1.3 Differential Equations as Mathematical Models a lesson for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

January 15, 2019

DEs as models

- I have already pushed differential equations as models
 - o made a big deal of it in previous slides!
- the goal of the exercises in §1.3 is to write down a differential equation as a model of some situation
 - o generally don't need to solve the DE
 - generally first-order DE
- for section §1.3 my plan is:
 - I will work-through four exercises in these slides, and
 - o you will actually read the examples in the section

exercise 2 in §1.3

- 2. The population model given in (1) fails to take death into consideration: the growth rate equals the birth rate. In another model of a changing population of a community it is assumed that the rate at which the population changes is a net rate—that is, the difference between the rate of births and the rate of deaths in the community. Determine a model for the population P(t) if both the birth rate and the death rate are proportional to the population present at time t>0.
- the population model in (1) is simply that the rate of change of population is proportional to the population: $\frac{dP}{dt} = kP$
- this exercise asks for "another model" where "both the birth rate and death rate are proportional" to P(t)
 - P(t) = "the population present at time t > 0"
- in the new model we want $\frac{dP}{dt}$ to be the *net* rate
- the net rate is "the difference between the rate of births and the rate of deaths"

exercise 2 cont.

• the rate at which the population changes is net rate:

$$\frac{dP}{dt} = (\text{rate of births}) - (\text{rate of deaths})$$

• both the birth rate and death rate are proportional to P(t):

(rate of births) =
$$k_b P$$

(rate of deaths) = $k_d P$

where k_b , k_d are two new *positive* constants

exercise 2 cont. cont.

the new model combines the stuff on last slide:

$$\frac{dP}{dt} = k_b P - k_d P$$

• show this new model is really the old model (1):

- conclusion. we see that (1) already allows births and deaths, with $k=k_b-k_d$
- please go back and actually read the "Population Dynamics" example on page 23

exercise 5 in §1.3

- **5**. A cup of coffee cools according to Newton's law of cooling. Use data from the graph of temperature T(t) [below] to estimate the constants T_m , T_0 , and k in a model of the form of a first order initial-value problem: $dT/dt = k(T T_m)$, $T(0) = T_0$.
- Newton's law of cooling says that an object with temperature T(t) warms or cools at a rate proportional to the difference between T(t) and the ambient temperature T_m : $dT/dt = k(T T_m)$
- solve by extracting numbers from the graph:

exercise 21 in §1.3

- 21. A small single-stage rocket is launched vertically as shown. Once launched, the rocket consumes its fuel, and so its total mass m(t) varies with time t>0. If it is assumed that the positive direction is upward, air resistance is proportional to the instantaneous velocity v of the rocket, and R is the upward thrust or force, then construct a mathematical model for the velocity v(t) of the rocket.
- hint 1: when the mass is changing with time, Newton's law is

$$F = \frac{d}{dt} (mv) \tag{17}$$

where F is the net force on the body and mv is the momentum

• hint 2: on page 27 there is a model for air resistance used in equation (14): $F_2 = -kv$

exercise 21, cont.

• collect the forces to get the net force:

$$F =$$

• now we can write down the model:

exercise 10 in §1.3

10. Suppose that a large mixing tank initially holds 300 gallons of water in which 50 pounds of salt have been dissolved. Another brine solution is pumped into the tank at a rate of 3 gallons per minute [gal/min], and when the solution is well-stirred it is then pumped out at a slower rate of 2 gal/min. If the concentration of the solution entering is 2 pounds per gallon [lb/gal], determine a differential equation for the amount of salt A(t) in the tank at time t>0.

- A(t) is amount of salt in pounds [lb]; what is A(0)?
- what is V(t), the total solution volume?
- write down the differential equation for $\frac{dA}{dt}$:

exercise 10, extended and fully-solved

• what is a function A(t) satisfying the ODE IVP?:

$$\frac{dA}{dt} = 6 - \frac{2}{300 + t}A, \quad A(0) = 50$$

• one may verify that

$$A(t) = 2(300 + t) - 550 \left(\frac{300}{300 + t}\right)^2$$

o get it using methods in §2.3

expectations

to learn this material, just watching this video is not enough; also

- read section 1.3 in the textbook
 - for instance, actually read the "Mixtures" example on p. 25 and the "Falling Bodies and Air Resistance" example on p. 27
- do the WebAssign exercises for section 1.3
- see the other "found online" videos at the bottom of the week
 2 page:

bueler.github.io/math302/week2.html