一、 判断题

1.

()已知汞的元素电势图如下 : φ_{-A}°/v $Hg^{2^{+}}$ 0.906v $Hg_{2}^{2^{+}}$ 0.797v Hg则亚汞离子的歧化反应平衡常数计算式为:

$$\lg K^{\theta} = \frac{1}{0.0592}(0.797 - 0.906)$$

- 2. () 在一自发进行的电极反应的方程式中, 若诸物质所得(失) 电子数同时增大为 n 倍时, 此电极反应的 ΔG 和 φ 的变化情况是变小和变大。
- 3. ()电池 Cu | Cu⁺||Cu⁺ ,Cu²⁺ | Pt 和电池 Cu | Cu²⁺||Cu²⁺ ,Cu⁺ | Pt 的反应均 写成 $Cu + Cu^{2+} = 2 Cu^{+}$,此两电池的 $\Delta r G_{m}^{\theta}$, E^{θ} 均相同。
- 4. () 电解某一溶液时,在阴极上析出的物质是 φ 值较大的电对中的氧化态物质。
- 5. () 电解时,由于超电压的存在,使实际分解电压与理论分解电压不等,这是由于阳 极的实际析出电势减小,而阴极的实际析出电势增加。
- 6.() 在热力学上判断为不可能发生的反应,往往通过电解是可以进行的。
- 7. () 可逆电池是指既可充电又可放电的原电池。
- 8. () 电镀铜时, 应以镀件作阳极, 以粗铜作阴极。
- 9. () 由于 $\varphi^{\Theta}(Zn^{2+}/Zn) > \varphi^{\Theta}(H^{+}/H_{2})$,所以电解 $ZnCl_{2}$ 水溶液时,在阴极得到的是氢 气而不是金属锌。
- 10.()标准状态时,若微小浓度的改变就可以使某个氧化还原反应的方向逆转,则用该 反应组成的原电池, 其标准电动势应接近于零。

二、 选择题

根据铁在酸性溶液中的电势图,下列说法中错误的是** ()

$$Fe^{3+}$$
 $\frac{+ 0.77v}{}$ Fe^{2+} $\frac{- 0.44v}{}$ Fe

A、φ[©](Fe³⁺/Fe) = -0.04 v B、Fe 与稀酸反应生成 Fe²⁺ 和氢气

C、在酸性溶液中 Fe²⁺ 能发生歧化反应 D、Fe 与氯气反应生成 Fe³⁺ 和 Cl⁻

2.

根据铬在酸性溶液中的元素电势图可知 , $\varphi^{\Theta}(Cr^{2+}/Cr)$ 为**

 $A_s = -0.58 \, \text{v}$ $B_s = -0.91 \, \text{v}$ $C_s = -1.32 \, \text{v}$ $D_s = -1.81 \, \text{v}$

Q	
v	•

() 在锌锰干电池中有二氧化锰(MnO₂),它的主要作用是** A、吸收反应中产生的水分 B、起导电作用 C、作为填料 D、参加正极反应 4. 电解熔融的 ZnCl2 制取金属锌 , 如果将 0.010 A 电流通过 1 h , 在阴极上析出锌的质 量为(原子量: Zn 65.4)*** () A、0.010 g B、0.012 g C、0.024 g D、0.036 g 5. 由下列电势图可确定 298K 时给定反应的平衡常数为*** () $T1^{3+}$ $T1^{+}$ - 0.34v+0.72 v $3 \text{ T1}^+ = \text{T1}^{3^+} + 2 \text{T1}$ A, 3.8×10^{-66} B, 1.3×10^{-54} C, 7.0×10^{30} D, 2.1×10^{17} 6. 在潮湿空气中的钢铁发生电化学腐蚀, 其阴极反应是*** () A, Fe = $Fe^2 + 2e^-$ B, $O_2 + 2H_2O + 4e^- = 4OH^ C_{x} 2 H^{+} + 2 e^{-} = H_{2}$ $D_{x} Fe^{2+} + 2 OH^{-} = Fe (OH)_{2}$ 7. 已知原电池 (-)Pt $| Fe^{2+}(m_1), Fe^{3+}(m_2) | | Ag^+(m_3) | Ag^-(+)$ 的 $E^{\theta} = 0.0296 \, \text{v}$ 。若 原电池的电动势等于零时 Fe^{2+} 和 Fe^{3+} 的浓度相等,则此时 Ag^{+} 的浓度为**** () A, $3.15 \text{ mol} \cdot \text{kg}^{-1}$ B, $0.1 \, \text{mol} \cdot \, \text{kg}^{-1}$ C_{s} 0.315 mol·kg⁻¹ D、1 $mol \cdot kg^{-1}$ 8. 以惰性电极电解一段时间后, pH 值增大的溶液是 ** () A、HCI B、H₂SO₄ C、Na₂SO₄ D、NaHSO₄ 三、 简答题

1. 在氯水中发生下述反应: $Cl_2 + H_2O = H^{\dagger} + Cl^{-} + HClO$ 已知: $\varphi^{\theta}(Cl_2/Cl_2) = 1.36 \text{ V}$, $\varphi^{\theta}(HClO/Cl_2) = 1.63 \text{ V}$, 求: 当 Cl_2 的分压为 φ^{θ} 时,氯水的 pH 值。

已知 $[H^+]=1.0 \, \underline{\text{mol}} \cdot L^{-1}$ 时 ,锰的元素电势图 (φ°/v):

$$MnO_4^{-0.564}MnO_4^{2-2.26}MnO_2^{-0.95}Mn^{3+1.51}Mn^{2+1.51}Mn^{2+1.18}Mn^{2+1.18}$$

- (1) 指出哪些物质在酸性溶液中会发生歧化反应;
- (2) 计算 $\varphi^{\circ}(MnO_4^{-}/Mn^{2+})$;
- (3) 写出用电对 Mn²⁺/Mn 与标准氢电极组成原电池的电池符号及该电池的自发反应的方程式。***

3.

根据酸性条件下的下面两个元素电势图:

 IO_3^- — HIO — I_2 — I_2 — I_3 — I_4 — I_5 — I_5 — I_7 — I_8 — I_8 — I_9 —

- (1) 计算 $\varphi^{\circ}(IO_3^{-}/I^{-})=?$ $\varphi^{\circ}(IO_3^{-}/HIO)=?$
- (2) 指出图中哪些物质能发生歧化反应,并写出反应方程式;
- (3) 从电极电势考虑,在酸性介质中 HIO3 与 H2O2 能否反应?
- (4) 从电极电势考虑,在酸性介质中 I2与 H2O2 能否反应?
- (5) 综合考虑 (3) 、(4) ,你认为 HIO_3 与 H_2O_2 反应最终结果是什么?写出反应方程式 说明之。****

答案

$$\sqrt{\times}$$

CBDBB BCA

电池反应式: $Cl_2 + H_2O = H^+ + Cl^- + HClO$

$$\lg \underbrace{\mathbb{K}^{\circ}}_{} = \lg \frac{[H^{+}][Cl^{-}][HClO]}{p_{Cl_{2}}}$$

$$\lg \underline{K}^{\circ} = \frac{nE^{\theta}}{0.0591} = \frac{1 \times (1.36 - 1.63)}{0.0591} = -4.57 \qquad \underline{K}^{\circ} = 2.7 \times 10^{-5}$$

因为平衡时 $[H^{+}]=[Cl^{-}]=[HClO]=x$

则
$$\frac{x^3}{1} = 2.7 \times 10^{-5}$$
 解得 $x = [H^+] = 0.03 \text{ (mol } \cdot L^{-1})$

$$pH = (-lg \ 0.03) = 1.52$$

- (1) 根据在元素电势图中 $\varphi^{\circ}_{\pm} > \varphi^{\circ}_{\pm}$ 时 ,中间物种将自发歧化 ,可推断在酸性条件下 锰的元素电势图中会发生歧化的物种是 MnO_4^{2-} 和 Mn^{3+} 。
- (2) $\varphi^{\circ}(\underline{\text{MnO}}_{4}^{-}/\text{Mn}^{2+}) = \frac{1 \times 0.564 + 2 \times 2.26 + 1 \times 0.95 + 1 \times 1.51}{5} = 1.51 \text{ (v)}$
- (3) Mn (s) | Mn (c₁) | H⁺ (1.0 mol·L⁻¹) | H₂ (g, 100kPa), Pt 该电池自发反应的方程式为 2 H⁺ + Mn = Mn²⁺ + H₂ ↑

49. (1)
$$\varphi^{\circ}(\text{IO}_{3}^{-}/\Gamma) = \frac{5 \times 1.20 + 1 \times 0.53}{6} = 1.09 \text{ (v)}$$

$$\varphi^{\circ}(\text{IO}_{3}^{-}/\text{HIO}) = \frac{5 \times 1.20 - 1 \times 1.45}{4} = 1.14 \text{ (v)}$$

(2) 根据在元素电势图中 $\varphi^{\circ}_{a}>\varphi^{\circ}_{z}$ 时 ,中间物种将自发歧化 ,可推断在酸性条件下

HIO 和 H_2O_2 可发生歧化反应 , 有关反应式如下 :

$$10\,HIO\,=\,2\,HIO_3\,+\,4\,I_2\,+\,4\,H_2O$$

$$2\,H_2O_2\,=\,2\,H_2O\,+\,O_2$$

(3) 因为在酸性介质中 $\varphi^{\circ}(IO_{3}^{-}/I^{-})>\varphi^{\circ}(O_{2}/H_{2}O_{2})$,所以 HIO_{3} 与 $H_{2}O_{2}$ 能反应 。

因为在酸性介质中 $\varphi^{\circ}(IO_3^-/I_2) < \varphi^{\circ}(H_2O_2/H_2O)$,所以 I_2 与 H_2O_2 能反应 。

(4) 由于发生下述反应 , 所以最终结果是 H2O2 完全分解 :

$$\begin{array}{l} 2~HIO_3~+~5~H_2O_2~=~I_2~+~5~O_2~+~6~H_2O \\ 5~H_2O_2~+~I_2~=~2~HIO_3~+~4~H_2O \end{array}$$

反应总结果是 $2 H_2 O_2 = O_2 + 2 H_2 O$