

文件编号:

版本: A0

页码: 4

景目

目录	4
第一章 整车控制器	5
第一节 系统概述	5
	5
第三节 电气原理图及接插件引脚定义	6
第四节 故障代码	9
第五节 诊断流程	10
第六节 拆卸与安装	37

版本: A0

页码: 5

第一章 整车控制器

第一节 系统概述

整车控制器模块具备实时动力计算和动力分配、实时信息交互与集中处理转发、传感器信号采集及处理,同时包括 CAN 通讯、故障报警及处理、程序升级、与其他模块配合完成整车的工作要求以及自检等功能。

第二节 组件位置

整车控制器模块安装在主驾座椅下方。

1整车控制器安装位置

文件名称: HCB 整车控制器维修手册		
文件编号:	版本: A0	页码: 6

第三节 电气原理图及接插件引脚定义

3.1 电气原理图

3.2 接插件引脚定义

34PIN 低压信号接插件

表 1

引脚号	引脚信号定义	线束接法
1		
2		

文件编号:

版本: A0

页码: 7

0		1
3		
4		
5		
6		
7		
8	GND	CAN 屏蔽地
9	CANL1 CAN信号低	接ECM网
10		
11		
12		70
13		
14		
15	.V	
16		
17	CANH1 CAN信号高	接ECM网
18	/PUMP_OUT 水泵输出	接 IG3 电源下水泵继电器控制脚
19		
20		
21	N	
22		
23		
24	~	
25		
26		
27	CRASH-IN 碰撞信号	接 SRS-ECU
28		
29		
30	制动开关信号	制动灯控制系统
31	/PUMP_TEST 水泵检测输入	接常电下水泵继电器输出脚
32		

文件编号:

版本: A0

页码: 8

33	
34	

26PIN 低压信号接插件

表 2

引脚号	引脚信号定义	线束接法
1	外部输入12V电源地	接整车电池地
2	外部输入12V电源地	接整车电池地
3		
4		
5		10
6		
7	GND 油门深度电源地1	接油门踏板
8	GND 油门深度电源地2	接油门踏板
9	油门深度屏蔽地	整车控制器单端屏蔽
	IMI JUNIX/// IMXZE	地
10	+5V 油门深度电源1	接油门踏板
11	+5V 油门深度电源2	接油门踏板
12		
13	N	
14	VCC外部提供的+12V电源	接 IG4 电源
15	VCC外部提供的+12V电源	接 IG4 电源
16		
17		
18	DC_GAIN1 油门深度1	接油门踏板
19		
20		
21		
22		
23		
24	DC_GAIN2 油门深度2	接油门踏板

文件名称: HCB 整车控制器维修手册		
文件编号:	版本: A0	页码: 9

25	
26	

第四节 故障代码

表 3

序号	故障码(ISO 15031-6)	故障定义
1	P1D6000	整车控制器碰撞信号故障(硬线)
2	P1D6144	整车控制器 EEPROM 错误
3	P1D6200	整车控制器巡航开关信号故障
4	P1D6300	整车控制器水泵驱动故障
5	P1D6400	油门信号故障-1 信号故障
6	P1D6500	油门信号故障-2 信号故障
7	P1D6600	油门信号故障-校验故障
8	U010100	与 TCU 通讯故障
9	U011100	与电池管理器(BMS)通讯故障
10	U015500	与组合仪表通讯故障 (预留)
11	U010300	与 ECM 通讯故障
12	U012100	与 ESC 通讯故障
13	U012800	与 EPB 通讯故障
14	U029100	与档位控制器通讯故障
15	U016400	与空调通讯故障
16	U014000	与 BCM 通讯故障
17	U029800	与 DC 通讯故障
18	U01A500	与前电机控制器(FMCU)通讯故障
19	U01A600	与后驱动电机控制器(RMCU)通讯故障
20	U021400	与 I-KEY 通讯故障
21	U029400	与 EV-HEV 开关通讯故障
22	P1B6000	发动机启动失败
23	U012A00	与 EPS(电动助力转向)模块失去通讯
24	U012200	与低压电池管理器(BMS)失去通讯
25	P1D6D00	整车控制器 DSP 复位故障
26	P1BA200	换挡超时

文件编号:

版本: A0

页码: 10

27	U011287	与 BSG 电机控制器通讯故障
28	P1D7800	稳压故障
29	P1D7D00	BSG 皮带严重打滑
30	P1D6C00	BSG 启动发动机故障
31	P1D6E09	BSG 电机故障
32	P1D6F00	BSG 皮带一般打滑故障
33	P1D7100	高压系统故障, BMS 放电不允许

第五节 诊断流程

1 把车开进维修间

下一步

2 检查低压蓄电池电压

结果	进入步骤
如果低压蓄电池电压值 不在 标准电压(11V-14V)范围内	A
如果低压蓄电池电压值 在 标准电压(11V-14V)范围内	В

В

转到第4步

A

3

请参考低压蓄电池维修手册

下一步

4 使用 VDS2000 读取 VCU 故障代码

结果	进入步骤
如果 VCU 故障代码不在故障列表中	С

下一步

7 | 结束

具体步骤如下:

5.1 故障码诊断

(a) 将 VDS2000 连接 DLC3 诊断口。

提示:将 VDS2000 连接 DLC3 诊断口,如果提示通讯错误,则可能是车辆 DLC3 诊断口问题,也可能是 VDS2000 问题。将 VDS2000 连接另一辆车的 DLC3 诊断口,如果可以显示,则原车 DLC3 诊断口有问题,需更换;若不可显示则 VDS2000 问题。

(b) 使用 VDS2000 读取 VCU 故障代码

P1D600 **整**车控制器碰撞信号故障(硬线)

文件编号:

版本: A0

页码: 12

1 检查安全气囊 ECU

a、用 VDS2000 读取安全气囊 ECU 是否整车发生碰撞,如果有,清除故障码即可。

NG

检查线束和安全气囊 ECU,

OK

2 更换整车控制器

P1D6144

整车控制器 EEPROM 错误

1 重新启动车辆,,使用 VDS2000 读取 VCU 故障代码

结果	进入步骤
如果没有"整车控制器 EEPROM 错误"	A
如果有"整车控制器 EEPROM 错误"	В

В

转到第3步

A

2 清除故障代码

下一步

3 更换整车控制器

P1D6200

整车控制器巡航开关信号故障

检查巡航开关低压线路是否正常

文件编号:

版本: A0

页码: 13

NG

检查巡航开关低压线路故障:

断开整车控制器接插件,依次按下巡航 4 个键,用万用表量测线束端(26pin)接插件 pin 脚 25 和 6 脚之间的电阻值,如其阻值显示为开路(0.L),则依据整车线束定义检查巡航信号是否开路。若排除巡航信号线开路,则更换巡航按键模块。

OK

2 更换整车控制器

P1D6300

整车控制器水泵驱动故障

1 检查水泵低压回路

a、分别检查水泵继电器、保险、水泵及相应的低压线

路。

NG

更换相应故障件

OK

2 更换整车控制器

P1D6400/

P1D6500/

油门信号故障-1 信号故障/油门信号故障-2 信号故障/油门信号故障-校验故障

P1D6600

- 1 检查加速踏板传感器低压回路
- a、排除线路故障:控制器正常上电,踩踏油门踏板,用 VDS 监测油门信号,若两路油门信号异常 跳变,则需检查跳变的油门信号线及其供电电源线是否断线,以及检查相应接插件接线端子是否 松动。
- b、排除油门传感器故障: 若无线路故障, 需拆下油门踏板, 给油门供电+5V, 用万用表量测油门

文件编号:

版本: A0

页码: 14

传感器实际输出信号。若超出 0.5V—4.7V,则油门异常,更换油门踏板。

油门踏板传感器接插件示意图

油门踏板传感器接插件引脚定义

引脚号	6	5	4	3	2	1
端口名称	油门2	油门1	油门1	油门1	油门2	油门2
	电源地	电源地	信号	电源+5V	电源+5V	信号
线束接法 (整车控制器 26pin 插头)	8#	7#	18#	10#	11#	24#
电压范围	OV	OV	0. 5-4. 7V	+5V	+5V	0. 25-2. 3V

NG

更换相应故障件

OK

2 更换整车控制器

U010100

与 TCU 通讯故障

1 使用 VDS2000 读取 TCU 数据流

结果	进入步骤
如果 TCU 数据流异常	A
如果 TCU 数据流正常	В

В

转到第3步

文件编号:

版本: A0

页码: 15

Α

2 请参考 TCU 控制器维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

A. C.	
结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

下一步

4 更换整车控制器

U011100 与电池管理器 (BMS) 通讯故障

1 使用 VDS2000 读取电池管理器 (BMS) 数据流

结果	进入步骤
如果电池管理器(BMS)数据流异常	A
如果电池管理器 (BMS) 数据流正常	В

В

转到第3步

A

2 请参考电池管理器 (BMS) 维修手册

文件名称:	HCB	整车控制器维修手册
-------	-----	-----------

版本: A0

页码: 16

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

下一步

5 更换整车控制器

U015500

与组合仪表通讯故障 (预留)

1 使用 VDS2000 读取组合仪表数据流

结果	进入步骤
如果组合仪表数据流异常	A
如果组合仪表数据流正常	В

В

转到第3步

A

2 请参考组合仪表维修手册

文件名称.	HCB	整车控制器维修手册
人 IT 石 ///:	$\mathbf{H} \mathbf{C} \mathbf{D}$	金十江 川

版本: A0

页码: 17

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

 \mathbf{C}

4 请参考网关控制器维修手册

下一步

5 更换整车控制器

U010300 与 ECM 通讯故障

1 使用 VDS2000 读取 ECM 数据流

结果	进入步骤
如果 ECM 数据流异常	A
如果 ECM 数据流正常	В

В

转到第3步

A

2 请参考 ECM 维修手册

文件名称:	HCB	整车控制器维修手册
-------	-----	-----------

版本: A0

页码: 18

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

下一步

4 更换整车控制器

U012100

与 ESC 通讯故障

1 使用 VDS2000 读取 ESC 数据流

结果	进入步骤
如果 ESC 数据流异常	A
如果 ESC 数据流正常	В

В

转到第3步

A

2 请参考 ESC 维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

文件编号:

版本: A0

页码: 19

C

4 请参考网关维修手册

下一步

5 更换整车控制器

U012800

与 EPB 通讯故障

1 使用 VDS2000 读取 EPB 数据流

结果	进入步骤
如果 EPB 数据流异常	A
如果 EPB 数据流正常	В

В

转到第3步

A

2 请参考 EPB 维修手册

下一步

使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

文件编号:

版本: A0

页码: 20

C

4 请参考网关维修手册

下一步

5 更换整车控制器

U029100

与档位控制器通讯故障

1 使用 VDS2000 读取档位控制器数据流

结果	进入步骤
如果档位控制器数据流异常	A
如果档位控制器数据流正常	В

В

转到第3步

A

2 请参考档位控制器维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

下一步

文件编号:

版本: A0

页码: 21

4 更换整车控制器

U016400

与空调通讯故障

1 使用 VDS2000 读取空调控制器数据流

结果	进入步骤
如果空调控制器数据流异常	A
如果空调控制器数据流正常	В

В

转到第3步

A

2 请参考空调控制器维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

文件编号:

版本: A0

页码: 22

5 更换整车控制器

U014000

与 BCM 通讯故障

1 使用 VDS2000 读取 BCM 数据流

结果	进入步骤
如果 BCM 数据流异常	A
如果 BCM 数据流正常	В

В

转到第3步

A

2 请参考 BCM 维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

文件编号:

版本: A0

页码: 23

5 更换整车控制器

U029800

与 DC 通讯故障

1 使用 VDS2000 读取 DC 数据流

结果	进入步骤
如果 DC 数据流异常	A
如果 DC 数据流正常	В

В

转到第3步

A

2 请参考 DC 维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

下一步

4 更换整车控制器

U01A500

与前电机控制器(FMCU)通讯故障

1 使用 VDS2000 读取前电机控制器(FMCU)数据流

文件编号: 版本: A0

结果	进入步骤
如果前电机控制器(FMCU)数据流异常	A
如果前电机控制器(FMCU)数据流正常	В

В

转到第3步

页码: 24

A

2 请参考前电机控制器(FMCU)维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

下一步

4 更换整车控制器

U01A600

与后驱动电机控制器(RMCU)通讯故障

1 使用 VDS2000 读取后电机控制器(RMCU)数据流

结果	进入步骤
如果后电机控制器(RMCU)数据流异常	A
如果后电机控制器(RMCU)数据流正常	В

В

转到第3步

A

文件编号:

版本: A0

页码: 25

2 | 请参考后电机控制器 (RMCU) 维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

下一步

4 更换整车控制器

U021400

与 I-KEY 通讯故障

1 使用 VDS2000 读取 I-KEY 数据流

1	结果	进入步骤
	如果 I-KEY 数据流异常	A
	如果 I-KEY 数据流正常	В

В

转到第3步

A

2 请参考 I-KEY 维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

文件编号:

版本: A0

页码: 26

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

下一步

5 更换整车控制器

U029400

与 EV-HEV 开关通讯故障

1 使用 VDS2000 读取模式开关数据流

结果	进入步骤
如果模式开关数据流异常	A
如果模式开关数据流正常	В

В

转到第3步

A

2 请参考模式开关维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果

进入步骤

文件名称: H	ICB 整	车控制器	维修手册
---------	-------	------	------

版本: A0

页码: 27

如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

下一步

5 更换整车控制器

P1B6000

发动机启动失败

1 使用 VDS2000 读取发动机、BSG 电机故障代码

结果	进入步骤
如果有故障代码	A
如果没有故障代码	В

В

转到第3步

A

2 请参考发动机控制器维修手册、BSG 电机控制器维修手册

下一步

3 使用 VDS2000 读取 VCU 故障代码

结果	进入步骤
如果有故障代码	С

文件编号:

版本: A0

页码: 28

如果没有故障代码

D

D

转到第4步

下一步

请参照 VCU 的故障代码排查相关故障

下一步

5 更换整车控制器

U012A00 与 EPS (电动助力转向) 模块失去通讯

使用 VDS2000 读取 ESP (电动助力转向) 数据流

结果	进入步骤
如果 ESP (电动助力转向) 数据流异常	A
如果 ESP(电动助力转向)数据流正常	В

转到第3步

请参考 EPS (电动助力转向) 维修手册

下一步

使用 VDS2000 读取 VCU 数据流 3

结果	进入步骤
如果 VCU 数据流正常	С

文件编号:

版本: A0

页码: 29

如果 VCU 数据流异常

D

D

转到第5步

C

4 请参考网关控制器维修手册

下一步

5 更换整车控制器

U012200

与低压电池管理器(BMS)失去通讯。

使用 VDS2000 读取低压电池管理器 (BMS) 数据流

结果	进入步骤
如果低压电池管理器(BMS)数据流异常	A
如果低压电池管理器(BMS)数据流正常	В

В

转到第3步

A

2 请参考低压电池管理器(BMS)维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С

清除故障代码

下一步

更换整车控制器 3

P1BA200 | 换挡超时

文件名称:	HCB	整车控制器维修手册
-------	-----	-----------

版本: A0

页码: 31

1 更换整车控制器

U011287

与 BSG 电机控制器通讯故障

1 使用 VDS2000 读取 BSG 电机控制器数据流

结果	进入步骤
如果 BSG 电机控制器数据流异常	A
如果 BSG 电机控制器数据流正常	В

В

转到第3步

A

2 请参考 BSG 电机控制器维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

文件编号:

版本: A0

页码: 32

更换整车控制器

P1D7800 稳压故障

更换整车控制器

P1D6C00 BSG 启动发动机故障

使用 VDS2000 读取 BSG 电机相关故障代码

结果	进入步骤
如果有故障代码	A
如果没有故障代码	В

В

转到第3步

请参照 BSG 电机控制器维修手册

下一步

使用 VDS 读取 VCU 相关故障代码 3

结果	进入步骤
如果有故障代码	С
如果没有故障代码	D

D

转到第5步

文件名称:	HCB	整车控制器维修手册
-------	-----	-----------

版本: A0

页码: 33

4 请参照 VCU 的故障代码排查相关故障

下一步

5 更换整车控制器

P1D6E09

BSG 电机故障

1 使用 VDS2000 读取 BSG 电机控制器故障代码

	结果	进入步骤
	如果有 BSG 过压故障	
	如果有 BSG 欠压故障	1
	如果有 BSG 过流故障	-
	如果有 BSG 电流霍尔故障	-
•	如果有 BSG 旋变故障	-
	如果有 BSG IPM 故障	
	如果有 BSG 缺相故障	
MM	如果有 BSG 三相短路故障	-
	如果有 BSG 电机超速故障	A
		-
	如果有 BSG DOS 故障	
	如果有 BSG LOT 故障	
	如果有 BSG IPM 过温故障	-
	如果有 BSG 箱体过温故障	-
	如果有 BSG 电机过温故障	-
	如果有 BSG 过载故障	-
	如果有 BSG CAN 通信故障	-
	如果没有以上任何一个故障	В

В

转到第3步

文件编号:

版本: A0

页码: 34

请参考 BSG 电机控制器维修手册

下一步

更换整车控制器

P1D6F00 BSG 皮带一般打滑故障

使用 VDS2000 读取 ECM 数据流一发动机转速、BSG 电控数据流一BSG 转速

结果	进入步骤
发动机转速≥1000rpm BSG 转速 1000rpm 2	A
BSG 转速 1000rpm 速比 1000rpm 发动机转速 - BSG 转速 ≥600rpm	
如果不满足以上条件	В

В

转到第3步

2 请检查 BSG 电机轮系

文件编号:

版本: A0

页码: 35

下一步

3 更换整车控制器

P1D7D00

BSG 皮带严重打滑

结果	进入步骤
发动机转速≥1000rpm	
BSG 转速 速比 ≥1000rpm	
<u>发动机转速- BSG 转速 </u> <mark>速比 </mark>	
发动机转速<1000rpm	A
发动机转速 — BSG 转速 速比 ≥600rpm	
BSG 转速 1000rpm #P = h + II ## / TE BSG 转速 2000	
发动机转速——BSU 转速 ≥600rpm	
如果不满足以上条件	В

В

转到第3步

A

2 请检查 BSG 电机轮系

下一步

3 更换整车控制器

P1D7100

高压系统故障, BMS 放电不允许

文件编号:

版本: A0

页码: 36

1 使用 VDS2000 读取电池管理系统(BMS)数据流一放电是否允许

结果	进入步骤
如果放电不允许	A
如果放电允许	В

В

转到第3步

A

2 请参考电池管理系统(BMS)维修手册

下一步

3 使用 VDS2000 读取电池管理系统 (BMS) 数据流一放电主接触器状态

结果	进入步骤
如果放电主接触器断开	С
如果放电主接触器吸合	D

D

转到第5步

C

4 请参考电池管理系统(BMS)维修手册

下一步

5 更换整车控制器

文件编号:

版本: A0

页码: 37

第六节 拆卸与安装

拆卸维修前需:

- 1.通过 VDS2000 解除防盗密钥
- 2. 点火开关 OFF 档:
- 3. 低压蓄电池断电;
- 4. 拆卸主驾座椅;

6.1 拆卸

- (1) 拔掉整车控制器低压接插件;
- (2) 按照安装脚对角线顺序打松并取出紧固螺栓;
- (3) 将整车控制器取出。

6.2 安装

- (1) 将整车控制器控制器的安装脚 1 的螺栓旋入 1/3。
- (2) 将整车控制器以安装脚 1 螺栓轴线为中心点旋转,直至安装脚 3 的孔与车身的螺孔对齐,将安装脚的螺栓放置于安装脚 3 的孔。
- (3) 将整车控制器以安装脚 1 螺栓轴线为中心点,顺时针旋转到安装脚 2 的孔与车身孔对准。旋入安装脚 3 螺栓,如果旋不进,重复步骤 (3)。
- (4) 旋入安装脚 2 的螺栓,如果旋不进,轻微移动下整车控制器(注意安装脚 1 和安装脚 3 的螺栓不能脱落,安装脚 3 螺栓脱落后请重复步骤(2),安装脚 1 螺栓脱落后需将安装脚 1 螺栓旋入 1/3)。
- (5) 按照安装脚 1、2、3、4 顺序循环打紧螺栓 (力矩 9N·M)。
- (6) 安装整车控制器低压接插件
- (7) 开启防盗密钥