L=3m

Ftomax = Nz Ms

$$Sind = \frac{nan}{kp}$$

$$Sind = \frac{L^{1}}{L} \qquad \qquad \qquad L^{1} = S^{1}$$

kjednačine ravnotere

2)
$$\xi V_1 = N_2 - Q_m - Q_0^2 = 0$$

C)
$$\sin x = \frac{\cos x (\varphi_0^2 - \varphi_0^2)}{2 \sin x}$$

$$\int_{-\infty}^{\infty} \frac{d^3 \sin x}{2 \sin x} = \frac{\cos x (\varphi_0^2 - \varphi_0^2)}{2 \sin x}$$

$$\int_{-\infty}^{\infty} \frac{d^3 \sin x}{2 \sin x} = \frac{\cos x}{2 \sin x}$$

$$\int_{-\infty}^{\infty} \frac{d^3 \sin x}{2 \sin x} = \frac{\cos x}{2 \sin x}$$

$$\int_{-\infty}^{\infty} \frac{d^3 \sin x}{2 \sin x} = \frac{\cos x}{2 \sin x}$$

$$\sin \alpha = \frac{\pi}{3} \quad \cos \alpha = \frac{3}{3}$$

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{\frac{3}{2}}{\frac{1}{2}} = \frac{3}{4}$$

$$h_{2} = \frac{\text{Ftr} - \text{Gm} \frac{\text{cty} \times \text{cty} \times \text$$

$\Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda = 3 \text{m}$

a)
$$N_{A}=?$$

Kjednadine ravnotere

a)
$$N_{A}=?$$

$$= \sqrt{\frac{1}{1 + (26)^2}}$$

$$= \sqrt{\frac{3}{1 + (26)^2}}$$

* jednadine ravnotere

1)
$$\sum X_{1} = T - Fk_{x} = 0$$

2) $\sum Y_{1} = Fk_{y} - Q_{g} - Q_{k} = 0$
2) $\sum Y_{1} = Fk_{y} - Q_{g} - Q_{k} = 0$
 $\sum Y_{1} = Fk_{y} - Q_{g} - Q_{k} = 0$
 $\sum Y_{1} = Fk_{y} - Q_{g} - Q_{k} = 0$
 $\sum Y_{1} = Fk_{y} - Q_{g} - Q_{k} = 0$
 $\sum Y_{1} = Fk_{y} - Q_{g} - Q_{k} = 0$
 $\sum Y_{1} = Fk_{y} - Q_{g} - Q_{k} = 0$
 $\sum Y_{1} = Fk_{y} - Q_{g} - Q_{k} = 0$

$$T = G \cot_{30}^{\circ} \frac{1}{2} + G \cot_{30}^{\circ} = \frac{3}{2} G \cot_{30}^{\circ}$$

b)
$$T_{\times} = \cos 30^{\circ}T$$

 $T_{Y} = \sin 30^{\circ}T$

$$M.15$$
) $M_8 = 82.0 \text{kg}$
 $h = 2 \text{m}$
 $lc = 1.15 \text{m} \rightarrow$

COSK = d

1)
$$T - F_{kx} = 0$$

 $F_{kx} = T = 0$ $F_{kx} = \frac{3}{2} G c + \frac{3}{2} G c$

* jednazine ravnotere

$$S_{X} = T_{x} - F_{kx} = 0$$

$$\int_{CO} + \int_{CO} + \int$$

$$h = 2m$$

$$lc = 1.15m \rightarrow$$

$$lr = 0.3m \leftarrow$$

$$F_s = \frac{Q - 2F_0}{z} \qquad F_s = 130N$$

$$l_{1}=1$$
, l_{1} $l_{2}=80$, $l_{3}=80$, $l_{4}=80$, $l_{5}=80$

*jednatine ramotere

$$11.25$$
) $l=2m$
 $sl=0.25cm=0.25\cdot10^{-2}m$

$$\Gamma = \sqrt{\frac{A}{11}} \sqrt{\Gamma_2 - 7,13.10^{-4}}$$

$$M_P = 65 kg$$
 $Q = M_P \cdot g$
 $L = 45 m$
 $r = 7.45 m$
 $X = 7$

1=? da li cepreci?

* jedncevine ravnoteze

=> nece precimost!

M.SN L=lism

M = 18,0 kg

L=1,2m

mr = 28,0kg

d = 32cm = 0,32m

sd=90cm=0,2m

Ls=2,0m

0) Tk = ?

Tou=mrg

=> Td = mrg | Td = 137,34N

QL=Mg QL=176,58 N

Tan= RTd

92=Mg

?) zasto u zno ne Uradunavamo I caz vrednest Posto smo razlozili delovanie Forainaxinayoun?

* jednačine ravnotere

Ts sinxL=TdL+Td O.6+QL=

$$M.69$$
) $Q = 1250N$
 $V = 53.0^{\circ}$
 $T_{1} = {}^{2}$

a)
$$F_V = \frac{Q - 1/\Lambda}{sin x \cdot 1/\Gamma}$$

(c) $F_{Lr} = F_{Vsin x}$

(d) $F_{tr} = g_{16,6N}$

b) $N = F_{V} \cos x + Q$

d) $F_{tr} = N \mu$
 $N = 1940,75N$
 $M = \frac{F_{tr}}{N} \mu = 0.47$

M.76)
$$m_1R$$
 - total bioikla

 k - visina bankine

 F - sila kojom dejstrujet na totak

a) $\sqrt{R^2 - (R - h)^2} = \sqrt{2Rh - h^2}$
 F = $m_g = \sqrt{\frac{2Rh - h^2}{R - h}}$

c) Manja sila je potrebna u drugom slučuju (kad delijemo silom na vrh točka)