HW2_yye1997

Youhui Ye

8/30/2020

Problem 3

From my point of view, I will definitely use version control on my future's programming. Even though I finish projects on my own, it give me chance to make mistakes and to test a new feature. Needless to say, it allows us to develop different versions when we are cooperating with others.

Problem 4

a.

First, we need to get the data from the link above:

```
## getting "https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/fullgirder.dat"
# girder_data_raw <- fread("https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/fullgirder.dat")
# saveRDS(girder_data_raw, "girder_data_raw.RDS")
girder_data_raw <- readRDS("girder_data_raw.RDS")</pre>
```

Need to tidy the data, basic issue is sites are columns, need to push them into a column.

We have converted the data frames to tidy data frames using the base functions. Here is a summary of the data:

girder	value	method
Length:90 Class :character Mode :character NA NA	Min. :0.5600 1st Qu.:0.8582 Median :0.9310 Mean :0.9685 3rd Qu.:1.0617	Aarau: 9 Karlsruhe: 9 Lehigh: 9 Cardiff: 9 Gothenburg: 9
NA NA	Max. :1.5590 NA	Osaka : 9 (Other) :36

Now, we use tidyverse to tidy data frames again.

```
## stack and fix column names using tidyverse
girder_data_tidy_tv <- girder_data_raw %>% gather(key="method", value="value", Aarau:Zurich)
```

b.

First, we need to get the data from the link above:

```
## getting "https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/LongJumpData.dat"
# LongJump_data_raw <- fread("https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/LongJumpData.dat")
# names(LongJump_data_raw) <- make.unique(names(LongJump_data_raw))
# saveRDS(LongJump_data_raw, "LongJump_data_raw.RDS")
LongJump_data_raw <- readRDS("LongJump_data_raw.RDS")</pre>
```

Need to tidy the data, basic issues are "LongJump" was regarded as two separated words and 2 variables were split into several parts.

We have converted the data frames to tidy data frames using the base functions. Here is a summary of the data:

Year	LongJump
Min. :-4.00	Min. :249.8
1st Qu.:21.00	1st Qu.:295.4
Median:50.00	Median $:308.1$
Mean $:45.45$	Mean $:310.3$
3rd Qu.:71.00	3rd Qu.:327.5
Max. :92.00	Max. $:350.5$

Also, the scatter plot and the fitted line show a positive relationshup between 2 variables.

Now, we use tidyverse to clean and tidy data again.

```
## stack and fix column names using tidyverse
## making new names for the data set
colnames(LongJump_data_raw) <- pasteO(c("Year","LongJump"),rep(1:6,each=2))
LongJump_data_tv <- LongJump_data_raw %>%
  melt( measure=patterns("^Year", "^LongJump"),
     value.name=c("Year", "LongJump"),na.rm =TRUE) %>%
  select(-variable)
```

c.

First, we need to get the data from the link above:

```
 \begin{tabular}{ll} \# getting $"https://https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/BrainandBodyWeight.dat" \\ \# bbw_data_raw <- fread("https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/BrainandBodyWeight.dat" \\ \end{tabular}
```

```
# saveRDS(bbw_data_raw, "bbw_data_raw.RDS")
bbw_data_raw <- readRDS("bbw_data_raw.RDS")</pre>
```

Need to tidy the data, basic issues are the same as the last one.

Here is a summary table of body and brain weight.

BodyWt	BrainWt
Min. : 0.005	Min.: 0.10
1st Qu.: 0.600	1st Qu.: 4.25
Median: 3.342	Median: 17.25
Mean: 198.790	Mean: 283.13
3rd Qu.: 48.202	3rd Qu.: 166.00
Max. :6654.000	Max. :5712.00

Also, the scatter plot and the fitted line show a positive relationship between 2 variables. There seem to be 2 outliers,

Now, we use tidyverse package to tidy this data set again.

```
colnames(bbw_data_raw) <- paste0(c("BodyWt","BrainWt"),rep(1:6,each=2))
bbw_data_tv <- bbw_data_raw %>%
  melt( measure=patterns("^BodyWt", "^BrainWt"),
     value.name=c("BodyWt", "BrainWt"),na.rm =TRUE) %>%
  select(-variable)
```

d.

First, we need to get the data from the link above:

```
## getting "https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat" # ty_{data_raw} \leftarrow fread("https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat") # saveRDS(ty_{data_raw}, "ty_{data_raw}.RDS") ty_data_raw <- readRDS("ty_data_raw.RDS")
```

Need to tidy the data, basic issues are densities are columns and one cell contains multiple values.

Here is a summary table of tomato yield.

Variety	Density	Yield
Length:18	Length:18	Min.: 8.10
Class:character	Class:character	1st Qu.:12.95
Mode :character	Mode :character	Median $:15.35$
NA	NA	Mean $:15.07$
NA	NA	3rd Qu.:17.88
NA	NA	Max. $:21.00$

Also, the boxplot by density and variety shows apparent trends.

Now, we use tidyverse package to tidy this data set again.

```
ty_data_tv <- ty_data_raw %>%
    separate_rows("10000") %>%
    separate_rows("20000","30000") %>%
    gather(key = "Density", value = "Yield", "10000":"30000") %>%
    distinct() %>%
    na_if("") %>%
    drop_na()
```