Expectation Prior Knowledge of $p(\theta)$, $\mathbb{E}[X] = \int_{\Omega} x f(x) dx = \int_{\omega} x \mathbb{P}[X=x] dx$ Find Posterior Density: $p(\theta X)$. $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate \mathcal{L} w.r.t β $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate \mathcal{L} w.r.t β $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate \mathcal{L} w.r.t β $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate \mathcal{L} w.r.t β $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate \mathcal{L} w.r.t β $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate \mathcal{L} w.r.t β $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate \mathcal{L} w.r.t β $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate \mathcal{L} w.r.t β $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate \mathcal{L} w.r.t β $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate \mathcal{L} w.r.t β $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate \mathcal{L} w.r.t β $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ Solution: differentiate $\mathcal{L} = (y - X\beta)^T (y - X\beta) + \lambda \beta^T (y - X\beta) $	
$\mathbb{E}[X] = \int_{\Omega} xf(x) dx = \int_{\omega} x\mathbb{P}[X=x] dx \text{Init Posterior Density. } p(\theta X).$ $\mathbb{E}_{Y X}[Y] = \mathbb{E}_{Y}[Y X] \mathcal{E}_{X} = \{x_{1}, \dots, x_{n}\} \text{Solution: differentiate } \mathcal{L} \text{ w.r.t } \beta$ $\hat{\beta}^{\text{ridge}} = (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbb{I})^{-1}\mathbf{X}^{T}\mathbf{y} \mathbb{E}_{X}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2}) \text{(TIC): } -2\log \mathbb{P}(\mathcal{X} \theta)$ $\hat{\beta}^{\text{ridge}} = (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbb{I})^{-1}\mathbf{X}^{T}\mathbf{y} \mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2}) \text{(TIC): } -2\log \mathbb{P}(\mathcal{X} \theta)$ $\hat{\beta}^{\text{ridge}} = (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbb{I})^{-1}\mathbf{X}^{T}\mathbf{y} \mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2}) \mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2}) \mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2})$ $\mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2}) \mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2}) \mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2})$ $\mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2}) \mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2})$ $\mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2}) \mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2})$ $\mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2}) \mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2})$ $\mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2})$ $\mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2}) \mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] \text{ (noise}^{2})$ $\mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^{2}] $	
$\mathbb{E}_{Y X}[Y] = \mathbb{E}_{Y}[Y X] $ $\mathbb{E}_{X,Y}[f(X,Y)] = \mathbb{E}_{X}\mathbb{E}_{Y X}[f(X,Y) X] $ $p(\theta X^{n}) = \frac{p(x_{n} \theta)p(\theta X^{n-1})}{\int p(x_{n} \theta)p(\theta X^{n-1})d\theta} $ Solution: differentiate \mathcal{L} w.r.t β $\hat{\beta}^{\text{ridge}} = (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbb{I})^{-1}\mathbf{X}^{T}\mathbf{y} $ $+\mathbb{E}_{X}\mathbb{E}_{D}[(\hat{f}_{D}(X) - \mathbb{E}_{D}[\hat{f}(X)])^{2}] \text{ (var.)} $ $+\mathbb{E}_{X}\mathbb{E}_{D}[(\hat{f}_{D}(X) - \mathbb{E}_{D}[\hat{f}_{D}(X)])^{2}] \text{ (var.)} $, , ,
	\mathbf{T} \mathbf{T}
Ontimization (1) The expected label and $\frac{1}{2}$	
$ V(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ Gradient Descent Setting: Penalize full β . $\mathbb{E}_D[\hat{f}(X)]$ the expected classifier.	
$V[X+Y]=Var[Y]$ X,Y 11d Q_{new} Q_{old}	$\rightarrow -x_i$ if $y_i = 2$
$ \mathbf{v}[\alpha X] = \alpha \text{ var}[X]$ Setting: Estimate $\hat{f}(x) \in \mathcal{F}$ with mini- Learning w. Gradier	nt Descent:
Lasso has no closed form. mal prediction error. $a(k+1) = a(k) - n(k)$	
V = V = V = V = V = V = V = V = V = V =	
$\mathbb{P}[X Y] = \frac{\mathbb{P}[X,Y]}{\mathbb{P}[Y]} = \frac{\mathbb{P}[Y X]\mathbb{P}[X]}{\mathbb{P}[Y]}$ Newton's Method Setting: Define a prior over β . Use 2nd order derivation. (Hessian) e.g. Ridge: Assume β distributed as: $\mathcal{Z} = \mathcal{Z}_1 \cup \mathcal{Z}_2 \cup \cdots \cup \mathcal{Z}_K, \mathcal{Z}_\mu \cap \mathcal{Z}_\nu = \emptyset$ $q(k+1) = q(k) - H^{-1}$	-2-
Distributions $(-1)^{-1}$	$\nabla J_i H = \frac{\partial^2 J}{\partial a_i \partial a_i}$
$\mathcal{N}(x \mu,\sigma^2) = \frac{e^{-(x-\mu)^2/(2\sigma^2)}}{\sqrt{2\pi\sigma^2}}$ $\theta^{\text{new}} \leftarrow \theta^{\text{old}} - \eta(\nabla_\theta \mathcal{L}/\nabla_\theta^2 \mathcal{L})$ $H = \nabla^2 \mathcal{L} \text{ has to be p.d. (convex func.)}$ $p(\beta \mathbf{\Lambda}) = \mathcal{N}(\beta 0, \frac{\sigma^2}{\lambda}\mathbb{I}) \propto \exp(-\frac{\lambda}{2\sigma^2}\beta^T\beta)$ $Earning:$ $\mathcal{L}_k \approx n\frac{K-1}{K} \text{ # of samples}$ Learning: Learning:	$(x-a)f'(a)+\dots$
$H = \nabla_{\theta}^{2} \mathcal{L} \text{ has to be p.d (convex func)}. \text{For } \Lambda = \frac{\sigma^{2}}{\lambda} \mathbb{I}. \text{ Linear for } \sigma = 1.$ $\text{Learning:} \sum_{i \notin \mathcal{Z}_{i}(y_{i} - f(x_{i}))^{2}} \text{Perceptron Criterion}$	ı
$\mathcal{N}(x \boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}}{(2\pi)^{D/2} \boldsymbol{\Sigma} ^{1/2}}$	\tilde{x}),
$\operatorname{Exp}(x 1) = 1 e^{-\lambda x} \operatorname{Rer}(x \theta) = \theta x (1-\theta)(1-x)$ Conditional expected Risk theorem to find the posterior validation:	
Diginiord. $O(x) = 1/(1+e^{-x})$ Total Expected Rick $P(f) = 2(x^Tx + 2x) = 1x^T$ Underfits because smaller dataset. Converges if data see	
Chebyshev & Consistency $\mathbb{E}_{[p(f, Y)]} = \int_{\mathbb{R}} p(f, Y) \mathbb{E}[Y] dY = \mathbb{E}_{[p(f, Y)]} \frac{\mu_{\beta} - \nu(X, X + \nu, X)}{\mu_{\beta} - \nu(X, X + \nu, X)} $ Leave-one-out: $K = n$ (unbiased but Single sample perce	
$\mathbb{P}(X - \mathbb{E}[X] > \epsilon) < \frac{\sqrt{ X }}{2}$ var can be large from corr. datasets) $a(k+1) = a(k) + \tilde{x}^k$ (respectively)	
$\lim_{n\to\infty} P(\hat{\mu}-\mu >\epsilon) = 0$ $\int_{\mathcal{X}} \int_{\mathbb{R}} \mathcal{L}(Y,f(X)) P(X,Y) dX dY.$ Nonlinear Regression Bootstrapping WINNOW Algorithm	,
Cramer Rao lower bound Empirical Risk Minimizer (ERM) f : Idea: Feature space transformation Bootstrap samples: $\mathcal{Z} = \{\mathcal{Z}_1, \dots \mathcal{Z}_B\}$, Performs better V	
Var $[\hat{\theta}] \ge \mathcal{I}_n(\theta)^{-1}$ $\hat{f} \in \arg\min_{f \in \mathcal{C}} \hat{R}(\hat{f}, Z^{train})$ Model: $\mathbf{Y} = f(\mathbf{X}) = \sum_{m=1}^M \beta_m h_m(\mathbf{X})$ of same size as original, drawn with replacement. The chance of a sample 2 weight vectors	
$I_n(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log X_n(\theta) }{\partial \Omega_n(\theta)}\right], \hat{\theta} \text{ unbiased}$ $R(f, Z^{train}) = \frac{1}{n}\sum_{i=1}^n Q(Y_i, f(X_i))$	
$R(f,Z^{test}) = \frac{1}{2}\sum_{i=1}^{n+m} O(Y_i,f(X_i))$	
Joint Gaussian over all outputs $Z^{\text{train}} = (X_1, Y_1),, (X_n, Y_n)$ $Z^{\text{train}} = (X_1, Y_1),, (X_n, Y_n)$ $Z^{\text{train}} = (X_1, Y_1),, (X_n, Y_n)$ we compute the ERM on Z we could $a_i^+ \leftarrow \alpha^{-\tilde{x}_i} a_i^+, a_i^- \leftarrow \alpha^{+\tilde{x}_i} a_i^+, a_i^- $	
$\lambda_{im}^{(n)} = a(A_i) - 1$ (asymptosis) ($\lambda_{im}^{(n)} = (A_{n+1}, I_{n+1}), \dots, (A_{n+m}, I_{n+m})$ (we can rewrite the distribution get 63% accuracy by memorization. Exponential update	
Matrix Portugations Linear Regression $p_{\ell}(y) - N(y) 0 \begin{bmatrix} C_n & k \end{bmatrix}$ $Vortconfiguret.$ Fisher's Linear Discreptions	
$da^{T}X = da^{T}Xb = ab^{T}$ $da^{T}X^{T}b = ba^{T}$ Data. $Z = (x_{i}, y_{i}) \in \mathbb{N}$ $X = X = X = A$ puting the EKM where no memorization along the definition of the projected along the experimental projected along the experime	of the means of
$\frac{\partial x}{\partial x} = \frac{\partial x}{\partial x} = $	
$\frac{\partial a}{\partial a} = a \cdot (X + X) \cdot \frac{\partial K}{\partial K} = -K \cdot K \cdot K \cdot Model: Y = \beta_0 + \sum_{j=1}^{n} X_j \beta_j, Y \in \mathbb{R}$ Province of the classification, like cross-validation: province and $\tilde{u}_{\alpha} = \frac{1}{2} \sum_{j=1}^{n} X_j \beta_j \cdot Y_j \cdot K \cdot $	
$\frac{1}{\partial x}$ I(x) $\frac{1}{\partial x}$ $\frac{1}{\partial x}$ $\frac{1}{\partial x}$ Introduce $x_0 = 1$ and rewrite $\frac{1}{\partial x}$ $\frac{1}{\partial x}$ $\frac{1}{\partial x}$ $\frac{1}{\partial x}$ $\frac{1}{\partial x}$ Dist of projection $\frac{1}{\partial x}$	
X' X: invertible if no no zero eigenva- $\mathbf{I} = \mathbf{A} p \mathbf{A} \in \mathbb{R}^{n}$, $p \in \mathbb{R}^{n}$,	
lites. Inversion unstable in ratio from additive Gaussian noise $\epsilon \sim N(0,0)$ k is the kernel function. Lengthscale: Estimate of an estimator S_n 's Bias. Fishers Criterion:	, ,
Parametric Density Estimation how far can we reliably extrapolate. Since $S_n = S_n - \text{bias}^n$ is JK Estimator. $J(w) = \frac{ F F }{ F F } = \frac{1}{2}$	$\frac{w^{*}(\mu_{1}-\mu_{2})(\mu_{1}-\mu_{2})^{*}w}{w^{T}(\Sigma_{1}+\Sigma_{2})w}$
Gaussian Process Prediction $Dias' = (n-1)(s_n - s_m)$ Fighers Crit for Mul	tiple Classes:
We then predict new values from: $S_n = \frac{1}{n} \sum_{i=1}^n S_{n-1}^{-i}$ avg. LOO Estimator. $I(W) = W^T S_B W $	
Find: $\theta \in \operatorname{argmax}_{\mathcal{P}}[\mathcal{X} \theta]$	$(u_{t}-u)T$
Procedure: solve $\nabla_{\alpha} \log \mathbb{P}[\mathcal{X} \theta] = 0$ $\mu_{v_s} = \mathbb{R}^n (\mathbb{R} + \sigma^2 \mathbb{I})^{-1} \mathbb{Y},$	
Consistent. Converges to best θ_0 . $= (\mathbf{v} - \mathbf{X}\beta)^T (\mathbf{v} - \mathbf{X}\beta)$ Model selection LDA for Multiples	
Maximum A Posteriori (MAP) Solution: differentiate \mathcal{L} w.r.t β Bias-Variance tradeoff Bayesian Information Criterion as $(k-1)$ "class α - not also as $(k-1)$ " "class	ot class α'' dicho-
Assume prior $\mathbb{P}(\theta)$ $\hat{\beta}^{\text{OLS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ Bias $(\hat{f}) = \mathbb{E}[\hat{f}] - f$ (BIC): $-2 \log \mathbb{P}(\mathcal{X} \theta_k) + k \log(n)$. Pena- tomies. But some are	
Find: $\hat{\theta} \in \arg\max_{\theta} P(\theta \mathcal{X}) = \lim_{\theta \to \infty} \Pr(\hat{f} = \mathbb{E}[\hat{f} - \mathbb{E}[\hat{f}])^2]$ lizes larger models (larger k with mo-	
$= \arg\max_{\theta} P(\mathcal{X} \theta)P(\theta) \qquad \text{riance of all unbiased estimates.} \qquad \mathcal{Z} \downarrow \qquad \mathcal{F} \uparrow \Rightarrow \qquad \text{Var} \uparrow \qquad \text{Bias} \downarrow \qquad \text{re data } n\text{)}. \text{ Tendency to underfit.} \qquad \text{Generalize Perception} $ $\text{Solve } \nabla_{\theta} \log P(\mathcal{X} \theta)P(\theta) = 0 \qquad \qquad \text{Prediction: } \hat{y} = \mathbf{X} \hat{\beta} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \qquad \mathcal{Z} \uparrow \qquad \mathcal{F} \downarrow \Rightarrow \qquad \text{Var} \downarrow \qquad \text{Bias} \uparrow \qquad \qquad \text{Akaike Information Criterion} \qquad and kernel. Find plays the production of the production of$	
$ \mathcal{L} = \mathcal{L} + $	

Optimal Margin: $\mathbf{w}^T \mathbf{w} = \sum_{i \in SV} \alpha_i^T$	Set of estimators. $f_1(x)$, $f_2(x)$
Discrim.: $g^*(\mathbf{x}) = \sum_{i \in SV} z_i \alpha_i \mathbf{y_i}^T \mathbf{y_i} + w_0^*$	simple average: $\hat{f}(x) = \frac{1}{B} \sum_{i=1}^{B} \hat{f}_i$
$class = sign(\mathbf{y}^{T}\mathbf{w}^{*} + \mathbf{w}_{0}^{*})$	$\operatorname{Bias}[\hat{f}(x)] = \frac{1}{B} \sum_{i=1}^{B} \operatorname{Bias}[f_i(x)]$
Soft Margin SVM	$\mathbb{V}[\hat{f}(x)] \approx \frac{\sigma^2}{B}$ if the estimators are
Introduce slack to relax constraints $z_i(\mathbf{w}^T\mathbf{y}_i + w_0) \ge m(1 - \xi)$ $L(\mathbf{w}, w_0, \xi, \alpha, \beta) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i [z_i(\mathbf{w}^T\mathbf{y}_i + w_0) - 1 + \xi_i]$ $-\sum_{i=1}^n \beta_i \xi_i$	correlated. Combining Classifiers Input: classifiers $c_1(x), \dots, c_B(x)$ Infer $\hat{c}_B(x) = \operatorname{sgn}(\sum_{b=1}^B \alpha_b c_b(x))$ with weights $\{\alpha_b\}_{b=1}^B$ Requires diversity of the classifier
C controls margin maximization vs. constraint violation Dual Problem same as usual SVM but with supplementary constraint: $C \ge \alpha_i \ge 0$	Bagging Train on bootstrapped subsets. Sample: $\mathcal{Z} = \{(x_1, y_1), \dots (x_n, y_n)\}$ \mathcal{Z}^* : chose i.i.d from \mathcal{Z} w. replacemed Covariance small, variance similar biographics and \mathcal{Z} .
Use kernel in discriminant funct: $g(\mathbf{x}) = \sum_{i,j=1}^{n} \alpha_i \alpha_j z_i z_j K(\mathbf{x_i}, \mathbf{x})$ E.g solve the XOR Problem with: $K(x,y) = (1 + x_1 y_1 + x_2 y_2)^2$	bias unaffected. Boosting Combine uncorr. weak learners in quence. (Weak to avoid overfitting Coeff. of \hat{c}_{b+1} depend on \hat{c}_b 's result AdaBoost (minimizes exp. loss)
Multiclass SVM	Init: $\mathcal{X} = \{(x_1, y_1), \dots, (x_n, y_n)\}, w_i^{(1)} =$
\forall class $z \in \{1, 2, \dots, M\}$ we introduce \mathbf{w}_z and define the margin m s.t.: $(\mathbf{w}_{z_i}^T \mathbf{y}_i + w_{z_i,0}) - \max_{z \neq Z_i} (\mathbf{w}_z^T \mathbf{y}_i + w_{z,0}) \geq m, \forall \mathbf{y}_i \in \mathcal{Y}$	Fit $\hat{c}_b(x)$ to \mathcal{X} weighted by $w^{(b)}$ $\epsilon_b = \sum_{i=1}^n w_i^{(b)} \mathbb{I}_{\{c_b(x_i) \neq y_i\}} / \sum_{i=1}^n w_i^{(b)}$ $\alpha_b = \log \frac{1 - \epsilon_b}{\epsilon_b} > 0$
Structured SVM	$w_i^{(b+1)} = w_i^{(b)} \exp(\alpha_i \mathbb{I}_{\{c_b(\hat{x_i}) \neq y_i\}})$
L	$\sim R$

Each sample **y** is assigned to a struc-return $\hat{c}_B(x) = \operatorname{sgn}(\sum_{b=1}^B \alpha_b c_b(x))$

 $w_0^* = -\frac{1}{2}(\min_{z_i=1} \mathbf{w}^{*T} \mathbf{y_i} + \max_{z_i=-1} \mathbf{w}^{*T} \mathbf{y_i})$ not p.s-d eg: $\mathbf{x} = [1, -1], \mathbf{x}' = [-1, 2]$

zes margin *m* s.t.:

 $z_i \in \{-1, +1\}$ $\mathbf{y_i} = \phi(\mathbf{x_i})$

Functional Margin Problem:

 $\mathbf{w} = \sum_{i=1}^{n} \alpha_i z_i \mathbf{y_i} \quad 0 = \sum_{i=1}^{n} \alpha_i z_i$

 $z_i g(\mathbf{y}) = z_i (\mathbf{w}^T \mathbf{y} + w_0) \ge m, \forall \mathbf{y}_i \in \mathcal{Y}$

Vectors \mathbf{y}_i are the support vectors

minimizes $\|\mathbf{w}\|$ for m=1: $L(\mathbf{w}, w_0, \alpha)=$

 $= \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i [z_i(\mathbf{w}^T \mathbf{y}_i + w_0) - 1]$

where lphas are Lagrange multipliers.

 $\frac{\partial L}{\partial w} = 0$ and $\frac{\partial L}{\partial w_0} = 0$ give us constraints

Replacing these in $L(\mathbf{w}, w_0, \alpha)$ we get

 $\tilde{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j z_i z_j \mathbf{y_i}^T \mathbf{y_j}$

This is the dual representation. The

where α maximize the dual problem.

Only Support Vectors $(\alpha_i \neq 0)$ contri-

with $\alpha_i \ge 0$ and $\sum_{i=1}^n \alpha_i z_i = 0$

optimal hyperplane is given by

bute to the evaluation.
Optimal Margin: $\mathbf{w}^T \mathbf{w} = \nabla$

tured output label z

Output Space Representation:

 $\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* z_i \mathbf{y_i}$

joint feature map: $\psi(z, y)$

Similarity based reasoning

Kernels

Scoring function: $f_{\mathbf{w}}(z, \mathbf{y}) = \mathbf{w}^T \psi(\mathbf{z}, \mathbf{y})$

Classify: $\hat{z} = h(\mathbf{y}) \arg \max_{z \in \mathcal{K}} f_{\mathbf{w}(z,\mathbf{y})}$

Gram Matrix $K = K(\mathbf{x}_i, \mathbf{x}_i), 1 \le i, j \le n$

 $K(\mathbf{x}, \mathbf{x}')$ pos.semi-def. (all EV ≥ 0)

If $K_1 \& K_2$ are kernels K is too:

 $K(\mathbf{x}, \mathbf{x}') = \alpha K_1(\mathbf{x}, \mathbf{x}') + \beta K_2(\mathbf{x}, \mathbf{x}')$

 $K(\mathbf{x}, \mathbf{x}') = K_1(h(\mathbf{x}), h(\mathbf{x}')) \quad h : \mathcal{X} \rightarrow \mathcal{X}$

 $K(\mathbf{x}, \mathbf{x}') = h(K_1(\mathbf{x}, \mathbf{x}'))$ h: poly/exp

 $K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$ $K(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + 1)^p$

Sigmoid: $K(\mathbf{x}, \mathbf{x}') = \tanh(\alpha \mathbf{x}^T \mathbf{x}' + c)$

Set of estimators: $\hat{f}_1(x), \dots, \hat{f}_R(x)$

RBF(Gauss): $K(\mathbf{x}, \mathbf{x}') = \exp(-\|\mathbf{x} - \mathbf{x}'\|_2^2/h^2)$

 $K(\mathbf{x}, \mathbf{x}') = K_1(\mathbf{x}, \mathbf{x}')K_2(\mathbf{x}, \mathbf{x}')$

Kernel Function Examples:

Ensemble Methods

Combining Regressors

 $K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$ $K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}', \mathbf{x}')$

Best approx. at log-odds ratio. Like

stagewise-additive modeling.

ement. and $\log N!$ imilar,

> s in seting). esults

Hypothesis: $\sum_{i=1}^{d} a_i x_i + a_0$ (all possi-

Difference (1) Boosting keeps identical training

data, bagging potentially varies the training data for each classifier. (2) Boosting weighs the prediction of each classifier according to its accuracy, bagging gives same importance AdaBoost gives large weight to samp-

Notes

to each.

les that are hard to classify: those could be outliers. For bagging, there is a chance that imbalanced datasets lead to bootstrap samples missing a class alltogether. Fix by making the bootstrap size large enough s.t. at least one point is included. **PAC learning**

Function of interest

The probability of large excess error:

 $\mathbb{P}[\hat{c}_N(X) \neq c^{\text{Bayes}}(X)|\mathcal{Z}] < \delta.$

But: could be unlucky with \mathcal{Z} , c^{Bayes} not in hypoth. class, $\mathbb{P}[\dots]$ is a r.v., not scalar quality measure. Strat: aveare un-rage. $\mathbb{P}[\mathcal{R}(\hat{c}) - \inf_{c \in C} \mathcal{R}(c) > \epsilon] < \delta$. Where $\mathcal{R}[\hat{c}]$ is the generalization error of the trained class., should not exceed the min. generalization error achievable by more than ϵ . Leads to: $\sum_{c \in \mathcal{C}} \mathbb{P}[|\hat{\mathcal{R}}_n(c) - \mathcal{R}(c)| > \epsilon] \le 2Ne^{-2n\epsilon^2}.$ Def RHS= δ : $\epsilon = \sqrt{\frac{\log N - \log(\delta/2)}{2n}}$. For

> N the size of hypothesis class, and fixed α , but from reducing stick: for *n* the num. of samples. The expected error of c thus depends on $1/\sqrt{n}$

Rectangle learning

Pick tight rectangle. Diff. between picked rectangle \hat{R} and true R with few examples. Rectangles are efficiently PAC learnable: runs in polynom. $1/\epsilon$ (error param.) and $1/\delta$ (confidence val.).

Hyperplane learning

ble hyperplanes through *d*-dim vector) has #-of-possible-classifiers $2\binom{n}{d}$. In class: the classifiers c and \hat{c} differ for no more than d data points on a plane, IF found with ERM: $\forall_{c \in \mathcal{C}} \hat{\mathcal{R}}_n(c) \geq \hat{\mathcal{R}}_n(\hat{c}) - \frac{d}{n}$.

How effectively a classifier (e.g., in-Regularizazion

terval, unions of intervals, circles) can select subsets. Classifying with a closed iterval: $V_C = 2$, for you cannot select the begin-point and endpoint but not middle point! For unions, $V_c = 2k$, for unit circles $V_c = 3$, for finite-dimensional vector space $V_c \leq \dim(\mathcal{G})$. From practical

VC dimension

 $\mathcal{R}_n(\hat{c}) - \inf_{c \in \mathcal{C}} \mathcal{R}(c) \le 2 \sup_{c \in \mathcal{C}} |\hat{\mathcal{R}}_n(c)| - \mathcal{R}_n(c)$ $\mathcal{R}(c)$ for any class \mathcal{C} . Finite class: $\mathbb{P}[2\sup_{c\in\mathcal{C}}|\hat{\mathcal{R}}_n(c) - \mathcal{R}(c)| > \epsilon] \leq$ $2|C|e^{-2n\epsilon^2}$. Shattering s(A, n) is the score... For half-planes s(A, 2) = 4, s(A,3) = 8, For triangles s(A, 2) = 4, s(A, 3) = 8, s(A, 4) = 16,

Nonparametric Bayesian methods

Beta $(x|a,b) = B(a,b)^{-1}x^{a-1}(1-x)^{b-1}$: prob. of Bernoulli proc. after observing a-1 success and b-1 failures. Expended to multivariate case with Dirichlet distr. That will give multivar. probs, based on finite counts! But we don't know exactly which multivar. distribution works. With more data, we update the Dirichlet distribution. Is a conjugate prior. Stick-breaking Dirichl. proc.. Repeatedly draw from Beta($x|1,\alpha$) with

 $\rho_k = \beta_k (1 - \sum_{i=1}^{k-1} \rho_i)$. The prior: $\mathbb{P}[z_i = k | z_{-i}, \alpha] = \begin{cases} \frac{N_{k,-i}}{\alpha + N - 1} & \text{exist. } K \\ \frac{1}{\alpha + N - 1} & \text{oth.} \end{cases}$

Final Gibbs sampler:

 $\frac{N_{k,-i}}{\alpha+N-1}p(x_i|x_{-i,k},\mu) \quad \text{exist. } K$

 $k|z_{-i},\alpha,\mu|$

 $\left(\frac{\alpha}{\alpha+N-1}p(x_i,\mu)\right)$ Gibbs sampling

 $\mathbb{P}[z_i]$

Init: assign all data to a cluster, with prior π_i , with $\sum_{k=1}^K \pi_i < 1$ (s.t. new clusters possible). E.g. with stick-

breaking. Then remove x from k

and compute new θ_k , then compu-

te Gibbs sampler prob. (CRP), and

sample the new cluster assignment

 $z_i \sim p(z_i|x_{-i},\theta_k)$. If cluster is empty,

remove it and decrease *K*.

Avoid overfitting on complex nets. Early Stopping separate data into

Neural Networks

train/error/validation sets. **Drop Out** Combine thinned nets with removed nodes. **Bayesian** priors on w's

Convolutional Neural Network

Modelling invariance. Convolutional Layers (filters on a region) & Pooling Layers (aggregate nodes together). **Autoencoder: explicit density**

Data compression purposes, Output should reproduce input. \Rightarrow PCA. Denoising autoencoders reproduce data from partial observations (blanking out parts of input), more robust.

GAN: implicit density

Sample from noise → training data. 2-player game: generator network fools discriminator by creating fake images, discriminator distinguishes between real and fake images. Gen: upsampling network with fractionally strided convs, Disc: convolutional network. **Mixture Models**

Gaussian Mixture

EM-Algorithm

Latent Variable: unknown data →

What cluster generated each sample? EM does ML for unknown parame-

Latent var. $M_{xc} = \begin{cases} 1 & \text{c generated x} \\ 0 & \text{else} \end{cases}$ $P(\mathcal{X}, M|\theta) = \prod_{x \in \mathcal{X}} \prod_{c=1}^{k} (\pi_c P(\mathbf{x}|\theta_c))^{M_{\mathbf{x}c}}$

E-Step

 $\gamma_{\mathbf{x}c} = \mathbb{E}[M_{\mathbf{x}c}|\mathcal{X}, \theta^{(j)}] = \frac{P(\mathbf{x}|c, \theta^{(j)})P(c|\theta^{(j)})}{P(\mathbf{x}|\theta^{(j)})}$

M-Step

 $\mu_c^{(j+1)} = \frac{\sum_{c \in \mathcal{X}} \gamma_{xc} \mathbf{x}}{\sum_{c \in \mathcal{X}} \gamma_{xc}}$ $(\sigma_c^2)^{(j+1)} = \frac{\sum_{c \in \mathcal{X}} \gamma_{xc} (\mathbf{x} - \mu_c)^2}{\sum_{c \in \mathcal{X}} \gamma_{xc}}$

 $\mathcal{N}(\mu_1, \sigma_1^2) + \mathcal{N}(\mu_2, \sigma_2^2) = \mathcal{N}(\mu_1 +$ $\mu_2, \sigma_1^2 + \sigma_2^2$).