Pengaruh *Fuzzy Logic Controller* Pada Pengoperasian Filter Aktif *Shunt* Terhadap Penurunan I_{THD} dan Rugi-Rugi Daya Pada Sistem Kelistrikan RSUD Klungkung

I Putu Jerry Akira Dinata, I Wayan Rinas, I Wayan Arta Wijaya Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana Email: putu.jerry14@gmail.com

Abstrak

RSUD Klungkung disuplai oleh transformator dengan kapasitas 200 kVA. Penggunaan beban non linier di RSUD Klungkung dapat menyebabkan terjadinya arus harmonisa (I_{THD}). Semakin besar arus harmonisa yang dihasilkan, maka kualitas daya listrik akan semakin buruk, sehingga menyebabkan munculnya *losses* pada transformator. Pemasangan filter aktif *shunt* dan penggunaan *fuzzy logic controller* sebagai pengontrol pada filter mampu meredam harmonisa yang terjadi pada sistem kelistrikannya. Hasil pengukuran I_{THD} pada kondisi eksisting untuk phasa R sebesar 11,23%, phasa S sebesar 14,72%, dan phasa T sebesar 11,20%. Nilai I_{THD} mengalami penurunan saat sistem dipasangkan filter aktif *shunt* untuk phasa R sebesar 5,24%, phasa S sebesar 7,18%, dan phasa T sebesar 5,34%. Nilai I_{THD} kembali mengalami penurunan saat penggunaan *fuzzy logic controller* untuk phasa R sebesar 0,15%, phasa S sebesar 0,17%, dan phasa T sebesar 0,11%. Menurunnya nilai I_{THD} berpengaruh terhadap *losses* yang dihasilkan pada sistem. Pada kondisi eksisting *losses*nya sebesar 10,525%, *losses* pada pengoperasian filter aktif *shunt* sebesar 1,352%, dan penggunaan *fuzzy logic controller* menghasilkan *losses* terkecil yaitu 0,00035%.

Kata Kunci: I_{THD}, Filter Aktif Shunt, Fuzzy Logic Controller, Losses

Abstract

RSUD Klungkung is supplied by a transformer with a capacity of 200 kVA. The use of non-linear loads in Klungkung Hospital can cause harmonic currents (ITHD). The greater the harmonic current produced, the quality of the electrical power will get worse, causing losses to the transformer. The installation of active shunt filters and the use of fuzzy logic controllers as controllers on filters can reduce the harmonics that occur in the electrical system. The results of ITHD measurements on existing conditions for R phase are 11.23%, S phase is 14.72%, and T phase is 11.20%. The ITHD value decreased when the system was paired with a shunt active filter for R phase of 5.24%, S phase was 7.18%, and T phase was 5.34%. The ITHD value has decreased again when the use of fuzzy logic controller for R phase is 0.15%, S phase is 0.17%, and T phase is 0.11%. Decreasing ITHD values affect the losses generated on the system. In the existing conditions losses are 10.525%, losses in the operation of the shunt active filter are 1.352%, and the use of fuzzy logic controller produces the smallest losses of 0.00035%.

Keywords: I_{THD}, Shunt Active Filter, Fuzzy Logic Controller, Losses

1. PENDAHULUAN

RSUD Klungkung merupakan rumah sakit umum daerah yang memiliki berbagai macam peralatan elektonika yang diklasifikasikan sebagai beban non linier. Pengoperasian beban non linier dapat menimbulkan harmonisa yang

menyebabkan kualitas daya listrik semakin buruk dan rugi-rugi daya listrik semakin besar [1].

Sistem kelistrikan RSUD Klungkung disuplai oleh sebuah transformator dengan kapsitas daya 200kVA dari jaringan PLN melalui penyulang Klungkung dengan yang di distribusi melalui MDP yang mensuplai kebutuhan beban di 15 ruangan.

Dari hasil pengukuran I_{THD} (*Total Harmonic Current Distrotion*) awal diperoleh nilai I_{THD} untuk phasa R sebesar 16,66%, phasa S sebesar 16,47%, dan phasa T sebesar 13,00%. Hasil pengukuran I_{THD} yang diperoleh pada MDP belum sesuai dengan standar IEEE 519-2014 sebesar 8%.

Untuk meredam kandungan harmonisa berlebih. maka dapat operasikan filter aktif pada sistem kelistrikan [2]. Filter aktif dapat dioperasikan dengan menggunakan sistem kontrol sehingga filter akan bekerja jika mendeteksi gangguan dan tidak akan bekerja jika beban dinilai stabil. Penggunaan filter aktif akan lebih optimail apabila ditambahkan dengan teknik PID. pengontrolan berupa namun pengontrolan PID masih memiliki kekurangan terutama pada sistem kontrol yang masih sederhana [3].

Berdasarkan permasalahan tersebut, pada penelitian ini akan dilakukan pengoperasian filter aktif shunt menggunakan teknik pengontrolan fuzzy logic untuk mereduksi arus harmonisa dan mengurangi rugi-rugi daya listrik pada sistem kelistrikan.

2. KAJIAN PUSTAKA

2.1 Harmonisa

Harmonisa adalah suatu fenomena disebabkan oleh penggunaan peralatan listrik non linier yang dapat mempengaruhi kualitas daya listrik [4][5]. Harmonisa bersifat permanen menyebabkan terbentuknya gelombang frekuensi tinggi yang dapat mengganggu kelistrikan sistem pada frekuensi fundamental. Peralatan listrik non linier merupakan peralatan listrik yang arusnya tidak sebanding dengan tegangan yang diberikan. sehingga menghasilkan gelombang integer dari frekuensi fundamental yang akan tertumpang dan mengalami bentuk gelombang non sinusoidal akibat distori arus maupun tegangan [1].

2.2 Standar Harmonisa

Standar harmonisa yang digunakan pada sistem tenaga listrik yaitu standar IEEE 519-2014, yaitu :

a. Standar THD Tegangan Berdasarkan acuan standar IEEE 519-2014 nilai batas maksimum THD tegangan yang diperbolehkan dapat dilihat pada Tabel 1.

Tabel 1. Standar THD Tegangan [6]

Bus Voltage (V) at PCC	Individual Harmonic (%)	Total Harmonic Distortion (%)
$V \le 1 \text{ kV}$	5.0	8.0
1 kV < V < 69 kV	3.0	5.0
69 kV < V < 161 kV	1.5	2.5
161 kV < V	1.0	1.5

b. Standar THD Arus

Berdasarkan acuan standar IEEE 519-2014 nilai batas maksimum THD arus yang diperbolehkan dapat dilihat pada Tabel 2.

Tabel 2. Standar THD Arus [6]

Maximum Harmonic Current Distortion in Percent of I _L Individual Harmonic Order (odd harmonic) ^{a,b}						
	11	17	23	35	≤ 50	(%)
< 20°	4.0	2.0	1.5	0.6	0.3	5.0
20 < 50	7.0	3.5	2.5	1.0	0.5	8.0
50 < 100	10.0	4.5	4.0	1.5	0.7	12.0
100 < 1000	12.0	5.5	5.0	2.0	1.0	15.0
> 1000	15.0	7.0	6.0	2.5	1.4	20.0

Batas I_{THD} dalam suatu sistem kelistrikan dapat ditentukan dengan menggunakan perhitungan *Short Circuit Ratio* (SC_{Ratio}).

2.3 Filter Aktif

Filter aktif merupakan suatu perangkat elektronika yang dapat mereduksi arus harmonisa dan memperbaiki kualitas daya dari sumber ke beban. Penggunaan filter aktif lebih ekonomis dibandingkan filter pasif serta memiliki konfigurasi yang lebih fleksibel.

Filter aktif menggunakan rangkaian R, L, dan C yang dapat meredam harmonisa pada beban non linier, serta dapat menginjeksikan arus untuk mereduksi harmonisa yang terkandung pada arus beban.

2.4 Fuzzy Logic Controller

Fuzzy merupakan suatu sistem yang dibangun menggunakan suatu aturan linguistik sederhana dalam menentukan pada sistem kontrol. Fuzzy perintah Inference System (FIS) merupakan suatu kerangka komputasi yang didasarkan pada teori himpunan fuzzy, aturan fuzzy yang THEN, berbentuk IF dan penalaran fuzzy.FIS memiliki tiga metode yaitu metode Tsukamoto, Mamdani, dan Takagi Sugeno. Metode Mamdani memiliki fungsi untuk mengambil keputusan melalui sebuah proses dengan menggunakan aturan infeensi Fuzzy Logic Controller [8][9].

2.5 Rugi-Rugi Daya Pada Transformator

P_{LL} dalam satuan per unit (p.u) dapat dihitung dengan menggunakan Persamaan 1 [1].

$$P_{LL} = \sum I_h^2 + (\sum I_h^2 \times h^2) \times P_{EC-R}$$
 (1)

Dimana:

 P_{EC-R} = Eddy Current Loss Factor

h = Harmonisa (%)

 I_h = Arus Harmonisa (A)

 I_{h} dalam satuan Ampere dan p.u dapat dihitung dengan menggunakan Persamaan 2 dan 3.

$$I_h(A) = \frac{h \, x \, I_{rms}}{100} \tag{2}$$

$$I_h(p.u) = \frac{I_h(A)}{I_{rms}}$$
 (3)

Untuk menghitung P_{LL} dalam satuan kW dapat menggunakan Persamaan 4.

Gambar 1. Konfigurasi Filter Aktif [7]

$$P_{LL}(kW) = P_{LL}(p.u) x P_{base 1\phi}$$
(4)

 $P_{base \, 1\phi}$ dapat dihitung dengan menggunakan Persamaan 5.

$$P_{base \ 1\phi} = \frac{s \, x \, cos\phi}{\sqrt{3}} \tag{5}$$

3. METODE PENELITIAN

Penelitian dilakukan di **RSUD** Klungkung berlokasi di Jalan yang Falmboyan No. 40 Semarapura Kauh. Penelitian dilakukan dengan menentukan standar arus harmonisa berdasarkan standar IEEE 519-2014. Selanjutnya dilakukan simulasi sistem kelistrikan dengan menggunakan Matlab kondisi Simulink pada eksisting, pengoperasian filter aktif shunt, dan pengoperasian filter aktif shunt berbasis FLC. Hasil simulasi yang telah dilakukan kemudian akan dibandingkan dengan batas maksimum I_{THD} berdasarkan standar IEEE 519-2014 serta melihat penurunan I_{THD} dan rugi-rugi daya listrik.

4. HASIL DAN PEMBAHASAN

4.1 Batas Maksimum I_{THD}

Berdasarkan IEEE 519-2014, penentuan batas maksimum arus harmonisa (I_{THD}) dapat dilakukan dengan menghitung rasio hubung singkat (SC_{Ratio}). Apabila nilai SC_{Ratio} <50, maka nilai maksimum I_{THD} yang diperbolehkan yaitu 8%. Dari perhitungan short circuit ratio diperoleh hasil 48,069, sehingga berdasarkan standar IEEE 519-2014, batas maksimum I_{THD} di RSUD Klungkung yaitu 8%.

4.2 Pemodelan Sistem

Untuk simulasi I_{THD} pemodelan sistem kelistrikan RSUD Klungkung dilakukan dengan menggunakan *Simulink MATLAB*. Saat kondisi eksisting atau belum dioperasikannya filter aktif *shunt* dan *fuzzy logic controller*, pemodelan sistem kelistrikan

di RSUD Klungkung dapat dilihat pada Gambar 2.

Pada Gambar 3 menunjukkan pemodelan sistem kelistrikan RSUD Klungkung setelah dioperasikannya filter aktif *shunt*. Pemodelan sistem dengan pengoperasian filter aktif *shunt* berbasis FLC di RSUD Klungkung ditunjukkan pada Gambar 4.

Gambar 2. Pemodelan Sistem Kelistrikan RSUD Klungkung Pada Kondisi Eksisting

Gambar 3. Pemodelan Sistem Kelistrikan RSUD Klungkung dengan Pengoperasian Filter Aktif Shunt

Gambar 4. Pemodelan Sistem Kelistrikan RSUD Klungkung dengan Pengoperasian Filter Aktif Shunt Berbasis *Fuzzy Logic Controller*

4.3 Simulasi Pada Kondisi Eksisting

Dari pemodelan sistem yang telah dilakukan, didapatkan hasil kandungan I_{THD} pada kondisi eksisting yang berbentuk gelombang dengan bantuan FFT (*Fast Fourier* Transform). Kandungan I_{THD} untuk masing-masing phasa yaitu phasa R sebesar 11,23%, phasa S sebesar 14,72%, dan phasa T sebesar 11,20%. Gambar 5 menunjukkan kandungan I_{THD} pada phasa R untuk kondisi eksisting.

Gambar 5. I_{THD} Phasa R Pada Kondisi Eksisting

4.4 Simulasi Pengoperasian Filter Aktif Shunt

Gambar 6 merupakan hasil simulasi kandungan I_{THD} pada phasa R dari pemodelan sistem dengan pengoperasian filter aktif *shunt* tanpa teknik pengontrol *fuzzy logic*.

Gambar 6. I_{THD} Phasa R Pada Pengoperasian Filter Aktif *Shunt*

Kandungan I_{THD} pada pengoperasian filter aktif shunt mengalami penurunan dibandingkan pada kondisi eksisting. Nilai kandungan I_{THD} untuk phasa R sebesar 5,24%, phasa S sebesar 7,18%, dan phasa T sebesar 5,34%.

4.5 Simulasi Pengoperasian Filter Aktif Shunt Berbasis Fuzzy Logic Controller

Pada simulasi pengoperasian filter aktif shunt berbasis fuzzy logic controller menggunakan 9 membership function yaitu Negative Very Big (NVB), Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (ZE), Positive Small (PS), Positive Medium (PM), Positive Big (PB), Positive Very Big (PVB). Membership function ini kemudian dibentuk menjadi rule base function yang dapat dilihat pada Tabel 3.

Tabel 3. Rule Base Function 9x9

	Error								
D_error	NVB	NB	NS	NM	ZE	PS	PM	PB	PVB
NVB	NVB	NVB	NVB	NVB	NVB	NB	NM	NS	ZE
NB	NVB	NVB	NVB	NVB	NB	NM	NS	ZE	PS
NM	NVB	NVB	NVB	NB	NM	NS	ZE	PS	PM
NS	NVB	NVB	NB	NM	NS	ZE	PS	PM	PB
ZE	NVB	NB	NM	NS	ZE	PS	PM	PB	PVB
PS	NB	NM	NS	ZE	PS	PM	PB	PVB	PVB
PM	NM	NS	ZE	PS	PM	PB	PVB	PVB	PVB
PB	NS	ZE	PS	PM	PB	PVB	PVB	PVB	PVB
PVB	ZE	PS	PM	PB	PVB	PVB	PVB	PVB	PVB

Dari pemodelan sistem yang telah dilakukan, maka dapat diketahui nilai kandungan I_{THD} setelah pengoperasian filter aktif *shunt* berbasis *fuzzy logic controller* untuk phasa R yaitu 0,15%, phasa S yaitu 0,17%, dan phasa T yaitu 0,11%. Gambar 7 merupakan grafik kandungan I_{THD} phasa R pada pengoperasian filter aktif *shunt* berbasis *fuzzy logic controller*.

Tabel 4 menunjukkan hasil simulasi sistem pada kondisi eksisting, pengoperasian filter aktif shunt, dan pengoperasian filter aktif shunti berbasis fuzzy logic controller.

Tabel 4. Hasil Simulasi I_{THD} Pada Setiap Kondisi Simulasi

Phasa Stand	Standon	ITHD (%) ITHD (%)		I _{THD} (%)			
		Kondisi	Filter Aktif	Filter Aktif Shunt			
	ITHD (%)	Eksisting	Shunt	berbasis FLC			
R	8	11,23	5,24	0,15			
S	8	14,72	7,18	0,17			
T	8	11,20	5,34	0,11			

Saat sistem pada kondisi eksiting (blok biru) nilai kandungan I_{THD} pada phasa R=11,23%, phasa S=14,72%, dan phasa T=11,20%, sehingga berdasarkan standar IEEE 519-2014 (blok *pink*) kandungan I_{THD} belum memenuhi standar yaitu 8%.

Saat pengoperasian filter aktif shunt (blok hijau) nilai kandungan I_{THD} mengalami penurunan yaitu phasa R = 5,24%, phasa S = 7,18%, dan phasa T = 5,34%.

Setelah terpasangnya filter aktif shunt berbasis fuzzy logic controller (blok kuning) kandungan I_{THD} kembali mengalami penurunan yaitu phasa R = 0,15%, phasa S = 0,17%, dan phasa T = 0,11%, sehingga

Gambar 7. I_{THD} Phasa R Pada Pengoperasian Filter Aktif *Shunt* Berbasis *Fuzzy Logic Controller*

4.6 Analisa Nilai I_{THD} Pada Setiap Kondisi Simulasi

Dari hasil simulasi pada setiap kondisi yang telah dilakukan, dapat diketahui perbandingan kandungan I_{THD} yang dapat dilihat pada Tabel 4.

berdasarkan standar IEEE 519-2014 yang telah ditentukan kandungan I_{THD} pada pengoperasian filter aktif *shunt* berbasis *fuzzy logic controller* telah memenuhi standar yaitu dibawah batas maksimum 8%. Untuk perbandingan grafik masing-masing kondisi simulasi dapat dilihat pada Gambar 8.

Gambar 8. Grafik Perbandingan ITHD

4.7 Analisa Rugi-Rugi Daya Listrik

Untuk menganalisa rugi-rugi daya pada kondisi eksisting, pengoperasian filter aktif shunt, dan pengoperasian filter aktif shunt berbasis fuzzy logic controller terlebih dahulu dilakukan dengan menghitung $P_{base\ 1\phi}$ dengan menggunakan Persamaan (5), kemudian menghitung arus harmonisa (I_h) dalam p.u menggunakan Persamaan (3). Setelah nilai arus harmonisa dalam satuan p.u didapatkan, maka dapat dihitung nilai

P_{LL} dari orde 3 sampai 19 dengan Persamaan (4). Hasil perhitungan rugi-rugi daya listrik pada kondisi eksisting, pengoperasian filter aktif shunt, dan pengoperasian filter aktif shunt berbasis fuzzy logic controller dapat dilihat pada Tabel 5.

Tabel 5. Hasil Perhitungan Rugi-Rugi Daya Listrik Pada Masing-Masing Kondisi Simulasi

MDP RSUD Kabupaten Klungkung					
Simulasi	Total Losses	Total Losses			
Silliulasi	(kW)	(%)			
Eksisting	11,07	10,525			
Filter Aktif Shunt	1,42	1,352			
Filter Aktif Shunt Berbasis FLC	0,000375	0,00035			

Berdasarkan Tabel 5, *losses* pada kondisi eksisting yaitu sebesar 11,07 kW atau 10,525%, *losses* pada pengoperasian filter aktif *shunt* yaitu sebesar 1,42 kW atau 1,352%, dan *losses* pada pengoperasian filter aktif *shunt* berbasis *fuzzy logic controller* yaitu 0,000375 kW atau 0,00035%.

Gambar 9. Grafik Perbandingan Losses

Dari grafik yang ditunjukkan oleh Gambar 9, nilai losses mengalami penurunan saat dioperasikannya filter aktif shunt berbasis fuzzy logic controller.

5. KESIMPULAN

Berdasarkan hasil analisa yang telah dilakukan I_{THD} pada kondisi eksisting untuk phasa R=11,23%, phasa S=14,72%, dan phasa T sebesar 11,20% dengan rugi-rugi daya sebesar 11,07 kW atau 10,525%. Saat sistem telah dioperasikan filter aktif *shunt* kandungan I_{THD} mengalami penurunan yaitu untuk phasa R=5,24%, phasa S=7,18%, dan phasa T=5,34% dengan rugi-rugi daya sebesar 1,42 kW atau 1,352%. Setelah sistem dioperasikannya filter aktif *shunt* berbasis *fuzzy logic controller* kandungan

 I_{THD} kembali mengalami penurunan untuk masing-masing phasa yaitu phasa R = 0,15%, phasa S = 0,17%, dan phasa T = 0,11% dengan rugi-rugi daya yaitu 0,000375 kW atau 0,00035%.

6. DAFTAR PUSTAKA

- [1] Dugan, R.C., McGranaghan, M.F, Santoso, S., Beaty, H.W, Electrical Power System Quality-Second Editi-on. The McGraw-Hill. 2004.
- [2] Limantara, L. Hybrid Active Filter Untuk Meredam Resonansi Harmonisa pada Pembangkitan di Industri. Surabaya : Jurusan Teknik Elektro Universitas Kristen Petra. 2002.
- [3] Dhani, dkk. "Reduksi Harmonisa Dengan Filter Aktif Shunt Berbasis Matlab/Simulink". Media Elektrika, Volume 8 No 2. 2014.
- [4] De La Rosa FC. *Harmonics And Power System*. United State of America. Taylor & Francis Group. 2006.
- [5] Ekastawa Putra, IW., Rinas, IW., Putu Arya Mertasana. "Kajian dan Analisa Distorsi Harmonisa di Hotel Amankila". Jimbaran : Jurusan Teknik Elektro, Universitas Udayana. 2014.
- [6] IEEE Standards Association. 519-2014. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power System. New York; IEEE Press:2014
- [7] Izhar. M. et al. "Performance for Passive and Active Power Filter in Reducing Harmonics in the Distribution System", National Power & Energi Conference (PECon) 2004, IEEE Proceedings, Kuala Lumpur, Malaysia, pp. 104-108, 2004.
- [8] Prawira. Implementasi Fuzzy Logic Controller Pada Filter Active Shunt Untuk Menanggulangi THD (Total Harmonic Distortion) Sistem Kelistrikan RSUP Sanglah. Jimbaran : Jurusan Teknik Elektro Universitas Udayana. 2013
- [9] Kusumadewi, S. Aplikasi Logika Fuzzy Untuk Pendukung Keputusan, Graha Ilmu, Yogyakarta. 2006.