EC583 – Power Electronics for Energy Systems DC-DC Boost Converter

Background:

This experiment focuses on the DC-DC *boost* converter that we studied in class. The word "boost" means to "raise" or "lift up"; indeed, the boost converter accepts raw voltage from a DC energy store, then uses inductive storage to provide a DC output at higher voltage. Thus one of the key characteristics of the boost converter is that its output voltage is <u>larger</u> than its input voltage. This type of controller is often found in energy systems in which lower voltages – for example, energy derived from a photovoltaic solar array – must be increased to 170 VDC so that it can then converted into 120 VAC *rms* by a circuit called an *inverter*. In this context, the switching inverter is a circuit that converts DC to AC; it should not be confused with the "transistor inverter" circuit – a form of amplifier – that you studied in electronics class.

The circuit shown below is a generic version of the boost converter. It's output will be unregulated; that is, you will set the duty cycle to produce a desired V_{OUT} , but the actual output will be different due to the forward diode drop ($V_{\text{f}} = 0.7 \text{ V}$), the effect of the load, and losses in the MOSFET. In a later lab, we will learn how to build a controller that compares V_{OUT} to a reference voltage V_{REF} and then continually adjusts the duty cycle so that $V_{\text{OUT}} = V_{\text{REF}}$.

For this experiment, we will simulate the load by using a resistor equal to $V_{\rm OUT}/({\rm Required\ Load\ Current})$

Assignment Part 1

Write a spreadsheet (or MATLAB) program that will allow you to do the following:

- Specify desired V_{DC} , V_{OUT} , I_{LOAD} , and switching frequency f_{sw}
- Calculate required D, and find L_{\min}
- Choose an appropriate L larger than L_{\min} , and choose a value for C_1
- Calculate i_{MIN} , i_{MAX} and V_{rip}

Here are some of the relevant formulas for the boost converter as found in the Class Notes:

$$\frac{V_{OUT}}{V_{DC}} = \frac{1}{1 - D} \text{ (See footnote}^{**})$$

$$i_{MAX} = I_{LOAD} + V_{DC} \frac{DT}{2L} \text{ and } i_{MIN} = I_{LOAD} - V_{DC} \frac{DT}{2L}$$

$$L_{min} = V_{DC} \frac{DT}{2I_{LOAD}}$$

$$V_{rip} = i_{LOAD} D/fC$$

Assignment Part 2

Use your spreadsheet (or MATLAB program) to design and test a PWM DC-DC boost converter that has the following specifications:

- *Input voltage*: 3.0 V DC (This is the voltage of two AA batteries.)
- Target Output voltage: 5.0 V (This is the voltage needed to charge many cell phones.)
- Switching frequency: In the 5-20 kHz range.
- Load current: Some value between 0.5 and 1 A.

For now, use the HP/Agilent waveform generator to produce a 0 to 8-V square-wave with variable duty cycle as the gate drive signal.

- a) Set the duty cycle to your calculated value and observe the output voltage. Then find the *actual* duty cycle, if it's different, that is needed to produce the desired $V_{\rm OUT}$.
- b) Measure the output voltage ripple V_{rip} at the duty cycle needed to produce the desired V_{OUT} .
- c) Find the values of D required to change V_{OUT} by about $\pm 20\%$.
- d) Verify that your converter operates in continuous conduction mode in at least 2 of 3 ways: a) Measure the inductor current; b) Measure the voltage across diode D_1 . It should conduct the entire time that the MOSFET is off. You will need to use two probes in differential make this measurement; c) Measure the voltage across Rds-on when the MOSFET is on.)

Note: Use the B-K Precision CP62 clamp-on current probe to measure inductor current.

^{**} Inverting this formula: $D = \frac{V_{OUT} - V_{DC}}{V_{OUT}}$ provides the duty cycle D needed to obtain a desired V_{OUT}/V_{DC} .

Assignment Part 3

In real life, you can't carry around a function generator to produce the PWM duty-cycle signal required of the converter. Replace the function generator with the self-contained 555-timer circuit shown below. It provides two separate pathways for the charging/discharging of the timing capacitor C_T , one via D_1 and R_1 , and the other via D_2 and R_2 . The duty cycle can be adjusted using the potentiometer control R_3 to change the value of resistance connected to C_T for each pathway.

- Build the 555-timer circuit
- Find the minimum and maximum values of D that you can obtain using this circuit.
- Replace the function generator in your boost converter with this timer circuit.
- With $V_{\rm IN} = 1.5$ V, vary (measure and record) the duty cycle, and find the minimum and maximum possible values of $V_{\rm OUT}$. Compare with theoretical values predicted by $V_{\rm OUT} = V_{\rm IN}/(1-D)$.

