Answer sheet - 12

Mathematics-I(MA10001)

Autumn 2019

- 1. a) Ans: z = 0(simple pole).
 - b) Ans: z = 0 (pole of order 3), $z = n\pi$ (simple pole) where n is a non-zero integer.
 - c) Ans: z = -1 (simple pole), z = 1 (pole of order 2).
 - d) Ans: z = 0 (pole of order 3).
 - e) Ans: z = 0 (removable).
 - f) Ans: z = 0 (simple pole), $z = \sqrt{2n\pi i}$ (simple pole) where n is a non-zero integer.
 - g) Ans: z = 0(essential).
 - h) Ans: z = 0 (simple pole), $z = \pm i$ (simple pole).
 - i) Ans: z = 0 (pole of order 2).
- 2. a) Ans: $\operatorname{Res}(f, \pm i) = \pm \frac{3i}{4}$. b) Ans: $\operatorname{Res}(f, 1) = -e$, $\operatorname{Res}(f, 0) = e 1$.

 - c) Ans: Res(f, 0)=0.
 - d) Ans: $\operatorname{Res}(f, 0) = 0$
- 3. a) Ans: $\frac{1}{(z-i)(z-2)} = \frac{1}{i-2} \sum_{n=0}^{\infty} \left[\left(\frac{1}{i}\right)^{n-1} + \frac{1}{2^{n+1}} \right] z^n$. [Hint: $\frac{1}{z-i} = \frac{i}{1-\frac{z}{i}}$ and $\frac{1}{z-2} = -\frac{1}{2} \frac{1}{(1-\frac{z}{2})}$]
 - b) Ans: $\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{(z-2i)^n}{(1-2i)^{n+1}}, |z-2i| < \sqrt{5}.$ [Hint: $\frac{1}{1-z} = \frac{1}{1-2i-(z-2i)} = \frac{1}{(1-2i)} \frac{1}{(1-2i)}$
- 4. Ans: $\frac{z^2 2z + 3}{z 2} = (z 1) + 1 + \sum_{n=-\infty}^{\infty} \frac{3}{(z 1)^n}$.
- 5. a) Ans: $(z-3)\sin\frac{1}{z+2} = 1 \frac{5}{z+2} \frac{1}{6(z+2)^2} + \frac{5}{6(z+2)^3} + \dots, z \neq 2$. [Hint: Put u=z+2]

- and expand $\sin \frac{1}{u}$ in Laurent series.] b) Ans: $\frac{e^{2z}}{(z-1)^3} = \frac{e^2}{(z-1)^3} + \frac{2e^2}{(z-1)^2} + \frac{2e^2}{z-1} + \frac{4e^2}{3} + \frac{2e^2}{3}(z-1) + \dots$, for $z \neq 1$ [Hint: put $u = z - 1, \frac{e^{2z}}{(z - 1)^3} = \frac{e^2}{u^3}e^{2u}$
- 6. Ans: $z^2 e^{\frac{1}{z}} = z^2 + z + \sum_{n=0}^{\infty} \frac{1}{(n+2)!} z^{-n}$. [Hint: Expand $e^{1/z}$ in Taylor series about z = 0]
- 7. a) Ans: $\frac{1}{z(1-z)(2-z)} = \frac{1}{2z} + \sum_{k=0}^{\infty} (1-2^{-(k+2)})z^k$, 0 < |z| < 1.[Hint: $f(z) = \frac{1}{z}(\frac{1}{1-z} \frac{1}{2-z})$ and

$$\frac{1}{2-z} = \frac{1}{2} \frac{1}{(1-\frac{z}{2})}$$

b) Ans: $\frac{1}{z(1-z)(2-z)} = -\sum_{n=-\infty}^{n=-2} z^n - \sum_{n=-1}^{n=\infty} 2^{-(n+2)} z^n, \ 1 < |z| < 2. [\text{Hint: } f(z) = \frac{1}{z} (\frac{1}{1-z} - \frac{1}{2-z})]$ and $\frac{1}{1-z} = -\frac{1}{z} \frac{1}{1-\frac{1}{z}} \text{ and } \frac{1}{2-z} = \frac{1}{2} \frac{1}{(1-\frac{z}{2})}]$

and
$$\frac{1}{1-z} = -\frac{1}{z} \frac{1}{1-\frac{1}{z}}$$
 and $\frac{1}{2-z} = \frac{1}{2} \frac{1}{(1-\frac{z}{2})}$

c) Ans: $\frac{1}{z(1-z)(2-z)} = \sum_{k=-3}^{k=-3} (2^{-(k+2)} - 1)z^k$, 2 < |z|. [Hint: Use (a) and (b)].

8. Ans:
$$\frac{e^z}{(z-1)^2} = \sum_{n=-2}^{n=\infty} \frac{e}{(n+2)^n} (z-1)^n$$
, $0 < |z| < \infty$. [Hint: Expand e^z in Taylor series about $z=1$]

- 9. a) Ans: $10\pi i$.[Hint: Use Cauchy-Residue theorem]
 - b) Ans: $-\frac{i\pi}{3}$.[Hint: Use Cauchy-Residue theorem]
 - c) Ans: $\frac{\pi i}{60}$.[Hint: Use Cauchy-Residue theorem]
 - d) Ans: $-\frac{\pi i}{2e}$.[Hint: Use Cauchy-Residue theorem]
- 10. Ans: $-4\pi + 12\pi i$.[Hint: Use Cauchy-Residue theorem]
- 11. a) Ans: $4\pi i$.[Hint: Use Cauchy-Residue theorem]
 - b) Ans: Integration value $2\pi i$, if n=1; Integration value 0, if $n\neq 1$. [Hint: Put $z-a=re^{i\theta}, 0\leq \theta\leq 2\pi$]
- 12. Ans: $2\pi i$.[Hint: Use Cauchy-Residue theorem]