

CMPT 825: Natural Language Processing

Recurrent Neural Networks

How to model sequences using neural networks?

Spring 2020

(with some slides adapted from Chris Manning, Abigail See, Andrej Karpathy)

Recurrent neural networks (RNNs)

A class of neural networks allowing to handle variable length inputs

A function: $y = \text{RNN}(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) \in \mathbb{R}^d$ where $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^{d_{in}}$

Simple RNNs

 $\mathbf{h}_0 \in \mathbb{R}^d$ is an initial state

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t) \in \mathbb{R}^d$$

 \mathbf{h}_t : hidden states which store information from \mathbf{x}_1 to \mathbf{x}_t

Simple RNNs:

$$\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^d$$

g: nonlinearity (e.g. tanh),

$$\mathbf{W} \in \mathbb{R}^{d \times d}, \mathbf{U} \in \mathbb{R}^{d \times d_{in}}, \mathbf{b} \in \mathbb{R}^{d}$$

Vanishing gradients

Vanishing Gradients

Gradient signal from faraway is lost because it's much smaller than gradient signal from close-by.

So model weights are updated only with respect to near effects, not long-term effects.

Gradient Clipping (for exploding gradients)

Simple RNN vs GRU vs LSTM

Simple RNN

GRU

LSTM

LSTM cell intuitively

You can think of the LSTM equations visually like this:

Long Short-term Memory (LSTM)

Uninterrupted gradient flow!

- LSTM makes it easier to for the RNN to preserve information over many time steps
 - If forget gate is set to 1 and input gate to 0, information for that cell is preserved indefinitely
- LSTM doesn't guarantee that there is no vanishing/exploding gradient, but it does provide an easier way for the model to learn long-distance dependencies
- LSTMs were invented in 1997 but finally got working from 2013-2015.

Progress on language models

On the Penn Treebank (PTB) dataset

Metric: perplexity

KN5: Kneser-Ney 5-gram

Model	Individual
KN5	141.2
KN5 + cache	125.7
Feedforward NNLM	140.2
Log-bilinear NNLM	144.5
Syntactical NNLM	131.3
Recurrent NNLM	124.7
RNN-LDA LM	113.7

Progress on language models

On the Penn Treebank (PTB) dataset

Metric: perplexity

Model	#Param	Validation	Test
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache	9M [‡]	-	92.0
Zaremba et al. (2014) – LSTM	20M	86.2	82.7
Gal & Ghahramani (2016) – Variational LSTM (MC)	20M	-	78.6
Kim et al. (2016) – CharCNN	19M	-	78.9
Merity et al. (2016) – Pointer Sentinel-LSTM	21M	72.4	70.9
Grave et al. (2016) – LSTM + continuous cache pointer [†]	-	-	72.1
Inan et al. (2016) – Tied Variational LSTM + augmented loss	24M	75.7	73.2
Zilly et al. (2016) – Variational RHN	23M	67.9	65.4
Zoph & Le (2016) – NAS Cell	25M	-	64.0
Melis et al. (2017) – 2-layer skip connection LSTM	24M	60.9	58.3
Merity et al. (2017) – AWD-LSTM w/o finetune	24M	60.7	58.8
Merity et al. (2017) – AWD-LSTM	24M	60.0	57.3
Ours – AWD-LSTM-MoS w/o finetune	22M	58.08	55.97
Ours – AWD-LSTM-MoS	22M	56.54	54.44
Merity et al. (2017) – AWD-LSTM + continuous cache pointer [†]	24M	53.9	52.8
Krause et al. (2017) – AWD-LSTM + dynamic evaluation [†]	24M	51.6	51.1
Ours – AWD-LSTM-MoS + dynamic evaluation [†]	22M	48.33	47.69

Is the LSTM architecture optimal?

MUT1:

$$z = \operatorname{sigm}(W_{xz}x_t + b_z)$$

$$r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + \operatorname{tanh}(x_t) + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

MUT2:

$$z = \operatorname{sigm}(W_{xz}x_t + W_{hz}h_t + b_z)$$

$$r = \operatorname{sigm}(x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

MUT3:

$$z = \operatorname{sigm}(W_{xz}x_t + W_{hz} \tanh(h_t) + b_z)$$

$$r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \tanh(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

Arch.	Arith.	XML	PTB	
Tanh	0.29493	0.32050	0.08782	
LSTM	0.89228	0.42470	0.08912	
LSTM-f	0.29292	0.23356	0.08808	
LSTM-i	0.75109	0.41371	0.08662	
LSTM-o	0.86747	0.42117	0.08933	
LSTM-b	0.90163	0.44434	0.08952	
GRU	0.89565	0.45963	0.09069	
MUT1	0.92135	0.47483	0.08968	
MUT2	0.89735	0.47324	0.09036	
MUT3	0.90728	0.46478	0.09161	

Arch.	5M-tst	10M-v	20M-v	20M-tst
Tanh	4.811	4.729	4.635	4.582 (97.7)
LSTM	4.699	4.511	4.437	4.399 (81.4)
LSTM-f	4.785	4.752	4.658	4.606 (100.8)
LSTM-i	4.755	4.558	4.480	4.444 (85.1)
LSTM-o	4.708	4.496	4.447	4.411 (82.3)
LSTM-b	4.698	4.437	4.423	4.380 (79.83)
GRU	4.684	4.554	4.559	4.519 (91.7)
MUT1	4.699	4.605	4.594	4.550 (94.6)
MUT2	4.707	4.539	4.538	4.503 (90.2)
MUT3	4.692	4.523	4.530	4.494 (89.47)

Batching

- Apply RNNs to batches of sequences
- Present data as 3D tensor of $(T \times B \times F)$

Batching

• Use mask matrix to aid with computations that ignore padded zeros

Padded sequences				Length		
1	1	1	1	O	O	4
1	O	O	O	O	O	1
1	1	1	1	1	1	6
1	1	1	0	O	O	3

Batching

• Sorting (partially) can help to create more efficient mini-batches

Unsorted

Sorted

Applications and Extensions

Application: Text Generation

You can generate text by **repeated sampling.**Sampled output is next step's input.

Fun with RNNs

Obama speeches

Latex generation

Good afternoon. God bless you.

The United States will step up to the cost of a new challenges of the American people that will share the fact that we created the problem. They were attacked and so that they have to say that all the task of the final days of war that I will not be able to get this done. The promise of the men and women who were still going to take out the fact that the American people have fought to make sure that they have to be able to protect our part. It was a chance to stand together to completely look for the commitment to borrow from the American people. And the fact is the men and women in uniform and the millions of our country with the law system that we should be a strong stretcks of the forces that we can afford to increase our spirit of the American people and the leadership of our country who are on the Internet of American lives.

Thank you very much. God bless you, and God bless the United States of America.

```
\begin{proof}
We may assume that $\mathcal{I}$ is an abelian sheaf on $\mathcal{C}$.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak q$ be an abelian sheaf on $X$.
Let $\mathcal{F}$ be a fibered complex. Let $\mathcal{F}$ be a category.
\begin{enumerate}
\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}

Let $\mathcal{F}$ be an abelian quasi-coherent sheaf on $\mathcal{C}$.

Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Then
$\mathcal{F}$ is an abelian catenary over $\mathcal{C}$.
\item The following are equivalent
\begin{enumerate}
\item $\mathcal{F}$ is an $\mathcal{O}_X$-module.
\end{lemma}
```

Application: Sequence Tagging

Input: a sentence of *n* words: $x_1, ..., x_n$

Output: $y_1, ..., y_n, y_i \in \{1, ..., C\}$

$$P(y_i = k) = softmax_k(\mathbf{W}_o \mathbf{h}_i) \quad \mathbf{W}_o \in \mathbb{R}^{C \times d}$$

$$L = -\frac{1}{n} \sum_{i=1}^{n} \log P(y_i = k)$$

Application: Text Classification

Input: a sentence of *n* words

Output: $y \in \{1, 2, ..., C\}$

$$P(y = k) = softmax_k(\mathbf{W}_o \mathbf{h}_n) \qquad \mathbf{W}_o \in \mathbb{R}^{C \times d}$$

Multi-layer RNNs

- RNNs are already "deep" on one dimension (unroll over time steps)
- We can also make them "deep" in another dimension by applying multiple RNNs
- Multi-layer RNNs are also called stacked RNNs.

Multi-layer RNNs

The hidden states from RNN layer i are the inputs to RNN layer i + 1

- In practice, using 2 to 4 layers is common (usually better than 1 layer)
- Transformer-based networks can be up to 24 layers with lots of skip-connections.

Bidirectional RNNs

• Bidirectionality is important in language representations:

terribly:

- left context "the movie was"
- right context "exciting!"

Bidirectional RNNs

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t) \in \mathbb{R}^d$$

$$\overrightarrow{\mathbf{h}}_{t} = f_{1}(\overrightarrow{\mathbf{h}}_{t-1}, \mathbf{x}_{t}), t = 1, 2, \dots n$$

$$\overleftarrow{\mathbf{h}}_{t} = f_{2}(\overleftarrow{\mathbf{h}}_{t+1}, \mathbf{x}_{t}), t = n, n - 1, \dots 1$$

$$\overleftarrow{\mathbf{h}}_{t} = [\overleftarrow{\mathbf{h}}_{t}, \overrightarrow{\mathbf{h}}_{t}] \in \mathbb{R}^{2d}$$

Bidirectional RNNs

- Sequence tagging: Yes!
- Text classification: Yes! With slight modifications.

Text generation: No. Why?