

BSc (Hons) in Information Technology Year 2

Data Structures and Algorithms – IT2070

Tutorial 4 – Trees

2023

Question 1

Arrange the following sequence of integers into a binary search tree

280 308 180 416 298 350 156 255 580 275 12

Question 2

Print the elements in the tree built in Question1 using the following traversing methods.

- a) inorder
- b) preorder
- c) postorder

Question 3

Draw the tree structures for the binary tree created in Question 1 for each of the following delete commands.

- a) Delete(255)
- b) Delete(308)
- c) Delete (180)
- d) Delete(280)

Question 4

Consider the Node class and Tree class given below.

Node
int iData
double dData
Node leftChild
Node rightChild
void displayNode()

Tree
Node root
Node find(int key)
void insert(int id, double dd)
boolean delete(int id)
<pre>void inOrder()</pre>

Implement a method called **minimum()** which find the minimum key in a tree.

Question 5

Write a java program to implement the following.

- a) Implement a **Node** class to store a height of a child. In the same class implement displayNode () method to display the data stored in a Node.
- b) Implement the **Tree** class with the following data members and methods.

Tree	
Node root	
void insert(int height)	
Node minimum()	
Node maximum ()	
void descendingOrder ()	

c) In your application, enter the height of 10 children in a class from the key board and store them in a tree. Use the above implemented methods to display the height of the tallest child, shortest child in the class. Also display the height of all ten children in descending order.