CHANNEL CODING - FINAL PROJECT

UNIFIED HIGH-SPEED WIRELINE-BASE HOME NETWORKING TRANSCEIVERS

Access networks – In premises networks

Author: Lorenzo Gasparollo Professor: Tomaso Erseghe

30th March 2017

Index

- Standard generality
- Encoder
- Decoder
- Rationale Decoder
- BICM
- Results

An introduction

- The **G.hn ITU G9960** is a standard prosed by the ITU-T.
- Designed for: the transmission of data over premises' wiring.
- The standard defines:
 - 1. the home network architecture and reference models.
 - 2. the physical layer specification.

Transmission modes

- Each node of the home-network has a different profile.
 - The standard refers to two different profile:
 - 1. Low-complexity profile (L-CP).
 - 2. Standard profile (SP).
 - A node of the network is required to support one profile, at minimum.

Profile name	Domain type	Valid bandplans
L-CP	Power-line baseband	25 MHz
SP	Power-line baseband	50 MHz, 100 MHz
	Telephone-line baseband	50 MHz, 100 MHz
	Coax baseband	50 MHz, 100 MHz
	Coax RF	50 MHz, 100 MHz, 200 MHz

Transmission modes

- The parity check matrix H of size (N-K) x N will have:
- □ Rate $\frac{1}{2}$: N = 1920 (*LCP,SP*), 8640 (*SP*).
- \square Rate $^{2}/_{3}$: N = 1440, 6480 (SP)
- \square Rate $\frac{5}{6}$: N = 1152, 5184 (SP)
- Rate ¹⁶/₁₈, ²⁰/₂₁ are obtained puncturing the code with rate ⁵/₆, through different puncturing patterns.

Profile name	FEC rate	FEC block size
L-CP	1/2	120 bytes (Payload)
SP	1/2,2/3,5/6	120 and 540 bytes (Payload)
	16/ ₁₈ , ²⁰ / ₂₁	

Encoder

1. Given H, get its systematic form Hsys.

Encoder

- 1. Given H, get its systematic form H_{sys}.
- 2. Encoding Procedure for a single word:
 - ✓ The K information bits of u are directly copied to the codeword v.
 - ✓ Let A be the submatrix obtained considering *N-K* raws and the first k colums of Hsys; then, the *N-K* parity-check bits are computed as A * u.
 - ✓ The final codeword is v = [u|A u]
 - Preprocessing is done once.

- All the minsum/ sumproduct algorithm written in c, and invoking via mex functions.
- At least three matrixes as big as the H matrix:

- All the minsum/ sumproduct algorithm were written in c, and invoked via mex functions.
- At least three matrixes as big as the H matrix

Unfeasible in terms of:

- Memory allocation.
- Computational efforts.

- All the minsum/ sumproduct algorithm written in c, and invoking via mex functions.
- At least three matrixes as big as the H matrix

Unfeasible in terms of:

- Memory allocation.
- Computational efforts.

- All the minsum/ sumproduct algorithm written in c, and invoking via mex functions.
- At least three matrixes as big as the H matrix

Unfeasible in terms of:

- Memory allocation.
- Computational efforts.

• Preprocess the matrix H in such a way to get all the **useful patterns** from it.

Preprocess the matrix H in such a way to get all the useful patterns from it.

Do only once.

Preprocess the matrix *H* in such a way to get all the **useful patterns** from it.

Do only once.

From *H* we'll get:

$$\underset{v \to c}{\Psi}$$

$$\Psi_{c \to v}$$

$$\prod_{v \to c}$$

$$\prod_{c \to v}$$

$$\Psi \underset{v \to c}{\Psi} \quad \Pi \underset{c \to v}{\Pi} \quad \{l_i\}_{i=1}^{N-K} \quad \{j_i\}_{i=1}^{N}$$

Preprocess the matrix *H* in such a way to get all the patterns from it.

Do only once.

From H we'll get:

$$\underset{v \to c}{\Psi}$$

$$\Psi_{c \to v}$$

$$\prod_{v \to c}$$

$$\prod_{c \to v}$$

$$\Psi \underset{v \to c}{\Psi} \quad \Pi \underset{c \to v}{\Pi} \quad \{l_i\}_{i=1}^{N-K} \quad \{j_i\}_{i=1}^{N}$$

$$\left\{j_i\right\}_{i=1}^N$$

No need to evaluate directly H in the message passing for the computation of LLRs.

Updates as a linear map

• Let be $v \to v$ and $v \to c$ the check update matrix and the variable update matrix, respectively:

$$\Psi = \begin{bmatrix}
I_{l_1}^C & 0 \\
& \ddots & \\
0 & I_{l_{N-K}}^C
\end{bmatrix}$$

$$\Psi = \begin{bmatrix}
\Psi \\
v \to c
\end{bmatrix}$$

- + I_s^C denotes the complement of the Identity matrix of size $\,s\,.$
- $\{l_i\}_{i=1}^{N-K}$ and $\{j_i\}_{i=1}^N$ are the number of ones in each raw and column respectively.

LLRs notation

• Let $LLR, LLR \in \mathbb{F}_2^U$ with U the total numbers of ones (edges) in the H matrix.

Updates in minSum and sumProd

 For both minsum and sumproduct decoder the variable updates will have the following expression:

$$LLR = \underset{v \to c}{\Psi} \cdot LLR + p$$

In the sum product the check updates is:

$$LLR_{c \to v} = \left(\underbrace{\Psi}_{c \to v} \cdot \Phi \left(|LLR|_{v \to c} \right) \right) * \operatorname{sgn} \left(\underbrace{LLR}_{v \to c} \right)$$

• Where $\Phi(x) = \log\left(\frac{e^x+1}{e^x-1}\right)$, $\operatorname{sgn}(\cdot)$ is the function that maps each element of the vector in its corresponding sign and p is the vector of prior LLRs.

Permutation matrixes

In order to compute properly the updates of the LLRs, vectors must be properly ordered...

HOW?

Permutation matrixes

In order to compute properly the updates of the LLRs, vectors must be properly ordered...

HOW?

We will refer to two different LLR representation:

Check representation (CR)

Variable representation (VR)

Permutation matrixes

CHECK REPRESENTATION (CR)

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 5 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 5 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

VARIABLE REPRESENTATION (VR)

Permutation matrixes (1/2)

- Let be $per: D_U \longrightarrow D_U$ the permutation map, that associate for each edge in **CR** the corrisponding position in the **VR**.
- $D_U = \{1, \dots, U\}$, U the number of ones (edges) in the matrix H

$$\prod_{c \to v} = \begin{bmatrix}
e_{per(1)}^{\mathsf{T}} \\
\vdots \\
e_{per(U)}^{\mathsf{T}}
\end{bmatrix}$$

• Where $e_i \in \mathbb{F}_2^U$ denotes the i-th canonical vector in \mathbb{F}_2^U .

Permutation matrixes (2/2)

• If we think of $\prod\limits_{c \to v}$ as a linear application and we expoit the property of the permutation matrixes:

$$\prod_{v \to c} = \prod_{c \to v}^{-1} = \prod_{c \to v}^{\top}$$

• Hence, there is no need to compute directly $\prod_{v
ightarrow c}$ since:

$$\prod_{c \to v} \quad \longleftrightarrow \quad \prod_{v \to c}$$

Sum product


```
for it=1:iter
                                                  Get LLRvc in CR
    LLRvc = perMatrVC * LLRvc;
    curSign = sign(LLRvc);
     curSign(curSign == 0) = 1;
     signLLRcv = GetSign(curSign,nOR);
    tmpP = abs(LLRvc);
    tmpP(tmpP < minf) = 1e-10;
    temp = upMatrCV * PhiMap(tmpP);
                                                     Update
    LLRcv = PhiMap(temp).* signLLRcv;
    LLRcv = perMatrCV * LLRcv;
                                                               Get LLRcv in VR
    LLRvc = upMatrVC * LLRcv + LLRprior;
                                                     Update
    curIndex = 1;
    for j=1:length(nOC)
         if(vPLLRs(j) + sum(LLRcv(curIndex:nOC(j)+curIndex-1)) < 0)</pre>
            u hat(j) = 1;
         else
            u hat(j) = 0;
         end
         curIndex = curIndex + nOC(j);
    end
    if(mod(Hreal * u hat, 2) == 0)
        break:
    end
end
```

Practical considerations

- Product between sparse matrixes is optimized in Matlab.
 (https://it.mathworks.com/help/matlab/math/sparse-matrix-operations.html
- Only vectors proportional to the number of ones in the check matrix are used.

Mex function for specific tasks have been implemented:

- Arrayfunc command of matlab leads to slow computation.
- Mex function PhiMap() improves dramatically the performances (Make a number).
- Search in the minsum is not bottle neck since elements to be checked are few (consequence to the fact that *H* is sparse).

ENCODING

- Grouping sequences of $b = \log_2 M$ bits and then mapping according to the suitable constellation mappers.
- Both constellation mappers (4 and 16 symbos) realizated with mex function.

Faster than define a matlab function and then using arrayfunc.

BICM – Implementation perpective

COMPUTATION OF LLRs FOR DECODER

$$LLR = \ln \left(\frac{P(0,0) + P(0,1)}{P(1,0) + P(1,1)} \right)$$
bo \rightarrow vo

lm

ymbol

$$LLR = \ln \left(\frac{P(0,0) + P(1,0)}{P(0,1) + P(1,1)} \right)$$

Uncoded case:

Pbit =
$$10^{-6}$$

for $\frac{Eb}{N0} \cong 10,5 \text{ dB}$

Results – MinSum vs SumProd

Results – Different Puncturing Patterns

For K = 960:

Results - Different Puncturing Patterns

For K = 4320:

Conclusions and remarks

Possible extensions/improvements.

Details

- All the images has been created with LaTeX or Matlab.
- The images reported in pag. 8 where taken from two superb books (According to Goodreads): The Pragmatic Programmer and Programming Pearls.
- The images of LDPC decoder have been select from PDFs of Channel Coding Course (Tomaso Erseghe).