Exerice 5

Soit (E, < .|.>) un espace euclidien de dimension $n \ge 2$ et u un vecteur non nul de E

 $V = \{x \in E, <x | u > = 0\}$

On veut montrer que V et $Vect\{u\}$ sont en somme directe Soit $U=Vect\{u\}$

• $U \cap V = 0_E$?

Soit $x \in U \cap V$ alors $x \in U$ et $x \in V$

Comme $x \in U, \exists \alpha \in \mathbb{R} \text{ tq } x = \alpha u$

Comme $x \in U$, on a $\langle x|u \rangle = 0$

Donc on a $<\alpha u|u>=0 \Leftrightarrow \alpha < u|u>=0$ or u est un vecteur non nul donc $< u|u>\neq 0$

Finalement on a que $\alpha=0$, donc que x=0 et donc que $U\cap V=0_E$

Donc U et V sont en somme directe

• Soit φ une application de $E \to \mathbb{R}$, qui à tout vecteur x associe $\langle x|u \rangle$

Soit $(x,y) \in E^2$ et $\alpha \in \mathbb{R}$

$$\varphi(\alpha x + y) = <\alpha x + y|u> = \alpha < x|u> + < y|u> = \alpha \varphi(x) + \varphi(y)$$

Donc φ est une forme linéaire

$$ker\varphi = \{x \in E, \varphi(x) = 0\} = \{x \in E, \langle x|u \rangle = 0\} = V$$

Comme φ est une application linéaire on a que $dim(E) = dim(ker\varphi) + dim(im\varphi)$

Or φ va de $E \to \mathbb{R}$, donc $dim(im\varphi) = 1$

Donc $dim(ker\varphi) = dim(V) = dim(E) - dim(im\varphi) = n - 1$

• On a vu que et U et V était en somme directe de plus $\dim(U) + \dim(V) = 1 + N - 1 = N = 1$

Dim(E), donc on a que $U \bigoplus V = E$

Donc on peut définir la projection orthogonal