Mathematics 25.08.22 (2) Notes

Eason Shao, Mr Finch-Noyes

25.08.22 (2)

Contents

1	Money Conversion	1
2	Ratio	1
3	Graphs	1

Section 1 Money Conversion

Example 1.1. (Money Conversion) Euro1 = £0.84 = \$1.39. Euro29.04 to £: 24.39£. \$74.08 to Euros: Euro53.29. £90 to \$5: \$148.93.

Section 2 Ratio

Example 2.1. (Ratio) \$3600 is shared in the ratio 4:6:8.

- (1) Can we simplify this ratio? 4:6:8=2:3:4.
- (2) What does each person get? Each part is $\$3600 \div (2+3+4) = \400 . $\$400 \times 2 = \$800, \$400 \times 3 = \$1200, \$400 \times 4 = \1600 .
- (3) What fraction does the lowest share get? $\frac{2}{2+3+4} = \frac{2}{9}$.

Problem 2.2. Money is shared in ratio 1:5. If the smaller share is £40, what is the total share? **Solution.** £40 ÷ 1 × (1 + 5) = £240.

Section 3 Graphs

Example 3.1. (Displacement-Time Graph) Describe the movement of the object.

_	Time	Direction	Velocity
	0 - 10	Positive	$20 \mathrm{m s^{-1}}$
	10 - 15	At Rest	0
	15 - 18	Negative	$-10{\rm ms^{-1}}$
Ī	18 - 23	At Rest	0
	23 - 28	Positive	$2 { m m s^{-1}}$

Example 3.2. (Velocity-Time Graph) Draw the Velocity-Time Graph of this motion.

Definition 3.3. (Average Velocity, Average Speed)

$$\begin{aligned} \text{Average Velocity} &= \frac{\text{Total Displacement}}{\text{Total Time}}. \end{aligned}$$

$$\text{Average Speed} &= \frac{\text{Total Distance}}{\text{Total Time}}. \end{aligned}$$

Example 3.4. (Average Velocity, Average Speed) Calculate the Average Velocity and Average Speed of the previous example.

$$\mbox{Average Velocity} = \frac{\mbox{Total Displacement}}{\mbox{Total Time}} = \frac{0\,\mbox{m}}{28\,\mbox{s}} = 0,$$

$$\mbox{Average Speed} = \frac{\mbox{Total Distance}}{\mbox{Total Time}} = \frac{60\,\mbox{m}}{28\,\mbox{s}} = 2.14\,\mbox{m}\,\mbox{s}^{-1}.$$

Example 3.5. (Velocity-Time Graph) Describe the movement of the object.

Time	Direction of Movement	Velocity	Direction of Acceleration	Acceleration
0 - 10	Positive	N/A	Positive	$1.2{\rm ms^{-2}}$
10 - 15	Positive	$12{\rm ms^{-1}}$	Zero	0
15 - 17	Positive	N/A	Negative	$-6{\rm ms^{-2}}$
17 - 20	At Rest	0	Zero	0
20 - 22	Negative	N/A	Negative	$-5{\rm ms^{-2}}$
22 - 30	Negative	N/A	Positive	$1.25{\rm ms^{-2}}$

Method 3.6. (Calculating Displacement/Distance via a Veloity/Speed Graph)

$$S = \int dS$$
$$= \int v dt,$$

therefore the Displacement/Distance is the area below the Veloity/Speed curve.

Example 3.7. (Calculating Displacement/Distance via a Veloity/Speed Graph) Calculate the displacement and the distance of the previous example.

Displacement =
$$10 \text{ s} \times 12 \text{ m s}^{-1} \times \frac{1}{2} + 5 \text{ s} \times 12 \text{ m s}^{-1} + 2 \text{ s} \times 12 \text{ m s}^{-1} \times \frac{1}{2}$$

+ $2 \text{ s} \times -10 \text{ m s}^{-1} \times \frac{1}{2} + 8 \text{ s} \times -10 \text{ m s}^{-1} \times \frac{1}{2}$
= 82 m .

$$\begin{split} \text{Distance} &= 10\,\text{s} \times 12\,\text{m}\,\text{s}^{-1} \times \frac{1}{2} + 5\,\text{s} \times 12\,\text{m}\,\text{s}^{-1} + 2\,\text{s} \times 12\,\text{m}\,\text{s}^{-1} \times \frac{1}{2} \\ &+ 2\,\text{s} \times 10\,\text{m}\,\text{s}^{-1} \times \frac{1}{2} + 8\,\text{s} \times 10\,\text{m}\,\text{s}^{-1} \times \frac{1}{2} \\ &= 182\,\text{m}. \end{split}$$

Example 3.8. (Calculating Average Velocity/Speed)

$$\mbox{Average Velocity} = \frac{\mbox{Total Displacement}}{\mbox{Total Time}} = \frac{82\,\mbox{m}}{30\,\mbox{s}},$$

$$\mbox{Average Speed} = \frac{\mbox{Total Distance}}{\mbox{Total Time}} = \frac{182\,\mbox{m}}{30\,\mbox{s}}.$$