2/9/2015 Notes (by Erik Margetis)

Milk Case study

- Guiding principles of top down decision:
 - o Goal is to maximize PROFIT
 - What do we control to achieve goal? Price per gallon
 - Profit = Revenue Expenses
 - = (Revenue per unit expenses per unit)* Units sold
 - = (price/unit expenses/unit)*Units sold
 - Make assumption about expenses per unit
 - = [Price/Unit Expense/Unit] * f(price)
 - o cost at \$1.29
 - = [x 1.29]
 - Then combine data sets (Adding a column) to original and [x-1.29]

OR

• Plot logarithmic function

2. Find Maximum

<u>Recap</u>

Used historical data to fit relationship

OR

Used linear on a log scale

Top down/bottom up should be used to get past road blocks

- Top down = from first principles, what would I need to know (start with solution and work backwards)
- Bottom up = start with data then work forwards

Video game walkthrough

- Care about reaction time
- Variables are littered and FarAway, both are dummy variables
- Use "+" in R to denote "and" for using two variables
- Yhat = beta0 + beta1 * littered + beta2 * Faraway
 - Yhat(not literered, not faraway)
 - =beta0
 - Yhat(littered, not faraway)
 - =Beta0 + beta1
 - Yhat(not littered, far away)
 - =Beta0 + beta2
 - Yhat(littered, faraway)
 - =Beta0 + beta1 + beta2
- Interaction model (When dummy variables interact with each other)
- Yhat = beta0 + beta1 * littered + beta2 * Faraway + beta3 * littered * faraway
 - Yhat(littered,faraway)
 - Only one that changes
 - Yhat = beta0 + bet1 + beta2 + beta3