复流形基础

温尊

1 HODGE 理论基础及其应用

定义 1.1. 对 Hermitian 流形 (X,g), 我们定义 d- 调和形式为 $\mathcal{H}^k(X,g)=\{\alpha\in\mathscr{A}^k:\Delta\alpha=0\}$, 其余的 $\mathcal{H}^k_{\overline{\partial}}(X,g)$ 和 $\mathcal{H}^p_{\overline{\partial}}(X,g)$ 也是如此.

定理 1.2 (Hodge 分解定理). 若 (X,g) 是紧 Hermitian 流形,则有相互正交的分解:

$$\mathscr{A}^{p,q}(X) = \partial \mathscr{A}^{p-1,q}(X) \oplus \mathscr{H}^{p,q}_{\partial}(X,g) \oplus \partial^* \mathscr{A}^{p+1,q}(X),$$

$$\mathscr{A}^{p,q}(X) = \overline{\partial} \mathscr{A}^{p-1,q}(X) \oplus \mathscr{H}^{p,q}_{\overline{\partial}}(X,g) \oplus \overline{\partial}^* \mathscr{A}^{p+1,q}(X);$$

另外, 我们有

$$\ker \partial = \partial \mathscr{A}^{p-1,q}(X) \oplus \mathscr{H}^{p,q}_{\partial}(X,g), \ker \overline{\partial} = \overline{\partial} \mathscr{A}^{p-1,q}(X) \oplus \mathscr{H}^{p,q}_{\overline{\partial}}(X,g).$$

证明. 我们只用 Hodge 分解定理的主体部分来证明 $\ker \overline{\partial} = \overline{\partial} \mathscr{A}^{p-1,q}(X) \oplus \mathscr{H}^{p,q}_{\overline{\partial}}(X,g)$, 另一个同理. 我们知道 $\overline{\partial} \mathscr{A}^{p-1,q}(X) \oplus \mathscr{H}^{p,q}_{\overline{\partial}}(X,g) \subset \ker \overline{\partial}$. 另一方面, 我们断言 $\overline{\partial} \overline{\partial}^* \beta = 0$ 当且仅当 $\overline{\partial}^* \beta = 0$, 事实上这是因为 $\overline{\partial} \overline{\partial}^* \beta = 0$ 蕴含 $0 = (\overline{\partial} \overline{\partial}^* \beta, \beta) = \|\overline{\partial}^* \beta\|^2$, 则 $\overline{\partial}^* \beta = 0$. 那么由 Hodge 分解定理, 如果 $\overline{\partial}^* \beta \in \ker \overline{\partial}$, 则得到 $\overline{\partial}^* \beta = 0$, 故得证.

命题 1.3. 设 (X,g) 是紧 Hermitian 流形, 则典范投影 $\mathcal{H}^{p,q}_{\overline{\partial}}(X,g) \to H^{p,q}(X)$ 是同构.

证明. 取 $\alpha \in \mathscr{H}^{p,q}_{\overline{\partial}}(X,g)$,则 $\overline{\partial}\alpha = 0$,故典范投影为将其映射到 Dolbeault 上同调类 $[\alpha] \in H^{p,q}(X)$. 由 Hodge 分解定理我们知道 $\ker \overline{\partial} = \overline{\partial} \mathscr{A}^{p-1,q}(X) \oplus \mathscr{H}^{p,q}_{\overline{\partial}}(X,g)$,则这个命题显然成立.

Hodge 分解定理是 Hodge 理论在紧 Hermitian 流形上的主要结果之一, 但如果我们考虑紧 Kähler 流形, 则有一些非常美妙和重要的性质, 下面是一些重要结果.

命题 1.4. 设 (X,g) 是紧 $K\ddot{a}hler$ 流形, 对于 d- 闭形式 $\alpha\in\mathscr{A}^{p,q}(X)$, 则 α 是 d- 正合的当且仅当是 $\overline{\partial}-$ 正合的当且仅当是 $\overline{\partial}-$ 正合的.

定理 1.5 (紧 Kähler 流形的 Hodge 分解). 设 (X,g) 是紧 $K\ddot{a}hler$ 流形,则有分解

$$H^k(X,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X),$$

并且这个分解不依赖于选取的 Kähler 结构.

证明. 由于 (X,g) 是紧 Kähler 流形, 那么有

$$H^k(X,\mathbb{C})=\mathscr{H}^k(X,g)=\bigoplus_{p+q=k}\mathscr{H}^{p,q}(X,g)=\bigoplus_{p+q=k}H^{p,q}(X),$$

若 X 上由另一个 Kähler 度量 g', 则显然 $\mathcal{H}^{p,q}(X,g)\cong H^{p,q}(X)\cong \mathcal{H}^{p,q}(X,g')$, 那 $\alpha\in\mathcal{H}^{p,q}(X,g)$, 对应了 $\alpha'\in\mathcal{H}^{p,q}(X,g')$, 则我们只需证明其对应的 de Rham 上 同调类 $[\alpha], [\alpha']\in H^k(X,\mathbb{C})$ 是相同的. 由 $[\alpha]=[\alpha']\in H^{p,q}(X)$, 则 $\alpha'=\alpha+\overline{\partial}\gamma$, 则有 $\overline{\partial}\gamma\in\ker d$, 那么用关于 d 的 Hodge 分解我们知道 $\overline{\partial}\gamma\in\operatorname{Im} d\oplus\mathcal{H}^k(X,g)_{\mathbb{C}}$, 而且注意到 $(\overline{\partial}\gamma,\theta)=(\gamma,\overline{\partial}^*\theta)=0$, 则 $\overline{\partial}\gamma$ 和 $\mathcal{H}^k(X,g)_{\mathbb{C}}$ 正交, 故 $\overline{\partial}\gamma\in\operatorname{Im} d$, 则定理成立.

定义 1.6. 设 (X,q) 是紧 $K\ddot{a}hler$ 流形,则其本原上同调定义为

$$H^{k}(X,\mathbb{R})_{p} = \ker(\Lambda : H^{k}(X,\mathbb{R}) \to H^{k-2}(X,\mathbb{R})),$$

$$H^{p,q}(X)_{p} = \ker(\Lambda : H^{p,q}(X) \to H^{p-1,q-1}(X)).$$

定理 1.7 (Hard Lefschetz 定理). 设 (X,g) 是 n 维紧 Kähler 流形, 则对 $k \le n$ 有

$$L^{n-k}: H^k(X, \mathbb{R}) \cong H^{2n-k}(X, \mathbb{R}),$$

且

$$H^{k}(X,\mathbb{R}) = \bigoplus_{i>0} L^{i}H^{k-2i}(X,\mathbb{R})_{p}.$$

当然这些分解和 (p,q) 型有关, 例如 $H^k(X,\mathbb{R})_p\otimes\mathbb{C}=\bigoplus_{p+q=k}H^{p,q}(X)_p$.

事实上 Hodge * 算子也有 *: $H^{p,q}(X) \cong H^{n-q,n-p}(X)$, 我们不再赘述.

我们有一张很好的图来总结一些对偶,我们用 Hodge 数 $h^{p,q} = \dim H^{p,q}(X)$ 来完成这张基于紧 Kähler 流形上的图,其中 Serre 对偶为 $H^{p,q}(X) \cong H^{n-p,n-q}(X)^*$,而 Hodge * 对偶为 *: $H^{p,q}(X) \cong H^{n-q,n-p}(X)$,共轭作用为 $\overline{H^{p,q}(X)} = H^{q,p}(X)$:

命题 1.8 (Hodge 指标定理). 设 (X,g) 是紧 $K\ddot{a}hler$ 曲面, 则相交对

$$H^2(X,\mathbb{R}) \times H^2(X,\mathbb{R}) \to \mathbb{R}, (\alpha,\beta) \mapsto \int_Y \alpha \wedge \beta$$

的指标是 $(2h^{2,0}+1,h^{1,1}-1)$.

证明. 注意到 $H^2(X,\mathbb{R}) = ((H^{2,0}(X) \oplus H^{0,2}(X)) \cap H^2(X,\mathbb{R})) \oplus H^{1,1}(X)$, 取 α 为 $H^{2,0}(X) \oplus H^{0,2}(X)$ 中元素, 注意到这里面全是本原上同调类, 设 $\alpha = \alpha^{2,0} + \alpha^{0,2}$, 则

$$\int_X \alpha^2 = 2 \int_X \alpha^{2,0} \wedge \alpha^{0,2} = 2 \int_X \alpha^{2,0} \wedge \overline{\alpha^{2,0}} > 0,$$

我们只需考虑 $H^{1,1}(X)$, 由 Lefschetz 分解我们得到

$$H^{1,1}(X) = H^{1,1}(X) \oplus LH^0(X) = H^{1,1}(X) \oplus [\omega]\mathbb{R},$$

由 Hodge * 对偶和分解的正交性我们得到 $\int_X \omega \wedge \alpha = 0$. 而且显然 $\int_X \omega^2 > 0$, 由 Hodge-Riemann 我们得到 $\int_X \alpha^2 < 0$, 所以命题成立.

2 消灭定理

2.1 BOCHNER 消灭定理——杀掉全纯截面

Bochner 的工作告诉我们,对于一个复流形上的全纯向量丛,给定 Hermitian 度量和 Chern 联络,那么通过控制其平均曲率为半负定乃至负定,可以使得向量丛的全纯截面都 平行,而且截面处的平均曲率为零,乃至让向量丛的全纯截面消失.

设 $E \to M$ 为全纯向量丛, 考虑度量 h 和对应的 Chern 联络 D 和曲率 $R = D^2$. 考虑全纯局部标架场 $s_1,...,s_r$ 及其对偶标架 $t_1,...,t_r$, 对光滑截面 ξ 可以写为 $\xi = \sum_i \xi^i s_i$. 另外给定 M 上的局部坐标卡 $z^1,...,z^n$.

由于 D 是 Chern 联络, 那么 $D\xi = D'\xi + \overline{\partial}\xi = \sum_i (\partial \xi^i + \sum_j \omega^i_j \xi^j + \overline{\partial}\xi^i)$. 那我们可以假设 $\partial \xi^i + \sum_j \omega^i_j \xi^j = \sum \nabla_\alpha \xi^i dz^\alpha$ 且 $\overline{\partial}\xi^i = \sum \nabla_{\bar{\beta}}\xi^i d\bar{z}^\beta$. 设 Ω^i_j 是曲率形式, 设 $\Omega^i_j = \sum R^i_{i\alpha\bar{\beta}} dx^\alpha \wedge d\bar{z}^\beta$.

接下来考虑 M 上的 Hermitian 度量 $g = \sum g_{\alpha\bar{\beta}}dz^{\alpha} \wedge d\bar{z}^{\beta}$, 如果假设 $K_{j}^{i} = \sum g^{\alpha\bar{\beta}}R_{j\alpha\bar{\beta}}^{i}$, $K_{j\bar{k}} = \sum h_{i\bar{k}}K_{j}^{i}$, 那么称 $K = (K_{j}^{i})$, $\hat{K} = (K_{j\bar{k}})$ 分别为平均曲率变换和平均曲率形式,他们分别的作用为 $K(\xi) = \sum K_{i}^{i}\xi^{j}s_{i}$, $\hat{K}(\xi,\eta) = \sum K_{i\bar{k}}\xi^{j}\bar{\eta}^{k}$.

事实上我们不难计算得到下面命题

命题 2.1. 取全纯截面 ξ , 则有

$$\frac{\partial^2 h(\xi,\xi)}{\partial z^{\alpha} \partial \bar{z}^{\beta}} = \sum h_{i\bar{j}} \nabla_{\alpha} \xi^i \nabla_{\bar{\beta}} \bar{\xi}^j - \sum h_{i\bar{k}} R^i_{j\alpha\bar{\beta}} \xi^j \bar{\xi}^k.$$

通过两边取迹可以得到

命题 2.2 (WEITZENBÖCK FORMULA). 取全纯截面 ξ ,则有

$$\sum g^{\alpha\bar{\beta}} \frac{\partial^2 h(\xi,\xi)}{\partial z^{\alpha} \partial \bar{z}^{\beta}} = \|D'\xi\|^2 - \widehat{K}(\xi,\xi),$$

其中 $||D'\xi||^2 = \sum h_{i\bar{j}} g^{\alpha\bar{\beta}} \nabla_{\alpha} \xi^i \nabla_{\bar{\beta}} \bar{\xi}^j$.

这时对这个式子用 Hopf 最大值原理我们就可以很容易的得到主要结论:

定理 2.3 (BOCHNER 消灭定理). 对紧复流形 M 上的全纯向量丛 E, 如果 D 是其 Chern 联络且 R, \hat{K} 是其曲率和平均曲率形式.

(i) 如果 \widehat{K} 处处半负定,则对其任意的全纯截面 \mathcal{E} ,我们有

$$D\xi = 0, \widehat{K}(\xi, \xi) = 0;$$

(ii) 如果 \hat{K} 满足 (i) 条件, 且在某点严格负定, 那么 E 无非零全纯截面.

现在我们考虑一个重要的特例,考虑紧 Kähler 流形. 因为 M 上的度量 g 可以诱导切丛和余切丛上的度量,我们在 TM 上定义 Ricci 曲率为 Ric = $\sum R_{k\bar{h}}dz^k\otimes d\bar{z}^h$, 其中 $R_{k\bar{h}}=\sum R^i_{ik\bar{h}}$,由 Kähler 条件得知在 TM 上 $R_{i\bar{j}}=K_{i\bar{j}}$,则 Ric = \hat{K} . 那么在 $(T^*M)^{\otimes p}$ 上用 Bochner 消灭定理可以得到著名结论:

推论 2.4. 设 p>0, 若紧 Kähler 流形的 Ricci 曲率处处半正定, 那么 $(T^*M)^{\otimes p}$ 的所有全纯截面都平行. 如果更多的, 在某点严格正定, 则 $(T^*M)^{\otimes p}$ 无非零全纯截面.

特别的, 如果 Ricci 曲率处处半正定, 那么 M 上所有 (p,0)-形式都平行 (p>0). 如果更多的, 在某点严格正定, 那么 $H^{p,0}(M) = 0, p > 0$.

注 **2.5.** (i) 根据 Hodge Diamond, 容易知道 (只是共轭) $H^{p,0}(M) = H^{0,p}(M) = 0, p > 0$. (ii) 所以对于 Kähler-Einstein 流形 (满足 $Ric(\omega) = \omega$), 有 $H^{p,0}(M) = 0, p > 0$.

2.2 KODAIRA-NAKANO 消灭定理

线丛的消灭定理最著名的结果莫过于这个定理.

定理 **2.6** (KODAIRA-NAKANO 消灭定理). 对紧 Kähler 流形 M, 如果 L 为全纯 Positive 线丛, 那么如果 p+q>n, 则

$$H^q(M, \Omega_M^p \otimes L) = 0.$$

(事实上紧复流形 M, 如果 L 为全纯 Positive 线丛, 那么 M 一定是 Kähler 的, 这个得益于 $c_1(L)$ 正定,可以充当 Kähler 形式)这个定理的证明主要得益于紧 Kähler 流形上的一系列算符的等式和不等式. 事实上在流形上任意全纯向量丛 E 我们熟知有 Kähler 等式 $[\Lambda, L] = (n-p-q)$ id 和 $[\Lambda, \overline{\partial}] = -i\partial^*$. 另外事实上 Nakano 证明了 E 上面的 Chern 联络 D 满足 $[\Lambda, \overline{\partial}_E] = -i(D')^* = i(\overline{*}_{E^*} \circ D'_{E^*} \circ \overline{*}_E)$. 如果进而考虑 R 为其曲率,那么对于任何调和形式 $\alpha \in \mathcal{H}^{p,q}(M,E)$ 都有(经过一些分析和计算) $\frac{i}{2\pi}(R\Lambda(\alpha), \alpha) \leq 0$ 且 $\frac{i}{2\pi}(\Lambda R(\alpha), \alpha) \geq 0$.

有了这些工具我们就可以来证明 KODAIRA-NAKANO 消灭定理. 选取度量使得 $\frac{i}{2\pi}R$ 为 M 的 Kähler 形式, 那么 L 就是 $\frac{i}{2\pi}R$, 那么任取 $\alpha \in \mathcal{H}^{p,q}(M,L)$ 有

$$0 \le \frac{i}{2\pi}([\Lambda, R](\alpha), \alpha) = ([\Lambda, R]\alpha, \alpha) = (n - p - q)\|\alpha\|^2,$$

那么如果 p+q>n, 那么 $\alpha=0$. 根据 Hodge 定理得到 $H^q(M,\Omega_M^p\otimes L)=0$. 事实上有更推广的结果如下, 我们不再赘述, 感兴趣者请看 [3].

定理 2.7 (GIGANTE-GIRBAU 消灭定理). 设 L 是紧 $K\ddot{a}hler$ 流形 X 上的全纯线丛, 如果 $c_1(L)$ 半负定, 而且 $rank(c_1(L)) \geq k$, 那么

$$H^q(X, \Omega^p \otimes L) = 0, p+q \leq k-1.$$

作为 Kodaira-Nakano 消灭定理推论事实上还有著名的 Weak Lefschetz 定理:

定理 2.8 (WEAK LEFSCHETZ 定理). 对 n 维紧 $K\ddot{a}hler$ 流形 X, 设 $Y \subset X$ 为光滑超曲面 使得 $\mathcal{O}(Y)$ positive, 则典范限制映射

$$H^k(X,\mathbb{C}) \to H^k(Y,\mathbb{C})$$

在 k < n-2 时为双射, 在 k = n-1 时为单射.

这个最标准的证明就是先用 Hodge 分解定理将其转化为 $H^q(X,\Omega_X^p) \to H^q(Y,\Omega_Y^p)$ 的情况,然后注意到 $\mathcal{O}_X(-Y) = \mathcal{J}_Y$ 和 $\mathcal{O}_Y(Y) = \mathcal{N}_{Y/X}$,那么会有两个著名的正合列,之后用 Serre 对偶和 Kodaira-Nakano 消灭定理得到某个上同调为零,然后考虑之前 $\mathcal{O}_X(-Y)$ 诱导短正合列引出的长正合列,就可以看到 $H^q(X,\Omega_X^p) \to H^q(Y,\Omega_X^p|_Y)$ 有定理描述的样子,之后考虑自然映射 $H^q(Y,\Omega_X^p|_Y) \to H^q(Y,\Omega_Y^p)$,这个事实上先考虑映射的 kernel 和 cokernel 为 $\Omega_Y^{p-1}(-Y)$ 的元素,然后用 $\mathcal{O}_Y(Y)$ 诱导短正合列引出的长正合列,之后操作和之前类似,这样就证明了定理.

神奇的是,这个定理有一个 Morse 理论的证明,线丛 $\mathcal{O}(Y)$ 存在整体截面 s 满足诱导除子为 z(s) = Y,这个很容易做到. 考虑线丛上的度量为 $\frac{i}{2\pi}R^{\mathcal{O}(Y)} = \frac{i}{2\pi}\partial\overline{\partial}\log|s|^{-2}$,那么考虑 $\phi: X \to [-\infty, \infty)$ 为 $\phi(x) = \log|s|^2$,注意到 $\phi^{-1}(-\infty) = Y$,我们将其视作一个 Morse 函数,可以发现 Hess ϕ 的负特征值个数至少是 n,这说明 x 增大时,是从 Y 粘至少 n 维胞腔,这就得到纯粹拓扑上的解释,这样的也增进了对 positive 线丛的一点理解.

定理 2.9 (SERRE 消灭定理). 设 $L \to X$ 是紧 Kaähler 流形上的 positive 线丛, 那么对任意的全纯向量丛 E, 存在 m_0 使得当 $q>0, m\geq m_0$ 时有

$$H^q(X, E \otimes L^m) = 0.$$

赋予 E, L 两个 Hermitian 度量,考虑其 Chern 联络为 ∇_E, ∇_L ,且 R_L 诱导 X 上的 Kähler 形式 ω . 注意到 $E \otimes L^m$ 对应的联络为 $\nabla = \nabla_E \otimes 1 + 1 \otimes \nabla_{L^m}$. 事实上会发现 $\frac{i}{2\pi}R_{L^m} = m\omega$,那么 $\frac{i}{2\pi}R = \frac{i}{2\pi}R_E \otimes 1 + m(1 \otimes \omega)$. 和 Kodaira 消灭定理的证明一样,我们任取调和形式 $\alpha \in \mathcal{H}^{p,q}(X, E \otimes L^m)$,那么仍有 Kähler 形式的不等式 $\frac{i}{2\pi}([\Lambda, R](\alpha), \alpha) \geq 0$,简单计算不难得到

$$\frac{i}{2\pi}([\Lambda, R](\alpha), \alpha) = \frac{i}{2\pi}([\Lambda, R_E](\alpha), \alpha) + m(n - p - q)\|\alpha\|^2 \le (C + m(n - p - q))\|\alpha\|^2,$$

于是取 $m_0 > C$ 即可得到 $H^q(X, E \otimes L^m \otimes K_X) = 0, m \geq m_0$, 只需要替换 $E \otimes K_X^*$ 即可. 这就完成了证明, 事实上这个和 Kodaira 消灭定理证明类似, 都是强迫调和形式变成零, 然后用 Hodge 定理.

通过 Riemann Roch 定理和 Serre 消灭定理, 我们可以对 \mathbb{P}^1 上的向量丛分类: 定理 **2.10** (GROTHENDIECK 引理). 任何 \mathbb{P}^1 上的全纯向量丛都同构于 $\bigoplus \mathcal{O}(a_i)$.

2.3 从线丛移植到向量丛上的消灭定理

定理 2.11. 假设 E 是复流形 X 的全纯向量丛, 设 $\mathcal{P}(E)=(E\setminus\{0\})/\mathbb{C}^*$, 那么设 p: $\mathcal{P}(E)\to X$. 设 L(E) 是 $\mathcal{P}(E)$ 上的重言线丛, 其在 $\xi\in\mathcal{P}(E)$ 的纤维为 $L(E)_\xi$ 是在 $E_{v(\xi)}$ 内被 ξ 表示的复直线. 那么有自然同构:

$$H^q(X,\Omega_X^p(E^*))=H^q(\mathscr{P}(E),\Omega_{\mathscr{P}(E)}^p(L(E)^*)).$$

证明细节见 [3], 我们略去. 我们现在可以把线丛的 Positive 那一套搬到一般的全纯向量丛上, 只需要考虑 $c_1(L(E))$ 的相关概念即可. 运用这个, 我们根据 GIGANTE-GIRBAU 消灭定理就得到

定理 2.12. 设 E 是紧 $K\ddot{a}hler$ 流形 X 上的秩 r 全纯向量丛, 如果 E 是半负定且 $\mathrm{rank}(E) \geq k$, 那么

$$H^{q}(X, \Omega^{p}(E)) = 0, p + q < k - r.$$

3 RIEMANNIAN-ROCH 定理

我们这节最主要的是如下 Hirzebruch 用配边理论证明的经典 Riemannian-Roch 的推广,可以参考 [2]. 我们考虑紧复流形 X 上的全纯向量丛 E, 定义其 Euler-Poincaré 示性数 $\chi(X,E) = \sum_{j=0}^{\dim X} (-1)^j h^j(X,E)$.

定理 3.1 (HIRZEBRUCH-RIEMANN-ROCH 定理). 对紧复流形 X 上的全纯向量丛 E, 则

$$\chi(X, E) = \int_X \operatorname{ch}(E) \operatorname{td}(X),$$

其中 ch(E) 为 E 的 chern 特征标, 而 td(X) 是 X 的 todd 类.

这个著名的定理有相当多的应用, 其证明甚至启发了 Atiyah 证明 ATIYAH-SINGER 指标定理. 我们举一个例子来表明其威力:

例 3.2. 一个紧复曲面 X 我们称之为 K3 曲面, 如果它满足 $K_X \cong \mathcal{O}_X$, 且 $h^1(X,\mathcal{O}_X) = 0$. 我们现在要探究其 Betti 数和 Hodge 数. 首先要知道 Y.-T.Siu 在 1983 年 ([6]) 证明了所有 K3 曲面都是 $K\ddot{a}hler$ 流形, 我们以这个为前提, 便于使用各种工具.

事实上我们不难得到对于紧复曲面的 HIRZEBRUCH-RIEMANN-ROCH 定理 $\chi(X,\mathcal{O}_X)=\int_X \frac{c_1^2(X)+c_2(X)}{12}$. 计算形式 Chern roots 会得到对任何向量丛 $E\to X$,都有 $c(\det E)=1+c_1(E)$. 另外,对 n 维紧 Kähler 流形 X,有 $e(X)=\int_X c_n(x)$,其中 $e(X)=\sum_{k=0}^{2n}(-1)^kb_k(X)$ 为 Euler 数 (Gauss-Bonnet).

下面假设 X 是某个 K3 曲面, 那么我们有 $c_1(X) = -c_1(\Omega_X) = -c_1(K_X) = -c_1(\mathscr{O}_X) = 0$, 接下来开始正题. 由连通性和 Poincaré 对偶我们知道 $b_0(X) = b_4(X) = 1$ 且 $b_1(X) = b_3(X)$. 因为是 K3 曲面, 所以 $H^{0,1}(X) \cong H^1(X, \mathscr{O}_X) = 0$, 从而 $h^{0,1}(X) = 0$, 由共轭得到 $h^{1,0}(X) = 0$. 用 Hodge 分解定理得知 $b_1(X) = b_3(X) = 0$, 于是 $h^{2,1}(X) = h^{1,2}(X) = 0$ 且 $h^{2,2}(X) = 1$.

注意到 $H^0(X, \mathcal{O}_X) = \Gamma(X, \mathcal{O}_X) = \mathbb{C}$, 则由 Serre 对偶得到

$$H^2(X, \mathscr{O}_X) \cong H^0(X, K_X)^* = H^0(X, \mathscr{O}_X)^* = \mathbb{C},$$

于是 $\chi(X,\mathscr{O}_X)=2$. 由于 $\chi(X,\mathscr{O}_X)=\frac{1}{12}\int_X c_2(X)$, 于是 $\int_X c_2(X)=24$, 从而由 Gauss-Bonnet 得到 e(X)=24. 由于 $e(X)=2+b_2(X)$, 我们得到 $b_2(X)=22$. 之前有 $H^{0,2}(X)\cong H^2(X,\mathscr{O}_X)=\mathbb{C}$, 我们有 $h^{2,0}(X)=h^{0,2}(X)=1$, 故 $h^{1,1}(X)=20$, 这样我们得到结论.

其有两个方向的推广, 都是极为著名的结果:

定理 3.3 (GROTHENDIECK-RIEMANN-ROCH 定理). 设 $f: X \to Y$ 是光滑射影簇之间的光滑射影映射, 则对于 X 上任意凝聚层 \mathscr{F} 在 Chow 群 $CH(Y)_{\mathbb{Q}}$ (或者说 $H^*(Y,\mathbb{R})$) 内有

$$\operatorname{ch}\left(\sum (-1)^i R^i f_* \mathscr{F}\right) \operatorname{td}(Y) = f_*(\operatorname{ch}(\mathscr{F}) \operatorname{td}(X)).$$

我们考虑 $f: X \to \{point\}$, 则 $f_* = \int_X \coprod R^i f_* \mathscr{F} = H^i(X, \mathscr{F})$, 由于 td(point) = 1 且 $ch(E_{point}) = \dim E_{point}$, 这就得到 HIRZEBRUCH-RIEMANN-ROCH 定理.

定理 3.4 (ATIYAH-SINGER 指标定理). 设 M 是紧可定向微分流形, E,F 是上面的两个向量丛, 考虑 $D:\Gamma(E)\to\Gamma(F)$ 是椭圆微分算子. 设解析指标 $\operatorname{index}(D)=\operatorname{dim}\ker D-\operatorname{dim}\operatorname{coker}D$ 和拓扑指标 $\gamma(D)$, 则

$$index(D) = \gamma(D).$$

在此处考虑算子 $\Delta_{\overline{\partial}_E}$ 即可得到 HIRZEBRUCH-RIEMANN-ROCH 定理.

4 KODAIRA 嵌入定理

首先, 我们事实上熟知在复流形 X 上的全纯线丛 L, 假设 $s_0,...,s_N$ 是 $H^0(X,L)$ 的 生成元, 那么有自然的全纯映射 $\phi_L: X\backslash \mathrm{Bs}(L) \to \mathbb{P}^N$ 为 $x \mapsto (s_0(x):\cdots,s_N(x))$, 且 $\phi_L^* \mathcal{O}_{\mathbb{P}^N}(1) \cong L|_{X\backslash \mathrm{Bs}(L)}$. 我们的想法就是用这个来将流形嵌入射影空间.

如果存在自然数 k 使得 $\phi_{L^k}: X \to \mathbb{P}^N$ 是嵌入, 那我们称 L 是丰沛的, 如果 k = 1, 则 L 是极丰沛的. Kodaira 告诉我们, 事实上有如下结论:

定理 **4.1** (KODAIRA 嵌入定理). 考虑紧 $K\ddot{a}hler$ 流形上的全纯线丛 L, 那么 L 是 Positive 的当且仅当 L 是丰沛的. 所以在此情况下, 我们得到 X 是射影流形.

这个证明的关键是分析映射 ϕ_L 何时是嵌入. 首先 $Bs(L) = \emptyset$ 保证 ϕ_L 是个映射, 其次需要 ϕ_L 是单射, 然后是闭嵌入. 证明细节可以参考 [1] 或者 [4], 我们不在这里赘述 (事实上首先是用正合列等价表示 ϕ_L 是闭嵌入, 然后考虑用 Blow-up 手段和 Blow-up 前后的上同调关系).

推论 4.2. 对于紧 Kähler 流形 X, 其是射影流形当且仅当 Hodge 类 $\mathcal{K}_X \cap H^2(X, \mathbb{Z}) \neq \emptyset$.

证明. 这个事实上是 Lefschetz (1,1) 定理的直接推论, 这个定理告诉我们 $Pic(X) \to H^{1,1}(X,\mathbb{Z})$ 是满的, 那么如果 $\mathcal{K}_X \cap H^2(X,\mathbb{Z}) \neq \emptyset$, 就有线丛 L 使得 $c_1(L)$ 正定, 根据 KODAIRA 嵌入 定理就完成了证明.

接下来考虑一个比较在意的问题, 就是典范的映射 $Div(X) \to Pic(X)$ 何时是满射?

推论 4.3. 如果紧复流形 X 是射影流形, 那么映射 $Div(X) \rightarrow Pic(X)$ 是满的.

证明. 考虑 L 是 Positive 线丛, 那么根据 Serre 消灭定理得到对任何 $M \in \text{Pic}(X)$ 和 $k \gg 0$ 都有 $\chi(X, M \otimes L^k) = h^0(X, M \otimes L^k)$. 注意到

$$\operatorname{ch}(M \otimes L^k) = \sum_{j=1}^n \frac{c_1^j(M \otimes L^k)}{j!} = \sum_{j=1}^n \frac{(c_1(M) + kc_1(L))^j}{j!},$$

根据 HIRZEBRUCH-RIEMANN-ROCH 定理就有 $\chi(X, M \otimes L^k) = \frac{1}{n!} \int_X c_1(L)^n k^n + \cdots$,故 其为最高次 n 次的系数为 $\frac{1}{n!} \int_X c_1(L)^n$ 的 k 的多项式. 事实上由于 L 是 Positive 线丛,那 么 $\frac{1}{n!} \int_X c_1(L)^n > 0$,故 $H^0(X, M \otimes L^k) \neq 0$ (特别的 $H^0(X, L^k) \neq 0$,这个是证明的核心). 接下来就是熟悉的东西,熟知存在非零截面 $s_1 \in H^0(X, M \otimes L^k)$ 和 $s_2 \in H^0(X, L^k)$ 使得 $\mathcal{O}(Z(s_1)) \cong M \otimes L^k$, $\mathcal{O}(Z(s_2)) \cong L^k$,于是 $M \cong \mathcal{O}(Z(s_1) - Z(s_2))$,所以是满的. \square

参考文献

- [1] Daniel Huybrechts, Complex Geometry, An Introduction, Springer, 2004.
- [2] F.Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, 1978.
- [3] Shoshichi Kobayashi, Differential Geometry of Complex Vector Bundles, Princeton University Press, 1987.
- [4] Phillip Griffiths, Joseph Harris, Principles of Algebraic Geometry, Wiley, 1978.
- [5] Weiping Zhang, Lectures On Chern-Weil Theory and Witten Deformations, World Scientific, 2001.
- [6] Y.-T.Siu, Every K3 surface is Kähler, Invent. math. 73, 135-150, 1983.