PROVA PRATICA S1/L5

TRACCIA

Un'azienda ha due palazzi di 4 piani, ogni piano ha 30 computer, tra un palazzo e l'altro c'è una strada e la distanza è circa 30 metri.

- Progettare la rete e fare un preventivo di massima di spesa.
- Usare la subnet mask più consona.

SOLUZIONE 1

SUBNET UNIVOCA PER OGNI PALAZZO

Per applicare questa soluzione abbiamo come prima cosa fatto il conteggio di tutte le reti e di tutti gli host di cui necessitavamo e abbiamo poi scelto la classe di indirizzi IP che risultava essere più idonea: in questo caso abbiamo optato per la classe C con i suoi conseguenti IP privati (192.168.0.0/24 – 192.168.255.255/24). Successivamente abbiamo deciso di suddividere ogni palazzo con una propria subnet, considerando che ogni edificio avrebbe dovuto necessitare di almeno 120 host (+ IP Network, IP Broadcast, IP Gateway). Abbiamo così assegnato a:

- Edificio 1
 - IP Network 192.168.0.0/25
 - IP Broadcast 192.168.0.127/25
 - IP Gateway 192.168.0.1/25
- Edificio 2
 - o IP Network 192.168.0.128/25
 - o IP Broadcast 192.168.0.255/25
 - IP Gateway 192.168.0.129/25

Successivamente abbiamo proceduto a connettere gli host di ogni piano con uno **switch** (2°L. ISO-OSI) e un **A/P** (2°L. ISO-OSI), per poi connettere tutti gli switch tra di loro e infine mettendoli in comunicazione mediante un **router** (3°L. ISO-OSI) secondo il seguente schema:

EDIFICIO 2

EDIFICIO 2

IP NETWORK

192.168.0.128/25

IP BROADCAST

192.168.0.255/25

IP GATEWAY

192.168.0.129/25

Per collegare tra loro i dispositivi si sono utilizzati dei cavi FAST-ETHERNET.

I laptop utilizzati in questo progetto sono degli *ASUS ExpertBook B9 B9400CBA-KC0641X*,
gli switch sono dei *Cisco WS-C3750X-48P-L*, il router è un *Cisco C891F-K9*, mentre gli A/P sono dei *Cisco AIR-CAP2702I-E-K9*.

LAPTOP - ASUS ExpertBook B9 B9400CBA-KC0641X

SWITCH - Cisco WS-C3750X-48P-L

• ROUTER - Cisco C891F-K9

ACCESS POINT - Cisco AIR-CAP2702I-E-K9

SPESA PREVISTA

OGGETTO	TIPOLOGIA	QUANTITA'	COSTO x PEZZO	COSTO TOTALE
PC/laptop	ASUS ExpertBook B9 B9400CBA- KC0641X	240	1.319,78 €	316.747,20 €
Switch	Cisco WS-C3750X- 48P-L	8	1.699,00 €	13.592,00 €
Access Point	Cisco AIR- CAP2702I-E-K9	8	35,00 €	280,00 €
Router	Cisco C891F-K9	1	579,00 €	579,00 €
Cavo fast-ethernet	1	55 m	3,50 €/m	192,50 €
Mano d'opera	/	16 h	55 €/h	880,00€
Costo totale				332.270,70 €

CONCLUSIONI

VANTAGGI:

- Questa soluzione è sicuramente la più economica e quella che utilizza meno dispositivi.
- Permette di avere una maggiore accessibilità generale poiché utilizza soltanto due IP di network:
 uno per ogni edificio, e quindi solamente due subnet.

SVANTAGGI

Questa soluzione non è la migliore in termini di sicurezza in quanto avere solamente solamente 2
 IP di network e quindi due subnet rende sicuramente i dispositivi di ogni edificio più vulnerabili ad eventuali exploit.

SOLUZIONE 2

SUBNET PER OGNI PIANO DI OGNI PALAZZO

Per applicare questa soluzione abbiamo come prima cosa fatto il conteggio di tutte le reti e di tutti gli host di cui necessitavamo e abbiamo poi scelto la classe di indirizzi IP che risultava essere più idonea: in questo caso abbiamo optato per la classe C con i suoi conseguenti IP privati (192.168.0.0/24 – 192.168.255.255/24). Successivamente abbiamo deciso di suddividere ogni piano di ogni palazzo con una propria subnet, considerando che ogni piano avrebbe dovuto necessitare di almeno 30 host (+ IP Network, IP Broadcast, IP Gateway).

Abbiamo così assegnato a:

Edificio 1

- o piano 1
 - IP Network 192.168.0.0/26
 - IP Broadcast 192.168.0.63/26
 - IP Gateway 192.168.0.1/26
- o piano 2
 - IP Network 192.168.0.64/26
 - IP Broadcast 192.168.0.127/26
 - IP Gateway 192.168.0.65/26
- o piano 3
 - IP Network 192.168.0.128/26
 - IP Broadcast 192.168.0.191/26
 - IP Gateway 192.168.0.129/26
- o piano 4
 - IP Network 192.168.0.192/26
 - IP Broadcast 192.168.0.255/26
 - IP Gateway 192.168.0.193/26

Edificio 2

- o piano 1
 - IP Network 192.168.1.0/26
 - IP Broadcast 192.168.1.63/26
 - IP Gateway 192.168.1.1/26
- o piano 2
 - IP Network 192.168.1.64/26
 - IP Broadcast 192.168.1.127/26
 - IP Gateway 192.168.1.65/26

- opiano 3
 - IP Network 192.168.1.128/26
 - IP Broadcast 192.168.1.191/26
 - IP Gateway 192.168.1.129/26
- o piano 4
 - IP Network 192.168.1.192/26
 - IP Broadcast 192.168.1.255/26
 - IP Gateway 192.168.1.193/26

Successivamente abbiamo proceduto a connettere gli host di ogni piano con uno **switch** (2°L. ISO-OSI) un **A/P** (2°L. ISO-OSI) e un **router** (3°L. ISO-OSI), per poi connettere tutti i router tra di loro e infine mettendoli in comunicazione mediante un altro router secondo il seguente schema:

EDIFICIO 1

EDIFICIO 2

Per collegare tra loro i dispositivi si sono utilizzati dei cavi FAST-ETHERNET.

I laptop utilizzati in questo progetto sono degli *ASUS ExpertBook B9 B9400CBA-KC0641X*,
gli switch sono dei *Cisco WS-C3750X-48P-L*, i router sono dei *Cisco C891F-K9*, mentre gli A/P sono dei *Cisco AIR-CAP2702I-E-K9*.

LAPTOP - ASUS ExpertBook B9 B9400CBA-KC0641X

• SWITCH - Cisco WS-C3750X-48P-L

• ROUTER - Cisco C891F-K9

• ACCESS POINT - Cisco AIR-CAP2702I-E-K9

SPESA PREVISTA

OGGETTO	TIPOLOGIA	QUANTITA'	COSTO x PEZZO	COSTO TOTALE
PC/laptop	ASUS ExpertBook B9 B9400CBA- KC0641X	240	1.319,78 €	316.747,20 €
Switch	Cisco WS-C3750X- 48P-L	8	1.699,00 €	13.592,00 €
Access Point	Cisco AIR- CAP2702I-E-K9	8	35,00 €	280,00 €
Router	Cisco C891F-K9	9	579,00 €	5.211,00 €
Cavo fast-ethernet	1	55 m	3,50 €/m	192,50 €
Mano d'opera	/	16 h	55 €/h	880,00€
Costo totale				336.902,70 €

CONCLUSIONI

VANTAGGI:

 Questa soluzione è sicuramente migliore in termini di sicurezza in quanto avere 8 subnet rende sicuramente i dispositivi di ogni edificio meno vulnerabili ad eventuali attacchi hacker.

SVANTAGGI

- Questa soluzione è meno economica della precedente in quanto utilizza che utilizza più dispositivi.
- o Garantisce una minore accessibilità generale poiché la rete è più frammentata.