

21 December 2015 09:00-12:00

CALCULUS II 201-NYB-05

INSTRUCTORS: W. Boshuck, F. Lo Vasco, R. Masters, S. Mikhail, L. Takei

Student name:	
STUDENT NUMBER:	
Instructor:	

Instructions

- 1. Write all of your solutions in this booklet and show all supporting work.
- 2. If the space provided is not sufficient, continue the solution on the opposite page.
- 3. Check that this booklet contains 3 pages, excluding this cover page.
- 4. Remember that the use of a calculator is not permitted.

1. Evaluate the following integrals:

(a)
$$\int \frac{\tan^5(\ln x)\sec^3(\ln x)}{x} dx$$

(b)
$$\int x \arcsin x \, dx$$

(c)
$$\int \frac{x^2}{\sqrt{4x^2 - 9}} dx$$

(d)
$$\int \frac{8x^2 + 4x + 5}{(x+1)^2(2x-1)} dx$$

(e)
$$\int_{5}^{6} \frac{1}{\sqrt{-x^2 + 10x - 21}} dx$$

(f)
$$\int \sqrt{x}e^{\sqrt{x}} dx$$

(g)
$$\int_{1}^{\sqrt{3}} \frac{1}{x^2 \arctan x + \arctan x} dx$$

- **2.** Given that f(-2) = -3; f'(-2) = 5; f(1) = 3; f'(1) = 2Evaluate $\int_{-2}^{1} x f''(x) dx$
- **3.** Evaluate the following limits:

(a)
$$\lim_{x \to \pi} \frac{\sin^2 3x}{1 + \cos x}$$

(b)
$$\lim_{x \to \infty} x(e^{3/x} - 1)$$

(c)
$$\lim_{x\to 0^+} (\cos x)^{1/x^2}$$

4. Determine whether the following integrals converge or diverge:

(a)
$$\int_{1}^{\infty} \frac{1 - \ln x}{x^2} dx$$

(b)
$$\int_0^3 \frac{dx}{x^2 - 2x + 1}$$

5. Solve the differential equation:

$$\cos^2 x \frac{dy}{dx} = e^{-y} \sin x \; ; \; y(0) = 0$$

6. Sketch the region \mathcal{R} bounded by $y = x^2 + 1$ and y = 2x + 4 and find its area.

- 7. Let \mathcal{R} be the region bounded by the functions $y = 1 + \cos x$, y = 1 and $0 \le x \le \frac{\pi}{2}$. Set up (but do not evaluate) the integrals to find the volume of the solid of revolution obtained by revolving \mathcal{R} about;
 - (a) the y-axis
 - (b) the x-axis
 - (c) the line x = 3
- **8.** Consider the sequence $a_n = n \sin\left(\frac{1}{n}\right)$
 - (a) Is the sequence $\{a_n\}$ convergent? If so, find it's convergence value or explain why it diverges.
 - (b) Is the series $\sum_{n=1}^{\infty} a_n$ convergent? Justify your answer.
- **9.** Let $S_n = \frac{n}{n+2}$ be the sequence of partial sums for the series $\sum_{n=1}^{\infty} a_n$.
 - (a) Evaluate $\sum_{n=1}^{\infty} a_n$
 - (b) Find a_n
- 10. Determine whether the following series converge or diverge. Justify your answer by displaying a proper solution.
 - (a) $\sum_{n=1}^{\infty} \left(\frac{2n}{3n+2} \frac{1}{n\sqrt{n}} \right)$
 - (b) $\sum_{n=1}^{\infty} \frac{1}{n \, 7^n}$
 - (c) $\sum_{n=1}^{\infty} \frac{5\sqrt{n}}{(n+1)^2}$
- 11. Determine whether the following series are absoutely convergent, conditionally convergent or divergent. Justify your answer by displaying a proper solution.
 - (a) $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{\ln(2n)}$
 - (b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(2n+1)!}{n^2 \, 7^n}$
- 12. Find the radius and interval of convergence for the power series,

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3^{2n} (x-1)^n}{3n+1}$$

13. Find the Maclaurin series expansion for $f(x) = \frac{x}{x+1}$

Answers Fall 2015

- 1. (a) $\frac{1}{7}\sec^7(\ln x) \frac{2}{5}\sec^5(\ln x) + \frac{1}{3}\sec^3(\ln x) + c$
 - (b) $\frac{x^2}{2} \arcsin x \frac{1}{4} \arcsin x + \frac{1}{4} x \sqrt{1 x^2} + c$
 - (c) $\frac{9}{16} \left(\frac{2x}{3} \cdot \frac{\sqrt{4x^2 9}}{3} + \ln \left| \frac{2x}{3} + \frac{\sqrt{4x^2 9}}{3} \right| \right) + c$
 - (d) $2 \ln |x+1| + \frac{3}{x+1} + 2 \ln |2x-1| + c$
 - (e) $\pi/6$
 - (f) $2e^{\sqrt{x}}(x-2\sqrt{x}+2)+c$
 - (g) $\ln(4/3)$
- **2.** 6
- **3.** (a) 18
 - (b) 3
 - (c) $1/\sqrt{e}$
- 4. (a) Convergent
 - (b) Divergent
- $5. \ y = \ln|\sec x|$
- **6.** 32/3
- 7. (a) $v = 2\pi \int_0^{\pi/2} x \cos x \, dx$

- (b) $v = \pi \int_0^{\pi/2} ((1 + \cos x)^2 (1)^2) dx$
- (c) $v = 2\pi \int_0^{\pi/2} (3-x) \cos x \, dx$
- 8. (a) $\{a_n\}$ is convergent
 - (b) $\sum_{n=1}^{\infty} a_n$ is divergent
- **9.** (a) 1
 - (b) $a_n = \frac{2}{(n+1)(n+2)}$
- 10. (a) Divergent by test for divergence
 - (b) Convergent by comparison test
 - (c) Convergent by limit comparison test
- 11. (a) Conditionally Convergent
 - (b) Divergent by Ratio Test
- **12.** Radius = 1/9; Interval $8/9 < x \le 10/9$
- 13. $\sum_{n=1}^{\infty} (-1)^{n+1} x^n$