(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 February 2002 (07.02.2002)

PCT

(10) International Publication Number WO 02/09573 A2

(51) International Patent Classification⁷:

101

A61B

(74) Agents: VAN AMSTERDAM, John, R. et al.; Wolf,

AND THE RESIDENCE OF THE PROPERTY OF THE PROPE

(21) International Application Number: PCT/US01/24104

(22) International Filing Date: 31 July 2001 (31.07.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/221,735 31 July 2000 (31.07.2000) US

(71) Applicant: THE BRIGHAM AND WOMEN'S HOSPITAL, INC. [US/US]; 75 Francis Street, Boston, MA 02115 (US).

(72) Inventor: MUTTER, George, L.; 230 Middlesex Road, Chestnut Hill, MA 02467-1841 (US).

Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).

(81) Designated States (national): CA, JP.

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A 2

(54) Title: PROGNOSTIC CLASSIFICATION OF ENDOMETRIAL CANCER

(57) Abstract: The invention provided sets of genes that are expressed differentially in normal and malignant endometrium. These sets of genes can be used to discriminate between normal and malignant endometrial tissues. Accordingly, diagnosticd assays for classification of tumors, prediction of tumor outcome, selecting and monitoring treatment regimens and monitoring tumor progression/regression also are provided.

- 1 -

PROGNOSTIC CLASSIFICATION OF ENDOMETRIAL CANCER

Field of the Invention

The invention relates to nucleic acid microarray markers for cancer, particularly for endometrial cancer. The invention also relates to methods for diagnosing cancer as well as optimizing cancer treatment strategies.

Background of the Invention

Endometrioid endometrial adenocarcinomas are the most common gynecologic malignancy, the risk of which is increased by an abnormal endocrine environment or premalignant lesions with loss of tumor suppressor function. The 6000 deaths yearly make uterine cancer the seventh leading cause of death from malignancy in females. It is primarily a disease of postmenopausal women, although 25 percent of cases occur in women below age 50 and 5 percent below age 40 (Harrison's Principles of Internal Medicine 1998).

Although much progress has been made toward understanding the biological basis of cancer and in its diagnosis and treatment, it is still one of the leading causes of death in the United States. Inherent difficulties in the diagnosis and treatment of cancer include among other things, the existence of many different subgroups of cancer and the concomitant variation in appropriate treatment strategies to maximize the likelihood of positive patient outcome.

The prognosis of endometrial cancer depends upon stage, histologic grade, and extent of myometrial invasion. The staging of endometrial cancer requires surgery to establish the extent of disease and the depth of myometrial invasion. Peritoneal fluid should be sampled; the abdomen and pelvis explored; and pelvic and para-aortic lymphadenectomy performed depending upon the histology, grade, and depth of invasion in the uterine specimen on frozen section.

Initial evaluation of patients suspected of endometrial cancer includes a history and physical and pelvic examination followed by an endometrial biopsy or a fractional dilation and curettage. Outpatient procedures such as endometrial biopsy or aspiration curettage can be used but are definitive only when positive. Once a diagnosis is made, the options for treating endometrial cancer are assessed with respect to the needs of the patient. These options traditionally include surgical intervention, radiotherapy, chemotherapy, and adjuvant systemic therapies. Adjuvants may include but are not limited to chemotherapy, radiotherapy, and

- 2 -

endocrine therapies with progestational agents such as hydroxyprogesterone, megastrol, and deoxyprogesterone, and the antiestrogen tamoxifen.

It is difficult to predict from standard clinical and pathologic features the clinical course of endometrial cancer. However, it is very important in the treatment of endometrial cancer to select and implement an appropriate combination of therapeutic approaches. The available methods for designing strategies for treating endometrial cancer patients are complex and time consuming. The wide range of cancer subgroups and variations in disease progression limit the predictive ability of the healthcare professional. In addition, continuing development of novel treatment strategies and therapeutics will result in the addition of more variables to the already complex decision-making process involving matching the cancer patient with a treatment regimen that is appropriate and optimized for the cancer stage, extent of myometrial invasion, tumor growth rate, and other factors central to the individual patient's prognosis. Because of the critical importance of selecting appropriate treatment regimens for endometrial cancer patients, the development of guidelines for treatment selection is of key interest to those in the medical community and their patients. Thus, there presently is a need for objective, reproducible, and sensitive methods for predicting endometrial cancer patient outcome and selecting optimal treatment regimens.

Summary of the Invention

It now has been discovered that particular sets of genes are expressed differentially in normal and malignant endometrium. These sets of genes can be used to discriminate between normal and malignant endometrial tissues. Accordingly, diagnostic assays for classification of tumors, prediction of tumor outcome, selecting and monitoring treatment regimens, and monitoring tumor progression/regression can now be based on the expression of sets of genes.

According to one aspect of the invention, methods for diagnosing endometrial cancer in a subject suspected of having endometrial cancer are provided. The methods include obtaining from the subject an endometrial tissue sample and determining the expression of a set of nucleic acid molecules or expression products thereof in the endometrial tissue sample. The set of nucleic acid molecules includes at least two nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50. In preferred embodiments, the endometrial tissue sample is suspected of being cancerous.

In some embodiments the set of nucleic acid molecules includes more than 2, and up to all of the nucleic acid molecules set forth as SEQ ID NOs:1-50, and any number of nucleic acid sequences between these two numbers. For example, in certain embodiments the set includes at least 3, 4, 5, 10, 15, 20, 30, 40 or more nucleic acid molecules of the nucleic acid molecules set forth as SEQ ID NOs:1-50.

In other embodiments, the method further includes determining the expression of the set of nucleic acid molecules or expression products thereof in a non-cancerous endometrial tissue sample, and comparing the expression of the set of nucleic acid molecules or expression products thereof in the endometrial tissue sample suspected of being cancerous and the non-cancerous endometrial tissue sample.

The invention in another aspect provides solid-phase nucleic acid molecule arrays. The arrays have a cancer gene marker set that consists essentially of at least two and as many as all of the nucleic acid molecules set forth as SEQ ID NOs:1-50 fixed to a solid substrate. The set of nucleic acid markers can include any number of nucleic acid sequences between these two numbers, selected from SEQ ID NOs:1-50. For example, in certain embodiments the set includes at least 3, 4, 5, 10, 15, 20, 30, 40 or more nucleic acid molecules of the nucleic acid molecules set forth as SEQ ID NOs:1-50. In some embodiments, the solid-phase nucleic acid molecule array also includes at least one control nucleic acid molecule.

In certain embodiments, the solid substrate includes a material selected from the group consisting of glass, silica, aluminosilicates, borosilicates, metal oxides such as alumina and nickel oxide, various clays, nitrocellulose, or nylon. Preferably the substrate is glass.

In other embodiments, the nucleic acid molecules are fixed to the solid substrate by covalent bonding.

According to yet another aspect of the invention, protein microarrays are provided. The protein microarrays include antibodies or antigen-binding fragments thereof, that specifically bind at least two different polypeptides selected from the group consisting of SEQ ID NOs:51-100, fixed to a solid substrate. In some embodiments, the microarray comprises antibodies or antigen-binding fragments thereof, that bind specifically to least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 different polypeptides selected from the group consisting of SEQ ID NOs:51-100. In certain embodiments, the microarray also includes an antibody or antigen-binding fragment thereof, that binds specifically to a cancer-associated

- 4 -

polypeptide other than those selected from the group consisting of SEQ ID NOs:51-100, preferably An endometrial cancer associated polypeptide. In some embodiments, the protein microarray also includes at least one control polypeptide molecule. In further embodiments, the antibodies are monoclonal or polyclonal antibodies. In other embodiments, the antibodies are chimeric, human, or humanized antibodies. In some embodiments, the antibodies are single chain antibodies. In still other embodiments, the antigen-binding fragments are F(ab')₂, Fab, Fd, or Fv fragments.

According to yet another aspect of the invention, protein microarrays are provided. The protein microarrays include antibodies or antigen-binding fragments thereof, that specifically bind at least two different polypeptides selected from the group consisting of SEQ ID NOs:51-100, fixed to a solid substrate. In some embodiments, the microarray comprises antibodies or antigen-binding fragments thereof, that bind specifically to least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 different polypeptides selected from the group consisting of SEQ ID NOs:51-100. In certain embodiments, the microarray also includes an antibody or antigen-binding fragment thereof, that binds specifically to a cancer-associated polypeptide other than those selected from the group consisting of SEQ ID NOs:51-100, preferably an endometrial cancer associated polypeptide. In some embodiments, the protein microarray also includes at least one control polypeptide molecule. In further embodiments, the antibodies are monoclonal or polyclonal antibodies. In other embodiments, the antibodies are chimeric, human, or humanized antibodies. In some embodiments, the antibodies are single chain antibodies. In still other embodiments, the antigen-binding fragments are F(ab')2, Fab, Fd, or Fv fragments.

In a further aspect of the invention, methods for identifying lead compounds for a pharmacological agent useful in the treatment of endometrial cancer are provided. The methods include contacting an endometrial cancer cell or tissue with a candidate pharmacological agent, and determining the expression of a set of nucleic acid molecules in the endometrial cancer cell or tissue sample under conditions which, in the absence of the candidate pharmacological agent, permit a first amount of expression of the set of nucleic acid molecules. The set of nucleic acid molecules includes at least two and as many as all of the nucleic acid molecules set forth as SEQ ID NOs:1-50. The methods also include detecting a test amount of the expression of the set of nucleic acid molecules, wherein a decrease in the test amount of expression in the presence of

the candidate pharmacological agent relative to the first amount of expression indicates that the candidate pharmacological agent is a lead compound for a pharmacological agent that is useful in the treatment of endometrial cancer.

In some embodiments of any of the foregoing methods and products, the differences in the expression of the nucleic acid molecules are determined by nucleic acid hybridization or nucleic acid amplification methods. Preferably the nucleic acid hybridization is performed using a solid-phase nucleic acid molecule array. In other embodiments, the differences in the expression of the nucleic acid molecules are determined by protein expression analysis, preferably SELDI mass spectroscopy.

These and other aspects of the invention will be described in greater detail below.

Detailed Description of the Invention

The invention described herein relates to the identification of a set of genes expressed in endometrial cancer tissue that are predictive of the clinical outcome of the cancer. Changes in cell phenotype in cancer are often the result of one or more changes in the genome expression of the cell. Some genes are expressed in tumor cells, and not in normal cells. In addition, different genes are expressed in different subgroups of endometrial cancers, which have different prognoses and require different treatment regimens to optimize patient outcome. The differential expression of endometrial cancer genes can be examined by the assessment of nucleic acid or protein expression in the endometrial cancer tissue.

The genes identified permit, *inter alia*, rapid screening of cancer samples by nucleic acid microarray hybridization or protein expression technology to determine the expression of the specific genes and thereby to predict the outcome of the cancer. Such screening is beneficial, for example, in selecting the course of treatment to provide to the cancer patient, and to monitor the efficacy of a treatment.

The invention differs from traditional endometrial cancer diagnostic and classification techniques with respect to the speed, simplicity, and reproducibility of the cancer diagnostic assay. The invention also presents targets for drug development because it identifies genes that are differentially expressed in outcome endometrial tumors, which can be utilized in the development of drugs to treat such tumors, e.g., by reducing expression of the genes or reducing activity of proteins encoded by the genes.

The invention simplifies prognosis determination by providing an identified set of genes whose expression in endometrial cancers predicts clinical outcome as defined by tumor metastasis, recurrence, or death. In the invention RNA expression phenotyping was performed using high density microarrays generated from quantitative expression data on over 5000 (estimated 5800) genes, which have been analyzed to identify 50 specific probe sets (genes). The expression gene set has multifold uses including, but not limited to, the following examples. The expression gene set may be used as a prognostic tool for endometrial cancer patients, to make possible more finely tuned diagnosis of endometrial cancer and allow healthcare professionals to tailor treatment to individual patients' needs. The invention can also assess the efficacy of endometrial cancer treatment by determining progression or regression of endometrial cancer in patients before, during, and after endometrial cancer treatment. Another utility of the expression gene set is in the biotechnology and pharmaceutical industries' research on disease pathway discovery for therapeutic targeting. The invention can identify alterations in gene expression in endometrial cancer and can also be used to uncover and test candidate pharmaceutical agents to treat endometrial cancer.

As used herein, a subject is a human, non-human primate, cow, horse, pig, sheep, goat, dog, cat, or rodent. In all embodiments human subjects are preferred. Preferably the subject is a human either suspected of having endometrial cancer, or having been diagnosed with endometrial cancer. In a preferred embodiment of the invention the cancer is endometroid endometrial adenocarcinoma. Methods for identifying subjects suspected of having endometrial cancer may include physical examination, subject's family medical history, subject's medical history, endometrial biopsy, or a number of imaging technologies such as ultrasonography, computed tomography, magnetic resonance imaging, magnetic resonance spectroscopy, or positron emission tomography. Diagnostic methods for endometrial cancer and the clinical delineation of endometrial cancer diagnoses are well known to those of skill in the medical arts.

As used herein, endometrial tissue sample is tissue obtained from an endometrial tissue biopsy using methods well known to those of ordinary skill in the related medical arts. The phrase "suspected of being cancerous" as used herein means an endometrial cancer tissue sample believed by one of ordinary skill in the medical arts to contain cancerous cells. Methods for obtaining the sample from the biopsy include gross apportioning of a mass, microdissection, laser-based microdissection, cytologic sampling of the endometrium using a brush, aspiration curettage, fractional dilation and curettage, or other art-known cell-separation methods.

- 7 -

Because of the variability of the cell types in diseased-tissue biopsy material, and the variability in sensitivity of the diagnostic methods used, the sample size required for analysis may range from 1, 10, 50, 100, 200, 300, 500, 1000, 5000, 10,000, to 50,000 or more cells. The appropriate sample size may be determined based on the cellular composition and condition of the biopsy and the standard preparative steps for this determination and subsequent isolation of the nucleic acid for use in the invention are well known to one of ordinary skill in the art. An example of this, although not intended to be limiting, is that in some instances a sample from the biopsy may be sufficient for assessment of RNA expression without amplification, but in other instances the lack of suitable cells in a small biopsy region may require use of RNA conversion and/or amplification methods or other methods to enhance resolution of the nucleic acid molecules. Such methods, which allow use of limited biopsy materials, are well known to those of ordinary skill in the art and include, but are not limited to: direct RNA amplification, reverse transcription of RNA to cDNA, amplification of cDNA, or the generation of radio-labeled nucleic acids.

As used herein, the phrase "determining the expression of a set of nucleic acid molecules in the endometrial tissue" means identifying RNA transcripts in the tissue sample by analysis of nucleic acid or protein expression in the tissue sample. As used herein, "set" refers to a group of nucleic acid molecules that include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 different nucleic acid sequences from the group of nucleic acid sequences numbered 1 through 50 in Table 1 (SEQ ID NOs: 1-50).

The expression of the set of nucleic acid molecules in the sample from the endometrial cancer patient can be compared to the expression of the set of nucleic acid molecules in a sample of endometrial tissue that is non-cancerous. As used herein, non-cancerous endometrial tissue means tissue determined by one of ordinary skill in the medical art to have no evidence of endometrial cancer based on standard diagnostic methods including, but not limited to, histologic staining and microscopic analysis.

Nucleic acid markers for cancer are nucleic acid molecules that by their presence or absence indicate the presence of absence of endometrial cancer. In tissue, certain nucleic acid molecules are expressed at different levels depending on whether tissue is non-cancerous or cancerous.

- 8 -

Hybridization methods for nucleic acids are well known to those of ordinary skill in the art (see, e.g. *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or *Current Protocols in Molecular Biology*, F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York). The nucleic acid molecules from an endometrial cancer tissue sample hybridize under stringent conditions to nucleic acid markers expressed in endometrial cancer. In one embodiment the markers are sets of two or more of the nucleic acid molecules as set forth in SEQ ID NOs: 1 through 50.

The endometrial cancer nucleic acid markers disclosed herein are known genes and fragments thereof. It may be desirable to identify variants of those genes, such as allelic variants or single nucleotide polymorphisms (SNPs) in tissues. Accordingly, methods for identifying endometrial cancer nucleic acid markers, including variants of the disclosed full-length cDNAs, genomic DNAs, and SNPs are also included in the invention. The methods include contacting a nucleic acid sample (such as a cDNA library, genomic library, genomic DNA isolate, etc.) with a nucleic acid probe or primer derived from one of SEQ ID NOs:1-50. The nucleic acid sample and the probe or primer hybridize to complementary nucleotide sequences of nucleic acids in the sample, if any are present, allowing detection of nucleic acids related to SEQ ID NOs: 1-50. Preferably the probe or primer is detectably labeled. The specific conditions, reagents, and the like can be selected by one of ordinary skill in the art to selectively identify nucleic acids related to sets of two or more of SEQ ID NOs:1 through 50. The isolated nucleic acid molecule can be sequenced according to standard procedures.

In addition to native nucleic acid markers (SEQ ID NOs:1-50), the invention also includes degenerate nucleic acids that include alternative codons to those present in the native materials. For example, serine residues are encoded by the codons TCA, AGT, TCC, TCG, TCT, and AGC. Each of the six codons is equivalent for the purposes of encoding a serine residue. Similarly, nucleotide sequence triplets that encode other amino acid residues include, but are not limited to: CCA, CCC, CCG, and CCT (proline codons); CGA, CGC, CGG, CGT, AGA, and AGG (arginine codons); ACA, ACC, ACG, and ACT (threonine codons); AAC and AAT (asparagine codons); and ATA, ATC, and ATT (isoleucine codons). Other amino acid residues may be encoded similarly by multiple nucleotide sequences. Thus, the invention embraces degenerate nucleic acids that differ from the biologically isolated nucleic acids in codon sequence due to the degeneracy of the genetic code.

The invention also provides modified nucleic acid molecules, which include additions, substitutions, and deletions of one or more nucleotides such as the allelic variants and SNPs described above. In preferred embodiments, these modified nucleic acid molecules and/or the polypeptides they encode retain at least one activity or function of the unmodified nucleic acid molecule and/or the polypeptides, such as hybridization, antibody binding, etc. In certain embodiments, the modified nucleic acid molecules encode modified polypeptides, preferably polypeptides having conservative amino acid substitutions. As used herein, a "conservative amino acid substitution" refers to an amino acid substitution which does not alter the relative charge or size characteristics of the protein in which the amino acid substitution is made. Conservative substitutions of amino acids include substitutions made amongst amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H; (d) A, G; (e) S, T; (f) Q, N; and (g) E, D. The modified nucleic acid molecules are structurally related to the unmodified nucleic acid molecules so that the modified and unmodified nucleic acid molecules hybridize under stringent conditions known to one of skill in the art.

For example, modified nucleic acid molecules that encode polypeptides having single amino acid changes can be prepared for use in the methods and products disclosed herein. Each of these nucleic acid molecules can have one, two, or three nucleotide substitutions exclusive of nucleotide changes corresponding to the degeneracy of the genetic code as described herein. Likewise, modified nucleic acid molecules that encode polypeptides having two amino acid changes can be prepared, which have, e.g., 2-6 nucleotide changes. Numerous modified nucleic acid molecules like these will be readily envisioned by one of skill in the art, including for example, substitutions of nucleotides in codons encoding amino acids 2 and 3, 2 and 4, 2 and 5, 2 and 6, and so on. In the foregoing example, each combination of two amino acids is included in the set of modified nucleic acid molecules, as well as all nucleotide substitutions that code for the amino acid substitutions. Additional nucleic acid molecules that encode polypeptides having additional substitutions (i.e., 3 or more), additions or deletions [e.g., by introduction of a stop codon or a splice site(s)] also can be prepared and are embraced by the invention as readily envisioned by one of ordinary skill in the art. Any of the foregoing nucleic acids can be tested by routine experimentation for retention of structural relation to or activity similar to the nucleic acids disclosed herein.

-10-

In the invention, standard hybridization techniques of microarray technology are utilized to assess patterns of nucleic acid expression and identify nucleic acid marker expression. Microarray technology, which is also known by other names including: DNA chip technology, gene chip technology, and solid-phase nucleic acid array technology, is well known to those of ordinary skill in the art and is based on, but not limited to, obtaining an array of identified nucleic acid probes on a fixed substrate, labeling target molecules with reporter molecules (e.g., radioactive, chemiluminescent, or fluorescent tags such as fluorescein, Cye3-dUTP, or Cye5-dUTP), hybridizing target nucleic acids to the probes, and evaluating target-probe hybridization. A probe with a nucleic acid sequence that perfectly matches the target sequence will, in general, result in detection of a stronger reporter-molecule signal than will probes with less perfect matches. Many components and techniques utilized in nucleic acid microarray technology are presented in *The Chipping Forecast*, Nature Genetics, Vol.21, Jan 1999, the entire contents of which is incorporated by reference herein.

According to the present invention, microarray substrates may include but are not limited to glass, silica, aluminosilicates, borosilicates, metal oxides such as alumina and nickel oxide, various clays, nitrocellulose, or nylon. In all embodiments a glass substrate is preferred. According to the invention, probes are selected from the group of nucleic acids including, but not limited to: DNA, genomic DNA, cDNA, and oligonucleotides; and may be natural or synthetic. Oligonucleotide probes preferably are 20 to 25-mer oligonucleotides and DNA/cDNA probes preferably are 500 to 5000 bases in length, although other lengths may be used. Appropriate probe length may be determined by one of ordinary skill in the art by following art-known procedures. In one embodiment, preferred probes are sets of two or more of the nucleic acid molecules set forth as SEQ ID NO: 1 through 50 (see also Table 1). Probes may be purified to remove contaminants using standard methods known to those of ordinary skill in the art such as gel filtration or precipitation.

In one embodiment, the microarray substrate may be coated with a compound to enhance synthesis of the probe on the substrate. Such compounds include, but are not limited to, oligoethylene glycols. In another embodiment, coupling agents or groups on the substrate can be used to covalently link the first nucleotide or olignucleotide to the substrate. These agents or groups may include, but are not limited to: amino, hydroxy, bromo, and carboxy groups. These reactive groups are preferably attached to the substrate through a hydrocarbyl radical such as an alkylene or phenylene divalent radical, one valence position occupied by the chain bonding and

the remaining attached to the reactive groups. These hydrocarbyl groups may contain up to about ten carbon atoms, preferably up to about six carbon atoms. Alkylene radicals are usually preferred containing two to four carbon atoms in the principal chain. These and additional details of the process are disclosed, for example, in U.S. Patent 4,458,066, which is incorporated by reference in its entirety.

In one embodiment, probes are synthesized directly on the substrate in a predetermined grid pattern using methods such as light-directed chemical synthesis, photochemical deprotection, or delivery of nucleotide precursors to the substrate and subsequent probe production.

In another embodiment, the substrate may be coated with a compound to enhance binding of the probe to the substrate. Such compounds include, but are not limited to: polylysine, amino silanes, amino-reactive silanes (Chipping Forecast, 1999) or chromium (Gwynne and Page, 2000). In this embodiment, presynthesized probes are applied to the substrate in a precise, predetermined volume and grid pattern, utilizing a computer-controlled robot to apply probe to the substrate in a contact-printing manner or in a non-contact manner such as ink jet or piezo-electric delivery. Probes may be covalently linked to the substrate with methods that include, but are not limited to, UV-irradiation. In another embodiment probes are linked to the substrate with heat.

Targets are nucleic acids selected from the group, including but not limited to: DNA, genomic DNA, cDNA, RNA, mRNA and may be natural or synthetic. In all embodiments, nucleic acid molecules from human endometrial tissue are preferred. The tissue may be obtained from a subject or may be grown in culture (e.g. from a endometrial cancer cell line).

In embodiments of the invention one or more control nucleic acid molecules are attached to the substrate. Preferably, control nucleic acid molecules allow determination of factors including but not limited to: nucleic acid quality and binding characteristics; reagent quality and effectiveness; hybridization success; and analysis thresholds and success. Control nucleic acids may include but are not limited to expression products of genes such as housekeeping genes or fragments thereof.

To select a set of tumor markers, the expression data generated by, for example, microarray analysis of gene expression, preferably is analyzed to determine which genes in different groups of cancer tissues are significantly differentially expressed. In the methods disclosed herein, the significance of gene expression was determined using Permax computer

-12-

software, although any standard statistical package that can discriminate significant differences in expression may be used. Permax performs permutation 2-sample t-tests on large arrays of data. For high dimensional vectors of observations, the Permax software computes t-statistics for each attribute, and assesses significance using the permutation distribution of the maximum and minimum overall attributes.

In one embodiment of the invention, expression of nucleic acid markers is used to select clinical treatment paradigms for endometrial cancer. Treatment options, as described herein, may include but are not limited to: radiotherapy, chemotherapy, adjuvant therapy, or any combination of the aforementioned methods. Aspects of treatment that may vary include, but are not limited to: dosages, timing of administration, or duration or therapy; and may or may not be combined with other treatments, which may also vary in dosage, timing, or duration. Another treatment for endometrial cancer is surgery, which can be utilized either alone or in combination with any of the aforementioned treatment methods. One of ordinary skill in the medical arts may determine an appropriate treatment paradigm based on evaluation of differential expression of sets of two or more of the nucleic acid targets ste forth as SEQ ID NOs:1-50. Cancers that express markers that are indicative of a more aggressive cancer or poor prognosis may be treated with more aggressive therapies.

Progression or regression of endometrial cancer is determined by comparison of two or more different endometrial cancer tissue samples taken at two or more different times from a subject. For example, progression or regression may be evaluated by assessments of expression of sets of two or more of the nucleic acid targets, including but not limited to SEQ ID NOs:1-50, in an endometrial cancer tissue sample from a subject before, during, and following treatment for endometrial cancer.

In another embodiment, novel pharmacological agents useful in the treatment of endometrial cancer can be identified by assessing variations in the expression of sets of two or more endometrial cancer nucleic acid markers, from among SEQ ID NOs:1-50, prior to and after contacting endometrial cancer cells or tissues with candidate pharmacological agents for the treatment of endometrial cancer. The cells may be grown in culture (e.g. from an endometrial cancer cell line), or may be obtained from a subject, (e.g. in a clinical trial of candidate pharmaceutical agents to treat endometrial cancer). Alterations in expression of two or more sets of endometrial cancer nucleic acid markers, from among SEQ ID NOs:1-50, in endometrial cancer cells or tissues tested before and after contact with a candidate pharmacological agent to

-13-

treat endometrial cancer, indicate progression, regression, or stasis of the endometrial cancer thereby indicating efficacy of candidate agents and concomitant identification of lead compounds for therapeutic use in endometrial cancer.

The invention further provides efficient methods of identifying pharmacological agents or lead compounds for agents active at the level of endometrial cancer cellular function. Generally, the screening methods involve assaying for compounds that beneficially alter endometrial cancer nucleic acid molecule expression. Such methods are adaptable to automated, high-throughput screening of compounds.

The assay mixture comprises a candidate pharmacological agent. Typically, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a different response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration of agent or at a concentration of agent below the limits of assay detection. Candidate agents encompass numerous chemical classes, although typically they are organic compounds. Preferably, the candidate pharmacological agents are small organic compounds, i.e., those having a molecular weight of more than 50 yet less than about 2500, preferably less than about 1000 and, more preferably, less than about 500. Candidate agents comprise functional chemical groups necessary for structural interactions with polypeptides and/or nucleic acids, and typically include at least an amine, carbonyl, hydroxyl, or carboxyl group, preferably at least two of the functional chemical groups and more preferably at least three of the functional chemical groups. The candidate agents can comprise cyclic carbon or heterocyclic structure and/or aromatic or polyaromatic structures substituted with one or more of the above-identified functional groups. Candidate agents also can be biomolecules such as peptides, saccharides, fatty acids, sterols, isoprenoids, purines, pyrimidines, derivatives or structural analogs of the above, or combinations thereof and the like. Where the agent is a nucleic acid, the agent typically is a DNA or RNA molecule, although modified nucleic acids as defined herein are also contemplated.

Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides, synthetic organic combinatorial libraries, phage display libraries of random peptides, and the like. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant, and animal extracts are available or readily produced.

- 14 -

Additionally, natural and synthetically produced libraries and compounds can be readily be modified through conventional chemical, physical, and biochemical means. Further, known pharmacological agents may be subjected to directed or random chemical modifications such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs of the agents.

A variety of other reagents also can be included in the mixture. These include reagents such as salts, buffers, neutral proteins (e.g., albumin), detergents, etc. which may be used to facilitate optimal protein-protein and/or protein-nucleic acid binding. Such a reagent may also reduce non-specific or background interactions of the reaction components. Other reagents that improve the efficiency of the assay such as protease, inhibitors, nuclease inhibitors, antimicrobial agents, and the like may also be used.

The mixture of the foregoing assay materials is incubated under conditions whereby, the anti-endometrial cancer candidate agent specifically binds the cellular binding target, a portion thereof or analog thereof. The order of addition of components, incubation temperature, time of incubation, and other paameters of the assay may be readily determined. Such experimentation merely involves optimization of the assay parameters, not the fundamental composition of the assay. Incubation temperatures typically are between 4°C and 40°C. Incubation times preferably are minimized to facilitate rapid, high throughput screening, and typically are between 0.1 and 10 hours.

After incubation, the presence or absence of specific binding between the antiendometrial cancer candidate agent and one or more binding targets is detected by any
convenient method available to the user. For cell-free binding type assays, a separation step is
often used to separate bound from unbound components. The separation step may be
accomplished in a variety of ways. Conveniently, at least one of the components is immobilized
on a solid substrate, from which the unbound components may be easily separated. The solid
substrate can be made of a wide variety of materials and in a wide variety of shapes, e.g.,
microtiter plate, microbead, dipstick, resin particle, etc. The substrate preferably is chosen to
maximize signal-to-noise ratios, primarily to minimize background binding, as well as for ease
of separation and cost.

Separation may be effected for example, by removing a bead or dipstick from a reservoir, emptying or diluting a reservoir such as a microtiter plate well, rinsing a bead, particle, chromotograpic column or filter with a wash solution or solvent. The separation step preferably

-15-

includes multiple rinses or washes. For example, when the solid substrate is a microtiter plate, the wells may be washed several times with a washing solution, which typically includes those components of the incubation mixture that do not participate in specific bindings such as salts, buffer, detergent, non-specific protein, etc. Where the solid substrate is a magnetic bead, the beads may be washed one or more times with a washing solution and isolated using a magnet.

Detection may be effected in any convenient way for cell-based assays such as two- or three-hybrid screens. The transcript resulting from a reporter gene transcription assay of the anti-cancer agent binding to a target molecule typically encodes a directly or indirectly detectable product, e.g., β-galactosidase activity, luciferase activity, and the like. For cell-free binding assays, one of the components usually comprises, or is coupled to, a detectable label. A wide variety of labels can be used, such as those that provide direct detection (e.g., radioactivity, luminescence, optical, or electron density, etc) or indirect detection (e.g., epitope tag such as the FLAG epitope, enzyme tag such as horseseradish peroxidase, etc.). The label may be bound to an anti-cancer agent binding partner, or incorporated into the structure of the binding partner.

A variety of methods may be used to detect the label, depending on the nature of the label and other assay components. For example, the label may be detected while bound to the solid substrate or subsequent to separation from the solid substrate. Labels may be directly detected through optical or electron density, radioactive emissions, nonradiative energy transfers, etc. or indirectly detected with antibody conjugates, strepavidin-biotin conjugates, etc. Methods for detecting the labels are well known in the art.

The invention provides endometrial cancer gene-specific binding agents, methods of identifying and making such agents, and their use in diagnosis, therapy and pharmaceutical development. For example, endometrial cancer gene-specific pharmacological agents are useful in a variety of diagnostic and therapeutic applications as described herein. In general, the specificity of an endometrial cancer gene binding to a binding agent is shown by binding equilibrium constants. Targets that are capable of selectively binding an endometrial cancer gene preferably have binding equilibrium constants of at least about 10⁷ M⁻¹, more preferably at least about 10⁸ M⁻¹, and most preferably at least about 10⁹ M⁻¹. The wide variety of cell-based and cell-free assays may be used to demonstrate endometrial cancer gene-specific binding. Cell-based assays include one, two and three hybrid screens, assays in which endometrial cancer gene-mediated transcription is inhibited or increased, etc. Cell-free assays include endometrial cancer gene-protein binding assays, immunoassays, etc. Other assays useful for screening

- 16-

agents which bind endometrial cancer polypeptides include fluorescence resonance energy transfer (FRET), and electrophoretic mobility shift analysis (EMSA).

In another aspect of the invention, pre- and post-treatment alterations in expression of two or more sets of endometrial cancer nucleic acid markers including, but not limited to, SEQ ID NOs:1-50 in endometrial cancer cells or tissues may be used to assess treatment parameters including, but not limited to: dosage, method of administration, timing of administration, and combination with other treatments as described herein.

Candidate pharmacological agents may include antisense oligonucleotides that selectively bind to an endometrial cancer nucleic acid marker molecule, as identified herein, to reduce the expression of the marker molecules in endometrial cancer cells and tissues. One of ordinary skill in the art can test of the effects of a reduction of expression of endometrial cancer nucleic acid marker sequences *in vivo* or *in vitro*, to determine the efficacy of one or more antisense oligonucleotides.

As used herein, the term "antisense oligonucleotide" or "antisense" describes an oligonucleotide that is an oligoribonucleotide, oligodeoxyribonucleotide, modified oligoribonucleotide, or modified oligodeoxyribonucleotide, which hybridizes under physiological conditions to DNA comprising a particular gene or to an mRNA transcript of that gene and, thereby, inhibits the transcription of that gene and/or the translation of that mRNA. The antisense molecules are designed so as to interfere with transcription or translation of a target gene upon hybridization with the target gene or transcript. Those skilled in the art will recognize that the exact length of the antisense oligonucleotide and its degree of complementarity with its target will depend upon the specific target selected, including the sequence of the target and the particular bases which comprise that sequence. It is preferred that the antisense oligonucleotide be constructed and arranged so as to bind selectively with the target under physiological conditions, i.e., to hybridize substantially more to the target sequence than to any other sequence in the target cell under physiological conditions.

Based upon the sequences of endometrial cancer expressed nucleic acids, or upon allelic or homologous genomic and/or cDNA sequences, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense molecules for use in accordance with the present invention. In order to be sufficiently selective and potent for inhibition, such antisense oligonucleotides should comprise at least 10 and, more preferably, at least 15 consecutive bases that are complementary to the target, although in certain cases modified oligonucleotides as

short as 7 bases in length have been used successfully as antisense oligonucleotides (Wagner et al., 1996). Most preferably, the antisense oligonucleotides comprise a complementary sequence of 20-30 bases. Although oligonucleotides may be chosen that are antisense to any region of the gene or mRNA transcripts, in preferred embodiments the antisense oligonucleotides correspond to N-terminal or 5' upstream sites such as translation initiation, transcription initiation, or promoter sites. In addition, 3'-untranslated regions may be targeted. Targeting to mRNA splicing sites has also been used in the art but may be less preferred if alternative mRNA splicing occurs. In addition, the antisense is targeted, preferably, to sites in which mRNA secondary structure is not expected (see, e.g., Sainio et al., 1994) and at which proteins are not expected to bind. Finally, although the listed sequences are cDNA sequences, one of ordinary skill in the art may easily derive the genomic DNA corresponding to the cDNA of an endometrial cancer expressed polypeptide. Thus, the present invention also provides for antisense oligonucleotides that are complementary to the genomic DNA corresponding to endometrial cancer expressed nucleic acids. Similarly, the use of antisense to allelic or homologous cDNAs and genomic DNAs are enabled without undue experimentation.

In one set of embodiments, the antisense oligonucleotides of the invention may be composed of "natural" deoxyribonucleotides, ribonucleotides, or any combination thereof. That is, the 5' end of one native nucleotide and the 3' end of another native nucleotide may be covalently linked, as in natural systems, via a phosphodiester internucleoside linkage. These oligonucleotides may be prepared by art-recognized methods, which may be carried out manually or by an automated synthesizer. They also may be produced recombinantly by vectors.

In preferred embodiments, however, the antisense oligonucleotides of the invention also may include "modified" oligonucleotides. That is, the oligonucleotides may be modified in a number of ways that do not prevent them from hybridizing to their target but which enhance their stability or targeting or which otherwise enhance their therapeutic effectiveness. The term "modified oligonucleotide" as used herein describes an oligonucleotide in which (1) at least two of its nucleotides are covalently linked via a synthetic internucleoside linkage (i.e., a linkage other than a phosphodiester linkage between the 5' end of one nucleotide and the 3' end of another nucleotide) and/or (2) a chemical group not normally associated with nucleic acids has been covalently attached to the oligonucleotide. Preferred synthetic internucleoside linkages are phosphorothioates, alkylphosphonates, phosphorodithioates, phosphate esters,

alkylphosphonothioates, phosphoramidates, carbamates, carbonates, phosphate triesters, acetamidates, carboxymethyl esters, and peptides.

The term "modified oligonucleotide" also encompasses oligonucleotides with a covalently modified base and/or sugar. For example, modified oligonucleotides include oligonucleotides having backbone sugars that are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 3' position and other than a phosphate group at the 5' position. Thus modified oligonucleotides may include a 2'-O-alkylated ribose group. In addition, modified oligonucleotides may include sugars such as arabinose instead of ribose. The present invention, thus, contemplates pharmaceutical preparations containing modified antisense molecules that are complementary to and hybridizable with, under physiological conditions, endometrial cancer expressed nucleic acids, together with pharmaceutically acceptable carriers.

Antisense oligonucleotides may be administered as part of a pharmaceutical composition. Such a pharmaceutical composition may include the antisense oligonucleotides in combination with any standard physiologically and/or pharmaceutically acceptable carriers which are known in the art. The compositions should be sterile and contain a therapeutically effective amount of the antisense oligonucleotides in a unit of weight or volume suitable for administration to a patient. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredients. The term "physiologically acceptable" refers to a non-toxic material that is compatible with a biological system such as a cell, cell culture, tissue, or organism. The characteristics of the carrier will depend on the route of administration. Physiologically and pharmaceutically acceptable carriers include diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials, which are well known in the art.

Expression of endometrial cancer nucleic acid molecules can also be determined using protein measurement methods to determine expression of SEQ ID NOs:1-50, e.g., by determining the expression of polypeptides encoded by SEQ ID NOs:1-50 (SEQ ID NOs: 51-100). Preferred methods of specifically and quantitatively measuring proteins include, but are not limited to: mass spectroscopy-based methods such as surface enhanced laser desorption ionization (SELDI; e.g., Ciphergen ProteinChip System), non-mass spectroscopy-based methods, and immunohistochemistry-based methods such as 2-dimensional gel electrophoresis.

SELDI methodology may, through procedures known to those of ordinary skill in the art, be used to vaporize microscopic amounts of tumor protein and to create a "fingerprint" of

individual proteins, thereby allowing simultaneous measurement of the abundance of many proteins in a single sample. Preferably SELDI-based assays may be utilized to classify endometrial cancer tumors. Such assays preferably include, but are not limited to the following examples. Gene products discovered by RNA microarrays may be selectively measured by specific (antibody mediated) capture to the SELDI protein disc (e.g., selective SELDI). Gene products discovered by protein screening (e.g., with 2-D gels), may be resolved by "total protein SELDI" optimized to visualize those particular markers of interest from among SEQ ID NOs:1-50. Predictive models of tumor classification from SELDI measurement of multiple markers from among SEQ ID NOs:1-50 may be utilized for the SELDI strategies. In an additional embodiment a set of endometrioid endometrial adenocarcinoma tissues may be preferably utilized to determine the risk classification of endometrial cancer based on SELDI results.

The invention also involves agents such as polypeptides that bind to endometrial cancer-associated polypeptides, i.e., SEQ ID NOs:51-100. Such binding agents can be used, for example, in screening assays to detect the presence or absence of endometrial cancer-associated polypeptides and complexes of endometrial cancer-associated polypeptides and their binding partners and in purification protocols to isolate endometrial cancer-associated polypeptides and complexes of endometrial cancer-associated polypeptides and their binding partners. Such agents also may be used to inhibit the native activity of the endometrial cancer-associated polypeptides, for example, by binding to such polypeptides.

The invention, therefore, embraces peptide binding agents which, for example, can be antibodies or fragments of antibodies having the ability to selectively bind to endometrial cancer-associated polypeptides. Antibodies include polyclonal and monoclonal antibodies, prepared according to conventional methodology.

Significantly, as is well-known in the art, only a small portion of an antibody molecule, the paratope, is involved in the binding of the antibody to its epitope (see, in general, Clark, W.R. (1986) The Experimental Foundations of Modern Immunology Wiley & Sons, Inc., New York; Roitt, I. (1991) Essential Immunology, 7th Ed., Blackwell Scientific Publications, Oxford). The pFc' and Fc regions, for example, are effectors of the complement cascade but are not involved in antigen binding. An antibody from which the pFc' region has been enzymatically cleaved, or which has been produced without the pFc' region, designated an F(ab')₂ fragment, retains both of the antigen binding sites of an intact antibody. Similarly, an antibody from which the Fc region has been enzymatically cleaved, or which has been produced

without the Fc region, designated an Fab fragment, retains one of the antigen binding sites of an intact antibody molecule. Proceeding further, Fab fragments consist of a covalently bound antibody light chain and a portion of the antibody heavy chain denoted Fd. The Fd fragments are the major determinant of antibody specificity (a single Fd fragment may be associated with up to ten different light chains without altering antibody specificity) and Fd fragments retain epitope-binding ability in isolation.

Within the antigen-binding portion of an antibody, as is well-known in the art, there are complementarity determining regions (CDRs), which directly interact with the epitope of the antigen, and framework regions (FRs), which maintain the tertiary structure of the paratope (see, in general, Clark, 1986; Roitt, 1991). In both the heavy chain Fd fragment and the light chain of IgG immunoglobulins, there are four framework regions (FR1 through FR4) separated respectively by three complementarity determining regions (CDR1 through CDR3). The CDRs, and in particular the CDR3 regions, and more particularly the heavy chain CDR3, are largely responsible for antibody specificity.

It is now well-established in the art that the non-CDR regions of a mammalian antibody may be replaced with similar regions of conspecific or heterospecific antibodies while retaining the epitopic specificity of the original antibody. This is most clearly manifested in the development and use of "humanized" antibodies in which non-human CDRs are covalently joined to human FR and/or Fc/pFc' regions to produce a functional antibody. See, e.g., U.S. patents 4,816,567, 5,225,539, 5,585,089, 5,693,762 and 5,859,205.

Fully human monoclonal antibodies also can be prepared by immunizing mice transgenic for large portions of human immunoglobulin heavy and light chain loci. Following immunization of these mice (e.g., XenoMouse (Abgenix), HuMAb mice (Medarex/GenPharm)), monoclonal antibodies can be prepared according to standard hybridoma technology. These monoclonal antibodies will have human immunoglobulin amino acid sequences and therefore will not provoke human anti-mouse antibody (HAMA) responses when administered to humans.

Thus, as will be apparent to one of ordinary skill in the art, the present invention also provides for F(ab')₂, Fab, Fv and Fd fragments; chimeric antibodies in which the Fc and/or FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric F(ab')₂ fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric Fab fragment antibodies in which the FR and/or CDR1

and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; and chimeric Fd fragment antibodies in which the FR and/or CDR1 and/or CDR2 regions have been replaced by homologous human or non-human sequences. The present invention also includes so-called single chain antibodies.

Thus, the invention involves polypeptides of numerous size and type that bind specifically to polypeptides selected from SEQ ID NOs:51-100, and complexes of both endometrial cancer-associated polypeptides and their binding partners. These polypeptides may be derived also from sources other than antibody technology. For example, such polypeptide binding agents can be provided by degenerate peptide libraries which can be readily prepared in solution, in immobilized form or as phage display libraries. Combinatorial libraries also can be synthesized of peptides containing one or more amino acids. Libraries further can be synthesized of peptoids and non-peptide synthetic moieties.

Phage display can be particularly effective in identifying binding peptides useful according to the invention. Briefly, one prepares a phage library (using e.g. m13, fd, or lambda phage), displaying inserts from 4 to about 80 amino acid residues using conventional procedures. The inserts may represent, for example, a completely degenerate or biased array. One then can select phage-bearing inserts which bind to the endometrial cancer-associated polypeptide. This process can be repeated through several cycles of reselection of phage that bind to the endometrial cancer-associated polypeptide. Repeated rounds lead to enrichment of phage bearing particular sequences. DNA sequence analysis can be conducted to identify the sequences of the expressed polypeptides. The minimal linear portion of the sequence that binds to the endometrial cancer-associated polypeptide can be determined. One can repeat the procedure using a biased library containing inserts containing part or all of the minimal linear portion plus one or more additional degenerate residues upstream or downstream thereof. Yeast two-hybrid screening methods also may be used to identify polypeptides that bind to the endometrial cancer-associated polypeptides.

Thus, the endometrial cancer-associated polypeptides of the invention, including fragments thereof, can be used to screen peptide libraries, including phage display libraries, to identify and select peptide binding partners of the endometrial cancer-associated polypeptides of the invention. Such molecules can be used, as described, for screening assays, for purification protocols, for interfering directly with the functioning of endometrial cancer-associated polypeptides and for other purposes that will be apparent to those of ordinary skill in the art. For

-22-

example, isolated endometrial cancer-associated polypeptides can be attached to a substrate (e.g., chromatographic media, such as polystyrene beads, a filter, or an array substrate), and then a solution suspected of containing the binding partner may be applied to the substrate. If a binding partner that can interact with endometrial cancer-associated polypeptides is present in the solution, then it will bind to the substrate-endometrial cancer-associated polypeptide. The binding partner then may be isolated.

As detailed herein, the foregoing antibodies and other binding molecules may be used for example, to identify tissues expressing protein or to purify protein. Antibodies also may be coupled to specific diagnostic labeling agents for imaging of cells and tissues that express endometrial cancer-associated polypeptides or to therapeutically useful agents according to standard coupling procedures. Diagnostic agents include, but are not limited to, barium sulfate, iocetamic acid, iopanoic acid, ipodate calcium, diatrizoate sodium, diatrizoate meglumine, metrizamide, tyropanoate sodium and radiodiagnostics including positron emitters such as fluorine-18 and carbon-11, gamma emitters such as iodine-123, technitium-99m, iodine-131 and indium-111, nuclides for nuclear magnetic resonance such as fluorine and gadolinium.

The invention further includes protein microarrays for analyzing expression of endometrial cancer-associated peptides selected from SEQ ID NOs:51-100. In this aspect of the invention, standard techniques of microarray technology are utilized to assess expression of the endometrial cancer-associated polypeptides and/or identify biological constituents that bind such polypeptides. The constituents of biological samples include antibodies, lymphocytes (particularly T lymphocytes), and the like. Protein microarray technology, which is also known by other names including: protein chip technology and solid-phase protein array technology, is well known to those of ordinary skill in the art and is based on, but not limited to, obtaining an array of identified peptides or proteins on a fixed substrate, binding target molecules or biological constituents to the peptides, and evaluating such binding. See, e.g., G. MacBeath and S.L. Schreiber, "Printing Proteins as Microarrays for High-Throughput Function Determination," *Science* 289(5485):1760-1763, 2000.

Preferably antibodies or antigen binding fragments thereof that specifically bind polypeptides selected from the group consisting of SEQ ID NOs:51-100 are attached to the microarray substrate in accordance with standard attachment methods known in the art. These arrays can be used to quantify the expression of the polypeptides identified herein.

In some embodiments of the invention, one or more control peptide or protein molecules are attached to the substrate. Preferably, control peptide or protein molecules allow determination of factors such as peptide or protein quality and binding characteristics, reagent quality and effectiveness, hybridization success, and analysis thresholds and success.

The use of such methods to determine expression of endometrial cancer nucleic acids from among SEQ ID NOs:1-50 and/or proteins from among SEQ ID Nos:51-100 can be done with routine methods known to those of ordinary skill in the art and the expression determined by protein measurement methods may be used as a prognostic method for selecting treatment strategies for endometrial cancer patients.

Examples

To establish a prognostic tool for designing endometrial cancer treatment regimens, expression patterns in primary endometrial cancer specimens were assessed and correlated with clinical outcome.

Tissue processing:

RNA isolated from normal cycling (proliferative, n=2; secretory, n=2) and neoplastic (endometrioid adenocarcinoma, n=10) human endometrial specimens was reverse transcribed and resultant cDNA used for in *vitro* transcriptional synthesis of fluorescently labeled nucleic acid probes according to manufacturer's instructions. Each resultant tissue-derived probe was then separately hybridized to an Affymetrix HuFL human expression array and hybridization images analyzed with Affymetrix software to generate a data matrix of named probes by quantitative expression level in each tissue.

Data Normalization:

Average differences for each sample were rescaled to sum to 3,000,000 over all genes. Then the average differences with an Affymetrix call of Absent or Marginal were set to 20, and average differences with a call of Present but with less than 20 were also set to 20. This resulted in a dataset truncated on the left tail at a value of 20, in which only genes determined to be "present" by the Affymetrix call were included as positive expression values.

Permax Test:

-24-

Standard pooled variance t-statistics comparing the 4 normal samples to the 10 tumor samples were computed separately for each gene from their log values. Log values were used because it is natural to think of differences between tissue types as a multiplicative effect or ratio increase/decrease. Only genes with at least 2 values > 20 were considered (3665 genes), since the t statistic is undefined for genes with all values = 20, and the statistic is either 1.69 or -.62 with only one value not equal to 20, regardless of the value.

The permutation distribution was used to assess the significance of t-statistics calculated for each gene in the dataset (Permax test). The customized program written in S-plus language to calculate Permax is a data analysis software tool for testing the significance of gene expression. It has been presented by Mutter, et al., 8th International Workshop on Chromosomes in Solid Tumors, Tucson, AZ, 2000; and is available online² at biowww.dfci.harvard.edu/~gray/permax.html and from Robert J. Gray, Department of Biostatistical Science, Dana-Farber Cancer Institute, 44 Binney Street Boston, MA 02115. Permax details enclosed therein are incorporated by reference herein. In this approach all 1001 possible ways of dividing the 14 samples into two groups of sizes 4 and 10 were considered. For each of these, the t-statistics were computed for each gene. With unequal group sizes, these distributions are not symmetric, so the significance was assessed separately in each direction. To control the overall error rate, the distributions of the maximum and minimum t-statistics over the genes were used. That is, for each gene, the p-value in the direction with expression higher (lower) in normals is the proportion of permutations with the minimum (maximum) t statistic over all genes less than (greater than) or equal to the observed value for the particular gene. A test declaring as significant any genes with say p<.50 then guarantees that the chance of any false positives being selected is <50%.

The t statistics have a tendency to preferentially select genes with very small variances within a group. Because of this it may be appropriate to also require minimum criteria for differences between the group means. After determining the most significant genes from the t statistics, those genes with absolute differences between means <100, and ratios of means <3 were identified.

Table 1 is a spreadsheet identifying 50 genes which discriminate normal cycling from malignant endometrium.

E2F transcription factor 5, p130-binding erythrocyte membrane protein band 4.9 chromosome 11 open reading frame 13 esterase D/formylglutathione hydrolase inducible), polypeptide 1 (glaucoma 3, cytochrome P450, subfamily I (dioxincadherin 11 (OB-cadherin, osteoblast) collagen, type XIV, alpha 1; undulin excision repair cross-complementing glycophorin C (Gerbich blood group) discs, large (Drosophila) homolog 4 amine oxidase, copper containing 2 FSH primary response (LRPR1, rat) hect (homologous to the E6-AP AXL receptor tyrosine kinase dual specificity phosphatase 1 endothelin receptor type A complementation group 4 collagen, type XI, alpha rodent repair deficiency, G17 transporter protein Title (from Unigene) primary infantile) retina-specific) granulysin cyclin D2 dematin) lomolog 1 C110RF13 COL11A1 COL14A1 FSHPRH1 ABREV CCND2 CYP1B1 CDH11 ERCC4 AOC2 EDNRA EPB49 HERCI DLG4 DUSPI GYPC AXL GNLY E2F5 ESD G17 LocusLink GenBank M91083 D13639 M85276 D88213 M76125 D21255 U49082 Y11710 U28389 J04177 U03688 M36284 U50078 U83192 U15642 D11151 L76568 M13450 X97249 X68277 8045 10578 894 1009 7373 1545 1742 1875 1909 1843 2039 10991 2995 2072 2098 8925 314 558 1301 2491 L76568_xpt3_f_at Y11710 ma1 at AffyProbe Set U15642 s at HT4940 s at M36284 s at M91083 at HT3165 at D13639 at D88213_at D21255 at J04177 at U03688 at U83192 at X68277 at D11151 at M13450_at X97249_at M85276 at U49082 at at HG4535-HG162-U50078 TY GPT 918 175 146 1321 640 509 353 781 20 32 57 32 33 20 20 20 58 20 32 4 99/ 4140 NLX GPT 1103 504 446 278 3585 330 177 377 70 287 179 929 242 149 33 277 20 20 16p13.3-ChrBand 11p15.5 13q14.1-2q14-q21 19q13.1 3p21.3 2p12-q11 12p13 16q22.1 17p13.1 8p21.1 p13.11 17q21 q14.2 Xq22 8q23 5q34 1p21 2p21 ∞ 1078.6 1590.5 3499.8 344.8 3521.2 Delta GPT 157.3 446.4 158.8 597.5 489.0 750.5 761.3 310.3 898.1 113.1 255.1 258.1 245.1 129.1 11.6 Fold 45.9 13.9 25.4 16.5 13.3 6.5 11.2 8.9 8.8 8.9 8.9 4.4 5.5 39.1 55.8 10.1 3.1 8.7 7.5 GeneCode Permax 0.2587 0.19380.2038 0.2448 0.3057 0.22.18 0.2218 0.2448 0.0959 0.014 0.426 0.2128 0.3247 0.042 0.468 0.028 0.446 0.1359 0.5 x4535 x6235 x6580 x3108 ,x3342 x4516 x2035 x3265 x3120 x2140 x1629 x4985 x6244 x2404 x4495 x1222 x2590 x2797 x2341 x671 SEQ ID 19 d 9 10 Ξ 2 13 14 15 16 18 20 S ∞ m 4 6

Table 1

(UBE3A) carboxyl terminus) domain and RCC1 (CHC1)-like domain (RLD)	histamine N-methyltransferase	5-hydroxytryptamine (serotonin) receptor 2B	interferon, alpha 21	insulin-like growth factor 1 (somatomedin C)	ilvB (bacterial acetolactate synthase)- like	interferon regulatory factor 2	KIAA0001 gene product	keratin 18	keratin 8	lecithin-cholesterol acyltransferase	lectin, galactoside-binding, soluble, 1 (galectin 1)	membrane component, chromosomal 4, surface marker (35kD glycomotein)	mitogen inducible 2	matrix metalloproteinase 14 (membrane-inserted)	nidogen (enactin)	nuclear receptor subfamily 2, group F, member 1	procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide 1	progestagen-associated endometrial	protein (Piaceniai protein 14, pregnancy-associated endometrial	alpha-2-globulin, alpha uterine protein): Alternate Splice 2	procollagen C-endopeptidase enhancer
	HNMT	HTR2B	IFNA21	IGF1	ILVBL	IRF2	KIAA0001	KRT18	KRT8	LCAT	LGALS1	M4S1	MIG2	MMP14	QIN	NR2F1	P4HA1	PAEP(alt2)			PCOLCE
	U44111	X77307	V00540	X57025	U61263	X15949	D13626	X12876	X74929	M12625	304456	M93036	Z24725	Z48481	M30269	X12795	M24486	J04129			L33799
	3176	3357	3452	3479	10994	3660	9934	3875	3856	3931	3956	4072	10979	4323	4811	7025	5033	5047			5118
	U44111_at	X77307_at	J00212_f_at	X57025_at	U61263_at	X15949_at	D13626 at	X12876 s at	X74929_s_at	M12625_at	J04456_at	M93036_at	Z24725 at	Z48481_at	M30269 at	HG3510- HT3704 at	M24486_s_at	HG721-	111+02/_S_at		L33799 at
	20	39	30	35	81	20	70	4151	5338	20	1537	2192	205	46	54	89	245	32			353
	205	434	236	1490	501	208	145	1115	521	873	8915	583	818	844	1204	793	41	4998			4331
	2	2q37.1- q36.3	9p22	12q22-q23	19p13.1	4q34.1- q35.1	3q21-q25	12q13	. 12q13	16q22.1	22q13.1	44	14	14q11-q12	1943	5q14	10q21.3- q23.1	9q34		,	7q22
	185.2	395.1	206.0	1454.6	420.4	188.0	124.9	3035.7	4816.8	853.4	7378.3	1609.5	613.2	797.4	1149.7	724.8	204.3	4966.1			3977.7
	10.3	11.2	7.9	42.3	6.2	10.4	7.2	3.7	10.2	43.7	5.8	3.8	4.0	18.2	22.3	11.6	0.9	158.2			12.3
	0.0599	0.2388	0.2108	0.1618	0.5	0.1808	0.3447	0.1728	0.0669	0.035	0.2478	0.1299	0.431	0.2038	0.2458	0.3946	0.2987	0.2478			0.2038
	x881	x5023	x2719	x5442	x5452	x6197	x3700	x1553	x5912	x197	x723	x1271	x6752	x1469	x879	x1397	x2831	x2670			x5757
	21	22	23	24	25	26	27	28	29	30	31.	32	33	34	35	36	37	38			39

PDGFRA platelet-derived growth factor receptor, alpha polypeptide	phosphoribosyl pyrophosphate synthetase 1	phosphoribosyl pyrophosphate synthetase 2	quinoid dihydropteridine reductase	RABGGTB Rab geranylgeranyltransferase, beta subunit	stromal cell-derived factor 1	selenoprotein P, plasma, 1	synaptobrevin-like 1	tight junction protein 1 (zona occludens 1)	Wilms tumor associated protein	zuotin related factor 1
	PRPS1	PRPS2	QDPR	RABGGTB	SDF1	SEPP1	SYBL1	TJP1	WIT-1	ZRF1
M21574	09800Q	Y00971	M16447	10086X	L36033	Z11793	X92396	L14837	X69950	X98260
5156	5631	5634	2860	2876	6387	6414	6845	7082	51352	27000
M21574_at	D00860_at	Y00971_at	M16447_at	X98001_at	L36033 at	Z11793_at	X92396_at	L14837_at	X69950 s at	X98260 at
92	29	20	20	37	49	110	30	321	20	25
1167	150	204	233	204	677	408	245	886	260	349
4q11-q13	Xq21-q27	Xp22.3- p22.2	4p15.31	1p31-p22	10q11.1	5q31	Xq28	15q13	11p13	0.1508 13.9 323.7 7q22-q32
1101.4	120.6	183.7	0.0789 11.6 212.7	167.7	628.3	297.9	215.8	666.3	239.8	323.7
17.8	5.1	10.2	11.6	5.6	13.9	3.7	8.3	3.1	13.0	13.9
x6701 0.3077 17.8 1101.4	x6741 0.2068	0.1099	_	0.4076	x6986 0.3417 13.9	0.1988	0.2218	0.2228	0.038	0.1508
x6701	x6741	x1195	x5284	x320	9869x	x1047	x4685	x5624	x4880	098x
40	41	42	43	44	45	46	47	48	49	20

SEQ ID NO

Sequence identifier number GeneCode

Internal lab unique identifier, numbers preceded by an "x"

Permax value using GPT datastate

PermaxGPT

FoldGPT

Ratio of NLXGPT to TXGPT, inverted if needed to yield value >1

Arithmetic difference of NLXGPT and TXGPT, absolute value

Karyotypic locus of gene

Mean expression in GPT units of 4 normal endometria Mean expression in GPT units of 10 endometrial

adenocarcinomas

Affymetrix probe identifier in HuFL human expression array chip Locuslink ID number, when available. AffyProbeSet

The GenBank entry for sequence used by Affymetrix to design probes When in full caps, this is the Locuslink recommended nomenclature.

Text description of gene. Usually Locuslink label

ChrBand

NLXGPT

10

TXGPT

DeltaGPT

GenBank

Abrev

LocusLink

5

10

15

25

WO 02/09573 PCT/US01/24104

References

-28-

- 1. Mutter, G. L., Baak, J. P. A., Cai, T., Fitzgerald, J., Gray, R., Gentleman, R., Gullans, S., Ibrahim, J., Neuberg, D., and Wilcox, M. Altered Gene Expression in Endometrioid Endometrial Adenocarcinomas Analyzed by High Density Microarrays. 8th International Workshop on Chromosomes in Solid Tumors (Tucson, AZ). 2000. Ref Type: Abstract
- Gray, R. Permax [On Line]. Available: http://biowww.dfci.harvard.edu/~gray/permax.html. 2000.
- 3. National Center for Biotechnology Information (USA): Unigene [Online]. Available: http://www.ncbi.nlm.nih.gov/UniGene/ 2000.
- 4. Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler GD, Tatusova TA, Rapp BA: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2000, 28:10-14.
- 5. National Center for Biotechnology Information (USA): Locuslink [Online]. Available: http://www.ncbi.nlm.nih.gov/LocusLink/ 2000.
- 6. Pruitt KD, Katz KS, Sicotte H, Maglott DR: Introducing RefSeq and LocusLink: curated human genome resources at the NCBI. Trends Genet 2000, 16:44-47.
- 7. Harrison's Principles of Internal Medicine, 14/e, (1998) McGraw-Hill Companies, New York.
- 20 8. The Chipping Forecast (1999) Nature Genetics, 21(1):1-60.
 - 9. Gwynne, P., and Page, G., (1999) Microarray Analysis: the next revolution in Molecular Biology, Science eMarketplace, Science, August 6. (sciencemag.org/feature/e-market/benchtop/micro.shl)
 - 10. *Molecular Cloning: A Laboratory Manual*, (1989) J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
 - 11. Current Protocols in Molecular Biology, (1999) F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York.
 - 12. Wagner et al., Nature Biotechnol. (1996) 14:840-844.
- 13. Sainio, K., Saarma, M., Nonclercq, D., Paulin, L., and Sariola, H. (1994) Antisense
 inhibition of low-affinity nerve growth factor receptor in kidney cultures: power and pitfalls. Cell Mol. Neurobiol. 14(5):439-457.

-29-

The present invention is not limited in scope by the examples provided, since the examples are intended as illustrations of various aspects of the invention and other functionally equivalent embodiments are within the scope of the invention. Various modifications of the invention in addition to those shown are described herein will become apparent to those skilled in the art for the foregoing description and fall within the scope of the appended claims. The advantages and objects of the invention are not necessarily encompassed by each embodiment of the invention.

All references, patents, and patent publications that are recited in this application are incorporated in their entirety herein by reference.

I claim:

5

10

-30-

Claims

1. A method for diagnosing endometrial cancer in a subject suspected of having endometrial cancer comprising:

5

15

30

- obtaining from the subject an endometrial tissue sample suspected of being cancerous, determining the expression of a set of nucleic acid molecules or expression products thereof in the endometrial tissue sample, wherein the set of nucleic acid molecules comprises at least two nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
- 10 2. The method of claim 1, wherein the set of nucleic acid molecules comprises at least 3 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
 - 3. The method of claim 1, wherein the set includes at least 4 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
 - 4. The method of claim 1, wherein the set includes at least 5 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
- 5. The method of claim 1, wherein the set includes at least 10 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
 - 6. The method of claim 1, wherein the set includes at least 15 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
- 7. The method of claim 1, wherein the set includes at least 20 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
 - 8. The method of claim 1, wherein the set includes at least 30 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
 - 9. The method of claim 1, wherein the set includes at least 40 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.

-31-

10. The method of claim 1, further comprising:

determining the expression of the set of nucleic acid molecules or expression products thereof in a non-cancerous endometrial tissue sample, and comparing the expression of the set of nucleic acid molecules or expression products thereof in the endometrial tissue sample suspected of being cancerous and the non-cancerous endometrial tissue sample.

11. A method for selecting a course of treatment of a subject having or suspected of having endometrial cancer, comprising:

obtaining from the subject an endometrial tissue sample suspected of being cancerous, determining the expression of a set of nucleic acid markers or expression products thereof which are differentially expressed in endometrial tumor tissue samples, and selecting a course of treatment appropriate to the endometrial cancer of the subject.

- 12. The method of claim 11 wherein the endometrial cancer is endometrial carcinoma.
 - 13. The method of claim 12, further comprising:

 determining the expression of the set of nucleic acid molecules or expression products thereof in a non-cancerous endometrial tissue sample.

20

30

5

10

15

- 14. The method of claim 11, wherein the expression of a set of nucleic acid markers is determined by a method selected from the group consisting of nucleic acid hybridization and nucleic acid amplification.
- 15. The method of claim 14, wherein the nucleic acid hybridization is performed using a solid-phase nucleic acid molecule array.
 - 16. A method for evaluating treatment of endometrial cancer, comprising:
 obtaining a first determination of the expression of a set of nucleic acid molecules, or
 expression products thereof, which are differentially expressed in an endometrial tumor tissue
 sample from a subject undergoing treatment for cancer,

WO 02/09573

5

20

30

obtaining a second determination of the expression of a set of nucleic acid molecules, or expression products thereof, which are differentially expressed in a second endometrial tumor tissue sample from the subject after obtaining the first determination,

-32-

PCT/US01/24104

comparing the first determination of expression to the second determination of expression as an indication of evaluation of the treatment.

- 17. The method of claim 16, wherein the cancer is endometrial adenocarcinoma.
- 10 18. The method of claim 17, further comprising:

 determining the expression of a set of nucleic acid markers which are differentially expressed in non-cancerous endometrial tissue samples.
- 19. The method of claim 16, wherein the expression of a set of nucleic acid markers is
 determined by a method selected from the group consisting of nucleic acid hybridization and
 nucleic acid amplification.
 - 20. The method of claim 16, wherein the nucleic acid hybridization is performed using a solid-phase nucleic acid molecule array.
 - 21. A solid-phase nucleic acid molecule array consisting essentially of at least two nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50 fixed to a solid substrate.
- 25 22. The solid-phase nucleic acid molecule array of claim 21, further comprising at least one control nucleic acid molecule.
 - 23. The solid-phase nucleic acid molecule array of claim 21, wherein the set of nucleic acid molecules comprises at least 3 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
 - 24. The solid-phase nucleic acid molecule array of claim 21, wherein the set includes at least 4 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.

-33-

WO 02/09573

10

30

25. The solid-phase nucleic acid molecule array of claim 21, wherein the set includes at least 5 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.

PCT/US01/24104

- 5 26. The solid-phase nucleic acid molecule array of claim 21, wherein the set includes at least 10 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
 - 27. The solid-phase nucleic acid molecule array of claim 21, wherein the set includes at least 15 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
 - 28. The solid-phase nucleic acid molecule array of claim 21, wherein the set includes at least 20 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
- 29. The solid-phase nucleic acid molecule array of claim 21, wherein the set includes at least 30 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
 - 30. The solid-phase nucleic acid molecule array of claim 21, wherein the set includes at least 40 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50.
- 31. The solid-phase nucleic acid molecule array of claim 21, wherein the solid substrate comprises a material selected from the group consisting of glass, silica, aluminosilicates, borosilicates, metal oxides such as alumina and nickel oxide, various clays, nitrocellulose, or nylon.
- 25 32. The solid-phase nucleic acid molecule array of claim 21, wherein the nucleic acid molecules are fixed to the solid substrate by covalent bonding.
 - 33. A solid-phase protein microarray comprising at least two antibodies or antigenbinding fragments thereof, that specifically bind at least two different polypeptides selected from the group consisting of SEQ ID NOs:51-100, fixed to a solid substrate.

-34-

- 34. The protein microarray of claim 33, wherein the microarray further comprises an antibody or antigen-binding fragment thereof, that binds specifically to a cancer-associated polypeptide other than those selected from the group consisting of SEQ ID NOs:51-100.
- 5 35. The protein microarray of claim 34, wherein the cancer-associated polypeptide other than those selected from the group consisting of SEQ ID NOs: 51-100 is a endometrial cancer associated polypeptide.
- 36. The protein microarray of claim 33, further comprising at least one control polypeptide molecule.
 - 37. The protein microarray of claim 33, wherein the antibodies are monoclonal or polyclonal antibodies.
- 15 38. The protein microarray of claim 33, wherein the antibodies are chimeric, human, or humanized antibodies.
 - 39. The protein microarray of claim 33, wherein the antibodies are single chain antibodies.

20

30

- 40. The protein microarray of claim 33, wherein the antigen-binding fragments are $F(ab')_2$, Fab, Fd, or Fv fragments.
- 41. A method for identifying lead compounds for a pharmacological agent useful in the treatment of endometrial cancer, comprising:

contacting a endometrial cancer cell or tissue with a candidate pharmacological agent, determining the expression of a set of nucleic acid molecules in the endometrial cancer cell or tissue sample under conditions which, in the absence of the candidate pharmacological agent, permit a first amount of expression of the set of nucleic acid molecules wherein the set of nucleic acid molecules comprises at least two nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-50, and

detecting a test amount of the expression of the set of nucleic acid molecules, wherein a decrease in the test amount of expression in the presence of the candidate pharmacological

-35-

agent relative to the first amount of expression indicates that the candidate pharmacological agent is a lead compound for a pharmacological agent which is useful in the treatment of endometrial cancer.

5 42. The method of claim 41, wherein the set of nucleic acid molecules is differentially expressed in endometrioid endometrial tumor tissue samples.

- 1 -

SEQUENCE LISTING

<110> The Brigham and Women's Hospital, Inc. <120> PROGNOSTIC CLASSIFICATION OF ENDOMETRIAL CANCER <130> B0801/7225WO <150> US 60/221,735 <151> 2000-07-31 <160> 100 <170> PatentIn version 3.0 <210> 1 <211> 2572 <212> DNA <213> Homo sapiens <400> 1 tctgatttca cctctcagca tccaccatgc atctcaagat agtcctggcg ttcctggcac 60 tgtccctcat taccatcttt gccctggcct atgttttgct gaccagccca ggtggttcca 120 gccagectee ecactgceee tetgtateee atagggceea gccetggeea caccetggee 180 agagccagct gtttgcagac ctgagccgag aggagttgac agctgtgatg cgctttctga 240 cccagcggct ggggccaggg ctggtggacg cagcccaggc tcagccctcg gacaactgca 300 tetteteagt ggagetgeag etgeceecca aggetgeage cetggeceae etggacaggg 360 ggagcccccc acctgcccgg gaggcactgg ccatcgtcct ctttggtgga caaccccaac 420 ccaatgtgag tgagctggtg gtggggccgc tgcct@accc ctcgtacatg cgggatgtga ctgtggagcg tcacggcggg cccctgccct atcaccgtcg cccggtgctg agaqctqaqt 540 ttacacagat gtggaggcat ctgaaagatg tggagctacc caaggcaccc atcttcctgt 600 cgtccacctt caactacaat ggctctaccc tggcagctgt gcatgccacc cctcggggct 660 tgcgctcaag ggaacgaact acctggattg gcctctacca taacatctca ggggttggtc 720 ttttccttca ccccgtgggg ctggagctac tactggacca cagggccctg gaccctgccc 780 actggactgt ccagcaggtc ttctaccttg ggcactacta tgcagacttg ggccagttgg 840 aacgggagtt taagtctggc cggttggaag tggttagagt ccctctacct ccaccaaatq 900 gagetteate cetgaggtet eggaactete eaggteetet tecceetett eagttetege 960 cccagggttc ccagtacagt gtgcaaggaa acctggtggt atcctcctc tggtcattta 1020 cctttggcca tggggtgttc ageggcctga ggatttttga tgttcggttc caqqqtqaqc 1080 gaatageeta tgaagteagt gtecaggagt gtgtatetat etatggtgee gatteaceea 1140 agacgatgct gactcgctat ttggatagca gctttggact cggccgtaac agccgaggct 1200

tggtgcgggg	agtggactgc	ccctatcaag	ccacgatggt	ggacatccat	atattagtgg	1260
gcaaaggggc	agtccagctg	cttccagggg	ctgtgtgtgt	atttgaggaa	gcccagggac	1320
tgccccttcg	aaggcaccac	aattaccttc	aaaatcattt	ctatggtggt	ttggccagct	1380
cagcccttgt	ggtcaggtct	gtgtcatctg	tgggcaacta	tgactacatt	tgggactttg	1440
tgttgtaccc	aaatggggca	cttgaagggc	gggtccatgc	cacgggttat	atcaacacag	1500
ctttcctgaa	agggggagag	gagggcctcc	tctttgggaa	ccgtgtgggg	gaaagagtgc	1560
tgggaacggt	gcacacacat	gccttccact	tcaagctgga	cctggatgtg	gcagggctga	1620
aaaactgggt	ggtagctgaa	gacgtggtgt	ttaaacctgt	ggctgcccc	tggaacccgg	1680
agcactggct	acagcgccca	cagctgactc	ggcaggtcct	gggaaaggag	gacctgacag	1740
ctttttcctt	gggaagcccc	ctaccccgct	acctctacct	ggctagcaac	cagactaatg	1800
cgtggggtca	ccagcgcgga	taccagcttg	tggtgaccca	gagaaaggag	gaggagtcac	1860
agagcagtag	catctatcac	cagaatgaca	tctggacacc	cacagttacc	tttgctgact	1920
tcatcaacaa	tgaaaccctc	ttaggagagg	atctggtggc	ttgggtcaca	gccagcttcc	1980
tgcacattcc	ccatgccgag	gacatcccaa	acacagtgac	tctggggaac	agagttggct	2040
tcttgctccg	accctataac	ttctttgatg	aggacccctc	catcttctcc	cctggcagtg	2100
tgtactttga	gaagggccag	gatgctgggc	tctgcagcat	caatcctgtg	gcctgcctcc	2160
ccgacctggc	agcctgtgtc	ccggacttac	cccctttctc	ttaccacggc	ttctagtcct	2220
gagggtgtgg	cgggcggcgt	ggttaggcac	atgtactttt	ccctgtttct	actttctatt	2280
ctccgtgttt	ttatcacacc	tgctccccag	attcccaccc	cctcaatgtt	cctctcacac	2340
gaaaccccca	tcagtccctt	tggttaattc	ttacttcctg	ttcatctcta	aagtgttaaa	2400
ttataaaaat	gatttttaaa	tattcaaaga	aaaatatcac	aaatcctact	actcagaaat	2460
aggtggtcac	attacatcag	acatctcttt	atgcatgtgc	attcaaaagg	aagagtagat	2520
agaattttgt	aaaacagatg	ttgtatgtaa	tttataataa	aaagtattaa	ag	2572
<210> 2 <211> 3227	7 .					

gctgggcaaa gccggtggca agggcctccc ctgccgctgt gccaggcagg cagtgccaaa tccggggagc ctggagctgg ggggagggcc ggggacagcc cggccctgcc ccctcccccg 120 ctgggagccc agcaacttct gaggaaagtt tggcacccat ggcgtggcgg tgcccagga 180

<212> DNA

<213> Homo sapiens

tgggcagggt cccgctggcc tggtgcttgg cgctgtgcgg.ctgggcgtgc atggcccca 240 ggggcacgca ggctgaagaa agtcccttcg tgggcaaccc agggaatatc acaggtgccc 300 ggggactcac gggcaccett cggtgtcage tecaggttca gggagagece eccgaggtae 360 attggetteg ggatggaeag atcetggage tegeggaeag cacceagace caggtgeece 420 tgggtgagga tgaacaggat gactggatag tggtcagcca gctcagaatc acctccctgc 480 · agctttccga cacgggacag taccagtgtt tggtgtttct gggacatcag accttcgtgt 540 cccagcctgg ctatgttggg ctggagggct tgccttactt cctggaggag cccgaagaca 600 ggactgtggc cgccaacacc ccettcaacc tgagetgcca agetcaggga cccccagage ccgtggacct actctggctc caggatgctg tecccctggc cacggctcca ggtcacggcc 720 cccagcgcag cctgcatgtt ccagggctga acaagacatc ctctttctcc tgcgaagccc 780 ataacgccaa gggggtcacc acatcccgca cagccaccat cacagtgctc ccccagcagc 840 cccgtaacct ccacctggtc tcccgccaac ccacggagct ggaggtggct tggactccag 900 gcctgagcgg catctacccc ctgacccact gcaccctgca ggctgtgctg tcagacgatg 960 ggatgggcat ccaggcggga gaaccagacc ccccagagga gcccctcacc tcgcaagcat 1020 cegtgeeece ceateagett eggetaggea geeteeatee teacacecet tateacatee 1080 gcgtggcatg caccagcagc cagggcccct catcctggac ccactggctt cctgtggaga 1140 cgccggaggg agtgcccctg ggccccccta agaacattag tgctacgcgg aatgggagcc 1200 aggeettegt geattggeaa gageeeeggg egeeeetgea gggtaeeetg ttagggtaee 1260 ggctggcgta tcaaggccag gacaccccag aggtgctaat ggacataggg ctaaggcaag 1320 aggtgaccct ggagctgcag ggggacgggt ctgtgtccaa tctgacagtg tgtgtggcag 1380 cctacactgc tgctggggat ggaccctgga gcctcccagt acccctggag gcctggcgcc 1440 cagtgaagga accttcaact cctgccttct cgtggccctg gtggtatgta ctgctaggag cagtcgtggc cgctgcctgt gtcctcatct tggctctctt ccttgtccac cggcgaaaga aggagacccg ttatggagaa gtgtttgaac caacagtgga aagaggtgaa ctggtagtca 1620 ggtaccgcgt gcgcaagtcc tacagtcgtc ggaccactga agctaccttg aacagcctgg gcatcagtga agagctgaag gagaagctgc gggatqtgat ggtggaccgg cacaaggtgg 1740 ccctggggaa gactctggga gagggagagt ttggagctgt gatggaaggc cagctcaacc 1800 aggacgactc catcctcaag gtggctgtga agacgatgaa gattgccatc tgcacgaggt 1860 cagagetgga ggattteetg agtgaagegg tetgeatgaa ggaatttgae cateccaaeg 1920 tcatgaggct categgtgte tgtttccagg gttctgaacg agagagette ccagcacetg 1980

PCT/US01/24104 WO 02/09573

tggtcatctt	acctttcatg	aaacatggag	acctacacag	cttcctcctc	tattcccggc	2040
		ctgcccactc				2100
		agtaccaaga				2160
actgcatgct	gaatgagaac	atgtccgtgt	gtgtggcgga ;	cttcgggctc	tccaagaaga	2220
tctacaatgg	ggactactac	cgccagggac	gtatcgccaa	gatgccagtc	aagtggattg	2280
ccattgagag	tctagctgac	cgtgtctaca	ccagcaagag	cgatgtgtgg	tccttcgggg	2340
tgacaatgtg	ggagattgcc	acaagaggcc	aaaccccata	tccgggcgtg	gagaacagcg	2400
agatttatga	ctatctgcgc	cagggaaatc	gcctgaagca	gcctgcggac	tgtctggatg	2460
gactgtatgc	cttgatgtcg	cggtgctggg	agctaaatcc	ccaggaccgg	ccaagtttta	2520
cagagetgeg	ggaagatttg	gagaacacac	tgaaggcctt	gcctcctgcc	caggagcctg	2580
acgaaatcct	ctatgtcaac	atggatgagg	gtggaggtta	tcctgaaccc	cctggagctg	2640
caggaggagc	tgacccccca	acccagccag	accctaagga	ttcctgtagc	tgcctcactg	2700
cggctgaggt	ccatcctgct	ggacgctatg	tcctctgccc	ttccacaacc	cctagccccg	2760
ctcagcctgc	tgataggggc	tccccagcag	ccccagggca	ggaggatggt	gcctgagaca	2820
accctccacc	tggtactccc	tctcaggatc	caagctaagc	actgccactg	gggaaaactc	2880
caccttccca	cttttccacc	ccacgcctta	tccccacttg	cagccctgtc	ttcctaccta	2940
tcccacctcc	atcccagaca	ggtccctccc	cttctctgtg	cagtagcatc	accttgaaag	3000
cagtagcatc	accatctgta	aaaggaaggg	gttggattgc	aatatctgaa	gccctcccag	3060
gtgttaacat	tccaagactc	tagagtccaa	ggtttaaaga	gtctagattc	aaaggttcṭa	3120
ggtttcaaag	atgctgtgag	tctttggttc	taaggacctg	aaattccaaa	gtctctaatt	3180
ctattaaagt	gctaaggttc	taaggcaaaa	aaaaaaaaa	aaaaaaa		3227

<210> 3

<211> 1539 <212> DNA <213> Homo sapiens

<400> 3 gaattcgggg ggaggggca gtgtcctccg agccaggaca ggcatgttgt tgggactggc 60 ggccatggag ctgaaggtgt gggtggatgg catccagcgt gtggtctgtg gggtctcaga 120 gcagaccacc tgccaggaag tggtcatcgc actagcccaa gcaataggcc agactggccg 180 ctttgtgctt gtgcagcggc ttcgggagaa ggagcggcag ttgctgccac aagagtgtcc 240 agtgggcgcc caggccacct gcggacagtt tgccagcgat gtccagtttg tcctgaggcg 300 cacagggccc agcctagctg ggaggccctc ctcagacagc tgtccacccc cggaacgctg 360

cctaattcgt	gccagcctcc	ctgtaaagcc	acgggctgcg	ctgggctgtg	agccccgcaa	420
aacactgacc	cccgagccag	ccccagcct	ctcacgccct	gggcctgcgg	cccctgtgac	480
acccacacca	ggctgctgca	cagacetgcg	gggcctggag	ctcagggtgc	agaggaatgc	540
tgaggagctg	ggccatgagg	ccttctggga	gcaagagctg	cgccgggagc	aggcccggga	600
gcgagaggga	caggcacgcc	tgcaggcact	aagtgcggcc	actgctgagc	atgccgcccg	660
gctgcaggcc	ctggacgctc	aggcccgtgc	cctggaggct	gagctgcagc	tggcagcgga	720
ggcccctggg	ccccctcac	ctatggcatc	tgccactgag	cgcctgcacc	aggacctggc	780
tgttcaggag	cggcagagtg	cggaggtgca	gggcagcctg	gctctggtga	gccgggccct	840
ggaggcagca	gagcgagcct	tgcaggctca	ggctcaggag	ctggaggagc	tgaaccgaga	900
gctccgtcag	tgcaacctgc	agcagttcat	ccagcagacc	ggggctgcgc	tgccaccgcc	960
cccacggcct	gacaggggcc	ctcctggcac	tcagggccct	ctgcctccag	ccagagagga	1020
gtccctcctg	ggcgctccct	ctgagtccca	tgctggtgcc	cagcctaggc	cccgaggtgg	1080
ccccatgac	gcagaactcc	tggaggtagc	agcagctcct	gccccagagt	ggtgtcctct	1140
ggcagcccag	'ccccaggctc	tgtgacagcc	tagtgagggc	tgcaagacca	tcctgcccgg	1200
accacagaag	gagagttggc	ggtcacagag	ggctcctctg	ccaggcagtg	ggaagccctg	1260
ggtttggcct	caggagctgg	gggtgcagtg	ggggactgcc	ctagtccttg	ccaggtcgcc	1320
cagcaccctg	gagaagcatg	gggcgtagcc	agctcggaac	ttgccaggcc	ccaaaggcca	1380
cgactgcctg	ttggggacag	gagatgcatg	gacagtgtgc	tcaagctgtg	ggcatgtgct	1440
tgcctgcggg	agaggtcctt	cactgtgtgt	acacagcaag	agcatgtgtg	tgccacttcc	1500
cctaccccaa	cgtgaaaacc	tcaataaact	gcccgaagc			1539
	s sapiens					
<400> 4 agagcgagca	ggggagagcg	agaccagttt	taaggggagg	accggtgcga	gtaaggcagc	60
cccgaggctc	tgctcgccca	ccacccaatc	ctcgcctccc	ttctgctcca	ccttctctct	120
ctgccctcac	ctctcccccg	aaaaccccct	atttagccaa	aggaaggagg	tcaggggaac	180
gctctcccct	ccccttccaa	aaaacaaaaa	cagaaaaacc	cttttccagg	ccggggaaag	240
caggagggag	aggggccgcc	gggctggcca	tggagctgct	gtgccacgag	gtggacccgg	300
tccgcagggc	cgtgcgggac	cgcaacctgc	teegagaega	ccgcgtcctg	cagaacctgc	360

- 6 -

tcaccatcga	ggagcgctac	cttccgcagt	gctcctactt	caagtgcgtg	cagaaggaca	420
tccaacccta	catgcgcaga	atggtggcca	cctggatgct	ggaggtctgt	gaggaacaga	480
agtgcgaaga	agaggtcttc	cctctggcca	tgaattacct	ggaccgtttc	ttggctgggg	540
tcccgactcc	gaagtcccat	ctgcaactcc	tgggtgctgt	ctgcatgttc	ctggcctcca	600
aactcaaaga	gaccagcccg	ctgaccgcgg	agaagctgtg	catttacacc	gacaactcca	660
tcaagcctca	ggagctgctg	gagtgggaac	tggtggtgct	ggggaagttg	aagtggaacc	720
tggcagctgt	cactcctcat	gacttcattg	agcacatctt	gcgcaagctg	ccccagcagc	780
gggagaagct	gtctctgatc	cgcaagcatg	ctcagacctt	cattgctctg	tgtgccaccg	840
actttaagtt	tgccatgtac	ccaccgtcga	tgatcgcaac	tggaagtgtg	ggagcagcca	900
tctgtgggct	ccagcaggat	gaggaagtga	gctcgctcac	ttgtgatgcc	ctgactgagc	960
tgctggctaa	gatcaccaac	acagacgtgg	attgtctcaa	agcttgccag	gagcagattg	1020
aggcggtgct	cctcaatagc	ctgcagcagt	accgtcagga	ccaacgtgac	ggatccaagt	1080
cggaggatga	actggaccaa	gccagcaccc	ctacagacgt	gcgggatatc	gacctgtgag	1140
gatgccagtt	gggccgaaag	agagagacgc	gtccataatc	tggtctcttc	ttetttetgg	1200
ttgtttttgt	tctttgtgtt	ttagggtgaa	acttaaaaaa	aaaattctgc	ccccacctag	1260
atcatattta	aagatctttt	agaagtgaga	gaaaaaggtc	ctacgaaaac	ggaataataa	1320
aaagcatttg	gtgcctattt	gaagtacagc	ataagggaat	cccttgtata	tgcgaacagt	1380
tattgtttga	ttatgtaaaa	gtaatagtaa	aatgcttaca	ggaaaacctg	cagagtagtt	1440
agagaatatg	tatgcctgca	atatgggaac	aaattagagg	agacttttt	tttcatgtta	1500
tgagctagca	catacacccc	cttgtagtat	aatttçaagg	aactgtgtac	gccatttatg	1560
gcatgattag	attgcaaagc	aatgaactca	agaaggaatt	gaaataagga	gggacatgat	1620
ggggaaggag	tacaaaacaa	tctctcaaca	tgattgaacc	atttgggatg	gagaagcacc	1680
tttgctctca	gccacctgtt	actaagtcag	gagtgtagtt	ggatctctac	attaatgtcc	1740
tcttgctgtc	tacagtagct	gctacctaaa	aaaagatgtt	ttattttgcc	agttggacac	1800
aggtgattgg	ctcctgggtt	tcatgttctg	tgacátcctg	cttcttcttc	caaatgcagt	1860
tcattgcaga	caccaccata	ttgctatcta	atggggaaat	gtagctatgg	gccataacca	1920
aaactcacat	gaaacggagg	cagatggaga	ccaagggtgg	gatccagaat	ggagtctttt	1980
ctgttattgt	atttaaaagg	gtaatgtggc	cttggcattt	cttcttagaa	aaaaactaat	2040
ttttggtgct	gattggcatg	tctggttcac	agtttagcat	tgttataaac	cattccattc	2100
gaaaagcact	ttgaaaaatt	gttcccgagc	gatagatggg	atggtttatg	caagtcatgc	2160

	tgaatactcc	teccetette	tcttttgccc	cctcccttcc	tgcccccagt	ctgggttact	2220
	cttcgcttct	ggtatctggc	gttctttggt	acacagttct	ggtgttccta	ccaggactca	2280
	agagacaccc	cttcctgctg	acattcccat	cacaacattc	ctcagacaag	cctgtaaact	2340
	aaaatctgtt	accatctgat	ggcacagaag	gatcttaatt	cccatctcta	tacttctcct	2400
	ttggacatgg	aaagaaaagt	tattgctggt	gcaaagatag	atggctgaac	atcagggtgt	2460
	ggcattttgt	tcccttttcc	gtttttttt	tttttattgt	tgttgttaat	tttattgcaa	2520
	agttgtattc	agcgtacttg	aatttttctt	cctctccact	tcttagaggc	attcagttag	2580
	caaagaggtt	ggagcaacaa	cttttttt	tttttttgc	acaattgtaa	ttgacaggta	2640
	atgaagctat	ttgttaaaat	atttgccttt	ttaagtaaaa	aagaaaaatc.	agaacagggc	2700
	tatttgaaga	attattttat	acacagattc	tgccttgttt	catagtatga	gggttgaaga	2760
	cggaaaacaa	tctaagggtc	tctcattttt	ttaattttgt	tttgttcagt	ttggtttttt	2820
	ttttttttg	cgctgctaag	aagctaaagt	catccatcct	tattcacgtt	gacagtacct	2880
	agctgtaatg	tttcacagag	tgtgctgcta	ttttaţaaac	atttttataa	tatattattt	2940
	tactgcttaa	attccaagtc	ctgaagtaga	tggttgagat	atgagttctt	cgtactggaa	3000
	aagcccttcc	gtagtttgtt	ttcttctggt	agcatattca	tggttgtttt	tttttttctt	3060
	ttttggtttt	ttggttttt	ttttttcctc	tgatcacatt	cttcaaagac	ggagtattct	3120
	tacctcaggt	ttactggaca	aaatcaataa	ctaca'aaagg	caatgattca	cgcttttgtt	3180
	ttcataatac	ctcacaaccg	tacagtttct	gcttgggagc	ccattcgcat	gaggaataca	3240
	gaagcagtgt	gagcagggct	gactccctct	caggtggaag	gcagggcggt	ctcactccca	3300
	gggacctttt	tggtcatgga	ggccatcggg	ctcccagtta	gaccctggta	tcctcatcat	3360
	gatggaaaaa	atacattgaa	ccaagggatc	ctccctcccc	ttcaaggcag	acgttcagta	3420
	caaacattta	tgcggtaggc	tcagatgtcg	taatttgcac	ttaggtacca	ggtgtcagga	3480
	aacagactaa	aaagaattcc	accaggctgt	ttggagatcc	tcatcttgga	gctttttcaa	3540
	aagcggggct	tcatctgcaa	agggcccttt	catcttgaag	tttttcccct	ccgtctttcc	3600
	cctcccctgg	catggacacc	ttgtgtttag	gatcatctct	gcaggtttcc	taggtctgaa	3660
	tctgcgagta	gatgaacctg	cagcaagcag	cgtttatggt	gcttccttct	ccctcctctg	3720
	tctcaaactg	cgcaggcaag	cactatgcaa	gcccaggccc	tctgctgagc	ggtactaaac	3780
	ggtcgggttt	tcaatcacac	tgaattggca	ggataagaaa	aataggtcag	ataagtatgg	3840
	gatgatagtt	gaagggaggt	gaagaggctg	cttctctaca	gaggtgaaat	tccagatgag	3900
,	tcagtctctt	gggaagtgtg	tttagaaggg	ttcaggactt	tgtgagttag	catgacccta	3960

aaattctagg	ggatttctgg	tgggacaatg	ggtggtgaat	tttgaagttt	tggagaggga	4020
agtggagcag	ccagcaagta	agctagccag	agttttctca	agagccagct	ttgctcagca	4080
cactctcctg	ggccccaagg	agtcccacgg	aatggggaaa	gtgggaaccc	tggagttctt	4140
gggaatcttg	gagcctaaag	agaaaccgag	gtgcaaattc	atttcatggt	gactgaccct	4200
tgagcttaaa	cagaagcagc	aaatgaaaga	accggacaaa	taaggaaggg	cacaagccta	4260
cccgactcta	tttacagtct	gtaactttcc	actcttcctg	tagtcccgag	gcccctgggt	4320
ccttctagct	tttctctttc	ccatccttgg	ggccttgtgt	gatgatgggt	gtggggctgc	4380
cgatgggaaa	gtcgggggtt	gttaggcttt	tetgeetget	cctgcttaaa	cacaagaagg	4440
aatcctggat	tttgccctct	ccttagctct	tagtctcttt	ggtaggagtt	ttgttccaga	4500
ggagctctcc	cccttggatt	tgaacttgct	ctttttgttg	ttgttgttct	ttatattatt	4560
tttcttacct	cccactaaag	gggttccaaa	ttatcctggt	ctttttctac	cttgttgtgt	4620
ttctatctcg	tctttacttc	catctgtttg	tttttttctc	catcagtggg	ggccgagttg	4680
ttcccccagc	ctgccaaatt	ttgatccttc	ccctcttttg	gccaaatcct	agggggaaga	4740
aatcctagta	tgccaaaaat	atatgctaag	cataattaaa	ctccatgcgg	gtccataaca	4800
gccaagaagc	ctgcaggaga	aagccaaggg	cagttccctc	cgcagaacac	cccatgcgtg	4860
ctgagaggcg	agctccttga	agaaggggct	gttcttccag	gaggccttat	tttgaactgc	4920
ctcaggaccc	cactggagag	cacagcatgc	cttactactg	ggtcatcctt	ggtctatgtg	4980
ctctgtactg	gaggctctgt	tctgcctctt	atcagccagg	tcaggggcac	acatggctta	5040
agtgacaaag	ccagaggaga	agacaaccct	gacagcatca	cgctgcatcc	cattgctagc	5100
aggattggca	actcttcaga	cggagctgcg	cttccctgca	gtctagcacc	tctagggcct	5160
ctccagactg	tgccctggga	gctctgggac	tgaaaggtta	agaacataag	gcaggatcag	5220
atgactctct	ccaagagggc	aggggaattt	tctctccatg	ggccacaggg	gacagggctg	5280
ggagaagaaa	tagacttgca	ccttatgtca	tgtaaataat	tgattttcta	gttcaagaag	5340
ataatattgg	tagtgtggga	attggaggta	ggaaggggag	gaagtctgag	taagccagtt	5400
ggcttctaag	ccaaaaggat	tcctctttgt	ttatctctga	gacagtccaa	ccttgagaat	5460
agctttaaaa	gggaaattaa	tgctgagatg	ataaagtccc	cttaagccaa	caaaccctct	5520
gtagctatag	aatgagtgca	ggtttctatt	ggtgtggact	cagagcaatt	tacaagagct	5580
gttcatgcag	ccatccattt	gtgcaaaata	gggtaagaag	attcaagagg	atatttatta	5640
cttcctcata	ccacatggct	tttgatgatt	ctggattcta	aacaacccag	aatggtcatt	5700
tcaggcacaa	cgatactaca	ttcgtgtgtg	tctgctttta	aacttggctg	ggctatcaga	5760

- 9 -

ccctattctc	ggctcaggtt	ttgagaagcc	atcagcaaat	gtgtacgtgc	atgctgtagc	5820
tgcagcctgc	atecettege	ctgcagccta	ctttggggaa	ataaagtgcc	ttactgactg	5880
tagccattac	agtatccaat	gtcttttgac	aggtgcctgt	ccttgaaaaa	caaagtttct	5940
atttttattt	ttaattggtt	tagttcttaa	ctgctggcca	actcttacat	ccccagcaaa	6000
tcatcgggcc	attggatttt	ttccattatg	ttcatcaccc	ttatatcatg	tacctcagat	6060
ctctctct	ctcctctctc	tcagttatat	agtttcttgt	cttggacttt	ttttttcttt	6120
tcttttctt	ttttttttg	ctttaaaaca	agtgtgatgc	catatcaagt	ccatgttatt	6180
ctctcacagt	gtactctata	agaggtgtgg	gtgtctgttt	ggtcaggatg	ttagaaagtg	6240
ctgataagta	gcatgatcag	tgtatgcgaa	aaggttttta	ggaagtatgg	caaaaatgtt	6300
gtattggcta	tgatggtgac	atgatatagt	cagctgcctt	ttaagaggtc	ttatctgttc	6360
agtgttaagt	gatttaaaaa	aataataacc	tgttttctga	ctagtttaaa	gatggatttg	6420
aaaatggttt	tgaatgcaat	taggttatgc	tatttggaca	ataaactcac	cttgacct .	6478

PCT/US01/24104

<210> 5

WO 02/09573

<211> 3867 <212> DNA

<213> Homo sapiens

<400> 5

acaggecege gaegeteece teagetggeg geggeegegg agagatgeeg egggggeege 60 tegeageege egetgaettg tgaatgggae egggaetggg geegggaetg acaeegeage 120 gettgeeetg egecagggae tggeggeteg gaggttgegt ceacceteaa gggeeecaga 180 aatcactgtg ttttcagctc ageggeectg tgacatteet tegtgttgte atttgttgag 240 tgaccaatca gatgggtgga gtgtgttaca gaaattggca gcaagtatcc aatgggtgaa 300 gaagaagcta actggggacg tgggcagccc tgacgtgatg agctcaacca gcagagacat 360 tecateccaa gagaggtetg egtgaegegt eegggaggee acceteagea agaecaeegt 420 acagttggtg gaaggggtga cagctgcatt ctcctgtgcc taccacgtaa ccaaaaatga 480 aggagaacta ctgtttacaa gccgccctgg tgtgcctggg catgctgtgc cacagccatg 540 cetttgecce agageggegg gggeacetge ggeeeteett ceatgggeac catgagaagg 600 gcaaggaggg gcaggtgcta cagcgctcca agcgtggctg ggtctggaac cagttcttcg 660 tgatagagga gtacaccggg cctgaccccg tgcttgtggg caggettcat tcagatattg 720 actotggtga tgggaacatt aaatacatto totcagggga aggagctgga accatttttg 780 tgattgatga caaatcaggg aacattcatg ccaccaagac gttggatcga gaagagagag 840 cccagtacac gttgatggct caggcggtgg acagggacac caatcggcca ctggagccac 900

egteggaatt cattgteaag gteeaggaca ttaatgacaa eeeteeggag tteetgeaeg 960 agacctatca tgccaacgtg cctgagaggt ccaatgtggg aacgtcagta atccaggtga 1020 cagcttcaga tgcagatgac cccacttatg gaaatagcgc caagttagtg tacagtatcc 1080 togaaggaca accetatttt toggtggaag cacagacagg tatcatcaga acageetac 1140 ccaacatgga cagggaggcc aaggaggagt accacgtggt gatccaggcc aaggacatgg 1200 gtggacatat gggcggactc tcagggacaa ccaaagtgac gatcacactg accgatgtca 1260 atgacaaccc accaaagttt ccgcagagcg tataccagat atctgtgtca gaagcagccg 1320 tccctgggga ggaagtagga agagtgaaag ctaaagatcc agacattgga gaaaatggct 1380 tagtcacata caatattgtt gatggagatg gtatggaatc gtttgaaatc acaacggact 1440 atgaaacaca ggagggggtg ataaagctga aaaagcctgt agattttgaa accaaaaqaq 1500 cctatagctt gaaggtagag gcagccaacg tgcacatcga cccgaagttt atcagcaatg 1560 gccctttcaa ggacactgtg accgtcaaga tcgcagtaga agatgctgat gagcccccta 1620 tgttcttggc cccaagttac atccacgaag tccaagaaaa tgcagctgct ggcaccgtgg 1680 ttgggagagt gcatgccaaa gaccctgatg ctgccaacag cccgataagg tattccatcg 1740 atcgtcacac tgacctcgac agatttttca ctattaatcc agaggatggt tttattaaaa 1800 ctacaaaacc tetggataga gaggaaacag cetggetcaa catcactgte tttgcagcag 1860 aaatccacaa tcggcatcag gaagccaaag tcccagtggc cattagggtc cttgatgtca 1920 acgataatgc tcccaagttt gctgcccctt atgaaggttt catctgtgag agtgatcaga 1980 ccaagccact ttccaaccag ccaattgtta caattagtgc agatgacaag gatgacacgg 2040 ccaatggacc aagatttatc ttcagcctac cccctgaaat cattcacaat ccaaatttca 2100 cagtcagaga caaccgagat aacacagcag gegtgtaege ceggegtgga gggtteagte 2160 ggcagaagca ggacttgtac ettetgeeca tagtgateag egatggegge ateeggeeca 2220 tgagtagcac caacaccctc accatcaaag tctgcgggtg cgacgtgaac ggggcactgc 2280 tetectgeaa egeagaggee tacattetga aegeeggeet gageacagge geeetgateg 2340 ccatcctcgc ctgcatcgtc attctcctgg gttgcccaag cttaatggaa cccccctctc 2400 ccagggaaga catgagattg ctttatctgg gcttccagct gatgctattt tcctatgtta 2460 aagtaaacag aagattttgt cttctggggg tctttataaa acttcctttc ctctatqtgg 2520 tggctacaga gagtccaacc acacttacgt cattgtagta ttgtttgtga ccctgagaag 2580 gcaaaagaaa gaaccactca ttgtctttga ggaagaagat gtccgtgaga acatcattac 2640 ttatgatgat gaagggggtg gggaagaaga cacagaagcc tttgatattg ccaccctcca 2700

gaatcctgat	ggtatcaatg	gatttatccc	ccgcaaagac	atcaaacctg	agtatcagta	2760
catgcctaga	cctgggctcc	ggccagcgcc	caacagcgtg	gatgtcgatg	acttcatcaa	2820
cacgagaata	caggaggcag	acaatgaccc	cacggctcct	ccttatgact	ccattcaaat	2880
ctacggttat	gaaggcaggg	gctcagtggc	cgggtccctg	agctccctag	agtcggccac	2940
cacagattca	gacttggact	atgattatct	acagaactgg	ggacctcgtt	ttaagaaact	3000
agcagatttg	tatggttcca	aagacacttt	tgatgacgat	tcttaacaat	aacgatacaa	3060
atttggcctt	aagaactgtg	tctggcgttc	tcaagaatct	agaagatgtg	taaacaggta	3120
ttttttaaa	tcaaggaaag	gctcatttaa	aacaggcaaa	gttttacaga	gaggatacat	3180
ttaataaaac	tgcgaggaca	tcaaagtggt	aaatactgtg	aaataccttt	tctcacaaaa	3240
aggcaaatat	tgaagttgtt	tatcaacttc	gctagaaaaa	aaaaacactt	ggcatacaaa	3300
atatttaagt	gaaggagaag	tctaacgctg	aactgacaat	gaagggaaat	tgtttatgtg	3360
ttatgaacat	ccaagtcttt	cttcttttt	aagttgtcaa	agaagcttcc	acaaaattag	3420
aaaggacaac	agttctgagc	tgtaatttcg	ccttaaactc	tggacactct	atatgtagtg	3480
catttttaaa	cttgaaatat	ataatattca	gccagcttaa	acccatacaa	tgtatgtaca	3540
atacaatgta	caattatgtc	tcttgagcat	caatcttgtt	actgctgatt	cttgtaaatc	3600
tttttgcttc	tactttcatc	ttaaactaat	acgtgccaga	tataactgtc	ttgtttcagt	3660
gagagacgcc	ctatttctat	gtcattttta	atgtatctat	ttgtacaatt	ttaaagttct	3720
tattttagta	tacatataaa	tatcagtatt	ctgacatgta	agaaaatgtt	acggcatcac	3780
acttatattt	tatgaacatt	gtactgttgc	tttaatatga	gcttcaatat	aagaagcaat	3840
ctttgaaata	aaaaaagatt	tttttt				3867
<220> <221> Unsi <222> (243	o sapiens	t/u				·
<400> 6 aaccatcaaa	tttagaagaa	aaagcccttt	gactttttcc	ccctctccct	ccccaatggc	60

tgtgtagcaa acatccctgg cgataccttg gaaaggacga agttggtctg cagtcgcaat

ttcgtgggtt gagttcacag ttgtgagtgc ggggctcgga gatggagccg tggtcctcta

-12-

ggtggaaaac gaaacggtgg ctctgggatt tcaccgtaac aaccctcgca ttgaccttcc 240 tettecaage tagagaggte agaggagetg etceagttga tgtactaaaa geactagatt 300 ttcacaattc tccagaggga atatcaaaaa caacgggatt ttgcacaaac agaaagaatt 360 ctaaaggete agatactget tacagagttt caaagcaage acaactcagt geeccaacaa 420 aacagttatt tccaggtgga actttcccag aagacttttc aatactattt acagtaaaac 480 caaaaaaagg aattcagtct ttccttttat ctatatataa tgagcatggt attcagcaaa 540 ttggtgttga ggttgggaga tcacctgttt ttctgtttga agaccacact ggaaaacctg 600 ccccagaaga ctatcccctc ttcagaactg ttaacatcgc tgacgggaag tggcatcggg 660 tagcaatcag cgtggagaag aaaactgtga caatgattgt tgattgtaag aagaaaacca 720 cgaaaccact tgatagaagt gagagagcaa ttgttgatac caatggaatc acggtttttg 780 gaacaaggat tttggatgaa gaagtttttg agggggacat tcagcagttt ttgatcacag 840 gtgatcccaa ggcagcatat gactactgtg agcattatag tccagactgt gactcttcag 900 cacccaaggc tgctcaagct caggaacctc agatagatga gtatgcacca gaggatataa 960 tcgaatatga ctatgagtat ggggaagcag agtataaaga ggctgaaagt gtaacagagg 1020 gacccactgt aactgaggag acaatagcac agacggaggc aaacatcgtt gatgattttc 1080 aagaatacaa ctatggaaca atggaaagtt accagacaga agctcctagg catgtttctg 1140 ggacaaatga gccaaatcca gttgaagaaa tatttactga agaatatcta acgggagagg 1200 attatgattc ccagaggaaa aattctgagg atacactata tgaaaacaaa gaaatagacg 1260 gcagggattc tgatcttctg gtagatggag atttaggcga atatgatttt tatgaatata aagaatatga agataaacca acaagccccc ctaatgaaga atttggtcca ggtgtaccag 1380 cagaaactga tattacagaa acaagcataa atggccatgg tgcatatgga gagaaaggac 1440 agaaaggaga accagcagtg gttgagcctg gtatgcttgt cgaaggacca ccaggaccag 1500 caggacctgc aggtattatg ggtcctccag gtctacaagg ccccactgga ccccctggtg 1560 accetggega taggggeece ceaggaegte etggettace aggggetgat ggtetacetg 1620 gtcctcctgg tactatgttg atgttaccgt tccgttatgg tggtgatggt tccaaaggac 1680 caaccatctc tgctcaggaa gctcaggctc aagctattct tcagcaggct cggattgctc 1740 tgagaggece acetggecea atgggtetaa etggaagace aggteetgtg ggggggeetg 1800 gttcatctgg ggccaaaggt gagagtggtg atccaggtcc tcagggccct cgaggcgtcc 1860 agggtccccc tggtccaacg ggaaaacctg gaaaaagggg tcgtccaggt gcagatggag 1920 gaagaggaat gccaggagaa cctggggcaa agggagatcg agggtttgat ggacttccgg 1980

gtctgccagg	tgacaaaggt	cacaggggtg	aacgaggtcc	tcaaggtcct	ccaggtcctc	2040
ctggtgatga	tggaatgagg	ggagaagatg	gagaaattgg	accaagaggt	cttccaggtg	2100
aagctggccc	acgaggtttg	ctgggtccaa	ggggaactcc	aggagctcca	gggcagcctg	2160
gtatggcagg	tgtagatggc	ccccaggac	caaaagggaa	catgggtccc	caaggggagc	2220
ctgggcctcc	aggtcaacaa	gggaatccag	gacctcaggg	tcttcctggt	ccacaaggtc	2280
caattggtcc	tcctggtgaa	aaaggaccac	aaggaaaacc	aggacttgct	ggacttcctg	2340
gtgctgatgg	gcctcctggt	catcctggga	aagaaggcca	gtctggagaa	aagggggctc	2400
tgggtccccc	tggtccacaa	ggtcctattg	gatnnccggg	cccccgggga	gtaaagggag	2460
cagatggtgt	cagaggtctc	aagggatcta	aaggtgaaaa	gggtgaagat	ggttttccag	2520
gattcaaagg	tgacatgggt	ctaaaaggtg	acagaggaga	agttggtcaa	attggcccaa	2580
gagggnaaga	tggccctgaa	ggacccaaag	gtcgagcagg	cccaactgga	gacccaggtc	2640
cttcaggtca	agcaggagaa	aagggaaaac	ttggagttcc	aggattacca	ggatatccag	2700
gaagacaagg	tccaaagggt	tccactggat	tccctgggtt	tccaggtgcc	aatggagaga	2760
aaggtgcacg	gggagtagct	ggcaaaccag	gccctcgggg	tcagcgtggt	ccaacgggtc	2820
ctcgaggttc	aagaggtgca	agaggtccca	ctgggaaacc	tgggccaaag	ggcacttcag	2880
gtggcgatgg	ccctcctggc	cctccaggtg	aaagaggtcc	tcaaggacct	cagggtccag	2940
ttggattccc	tggaccaaaa	ggccctcctg	gaccaccagg	aaggatgggc	tgcccaggac	3000
accctgggca	acgtggggag	actggatttc	aaggcaagac	cggccctcct	gggccagggg	3060
gagtggttgg	accacaggga	ccaaccggtg	agactggtcc	aataggggaa	cgtgggtatc	3120
ctggtcctcc	tggccctcct	ggtgagcaag	gtcttcctgg	tgctgcagga	aaagaaggtg	3180
caaagggtga	tccaggtcct	caaggtatct	cagggaaaga	tggaccagca	ggattacgtg	3240
gtttcccagg	ggaaagaggt	cttcctggag	ctcagggtgc	acctggactg	aaaggagggg	3300
aaggtcccca	gggcccacca	ggtccagttg	gctcaccagg	agaacgtggg	tcagcaggta	3360
cagctggccc	aattggttta	cgagggcgcc	cgggacctca	gggtcctcct	ggtccagctg	3420
gagagaaagg	tgctcctgga	gaaaaaggtc	cccaagggcc	tgcagggaga	gatggagttc	3480
aaggtcctgt	tggtctccca	gggccagctg	gtcctgccgg	ctcccctggg	gaagacggag	3540
acaagggtga	aattggtgag	ccgggacaaa	aaggcagcaa	gggtggcaag	ggagaaaatg	3600
gccctcccgg	tccccaggt	cttcaaggac	cagttggtgc	ccctggaatt	gctggaggtg	3660
atggtgaacc	aggtcctaga	ggacagcagg	ggatgtttgg	gcaaaaaggt	gatgagggtg	3720
ccagaggctt	ccctggacct	cctggtccaa	taggtcttca	gggtctgcca	ggcccacctg	3780

gtgaaaaagg	tgaaaatggg	gatgttggtc	catgggggcc	acctggtcct	ccaggcccaa	3840
gaggccctca	aggtcccaat	ggagctgatg	gaccacaagg	acccccaggt	tctgttggtt	3900
cagttggtgg	tgttggagaa	aagggtgaac	ctggagaagc	aggaaaccca	gggcctcctg	3960
gggaagcagg	tgtaggeggt	cccaaaggag	aaagaggaga	gaaaggggaa	gctggtccac	4020
ctggagctgc	tggacctcca	ggtgccaagg	ggccgccagg	tgatgatggç	cctaagggta	4080
acccgggtcc	tgttggtttt	cctggagatc	ctggtcctcc	tggggaactt	ggccctgcag	4140
gtcaagatgg	tgttggtggt	gacaagggtg	aagatggaga	tcctggtcaa	ccgggtcctc	4200
ctggcccatc	tggtgaggct	ggcccaccag	gteeteetgg	aaaacgaggt	cctcctggag	4260
ctgcaggtgc	agagggaaga	caaggtgaaa	aaggtgctaa	gggggaagca	ggtgcagaag	4320
gtectectgg	aaaaaccggc	ccagtcggtc	ctcagggacc	tgcaggaaag	cctggtccag	4380
aaggtcttcg	gggcatccct	ggtcctgtgg	gagaacaagg	tctccctgga	gctgcaggcc	4440
aagatggacc	acctggtcct	atgggacctc	ctggcttacc	tggtctcaaa	ggtgaccctg	4500
gctccaaggg	tgaaaaggga	catcctggtt	taattggcct	gattggtcct	ccaggagaac	4560
aaggggaaaa	aggtgaccga	gggeteeetg	gaactcaagg	atctccagga	gcaaaagggg	4620
atgggggaat	teetggteet	gctggtccct	taggtccacc	tggtcctcca	ggcttaccag	4680
gtcctcaagg	cccaaagggt	aacaaaggct	ctactggacc	cgctggccag	aaaggtgaca	4740
gtggtcttcc	agggcctcct	gggcctccag	gtccacctgg	tgaagtcatt	cagcctttac	4800
caatcttgtc	ctccaaaaaa	acgagaagac	atactgaagg	catgcaagca	gatgcagatg	4860
ataatattct	tgattactcg	gatggaatgg	aagaaatatt	tggttccctc	aattccctga	4920
aacaagacat	cgagcatatg	aaatttccaa	tgggtåctca	gaccaatcca	gcccgaactt	4980
gtaaagacct	gcaactcagc	catcctgact	tcccagatgg	tgaatattgg	attgatccta	5040
accaaggttg	ctcaggagat	tccttcaaag	tttactgtaa	tttcacatct	ggtggtgaga	5100
cttgcattta	tccagacaaa	aaatctgagg	 gagtaagaat	ttcatcatgg	ccaaaggaga	5160
aaccaggaag	ttggtttagt	gaatttaaga	ggggaaaact	gctttcatac	ttagatgttg	5220
aaggaaattc	catcaatatg	gtgcaaatga	cattcctgaa	acttctgact	gcctctgctc	52.80
ggcaaaattt	cacctaccac	tgtcatcagt	cagcagcctg	gtatgatgtg	tcatcaggaa	5340
gttatgacaa	agcacttcgc	ttcctgggat	caaatgatga	ggagatgtcc	tatgacaata	5400
atccttttat	caaaacactg	tatgatggtt	gtacgtccag	aaaaggctat	gaaaaaactg	5460
tcattgaaat	caatacacca	aaaattgatc	aagtacctat	tgttgatgtc	atgatcagtg	5520
actttggtga	tcagaatcag	aagttcggat	ttgaagttgg	tcctgtttgt	tttcttggct	5580

- 15 --

WO 02/09573 PCT/US01/24104

aagattaaga	caaagaacat	atcaaatcaa	cagaaaatgt	accttggtgc	caccaaccca	5640
ttttgtgcca	catgcaagtt	ttgaataagg	atgtatggaa	aacaacgctg	catatacagg	5700
taccatttag	gaaataccga	tgcctttgtg	ggggcagaat	cacagacaaa	agctttgaaa	5760
atcataaaga	tataagttgg	tgtggctaag	atggaaacag	ggctgattct	tgattcccaa	5820
ttctcaactc	tecttttect	atttgaattt	ctttggtgct	gtagaaaaca	aaaaaagaaa	5880
aatatatatt	cataaaaaat	atggtgctca	ttctcatcca	tccaggatgt	actaaaacag	5940
tgtgtttaat	aaattgtaat	tattttgtgt	acagttctat	actgttatct	gtgtccattt	6000
ccaaaacttg	cacgtgtccc	tgaattccgc	tgactctaat	ttatgaggat	gccgaactct	6060
gatggcaata	atatatgtat	tatgaaaatg	aagttatgat	ttccgatgac	cctaagtccc	6120
tttctttggt	taatgatgaa	attcctttgt	gtgtgttt			6158
<400> 7	o sapiens					
tatgtaaggc	ggccaaggct	gacctggtat	ttatggtgga	tggatcctgg	agcattggag	60
atgaaaattt	caataagatc	atcagctttc	tatacagcac	tgttggagcc	ctgaacaaga	120
ttggcacaga	tggaacccaa	gttgcaatgg	ttcagttcac	tgatgatccc	agaacagaat	180
ttaaactaaa	tgcttacaaa	accaaagaga	ctcttcttga	tgcaattaaa	cacatttcat	240
acaaaggagg	aaatacaaaa	acaggaaaag	caattàagta	tgttcgagat	accttgttca	300
ctgcagagtc	aggtacaaga	aggggcatcc	caaaggttat	cgtggttata	actgatggaa	360
gatcacaaga	tgatgtgaac	aaaatctcca	gggagatgca	attagatggc	tatagcattt	420
ttgcaattgg	tgtggccgat	gcagattact	cggagttggt	tagcattggc	agtaagccca	480
gcgcacgcca	tgtcttcttt	gtggatgact	ttgacgcctt	taagaaaatc	gaagatgagt	540
taattacttt	tgtctgcgaa	acagcatcag	caacctgtcc	agtggtacac	aaggatggca	600
ttgatcttgc	aggatttaag	atgatggaaa	tgtttggttt	ggttgaaaaa	gatttttcat	660
cagtggaagg	ggtttctatg	gagcctggta	ccttcaatgt	gtttccatgt	taccaactcc	720
ataaagatgc	cctggtttcc	cagccaacca	ggtacttgca	cccagaagga	ttgccctccg	780
actacacaat	cagttttcta	ttccggattc	ttcctgacac	tccacaggag	ccatttgctc	840
tttgggagat	tttaaataaa	aattctgacc	cattggttgg	ggttatttta	gacaatggtg	900
ggaaaactct	aacatatttc	aactatgacc	agagtgggga	ttttcaaact	gttactttcg	960
aaggacctga	aattaggaaa	attttttatg	gaagctttca	caagctacac	attgttgtca	1020

gtgagacttt ggtcaaagtg gttattgact gcaagcaagt gggtgagaag gcaatgaacg 1080 catcagctaa tatcacgtca gatggtgtag aagtgctagg gaaaatggtt cgatcaagag 1140 gaccaggtgg aaactctgca ccgttccagt tacagatgtt tgatattgtt tgctccacat 1200 catgggccaa tacagacaaa tgctgtgaac ttccaggcct gagagatgat gagtcttgcc 1260 cagaccttcc ccattcctgc tcctgttctg aaaccaatga agtggctctg ggaccagegg 1320 gcccaccagg tggtccagga ctccgaggac caaagggcca gcaaggtgaa ccgggtccaa 1380 agggaccaga tggccctcgg ggtgaaattg gtctgccagg acctcagggt ccacctggac 1440 ctcaaggacc aagtggtctg tccattcaag gaatgcccgg aatgccagga gaaaaaggag 1500 agaaaggaga tactggcctt ccaggtccac agggtatccc aggaggcgtt ggttcaccag 1560 gacgtgatgg ctcaccaggc cagaggggcc ttccgggaaa ggatggatcc tcgggacctc 1620 caggaccacc agggccaata ggcatteetg gcacceetgg agteecaggg ateacaggaa 1680 gcatgggacc gcaaggegcc etgggaccac etggtgtecc tggagcaaag ggggaacqag 1740 gagagegggg tgacetgeag teteaageea tggtgagate agtggegegt caagtatgeg 1800 aacageteat ecagagteae atggeeaggt acaetgeeat eeteaaceag atteceagee 1860 actecteate cateeggaet gteeaaggge eteetgggga geetgggagg eeaggeteae 1920 ctggagecec tggtgaacaa ggacececag gaacaceagg etteecegga aatgeaggeg 1980 taccagggac cccaggagaa cgaggtctaa ctggtatcaa aggagaaaaa ggaaatccag 2040 gcgttggaac ccaaggtcca agaggccccc ctggaccagc aggaccttca ggggagagtc 2100 ggcctggcag ccctgggccc cctggctctc ctggaccaag aggcccacca ggtcatctgg 2160 gggttcctgg accccaaggt ccttctggcc agcctggata ttgtgacccc tcatcatgtt 2220 ctgcctatgg tgtgagagat ctgatcccct acaatgatta ccagcactga agtggaaatc 2280 ctecactetg gttccattgg ceccagacat ttagetgtgg atacagaact gtcctgtcaa 2340 ccaccaccac caccaageee etgecectaa caatggacae tetgetteee tgettettet 2400 gcatccctgc cttcccactt tcaaacctct tgcccactct gctccaaaca tgatggagtg 2460. ataacatcgg aacttaacca aatcatatat gtctatttta atagacactg actgctccat 2520 gtcagcctgg atagaggtat atgacgtgtg ccaagaattt atcccagact cccctgtqtg 2580 acagetteat aataaagtta ettaaetgtg cetetteete etteetee eeacaeagga 2640 tggatgggca tettteteet tgaccaccet acteteett ceteceetga teaccteece 2700 tccctgctct cccctggtga tggacttcta acatgagatt tttttaaaaa atttctattt 2760 cttttataat tttgctgagt tttcagggtt tcttctgtaa ataaaacata atatttaaaa 2820

-17-

aaa				•		2823
<210> 8 <211> 5102 <212> DNA <213> Homo	2 o sapiens					
<400> 8 gcttctgcga	ctccagttgt	gagagccgca	agggcatggg	aattgacgcc	actcaccgac	60
ccccagtctc	aatctcaacg	ctgtgaggaa	acctcgactt	tgccaggtcc	ccaagggcag	120
cggggctcgg	cgagcgaggc	accettetee	gtccccatcc	caatccaagc	gctcctggca	180
ctgacgacgc	caagagactc	gagtgggagt	taaagcttcc	agtgagggca	gcaggtgtcc	240
aggccgggcc	tģcgggttcc	tgttgacgtc	ttgccctagg	caaaggtccc	agttccttct	300
cggagccggc	tgtcccgcgc	cactggaaac	cgcacctccc	cgcagcatgg	gcaccagcct	360
cagcccgaac	gaccettgge	cgctaaaccc	gctgtccatc	cagcagacca	cgctcctgct	420
actcctgtcg	gtgctggcca	ctgtgcatgt	gggccagcgg	ctgctgaggc	aacggaggcg	480
gcagctccgg	teegegeece	cgggcccgtt	tgcgtggcca	ctgatcggaa	acgcggcggc	540
ggtgggccag	gcggctcacc	tetegttege	tegeetiggeg	cggcgctacg	gcgacgtttt	600
ccagatccgc	ctgggcagct	gccccatagt	ggtgctgaat	ggcgagcgcg	ccatccacca	660
ggccctggtg	cagcagggct	cggccttcgc	cgaccggccg	gccttcgcct	ccttccgtgt	720
ggtgtccggc	ggccgcagca	tggctttcgg	ccactactcg	gagcactgga	aggtgcagcg	780
gcgcgcagcc	cacagcatga	tgcgcaactt	cttcacgcgc	cagccgcgca	gccgccaagt	840
cctcgagggc	cacgtgctga	gcgaggcgcg	cgagctggtg	gcgctgctgg	tgcgcggcag	900
cgcggacggc	gccttcctcg,	acccgaggcc	gctgaccgtc	gtggccgtgg	ccaacgtcat	960
gagtgccgtg	tgtttcggct	gccgctacag	ccacgacgac	cccgagttcc	gtgągctgct	1020
cagccacaac	gaagagttcg	ggcgcacggt	gggcgcgggc	agcctggtgg	acgtgatgcc	1080
ctggctgcag	tacttcccca	acceggtgcg	caccgttttc	cgcgaattcg	agcagctcaa	1140
ccgcaacttc	agcaacttca	tcctggacaa	gttcttgagg	cactgcgaaa	gccttcggcc	1200
cggggccgcc	ccccgcgaca	tgatggacgc	ctttatcctc	tctgcggaaa	agaaggcggc	1260
cggggactcg	cacggtggtg	gcgcgcggct	ggatttggag	aacgtaccgg	ccactatcac	1320
tgacatcttc	ggcgccagcc	aggacaccct	gtccaccgcg	ctgcagtggc	tgctcctcct	1380
cttcaccagg	tatcctgatg	tgcagactcg	agtgcaggca	gaattggatc	aggtcgtggg	1440
aaaaaaccat.	ctaccttata	taaataaaa	aaaaaaaata	aaakabatuu	h~	1500

ttatgaagcc atgcgcttct ccagctttgt gcctgtcact attcctcatg ccaccactgc 1560 caacacctct gtcttgggct accacattcc caaggacact gtggtttttg tcaaccagtg 1620 gtctgtgaat catgacccag tgaagtggcc taacccggag aactttgatc cagctcgatt 1680 cttggacaag gatggcctca tcaacaagga cctgaccagc agagtgatga ttttttcagt 1740 gggcaaaagg cggtgcattg gcgaagaact ttctaagatg cagctttttc tcttcatctc 1800 catectgget caccagtgeg atttcaggge caacccaaat gageetgega aaatgaattt 1860 cagttatggt ctaaccatta aacccaagtc atttaaagtc aatgtcactc tcagagagtc 1920 catggagete ettgatagtg etgtecaaaa tttacaagee aaggaaaett gecaataaga 1980 agcaagaggc aagctgaaat tttagaaata ttcacatctt cggagatgag gagtaaaatt 2040 cagttttttt ccagttcctc ttttgtgctg cttctcaatt agcgtttaag gtgagcataa 2100 atcaactgtc catcaggtga ggtgtgctcc atacccagcg gttcttcatg agtagtgggc 2160 tatgcaggag cttctgggag atttttttga gtcaaagact taaagggccc aatgaattat 2220 tatatacata ctgcatcttg gttatttctg aaggtagcat tctttggagt taaaatgcac 2280 atatagacac atacacccaa acacttacac caaactactg aatgaagaag tattttggta 2340 accaggecat ttttggtggg aatccaagat tggtetecca tatgcagaaa tagacaaaaa 2400 gtatattaaa caaagtttca gagtatattg ttgaagagac agagacaagt aatttcagtg 2460 taaagtgtgt gattgaaggt gataagggaa aagataaaga ccagaaattc ccttttcacc 2520 ttttcaggaa aataacttag actctagtat ttatgggtgg atttatcctt ttgccttctg 2580 gtatacttcc ttacttttaa ggataaatca taaagtcagt tgctcaaaaa gaaatcaata 2640 gttgaattag tgagtatagt ggggttccat gagttatcat gaattttaaa gtatgcatta 2700 ttaaattgta aaactccaag gtgatgttgt acctcttttg cttgccaaag tacagaattt 2760 gaattatcag caaagaaaaa aaaaaaagcc agccaagctt taaattatgt gaccataatg 2820 tactgatttc agtaagtctc ataggttaaa aaaaaaagtc accaaatagt gtgaaatata 2880 ttacttaact gtccgtaagc agtatattag tattatcttg ttcaggaaaa ggttgaataa 2940 tatatgcctt gtgtaatatt gaaaattgaa aagtacaact aacgcaacca agtgtgctaa 3000 aaatgagctt gattaaatca accacctatt tttgacatgg aaatgaagca gggtttcttt 3060 tcttcactca aattttggcg aatctcaaaa ttagatccta agatgtgttc ttattttat 3120 aacatcttta ttgaaattct atttataata cagaatcttg ttttgaaaat aacctaatta 3180 atatattaaa attccaaatt catggcatgc ttaaatttta actaaatttt aaagccattc 3240 tgattattga gttccagttg aagttagtgg aaatctgaac attctcctgt ggaaggcaga 3300 gaaatctaag ctgtgtctgc ccaatgaata atggaaaatg ccatgaatta cctggatgtt 3360 3420 ctttttacga ggtgacaaga gttggggaca gaactcccat tacaactgac caagtttctc ttctagatga ttttttgaaa gttaacatta atgcctgctt tttggaaagt cagaatcaga 3480 agatagtett ggaagetgtt tggaaaagae agtggagatg aggteagttg tgttttttaa 3540 3600 gatggcaatt actttggtag ctgggaaagc ataaagctca aatgaaatgt atgcattcac atttagaaaa gtgaattgaa gtttcaagtt ttaaagttca ttgcaattaa acttccaaag 3660 aaagttctac agtgtcctaa gtgctaagtg cttattacat tttattaagc tttttggaat 3720 ctttqtacca aaattttaaa aaagggagtt tttgatagtt gtgtgtatgt gtgtgtgggg 3780 3840 tggggggatg gtaagagaaa agagagaaac actgaaaaga aggaaagatg gttaaacatt ttcccactca ttctqaatta attaatttgg agcacaaaat tcaaagcatg gacatttaga 3900 aqaaaqatqt ttqqcqtaqc aqagttaaat ctcaaatagg ctattaaaaa agtctacaac 3960 4020 ataqcaqatc tqttttqtqq tttqqaatat taaaaaactt catqtaattt tattttaaaa tttcataget gtacttettg aatataaaaa atcatgecag tatttttaaa ggeattagag 4080 tcaactacac aaagcaggct tgcccagtac atttaaattt tttggcactt gccattccaa 4140 aatattatgo cocaccaagg ctgagacagt gaatttgggo tgotgtagoo tattttttta -4200 gattgagaaa tgtgtagctg caaaaataat catgaaccaa tctggatgcc tcattatgtc 4260 aaccaggtcc agatgtgcta taatctgttt ttacgtatgt aggcccagtc gtcatcagat 4320 gcttgcggca aaagaaagct gtgtttatat ggaagaaagt aaggtgcttg gagtttacct 4380 ggcttattta atatgcttat aacctagtta aagaaaggaa aagaaaacaa aaaacgaatg 4440 aaaataactg aatttggagg ctggagtaat cagattactg ctttaatcag aaaccctcat 4500 tgtgtttcta ccggagagag aatgtatttg ctgacaacca ttaaagtcag aagttttact 4560 ccaqqttatt qcaataaaqt ataatgttta ttaaatgctt catttgtatg tcaaagcttt 4620 qactctataa qcaaattgct tttttccaaa acaaaaagat gtctcaggtt tgttttgtga 4680 attttctaaa agctttcatg tcccagaact tagcctttac ctgtgaagtg ttactacagc 4740 cttaatattt tcctagtaga tctatattag atcaaatagt tgcatagcag tatatgttaa 4800 tttgtgtgtt tttagctgtg acacaactgt gtgattaaaa ggtatacttt agtagacatt 4860 tataactcaa ggatacette ttatttaate ttttettatt tttgtaettt ateatgaatg 4920 cttttagtgt gtgcataata gctacagtgc atagttgtag acaaagtaca ttctggggaa 4980 5040 acaacattta tatgtagect ttactgtttg atataccaaa ttaaaaaaaa attgtatete attacttata ctgggacacc attaccaaaa taataaaaat cactttcata atcttgaaaa 5100 -20-

WO 02/09573

PCT/US01/24104

5102 aa <210> <211> 3995 <212> DNA <213> Homo sapiens <400> 9 ggatccgcgg gacagatgag gaaggggctt aagtcactgc agccagaggg atggaggtgg 60 actgatggga gggcttctcc ggtggggtta gaagggaaaa gtagggaaag agaagtgtaa 120 180 ggtagatggc agaggcagag acatggaaag acagactcta gggttcctga tgatatctat ctcggccaac acaaaaggga gggtacagtg gtgggggcac ccaagctagg gtgtgagtac 240 300 cctaagtgta ttcttctgag atgtaggcca ttcactaact cttggaacag ctacagtttc acagtaggaa gacccccca gattcactgc ccctccctta gtaaagcctc tgagaccttc 360 ctgaacattc ccttctgtct ttgccctctg ttccttccag agactatgtg cccaggcaga 420 tggattcctc ccgggcctga gaggaactgc aggaattctc ctgcctctta cccgtaaaac 480 cccaacttct ctagccctag ggcaggaagt cccaaacaat ttctacccct ttttctgcaa 540 600 ttctcattgg ggtgagagga ggcccaggag gagagagagc tgggctcagc ttctttttga gctgctggag ccctctgtga ggaggccctc tttgctggct tctcaggaga gtgtggctag 660 gttctgcctg cctatgggaa gaggggcca gggtgtgtgg agcaagatgg tgcggtgctg 720 gtgccttggg acctggggga atgggacagc tggtcggctc agagacggcc tactttactc 780 acagetggaa tttagtgggg agaageaget caactecaat cetggaggat tagggagatt 840 900 aaaqtqaqaq aaqaqaqa tqtcccaqaq accaaqaqct cccaqqtcag ccctctggct cctggcaccc ccactgctgc ggtgggcacc cccactcctc acagtgctgc atagcgacct 960 cttccaqqcc ttqctqqaca tcctgqacta ttatqaqqct tccctctcag agagtcagaa 1020 atacegetae caagatgaag acaegeeee tetggageae ageeeggeee acetteeeaa 1080 ccaggccaat tctcccccag tgattgtcaa cacagatacc ctagaagccc caggatatga 1140 gttgcaggtg aacgggaccg agggggagat ggaatacgag gaaatcacat tggaaagggg 1200 taactcaggt ctgggcttca gcatcgcagg tggcactgac aacccacaca tcggtgacga 1260 cccatccatt ttcatcacca agatcattcc tggtggggct gcggcccagg atggccgcct 1320 cagggtcaac gacagcatcc tgtttgtaaa tgaagtggac gtgcgcgagg tgacccactc 1380 ageggeggtg gaageeetea aagaggeagg etecategtt egeetetatg teatgegeeg 1440 gaagcccccg gctgagaagg tcatggagat caagctcatc aagggccta aaggtcttgg 1500 etteageate geagggggeg tagggaacea geacafeeca ggagataata geatetatgt 1560

aacaaagatc	atcgaagggg	gtgctgccca	caaggatggg	aggttgcaga	ttggagacaa	1620
gatcctggcg	gtcaacagtg	tggggctaga	ggacgtcatg	catgaagatg	ctgtggcagc	1680
cctgaagaac	acgtatgatg	ttgtctacct	aaaggtggcc	aagcccagca	atgcctacct	1740
gagtgacagc	tatgctcccc	cagacatcac	aacctcttat	tcccagcacc	tggacaatga	1800
gatcagtcac	agcagctacc	tgggcaccga	ctaccccaca	gccatgaccc	ccacttcccc	1860
teggegetae	tctccagtgg	ccaaggacct	gctcggggag	gaagacattc	cccgagaacc	1920
gaggcgaatt	gtgatccacc	ggggctccac	gggcctgggc	ttcaacatcg	tgggtggcga	1980
ggacggtgaa	ggcatcttca	tctcctttat	cctggccggg	ggccctgcag	acctcagtgg	2040
ggagctgcgg	aagggggacc	agatectgte	ggtcaacggt	gtggacctcc	gaaatgccag	2100
ccatgagcag	gctgccattg	ccctgaagaa	tgcgggtcag	acggtcacga	tcatcgctca	2160
gtataaacca	gaagagtaca	gccgattcga	ggccaagatc	cacgaccttc	gggaacagct	2220
catgaacagc	agcctgggct	cagggactgc	gtccttgcgg	agcaacccca	aaaggggttt	2280
ctacatcagg	gccctgtttg	attacgacaa	gaccaaggac	tgcggcttcc	tgagccaggc	2340
cctgagcttc	cgctttgggg	atgtgctgca	tgtcatcgat	gctagtgatg	aggagtggtg	2400
gcaggcacgg	cgggtccact	ctgacagtga	gaccgacgac	attgggttca	tececageaa	2460
acggcgggtt	gagcgacgag	agtggtcaag	gttaaaggcc	aaggactggg	gctccagctc	2520
tggatcgcag	ggtcgagaag	acteggttet	gagctacgag	acagtgacgc	agatggaagt	2580
gcactatgct	cgccccatca	tcatccttgg	gcccaccaag	gaccgcgcca	acgatgatct	2640
tctctccgag	ttccccgaca	agtttggatc	ctgtgttccc	catacgacac	ggcccaagcg	2700
ggagtatgag	atagatggcc	gggattacca	ctttgtgtcg	tcccgggaga	aaatggagaa	2760
ggacattcag	gcgcacaagt	tcattgaggc	cggccagtac	aacagccacc	tctatgggac	2820
cagcgtccag	teegtgegag	aggtggcaga	gcagggaag ;	cactgcatcc	tegatgtete	2880
ggccaatgcc	gtgcggcggc	tgcaggcggc	ccacctgcac	cccatcgcca	tcttcatccg	2940
cccccgctcc	ctggagaatg	tgctagagat	taacaagcgg	atcacagagg	agcaagcccg	3000
caaagcette	gacagagcca	ccaagctgga	gcaggagttc	acagagtgct	tctcagccat	3060
cgtggagggt	gacagctttg	aggagatcta	ccacaaggtg	aagcgtgtca	tcgaggacct	3120
ctcaggcccc	tacatctggg	ttccagcccg	agagagactc	tgattcctgc	cctggcttgg	3180
cctggactcg	ccctgcctcc	atcacctggg	cccttggtct	ggactgaatt	gcccaagccc	3240
ttggctcccc	ccggcctccc	tcccacccct	tcttatttat	ttcctttcta	actggatcca	3300
gcctgttgga	ggggggacac	tcctctgcat	gtatccccgc	accccagaac	tgggctcctg	3360

aacgccagga acctggggtc tggggggag ctgggctcct tgttccgagc ccttgctcct	3420
taggatecce gececeacet gececeaatg cacacaga cecaeegggg gecaeetgee	3480
ctcccccatc ctctcccaca cacattccag aagtcagggc cccctcgagg agcacccgct	3540
gcagggatgc agggccacag gcctccgctc tctcctaagg cagggtctgg ggtcacccct	3600
gcctcatcgt aattccccat gttaccttga tttctcattt attttttcca cttttttct	3660
teteaaaggt ggttttttgg ggggagaage aggggaetee geagegggee eetgeettee	3720
acatgccccc accatttttc tttgccggtt tgcatgagtg gaaggtctaa atgtggcttt	3780
ttttttttt ttcctgggaa tttttttggg gaaaagggag ggatgggtct agggagtggg	3840
aaatgcggga gggagggtgg ggcaggggtc gggggtcggg tgtccgggag ccagggaaga	3900
ctggaaatgc tgccgccttc tgcaatttat ttatttttt cttttgagag agtgaaagga	3960
agagacagat acttgaaaaa aaaaaaaaa aaaaa	3995
<210> 10 <211> 2000 <212> DNA <213> Homo sapiens <400> 10	
tttgggctgt gtgtgcgacg cgggtcggag gggcagtcgg gggaaccgcg aagaagccga	60
ggagcccgga gccccgcgtg acgctcctct ctcagtccaa aagcggcttt tggttcggcg	120
ggagecegga geceegegtg aegeteetet eteagteeaa aageggettt tggtteggeg eagagagaee egggggteta getttteete gaaaagegee geeetgeeet	120 180
cagagagace egggggteta getttteete gaaaagegee geeetgeeet	180
cagagagace egggggteta getttteete gaaaagegee geeetgeeet	180 240
cagagagace egggggteta getttteete gaaaagegee geeetgeeet	180 240 300
cagagagace egggggteta getttteete gaaaagegee geeetgeeet	180 240 300 360
cagagagace egggggteta getttteete gaaaagegee geeetgeeet	180 240 300 360 420
cagagagace egggggteta getttteete gaaaagegee geeetgeeet	180 240 300 360 420 480
cagagagace egggggteta getttteete gaaaagegee geeetgeeet	180 240 300 360 420 480 540
cagagagace egggggteta getttteete gaaaagegee geeetgeeet	180 240 300 360 420 480 540
cagagagace egggggteta gettteete gaaaagegee geeetgeeet	180 240 300 360 420 480 540 600
cagagagace egggggteta gettteete gaaaagegee geeetgeeet	180 240 300 360 420 480 540 600

tccctgtgga	ggacaaccac	aaggcagaca	tcagctcctg	gttcaacgag	gccattgact	960
tcatagactc	catcaagaat	gctggaggaa	gggtgtttgt	ccactgccág	gcaggcattt	1020
cccggtcagc	caccatctgc	cttgcttacc	ttatgaggac	taatcgagtc	aagctggacg	1080
aggcctttga	gtttgtgaag	cagaggcgaa	gcatcatctc	tcccaacttc	agcttcatgg	1140
gccagctgct	gcagtttgag	tcccaggtgc	tggctccgca	ctgttcggca	gaggctggga	1200
gccccgccat	ggctgtgctc	gaccgaggca	cctccaccac	caccgtgttc	aacttccccg	1260
tctccatccc	tgtccactcc	acgaacagtg	cgctgagcta	ccttcagagc	cccattacga	1320
cctctcccag	ctgctgaaag	gccacgggag	gtgaggctct	tcacatccca	ttgggactcc	1380
atgctccttg	agaggagaaa	tgcaataact	ctgggagggg	ctcgagaggg	ctggtcctta	1440
tttatttaac	ttcacccgag	ttcctctggg	tttctaagca	gttatggtga	tgacttagcg	1500
tcaagacatt	tgctgaactc	agcacattcg	ggaccaatat	atagtgggta	catcaagtcc	1560
atctgacaaa	atggggcaga	agagaaagga	ctcagtgtgt	gatccggttt	ctttttgctc	1620
gcccctgttt	tttgtagaat	ctcttcatgc	ttgacatacc	taccagtatt	attcccgacg	1680
acacatatac	atatgagaat	ataccttatt	tatttttgtg	taggtgtctg	ccttcacaaa	1740
tgtcattgtc	tactcctaga	agaaccaaat	acctcaattt	ttgtttttga	gtactgtact	1800
atcctgtaaa	tatatcttaa	gcaggtttgt	tttcagcact	gatggaaaat	accagtgttg	1860
ggttttttt	tagttgccaa	cagttgtatg	tttgctgatt	atttatgacc	tgaaataata	1920
tatttcttct	tctaagaaga	cattttgtta	cataaggatg	actttttat	acaatggaat	1980
aaattatggc	atttctattg		N.			2000

<210> 11 <211> 1587 <212> DNA <213> Homo sapiens

<400> 11

/#OO/ TT						
gcgcggaggc	ccggcgtgac	aagcggccca	gactcccgtg	ggcgccgcac	acctgttgtt	60
tgcagcagcc	agcgacccgc	actaccgctc	teggegggeg	gggaagcggc	cgcagcggag	120
ccgacccggc	aggtggccgc	gggcggggcc	ggcgagcgaa	agtgcgcggg	ggcccgacca	180
ccgcggggcc	gggacgcgac	gcgatggcgg	cggcagagcc	cgcgagctcg	ggccagcagg	240
cgccggcagg	gcaggggcag	ggccagcggc	cgccgccgca	gcctccgcag	gcgcaagccc	300
cgcagccgcc	cccgccgccg	cagctcgggg	acacaaaaaa	cggcagcagc	aggcacgaga	360
agagcctggg	gctgctcact	accaagttcg	tgtcgctgct	gcaggaggcc	aaggacggcg	420
ttctggatct	caaagcggct	gctgatactt	tggctgtgag	gcaaaaaagg	agaatttatg	480

540

600

WO 02/09573 PCT/US01/24104

atatcaccaa tgtcttagag ggaattgact tgattgaaaa aaagtcaaaa aacagtatcc

agtggaaagg tgtaggtgct ggctgtaata ctaaagaagt catagataga ttaagatatc

ttaaagctga	aattgaagat	ctagaactga	aggaaagaga	acttgatcag	cagaagttgt	660
ggctacagca	aagcatcaaa	aatgtgatgg	acgattccat	taataataga	ttttcctatg	720
taactcatga	agacatctgt	aattgcttta	atggtgatac	acttttggcc	attcaggcac	780
cttctggtac	acaactggag	gtacccattc	cagaaatggg	tcagaatgga	caaaagaaat	840
accagatcaa	tctaaagagt	cattcaggac	ctatccatgt	gctgcttata	aataaagagt	900
cgagttcatc	taagcccgtg	gtttttcctg	ttcccccacc	tgatgacctc	acacagcett	960
cctcccagtc	cttgactcca	gtgactccac	agaaatccag	catggcaact	caaaatctgc	1020
ctgagcaaca	tgtctctgaa	agaagccagg	ctctgcagca	gacatcagct	acagatatat	1080
cttcaggatc	tattagtgga	gatatcattg	atgagttaat	gtcttctgac	gtgtttcctc	1140
tcttaaggct	ttctcctacc	ccggcagatg	actacaactt	taatttagat	gataacgaag	1200
gagtttgtga	tctgtttgat	gtccagatac	taaattatta	gattccatgg	aaacttggga	1260
ctgttatcta	cctctaactg	tgtaacattt	tagacttctt	aataacctaa	atatttaaaa	1320
taatgaatgt	aacacctttt	gttcactgat	tctgaagtgt	tcttccctaa	tacttcttta	1380
cttcacaaaa	cttcaaccat	aaaaacaaag	ggctctgatt	gctttagggg	ataagtgatt	1440
taatatccac	aaacgtcccc	actccccaaa	agtaactata	tctggatttc	aacttttctt	1500
ctaattgtga	atccttctgt	ttttcttctt	aaggaggaag	taaggacact	acaggtcatc	1560
aaaacagtgg	ccaaggactc	attactg	·			1587
<210> 12 <211> 259 <212> DNA <213> Home	_					
	tcccccagtc	atgcctctgc	tgctgctgtt	accagtccaa	aagtctgatg	60
acctcggtcc	ccatgaacgg	aacaagcatc	cagtggaaga	accacgatca	aaacaaccac	120
aacacagacc	ggagcagcca	taaggacagc	atgaactgac	cacccttaga	agcactcctc	180
ggtactccca	taatcctctc	ggagaaaaaa	atcacaaggc	aactgtgact	ccgggaatct	240
cttctctgat	ccttcttcct	taattcactc	ccacacccaa	gaagaaatgc	tttccaaaac	300
cgcaaggtag	actggtttat	ccacccacaa	catctacgaa	tegtaettet	ttaattgatc	360
taatttacat	attctgcgtg	ttgtattcag	cactaaaaaa	tggtgggagc	tgggggagaa	420

tgaagactgt	taaatgaaac	cagaaggata	tttactactt	ttqcatqaaa	atagagettt	480
	gctagctttt	, -				540
	gagattaacg					600
	aatatgggct					660
ttttaactgc	ataatagcct	aacatgatta	tttgaactta	tttacacata	gtttgaaaaa	720
aaaaagacaa	aaatagtatt	caggtgagca	attagattag	tattttccac	gtcactattt	780
attttttaa	aacacaaatt	ctaaagctac	aacaaatact	acaggccctt	aaagcacagt	840
ctgatgacac	atttggcagt	ttaatagatg	ttactcaaag	aatttttaa	gaactgtatț	900
ttatttttta	aatggtgttt	tattacaagg	gaccttgaac	atgttttgta	tgttaaattc	. 960
aaaagtaatg	cttcaatcag	atagttcttt	ttcacaagtt	caatctgttt	ttcatgtaaa	1020
ttttgtatga	aaaatcaatg	tcaagtacca	aaatgttaat	gtatgtgtca	tttaactctg	1080
cctgagactt	tcagtgcact	gtatatagaa	gtctaaaaca	cacctaagag	aaaaagatcg	1140
aatttttcag	atgattcgga	aattttcatt	caggtatttg	taatagtgac	atatatatgt	1200
atatacatat	cacctcctat	tctcttaatt	tttgttaaaa	tgttaactgg	cagtaagtct	1260
tttttgatca	ttcccttttc	catataggaa	acataatttt	gaagtggcca	gatgagttta	1320
tcatgtcagt	gaaaaataat	tacccacaaa	tgccaccagt	aacttaacga	ttcttcactt	1380
cttggggttt	tcagtatgaa	cctaactccc	caccccaaca	tatacataca	acattgtcac	1440
catttcaaag	ggcccacagt	gacttttgct	gggcattttc	ccagatgttt	acagactgtg	1500
agtacagcag	aaaatctttt	actagtgtgt	gtgtgtatat	atataaacaa	ttgtaaattt	1560
cttttagccc	atttttctag	actgtctctg	tggaatatat	ttgtgtgtgt	gatatatgca	1620
tgtgtgtgat	ggtatgtatg	gatttaatct	aatctaataa	ttgtgccccg	cagttgtgcc	. 1680
aaagtgcata	gtctgagcta	aaatctaggt	gattgttcat	catgacaacc	tgcctcagtc	1740
cattttaacc	tgtagcaacc	ttctgcattc	ataaatcttg	taatcatgtt	accattacaa	1800
atgggatata	agaggcagcg	tgaaagcaga	tgagctgtgg	actagcaata	tagggttttg	1860
tttggttggt	tggtttgata	aagcagtatt	tggggtcata	ttgtttcctg	tgctggagca	1920
aaagtcatta	cactttgaag	tattatattg	ttcttatcct	caattcaatg	tggtgatgaa	1980
attgccaggt	tgtctgatat	ttctttcaga	cttcgccaga	cagattgctg	ataataaatt	2040
aggtaagata	atttgttggg	ccatatttta	ggacaggtaa	aataacatca	ggttccagtt	2100
gcttgaattg	caaggctaag	aagtactgcc	cttttgtgtg	ttagcagtca	aatctattat	2160
tccactggcg	catcatatgc	agtgatatat	gcctataata	taagccatag	gttcacacca	2220

WO 02/09573

-26-

PCT/US01/24104

ttttgtttag acaattgtct t	tttttcaag	atgctttgtt	tctttcatat	gaaaaaaatg	2280
cattttataa attcagaaag t	tcatagattt	ctgaaggcgt	caacgtgcat	tttatttatg	2340
gactggtaag taactgtggt t	ttactagcag	gaatatttcc	aatttctacc	tttactacat	2400
cttttcaaca agtaactttg t	tagaaatgag	ccagaagcca	aggccctgag	ttggcagtgg	2460
cccataagtg taaaataaaa g	gtttacagaa	accttgcaag	tgtctcttca	tttttatgta	2520
gttttccata gaaaatgttt g	gttacataat	gcctgttgca	aacctctcct	tagtaatatc	2580
ctggaaagca gttta					2595
<210> 13 <211> 2727 <212> DNA <213> Homo sapiens <400> 13					
cacgagaaga caggaggaag	aaagggagag	agggccaggc	agtcgcactg	tgaacagaac	60
aggagaaggc gaagcggggc	aaagttccct _.	gcccaccgac	gccagcctgc	ttggatgact	120
tgcctcgttt cataattcac	ttactgtctg	caccagccgg	cctcagcctg	gctggaccct	180
gctgcctgtg tggcccggag	ccagaggccc	ccacactccc	agctgctctt	ctacagatgc	240
catcaacgag caggactctg	ggtggctcca	ctgtctaagc	ctggagagtc	accgccgagg	300
gatgaggacg cgccagcccg	ggggaacgcg	ccagctgctt	tegeggeece	aagcgcgcag	360
tgcccagcag ccgcgccgag	cctgacacgc	tgtcctctcc	cctcgcgcac	agggctctgc	420
gagtgacccg gcgggcgagc 1	taagtgatga	atggaacggc	tgcagaagca	accacttacc	480
tccccggga gcgtgagccc	ctcccgagat	tccagtgtgc	ctggctctcc	ctccagcatc	540
gtggccaaga tggacaatca	ggtgctgggc	tacaaggacc	tggctgccat	ccccaaggac	600
aaggccatcc tggacatcga	gcggcccgac	ctcatgatct	acgagcctca	cttcacttat	660
teceteetgg aacaegtgga	gatgaataga	cagcgcgagc	gctcgctgtc	acccaaatcc	720
acatecece caccatecee	agaggtgtgg	gcggacagcc	ggtcgcctgg	aatcatctct	780
caggeetegg ceeceagaac	cactggaacc	ccccggacca	gcctgcccca	tttccaccac	840
cctgagacct cccgcccaga	ttccaacatc	tacaagaagc	ctcccatcta	taagcagaga	900
gagtccgtgg gaggcagccc	tcagaccaag	cacctcatcg	aggatctcat	catcgagtca	960
tccaagtttc ctgcagccca (gcccccagac	cccaaecagc	cagccaaaat	cgaaaccgac	1020
tactggccat gcccccgtc	tctggctgtt	gtggagacag	aatggaggaa	gcągaaggcg	1080
tctcggaggg gagcagagga a	agaggaggag	gaggaagatg	acgactctgg	agaggagatg	1140
		•			

aaggetetea gggagegtea gagagaggaa eteagtaagg ttaetteeaa ettgggaaag 1200

atgatcttga	aagaagagat	ggaaaagtca	ttgccgatcc	gaaggaaaac	cegetetetg	1260
cctgaccgga	cacccttcca	tacctccttg	caccagģgaa	cgtctaaatc	ttcctctctc	1320
ccccgctatg	gcaggaccac	cctgagccgg	ctacagtcca	cagagttcag	cccatcaggg	1380
agtgagactg	gaagcccagg	cctgcagaac	ggagagggcc	agaggggag	gatggaccgg	1440
gggaactccc	tgccctgtgt	gctggagcag	aagatctatc	cctatgaaat	gctagtggtg	1500
accaacaagg	ggcgaaccaa	gctgccaccg	ggggtggatc	ggatgcggct	tgagaggcat	1560
ctgtctgccg	aggacttctc	aagggtattt	gccatgtccc	ctgaagagtt	tggcaagctg	1620
gctctgtgga	agcggaatga	gctcaagaag	aaggcctctc	tcttctgatg	gcccccacct	1680
gctccgggac	ggccccctta	cccctgctgc	ttcagggttt	ttccccggcg	ggttgggagg	1740
ggcaggaggt	ggggtggaaa	tagggtgggc	teettteete	aggtagagtg	gggggccaaa	1800
acctctgcag	tccccggcag	tgagctatgg	actttcttcc	ccctcacgag	gctgggggcc	1860
tcctgctctc	gtccctggcc	ctccctgtac	agggcaaagc	cagtctgggc	tctggcacac	1920
agagttcatg	tttgccgccc	tetecetgee	cctcacccca	gaġgtgagag	gaatgagggg	1980
cattggtggt	taggccggtt	ggctgtcttg	aacagctgga	gggaagatgc	aggggtggga	2040
agcggccagg	cagaaagagc	tccaggctct	tgtgtcgccc	acccagccct	cccatactca	2100
ctcctgacag	ctttcctgca	ctgcagcttc	ctgctcctct	gactctagtg	ggaacaggcc	2160
ccagctcagc	ctccgcgagg	gaggtcaccc	ctccacttca	gcttgccctg	acctccgctc	2220
gcaaaccccg	agcttccaag	ccttttgctc	cagccctgcg	gcttccccag	aagcctgggc	2280
ttagggtgga	gatgccgcct	acccgatcct	ggccctccac	ctgcctccag	gccacgaaat	2340
gggaattcca	gcactaagcc	aggcaccggg	cagaagetgg	gccttccgcc	tcccttggat	2400
ggggtcaaga	ggccaggcct	ggcacatttt	ggagtgtcct	ggctaccagc	tctcacacct	2460
acacccacgc	accccctcac	acactatgct	ctctcaagaa	tgtaatttat	tggggcccc	2520
ccagctgctt	tcctcacctg	accetgecet	accttacacc	cccagcttga	cttctttcca	2580
gtccacgtgg	atataatgat	atctatattt	ttgcccaggt	ctgggtattg	ctcctgccca	2640
gaccctgaca	tccctttcca	ctgtgtgtgt	gaccatgctg	ggggagggg	actctgcttg	2700
gaattaaaag	gttgctttgg	gtcccta				2727

<210> 14 <211> 3857 <212> DNA <213> Homo sapiens

<400> 14

-28-

PCT/US01/24104

ggaagagett ccatggagte agggeageeg getegaegga ttgccatgge geegetgetg gagtacgagc gacagctggt gctggaactg ctcgacactg acgggctagt agtgtgcgcc cgcgggctcg gcgcggaccg gctcctctac cactttctcc agctgcactg ccacccagcc 180 tgcctggtgc tggtgctcaa cacgcagccg gccgaggagg agtattttat caatcagctg 240 aagatagaag gagttgaaca cetecetege egtgtaacaa atgaaateae aagcaacagt 300 cgctatgaag tttacacaca aggtggtgtt atatttgcga caagtaggat acttgtggtt 360 gacttettga etgatagaat acetteagat ttaattaetg geatettggt gtatagagee 420 cacagaataa tcgagtcttg tcaagaagca ttcatcttgc gcctctttcg ccagaaaaac 480 aaacgtggtt ttattaaagc tttcacagac aatgctgttg cctttgatac tggtttttgt 540 catgtggaaa gagtgatgag aaatcttttt gtgaggaaac tgtatctgtg gccaaggttc 600 catgtagcag taaactcatt tttagaacag cacaaacctg aagttgtaga aatccatgtt 660 tctatgacac ctaccatgct tgctatacag actgctatac tggacatttt aaatgcatgt 720 ctaaaggaac taaaatgcca taacccatcg cttgaagtgg aagatttatc tttagaaaat 780 gctattggaa aaccttttga caagacaatc cgccattatc tggatccttt gtggcaccag 840 cttggagcca agactaaatc cttagttcag gatttgaaga tattacgaac tttgctgcag 900 tatctctctc agtatgattg tgtcacattt cttaatcttc tggaatctct gagagcaacg 960 gaaaaagctt ttggtcagaa ttcaggttgg ctgtttcttg actccagcac ctcgatgttt 1020 ataaatgctc gagcaagggt ttatcatctt ccagatgcca aaatgagtaa aaaagaaaaa 1080 atatctgaaa aaatggaaat taaagaaggg gaagaaacaa aaaaggaact ggtcctagaa 1140 agcaacccaa agtgggaggc actgactgaa gtattaaaag aaattgaggc agaaaataag 1200 gagagtgaag ctcttggtgg tccaggtcaa gtactgattt gtgcaagtga tgaccgaaca 1260 tgttcccagc tgagagacta tatcactctt ggagcggagg ccttcttatt gaggctctac 1320 aggaaaacct ttgagaagga tagcaaagct gaagaagtct ggatgaaatt taggaaggaa 1380 gacagttcaa agagaattag gaaatctcac aaaaagaccta aagaccccca aaacaaagaa 1440 cgggcttcta ccaaagaaag aaccctcaaa aagaaaaaac ggaagttgac cttaactcaa 1500 atggtaggaa aacctgaaga actggaagag gaaggagatg tcgaggaagg atatcgtcga 1560 gaaataagca gtagcccaga aagctgcccg gaagaaatta agcatgaaga atttgatgta 1620 aatttgtcat cggatgctgc tttcggaatc ctgaaagaac ccctcactat catccatccg 1680 cttctgggtt gcagcgaccc ctatgctctg acaagggtac tacatgaagt ggagccaaga 1740 tacgtggttc tttatgacgc agagctaacc tttgttcggc agcttgaaat ttacagggcg 1800

agtaggcctg	ggaaacctct	gagggtttac	tttcttatat	acggaggttc	aactgaggaa	1860
caacgctatc	tcactgcttt	gcggaaagaa	aaggaagctt	ttgaaaaact	cataagggaa	1920
aaagcaagca	tggttgtccc	tgaagaaaga	gaaggcagag	atgaaacaaa	cttagaccta	1980
gtaagaggca	cagcatctgc	agatgtttcc	actgacactc	ggaaagccgg	tggccaggaa	2040
cagaatggta	cacagcaaag	catagttgtg	gatatgcgtg	aatttcgaag	tgagcttcca	2100
tctctgatcc	atcgtcgggg	cattgacatt	gaacccgtga	ctttagaggt	tggagattac	2160
atcctcactc	cagaaatgtg	cgtggagcgc	aagagtatca	gtgatttaat	cggctcttta	2220
aataacggcc	gcctctacag	ccagtgcatc	tccatgtccc	gctactacaa	gcgtcccgtg	2280
cttctgattg	agtttgaccc	tagcaagcct	ttctctctca	cttcccgagg	tgccttgttt	2340
caggagatct	ccagcaatga	cattagttcc	aaactçactc	ttcttacact	tcacttcccc	2400
agactacgga	ttctctggtg	cccctctcct	catgcaacgg	cggagttgtt	tgaggagctg	2460
aaacaaagca	agccacagcc	tgatgcggcg	acagcactgg	ccattacagc	agattctgaa	2520
accetteeeg	agtcagagaa	gtataatcct	ggtccccaag	acttcttgtt	aaaaatgcca	2580
ggggtgaatg	ccaaaaactg	ccgctccttg	atgcaccacg	ttaagaacat	cgcagaatta	2640
gcagccctgt	cacaagacga	gctcacgagt	attctgggga	atgctgcaaa	tgccaaacag	2700
ctttatgatt	tcattcacac	ctcttttgca	gaagtcgtat	caaaaggaaa	agggaaaaag	2760
tgaacagtga	tggctgtttt	cttatcccat	gcctgṭactt	ttcagcggct	ccttgccaga	2820
catcataggt	cattattaat	tattggtttg	ctatttcatt	cttttccaat	gctcttaatg	2880
attgtacggt	ggaccagaag	ccaggattcc	tctctgaact	ctgcagttag	gcatcacttg	2940
aacttgcctg	tgcctgctct	ttttcctccc	tgcac¢gtct	atgccgggct	tagcatgttt	3000
ctttttaaat	gaggtttgtc	aggatcaggt	aaagttccta	caagtgatta	cagaaggtag	3060
aaactttacc	tgatcctaac	agatctcatt	tagaaaggaa	tatgctaagc	ctggcatgga	3120
cggtgcaggg	agggaaaaga ,	gcaggcacaa	gaaagctacc	atttttaaca	gtccttgtta	3180
tctagtgcaa	cataaataac	agtcttaatt	gcacttatac	ccatgtcctg	tggctctcca	3240
aatctggtct	ttgctgttgt	gtctgctgga	cgcttgaact	gatgtttgtg	taggaaatca	3300
tgttctgacc	ctttgtctac	aaaggagcct	tctggaacac	tgagaagaaa	catctctttg	3360
ccattcctga	ccagttctct	ctaccacatt	ttcttcagct	ccatacttct	gcctgtctgc	3420
tctaaggaaa	tttcatggag	ccttcctact	actaattcaa	gacagtctcc	tcaaaaactg	3480
gttgactagt	cttctaatga	ccctaacata	tgtagcatat	actataattt	cattgttcca	3540
aattagtatt	tttaaagcaa	aatgaattac	ctgtttgcaa	aagttaatga	tgaaggagct	3600

-30-

WO 02/09573

PCT/US01/24104

cttagaattc tcaatttttg	cacatattca	gtctcctaat	atcagagatc	cctaagtcca	3660
gctggctagt tacagagttt	tttcagactt	cctcgtttct	cagctcttat	atcctaagac	3720
accagcatca tatcctctag	aaatacaacc	taattggcag	tgagccgaga	tcgcaccact	3780
gcacccctgc ctgggcgaca	gagtgagact	ttgtctctat	tacaaaaaga	aaagaaaaga	3840
aatacaacct aagctca	4				3857
<210> 15 <211> 1069 <212> DNA <213> Homo sapiens					
<400> 15 gaattcgggg caaaaagcaa	tcagcaattg	gacaggaaaa	gaatggcatt	gaagcagatt	60
tccagcaaca agtgctttgg	gggattgcag	aaagtttttg	aacatgacag	tgttgaacta	120
aactgcaaaa tgaaatttgc	tgtctactta	ccaccaaagg	cagaaacagg	aaagtgccct	180
gcatgtattg gctctccagg	tttaacttgc	acagagccaa	aattttatca	tcaaaatctg	240
gttatcatca gtctgcttca	gaaccatttg	tettgttgtc	attgctccag	atacagccct	300
cgtgcgtgca atattaaagg	tgaagatgag	agctgggact	ttgcgactgg	tcgtggattt	360
tatgttgatg ccactgaaga	tccttggaaa	accaactaca	gaatgtactc	ttatgtcaca	420
gaggagette eccaacteat	aaatgccaat	tttccagtgg	atccccaaag	gatgtctatt	480
tttggccact ccatgggagg	tcatggagct	ctgatctgtg	ctttgaaaaa	tcctggaaaa	540
tacaaatctg tgtcagcatt	tgctccaatt	tgcaaccctg	tactctgtcc	ctggggcaaa	600
aaagcettta gtggatattt	gggaacagat	caaagtaaat	ggaaggctta	tgatgctacc	660
caccttgtga aatcctatcc	aggatctcag	ctggacatac	taattgatca	agggaaagat	720
gaccagtttc ttttagatgg	acagttactc	cctgataact	tcatagctgc	ctgtacagaa	780
aagaaaatcc ccgttgtttt	tcgattgcaa	gagggttatg	atcatagcta	ctacttcatt	840
gcaaccttta ttactgacca	catcagacat	catgctaaat	acctgaatgc	atgaaaaaac	900
tccaaataag agaatctctt	caggattata	aaagttgtaa	aatgcaactg	tattgctgag	960
caaaaaaaaa aaaaattcaa	aacattggat	tttatagtgc	taaaagggct	ttattctata	1020
gttgaatcac ctctgaataa	agatataaaa	cctaaaaaaa	cccgaattc		1069

<210> 16 <211> 2570 <212> DNA <213> Homo sapiens

<220>

-31-

<221> Unsure <222> (779)..(779) <223> n = a, c, g or t/u

<400> 16 acaaagtett getetgteac eeaggetgga gtgeagtgge geaateaegg etetetgeag 60 cctcgacctc cgrggctcaa gctattctcc tgcctcaccc tcctgagtag atgggactac 120 aggtacgtgc ggctatctag ctaatttttt aaatcttaag tagagacatt ggtctcactg 180 tqttqcccaq actqqtcttq aactcctaqq ttqaaqqqat cttccaqcct ctqcctcccq 240 aagtgctgta ttacagaaca tatgcagtaa tgtcacctca aaagagagtt aagaacgtcc 300 aggcacaaaa caggacttca caaggtagta gtagttttca gaccacgctt tcagcctgga 360 aagtaaaaca ggatccaagc aactcgaaga acatctcaaa acatggacaa aacaatccag 420 tgggagatta tgaacatgct gatgatcaag ctgaagaaga tgctttgcaa atggcagtgg 480 gatattttga gaaaggtccc attaaagctt cacagaataa agataaaacc ttggaaaaac 540 acttgaaaac tgtggaaaat gtggcttgga agaatgggtt agcttcagaa gaaattgata 600 ttctattaaa tattgcactc agtggcaaat ttggaaatgc tgtaaacaca cggatattga 660 agtgcatgat cccagcaaca gtaatatcag aagattctgt ggttaaggca gtctcctggc 720 tttgtgttgg caagtgttct ggtagcacca aggtactttt ttatcgttgg ctggttgcna 780 840 tgtttgactt cattgatcgy aaggagcaaa ttaacttgct ctatggcttc ttttttgctt cattgcaaga tgatgcactg tgcccttatg tttgccattt gttatattta cttacgaaaa 900 aagagaatgt caaaccattt cgtgtgagaa aactgcttga tcttcaggcc aaaatgggaa 960 tgcagcctca tctccaggct ttgttgtcac tgtataagtt ctttgctcct gctctgattt 1020 1080 cagtatcttt gcctgtaagg aagaagatat atcttcagaa ttcagagaat ctatggaaga cggctctgct tgccgtgaag caaagaaacc ggggaccttc tccagaacct ctgaagttga 1140 tgttaggtcc agctaatgtt cgtcctctaa aaagaaagtg gaattctctc tcagttatac 1200 cagtgetcaa ttccagtage tacactaaag aatgtggaaa aaaagagatg agtettetg 1260 attgtctgaa tagaagtgga tcatttccac tagaacaact tcaaagcttc ccccaacttt 1320 tacagaacat ccattgctta gagctgcctt ctcagatggg ctcagtgcta aacaactctc 1380 tgctgcttca ctacattaac tgtgtcagag atgagccagt cttgctgagg tttcattact 1440 ggttgagtca aacattacaa gaagaatgta tttggtacaa ggtgaataat tatgaacatg 1500 gaaaagaatt taccaacttc ctggatacca tcatcagggc agagtgcttc ttacaagagg 1560 ggtattattc ctgtgaagca ttcctgtata agagccttcc tctctgggat qqccttagtt 1620

gtcggtcaca gttccttcag cttgtgagct ggattccttt tagtagcttc tctgaggtga	1680
aaccacttct ttttgaccat ctagegcage tettetttac atcaaccatt tatttcaagt	1740
gtagtgtgct tcagagtctg aaagagctat tgcagaattg gctgttgtgg ctttctatgg	1800
acattcacat gaaacctgtt acraacagtc ctctagagac aactttgggt ggatccatga	1860
actgtgtgtc taaactgatc cactatgtag ggtggctatc cactactgca atgcgcttgg	1920
agagcaacaa tactttcttg ctgcacttta ttttggattt ctatgagaag gtgtgtgaca	1980
tatatataaa ttatgacctt ccattagtgg tattgtttcc tcctgggatc ttctattctg	2040
cactcctcag cctggatacc agcatcctga accagctgtg ttttattatg cacagatatc	2100
gtaaaaattt gactgccgca aagaaaaatg agttggtaca aaagacaaaa tcagagttca	2160
atttcagcag caagacttat caagaattta attactattt gacatcaatg gttggttgcc	2220
tgtggacgtc caaaccettt gcgaaaggaa tatatattga ceetgaaatc etagaaaaaa	2280
ctggagtggc tgaatataaa aacagtttaa atgtagtcca tcatccttct ttcttgagtt	2340
acgetgttte etttttgeta caggaaagee cagaagaaag gacagtaaac gtgageteta	2400
tycggggaaa gaaatggagc tggtatttgg actatttatt ttcacagggg ttacaaggct	2460
tgaaactttt tataagaagt agtgttcatc attcttccat tcccagagca gagggcataa	2520
actgcaacaa tcaatattaa atgaatgttg acataaactg aaaaaaaaaa	2570
<210> 17 <211> 2431 <212> DNA <213> Homo sapiens	
<400> 17 ggcacgaggc cgggagcaga gcgaaccgca ccggcccgag cggagcgccg cacgttccca	60
accgcgaggc cagacatctg actgttggtg tgagaccagt gctcctggtg gtgtgccctg	120
agccatggag gcgcctttgc agacagagat ggtggagctg gtgcccaatg gcaaacactc	180
agaggggctg ctcccggtca tcacccccat ggcaggcaac cagagggtcg aggaccctgc	240
acggagctgt atggaggca agagcttcct acagaaaagt cccagcaagg agccacactt	300
cactgacttc gaggggaaga catcattcgg gatgtcagtg ttcaacctca gcaatgccat	360
catgggcagc ggcatcctgg gactcgccta tgccatggcc aatacgggca ttatcctttt	420
cctgttcctg ttgacagctg tcgccttgct ctccagctac tccatccacc tgctactcaa	480
gtcctcaggg gtcgtgggca tccgtgccta tgagcagctg ggctaccgtg cctttgggac	540
cccaggaaag ctggcagcag ccctggccat cacgctccag aacatcggag ccatgtccag	600

ctacctgtac atcatcaagt ctgagctgcc acttgtcata cagaccttcc tgaacctgga

660

ggagaaaacc teggaetggt acatgaacgg gaactaeetg gtaateettg tetetqteae 720 catcattetg eccetggeac tgatgeggea gettggetae etgggetaet ecageggett 780 ctctcttagc tgcatggtgt tcttcctaat tgcagtcatc tacaaaaagt tccacgtgcc 840 etgeceactg ceecceaact teaacaacae cacaggeaac tteagecaeg tggagategt 900 gaaggagaag gtgcagctgc aggtcgagcc tgaggcttca gccttctgca ctcccagcta 960 cttcacgctc aactcacaga cagcatacac catccccatc atggccttcg ccttcgtctg 1020 ccaccccgag gtgctgccca tctatactga gctcaaggac ccctccaaga agaagatgca 1080 gcacatetee aacetgteea tegetgteat gtacateatg tactteetgg etgeeetett 1140 cggctacctc accttctaca acggggtgga gtcggagctg ctgcacacct acagcaaggt 1200 ggaccegttt gacgteetga teetgtgtgt gegegtggee gtgetgacag cagteacget 1260 cacagtgccc atcgttctgt tcccggtgcg ccgcgccatc cagcagatgc tgtttccaaa 1320 ccaggagttc agctggctgc ggcatgtgct tattgccgtt ggcctgctca cttgtatcaa 1380 cctgctggtc atctttgccc ccaacatcct gggcatcttt ggggtcatcg gtgccacatc 1440 tgccccattc ctcatcttca tcttccctgc catcttctac ttccgaatca tgcccacgga 1500 gaaggageet geaagateea eeeccaaaat eetggeeetg tgttttgeta tgettggett 1560 cttgctgatg accatgagct tgagcttcat catcattgac tgggcctcag ggaccaqccq 1620 gcatggagga aaccactagg gtgaccctca teetgttetg tetaeteace etageageee 1680 tgeccagaet etteageece tgeteccate cagtggeeag tegggggagg agaaagaege 1740 gattaacact gtggcattca gccaggcccc atgtcctctc tgtggaaggt ttttgttcaa 1800 gagccaggac caaggccett gggccactac cetgctaggc tetggagetg tagaggette 1860 ctgaactggg agcagggtag ggctgtcgcc ttagatcccg cccaagcccc tcattccctc 1920 ettgeacaga tgeatacact ggggeecage agetgeetee tgaqqtqaca caqeetqtaq 1980 gaacatacac agctgggatc agcctgcagc catcccccga ccctgctgct aggccacqqt 2040 etgegeeetg gggeeteate teeceeagee caettgtttt ceeceetttt atteectagg 2100 cccttttcag actcctgggc ccttggatac tcttctccca tctcccttca caggatgaca 2160 ccctcccata ccccatagct ggggccagca ggttctgctg agggtggggc tggtgtaggg 2220 acccccaaga gacccctgtc ctgtcccttc accagtcctg gggaggctgg gactccccct 2280 gccacaagcc tgggccacag ctcacattcc actgctggga gaagaaacag gccgaggccc 2340 agagtggcct gcccccggga gccaaagacc ccagtggcca cactgggata gggtggggag 2400 gctggcagcc ctcttttata aatctcgtgc c 2431

WO 02/09573

PCT/US01/24104

<210> 18 <211> 6746 <212> DNA <213> Homo sapiens <400> 18 ctgcagtgtt tggtctcacc aagtttccca caataaagag acatgagtca cctttcaaqa 60 ccctttaccc ccaagaatgt ggtcttcaca catgagacca aggtctacaa gtggtcagga 120 gagaggggt ctgctcagat gggggagtag tgcctgagct ggcctcaaga gggttaagtg 180 gccctgcact gaaaacctgg acactgagtt agggtagggc tggggggaaaa cttgggcttt 240 ggagtcgtag ggtctgggtt caaatccaca gaccattccc ttcctagctg tgtgttggtg 300 ggtaattcac tggatctttc tgagtcctgg tttcctcatc tgaggtaaaa cgagtttgcc 360 ggttggtctg agagctgttc taggcatggt ggggagaccc tgacaggcag aggcagccct 420 gctctcaagc agttgattta cagctgggga aacaagacag ccacaaatgc aatacctcaa 480 actcaacttc tcaccagaaa gctccttttc ctaattttca cagccagtcc ctcagcctcc 540 tgggccccaa atactagtaa aacetttgcc tcctctctt tctttctttc ttgtaatcat 600 ataggtacaa agtcctacca attcttcctg aaatatgttt ccttatcaaa aagtcctgca 660 aagccgtgcg tggttgctca tgcctataat cccagcactt tggaggctgg gaggatcgct 720 tgagtccagg agttcgagac cagcctggac aacatatgga gacccatctc taccaaaaat 780 tttaaaatca gcagggttgg tagtggcaag cacctgtggt ctcatctact tgggaggctg 840 aggtgggggg attgttggag cctgggcggt tgaggctgca gtgatctgtg attgcaccac 900 960 geggtactgg acactgccat tgcctatacg attcccactc cctcatcctc cctagcagga 1020 tatcaatttt gttcgaagtg tcaatgaagg ccaggtgcgg tggctgatgc ctgtaatcct 1080 aacactttgg gaggccgagg caggcggatc acctgaggtc aggagttcaa gaccagcctg 1140 gccaacatgg tgaaaccctg tctctactaa aaacacacaa attagcaggg catggtggcg 1200 tgcacctgta atcccagcta ctcaggaggc tgagacagga gaatcacttg aacccggagt 1260 ggaggttgca atcagccaag atcacaccac tgcacttcag cttgggtgac aagagtgaaa 1320 ctctgtctca aaaaagaaaa acaaacaaa aacaaacaac aacaacaaa agcaaagtgt 1380 cagtgaaggt ccagcaaaag actcccttcc tattgccctt tgcagccagg gtcatcatgt 1440 gacacagttc agatcaatga gatggaggct gagggtccct gggaaagatg tttttcctat 1500 acaggtacca cctctttcag cttcactctt tccattttcc acgtgaacag gccttgtagc 1560

-35-

ctggaggagc tacagctgcc tttttgagat gctgaggcac cctgtctgaa gaaggccctc 1620 acatcactca acttgactac tgggtgagcc cttggagagg cttcccagcc tctgctcttc 1680 aagccgaagt accacagggg acacgagtcc cagagttaca ggaccccagc tatggttcat 1740 gtgtaaaggg aaccattagg caaccagggg aaatgatgaa gaagatctac atttacaaat 1800 gtggaaagat gttcgtggta tattgttaaa ttaaaaagct gtttaaaaat agtttttggg 1860 tcaagtgaga tgactcactt atacttttag tataagtatg tcccatgcaa tatctggaac 1920 gtacttgtac taaggggttt ctccctccat cggcacatcc caggcatcct ggcagctgct 1980 ggcctccagc aaccccacat tctagttgtg tgggagtggg ttgtggcatg gaccctgtgg 2040 gctaccactg ccctgacctg cttcttcaca cactggtatt tgtatctgtg gtaaacccag 2100 tgacacgggg gagatgacat acaaaaaggg caggacctga gaaagattaa gctgcaggct 2160 ccctgcccat aaaacagggt gtgaaaggca tctcagcggc tgccccacca tggctacctg 2220 ggccctcctg ctccttgcag ccatgctcct gggcaaccca ggtaaggcct tcccctcggg 2280 atcgatcctg atggcccacc cagcctcgca ctctcaggct ggctgaacct ggagcttgga 2340 ctctgtgggc acccaggtgc ccctgcctcc ccccggcctt ctcccccgtc atggaggcct 2400 2460 caaggaggag agacaggcca gggattctgg tcctaactct actggccaca ctgtgtggcc 2520 tgagaccccc ctttccctcc caagcccctg cctccgcatc tgcgtggtga aggccattgg 2580 eeteateggt ggatetgegt tteeteggge etacaetgte taggattgtg eggggetggt 2640 gagagaacaa gatetettee gtgtteaagg cagaetteet geeecetgea eeetgetete 2700 teccaggeet tgaggteagt gtgageecea agggeaagaa caettetgga agggagagtg 2760 gatttggctg ggccatctgg atggaaggta aaaaaagaaa atcccttgaa aggagattga 2820 gggaagtttc tagacaaacc gacccccaaa tctgtgttgc tgggggaaca gaggagaaga 2880 gagagteteg eecteetgge titetagaag gaacgtgaga acaegtgttt gtgetgagag 2940 tgggtcagag cggctccagg gcaaagcatg tggacaggta tcctggcccc ctgcaaggcc 3000 cageteetgt cetaggeeet ggteacetee tggacteeca ceageeagga gaacgggett 3060 teceteteet teegeetgeg gaggggaage tgaagtetgg tetteeteag gtetggtett 3120 ctctcgtctg agccctgagt actacgacct ggcaagagcc cacctgcgtg atgaggagaa 3180 atcctgcccg tgcctggccc aggagggccc ccaggtacgt gttggctctc tgctcacctg 3240 ccacagtece teteettee etectecetg gtggeteetg gggtgaggte tggagetete 3300 taatggtcag gaggtgggag tggaggctgg gctgtttctg acgatgctgg ttttgttgaa 3360

WO 02/09573

ttcatgtctg	gccaggaggg	ctacaggtat	ctggcagact	cctccaggag	gatcctctgg	3420
ggtctcaccc	tccaaggagc	ctggggctgc	agaacccaaa	taggcagact	cccctgggag	3480
ttcctcaata	ggagaggggc	aagtgcaggg	ctgggaaagt	actggggttg	tgggaggctg	3540
tttctggggt	gtctcagagc	ctctaagaca	agcaaaaggg	tgggtagggg	ccaggcagcc	3600
agttcaggcc	ttcagtgtat	ccacgctctg	ggaagagatc	acggacattc	ctgccggcct	3660
cagaaacaca	aagggcccct	ttcctgggca	ctttcacgcg	ctcccagagt	gtctgagaga	3720
ccatcataag	ggctttcttt	cctgacaggg	tgacctgttg	accaaaacac	aggagctggg	3780
ccgtgactac	aggacctgtc	tgacgatagt	ccaaaaactg	aagaagatgg	tggataagcc	3840
cacccaggtg	aggccaaggg	gctacagagc	ctcctgtctg	ctgctcaatg	gaggggccag	3900
cctgtgacca	ggtcggggat	cggggagccc	gggggcacct	tgcacagtga	tcctggggga	3960
gggcttccta	gaagggaatc	tgtgagtccc	cgtgtgtctg	tggatgaatt	tcagagaact	4020
tgtgaaattg	tgactctctg	gaactgtgta	agtcagacgg	cagagtatac	atggttttca	4080
tcatgtatcc	tcaaagaggg	cttgtcccag	agaagttagg	aatcttcccc	taaagcccta	4140
acatttgtgt	ccaaggcaga	gtttgagaag	ctagttcccc	aagaggcctg	ggtcaggact	4200
gataaatccc	agatctgcta	cttccaagct	gcatggcctt	gggcaagtca	cttccacttt	4260
ctgagcccct	gttatcttat	ctttgaaatg	tgatggataa	tagtccctat	cttgcaagtt	4320
gtcaaaccct	tttttttt	tttccttgag	ataggatett	actctgagac	ccaggctgga	4380
gtgcactggt	gtgatcttgg	ctcactgcaa	catatgacta	cctggcccaa	gcaattctcc	4440
tgtctaagcc	tcctgagtac	ctggggctcc	aggtgtgcgc	caccatgccc	agctaatttt	4500
tgtacttttg	tagaaacagg	gtctcactgt	gttgcccagg	ctggtctcca	acttctgagc	4560
tgaagcaatc	cacctgcctt	ggcctcccaa	agtgtgggat	tataggcatg	agccactgca	4620
cctggctgct	gaagcttttt	aaaagagctg	agggctggga	tgtgcttagc	tccacgtcca	4680
gcactgagta	aatgcttaac	gaatgactgt	gttactacca	agaattattg	tttcactctc	4740
cctccttccc	teteetetge	tgccccaaac	tactcagcat	cctggcactg	caggetegea	4800
cttagccctg	gatacccaga	ttcatcctcc	teceetggga	tggcatagaa	gagactttaa	4860
aaccaaatga	gccaagactc	caagctctga	ccacacctcc	cacccccacc	agtcttctct	4920
atgcaccccc	tctatatctg	gagcccccag	ccaggttctg	gaccaaggta	gctacatggc	4980
agagcattta	atgtgtgcct	ggcagccatg	ggcaccattc	tccacacaga	aggcagggac	5040
aggtgcacaa	ggggctgaga	ccccagcagg	gctaactgtc	cttgtctcag	gagccctacc	5100
tggccagtct	tgggccaggc	cttggggact	gggagtaggg	gctgacccgt	ctgtacagtc	5160

tetggeecea	tggcaccagg	tgccagctcc	tegeacceag	tactcccatt	gctagggctg	5220
ctggaacctg	cagggttggc	agagctgggc	aggactcacc	ctataaccat	gtccactgtg	5280
gtgctgctgc	tgcagagaag	tgtttccaat	gctgcgaccc	gggtgtgtag	gacggggagg	5340
tcacgatggc	gcgacgtctg	cagaaatttc	atgaggaggt	atcagtctag	agttatccag	5400
ggcctcgtgg	ccggagaaac	tgcccagcag	atctgtgagg	acctcaggtt	gtgtatacct	5460
tctacaggtg	agtgcagagg	tgacagcagg	gatacctcct	gagggttgga	gacagcttcc	5520
cccaggatat	atcaaagctg	cctccttact	ccccatctc	ccagcatggg	aaagtgtgga	5580
gaattgagca	gatggacttt	agctagaaat	gtttgagaaa	tactgattag	agcttgggct	5640
tcagacacag	gtggttgtgg	agtaaaatct	ggtctccatc	tctccctggc	tgtgtgacct	5700
taagcaaata	acttgacctc	tctgagcttc	agtttcttca	tctgtgaagg	agagatagca	5760
atcctgattt	ttgagattgg	aatgagaatt	gaaggaggtc	accgtgtgtg	tggacctgac	5820
cctggggaaa	tgtcctcaga	ctgaggctat	tcaaggtcat	cagaccctca	gtcaaactcc	5880
aacccagccc	agcacatggc	ccctggggtc	gggagctggg	gccatatcct	ccccacaat	5940
cctgggccct	gagatctggg	ctagggaacc	cttcaggcag	gggagcatga	ggcctttccc	6000
tecatggetg	cccaggctgt	gctgagagaa	cagatetegg	ctgtaggaaa	cggggccaga	6060
aaggggcctc	ggtgattggc	tctggcagct	cagctggcac	ttgccaatag	ctctgggatt	6120
ttatgctggc	agatcggggg	tccccaccat	ttcctgtcat	tggagcttgt	ggcttttcta	6180
ttcaaggccc	cacagcctgc	tcaggctgcc	gactggcttc	caggatgtgc	ctctgggtgt	6240
gttcagtagg	gtcaggtggc	tctgggacct	taagcaagta	acattctgag	tgcctgcttc	6300
tccttgagga	cccaccacat	ctgcccacag	ctagctgttc	tctccgctcc	aggtcccctc	6360
tgagccctct	caccttgtcc	tgtggaagaa	gcacaggctc	ctgtcctcag	atcccgggaa	6420
cgtcagcaac	ctctgccggc	tcctcgcttc	ctcgatccag	aatccactct	ccagtctccc	6480
tcccctgact	ccctctgctg	tcctcccctc	tcaggagaat	aaagtgtcaa	gcaagatttt	6540
agccgcagct	gcttcttctt	tggtggattt	gaggggtggg	tgtcagtggc	atgctggggt	6600
gagctgtgta	gtccttcaat	aaatgtctgt	cgtgtgtccc	atacactgtt	gtagatgtta	6660
tggatttagt	ggtgaacgag	acaaccttaa	cagcattcac	acagttagtc	gtgaaatgct	6720
tactgagcac	tcaccacage	catgca				6746

<210> 19 <211> 915 <212> DNA <213> Homo sapiens

<400> 19						
atgtggtcga	cgagaagccc	caacagcacg	gcgtggcctc	tcagectega	gcctgatccg	60
gggatggcct	ctgcctccac	cacaatgcat	actaccacca	ttgcagagcc	tgatccaggg	120
atgtctggat	ggccggatgg	cagaatggag	acctccaccc	ccaccataat	ggacattgtc	. 180
gtcattgcag	gtgtgattgc	tgctgtggcc	atcgtcctag	tetecetect	cttcgtcatg	240
ctgcgctaca	tgtaccggca	caagggcacg	taccacacca	atgaggccaa	gggcacggag	300
tttgctgaga	gtgcagatgc	agccctgcag	ggagaccctg	ccctccaaga	tgctggtgat	360
agcagcagaa	aggagtactt	tatttgaggg	acaacagact	tcacttccct	gaatgcctcc	420
cccatctcca	tcaggaaaaa	tacaccccat	cgcccagtat	ccccgtcgat	accaccagac	480
agagagagag	agtacacttg	atttcttccc	gagatagtta	cctagaaaca	ctaggtgcct	540
gcccaaggag	gaacggagga	ggactcgcgc	tacaagaggc	cactcccagg	gacccaggga	600
ggcgatggcc	accccagagg	ccaccttttg	ctccacggag	gtgggagaga	atctgggcac	660
atggggccc	ctagggcagt	gcaggacaac	atcagctcac	tggcaggaaa	gtccttgttg	720
agggtgaggg	ggtgctgggg	tacccggggg	ctggggaagc	aaggaaataa	gtcatctgta	780
tgctgactgg	ggataatggc	atcaatgtca	gtccttgact	ttggggggaa	cagcaggtgc	840
cagagctaaa	aggtaccttt	gtctgccatt	gatccagcta	agaacgattg	gaaataaatt	900
ggaaatgtaa	ccgag					915
<210> 20						
<211> 1516	54					
<212> DNA <213> Homo	sapiens					
<400> 20		·				
gaattccgcc	tctgcggagc	cgggctcggg	tcgccggagc	cgcgcccac	cccgccagct	60
ccagagccac	gactaatggc	tgaaggataa	atcaacatgg	caactatgat	tccaccagtg	120
aagctgaaat	ggcttgaaca	cttgaacagc	tcctggatta	cagaggacag	tgaatctatt	180
gctacaagag	agggagttgc	tgttctgtat	tctaaactgg	ttagcaataa	ggaagtagta	240
cctttgcccc	aacaagtttt	atgcctcaaa	ggaccacagt	tgccagactt	tgaacgtgag	300
tctctttcaa	gtgatgaġca	ggaccactat	ttggatgccc	ttcttagcag	ccagctagca	360 ·
ttggcaaaga	tggtatgttc	agattcccca	tttgccgggg	cacttagaaa	acgactgctt	420
gtactccagc	gtgtctttta	tgcactttct	aataaatacc	atgacaaagg	caaggtgaag	480
cagcagcagc	attctccgga	gagcagttct	ggttcagcag	atgtccattc	tgttagtgaa	540
cgcccccggt	caagcactga	tgcacttata	gaaatgggtg	ttcgaactgg	tctaagttta	600

PCT/US01/24104

ttatttgcgc ttctaagaca aagttggatg atgcctgtgt caggacctgg tctcagtctt 660 tgcaacgatg tcattcatac tgcaattgaa gttgtgagct ctttgccacc attatcatta 720 gcaaatgaaa gcaagattcc tcctatgggc ttggactgct tatcgcaagt aacaacattt 780 cttaaaggag tcactattcc taattctggg gcagacactt taggtcgtag attagcttct 840 gagttgctgc ttggtttggc agctcaacga ggctcattgc gatatcttct tgaatggata 900 gaaatggctt tgggggcttc ggcagttgta cacaccatgg agaaaggcaa actactctca 960 agccaggaag gaatgatcag ctttgactgc tttatgacca tattaatgca gatgaggcgt 1020 tetttgggtt catetgetga teggagteag tggagagaac caaccagaac ateggatgge 1080 ttgtgctccc tttacgaggc agcattatgt ctctttgaag aggtttgcag aatggcttct 1140 gattattcga gaacatgtgc tagcccagat agcattcaga ctggtgatgc tcccattgtc 1200 tccgaaacct gtgaggttta tgtttggggg agcaatagca gccatcagtt ggtagaaggt 1260 acacaggaga aaatactgca acccaaactg gctcctagtt tctctgatgc acagaccatt 1320 gaagetggae agtactgeae ttttgteatt tetaeggatg geteagttag agettgeggg 1380 aaaggcagct atgggagact gggccttgga gactccaata atcagtcaac tttaaaaaaag 1440 ttaacattcg agcctcacag atccattaaa aaggtttcat cttctaaagg atctgatggt 1500 cacactttag cetttacgac agaaggagaa gtettcagtt ggggagatgg tgattatggg 1560 aaactggggc atggaaatag ttcaacacag aaatatccca agcttattca gggacctcta 1620 caaggaaagg tagttgtttg tgtgtcagct ggatacagac atagtgctgc tgtcacagag 1680 gatggggaat tatacacatg gggtgaagga gactttggaa gattaggtca tggtgacagc 1740 aatagtcgta acattccaac attagtaaaa gacatcagca atgtaggaga ggtttcttgt 1800 ggcagttcac atactattgc tctgtctaaa gatgggagaa ctgtatggtc ttttggagga 1860 ggagacaatg gtaaacttgg tcatggtgat accaacagag tgtataaacc taaagttatt 1920 gaagetttae aaggaatgtt cattegeaaa gtttgtgetg ggageeagte tteaettget 1980 ttgacatcaa cagggcaggt ctatgcttgg ggctgtggag cttgtctagg ttgtggttct 2040 tcagaagcta ctgctttgag acccaagctt attgaagaac tggctgccac aagaatagtt 2100 gatgtttcta ttggagacag tcattgtttg gctctttctc atgataatga agtttatgcc 2160 tggggcaata actcaatggg gcaatgtggt cagggaaatt ccacaggtcc tattactaaa 2220 ccaaagaaag tgagtggctt agatggcata gctattcagc agatttcggc tggaacatca 2280 catagtetgg catggactge tettectagg gacagacaag ttgttgcatg geacegacet 2340 tattgtgtag atcttgaaga gagtaccttc tcacacctgc gttcttttct tgagagatac 2400

tgtgataaaa	taaacagtga	gattccccca	ctccctttcc	cttcatcaag	agaacaccac	2460
agttttctca	agctgtgcct	gaagctactt	tcaaatcacc	ttgctcttgc	acttgcggga	2520
ggggtagcta	ccagcattct	cgggaggcag	gcaggtccac	ttcgaaattt	gctcttcaga	2580
ctgatggact	caactgtccc	agatgaaatc	caagaggtgg	taattgaaac	tttatcagtg	2640
ggagcaacca	tgctgttacc	tccattacga	gaacggatgg	aattacttca	ttctctttta	2700
cctcaaggac	ctgatagatg	ggaaagctta	tctaaaggac	agagaatgca	actggatatc	2760
atcctgacaa	gtttgcaaga	tcatacccac	gtagcctccc	tacttggcta	tagttcaccc	2820
tctgatgctg	ctgacctatc	ttctgtgtgt	actggctacg	gaaatctgtc	agatcaacct	2880
tacggcactc	agagctgcca	tccagatacc	cacctggctg	aaattttgat	gaagaccctc	2940
ttaagaaatt	taggatttta	tacagatcaa	gcatttggag	agctagaaaa	gaatagtgat	3000
aaatttctac	ttggaacatc	atcatcagaa	aacagtcagc	ctgctcatct	tcatgaactg	3060
ctatgttcac	tacagaaaca	gctgctggca	ttttgccata	tcaataacat	tagtgagaac	3120
tcaagcagtg	tggcattgct	tcataaacat	cttcagcttt	tgttgcctca	tgccacagat	3180
atttattcac	gttctgcaaa	tttgctcaaa	gaaagtcctt	ggaatggcag	tgttggagaa	3240
aaattaagag	atgtgatata	cgtctcagct	gctggcagta	tgctctgcca	gattgttaac	3300
tecctgetgt	tactccctgt	gtcagtggct	cggcctttat	tgagttacct	cctcgacttg	3360
ttgccacctc	ttgattgcct	taatagactc	ctgccagctg	ctgatctttt	agaagaccag	3420
gagttacagt	ggcctcttca	tggagggcca	gaactaattg	atcctgctgg	tctgccatta	3480
cctcagccag	ctcagtcctg	ggtatggctt	gtggatctag	aaagaacaat	tgctctcctt	3540
attgggcggt	gtcttggtgg	catgcttcag	ggctcccctg	tgtctccaga	ggaacaggac	3600
actgcatatt	ggatgaaaac	gccactgttc	agtgacġgtg	tagaaatgga	cactcctcaa	3660
ttggataaat	gtatgagttg	cctgttagaa	gtagcacttt	ctggaaatga	agaacagaag	3720
ccttttgatt	ataaattgcg	gcctgaaatt	gctgtctatg	tagacttggc	attgggttgt	3780
tctaaagagc	ctgcccgaag	cctttggatc	agcatgcagg	actatgctgt	tagtaaagat	3840
tgggacagtg	caactttaag	taatgagtca	ctcttggaca	ctgtgtctag	atttgttctt	3900
gcagctcttc	tgaaacacac	aaatttactt	agtcaagcat	gtggagaaag	ccgatatcaa	3960
cctggtaaac	acttatcaga	agtgtaccgt	tgtgtataca	aagttcgaag	tcgtttactt	4020
gcttgcaaga	accttgaact	tattcaaaca	aggtcatcat	cacgggacag	atggatatca	4080
gaaaaccagg	actctgcaga	tgttgatcct	caggagcatt	catttactcg	aactattgat	4140
gaagaagctg	aaatggaaga	acaggetgag	agagaccggg	aagaggggca	tccggagcca	4200

-41-

gaggatgaag	aggaggaacg	ggaacatgaa	gtgatgacag	ctggcaaaat	ctttcagtgt	4260
ttcctctcag	cccgtgaagt	agctcgtagc	cgagaccgag	atagaatgaa	cagtggggca	4320
gggtctgggg	ctcgagctga	tgatccacct	cctcagtctc	agcaagagcg	aagggtcagc	4380
acagaccttc	ctgagggtca	ggatgtgtac	actgctgcat	gcaactccgt	gatccatcgg	4440
tgtgccctgt	taatattagg	agtaagtcct	gtgatagatg	agcttcagaa	gcgaagagaa	4500
gaaggacagt	tgcagcaacc	ttcaacaagt	gcctctgaag	ggggtggact	tatgaccagg	4560
agtgaaagtc	ttactgcaga	gagccggcta	gtccacacaa	gcccaaatta	tagactgatc	4620
aaatcgagga	gtgaatctga	tttgtctcag	cctgaatcag	atgaagaggg	ttacgcactg	4680
agtggcagac	aaaatgttga	tttggatttg	gcagcatctc	acagaaagag	aggtcctatg	4740
cacagtcaat	tggaatccct	gagtgactct	tgggctcgcc	tgaaacatag	cagagactgg	4800
ttatgcaact	cctcctattc	ctttgagtca	gattttgatc	ttaccaagtc	tttgggagtt	4860
cacactttga	ttgaaaatgt	tgtaagcttt	gtgagtggag	atgtggggaa	tgccccaggt	4920
tttaaagagc	cagaggaaag	tatgtctaca	agtccccagg	cctccatcat	tgcaatggaa	4980
cagcagcagt	taagggcaga,	acttcgttta	gaggcacttc	atcagatcct	cgttctattg	5040
tctgggatgg	aagaaaaagg	tagcatctca	ctggcaggaa	gcagattgag	ttcaggcttc	5100
cagtcctcca	cactactcac	gtctgtgagg	ctgcagttcc	tagcagggtg	ttttggttta	5160
ggcactgttg	gacacacagg	agccaaggga	gagagtggcc	gattgcatca	ctatcaggat	5220
gggatcagag	cagctaagag	aaatattcag	attgaaatcc	aggtagctgt	gcataaaatt	5280
tatcaacagt	tgtctgctac	cctggaaaga	gccctgcaag	caaacaagca	tcacattgaa	5340
gcccagcaac	gtctgcttct	ggttacagtt	tttgccctaa	gtgttcatta	tcaaccagta	5400
gatgtttctt	tggcaatttc	cactggtctg	ctaaacgtat	tgtcacagtt	gtgtggtaca	5460
gacaccatgc	taggacagcc	cctgcagttg	ttgccaaaga	cgggtgtttc	ccașcttagc	5520
acagctttga	aagtggccag	tacaaggttg	ctccagattc	tagccatcac	tactgggacc	5580
tatgctgata	aactgagtcc	caaagtagtt	caatccttgt	tggatctact	ctgtagtcag	5640
ttgaagaatt	tattgtccca	aactggtgta	ctacatatgg	cctctttcgg	agaaggggag	5700
caagaagacg	gtgaagaaga	agaaaaaaaa	gttgactcca	gtggagaaac	tgagaagaaa	5760
gatttcagag	ctgctcttag	gaaacaacat	gcagccgaac	tccatctagg	ggatttttta	5820
gtttttcttc	gcagagttgt	atcttcaaaa	gcaattcaat	caaaaatggc	ttccccaaag	5880
tggaccgaag	tgcttctaaa	tatagcatct	cagaaatgtt	cttcaggtat	ccctctggtt	5940
ggtaacttaa	gaacaaggct	ccttgcactt	catgtccttg	aagctgtgct	gccagcttgt	6000

gaatctggtg tagaagatga tcaaatggcc cagattgttg agcgcttatt ttcccttctc 6060 tctgattgta tgtgggagac acccattgct caggccaaac atgctattca gataaaggaa 6120 aaagaacaag aaataaaact acagaagcag ggcgagttgg aagaagaaga tgagaatctt 6180 cctatccaag aagtatcctt tgacccggag aaagctcagt gttgcctagt ggagaatgga 6240 cagattttaa ctcacggcag tggagggaaa ggatatggat tggcatctac aggagtaact 6300 tctgggtgct atcagtggaa gttttatatt gtgaaggaaa acagaggtaa tgaaggcacg 6360 tgtgttggag tttctcgctg gccagtacat gactttaatc accgcactac ctcggatatg 6420 tggctctata gggcctacag tggtaacctc tatcacaatg gagaacagac tctcacattg 6480 tccagcttta ctcaaggaga tttcattacc tgtgtgttag acatggaagc caggaccatt tcttttggga aaaatggaga ggaacccaaa ttagcttttg aagatgtgga tgcagcagag 6600 ttgtacccat gtgtgatgtt ctatagtagc aatccagggg aaaaggtgaa aatttgtgat 6660 atgcagatgc gtggcacacc ccgagactta cttccaggag accctatttg tagtccagta 6720 6780 gcagcagtgc tggctgaggc cactattcag ctcgtccgta tccttcaccg aacagaccgt tggacttact gcattaacaa aaaaatgatg gaaagģcttc acaaaattaa gatatgtatt 6840 aaagagtcag gtcagaagct aaagaaaagc cgctcggttc agagccgaga ggaaaatgaa 6900 atgagagag agaaggaga caaagaggaa gagaaaggta aacatactag gcatggcctc 6960 gctgacctct cagagctgca gctgaggact ctttgcatag aggtgtggcc cgtgctggct 7020 gtgataggag gagttgatgc tggtcttaga gttggaggtc ggtgtgttca caagcaaact 7080 gggcgccatg ccacgctgct gggagtggtc aaagagggca gcacgtctgc caaggtccaa 7140 tgggatgaag cagaaattac tatcagcttc ccaacttttt ggtcgcctag tgatactcca 7200 ttgtataatc tggaaccctg tgaaccattg ccgtttgatg tggcgcgatt ccgaggcctg 7260 acggettetg tgetgetgga eetaacatat eteaetggeg tteatgaaga eatgggeaaa 7320 cagagcacca aacgacatga aaagaaacac cgacatgaat ccgaggagaa aggggatgtt 7380 gagcagaaac ctgagagtga atccgcttta gatatgcgaa caggcctaac atctgatgac 7440 gtcaaaagtc agagtaccac aagctccaaa tcagaaaatg aaatcgcttc attttcttta 7500 gatccaacac tgccaagtgt ggaatcccaa catcaaataa cagaagggaa aagaaaaaat 7560 catgaacaca tgtccaaaaa ccatgatgta gcccagtcag aaatcagagc agtccagctg 7620 tectatettt aceteggtge tatgaagtea ettagtgeee ttettggetg tagtaaatat 7680 gctgagctgt tgctgatacc aaaagttctg gctgaaaatg gccacaactc agactgtgca 7740 agttctccag ttgttcatga agacgtggag atgcgagcag ccctgcagtt cttgatgcga 7800 cacatggtga agcgagcagt catgcggtca cccataaaga gagcattggg attagctgat 7860 ctggaacgag cgcaagccat gatctataaa ttagtggttc atgggctttt ggaagaccag 7920 tttgggggca aaattaagca agagattgat caacaagctg aagaaagtga ccctgcccag 7980 caggcacaga caccagttac tactagccca tcagcctcaa gcacgacctc ctttatgagc 8040 agetetetgg aggacaccac aactgecace actecagtea etgacacaga aacagtgeet 8100 gcatccgagt ccccgggagt gatgcctctt agtcttctca ggcaaatgtt ctctagttac 8160 ccaactacca ctgtacttcc cacacgtcgg gcacagactc ctccaatatc ttcgttacca 8220 accteteett etgatgaagt aggaaggagg caaagtttaa etteteetga tteecagtea 8280 gcaaggccag ctaaccgcac agccttgtca gacccaagca gtagactttc aacttctcct 8340 cctcctccag caattgcagt tcccttgctg gaaatggggt tctctcttcg gcagattgcc 8400 aaagccatgg aagctacagg tgctagggga gaggctgatg cccagaatat cactgtcctt 8460 gccatgtgga tgatagagca ccctgggcat gaggatgaag aggagcccca gtcgggcagc 8520 acagcagact ctaggcctgg agcagccgtt ctaggcagtg gcgggaagtc aaatgatccc 8580 tgttatttgc agtcacctgg agacatacca tcagctgatg ctgctgaaat ggaggaaggt 8640 tttagtgaaa gccctgataa tttggatcat acagagaatg cagcttctgg aagtggacca 8700 tcagctagag gtcgctcagc ggtaacaaga agacacaagt ttgacttagc tgctcgcaca 8760 ctgctagcaa gagcagcggg attataccgc tctgtgcagg cccacaggaa tcaaagtcgg 8820 agagaaggaa tatctttgca gcaagaccca ggggcgttgt atgactttaa tttagatgag 8880 gaattggaaa ttgatcttga tgatgaggcg atggaagcta tgtttggaca agacctgacc 8940 agtgacaatg atattetggg aatgtggate ceagaggtae tggattggee tacetggeat 9000 gtttgtgagt ctgaagacag ggaagaagtg gtggtgtgtg aactgtgtga atgcagcgtc 9060 gtcagcttca atcagcacat gaagagaaac catccagget gtgggcgcag tgcaaaccgc 9120 cagggctatc gcagcaatgg ttcctatgtg gatggctggt ttggcggtga atgtgggagt 9180 ggaaatccat actacctgtt atgtggcacc tgcagggaga agtacttagc catgaagacc 9240 aaatctaagt caacaagttc tgaaaggtac aagggacaag ctccagatct aattggcaag 9300 caagacagtg tgtatgaaga agactgggac atgttggatg ttgatgaaga tgaaaagcta 9360 actggtgaag aagaatttga attacttgct ggaccgcttg gtttaaatga ccggcgcatt 9420 gtaccagaac cagttcagtt ccctgacagc gatccactgg gagcatcagt agcaatggtc 9480 acagccacca acagtatgga agagactctg atgcaaatag gttgccatgg ctccgtagaa 9540 aagageteet etgggagaat aaegttagga gageaggeag etgeeetage aaaeeeteat 9600

WO 02/09573

- 44 -

gaccgtgtgg tggctttaag gagagtgact gctgctgctc aggttcttct ggccagaacc 9660 atggtcatga gagcgctgtc tcttctctca gtcagtggtt ccagttgtag cctggctgct 9720 ggtcttgagt ctctggggct aacagatatc cgaacgctag ttcgattaat gtgcttggca 9780 gcagcaggga gagctggcct ctccaccagc ccttctgcca tggctagcac ctcagaacga 9840 tcacgaggtg ggcatagcaa ggctaacaag cctatctctt gcctggccta tttgagcaca 9900 gcagtgggat gtctggcatc aaatgctcct agtgctgcca aactgcttgt acagttgtgt 9960 acacagaact tgatttctgc tgcaacaggt gtaaatctaa ccacagttga tgactcaatt 10020 cagcgaaagt ttctacccag ctttctccga ggaattgctg aagagaacaa gcttgtgacc 10080 tccccaaact ttgttgtaac acaggccctt gtggcattgc tagcagacaa aggggccaaa 10140 ctaagaccta actatgataa gtcagaagtt gaaaagaaag gccctctgga gttggctaat 10200 gccctggcag cctgctgcct ctcctccagg ctgtcctcac agcatcggca atgggcagct 10260 cagcaactcg tgcgcactct tgctgcacac gaccgtgaca accaaactac tctgcagaca 10320 cttgctgata tgggaggaga tcttagaaaa tgctccttta tcaaattgga ggctcatcag 10380 aacagagtaa tgacatgtgt ttggtgtaat aaaaaaggtc ttttggctac aagtggcaat 10440 gatggcacca tccgcgtatg gaatgttacc aagaagcaat attcactgca acagacctgt 10500 gtgttcaaca gattggaagg ggatgctgag gaaagcctgg gatcacccag tgatccaagt 10560 tteteaceag ttteetggag tateagtgge aaatatetag caggegettt ggaaaagatg 10620 gtgaatatet ggcaagttaa tggaggaaaa ggattagtag atatteagee teattgggta 10680 tctgccctgg cttggccaga agagggtccg gctacagcct ggtcaggaga gtctccagaa 10740 ttgttgttgg tgggacggat ggatggatct ctgggactga ttgaagttgt tgatgtgtcc 10800 accatgcacc gtcgagaatt ggagcattgc tatcgaaagg atgtgtctgt tacttgcatt 10860 gcatggttca gtgaagacag accatttgca gtgggatatt ttgatggaaa actgttactg 10920 ggaacaaagg aaccacttga gaaaggaggc attgttctaa ttgatgcaca taaggatact 10980 cttattagca tgaagtggga ccctacaggt catattctta tgacatgtgc caaagaagac 11040 agtgtgaaac totggggctc tatttcggga tgctggtgct gtctacattc actctgccat 11100 ccatctattg taaatggcat tgcttggtgc cgccttccag ggaaaggatc caagttgcag 11160 ttactgatgg ctactggctg tcagagtggc ttagtatgtg tttggcgcat tcctcaagat 11220 actacacaga ccaatgtgac tagtgcagaa ggatggtggg accaggaatc aaattgccag 11280 gatggatata ggaaatcatc aggagccaag tgtgtttatc agctgcgggg acacatcact 11340 cctgttcgga ctgttgcctt tagttctgat gggttggccc tggtgtctgg tggactaggt 11400

PCT/US01/24104

WO 02/09573

-45-

PCT/US01/24104

gggctcatga acatttggtc tttaagggat ggctctgtct tgcaaactgt tgtgataggc 11460 tctggagcta ttcagaccac agtatggatt ccagaagttg gagtagctgc ttgctcaaat 11520 agatcaaagg atgttttggt cgtgaattgt acagcagaat gggcagctgc caatcatgtt 11580 ttggcaacct gtaggacagc attgaaacag cagggtgttc tgggattgaa catggctccc 11640 tgcatgagag catttttgga gcggctcccc atgatgcttc aggagcagta tgcctatgaa 11700 aagcctcatg tggtttgtgg tgaccaactt gttcatagcc cctatatgca atgcttggct 11760 tecettgetg tgggaettea tetggateag etgttgtgta accetecagt gecaceacae 11820 caccagaact gtctgcctga ccctgcatcc tggaatccaa atgaatgggc ctggttagaa 11880 tgtttctcaa ccactataaa agctgccgaa gccctgacca atggagccca gtttccagaa 11940 tettttaceg ttecagatet agaacetgtt eeagaggatg aaettgtatt tetaatggat 12000 aacagtaaat ggattaacgg catggatgaa caaattatgt cttgggcaac ttccagacct 12060 gaggactggc acctgggagg taaatgtgat gtctacttat ggggtgctgg taggcatgga. 12120 cagetggeag aagetggaag aaatgtaatg gtacetgeag cageteeete atteteacag 12180 gcccaacagg tcatttgtgg tcagaattgt acctttgtca tccaggccaa tggcacagtg 12240 ttggcttgtg gggaaggaag ttatggcaga ttaggacaag gaaattcaga tgaccttcat 12300 gtgctgacag ttatttcagc cttacaaggc tttgtggtga cccagctggt gacttcctgt 12360 ggttctgatg ggcactctat ggccctaact gaaagtggtg aggtctttag ctggggagat 12420 ggtgactatg gtaaacttgg ccatgggaac agcgacaggc agcggcggcc caggcagatc 12480 gaggccttac aaggagaaga agtggtgcag atgtcttgtg gcttcaagca ctcagcagtg 12540 gtcacttcag atggcaaact gttcaccttt gggaatggtg actatggtcg tctgggtctt 12600 ggaaatacct ctaacaaaaa acttccagag agagtgactg cactggaggg atatcagatt 12660 ggacaggtgg cctgtggatt aaaccacact ttggcagtgt cagcagatgg ttccatggtg 12720 tgggcttttg gagatggaga ctatggaaaa ctaggcttag gaaattccac tgcaaaatct 12780 tcacctcaga aaattgacgt cctttgtgga attggaataa aaaaggttgc ttgtggaact 12840 cagttttctg ttgctttgac caaagatggt catgtgtata cctttggtca agatcgcctg 12900 ataggettge cagaggggeg tgetegeaat cacaategae egeaacaaat ecetgteetg 12960 gctggagtaa tcattgaaga tgtggcagtt ggagctgaac acacacttgc tttggcatca 13020 aatggagatg tgtatgcctg ggggagcaat tcagaagggc agctcggctt aggccatacc 13080 aaccatgttc gagaaccaac cctggtaaca ggtctgcaag ggaaaaatgt tcggcagatc 13140 teggetggee getgecaeag tgetgeatgg acageaecae etgteceaec aagageaeca 13200

ggtgtgtcag tacctctgca gctgggcctg cctgacacag tgccccccca gtatgggcg etgagagaag teageattea eaeggtgegg geeaggetee ggetgeteta eeaettetet 13320 gacctcatgt actcatectg gagactgetg aaccttagee ecaacaacca gaacagcaca 13380 teccattata atgetggaae ttggggeatt gtacagggae aaetteggee tttgttagee 13440 ccaagagtct acactctgcc aatggtgcgc tccataggaa aaaccatggt tcaaggcaaa 13500 aactatggac ctcagataac tgtaaagagg atatéaacca gaggacggaa gtgtaagcct 13560 atttttgtcc aaatagcgag acaagtagtt aagctgaatg cttcagacct ccqcctqcct 13620 tecegagegt ggaaggttaa getggttgga gaaggggetg atgatgetgg aggagtgttt 13680 gatgacacca tcacagagat gtgccaggaa cttgaaactg gtattgttga ccttcttata 13740 ccctctccca atgccaccgc agaagtgggt tacaataggg acaggttcct ttttaaccct 13800 tetgeetgee tegatgaaca ettaatgeag titaagttit taggaattit aatgggggtt 13860 gccattcgca caaagaagcc tctggacctc cacttggccc ctctggtgtg gaagcagctg tgctgtgtcc cactcaccct agaggacctg gaggaggtgg atctgctcta cgtgcagact 13980 ctcaacagca ttcttcacat tgaagacagt gggattaccg aggagagttt ccatgagatg 14040 attectettg attettttgt tggccagagt getgatggca aaatggttee tataateeet 14100 ggtggaaata gtatcccact cacattttcc aacaggaagg aatatgtgga gagggccatt 14160 gaatatcgac ttcatgagat ggacagacag gtggctgcag tccgagaagg gatgtcctgg 14220 attgtteetg tgeegetget gteecteete acageaaaac aactggagea gatggtgtgt 14280 gggatgcccg agatctctgt ggaagtcttg aagaaagtgg tgcggtaccg tgaggtggat 14340 gagcagcatc agctggtgca gtggttctgg cacacgctgg aagagttctc caatgaggag 14400 cgggtgcttt tcatgaggtt tgtgtcagga agatctcgac taccagccaa cactgctgac 14460 atttctcaga gatttcaaat catgaaggtt gataggcctt acgacagtct gcctacctca cagacetget tettecaget gaggetgeee eegtaeteea geeagetggt catggeegag 14580 cgcctgcgct atgccatcaa caactgccgc tcaatcgaca tggacaacta catgctctcg 14640 agaaacgtgg acaacgccga gggctccgac actgactact gaccgtgcgg gtgctctcac 14700 ectecettet eteceteaat aatgeteaet tetgatttga tgttgatata ettttatggt 14760 aactacatag atgttataag aacataaacc aacattataa acaatggcca catttagtta 14820 ctctaaatgt aacaaagaaa ttagatgttt ttatttttct gtgattgtac aaaaacaaca 14880 aaaacgaagt geteteagte aggtttttee etecatattt ttggteaett ttgataagtt 14940 tgcatgaaac cattttggtg catttttagt tgggaatggt acatttttgt aaatccaccc 15000

-47-

WO 02/09573 PCT/US01/24104

agtgaacatg aaattgtaca	ttgtgtataa	ttgttcatta	gaaaggacag	ttttacatga	15060
atattcatat atttattttg	ttttaatttg	aattgcctgt	tcagggttcc	ttatgcagag	15120
aaataaagca gattcaggaa	ttggaaaaaa	aaaaaaaaa	aaaa		15164
<210> 21 <211> 1201 <212> DNA <213> Homo sapiens					
<400> 21 cctagttaaa acagcagccc	atcaaagtct	ttaaccctct	tagcatttac	tcagattact	60
ttttcattta gcatttatca	ccatatattt	acttatttt	ctctctcctc	ctgtactcct	120
tgaaatatga gctgcacaaa	ggacaagatt	attattttgt	tctattctaa	gcatctagtg	180
tactttctgg cagactgcaa	atgaaagaaa	gaataaatga	aagcatgact	tgtgttttat	240
tgcacaggaa gcagtggctg	ggacaagctg	tggaaaaagt	acggatcacg	ctttccccag	300
gatgacctct gccagtatat	cacatcagat	gacctcactc	agatgctgga	caacctaggg	360
cttaagtatg agtgctatga	ccttttgtcc	accatggata	tatctgactg	ctttattgat	420
ggtaatgaaa atggagacct	gctttgggat	tttttgactg	aaacctgcaa	ctttaatgcc	480
acagcaccac ctgatctcag	agcagagctt	gggaaagatc	tacaagagcc	tgaatttagt	540
gctaagaaag aggggaaggt	tctttttaat	aatactctga	gtttcatagt	gattgaggca	600
taactatcaa tcacaaaagt	atattcaaaa	attatatttt	gaacaactcg	aatcactcat	660
ttgtttccat attaaaatca	caaactcatc	cattaatgta	gataaagcac	tgtttggata	720
tgagatgtag caaattccaa	tacattattg	gacttccatt	tggaatcata	tgggatactg	780
ctggtcttat cctgtccctc	ctccaggtag	agagaccaca	tgcaggctca	acataacata	840
agctagaaaa attagatgac	tgaatttcta	tggcatattg	ataataaaat	tcattccatt	900
tgctgattgt ctgaaatttt	ctagaatact	aataaaatac	atactataga	ttctttatta	960
gtgaagtatg cactaatcaa	tactttgaac	acaaagcctg	tgttactgat	ttggccgttt	1020
tgtgaagaaa catttatctt	tgtacgttct	tctattgtgc	tttctatcta	atttttatta	1080
atttgtaaga gtaagcacct	ttagaatatt	aaaaattaat	tctttatcac	atgttgtcat	1140
ttcttcccat tgtgttttct	cttgtaattt	tatctgtgaa	ttaatagctt	ggggttggtc	1200
t					1201

<210> 22

<211> 1790

<212> DNA <213> Homo sapiens

<400> 22 tactaaccat gctgaccact gttcggaacg ggattgaatc acagaaaaac agcaaatggc 60 tctctcttac agagtgtctg aacttcaaag cacaattcct gagcacattt tgcagagcac 120 ctttgttcac gttatctctt ctaactggtc tggattacag acagaatcaa taccagagga 180 aatgaaacag attgttgagg aacagggaaa taaactgcac tgggcagctc ttctgatact 240 catggtgata atacccacaa ttggtggaaa tacccttgtt attctggctg tttcactgga 300 gaagaagctg cagtatgcta ctaattactt tctaatgtcc ttggcggtgg ctgatttgct 360 ggttggattg tttgtgatgc caattgccct cttgacaata atgtttgagg ctatgtggcc 420 cctcccactt gttctatgtc ctgcctggtt atttcttgac gttctctttt caaccgcatc 480 catcatgcat ctctgtgcca tttcagtgga tcgttacata gccatcaaaa agccaatcca ggccaatcaa tataactcac gggctacagc attcatcaag attacagtgg tgtggttaat 600 ttcaataggc attgccattc cagtccctat taaagggata gagactgatg tggacaaccc 660 aaacaatatc acttgtgtgc tgacaaagga acgttttggc gatttcatgc tctttggctc 720 actggctgcc ttcttcacac ctcttgcaat tatgattgtc acctactttc tcactatcca 780 tgctttacag aagaaggett acttagtcaa aaacaagcca cctcaacgcc taacatggtt 840 gactgtgtct acagttttcc aaagggatga aacaccttgc tcgtcaccgg aaaaggtggc 900 aatgctggat ggttctcgaa aggacaaggc tctgcccaac tcaggtgatg aaacacttat 960 gcgaagaaca tccacaattg ggaaaaagtc agtgcagacc atttccaacg aacagagagc 1020 ctcaaaggtc ctagggattg tgtttttcct ctttttgctt atgtggtgtc ccttctttat 1080 tacaaatata actttagttt tatgtgattc ctgtaaccaa actactctcc aaatgctcct 1140 ggagatattt gtgtggatag gctatgtttc ctcaggagtg aatcctttgg tctacaccct 1200 cttcaataag acatttcggg atgcatttgg ccgatatatc acctgcaatt accgggccac 1260 aaagtcagta aaaactctca gaaaacgctc cagtaagatc tacttccgga atccaatggc 1320 agagaactet aagtttttea agaaacatgg aattegaaat gggattaace etgecatgta 1380 ccagagtcca atgaggctcc gaagttcaac cattcagtct tcatcaatca ttctactaga 1440 tacgcttctc ctcactgaaa atgaaggtga caaaactgaa gagcaagtta gttatgtata 1500 gcagaactgg cagttgtcat caaacataat gatgagtaag atgatgaatg agatgtaaat 1560 gtgcccagaa tatattatat aaagaatttt atgtcatata tcaaatcatc tctttaacct 1620 aagatgtaag tattaagaat atctaatttt cctaatttgg acaagattat tccatgagga 1680 aaataatttt atatagctac aaatgaaaac aatccagcac tctggttaaa ttttaaggta 1740

-49-

ttcgaatgaa	ataaagtcaa	atcaataaat	ttcaggcttt	aaaaaaaaa		1790	
<210> 23 <211> 985 <212> DNA <213> Hom	o sapiens		:				
<400> 23 acatcccaat	ggccctgtcc	ttttctttac	tgatggccgt	gctggtgctc	agctacaaat	60 .	
ccatctgttc	tctgggctgt	gatctgcctc	agacccacag	cctgggtaat	aġgagggcct	120	
tgatactcct	ggcacaaatg	ggaagaatct	ctcctttctc	ctgcctgaag	gacagacatg	180	
actttggatt	cccccaagag	gagtttgatg	gcaaccagtt	ccagaaggct	caagccatct	240	
ctgtcctcca	tgagatgatc	cagcagacct	tcaatctctt	cagcacaaag	gactcatctg	300	
ctacttggga	acagagcctc	ctagaaaaat	tttccactga	acttaaccag	cagctgaatg	360	
acatggaagc	ctgcgtgata	caggaggttg	gggtggaaga	gactcccctg	atgaatgtgg	420	
actccatctt	ggctgtgaag	aaatacttcc	aaagaatcac	tctttatctg	acagagaaga	480	
aatacagccc	ttgtgcttgg	gaggttgtca	gagcagaaat	catgagatcc	ttctctttat	540	
caaaaatttt	tcaagaaaga	ttaaggagga	aggaatgaaa	ccgtttcaac	atggaaatga	600	
tctgtattga	ctaatacacc	agtccacact	tctatgactt	ctgccatttc	aaagactcat	660	
ttctcctata	accaccgcat	gagttgaatc	aaaattttca	gatcttttca	ggagtgtaag	720	
gaaacatcat	gtttacctgt	gcaggcacta	gtcctttaca	gatgaccatg	ctgatagatc	780	
taattatcta	tctattgaaa	tatttattta	tttattagat	ttaaattatt	tttgtccatg	840	
taatattatg	tgtactttta	cattgtgtta	tatcaaaata	tgttaatcta	atatttagtc	900	
aatatattat	tttcttttta	ttaattttta	ctattaaaac	ttcttatatt	atttggttat	960	
tctttaataa	agaaattcca	agece				985	
<210> 24 <211> 726 <212> DNA <213> Hom	0 o sapiens						
<400> 24 tcactgtcac	tgctaaattc	agagcagatt	agagcctgcg	caatggaata	aagtcctcaa	60	
aattgaaatg	tgacattgct	ctcaacatct	cccatctctc	tggatttcct	tttgcttcat	120	
tattcctgct	aaccaattca	ttttcagact	ttgtacttca	gaagcaatgg	gaaaaatcag	180	
cagtcttcca	acccaattat	ttaagtgctg	cttttgtgat	ttcttgaagg	tgaagatgca	240	
caccatgtcc	tcctcgcatc	tcttctacct	ggcgctgtqc	ctgctcacct	tcaccagete	300	

tgccacggct ggaccggaga cgctctgcgg ggctgagctg gtggatgctc ttcagttcgt 360 gtgtggagac aggggctttt atttcaacaa gcccacaggg tatggctcca gcagtcggag 420 ggcgcctcag acaggcatcg tggatgagtg ctgcttccgg agctgtgatc taaggaggct 480 ggagatgtat tgcgcacccc tcaagcctgc caagtcagct cgctctgtcc gtgcccagcg 540 ccacaccgac atgcccaaga cccagaagga agtacatttg aagaacgcaa gtagagggag 600 tgcaggaaac aagaactaca ggatgtagga agaccctcct gaggagtgaa gagtgacatg 660 ccaccgcagg atcetttgct ctgcacgagt tacctgttaa actttggaac acctaccaaa 720 aaataagttt gataacattt aaaagatggg cgtttccccc aatgaaatac acaagtaaac 780 attccaacat tgtctttagg agtgatttgc accttgcaaa aatggtcctg gagttggtag 840 attgctgttg atcttttatc aataatgttc tatagaaaag aaaaaaaaat atatatat 900 atatatetta gteectgeet eteaagagee acaaatgeat gggtgttgta tagateeagt 960 tgcactaaat tcctctctga atcttggctg ctggagccat tcattcagca accttgtcta 1020 agtggtttat gaattgtttc cttatttgca cttctttcta cacaactcgg gctgtttgtt 1080 ttacagtgtc tgataatctt gttagtctat acccaccacc tcccttcata acctttatat 1140 ttgccgaatt tggcctcctc aaaagcagca gcaagtcgtc aagaagcaca ccaattctaa 1200 cccacaagat tccatctgtg gcatttgtac caaatataag ttggatgcat tttattttag 1260 acacaaagct ttatttttcc acatcatgct tacaaaaaag aataatgcaa atagttgcaa 1320 ctttgaggcc aatcattttt aggcatatgt tttaaacata gaaagtttct tcaactcaaa 1380 agagtteett caaatgatga gttaatgtge aacctaatta gtaactttee tettttatt 1440 ttttccatat agagcactat gtaaatttag catatcaatt atacaggata tatcaaacag 1500 tatgtaaaac tctgtttttt agtataatgg tgctattttg tagtttgtta tatgaaagag 1560 tctggccaaa acggtaatac gtgaaagcaa aacaataggg gaagcctgga gccaaagatg 1620 acacaagggg aagggtactg aaaacaccat ccatttggga aagaaggcaa agtcccccca 1680 gttatgcctt ccaagaggaa cttcagacac aaaagtccac tgatgcaaat tggactggcg 1740 agtccagaga ggaaactgtg gaatggaaaa agcagaaggc taggaatttt agcagtcctg 1800 gtttcttttt ctcatggaag aaatgaacat ctgccagctg tgtcatggac tcaccactgt 1860 gtgacettgg geaagteact teacetetet gtgeeteagt tteeteatet geaaaatggg 1920 ggcaatatgt catctaccta cctcaaaggg gtggtataag gtttaaaaag ataaagattc 1980 agatttttt accctgggtt gctgtaaggg tgcaacatca gggcgcttga gttgctgaga 2040 tgcaaggaat tetataaata acceatteat ageatageta gagattggtg aattgaatge 2100

-51-

teetgacate teagttettg teagtgaage tatecaaata aetggeeaac tagttgttaa 2160 aagctaacag ctcaatctct taaaacactt ttcaaaatat gtgggaagca tttgattttc 2220 aatttgattt tgaattctgc atttggtttt atgaatacaa agataagtga aaagagagaa 2280 aggaaaagaa aaaggagaaa aacaaagaga tttctaccag tgaaagggga attaattact 2340 ctttgttagc actcactgac tcttctatgc agttactaca tatctagtaa aaccttgttt 2400 aatactataa ataatattot attoattttg aaaaacacaa tgattootto ttttotaggo 2460 aatataagga aagtgatcca aaatttgaaa tattaaaata atatctaata aaaagtcaca 2520 aagttatctt ctttaacaaa ctttactctt attcttagct gtatatacat ttttttaaaa 2580 agtttgttaa aatatgettg actagagttt cagttgaaag geaaaaactt ccatcacaae 2640 aagaaatttc ccatgcctgc tcagaagggt agcccctagc tctctgtgaa tgtgttttat 2700 ccattcaact gaaaattggt atcaagaaag tccactggtt agtgtactag tccatcatag 2760 cctagaaaat gatccctatc tgcagatcaa gattttctca ttagaacaat gaattatcca 2820 gcattcagat ctttctagtc accttagaac tttttggtta aaagtaccca ggcttgatta 2880 tttcatgcaa attctatatt ttacattctt ggaaagtcta tatgaaaaac aaaaataaca 2940 tcttcagttt ttctcccact gggtcacctc aaggatcaga ggccaggaaa aaaaaaaaag 3000 actccctgga tctctgaata tatgcaaaaa gaaggcccca tttagtggag ccagcaatcc 3060 tgttcagtca acaagtattt taactctcag tccaacatta tttgaattga gcacctcaag 3120 catgcttagc aatgttctaa tcactatgga cagatgtaaa agaaactata catcattttt 3180 gccctctgcc tgttttccag acatacaggt tctgtggaat aagatactgg actcctcttc 3240 ccaagatggc acttctttt atttcttgtc cccagtgtgt accttttaaa attattccct 3300 ctcaacaaaa ctttataggc agtcttctgc agacttaaca tgttttctgt catagttaga 3360 tgtgataatt ctaagagtgt ctatgactta tttccttcac ttaattctat ccacagtcaa 3420 aaatccccca aggaggaaag ctgaaagatg caactgccaa tattatcttt cttaactttt 3480 tccaacacat aatcctctcc aactggatta taaataaatt gaaaataact cattatacca 3540 attcactatt ttatttttta atgaattaaa actagaaaac aaattgatqc aaaccctqqa 3600 agtcagttga ttactatata ctacagcaga atgactcaga tttcatagaa aggagcaacc 3660 aaaatgtcac aaccaaaact ttacaagctt tgcttcagaa ttagattgct ttataattct 3720 tgaatgaggc aatttcaaga tatttgtaaa agaacagtaa acattggtaa gaatgagctt 3780 tcaactcata ggcttatttc caatttaatt gaccatactg gatacttagg tcaaatttct 3840 gttctctctt gcccaaataa tattaaagta ttatttgaac tttttaagat gaggcagttc 3900

-52-

ccctgaaaaa gttaatgcag ctctccatca gaatccactc ttctaqqqat atqaaaatct 3960 4020 cacacattca ccctaaggat ccaatggaat actgaaaaga aatcacttcc ttgaaaattt 4080 tattaaaaaa caaacaaaca aacaaaaagc ctgtccaccc ttgagaatcc ttcctctct 4140 tggaacgtca atgtttgtgt agatgaaacc atctcatgct ctgtggctcc agggtttctg 4200 ttactatttt atgcacttgg gagaaggctt agaataaaag atgtagcaca ttttqctttc 4260 ccatttattg tttggccagc tatgccaatg tggtgctatt gtttctttaa gaaagtactt 4320 gactaaaaaa aaaagaaaaa aagaaaaaaa agaaagcata gacatatttt tttaaagtat 4380 aaaaacaaca attctataga tagatggctt aataaaatag cattaggtct atctagccac 4440 caccaccttt caacttttta tcactcacaa gtagtgtact gttcaccaaa ttgtgaattt 4500 gggggtgcag gggcaggagt tggaaatttt ttaaagttag aaggctccat tgttttgttg 4560 gctctcaaac ttagcaaaat tagcaatata ttatccaatc ttctgaactt gatcaagagc 4620 atggagaata aacgcgggaa aaaagatctt ataggcaaat agaagaattt aaaaqataaq 4680 taagttcctt attgattttt gtgcactctg ctctaaaaca gatattcagc aagtggagaa 4740 aataagaaca aagagaaaaa atacatagat ttacctgcaa aaaatagctt ctgccaaatc 4800 ccccttgggt attctttggc atttactggt ttatagaaga cattctccct tcacccagac 4860 atctcaaaga gcagtagctc tcatgaaaag caatcactga tctcatttgg gaaatgttgg 4920 aaagtatttc cttatgagat gggggttatc tactgataaa gaaagaattt atgagaaatt 4980 gttgaaagag atggctaaca atctgtgaag attttttgtt tcttggtttt gtttttttt 5040 tttttttac tttatacagt ctttatgaat ttcttaatgt tcaaaatgac ttggttcttt 5100 tcttctttt tttatatcag aatgaggaat aataagttaa acccacatag actctttaaa 5160 actatagget agatagaaat gtatgtttga ettgttgaag etataateag actatttaaa 5220 atgttttgct atttttaatc ttaaaagatt gtgctaattt attagagcag aacctgtttg 5280 gctctcctca gaagaaagaa tctttccatt caaatcacat ggctttccac caatattttc 5340 aaaagataaa tetgatttat geaatggeat eatttatttt aaaacagaag aattgtgaaa 5400 gtttatgccc ctcccttgca aagaccataa agtccagatc tggtaggggg gcaacaacaa 5460 aaggaaaatg ttgttgattc ttggttttgg attttgtttt gttttcaatg ctaqtqttta 5520 atcctgtagt acatatttgc ttattgctat tttaatattt tataagacct tcctgttagg 5580 tattagaaag tgatacatag atatcttttt tgtgtaattt ctatttaaaa aagagagaag 5640 actgtcagaa gctttaagtg catatggtac aggataaaga tatcaattta aataaccaat 5700

WO 02/09573

-53-

PCT/US01/24104

tcctatctgg	aacaatgctt	ttgttttta	aagaaacctc	tcacagataa	gacagaggec	5760
caggggattt	ttgaagctgt	ctttattctg	ccccatccc	aacccagccc	ttattattt	5820
agtatctgcc	tcagaatttt	atagagggct	gaccaągctg	aaactctaga	attaaaggaa	5880
cctcactgaa	aacatatatt	tcacgtgttc	cctctcttt	ttttcctttt	tgtgagatgg	5940
ggtctcgcac	tgtcccccag	gctggagtgc	agtggcatga	teteggetea	ctgcaacctc	6000
cacctcctgg	gtttaagcga	ttctcctgcc	tcagcctcct	gagtagctgg	gattacaggc	6060
acccaccact	atgcccggct	aatttttgg	atttttaata	gagacggggt	tttaccatgt	6120
tggccaggtt	ggactcaaac	tcctgacctt	gtgatttgcc	cgcctcagcc	tcccaaattg	6180
ctgggattac	aggcatgagc	caccacaccc	tgcccatgtg	ttccctctta	atgtatgatt	6240
acatggatct	taaacatgat	ccttctctcc	tcattcttca	actatctttg	atggggtctt	6300
tcaaggggaa	aaaaatccaa	gcttttttaa	agtaaaaaaa	aaaaaagaga	ggacacaaaa	6360
ccaaatgtta	ctgctcaact	gaaatatgag	ttaagatgga	gacagagttt	ctcctaataa	6420
ccggagctga	attacctttc	actttcaaaa	acatgacctt	ccacaatcct	tagaatctgc	6480
ctttttttat	attactgagg	cctaaaagta	aacattactc	attttatttt	gcccaaaatg	6540
cactgatgta	aagtaggaaa	aataaaaaca	gagctctaaa	atccctttca	agccacccat	6600
tgaccccact	caccaactca	tagcaaagtc	acttctgtta	atcccttaat	ctgattttgt	6660
ttggatattt	atcttgtacc	cgctgctaaa	cacactgcag	gagggactct	gaaacctcaa	6720
gctgtctact	tacatctttt	atctgtgtct	gtgtatcatg	aaaatgtcta	ttcaaaatat	6780
caaaaccttt	caaatatcac	gcagcttata	ttcagtttac	ataaaggccc	caaataccat	6840
gtcagatctt	tttggtaaaa	gagttaatga	actatgagaa	ttgggattac	atcatgtatt	6900
ttgcctcatg	tatttttatc	acacttatag	gccaagtgtg	ataaataaac	ttacagacac	6960
tgaattaatt	tcccctgcta	ctttgaaacc	agaaaataat	gactggccat	tcgttacatc	7020
tgtcttagtt	gaaaagcata	ttttttatta	aattaattct	gattgtattt	gaaattatta	7080
ttcaattcac	ttatggcaga	ggaatatcaa	tcctaatgac	ttctaaaaat	gtaactaatt	7140
gaatcattat	cttacattta	ctgtttaata	agcatatttt	gaaaatgtat	ggctagagtg	7200
tcataataaa	atggtatatc	tttctttagt	aattacaaaa	aaaaaaaaa	aaaaaaaa	7260

<210> 25 <211> 2212 <212> DNA <213> Homo sapiens

<220>

<221> Unsure

-54-

PCT/US01/24104

<222> (625)..(625) <223> n = a, c, g or t/u

WO 02/09573

25 <400> 60 gcatatcctg gaggtgaagg taccacctca tggagacccc cgcggccgcc gcccccgctg ggagcttatt cccctccttc ctgctcctgg cctgcgggac gctggtggcc gccttgctgg 120 180 gcgccgctca ccgcctgggg ctcttctatc agctgctgca caaggtggac aaggcaagcg tccggcatgg cggagagaac gtggccgctg tgctgagggc ccatggtgtg cggttcatct 240 300 teaegetggt eggtgggeae attteeeege tgetgqtgge etgtgagaaa etgggeatee 360 gtgtggtgga cacacgccat gaggtcacgg ccgtctttgc tgctgatgct atggcccgcc tgtccgggac ggtgggcgtg gcggcagtga cagcaggccc tggcctcacc aacacggtga 420 480 ctgcggtgaa gaatgctcag atggctcagt ccccaatcct gcttctgggt ggggctgcca gcactctgct gcagaaccgg ggtgcgctcc aggctgttga tcagctgtcc cttttccggc 540 cactctgtaa gttttgtgtg tctgtgcgga gggtgcggga cattgtgccc accctgaggg 600 ccgcgatggc tgccgcccag tcggncaccc caggtccggt gtttgtggag ctgcccgttg 660 acgtgcttta cccctacttc atggtccaga aggagatggt gccagccaag ccacccaagg 720 gcctcgtggg ccgagtggtc tcctggtatt tagagaatta cctggccaac ctctttgcag 780 gagcctggga gcctcagccc gagggaccgc tgcccctgga catcccccag gcttccccgc 840 agcaggttca gcgctgtgtg gagatcctga gccgggccaa gaggcctctg atggtgctgg 900 ggagtcaggc cctgctcacc ccaacgtctg ccgacaagct tcgggctgcc gtggagacct 960 1020 tgggtgttcc ctgcttcctt ggagggatgg cacgggggct gttaggccgc aaccaccccc tccacatccg ggagaaccgc agtgcggccc tgaagaaggc ggacgtcatt gtcctagcag 1080 gaactgtgtg tgacttccgc ctatcctatg gccgtgtcct cagccacagc agcaagatca 1140 tcatcgtcaa tcgtaatcgg gaagagatgt tgctcaactc agacatcttc tggaagcccc 1200 aggaggctgt gcagggagat gtgggttcct tcgtgctgaa gttagtggag ggccttcagg 1260 gccagacctg ggccccagac tgggtggagg agctgcggga agccgaccgg cagaaggagc 1320 agacctttcg ggagaaggca gcgatgcctg tggcccagca cctgaaccca gtgcaggtgc 1380 tgcagctggt ggaggaaacg ctacctgaca actcaattct ggtggtggat ggcggggact 1440 1500 tegtgggeae tgetgeeeat etggtaeage eeegeggeee eetgegetgg etegateetg qqqcctttgg gactctggga gttggtgcag gatttgcact tggggccaag ctgtgccggc 1560 1620 cagatgctga ggtctggtgc ctgtttgggg acggagcttt tggctacagc ctcatcgaat ttgatacatt cgtcagacac aagatcccag tgatggcctt ggtagggaat gatgctggct 1680

-55-

PCT/US01/24104

ggacacagat ttctcgggag caggtgccct ctctgggcag caacgtggcc tgtggcctgg 1740 1800 cctacactga ttatcacaag gcagccatgg gtctgggggc ccgggggcttg ctgctctcac gggagaacga ggatcaggtg gtcaaggtgc tgcacgatgc ccagcagcag tgccgagacg 1860 gccacccggt tgtggtcaac atcctcattg ggaggacgga cttccgcgat ggctccattg 1920 ctgtataggg ccttgtgggt caggacgctt ggctgccttc ctgcccctgg actgtgtcca 1980 2040 getggtttgg agteteatea ttgettgeee tgggeetate eeatgaggee cagtgactee acaacctccc tgaggagggg atggaggggt caaatctcag agaggctctc ttgtgagctc 2100 ttggaccete etetteaegg acceaactgt geegtttgte eestetetta tggagactga 2160 2212 ataaaccacc tctggcccat gtaggcccaa gtaaaaaaaaa aaaaaaaaa aa

<210> 26

<211> 2144

WO 02/09573

<212> DNA

<213> Homo sapiens

<400> 26

aactgacggg ctttcatttc catttcacac accctagcaa cacttatacc ttgcggaatt 60 gtattggtag cgtgaaaaaa gcacactgag agggcaccat gccggtggaa aggatgcgca 120 tgcgcccgtg gctggaggag cagataaact ccaacacgat cccggggctc aagtggctta 180 acaaggaaaa gaagattttt cagatcccct ggatgcatgc ggctagacat gggtgggatg 240 300 tggaaaaaga tgcaccactc tttagaaacc gggcaatcca tacaggaaag catcaaccag gagtagataa acctgatece aaaacatgga aggegaattt eagatgegee atgaatteet 360 tgcctgatat tgaagaagtc aaggataaaa gcataaagaa aggaaataat gccttcaggg 420 480 tctaccgaat gctgccccta tcagaacggc cttctaagaa aggaaagaaa ccaaagacag aaaaagaaga caaagttaag cacatcaagc aagaaccagt tgagtcatct ctggggctta 540 gtaatggagt aagtgatett teteetgagt atgeggteet gaetteaact ataaaaaatg 600 aagtggatag tacggtgaac atcatagttg taggacagtc ccatctggac agcaacattg 660 agaatcaaga gattgtcacc aatccgccag acatttgcca agttgtagag gtgaccactg 720 agagegaega geageeggte ageatgageg agetetaeee tetgeagate tececegtgt 780 cttcctatgc agaaagcgaa acgactgata gtgtgcccag cgatgaagag agtgccgagg 840 ggcggccaca ctggcggaag aggaatattg aaggcaaaca gtacctcagc aacatgggga 900 ctcgaggctc ctacctgctg cccggcatgg cgtccttcgt cacttccaac aaaccggacc 960 tccaggtcac catcaaagag gagagcaatc cggtgcctta caacagctcc tggccccctt 1020

WO 02/09573

-56-

PCT/US01/24104

14

60

120

180

300

480

ttcaagacct	cccctttct	țcctccatga	ccccagcatc	cagcagcagt	eggecagace	1080
gggagacccg	ggccagcgtc	atcaagaaaa	catcggatat	cacccaggcc	cgcgtcaaga	1140
gctgttaagc	ctctgactct	ccgcggtggt	tgttggggct	tcttggcttt	gttttgttgt	1200
ttgtttgtat	tttattttt	tctctctgac	acctatttta	gacaaatcta	agggaaaaag	1260
ccttgacaat	agaacattga	ttgctgtgtc	caactccagt	acctggagct	tctctttaac	1320
tcaggactcc	agcccattgg	tagacgtgtg	tttctagagc	ctgctggatc	tcccagggct	1380
actcactcaa	gttcaaggac	caacaagggc	agtggaggtg	ctgcattgcc	tgcggtcaag	1440
gccagcaagg	tggagtggat	gcctcagaac	ggacgagata	atgtgaacta	gctggaattt	1500
tttattcttg	tgaatatgta	cataggcagc	actagcgaca	ttgcagtctg	cttctgcacc	1560
ttatcttaaa	gcacttacag	ataggccttc	ttgtgatctt	gctctatctc	acagcacact	1620
cagcaccccc	ttctctgccc	attccccago	ctctcttcct	atcccatccc	atcccatccc	1680
atcccatccc	atcccatccc	gctcttttcc	tacttttcct	tccctcaaag	cttccattcc	1740
acatccggag	gagaagaagg	aaatgaattt	ctctacagat	gtcccatttt	cagactgctt	1800
taaaaaaaat	ccttctaatc	tgctatgctt	gaatgccacg	cggtacaaag	gaaaaagtat	1860
catggaaata	ttatgcaaat	tcccagattt	gaagacaaaa	atactctaat	tctaaccaga	1920
gcaagctttt	ttattttta	tacaggggaa	tattttattc	aaggtaaaat	tctaaataaa	1980
atataattgt	tttttatctt	ttctacagca	aatttataat	tttaagattc	cttttcttgt	2040
ttatcagcag	ttgttattac	atccttgtgg	cacattttt	tttaattttg	taaaggtgaa	2100
aaaagctttt	atgagctcat	ctagcaatca	gattttcctg	tgga		2144

<210> 27 <211> 2416 <212> DNA <213> Homo sapiens

tcacagatga aggcctagac gcaggatctt taatggaaaa acacttgggc cacttcaaga cgacaaacgc tcactgggca aaacaccttc actgaaaaga gacctcatat tatgcaaaaa aaatcttaag aggcctctgc cttcagaagt tacaagatga tcaattcaac ctccacacag cctccagatg aatcctgctc tcagaacctc ctgatcactc agcagatcat tcctgtgctg

gaacagtgtt accttggagc ctacaatgag aggtatttca aaatgagtga agcatgactc

tactgtatgg tetteattge gggaateeta etcaatggag tgteaggatg gatattettt 360 420 tacgtgccca gctctaagag tttcatcatc tatctcaaga acattgttat tgctgacttt

gtgatgagcc tgacttttcc tttcaagatc cttggtgact caggccttgg tccctggcag

ctgaacgtgt ttgtgtgcag ggtctctgcc gtgctcttct acgtcaacat gtacgtcagc 540 attgtgttct ttgggctcat cagctttgac aggtattata aaattgtaaa gcctctttgg 600 acttetttea tecagteagt gagttacage aaaettetgt cagtgatagt atggatgete 660 atgctcctcc ttgctgttcc aaatattatt ctcaccaacc agagtgttag ggaggttaca 720 780 caaataaaat qtataqaact qaaaaqtqaa ctgggacgga agtggcacaa agcatcaaac tacatcttcg tggccatctt ctggattgtg tttcttttgt taatcgtttt ctatactgct 840 900 aagaaatcta gccgcaacat attcagcatc gtgtttgtgt tttttgtctg ttttgtacct 960 taccatattg ccagaatccc ctacacaaag agtcagaccg aagctcatta cagctgccag 1020 tcaaaagaaa tcttgcggta tatgaaagaa ttcactctgc tactatctgc tgcaaatgta 1080 tgcttggacc ctattattta tttctttcta tgccagccgt ttagggaaat cttatgtaag 1140 aaattgcaca ttccattaaa agctcagaat gacctagaca tttccagaat caaaagagga 1200 aatacaacac ttgaaagcac agatactttg tgagttccta ccctcttcca aagaaagacc 1260 acgtgtgcat gttgtcatct tcaattacat aacagaaatc aataagatat gtgccctcat 1320 cataaatatc atctctagca ctgccatcca atttagttca ataaaattca aatataagtt 1380 tccatgcttt tttgtaacat caaagaaaac atacccatca gtaatttctc taatactgac 1440 ctttctattc tctattaata aaaaattaat acatacaatt attcaattct attatattaa 1500 1560 aataagttaa agtttataac cactagtctg gtcagttaat gtagaaattt aaatagtaaa 1620 taaaacacaa cataatcaaa gacaactcac tcaggcatct tctttctcta aataccagaa 1680 totagtatgt aattgtttte aacactgtee ttaaagaeta aettgaaage aggeacagtt tgatgaaggg ctagagagct gtttgcaata aaaagtcagg tttttttcct gatttgaaga 1740 agcaggaaaa gctgacaccc agacaatcac ttaagaaacc ccttattgat gtatttcatg 1800 gcactgcaaa ggaagaggaa tattaattgt atacttagca agaaaatttt tttttctga 1860 1920 tagcactttg aggatattag atacatgcta aatatgtttt ctacaaagac ttacgtcatt 1980 taatgagcct ggggttctgg tgttagaata tttttaagta ggctttactg agagaaacta 2040 aatattggca tacgttatca gcaacttccc ctgttcaata gtatgggaaa aataagatga 2100 ctgggaaaaa gacacacca caccgtagaa catatattaa tctactggcg aatgggaaag qaqaccattt tcttagaaag caaataaact tgattttttt aaatctaaaa tttacattaa 2160 2220 tgagtgcaaa ataacacata aaatgaaaat tcacacatca catttttctg gaaaacagac ggattttact tctggagaca tggcatacgg ttactgactt atgagctacc aaaactaaat 2280

tctttctctg	ctattaactg	gctagaagac	attcatctat	ttttcaaatg	ttctttcaaa	2340
acatttttat	aagtaatgtt	tgtatctatt	tcatgcttta	ctgtctatat	actaataaag	2400
aaatgtttta	atactg					2416
<210> 28 <211> 756						
<212> DNA <213> Homo	sapiens					
<400> 28	-					
	agatcgaggc	tctcaaggag	gagctgctct	tcatgaagaa	gaaccacgaa	60
gaggaagtaa	aaggcctaca	agcccagatt	gccagctctg	ggttgaccgt	ggaggtagat	120
gccccgaaat	ctcaggacct	ctccaagatc	atggcagaca	tccgggccca	atatgacgag	180
ctggctcgga	agaaccgaga	ggagctagac	aagtactggt	ctcagcagat	tgaggagagc	240
accacagtgg	tcaccacaca	gtctgctgag	gttggagctg	ctgagacgac	gctcacagag	300
ctgagacgta	cagtccagtc	cttggagatc	cgactggacc	gcatgagaaa	tctgaaggcc	360
agcttggaga	acagcctgag	ggaggtggag	gcccgttacg	ccctacagat	ggagcagctc	420
aacgggatcc	tgctgcacct	tgagtcagag	ctggcacaga	cccgggcaga	gggacagcgc	480
caggeecagg	agtatgaggc	cctgctgaac	atcaaggtca	agctggaggc	tgagatcgcc	540
acctaccgcc	gcctgctgga	agatggcgag	gactttaatc	ttggtgatgc	cttggacagc	600
agcaactcca	tgcaaaccat	ccaaaagacc	accacccgcc	ggatagtgga	tggcaaagtg	660
gtgtctgaga	ccaatgacac	caaagttctg	aggcattaag	ccagcagaag	acgggtacct	720
ttggggagca	ggaggccaat	aaaaagttca	gagttc			75
<210> 29						
<211> 175						
<212> DNA <213> Hom	o sapiens					
<400> 29	•		:			
ctgctccttc	taggatetee	gcctggttcg	gcccgcctgc	ctccactcct	gcctccacca	6
tgtccatcag	ggtgacccag	aagtcctaca	aggtgtccac	ctctggcccc	cgggccttca	12
gcagccgctc	ctacacgagt	gggcccggtt	cccgcatcag	ctcctcgagc	ttctcccgag	18
tgggcagcag	caactttcgc	ggtggcctgg	gcggcggcta	tggtggggcc	agcggcatgg	24
gaggcatcac	cgcagttacg	gtcaaccaga	gcctgctgag	ccccttgtc	ctggaggtgg	30
accccaacat	ccaggccgtg	cgcacccagg	agaaggagca	gatcaagacc	ctcaacaaca	36
agtttgcctc	cttcatagac	aaggtacggt	tcctggagca	gcagaacaag	atgctggaga	42

-59-

WO 02/09573 PCT/US01/24104

ccaagtggag	cctcctgcag	cagcagaaga	cggctcgaag	caacatggac	aacatgttcg	480
agagctacat	caacaacctt	aggcggcagc	tggagactct	gggccaggag	aagctgaagc	540
tggaggcgga	gcttggcaac	atgcaggggc	tggtggagga	cttcaagaac	aagtatgagg	600
atgagatcaa	taagcgtaca	gagatggaga	acgaatttgt	cctcatcaag	aaggatgtgg	660
atgaagetta	catgaacaag	gtagagetgg	agtetegeet	ggaagggctg	accgacgaga	720
tcaacttcct	caggcagcta	tatgaagagg	agatccggga	gctgcagtcc	cagatctcgg	780
acacatctgt	ggtgctgtcc	atggacaaca	gccgctccct	ggacatggac	agcatcattg	840
ctgaggtcaa	ggcacagtac	gaggatattg	ccaaccgcag	ccgggctgag	gctgagagca	900
tgtaccagat	caagtatgag	gagctgcaga	gcctggctgg	gaagcacggg	gatgacctgc	960
ggcgcacaaa	gactgagatc	tctgagatga	accggaacat	cageeggete	caggctgaga	1020
ttgagggcct	caaaggccaġ	agggetteee	tggaggccgc	cattgcagat	gccgagcagc	1080
gtggagagct	ggccattaag	gatgccaacg	ccaagttgtc	cgagctggag	gccgccctgc	1140
agcgggccaa	gcaggacatg	gcgcggcagc	tgcgtģagta	ccaggagctg	atgaacgtca	1200
agctggccct	ggacatcgag	atcgccacct	acaggaagct	gctggagggc	gaggagagcc	1260
ggctggagtc	tgggatgcag	aacatgagta	ttcatacgaa	gaccaccagc	ggctatgcag	1320
gtggtctgag	ctcggcctat	gggggcctca	caagccccgg	cctcagctac	agcctgggct	1380
ccagctttgg	ctctggcgcg	ggctccagct	ccttcagccg	caccagctcc	tccagggccg	1440
tggttgtgaa	gaagatcgag	acacgtgatg	ggaagctggt	gtctgagtcc	tctgacgtcc	1500
tgcccaagtg	aacagctgcg	gcagcccctc	ccagcctacc	cctcctgcgc	tgccccagag	1560
cctgggaagg	aggccgctat	gcagggtagc	actgggaaca	ggagacccac	ctgaggctca	1620
gccctagccc	tcagcccacc	tggggagttt	actacctggg	gacccccctt	gcccatgcct	1680
ccagctacaa	aacaattcaa	ttgctttttt	třtttggtcc	aaaataaaac	ctcagctagc	1740
tctgccaaac	cc					1752

tgaggcctga ctttttcaat aaaacattgt gtagttctgg gcctcctgct gccccggctc 60 tgtttcccct ggcgccaaga gaagaaggcg gaactgaacc caggcccaga gccggctccc 120 tgaggetgtg ececttteeg geaatetetg gecacaacce ceaetggeca ggeegteeet 180

<210> 30 <211> 1744 <212> DNA <213> Homo sapiens

<400> 30

WO 02/09573

-60-

PCT/US01/24104

cccactggcc	ctagggcccc	tcccactccc	acaccagata	aggacagccc	agtgccgctt	240
tctctggcag	taggcaccag	ggctggaatg	gggccgcccg	gctccccatg	gcagtgggtg	300
acgctgctgc	tggggctgct	gctccctcct	geegeeeet	tctggctcct	caatgtgctc	360
ttccccccgc	acaccacgcc	caaggctgag	ctcagtaacc	acacacggcc	cgtcatcctc	420
gtgcccggct	gcctggggaa	tcagctagaa	gccaagctgg	acaaaccaga	tgtggtgaac	480
tggatgtgct	accgcaagac	agaggacttc	ttcaccatct	ggctggatct	caacatgttc	540
ctaccccttg	gggtagactg	ctggatcgat	aacaccaggg	ttgtctacaa	ccggagctct	600
gggctcgtgt	ccaacgcccc	tggtgtccag	atccgcgtcc	ctggctttgg	caagacctac	660
tctgtggagt	acctggacag	cagcaagetg	gcagggtacc	tgcacacact	ggtgcagaac	720
ctggtcaaca	atggctacgt	gcgggacgag	actgtgcgcg	ccgcccccta	tgactggcgg	780
ctggagcccg	gccagcagga	ggagtactac	cgcaagctcg	cagggctggt	ggaggagatg	840
cacgctgcct	atgggaagcc	tgtcttcctc	attggccaca	gcctcggctg	tctacacttg	900
ctctatttcc	tgctgcgcca	gccccaggcc	tggaaggacc	gctttattga	tggcttcatc	960
tctcttgggg	ctccctgggg	tggctccatc	aagcccatgc	tggtcttggc	ctcaggtgac	1020
aaccagggca	tccccatcat	gtccagcatc	aagctgaaag	aggagcagcg	cataaccacc	1080
acctccccct	ggatgtttcc	ctctcgcatg	gcgtggcctg	aggaccacgt	gttcatttcc	1140
acacccagct	tcaactacac	aggccgtgac	ttccaacgct	tctttgcaga	cctgcacttt	1200
gaggaaggct	ggtacatgtg	gctgcagtca	cgtgacctcc	tggcaggact	cccagcacct	1260
ggtgtggaag	tatactgtct	ttacggcgtg	ggcctgccca	cgccccgcac	ctacatctac	1320
gaccacggct	tcccctacac	ggaccetgtg	ggtgtgctct	atgaggatgg	tgatgacacg	1380
gtggcgaccc	gcagcaccga	gctctgtggc	ctgtggcagg	gccgccagcc	acagcctgtg	1440
cacctgctgc	ccctgcacgg	gatacagcat	ctcaacatgg	tcttcagcaa	cctgaccctg	1500
gagcacatca	atgccatcct	gctgggtgcc	taccgccagg	gtccccctgc	atccccgact	1560
gccagcccag	agcccccgcc	tcctgaataa	agaccttcct	ttgctaccgt	aagccctgat	1620
ggctatgttt	caggttgaag	ggaggcacta	gagtcccaca	ctaggtttca	ctcctcacca	1680
gccacaggct	cagtgctgtg	tgcagtgagg	caagatgggc	tctgctgagg	cctgggactg	1740
agct		,				1744

<210> 31 <211> 507 <212> DNA <213> Homo sapiens

<pre><400> 31 cttctgacag ctggtgcgcc tgcccgggaa catcctcctg gactcaatca tggcttgtgg</pre>	60
tctggtcgcc agcaacctga atctcaaacc tggagagtgc cttcgagtgc gaggcgaggt	120
ggctcctgac gctaagagct tcgtgctgaa cctgggcaaa gacagcaaca acctgtgcct	180
gcacttcaac cctcgcttca acgcccacgg cgacgccaac accatcgtgt gcaacagcaa	240
ggacggcggg gcctggggga ccgagcagcg ggaggctgtc tttcccttcc agcctggaag	300
tgttgcagag gtgtgcatca ccttcgacca ggccaacctg accgtcaagc tgccagatgg	360
atacgaattc aagttcccca accgcctcaa cctggaggcc atcaactaca tggcagctga	420
cggtgacttc aagatcaaat gtgtggcctt tgactgaaat cagccagccc atggccccca	480
ataaaggcag ctgcctctgc tcccctg	507
<210> 32	
<211> 672 <212> DNA	
<213> Homo sapiens	
<400> 32 , aatataactt tttcttttt tatttaaata agtcttataa atgtgggaaa aaattatctt	60
gtgttccttt aattțcattt ttatttaata ctattttcag aatgaacaaa agattgaaaa	120
attatttaga atttttttct gtgctttttc ctgtttcaga taaaggagat gggtgagatg	180
catagggaac tcaatgcata actatataat ttgaagatta tagaagaagg gaaatagcaa	240
atggacacaa attacaaatg tgtgtgcgtg ggacgaagac atctttgaag gtcatgagtt	300
tgttagttta acatcatata tttgtaatag tgaaacctgt actcaaaata taagcagctt	360
gaaactggct ttaccaatct tgaaatttga ccacaagtgt cttatatatg cagatctaat	420
gtaaaatcca gaacttggac tccatcgtta aaattattta tgtgtaacat tcaaatgtgt	480
gcattaaata tgcttccaca gtaaaatctg aaaaactgat ttgtgattga aagctgcctt	540
tctatttact tgagtcttgt acatacatac ttttttatga gctatgaaat aaaacatttt	600
aaactgaatt tottaacttt gacatttcaa atttottott otttttottt tottttttt	660
ttttttttga ga	672
<210> 33 <211> 3270	•
<212> DNA	
<213> Homo sapiens	

<220>

<221> Unsure
<222> (2708)..(2708)
<223> n = a, c, g or t/u

-62-

<220>
<221> Unsure
<222> (2746)..(2746)
<223> n = a, c, g or t/u

<400> caaaaagtgt gtggaaaggt ggattgaggg agcgggaccc ccgcgggacc cgagggggcg 60 gcaggcgggg aacggggggt cagcccgcgc tgtgtctcgg ggccggccgg caggaaggag 120 ccatggctct ggacgggata aggatgccag atggctgcta cgcggacggg acgtgggaac 180 tgagtgtcca tgtgacggac ctgaaccgcg atatcaccct gagagtgacc ggcgaggtgc 240 acattggagg cgtgatgctt aagctggtgg agaaactcga tgtaaaaaaa gattggtctg 300 accatgetet etggtgggaa aagaagagaa ettggettet gaagacacat tggacettag 360 ataagtatgg tattcaggca gatgctaagc ttcagttcac ccctcagcac aaactgctcc 420 gcctgcagct tcccaacatg aagtatgtga aggtgaaagt gaatttctct gatagagtct 480 tcaaagctgt ttctgacatc tgtaagactt ttaatatcag acaccccgaa gaactttctc 540 600 tcttaaagaa acccagagat ccaacaaaga aaaaaaagaa gaagctagat gaccagtctg aagatgaggc acttgaatta gaggggcctc ttatcactcc tggatcagga agtatatatt 660 caageccagg actgtatagt aaaacaatga eeeccaetta tgatgeteat gatggaagee 720 780 ccttgtcacc aacttctgct tggtttggtg acagtgcttt gtcagaaggc aatcctggta tacttgctgt cagtcaacca atcacgtcac cagaaatctt ggcaaaaatg ttcaagcctc 840 900 aagetettet tgataaagea aaaateaace aaggatgget tgatteetea agatetetea tggaacaaga tgtgaaggaa aatgaggcct tgctgctccg attcaagtat tacagctttt 960 1020 ttgatttgaa tccaaagtat gatgcaatca gaatcaatca gctttatgag caggccaaat gggccattct cctggaagag attgaatgca cagaagaaga aatgatgatg tttgcagccc 1080 tgcagtatca tatcaataag ctgtcaatca tgacatcaga gaatcatttg aacaacagtg 1140 acaaagaagt tgatgaagtt gatgctgccc tttcagacct ggagattact ctggaagggg 1200 gtaaaacgtc aacaattttg ggtgacatta cttccattcc tgaacttgct gactacatta 1260 aagttttcaa gccaaaaaag ctgactctga aaggttacaa acaatattgg tgcaccttca 1320 aagacacate catttettgt tataagagea aagaagaate cagtggeaca ecageteate 1380 agatgaacct caggggatgt gaagttaccc cagatgtaaa catttcaggc caaaaattta 1440 1500 acattaaact cctgattcca gttgcagaag gcatgaatga aatctggctt cgttgtgaca atgaaaaaca gtatgcacac tggatggcag cctgcagatt agcctccaaa ggcaagacca 1560 tggcggacag ttcttacaac ttagaagttc agaatattct ttcctttctg aagatgcagc 1620 atttaaaccc agatcctcag ttaataccag agcagatcac gactgatata actcctgaat 1680 gtttggtgtc tccccgctat ctaaaaaagt ataagaacaa qcaqataaca qcqaqaatct 1740 tggaggccca tcagaatgta gctcagatga gtctaattga agccaagatg agatttattc 1800 aagettggca gteactaeet gaatttggea teacteaett cattgeaagg ttecaagggg 1860 gcaaaaaaga agaacttatt ggaattgcat acaacagact gattcggatg gatgccagca 1920 ctggagatgc aattaaaaca tggcgtttca gcaacatgaa acagtggaat gtcaactggg 1980 2040 aaatcaaaat ggtcaccgta gagtttgcag atgaagtacg attgtccttc atttgtactg 2100 aagtagattg caaagtggtt catgaattca ttggtggcta catatttctc tcaacacgtg caaaagacca aaacgagagt ttagatgaag agatgttcta caaacttacc agtggttggg 2160 tgtgaataga aatactgttt aatgaaactc cacggccata acaatattta actttaaaag 2220 ctgtttgtta tatgctgctt aataaagtaa gcttgaaatt tatcatttta tcatgaaaac 2280 ttctttgcct taccagacca gttaatatgt gcactaaaca agcacgacta ttaatctatc 2340 atgttatgat ataataaact tgaatttggc acacattcct tagggccatg aattgaaaac 2400 tgaaatagtg ggcaaatcag gaacaaacca tcactgattt actgatttaa gctagccaaa 2460 ctgtaagaaa caagccatct attttaaagc tatccagggc ttaacctata tgaactctat 2520 ttatcatgtc taatgcatgt gatttaatgt atgtttaatt tgatatcatg ttttaaaata 2580 tectacttet ggtagecatt taatteetee ceetaceece aaataaatea ggcatgeagg 2640 aggeetgata tttagtaatg teattgtgtt tgacettgaa ggaaaatget attagteegt 2700 cgtgcttnat ttgtttttgt ccttgaataa gcatgttatg tatatngtct cgtgttttta 2760 tttttacacc atattgtatt acacttttag tattcaccag cataancact gtctgcctaa 2820 aatatgcaac totttgcatt acaatatgaa gtaaagttot atgaagtatg catttgtgt 2880 aactaatgta aaaacacaaa ttttataaaa ttgtacagtt ttttaaaaac tactcacaac 2940 tagcagatgg cttaaatgta gcaatctctg cgttaattaa atgcctttaa gagatataat 3000 taacgtgcag ttttaatatc tactaaatta agaatgactt cattatgatc atgatttgcc 3060 acaatgteet taactetaat geetggaetg geeatgttet agtetgttge getgttacaa 3120 tctgtattgg tgctagtcag aaaattccta gctcacatag cccaaaaggg tgcgagggag 3180 aggtggatta ccagtattgt tcaataatcc atggttcaaa gactgtataa atgcatttta 3240 ttttaaataa aagcaaaact tttatttaaa 3270

-64-

<210> 34 <211> 3437 <212> DNA <213> Homo sapiens

WO 02/09573

<400> 34

aagttcagtg cctaccgaag acaaaggcgc cccgagggag tggcggtgcg accccagggc 60 gtgggcccgg ccgcggagcc cacactgccc ggctgacccg gtggtctcgg accatgtctc 120 eegececaag acceecegt tgteteetge tececetget caegetegge accgegeteg 180 cctccctcgg ctcggcccaa agcagcagct tcagccccga agcctqgcta caqcaatatq 240 getacetgee teeeggggae etacgtacee acacacageg eteaceceag teacteteag 300 cggccatcgc tgccatgcag aagttttacg gcttgcaagt aacaggcaaa gctgatgcag 360 acaccatgaa ggccatgagg cgcccccgat gtggtgttcc agacaagttt ggggctgaga 420 tcaaggccaa tgttcgaagg aagcgctacg ccatccaggg tctcaaatgg caacataatg 480 aaatcacttt etgeateeag aattacacee eeaaggtggg egagtatgee acataegagg 540 ccattegeaa ggegtteege gtgtgggaga gtgeeaece aetgegette egegaggtge 60,0 cctatgccta catccgtgag ggccatgaga agcaggccga catcatgatc ttctttgccg 660 agggetteca tggegacage aegeeetteg atggtgaggg eggetteetg geeeatgeet 720 acttcccagg ccccaacatt ggaggagaca cccactttga ctctgccgag ccttggactg 780 tcaggaatga ggatctgaat ggaaatgaca tcttcctggt ggctgtgcac gagctgggcc 840 atgccctggg gctcgagcat tccagtgacc cctcggccat catggcaccc ttttaccagt 900 ggatggacac ggagaatttt gtgctgcccg atgatgaccg ccggggcatc cagcaacttt 960 atgggggtga gtcagggttc cccaccaaga tgcccctca acccaggact acctcccggc 1020 ettetgttee tgataaacce aaaaaccea cetatgggee caacatetgt gaegggaact 1080 ttgacaccgt ggccatgctc cgaggggaga tgtttgtctt caaggagcgc tggttctggc 1140 gggtgaggaa taaccaagtg atggatggat acccaatgcc cattggccag ttctggcqqq 1200 gcctgcctgc gtccatcaac actgcctacg agaggaagga tggcaaattc gtcttcttca 1260 aaggagacaa gcattgggtg tttgatgagg cgtccctgga acctggctac cccaagcaca 1320 ttaaggagct gggccgaggg ctgcctaccg acaagattga tgctgctctc ttctggatgc 1380 ccaatggaaa gacctacttc ttccgtggaa acaagtacta ccgtttcaac gaagagctca 1440 gggcagtgga tagcgagtac cccaagaaca tcaaagtctg ggaagggatc cctgagtctc 1500 ccagagggtc attcatgggc agcgatgaag tcttcactta cttctacaag gggaacaaat 1560 actggaaatt caacaaccag aagctgaagg tagaaccggg ctaccccaag tcagccctga 1620

PCT/US01/24104

-65-

gggactggat gggctgccca tcgggaggcc ggccggatga ggggactgag gaggagacgg 1680 aggtgateat cattgaggtg gacgaggagg geggegggge ggtgagegeg getgeegtgg 1740 tgctgcccgt gctgctgctg ctcctggtgc tggcggtggg ccttgcagtc ttcttcttca 1800 gacgccatgg gacccccagg cgactgctct actgccagcg ttccctgctg gacaaggtct 1860 gacgcccacc gccggcccgc ccactcctac cacaaggact ttgcctctga aggccagtgg 1920 cagcaggtgg tggtgggtgg gctgctccca tcgtcbcgag ccccctcccc gcagcctcct 1980 tgettetete tgteecetgg etggeeteet teaccetgae egeeteeete eeteetgeee 2040 eggcattgca tettecetag ataggteece tgagggetga gtgggaggge ggecetttee 2100 agcetetgee ceteagggga accetgtage tttgtgtetg tecagececa tetgaatgtg 2160 ttgggggctc tgcacttgaa ggcaggaccc tcagacctcg ctggtaaagg tcaaatgggg 2220 tcatctgctc cttttccatc ccctgacata ccttaacctc tgaactctga cctcaggagg 2280 etetgggeac tecagecetg aaagececag gtgtacecaa ttggeageet eteactaete 2340 tttctggcta aaaggaatct aatcttgttg agggtagaga ccctgagaca gtgtgagggg 2400 gtggggactg ccaagccacc ctaagacctt gggaggaaaa ctcagagagg gtcttcgttg 2460 ctcagtcagt caagttcctc ggagatctgc ctctgcctca cctaccccag ggaacttcca 2520 aggaaggagc ctgagccact ggggactaag tgggcagaag aaacccttgg cagccctgtg 2580 cctctcgaat gttagccttg gatggggctt tcacagttag aagagctgaa accaggggtg 2640 cagctgtcag gtagggtggg gccggtggga gaggcccggg tcagagccct gggggtgagc 2700 ctgaaggcca cagagaaaga accttgccca aactcaggca gctggggctg aggcccaaag 2760 gcagaacagc cagaggggc aggagggac caaaaaggaa aatgaggacg tgcagcagca 2820 ttggaaggct ggggccgggc aggccaggcc aagccaagca gggggccaca gggtgggctg 2880 tggagctetc aggaagggcc ctgaggaagg cacacttgct cctgttggtc cctgtccttg 2940 ctgcccaggc agcgtggagg ggaagggtag ggcagccaga gaaaggagca gagaaggcac 3000 acaaacgagg aatgaggggc ttcacgagag gccacagggc ctggctggcc acgctgtccc 3060 ggcctgctca ccatctcagt gagggcagg agctggggct cgcttaggct gggtccacgc 3120 ttccctggtg ccagcacccc tcaagcctgt ctcaccagtg gcctgccctc tcgctcccc 3180 acccagecca eccattgaag teteettggg ecaceaaagg tggtggecat ggtacegggg 3240 acttgggaga gtgagaccca gtggagggag caagaggaga gggatgtcgg gggggtgggg 3300 cacggggtag gggaaatggg gtgaacggtg ctggcagttc ggctagattt ctgtcttgtt 3360 tgtttttttg ttttgtttaa tgtatatttt tattataatt attatatatg aattccaaaa 3420 -66-

aaaaaaaaaa aaaaaaa	3437
<210> 35 <211> 4898 <212> DNA <213> Homo sapiens	
<400> 35 gaatteegge tgccagggge gtccggttac ateccegeet teetetgtee tggccgeggg	60
accgggtttg cgggaccgca gttcgggaac atgttggcct cgagcagceg gatccgggct	120
gegtggaege gggegetget getgeegetg etgetggegg ggeetgtggg etgeetgage	180
cgccaggagc tettteeett eggeeeegga cagggggaee tggagetgga ggaeggggat	240
gacttegtet etectgeeet ggagetgagt ggggegetee gettetaega cagateegae	300
ategaegeag tetaegteae cacaaatgge ateattgeta egagtgaace eeeggeeaaa	360
gaateccate eegggetett eecaceaaca tteggtgeag tegeceettt eetggeggae	420
ttggacacga ccgatggcct ggggaaggtt tattatcgag aagacttatc cccctccatc	480
actcagcgag cagcagagtg tgtccacaga gggttcccgg agatctcttt ccagcctagt	540
agegeggtgg ttgtcacttg ggaateegtg geecectace aagggeecag cagggaceca	600
gaccagaaag gcaagagaaa cacgttccag gctgttctag cctcctctga ttccagctcc	660
tatgccattt tcctttatcc tgaggatggt ctgcagttcc atacgacatt ctcaaagaag	720
gaaaacaacc aagtteetge egtggttgea tteagteaag gtteagtggg attettatgg	780
aagagcaacg gagcttataa catatttgct aatgacaggg aatcaattga aaatttggcc	840
aagagtagta actctgggca gcagggtgtc tgggtgtttg agattgggag tccagccacc	900
accaatggcg tggtgcctgc agacgtgatc ctcggaactg aagatggggc agagtatgat	960
gatgaggatg aagattatga cctggcgacc actcgtctgg gcctggagga tgtgggcacc	1020
acgcccttct cctacaaggc tctgagaagg ggaggtgctg acacatacag tgtgcccagc	1080
gtectetece egegeeggge agetacegaa aggeeeettg gaceteceae agagagaace	1140
aggtetttee agttggeagt ggagaetttt caccageage acceteaggt catagatgtg	1200
gatgaagttg aggaaacagg agttgttttc agctataaca cggattcccg ccagacgtgt	1260
gctaacaaca gacaccagtg ctcggtgcac gcagagtgca gggactacgc cacgggcttc	1320
tgctgcagct gtgtcgctgg ctatacgggc aatggcaggc aatgtgttgc agaaggttcc	1380
ccccagcgag tcaatggcaa ggtgaaagga aggatctttg tggggagcag ccaggtcccc	1440
attgtctttg agaacactga cctccactct tacgtagtaa tgaaccacgg gcgctcctac	1500
acagecatea geaceattee egagacegtt ggatattete tgetteeact ggeeceagtt	1560

-67-

ggaggcatca ttggatggat gtttgcagtg gagcaggacg gattcaagaa tgggttcagc 1620 atcaccgggg gtgagttcac tcgccagget gaggtgacct tcgtggggca cccgggcaat 1680 ctggtcatta agcagcggtt cagcggcatc gatgagcatg ggcacctgac catcgacacg 1740 gagetggagg geegegtgee geagatteeg tteggeteet eegtgeacat tgageeetae 1800 acggagctgt accactactc cacctcagtg atcacttcct cctccacccg ggagtacacg 1860 gtgactgagc ccgagcgaga tggggcatct ccttcacgca tctacactta ccagtggcgc 1920 cagaccatca cettecagga atgegtecae gatgaetece ggecageeet geccageace 1980 cagcagetet eggtggacag egtgttegte etgtacaace aggaggagaa gatettgege 2040 tacgctttca gcaactccat tgggcctgtg agggaaggct cccctgatgc tcttcagaat 2100 ccctgctaca tcggcactca tgggtgtgac accaacgcgg cctgtcgccc tggtcccagq 2160 acacagttca cctgcgagtg ctccatcggc ttccgaggag acgggcgaac ctgctatgat 2220 attgatgaat gttcagaaca accetcagtg tgtgggagcc acacaatctg caataatcac 2280 ccaggaacct tccgctgcga gtgtgtggag ggctaccagt tttcagatga gggaacgtgt 2340 gtggctgtcg tggaccagcg ccccatcaac tactgtgaaa ctggccttca taactgcgac 2400 ataccccagc gggcccagtg tatctacaca ggaggctcct cctacacctg ttcctgcttg 2460 ccaggetttt ctggggatgg ccaagectge caagatgtag atgaatgeea gccaageega 2520 tgtcaccctg acgccttctg ctacaacact ccaggctctt tcacgtgcca gtgcaaacct 2580 ggttatcagg gagacggctt ccgttgcgtg cccggagagg tggagaaaac ccggtgccag 2640 cacgagegag aacacattet eggggeageg ggggegacag acceacageg acceattect 2700 ccggggctgt tcgttcctga gtgcgatgcg cacgggcact acgcgcccac ccagtgccac 2760 ggcagcaccg gctactgctg gtgcgtggat cgcgacggcc gcgaggtgga gggcaccagg 2820 accaggeceg ggatgaegee eeegtgtetg agtacagtgg eteceeegat teaccagga 2880 cctgcggtgc ctaccgccgt gatccccttg cctcctggga cccatttact ctttgcccag 2940 actgggaaga ttgagcgcct gcccctggag ggaaatacca tgaggaagac agaagcaaag 3000 gegtteette atgteeegge taaagteate attggaetgg cetttgaetg egtggaeaag 3060 atggtttact ggacggacat cactgagcet tecattggga gagctagtet acatggtgga 3120 gagecaacca ecateattag acaagatett ggaagtecag aaggtatege tgttgateae 3180 ettggeegea acatettetg gacagaetet aacetggate gaatagaagt ggegaagetg 3240 gacggcacgc agcgccgggt gctctttgag actgacctgg tgaatcccag aggcattgta 3300 acggattccg tgagagggaa cctttactgg acagactgga acagagataa ccccaagatt 3360

gaaacttcct	acatggacgg	cacgaaccgg	aggatccttg	tgcaggatga	cctgggcttg	3420
cccaatggac	tgcacttcga	tgcgttctca	tctcagctct	gctgggtgga	tgcaggcacc	3480
aatcgggcgg	aatgcctgaa	ccccagtcag	cccagcagac	gcaaggctct	cgaagggctc	3540
cagtatcctt	ttgctgtgac	gagctacggg	aagaatctgt	atttcacaga	ctggaagatg	3600
aattccgtgg	ttgctctcga	tcttgcaatt	tccaaggaga	cggatgcttt	ccaaccccac	3660
aagcagaccc	ggctgtatgg	catcaccacg	gccctgtctc	agtgtccgca	aggccataac	3720
tactgctcag	tgaacaatgg	cggctgcacc	cacctatgct	tggccacccc	agggagcagg	3780
acctgccgtt	gccctgacaa	caccttggga	gttgactgta	tcgaacggaa	atgaagacaa	3840
gagtgcctta	tttcctttcc	aagtatttca	cagcaacact	ctacttgaag	caacttggtc	3900
cagattgaaa	agtgtcctct	ggctgagtgg	ccactaggcc	cagacccagc	ccagcctgag	3960
ccccaacaac	aacttttccc	tcactgttcc	ccaaaacatg	caccctggac	ttctctaata	4020
gaaaagtctc	cacccctaca	caaggacaga	accetccace	cctaccccca	acceteagae	4080
agacttatac	acccctgagt	gaggattaca	tgcccatccc	agtgtcctag	gaccttttcc	4140
caatactagc	ccccagtgg	tgaacagaac	ctcccaaatt	tgagttgcac	ccttccctgt	4200
ggccttatga	gctcagcctc	gctttgaggt	acccaccgtc	ctgtcagctc	cttgacctat	4260
gagctggggc	ctgactagga	aaagttggga	gttaaggagg	aaattagcat	tccttaatgt	4320
tttgttttgg	tgctctgaat	ttcttcttta	ttatagtcct	atagttttac	tectcagttc	4380
ctcaccatca	tcatcttgtc	taagaccccc	attataatat	tcatgcgctg	ctttttcatc	4440
aaaacctacc	ctgtcctaga	gatctatggg	catttggtgg	atgataatga	gcagcccctc	4500
ccagatagaa	tgtcaatatt	tgagcagtag	gatattggca	tttgttagtt	aaaggcttaa	4560
atcaaaagaa	tgtccaatgg	taggaatttc	aaggtgtagg	tcagatattt	gagaataggg	4620
gattttttg	atgtgcctta	aattatacca	aagattacta	attattcctc	tttgcccaaa	4680
atacttgcat	ccaaggttct	agtctctgtt	gctgtgctgg	tctttagccc	cactgctggc	4740
actgatgtcc	ctccttttc	acggagacct	atctgaggta	caggatgggg	ctggcaccag	4800
atgatgtccc	accacagtcc	ctcacctccg	gcctccacat	gacagaacca	atttacactc	4860
aaccatgacc	tcacccctcc	ttggtttctc	cctccccg			4898

<210> 36 <211> 2511 <212> DNA <213> Homo sapiens

<400> 36

-69-

cgccgcctgt gccatttctg attttgcaac ttggggaaga agaaaaaagc gagagaaggg 60 agettgeteg eeggggggtg gggagggggg aaggagageg eggeeeeee aggaaeggag 120 cgcgggggga gcgggcgagg ggagcagggg tgttgggggg ggagcctgag agcctggggg 180 240 gggcgcgcag cagcagcggg gcggccgagg cagtagcggc ggcagcggcg gcggcggcgg 300 aggeagegge eggtgteegg etegggeteg geteetgega eeeeggggeg eeeggeggge 360 cccccgcccc ctccccctcc ccccttcccc ttccccttcc cctcccagcg cgcccgcgcg 420 cccegeggcc ctcggcgagc ageteggetc ccccagegc teccegggcc caaagatatg 480 gcaatggtag ttagcagctg gcgagatccg caggacgacg tggccggggg caaccccggc 540 adececeree cederaces adeadecede adeadeade deadeceda edraderad 600 cagcaggegg getegggege geegeacaeg cegeagaeee egggeeagee eggagegee 660 gecaeeeeeg geaeggeggg ggacaaggge cagggeeege ceggtteggg ceagageeag 720 cagcacatcg agtgcgtggt gtgcggggac aagtcgagcg gcaagcacta cggccaattc 780 acctgcgagg gctgcaaaag tttcttcaag aggagcgtcc gcaggaactt aacttacaca 840 tgccgtgcca acaggaactg tcccatcgac cagcaccacc gcaaccagtg ccaatactgc 900 cgcctcaaga agtgcctcaa agtgggcatg aggcgggaag cggttcagcg aggaagaatg 960 cetecaacee ageceaatee aggeeagtae geactéacea aeggggacee ceteaaegge 1020 cactgetace tgteeggeta catetegetg etgetgegeg eegageeeta eeceaegteg 1080 cgctacggca gccagtgcat gcagcccaac aacattatgg gcatcgagaa catctgcgag 1140 etggeegege geetgetett eagegeegte gagtgggeee geaacateee ettetteeeg 1200 gatetgeaga teacegacea ggtgteeetg etacgeetea eetggagega getgttegtg 1260 ctcaacgegg cccagtgete tatgeegetg caegtggege egttgetgge egeegge 1320 etgeatgeet egeceatgte tgeegaeege gtegtggeet teatggaeea cateegeate 1380 ttccaggagc aggtggagaa gctcaaggcg ctacacgtcg actcagccga gtacagctgc 1440 ctcaaagcca tcgtgctgtt cacgtcagac gcctgtggcc tgtcggatgc ggcccacatc 1500 gagagcetge aggagaagte geagtgegea etggaggagt aegtgaggag ceagtacece 1560 aaccagecca geegttttgg caaactgetg etgegaetge cetegetgeg caeegtgtee 1620 tecteegtea tegageaget ettettegte egtttggtag gtaaaacece categaaact 1680 ctcatccgcg atatgttact gtctgggagc agcttcaact ggccttacat gtccatccag 1740 tgctcctaga ccttgggcgc ttcccacctg ccccgtcccc ctagagactc agaggaccca 1800

-70-

WO 02/09573 PCT/US01/24104

cctgggccaa ggactccaaa	gccgcgggga	caccgggaag	tgcagcgggc	caggcaggct	1860
gggtgggagg gaggagggcc	gagacaggag	cagcccaccc	agcagaaata	caatccgagc	1920
tacaaagcat gggaaaaaga	gactctttta	ggatcagatc	tgtgagcacg	ttggcgagga	1980
aaaacaaaac aaacaaaaaa	aagaaccttg	tgtctgtctg	gtgaaaaaaa	gaaaaacaaa	2040
ttggaagaga ggaccatgag	aattttaata	aaacagaagg	aaactaatgg	accttccagg	2100
atttattgtg gacggatgtg	gatatattct	gtacaggaac	aacacatatg	gaagtggact	2160
gaagcctatg tagaaacaca	cacacactga	acattgttat	tcattttgta	aaatactagt	2220
ctttattttc attttttgta	aaatttaaac	atcgtatgcg	cataaagaaa	aaggaaacaa	2280
gaattagggg aaaataacat	tttccaaata	attataaaaa	attgtcctgt	gtctatgtat	2340
ctatatctgt tttgtatttt	tttctggttc	caaaccagat	ttcctgtgat	tctatactaa	2400
taatttttga tataaccctt	tgcttcttat	aatgagtgcg	atatatgttg	tcgaggctgt	2460
tcttcaagaa ttaaaattga	agtgaaaatt	taaacaaaaa	taaaagaatt	a	2511
<210> 37 <211> 2722 <212> DNA <213> Homo sapiens					
<400> 37 gagcgggctg agggtaggaa	gtagccgctc	cgagtggagg	cgactggggg	ctgaagagcg	60
cgccgccctc tcgtcccact	ttccaggtgt				
		gtgatcctgt	aaaattaaat	cttccaagat	120
gatctggtat atattaatta					120 180
gatctggtat atattaatta ttttacttca attggtcaga	taggaattet	gcttccccag	tctttggctc	atccaggctt	
	taggaattct tgactgattt	gcttccccag gatccatact	tctttggctc gagaaagatc	atccaggctt tggtgacttc	180
ttttacttca attggtcaga	taggaattet tgaetgattt cagaagagga	gcttccccag gatccatact caagttagaa	tctttggctc gagaaagatc caaataaaaa	atccaggctt tggtgacttc aatgggcaga	180 240
ttttacttca attggtcaga	taggaattet tgactgattt cagaagagga gtacagegae	gcttccccag gatccatact caagttagaa aaaagatcca	tctttggctc gagaaagatc caaataaaaa gaaggatttg	atccaggett tggtgactte aatgggcaga ttgggcatce	180 240 300
ttttacttca attggtcaga tctgaaagat tatattaagg gaagttagat cggctaacta	taggaattet tgactgattt cagaagagga gtacagegae tgaaacgtet	gcttccccag gatccatact caagttagaa aaaagatcca gaatactgag	tctttggctc gagaaagatc caaataaaaa gaaggatttg tggagtgagt	atccaggett tggtgaette aatgggeaga ttgggeatee tggagaatet	180 240 300 360
ttttacttca attggtcaga tctgaaagat tatattaagg gaagttagat cggctaacta agtaaatgca ttcaaattaa	taggaattet tgactgattt cagaagagga gtacagegae tgaaaegtet atggetttat	gcttccccag gatccatact caagttagaa aaaagatcca gaatactgag ctctaaccta	tctttggctc gagaaagatc caaataaaaa gaaggatttg tggagtgagt accattcaga	atccaggett tggtgacttc aatgggcaga ttgggcatcc tggagaatct gaccagtact	180 240 300 360 420
ttttacttca attggtcaga tctgaaagat tatattaagg gaagttagat cggctaacta agtaaatgca ttcaaattaa ggtccttaag gatatgtcag	taggaattet tgactgattt cagaagagga gtacagegae tgaaaegtet atggetttat ttggggeage	gcttccccag gatccatact caagttagaa aaaagatcca gaatactgag ctctaaccta caaagctctg	tctttggctc gagaaagatc caaataaaaa gaaggatttg tggagtgagt accattcaga ttacgtctcc	atccaggett tggtgactte aatgggcaga ttgggcatce tggagaatct gaccagtact aggataccta	180 240 300 360 420 480
ttttacttca attggtcaga tctgaaagat tatattaagg gaagttagat cggctaacta agtaaatgca ttcaaattaa ggtccttaag gatatgtcag ttctaatgat gaagatcagg	taggaattet tgaetgattt cagaagagga gtaeagegae tgaaaegtet atggetttat ttggggeage teteaaaggg	gcttccccag gatccatact caagttagaa aaaagatcca gaatactgag ctctaaccta caaagctctg taatcttcca	tctttggctc gagaaagatc caaataaaaa gaaggatttg tggagtgagt accattcaga ttacgtctcc ggagtgaaac	atccaggett tggtgacttc aatgggcaga ttgggcatcc tggagaatct gaccagtact aggataccta acaaatcttt	180 240 300 360 420 480 540
ttttacttca attggtcaga tctgaaagat tatattaagg gaagttagat cggctaacta agtaaatgca ttcaaattaa ggtccttaag gatatgtcag ttctaatgat gaagatcagg caatttggat acagatacca	taggaattet tgaetgattt cagaagagga gtaeagegae tgaaaegtet atggetttat ttggggeage teteaaaggg ttgagttggg	gcttccccag gatccatact caagttagaa aaaagatcca gaatactgag ctctaaccta caaagctctg taatcttcca caaagtgcc	tctttggctc gagaaagatc caaataaaaa gaaggatttg tggagtgagt accattcaga ttacgtctcc ggagtgaaac tatacagaag	atccaggett tggtgacttc aatgggcaga ttgggcatcc tggagaatct gaccagtact aggataccta acaaatcttt cagattatta	180 240 300 360 420 480 540
ttttacttca attggtcaga tctgaaagat tatattaagg gaagttagat cggctaacta agtaaatgca ttcaaattaa ggtccttaag gatatgtcag ttctaatgat gaagatcagg caatttggat acagatacca tctaacggct gaggactgct	taggaattet tgactgattt cagaagagga gtacagegae tgaaaegtet atggettat ttggggeage tctcaaaggg ttgagttggg aacaagecet	gcttccccag gatccatact caagttagaa aaaagatcca gaatactgag ctctaaccta caaagctctg taatcttcca caaagtggcc aaggcaactg	tctttggctc gagaaagatc caaataaaaa gaaggatttg tggagtgagt accattcaga ttacgtctcc ggagtgaaac tatacagaag gatgaaggg	atccaggett tggtgactte aatgggcaga ttgggcatce tggagaatct gaccagtact aggataccta acaaatcttt cagattatta agatttctac	180 240 300 360 420 480 540 600
ttttacttca attggtcaga tctgaaagat tatattaagg gaagttagat cggctaacta agtaaatgca ttcaaattaa ggtccttaag gatatgtcag ttctaatgat gaagatcagg caatttggat acagatacca tctaacggct gaggactgct ccatacggaa ctgtggatgg	taggaattet tgactgattt cagaagagga gtacagegae tgaaaegtet atggettat ttggggeage tctcaaaggg ttgagttggg aacaageet tagattatt	gcttccccag gatccatact caagttagaa aaaagatcca gaatactgag ctctaaccta caaagctctg taatcttcca caaagtggcc aaggcaactg gagctatgcg	tctttggctc gagaaagatc caaataaaaa gaaggatttg tggagtgagt accattcaga ttacgtctcc ggagtgaaac tatacagaag gatgaaggcg gatgaaggcg	atccaggett tggtgacttc aatgggcaga ttgggcatcc tggagaatct gaccagtact aggataccta acaaatcttt cagattatta agattctac agggagacct	180 240 300 360 420 480 540 600 720

taatggtaac ttaaaatatt ttgagtatat aatggctaaa gaaaaagatg tcaataagtc 900

tgcttcagat gaccaatctg atcagaaaac tacaccaaag aaaaaagggg ttgctgtgga 960 ttacctgcca gagagacaga agtacgaaat gctgtgccgt ggggagggta tcaaaatgac 1020 ccctcggaga cagaaaaaac tcttttgccg ctaccatgat ggaaaccgta atcctaaatt 1080 tattctggct ccagctaaac aggaggatga atgggacaag cctcgtatta ttcgcttcca 1140 tgatattatt tctgatgcag aaattgaaat cgtcaaagac ctagcaaaac caaggctgag 1200 ccgagctaca gtacatgacc ctgagactgg aaaattgacc acagcacagt acagagtatc 1260 taagagtgcc tggctctctg gctatgaaaa tcctgtggtg tctcgaatta atatgagaat 1320 acaagatcta acaggactag atgtttccac agcagaggaa ttacaggtag caaattatgg 1380 agttggagga cagtatgaac cccattttga ctttgcacgg aaagatgagc cagatgcttt 1440 caaagagctg gggacaggaa atagaattgc tacatggctg ttttatatga gtgatgtgtc 1500 tgcaggagga gccactgttt ttcctgaagt tggagctagt gtttggccca aaaaaggaac 1560 tgctgttttc tggtataatc tgtttgccag tggagaagga gattatagta cacggcatgc 1620 agcctgtcca gtgctagttg gcaacaaatg ggtatccaat aaatggctcc atgaacgtgg 1680 acaagaattt cgaagacctt gtacgttgtc agaattggaa tgacaaacag gcttcccttt 1740 ttctcctatt gttgtactct tatgtgtctg atatacacat ttccatagtc ttaactttca 1800 ggagtttaca attgactaac actccatgat tgattcagtc atgaacctca tcccatgttt 1860 catctgtgga caattgctta ctttgtgggt tcttttaaaa gtaacacgaa atcatcatat 1920 tgcataaaac cttaaagttc tgttggtatc acagaagaca aggcagagtt taaagtgagg 1980 aattttatat ttaaagaact ttttggttgg ataaaaacat aatttgagca tccagtttta 2040 gtatttcact acatctcagt tggtgggtgt taagctagaa tgggctgtgt gataggaaac 2100 aaatgcctta cagatgtgcc taggtgttct gtttacctag tgtcttactc tgttttctgg 2160 atotgaagac tagtaataaa otaggacact aactgggtto catgtgattg codtttcata 2220 tgatetteta agttgatttt ttteeteeca agtetttttt aaagaaagta taetqtattt 2280 taccaacccc ctctctttc ttttagctcc tctgtggtga attaaacgta cttgagttaa 2340 aatatttega ttttttttt ttttttaatg gaaagteetg cataacaaca etgggeette 2400 ttaactaaaa tgctcaccac ttagcctgtt tttttatccc ttttttaaaa tgacagatga 2460 ttttgttcag gaattttgct gtttttctta gtgctaatac cttgcctctt attcctgcta 2520 cagcagggtg gtaatattgg cattctgatt aaatactgtg ccttaggaga ctggaagttt 2580 aaaaatgtac aagtcctttc agtgatgagg gaattgattt tttttaaaag tctttttctt 2640 agaaagccaa aatgtttgtt tttttaagat tctgaaatgt gttgtgacaa caatgaccta 2700

WO 02/09573

tttatgatct taaatctttt tt

-72-

<210> 38 <211> 811 <212> DNA <213> Homo	sapiens		· ·			
<400> 38 catccctctg	gctccagagc	tcagagccac	ccacageege	agccatgctg	tgcctcctgc	60
tcaccctggg	cgtggccctg	gtctgtggtg	tcccggccat	ggacatecce	cagaccaagc	120
aggacctgga	gctcccaaag	ttggcaggga	cctggcactc	catggccatg	gcgaccaaca	180
acatctccct	catggcgaca	ctgaaggccc	ctctgagggt	ccacatcacc	tcactgttgc	240
ccacccccga	ggacaacctg	gagatcgttc	tgcacagatg	ggagaacaac	agctgtgttg	300
agaagaaggt	ccttggagag	aagactggga	atccaaagaa	gttcaagatc	aactatacgg	360
tggcgaacga	ggccacgctg	ctcgatactg	actacgacaa	tttcctgttt	ctctgcctac	420
aggacaccac	cacccccatc	cagagcatga	tgtgccagta	cctggccaga	gtcctggtgg	480
aggacgatga (gatcatgcag	ggattcatca	gggctttcag	geeeetgeee	aggcacctat	540
ggtacttgct	ggacttgaaa	cagatggaag	agccgtgccg	tttctagctc	acctccgcct	600
ccaggaagac (cagactccca	cccttccaca	cctccagagc	agtgggactt	cctcctgccc	660
tttcaaagaa	taaccacagc	tcagaagacg	atgacgtggt	catctgtgtc	gccatcccct	720
tcctgctgca (cacctgcacc	attgccatgg	ggaggctgct	ccctgggggc	agagtctctg	780
gcagaggtta (ttaataaacc	cttggagcat	g			811
<210> 39 <211> 1480 <212> DNA <213> Homo	sapiens					
<400> 39 ctctgcaaaa 1	ttcagctgct	gcatatgtat	tgaggacccc	agcgcctttc	cccggggcc	60
atgctgcctg (cagccacagc	ctccctcctg	gggcccctcc	tcactgcctg	cgccctgctg	120
ccttttgccc a	agggccagac	ccccaactac	accagacccg	tgttcctgtg	cggaggggat	180
gtgaaggggg a	aatcaggtta	cgtggcaagt	gaggggttcc	ccaactccta	ccccctaat	240
aaggagtgca (tctggaccat	aacggtcccc	gagggccaga	ctgtgtccct	ctcattccga	300
gtcttcgacc 1	tggagctgca	ccccgcctgc	cgctacgatg	ctctggaggt	cttcgctggg	360
tctgggactt (ccggccagcg	gctcggacgc	ttttgtggga	ccttccggcc	tgcgccccta	420
gtcgcccccg g	gcaaccaggt	gaccctgagg	atgacgacgg	atgagggcac	aggaggacga	480

PCT/US01/24104

2722

ggetteetge tetggtacag egggegggee aceteggget etgageacea atttte	geggg 540
gggeggetgg agaaggeeca gggaaceetg accaegeeca actggeeega gteega	attac 600
cccccgggca tcagctgttc ctggcacatc atcgcgcccc cggaccaggt catcgc	egetg 660
accttcgaga agtttgacct ggagccggac acctactgcc gctatgactc ggtcag	gegte 720
ttcaacggag ccgtgagcga cgactcccgg aggctgggga agttctgcgg cgacgo	cagtc 780
ccgggetcca teteeteega agggaatgaa eteetegtee agttegtete agatet	cagt 840
gtcacegetg atggettete agecteetae aagaceetge egeggggeae tgecaa	agaa 900
gggcaaggge ccggcccaa acggggaact gagcctaaag tcaagctgcc ccccaa	agtcc 960
caacctccgg agaaaacaga ggaatctcct tcagcccctg atgcacccac ctgcc	caaag 1020
cagtgccgcc ggacaggcac cttgcagagc aacttctgtg ccagcagcct tgtggt	gact 1080
gcgacagtga agtccatggt tcgggagcca ggggagggcc ttgccgtgac tgtcag	gtctt 1140
attggtgctt ataaaactgg aggactggac ctgccaactc cacccactgg tgcct	ecctg 1200
aagttttacg tgccttgcaa gcagtgcccc cccatgaaga aaggagtcag ttatct	gctg 1260
atgggccagg tagaagagaa cagaggcccc gtccttcctc cagagagctt tgtggt	tctc 1320
caceggeeca accaggaeca gateeteace aacetaagea agaggaagtg eccete	ctcaa 1380
cctgtgcggg ctgctgcgtc ccaggactga gacgcaggcc agccccggcc cctag	ecete 1440
aggeetetet tettateeaa ataaatgttt ettaatgaaa	1480
<210> 40 <211> 6378 <212> DNA <213> Homo sapiens <400> 40	
cccattactg ttggagctac agggagagaa acaggaggag actgcaagag atcatt	tggg 60
aaggeegtgg geaegetett taeteeatgt gtgggaeatt eattgeggaa taacat	cgga 120
ggagaagttt cccagagcta tggggacttc ccatccggcg ttcctggtct taggct	gtct 180
teteacaggg etgageetaa teetetgeea gettteatta eeetetatee ttecaa	atga 240
aaatgaaaag gttgtgcagc tgaattcatc cttttctctg agatgctttg gggaga	gtga 300
agtgagctgg cagtacccca tgtctgaaga agagagctcc gatgtggaaa tcagaa	atga 360
agaaaacaac agcggccttt ttgtgacggt cttggaagtg agcagtgcct cggcgg	gccca 420
cacagggttg tacacttgct attacaacca cactcagaca gaagagaatg agcttg	gaagg 480
caggeacatt taeatetatg tgecagaece agatgtagee tttgtaeete taggaa	tgac 540

-74-

ggattattta gtcatcgtgg aggatgatga ttctgccatt ataccttgtc gcacaactga 600 tecegagaet cetgtaacet tacacaacag tgagggggtg gtacetgeet cetacgacag 660 cagacagggc tttaatggga ccttcactgt agggccctat atctgtgagg ccaccgtcaa 720 aggaaagaag ttccagacca tcccatttaa tgtttatgct ttaaaagcaa catcagagct 780 ggatctagaa atggaagctc ttaaaaccgt gtataagtca ggggaaacga ttgtggtcac 840 ctgtgctgtt tttaacaatg aggtggttga ccttcaatgg acttaccctg gagaagtgaa 900 aggcaaaggc atcacaatgc tggaagaaat caaagtccca tccatcaaat tggtgtacac 960 tttgacggtc cccgaggcca cggtgaaaga cagtggagat tacgaatgtg ctgcccgcca 1020 ggctaccagg gaggtcaaag aaatgaagaa agtcactatt tctgtccatg agaaaggttt 1080 cattgaaatc aaacccacct tcagccagtt ggaagctgtc aacctgcatg aagtcaaaca 1140 ttttgttgta gaggtgcggg cctacccacc tcccaggata tcctggctga aaaacaatct 1200 gactetgatt gaaaatetea etgagateae eaetgatgtg gaaaagatte aggaaataag 1260 gtatcgaagc aaattaaagc tgatccgtgc taaggaagaa gacagtggcc attatactat 1320 tgtagctcaa aatgaagatg ctgtgaagag ctatactttt gaactgttaa ctcaagttcc 1380 ttcatccatt ctggacttgg tcgatgatca ccatggctca actgggggac agacggtgag 1440 gtgcacagct gaaggcacgc cgcttcctga tattgagtgg atgatatgca aagatattaa 1500 gaaatgtaat aatgaaactt cctggactat tttggccaac aatgtctcaa acatcatcac 1560 ggagatccac tcccgagaca ggagtaccgt ggagggccgt gtgactttcg ccaaagtgga 1620 ggagaccatc gccgtgcgat gcctggctaa gaatctcctt ggagctgaga accgagagct 1680 gaagetggtg geteceacee tgegttetga acteaeggtg getgetgeag teetggtget 1740 gttggtgatt gtgatcatct cacttattgt cctggttgtc atttggaaac agaaaccgag 1800 gtatgaaatt cgctggaggg tcattgaatc aatcagcccg gatggacatg aatatattta 1860 tgtggacccg atgcagctgc cttatgactc aagatgggag tttccaagag atggactagt 1920 gcttggtcgg gtcttggggt ctggagcgtt tgggaaggtg gttgaaggaa cagcctatgg 1980 attaagccgg tcccaacctg tcatgaaagt tgcagtgaag atgctaaaac ccacggccag 2040 atccagtgaa aaacaagctc tcatgtctga actgaagata atgactcacc tggggccaca 2100 tttgaacatt gtaaacttgc tgggagcctg caccaagtca ggccccattt acatcatcac 2160 agagtattgc ttctatggag atttggtcaa ctatttgcat aagaataggg atagcttcct 2220 gagccaccac ccagagaagc caaagaaaga gctggatatc tttggattga accctgctga 2280 tgaaagcaca cggagctatg ttattttatc ttttgaaaac aatggtgact acatggacat 2340

WO 02/09573

-75-

PCT/US01/24104

gaagcaggct	gatactacac	agtatgtccc	catgctagaa	aggaaagagg	tttctaaata	2400
ttccgacatc	cagagatcac	tctatgatcg	tccagcctca	tataagaaga	aatctatgtt	2460
agactcagaa	gtcaaaaacc	tcctttcaga	tgataactca	gaaggcctta	ctttattgga	2520
tttgttgagc	ttcacctatc	aagttgcccg	aggaatggag	tttttggctt	caaaaaattg	2580
tgtccaccgt	gatctggctg	ctcgcaacgt	cctcctggca	caaggaaaaa	ttgtgaagat	2640
ctgtgacttt	ggcctggcca	gagacatcat	gcatgattcg	aactatgtgt	cgaaaggcag	2700
tacctttctg	cccgtgaagt	ggatggctcc	tgagagcatc	tttgacaacc	tctacaccac	2760
actgagtgat	gtctggtctt	atggcattct	getetgggag	atcttttccc	ttggtggcac	2820
cccttacccc	ggcatgatgg	tggattctac	tttctacaat	aagatcaaga	gtgggtaccg	2880
gatggccaag	cctgaccacg	ctaccagtga	agtctacgag	atcatggtga	aatgctggaa	2940
cagtgagccg	gagaagagac	cctcctttta	ccacctgagt	gagattgtgg	agaatctgct	3000
gcctggacaa	tataaaaaga	gttatgaaaa	aattcacctg	gacttcctga	agagtgacca	3060
tcctgctgtg	gcacgcatgc	gtgtggactc	agacaatgca	tacattggtg	tcacctacaa	3120
aaacgaggaa	gacaagctga	aggactggga	gggtggtctg	gatgagcaga	gactgagcgc	3180
tgacagtggc	tacatcattc	ctctgcctga	cattgaccct	gtccctgagg	aggaggacct	3240
gggcaagagg	aacagacaca	gctcgcagac	ctctgaagag	agtgccattg	agacgggttc	3300
cagcagttcc	accttcatca	agagagagga	cgagaccatt	gaagacatcg	acatgatgga	3360
cgacatcggc	atagactctt	cagacctggt	ggaagacagc	ttcctgtaac	tggcggattc	3420
gaggggttcc	ttccacttct	ggggccacct	ctggatcccg	ttcagaaaac	cactttattg	3480
caatgcggag	gttgagagga	ggacttggtt	gatgtttaaa	gagaagttcc	cagccaaggg	3540
cctcggggag	cgttctaaat	atgaatgaat	gggatatttt	gaaatgaact	ttgtcagtgt	3600
tgcctctcgc	aatgcctcag	tagcatctca	gtggtgtgtg	aagtttggag	atagatggat	3660
aagggaataa	taggccacag	aaggtgaact	ttgtgcttca	aggacattgg	tgagagtcca	3720
acagacacaa	tttatactgc	gacagaactt	cagcattgta	attatgtaaa	taactctaac	3780
caaggctgtg	tttagattgt	attaactatc	ttctttggac	ttctgaagag	accactcaat	3840
ccatccatgt	acttccctct	tgaaacctga	tgtcagctgc	tgttgaactt	tttaaagaag	3900
tgcatgaaaa	accatttttg	aaccttaaaa	ggtactggta	ctatagcatt	ttgctatctt	3960
ttttagtgtt	aagagataaa	gaataataat	taaccaacct	tgtttaatag	atttgggtca	4020
tttagaagcc	tgacaactca	ttttcatatt	gtaatctatg	tttataatac	tactactgtt	4080
atcagtaatg	ctaaatgtgt	aataatgtaa	catgatttcc	ctccagagaa	agcacaattt	4140

aaaacaatcc ttactaagta ggtgatgagt ttgacagttt ttgacattta tattaaataa 4200 catgtttctc tataaagtat ggtaatagct ttagtgaatt aaatttagtt qagcatagag 4260 aacaaagtaa aagtagtgtt gtccaggaag tcagaatttt taactgtact gaataggttc 4320 cccaatccat cgtattaaaa aacaattaac tgccctctga aataatggga ttagaaacaa 4380 acaaaactct taagtcctaa aagttctcaa tgtagaggca taaacctgtg ctgaacataa 4440 cttctcatgt atattaccca atggaaaata taatgatcag caaaaagact ggatttgcag 4500 aagttttttt ttttttctt catgcctgat gaaagctttg gcaaccccaa tatatgtatt 4560 ttttgaatct atgaacctga aaagggtcag aaggatgccc agacatcagc ctccttcttt 4620 caccccttac cccaaagaga aagagtttga aactcgagac cataaagata ttctttaqtq 4680 gaggctggat gtgcattagc ctggatcctc agttctcaaa tgtgtgtggc agccaggatg 4740 actagatcct gggtttccat ccttgagatt ctgaagtatg aagtctgagg gaaaccagag 4800 tctgtatttt tctaaactcc ctggctgttc tgatcggcca gttttcggaa acactgactt 4860 aggtttcagg aagttgccat gggaaacaaa taatttgaac tttggaacag ggttggaatt 4920 caaccacgca ggaagcctac tatttaaatc cttggcttca ggttagtgac atttaatgcc 4980 atctagetag caattgegae ettaatttaa ettteeagte ttagetgagg etgagaaage 5040 taaagtttgg ttttgacagg ttttccaaaa gtaaagatgc tacttcccac tgtatggggg 5100 agattgaact ttccccgtct cccgtcttct gcctcccact ccataccccg ccaaggaaag 5160 gcatgtacaa aaattatgca attcagtgtt ccaagtctct gtgtaaccag ctcagtgttt 5220 tggtggaaaa aacattttaa gttttactga taatttgagg ttagatggga ggatgaattg 5280 tcacatctat ccacactgtc aaacaggttg gtgtgggttc attggcattc tttgcaatac 5340 tgcttaattg ctgataccat atgaatgaaa catgggctgt gattactgca átcactgtgc 5400 tatcggcaga tgatgctttg gaagatgcag aagcaataat aaagtacttg actacct 5460 ggtgtaatct caatgcaagc cccaactttc ttatccaact ttttcatagt aagtgcgaag 5520 actgagccag attggccaat taaaaacgaa aacctgacta ggttctgtag agccaattag 5580 acttgaaata cgtttgtgtt tctagaatca cagctcaagc attctgttta tcgctcactc 5640 tecettgtac ageettattt tgttggtget ttgcattttg atattgctgt qageettqca 5700 tgacatcatg aggccggatg aaacttctca gtccagcagt ttccagtcct aacaaatgct 5760 cccacctgaa tttgtatatg actgcatttg tgggtgtgtg tgtgttttca gcaaattcca 5820 gatttgtttc cttttggcct cctgcaaagt ctccagaaga aaatttgcca atctttccta 5880 ctttctattt ttatgatgac aatcaaagcc ggcctgagaa acactatttg tgacttttta 5940

-77-

PCT/US01/24104

aacgattagt	gatgtcctta	aaatgtggtc	tgccaatctg	tacaaaatgg	tcctattttt	6000
gtgaagaggg	acataagata	aaatgatgtt	atacatcaat	atgtatatat	gtatttctat	6060
atagacttgg	agaatactgc	caaaacattt	atgacaagct	gtatcactgc	cttcgtttat	6120
atttttttaa	ctgtgataat	ccccacaggc	acattaactg	ttgcactttt	gaatgtccaa	6180
aatttatatt	ttagaaataa	taaaaagaaa	gatacttaca	tgttcccaaa	acaatggtgt	6240
ggtgaatgtg	tgagaaaaac	taacttgata	gggtctacca	atacaaaatg	tattacgaat	6300
gcccctgttc	atgtttttgt	tttaaaacgt	gtaaatgaag	atctttatat	ttcaataaat	6360
gatatataat	ttaaagtt		•			6378

<210> 41

<211> 2075

WO 02/09573

<212> DNA

<213> Homo sapiens

<400> 41

gggaatgtaa gatggcggag tagcaacgca aagcgcttgg tattgagtct gtggccgact 60 teggtteegg tetetgeage ageegtgate gettagtgga gtgettaggg tagttggeea 120 ggatgccgaa tatcaaaatc ttcagcggca gctcccacca ggacttatct cagaaaattg 180 ctgaccgcct gggcctggag ctaggcaagg tggtgactaa gaaattcagc aaccaggaga 240 cctgtgtgga aattggtgaa agtgtacgtg gagaggatgt ctacattgtt cagagtggtt 300 gtggcgaaat caatgacaat ttaatggagc ttttgatcat gattaatgcc tgcaagattg 360 cttcagccag ccgggttact gcagtcatcc catgcttccc ttatgcccgg caggataaga 420 aagataagag ccgggcgcca atctcagcca agcttgttgc aaatatgcta tctgtagcag 480 gtgcagatca tattatcacc atggacctac atgcttctca aattcagggc ttttttgata 540 tcccagtaga caatttgtat gcagagccgg ctgtcctaaa gtggataagg gagaatatct 600 ctgagtggag gaactgcact attgtctcac ctgatgctgg tggagctaag agagtgacct 660 ccattgcaga caggctgaat gtggactttg ccttgattca caaagaacgg aagaaggcca 720 atgaagtgga ccgcatggtg cttgtgggag atgtgaagga tcgggtggcc atccttgtgg 780 atgacatggc tgacacttgt ggcacaatct gccatgcagc tgacaaactt ctctcagctg 840 gegecaceag agtttatgee atettgaete atggaatett eteeggteet getatttete 900 gcatcaacaa cgcatgcttt gaggcagtag tagtcaccaa taccatacct caggaggaca 960 agatgaagca ttgctccaaa atacaggtga ttgacatctc tatgatcctt gcagaagcca 1020 tcaggagaac tcacaatgga gaatccgttt cttacctatt cagccatgtc cctttataat 1080 agagtaactt ctgaggcttt țtgagaataa aatccacccc accettgttt cccettggta 1140 tttgatgaca aattcagcag aagacccggc ttgctccagt gtagctttct acatcccaca 1200

WO 02/09573 PCT/US01/24104

tcaggtatat	tagagcttat	ccgaactggg	gaaagacgga	ttgagattaa	ctgctgggac	1260
ctcctacctg	cattatctca	ttctggcttc	cttgataatt	ctgtgggcct	tgcagcttta	1320
actatagete	: .agctgctgca	agatttcaga	cttttgagga	tgttgtgtga	gggtgtttga	1380
ctgtgactgg	ggaagctcag	actactttgt	atgtgaatgc	ttcagggttt	tctttgttga	1440
gaacaactag	caacaaaggc	aacccatgtg	tgaccagttc	tccccaaggt	ctatgctaaa	1500
ttatagcaag	agccctgggc	aaccccaaac	ctagtcctgg	tagctgagca	ccctgtaagg	1560
caggagcagg	cagctcagct	tgagcagaca	ttgggtgggg	ggtgggggt	ggttgagggg	1620
ggaggcagca	cagtgcagca	aatgtttctt	gggaggaaga	agcctgatcc	atcaccatct	1680
gcttgactat	gtagcttgga	ttctcctttg	tacctatccc	tttcgatttg	gctttacctt	1740
catctatctt	gatcctttcc	tggccaaata	tcctcttggg	cccaaatgaa	cattgtacca	1800
tagtcttctg	gaaagcaaac	atgcttcctg	ctatgtaatt	gctaacattc	atattagatg	1860
atgtgctgta	gcttgatctt	ccttagccta	ctgccactga	ggcagtaggt	tttaggtggt	1920
atcgtagtgc	cttttgatta	atttaagtat	ttaattttca	tetteettet	ttggatctat	1980
ttggcctctc	aaatgaactg	agattcctgt	taaaaaagat	tgatgttatt	gtctcttgta	2040
	ataaagtgtg	tgtacctgtg	tgaat			2075
gaggaaacta <210> 42 <211> 245' <212> DNA <213> Homo	ataaagtgtg	tgtacctgtg	tgaat			2075
gaggaaacta <210> 42 <211> 245 <212> DNA <213> Homo <400> 42	ataaagtgtg 7			tcggagttcc	gcgcccacc	2075
gaggaaacta <210> 42 <211> 245' <212> DNA <213> Homo <400> 42 cgctgttgcc	ataaagtgtg 7 5 sapiens tccgccacct	cctccgccgc	cgegegeeee			
gaggaaacta <210> 42 <211> 245 <212> DNA <213> Homo <400> 42 cgctgttgcc atgcccaaca	ataaagtgtg 7 5 sapiens	cctccgccgc cagcggcagc	cgcgcgcccc tcgcatcagg	acctatccca	gcgcgtggcc	60
gaggaaacta <210> 42 <211> 245 <212> DNA <213> Homo <400> 42 cgctgttgcc atgcccaaca gaccgcctgg	ataaagtgtg 7 5 sapiens tccgccacct tcgtgctgtt	cctccgccgc cagcggcagc gggcaaggtg	cgcgcgcccc tcgcatcagg gtcacgaaga	acctatccca agttcagcaa	gcgcgtggcc	60 120
gaggaaacta <210> 42 <211> 245 <212> DNA <213> Homo <400> 42 cgctgttgcc atgcccaaca gaccgcctgg agcgtggaga	ataaagtgtg 7 Sapiens tccgccacct tcgtgctgtt gcctggagct	cctccgccgc cagcggcagc gggcaaggtg cgtgagaggg	cgcgcgcccc tcgcatcagg gtcacgaaga gaagatgtct	acctatccca agttcagcaa acatcatcca	gcgcgtggcc ccaggagacc gagcggctgc	60 120 180
gaggaaacta <210> 42 <211> 245 <212> DNA <213> Homo <400> 42 cgctgttgcc atgcccaaca gaccgcctgg agcgtggaga ggggaaatta	ataaagtgtg 7 Sapiens tccgccacct tcgtgctgtt gcctggagct ttggtgaaag	cctccgccgc cagcggcagc gggcaaggtg cgtgagaggg gatggaactc	cgcgcgcccc tcgcatcagg gtcacgaaga gaagatgtct ctcatcatga	acctatccca agttcagcaa acatcatcca tcaatgcctg	gcgcgtggcc ccaggagacc gagcggctgc caagattgcg	60 120 180 240
gaggaaacta <210> 42 <211> 245 <212> DNA <213> Homo <400> 42 cgctgttgcc atgcccaaca gaccgcctgg agcgtggaga ggggaaatta tcatcatcca	ataaagtgtg o sapiens tccgccacct tcgtgctgtt gcctggagct ttggtgaaag acgacaacct	cctccgccgc cagcggcagc gggcaaggtg cgtgagaggg gatggaactc cgtgatcccg	cgcgcgcccc tcgcatcagg gtcacgaaga gaagatgtct ctcatcatga tgtttcccat	acctatccca agttcagcaa acatcatcca tcaatgcctg acgcccgaca	gcgcgtggcc ccaggagacc gagcggctgc caagattgcg agataaaaag	60 120 180 240 300
gaggaaacta <210> 42 <211> 245 <212> DNA <213> Homo <400> 42 cgctgttgcc atgcccaaca gaccgcctgg agcgtggaga ggggaaatta tcatcatcca gacaagagtc	ataaagtgtg 7 2 sapiens tccgccacct tcgtgctgtt gcctggagct ttggtgaaag acgacaacct gagtaactgc	cctccgccgc cagcggcagc gggcaaggtg cgtgagaggg gatggaactc cgtgatcccg ttctgcaaaa	cgcgcgcccc tcgcatcagg gtcacgaaga gaagatgtct ctcatcatga tgtttcccat cttgtggcca	acctatecca agtteageaa acateateca teaatgeetg aegeeegaea atatgetgte	gcgcgtggcc ccaggagacc gagcggctgc caagattgcg agataaaaag ggtggctggg	60 120 180 240 300 360
gaggaaacta <210> 42 <211> 245 <212> DNA <213> Homo <400> 42 cgctgttgcc atgcccaaca gaccgcctgg agcgtggaga gggaaatta tcatcatcca gacaagagtc gcggatcaca	ataaagtgtg o sapiens teegeeacet tegtgetgtt geetggaget ttggtgaaag acgacaacet gagtaactge gtgeeeaat	cctccgccgc cagcggcagc gggcaaggtg cgtgagaggg gatggaactc cgtgatcccg ttctgcaaaa ggacctgcat	cgcgcgcccc tcgcatcagg gtcacgaaga gaagatgtct ctcatcatga tgtttcccat cttgtggcca gcttctcaga	acctatecca agtteageaa acateateca teaatgeetg aegeeegaea atatgetgte tacagggatt	gcgcgtggcc ccaggagacc gagcggctgc caagattgcg agataaaaag ggtggctggg ctttgatatt	60 120 180 240 300 360

-79-

attgcagaca ggttgaatgt ggaatttgct ttgatccaca aagagaggaa gaaggcgaat 660 gaagtggacc ggatggtcct ggtgggcgac gtgaaggacc gtgtggccat cctcgtggat 720 gacatggctg acacttgcgg caccatctgc catgctgcgg acaagctgct gtcagctgga 780 gccaccaaag tgtatgctat ccttacccat gggatcttct ctggaccagc tatttccaga 840 ataaataatg ccgcctttga ggctgttgtc gtcacaaaca caattccgca agaggacaaa 900 atgaaacact gcaccaagat tcaggtcatt gacatttcca tgatcttggc cgaagcaatc 960 cgaaggacac acaatgggga atccgtgtcc tacctgttca gccatgtccc gctataaatc 1020 cagaatggga agtgtccagc aagcctactc tgacttctga cttgtttttg ttttctqqat 1080 ttttagctgt aggtattcag caatgatagg ttaatcactg gcaaaagcat cagatctttg 1140 tatatgctaa gatttattgt ttccccttct aaagctcaag atcatttctt tccagttttt 1200 ggggaaatgg tggtggttat ttggtcttta agtgaactgt cttaaatgag aaacgttttt 1260 gtcattttga cttttaacag gtacaggtga tctcttcctt tgttctttca gtactttgag 1320 gcgacaactt tcaagtatat aatttcattg tggaagtcat agtttatata tttcgaggtt 1380 gccaaaggtg acttcacatt aaagccttct gtgtaaatat atactgataa tgcctatgga 1440 catttgggta aaaccctgta tagaattaat tatcctttta ctttggagtg aaccttggaa 1500 1560 actcagtttc agataaacca tcttggttac tgtgcttaat ttggaccaaa ttttatttag 1620 cttaatatgg acactgacac attttggggg gtatacatta gacatatcag agcagtgtat 1680 ttctggatca ttttttaaat gacctcttct aaaacataac tgtcacttac ctgaaatgct 1740 gcatectaaa attecaaaat tatattgage aategeeaag geetaaagee aaetgaetta 1800 aaggtaatca tttcagctaa gattaaattt aaagcdtaag aatgtataga gctagtttta 1860 aaataatgat ctcagatttt taaaaaggat ataggaacct gcattgtcat tctctgaatt 1920 aagaactgat ggtttctatc attatttagc cccacctttg tattttaaaa tccttcagaa 1980 tacatttatg aaccaatgcg actggactta gccacacaca atggaaattc agaccttgac 2040 tatttggtgt ttccagttca caaaggtgat gaagactgtc ttgggagcag cttaatccca 2100 aaatttgtac atttcttgct gctcctggcg tggaaactta agtgagacca ccaaatacat 2160 tggtcctgtc caattctact gaatgggggt ggacctggca tttatctggc caaaaacagg 2220 agccagagaa atatgaatat accaaagttg tttgtttagc ctccaactta aattacatta 2280 gtcaacttat agatactcat atgatcactt ttctttttag atactacatc aactagattc 2340 aggagtatat catttgcagt gcttgtattg gtttaaaatg taagatttta agatcctcta 2400

-80-

acactgtact aaaacatttc aataaaatca ttctgactgc gttcaaaaaa aaaaaaa 2457

<210> 43 <211> 1550 <212> DNA <213> Homo sapiens <400> 43 gtggcctacc atggtttcaa cgggtaacgg ggaataaggg ttcgattcgg agctgcggga 60 gccgggctgg caggagcagg atggcggcgg cggcggctgc aggcgaqqcg cgccqgqtqc 120 tggtgtacgg cggcaggggc qctctggqtt ctcqatqcqt qcaqqctttt cqqqcccqca 180 actggtgggt tgccagcgtt gatgtggtgg agaatgaaga ggccagcgct acgatcattg 240 ttaaaatgac agactcgttc actgagcagg ctgaccaggt gactgctgag gttggaaagc 300 tettgggtga agagaaggtg gatgeaatte tttgegttge tggaggatgg geegggggea 360 atgccaaatc caagtctctc tttaagaact gtgacctgat gtggaagcag agcatatgga 420 categaccat ctccagecat ctggetacca agcateteaa ggaaggagge ctcctgacct 480 tggctggcgc aaaggctgcc ctggatggga ctcctggtat gatcgggtac ggcatggcca 540 agggtgetgt teaccagete tgecagagee tggetgggaa gaacagegge atgeegeeeg 600 gggcagccgc catcgctgtg ctcccggtta ccctggatac cccgatgaac aggaaatcaa 660 tgcctgaggc tgacttcagc tcctggacac ccttagaatt cctagttgaa actttccatg 720 actggatcac agggaaaaac cgaccgagct caggaagcct aatccaggtg gtaaccacag 780 aaggaaggac ggaactcacc ccagcatatt tttaggcctc atctcagtgc ctatgagggq 840 cctgccagaa aagtcactaa cctgtctcag tgtggccttg tccagccttg tgttttctgt 900 aacccctgtt tgtggtacga gataatgagt cctatttttc tctcacataa tatgcatttg 960 ctctcctagg gacaagtgta atacatttat gtgaagtaag acaatgcgag actggtggcc 1020 gtcaaatagc atccgtcaat ctgtgttaac tgcataggag gctctcgata gcacctgcta 1080 tageggtgte atgttggate getttgtgae tgtteatetg teettgaeag tggetgteat 1140 cttgactact ttgttgattt gttggtattg gggacatttt aaaggctgag ttatttttga 1200 atgtcatgtt tatgtcatag acgtagaaaa cgcatccttg aattaaactg ccttaactcc 1260 ttttgtggta taagcaaact acatggacte tgtecetggt atcettttee tgtqtqqttq 1320 cccctgtgcc tgtggtctgg cctaggttaa gtgtgcaaga taactactcg tgagttattc 1380 agaatgttgt toctaataaa tgcacttgtt gtotgtotto tttaatcaaa toacatotta 1440 tatacagcag tçagagatga gtatactaga atcatggatt gctggaggtc ttttaatctg 1500

atgttctcag aagggggtgg atttaaatcc tgaaataaat atttcaacac

1550

WO 02/09573

-81-

PCT/US01/24104

<210> <211> <212> <213>	44 1179 DNA Homo	e sapiens					
<400> gaattcc	44 ggca	cgaggcggtt	agacatgggc	actccacaga	aggatgttat	tatcaagtca	60
gatgcac	cgg	acactttgtt	attggagaaa	catgcagatt	atatcgcatc	ctatggctca	120
aagaaag	gatg	attatgaata	ctgtatgtct	gagtatttga	gaatgagtgg	catctattgg	180
ggtctga	acag	taatggatct	catgggacaa	cttcatcgca	tgaatagaga	agagattctg	240
gcattta	atta	agtcttgcca	acatgaatgt	ggtggaataa	gtgctagtat	cggacatgat	300
cctcato	cttt	tatacactct	tagtgctgtc	cagattctta	cgctgtatga	cagtattaat	360
gttattg	gacg	taaataaagt	tgtggaatat	gttaaaggtc	tacagaaaga	agatggttct	420
tttgctg	ggag	atatttgggg	agaaattgac	acaagattct	ctttttgtgc	ggtggcaact	480
ttggctt	tgt	tggggaagct	tgatgctatt	aatgtggaaa	aggcaatcga	atttgtttta	540
tcctgta	atga	actttgacgg	tggatttggt	tgcagaccag	gttctgaatc	ccatgctggg	600
cagatct	catt	gttgcacagg [.]	atttctggct	attacaagtc	agttgcatca	agtaaattct	660
gatttad	cttg	gctggtggct	ttgtgaacga	caattaccct	caggcgggct	caatggaagg	720
ccggaga	aagt	taccagatgt	atgctactca	tggtgggtcc	tggcttccct	aaagataatt	780
ggaagad	cttc	attggattga	tagagagaaa	ctgcgtaatt	tcattttagc	atgtcaagat	840
gaagaaa	acgg	ggggatttgc	agacaggcca	ggagatatgg	tggatccttt	tcatacctta	900
tttggaa	attg	ctggattgtc	acttttggga	gaagaacaga	ttaaacctgt	taatcctgtc	960
ttttgca	atgc	ctgaagaagt	gcttcagaga	gtgaatgttc	agcctgagct	agtgagctag	1020
attcatt	tgaa	ttgaaagttg	catagtatag	ttttgccatt	ttaacatttc	tgtatttgaa	1080
gtgctta	atcg	aatctaaaag	tgactactgt	taatattttg	tatattgtgt	taaattaatt	1140
ttaataa	aatt	atataattat	gcatattgta	aaataaaaa			1179
<210> <211> <212> <213>		1 o sapiens					
<400> tctccgt	45 ccag	ccgcattgcc	cgctcggcgt	ccggcccccg	acccgtgctc	gtccgcccgc	, 60
ccgcccg	gccc	gcccgcgcca	tgaacgccaa	ggtcgtggtc	gtgctggtcc	tcgtgctgac	120
cgcgcto	ctgc	ctcagcgacg	ggaagcccgt	cagcctgagc	tacagatgcc	catgccgatt	180

cttcgaaagc catgttgcca gagccaacgt caagcatctc aaaattctca acactccaaa 240 ctgtgccctt cagattgtag cccggctgaa gaacaacaac agacaagtgt qcattqaccc 300 gaagctaaag tggattcagg agtacctgga gaaagcttta aacaagaggt tcaagatgtg 360 agagggtcag acgcctgagg aacccttaca gtaggagccc agctctgaaa ccagtgttag 420 ggaagggcct gccacagcct cccctgccag ggcagggccc caggcattgc caagggcttt 480 gttttgcaca ctttgccata ttttcaccat ttgattatgt agcaaaatac atgacattta 540 tttttcattt agtttgatta ttcagtgtca ctggcgacac gtagcagctt agactaaggc 600 cattattgta cttgccttat tagagtgtct ttccacggag ccactcctct gactcagggc 660 tcctgggttt tgtattctct gagctgtgca ggtggggaga ctgggctgag ggagcctggc 720 cccatggtca gccctagggt ggagagccac caagagggac gcctgggggt gccaggacca 780 840 catgggaggc tcacccctt ctccatccac atgggagccg ggtctgcctc ttctgggagg 900 gcagcagggc taccctgagc tgaggcagca gtgtgaggcc agggcagagt gagacccagc 960 cctcatcccg agcacctcca catcctccac gttctgctca tcattctctg tctcatccat 1020 catcatgtgt gtccacgact gtctccatgg ccccgcaaaa ggactctcag gaccaaagct 1080 ttcatgtaaa ctgtgcacca agcaggaaat gaaaatgtct tgtgttacct gaaaacactg 1140 tgcacatctg tgtcttgtgt ggaatattgt ccattgtcca atcctatgtt tttgttcaaa 1200 gccagcgtcc tcctctgtga ccaatgtctt gatgcatgca ctgttccccc tgtgcagccg 1260 ctgagcgagg agatgctcct tgggcccttt gagtgcagtc ctgatcagag ccgtggtcct 1320 ttggggtgaa ctaccttggt tcccccactg atcacaaaaa catggtgggt ccatgggcag 1380 agcccaaggg aattcggtgt gcaccagggt tgaccccaga ggattgctgc cccatcagtg 1440 ctccctcaca tgtcagtacc ttcaaactag ggccaagccc agcactgctt gaggaaaaca 1500 agcattcaca acttgttttt ggtttttaaa acccagtcca caaaataacc aatcctggac 1560 atgaagattc tttcccaatt cacatctaac ctcatcttct tcaccatttg gcaatgccat 1620 catctcctgc cttcctcctg ggccctctct gctctgcgtg tcacctgtgc ttcgggccct 1680 tcccacagga catttctcta agagaacaat gtgctatgtg aagagtaagt caacctgcct 1740 gacatttgga gtgttcccct cccactgagg gcagtcgata gagctgtatt aagccactta 1800 1860 cttacgaata cttttgccct ttgattaaag actccagtta aaaaaaattt taatgaagaa 1920 agtggaaaac aaggaagtca aagcaaggaa actatgtaac atgtaggaag taggaagtaa 1980

attatagtga	tgtaatcttg	aattgtaact	gttcgtgaat	ttaataatct	gtagggtaat	2040
tagtaacatg	tgttaagtat	tttcataagt	atttcaaatt	ggagcttcat	ggcagaaggc	2100
aaacccatca	acaaaaattg	tcccttaaac	aaaaattaaa	atcctcaatc	cagctatgtt	2160
atattgaaaa	aatagagcct	gagggatctt	tactagttat	aaagatacag	aactctttca	2220
aaaccttttg	aaattaacct	ctcactatac	cagtataatt	gagttttcag	tggggcagtc	2280
attatccagg	taatccaaga	tattttaaaa	tctgtcacgt	agaacttgga	tgtacctgcc	2340
cccaatccat	gaaccaagac	cattgaattc	ttggttgagg	aaacaaacat	gaccctaaat	2400
cttgactaca	gtcaggaaag	gaatcatttc	tatttctcct	ccatgggaga	aaatagataa	2460
gagtagaaac	tgcagggaaa	attatttgca	taacaattcc	tctactaaca	atcagctcct	2520
tcctggagac	tgcccagcta	aagcaatatg	catttaaata	cagtetteca	tttgcaaggg	2580
aaaagtctct	tgtaatccga	atctcttttt	gctttcgaac	tgctagtcaa	gtgcgtccac	2640
gagctgttta	ctagggatcc	ctcatctgtc	cctccgggac	ctggtgctgc	ctctacctga	2700
cactcccttg	ggctccctgt	aacctcttca	gaggccctcg	ctgccagctc	tgtatcagga	2760
cccagaggaa	ggggccagag	gctcgttgac	tggcţgtgtg	ttgggattga	gtctgtgcca	2820
cgtgtatgtg	ctgtggtgtg	tececetetg	tccaggcact	gagataccag	cgaggaggct	2880
ccagagggca	ctctgcttgt	tattagagat	tacctcctga	gaaaaaagct	tccgcttgga	2940
gcagaggggc	tgaatagcag	aaggttgcac	ctcccccaac	cttagatgtt	ctaagtcttt	3000
ccattggatc	tcattggacc	cttccatggt	gtgatcgtct	gactggtgtt	atcaccgtgg	3060
gctccctgac	tgggagttga	tegeetttee	caggtgctac ,	acccttttcc	agctggatga	3120
gaatttgagt	gctctgatcc	ctctacagag	cttccctgac	tcattctgaa	ggagccccat	3180
	tattccctag					3240
gtagaaaatt	tgttattttg	caacctcgct	ggactctcag	tctctgagca	gtgaatgatt	3300
cagtgttaaa	tgtgatgaat	actgtatttt	gtattgtttc	aagtgcatct	cccagataat	3360
gtgaaaatgg	tccaggagaa	ggccaattcc	tatacgcagc	gtgctttaaa	aaataaataa	3420
gaaacaactc	tttgagaaac	aacaatttct	actttgaagt	cataccaatg	aaaaaatgta	3480
tatgcactta	taattttcct	aataaagttc	tgtactcaaa	tgta		3524

<210> 46 <211> 2038 <212> DNA <213> Homo sapiens

<400> 46 ·

WO 02/09573

gcaggcccgt	tggaagtggt	tgtgacaacc	ccagcáatgt	ggagaagcct	ggggcttgcc	60
ctggctctct	gtatactaca	atcgggagga	acagagagcc	aggaccaaag	ctccttatgt	120
aagcaacccc	cagcctggag	cataagagat	caagatccaa	tgctaaactc	caatggttca	180
gtgactgtgg	ttgctcttct	tcaagccagc	tgatacctgt	gcatcatcga	ggcatctaaa	240
ttagaagacc	tgcgagtaaa	actgaagaaa	gaaggatatt	ctaatatttc	ttatattgtt	300
gttaatcatc	aaggaatctc	ttctcgatta	aaatacacac	atcttaagaa	taaggtttca	360
gagcatattc	ctgtttatca	acaagaagaa	aaccaaacag	atgtctggac	tcttttaaat	420
ggaagcaaag	atgacttcct	catatatgat	agatgtggcc	gtcttgtata	tcatcttggt	480
ttgccttttt	ccttcctaac	tttcccatat	gtagaagaag	ccattaagat	tgcttactgt	540
gaaaagaaat	gtggaaactg	ctctctcacg	actctcaaag	atgaagactt	ttgtaaacgt	600
gtatctttgg	ctactgtgga	taaaacagtt	gaaactccat	cgcctcatta	ccatcatgag	660
catcatcaca	atcatggaca	tcagcacctt	ggcagcagtg	agctttcaga	gaatcagcaa	720
ccaggagcac	caaatgctcc	tactcatcct	gctcctccag	gccttcatca	ccaccataag	780
cacaagggtc	agcataggca	gggtcaccca	gagaaccgag	atatgccagc	aagtgaagat	840
ttacaagatt	tacaaaagaa	gctctgtcga	aagagatgta	taaatcaatt	actctgtaaa	900
ttgcccacag	attcagagtt	ggctcctagg	agctgatgct	gccattgtcg	acatctgata	960
tttgaaaaaa	cagggtctgc	aatcacctga	cagtgtaaag	aaaacctccc	atctttatgt	1020
agctgacagg	gacttcgggc	agaggagaac	ataactgaat	cttgtcagtg	acgtttgcct	1080
ccagctgcct	gacaaataag	tcagcagctt	atacccacag	aagccagtgc	cagttgacgc	1140
tgaaagaatc	aggcaaaaaa	gtgagaatga	ccttcaaact	aaatatttaa	aataggacat	1200
actccccaat	ttagtctaga	cacaatttca	tttccagcat	ttttataaac	taccaaatta	1260
gtgaaccaaa	aatagaaatt	agatttgtgc	aaacatggag	aaatctactg	aattggcttc	1320
cagattttaa	attttatgtc	atagaaatat	tgactcaaac	catattttt	atgatggagc	1380
aactgaaagg	tgattgcagc	ttttggttaa	tatgtctttt	tttttctttt	tccagtgttc	1440
tatttgcttt	aatgagaata	gaaacgtaaa	ctatgaccta	ggggttttct	gttggataat	1500
tagcagttta	gaatggagga	agaacaacaa	agacatgctt	tccattttt	cctttactta	1560
tctctcaaaa	caatattact	ttgtcttttc	aatcttctac	ttttaactaa	taaaataagt	1620
ggattttgta	ttttaagatc	cagaaatact	taacacgtga	atattttgct	aaaaaagcat	1680
atataactat	tttaaatatc	catttatctt	ttgtatatct	aagactcatc	ctgattttta	1740
ctatcacaca	tgaataaagg	cctttgtatc	tttctttctc	taatgttgta	tcatactctt	1800

-85-

ctaaaacttg agtggctgtc ttaaaaagata taaggggaaa gataatattg tctgtctcta 1860 tattgcttag taagtatttc catagtcaat gatggtttaa taggtaaacc aaaccctata 1920 aacctgacct cetttatggt taatactatt aagcaagaat gcagtacaga attggataca 1980 2038 <210> 47 <211> 2588 <212> DNA <213> Homo sapiens <400> 47 gaattegeeg gteeageete etetgggage gggeagttgg egaeeetgea etgaeeegeg 60 teceteegte eegageeege gegeeeteag agggtgeeeg gacagaetga agecatggeg 120 attetttttg ctgttgttgc cagggggacc actatecttg ccaaacatgc ttggtgtgga 180 ggaaacttcc tggaggtgac agagcagatt ctggctaaga taccttctga aaataacaaa 240 ctaacgtact cacatggcaa ttatttgttt cattacatct gccaagacag gattgtatat 300 ctttgtatca ctgatgatga ttttgaacgt tcccgagcct ttaattttct gaatgagata 360 aagaagaggt teeagactae ttaeggttea agageacaga eageaettee atatgeeatg 420 aatagcgagt teteaagtgt ettagetgea cagetgaage ateaetetga gaataaggge 480 ctagacaaag tgatggagac tcaagcccaa gtggatgaac tgaaaggaat catggtcaga 540 aacatagatc tggtagctca gcgaggagaa agattggaat tattgattga caaaacagaa 600 aatcttgtgg attcttctgt caccttcaaa actaccagca gaaatcttgc tcgagccatg 660 tgtatgaaga acctcaagct cactattatc atcatcatcg tatcaattgt gttcatctat 720 atcattgttt cacctctctg tggtggattt acatggccaa gctgtgtgaa gaaataggaa 780 agaagaagtt accattaacc aaggatatga gagaacaagg agttaaaagc aatccatqtq 840 acteaageet tteacataet gaeagatggt atetgeeagt etetteaace etetteteae 900 tttttaaaat cttgttccat gcctccaggt ttatctttgt cttatctacc agtttattcc 960 tgtgaacttc agattgaacc attcattgca gcagtagcct taaaaaggct tttgtttatt 1020 tctttggttt gttaactagt gtcatctatt tagagaaaca tttttgtttt taattgctca 1080 aagetgtege egetagtett atgagetate taetaaaaet atggagaaae tttgtatgtg 1140 cacacaaaag tattcaagag acagtattgc taacatctca tcttaatgtc ttttgttatt 1200 gagaagtttt aggtgcttca aaacaatata aatggataat agttgttatt tggggaattg 1260 taatgatgtt ggtgctgctt ccttctaaga gctcagacaa gtaaagtatg aaacattctt 1320 atttcagtta gatggggaac attttgctag cccattagaa gcacacagaa ttatccttgt 1380

WO 02/09573

cctcctaata	ttgactttca	ggaataaagt	tcagtgtgct	gatcattcac	aatacagtgg	1440
atagcttgat	atcttctgtt	ttcccattgc	agttgatttg	agaagatgaa	ggtttaaata	1500
ttgttgaaag	ttgcagtttt	ttaaatgtgt	tcctttttct	tctgtgaata	tttagggcaa	1560
tcgtgtcgct	aatagaatat	gtagtagagg	gggtggggag	gtaaattcct	ctgacttgcc	1620
aaagaaaaag	aagggaacca	cagtggatat	gctagcattt	tagctgtgca	aagggaggta	1680
gtgtgggaaa	agtgtttcca	ttctgggaaa	agcccaaacc	gaatacggtc	agcagtcaac	1740
tccagggttt	gggcttgatt	cctgttgaat	aatagttttg	agcattcttt	gtggttaaat	1800
aaattcttaa	atctgcctag	ttttgatgaa	ttcttttgtg	aaacttgaaa	gagaatagac	1860
agtatgacat	atagaattaa	tacaaaacag	tttaacaacc	atttaactgc	agtgtaagaa	1920
aattggactg	taatcatatc	gctactggca	tctgttatct	agtatgcatt	tctggtgtgt	1980
atctgaaagg	aagacatttt	ctaccctaga	tccaattgca	tttatttatc	aataagtgcc	2040
attaaattga	aattatatta	cattttacac	tttctcaatg	aatgaacaaa	ttagtctgta	2100
gaatctagcc	acctgtttag	cctagtcatg	tgccttgaac	atatatgtgt	cccataatct	2160
ggctcatggt	acctgttctt	ctatccaaac	ctttcaattc	atgctacctg	attcatttat	2220
ttgacataga	tcttaggccc	acttgaactc	ttttcttgtt	tatctagcat	agcacaaacg	2280
tttttccagt	cttctttatc	aacactaatg	cctcttaatt	gcatcagtat	ttcctattgg	2340
aaaatacatc	tgttccagaa	aaacatttgg	cattcctgaa	taatttccaa	atgtttttaa	2400
tccaaagaaa	aaggtttaaa	gcttatttcc	ctttcttata	cacacctgaa	taaaattgat	2460
gtgcatgttt	tagggatcaa	ttacctaact	gttccttggt	ctatttatgt	ataagaatgc	2520
tttttaaagc	acatgtctca	ttttaaatga	cgcacaaact	gaagatgtta	ataaaattta	2580
aggaattc						2588
<210> 48						

<210> 48 <211> 7888

<212> DNA

<213> Homo sapiens

<400> 48

tccgggtatg	gatgtcaatc	ttttgtctac	aatgtgaata	catttatcct	tcggggacca	60
tcaagacttt	caggaaaggc	cccgcctgtc	tctgcgcggc	cactttgctg	ggacaaaggt	120
caactgaaga	agtgggcagg	cccgaggcag	gagagatgct	gaggagtcca	tgtgcagggg	180
agggaaaggg	agaggcagtc	agggagagga	ggaggaggta	ccgccagaag	gggatcctcc	240
cqctccqaaa	accagacacc	gggtcttgcc	ctgtggtcca	ggcaggagtg	cagtggtgca	300

WO 02/09573

acctcagctc	actgcagcct	tgacctcccc	gggctcaagc	gatcctccgg	ccacagcact	360
tggctgttca	gcggctggag	gagcagggcc	ccaggtcctc	cccaccctca	cctgctgctc	420
ccaggtcgtg	gccgtcttgc	tcttccaggt	ccttctctag	ggatgcaata	ttcacattgc	480
taagatgcag	gtctaacgca	gaacctgtca	acagagcccc	ccatcatcca	cagcccaccc	540
agcgctgcag	agctcaggaa	gcctagctga	ggaggacgac	cgtcccacct	gggcttagag	600
tgagaccaag	ggcagaaggc	gtgggagttg	ctggggcagc	cagggaagga	cacccccagc	660
ccgtcctcgc	agccccccac	aggcagtggg	aggcttggct	gttcctccgg	caaaacgggc	720
atgctcagtg	ggccgggccg	gcaggtttgc	gtggccgctg	agttgccggc	gccggctgag	780
ccagcggacg	ccgcgttcct	tggcggccgc	cggttcccgg	gaagttacgt	ggcgaagccg	840
gcttccgagg	agacgccggg	aggccacggg	tgctgctgac	gggcgggcga	ccgggcgagg	900
ccgacgtggc	cgggctgcga	aagctgcggg	aggccgagtg	ggtgacegeg	ctcggaggga	960
ggtgccggtc	gggcgcgccc	cgtggagaag	acccgggcgg	ggcgggcgct	tcccggactt	1020
ttgtccgagt	tgaattccct	ccccctgggc	cgggcccttc	cgtccgcccc	cgcccgtgcc	1080
ccgctcgctc	tcgggagatg	tttatttggg	ctgtggcgtg	aggagcgggc	gggccagcgc	1140
cgcggagttt	cgggtccgag	gagcctcgcg	cggcgctgga	gagagacaag	atgtccgcca	1200
gagctgcggc	cgccaagagc	acagcaatgg	aggaaacagc	tatatgggaa	caacatacag	1260
tgacgcttca	cagggctcct	ggatttggat	ttggaattgc	aatatctggt	ggacgagata	1320
atcctcattt	tcagagtggg	gaaacgtcaa	tagtgatttc	agatgtgctg	aaaggaggac	1380
cagctgaagg	acagetacag	gaaaatgacc	gagttgcaat	ggttaacgga	gtttcaatgg	1440
ataatgttga	acatgctttt	gctgttcagc	aactaaggaa	aagtgggaaa	aatgcaaaaa	1500
ttacaattag	aaggaagaag	aaagttcaaa	taccagtaag	tcgtcctgat	cctgaaccag	1560
tatctgataa	tgaagaagat	agttatgatg	aggaaataca	tgatccaaga	agtggccgga	1620
gtggtgtggt	taacagaagg	agtgagaaga	tttggccgag	ggatagaagt	gcaagtagag	1680
agaggagctt	gtccccgcgg	tcagacaggc	ggtcagtggc	ttccagccag	cctgctaaac	1740
ctactaaagt	cacactggtg	aaatcccgga	aaaatgaaga	atatggtctt	cgattggcaa	1800
gccatatatt	tgttaaggaa	atttcacaag	atagtttggc	agcaagagat	ggcaatattc	1860
aagaaggtga	tgttgtattg	aagataaatg	gtactgtgac	agaaaatatg	tcattgacag	1920
atgcaaagac	attgatagaa	aggtctaaag	gcaaattaaa	aatggtagtt	caaagagatg	1980
aacgggctac	gctattgaat	gtccctgatc	tttctgacag	catccactct	gctaatgcct	2040
ctgagagaga	cgacatttca	gaaattcagt	cactggcatc	agatcattct	ggtcgatcac	2100

acgataggcc teceegeege ageeggteac gateteetga ecageggtea gageettetg 2160 atcattccag gcactcgccg cagcagccaa gcaatggcag tctccggagt agagatgaag 2220 agagaatttc taaacctggg gctgtctcaa ctcctgtaaa gcatgctgat gatcacacac 2280 ctaaaacagt ggaagaagtt acagttgaaa gaaatgagaa acaaacacct tctcttccag 2340 aaccaaagcc tgtgtatgcc caagttggca accagatgtg gatttacctg tcagtccatc 2400 tgatggtgtc ctacctaatt caactcatga agatgggatt tcttcggccc agcatgaaat 2460 tggtaaaatt cagaaaagga gatagtgtgg gtttgcggct ggctggtgga aatgatgttg 2520 gaatatttgt agctggcgtt ctagaagata gccctgcagc caaggaaggc ttagaggaag 2580 gtgatcaaat tctcagggta aacaacgtag attttacaaa tatcataaga gaagaagccg 2640 teetttteet gettgaeete eetaaaggag aagaagtgae catattgget cagaagaaga 2700 aggatgttta tegtegeatt gtagaateag atgtaggaga ttetttetat attagaacee 2760 attttgaata tgaaaaggaa tctccctatg gacttagttt taacaaagga gaggtgttcc 2820 gtgctgtgga taccttgtac aatggaaaac tgggctcttg gcttgctatt cgaattggta 2880 aaaatcataa ggaggtagaa cgaggcatca tccctaataa gaacagagct gagcagctag 2940 ccagtgtaca gtatacactt ccaaaaacag caggcggaga ccgtgctgac ttctggagat 3000 tcagaggtct tcgcagctcc aagagaaatc ttcgaaaaag cagagaggat ttgtccgctc 3060 agcctgttca aacaaagttt ccagcttatg aaagagtggt tcttcgagaa gctggatttc 3120 tgaggcctgt aaccattttt ggaccaatag ctgatgttgc cagagaaaag ctggcaagag 3180 aagaaccaga tatttatcaa attgcaaaga gtgaaccacg agacgctgga actgaccaac 3240 gtagctctgg ctatattcgc ctgcatacaa taaagcaaat catagatcaa gacaaacatg 3300 ctttattaga tgtaacacca aatgcagttg atcgtcttaa ctatgcccag tggtatccaa 3360 ttgttgtatt tcttaaccct gattctaagc aaggagtaaa aacaatgaga atgaggttat 3420 gtccagaatc tcggaaaagt gccaggaagt tatacgagcg atctcataaa cttgctaaaa 3480 ataatcacca tetttttaca actacaatta aettaaatte aatgaatgat ggttggtatg 3540 gtgcgctgaa agaagcagtt caacaacagc aaaaccagct ggtatgggtt tccgagggaa 3600 aggcggatgg tgctacaagt gatgaccttg atttgcatga tgatcgtctg tcctacctgt 3660 cagctccagg tagtgaatac tcaatgtata gcacggacag tagacacact tctgactatg 3720 aagacacaga cacagaaggc ggggcctaca ctgatcaaga actagatgaa actcttaatg 3780 atgaggttgg gactccaccg gagtctgcca ttacacggtc ctctgagcct gtaagagagg 3840 actectetgg aatgeateat gaaaaceaaa catatectee ttacteacea caagegeage 3900

			4			
cacaaccaat	tcatagaata	gactcccctg	gatttaagcc	agcctctcaa	cagaaagcag	3960
aagcttcatc	tccagtccct	tacctttcgc	ctgaaacaaa	cccagcatca	tcaacctctg	4020
ctgttaatca	taatgtaaat	ttaactaatg	tcagactgga	ggagcccacc	ccagctcctt	4080
ccacctctta	ctcaccacaa	gctgattctt	taagaacacc	aagtactgag	gcagctcaca	4140
taatgctaag	agatcaagaa	ccatcattgt	cgtcgcatgt	agatccaaca	aaggtgtata	4200
gaaaggatcc	atatcccgag	gaaatgatga	ggcagaacca	tgttttgaaa	cagccagccg	4260
ttagtcaccc	agggcacagg	ccagacaaag	agcctaatct	gacctatgaa	ccccaactcc	4320
catacgtaga	gaaacaagcc	agcagagacc	tcgagcagcc	cacatacaga	tacgagtcct	4380
caagctatac	ggaccagttt	tctcgaaact	atgaacatcg	tctgcgatac	gaagategeg	4440
tccccatgta	tgaagaacag	tggtcatatt	atgatgacaa	acagccctac	ccatctcggc	4500
caccttttga	taatcagcac	tctcaagacc	ttgactccag	acagcatccc	gaagagtcct	4560
cagaacgagg	gtactttcca	cgttttgaag	agccagcccc	tctgtcttac	gacagcagac	4620
cacgttacga	acaggcacct	agagcatccg	ccctgcggca	cgaagagcag	ccagctcctg	4680
ggtatgacac	acatggtaga	ctcagaccgg	aagcccagcc	ccacccttca	gcagggccca	4740
agcctgcaga	gtccaagcag	tattttgagc	aatattcacg	cagttacgag	caagtaccac	4800
cccaaggatt	tacctctaga	gcaggtcatt	ttgagcctct	ccatggtgct	gcagctgtcc	4860
ctccgctgat	accttcatct	cagcataagc	cagaagctct	gccttcaaac	accaaaccac	4920
tgcctccacc	cccaactcaa	accgaagaag	aggaagatcc	agcaatgaag	ccacagtctg	4980
tactcaccag	agttaagatg	tttgaaaaca	aaagatctgc	atccttagag	accaagaagg	5040
atgtaaatga	cactggcagt	tttaagcctc	cagaagtagc	atctaaacct	tcaggtgctc	5100
ccatcattgg	tcccaaaccc	acttctcaga	atcaattcag	tgaacatgac	aaaactctgt	5160
acaggatece	agaacctcaa	aaacctcaac	tgaagccacc	tgaagatatt	gttcggtcca	5220
atcattatga	ccctgaagaa	gatgaagaat	attatcgaaa	acagctgtca	tactttgacc	5280
gaagaagttt	tgagaataag	cctcctgcac	acattgctgc	cagccatctc	tccgagcctg	5340
caaagccagc	tcattctcag	aatcaatcaa	atttttctag	ttattcttca	aagggaaagc	5400
ctcctgaagc	tgatggtgtg	gatagatcat	ttggcgagaa	acgctatgaa	cccatccagg	5460
ccactccccc	tcctcctcca	ttgccctcgc	agtatgccca	gccatctcag	cctgtcacca	5520
gcgcgtctct	ccacatacat	tctaagggag	cacatggtga	aggtaattca	gtgtcattgg	5580
attttcagaa	ttccttagtg	tccaaaccag	acccacctcc	atctcagaat	aagccagcaa	5640
ctttcagacc	accaaaccga	gaagatactg	ctcaggcagc	tttctatccc	cagaaaagtt	5700

-90,-

5760 ttccagataa agccccagtt aatggaactg aacagactca gaaaacagtc actccagcat acaatcgatt cacaccaaaa ccatatacaa gttctgcccg accatttgaa cgcaagtttg 5820 aaagteetaa atteaateae aatettetge caagtgaaae tgeacataaa eetgaettgt 5880 cttcaaaaac tcccacttct ccaaaaactc ttgtgaaatc gcacagtttg gcacagcctc 5940 ctgagtttga cagtggagtt gaaactttct ctatccatgc agagaagcct aaatatcaaa 6000 taaataatat cagcacagtg cctaaagcta ttcctgtgag tccttcagct gtggaagagg 6060 atgaagatga agatggtcat actgtggtgg ccacagcccg aggcatattt aacagcaatg 6120 ggggcgtgct gagttccata gaaactggtg ttagtataat tatccctcaa ggagccattc 6180 ccgaaggagt tgagcaggaa atctatttca aggtctgccg ggacaacagc atccttccac 6240 ctttagataa agagaaaggt gaaacactgc tgagtccttt ggtgatgtgt ggtccccatg 6300 gcetcaagtt cetgaageet gtggagetge gettaceaca etgtgateet aaaacetgge 6360 aaaacaagtg tcttcccgga gatccaaatt atctcgttgg agcaaactgt gtttctgtcc 6420 ttattgacca cttttaactc ttgaaatata ggaacttaaa taatgtgaaa ctggattaaa 6480 cttaatctaa atggaaccac tctatcaagt attatacctt ttttagagtt gatactacag 6540 tttgttagta tgaggcattt gtttgaactg ataaagatga gtgagcatgc ccctqaacca 6600 tggtcggaaa acatgctaca cactgcatgt ttgtgattga cgggactgtt ggtattggct 6660 agaggttcaa agatattttg ctttgtgatt tttgtaattt ttttatcgtc actgcttaac 6720 ttcacatatt gatttccgtt aaaataccag ccagtaaatg ggggtgcatt tgaggtctgt 6780 tetttecaaa gtacaetgtt teaaaettta etatggeeet ggeetageat aegtacaeat 6840 tttattttat tatgcatgaa gtaatatgca cacatttttt aaatgcacct ggaatatata 6900 accagtgttg tggatttaac agaaatgtac agcaaggaga tttacaactg ggggagggtg 6960 aagtgaagac aatgacttac tgtacatgaa aacacatttt tcttagggaa ggatacaaaa 7020 gcatgtgaga ctggttccat ggcctcttca gatctctaac ttcaccatat taccacagac 7080 atactaacca gcagaaatgc cttaccctca tgttcttaat tcttagctca ttctccttgt 7140 gttactaagt tittatgget titgtgeatt atetagatae tgtateatga caaagaetga 7200 gtacgttgtg catttggtgg tttcagaaat gtgttatcac ccagaagaaa atagtggtgt 7260 7320 cagtggtggt tttctgttct ttctggctat gcatttgaaa attttgatgt tttaaggatg 7380 cttgtacata atgcgtgcat accacttttg ttcttggttt gtaaattaac ttttataaac 7440 tttacctttt ttatacataa acaagaccac gtttctaaag gctacctttg tattctctc 7500

-91-

WO 02/09573 PCT/US01/24104

tgtacctctt gagccttgaa ctttgacctc tgcagcaata aagcagcgtt tctatgacac 7560 atgcaaggtc attttttta agaaaaagga tgcacagagt tgttacattt ttaagtgctg 7620 catttaaaag atacagttac tcagaattct ctagtttgat taaattcttg caaagtatcc 7680 ctactgtaat ttgtgataca atgctgtgcc ctaaagtgta tttttttact aatagacaat 7740 ttattatgac acatcagcac gatttctgtt taaataatac accactacat tctgttaatc 7800 attaggtgtg actgaatttc ttttgccgtt attaaaaatc tcaaatttct aaatctccaa 7860 aataaaactt tttaaaataa aaaaaaat 7888 <210> 49 <211> 5503 <212> DNA <213> Homo sapiens <220> <221> Unsure (2083)..(2083) <222> <223> n = a, c, g or t/u <400> 49 ggtgcgctca ggactggaag caactctcag ttcatcaatt tcatgggcct acgtatctgc 60 tetggecaeg geetggeete catececaet gtggeattaa tgeagaacaa attgagaeat 120 atcctctata taattagttc cagaatttaa aaagatttac ggtataataa tagaggcagt 180 gccgcggaat cctttcactg aggactctcg gggagctcgg ggaccatctc gcggtggcat 240 cagaacagac gagtaacccc agcggctcca ggcactgcga actggggggag agggggaaat 300 tttgcaccgc attcggcagt acctaacggt tccgggctcc cagatagggt cagcgaggag 360 agttaggaca gtaagtgggg actggttaaa aaaaatcgac ttaattttga aatgatcaga 420 agaagctggg agtagttatc acaaagcccc tcccttgccc cccccttttt ttaattqaaq 480 gaatgacgtt gaaattttca ccgccagcgc ggggctggga accatcctaa acacttgccc 540 tgcagccccg agtgggcaga ttccgaagag ttggagtcgg cggggagggg aggaacagct 600 gttgggetgt ettgegegtg gggetegggg egegggeeee ggggagagge getagtegaa 660 agcttgttcc tctcccgcga caggcagcag cgaggtcgag ccactcttta ttacggcctg 720 cgggccccgc gcgcagtgtg gctgtccccg cccttgaccg accgcagcgc tttggggtgt 780 ttattcagtt gtccgcggcc gctgggtgac tcccggaggc ggcccaggcg tgcgcactgg 840 tecetggggt tgeggetgta geageeeage teegegetet gteagatgea gtggaeageg 900 ccggggtgaa agtaagggtt gagaaateet caetgeeetg etectaeeca geetegattt 960 tttcatattg caataattat gcaccttcga ggccgggatg cctgcgcttt gccagtgtat

1020

caacgccaca	tggttttcca	ggggctgtcc	tcgcctctgc	atcccattag	ctctgaagag	1080
gtagaggggt	ggtgggtaaa	acctccaact	ggacgttgag	agacccgggt	ttcagctcgg	1140
cgttgccact	aacttgtttc	ctgtccttaa	acagtagtag	taacaaaaac	tgtaaagttg	1200
attgagtcaa	aggcccacac	tgctctccta	tctaatcctc	agaacaactc	tatgaggtgg	1260
gcgctagtat	cccattatcc	cgtttgacca	gtaaggaaac	tgaggctcag	agagactgcg	1320
gaactcgtct	agggtcacac	agctgttggt	tacctggcag	agctgaggtt	ccattctggg	1380
gccaccaacc	ccttgctctt	tacgtgcgct	ccatagactg	cctctccttc	ggctgtctgg	1440
gcctcagttt	ccttctctgt	aaaacgagaa	gtttaatctg	cagctttctt	tgccaatcgg	1500
tggttcagac	caggaacctc	tgctacagat	ctcggcgctg	acaggggtaa	gaaggtgggt	1560
gaaagaaggg	ggcgcccagt	tttccacagc	ctgcttttct	ctgggacctc	gcgaagggcg	1620
ggcctcgcga	gctaaaggag	gtacaggaga	gcgcctatcg	tccgcggcgg	gtgaaggtgc	1680
tacctgcctt	cgtgctaggc	tgtgagtcct	ggtgcttagc	tcagggcgcc	aaggccagtg	1740
tagctggcat	gtcccccttg	gaaaacctca	ggtctcccgc	agagaacgtt	acccacaaca	1800
aagaagagga	cagagaggca	tggagcgccc	tgcgactgca	ggagtacgtc	agttccccag	1860
cgctggctta	gtgtcgcctg	ggcttccggg	catgtggatc	cgttggggtc	gtacggagac	1920
ttcctgtcgg	gtccctgggg	tecteegact	geggeteete	agcttagcac	tttcttcttg	1980
gccccgcagg	ctgcagggaa	ctcctcccac	ctctttagtc	ggagaagtcc	aagtcgggcg	2040
agggggcacc	ccggggttcg	caccggtgct	attacaataa	ccncccccac	aaggattctg	2100
agaaaataaa	tggcagagga	gagaggagtt	ctacatttgc	ttggatataa	tttcctccta	2160
tccaccccta	catccctcac	cccggnncaa	aaacttattt	ttgaaaaatg	ttggcagaga	2220
tttacgtgtc	tttgccttac	ctgggtttca	caaacacaac	gactcacatt	caagccagcc	2280
tcccttcaga	taacctcctc	tcccccgct	aaaagtgcca	aggatggtaa	aagaagaaac	2340
aatctcaatc	ttttcgtttg	gaaatgaaag	tccccggctt	ttcataaagg	gctcctcgcc	2400
cctcacagtt	gagtcctagt	taagaaaaac	gacttccaag	tagaaataat	aggcggggag	2460
aaggaaggga	gatacaggga	tctggggngt	tcttagggca	actggcagtg	aattttgtct	2520
cgagagtcct	ttctccactc	aaaaaaccaa	acgcgcgagc	cccgcgaaag	gtttagggat	2580
agatcgtgtg	ggagaggact	gagcagagag	cgtgggggca	gtgtcttgta	gaatctttct	2640
tttcttaata	ataattttaa	aagcttctga	gtggagacga	cgcaaagtca	agcagcaaag	2700
gtggcctggg	aggcaagcgg	agggctcaag	tgccgcatct	ttaccctcag	ggtctcctgc	2760
gcctacggga	tgcgcattcc	caagaagtgc	gcccttcgag	taagtcctgg	gcccgcacac	2820

acttcgggtc	cgcagccaga	atttaatggc	gacaacgttt	atgcaatgca	agctaaaaac	2880
caaagcgtaa	aaaattacta	tgtcatttat	tgaaacgcca	ttctttgtca	aactgcaact	2940
actttgcttc	acataagttt	ggctggaaag	cttgcagccc	cagcccgggc	cagccaggta	3000
caggaggccg	gactgcaacc	ggttgcttcc	ctcccgtcgc	gcctggccgt	cccacgctgc	3060
gccgtcgctg	ctgcctcctg	gcgcccctgg	gattttatac	gcacctctga	aacacgctcc	3120
gctccggccc	ccggttcttc	tccttgccta	ggggttgttt	cccaatagat	actgactcct	3180
ttagaagatc	caaaaaccaa	accaaaacac	cccctacccg	ccccaaacac	ctgctctggg	3240
acacaaaaac	tgccaaacag	agactagacg	aagggagtca	gatttagcga	agctcttcga	3300
gctcccaaag	attcgaacac	taactcgcgc	ccgtgggccg	atggaggttc	tccctactcc	3360
actccttggt	ccccttaact	ggcttncgcc	tcctggtcaa	tcactgagca	accagaatgg	3420
tatcctcgac	cagggccaca	ggcagtgctc	ggcggagtgg	ctccaggagt	tacccgctcc	3480
ctgccgggct	tcgtatccaa	accetecect	tcacccctcc	tccccaaact	gggcgccagg	3540
atgctccggc	cggaatatac	gcaggctttg	ggcgtttgcc	caagggtttt	cttccctcct	3600
aaactagccg	ctgttttccc	ggcttaaccg	tagaagaatt	agatattcct	cactggaaag	3660
ggaaactaag	tgctgctgac	tccaatttta	ggtaggcggc	aaccgccttc	cgcctggngn	3720
aaacctcacc	aagtaaacaa	ctactageeg	atcgaaatac	gcccggctta	taactggtgc	3780
aactcccggc	cacccaactg	agggacgttc	gctttcagtc	ccgacctctg	gaacccacaa	3840
agggccacct	ctttccccag	tgaccccaag	atcatggcca	ctcccctacc	cgacagttct	3900
agaagcaaga	gccagactca	agggtgcaaa	gcaagggnat	acgcttcttt	gaagcttgac	3960
tgagttcttt	ctgcgctttc	ctgaagttcc	cgccctcttg	gagcctacct	gcccctccct	4020
ccaaaccact	cttttagatt	aacaacccca	tctctactcc	caccgcattc	gaccctgccc	4080
ggactcactg	cttacctgaa	cgactctcca	gṭgagacgag	gctcccacac	tggdgaaggd	4140
caagaagggg	aggtggggg	agggttgtgc	cacaccggcc	agctgagagc	gcgtgttggg	4200
ttgaagagga	gggtgtctcc	gagagggacg	ctccctcgga	cccgccctca	ccccagctgc	4260
gagggcgccc	ccaaggagca	gcgcgcgctg	cctggccggg	cttgggctgc	tgagtgaatg	4320
gagcggccga	gcctcctggc	tcctcctctt	ccccgcgccg	ccggcccctc	ttatttgagc	4380
tttgggaagc	tgagggcage	caggcagctg	gggtaaggag	ttcaaggcag	cgcccacacc	4440
cgggggctct	ccgcaacccg	accgcctgtc	cgctccccca	cttcccgccc	tccctcccac	4500
ctactcattc	acccacccac	ccacccagag	ccgggacggc	ageceaggeg	cccgggcccc	4560
gccgtctcct	cgccgcgatc	ctggacttcc	tcttgctgca	ggacccggct	tccacgtgtg	4620

tcccggagcc	ggcgtctcag	cacacgetee	gctccgggcc	tgggtgccta	cagcagccag	4680
agcagcaggg	agtccgggac	ccgggcggca	tctgggccaa	gttaggcgcc	gccgaggcca	4740
gcgctgaacg	tctccagggc	cggaggagcc	gcggggcgtc	cgggtctgag	cctcagcaaa	4800
tgggctccga	cgtgcgggac	ctgaacgcgc	tgctgcccgc	cgtcccctcc	ctgggtggcg	4860
gcggcggctg	tgccctgcct	gtgagcggcg	cggcgcagtg	ggcgccggtg	ctggactttg	4920
cgcccccggg	cgcttcggct	tacgggtcgt	tgggcˌggccc	cgcgccgcca	ccggctccgc	4980
cgccaccccc	gccgccgccg	cctcactcct	tcatcaaaca	ggagccgagc	tggggcggcg	5040
cggagccgca	cgaggagcag	tgcctgagcg	ccttcactgt	ccacttttcc	ggccagttca	5100
ctggcacagc	cggagcctgt	cgctacgggc	ccttcggtcc	tectecgece	agccaggcgt	5160
catccggcca	ggccaggatg	tttcctaacg	cgccctacct	gcccagctgc	ctcgagagcc	5220
agcccgctat	tcgcaatcag	ggtaagtagg	ccggggagcg	ccccctacgc	gcggggcagt	5280
ggcgccaggg	actctccgct	ctaggacacc	cccctctcct	accccttttg	accgcagctc	5340
ttacccagct	gcttcccaag	ggccgtgagg	atagcggaag	cggcggctgg	ggaggaggcc	5400
ggagagtggg	agtgcacgca	ggcactggcc	cccgacatcc	tccaaagcca	ggcagagcta	5460
ggagcctgac	tgttcgcaag	agccgggagg	gcgtctgggg	ccc		5503

<210> 50

<211> 1860

<212> DNA

<213> Homo sapiens

<400> 50

gggacgtgag cegetgegee caeegggeta gaceeggege cateatgetg ettetgeeaa 60 gegeegegga eggeegggge acegecatea eccaegetet gacetetgee tetacaetet 120 gtcaagttga acctgtggga agatggtttg aagcttttgt taagaggaga aacagaaatg 180 cttctgcctc ttttcaggaa ctggaggata agaaagagtt atccgaggaa tcagaagatg 240 aagaattgca gttggaagag tttcccatgc tgaaaacact tgatcccaaa gactggaaga 300 accaagatca ttatgcagtt cttggacttg gccatgtgag atacaaggct acacagagac 360 agatcaaagc agctcataaa gcaatggttt taaaacatca cccagacaaa cggaaagcag 420 ctggtgaacc aataaaagaa ggagataatg actacttcac ttgcataact aaagcttatg 480 aaatgttatc tgatccagtg aaaagacgag catttaacag tgtagatcct acttttgata 540 actcagttcc ttctaaaagt gaagcaaagg ataatttctt cgaagtgttt accccagtgt 600 ttgaaaggaa ttccagatgg tcaaataaaa aaaatgttcc taaacttggt gatatgaatt 660

-95-

PCT/US01/24104

catcatttga	agatgtagat	atattttatt	ctttatggta	taattttgat	tcttggagag	720
aattttctta	tttagatgaa	gaagaaaaag	aaaaagcaga	atgtcgtgat	gagaggagat	780
ggattgaaaa	gcagaacgga	gcaacaagag	cacaaagaaa	aaaagaagaa	atgaacagaa	840
taagaacatt	agttgacaat	gcatacagct	gtgatccaag	gataaaaaag	ttcaaggaag	900
aagaaaaagc	caagaaagaa	gcagaaaaga	aagcaaaagc	agaagctaaa	cggaaggagc	960
aagaagctaa	agaaaaacaa	agacaagctg	aattagaagc	tgctcggtta	gctaaggaga	1020
aagaagagga	ggaagtcaga	cagcaagcat	tgctggcaaa	gaaggaaaaa	gatatccaga	1080
aaaaagccat	taagaaggaa	aggcaaaaac	ttcgaaactc	atgcaagata	gaagaaataa	1140
atgagcaaat	cagaaaagag	aaagaggaag	ctgaggeteg	tatgcgacaa	gcatctaaga	1200
acacagagaa	atcaactggt	ggaggtggaa	atggaagtaa	aaattggtca	gaagatgatc	1260
tacaattact	aattaaagct	gtgaatctgt	tccctgctag	aacaaattca	agatgggaag	1320
ttattgctaa	ttacatgaac	atacattctt	cctctggagt	caaaagaact	gccaaagatg	1380
ttattggcaa	agcaaagagt	ctccaaaaac	ttgaccctca	tcaaaaagat	gacataaata	1440
aaaaggcatt	tgataagttc	aaaaaagaac	atggagtggt	acctcaagca	gacaacgcaa	1500
cgccttcaga	acgatttgaa	ggtccatata	cagacttcac	cccttggaca	acagaagaac	1560
agaagctttt	ggaacaagct	ttgaaaacat	acccagtaaa	tacacctgaa	agatgggaaa	1620
aaatagcaga	agcggtgcct	ggcaggacaa	agaaggactg	catgaaacga	tacaaggaac	1680
ttgtcgagat	ggtaaaagca	aagaaagctg	ctcaagaaca	agtgctgaat	gcaagtagag	1740
ccaagaaatg	acaatctttg	ttgtgtgtgc	atttttataa	taaaactgaa	aatactgtaa	1800
acattttcat	tcttaaaatt	atactcatgg	taataatttg	aaagtaaaaa	aaaaaaaaa	1860

<210> 51

WO 02/09573

Met His Leu Lys Ile Val Leu Ala Phe Leu Ala Leu Ser Leu Ile Thr $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ile Phe Ala Leu Ala Tyr Val Leu Leu Thr Ser Pro Gly Gly Ser Ser 20 25 30

Gln Pro Pro His Cys Pro Ser Val Ser His Arg Ala Gln Pro Trp Pro 35 40 45

His Pro Gly Gln Ser Gln Leu Phe Ala Asp Leu Ser Arg Glu Glu Leu 50 60

<211> 729

<212> PRT

<213> Homo sapiens

<400> 51

-96-Thr Ala Val Met Arg Phe Leu Thr Gln Arg Leu Gly Pro Gly Leu Val Asp Ala Ala Gln Ala Gln Pro Ser Asp Asn Cys Ile Phe Ser Val Glu Leu Gln Leu Pro Pro Lys Ala Ala Leu Ala His Leu Asp Arg Gly Ser Pro Pro Pro Ala Arg Glu Ala Leu Ala Ile Val Leu Phe Gly Gly Gln Pro Gln Pro Asn Val Ser Glu Leu Val Val Gly Pro Leu Pro His Pro Ser Tyr Met Arg Asp Val Thr Val Glu Arg His Gly Gly Pro Leu Pro Tyr His Arg Arg Pro Val Leu Arg Ala Glu Phe Thr Gln Met Trp 170 Arg His Leu Lys Asp Val Glu Leu Pro Lys Ala Pro Ile Phe Leu Ser Ser Thr Phe Asn Tyr Asn Gly Ser Thr Leu Ala Ala Val His Ala Thr 200 Pro Arg Gly Leu Arg Ser Arg Glu Arg Thr Thr Trp Ile Gly Leu Tyr 215 His Asn Ile Ser Gly Val Gly Leu Phe Leu His Pro Val Gly Leu Glu 235 Leu Leu Leu Asp His Arg Ala Leu Asp Pro Ala His Trp Thr Val Gln Gln Val Phe Tyr Leu Gly His Tyr Tyr Ala Asp Leu Gly Gln Leu Glu Arg Glu Phe Lys Ser Gly Arg Leu Glu Val Val Arg Val Pro Leu Pro Pro Pro Asn Gly Ala Ser Ser Leu Arg Ser Arg Asn Ser Pro Gly Pro . Leu Pro Pro Leu Gln Phe Ser Pro Gln Gly Ser Gln Tyr Ser Val Gln Gly Asn Leu Val Val Ser Ser Leu Trp Ser Phe Thr Phe Gly His Gly Val Phe Ser Gly Leu Arg Ile Phe Asp Val Arg Phe Gln Gly Glu Arg Ile Ala Tyr Glu Val Ser Val Gln Glu Cys Val Ser Ile Tyr Gly Ala 360 Asp Ser Pro Lys Thr Met Leu Thr Arg Tyr Leu Asp Ser Ser Phe Gly 375 380

-97-Leu Gly Arg Asn Ser Arg Gly Leu Val Arg Gly Val Asp Cys Pro Tyr Gln Ala Thr Met Val Asp Ile His Ile Leu Val Gly Lys Gly Ala Val 410 Gln Leu Leu Pro Gly Ala Val Cys Val Phe Glu Glu Ala Gln Gly Leu Pro Leu Arg Arg His His Asn Tyr Leu Gln Asn His Phe Tyr Gly Gly Leu Ala Ser Ser Ala Leu Val Val Arg Ser Val Ser Ser Val Gly Asn Tyr Asp Tyr Ile Trp Asp Phe Val Leu Tyr Pro Asn Gly Ala Leu Glu 470 475 Gly Arg Val His Ala Thr Gly Tyr Ile Asn Thr Ala Phe Leu Lys Gly Gly Glu Glu Gly Leu Leu Phe Gly Asn Arg Val Gly Glu Arg Val Leu 505 Gly Thr Val His Thr His Ala Phe His Phe Lys Leu Asp Leu Asp Val Ala Gly Leu Lys Asn Trp Val Val Ala Glu Asp Val Val Phe Lys Pro 535 Val Ala Ala Pro Trp Asn Pro Glu His Trp Leu Gln Arg Pro Gln Leu 555 550 Thr Arg Gln Val Leu Gly Lys Glu Asp Leu Thr Ala Phe Ser Leu Gly 570 · Ser Pro Leu Pro Arg Tyr Leu Tyr Leu Ala Ser Asn Gln Thr Asn Ala Trp Gly His Gln Arg Gly Tyr Gln Leu Val Val Thr Gln Arg Lys Glu 600 Glu Glu Ser Gln Ser Ser Ile Tyr His Gln Asn Asp Ile Trp Thr 615 Pro Thr Val Thr Phe Ala Asp Phe Ile Asn Asn Glu Thr Leu Leu Gly Glu Asp Leu Val Ala Trp Val Thr Ala Ser Phe Leu His Ile Pro His Ala Glu Asp Ile Pro Asn Thr Val Thr Leu Gly Asn Arg Val Gly Phe 665 Leu Leu Arg Pro Tyr Asn Phe Phe Asp Glu Asp Pro Ser Ile Phe Ser

680 ·

695

Pro Gly Ser Val Tyr Phe Glu Lys Gly Gln Asp Ala Gly Leu Cys Ser

-98'-

Ile Asn Pro Val Ala Cys Leu Pro Asp Leu Ala Ala Cys Val Pro Asp 705 710 715 720

Leu Pro Pro Phe Ser Tyr His Gly Phe 725

<210> 52

<211> 885

<212> PRT

<213> Homo sapiens

<400> 52

Met Ala Trp Arg Cys Pro Arg Met Gly Arg Val Pro Leu Ala Trp Cys

10
15

Leu Ala Leu Cys Gly Trp Ala Cys Met Ala Pro Arg Gly Thr Gln Ala
20 25 30

Glu Glu Ser Pro Phe Val Gly Asn Pro Gly Asn Ile Thr Gly Ala Arg 35 40 45

Gly Leu Thr Gly Thr Leu Arg Cys Gln Leu Gln Val Gln Gly Glu Pro 50 55 60

Pro Glu Val His Trp Leu Arg Asp Gly Gln Ile Leu Glu Leu Ala Asp 65 70 75. 80

Ser Thr Gln Thr Gln Val Pro Leu Gly Glu Asp Glu Gln Asp Asp Trp 85 90 95

Ile Val Val Ser Gln Leu Arg Ile Thr Ser Leu Gln Leu Ser Asp Thr 100 105 110

Gly Gln Tyr Gln Cys Leu Val Phe Leu Gly His Gln Thr Phe Val Ser 115 120 125

Gln Pro Gly Tyr Val Gly Leu Glu Gly Leu Pro Tyr Phe Leu Glu Glu 130 135 140

Pro Glu Asp Arg Thr Val Ala Ala Asn Thr Pro Phe Asn Leu Ser Cys 145 150 155 160

Gln Ala Gln Gly Pro Pro Glu Pro Val Asp Leu Leu Trp Leu Gln Asp

Ala Val Pro Leu Ala Thr Ala Pro Gly His Gly Pro Gln Arg Ser Leu 180 185 190

His Val Pro Gly Leu Asn Lys Thr Ser Ser Phe Ser Cys Glu Ala His 195 200 205

Asn Ala Lys Gly Val Thr Thr Ser Arg Thr Ala Thr Ile Thr Val Leu 210 220

Pro Gln Gln Pro Arg Asn Leu His Leu Val Ser Arg Gln Pro Thr Glu 225 230 235 240

Leu Glu Val Ala Trp Thr Pro Gly Leu Ser Gly Ile Tyr Pro Leu Thr 245 250 255

WO 02/09573

His	Cys	Thr	Leu 260	Gln	Ala	Val	Leu	Ser 265	Asp	Asp	Gly	Met	Gly 270	Ile	Gln
Ala	Gly	Glu 275	Pro	Asp	Pro	Pro	Glu 280	Glu	Pro	Leu	Thr	Ser 285	Gln	Ala	Ser
Val	Pro 290	Pro	His	Gln	Leu	Arg 295	Leu	Gly	Ser	Leu	His 300	Pro	His	Thr	Pro
Tyr 305	His	Ile	Arg	Val	Ala 310	Сув	Thr	Ser	Ser	Gln 315	Gly	Pro	Ser	Ser	Trp 320
Thr	His	Trp	Ьeu	Pro 325	Val	Glu	Thr	Pro	Glu 330	Gly	Val	Pro	Leu	Gly 335	Pro
Pro	Lys	Asn	Ile 340	Ser	Ala	Thr	Arg	Asn 345	Gly ·	Ser	Gln	Ala	Phe 350	Val	His
Trp	Gln	Glu 355	Pro	Arg	Ala	Pro	Leu 360	Gln	Gly	Thr	Leu	Leu 365	Gly	Tyr	Arg
Leu	Ala 370	Tyr	Gln	Gly	Gln	Asp 375	Thr	Pro	Glu	Val	Leu 380	Met	Asp	Ile	Gly
Leu 385	Arg	Gln	Glu	Val	Thr 390	Leu	Glu	Leu	Gln	Gly 395	Asp	Gly	Ser	Val	Ser 400
Asn	Leu	Thr	Val	Cys 405	Val	Ala	Ala	Tyr	Thr 410	Ala	Ala	Gly	Asp	Gly 415	Pro
Trp	Ser	Leu	Pro 420	Val	Pro	Leu	Glu	Ala 425	Trp	Arg	Pro	Val	Lys 430	Glu	Pro
Ser	Thr	Pro 435	Ala	Phe	Ser	Trp	Pro 440	Trp	Trp	Tyr	Val'	Leu 445	Leu	Gly	Ala
Val	Val 450	Ala	Ala	Ala	Сув	Val 455	Leu	Ile	Leu	Ala	Leu 460	Phe	Leu	Val	His
Arg 465	Arg	Lys	Lys	Glu	Thr 470	Arg	Tyr	Gly	Glu	Val 475	Phe	Glu	Pro	Thr	Val 480
Glu	Arg	Gly	Glu	Leu 485	Val	Val	Arg	Tyŗ	Arg 490	Val	Arg	Lys	Ser	Tyr 495	Ser
Arg	Arg	Thr	Thr 500	Glu	Ala	Thr	Leu	Asn 505	ser	Leu	Gly	Ile	Ser 510	Glu	Glu
Leu	Lys	Glu 515		Leu	Arg	Asp	Val 520	Met	Val	Asp	Arg	His 525	Lys	Val	Ala
Leu	Gly 530	Lys	Thr	Leu	Gly	Glu 535		Glu	Phe	Gly	Ala 540	Val	Met	Glu	Gly
Gln 545		Asn	Gln	Asp	Asp 550		Ile	Leu	Lys	Val 555	Ala	Val	Lys	Thr	Met 560
Lys	Ile	Ala	Ile	Cys 565		Arg	Ser	Glu	Leu 57,0	Glu	Asp	Phe	Leu	Ser 575	Glu

-100-

															•
Ala	Val	Cys	Met 580	ГÀЗ	Glu	Phe	Asp	His 585	Pro	Asn	Val	Met	Arg 590	Leu	Ile
Gly	Val	Сув 595	Phe	Gln	Gly	Ser	Glu 600	Arg	Glu	Ser	Phe	Pro 605	Ala	Pro	Val
Val	Ile 610	Leu	Pro	Phe	Met	Lys 615	His	Gly	qaA	Leu	His 620	Ser	Phe	Leu	Leu
Tyr 625	Ser	Arg	Leu	Gly	Asp 630	Gln	Pro	Val	TYŗ	Leu 635	Pro	Thr	Gln	Met	Leu 640
Val	ГЛЗ	Phe	Met	Ala 645	Asp	Ile	Ala	Ser	Gly 650	Met	Glu	Tyr	Leu	Ser 655	Thr
Lys	Arg	Phe	Ile 660	His	Arg	Asp	Leu	Ala 665	Ala	Arg	Asn	Cys	Met 670	Leu	Asn
Glu	Asn	Met 675	Ser	Val	Cys	Val	Ala 680	Asp	Phe	Gly	Leu	Ser 685	Lys	Lys	Ile
Tyr	Asn 690	Gly	Asp	Tyr	Tyr	Arg 695	Gln	Gly	Arg	Ile	Ala 700	Lys	Met	Pro	Val
Lys 705	Trp	Ile	Ala	Ile	Glu 710	Ser	Leu	Ala	Asp	Arg 715	Val	Tyr	Thr	Ser	Lys 720
Ser	Asp	Val	Trp	Ser 725	Phe	Gly	Val	Thr	Met 730	Trp	Glu	Ile	Ala	Thr 735	Arg
Gly	Gln	Thr	Pro 740	Tyr	Pro	Gly	Val	Glu 745	Asn	Ser	Glu	Ile	Туг 750	Asp	Tyr
Leu	Arg	Gln 755	Gly	Asn	Arg	Leu	Lys 760	Gln	Pro	Ala	qaA	Сув 765	Leu	Asp	Gly
Leu	Tyr 770	Ala	Leu	Met	Ser	Arg 775	Cys	Trp	Glu	Leu	Asn 780	Pro	Gln	Asp	Arg
Pro 785	Ser	Phe	Thr	Glu	Leu 790	Arg	Glu	Asp	Leu	Glu 795	Asn	Thr	Leu	Lys	Ala 800
Leu	Pro	Pro	Ala	Gln 805	Glu	Pro	Asp	Glu	Ile 810	Leu	Tyr	Val	Asn	Met 815	Asp
Glu	Gly	Gly	Gly 820	Tyr	Pro	Glu	Pro	Pro 825	Gly	Ala	Ala	Gly	830	Ala	Asp
Pro	Pro	Thr 835	Gln	Pro	Asp	Pro	Lys 840	Asp	Ser	Cys	Ser	Cys 845	Leu	Thr	Ala
Ala	Glu 850	Val	His	Pro	Ala	Gly 855	Arg	Tyr	Val	Leu	Cys 860	Pro	Ser	Thr	Thr
Pro 865	Ser	Pro	Ala	Gln	Pro 870	Ala	Asp	Arg	Gly	Ser 875	Pro	Ala	Ala	Pro	Gly 880
Gln	Glu	Asp	Gly	Ala 885											

-101-

<210 <211 <212 <213	L> 2>	53 373 PRT Homo	sapi	iens											
<400)>	53													
Met 1	Leu	. Leú	Gly	Leu 5	Ala	Ala	Met	Glu	Leu 10	Lys	Val	Trp	Val	Asp 15	Gly
Ile	Gln	Arg	Val 20	Val	Cys	Gly	Val	Ser 25	Glu	Gln	Thr	Thr	Сув 30	Gln	Glu
Val	Val	Ile 35	Ala	Leu	Ala	Gln	Ala 40	Ile	Gly	Gln	Thr	Gly 45	Arg	Phe	Val
Leu	Val 50	Gln	Arg	Leu	Arg	Glu 55	Lys	Glu	Arg	Gln	Leu 60	Leu	Pro	Gln	Glu
Суз 65	Pro	Val	Gly	Ala	Gln 70	Ala	Thr	Cys	Gly	Gln 75	Phe	Ala	Ser	Asp	Val 80
Gln	Phe	· Val	Leu	Arg 85	Arg	Thr	Gly	Pro	Ser 90	Leu	Ala	Gly	Arg	Pro 95	Ser
Ser	Asp	Ser	Cys 100	Pro	Pro	Pro	Glu	Arg 105	Cys	Leu	Ile	Arg	Ala 110	Ser	Leu
Pro	Val	Lys 115	Pro	Arg	Ala	Ala	Leu 120	Gly	Cys	Glu	Pro	Arg 125	Lys	Thr	Leu
Thr	Pro 130	Glu	Pro	Ala	Pro	Ser 135	Leu	Ser	Arg	Pro	Gly 140	Pro	Ala	Ala	Pro
Val 145	Thr	Pro	Thr	Pro	Gly 150	Cys	Cys	Thr	Asp.	Leu 155	Arg	Gly	Leu	Glu	Leu 160
Arg	Val	Gln	Arg	Asn 165	Ala	Glu	Glu	Leu	Gly 170	His	Glu	Ala	Phe	Trp 175	Glu
Gln	Glu	Leu	Arg 180	Arg	Glu	Gln	Ala	Arg 185	Glu	Arg	Glu	Gly	Gln 190	Ala	Arg
Leu	Gln	Ala 195	Leu	Ser	Ala	Ala	Thr 200	Ala	Glu	His	Ala	Ala 205	Arg	Leu	Gln
Ala	Leu 210	Asp	Ala	Gln	Ala	Arg 215	Ala	Leu	Glu	Ala	Glu 220	Leu	Gln	Leu	Ala
Ala 225	Glu	Ala	Pro	Gly	Pro 230	Pro	Ser	Pro	Met	Ala 235	Ser	Ala	Thr	Glu	Arg 240
Leu	His	Gln	Asp	Leu 245	Ala	Val	Gln	Glu	Arg 250	Gln	Ser	Ala	Glu	Val 255	Gln
Gly	Ser	Leu	Ala 260	Leu	Val	Ser	Arg	Ala 265	Leu	Glu	Ala	Ala	Glu 270	Arg	Ala
Leu	Gln	Ala	Gln	Ala	Gln	Glu	Leu	Glu	Glu	Leu	Asn	Arg	Glu	Leu	Arg .

-102-

285 275 280 Gln Cys Asn Leu Gln Gln Phe Ile Gln Gln Thr Gly Ala Ala Leu Pro 295 Pro Pro Pro Arg Pro Asp Arg Gly Pro Pro Gly Thr Gln Gly Pro Leu 310 315 Pro Pro Ala Arg Glu Glu Ser Leu Leu Gly Ala Pro Ser Glu Ser His 330 325 Ala Gly Ala Gln Pro Arg Pro Arg Gly Gly Pro His Asp Ala Glu Leu 345 Leu Glu Val Ala Ala Ala Pro Ala Pro Glu Trp Cys Pro Leu Ala Ala 360 Gln Pro Gln Ala Leu 370 <210> 54 <211> 289 <212> PRT <213> Homo sapiens <400> 54 Met Glu Leu Cys His Glu Val Asp Pro Val Arg Arg Ala Val Arg 10 0 Asp Arg Asn Leu Leu Arg Asp Asp Arg Val Leu Gln Asn Leu Leu Thr Ile Glu Glu Arg Tyr Leu Pro Gln Cys Ser Tyr Phe Lys Cys Val Gln Lys Asp Ile Gln Pro Tyr Met Arg Arg Met Val Ala Thr Trp Met Leu Glu Val Cys Glu Glu Gln Lys Cys Glu Glu Glu Val Phe Pro Leu Ala Met Asn Tyr Leu Asp Arg Phe Leu Ala Gly Val Pro Thr Pro Lys Ser His Leu Gln Leu Leu Gly Ala Val Cys Met Phe Leu Ala Ser Lys Leu Lys Glu Thr Ser Pro Leu Thr Ala Glu Lys Leu Cys Ile Tyr Thr Asp Asn Ser Ile Lys Pro Gln Glu Leu Leu Glu Trp Glu Leu Val Val Leu Gly Lys Leu Lys Trp Asn Leu Ala Ala Val Thr Pro His Asp Phe Ile Glu His Ile Leu Arg Lys Leu Pro Gln Gln Arg Glu Lys Leu Ser Leu

:

-103-

Ile Arg Lys His Ala Gln Thr Phe Ile Ala Leu Cys Ala Thr Asp Phe 1.85 Lys Phe Ala Met Tyr Pro Pro Ser Met Ile Ala Thr Gly Ser Val Gly 200 Ala Ala Ile Cys Gly Leu Gln Gln Asp Glu Glu Val Ser Ser Leu Thr Cys Asp Ala Leu Thr Glu Leu Leu Ala Lys Ile Thr Asn Thr Asp Val Asp Cys Leu Lys Ala Cys Gln Glu Gln Ile Glu Ala Val Leu Leu Asn Ser Leu Gln Gln Tyr Arg Gln Asp Gln Arg Asp Gly Ser Lys Ser Glu 265 Asp Glu Leu Asp Gln Ala Ser Thr Pro Thr Asp Val Arg Asp Ile Asp 280 Leu <210> 55 <211> 693 <212> PRT <213> Homo sapiens <400> 55 Met Lys Glu Asn Tyr Cys Leu Gln Ala Ala Leu Val Cys Leu Gly Met Leu Cys His Ser His Ala Phe Ala Pro Glu Arg Arg Gly His Leu Arg 3.0 Pro Ser Phe His Gly His His Glu Lys Gly Lys Glu Gly Gln Val Leu Gln Arg Ser Lys Arg Gly Trp Val Trp Asn Gln Phe Phe Val Ile Glu Glu Tyr Thr Gly Pro Asp Pro Val Leu Val Gly Arg Leu His Ser Asp Ile Asp Ser Gly Asp Gly Asn Ile Lys Tyr Ile Leu Ser Gly Glu Gly Ala Gly Thr Ile Phe Val Ile Asp Asp Lys Ser Gly Asn Ile His Ala Thr Lys Thr Leu Asp Arg Glu Glu Arg Ala Gln Tyr Thr Leu Met Ala Gln Ala Val Asp Arg Asp Thr Asn Arg Pro Leu Glu Pro Pro Ser Glu 135 Phe Ile Val Lys Val Gln Asp Ile Asn Asp Asn Pro Pro Glu Phe Leu . 155

ţ

-104-

His Glu Thr Tyr His Ala Asn Val Pro Glu Arg Ser Asn Val Gly Thr 165 170 Ser Val Ile Gln Val Thr Ala Ser Asp Ala Asp Asp Pro Thr Tyr Gly 1.80 185 Asn Ser Ala Lys Leu Val Tyr Ser Ile Leu Glu Gly Gln Pro Tyr Phe 200 Ser Val Glu Ala Gln Thr Gly Ile Ile Arg Thr Ala Leu Pro Asn Met 215 Asp Arg Glu Ala Lys Glu Glu Tyr His Val Val Ile Gln Ala Lys Asp 230 Met Gly Gly His Met Gly Gly Leu Ser Gly Thr Thr Lys Val Thr Ile 250 Thr Leu Thr Asp Val Asn Asp Asn Pro Pro Lys Phe Pro Gln Ser Val 265 Tyr Gln Ile Ser Val Ser Glu Ala Ala Val Pro Gly Glu Glu Val Gly 280 Arg Val Lys Ala Lys Asp Pro Asp Ile Gly Glu Asn Gly Leu Val Thr 295 Tyr Asn Ile Val Asp Gly Asp Gly Met Glu Ser Phe Glu Ile Thr Thr Asp Tyr Glu Thr Gln Glu Gly Val Ile Lys Leu Lys Lys Pro Val Asp Phe Glu Thr Lys Arg Ala Tyr Ser Leu Lys Val Glu Ala Ala Asn Val His Ile Asp Pro Lys Phe Ile Ser Asn Gly Pro Phe Lys Asp Thr Val 360 Thr Val Lys Ile Ala Val Glu Asp Ala Asp Glu Pro Pro Met Phe Leu Ala Pro Ser Tyr Ile His Glu Val Gln Glu Asn Ala Ala Gly Thr 390 Val Val Gly Arg Val His Ala Lys Asp Pro Asp Ala Ala Asn Ser Pro 405 Ile Arg Tyr Ser Ile Asp Arg His Thr Asp Leu Asp Arg Phe Phe Thr 425 Ile Asn Pro Glu Asp Gly Phe Ile Lys Thr Thr Lys Pro Leu Asp Arg 435 Glu Glu Thr Ala Trp Leu Asn Ile Thr Val Phe Ala Ala Glu Ile His 455 Asn Arg His Gln Glu Ala Lys Val Pro Val Ala Ile Arg Val Leu Asp

-105-

Val Asn Asp Asn Ala Pro Lys Phe Ala Ala Pro Tyr Glu Gly Phe Ile Cys Glu Ser Asp Gln Thr Lys Pro Leu Ser Asn Gln Pro Ile Val Thr Ile Ser Ala Asp Asp Lys Asp Asp Thr Ala Asn Gly Pro Arg Phe Ile Phe Ser Leu Pro Pro Glu Ile Ile His Asn Pro Asn Phe Thr Val Arg 530 535 Asp Asn Arg Asp Asn Thr Ala Gly Val Tyr Ala Arg Arg Gly Gly Phe Ser Arg Gln Lys Gln Asp Leu Tyr Leu Leu Pro Ile Val Ile Ser Asp Gly Gly Ile Pro Pro Met Ser Ser Thr Asn Thr Leu Thr Ile Lys Val Cys Gly Cys Asp Val Asn Gly Ala Leu Leu Ser Cys Asn Ala Glu Ala Tyr Ile Leu Asn Ala Gly Leu Ser Thr Gly Ala Leu Ile Ala Ile Leu Ala Cys Ile Val Ile Leu Leu Gly Cys Pro Ser Leu Met Glu Pro Pro 635 Ser Pro Arg Glu Asp Met Arg Leu Leu Tyr Leu Gly Phe Gln Leu Met Leu Phe Ser Tyr Val Lys Val Asn Arg Arg Phe Cys Leu Leu Gly Val 660 665 Phe Ile Lys Leu Pro Phe Leu Tyr Val Val Ala Thr Glu Ser Pro Thr 675 680 Thr Leu Thr Ser Leu 690 <210> 56 <211> 1806 <212> PRT <213> Homo sapiens <220> <221> UNSURE <222> (758)..(758) <223> Xaa = any amino acid <220> <221> UNSURE <222> (809)..(809) <223> Xaa = any amino acid

-106-

<400> 56

Met Glu Pro Trp Ser Ser Arg Trp Lys Thr Lys Arg Trp Leu Trp Asp Phe Thr Val Thr Thr Leu Ala Leu Thr Phe Leu Phe Gln Ala Arg Glu Val Arg Gly Ala Ala Pro Val Asp Val Leu Lys Ala Leu Asp Phe His Asn Ser Pro Glu Gly Ile Ser Lys Thr Thr Gly Phe Cys Thr Asn Arg Lys Asn Ser Lys Gly Ser Asp Thr Ala Tyr Arg Val Ser Lys Gln Ala Gln Leu Ser Ala Pro Thr Lys Gln Leu Phe Pro Gly Gly Thr Phe Pro Glu Asp Phe Ser Ile Leu Phe Thr Val Lys Pro Lys Lys Gly Ile Gln 105 Ser Phe Leu Leu Ser Ile Tyr Asn Glu His Gly Ile Gln Gln Ile Gly 120 Val Glu Val Gly Arg Ser Pro Val Phe Leu Phe Glu Asp His Thr Gly 135 Lys Pro Ala Pro Glu Asp Tyr Pro Leu Phe Arg Thr Val Asn Ile Ala 150 155 Asp Gly Lys Trp His Arg Val Ala Ile Ser Val Glu Lys Lys Thr Val 165 Thr Met Ile Val Asp Cys Lys Lys Lys Thr Thr Lys Pro Leu Asp Arg Ser Glu Arg Ala Ile Val Asp Thr Asn Gly Ile Thr Val Phe Gly Thr Arg Ile Leu Asp Glu Glu Val Phe Glu Gly Asp. Ile Gln Gln Phe Leu 215 Ile Thr Gly Asp Pro Lys Ala Ala Tyr Asp Tyr Cys Glu His Tyr Ser Pro Asp Cys Asp Ser Ser Ala Pro Lys Ala Ala Gln Ala Gln Glu Pro 250 Gln Ile Asp Glu Tyr Ala Pro Glu Asp Ile Ile Glu Tyr Asp Tyr Glu 265 Tyr Gly Glu Ala Glu Tyr Lys Glu Ala Glu Ser Val Thr Glu Gly Pro 280 Thr Val Thr Glu Glu Thr Ile Ala Gln Thr Glu Ala Asn Ile Val Asp

Asp Phe Gln Glu Tyr Asn Tyr Gly Thr Met Glu Ser Tyr Gln Thr Glu

-107-

305					310					315					320
Ala	Pro	Arg	His	Val 325	Ser	Gly	Thr	Asn	Glu 330	Pro	Asn	Pro	Val	Glu 335	Glu
Ile	Phe	Thr	Glu 340	Glu	Tyr	Leu	Thr	Gly 345	Glu	Asp	Tyr	Asp	Ser 350	Gln	Arg
Lys	Asn	Ser 355	Glu	Asp	Thr	Leu	Tyr 360	Glu	Asn	Lys	Glu	Ile 365	Asp	Gly	Arg
Asp	Ser 370	Asp	Leu	Leu	Val	Asp 375	Gly	Asp	Leu	Gly	Glu 380	Tyr	Asp	Phe	Tyr
Glu 385	Tyr	Lys	Glu	Tyr	Glu 390	Asp	Lys	Pro	Thr	Ser 395	Pro	Pro	Asn	Glu	Glu 400
Phe	Gly	Pro	Gly	Val 405	Pro	Ala	Glu	Thr	Asp 410	Ile	Thr	Glu	Thr	Ser 415	Ile
Asn	Gly	His	Gly 420	Ala	Tyr	Gly	Glu	Lys 425	Gly	Gln	Lys	Gly	Glu 430	Pro	Ala
Val	Val	Glu 435	Pro	Gly	Met	Leu	Val 440	Glu	Gly	Pro	Pro	Gly 445	Pro	Ala	Gly
Pro	Ala 450	Gly	Ile	Met	Gly	Pro 455	Pro	Gly	Leu	Gln	Gly 460	Pro	Thr	Gly	Pro
Pro 465	Gly	Asp	Pro	Gly	Asp 470	Arg	Gly	Pro	Pro	Gly 475	Arg	Pro	Gly	Leu	Pro 480
Gly	Ala	Asp	Gly	Leu 485	Pro	Gly	Pro	Pro	Gly 490	Thr	Met	Leu	Met	Leu 495	Pro
Phe	Arg	Tyr	Gly 500	Gly	Asp	Gly	Ser	Lуs 505	Gly	Pro	Thr	Ile	Ser 510	Ala	Gln
Glu	Ala	Gln 515	Ala	Gln	Ala	Ile	Leu 520	Gln	Gln	Ala	Arg	Ile 525	Ala	Leu	Arg
Gly	Pro 530	Pro	Gly	Pro	Met	Gly 535	Leu	Thr	Gly	Arg	Pro 540	Gly	Pro	Val	Gly
Gly 545		Gly	Ser	Ser	Gly 550	Ala	Lys	Gly	Glu	Ser 555	Gly	Asp	Pro	Gly	Pro 560
Gln	Gly	Pro	Arg	Gly 565	Val	Gln	Gly	Pro	Pro 570	Gly	Pro	Thr	Gly	Lys 575	Pro
Gly	Lys	Arg	Gly 580	Arg	Pro	Gly	Ala	Asp 585	Gly	Gly	Arg	Gly	Met 590	Pro	Gly
Glu	Pro	Gly 595	Ala	Lys	Gly	Asp	Arg 600	Gly	Pḥe	Asp	Gly	Leu 605	Pro	Gly	Leu
Pro	Gly 610	Asp	ьуз	Gly	His	Arg 615	Gly	Glu	Arg	Gly	Pro 620	Gln	Gly	Pro	Pro
Gly	Pro	Pro	Gly	Asp	Asp	Gly	Met	Arg	Gly	Glu	Asp	Gly	Glu	Ile	Gly

-108-

625					630				`i	635					640
Pro	Arg	Gly	Leu	Pro 645	Gly	Glu	Ala	Gly	Pro 650	Arg	Gly	Leu	Leu	Gly 655	Pro
Arg	Gly	Thr	Pro 660	Gly	Ala	Pro	Gly	Gln 665	Pro	Gly	Met	Ala	Gly 670	Val	Asp
Gly	Pro	Pro 675	Gly	Pro	Lys	Gly	Asn 680	Met	Gly	Pro	Gln	Gly 685	Glu	Pro	Gly
Pro	Pro 690	Gly	Gln	Gln	Gly	Asn 695	Pro	Gly	Pro	Gln	Gly 700	Leu	Pro	Gly	Pro
Gln 705	Gly	Pro	Ile	Gly	Pro 710	Pro	${ t Gl}_{m{Y}}$	Glu	Lys	Gly 715	Pro	Gln	Gly	Lys	Pro 720
Gly	Leu	Ala	Gly	Leu 725	Pro	Gly	Ala	Asp	Gly 730	Pro	Pro	Gly	His	Pro 735	Gly
Lys	Glu	Gly	Gln 740	Ser	Gly	Glu	Lys	Gly 745	Ala	Leu	Gly	Pro	Pro 750	Gly	Pro
Gln	Gly	Pro 755	Ile	Gly	Xaa	Pro	Gly 760	Pro	Arg	Gly	Val	Lуз 765	Gly	Ala	Asp
Gly	Val 770	Arg	Gly	Leu	Lys	Gly 775	Ser	ГÀЗ	Gly	Glu	Lys 780	Gly	Glu	Asp	Gly
Phe 785	Pro	Gly	Phe	Lys	Gly 790	Asp	Met	Gly	Leu	Lуs 795	Gly	Asp	Arg	Gly	Glu 800
Val	Gly	Gln	Ile	Gly 805	Pro	Arg	Gly	Xaa	Asp 810	Gly	Pro	Glu	Gly	Pro 815	Lys
Gly	Arg	Ala	Gly 820	Pro	Thr	Gly	Asp	Pro 825	Gly	Pro	Ser	Gly	Gln 830	Ala	Gly
Glu	Lys	Gly 835	Lys	Leu	Gly	Val	Pro 840	Gly	Leu	Pro	Gly	Tyr 845	Pro	Gly	Arg
Gln	Gly 850	Pro	Lys	Gly	Ser	Thr 855	Gly	Phe	Prb	Gly	Phe 860	Pro	Gly	Ala	
Gly 865	Glu	Lys	Gly	Ala	Arg 870	Gly	Val	Ala	Gly	Lys 875	Pro	Gly	Pro	Arg	Gly 880
Gln	Arg	Gly	Pro	Thr 885	Gly	Pro	Arg	Gly	Ser 890	Arg	Gly	Ala	Arg	Gly 895	Pro
Thr	Gly	Lys	Pro 900	Gly	Pro	Lys	Gly	Thr 905	Ser	Gly	Gly	Asp	Gly 910	Pro	Pro
Gly	Pro	Pro 915	Gly	Glu	Arg	${ m Gl}_Y$	Pro 920	Gln	Gly	Pro	Gln	Gly 925	Pro	Val	Gly
Phe	Pro 930	Gly	Pro	Lys	Gly	Pro 935	Pro	Gly	Pro	Pro	Gly 940	Arg	Met	Gly	Cys
Pro	Gly	His	Pro	Gly	Gln	Arg	Gly	Glu	Thr	Gly	Phe	Gln	Gly	Lys	Thr

-109-

945					950					95	5				960
Gly	Pro I	Pro	_	Pro 965	Gly	Gly V	al '	Val	Gly 970		o Gl	n Gly	/ Pro	975	=
Glu	Thr (Pro 980	Ile	Gly	Glu A		Gly 985	Tyr	Pr	o Gl	y Pro	990		Pro
Pro	_	31u (995	Gln	Gly	Leu		ly .000		a Al	a G	ly I	_	.u 0	Bly A	ala Lys
Gly	Asp 1010	Pro	Gly	Pro	Gln	Gly 1015		e Se	er G	ly	Lys	Asp 1020	Gly	Pro	Ala
Gly	Leu 1025	Arg	Gly	Phe	Pro	Gly 1030		u Ar	g G	ly	Leu	Pro 1035	Gly	Ala	Gln
Gly	Ala 1040	Pro	Gly	Leu	Lys	Gly 1045		y G]	lu G	ly	Pro	Gln 1050	Gly	Pro	Pro
Gly	Pro 1055	Val	Gly	Ser	Pro	Gly 1060		u Aı	g G	Зly	Ser	Ala 1065	Gly	Thr	Ala
Gly	Pro 1070	Ile	Gly	Leu	. Arg	Gly 1075		g Pı	co G	ly	Pro	Gln 1080	Gly	Pro	Pro
Gly	Pro 1085	Ala	Gly	Glu	. Lys	Gly 1090		a Pı	:o G	ly	Glu	Lys 1095	Gly	Pro	Gln
Gly	Pro 1100	Ala	Gly	Arg	Asp	Gly 1105		l Gl	ln G	ly	Pro	Val 1110	Gly	Leu	Pro
Gly	Pro 1115	Ala	Gly	Pro	Ala	Gly 1120		r Pı	:o G	ly	Glu	Asp 1125	Gly	Asp	Lys
Gly	Glu 1130	Ile	Gly	Glu	. Pro	Gly 1135		n Ly	rs G	ly	Ser	Lys 1140	Gly	Gly	Lys
Gly	Glu 1145	Asn	Gly	Pro	Pro	Gly 1150		0 P1	co G	ly	Leu	Gln 1155	Gly	Pro	Val
Gly	Ala 1160	Pro	Gly	' Ile	Ala	Gly 1165		y As	sp G	ly	Glu	Pro 1170	Gly		Arg
Gly	Gln 1175	Gln	Gly	Met	Phe	Gly 1180		n Ly	/s G	ly	Asp	Glu 1185	Gly	Ala	Arg
Gly	Phe 1190	Pro	Gly	Pro	Pro	Gly 1195		o II	Le G	ly	Leu	Gln 1200	Gly	Leu	Pro
Gly	Pro 1205	Pro	Gly	Glu	Lys	Gly 1210		u As	sn G	ly	Asp	Val 1215	Gly	Pro	Trp
Gly	Pro 1220	Pro	Gly	Pro	Pro	Gly 1225		0 A1	rg (G	ly	Pro	Gln 1230	Gly	Pro	Asn
Gly	Ala 1235	Asp	Gly	Pro	Gln	Gly 1240		0 P1	co G	ly	Ser	Val 1245	Gly	Ser	Val
Gly	Gly	Val	Glv	r Glu	Lys	Glv	Gl	u Pi	co G	ly	Glu	Ala	Glv	Asn	Pro

-110-

	1250					1255					1260			
Gly	Pro 1265	Pro	Gly	Glu	Ala	Gly 1270	Val	Gly	Gly	Pro	Lys 1275	Gly	Glu	Arg
Gly	Glu 1280	Lys	Gly	Glu	Ala	Gly 1285	Pro	Pro	Gly	Ala	Ala 1290	Gly	Pro	Pro
Gly	Ala 1295	Lys	Gly	Pro	Pro	Gly 1300	Asp	Asp	Gly	Pro	Lys 1305	Gly	Asn	Pro
Gly	Pro 1310	Val	Gly	Phe	Pro	Gly 1315	qaA	Pro	Gly	Pro	Pro 1320	Gly	Glu	Leu
Gly	Pro 1325	Ala	Gly	Gln	Asp	Gly 1330	Val	Gly	Gly	Asp	Lys 1335	Gly	Glu	Asp
Gly	Asp 1340	Pro	Gly	Gln	Pro	Gly 1345	Pro	Pro	Gly	Pro	Ser 1350	Gly	Glu	Ala
Gly	Pro 1355	Pro	Gly	Pro	Pro	Gly 1360	Lys	Arg	Gly	Pro	Pro 1365	Gly	Ala	Ala
Gly	Ala 1370	Glu	Gly	Arg	Gln	Gly 1375	Glu	Lys	Gly	Ala	Lys 1380	Gly	Glu	Ala
Gly	Ala 1385	Glu	Gly	Pro	Pro	Gly 1390	Lys	Thr	Gly	Pro	Val 1395	Gly	Pro	Gln
Gly	Pro 1400	Ala	Gly	Lys	Pro	Gly 1405	Pro	Glu	Gly	Leu	Arg 1410	Gly	Ile	Pro
Gly	Pro 1415	Val	Gly	Glu	Gln	Gly 1420	Leu	Pro	Gly	Ala	Ala 1425	Gly	Gln	Asp
Gly	Pro 1430	Pro	Gly	Pro	Met	Gly 1435	Pro	Pro	Gly	Leu	Pro 1440	Gly	Leu	Lys
Gly	Asp 1445		Gly	Ser	Lys	Gly 1450	Glu	ГÀЗ	Gly	His	Pro 1455	Gly	Leu	Ile
Gly	Leu 1460	Ile	Gly	Pro	Pro	Gly 1465	Glu	Gln	Ġly	Glu	Lys 1470	Gly		Arg
Gly	Leu 1475		Gly	Thr	Gln	Gly 1480	Ser	Pro	Gly	Ala	Lys 1485	_	Asp	Gly
Gly	Ile 1490		Gly	Pro	Ala	Gly 1495	Pro	Leu	Gly	Pro	Pro 1500	_	Pro	Pro
Gly	Leu 1505		Gly	Pro	Gln	Gly 1510		Lys	Gly	Asn	Lys 1515	_	Ser	Thr
Gly	Pro 1520		Gly	Gln	Lys	Gly 1525		Ser	Gly	Leu	Pro 1530		Pro	Pro
Gly	Pro 1535		Gly	Pro	Pro	Gly 1540	Glu	Val	Ile	Gln	Pro 1545		Pro	Ile
Leu	Ser	Ser	Lys	Lys	Thr	Arg	Arg	His	Thr	Glu	Gly	Met	Gln	Ala

-111-

	1550					1555					1560			
Asp	Ala 1565	Asp	Asp	Asn	Ile	Leu 1570	Asp	Tyr	Ser	Asp	Gly 1575	Met	Glu	Glu
Ile	Phe 1580	Gly	Ser	Leu	Asn	Ser 1585	Leu	Lys	Gln	Asp	Ile 1590	Glu	His	Met
Lys	Phe 1595	Pro	Met	Gly	Thr	Gln 1600	Thr	Asn	Pro	Ala	Arg 1605	Thr	Cys	Lys
Asp	Leu 1610	Gln	Leu	Ser	His	Pro 1615	Asp	Phe	Pro	Asp	Gly 1620	Glu	Tyr	Trp
Ile	Asp 1625	Pro	Asn	Gln	Gly	Cys 1630	Ser	Gly	Asp	Ser	Phe 1635	Lys	Val	Tyr
Cys	Asn 1640	Phe	Thr	Ser	Gly	Gly 1645	Glu	Thr	Cys	Ile	Tyr 1650	Pro	Asp	Lys
Lys	Ser 1655	Glu	Gly	Val	Arg	Ile 1660	Ser	Ser	Trp	Pro	Lys 1665	Glu	Lys	Pro
Gly	Ser 1670	Trp	Phe	Ser	Glu	Phe 1675	Lys	Arg	Gly	Lys	Leu 1680	Leu	Ser	Tyr
Leu	Asp 1685	Val	Glu	Gly	Asn	Ser 1690	Ile	Asn	Met	Val	Gln 1695	Met	Thr	Phe
Leu	Lys 1700	Leu	Leu	Thr	Ala	Ser 1705		Arg	Ģln	Asn	Phe 1710	Thr	Tyr	His
Cys	His 1715	Gln	Ser	Ala	Ala	Trp 1720	Tyr	Asp	Val	Ser	Ser 1725	Gly	Ser	Tyr
Asp	Lys 1730	Ala	Leu	Arg	Phe	Leu 1735	Gly	Ser	Asn	Asp	Glu 1740	Glu	Met	Ser
Tyr	Asp 1745	Asn	Asn	Pro	Phe	Ile 1750	Lys	Thr	Leu	Tyr	Asp 1755	Gly	Cys	Thr
Ser	Arg 1760	Ъуз	Gly	Tyr	Glu	Lys 1765	Thr	Val	Ile	Glu	Ile 1770	Asn		Pro
Lys	Ile 1775	Asp	Gln	Val	Pro	Ile 1780	Val	Asp	Val	Met	Ile 1785	Ser		
Gly	Asp 1790	Gln	Asn	Gln	Lys	Phe 1795	Gly	Phe	Glu	Val	Gly 1800	Pro	Val	Cys
Phe	Leu 1805	Gly							-					
<21	0 > 5	7												
<21:		55 RT												
<21			sapi	ens										
<40	0 > 5	7												

Cys Lys Ala Ala Lys Ala Asp Leu Val Phe Met Val Asp Gly Ser Trp Ser Ile Gly Asp Glu Asn Phe Asn Lys Ile Ile Ser Phe Leu Tyr Ser Thr Val Gly Ala Leu Asn Lys Ile Gly Thr Asp Gly Thr Gln Val Ala Met Val Gln Phe Thr Asp Asp Pro Arg Thr Glu Phe Lys Leu Asn Ala Tyr Lys Thr Lys Glu Thr Leu Leu Asp Ala Ile Lys His Ile Ser Tyr Lys Gly Gly Asn Thr Lys Thr Gly Lys Ala Ile Lys Tyr Val Arg Asp Thr Leu Phe Thr Ala Glu Ser Gly Thr Arg Arg Gly Ile Pro Lys Val 105 Ile Val Val Ile Thr Asp Gly Arg Ser Gln Asp Asp Val Asn Lys Ile 120 Ser Arg Glu Met Gln Leu Asp Gly Tyr Ser Ile Phe Ala Ile Gly Val 130 135 Ala Asp Ala Asp Tyr Ser Glu Leu Val Ser Ile Gly Ser Lys Pro Ser 155 Ala Arg His Val Phe Phe Val Asp Asp Phe Asp Ala Phe Lys Lys Ile Glu Asp Glu Leu Ile Thr Phe Val Cys Glu Thr Ala Ser Ala Thr Cys 185 Pro Val Val His Lys Asp Gly Ile Asp Leu Ala Gly Phe Lys Met Met Glu Met Phe Gly Leu Val Glu Lys Asp Phe Ser Ser Val Glu Gly Val 215 Ser Met Glu Pro Gly Thr Phe Asn Val Phe Pro Cys Tyr Gln Leu His 230 . 235 Lys Asp Ala Leu Val Ser Gln Pro Thr Arg Tyr Leu His Pro Glu Gly 250 Leu Pro Ser Asp Tyr Thr Ile Ser Phe Leu Phe Arg Ile Leu Pro Asp Thr Pro Gln Glu Pro Phe Ala Leu Trp Glu Ile Leu Asn Lys Asn Ser 280 Asp Pro Leu Val Gly Val Ile Leu Asp Ash Gly Gly Lys Thr Leu Thr Tyr Phe Asn Tyr Asp Gln Ser Gly Asp Phe Gln Thr Val Thr Phe Glu 315

-113-

Gly Pro Glu Ile Arg Lys Ile Phe Tyr Gly Ser Phe His Lys Leu His 325 Ile Val Val Ser Glu Thr Leu Val Lys Val Val Ile Asp Cys Lys Gln 345 Val Gly Glu Lys Ala Met Asn Ala Ser Ala Asn Ile Thr Ser Asp Gly Val Glu Val Leu Gly Lys Met Val Arg Ser Arg Gly Pro Gly Gly Asn Ser Ala Pro Phe Gln Leu Gln Met Phe Asp Ile Val Cys Ser Thr Ser Trp Ala Asn Thr Asp Lys Cys Cys Glu Leu Pro Gly Leu Arg Asp Asp Glu Ser Cys Pro Asp Leu Pro His Ser Cys Ser Cys Ser Glu Thr Asn 425 Glu Val Ala Leu Gly Pro Ala Gly Pro Pro Gly Gly Pro Gly Leu Arg Gly Pro Lys Gly Gln Gln Gly Glu Pro Gly Pro Lys Gly Pro Asp Gly Pro Arg Gly Glu Ile Gly Leu Pro Gly Pro Gln Gly Pro Pro Gly Pro Gln Gly Pro Ser Gly Leu Ser Ile Gln Gly Met Pro Gly Met Pro Gly 485 Glu Lys Gly Glu Lys Gly Asp Thr Gly Leu Pro Gly Pro Gln Gly Ile 505 Pro Gly Gly Val Gly Ser Pro Gly Arg Asp Gly Ser Pro Gly Gln Arg Gly Leu Pro Gly Lys Asp Gly Ser Ser Gly Pro Pro Gly Pro Pro Gly 535 Pro Ile Gly Ile Pro Gly Thr Pro Gly Val Pro Gly Ile Thr Gly Ser Met Gly Pro Gln Gly Ala Leu Gly Pro Pro Gly Val Pro Gly Ala Lys 565 Gly Glu Arg Gly Glu Arg Gly Asp Leu Gln Ser Gln Ala Met Val Arg 585 Ser Val Ala Arg Gln Val Cys Glu Gln Leu Ile Gln Ser His Met Ala 600 Arg Tyr Thr Ala Ile Leu Asn Gln Ile Pro Ser His Ser Ser Ser Ile 615 Arg Thr Val Gln Gly Pro Pro Gly Glu Pro Gly Arg Pro Gly Ser Pro 630 635

-114

Gly Ala Pro Gly Glu Gln Gly Pro Pro Gly Thr Pro Gly Phe Pro Gly Asn Ala Gly Val Pro Gly Thr Pro Gly Glu Arg Gly Leu Thr Gly Ile Lys Gly Glu Lys Gly Asn Pro Gly Val Gly Thr Gln Gly Pro Arg Gly Pro Pro Gly Pro Ala Gly Pro Ser Gly Glu Ser Arg Pro Gly Ser Pro 695 Gly Pro Pro Gly Ser Pro Gly Pro Arg Gly Pro Pro Gly His Leu Gly Val Pro Gly Pro Gln Gly Pro Ser Gly Gln Pro Gly Tyr Cys Asp Pro Ser Ser Cys Ser Ala Tyr Gly Val Arg Asp Leu Ile Pro Tyr Asn Asp Tyr Gln His 755 <210> 58 <211> 543 <212> PRT <213> Homo sapiens <400> 58 Met Gly Thr Ser Leu Ser Pro Asn Asp Pro Trp Pro Leu Asn Pro Leu Ser Ile Gln Gln Thr Thr Leu Leu Leu Leu Ser Val Leu Ala Thr Val His Val Gly Gln Arg Leu Leu Arg Gln Arg Arg Gln Leu Arg Ser Ala Pro Pro Gly Pro Phe Ala Trp Pro Leu Ile Gly Asn Ala Ala Ala Val Gly Gln Ala Ala His Leu Ser Phe Ala Arg Leu Ala Arg Arg Tyr Gly Asp Val Phe Gln Ile Arg Leu Gly Ser Cys Pro Ile Val Val Leu Asn Gly Glu Arg Ala Ile His Gln Ala Leu Val Gln Gln Gly Ser Ala Phe Ala Asp Arg Pro Ala Phe Ala Ser Phe Arg Val Val Ser Gly Gly Arg Ser Met Ala Phe Gly His Tyr Ser Glu His Trp Lys Val Gln Arg Arg Ala Ala His Ser Met Met Arg Asn Phe Phe Thr Arg Gln Pro

155

Val Asp Val Met Pro 245 Trp Leu Gln Tyr Phe Pro Asn Pro Val Arg 255 The 250 Pro Asn Pro Val Arg 255 The 250 Pro Asn Phe Ser Asn Phe Il 255 The 250 Phe Il 255 The 250 Phe Il 255 The Asn Phe Il 260 Phe Il 260 Phe Il 260 Phe Il 270 Phe Il 270 Phe Il 270 Phe Il 270 Asn Phe Il 280 Asn Phe Il 280 Phe Il 280 Asn Phe Il 280 Asn Phe Il 280 Asn																
180	Arg	Ser	Arg	Gln		Leu	Glu	Gly	Hįs		Leu	Ser	Glu	Ala	_	Glu
195 200 205	Leu	Val	Ala		Leu	Val	Arg	Gly		Ala	Asp	Gly	Ala		Leu	Asp
210 215 220 Leu Ser His Asn Glu Glu Phe Gly Arg Thr Val Gly Ala Gly Ser Leg 230 230 Phe Gly Arg Thr Val Gly Ala Gly Ala Gly Ser Leg 24 Val Asp Val Met Pro Trp Leu Gln Tyr Phe Pro Asn Pro Val Arg The 245 Trp Leu Gln Tyr Phe Pro Asn Pro Val Arg The 255 Val Phe Arg Glu Phe Glu Gln Leu Asn Asn Arg Asn Phe Ser Asn Phe Ille Leu Asp Lys Phe Leu Arg His Cys Glu Ser Leu Arg Pro Gly Ala Ala 285 Pro Arg Asp Met Met Asp Ala Phe Ille Leu Ser Ala Glu Lys Lys Ala 305 Ala Gly Asp Ser His Gly Gly Gly Ala Arg Leu Asp Leu Glu Asn Va 315 Ala Thr Ile Thr Asp Ile Phe Gly Ala Ser Gln Asp Thr Leu Ser 335 Thr Ala Leu Gln Trp Leu Leu Leu Leu Phe Thr Arg Tyr Pro Asp Va 345 Gln Thr Arg Val Gln Ala Glu Leu Asp Gln Val Val Gly Arg Asp Arg 365 Leu Pro Cys Met Gly Asp Gln Pro Asn Leu Pro Tyr Val Leu Ala Phe 370 Leu Tyr Glu Ala Met Arg Phe Ser Ser Phe Val Pro Val Thr Ile Pro 385 Asp Thr Val Val Phe Val Asn Gln Trp Ser Val Leu Gly Tyr His Ile Pro Ly 415 Asp Thr Val Val Phe Val Asn Gln Trp Ser Val Asn His Asp Pro Val 425 Trp Pro Asn Pro Glu Asn Phe Asp Pro Ala Arg Phe Leu Asp Leu Asp Leu Asp Cly Leu Ile Asn Lys Asp Leu Thr Ser Arg Val Met Ile Phe Ser Lys Met Gln Leu Asp Lys Asp Cly Leu Ile Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cly Leu Cly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cly Leu Cly Lys Arg Arg Cys Ile Gly Glu Glu Glu Leu Ser Lys Met Gln Leu Cly Lys Arg Arg Cys Ile Gly Glu Glu Glu Leu Ser Lys Met Gln Leu Cly Lys Arg Arg Cys Ile Gly Glu Glu Glu Leu Ser Lys Met Gln	Pro	Arg		Leu	Thr	Val	Val		Val	Ala	Asn	Val		Ser	Ala	Val
225 230 235 24 Val Asp Val Met Pro 245 Trp Leu Gln Tyr Phe Pro Asn Pro Val Arg Th 255 Pro Asn Pro Val Arg Th 255 Val Phe Arg Glu Phe Glu Gln Leu Asn Asn Arg Asn Phe Ser Asn Phe Illeu Asp Lys Phe Leu Arg His Cys Glu Ser Leu Arg Pro Gly Ala Al 285 Pro Arg Asp Met Met Asp Ala Phe Ille Leu Ser Ala Glu Lys Lys Al 300 Ala Gly Asp Ser His Gly Gly Gly Gly Ala Arg Leu Asp Leu Asp Leu Glu Asn Va 315 325 Pro Ala Thr Ille Thr Asp Ille Phe Gly Ala Ser Gln Asp Thr Leu Ser 335 335 Thr Ala Leu Gln Trp Leu Leu Leu Leu Leu Phe Thr Arg Tyr Pro Asp Va 345 360 Gln Thr Arg Val Gln Ala Glu Leu Asp Gln Val Val Gly Arg Asp Arg 350 365 Leu Pro Cys Met Gly Asp 390 Ser Ser Phe Val Pro Val Thr Ille Phe Arg 390 His Ala Thr Thr Ala Asn Thr Ser Val Leu Gly Tyr His Ille Pro Ly 405 Asp Thr Val Val Phe Val Asn Gln Trp Ser Val Asn His Asp Pro Val Ash Arg 420 Ley Trp Pro Asn Pro Glu Asn Phe Asp Pro Ala Arg Phe Leu Asp Ly 445 Asp Gly Leu Ile Asn Lys Asp Leu Thr Ser Arg Val Met Ile Phe Ser 450 Val Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Ser Lys Met Gln Leu Cyl Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cyl Lys Met Gln Leu Cyl Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cyl Lys Met Gln Leu Cyl Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cyl Lys Arg Arg Cys Ile Gly Glu Glu Glu Leu Ser Lys Met Gln Leu Cyl Lys Arg Arg Cys Ile Gly Glu Glu Cyl Leu Ser Lys Met Gln Leu Cyl Lys Arg Arg Cys Ile Gly Glu Glu Cyl	Cys		Gly	Cys	Arg	Tyr		His	Asp	Asp	Pro		Phe	Arg	Glu	Leu
Second S		Ser	His	Asn	Glu		Phe	Gly	Arg			Gly	Ala	Gly	Ser	Leu 240
Leu Asp Lys Phe Leu Arg His Cys Glu Ser Leu Arg Pro Gly Ala Al 285 Pro Arg Asp Met Met Asp Ala Phe Ile Leu Ser Ala Glu Lys Lys Al 305 Ala Gly Asp Ser His Gly Gly Gly Ala Arg Leu Asp Leu Glu Asn Va 315 Pro Ala Thr Ile Thr Asp Ile Phe Gly Ala Ser Gln Asp Thr Leu Ser 335 Thr Ala Leu Gln Trp Leu Leu Leu Leu Phe Thr Arg Tyr Pro Asp Va 350 Gln Thr Arg Val Gln Ala Glu Leu Asp Gln Val Val Gly Arg Asp Arg 370 Leu Pro Cys Met Gly Asp Gln Pro Asn Leu Pro Tyr Val Leu Ala Phe 370 Leu Tyr Glu Ala Met Arg Phe Ser Ser Phe Val Pro Val Thr Ile Pro 390 His Ala Thr Thr Ala Asn Thr Ser Val Leu Gly Tyr His Ile Pro Ly 415 Asp Thr Val Val Phe Val Asn Phe Asp Pro Ala Arg Phe Leu Asp Ly 435 Thy Ala Cly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cyal Gly Lys Arg Arg Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cyal Gly Lys Met Gln Leu Cyal Gly Lys Met Gln Leu Cyal Gly Lys Arg Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cyal Gly Lys Arg Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cyal Cyal Cyal Cyal Cyal Cyal Cyal Cyal	Val	Asp	Val	Met		Trp	Leu	Gln	Tyr		Pro	Asn	Pro	Val	_	Thr
275	Val	Phe	Arg		Phe	Glu	Gln	Leu		Arg	Asn	Phe	Ser		Phe	Ile
290 295 300 Ala Gly Asp Ser His Gly Gly Gly Ala Arg Leu Asp Leu Glu Asn Va 310 Pro Ala Thr Ile Thr Asp Ile Phe Gly Ala Ser Gln Asp Thr Leu Se 335 Thr Ala Leu Gln Trp Leu Leu Leu Leu Phe Thr Arg Tyr Pro Asp Va 340 Gln Thr Arg Val Gln Ala Glu Leu Asp Gln Val Val Gly Arg Asp Arg 365 Leu Pro Cys Met Gly Asp Gln Pro Asn Leu Pro Tyr Val Leu Ala Phe 370 Leu Tyr Glu Ala Met Arg Phe Ser Ser Phe Val Pro Val Thr Ile Pro 395 His Ala Thr Thr Ala Asn Thr Ser Val Leu Gly Tyr His Ile Pro Ly 405 Asp Thr Val Val Phe Val Asn Gln Trp Ser Val Asn His Asp Pro Val Asp Leu Asp Ly 435 Asp Gly Leu Ile Asn Lys Asp Leu Thr Ser Arg Val Met Ile Phe Ser Asp Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cyal Cyal Cys Met Gln Leu Cyal Cyal Cyal Cyal Cyal Cyal Cyal Cyal	Leu	Asp	_	Phe	Leu	Arg	His	_	Glu	Ser	Leu	Arg		Gly	Ala	Ala
305 310 315 32 Pro Ala Thr Ile Thr Asp Ile Phe Gly Ala Ser Gln Asp Thr Leu Ser 335 Thr Ala Leu Gln Trp Leu Leu Leu Leu Leu Phe Thr Arg Tyr Pro Asp Val 340 Gln Thr Arg Val Gln Ala Glu Leu Asp Gln Val Val Gly Arg Asp Arg 355 Leu Pro Cys Met Gly Asp Gln Pro Asn Leu Pro Tyr Val Leu Ala Phe 370 Leu Tyr Glu Ala Met Arg Phe Ser Ser Phe Val Pro Val Thr Ile Pro 385 Leu Tyr Glu Ala Asn Thr Ser Val Leu Gly Tyr His Ile Pro Ly 415 Asp Thr Val Val Phe Val Asn Gln Trp Ser Val Asn His Asp Pro Val 420 Lys Trp Pro Asn Pro Glu Asn Phe Asp Pro Ala Arg Phe Leu Asp Ly 445 Asp Gly Leu Ile Asn Lys Asp Leu Thr Ser Arg Val Met Ile Phe Ser 450 Val Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Leu Cly Lys Met Gln Leu Cly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cly Lys Met Cln Leu Cly Lys Arg Arg Cys Ile Cly Glu Glu Leu Ser Lys Met Gln Leu Cly Lys Met Cln Leu Cly Lys Arg Arg Cys Ile Cly Glu Glu Leu Ser Lys Met Cln Leu Cly Lys Met Cln Leu	Pro	-	Asp	Met	Met	Asp		Phe	Ile	Leu	Ser		Glu	Lys	Lys	Ala
335 336 335 347 348 348 349 349 349 349 349 349 349 349 349 349		Gly	Asp	Ser	His	_	Gly	Gly	Ala	Arg		Asp	Leu	Glu	Asn	Val 320
Gln Thr Arg Val Gln Ala Glu Leu Asp Gln Val Val Gly Arg Asp Arg 355 Leu Pro Cys Met Gly Asp Gln Pro Asn Leu Pro Tyr Val Leu Ala Pho 370 Leu Tyr Glu Ala Met Arg Phe Ser Ser Phe Val Pro Val Thr Ile Pro 385 His Ala Thr Thr Ala Asn Thr Ser Val Leu Gly Tyr His Ile Pro Ly 415 Asp Thr Val Val Phe Val Asn Gln Trp Ser Val Asn His Asp Pro Val Asp Pro Val 425 Lys Trp Pro Asn Pro Glu Asn Phe Asp Pro Ala Arg Phe Leu Asp Ly 435 Asp Gly Leu Ile Asn Lys Asp Leu Thr Ser Arg Val Met Ile Phe Ser 450 Val Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Ser Lys M	Pro	Ala	Thr	Ile		Asp	Ile	Phe	Gly		Ser	Gln	Asp	Thr		Ser
Leu Pro Cys Met Gly Asp Gln Pro Asn Leu Pro Tyr Val Leu Ala Pho 370 Leu Tyr Glu Ala Met Arg Phe Ser Ser Phe Val Pro Val Thr Ile Pro 385 His Ala Thr Thr Ala Asn Thr Ser Val Leu Gly Tyr His Ile Pro Ly 415 Asp Thr Val Val Phe Val Asn Gln Trp Ser Val Asn His Asp Pro Val 435 Lys Trp Pro Asn Pro Glu Asn Phe Asp Pro Ala Arg Phe Leu Asp Ly 435 Asp Gly Leu Ile Asn Lys Asp Leu Thr Ser Arg Val Met Ile Phe Ser 450 Val Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu	Thr	Ala	Leu		Trp	Leu	Leu	Leu		Phe	Thr	Arg	Tyr		Asp	Val
Leu Tyr Glu Ala Met Arg Phe Ser Ser Phe Val Pro Val Thr Ile Pro Ly 405 Asp Thr Val Val Phe Val Asn Gln Trp Ser Val Asn His Asp Pro Val Asp Ly 435 Asp Gly Leu Ile Asn Lys Asp Leu Thr Ser Arg Val Met Ile Phe Ser 450 Val Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leg	Gln	Thr		Val	Gln	Ala	Glu		Asp	Gln	Val	Val	-	Arg	Asp	Arg
His Ala Thr Thr Ala Asn Thr Ser Val Leu Gly Tyr His Ile Pro Ly 415 Asp Thr Val Val Phe Val Asn Gln Trp Ser Val Asn His Asp Pro Val 420 Lys Trp Pro Asn Pro Glu Asn Phe Asp Pro Ala Arg Phe Leu Asp Ly 435 Asp Gly Leu Ile Asn Lys Asp Leu Thr Ser Arg Val Met Ile Phe Ser 450 Val Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Let	Leu		Cys	Met	Gly	Asp		Pro	Asn	Leu	Pro	_	Val	Leu	Ala	Phe
Asp Thr Val Val Phe Val Asn Gln Trp Ser Val Asn His Asp Pro Val Asp Trp Pro Asn Pro Glu Asn Phe Asp Pro Ala Arg Phe Leu Asp Lyd Asp Gly Leu Ile Asn Lys Asp Leu Thr Ser Arg Val Met Ile Phe Ser Asp Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Val Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Val Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Val Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Val Gly Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Val Gly Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu Cys Ile Gly Glu Glu Glu Leu Ser Lys Met Gln Leu Cys Ile Gly Glu		Tyr	Glu	Ala	Met		Phe	Ser	Ser	Phe		Pro	Val	Thr	Ile	Pro 400
Lys Trp Pro Asn Pro Glu Asn Phe Asp Pro Ala Arg Phe Leu Asp Lys 435 Asp Gly Leu Ile Asn Lys Asp Leu Thr Ser Arg Val Met Ile Phe Ser 450 Val Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu	His	Ala	Thr	Thr		Asn	Thr	Ser	Val		Gly	Tyr	His	Ile		Lys
Asp Gly Leu Ile Asn Lys Asp Leu Thr Ser Arg Val Met Ile Phe Ser 450 Val Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Leu	Asp	Thr	Val		Phe	Val	Asn	Gln	_	Ser	Val	Asn	His		Pro	Val
450 455 460 Val Gly Lys Arg Arg Cys Ile Gly Glu Glu Leu Ser Lys Met Gln Le	Lys	Trp		Asn	Pro	Glu	Asn		Asp	Pro	Ala	Arg		Leu	Asp	Lys
	Asp		Leu	Ile	Asn	Lys	_	Leu	Thr	Ser			Met	Ile	Phe	Ser
		Gly	Lys	Arg	Arg			Gly	Glu	Glu		Ser	Lys	Met	Gln	Leu 480

Phe Leu Phe Ile Ser Ile Leu Ala His Gln Cys Asp Phe Arg Ala Asn 485 Pro Asn Glu Pro Ala Lys Met Asn Phe Ser Tyr Gly Leu Thr Ile Lys 500 505 Pro Lys Ser Phe Lys Val Asn Val Thr Leu Arg Glu Ser Met Glu Leu 520 Leu Asp Ser Ala Val Gln Asn Leu Gln Ala Lys Glu Thr Cys Gln 535 <210> 59 <211> 767 <212> PRT <213> Homo sapiens <400> 59 Met Ser Gln Arg Pro Arg Ala Pro Arg Ser Ala Leu Trp Leu Leu Ala Pro Pro Leu Leu Arg Trp Ala Pro Pro Leu Leu Thr Val Leu His Ser 25 . Asp Leu Phe Gln Ala Leu Leu Asp Ile Leu Asp Tyr Tyr Glu Ala Ser Leu Ser Glu Ser Gln Lys Tyr Arg Tyr Gln Asp Glu Asp Thr Pro Pro Leu Glu His Ser Pro Ala His Leu Pro Asn Gln Ala Asn Ser Pro Pro Val Ile Val Asn Thr Asp Thr Leu Glu Ala Pro Gly Tyr Glu Leu Gln Val Asn Gly Thr Glu Gly Glu Met Glu Tyr Glu Glu Ile Thr Leu Glu Arg Gly Asn Ser Gly Leu Gly Phe Ser Ile Ala Gly Gly Thr Asp Asn Pro His Ile Gly Asp Asp Pro Ser Ile Phe Ile Thr Lys Ile Ile Pro Gly Gly Ala Ala Ala Gln Asp Gly Arg Leu Arg Val Asn Asp Ser Ile Leu Phe Val Asn Glu Val Asp Val Arg Glu Val Thr His Ser Ala Ala Val Glu Ala Leu Lys Glu Ala Gly Ser Ile Val Arg Leu Tyr Val Met 185 Arg Arg Lys Pro Pro Ala Glu Lys Val Met Glu Ile Lys Leu Ile Lys 195

Gly Pro Lys Gly Leu Gly Phe Ser Ile Ala Gly Gly Val Gly Asn Gln

-117-

	210					215					220				
His 225	Ile	Pro	Gly	Asp	Asn 230	Ser	Ile	Tyr	Val	Thr 235	Lys	Ile	Ile	Glu	Gly 240
Gly	Ala	Ala	His	Lys 245	Asp	Gly	Arg	Leu	Gln 250	Ile	Gly	Asp	Lys	Ile 255	Leu
Ala	Val	Asn	Ser 260	Val	Gly	Leu	Glu	Asp 265	Val	Met	His	Glu	Asp 270	Ala	Val
Ala	Ala	Leu 275	Lys	Asn	Thr	Tyr	Asp 280	Val	Val	Tyr	Leu	Lys 285	Val	Ala	Lys
Pro	Ser 290	Asn	Ala	Tyr	Leu	Ser 295	Asp	Ser	Tyr	Ala	Pro 300	Pro	Asp	Ile	Thr
Thr 305	Ser	Tyr	Ser	Gln	His 310	Leu	Asp	Asn	Glu	Ile 315	Ser	His	Ser	Ser	Tyr 320
Leu	Gly	Thr	Asp	Tyr 325	Pro	Thr	Ala	Met	Thr 330	Pro	Thr	Ser	Pro	Arg 335	Arg
Tyr	Ser	Pro	Val 340	Ala	ГÀв	Asp	Leu	Leu 345	Gly	Glu	Glu	Asp	Ile 350	Pro	Arg
Glu	Pro	Arg 355	Arg	Ile	Val	Ile	His 360	Arg	Gly	Ser	Thr	Gly 365	Leu	Gly	Phe
Asn	Ile 370	Val	Gly	Gly	Glu	Asp 375	Gly	Glu	Gly	Ile	Phe 380	Ile	Ser	Phe	Ile
Leu 385	Ala	Gly	Gly	Pro	Ala 390	Asp	Leu	Ser	Gly	Glu 395	Leu	Arg	Lys	Gly	Asp 400
Gln	Ile	Leu	Ser	Val 405	Asn	Gly	Val	Asp	Leu 410	Arg	Asn	Ala	Ser	His 415	Glu
Gln	Ala	Ala	Ile 420	Ala	Leu	Lys	Asn	Ala 425	Gly	Gln	Thr	Val	Thr 430	Ile	Ile
Ala	Gln	Tyr 435	Lys	Pro	Glu	Glu	Tyr 440	Ser	Arg	Phe	Glu	Ala 445	Lys	Ile	
Asp	Leu 450	Arg	Glu	Gln	Leu	Met 455	Asn	Ser	Ser	Leu	Gly 460	Ser	Gly	Thr	Ala
Ser 465	Leu	Arg	Ser	Asn	Pro 470	Lys	Arg	Gly	Phe	Tyr 475	Ile	Arg	Ala	Leu	Phe 480
Asp	Tyr	Asp	Ьуs	Thr 485	Lys	Asp	Cys	Gly	Phe 490	Leu	Ser	Gln	Ala	Leu 495	Ser
Phe	Arg	Phe	Gly 500	Asp	Val	Leu	His	Val 505	Ile	Asp	Ala	Ser	Asp 510	Glu	Glu
Trp	Trp	Gln 515	Ala	Arg	Arg	Val	His 520	Ser	Asp	Ser	Glu	Thr 525	Asp	Asp	Ile
Gly	Phe	Ile	Pro	Ser	Гуs	Arg	Arg	Val	Glu	Arg	Arg	Glu	Trp	Ser	Arg

-118-

535 540 530 Leu Lys Ala Lys Asp Trp Gly Ser Ser Gly Ser Gln Gly Arg Glu 550 555 Asp Ser Val Leu Ser Tyr Glu Thr Val Thr Gln Met Glu Val His Tyr Ala Arg Pro Ile Ile Leu Gly Pro Thr Lys Asp Arg Ala Asn Asp 580 585 Asp Leu Leu Ser Glu Phe Pro Asp Lys Phe Gly Ser Cys Val Pro His 600 Thr Thr Arg Pro Lys Arg Glu Tyr Glu Ile Asp Gly Arg Asp Tyr His 615 Phe Val Ser Ser Arg Glu Lys Met Glu Lys Asp Ile Gln Ala His Lys 630 635 Phe Ile Glu Ala Gly Gln Tyr Asn Ser His Leu Tyr Gly Thr Ser Val 645 Gln Ser Val Arg Glu Val Ala Glu Gln Gly Lys His Cys Ile Leu Asp 665 Val Ser Ala Asn Ala Val Arg Arg Leu Gln Ala Ala His Leu His Pro Ile Ala Ile Phe Ile Arg Pro Arg Ser Leu Glu Asn Val Leu Glu Ile Asn Lys Arg Ile Thr Glu Glu Gln Ala Arg Lys Ala Phe Asp Arg Ala Thr Lys Leu Glu Glu Glu Phe Thr Glu Cys Phe Ser Ala Ile Val Glu 730 Gly Asp Ser Phe Glu Glu Ile Tyr His Lys Val Lys Arg Val Ile Glu Asp Leu Ser Gly Pro Tyr Ile Trp Val Pro Ala Arg Glu Arg Leu 760 <210> 60 <211> 367 <212> PRT<213> Homo sapiens <400> 60 Met Val Met Glu Val Gly Thr Leu Asp Ala Gly Gly Leu Arg Ala Leu Leu Gly Glu Arg Ala Ala Gln Cys Leu Leu Asp Cys Arg Ser Phe

Phe Ala Phe Asn Ala Gly His Ile Ala Gly Ser Val Asn Val Arg Phe

-119-

PCT/US01/24104

Ser	Thr 50	Ile	Val	Arg	Arg	Arg 55	Ala	Lys	Gly	Ala	Met 60	Gly	Leu	Glu	His
Ile 65	Val	Pro	Asn	Ala	Glu 70	Leu	Arg	Gly	Arg	Leu 75	Leu	Ala	Gly	Ala	Tyr 80
His	Ala	Val	Val	Leu 85	Leu	Asp	Glu	Arg	Ser 90	Ala	Ala	Leu	Asp	Gly 95	Ala
Lys	Arg	Asp	Gly 100	Thr	Leu	Ala	Leu	Ala 105	Ala	Gly	Ala	Leu	Cys 110	Arg	Glu
Ala	Arg	Ala 115	Ala	Gln	Val	Phe	Phe 120	Leu	ГÀथ	Gly	Gly	Tyr 125	Glu	Ala	Phe
Ser	Ala 130	Ser	Cys	Pro	Glu	Leu 135	Cys	Ser	Lys	Gln	Ser 140	Thr	Pro	Met	Gly
Leu 145	Ser	Leu	Pro	Leu	Ser 150	Thr	Ser	Val	Pro	Asp 155	Ser	Ala	Glu	Ser	Gly 160
Cys	Ser	Ser	Cys	Ser 165	Thr	Pro	Leu	Tyr	Asp 170	Gln	Gly	Gly	Pro	Val 175	Glu
Ile	Leu	Pro	Phe 180	Leu	Tyr	Leu	Gly	Ser 185	Ala	Tyr	His	Ala	Ser 190	Arg	Lys
Asp	Met	Leu 195	Asp	Ala	Leu	Gly	Ile 200	Thr	Ala	Leu	Ile	Asn 205	Val	Ser	Ala
Asn	Cys 210	Pro	Asn	His	Phe	Glu 215	Gly	His	Tyr	Gln	Tyr 220	Lys	Ser	Ile	Pro
Val 225	Glu	Asp	Asn	His	Lys 230	Ala	Asp	Ile		Ser 235	Trp	Phe	Asn	Glu	Ala 240
Ile	Asp	Phe	Ile :	Asp 245	Ser	Ile	Lys	Asn	Ala 250	Gly	Gly	Arg	Val	Phe 255	Val
His	Cys	Gln	Ala 260	Gly	Ile	Ser	Arg	Ser 265	Ala	Thr	Ile	Cys	Leu 270	Ala	Tyr
Leu	Met	Arg 275	Thr	Asn	Arg	Val	Lys 280	Leu 	Asp	Glu	Ala	Phe 285	Glu	Phę	Val
Lys	Gln 290	Arg	Arg	Ser	Ile	Ile 295	Ser	Pro	Asn	Phe	Ser 300	Phe	Met	Gly	Gln
Leu 305	Leu	Gln	Phe	Glu	Ser 310	Gln	Val	Leu	Ala	Pro 315	His	Cys	Ser	Ala	Glu 320
Ala	Gly	Ser	Pro	Ala 325	Met	Ala	Val	Leu	Asp 330	Arg	Gly	Thr	Ser	Thr 335	Thr
Thr	Val	Phe	Asn 340	Phe	Pro	Val	Ser	Ile 345	Pro	Val	His	Ser	Thr 350	Asn	Ser
Ala	Leu	Ser 355	Tyr	Leu	Gln	Ser	Pro 360	Ile	Thr	Thr	Ser	Pro 365	Ser	Cys	

<210> 61

<211> 345

<212> PRT <213> Homo sapiens

<400> 61

Met Ala Ala Glu Pro Ala Ser Ser Gly Gln Gln Ala Pro Ala Gly 10

Gln Gly Gln Gly Gln Arg Pro Pro Pro Gln Pro Pro Gln Ala Gln Ala 25

Pro Gln Pro Pro Pro Pro Gln Leu Gly Gly Ala Gly Gly Ser

Ser Arg His Glu Lys Ser Leu Gly Leu Leu Thr Thr Lys Phe Val Ser

Leu Leu Gln Glu Ala Lys Asp Gly Val Leu Asp Leu Lys Ala Ala Ala

Asp Thr Leu Ala Val Arg Gln Lys Arg Ile Tyr Asp Ile Thr Asn

Val Leu Glu Gly Ile Asp Leu Ile Glu Lys Lys Ser Lys Asn Ser Ile 105

Gln Trp Lys Gly Val Gly Ala Gly Cys Asn Thr Lys Glu Val Ile Asp

Arg Leu Arg Tyr Leu Lys Ala Glu Ile Glu Asp Leu Glu Leu Lys Glu 1.35

Arg Glu Leu Asp Gln Gln Lys Leu Trp Leu Gln Gln Ser Ile Lys Asn

Val Met Asp Asp Ser Ile Asn Asn Arg Phe Ser Tyr Val Thr His Glu 170

Asp Ile Cys Asn Cys Phe Asn Gly Asp Thr Leu Leu Ala Ile Gln Ala 180 185

Pro Ser Gly Thr Gln Leu Glu Val Pro Ile Pro Glu Met Gly Gln Asn 200

Gly Gln Lys Lys Tyr Gln Ile Asn Leu Lys Ser His Ser Gly Pro Ile 210 215

His Val Leu Leu Ile Asn Lys Glu Ser Ser Ser Lys Pro Val Val 230 , 235

Phe Pro Val Pro Pro Pro Asp Asp Leu Thr Gln Pro Ser Ser Gln Ser 245 250

Leu Thr Pro Val Thr Pro Gln Lys Ser Ser Met Ala Thr Gln Asn Leu 265

Pro Glu Gln His Val Ser Glu Arg Ser Gln Ala Leu Gln Gln Thr Ser 275 280 285

-121-

Ala Thr Asp Ile Ser Ser Gly 295 Ser Ile Ser Gly Asp Ile Ile Asp Glu 290 Met Ser Ser Asp Val Phe Pro Leu Leu Arg Leu Ser Pro Thr Pro 320

Ala Asp Asp Tyr Asn Phe Asn Leu Asp Asp Asp Glu Gly Val Cys Asp 335

PCT/US01/24104

Leu Phe Asp Val Gln Ile Leu Asn Tyr 340 345

<210> 62

<211> 427

WO 02/09573

<212> PRT

<213> Homo sapiens

<400> 62

Met Glu Thr Leu Cys Leu Arg Ala Ser Phe Trp Leu Ala Leu Val Gly
1 5 10 15

His Val Asp Asp Phe Thr Thr Phe Arg Gly Thr Glu Leu Ser Phe Leu 35 40 45

Val Thr Thr His Gln Pro Thr Asn Leu Val Leu Pro Ser Asn Gly Ser 50 55 60

Met His Asn Tyr Cys Pro Gln Gln Thr Lys Ile Thr Ser Ala Phe Lys 65 70 75 80

Tyr Ile Asn Thr Val Ile Ser Cys Thr Ile Phe Ile Val Gly Met Val 85 90 95

Gly Asn Ala Thr Leu Leu Arg Ile Ile Tyr Gln Asn Lys Cys Met Arg 100 . 105 110

Asn Gly Pro Asn Ala Leu Ile Ala Ser Leu Ala Leu Gly Asp Leu Ile 115 120 125

Tyr Val Val Ile Asp Leu Pro Ile Asn Val Phe Lys Leu Leu Ala Gly
130 135 140

Arg Trp Pro Phe Asp His Asn Asp Phe Gly Val Phe Leu Cys Lys Leu 145 150 155 160

Phe Pro Phe Leu Gln Lys Ser Ser Val Gly Ile Thr Val Leu Asn Leu 165 170 175

Cys Ala Leu Ser Val Asp Arg Tyr Arg Ala Val Ala Ser Trp Ser Arg 180 185 190

Val Gln Gly Ile Gly Ile Pro Leu Val Thr Ala Ile Glu Ile Val Ser 195 200 205

Ile Trp Ile Leu Ser Phe Ile Leu Ala Ile Pro Glu Ala Ile Gly Phe

-122-

210 215 220 Val Met Val Pro Phe Glu Tyr Arg Gly Glu Gln His Lys Thr Cys Met 230 235 Leu Asn Ala Thr Ser Lys Phe Met Glu Phe Tyr Gln Asp Val Lys Asp 245 250 Trp Trp Leu Phe Gly Phe Tyr Phe Cys Met Pro Leu Val Cys Thr Ala 265 Ile Phe Tyr Thr Leu Met Thr Cys Glu Met Leu Asn Arg Arg Asn Gly 280 Ser Leu Arg Ile Ala Leu Ser Glu His Leu Lys Gln Arg Arg Glu Val Ala Lys Thr Val Phe Cys Leu Val Val Ile Phe Ala Leu Cys Trp Phe Pro Leu His Leu Ser Arg Ile Leu Lys Lys Thr Val Tyr Asn Glu Met Asp Lys Asn Arg Cys Glu Leu Leu Ser Phe Leu Leu Met Asp Tyr Ile Gly Ile Asn Leu Ala Thr Met Asn Ser Cys Ile Asn Pro Ile Ala Leu Tyr Phe Val Ser Lys Lys Phe Lys Asn Cys Phe Gln Ser Cys Leu Cys Cys Cys Cys Tyr Gln Ser Lys Ser Leu Met Thr Ser Val Pro Met 395 Asn Gly Thr Ser Ile Gln Trp Lys Asn His Asp Gln Asn Asn His Asn Thr Asp Arg Ser Ser His Lys Asp Ser Met Asn <210> 63 <211> 405 <212> PRT <213> Homo sapiens <400> 63 Met Glu Arg Leu Gln Lys Gln Pro Leu Thr Ser Pro Gly Ser Val Ser Pro Ser Arg Asp Ser Ser Val Pro Gly Ser Pro Ser Ser Ile Val Ala Lys Met Asp Asn Gln Val Leu Gly Tyr Lys Asp Leu Ala Ala Ile Pro Lys Asp Lys Ala Ile Leu Asp Ile Glu Arg Pro Asp Leu Met Ile Tyr

-123-

Glu 65	Pro	His	Phe	Thr	Туг 70	Ser	Leu	Leu	Glu	His 75	Val	Glu	Leu	Pro	Arg 80
Gln	Arg	Glu	Arg	Ser 85	Leu	Ser	Pro	Lys	Ser 90	Thr	Ser	Pro	Pro	Pro 95	Ser
Pro	Glu	Val	Trp 100	Ala	Asp	Ser	Arg	Ser 105	Pro	Gly	Ile	Ile	Ser 110	Gln	Ala
Ser	Ala	Pro 115	Arg	Thr	Thr	Gly	Thr 120	Pro	Arg	Thr	Ser	Leu 125	Pro	His	Phe
His	His 130	Pro	Glu	Thr	Ser	Arg 135	Pro	Asp	Ser	Asn	Ile 140	Tyr	Lys	Lys	Pro
Pro 145	Ile	Tyr	Lys	Gln	Arg 150	Glu	Ser	Val	Gly	Gly 155	Ser	Pro	Gln	Thr	Lys 160
His	Leu	Ile	Glu	Asp 165	Leu	Ile	Ile	Glu	ser 170	Ser	Lys	Phe	Pro	Ala 175	Ala
Gln	Pro	Pro	Asp 180	Pro	Asn	Gln	Pro	Ala 185	Lys	Ile	Glu	Thr	Asp 190	Tyr	Trp
Pro	Cys	Pro 195	Pro	Ser	Leu	Ala	Val 200	Val	Glu	Thr	Glu	Trp 205	Arg	Lys	Arg
Lys	Ala 210	Ser	Arg	Arg	Gly	Ala 215	Glu	Glu	Glu	Glu	Glu 220	Glu	Glu	Asp	Asp
Asp 225	Ser	Gly	Glu	Glu	Met 230	Lys	Ala	Leu	Arg	Glu 235	Arg	Gln	Arg	Glu	Glu 240
Leu	Ser	Lys	Val	Thr 245	Ser	Asn	Leu	Gly	Lys 250	Met	Ile	Leu	Lys	Glu 255	Glu
Met	Glu	Lys	Ser 260	Leu	Pro	Ile	Arg	Arg 265	Lys	Thr	Arg	Ser	Leu 270	Pro	Asp
Arg	Thr	Pro 275	Phe	His	Thr	Ser	Leu 280	His	Gln	Gly	Thr	Ser 285	Lys	Ser	Ser
Ser	Leu 290	Pro	Arg	Tyr	Gly	Arg 295	Thr	Thr	Leu	Ser	Arg 300	Leu	Gln	Ser	Thr
Glu 305	Phe	Ser	Pro	Ser	Gly 310	Ser	Glu	Thr	Gly	Ser 315	Pro	Gly	Leu	Gln	Asn 320
Gly	Glu	Gly	Gln	Arg 325	Gly	Arg	Met	qaA	Arg 330	Gly	Asn	Ser	Leu	Pro 335	Cys
Val	Leu	Glu	Gln 340	Lys	Ile	Tyr	Pro	Tyr 345	Glu	Met	Leu	Val	Val 350	Thr	Asn
Lys	Gly	Arg 355	Thr	Lys	Leu	Pro	Pro 360	Gly	Val	Asp	Arg	Met 365	Arg	Leu	Glu
Arg	His 370	Leu	Ser	Ala	Glu	Asp 375	Phe	Ser	Arg	Val	Phe 380	Ala	Met	Ser	Pro

-124

Glu Glu Phe Gly Lys Leu Ala Leu Trp Lys Arg Asn Glu Leu Lys Lys 385 390 395 400

Lys Ala Ser Leu Phe 405

<210> 64

<211> 916

<212> PRT

<213> Homo sapiens

<400> 64

Met Glu Ser Gly Gln Pro Ala Arg Arg Ile Ala Met Ala Pro Leu Leu 1 5 10 15

Glu Tyr Glu Arg Gln Leu Val Leu Glu Leu Leu Asp Thr Asp Gly Leu 20 25 30

Val Val Cys Ala Arg Gly Leu Gly Ala Asp Arg Leu Leu Tyr His Phe 35 40 45

Leu Gln Leu His Cys His Pro Ala Cys Leu Val Leu Val Leu Asn Thr 50 55 60

Gln Pro Ala Glu Glu Glu Tyr Phe Ile Asn Gln Leu Lys Ile Glu Gly 65 70 75 80

Val Glu His Leu Pro Arg Arg Val Thr Asn Glu Ile Thr Ser Asn Ser 85 90 95

Arg Tyr Glu Val Tyr Thr Gln Gly Gly Val Ile Phe Ala Thr Ser Arg

Ile Leu Val Val Asp Phe Leu Thr Asp Arg Ile Pro Ser Asp Leu Ile 115 120 125

Thr Gly Ile Leu Val Tyr Arg Ala His Arg Ile Ile Glu Ser Cys Gln 130 135

Glu Ala Phe Ile Leu Arg Leu Phe Arg Gln Lys Asn Lys Arg Gly Phe 145 150 155 160

Ile Lys Ala Phe Thr Asp Asn Ala Val Ala Phe Asp Thr Gly Phe Cys 165 170 175

His Val Glu Arg Val Met Arg Asn Leu Phe Val Arg Lys Leu Tyr Leu 180 185 190

Trp Pro Arg Phe His Val Ala Val Asn Ser Phe Leu Glu Gln His Lys
195 200 205

Pro Glu Val Val Glu Ile His Val Ser Met Thr Pro Thr Met Leu Ala 210 215 220

Ile Gln Thr Ala Ile Leu Asp Ile Leu Asn Ala Cys Leu Lys Glu Leu 225 230 235 240

Lys Cys His Asn Pro Ser Leu Glu Val Glu Asp Leu Ser Leu Glu Asn 245 250 250

Ala Ile	Gly	Lys 260	Pro	Phe	Asp	Lys	Thr 265	Ile	Arg	His	Tyr	Leu 270	Asp	Pro
Leu Trp	His 275	Gln	Leu	Gly	Ala	Lys 280	Thr	Lys	Ser	Leu	Val 285	Gln	Asp	Leu
Lys Ile 290		Arg	Thr	Leu	Leu 295	Gln	Tyr	Leu	Ser	Gln 300	Tyr	Asp	Cys	Val
Thr Phe	Leu	Asn	Leu	Leu 310	Glu	Ser	Leu	Arg	Ala 315	Thr	Glu	Lys	Ala	Phe 320
Gly Gln	Asn	Ser	Gly 325	Trp	Leu	Phe	Leu	Asp 330	Ser	Ser	Thr	Ser	Met 335	Phe
Ile Asn	Ala	Arg 340	Ala	Arg	Val	Tyr	His 345	Leu	Pro	Asp	Ala	Lys 350	Met	Ser
Lys Lys	Glu 355	ГÀЗ	Ile	Ser	Glu	Lys 360	Met	Glu	Ile	Lys	Glu 365	Gly	Glu	Glu
Thr Lys		Glu	Leu	Val	Leu 375	Glu	Ser	Asn	Pro	180	Trp	Glu	Ala	Leu
Thr Glu 385	. Val	Leu	Lys	Glu 390	Ile	Glu	Ala	Glu	Asn 395	Lys	Glu	Ser	Glu	Ala 400
Leu Gly	Gly	Pro	Gly 405	Gln	Val	Leu	Ile	Cys 410	Ala	Ser	Asp	Asp	Arg 415	Thr
Cys Ser	Gln	Leu 420	Arg	Asp	Tyr	Ile	Thr 425	Leu	Gly	Ala	Glu	Ala 430	Phe	Leu
Leu Arg	Leu 435	Tyr	Arg	Lys	Thr	Phe 440	Glu	Lys	Asp	Ser	Lys 445	Ala	Glu	Glu
Val Trp 450		Lys	Phe	Arg	Lys 455	Glu	Asp	Ser	Ser	Lys 460	Arg	Ile	Arg	Lys
Ser His 465	Lys	Arg	Pro	Lys 470	Asp	Pro	Gln	Asn	Lys 475	Glu	Arg	Ala		480
Lys Glu	. Arg	Thr	Leu 485	Lys	Lys	Lys	Lys	Arg 490	Lуs	Leu	Thr	Leu	Thr 495	Gln
Met Val	Gly	Lys 500	Pro	Glu	Glu	Leu	Glu 505	Glu	Glu	Gly	Asp	Val 510	Glu	Glu
Gly Tyr	Arg 515	Arg	Glu	Ile	Ser	Ser 520	Ser	Pro	Glu	Ser	Cys 525	Pro	Glu	Glu
Ile Lys 530		Glu	Glu	Phe	Asp 535	Val	Asn	Leu	Ser	Ser 540	Asp	Ala	Ala	Phe
Gly Ile 545	Leu	Lys	Glu	Pro 550	Leu	Thr	Ile	Ile	His 555	Pro	Leu	Leu	Gly	Cys 560
Ser Asp	Pro	Tyr	Ala 565	Leu	Thr	Arg	Val	Leu 570	His	Glu	Val	Glu	Pro 575	Arg

Tyr	Val	Val	Leu 580	Tyr	Asp	Ala	Glu	Leu 585	Thr	Phe	Val	Arg	Gln 590	Leu	Glu
Ile	Tyr	Arg 595	Ala	Ser	Arg	Pro	Gly 600	Lys	Pro	Leu	Arg	Val 605	Tyr	Phe	Leu
Ile	Tyr 610	Gly	Gly	Ser	Thr	Glu 615	Glu	Gln	Arg	Tyr	Leu 620	Thr	Ala	Leu	Arg
Lys 625	Glu	Lys	Glu	Ala	Phe 630	Glu	Lys	Leu	Ile	Arg 635	Glu	Гуз	Ala	Ser	Met б40
Val	Val	Pro	Glu	Glu 645	Arg	Glu	Gly	Arg	Asp 650	Glu	Thr	Asn	Leu	Asp 655	Leu
Val	Arg	Gly	Thr 660	Ala	Ser	Ala	Asp	Val 665	Ser	Thr	Asp	Thr	Arg 670	Lys	Ala
Gly	Gly	Gln 675	Glu	Gln	Asn	Gly	Thr 680	Gln	Gln	Ser	Ile	Val 685	Val	Asp	Met
Arg	Glu 690	Phe	Arg	Ser	Glu	Leu 695	Pro	ser	Leu	Ile	His 700	Arg	Arg	Gly	Ile
Asp 705	Ile	Glu	Pro	Val	Thr 710	Leu	Glu	Val	Gly	Asp 715	Tyr	Ile	Leu	Thr	Pro 720
Glu	Met	Cys	Val	Glu 725	Arg	Lys	Ser	Ile	Ser 730	qaA	Leu	Ile	Gly	Ser 735	Leu
Asn	Asn	Gly	Arg 740	Leu	Tyr	Ser	Gln	Cys 745	Ile	Ser	Met	Ser	Arg 750	Tyr	Tyr
Lys	Arg	Pro 755	Val	Leu	Leu	Ile	Glu 760	Phe	Asp	Pro	Ser	Lys 765	Pro	Phe	Ser
Leu	Thr 770	Ser	Arg	Gly	Ala	Leu 775	Phe	Gln	Glụ	Ile	Ser 780	Ser	Asn	Asp	Ile
785			Leu		790					795				_	800
Leu	Trp	Cys	Pro	Ser 805	Pro	His	Ala	Thr	Ala 810	Glu	Leu	Phe	Glu	Glu. 815	Leu
Lys	Gln	Ser	Lys 820	Pro	Gln	Pro	Asp	Ala 825	Ala	Thr	Ala	Leu	Ala 830	Ile	Thr
Ala	Asp	Ser 835	Glu	Thr	Leu	Pro	Glu 840	Ser	Glu	Lys	Tyr	Asn 845	Pro	Gly	Pro
Gln	Asp 850	Phe	Leu	Leu	Lys	Met 855	Pro	Gly	Val	Asn	Ala 860	Lys	Asn	Cys	Arg
Ser 865	Leu	Met	His	His	Val 870	Lys	Asn	Ile	Ala	Glu 875	Leu	Ala	Ala	Leu	Ser 880
Gln	Asp	Glu	Leu	Thr 885	Ser	Ile	Leu	Gly	Asn 890	Ala	Ala	Asn	Ala	Lys 895	Gln

Leu Tyr Asp Phe Ile His Thr Ser Phe Ala Glu Val Val Ser Lys Gly
900 905 910

Lys Gly Lys Lys 915

<210> 65

<211> 297

<212> PRT

<213> Homo sapiens

<400> 65

Glu Phe Gly Ala Lys Ser Asn Gln Gln Leu Asp Arg Lys Arg Met Ala 1 5 10 15

Leu Lys Gln Ile Ser Ser Asn Lys Cys Phe Gly Gly Leu Gln Lys Val

Phe Glu His Asp Ser Val Glu Leu Asn Cys Lys Met Lys Phe Ala Val 35 40 45

Tyr Leu Pro Pro Lys Ala Glu Thr Gly Lys Cys Pro Ala Cys Ile Gly 50 55 60

Ser Pro Gly Leu Thr Cys Thr Glu Pro Lys Phe Tyr His Gln Asn Leu 65 70 75 80

Val Ile Ile Ser Leu Leu Gln Asn His Leu Ser Cys Cys His Cys Ser 85 90 95

Arg Tyr Ser Pro Arg Ala Cys Asn Ile Lys Gly Glu Asp Glu Ser Trp
100 105 110

Asp Phe Ala Thr Gly Arg Gly Phe Tyr Val Asp Ala Thr Glu Asp Pro 115 120 125

Trp Lys Thr Asn Tyr Arg Met Tyr Ser Tyr Val Thr Glu Glu Leu Pro 130 135 140

Gln Leu Ile Asn Ala Asn Phe Pro Val Asp Pro Gln Arg Met Ser Ile 145 150 155 160

Phe Gly His Ser Met Gly Gly His Gly Ala Leu Ile Cys Ala Leu Lys 165 170 175

Asn Pro Gly Lys Tyr Lys Ser Val Ser Ala Phe Ala Pro Ile Cys Asn 180 185 190

Pro Val Leu Cys Pro Trp Gly Lys Lys Ala Phe Ser Gly Tyr Leu Gly
195 200 205

Thr Asp Gln Ser Lys Trp Lys Ala Tyr Asp Ala Thr His Leu Val Lys 210 215 . 220

Ser Tyr Pro Gly Ser Gln Leu Asp Ile Leu Ile Asp Gln Gly Lys Asp 225 230 235

Asp Gln Phe Leu Leu Asp Gly Gln Leu Leu Pro Asp Asn Phe Ile Ala

-128-

245 250 255 Ala Cys Thr Glu Lys Lys Ile Pro Val Val Phe Arg Leu Gln Glu Gly Tyr Asp His Ser Tyr Tyr Phe Ile Ala Thr Phe Ile Thr Asp His Ile Arg His His Ala Lys Tyr Leu Asn Ala 295 <210> 66 <211> 756 <212> PRT <213> Homo sapiens <400> 66 Met Ser Pro Gln Lys Arg Val Lys Asn Val Gln Ala Gln Asn Arg Thr 5 10 Ser Gln Gly Ser Ser Ser Phe Gln Thr Thr Leu Ser Ala Trp Lys Val Lys Gln Asp Pro Ser Asn Ser Lys Asn Ile Ser Lys His Gly Gln Asn 40 Asn Pro Val Gly Asp Tyr Glu His Ala Asp Asp Gln Ala Glu Glu Asp Ala Leu Gln Met Ala Val Gly Tyr Phe Glu Lys Gly Pro Ile Lys Ala Ser Gln Asn Lys Asp Lys Thr Leu Glu Lys His Leu Lys Thr Val Glu Asn Val Ala Trp Lys Asn Gly Leu Ala Ser Glu Glu Ile Asp Ile Leu Leu Asn Ile Ala Leu Ser Gly Lys Phe Gly Asn Ala Val Asn Thr Arg 120 Ile Leu Lys Cys Met Ile Pro Ala Thr Val Ile Ser Glu Asp Ser Val 135 . 140 Val Lys Ala Val Ser Trp Leu Cys Val Gly Lys Cys Ser Gly Ser Thr Lys Val Leu Phe Tyr Arg Trp Leu Val Ala Met Phe Asp Phe Ile Asp Arg Lys Glu Gln Ile Asn Leu Leu Tyr Gly Phe Phe Phe Ala Ser Leu Gln Asp Asp Ala Leu Cys Pro Tyr Val Cys His Leu Leu Tyr Leu Leu 200 Thr Lys Lys Glu Asn Val Lys Pro Phe Arg Val Arg Lys Leu Leu Asp

-129-Leu Gln Ala Lys Met Gly Met Gln Pro His Leu Gln Ala Leu Leu Ser 225 230 . 235 Leu Tyr Lys Phe Phe Ala Pro Ala Leu Ile Ser Val Ser Leu Pro Val 250 245 Arg Lys Lys Ile Tyr Leu Gln Asn Ser Glu Asn Leu Trp Lys Thr Ala Leu Leu Ala Val Lys Gln Arg Asn Arg Gly Pro Ser Pro Glu Pro Leu 280 Lys Leu Met Leu Gly Pro Ala Asn Val Arg Pro Leu Lys Arg Lys Trp Asn Ser Leu Ser Val Ile Pro Val Leu Asn Ser Ser Ser Tyr Thr Lys 310 315 Glu Cys Gly Lys Lys Glu Met Ser Leu Ser Asp Cys Leu Asn Arg Ser 330 Gly Ser Phe Pro Leu Glu Glu Leu Gln Ser, Phe Pro Gln Leu Leu Gln 345 Asn Ile His Cys Leu Glu Leu Pro Ser Gln Met Gly Ser Val Leu Asn Asn Ser Leu Leu His Tyr Ile Asn Cys Val Arg Asp Glu Pro Val Leu Leu Arg Phe His Tyr Trp Leu Ser Gln Thr Leu Gln Glu Glu Cys Ile Trp Tyr Lys Val Asn Asn Tyr Glu His Gly Lys Glu Phe Thr Asn 405 410 Phe Leu Asp Thr Ile Ile Arg Ala Glu Cys Phe Leu Gln Glu Gly Tyr 425 420 Tyr Ser Cys Glu Ala Phe Leu Tyr Lys Ser Leu Pro Leu Trp Asp Gly 440 Leu Ser Cys Arg Ser Gln Phe Leu Gln Leu Val Ser Trp Ile Pro Phe 455 460 Ser Ser Phe Ser Glu Val Lys Pro Leu Leu Phe Asp His Leu Ala Gln 470 475 Leu Phe Phe Thr Ser Thr Ile Tyr Phe Lys Cys Ser Val Leu Gln Ser 490 Leu Lys Glu Leu Leu Gln Asn Trp Leu Leu Trp Leu Ser Met Asp Ile 505 His Met Lys Pro Val Thr Asn Ser Pro Leu Glu Thr Thr Leu Gly Gly 520 Ser Met Asn Cys Val Ser Lys Leu Ile His Tyr Val Gly Trp Leu Ser

-130-

Thr Thr Ala Met Arg Leu Glu Ser Asn Asn Thr Phe Leu Leu His Phe Ile Leu Asp Phe Tyr Glu Lys Val Cys Asp Ile Tyr Ile Asn Tyr Asp 570 Leu Pro Leu Val Val Leu Phe Pro Pro Gly Ile Phe Tyr Ser Ala Leu 580 Leu Ser Leu Asp Thr Ser Ile Leu Asn Gln Leu Cys Phe Ile Met His 600 Arg Tyr Arg Lys Asn Leu Thr Ala Ala Lys Lys Asn Glu Leu Val Gln 615 , 620 Lys Thr Lys Ser Glu Phe Asn Phe Ser Ser Lys Thr Tyr Gln Glu Phe 630 635 Asn Tyr Tyr Leu Thr Ser Met Val Gly Cys Leu Trp Thr Ser Lys Pro Phe Ala Lys Gly Ile Tyr Ile Asp Pro Glu Ile Leu Glu Lys Thr Gly 665 Val Ala Glu Tyr Lys Asn Ser Leu Asn Val Val His His Pro Ser Phe Leu Ser Tyr Ala Val Ser Phe Leu Leu Gln Glu Ser Pro Glu Glu Arg Thr Val Asn Val Ser Ser Ile Arg Gly Lys Lys Trp Ser Trp Tyr Leu 710 Asp Tyr Leu Phe Ser Gln Gly Leu Gln Gly Leu Lys Leu Phe Ile Arq Ser Ser Val His His Ser Ser Ile Pro Arg Ala Glu Gly Ile Asn Cys 740 Asn Asn Gln Tyr 755 <210> 67 <211> 504 <212> PRT <213> Homo sapiens <400> 67 Met Glu Ala Pro Leu Gln Thr Glu Met Val Glu Leu Val Pro Asn Gly Lys His Ser Glu Gly Leu Leu Pro Val Ile Thr Pro Met Ala Gly Asn 20 Gln Arg Val Glu Asp Pro Ala Arg Ser Cys Met Glu Gly Lys Ser Phe

Leu Gln Lys Ser Pro Ser Lys Glu Pro His Phe Thr Asp Phe Glu Gly

55

WO 02/09573

-131-

Lys 65	Thr	Ser	Phe	Gly	Met 70	Ser	Val	Phe	Asn	Leu 75	Ser	Asn	Ala	Ile	Met 80
Gly	Ser	Gly	Ile	Leu 85	Gly	Leu	Ala	Tyr	Ala 90	Me _. t	Ala	Asn	Thr	Gly 95	Ile
Ile	Leu	Phe	Leu 100	Phe	Leu	Leu	Thr	Ala 105	Val	Ala	Leu	Leu	Ser 110	Ser	Tyr
Ser	Ile	His 115	Leu	Leu	Leu	Lys	Ser 120	Ser	Gly	Val	Val	Gly 125	Ile	Arg	Ala
Tyr	Glu 130	Gln	Leu	Gly	Tyr	Arg 135	Ala	Phe	Gly	Thr	Pro 140	Gly	Lys	Leu	Ala
Ala 145	Ala	Leu	Ala	Ile	Thr 150	Leu	Gln	Asn	Ile	Gly 155	Ala	Met	Ser	Ser	Tyr 160
Leu	Tyr	Ile	Ile	Lys 165	Ser	Glu	Leu	Pro	Leu 170	Val	Ile	Gln	Thr	Phe 175	Leu
Asn	Leu	Glu	Glu 180	Lys	Thr	Ser	Asp	Trp 185	Tyr	Met	Asn	Gly	Asn 190	Tyr	Leu
Val	Ile	Leu 195	Val	Ser	Val	Thr	Ile 200	Ile	Leu	Pro	Leu	Ala 205	Leu	Met	Arg
Gln	Leu 210	Gly	Tyr	Leu	Gly	Tyr 215	Ser	Ser	Gly	Phe	Ser 220	Leu	Ser	Cys	Met
Val 225	Phe	Phe	Leu	Ile	Ala 230	Val	Ile	Tyr	Lys	Lys 235	Phe	His	Val	Pro	Cys 240
Pro	Leu	Pro	Pro	Asn 245	Phe	Asn	Asn	Thr	Thr 250	Gly	Asn	Phe	Ser	His 255	Val
Glu	Ile	Val	Lys 260	Glu	Lys	Val	Gln	Leu 265	Gln	Val	Glu	Pro	Glu 270	Ala	Ser
Ala	Phe	Cys 275	Thr	Pro	Ser	Tyr	Phe 280	Thr	Leu	Asn	Ser	Gln 285	Thr	Ala	Tyr
Thr	Ile 290	Pro	Ile	Met	Ala	Phe 295	Ala	Phe	Val	Cys	His 300	Pro	Glu	Val	Leu
Pro 305	Ile	Tyr	Thr	Glu	Leu 310	Lys	Asp	Pro	Ser	Lys 315	Lys	Lys	Met	Gln	His 320
Ile	Ser	Asn	Leu	Ser 325	Ile	Ala	Val	Met	Tyr 330	Ile	Met	Tyr	Phe	Leu 335	Ala
Ala	Leu	Phe	Gly 340	Tyr	Leu	Thr	Phe	Tyr 345	Asn	Gly	Val	Glu	Ser 350	Glu	Leu
Leu	His	Thr 355	Tyr	Ser	Lys	Val	Asp 360	Pro	Phe	Asp	Val	Leu 365	Ile	Leu	Cys
Val	Arg	Val	Ala	Val	Leu	Thr	Ala	Val	Thr	Leu	Thr	Val	Pro	Ile	Val

WO 02/09573

-132-

PCT/US01/24104

Leu Phe Pro Val Arg Arg Ala Ile Gln Gln Met Leu Phe Pro Asn Gln 390

Glu Phe Ser Trp Leu Arg His Val Leu Ile Ala Val Gly Leu Leu Thr 405

Cys Ile Asn Leu Leu Val Ile Phe Ala Pro Asn Ile Leu Gly Ile Phe 425

Gly Val Ile Gly Ala Thr Ser Ala Pro Phe Leu Ile Phe Ile Pho Pro

Ala Ile Phe Tyr Phe Arg Ile Met Pro Thr Glu Lys Glu Pro Ala Arg 455

Ser Thr Pro Lys Ile Leu Ala Leu Cys Phe Ala Met Leu Gly Phe Leu

Leu Met Thr Met Ser Leu Ser Phe Ile Ile Ile Asp Trp Ala Ser Gly 485 490

Thr Ser Arg His Gly Gly Asn His 500

<210> 68

<211> 145 <212> PRT

<213> Homo sapiens

<400> 68

Met Ala Thr Trp Ala Leu Leu Leu Ala Ala Met Leu Leu Gly Asn

Pro Gly Leu Val Phe Ser Arg Leu Ser Pro Glu Tyr Tyr Asp Leu Ala

Arg Ala His Leu Arg Asp Glu Glu Lys Ser Cys Pro Cys Leu Ala Gln

Glu Gly Pro Gln Gly Asp Leu Leu Thr Lys Thr Gln Glu Leu Gly Arg

Asp Tyr Arg Thr Cys Leu Thr Ile Val Gln Lys Leu Lys Lys Met Val 70

Asp Lys Pro Thr Gln Arg Ser Val Ser Asn Ala Ala Thr Arg Val Cys

Arg Thr Gly Arg Ser Arg Trp Arg Asp Val Cys Arg Asn Phe Met Arg 100

Arg Tyr Gln Ser Arg Val Ile Gln Gly Leu Val Ala Gly Glu Thr Ala 120

Gln Gln Ile Cys Glu Asp Leu Arg Leu Cys Ile Pro Ser Thr Gly Pro 135

Leu

-133-

145

<210> 69

<211> 128

<212> PRT

<213> Homo sapiens

<400> 69

Met Trp Ser Thr Arg Ser Pro Asn Ser Thr Ala Trp Pro Leu Ser Leu 1 5 10 15

Glu Pro Asp Pro Gly Met Ala Ser Ala Ser Thr Thr Met His Thr Thr 20 25 30

Thr Ile Ala Glu Pro Asp Pro Gly Met Ser Gly Trp Pro Asp Gly Arg
35 40 45

Met Glu Thr Ser Thr Pro Thr Ile Met Asp Ile Val Val Ile Ala Gly 50 55 60

Val Ile Ala Ala Val Ala Ile Val Leu Val Ser Leu Leu Phe Val Met 65 70 75 80

Leu Arg Tyr Met Tyr Arg His Lys Gly Thr Tyr His Thr Asn Glu Ala 85 90 95

Lys Gly Thr Glu Phe Ala Glu Ser Ala Asp Ala Ala Leu Gln Gly Asp 100 105 110

Pro Ala Leu Gln Asp Ala Gly Asp Ser Ser Arg Lys Glu Tyr Phe Ile 115 120 125

<210> 70

<211> 4861

<212> PRT

<213> Homo sapiens

<400> 70

Met Ala Thr Met Ile Pro Pro Val Lys Leu Lys Trp Leu Glu His Leu 1 5 10 15

Asn Ser Ser Trp Ile Thr Glu Asp Ser Glu Ser Ile Ala Thr Arg Glu 20 25 30

Gly Val Ala Val Leu Tyr Ser Lys Leu Val Ser Asn Lys Glu Val Val 35 40 45

Pro Leu Pro Gln Gln Val Leu Cys Leu Lys Gly Pro Gln Leu Pro Asp 50 55 60

Phe Glu Arg Glu Ser Leu Ser Ser Asp Glu Gln Asp His Tyr Leu Asp 65 70 75 80

Ala Leu Leu Ser Ser Gln Leu Ala Leu Ala Lys Met Val Cys Ser Asp 85 90 95

Ser Pro Phe Ala Gly Ala Leu Arg Lys Arg Leu Leu Val Leu Gln Arg

Val Phe Tyr Ala Leu Ser Asn Lys Tyr His Asp Lys Gly Lys Val Lys Gln Gln His Ser Pro Glu Ser Ser Gly Ser Ala Asp Val His 1.35 Ser Val Ser Glu Arg Pro Arg Ser Ser Thr Asp Ala Leu Ile Glu Met 150 155 Gly Val Arg Thr Gly Leu Ser Leu Leu Phe Ala Leu Leu Arg Gln Ser Trp Met Met Pro Val Ser Gly Pro Gly Leu Ser Leu Cys Asn Asp Val 185 Ile His Thr Ala Ile Glu Val Val Ser Ser Leu Pro Pro Leu Ser Leu 200 Ala Asn Glu Ser Lys Ile Pro Pro Met Gly Leu Asp Cys Leu Ser Gln Val Thr Thr Phe Leu Lys Gly Val Thr Ile Pro Asn Ser Gly Ala Asp Thr Leu Gly Arg Arg Leu Ala Ser Glu Leu Leu Leu Gly Leu Ala Ala 250 Gln Arg Gly Ser Leu Arg Tyr Leu Leu Glu Trp Ile Glu Met Ala Leu 265 Gly Ala Ser Ala Val Val His Thr Met Glu Lys Gly Lys Leu Leu Ser 280 Ser Gln Glu Gly Met Ile Ser Phe Asp Cys Phe Met Thr Ile Leu Met 295 Gln Met Arg Arg Ser Leu Gly Ser Ser Ala Asp Arg Ser Gln Trp Arg 310 315 Glu Pro Thr Arg Thr Ser Asp Gly Leu Cys Ser Leu Tyr Glu Ala Ala Leu Cys Leu Phe Glu Glu Val Cys Arg Met Ala Ser Asp Tyr Ser Arg Thr Cys Ala Ser Pro Asp Ser Ile Gln Thr Gly Asp Ala Pro Ile Val 360 Ser Glu Thr Cys Glu Val Tyr Val Trp Gly Ser Asn Ser Ser His Gln Leu Val Glu Gly Thr Gln Glu Lys Ile Leu Gln Pro Lys Leu Ala Pro Ser Phe Ser Asp Ala Gln Thr Ile Glu Ala Gly Gln Tyr Cys Thr Phe Val Ile Ser Thr Asp Gly Ser Val Arg Ala Cys Gly Lys Gly Ser Tyr 425

Gly	Arg	Leu 435	Gly	Leu	Gly	Asp	Ser 440	Asn	Asn	Gln	Ser	Thr 445	Leu	Lys	Lys
Leu	Thr 450	Phe	Glu	Pro	His	Arg 455	Ser	Ile	Lys	Lys	Val 460	Ser	Ser	Ser	Lys
Gly 465	Ser	Asp	Gly	His	Thr 470	Leu	Ala	Phe	Thr	Thr 475	Glu	Gly	Glu	Val	Phe 480
Ser	Trp	Gly	Asp	Gly 485	Asp	Tyr	Gly	Lys	Leu 490	Gly	His	Gly	Asn	Ser 495	Ser
Thr	Gln	Lys	Tyr 500	Pro	Lys	Leu	Ile	Gln 505	Gly	Pro	Leu	Gln	Gly 510	Lys	Val
Val	Vaļl	Cys 515	Val	Ser	Ala	Gly	Tyr 520	Arg	His	Ser	Ala	Ala 525	Val	Thr	Glu
Asp	Gly 530	Glu	Leu	Tyr	Thr	Trp 535	Gly	Glu	Gly	Asp	Phe 540	Gly	Arg	Leu	Gly
His 545	Gly	Asp	Ser	Asn	Ser 550	Arg	Asn	Ile	Pro	Thr 555	Leu	Val	Lys	Asp	Ile 560
Ser	Asn	Val	Gly	Glu 565	Val	Ser	Cys	Gly	Ser 570	Ser	His	Thr	Ile	Ala 575	Leu
Ser	Lys	Asp	Gly 580	Arg	Thr	Val	Trp	Ser 585	Phe	Gly	Gly	Gly	Asp 590	Asn	Gly
Lys	Leu	Gly 595	His	Gly	Asp	Thr	Asn 600	Arg	Val	Tyr	Lys	Pro 605	Lys	Val	Ile
Glu	Ala 610	Leu	Gln	Gly	Met	Phe 615	Ile	Arg	ГÀЗ	Val	Cys 620	Ala	Gly	Ser	Gln
Ser 625	Ser	Leu	Ala	Leu	Thr 630	Ser	Thr	Gly	Gln	Val 635	Tyr	Ala	Trp	Gly	Cys 640
Gly	Ala	Cys	Leu	Gly 645	Cys	Gly	Ser	Ser	Glu 650	Ala	Thr	Ala	Leu	Arg 655	Pro
Lys	Leu	Ile	Glu 660	Glu	Leu	Ala	Ala	Thr 665	Arg	Ile	Val	Asp	Val 670	Ser.	lle
Gly	Asp	Ser 675	His	Сув	Leu	Ala	Leu 680	Ser	His	Asp	Asn	Glu 685	Val	Tyr	Ala
Trp	Gly 690	Asn	Asn	Ser	Met	Gly 695	Gln	Cys	Gly	Gln	Gly 700	Asn	Ser	Thr	Gly
Pro 705	Ile	Thr	Lys	Pro	Lуs 710	Lys	Val	Ser	Gly	Leu 715	Asp	Gly	Ile	Ala	Ile 720
Gln	Gln	Ile	Ser	Ala 725	Gly	Thr	Ser	Hís	Ser 730	Leu	Ala	Trp	Thr	Ala 735	Leu
Pro	Arg	Asp	Arg 740	Gln	Val	Val	Ala	Trp 745	His	Arg	Pro	Tyr	Сув 750	Val	Asp

Leu	Glu	Glu 755	Ser	Thr	Phe	Ser	His 760	Leu	Arg	Ser	Phe	Leu 765	Glu	Arg	Tyr
Cys	Asp 770	Lys	Ile	Asn	Ser	Glu 775	Ile	Pro	Pro	Leu	Pro 780	Phe	Pro	Ser	Ser
Arg 785	Glu	His	His	Ser	Phe 790	Leu	Lys	Leu	Cys	Leu 795	Lys	Leu	Leu	Ser	Asn 800
His	Leu	Ala	Leu	Ala 805	Leu	Ala	Gly	Gly	Val 810	Ala	Thr	Ser	Ile	Leu 815	Gly
Arg	Gln	Ala	Gly 820	Pro	Leu	Arg	Asn	Leu 825	Leu	Phe	Arg	Leu	Met 830	Asp	Ser
Thr	Val	Pro 835	Asp	Glu	Ile	Gln	Glu 840	Val	Val	Ile	Glu	Thr 845	Leu	Ser	Val
Gly	Ala 850	Thr	Met	Leu	Leu	Pro 855	Pro	Leu	Arg	Glu	Arg 860	Met	Glu	Leu	Leu
His 865	Ser	Leu	Leu	Pro	Gln 870	Gly	Pro	Asp	Arg	Trp 875	Glu	Ser	Leu	Ser	Lys 880
Gly	Gln	Arg	Met	Gln 885	Leu	Asp	Ile	Ile	Leu 890	Thr	Ser	Leu	Gln	Asp 895	His
Thr	His	Val	Ala 900	Ser	Leu	Leu	Gly	Tyr 905	Ser	Ser	Pro	Ser	Asp 910	Ala	Ala
Asp	Leu	Ser 915	Ser	Val	Сув	Thr	Gly 920	Tyr	Gly	Asn	Leu	Ser 925	Asp	Gln	Pro
Tyr	Gly 930	Thr	Gln	Ser	Cys	His 935	Pro	Asp	Thr	His	Leu 940	Ala	Glu	Ile	Leu
Met 945	Lys	Thr	Leu	Leu	Arg 950	Asn	Leu	Gly	Phe	Tyr 955	Thr	Asp	Gln	Ala	Phe 960
Gly	Glu	Leu	Glu	Lys 965	Asn	Ser	Asp	Lys	Phe 970	Leu	Leu	Gly	Thr	Ser 975	Ser
Ser	Glu	Asn	Ser 980	Gln	Pro	Ala	His	Leu 985	His	Glu	Leu	Leu	Cys 990	ser	Leu
Gln	Lys	Gln 995	Leu	Leu	Ala	Phe	Cys		s Il	e As:	n Ası	n Il		er G	lu Ası
Ser	Ser 101		r Va	l Ala	a Lei	и Le [.] 10	u H: 15	is L	As Ĥ	is L		ln :	Leu	Leu	Leu
Pro	His 102		a Th	r As	p Il	е Ту 10	r S	er A	rg S	er A		sn :	Leu	Leu	Lys
Glu	Ser 104		o Tr	p As:	n Gl	y Se	r Va 45	al'G	ly G	lu L		eu . 050	Arg	Asp	Val
Ile	Tyr		l Se	r Al	a Al	a Gl	y S	er M	et L	eu C	_	ln	Ile	Val .	Asn

Ser	Leu 1070	Leu	Leu	Leu	Pro	Val 1075	Ser	Val	Ala	Arg	Pro 1080	Leu	Leu	Ser
Tyr	Leu 1085	Leu	Asp	Leu	Leu	Pro 1090	Pro	Leu	Asp	Cys	Leu 1095	Asn	Arg	Leu
Leu	Pro 1100	Ala	Ala	Asp	Leu	Leu 1105	Glu	Asp	Gln	Glu	Leu 1110	Gln	Trp	Pro
Leu	His 1115	Gly	Gly	Pro	Glu	Leu 1120	Ile	Asp	Pro	Ala	Gly 1125	Leu	Pro	Leu
Pro	Gln 1130	Pro	Ala	Gln	Ser	Trp 1135	Val	Trp	Leu	Val	Asp 1140	Leu	Glu	Arg
Thr	Ile 1145	Ala	Leu	Leu	Ile	Gly 1150	Arg	Cys	Leu	Gly	Gly 1155	Met	Leu	Gln
Gly	ser 1160		Val	Ser	Pro	Glu 1165		Gln	Asp	Thr	Ala 1170	_	Trp	Met
Lys	Thr 1175	Pro	Leu	Phe	Ser	Asp 1180	Gly	Val	Gļu	Met	Asp 1185	Thr	Pro	Gln
Leu	Asp 1190	_	Cys	Met	Ser	Cys 1195	Leu	Leu	Glu	Val	Ala 1200	Leu	Ser	Gly
Asn	Glu 1205	Glu	Gln	Lys	Pro	Phe 1210	Asp	Tyr	Lys	Leu	Arg 1215	Pro	Glu	Ile
Ala	Val 1220	•	Val	Asp	Leu	Ala 1225	Leu	Gly	Cys	Ser	Lys 1230	Glu	Pro	Ala
Arg	Ser 1235		Trp	Ile	Ser	Met 1240		Asp	Ţyr	Ala	Val 1245	Ser	Lys	Asp
Trp	Asp 1250		Ala	Thr	Leu	Ser 1255	Asn	Glu	Ser	Leu	Leu 1260	Asp	Thr	Val
Ser	Arg 1265		Val	Leu	Ala	Ala 1270	Leu	Leu	Lys	His	Thr 1275	Asn	Leu	Leu
Ser	Gln 1280		Cys	Gly	Glu	Ser 1285	Arg	Ţyr	Gln	Pro	Gly 1290	Lys	His	Leu
ser	Glu 1295		Tyr	Arg	Cys	Val 1300		Lys	Val	Arg	Ser 1305		Leu	Leu
Ala	Cys 1310	_	Asn	Leu	Glu	Leu 1315		Gln	Thr	Arg	Ser 1320		Ser	Arg
Asp	Arg 1325		Ile	Ser	Glu	Asn 1330		Asp	Ser	Ala	Asp 1335		Asp	Pro
Gln	Glu 1340			Phe	Thr	Arg 1345		·Ile	Asp	'Glu	Glu 1350	Ala	Glu	Met
Glu	Glu 1355		Ala	Glu	Arg	Asp 1360		Glu	Glu	Gly	His 1365		Glu	Pro

Q1	_													
GIU	1370	Glu	Glu	Glu	Glu	Arg 1375	Glu	His	Glu	Val	Met 1380	Thr	Ala	Ġly
Lys	Ile 1385	Phe	Gln	Cys	Phe	Leu 1390	Ser	Ala	Arg	Glu	Val 1395	Ala	Arg	Ser
Arg	Asp 1400	Arg	Asp	Arg	Met	Asn 1405	Ser	Gly	Ala	Gly	Ser 1410	Gly	Ala	Arg
Ala	Asp 1415	Asp	Pro	Pro	Pro	Gln 1420	Ser	Gln	Gln	Glu	Arg 1425	Arg	Val	Ser
Thr	Asp 1430	Leu	Pro	Glu	Gly	Gln 1435	Asp	Val	Tyr	Thr	Ala 1440	Ala	Сув	Asn
Ser	Val 1445	Ile	His	Arg	Cys	Ala 1450	Leu	Leu	Ile	Leu	Gly 1455	Val	Ser	Pro
Val	Ile 1460	Asp	Glu	Leu	Gln	Lys 1465	Arg	Arg	Glu	Glu	Gly 1470	Gln	Leu	Gln
Gln	Pro 1475	Ser	Thr	Ser	Ala	Ser 1480	Glu	Gly	Gly	Gly	Leu 1485	Met	Thr	Arg
Ser	Glu 1490	Ser	Leu	Thr	Ala	Glu 1495	Ser	Arg	Leu	Val	His 1500	Thr	Ser	Pro
Asn	Tyr 1505	Arg	Leu	Ile	Lys	Ser 1510	Arg	Ser	Glu	Ser	Asp 1515	Leu	Ser	Gln
Pro	Glu 1520	Ser	Asp	Glu	Glu	Gly 1525	Tyr	Ala	Leu	Ser	Gly 1530	Arg	Gln	Asn
Val	Asp 1535	Leu	Asp	Leu	Ala	Ala 1540	Ser	His	Arg	Lys	Arg 1545	Gly	Pro	Met
His	Ser 1550	Gln	Leu	Glu	ser	Leu 1555	Ser	Asp	Ser	Trp	Ala 1560	Arg	Leu	Lys
His	Ser 1565	Arg	Asp	Trp	Leu	Cys 1570	Asn	Ser	Ser ,	Tyr	Ser 1575	Phe	Glu	Ser
Asp	Phe 1580	Asp	Leu	Thr	Lys	Ser 1585	Leu	Gly	Val	His	Thr 1590	Leu	Ile	Ġlu
Asn	Val 1595	Val	Ser	Phe	Val	Ser 1600	Gly	Asp	Val	Gly	Asn 1605	Ala	Pro	Gly
Phe	Lys 1610	Glu	Pro	Glu	Glu	Ser 1615	Met	Ser	Thr	Ser	Pro 1620	Gln	Ala	Ser
Ile	Ile 1625	Ala	Met	Glu	Gln	Gln 1630	Gln	Leu	Arg	Ala	Glu 1635	Leu	Arg	Leu
Glu	Ala 1640	Leu	His	Gln	Ile	Leu 1645	Val	Leu	Leu	Ser	Gly 1650	Met	Glu	Glu
Lys	Gly 1655	Ser	Ile	Ser	Leu	Ala 1660	Gly	Ser	Arg	Leu	Ser 1665	Ser	Gly	Phe

_														
Gln	Ser 1670	Ser	Thr	Leu	Leu	Thr 1675	Ser	Val	Arg	Leu	Gln 1680	Phe	Leu	Ala
Gly	Cys 1685	Phe	Gly	Leu	Gly	Thr 1690	Val	Gly	His	Thr	Gly 1695	Ala	Lys	Gly
Glu	Ser 1700	Gly	Arg	Leu	His	His 1705	Tyr	Gln	qaA	Gly	Ile 1710	Arg	Ala	Ala
Lys	Arg 1715	Asn	Ile	Gln	Ile	Glu 1720	Ile	Gln	Val	Ala	Val 1725	His	Lys	Ile
Tyr	Gln 1730	Gln	Leu	Ser	Ala	Thr 1735	Leu	Glu	Arg	Ala	Leu 1740	Gln	Ala	Asn
Lys	His 1745	His	Ile	Glu	Ala	Gln 1750	Gln	Arg	Leu	Leu	Leu 1755	Val	Thr	Val
Phe	Ala 1760	Leu	Ser	Val	His	Tyr 1765	Gln	Pro	Val	Asp	Val 1770	Ser	Leu	Ala
Ile	Ser 1775	Thr	Gly	Leu	Leu	Asn 1780	Val	Leu	Ser	Gln	Leu 1785	Cys	Gly	Thr
Asp	Thr 1790	Met	Leu	Gly	Gln	Pro 1795	Leu	Gln	Leu	Leu	Pro 1800	Lys	Thr	Gly
Val	Ser 1805	Gln	Leu	Ser	Thr	Ala 1810	Leu	Lys	Val	Ala	Ser 1815	Thr	Arg	Leu
Leu	Gln 1820	Ile	Leu	Ala	Ile	Thr 1825	Thr	Gly	Thr	Tyr	Ala 1830	Asp	Lys	Leu
Ser	Pro 1835	Lys	Val	Val	Gln	Ser 1840	Leu	Leu	Åsp	Leu	Leu 1845	Cys	Ser	Gln
Leu	Lys 1850	Asn	Leu	Leu	Ser	Gln 1855	Thr	Gly	Val	Leu		Met	Ala	Ser
Phe	Clar										1860			
	1865	Glu	Gly	Glu	Gln	Glu 1870	Asp	Gly	Glu	Glu		Glu	Lys	Lys
Val						1870					Glu 1875		_	
	1865 Asp	Ser	Ser	Gly	Glu	1870 Thr 1885	Glu	Ļуs	Lys 	Asp	Glu 1875 Phe 1890	Arg	Ala	Åla
Leu	1865 Asp 1880 Arg	Ser Lys	Ser Gln	Gly His	Glu Ala	1870 Thr 1885 Ala	Glu Glu	Ļys Leu	Lys His	Asp Leu	Glu 1875 Phe 1890 Gly 1905	Arg Asp	Ala Phe	Åla
Leu Val	Asp 1880 Arg 1895 Phe	Ser Lys Leu	Ser Gln Arg	Gly His Arg	Glu Ala Val	1870 Thr 1885 Ala 1900 Val	Glu Glu Ser	Ļys Leu Ser	Lys His Lys	Asp Leu Ala	Glu 1875 Phe 1890 Gly 1905 Ile 1920	Arg Asp Gln	Ala Phe	Åla Leu Lys
Leu Val Met	Asp 1880 Arg 1895 Phe 1910	Ser Lys Leu Ser	Ser Gln Arg Pro	Gly His Arg Lys	Glu Ala Val Trp	1870 Thr 1885 Ala 1900 Val 1915 Thr 1930	Glu Glu Ser	Ļys Leu Ser Val	Lys His Lys	Asp Leu Ala Leu	Glu 1875 Phe 1890 Gly 1905 Ile 1920 Asn 1935	Arg Asp Gln Ile	Ala Phe Ser	Ala Leu Lys Ser

Glu	Ser 1970	Gly	Val	Glu	Asp	Asp 1975	Gln	Met	Ala	Gln	Ile 1980	Val	Glu	Arg
Leu	Phe 1985	Ser	Leu	Leu	Ser	Asp 1990	Cys	Met	Trp	Glu	Thr 1995	Pro	Ile	Ala
Gln	Ala 2000	Lys	His	Ala	Ile	Gln 2005	Ile	Lys	Glu	Lys	Glu 2010	Gln	Glu	Ile
Lys	Leu 2015	Gln	Lys	Gln	Gly	Glu 2020	Leu	Glu	Glu	Glu	Asp 2025	Glu	Asn	Leu
Pro	Ile 2030	Gln	Glu	Val	Ser	Phe 2035	Asp	Pro	Glu	Lys	Ala 2040	Gln	Cys	Cys
Leu	Val 2045	Glu	Asn	Gly	Gln	Ile 2050	Leu	Thr	His	Gly	Ser 2055	Gly	Gly	Lys
	Tyr 2060	Gly	Leu	Ala	Ser	Thr 2065	Gly	Val	Thr	Ser	Gly 2070	Cys	Tyr	Gln
Trp	Lys 2075	Phe	Tyr	Ile	Val	Lys 2080		Asn	Arg	Gly	Asn 2085	Glu	Gly	Thr
Cys	Val 2090	Gly	Val	Ser	Arg	Trp 2095	Pro	Val	His	Asp	Phe 2100	Asn	His	Arg
Thr	Thr 2105	Ser	Asp	Met	Trp	Leu 2110	Tyr	Arg	Ala	Tyr	Ser 2115	Gly	Asn	Leu
Tyr	His 2120	Asn	Gly	Glu	Gln	Thr 2125	Leu	Thr	Leu	Ser	Ser 2130	Phe	Thr	Gln
Gly	Asp 2135	Phe	Ile	Thr	Cys	Val 2140	Leu	Asp	Met	Glu	Ala 2145	Arg	Thr	Ile
Ser	Phe 2150	Gly	Lys	Asn	Gly	Glu 2155	Glu	Pro	Гуs	Leu	Ala 2160	Phe	Glu	Asp
Val	Asp 2165	Ala	Ala	Glu	Leu	Tyr 2170	Pro	Cys	Val	Met	Phe 2175	Tyr	Ser	Ser
Asn	Pro 2180	Gly	Glu	ГÀЗ	Val	Lys 2185	Ile	Cys		Met	Gln 2190	Met	Arg	, Ġ1Ā
Thr	Pro 2195	Arg	Asp	Leu	Leu	Pro 2200	Gly	Asp	Pro	Ile	Cys 2205	Ser	Pro	Val
Ala	Ala 2210	Val	Leu	Ala	Glu	Ala 2215	Thr	Ile	Gln	Leu	Val 2220	Arg	Ile	Leu
His	Arg 2225	Thr	Asp	Arg	Trp	Thr 2230	Tyr	Cys	Îļe	Asn	Lys 2235	Lys	Met	Met
Glu	Arg 2240	Leu	His	Lys	Ile	Lys 2245	Ile	, CÀ2	Ile	Lys	Glu 2250	Ser	Gly	Gln
Lys	Leu 2255	Lys	Lys	Ser	Arg	Ser 2260	Val	Gln	Ser	Arg	Glu 2265	Glu	Asn	Glu

-141-

	,								•					
Met	Arg 2270	Glu	Glu	Lys	Glu	Ser 2275	Lys	Glu	Ğlu	Glu	Lys 2280	Gly	Lys	His
Thr	Arg 2285	His	Gly	Leu	Ala	Asp 2290	Leu	Ser	Glu	Leu	Gln 2295	Leu	Arg	Thr
Leu	Cys 2300	Ile	Glu	Val	Trp	Pro 2305	Val	Leu	Ala	Val	Ile 2310	Gly	Gly	Val
Asp	Ala 2315	Gly	Leu	Arg	Val	Gly 2320	Gly	Arg	Cys	Val	His 2325	Lys	Gln	Thr
Gly	Arg 2330	His	Ala	Thr	Leu	Leu 2335	Gly	Val	Val	Lys	Glu 2340	Gly	Ser	Thr
Ser	Ala 2345	Lys	Val	Gln	Trp	Asp 2350	Glu	Ala	Ğlu	Ile	Thr 2355	Ile	Ser	Phe
Pro	Thr 2360	Phe	Trp	Ser	Pro	Ser 2365	Asp	Thr	Pro	Leu	Tyr 2370	Asn	Leu	Glu
Pro	Cys 2375	Glu	Pro	Leu	Pro	Phe 2380	Asp	Val	Ala	Arg	Phe 2385	Arg	Gly	Leu
Thr	Ala 2390	Ser	Val	Leu	Leu	Asp 2395	Leu	Thr	Tyr	Leu	Thr 2400	Gly	Val	His
Glu	Asp 2405	Met	Gly	Lys	Gln	Ser 2410	Thr	Lys	Arg	His	Glu 2415	Lys	Lys	His
Arg	His 2420	Glu	Ser	Glu	Ğlu	Lys 2425	Gly	Asp	Val	Glu	Gln 2430	Lys	Pro	Glu
Ser	Glu 2435	Ser	Ala	Leu	Asp	Met 2440	Arg	Thr	Gly	Leu	Thr 2445	Ser	Asp	Asp
Val	Lys 2450	Ser	Gln	Ser	Thr	Thr 2455	Ser	Ser	Lys	Ser	Glu 2460	Asn	Glu	Ile
Ala	Ser 2465	Phe	Ser	Leu	Asp	Pro 2470	Thr	Leu	Pro	Ser	Val 2475	Glu	Ser	Gln
His	Gln 2480	Ile	Thr	Glu	Gly	Lys 2485	Arg	ŢŊs	Asn	His	Glu 2490	His	Met	Ser
Lys	Asn 2495	His	Asp	Val	Ala	Gln 2500	Ser	Glu	Ile	Arg	Ala 2505	Val	Gln	Leu
Ser	Tyr 2510	Leu	Tyr	Leu	Gly	Ala 2515	Met	Lys	Ser	Leu	Ser 2520	Ala	Leu	Leu
Gly	Cys 2525	Ser	Lys	Tyr	Ala	Glu 2530		Leu	Leu	Ile	Pro 2535	Lys	Val	Leu
Ala	Glu 2540	Asn	Gly	His	Asn	Ser 2545	Asp,	Cys	Ala	Ser	Ser 2550	Pro	Val	Val
His	Glu 2555	Asp	Val	Glu	Met	Arg 2560	Ala	Ala	Leu	Gln	Phe 2565	Leu	Met	Arg

His	Met 2570	Val	Lys	Arg	Ala	Val 2575	Met	Arg	Şer	Pro	Ile 2580	Lys	Arg	Ala
Leu	Gly 2585	Leu	Ala	Asp	Leu	Glu 2590	Arg	Ala	Gln	Ala	Met 2595	Ile	Tyr	Lys
Leu	Val 2600		His	Gly	Leu	Leu 2605	Glu	Asp	Gln	Phe	Gly 2610	Gly	Lys	Ile
Lys	Gln 2615	Glu	Ile	Asp	Gln	Gln 2620	Ala	Glu	Glu	Ser	Asp 2625	Pro	Ala	Gln
Gln	Ala 2630	Gln	Thr	Pro	Val	Thr 2635		Ser	Pro	Ser	Ala 2640	Ser	Ser	Thr
Thr	Ser 2645	Phe	Met	Ser	Ser	Ser 2650	Leu	Glu	Asp	Thr	Thr 2655	Thr	Ala	Thr
Thr	Pro 2660	Val	Thr	Asp	Thr	Glu 2665	Thr	Val	Pro	Ala	Ser 2670	Glu	Ser	Pro
Gly	Val 2675	Met	Pro	Leu	Ser	Leu 2680	Leu	Arg	Gln	Met	Phe 2685	ser	Ser	Tyr
Pro	Thr 2690	Thr	Thr	Val	Leu	Pro 2695	Thr	Arg	Arg	Ala	Gln 2700	Thr	Pro	Pro
Ile	Ser 2705	Ser	Leu	Pro	Thr	Ser 2710	Pro	Ser	Asp	Glu	Val 2715	Gly	Arg	Arg
Gln	Ser 2720	Leu	Thr	Ser	Pro	Asp 2725	Ser	Gln	Ser	Ala	Arg 2730	Pro	Ala	Asn
Arg	Thr 2735	Ala	Leu	Ser	Asp	Pro 2740	Ser	Ser	Arg	Leu	Ser 2745	Thr	Ser	Pro
Pro	Pro 2750	Pro	Ala	Ile	Ala	0 = = =	Pro	Leu	Leu	Glu	Met 2760	Gly	Phe	Ser
Leu	Arg 2765	Gln	Ile	Ala	Lys	Ala 2770	Met	Glu	Ala	Thr	Gly. 2775	Ala	Arg	Gly
Glu	Ala 2780	Asp	Ala	Gln	Asn	Ile 2785	Thr	Val	Leu	Ala	Met 2790	Trp	Met ¹	lle
Glu	His 2795	Pro	Gly	His	Glu	Asp 2800	Glu	Glu	Glu	Pro	Gln 2805	Ser	Gly	Ser
Thr	Ala 2810	Asp	Ser	Arg	Pro	Gly 2815		Ala	Val	Leu	Gly 2820	Ser	Gly	Gly
Lys	Ser 2825	Asn	Asp	Pro	Сув	Tyr 2830	Leu	Gļn	Ser	Pro	Gly 2835	Asp	Ile	Pro
Ser	Ala 2840	Asp	Ala	Ala	Glu	Met 2845	Glu	Glu	Gly	Phe	Ser 2850	Glu	Ser	Pro
Asp	Asn 2855	Leu	Asp	His	Thr	Glu 2860	Asn	Ala	Ala	Ser	Gly 2865	Ser	Gly	Pro

WO 02/09573

Ser	Ala 2870	Arg	Gly	Arg	Ser	Ala 2875	Val	Thr	Arg	Arg	His 2880		Phe	Asp
Leu	Ala 2885	Ala	Arg	Thr	Leu	Leu 2890		Arg	Ala	Ala	Gly 2895		Tyr	Arg
Ser	Val 2900	Gln	Ala	His	Arg	Asn 2905		Ser	Arg	Arg	Glu 2910	Gly	Ile	Ser
Leu	Gln 2915	Gln	Asp	Pro	Gly	Ala 2920	Leu	Tyr	Asp	Phe	Asn 2925	Leu	Asp	Glu
Glu	Leu 2930	Glu	Ile	Asp	Leu	Asp 2935	Asp	Glu	Ala	Met	Glu 2940	Ala	Met	Phe
Gly	Gln 2945		Leu	Thr	Ser	Asp 2950		Asp	İle	Leu	Gly 2955	Met	Trp	Ile
Pro	Glu 2960	Val	Leu	Asp	Trp	Pro 2965	Thr	Trp	His	Val	Cys 2970	Glu	Ser	Glu
Asp	Arg 2975	Glu	Glu	Val	Val	Val 2980	Cys	Glu	Leu	Cys	Glu 2985	Cys	Ser	Val
Val	Ser 2990	Phe	Asn	Gln	His	Met 2995	Lys	Arg	Asn	His	Pro 3000	Gly	Cys	Gly
Arg	Ser 3005	Ala	Asn	Arg	Gln	Gly 3010	Tyr	Arg	Ser	Asn	Gly 3015	Ser	Tyr	Val
Asp	Gly 3020	Trp	Phe	Gly	Gly	Glu 3025		Gly	Ser	Gly	Asn 3030	Pro	Tyr	Tyr
Leu	Leu 3035	Cys	Gly	Thr	Cys	Arg 3040	Glu	Lys	Tyr	Leu	Ala 3045	Met	Lys	Thr
Lys	Ser 3050	Lys	Ser	Thr	Ser	Ser 3055	Glu	Arg	Tyr	Lys	Gly 3060	Gln	Ala	Pro
Asp	Leu 3065	Ile	Gly	Lys	Gln	Asp 3070	Ser	Val	Tyr	Glu	Glu 3075	Asp	Trp	Asp
Met	Leu 3080	qaA	Val	Asp	Glu	Asp 3085	Glu	Lys	Leu	Thr	Gly 3090	Glu	Glu	Ġlu
Phe	Glu 3095	Leu	Leu	Ala	Gly	Pro 3100	Leu	Gly	Leu	Asn	Asp 3105	Arg	Arg	Ile
Val	Pro 3110	Glu	Pro	Val	Gln	Phe 3115	Pro	Asp	Ser	Asp	Pro 3120	Leu	Gly	Ala
Ser	Val 3125	Ala	Met	Val	Thr	Ala 3130	Thr	Asn	Ser	Met	Glu 3135	Glu	Thr	Leu
Met	Gln 3140	Ile	Gly	Cys	His	Gly 3145	Ser	Val	Glu	Lys	Ser 3150	Ser	Ser	Gly
Arg	Ile 3155	Thr	Leu	Gly	Glu	Gln 3160	Ala	Ala	Ala	Leu	Ala 3165	Asn	Pro	His

Asp	Arg 3170	Val	Val	Ala	Leu	Arg 3175		Val	Thr	Ala	Ala 3180		Gln	Val
Leu	Leu 3185	Ala	Arg	Thr	Met	Val 3190	Met	Arg	Ala	Leu	Ser 3195		Leu	Ser
Val	Ser 3200	Gly	Ser	Ser	Cys	Ser 3205	Leu	Ala	Ala	Gly	Leu 3210		Ser	Leu
Gly	Leu 3215		Asp	Ile	Arg	Thr 3220		Val	Arg	Leu	Met 3225		Leu	Ala
Ala	Ala 3230	Gly	Arg	Ala	Gly	Leu 3235	Ser	Thr	Ser	Pro	Ser 3240	Ala	Met	Ala
Ser	Thr 3245	Ser	Glu	Arg	Ser	Arg 3250		Gly	His	Ser	Lys 3255		Asn	Lys
Pro	Ile 3260	Ser	Cys	Leu	Ala	Туr 3265		Ser	Thr	Ala	Val 3270		Cys	Leu
Ala	Ser 3275	Asn	Ala	Pro	Ser	Ala 3280	Ala	Lys	Leu	Leu	Val 3285	Gln	Leu	Cys
Thr	Gln 3290		Leu	Ile	Ser	Ala 3295	Ala	Thr	Gly	Val	Asn 3300	Leu	Thr	Thr
Val	Asp 3305	Asp	Ser	Ile	Gln	Arg 3310	Lys	Phe	Leu	Pro	Ser 3315		Leu	Arg
Gly	Ile 3320	Ala	Glu	Glu	Asn	Lys 3325	Leu	Val	Thr	Ser	Pro 3330	Asn	Phe	Val
Val	Thr 3335	Gln	Ala	Leu	Val	Ala 3340	Leu	Leu	Ala	Asp	Lys 3345	Gly	Ala	Lys
Leu	Arg 3350	Pro	Asn	Tyr	Asp	Lys 3355	Ser	Glu	Val	Glu	Lуs 3360	Lys	Gly	Pro
Leu	Glu 3365	Leu	Ala	Asn	Ala	Leu 3370	Ala	Ala	Cys	Cys	Leu 3375	Ser	Ser	Arg
Leu	Ser 3380	Ser	Gln	His	Arg	Gln 3385	Trp	Ala	Ala	Gln	Gln 3390	Leu	Val '	Arg
Thr	Leu 3395	Ala	Ala	His	qaA	Arg 3400	Asp	Asn	Gln	Thr	Thr 3405	Leu	Gln	Thr
Leu	Ala 3410	Asp	Met	Gly	Gly	Asp 3415	Leu	Arg	Lys	Cys	Ser 3420	Phe	Ile	ГХа
Leu	Glu 3425	Ala	His	Gln	Asn	Arg 3430	Val	Met	Thr	Cys	Val 3435	Trp	Сув	Asn
Lys	Lys 3440	Gly	Leu	Leu	Ala	Thr 3445	Ser	·Gly	Asn	Asp	Gly 3450	Thr	Ile	Arg
Val	Trp 3455	Asn	Val	Thr	Lys	Lys 3460	Gln	Tyr	Ser	Leu	Gln 3465	Gln	Thr	Cys

۷al	Phe 3470	Asn	Arg	Leu	Glu	Gly 3475	Asp	Ala	Glu	Glu	Ser 3480	Leu	Gly	Ser
Pro	Ser 3485	Asp	Pro	Ser	Phe	Ser 3490	Pro	Val	Ser	Trp	Ser 3495	Ile	Ser	Gly
Lys	Tyr 3500	Leu	Ala	Gly	Ala	Leu 3505	Glu	Lys	Met	Val	Asn 3510	Ile	Trp	Gln
Val	Asn 3515	Gly	Gly	Lys	Gly	Leu 3520	Val	Asp	Ile	Gln	Pro 3525	His	Trp	Val
Ser	Ala 3530	Leu	Ala	Trp	Pro	Glu 3535	Glu	Gly	Pro	Ala	Thr 3540	Ala	Trp	Ser
Gly	Glu 3545	Ser	Pro	Glu	Leu	Leu 3550	Leu	Val	Gly	Arg	Met 3555	qaA	Gly	Ser
Leu	Gly 3560	Leu	Ile	Glu	Val	Val 3565	Asp	Val	Ser	Thr	Met 3570	His	Arg	Arg
Glu	Leu 3575	Glu	His	Cys	Tyr	Arg 3580	Lys	Asp	Val	Ser	Val 3585	Thr	Cys	Ile
Ala	Trp 3590	Phe	Ser	Glu	Asp	Arg 3595	Pro	Phe	Ala	Val	Gly 3600	Tyr	Phe	Asp
Gly	Lys 3605	Leu	Leu	Leu	Gly	Thr 3610	Lys	Glu	Pro	Leu	Glu 3615	Lys	Gly	Gly
Ile	Val 3620	Leu	Ile	Asp	Ala	His 3625	Lys	Asp	Thr	Leu	Ile 3630	Ser	Met	Lys
Trp	Asp 3635	Pro	Thr	Gly	His	Ile 3640	Leu	Met	Thr	Cys	Ala 3645	Lys	Glu	Asp
Ser	Val 3650	Lys	Leu	Trp		Ser 3655	Ile	Ser	Gly	Cys	Trp 3660	Cys	Cys	Leu
His	Ser 3665	Leu	Cys	His	Pro	Ser 3670	Ile	Val	Asn	Gly	Ile 3675	Ala	Trp	Cys
Arg	Leu 3680	Pro	Gly	Lys	Gly	Ser 3685	Lys	Leu	Gln	Leu	Leu 3690	Met	Ala	Thr
Gly	Cys 3695	Gln	Ser	Gly	Leu	Val 3700	Cys	Val	Trp	Arg	Ile 3705	Pro	Gln	Asp
Thr	Thr 3710	Gln	Thr	Asn ,	Val	Thr 3715	Ser	Ala	Glu	Gly	Trp 3720	Trp	Asp	Gln
Glu	Ser 3725	Asn	Cys	Gln	Asp	Gly 3730	Tyr	Arg	Lys	Ser	Ser 3735	Gly	Ala	Lys
Cys	Val 3740	Tyr	Gln	Leu	Arg	Gly 3745	His	Ile	Thr	Pro	Val 3750	Arg	Thr	Val
Ala	Phe 3755	Ser	Ser	Asp	Gly	Leu 3760	Ala	Leu	Val	Ser	Gly 3765	Gly	Leu	Gly
									_					

Gly	Leu 3770	Met	Asn	Ile	Trp	Ser 3775	Leu	Arg	Asp	Gly	Ser 3780	Val	Leu	Gln
Thr	Val 3785	Val	Ile	Gly	Ser	Gly 3790	Ala	Ile	Gln	Thr	Thr 3795	Val	Trp	Ile
Pro	Glu 3800	Val	Gly	Val	Ala	Ala 3805	Cys	Ser	Asn	Arg	Ser 3810	Lys	Asp	Val
Leu	Val 3815	Val	Asn	Cys	Thr	Ala 3820	Glu	Trp	Ala	Ala	Ala 3825	Asn	His	Val
Leu	Ala 3830	Thr	Cys	Arg	Thr	Ala 3835	Leu	Lys	Gln	Gln	Gly 3840	Val	Leu	Gly
Leu	Asn 3845	Met	Ala	Pro	Cys	Met 3850	Arg	Aļa	Phe	Leu	Glu 3855	Arg	Leu	Pro
Met	Met 3860	Leu	Gln	Glu.	${\tt Gln}$	Tyr 3865	Ala	Tyr	Glu	Lys	Pro 3870	His	Val	Val
Cys	Gly 3875	Asp	Gln	Leu	Val	His 3880		Pro	Tyr	Met	Gln 3885	Cys	Leu	Ala
Ser	Leu 3890	Ala	Val	Gly	Leu	His 3895		Asp	Gln	Leu	Leu 3900	Cys	Asn	Pro
Pro	Val 3905	Pro	Pro	His	His	Gln 3910	Asn	Cys	Leu	Pro	Asp 3915	Pro	Ala	Ser
Trp	Asn 3920	Pro	Asn	Glu	Trp	Ala 3925	Trp	Leu	Glu	Cys	Phe 3930	Ser	Thr	Thr
Ile	Lys 3935		Ala	Glu	Ala	Leu 3940	Thr	Asn	Gly	Ala	Gln 3945	Phe	Pro	Glu
Ser	Phe 3950	Thr	Val	Pro	Asp	Leu 3955	Glu	Pro	Val	Pro	Glu 3960	Asp	Glu	Leu
Val	Phe 3965	Leu	Met	Asp	Asn	Ser 3970	Lys	Trp	Ile	Asn	Gly 3975	Met	Asp	Glu
Gln	Ile 3980	Met	Ser	Trp	Ala	Thr 3985	Ser	Arg	Pro	Glu	Asp 3990	Trp	His	Leu
Gly	Gly 3995	Lys	Cys	Asp	Val	Tyr 4000	Leu	Trp	Gly	Ala	Gly 4005	Arg	His	Gly
Gln	Leu 4010	Ala	Glu	Ala	Gly	Arg 4015	Asn	Val	Met	Val	Pro 4020	Ala	Ala	Ala
Pro	Ser 4025	Phe	Ser	Gln	Ala	Gln 4030	Gln	Val	Ile '	Cys	Gly 4035	Gln	Asn	Cys
Thr	Phe 4040	Val	Ile	Gln	Ala	Asn 4045	Gly	·Thr	Val	Leu	Ala 4050	Cys	Gly	Glu
Gly	Ser 4055	Tyr	Gly	Arg	Leu	Gly 4060	Gln	Gly	Asn	Ser	Asp 4065	Asp	Leu	His

-147-

PCT/US01/24104

Val	Leu 4070	Thr	Val	Ile	Ser	Ala 4075	Leu	Gln	Gly	Phe	Val 4080	Val	Thr	Gln
Leu	Val 4085	Thr	Ser	Cys	Gly	Ser 4090	Asp	Gly	His	Ser	Met 4095	Ala	Leu	Thr
Glu	Ser 4100	Gly	Glu	Val	Phe	Ser 4105	Trp	Gly	Asp	Gly	Asp 4110	Tyr	Gly	Lys
Leu	Gly 4115	His	Gly	Asn	Ser	Asp 4120	Arg	Gln	Arg	Arg	Pro 4125	Arg	Gln	Ile
Glu	Ala 4130	Leu	Gln	Gly	Glu	Glu 4135	Val	Val	Gln	Met	Ser 4140	Cys	Gly	Phe
Lys	His 4145	Ser	Ala	Val	Val	Thr 4150	Ser	Asp	Gly	Lys	Leu 4155		Thr	Phe
Gly	Asn 4160	Gly	Asp	Tyr	Gly	Arg 4165	Leu	Gly	Leu	Gly	Asn 4170	Thr	Ser	Asn
Lys	Lys 4175	Leu	Pro	Glu	Arg	Val 4180	Thr	Ala	Leu	Glu	Gly 4185	Tyr	Gln	Ile
Gly	Gln 4190	Val	Ala	Cys	Gly	Leu 4195	Asn	His	Thr	Leu	Ala 4200	Val	Ser	Ala
Asp	Gly 4205	Ser	Met	Val	Trp	Ala 4210			Asp	Gly	Asp 4215	Tyr	Gly	Lys
Leu	Gly 4220	Leu	Gly	Asn	Ser	Thr 4225	Ala	Lys	Ser	Ser	Pro 4230	Gln	Lys	Ile
Asp	Val 4235	Leu	Cys	${\tt Gl}_Y$	Ile	Gly 4240	Ile	Lys	Lys	Val	Ala 4245	Cys	Gly	Thr
Gln	Phe 4250	Ser	Val	Ala	Leu	Thr 4255	Lys	Asp	Gly	His	Val 4260	Tyr	Thr	Phe
Gly	Gln 4265	Asp	Arg	Leu	Ile	Gly 4270	Leu	Pro	Glu	Gly	Arg 4275	Ala	Arg	Asn
His	Asn 4280	Arg	Pro	Gln	Gln	Ile 4285	Pro	Val	Leu	Ala	Gly 4290	Val	Ile	Île
Glu	Asp 4295	Val	Ala	Val	Gly	Ala 4300	Glu	His	Thr	Leu	Ala 4305	Leu	Ala	Ser
Asn	Gly 4310	Asp	Val	Tyr	Ala	Trp 4315		Ser	Asn :	Ser	Glu 4320	Gly	Gln	Leu
Gly	Leu 4325	Gly	His	Thr	Asn	His 4330		Arg	Glu	Pro	Thr 4335	Leu	Val	Thr
Gly	Leu 4340	Gln	Gly	Lys	Asn	Val 4345	Arg	'Gln	Ile	Ser	Ala 4350	Gly	Arg	Cys
His	Ser 4355	Ala	Ala	Trp	Thr	Ala 4360	Pro	Pro	Val	Pro	Pro 4365	Arg	Ala	Pro

Gly	Val 4370	Ser	Val	Pro	Leu	Gln 4375		Gly	Leu	Pro	Asp 4380		Val	Pro
Pro	Gln 4385	Tyr	Gly	Ala	Leu	Arg 4390	Glu	Val	Ser	Ile	His 4395	Thr	Val.	Arg
Ala	Arg 4400	Leu	Arg	Leu	Leu	Tyr 4405	His	Phe	Ser	Asp	Leu 4410	Met	Tyr	Ser
Ser	Trp 4415	Arg	Leu	Leu	Asn	Leu 4420	Ser	Pro	Asn	Asn	Gln 4425	Asn	Ser	Thr
Ser	His 4430	Tyr	Asn	Ala	Gly	Thr 4435	Trp	Gly	Ile	Val	Gln 4440	Gly	Gln	Leu
Arg	Pro 4445	Leu	Leu	Ala	Pro	Arg 4450	Val	Tyr	Thr	Leu	Pro 4455	Met	Val	Arg
Ser	Ile 4460	Gly	Lys	Thr	Met	Val 4465	Gln	Gly	Lys	Àsn	Tyr 4470	Gly	Pro	Gln
Ile	Thr 4475	Val	Lys	Arg	Ile	Ser 4480	Thr	Arg	Gly	Arg	Lys 4485	Cys	Lys	Pro
Ile	Phe 4490	Val	Gln	Ile	Ala	Arg 4495	Gln	Val	Val	Lys	Leu 4500	Asn	Ala	Ser
Asp	Leu 4505	Arg	Leu	Pro	Ser	Arg 4510	Ala	Trp	Lys	Val	Lys 4515	Leu	Val	Gly
Glu	Gly 4520	Ala	Asp	Asp	Ala	Gly 4525	Gly	Val	Phe	Asp	Asp 4530	Thr	Ile	Thr
Glu	Met 4535	Cys	Gln	Glu	Leu	Glu 4540	Thr	Gly	Ļle	Val	Asp 4545	Leu	Leu	Ile
Pro	Ser 4550	Pro	Asn	Ala	Thr	Ala 4555	Glu	Va1	Gly	Tyr	Asn 4560	Arg	qaA	Arg
Phe	Leu 4565		Asn	Pro	Ser	Ala ' 4570	Cys	Leu	Asp	Glu	His 4575	Leu	Met	Gln
Phe	Lys 4580	Phe	Leu	Gly	Ile	Leu 4585	Met	Gly	Val	Ala	Ile 4590	Arg	Thr	Lys
Lys	Pro 4595	Leu	Asp	Leu	His	Leu 4600	Ala	Pro	Leu	Val	Trp 4605	Lys	Gln	Leu
Cys	Cys 4610	Val	Pro	Leu	Thr	Leu 4615	Glu	Asp	Leu	Glu	Glu 4620	Val	Asp	Leu
Leu	Tyr 4625	Val	Gln	Thr	Leu	Asn 4630		Ile	Leu	His	Ile 4635	Glu	Asp	Ser
Gly	Ile 4640	Thr	Glu	Glu	Seŗ	Phe 4645		Glu	Met	Ile	Pro 4650	Leu	Asp	Ser
Phe	Val 4655	Gly	Gln	Ser	Ala	Asp 4660	Gly	Lys	Met	Val	Pro 4665	Ile	Ile	Pro

Gly Gly Asn Ser Ile Pro Leu Thr Phe Ser Asn Arg Lys Glu Tyr Val Glu Arg Ala Ile Glu Tyr Arg Leu His Glu Met Asp Arg Gln 4690 Val Ala Ala Val Arg Glu Gly Met Ser Trp Ile Val Pro Val Pro 4705 Leu Leu Ser Leu Leu Thr Ala Lys Gln Leu Glu Gln Met Val Cys 4720 Gly Met Pro Glu Ile Ser Val Glu Val Leu Lys Lys Val Val Arg 4735 Tyr Arg Glu Val Asp Glu Gln His Gln Leu Val Gln Trp Phe Trp 4745 4750 4755 His Thr Leu Glu Glu Phe Ser Asn Glu Glu Arg Val Leu Phe Met 4765 Arg Phe Val Ser Gly Arg Ser Arg Leu Pro Ala Asn Thr Ala Asp 4780 Ile Ser Gln Arg Phe Gln Ile Met Lys Val Asp Arg Pro Tyr Asp 4795 Ser Leu Pro Thr Ser Gln Thr Cys Phe Phe Gln Leu Arg Leu Pro 4810 Pro Tyr Ser Ser Gln Leu Val Met Ala Glu Arg Leu Arg Tyr Ala 4825 Ile Asn Asn Cys Arg Ser Ile Asp Met Asp Asn Tyr Met Leu Ser 4840 Arg Asn Val Asp Asn Ala Glu Gly Ser Asp Thr Asp Tyr 4855 <210> 71 <211> 292 <212> PRT <213> Homo sapiens <400> 71 Met Ala Ser Ser Met Arg Ser Leu Phe Ser Asp His Gly Lys Tyr Val Glu Ser Phe Arg Arg Phe Leu Asn His Ser Thr Glu His Gln Cys Met 20 Gln Glu Phe Met Asp Lys Lys Leu Pro Gly Ile Ile Gly Arg Ile Gly 40 Asp Thr Lys Ser Glu Ile Lys Ile Leu Ser Ile Gly Gly Gly Ala Gly 55 Glu Ile Asp Leu Gln Ile Leu Ser Lys Val Gln Ala Gln Tyr Pro Gly

-150-

65 70 75 80 Val Cys Ile Asn Asn Glu Val Val Glu Pro Ser Ala Glu Gln Ile Ala 90 Lys Tyr Lys Glu Leu Val Ala Lys Thr Ser Asn Leu Glu Asn Val Lys Phe Ala Trp His Lys Glu Thr Ser Ser Glu Tyr Gln Ser Arg Met Leu 120 Glu Lys Lys Glu Leu Gln Lys Trp Asp Phe Ile His Met Ile Gln Met Leu Tyr Tyr Val Lys Asp Ile Pro Ala Thr Leu Lys Phe Phe His Ser 155 150 Leu Leu Gly Thr Asn Ala Lys Met Leu Ile Ile Val Val Ser Gly Ser 170 Ser Gly Trp Asp Lys Leu Trp Lys Lys Tyr Gly Ser Arg Phe Pro Gln 180 185 Asp Asp Leu Cys Gln Tyr Ile Thr Ser Asp Asp Leu Thr Gln Met Leu 200 Asp Asn Leu Gly Leu Lys Tyr Glu Cys Tyr Asp Leu Leu Ser Thr Met 215 Asp Ile Ser Asp Cys Phe Ile Asp Gly Asn Glu Asn Gly Asp Leu Leu 235 Trp Asp Phe Leu Thr Glu Thr Cys Asn Phe Asn Ala Thr Ala Pro Pro Asp Leu Arg Ala Glu Leu Gly Lys Asp Leu Gln Glu Pro Glu Phe Ser 265 Ala Lys Lys Glu Gly Lys Val Leu Phe Asn Asn Thr Leu Ser Phe Ile 275 280 285 Val Ile Glu Ala 290 <210> 72 <211> 481 <212> PRT <213> Homo sapiens <400> 72 Met Ala Leu Ser Tyr Arg Val Ser Glu Leu Gln Ser Thr Ile Pro Glu His Ile Leu Gln Ser Thr Phe Val His Val Ile Ser Ser Asn Trp Ser Gly Leu Gln Thr Glu Ser Ile Pro Glu Glu Met Lys Gln Ile Val Glu 40

-151-

Glu	Gln 50	Gly	Asn	Lys	Leu	His 55	Trp	Ala	Ala	Leu	Leu 60	Ile	Leu	Met	Val
Ile 65	Ile	Pro	Thr	Ile	Gly 70	Gly	Asn	Thr	Leu	Val 75	Ile	Leu	Ala	Val	Ser 80
Leu	Glu	Lys	Lys	Leu 85	Gln	Tyr	Ala	Thr	Asn 90	Tyr	Phe	Leu	Met	Ser 95	Leu
Ala	Val	Ala	Asp 100	Leu	Leu	Val	Gly	Leu 105	Phe	Val	Met	Pro	Ile 110	Ala	Leu
Leu	Thr	Ile 115	Met	Phe	Glu	Ala	Met 120	Trp	Pro	Leu	Pro	Leu 125	Val	Leu	Cys
Pro	Ala 130	Trp	Leu	Phe	Leu	Asp 135	Val	Leu	Phe	Ser	Thr 140	Ala	Ser	Ile	Met
His 145	Leu	Cys	Ala	Ile	Ser 150	Val	Asp	Arg	Tyr	Ile 155	Ala	Ile	Lys	Lys	Pro 160
Ile	Gln	Ala	Asn	Gln 165	Tyr	Asn	Ser	Arg	Ala 170	Thr	Ala	Phe	Ile	Lys 175	Ile
Thr	Val	Val	Trp 180	Leu	Ile	Ser	Ile	Gly 185	Ile	Ala	Ile	Pro	Val 190	Pro	Ile
Lys	Gly	Ile 195	Glu	Thr	Asp	Val	Asp 200	Asn	Pro	Asn	Asn	Ile 205	Thr	Cys	Val
Leu	Thr 210	Lys	Glu	Arg	Phe	Gly 215	Asp	Phe	Met	Leu	Phe 220	Gly	Ser	Leu	Ala
Ala 225	Phe	Phe	Thr	Pro	Leu 230	Ala	Ile	Met	Ile	Val 235	Thr	Tyr	Phe	Leu	Thr 240
Ile	His	Ala	Leu	Gln 245	Lys	Lys	Ala	Tyr	Leu 250	Val	Lys	Asn	Lys	Pro 255	Pro
Gln	Arg	Leu	Thr 260	Trp	Leu	Thr	Val	Ser 265	Thr	Val	Phe	Gln	Arg 270	Asp	Glu
Thr	Pro	Cys 275	Ser	Ser	Pro	Glu	Lys 280	Val	Ala	Met	Leu	Asp 285	Gly	Ser	Arg
Lys	Asp 290	Lys	Ala	Leu	Pro	Asn 295	Ser	Gly	Asp	Glu	Thr 300	Leu	Met	Arg	Arg
Thr 305	Ser	Thr	Ile	Gly	Lys 310	Lys	Ser	Val	Gln	Thr 315	Ile	Ser	Asn	Glu	Gln 320
Arg	Ala	Ser	Lys	Val 325	Leu	Gly	Ile	Val	Phe 330	Phe	Leu	Phe	Leu	Leu 335	Met
Trp	Cys	Pro	Phe 340	Phe	Ile	Thr	Asn	Ile 345	Thr	Leu	Val	Leu	Cys 350	Asp	Ser
Cys	Asn	Gln 355	Thr	Thr	Leu	Gln	Met 360	Leu	Leu	Glu	Ile	Phe 365	Val	Trp	Ile

-152-

Gly Tyr Val Ser Ser Gly Val Asn Pro Leu Val Tyr Thr Leu Phe Asn 370 375 380 Lys Thr Phe Arg Asp Ala Phe Gly Arg Tyr Ile Thr Cys Asn Tyr Arg 390 Ala Thr Lys Ser Val Lys Thr Leu Arg Lys Arg Ser Ser Lys Ile Tyr Phe Arg Asn Pro Met Ala Glu Asn Ser Lys Phe Phe Lys Lys His Gly Ile Arg Asn Gly Ile Asn Pro Ala Met Tyr Gln Ser Pro Met Arg Leu Arg Ser Ser Thr Ile Gln Ser Ser Ser Ile Ile Leu Leu Asp Thr Leu Leu Leu Thr Glu Asn Glu Gly Asp Lys Thr Glu Glu Gln Val Ser Tyr 470 475 Val <210> 73 <211> 189 <212> PRT <213> Homo sapiens <400> 73 Met Ala Leu Ser Phe Ser Leu Leu Met Ala Val Leu Val Leu Ser Tyr 10 Lys Ser Ile Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser Leu Gly Asn Arg Arg Ala Leu Ile Leu Leu Ala Gln Met Gly Arg Ile Ser Pro Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Asp Gly Asn Gln Phe Gln Lys Ala Gln Ala Ile Ser Val Leu His Glu Met Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Thr Trp Glu Gln Ser Leu Leu Glu Lys Phe Ser Thr Glu Leu 100 105 Asn Gln Gln Leu Asn Asp Met Glu Ala Cys Val Ile Gln Glu Val Gly 120 Val Glu Glu Thr Pro Leu Met Asn Val Asp Ser Ile Leu Ala Val Lys Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr Ser 150 155

-153-

Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser 165 170 175

Leu Ser Lys Ile Phe Gln Glu Arg Leu Arg Arg Lys Glu 180 185

<210> 74

<211> 153

<212> PRT

<213> Homo sapiens

<400> 74

Met Gly Lys Ile Ser Ser Leu Pro Thr Gln Leu Phe Lys Cys Cys Phe 1 5 10 15

Cys Asp Phe Leu Lys Val Lys Met His Thr Met Ser Ser His Leu 20 25 30

Phe Tyr Leu Ala Leu Cys Leu Leu Thr Phe Thr Ser Ser Ala Thr Ala 35 40 45

Gly Pro Glu Thr Leu Cys Gly Ala Glu Leu Val Asp Ala Leu Gln Phe 50 60

Val Cys Gly Asp Arg Gly Phe Tyr Phe Asn Lys Pro Thr Gly Tyr Gly 65 70 75 80

Ser Ser Ser Arg Arg Ala Pro Gln Thr Gly Ile Val Asp Glu Cys Cys 85 90 95

Phe Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Pro Leu 100 105 110

Lys Pro Ala Lys Ser Ala Arg Ser Val Arg Ala Gln Arg His Thr Asp 115 120 125

Met Pro Lys Thr Gln Lys Glu Val His Leu Lys Asn Ala Ser Arg Gly 130 140

Ser Ala Gly Asn Lys Asn Tyr Arg Met 145

<210> 75

<211> 632

<212> PRT

<213> Homo sapiens

<220>

<221> UNSURE

<222> (199)..(199)

<223> Xaa = any amino acid

<400> 75

Met Glu Thr Pro Ala Ala Ala Ala Pro Ala Gly Ser Leu Phe Pro Ser 1 5 10 . 15 -154

Phe	Leu	Leu	Leu 20	Ala	Cys	Gly	Thr	Leu 25	Val;	Ala	Ala	Leu	Leu 30	Gly	Ala
Ala	His	Arg 35	Leu	Gly	Leu	Phe	Tyr 40	Gln	Leu	Leu	His	Lys 45	Val	qaA	Lys
Ala	Ser 50	Val	Arg	His	Gly	Gly 55	Glu	Asn	Val	Ala	Ala 60	Val	Leu	Arg	Ala
His 65	Gly	Val	Arg	Phe	Ile 70	Phe	Thr	Leu	Val	Gly 75	Gly	His	Ile	Ser	Pro 80
Leu	Leu	Val	Ala	Cys 85	Glu	Lys	Leu	Gly	Ile 90	Arg	Val	Val	Asp	Thr 95	Arg
His	Glu	Val	Thr 100	Ala	Val	Phe	Ala	Ala 105	Asp	Ala	Met	Ala	Arg 110	Leu	Ser
Gly	Thr	Val 115	Gly	Val	Ala	Ala	Val 120	Thr	Ala	Gly	Pro	Gly 125	Leu	Thr	Asn
Thr	Val 130	Thr	Ala	Val	Lys	Asn 135	Ala	Gln	Met	Ala	Gln 140	Ser	Pro	Ile	Leu
Leu 145	Leu	Gly	Gly	Ala	Ala 150	ser	Thr	Leu	Leu	Gln 155	Asn	Arg	Gly	Ala	Leu 160
Gln	Ala	Val	Asp	Gln 165	Leu	Ser	Leu	Phe	Arg 170	Pro	Leu	Cys	Lys	Phe 175	Cys
Val	Ser	Val	Arg 180	Arg	Val	Arg	Asp	Ile 185	Val	Pro	Thr	Leu	Arg 190	Ala	Ala
Met	Ala	Ala 195	Ala	Gln	Ser	Xaa	Thr 200	Pro	Gly	Pro	Val	Phe 205	Val	Glu	Leu
Pro	Val 210	qaA	Val	Leu	Tyr	Pro 215	Tyr	Phe	Met	Val	Gln 220	Lys	Glu	Met	Val
Pro 225	Ala	Lys	Pro	Pro	Lys 230	Gly	Leu	Val	Gly	Arg 235	Val	Val	Ser	Trp	Туr 240
Leu	Glu	Asn	Tyr	Leu 245	Ala	Asn	Leu	Phe	Ala 250	, GJÀ	Ala	Trp	Glu	Pro 255	Gln
Pro	Glu	Gly	Pro 260	Leu	Pro	Leu	Asp	Ile 265	Pro	Gln	Ala	Ser	Pro 270	Gln	Gln
Val	Gln	Arg 275	Cys	Val	Glu	Ile	Leu 280	Ser	Arg	Ala	Lys	Arg 285		Leu	Met
Val	Leu 290	Gly	Ser	Gln	Ala	Leu 295	Leu	Thr	Pro	Thr	Ser 300	Ala	Asp	Lys	Leu
Arg 305	Ala	Ala	Val	Glu	Thr 310	Leu	Gly	Val	Pro	Cys 315	Phe	Leu	Gly	Gly	Met 320
Ala	Arg	Gly	Leu	Leu 325	Gly	Arg	Asn	His	Pro 330	Leu	His	Ile	Arg	Glu 335	Asn

-155-

Arg Ser Ala Ala Leu Lys Lys Ala Asp Val Ile Val Leu Ala Gly Thr Val Cys Asp Phe Arg Leu Ser Tyr Gly Arg Val Leu Ser His Ser Ser 360 Lys Ile Ile Ile Val Asn Arg Asn Arg Glu Glu Met Leu Leu Asn Ser 375 Asp Ile Phe Trp Lys Pro Gln Glu Ala Val Gln Gly Asp Val Gly Ser Phe Val Leu Lys Leu Val Glu Gly Leu Gln Gly Gln Thr Trp Ala Pro 405 Asp Trp Val Glu Glu Leu Arg Glu Ala Asp Arg Gln Lys Glu Gln Thr Phe Arg Glu Lys Ala Ala Met Pro Val Ala Gln His Leu Asn Pro Val 440 Gln Val Leu Gln Leu Val Glu Glu Thr Leu Pro Asp Asn Ser Ile Leu 455 Val Val Asp Gly Gly Asp Phe Val Gly Thr Ala Ala His Leu Val Gln 470 475 Pro Arg Gly Pro Leu Arg Trp Leu Asp Pro Gly Ala Phe Gly Thr Leu Gly Val Gly Ala Gly Phe Ala Leu Gly Ala Lys Leu Cys Arg Pro Asp 505 Ala Glu Val Trp Cys Leu Phe Gly Asp Gly Ala Phe Gly Tyr Ser Leu 520 Ile Glu Phe Asp Thr Phe Val Arg His Lys Ile Pro Val Met Ala Leu 535 Val Gly Asn Asp Ala Gly Trp Thr Gln Ile Ser Arg Glu Gln Val Pro , 555 Ser Leu Gly Ser Asn Val Ala Cys Gly Leu Ala Tyr Thr Asp Tyr His Lys Ala Ala Met Gly Leu Gly Ala Arg Gly Leu Leu Leu Ser Arg Glu 585 Asn Glu Asp Gln Val Val Lys Val Leu His Asp Ala Gln Gln Gln Cys Arg Asp Gly His Pro Val Val Val Asn Ile Leu Ile Gly Arg Thr Asp 615

Phe Arg Asp Gly Ser Ile Ala Val

630

<210> 76

<211> 349

<212> PRT

-156-

PCT/US01/24104

<213> Homo sapiens

<400> 76

WO 02/09573

Met Pro Val Glu Arg Met Arg Met Arg Pro Trp Leu Glu Glu Gln Ile

Asn Ser Asn Thr Ile Pro Gly Leu Lys Trp Leu Asn Lys Glu Lys Lys

Ile Phe Gln Ile Pro Trp Met His Ala Ala Arg His Gly Trp Asp Val

Glu Lys Asp Ala Pro Leu Phe Arg Asn Arg Ala Ile His Thr Gly Lys

His Gln Pro Gly Val Asp Lys Pro Asp Pro Lys Thr Trp Lys Ala Asn

Phe Arg Cys Ala Met Asn Ser Leu Pro Asp Ile Glu Glu Val Lys Asp

Lys Ser Ile Lys Lys Gly Asn Asn Ala Phe Arg Val Tyr Arg Met Leu

Pro Leu Ser Glu Arg Pro Ser Lys Lys Gly Lys Lys Pro Lys Thr Glu

Lys Glu Asp Lys Val Lys His Ile Lys Gln Glu Pro Val Glu Ser Ser

Leu Gly Leu Ser Asn Gly Val Ser Asp Leu Ser Pro Glu Tyr Ala Val

Leu Thr Ser Thr Ile Lys Asn Glu Val Asp Ser Thr Val Asn Ile Ile

Val Val Gly Gln Ser His Leu Asp Ser Asn Ile Glu Asn Gln Glu Ile

Val Thr Asn Pro Pro Asp Ile Cys Gln Val Val Glu Val Thr Thr Glu

Ser Asp Glu Gln Pro Val Ser Met Ser Glu Leu Tyr Pro Leu Gln Ile 215

Ser Pro Val Ser Ser Tyr Ala Glu Ser Glu Thr Thr Asp Ser Val Pro 235 230

Ser Asp Glu Glu Ser Ala Glu Gly Arg Pro His Trp Arg Lys Arg Asn 250

Ile Glu Gly Lys Gln Tyr Leu Ser Asn Met Gly Thr Arg Gly Ser Tyr

Leu Leu Pro Gly Met Ala Ser Phe Val Thr Ser Asn Lys Pro Asp Leu 280

Gln Val Thr Ile Lys Glu Glu Ser Asn Pro Val Pro Tyr Asn Ser Ser 295

Trp Pro Pro Phe Gln Asp Leu Pro Leu Ser Ser Met Thr Pro Ala 305 310 315 320

Ser Ser Ser Ser Arg Pro Asp Arg Glu Thr Arg Ala Ser Val Ile Lys 325 330 335

Lys Thr Ser Asp Ile Thr Gln Ala Arg Val Lys Ser Cys 340 345

<210> 77

<211> 338

<212> PRT

<213> Homo sapiens

<400> 77

Met Ile Asn Ser Thr Ser Thr Gln Pro Pro Asp Glu Ser Cys Ser Gln 1 5 10 15

Asn Leu Leu Ile Thr Gln Gln Ile Ile Pro Val Leu Tyr Cys Met Val 20 25 30

Phe Ile Ala Gly Ile Leu Leu Asn Gly Val Ser Gly Trp Ile Phe Phe 35 40 45

Tyr Val Pro Ser Ser Lys Ser Phe Ile Ile Tyr Leu Lys Asn Ile Val 50 55 60

Ile Ala Asp Phe Val Met Ser Leu Thr Phe Pro Phe Lys Ile Leu Gly 65 70 75 80

Asp Ser Gly Leu Gly Pro Trp Gln Leu Asn Val Phe Val Cys Arg Val 85 90 95

Ser Ala Val Leu Phe Tyr Val Asn Met Tyr Val Ser Ile Val Phe Phe 100 105 110

Gly Leu Ile Ser Phe Asp Arg Tyr Tyr Lys Ile Val Lys Pro Leu Trp

Thr Ser Phe Ile Gln Ser Val Ser Tyr Ser Lys Leu Leu Ser Val Ile 130 135 140

Val Trp Met Leu Met Leu Leu Leu Ala Val Pro Asn Ile Ile Leu Thr 145 150 155 160

Asn Gln Ser Val Arg Glu Val Thr Gln Ile Lys Cys Ile Glu Leu Lys 165 170 175

Ser Glu Leu Gly Arg Lys Trp His Lys Ala Ser Asn Tyr Ile Phe Val

Ala Ile Phe Trp Ile Val Phe Leu Leu Leu Ile Val Phe Tyr Thr Ala 195 200 205

Ile Thr Lys Lys Ile Phe Lys Ser His Leu Lys Ser Ser Arg Asn Ser 210 220

Thr Ser Val Lys Lys Lys Ser Ser Arg Asn Ile Phe Ser Ile Val Phe

-158-

230 235 240 225 Val Phe Phe Val Cys Phe Val Pro Tyr His Ile Ala Arg Ile Pro Tyr 250 Thr Lys Ser Gln Thr Glu Ala His Tyr Ser Cys Gln Ser Lys Glu Ile Leu Arg Tyr Met Lys Glu Phe Thr Leu Leu Leu Ser Ala Ala Asn Val 280 Cys Leu Asp Pro Ile Ile Tyr Phe Phe Leu Cys Gln Pro Phe Arg Glu Ile Leu Cys Lys Lys Leu His Ile Pro Leu Lys Ala Gln Asn Asp Leu 315 Asp Ile Ser Arg Ile Lys Arg Gly Asn Thr Thr Leu Glu Ser Thr Asp 325 330 Thr Leu <210> 78 <211> 232 <212> PRT <213> Homo sapiens <400> 78 Leu Glu Thr Gln Ile Glu Ala Leu Lys Glu Glu Leu Leu Phe Met Lys Lys Asn His Glu Glu Glu Val Lys Gly Leu Gln Ala Gln Ile Ala Ser 25 Ser Gly Leu Thr Val Glu Val Asp Ala Pro Lys Ser Gln Asp Leu Ser Lys Ile Met Ala Asp Ile Arg Ala Gln Tyr Asp Glu Leu Ala Arg Lys Asn Arg Glu Glu Leu Asp Lys Tyr Trp Ser Gln Gln Ile Glu Glu Ser Thr Thr Val Val Thr Thr Gln Ser Ala Glu Val Gly Ala Ala Glu Thr 85 Thr Leu Thr Glu Leu Arg Arg Thr Val Gln Ser Leu Glu Ile Arg Leu 105 Asp Arg Met Arg Asn Leu Lys Ala Ser Leu Glu Asn Ser Leu Arg Glu 115 120 Val Glu Ala Arg Tyr Ala Leu Gln Met Glu Gln Leu Asn Gly Ile Leu 135 140 Leu His Leu Glu Ser Glu Leu Ala Gln Thr Arg Ala Glu Gly Gln Arg 155 145 150

-159-

Gln Ala Gln Glu Tyr Glu Ala Leu Leu Asn Ile Lys Val Lys Leu Glu 165 170 175

Ala Glu Ile Ala Thr Tyr Arg Arg Leu Leu Glu Asp Gly Glu Asp Phe
180 185 190

Asn Leu Gly Asp Ala Leu Asp Ser Ser Asn Ser Met Gln Thr Ile Gln
195 200 205

Lys Thr Thr Thr Arg Arg Ile Val Asp Gly Lys Val Val Ser Glu Thr 210 215 220

Asn Asp Thr Lys Val Leu Arg His 225 230

<210> 79

<211> 483

<212> PRT

<213> Homo sapiens

<400> 79

Met Ser Ile Arg Val Thr Gln Lys Ser Tyr Lys Val Ser Thr Ser Gly
1 5 10 15

Pro Arg Ala Phe Ser Ser Arg Ser Tyr Thr Ser Gly Pro Gly Ser Arg 20 25 30

Ile Ser Ser Ser Ser Phe Ser Arg Val Gly Ser Ser Asn Phe Arg Gly 35 40 45

Gly Leu Gly Gly Gly Tyr Gly Gly Ala Ser Gly Met Gly Gly Ile Thr 50 55 60

Ala Val Thr Val Asn Gln Ser Leu Leu Ser Pro Leu Val Leu Glu Val 65 70 75 80

Asp Pro Asn Ile Gln Ala Val Arg Thr Gln Glu Lys Glu Gln Ile Lys 85 90: 95

Thr Leu Asn Asn Lys Phe Ala Ser Phe Ile Asp Lys Val Arg Phe Leu 100 105 110

Glu Gln Gln Asn Lys Met Leu Glu Thr Lys Trp Ser Leu Leu Gln Gln 115 120 125

Gln Lys Thr Ala Arg Ser Asn Met Asp Asn Met Phe Glu Ser Tyr Ile 130 135 140

Asn Asn Leu Arg Arg Gln Leu Glu Thr Leu Gly Gln Glu Lys Leu Lys 145 150 155 160

Leu Glu Ala Glu Leu Gly Asn Met Gln Gly Leu Val Glu Asp Phe Lys
165 170 175

Asn Lys Tyr Glu Asp Glu Ile Asn Lys Arg Thr Glu Met Glu Asn Glu 180 185 190

Phe Val Leu Ile Lys Lys Asp Val Asp Glu Ala Tyr Met Asn Lys Val 195 200 205

-160-

Glu Leu Glu Ser Arg Leu Glu Gly Leu Thr Asp Glu Ile Asn Phe Leu 215 Arg Gln Leu Tyr Glu Glu Glu Ile Arg Glu Leu Gln Ser Gln Ile Ser 230 235 Asp Thr Ser Val Val Leu Ser Met Asp Asn Ser Arg Ser Leu Asp Met 250 Asp Ser Ile Ile Ala Glu Val Lys Ala Gln Tyr Glu Asp Ile Ala Asn Arg Ser Arg Ala Glu Ala Glu Ser Met Tyr Gln Ile Lys Tyr Glu Glu 280 Leu Gln Ser Leu Ala Gly Lys His Gly Asp Asp Leu Arg Arg Thr Lys Thr Glu Ile Ser Glu Met Asn Arg Asn Ile Ser Arg Leu Gln Ala Glu 315 Ile Glu Gly Leu Lys Gly Gln Arg Ala Ser Leu Glu Ala Ala Ile Ala 330 Asp Ala Glu Gln Arg Gly Glu Leu Ala Ile Lys Asp Ala Asn Ala Lys 345 Leu Ser Glu Leu Glu Ala Ala Leu Gln Arg Ala Lys Gln Asp Met Ala 360 Arg Gln Leu Arg Glu Tyr Gln Glu Leu Met Asn Val Lys Leu Ala Leu 375 Asp Ile Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Glu Ser 390 Arg Leu Glu Ser Gly Met Gln Asn Met Ser Ile His Thr Lys Thr Thr Ser Gly Tyr Ala Gly Gly Leu Ser Ser Ala Tyr Gly Gly Leu Thr Ser Pro Gly Leu Ser Tyr Ser Leu Gly Ser Ser Phe Gly Ser Gly Ala Gly Ser Ser Ser Phe Ser Arg Thr Ser Ser Ser Arg Ala Val Val Lys Lys Ile Glu Thr Arg Asp Gly Lys Leu Val Ser Glu Ser Ser Asp Val 470 475

Leu Pro Lys

<210> 80

<211> 440

<212> PRT

<213> Homo sapiens

<400> 80

Met Gly Pro Pro Gly Ser Pro Trp Gln Trp Val Thr Leu Leu Gly
1 5 10 15

Leu Leu Pro Pro Ala Ala Pro Phe Trp Leu Leu Asn Val Leu Phe 20 25 30

Pro Pro His Thr Thr Pro Lys Ala Glu Leu Ser Asn His Thr Arg Pro 35 40 45

Val Ile Leu Val Pro Gly Cys Leu Gly Asn Gln Leu Glu Ala Lys Leu 50 55 60

Asp Lys Pro Asp Val Val Asn Trp Met Cys Tyr Arg Lys Thr Glu Asp 65 70 75 80

Phe Phe Thr Ile Trp Leu Asp Leu Asn Met Phe Leu Pro Leu Gly Val 85 90 95

Asp Cys Trp Ile Asp Asn Thr Arg Val Val Tyr Asn Arg Ser Ser Gly 100 105 110

Leu Val Ser Asn Ala Pro Gly Val Gln Ile Arg Val Pro Gly Phe Gly
115 120 125

Lys Thr Tyr Ser Val Glu Tyr Leu Asp Ser Ser Lys Leu Ala Gly Tyr . 130 135 140

Leu His Thr Leu Val Gln Asn Leu Val Asn Asn Gly Tyr Val Arg Asp 145 150 155 160

Glu Thr Val Arg Ala Ala Pro Tyr Asp Trp Arg Leu Glu Pro Gly Gln
165 170 175

Gln Glu Glu Tyr Tyr Arg Lys Leu Ala Gly Leu Val Glu Glu Met His 180 185 190

Ala Ala Tyr Gly Lys Pro Val Phe Leu Ile Gly His Ser Leu Gly Cys
195 200 205

Leu His Leu Leu Tyr Phe Leu Leu Arg Gln Pro Gln Ala Trp Lys Asp 210 215 220

Arg Phe Ile Asp Gly Phe Ile Ser Leu Gly Ala Pro Trp Gly Gly Ser 225 230 235 240

Ile Lys Pro Met Leu Val Leu Ala Ser Gly Asp Asn Gln Gly Ile Pro 245 250 255

Ile Met Ser Ser Ile Lys Leu Lys Glu Glu Gln Arg Ile Thr Thr 260 265 270

Ser Pro Trp Met Phe Pro Ser Arg Met Ala Trp Pro Glu Asp His Val 275 280 285

Phe Ile Ser Thr Pro Ser Phe Asn Tyr Thr Gly Arg Asp Phe Gln Arg 290 295 300

Phe Phe Ala Asp Leu His Phe Glu Glu Gly Trp Tyr Met Trp Leu Gln

-162-

310 315 305 320 Ser Arg Asp Leu Leu Ala Gly Leu Pro Ala Pro Gly Val Glu Val Tyr 330 Cys Leu Tyr Gly Val Gly Leu Pro Thr Pro Arg Thr Tyr Ile Tyr Asp 345 His Gly Phe Pro Tyr Thr Asp Pro Val Gly Val Leu Tyr Glu Asp Gly Asp Asp Thr Val Ala Thr Arg Ser Thr Glu Leu Cys Gly Leu Trp Gln Gly Arg Gln Pro Gln Pro Val His Leu Leu Pro Leu His Gly Ile Gln His Leu Asn Met Val Phe Ser Asn Leu Thr Leu Glu His Ile Asn Ala Ile Leu Leu Gly Ala Tyr Arg Gln Gly Pro Pro Ala Ser Pro Thr Ala 425 Ser Pro Glu Pro Pro Pro Glu 435 <210> 81 <211> 135 <212> PRT <213> Homo sapiens <400> 81 Met Ala Cys Gly Leu Val Ala Ser Asn Leu Asn Leu Lys Pro Gly Glu Cys Leu Arg Val Arg Gly Glu Val Ala Pro Asp Ala Lys Ser Phe Val Leu Asn Leu Gly Lys Asp Ser Asn Asn Leu Cys Leu His Phe Asn Pro Arg Phe Asn Ala His Gly Asp Ala Asn Thr Ile Val Cys Asn Ser Lys Asp Gly Gly Ala Trp Gly Thr Glu Gln Arg Glu Ala Val Phe Pro Phe Gln Pro Gly Ser Val Ala Glu Val Cys Ile Thr Phe Asp Gln Ala Asn Leu Thr Val Lys Leu Pro Asp Gly Tyr Glu Phe Lys Phe Pro Asn Arg Leu Asn Leu Glu Ala Ile Asn Tyr Met Ala Ala Asp Gly Asp Phe Lys 120 Ile Lys Cys Val Ala Phe Asp 130

-163-

<210> 82

<211> 314

<212> PRT

<213> Homo sapiens

<400> 82

Met Ala Pro Pro Gln Val Leu Ala Phe Gly Leu Leu Ala Ala Ala 1 5 10 15

Thr Ala Thr Phe Ala Ala Ala Gln Glu Glu Cys Val Cys Glu Asn Tyr
20 25 30

Lys Leu Ala Val Asn Cys Phe Val Asn Asn Asn Arg Gln Cys Gln Cys 35 40 45

Thr Ser Val Gly Ala Gln Asn Thr Val Ile Cys Ser Lys Leu Ala Ala 50 55 60

Lys Cys Leu Val Met Lys Ala Glu Met Asn Gly Ser Lys Leu Gly Arg 65 70 75 80

Arg Ala Lys Pro Glu Gly Ala Leu Gln Asn Asn Asp Gly Leu Tyr Asp 85 90 95

Pro Asp Cys Asp Glu Ser Gly Leu Phe Lys Ala Lys Gln Cys Asn Gly
100 105 110

Thr Ser Thr Cys Trp Cys Val Asn Thr Ala Gly Val Arg Arg Thr Asp 115 120 125

Lys Asp Thr Glu Ile Thr Cys Ser Glu Arg Val Arg Thr Tyr Trp Ile 130 . 135 140

Ile Ile Glu Leu Lys His Lys Ala Arg Glu Lys Pro Tyr Asp Ser Lys
145 150 155 160

Ser Leu Arg Thr Ala Leu Gln Lys Glu Ile Thr Thr Arg Tyr Gln Leu 165 170 175

Asp Pro Lys Phe Ile Thr Ser Ile Leu Tyr Glu Asn Asn Val Ile Thr 180 185 · 190

Ile Asp Leu Val Gln Asn Ser Ser Gln Lys Thr Gln Asn Asp Val Asp
195 200 205

Ile Ala Asp Val Ala Tyr Tyr Phe Glu Lys Asp Val Lys Gly Glu Ser 210 215 220

Leu Phe His Ser Lys Lys Met Asp Leu Thr Val Asn Gly Glu Gln Leu 225 230 235 240

Asp Leu Asp Pro Gly Gln Thr Leu Ile Tyr Tyr Val Asp Glu Lys Ala 245 250 255

Pro Glu Phe Ser Met Gln Gly Leu Lys Ala Gly Val Ile Ala Val Ile 260 265 270

Val Val Val Ile Ala Val Val Ala Gly Ile Val Val Leu Val Ile 275 280 285 -164

Ser Arg Lys Lys Arg Met Ala Lys Tyr Glu Lys Ala Glu Ile Lys Glu 290 295 300 .

Met Gly Glu Met His Arg Glu Leu Asn Ala 305 310

<210> 83

<211> 720

<212> PRT

<213> Homo sapiens

<400> 83

Lys Ser Val Trp Lys Gly Gly Leu Arg Glu Arg Asp Pro Arg Gly Thr

1 10 15

Arg Gly Gly Arg Arg Gly Thr Gly Ser Gln Pro Ala Leu Cys Leu 20 25 30

Gly Ala Gly Arg Gln Glu Gly Ala Met Ala Leu Asp Gly Ile Arg Met 35 40 45

Pro Asp Gly Cys Tyr Ala Asp Gly Thr Trp Glu Leu Ser Val His Val 50 60

Thr Asp Leu Asn Arg Asp Ile Thr Leu Arg Val Thr Gly Glu Val His 65 70 75 80

Ile Gly Gly Val Met Leu Lys Leu Val Glu Lys Leu Asp Val Lys Lys 85 90 95

Asp Trp Ser Asp His Ala Leu Trp Trp Glu Lys Lys Arg Thr Trp Leu 100 , 105 110

Leu Lys Thr His Trp Thr Leu Asp Lys Tyr Gly Ile Gln Ala Asp Ala
115 120 : 125

Lys Leu Gln Phe Thr Pro Gln His Lys Leu Leu Arg Leu Gln Leu Pro 130 135 140

Asn Met Lys Tyr Val Lys Val Lys Val Asn Phe Ser Asp Arg Val Phe 145 150 155 , 160

Lys Ala Val Ser Asp Ile Cys Lys Thr Phe Asn Ile Arg His Pro Glu 165 170 175

Glu Leu Ser Leu Leu Lys Lys Pro Arg Asp Pro Thr Lys Lys Lys 180 185 190

Lys Lys Leu Asp Asp Gln Ser Glu Asp Glu Ala Leu Glu Leu Glu Gly
195 200 205

Pro Leu Ile Thr Pro Gly Ser Gly Ser Ile Tyr Ser Ser Pro Gly Leu 210 215 220

Tyr Ser Lys Thr Met Thr Pro Thr Tyr Asp Ala His Asp Gly Ser Pro 225 230 235 240

Leu Ser Pro Thr Ser Ala Trp Phe Gly Asp Ser Ala Leu Ser Glu Gly

-165-

				245					250					255	
Asn	Pro	Gly	Ile 260	Leu	Ala	Val	Ser	Gln 265	Pro	Ile	Thr	Ser	Pro 270	Glu	Ile
Leu	Ala	Lys 275	Met	Phe	Lys	Pro	Gln 280	Ala	Leu	Leu	Asp	Lys 285	Ala	Lys	Ile
Asn	Gln 290	Gly	Trp	Leu	qaA	Ser 295	Ser	Arg	Ser	Leu	Met 300	Glu	Gln	Asp	Val
Lys 305	Glu	Asn	Glu	Ala	Leu 310	Leu	Leu	Arg	Phe	Lys 315	Tyr.	Tyr	ser	Phe	Phe 320
Asp	Leu	Asn	Pro	Lys 325	Tyr	Asp	Ala	Ile	Arg 330	Ile	Asn	Gln	Leu	Tyr 335	Glu
Gln	Ala	Lys	Trp 340	Ala	Ile	Leu	Leu	Glu 345	Glu ,	Ile	Glu	Cys	Thr 350	Glu	Glu
Glu	Met	Met 355	Met	Phe	Ala	Ala	Leu 360	Gln	Tyr	His	Ile	Asn 365	Lys	Leu	Ser
Ile	Met 370	Thr	Ser	Glu	Asn	His 375	Leu	Asn	Asn	Ser	Asp 380	Lys	Glu	Val	Asp
Glu 385	Val	Asp	Ala	Ala	Leu 390	Ser	Ásp	Leu	Glu	Ile 395	Thr	Leu	Glu	Gly	Gly 400
Lys	Thr	Ser	Thr	Ile 405	Leu	Gly	Asp	Ile	Thr 410	Ser	Ile	Pro	Glu	Leu 415	Ala
Asp	Tyr	Ile	Lys 420	Val	Phe	Lys	Pro	Lys 425	Lys	Leu	Thr	Leu	Lys 430	Gly	Tyr
Lys	Gln	Tyr 435	Trp	Cys	Thr	Phe	Lys 440	Asp	Thr	Ser	Ile	Ser 445	Cys	Tyr	Lys
Ser	Lys 450	Glu	Glu	Ser	Ser	Gly 455	Thr	Pro	Äla	His	Gln 460	Met	Asn	Leu	Arg
Gly 465	Сув	Glu	Val	Thr	Pro 470	Asp	Val	Asn	Ile	Ser 475	Gly	Gln	Lys	Phe	480
Ile	Lys	Leu	Leu	Ile 485	Pro	Val	Ala	Glu	Gly 490	Met	Asn	Glu	Ile	Trp 495	Leu
Arg	Cys	Asp	Asn 500	Glu	Lys	Gl'n	Tyr	Ala 505	His	Trp	Met	Ala	Ala 510	Cys	Arg
Leu	Ala	Ser 515	ГÀЗ	Gly	Lys	Thr	Met 520	Ala	Asp	Ser	Ser	Tyr 525	Asn	Leu	Glu
Val	Gln 53.0	Asn	Ile	Leu	Ser	Phe 535	Leu	Lys	Met	Gln	His 540	Leu	Asn	Pro	Asp
Pro 545	Gln	Leu	Ile	Pro	Glu 550	Gln	Ile	Thr	Thr	Asp 555	Ile	Thr	Pro	Glu	Cys 560
Leu	Val	Ser	Pro	Arg	Tyr	Leu	Lys	Lys	Tyr :	Lys	Asn	Lys	Gln	Ile	Thr

-166-

565 57**0** Ala Arg Ile Leu Glu Ala His Gln Asn Val Ala Gln Met Ser Leu Ile 585 Glu Ala Lys Met Arg Phe Ile Gln Ala Trp Gln Ser Leu Pro Glu Phe 600 Gly Ile Thr His Phe Ile Ala Arg Phe Gln Gly Gly Lys Lys Glu Glu 615 Leu Ile Gly Ile Ala Tyr Asn Arg Leu Ile Arg Met Asp Ala Ser Thr 630 ; 635 Gly Asp Ala Ile Lys Thr Trp Arg Phe Ser Asn Met Lys Gln Trp Asn , 650 Val Asn Trp Glu Ile Lys Met Val Thr Val Glu Phe Ala Asp Glu Val 665 Arg Leu Ser Phe Ile Cys Thr Glu Val Asp Cys Lys Val Val His Glu 680 Phe Ile Gly Gly Tyr Ile Phe Leu Ser Thr Arg Ala Lys Asp Gln Asn 695 Glu Ser Leu Asp Glu Glu Met Phe Tyr Lys Leu Thr Ser Gly Trp Val 710 715 <210> 84 <211> 582 <212> PRT <213> Homo sapiens <400> 84 Met Ser Pro Ala Pro Arg Pro Pro Arg Cys Leu Leu Leu Pro Leu Leu Thr Leu Gly Thr Ala Leu Ala Ser Leu Gly Ser Ala Gln Ser Ser Ser Phe Ser Pro Glu Ala Trp Leu Gln Gln Tyr Gly Tyr Leu Pro Pro Gly Asp Leu Arg Thr His Thr Gln Arg Ser Pro Gln Ser Leu Ser Ala Ala Ile Ala Ala Met Gln Lys Phe Tyr Gly Leu Gln Val Thr Gly Lys Ala 75 Asp Ala Asp Thr Met Lys Ala Met Arg Arg Pro Arg Cys Gly Val Pro Asp Lys Phe Gly Ala Glu Ile Lys Ala Asn Val Arg Arg Lys Arg Tyr 105 Ala Ile Gln Gly Leu Lys Trp Gln His Asn Glu Ile Thr Phe Cys Ile

120 . 125

-167-

Gln	Asn 130	Tyr	Thr	Pro	Гуs	Val 135	Gly	Glu	Tyr	Ala	Thr 140	Tyr	Glu	Ala	Ile
Arg 145	Lys	Ala	Phe	Arg	Val 150	Trp	Glu	Ser	Ala	Thr 155	Pro	Leu	Arg	Phe	Arg 160
Glu	Val	Pro	Tyr	Ala 165	Tyr	Ile	Arg	Glu	Gly 170	His	Glu	Lys	Gln	Ala 175	Asp
Ile	Met	Ile	Phe 180	Phe	Ala	Glu	Gly	Phe 185	His	Gly	Asp	Ser	Thr 190	Pro	Phe
Asp	Gly	Glu 195	Gly	Gly	Phe	Leu	Ala 200	His	Ala	Tyr	Phe	Pro 205	Gly	Pro	Asn
Ile	Gly 210	Gly	Asp	Thr	His	Phe 215	Asp	Ser	Ala	Glu	Pro 220	Trp	Thr	Val	Arg
Asn 225	Glu	Asp	Leu	Asn	Gly 230	Asn	Asp	Ile	Phé	Leu 235	Val	Ala	Val	His	Glu 240
Leu	Gly	His	Ala	Leu 245	Gly	Leu	Glu	His	Ser 250	Ser	Asp	Pro	Ser	Ala 255	Ile
Met	Ala	Pro	Phe 260	Tyr	Gln	Trp	Met	Asp 265	Thr	Glu	Asn	Phe	Val 270	Leu	Pro
Asp	Asp	Asp 275	Arg	Arg	Gly	Ile	Gln 280	Glņ	Leu	Tyr	Gly	Gly 285	Glu	Ser	Gly
Phe	Pro	Thr	Lys	Met	Pro	Pro	Gln	Pro	Arg	Thr	Thr	Ser	Arg	Pro	Ser
	290					295					300				
Val 305	290 Pro	Asp	Lys	Pro	Lys 310		Pro	Thr	Tyr	Gly 315		Asn	Ile	Сув	Asp 320
305					310	Asn				315	Pro			_	320 Phe
305 Gly	Pro	Phe	Asp	Thr 325	310 Val	Asn Ala	Met	Leu	Arg 330	315 Gly	Pro Glu	Met	Phe	Val 335	320 Phe
305 Gly Lys	Pro Asn	Phe Arg	Asp Trp 340	Thr 325 Phe	310 Val Trp	Asn Ala Arg	Met Val	Leu Arg 345	Arg 330 Asn	315 Gly Asn	Pro Glu Gln	Met Val	Phe Met 350	Val 335 Asp	320 Phe Gly
305 Gly Lys Tyr	Pro Asn Glu	Phe Arg Met 355	Asp Trp 340 Pro	Thr 325 Phe Ile	310 Val Trp Gly	Asn Ala Arg Gln	Met Val Phe 360	Leu Arg 345 Trp	Arg 330 Asn Arg	315 Gly Asn Gly	Pro Glu Gln Leu	Met Val Pro 365	Phe Met 350 Ala	Val 335 Asp	320 Phe Gly Ile
305 Gly Lys Tyr	Pro Asn Glu Pro	Phe Arg Met 355 Ala	Asp Trp 340 Pro	Thr 325 Phe Ile Glu	310 Val Trp Gly Arg	Asn Ala Arg Gln Lys 375	Met Val Phe 360 Asp	Leu Arg 345 Trp	Arg 330 Asn Arg	315 Gly Asn Gly Phe	Pro Glu Gln Leu Val	Met Val Pro 365 Phe	Phe Met 350 Ala Phe	Val 335 Asp Ser	320 Phe Gly Ile
Gly Lys Tyr Asn Asp 385	Pro Asn Glu Pro Thr	Phe Arg Met 355 Ala	Asp Trp 340 Pro Tyr	Thr 325 Phe Ile Glu Val	310 Val Trp Gly Arg	Asn Ala Arg Gln Lys 375 Asp	Met Val Phe 360 Asp	Leu Arg 345 Trp Gly	Arg 330 Asn Arg Lys	315 Gly Asn Gly Phe Leu 395	Pro Glu Gln Leu Val 380 Glu	Met Val Pro 365 Phe	Phe Met 350 Ala Phe Gly	Val 335 Asp Ser Lys	320 Phe Gly Ile Gly Pro 400
Gly Lys Tyr Asn Asp 385 Lys	Pro Asn Glu Pro Thr 370 Lys	Phe Arg Met 355 Ala His	Asp Trp 340 Pro Tyr Trp	Thr 325 Phe Ile Glu Val Glu 405	Val Trp Gly Arg Phe 390 Leu	Asn Ala Arg Gln Lys 375 Asp	Met Val Phe 360 Asp Glu Arg	Leu Arg 345 Trp Gly Ala Gly	Arg 330 Asn Arg Lys Ser	315 Gly Asn Gly Phe Leu 395 Pro	Pro Glu Gln Leu Val 380 Glu Thr	Met Val Pro 365 Phe Pro	Phe Met 350 Ala Phe Gly Lys	Val 335 Asp Ser Lys Tyr	320 Phe Gly Ile Gly Pro 400 Asp

-168-

Tyr Pro Lys Asn Ile Lys Val Trp Glu Gly Ile Pro Glu Ser Pro Arg 455 Gly Ser Phe Met Gly Ser Asp Glu Val Phe Thr Tyr Phe Tyr Lys Gly 475 Asn Lys Tyr Trp Lys Phe Asn Asn Gln Lys Leu Lys Val Glu Pro Gly Tyr Pro Lys Ser Ala Leu Arg Asp Trp Met Gly Cys Pro Ser Gly Gly 505 Arg Pro Asp Glu Gly Thr Glu Glu Glu Thr Glu Val Ile Ile Glu Val Asp Glu Glu Gly Gly Ala Val Ser Ala Ala Val Val Leu Pro Val Leu Leu Leu Leu Val Leu Ala Val Gly Leu Ala Val Phe Phe Phe Arg Arg His Gly Thr Pro Arg Arg Leu Leu Tyr Cys Gln Arg Ser Leu Leu Asp Lys Val 580 <210> 85 <211> 1246 <212> PRT <213> Homo sapiens <400> 85 Met Leu Ala Ser Ser Ser Arg Ile Arg Ala Ala Trp Thr Arg Ala Leu Leu Leu Pro Leu Leu Ala Gly Pro Val Gly Cys Leu Ser Arg Gln Glu Leu Phe Pro Phe Gly Pro Gly Gln Gly Asp Leu Glu Leu Glu Asp Gly Asp Asp Phe Val Ser Pro Ala Leu Glu Leu Ser Gly Ala Leu Arg Phe Tyr Asp Arg Ser Asp Ile Asp Ala Val Tyr Val Thr Thr Asn Gly Ile Ile Ala Thr Ser Glu Pro Pro Ala Lys Glu Ser His Pro Gly Leu Phe Pro Pro Thr Phe Gly Ala Val Ala Pro Phe Leu Ala Asp Leu Asp

Thr Thr Asp Gly Leu Gly Lys Val Tyr Tyr Arg Glu Asp Leu Ser Pro 115 120 125

Ser Ile Thr Gln Arg Ala Ala Glu Cys Val His Arg Gly Phe Pro Glu

13,0

Ile Ser Phe Gln Pro Ser Ser Ala Val Val Thr Trp Glu Ser Val Ala Pro Tyr Gln Gly Pro Ser Arg Asp Pro Asp Gln Lys Gly Lys Arg Asn Thr Phe Gln Ala Val Leu Ala Ser Ser Asp Ser Ser Ser Tyr Ala Ile Phe Leu Tyr Pro Glu Asp Gly Leu Gln Phe His Thr Thr Phe Ser Lys Lys Glu Asn Asn Gln Val Pro Ala Val Val Ala Phe Ser Gln Gly Ser Val Gly Phe Leu Trp Lys Ser Asn Gly Ala Tyr Asn Ile Phe Ala Asn Asp Arg Glu Ser Ile Glu Asn Leu Ala Lys Ser Ser Asn Ser Gly Gln Gln Gly Val Trp Val Phe Glu Ile Gly Ser Pro Ala Thr Thr Asn 265 Gly Val Val Pro Ala Asp Val Ile Leu Gly Thr Glu Asp Gly Ala Glu Tyr Asp Asp Glu Asp Glu Asp Tyr Asp Leu Ala Thr Thr Arg Leu Gly 295 Leu Glu Asp Val Gly Thr Thr Pro Phe Ser Tyr Lys Ala Leu Arg Arg 310 Gly Gly Ala Asp Thr Tyr Ser Val Pro Ser Val Leu Ser Pro Arg Arg Ala Ala Thr Glu Arg Pro Leu Gly Pro Pro Thr Glu Arg Thr Arg Ser 345 Phe Gln Leu Ala Val Glu Thr Phe His Gln Gln His Pro Gln Val Ile 355 Asp Val Asp Glu Val Glu Glu Thr Gly Val Val Phe Ser Tyr Ash Thr 375 Asp Ser Arg Gln Thr Cys Ala Asn Asn Arg His Gln Cys Ser Val His 385 Ala Glu Cys Arg Asp Tyr Ala Thr Gly Phe Cys Cys Ser Cys Val Ala 410 Gly Tyr Thr Gly Asn Gly Arg Gln Cys Val Ala Glu Gly Ser Pro Gln Arg Val Asn Gly Lys Val Lys Gly Arg Ile Phe Val Gly Ser Ser Gln 440 Val Pro Ile Val Phe Glu Asn Thr Asp Leu His Ser Tyr Val Val Met 450 455

Asn 465	His	Gly	Arg	Ser	Tyr 470	Thr	Ala	Ile	Seŗ	Thr 475	Ile	Pro	Glu	Thr	Val 480
Gly	Tyr	Ser	Leu	Leu 485	Pro	Leu	Ala	Pro	Val 490	Gly	Gly	Ile	Ile	Gly 495	Trp
Met	Phe	Ala	Val 500	Glu	Gln	Asp	Gly	Phe 505	Lys	Asn	Gly	Phe	Ser 510	Ile	Thr
Gly	Gly	Glu 515	Phe	Thr	Arg	Gln	Ala 520	Glu	Val	Thr	Phe	Val 525	Gly	His	Pro
Gly	Asn 530	Leu	Val	Ile	Lys	Gln 535	Arg	Phe	Ser	Gly	Ile 540	Asp	Glu	His	Gly
His 545	Leu	Thr	Ile	Asp	Thr 550	Glu	Leu	Glu	Gly	Arg 555	Val	Pro	Gln	Ile	Pro 560
Phe	Gly	Ser	Ser	Val 565		Ile	Glu	Pro	Tyr 570	Thr	Glu	Leu	Tyr	His 575	Туг
Ser	Thr	Ser	Val 580	Ile	Thr	Ser	Ser	Ser 585	Thr	Arg	Glu	Tyr	Thr 590	Val	Thi
Glu	Pro	Glu 595	Arg	Asp	Gly	Ala	Ser 600	Pro	Ser	Arg	lle	Tyr 605	Thr	Tyr	Glr
Trp	Arg 610	Gln	Thr	Ile	Thr	Phe 615	Gln	Glu	Cys	Val	His 620	Asp	Asp	Ser	Arç
Pro 625	Ala	Leu	Pro	Ser	Thr 630	Gln	Gln	Leu	Ser	Val 635	Asp	Ser	Val	Phe	Va]
Leu	Tyr	Asn	Gln	Glu 645	Glu	Lys	Ile	Leu	Arg 650	Tyr	Ala	Phe	Ser	Asn 655	Ser
Ile	Gly	Pro	Val 660	Arg	Glu	Gly	Ser	Pro 665	Asp	Ala	Leu	Gln	Asn 670	Pro	Сує
Tyr	Ile	Gly 675	Thr	His	Gly	Cys	Asp 680	Thr	Asn	Ala	Ala	Cys 685	Arg	Pro	Glλ
Pro	Arg 690	Thr	Gln	Phe	Thr	Cys 695	Glu	СЛ̀а	Ser	Ile	Gly 700	Phe	Arg	Gly	Asp
Gly 705	Arg	Thr	Cys	Tyr	Asp 710	Ile	Asp	Glu	Суз	Ser 715	Glu	Gln	Pro	Ser	Va]
Cys	Gly	Ser	His	Thr 725	Ile	Cys	Asn	Asn	His 730	Pro	Gly	Thr	Phe	Arg 735	Суя
Glu	Cys	Val	Glu 740	Gly	Tyr	Gln	Phe	Ser 745	Asp	Glu	Gly	Thr	Cys 750	Val	Ala
Val	Val	Asp 755	Gln	Arg	Pro	Ile	Asn 760	Tyr	Cys	Glu	Thr	Gly 765	Leu	His	Asr
Cys	Asp	Ile	Pro	Gln	Arg	Ala		Cys	Ile	Tyr	Thr	Gly	Gly	Ser	Sei

-171-

Tyr 785	Thr	Cys	Ser	Сув	Leu 790	Pro	Gly	Phe	Ser	Gly 795	Asp	Gly	Gln	Ala	Cys 800
Gln	Asp	Val	Asp	Glu 805	Cys	Gln	Pro	Ser	Arg 810	Cys	His	Pro	Asp	Ala 815	Phe
Cys	Tyr	Asn	Thr 820	Pro	Gly	Ser	Phe	Thr 825	Cys	Gln	Cys	Lуs	Pro 830	Gly	Tyr
Gln	Gly	Asp 835	Gly	Phe	Arg	Cys	Val 840	Pro	Gly	Glu	Val	Glu 845	Lys	Thr	Arg
Cys	Gln 850	His	Glu	Arg	Glu	His 855	Ile	Leu	Gly	Дlа	Ala 860	Gly	Ala	Thr	Asp
Pro 865	Gln	Arg	Pro	Ile	Pro 870	Pro	Gly	Leu	Phe	Val 875	Pro	Glu	Сув	Asp	Ala 880
His	Gly	His	Tyr	Ala 885	Pro	Thr	Gln	Cys	His 890	Gly	Ser	Thr	Gly	Tyr 895	Cys
Trp	Сув	Val	qaA 000	Arg	Asp	Gly	Arg	Glu 905	Val	Glu	Gly	Thr	Arg 910	Thr	Arg
Pro	Gly	Met 915	Thr	Pro	Pro	Cys	Leu 920	Ser	Thr	Val	Ala	Pro 925	Pro	Ile	His
Gln	Gly 930	Pro	Ala	Val	Pro	Thr 935	Ala	Val	Ile	Pro	Leu 940	Pro	Pro	Gly	Thr
His 945	Leu	Leu	Phe	Ala	Gln 950	Thr	Gly	Lys	Ile	Glu 955	Arg	Leu	Pro	Leu	Glu 960
Gly	Asn	Thr	Met	Arg 965	Lys	Thr	Glu	Ala	Lys 970	Ala	Phe	Leu	His	Val 975	Pro
Ala	Гуs	Val	Ile 980	Ile	Gly	Leu	Ala	Phe 985	Asp	Cys	Val	Asp	Lys 990	Met	Val
Tyr	Trp	Thr 995	Asp	Ile	Thr	Glu	Pro 1000		Ile	e Gly	/ Arg	Ala 10		er Le	eu Hi
Gly	Gly 1010		ı Pro	Thr	Thr	Il∈ 101		e Ar	g G]	ln As		eu ()20	Gly &	ser'l	?ro
Glu	Gly 1025		e Ala	Val	. Asp	His 103		eu Gl	ly Ar	rg As		le :	Phe 7	rp 7	Ch r
Asp	Ser 1040		ı Lev	Asp	Arg	104		.u Va	al Al	la Ly		eu 1 050	Asp (3ly ⊃	Thr
Gln	Arg 1055		y Val	. Leu	ı Ph∈	9 Glu 106		ır As	p Le	eu Va		n 1)65	Pro A	Arg (Bly
Ile	Val 1070		: Asp	Ser	· Val	. Arc		.y՝ As	n Le	eu Ty		p 5	Thr A	ap T	rp
Asn	Arg 1085		Asn	Pro	Lys	11e		u Th	,	er Ty	•	et 1 195	Asp (aly I	Thr
									<u>}</u>						

-172-

WO 02/09573 PCT/US01/24104

Asn Arg Arg Ile Leu Val Gln Asp Asp Leu Gly Leu Pro Asn Gly 1100 1105 1110 Leu His Phe Asp Ala Phe Ser Ser Gln Leu Cys Trp Val Asp Ala 1125 1115 1120 Gly Thr Asn Arg Ala Glu Cys Leu Asn Pro Ser Gln Pro Ser Arg 1135 1130 Arg Lys Ala Leu Glu Gly Leu Gln Tyr Pro Phe Ala Val Thr Ser 1145 1150 1155 Tyr Gly Lys Asn Leu Tyr Phe Thr Asp Trp Lys Met Asn Ser Val 1165 Val Ala Leu Asp Leu Ala Ile Ser Lys Glu Thr Asp Ala Phe Gln 1175 1180 Pro His Lys Gln Thr Arg Leu Tyr Gly Ile Thr Thr Ala Leu Ser 1190 1195 Gln Cys Pro Gln Gly His Asn Tyr Cys Ser Val Asn Asn Gly Gly 1210 1205 Cys Thr His Leu Cys Leu Ala Thr Pro Gly Ser Arg Thr Cys Arg 1225 Cys Pro Asp Asn Thr Leu Gly Val Asp Cys Ile Glu Arg 1240 <210> 86 <211> 423 <212> PRT <213> Homo sapiens <400> 86 Met Ala Met Val Val Ser Ser Trp Arg Asp Pro Gln Asp Asp Val Ala Gly Gly Asn Pro Gly Gly Pro Asn Pro Ala Ala Gln Ala Ala Arg Gly Gly Gly Gly Ala Gly Glu Gln Gln Gln Ala Gly Ser Gly Ala Pro His Thr Pro Gln Thr Pro Gly Gln Pro Gly Ala Pro Ala Thr Pro Gly Thr Ala Gly Asp Lys Gly Gln Gly Pro Pro Gly Ser Gly Gln Ser Gln Gln His Ile Glu Cys Val Val Cys Gly Asp Lys Ser Ser Gly Lys 90 His Tyr Gly Gln Phe Thr Cys Glu Gly Cys Lys Ser Phe Phe Lys Arg 100 .

Ser Val Arg Arg Asn Leu Thr Tyr Thr Cys Arg Ala Asn Arg Asn Cys

-173-

		115					120					125			
Pro	Ile 130	Asp	Gln	His	His	Arg 135	Asn	Gln	Cys	Gln	Tyr 140	Cys	Arg	Leu	Lys
Lys 145	Cys	Leu	Lys	Val	Gly 150	Met	Arg	Arg	Glu	Ala 155	Val	Gln	Arg	Gly	Arg 160
Met	Pro	Pro	Thr	Gln 165	Pro	Asn	Pro	Gly	Gln 170	Tyr	Ala	Leu	Thr	Asn 175	Gly
Asp	Pro	Leu	Asn 180	Gly	His	Cys	Tyr	Leu 185	Ser	Gly	Tyr	Ile	Ser 190	Leu	Leu
Leu	Arg	Ala 195	Glu	Pro	Tyr	Pro	Thr 200	Ser	Arg	Tyr	Gly	Ser 205	Gln	Cys	Met
Gln	Pro 210	Asn	Asn	Ile	Met	Gly 215		Glu	Asn	Ile	Cys 220	Glu	Leu	Ala	Ala
Arg 225	Leu	Leu	Phe	Ser	Ala 230	Val	Glu	Trp	Ala	Arg 235	Asn	Ile	Pro	Phe	Phe 240
Pro	Asp	Leu	Gln	Ile 245	Thr	Asp	Gln	Val	Ser 250	Leu	Leu	Arg	Leu	Thr 255	Trp
Ser	Glu	Leu	Phe 260	Val	Leu	Asn	Ala	Ala 265	Gln	Cys	Ser	Met	Pro 270	Leu	His
Val	Ala	Pro 275	Leu	Leu	Ala	Ala	Ala 280	Gly	Leu:	His	Ala	Ser 285	Pro	Met	Ser
Ala	Asp 290	Arg	Val ⁻	Val	Ala	Phe 295	Met	Asp	His	Ile	Arg 300	Ile	Phe	Gln	Glu
Gln 305	Val	Glu	Lys	Leu	Lys 310		Leu	His	Val	Asp 315		Ala	Glu	Tyr	Ser 320
Cys	Leu	ГÀЗ	Ala	Ile 325	Val	Leu	Phe	Thr	Ser 330	Asp	Ala	Cys	Gly	Leu 335	Ser
Asp	Ala	Ala	His 340	Ile	Glu	Ser	Leu	Gln 345	Glu	Lys	Ser	Gln	Сув 350	Ala	
Glu	Glu	Tyr 355	Val	Arg	Ser	Gln	Туг 360	Pro	Asn	Gln	Pro	Ser 365	Arg	Phe	Gly
Lys	Leu 370	Leu	Leu	Arg	Leu	Pro 375	Ser	Leu	Arg	Thr	Val 380	Ser	Ser	Ser	Val
Ile 385	Glu	Gln	Leu	Phe	Phe 390	Val	Arg	Leu	Val	Gly 395	Lys	Thr	Pro	Ile	Glu 400
Thr	Leu	Ile	Arg	Asp 405	Met	Leu	Leu	Ser	Gly 410	Ser	Ser	Phe	Asn	Trp 415	Pro
Tyr	Met	Ser	Ile 420	Gln	Cys	Ser			,						

<210> 87

PCT/US01/24104

-174-

<211> 534 <212> PRT <213> Homo sapiens <400> 87 Met Ile Trp Tyr Ile Leu Ile Ile Gly Ile Leu Leu Pro Gln Ser Leu 5 Ala His Pro Gly Phe Phe Thr Ser Ile Gly Gln Met Thr Asp Leu Ile His Thr Glu Lys Asp Leu Val Thr Ser Leu Lys Asp Tyr Ile Lys Ala Glu Glu Asp Lys Leu Glu Gln Ile Lys Lys Trp Ala Glu Lys Leu Asp Arg Leu Thr Ser Thr Ala Thr Lys Asp Pro Glu Gly Phe Val Gly His Pro Val Asn Ala Phe Lys Leu Met Lys Arg Leu Asn Thr Glu Trp Ser Glu Leu Glu Asn Leu Val Leu Lys Asp Met Ser Asp Gly Phe Ile Ser 100 105 Asn Leu Thr Ile Gln Arg Pro Val Leu Ser Asn Asp Glu Asp Gln Val 120 Gly Ala Ala Lys Ala Leu Leu Arg Leu Gln Asp Thr Tyr Asn Leu Asp Thr Asp Thr Ile Ser Lys Gly Asn Leu Pro Gly Val Lys His Lys Ser Phe Leu Thr Ala Glu Asp Cys Phe Glu Leu Gly Lys Val Ala Tyr Thr Glu Ala Asp Tyr Tyr His Thr Glu Leu Trp Met Glu Gln Ala Leu Arg Gln Leu Asp Glu Gly Glu Ile Ser Thr Ile Asp Lys Val Ser Val Leu 200 Asp Tyr Leu Ser Tyr Ala Val Tyr Gln Gln Gly Asp Leu Asp Lys Ala 215 Leu Leu Leu Thr Lys Lys Leu Leu Glu Leu Asp Pro Glu His Gln Arg 225 Ala Asn Gly Asn Leu Lys Tyr Phe Glu Tyr Ile Met Ala Lys Glu Lys 250 Asp Val Asn Lys Ser Ala Ser Asp Gln Ser Asp Gln Lys Thr Thr 265 Pro Lys Lys Gly Val Ala Val Asp Tyr Leu Pro Glu Arg Gln Lys 280 285

-175-

Tyr Glu Met Leu Cys Arg Gly Glu Gly Ile Lys Met Thr Pro Arg Arg 290 295 300

Gln Lys Lys Leu Phe Cys Arg Tyr His Asp Gly Asn Arg Asn Pro Lys 305 310 315

Phe Ile Leu Ala Pro Ala Lys Gln Glu Asp Glu Trp Asp Lys Pro Arg 325 330 335

Ile Ile Arg Phe His Asp Ile Ile Ser Asp Ala Glu Ile Glu Ile Val 340 345 350

Lys Asp Leu Ala Lys Pro Arg Leu Ser Arg Ala Thr Val His Asp Pro 355 360 365

Glu Thr Gly Lys Leu Thr Thr Ala Gln Tyr Arg Val Ser Lys Ser Ala 370 380

Trp Leu Ser Gly Tyr Glu Asn Pro Val Val Ser Arg Ile Asn Met Arg 385 390 395 400

Ile Gln Asp Leu Thr Gly Leu Asp Val Ser Thr Ala Glu Glu Leu Gln 405 410 415

Val Ala Asn Tyr Gly Val Gly Gln Tyr Glu Pro His Phe Asp Phe 420 425 430

Ala Arg Lys Asp Glu Pro Asp Ala Phe Lys Glu Leu Gly Thr Gly Asn 435 440 445

Arg Ile Ala Thr Trp Leu Phe Tyr Met Ser Asp Val Ser Ala Gly Gly 450 460

Ala Thr Val Phe Pro Glu Val Gly Ala Ser Val Trp Pro Lys Lys Gly 465 470 475 480

Thr Ala Val Phe Trp Tyr Asn Leu Phe Ala Ser Gly Glu Gly Asp Tyr 485 490 495

Ser Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Asn Lys Trp Val 500 505 510

Ser Asn Lys Trp Leu His Glu Arg Gly Glu Phe Arg Arg Pro Cys 515 520 525

Thr Leu Ser Glu Leu Glu 530

<210> 88

<211> 162

<212> PRT

<213> Homo sapiens

<400> 88

Met Asp Ile Pro Gln Thr Lys Gln Asp Leu Glu Leu Pro Lys Leu Ala 1 5 10 15

Gly Thr Trp His Ser Met Ala Met Ala Thr Asn Asn Ile Ser Leu Met 20 25 30

-176-

Ala Thr Leu Lys Ala Pro Leu Arg Val His Ile Thr Ser Leu Leu Pro 35 40 45

Thr Pro Glu Asp Asn Leu Glu Ile Val Leu His Arg Trp Glu Asn Asn 50 55 60

Ser Cys Val Glu Lys Lys Val Leu Gly Glu Lys Thr Gly Asn Pro Lys 65 70 75 80

Lys Phe Lys Ile Asn Tyr Thr Val Ala Asn Glu Ala Thr Leu Leu Asp 85 90 95

Thr Asp Tyr Asp Asn Phe Leu Phe Leu Cys Leu Gln Asp Thr Thr Thr 100 105 110

Pro Ile Gln Ser Met Met Cys Gln Tyr Leu Ala Arg Val Leu Val Glu 115 120 125

Asp Asp Glu Ile Met Gln Gly Phe Ile Arg Ala Phe Arg Pro Leu Pro 130 140

Arg His Leu Trp Tyr Leu Leu Asp Leu Lys Gln Met Glu Glu Pro Cys 145 150 155 160

Arg Phe

<210> 89

<211> 449

<212> PRT

<213> Homo sapiens

<400> 89

Met Leu Pro Ala Ala Thr Ala Ser Leu Leu Gly Pro Leu Leu Thr Ala 1 5 10 15

Cys Ala Leu Leu Pro Phe Ala Gln Gly Gln Thr Pro Asn Tyr Thr Arg
20 25 30

Pro Val Phe Leu Cys Gly Gly Asp Val Lys Gly Glu Ser Gly Tyr Val 35 40 45

Ala Ser Glu Gly Phe Pro Asn Ser Tyr Pro Pro Asn Lys Glu Cys Ile 50 55 60

Trp Thr Ile Thr Val Pro Glu Gly Gln Thr Val Ser Leu Ser Phe Arg 70 75 80

Val Phe Asp Leu Glu Leu His Pro Ala Cys Arg Tyr Asp Ala Leu Glu 85 90 95

Val Phe Ala Gly Ser Gly Thr Ser Gly Gln Arg Leu Gly Arg Phe Cys 100 105 110

Gly Thr Phe Arg Pro Ala Pro Leu Val Ala Pro Gly Asn Gln Val Thr 115 120 125

Leu Arg Met Thr Thr Asp Glu Gly Thr Gly Gly Arg Gly Phe Leu Leu

-177-

	130					135					140				
Trp 145	Tyr	Ser	Gly	Arg	Ala 150	Thr	Ser	Gly	Ser	Glu 155	His	Gln	Phe	Cys	Gly 160
Gly	Arg	Leu	Glu	Lys 165	Ala	Gln	Gly	Thr	Leu 170	Thr	Thr	Pro	Asn	Trp 175	Pro
Glu	Ser	Asp	Tyr 180	Pro	Pro	Gly	Ile	Ser 185	Cys	Ser	Trp	His	Ile 190	Ile	Ala
Pro	Pro	Asp 195	Gln	Val	Ile	Ala	Leu 200	Thr	Phe	Glu	Lys	Phe 205	Asp	Leu	Glu
Pro	Asp 210	Thr	Tyr	Cys	Arg	Tyr 215	Asp	Ser	Val	Ser	Val 220	Phe	Asn	Gly	Ala
Val 225	Ser	Asp	Asp	Ser	Arg 230	Arg	Leu	Gly	Lys	Phe 235	Cys	Gly	Asp	Ala	Val 240
Pro	Gly	Ser	Ile	Ser 245	Ser	Glu	Gly	Asn	Glu 250	Leu	Leu	Val	Gln	Phe 255	Val
Ser	Asp	Leu	Ser 260	Val	Thr	Ala	Asp	Gly 265	Phe	Ser	Ala	Ser	Tyr 270		Thr
Leu	Pro	Arg 275	Gly	Thr	Ala	Lys	Glu 280	Gly	Gln	Gly	Pro	Gly 285	Pro	Lys	Arg
Gly	Thr 290	Glu	Pro	Lys	Val	Lys 295	Leu	Pro	Pro	Lys	ser 300	Gln	Pro	Pro	Glu
Lys 305	Thr	Glu	Glu	Ser	Pro 310	Ser	Ala	Pro	Asp	Ala 315	Pro	Thr	Cys	Pro	Lys 320
Gln	Cys	Arg	Arg	Thr 325	Gly	Thr	Leu	Gln	Ser 330	Asn	Phe	Cys	Ala	Ser 335	Ser
Leu	Val	Val	Thr 340	Ala	Thr	Val	Lys	Ser 345	Met	Val	Arg	Glu	Pro 350	Gly	Glu
Gly	Leu	Ala 355	Val	Thr	Val	Ser	Leu 360	Ile	Gly	Ala	Tyr	Lys 365	Thr	Gly	
Leu	Asp 370	Leu	Pro	Thr	Pro	Pro 375	Thr	Gly	Ala	Ser	Leu 380	Lys	Phe	Tyr	Val
Pro 385	Cys	Lys	Gln	Cys	Pro 390	Pro	Met	ГÀЗ	Lys	Gly 395	Val	Ser	Tyr	Leu	Leu 400
Met	Gly	Gln	Val	Glu 405	Glu	Asn	Arg	Gly	Pro 410	Val	Leu	Pro	Pro	Glu 415	Ser
Phe	Val	Val	Leu 420	His	Arg	Pro	Asn	Gln 425	Asp	Gln	Ile	Leu	Thr 430	Asn	Leu
Ser	Lys	Arg 435	Lys	Cys	Pro	Ser	Gln 440	Pro	Val	Arg	Ala	Ala 445	Ala	Ser	Gln
Asp															

WO 02/09573

-178-

PCT/US01/24104

<210> 90 <211> 1089 <212> PRT<213> Homo sapiens <400> 90 Met Gly Thr Ser His Pro Ala Phe Leu Val Leu Gly Cys Leu Leu Thr Gly Leu Ser Leu Ile Leu Cys Gln Leu Ser Leu Pro Ser Ile Leu Pro 25 Asn Glu Asn Glu Lys Val Val Gln Leu Asn Ser Ser Phe Ser Leu Arg Cys Phe Gly Glu Ser Glu Val Ser Trp Gln Tyr Pro Met Ser Glu Glu Glu Ser Ser Asp Val Glu Ile Arg Asn Glu Glu Asn Asn Ser Gly Leu Phe Val Thr Val Leu Glu Val Ser Ser Ala Ser Ala Ala His Thr Gly Leu Tyr Thr Cys Tyr Tyr Asn His Thr Gln Thr Glu Glu Asn Glu Leu Glu Gly Arg His Ile Tyr Ile Tyr Val Pro Asp Pro Asp Val Ala Phe Val Pro Leu Gly Met Thr Asp Tyr Leu Val Ile Val Glu Asp Asp Asp Ser Ala Ile Ile Pro Cys Arg Thr Thr Asp Pro Glu Thr Pro Val Thr Leu His Asn Ser Glu Gly Val Val Pro Ala Ser Tyr Asp Ser Arg Gln Gly Phe Asn Gly Thr Phe Thr Val Gly Pro Tyr Ile Cys Glu Ala Thr Val Lys Gly Lys Lys Phe Gln Thr Ile Pro Phe Asn Val Tyr Ala Leu 200 Lys Ala Thr Ser Glu Leu Asp Leu Glu Met Glu Ala Leu Lys Thr Val Tyr Lys Ser Gly Glu Thr Ile Val Val Thr Cys Ala Val Phe Asn Asn . 235 Glu Val Val Asp Leu Gln Trp Thr Tyr Pro Gly Glu Val Lys Gly Lys Gly Ile Thr Met Leu Glu Glu Ile Lys Val Pro Ser Ile Lys Leu Val 260 265 +

-179-

	Tyr	Thr	Leu 275	Thr	Val	Pro	Glu	Ala 280	Thr	Val	Lys	Asp	Ser 285	Gly	Asp	Tyr
	Glu	Сув 290	Ala	Ala	Arg	Gln	Ala 295	Thr	Arg	Glư	Val	300	Glu	Met	Lys	Lys
	Val 305	Thr	Ile	Ser	Val	His 310	Glu	Lys	Gly	Phe	Ile 315	Glu	Ile	Lys	Pro	Thr 320
	Phe	Ser	Gln	Leu	Glu 325	Ala	Val	Asn	Leu	His 330	Glu	Val	Lys	His	Phe 335	Val
	Val	Glu	Val	Arg 340	Ala	Tyr	Pro	Pro	Pro 345	Arg	Ile	Ser	Trp	Leu 350	Lys	Asn
	Asn	Leu	Thr 355	Leu	Ile	Glu	Asn	Leu 360	Thr	Glu	Ile	Thr	Thr 365	Asp	Val	Glu
	Lys	Ile 370	Gln	Glu	Ile	Arg	Tyr 375	Arg	Ser	Lys	Leu	180 280	Leu	Ile	Arg	Ala
,	Lys 385	Glu	Glu	Asp	Ser	Gly 390	His	Tyr	Thr	Ile	Val 395	Ala	Gln	Asn	Glu	Asp 400
	Ala	Val	Lys	Ser	Tyr 405	Thr	Phe	Glu	Leu	Leu 410	Thr	Gln	Val	Pro	Ser 415	Ser
	Ile	Leu	Asp	Leu 420	Val	Asp	Asp	His	His 425	Gly	Ser	Thr	Gly	Gly 430	Gln	Thr
	Val	Arg	Cys 435	Thr	Ala	Glu	Gly	Thr 440	Pro	Leu	Pro	Asp	Ile 445	Glu	Trp	Met
	Ile	Cys 450	Lys	qaA	Ile	Lys	Lys 455	Cys	Asn	Asn	Glu	Thr 460	Ser	Trp	Thr	Ile
	Leu 465	Ala	Asn	Asn	Val	Ser 470	Asn	Ile	Ile	Thr	Glu 475	Ile	His	Ser	Arg	Asp 480
					485					490				Glu	495	
	Ile	Ala	Val	Arg 500	Cys	Leu	Ala	ГХЗ	Asn 505	Leu	Leu	Ġly	Ala	Glu 510	Asn	Arg
	Glu	Leu	Lys 515	Leu	Val	Ala	Pro	Thr 520	Leu	Arg ·	Ser	Glu	Leu 525	Thr	Val	Ala
	Ala	Ala 530	Val	Leu	Val	Leu	Leu 535	Val.	Ile	Val :	Ile	Ile 540	Ser	Leu	Ile	Val
	Leu 545	Val	Val	Ile	Trp	Lуs 550	Gln	Lys	Pro	Arg	Tyr 555	Glu	Ile	Arg	Trp	Arg 560
	Val	Ile	Glu	Ser	Ile 565	Ser	Pro	Asp	GJA	His 570	Glu	Tyr	Ile	Tyr	Val 575	Asp
	Pro	Met	Gln	Leu 580	Pro	Tyr	Asp	Ser	Arg 585	Trp	Glu	Phe	Pro	Arg 590	Asp	Gly

									,						
Leu	Val	Leu 595	Gly	Arg	Val	Leu	Gly 600	Ser	Gly	Ala	Phe	Gly 605	Lys	Val	Val
Glu	Gly 610	Thr	Ala	Tyr	Gly	Leu 615	Ser	Arg	Ser	Gln	Pro 620	Val	Met	Lys	Val
Ala 625	Val	Lys	Met	Leu	Lys 630	Pro	Thr	Ala	Arg	Ser 635	Ser	Glu	Lys	Gln	Ala 640
Leu	Met	Ser	Glu	Leu 645	ГЛЗ	Ile	Met	Thr	His 650	Leu	Gly	Pro	His	Leu 655	Asn
Ile	Val	Asn	Leu 660	Leu	Gly	Ala	Cys	Thr 665	Lys	Ser	Gly	Pro	Ile 670	Tyr	Ile
Ile	Thr	Glu 675	Tyr	Cys	Phe	Tyr	680	qaA	Leu	Val	Asn	Tyr 685	Leu	His	Lys
Asn	Arg 690	Asp	Ser	Phe	Leu	Ser 695	His	His	Pro	Glu	Lys 700	Pro	Lys	Lys	Glu
Leu 705	Asp	Ile	Phe	Gly	Leu 710	Asn	Pro	Ala	Asp	Glu 715	Ser	Thr	Arg	Ser	Tyr 720
Val	Ile	Leu	Ser	Phe 725	Glu	Asn	Asn	Gly	Asp 730	Tyr	Met	Asp	Met	Lys 735	Gln
Ala	Asp	Thr	Thr 740	Gln	Tyr	Val	Pro	Met 745	Leu ,	Glu	Arg	Lys	Glu 750	Val	Ser
Lys	Tyr	Ser 755	Asp	Ile	Gln	Arg	Ser 760	Leu	Tyŗ	Asp	Arg	Pro 765	Ala	Ser	Tyr
Lys	Lys 770	Lys	Ser	Met	Leu	Asp 775	Ser	Glu	Val	Lys	Asn 780	Leu	Leu	Ser	Asp
Asp 785	Asn	Ser	Glu	Gly	Leu 790	Thr	Leu	Leu	Asp	Leu 795	Leu	Šer	Phe	Thr	Tyr 800
Gln	Val	Ala	Arg	Gly 805	Met	Glu	Phe	Leu	Ala 810	Ser	Lys	Asn	Cys	Val 815	His
Arg	Asp	Leu	Ala 820	Ala	Arg	Asn	Val	Leu 825	Leu	Ala	Gln	Gly	830 Lys	Ile	Val
Lys	Ile	Cys 835	Asp	Phe	Gly	Leu	Ala 840	Arg	Asp	Ile	Met	His 845	Asp	Ser	Asn
Tyr	Val 850	Ser	Ьуs	Gly	Ser	Thr 855	Phe	Leu	Pro	Val	198 860	Trp	Met	Ala	Pro
Glu 865	Ser	Ile	Phe	Asp	Asn 870	Leu	Tyr	Thr	Thr	Leu 875	Ser	Aap	Val	Trp	Ser 880
Tyr	Gly	Ile	Leu	Leu 885	Trp	Glu	Ile	Phe ·	Ser 890	Leu	Gly	Gly	Thr	Pro 895	Tyr
Pro	Gly	Met	Met 900	Val	Asp	Ser	Thr	Phe 905	Tyr	Asn	Lys	Ile	Lys 910	Ser	Gly

-181-

Tyr Arg Met Ala Lys Pro Asp His Ala Thr Ser Glu Val Tyr Glu Ile 915 920 925

Met Val Lys Cys Trp Asn Ser Glu Pro Glu Lys Arg Pro Ser Phe Tyr 930 935 940

His Leu Ser Glu Ile Val Glu Asn Leu Leu Pro Gly Gln Tyr Lys 45 950 955 960

Ser Tyr Glu Lys Ile His Leu Asp Phe Leu Lys Ser Asp His Pro Ala 965 970 975

Val Ala Arg Met Arg Val Asp Ser Asp Asn Ala Tyr Ile Gly Val Thr 980 985 990

Tyr Lys Asn Glu Glu Asp Lys Leu Lys Asp Trp Glu Gly Gly Leu Asp 995 1000 1005

Glu Gln Arg Leu Ser Ala Asp Ser Gly Tyr Ile Ile Pro Leu Pro 1010 1015 1020

Asp Ile Asp Pro Val Pro Glu Glu Glu Asp Leu Gly Lys Arg Asn 1025 1030 1035

Arg His Ser Ser Gln Thr Ser Glu Glu Ser Ala Ile Glu Thr Gly 1040 1050

Ser Ser Ser Ser Thr Phe Ile Lys Arg Glu Asp Glu Thr Ile Glu 1055 1060 1065

Asp Ile Asp Met Met Asp Asp Ile Gly Ile Asp Ser Ser Asp Leu 1070 1075 1080

Val Glu Asp Ser Phe Leu 1085

<210> 91

<211> 318

<212> PRT

<213> Homo sapiens

<400> 91

Met Pro Asn Ile Lys Ile Phe Ser Gly Ser Ser His Gln Asp Leu Ser 1 5 10 15

Gln Lys Ile Ala Asp Arg Leu Gly Leu Glu Leu Gly Lys Val Val Thr
20 25 30

Lys Lys Phe Ser Asn Gln Glu Thr Cys Val Glu Ile Gly Glu Ser Val 35 40 45

Arg Gly Glu Asp Val Tyr Ile Val Gln Ser Gly Cys Gly Glu Ile Asn 50 55 . 60

Asp Asn Leu Met Glu Leu Leu Ile Met Ile Asn Ala Cys Lys Ile Ala 65 70 75 80

Ser Ala Ser Arg Val Thr Ala Val Ile Pro Cys Phe Pro Tyr Ala Arg 85 90 95

-182-

Gln Asp Lys Lys Asp Lys Ser Arg Ala Pro Ile Ser Ala Lys Leu Val 105 Ala Asn Met Leu Ser Val Ala Gly Ala Asp His Ile Ile Thr Met Asp 120 Leu His Ala Ser Gln Ile Gln Gly Phe Phe Asp Ile Pro Val Asp Asn Leu Tyr Ala Glu Pro Ala Val Leu Lys Trp Ile Arg Glu Asn Ile Ser Glu Trp Arg Asn Cys Thr Ile Val Ser Pro Asp Ala Gly Gly Ala Lys 170 Arg Val Thr Ser Ile Ala Asp Arg Leu Asn Val Asp Phe Ala Leu Ile 185 His Lys Glu Arg Lys Lys Ala Asn Glu Val Asp Arg Met Val Leu Val 200 Gly Asp Val Lys Asp Arg Val Ala Ile Leu Val Asp Asp Met Ala Asp 215 Thr Cys Gly Thr Ile Cys His Ala Ala Asp Lys Leu Leu Ser Ala Gly 230 235 Ala Thr Arg Val Tyr Ala Ile Leu Thr His Gly Ile Phe Ser Gly Pro 250 Ala Ile Ser Arg Ile Asn Asn Ala Cys. Phe Glu Ala Val Val Thr Asn Thr Ile Pro Gln Glu Asp Lys Met Lys His Cys Ser Lys Ile Gln 280 Val Ile Asp Ile Ser Met Ile Leu Ala Glu Ala Ile Arg Arg Thr His Asn Gly Glu Ser Val Ser Tyr Leu Phe Ser His Val Pro Leu 310 <210> 92 <211> 318 <212> PRT <213> Homo sapiens Met Pro Asn Ile Val Leu Phe Ser Gly Ser Ser His Gln Asp Leu Ser

-183-

55 60 Asp Asn Leu Met Glu Leu Leu Ile Met Ile Asn Ala Cys Lys Ile Ala Ser Ser Ser Arg Val Thr Ala Val Ile Pro Cys Phe Pro Tyr Ala Arg Gln Asp Lys Lys Asp Lys Ser Arg Ala Pro Ile Ser Ala Lys Leu Val Ala Asn Met Leu Ser Val Ala Gly Ala Asp His Ile Ile Thr Met Asp Leu His Ala Ser Gln Ile Gln Gly Phe Phe Asp Ile Pro Val Asp Asn Leu Tyr Ala Glu Pro Ala Val Leu Gln Trp Ile Arg Glu Asn Ile Ala Glu Trp Lys Asn Cys Ile Ile Val Ser Pro Asp Ala Gly Gly Ala Lys Arg Val Thr Ser Ile Ala Asp Arg Leu Asn Val Glu Phe Ala Leu Ile 185 His Lys Glu Arg Lys Lys Ala Asn Glu Val Asp Arg Met Val Leu Val Gly Asp Val Lys Asp Arg Val Ala Ile Leu Val Asp Asp Met Ala Asp 215 Thr Cys Gly Thr Ile Cys His Ala Ala Asp Lys Leu Leu Ser Ala Gly Ala Thr Lys Val Tyr Ala Ile Leu Thr His Gly Ile Phe Ser Gly Pro 250 Ala Ile Ser Arg Ile Asn Asn Ala Ala Phe Glu Ala Val Val Thr 260 265 Asn Thr Ile Pro Gln Glu Asp Lys Met Lys His Cys Thr Lys Ile Gln 280 Val Ile Asp Ile Ser Met Ile Leu Ala Glu Ala Ile Arg Arg Thr His 295 Asn Gly Glu Ser Val Ser Tyr Leu Phe Ser His Val Pro Leu 310 315 <210> 93 <211> 244 <212> PRT <213> Homo sapiens <400> 93

Met Ala Ala Ala Ala Ala Gly Glu Ala Arg Arg Val Leu Val Tyr

10

-184

Gly Gly Arg Gly Ala Leu Gly Ser Arg Cys Val Gln Ala Phe Arg Ala 20
Arg Asn Trp Trp Val Ala Ser Val Asp Val Val Glu Asn Glu Glu Ala Ser Val Asp Val Val Glu Asn Glu Glu Ala Ser Ala Thr Ile Ile Val Lys Met Thr Asp Ser Phe Thr Glu Gln Ala 60
Asp Gln Val Thr Ala Glu Val Gly Lys Leu Leu Gly Glu Glu Lys Val 65
Asp Ala Ile Leu Cys Val Ala Gly Gly Trp Ala Gly Gly Gly Asn Ala Lys 95
Ser Lys Ser Leu Phe Lys Asn Cys Asp Leu Met Trp Lys Gln Ser Ile 115
Trp Thr Ser Thr Ile Ser Ser His Leu Ala Gly Ala Lys Ala Ala Lye Asp Gly Thr

Gly Gly Leu Leu Thr Leu Ala Gly Ala Lys Ala Ala Leu Asp Gly Thr

Cys Gln Ser Leu Ala Gly Lys Asn Ser Gly Met Pro Pro Gly Ala Ala 165 170 175

Ala Ile Ala Val Leu Pro Val Thr Leu Asp Thr Pro Met Asn Arg Lys 180 185 190

Ser Met Pro Glu Ala Asp Phe Ser Ser Trp Thr Pro Leu Glu Phe Leu 195 200 205

Val Glu Thr Phe His Asp Trp Ile Thr Gly Lys Asn Arg Pro Ser Ser 210 225 220

Gly Ser Leu Ile Gln Val Val Thr Thr Glu Gly Arg Thr Glu Leu Thr 225 230 235 240

Pro Ala Tyr Phe

<210> 94

<211> 331

<212> PRT

<213> Homo sapiens

<400> 94

Met Gly Thr Pro Gln Lys Asp Val Ile Ile Lys Ser Asp Ala Pro Asp 1 5 10 15

Thr Leu Leu Glu Lys His Ala Asp Tyr Ile Ala Ser Tyr Gly Ser
20 25 30

Lys Lys Asp Asp Tyr Glu Tyr Cys Met Ser Glu Tyr Leu Arg Met Ser 35 40 45

-185-

WO 02/09573 PCT/US01/24104

Gly	Ile 50	Tyr	Trp	Gly	Leu	Thr 55	Val	Met	Asp	Leu	Met 60	Gly	Gln	Leu	His
Arg 65	Met	Asn	Arg	Glu	Glu 70	Ile	Leu	Ala	Phe	Ile 75	Lys	Ser	Cys	Gln	His 80
Glu	Cys	Gly	Gly	Ile 85	Ser	Ala	Ser	Ile	Gly 90	His	Asp	Pro	His	Leu 95	Leu
Tyr	Thr	Leu	Ser 100	Ala	Val	Gln	Ile	Leu 105	Thr	Leu	Tyr	Asp	Ser 110	Ile	Asn
Val	Ile	Asp 115	Val	Asn	Lys	Val	Val 120	Glu	Tyr	Val	Lys	Gly 125	Leu	Gln	Lys
Glu	Asp 130	Gly	Ser	Phe	Ala	Gly 135	Asp	Ile	Trp	Gly	Glu 140	Ile	Asp	Thr	Arg
Phe 145	Ser	Phe	Cys	Ala	Val 150	Ala	Thr	Leu	Ala	Leu 155	Leu	Gly	Lys	Leu	Asp 160
Ala	Ile	Asn	Val	Glu 165	Lys	Ala	Ile	Glu	Phe 17 ⁰	Val	Leu	Ser	Cys	Met 175	Asn
Phe	Asp	Gly	Gly 180	Phe	Gly	Cys	Arg	Pro 185	Gly	Ser	Glu	Ser	His 190	Ala	Gly
Gln	Ile	Tyr 195	Cys	Cys	Thr	Gly	Phe 200	Leu	Ala	Ile	Thr	Ser 205	Gln	Leu	His
Gln	Val 210	Asn	Ser	Asp	Leu	Leu 215	Gly	Trp	Trp	Leu	Cys 220	Glu	Arg	Gln	Leu
Pro 225	Ser	Gly	Gly	Leu	Asn 230	Gly	Arg	Pro	Glu	Lys 235	Leu	Pro	qaA	Val	Cys 240
Tyr	Ser	Trp	Trp	Val 245	Leu	Ala	Ser	Leu	Lys 250	Ile	Ile	Gly	Arg	Leu 255	His
Trp	Ile	Asp	Arg 260	Glu	Lys	Leu	Arg	Asn 265	Phe	Ile	Leu	Ala	Cys 270	Gln	Asp
Glu	Glu	Thr 275	Gly	Gly	Phe	Ala	Asp 280	Arg	Pro	Gly	Asp	Met 285	Val	Asp	Pro
Phe	His 290	Thr	Leu	Phe	Gly	Ile 295	Ala	Gly	Leu	Ser	Leu 300	Leu	Gly	Glu	Glu
Gln 305	Ile	Lys	Pro	Val	Asn 310	Pro	Val ,	Phe	Cys	Met 315	Pro	Glu	Glu	Val	Leu 320
Gln	Arg	Val	Asn	Val 325	Gln	Pro	Glu	Leu	Val 330	Ser		-			

<210> 95 <211> 93 <212> PRT <213> Homo sapiens

-186-

<400> 95

Met Asn Ala Lys Val Val Val Leu Val Leu Val Leu Thr Ala Leu

Cys Leu Ser Asp Gly Lys Pro Val Ser Leu Ser Tyr Arg Cys Pro Cys 25

Arg Phe Phe Glu Ser His Val Ala Arg Ala Asn Val Lys His Leu Lys

Ile Leu Asn Thr Pro Asn Cys Ala Leu Gln Ile Val Ala Arg Leu Lys 55 i

Asn Asn Asn Arg Gln Val Cys Ile Asp Pro Lys Leu Lys Trp Ile Gln

Glu Tyr Leu Glu Lys Ala Leu Asn Lys Arg Phe Lys Met

<210> 96

<211> 381

<212> PRT

<213> Homo sapiens

<220>

<221> UNSURE

<222> (59)..(59)

<223> Xaa = any amino acid

<220>

<221> UNSURE

<222> (300)..(300)

<223> Xaa = any amino acid

<220>

<221> UNSURE

<222> (318)..(318)

<223> Xaa = any amino acid

<220>

<221> UNSURE

<222> (330)..(330)

<223> Xaa = any amino acid

<220>

<221> UNSURE

<222> (345)..(345)

<223> Xaa = any amino acid

<220>

<221> UNSURE <222> (352)..(352) <223> Xaa = any amino acid

-187-

```
<220>
<221> UNSURE
<222> (367)..(367)
<223> Xaa = any amino acid
<220>
<221> UNSURE
<222> (369)..(369)
<223> Xaa = any amino acid
<220>
<221> UNSURE
<222> (376)..(376)
<223> Xaa = any amino acid
<220>
<221> UNSURE
<222> (378)..(378)
<223> Xaa = any amino acid
<400> 96
Met Trp Arg Ser Leu Gly Leu Ala Leu Ala Leu Cys Leu Leu Pro Ser
Gly Gly Thr Glu Ser Gln Asp Gln Ser Ser Leu Cys Lys Gln Pro Pro
                                25
Ala Trp Ser Ile Arg Asp Gln Asp Pro Met Leu Asn Ser Asn Gly Ser
Val Thr Val Val Ala Leu Leu Gln Ala Ser Xaa Tyr Leu Cys Ile Ile
Glu Ala Ser Lys Leu Glu Asp Leu Arg Val Lys Leu Lys Lys Glu Gly
Tyr Ser Asn Ile Ser Tyr Ile Val Val Asn His Gln Gly Ile Ser Ser
                                                        95
Arg Leu Lys Tyr Thr His Leu Lys Asn Lys Val Ser Glu His Ile Pro
                                105
Val Tyr Gln Gln Glu Asn Gln Thr Asp Val Trp Thr Leu Leu Asn
        115
                            120
Gly Ser Lys Asp Asp Phe Leu Ile Tyr Asp Arg Cys Gly Arg Leu Val
                        135
Tyr His Leu Gly Leu Pro Phe Ser Phe Leu Thr Phe Pro Tyr Val Glu
                    150
                                        155
Glu Ala Ile Lys Ile Ala Tyr Cys Glu Lys Lys Cys Gly Asn Cys Ser
                165
                                    170
                                                        175
```

WO 02/09573

-188-

PCT/US01/24104

Leu Thr Thr Leu Lys Asp Glu Asp Phe Cys Lys Arg Val Ser Leu Ala 185 190 Thr Val Asp Lys Thr Val Glu Thr Pro Ser Pro His Tyr His His Glu His His His Asn His Gly His Gln His Leu Gly Ser Ser Glu Leu Ser Glu Asn Gln Gln Pro Gly Ala Pro Asn Ala Pro Thr His Pro Ala Pro Pro Gly Leu His His His Lys His Lys Gly Gln His Arg Gln Gly . 250 His Pro Glu Asn Arg Asp Met Pro Ala Ser Glu Asp Leu Gln Asp Leu Gln Lys Lys Leu Cys Arg Lys Arg Cys Ile Asn Gln Leu Leu Cys Lys 275 280 Leu Pro Thr Asp Ser Glu Leu Ala Pro Arg Ser Xaa Cys Cys His Cys 295 Arg His Leu Ile Phe Glu Lys Thr Gly Ser Ala Ile Thr Xaa Gln Cys 305 310 315 Lys Glu Asn Leu Pro Ser Leu Cys Ser Xaa Gln Gly Leu Arg Ala Glu 330 Glu Asn Ile Thr Glu Ser Cys Gln Xaa Arg Leu Pro Pro Ala Ala Xaa 345 Gln Ile Ser Gln Gln Leu Ile Pro Thr Glu Ala Ser Ala Ser Xaa Arg Xaa Lys Asn Gln Ala Lys Lys Xaa Glu Xaa Pro Ser Asn 370 375 <210> 97 <211> 220 <212> PRT <213> Homo sapiens 14 <400> 97 Met Ala Ile Leu Phe Ala Val Val Ala Arg Gly Thr Thr Ile Leu Ala Lys His Ala Trp Cys Gly Gly Asn Phe Leu Glu Val Thr Glu Gln Ile 25 Leu Ala Lys Ile Pro Ser Glu Asn Asn Lys Leu Thr Tyr Ser His Gly Asn Tyr Leu Phe His Tyr Ile Cys Gln Asp Arg Ile Val Tyr Leu Cys Ile Thr Asp Asp Asp Phe Glu Arg Ser Arg Ala Phe Asn Phe Leu Asn 70

Glu Ile Lys Lys Arg Phe Gln Thr Thr Tyr Gly Ser Arg Ala Gln Thr 85 90 95

Ala Leu Pro Tyr Ala Met Asn Ser Glu Phe Ser Ser Val Leu Ala Ala . 100 105 110

Gln Leu Lys His His Ser Glu Asn Lys Gly Leu Asp Lys Val Met Glu 115 120 125

Thr Gln Ala Gln Val Asp Glu Leu Lys Gly Ile Met Val Arg Asn Ile 130 135 140

Asp Leu Val Ala Gln Arg Gly Glu Arg Leu Glu Leu Leu Ile Asp Lys 145 150 155 160

Thr Glu Asn Leu Val Asp Ser Ser Val Thr Phe Lys Thr Thr Ser Arg 165 170 175

Asn Leu Ala Arg Ala Met Cys Met Lys Asn Leu Lys Leu Thr Ile Ile 180 185 190

Ile Ile Ile Val Ser Ile Val Phe Ile Tyr Ile Ile Val Ser Pro Leu 195 200 205

Cys Gly Gly Phe Thr Trp Pro Ser Cys Val Lys Lys 210 215

<210> 98

<211> 1736

<212> PRT

<213> Homo sapiens

<400> 98

Ala Pro Gly Phe Gly Phe Gly Ile Ala Ile Ser Gly Gly Arg Asp Asn 20 25 30

Pro His Phe Gln Ser Gly Glu Thr Ser Ile Val Ile Ser Asp Val Leu 35 40 45

Lys Gly Gly Pro Ala Glu Gly Gln Leu Gln Glu Asn Asp Arg Val Ala 50 55 60

Met Val Asn Gly Val Ser Met Asp Asn Val Glu His Ala Phe Ala Val 65 , 75 , 80

Gln Gln Leu Arg Lys Ser Gly Lys Asn Ala Lys Ile Thr Ile Arg Arg 85 90 95

Lys Lys Lys Val Gln Ile Pro Val Ser Arg Pro Asp Pro Glu Pro Val 100 105 110

Ser Asp Asn Glu Glu Asp Ser Tyr Asp Glu Glu Ile His Asp Pro Arg 115 120 125

Ser Gly Arg Ser Gly Val Val Asn Arg Arg Ser Glu Lys Ile Trp Pro

-190-

	130	*				135			,		140				
Arg 145	Asp	Arg	Ser	Ala	Ser 150	Arg	Glu	Arg	Ser	Leu 155		Pro	Arg	Ser	Asp 160
Arg	Arg	Ser	Val	Ala 165	Ser	Ser	Gln	Pro	Ala 170	Lys	Pro	Thr	Lys	Val 175	Thr
Leu	Val	Lys	Ser 180	Arg	Lys	Asn	Glu	Glu 185	Tyr	Gly	Leu	Arg	Leu 190	Ala	Ser
His	Ile	Phe 195	Val	Ьуs	Glu	Ile	Ser 200	Gln	Asp	Ser	Leu	Ala 205	Ala	Arg	Asp
Gly	Asn 210	Ile	Gln	Glu	Gly	Asp 215	Val	Val	Leu	Lys	Ile 220	Asn	Gly	Thr	Val
Thr 225	Glu	Asn	Met	Ser	Leu 230	Thr	Asp	Ala	Lys	Thr 235	Leu	Ile	Glu	Arg	Ser 240
Lys	Gly	Lys	Leu	Lys 245	Met	Val	Val	Gln	Arg 250	Asp	Glu	Arg	Ala	Thr 255	Leu
Leu	Asn	Val	Pro 260	Asp	Leu	Ser	Asp	Ser 265	Ile	His	Ser	Ala	Asn 270	Ala	Ser
Glu	Arg	Asp 275	Asp	Ile	Ser	Glu	Ile 280	Gln	Ser	Leu	Ala	Ser 285	Asp	His	Ser
Gly	Arg 290	Ser	His	Asp	Arg	Pro 295	Pro	Arg	Arg	Ser	Arg 300	Ser	Arg	Ser	Pro
Asp 305	Gln	Arg	Ser	Glu	Pro 310	Ser	Asp	His	Ser	Arg 315	His	Ser	Pro	Gln	Gln 320
Pro	Ser	Asn	Gly	Ser 325	Leu	Arg	Ser	Arg	Asp 330	Glu	Glu	Arg	Ile	Ser 335	ГÀЗ
Pro	Gly	Ala	Val 340	Ser	Thr	Pro	Val	Lys 345	His	Ala	Asp	Asp	His 350	Thr	Pro
Lys	Thr	Val 355	Glu	Glu	Val	Thr			Arg			-		Thr.	
Ser	Leu 370	Pro	Glu	Pro	Lys	Pro 375	Val	Tyr	Ala	Gln	Val 380	Gly ·	Asn	Gln	Met
Trp 385	Ile	Tyr	Leu	Ser	Val 390	His	Leu	Met	Val	Ser 395	Tyr	Leu	Ile	Gln	Leu 400
Met	Lys	Met	Gly	Phe 405	Leu	Arg	Pro	Ser	Met 410	Lys	Leu	Val	Lys	Phe 415	Arg
Lys	Gly	Asp	Ser 420	Val	Gly	Leu	Arg	Leu 425	Ala	Gly	Gly	Asn	Asp 430	Val	Gly
Ile	Phe	Val 435	Ala	Gly	Val	Leu	Glu 440	Asp		Pro	Ala	Ala 445	Lys	Glu	Gly
Leu	Glu	Glu	Gly	Asp	Gln	Ile	Leu	Arg	Val	Asn	Asn	Val	Asp	Phe	Thr

-191-

	450					455					460				
Asn 465	Ile	Ile	Arg	Glu	Glu 470	Ala	Val	Leu	Phe	Leu 475	Leu	Asp	Leu	Pro	Lys 480
Gly	Glu	Glu	Val	Thr 485	Ile	Leu	Ala	Gln	Lys 490	Lys	Lys	Asp	Val	Tyr 495	Arg
Arg	Ile	Val	Glu 500	Ser	Asp	Val	Gly	Asp 505	Ser	Phe	Tyr	Ile	Arg 510	Thr	His
Phe	Glu	Tyr 515	Glu	Lys	Glu	Ser	Pro 520	Tyr	Gly	Leu	Ser	Phe 525	Asn	Lys	Gly
Glu	Val 530	Phe	Arg	Ala	Val	Asp 535	Thr	Leu	Tyr	Asn	Gly 540	Lys	Leu	Gly	Ser
Trp 545	Leu	Ala	Ile	Arg	Ile 550	Gly	ГÀЗ	Asn	His	L ув 555	Glu	Val	Glu	Arg	Gly 560
Ile	Ile	Pro	Asn	Lys 565	Asn	Arg	Ala	Glu	Gln 570	Leu	Ala	Ser	Val	Gln 575	Tyr
Thr	Leu	Pro	Lys 580	Thr	Ala	Gly	Gly	Asp 585	Arg	Ala	Asp	Phe	Trp 590	Arg	Phe
Arg	Gly	Leu 595	Arg	Ser	Ser	Lys	Arg 600	Asn	Leu	Arg	ГХа	Ser 605	Arg	Glu	Asp
Leu	Ser 610	Ala	Gln	Pro	Val	Gln 615	Thr	Lys	Phe	Pro	Ala 620	Tyr	Glu	Arg	Val
Val 625	Leu	Arg	Glu	Ala	Gly 630	Phe	Leu	Arg	Pro	Val 635	Thr	Ile	Phe	Gly	Pro 640
Ile	Ala	Asp	Val	Ala 645	Arg	Glu	ГÀЗ	Leu	Ala 650	Arg	Glu	Glu	Pro	Asp 655	Ile
Tyr	Gln	Ile	Ala 660	Lys	Ser	Glu	Pro	Arg 665	Asp	Ala	Gly	Thr	Asp 670	Gln	Arg
Ser	Ser	Gly 675	Tyr	Ile	Arg	Leu	His 680	Thr	Ile	Lys	Gln	Ile 685	Ile	Asp	
Asp	Lys 690	His	Ala	Leu	Leu	Asp 695	Val	Thr	Pro	Asn	Ala 700	Val	Asp	Arg	Leu
Asn 705	Tyr	Ala	Gln	Trp	Tyr 710	Pro	Ile	Val	Val	Phe 715	Leu	Asn	Pro	Asp	Ser 720
Lys	Gln	Gly	Val	Lys 725	Thr	Met	Arg	Met	Arg 730	Leu	Cys	Pro	Glu	Ser 735	Arg
Lys	Ser	Ala	Arg 740	ГЛЗ	Leu	Tyr	Glu	Arg 745	Ser	His	Lys	Leu	Ala 750	Lys	Asn
Asn	His	His 755	Leu	Phe	Thr	Thr	Thr 760	Ile	Asn	Leu	Asn	Ser 765	Met	Asn	Asp
Gly	Trp	Tyr	Gly	Ala	Leu	Lys	Glu	Ala	Val	Gln	Gln	Gln	Gln	Asn	Gln

WO 02/09573

PCT/US01/24104

-192-

770 775 780 Leu Val Trp Val Ser Glu Gly Lys Ala Asp Gly Ala Thr Ser Asp Asp 790 795 Leu Asp Leu His Asp Asp Arg Leu Ser Tyr Leu Ser Ala Pro Gly Ser 805 810 Glu Tyr Ser Met Tyr Ser Thr Asp Ser Arg His Thr Ser Asp Tyr Glu 825 · Asp Thr Asp Thr Glu Gly Gly Ala Tyr Thr Asp Gln Glu Leu Asp Glu 840 Thr Leu Asn Asp Glu Val Gly Thr Pro Pro Glu Ser Ala Ile Thr Arg Ser Ser Glu Pro Val Arg Glu Asp Ser Ser Gly Met His His Glu Asn 870 875 Gln Thr Tyr Pro Pro Tyr Ser Pro Gln Ala Gln Pro Gln Pro Ile His 885 Arg Ile Asp Ser Pro Gly Phe Lys Pro Ala Ser Gln Gln Lys Ala Glu 905 Ala Ser Ser Pro Val Pro Tyr Leu Ser Pro Glu Thr Asn Pro Ala Ser Ser Thr Ser Ala Val Asn His Asn Val Asn Leu Thr Asn Val Arg Leu Glu Glu Pro Thr Pro Ala Pro Ser Thr Ser Tyr Ser Pro Gln Ala Asp Ser Leu Arg Thr Pro Ser Thr Glu Ala Ala His Ile Met Leu Arg Asp 970 Gln Glu Pro Ser Leu Ser Ser His Val Asp Pro Thr Lys Val Tyr Arg 985 Lys Asp Pro Tyr Pro Glu Glu Met Met Arg Gln Asn His Val Leu Lys 1005 Gln Pro Ala Val Ser His Pro Gly His Arg Pro Asp Lys Glu Pro 1010 Asn Leu Thr Tyr Glu Pro Gln Leu Pro Tyr Val Glu Lys Gln Ala Ser Arg Asp Leu Glu Gln Pro Thr Tyr Arg Tyr Glu Ser Ser 1040 1045 Tyr Thr Asp Gln Phe Ser Arg Asn Tyr Glu His Arg Leu Arg Tyr Glu Asp Arg Val Pro Met Tyr Glu Glu Gln Trp Ser Tyr Tyr Asp 1070 1075 Asp Lys Gln Pro Tyr Pro Ser Arg Pro Pro Phe Asp Asn Gln His

WO 02/09573

-193-

PCT/US01/24104

	1085					1090					1095			
Ser	Gln 1100	Asp	Leu	Asp	Ser	Arg 1105	Gln	His	Pro	Glu	Glu 1110	Ser	Ser	Glu
Arg	Gly 1115	Tyr	Phe	Pro	Arg	Phe 1120	Glu	Glu	Pro	Ala	Pro 1125	Leu	Ser	Tyr
Asp	Ser 1130	Arg	Pro	Arg	Tyr	Glu 1135	Gln	Ala	Pro	Arg	Ala 1140	Ser	Ala	Leu
Arg	His 1145	Glu	Glu	Gln	Pro	Ala 1150	Pro	Gly	Tyr	Asp	Thr 1155	His	Gly	Arg
Leu	Arg 1160	Pro	Glu	Ala	Gln	Pro 1165	His	Pro	Ser	Ala	Gly 1170	Pro	Lys	Pro
Ala	Glu 1175	Ser	Lys	Gln	Tyr	Phe 1180	Glu	Gln	Tyr	Ser	Arg 1185	Ser	Tyr	Glu
Gln	Val 1190	Pro	Pro	Gln	Gly	Phe 1195	Thr	Ser	Arg	Ala	Gly 1200	His	Phe	Glu
Pro	Leu 1205	His	Gly	Ala	Ala	Ala 1210	Val	Pro	Pro	Leu	Ile 1215	Pro	Ser	Ser
Gln	His 1220	Lys	Pro	Glu	Ala	Leu 1225	Pro	Ser	Asn	Thr	Lys 1230		Leu	Pro
Pro	Pro 1235	Pro	Thr	Gln	Thr	Glu 1240	Glu	Glu	Glu	Asp	Pro 1245	Ala	Met	Lys
Pro	Gln 1250	Ser	Val	Leu	Thr	Arg 1255	Val	ГÀЗ	Met	Phe	Glu 1260	Asn	Lys	Arg
Ser	Ala 1265	Ser	Leu	Glu	Thr	Lys 1270	Lys	Asp	Val	Asn	Asp 1275	Thr	Gly	Ser
Phe	Lys 1280	Pro	Pro	Glu	Val	Ala 1285	Ser	Lys	Pro	Ser	Gly 1290	Ala	Pro	Ile
Ile	Gly 1295	Pro	Lys	Pro	Thr	Ser 1300	Gln	Asn	Gln	Phe	Ser 1305	Glu		Asp
Lys	Thr 1310	Leu	туг	Arg	Ile	Pro 1315	Glu	Pro	Gln	Lys	Pro 1320	Gln	Leu	Ĺys
Pro	Pro 1325	Glu	Asp	Ile	Val	Arg 1330	Ser	Asn	Нis	Tyr	Asp 1335	Pro	Glu	Glu
Asp	Glu 1340	Glu	Tyr	Tyr	Arg	Lys 1345	Gln	Leu	Ser	Tyr	Phe 1350	Asp	Arg	Arg
Ser	Phe 1355	Glu	Asn	Lys	Pro	Pro 1360		His	Ile	Ala	Ala 1365	Ser	His	Leu
Ser	Glu 1370	Pro	Ala	Lys	Pro	Ala 1375	His	Ser	Gln	Asn	Gln 1380	Ser	Asn	Phe
Ser	Ser	Tyr	Ser	Ser	Lys	Gly	Lys	Pro	Pro	Glu	Ala	Asp	Gly	Val

	1385					1390					1395				
Asp	Arg 1400	Ser	Phe	Gly	Glu	Lys 1405		Tyr	Glu	Pro	Ile 1410	Gln	Ala	Thr	
Pro	Pro 1415	Pro	Pro	Pro	Leu	Pro 1420	Ser	Gln	туг	Ala	Gln 1425	Pro	Ser	Gln	
Pro	Val 1430	Thr	Ser	Ala	Ser	Leu 1435		Ile	His	Ser	Lys 1440	Gly	Ala	His	
Gly	Glu 1445	Gly	Asn	Ser	Val	Ser 1450		Asp	Phe	Gln	Asn 1455	Ser	Leu	Val	
Ser	Lys 1460	Pro	Asp	Pro	Pro	Pro 1465		Gln	Asn	Lys	Pro 1470	Ala	Thr	Phe	
Arg	Pro 1475	Pro	Asn	Arg	Glu	Asp 1480		Ala	Gln	Ala	Ala 1485	Phe	Tyr	Pro	
Gln	Lys 1490	Ser	Phe	Pro	Asp	Lys 1495		Pro	Val	Asn	Gly 1500	Thr	Glu	Gln	
Thr	Gln 1505	Lys	Thr	Val	Thr	Pro 1510	Ala	Tyr	Asn	Arg	Phe 1515	Thr	Pro	Lys	
Pro	Tyr 1520	Thr	Ser	Ser	Ala	Arg 1525		Phe	Glu	Arg	Lys 1530	Phe	Glu	Ser	
Pro	Lys 1535	Phe	Asn	His	Asn	Leu 1540		Pro	Ser	Glu	Thr 1545	Ala	His	Lys	
Pro	Asp 1550	Leu	Ser	Ser	Lys	Thr 1555		Thr	Ser	Pro	Lys 1560	Thr	Leu	Val	
Lys	Ser 1565	His	Ser	Leu	Ala	Gln 1570	Pro	Pro	Glu	Phe	Asp 1575	Ser	Gly	Val	
Glu	Thr 1580	Phe	Ser	Ile	His	Ala 1585	Glu	Lys	Pro	Lys	Tyr 1590	Gln	Ile	Asn	
Asn	Ile 1595	Ser	Thr	Val	Pro	Lys 1600	Ala	Ile	Pro	Val	Ser 1605	Pro		Ala	
Val	Glu 1610	Glu	Asp	Glu	Asp	Glu 1615		Gly	His	Thr	Val 1620		Ala	Thr	
Ala	Arg 1625	Gly	Ile	Phe	Asn	Ser 1630	Asn	Gly	Gly	Val	Leu 1635	Ser	Ser	Ile	
Glu	Thr 1640	Gly	Val	Ser	Ile	Ile 1645	Ile	Pro	Gln	Gly	Ala 1650	Ile	Pro	Glu	
Gly	Val 1655	Glu	Gln	Glu	Ile	Tyr 1660	Phe	Lys	Val	Cys	Arg 1665	Asp	Asn	Ser	
Ile	Leu 1670	Pro	Pro	Leu	Asp	Lys 1675	Glu	Lys	Gly	Glu	Thr 1680	Leu	Leu	Ser	
Pro	Leu	Val	Met	Cys	Gly	Pro	His	Gly	Leu	Lys	Phe	Leu	Lys	Pro	

-195-1685 1690 1695 Val Glu Leu Arg Leu Pro His Cys Asp Pro Lys Thr Trp Gln Asn 1710 Lys Cys Leu Pro Gly Asp Pro Asn Tyr Leu Val Gly Ala Asn Cýs Val Ser Val Leu Ile Asp His Phe 1730 <210> 99 <211> 93 <212> PRT <213> Homo sapiens <400> 99 Met Gln Arg Arg Gly Gln Pro Leu Glu Asn His Val Ala Leu Ile His Trp Gln Ser Ala Gly Ile Pro Ala Ser Lys Val His Asn Tyr Cys Asn Met Lys Lys Ser Arg Leu Gly Arg Ser Arg Ala Val Arg Ile Ser Gln Pro Leu Leu Ser Pro Arg Arg Cys Pro Leu His Leu Thr Glu Arg Gly Ala Gly Leu Leu Gln Pro Gln Pro Gln Gly Pro Val Arg Thr Pro Gly Pro Pro Pro Gly Val Thr Gln Arg Pro Arg Thr Thr Glu 85 <210> 100 <211> 582 <212> PRT <213> Homo sapiens <400> 100 Asp Val Ser Arg Cys Ala His Arg Ala Arg Pro Gly Ala Ile Met' Leu Leu Leu Pro Ser Ala Ala Asp Gly Arg Gly Thr Ala Ile Thr His Ala Leu Thr Ser Ala Ser Thr Leu Cys Gln Val Glu Pro Val Gly Arg Trp Phe Glu Ala Phe Val Lys Arg Arg Asn Arg Asn Ala Ser Ala Ser Phe Gln Glu Leu Glu Asp Lys Glu Leu Ser Glu Glu Ser Glu Asp Glu Glu Leu Gln Leu Glu Glu Phe Pro Met Leu Lys Thr Leu Asp Pro Lys

PCT/US01/24104

-196-

WO 02/09573

Asp															
~p	Trp	Lys	Asn 100	Gln	Asp	His	Tyr	Ala 105	Val	Leu	Gly	Leu	Gly 110	His	Val
Arg	Tyr	Lys 115	Ala	Thr	Gln	Arg	Gln 120	Ile	Lys	Ala	Ala	His 125	Lys	Ala	Met
Val	Leu 130	Lys	His	His	Pro	Asp 135	ГÀЗ	Arg	ьуз	Ala	Ala 140	Gly	Glu	Pro	Ile
Lys 145	Glu	Gly	Asp	Asn	Asp 150	Tyr	Phe	Thr	Cys	Ile 155	Thr	Lys	Ala	Tyr	Glu 160
Met	Leu	Ser	qaA	Pro 165	Val	Lys	Arg	Arg	Ala 170	Phe	Asn	Ser	Val	Asp 175	Pro
Thr	Phe	Asp	Asn 180	Ser	Val	Pro	Ser	Lys 185	Ser	Glu	Ala	Lys	Asp 190	Asn	Phe
Phe	Glu	Val 195	Phe	Thr	Pro	Val	Phe 200	Glu	Arg	Asn	Ser	Arg 205	Trp	Ser	Asn
Lys	Lys 210	Asn	Val	Pro	Lys	Leu 215	Gly	Asp	Met	Asn	Ser 220	ser	Phe	Glu	Asp
Val 225	Asp	Ile	Phe	Tyr	Ser 230	Phe	Trp	Tyr	Asn	Phe 235	Asp	Ser	Trp	Arg	Glu 240
Phe	Ser	Tyr	Leu	Asp 245	Glu	Glu	Glu	Lys	Glu 250	Lys	Ala	Glu	Cys	Arg 255	Asp
Glu	Arg	Arg	Trp 260	Ile	Glu	Lys	Gln	Asn 265	Gly	Ala	Thr	Arg	Ala 270	Gln	Arg
Lys	Lys	Glu 275	Glu	Met	Asn	Arg	Ile 280	Arg	Thr	Leu	Val	Asp 285		Ala	Tyr
					_						~ 1				_
Ser	Суз 290	Asp	Pro	Arg	Ile	Lys 295	Lys	Phe	Lys	Glu	300	Glu	Lys	Ala	Lys
	290		Pro Glu			295	-				300				_
Lys 305	290 Glu	Ala		Lys	Lys 310	295 Ala	Lys	Ala	Glu	Ala 315	T\(\text{P}\) 300	Arg	Lys	Glu	Gln 320
Lys 305 Glu	290 Glu Ala	Ala Lys	Glu	Lys Lys 325	Lys 310 Gln	295 Ala Arg	Lys Gln	Ala Ala	Glu Glu 330	Ala 315 Leu	300 Lys Glu	Arg Ala	Lys Ala	Glu Arg 335	Gln 320 Leu
Lys 305 Glu Ala	290 Glu Ala Lys	Ala Lys Glu	Glu Glu Lys	Lys Lys 325 Glu	Lys 310 Gln Glu	295 Ala Arg Glu	Lys Gln Glu	Ala Ala Val 345	Glu Glu 330 Arg	Ala 315 Leu Gln	300 Lys Glu Gln	Arg Ala Ala	Lys Ala Leu 350	Glu Arg 335 Leu	Gln 320 Leu Ala
Lys 305 Glu Ala Lys	290 Glu Ala Lys	Ala Lys Glu Glu 355	Glu Glu Lys 340	Lys 325 Glu Asp	Lys 310 Gln Glu Ile	295 Ala Arg Glu Gln	Lys Gln Glu Lys 360	Ala Ala Val 345 Lys	Glu 330 Arg	Ala 315 Leu Gln Ile	300 Lys Glu Gln Lys	Arg Ala Ala Lys 365	Lys Ala Leu 350 Glu	Glu Arg 335 Leu Arg	Gln 320 Leu Ala Gln
Lys 305 Glu Ala Lys	290 Glu Ala Lys Lys Leu 370	Ala Lys Glu Glu 355 Arg	Glu Glu Lys 340 Lys	Lys 325 Glu Asp	Lys 310 Gln Glu Ile	295 Ala Arg Glu Gln Lys 375	Lys Glu Lys 360	Ala Ala Val 345 Lys Glu	Glu 330 Arg Ala	Ala 315 Leu Gln Ile	300 Lys Glu Gln Lys Asn 380	Arg Ala Ala Lys 365 Glu	Lys Ala Leu 350 Glu	Glu Arg 335 Leu Arg	Gln 320 Leu Ala Gln

-197-

Glu Asp Asp Leu Gln Leu Leu Ile Lys Ala Val Asn Leu Phe Pro Ala 425 Arg Thr Asn Ser Arg Trp Glu Val Ile Ala Asn Tyr Met Asn Ile His Ser Ser Ser Gly Val Lys Arg Thr Ala Lys Asp Val Ile Gly Lys Ala Lys Ser Leu Gln Lys Leu Asp Pro His Gln Lys Asp Asp Ile Asn Lys 465 470 Lys Ala Phe Asp Lys Phe Lys Lys Glu His Gly Val Val Pro Gln Ala Asp Asn Ala Thr Pro Ser Glu Arg Phe Glu Gly Pro Tyr Thr Asp Phe Thr Pro Trp Thr Thr Glu Glu Gln Lys Leu Leu Glu Gln Ala Leu Lys Thr Tyr Pro Val Asn Thr Pro Glu Arg Trp Glu Lys Ile Ala Glu Ala Val Pro Gly Arg Thr Lys Lys Asp Cys Met Lys Arg Tyr Lys Glu Leu 550 555 Val Glu Met Val Lys Ala Lys Lys Ala Ala Gln Glu Gln Val Leu Asn 570 565

Ala Ser Arg Ala Lys Lys 580