Labsession 10: Queue

Objective

The ob	iective	of l	lab	session	10	0	is

- To know the properties of queue
- To understand the basic operation of queues
- To implement the queue operation
- To know different flavors of queues

Pre

e-lab Exercise								
1.	Select the false stateme	ent about queues fro	om the following					
	A. It is open at both	n its ends						
	B. Follows first in firs	t out methodology C	C. Follows last in last out methodology					
	D. It is abstract date	ı type.						
2.	2. Which operation contain the following procedures							
	Step1: Check if the queue is full							
	Step2: If the queue is full, produce overflow error and exit							
	Step3: If not full, increment rear pointer and point o the next empty space							
	Step4: Add data element to the queue location, where the rear is pointing							
	Step5: Return Su	ccess						
	A. Enqueue Opera	B. Dequeue Operation						
	B. Push Operation		C. Peek Operation					
3.	Which pointer(s) of the queue manipulated when dequeue operation executed							
	A. Rear B. Front	С. Тор	D. A and B					
4.	Write the two basic task	ks involved when we	access data from the queue?					
5.	Accessing the content	while removing it from	m the queue is known as					
	A. Enqueue	B. Deque	C. Dequeue					

- 6. You can have underflow when we implement queue using _____-
 - A. Array
- B. Linked List C. All
- 7. Insertion and deletion can occur at either end. This statement describes
 - A. Stack
- B. Queue
- C. Deque
- D. B and C
- 8. Assume, a largest first out priority queue with the following data

$$23 \rightarrow 6 \rightarrow 1^{1} \rightarrow 21 \rightarrow 19 \rightarrow 29 \rightarrow 5 \rightarrow 14$$

Write the item sequence when eight sequential dequeue operation executed.

- 9. Let Q be queue. Illustrate the following operations (the state of the queue and the sequence of outputs).
 - enqueue(Q,'A')
 - enqueue(Q, 'D')
 - dequeue(Q)
 - enqueue('S')
 - dequeue(Q)
 - dequeue(Q)

In-lab Exercise

- 10. Create a simple program to create a queue and to queue integer numbers from 1 to 30. Then dequeue and print on screen the content of the queue. Use an array queue.
- 11. You are developing the help desk application of a company. Request of issues will be stored to be served on a **first-come first-serviced** basis. For each issue, the name of the employee and the description will be stored. Implement the ADT queue on C++ for issues. Use a linked list queue.

Post-lab Exercise

¹ | Page

- 1. What is the drawback of implementing queues using normal array? And how to solve this drawback?
- 2. It is possible to implement a queue with two stacks? What is the complexity of the **enqueue** and **dequeue** operation?