Ejercicio: Juntura PN

Enunciado

- Considere una juntura PN de silicio a 300K con $N_A = 10^{19} \,\mathrm{cm}^{-3}$ y $N_D = 10^{17} \,\mathrm{cm}^{-3}$.
 - 1. Para la condición de equilibrio térmico ($V_R = 0 \, \mathrm{V}$), y bajo la aproximación de vaciamiento, realice los diagramas de
 - 1.1 concentración de dopantes N_A y N_D
 - 1.2 concentración de portadores libres n_0 y p_0
 - 1.3 densidad de carga neta ρ
 - 1.4 campo eléctrico
 - 1.5 potencial electrostático
 - 2. Repita el punto anterior para $V_R = 5 \text{V y } 10 \text{ V}$.
 - 3. Si el campo eléctrico máximo admitido es $E_{MAX}=5\times10^5\,\mathrm{V/cm}$, ¿Cuál es el máximo valor de V_R admisible?

Metodología para la resolución

- Asumimos que las QNR's tienen neutralidad de carga
- Asumimos que las SCR estan <u>vacias</u> de portadores (*región de vaciamiento*)
- Transición entre SCR y QNR's abrupta

Descripción física

Silicio dopado con "Boro" (B) Tipo P

Na: Concentración de dopantes "aceptores" por unidad de volumen Silicio dopado con "Fósforo" (P) Tipo N

Nd: Concentración de dopantes "donores" por unidad de volumen

Figure: Esquema de materiales.

Concentración de dopantes N_A y N_D

Figure: Concentración de dopantes donores (N_d) y aceptores (N_a) .

Concentración de portadores libres n_0 y p_0

Figure: Diagrama de concentraciones de portadores libres en escala lineal.

	Hipótesis	N_A	N_D	p_0	n ₀	$\rho(x)$
$x \le x_{p0}$	HQN	10 ¹⁹	0	$\sim N_A$ (QN)	$\frac{n_i^2}{N_A} \ll N_A \; (Min)$	0 (QN)
$x_{p0} < x < 0$	VAC	10 ¹⁹	0	\sim 0 (VAC)	\sim 0 (VAC)	$\sim -q \cdot N_A$
$0 \le x < x_{n0}$	VAC	0	10 ¹⁷	\sim 0 (VAC)	\sim 0 (VAC)	$\sim q \cdot N_D$
$x_{n0} \leq x$	HQN	0	10 ¹⁷	$\frac{n_i^2}{N_D} \ll N_A \text{ (Min)}$	$\sim N_D$ (QN)	0 (QN)

Concentración de portadores libres n_0 y p_0

Figure: Concentración de dopantes donores (N_d) y aceptores (N_a) en escala semi-logarítmica.

Densidad de carga neta $\rho(x)$

$$\rho(x) = \begin{cases} 0 & \text{si } x \le x_{p0} \\ -qN_a = 1.6 \frac{C}{cm^3} & \text{si } x_{p0} < x < 0 \\ qN_d = 0.016 \frac{C}{cm^3} & \text{si } 0 \le x < x_{n0} \\ 0 & \text{si } x_{n0} \le x \end{cases}$$

Campo eléctrico E(x)

Figure: Campo eléctrico en la región de carga espacial (SCR).

$$E(x) = \begin{cases} 0 & \text{si } x \leq x_{p0} \\ \frac{-qN_{\theta}}{\epsilon_{s}}(x + \zeta_{p0}) & \text{si } x_{p0} < x < 0 \\ \frac{qN_{\theta}}{\epsilon_{s}}(x - \zeta_{n0}) & \text{si } 0 \leq x < x_{n0} \\ 0 & \text{si } x_{n0} \leq x \end{cases}$$

$$\frac{-qN_a}{\epsilon_s} = -1.54 \cdot 10^{12} \frac{V}{cm^2}$$
$$\frac{qN_d}{\epsilon_s} = -15.4 \cdot 10^9 \frac{V}{cm^2}$$

Potencial electrostático $\Phi(x)$

Figure: Potencial electrico en la juntura.

• en QNR-P:
$$p_o = N_a \Rightarrow \phi_p = -\frac{kT}{q} \ln \frac{N_a}{n_i} = -0.535 V$$

• en QNR-N:
$$n_o = N_d \Rightarrow \phi_n = \frac{kT}{q} \ln \frac{N_d}{n_i} = 0.416 V$$

$$\Phi(x) = \begin{cases} \phi_p & \text{si } x \le x_{p0} \\ \frac{qN_a}{2\epsilon_s} (x + x_{po})^2 & \text{si } x_{p0} < x < 0 \\ \phi_n - \frac{qN_d}{2\epsilon_s} (x - x_{no})^2 & \text{si } 0 \le x < x_{n0} \\ \phi_n & \text{si } x_{n0} \le x \end{cases}$$

¿Dónde termina la SCR?

Figure: Potencial electrico en la juntura.

$$\phi_B = \phi_n - \phi_p = \frac{kT}{q} \ln \frac{N_a N_d}{n_i^2} = 0.950 V$$

$$x_{no} = \sqrt{\frac{2\epsilon_s \phi_B N_a}{q(N_a + N_d)N_d}} = 1.1 \cdot 10^{-5} [cm] \qquad x_{no} = \sqrt{\frac{2\epsilon_s \phi_B N_d}{q(N_a + N_d)N_a}} = 1.1 \cdot 10^{-7} [cm]$$

Casos de interés según su relación entre concentraciones

Tres casos de interés:

- ▶ Juntura simétrica: $N_a = N_d \implies x_{po} = x_{no}$
- ▶ Juntura asimétrica: $N_a > N_d \Rightarrow x_{po} < x_{no}$
- Juntura muy asimétrica:

ej. p⁺n juntura:
$$N_a \gg N_d$$

$$x_{po} \ll x_{no} \simeq x_{do} \simeq \sqrt{\frac{2\epsilon_s \phi_B}{\sqrt{N_d}}} \propto \frac{1}{\sqrt{N_d}}$$

$$|E_o| \simeq \sqrt{\frac{2q\phi_B N_d}{\epsilon_s}} \propto \sqrt{N_d}$$

El lado poco dopado controla la electrostática de la juntura PN.

► Herramienta para jugar:

https://www.desmos.com/calculator/t5tyltuppv

Juntura con polarización

► La formulación analítica de la electrostática de la juntura PN polarizada es idéntica a la del equilibrio térmico, solo que:

$$\phi_{B} \longrightarrow \phi_{B} - V$$

$$X_{n}(V) = \sqrt{\frac{2\epsilon (\phi_{B} - V)N_{a}}{q(N_{a} + N_{d})N_{d}}} \qquad x_{p}(V) = \sqrt{\frac{2\epsilon_{s}(\phi_{B} - V)N_{d}}{q(N_{a} + N_{d})N_{a}}}$$

$$x_{d}(V) = \sqrt{\frac{2\epsilon_{s}(\phi_{B} - V)(N_{a} + N_{d})}{qN_{a}N_{d}}}$$

$$|E|(V) = \sqrt{\frac{2\epsilon_{s}(\phi_{B} - V)(N_{a} + N_{d})}{\epsilon_{s}(N_{a} + N_{d})}}$$

Juntura con polarización

Resumen de resultados para el punto 2:

V_R	0	-5	-10	[V]
$\phi_b - V_R$	9.53E-01	5.95E+00	1.10E+01	[V]
Xn	1.11E-05	2.76E-05	3.75E-05	[cm]
Xp	1.11E-07	2.76E-07	3.75E-07	[cm]
x_d	1.12E-05	2.79E-05	3.78E-05	[cm]
E_0	1.71E+05	4.27E+05	5.79E+05	[V/cm]
	A	A	4	

Punto 3:

Sabiendo que el campo eléctrico se puede reescribir como:

$$|E|(V) = |E_o|\sqrt{1 - \frac{V}{\phi_B}} \Rightarrow V_R = \Phi_b(1 - (\frac{|E|}{|E_0|})^2) = -7.2[V]$$