MT251P - Lecture 8

Fiacre Ó Cairbre

Remark 2.

Once we know the intial point A and the terminal point B of a vector \underline{v} , then we can think of \underline{v} in terms of the coordinates of A and B.

For example, denote the usual two–dimensional xy–plane by

$$\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}$$

and suppose

$$A = (x_1, y_1), B = (x_2, y_2) \in \mathbb{R}^2$$

Then the vector $\underline{v} = \overrightarrow{AB}$ can be written in many ways including:

$$\underline{v} = (x_2 - x_1, y_2 - y_1)$$

$$\underline{v} = v_1 i + v_2 j$$
, where $v_1 = x_2 - x_1$, $v_2 = y_2 - y_1$

 \underline{v} is called the displacement vector.

Example 1.

Suppose $\underline{v} = \overrightarrow{AB}$, where A = (2, 1), B = (4, -6). Then,

$$\underline{v} = (4-2)i + (-6-1)j = 2i - 7j$$

Remark 3.

0i + 0j is called the zero vector.

Theorem 1.

Suppose $\underline{w} = w_1 i + w_2 j$, $\underline{v} = v_1 i + v_2 j$ and $t \in \mathbb{R}$. Then

(a)
$$\underline{w} + \underline{v} = (w_1 + v_1)i + (w_2 + v_2)j$$
.

- (b) $t\underline{w} = tw_1i + tw_2j$.
- (c) The magnitude (or length) of \underline{v} is denoted by $||\underline{v}||$ and satisfies

$$||\underline{v}|| = \sqrt{{v_1}^2 + {v_2}^2}$$

1

(d) The dot (or scalar) product of \underline{w} and \underline{v} is denoted by $\underline{w}.\underline{v}$ and is defined by

$$\underline{w}.\underline{v} = w_1v_1 + w_2v_2$$

(e) Suppose neither \underline{w} nor \underline{v} is the zero vector. Then, $\underline{w}.\underline{v} = ||\underline{w}||||\underline{v}||\cos\theta$, where θ is the angle between \underline{w} and \underline{v} and $0 \le \theta \le \pi$.

Example 2.

Suppose $E=(0,0),\ F=(2,-7)$ and $\underline{w}=\vec{EF}$. Then, $\underline{w}=\underline{v}$ from example 1 because $\underline{w}=2i-7j$. This is an example of the fact that \vec{AB} (from example 1) may equal \vec{EF} even though $A\neq E$ and $B\neq F$. The reason that \vec{AB} and \vec{EF} are actually the same vector is because \vec{AB} and \vec{EF} both have the same magnitude and direction.

The following picture shows \vec{AB} and \vec{EF}

Example 3.

Suppose $\underline{w} = 2i - 3j$, $\underline{v} = 4i + 2j$. Then

$$\underline{w} + \underline{v} = 6i - j$$

$$2\underline{v} = 8i + 4j$$

$$||\underline{w}|| = \sqrt{4+9} = \sqrt{13}$$

$$\underline{w}.\underline{v} = 2(4) + (-3)2 = 2$$

Definition 1.

The non–zero vectors \underline{v} , \underline{w} are said to be perpendicular (or orthogonal) if the angle between \underline{v} and \underline{w} is $\frac{\pi}{2}$.

We also define the zero vector to be perpendicular to any vector.

Remark 4.

Two vectors \underline{v} , \underline{w} in \mathbb{R}^2 are perpendicular $\iff \underline{v}.\underline{w} = 0$

Example 4.

Suppose $\underline{u} = 3i - 2j$ and $\underline{w} = 4i + 6j$. Then, find the angle between \underline{u} and \underline{w} .

Solution.

Note that $\underline{u}.\underline{w} = 0$ and so \underline{u} and \underline{w} are perpendicular. Hence, the angle between \underline{u} and \underline{w} is $\frac{\pi}{2}$.

Here is a picture of this example:

Remark 5.

Suppose A = (0,0), $B = (x_1, x_2)$. Then the vector $\underline{v} = AB$ is called a position vector. So, a position vector is a vector that has the origin (0,0) as initial point.