PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-075500

(43) Date of publication of application: 23.03.2001

(51)Int.CI.

9/30 G09F G02F 1/1333 G02F GO2F G09F 9/00 H01L 29/786 HO4N 5/66

(21)Application number: 2000-196438

(71)Applicant: SEMICONDUCTOR ENERGY LAB CO

LTD

(22)Date of filing:

29.06.2000

(72)Inventor: HIRAKATA YOSHIHARU

GOTOU YUUGO KOBAYASHI YUKO YAMAZAKI SHUNPEI

(30)Priority

Priority number: 11191102

Priority date: 06.07.1999

Priority country: JP

(54) SEMICONDUCTOR DEVICE AND ITS MANUFACTURE

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a high-quality liquid crystal panel having the thickness designed in a free range according to the characteristics and driving methods of the liquid crystals to be used with good accuracy without using particulate spacers by disposing a plurality of columnar spacers for maintaining the spacing of both substrates between a first and a second substrate.

SOLUTION: The columnar spacers are used to maintain the specified spacing between the first substrate and the second substrate. When the width (diameter) in the central part of the columnar spacers is defined as L1, the width (diameter) at the top end as L3 and the width (diameter) at the bottom end as L2, the width L2 is the width of the region where the columnar spacers of a film thickness above 0.2 μ m exist from above the plane before the formation of the columnar spacers. The width L1 at the center of the columnar spacers is required to sufficiently play the role as a spacer and is $\leq 20 \mu m$, more preferably $\leq 7 \mu m$. The radius of curvature R of the columnar spacers is $\leq 2 \mu m$, more preferably ≤ 1 μ m. The height H of the columnar spacers is 0.5 to 10 μ m, more preferably 1.2 to 5 μ m.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-75500 (P2001-75500A)

(43)公開日 平成13年3月23日(2001.3.23)

(51) Int.Cl.7		識別記号		FΙ			Ť	-7]-ド(参考)
G09F	9/30	320		G09F	9/30		320	
		338					338	
G02F	1/1333			G02F	1/1333			
	1/1339	500			1/1339		500	
	1/1368			G09F	9/00		338	
			審査請求	未請求 請求	項の数35	OL	(全 30 頁)	最終頁に続く

(21)出願番号	特願2000-196438(P2000-196438)	(71)出顧人	000153878 株式会社半導体エネルギー研究所
(22)出顧日	平成12年6月29日(2000.6.29)	(72)発明者	神奈川県厚木市長谷398番地 平形 吉晴
(31)優先権主張番号 (32)優先日	特顧平11-191102 平成11年7月6日(1999.7.6)		神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内
(33)優先権主張国	日本(JP)	(72)発明者	後藤 裕吾 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内
		(72)発明者	小林 優子 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内

最終頁に続く

(54) 【発明の名称】 半導体装置およびその作製方法

(57)【要約】

【課題】 粒子状スペーサを用いず、使用する液晶の特性や駆動方法に応じて自由な範囲で設計された厚みを精度よく有する、高品質な液晶パネルおよびその作製方法を提供する。

【解決手段】基板間隔を一定に保つためのスペーサの形状を、柱状で曲率半径 $R=2~\mu$ m以下、高さ H=0. 5 μ m~ $1~0~\mu$ m、径 $2~0~\mu$ m以下、角度 $\alpha=6~5~1~1~5$ ° とする。こうすることにより、開口率の低下防止、配向乱れによる光漏れの低減をすることができる。

(A)スペーサのSEM鞭索写真

【特許請求の範囲】

【請求項1】第1の基板と、第2の基板と、

前記第1の基板と前記第2の基板との間に配置され、前記第1の基板と前記第2の基板との間隔を保つ柱状のスペーサを複数備えたことを特徴とする半導体装置。

【請求項2】第1の基板と、第2の基板と、前記第1の基板と前記第2の基板との間に柱状のスペーサを複数備えた半導体装置であって、前記柱状のスペーサの曲率半径Rは、2μm以下であることを特徴とする半導体装置。

【請求項3】請求項1または請求項2において、前記柱 状のスペーサの高さHは、 0.5μ m $\sim 10 \mu$ mである ことを特徴とする半導体装置。

【請求項4】請求項1または請求項2において、前記柱 状のスペーサの高さHは、1.2 μ m \sim 5 μ m τ m τ あることを特徴とする半導体装置。

【請求項5】請求項1乃至4のいずれか一において、前記柱状のスペーサの幅L1は、 20μ m以下であることを特徴とする半導体装置。

【請求項6】請求項1乃至5のいずれか一において、前記柱状のスペーサの幅L1は、 7μ m以下であることを特徴とする半導体装置。

【請求項7】請求項1乃至6のいずれか一において、前記柱状のスペーサの側面中央における接平面と基板面との角度 α は、65°~115°であることを特徴とする半導体装置。

【請求項8】請求項1乃至7のいずれか一において、前 記柱状のスペーサは、頭頂部に平坦な面を有することを 特徴とする半導体装置。

【請求項9】請求項1乃至8のいずれか一において、前記柱状のスペーサにおける径方向の断面形状は、円形、楕円形、三角形、四角形、またはそれ以上の多角形であることを特徴とする半導体装置。

【請求項10】請求項1万至9のいずれか一において、 前記柱状のスペーサは絶縁性を有する材料でなることを 特徴とする半導体装置。

【請求項11】請求項1乃至10のいずれか一において、前記柱状のスペーサは、TFTと画素電極とが接続するコンタクト部の上に形成されていることを特徴とする半導体装置。

【請求項12】請求項1乃至10のいずれか一において、前記柱状のスペーサはシール領域のみに形成されることを特徴とする半導体装置。

【請求項13】請求項1乃至10のいずれか一において、前記柱状のスペーサはシール領域及び駆動回路において素子が存在しない領域の上に形成されていることを特徴とする半導体装置。

【請求項14】請求項1乃至10のいずれか一において、前記柱状のスペーサはシール領域及び画素部に形成されていることを特徴とする半導体装置。

2

【請求項15】請求項1乃至10のいずれか一において、前記柱状のスペーサは駆動回路において素子が存在しない領域の上及び画素部に形成されていることを特徴とする半導体装置。

【請求項16】請求項1乃至10のいずれか一において、前記柱状のスペーサはシール領域及び駆動回路と画素部との間の領域に形成されていることを特徴とする半導体装置。

【請求項17】請求項1乃至10のいずれか一におい 10 て、前記柱状のスペーサは駆動回路と画素部との間の領 域及び画素部に形成されていることを特徴とする半導体 装置。

【請求項18】請求項1乃至10のいずれか一において、前記柱状のスペーサはシール領域、駆動回路において素子が存在しない領域の上及び画素部に形成されていることを特徴とする半導体装置。

【請求項19】請求項1乃至10のいずれか一において、前記柱状のスペーサは駆動回路において素子が存在しない領域の上及び駆動回路と画素部との間の領域に形20 成されていることを特徴とする半導体装置。

【請求項20】請求項1乃至10のいずれか一において、前記柱状のスペーサはシール領域、駆動回路において素子が存在しない領域の上、駆動回路と画素部との間の領域及び画素部に形成されていることを特徴とする半導体装置。

【請求項21】請求項1乃至10のいずれか一において、前記柱状のスペーサはシール領域と画素部との間の領域に形成されていることを特徴とする半導体装置。

【請求項22】請求項1乃至10のいずれかーにおいて、前記柱状のスペーサはシール領域と駆動回路との間の領域に形成されていることを特徴とする半導体装置。 【請求項23】請求項1乃至10のいずれかーにおいて、前記柱状のスペーサはシール領域と基板の端部との間の領域に形成されていることを特徴とする半導体装置

【請求項24】請求項1乃至10のいずれか一において、前記柱状のスペーサは基板全域に形成されていることを特徴とする半導体装置。

【請求項25】請求項1乃至24において前記柱状のスペーサは、配向膜上に接して形成されており、プレチルト角は、4~5°であることを特徴とする半導体装置。 【請求項26】請求項1乃至24において前記柱状のスペーサは、配向膜で覆われており、プレチルト角は、6~10°であることを特徴とする半導体装置。

【請求項27】請求項1乃至26に記載された半導体装置とは、アクティブマトリクス型液晶ディスプレイであることを特徴とする半導体装置。

【請求項28】請求項1乃至24に記載された半導体装置とは、前記第1の基板と前記第2の基板の間にはエレクトロルミネセンス素子が挟持されたELディスプレイ

20

3

であることを特徴とする半導体装置。

【請求項29】請求項1乃至24に記載された半導体装置とは、ビデオカメラ、デジタルカメラ、プロジェクター、ゴーグル型ディスプレイ、カーナビゲーション、パーソナルコンピュータ、携帯情報端末であることを特徴とする半導体装置。

【請求項30】第1の基板と、第2の基板と、前記第1 の基板と前記第2の基板との間に配置された柱状スペー サを複数備えた表示装置と、光学式の検出素子を備えた タッチパネルとを有することを特徴とする半導体装置。 【請求項31】第1の基板と、第2の基板と、前記第1 の基板と前記第2の基板との間に配置された柱状スペー サを複数備えた表示装置と、感圧式の検出素子を備えた

【請求項32】第1の基板と、第2の基板と、前記第1 の基板と前記第2の基板との間に配置された柱状スペー サを複数備えた表示装置と、静電容量式の検出素子を備 えたタッチパネルとを有することを特徴とする半導体装 置。

タッチパネルとを有することを特徴とする半導体装置。

【請求項33】基板上にTFTを形成する第1工程と、 前記TFTを覆って平坦化膜を形成する第2工程と、前 記平坦化膜を開孔して、前記TFTに接続するとともに 画素電極を形成する第3工程と、

前記画素電極上に配向膜を形成する第4工程と、

前記配向膜にラビング処理を施す第5工程と、

前記TFTと前記画素電極とが接続するコンタクト部の 上方に絶縁膜でなる柱状スペーサを形成する第6工程 と、

を有することを特徴とする半導体装置の作製方法。

【請求項34】基板上にTFTを形成する第1工程と、前記TFTを覆って平坦化膜を形成する第2工程と、前記平坦化膜を開孔して、前記TFTに接続するとともに画素電極を形成する第3工程と、前記TFTと前記画素電極とが接続するコンタクト部の上に絶縁膜でなる柱状スペーサを形成する第4工程と、

前記画素電極および前記柱状スペーサを覆う配向膜を形成する第5工程と、

前記配向膜にラビング処理を施す第6工程と、を有する ことを特徴とする半導体装置の作製方法。

【請求項35】請求項33または請求項34において、 前記絶縁膜でなる柱状スペーサを形成する工程は、 絶縁贈を形成する工程と、前記絶縁贈をパターニングす

絶縁膜を形成する工程と、前記絶縁膜をパターニングする工程とによって柱状スペーサを形成することを特徴とする半導体装置の作製方法。

【発明の詳細な説明】

[0001]

学装置を部品として搭載した電子機器に関する。

【0002】なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。

[0003]

【従来の技術】近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数~数百 n m程度)を用いて薄膜トランジスタ(TFT)を構成する技術が注目されている。薄膜トランジスタはICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置のスイッチング素子として開発が急がれている。

【0004】上記電気光学装置の代表例としては、液晶表示装置やEL表示装置や密着型イメージセンサが挙げられる。

【0005】一般に液晶表示装置は、一定の基板間隔を隔てて対向された一対の基板と、一定の基板間隔を保つための粒子状スペーサと、基板間に封入された液晶材料とを備えている。

【0006】液晶表示装置の基板間隔は通常 $1\sim20\mu$ mに設定され、これを $\pm0.1\mu$ m程度の精度で均一に制御する必要がある。基板間隔にばらつきが生じると、色むら、干渉縞などの表示品位の劣化原因となるばかりではなく、外力により基板間隔が狭められた際に電極が接触して回路損傷や表示不能などの不良の発生要因となるためである。このようにスペーサは液晶表示素子の性能保持のための重要な部材である。

【0007】以下、従来の液晶表示装置(TFT-LCD)の作製方法を簡略に説明する。

び 【0008】まず、一対の基板を用意する。一方の基板には、TFT素子および画素電極をマトリクス状に形成する。もう一方の基板には、電極またはカラーフィルター等を形成する。次いで、一対の基板のそれぞれに配向膜を形成した後、ラビング処理を行う。

【0009】次に、どちらか一方の基板の配向膜上に粒子状スペーサを均一に散布する。次に、もう一方の基板とを組み合わせ、周縁部をシール用接着剤でシールして液晶セルを形成する。次いで、この液晶セル内に液晶材料を真空注入法により充填した後、注入口を封止する。

40【0010】以上の工程の流れがTFT-LCDの一般的な作製工程である。

【0011】上記従来の工程において、粒子状スペーサを均一に散布することは困難であり、スペーサの擬集による透過率の低減やスペーサ直下の素子を破壊してリークやショートが生じていることが問題となっている。

【0012】また、液晶材料を真空注入法により注入す

なっている。

[0013]

【発明が解決しようとする課題】一般的に使用されている従来の粒子状スペーサ(ガラスビーズ、プラスチックビーズ等)を用いた場合、粒子状スペーサを一方の基板上に散布する方法をとっている。そのため、画素電極上にスペーサが配置され、入射光を遮ったり、液晶分子の配向を乱してしまう。結果的に透過光量や発色を調節することが困難となっていた。また、粒子状スペーサは静電気が帯電しやすく、このためスペーサ同士が集まりや 10 すくなり均一に分布させることが困難であった。

【0014】本発明の目的は、粒子状スペーサを用いず、使用する液晶の特性や駆動方法に応じて自由な範囲で設計された厚みを精度よく有する、高品質な液晶パネルおよびその作製方法を提供することである。

[0015]

【課題を解決するための手段】本明細書で開示する発明の構成は、第1の基板と、第2の基板と、前記第1の基板と前記第2の基板との間に配置され、前記第1の基板と前記第2の基板との間隔を保つ柱状のスペーサを複数 20 備えたことを特徴とする半導体装置である。

【0016】また、他の発明の構成は、第1の基板と、第2の基板と、前記第1の基板と前記第2の基板との間に柱状のスペーサを複数備えた半導体装置であって、前記柱状のスペーサの曲率半径Rは、2μm以下、好ましくは1μm以下であることを特徴とする半導体装置である。

【 $0\,0\,1\,7$ 】また、上記各構成において、前記柱状のスペーサの高さHは、 $0.\,5\,\mu\,m\sim 1\,0\,\mu\,m$ 、好ましくは $1.\,2\,\mu\,m\sim 5\,\mu\,m$ であることを特徴としている。

【0018】また、上記各構成において、前記柱状のスペーサの幅L1は、 20μ m以下、好ましくは 7μ m以下であることを特徴としている。

【0019】また、上記各構成において、前記柱状のスペーサの側面中央における接平面と基板面との角度 α は、 $65^{\circ}\sim115^{\circ}$ であることを特徴としている。

【0020】また、上記各構成において、前記柱状のスペーサは、頭頂部に平坦な面を有することを特徴としている。

【0021】また、上記各構成において、前記柱状のスペーサにおける径方向の断面形状は、円形、楕円形、三角形、四角形、またはそれ以上の多角形であることを特徴としている。

【0022】また、上記各構成において、前記柱状のスペーサは絶縁性を有する材料でなることを特徴としている。

【0023】また、上記各構成において、前記柱状のスペーサは、TFTと画素電極とが接続するコンタクト部の上に形成されていることを特徴としている。

【 $0\ 0\ 2\ 4$ 】また、前記柱状のスペーサはシール領域の 50 工程と、前記 $T\ F\ T$ と前記画素電極とが接続するコンタ

みに形成される構成としてもよいし、シール領域及び駆動回路において素子が存在しない領域の上に形成してもよい。また、前記柱状のスペーサはシール領域及び画素部に形成してもよいし、駆動回路において素子が存在しない領域の上及び画素部に形成してもよい。また、前記柱状のスペーサはシール領域及び駆動回路と画素部との

間の領域に形成してもよいし、前記柱状のスペーサは駆動回路と画素部との間の領域及び画素部に形成してもよ

【0025】また、前記柱状のスペーサはシール領域、 駆動回路において素子が存在しない領域の上及び画素部 に形成してもよいし、前記柱状のスペーサは駆動回路に おいて素子が存在しない領域の上及び駆動回路と画素部 との間の領域に形成してもよい。また、前記柱状のスペーサはシール領域、駆動回路において素子が存在しない 領域の上、駆動回路と画素部との間の領域及び画素部に 形成してもよいし、前記柱状のスペーサはシール領域と 画素部との間の領域に形成してもよい。また、前記柱状 のスペーサはシール領域と駆動回路との間の領域に形成 してもよいし、前記柱状のスペーサはシール領域と基板 の端部との間の領域に形成してもよい。また、前記柱状 のスペーサは基板全域に形成してもよい。

【0026】また、上記各構成において、前記柱状のスペーサが、配向膜上に接して形成されている場合、プレチルト角は、 $4\sim5$ °であることを特徴としている。【0027】また、上記各構成において、前記柱状のスペーサが、配向膜で覆われている場合、プレチルト角は、 $6\sim10$ °であることを特徴としている。

【0028】また、他の発明の構成は、第1の基板と、第2の基板と、前記第1の基板と前記第2の基板との間に配置された柱状スペーサを複数備えた表示装置と、光学式の検出素子を備えたタッチパネルとを有することを特徴とする半導体装置である。

【0029】また、他の発明の構成は、第1の基板と、第2の基板と、前記第1の基板と前記第2の基板との間に配置された柱状スペーサを複数備えた表示装置と、感圧式の検出素子を備えたタッチパネルとを有することを特徴とする半導体装置である。

【0030】また、他の発明の構成は、第1の基板と、第2の基板と、前記第1の基板と前記第2の基板との間に配置された柱状スペーサを複数備えた表示装置と、静電容量式の検出素子を備えたタッチパネルとを有することを特徴とする半導体装置である。

【0031】また、上記構造を実現するための発明の構成は、基板上にTFTを形成する第1工程と、前記TFTを覆って平坦化膜を形成する第2工程と、前記平坦化膜を開孔して、前記TFTに接続するとともに画素電極を形成する第3工程と、前記画素電極上に配向膜を形成する第4工程と、前記配向膜にラビング処理を施す第5工程と、前記TFTと前記画表電極とが接続するコンタ

クト部の上方に絶縁膜でなる柱状スペーサを形成する第 6工程と、を有することを特徴とする半導体装置の作製 方法である。

【0032】また、他の発明の構成は、基板上にTFTを形成する第1工程と、前記TFTを覆って平坦化膜を形成する第2工程と、前記平坦化膜を開孔して、前記TFTに接続するとともに画素電極を形成する第3工程と、前記TFTと前記画素電極とが接続するコンタクト部の上に絶縁膜でなる柱状スペーサを形成する第4工程と、前記画素電極および前記柱状スペーサを覆う配向膜を形成する第5工程と、前記配向膜にラビング処理を施す第6工程と、を有することを特徴とする半導体装置の作製方法である。

【0033】上記構成において、前記絶縁膜でなる柱状スペーサを形成する工程は、絶縁膜を形成する工程と、前記絶縁膜をパターニングする工程とによって柱状スペーサを形成することを特徴としている。

[0034]

【発明の実施の形態】本願発明の実施形態について、図1~図4を用いて以下に説明する。

【0035】本願発明は、第1の基板と第2の基板の間隔を一定に保つため柱状スペーサを用いる。本願発明の柱状スペーサの形状は以下に示す条件に適合することが望ましい。

【0036】図1に示すように、柱状スペーサにおいて、中央部の幅(径)をL1、上端の幅(径)をL3、下端の幅(径)をL2とする。図3に示した工程(配向膜301上に柱状スペーサ303を形成する場合)においては、柱状スペーサ自体の幅の値とするが、図14に示した工程(柱状スペーサ1102上に配向膜1103を形成する場合)は、柱状スペーサ自体に配向膜の膜厚分も加えた値を幅L1~L3とする。なお、幅L2は、柱状スペーサ形成以前の平面上から0.2 μ m以上の膜厚の柱状スペーサ材料が存在する領域の幅である。柱状スペーサの中央の幅L1は十分にスペーサとしての役割を果たすことが必要であり、20 μ m以下、好ましくは 10μ m以下、さらに好ましくは 7μ m以下であることが記まり、

【0037】なお、本明細書において、下端とは、柱状スペーサにおける第1の基板側の端部を指す。上端とは、柱状スペーサの頭頂部を指す。なお、本発明の柱状スペーサの頭頂部は、外圧がかけられた時、均等な圧力が柱状スペーサにかかる様に、平坦な面を有する。また、樹脂材料でなるスペーサは弾力性に富むため、圧力を適当に吸収することができる。また、本発明の柱状スペーサは、粒子状スペーサと違って面で素子と接するため圧力が分散し、一点に過剰な圧力がかかるようなことがない。本発明においては、柱状スペーサの頭頂部における端部の曲率半径Rを2μm以下、好ましくは1μm以下とすることで均等な圧力が柱状スペーサにかかる様

にする。

【0038】本発明において柱状スペーサの各部位の幅は同一、即ちL1=L2=L3とすることが望ましい。また、柱状スペーサの中央部における側面と基板表面とがなす角 α °は65°~115°の範囲とすることが望ましい。

【0039】しかし、実際に柱状スペーサを形成した場合、柱状スペーサの上端が曲率半径 2μ m以下、好ましくは 1μ m以下を有する端部となり、柱状スペーサの下端にはテーパー部が形成されるため、L2>L1>L3となる。テーパー部では液晶の配向不良が生じやすく、この周辺では光漏れが発生する。本発明においては、 $0.8 \le L2/L1 \le 3$ の範囲内になるようにすることで光漏れを低減する。なお、図3に示した工程(配向膜上に柱状スペーサを形成する場合)においては、 $1 \le L2/L1 \le 1$. 1とすることが望ましい。また、図14に示した工程(柱状スペーサ上に配向膜を形成する場合)においては、 $1 \le L2/L1 \le 2$. 5とすることが望ましい。

0 【0040】また、第2の基板との接触面積が縮小されるので、外圧がかけられた時、大きな圧力が局所的にかかる。このことは、スペーサ強度の劣化の原因となる。本発明においては、 $0.6 \le L3/L1 \le 1.2$ とすることでスペーサ強度を強化した。

【0041】また、柱状スペーサの高さHは、柱状スペーサの形成工程の条件により自由な範囲で制御できるため、適宜、所望の値に設定すればよい。例えば、液晶表示装置において、その装置に用いられる液晶材料(TN 液晶、強誘電性液晶、反強誘電性液晶等)に応じて最適な基板間隔(0.5μ m~ 10μ m、好ましくは 1.2μ m~ 5μ m)に設定する。

【0042】また、柱状スペーサの材料としては、樹脂材料でなる絶縁物(絶縁膜)が望ましい。ポリイミドなどの樹脂材料でなる絶縁膜は溶液を塗布して形成することができるが、溶液塗布系の絶縁膜は微小な孔を充填する上で非常に好適である。もちろん、溶液を塗布して形成する酸化シリコン膜などを用いても構わない。また、樹脂材料でなる絶縁膜を用いる場合、光重合型絶縁膜でも良いし、熱重合型絶縁膜でも良い。特に、ポジ型またはネガ型の感光性樹脂を用いると簡単な工程で柱状スペーサを形成することができるので好ましい。また、光劣化を避けるためにネガ型感光性をもつ樹脂材料を用いることが望ましい。

【0043】また、柱状のスペーサにおける径方向の断面形状は、円形であってもよいし、楕円形であってもよい。 さらに、三角形や四角形であってもよいし、それ以上の多角形であってもよい。

がない。本発明においては、柱状スペーサの頭頂部にお 【0044】また、柱状スペーサは、図2に示したようける端部の曲率半径Rを2 μ m以下、好ましくは1 μ m に、規則的に配置する。図2においては、6 画素(6 行以下とすることで均等な圧力が柱状スペーサにかかる様 50 × 1 列)当たりに1 個の柱状スペーサ2 0 2 を配置する

Q

構成としているが特に限定されず、10~200個/m m²の密度で配置すればよい。図2中の201は画素電 極、203は柱状スペーサの形成されていないコンタク ト部である。また、図2においては、TFTと画素電極 とが接続するコンタクト部上の位置に形成しているが、 特に限定されない。例えば、配線(ソース配線、ゲート 配線、容量配線等)の上方、または遮光膜の上方に形成 すれば透過率に影響しないため好ましい。また、柱状ス ペーサを画素部以外、例えば、駆動回路において素子が 存在しない領域、シール領域、画素部と駆動回路との間 の領域、画素部とシール領域との間の領域、駆動回路と シール領域の間の領域、シール領域と基板端部との間の 領域に形成してもよい。なお、シール領域と基板端部と の間の領域に形成すると、貼り合わせ工程及び基板分断 工程において圧力が均等に基板にかかるため、歩留まり が向上する。また、FPCを接続する端子部から駆動回 路につながる配線に柱状スペーサを形成すれば、FPC と接続する部分の機械強度を補強することができる。

【0045】上記形状を有する本願発明の柱状スペーサの作製方法を用いて以下に簡略に説明する。なお、図3は本願発明の工程断面図を示し、図4は工程順序を示したフローチャート図である。

【0046】まず、スイッチング素子および画素電極をマトリクス状に形成した第1の基板300を形成する。また、電極を形成した第2の基板304を形成する。なお、図3には簡略化のためスイッチング素子および画素電極等は図示していない。次いで、第1の基板300と第2の基板304のそれぞれに配向膜301、305を形成した後、ラビング処理を行う。(図3(a))

【0047】次いで、第1の基板の配向膜301上にス 30ペーサ材料層302を形成する。(図3(b))なお、ここでは、第1の基板に柱状スペーサを形成した例を示したが、第2の基板に柱状スペーサを形成する工程としてもよい。

【0048】こうして形成されたスペーサ材料層302 に露光用マスクを介して柱状スペーサのパターンを露光 した後、現像処理を行い、柱状スペーサ303を形成す る。(図3(c))

【0049】そして、電極および配向膜305を形成した第2の基板304にシール材パターン306を形成す 40 る。シール材パターンは液晶注入口を形成した矩形で、且つ同じ幅のパターン枠を形成する。なお、ここでは、第2の基板にシール領域を形成した例を示したが、第1の基板にシール領域を形成する工程としてもよい。そして、第1の基板300と第2の基板304を貼り合わせる。貼り合わせ工程は、アライメントマークを利用して精度よく貼り合わせた後、加圧焼成してシール材を硬化させる工程である。(図3(d))

【0050】その後、適当なサイズに第1の基板および 第2の基板を分断し、液晶注入口から液晶材料307を 50

10 注入した後、注入口を封止する。こうして液晶パネルを 完成させる。

【0051】また、上記工程では、第1の基板上に配向膜を形成した後、その上に柱状スペーサを形成した例を示したが、図14に示したように第1の基板1100上に柱状スペーサ1102を形成した後、その上に配向膜1103を形成する工程としてもよい。

【0052】また、第1の基板または第2の基板にカラーフィルターや遮蔽膜を形成する工程としてもよい。

【0053】また、ここではアクティブマトリクス型の 液晶表示装置の例を示したが、特に限定されない。例え ば、単純マトリクス型の液晶表示装置にも適用でき、表 示方式がTN型でもSTN型でもよく、透過型でも反射 型でもよい。

【0054】以上の構成でなる本願発明について、以下 に示す実施例でもってさらに詳細な説明を行うこととす る。

[0055]

【実施例】 [実施例1] 本発明の実施例について図5~図8を用いて説明する。ここでは、画素部とその周辺に設けられる駆動回路を同時に作製する方法について説明する。但し、説明を簡単にするために、駆動回路に関しては、シフトレジスタ回路、バッファ回路等の基本回路であるCMOS回路と、サンプリング回路を形成する n チャネル型TFTとを図示することとする。

【0056】図5(A)において、基板501には、ガラス基板や石英基板を使用することが望ましい。その他にもシリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを基板としても良い。耐熱性が許せばプラスチック基板を用いることも可能である。 【0057】そして、基板501のTFTが形成される

【0057】そして、基板501のTFTが形成される表面には、珪素(シリコン)を含む絶縁膜(本明細書中では酸化シリコン膜、窒化シリコン膜、または窒化酸化シリコン膜の総称を指す)からなる下地膜502をプラズマCVD法やスパッタ法で100~400nmの厚さに形成する。

【0058】なお、本明細書中において窒化酸化シリコン膜とはSiOxNyで表される絶縁膜であり、珪素、酸素、窒素を所定の割合で含む絶縁膜を指す。本実施例では、下地膜502として、窒素を20~50atomic%

(典型的には $20\sim30$ atomic%)で含む 100 n m厚の窒化酸化シリコン膜と、窒素を $1\sim20$ atomic%(典型的には $5\sim10$ atomic%)で含む 200 n m厚の窒化酸化シリコン膜との積層膜を用いる。なお、厚さはこの値に限定する必要はない。また、窒化酸化シリコン膜に含まれる窒素と酸素の含有比(atomic%比)は $3:1\sim1:3$ (典型的には 1:1)とすればよい。また、窒化酸化シリコン膜は、 SiH_4 と N_2O 2 N H_3 を原料ガスとして作製すればよい。

【0059】なお、この下地膜502は基板からの不純

物汚染を防ぐために設けられるものであり、石英基板を 用いた場合には必ずしも設けなくても良い。

【0060】次に下地膜502の上に30~120nm (好ましくは50~70nm) の厚さの、非晶質構造を 含む半導体膜(本実施例では非晶質シリコン膜(図示せ ず))を公知の成膜法で形成する。なお、非晶質構造を 含む半導体膜としては、非晶質半導体膜、微結晶半導体 膜があり、さらに非晶質シリコンゲルマニウム膜などの 非晶質構造を含む化合物半導体膜も含まれる。また、上 記膜厚で形成しておけば、最終的に TFTが完成した時 点の活性層の膜厚は10~100nm(好ましくは30 ~50 nm) となる。

【0061】そして、特開平7-130652号公報 (USP5, 643, 826号に対応) に記載された技 術に従って、結晶構造を含む半導体膜(本実施例では結 晶質シリコン膜) 503を形成する。同公報記載の技術 は、非晶質シリコン膜の結晶化に際して、結晶化を助長 する触媒元素(ニッケル、コバルト、ゲルマニウム、 錫、鉛、パラジウム、鉄、銅から選ばれた一種または複 数種の元素、代表的にはニッケル)を用いる結晶化手段 20 である。

【0062】具体的には、非晶質シリコン膜表面に触媒 元素を保持させた状態で加熱処理を行い、非晶質シリコ ン膜を結晶質シリコン膜に変化させるものである。本実 施例では同公報の実施例1に記載された技術を用いる が、実施例2に記載された技術を用いても良い。なお、 結晶質シリコン膜には、いわゆる単結晶シリコン膜も多 結晶シリコン膜も含まれるが、本実施例で形成される結 晶質シリコン膜は結晶粒界を有するシリコン膜である。 (図5(A))

【0063】非晶質シリコン膜は含有水素量にもよる が、好ましくは400~550℃で数時間加熱して脱水 素処理を行い、含有水素量を5atom%以下として、結晶 化の工程を行うことが望ましい。また、非晶質シリコン 膜をスパッタ法や蒸着法などの他の作製方法で形成して も良いが、膜中に含まれる酸素、窒素などの不純物元素 を十分低減させておくことが望ましい。

【0064】ここでは、下地膜と非晶質シリコン膜と は、同じ成膜法で形成することが可能であるので両者を 連続形成しても良い。下地膜を形成後、一旦大気雰囲気 にさらされないようにすることで表面の汚染を防ぐこと が可能となり、作製されるTFTの特性バラツキを低減 させることができる。

【0065】次に、結晶質シリコン膜503に対してレ ーザー光源から発する光(レーザー光)を照射(以下、 レーザーアニールという)して結晶性の改善された結晶 質シリコン膜504を形成する。レーザー光としては、 パルス発振型または連続発振型のエキシマレーザー光が 望ましいが、連続発振型のアルゴンレーザー光でも良 い。また、レーザー光のビーム形状は線状であっても矩 50 型的にはボロンまたはガリウムを用いることができる。

形状であっても構わない。(図5(B))

【0066】また、レーザー光の代わりにランプから発 する光(以下、ランプ光という)を照射(以下、ランプ アニールという)しても良い。ランプ光としては、ハロ ゲンランプ、赤外ランプ等から発するランプ光を用いる ことができる。

【0067】なお、このようにレーザー光またはランプ 光により熱処理(アニール)を施す工程を光アニール工 程という。光アニール工程は短時間で髙温熱処理が行え るため、ガラス基板等の耐熱性の低い基板を用いる場合 にも効果的な熱処理工程を高いスループットで行うこと ができる。勿論、目的はアニールであるので電熱炉を用 いたファーネスアニール(熱アニールともいう)で代用 することもできる。

【0068】本実施例では、パルス発振型エキシマレー ザー光を線状に加工してレーザーアニール工程を行う。 レーザーアニール条件は、励起ガスとしてXeClガス を用い、処理温度を室温、パルス発振周波数を30Hz とし、レーザーエネルギー密度を250~500mJ/cm² (代表的には350~400mJ/cm²)とする。

【0069】上記条件で行われたレーザーアニール工程 は、熱結晶化後に残存した非晶質領域を完全に結晶化す ると共に、既に結晶化された結晶質領域の欠陥等を低減 する効果を有する。そのため、本工程は光アニールによ り半導体膜の結晶性を改善する工程、または半導体膜の 結晶化を助長する工程と呼ぶこともできる。このような 効果はランプアニールの条件を最適化することによって も得ることが可能である。本明細書中ではこのような条 件を第1アニール条件と呼ぶことにする。

【0070】次に、結晶質シリコン膜504をパターニ ングして島状の半導体膜(以下、活性層という)505 ~508を形成する。なお、このとき同時に、今後のパ ターニング時の位置合わせに用いるアライメントマーカ ーを、結晶質シリコン膜を用いて形成する。本実施例の 場合、活性層の形成と同時にアライメントマーカーを形 成することができるため、アライメントマーカーを別途 形成する手間(マスク数の増加)を防ぐことができる。

【0071】次に、活性層505~508上に後の不純 物添加時のために保護膜509を形成する。保護膜50 9は100~200nm (好ましくは130~170n m) の厚さの窒化酸化シリコン膜または酸化シリコン膜 を用いる。この保護膜509は不純物添加時に結晶質シ リコン膜が直接プラズマに曝されないようにするため と、微妙な濃度制御を可能にするための意味がある。 (図5 (C))

【0072】そして、その上にレジストマスク510を 形成し、保護膜509を介してp型を付与する不純物元 素(以下、p型不純物元素という)を添加する。p型不 純物元素としては、代表的には13族に属する元素、典

この工程(チャネルドープ工程という)はTFTのしきい値電圧を制御するための工程である。なお、ここではジボラン(B2H6)を質量分離しないでプラズマ励起したイオンドープ法でボロンを添加する。勿論、質量分離を行うイオンインプランテーション法を用いても良い。

13

【0073】こうして $1\times10^{15}\sim1\times10^{18}$ atoms/cm 3 (代表的には $5\times10^{16}\sim5\times10^{17}$ atoms/cm 3)の濃度でp型不純物元素(本実施例ではボロン)が添加された活性層 $511\sim513$ が形成される。この活性層 $511\sim513$ は後のnチャネル型TFTの活性層となる。但し、本明細書中で記載する濃度は全TSIMS(質量二次イオン分析)による測定値である。

【0074】なお、本明細書中では少なくとも上記濃度 範囲でp型不純物元素を含む不純物領域(但し、1×1 0¹⁶atoms/cm³の濃度でn型を付与する不純物元素、典 型的にはリン又は砒素が添加された領域を除く)をp型 不純物領域(b)と定義する。(図5(D))

【0075】次に、レジストマスク510を除去し、新たにレジストマスク514a~514dを形成する。そして、n型を付与する不純物元素(以下、n型不純物元素 20という)を添加してn型を呈する不純物領域515~517を形成する。なお、n型不純物元素としては、代表的には15族に属する元素、典型的にはリンまたは砒素を用いることができる。(図5(E))

【0076】この低濃度不純物領域 $515\sim517$ は、後にCMOS回路およびサンプリング回路のn チャネル型TFTにおいて、LDD領域として機能させるための不純物領域である。なお、ここで形成された不純物領域にはn型不純物元素が $2\times10^{16}\sim5\times10^{19}$ atoms/cm 3 (代表的には $5\times10^{17}\sim5\times10^{18}$ atoms/cm 3) の濃度で含まれている。本明細書中では上記濃度範囲でn型不純物元素を含む不純物領域をn型不純物領域(b)と定義する。

【0077】なお、ここではフォスフィン(PH_3)を質量分離しないでプラズマ励起したイオンドープ法でリンを 1×10^{18} atoms/cm³の濃度で添加する。勿論、質量分離を行うイオンインプランテーション法を用いても良い。この工程では、保護膜 509を介して結晶質シリコン膜にリンを添加する。

【0078】次に、レジストマスク514a~514d及び保護膜509を除去し、再びレーザー光の照射工程を行う。ここでもレーザー光としては、パルス発振型または連続発振型のエキシマレーザー光が望ましいが、連続発振型のアルゴンレーザー光でも良い。また、レーザー光のビーム形状は線状であっても矩形状であっても構わない。但し、添加された不純物元素の活性化が目的であるので、結晶質シリコン膜が溶融しない程度のエネルギーで照射することが好ましい。また、保護膜509をつけたままレーザーアニール工程を行うことも可能である。(図5(F))

【0079】本実施例では、パルス発振型エキシマレーザー光を線状に加工してレーザーアニール工程を行う。レーザーアニール条件は、励起ガスとしてKrFガスを用い、処理温度を室温、パルス発振周波数を30Hzとし、レーザーエネルギー密度を $100\sim300$ mJ/cm² (代表的には $150\sim250$ mJ/cm²) とする。

14

【0080】上記条件で行われた光アニール工程は、添加された n 型または p 型を付与する不純物元素を活性化すると共に、不純物元素の添加時に非晶質化した半導体 膜を再結晶化する効果を有する。なお、上記条件は半導体膜を溶融させることなく原子配列の整合性をとり、且つ、不純物元素を活性化することが好ましい。また、本工程は光アニールにより n 型または p 型を付与する不純物元素を活性化する工程、半導体膜を再結晶化する工程、またはそれらを同時に行う工程と呼ぶこともできる。このような効果はランプアニールの条件を最適化することによっても得ることが可能である。本明細書中ではこのような条件を第2アニール条件と呼ぶことにする。

1 【0081】この工程によりn型不純物領域(b)51 5~517の境界部、即ち、n型不純物領域(b)の周 囲に存在する真性な領域(p型不純物領域(b)も実質 的に真性とみなす)との接合部が明確になる。このこと は、後にTFTが完成した時点において、LDD領域と チャネル形成領域とが非常に良好な接合部を形成しうる ことを意味する。

【0082】なお、このレーザー光による不純物元素の活性化に際して、電熱炉を用いた熱処理による活性化を併用しても構わない。熱処理による活性化を行う場合は、基板の耐熱性を考慮して $450\sim650$ $^{\circ}$ (好ましくは $500\sim550$ $^{\circ}$)の熱処理を行えば良い。

【0083】次に、活性層505、511~513を覆ってゲート絶縁膜518を形成する。ゲート絶縁膜518は、10~200nm、好ましくは50~150nmの厚さに形成すれば良い。本実施例では、プラズマCVD法で N_2O と SiH_4 を原料とした窒化酸化シリコン膜を115nmの厚さに形成する。(図6(A))

【0084】次に、ゲート配線となる導電膜を形成する。なお、ゲート配線は単層の導電膜で形成しても良いが、必要に応じて二層、三層といった積層膜とすることが好ましい。本実施例では、第1導電膜519と第2導電膜520とでなる積層膜を形成する。(図6(B))【0085】ここで第1導電膜519、第2導電膜520としては、タンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(W)、クロム(Cr)、ニオブ(Nb)、シリコン(Si)から選ばれた元素を含む金属膜、または前記元素を主成分とする金属化合物膜(代表的には窒化タンタル膜、窒化タングステン膜、窒化チタン膜)、または前記元素を組み合わせた60歳(代表的にはMo-W合金膜、Mo-Ta合金

--8-

(9)

16

膜、タングステンシリサイド膜)、若しくはそれらの薄膜を積層した積層膜を用いることができる。

【0086】なお、第1導電膜519は10~50nm (好ましくは20~30nm)とし、第2導電膜520は200~400nm (好ましくは250~350nm)とすれば良い。本実施例では、第1導電膜519として、50nm厚の窒化タンタル(TaN)膜を、第2導電膜520として、350nm厚のタンタル(Ta)膜を用いる。

【0087】このほか、窒化タングステン膜とタングステン膜との積層膜、窒化タンタル膜のみの単層膜、タングステンシリサイド膜も好適である。また、第1導電膜519の下にシリコン膜を2~20nm程度の厚さで形成する構造(ポリサイド構造)とすると、シリコン膜上に形成された導電膜の密着性を向上させると同時に、導電膜の酸化を抑制することができる。

【0088】また、本実施例のように第2導電膜520 として金属膜を用いた場合、その表面をアンモニアガス または窒素ガスを用いたプラズマ雰囲気に曝すことで窒 化することも有効である。こうすることで、金属膜表面 の酸化を抑制することが可能である。

【0089】次に、第1導電膜519と第2導電膜520とを一括でエッチングして400nm厚のゲート配線(ゲート電極とも言える)521~524a、524bを形成する。この時、駆動回路に形成されるゲート配線522、523はn型不純物領域(b)515~517の一部とゲート絶縁膜を介して重なるように形成する。なお、ゲート配線524a、524bは断面では二つに見えるが、実際は連続的に繋がった一つのパターンから形成されている。(図6(C))

【0090】次に、ゲート配線521~524をマスクとして自己整合的にn型不純物元素(本実施例ではリン)を添加する。こうして形成された不純物領域525~530には前記n型不純物領域(b)の1/2~1/10(代表的には1/3~1/4)の濃度(但し、前述のチャネルドープ工程で添加されたボロン濃度よりも5~10倍高い濃度、代表的には 1×10^{16} ~ 5×10^{18} atoms/cm³、典型的には 3×10^{17} ~ 3×10^{18} atoms/cm³、)でリンが添加されるように調節する。なお、本明細書中では上記濃度範囲でn型不純物元素を含む不純物領域をn型不純物領域(c)と定義する。(図6(D))

【0091】なお、n型不純物領域(c)527~53 0には既にチャネルドープ工程で $1\times10^{15}~1\times10^{18}$ atoms/ cm^3 の濃度のボロンが添加されているが、この工程ではp型不純物領域(b)に含まれるボロンの5~10倍の濃度でリンが添加されるので、ボロンの影響は無視して良い。

【0092】但し、厳密にはn型不純物領域(b) 51 に $1 \times 10^{20} \sim 1 \times 10^{21}$ atoms/cm³の濃度でリンが添 $5 \sim 517$ のうちゲート配線に重なった部分のリン濃度 50 加されているが、ここで添加されるボロンはその少なく

が $2 \times 10^{16} \sim 5 \times 10^{19}$ atoms/cm³ のままであるのに対し、ゲート配線に重ならない部分はそれに $1 \times 10^{16} \sim 5 \times 10^{18}$ atoms/cm³ の濃度のリンが加わっており、若干高い濃度でリンを含むことになる。

【0093】次に、ゲート配線 $521\sim524$ をマスクとして自己整合的にゲート絶縁膜518をエッチングする。エッチングはドライエッチング法を用い、エッチングガスとしてはCHF3ガスを用いれば良い。但し、エッチングガスはこれに限定する必要はない。こうしてゲート配線下にゲート絶縁膜 $531\sim534$ a、534bが形成される。(図6(E))

【0094】このように活性層を露呈させることによって、次に不純物元素の添加工程を行う際に加速電圧を低くすることができる。そのため、また必要なドーズ量が少なくて済むのでスループットが向上する。勿論、ゲート絶縁膜をエッチングしないで残し、スルードーピングによって不純物領域を形成しても良い。

【0095】次に、ゲート配線を覆う形でレジストマスク535a~535dを形成し、n型不純物元素(本実施例ではリン)を添加して高濃度にリンを含む不純物領域536~544を形成する。ここでも、フォスフィン(PH3)を用いたイオンドープ法(勿論、イオンインプランテーション法でも良い)で行い、この領域のリンの濃度は $1\times10^{20}\sim1\times10^{21}$ atoms/cm³(代表的には $2\times10^{20}\sim5\times10^{21}$ atoms/cm³)とする。(図6(F))

【0096】なお、本明細書中では上記濃度範囲で n型不純物元素を含む不純物領域を n型不純物領域(a)と定義する。また、不純物領域536~544が形成された領域には既に前工程で添加されたリンまたはボロンが含まれるが、十分に高い濃度でリンが添加されることになるので、前工程で添加されたリンまたはボロンの影響は考えなくて良い。従って、本明細書中では不純物領域536~544は n型不純物領域(a)と言い換えても構わない。

【0097】次に、レジストマスク $535a\sim535d$ を除去し、新たにレジストマスク545を形成する。そして、p型不純物元素(本実施例ではボロン)を添加し、高濃度にボロンを含む不純物領域546、547を形成する。ここではジボラン(B_2H_6)を用いたイオンドープ法(勿論、イオンインプランテーション法でも良い)により $3\times10^{20}\sim3\times10^{21}$ atoms/cm³(代表的には $5\times10^{20}\sim1\times10^{21}$ atoms/cm³)濃度でボロンを添加する。なお、本明細書中では上記濃度範囲でp型不純物元素を含む不純物領域をp型不純物領域(a)と定義する。(図7(A))

【0098】なお、不純物領域546、5470一部 (前述のn型不純物領域(a)536、537)には既 に $1\times10^{20}\sim1\times10^{21}$ atoms/cm³の濃度でリンが添 加されているが、ここで添加されるボロンはその少なく

とも3倍以上の濃度で添加される。そのため、予め形成されていた n型の不純物領域は完全にP型に反転し、P型の不純物領域として機能する。従って、本明細書中では不純物領域546、547をp型不純物領域(a)と言い換えても構わない。

17

【0099】次に、レジストマスク545を除去した後、第1層間絶縁膜548を形成する。第1層間絶縁膜548としては、珪素を含む絶縁膜、具体的には窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜またはそれらを組み合わせた積層膜で形成すれば良い。また、膜厚は $50\sim400$ nm(好ましくは $100\sim200$ nm)とすれば良い。

【0100】本実施例では、プラズマCVD法で SiH_4 、 N_2O 、 NH_3 を原料ガスとし、200nm厚の窒化酸化シリコン膜(但し窒素濃度が $25\sim50$ atomic%)を用いる。この第1層間絶縁膜548は次に行われる熱処理工程(活性化工程)において、ゲート配線 $521\sim524$ a、524bが酸化されて抵抗値が増加するのを防ぐ効果を有する。

【0101】その後、それぞれの濃度で添加された n型または p型不純物元素を活性化するために熱処理工程を行う。この工程はファーネスアニール法、レーザーアニール法、またはラピッドサーマルアニール法(R T A 法)で行うことができる。ここではファーネスアニール法で活性化工程を行う。この熱処理工程は、窒素雰囲気中において $300\sim650$ ℃、好ましくは $400\sim55$ 0 ℃、ここでは 550 ℃、4時間の熱処理を行う。(図 7 (B))

【0102】この時、本実施例において非晶質シリコン 膜の結晶化に用いた触媒元素(本実施例ではニッケル)が、矢印で示す方向に移動して、前述の図6(F)の工程で形成された高濃度にリンを含む領域に捕獲(ゲッタリング)される。これはリンによる金属元素のゲッタリング効果に起因する現象であり、この結果、後のチャネル形成領域 $549\sim553$ は前記触媒元素の濃度が 1×10^{17} atoms/cm³以下となる。但し、ニッケルの場合、 1×10^{17} atoms/cm³以下はSIMSの測定下限となるため、現状の技術では測定不能である。

【0103】また、逆に触媒元素のゲッタリングサイトとなった領域(図6(F)の工程で不純物領域 $536\sim544$ が形成された領域)は高濃度に触媒元素が偏析して 5×10^{18} atoms/cm 3 以上(代表的には $1\times10^{19}\sim5\times10^{20}$ atoms/cm 3)濃度で存在するようになる。しかし、このゲッタリングサイトとなった領域はソース領域またはドレイン領域として機能すれば良いので、ニッケルの有無は問題とはならないと考えられる。

【0104】次に、 $3\sim100$ %の水素を含む雰囲気中で、 $300\sim450$ ℃で $1\sim12$ 時間の熱処理を行い、活性層を水素化する工程を行う。この工程は熱的に励起された水素により半導体層のダングリングボンドを終端

する工程である。水素化の他の手段として、プラズマ水 素化(プラズマにより励起された水素を用いる)を行っ ても良い。

【0105】活性化工程を終えたら、第1層間絶縁膜5480上に $500nm~1.5\mu$ m厚の第2層間絶縁膜554を形成する。本実施例では第2層間絶縁膜554として800nm厚の酸化シリコン膜をプラズマCVD法により形成する。こうして第1層間絶縁膜(窒化酸化シリコン膜)548と第2層間絶縁膜(酸化シリコン順)554との積層膜でなる 1μ m厚の層間絶縁膜を形成する。

【0106】なお、第2層間絶縁膜554として、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、BCB(ベンゾシクロブテン)等の有機樹脂絶縁膜を用いることも可能である。

【0107】その後、それぞれのTFTのソース領域またはドレイン領域に達するコンタクトホールが形成され、ソース配線555~558と、ドレイン配線559~562を形成する。なお、図示されていないがСМОS回路を形成するためにドレイン配線559、560は同一配線で形成されている。また、本実施例ではこの電極を、Ti膜を100nm、Tiを含むアルミニウム膜300nm、Ti膜150nmをスパッタ法で連続して形成した3層構造の積層膜とする。

【0108】次に、パッシベーション膜563として、窒化シリコン膜、酸化シリコン膜、または窒化酸化シリコン膜で50~500nm(代表的には200~300nm)の厚さで形成する。(図7(C))

【0109】この時、膜の形成に先立ってH2、NH3等水素を含むガスを用いてプラズマ処理を行い、成膜後に熱処理を行うことは有効である。この前処理により励起された水素が第1、第2層間絶縁膜中に供給される。、この状態で熱処理を行うことで、パッシベーション膜563の膜質を改善するとともに、第1、第2層間絶縁膜中に添加された水素が下層側に拡散するため、効果的に活性層を水素化することができる。

【0110】また、パッシベーション膜563を形成した後に、さらに水素化工程を行っても良い。例えば、 $3\sim100$ %の水素を含む雰囲気中で、 $300\sim450$ ℃で $1\sim12$ 時間の熱処理を行うと良く、あるいはプラズマ水素化法を用いても同様の効果が得られた。

【0111】なお、ここで後に画素電極とドレイン配線を接続するためのコンタクトホールを形成する位置において、パッシベーション膜563に開口部を形成しておいても良い。

【0112】その後、図7(D)に示すように、樹脂材料(又は有機材料ともいう)でなる絶縁膜(以下、樹脂絶縁膜という)でなる第3層間絶縁膜(本明細書中では平坦化膜と呼ぶ場合もある)564を約 $1\sim3\mu$ m(典型的には $1.5\sim2\mu$ m)の厚さに形成する。

【0113】樹脂材料としては、ポリイミド、アクリ ル、ポリアミド、ポリイミドアミド、BCB(ベンゾシ クロプテン)、シクロテン等を使用することができる。 樹脂絶縁膜を用いることの利点は、極めて平坦性に優れ る点、比誘電率が低い点などが上げられる。なお上述し た以外の樹脂絶縁膜や有機系SiO化合物などを用いるこ ともできる。また、平坦性さえ高ければ無機材料でなる 絶縁膜を用いることも可能である。

【0114】なお、ここでは、基板に塗布後、熱で重合 するタイプのアクリル膜を用いるが、光照射により重合 するタイプを用いても良い。勿論、ポジ型またはネガ型 の感光性材料であっても良い。

【0115】また、第3層間絶縁膜564の一部の層と して、顔料等で着色した樹脂膜を設け、カラーフィルタ ーとして用いることも可能である。

【0116】次に、画素部において、樹脂材料でなる第 3層間絶縁膜(平坦化膜)564上に遮蔽膜565を形 成する。なお、本明細書中において遮蔽膜とは、光若し くは電磁波を遮断する性質を有する導電膜を指す。

【0117】遮蔽膜565はアルミニウム(A1)、チ タン(Ti)、タンタル(Ta)から選ばれた元素でな る金属膜または前記いずれかの元素を主成分(本明細書 中では50重量%以上で含む場合に主成分とみなす)と する金属膜で100~300 nmの厚さに形成する。本 実施例では1wt%のチタンを含有させたアルミニウム膜を 125 nmの厚さに形成する。なお、本明細書中ではこ の遮蔽膜を第「1導電膜」と呼ぶ場合がある。

【0118】なお、本実施例では遮蔽膜565を形成す る前に酸化シリコン膜を5~50nm(典型的には20 ~30 nm) の厚さに形成している。そして、その上に 遮蔽膜565を形成し、遮蔽膜565をマスクとして上 記絶縁膜のエッチング処理を行い、566で示される酸 化シリコン膜が形成される。

【0119】この酸化シリコン膜566は第3層間絶縁 膜564と遮蔽膜565の密着性を高めるために設ける が、遮蔽膜が存在する以外の領域では、後に第3層間絶 縁膜にコンタクトホールを形成する際の障害になるため 除去することが望ましい。なお、第3層間絶縁膜564 の表面にCF4ガスを用いたプラズマ処理を施すことに よっても、表面改質により膜上に形成する遮蔽膜の密着 40 性を向上させることができる。

【0120】また、このチタンを含有させたアルミニウ ム膜を用いて、遮蔽膜だけでなく他の接続配線を形成す ることも可能である。例えば、駆動回路内で回路間をつ なぐ接続配線を形成できる。但し、その場合は遮蔽膜ま たは接続配線を形成する材料を成膜する前に、予め第3 層間絶縁膜にコンタクトホールを形成しておく必要があ

【0121】次に、遮蔽膜565の表面に公知の陽極酸

より20~100nm (好ましくは30~50nm) の 厚さの酸化物を形成する。本実施例では遮蔽膜565と してアルミニウムを主成分とする膜を用い、陽極酸化法 を用いるため、陽極酸化物567として酸化アルミニウ ム膜(アルミナ膜)が形成される。この陽極酸化物56 7が本実施例の保持容量の誘電体となる。

20

【0122】また、ここでは陽極酸化法を用いて遮蔽膜 表面のみに絶縁物を設ける構成としたが、他の絶縁物 (絶縁膜)をプラズマ C V D 法、熱 C V D 法またはスパ ッタ法などの気相法によって形成しても良い。その場合 も膜厚は20~100nm (好ましくは30~50n m) とすることが好ましい。

【0123】次に、第3層間絶縁膜564、パッシベー ション膜563にドレイン配線562に達するコンタク トホールを形成し、画素電極569を形成する。なお、 画素電極570、571はそれぞれ隣接する別の画素の 画素電極である。本実施例では画素電極569~571 として透明導電膜を用い、具体的には酸化インジウム・ スズ(ITO)膜を110nmの厚さにスパッタ法で形 成する。なお、本明細書中では画素電極を「第2導電 膜」と呼ぶ場合がある。

【0124】なお、反射型の液晶表示装置とする場合に は画素電極の材料として金属膜を用いれば良い。

【0125】また、この時、画素電極569と遮蔽膜5 65とが陽極酸化物567を介して重なり、保持容量 (キャパシタンス・ストレージ又はコンデンサ) 572を形成す る。なお、保持容量572しか符号を付していないが、 遮蔽膜と画素電極とが重なる領域は全て保持容量として 機能する。

【0126】また、保持容量の誘電体として比誘電率が 7~9と高いアルミナ膜を用いたため、必要な容量を形 成するための面積を少なくすることを可能としている。 さらに、本実施例のように画素 TFT上に形成される遮 蔽膜を保持容量の一方の電極とすることで、アクティブ マトリクス型液晶表示装置の画像表示部の開口率を向上 させることができる。

【0127】また、この場合、遮蔽膜565をフローテ ィング状態(電気的に孤立した状態)か固定電位、好ま しくはコモン電位(データとして送られる画像信号の中 間電位)に設定しておくことが望ましい。

【0128】上記工程を経て、画素TFTおよび画素電 極を形成したアクティブマトリクス基板 (第1の基板) を形成した。

【0129】次に、アクティブマトリクス基板(第1の 基板)から、アクティブマトリクス型液晶表示装置を作 製する工程を説明する。まず、画素 TFT および画素電 極を形成した第1の基板上に配向膜573を成膜した。 また、対向基板(第2の基板)574には、透明導電膜 575と、配向膜576とを形成する。なお、第2の基 化法又はプラズマ酸化法(本実施例では陽極酸化法)に 50 板には必要に応じてカラーフィルターや遮蔽膜を形成し

ても良い。本実施例では配向膜としてポリイミド膜を用いる。配向膜573をロールコーターにより塗布した後、200℃で90分加熱した。なお、配向膜573を形成する前に第1の基板を洗浄することが好ましい。その後、布を装着したローラーで配向膜表面を擦り、液晶のスがある一定のプレチルト魚(6°~10°・好まし

21

の後、布を装着したローラーで配向膜表面を擦り、液晶分子がある一定のプレチルト角($6^\circ \sim 10^\circ$ 、好ましくは $7^\circ \sim 8^\circ$)を持って配向するようにラビング配向処理を行った。

【0130】次いで、配向膜 573上にスペーサ材料層 として感光性アクリル樹脂(NN700:JSR製)を 900rpmでスピンコートし4. 7μ mの膜厚とした。その後、ホットプレートを用いて 80%、3分間加熱した。加熱後の感光性アクリル樹脂膜の厚さは、4. 0μ mとした。

【0131】こうして形成されたスペーサ材料層に露光用マスクを介して柱状スペーサのパターン(サイズ: 6μ m四方)を露光した後、現像した。現像条件は、現像液として、CD-700(TMAH0.14%)を用い、液温を 18 ± 1 ℃、現像時間は60秒とした。次いで、クリーンオーブンを用いて180℃、1分間加熱した。

【0132】このようにして、第1の基板上に柱状のスペーサ568を形成した。(図8(A))また、柱状のスペーサ568は、その形成位置を自由に設計することができるので、画像表示領域を有効に活用することができる。なお、現像液によりプレチルト角は、 $4^\circ \sim 5^\circ$ に変化した。

【0133】本実施例の画素構造を上面から見た図を図12に示す。図12に示すように本実施例では、画素TFTと画素電極62とが電気的に接続するコンタクト部65の上に柱状スペーサ63を設ける。また、図12において、565は遮蔽膜であり、その上には図示されていない酸化物567を介して画素電極62が設けられている。このとき、遮蔽膜565、酸化物567及び画素電極62で保持容量64a~64cが形成される。本実施例の構造とすることで、コンタクト部に形成される段差(層間絶縁膜564の膜厚分)を埋め込むことが可能となり、段差に起因する液晶分子の配向不良を防止することができる。

【0134】このように、本実施例では、TFTと画素電極とのコンタクト部に柱状スペーサを形成した例を示したが、柱状のスペーサ568は、遮蔽膜やソース配線上など画像表示領域として用いない領域に形成すれば特に限定されない。本実施例においては、1mm²あたり約100個の割合で規則正しく画素部に配置した。本実施例の柱状スペーサの断面におけるSEM観察写真図が、図17(A)である。また、外観を示すSEM観察写真図が、図17(A)である。図2(A)には配置された模式図を示し、図2(B)および図2(C)には、図1(A)に相当する倍率の異なるSEM観察写真を示し

た。 【0 1 3 5】 この柱状スペーサの形状は、テーパー部がほとんどなく、頭頂部に平坦な面を有し、高さH=4 μ m、幅L 1=6 μ m、曲率半径は 1 μ m以下であった。また、柱状スペーサの側面中央における接平面と基板面との角度 α は、8 5° \sim 9 5° となっており、ほぼ垂直であった。このような形状とすることで、光漏れを低減することができる。

【0136】そして、画素部と、駆動回路が形成されたアクティブマトリクス基板と対向基板とを、公知のセル組み工程によってシール材579を介して貼りあわせる。本実施例では、フィラー580を含むシール材を用いて基板間隔を一定に保った。また、本実施例では弾力性に富んだ樹脂材料でなる柱状スペーサ568を用いているため、貼り合わせ工程でかかる圧力を吸収(緩和)することができる。また、本実施例のスペーサは素子に対する接触面積がビーズ状スペーサのそれより大きいため、特定部分に過剰な圧力がかかるようなことがない。

【0137】その後、両基板の間に液晶578を注入し、封止剤(図示せず)によって完全に封止する。液晶には公知の液晶材料を用いれば良い。このようにして図8(B)に示すアクティブマトリクス型液晶表示装置が完成する。

【0139】なお、本実施例の工程順序は適宜変更しても構わない。どのような順序としても、最終的に形成されるTFTの構造が図8(B)のような構造であればアクティブマトリクス基板の基本的な機能は変化せず、本発明の効果を損なうものではない。

【0140】駆動回路のpチャネル型TFT701には、チャネル形成領域601、ソース領域602、ドレイン領域603がそれぞれp型不純物領域(a)で形成される。但し、実際にはソース領域またはドレイン領域の一部に $1\times10^{20}\sim1\times10^{21}$ atoms/cm³の濃度でリンを含む領域が存在する。また、その領域には図7

(B) の工程でゲッタリングされた触媒元素が 5×10 40 18 atoms/cm³以上(代表的には $1 \times 10^{19} \sim 5 \times 10^{20}$ a toms/cm³) 濃度で存在する。

【0141】また、n チャネル型TFT702には、チャネル形成領域604、ソース領域605、ドレイン領域606、そしてチャネル形成領域の片側(ドレイン領域側)に、ゲート絶縁膜を介してゲート配線と重なったLDD領域(本明細書中ではこのような領域をLov領域という。なお、0 ないは 0 では 0 でが形成される。この時、0 では 0 では

50

【0142】また、nチャネル型TFT703には、チャネル形成領域608、ソース領域609、ドレイン領域610、そしてチャネル形成領域の両側にLDD領域611、612が形成された。なお、この構造ではLDD領域611、612の一部がゲート配線と重なるように配置されたために、ゲート絶縁膜を介してゲート配線と重なったLDD領域(Lov領域)とゲート絶縁膜を介してゲート配線と重ならないLDD領域(本明細書中ではこのような領域をLoff領域という。なお、offはoffsetの意味で付した。)が形成されている。

【0144】また、画素TFT704には、チャネル形成領域613、614、ソース領域615、ドレイン領域616、Loff領域617~620、Loff領域618、619に接したn型不純物領域(a)621が形成される。この時、ソース領域615、ドレイン領域616はそれぞれn型不純物領域(a)で形成され、Loff領域617~620はn型不純物領域(c)で形成される。

【0145】本実施例によれば、画素部および駆動回路が求める性能に応じて回路または素子を形成するTFTの構造を最適化し、半導体装置の動作性能および信頼性を向上させることができる。具体的には、nチャネル型TFTは回路仕様に応じてLDD領域の配置を異ならせ、Lov領域またはLoff領域を使い分けることによって、同一基板上に高速動作またはホットキャリア対策を重視したTFT構造と低オフ電流動作を重視したTFT構造とを実現しうる。

【0146】例えば、アクティブマトリクス型液晶表示装置の場合、nチャネル型TFT702は高速動作を重視するシフトレジスタ回路、信号分割回路、レベルシフタ回路、バッファ回路などの駆動回路に適している。即ち、チャネル形成領域の片側(ドレイン領域側)のみにLov領域を配置することで、できるだけ抵抗成分を低減させつつホットキャリア注入による劣化に強い動作を達成しうる。これは上記回路の場合、ソース領域とドレイン領域の機能が変わらず、キャリア(電子)の移動する方向が一定だからである。但し、必要に応じてチャネル形成領域の両側にLov領域を配置することもできる。

【0147】また、nチャネル型TFT703はホット キャリア対策と低オフ電流動作の双方を重視するサンプ 50

リング回路(サンプル及びホールド回路)に適している。即ち、Lov領域を配置することでホットキャリア対策とし、さらにLoff領域を配置することで低オフ電流動作を達成しうる。また、サンプリング回路はソース領域とドレイン領域の機能が反転してキャリアの移動方向が180°変わるため、ゲート配線を中心に線対称となるような構造としなければならない。なお、場合によってはLov領域のみとすることもありうる。

【0148】また、nチャネル型TFT704は低オフ電流動作を重視した画素部、サンプリング回路(サンプルホールド回路)に適している。即ち、オフ電流値を増加させる要因となりうるLov領域を配置せず、Loff領域のみを配置することで低オフ電流動作を達成しうる。また、駆動回路のLDD領域よりも低い濃度のLDD領域をLoff領域として用いることで、多少オン電流値が低下するが徹底的にオフ電流値を低減することができる。さらに、n型不純物領域(a)621はオフ電流値を低減する上で非常に有効である。

【0149】また、n チャネル型T F T 7 0 2 σ Lov領域 6 0 7 σ 長さ(幅)は 0 . 1 \sim 3 . 0 μ m、代表的には 0 . 2 \sim 1 . 5 μ m とすれば良い。また、n チャネル型T F T 7 0 3 σ Lov領域 6 1 1 a、6 1 2 a σ 長さ(幅)は 0 . 1 \sim 3 . 0 μ m、代表的には 0 . 2 \sim 1 . 5 μ m、Loff領域 6 1 1 b、6 1 2 b σ 長さ(幅)は 1 . 0 \sim 3 . 5 μ m、代表的には 1 . 5 \sim 2 . 0 μ m とすれば良い。また、画素 T F T 7 0 4 に設けられる Loff領域 6 1 7 \sim 6 2 0 σ 長さ(幅)は 0 . 5 \sim 3 . 5 μ m、代表的には 2 . 0 \sim 2 . 5 μ m とすれば良い。

【0150】また、上記アクティブマトリクス型液晶表示装置の構成を、図10の斜視図を用いて説明する。アクティブマトリクス基板(第1の基板)は、ガラス基板801上に形成された、画素部802と、ゲート側駆動回路803と、ソース側駆動回路804で構成される。画素部の画素TFT805(図8(B)の画素TFT704に相当する)はnチャネル型TFTであり、画素電極806及び保持容量807(図8(A)の保持容量572に相当する)に接続される。

【0151】また、周辺に設けられる駆動回路はCMOS回路を基本として構成されている。ゲート側駆動回路803と、ソース側駆動回路804はそれぞれゲート配線808とソース配線809で画素部802に接続されている。また、FPC810が接続された外部入出力端子811には駆動回路まで信号を伝達するための入出力配線(接続配線)812、813が設けられている。また、814は対向基板(第2の基板)である。

【0152】なお、本明細書中では図10に示した半導体装置をアクティブマトリクス型液晶表示装置と呼んでいるが、図10に示すようにFPCまで取り付けられた液晶パネルのことを一般的には液晶モジュールという。 従って、本実施例でいうアクティブマトリクス型液晶表 示装置を液晶モジュールと呼んでも差し支えない。

【0153】また、上記液晶表示装置の回路構成の一例 を図11に示す。本実施例の液晶表示装置は、ソース側 駆動回路901、ゲート側駆動回路(A)907、ゲー ト側駆動回路(B)911、プリチャージ回路912、 画素部906を有している。なお、本明細書中におい て、駆動回路とはソース側駆動回路およびゲート側駆動 回路を含めた総称である。

25

【0154】ソース側駆動回路901は、シフトレジス タ回路902、レベルシフタ回路903、バッファ回路 904、サンプリング回路905を備えている。また、 ゲート側駆動回路(A)907は、シフトレジスタ回路 908、レベルシフタ回路909、バッファ回路910 を備えている。ゲート側駆動回路(B) 9 1 1 も同様な 構成である。

【0155】ここでシフトレジスタ回路902、908 は駆動電圧が5~16V(代表的には10V)であり、 回路を形成するCMOS回路に使われるnチャネル型T FTは図8(B)の702で示される構造が適してい

【0156】また、レベルシフタ回路903、909、 バッファ回路904、910は、駆動電圧は14~16 Vと高くなるが、シフトレジスタ回路と同様に、図8 (B) のnチャネル型TFT702を含むCMOS回路 が適している。なお、ゲート配線をダブルゲート構造、 トリプルゲート構造といったマルチゲート構造とするこ とは、各回路の信頼性を向上させる上で有効である。

【0157】また、サンプリング回路905は駆動電圧 が14~16 Vであるが、ソース領域とドレイン領域が 反転する上、オフ電流値を低減する必要があるので、図 8 (B) の n チャネル型 T F T 7 0 3 を含む C M O S 回 路が適している。なお、図8(B)ではnチャネル型T F T しか図示されていないが、実際にサンプリング回路 を形成する時はnチャネル型TFTとpチャネル型TF Tとを組み合わせて形成することになる。

【0158】また、画素部906は駆動電圧が14~1 6 V であり、サンプリング回路905よりもさらにオフ 電流値が低いことを要求するので、オフ電流の増加を招 くLov領域を配置しない構造とすることが望ましく、図 8 (B) のnチャネル型TFT704を画素TFTとし て用いることが望ましい。

【0159】 [実施例2] 本実施例では、柱状スペーサ をシール領域以外の箇所に設け、機械的強度を補強する 例を図13(a)および図13(b)に示す。本実施例 は、図8(B)に示されていなかった領域(外部端子接 続部)を示している。従って、実施例1の図8 (B) に 対応しており、同じ符号を一部用いている。なお、シー ル材1000にフィラーを示していない点だけが実施例 1と異なっている。

示し、図13 (b) に外部端子接続部の断面構造図を示 す。また、上面図におけるd-d'断面での断面構造も 示している。

【0161】図13 (a) および図13 (b) 中におい て、1001は柱状スペーサ、1002は外部端子接続 部、1003はITO膜、1004は導電性スペーサ、 1005は接着剤、1006はFPCである。

【0162】FPC1006と接続する外部端子接続部 1002は、pチャネル型TFT701のソース電極 (配線) から延在している。

【0163】本実施例では、シール材1000が存在す るシール領域と対向基板574の端部の間に柱状スペー サ1001を形成する。この柱状スペーサ1001は、 引き出し配線間に設けられ、機械的強度を補強してい る。また、この柱状スペーサ1001は、対向基板の分 断工程においても分断不良を防止する効果を有してい **る。なお、ここでは p チャネル型TFT701のソース** 電極と外部端子接続部との間の配線を引き出し配線と呼 んでいる。

【0164】また、この柱状スペーサは実施例1中のコ 20 ンタクト部に形成されるものと同一工程によって形成す ることができる。

【0165】また、外部端子接続部1002上には、画 素電極と同一工程によりITO膜1003を形成し、F PCと良好なコンタクトを形成する。なお、接着剤 10 0 5中には金ペースト等の導電性スペーサが混入してお り、圧着することによってFPC1006とITO膜1 003とを接続している。

【0166】 [実施例3] 本実施例では、実施例1とは 異なる以下のような方法(図14に簡略化した工程図を 示し、図15にそのフローチャート図を示した)によ り、柱状スペーサを形成する例に示す。また、本実施例 **では、実施例 1 とは工程順序が異なっており、配向膜の** 形成前に柱状スペーサを形成する。

【0167】図14を用いて手順を簡単に説明する。ま ず、第1の基板1100上にスペーサ材料層1101を 形成する。(図14(a))次いで、実施例1と同様に して露光および現像を行って、柱状スペーサ1102を 形成する。(図14(b))次いで、柱状スペーサ11 02を覆う配向膜1103を形成し、ラビング処理を行 う。(図14(c))次いで、配向膜1105とシール 1106とが設けられた第2の基板1104を第1の基 板1100と貼り合わせる。(図14(d))次いで、 第1の基板および第2の基板を適当な形状に分断し、液 晶材料1107を注入、封止して液晶パネルが完成す る。 (図14 (e))

【0168】以下に詳細を示す。

【0169】まず、実施例1と同様にしてアクティブマ トリクス基板(第1の基板)を形成する。画素電極56 【0.160】図1.3(a)に外部端子接続部の上面図を 50 9、570を形成する工程までは全く同一の工程を用い

40

た。次いで、第1の基板上に実施例1と同じスペーサ材料を用い、同じ条件(成膜条件、露光条件、現像条件、ベーク条件等)で柱状スペーサ1201を形成した。

【0170】次いで、柱状スペーサを覆って配向膜1202を形成した。(図16(A))その後、ラビング処理を行った。以後、これらの工程以外は実施例1と全く同様にして図16(B)に示す液晶表示装置を作製した

【0171】本実施例の柱状スペーサの断面におけるS EM観察写真図が、図17(B)である。

【0172】この柱状スペーサの形状は、テーパー部が存在しているものの、頭頂部に平坦な面を有し、幅L1=7~8 μ m、曲率半径は2 μ mであった。また、柱状スペーサの側面中央における接平面と基板面との角度 α は、68°であった。本実施例において、幅L1は配向膜の厚さを含めた値としている。なお、本実施例においては、1 \leq L2/L1 \leq 2.5 とするとテーパー部による光漏れを低減できるため望ましい。

【0173】また、実施例1では、現像液の影響により最終的なプレチルト角が $4^\circ \sim 5^\circ$ 程度となっていたが、本実施例では、柱状スペーサを形成した後に配向膜を形成してラビング処理を行うため、プレチルト角を $6^\circ \sim 10^\circ$ 、好ましくは $7^\circ \sim 8^\circ$ とすることができ、液晶の配向を良好なものとすることができた。

【0174】図27にプレチルト角のラビングロール押し込み量依存性を示した。ラビングロール押し込み量とは、配向膜に施すラビング処理の際、ロールを押し込む量のことを指している。

【0175】本実施例では、ラビングロール押し込み量を0.3 mm、0.4 mm、0.5 mmと条件をふってラビング処理を行い、それぞれのプレチルト角を測定する実験を行った。実験結果は、0.3 mmとした場合、平均のプレチルト角は、8.23°となり、0.4 mmとした場合、平均のプレチルト角は、7.42°となり、0.5 mmとした場合、平均のプレチルト角は、6.95°となった。ラビングロール押し込み量を調節することによって、プレチルト角を6°~10°、好ましくは7°~8°とすることができる。このように、本実施例は、配向膜上に球状スペーサを散布した従来例と比較しても、大差なく良好な値を示している。

【0176】なお、本実施例を実施例2と組み合わせることは可能である。

【0177】 [実施例4] 本実施例では、図18(A) に示すように第1の基板全面に柱状スペーサを一定の間隔で設けた例を示す。

【0178】図18(A)において、1300は封止 材、1301は第1の基板、1302は画素部、130 3はゲート側駆動回路、1304はソース側駆動回路、 1305は信号分割回路、1306は外部接続端子部、 1308はシール領域、1321は第2の基板である。 【0179】本実施例においては、画素部とソース側駆動回路との間に柱状スペーサ1307、外部接続端子部に柱状スペーサ1309、画素部に柱状スペーサ1310、ゲート側駆動回路に柱状スペーサ1311、シール領域に柱状スペーサ1312がそれぞれ一定の間隔でフォトリソグラフィ法により設けた。このように一定の間隔で柱状スペーサを設けることにより均一な基板間隔を維持することができる。また、シール領域に柱状スペーサ1312を設けることによりフィラーを用いなくともよい。また、外部接続端子部に柱状スペーサ1309を設けることにより接続部における機械強度を補強することができる。なお、上記各柱状スペーサは実施例1または実施例3に示した作製方法を用いればよい。

【0180】また、図18(B)は、図18(A)中の点線1322で囲んだ領域の断面構造を簡略に示した。図18(A)と同じ符号を用いた。図18(A)において、1314はCMOS回路、1315はnチャネル型TFT、1316は画素TFT、1317は層間絶縁膜、1318aは画素電極、1318bはITO膜である。このITO膜1318bは、FPC等の外部端子と接続するために設ける。また、1319は液晶材料、1320は対向電極である。

【0181】また、図19に他のスペーサ配置の形態を示した。図19(A)は、シール領域1408内に均一に柱状スペーサ1407を形成した例である。また、図19(B)は、画素部には柱状スペーサを設けず、シール領域に柱状スペーサ1410と、外部接続端子部に1409とを形成した例である。また、図19(C)は、シール領域以外の領域に柱状スペーサ1411、1412を形成した例である。なお、同様に上記各柱状スペーサは実施例1または実施例3に示した作製方法を用いればよい。

【0182】なお、本実施例は実施例 $1\sim3$ と自由に組み合わせることが可能である。

【0183】 [実施例5] 本実施例においては実施例1 とは異なるアクティブマトリクス基板(第1の基板)を 作製する。なお、本実施例のTFT作製工程の詳細は、 特願平11-104646号に記載の工程を用いる。

【0184】まず、基板1501には低アルカリガラス 基板や石英基板を用いることができる。本実施例では低 アルカリガラス基板を用いた。この基板1501のTF Tを形成する表面には、基板1501からの不純物拡散 を防ぐために、酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜などの下地膜1502を形成する。【0185】次に、20~150nm(好ましくは30~80nm)の厚さで非晶質構造を有する半導体膜を、プラズマCVD法やスパッタ法などの公知の方法で形成

プラズマCVD法やスパッタ法などの公知の方法で形成する。本実施例では、プラズマCVD法で非晶質シリコン膜を55nmの厚さに形成した。そして、公知の結晶

50 化技術を使用して非晶質シリコン膜から結晶質シリコン

膜を形成する。例えば、レーザー結晶化法や熱結晶化法 (固相成長法)を適用すれば良いが、ここでは、特開平 7-130652号公報で開示された技術に従って、触 媒元素を用いる結晶化法で結晶質シリコン膜を形成し た。

29

【0186】そして、結晶質シリコン膜を島状に分割し て、島状半導体層を形成する。その後、プラズマCVD 法またはスパッタ法により50~100nmの厚さの酸 化シリコン膜によるマスク層を形成する。そしてレジス トマスクを設け、nチャネル型TFTを形成する島状半 導体層の全面にしきい値電圧を制御する目的で1×10 $^{16}\sim5 imes1~0^{17}$ atoms/cm 3 程度の濃度で $^$ 不純物元素としてボロン (B) を添加した。次いで、駆 動回路のnチャネル型TFTのLDD領域を形成するた めに、n型を付与する不純物元素を島状半導体層に選択 的に添加する。そのため、あらかじめレジストマスクを 形成した。次に、マスク層をフッ酸などにより除去し て、添加した不純物元素を活性化させる工程を行う。活 性化は、窒素雰囲気中で500~600℃で1~4時間 の熱処理や、レーザー活性化の方法により行うことがで きる。また、両者を併用して行っても良い。本実施例で は、レーザー活性化の方法を用いた。

【0187】そして、ゲート絶縁膜1520をプラズマCVD法またはスパッタ法を用いて10~150nmの厚さでシリコンを含む絶縁膜で形成する。次に、本実施例では、導電性の窒化物金属膜から成る導電層(A)と金属膜から成る導電層(B)とを積層させた。導電層(B)はタンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(W)から選ばれた元素、または前記元素を主成分とする合金か、前記元素を組み合わせた合金膜(代表的にはMo-W合金膜、Mo-Ta合金膜)で形成すれば良く、導電層(A)は窒化タンタル(TaN)、窒化タングステン(WN)、窒化チタン(TiN)膜、窒化モリブデン(MoN)で形成する。本実施例では、導電層(A)に30nmの厚さの窒化タンタル膜を、導電層(B)には350nmのTa膜を用い、いずれもスパッタ法で形成した。

【0188】次に、レジストマスクを形成し、導電層 (A) と導電層 (B) とを一括でエッチングしてゲート 電極1528~1531と容量配線132を形成する。 【0189】次いで、駆動回路のpチャネル型TFTのソース領域およびドレイン領域を形成するために、p型を付与する不純物元素を添加する工程を行う。ここでは、ゲート電極1528をマスクとして、自己整合的に不純物領域を形成する。このとき、nチャネル型TFT が形成される領域はレジストマスクで被覆しておく。 【0190】次に、nチャネル型TFTにおいて、ソー

【0190】次に、nチャネル型TFTにおいて、ソース領域またはドレイン領域として機能する不純物領域の形成を行った。

【0191】そして、画素マトリクス回路のnチャネル 50

型TFTのLDD領域を形成するためのn型を付与する不純物添加の工程を行った。その後、それぞれの濃度で添加されたn型またはp型を付与する不純物元素を活性化するために窒素雰囲気中でファーネスアニール法で活性化工程を行った。ここで実施される活性化工程の熱処理により、nチャネル型TFTおよびpチャネル型TFTのチャネル形成領域から触媒元素をゲッタリングをすることができた。この熱処理において、ゲート電極1528~1531と容量配線1532の表面には窒化金属層が形成される。さらに、島状半導体層を水素化する工程を行った。

【0192】活性化および水素化の工程が終了したら、 ゲート配線1547、1548と容量配線1549を形成した。

【0193】第1の層間絶縁膜1550は500~1500nmの厚さで酸化シリコン膜または酸化窒化シリコン膜で形成され、その後、それぞれの島状半導体層に形成されたソース領域またはドレイン領域に達するコンタクトホールを形成し、ソース配線1551~1554と、ドレイン配線1555~1558を形成する。次に、パッシベーション膜1559として、窒化シリコン膜、酸化シリコン膜、または窒化酸化シリコン膜を50~500nm(代表的には100~300nm)の厚さで形成する。

【0194】その後、有機樹脂からなる第2の層間絶縁 膜1560を $1.0\sim$ 1.5 μ mの厚さに形成する。そ して、第2の層間絶縁膜1560にドレイン配線155 8に達するコンタクトホールを形成し、画素電極156 1、1562を形成する。画素電極は、透過型液晶表示 装置とする場合には透明導電膜を用いれば良く、反射型 の液晶表示装置とする場合には金属膜を用いれば良い。 【0195】次いで、柱状スペーサ1607を形成す る。この柱状スペーサ1607は実施例3でのスペーサ 作製工程と同一であるので省略する。次いで、実施例3 と同様に柱状スペーサ1607を覆う配向膜1601を 形成する。配向膜を形成した後、ラビング処理を施して 液晶分子がある一定のプレチルト角(6°~10°、好 ましくは7°~8°)を持って配向するようにした。対 向側の対向基板1602には、遮光膜1603、透明導 電膜1604および配向膜1605を形成した。そし て、画素マトリクス回路と、СМОS回路が形成された アクティブマトリクス基板と対向基板とを、公知のセル 組み工程によって貼りあわせる。その後、両基板の間に 液晶材料1606を注入し、封止剤(図示せず)によっ て完全に封止した。液晶材料には公知の液晶材料を用い れば良い。このようにして図20に示すアクティブマト リクス型液晶表示装置が完成した。

【0196】図20において、駆動回路にはpチャネル型TFT1701、第1のnチャネル型TFT170 2、第2のnチャネル型TFT1703、表示領域には 画素 T F T 1 7 0 4、保持容量 1 7 0 5 が形成されている。

【0197】なお、本実施例は実施例1~4と自由に組み合わせることが可能である。

【0198】 [実施例6] 本実施例においては、上記実施例とは異なるTFTを用いて表示装置を作製した例を示す。

【0199】上記実施例においてはトップゲート型TFTを用いたが、本実施例ではボトムゲート型TFTを用いて第1の基板を作製する。

【0200】図21中において1814はCMOS回路、1815はnチャネル型TFT、1816は画素TFT、1817は層間絶縁膜、1818aは画素電極、1818bはITO膜である。このITO膜1818bは、FPC等の外部端子と接続するために設ける。また、1819は液晶材料、1820は対向電極である。また、1801は第1の基板、1808はシール領域、1821は第2の基板である。

【0201】また、本実施例においては画素部とソース側駆動回路との間に柱状スペーサ1807、外部接続端子部に柱状スペーサ1809、画素部に柱状スペーサ1810、ゲート側駆動回路に柱状スペーサ1811、シール領域に柱状スペーサ1812がそれぞれ一定の間隔でフォトリソグラフィ法により設けた。このように一定の間隔で柱状スペーサを設けることにより均一な基板間隔を維持することができる。また、シール領域に柱状スペーサ1812を設けることによりフィラーを用いなくともよい。また、外部接続端子部に柱状スペーサ1809を設けることにより接続部における機械強度を補強することができる。なお、上記各柱状スペーサは実施例1または実施例3に示した作製方法を用いればよい。

【0202】なお、上記TFT構造を得るための作製工程は公知の技術を用いればよく、特に限定されない。

【0203】なお、本実施例は実施例 $1\sim4$ と自由に組み合わせることが可能である。

【0204】 [実施例7] 本実施例では、タッチパネルを備えた液晶表示装置に本発明の柱状スペーサを適用した場合について図22(a) および図22(b) を用い説明する。

【0205】図22(a)は、光学式タッチパネル3002を備えた携帯情報端末機器の外観図および断面図である。

【0206】図22(a)において、3001はデジタルカメラ、3002はタッチパネル、3003は液晶パネル、3004はLEDバックライト、3100は発光素子、3200は受光素子である。

【0207】このタッチパネルを備えた表示装置においては、タッチパネル3002の表面に指先やペン先が触ると、パネルの端部に設けられた発光素子3100からの光路aの一部が遮断され光の一部が光路bに進んでし

まう。そして、その光路 a の一部が遮断された発光素子に対応する受光素子3200は光を受光しないから、触った箇所の時間的な位置変化を検出することができる。 【0208】本実施例において、本発明の柱状スペーサ3005を液晶パネル3003に用いた。この柱状スペーサは、実施例1または実施例3に記載した作製方法に

32

より形成する。こうすることにより、機械的強度が補強 され、頑丈なパネルとすることができた。また、本発明 の柱状スペーサによって、外部からの圧力(指先やペン 先からの)により基板間隔がほとんど変化しないので表 示画像が乱れにくい。

【0209】なお、本実施例ではLEDバックライトを用いた透過型のLCDパネルを用いたが、バックライトを用いない反射型LCDパネルを用いてもよい。また、外光の光量に応じて自由に、反射型や透過型に切り替え可能なLCDパネルを用いてもよい。

【0210】図22(b)は、ペン入力式タッチパネル3102を備えた携帯情報端末機器の外観図および断面図である。

(0211) 図22(b)において、3102はタッチパネル、3103は液晶パネル、3104はバックライト、3105は入力ペンである。

【0212】このタッチパネルを備えた表示装置においては、タッチパネル3102の表面に感圧式や静電容量式の検出素子が設けられている。入力ペン3105で触ると、検出素子により時間的な位置変化を検出することができる。

【0213】本実施例において、本発明の柱状スペーサ3106を液晶パネル3103に用いた。この柱状スペーサは、実施例1または実施例3に記載した作製方法により形成する。こうすることにより、機械的強度が補強され、頑丈なパネルとすることができた。また、本発明の柱状スペーサによって、外部からの圧力(指先やペン先からの)により基板間隔がほとんど変化しないので表示画像が乱れにくい。なお、このような感圧式や静電容量式の検出素子が設けられたタッチパネル3102はLCDパネル3103が外部からの圧力を受けやすく効果的である。

0 【0214】なお、本実施例の構成は、実施例1~6のいずれの構成とも自由に組み合わせることが可能である。

【0215】 [実施例8] 本実施例では、本発明をシリコン基板上に作製した反射型液晶表示装置に適用した場合について説明する。本実施例は、実施例1において、結晶質シリコン膜でなる活性層の代わりに、シリコン基板(シリコンウェハ)に直接的にn型またはp型を付与する不純物元素を添加し、TFT構造を実現すれば良い。また、反射型であるので、画素電極として反射率の高い金属膜(例えばアルミニウム、銀、またはこれらの

合金(Al-Ag合金)等を用いれば良い。

【0216】なお、本実施例の構成は、実施例1~7のいずれの構成とも自由に組み合わせることが可能である。

33

【0217】 [実施例9] 本発明は従来のMOSFET上に層間絶縁膜を形成し、その上にTFTを形成する際に用いることも可能である。即ち、三次元構造の半導体装置を実現することも可能である。また、基板としてSIMOX、Smart-Cut (SOITEC社の登録商標)、ELTRAN (キャノン株式会社の登録商標)などのSOI基板を用いることも可能である。

【0218】なお、本実施例の構成は、実施例 $1\sim8$ のいずれの構成とも自由に組み合わせることが可能である。

【0219】 [実施例10] 本発明はアクティブマトリクス型EL (エレクトロルミネッセンス) ディスプレイに適用することも可能である。その例を図23に示す。 【0220】図23はアクティブマトリクス型ELディスプレイの回路図である。11は画素部を表しており、その周辺にはX方向駆動回路12、Y方向駆動回路13が設けられている。また、表示領域11の各画素は、スイッチ用TFT14、保持容量15、電流制御用TFT16、有機EL素子17を有し、スイッチ用TFT14にX方向信号線18a(または18b)、Y方向信号線19a(または19b、19c)が接続される。また、電流制御用TFT16には、電源線20a、20bが接続される

【0221】本実施例のアクティブマトリクス型ELディスプレイでは、X方向駆動回路12、Y方向駆動回路13に用いられるTFTを図8(B)のpチャネル型TFT701、nチャネル型TFT702または703を組み合わせて形成する。また、スイッチ用TFT14や電流制御用TFT16のTFTを図8(B)のnチャネル型TFT704で形成する。

【0222】 [実施例11] 本発明によって作製された液晶表示装置は様々な液晶材料を用いることが可能である。そのような材料として、TN液晶、PDLC(ポリマー分散型液晶)、FLC(強誘電性液晶)、AFLC(反強誘性電液晶)、またはFLCとAFLCの混合物が挙げられる。

【0223】例えば、「H. Furue et al.: Charakteristics and Drivng Scheme of Polymer-Stabilized Monostable FLCD Exhibiting Fast Response Time and High Contrast Ratio with Gray-Scale Capability, SID, 199 8」、「T. Yoshida et al.: A Full-Color Thresholdless Antiferroelectric LCD Exhibiting Wide Viewing Angle with Fast Response Time, 841, SID97DIGEST, 199 7」、または米国特許第5, 594, 569号に開示された材料を用いることができる。

【0224】特に、しきい値なし(無しきい値)の反強 50

誘電性液晶(Thresholdless Antiferroelectric LCD: TL-AFLCと略記する)を使うと、液晶の動作電圧を±2.5V程度に低減しうるため電源電圧として5~8V程度で済む場合がある。即ち、ドライバー回路と画素マトリクス回路を同じ電源電圧で動作させることが可能となり、液晶表示装置全体の低消費電力化を図ること

34

【0225】また、無しきい値反強誘電性液晶は、V字型の電気光学応答特性を示すものがあり、その駆動電圧が約 ±2.5 V程度(セル厚約 $1~\mu$ m $\sim2~\mu$ m)のものも見出されている。

【0226】ここで、V字型の電気光学応答を示す無しきい値反強誘電性混合液晶の印加電圧に対する光透過率の特性を図24に示す。図24に示すグラフの縦軸は透過率(任意単位)、横軸は印加電圧である。なお、液晶パネルにおける入射側の偏光板の透過軸は、液晶パネルのラビング方向にほぼ一致する無しきい値反強誘電性混合液晶のスメクティック層の法線方向とほぼ平行に設定されている。また、出射側の偏光板の透過軸は、入射側の偏光板の透過軸に対してほぼ直角(クロスニコル)に設定されている。

【0227】また、強誘電性液晶や反強誘電性液晶はTN液晶に比べて応答速度が速いという利点をもつ。上記実施例で用いるような結晶質TFTは非常に動作速度の速いTFTを実現しうるため、強誘電性液晶や反強誘電性液晶の応答速度の速さを十分に生かした画像応答速度の速い液晶表示装置を実現することが可能である。

【0228】なお、本実施例の液晶表示装置をパーソナルコンピュータ等の電子機器の表示ディスプレイとして用いることが有効であることは言うまでもない。

【0229】また、本実施例の構成は、実施例 $1\sim10$ のいずれの構成とも自由に組み合わせることが可能である。

【0230】[実施例12] 本発明を実施して形成されたTFTは様々な電気光学装置に用いることができる。即ち、それら電気光学装置を表示部として組み込んだ電子機器全てに本発明を実施できる。

【0231】その様な電子機器としては、ビデオカメラ、デジタルカメラ、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、ウエアラブルディスプレイ、カーナビゲーション、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの一例を図25に示す。

【0232】図25(A)はパーソナルコンピュータであり、本体2001、画像入力部2002、表示部2003、キーボード2004で構成される。本願発明を画像入力部2002、表示部2003やその他の駆動回路に適用することができる。

【0233】図25(B)はビデオカメラであり、本体

2101、表示部2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106で構成される。本願発明を表示部2102、音声入力部2103やその他の駆動回路に適用することができる。

【0234】図25 (C) はモバイルコンピュータ(モービルコンピュータ)であり、本体2201、カメラ部2202、受像部2203、操作スイッチ2204、表示部2205で構成される。本願発明は表示部2205やその他の駆動回路に適用できる。

【0235】図25 (D) はゴーグル型ディスプレイであり、本体2301、表示部2302、アーム部2303で構成される。本発明は表示部2302やその他の駆動回路に適用することができる。

【0236】図25(E)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体2401、表示部2402、スピーカ部2403、記録媒体2404、操作スイッチ2405で構成される。なお、この装置は記録媒体としてDVD(Digtial Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを行うことができる。本発明は表示部2402やその他の駆動回路に適用することができる。

【0237】図25 (F) はデジタルカメラであり、本体2501、表示部2502、接眼部2503、操作スイッチ2504、受像部(図示しない)で構成される。本願発明を表示部2502やその他の駆動回路に適用することができる。

【0238】以上の様に、本願発明の適用範囲は極めて広く、あらゆる分野の電子機器に適用することが可能である。また、本実施例の電子機器は実施例1~9および実施例11のどのような組み合わせからなる構成を用いても実現することができる。

【0239】 [実施例13] 本発明を実施して形成されたTFTは様々な電気光学装置に用いることができる。即ち、それら電気光学装置を表示部として組み込んだ電子機器全てに本発明を実施できる。

【0240】その様な電子機器としては、プロジェクター(リア型またはフロント型)などが挙げられる。それらの一例を図26に示す。

【0241】図26(A)はフロント型プロジェクターであり、投射装置2601、スクリーン2602等を含む。本発明は投射装置2601の一部を構成する液晶表示装置2808やその他の駆動回路に適用することができる。

【0242】図26(B)はリア型プロジェクターであり、本体2701、投射装置2702、ミラー2703、スクリーン2704等を含む。本発明は投射装置2702の一部を構成する液晶表示装置2808やその他の駆動回路に適用することができる。

36

【0243】なお、図26(C)は、図26(A)及び図26(B)中における投射装置2601、2702の構造の一例を示した図である。投射装置2601、2702は、光源光学系2801、ミラー2802、2804~2806、ダイクロイックミラー2803、プリズム2807、液晶表示装置2808、位相差板2809、投射光学系2810で構成される。投射光学系2810は、投射レンズを含む光学系で構成される。本実施例は三板式の例を示したが、特に限定されず、例えば単板式であってもよい。また、図26(C)中において矢印で示した光路に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するためのフィルム、IRフィルム等の光学系を設けてもよい。

【0244】また、図26(D)は、図26(C)中における光源光学系2801の構造の一例を示した図である。本実施例では、光源光学系2801は、リフレクター2811、光源2812、レンズアレイ2813、2814、偏光変換素子2815、集光レンズ2816で構成される。なお、図26(D)に示した光源光学系は一例であって特に限定されない。例えば、光源光学系に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するフィルム、IRフィルム等の光学系を設けてもよい。

【0245】ただし、図26に示したプロジェクターにおいては、透過型の電気光学装置を用いた場合を示しており、反射型の電気光学装置及びEL表示装置での適用例は図示していない。

【0246】以上の様に、本願発明の適用範囲は極めて広く、あらゆる分野の電子機器に適用することが可能である。また、本実施例の電子機器は実施例 $1\sim9$ および実施例11のどのような組み合わせからなる構成を用いても実現することができる。

[0247]

【発明の効果】本願発明の柱状スペーサを用いることで、粒子状スペーサを用いず、使用する液晶の特性や駆動方法に応じて自由な範囲で設計された厚みを精度よく有する、高品質な液晶パネルを提供することができる。

【0248】また、本願発明の柱状スペーサの形状とすることで、液晶の配向不良を防ぐことができる。

【0249】また、本願発明の柱状スペーサを用いることで、素子にかかる負荷を低減し、素子破壊等による歩留まりの低下、信頼性の低下を防ぐことが可能となる。このように液晶表示装置に代表される電気光学装置の動作性能の向上と信頼性の向上とを達成することができる。

[0250]

【図面の簡単な説明】

【図1】 本願発明の柱状スペーサのSEM観察写真および模式図である。

50 【図2】 柱状スペーサの配置の一例を示した図およ

びSEM観察写真である。

- 【図3】 本願発明の作製工程図である。
- 【図4】 本願発明の作製工程のフローチャートを示す図である。
- 【図5】 AM-LCDの作製工程を示す図である。
- 【図6】 AM-LCDの作製工程を示す図である。
- 【図7】 AM-LCDの作製工程を示す図である。
- 【図8】 AM-LCDの作製工程を示す図である。
- 【図9】 TFTの断面構造図である。
- 【図10】 AM-LCDの外観を示す図である。
- 【図11】 画素部と駆動回路の構成を示す図である。
- 【図12】 画素構造を示す上面図である。
- 【図13】 外部端子との接続部の一例を示す図である。
- 【図14】 本願発明の作製工程図である。
- 【図15】 本願発明の作製工程のフローチャートを示す図である。
- 【図16】 AM-LCDの作製工程を示す図である。
- 【図17】 本願発明の柱状スペーサのSEM観察写真

[図3]

(a) 配向膜の形成工程およびラビング工程

(e)分断工程および被晶注入工程

である。

【図18】 柱状スペーサの配置の一例を示した図である。

【図19】 柱状スペーサの配置の一例を示した図である。

【図20】 アクティブマトリクス型液晶表示装置の断 面構造図である。

【図21】 アクティブマトリクス型液晶表示装置の断面構造図である。

10 【図22】 タッチパネルを備えた表示装置を示す図で ある。

【図23】 アクティブマトリクス型EL表示装置の構成を示す図。

【図24】 無しきい値反強誘電性混合液晶の印加電圧 に対する光透過率の特性を示す図である。

【図25】 電子機器の一例を示す図である。

【図26】 電子機器の一例を示す図である。

【図27】 プレチルト角のラビングロール押し込み量依存性を示す図である。

【図4】

【図1】

【図9】

(A) スペーサのSEM観察写真

(B) スペーサの断面模式図

(a) スペーサの配置

(c) SEM観察写真

【図5】

【図6】

【図21】

【図7】

【図8】

【図10】

【図11】

【図12】

【図13】

【図15】 【図14】 第1の基板 (a) スペーサ材料層の形成工程 TFT素子形成 第2の基板 配向膜形成 スペーサ形成 (b) 電光工程および現像工程 1102 ラピング処理 配向膜形成 シール印刷 ラピング処理 (c) 配向膜の形成工程およびラピング工程 貼り合わせ工程 基板分断工程 (d) シール形成工程および重ね合わせ工程 液晶注入工程 **ļ106** 液晶注入口封止工程 再配向工程 (e) 分断工程および液晶在入工程

【図17】

(A) 柱状スペーサの断面におけるSEM観察写真

(B) 柱状スペーサの断面におけるSEM観察写真

【図22】

【図23】

(a) 携帯情報端末機器(光学式タッチパネル)の外観図および新面図

【図25】

(b) 携帯情報端末機器(ペン入力式タッチパネル)の外観図および断面図

印加電圧(V)

識別記号	FΙ		テーマコート゜(参考)
3 3 8	G 0 9 F	9/00	3 6 2	
3 6 2			3 6 6 A	
3 6 6	H 0 4 N	5/66	1 0 2 A	
	G 0 2 F	1/136	5 0 0	
1 0 2	H 0 1 L	29/78	6 1 2 B	
Ž.				
	3 6 2 3 6 6	3 3 8 G 0 9 F 3 6 2 3 6 6 H 0 4 N G 0 2 F 1 0 2 H 0 1 L	3 3 8 3 6 2 3 6 6 H 0 4 N 5/66 G 0 2 F 1/136 H 0 1 L 29/78	3 3 8 G 0 9 F 9/00 3 6 2 3 6 2 3 6 6 A 3 6 6 H 0 4 N 5/66 1 0 2 A G 0 2 F 1/136 5 0 0 1 0 2 H 0 1 L 29/78 6 1 2 B

導体エネルギー研究所内