V. 미분방정식

1 상미분방정식

- 1. 미분방정식(Differential Equation)
 - 1) 미분방정식의 정의
 - (1) 함수의 미분이 도입되어 해로서 함수를 구하는 함수방정식
 - ① 해(solution): 미분방정식의 해는 함수로 표현되는 함수방정식이다.
 - ② 선형성과 비선형성: 미분방정식은 + 기호로 연결되는 선형성을 갖는 선형 미분방정식과 × 기호로 연결되는 비선형성을 갖는 비선형 미분방 정식이 있다.
 - (ex) f(x)+f'(x)=1 \triangleright 일계 선형 미분방정식
 - (ex) f(x)f'(x)=1 \triangleright 일계 비선형 미분방정식
 - ③ -계(n-th order) : 미분방정식은 가장 많이 미분한 횟수를 n이라고 할 때, 그 횟수를 따서 n계 미분방정식이라고 부른다.
 - 2) 상미분방정식 : 단일변수에 대한 미분만을 전제한다.
 - (1) 문자에 등장하는 모든 변수는 x에 대한 식으로 취급할 수 있다.
 - (예) $x^2 + xy' = 0$ 의 방정식에서 y = f(x), y' = f'(x)라는 양함수 표현을 차용해도 수학적 문제가 없다.
 - (2) 미분 표현은 $\frac{d}{dx}y$ 를(전미분 기호) 사용한다.
- 2. 일계 선형 미분방정식(first-order differential equation)
 - 1) 정의 : x를 독립변수로 갖는 일변수함수 p(x), q(x)에 대하여 일계 선형 미분방정식은 다음과 같다.

$$\frac{dy}{dx} + p(x)y = q(x)$$

- 2) 재차와 비제차
 - (1) 우변의 q(x) = 0인 경우 제차(homogeneous)라고 하고, $q(x) \neq 0$ 인 경우 비제차(nonhomogeneous)라고 한다.

- 3) 일계 선형 미분 방정식의 해법
 - (1) 발상 : 좌변의 식을 곱의 미분이 일어난 형태로 변형한다. 적당한 함수 h(x)가 존재하여 방정식을 h(x)y'+h(x)p(x)y=h(x)q(x)로 바꾸고, h(x)q(x)=(h(x)y)'을 만족시키는 h(x)를 생각하자.
 - \triangleright 여기서 h(x)를 적분 인자(integrating factor)라고 한다.
 - (2) 풀이
 - ① (h(x)y)' = h(x)y' + h'(x)y = h(x) + h(x)p(x)y의 항등식에서 h'(x) = h(x)p(x)
 - ② 양변을 h(x)로 나누면 $(h(x) \neq 0)$

$$\frac{h'(x)}{h(x)} = p(x)$$

③ 양변을 적분하면

$$\ln(h(x)) = \int p(x)dx + C \text{ (단, } C \leftarrow \text{ 적분상수)}$$

- ④ 역함수 전개로 $h(x) = e^{\int p(x)dx + C} = C_1 e^{\int p(x)dx}$ (단, $C_1 = e^C$)
- ⑤ 대입하여 전개하면 $\left(Ce^{\int p(x)dx}y\right)' = Ce^{\int p(x)dx}q(x)$
- ⑥ 해를 풀면

$$y = e^{-\int p(x) dx} \left(\int e^{\int p(x) dx} q(x) + C \right)$$

- (3) 특수해와 보조해를 이용한 풀이
 - ① 특수해 $(\phi(x))$: 미분방정식 L(x,y)=g(x)를 만족하는 특별한 해
 - ② 보조해(Y(x)): 비제차 미분방정식을 제차 미분방정식으로 구한 해
 - ③ 일반해 $y(x) = \phi(x) + Y(x)$ 로 구할 수 있다.
- (4) 초깃값 문제(initial value problem)
- : y(t)=k라는 조건이 부여된 경우 일반해 y(x)에 t를 대입하여 상수를 처리할 수 있다. 이는 일계선형미분방정식의 일반해 $y=c_1y_1+y_2$ 의 꼴로 기술되고, 이때 미정계수가 c_1 1개이기에 가능하다. (변수 하나, 조건 하나)

※ 특수해와 보조해를 이용한 일계 선형 미분방정식의 풀이

$$\frac{dy}{dx} + p(x)y = q(x)$$

① 보조해 구하기 : 제차방정식 사용

$$\triangleright \frac{d}{dx}f_1(x)+p(x)f_1(x)=q(x)$$
를 만족하는 $f_1(x)$ 를 찾는다.

- ② 특수해 구하기
- $\triangleright \frac{d}{dx}f_2(x)+p(x)f_2(x)=q(x)$ 를 만족하는 $f_2(x)$ 를 찾는다.
- → 일반해를 찾는 게 아니라, 직관적으로 가능한 경우 하나를 찾는다. ▶ 자명해를 구하는 것에 좀 더 가깝다. 일계 선형방정식의 해 $y=c_1f_1(x)+f_2(x)$ -- 증명 후술

pf) (약식증명) $y=c_1f_1(x)+f_2(x)$ 를 원래 식에 대입하면 $c_1f_1{'}(x)+f_2{'}(x)+c_1p(x)f_1(x)+p(x)f_2(x)$ $=c_1(f_1{'}(x)+p(x)f_1(x))+f_2{'}(x)+p(x)f_2(x)$ =0+q(x)=q(x)

이므로 방정식의 해라는 명제는 참

 $oldsymbol{g}$ 조건이 y(1)=3일 때 미분방정식을 푸시오.

$$x\frac{dy}{dx} - y = x$$

 $oxedsymbol{eta}$ x=2일 때, y=2에서 다음 미분방정식의 해를 구하시오.

$$x\frac{dy}{dx} + y = 2x$$

예제 호기 조건 m(0) = 20일 때 미분 방정식을 푸시오.

$$\frac{dm}{dt} + \frac{4m}{20+t} = 2$$

★ p21 예제 1번에 대한 답

- 4) 일계 선형 미분방정식의 활용
 - (1) 단일단계 반응에서의 반응속도론

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

- ① 각 단일단계 반응은 반응물에 대한 일차 반응이라고 하자.
- ② 일차 반응에 대한 속도론으로부터 주어진 경로에 따라

$$\frac{d[\mathbf{A}]}{dt} = -k_1[\mathbf{A}], \quad \frac{d[\mathbf{B}]}{dt} = k_1[\mathbf{A}] - k_2[\mathbf{B}], \quad \frac{d[\mathbf{C}]}{dt} = k_2[\mathbf{B}]$$

③ [A]에 대한 식은 변수분리형 미분방정식이므로

$$[A](t) = [A]_0 e^{-k_1 t}$$
 (초깃값 조건)

④ ③의 결론을 ④에 대입하면 $\frac{d[B]}{dt} + k_2[B] = k_1[A]_0 e^{-k_1 t}$

⑤ 적분인자 $e^{\int p(x)dx} = e^{k_2 t}$ 를 이용하면

[B]
$$(t) = e^{-k_2(t)} \left(k_1 [A]_0 \int e^{(k_2 - k_1)t} dt + \beta \right) = \frac{k_1 [A]_0 e^{-k_1 t}}{k_2 - k_1} + \beta e^{-k_2 t}$$

⑥ 초깃값 조건 [B](0)=0으로부터 $\beta=-\frac{k_1\,[A]_0}{k_2-k_1}$ 이다. 고로 정리하면

$$B(t) = \frac{k_1 [A]_0}{k_2 - k_1} (e^{-k_1 t} - e^{-k_2 t})$$

⑦ 질량 보존의 법칙으로부터 $[A](t)+[B](t)+[C](t)=[A]_0$ 이므로

$$[C](t) = [A]_0 - [A]_0 e^{-k_1 t} - \frac{k_1 [A]_0}{k_2 - k_1} (e^{-k_1 t} - e^{-k_2 t})$$

⑧ 이상의 내용을 그래프로 도시하면 다음과 같다.

[그림 6.1] $A_0 = 1$, $k_1 = 2$, $k_2 = 1$ 에 대해 식 6.6의 해에 대한 도시.

예제 화학 반응 및 속도 과정에서 두 화학종 A와 B의 가역 반응(reversible process)를 나타내는 도식 $A \rightleftharpoons k_1 \\ k_2 \\ B$ 를 자주 만난다. k_1 과 k_2 가 반응 속도 상수(rate constant)일 때 이 가역 반응에 대한 반응 속도식은 $\frac{d[A]}{dt} = -k_1[A]$ 로 쓰일 수 있다. 이때 질량 보존의 법칙에 의해 $[A](t) + [B](t) = [A]_0 + [B]_0$ 이다.

- (1) [A](t) + [B](t)에 대해 다음 식을 푸시오.
- (2) 평형 상태에서 $\frac{[{\rm B}]_{\rm eq}}{[{\rm A}]_{\rm eq}} = \frac{k_1}{k_2} = K$ 임을 보이시오.

- (2) 희석 문제(배수 문제 등)
 - ★ 용액의 유입과 유출에 대한 미분방정식
 - 예시) 3M의 NaCl 용액 50L가 100L 용기에 들어 있다. 1M의 NaCl 용기가 8L/min으로 용기 안으로 흘러들어가 균일한 용액이 되고, 이용액이 다시 6L/min의 속도로 용기로부터 흘러 나간다. 용기가 가득 할 때 용액의 농도는 얼마인가?
 - ① 용액의 부피 V(t) = 50 + (8-6)t = 50 + 2t(L) ▷ 25분 뒤 가득 찬다.
 - ② 염의 몰수 $\Delta n(t) = 8 \Delta t \frac{n(t)}{50 + 2t} \Delta t \text{(mol)}$

정리하면
$$\frac{\Delta n(t)}{\Delta t} + \frac{n(t)}{50 + 2t} = 8$$

③ $\Delta t \rightarrow 0$ 을 취하면 미분방정식을 얻을 수 있다. 즉,

$$\frac{dn}{dt} + \frac{6n}{50 + 2t} = 8$$

- ④ 적분인자 $\rho = e^{\int \frac{6dt}{50+2t}} = (50+2t)^3$
- ⑤ 알고 있는 원래 해에 대입하면 미분방정식의 일반해

$$n(t) = \frac{(50+2t)^4 + \beta}{(50+2t)^3}$$

⑥ 초깃값 조건 t=0일 때 n(0)=150이라는 사실을 대입하면

$$\beta = 2 \times (50)^4$$
, $c(t) = \frac{(50+2t)^4 + 2 \times (50)^4}{(50+2t)^4}$

⑦ t = 25 대입하면 $c(25) = \frac{9}{8}$ 이다.

lacktriangle c(t)의 그래프. $\lim_{t \to \infty} c(t) = 1$ 이므로 y = 1을 점근선으로 갖는다.

예제 큰 용기에 2.00M 용액 100L가 들어 있다. 순수한 물을 2L/s의 속도로 용기 안으로 퍼 올려 균일한 용액이 되고 이 용액이 1L/s의 속도로 용기 밖으로 빠져나간 다. 용기의 용액이 0.10M보다 더 작아질 때까지 걸리는 시간은 얼마인가?

예제 큰 용기에 농도가 20g/L인 소금물 100L가 들어 있다. 농도가 2g/L인 소금물이 10L/min의 속도로 용기 안으로 더해지고, 이 용액의 용기로부터 유출이 5L/min이다. 이때 용기 안에 있는 소금의 최소량을 계산하시오. (단, 용액의 농도는 균질하게 유지된다고 가정한다.)

에제 일계 선형 미분방정식은 '희석 문제'를 풀기 위해 사용된다. 3.00M HCl이 50L 채워진 100L 용기에 2M HCl이 10L/min의 속도로 채워진다. 이때 용기의 바닥에는 작은 틈이 있어, 용기의 용액을 8L/min으로 유출시킨다. 아래의 식을 이용하여 용기가 가득 채워졌을 때의 농도를 구하라.

$$\frac{dy}{dx} + p(x) y = q(x)$$
$$y(x) = e^{\int p(x) dx} \left(\int q(x) e^{\int p(x) dx} + \beta \right)$$

3. 상수 계수의 제차(homogeneous) 선형 미분 방정식

- 1) n계 선형 미분방정식
 - (1) n계 선형 미분방정식의 일반해를 구하는 것은 쉽지 않으나, y의 n계도 함수에 붙은 항이 모두 상수라면 보조방정식을 이용하여 쉽게 해를 구할 수 있다.
 - ① 제차 미분방정식의 경우 적용 가능하다.

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

② 선형 미분 연산자 L의 도입

$$L = a_n(x) \frac{d^n}{dx^n} + a_{n-1}(x) \frac{d^{n-1}}{dx^{n-1}} + \dots + a_1(x) \frac{d}{dx} + a_0(x)$$

③ 즉, 재차 미분방정식은 다음과 같은 꼴로 도입된다.

$$Ly(x) = 0$$

- ④ 제차 미분 방정식의 해 $y_1(x)$, $y_2(x)$ …이 모두 Ly(x)=0의 해라면 $c_1y_1(x)+c_2y_2(x)+\cdots+c_ny_n(x)$ 또한 제차 방정식의 해다.
- (2) 제차 미분 방정식의 보조 방정식
 - ightharpoonup 남은 장에서 다루는 것은 상수 계수의 동차 방정식만을 다룬다. 즉, $a_n(x), a_{n-1}(x) \cdots a_0(x)$ 가 모두 상수인 경우만으로 한정한다.

$$L = a_n \frac{d^n}{dx^n} + a_{n-1} \frac{d^{n-1}}{dx^{n-1}} + \dots + a_1 \frac{d}{dx} + a_0$$

- ① 상수 계수를 갖는 경우 미분방정식은 그 n계도함수가 그 자신의 배수 가 되도록 하는 함수에 의해서만 만족된다. $\rightarrow y(x) = e^{\alpha x}$ 라고 하자.
- ② 그렇다면 동차 미분방정식 Ly(x) = 0의 보조방정식은

$$a_n\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_0 = 0$$

③ 이를 만족하는 α 들에 대하여 해 y(x)는 다음과 같이 표현된다.

$$y(x) = c_1 e^{\alpha_1 x} + c_2 e^{\alpha_2 x} + \dots + c_n e^{\alpha_n x}$$

 $\rightarrow y(x)=0$ 을 만족시키는 방법이 $c_1=c_2=\cdots=c_n=0$ 인 경우에만 $e^{\alpha_1 x}$, $e^{\alpha_2 x}\cdots e^{\alpha_n x}$ 는 모두 선형 독립(linearly independent)이다.

 $oldsymbol{g}$ 소기 조건 y(0)=0과 y'(0)=6을 따르는 미분 방정식의 해를 구하시오.

 $oxed{\mathbf{qM}}$ 다음 각 경우에 y(0) = 0과 y'(0) = 1일 때 각 미분 방정식의 해를 구하시오.

(1)
$$y''(x) + 6y'(x) = 0$$

(2)
$$y''(x) + 4y(x) = 0$$

2) 차수의 축소

예> 이계 선형 제차 미분 방정식 y'' + p(x)y' + q(x)y = 0을 가정하자.

- ① 방정식의 자명해(또는 특수해) $y_1(x)$ 를 찾는다.
- ② $y_1(x)$ 와 선형 독립(linearly independent)인 해 $y_2(x)$ 가 존재한다면 $\frac{y_2(x)}{y_1(x)}$ 는 상수가 아니다. 따라서 $y_2(x)=u(x)y_1(x)$ 라고 가정하자.
- ③ 도함수를 구하면 $y_2'(x) = u(x)y_1'(x) + u'(x)y_1(x),$ $y_2''(x) = u(x)y_1''(x) + 2u'(x)y_1'(x) + u''(x)y_1(x)$
- ③ 이를 원래 방정식에 대입하면 y'' + p(x)y' + q(x)y $= u(y_1' + p(x)y_1' + q(x)y_1) + y_1u'' + (2y_1' + p(x)y_1)u'$ $= y_1u'' + (2y_1 + p(x)y_1)u' = 0$
- ④ 변수분리하면 $\frac{u''}{u'} + 2\frac{{y_1}'}{y_1} + p(x) = 0$, $\ln \left| u' y_1^2 \right| = -\int p(x) \, dx + C$, $u' y_1^2 = c_1 e^{\int p(x) \, dx}$ \triangleright 정리하면

$$y_2(x) = y_1(x) \int \frac{e^{-\int p(x) dx}}{(y_1(x))^2} dx$$

예제 $y=x^2$ 이 $x^2y''(x)+xy'(x)-4y(x)=0$ 을 만족하는 것으로 주어질 때, 차수의 축소를 이용하여 이차의 해를 구하시오.

예제 y=x가 $x^2y''(x)-xy'(x)+y(x)=0$ 을 만족하는 것으로 주어질 때, 차수의 축소를 이용하여 이차의 해를 구하시오.

4. 진동하는 해

- 1) 보조방정식의 복소수 영역 확장
 - (1) 상수 w에 대하여 다음 이계 선형 미분 방정식 $x''(t)+w^2x(t)=0$ 을 생각하면 보조방정식 $\alpha^2+w^2=0$ 이고, 따라서 $\alpha=\pm i\,w$ 이다.
 - ① 일반해 $x(t) = c_1 e^{iut} + c_2 e^{-iut}$ 라고 쓸 수 있다.
 - ② 오일러 공식을 이용하면 $x(t) = c_3 \cos wt + c_4 \sin wt$

$$(c_3 = c_1 + c_2, c_4 = i(c_1 - c_2))$$

③ 이때 삼각함수의 합성에 의해

$$x(t) = A\cos\left(wt + \phi\right)$$

어제 다음 값이 방정식
$$x''(t)+w^2x(t)=0$$
의 일반해임을 보이시오.
$$x(t)=A\cos\left(wt+\phi\right)$$

- 2) 진동해의 응용
 - (1) 후크의 법칙(고전 조화 진동자)
 - ① 질량에 m에 작용하는 힘 f = -kx

(단, x는 평형점으로부터의 변위)

- ② 이때 k를 용수철의 특성을 나타내는 상수 인 힘 상수(force constant)라 한다.
- ③ 뉴턴의 운동 법칙으로부터

$$ma = m\frac{d^2x}{dt^2} = -kx$$

 \triangleright 이는 $x''(t)+w^2x(t)=0$ 의 비표준화 형태와 동일

(2) 단진자

① 각변위 θ 가 발생한 질량 m인 물체에 작용하는 중력의 크기는

$$f(\theta) = -mg\sin\theta$$

② 단진자는 $\theta \rightarrow 0$ 인 상황을 상정하므로

$$f(\theta) \approx -mg\theta$$

③ 뉴턴의 운동 법칙에 의해

$$m\frac{d^2x}{dt^2} = -mg\theta$$

④ 이때 각변수와 직선 변수의 대응 관계에서 a=rlpha=llpha이므로

$$m l \frac{d^2 \theta}{dt^2} = -mg \theta$$

⑤ 정리하면 $\frac{d^2\theta}{dt^2} + w^2\theta = 0$

예제 (1차원 상자 속의 입자(particle in a box 문제)

물리적으로 0부터 L까지 직선에 놓여 가두어진 퍼텐셜이 없는 입자를 나타내는 슈뢰딩거 방정식은 다음과 같다.

$$\frac{d^2\psi}{dx^2} + \frac{2mE}{\hbar^2}\psi = 0 \ (0 \le x \le L)$$

파동함수의 경계 조건 $\psi(0)=\psi(L)=0$ 을 만족해야 한다. 경계 조건에 지배되는 미분 방정식을 푸는 것을 경곗값 문제(boundary condition problem)이라고 한다. 위의 경곗값 문제를 푸시오.

예제 (감쇠 조화 진동(damping))

점성 매질 속으로 운동하면서 저항을 받는 진자를 생각해 보자. 마찰력 f는 각속도 $w=\dfrac{d\theta}{dt}$ 에 비례한다는 사실을 어렵지 앟게 이해할 수 있다. 물리적 현상을 미분방정식으로 나타내고 이를 푸시오.

예제 (종단 속력)

속도의 제곱에 비례하는 저항을 가지고 높이 h로부터 띨어지는 물체를 생각하자.

(1) 이 계에 대한 뉴턴의 방정식은

$$\frac{dv}{dt} + \frac{\gamma}{m}v = g$$

임을 보이시오.

(2) t=0일 때와 $t\to\infty$ 일 때 이 식을 풀어 종단속도 $v=\frac{mg}{\gamma}$ 를 찾으시오.

에제 Damping 과정은 경우에 따라 사인이나 코사인함수의 해를 얻어야 한다. 두 경우를 분리하고 이에 상응하는 그래프를 그리시오.

예제 조화 진동자의 미분 방정식에 대한 해를 구하는 과정을 후크의 법칙부터 설명 하고 이와 유사한 예시들을 쓰시오.

2 미분방정식의 멱급수해

- 1. 멱급수 방법(Power series method of solving differential equations)
 - 1) 가정 : 미분방정식의 해를 다음과 같이 가정한다.

$$y(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{n=0}^{\infty} a_n x^n$$

- 2) 멱급수 방법을 활용한 제차 미분방정식의 풀이
 - ★ 이계 선형 미분방정식 y''(x)+y(x)=0의 풀이

예시) 멱급수 방법을 이용하여 이계 선형 미분 방정식 y''(x)+y(x)=0을 풀어라.

①
$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$
으로 쓰고 식을 정리하면

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=0}^{\infty} a_n x^n = 0$$

② 합을 보정하면

$$\sum_{n=0}^{\infty} ((n+2)(n+1)a_{n+2} + a_n)x^n = 0$$

③ 멱급수가 0이라는 명제는 각 항의 계수가 0이라는 사실과 필요충분 조건에 있다. 따라서

$$a_{n+2} = -\frac{a_n}{(n+2)(n+1)} \quad (n=0,1,2\cdots)$$

④ ③에서 얻은 점화식으로부터

$$a_{2n} = \frac{(-1)^n}{(2n)!} a_0, \ a_{2n+1} = \frac{(-1)^n}{(2n+1)!} a_1 \ (n = 0, 1, 2, \cdots)$$

⑤ 이때 $\sin x$ 와 $\cos x$ 의 매클로린 급수에 의해

$$y(x) = a_0 \cos x + a_1 \sin x$$

- 3) 여러 유명한 함수들의 매클로린 급수(참고)
 - (1) 삼각함수

①
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$
 (수렴구간 : R)

②
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$
 (수렴구간 : R)

(2) 지수함수

①
$$\exp(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$
 (수렴구간 : \mathbb{R})

(3) 조화급수

①
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots$$
 (수렴구간 $|x| < 1$)

②
$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n} = -\left(x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \cdots\right)$$
 (수렴구간 $|x| < 1$)

예제 멱급수 방법으로 다음 이계 미분 선형 제차 방정식을 푸시오.

$$y''(x) + 3xy'(x) + 3y(x) = 0$$

(예제) 방정식 $(1-x^2)y''(x)-2xy'(x)+2y(x)=0$ 을 푸시오.

- 2. 르장드르 방정식(Legendre's Equation)의 급수해
 - 1) 르장드르 방정식

다음 방정식을 르장드르 방정식(Legendre's equation)이라고 한다.

$$(1-x^2)y''(x) - 2xy'(x) + \alpha(\alpha+1)y(x) = 0$$

- 2) 르장드르 방정식의 급수해
 - (1) 르장드르 방정식에 $y(x) = \sum_{n=0}^{\infty} a_n x^n$ 을 대입하면 다음을 얻는다.

$$a_{2n} = (-1)^n \frac{\alpha(\alpha - 2)(\alpha - 2n + 2)\cdots(\alpha + 1)(\alpha + 3)\cdots(\alpha + 2n - 1)}{(2n)!} a_0 \quad (n \ge 1)$$

$$a_{2n+1} = (-1)^n \frac{(\alpha - 1)(\alpha - 3)(\alpha - 2n + 1)(\alpha + 2)(\alpha + 4)\cdots(\alpha + 2n)}{(2n+1)!} \quad (n \ge 1)$$

(2) n차 르장드르 다항식(Legendre polynomial) $f_n(x)$ 는 다음과 같이 정의된다.

$$f_n(x) = P_n(x) = \sum_{k=0}^{\infty} a_k x^k$$

(3) 함수의 직교성(orthogonality)

$$m \neq n$$
일 때 $\int_a^b \phi_n(x) \phi_m(x) = 0$ 를 만족하면 함수 $\phi_n(x)$ 의 집합
$$\{\phi_n(x)\}$$
는 구간 (a,b) 에서 직교성(orthogonality)을 갖는다.

예제 구간 (-1,1)에서 처음 몇 개의 르장드르 다항식이 직교함을 설명하시오.