L	Q1.0,7/1/2/
(\$P)	02.0,2/2 25.0,7/1
23 = 30	23. 06/1 Q6. 1,2/3 3/1
	EA 869 – Turma U – 1. Semestre 2006. Prova 3 – 26/06/2005 – Prof. Léo Pini Magalhães (com consulta a 1 folha A4 que não pode ser fotocópia – assine a sua folha)
1 1	Nome: Pedro Paulo Chain alred Número: 035262
07	Q1. (1,0) Explique com suas palavras o processo de atendimento de uma interrupção originada em um alarme. Descreva desde um instante anterior à ocorrência do sinal do alarme até um instante após o atendimento da interrupção e retorno ao programa interrompido. A interrupção é habilitada por uma máscara de bits e o vetor de interrupção contém 2 posições por linha de interrupção.
se se ser	O programa estará sendo executado normalmente até o momento) e a interrupção merte momento os valores de PC e PSW são armazenados po do retorno, seja possevel retornar nom mesmo ponto e com o mesmo esta
· programa	
	Enquanto a interrupció estever sendo tratada ener valores ficam armas
or na pelho	Enquanto a interrupção estever sendo tratada ener valores ficam armaz a, e os reguteadores receberão volores novos de acordo com a rotina de ses
ue esta em	do tracado.
	Par esse motivo que a vetor de interrupcion à da forma abaco: () reforme
	Q2. (2,0) Você utiliza um processador com uma arquitetura para controle de interrupção que controla 3 linhas de interrupção (L1 a L3) sendo o controle de atendimento por nível (0 é o nível de menor prioridade). As linhas L1 a L3 tem a si associados os níveis 1 a 3 respectivamente. Os bits 0 e 1 da PSW armazenam a prioridade do programa corrente.
	Programe o processador de forma a atuar como a seguir:
	 a rotina de serviço Rot3 poderá ser interrompida por qualquer linha; a rotina de serviço Rot2 poderá ser interrompida pelas linhas L3 e L2; a rotina de serviço Rot1 só poderá ser interrompida por L3;
	 O programa principal só poderá ser interrompido por L3. O programa principal inicia em 4000H, as rotinas em: Rot1 3000H, Rot2 1000 Rot3 2000.1-1 O esquema de interrupção é vetorizado associando duas posições a cada linha de
	interrunção a primeira contendo Nava PSW a a outra End natina. O votos de interrunção

inicia na posição 6000H.

a. (0,5) Forneça as instruções geradas pela CPU ao aceitar interrupção e iniciar o seu tratamento.

PUSH PC
PUSH PSW

TORF (6001)

TORF (6001)

-0,15

1

b. (1,5) Escreva um código (use ORG, DW, MOVE) para definir todos os elementos acima descritos com valores que determinem o comportamento descrito (vetor de interrupção, Rot1, Rot2, Rot3, programa principal).

Q3. (1,0)

(a) (0,5) Considere uma ligação através de uma interface serial assíncrona entre uma CPU e um dispositivo. Descreva sucintamente, representando esquematicamente, o relacionamento entre os 3 elementos citados. Descreva/esquematize a troca de dados, controle e endereçamento entre os 3 elementos.

te formato: PARIDADE

Or dados entrom aporter do despositivo um à un e vio sendo enveados para à CPU, através da enterface, esta por sua vez voi realizando o controle sunto a CPU para salver . se um novo dado pode ser enexado. no caro oporto quando en dados partem da CPU a interface realiza o controle de disposibilidade junto ao dispositivo

(b) (0,5) Explique como se dá a comunicação serial entre interface e dispositivo na forma síncrona.

informações são passadas unas à uma relogios que estes agustados equi e dado através de mente de modo que uma nova informação não parta da sua destino que a anterior tenha chegado a seu destina.

Caracter cle.

Q4. (2,0) Você quer realizar entrada de dados paralela, 4 bits, através da interface XyF++. Esta interface possui 3 registradores de operação (1 byte cada): RCo ou registrador de Controle, REs ou registrador de estado e RDa ou registrador de dados.

Definição da operação de XyF++:

- . 3 modos de operação: entrada em modo incondicional, condicional e por interrupção
- . 3 configurações de entrada: RDa recebe 8 bits de entrada e RDa recebe 4 + 4 bits de entrada (2 entradas independentes de 4 bits)
- . bits de REs com valor "1" sinalizam dado disponível em RDa (possibilidade de distinguir as 3 possibilidadesacima)

(b) (0,75) programe a interface para operar com entrada em modo condicional de 4 bits (os 4 bits mais significativos de RDa). Considere arquitetura de E/S mapeada e máquina de 2 endereços. Chame os registradores da CPU por R1, R2, etc.

MOUE # 010010, PC0

(c) (1,0) codifique a rotina para realizar a entrada de dados obedecendo (a) e (b).

Q5. (1,0) Considere a representação em ponto flutuante normalizada com 1 bit para sinal, 6 bits para mantissa e 4 bits para sinal (em complemento de 1 e base 2).

モナシ

Q6. (3,0) Considere o seguinte programa em linguagem Assembly:

1050 start: 1053 1054 aqui:	INCR	1050H xl, R0 R0 start	; H define um número em hexadecimal
1058 x4: 1058 x1: 105A x5:	DW EQU ADR END	6H x4 x1	

Considere as Tabelas TIM (Tab. de Instr. de Máquina) e TPI (Tab. de Pseudo-instruções):

TIM			TPI	
Mnemônico	CO - hexad.	Compr.(bytes	Mnemônico	Compr. (bytes)
MOVE ,R0	45	3	ORG	
INCR R0	52	1 .	EQU	
JZ	6A	3	ADR	2
STOP	B2	1	DW	2.
SUB R1	65	1	END	

(a) (1,0) Realize o passol do montador apresentado em aula e apresente a Tabela de Símbolos. Mostre seus passos.

TABELA DE	SÍMBOLOS	
ROTULO	END.	
START	1050	
AQUI	1054	
X 4	1058	/
X1	105A X	1-100
×5	105 E X	1201
	_	

Está tabela foi construida através da deservação do programa e consulta às tabelas Tim . TPi para valver o De tamahiho en byter que cada instrução ocupa.

(b) (1,0) Realize o passo2 do montador apresentado em aula e apresente o código de máquina com os endereços finais e nas posições adequadas de memória. Mostre o seu

END.	c.0	1 donteúbo	1
1050	45	1	1
1051)
1052		5 A	- 16
1053	52	500000105B	? X -0,16k
1054	6 A	G 3	
1055		‡ €	
1056		50	
1057	02		
1058		00	٠.
1057		06	100
1054		00 , 10	1-0,400
1053		00 X 28	1 '
105 C		10 ×	-0,166 -0,166
1050		5A X X	
		· · · -	

(c) (1,0) Modifique o código fonte apresentado de forma a ser possível o seu processamento por um montador de 1 passo? Justifique brevemente.

1	ORG	1050 H
1	START: MOVE	6 H , RO
	iN C R	Ro
	Aqui; QTZ	START
\	STOP	
	ru: Dw	6 H
	XI EQU	*4)
	15; ADR	+1
	END	

X esta alteração deve ser fecta pois no montador de um fasso as rovuçõeis devem ser declaradas antes do seu uro no programa.