

Description

Image

Caption

1. Close-up of the material. © Granta Design 2. Slate is used as a roof and wall covering as well as for construction. © Granta Design

The material

Slates are formed by the deposition of clay and mud, consolidated by pressure. Their most striking features are their ability to be cleaved, producing flat slabs or sheets, and their impermeability to water in a direction normal to the cleavage plain. Because of this, slate has been used for centuries for roof tiles, pavings and floors when laid directly on bare earth. Slate is exceptionally durable and weather resistant: if maintained, slate roofs last for hundreds of years. The fine texture and uniform subdued coloring leads also to the decorative use of slate, in stair treads, signs and grave stones.

Compositional summary

Slate is a form of shale, a complex

General properties

Density	162	-	181	lb/ft^3
Price	* 0.308	-	0.404	USD/lb
Date first used	-10000			

Mechanical properties

Young's modulus	8.7	-	13.1	10^6 psi
Shear modulus	* 2.9	-	4.35	10^6 psi
Bulk modulus	* 7.25	-	11.6	10^6 psi
Poisson's ratio	* 0.22	-	0.3	
Yield strength (elastic limit)	* 2.18	-	4.35	ksi
Tensile strength	* 2.18	-	4.35	ksi
Compressive strength	17.4	-	25.4	ksi
Elongation	0			% strain
Hardness - Vickers	22	-	60	HV

Slate Page 2 of 5

Fatigue strength at 10^7 cycles	* 1.45	-	1.74	ksi
Fracture toughness	* 0.364	-	1	ksi.in^0.5
Mechanical loss coefficient (tan delta)	* 0.001	-	0.003	

Thermal properties

Maximum service temperature	* 662	-	932	°F
Minimum service temperature	-58	-	-22	°F
Thermal conductor or insulator?	Poor ins	sulat	or	
Thermal conductivity	0.693	-	1.21	BTU.ft/h.ft^2.F
Specific heat capacity	0.203	-	0.213	BTU/lb.°F
Thermal expansion coefficient	5.56	-	6.67	µstrain/°F

Electrical properties

Electrical conductor or insulator?	Good in	sula	tor	
Electrical resistivity	* 1e12	-	1e14	µohm.cm
Dielectric constant (relative permittivity)	* 8	-	15	
Dissipation factor (dielectric loss tangent)	* 0.001	-	0.005	
Dielectric strength (dielectric breakdown)	* 127	-	305	V/mil

Optical properties

Transparency Opaque	
---------------------	--

Processability

•			
Machinability	3	- 4	

Durability: water and aqueous solutions

Water (fresh)	Excellent
Water (salt)	Excellent
Soils, acidic (peat)	Excellent
Soils, alkaline (clay)	Excellent
Wine	Excellent

Durability: acids

Acetic acid (10%)	Excellent
Acetic acid (glacial)	Excellent
Citric acid (10%)	Excellent
Hydrochloric acid (10%)	Excellent
Hydrochloric acid (36%)	Excellent
Hydrofluoric acid (40%)	Unacceptable
Nitric acid (10%)	Excellent
Nitric acid (70%)	Excellent
Phosphoric acid (10%)	

	Excellent
Phosphoric acid (85%)	Excellent
Sulfuric acid (10%)	Excellent
Sulfuric acid (70%)	Excellent

Durability: alkalis

Sodium hydroxide (10%)	Excellent
Sodium hydroxide (60%)	Excellent

Durability: fuels, oils and solvents

Excellent
Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)	Excellent
Fluorine (gas)	Acceptable
O2 (oxygen gas)	Excellent
Sulfur dioxide (gas)	Excellent

Durability: built environments

Industrial atmosphere	Excellent
Rural atmosphere	Excellent
Marine atmosphere	Excellent
UV radiation (sunlight)	Excellent

Durability: flammability

Flammability	Non-flammable
--------------	---------------

Durability: thermal environments

Tolerance to cryogenic temperatures	Excellent
Tolerance up to 150 C (302 F)	Excellent
Tolerance up to 250 C (482 F)	Excellent
Tolerance up to 450 C (842 F)	Excellent
Tolerance up to 850 C (1562 F)	Unacceptable
Tolerance above 850 C (1562 F)	Unacceptable

Primary material production: energy, CO2 and water

Embodied energy, primary production	126	-	140	kcal/lb
CO2 footprint, primary production	0.0698	-	0.0772	lb/lb
Water usage	* 0.387	-	0.428	gal(US)/lb
Eco-indicator 99	34			millipoints/kg

Material processing: energy

Grinding energy (per unit wt removed)	* 1.14e3 -	1.26e3	kcal/lb

Material processing: CO2 footprint

	•				
Grinding CO2 (per unit wt removed)		* 0.788	-	0.871	lb/lb

Material recycling: energy, CO2 and recycle fraction

Recycle	×
Recycle fraction in current supply	* 5 - 10 %
Downcycle	✓
Combust for energy recovery	×
Landfill	✓
Biodegrade	×
Toxicity rating	Non-toxic
A renewable resource?	×

Environmental notes

Slate in bulk is chemically inert and non-toxic. Silicate dust created by cutting causes respiratory damage.

Supporting information

Design guidelines

Slate Page 5 of 5

Slate is an exceptionally stable and inert material. Slate roofs last between 30 and 100 years, depending on the climate. It can be damaged by severe frost.

Technical notes

Slate cleaves easily to give surfaces that can be extremely flat -- its use as the surface of a billiard table is an example. Its fine texture allows delicate incising and carving.

Typical uses

Roof tiles, paving, floors, stair treads, table tops (including billiard and snooker tables), chalk boards, electric panels, gravestones and other monumental signs.

Further reading

Doran, D.K. (ed.) Construction materials reference book, Butterworth Heinemann, Oxford (1992)

Links

Reference

ProcessUniverse

Producers