Naming and Mobility

Dominic Duggan
Stevens Institute of Technology
Based on slides by
Ken Birman, Dan Duchamp, Paul Francis, Jochen Schiller

1

NAMING

Naming: layer of indirection

- Makes objects human readable
- Hides complexity and dynamics
- Allows searching

3

Names map to objects through a resolution service

Identifiers and Locators

- Name is always an identifier
 - Persistent or non-persistent
 - globally unique
 - locally unique
 - non-unique
- If a name has structure that helps the resolution service, then the name is also a locator

5

Naming in networks Name Route

Routes get packets to interfaces

9

DNS names and IP addresses are identifiers and locators

- Both are typically non-persistent
- Private IP addresses identify only in the context of an IP realm
- Domain names are good identifiers
 - nexus.stevens.edu identifies a host
 - www.cnn.com identifies a service
- URLs are good identifiers
- See additional material: DNS

MOBILE IP: ROUTING

Motivation for Mobile IP

- Mobile devices
 - Suppose devices move across networks
 - Addressed by IP address
- IP Routing
 - Routing tables do not address every machine
 - IP addresses are hierarchical

	Network		Subnet	Host	
Г					
	155	246	89	22	

Motivation for Mobile IP

- Mobile devices
 - Suppose devices move across networks
 - Addressed by IP address
- IP Routing
 - based on IP destination address, network prefix
 (e.g. 155.246.89) determines physical subnet
 - change of physical subnet implies
 - change of IP address (standard IP) or
 - · special entries in the routing tables

Motivation for Mobile IP

- Specific routes to end-systems?
 - Change routing table entries to forward packets
 - does not scale
 - security problems
- Changing the IP-address?
 - adjust host IP address depending on current location
 - almost impossible to find a mobile device
 - DNS updates take too long
 - TCP connections break, security problems

17

Mobile IP adds a layer of indirection

Requirements for Mobile IPv4

- Transparency
 - mobile end-systems keep their IP address
 - continuation of communication after interruption
- Compatibility
 - support of the same layer 2 protocols as IP
 - no changes to end-systems and routers
- Security
 - authentication of registration messages
- Efficiency and scalability

19

Terminology

- Mobile Node (MN)
- Home Agent (HA)
 - home network of the MN, typically a router
 - registers location of the MN, tunnels IP datagrams to COA
- Foreign Agent (FA)
 - current foreign network of the MN, typically a router
 - forwards the tunneled datagrams to the MN
- Care-of Address (COA)
 - address of current tunnel end-point for the MN
 - actual IP location of the MN e.g. DHCP
- Correspondent Node (CN)

Mobile IP with reverse tunneling

- Problem: Routers often only accept "topological correct" addresses (firewall!)
- Reverse Tunneling: tunnel replies back to HA
 - a packet from the MN encapsulated by the FA is now topological correct
 - furthermore multicast and TTL problems solved (TTL in the home network correct, but MN is too far away from the receiver)

Agent Advertisement

Mobile Node moves to foreign network, gets a Care-of Address (COA)

Home Agent

Mobile Node

Correspondent Node

33

Agent Advertisement

- How does mobile node learn its HA/FA?
 - HA and FA periodically send advertisement messages into their physical subnets
 - MN listens to these messages, and detects if it is in the home or a foreign network
 - MN reads a COA from the FA advertisement messages

Registration

- Registration (always limited lifetime!)
 - MN signals COA to the HA via the FA
 - HA acknowledges via FA to MN
 - these actions have to be secured by authentication

Mobile Node Advertisement

- How do other hosts learn of MN address?
 - HA advertises the IP address of the MN (proxy ARP)
 - routers adjust their entries (HA association longlived)
 - packets to the MN are sent to the HA
 - independent of changes in COA/FA

37

Optimization of packet forwarding

- Problem: Triangular Routing
 - sender sends all packets via HA to MN

- higher latency and network load
- "Solutions"
 - sender learns the current location of MN
 - direct tunneling to this location
 - HA informs a sender about the location of MN
 - big security problems!

Change of Foreign Agent

- Packets on-the-fly during the change can be lost
- New FA informs old FA to avoid packet loss
- Old FA now forwards remaining packets to new FA
- This information also enables the old FA to release resources for the MN

MOBILE IP: PROSPECTS

41

Mobile IP and IPv6 (RFC 3775)

- IPv6 simplifies the protocols
 - security is integrated
 - COA assigned via auto-configuration e.g. DHCPv6
 - all routers perform advertisement (no need for FA)
 - MN can signal a sender directly the COA, sending via HA not needed in this case (automatic path optimization)
 - "soft" hand-over, i.e. without packet loss, between two subnets is supported
 - MN sends the new COA to its old router
 - old router forwards packets to the new COA
 - authentication is always granted

Problems with Mobile IP

- Security
 - authentication with FA problematic (typically belongs to another organization)
 - no standard protocol for key management and key distribution
 - patent and export restrictions
- Firewalls
 - Typically cannot be used with firewalls (reverse tunneling)
- QoS
 - tunneling makes it hard to ensure QoS

43

Mobile IP in Telephone Networks

- In long term, carriers moving to IP
 - Bandwidth/cost efficiency of packet-based service
 - IP is standard packet technology
- Hierarchical approach to mobility:
 - Hardware/link based mechanism for tower-totower handover
 - Mobile IP for region-to-region handover
 - "Stacked" Mobile IP sessions for internetworking

CDMA2000

- Uses Mobile IP within a single network
- Three levels of support station, all within one CDMA2000 network
 - Cell base station (BS)
 - FA (called "Packet Data Serving Node," PDSN)
 - HA
 - Each FA connects to several BSs

45

CDMA2000

- MN initiates **two** sessions:
 - PPP session with FA
 - Mobile IP session with HA
- Mobile IP traffic travels over PPP
- Move between BSs attached to same FA: no changes
- Move between BSs attached to different FAs: Mobile IP style handover + teardown/ establish PPP sessions

CDMA2000

- Move between CDMA2000 network and another network: use second, "stacked" Mobile IP session
- Mobile IP session #1: remains, for mobility within CDMA2000 network
- Mobile IP session #2: for mobility between CDMA2000 network & other network
 - CDMA2000's HA can act as cross-network Mobile IP HA
 - CDMA2000's HA can act as cross-network FA
 - Identity of HA depends on MN-HA trust relationship

47

The Future

- Cross-network mobility likely to be "vertical" rather than "horizontal"
 - Vertical ⇒ between local high speed (e.g., 802.11)
 and wide area low speed carrier
 - Horizontal ⇒ between wide area low speed carriers
- Carriers have spent 10s of billions to acquire licenses & build out
- Each wants its customers on ITS network 100% of the time

MOBILITY IN NAMING

When do we need Mobile IP?

- Most mobile systems are clients
 - Servers are rarely mobile
- Clients need to:
 - Send/receive email
 - Send/receive instant messages
 - VOIP (Voice over IP)
- Key Insight: Clients initiate connections

51

Application specific registration as a mobility solution

- To receive email, client connects to an email server
- To do instant messaging, client registers with an IM server
- To do VoIP, client registers with a SIP server
- Handles many of the problems

Discovery

- Discovery: How do we find a service?
 - URL
 - URN: Uniform Resource Name
 - More general approach: a discovery service
 - Search UDDI database
 - WSDL provides interface for service

53

Example: Why discovery is tricky

- Client has opinions
 - "I want current map data for Disneyland showing linelengths for the rides right now"
- Service has opinions
 - Amazon.com would like requests from Hoboken to go to the NJ-3 datacenter, and if possible, to the same server instance within each clustered service
- DNS has opinions
 - Many systems play with name \rightarrow IP bindings
- Internet has opinions (routing)

How we do it now

- Client queries directory to find the service
- Server has several options:
 - Web pages with dynamically created URLs
 - Content hosting companies remap URLs on the fly. E.g. http://www.akamai.com/www.cnn.com
 - Server can control mapping from host to IP addr.
 - Must use short-lived DNS records; overheads are very high!
- Mechanisms are non-standard and costly
- See additional material: CDNs and Akamai

55

Based on slides by Hari Balakrishnan, Karthik Lakshminarayanan, Sylvia Ratnasamy, Scott Shenker, Ion Stoica, Michael Walfish

LAYERED NAMING

Architectural Brittleness in Internet Naming

- Hosts are tied to IP addresses
 - Mobility and multi-homing pose problems
- Services are tied to hosts
 - A service is more than just one host: replication, migration, composition
- Packets might require processing at intermediaries before reaching destination
 - "Middleboxes" (NATs, firewalls, ...)

57

The Trouble with Host-Centric Names

- Host-centric names are fragile
 - If a name is based on mutable properties of its referent, it is fragile
 - Example: If Joe's Web page <u>www.berkeley.edu/</u>
 <u>hippie</u> moves to <u>www.wallstreetstiffs.com/</u>
 <u>yuppie</u>, Web links to his page break
- Fragile names constrain movement
 - IP addresses are not stable host names
 - DNS URLs are not stable data names

Name Services and Hosts Separately

- Service identifiers (SIDs) are hostindependent data names
- End-point identifiers (EIDs) are locationindependent host names
- Protocols bind to names, and resolve them
 - Apps should use SIDs as data handles
 - Transport connections should bind to EIDs

59

Name Services and Hosts Separately

- Service identifiers (SIDs) are hostindependent data names
- End-point identifiers (EIDs) are locationindependent host names
- Protocols bind to names, and resolve them
 - Apps should use SIDs as data handles
 - Transport connections should bind to EIDs

Binding principle: Names should bind protocols only to relevant aspects of underlying structure

The Naming Layers

User-level descriptors (e.g., search)

61

The Naming Layers

User-level descriptors (e.g., search)

App-specific search/lookup returns SID

App session

SIDs and EIDs should be Flat 0xf436f0ab527bac9e8b100afeff394300

- Flat names impose no structure on entities
 - Structured names stable only if name structure matches natural structure of entities
 - Can be resolved scalably using DHTs (e.g. i3)
- Flat names can be used to name anything
 - Once you have a large flat namespace, you never need other global "handles"

Stable-name principle: A stable name should not impose restrictions on the entity it names

Delegation

- Names usually resolve to "location" of entity
- Packets might require processing at intermediaries before reaching destination
- Such processing today violates layering
 - Only element identified by packet's IP destination should inspect higher layers

Delegation principle: A network entity should be able to direct resolutions of its name not only to its own location, but also to chosen delegates

69

Conclusions

- Names: Identifiers, may also be locators
- Internet: Name ⇒ DNS address ⇒ P route
- Mobile IP: Name ⇒^{DNS} home address ⇒^{MobileIP}
 COA ⇒^{IP} route
- Layered Names: Name ⇒ Search SID ⇒ DHT EID
 ⇒ DHT address ⇒ IP route

