Mean Daily Temperature by Month at SFU (n= 17582)

July and August are the warmest, and January and December are the coldest

Standardized Temperature Anomaly

Seasonal Mean Daily Precip. at SFU (n= 17582)

Q5

P(Precip > 0) and P(Precip > 0 | Monday) are almost equal, so they are independent.

Q6

```
> SFU.Weather$Temp.Seg <- factor(SFU.Weather$Temp.Seg, levels =
c("Cold","Mid","Warm"))
> tab <- table(SFU.Weather$Temp.Seg, SFU.Weather$Total.Precip.mm > 0)
>
> prop <- prop.table(tab, 1)[, "TRUE"]
> names(prop) <- c("P(>0|Cold)", "P(>0|Mid)", "P(>0|Warm)")
> prop
P(>0|Cold) P(>0|Mid) P(>0|Warm)
0.5714522 0.4879113 0.3971326
```

Yes, it does, because the probability of precipitation is highest on cold days.

Q7

```
P(Warm \mid Precip > 0) = \frac{P(Warm) P(Precip > 0 \mid Warm)}{P(Warm) P(Precip > 0 \mid Warm) + P(Mid) P(Precip > 0 \mid Mid) + P(Cold) P(Precip > 0 \mid Cold)})
> P_warm <- sum(tab["Warm",]) / sum(tab)
> P_precip <- sum(tab[, "TRUE"]) / sum(tab)
> P_precip_given_warm <- tab["Warm", "TRUE"] / sum(tab["Warm",])
> P_precip_given_warm * P_warm / P_precip
[1] 0.2583654
```

Q8

```
> p <- prop.table(tab["Warm", , ], 1)[, "TRUE"]
> round(p, 5)
Summer Autumn Winter Spring
0.08699 0.42982 0.72125 0.34925
```

In general, precipitation is less likely on warm days; however, the seasonal effect is significant — warm days in winter are most likely to have precipitation, followed by autumn and spring, with summer being the least.

Effect of Warmth on Likelihood of Precip

The highest is December, $P(Precip > 0 | Warm) \approx 0.78156$