 01,\ 11$ và quay lại 00

B. 00, 11, 01, 10 và quay lại 00

C. 00, 01, 10, 11 và quay lại 00

D. 00, 11, 10, 01 và quay lại 00

Câu 29: Biểu diễn số (-10) trong hệ thống bù 2 là:

A. 10101

B. 10110

C. 11010

D. 01010

Câu 30: Chọn sơ đồ mạch có nguyên lý hoạt động tương ứng với bảng sự thật dưới đây:

SET	CLR	CLK	Q
0	0	↑	NC
0	1	↑	1
1	0	↑	0
1	1	↑	Invalid

D. Cả A và C đều đúng

PHẦN TỰ LUẬN (1đ)

Sử dụng D Flip-Flop để thiết kế mạch đếm đồng bộ theo sơ đồ chuyển trạng thái sau (chú ý trình bày đầy đủ các bước thiết kế - bao gồm cả sơ đồ mạch):

Trạn	Trạng thái hiện tại			Trạng thái kế tiếp				
A	В	C	A	В	C	$\mathbf{D}_{\mathbf{A}}$	$\mathbf{D}_{\mathbf{B}}$	$\mathbf{D}_{\mathbf{C}}$
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	1	1	0	1	1	0
0	1	1	0	0	1	0	0	1
1	0	0	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0

	B'C'	B'C	BC	BC'	
A'	0	0	0	1	
A	1	1	0	1	
$\rightarrow D_A = AB' + BC'$					

	B'C'	B'C	BC	BC'
A'	0	1	0	1
Δ	1	1	Ω	1

$$\rightarrow D_B = AB' + BC' + B'C \text{ (hoặc AC' + B'C + BC')}$$

	B'C'	B'C	BC	BC'	
A'	1	0	1	0	
A	1	1	0	1	
→ I	$O_C = A$	B' + B	'C' +	AC'+	A'BC