Embedded Systems Laboratory

Lap9: - มีความรู้ความเข้าใจในรายละเอียดของ External EEPROM ของ ESP32

- การโปรแกรมเพื่อควบคุมการทำงานโดยใช้ External EEPROM

- การโปรแกรมประยุกต์ในการใช้งาน External EEPROM ของ ESP32

9.1 ข้อมูลเบื้องต้น External EEPROM ของ ESP32

ให้นิสิตหาร่วมกันหาข้อมูลเพื่อนำมาตอบคำถามข้างล่างดังนี้

คำถาม	คำตอบ
EEPROM คือ	Electrically Erasable Programmable ROM เป็นหน่วยความจำ ROM ที่สามารถลบและแก้ไขได้หลายครั้ง
EEPROM ต่อกับ ESP32 ด้วย Protocol ใด?	SPI
สามารถบันทึกข้อมูลสูงสุดได้กี่ Byte ในกรณีใช้ Lib EEPROM ใน ArduinoIDE?	4096 byte
ถ้าต้องการเก็บข้อความ "Embedded System" ต้องใช้ Memory เท่าใด (Byte) ในการเก็บ ข้อมูลข้อความลง EEPROM?	2 byte/char 15 char = 15*2 = 30 byte

จงอธิบายการทำงาน Function EEPROM ใน ArduinoIDE

Function	คำตอบ	
EEPROM.Read(address);	อ่านค่าใน address นั้นๆ	
EEPROM.Write(address,value);	เขียนค่าลงใน address นั้นๆ	
EEPROM.Update(address,value);	เขียนค่าลงใน address นั้นๆ เมื่อค่าที่เขียนไม่ตรงกับค่าที่อยู่ใน address	
EEPROM.get(address,data);	นำค่าใน address นั้นบันทึกลงใน data	
EEPROM.put(address, data);	นำค่าใน data เขขียนลงใน address นั้นๆ	
EEPROM.commit();	ยืนยันคำสั่งอ่านหรือเขียนก่อนหน้า(ทำให้คำสั่งก่อนหน้าถูกใช้งาน)	

9.2 Write External EEPROM

ให้นิสิต ศึกษาการใช้งาน EEPROM จาก

https://github.com/espressif/arduino-esp32/issues/1608

จากนั้นให้เขียนโค้ดเพื่อทดสอบการทำงานของ ESP32

```
#include "EEPROM.h"
#define EEPROM SIZE 4
void setup() {
  Serial.begin(115200);
  if (!EEPROM.begin(EEPROM_SIZE)) {
    Serial.println("Failed init EEPROM");
    delay(1000);
    ESP.restart();
  Serial.println("Success init EEPROM");
  EEPROM.writeUChar(0, 1);
  EEPROM.commit();
  EEPROM.writeUChar(1, 100);
  EEPROM.commit();
  EEPROM.writeUChar(2, 200);
  EEPROM.commit();
  EEPROM.writeUChar(3, 255);
  EEPROM.commit();
  Serial.println("Write EEPROM Complete");
void loop() {
      // Nothing
}
```

จากโค้ดด้านบน นิสิตคิดว่าตัว Firmware ต้องการทำสิ่งใด

```
เขียนข้อมูลลง EEROM โดย
ตำแหน่งที่ 0 เขียน 1 ลง
ตำแหน่งที่ 1 เขียน 100 ลง
ตำแหน่งที่ 3 เขียน 255 ลง
```

9.3 Read External EEPROM

ให้นิสิต ศึกษาการใช้งาน EEPROM จาก

https://github.com/espressif/arduino-esp32/issues/1608

เมื่อ Burn Code Lab 8.2 แล้ว จากนั้นให้เขียนโค้ดเพื่อทดสอบการทำงานของ ESP32

```
#include "EEPROM.h"
#define EEPROM SIZE 4
char charBuffer[100];
int var0, var1, var2, var3;
void setup() {
  Serial.begin(115200);
  if (!EEPROM.begin(EEPROM_SIZE)) {
    Serial.println("Failed init EEPROM");
    delay(1000);
    ESP.restart();
  Serial.println("Success init EEPROM");
 var0 = EEPROM.readUChar(0);
 var1 = EEPROM.readUChar(1);
 var2 = EEPROM.readUChar(2);
 var3 = EEPROM.readUChar(3);
  sprintf(charBuffer, "EEPROM Data>>> var0 %03d | var1 %03d | var2 %03d | var3
%03d\n", var0, var1, var2, var3);
  Serial.println(charBuffer);
  Serial.println("Read EEPROM Complete");
void loop() {
      // Nothing
}
```

จากโค้ดด้านขน นิสิตคิดว่าตัว Firmware ต้องการทำสิ่งใด

อ่านข้อมูลจาก EEROM ในตำแหน่งที่ 0,1,2 และ 3				

9.4 โจทย์ Assigment External EEPROM

การทำงาน

- 1. เมื่อ MCU เริ่มต้นการทำงาน ให้ อ่านค่าของ ADC ล่าสุดที่บันทึกไว้ ในตำแหน่ง 0x00 นำไปคำนวณและแสดงผลกับ LED (LED21) โดยใช้ PWM และมีการแสดงผลที่หน้าจอ OLED และ Serial Monitor
- 2. สามารถกำหนดความสว่างของหลอด LED โดยผ่านนำค่าที่บันทึกใน EEPROM 2 ตำแหน่งมาแสดงได้แก่
 - ตำแหน่ง1 0x000 มาแสดงโดยการกดปุ่ม SW15
 - ตำแหน่ง2 แสดงโดยการกดปุ่ม SW14 โดยค่าที่บันทึกลงใน EEPROM คือรหัสนิสิต3ตัวท้าย เช่น 6130300921 สามตัวท้ายคือ 921 ให้บันทึกค่าลงในตำแหน่ง 921 การแสดงผลบนจอทั้ง Dec, Hex
- 3. เมื่อกดปุ่ม SW10 จะอ่านค่า ADC จาก POT (R36) โดยการปรับ ให้เหมาะสมกับการนำไป Drive PWM ของ LED แล้ว นำไปบันทึกในตำแหน่งของ EEPROM ที่กำลังแสดงอยู่ขณะนั้น
- 4. มีการแสดงผลค่าของ EEPROM ทาง Serial Monitor (ตอนเปิด และกด Switch)
- 5. มีการแสดงผลค่าของ EEPROM ทาง OLED Display (ตอนเปิด และกด Switch)

ตัวอย่างการแสดงผลบนจอ OLED

เขียนโปรแกรมลงในกล่องคำตอบด้านล่าง **และถ่ายวีดีโอผลลัพท์ของโจทย์นี้ Upload ไฟล์ตามหมู่เรียน**

ในกรณีตัวหน้ากระดาษไม่พอให้เพิ่มหน้าแทรกในไฟล์แทน

```
#include "EEPROM.h"
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
Adafruit_SSD1306 display(128, 32, &Wire);
#define eeprom1 0
#define eeprom2 38
#define pot 34
#define SW14 16 // Addr Nisit3X (139)
#define SW15 17 // Addr 0
#define SW10 5 // Write EEPROM
char charBuffer[100]:
int varo, var1, var2, var3;
int pot value = 0;
long lasttime10ms = 0;
long lasttime1000ms = 0;
bool stateToogle = true;
int stateMode = 0; // 0 = addr0, 1 = addrNisit
void setup() {
 Serial.begin(115200);
 Serial.printf("Start Firmware\n");
 delay(1000);
 if (!EEPROM.begin(140)) {
  Serial.println("Failed init EEPROM");
  delay(1000);
  ESP.restart();
 Serial.println("Success init EEPROM\n");
 varo = EEPROM.readUChar(eeprom1); // Addro
 varo = EEPROM.readUChar(eeprom2); // Addr Nisit3X
 Serial.printf("Read EEPROM Addro = %d\n", varo);
 //Setting PWM
 ledcSetup(0, 1000, 8); // channelo, freq1khz, bitres 8bit (0-255)
 ledcAttachPin(LED, 0); // led gpio21(25), map pwm channelo
 ledcWrite(0, var0); // pwm channel0 (gpio21) output pwm = var0
 Serial.printf("Send PWM %d to GPIO21\n", varo);
 //Read Analog GPIO34
 pot_value = analogRead(pot);
 //Drive OLED LCD
 if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {
  Serial.println(F("SSD1306 allocation failed"));
  for (;;); // Don't proceed, loop forever
 display.display();
 delay(2000); // Pause for 2 seconds
 //display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
 // Clear, Color, Size, Cursor, Print, Display
 display.clearDisplay();
 display.setTextColor(SSD1306_WHITE);
 display.setTextSize(1);
 display.setCursor(0, 0);
 display.printf("EEPROM ADC:%04d", pot_value);
 display.setCursor(0, 10);
 display.printf("Address: %04d (0x%03x)", 0, 0);
 display.setCursor(0, 20);
 display.printf("Data: %03d", varo);
 display.display();
 Serial.println("Display OLED LCD");
 pinMode(SW10, INPUT_PULLUP);
 pinMode(SW14, INPUT_PULLUP);
 pinMode(SW15, INPUT_PULLUP);
```

เขียนโปรแกรมลงในกล่องคำตอบด้านล่าง **และถ่ายวีดีโอผลลัพท์ของโจทย์นี้ Upload ไฟล์ตามหมู่เรียน**

ในกรณีตัวหน้ากระดาษไม่พอให้เพิ่มหน้าแทรกในไฟล์แทน

```
void loop() {
// 10ms
if (millis() - lasttime10ms >= 10) {
 lasttime10ms = millis();
 // Mode Addr o
 if (digitalRead(SW15) == LOW) {
  stateMode = 0;
 // Mode Addr Nisit3X
  if (digitalRead(SW14) == LOW) \{
  stateMode = 1;
 if (stateMode == 0) {
   var0 = EEPROM.readUChar(eeprom1); // var0 = 0 - 255
   //Setting PWM
   ledcWrite(0, var0); // pwm channel0 (gpio21) output pwm = var0
   //Read Analog GPIO34
   pot_value = analogRead(pot);
   // Clear, Color, Size, Cursor, Print, Display
   display.clearDisplay();
   display.setTextColor(SSD1306_WHITE);
   display.setTextSize(1);
   display.setCursor(0, 0);
   display.printf("EEPROM\ ADC:\%04d", pot\_value);\\
   display.setCursor(0, 10);
   display.printf("Address: %04d (0x%03x)", 0, 0);
   display.setCursor(0, 20);
   display.printf("Data: %03d", varo);
   display.display();
  } else {
   var1 = EEPROM.readUChar(eeprom2); // var0 = 0 - 255
   //Setting PWM
   ledcWrite(0, var1); \ \ // \ \ pwm \ channelo \ (gpio21) \ output \ pwm = var0
   //Read Analog GPIO34
   pot_value = analogRead(pot);
   // Clear, Color, Size, Cursor, Print, Display
   display.clearDisplay();
   display.setTextColor(SSD1306_WHITE);
   display.setTextSize(1);
   display.setCursor(0, 0);
   display.printf("EEPROM\ ADC:\%04d",pot\_value);\\
   display.setCursor(0, 10);
   display.printf("Address: %04d (0x%03x)", eeprom2, eeprom2);
   display.setCursor(0, 20);
   display.printf("Data: %03d", var1);
   display.display();
  if (digitalRead(SW10) == LOW) \{
   if (stateMode == 0) {
    // Addro
    pot_value = analogRead(pot); // 12bit
    int covn8bit = pot value * 255 / 4095; // convert 12bit to 8bit
    EEPROM.writeUChar(eeprom1, covn8bit); // 8bit
    EEPROM.commit();
    Serial.printf("Write EEPROM Addr %d = %d\n", 0, covn8bit);
   } else {
    pot_value = analogRead(pot); // 12bit
    int covn8bit = pot_value * 255 / 4095; // convert 12bit to 8bit
    EEPROM.writeUChar(eeprom2, covn8bit); // 8bit
    EEPROM.commit();
    Serial.printf("Write EEPROM Addr %d = %d\n", 0, covn8bit);
 }
if (millis() - lasttime1000ms >= 1000) {
 lasttime1000ms = millis();
  stateToogle = !stateToogle;
  digitalWrite(2, stateToogle);
```

}