Nonparametric Methods

Nonparametric Months

Linear regression
$$\Rightarrow f(x) = w^T.x + w_0$$

Logistic regression $\Rightarrow S(w^T.x + x_0) = \begin{cases} 0 & \text{otherwise} \end{cases}$

Logistic regression $\Rightarrow N(x; \mu, \sigma^2)$

Density estimation $\Rightarrow N(x; \mu, \delta^2)$
 $N(x; \mu, \delta) = \begin{cases} 0 & \text{otherwise} \end{cases}$
 $N(x; \mu, \delta) = \begin{cases} 0 & \text{otherwise} \end{cases}$
 $N(x; \mu, \delta) = \begin{cases} 0 & \text{otherwise} \end{cases}$

SIMILAR INPUTS => SIMILAR OUTPUTS
How & we measure similarity? "data-dependent" or "local" models => no perametric

$$F(x = a) = \int_{0}^{2/6} p(x) dx$$

 $p(x) \Rightarrow I$ would like to check whether p(x) is a valid density function or not. x is a disorte R.V. $\Rightarrow i$) $\stackrel{\text{to}}{\approx} P(X=x) =$ (i) P(X=x) > 0if x is a continuous R.V. \Rightarrow i) Sp(x) dx = $(ij) p(x) > 0 \qquad \forall x$ Histogram Estimator p(x) = # { xis in the same bin as x} $7^{(0.4)\times2} = 0.8$ \$(x)A 7(0.1)×2=0.2 分分三号·皇 争(的=号·立 $\hat{p}(x) = \frac{1}{5} \cdot \frac{1}{2}$ \$(x)=4.1 Histogram estimater is a votid density estimator! is p(x) 70 4x? is + 5 p(x) dx = 1 ?

Kernel Estmater (PARZEN WINDOWS) (KDE)

$$W(v) = K(v) = \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{v^2}{2}\right)$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{(x-y)^2}{2}\right)$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{(x-y)^2}{2}\right)$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{(x-y)^2}{2}\right)$$

Exercise: Show that Porzen Windows

produces a valid density estimator.

i)
$$p(x) \neq 0$$
 $\forall x$
ii) $p(x) \neq 0$ $\forall x = 1$

k = # of data points that fall into the bin k-Nearest Neiphbor Estmater $\hat{p}(x) = \frac{k}{\sum_{k=1}^{k} k}$ dk(x) = the distance to the kth nearest neighbor. N 2 dk (x) · => troining · => test · => test 1st 2nd 3rd and and 1st dk (x) dk(x) dk(x) dk(x) $\hat{p}(\bullet) > \hat{p}(\bullet)$ show that k-nearest neighbor estimater is NOT a valid density estimator. 2) $\hat{p}(x)$ 7,0 $\forall x$

(ii) (x) $dx = 1 \times$