"FLOW AND SEDIMENT TRANSPORT MODELING IN RIVER BASINS USING TELEMAC 2D AND 3D NUMERICAL CODES"

3D hydrodynamics - TELEMAC-3D

Steering Telemac-3D: parameters and data files

Chen Peng-An

BASINS USING TELEMAC 2D AND 3D NUMERICAL CODES" February 26-28, 2022

Difficulty

- HEC-RAS (Maskey & Ruther, 2019)
- SRH-1D
- **MASCARET**

- **Two-dimensional numerical model:**
 - SRH-2D (**Huang et al., 2019**)
 - RESED-2D (**Hung et al., 2009**)
 - **Anaysy CFX**

- Three-dimensional numerical model:
 - ANSYS-CFX (De Cesare et al., 2006)
 - FLOW-3D (Janocko et al., 2013)
 - SSIM-3D (Esmaeili et al., 2017; 2018)
 - Telemac-3D (Pérez-Díaz et al., 2019)

Consider more complicated unsteady flow, backflow and sediment transportation.

Effectively grasp the complex flow regime and sediment migration behavior.

"FLOW AND SEDIMENT TRANSPORT MODELING IN RIVER BASINS USING TELEMAC 2D AND 3D NUMERICAL CODES"
February 26-28, 2022

Output file

2D: Deposition

3D: sediment transport

"FLOW AND SEDIMENT TRANSPORT MODELING IN RIVER BASINS USING TELEMAC 2D AND 3D NUMERICAL CODES" February 26-28, 2022

Physical parameters: Layer

Figure 4.1: Effect of the MESH TRANSFORMATION keyword – Value 1: sigma.

Uniform layer is not suitable

"FLOW AND SEDIMENT TRANSPORT MODELING IN RIVER BASINS USING TELEMAC 2D AND 3D NUMERICAL CODES" February 26-28, 2022

Physical parameters: Layer

Figure 4.1: Effect of the MESH TRANSFORMATION keyword – Value 1: sigma.

Figure 4.2: Effect of the MESH TRANSFORMATION keyword - Value 2: zstar.

Figure 4.3: Effect of the MESH TRANSFORMATION keyword – Value 3: user defined.

"FLOW AND SEDIMENT TRANSPORT MODELING IN RIVER BASINS USING TELEMAC 2D AND 3D NUMERICAL CODES"

Physical parameters: Layer

BASINS USING TELEMAC 2D AND 3D NUMERICAL CODES"

February 26-28, 2022

Physical parameters: TURBULENCE MODEL

- The turbidity current transportation in the horizontal direction is stable and complex interaction in the vertical direction
- Therefore, it is reliable to adopt Cst for horizontal aspect and $k-\omega$ for vertical aspect in the turbidity current simulation.

Cases	Horizontal	Vertical aspect	CPU	RMSE (g/l)			
			time (min)	Bottom reach	Cross section	Outlet	Mean
Same scheme for horizontal and vertical aspects							
1	Cst	Cst	27.82	29.50	23.51	20.71	22.11
2	k- $arepsilon$	k - ε	34.82	28.27	22.71	23.08	22.89
3	k - ω	k-ω	38.83	26.61	21.82	22.31	22.07
4	Smag	Smag	30.28	112.82	82.53	84.97	83.75
Mixing scheme for horizontal and vertical aspects							
(5)	k-w	Cst	40.42	27.08	22.09	22.04	22.07
6	Cst	k-ω	38.90	26.86	21.89	19.12	20.50
7	Cst	ML	28.20	129.76	95.05	94.67	94.86

Similar to Smag, the ML is inappropriate for turbidity current simulation.

"FLOW AND SEDIMENT TRANSPORT MODELING IN RIVER BASINS USING TELEMAC 2D AND 3D NUMERICAL CODES"

:'CONSTANT FLEVATION'

: 189.02 /initial water level

February 26-28, 2022

INITIAL CONDITIONS

INITIAL ELEVATION

/-----

/-----

SOURCE TERMS

AUL OF BOTTON EDICTION

"FLOW AND SEDIMENT TRANSPORT MODELING IN RIVER BASINS USING TELEMAC 2D AND 3D NUMERICAL CODES" February 26-28, 2022

2D vs. 3D

2D simulation

3D simulation

