8 НЕПРЕРЫВНОСТЬ ФУНКЦИИ

8.1 Основные определения

Определение 8.1.1 Функция $f: E \to \mathbb{R}$ называется непрерывной в точке $x_0 \in E$, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

Ясно, что используя понятие ε -окрестности и δ -окрестности определение может быть переписано в виде

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : x \in U_{\delta}(x_0) \Rightarrow f(x) \in U_{\varepsilon}(f(x_0)).$$

Аналогично определению предела, понятие непрерывности может быть сформулировано и в терминах произвольных окрестностей.

Определение 8.1.2 Функция $f:E\to\mathbb{R}$ называется непрерывной в точке $x_0\in E,\ ecnu$

$$\forall U(f(x_0)) \ \exists U(x_0) : \forall x \in E : x \in U(x_0) \Rightarrow f(x) \in U(f(x_0)).$$

Можно бы было провести доказательство эквивалентности этих двух определений в том ключе, который был рассмотрен ранее, однако это получится несколько иным путем.

Пусть функция f(x) непрерывна в точке x_0 . Для точки x_0 справедлива альтернатива: либо x_0 предельная для E, либо нет. Оказывается, в первом случае понятие непрерывности тесно связано с понятием предела.

Лемма 8.1.1 Для того чтобы функция $f: E \to \mathbb{R}$ была непрерывной в точке x_0 , предельной для E, необходимо и достаточно, чтобы выполнялось

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Доказательство. Необходимость. Пусть функция f(x) непрерывна в точке x_0 , предельной для E, тогда

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

В частности,

$$\forall x \in E : 0 < |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon,$$

то есть получается определение того, что $\lim_{x\to x_0} f(x) = f(x_0)$. Достаточность. Пусть $\lim_{x\to x_0} f(x) = f(x_0)$, тогда

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : 0 < |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

Так как при $x = x_0$ выполняется $|f(x_0) - f(x_0)| = 0$, то

$$\forall x \in E : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon,$$

то есть функция f(x) непрерывна в точке x_0 .

Лемма 8.1.2 Если $x_0 \in E$ – изолированная точка, то функция $f: E \to \mathbb{R}$ непрерывна в x_0 .

Доказательство. Если x_0 – изолированная точка множества E, то существует окрестность U(x), не содержащая других точек из E. А тогда если $\varepsilon > 0$, то

$$x \in U(x), x \in E \Rightarrow (x = x_0) \Rightarrow |f(x) - f(x_0)| = 0 < \varepsilon,$$

что и означает непрерывность.

Определение 8.1.3 Функция $f: E \to \mathbb{R}$ называется непрерывной на множестве $D \subset E$, если она непрерывна в каждой точке D. Обозначается это, как $f \in C(D)$.

Замечание 8.1.1 Геометрически понятие непрерывности на множестве (например, на отрезке [a,b]) можно пояснить следующим образом. Непрерывность функции f(x) на отрезке [a,b] означает, что ее график на этом отрезке можно нарисовать, не отрывая ручки от бумаги.

Пример 8.1.1 Константа, то есть функция y(x) = c, непрерывна на \mathbb{R} . Действительно, пусть $\varepsilon > 0$, тогда неравенство

$$0 = |c - c| < \varepsilon$$

справедливо при любой δ .

Пример 8.1.2 Функция y(x) = x непрерывна на \mathbb{R} . Действительно, пусть $\varepsilon > 0$ и $x_0 \in \mathbb{R}$, тогда неравенство

$$|x-x_0|<\varepsilon$$

справедливо, как только $|x-x_0| < \delta = \varepsilon$.

8.2 Классификация точек разрыва

Определение 8.2.1 Если функция $f: E \to \mathbb{R}$ не является непрерывной в точке x_0 , то говорят, что функция f терпит разрыв (или что f разрывна) в точке x_0 , а сама точка x_0 называется точкой разрыва.

Лемма 8.2.1 Пусть $f: E \to \mathbb{R}$ и x_0 – предельная для E. Если существуют (в смысле определения) пределы $f(x_0 + 0)$ и $f(x_0 - 0)$, то непрерывность функции f в точке x_0 равносильна равенству

$$f(x_0 + 0) = f(x_0 - 0) = f(x_0).$$

Доказательство. Первое равенство $f(x_0 + 0) = f(x_0 - 0)$ необходимо и достаточно для того, чтобы существовал предел $\lim_{x \to x_0} f(x) = f(x_0 + 0) = f(x_0 - 0)$. Второе же равенство устанавливает, что $\lim_{x \to x_0} f(x) = f(x_0)$, что означает непрерывность.

Тем самым, если нарушено какое-либо из условий вышеприведенной леммы, то функция не является непрерывной. Возможны следующие варианты.

Определение 8.2.2 Пусть $f: E \to \mathbb{R}$. Если существуют пределы $f(x_0 + 0)$, $f(x_0 - 0)$, причем $f(x_0 + 0) = f(x_0 - 0) = A$, но $A \neq f(x_0)$ или f не определена в точке x_0 , то точка x_0 называется точкой устранимого разрыва первого рода.

Замечание 8.2.1 Если x_0 – точка устранимого разрыва, то переопределив (или доопределив) функцию f в точке x_0 значением $f(x_0 - 0) = f(x_0 + 0)$ получится непрерывная в точке x_0 функция.

Пример 8.2.1 Пусть $f(x) = |\sin x|$. Тогда f(0+0) = f(0-0) = 1, но f(0) = 0, то есть точка $x_0 = 0$ – точка устранимого разрыва первого рода.

Пример 8.2.2 Пусть $f(x) = \frac{x^2-1}{x-1}$. Тогда $f(1+0) = f(1-0) = \lim_{x \to 1} (x+1) = 2$. Однако сама функция в точке $x_0 = 1$ не определена. Тем самым в точке $x_0 = 1$ функция имеет устранимый разрыв первого рода.

Определение 8.2.3 Пусть $f: E \to \mathbb{R}$. Если существуют пределы $f(x_0 + 0)$, $f(x_0 - 0)$, но

$$f(x_0 + 0) \neq f(x_0 - 0),$$

то точка x_0 называется точкой неустранимого разрыва первого рода или точкой разрыва типа скачок.

Замечание 8.2.2 Величина

$$f(x_0 + 0) - f(x_0 - 0)$$

называется величиной скачка.

Пример 8.2.3 Пусть $f(x) = \sin x$. Тогда f(0+0) = 1, f(0-0) = -1. Значит, точка $x_0 = 0$ является точкой неустранимого разрыва первого рода.

Определение 8.2.4 Пусть $f: E \to \mathbb{R}$. Если не существует хотя бы один из двух пределов $f(x_0 - 0)$ или $f(x_0 + 0)$, то точка x_0 называется точкой разрыва второго рода.

Пример 8.2.4 Пусть $f(x) = \frac{1}{x}$. Тогда $f(0+0) = +\infty$ и $f(0-0) = -\infty$, значит точка $x_0 = 0$ – точка разрыва второго рода.

Puc. 4 $\Gamma pa\phi u\kappa y = \sin \frac{1}{x}$

Пример 8.2.5 Пусть $f(x) = \sin \frac{1}{x}$. Положив

$$x_n^1 = \frac{1}{2\pi n}, \ x_n^2 = \frac{1}{\pi/2 + 2\pi n}.$$

очевидно, что $x_n^i \to 0 + 0$, i = 1, 2. Однако,

$$\sin\frac{1}{x_n^1} = \sin(2\pi n) \to 0,$$

a

$$\sin\frac{1}{x_n^2} = \sin\left(\frac{\pi}{2} + 2\pi n\right) \to 1.$$

Значит, согласно отрицанию определения предела по Гейне, не существует $\lim_{x\to 0+0} \sin\frac{1}{x}$. Аналогично можно показать, что не существует $\lim_{x\to 0-0} \sin\frac{1}{x}$. Тем самым, точка $x_0=0$ – точка разрыва второго рода. Попытка изобразить график этой функции представлена на рисунке 4.

Пример 8.2.6 Еще одна классическая функция – функция Дирихле:

$$d(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{I} \end{cases}.$$

Ясно, что данная функция разрывна в каждой точке и каждая точка является точкой разрыва второго рода.

8.3 Локальные свойства непрерывных функций

Теорема 8.3.1 Пусть функции $f,g:E\to\mathbb{R}$ непрерывны в точке $x_0,$ тогда:

- 1. Функция f(x) ограничена в некоторой окрестности x_0 .
- 2. Функция f(x) + g(x) непрерывна в x_0 .
- 3. Функция f(x)g(x) непрерывна в x_0 .
- 4. Функция $\frac{f(x)}{g(x)}$ непрерывна в x_0 , если $g(x_0) \neq 0$.

Доказательство. Если x_0 – изолированная точка для E, то теорема очевидна. Если x_0 – предельная точка для E, то теорема является прямым следствием теоремы об арифметических свойствах пределов.

Теорема 8.3.2 (О непрерывности сложной функции) Пусть $f: E_1 \to E_2, g: E_2 \to \mathbb{R}$, функция f(x) непрерывна в точке $x_0 \in E_1$, а функция g(y) непрерывна в точке $y_0 = f(x_0) \in E_2$. Тогда функция g(f(x)) непрерывна в точке x_0 .

Доказательство. Так как g(y) непрерывна в точке y_0 , то

$$\forall U(g(y_0)) \ \exists U(y_0) : \forall y \in E_2 : y \in U(y_0) \Rightarrow g(y) \in U(g(y_0)).$$

Так как f(x) непрерывна в точке x_0 , то по $U(y_0)$

$$\exists U(x_0) : \forall x \in E_1, x \in U(x_0) \Rightarrow f(x) \in U(y_0),$$

откуда

$$\forall x \in E_1, x \in U(x_0) \Rightarrow g(f(x)) \in U(g(f(x_0))),$$

то есть g(f(x)) непрерывна в точке x_0 .

Следствие 8.3.3 (Теорема о пределе сложной функции) Пусть $f: E_1 \to E_2, g: E_2 \to \mathbb{R}, \lim_{x \to x_0} f(x) = y_0, a$ функция g(y) непрерывна в точке y_0 . Тогда $\lim_{x \to x_0} g(f(x)) = g(y_0)$.

Доказательство. Доопределив функцию f(x) в точке x_0 по непрерывности значением y_0 , по теореме о непрерывности сложной функции, $\lim_{x\to x_0} g(f(x)) = g(y_0)$. Так как при $x\to x_0$ выполняется $x\neq x_0$, то для исходной функции f справедливо требуемое равенство.

Пример 8.3.1 Лишь требование существования предела функции g(y) в точке y_0 недостаточно. Пусть $g(y) = |\operatorname{sign} y|$, а $f(x) = x \operatorname{sin} \frac{1}{x}$. Тогда $\lim_{x\to 0} f(x) = 0$, $\lim_{y\to 0} g(y) = 1$, но не существует предела $\lim_{x\to 0} g(f(x))$. Действительно, пусть

$$x_n^1 = \frac{1}{2\pi n}, \ x_n^2 = \frac{1}{\frac{\pi}{2} + 2\pi n}.$$

 $\operatorname{Tor} \partial a \lim_{n \to \infty} g(f(x_n^1)) = 0, \ a \lim_{n \to \infty} g(f(x_n^2)) = 1.$

8.4 Глобальные свойства непрерывных функций

Теорема 8.4.1 (Первая теорема Больцано-Коши) Пусть $f(x) \in C[a,b] \ u \ f(a) \cdot f(b) < 0.$ Тогда $\exists c \in (a,b) : f(c) = 0.$

Доказательство. Разделим отрезок [a,b] пополам точкой $c_1 = \frac{a+b}{2}$, тогда если $f(c_1) = 0$, то условие теоремы выполняется, а если $f(c_1) \neq 0$ имеем два случая: либо $f(c_1) > 0$, либо $f(c_1) < 0$. Тогда выберем отрезок либо $[a,c_1]$, либо $[c_1,b]$ так, чтобы на его концах значения функции были разных знаков. С этим отрезком поступим так же, как и с исходным, то есть делим пополам и продолжаем процесс дальше.

На очередном шаге мы либо попадем в точку $c \in [a,b]$, где f(c) = 0, либо получим систему вложенных отрезков I_n , длины которых стремятся к нулю и на концах которых функция f принимает значения разных знаков. Согласно принципу вложенных отрезков, найдется единственная точка $c \in [a,b]$, принадлежащая каждому отрезку I_n . Пусть a_n – левый конец отрезка I_n , а b_n его правый конец. Можно считать, что

$$f(a_n) < 0, f(b_n) > 0,$$

или наоборот. Так как $\lim_{n\to\infty}a_n=c,\ \lim_{n\to\infty}b_n=c$ и f(x) непрерывна на [a,b], то

$$\lim_{n \to \infty} f(a_n) = f(c) \le 0, \quad \lim_{n \to \infty} f(b_n) = f(c) \ge 0,$$

TO ECTH f(c) = 0.

Рис. 5 Теорема Вейерштрасса

Замечание 8.4.1 Геометрически теорема означает, что уравнение f(x) = 0 имеет хотя бы одно решение на отрезке [a,b] (см. рисунок 5). Кроме того, доказательство теоремы дает простейший способ поиска корня.

Теорема 8.4.2 (Вторая теорема Больцано-Коши) *Пусть* $f(x) \in C[a,b], f(a) = A, f(b) = B, A < B.$ *Тогда* $\forall C \in (A,B) \exists c \in (a,b) : f(c) = C.$

Доказательство. Пусть $C \in (A, B)$. Рассмотрим функцию $\varphi(x) = f(x) - C$. Функция $\varphi(x)$ непрерывна на [a, b] и $\varphi(a) = A - C < 0$, а $\varphi(b) = B - C > 0$, т. е. $\varphi(a) \cdot \varphi(b) < 0$.

По первой теореме Больцано-Коши (8.4.1), имеем

$$\exists c \in (a,b) : \varphi(c) = 0 \Rightarrow f(c) - C = 0 \Rightarrow f(c) = C.$$

Замечание 8.4.2 Геометрически вторая теорема Больцано-Коши означает, что непрерывная на отрезке функция f принимая два каких-то значения, принимает на этом отрезке и все промежуточные. Эту теорему часто называют теоремой о промежуточных значениях непрерывной функции.

Теорема 8.4.3 (Теорема Вейерштрасса) Пусть $f(x) \in C[a,b]$. Тогда f(x) ограничена на [a,b] и принимает на нем наибольшее и наименьшее значение.

Доказательство.

Пусть $x \in [a,b]$. Так как функция f(x) непрерывна в точке x, то она ограничена в некоторой окрестности U(x) этой точки по теореме 8.3.1. Множество таких окрестностей U(x), $x \in [a,b]$ образует покрытие отрезка [a,b]. По лемме Бореля-Лебега, существует конечное покрытие $U(x_1), U(x_2), \ldots, U(x_n)$. В каждой окрестности $U(x_i)$ имеем

$$x \in [a, b], x \in U(x_i) \Rightarrow m_i \le f(x) \le M_i.$$

Положив $m = \min(m_1, \dots, m_n), M = \max(M_1, \dots, M_n)$ получим, что $m \le f(x) \le M$ на [a, b], то есть, f(x) ограничена.

Второй пункт будет доказан от противного. Пусть $M = \sup_{x \in [a,b]} f(x)$, причем

супремум не достигается. Тогда функция

$$\varphi(x) = \frac{1}{M - f(x)}$$

непрерывна на [a, b], а значит ограничена (по только что доказанному пункту 1), то есть существует положительное число M_1 , что $\varphi(x) \leq M_1$. Но тогда

$$f(x) \le M - \frac{1}{M_1}$$

и M – не супремум. Противоречие.

Теорема 8.4.4 (О существовании и непрерывности обратной функции) Пусть функция f(x) строго возрастает и непрерывна на отреже [a,b], причем f(a) = c, f(b) = d. Тогда на отреже [c,d] определена обратная функция $x = f^{-1}(y)$, которая непрерывна на [c,d] и строго возрастает.

Доказательство. Сначала будет показано, что обратная функция существует. По второй теореме Больцано - Коши, $\forall y \in (c,d) \; \exists x \in (a,b) : f(x) = y$. Кроме того, так как f(x) строго возрастает, то $\forall x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Тогда f(x) – взаимно однозначное отображение отрезка [a,b] на отрезок [c,d], а следовательно, существует обратная функция $x = f^{-1}(y)$, определенная на [c,d].

Далее будет показано, что обратная функция строго возрастает. От противного, пусть $\exists y_1 < y_2 : f^{-1}(y_1) = x_1 \geq x_2 = f^{-1}(y_2)$. По условию f(x) возрастает. Подействовав ею на неравенство $f(x_1) = y_1 \geq y_2 = f(x_2)$, получается противоречие.

Осталось показать, что обратная функция непрерывна. Для этого достаточно установить, что $f^{-1}(y_0-0)=f^{-1}(y_0)=f^{-1}(y_0+0)$ (для граничных значений отрезка равенства односторонние). От противного. Пусть, например, $f^{-1}(y_0-0)\neq f^{-1}(y_0)$. Тогда, в силу возрастания $f^{-1}(y)$ она не принимает значений из интервала $(f^{-1}(y_0-0),f^{-1}(y_0))$. Противоречие.

 \Box

Замечание 8.4.3 В предыдущей теореме строгое возрастание можно, с необходимыми изменениями порядка с и d, заменить на строгое убывание. Кроме того, вместо отрезка [a,b] можно рассматривать интервал, получитервал или луч.

8.5 Первый замечательный предел

Далее устанавливается равенство, которое будет часто использоваться в дальнейшем.

Теорема 8.5.1 (Первый замечательный предел)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Доказательство. Пусть $x \in (0, \frac{\pi}{2})$. Из геометрических соображений (рисунок 6) очевидно неравенство

$$S_{\triangle OAB} < S_{\text{cekt. }OAB} < S_{\triangle OCB}$$
.

Вычислив каждую из площадей, имеем

$$S_{\triangle OAB} = \frac{1}{2} \cdot OB \cdot AM = \frac{1}{2} \cdot \sin x,$$

$$S_{\text{CEKT. }OAB} = \frac{\pi \cdot x}{2\pi} = \frac{x}{2},$$

$$S_{\triangle OCB} = \frac{1}{2} \cdot CB \cdot OB = \frac{1}{2} \cdot \operatorname{tg} x.$$

Рис. 6 Первый замечательный предел

Тогда получаем цепочку неравенств

$$\frac{\sin x}{2} < \frac{x}{2} < \frac{\operatorname{tg} x}{2}$$

или

$$\sin x < x < \operatorname{tg} x.$$

Поделив на $\sin x$, получается

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}.$$

Так как все функции, входящие в неравенство, четные, можно утверждать, что неравенство справедливо при $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus \{0\}$. Попутно установлено, что

$$\sin x < x, \quad x \in \left(0, \frac{\pi}{2}\right),$$

а значит, что

$$|\sin x| < |x|, \quad x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right). \tag{4}$$

Устремим x к 0, при этом заметив, что $\lim_{x\to 0}\cos x=1$, так как

$$|\cos x - 1| = |\cos x - \cos 0| = \left| 2\sin\frac{x}{2}\sin\frac{x}{2} \right| \le \left| 2\sin\frac{x}{2} \right| < 2\left| \frac{x}{2} \right| = |x| < \varepsilon,$$

где предпоследнее неравенство справедливо в силу (4). Положив $\delta = \varepsilon$ получается, что $\lim_{x\to 0}\cos x=1$. Кроме того, предел правой части неравенства $\lim_{x\to 0}1=1$. Тогда по теореме о сжатой переменной

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Пример 8.5.1 Вычислить предел

$$\lim_{x \to 0} \frac{\operatorname{ctg} x (1 - \cos^2(2x))}{x^2 + 5x} = \lim_{x \to 0} \frac{\cos x \sin^2(2x)}{x(x+5)\sin x}.$$

 $Ta\kappa \ \kappa a\kappa \sin^2(2x) = 4\sin^2 x \cos^2 x$, получается

$$\lim_{x \to 0} \frac{4\cos^3 x \sin^2 x}{x(x+5)\sin x} = \lim_{x \to 0} \frac{4\cos^3 x \sin x}{x(x+5)}.$$

По доказанному выше, $\lim_{x\to 0}\cos x=1$. Кроме того, так как $\lim_{x\to 0}(x+5)=5$ и учитывая первый замечательный предел,

$$\lim_{x \to 0} \frac{4\cos^3 x \sin x}{x(x+5)} = 4\lim_{x \to 0} \frac{1}{x+5} \lim_{x \to 0} \cos^3 x \lim_{x \to 0} \frac{\sin x}{x} = \frac{4}{5}.$$

8.6 Непрерывность элементарных функций

Определение 8.6.1 Основными элементарными функциями, или простейшими функциями, называются следующие функции:

- 1. Постоянная: $y(x) = c, c \in \mathbb{R}$.
- 2. Степенная: $y(x) = x^{\alpha}, \ \alpha \in \mathbb{R}$.
- 3. Показательная $y(x) = a^x$, a > 0, $a \neq 1$.
- 4. Логарифмическая: $y(x) = \log_a x$, a > 0, $a \neq 1$.
- 5. Тригонометрические: $y(x) = \sin x$, $y(x) = \cos x$, $y(x) = \tan x$, $y(x) = \cot x$, $y(x) = \cot x$.
- 6. Обратные тригонометрические: $y(x) = \arcsin x$, $y(x) = \arccos x$, $y(x) = \arctan x$, $y(x) = \arctan x$.

Ниже подробно будет рассмотрена каждая из функций, с указанием области определения и свойств.

Определение 8.6.2 Функции, которые получаются из основных элементарных функций с помощью конечного числа арифметических действий и операций композиции называются элементарными.

В виду того, что некоторые функции были определены в школе недостаточно строго, их определения будут дополнены.

- **1.** Постоянная функция. Эта функция, как уже было отмечено в примере 8.1.1, непрерывна на \mathbb{R} .
- **2. Степенная функция.** Функция x^{α} будет определена при различных значениях x и α , постепенно усложняя вид α .

При $\alpha=1$ получается функция y(x)=x, которая, как отмечалось в примере 8.1.2, непрерывна на $\mathbb R$.

При $\alpha = n \in \mathbb{N}$ по определению

$$x^n = x \cdot \ldots \cdot x, \quad x \in \mathbb{R},$$

и функция непрерывна на \mathbb{R} , как произведение конечного числа непрерывных функций.

При $\alpha = -n, n \in \mathbb{N}$, полагаем

$$x^{-n} = \frac{1}{x^n}, \quad x \in \mathbb{R} \setminus \{0\},$$

и функция непрерывна на $\mathbb{R} \setminus \{0\}$, как частное непрерывных функций.

При $\alpha=0$ по определению полагается $x^0=1$ при $x\neq 0$. Удобно доопределить функцию по непрерывности и считать, что $x^0=1$ при $x\in \mathbb{R}$.

При нечетном $n \in \mathbb{N}$ функция x^n возрастает, причем $\sup_{x \in \mathbb{R}} x^n = +\infty$, $\inf_{x \in \mathbb{R}} x^n = -\infty$, а значит, по теореме 8.4.4 $E(x^n) = \mathbb{R}$. Если $n \in \mathbb{N}$ четно, то функция x^n возрастает при $x \geq 0$, $\sup_{x \geq 0} x^n = +\infty$, $\inf_{x \geq 0} x^n = 0$. По теореме

8.4.4, существует и непрерывна обратная функция, обозначаемая $x^{1/n}$ или $\sqrt[n]{x}$, причем

$$x^{1/n}:\mathbb{R}\to\mathbb{R},\quad n$$
 нечетно, $x^{1/n}:[0,+\infty)\to[0,+\infty),\quad n$ четно,

Ниже приведены свойства корня, хорошо известные из школы.

Лемма 8.6.1 Пусть $x, y \ge 0$ и $m, n \in \mathbb{N}$, тогда:

1.
$$\sqrt[n]{\sqrt[m]{x}} = \sqrt[nm]{x}$$
.

$$2. \sqrt[n]{x} = \sqrt[nm]{x^m}.$$

$$3. \sqrt[n]{xy} = \sqrt[n]{x}\sqrt[n]{y}.$$

4.
$$\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}, y \neq 0.$$

Доказательство. Все свойства доказываются исходя из определения. Для примера будет доказано первое свойство. Пусть $z = \sqrt[n]{\sqrt[n]{x}}$, тогда $z^n = \sqrt[m]{x}$ и $z^{nm} = x$, откуда $z = \sqrt[nm]{x}$.

Описанные выше свойства справедливы и при x,y<0, если указанные корни существуют. Пусть $\alpha\in\mathbb{Q}$, причем $\alpha=\frac{p}{q}=r$, где последняя дробь несократима. Положим

$$x^r = (x^p)^{1/q}$$

для всех тех x, при которых правая часть имеет смысл. Таким образом, функция x^r определена в следующих случаях:

$$x>0, \quad \forall r\in \mathbb{Q},$$

$$x=0, \quad r\geq 0,$$

$$x\in \mathbb{R}, \quad q \text{ нечетно}.$$

Функция x^r непрерывна на области определения, возрастает на $[0, +\infty)$ при r > 0, убывает на $(0, +\infty)$ при r < 0. Ниже приведены свойства рациональной степени.

Лемма 8.6.2 Пусть $x, y > 0, r_1, r_2 \in \mathbb{Q}, mor\partial a$:

1.
$$x^{-r_1} = \frac{1}{r^{r_1}}$$
.

$$2. x^{r_1}x^{r_2} = x^{r_1+r_2}.$$

$$\beta. (x^{r_1})^{r_2} = x^{r_1 r_2}.$$

4.
$$x^{r_1}y^{r_1} = (xy)^{r_1}$$
.

Доказательство. Первое свойство.

$$x^{-r_1} = x^{-\frac{m}{n}} = (x^{-m})^{\frac{1}{n}} = \sqrt[n]{x^{-m}} = \sqrt[n]{\frac{1}{x^m}} = \frac{1}{\sqrt[n]{x^m}} = \frac{1}{x^{r_1}}.$$

Второе свойство. Пользуясь свойствами корней,

$$x^{r_1}x^{r_2} = \sqrt[n_1]{x^{m_1}} \sqrt[n_2]{x^{m_2}} = \sqrt[n_1 n_2]{x^{m_1 n_2}} \sqrt[n_2 n_2]{x^{n_1 m_2}} =$$

$$= \sqrt[n_1 n_2]{x^{m_1 n_2 + n_1 m_2}} = x \sqrt[\frac{m_1 n_2 + n_1 m_2}{n_1 n_2}} = x^{r_1}x^{r_2}.$$

Остальные свойства доказываются аналогично.

На рисунке 7 изображены графики степенных функций при различных α при x>0.

Рис. 7 Графики степенных функций

Для $\alpha \in \mathbb{I}$ определение степенной функции будет закончено ниже.

3. Показательная функция. Пусть $0^x = 0$ для x > 0. Пусть a > 0. Цель данного пункта – определить a^x для $x \in \mathbb{R}$. Пока что значение a^x определено лишь при $x \in \mathbb{Q}$. Эта функция обладает следующими свойствами, хорошо известными из школы. Ниже эти свойства сформулированы, хотя часть из них уже была доказана выше.

Лемма 8.6.3 Пусть $r, s \in \mathbb{Q}, a, b > 0, mor \partial a$

- 1. Если r < s, то $a^r < a^s$ при a > 1 и $a^s < a^r$ при 0 < a < 1.
- $2. \ a^{r+s} = a^r a^s.$
- $3. \ (a^r)^s = a^{rs}.$
- $4. (ab)^r = a^r b^r.$

Доказательство. 1. Исходя из принципа индукции получается, что если x,y>0, то

$$(x < y) \Leftrightarrow (x^n < y^n),$$

причем

$$(x = y) \Leftrightarrow (x^n = y^n).$$

Тогда, если a>1, то $a^{\frac{1}{n}}>1$ при натуральных n (если предположить $x=a^{\frac{1}{n}}\leq 1$, то это означает, что $x^n=a>1$, что противоречит вышесказанному). Кроме того, аналогично предыдущему при натуральных m выполняется $(a^m)^{\frac{1}{n}}>1$. Тогда

$$a^s = a^r \cdot a^{s-r} > a^r$$
.

Остальные свойства доказаны в лемме 8.6.2.

Определение 8.6.3 Пусть a > 0, $x \in \mathbb{R}$, $r \in \mathbb{Q}$. По определению,

$$a^x = \lim_{r \to x} a^r$$
.

 $\Pi pu \ a > 0, \ a \neq 1 \ nonyченная функция называется показательной функцией$ с основанием а.

Для того, чтобы введенное определение было корректным, необходимо доказать, что данный предел существует, и что для рациональных x новое определение совпадает со старым.

Лемма 8.6.4 Пусть a > 0, $r_n \in \mathbb{Q}$, $\lim_{n \to \infty} r_n = 0$, тогда $\lim_{n \to \infty} a^{r_n} = 1$.

Доказательство. При a=1 лемма выполняется, так как $1^{r_n}=1$. В частном случае, при $r_n = \frac{1}{n}$ уже доказано, что

$$\lim_{n\to\infty} \sqrt[n]{a} = 1.$$

Пусть $a>1,\, \varepsilon>0,\, r_n$ произвольна, тогда можно выбрать n_0 такой, что

$$1 - \varepsilon < a^{-1/n_0} < a^{1/n_0} < 1 + \varepsilon.$$

Так как $r_n \to 0$, то найдется номер n_1 , что при $n > n_1$

$$-\frac{1}{n_0} < r_n < \frac{1}{n_0}.$$

В силу леммы 8.6.3,

$$1 - \varepsilon < a^{-1/n_0} < a^{r_n} < a^{1/n_0} < 1 + \varepsilon$$

что и означает, что $\lim_{n \to \infty} a^{r_n} = 1$. Если 0 < a < 1, то $\frac{1}{a} > 1$ и

$$a^{r_n} = \frac{1}{(1/a)^{r_n}} \to 1.$$

Лемма 8.6.5 Пусть $a>0,\ x\in\mathbb{R},\ r_n\in\mathbb{Q},\ \lim_{n\to\infty}r_n=x.$ Тогда последовательность a^{r_n} имеет предел.

Доказательство. При a=1 лемма, очевидно, выполняется. Пусть a>1. Пусть s_n – возрастающая последовательность рациональных чисел, сходящаяся к x. Тогда, согласно лемме 8.6.3, последовательность a^{s_n} возрастает и ограничена сверху числом $a^{[x]+1}$, а значит, по теореме Вейерштрасса, имеет предел. Значит, $\lim_{n\to\infty}a^{s_n}=A$. Но тогда

$$a^{r_n} = a^{r_n - s_n} a^{s_n} \to A,$$

так как по предыдущей лемме $a^{r_n-s_n} \to 1$.

Если 0 < a < 1, то $\frac{1}{a} > 1$ и по доказанному $\left(\frac{1}{a}\right)^{r_n} = A > 0$. Тогда

$$a^{r_n} = \frac{1}{(1/a)^{r_n}} \to \frac{1}{A}.$$

Данная лемма устанавливает корректность определения a^x . Во-первых, так как для любой последовательности рациональных чисел предел существует, то он один и тот же (это доказывается аналогично доказательству в критерии Коши). Если же $x \in \mathbb{Q}$, то положим $r_n = x$ получаем, что новое определение совпадает со старым.

Замечание 8.6.1 Последовательность s_n , выбранная в доказательстве леммы, существует. Например, можно взять $s_n = \frac{[10^n x]}{10^n}$. Детальная проверка оставляется читателю.

Ниже приведены основные свойства функции a^x .

Лемма 8.6.6 Функция a^x возрастает на $\mathbb R$ при a>1 и убывает на $\mathbb R$ при 0< a<1.

Доказательство. Пусть a > 0, x < y. Нужно показать, что $a^x < a^y$. Пусть числа $r_1, r_2 \in \mathbb{Q}$ такие, что

$$x < r_1 < r_2 < y$$

и последовательности $r_n^1 < x, \, r_n^2 > y$ такие, что $\lim_{n \to \infty} r_n^1 = x, \, \lim_{n \to \infty} r_n^2 = y$. В силу монотонности показательной функции при рациональном аргументе,

$$a^{r_n^1} < a^{r_1} < a^{r_2} < a^{r_2}^2$$

и по теореме о предельном переходе в неравенствах

$$a^x \le a^{r_1} < a^{r_2} \le a^y.$$

Случай 0 < a < 1 разбирается аналогично.

Лемма 8.6.7 $a^{x+y} = a^x a^y$, $\epsilon \partial e \ x \in \mathbb{R} \ u \ y \in \mathbb{R}$.

Доказательство. Пусть $r_n^1, r_n^2 \in \mathbb{Q}$, причем $\lim_{n \to \infty} r_n^1 = x$, $\lim_{n \to \infty} r_n^2 = y$. Так как

$$a^{r_n^1 + r_n^2} = a^{r_n^1} a^{r_n^2},$$

то переходя к пределу в этом равенстве, получается требуемое.

Лемма 8.6.8 Показательная функция непрерывна на \mathbb{R} .

Доказательство. Уже доказано, что

$$\lim_{n\to\infty} \sqrt[n]{a} = 1.$$

Пусть $a>1,\ \varepsilon>0,\ x_{n}$ — произвольная последовательность, стремящаяся к нулю, тогда можно выбрать n_0 такой, что

$$1 - \varepsilon < a^{-1/n_0} < a^{1/n_0} < 1 + \varepsilon.$$

Так как $x_n \to 0$, то найдется номер n_1 , что при $n > n_1$

$$-\frac{1}{n_0} < x_n < \frac{1}{n_0}.$$

В силу леммы 8.6.3,

$$1 - \varepsilon < a^{-1/n_0} < a^{x_n} < a^{1/n_0} < 1 + \varepsilon,$$

что и означает, что $\lim_{n \to \infty} a^{x_n} = 1$. Если 0 < a < 1, то $\frac{1}{a} > 1$ и

$$a^{x_n} = \frac{1}{(1/a)^{x_n}} \to 1.$$

Непрерывность в произвольной точке x_0 следует из непрерывности в нуле, так как

$$a^{x_0 + \Delta x} - a^{x_0} = a^{x_0} (a^{\Delta x} - 1) \to 0.$$

Лемма 8.6.9 $(a^x)^y = a^{xy}$.

Доказательство. Пусть $x_n, y_n \in \mathbb{Q}$ и $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} y_n = y$. Согласно лемме 8.6.3,

$$(a^{x_n})^{y_m} = a^{x_n y_m}.$$

Пусть m фиксировано, а $n \to \infty$. По определению показательной функции

$$\lim_{n \to \infty} a^{x_n y_m} = a^{x y_m}, \quad \lim_{n \to \infty} a^{x_n} = a^x.$$

В силу непрерывности степенной функции с рациональным показателем,

$$\lim_{n\to\infty} (a^{x_n})^{y_m} = a^{xy_m}.$$

Теперь пусть $m \to \infty$, тогда в силу непрерывности показательной функции получим требуемое.

Лемма 8.6.10 $(ab)^x = a^x b^x$.

Доказательство. Для доказательства нужно осуществить предельный переход в равенстве для степеней с рациональным показателем. Детали оставляем читателю.

Лемма 8.6.11 $E(a^x) = (0, +\infty)$.

Доказательство. Пусть a>1. Функция a^x строго возрастает, причем $\lim_{x\to -\infty}a^x=0$, а $\lim_{x\to +\infty}a^x=+\infty$. Согласно теореме Больцано-Коши, $E(a^x)=(0,+\infty)$.

Случай 0 < a < 1 разбирается аналогично. \square

Графики показательных функции при различных основаниях a представлены на рисунке 8.

4. Логарифмическая функция. Выше показано, что функция a^x является биекцией между \mathbb{R} и $(0,\infty)$.

Определение 8.6.4 Пусть $a > 0, a \neq 1$. Функция, обратная κ a^x , называется логарифмом по основанию a и обозначается $\log_a x$.

Из теоремы 8.4.4 следует, что $\log_a x:(0,+\infty)\to\mathbb{R}$, непрерывна на области определения, возрастает при a>1 и убывает при 0< a<1. Кроме того,

$$\lim_{x \to +\infty} \log_a x = \left\{ \begin{array}{l} +\infty, \quad a > 1 \\ -\infty, \quad 0 < a < 1 \end{array} \right., \quad \lim_{x \to 0} \log_a x = \left\{ \begin{array}{l} -\infty, \quad a > 1 \\ +\infty, \quad 0 < a < 1 \end{array} \right..$$

Из определения логарифмической функции и свойств показательной вытекают все свойства логарифма, хорошо известные из школы. Ниже приведены некоторые из них.

Рис. 8 Графики показательных функций

Лемма 8.6.12 Справедливы следующие равенства

1.
$$a^{\log_a x} = x \ npu \ x > 0$$
.

2.
$$\log_a(xy) = \log_a x + \log_a y \ npu \ x, y > 0$$
.

3.
$$\log_a x^p = p \log_a x \ npu \ x > 0$$
.

4.
$$\log_{a^p} x = \frac{1}{p} \log_a x \ npu \ x > 0$$

5.
$$\log_a x = \frac{\log_b x}{\log_b a} npu \ x > 0$$
.

Доказательство. Все данные свойства доказываются одинаково, используя свойства показательной функции. Например, так как

$$a^{\log_a x + \log_a y} = a^{\log_a x} a^{\log_a y} = xy,$$

 \Box

To $\log_a(xy) = \log_a x + \log_a y$.

Часто бывает удобно использовать логарифм по основанию e. Такой логарифм называется, как известно, натуральным логарифмом и обозначается $\ln x$.

Графики логарифмических функций при различных основаниях a изображены на рисунке 9.

2'. Степенная функция (продолжение). При всех x>0 и $\alpha\in\mathbb{R}$ верно представление

$$x^{\alpha} = e^{\alpha \ln x},$$

а значит степенная функция x^{α} непрерывна на $(0,\infty)$ при всех $\alpha \in \mathbb{R}$.

5. Тригонометрические функции. Далее будут использованы школьные

Рис. 9 Графики логарифмических функций

определения функций $\sin x$ и $\cos x$, как ординаты и абсциссы точки единичной окружности, а также все формулы, выведенные на основе данного определения.

Лемма 8.6.13 Справедливо неравенство

$$|\sin x| \le |x|, \quad x \in \mathbb{R},$$

 $nричем равенство имеет место только <math>npu \ x = 0.$

Доказательство. При $|x| \leq \frac{\pi}{2}$ неравенство доказано в доказательстве теоремы 8.5.1. При $x \geq \frac{\pi}{2}$ получается

$$\sin x \le 1 < \frac{\pi}{2} \le x.$$

 \Box

Аналогично рассматривается случай $x \leq -\frac{\pi}{2}$.

Теорема 8.6.1 Функции $\sin x$, $\cos x$ непрерывны при $x \in \mathbb{R}$.

Доказательство. Пусть $x_0 \in \mathbb{R}$, тогда

$$|\sin x - \sin x_0| = 2 \left| \sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} \right| \le 2 \left| \sin \frac{x - x_0}{2} \right| \le$$
$$\le 2 \left| \frac{x - x_0}{2} \right| = |x - x_0| < \varepsilon.$$

Взяв $\delta = \varepsilon$ получается требуемое.

Непрерывность функции $\cos x$ доказывается аналогично, или используя представление $\cos x = \sin\left(\frac{\pi}{2} - x\right)$.

Графики функций $\sin x$, $\cos x$ представлены на рисунках 10, 11.

Puc. 10 График функции $y = \sin x$

 $Puc.\ 11\ \Gamma paфик функции\ y = \cos x$

Следствие 8.6.2 Функции

$$\operatorname{tg} x = \frac{\sin x}{\cos x}, \quad x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + \pi k : \ k \in \mathbb{Z} \right\},$$
$$\operatorname{ctg} x = \frac{\cos x}{\sin x}, \quad x \in \mathbb{R} \setminus \left\{ \pi k : \ k \in \mathbb{Z} \right\}$$

непрерывны на своих областях определения.

Доказательство. Доказательство немедленно следует из непрерывности функций $\sin x$ и $\cos x$ и теоремы о непрерывности частного. \Box Графики функций $\operatorname{tg} x$ и $\operatorname{ctg} x$ представлены на рисунке 12.

6. Обратные тригонометрические функции. Функция $\sin x : \mathbb{R} \to [-1,1]$ не является обратимой, так как каждое свое значение она принимает более одного раза (даже бесконечное число раз). Однако функция $\sin x : \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1,1]$ возрастает и поэтому обратима.

Определение 8.6.5 Пусть $\sin x : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to [-1, 1]$. Обратная к данной функции функция называется арксинусом и обозначается $\arcsin x$.

Лемма 8.6.14 *Функция*

$$\arcsin x: [-1,1] \to \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

возрастает и непрерывна на всей области определения.

Puc. 12 Графики функций $y = \operatorname{tg} x$ (слева) и $y = \operatorname{ctg} x$ (справа)

Доказательство. Немедленно следует из теоремы 8.4.4.

График функции $y = \arcsin x$ представлен на рисунке 13.

Функция $\cos x: \mathbb{R} \to [-1,1]$ не является обратимой, однако функция $\cos x: [0,\pi] \to [-1,1]$ убывает и поэтому обратима.

Определение 8.6.6 Пусть $\cos x : [0,\pi] \to [-1,1]$. Обратная κ данной функции функция называется арккосинусом и обозначается $\arccos x$.

Лемма 8.6.15 Функция

$$\arccos x:[-1,1]\to[0,\pi]$$

убывает и непрерывна на всей области определения.

Доказательство. Немедленно следует из теоремы 8.4.4.

График функции $y = \arccos x$ представлен на рисунке 13.

Функция $\operatorname{tg} x$ не является обратимой, однако функция $\operatorname{tg} x:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}$ возрастает и поэтому обратима.

Определение 8.6.7 Пусть $\operatorname{tg} x: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$. Обратная к данной функции функция называется арктангенсом и обозначается $\operatorname{arctg} x$.

Лемма 8.6.16 *Функция*

$$\operatorname{arctg} x : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

возрастает и непрерывна на всей области определения.

 $Puc.\ 13\ \Gamma paфики функций <math>y = \arcsin x \ (cnesa)\ u\ y = \arccos x \ (cnpasa)$

 $Puc.\ 14\ \Gamma paфик функции y = arctg x$

Доказательство. Немедленно следует из теоремы 8.4.4. \square График функции $y = \arctan x$ представлен на рисунке 14. Функция $\cot x$ не является обратимой, однако функция $\cot x : (0,\pi) \to \mathbb{R}$ убывает и поэтому обратима.

Определение 8.6.8 Пусть $\operatorname{ctg} x:(0,\pi)\to\mathbb{R}$. Обратная к данной функции функция называется арккотангенсом и обозначается $\operatorname{arcctg} x$.

Лемма 8.6.17 Функция

$$\operatorname{arcctg} x : \mathbb{R} \to (0, \pi)$$

 $Puc.\ 15\ \Gamma pa \phi u \kappa \phi y н \kappa u u u y = \operatorname{arcctg} x$

убывает и непрерывна на всей области определения.

Доказательство. Немедленно следует из теоремы 8.4.4.

Выше определены основные элементарные функции и доказано, что все они непрерывны на своих областях определения. Так как арифметические операции и композиция не выводят за класс непрерывных функций (в силу локальных свойств), то справедлива следующая теорема.

Теорема 8.6.3 Все элементарные функции непрерывны на своей области определения.

8.7 Второй замечательный предел

Теорема 8.7.1

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Доказательство. Функция

$$f(x) = \left(1 + \frac{1}{x}\right)^x,$$

задана при $x \in \mathbb{R} \setminus [-1,0]$. Пусть $x_n \in \mathbb{R} \setminus [-1,0]$, $x_n \to \infty$. Достаточно показать, что $\lim_{n \to \infty} f(x_n) = e$.

1. псть $x_n \in \mathbb{N}$. Пусть $\varepsilon > 0$. Согласно второму замечательному пределу для последовательностей,

$$\exists k_0 : \forall k > k_0 \Rightarrow |f(k) - e| < \varepsilon.$$

Так как $x_n \in \mathbb{N}$, то $x_n \to +\infty$ и

$$\exists n_0 : \forall n > n_0 \Rightarrow x_n > k_0,$$

а значит

$$|f(x_n) - e| < \varepsilon,$$

что и означает, что $\lim_{n\to\infty} f(x_n) = e$.

2. Пусть $x_n \to +\infty$. Тогда, начиная с некоторого номера, $x_n > 1$. Не нарушая общности можно считать, что x_n всегда больше 1. Очевидна цепочка неравенств

$$\left(1 + \frac{1}{[x_n] + 1}\right)^{[x_n]} \le \left(1 + \frac{1}{x_n}\right)^{x_n} \le \left(1 + \frac{1}{[x_n]}\right)^{[x_n] + 1},$$

которую можно переписать в виде в виде

$$\frac{f([x_n]+1)}{1+\frac{1}{[x_n]+1}} \le f(x_n) \le f([x_n]) \left(1+\frac{1}{[x_n]}\right).$$

Так как $[x_n]+1$ и $[x_n]$ – последовательности натуральных чисел, стремящиеся $\kappa + \infty$, по доказанному в пункте 1 имеем

$$\lim_{n \to \infty} f([x_n] + 1) = e, \quad \lim_{n \to \infty} f([x_n]) = e,$$

а значит, по теореме о сжатой переменной, $\lim_{n\to\infty} f(x_n) = e$.

3. Пусть $x_n \to -\infty$. Можно считать, что $x_n \overset{n \to \infty}{<} -2$. Если положить $y_n = -x_n$, то $y_n \to +\infty$ и $y_n - 1 \to +\infty$. Так как

$$f(x_n) = \left(1 + \frac{1}{-y_n}\right)^{-y_n} = \left(\frac{y_n}{y_n - 1}\right)^{y_n} = \left(1 + \frac{1}{y_n - 1}\right)f(y_n - 1)$$

и по доказанному в пункте 2, $\lim_{n\to\infty} f(y_n-1)=e$, получается требуемое.

4. Пусть $x_n \to \infty$, $x_n \in \mathbb{R} \setminus [-1,0]$. Если число отрицательных (положительных) членов последовательности x_n конечно, то $x_n \to +\infty$ ($x_n \to -\infty$). Если же количество положительных и отрицательных членов последовательности бесконечно, то натуральный ряд разбивается на две подпоследовательности n_k и n_p так, что $x_{n_k} > 0$, $x_{n_p} < 0$. По доказанному,

$$\lim_{k \to \infty} f(x_{n_k}) = \lim_{p \to \infty} f(x_{n_p}) = e.$$

Пусть $\varepsilon > 0$, тогда

$$\exists k_0 : \forall k > k_0 \Rightarrow |f(x_{n_k}) - e| < \varepsilon,$$

$$\exists p_0: \forall p > p_0 \Rightarrow |f(x_{n_p}) - e| < \varepsilon.$$

Тогда пусть $n_0 = \max(n_{k_0}, n_{p_0})$, тогда при $n > n_0$ либо $n = n_k$ при $k > k_0$, либо $n = n_p$ при $p > p_0$, значит

$$|f(x_n) - e| < \varepsilon,$$

TO ECTH $\lim_{n\to\infty} f(x_n) = e$.

8.8 Следствия замечательных пределов

Ниже приведены важные следствия первого и второго замечательных пределов, часто используемые в дальнейшем.

Лемма 8.8.1

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1.$$

Доказательство. Действительно,

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1}{\cos x} = \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{1}{\cos x} = 1,$$

где в последнем равенстве используется первый замечательный предел и непрерывность функции $\cos x$.

Лемма 8.8.2

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1.$$

Доказательство. Пусть $y=\arctan x$. Так как $x\to 0$ и функция $\arctan x$ непрерывна, то $y\to 0$. Тогда

$$\lim_{x \to 0} \frac{\arctan x}{x} = \lim_{y \to 0} \frac{y}{\operatorname{tg} y} = \lim_{y \to 0} \frac{1}{\frac{\operatorname{tg} y}{y}} = 1$$

по только что доказанному.

Замечание 8.8.1 Замена, проведенная в доказательстве выше, требует обоснования. Пусть $x_n \to 0$, $x_n \neq 0$. Нужно вычислить

$$\lim_{n\to\infty} \frac{\arctan x_n}{x_n}.$$

Обозначив $y_n = \arctan x_n$, в силу непрерывность функции $\arctan x$ последовательность y_n стремится к 0. Кроме того, так как $x_n \neq 0$, то и $y_n \neq 0$. Тогда

$$\frac{\arctan x_n}{x_n} = \frac{y_n}{\operatorname{tg} y_n}.$$

Последний предел, как показано выше, равен 1, а значит для любой последовательности y_n такой, что $\lim_{n\to\infty}y_n=0,\ y_n\neq 0$ выполняется

$$\lim_{n \to \infty} \frac{y_n}{\operatorname{tg} y_n} = 1.$$

Тем самым выполнено определение по Гейне и

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

Лемма 8.8.3

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1.$$

Доказательство. Пусть $y=\sin x$. Так как $x\to 0$ и функция $\sin x$ непрерывна, то и $y\to 0$. Тогда

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{y \to 0} \frac{y}{\sin y} = \lim_{y \to 0} \frac{1}{\frac{\sin y}{y}} = 1.$$

Обоснование замены проводится аналогично замечанию 8.8.1.

Лемма 8.8.4

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.$$

Доказательство. Домножив числитель и знаменатель на $(1 + \cos x)$ и воспользовавшись первым замечательным пределом и непрерывностью функции $\cos x$, получается

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2 (1 + \cos x)} = \lim_{x \to 0} \frac{\sin^2 x}{x^2 (1 + \cos x)} = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \lim_{x \to 0} \frac{1}{1 + \cos x} = \frac{1}{2}.$$

Лемма 8.8.5

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e.$$

Доказательство. Пусть $y=\frac{1}{x}$, тогда $y\to\infty$ и

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1 + \frac{1}{y}\right)^y = e.$$

Замена обосновывается так же, как и в замечании 8.8.1.

Лемма 8.8.6

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}.$$

B частности,

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

Доказательство. В силу формулы замены основания, достаточно доказать второе равенство. Так как логарифм непрерывен, то

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x) = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \ln e = 1.$$

Лемма 8.8.7

$$\lim_{x \to 0} \frac{(1+x)^s - 1}{sx} = 1, \quad s \in \mathbb{R}.$$

Доказательство. Пусть $y=(1+x)^s-1$. В силу непрерывности степенной функции, при $x\to 0$ и $y\to 0$. Кроме того, $\ln(1+y)=s\ln(1+x)$ и

$$\lim_{x \to 0} \frac{(1+x)^s - 1}{sx} = \lim_{x \to 0} \left(\frac{y}{s \ln(1+y)} \frac{s \ln(1+x)}{x} \right) = 1.$$

Замена обосновывается так же, как и в замечании 8.8.1.

Лемма 8.8.8

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a.$$

B частности,

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

Доказательство. Пусть $y=a^x-1$, откуда $x=\log_a(1+y)$ и при $x\to 0$ выполняется и $y\to 0$. Тогда

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \lim_{y \to 0} \frac{y}{\log_a(1 + y)} = \lim_{y \to 0} \frac{1}{\frac{\log_a(1 + y)}{y}} = \ln a.$$

Замена обосновывается так же, как и в замечании 8.8.1.

8.9 Асимптотическое сравнение функций

Определение 8.9.1 Пусть $f, g : E \to \mathbb{R}$, x_0 – предельная для E и существует окрестность $\overset{o}{U}(x_0)$ такая, что $f(x) = \alpha(x)g(x)$ при $x \in \overset{o}{U}(x_0) \cap E$.

1. Если $\alpha(x)$ ограничена на $U(x_0) \cap E$, то говорят, что функция f(x) есть О большое от функции g(x) при $x \to x_0$ (или что функция f(x) ограничена по сравнению с функцией g(x) при $x \to x_0$) и пишут

$$f(x) = O(g(x)), \quad x \to x_0.$$

2. Если $\lim_{x\to x_0} \alpha(x) = 0$, то говорят, что функция f(x) есть о малое от функции g(x) при $x\to x_0$ (или что функция f(x) бесконечно малая по сравнению с функцией g(x) при $x\to x_0$) и пишут

$$f(x) = o(g(x)), \quad x \to x_0.$$

3. Если $\lim_{x\to x_0} \alpha(x) = 1$, то говорят, что функция f(x) эквивалентна функции g(x) при $x\to x_0$ и пишут

$$f(x) \sim g(x), \quad x \to x_0.$$

Лемма 8.9.1 В случае, когда в $U(x_0)$ выполняется $g(x) \neq 0$, то определениям можно дать более простой вид.

- 1. f(x) = O(g(x)) при $x \to x_0$ равносильно тому, что $\frac{f(x)}{g(x)}$ ограничена на $U(x_0) \cap E$.
- 2. f(x) = o(g(x)) при $x \to x_0$ равносильно тому, что $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$.
- 3. $f(x) \sim g(x)$ при $x \to x_0$ равносильно тому, что $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$.

Доказательство. Первое утверждение. Пусть функция $\alpha(x) = \frac{f(x)}{g(x)}$ ограничена на $U(x_0) \cap E$. Тогда на $U(x_0) \cap E$ выполняется

$$|\alpha(x)| = \left| \frac{f(x)}{g(x)} \right| \le C,$$

а значит $f(x) = \alpha(x)g(x)$ и $\alpha(x)$ ограничена.

Обратно, пусть $f(x)=\alpha(x)g(x)$ и $\alpha(x)$ ограничена. Тогда и $\alpha(x)=\frac{f(x)}{g(x)}$ ограничена.

Остальные пункты доказываются аналогично и остаются в качестве упражнения. \Box

Пример 8.9.1 Доказать, что

$$\lim_{x \to +\infty} \frac{x}{a^x} = 0, \ a > 1,$$

то есть $x = o(a^x)$ при $x \to +\infty$, a > 1. Действительно, справедливы неравенства

$$\frac{[x]}{a \cdot a^{[x]}} \le \frac{x}{a^x} \le \frac{[x]+1}{a^{[x]+1}}a.$$

Известно, что

$$\lim_{n \to \infty} \frac{n}{a^n} = 0, \ a > 1,$$

значит если $\varepsilon > 0$, то найдется номер n_0 , что при $n > n_0$ выполняется

$$0 < \frac{n}{a^n} < \varepsilon.$$

Так как $x \to +\infty$, то найдется δ , что при $x > \frac{1}{\delta} \Rightarrow [x] > n_0$, а значит

$$0 < \frac{[x]}{a \cdot a^{[x]}} \le \frac{\varepsilon}{a}, \ 0 < \frac{[x]+1}{a^{[x]+1}}a < \varepsilon a,$$

что и означает требуемое.

Пример 8.9.2 Используя предыдущий пример не сложно показать, что $x^s = o(a^x)$ при $x \to +\infty$, a > 1, $s \in \mathbb{R}$.

Пример 8.9.3 Доказать, что $\log_a^\alpha x = o(x^s)$ при $x \to +\infty$, s > 0. Пусть a > 1, тогда достаточно вычислить

$$\lim_{x \to +\infty} \frac{\log_a^{\alpha} x}{x^s}.$$

Пусть $t = \log_a x$. Ясно, что $t \to +\infty$ и

$$\lim_{x \to +\infty} \frac{\log_a^{\alpha} x}{x^s} = \lim_{t \to +\infty} \frac{t^{\alpha}}{a^{ts}} = 0$$

по только что доказанному. Замена обосновывается так же, как и в замечании 8.8.1. Случай 0 < a < 1 остается в качестве упражнения.

Определение 8.9.2 Если f(x) = o(g(x)) при $x \to x_0$ и функция g(x) является бесконечно малой при $x \to x_0$, то функция f(x) называется бесконечно малой более высокого порядка, чем функция g(x) при $x \to x_0$.

Определение 8.9.3 *Если* f(x) = o(g(x)) *при* $x \to x_0$ *и* функция f(x) является бесконечно большой при $x \to x_0$, то функция q(x) называется бесконечно большой более высокого порядка, чем функция f(x) при $x \to x_0$.

Ниже приведены правила обращения с символами O и o.

Лемма 8.9.2 При $x \to x_0$ справедливы равенства:

1.
$$o(f) + o(f) = o(f)$$
.

2.
$$O(f) + O(f) = O(f)$$
.

3.
$$o(f) + O(f) = O(f)$$
.

4. o(f) является u(O(f)), но не наоборот.

5.
$$g(x)o(f(x)) = o(f(x)g(x)) u g(x)O(f(x)) = O(f(x)g(x)).$$

Доказательство. Первый пункт. Первый символ в равенстве означает некоторую функцию $\alpha_1(x) f(x)$, а второй символ – некоторую функцию $\alpha_2(x) f(x)$. Тогда

$$o(f) + o(f) = \alpha_1(x)f(x) + \alpha_2(x)f(x) = (\alpha_1(x) + \alpha_2(x))f(x) = \alpha_3(x)f(x) = o(f(x)),$$

так как $\lim_{x \to x_0} \alpha_3(x) = 0$.

Остальные утверждения доказываются аналогично и остаются читателю в качестве упражнения.

8.10 Таблица эквивалентностей

В связи с пунктом 8.8, можно выписать следующую таблицу эквивалентных функций при $x \to 0$.

1.
$$\sin x \sim x$$

2.
$$\ln(1+x) \sim x$$

1.
$$\sin x \sim x$$

2. $\ln (1+x) \sim x$
3. $\log_a (1+x) \sim \frac{x}{\ln a}$
4. $\tan x \approx x$
5. $e^x - 1 \sim x$
6. $a^x - 1 \sim x \ln a$
7. $\arcsin x \sim x$
8. $\arctan x \sim x$
9. $1 - \cos x \sim \frac{x^2}{2}$
10. $(1+x)^s - 1 \sim sx$

4.
$$\operatorname{tg} x \sim x$$

$$5. \quad e^x - 1 \sim x$$

6.
$$a^x - 1 \sim x \ln a$$

7.
$$\arcsin x \sim x$$

8.
$$arctg x \sim x$$

9.
$$1 - \cos x \sim \frac{x^2}{2}$$

10.
$$(1+x)^s - 1 \sim sx$$

На самом деле на практике часто используется следующее обобщение приведенной таблицы.

Теорема 8.10.1 Пусть $\lim_{x\to x_0}\beta(x)=0$. Тогда при $x\to x_0$ справедливы равенства

1.
$$\sin \beta(x) \sim \beta(x)$$
 | 6. $a^{\beta(x)} - 1 \sim \beta(x) \ln a$
2. $\ln (1 + \beta(x)) \sim \beta(x)$ | 7. $\arcsin \beta(x) \sim \beta(x)$
3. $\log_a (1 + \beta(x)) \sim \frac{\beta(x)}{\ln a}$ | 8. $\arctan \beta(x) \sim \beta(x)$
4. $\tan \beta(x) = \frac{\beta(x)}{\ln a}$ | 9. $\tan \beta(x) = \frac{\beta^2(x)}{2}$
5. $e^{\beta(x)} - 1 \sim \beta(x)$ | 10. $(1 + \beta(x))^s - 1 \sim s\beta(x)$

Доказательство. Первое утверждение. Так как $\lim_{x\to 0} \frac{\sin x}{x} = 1$, то $\sin x = \alpha(x)x$ в некоторой проколотой окрестности $\stackrel{o}{U}(0)$, причем $\lim_{x\to 0} \alpha(x) = 1$. Пусть функция $\alpha(x)$ доопределена по непрерывности в нуле значением 1. Тогда написанное равенство справедливо в U(0). Так как $\lim_{x\to x_0} \beta(x) = 0$, $\beta(x): E\to \mathbb{R}$, то $\exists \delta>0: \forall x\in E: 0<|x-x_0|<\delta\Rightarrow\beta(x)\in U(0)$. Тогда можно записать равенство

$$\sin \beta(x) = \alpha(\beta(x))\beta(x)$$

справедливое в $\overset{o}{U}_{\delta}(x_0)$. Осталось проверить, что $\lim_{x\to x_0}\alpha(\beta(x))=1$. Это немедленно следует из следствия 8.3.3.

Остальные равенства доказываются аналогично.

Теорема 8.10.2 (О замене на эквивалентную) Пусть $f, g, \tilde{f}: E \to \mathbb{R}, f \sim \tilde{f}$ при $x \to x_0$. Тогда

$$\lim_{x \to x_0} fg = \lim_{x \to x_0} \tilde{f}g.$$

Доказательство. Так как при $x \in \overset{o}{U}(x_0) \cap E$ выполняется $f(x) = \alpha(x) \tilde{f}(x)$ и $\lim_{x \to x_0} \alpha(x) = 1$, то

$$\lim_{x\to x_0}fg=\lim_{x\to x_0}\alpha \tilde{f}g=\lim_{x\to x_0}\alpha \lim_{x\to x_0}\tilde{f}g=\lim_{x\to x_0}\tilde{f}g.$$

Пример 8.10.1 Вычислить предел

$$\lim_{x \to 0} \frac{\ln \cos(3x)}{\sqrt{1 - x^2} - 1}.$$

Логарифм может быть переписан в виде

$$\ln \cos(3x) = \ln(1 + \cos(3x) - 1).$$

 $Ta\kappa \ \kappa a\kappa \lim_{x\to 0} (\cos(3x) - 1) = 0, \ mo$

$$\ln\cos(3x) \sim \cos(3x) - 1.$$

 $Ta\kappa \kappa a\kappa \lim_{x\to 0} 3x = 0, mo$

$$\cos(3x) - 1 \sim -\frac{9x^2}{2}.$$

Кроме того, так как $\lim_{x\to 0} x^2 = 0$, то

$$(1-x^2)^{1/2} - 1 \sim -\frac{x^2}{2}$$
.

Согласно теореме о замене на эквивалентную,

$$\lim_{x \to 0} \frac{\ln \cos(3x)}{\sqrt{1 - x^2} - 1} = \lim_{x \to 0} \frac{\cos(3x) - 1}{-\frac{x^2}{2}} = \lim_{x \to 0} \frac{-\frac{9x^2}{2}}{-\frac{x^2}{2}} = 9.$$

Пример 8.10.2 Пример ниже показывает, что замена на эквивалентную в сумме может привести к неверному результату. Пусть требуется вычислить предел

$$\lim_{x \to 0} \frac{\ln(1+3x+x^2) + \ln(1-3x+x^2)}{x^2}.$$

Так как при $x \to 0$ выполняется $\ln(1+3x+x^2) \sim (3x+x^2)$ и $\ln(1-3x+x^2) \sim (-3x+x^2)$, то ошибочная выкладка дает

$$\lim_{x \to 0} \frac{3x + x^2 + (-3x + x^2)}{x^2} = \lim_{x \to 0} \frac{2x^2}{x^2} = 2.$$

Проведем вычисление исходного предела иначе, выполнив преобразования

$$\ln\left((1+3x+x^2)(1-3x+x^2)\right) = \ln(1-7x^2+x^4) \sim (-7x^2+x^4).$$

Тогда

$$\lim_{x \to 0} \frac{\ln(1+3x+x^2) + \ln(1-3x+x^2)}{x^2} = \lim_{x \to 0} \frac{-7x^2 + x^4}{x^2} = -7.$$

Причина ошибки будет понятна после изучения формулы Тейлора (пример 9.11.2).

Теорема 8.10.3 (Необходимое и достаточное условие замены на эквивалент Две функции f(x), g(x) эквивалентны при $x \to x_0$ в некоторой проколотой окрестности точки x_0 тогда и только тогда, когда при $x \to x_0$ справедливо равенство f(x) = g(x) + o(g(x)).

Доказательство. Пусть $f(x) \sim g(x)$ при $x \to x_0$. Тогда в некоторой проколотой окрестности точки x_0 справедливо равенство $f(x) = g(x)\alpha(x)$, где $\lim \alpha(x) = 1$. Отсюда получим $f(x) - g(x) = g(x)(1 - \alpha(x))$. Так как $\lim_{x \to a_0} (1 - \alpha(x)) = 0$, to f(x) - g(x) = o(g(x)).

Обратно, пусть f(x) = q(x) + o(q(x)) при $x \to x_0$. Тогда в некоторой проколотой окрестности точки x_0 будет $f(x) - g(x) = g(x)\beta(x)$, где $\lim_{x \to \infty} \beta(x) = 0$.

Отсюда $f(x)=g(x)(1+\beta(x))$ или $f(x)=g(x)\alpha(x)$, где $\alpha(x)=1+\beta(x)$ и $\lim \alpha(x) = 1$. А следовательно, $f(x) \sim g(x)$.

Следствие 8.10.4 Используя вышеописанную теорему, таблицу эквивалентностей можно переписать следующим образом, если при $x \to x_0$ выполняется $\lim_{x \to x_0} \beta(x) = 0$.

1.
$$\sin \beta(x) = \beta(x) + o(\beta(x))$$
.

2.
$$\operatorname{tg} \beta(x) = \beta(x) + o(\beta(x)).$$

3.
$$\arcsin \beta(x) = \beta(x) + o(\beta(x))$$

4.
$$\operatorname{arctg} \beta(x) = \beta(x) + o(\beta(x))$$

5.
$$1 - \cos \beta(x) = \frac{\beta(x)^2}{2} + o(\beta^2(x)).$$

6.
$$\ln(1 + \beta(x)) = \beta(x) + o(\beta(x)).$$

7.
$$\log_a (1 + \beta(x)) = \frac{\beta(x)}{\ln a} + o(\beta(x)).$$

8.
$$e^{\beta(x)} - 1 = \beta(x) + o(\beta(x))$$
.

9.
$$a^{\beta(x)} - 1 = \beta(x) \ln a + o(\beta(x))$$
.

1.
$$\sin \beta(x) = \beta(x) + \delta(\beta(x))$$
.
2. $\tan \beta(x) = \beta(x) + o(\beta(x))$.
3. $\arcsin \beta(x) = \beta(x) + o(\beta(x))$.
4. $\arctan \beta(x) = \beta(x) + o(\beta(x))$.
5. $1 - \cos \beta(x) = \frac{\beta(x)^2}{2} + o(\beta^2(x))$.
6. $\inf (1 + \beta(x)) = \beta(x) + o(\beta(x))$.
7. $\log_a (1 + \beta(x)) = \frac{\beta(x)}{\ln a} + o(\beta(x))$.
8. $e^{\beta(x)} - 1 = \beta(x) + o(\beta(x))$.
9. $a^{\beta(x)} - 1 = \beta(x) + o(\beta(x))$.
10. $(1 + \beta(x))^s - 1 \sim s\beta(x) + o(\beta(x))$.

Пример 8.10.3 *Вычислить:*

$$\lim_{x \to 0} \frac{\sqrt{\cos 2x} + \lg 3x \cdot e^{5x} - 1}{\ln(1 + 3x)}.$$

Используя выведенные соотношения,

$$\cos 2x = 1 - \frac{(2x)^2}{2} + o((2x)^2) = 1 - 2x^2 + o(x^2),$$

значит

$$\sqrt{\cos 2x} = \sqrt{1 - 2x^2 + o(x^2)} = \left(1 + \left(-2x^2 + o(x^2)\right)\right)^{\frac{1}{2}} = 1 + \frac{1}{2}(-2x^2 + o(x^2)) + o(-2x^2 + o(x^2)) = 1 - x^2 + o(x^2).$$

Кроме того,

$$tg 3x = 3x + o(x),$$

$$e^{5x} = 1 + 5x + o(x).$$

Тогда

$$\sqrt{\cos 2x} + \operatorname{tg} 3x \cdot e^{5x} - 1 = 1 - x^2 + o(x^2) + (3x + o(x))(1 + 5x + o(x)) - 1 = 3x + o(x).$$

Τακ κακ

$$\ln\left(1+3x\right) \sim 3x,$$

mo

$$\lim_{x \to 0} \frac{\sqrt{\cos 2x} + \operatorname{tg} 3x \cdot e^{5x} - 1}{\ln(1 + 3x)} = \lim_{x \to 0} \frac{3x + o(x)}{3x} = 1.$$

8.11 Контрольные вопросы и задачи

- 1. Сформулируйте геометрическую интерпретацию понятия непрерывной функции.
- 2. Покажите, что если $f \in C(E_i)$, i = 1, 2, то не всегда $f \in C(E_1 \cup E_2)$.
- 3. Пусть $f:[0,1] \to [0,1]$ и $f \in C[0,1]$. Покажите, что существует точка x такая, что f(x) = x.
- 4. Докажите, что любой многочлен непрерывен на множестве вещественных чисел.
- 5. Докажите все пункты леммы 8.9.2.
- 6. Поясните геометрически замену на эквивалентную.

9 ПРОИЗВОДНАЯ И ИССЛЕДОВАНИЕ ФУНКЦИИ

9.1 Производная и дифференциал

Определение 9.1.1 Пусть $f: E \to \mathbb{R}$ и x_0 – предельная точка для E. Функция f(x) называется дифференцируемой в точке x_0 , если

$$f(x_0 + \Delta x) - f(x_0) = A(x_0)\Delta x + o(\Delta x), \quad x_0 + \Delta x \in E, \quad \Delta x \to 0.$$

Определение 9.1.2 Величины Δx и $\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0)$ называют приращением аргумента и приращением функции, соответствующим приращению аргумента, соответственно.

Определение 9.1.3 Выражение $A(x_0)\Delta x$ называется дифференциалом функции $f: E \to \mathbb{R}$ в точке x_0 и обозначается df, то есть $df(x_0, \Delta x) = A(x_0)\Delta x$.

Как следует из определения, для функции f(x) = x выполняется $x_0 + \Delta x - x_0 = 1 \cdot \Delta x$, тем самым $dx = \Delta x$ и можно переписать $df(x_0) = A(x_0)dx$.