NIDA Core Center of Excellence in Omics, Systems Genetics, and the Addictome (OSGA)

Laura M. Saba¹, Saunak Sen², and Robert W. Williams²

¹University of Colorado Anschutz Medical Campus, Aurora, CO, USA ²University of Tennessee Health Science Center, Memphis, TN, USA.

Funded by NIDA P30DA044223

Barriers To NIDA Researchers

Generating, normalizing, and combining massive genome, transcriptome, behavior, and health record datasets

- Gaining access to <u>high-end computational resources</u> and appropriate analytic frameworks is usually beyond R01 teams.
- Finding <u>bioinformatics/biostatistics collaborators</u> with the domain expertise to handle high-dimensional datasets (epigenomes, proteomes, images, metagenomes, single-cell assays) related to addiction is also challenging.

Purpose of the Center

The long-term goal of this NIDA Core Center of Excellence in Omics, Systems Genetics, and the Addictome is to empower current and future researchers supported by NIDA and NIAAA to analyze the interwoven roles of genetic, epigenetic and environmental variation on drug abuse risk, relapse, and treatment.

Our Approach

- Omics Portal for Addiction Research (OPAR)
- Methods, software, and dataset development for omics analyses
- Training in Systems Genetics, RNA-Seq, and Web-based Rat Genomics/Genetics Resources
- Funding for pilot grants

Omics Portal for Addiction Research

Omics Portal for Addiction Research

- Access to curated data
- Access to tools
- Access to gene level reports
- More intuitive search/ question capabilities

The Rat Addictome

BN/SsN MR/N BUF/N M520/N WN/N ACIN WKY/N F344/N
Heterogeneous
Stock
NIDA/NIH (P50DA037844)

- Past: Rat addiction related data sets (GEO and GEMMA)
- Present: Two foundational rat populations
- Future: Data direction from NIDA/NIAAA researchers

PhenoGen Informatics

The site for quantitative genetics of the transcriptome.

GeneNetwork

University of Tennessee: www.genenetwork.org

Use GeneNetwork 2

Spearman Rank Correlation (rho)										
	Trait1	Trait2	Trait3	Trait4	Trait5	Trait6	Trait7	Trait8	Trait9	Trait10
Trait 1: UT_HippRatEx_RMA_0709:6599151	n 32	-0.717 32	-0.626 32	-0.669 32	-0.690 32	-0.654 32	0.735 32	-0.721 32	0.582 32	-0.695 32
Trait 2: UT_HippRatEx_RMA_0709:6193436	-0.772 32	32	0.505 32	0.455 32	0.488 32	0.619 32	-0.448 32	0.492 32	-0.258 32	0.462 32
Trait 3: UT_HippRatEx_RMA_0709:5925974	-0.744 32	0.695 32	n 32	0.444 32	0.298 32	0.226 32	-0.369 32	0.450 32	-0.313 32	0.471 32
Trait 4: UT_HippRatEx_RMA_0709:5993392	-0.711 32	0.541 32	0.631 32	." 32	0.553 32	0.401 32	-0.541 32	0.612 32	-0.373 32	0.296 32
Trait 5: UT_HippRatEx_RMA_0709:6109748	-0.700 32	0.542 32	0.457 32	0.550 32	n 32	0.500 32	-0.445 32	0.415 32	-0.497 32	0.456 32
Trait 6: UT_HippRatEx_RMA_0709:5976463	-0.697 32	0.614 32	0.388	0.457 32	0.434 32	# 32	-0.384 32	0.577 32	-0.424 32	0.574 32
Trait 7: UT_HippRatEx_RMA_0709:6107896	0.692	-0.443 32	-0.448 32	-0.541 32	-0.479 32	-0.374 32	.n 32	-0.547 32	0.368 32	-0.415 32
Trait 8: UT_HippRatEx_RMA_0709:6584887	-0.691 32	0.516 32	0.533 32	0.638 32	0.460 32	0.545 32	-0.504 32	n 32	-0.601 32	0.549 32
Trait 9: UT_HippRatEx_RMA_0709:6600440	0.687	-0.394 32	-0.436 32	-0.409 32	-0.530 32	-0.577 32	0.372	-0.649 32	.n 32	-0.587 32
Trait 10: UT_HippRatEx_RMA_0709:6171331	-0.685 32	0.513	0.498	0.306	0.517	0.605	-0.421 32	0.517 32	-0.654 32	77

GeneWeaver.org

A system for the integration of functional genomics experiment

Home Search ▼ Manage GeneSets ▼ Analyze Ge

A Smarter Search

Where is the brain is P2rx4 expressed?

What other genes and traits are associated with P2rx4?

What rat genes are expressed in hippocampus within 10 Mb of my QTL?

Is P2rx4 genetically controlled?

Are there multiple isforms of P2rx4 in the nucleus accumbens?

What genes expressed in the VTA have a binding site for mir-23?

Methods, Software, and Database Development

Systems Analytics and Modeling (SAM) Research Support Core (Core Lead - Dr. Saunak Sen at UTHSC)

- Smart search capabilities to connect investigators queries with relevant information across rat genetics websites and databases
- Fast linear mixed model computations for QTL analyses with population structure
- Matrix linear models for mapping multivariate traits
- Methods/workflow for single cell RNA-Seq data

Transcriptome Informatics and Mechanisms (TIM) Research Support Core (Core Lead - Dr. Laura Saba at CU-AMC)

- Processing of brain and liver RNA-Seq data from the Hybrid Rat Diversity Panel (Tabakoff, Hoffman, Saba; NIAAA/NIH R24AA013162)
- Processing of RNA-Seq data from 5 brain regions of the heterogeneous stock (HS) rats (Palmer; NIDA/NIH P50DA037844)
- Identification and evaluation of novel brain and liver rat transcripts (mRNA, ncRNA, snoRNA, miRNA)
- Development of methods for systems genetics and for exploring the genetic control of transcription levels and characteristics

Current Training Opportunities

Training in Web-based Rat Genomics/Genetics Resources

Integrated training on:

- OPAR
- PhenoGen
- Rat Genome Database
- GeneNetwork/ GeneNetwork2
- GeneWeaver
- Chilibot
- Allen Brain Atlas

Beginner

NO EXPERIENCE NECESSARY

First timers welcome

Summer of Rat Genomics (SuRGe) Workshop

- Friday and Saturday (August 2nd and 3rd; 8am to 5pm)
- Skaggs School of Pharmacy and Pharmaceutical Sciences on the University of Colorado Anschutz Medical Campus in Aurora, CO
- First 20 out-of-state participants will receive travel funds to cover lodging costs
- All participates will be FED!
- Participants are asked to come with a gene or set of genes and a region of the genome relevant to them to investigate using the various tool

SuRGe Workshop Format

Three sections:

- 1. Identifying a genomic region of interest
- 2. Interrogating a genomic region
- 3. Examining your favorite gene(s)

Within each section and each web tool:

- 15 minutes of instruction
- 45 minutes of hands-on activities with multiple "coaches" available for individual consultation

Who should come?

- All levels welcome!
- Registration at: http://bit.ly/OSGA_2019
- GitHub Repository: https://github.com/OSGA-OPAR/SuRGe-2019
- Email <u>Laura.Saba@cuanschutz.edu</u> with questions

Future Training Opportunities

RNA-Seq Processing and Analysis

(researchers generating transcriptome data for the first time)

- On-site training upon request
- Short course in Colorado and/or Tennessee

Intermediate

Moderate Intensity

EXPERIENCE RECOMMENDED

Some physical ability required

Systems Genetics

(researchers with multiple types of omics data for integration)

- On-site training upon request
- Short course in Colorado and/or Tennessee

Advanced

High Intensity

EXPERIENCE RECOMMENDED

Need agility, good balance, & strength

Pilot Funding Program

Purpose/Structure

Our pilot program was designed to entice investigators to explore the role of genetics in addiction using rat models by reducing eliminating some of the barriers and to promote the development of collaborative, inter-disciplinary teams.

Provide funding/support for:

- Researchers to help establish collaborations (across at least two institutions and/or disciplines)
- \$20,000 per year for up to 2 years
- e.g., studies that provide proof that genetic variation contributes substantially to a complex addiction-related trait and/or that a new omics technology can capture a critical missing piece of the mechanistic model of disease

What comes with it?

- 1. **Financial resources**. One of the charges of the pilot research project core is to provide financial support to generate this preliminary evidence.
- 2. **Networking opportunities**. Once a researcher is awarded pilot funding they will be required to attend our Annual Center Meeting.
- 3. Mentoring and guidance. The goal of the research pilot core is to nurture the best and the brightest addiction researchers interested in systems genetics by providing them with both the financial means and the guidance to be successful in the field.
- 4. Statistical genetics expertise and computational resources.

 Participation in the Center through the Pilot program provides access to statistical genetics expertise and computational resources through the OPAR and the SAM and TIM cores.

Application Process

- Rolling Deadline until 9/1/19: applications are reviewed within 2 months of receipt
- Details available at the OPAR website (http://opar.io)

Feedback

Methods for providing feedback

- Email us at rwilliams@uthsc.edu or Laura.Saba@cuanschutz.edu
- Contact us via twitter @OPARProject