# Virtual Machine

Memory Management I

資工三 B00902064 宋昊恩 資工三 B00902110 余孟桓

### Outline

- Brief introduction
- Motivation
- Terminology
- Memory Demand Detection
- Memory Reclamation
- Memory Sharing
- Memory Utilization and Isolation
- Conclusion

# Brief Introduction

### Brief introduction

- Memory Resource Management in VMWare ESX server [1]
  - C. A. Waldspurger, OSDI '02: Proceedings of the 5th symposium on Operating systems design and implementation, 2002
- Collaborative Memory Management in Hosted Linux Environments [2]
  - o Martin Schwidefsky, et. al., Linux Symposium, 2006
- Satori: Enlighted Page Sharing [3]
  - o G. Milos, et. al., USENIX 2009
- Dynamic memory balancing for virtual machines [4]
  - Weiming Zhao, et. al., ACM SIGOPS Operating Systems Review, Volume 43 Issue 3, July
    2009

# Motivation

### Motivation

- Two solution direction in terms of mechanism:
  - Memory Reclamation
  - Memory Sharing
- Two solution direction in terms of emphasis phase:
  - Memory Utilization
  - Memory Isolation
- Two solution direction in terms of fulfillment:
  - Modification on guest OS or not

# Terminology

### Terminology

- Overcommitment
  - Total size configured for all running VM exceeds the total amount of actual machine memory.
- Shadow Page Table
  - A mechanism for preserving the relationship between virtual address and machine address.
  - TLB then cache the mapping from Shadow Page Table.

# Terminology (cont.)

- COW
  - Copy-on-write, a mechanism to save memory space. When a minor-refined copy is created, it is unnecessary to duplicate whole data, but only the differences between them.
- Paravirtualization (enlightenment, used in [3])
  - O Different from full-virtualization, each guest OS system is aware of one another. In this case, the entire system can work together as a cohesive unit.

# Memory Demand Detection

### Memory Demand Detection

#### • Motivation:

• To prevent VM idle and resources waste, it is important to get clear memory demand for each VM.

#### • Solution:

- Sampling VM for specific span of time. [1]
- o LRU-based statistics. [4]

## Sampling VM for specific span of time

#### • Description:

- Determine span of time T, then invalidate N physical pages related TLB and MMU state in uniform distribution.
- Once guest trying to re-establish mappings, counter increases.

#### • Drawbacks:

- Tradeoff between estimation accuracy and overhead.
- Cannot tell the VM performance when more or less memory is allocated.

### LRU-based statistics

#### • Description:

- Every page are cold initially, all accessibilities are removed.
- When traps, it turns hot, accessibility is recovered.
- When there are too many hot pages, LRU one will turn cold.
- Trap only cold one, will not cause too much overhead.

#### • Drawbacks:

- Cannot detect swap usage.
- o Too many pages to preserve.
- Updating needs linear search.



### LRU-based statistics (cont.)

- Cannot detect swap usage
  - Add another background process to collect information, and send back to VMM.
- Too many pages to preserve
  - Collect G consecutive pages as a node.
- Updating needs linear search
  - o Assume good locality exists.





# Memory Reclamation

### Memory Reclamation

#### • Motivation:

- Commodity operating system don't support dynamic changes to physical memory sizes.
- o But we still want to improve memory utilities.

#### • Solutions:

- Page Replacement
- Improved Page Replacement [1]
- o Ballooning [1]
- MEmory Balancer (MEB) [4]

### Page Replacement

- Description:
  - Host level pages
- Drawbacks:
  - Host-level knows little about guest OS memory situation.
  - Double Paging Problem
    - Page swapped out by host-level before swapping out by guest OS.
    - It can be improved by Randomized page replacement strategy (used by ESX server).

### Ballooning

- Description:
  - A module loaded into guest OS as a pseudo-device driver.
  - When facing memory pressure, balloon inflates and notify
    VMM to reclaim physical pages it gain.
- Drawbacks:
  - It may be uninstalled, disabled explicitly.
  - It is not available while OS boosting.
  - Cannot reclaim memory quickly.
  - o Each balloon has a minimum allocation.



### Collaborative memory management (CMM)

- Collaborative memory management (CMM)
  - Infrequent Ballooning (CMM1)
    - Apply sufficient long term request
  - Page Replacement (CMM2)
    - Guest OS maintain *page status*
    - Host OS maintain *page resident*
  - Used by zSeries and z/VM

### MEmory Balancer (MEB)

- Description:
  - o Based on LRU statistics, it do dynamic memory resizing.
  - If the sum of VM memory demand can be fulfilled, then done.
  - Else, a delicate optimized algorithm is needed.

# Memory Sharing

### Memory Sharing

#### • Motivation:

- Besides adjusting memory allocation between VMs, many VM shares similar process on same OS platform.
- Prevent malicious virtual machine take advantage of memory reclamation.

#### • Solutions:

- Transparent Page Sharing
- Content-based Page sharing [1]
- Enlightened page sharing [3]

### Transparent Page Sharing

#### • Description:

o Introduced by Disco, one copies are identified, multiple guest physical pages are mapped to the same machine page.

#### • Drawbacks:

- It needs several guest OS modifications to identify copies.
  - For example, it hooked some code to routine "bcopy".

### Content-based Page Sharing

#### • Description:

- Initially, all pages are ordinary pages, and are hashed.
- Once hash value meets, recalculate hash value.
  - If changed, remove old page and hash value.
  - If not changed, mark the page as COW.
- It need to scan pages frequently.

#### • Drawbacks:

- Tradeoff between scanning frequency and overhead.
- Hard to discover short-lived share memory. (< 40 min)

### Content-based Page Sharing (cont.)





# Enlighted Page Sharing

#### • Description:

- Modify virtual disk subsystem, and implement Sharing-aware Block Devices.
- Detect sharing directly when data is read from disk.

#### • Advantages:

- Avoid scanning overhead.
- Detect short-lived sharing immediately.

## Enlighted Page Sharing (Cont.)

#### Drawbacks:

- Cannot detect consequent memory writes.
- Lots of modification, including hypervisor modification, sharing-aware block device addition, and adding repayment FIFO to guest OS kernel.

# Memory Utilization and Isolation

### **Memory Utilization**

#### • Motivation:

• No matter how many resources one claim, the top principle is maximize the efficiency of memory usage.

#### • Advantages:

o Avoid resources idle.

#### • Drawbacks:

 Some malicious VM may utilize auto memory balancing mechanism to gain unreasonable amount of resources.

### Memory Isolation

#### • Motivation:

 No matter how imbalancing memory usage are, VM should follows isolation principles, and not affected by others.

#### • Advantages:

o Can prevent malicious user, and preserve one's privilege.

#### • Drawbacks:

- Most of the time, malicious user does not exist.
- Large amount of memory are wasted.

### Some mechanisms

- Min-funding revocation:
  - One paid more money, the least valuable one becomes victim.
- Page-share advantage:
  - One share more pages with others uses more memory space.
  - No matter one page is shared or changed, only VMs sharing that certain page are involved.

### Some mechanisms (cont.)

• Idle memory tax:

$$\circ \quad \rho = S / (P \bullet (f + k \bullet (1 - f)))$$

- ho: shares-per-page ratio
- $\blacksquare$  S: shares
- $\blacksquare$  P: number of pages
- f = t / n: active rate
- $k = 1/(1 \tau)$ : idle page cost
- τ: tax rate
- *t*: touched page account
- $\blacksquare$  *n*: number of random sample pages

### Conclusion

### Conclusion

- There are always diverse choices for us to choose.
  - o It is hard to balance between accuracy and overhead.
  - o It is hard to balance between performance and isolation.
  - It is hard to determine whether revised OS is needed or not.