

REAL ESTATE PRICING PREDICTIONS

Elio Aybar, Cristal Garcia, Sunny Li, and Matt Norgren

GOAL: PREDICT MEDIAN HOUSE PRICES GIVEN CONVENTIONAL ATTRIBUTES AND PRESENCE OF A TARGET AND/OR STARBUCKS.

VALUE: TESTING NON-CONVENTIONAL FEATURES TO SEE IF WORTH EXPLORING IN THE FUTURE. **HYPOTHESIS:** DIFFERENT TYPES OF NEIGHBORHOODS MAY ATTRACT SPECIFIC BUSINESSES.

PROBLEM STATEMENT

PROJECT DEFINITION OF VARIABLES

Zillow Real Estate: 4.3M X 75

Starbucks location 25K X 7

Target Locations: 1.8K X 47

USA Public Schools data: 47K X 33

Food Desert & Economic Data: 73K X 148

Hospital Ratings: 4.8K X 28

FEATURES & TARGET VARIABLE

LIMITATIONS AND DELIMITATIONS OF DATA

01

Hospital:
hospital deserts
(distance between
hospital and
home)

02

Public School
Data: Creating
Student-toTeacher Ratio

03

Food Desert
Data: converting
CensusTract
number to
Zipcode

04

Starbucks and Target

LIMITATIONS AND DELIMITATIONS OF DATA PART 2

☐ Granularity

☐ Time (1996 - 2017)

☐ Features Sales Data Zillow Estimates

★ Complexity of combination 19K Unique Zip codes

☐ Aggregation of Features Dwelling Type


```
IS IT ALL HERE?
      Scarcity of price
      Duplicative feature types
      Scaling & Aggregation
      Consolidated variable Function creation
       creation
                            Factorization
      Melting and Reshaping
```

```
.p df['MedianListingPricePerSqft_1Bedroom'] = zip_
.p df['MedianListingPricePerSqft 2Bedroom'] = zip
ip df['MedianListingPricePerSqft_3Bedroom'] = zip_
ip df['MedianListingPricePerSqft 4Bedroom'] = zip
ip df['MedianListingPricePerSqft 5BedroomOrMore']
 p_df['MedianListingPrice_1Bedroom'] = zip_df['Med
  p df['MedianListingPrice 2Bedroom'] = zip df['Med
   o df['MedianListingPrice 3Bedroom'] = zip df['Med
    o df['MedianListingPrice 4Bedroom'] = zip df['MedianListingPrice 4Bedroom']
      df['MedianListingPrice 5BedroomOrMore'] = zip or price 5BedroomOrMore']
        df['MedianRentalPricePerSqft 1Bedroom'] = zip or a priceprice of the control of the control
         'f['MedianRentalPricePerSqft 2Bedroom'] = zip o
             ['MedianRentalPricePerSqft 3Bedroom'] = zip o
                ['MedianRentalPricePerSqft 4Bedroom'] = zip o
                   'MedianRentalPricePerSqft 5BedroomOrMore'] =
                                                                                  1Bedroom'] = zip df['Medi
                                                                                 2Bedroom'] = zip df['Medi
                                   anRentalPrice 3Bedroom'] = zip df['Medi
                                      "RentalPrice 4Bedroom'] = zip df['Medi
                                   'entalPrice 5BedroomOrMore'] = zip df
                                                       ingPrice AllHomes'] = zip df['Med
                                                              TPrice CondoCoop'] = zip df['Me
                                                                     "ice DuplexTriplex'] = zip di
                                                                              `e SingleFamilyResidence']
```


DATA EXPLORATION

Featurization:

- 90%-time spent feature engineering (5.5 weeks)
- Individually worked on datasets separately:
 - Identified and removed features with high collinearity
 - Captured summary statistics
- Consolidated features and visualized relationship

HEATMAP, PCA & FEATURE IMPORTANCE

TARGET VARIABLE EXPLORATION

METHODOLOGY

Models

- Linear Regression
- Decision Tree
- Random Forest
- Support Vector Regression
- Gradient Boosting
- KNN for Regression
- XGBoost

Validation Methodology

 Compare Desired Errors with Training and Cross Validation errors 2

Descriptions

• Choose top 3 models

Model Selection Justification

• Best performing RMSE

FRAMEWORK

This Photo by Unknown Author is licensed under CC BY-SA

RESULTS

MODELING RESULTS

- Linear Regression
 - Desired Error: 279471.46
 - Training Error: 0.78
 - Cross Validation Error: 0.78
- Support Vector Regression (SVR)
 - RMSE score: 0.65
- Decision Tree
 - Hyperparameter Tuning: max depth = 4, min_samples_leaf = 0.1
 - Desired Error: 210381.81
 - Training Error: 194304.60
 - Cross Validation Error: 195936.04

- Random Forest
 - Hyperparameter Tuning: max depth = 4, min_samples_leaf = 0.1
 - Desired Error: 204785.74
 - Training Error: 201373.10
- Gradient Boosting
 - RMSE: 131471.88186
- KNN for Regression
 - N_neighbors = 2, RMSE value for k = 2 of 325245.033
- XGBoost
 - RMSE = 108618

MODELING RESULTS DIFFERENT FEATURES

- Linear Regression
 - Desired Error: 294214.72
 - Training Error: 0.84
 - Cross Validation Error: 0.84
- Support Vector Regression (SVR)
 - RMSE score: 0.79
- Decision Tree
 - Hyperparameter Tuning: max depth = 4, min_samples_leaf = 0.1
 - Desired Error: 204245.67
 - Training Error: 200400.99
 - Cross Validation Error: 200487.57

- Random Forest
 - Hyperparameter Tuning: max depth = 4, min_samples_leaf = 0.1
 - Desired Error: 208813.27
 - Training Error: 205483.11
- Gradient Boosting
 - RMSE: 173276,42
- KNN for Regression
 - N_neighbors = 2, RMSE value for k = 2 of 327642.71
- XGBoost
 - RMSE = 112413

eXtreme Gradient Boosted trees

Most powerful machine learning algorithm up until today

Features:

- Regularized boosting (prevent overfitting)
- Can handle missing values
- Parallel processing
- Can cross-validation at each iteration

CONVENTIONAL FEATURES

Target Density

Starbucks Density

Starbucks/target 220,186 220K 194,520 200K 180K 160K 153,289 Median Pricing 120K 100K 80K 60K 40K 20K 0K No S, No T Yes S & T Yes S, No T

STARBUCKS INFLUENCE

Non-conventional features may be economic indicators.

We spent 80% of time on addressing a number of issues around data quality, standards, access.

We have plans for model optimization but didn't have time to achieve it.

CONCLUSIONS

- New dataset or extension of features.
- Number of bathrooms, rent cost, Square footage, etc.
- Dollar trees stores, Dunkin donuts, pharmacies, supermarkets, etc
- Complex imputation methods
- Focus on the hospital specifically, calculate the radii of hospitals, then use radii to weigh the hospital rating for each zip code.
- Robust test
- Replacing zip code with county/city
- Include time series data to the analysis

QUESIIONS?

Thanks for Your attention