## Intervals, Transformations, and Slope Solution (version 158)

1. The function f is graphed below.



Indicate the following intervals using interval notation. Remember, you can use  $\cup$  between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

| Feature    | Where                   |
|------------|-------------------------|
| Positive   | $(-5,3) \cup (6,10)$    |
| Negative   | $(-8, -5) \cup (3, 6)$  |
| Increasing | $(-7, -3) \cup (5, 10)$ |
| Decreasing | $(-8, -7) \cup (-3, 5)$ |
| Domain     | (-8, 10)                |
| Range      | (-6,8)                  |

## Intervals, Transformations, and Slope Solution (version 158)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=47$  and  $x_2=87$ . Express your answer as a reduced fraction.

$$\frac{g(87) - g(47)}{87 - 47} = \frac{15 - 60}{87 - 47} = \frac{-45}{40}$$

The greatest common factor of -45 and 40 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-9}{8}$$

2