4 1					1
A	go	nı	n	m	-1

Step	Cost of each execution	Total # of times executed
1	ı	a 1
2	1	'n
3	4	Egin Eugl (n-1) = n (n+1)
4	1	n(n)
5	1	Z 1=0 Z 2. 2 (N2 N3
6	6	O^3
7	5	n ³
8	2	

Multiply col.1 with col.2, add across rows and simplify

 $T_1(n) = 1 + n + n(n+1) + n^2 + n^3 + (on^3 + 5n^3 + 2 = 3 + 12n^3 + 2n^2 + 2n = 0(n^3)$

Algorithm-2

Step	Cost of each execution	Total # of times executed
1	1	1
2	1	n+ 2
3	1	O+ \
4	1	n E u= N (n+1)
5	V	n (n+1)
6	4	n(n+1)
7	2	

Multiply col.1 with col.2, add across rows and simplify

$$T_2(n) = 1 + n + 2 + n + 1 + (n(n+1)) + 6 (n(n+1)) + 4 (n(n+1)) = (2n+4) + 11(n(n+1))$$

$$= 11(n^2 + n) = 11n^2 + 11n \rightarrow 11n^2 + 13n + 4 = O(n^2)$$

Algorithm-3

Step	Cost of each execution	Total # of times executed in any single recursive call	
1	5		
2		1	
	recuted when the input is a base case:		
First rec	currence relation: T(n=1 or n=0) =		
3	5		
4	2	ı	
5		N/2	
6	5	1/2 - 1	
7	5	^/2 -	
8	2		
9	1	M/2	
10	5	^/2 -1	
11	5	n/2 - 1	
12	4	1	
13	1	(cost excluding the recursive call)	
14	1	(cost excluding the recursive call)	
15	4	1	
Steps ex	secuted when input is NOT a base case: 3 - 15		
Second	recurrence relation: $T(n>1) = T(n/2) + T(n/2)$	(n/2)	
Simplifi	ed second recurrence relation (ignore the constant ter		

Simplified second recurrence relation (ignore the constant term): T(n>1) = 2T(n/2)Solve the two recurrence relations using any method (recommended method is the Recursion Tree). Show your work

below: $T_3(n) =$

Frence relations using any ineurou (recommended methods) 5+2+n/2+(n/2-1) 5+5(n/2-1) 5+2+n/2+(n/2-1) 5+5(n/2-1) 5+2+n/2+(n/2-1) 5+3(n/2-1) 5+3+n+25(n/2-1) 5+n+25(n/2-1) 5+n+25(n/2-1) 5+n+25(n/2-1) 5+n+25(n/2-1) 5+n+25(n/2-1) 5+n+25(n/2-1) 5+n+25(n/2-1) 5+n+25(n/2-1)

Page 4 of 5

Algorithm-4

Step	Cost of each execution	Total # of times executed	
1	1		
2	(
3		n	
4	(0	n=1	
5	4	No.1	
6	2		3

Multiply col.1 with col.2, add across rows and simplify

 $T_4(n) =$

O(n)