

MAT255I Análisis Funcional

Sebastián Guerra (sebastian.guerrap@uc.cl) Profesor: Nikola Kamburov (nikamburov@mat.uc.cl)

Apuntes aún no revisados, por favor no distribuir

Versión: 13 de noviembre de 2023

Índice general

1.	Intr	o al Análisis Funcional	4
	1.1.	¿Qué estudia el Análisis Funcional?	4
	1.2.	Motivación	5
	1.3.	Objeto central: espacio de Banach	5
	1.4.	Resultados que vamos a ver	6
2 .	Esp	acios de Banach	8
	2.1.	Nociones básicas	8
		2.1.1. Espacios Normados	8
		2.1.2. Espacios de Banach	1
	2.2.	Operadores y funcionales	14
		2.2.1. Operadores Lineales	14
		2.2.2. Espacio Dual	18
		2.2.3. Espacio cociente	21
		2.2.4. Completación de espacios normados	23
	2.3.	El teorema de Baire	23
		2.3.1. Categorias de Baire	23
		2.3.2. Aplicación	27
		2.3.3. Teorema de la Aplicación Abierta	28
		2.3.4. Teorema del Grafo Cerrado	31
3.	Espa	acios de Hilbert	3
	3.1.		33
	3.2.		36
	3.3.		10
	3.4.		11
	3.5.	Series de Fourier	18
		3.5.1. Series de Fourier y convergencia	18
			30
	3.6.	Repaso/Crash course en teoría de la medida	33
			34
		3.6.2. La integral de Lebesgue	57
	3.7.		70
		3.7.1. Espacios L^p	70
		3.7.2. Los espacios L^p y dualidad	74
			75
	3.8.	Teorema de Hahn-Banach	38

3	ÍNDICE GENERAL Capítu	ılo 0
4.	Teoría de Operadores	96
	4.1. Relaciones de Ortogonalidad	96
	4.2. Operadores Compactos	
	4.3. La Teoría de Riesz-Fredholm	

Intro al Análisis Funcional

1.1. ¿Qué estudia el Análisis Funcional?

Estudia los espacios vectoriales de dimensión infinita y las transformaciones lineales entre ellos.

Definición 1.1.1. Un espacio vectorial V sobre \mathbb{K} campo de escalares tiene dimensión infinita si $\forall n \in \mathbb{N}$ hay n elementos de V que son linealmente independientes sobre \mathbb{K}

Ejemplo: $V = C([0,1], \mathbb{R}) = \text{funciones reales continuas en } [0,1].$ $\{1, x, \dots, x^{n-1}\} \subseteq V$ es linealmente independiente sobre \mathbb{R} .

Demostración.
$$\sum_{k=0}^{n-1} a_k x^k \equiv 0, \ a_k \in \mathbb{R}.$$

Reconocemos que existe la operación $\frac{d}{dx}$ definida en $C^{\infty}([0,1],\mathbb{R})$, funciones suaves, y la operación evaluar en x=0.

Evaluando en $x = 0 \rightarrow a_0 = 0$. Derivamos a los lados.

$$\sum_{k=1}^{n-1} a_k k x^{k-1} \equiv 0$$

y ahora evaluamos en x = 0:

$$a_1 = 0$$

...

Demostración alternativa. Reconocemos que hay un producto interno en $V = C([0,1],\mathbb{R})$

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$$

$${f_k = \sin(\pi kx)}_{k=1}^n \subseteq V$$

$$\langle \sin(\pi kx), \sin(\pi lx) \rangle = \begin{cases} 0 & k \neq l \\ \frac{1}{2} & k = l \end{cases}$$
$$S = \sum_{k=1}^{n} a_k f_k \equiv 0$$
$$0 = \langle S, f_k \rangle = \left\langle \sum a_k f_k, f_l \right\rangle = a_l \langle f_0, f_l \rangle = \frac{1}{2} a_l$$

 $\implies a_l = 0, \forall l = 1, \ldots, n$

1.2. Motivación

Ejemplo (Ecuación de Poisson):

$$\begin{cases} \Delta u = f & \text{en } \Omega \subseteq \mathbb{R}^n \\ u = 0 & \text{en } \partial \Omega \end{cases}$$

Seba Aañdir dibujo

El problema se reformula así:

$$\begin{cases} D = \Delta : x \to Y \ni f \\ Du = f \end{cases}$$

tiene una solución $u \in X$ para ciertos espacios X, Y apropiados.

El Análaisis Funcional busca construir teoría más general que aplica para todos los problemas que comparten las mismas características topológicas/algebraicas/métricas.

1.3. Objeto central: espacio de Banach

Definición 1.3.1 (Espacio de Banach). $(V, ||\cdot||)$ es un espacio de Banach si es un espacio normado completo (clave para sacar límites).

 $\{\text{Espacios de Hilbert}, (V, \langle \cdot, \cdot \rangle) completos\} \subseteq \{\text{Espacios de Banach}, (V, ||\cdot||)\} \subseteq \{\text{Espacios métricos}, (V, d) control of the second of the secon$

Seba Arreglar

Lógica de inclusiones

1. $\langle \cdot, \cdot \rangle$ induce una norma $||\cdot||$

$$||v|| = \langle v, v \rangle^{1/2}$$

2. $||\cdot||$ induce una métrica $d(\cdot,\cdot)$

$$d(v, w) = ||v - w||$$

1.4. Resultados que vamos a ver

1. Resultados que se parecen a los teoremas que conocemos en la situación de dimensión finita.

Ejemplo: Cada funcional lineal en \mathbb{R} $(l : \mathbb{R}^n \to \mathbb{R})$ se puede representar como $l(v) = v \cdot w$ para algún vector (único) $w \in \mathbb{R}^n$.

En la situación de dimensión ∞ , se tiene el Teorema de Representación de Riesz:

Teorema 1.4.1 (Representación de Riesz). Sea (V, \langle, \rangle) un espacio de Hilbert $y \mid V \rightarrow \mathbb{R}$ un funcional lineal continuo . Entonces existe un único $w \in V$, tal que

$$l(v) = \langle v, w \rangle$$

2. Resultados son muy diferentes de la situación en dimensión finita. contraintuitivos .

Ejemplo: $\overline{B_1(0)} \subseteq \mathbb{R}^n$ es compacta (Heine-Borel). En dim $V = \infty$, este teorema es falso.

Proposición 1.4.2. Sea V un espacio de Banach y sea $B = \{v \in V : ||v|| \le 1\}$. B es compacto en $V \iff \dim V < \infty$

Ejemplo: En particular, la bola unitaria cerrada en

$$B \subseteq L^p([0,1]), \quad p \in (1,\infty)$$

no es compacta.

⇒ motiva la definición de topologías débiles.

Espacios de Banach

2.1. Nociones básicas

2.1.1. Espacios Normados

Definición 2.1.1 (Espacios métricos). Un espacio métrico (X, d) y $d: X \times X \to [0, \infty)$ la métrica que satisface:

- 1. $d(x,y) = 0 \iff x = y$
- 2. (simetría) d(x,y) = d(y,x)
- 3. (Designaldad triangular) $d(x,y) \leq d(x,z) + d(z,y)$

Definición 2.1.2. Sea V un espacio vectorial (sobre \mathbb{R} o \mathbb{C}). Una norma en V es una función $||\cdot||:V\to [0,\infty)$ que satsiface:

- 1. $||v|| = 0 \iff v = 0$
- $2. ||\lambda v|| = |\lambda| \cdot ||v||$
- 3. (Desigualdad triangular) $||v+w|| \le ||v|| + ||w||$

Una función $||\cdot||:V\to [0,\infty)$ que satisface solo 2. y 3. se llama semi-norma .

Una espacio vectorial V con una norma se llama Espacio normado $(V, ||\cdot||)$.

 $\textbf{Proposición 2.1.1.} \ (V, ||\cdot||) \ \textit{define un espacio métrico con métrica} \ d(v, w) := ||v-w||.$

Ejemplo: $V = \mathbb{R}^n$, \mathbb{C}^n tiene la estructura de espacio normado:

$$|x|_2 := \left(\sum_{k=1}^n |x_k|^2\right)^{1/2}, \quad x = (x_1, \dots, x_n)$$

• En \mathbb{R}^2 , $|(x_1, x_2)| := |x_1|$ define una semi-norma:

$$|(x_1, x_2)| = 0 \iff x_1 = 0, x_2 \in \mathbb{R}$$

 $|x|_{\infty} = \max_{k=1,\dots,n} \{x_k\}$ es una norma.

$$|x|_p := \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}, \quad p \in [1, \infty)$$

Seba Añadir dibujos de norma infinito y norma 1

Proposición 2.1.2. En \mathbb{R}^n y \mathbb{C}^n todas normas son equivalentes: si $||\cdot||_1$, $||\cdot||_2$ son 2 normas, existe c>0 tal que

$$\frac{1}{c}||v||_2 \le ||v||_1 \le c||v||_2, \quad \forall v \in V$$

Definición 2.1.3. Sea X un espacio métrico. Definimos

$$C_{\infty}(X) := \{ f : X \to \mathbb{C} \text{ continuas y acotadas} \}$$

Ejemplo: $C_{\infty}([0,1]) = C([0,1])$ (funciones continuas)

Proposición 2.1.3. $||f||_{\infty} := \sup_{x \in X} |f(x)|$ define una norma en $C_{\infty}(X)$.

Demostración. 1. $||f||_{\infty} = 0 \iff f(x) = 0 \forall x \in X$.

2.

$$||\lambda f||_{\infty} = \sup_{x} |\lambda f(x)|$$
$$= \sup_{x} |\lambda| \cdot |f(x)|$$
$$= |\lambda| \cdot ||f||_{\infty}$$

3.

$$|f_1(x) + f_2(x)| \le |f_1(x)| + |f_2(x)|$$

 $\le ||f_1||_{\infty} + ||f_2||_{\infty}$

Convergencia en $||\cdot||_{\infty}$

$$f_n \to f$$
, en $C_\infty(X)$

 \sin

$$||f_n - f||_{\infty} \xrightarrow{n \to \infty} 0$$

$$\iff \forall \varepsilon > 0 \exists N \in \mathbb{N} \text{ tal que}$$

$$||f_n - f||_{\infty} < \varepsilon, \quad \forall n \ge N$$

$$\iff |f_n(x) - f(x)| < \varepsilon, \quad \forall x \in X$$

Ejemplo: $\mathbb{K} = \mathbb{R} \circ \mathbb{C}$.

$$\ell^p(\mathbb{K}) := \{ \{a_k\}_k \subseteq \mathbb{K} : ||a||_p < \infty \}$$

donde

$$||a||_p := \begin{cases} \left(\sum_{k=1}^{\infty} |a_k|^p\right)^{1/p} & p \in [1, \infty) \\ \sup_{k \in \mathbb{N}} |a_k| & p = \infty \end{cases}$$

Sea (X, \mathcal{B}, σ) un espacio de medida.

$$L^p(x,\sigma) := \{ f : X \to \mathbb{K} \, \sigma \text{-medibles, tales que} ||f||_{L^p} < \infty \}$$

donde

$$||f||_{L^p} := \left(\int |f|^p \, d\sigma\right)^{1/p}$$

$$||f||_{L^{\infty}} := \operatorname{ess\,sup}_{x} |f|$$

Ejemplo: $X = [0, 1], \sigma = \text{medida de Lebesgue}.$ En C([0, 1]) definimos

$$||f||_{\infty} = \sup |f(x)|$$

$$||f||_{L^1} = \int |f(x)| \, dx$$

Estas 2 normas no son equivalentes

2.1.2. Espacios de Banach

Definición 2.1.4. Un espacio normado $(V, ||\cdot||)$ es un espacio de Banach si es completo con respecto a la métrica inducida.

Ejemplo: \mathbb{R}^n , \mathbb{C}^n son espacios de Banach (con respecto a cualquier norma) $L^p(X, \mathcal{B}, \sigma)$ es un espacio de Banach (cuando (X, \mathcal{B}, σ) es completo).

Proposición 2.1.4. $C_{\infty}(X)$ es un espacio de Banach.

Demostración. $\{f_n\} \subseteq V = C_{\infty}(X)$ de Cauchy.

- 1. Adivinar el límite f.
- 2. Probar la convergencia:

$$||f_n - f|| \to 0$$

3. f está en el espacio.

 $\forall \varepsilon > 0 \exists N = N(\varepsilon) \text{ tal que}$

$$||f_n - f_m||_{\infty} \le \varepsilon, \quad \forall n, m \ge N$$

Para todo $x \in X$ fijo, tenemos entonces

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} \le \varepsilon$$

Esto es $\{f_n(x)\}_n$ es Cauchy en \mathbb{C} .

$$\implies f(x) := \lim_{n \to \infty} f_n(x)$$
 existe

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)|$$

 $\leq \varepsilon \quad \forall n \geq N(\varepsilon) \text{ independiente de } x \in X$

$$\implies ||f_n - f||_{\infty} < \varepsilon, \quad \forall n \ge N(\varepsilon)$$

Esto es $f_n \to f$ uniformemente sobre X.

 $\implies f$ es continua sobre X.

¿Por qué f es acotada?

Considere $\varepsilon = 1$

$$\implies ||f_n - f_{\bar{N}}||_{\infty} \le 1$$

cuando $n \geq \bar{N} := N(1)$.

$$||f_n||_{\infty} \le ||f_{\bar{N}}||_{\infty} + ||f_n - f_{\bar{N}}||_{\infty}$$

 $\le ||f_{\bar{N}}||_{\infty} + 1$

$$\implies f(x) = \lim_{n \to \infty} f_n(x)$$
 es acotada

Definición 2.1.5. Sea $(V, ||\cdot||)$ un espacio normado. $v_n \in V, n \in \mathbb{N}$. $\sum_{n=1}^{\infty} v_n$ es sumable si

$$S_m = \sum_{n=1}^m v_n$$

converge.

 $\sum_{n} v_n$ es absolutamente sumable si

$$\sum_{n=1}^{\infty} ||v_n||$$

converge.

Proposición 2.1.5. Si $\sum_{n=1}^{\infty} v_n$ es absolutamente sumable, entonces, $\{S_m\}$ es Cauchy

Teorema 2.1.6. Un espacio normado $(V, ||\cdot||)$ es un espacio de Banach si y solo si toda serie absolutamente sumable es sumable.

 $Demostración. \iff :$

- 1. Tome una sucesión $\{v_n\}$ de Cauchy. Es suficiente demostrar que una subsucesión converge. $v_{n_k} \to v$ en V. Fije $\varepsilon > 0$. $\Longrightarrow ||v_m v|| \le \underbrace{||v_m v_{n_k}||}_{\le \varepsilon/2} + \underbrace{||v_{n_k} v||}_{\le \varepsilon/2} \le \varepsilon$, tomando k, m suficientemente grandes.
- 2. Dos trucos: Podemos "acelerar" la convergencia. Existe una subsucesión $\{v_{n_k}\}$ tal que

$$||v_{n_{k+1}} - v_{n_k}|| \le 2^{-k} \tag{2.1}$$

$$||v_n - v_m|| < 2^{-k} \quad \forall n, m > N(2^{-k}) := N_k$$

$$n_k := N_1 + \ldots + N_k$$

Afirmamos que $\{v_{n_k}\}$ converge.

Truco de la suma telescopica.

$$\sum_{k=1}^{\infty} (v_{n_{k+1}} - v_{n_k})$$

es absolutamente sumable debido a (1.1) entonces es sumable:

$$\sum_{k=1}^{m} (v_{n_{k+1}} - v_{n_k}) \xrightarrow{m \to \infty} S \in V$$

Sumas parciales convergen

$$v_{n_{m+1}} - v_{n_1} \xrightarrow{m \to \infty} S \in V$$

$$\implies v_{n_{m+1}} \xrightarrow{m \to \infty} S + v_{n_1} \in V$$

2.2. Operadores y funcionales

2.2.1. Operadores Lineales

Nos interesan las aplicaciones lineales entre espacios normados.

Ejemplo:

$$T: C([0,1], \mathbb{C}) \to C([0,1], \mathbb{C})$$
$$f \to F(x) = \int_0^x f(y) \, dy$$

T es lineal.

$$F(x) = \int_0^1 \mathbb{1}_{\{y < x\}} f(y) \, dy$$

Definición 2.2.1. V, W son 2 espacios vectoriales.

 $T:V\to W$ es lineal si

$$T(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 T(v_1) + \lambda_2 T(v_2) \quad \forall v_1, v_2 \in V \text{ y } \lambda_1, \lambda_2 \in \mathbb{K}$$

$$T:C([0,1])\to C([0,1])$$

$$f\to \int_0^1 \underbrace{K(x,y)}_{\text{Kernel}} f(y)\,dy:=Tf(x)$$

operador integral. Cuando $K \in C([0,1]^2), T$ está bien definida.

En dim ∞ vamos a exigir que los operadores lineales sean continuos.

Definición 2.2.2. $T:V\to W,V,W$ son espacios métricos. Decimos que T es continuo si

$$T^{-1}(O) \stackrel{ab}{\subseteq} V, \, \forall O \stackrel{ab}{\subseteq} V$$

$$\iff T^{-1}(C) \overset{cerr}{\subseteq} V \quad \forall C \overset{cerr}{\subseteq} W$$

 $\iff v_n \to v \text{ en } V \text{ entonces } Tv_n \to Tv \text{ en } W.$

Teorema 2.2.1. Sean V,W espacios normados. Entonces $T:V\to W$ operador lineal es continuo si y solo si

$$||Tv||_W \le C||v|| \quad \forall v \in V \tag{2.2}$$

para alguna constante C.

Definición 2.2.3. Operador lineal que satisface (2,2) se llama acotado .

 $Demostraci\'on. \implies$: Sea T continuo. $B:=\{||w||_W<1\}$ $0\in T^{-1}(B)=B^v_r$

$$T^{-1}(B) \supseteq B_r^v := \{ v \in V : ||v||_V < r \}$$

pues $T^{-1}(B)$ es abierto

$$\implies T^{-1}(B) \supseteq \{v \in V : ||v||_V = \frac{r}{2}\}$$

esfera de radio $\frac{r}{2}$.

$$||T\bar{v}||_W < 1$$

Todo $v \in V, v \neq 0$ se puede escribir como $v = \frac{\bar{v}}{r/2}||v||_V$ Para algún $\bar{v} \in S^v_{r/2}$

Por lo tanto

$$||Tv||_{W} = ||T(\frac{\bar{v}}{r/2}||v||_{V})||_{W}$$

$$= ||\frac{2}{r}||v||_{V}T(\bar{v})||_{W}$$

$$= \frac{2}{r}||v||_{V}||T\bar{v}||_{W} < 1$$

$$\leq \frac{2}{r}||v||_{V} \quad \forall v \neq 0$$

Ejemplo:

$$Tf(x) := \int_0^1 K(x, y) f(y) \, dy$$

es acotado en $(C([0,1]),||||_{\infty})$

$$|Tf(x)| \le \int_0^1 \underbrace{|K(x,y)|}_{\le M} |f(y)| \, dy$$

$$\le M \int_0^1 |f(y)| \, dy \le M ||f||_{\infty} \quad \forall x \implies ||Tf||_{\infty} \le M ||f||_{\infty}$$

Definición 2.2.4. Sean V, W espacios normados. Defina $\mathcal{B}(V, W)$ como el conjunto de operadores lineales continuos acotados de V a W. Obviamente $\mathcal{B}(V, W)$ es un espacio vectorial.

Norma operador $T: V \to W$:

$$||T|| := \sup_{||v||=1} ||Tv||$$

Obviamente, $T \in \mathcal{B}(V, W), ||T|| < \infty$

$$||Tv|| \le C \underbrace{||v||}_{1} = C$$

$$\implies ||T|| \le C$$

De hecho, para $T \in \mathcal{B}(V, W)$

$$\begin{aligned} ||T|| &= \sup_{v \neq 0} \frac{||Tv||}{||v||} = \sup_{||v|| \leq 1} ||Tv|| \\ &= \inf\{C > 0 : ||Tv|| \leq C||v|| \quad \forall v \in V\} \end{aligned}$$

Tenemos $||Tv|| \le ||T||||v||$

Teorema 2.2.2. $\mathcal{B}(V,W)$ es un espacio normado bajo la norma operador.

$$\begin{aligned} Demostración. & 1. \ ||T|| = 0 \implies ||Tv|| = 0 \forall v \in V \\ & \implies Tv = 0 \implies T = 0. \end{aligned}$$

- $2. ||\lambda T|| = |\lambda|||T||$
- 3. Sea $v \in V, ||v|| = 1. \ \forall T, S \in \mathcal{B}(V, W),$

$$||(T+S)v|| = ||Tv + Sv||$$

$$\leq ||Tv|| + ||Sv||$$

$$\leq ||T||||v|| + ||S||||v|| = (||T|| + ||S||)||v||$$

$$\implies ||(T+S)v|| \le ||T|| + ||S||$$
$$\implies ||T+S|| \le ||T|| + ||S||$$

¿Cuándo es $\mathcal{B}(V, W)$ completo?

Teorema 2.2.3. $\mathcal{B}(V, W)$ es Banach cuando W es Banach.

Demostración. $T_n \in \mathcal{B}(V, W)$ Cauchy. Queremos demostrar que converge en $||\cdot||_{\mathcal{B}(V,W)}$.

1. $\forall v \in V, \{T_n v\}$ es Cauchy en W pues

$$||T_n v - T_n v|| \le ||T_n - T_w|| \cdot ||v||$$

 $\implies \{T_n v\}$ converge. Definimos

$$Tv := \lim_{n \to \infty} T_n v$$

2. ¿Por qué $T \in \mathcal{B}(V, W)$? \rightarrow lineal:

$$T(\lambda v) = \lim_{n \to \infty} T_n(\lambda v) = \lambda \lim_{n \to \infty} T_n v = \lambda T(v)$$

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$

 \rightarrow acotado:

 $\{T_n\}$ es Cauchy.

 $\{||T_n||\}$ es Cauchy en $[0,\infty)$

$$|||T_n|| - ||T_m||| \le ||T_n - T_w||$$

$$\implies ||T_n|| \le C \quad \forall n \in \mathbb{N}$$

Sea $v \in V, ||v|| = 1.$

$$||Tv|| = ||\lim_{n \to \infty} T_n v||$$

$$= \lim_{n \to \infty} \underbrace{||T_n v||}_{\leq C||v|| = C} \leq C$$

$$\implies ||T|| \le C$$

3. Convergencia: $T_n \to T$ en norma operador. Sea $v \in V, ||v|| = 1.$

$$||(T_n-T)v||$$

 $T_m v \to T v$

$$\begin{split} &= \lim_{m \to \infty} ||(T_n - T_m)v|| \\ &\leq \underbrace{||T_n - T_m||}_{\leq \varepsilon} \cdot ||v|| \quad \forall n, m \geq N(\varepsilon) \\ &\implies ||T_n - T|| \leq \varepsilon \quad \forall n \geq N(\varepsilon) \end{split}$$

2.2.2. Espacio Dual

Definición 2.2.5. Sea V un espacio normado sobre \mathbb{K} .

$$V^* = \mathcal{B}(V, \mathbb{K})$$

se llama el espacio dual de V.

Teorema 2.2.4. Cuando $\mathbb{K} = \mathbb{R}, \mathbb{C}$ (completos) V^* es un espacio de Banach

Elementos de V^* se llaman funcionales en V.

Ejemplo: $[\ell^p(\mathbb{C})]^* = ?, p \in [1, \infty)$ Resulta que $? = l^q(\mathbb{C})$ donde $\frac{1}{p} + \frac{1}{q} = 1$. Si $v \in \ell^p, w \in \ell^q$ podemos definir un funcional en ℓ^p

$$\ell_w : \ell^p(\mathbb{C}) \to \mathbb{C}$$

$$v = \{v_k\} \to \sum_{k=1}^{\infty} v_k \bar{w}_k$$

$$|\ell_w| \le ||w||_{\ell^q} ||v||_{\ell^p}$$

Es la desigualdad de Hölder discreta.

$$(\ell^1)^* \simeq \ell^\infty \ (\ell^2)^* \simeq \ell^2$$

Nota: $(\ell^{\infty})^* \not\simeq \ell^1$

Cuando V=W espacio de Banach, entonces B(V,V) es un espacio de Banach. Es también álgebra .

$$T, S \in B(V, V) \implies TS \in B(V, V)$$

$$\begin{split} ||TS|| &= \sup_{||v||=1} ||T(Sv)|| \leq ||T|| \cdot ||Sv|| \\ &\leq ||T|| \cdot ||S|| \cdot ||v|| \leq ||T|| \cdot ||S|| \end{split}$$

Cómo resolver ecuaciones del tipo

$$(T - \lambda I)u = v$$

donde $v \in V \leftarrow$ un espacio de Banach, $T \in B(V, V), \lambda \neq 0$.

Queremos construir el operador inverso

$$S := (T - \lambda I)^{-1}$$

Cuando $|\lambda|>||T||,\,S$ se puede construir a través de la serie de Neumann

$$-\lambda (I - \underbrace{\frac{T}{\lambda}}_{||T/\lambda|| < 1}) u = v$$

Sabemos que

$$(1-x)^{-1} = \sum_{n=0}^{\infty} x^n \quad |x| < 1$$

Definimos

$$S := -\frac{1}{\lambda} \sum_{n=0}^{\infty} \left(\frac{T}{\lambda}\right)^n \tag{2.3}$$

 ${\bf 2.3}$ define $S\in B(V,V)$ ya que

$$\sum_{n=0}^{\infty} \left(\frac{T}{\lambda}\right)^n$$

es sumable pues es absolutamente sumable en el espacio de Banach B(V, V).

$$\rightarrow$$
 ;
por qué $(T-\lambda I)S=S(T-\lambda I)=I?$

Para verificar que $S(T - \lambda I) = I$,

$$S_N = \sum_{n=0}^{N} -\frac{1}{\lambda} \left(\frac{T}{\lambda}\right)^n$$

$$S_N(T - \lambda I) = S_N T - S_N \lambda = \sum_{n=0}^N - \left(\frac{T}{\lambda}\right)^{n+1} - \sum_{n=0}^N - \left(\frac{T}{\lambda}\right)^n$$
$$= \underbrace{-\left(\frac{T}{\lambda}\right)^{N+1}}_{\to 0 \text{ en } B(VV)} + I$$

2.2.3. Espacio cociente

¿Cómo obtener espacios normados/Banach de otros espacios?

Definición 2.2.6 (Espacio cociente). Sea W un subespacio del espacio vectorial V.

$$V/W := \{[v], v \in V\}$$

 $[\cdot]$ se define a través $v_1 \sim v_2$ si $v_1 - v_2 \in W$.

Se nota también V mód W y se llama el espacio cociente.

Es útil denotar [v] = v + W

Una construcción de subespacio $W\subseteq V$ tal que V/W es normado es a través de una semi-norma definida en V.

Ejemplo: $V = C^1([0,1]) =$ espacio de funciones en [0,1] con derivadas continuas en [0,1].

$$||f|| := \max_{t \in [0,1]} |f'(t)|$$

$$||f|| = 0 \iff f = \text{const}$$

Teorema 2.2.5. Sea $(V, ||\cdot||)$ un espacio vectorial semi-normado. Entonces $Z := \{v \in V: ||v|| = 0\}$ es un subespacio de V y

$$||v + Z||_{V/Z} := ||v||$$
 (2.4)

define una norma en V/Z.

Demostración. 1. Z es un subespacio vectorial.

$$z_1, z_2 \in Z \implies z_1 + z_2 \in Z$$

$$||z_1 + z_2|| \le ||z_1|| + ||z_2|| = 0$$

$$z \in Z \implies \lambda z \in Z$$

Así, V/Z tiene la estructura de un espacio vectorial.

2. Tenemos que comprobar que 2.4 es una buena definición:

Si v_1, v_2 son 2 representantes de [v]:

$$v_1 = v_2 + z, \quad z \in Z$$

$$||v_1|| \le ||v_2|| + ||z|| \implies ||v_1|| \le ||v_2||$$

 $||v_2|| \le ||v_1|| \implies ||v_1|| = ||v_2||$

$$||v+z||_{V/Z} = 0$$

$$\implies v + Z = Z \implies v \in Z$$

Las otras 2 proposiciones se heredan de manera obvia

 $C^1([0,1])/const$ es un espacio normado con la norma inducida.

Otra construcción similar:

Proposición 2.2.6. Si $W \subseteq V$ subespacio cerrado de un espacio normado $(V, ||\cdot||)$, entonces V/W tiene una norma:

$$||[v]||_{V/W} := \inf_{w \in W} ||v - w||$$

2.2.4. Completación de espacios normados

Definición 2.2.7. Sea $(V, ||\cdot||)$ un espacio normado. La completación de V es un espacio de Banach $(\tilde{V}, ||\cdot||_{\tilde{V}})$ con una aplicación lineal

$$\mathcal{J}_{\tilde{V}}:V\to \tilde{V}$$

que satisface las siguientes propiedades:

- 1. $\mathcal{J}_{\tilde{V}}$ es uno a uno
- 2. $\mathcal{J}_{\tilde{V}}(V)$ es denso en \tilde{V}
- 3. $\mathcal{J}_{\tilde{V}}(V)$ es una isometría:

$$||\mathcal{J}_{\tilde{V}}(v)||_{\tilde{V}} = ||v||_{V} \quad \forall v \in V$$

Teorema 2.2.7. Todo espacio normado V tiene una completación. Esta es única en el siguiente sentido:

Seba hacer dibujo

 $\overline{\tilde{V}} = \{sucesiones \ de \ Cauchy \ en \ V \ que \ convergen\}$

$$\{v_n\} \sim \{w_n\} \ si \ ||v_n - w_n|| \to 0$$

Sea $\tilde{v} \in \tilde{V}$

Seba ESTOY HASTA EL PICO

2.3. El teorema de Baire

2.3.1. Categorias de Baire

(X,d) espacio métrico.

$$B_r(x) = \{ y \in X : d(x, y) < r \}$$

$$\overline{B_r}(x) = \{ y \in X : d(x, y) \le r \}$$

 $O \subseteq X$ es abierto si $\forall x \in O, \exists B_r(x) \in O. \bigcup_{\alpha} O_{\alpha}$ es abierto.

 $F \subseteq X$ es cerrado si F^c es abierto. $\bigcap_{\alpha} F_{\alpha}$ es cerrado.

$$\overline{E} = \bigcap_{F \supseteq E} F$$

$$\mathring{E} = \bigcup_{O \subseteq E} O$$

$$E \stackrel{denso}{\subseteq} X \text{ si } \overline{E} = X$$

Definición 2.3.1. $E \subseteq X$ es denso en ninguna parte si $\stackrel{\circ}{\overline{E}} = \varnothing$.

esencialmente, denso en ninguna parte E significa que E no contiene bolas abiertas.

Ejemplo: $E = \{x\}$ es denso en niguna parte.

Proposición 2.3.1. F es cerrado y denso en ninguna parte \iff F^c es abierto y denso.

La noción de categoria de Baire

Definición 2.3.2. $E \subseteq X$ cat I si $E = \bigcup_k E_k$ donde E_k es denso en ninguna parte.

Ejemplo: \mathbb{Q} es cat I.

Definición 2.3.3. Si G tiene G^c que es cat I, decimos que G es **genérico**.

Definición 2.3.4. E es de cat II si no es de primera categoría.

Observaciones

1. Si Ees cat I, y $F\subseteq E$ es cat I

$$F \subseteq E \subseteq \bigcup_{k} E_{k}$$
 $\implies F = \bigcup_{k} E_{k} \cap F, \quad \overline{E_{k} \cap F} \subseteq \overline{E_{k}}$
 $\implies E_{k} \cap F \text{ son densos en niguna parte.}$

- 2. Si $\{E_k\}_{k\in\mathbb{N}}$ de cat I, $\bigcup_k E_k = \bigcup_k \bigcup_l \underbrace{E_{kl}}_{\text{dense en NP}}$ es una unión contable.
- 3. No hay conexión entre conjuntos de cat I y conjuntos despreciables del punto de vista de teoría de la medida.

Ejemplo: $G_j = \bigcup_n (q_n - 2^{-(n+j+1)}, q_n + 2^{-(n+j+1)})$ $\{q_j\}$ enumeración de \mathbb{Q} . G_j es abierto y denso en \mathbb{R} .

$$\implies E_j = G_j^c$$
 es cerrado y denso en NP
 $\implies E := \bigcup_j E_j$ es cat I

y de plena medida en \mathbb{R} . $\iff E^c$ es de medida 0 de Lebesgue.

$$|E^c| = |\bigcap E_j^c|$$

$$= |\bigcap G_j| \le |G_j|$$

$$|G_j| \le \sum_{n=1}^{\infty} 2 \cdot 2^{-(n+j+1)}$$

$$= 2^{-j} \xrightarrow{j \to \infty} 0$$

Teorema 2.3.2 (Teorema de Baire). Sea (X, d) completo. Entonces, X es de la cat II en sí mismo.

Demostración. Supongamos que X es de cat I en sí:

$$X = \bigcup_k \underbrace{E_k}_{\text{densos en NP}} = \bigcup_k \underbrace{\overline{E_k}}_{=F_k \text{ denso en NP y cerrado}}$$

Llegaremos a una contradicción si demostramos que hay un $x \notin F_k$, $\forall k$.

$$F_1 \neq X$$
. $\overline{B_{r_1}}(x_1) \subseteq F^c$, $\overline{B_{r_2}}(x_2) \subseteq F_2^c$.

De esta manera obtenemos bolas cerradas $\overline{B_{r_k}}(x_k)$ tales que

1.

$$\overline{B_{r_{k+1}}}(x_{k+1}) \subseteq \overline{B_{r_k}}(x_k)$$

2.

$$\overline{B_{r_k}}(x_k) \subseteq F_k^c$$

3.

$$r_{k+1} \le \frac{r_k}{2} \implies r_k \to 0$$

 $\{x_k\}$ es Cauchy pues:

$$\forall k, l \ge n, x_k, x_l \in \overline{B_{r_n}}(x_n)$$

$$\implies |x_k - x_l| \le 2r_n \xrightarrow{n \to \infty} 0$$

$$\implies x_k \to x \in X$$

Como $x_k \in \overline{B_{r_k}} \quad \forall k \ge n,$

$$\implies x = \lim x_k \in \overline{B_{r_n}}(x_n) \subseteq F_n^c$$

Por lo que $x \notin F_n \quad \forall n$.

Corolario 2.3.2.1. $G \subseteq X$ es $gen\'erico \implies denso en X$, con X completo.

Demostración. Asumimos que G genérico no es denso, entonces hay una bola B

$$\implies \overline{B} \subseteq G^c = \bigcup_k E_k \subseteq \bigcup \overline{E_k}$$

$$\Longrightarrow \overline{B} = \bigcup_{\substack{k \text{ cerrados y densos en NP}}} \overline{E_k \cap \overline{B}}$$

Pero \overline{B} es un espacio métrico completo, contradicción con el teorema de Baire.

Corolario 2.3.2.2. X completo, $X = \bigcup_k F_k \leftarrow cerrado$. Entonces, por lo menos uno F_k contiene una bola.

2.3.2. Aplicación

Teorema 2.3.3. El conjunto de funciones continuas en [0,1] que no son derivables en nigún punto es **denso** en C([0,1])

Demostración. Sea $\mathcal{D} = \{ f \in C([0,1]) : f'(x_*) \text{ existe en un punto } x_* \in [0,1] \}$

Queremos demostrar que \mathcal{D} es cat I en C([0,1]).

Por 2.3.2.1, \mathcal{D}^c es genérico \implies denso en C([0,1]).

Si $f \in \mathcal{D} \implies f'(x_*)$ existe

$$\implies \lim_{x \to x_*} \frac{f(x) - f(x_*)}{x - x_*}$$

existe.

$$\implies |f(x) - f(x_*)| \le M|x - x_*| \quad \forall x \in [0, 1]$$

para algún M > 0.

$$\implies \mathcal{D} \subseteq \bigcup_{N=1}^{\infty} E_N$$

 $E_N := \{ f \in C([0,1]) : |f(x) - f(x_*)| \le N|x - x_*| \text{ para algún } x_* \in [0,1] \}$

Estaremos listos si probamos que:

- 1. E_N es cerrado en C([0,1])
- 2. E_N es denso en ninguna parte.
- 1. $f_n \in E_N \text{ y } f_n \to f, \text{ en } ||\cdot||_{\infty}.$

 $[0,1]\ni x_n^*\to x^*$ (podemos extraer una subsucesión que converge)

$$|f_n(x) - f_n(x_n^*)| \le N|x - x_n^*| \quad \forall x \in [0, 1]$$

Queremos demostrar que

$$|f(x) - f(x^*)| \le N|x - x^*|$$

$$|f(x) - f(x^*)| \le \underbrace{|f(x) - f_n(x)|}_{\le ||f - f_n||_{\infty} \le \varepsilon/2} + |f_n(x) - f_n(x^*)| + \underbrace{|f_n(x^*) - f(x^*)|}_{\le \varepsilon/3}$$

$$|f_n(x) - f_n(x^*)| \le |f_n(x) - f_n(x^*)| + |f_n(x_n^*) - f_n(x^*)|$$

$$\le N|x - x_n^*| + N|x_n^* - x^*|$$

$$\le N(|x - x^*| + |x^* - x_n^*|) + N|x_n^* - x^*|$$

$$\le N|x - x^*| + \underbrace{2N|x_n^* - x^*|}_{\varepsilon/3}$$

2. ¿Por qué E_N es denso en NP de X?

$$P_M = \{\text{funciones continuas en } [0,1] \text{ derivables a trozos, } |f'| = M\}$$

son funciones zig-zag. Cuando M > N, $P_M \cap E_N = \emptyset$. Además, P_M es denso en C([0,1]). Como consecuencia, E_N no puede tener interior no trivial ya que E_N no puede tener una bola abierta (hay funciones de P_M en E_N y P_M es denso).

Mostraremos que P_M es denso.

$$P = \{ \text{las funciones continuas lineales a tozos} \} \overset{denso}{\subseteq} C([0,1])$$

Podemos aproximar cada $f \in P$ con una función $g \in P_M$ arbitrariamente bien.

2.3.3. Teorema de la Aplicación Abierta

Sean $(X, ||\cdot||_X), (Y, ||\cdot||_Y)$ espacios de Banach.

$$T \in \mathcal{B}(X,Y) \implies T^{-1}(O) \overset{ab}{\subseteq} X \quad \forall O \overset{ab}{\subseteq} Y$$

Si T es biyectiva adicionalmente, entonces $S:=T^{-1}$ es lineal (no necesariamente acotada). Sin embargo, si S es continua, entonces $S^{-1}(U) \overset{ab}{\subseteq}, \forall U \overset{ab}{\subseteq} X$

$$\iff T(U) \stackrel{ab}{\subseteq} Y \quad \forall U \stackrel{ab}{\subseteq} X$$

Definición 2.3.5. Sea $T: X \to Y$ una aplicación. Decimos que T es abierta si

$$T(U) \stackrel{ab}{\subseteq} Y \quad \forall U \stackrel{ab}{\subseteq} X$$

Si $T:X\to Y$ es lineal, continua y biyectiva, entonces $T^{-1}:Y\to X$ es lineal. ¿Es T^{-1} continua?

Lo será cuando T es abierta.

Teorema 2.3.4 (Aplicación Abierta). Si X, Y son espacios de Banach, $T \in \mathcal{B}(X, Y)$ y sobreyectiva, entonces T es abierta.

Corolario 2.3.4.1. Si X, Y son espacios de Banach, $T \in \mathcal{B}(X, Y)$ es biyectiva, entonces $T^{-1} \in \mathcal{B}(Y, X)$. Existen c, C > 0 tales que

$$c||x||_X \le ||\underbrace{Tx}_y||_Y \le C||x||_X \quad \forall x \in X$$
$$c||T^{-1}y||_X \le ||y||_Y$$

Demostración del teorema 2.3.4. 1. Será suficiente demostrar que $T(B_2^X) \supseteq B_\delta^Y$. $(B_r^X = B_r^X(0))$

Por linealidad

$$\begin{split} T(B_r^X(x)) &= T(x + B_r^X) \\ &= Tx + T(B_r^X) = y + \frac{r}{2}T(B_2^X) \\ &\supseteq y + \frac{r}{2}B_\delta^Y = B_{\frac{\delta r}{2}}^Y(y) \end{split}$$

2. Vamos a demostrar que $\overline{T(B_1^X)} \supseteq B_\delta^X$ para algún $\delta > 0$ Por la sobreyectividad:

$$catII \to Y = \bigcup_{n=1}^{\infty} \overline{T(B_n^X)}$$

Entonces, $T(B_n^X)\supseteq B_r^Y(y)$ para algún $n\in\mathbb{N}, r>0, y\in Y$. Tomamos \tilde{y} tal que $|\tilde{y}-y|\leq \frac{r}{2}$ e $\tilde{y}=T\tilde{x}$ para algún $\tilde{x}\in B_n^X$.

$$T(B^x_{2n}(\tilde{x}))\supseteq \overline{T(B^X_n)}\supseteq B^Y_r(y)\supseteq B^Y_{\frac{r}{2}}(\tilde{y})$$

Restando $T\tilde{x}$

$$T(B_{2n}^X) \supseteq B_{\frac{r}{2}}^X$$

Reescalando

$$\overline{T(B_1^X)} \supseteq B_{\frac{r}{4n}}^Y \quad \delta = \frac{r}{4n}$$

3. Tenemos $\overline{T(B_1^X)}\supseteq B_\delta^Y.$ Reescalando

$$\overline{T(B_{2^{-k}}^X)} \supseteq B_{\delta 2^{-k}}^Y$$

¿Por qué $T(B_2^X) \supseteq B_\delta^Y$?

Fije $y_0 \in B^Y_\delta.$ Podemos encontrar $x_0 \in B^X_1$ tal que

$$||y_0 - Tx_0||_Y < \frac{\delta}{2}$$

$$\implies y_1 := y_0 - Tx_0 \in B_{\delta/2}^Y$$

 \implies existe $x_1 \in B_{\frac{1}{2}}^X$ tal que

$$||y_1 - Tx_1|| < \frac{\delta}{4}$$

De esta manera construimos sucesiones $\{x_n\}, \{y_n\}$, tales que

a)
$$x_n \in B_{2^{-n}}^X, y_n \in B_{\delta 2^{-n}}^Y$$

$$b) \ y_{n+1} = y_n - Tx_n$$

 $x := \sum_{n=0}^{\infty} x_n \in X$ porque X es Banach. Veremos que Tx = y y $x \in B_2^X$.

x es convergente puesto que es absolutamente convergente.

$$||x|| = \sum_{k=1}^{\infty} ||x_k|| \le 2$$

Afirmamos que $Tx = y_0$ por construcción.

$$Tx = \lim_{N \to \infty} T\left(\sum_{n=0}^{N} x_k\right)$$
$$= \lim_{N \to \infty} \sum_{k=0}^{N} \underbrace{Tx_k}_{y_k - y_{k+1}}$$
$$= \lim_{N \to \infty} (y_0 - y_{N+1})$$
$$= y_0$$

ya que $y_{N+1} \to 0$.

2.3.4. Teorema del Grafo Cerrado

Definición 2.3.6. Sean X,Y espacios métricos. Decimos que $T:X\to Y$ es **cerrada** si su grafo en $X\times Y$

$$G_T = \{(x, Tx) \in X \times Y\}$$

es cerrado en $X \times Y$.

En otras palabras,

$$(x_n, Tx_n) \to (x, y) \in X \times Y \implies (x, y) \in G_T \iff y = Tx$$

Nota: $T: X \to Y$ es continua $\implies T$ es cerrada.

$$x_n \to x \implies Tx_n \to Tx \implies (x_n, Tx_n) \to (x, Tx)$$

Teorema 2.3.5. Sean X, Y Banach. Entonces, $T \in \mathcal{B}(X, Y) \iff T$ es lineal y cerrada.

 $Demostración. \Longleftarrow:$ Utilizaremos el hecho que si X,Y son Banach, entonces $X\times Y$ es Banach.

$$||(x,y)||_{X\times Y} := ||x||_X + ||y||_Y$$

$$G_T := \{(x, Tx)\} \subseteq X \times Y$$

- 1. G_T es un subespacio de $X \times Y$.
- $2. \ G_T \stackrel{cerr}{\subseteq} X \times Y$

Entonces G_T es un espacio de Banach en sí. Tenemos las proyecciones $\Pi_X:G_T\to X$ y $\Pi_Y:G_T\to Y$ continuas y lineales.

$$T = \Pi_Y \circ (\Pi_X)^{-1}$$

ya que Π_x es biyectiva, continua y lineal (en un espacio de Banach a otro Banach). Por el teorema 2,3,4,1, Π_X^{-1} es continua. Por lo que $T = \Pi_Y \circ \Pi_X^{-1}$ es continua.

Significado Si queremos demostrar que una aplicación lineal $T:X\to Y$ es continua, $x_n\to X\implies Tx_n\to T_x$

Podemos asumir adicionalmente que $TX_n \to Ty$, y demostrar que y = Tx

Capítulo 3 -

Espacios de Hilbert

3.1. Conceptos Básicos

Definición 3.1.1. Sea H un espacio vectorial sobre $\mathbb{K} = \mathbb{R}$ o \mathbb{C} . Un producto interno $\langle \cdot, \cdot \rangle$ es una función $H \times H \to \mathbb{K}$ que satisface

1. Linealidad en $\langle \cdot, y \rangle$, $\forall y \in H$:

$$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$$

 $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$

2. (Hermiticidad)

$$\langle y, x \rangle = \overline{\langle x, y \rangle}$$

(En $\mathbb{K} = \mathbb{R}$, esto es simetría)

3. (Definidad) $\langle x, x \rangle \ge 0$ y $\langle x, x \rangle = \Longrightarrow x = 0$

Nota: 1. y 2., implican que $\langle x, \cdot \rangle$ es lineal conjugada en la segunda entrada.

$$\langle x, \lambda y + z \rangle = \overline{\lambda} \langle x, y \rangle + \langle x, z \rangle$$

Terminología Tal función se llama forma sesquilineal

Nota: $\mathbb{K}=\mathbb{R},\,\langle\cdot,\cdot\rangle$ es una forma simétrica definida positiva

Decimos que $(H, \langle \cdot, \cdot \rangle)$ es un **espacio pre-Hilbertiano**

De 1. y 2.,
$$(0, y) = 0$$
, $(x, 0) = 0$

Definimos $||x|| := \langle x, x \rangle^{1/2}$

Proposición 3.1.1 (Desigualdad de Cauchy-Schwarz). Sea H un espacio pre-Hilbertiano

$$|\left\langle x,y\right\rangle |\leq ||x||\cdot ||y||\quad \forall x,y\in H$$

Demostración. Si y=0, la desigualdad es verdadera. Podemos asumir que $y\neq 0$.

$$0 \leq \langle x + \lambda y, x + \lambda y \rangle$$

$$= \langle x, x \rangle + \lambda \langle y, x \rangle + \overline{\lambda} \langle x, y \rangle + \lambda \overline{\lambda} \langle y, y \rangle$$

$$= ||x||^2 + \underbrace{\lambda \overline{\langle x, y \rangle} + \overline{\lambda} \langle x, y \rangle}_{2 \operatorname{Re}(\langle x, y \rangle \overline{\lambda})} + |\lambda|^2 |\cdot |y||^2$$

Evaluando en $\lambda = -\frac{\langle x, y \rangle}{||y||^2}$

$$0 \le ||x||^2 + 2\operatorname{Re}(\langle x, y \rangle \frac{-\overline{\langle x, y \rangle}}{||y||^2})$$

$$0 \le ||x||^2 - 2\frac{|\langle x, y \rangle|^2}{||y||^2} + \frac{|\langle x, y \rangle|^2}{||y||^2}$$

$$\implies ||x||^2 \ge \frac{|\langle x, y \rangle|^2}{||y||^2}$$

Proposición 3.1.2. $||\cdot||$ define una norma H.

Demostración. 1. Definidad ✓

2.
$$||\lambda x|| = \langle \lambda x, \lambda x \rangle^{1/2} = (\lambda \overline{\lambda} ||x||^2)^{1/2} = |\lambda| \cdot ||x||$$

3. (Desigualdad triangular)

$$||x+y||^2 = ||x||^2 + 2\operatorname{Re}(\langle x, y \rangle) + ||y||^2 \le ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2$$
$$= (||x|| + ||y||)^2$$

Proposición 3.1.3. $\langle \cdot, \cdot \rangle$ es continuo en $H \times H$

Demostración. $x_n \to x$ en $||\cdot$ e $y_n \to y$ en $||\cdot||$

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| = |\langle x_n - x, y_n \rangle + \langle x, y_n - y \rangle|$$

$$\leq |\langle x_n - x, y_n \rangle| + |\langle x, y_n - y \rangle|$$

$$\leq ||x_n - x|| \cdot ||y_n|| + ||x|| \cdot ||y_n - y||$$

$$\xrightarrow{x_n \to \infty} 0$$

Definición 3.1.2. Decimos que $x \perp y$ en el espacio pre-Hilbertiano H si $\langle x, y \rangle = 0$. Si $E \subseteq H$ subconjunto, definimos el **espacio ortogonal**

$$E^{\perp} := \{ x \in H : x \perp y \quad \forall y \in E \}$$

 E^{\perp} es un **subespacio** de H y es cerrado:

 $x_n \in E^{\perp}$ y $x_n \to x$ en H entonces

$$\langle x, y \rangle = \lim_{n \to \infty} \langle x_n, y \rangle = 0 \quad \forall y \in E$$

Teorema 3.1.4 (Pitagoras). Si $x_1, \ldots, x_n \in H$ (pre-Hilbertiano) son mutuamente ortogonales, entonces

$$||x_1 + \dots + x_n||^2 = \sum_{k=1}^n ||x_k||^2$$

Proposición 3.1.5 (Ley del paralelogramo).

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

Demostración.

$$||x \pm y||^2 = ||x||^2 \pm 2 \operatorname{Re} \langle x, y \rangle + ||y||^2$$

Sumando los 2 términos (diagonales), estamos listos.

Definición 3.1.3. Decimos que un espacio $(H, \langle \cdot, \cdot \rangle)$ pre-Hilbertiano es un espacio de **Hilbert** si es **completo** respecto $||\cdot||$ inducida por $\langle \cdot, \cdot \rangle$

Ejemplo: $(\mathbb{C}^n, \langle \cdot, \cdot \rangle)$. $\langle x, y \rangle = \sum_{k=1}^n x_k \overline{y_k}$ es un espacio de Hilbert.

Ejemplo:
$$(\ell^2, \langle \cdot, \cdot \rangle)$$
. $\langle \{x_k\}, \{y_k\} \rangle = \sum_{k=1}^{\infty} x_k \overline{y_k}$

 $i \ell^p$ tiene una estructura de espacio de Hilbert? $\iff p=2$

Ejemplo: (X, \mathcal{M}, μ) es un espacio de medida, definimos

$$L^2(X, \mathcal{M}, \mu) = \{ f : X \to \mathbb{C} \text{ medibles} : \int_X |f|^2 d\mu < \infty \} /_{\sim}$$

 $f_1 \sim f_2$ si $\{f_1 \neq f_2\}$ es despreciable.

3.2. Teorema de la Proyección

Sea H un espacio de Hilbert. $C\subseteq R^n$ cerrado y convexo. Existe único $y\in C$ tal que y minimiza la distancia entre x y C.

Definición 3.2.1. Sea C un subconjunto de un espacio vectorial V. Decimos que C es **convexo** en V si

$$\forall x,y \in C \quad (1-t)x + ty \in C \quad \forall t \in [0,1]$$

Teorema 3.2.1. Sea $C \subseteq H$ un subconjunto cerado y convexo del espacio de Hilbert H. Entonces $\forall x \in H, \exists ! y = P_C x \in C$ que satisface:

$$||x - P_C x|| = d(x, C) = \inf_{c \in C} ||x - c||$$

Además, $y = P_C x \iff \operatorname{Re} \langle c - y, x - y \rangle \leq 0, \quad \forall c \in C$

Demostración. Tome $\{y_n\} \subseteq C$, tal que

$$d_n := ||x - y_n|| \xrightarrow{n \to \infty} d := d(x_n, c)$$

 $\{y_n\}$ será convergente si es Cauchy, ya que $y_n \to y \in H$. Ya que C es cerrado, de hecho $y \in C$.

Por la ley del paralelogramo, con $v = x - y_n, w = x - y_m$

$$2d_n^2 + 2d_m^2 = ||v - w||^2 + ||v + w||^2$$

$$= ||y_n - y_m||^2 + ||2x - (y_n + y_m)||^2$$

$$= ||y_n - y_m||^2 + 4 \left\| x - \underbrace{\frac{y_n + y_m}{2}}_{\in C} \right\|^2$$

$$\geq ||y_n - y_m||^2 + 4d^2$$

Luego,

$$||y_n - y_m||^2 \le 2d_n^2 + d_m^2 - 4d^2$$

$$\xrightarrow{n,m \to \infty} 0$$

por lo que $\{y_n\}$ es Cauchy.

$$y = \lim_{n \to \infty} y_n,$$

$$||x - y|| = \lim_{n \to \infty} \underbrace{||x - y_n||}^{d_n} = d$$

Este minimizador es el único!. Si hubiera otro $z \neq y$, aplicamos el mismo argumento a $\{y, z, y, z, \ldots\}$ que no converge por construcción, pero es Cauchy, lo que es una contradicción.

 \implies : Sea $c \in C$ y considere (1-t)y+tc, $t \in [0,1]$.

$$||x - (1 - t)y - tc||^{2} = ||x - y - t(c - y)||^{2}$$

$$= ||x - y||^{2} - 2t \operatorname{Re} \langle x - y, c - y \rangle + t^{2}||c - y||^{2}$$

$$\geq ||x - y||^{2}$$

$$\implies 2t \operatorname{Re} \langle x - y, c - y \rangle \le t^2 ||c - y||^2$$
$$\implies 2 \operatorname{Re} \langle x - y, c - y \rangle \le 0$$

 \iff : Evalúe $||x - (1-t)y + tc||^2$ en t = 1.

$$||x - c||^2 = ||x - y||^2 - 2 \operatorname{Re} \langle x - y, c - y \rangle + ||c - y||^2$$

$$\implies ||x - c||^2 - ||x - y||^2 = ||c - y||^2 - 2 \operatorname{Re} \langle x - y, c - y \rangle$$

$$\implies ||x - c||^2 \ge ||x - y||^2 \quad \forall c \in C$$

Tenemos igualdad $\iff c = y$.

Ejemplo: $W \subseteq H$ es un subespacio $\implies W$ es convexo.

Teorema 3.2.2. Sea $F \subseteq H$ un subespacio cerrado. Entonces $H = F \oplus F^{\perp}$, es decir, que todo $x \in H$ se puede escribir de manera única como x = y + z con $y \in F$ y $z \in F^{\perp}$. Además $y = P_F x, z = P_{F^{\perp}} x$. y

$$P_F: H \to H$$

es lineal, acotado y satisface:

- $||P_F|| \le 1 \ (= 1 \ cuando \ F = \{0\})$
- $P_F^2 = P_F$
- Im $P_F = F$, ker $P_F = F^{\perp}$
- $P_F x_1, x_2 \rangle = \langle x_1, P_F x_2 \rangle$

Definición 3.2.2. P_F se llama la proyección ortogonal

Demostración. Ya que $F\cap F^{\perp}=\{0\},$ la unicidad se cumple.

$$y + z = y' + z' \implies y - y' = z' - z = 0$$

Tome $x \in H$. Define $y = P_F x$. Queremos demostrar que $x : x - y \in F^{\perp}$. Del teorema ?? sabemos que

$$\operatorname{Re}\langle c-y, x-y\rangle \leq 0 \quad \forall c \in F$$

.

$$\implies \operatorname{Re}\langle v, z \rangle \le 0 \quad \forall v \in F$$

$$\implies \operatorname{Re}\langle \lambda v, z \rangle \le 0 \quad \forall \lambda \in \mathbb{K}$$

$$\implies \operatorname{Re}\lambda \langle v, z \rangle < 0$$

Seba añadir align

tome $\lambda = \overline{\langle v, z \rangle}$

$$\implies \operatorname{Re} |\langle v, z \rangle|^2 \le 0$$
$$\implies |\langle v, z \rangle| = 0 \implies z \in F^{\perp}$$

Propiedades de P_F : $x_1 = y_1 + z$, $x_2 = y_2 + z_2$

$$\langle P_F x_1, x_2 \rangle = \langle y_1, x_2 \rangle$$

= $\langle y_1, y_2 + z_2 \rangle$

$$\langle x_1, P_F x_2 \rangle = \langle y_1 + z_1, y_2 \rangle$$

= $\langle y_1, y_2 \rangle$

Por lo que P_F es lineal

$$\langle P_F(x_1 + x_2), x_3 \rangle = \langle x_1 + x_2, P_F x_3 \rangle$$

$$= \langle x_1, P_F x_3 \rangle + \langle x_2, P_F x_3 \rangle$$

$$= \langle P_F x_1, x_3 \rangle + \langle P_F x_2, x_3 \rangle$$

$$= \langle (P_F x_1 + P_F x_2), x_3 \rangle$$

$$\iff P_F(x_1+x_2)=P_Fx_1+P_Fx_2$$

 $P_F(\lambda x) = \lambda P_F x$ de la misma manera.

$$P_F/_F = \operatorname{Id}/_F$$

$$\implies P_F^2 x = P_F(P_F x) = P_F x \quad \forall x \in H$$
$$\implies P_F^2 = P_F$$

 $||P_F x||^2 = ||y||^2 \le ||x||^2$ mientras

$$||x||^2 \le ||y||^2 + ||z||^2$$

$$\implies ||P_F|| \le 1$$

3.3. Teorema de Representación de Riesz

Teorema 3.3.1. Sea H un espacio de Hilbert y sea $f \in H^*$ un funcional lineal acotado. Entonces existe único $u \in H$ tal que

$$f(x) = \langle x, u \rangle \quad \forall x \in H$$

Observaciones

- 1. $||f||_* = ||u||$ por Cauchy-Schwarz
- 2.

$$H^* \to H$$

 $f \to u_f$

es una isometría biyectiva, lineal-conjugada. Para todo $v \in H$ define $f_v(x) : \langle x, v \rangle$

3. $f_1 + f_2 \rightarrow u_{f_1 + f_2} = u_{f_1} + u_{f_2}$, ya que

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = \langle x, u_{f_1} \rangle + \langle x, u_{f_2} \rangle$$

= $\langle x, u_{f_1} + u_{f_2} \rangle \implies u_{f_1 + f_2} = u_{f_1} + u_{f_2}$

4. $i \lambda f \to u_{\lambda f} = \lambda u_f$?

$$[\lambda f](x) = \lambda(f(x)) = \lambda \langle x, u_f \rangle = \langle x, \overline{\lambda} u_f \rangle$$

Nota: Teorema falso. Cuando H es solo espacio pre-Hilbertiano, por ejemplo,

$$H = C([-1, 1])$$

con producto interno usual.

$$f(x) = \int_0^1 x(t) dt \in H^*$$

Demostración. Si $f = 0 \implies u = 0$. Asumimos que $f \neq 0$ y consideramos $F := \ker f = \{x \in H : f(x) = 0\}$. F es un subespacio de H cerrado. Si $f \neq 0 \implies F \neq H$. Por el teorema de la proyección (3.2.2)

$$H=F\oplus F^\perp$$

Elije $z \in F^{\perp} \setminus \{0\}$. Afirmamos que $u = \overline{f(z)}z|z|^2 \neq 0$ satisface $f = \langle \cdot, u \rangle$. Ya que

$$f(z)x - f(x)z \in F$$

$$\implies f(z)x - f(x)z \perp z$$

$$\langle f(z)x, z \rangle - \langle f(x)z, z \rangle = 0$$

$$\implies \left\langle x, \overline{f(z)}z \right\rangle = f(x)||z||^2$$

$$\implies f(x) = \left\langle x, \frac{\overline{f(x)}z}{||z||^2} \right\rangle$$

Entonces $u \in H$ que satisface $f = \langle \cdot, u \rangle$. Es único: si tenemos $u, u' \in H$

$$f(x) = \langle x, u \rangle = \langle x, u' \rangle$$

$$\implies \langle x, u - u' \rangle = 0 \quad \forall x \in H$$

$$\implies u - u' \in H^{\perp} = \{0\}$$

3.4. Bases Ortonormales

Sea V un espacio vectorial sobre \mathbb{K} . Un subconjunto $\{v_{\alpha}\}_{{\alpha}\in A}$ es LI si $\forall I \stackrel{\text{finito}}{\subseteq} A$,

$$\sum_{i \in I} c_i v_i = 0 \implies c_i = 0 \quad \forall i \in I$$

$$Gen(\{u_{\alpha}\}_{\alpha \in A}) = \left\{ \sum_{i \in I} c_i u_i : I \stackrel{\text{finito}}{\subseteq} A, c_i \in \mathbb{K} \right\}$$

Definición 3.4.1. Sea H un espacio de Hilbert, $\{e_{\alpha}\}_{{\alpha}\in A}$ es ortonormal (o.n.) si

$$\langle e_{\alpha}, e_{\beta} \rangle = \delta_{\alpha\beta} \quad \delta \text{ de Kronecker}$$

Suponga que $\{e_1, \ldots, e_n\}$ es o.n.

$$F := \operatorname{Gen}(\{e_i\}_i^n) \subseteq H$$

es un subespacio cerrado. Podemos definir P_F

$$P_F x = \underbrace{\sum_{i=1}^{n} \langle x, e_i \rangle e_i}_{y}$$

Es suficiente demostrar que $x-y\perp F$.

$$\left\langle x - \sum_{x,e_i} e_i, e_k \right\rangle = 0 \quad \forall k = 1, \dots, n$$

$$||P_F x||^2 \le ||x||^2$$

Por Pitagoras

$$= \sum_{i=1}^{n} ||\langle x, e_i \rangle e_i||^2 \le ||x||^2$$

$$\implies \sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \le ||x||^2$$

Proposición 3.4.1 (Desigualdad de Bessel). Sea $S = \{e_{\alpha}\}_{\alpha}$ un conjunto o.n. Entonces,

$$\sum_{\alpha} |\langle x, e_{\alpha} \rangle|^2 \le ||x||^2$$

$$\sum_{\alpha} r_{\alpha} := \sup \left\{ \sum_{i \in I} r_i : I \subseteq A \right\}$$

Demostración. Utilizando $\sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \le ||x||^2$, y tomando supremo.

Consecuencias $\{\alpha: \langle x, e_{\alpha} \rangle \neq 0\} = \bigcup_{n=1}^{\infty} \{\alpha \in A: |\langle x, e_{\alpha} \rangle| \geq \frac{1}{n}\}$ es contable: Si es infinito: $|\langle x, e_{\alpha_k} \rangle|^2 > \frac{1}{n^2}, k = 1, \dots$ Sumando suficientes términos superaríamos $||x||^2$, que no es posible por Bessel.

Definición 3.4.2.

$$\hat{x}(\alpha) = \langle x, e_{\alpha} \rangle$$

coeficientes de Fourier respecto a $\{e_{\alpha}\}$

$$\sum_{\hat{x}} |\hat{x}(\alpha)|^2 \le ||x||^2$$

¿Cuando tenemos igualdad?

Teorema 3.4.2. Sea $\mathcal{B} = \{e_{\alpha}\}_{{\alpha} \in A}$ un subconjunto o.n. del espacio de Hilbert H. Los siguientes enunciados son equivalentes:

1.

$$\sum_{\alpha} |\hat{x}(\alpha)|^2 = ||x||^2$$

2. \mathcal{B} es **maximal** en el sentido de: Si $x \in H$, tal que $x \perp e_{\alpha}, \forall \alpha \in A \implies x = 0$

 $3. \ \forall x \in H,$

$$x = \sum_{\alpha} \langle x, e_{\alpha} \rangle e_{\alpha}$$

donde la suma en el lado derecho tiene solo un número contable de términos no ceros y la suma de estos converge a x en $||\cdot||$ independiente de su orden.

4. $Gen(\mathcal{B})$ es denso en H

Definición 3.4.3. Decimos que un conjunto $\{e_{\alpha}\}_{{\alpha}\in A}$ o.n. es una base ortonormal si satisface cualquiera de 1.-4.

Demostración. 2. \implies 3. Sea $e_{\alpha_1}, \ldots, e_{\alpha_n}, \ldots$ una enumeración de los $\{e_{\alpha}\}_{{\alpha} \in \mathcal{J}}$ para los cuales $\hat{x}({\alpha}) \neq 0$. Por Bessel:

$$\sum_{k=1}^{\infty} |\hat{x}(\alpha_k)|^2 \le ||x||^2 < \infty$$

$$\implies \sum_{k=n}^{m} |\hat{x}(\alpha_k)|^2 \xrightarrow{m,n \to \infty} 0$$

Por Pitagoras,

$$\left|\left|\sum_{k=n^m} \langle x, e_{\alpha_k} \rangle e_{\alpha_k}\right|\right| \xrightarrow{m, n \to \infty} 0$$

Sea $S_n = \sum_{k=1}^n \hat{x}(\alpha_k) e_{\alpha_k}$. $\{S_n\}$ es Cauchy en H

$$\implies S_n \xrightarrow{n \to \infty} S$$
 en H

Además

 $3. \implies 1.$: Por continuidad de la norma

$$||x||^2 = ||\lim_{n \to \infty} S_n||^2$$

$$= \lim_{n \to \infty} ||S_n||^2$$

$$= \lim_{n \to \infty} \sum_{k=1}^n |\hat{x}(\alpha_k)|^2$$

$$= \sum_{\alpha} |\hat{x}(\alpha)|^2$$

 $1. \implies 2.: \text{ obvio}$

$$||x||^2 = \sum_{\alpha} |\langle x, e_{\alpha} \rangle|^2 = 0 \implies x = 0$$

 $3. \implies 4.: \text{Si } x \perp e_{\alpha}, \quad \forall \alpha,$

$$\implies x \perp \operatorname{Gen}(\{e_{\alpha}\})$$

$$\stackrel{\text{continuidad}}{\Longrightarrow} x \perp \overline{\operatorname{Gen}(\{e_{\alpha}\})} = H$$

$$\implies x = 0$$

Ejemplo:
$$\ell^2$$
, $e_k = \{(0, \dots, \underbrace{1}_k, 0, \dots)\}, k \in \mathbb{N}$.
$$||x||^2 = \sum |x_i|^2 = \sum |\langle x, e_i \rangle|^2$$

Teorema 3.4.3. Todo espacio de Hilbert tiene una base ortonormal.

Demostración. Utiliza el Lema de Zorn

Definición 3.4.4. X espacio métrico es **separable** si existe un subconjunto $C \subseteq X$ contable y denso en X.

Ejemplo: $\ell^p, p \in [1, \infty)$ es separable.

 $L^2([0,1])$ es separable. Polinomios con coeficientes $\in \mathbb{K} \stackrel{\text{denso}}{\subseteq} C([0,1]) \stackrel{\text{denso}}{\subseteq} L^2([0,1])$ Seba Faltan los polinomios con coefs $\in \mathbb{Q}$ cuando $\mathbb{K} = \mathbb{R}$ o \mathbb{C} .

Teorema 3.4.4. H es separable si y solo si existe una base ortonormal para H que es contable. En este caso, toda base o.n. es contable.

Demostración. \implies : $\{x_n\} \subseteq H$ es denso. x_1, \ldots, x_n, \ldots Descartando posiblemente términos, podemos asumir que x_1, \ldots, x_n son LI $\forall n \in \mathbb{N}$ y todos los descartados pertenecen a Gen $(\{x_k\})$. De esta manera, Gen $(\{x_k\})$ es denso en H.

Por Gram-Schmidt producimos una sucesión $\{y_k\}_{k=1}^{\infty}$ tal que, $\operatorname{Gen}(\{y_k\}_{k=1}^n) = \operatorname{Gen}(\{x_k\}_{k=1}^n) \forall n \in \mathbb{N} \text{ y } \mathcal{B} = \{y_k\} \text{ es un conjunto o.n.}$

 \mathcal{B} es o.n. y $Gen(\mathcal{B}) = Gen(\{x_k\})$ es denso en H. Entonces \mathcal{B} es una base ortonormal contable. \iff : Sea $\{e_k\}_k$ una base o.n. contable.

$$G_n := \operatorname{Gen}(\{e_k\}_{k=1}^n) = \left\{ \sum_{k=1}^n \lambda_k e_k, \lambda_k \in \mathbb{K} \right\}$$

 \implies Gen $(\{e_k\}_k) = \bigcup_{n=1}^{\infty} G_n$ es denso en H.

$$\bigcup_{n=1}^{\infty} \hat{G}_n \stackrel{\text{denso}}{\subseteq} \bigcup_{n=1}^{\infty} G_n$$

donde $\hat{G}_n = \{ \sum_{i=1}^n \lambda_i e_i, \lambda_k \in \mathbb{Q} \text{ si } \mathbb{K} = \mathbb{R}, \lambda_k \in \mathbb{Q} + i \mathbb{Q} \text{ si } \mathbb{K} = \mathbb{C} \}$

Seba añadir cases en vola

Sea $\{u_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ otra base o.n.

$$A_n = \left\{ \alpha \in \mathcal{A} : \left\langle \overbrace{x}^{e_n}, u_{\alpha} \right\rangle \neq 0 \right\} \text{ es contable}$$

Además, para cada $\alpha \in \mathcal{A}$,

$$\langle u_\alpha, e_k \rangle \neq 0$$
 para algún k

por la maximalidad de la base $\{e_n\}_n$ (que es contable). Entonces, $\mathcal{A} = \bigcup_{k=1}^{\infty} A_k$ es contable.

Vamos a demostrar que todo espacio de Hilbert separable es $\ell^2 = \{\{x_k\} \in \mathbb{K}^n : \sum ||x_k|^2| < \infty\}$

Definición 3.4.5. Sean H_1, H_2 dos espacios de Hilbert. Un **isomorfismo** $T: H_1 \to H_2$ se llama **unitario** si

$$\langle Tx_1, Tx_2 \rangle_{H_2} = \langle x_1, x_2 \rangle_{H_1} \quad \forall x_1, x_2 \in H_1$$

Tunitario $\implies T$ es una **isometría**:

$$||Tx||_{H_2}^2 = \langle Tx, Tx \rangle_{H_2} = \langle x, x \rangle_{H_1} = ||x||_{H_1}^2$$

Teorema 3.4.5. Todo espacio de Hilbert separable es unitariamente isomorfo a ℓ^2 .

Demostración. Sea $\{e_n\}$ una base o.n. contable para H.

$$H \to \ell^2$$
$$x \to \hat{x} = (\hat{x}(1), \hat{x}(2), \ldots)$$

donde $\hat{x}(k) = \langle x, e_k \rangle$.

Por Parseval,

$$||\hat{x}||_{\ell^2}^2 = \sum_{k} |\hat{x}(k)|^2 = ||x||^2 < \infty$$

$$\implies \hat{x} \in \ell^2 \implies T$$
 es bien definido

es lineal, inyectivo (por maximalidad), sobreyectivo: si $c \in \ell^2, \sum_{k=1}^n c_k e_k \xrightarrow{H} x_c$, donde

$$\hat{x}_c(k) = \langle x_c, e_k \rangle = c_k \quad \forall k \in \mathbb{N}$$

Es una isometría: Identidad de Parseval.

$$||Tx||_{\ell^2}^2 = ||x||_H^2$$

Identidad de Polarización:

$$\mathbb{K} = \mathbb{R} : \langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2)$$

$$\mathbb{K} = \mathbb{C} : \langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2 + i||x + iy||^1 - i||x - iy||^2)$$

Por lo tanto, T preserva el producto interno:

$$\langle Tx_1, Tx_2 \rangle_{\ell^2} = \langle x_1, x_2 \rangle_H$$

3.5. Series de Fourier

3.5.1. Series de Fourier y convergencia

 $f: \mathbb{R} \to \mathbb{C}$ periódica de período 2π .

 $F:\mathbb{T}\to\mathbb{C},\,\mathbb{T}$ es el círculo unitario.

$$F(e^{i\theta}) = f(\theta)$$

$$\hookrightarrow \tilde{f}: [-\pi, \pi] \to \mathbb{C}$$

con

$$\tilde{f}(-\pi) = \tilde{f}(\pi)$$

Vamos a asumir que $\langle f,g\rangle_{L^2}:=\int_{-\pi}^{\pi}f(x)\overline{g(x)}\,dx$

$$f \in L^2(\mathbb{T}) = \left\{ f : \mathbb{R} \to \mathbb{C} \text{ medibles, periódicas-} 2\pi \text{ t.q.} \int_{-\pi}^{\pi} |f(x)|^2 dx < \infty \right\} = L^2([-\pi, \pi])$$

Definimos

$$e_n = \frac{1}{\sqrt{2\pi}}e^{inx}$$
 $n = 0, \pm 1, \pm 2, \dots$

Proposición 3.5.1. $\{e_n\}$ es un conjunto ortonormal de $L^2(\mathbb{T})$.

Demostración.

$$\langle e_n, e_m \rangle = \int_{-\pi}^{\pi} e_n(x) \overline{e_m(x)} dx$$

$$= \int_{-\pi}^{\pi} \frac{2}{\pi} e^{inx} e^{-imx} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)x} dx$$

$$= \begin{cases} \frac{2\pi}{2\pi} = 1 & n = m \\ \frac{e^{i(n-m)x}}{i(n-m)} \Big|_{x=-\pi}^{x=\pi} & n \neq m \end{cases}$$

Definición 3.5.1. Sea $f \in L^2(\mathbb{T})$. Defina

$$\hat{f}(n) = \langle f, e_n \rangle_{L^2}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

coeficiente de Fourier.

$$f \to \sum_{n \in \mathbb{Z}} \hat{f}(n) e_n$$

serie de Fourier.

$$S_N f(x) = \sum_{|n| < N} \hat{f}(n) \frac{1}{\sqrt{2\pi}} e^{inx}$$

suma de Fourier parcial.

Preguntas:

- 1. ¿Converge $S_n f$ a f en L^2 ?
- 2. ¿Converge $S_N f(x)$ a f(x) puntualmente? Si falla para algún x, ¿es este comportamiento raro o genérico?
- 3. ¿Converge $S_N f$ a f en otras normas (e.g. $L^p, p>1$)?

Teorema 3.5.2. $f \in L^2(\mathbb{T}), S_N f \xrightarrow{L^2} f \ cuando \ N \to \infty.$

Nota: El enunciado \iff , $\mathcal{B} = \{e_n(x)\}_{n \in \mathbb{Z}}$ es una base o.n. para $L^2(\mathbb{T})$

Entonces será suficiente demostrar que \mathcal{B} es maximal:

$$\hat{f}(n) = 0 \quad \forall n \in \mathbb{Z} \implies f = 0$$

Teorema 3.5.3. $f \in L^2(\mathbb{T})$. Entonces,

$$S_N f(x) = \int_{-\pi}^{\pi} D_N(x - t) f(t) dt$$

donde

$$D_N(x) = \begin{cases} \frac{2N+1}{2\pi} & x = 0\\ \frac{\sin(N+\frac{1}{2})x}{2\pi\sin\frac{x}{2}} & x \neq 0 \end{cases}$$

Demostración.

$$S_n f = \sum_{|n| \le N} \langle f, e_n \rangle e_n(x)$$

$$= \sum_{|n| \le N} \frac{1}{2\pi} \left(\int_{\mathbb{T}} f(t) e^{-int} dt \right) e^{inx}$$

$$= \int_{\mathbb{T}} \left(\sum_{|n| \le N} \frac{1}{2\pi} e^{in(x-t)} \right) f(t) dt$$

$$D_N(x-t)$$

donde

$$D_N(x) = \sum_{|n| \le N} \frac{1}{2\pi} e^{inx}$$

Kernel de Dirichlet.

$$D_N(0) = \frac{2N+1}{2\pi}$$

Para $x \neq 0$,

$$D_N(x) = \frac{1}{2\pi} e^{-iNx} \sum_{n=0}^{2N} e^{inx}$$

$$= \frac{1}{2\pi} e^{-iNx} \frac{e^{i(2N+1)x} - 1}{e^{ix} - 1}$$

$$= \frac{1}{2\pi} \frac{e^{i(N+1)x} - e^{-iNx}}{e^{ix} - 1}$$

$$= \frac{1}{2\pi} \frac{e^{i(N+\frac{1}{2})x} - e^{-i(N+\frac{1}{2})x}}{e^{ix/2} - e^{-ix/2}}$$

$$= \frac{1}{2\pi} \frac{2i\sin(N + \frac{1}{2})x}{2i\sin\frac{x}{2}}$$

Nota: $D_N(x)$ es 2π -periodico, par, suave y

$$\int_{\mathbb{T}} D_N(x) \, dx = 1$$

Seba añadir foto del kernel de Dirichlet

Es difícil demostrar directamente que $S_N f(x) \to f(x)$ ($D_N(x)$ cambia de signo y oscila muy rápidamente).

Desvío En lugar de demostrar que $S_N f \xrightarrow{L^2} f$ directamente, vamos a considerar la sucesión media de Cesàro

$$\sigma_N f = \frac{S_0 f + S_1 f + \dots + S_{N-1} f}{N}$$

Nota: $S_N f$ converge a f, $\sigma_N f$ converge a f

Teorema 3.5.4 (Fejér).

$$\sigma_N f \xrightarrow{L^2} f$$

Cuando $f \in C(\mathbb{T})$,

$$\sigma_N f \xrightarrow{unif.} f \ en \ \mathbb{T}$$

Si $\hat{f}(n) = 0 \quad \forall n \in \mathbb{Z}$

$$\implies S_n f \equiv 0 \quad \forall n \in \mathbb{Z} \implies \sigma_N f \equiv 0$$

$$\overset{\text{Fejer}}{\Longrightarrow} f = \lim_{N \to \infty} \sigma_N f = 0 \implies \text{Maximalidad de } \mathcal{B}$$

Proposición 3.5.5. Sea $f \in L^2(\mathbb{T})$. Entonces

$$\sigma_N f(x) = \int_{-\pi}^{\pi} F_N(x - t) f(t) dt$$

donde

$$F_N(x) = \begin{cases} \frac{1}{2\pi} N & x = 0\\ \frac{1}{2\pi N} \frac{\sin^2(Nx/2)}{\sin^2 \frac{x}{2}} & x \neq 0 \end{cases}$$

es el Kernel de Fejér.

Demostración.

$$\sigma_N f = \frac{1}{N} \sum_{n=0}^{N-1} S_n f$$

$$\downarrow$$

$$F_N(x) = \frac{1}{N} \sum_{n=0}^{N-1} D_n(x)$$

x = 0

$$F_N(0) = \frac{1}{N} \sum_{n=0}^{N-1} \underbrace{\frac{1}{2\pi} (2n+1)}^{D_n(0)}$$
$$= \frac{1}{2\pi} N$$

 $x \neq 0$,

$$F_N(x) = \frac{1}{N} \cdot \frac{1}{2\pi} \sum_{n=0}^{N-1} \frac{\sin((n + \frac{1}{2})x)}{\sin\frac{x}{2}}$$

$$= \frac{1}{2\pi N} \cdot \frac{1}{\sin^2\frac{x}{2}} \sum_{n=0}^{N-1} \frac{\sin(n + \frac{1}{2})x\sin\frac{x}{2}}{\frac{1}{2}(\cos(nx) - \cos((n+1)x))}$$

$$= \frac{2}{\pi N} \frac{1}{\sin^2\frac{x}{2}} \underbrace{\frac{1}{2}(\cos(0x) - \cos(Nx))}_{\sin^2\frac{Nx}{2}}$$

$$= \frac{1}{2\pi N} \frac{\sin^2\frac{Nx}{2}}{\sin^2\frac{x}{2}}$$

Propiedades de $F_N(x)$

1. $F_N(x) \ge 0$, suave, periódico- 2π , par

2.

$$\int_{\mathbb{T}} F_N(x) \, dx = 1$$

(como promedio de $D_N(x)$)

3.

$$|F_N(x)| \le \frac{1}{2\pi N \sin^2 \frac{\delta}{2}} \quad \delta \le |x| \le \pi$$

Seba añadir foto pero borrarla pa zapit

Notación

$$S_N f(x) = \int_{\mathbb{T}} D_N(x - t) f(t) dt = D_N * f$$
$$\sigma_N f(x) = \int_{\mathbb{T}} F_N(x - t) f(t) dt = F_N * f$$

Convolución: $f \in C(\mathbb{T}), g \in L^1(\mathbb{T})$

$$f * g(x) = \int_{-\pi}^{\pi} f(x - t)g(t) dt$$

tomando $\tau = x - t$

$$f * g(x) = \int_{x-\pi}^{x+\pi} f(\tau)g(x-\tau) d\tau = \int_{-\pi}^{\pi} f(\tau)g(x-\tau) = g * f(x)$$

Definición 3.5.2. $\{K_n\}_{n\in\mathbb{N}}$ es una familia de buenos kernels en $L^1(\mathbb{T})$ si

1.

$$\int_{\mathbb{T}} K_n(x) \, dx = 1$$

2.

$$\sup_{n} \int_{\mathbb{T}} |K_n(x)| \, dx < \infty$$

3.

$$\int_{\delta \le |x| \le \pi} |K_n(x)| \, dx \xrightarrow{n \to \infty} 0 \quad \forall \delta > 0$$

Nota: $\{F_N(x)\}_{N\in\mathbb{N}}$ es una familia de buenos kernels pero $\{D_N\}$ no lo es. Veremos que 2. falla para el kernel de Dirichlet.

Teorema 3.5.6. Si $\{K_N\}_{N\in\mathbb{N}}$ es una familia de buenos kernels en $L^1(\mathbb{T})$ y $f\in C(\mathbb{T})$, entonces

$$K_N * f = f * K_N \rightarrow f$$

 $uniformemente\ en\ \mathbb{T}$

Corolario 3.5.6.1.

$$\sigma_N f \xrightarrow[N \to \infty]{unif} f \ para \ f \in C(\mathbb{T})$$

Demsotración del teorema 3.5.6.

$$K_n * f(x) - f(x) = f * K_n(x) - f(x)$$

$$= \int f(x - y) K_n(y) dy - f(x)$$

$$= \int (f(x - y) - f(x)) K_n(y) dy$$

$$\implies |K_n * f(x) - f(x)| \le \int_{\mathbb{T}} |f(x - y) - f(x)| |K_n(y)| \, dy$$

$$= \int_{|y| < \delta} |f(x - y) - f(x)| |K_n(y)| \, dy + \int_{|y| > \delta} |f(x - y) - f(x)| |K_n(y)| \, dy$$

$$\le \varepsilon \int_{\mathbb{T}} |K_n(y)| \, dy + 2 \max_{\mathbb{T}} |f| \int_{|y| > \delta} |K_n(y)| \, dy$$

$$\le C\varepsilon$$

cuando n es suficientemente grande.

Corolario 3.5.6.2. Si $f \in C(\mathbb{T})$ y $\hat{f}(n) = 0 \ \forall n \in \mathbb{Z} \implies f \equiv 0$.

Demostración.

$$\sigma_N f \equiv 0$$
 $\downarrow \text{unif}$
 $f \equiv 0$

Corolario 3.5.6.3. Suponga que $f \in C(\mathbb{T})$ y su serie de Fourier converge absoluta y uniformemente, es decir:

$$\sum_{n} |\hat{f}(n)e_n(x)| = \sum_{n} |\hat{f}(n)| \frac{1}{\sqrt{2\pi}} < \infty$$

Entonces,

$$S_N f \to f \ unif$$

Demostración. Defina

$$g(x) := \sum_{n \in \mathbb{Z}} \hat{f}(n)e_n(x) \in C(\mathbb{T})$$

por convergencia absoluta uniforme.

$$h(x) := g(x) - f(x)$$

$$\hat{h}(n) = \hat{g}(n) - \hat{f}(n) = \left\langle \sum_{k} \hat{f}(k)e_{k}(x), e_{n}(x) \right\rangle - \hat{f}(n)$$
$$= \hat{f}(n) - \hat{f}(n) = 0$$

Se puede intercambiar la suma con la integral por convergencia uniforme y el corolario anterior, se concluye que $h \equiv 0$.

Tenemos la convergencia $\sigma_N f \xrightarrow{\text{unif}} f$ para $f \in C(\mathbb{T})$. Queremos pasar a convergencia en L^2 . Vamos a utilizar la **densidad** de $C(\mathbb{T}) \subseteq L^2(\mathbb{T})$. Vamos a necesitar la estimación adicional:

Proposición 3.5.7.

$$||\sigma_N f||_{L^2} \le ||f||_{L^2}$$

Demostración. $\sigma_N f = \frac{1}{N} (S_0 f + \dots + S_{N-1} f)$

$$||\sigma_N f||_{L^2} \le \frac{1}{N} \sum_{k=0}^{N-1} ||S_k f||_{L^2}$$

Tenemos,

$$||S_k f||_{L^2} \le ||f||_{L^2}$$
 (Bessel)

 $S_k f$ = proyección de f en $\operatorname{Gen}(\{e_l\}_{|l| \leq k})$

$$||\sigma_N f||_{L^2} \le \frac{1}{N} N||f||_{L^2}$$

De hecho, tenemos

Proposición 3.5.8. Si $f \in L^p(\mathbb{T})$, $1 \le p < \infty$, entonces

$$||\sigma_N f||_{L^p} \le ||f||_{L^p}$$

Teorema 3.5.9. Sea $f \in L^p(\mathbb{T})$, $1 \leq p < \infty$. Entonces,

$$\sigma_N f \xrightarrow{L^p} f$$

Demostración. Fije $\varepsilon > 0$. Aproxime $f \in L^p(\mathbb{T})$ con $g \in C(\mathbb{T})$:

$$||f - g||_{L^{p}} \leq \varepsilon$$

$$\sigma_{N}f - f = \sigma_{N}g - g + \sigma_{N}(f - g) - (f - g)$$

$$||\sigma_{N}f - f||_{L^{p}} \leq ||\sigma_{N}g - g||_{L^{p}} + ||\sigma_{N}(f - g)||_{L^{p}} + ||f - g||_{L^{p}}$$

$$< C\varepsilon$$

Podemos elegir N suficientemente gtande, tal que

$$||\underbrace{\sigma_N g - g}_h||_{\infty} \le \varepsilon$$

por convergencia uniforme.

$$||h||_{L^p} = \left(\int_{\mathbb{T}} |h|^p dx\right)^{1/p}$$

$$\leq \left(\int_{\mathbb{T}} \varepsilon^p dx\right)^{1/p} = (2\pi)^{1/p} \varepsilon$$

Corolario 3.5.9.1.

$$S_N f \xrightarrow{L^2} f$$

Demostración.

$$\sigma_N f \xrightarrow{L^2} f$$

Lema 3.5.10 (Riemann-Lebesgue). $f \in L^1(\mathbb{T}), \ \hat{f}(n) = \frac{1}{2\pi} \int_{\mathbb{T}} f(x) e^{-inx} \, dx \xrightarrow{n \to \infty} 0$

Demostración. Fije $\varepsilon > 0$. Utilizaremos que

$$\sigma_N f \xrightarrow{L^1} f$$

Podemos encontrar N suficientemente grande, tal que

$$||\underbrace{f - \sigma_N f}_{a}||_{L^1} \le \varepsilon$$

n > N,

$$\begin{split} \hat{g}(n) &= \hat{f}(n) - \widehat{\mathcal{O}_{N}f(n)}^{0} \\ \implies |\hat{f}(n)| &= |\hat{g}(n)| \leq \frac{1}{\sqrt{2\pi}} \int |g(x)e^{-inx}| \, dx = \frac{1}{\sqrt{2\pi}} \int |g| \, dx \leq \varepsilon/\sqrt{\pi} \end{split}$$

$$L^{2}(\mathbb{T}) \to \ell_{\mathbb{Z}}^{2} = \{ (\dots, a_{-1}, a_{0}, a_{1}, \dots) : \sum_{k \in \mathbb{Z}} |a_{k}|^{2} < \infty \}$$
$$f \to \hat{f} = (\dots, \hat{f}_{(-1)}, \hat{f}_{(0)}, \hat{f}_{(1)}, \dots)$$

es un isomorfismo unitario.

$$L^{1}(\mathbb{T}) \xrightarrow{\mathcal{F}} \hat{c}_{0} = \{(\dots, a_{-1}, a_{0}, a_{1}, \dots) : \lim_{|n| \to \infty} a_{n} = 0\}$$
$$f \to \hat{f}$$

Teorema 3.5.11. $L^1(\mathbb{T}) \xrightarrow{\mathcal{F}} \hat{c}_0$ es lineal, acotado e inyectivo.

Demostración. lineal \checkmark

$$||\hat{f}||_{\ell^{\infty}} \le ?$$

$$|\hat{f}(n)| \le \frac{1}{\sqrt{2\pi}} \int |f(x)e^{-inx}| dx$$

$$\le \frac{1}{\sqrt{2\pi}} ||f||_{L^{1}}$$

por lo que $||\hat{f}||_{\ell^{\infty}} \leq \frac{1}{\sqrt{2\pi}}||f||_{L^{1}}$

 \rightarrow inyectivo? Suponga que $\hat{f}=0\iff \hat{f}(n)=0 \quad \forall n\in\mathbb{Z}$

$$\sigma_N f \equiv 0$$

$$\downarrow L^1$$

$$f \equiv 0$$

pero \mathcal{F} no es sobreyectiva. Si \mathcal{F} fuera inyectivo, sería un isomorfismo continuo. Por teorema de aplicación abiert, tenemos que \mathcal{F}^{-1} es acotada:

$$||\mathcal{F}^{-1}\hat{f}||_{L^{1}} \le c||\hat{f}||_{\infty}$$

 $||f||_{L^{1}} \le c||\hat{f}||_{\infty}$

Tomamos $f(x) = D_N(x) = \frac{1}{\sqrt{2\pi}} \sum_{|n| \le N} \frac{1}{\sqrt{2\pi}} e^{inx} = \frac{1}{\sqrt{2\pi}} \sum_{|n| \le N} e_n(x).$

$$\hat{f}(n) = \langle f, e_n \rangle$$

$$= \frac{1}{\sqrt{2\pi}} \langle e_n, e_n \rangle \quad |n| \le N$$

$$= 0 \quad |n| > N$$

 $||\hat{f}||_{\infty} = \frac{1}{\sqrt{2\pi}}$

Proposición 3.5.12.

$$||D_N||_{L^1} \ge C \log N$$

Corolario 3.5.12.1. $f_N := D_N \ contradice \ ||f||_{L^1} \le c||\hat{f}||_{\infty}$

$$D_N(x) = \frac{1}{2\pi} \frac{\sin(N + \frac{1}{2})x}{\sin\frac{x}{2}}$$

$$||D_N|| = \int_{-\infty}^{\infty} |D_N(x)| \, dx = \frac{1}{2\pi} \int_0^{\infty} \frac{|\sin(N + \frac{1}{2})|}{\sin\frac{x}{2}}$$

$$||D_N|| \ge \frac{2}{\pi} \int_0^{\pi} \frac{\sin(N + \frac{1}{2})x}{x} \, dx$$

 $u = (N + \frac{1}{2})x$

$$= \frac{2}{3\pi} \int_0^{(N+\frac{1}{2})\pi} \frac{|\sin u|}{u} du \ge \frac{2}{\pi} \int_0^{N\pi} \frac{|\sin u|}{u} du$$

$$= \frac{2}{\pi} \sum_{k=1}^N \int_{(k-1)\pi}^{k\pi} \frac{|\sin u|}{u} du$$

$$\ge \frac{2}{\pi} \sum_{k=1}^N \frac{1}{k} \int_{(k-1)\pi}^{k\pi} |\sin u| du$$

$$= \frac{2}{\pi} \sum_{k=1}^N \frac{1}{k} \int_0^{\pi} |\sin u| dy$$

$$= \frac{2c'}{\pi} \sum_{k=1}^N \frac{1}{k} \ge c \log N$$

Seba añadir align

Vimos que $\forall f \in L^2(\mathbb{T}), S_N f \xrightarrow{L^2} f$.

Q. ¿Converge $S_n f \to f$ puntualmente?

A. ¡Generalmente no!

Q. ¿Converge $S_N f \to f$ c.t.p? Es fácil ver (si conocemos teoría de integración) que existe una subsucesión

$$S_{N_k}f \to f$$
 c.t.p

(dada la convergencia $S_N f \xrightarrow{L^2} f$) A. (Teorema de Carleson) Sí, $S_n f \to f$ c.t.p (Difícil).

3.5.2. Convergencia puntual de la serie de Fourier

Vieron en ayudantía un ejemplo de función $f \in C(\mathbb{T})$ tal que

$$S_N f(0) \not\to f(0)$$

De hecho, este ejemplo es genérico

Teorema 3.5.13. Para todo $x \in \mathbb{T}$, existe un conjunto genérico $A_x \subseteq C(\mathbb{T})$ tal que

$$\sup_{N} |S_N f(x)| = \infty$$

La demostración utiliza el marco del **principio de acotación uniforme**/Teorema de Banach-Steinhaus

Teorema 3.5.14 (Banach-Steinhaus). Sea X Banach, Y un espacio normado. Sean $T_k \in \mathcal{B}(X,Y), k \in I$, no necesariamente contable. Entonces

- 1. $o \sup_k ||T_k|| < \infty$
- 2. $o \sup_k ||T_k x|| = \infty$ para todo $x \in A$, donde $A \subseteq X$ es un subconjunto genérico G_{δ} .

Seba cambiar enumerate a letras a., b.

Nota: Si $\sup_k ||T_k x|| < \infty \ \forall x \in X$, entonces $||T_k||$ son uniformemente acotadas.

Corolario 3.5.14.1. Sean X Banach, Y normado. Sean $T_k \in \mathcal{B}(X,Y)$. Suponga que $\forall x \in X$

$$\lim_{k \to \infty} T_k x =: Tx \quad existe$$

Entonces, $T \in \mathcal{B}(X,Y)$ y

$$||T|| \le \liminf_{k \to \infty} ||T_k|| < \infty$$

Demostración. $\lim_{k\to\infty} T_k x = Tx$.

$$\implies \forall x \in X \quad \sup_{k} ||T_k x|| < \infty$$

(sucesión que converge es acotada)

$$\implies \sup_{k} ||T_k|| < \infty$$

Que T es lineal, fácil \checkmark

$$||Tx|| = ||\lim_{k \to \infty} T_k x|| = i m_{k \to \infty} ||T_k x||$$

$$= \sup_{n} \inf_{k \ge n} ||T_k x|| \le (\sup_{n} \inf_{k \ge n} ||T_k||) x = (\liminf_{k \to \infty} ||T_k||) ||x||$$

Seba añadir align

Demostración del teorema de Banach-Steinhaus (3.5.14). Defina $\psi(x) := \sup_k ||T_k x||$.

$$U_n = \{x \in X : \psi(x) > n\} = \bigcup_{\substack{k \text{ abjerto pues } T_k \text{ es continuo}}} \{||T_k x|| > n\}$$

Tenemos 2 posibilidades:

1. Si todos los U_n 's son densos en X,

$$\implies A := \bigcap_{n=1}^{\infty} U_n$$
 es genérico, G_{δ}

 $\forall x \in A, \ \psi(x) > n \quad \forall n \in \mathbb{N}$

$$\implies \psi(x) = \infty \pmod{b}$$
.

2. Si unos de los U_n 's **no** es denso, entonces U_m^c contiene una bola $B = B_r(a)$.

$$\psi(x) \le m \quad \forall x \in B_r(a)$$

$$\implies ||T_k x|| \le m \quad \forall x \in B_r(a), \forall k$$

$$\implies ||T_k(a+y)|| \le m \quad \forall y \in B_r(0), \forall k$$

 $\forall y \in B_r(0)$

$$||T_k y|| \le ||T_k a|| + ||T_k (y - a)||$$

= $||T_k a|| + ||T_k (a - y)||$
 $\le m + m = 2m$

$$\implies ||T_k y|| \le \frac{2m}{r} ||y|| \quad \forall y \in X, \forall k$$

Demostración del teorema 3.5.13. Será suficiente demostrar el teorema para x=0. Aplicaremos el principio de acotación uniforme (Banach-Steinhaus) a

$$S_N^0: C(\mathbb{T}) \to \mathbb{C}$$

 $f \to S_n f(0)$

Estaremos listos cuando probemos que

$$\sup_{N} ||S_N^0|| = \infty$$

 \iff estamos en la alternativa b.

$$\implies \sup_{N} |S_N f(0)| = \infty \forall f \in A, A \stackrel{gen.}{\subseteq} C(\mathbb{T})$$

Recordando que $(S_N f(x) = D_N * f(x))$

$$S_N^{(0)} = S_N f(0)$$

$$= \int_{-\pi}^{\pi} D_N(0 - y) f(y) \, dy$$

$$= \int_{-\pi}^{\pi} D_N(y) f(y) \, dy$$

$$\implies |S_N f(0)| \le \int_{-\pi}^{\pi} |D_n(y)| \cdot |f(y)| \, dy \le ||D_N||_{L^1} ||f||_{\infty}$$

$$\implies ||S_N^0|| \le ||D_N||_{L^1}$$

Pero, de hecho, afirmamos que

$$||S_N^0|| = ||D_N||_{L^1}$$

Noten que cuando ponemos $f(y) = \operatorname{sgn} D_n(y)$

$$S_N f(0) = \int_{-\pi}^{\pi} D_N(y) \operatorname{sgn} D_N(y) \, dy = ||D_N||_{L^1}$$

 $f = \operatorname{sgn} D_N \in L^1(\mathbb{T}), \implies \operatorname{podemos} \operatorname{encontrar} f_k \in C(\mathbb{T})$:

$$||f_k - f||_{L^1} \xrightarrow{k \to \infty} 0$$

$$S_N f_k(0) = \int D_N(y) (f_k - f)(y) \, dy + \underbrace{\int D_N(y) f(y) \, dy}_{||D_N||_{L^1}} \xrightarrow{k \to \infty} ||D_N||_{L^1}$$

mientras

$$\left| \int D_N(y)(f_k - f)(y) \, dy \right| \le \max_{\mathbb{T}} |D_N| ||f_k - f||_{L^1} \xrightarrow{k \to \infty} 0$$

3.6. Repaso/Crash course en teoría de la medida

 $\Omega = \{M_1, \dots, M_{100}\}$ pila de monedas. $V : \Omega \to [0, \infty)$. En el caso de Chile tenemos $ImV = \{1, 5, 10, 50, 100, 500\}$. Queremos calcular el valor total de la pila de monedas. Hay 2 métodos:

- 1. Dividimos la pila en grupos de digamos 10 monedas: M_1, \ldots, M_{10} y así sucesivamente. Luego, sumamos los valores de cada grupo y sumamos los resultados. Esto corresponde con la integral de Riemann
- 2. Dividimos las monedas en grupos de acuerdo al valor

$$E_1 = \{ M \in \Omega : V(M) = \alpha_1 \}$$

$$E_2 = \{ M \in \Omega : V(m) = \alpha_2 \}$$

:

 E_N

Luego, $S = \sum_{k=1}^{N} \alpha_k(\#E_k)$. Esto corresponde con la integral de Lebesgue.

3.6.1. Espacios de medida y funciones medibles

Definición 3.6.1 (Espacio de medida). un espacio de medida $(\Omega, \mathcal{M}, \mu)$.

Definición 3.6.2 (σ -álgebra). Una colección \mathcal{M} de subconjuntos de Ω es una σ -álgebra si

- 1. $\Omega \in \mathcal{M}$
- 2. $E \in \mathcal{M} \implies E^c := \Omega \setminus E \in \mathcal{M}$ 3. $\{E_k\}_{k=1}^{\infty} \subseteq \mathcal{M} \implies \bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$

Podemos ver que $\emptyset \in \mathcal{M}$, $\bigcap_k E_k \in \mathcal{M}$ si $\forall E_k \in \mathcal{M}$ y $E \setminus F \in \mathcal{M}$ si $E, F \in \mathcal{M}$.

Ejemplo: $\Omega = \{a, b\},\$

$$\mathcal{M}_1 = \{\varnothing, \Omega\}$$

$$\mathcal{M}_2 = \{\varnothing, \{a\}, \{b\}, \{a, b\}\}$$

son σ -álgebras.

Ejemplo: Si Ω es un espacio métrico (topológico más general).

 $\mathcal{B}_{\Omega} \to \sigma$ -álgebra de Borel

definida como la menor σ -álgebra que contiene todos los abiertos de Ω .

Definición 3.6.3. Una medida $\mu: \mathcal{M} \to [0, \infty]$ que satisface:

- 1. $\mu(\emptyset) = 0$
- 2. $\{E_k\}_{k=1}^{\infty}$ de conjuntos en \mathcal{M} mutuamente disjuntos,

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_m)$$

Esto se llama σ -aditividad

Las siguientes propiedades son consecuencias fáciles de la definición:

1. (Aditividad finita)

$$\mu\left(\bigcup_{k=1}^{N} E_k\right) = \sum_{k=1}^{N} \mu(E_k)$$

2. Si $A, B \in \mathcal{M}$ y $A \subseteq B$

$$\implies \mu(B) = \mu(A \cup B \setminus A) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$

3. (subaditividad) Si $\{E_k\} \subseteq \mathcal{M}$, no necesariamente disjuntos,

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) \le \sum_{k=1}^{\infty} \mu(E_k)$$

4. $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_{k+1} \subseteq \cdots$, sucesión creciente de medibles,

$$E = \bigcup_{k} E_k, E_k \uparrow E$$

$$\mu(E) = \lim_{k \to \infty} \mu(E_k)$$

5. $E_1 \supseteq E_2 \supseteq \cdots$

$$E = \bigcap_{k=1}^{\infty} E_k, E_k \downarrow E$$

$$\mu(E) = \lim_{n \to \infty} \mu(E_k)$$

si
$$\mu(E_1) < \infty$$

Ejemplo: $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$,

$$\mu(E) = \sum_{n \in E} \mu_n \leftarrow \text{pesos} \in [0, \infty)$$

Cuando todos los $\mu_n \equiv 1$, μ es la medida de contar.

Teorema 3.6.1. Existe una σ -álgebra \mathcal{M} de subconjuntos de \mathbb{R}^n y

$$|\cdot|:\mathcal{M}\to[0,\infty]$$

con las siguientes propiedades:

- 1. \mathcal{M} contiene todos los abiertos ($\supseteq B_{\mathbb{R}^n}$)
- 2. |B| = Vol(B) para toda la bola abierta $B \subseteq \mathbb{R}^n$
- 3. (completitud) Si $A \subseteq B$, donde $B \in \mathcal{M}$ y |B| = 0, entonces $A \in \mathcal{M}$ y |A| = 0.

Conjuntos de medida 0 = conjuntos despreciables.

Notación: Una propiedad se cumple para x c.t.p (en casi todas partes) si se cumple para todo $x \in E^c$ donde E es despreciable.

La medida producto : $(\Omega_1, \mathcal{M}_1, \mu_1)$ y $\Omega_2, \mathcal{M}_2, \mu_2$. Existe una única medida $\mu : \mathcal{M}_1 \times \mathcal{M}_2 \to [0, \infty]$ donde $\mathcal{M}_1 \times \mathcal{M}_2 := \text{la menor } \sigma\text{-álgebra que contiene todos los } E_1 \times E_2 \text{ con } E_1 \in \mathcal{M}, E_2 \in \mathcal{M}_2 \text{ tal que}$

$$\mu(E_1 \times E_2) = \mu_1(E_1)\mu_2(E_2)$$

Ejemplo: $(\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n}, |\cdot| = \lambda_n)$ y $(\mathbb{R}^m, \mathcal{B}_{\mathbb{R}^m}, |\cdot| = \lambda_m)$

$$\mathcal{B}_{\mathbb{R}^n} imes \mathcal{B}_{\mathbb{R}^m} = \mathcal{B}_{\mathbb{R}^n imes \mathbb{R}^m}$$

$$\lambda := \lambda_n \times \lambda_m = \lambda_{m+n}$$

que es la medida de Lebesgue en \mathbb{R}^{m+n} .

Definición 3.6.4. $f: \Omega \to [-\infty, \infty]$ es **medible** si $\{x \in \Omega : f(x) > r\} \in \mathcal{M} \quad \forall r \in [-\infty, \infty]$

$$\iff f^{-1}(I) \in \mathcal{M} \quad \forall I \subseteq [-\infty, \infty]$$

$$\iff f^{-1}(O) \in \mathcal{M} \quad \forall O \stackrel{ab}{\subseteq} [-\infty, \infty]$$

Esta clase de funciones con valores reales es cerrada bajo las operaciones usuales: $+, \times$ y tomar \sup_k , \inf_k , $\lim\sup_k$, $\lim\inf_k$. Si $\{f_k\}_{k=1}^{\infty}$ sucesión de funciones medibles, entonces $\sup_k f_k$, $\inf_k f_k$, $\lim\inf_k f_k$, $\lim\sup_k f_k$ son medibles.

Ejemplo: La funciones simples

$$s(x) = \sum_{i=1}^{n} \alpha_i \chi_{E_i}$$

De hecho toda función medible es límite de funciones simples $s_n(x)$ tal que

$$|s_n(x)| \nearrow |f(x)|$$

Descomponemos $f = f^+ - f^-$,

$$0 \le f^+ = \max\{f, 0\}$$

$$0 \leq f^- = \max\{-f, 0\}$$

$$|f| = f^+ + f^-$$

 $|f|=f^++f^-.$ Cuando $f\geq 0$ es medible, podemos aproximarla con

$$s_n(x) = n\chi_{\{f>n\}} + \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \chi_{\{\frac{k-1}{2^n} \le f < \frac{k}{2^n}\}}$$

$$s_n(x) \nearrow f(x), \quad n \to \infty$$

3.6.2. La integral de Lebesgue

Funciones simples

$$\int_{\Omega} s \, d\mu = \sum_{i=1}^{n} \alpha_i \mu(E_i)$$

donde
$$s(x) = \sum_{i=1}^{n} \alpha_i \chi_{E_i}$$

Funciones medibles

$$\int f \, d\mu := \sup \{ \int s \, d\mu : 0 \le s \le f \}$$

Propiedades

1.

$$\int (f+g) \, d\mu = \int f \, d\mu + \int g \, d\mu$$

2.

$$\int cf \, d\mu = c \int f \, d\mu, \quad c \ge 0$$

3.

$$\int f \, d\mu = 0 \iff f \equiv 0 \quad \text{c.t.p.}$$

4.

$$\int f \, d\mu < \infty \implies f < \infty \quad \text{c.t.p.}$$

Propiedades de convergencia

1. Teorema de Convergencia Monotona:

$$0 \le f_n \nearrow f$$
 c.t.p. $\Longrightarrow \int f d\mu = \lim_{n \to \infty} \int f_n d\mu$

2. Lema de Fatou:

$$f_n \ge 0$$

$$\int \liminf_n f_n \, d\mu \le \liminf_n \int f_n$$

Funciones reales $f:\Omega\to[-\infty,\infty],\,f=f^+-f^-$

$$\int f \, d\mu \coloneqq \int f^+ \, d\mu - \int f^- \, d\mu$$

si uno de estos dos términos $< \infty$.

Cuando ambos son finitos,

$$\iff \int |f| \, d\mu = \int f^+ \, d\mu + \int f^- \, d\mu < \infty$$

decimos que $f \in \mathcal{L}^1_{\mathbb{R}}(\mu)$ es integrable.

En $\mathcal{L}^1(\mu)$, la integral es un funcional lineal (POS) que es ≥ 0 cuando $f \geq 0$. Como consecuencia, para $f,g\in\mathcal{L}^1$:

1.

$$\int f \, d\mu \le \int g \, d\mu$$

cuando $f \geq g$ c.t.p.

2.

$$\left| \int f \, d\mu \right| \le \int |f| \, d\mu$$

3.

$$|f| < \infty$$
 c.t.p.

Funciones complejas

Definición 3.6.5. $f: \Omega \to \mathbb{C}$ es medible si $u := \operatorname{Re} f$, $v := \operatorname{Im} f$ son medibles.

$$\int f \, d\mu \coloneqq \int u \, d\mu + i \int v \, d\mu$$

Definición 3.6.6. $f \in \mathcal{L}^1_{\mathbb{C}}(\mu)$ si |f| es integrable $\iff u, v \in \mathcal{L}^1_{\mathbb{R}}(\mu)$.

Teorema 3.6.2 (Convergencia Dominada). $f_n \to f$ c.t.p. $y |f_n| \leq g$ c.t.p. donde $g \in \mathcal{L}^1_{\mathbb{R}}(\mu)$, entonces

$$\int f_n \, d\mu \to \int f \, d\mu$$

De hecho,

$$\int |f_n - f| \, d\mu \xrightarrow{n \to \infty} 0$$

Teorema 3.6.3 (Tonelli). $(\Omega_1, \mathcal{M}_2, \mu_1)$, $(\Omega_2, \mathcal{M}_2, \mu_2)$ espacio de medida σ -finitos. $(\Omega_1 \times \Omega_2, \mathcal{M}_1 \times \mathcal{M}_2, \mu = \mu_1 \times \mu_2)$. Sea f(x,y) $\mathcal{M}_1 \times \mathcal{M}_2$ -medible y no negativa. Entonces, denotando $f^y(x) = f(x,y)$ para y fijo es una función en Ω_1 , $f_x(y) = f(x,y)$ para x fijo es una función en Ω_2 ,

$$\int_{\Omega_1 \times \Omega_2} f \, d\mu = \int_{\Omega_2} \left(\int_{\Omega_1} f^y(x) \, d\mu_1(x) \right) d\mu(y)$$
$$= \int_{\Omega_1} \left(\int_{\Omega_2} f_x(y) \, d\mu_2(y) \right) d\mu_1(x)$$

donde toda función integrada es medible en el espacio correspondiente.

Teorema 3.6.4 (Fubini). Es posible cambiar el orden de integración cuando $f \in \mathcal{L}^1_{\mathbb{C}}(\mu)$:

$$\int_{\Omega_1 \times \Omega_2} f \, d\mu = \int_{\Omega_2} \left(\int_{\Omega_1} f^y(x) \, d\mu_1(x) \right) d\mu(y)$$
$$= \int_{\Omega_1} \left(\int_{\Omega_2} f_x(y) \, d\mu_2(y) \right) d\mu_1(x)$$

3.7. Espacios de Lebesgue L^p

3.7.1. Espacios L^p

Defina:

$$||f||_p := \left(\int |f|^p d\mu\right)^{1/p}, \quad p \in [1, \infty)$$
$$||f||_{\infty} := \inf\{M > 0 : |f| \le M \quad \text{c.t.p.}\}$$

$$\mathcal{L}^p_{\mathbb{K}}(\mu) \coloneqq \{ \text{funciones medibles} : \Omega \to \mathbb{K} : ||f||_p < \infty \}$$

Proposición 3.7.1. $||\cdot||_p$ es una semi-norma en $L^p_{\mathbb{K}}(\mu)$. Además,

$$||f||_p = 0 \iff f = 0 \quad c.t.p.$$

Corolario 3.7.1.1. $\mathcal{M}_{\mathbb{K}}(\mu) = \{f = 0 \quad c.t.p.\}$. Entonces,

$$L^p_{\mathbb{K}}(\mu) := \mathcal{L}^p_{\mathbb{K}}(\mu) / \mathcal{N}_{\mathbb{K}}(\mu)$$

es un espacio **normado** con norma $||\cdot||_p$.

Demostración de la proposición 3.7.1. $||\lambda f||_p = |\lambda| \cdot ||f||_p$.

Desigualdad triangular = desigualdad de Minkowski

$$||f + g||_p \le ||f||_p + ||g||_p$$

 $(p=1,\infty \text{ es obvio})$

Teorema 3.7.2 (Desigualdad de Hölder).

$$\int |fg| \, d\mu \le ||f||_p ||g||_q$$

donde

$$\frac{1}{p} + \frac{1}{q} = 1$$

 $y p, q \in [1, \infty]$

Demostración. Podemos asumir que

$$0 < ||f||_p, ||g||_q < \infty$$

 $p = 1, q = \infty. \ 0 < ||f||_1 < \infty, \ 0 < ||g||_\infty < \infty.$

$$\int |fg| d\mu \le \int (|f| d\mu) ||g||_{\infty}$$

$$\le |f| \cdot ||g||_{\infty} \quad \text{c.t.p.} = ||f||_{1} \cdot ||g||_{\infty}$$

Para los demás, $1 < p,q < \infty$. Podemos asumir $||f||_p = 1, ||g||_q = 1$ y será suficiente demostrar

$$\int |fg| \, d\mu \le 1$$

Aplicamos Young (lo que viene después) a $a=|f|,\,b=|g|$

$$|fg| \le \frac{|f|^p}{p} + \frac{|g|^q}{q}$$

$$\int |fg| \, d\mu \leq \frac{1}{p} \underbrace{\int |f|^p}_{=1} + \frac{1}{q} \underbrace{\int |g|^q}_{=1}$$

Teorema 3.7.3 (Desigualdad de Young). $0 \leq a,b \leq \infty$

$$ab \le \frac{a^p}{p} + \frac{b^q}{q} \quad 1 < p, q < \infty$$

Demostración. Podemos asumir a, b > 0.

$$ab = e^{\log(ab)} = e^{\log a + \log b} = e^{\frac{1}{p}\log(a^p) + \frac{1}{q}\log(b^q)}$$

 $e^{sx+(1-s)y} \le se^x + (1-s)e^y$ (convexidad de e^x)

por lo que

$$\leq \frac{1}{p}e^{\log(a^p)} + \frac{1}{q}e^{\log(b^q)}$$

Desigualdad de Minkowski. en 1

$$|f+g|^p = |f+g| \cdot |f+g|^{p-1}$$

$$\leq |f| \cdot |f+g|^{p-1} + |g| \cdot |f+g|^{p-1}$$

$$\int |f+g|^p d\mu \leq \int |f| \cdot |f+g|^{p-1} + \int |g| \cdot |f+g|^{p-1}$$

Teorema 3.7.4 (Riesz-Fischer). $L^p(\mu)$ es un espacio de Banach.

Demostración. $f_k \in L^p(\mu), k \in \mathbb{N}$. Queremos demostrar que si

$$\sum_{k=1}^{\infty} ||f_k||_p =: M < \infty$$

$$\implies \sum_{k=1}^{n} f_k \xrightarrow{L^p} F \in L^p$$

 $p=\infty$ (ejercicio). Sea $p\in[1,\infty)$

$$G_n(x) \coloneqq \sum_{k=1}^n |f_k(x)| \quad \text{medible}, \ge 0 \nearrow_{n\to\infty} G(x) \coloneqq \sum_{k=1}^\infty |f_k(x)|$$

Por teorema de convergencia monotona,

$$\int G(x)^p d\mu = \lim_{n \to \infty} \int G_n(x)^p d\mu$$

$$\left(\int G_n(x)^p \, d\mu \right) = ||G_n||_p \le \sum_{k=1}^n ||f_K||_p \le M$$

por Minkowski.

$$\implies \int G_n(x)^p d\mu \le M^p$$

$$\implies G^p \in L^1 \quad (G \in L^p)$$

En particular, $0 \le G^p(x) < \infty$ $\mu - \text{c.t.p.}$

$$\implies G(x) < \infty \quad \mu - \text{c.t.p.}$$

es decir, μ – c.t.p., $\sum |f_k(x)|$ converge. Defina

$$F(x) = \begin{cases} \sum_{k=1}^{\infty} f_k(x) & x \text{ tal que } G(x) < \infty \\ 0 & \text{e.o.c.} \end{cases}$$

F es medible y $F \in L^p(\mu)$ pues

$$|F(x)| \le \sum_{k=1}^{\infty} |f_k(x)| = G(x) \quad \mu - \text{c.t.p.}$$

$$\implies |F(x)|^p \le G(x)^p \quad \mu - \text{c.t.p.}$$

$$\implies \int |F(x)|^p \le \int G(x)^p < \infty$$

Falta establecer la convergencia en L^p :

$$\left\| F - \sum_{k=1}^{N} f_k \right\|_{p} \xrightarrow{N \to \infty} 0$$

$$\left| F - \sum_{k=1}^{n} f_k \right| (x) \le \sum_{k=N+1}^{\infty} |f_k|(x) \le G(x) \quad \mu - \text{c.t.p.}$$

$$\implies \left| F - \sum_{k=1}^{N} f_k \right|^p \le G^p \quad \mu - \text{c.t.p.}$$

Por definición de F,

$$|F - \sum_{k=1}^{N} f_k| \xrightarrow{N \to \infty} 0 \quad \mu - \text{c.t.p.}$$

Por el teorema de convergencia dominada

$$\int \left| F - \sum_{k=1}^{N} f_k \right|^p d\mu \xrightarrow{N \to \infty} \int 0 d\mu = 0$$

3.7.2. Los espacios L^p y dualidad

$$1 \le p \le \infty$$
, $q \to \text{exponente dual: } \frac{1}{p} + \frac{1}{q} = 1$

$$p = 1 \to q = \infty$$

$$p=2 \rightarrow q=2$$

$$p = \infty \rightarrow q = 1$$

Se puede definir un **emparejamiento** entre L^p y L^q .

$$\langle \cdot, \cdot \rangle : L^p(\mu) \times L^q(\mu) \to \mathbb{K}$$

$$f, g \to \langle f, g \rangle \coloneqq \int f g \, d\mu$$

es bien definido:

$$f \in L^p, g \in L^q \implies |fg| \in L^1$$

$$\left(\int |fg| \, d\mu\right) \le ||f||_p ||g||_q < \infty$$

$$\implies fg \in L^1$$

$$\implies |\langle f, g \rangle| = \left|\int fg \right| \le \int |fg| \le ||f||_p ||g||_q$$

Debido a esto podemos definir $\ell_g \in (L^p)^*$

$$\ell_g: L^p(\mu) \to \mathbb{K}$$

$$f \to \langle f, g \rangle$$

es lineal y acotado con

$$||\ell_g||_{(L^p)^*} \le ||g||_q$$

De esta manera tenemos una aplicación

$$\phi: L^q(\mu) \to [L^p(\mu)]^*$$
$$g \to \ell_q$$

 ϕ es lineal, acotada e inyectiva ($\ell_g=0 \implies g=0$).

3.7.3. Teorema de Representación de Riesz

Teorema 3.7.5. Sea $(\Omega, \mathcal{M}, \mu)$ σ -finito. Sea $1 \leq p < \infty$ Entonces ϕ es un **isomorfismo isométrico**:

$$\forall \ell \in (L^p(\mu))^*, \exists !g \in L^q(\mu) \ tal \ que \ \ell(f) = \langle f,g \rangle \quad \forall f \in L^p$$
 con $||\ell||_{(L^p)^*} = ||g||_q$.

Nota: 1. Incluye el caso p = 2 (Espacio de Hilbert).

2. $\Omega: \mathbb{N}, \mu = \text{medida de contar}$

$$L^p(\mu) = \{ f : \mathbb{N} \to \mathbb{K} : \left(\sum |f_k|^p\right)^{1/p} < \infty \} = \ell^p$$

3. El teorema dice que

$$(\ell^p)^* \simeq \ell^q \quad p \in [1, \infty)$$

4. $p = \infty$: $(L^{\infty})^* \not\simeq L^1$

 $\phi: L^1 \not\hookrightarrow (L^\infty)^*$ no es sobreyectiva

La demostración requiere la herramienta del Teorema de Radon-Nikodym.

Definición 3.7.1. (Ω, \mathcal{M}) y medidas $\mu, \nu : \mathcal{M} \to [0, \infty]$. Decimos que ν es absolutamente continua respecto a μ si

$$\mu(E) = 0 \implies \nu(E) = 0$$

y escribimos $\nu \ll \mu$.

Ejemplo: Si $h \geq 0, h \in L^1(\mu)$ podemos definir $\nu : \mathcal{M} \to [0, \infty]$

$$\nu(E) := \int h \chi_E \, d\mu =: \int_E h \, d\mu$$

 ν es una medida.

" $d\nu = h d\mu$ " h es densidad

 $\nu \ll \mu$ pues $\mu(E) = 0$

$$\implies \nu(E) = \int h \chi_E \, d\mu = 0$$

Teorema 3.7.6 (Radon-Nikodym). Sean μ y ν medidas en (Ω, \mathcal{M}) σ -finitas. Si $\nu \ll \mu$, entonces $\exists ! h \geq 0$ medible tal que $\nu(E) = \int_E h \, d\mu$. (h es única μ -c.t.p.)

 $(d\nu = h \, d\nu), \, h = \left[\frac{d\nu}{d\mu}\right]$ derivada de Radon-Nimkodym.

Demostración. Unicidad:

$$\int h_1 \chi_E \, d\mu = \int h_2 \chi_E \, d\mu = \nu(E) \quad \forall E \in \mathcal{M}$$

$$\int (h_1 - h_2) \chi_E \, d\mu = 0 \quad \forall E \in \mathcal{M}$$

$$E = \{h_1 > h_2\}$$

$$0 = \int_{\{h_1 - h_2 > 0\}} (h_1 - h_2) d\mu \implies \mu(\{h_1 > h_2\}) = 0 \implies \mu(\{h_1 \neq h_2\}) = 0 \implies h_1 = h_2 \quad \mu - \text{c.t.p.}$$

Existencia: (argumento de Von Neumann) que utiliza el Teorema de Representación de Riesz en L^2 .

idea: $\lambda = \mu + \nu$. Suponga que $\mu(\Omega), \nu(\Omega) < \infty$

$$\mu(E) = 0 \iff \lambda(E) = 0$$

Vamos a definir un funcional lineal acotado

$$\ell: L^2_{\mathbb{R}}(\lambda) \to \mathbb{R}$$

$$f \to \int f \, d\mu$$

 ℓ es obviamente lineal y acotado:

$$\left| \int f \, d\mu \right| \le \int |f| \, d\mu$$

$$= \int |f| \cdot 1 \, d\mu$$

$$\le \int |f| \cdot 1 \, d\lambda$$

$$\le ||f||_{L^2(\lambda)} \underbrace{||1||_{L^2(\lambda)}}_{[\lambda(\Omega)]^{1/2}}$$

Es decir, $|\ell(f)| \leq (\lambda(\Omega))^{1/2} ||f||_{L^2(\lambda)}$

Por Teorema de Representación de Riesz:

$$\ell(f) = \int fg \, d\lambda, \quad g \in L^2(\lambda)$$

$$\int_{\Omega} f \, d\mu = \int f g \, d\lambda$$

$$= \int f g \, d\mu + \int f g \, d\nu$$

$$\int f(1-g) \, d\mu = \int f g \, d\nu \quad \forall f \in L^2(\lambda)$$
(3.1)

Formalmente " $(1-g) d\mu = g d\nu$ " \Longrightarrow " $h = \frac{1-g}{g}$ ".

Primero vamos a demostrar que

$$0 < g \le 1$$
 $\mu - \text{c.t.p.}$

(a)
$$F := \{g \le 0\}$$

$$\mu(F) = \int \chi_F \, d\mu \le \int \chi_F(1-g) \, d\mu$$

por (3.1),

$$= \int \chi_F g \, d\nu \le 0$$
$$\implies \mu(F) = 0$$

(b) $G\coloneqq\{g>1\}.$ Suponga que $\mu(G)>0$

$$0 > \int_G (1 - g) d\mu = \int (1 - g) \chi_G d\mu$$
$$= \int (1 - g) \chi_G d\nu$$
$$= \int_G g d\nu \ge 0$$

lo que es una contradicción.

 $g \in L^2(\lambda)$. Podemos elegir representante g, tal que $0 < g \le 1$ en Ω . Definimos

$$h := \frac{1 - g}{g} \ge 0 \quad \text{en } \Omega$$

Tome $A \in \mathcal{M}$, $f_n = \chi_{\{A \cap g \geq \frac{1}{n}\}}/g \in L^2(\lambda)$. Ponemos f_n en (3,1):

$$\int f_n(1-g) \, d\mu = \int f_n g \, d\nu$$

 $x \in \{g < \frac{1}{n}\}, f_n = 0. \ x \in \{g \ge \frac{1}{n}\}, f_n \le \frac{1}{\frac{1}{n}} = n. \implies f_n \text{ es acotada.} \implies f \in L^2(\lambda).$

$$\int \frac{1-g}{g} \chi_{A \cap \{g \ge \frac{1}{n}\}} d\mu = nt \chi_{A \cap \{g \ge \frac{1}{n}\}} d\nu$$

$$A \cap \{g \ge \frac{1}{n}\} \nearrow A$$

Tomando lím $_{n\to\infty}$, por Teorema de Convergencia Monótona obtenemos

$$\int h\chi_A \, d\mu = \int \chi_A \, d\nu$$

Ahora suponga que μ, ν son σ -finitas: existe $\Omega_n \nearrow \Omega$, tales que

$$\mu(\Omega_n), \nu(\Omega_n) < \infty$$

Aplicaremos el resultado a $(\Omega_n, \mathcal{M}, \mu \ y \ \nu|_{\Omega_n})$. $\mathcal{M}_n = \{E \cap \Omega_n : E \in \mathcal{M}\}$.

$$\nu(A) = \int h_n \chi_A \, d\mu \quad \forall a \in \mathcal{M}_n$$

para alguna $h_n \geq 0$ y \mathcal{M}_n -medible.

$$= \int h_{n+1} \chi_A \, d\mu$$

por unicidad

$$h_{n+1}|_{\Omega_n} = h_n \quad \mu - \text{c.t.p.}$$

Extienda cada h_n por 0 fuera de Ω_n . De esta manera h_n es \mathcal{M} -medible. Defina $h := \lim_{n \to \infty} h_n$

$$h_n \nearrow h$$

Para todo $E \in \mathcal{M}$

$$\begin{split} \nu(E) &= \lim_{n \to \infty} \nu(\Omega_n \cap E) \\ &= \lim_{n \to \infty} \int_{E \cap \Omega_n} h_n \, d\mu \\ &= \lim_{n \to \infty} \int_{E \cap \Omega_n} h \, d\mu \\ &= \int_E h \, d\mu \end{split}$$

Necesitaremos también el siguiente resultado:

Definición 3.7.2. $\ell \in (L^p_{\mathbb{R}})^*$ es positivo si $\ell(f) \geq 0 \quad \forall f \in L^p_{\mathbb{R}}, f \geq 0$

Teorema 3.7.7. Sea $\ell \in (L^p_{\mathbb{R}})^*$, $1 \leq p < \infty$. Entonces

$$\ell = \ell_{+} - \ell_{-}$$

 $\ell_{\pm} \in (L_{\mathbb{R}}^p)^*$ son positivos.

Demostración. Sea $\ell \in (L^p)^*$.

1. Definiremos ℓ_+ para $f \geq 0$.

$$\ell_+(f) \coloneqq \sup_{0 \le g \le f} \ell(g)$$

Obviamente, $\ell_+(cf)=c\ell_+(f),\,c\geq 0.$ Probemos la aditividad:

$$\ell_+(f_1 + f_2) = \ell_+(f_1) + \ell_+(f_2) \quad \forall f_1, f_2 \ge 0 \text{ en } L^p$$

$$\ell\underbrace{(g_1+g_2)}_{q} = \ell(g_1) + \ell(g_2)$$

Si $0 \le g_1 \le f_1$, $0 \le g_2 \le f_2$

$$\implies g = g_1 + g_2 \le f_1 + f_2$$

$$\sup_{0 \le g \le f_1 + f_2} \ell(g) \ge \ell(g_1) + \ell(g_2)$$

Tomando sup sobre $0 \le g_1 \le f_1$, $0 \le g_2 \le f_2$

$$\ell_+(f_1 + f_2) \ge \ell(f_1) + \ell_(f_2)$$

Para demostrar la otra, notamos que cada $0 \le g \le f_1 + f_2$ se puede escribir

$$g = g_1 + g_2$$

donde $g_1 := \min(g, f_1) \le f_1, g_2 := g - g_1 \le f_2.$

$$\ell(g) \le \ell_+(f_1) + \ell_+(f_2)$$

$$\implies \ell_+(f) \le \ell_+(f_1) + \ell_*(f_2)$$

2. Extendemos ℓ_+ a toda $f \in L^p$.

$$f = f_{+} - f_{-}$$

Definimos $\ell_{+}(f) = \ell_{+}(f_{+}) - \ell_{+}(f_{-}).$

Esta definicón no depende de como descomponemos f como diferencia de 2 funciones no negativas.

$$f = f_{+} - f_{-} = f_{1} - f_{2} \implies f_{+}f_{2} = f_{1} + f_{-}$$

$$\implies \ell_{+}(f_{1} + f_{2}) = \ell_{+}(f_{1} + f_{-})$$

$$\implies \ell_{+}(f_{+}) + \ell_{+}(f_{2}) = \ell_{+}(f_{1}) + \ell_{+}(f_{-})$$

$$\implies \ell_{+}(f_{+}) - \ell_{+}(f_{-}) = \ell_{+}(f_{1}) - \ell_{+}(f_{2})$$

3. Por lo tanto, ℓ_+ es lineal

$$\ell_{+}(cf) = c\ell_{+}(f) \quad \forall c \ge 0$$

$$\ell_{+}(-cf) = \ell_{+}(c(-f)) = c\ell_{+}(-f) = -c\ell_{+}(f)$$

$$\implies \ell_{+}(-f) = \ell_{+}(f_{-}) - \ell_{+}(f_{+}) = -\ell_{+}(f)$$

 ℓ_+ es acotado.

$$\begin{aligned} |\ell_{+}(f)| &= |\ell_{+}(f_{+}) - \ell_{+}(f_{-})| \\ &\leq |\ell_{+}(f_{+})| + |\ell_{+}(f_{-})| \\ &\leq ||\ell|| \cdot ||f_{+}||_{L^{p}} + ||\ell|| \cdot ||f_{-}||_{L^{p}} \\ &\leq 2||\ell|| \cdot ||f||_{L^{p}} \end{aligned}$$

Espacios de Hilbert

ya que

$$\ell_{+}(f) \leq \sup_{0 \leq g \leq f} ||\ell|| \cdot ||g||_{L^{p}}$$

$$\leq ||\ell|| \cdot ||f||_{L^{p}}$$

Definimos

$$\ell_{-} := \ell_{+} - \ell$$

$$\Longrightarrow \ell \in (L_{\mathbb{R}}^{p})^{*}$$

 ℓ_{-} es positiva pues $\forall f \geq 0, f \in L^{p}$.

$$\ell_{-}(f) = \ell_{+}(f) - \ell(f) \ge 0$$

= \sup\{\ell(g) : 0 \le g \le f\} - \ell(f) \ge 0

Demostración del Teorema de Riesz (3.7.5). $\mathbb{K} = \mathbb{R}, \ell \in (L_{\mathbb{R}}^p)^*$ y positivo. Supondremos que $\mu(\Omega) < \infty$. Definimos

$$\nu: \mathcal{M} \to [0, \infty)$$

$$A \to \ell(\chi_A)$$

Afirmamos que ν es una medida finita.

(a)
$$\nu \ge 0$$

$$\nu(\Omega) \le ||\ell|| \cdot ||\chi_{\Omega}||_{L^p} = ||\ell|| \left(\int_{\Omega} 1^p d\mu \right)^{1/p} = ||\ell|| (\mu(\Omega)^{1/p}) < \infty$$

- (b) $\nu(\varnothing) = 0$
- (c) Si $E = \biguplus E_k, \chi_{\bigcup_{k=1}^N E_k} \nearrow \chi_E$

$$0 \le |\chi_E - \chi_{\bigcup_{k=1}^N E_k}|^p \le \chi_E^p \in L^1$$

Por Teorema de Convergencia Dominada

$$\implies \chi_{\bigcup_{k=1}^{N} E_{k}} \xrightarrow{L^{p}} \chi_{E}$$

$$\implies \ell(\chi_{\bigcup_{k=1}^{n} E_{k}}) \to \ell(\chi_{E}) \iff \sum_{k=1}^{N} \ell(\chi_{E_{k}}) \xrightarrow{N \to \infty} \ell(\chi_{E})$$

$$\nu(E) = \ell(\chi_E)$$

$$= \lim_{N \to \infty} \sum_{k=1}^{N} \ell(\chi_{E_k})$$

$$= \lim_{N \to \infty} \sum_{k=1}^{N} \nu(E_k)$$

$$= \sum_{k=1}^{\infty} \nu(E_k)$$

Además, $\nu \ll \mu$

$$\nu(A) \le ||\ell||\mu(A)^{1/p}$$

Si $\mu(A)=0 \implies \nu(A)=0$ Por el teorema de Radon-Nikodym,

$$\ell(\chi_A) = \nu(A) = \int \chi_A h \, d\mu$$

para una $h \geq 0$. Tomando combinaciones lineales finitas de χ_A 's:

$$\ell(s) = \int sh \, d\mu$$

para toda función simple $s:\Omega\to\mathbb{R}.$ Ahora, cada función $f\geq 0$ no negativa

$$0 \le s_n \le f$$
, $s_n \nearrow f$

Por Teorema de Convergencia Dominada,

$$\implies s_n \xrightarrow{L^p} f$$

Entonces,

$$\ell(f) = \lim_{n \to \infty} \ell(s_n) = \lim_{n \to \infty} \int s_n h \, d\mu$$
$$\int f h \, d\mu$$

Cuando μ es σ -finita,

$$\Omega = \biguplus_n \Omega_n, \quad \mu(\Omega_n) < \infty$$

En cada Ω_n , tenemos $h_n \geq 0$, tal que

$$\ell(f\chi_{\Omega_n}) = \int f\chi_{\Omega_n} h_n \, d\mu \quad \forall f \ge 0, f \in L^p$$

Extienda h_n por 0 fuera de Ω_n . Tenemos que

$$\sum_{n=1}^{N} f \chi_{\Omega_n} \xrightarrow{L^p} f$$

por lo que

$$\ell(f) = \lim_{N \to \infty} \ell(\sum_{n=1}^{N} f \chi_{\Omega_n}) = \lim_{N \to \infty} \sum_{n=1}^{N} \int f \chi_{\Omega_n} h_n \, d\mu$$
$$= \lim_{N \to \infty} \sum_{n=1}^{N} \int \Omega f h_n \, d\mu = \lim_{N \to \infty} \int f \sum_{n=1}^{N} h_n \, d\mu$$
$$= \int_{\Omega} f h \, d\mu$$

donde $h := \sum_{n=1}^{\infty} h_n$. En particular,

$$fh \in L^1(\mu)$$

Tomaremos ahora un $f \in L^p_{\mathbb{R}}(\mu)$ con signo arbitrario. $\ell \in (L^p_{\mathbb{R}})^*$ y positivo

$$\ell(f) = \ell(f_{+} - f_{-})$$

$$= \ell(f_{+}) - \ell(f_{-})$$

$$= \int f_{+}h - \int f_{-}h \int fh \, d\mu$$

 $f \in L^p \implies |f| \in L^p, |f| \ge 0$

$$\implies \ell(|f|) = \int |f| h \, d\mu \implies |f| h \in L^1$$

Por lo tanto, $f_{\pm}h \in L^1$

$$\int (f_{+} - f_{-})g = \int f_{+}h - f_{-}h = \int f_{+}h - \int f_{-}h$$

Si $\ell \in (L^p)^*$, lo expresamos como diferencia de 2 funcionales positivos:

$$\ell = \ell_+ - \ell_-$$

cada una con su h_{\pm} correspondiente, $h \coloneqq h_{+} - h_{-}$

$$\forall f \in L_{\mathbb{R}}^{p}(\mu), fh_{\pm} \in L^{1}$$

$$\implies fh = fh_{+} - fh_{-} \in L^{1}$$

$$\implies \ell(f) = \ell_{+}(f) - \ell_{-}(f) = \int fh_{+} - \int fh_{-} = \int fh$$

En esta etapa hemos demostrado que $\forall \ell \in (L^p_{\mathbb{R}})^*$ se puede escribir como

$$\ell(f) = \int f h \, d\mu$$

para alguna h medible donde $fh \in L^1$.

Para extender al caso complejo, noten que si $\ell \in (L^p_{\mathbb{C}})^*$ y $f \in L^p_{\mathbb{R}}$.

$$\implies \ell(f) = \operatorname{Re} \ell(f) + i \operatorname{Im} \ell(f)$$

donde Re $\ell \in (L^p_{\mathbb{R}})^*$ y Im $\ell \in (L^p_{\mathbb{R}})^*.$

$$|\operatorname{Re} \ell(f)| \leq |\ell(f)| \leq ||\ell||_{L^p_{\mathbb{C}}}^* ||f||_{L^p_{\mathbb{C}}} = ||\ell||_{(L^p_{\mathbb{C}})^*} ||f||_{L^p_{\mathbb{R}}}$$

$$\operatorname{Re} \ell = \langle \cdot, h_1 \rangle$$

$$\operatorname{Im} \ell = \langle \cdot, h_2 \rangle$$

donde $fh_i \in L^1$. Por lo tanto, si

$$h \coloneqq h_1 + ih_2$$

$$|fh| \le |fh_1| + |fh_2| \quad \forall f \in L^p_{\mathbb{R}}$$

У

$$\ell(f) = \langle f, h_1 \rangle + i \langle f, h_2 \rangle = \langle f, h_1 + i h_2 \rangle \quad \forall f \in L_{\mathbb{R}}^p$$

Por linealidad

$$\ell(f) = \langle f, h \rangle \quad \forall f \in L^p_{\mathbb{C}}$$

donde $|fh| \in L^1$.

 $\ell \in (L^p)^*.$ Hemos demostrado que existe h medible tal que

$$fh \in L^1 \quad \forall f \in L^p$$

у

$$\ell(f) = \int f h \, d\mu$$

Afirmamos que $h \in L^q$ y $||\ell|| = ||h||_q.$ Por Hölder,

$$|\ell(f)| \le \int |fh| \, d\mu \le ||f||_p ||h||_q$$

$$\implies ||\ell|| \le ||h||_q$$

Mostraremos ahora la otra desigualdad

(a)
$$p \in (1, \infty)$$
. Defina

$$B_n := \Omega_n \cap \{|h| \le n\}, \quad \Omega_n \nearrow \Omega$$

$$f_n := |h|^{q-1} \operatorname{sgn} h \chi_{B_n}$$

$$f_n \in L^p$$

$$||f_n||_p^p = \int_{B_n} (|h|^{q-1})^p = \int_{B_n} |h|^q$$

 $\implies ||f_n||_p = \left(\int |h|^q\right)^{1/p}$

$$\ell(f_n) = \int f_n h \, d\mu = \int |h|^{q-1} \operatorname{sgn} h h \, d\mu$$
$$= \int_{B_n} |h|^q \, d\mu$$

$$\int_{B_n} |h|^q d\mu = \ell(f_n) \le ||\ell|| \cdot ||f_n||_p = ||\ell|| \left(\int |h|^q d\mu \right)^{1/p}$$

$$\left(\int_{B_n} |h|^q d\mu \right)^{1-1/p} \le ||\ell||$$

$$\left(\int_{B_n} |h|^q \right)^{1/q} \le ||\ell||$$

Por Teorema de Convergencia Monótona,

$$\left(\int_{B_n} |h|^q\right)^{1/q} \xrightarrow{n \to \infty} ||h||_q$$

(b) $p=1, q=\infty$. Suponga que $||\ell||+2\varepsilon \leq ||h||_{\infty}$, para algún $\varepsilon>0$.

$$||h||_{\infty} = \inf\{M > 0 : |h| \le M \text{ c.t.p.}\}$$

 $\exists A \in \mathcal{M}, \mu(A) > 0$, tal que

$$|h| \ge ||h||_{\infty} - \varepsilon \quad \forall x \in A$$

Ya que μ es σ -finita, $\Omega_n \nearrow \Omega$

$$A_n := A \cap \Omega_n \nearrow A$$

Tenemos $|h| \ge ||h||_{\infty} - \varepsilon$ en A_n donde $0 < \mu(A_n) < \infty$. Tome $f_n := \operatorname{sgn} h \chi_{A_n} \in L^1$

$$\ell(f) \int fh \, d\mu = \int_{A_n} |h|$$

$$\geq (||h||_{\infty} - \varepsilon)\mu(A_n)$$

$$\geq (||\ell||_{\infty} + \frac{2}{\varepsilon} - \varepsilon)||f||_1$$

$$= (||\ell||_{\infty} + \varepsilon)||f||_1$$

 $\implies f$ viola la norma de $||\ell||$. Contradicción

3.8. Teorema de Hahn-Banach

Sea X un espacio normado, y sea X^* su dual = espacio de funcionales lineales acotados. No hemos visto si **existen** aún funcionales lineales acotados en X **no triviales**. Resulta ser el caso que hay una **abundancia** de funcionales lineales acotados en X.

 $X \to \text{espacio vectorial.} \ X' \to \text{espacio de funcionales lineales} \ (X \neq X')$. Diremos que $f \in X'$ $(f: X \to \mathbb{K})$ extiende, $g \in Y'$ $(Y \subseteq X \text{ subespacio, } g: Y \to \mathbb{K})$. Si

$$f(y) = g(y) \quad \forall y \in Y$$

$$(X, f) \succ (Y, g).$$

Definición 3.8.1. Sea X un espacio vectorial **real**. Decimos que

$$p: X \to \mathbb{R}$$

es un funcional convexo si satisface

- 1. (Homogeneidad positiva) $p(\lambda x) = \lambda p(x), \forall \lambda \geq 0$
- 2. (subaditividad) $p(x+y) \le p(x) + p(y)$

Se dice convexo porque

$$p(\lambda x + (1 - \lambda)y) \le p(\lambda x) + p((1 - \lambda)y)$$
$$= \lambda p(x) + (1 - \lambda)p(y)$$

Ejemplo: Una seminorma/norma es un funcional convexo.

Ejemplo: Un funcional lineal (sobre \mathbb{R}) es un funcional convexo.

Definición 3.8.2. Decimos que el funcional convexo p domina el funcional lineal f si

$$f(x) \le p(x) \quad \forall x \in X$$

Proposición 3.8.1. Sea X normado. $f \in X'$ es **acotado** si y solo si f es dominado por p(x) := M||x|| para alguna M > 0.

Demostración. $(\Longrightarrow): f \in X*$

$$|f(x)| \le M||x||$$

$$\implies f(x) \le M||x||$$

 (\Leftarrow) :

$$f(x) \le M||x|| \quad \forall x \in X$$
$$-f(x) = f(-x) \le M||-x|| = M||x||$$
$$\implies -M||x|| \le f(x) \le M||x||$$

Teorema 3.8.2 (Hahn-Banach). Sean X, Y espacios vectoriales **reales**, $Y \subseteq X$ y sea $p: X \to \mathbb{R}$ un funcional lineal **convexo**. Si $f \in Y'$ es dominado por p,

$$f(y) \le p(y) \quad \forall y \in Y$$

entonces existe una extensión $F \in X'$ dominado por p:

$$F(x) < p(x) \quad \forall x \in X$$

Corolario 3.8.2.1. X es un espacio normado real. $Y \subseteq X$ subespacio $Y \neq \{0\}$. $f \in Y^*$. Entonces existe una extensión $F \in X^*$ con

$$||F||_{X^*} = ||f||_{Y^*}$$

$$(Y = \text{Gen}(v)), f(\lambda v) = \lambda, ||f||_{Y^*} = \frac{1}{||v||}.$$
 Por Hahn-Banach, $F: X \to \mathbb{R}, ||F||_{X^*} = ||f||_{Y^*}.$

Demostración. Defina $p(x) := ||f||_{Y^*}||x||$. f es dominado por p., por lo que por el Teorema de Hahn-Banach nos da una extensión

$$F:X\to\mathbb{R}$$

$$F(x) \le p(x) = ||f||_{Y^*} ||x||$$

 $\implies F \in X^* \text{ y } ||F||_{X^*} \le ||f||_{Y^*}.$

$$||F||_{X^*} = ||f||_{Y^*}$$

pues es una extensión.

Demostración del Teorema de Hahn-Banach (3.8.2). Asumimos que $Y \subsetneq X \implies$ existe $z \in X \setminus Y$. Vamos a extender f a $F: Y + \operatorname{Gen}(z) \to \mathbb{R}$ de la manera que F sea **dominado** por p.

$$F(y+tz) := f(y) + ts, \quad F(z) = s$$

define un funcional lineal en Y + Gen(z). La meta es es elegir s de tal manera que $F(y+tz) = f(y) + ts \le p(y+tz)$. Noten que se satisface cuando t = 0. Afirmamos que para demostrar su validez $\forall t \ne 0$ basta ver que se satisface oara $t = \pm 1$.

$$F(y+tz) = |t|F\left(\frac{y}{|t|} + \frac{t}{|t|}z\right)$$
$$= |t|f\left(\frac{y}{|t|} + \operatorname{sgn} ts\right)$$
$$\leq |t|p\left(\frac{y}{|t|} + \operatorname{sgn} ts\right) = p(y+tz)$$

Meta: elija s de modo que

$$f(y) + s \le p(y+z) \quad t = 1$$
$$f(y') - s \le p(y'-z) \quad t = -1$$

 $\forall y, y' \in Y$. Tal s existe si

$$\sup_{y' \in Y} f(y') - p(y' - z) \le \inf_{y \in Y} p(y + z) - f(y)$$

Esto es válido cuando

$$f(y') - p(y' - z) \le p(y + z) - f(y) \quad \forall y, y' \in Y$$

$$\iff f(y') + f(y) \le p(y + z) + p(y' - z)$$

$$\iff f(y' + y) \le p(y + z) + p(y' - z) \quad \forall y, y' \in Y$$

Lo que es verdadero por la convexidad de p y porque f está dominado por p.

$$f(y'+y) \le p(y+y') = p(y+z+y'-z) \le p(y+z) + p(y'-z) \quad \forall y, y' \in Y$$

De esta manera obtuvimos

$$(\tilde{Y}, F) \succ (Y, f)$$

Para extender a todo X utilizaremos un argumento estándar por el Lema de Zorn.

Definición 3.8.3. Orden parcial \prec en un conjunto E es una relación entre algunos de los elementos de E que satisface

- 1. $e \prec e$
- 2. $e \prec f \ y \ f \prec e \implies e = f$
- 3. $e \prec f \ y \ f \prec g \implies e \prec g$

Definición 3.8.4. Un subconjunto $C \subseteq E$ se llama **cadena** si es totalmente ordenado. Es decir, todo par de elementos de C son relacionados.

Definición 3.8.5. Una cota superior de $D \subseteq E$ es un elemento $e \in E$ tal que

$$d \prec e \quad \forall d \in D$$

Definición 3.8.6. Un elemento maximal $m \in E$ es un elemento de E que no puede ser dominado: si

$$m \prec g \implies m = e$$

Lema 3.8.3 (Lema de Zorn). Si toda cadena de un conjunto E parcialmente ordenado tiene una cota superior, entonces E tiene un elemento maximal.

Lema de Zorn \iff Axioma de Elección

En nuestro contexto,

$$E = \{(L, \ell) : (L, \ell) \succ (y, f), \ell : L \to \mathbb{R} \text{ es dominado por } p\}$$

Orden es: $(L_1, \ell_1) \succ (L_2, \ell_2)$. Sea $C \subseteq E$ una cadena.

$$C = \{(L_{\alpha}, \ell_{\alpha})\}_{\alpha}$$

 $L := \bigcup_{\alpha} L_{\alpha}$ es un subespacio vectorial de X

$$x, y \in L \implies x \in L_{\alpha_1}, y \in L_{\alpha_2} \supseteq L_{\alpha_1}$$

 $\implies x + y \in L_{\alpha_2} \implies \lambda x + \mu y \in L_{\alpha_2} \subseteq L$

Defina

$$\ell: L \to \mathbb{R}$$

$$x \to \ell_{\alpha}(x) \quad \text{si } x \in L_{\alpha}$$

Por la rezón anterior, no hay ambiguedad en esta definición: si $x \in L_{\beta}$, podemos asumir que $(L_{\beta}, \ell_{\beta}) \succ (L_{\alpha}, \ell_{\alpha})$

$$\implies \ell_{\beta}(x) = \ell_{\alpha}(x) \quad \forall x \in L_{\alpha}$$

Concluimos que (L, ℓ) es una cota superior de C. Por el Lema de Zorn, existe un elemento maximal (\tilde{L}, \tilde{F}) . $\tilde{L} = X$. Si $\tilde{L} \subsetneq X$, podemos extender \tilde{F} a $\tilde{L} + \operatorname{Gen}(z)$, $z \in X \setminus \tilde{L}$ siendo dominado por p. Esto contradice la maximalidad de (\tilde{L}, \tilde{F}) .

En el caso de espacios normados **complejos**, utilizaremos la siguiente observación: Todo $X_{\mathbb{C}}$ se puede ver como un espacio vectorial **real** $X_{\mathbb{R}}$.

Tenemos la siguiente correspondencia biyectiva:

$$\begin{split} X_{\mathbb{R}}' & \xrightarrow{\sim} X_{\mathbb{C}}' \\ u & \longrightarrow x \to u(x) + \frac{1}{i} u(ix) =: F(x) \\ \operatorname{Re} F & \longleftarrow F \end{split}$$

$$F(x) = \underbrace{\operatorname{Re} F(x)}_{u(x)} + i \operatorname{Im} F(x)$$

$$\operatorname{Im} F(x) = \operatorname{Re} \left[\frac{1}{i} F(x) \right]$$
$$= -\operatorname{Re} [iF(x)]$$
$$= -\operatorname{Re} [F(ix)]$$
$$= -u(ix)$$

Además, tenemos $\alpha \in \mathbb{C}, |\alpha| = 1$

$$|F(x)| = \underbrace{\operatorname{sgn} F(z)}_{\alpha} F(x) = \alpha F(x) = F(\alpha x)$$

= $\operatorname{Re} F(\alpha x) = u(\alpha x) = |u(\alpha x)|$

Cuando $X_{\mathbb{C}}$ es normado, $X_{\mathbb{R}}$ hereda la norma de $X_{\mathbb{C}}$. Si

$$F \in X_{\mathbb{C}}^* \implies u = \operatorname{Re} F \in X_{\mathbb{R}}^*$$

у

$$||F||_{X_{\mathbb{C}}^*} = ||u||_{X_{\mathbb{D}}^*}$$

Teorema 3.8.4. Suponga que $Y_{\mathbb{C}} \subseteq X_{\mathbb{C}}$, $X_{\mathbb{C}}$ un espacio normado complejo, $y \ f \in Y_{\mathbb{C}}^*$. Entonces f se puede extender a $F \in X_{\mathbb{C}}^*$ preservando la norma: $||F||_{X^*} = ||f||_{Y^*}$

$$Demostraci\'on. \ \ f = \underbrace{\operatorname{Re} f}_{u \in Y_{\mathbb{R}}^*} + \underbrace{I \operatorname{Im} f}_{\frac{1}{i}u(i \cdot)}$$

Extendemos $U \in X_{\mathbb{R}}^*$ donde $||U||_{X_{\mathbb{R}}^*} = ||u||_{Y_{\mathbb{R}}^*}$. Definimos

$$F(x) := U(x) + \frac{1}{i}U(ix)$$

Tenemos $||F||_{X^*_{\mathbb{C}}} = ||U||_{X^*_{\mathbb{R}}} = ||u||_{Y^*_{\mathbb{R}}} = ||f||_{Y^*_{\mathbb{C}}}$

Corolario 3.8.4.1. Para todo $x_0 \in X$, X normado, existe $f_0 \in X^*$ tal que $||f_0|| = 1$ y tal que $f_0(x_0) = ||x_0||$.

Demostración. Aplicamos el teorema anterior a $Y = Gen(x_0)$ y

$$\bar{f}_0: Y \to \mathbb{K}$$

$$tx_0 \to t||x_0||$$

$$\bar{f}_0(x_0) = ||x_0||, ||\bar{f}_0||_{Y^*} = 1$$

Lo extendemos $f_0 \in X^*$.

Corolario 3.8.4.2.

$$||x|| = \sup\{|f(x)| : ||f|| = 1\}$$

Demostración.

$$|f(x)| \le ||f|| \cdot ||x|| = ||x||$$

Por 3.8.4.1, ||x|| = |f(x)| para algún $f \in X^*$ con ||f|| = 1.

$$\implies ||x|| \le \sup\{|f(x)| : ||f|| = 1\}$$

Teorema 3.8.5. $\forall x \in X, X$ espacio normado, define un funcional lineal acotado en X^*

$$\hat{x}: X^* \to \mathbb{K}$$
$$f \to f(x)$$

$$||\hat{x}|| = \sup_{\substack{f \in X^* \\ ||f|| = 1}} ||f(x)|| = ||x||$$

Entonces, el mapeo

$$\mathcal{J}: X \to (X^*)^*$$
$$x \to \hat{x}$$

es una isometría lineal.

Nota:

- $\blacksquare \mathcal{J}$ es inyectivo.

$$\overline{\mathcal{J}(X)}\subseteq (X^*)^*\implies \overline{\mathcal{J}(X)}\simeq \text{completación de }X$$

 \blacksquare Cuando ${\mathcal J}$ es sobreyectivo, $X\,\simeq\,X^{**}$ es un espacio de Banach. que se llama reflexivo.

Ejemplo: (Espacio de dimensión finita) $L^p(\mu), p \in (1, \infty]$.

Capítulo 4 -

Teoría de Operadores

4.1. Relaciones de Ortogonalidad

Notación: $x \in X, f \in X^*, X$ normado. $f(x) := \langle f, x \rangle. Y \subseteq X$, definimos el aniquilador de Y

$$Y^{\perp} := \{ f \in X^* : \langle f, y \rangle = 0 \quad \forall y \in Y \} \subseteq X^*$$

Similarmente, $Z \subseteq X^*$,

$$Z^{\perp} := \{ x \in X : \langle f, x \rangle = 0 \quad \forall f \in Z \} \subseteq X$$

Obviamente Y^{\perp} es un subespacio cerrado de X^* y Z^{\perp} es un subespacio cerrado de X.

Ejemplo: Cuando X es un espacio de Hilbert, $X^* \simeq X$ por Riesz. $Y \subseteq X$, el complemento ortogonal

$$Y^{\perp} = \{ x \in X : \langle x, y \rangle = 0 \quad \forall y \in Y \}$$

 \simeq aniquilador de Y.

Proposición 4.1.1. Sea $Y\subseteq X$ subespacio del espacio normado X. Entonces, $(Y^{\perp})^{\perp}=\overline{Y}$

Demostración. Es fácil ver que $Y \subseteq (Y^{\perp})^{\perp}$.

Para demostrar la otra inclusión, suponga que $\overline{Y} \subsetneq (Y^{\perp})^{\perp}$. Entonces existe $x \neq 0, x \in (Y^{\perp})^{\perp} \setminus \overline{Y}$. Defina

$$f: \overline{Y} + \operatorname{Gen}(x) \to \mathbb{K}$$

 $y + \lambda x \to \lambda$

Obviamente f es un funcional lineal en $\overline{Y} + \operatorname{Gen}(x)$ que satisface:

$$f(x) = 1$$

$$f(y) = 0$$

Además f es acotado en $Z := \overline{Y} + \text{Gen}(x)$:

$$f(y) = 0 \quad \forall y \in Y$$

Sea $z = y + \lambda x, \lambda \neq 0. \implies z \neq 0.$

$$|f(z)| = |\lambda| = \frac{|\lambda|}{||z||} ||z||$$

$$= \frac{|\lambda|}{||y + \lambda x||} ||z|| = \frac{1}{||\frac{y}{\lambda} + x||} ||z|| \le \frac{1}{dist(x, \overline{Y})} ||z||$$

Por Teorema de Hahn-Banach, podemos extender fa todo X,y asumir que $f\in X^*.$ Además,

$$\langle f, y \rangle = 0 \quad \forall y \in \overline{Y} \implies f \in \overline{Y}^{\perp} \supset Y^{\perp}$$

pero $f(x) \neq 0$. Por otro lado,

$$x \in (Y^{\perp})^{\perp} \implies \langle g, x \rangle = 0 \quad \forall g \in Y^{\perp}$$

En particular, $\langle f, x \rangle = 0$, lo que es una contradicción.

Suponga que $T \in \mathcal{B}(X,Y), X, Y$ normados. Definimos el **operador adjunto/transpuesto**

$$T^*: Y^* \to X^*$$

 $f \to f \circ T =: T^*(f)$
 $\langle T^*f, x \rangle = \langle f, T(x) \rangle \quad \forall x \in X$

Obviamente T^* es lineal y es acotado:

$$|T^*f(x)| = |f(Tx)| \le ||f||_{Y^*} ||Tx||_Y \le ||f||_{Y^*} ||T||_{\mathcal{B}(X,Y)} ||x||_X$$

$$\implies ||T^*f||_{X^*} \le ||f||_{Y^*} ||T||_{\mathcal{B}(X,Y)}$$

$$\implies ||T^*||_{\mathcal{B}(Y^*,X^*)} \le ||T||_{\mathcal{B}(X,Y)}$$

$$\implies ||T^*|| \in \mathcal{B}(Y^*,X^*)$$

Teorema 4.1.2. La asignación

$$\mathcal{B}(X,Y) \to \mathcal{B}(Y^*,X^*)$$

 $T \to T^*$

es una isometría lineal. Además,

(a)
$$(\operatorname{Im} T)^{\perp} = \ker T^* (\subseteq Y^*)$$

$$\begin{array}{ll} (a) \ (\operatorname{Im} T)^{\perp} = \ker T^{*} (\subseteq Y^{*}) \\ (b) \ (\ker T^{*})^{\perp} = \overline{\operatorname{Im} T} (\subseteq Y) \end{array}$$

(c)
$$(\operatorname{Im} T^*)^{\perp} = \ker T \subseteq X$$

Demostración. Obviamente, $(\lambda T_1 + T_2)^* = \lambda T_1^* + T_2^*$

$$\begin{aligned} ||T|| &= \sup_{||x||_X = 1} ||Tx||_Y \\ &= \sup_{||x||_X = 1} \left(\sup_{||f||_{Y^*} = 1} |\langle f, Tx \rangle| \right) \\ &= \sup_{\substack{||x||_X = 1 \\ ||f||_{Y^*} = 1}} |\langle f, Tx \rangle| = \sup_{||x||_X = 1} |\langle T^*f, x \rangle| \\ &= \sup_{||f||_{Y^*} = 1} \sup_{||x||_X = L} |T^*f(x)| \\ &= \sup_{||f||_{Y^*} = 1} ||T^*f|| = ||T^*|| \end{aligned}$$

(a)

$$f \in (\operatorname{Im} T)^{\perp} \iff \langle T^* f, x \rangle = \langle f, Tx \rangle = 0 \quad \forall x \in X$$

 $\iff T^* f = 0 \iff f \in \ker T^*$

(b)

$$(\ker T^*)^{\perp} = ((\operatorname{Im} T)^{\perp})^{\perp} = \overline{\operatorname{Im} T}$$

(c)

$$x \in (\operatorname{Im} T^*) \iff \langle T^*f, x \rangle = 0 \quad \forall f \in Y^*$$

 $\iff \langle f, Tx \rangle = 0 \quad \forall f \in Y^*$
 $\iff Tx = 0 \iff x \in \ker T$

4.2. Operadores Compactos

Definición 4.2.1. Sean X, Y espacios de Banach.

$$B^X := \{ x \in X : ||x||_X \le 1 \}$$

Decimos que un operador lineal $T: X \to Y$ es **compacto** si $\overline{T(B^X)}$ es compacto en Y.

 \iff toda sucesión en $T(B^X)$ tiene una subsucesión convergente en Y.

 \iff toda sucesión en $T(B^X)$ tiene una subsucesión de Cauchy.

Denotamos la clase de opradores **compactos** con $\mathcal{B}_c(X,Y)$

Teorema 4.2.1. $\mathcal{B}_c(X,Y) \subseteq \mathcal{B}(X,Y)$ es un subespacio cerrado.

$$\{T_n\} \subseteq \mathcal{B}_c(X,Y) \ y \ ||T_n - T|| \xrightarrow{n \to \infty} 0 \implies T \in \mathcal{B}_c(X,Y)$$

Demostración. Fije $\varepsilon > 0$. Elige N grande tal que

$$||T - T_n|| \le \frac{\varepsilon}{2}$$

$$\overline{T_N(B^X)} \subseteq \bigcup_{k=1}^M B_{\varepsilon/2}(y_k)$$

$$T(B^X) \subseteq \bigcup_{k=1}^M B_{\varepsilon}(y_k)$$

Tomaremos $\varepsilon_n = \frac{1}{m} \to 0$. Sea $\{x_n\} \subseteq B^X$.

- 1. Extraemos una subsucesión $\{x_{n,1}\}$ tal que $Tx_{n,1}\subseteq B_{\varepsilon_1}(\bar{y}_1)$
- 2. $\{x_{n,1}\} \to \{x_{n,2}\}$ tal que

$$Tx_{n,2} \subseteq B_{\varepsilon_2}(\bar{y}_2)$$

así hasta $\{x_{n,m}\}$ tal que

$$Tx_{n,m} \subseteq B_{\varepsilon_m}(\bar{y}_m)$$

Definimos $\tilde{x}_m := x_{m,m}$. $\{T\tilde{x}_m\}$ es una sucesión de Cauchy.

Definición 4.2.2. Un operador $T: X \to Y$ es de **rango finito** si Im T tiene dim finita.

Proposición 4.2.2. Un operador $T: X \to Y$ de rango finito es compacto. Como consecuencia si $T = \lim_{n \to \infty} T_n$, T_n de rango finito, entonces $T \in \mathcal{B}_c(X,Y)$

 $Demostraci\'on.\ X\xrightarrow{T}\operatorname{Im}T\simeq\mathbb{K}^{m},\ m=\dim\operatorname{Im}T.$

$$\varphi: \mathbb{K}^m \to \operatorname{Im} T$$

$$(c_1, \dots, c_m) \to \sum_{i=1}^m c_i e_i$$

donde $\{e_i\}$ es una base de Im T. φ es un isomorfismo continuo (con inversa continua). Por lo tanto, $\underline{\varphi}^{-1}(\overline{T(B_X)}) \subseteq K^m$ cerrado y acotado $\Longrightarrow \varphi^{-1}(\overline{T(B_X)})$ es compacto en K^m . Por lo tanto, $\overline{T(B_X)}$ es compacto en Im $T \subseteq Y$.

Q. Es un operador $T: \mathcal{B}_c(X,Y)$, límite de operadores de rango finito?.

A. En general, no. Sí, en el caso cuandso Y es un espacio de Hilbert.

Teorema 4.2.3. $T \in \mathcal{B}_c(X,Y)$, Y espacio de Hilbert. Entonces existen T_n de rango finito tal que

$$||T_n - T|| \xrightarrow{n \to \infty} 0$$

Demostración. Fije $\varepsilon > 0$. $\overline{T(B^X)} \subseteq \bigcup_{k=1}^M B_{\varepsilon}(y_k)$

$$F := \operatorname{Gen}(\{y_k\}_{k=1}^M) \stackrel{\operatorname{cerr}}{\subseteq} Y$$

Tenemos $P_F: Y \to Y$.

$$T_{\varepsilon} := P_F \circ T$$
 es de rango finito

Ahora, cada $x \in B^x$ tiene imagen $Tx \in B_{\varepsilon}(y_k) \implies ||Tx - y_k|| < \varepsilon$

$$||P_F(Tx) - P_F(y_k)|| \le ||Tx - y_k|| \le \varepsilon$$

 $||T_{\varepsilon}x - y_k|| < \varepsilon$

Concluimos que $\forall x \in B^X$,

$$||Tx - T_{\varepsilon}x|| \le ||Tx - y_k|| + ||T_{\varepsilon}x - y_k|| \le 2\varepsilon$$

 $\implies ||T - T_{\varepsilon}|| \le 2\varepsilon$

Ejemplo (Operadores de Hilbert-Schmidt): $X_i := (\Omega_i, \mu_i), i = 1, 2.$

$$K(x_1, x_2) \in L^2_{\mathbb{R}}(X_1 \times X_2)$$

Sea $f \in L^2(X_2)$. Defina

$$(T_k f)(x_1) \int_{\Omega_2} K(x_1, x_2) f(x_2) d\mu_2$$

 T_k es un operador $\mathcal{B}(L^2(X_2), L^2(X_1))$.

$$|T_k f(x_1)|^2 \le \left(\int_{\Omega_2} |K(x_1, x_2)| |f(x_2)| \, d\mu_2 \right)^2$$

$$\le \underbrace{\int_{\Omega_2} |K(x_1, x_2)|^2 \, d\mu_2}_{\text{finita } \mu_1 - \text{c.t.p.}} ||f||_{L^2(X_2)}^2$$

$$\int \left(\int K(x_1, x_2)^2 \, d\mu_2 \right) d\mu_1 < \infty$$

$$\int_{\Omega_1} |T_k f(x_1)|^2 d\mu_1(x_1) \le ||K||_{L^1(X_1 \times X_2)}^2 ||f||_{L^2(X_2)}^2$$

$$\implies T_k f \in L^2(X_1)$$

у

$$||T_k f||_{L^2(X_1)} \le ||K||_{L^2(X_1 \times X_2)} ||f||_{L^2(X_2)}$$

Además, $\forall g \in L^2(X_1)$,

$$\langle T_k f, g \rangle_1 = \int_{X_1 \times X_2} K(x_1, x_2) f(x_2) g(x_1) d(\mu_1 \times \mu_2)$$

$$= \int_{X_2} \left(\underbrace{\int_{X_1} K(x_1, x_2) g(x_1) d\mu_1}_{T_{K^*}g, K^*(x_2, x_1) = K(x_1, x_2)} \right) f d\mu_2 = \langle f, T_{K^*}g \rangle_2$$

$$T_K^* = T_{K^*}$$

Asumimos que $L^2(X_1), L^2(X_2)$ son separables. Sean $\{e_m\}_m$ una base o.n. de $L^2(X_1)$, $\{f_n\}_n$ una base o.n. de $L^2(X_2)$.

$$\{h_{mn}(x_1, x_2) := e_m(x_1) f_n(x_2)\}_{mn}$$
 es una base o.n. de $L^2(X_1 \times X_2)$

(Por Fubini h_{mn} es maximal)

$$K(x_1, x_2) = \sum_{m,n} a_{mn} e_m(x_1) f_n(x_2)$$

$$K_N(x_1, x_2) = \sum_{\substack{n \le N \\ m \le n}} a_{mn} h_{mn}(x_1, x_2)$$

$$||K - K_N||_{L^2(X_1 \times X_2)}^2 = \sum_{\substack{n \le N \\ m \le n}} |a_{mn}|^2 \xrightarrow{n \to \infty} 0$$

$$||T_K - T_{K_N}|| = ||T_{K - K_n}|| \le ||K - K_N||_{L^2(X_1 \times X_2)}$$

 T_{K_N} es un operador de rango finito!

$$T_{K_N} f(x_1) = \langle K_N(x_1, \cdot), f \rangle_{L^2(X_2)}$$

$$= \left\langle \sum_{\substack{m \le N \\ n \le N}} a_{mn} e_m(x_1) f_n(x_2), f(x_2) \right\rangle$$

$$= \sum_{\substack{m \le N \\ n \le N}} a_{mn} \langle f_n, f \rangle_{L^2(X_1)} e_m(x_1)$$

$$\implies \operatorname{Im} T_{K_N} \subseteq \operatorname{Gen}(\{e_m\}_{m=1}^N)$$

Proposición 4.2.4. Composición de un operador compacto y un operador continuo es compacto.

$$X \xrightarrow{T} Y \xrightarrow{S} Z$$

 $S \circ T$ es compacto.

$$Z \xrightarrow[continuo]{S} X \xrightarrow[compacto]{T} Y$$

 $Demostración. \{x_n\} \subseteq B^X.$ Por composición,

$$Tx_{n_k} \to y \implies (S \circ T)(x_{n_k}) \to Sy \text{ converge } \implies S \circ T \in \mathcal{B}_c(X, Z)$$

Por otro lado,

$$\{z_n\} \subseteq B^Z \implies x_n \coloneqq Sz_n \in B_{||S||}^X \implies \frac{x_n}{||S||} \in B^X \implies T(\frac{x_{n_k}}{||s||}) \to \frac{y}{||s||}$$

$$\implies T \circ S(z_{n_k}) \to y$$

$$\implies T \circ S \in \mathcal{B}_c(Z, Y)$$

Teorema 4.2.5 (Schauder).
$$T \in \mathcal{B}_c(X,Y) \iff T^* \in \mathcal{B}_c(Y^*,X^*)$$

Recuerden,

Teorema 4.2.6 (Arzelà-Ascoli). $K \to espacio\ m\'etrico\ compacto.\ \mathcal{C} \subseteq C(K)\ una\ coleccion\ de\ funciones\ continuas\ que\ satisface:$

- 1. (Acotamiento) $||f||_{C(K)} \leq M$, $\forall f \in \mathcal{C}$ para una constante M > 0.
- 2. (Equicontinuidad) $\forall \varepsilon > 0, \exists \delta > 0 \text{ tal que } \forall f \in \mathcal{C}$

$$|f(x) - f(y)| \le \varepsilon$$

 $cuando |x-y| < \delta.$

Entonces C existe $\{f_n\} \subseteq C$, $f \in C$ tal que $f_n \to f$ en C(K).

Demostración del Teorema de Schauder (4.2.5). \iff : En ayudantía

 \implies : Sea $\{f_n\}\subseteq B^{Y^*}$. Queremos demostrar que existe una subsucesión $\{f_{n_k}\}$ tal que $T^*f_{n_k}$ es Cauchy.

Sea $K := \overline{T(B^X)}$ es compacto en Y.

$$\mathcal{C} = \{ f_n \big|_K : K \to \mathbb{K} \}$$

es una colección de funciones continuas.

1. (Acotamiento)

$$|f_n(x)| \le \underbrace{||f_n||}_{\le 1} \cdot ||x|| \le ||x|| \le M$$

porque el compacto K es acotado.

2. (Equicontinuidad)

$$|f_n(x) - f_n(y)| \le ||f_n|| \cdot ||x - y|| \le ||x - y||$$

(Equi-Lipschitz)

Por Teorema de Arzelà-Ascoli, existe una subsucesión $\{f_{n_k}\}\in B^{Y^*}$ y una función $f\in C(K)$ tal que

$$f_{n_k} \to f \in C(K)$$

$$f_{n_k}(y) \to f(y) \quad \text{uniformemente en } y \in K$$

$$\iff f_{n_k}(Tx) \to f(Tx) \quad \text{uniformemente en } x \in B^X$$

$$\implies f_{n_k}(Tx) - f_{n_l}(Tx) \xrightarrow{k,l \to \infty} 0 \quad \text{uniformemente en } x \in B^X$$

$$\langle f_{n_k}, Tx \rangle - \langle f_{n_l}, Tx \rangle \to 0$$
 uniformemente en $x \in B^X$
 $\langle T^* f_{n_k}, x \rangle - \langle T^* f_{n_l}, x \rangle \to 0$ uniformemente en $x \in B^X$
 $\langle T^* (f_{n_k} - f_{n_l}), x \rangle \to 0$

$$||T^*f_{n_k} - T^*f_{n_l}||_{X^*} = \sup_{x \in B^X} ||\langle T^*(f_{n_k} - f_{n_l}), x \rangle|| \xrightarrow{r,l \to \infty} 0$$

4.3. La Teoría de Riesz-Fredholm

Teorema 4.3.1 (Alternativa de Fredholm). Sea X un espacio de Banach, $T \in \mathcal{B}_c(X,X)$. Entonces,

- a) $\ker(I-T)$ tiene $\dim < \infty$.
- b) $\operatorname{Im}(I-T)$ es cerrado en X e $\operatorname{Im}(I-T) = \ker(I-T^*)^{\perp}$
- $c) \ \ker(I-T) = \{0\} \iff \operatorname{Im}(I-T) = X$
- d) dim $\ker(I T) = \dim \ker(I T^*)$

Nota: La alternativa de Fredholm concierne la solubilidad de la ecuación

$$(I - T)u = f$$
$$u - Tu = f$$

Dice:

- o $\forall f \in X$, tiene una única solución u.
- o la ecuación homogénea

$$u - Tu = 0$$

tiene k soluciones linealmente independientes, $k < \infty$. $k = \dim \ker(I - T)$. En este caso, la ecuación no homogénea

$$u - Tu = f$$

se puede resolver solo cuando $f \in \text{Im}(I - T) = \text{ker}(I - T^*)^{\perp}$. $\iff \ell(f) = 0 \quad \forall \ell \in \ker(I - T^*)$

Es decir, se satisfacen las condiciones de ortogonalidad.

Nota: $c) \implies$ inyectividad implica sobreyectividad de I - T. Hay operadores acotados en ℓ^2 :

$$S:(x_1,x_2,\ldots)\to(x_2,x_2,\ldots)$$

operador shift es sobreyectivo pero no inyectivo.

$$\tilde{S}:(x_1,x_2,\ldots)\to(0,x_1,\ldots)$$

es invectivo pero no es sobrevectivo.

Necesitaremos los siguientes resultados auxiliares

Lema 4.3.2 (Riesz). Sea X un espacio normado y sea $F \subseteq X$. Entonces $\forall \varepsilon > 0$, $\exists u \in X, ||u|| = 1 \ tal \ que$

$$d(u, F) \ge 1 - \varepsilon$$
$$||u - f|| \ge 1 - \varepsilon \quad \forall \varepsilon \in F$$

Demostración. Sea $v \in X \setminus F$

$$\implies d := d(v, F) > 0$$
 (F es cerrado)

Elija $v_0 \in F$ tal que

$$d \le ||v - v_0| \le \frac{d}{1 - \varepsilon}$$

Ahora, $u \coloneqq \frac{v-v_0}{||v-v_0||}$ satisface el Lema pues

$$||u - f|| = ||\frac{v - v_0 - f||v - v_0||}{||v - v_0||}$$

$$= \frac{1}{||v - v_0||} \underbrace{||v - (v_0 + f||v - v_0||)||}_{\geq d}$$

$$\geq \frac{d}{||v - v_0||} \geq 1 - \varepsilon$$

Corolario 4.3.2.1. Sea X un espacio normado, y suponga que B^X es compacta. Entonces $\dim X < \infty$.

Demostración. Suponga que dim $X = \infty$. Sucesivamente construimos vectores $u_n \in X$

$$||u_n|| = 1, F_{n-1} := \operatorname{Gen}(\{u_k\}_{k=1}^{n-1})$$

tal que

$$d(u_n, F_{n-1}) \ge \frac{1}{2}$$

Entonces $F_{n-1} \subseteq F_n$ y cuando m > n

$$||u_m - u_n|| \ge d(u_m, F_n) \ge \frac{1}{2}$$

En particular, $\{u_m\}$ no tiene una subsucesión que converge. Lo que es una contradicción porque la bola unitaria es compacta por suposición.

Nota: $T: X \to Y$ compacto. $X_1 \stackrel{\text{cerr}}{\subseteq} X, X, Y$ Banach.

$$\implies T|_{X_1}: X_1 \to Y \quad \text{es compacto}$$

Demostración del Teorema de Alternativa de Fredholm. a) $X_1 = \ker(I - T) \stackrel{\text{cerr}}{\subseteq} X$

$$\implies T|_{X_1}: X_1 \to X$$

es compacto. Por otra parte, $T\big|_{X_1}=(\left.id\right)\big|_{X_1}$ ya que

$$\forall x \in \ker(I - T), (I - T)x = 0 \iff Tx = x$$

Luego, B^X es compacta \implies dim $X_1 < \infty$

b) Si demostramos que Im(I-T) es cerrada, $\implies \text{Im}(I-T) = \overline{\text{Im}(I-T)} = \ker(I-T^*)^{\perp}$. Sea

$$f_n := (I - T)u_n \to f \in X$$

y queremos demostrar que $f \in \text{Im}(I - T)$

$$d_n \coloneqq d(u_n, \ker(I - T))$$

ya que dim $\ker(I-T) < \infty$, entonces

$$d_n := d(u_n, \ker(I - T)) = ||u_n - v_n||$$

 $v_n \in \ker(I - T)$. Afirmamos que $\sup_n d_n < \infty$