Statistical Learning

https://github.com/ggorr/Machine-Learning/tree/master/ISLR

8 Tree-Based Methods

- 8.1 The Basics of Decision Trees
- 8.2 Bagging, Random Forests, Boosting
- 8.3 Lab: Decision Tree
- 8.4 Exercises

8.1 The Basics of Decision Trees

- 8.1.1 Regression Trees
- 8.1.2 Classification Trees
- 8.1.3 Trees Versus Linear Models
- 8.1.4 Advantages and Disadvantages of Trees

8.1.1 Regression Trees

x_1	1.1	1.0	1.0	1.15	1.5	1.6	1.4	1.4	1.5	1.6
x_2	1.1	1.3	1.0	1.1	1.5	1.3	1.4	1.0	8.0	0.9
y	4.0	4.2	4.0	4.1	2.7	1.8	2.3	3.1	3.9	3.5

• Means: 4.075, 2.267, 3.5

Regression Tree

- Divide the predictor space into regions $R_1, ..., R_J$
- Prediction:
 The mean in the region
- Goal:

Minimize the RSS

$$\sum_{j=1}^{J} \sum_{i:x_i \in R_j} \left(y_j - \hat{y}_{R_j} \right)^2$$

Finding Regions

Let

$$R_1(j,s) = \{X | X_j < s\}, R_2(j,s) = \{X | X_j \ge s\}$$

Seek j and s that minimize the value

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

• Repeat this process for $R_1(j,s)$ and $R_2(j,s)$

Tree Pruning

- Large(complex) tree
 - Overfitting
 - Example: n regions for n observations
- Finding small tree with low variance and low bias
- Strategy
 - Start with very large tree
 - Prune to obtain a subtree
- Algorithm
 - Cost complexity pruning

8.1.2 Classification Trees

- Classification tree
 - responses are qualitative
- Decision
 - the most commonly occurring class in each region

Example

x_1	1.1	1.0	1.0	1.15	1.5	1.6	1.4	1.4	1.5	1.6
x_2	1.1	1.3	1.0	1.1	1.5	1.3	1.4	1.0	8.0	0.9
y	0	1	0	2	1	1	2	2	0	2

RSS

classification error rate

$$E = 1 - \max_{k} \hat{p}_{mk}$$

- \hat{p}_{mk} : the proportion of the class k in the region R_m
- not sufficiently sensitive
- Gini index

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

- measure of node purity
- Cross-entropy

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

8.1.3 Trees Versus Linear Models

- Classification Example
 - two classes green and yellow

8.1.4 Advantages and Disadvantages of Trees

- Trees are
 - easy to explain
 - similar to human decision-making
 - some people believe it!!!
 - not accurate relative to other regression

8.2 Bagging, Random Forests, Boosting

- 8.2.1 Bagging
- 8.2.2 Random Forests
- 8.2.3 Boosting

8.2.1 Bagging

- Bootstrap aggregating = bagging
 - Motivation
 - Decision tree suffer from high variance
 - Averaging a set of observations reduces variance
 - Approach
 - Averaging estimates of bootstrapped training data sets
- Note
 - Bootstrap uses repeated samples with replacement

Bagging in Regression

- find estimate $\hat{f}^{*b}(x)$ for b-th bootstrapped training data set
- averaging

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

where B is the number of bootstrapped training data sets

bootstrapped training data set

Bagging with Decision Tree

- Complex tree
 - High variance
- Bagging
 - Averaging without pruning
 - Reduces variance

Bagging in Classification

Majority vote

Out-of-bag Error Estimation

- Let S_b be the b-th bootstrapped training data set
- An observation x_i is said to be out-of-bag if $x_i \notin S_b$
 - not used in training $\hat{f}^{*b}(x_i)$
 - $\Pr(x_i \in S_b) = 1 \left(\frac{n-1}{n}\right)^n \approx 1 \frac{1}{e} \approx \frac{2}{3}$
- Test output
 - regression
 - $\hat{f}_{\text{test}}^*(x_i) = \text{average}\{\hat{f}^{*b}(x_i) | x_i \notin S_b\}$
 - classification
 - $\hat{f}_{\text{test}}^*(x_i) = \text{vote}\{\hat{f}^{*b}(x_i) | x_i \notin S_b\}$

Variable Importance Measures

average of Gini indices

8.2.2 Random Forests

- Bagging
 - Strong predictors splits tree
 - All of the bagged trees will look quite similar to each other
 - Variance will not be decreased via average
- Random Forest
 - A sort of bagging
 - For each time a split in a tree, a random sample of m predictors are chosen from the full set of p predictors
 - $m \approx \sqrt{p}$

Random Forest Algorithm

- Choose a random sample from observations
 - Build tree
 - Choose *m* predictors
 - Split a branch
 - Choose another *m* predictors
 - Split a branch
 - and so on
 - Find the prediction function
- Repeat the process B times
- Average prediction functions

8.2.3 Boosting

- Boosting
 - A sort of decision tree
 - the trees are grown sequentially
 - each tree is grown using information from previously grown trees

Algorithm 8.2 Boosting for Regression Trees

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
 - (a) Fit a tree \hat{f}^b with d splits (d+1) terminal nodes) to the training data (X, r).
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x). \tag{8.10}$$

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i). \tag{8.11}$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$
 (8.12)