

程序代写代做 CS编程辅导

Introduction to

base Systems – Part 2

WeChat: cstutorcs

Math Concepts Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导 What are the Math Concepts behind Databases?

Set

Tuple

WeChat: cstutorcs

Assignment Project Exam Help

• Cartesian Product of Sets: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导 Set Notation

Container

WeChat: cstutores

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导 Set Notation

- We need set notation this course.
- A set is a collection of distinct elements.
 WeChat: estutores
- Two basic properties Assets ment Project Exam Help
 - The elements in a set have no order.
 e.g., {1,2,3}

 Engisil₁ tutorcs@163.com
 - Each element da Quot be in the interest more than once.
 e.g., {Monday, Monday, Tuesday, Wednesday, Thursday, Friday} is Not a temps Note that Multisets allow to have duplicate elements.

程序代写代做 CS编程辅导 Set Notation

- - $\{x_1,\ldots,x_n\}$ (i.e. elements in a set)
 - { 2, 3, 4, **W**eChat: cstutorcs
 - {Sydney, Melbourne, Canberra} Assignment Project Exam Help
 - {} or \emptyset , i.e., the *empty* set.

 Email: tutorcs@163.com
 - (i.e., describe the elements that satisfy a property φ)
 - {x | x is a student currently enrolled in COMP7240}
 - $\{x \mid x \text{ is an integer and } x > 0\}$

• Membership: $x \in A$

set A; $x \notin A$ if x is not in the set A.

WeChat: cstatorcs

Assignment Project Exam Help

Email: tatores@163.com

QQ $= \frac{49389476}{\text{https://turorcs.com}^3} \le \{1,2,3\}$

- Equality: If A and B \longrightarrow The property and
 - $\{x \mid x \text{ is an inte}$ and $x < 6 \} = \{2, 3, 4, 5\}$
 - If one set contains some element that is not in the other set, then they are different.
 Assignment Project Exam Help

Email: tutorcs@163.com
(1Q: 749389476

https://tutorcs.com

 $\{1,2\} \neq \{1,2,3\}$

- Subset: A is called $a \subseteq B$ if every element of A is in B and we write $A \subseteq B$;
- Proper subset: A is \square Lagrangian in the proper subset of B if $A \subseteq B$ and A and B are not equal, and we write $A \subseteq B$.

WeChat: cstutorcs

Assignment Project Exam Help 3
Email: tutores@163.com
QQ: \$\frac{49389476}{\frac{1}{1}}\$\frac{1}{2}\$\subseteq \frac{1}{1},2\} \subseteq \{1,2\} \{1,2\} \subseteq \{1,2,3\}

- Subset: A is called a B if every element of A is in B and we write A ⊂ B;
- Proper subset: A is \square toper subset of B if $A \subseteq B$ and A and B are not equal, and we write $A \subseteq B$.

WeChat: cstutorcs

Assignment Project Exam Help

 $\{1,2\} \subset \{1,2,3\}$

- Union: $A \cup B$ for the injury in A and everything in B.
 - ${3, 4, 5} \cup {3, 5, 7, 9} = {3, 4, 5, 7, 9}.$

WeChat: cstutorcs

- - {3, 4, 5} ∩ {3, **□ ? ? ? 4 ? 3**, 5}.

WeChat: cstutorcs

- **Difference**: A B is A B is the from A that are *not* in B
 - {3, 4, 5} {3, **4**, 5} **4**}.

WeChat: cstutorcs

程序代写代做 CS编程辅导 Set Operations – Exercise

- Let $A = \{1, 2, 3\}$ and $A = \{1, 2, 3\}$
- Which of the following are correct?
- We Chat: cstutorcs No! $\{2\} \subset A$ and $2 \in A$
 - ② true ⊂ B Assignm\tolth@coje@talick\timueHelp®
 - $\{2,3\}\subseteq A\cup B_{\text{Email: tulorcs}}$
 - \bigcirc 2 \in $A \cap B$

- No! $A \cap B = \{\}$
- **5** $2 \in A \{1, 3, 5\}$ **Q**: $749389476\{1, 3, 5\} = \{2\}$

Yes! $\emptyset = \{\}$, the empty set

2Email: tutorcs@163.com

OQ: 749389476 https://tutorcs.com

程序代写代做 CS编程辅导 Tuple Notation

- A tuple is an ordered ments.
 - (1,2,3,4,5)
 - (Melbourne, Sydney, Canberra)
- Two tuples are **equal** if they have the same elements in the same order.

 Assignment Project Exam Help
 - $(1,2,3) \neq (2,3,1)$ (i.e., the order does matter!)
- The same element can be into typically ice.
 - (Monday, Monday, Tuesday, Wednesday, Thursday, Friday, Friday) is a tuple.
- Ordered pairs are special cases of tuples.

QQ: 749389476

{2, 3, 4, **5**, **6**, **74**, **98**, **94**, **76**, J, Q, K, A}

- The Cartesian production takes an ordered list of sets, and returns a set of tuples.
- Cartesian product $D_1 \times D_n$ is the set of all possible combinations of values from the sets $D_1 \times D_n$: cstutorcs
- It contains all the tuples were the method to the second element from the second set, ...

 Email: tutorcs@163.com
- For example, $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$. If $A = \{2,3\}$ and B = Quibs, Diamonds, Hearts, Spades} Then $A \times B = \{(2, \text{Clubs}), (2, \text{Diamonds}), (2, \text{Hearts}), (2, \text{Spades}), (3, \text{Clubs}), (3, \text{Diamonds}), (3, \text{Hearts}), (9, \text{Spades})\}.$ (2, $C\text{lubs}) \in A \times B$, $(S\text{pades}, 3) \notin A \times B$, $(4, \text{Hearts}) \notin A \times B$, $(3, \text{Clubs}), (3, \text{Diamonds}), (3, \text{Hearts}), (3, \text{Spades})\} \subseteq A \times B$

{2, 3, 4, 5 (2, 2), 9, 10, J, Q, K, A}

| (2, 3, 4, 5) (2, 2), (3, 4), (4, 4)

2 3 4 s signment Project, Exam Help
2 3 5 s signment Project, Exam Help
2 5 s signment Project, Exam Help
2 6 s signment Project, Exam Help
2 7 s signment Project, Exam Help
2 7 s signment Project, Exam Help
2 8 s signment Project, Exam

9, 10, J, Q, K, A}

Assignment Project Exam Help Engal Full to 1880 (1988) Exam Help

STRAIGHT

sian product of sets. A relation is a subset

Example

- Let $X = \{Canberra Paris, Tokyo Kyoto\}$, and $Y = \{Australia, France, Japan\}$
- Let $R = \{(a, b) | Assignment Project Exam Help \}$
- It is easy to sectionally is the property of the second section of the second section of the second secon
 - $R \subseteq X \times \mathbb{Q}Q$: 749389476
 - (Canberratapstratiat @ ₱ (Pans, France) ∈ R but (Tokyo, France) $\notin R$, (France, Japan) $\notin R$

A relation is a subset

sian product of sets.

Example

- WeChat: cstutorcs
 Let $\mathbb{Z} = \{..., -1, 0, 1, 2, ...\}$, the set of all integers
- Let $R = \{(x, y) \mid x \in \mathbb{Z}, y \in \mathbb{Z} \text{ and } x \in \mathbb{Z}, y \in \mathbb{Z} \}$
- It is easy to sectional is it is the transfer of the section of
 - $R \subseteq \mathbb{Z} \times \mathbb{Q}Q$: 749389476
 - (0,1) ∈ Fhttps://tytenss.com but $(0,0) \notin R$, $(100,-2) \notin R$.