Adrianna Kopeć, Anna Nagi, Izabela Pachel

Modelowanie kontekstowe na przykładzie magazynu paliw

1. Opis zagadnienia biznesowego - Magazyn paliw

Kontenery

W magazynie paliw są kontenery o różnej pojemności, w skrajnych przypadkach od kilku metrów sześciennych, do kilku tysięcy.

Czujniki

W zbiornikach są czujniki które sygnalizują wycieki. W dużych zbiornikach może być kilka czujników, w różnych strefach.

Paliwa

W zbiornikach są paliwa o różnych skalach wybuchowości, trzy skale/poziomy. Jeśli sygnał z czujnika jest krótszy niż 5 sekund to się go ignoruje, jak dłuższy, to zagrożenie.

Na wolnym powietrzu / w środku

Jeśli zbiornik nie jest na wolnym powietrzu, a budynku zamkniętym, to inkrementacja zagrożenia.

I klasa najwyższa temperatura zapłonu powyżej 21 stopni najwyższa temperatura zapłonu powyżej 55 stopni lll klasa najwyższa temperatura zapłonu powyżej 100 stopni

Skale reakcji

Skala ważności zdarzeń:

- 0. nic się nie stało, błahe wzbudzenie (do 5 sekund)
- 1. zdarzenie zaistniało, ale nie jest krytyczne, trzeba podjąć działanie w ciągu najbliższego możliwego okresu czasu (?)
- zdarzenie zaistniało i może mieć wpływ na działanie instalacji, wymaga szybkiej reakcji personelu - kontakt z DzUR, informacja na ekranie WYMAGANA REAKCJA
- 3. zdarzenie krytyczne: konieczna natychmiastowa reakcja: **POZA INFORMACJĄ NA EKRANIE, KONIECZNY KONTAKT SYSTEMU POPRZEZ SMS**
- 4. zdarzenie turbo krytyczne: natychmiastowa reakcja służb ochrony

Skale reakcji na powiadomienie o alarmie w DzUR:

- 1. **wygaszenie alarmu, przyczyna alarmu usunięta** (interpretacja: pierwotna przyczyna alarmu została usunięta, nie ma dalszego powodu do tego alarmu, alarm usunięty z listy alarmów)
- 2. **embargo na ten alarm przez ustalony okres** (interpretacja: wiemy o alarmie, pracujemy nad usunięciem pierwotnej przyczyny alarmu, proszę na razie o alarmie nie informować, alarm zostaje w systemie do czasu podjęcia innej decyzji)
- 3. **embargo tylko na sms i mail na ten alarm przez ustalony okre**s (interpretacja: wiemy o alarmie, pracujemy nad usunięciem pierwotnej przyczyny alarmu, alarm będzie cyklicznie zgłaszany ale tylko do DzUR, lecz już bez sms i mail)

Nazwa zbiornika (przykładowe nazwy zbiorników: Zbiornik nr 3, Octan etylu, Alkohol 95%, Zbiornik 95%, Zbiornik nr 74)

Pojemność zbiornika wyrażona w m3 (przykłady m3:

1,3,5,10,30,50,100,500,1000,15000,50 000,.... 250 000)

Alarmy są wygaszane w DzUR, ale kontekst jest taki, że jak wiele zdarzeń pozornie niepowiązanych to zastanawiamy się czy coś grubszego się nie dzieje. Także jak są zdarzenia do 5 sekund, to niby nie ważne, ale jak jest dużo nieważnych, to zastanawiamy się czy coś się jednak nie dzieje.

2.Modelowanie kontekstowe - podstawowe definicje

Bazując na zasadzie 5W mamy następujące wymiary Kontekstu:

- Podmiot (Entity) określa kto/co jest rzeczą (tożsamość rzeczy)
- Aktywność (Activity) określa, jakie jest zadanie rzeczy
- Zdarzenie (Event) określa, dlaczego dana rzecz robi dane zadanie w danym miejscu i czasie
- Relacja (Relationship) określa związek między danymi wymiarami kontekstu (w jaki sposób dwie jednostki i dwa wymiary kontekstowe są powiązane)
- Lokalizacja (Location) określa gdzie dana rzecz jest zlokalizowana
- Czas (Time) określa, kiedy rzecz znajduje się w miejscu wykonania zadania i jaki jest czas trwania zadania

Do modelowania wymiarów Kontekstu używamy dodatkowo następujących pojęć:

- Kontekst (C): Podzbiór informacji w Profilu, który jest odpowiedni do danej sytuacji.
 - C = {id, ref}, gdzie id jest identyfikatorem kontekstu, a ref jest odniesieniem do przestrzeni magazynowej tego kontekstu.
- **Cel** (G): Kryterium punktu końcowego, do którego dąży cały ekosystem. Cel można rozłożyć na cele podrzędne (g)
- Lokalizacja (L): Wskazuje wymiar przestrzenny. Każda aplikacja używa bieżącej lokalizacji do zdefiniowania sytuacji i jej kontekstu. Każdy prymityw jest powiązany ze współrzędnymi lokalizacji (długość, szerokość geograficzna, wysokość), odległość, jednostki przestrzenne, budynki, kraje itp
- Profil (F): Struktura, która przechowuje wszystkie informacje ogólne, kolejność działań i pliki wykonywalne oraz powiązane koncepcje związane z dowolnym prymitywem. Te metadane pomagają uchwycić pełny Kontekst prymitywu.
 F = {id, name, ref}, gdzie id jest unikalnym identyfikatorem profilu, name jest nazwą profilu, a ref jest odniesieniem do lokalizacji tego profilu w rejestrze
- Stan (S): Wskazuje aktualny stan prymitywu. Niech S oznacza zbiór stanów prymitywu:
 - S={active, suspend, inactive}, gdzie active to aktywne zaangażowanie prymitywu,

suspend to zawieszenie zaangażowania prymitywu dla danego przedziału czasowego, a inactive to całkowite wycofanie zaangażowania prymitywu

- Czas (T): Czas określa czasowe właściwości różnych zdarzeń, które występują w ekosystemie IoT.
- Unikalny identyfikator (uid): identyfikator używany do jednoznacznej identyfikacji prymitywu.
 uid jest unikalnym identyfikatorem reprezentowanym jako zbiór trójek (prymityw, typ, identyfikator), gdzie prymityw to jeden z: {ENT: Entity, ACT: Activity, EVT: Event, REL: Relationship}, typ to typ prymitywu (np. Person dla osoby), a identyfikator to unikalny identyfikator dla prymitywu.

Np. ENT-PER-0001 reprezentuje prymitywny Podmiot (Entity) o typie Person i identyfikatorze 0001

3.Podmioty i ich zastosowanie w modelowaniu zakładu paliw

3.1 Definicja podmiotu

Podmiot (*Entity, e*) reprezentuje wszelkiego rodzaju indywidualny element istotny dla ekosystemu IoT. Może to być np. żywy organizm, taki jak człowiek, urządzenie, zasób naturalny. Atrybuty i własności podmiotu stanowią jego kontekst.

$$e = \{uid, n_e, T, L, F, C, S\},\$$

gdzie uid jest unikalnym identyfikatorem, n_e nazwą podmiotu, T czasem związanym z podmiotem, L lokalizacją podmiotu, F profilem podmiotu, F kontekstem podmiotu, a F stanem podmiotu.

Np. person jest podmiotem, który przybiera formę:

{ENT-PER-0001, Emma, 2020-02-18T10:00:15 , Classroom, F_id, C_id, active},

gdzie ENT i PER oznaczają prymityw "Entity" i typ "Person"

3.2 Podmioty w modelu zakładu paliw:

- Kontekst (cały zakład z paliwami)
- Konterery
- Sensory
- Jednostki alarmujące wznoszą alerty
- Ochrona
- Straż Pożarna

Zakład

```
Przykładowa forma:
      "id_podmiotu": "ENT-ZAKLAD-0001,
      "nazwa_podmiotu": "Zakład paliwowy Euro-paliwo",
      "czas": "20-12-2022 15:30:02",
      "lokalizacja_podmiotu": "ul. Warszawska 15A, 42-200 Częstochowa",
      "id_profilu": "PROFIL-0001",
      "id_kontekstu": "CONTEXT-0001", "stan": "aktywny"
}
Konterery
Kontener nr 1:
      "id_podmiotu": "ENT-KONTENER-0001,
      "nazwa_podmiotu": "Kontener nr 1",
      "czas": "20-12-2022 15:30:02",
      "lokalizacja_podmiotu": "ul. Warszawska 15A, 42-200 Częstochowa, I piętro,
pierwszy kontener od okna",
      "id_profilu": "PROFIL-0001",
      "id_kontekstu": "CONTEXT-0001", "stan": "aktywny"
}
Kontener nr 2:
{
      "id_podmiotu": "ENT-KONTENER-0002",
      "nazwa_podmiotu": "Kontener nr 2",
      "czas": "20-12-2022 15:30:02",
      "lokalizacja_podmiotu": "ul. Warszawska 15A, 42-200 Częstochowa, I piętro,
drugi kontener od okna",
      "id_profilu": "PROFIL-0001",
      "id_kontekstu": "CONTEXT-0001", "stan": "aktywny"
}
```

Sensory

```
Sensor nr 1 w Kontenerze nr 1:
      "id_podmiotu": "ENT-SENSOR-0001",
      "nazwa_podmiotu": "Sensor nr 1",
      "czas": "20-12-2022 15:30:02",
      "lokalizacja_podmiotu": "ul. Warszawska 15A, 42-200 Częstochowa, I piętro,
pierwszy kontener od okna, sensor u góry",
      "id_profilu": "PROFIL-0001",
      "id_kontekstu": "CONTEXT-0001", "stan": "aktywny"
}
Sensor nr 2 w Kontenerze nr 1:
{
      "id_podmiotu": "ENT-SENSOR-0002",
      "nazwa_podmiotu": "Sensor nr 2",
      "czas": "20-12-2022 15:30:02",
      "lokalizacja_podmiotu": "ul. Warszawska 15A, 42-200 Częstochowa, I piętro,
pierwszy kontener od okna, sensor na dole",
      "id_profilu": "PROFIL-0001",
      "id_kontekstu": "CONTEXT-0001", "stan": "nieaktywny"
}
Jednostka alarmująca
{
      "id_podmiotu": "ENT-JEDN_ALARM-0001",
      "nazwa_podmiotu": "Jednostka alarmująca nr 1",
      "czas": "20-12-2022 15:30:02",
      "lokalizacja_podmiotu": "ul. Warszawska 15A, 42-200 Częstochowa, I piętro, przy
schodach",
      "id_profilu": "PROFIL-0001",
      "id_kontekstu": "CONTEXT-0001", "stan": "aktywny"
}
```

4. Aktywności i ich zastosowanie w modelu zakładu paliw

4.1 Definicja aktywności

Aktywność (Activity, a) to pojedyncze zadanie wykonywane przez Podmiot przez określony czas. Aktywność jest wykonywana, by osiągnąć cel podrzędny. Cel podrzędny służy jako warunek zakończenia danej Aktywności i warunek wywołania (trigger) dla dalszej działalności.

gdzie n_a jest nazwą Aktywności, g to cel wybrany do osiągnięcia poprzez Aktywność, t_s i t_e to odpowiednio czas rozpoczęcia i zakończenia Aktywności, e to Podmiot związany z Aktywnością, L to lokalizacja Aktywności, F to profil Aktywności, C to Kontekst Aktywności, a S to stan aktywności.

Np. "powiadom lekarza" w scenariuszu opieki zdrowotnej to działanie, które przybiera formę:

{ACT-NT-10, notifym, Provide medical care, 2020-02-18T10:20:12, 2020-02-18T10:25:12, ENT-PER-001, L_id, F_id, C_id, active},

gdzie ACT, NT, ENT i PER oznaczają odpowiednio prymityw "Aktywność", typ Notify", prymityw "Podmiot" i typ "Person".

4.2 Aktywności w modelu zakładu paliw

Pomiar temperatury przez sensor

Podmiotem jest sensor, znajdujący się w określonym kontenerze w określonym miejscu

```
{
    "id_aktywnosci": "ACT-POMIAR-00001",
    "typ_aktywnosci": "pomiar_temperatury",
    "cel_aktywnosci": "Sprawdz jaka jest temperatura",
    "czas_aktywnosci_start": "22-12-2021 13:24:03",
    "czas_aktywnosci_end": "22-12-2021 13:26:34",
    "id_podmiotu": "ENT-CZUJNIK-0001"
}
```

5. Zdarzenia i ich zastosowanie w modelu zakładu paliw

5.1 Definicja zdarzenia

Zdarzenie (*Event, v*) w ekosystemie IoT Świadomym Kontekstu to wydarzenie mające miejsce w określonym czasie i miejscu, z udziałem Podmiotów. Zdarzenie obejmuje jeden lub więcej Podmiotów i Aktywności o określonym czasie trwania oraz czasie rozpoczęcia i zakończenia. Zdarzenie reprezentuje zakończenie jednej lub więcej Aktywności i jest wykonywane, aby osiągnąć Cel, który można podzielić na cele podrzędne dla każdej z Aktywności.

gdzie *uid* to unikalny identyfikator, *n_v* to nazwa eventu, *G* to cel wybrany do osiągnięcia, *vt_s* i *vt_e* to czasy rozpoczęcia i zakończenia Zdarzenia, *L* to lokalizacja Podmiotu, *E* i *A* to zbiory Podmiotów i Aktywności związanych ze Zdarzeniem, *F* to profil Zdarzenia, *C* to Kontekst Zdarzenia, a *S* to stan Zdarzenia.

Np. gdy studentka Emma mdleje, uruchamia się zdarzenie "MedicalEmergency", które ma formę:

```
\{EVT\text{-}ME\text{-}002, MedicalEmergency, Zapewnij opiekę medyczną, ,2020-02-18T10:20:00,2020-02-18T11:10:10 , L , \\ ENT\text{-}PER\text{-}0001,ENT\text{-}AMB\text{-}00001,ACT\text{-}ES\text{-}108,}F , C , Aktywny \}
```

gdzie EVT, ME, ENT, PER, AMB, ACT i ES oznaczają prymityw "Zdarzenie", o typie "MedicalEmergency", 2 prymitywy "Podmiot", o typie "Osoba" i "Ambulans", prymityw "Aktywność" o typie "Przyjazd pogotowia ratunkowego"

5.2 Zdarzenia w modelu zakładu paliw

- alerty
- zawiadamianie odpowiednich służb

```
Alert
{
      "id_zdarzenia": "EVT-ALERT-001",
      "nazwa_zdarzenia": "Alert nr 1 - najwyższy stopień zagrożenia",
      "cel_zdarzenia": "Rozpocznij procedurę alarmu - powiadom ochrone",
      "czas_start": "23-12-2021 15:30:03",
      "czas_end": "23-12-2021 15:35:03",
      "lokalizacja" : ul. Warszawska 15A, 42-200 Częstochowa, I piętro, pierwszy
kontener od okna",
      "zbior_podmiotow": {"ENT-SENSOR-0001", "ENT-KONTENER-001",
"ENT-ZAKLAD-001, "ENT_JEDN_ALARM-0001", "ENT-OCHRONA-003" }
      "zbior_aktywnosci": {""ACT-POMIAR-00001"},
      "profil_zdarzenia": "PROFIL-001",
      "kontekst_zdarzenia": "CONTEXT-001",
      "stan_zdarzenia": "Aktywne"
}
Zawiadamianie odpowiednich służb
{
      "id_zdarzenia": "EVT-ZAWIADOM-001",
      "nazwa_zdarzenia": "Zawiadamianie służb bezpieczeństwa",
      "cel_zdarzenia": "Powiadom straż pożarną",
      "czas_start": "23-12-2021 15:30:03",
      "czas_end": "23-12-2021 15:35:03",
      "lokalizacja" : ul. Warszawska 15A, 42-200 Częstochowa, I piętro, pierwszy
kontener od okna",
      "zbior_podmiotow": {"ENT-SENSOR-0001", "ENT-KONTENER-001",
"ENT-ZAKLAD-001, "ENT_JEDN_ALARM-0001", "ENT-OCHRONA-003",
"ENT-STRAZ_POZARNA-008" }
      "zbior_aktywnosci": {""ACT-POMIAR-00001", "ACT-ZADZWON_PO_STRAZ-002"},
      "profil_zdarzenia": "PROFIL-001",
      "kontekst_zdarzenia": "CONTEXT-001",
      "stan_zdarzenia": "Aktywne"
}
```

5.3 Aktywność a zdarzenie

Czym się różni aktywność od zdarzenia (eventu)? Aktywność - POJEDYNCZE ZADANIE wykonywane przez JEDEN PODMIOT przez określony czas

Zdarzenie - obejmuje jeden lub więcej Podmiotów i Aktywności o określonym czasie trwania oraz czasie rozpoczęcia i zakończenia.

Co w naszym przykładzie jest aktywnością, a co zdarzeniem?

Aktywności:

- pomiar temperatury przez sensor

Zdarzenia:

- alerty
- zawiadamianie odpowiednich służb

6. Relacje

6.1 Definicja relacji

Relacja (Relationship, r) obejmuje właściwości Podmiotów lub sposób, w jaki dwa prymitywy są ze sobą powiązane. Relacja pozwala opisać Kontekst. Relacje mogą być pochodne lub przechodnie. Jeśli prymityw *P1* ma relację z prymitywem *P2*, który z kolei ma związek z prymitywem *P3*, wtedy *P1* może mieć również relację z *P3*.

$$r = \{uid, n_r, P1, P2, S\},\$$

gdzie: *uid* to unikalny identyfikator, *n_r* to nazwa Relacji, *P1* i *P2* to prymitywy takie jak Podmiot, Aktywność lub Zdarzenie, a *S* to stan Relacji.

Np. kiedy sanitariusz dostaje informację o stanie zdrowia pacjentki, utworzona jest relacja "maPacjenta". Dodałyśmy dodatkowe pole - typ relacji, żeby uszczegółowić kontekst relacji.

6.2 Relacje w modelu magazynu paliw

Obecność kontenera w danym zakładzie

"stan_relacji": "Aktywna"

- trzymanie konkretnego paliwa o danych właściwościach w kontenerze
- obecność kontenera w danym zakładzie w danym miejscu
- obecność czujnika w danym kontenerze w określonym miejscu

"id_relacji": "REL-KONTENER_W_ZAKLADZIE-003",
"nazwa_relacji": "Kontener nr 3 znajduje się w Zakładzie nr 1",
"podmiot1": "ENT-KONTENER-003",
"podmiot2": "ENT-ZAKLAD-001",
"typ_relacji": "Podmiot1 zawiera się w podmiocie2",

}

Obecność czujnika w danym kontenerze w określonym miejscu

```
"id_relacji": "REL-CZUJNIK_W_KONTENERZE-005",
    "nazwa_relacji": "Czujnik nr 5 znajduje się w Kontenerze nr 1",
    "podmiot1": "ENT-CZUJNIK-005",
    "podmiot2": "ENT-KONTENER-001",
    "typ_relacji": "Podmiot1 zawiera się w podmiocie2",
    "stan_relacji": "Aktywna"
}
```

7. Implementacja modelu w projekcie

7.1 Kolejność implementacji modelu

- 1.Podmioty
- 2.Relacje
- 3.Aktywności
- 4.Zdarzenia

7.1.1 Implementacja podmiotów

- 1. Wczytanie wszystkich podmiotów
- 2. Pogrupowanie podmiotów per typ podmiotu
- 3. Stworzenie obiektu dla każdego typu podmiotów

7.1.2 Implementacja relacji

- 1.Wczytanie wszystkich relacji
- 2. Sprawdzenie jaki typ podmiotu jest zawarty w relacji
- 3.W obiekcie danego typu podmiotu tworzymy atrybut wiążący go z innym podmiotem

7.1.3 Implementacja aktywności

- 1. Wczytanie wszystkich aktywności
- 2. Pogrupowanie aktywności per podmioty
- 3.Utworzenie dla obiektów podmiotów funkcji / atrybutów związanych z aktywnościami

7.1.4 Implementacja zdarzeń

- 1.Pogrupowanie aktywności w zdarzenia
- 2. Dodanie dodatkowych informacji do kontekstu

7.1.5 Utworzenie reguł

Na podstawie podanych informacji, model wytwarza reguły zachowania w określonej sytuacji. Przykładowo, gdy temperatura jest wyższa niż 25 stopni, a niższa niż 35 stopni, powinien zostać uruchomiony alarm nr 3 i ochrona obiektu powinna być zawiadomiona o incydencie.

Input

Co na samym początku?

Najpierw trzeba wczytać do systemu wszystkie podmioty, które znajdują się w danym kontekście w formie JSONów.

Następnie należy wczytać relacje między podmiotami.

Na podstawie podmiotów i relacji zostanie utworzony bazowy model kontekstu.

Należy też wczytać możliwe typy aktywności i zdarzeń, które są dostępne w naszym modelu kontekstowym.

Co w trakcie?

W trakcie działania programu podmioty wchodzące w skład kontekstu będą komunikować się z systemem za pomocą JSONów z aktywnościami i zdarzeniami.

Za pomocą tych elementów będzie modyfikowany stan podmiotów i ogólny kontekst systemu, pokazujący jego aktualny stan.

Output

Na wyjściu mamy model kontekstowy, który posiada informacje na temat całej aktywności w systemie i może być aktualizowany. Dzięki temu, mamy stale dostęp do aktualnego stanu systemu i na jego podstawie możemy analizować jego działanie, podejmować akcje i sprawdzać dane historyczne oraz otrzymujemy reguły.

Przykład działania

Na wejściu od użytkownika otrzymujemy:

```
entities_jsons = [
{
  "entity_id" : "ENT-KONTENER-001",
  "entity_type" : "Kontener",
  "internal_id" : "1",
  "entity_name": "Kontener nr 1"
},
{
```

```
"entity_id": "ENT-KONTENER-002",
"entity_type": "Kontener",
"internal id": "2",
"entity_name": "Kontener nr 2"
},
"entity_id": "ENT-CZUJNIK-001",
"entity_type": "Czujnik",
"internal_id": "1",
"entity_name": "Czujnik nr 1"
},
"entity_id": "ENT-CZUJNIK-002",
"entity_type": "Czujnik",
"internal id": "2",
"entity_name": "Czujnik nr 2"
},
"entity_id": "ENT-CZUJNIK-003",
"entity_type": "Czujnik",
"internal_id": "3",
"entity_name": "Czujnik nr 3"
},
"entity_id": "ENT-PALIWO-001",
"entity_type": "Paliwo-klasa1",
"internal id": "1",
"entity_name": "Paliwo nr 1 o klasie zaplonu nr 1"
},
{
"entity_id": "ENT-PALIWO-002",
"entity_type" : "Paliwo-klasa2",
"internal id": "2",
"entity_name": "Paliwo nr 2 o klasie zaplonu nr 2"
}
]
relationship_jsons = [
"relationship_id": "REL_ENT-CZUJNIK-001_INSIDE_ENT-KONTENER-001_0001",
"relationship_type": "ENT1 inside ENT2",
"relationship_name" : "Czujnik nr 1 znajduje się w Kontenerze nr 1",
"ENT1": "ENT-CZUJNIK-001",
"ENT2": "ENT-KONTENER-001",
"relationship_state" : "active"
},
{
"relationship id": "REL ENT-CZUJNIK-002 INSIDE ENT-KONTENER-001 0002",
```

```
"relationship_type": "ENT1 inside ENT2",
"relationship_name" : "Czujnik nr 2 znajduje się w Kontenerze nr 1",
"ENT1": "ENT-CZUJNIK-002",
"ENT2": "ENT-KONTENER-001",
"relationship state": "active"
},
"relationship id": "REL ENT-CZUJNIK-003 INSIDE ENT-KONTENER-002 0003",
"relationship_type": "ENT1 inside ENT2",
"relationship name": "Czujnik nr 3 znajduje się w Kontenerze nr 2",
"ENT1": "ENT-CZUJNIK-003",
"ENT2": "ENT-KONTENER-002",
"relationship_state" : "active"
},
"relationship_id": "REL_ENT-PALIWO-001_INSIDE_ENT-KONTENER-001_0004",
"relationship_type": "ENT1 inside ENT2",
"relationship_name" : "Paliwo nr 1 znajduje się w Kontenerze nr 1",
"ENT1": "ENT-PALIWO-001",
"ENT2": "ENT-KONTENER-001",
"relationship_state" : "active"
},
"relationship_id": "REL_ENT-PALIWO-002_INSIDE_ENT-KONTENER-002_0005",
"relationship_type": "ENT1 inside ENT2",
"relationship_name" : "Paliwo nr 2 znajduje się w Kontenerze nr 2",
"ENT1": "ENT-PALIWO-002",
"ENT2": "ENT-KONTENER-002",
"relationship_state" : "active"
}
]
activities jsons = [
"activity_id": "ACT-POMIAR_TEMPERATURY-001",
"activity_type" : "pomiar_temperatury",
"activity_result": "40",
"activity_entity_id": "ENT-CZUJNIK-001"
},
"activity_id": "ACT-POMIAR_TEMPERATURY-002",
"activity_type": "pomiar_temperatury",
"activity result": "25",
"activity_entity_id": "ENT-CZUJNIK-003"
}
events jsons = [
```

```
"event_id": "EVT-ALERT-001",
"event name": "Alert nr 1 - najwyższy stopień zagrożenia",
"event_goal": "Powiadom ochrone, straz pożarną i wojsko",
"event location": "ul. Warszawska 15A, 42-200 Częstochowa, I piętro, pierwszy kontener
od okna".
"event_entities": ["ENT-CZUJNIK-001", "ENT-KONTENER-001", "ENT-PALIWO-001"],
"event activities": ["ACT-POMIAR TEMPERATURY-001"],
"event state": "active"
},
"event id": "EVT-ALERT-001",
"event_name": "Alert nr 3 - średni stopień zagrozenia",
"event_goal": "Powiadom ochrone",
"event location": "ul. Warszawska 15A, 42-200 Częstochowa, I piętro, pierwszy kontener
od okna".
"event_entities": ["ENT-CZUJNIK-003", "ENT-KONTENER-002", "ENT-PALIWO-002"],
"event activities": ["ACT-POMIAR TEMPERATURY-002"],
"event_state" : "active"
}
1
```

Generowanie zasad

Na podstawie algorytmu i podanych danych generowane są następujące zasady: If - warunki panujące w przechowalni paliw

Then - co się dzieje, jaki alarm jest uruchamiany (np. alert najwyższego stopnia) Do - co konkretnie system / użytkownik powinien zrobić w tej sytuacji (np. powiadomić ochronę, straż pożarną itp)

Wygenerowane zasady

1. If:

Entities: ['ENT-CZUJNIK-001', 'ENT-KONTENER-001', 'ENT-PALIWO-001']

AND: Activities: ['ACT-POMIAR_TEMPERATURY-001']

AND: Result: >40 Celsius degrees

AND: Relationships: ['REL_ENT-CZUJNIK-001_INSIDE_ENT-KONTENER-001_0001']

Then: Alert nr 1 - najwyższy stopień zagrożenia

Do: Powiadom ochronę, straż pożarną i wojsko

2. If:

Entities: ['ENT-CZUJNIK-003', 'ENT-KONTENER-002', 'ENT-PALIWO-002']

AND: Activities: ['ACT-POMIAR_TEMPERATURY-002']

AND: Result: >25 Celsius degrees

AND: Relationships: ['REL_ENT-CZUJNIK-003_INSIDE_ENT-KONTENER-002_0003']

Then: Alert nr 3 - średni stopień zagrożenia

Do: Powiadom ochronę