1 Use a direct proof to show that the sum of two odd integers is even.

Proof. Assume a is even and b is odd.

Let a = 2k, k is some integer

Let b = 2k + 1, k is some integer

$$b + b = n$$
 The sum of 2 odd integers (1)

$$2k + 1 + 2k + 1 = n Expand b (2)$$

$$4k + 2 = n Simplify (3)$$

$$2(2k+1) = n Factor out 2 (4)$$

$$2b = n$$
 Definition of an even number, b is some integer (5)

3 Show that the square of an even number is an even number using a direct proof.

Proof. Assume a is even.

Let a = 2k, k is some integer

$$a * a = n$$
 The square of two even numbers (1)

$$2k * 2k = n Expand a (2)$$

$$2 * 2k^2 = n$$
 Rearrange terms (3)

Let
$$j = 2k^2$$
 (4)

$$2j = n$$
 Definition of an even number, j is some integer (5)

4 Show that the additive inverse, or negative, of an even number is an even number using a direct proof.

Proof. Assume a is even.

Let a = 2k, k is some integer

$$a*-1=n$$
 Additive inverse of an even number (1)

$$2k * -1 = n Expand (2)$$

$$2(-k) = n$$
 Rearrange terms (3)

Let
$$j = -k$$
 (4)

$$2j = n$$
 Definition of an even number, j is some integer (5)

1

6 Use a direct proof to show that the product of two odd numbers is odd.

Proof. Assume a is odd.

Let a = 2k + 1, k is some integer

Let i be some integer

Let j be some integer

$$ai * aj = n$$
 Product of 2 odd numbers (1)

$$i(2k+1) * j(2k+1) = n$$
 Expand (2)

$$(2k+1)(i*j*(2k+1)) = n Rearrange terms (3)$$

Let
$$m = (i * j * (2k + 1))$$
 (4)

$$am = n$$
 Definition of an odd number, m is some integer (5)

8 Prove that if n is a perfect square, then n+2 is not a perfect square.

Proof. We can define a as a perfect square

Let $a = k^2$, k is some integer

We can prove this by contradiction by assuming that if $n = i^2$ then $n + 2 = j^2$.

$$n+2=j^2$$
 Assumption (1)

$$2 = j^2 - n$$
 Subtract n from both sides (2)

$$2 = (j - i)(j + i)$$
 Factor (4)

$$j = \frac{2}{3}$$
 j is not an integer so this is a contradiction (6)

9 Use a proof by contradiction to prove that the sum of an irrational number and a rational number is irrational.

Proof. We can define a rational number as a fraction of 2 integers.

Let
$$r = \frac{p}{q}$$
, p and q are integers, $q \neq 0$

Let x be an irrational number and let y be a rational number. To prove this by contradiction we will assume that the sum of x and y are rational. Using the definition of a rational number we can say

$$x + y = \frac{p}{q}$$
, p and q are integers, $q \neq 0$

and that

$$y = \frac{a}{b}$$
, a and b are integers, $q \neq 0$

such that

$$x + \frac{a}{b} = \frac{p}{q}$$

From here we can subtract $\frac{a}{h}$ from both sides

$$x = \frac{p}{q} - \frac{a}{b} = \frac{pb - aq}{qb}$$

a, b, p, and q are all nonzero integers. This would imply that x is rational, which contradicts our original assumption that x is irrational. Therefore our assumption that x + y is rational is false.

13 Prove that if x is irrational, then 1/x is irrational.

Proof. We can define a rational number as a fraction of 2 integers.

Let
$$r = \frac{p}{q}$$
, p and q are integers, $q \neq 0$

Let x be an irrational number. To prove this by contradiction we will assume that 1/x is rational. Using the definition of a rational number we can say

$$\frac{1}{x} = \frac{p}{q}$$
, p and q are integers, $q \neq 0$

Taking the reciprocal of both sides we get

$$x = \frac{q}{p}$$

This would imply that x is a rational number, which contradicts our assumption that 1/x is rational if x is irrational. Therefore our assumption that $\frac{1}{x}$ is rational is false

- 17 Show that if n is an integer and $n^3 + 5$ is odd, then n is even
 - a Using proof by contraposition

Proof. We can define an even number as a and an odd number as b where

Let
$$a = 2k$$
, k is some integer

Let
$$b = 2k + 1$$
, k is some integer

To prove this by contraposition, we must show that that if n is **not** even then $n^3 + 5$ is **not** odd. In other words, if n is odd then $n^3 + 5$ is even. We will let n be an odd number such that

$$n = 2k + 1$$
, k is some integer

so we can write this statement as

$$m = (2k+1)^3 + 5$$

Expanding this out gives us

$$m = 8k^3 + 12k^2 + 6k + 6$$

From here, we can factor a 2 from the entire polynomial

$$m = 2(4k^3 + 6k^2 + 3k + 3)$$

Since k is an integer, the result of $4k^3 + 6k^2 + 3k + 3$ will also be an integer, which we will define as c. We can then say

$$m = 2c$$

Which matches the definition of an even number. Thus we have proved that that if n is odd then $n^3 + 5$ is even

b Using proof by contradiction

Proof. We can define an even number as a and an odd number as b where

Let
$$a = 2k$$
, k is some integer

Let
$$b = 2k + 1$$
, k is some integer

To prove this by contradiction we will assume that if $n^3 + 5$ is odd, then n is odd. We will let n be an odd number such that

$$n = 2k + 1$$
, k is some integer

and that the result of $(2k+1)^3+5$ is odd such that so we can write this statement as

$$2j + 1 = (2k + 1)^3 + 5$$
, j is some integer

Expanding this out gives us

$$2j + 1 = 8k^3 + 12k^2 + 6k + 6$$

From here, we can factor a 2 from the right side

$$2j + 1 = 2(4k^3 + 6k^2 + 3k + 3)$$

Since k is an integer, the result of $4k^3 + 6k^2 + 3k + 3$ will also be an integer, which we will define as c. We can then say

$$2j + 1 = 2c$$

This is saying that an even number is equal to an odd number, which is a contradiction. Therefore if $n^3 + 5$ is odd, then n must be even

19 Prove the proposition P(0), where P(n) is the proposition "If n is a positive integer greater than 1, then $n^2 > n$." What kind of proof did you use?

Proof. The proposition states that if n > 1 then $n^2 > n$ so for P(0), if 0 > 1 then 0 > 0. This is trivially true by vacuous proof.

23 Show that at least ten of any 64 days chosen must fall on the same day of the week.

Proof. We will prove this using a contradiction. Assume that only 9 or less of any 64 days fall on the same day of the week. This means we can choose 9*7=63 days, which is less than 64 days, so this is a contradiction.

27 Prove that if n is a positive integer, then n is odd if and only if 5n + 6 is odd

Proof. Because this is a biconditional statement, our proof will have 2 parts. First we will prove that if n is odd then 5n + 6 is odd using a direct proof. To do this we will need to define an odd number a and an even number b as such

Let
$$a = 2k + 1$$
, k is some integer

Let
$$b = 2k$$
, k is some integer

We will let n be some odd number such that

$$n = 2k + 1$$

and that

$$5(2k+1) + 6 = 2j + 1$$
, j is some integer

Distributing the 5 to 2k + 1 gives us

$$10k + 5 + 6 = 2j + 1$$

Which can then be rewritten as

$$10k + 10 + 1 = 2j + 1$$

We can now factor out a 2 from 10k + 10

$$2(5k+5) + 1 = 2j + 1$$

k is an integer so the result of 5k + 5 will also be an integer which we will represent with c

$$2c + 1 = 2j + 1$$

Using the definition of an odd number, we have shown that if n is odd then 5n + 6 is odd.

We now need to prove that if 5n + 6 is odd then n is odd. This time we will use a proof by contradiction. Suppose if 5n + 6 is odd, then n is not odd. Using the definitions of even and odd numbers, we will let n be some even number such that

$$n=2k$$
, k is some integer

and we will let 5n + 6 be an odd number such that

$$5(2k) + 6 = 2j + 1$$
, j is some integer

Multiplying out the left side gives us

$$10k + 6 = 2j + 1$$

We can factor out a 2 from 10k + 6

$$2(5k+3) = 2j + 1$$

And because k is an integer, the result of 5k + 3 will also be an integer which we will represent with c

$$2c = 2j + 1$$

Using the definition of even and odd numbers, this contradicts our supposition that if 5n + 6 is odd, then n is not odd. Therefore, we have shown that if 5n + 6 is odd then n is odd.

35 Are these steps for finding the solutions of $\sqrt{x+3} = 3 - x$ correct?

$$\sqrt{x+3} = 3 - x Given (1)$$

$$x + 3 = x^2 - 6x + 9$$
 Square both sides of (1) (2)

$$0 = x^2 - 7x + 6$$
 Subtract x+3 from both sides of (2) (3)

$$0 = (x-1)(x-6)$$
 Factor the right-hand side of (3)

$$x = 1$$
 or $x = 6$, Follows from (4) because $ab = 0$ implies that $a = 0$ or $b = 0$ (5)

This is not correct because 3-6 would yield a negative number which is not in the range of a square root