高等机器学习

机器学习流程

6

微软亚洲研究院、、、、、

Outline

- Machine Learning Pipeline
- Machine Learning Programing
- Hands-on Examples

Machine Learning Pipeline

Overview

Data

- Training Set
 - Model will be fitted to this data
 - Most collected data are used
- Validation Set (a.k.a. dev set)
 - To verify Feature Engineering, Architecture Design and Hyper-parameter tuning
 - k-fold Cross Validation: 1 fold for validation, the rest for training, repeat k times with different validation folds
- Test set (holdout)
 - To verify the final result
 - Don't tune the model towards test set

《高等机器学习》

5

Data

- Partition ratios?
 - 0.8, 0.1, 0.1 for train, val, test
 - 0.9 for CV, 0.1 for test
- How to partition?
 - Randomly
 - Chronologically
 - •
- Retrain by all data after validation, if data is not enough

《高等机器学习》

6

Data Cleaning

- Data is not always correct
 - Hardware issues cause data corruption or loss
 - Human labeling error
 - ...

Data Cleaning – Missing Value Fill

- Constant fill
 - 0, -1, ...
- Random fill based a normal or uniform distribution.
- Mean or median fill
- Missing categorial value
 - Most frequently value
 - A new category to represent missing values
- Directly remove rows/columns if too many missing values

《高等机器学习》

8

Data Cleaning – Outlier Detection

• Z-score

•
$$z = \left| \frac{x - \mu}{\sigma} \right|$$

《高等机器学习》

q

Data Cleaning – Outlier Detection

- Clustering based solution
- Refer to `sklearn.neighbors.LocalOutlierFactor`

10

Data Preprocessing

- Normalization / standardization
 - Often required for stochastic models, such as neural networks
 - GBDT doesn't need this
- Categorical values conversion
 - Most machine learning cannot handle categorical values directly
 - Need to convert to numerical values
 - one-hot encoding, ordinal encoding, target encoding, ...

Categorical values	one hot encoding	Ordinal encoding
Α	1, 0, 0	0
В	0, 1, 0	1
С	0, 0, 1	2
В	0, 1, 0	1

Both parameters can be

updated in equal proportions

11

Data Type

	Pattern	Complete Information	Easy to Human	Permutation invariant
Image	Spatial locality	Yes	Yes	No
Sequence	Sequential dependency	Mostly	Yes (In Text & Speech)	No
Tabular	Unknown	No	No	Yes

Model Selection

- Choose an appropriate according to task/data and scenarios
- CNN
 - Image related tasks
- RNN, Transformer
 - Sequence
- GBDT
 - Adaptive and robustness
 - For all kinds of tasks with tabular data
- Linear model
 - Rapidly inference and online update

Feature Engineering

- Let model easily understand the data, leverage prior knowledge
 - Some patterns are unknown just from data
 - Data is too little to conclude these patterns
 - Experiences from domain experts
- Principle: Richer information, more is often better
- External information, such as holiday, geographic, etc
- Data analysis and visualization
- Note: Don't leak any label information into features

Architecture Design

- In deep learning, feature engineering is not needed, but the Architecture matters
- Introduce prior into model architecture
- Appropriate model complexity
- Leverage existing architectures

Hyper-parameter Tuning

- There are many hyper-parameters needed to be tuned
 - Learning rate, number of epochs, ...
- Use validation data / cross validation for tuning

Training Perf.	Validation Perf.	
Bad	Bad	under-fit, try complex settings, such as more iterations
Good	Bad	Over-fit, try simple settings
Good	Good	Good-fit

Automated ML

- Remove/Reduce human efforts in machine learning
 - Human efforts is needed in model selection, feature engineering, architecture design and hyper-parameter search
- Often need to search, most Auto-ML works aim to search an as good as possible solution within the limit time/resource
- More resource costs

Model Validation

- Measure metrics
 - Regression: MSE, MAE, ...
 - Binary classification: error, logloss, auc, ...
 - Classification: error, top-k accuracy, ...
 - Ranking: MAP, NDCG, ...
- Offline Test: Metrics over test set
 - Note: don't tune the model according to the test set
- Online A/B test

Model Serving

- Deploy model into online production
 - Optimize for response time
 - Improve model inference speed
- Refresh/update model periodically
 - New data is generated every second in online production, and the distribution of it may change
 - Need to update the model, to ensure the real-time performance
- Online learning
 - Inference and learning simultaneously

Machine Learning Programing

Overview

- Python
 - The most widely-used program language for machine learning
- NumPy
 - Data processing, matrix manipulation
- SkLearn (scikit-learn)
 - Basic models
- XGBoost & LightGBM
 - For all kinds of tabular data
- Tensorflow & Pytorch
 - For image, text and speech

Python

- Brief introduction
 - http://www.voidspace.org.uk/python/articles/python_datatypes.shtml
 - https://scipy-lectures.org/
- Package Management: pip, conda
- Use python 3
- Virtual environments
 - Different python/package versions
 - Multi-user servers

NumPy

- NumPy is the fundamental package for scientific computing with Python.
 - a powerful N-dimensional array object
 - sophisticated (broadcasting) functions
- Tutorial
 - https://www.numpy.org/devdocs/user/quickstart.html
- Many operators in Tensorflow and PyTorch are from NumPy

NumPy: Creating Arrays

NumPy: Arithmetic

NumPy: Indexing

NumPy: Aggregation

NumPy: Creating Matrices

NumPy: Matrix Arithmetic

NumPy: Dot Product

NumPy: Matrix Indexing

NumPy: Matrix Aggregation

NumPy: Matrix Shape Manipulation

SkLearn

- Basic Machine Learning library in Python
- Process:
 - 1. get the data
 - 2. define the model
 - 3. fit: train the model by data
 - 4. predict: use the fitted model to predict over the new data

```
In [1]: import numpy as np
      from sklearn.datasets import load iris
      from sklearn.neighbors import KNeighborsClassifier
      iris = load_iris() # Get the dataset
      X, y = iris.data, iris.target
      X.shape, y.shape
Out[1]: ((150, 4), (150,))
In [2]: X[0], y
Out[2]: (array([5.1, 3.5, 1.4, 0.2]),
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
           In [3]: model = KNeighborsClassifier(n neighbors=15)
Out[3]: KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
             metric_params=None, n_jobs=None, n_neighbors=15, p=2,
             weights='uniform')
In [4]: model.fit(X, y) # fit the data
Out[4]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
             metric_params=None, n_jobs=None, n_neighbors=15, p=2,
             weights='uniform')
In [5]: # prediction
      pred = model.predict(iris.data)
      print("error rate:", np.sum(pred != y) / len(y))
      error rate: 0.0133333333333333334
```


XGBOOST & LightGBM

- Similar to sklearn
- Data preprocessing and feature engineering matters

```
In [1]: import lightgbm as lgb
        from sklearn.datasets import load boston
        from sklearn.metrics import mean squared error
        from sklearn.model_selection import train_test_split
In [2]: boston = load boston()
        X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.1, random_state=42)
In [3]: # define the model
        gbm = lgb.LGBMRegressor(num_leaves=31,
                                learning rate=0.1,
                                n estimators=5)
In [4]: # start training
        gbm.fit(X_train, y_train,
                eval_set=[(X_test, y_test)],
                eval_metric='l1',
                early stopping rounds=5)
                valid 0's 12: 54.8782 valid 0's 11: 5.28594
        Training until validation scores don't improve for 5 rounds.
        [2]
                valid 0's l2: 46.7178 valid 0's l1: 4.85663
        [3]
                valid 0's 12: 40.0558 valid 0's 11: 4.52401
                valid 0's 12: 34.8406 valid 0's 11: 4.24429
        [4]
                valid 0's l2: 30.6244 valid 0's l1: 3.99647
        [5]
        Did not meet early stopping. Best iteration is:
                valid_0's l2: 30.6244 valid_0's l1: 3.99647
Out[4]: LGBMRegressor(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0,
               importance_type='split', learning_rate=0.1, max_depth=-1,
               min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0,
               n estimators=5, n jobs=-1, num leaves=31, objective=None,
               random_state=None, reg_alpha=0.0, reg_lambda=0.0, silent=True,
               subsample=1.0, subsample_for_bin=200000, subsample_freq=0)
In [5]: #start prediction
        y_pred = gbm.predict(X_test)
        print('The rmse of prediction is:', mean squared error(y test, y pred) ** 0.5)
```

The rmse of prediction is: 5.533928264286112

Deep Learning Toolkits

- Unlike traditional ML models, NN is more like the building blocks, you need to build the model by yourself
 - Different NN models essentially are different models
- DNN toolkits contains rich basic blocks, and you can use them to build your own models
- Therefore, compared with sklearn, DNN toolkits are not so straightforward to use

Computational Graph (CG)

• CG: represent a math function using the language of graph theory

Code DNN using Computational Graph

- DNN is a very complicated function
 - Represent it as a Directed Acyclic Graph
 - Node: operator
 - Edge: data flow

Why CG: Facilitate Automatic Differentiation

 Chaining the gradient backward in the topological order of the graph nodes

Deep Learning Toolkits

• TensorFlow

PyTorch

TensorFlow: Static CG

- Static CG: build the CG at first, the re-use it for several times
 - Define and Run
- Example:

```
#Feed
#创建占位符
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
#使用placeholder定义op
output = tf.multiply(input1, input2)

with tf.Session() as sess:
    #feed数据以字典的方式传入
    print(sess.run(output, feed_dict={input1: [7.], input2: [2.]}))
```

输出结果

```
[ 14.]
```

PyTorch: Dynamic CG

- Dynamic CG: build the graph during runtime
 - Define **by** run
- Example:

```
for t in range(500):
    # Forward pass: compute predicted y
   h = x.dot(w1)
   h_relu = np.maximum(h, 0)
   y_pred = h_relu.dot(w2)
   # Compute and print loss
   loss = np.square(y_pred - y).sum()
   print(t, loss)
    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
   grad_w2 = h_relu.T.dot(grad_y_pred)
   grad_h_relu = grad_y_pred.dot(w2.T)
   grad_h = grad_h_relu.copy()
   grad_h[h < 0] = 0
   grad_w1 = x.T.dot(grad_h)
   # Update weights
   w1 -= learning_rate * grad_w1
   w2 -= learning_rate * grad_w2
```

Comparison of Static GC and Dynamic GC

	Static GC	Dynamic GC
Modify graph at runtime	Hard	Easy
Varying length inputs handle	Hard	Easy
Difficulty to code	Hard	Easy
Performance optimization	High	Low

Hands-on Examples

Contents

- Sklearn
 - House price
 - https://github.com/ageron/handsonml/blob/master/02 end to end machine learning project.ipynb
- LightGBM
 - Click Prediction
 - https://nbviewer.jupyter.org/github/microsoft/recommenders/blob/444e6c4546f13203e 1390e06ba9f9fc95081e29e/notebooks/00 quick start/lightgbm tinycriteo.ipynb
- PyTorch
 - Image classification
 - https://pytorch.org/tutorials/beginner/blitz/cifar10 tutorial.html