Fórmula de Bhaskara

Introdução

A fórmula de Bhaskara, também conhecida como fórmula quadrática, é uma ferramenta essencial na matemática, especialmente na resolução de equações quadráticas. A equação quadrática tem a forma geral:

$$ax^{2} + bx + c = 0$$

Onde (a), (b) e (c) são coeficientes reais, e (x) é a variável. A fórmula de Bhaskara permite encontrar as raízes dessa equação, ou seja, os valores de (x) que satisfazem a igualdade.

Desenvolvimento da Fórmula de Bhaskara

A fórmula de Bhaskara é derivada do processo de completar o quadrado. A solução para a equação quadrática é dada por:

$$x = (-b \pm \sqrt{(b^2 - 4ac)}) / 2a$$

Essa fórmula fornece as raízes da equação quadrática, dependendo do valor do discriminante, (Δ), que é a parte da fórmula dentro da raiz quadrada:

$$\Delta = b^2 - 4ac$$

O valor do discriminante determina a natureza das raízes:

- 1. Δ > 0: A equação possui duas raízes reais e distintas.
- 2. Δ = 0: A equação possui uma raiz real dupla (ou duas raízes reais iguais).
- 3. Δ < 0: A equação nãopossui raízes reais; as raízes são complexas e conjugadas.

Aplicação da Fórmula de Bhaskara

Para aplicar a fórmula de Bhaskara, siga os passos abaixo:

1. Identificar os coeficientes:

Extraia os valores de (a), (b) e (c) da equação quadrática.

2. Calcular o discriminante ((Δ)):

$$(\Delta = b^2 - 4ac)$$

3. Determinar a natureza das raízes:

Verifique o valor de (Δ) para saber se as raízes são reais e distintas, reais e iguais, ou complexas.

4. Aplicar a fórmula de Bhaskara:

Use a fórmula

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

para encontrar as raízes.

Exemplos Práticos

Exemplo 1:

Resolva a equação ($2x^2 - 4x - 6 = 0$).

Passo 1: Identificar os coeficientes:

$$(a = 2), (b = -4), (c = -6)$$

Passo 2: Calcular o discriminante:

$$(\Delta = (-4)^2 - 4(2)(-6) = 16 + 48 = 64)$$

Passo 3: Determinar a natureza das raízes:

Como ($\Delta > 0$), a equação possui duas raízes reais e distintas.

Passo 4: Aplicar a fórmula de Bhaskara:

$$x = \frac{-(-4) \pm \sqrt{64}}{2(2)} = \frac{4 \pm 8}{4}$$

Assim,

$$x = \frac{4+8}{4} = 3$$
 ou $x = \frac{4-8}{4} = -1$

Portanto, as raízes são (x = 3) e (x = -1).

Exemplo 2:

Resolva a equação ($x^2 - 2x + 1 = 0$).

Passo 1: Identificar os coeficientes:

$$(a = 1), (b = -2), (c = 1)$$

Passo 2: Calcular o discriminante:

$$(\Delta = (-2)^2 - 4(1)(1) = 4 - 4 = 0)$$

Passo 3: Determinar a natureza das raízes:

Como ($\Delta = 0$), a equação possui uma raiz real dupla.

Passo 4: Aplicar a fórmula de Bhaskara:

$$x = \frac{-(-2) \pm \sqrt{0}}{2(1)} = \frac{2 \pm 0}{2} = 1$$

Portanto, a raiz é(x = 1).

Importância e Aplicações

A fórmula de Bhaskara é uma ferramenta poderosa na resolução de problemas matemáticos e é amplamente utilizada em várias áreas, incluindo física, engenharia e economia. Ela permite solucionar equações que modelam fenômenos reais, como o movimento dos corpos, as trajetórias de projéteis, e o cálculo de máximos e mínimos de funções quadráticas.

Fontes Acadêmicas

- 1. Larson, R., & Edwards, B. H. (2010). Calculus of a Single Variable. Cengage Learning.
- 2. Stewart, J. (2015). Calculus: Early Transcendentals. Cengage Learning.
- 3. Thomas, G. B., Weir, M. D., & Hass, J. (2014). Thomas' Calculus. Pearson.

Conclusão

Compreender a fórmula de Bhaskara e suas aplicações é essencial para estudantes e profissionais que lidam com equações quadráticas. Praticar a resolução de diversos tipos de equações quadráticas utilizando essa fórmula fortalecerá a habilidade de resolver problemas complexos de forma eficiente e precisa.