

ACADEMIC-GRADUATE STUDIES AND RESEARCH DIVISION

FIRST SEMESTER 2023-2024 COURSE HANDOUT (PART-II)

Date: 31/07/23

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course Number : EEE G512

Course Title : EMBEDDED SYSTEM DESIGN

Instructor-in-Charge: SYED ERSHAD AHMED

Course Description: Introduction to embedded systems; embedded architectures: Architectures and programming of microcontrollers. Embedded applications and technologies; power issues in system design; introduction to software.

Scope and Objective of the course

The course intends to cover the design issues involved in embedded systems and system-on-chip technologies. The course also deals with programming techniques, processor architectures, on-chip & off-chip protocols, performance analysis, and optimization techniques used in embedded system development. This course introduces the students to standard Embedded System Development tools and gives hands-on experience in developing various embedded applications.

Text Book:

T1. Wolf, Wayne, Computers as Components – Principles of Embedded Computing System Design, Second Edition, Elsevier, 2008.

Reference Books:

R3.Andrew N. Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide, Designing and Optimizing System Software" Morgan Kaufmann Publishers, Elsevier, 2004.

R4. Vahid, F, and Givargis, T, Embedded System Design – A Unified Hardware/Software Introduction, John Wiley, 2002

Course Plan:

Lecture No.	Learning Objectives	Topics	Reference to Text books/ References
1-2	Basics of Embedded System	Introduction to Embedded Systems, Design Methodology and Research Areas	T1-Chapter 1, R4 - Chapter 1 + Class Notes
3-5	Processors, Memory	Processors in Embedded Systems. RISC and CISC Architectures.	Class Notes

	and I/O Devices,	Memories, Exemplary Embedded		
	Device Drivers	Systems I/O Devices, Software in		
		Embedded Systems, Device Driver		
		Concepts		
6	Hardware	Memory Types Organization, Cache,	R4-Chapter 5+	
	Components of	Basic peripherals like Timers,	Class Notes	
	Embedded Systems	ADC/DAC, Interrupts		
7-11	Embedded	Introduction to ARM CPU	R3- Chapter 1	
	Architecture 1 –	Architecture	,2+ Class Notes	
	RISC ARM	2. Programmers Model of ARM	,	
	Architecture	CPU		
		2.1 Register Organization		
		2.2 Operating Modes		
		2.3 Pipelining		
		2.4 ARM Exception Handling		
		3. ARM Instruction Set		
12-14	ARM: Arithmetic	1. Arithmetic Instructions	R3- Chapter 5 +	
	and Logic	2. Logic Instructions	Class Notes	
	Instructions and	3. Rotate and Barrel Shifter		
	Programs	4. Shift and Rotate		
		Instructions		
		5. BCD conversion		
15-16	ARM: Branch, call	1.Looping and Branch	R3- Chapter 3+	
	and Looping	instructions	Class Notes	
		2.Calling Subroutine with		
		BL		
		3.ARM Time delay and		
		Instruction Pipeline		
		4. Conditional Execution		
17	Signed Integer	1.Signed Number concept	Class Notes	
	Arithmetic	2.Signed number		
		instructions and operation		
18-19	ARM Pipeline and	1.ARM Pipeline	R3- Chapter 4+	
	CPU Evolution	Evolution	Class Notes	
		2. Other CPU		
		Enhancements		
20-21	ARM and Thumb	1.Thumb Instructions	R3- Chapter 7+	
	Instructions	2.Thumb-2 Technology	Class Notes	
	32-bit Processor	NXP's LPC23XX Microcontroller	Class Notes	
22-25	Architecture			
26-27	LPC 2378	System and Power Control, Clock	Class Notes	
	Peripherals	Module,		
		GPIOs, Timers, Vectored Interrupt		
		Controller.		
28-32	LPC 2378	UARTs, ADC, DAC and PWM	Class Notes	
	Peripherals			
33	Real Time	Introduction to RTOS on ARM	Class Notes	
	Operating	(RTX Kernel)		
	System on ARM			
	Case Studies	General Purpose Processor based	Class Notes	
34-35		Design		
36-39	Bus Architectures	LPC 2378's I ² C and CAN Bus Class Notes		
		Interface		

	ARM Bus	AMBA Bus Architecture, GPIO,	R3- Chapter 11,
		Timer, Watchdog, Interrupt Handling	R4-Chapter 4+
		-VIC, ADC/DAC	Class Notes
	Embedded System	CPU Power Consumption and	
40	Hardware and	Optimization,	Class Notes
	Software Design	ICE, hardware –Software co-	
	Issues	simulation and	
		debugging, Real-time, Design Cycle	

Evaluation Scheme:

EC	Evaluation	Duration	Weightage	Date, Time	Remark
No	Component & Type				
1.	Midterm	90 mins	20 %	11/10 - 11.30 - 1.00PM	OB
2	Quizzes	30 mins	15 %	To be Announced	CB
2	Assignments		10 %	To be done throughout the course	OB
	J			as and when given	
3.	Mini Project		10 %	To begin when announced	OB
4.	LAB		10 %	To be done throughout the course	OB
				as and when given	
5.	Comprehensive	3 hours	35%	12/12 AN	CB
	Examination				

- I. Chamber Consultation Hour: To be announced in Class
- **II. Notices:** All notices regarding the course will be put up on CMS
- **III. Make-up Policy:** In general, Make-up will not be granted without prior permission. If the student is unable to appear for the Mid-Semester Test/Comprehensive Examination due to genuine exigencies, the student must refer to the procedure for applying for Make-up.
- **IV.** Note (if any): It shall be the responsibility of the individual student to be regular in attending lectures and the lab sessions as per the schedule announced in time table.
- V. Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge EEE G512