Equitable Active-Reactive Power Envelopes for Managing Distributed Energy Resources in Power Distribution systems

APPENDIX

A. Optimization Model of PQ-E Method

The compact form of allowable power region (10) of DERs is expressed as

$$AP_{E} + BQ_{E} \le W \tag{A1}$$

The rectangle P-Q envelope of the i_{th} DER is formulated as

$$\Omega_{i} = \{ (P_{E,i}, Q_{E,i}) \mid P_{E,i}^{L} \le P_{E,i} \le P_{E,i}^{U}, Q_{E,i}^{L} \le Q_{E,i} \le Q_{E,i}^{U} \}$$
(A2)

where $P_{\mathrm{E},i}^{\mathrm{L}}$, $P_{\mathrm{E},i}^{\mathrm{U}}$, $Q_{\mathrm{E},i}^{\mathrm{L}}$, and $Q_{\mathrm{E},i}^{\mathrm{U}}$ are the parameters to be determined.

The PQ-E method establishes an optimization model to obtain the rectangle P-Q envelopes:

$$\max_{(P^{\mathrm{U}}, P^{\mathrm{L}}, Q^{\mathrm{L}}, Q^{\mathrm{L}})} \sum_{i \in \mathbb{DER}} \left[P^{\mathrm{U}}_{\mathrm{E}, i} - P^{\mathrm{L}}_{\mathrm{E}, i} \right]$$
(A3a)

s.t. $\mathbf{AP}_{E}^{U} + \mathbf{BQ}_{E}^{U} \leq \mathbf{W}$ (A3b)

$$AP_{E}^{L} + BQ_{E}^{L} \le W \tag{A3c}$$

$$P_{\mathrm{E},i}^{\mathrm{U}}/\gamma_{i} = P_{\mathrm{E},i}^{\mathrm{U}}/\gamma_{i}, \ \forall i, j \in \mathbb{DER}$$
 (A3d)

$$P_{E_i}^{L}/\gamma_i = P_{E_i}^{L}/\gamma_i, \ \forall i, j \in \mathbb{DER}$$
 (A3e)

$$Q_{\mathrm{E},j}^{\mathrm{U}}/\gamma_{j} = Q_{\mathrm{E},i}^{\mathrm{U}}/\gamma_{i}, \ \forall i,j \in \mathbb{DER}$$
 (A3f)

$$Q_{\mathrm{E},i}^{\mathrm{U}}/\gamma_{j} = Q_{\mathrm{E},i}^{\mathrm{U}}/\gamma_{i}, \ \forall i,j \in \mathbb{DER}$$
 (A3g)

$$\left(P_{\mathrm{E},j}^{\mathrm{U}} - P_{\mathrm{E},j}^{\mathrm{L}}\right) \ge \mathcal{G}\left(Q_{\mathrm{E},j}^{\mathrm{U}} - Q_{\mathrm{E},j}^{\mathrm{L}}\right), \ \forall i,j \in \mathbb{DER}$$
 (A3h)

$$\left(P_{\mathrm{E},j}^{\mathrm{U}} - P_{\mathrm{E},j}^{\mathrm{L}}\right) \leq \frac{1}{q} \left(Q_{\mathrm{E},j}^{\mathrm{U}} - Q_{\mathrm{E},j}^{\mathrm{L}}\right), \ \forall i,j \in \mathbb{DER}$$
 (A3i)

$$P_{E,i}^{U} \ge 0, \ Q_{E,i}^{U} \ge 0, P_{E,i}^{L} \le 0, \ Q_{E,i}^{L} \le 0, \forall i \in \mathbb{DER}$$
 (A3j)

where ϑ is the aspect ratio of rectangle P-Q operating envelopes. The objective function (A3a) is to maximize the total permitted active power range. Inequalities (A3d)-(A3g) are the equitable constraints. Inequalities (A3h)-(A3i) are the aspect ratio constraints of operating envelopes.

B. Optimization Model of PQ-KL Method

The P-Q envelope of the $i_{\rm th}$ DER based on the PQ-KL method is formulated as

$$\Omega_{i} = \{ (P_{E_{i}}, Q_{E_{i}}) \mid A_{i}P_{E_{i}} + B_{i}Q_{E_{i}} \le \omega_{i} \}$$
(A4)

where A_i , B_i , and ω_i are the parameters to be determined.

The PQ-KL method establishes an optimization model to obtain the P-Q envelopes:

$$\min_{(\boldsymbol{\omega}, \boldsymbol{p}, \boldsymbol{q})} \mathbb{C}^{\text{net}}(\boldsymbol{p}, \boldsymbol{q}) + \varepsilon g(\boldsymbol{\omega})$$
 (A5a)

s.t.
$$\mathbb{C}^{\text{net}}(\boldsymbol{p},\boldsymbol{q}) = \|\boldsymbol{v} - \boldsymbol{v}^{nom}\|_{2}$$
 (A5b)

$$g(\boldsymbol{\omega}) = \begin{bmatrix} \boldsymbol{\omega}_{1} \oslash \boldsymbol{W} - 1/N_{\text{DER}} \\ \boldsymbol{\omega}_{2} \oslash \boldsymbol{W} - 1/N_{\text{DER}} \\ \vdots \\ \boldsymbol{\omega}_{N_{\text{DER}}} \oslash \boldsymbol{W} - 1/N_{\text{DER}} \end{bmatrix}_{2}$$
(A5c)

$$A_i p_{E,i} + B_i q_{E,i} \le \omega_i, \forall i \in \mathbb{DER}$$
 (A5d)

$$\sum_{i \in \mathbb{NRP}} \boldsymbol{\omega}_i = \boldsymbol{W} \tag{A5e}$$

$$\begin{bmatrix} A_1 & A_2 & \cdots & A_{N_{\text{DER}}} \end{bmatrix} = A \tag{A5f}$$

$$\begin{bmatrix} \boldsymbol{B}_1 & \boldsymbol{B}_2 & \cdots & \boldsymbol{B}_{N_{\text{DER}}} \end{bmatrix} = \boldsymbol{B} \tag{A5g}$$

where $\mathbb{C}^{\text{net}}(p,q)$ is used to constrain the solution of DNO's optimized objective, which is minimum voltage deviations, inside the P-Q envelopes; $g(\omega)$ is the equitableness objective, which is equitably allocating the right-hand side coefficient W to the right-hand side coefficient ω_i of each DER's P-Q envelope; ε is a weighted coefficient to balance the two objectives. Constraints (A5d)-(A5g) describe the Kornal-Liptak decomposition.

C. Optimization Model of P-E Method

s.t.

The P envelope of the i_{th} DER is formulated as

$$\Omega_{i} = \{ (P_{E,i}, Q_{E,i}) \mid P_{E,i}^{L} \le P_{E,i} \le P_{E,i}^{U}, Q_{E,i} = 0 \}$$
(A6)

where $P_{\mathrm{E},i}^{\mathrm{L}}$ and $P_{\mathrm{E},i}^{\mathrm{U}}$ are the parameters to be determined.

The P-E method establishes two optimization models to obtain the P envelopes:

$$\max_{P_i^{\text{U}}} \sum_{i \in \mathbb{DER}} P_{\text{E},i}^{\text{U}} \tag{A7a}$$

$$\mathbf{AP}_{\scriptscriptstyle \mathrm{E}}^{\scriptscriptstyle \mathrm{U}} \leq \mathbf{W} \tag{A7b}$$

$$P_{\mathrm{E},i}^{\mathrm{U}}/\gamma_{i} = P_{\mathrm{E},i}^{\mathrm{U}}/\gamma_{i}, \ \forall i,j \in \mathbb{DER}$$
 (A7c)

$$P_{\mathrm{E}\,i}^{\mathrm{U}} \ge 0, \ \forall i \in \mathbb{DER}$$
 (A7d)

$$\max_{P^{\mathrm{L}}} \sum_{i \in \mathbb{DER}} -P^{\mathrm{L}}_{\mathrm{E},i} \tag{A8a}$$

$$AP_{\scriptscriptstyle \mathrm{F}}^{\scriptscriptstyle \mathrm{L}} \le W \tag{A8b}$$

$$P_{\mathrm{E},j}^{\mathrm{L}} / \gamma_{j} = P_{\mathrm{E},i}^{\mathrm{L}} / \gamma_{i}, \ \forall i,j \in \mathbb{DER}$$
 (A8c)

$$P_{E,i}^{L} \le 0, \ \forall i \in \mathbb{DER}$$
 (A8d)

where objective functions (A7a) and (A8a) are to maximize the total exported and imported active power of DERs, respectively. Inequalities (A7c) and (A8c) are the equitable constraints.

D. Optimization Model of P-WE Method

The P-WE method establishes two optimization models to obtain the P envelopes:

$$\max_{P_i^{\rm U}} \sum\nolimits_{i \in \mathbb{DER}} \gamma_i \log \left(P_{{\rm E},i}^{\rm U} \right) \tag{A9a}$$

s.t.
$$AP_{\rm E}^{\rm U} \le W$$
 (A9b)

$$P_{\mathrm{E},i}^{\mathrm{U}} \ge 0, \ \forall i \in \mathbb{DER}$$
 (A9c)

$$\max_{P_i^{\rm L}} \sum\nolimits_{i \in \mathbb{DER}} \gamma_i \log \left(-P_{{\rm E},i}^{\rm L} \right) \tag{A10a}$$

$$AP_{E}^{L} \le W$$
 (A10b)
 $P_{E,i}^{L} \le 0, \ \forall i \in \mathbb{DER}$ (A10c)

$$\mathcal{P}_{\mathbf{F}_{i}}^{\mathbf{L}} \le 0, \ \forall i \in \mathbb{DER}$$
(A10c)

where logarithmic objective functions (A9a) and (A10a) are to maximize the total exported and imported active power of DERs considering the weighted proportional equitableness, respectively.

E. Optimization Model of P-SE Method

s.t.

The P-SE method establishes two optimization models to obtain the P envelopes:

$$\max_{P_{i}^{\text{U}}} \sum_{i \in \mathbb{DER}} P_{\text{E},i}^{\text{U}} - \sum_{i=1}^{N_{DER}-1} (P_{\text{E},i}^{\text{U}}/\gamma_{i} - P_{\text{E},i+1}^{\text{U}}/\gamma_{i+1})^{2}$$
 (A11a)

s.t.
$$AP_{E}^{U} \le W$$
 (A11b) $P_{E,i}^{U} \ge 0, \ \forall i \in \mathbb{DER}$ (A11c)

$$P_{E,i}^{U} \ge 0, \ \forall i \in \mathbb{DER}$$
 (A11c)

$$\max_{P_{E}^{L}} \sum_{i \in \mathbb{DER}} -P_{E,i}^{L} - \sum_{i=1}^{N_{DER}-1} \left(P_{E,i}^{L} / \gamma_{i} - P_{E,i+1}^{L} / \gamma_{i+1} \right)^{2} \text{ (A12a)}$$

s.t.
$$AP_{E}^{L} \leq W$$
 (A12b)

$$P_{\mathrm{E},i}^{\mathrm{L}} \leq 0, \ \forall i \in \mathbb{DER}$$
 (A12c)

where the first terms of (A11a) and (A12a) are to maximize the total exported and imported active power of DERs, respectively, and the second terms of (A11a) and (A12a) are the equitable objectives.

F. Directly Controlled Device Configuration

TABLE A.I DIRECTLY CONTROLLED DEVICE CONFIGURATION

Distribution system	Control Device	Parameter	Placement
33-bus system	OLTC	$\pm 1.25\% \times 8$	Primary side of the transformer
	CBs 1-4	0.5 Mvar $\times 4$	Bus 17, 24, 30, 32
	DG 1	1.2MVA	Replace DER 2
	DG 2	1.6MVA	Replace DER 4
135-bus system	OLTC	$\pm 1.25\% \times 8$	Primary side of the transformer
	CBs 1-10	0.5Mvar×4	Bus 15, 38, 42, 85, 59, 99, 108, 114, 120, 136
	DG 1	1.4MVA	Replace DER 14
	DG 2	1.2MVA	Replace DER 15
	DG 3	1.8MVA	Replace DER 16
	DG 4	2.8MVA	Replace DER 17
	DG 5	1.4MVA	Replace DER 18

G.Decision Results of Control Devices

TABLE A.II

DECISION RESULTS FOR MAXIMIZING ACTIVE POWER EXPORTATION IN THE IEEE 33-BUS SYSTEM

Affine Control Strategies	Position Control Strategies		
DG 1 DG 2 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	Tap position of OLTC: 3 Position level of CB 1: 1 Position level of CB 2: 4 Position level of CB 3: 3 Position level of CB 4: 1		

TABLE A.III DECISION RESULTS FOR MAXIMIZING ACTIVE POWER IMPORTATION IN THE IEEE 33-BUS SYSTEM

TABLE A.IV DECISION RESULTS FOR MAXIMIZING ACTIVE POWER EXPORTATION IN THE REAL-WORLD 135-BUS SYSTEM

TABLE A.V DECISION RESULTS FOR MAXIMIZING ACTIVE POWER IMPORTATION IN THE REAL-WORLD 135-BUS SYSTEM

Affine Control Strategies	Position Control Strategies
DG 1 0 DG 2 0 0.5 1 0 0.5 1 0 DG 2 0 0.5 1 0 DG 3 0 DG 5 0 DG	Tap position of OLTC: -3 Position level of CB 1: 0 Position level of CB 2: 4 Position level of CB 3: 0 Position level of CB 4: 0 Position level of CB 5: 2 Position level of CB 6: 0 Position level of CB 7: 0
0 1 2 0 1 2 0 0.5 1 P (MW) P (MW)	Position level of CB 8: 0 Position level of CB 9: 4 Position level of CB 10: 3