Análisis comparativo de algoritmos.

Sistemas de Aprendizaje Automático. Álvaro Martínez Lineros.

Diferencias entre K-Means, DBScan y Clústering Jerárquico.

Estos algoritmos se utilizan para el agrupamiento en aprendizaje no supervisado. Siendo muy diferentes:

Algoritmo	Tipo de Clustering	Nº de Clusters	Ventajas	Desventajas
K-Means	Particional	Necesita especificar	Rápido, eficiente con clusters esféricos, fácil de entender	Sensible a valores atípicos, requiere número de clusters, no flexible con formas complejas
DBScan	Basado en densidad	No necesita especificar	Detecta ruido, funciona bien con clusters de forma arbitraria	Sensible a parámetros, no funciona bien con densidades muy variadas
Clustering Jerárquico	Jerárquico	No necesita especificar	Visión completa, no requiere número de clusters de antemano	Computacional mente costoso, menos adecuado para grandes datasets

Comparación de PCA y t-SNE en términos de reducción de dimensionalidad.

Método	Propósito	Ventajas	Desventajas
PCA	Reducir la dimensionalidad lineal	Conserva varianza, fácil de entender e interpretar	No captura relaciones no lineales
t-SNE	Reducir la dimensionalidad para visualización	Captura relaciones no lineales, excelente para visualización 2D/3D	Costoso computacionalmente, difícil de interpretar

Importancia de la detección de anomalías en ciberseguridad.

La detección de anomalías en ciberseguridad juega un papel crucial pues es capaz de identificar actividades inusuales y prever una actividad peligrosa. Un tráfico inusual, un acceso extraño a archivos delicados o uso sospechoso de los recursos del sistema pueden ser un muy buen indicador de actividades fraudulentas que se pueden detectar con una buena detección de anomalías.

Casos reales y aplicación de las tecnologías.

Técnica	Aplicación	
K-Means	Segmentación de clientes en marketing	
DBScan	Detección de áreas con alta densidad de tráfico	
Clustering jerárquico	Análisis de grupos genéticos	
PCA	Análisis de grandes datos financieros	
t-SNE	Visualización de datos de imágenes de alta dimensión	
Detección de anomalías en ciberseguridad	Detección de fraudes bancarios	