

ising computers cse 1051

20.1 RECURSION EXAMPLES

Objectives:

To learn and understand the following concepts:

- ✓ To design a recursive algorithm
- ✓ To solve problems using recursion
- ✓ To understand the relationship and difference between recursion and iteration

Session outcome:

At the end of session one will be able to:

- Understand recursion
- Write simple programs using recursive functions

Steps to Design a Recursive Algorithm

■ Base case:

It prevents the recursive algorithm from running forever.

■ Recursive steps:

- Identify the base case for the algorithm.
- Call the same function recursively with the parameter having slightly modified value during each call.
- This makes the algorithm move towards the base case and finally stop the recursion.

Factorial - Recursive implementation

At each step, with time moving left to right:

starts in calls calls calls calls returns to returns to returns to main factorial(3) factorial(2) factorial(1) factorial(0) factorial(1) factorial(2) factorial(3) factorial(0) = 1factorial n = 3factorial(n) = n * factorial(n-1) [for n>0] n = 0Finding fact (3) long fact (long n) { ret(1*fact(0)) returns 1 if (n == 0)ret(1*1) = 1return (1); factorial factorial factorial return (n * fact (n-1)); n = 1 🐪 n = 1n = 1ret(2*fact(1)) ret(1*fact(0)) ret(1*fact(0)) returns 1 ret(2*1) = 2factorial factorial factorial factorial factorial n = 2n = 2n = 2n = 2n = 2ret(3*fact(2)) ret(2*fact(1)) ret(2*fact(1)) ret(2*fact(1)) ret(2*fact(1)) returns 2 ret(3*2) = 6factorial factorial factorial factorial factorial factorial factorial n = 3n = 3n = 3n = 3n = 3n = 3n = 3ret(3*fact(2)) ret(3*fact(2)) ret(3*fact(2)) ret(3*fact(2)) ret(3*fact(2)) ret(3*fact(2)) returns 6

main

main

Χ

main

returns to

main

x = 6

Fibonacci Numbers: Recursion

```
fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2) [for n>1]
So fib(4)
 = fib(3) + fib(2)
 = (fib(2) + fib(1)) + (fib(1) + fib(0))
 = ((fib(1) + fib(0)) + 1) + (1 + 0)
 = (1 + 0) + 1) + (1 + 0)
 = 3
```

Fibonacci Numbers: Recursion

Fibonacci series is 0,1, 1, 2, 3, 5, 8 ...

```
int fib(int n)
{
   if (n <= 1)
     return n;
     else
     return (fib(n-1) + fib(n-2));
}</pre>
```

$$fib(n) = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ fib(n-1) + fib(n-2) & \text{if } n > = 2 \end{cases}$$

First, the terms are numbered from 0 onwards like this:

n =	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
x _n =	0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	

Recursive Calls initiated by Fib(4)

Fibonacci Series using Recursion

```
int fibo(int);
int main(void){
 int n,i, a[20], fibo;
 printf("enter any num to n\n");
 scanf("%d", n);
 printf("Fibonacci series ");
 for (i=1; i<=n; i++)
  fibo = fib(i);
  printf("%d ", fibo);
 return 0;
```

```
int fib(int n)
{
  if (n <= 1)
    return n;
  else
    return (fib(n-1) + fib(n-2));
}</pre>
```

Static Variable

The value of static variable persists until the end of the program.

Static variables can be declared as

```
static int x;
```

A static variable can be either an internal or external type depending on the place of declaration.

```
void fnStat();
int main() {
  int i;
for( i= 1; i<=3; i++)
  fnStat();
  return 0;
}</pre>
```

```
void fnStat(){
static int x = 0;
x = x + 1;
printf("x=%d", x);
}
```

Output: x = 1 x = 2 x = 3

Reversing a Number

```
#include <stdio.h>
int rev(int);
int main() {
 int num;
 printf("enter number)";
 scanf("%d",num);
 printf("%d", rev(num));
 return 0;
```

```
int rev(int num) {
   static int n = 0;
   if(num > 0)
    n = (n*10) + (num%10);
   else
     return n;
   return rev(num/10);
```

Output

$$num = 234$$

rev = 432

GCD: Recursion

$$\gcd(x,y) = \begin{cases} x & \text{if } y = 0\\ \gcd(y, \operatorname{remainder}(x,y)) & \text{if } x \ge y \text{ and } y > 0 \end{cases}$$

```
int gcd(int x, int y)
{
  if (x == 0)
        return (y);
  if (y==0)
        return (x);
  return gcd(y, x % y);
}
```

```
Output:
x= 24 , y = 9
qcd = 3
```

```
gcd(24,9) ← control in gcd() on call

gcd(9,24%9) gcd(9,6)
gcd(6,9%6) gcd(6,3)
gcd(3,6%3) gcd(3,0)
return values return 3
return 3
return 3
return 3
```


Go to posts/chat box for the link to the question submit your solution in next 2 minutes

The session will resume in 3 minutes

Finding product of two numbers

```
#include <stdio.h>
int product(int, int);
int main()
  int a, b, result;
  printf("Enter two numbers to find their product: ");
  scanf("%d%d", &a, &b);
  result = product(a, b);
  printf("%d * %d = %d\n", a, b, result);
  return 0;
           Enter two numbers to find their product: 10 20
           10*20=200
```

```
int product(int a, int b)
  if (a < b)
    return product(b, a);
  else if (b != 0)
    return (a + product(a, b - 1));
  else
    return 0;
```


Division of two numbers

```
#include <stdio.h>
int divide(int a, int b);
int main()
  int a,b;
  printf("Enter two numbers for
division");
  scanf("%d%d", &a,&b);
  printf("%d/%d=%d",a,b, divide(a,b));
return 0;
```

```
int divide(int a, int b)
          if(a - b \le 0)
             return 1;
        else
          return divide(a - b, b) + 1;
Output:
Enter two numbers for division: 2010
20/10=2
```


Recursion - Should I or Shouldn't I?

- Pros
- Recursion is a natural fit for recursive problems.
- Cons
 - Recursive programs typically use a large amount of computer memory and the greater the recursion, the more memory used.
 - Recursive programs can be confusing to develop and extremely complicated to debug.

Recursion vs Iteration

RECURSION	ITERATION
Uses more storage space requirement	Less storage space requirement
Overhead during runtime	Less Overhead during runtime
Runs slower	Runs faster
A better choice, a more elegant solution for recursive problems	Less elegant solution for recursive problems

Recursion – Do's

- You must include a termination condition or Base Condition in recursive function; Otherwise your recursive function will run "forever" or infinite.
- Each successive call to the recursive function must be nearer to the base condition.

Summary

- Definition
- Recursive functions
- Problem Solving Using Recursion