Predicting Response with Decision Trees

Professor Song YaoOlin Business School

Customer Analytics

1

Basic Logic behind Decision Trees

How do we refer to the different parts of a tree?

Fundamental concept of decision trees

CLASSIFICATION TREES

- The dependent variables is categorical (non-metric), e.g., buy/not buy

REGRESSION TREES

- The dependent variable is **numeric** (metric), e.g. how much did a customer spend?

Basic Logic behind Decision Trees

- Each leaf (a segment of customers) in the tree is grown by splitting customers based on their independent variables (e.g., recency, gender, income, ...)
- The values of DV of customers of one leaf (e.g., buy or not buy, amount of spending) is different from those of customers in other leaves (as much as possible)

A Toy Example: First set of branches

5

We use a simple example to show how the CHAID (Chi-squared Automatic Interaction Detection) method works

- Predict response with customer demographics
- Dependent variable: Response -- "response"
- Independent variables:
 - Age -- "age"
 - Income -- "income"
 - Gender -- "female"

Response: DV

Distribution:		
Count	Percentage (%)	
799	79.9	
201	20.1	
	Count 799	

Income

Income	Distribution:		
	Count	Percentage (%)	
income			
1	208	20.8	
2	487	48.7	
3	305	30.5	

Age

Age	Distrib	ution:
	Count	Percentage (%)
age		
1	320	32.0
2	351	35.1
3	329	32.9

Female

Female	Distribution:		
	Count	Percentage	(%)
female			
0	517	5	1.7
1	483	4	18.3

CHAID EXAMPLE: ROOT NODE (TOP LEVEL)

Age variable:

- Cross tab every possible combination of two values of "age" with "response"
- Combine the two values that are the least significantly different from each other
- Stop if all remaining categories are significantly different in predicting response

```
# Compare age groups 1&2
age12 = chaid_demo[chaid_demo['age'].isin([1, 2])]
                                                                             All possible combinations
chi2_age12 = chi2_contingency(pd.crosstab(age12['response'],
                                                                             of different values of
                                           age12['age']), correction=False)
                                                                              "age": 12, 13, 23
print(chi2_age12.pvalue)
# Compare age groups 1&3
age13 = chaid demo[chaid demo['age'].isin([1, 3])]
chi2_age13 = chi2_contingency(pd.crosstab(age13['response'],
                                           age13['age']), correction=False) Age 1's response rates are
print(chi2_age13.pvalue)
                                                                             significantly different
                                                                             from Age 2 and Age 3
# Compare age groups 2&3
                                                                             (according to Chi2 test).
age23 = chaid_demo[chaid_demo['age'].isin([2, 3])]
chi2_age23 = chi2_contingency(pd.crosstab(age23[response'],
                                           age23['age']), correction=False)
print(chi2_age23.pvalue)
7.84511863307372e-05
1.842310598122182e-06
                                                              Treat age=2 and age=3 as equivalent
0.3548097350546101-
                                                             in terms of predicting response
                                                              --> combine them into
                                                                 one category
                                                                                                    7
```

CHAID EXAMPLE: ROOT NODE (TOP LEVEL)

Age variable: (take 2)

- Cross tab every possible combination of two values of "age" with "response"
 - Combine the two values that are the least significantly different from each other
 - Age 1 vs. Age 23
- Stop if all remaining categories are significantly different in predicting response

CHAID EXAMPLE: ROOT NODE (TOP LEVEL)

Income variable:

- Continue with "income" and "response": Possible combinations for income, 12, 13, 23
- Combine the two values that are the least significantly different from each other
- Stop if all remaining categories are significantly different in predicting response

```
# Compare income groups 1&2
income12 = chaid_demo[chaid_demo['income'].isin([1, 2])]
chi2_income12 = chi2_contingency(pd.crosstab(income12['response'],
                                              income12['income']), correction=False)
print(chi2_income12.pvalue)
# Compare income groups 1&3
income13 = chaid demo[chaid demo['income'].isin([1, 3])]
chi2_income13 = chi2_contingency(pd.crosstab(income13['response'],
                                              income13['income']), correction=False)
print(chi2_income13.pvalue)
# Compare income groups 2&3
income23 = chaid_demo[chaid_demo['income'].isin([2, 3])]
chi2_income23 = chi2_contingency(pd.crosstab(income23['response'],
                                              income23['income']), correction=False)
print(chi2_income23.pvalue)
                                              Treat income=1 and income=2 as
0.10568540009415126
0.04793679612791425
                                              equivalent in terms of predicting
1.4713066443738882e-05
                                              response (Chi2 test insignificant
                                              --> combine them into
                                                  1 category
```

CHAID EXAMPLE: ROOT NODE (TOP LEVEL)

Income variable: (take 2)

- Cross tab every possible combination of two values of "income" with "response"
 - Combine the two values that are the least significantly different from each other
 - ▶ Income 12 and Income 3
- Stop if all remaining categories are significantly different in predicting response

9

CHAID EXAMPLE: ROOT NODE (TOP LEVEL)

Female variable:

- Cross tab every possible combination of two values of "female" with "response"
- Combine the two values that are the least significantly different from each other
- Stop if all remaining categories are significantly different in predicting response

selecting the variable to first split the sample

11

CHAID EXAMPLE: ROOT NODE (TOP LEVEL)

Select variable for first sample partition:

- Cross tab every final variable (after combining categories) with "response"
- Select the variable with the smallest p-value

```
chi2_female = chi2_contingency(pd.crosstab(chaid_demo['response'],
                                            chaid_demo['female']), correction=False)
 print(chi2_female.pvalue)
 ### based on the p values, female is the most significant variable as it has the lowest p value
 ### we will use female to split the data this round
2.0152561677568327e-07
 # Create new age grouping (1 vs 2&3 combined)
 chaid_demo['ageNEW'] = np.where(chaid_demo['age'] == 1, 1, 23)
 chi2_ageNEW = chi2_contingency(pd.crosstab(chaid_demo['response'],
                                            chaid_demo['ageNEW']), correction=False)
 print(chi2_ageNEW.pvalue)
1.6626069931911872e-06
 # Create new income grouping (1&2 combined vs 3)
 chaid_demo['incomeNEW'] = np.where(chaid_demo['income'].isin([1, 2]), 12, 3)
 chi2_incomeNEW = chi2_contingency(pd.crosstab(chaid_demo['response'],
                                               chaid_demo['incomeNEW']), correction=False)
 print(chi2_incomeNEW.pvalue)
4.884343487542051e-05
```

Female split has the smallest p-value

Pick gender for sample partition at root note

We have determined that gender is the most important predictor

CHAID EXAMPLE: FIRST DATA PARTITION

13

A Toy Example Continued: Growing the Tree

We proceed with the female=0 (i.e., male) branch

CHAID EXAMPLE: FIRST DATA PARTITION

15

CHAID EXAMPLE: FIRST CHILD NODE (where FEMALE=0)

Age variable:

- Cross tab every possible combination of two values of "age" with "response"
- Combine the two values that are the least significantly different from each other
- Stop if all remaining categories are significantly different in predicting response

```
# Compare age groups 1&2 for males
male_age12 = chaid_demo[(chaid_demo['age'].isin([1, 2])) &
                        (chaid_demo['female'] == 0)].copy()
chi2_male_age12 = chi2_contingency(pd.crosstab(male_age12['response'],
                                               male_age12['age']), correction=False)
print(chi2_male_age12.pvalue)
# Compare age groups 1&3 for males
male_age13 = chaid_demo[(chaid_demo['age'].isin([1, 3])) &
                        (chaid_demo['female'] == 0)].copy()
chi2_male_age13 = chi2_contingency(pd.crosstab(male_age13['response'],
                                               male_age13['age']), correction=False)
print(chi2_male_age13.pvalue)
# Compare age groups 2&3 for males
male_age23 = chaid_demo[(chaid_demo['age'].isin([2, 3])) &
                        (chaid_demo['female'] == 0)].copy()
chi2_male_age23 = chi2_contingency(pd.crosstab(male_age23['response'],
                                                male_age23['age']), correction=False)
print(chi2_male_age23.pvalue)
0.36734481098374727
                                                    Treat age=2 and age=3 as equivalent in terms of
0.2117626995367813
                                                    predicting response
0.7097908825361634
                                                    --> combine them into 1 category
```

CHAID EXAMPLE: FIRST CHILD NODE (FEMALE=0)

Age variable: (take 2)

- Cross tab every possible combination of two values of "age" with "response"
- Combine the two values that are the least significantly different from each other
- Stop if all remaining categories are significantly different in predicting response

```
# Create new age grouping (1 vs 2&3 combined) for males
male_data = chaid_demo[chaid_demo['female'] == 0].copy()
male_data['ageNEW'] = np.where(male_data['age'] == 1, 1, 23)
chi2_male_ageNEW = chi2_contingency(pd.crosstab(male_data['response'],
                                                  male data['ageNEW']), correction=False)
print(chi2_male_ageNEW.pvalue)
0.22786305389769565
                              Age=1 and age=(2 \text{ or } 3)
                             are not significant
                              predictors of response
                              --> Combine all age
                              categories, i.e. ignore
                              age as predictor for
                              males!
                              Stop and go to next
                              variable
```

CHAID EXAMPLE: FIRST CHILD NODE (FEMALE=0)

Income variable:

- Cross tab every possible combination of two values of "income" with "response"
- Combine the two values that are the least significantly different from each other
- Stop if all remaining categories are significantly different in predicting response

```
# Compare income groups 1&2 for males
male_income12 = chaid_demo[(chaid_demo['income'].isin([1, 2])) &
                           (chaid demo['female'] == 0)].copy()
chi2_male_income12 = chi2_contingency(pd.crosstab(male_income12['response'],
                                                  male_income12['income']), correction=False)
print(chi2_male_income12.pvalue)
# Compare income groups 1&3 for males
male_income13 = chaid_demo[(chaid_demo['income'].isin([1, 3])) &
                           (chaid_demo['female'] == 0)].copy()
chi2_male_income13 = chi2_contingency(pd.crosstab(male_income13['response'],
                                                  male_income13['income']), correction=False)
print(chi2_male_income13.pvalue)
# Compare income groups 2&3 for males
male_income23 = chaid_demo[(chaid_demo['income'].isin([2, 3])) &
                            (chaid_demo['female'] == 0)].copy()
chi2_male_income23 = chi2_contingency(pd.crosstab(male_income23['response'],
                                                  male_income23['income']), correction=False)
print(chi2_male_income23.pvalue)
0.933515557879672
                       Treat income=1 and income=2 as equivalent
0.042925591804953415
                       in terms of predicting response
0.005081143114016782
                       --> combine them into 1 category
```

18

17

CHAID EXAMPLE: FIRST CHILD NODE (FEMALE=0)

Income variable: (take 2)

- Cross tab every possible combination of two values of "income" with "response"
- Combine the two values that are the least significantly different from each other
- Stop if all remaining categories are significantly different in predicting response

19

CHAID EXAMPLE: FIRST CHILD NODE (FEMALE=0)

Select variable for second sample partition (in the female=0 branch):

- Cross tab every final variable (after combining categories) with "response"
- Select the variable with the smallest p-value

```
# Create new income grouping (1&2 combined vs 3) for males
male_data = chaid_demo[chaid_demo['female'] == 0].copy()
male_data['incomeNEW'] = np.where(male_data['income'].isin([1, 2]), 12, 3)
chi2_male_incomeNEW = chi2_contingency(pd.crosstab(male_data['response'],
                                                   male_data['incomeNEW']), correction=False)
print(chi2_male_incomeNEW.pvalue)
0.0026573404504472826
# Create new age grouping (1 vs 2&3 combined) for males
male data = chaid demo[chaid demo['female'] == 0].copy()
male data['ageNEW'] = np.where(male_data['age'] == 1, 1, 23)
chi2_male_ageNEW = chi2_contingency(pd.crosstab(male_data['response'],
                                                male_data['ageNEW']), correction=False)
print(chi2_male_ageNEW.pvalue)
0.22786305389769565
                                Smallest p-value
                                pick income for sample
```

partition in the female=0

branch

We have determined that income is the most important predictor for men

CHAID EXAMPLE: THIRD DATA PARTITION

21

One more split completes the tree

How do we use Decision Trees to make decision

23

Decision trees are built through recursive partitioning

IDEA OF DECISION TREES ALGORITHMS

- Recursive partitioning = an iterative process of splitting the data into partitions and them splitting each partition into a sub-partitions
- Partition = MECE (**M**utually **E**xclusive and **C**ollectively **E**xhaustive)
- Start with Root node (includes all observations in the training sample)
- Each branch finds a single variable to split the data in 2 or more groups
 - Algorithm tries to break up the data, often using every possible split on every variable (brute force --> may require huge computing power)
 - For binary tree, suppose ages run 18-94 and consider splitting on ≤18/>18 versus ≤19/>19 versus ≤20/>20 versus...versus ≤93/>93
 - ▶ The best split is the one which best separates groups as measured by the dependent variable
- We focused on CHAID as an example. There are many different implementations of this basic algorithm (e.g., CHAID, CART, C4.5, etc.).

R and Python both have functions for CHAID, but they are somewhat cumbersome (particularly Python)

CHAID EXAMPLE: FINAL TREE

chaid_demo_model <- chaid(response ~ age + female + income, data = chaid_demo)
plot(chaid_demo_model)</pre>

25

CHAID TREE FOR BOOKBINDERS BUYERS

The break-even response rate tells us to which cells to extend the offer

BREAK EVEN RESPONSE RATE

- Cost of mailing an offer = \$0.50
- Selling price (includes shipping) = \$18
- Wholesale price paid by Bookbinders = \$9
- Shipping costs = \$3
- Break-even = Cost to mail/net revenue per sale = .5/(18-9-3) = **8.3**%
- Depending which leaves (segments) have response rates greater than 8.3%, we decide how to target.

27

We can use decision tree based analysis for a range of purposes

USES OF DECISION TREES

- **Prediction/classification:**Like logistic regression, predict values of a target variable
- **Segmentation:**Identify relatively homogeneous groups
- Interaction identification:
 Identify relationships that pertain only to specific subgroups, for example for use in a logistic regression model

Alternative Decision Tree Method to CHAID

CART, Classification and Regression Tree

- Classification tree:
 Instead of using Chi2, Gini-index is used for splitting branches
 - Gini-index: Another metric for the difference of DV across nodes
- Regression tree:
 ANOVA is one example metric that can be used for splitting branches
- K-fold cross validation automatically

29

Decision trees are simple to understand and implement

ADVANTAGES OF DECISION TREES

- Actionable -- generates a set of simple rules which can be used to classify/ predict new cases (e.g. if age<25 and purchase at least 1 art book last year, will purchase "The Art History of Florence")
 - Easy to encode rules in decision systems
 - Fast to classify and predict new cases
- Provides a clear indication which variables are most important for prediction or classification

Random Forest

31

Decision trees also have some serious disadvantages

DISADVANTAGES OF DECISION TREES

- 'Lose' information compared to regression models b/c of categorization of continuous variables:
 - In regression model, the prediction will be different for each value of a continuous predictor, e.g. 1014 vs. 1016 vs. 2006 vs. 2100
 - In decision tree, 1014 and 1016 are likely to fall into the same node and thus have the same prediction.
- Trees can be too large to properly interpret
- Can be error-prone if the number or observations per class gets small
- Can fit well training sample but badly in test sample -- overfitting problem

"Ensembles" of trees produce better predictions and are less prone to overfitting

ENSEMBLE APPROACHES

- Random Forests
- Boosted Decision Trees

CORE IDEA

- Each tree may be a weak predictor
- Create many decision trees
 - using subsets of the original data and subsets of the independent variables (Random Forests)
 - weighting original data differently (Boosted Decision Trees)
- Go with the (weighted) average of the prediction of all the decision trees

33

"Random Forest" is the most popular type of decision tree ensemble

RANDOM FOREST IDEA

- Decision trees algorithm that injects randomness into fitting (invented by Leo Breiman)
- This randomness reduces overfitting
- Key idea is to create many decision trees (~500), each of them based on
 - randomly chosen subsample of the data
 - randomly chosen subset of the predictor variables at each node that is considered
- Very accurate predictor, can handle huge number of input variables

The random forest algorithm builds hundreds of trees

RANDOM FOREST ALGORITHM

- For each tree:
 - · Create a "Bootstrap Sample"
 - ▶ Let's say the original sample has N observations
 - ▶ Randomly draw observations from the original data (with replacement) and form a new data of N observations
 - Some observations may appear multiple times; some may never appear
 - · Sample the variables when splitting
 - ▶ When building a branch, randomly select a subset of variables for the split instead of considering all available variables
 - ▶ The number of variables in the subset is typically the square root of the number of independent variables (e.g. 50 variables, randomly pick 7)
 - ▶ At next node, randomly select another subset of variables
- "Ensemble Scoring"
 - Combine the results from all the trees by averaging the prediction of each tree

35

Recall the CHAID example

Lets predict using Random Forest

RANDOM FOREST EXAMPLE

- For each tree:
 - "Bootstrap" observations
 - Draw 1000 observations from the original dataset (with replacement)
 - Randomly sample variables at each node
 1 variable only at each node
- Predict response with customer demographics
- 1000 consumers
- Dependent variable:
 Response -- "response"
- Independent variables:
- Age -- "age"
- Income -- "income"
- Gender -- "female"

1000 observations were randomly draw

1000 consumers 80.2 (802) -> no 19.8 (198) -> yes

age=2 or 3

675 consumers 76.4 -> no 23.6-> yes

age was randomly selected from [age, income, female]

37

Repeating the random selection of variables at each node yields the full FIRST tree

Resampling observations and *resampling* variables at each node yields the full **SECOND** tree

We can now "score the ensemble" of trees

In practice we would construct and ensemble score hundreds of trees

- Instead of just having two trees, build, say, 500 of them.
 - Given a customer's age, income, and gender, the customer will be grouped into a
 particular leaf at each respective tree.
 - Each leaf has its different response rate prediction for that customer (e.g., 23.9% vs. 28.6%)
 - Each customer has 500 response rates from the 500 leaves
 - The average of these 500 response rates is the predicted response probability of the customer

41

Random Forests: Advantages and Disadvantages

ADVANTAGES

- Very accurate predictor
 - Random forests algorithm is less prone to overfitting (not completely)
 - ▶ Because of the randomness, observations and variables that may cause overfitting are always dropped at some point
 - With a single decision tree, when alternative variables have similar prediction power, it may be difficult to decide how to build a node
 - ▶ Random Forest allows such variables all contribute to the prediction because we randomly select variables at each node (each one of them has the chance to be picked)
- Can handle huge number of input variables
 - Only use a subset of variables at each node

DISADVANTAGES

- Harder to interpret the results than single decision tree
- Time consuming
 - Hundreds of trees

Many models—need to tune and compare carefully

Firewall Example: Model Comparison on the Test Sample (*Code on Canvas for your ref.*)

43