

# L'historique du transistor



## Principe de fonctionnement



- Si Ve < tension de seuil (0,6V)</li>
  - Le transistor est bloquant
  - Interrupteur ouvert (Vs ≅Vcc)
- Si Ve > tension de seuil
  - Le transistor est passant
  - Interrupteur fermé

#### Comportement Inverseur:

| Ve       | Vs       |
|----------|----------|
| haut (1) | bas (0)  |
| bas (0)  | haut (1) |

## Principe de fonctionnement



Transistor NMOS dit à canal N

Le transistor à canal P (PMOS) inverse les polarités

La technologie actuelle utilise des transistors CMOS qui met en jeu à la fois des transistors P et N. Il sont plus rapides et consomment moins en électricité.

# 2. Portes logiques









# Réalisation de portes en technologie NMOS



# Réalisation de portes en technologie NMOS



## Réalisation de portes en technologie CMOS



## Portes de bases en technologie CMOS



## Portes de bases en technologie CMOS





## NAND à 4 entrées



## NAND à 3 entrées



## NAND à 8 entrées



## NAND à 8 entrées

4 NAND\_2 + 3 OR\_2 34 transistors



## NAND à 32 entrées



NAND\_32

16 NAND\_2 + 15 OR\_2 154 transistors

Une porte NAND à n entrées demande (n/2) portes NAND et (n/2) - 1 portes OR à 2 entrées , et donc 5n-6 transistors

## Réalisation de fonctions logiques

Pour définir chacune des fonctions logiques, on utilise plusieurs **représentations** :

- une représentation électrique : schéma à contacts
- une représentation algébrique : équation
- une représentation arithmétique: table de vérité
- une représentation temporelle : chronogramme
- une représentation logique : symbole logique

## Fonctions logiques

algèbrique

arithmétique

| a     | <u>b</u> | <br>S |
|-------|----------|-------|
| 0     | 0        | v0    |
| 0     | 1        | v1    |
| 1     | 0        | v2    |
| • • • |          |       |
| 1     | 1        | vn    |



temporelle



#### Fonctions booléennes

 On peut décrire complètement une fonction booléenne de n variables avec un table de vérité de 2<sup>n</sup> lignes

#### n=2 variables

| ඩ | .p | S  |
|---|----|----|
| 0 | 0  | v0 |
| 0 | 1  | v1 |
| 1 | 0  | v2 |
| 1 | 1  | v3 |

- 2 valeurs pour v0
- 2 valeurs pour v1
- 2 valeurs pour v2
- 2 valeurs pour v3

2\*2\*2\*2 = 16 fonctions booléennes de deux variables

## Fonctions booléennes

#### n variables

|                       | દા  | ب | • • • | S  |
|-----------------------|-----|---|-------|----|
|                       | 0   | 0 |       | v0 |
| 2 <sup>n</sup> lianes | 0   | 1 |       | v1 |
| 2 <sup>n</sup> lignes | 1   | 0 |       | v2 |
|                       | ••• |   |       |    |
|                       | 1   | 1 |       | vn |

• 2 valeurs pour v0

2 valeurs pour v1

2 valeurs pour v2

•...

2 valeurs pour v3

**2<sup>2<sup>n</sup></sup> fonctions** booléennes de n variables

# Exemple de circuit – le décodeur 7 segments

- L'afficheur 7 segments permet d'afficher l'ensemble des chiffres hexadécimaux de 0 à F
- 7 segments de contrôle de A à F
- Nécessite un décodeur pour établir la conversion du code hexadécimal sur 4 bits au contrôle de l'afficheur sur 7 bits





## Table de vérité du décodeur

- Elle dispose de 1- lignes
- Les entrées sont les 4 bits codant le chiffre hexa
- Les sorties sont les 7 segments

|         | Individual Segments |   |   |   |   |   |   |
|---------|---------------------|---|---|---|---|---|---|
| Display | Α                   | В | С | D | Ε | F | G |
| 0       | 1                   | 1 | 1 | 1 | 1 | 1 | 0 |
| 1       | 0                   | 1 | 1 | 0 | 0 | 0 | 0 |
| 2       | 1                   | 1 | 0 | 1 | 1 | 0 | 1 |
| 3       | 1                   | 1 | 1 | 1 | 0 | 0 | 1 |
| 4       | 0                   | 1 | 1 | 0 | 0 | 1 | 1 |
| 5       | 1                   | 0 | 1 | 1 | 0 | 1 | 1 |
| 6       | 1                   | 0 | 1 | 1 | 1 | 1 | 1 |
| 7       | 1                   | 1 | 1 | 0 | 0 | 0 | 0 |
| 8       | 1                   | 1 | 1 | 1 | 1 | 1 | 1 |
| 9       | 1                   | 1 | 1 | 1 | 0 | 1 | 1 |
| Α       | 1                   | 1 | 1 | 0 | 1 | 1 | 1 |
| В       | 0                   | 0 | 1 | 1 | 1 | 1 | 1 |
| С       | 1                   | 0 | 0 | 1 | 1 | 1 | 0 |
| D       | 0                   | 1 | 1 | 1 | 1 | 0 | 1 |
| E       | 1                   | 0 | 0 | 1 | 1 | 1 | 1 |
| F       | 1                   | 0 | 0 | 0 | 1 | 1 | 1 |

# Réalisation sous Logisim



#### Rappels –

#### Equivalence et simplifications de fonctions

- On démontre que toute fonction logique peut se décrire à l'aide des trois opérations de base grâce au théorème de De Morgan
- OU
- ET
- NOT

# Théorème de **De Morgan**

• 
$$a+b=a.b$$

 Dans les deux cas, l'expression ne sera VRAIE que si a et b sont fausses.

• 
$$a.b = a + b$$

 Dans les deux cas, l'expression ne sera VRAIE que si a ou b sont fausses

# Propriétés de la logique

#### **Associativité**

Certaines parenthèses sont inutiles:

$$(a+b)+c=a+(b+c)=a+b+c$$
  
 $(a.b).c=a.(b.c)=a.b.c$ 

#### Commutativité

• L'ordre est sans importance.

$$a + b = b + a$$
  
a.  $b = b$ . a

#### Distributivité

Comme avec les opérations habituelles, il est possible de distribuer:
a . (b+c) = a . b + a . c

#### Idempotence

# Propriétés

- Loi d'identité
- Loi de nullité
- Loi d'idempotence
- Loi d'inversion
- Loi d'absorption

#### Forme OU

• 
$$a+0 = a$$

• 
$$a+1=1$$

• 
$$a+a=1$$

#### Forme ET

• 
$$a.0 = 0$$

• 
$$a.a = 0$$

• 
$$a.(a+b) = a$$