Evaluation of hill climbing, simulated annealing, tabu search and random selection: search algorithms on cryptographic hash functions

BLAKE, Grøstl and Keccak

Soham Sadhu

May 25, 2014

Abstract

- In October 2012, Keccak was chosen as the winner of SHA-3 competition amongst 64 candidates, including the finalists BLAKE and Grøstl.
- I have attempted to find near collisions in reduced versions of BLAKE, Grøstl and Keccak; using hill climbing, random selection, simulated annealing and tabu search.

Table of contents

- Introduction
 - Hash function
 - Property of hash function
 - Security model
 - Application
 - Standards and SHA-3 competition
- 2 SHA-3 finalists
 - BLAKE
 - Grøstl

Hash function

A hash family is a four-tuple $(\mathcal{X}, \mathcal{Y}, \mathcal{K}, \mathcal{H})$, satisfying the following conditions.¹

- $oldsymbol{\cdot}$ $\mathcal X$ is a set of possible messages
- $oldsymbol{ ilde{\mathcal{Y}}}$ is a finite set of hash function output
- \bullet \mathcal{K} , the *keyspace*, is a finite set of possible keys
- For each $K \in \mathcal{K}$, there is a hash function $h_k \in \mathcal{H}$. Each $h_k : \mathcal{X} \to \mathcal{Y}$

¹Douglas R. Stinson. Cryptography Theory and Practice, chapter 4. Cryptographic Hash Functions. Chapman & Hall/CRC, Boca Raton, FL 33487-2742, USA, third edition, 2006.

Property of Hash function²

Preimage resistance

Given: A hash function $h: \mathcal{X} \to \mathcal{Y}$ and an element $y \in \mathcal{Y}$.

Find: $x \in \mathcal{X}$ such that h(x) = y.

Second preimage

Given: A hash function $h: \mathcal{X} \to \mathcal{Y}$ and an element $x \in \mathcal{X}$.

Find: $x' \in \mathcal{X}$ such that $x' \neq x$ and h(x) = h(x').

Collision resistance

Given: A hash function $h: \mathcal{X} \to \mathcal{Y}$

Find: $x, x' \in \mathcal{X}$ such that $x' \neq x$ and h(x') = h(x).

²Douglas R. Stinson. Cryptography Theory and Practice, chapter 4. Cryptographic Hash Functions. Chapman & Hall/CRC, Boca Raton, FL 33487-2742, USA, third edition, 2006.

Security model

- Random Oracle model, proposed by Bellare and Rogaway.
 Algorithm is secure, modulo the way it creates the random outputs.³
- Birthday paradox: In a sample size of M, minimum N number of attempts to find, two elements with same value is given by equation $N \approx 1.17 \sqrt{M}$.

³Gerrit Bleumer. Random oracle model. In HenkC.A. van Tilborg and Sushil Jajodia, editors, Encyclopedia of Cryptography and Security, pages 10271028. Springer US, 2011.

Application of hash functions

- Digital forensics: take a hash value of evidence, to later prove that it has not been tampered. 4
- Password stored: is salted and hashed, before inserting to database.
- File integrity: take hash value of files between time intervals, to make sure; they have not been tampered.
- Pseudo random: generator, based on a seed value.

⁴Richard P. Salgado. Fourth Amendment Search And The Power Of The Hash, volume 119 of 6, pages 38 46. Harvard Law Review Forum, 2006.

- SHA-0 proposed by NSA in 1993, later standardised by NIST.
- In 1995 Florent Chabaud and Antoine Joux, found collisions in SHA-0 with complexity of 2⁶¹.
- In 2004, Eli Biham and Chen found near collisions for SHA-0, about 142 out of 160 bits to be equal.
- Full collisions were also found, when the number of rounds for the algorithm were reduced from 80 to 62.

- In 1995, SHA-0 replaced by SHA-1, designed by NSA⁵. SHA-1 had block size of 512 bits, size of 160 bits; and additional circular shift operation, to rectify weakness from SHA-0.
- In 2005, team from Shandong University found collisions on full version of SHA-1 requiring 2⁶⁹ operations⁶.

⁵James Joshi. Network Security: Know It All: Know It All. Newnes Know It All. Elsevier Science, 2008.

⁶Bruce Schneier. Sha-1 broken.

- SHA-2 was designed by NSA, and released in 2001 by NIST.
 Family of functions of SHA-224, SHA-256, SHA-384, SHA-512.
- Computational operations for finding collisions in SHA-256 for 23-step was found to be around $2^{11.5}$, and for 24 step was $2^{28.5}$ respectively.
- Computational operations for finding collisions in SHA-512 for 23-step was found to be around 2^{16.5}, and for 24 step was 2^{32.5} respectively⁷.

⁷Somitra Kumar Sanadhya and Palash Sarkar. New collision attacks against up to 24- step sha-2. In Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors, INDOCRYPT, volume 5365 of Lecture Notes in Computer Science, pages 91103. Springer, 2008.

- NIST announced competition for choosing SHA-3 on November, 2007. Entries accepted till October, 2008.
- 51 candidates from 64 submissions, were accepted for first round on December 9, 2008.
- Out of 5 finalists, on October 2, 2012; Keccak was announced winner amongst other four finalist, which included BLAKE and Grøstl.
- Keccak was chosen for large security margin, flexibility, and efficient hardware implementation.

BLAKE

Grøstl

Properties of BLAKE hash function

Algorithm	Word	Message	Block	Digest	Salt
BLAKE-224	32	$< 2^{64}$	512	224	128
BLAKE-256	32	$< 2^{64}$	512	256	128
BLAKE-384	64	$< 2^{128}$	1024	384	256
BLAKE-512	64	$< 2^{128}$	1024	512	256

Table: Specification of available input, output, block and salt sizes for various BLAKE hash functions, size in bits. 9

⁹Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. Blake. http://www.131002.net/blake/blake.pdf, April 2012.

BLAKE construction

BLAKE is built on HAIFA (HAsh Iterative FrAmework) structure ¹⁰which is an improved version of Merkle-Damgård function.

Figure: Local wide construction of BLAKE's compression function¹¹

¹⁰Eli Biham and Orr Dunkelman. A framework for iterative hash functions - haifa. Cryptology ePrint Archive, Report 2007/278, 2007.

¹¹Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. Blake. http://www.131002.net/blake/blake.pdf, April 2012.

Padding rule

- For variant producing digest size 224, 256 input message is padded with '1' followed by '0' bits, so that length is 447 modulo 512. Followed by bit '1', and 64 bit unsigned big endian representation of block length.
- For variant producing digest size 384, 512 input message is padded by bit '1', followed by '0' bits till length is 895 modulo 1024. Followed by bit '1', and 128 bit unsigned big endian representation of block length in bits.

Compression algorithm

Algorithm 1 BLAKE Compression procedure¹²

- 1: $h^0 \leftarrow IV$
- 2: **for** i = 0, ..., N-1 **do**
- 3: $h^{i+1} \leftarrow compress(h^i, m^i, s, l^i)$
- 4: end for
- 5: **return** h^N

¹²Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. Blake. http://www.131002.net/blake/blake.pdf, April 2012.

BLAKE

Grøstl

$$\begin{pmatrix} v_0 & v_1 & v_2 & v_3 \\ v_4 & v_5 & v_6 & v_7 \\ v_8 & v_9 & v_{10} & v_{11} \\ v_{12} & v_{13} & v_{14} & v_{15} \end{pmatrix} \leftarrow \begin{pmatrix} h_0 & h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 & h_7 \\ s_0 \oplus c_0 & s_1 \oplus c_1 & s_2 \oplus c_2 & s_3 \oplus c_3 \\ t_0 \oplus c_4 & t_0 \oplus c_5 & t_1 \oplus c_6 & t_1 \oplus c_7 \end{pmatrix}$$

After initialization the matrix is operated for 14 or 16 rounds depending on version, on the following groups represented as $G_i(a, b, c, d)$

$$\begin{array}{lll} G_0(v_0,v_8,v_{12}) & G_1(v_1,v_5,v_9,v_{13}) & G_2(v_2,v_6,v_{10},v_{14}) \\ G_3(v_3,v_7,v_{11},v_{15}) & G_4(v_0,v_5,v_{10},v_{15}) & G_5(v_1,v_6,v_{11},v_{12}) \\ G_6(v_2,v_7,v_8,v_{13}) & G_7(v_3,v_4,v_9,v_{14}) \end{array}$$

BLAKE permutation operation for 224 and 256 variant

$$a \leftarrow a + b + (m_{\sigma_r(2i)} \oplus c_{\sigma_r(2i+1)})$$

$$d \leftarrow (d \oplus a) \gg 16$$

$$c \leftarrow c + d$$

$$b \leftarrow (b \oplus c) \gg 12$$

$$a \leftarrow a + b + (m_{\sigma_r(2i+1)} \oplus c_{\sigma_r(2i)})$$

$$d \leftarrow (d \oplus a) \gg 8$$

$$c \leftarrow c + d$$

$$b \leftarrow (b \oplus c) \gg 7$$

- + addition in modulo 2^{32}
- $\gg k$ rotate to right by k bits
- ⊕ bitwise XOR
- r permutation round
- i is from G_i

Permutation round selection, σ function¹³

σ_0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
σ_1	14	10	4	8	9	15	13	6	1	12	0	2	11	7	5	3
σ_2	11	8	12	0	5	2	15	13	10	14	3	6	7	1	9	4
σ_3	7	9	3	1	13	12	11	14	2	6	5	10	4	0	15	8
σ_{4}	9	0	5	7	2	4	10	15	14	1	11	12	6	8	3	13
σ_{5}	2	12	6	10	0	11	8	3	4	13	7	5	15	14	1	9
σ_6	12	5	1	15	14	13	4	10	0	7	6	3	9	2	8	11
σ_7	13	11	7	14	12	1	3	9	5	0	15	4	8	6	2	10
σ_8	6	15	14	9	11	3	0	8	12	2	13	7	1	4	10	5
σ_9	10	2	8	4	7	6	1	5	15	11	9	14	3	12	13	0

¹³ Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. Blake. http://www.131002.net/blake/blake.pdf, April 2012.

BLAKE permutation operation for 384 and 512 variant

$$a \leftarrow a + b + (m_{\sigma_r(2i)} \oplus c_{\sigma_r(2i+1)})$$

$$d \leftarrow (d \oplus a) \gg 32$$

$$c \leftarrow c + d$$

$$b \leftarrow (b \oplus c) \gg 25$$

$$a \leftarrow a + b + (m_{\sigma_r(2i+1)} \oplus c_{\sigma_r(2i)})$$

$$d \leftarrow (d \oplus a) \gg 16$$

$$c \leftarrow c + d$$

$$b \leftarrow (b \oplus c) \gg 11$$

+ addition in modulo 2⁶⁴

Finalization

$$h'_{0} \leftarrow h_{0} \oplus s_{0} \oplus v_{0} \oplus v_{8}$$

$$h'_{1} \leftarrow h_{1} \oplus s_{1} \oplus v_{1} \oplus v_{9}$$

$$h'_{2} \leftarrow h_{2} \oplus s_{2} \oplus v_{2} \oplus v_{10}$$

$$h'_{3} \leftarrow h_{3} \oplus s_{3} \oplus v_{3} \oplus v_{11}$$

$$h'_{4} \leftarrow h_{4} \oplus s_{0} \oplus v_{4} \oplus v_{12}$$

$$h'_{5} \leftarrow h_{5} \oplus s_{1} \oplus v_{5} \oplus v_{13}$$

$$h'_{6} \leftarrow h_{6} \oplus s_{2} \oplus v_{6} \oplus v_{14}$$

$$h'_{7} \leftarrow h_{7} \oplus s_{3} \oplus v_{7} \oplus v_{15}$$

Padding

- The message is split into blocks of 512 bits for variants of digest size upto 256 bits; and into 1024 bit block for variant of digest size above 256 bits.
- Bit '1' is appended, then $w = -N 65 \mod I$, 0 bits are appended; followed by 64 bit representation of (N + w + 65)/I.
- Due to encoding of message in padded block, the maximum size of message for short variants is $2^{73} 577$ bits, and that for variants above 256 is $2^{74} 1089$ bits.

Initial values and rounds 14

Permutations	Digest size	Recommended value of r
P_{512} and Q_{512}	8 - 256	10
P_{1024} and Q_{1024}	264 - 512	14

Table: Recommended number of rounds

n	iv _n
224	00 00 00 e0
256	00 00 01 00
384	00 00 01 80
512	00 00 02 00

Table: Initial values for Grøstl-n function.

¹⁴Søren Steffen Thomsen, Martin Schläffer, Christian Rechberger, Florian Mendel, Krystian Matusiewicz, Lars R. Knudsen, and Praveen Gauravaram.

Hashing the message

After padding, the message is broken to blocks, and processed sequentially. An initial $h_0 = iv$ is defined.

$$h_i \leftarrow f(h_{i-1}, m_i)$$
 for $i = 1, \ldots, t$.

Figure: Grøstl hash function 15

¹⁵Søren Steffen Thomsen, Martin Schläffer, Christian Rechberger, Florian Mendel, Krystian Matusiewicz, Lars R. Knudsen, and Praveen Gauravaram.

Input mapping

Mapping of the input bytes to the state in following order.

```
00
    80
             18
                  20
                      28
                           30
                               38
                               39
01
    09
             19
                  21
                      29
                           31
02
                 22
                               3a
             1a
03
                 23
                           33
                              3b
    0b
                      2b
04
                 24
                               3c
                               3d
05
         16 1e 26
                               3e
06
                           36
                 27
07
    0f
```

Permutation f function

$$f(h,m)=P(h\oplus m)\oplus Q(m)\oplus h.$$

Omega truncate function

The Ω function consists of a $trunc_n(x)$ that outputs only the trailing n bits of input x.

$$\Omega(x) = trunc_n(P(x) \oplus x).$$

Contents of P and Q function

The P and Q functions are represented by a round, with slight variation in variables they operate.

 $R = \textit{MixBytes} \cdot \textit{ShiftBytes} \cdot \textit{SubBytes} \cdot \textit{AddRoundConstant}$

Add Round Constant

 $A \leftarrow A \oplus C[i]$ where A is state matrix and C is constant matrix.

$$P_{1024}: C[i] = \begin{bmatrix} 00 \oplus i & 10 \oplus i & 20 \oplus i \dots f0 \oplus i \\ 00 & 00 & 00 \dots 00 \\ \vdots & \vdots & \vdots & \vdots \\ 0024: C[i] = \begin{bmatrix} ff & ff & ff \dots ff \\ \vdots & \vdots & ff \dots ff \\ ff \oplus i & ef \oplus i & df \oplus i \dots 0f \oplus i \end{bmatrix}$$

$$Q_{1024}: C[i] = \begin{bmatrix} fi & fi & fi \dots fi \\ \vdots & \vdots & ff \dots ff \\ ff \oplus i & ef \oplus i & df \oplus i \dots 0f \oplus i \end{bmatrix}$$

Substitute byte

$a_{i,j} \leftarrow S(a_{i,j}), 0 \le i < 8, 0 \le j < v.$																
	00	01	02	03	04	05	06	07	80	09	0a	0b	0c	0d	0e	0f
00	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
10	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9с	a4	72	c0
20	b7	fd	93	26	36	3f	f7	CC	34	a5	e5	f1	71	d8	31	15
30	04	с7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
40	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
50	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
70	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
80	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
90	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
a0	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b0	e7	c8	37	6d	8d	d5	4e	a9	6с	56	f4	ea	65	7a	ae	80
c0	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
d0	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
e0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
f0	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	b0	54	bb	16

Shift byte

Figure: ShiftBytes transformation of permutation $P_{1024}(top)$ and

Mix byte

$$A \leftarrow B \times A$$

$$B = \begin{bmatrix}
02 & 02 & 03 & 04 & 05 & 03 & 05 & 07 \\
07 & 02 & 02 & 03 & 04 & 05 & 03 & 05 \\
05 & 07 & 02 & 02 & 03 & 04 & 05 & 03 \\
03 & 05 & 07 & 02 & 02 & 03 & 04 & 05 \\
05 & 03 & 05 & 07 & 02 & 02 & 03 & 04 \\
04 & 05 & 03 & 05 & 07 & 02 & 02 & 03 \\
03 & 04 & 05 & 03 & 05 & 07 & 02 & 02 \\
02 & 03 & 04 & 05 & 03 & 05 & 07 & 02
\end{bmatrix}$$