Theoretische Physik I: Klassische Mechanik (PTP1)

Dozent: Prof. Dr. Matthias Bartelmann

Obertutor: Dr. Christian Angrick

Universität Heidelberg Wintersemester 2019/20

Übungsblatt 5

Besprechung in den Übungsgruppen am 18. November 2019

1. Hausaufgabe: Bewegung entlang einer Kurve

Ein Teilchen bewege sich auf der Kurve

$$\vec{x}(t) = (e^{-at}\cos(\omega t), e^{-at}\sin(\omega t), 0)^{\mathsf{T}} \quad \text{mit} \quad a, \omega > 0.$$

- a) Skizzieren Sie die Bahn und berechnen Sie den Tangentialvektor $\vec{\tau}(t)$, den Hauptnormalenvektor $\vec{n}_{\rm H}(t)$ und den Binormalenvektor $\vec{n}_{\rm B}(t)$.
- b) Berechnen Sie den lokalen Krümmungsradius $\rho(t)$ der Bahn.

2. Hausaufgabe: Differentialoperatoren

- a) Berechnen Sie den Gradienten $\vec{\nabla} f$ der folgenden Funktionen,
 - (i) $f(x, y, z) = y \sin(xz^2)$,
 - (ii) $f(x, y, z) = \sqrt{x^2 + y^2 + z^2} \equiv r$.
- b) Verwenden Sie das Ergebnis von a) (ii), um $\vec{\nabla}g(r)$ zu berechnen, wobei g(r) eine beliebige differenzierbare Funktion sei, die nur vom Abstand r abhängt.
- c) Berechnen Sie die Richtungsableitung $\nabla_{\rm e} f$ von

$$f(x, y, z) = x^{yz}$$

in die Richtung $(12, 3, 4)^{\mathsf{T}}$.* Welchen Wert hat $\nabla_{\mathsf{e}} f$ im Punkt (1, 1, 1)?

- d) Berechnen Sie die Divergenz $\vec{\nabla} \cdot \vec{f}$ und die Rotation $\vec{\nabla} \times \vec{f}$ der folgenden Funktionen,
 - (i) $\vec{f}(x, y, z) = (xy + 2z^3, x^2/2, 6xz^2)^{\mathsf{T}},$
 - (ii) $\vec{f}(x, y, z) = e^{x+y} (4z^2, y^2, x^2 + z)^{\mathsf{T}}.$

3. Hausaufgabe: Kurvenintegral

Berechnen Sie das Arbeitsintegral

$$W = \int_{\vec{A}}^{\vec{B}} \vec{F} \cdot d\vec{x} \quad \text{mit} \quad \vec{F}(x, y, z) = (6xyz - 1, 3x^2z + 2y, 3x^2y)^{\top}$$

von $\vec{A} = (0, 0, 1)^{T}$ nach $\vec{B} = (1, 1, 1)^{T}$ entlang

- a) $\vec{x}(t) = (t, t, 1)^{\mathsf{T}} \text{ mit } 0 \le t \le 1$,
- b) einer geraden Linie vom Ausgangspunkt \vec{A} zum Punkt $(1,0,1)^{\mathsf{T}}$ und danach entlang einer geraden Linie zum Endpunkt \vec{B} .

^{*}Hinweis: Stellen Sie sicher, dass der Richtungsvektor normiert ist!

4. Präsenzaufgabe: Teilchen auf Ellipsenbahn

Ein Teilchen der Masse m bewege sich auf einer Ellipsenbahn,

$$\vec{x}(t) = (a\cos(\omega t), b\sin(\omega t), 0)^{\mathsf{T}}$$

mit den Halbachsen a, b > 0 und der Kreisfrequenz ω .

- a) Welche Kraft $\vec{F}(x, y, z)$ wirkt auf das Teilchen? Berechnen Sie das zugehörige Potential V(x, y, z).
- b) Bestimmen Sie die zeitliche Änderung der Energie E(t) und des Drehimpulses $\vec{L}(t)$.

5. Verständnisfragen

- a) Benennen Sie die einschränkenden Bedingungen, die wir bei der Herleitung des Energiesatzes in einer bzw. in drei Dimensionen angenommen haben.
- b) Erklären Sie die Begriffe der partiellen Ableitung, des Gradienten, der Divergenz und der Rotation.
- c) Was ist eine Potentialfunktion?