

**PROCEEDINGS *of the* FOURTH
BERKELEY SYMPOSIUM ON
MATHEMATICAL STATISTICS
AND PROBABILITY**

*Held at the Statistical Laboratory
University of California
June 20–July 30, 1960,*

with the support of
University of California
National Science Foundation
Office of Naval Research
Office of Ordnance Research
Air Force Office of Research
National Institutes of Health

VOLUME I

CONTRIBUTIONS TO THE THEORY OF STATISTICS

EDITED BY JERZY NEYMAN

**UNIVERSITY OF CALIFORNIA PRESS
BERKELEY AND LOS ANGELES
1961**

A MARTINGALE SYSTEM THEOREM AND APPLICATIONS

Y. S. CHOW

IBM RESEARCH CENTER, YORKTOWN HEIGHTS
AND

HERBERT ROBBINS
COLUMBIA UNIVERSITY

1. Introduction

Let (W, \mathcal{F}, P) be a probability space with points $\omega \in W$ and let (y_n, \mathcal{F}_n) , $n = 1, 2, \dots$, be an *integrable stochastic sequence*: y_n is a sequence of random variables, \mathcal{F}_n is a sequence of σ -algebras with $\mathcal{F}_n \subset \mathcal{F}_{n+1} \subset \mathcal{F}$, y_n is measurable with respect to \mathcal{F}_n , and $E(y_n)$ exists, $-\infty \leq E(y_n) \leq \infty$. A random variable $s = s(\omega)$ with positive integer values is a *sampling variable* if $\{s \leq n\} \in \mathcal{F}_n$ and $\{s < \infty\} = W$. (We denote by $\{\dots\}$ the set of all ω satisfying the relation in braces, and understand equalities and inequalities to hold up to sets of P -measure 0.) We shall be concerned with the problem of finding, if it exists, a sampling variable s which maximizes $E(y_s)$.

To define a sampling variable s amounts to specifying a sequence of sets $B_n \in \mathcal{F}_n$ such that

$$(1) \quad 0 = B_0 \subset \dots \subset B_n \subset B_{n+1} \subset \dots ; \bigcup_1^\infty B_n = W,$$

the sampling variable s being defined by

$$(2) \quad \{s \leq n\} = B_n, \quad \{s = n\} = B_n - B_{n-1}.$$

We shall be particularly interested in the case in which the sequence (y_n, \mathcal{F}_n) is such that the sequence of sets

$$(3) \quad B_n = \{E(y_{n+1}|\mathcal{F}_n) \leq y_n\}$$

satisfies (1). We shall call this the *monotone case*. In this case a sampling variable s is defined by

$$(4) \quad \{s \leq n\} = \{E(y_{n+1}|\mathcal{F}_n) \leq y_n\},$$

and s satisfies

$$(5) \quad E(y_{n+1}|\mathcal{F}_n) \begin{cases} > y_n, & s > n, \\ \leqq y_n, & s \leq n. \end{cases}$$

The relations (5) will be fundamental in what follows.

This research was sponsored in part by the Office of Naval Research under Contract No. Nonr-226 (59), Project No. 042-205.

In the monotone case we have for the sampling variable s defined by (4) the following characterization:

$$(6) \quad s = \text{least positive integer } j \text{ such that } E(y_{j+1}|\mathcal{F}_j) \leq y_j.$$

Now even in the nonmonotone case we can always define a random variable s by (6), setting $s = \infty$ if there is no such j ; let us call it the *conservative* random variable. The following statement is evident: the necessary and sufficient condition that there exists a sampling variable s satisfying (5) is that we are in the monotone case, and in this case s is the conservative random variable.

In section 3 we are going to show that *in the monotone case, under certain regularity assumptions, the conservative sampling variable s maximizes $E(y_s)$.*

2. An example

Before proceeding with the general theory we shall give a simple and instructive example of the monotone case in the form of a *sequential decision problem*.

Let x, x_1, x_2, \dots be a sequence of independent and identically distributed random variables with $E(x^+) < \infty$, where we denote $a^+ = \max(a, 0)$, $a^- = \max(-a, 0)$. We observe the sequence x_1, x_2, \dots sequentially and can stop with any $n \geq 1$. If we stop with x_n we receive the reward $m_n = \max(x_1, \dots, x_n)$, but the cost of taking the observations x_1, \dots, x_n is some strictly increasing function $g(n) \geq 0$, so that our net gain in stopping with x_n is $y_n = m_n - g(n)$. The decision whether to stop with x_n or to take the next observation x_{n+1} must be a function of x_1, \dots, x_n alone. *Problem:* what stopping rule maximizes the expected value $E(y_s)$, where s is the random sample size defined by the stopping rule? We assume that the distribution function $F(u) = P\{x \leq u\}$ is known. That $E(y_n)$ exists follows from the inequality

$$(7) \quad y_n^+ \leq x_1^+ + \dots + x_n^+,$$

which implies that $E(y_n^+) < \infty$.

Let \mathcal{F}_n be the σ -algebra generated by x_1, \dots, x_n . Then (y_n, \mathcal{F}_n) is an integrable stochastic sequence, and we have

$$(8) \quad \begin{aligned} E(y_{n+1}|\mathcal{F}_n) - y_n &= \int [m_{n+1} - m_n] dF(x_{n+1}) - [g(n+1) - g(n)] \\ &= \int (x - m_n)^+ dF(x) - f(n), \end{aligned}$$

where we have set

$$(9) \quad f(n) = g(n+1) - g(n) = \text{cost of taking the } (n+1)\text{st observation.}$$

Since we have assumed $g(n)$ to be strictly increasing, and $f(n) > 0$, it is easily seen that there exist unique constants α_n such that

$$(10) \quad \int (x - \alpha_n)^+ dF(x) = f(n), \quad n \geq 1.$$

By (8) and (10),

$$(11) \quad E(y_{n+1}|\mathcal{F}_n) \begin{cases} > y_n & \text{if } m_n < \alpha_n, \\ \leq y_n & \text{if } m_n \geq \alpha_n. \end{cases}$$

The conservative random variable s defined by (6) is therefore

$$(12) \quad s = \text{least positive integer } j \text{ such that } m_j \geq \alpha_j.$$

We are in the monotone case if and only if this s is a sampling variable and for every n

$$(13) \quad \{E(y_{n+1}|\mathcal{F}_n) \leq y_n\} \subset \{E(y_{n+2}|\mathcal{F}_{n+1}) \leq y_{n+1}\},$$

that is, $m_n \geq \alpha_n$ implies $m_{n+1} \geq \alpha_{n+1}$, which will certainly be the case, since $m_n \leq m_{n+1}$, if $\alpha_n \geq \alpha_{n+1}$, that is, if $f(n)$ is nondecreasing and hence α_n is non-increasing. We shall henceforth assume this to hold. We shall now show that in this case the conservative random variable s is in fact a sampling variable, that is, that $P\{s < \infty\} = 1$. We have

$$(14) \quad \{s > n\} = \{m_n < \alpha_n\},$$

and hence

$$(15) \quad P\{s < \infty\} = 1 - \lim_n P\{s > n\} = 1 - \lim_n P\{m_n < \alpha_n\} \\ \geq 1 - \lim_n P\{m_n < \alpha_1\} = 1 - \lim_n P^n\{x < \alpha_1\} = 1,$$

since by hypothesis $f(1) > 0$ so that by (10), $P\{x < \alpha_1\} < 1$. In fact, for any $r \geq 0$,

$$(16) \quad E(s^r) = \sum_{n=1}^{\infty} n^r P\{s = n\} \leq \sum_{n=1}^{\infty} n^r P\{s > n - 1\} \\ \leq 1 + \sum_{n=2}^{\infty} n^r P\{m_{n-1} < \alpha_1\} \\ = 1 + \sum_{n=2}^{\infty} n^r P^{n-1}\{x < \alpha_1\} < \infty,$$

so that s has finite moments of all orders.

It is of interest to consider the special case $g(n) = cn$, $0 < c < \infty$. Here $f(n) = c$ and $\alpha_n = \alpha$, where α is defined by

$$(17) \quad \int (x - \alpha)^+ dF(x) = c,$$

and s is the first $j \geq 1$ for which $x_j \geq \alpha$. Hence

$$\begin{aligned}
 P\{s = j\} &= P\{x \geq \alpha\} P^{j-1}\{x < \alpha\}, \\
 E(s) &= \frac{1}{P\{x \geq \alpha\}}, \\
 (18) \quad E(y_s) &= \sum_{j=1}^{\infty} P\{s = j\} E(m_j - cj | s = j), \\
 E(m_j | s = j) &= E(x_j | x_1 < \alpha, \dots, x_{j-1} < \alpha, x_j \geq \alpha) \\
 &= \frac{1}{P\{x \geq \alpha\}} \int_{\{x \geq \alpha\}} x dF(x),
 \end{aligned}$$

so that

$$\begin{aligned}
 (19) \quad E(y_s) &= \frac{1}{P\{x \geq \alpha\}} \left[\int_{\{x \geq \alpha\}} x dF(x) - c \right] \\
 &= \frac{1}{P\{x \geq \alpha\}} \left[\int (x - \alpha)^+ dF(x) - c + \alpha P\{x \geq \alpha\} \right] = \alpha,
 \end{aligned}$$

an elegant relation.

3. General theorems

In the following three lemmas we assume that (y_n, \mathcal{F}_n) is any integrable stochastic sequence and that s and t are any sampling variables such that $E(y_s)$ and $E(y_t)$ exist.

LEMMA 1. *If for each n ,*

$$(20) \quad E(y_s | \mathcal{F}_n) \geq y_n \quad \text{if } s > n,$$

and

$$(21) \quad E(y_t | \mathcal{F}_n) \leq y_n \quad \text{if } s = n, t > n,$$

then

$$(22) \quad E(y_s) \geq E(y_t).$$

Conversely, if $E(y_s)$ is finite and (22) holds for every t , then (20) and (21) hold for every t .

PROOF.

$$\begin{aligned}
 (23) \quad E(y_s) &= \sum_{n=1}^{\infty} \int_{\{s=n, t \leq n\}} y_s dP + \sum_{n=1}^{\infty} \int_{\{s=n, t > n\}} y_n dP \\
 &= \sum_{n=1}^{\infty} \int_{\{s \geq n, t=n\}} y_s dP + \sum_{n=1}^{\infty} \int_{\{s=n, t>n\}} y_n dP \\
 &\geq \sum_{n=1}^{\infty} \int_{\{s \geq n, t=n\}} y_n dP + \sum_{n=1}^{\infty} \int_{\{s=n, t>n\}} y_t dP \\
 &= E(y_t).
 \end{aligned}$$

To prove the converse, for a fixed n let

$$(24) \quad V = \{s > n \text{ and } E(y_s|\mathcal{F}_n) < y_n\};$$

then $V \in \mathcal{F}_n$. Define

$$(25) \quad t' = \begin{cases} s, & \omega \notin V, \\ n, & \omega \in V. \end{cases}$$

Then t' is a sampling variable. Since $E(y_s)$ is finite, by (22) $E(y_n) < \infty$ and then $E(y_{t'})$ exists. But

$$\begin{aligned} (26) \quad E(y_{t'}) &= \int_{\{t'=s\}} y_{t'} dP + \int_V y_{t'} dP = \int_{\{t'=s\}} y_s dP + \int_V y_n dP \\ &\geq \int_{\{t'=s\}} y_s dP + \int_V y_s dP = E(y_s). \end{aligned}$$

But by (22), $E(y_{t'}) \leq E(y_s)$. Hence

$$(27) \quad \int_V y_n dP = \int_V y_s dP$$

and therefore $P(V) = 0$, which proves (20). To prove (21) let

$$(28) \quad V = \{s = n, t > n, \text{ and } E(y_t|\mathcal{F}_n) > y_n\},$$

and define

$$(29) \quad t' = \begin{cases} s, & \omega \notin V, \\ t, & \omega \in V. \end{cases}$$

Then

$$\begin{aligned} (30) \quad E(y_{t'}) &= \int_{\{t'=s\}} y_{t'} dP + \int_V y_{t'} dP = \int_{\{t'=s\}} y_s dP + \int_V y_t dP \\ &\geq \int_{\{t'=s\}} y_s dP + \int_V y_n dP = \int_{\{t'=s\}} y_s dP + \int_V y_s dP = E(y_s), \end{aligned}$$

and again $P(V) = 0$, which proves (21).

LEMMA 2. *If for each n ,*

$$(31) \quad E(y_{n+1}|\mathcal{F}_n) \geq y_n, \quad s > n,$$

and if

$$(32) \quad \liminf_n \int_{\{s>n\}} y_n^+ dP = 0,$$

then for each n ,

$$(33) \quad E(y_s|\mathcal{F}_n) \geq y_n, \quad s \geq n.$$

PROOF. (compare [2], p. 310). Let $V \in \mathfrak{F}_n$ and $U = V\{s \geq n\}$.

Then

$$\begin{aligned}
 (34) \quad \int_U y_n dP &= \int_{V\{s=n\}} y_n dP + \int_{V\{s>n\}} y_n dP \\
 &\leqq \int_{V\{s=n\}} y_n dP + \int_{V\{s>n\}} y_{n+1} dP \\
 &= \int_{V\{n \leq s \leq n+1\}} y_s dP + \int_{V\{s>n+1\}} y_{n+1} dP \\
 &\leqq \cdots \leqq \int_{V\{n \leq s \leq n+r\}} y_s dP + \int_{V\{s>n+r\}} y_{n+r} dP \\
 &\leqq \int_{V\{n \leq s \leq n+r\}} y_s dP + \int_{\{s>n+r\}} y_{n+r}^+ dP.
 \end{aligned}$$

Therefore

$$(35) \quad \int_U y_n dP \leqq \int_{V\{s \geq n\}} y_s dP + \liminf_n \int_{\{s>n\}} y_n^+ dP = \int_U y_s dP,$$

which is equivalent to (33).

LEMMA 3. If for each n ,

$$(36) \quad E(y_{n+1} | \mathfrak{F}_n) \leqq y_n, \quad s \leqq n,$$

and if

$$(37) \quad \liminf_n \int_{\{t>n\}} y_n^- dP = 0,$$

then

$$(38) \quad E(y_t | \mathfrak{F}_n) \leqq y_n, \quad s = n, \quad t \geq n.$$

PROOF. Let $V \in \mathfrak{F}_n$ and $U = V\{s = n, t \geq n\}$. Then

$$\begin{aligned}
 (39) \quad \int_U y_n dP &= \int_{V\{s=n, t=n\}} y_n dP + \int_{V\{s=n, t>n\}} y_n dP \\
 &\geqq \int_{V\{s=n, t=n\}} y_n dP + \int_{V\{s=n, t>n\}} y_{n+1} dP \\
 &= \int_{V\{s=n, n \leq t \leq n+1\}} y_t dP + \int_{V\{s=n, t>n+1\}} y_{n+1} dP \\
 &\geqq \cdots \geqq \int_{V\{s=n, n \leq t \leq n+r\}} y_t dP + \int_{V\{s=n, t>n+r\}} y_{n+r} dP \\
 &\geqq \int_{V\{s=n, n \leq t \leq n+r\}} y_t dP - \int_{\{t>n+r\}} y_{n+r}^- dP.
 \end{aligned}$$

Therefore

$$(40) \quad \int_U y_n dP \geq \int_{V\{s=n, t \geq n\}} y_t dP - \liminf_n \int_{\{t > n\}} y_n^- dP = \int_U y_t dP,$$

which is equivalent to (38).

We can now state the main result of the present paper.

THEOREM 1. *Let (y_n, \mathcal{F}_n) be an integrable stochastic sequence in the monotone case and let s be the conservative sampling variable*

$$(41) \quad s = \text{least positive integer } j \text{ such that } E(y_{j+1} | \mathcal{F}_j) \leqq y_j.$$

Suppose that $E(y_s)$ exists and that

$$(42) \quad \liminf_n \int_{\{s > n\}} y_n^+ dP = 0.$$

If t is any sampling variable such that $E(y_t)$ exists and

$$(43) \quad \liminf_n \int_{\{t > n\}} y_n^- dP = 0,$$

then

$$(44) \quad E(y_s) \geqq E(y_t).$$

PROOF. From lemmas 1, 2, and 3 and relations (5).

We shall now establish a lemma (see [2], p. 303) which provides sufficient conditions for (42) and (43).

LEMMA 4. *Let (y_n, \mathcal{F}_n) be a stochastic sequence such that $E(y_n^+) < \infty$ for each $n \geq 1$, and let s be any sampling variable. If there exists a nonnegative random variable u such that*

$$(45) \quad E(su) < \infty,$$

and if

$$(46) \quad E[(y_{n+1} - y_n)^+ | \mathcal{F}_n] \leqq u, \quad s > n,$$

, then

$$(47) \quad E(y_s^+) < \infty, \quad \lim_n \int_{\{s > n\}} y_n^+ dP = 0.$$

PROOF. Define

$$(48) \quad z_1 = y_1^+, \quad z_{n+1} = (y_{n+1} - y_n)^+ \quad \text{for } n \geq 1, \quad w_n = z_1 + \cdots + z_n.$$

Then

$$(49) \quad y_n^+ \leqq w_n$$

(and hence $y_n^+ \leqq w_s$ if $s \geq n$), and by (46)

$$(50) \quad E(z_{n+1} | \mathcal{F}_n) \leqq u, \quad s > n.$$

Hence

$$\begin{aligned}
 (51) \quad E(y_s^+) &\leq E(w_s) = \sum_{n=1}^{\infty} \int_{\{s=n\}} w_n dP = \sum_{n=1}^{\infty} \sum_{j=1}^n \int_{\{s=n\}} z_j dP \\
 &= \sum_{j=1}^{\infty} \sum_{n=j}^{\infty} \int_{\{s=n\}} z_j dP = \sum_{j=1}^{\infty} \int_{\{s>j-1\}} z_j dP \\
 &= E(y_1^+) + \sum_{j=2}^{\infty} \int_{\{s>j-1\}} E(z_j | \mathcal{F}_{j-1}) dP \\
 &\leq E(y_1^+) + \sum_{j=2}^{\infty} \int_{\{s>j-1\}} u dP = E(y_1^+) + \sum_{j=2}^{\infty} \sum_{n=j}^{\infty} \int_{\{s=n\}} u dP \\
 &= E(y_1^+) + \sum_{n=2}^{\infty} \int_{\{s=n\}} (n-1)u dP = E(y_1^+) + E(su) - E(u) \\
 &\leq E(y_1^+) + E(su) < \infty,
 \end{aligned}$$

and hence from (49)

$$(52) \quad \lim_n \int_{\{s>n\}} y_n^+ dP \leq \lim_n \int_{\{s>n\}} w_s dP = 0.$$

REMARK. Lemma 4 remains valid if we replace a^+ by a^- or by $|a|$ throughout.

4. Application to the sequential decision problem of section 2

Recalling the problem of section 2, let x, x_1, x_2, \dots be independent and identically distributed random variables with $E(x^+) < \infty$, \mathcal{F}_n the σ -algebra generated by x_1, \dots, x_n , $g(n) \geq 0$, $f(n) = g(n+1) - g(n) > 0$ and nondecreasing, $m_n = \max(x_1, \dots, x_n)$, and $y_n = m_n - g(n)$. The constants α_n are defined by

$$(53) \quad E[(x - \alpha_n)^+] = f(n)$$

and are nonincreasing; we are in the monotone case, and the conservative sampling variable s is the first $j \geq 1$ such that $m_j \geq \alpha_j$; thus

$$(54) \quad \{s > n\} = \{m_n < \alpha_n\}.$$

We have shown in section 2 that

$$(55) \quad P\{s < \infty\} = 1, \quad E(s^r) < \infty \quad \text{for } r \geq 0.$$

We wish to apply theorem 1. As concerns s it will suffice to show that $E(y_s^+) < \infty$ and that

$$(56) \quad \lim_n \int_{\{s>n\}} y_n^+ dP = 0,$$

which we shall do by using lemma 4. Let

$$(57) \quad Y_n = m_n^+ - g(n).$$

Then

$$(58) \quad Y_n^+ = y_n^+, \quad E(Y_n^+) = E(y_n^+) \leq E(x_1^+ + \cdots + x_n^+) = nE(x^+) < \infty,$$

and

$$\begin{aligned} (59) \quad E[(Y_{n+1} - Y_n)^+ | \mathcal{F}_n] &= E\{[m_{n+1}^+ - m_n^+ - f(n)]^+ | \mathcal{F}_n\} \\ &\leq E[(m_{n+1}^+ - m_n^+) | \mathcal{F}_n] \leq E(x_{n+1}^+ | \mathcal{F}_n) \\ &= E(x^+) < \infty. \end{aligned}$$

Hence by lemma 4, setting $u = E(x^+)$,

$$(60) \quad E(y_s^+) = E(Y_s^+) < \infty$$

and

$$(61) \quad \lim_n \int_{\{s > n\}} y_n^+ dP = \lim_n \int_{\{s > n\}} Y_n^+ dP = 0,$$

which were to be proved.

To establish the conditions on t of theorem 1 we assume that $E x^- < \infty$; then since $y_n^- \leq x_1^- + g(n)$ it follows that $E(y_n^-) < \infty$. Define a random variable u by setting

$$(62) \quad u(\omega) = f(n) \quad \text{if} \quad t(\omega) = n.$$

Since

$$(63) \quad (y_{n+1} - y_n)^- \leq f(n)$$

and $f(n)$ is nondecreasing, it follows that

$$(64) \quad E[(y_{n+1} - y_n)^- | \mathcal{F}_n] \leq u \quad \text{if} \quad t \geq n.$$

We now assume that $f(n) \leq h(n)$, where $h(n)$ is a polynomial of degree $r \geq 0$, and that $E(t^{r+1}) < \infty$. Then

$$(65) \quad E(tu) = \sum_{n=1}^{\infty} \int_{\{t=n\}} nf(n) dP \leq \sum_{n=1}^{\infty} nh(n) P\{t=n\}.$$

Since

$$(66) \quad E(t^{r+1}) = \sum_{n=1}^{\infty} n^{r+1} P\{t=n\} < \infty,$$

it follows that $E(tu) < \infty$. Then by the remark following lemma 4,

$$(67) \quad E(y_t^-) < \infty \quad \text{and} \quad \lim_n \int_{\{t>n\}} y_n^- dP = 0,$$

and all the conditions of theorem 1 are established. Thus we have proved

THEOREM 2. Suppose that $E|x| < \infty$ and that in addition to the conditions on $g(n)$ in the first paragraph of this section we have $f(n) \leq h(n)$, where $h(n)$ is a polynomial of degree $r \geq 0$. If t is any sampling variable for which $E(t^{r+1}) < \infty$ then $-\infty < E(y_t) \leq E(y_s) < \infty$, where s is the conservative sampling variable defined by (54).

If $g(n) = nc$ then $f(n) = c$ and we can take $r = 0$. Hence

COROLLARY 1. *If $E|x| < \infty$ and $y_n = m_n - cn$, $0 < c < \infty$, then if t is any sampling variable for which $E(t) < \infty$, $E(y_t) \leq E(y_s) = \alpha$ [see (19)], where α is defined by $E(x - \alpha)^+ = c$ and $s =$ the first $j \geq 1$ such that $x_j \geq \alpha$. Thus s is optimal in the class of all sampling variables with finite expectations.*

To replace the condition $E(t^{r+1}) < \infty$ in theorem 2 and corollary 1 by conditions on y_t we require the following theorem which is of interest in itself. We omit the proof.

THEOREM 3. *Let $F(u)$ be a distribution function. Define $G(u) = \prod_{n=1}^{\infty} F(u + n)$. Then $G(u)$ is a distribution function if and only if*

$$(68) \quad \int_0^{\infty} u dF(u) < \infty,$$

and for any integer $b \geq 1$,

$$(69) \quad \int_0^{\infty} u^b dG(u) < \infty$$

if and only if

$$(70) \quad \int_0^{\infty} u^{b+1} dF(u) < \infty.$$

COROLLARY 2. *If $y_n = m_n - cn$, $0 < c < \infty$, and b is any integer ≥ 1 , then*

$$(71) \quad E(\sup_{n \geq 1} y_n^+)^b < \infty$$

if and only if

$$(72) \quad E(x^+)^{b+1} < \infty.$$

PROOF. We can assume $c = 1$. Define

$$(73) \quad G(u) = P\{\sup_{n \geq 1} y_n^+ \leq u\}.$$

Then for $u \geq 0$,

$$(74) \quad \begin{aligned} G(u) &= P\{x_1 \leq u + 1, x_2 \leq u + 2, \dots, x_n \leq u + n, \dots\} \\ &= \prod_{n=1}^{\infty} F(u + n). \end{aligned}$$

By theorem 3,

$$(75) \quad E(\sup_{n \geq 1} y_n^+)^b = \int_0^{\infty} u^b dG(u) < \infty$$

if and only if

$$(76) \quad \int_0^{\infty} u^{b+1} dF(u) = E(x^+)^{b+1} < \infty.$$

THEOREM 4. *Assume $E|x| < \infty$, $E(x^+)^2 < \infty$. If $y_n = m_n - g(n)$ where $g(n)$ is a polynomial of degree $r \geq 1$ such that*

$$(77) \quad g(1) > 0,$$

$g(n+1) - g(n)$ is positive and nondecreasing, then for any sampling variable t ,

$$(78) \quad E(y_t) \leq E(y_s),$$

where s is the conservative sampling variable defined by (54).

PROOF. By theorem 2, if $E(t^*) < \infty$ then (78) holds. Hence we can assume that $E(t^*) = \infty$. Now

$$\begin{aligned} (79) \quad g(1) &> 0, & f(1) &= g(2) - g(1) > 0, \\ g(2) &\geq g(1) + f(1), & g(3) - g(2) &\geq f(1), \\ g(3) &\geq g(1) + 2f(1), \\ &\dots\dots \\ g(n) &\geq g(1) + (n-1)f(1). \end{aligned}$$

Let

$$(80) \quad a = \frac{1}{2} \min [g(1), f(1)] > 0.$$

Then by (79),

$$(81) \quad g(n) \geq an \quad \text{for } n \geq 1.$$

Let

$$(82) \quad \tilde{y}_n = m_n - \frac{a}{2} n.$$

By corollary 2, $E(\tilde{y}_t^+) < \infty$. Then since

$$(83) \quad y_t = \tilde{y}_t + \frac{a}{2} t - g(t) \leq \tilde{y}_t^+ - \frac{1}{2} g(t)$$

we have

$$(84) \quad E(y_t) \leq E(\tilde{y}_t^+) - \frac{1}{2} E[g(t)] = -\infty,$$

so that (78) holds in this case too.

REMARK. If in the case $g(n) = cn$ we define $\bar{y}_n = x_n - cn$, then

$$(85) \quad \bar{y}_n \leq y_n, \quad \bar{y}_s = y_s.$$

Hence for any sampling variable t ,

$$(86) \quad E(\bar{y}_t) \leq E(y_t) \leq E(y_s) = E(\bar{y}_s),$$

so that s is also optimal for the stochastic sequence $(\bar{y}_n, \mathcal{F}_n)$.

5. A result of Snell

As an application of lemmas 1 and 2, we are going to obtain Snell's result on sequential game theory [3].

LEMMA 5 (Snell). Let (y_n, \mathcal{F}_n) be a stochastic sequence satisfying $y_n \geq u$ for

each n with $E|u| < \infty$. Then there exists a semimartingale (x_n, \mathcal{F}_n) such that for every sampling variable t and every n ,

$$(87) \quad E(x_t | \mathcal{F}_n) \geq x_n \quad \text{if } t \geq n, \quad x_n \geq E(u | \mathcal{F}_n),$$

$$(88) \quad x_n = \min [y_n, E(x_{n+1} | \mathcal{F}_n)],$$

and

$$(89) \quad \liminf x_n = \liminf y_n.$$

We will assume the validity of this lemma, and prove the following theorem by applying lemmas 1 and 2.

THEOREM 5 (Snell). Let (y_n, \mathcal{F}_n) and (x_n, \mathcal{F}_n) satisfy the conditions of lemma 5. For $\epsilon \geq 0$ define $s = j$ to be the first $j \geq 1$ such that $x_j \geq y_j - \epsilon$. If $\epsilon > 0$, then

$$(90) \quad E(y_s) \leq E(y_t) + \epsilon$$

for every sampling variable t . If $\epsilon = 0$ and if $P\{s < \infty\} = 1$, then (90) still holds.

PROOF. It is obvious that in both cases s is a sampling variable. We need to verify that $P\{s < \infty\} = 1$. If $\epsilon > 0$, by (89) this is true.

Since (x_n, \mathcal{F}_n) is a semimartingale,

$$(91) \quad E(x_{n+1} | \mathcal{F}_n) \geq x_n.$$

By (88) and the definition of s ,

$$(92) \quad E(x_{n+1} | \mathcal{F}_n) = x_n \quad \text{for } s > n.$$

Since $-x_n \leq E(-u | \mathcal{F}_n)$ and $E|u| < \infty$, by lemma 2 and (92), we have

$$(93) \quad E(x_s | \mathcal{F}_n) \leq x_n \quad \text{for } s > n.$$

By (87), (93), and lemma 1, we obtain $E(x_s) \leq E(x_t)$, and therefore, by definition of s ,

$$(94) \quad E(y_s) \leq E(x_s) + \epsilon \leq E(x_t) + \epsilon \leq E(y_t) + \epsilon.$$

Thus the proof is complete.

J. MacQueen and R. G. Miller, Jr., in a recent paper [1], treat the problem of section 2 by completely different methods. Reference should also be made to a paper by C. Derman and J. Sacks [4], in which the formulation and results are very similar to those of the present paper.

REFERENCES

- [1] J. MACQUEEN and R. G. MILLER, JR., "Optimal persistence policies," *J. Operations Res. Soc. America*, Vol. 8 (1960), pp. 362-380.
- [2] J. L. DOOB, *Stochastic Processes*, New York, Wiley, 1953.
- [3] J. L. SNELL, "Application of martingale system theorems," *Trans. Amer. Math. Soc.*, Vol. 73 (1952), pp. 293-312.
- [4] C. DERMAN and J. SACKS, "Replacement of periodically inspected equipment (an optimal optional stopping rule)," to appear in *Naval Res. Logist. Quart.*, Vol. 7 (1960).