Primeiro Trabalho Prático Individual

INF - 01113: Organização de Computadores B

Turma B – Prof. Philippe O. A. Navaux – 2011/2

Data Final para Entrega: 29/09/2011

1. Especificação.

O trabalho baseia-se na execução de três benchmarks em um simulador da arquitetura MIPS (simplescalar). Através das simulações, serão obtidos o IPC e o número de ciclos de execução.

O objetivo deste trabalho é a avaliação do impacto da variação de dois quesitos:

- 1. Preditor de desvios.
- 2. Grau de superescalaridade.

Cada aluno deverá utilizar três aplicações (descritas na seção 2) em três configurações diferentes por quesito. O aluno deverá produzir um documento constando (por quesito):

• Uma tabela (para cada benchmark) com os resultados das simulações no formato abaixo.

Nome do Benchmark					
	IPC (sim_IPC)	Número de Ciclos (sim_cycle)			
Configuração					
1					
Configuração					
2					
Configuração					
3					

- Apresentar justificativas (para cada benchmark) para os resultados obtidos, bem como gráficos com os dados das simulações. Essa análise dos resultados deve abordar, no mínimo, uma relação entre os resultados e as características do benchmark, e o porquê da possível variação do IPC obtido.
- Avaliar (por quesito) a possível diferença nos resultados das aplicações sobre a mesma configuração. Ou seja, abordar quais as conseqüências das características da aplicação nos resultados.

2. A respeito dos benchmarks.

As aplicações que serão utilizadas são as seguintes.

- MM: Multiplicação de matrizes.
- CRC: Cyclic redundancy check, algoritmo de detecção de erros.
- GO: Aplicação de IA, simula dois jogadores se confrontando no jogo Go.

Para tonar mrais claro o comportamento desses programas, abaixo é apresentada uma tabela com o número de instruções executadas de cada classe por eles ao se utilizar os arquivos de entrada fornecidos. (nem todas as classes de instrução são mostrados na tabela):

	MM	CRC	GO
Load	898317 (11.66%)	12988 (21.49%)	3090393 (18.87 %)
Store	146089 (1.90%)	10815 (17.89%)	892851 (5.45 %)
Desvio Incondicional	150519 (1.95%)	4567 (7.56%)	475522 (2.90%)
Desvio Condicional	136344 (1.77%)	5412 (8.95%)	2167712 (13.23%)
Aritmética de Inteiros	6371210 (82.72%)	26661 (44.10%)	9753738 (59.55%)

3. Quanto às Configurações.

Nesta seção serão apresentadas as configurações para cada um dos quesitos.

3.1. Quesito Preditor de Desvios

Configuração 1: Nunca toma o desvio (not taken);

Configuração 2: Máquina de estados de dois bits (bimodal);

Configuração 3: Nunca erra uma predição de desvio (perfect).

3.2. Quesito Grau de Superescalaridade

Configuração 1: Uma unidade de inteiros;

Configuração 2: Duas unidades de inteiros;

Configuração 3: Quatro unidades de inteiros.

4. Recursos Necessários para Realizar o Trabalho

No moodle pode ser encontrado o arquivo contendo o simulador, os benchmarks, além de um pequeno tutorial sobre a instalação e utilização do simulador.

Dúvidas sobre a utilização e instalação do simulador podem ser tiradas com Daniel ou Renan na sala 209 do prédio 67 ou pelos e-mails: dagoliveira@inf.ufrgs.br rfpires@inf.ufrgs.br.

5. Entrega do Trabalho

Os alunos deverão realizar *upload* do documento no moodle. O nome do arquivo deverá ser no formato: <*numero_de_matricula>_*<*nome_do_aluno>*. (Em formato PDF)

O envio do trabalho deve ocorrer até o dia 29/09.