

MACHINE LEARNING FRAMEWORK

The basics of PyTorch

Advantages

O1 Easier to learn than Tensorflow

Tensorflow vs PyTorch

No more "add, compile, build".PyTorch's graph construction is dynamic

O3 PyTorch also integrates with TensorBoard (visualization tool)

Quickstart (b)

- Working with data
- Creating models
- Optimizing the Model Parameters
- Training steps
- Testing steps
- Saving and Loading a model

Working with data

- torch.utils.data.Dataloader
- torch.utils.data.Dataset

torch.utils.data.Dataloader

torch.utils.data.Dataset

DATASET

Working with data

Libraries TorchText, TorchVision, TorchAudio include datasets like COCO, FashionMNIST, ImageNet...

```
from torchvision import datasets
from torchvision.transforms import ToTensor

training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)
```


Working with data

Libraries TorchText, TorchVision, TorchAudio include datasets like COCO, FashionMNIST, ImageNet...

- 1. We create a class that inherits from nn. Module
- 2. We define the layers of the network in the ___init___
 function
- 3. We specify how data will pass through the network in the forward function
- 4. To accelerate operations in the neural network, we move it to the GPU if available.

- 1. We create a class that inherits from nn. Module
- 2. We define the layers of the network in the __init__

```
function
                    class NeuralNetwork(nn.Module):
                        def __init__(self):
                            super(NeuralNetwork, self).__init__()
                            self.flatten = nn.Flatten()
                            self.linear_relu_stack = nn.Sequential(
                                nn.Linear(28*28, 512),
                                nn.ReLU(),
                                nn.Linear(512, 512),
                                nn.ReLU(),
                                nn.Linear(512, 10)
```

- 3. We specify how data will pass through the network in the forward function
- 4. To accelerate operations in the neural network, we move it to the GPU if available.

```
def forward(self, x):
    x = self.flatten(x)
    logits = self.linear_relu_stack(x)
    return logits
```



```
device = "cuda" if torch.cuda.is_available() else "cpu"
model = NeuralNetwork().to(device)
```

```
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
# Define model
class NeuralNetwork(nn.Module):
   def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
           nn.Linear(28*28, 512),
           nn.ReLU(),
           nn.Linear(512, 512),
           nn.ReLU(),
           nn.Linear(512, 10)
   def forward(self, x):
       x = self.flatten(x)
       logits = self.linear_relu_stack(x)
       return logits
model = NeuralNetwork().to(device)
print(model)
```

Optimizing the Model Parameters

- Loss ??
- Optimizer ??

```
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
```

Training steps

```
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
   model.train() 
    for batch, (X, y) in enumerate(dataloader):
       X, y = X.to(device), y.to(device)
        # Compute prediction error
                                                        Make a simple prediction
        pred = model(X)
                                                                     Compute the error
        loss = loss_fn(pred, y) 	—
        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
                                                                 Make the right adjustments
        optimizer.step()
        if batch % 100 == 0:
           loss, current = loss.item(), batch \star len(X)
           print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
```

Testing steps

```
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
   num_batches = len(dataloader)
   model.eval()
   test_loss, correct = 0, 0
   with torch.no_grad():
       for X, y in dataloader:
           X, y = X.to(device), y.to(device)
           pred = model(X)
           test_loss += loss_fn(pred, y).item()
                                                                                  Calculate the loss
           correct += (pred.argmax(1) == y).type(torch.float).sum().item()
   test_loss /= num_batches
   correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
```

Saving and Loading a model

Your own model

```
model = torch.load('model.pth')
torch.save(model, 'model.pth')
```

A predefined architecture

With the predefined pretrained model

```
model = models.vgg16(pretrained=True)
torch.save(model.state_dict(), 'model_weights.pth')
```

With another pretrained model

```
model = models.vgg16() # we do not specify pretrained=True, i.e. do not load default weights
model.load_state_dict(torch.load('model_weights.pth'))
```

Dive Deeper 3

- Tensors
- Autograd
- nn Module
- Optim

Tensors

What is it?

a Tensor is an n-dimensional array, and PyTorch provides many functions for operating on these Tensors.

Why?

Numpy is a great framework, but it cannot utilize GPUs to accelerate its numerical computations, but A PyTorch Tensor CAN!

How?

```
import torch
dtype = torch.float
device = torch.device("cpu")

a = torch.randn((), device=device, dtype=dtype)
p = torch.tensor([1, 2, 3])
```

Autograd

When using autograd, the forward pass of your network will define a computational graph; nodes in the graph will be Tensors, and edges will be functions that produce output Tensors from input Tensors. Backpropagating through this graph then allows you to easily compute gradients.

Autograd

```
learning_rate = 1e-6
for t in range(2000):
    # Forward pass: compute predicted y
    y \text{ pred} = a + b * x + c * x ** 2 + d * x ** 3
    # Compute and print loss
    loss = (y_pred - y).pow(2).sum().item()
    if t % 100 == 99:
        print(t, loss)
    # Backprop to compute gradients of a, b, c, d with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_a = grad_y_pred.sum()
    grad_b = (grad_y_pred * x).sum()
    grad_c = (grad_y_pred * x ** 2).sum()
    grad_d = (grad_y_pred * x ** 3).sum()
    # Update weights using gradient descent
    a -= learning_rate * grad_a
    b -= learning rate * grad b
    c -= learning_rate * grad_c
    d -= learning_rate * grad_d
```

learning_rate = 1e-6 for t in range(2000): # Forward pass: compute predicted y using operations on Tensors. $y_pred = a + b * x + c * x ** 2 + d * x ** 3$ # Compute and print loss using operations on Tensors. # Now loss is a Tensor of shape (1,) # loss.item() gets the scalar value held in the loss. $loss = (y_pred - y).pow(2).sum()$ **if** t % 100 == 99: print(t, loss.item()) # Use autograd to compute the backward pass. This call will compute the # gradient of loss with respect to all Tensors with requires_grad=True. # After this call a.grad, b.grad. c.grad and d.grad will be Tensors holding # the gradient of the loss with respect to a, b, c, d respectively. loss.backward() # Manually update weights using gradient descent. Wrap in torch.no_grad() # because weights have requires_grad=True, but we don't need to track this # in autograd. with torch.no_grad(): a -= learning_rate * a.grad b -= learning_rate * b.grad c -= learning_rate * c.grad d -= learning_rate * d.grad # Manually zero the gradients after updating weights a.grad = None b.grad = None c.grad = None With Autograd

d.grad = None

Without Autograd

nn Module

What is it?

The nn package defines a set of Modules, which are roughly equivalent to neural network layers.

Why?

For large neural networks raw autograd can be a bit too low-level.

• How?

```
model = torch.nn.Sequential(
    torch.nn.Linear(3, 1),
    torch.nn.Flatten(0, 1)
)

# The nn package also contains definitions of popular loss functions; in this
# case we will use Mean Squared Error (MSE) as our loss function.
loss_fn = torch.nn.MSELoss(reduction='sum')
```

Optim

What is it?

Provides implementations of commonly used optimization algorithms.

How?

```
learning_rate = 1e-3
optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate)
```

```
optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)
```

Conclusion

```
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
# Define model
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10)
    def forward(self, x):
       x = self.flatten(x)
       logits = self.linear_relu_stack(x)
        return logits
model = NeuralNetwork().to(device)
print(model)
```

Conclusion

```
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
   model.train()
   for batch, (X, y) in enumerate(dataloader):
       X, y = X.to(device), y.to(device)
        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)
        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
```

Conclusion

```
def test(dataloader, model, loss_fn):
   size = len(dataloader.dataset)
   num_batches = len(dataloader)
   model.eval()
   test_loss, correct = 0, 0
   with torch.no_grad():
        for X, y in dataloader:
           X, y = X.to(device), y.to(device)
            pred = model(X)
           test_loss += loss_fn(pred, y).item()
           correct += (pred.argmax(1) == y).type(torch.float).sum().item()
   test_loss /= num_batches
   correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
```

Thank You

