

Métodos Computacionais A

Plano de Ensino - 2º semestre de 2022

Prof. Bernhard Enders bernhard@unb.br – 61-3107-8069 – FUP, sala AT-07/46

Ementa

- ◆ Álgebra linear, autovalores e autovetores de uma matriz.
- ◆ Integração aproximação de funções, funções especiais, zero de funções.
- ◆ Equações não lineares.
- ◆ Equações diferenciais ordinárias.

■ Objetivo

- ◆ Apresentar os fundamentos dos métodos numéricos utilizados em modelagem computacional de problemas físicos.
- ◆ Desenvolver as habilidades de programação em Python, tanto na implementação dos métodos numéricos como na utilização de bibliotecas numéricas estado da arte.

Bibliografia

- ◆ Linge, S. Langtangen, H. P. *Programming for Computations Python*. 2ª ed. Springer, 2020. Disponível em: <<u>https://doi.org/10.1007/978-3-030-16877-3_5</u>>
- ◆ Burden, R.L., Faires, J.D. e Burden, A.M. Análise Numérica, 3ª ed., São Paulo: Cengage Learning, 2015. Disponível em:
 https://integrada.minhabiblioteca.com.br/reader/books/9788522123414
- ◆ Press, W.H.; Saul, A.T.; William T.V.; Flannery, B.P. *Numerical recipes 3rd edition: The art of scientific computing*. 3^a ed. Cambridge: Cambridge University Press, 2007.

Método de ensino

- ◆ Apresentação do conteúdo por meio de aulas expositivas.
- ◆ Demonstração em ambiente de desenvolvimento em Python, da implementação e uso dos métodos numéricos e pacotes.
- Atividades em sala utilizando os métodos estudados.
- ◆ Exercícios no aprender3 de programação em python.
- ◆ Desenvolvimento de um projeto envolvendo a solução númerica de um problema físico.

■ Atendimento extraclasse

- ◆ Haverá um fórum para dúvidas. Costumo responder perguntas à noite e nos fins de semana. Agradeço aos alunos que colaborarem respondendo dúvidas de outros alunos.
- ◆ As notas serão disponibilizadas exclusivamente via Moodle. O aluno que não se

cadastrar não terá acesso às suas notas ou às provas corrigidas.

■ Avaliação

- ◆ *E* Exercícios de programação no Aprender3.
- ◆ *T* Trabalhos de aplicação dos algoritmos desenvolvidos.
- ♦ *P* Média das provas.

$$NF = 0.2E + 0.3T + 0.5P$$

- ◆ Para ser aprovado o aluno deve obter nota final maior ou igual a 5,0.
- ◆ Para ser aprovado o aluno deve obter nota maior ou igual a 5,0 em P e T.

Aula	Dia	Programação
1	25/out	Apresentação do professor e da disciplina, instalação e uso do sistema Python.
2	27/out	Introdução ao Python, operadores, variáveis, bibliotecas.
3	01/nov	Formatação, tipos enumeráveis, bibliotecas, "list comprehension".
4	03/nov	Programação estruturada x orientada a objetos
5	08/nov	Precisão e implementação de variáveis numéricas. Numpy: vetores, matrizes e arrays.
6	10/nov	Gráficos usando bibiotecas Python
7	15/nov	Zero de funções: bisseção.
8	17/nov	Zero de funções: Newto-Rapson
9	22/nov	Atividade remota (não presencial).
10	24/nov	COPA: Jogo do Brasil.
11	29/nov	Interpolação e extrapolação.
12	01/dez	Minimização de funções.
13	06/dez	COPA: Possível Jogo do Brasil.
14	08/dez	Primeira prova
15	13/dez	COPA: Possível Jogo do Brasil.
16	15/dez	Ajuste de funções.
17	20/dez	Diferenciação numérica. Introdução
18	22/dez	Método de diferenças finitas
19	27/dez	
20	29/dez	
21	03/jan	Integração numérica: método do trapézio.
22	05/jan	Integração numérica: método de Simpson.
23	10/jan	PVI: método de Euler.
24	12/jan	PVI: método de Runge-Kutta.
25	17/jan	PVI: métodos adaptativos.
26	19/jan	Sistemas lineares, determinantes e inversão de matrizes
27	24/jan	Autovalores e autovetores
28	26/jan	Sistemas não lineares I
29	31/jan	Sistemas não lineares II.
30	02/fev	Definição dos projetos
31	07/fev	Segunda prova
32	09/fev	Revisão