Appendix B: Completely Continuous Symmetric Operators

Let T be a bounded operator on the Hilbert space W. We say that $N \in \mathbb{C}$ is an eigenvalue of T in case there exists a nonzero $W \in \mathbb{C}$ such that T = NW. Each such nonzero W is an eigenvector of T corresponding to eigenvalue N. If W is W-dimensional and T is self-adjoint it is well-known that there exists an W basis $W \in \mathbb{C}$ for W consisting of eigenvectors of T.

The matrix of T with respect to this basis is diagonal:

$$\mathcal{I} = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)^{2} \cdot 0$$

However, if N is infinite-dimensional and T is self-adjoint it is usually not possible to find an ON basis for N consisting of eigenvectors. There is a sense in which T can be diagonalized (the spectral theorem for self-adjoint operators) but this is not a straight-forward extension of the procedure for diagonalizing self-adjoint operators on finite-dimensional spaces.

Nevertheless, there is a class of operators T of great importance in mathematical physics for which the eigenvectors do form an ON basis in the completely continuous self-adjoint operators.

A subset S of W is bounded if there exists a constant c>0 such that ||V||< c for all $v \in S$.

Definition: As operator T on $\mathbb N$ is completely continuous if for every bounded sequence $\{V_i\}$ in $\mathbb N$, there is a subsequence $\{V_i\}$, $\mathcal J_i < \mathcal J_i < \cdots < \mathcal J_i < \cdots$

Note: It is easy to show that a completely continuous operator is bounded.

Example 1: Every linear operator on a finite-dimensional space is completely continuous.

Example 2: The identity operator E on an infinite dimensional space is not completely continuous. (Hint: Look at the action of E on an ON basis of M.)

Example 3: Let $\mathfrak{R} = L_2(\mathfrak{R}_0)$, (appendix A), and let $h_2(x), \mathfrak{R}_2(x) \in C(\mathfrak{R}_0)$, $\mathfrak{R} = 1, \dots, n$. Let K be the operator on $L_2(\mathfrak{R}_0)$ defined by

(B.1) $K = K(x) = K(x, y) \in Y(y) = K(y) \in K(x, y)$

where

is the <u>kernel</u> of the integral operator K and W(Y) is the weight function on $L_2(^{O}m)$. Then K is completely continuous. This follows from the fact that R_K is finite-dimensional.

Example 4: Let $\mathfrak{N}=L_2(M)$ and let K be an integral operator (B.1) where now we require only that the kernel K(X,Y) be continuous in X and Y. Then K is completely continuous. Moreover, if K(X,Y)=K(Y,X) then K is self-adjoint.

Note: We give no proofs in this appendix. For detailed proofs the reader can consult [Helwig, 1] or [Stakgold, 1]. However, the reader should be able to supply the elementary proof of

Lemma B.1: Let T be a bounded self-adjoint operator on N. Then the eigenvalues of T are real and eigenvectors corresponding to distinct

eigenvalues are orthogonal.

Theorem 2.14: Let T be a nonzero completely continuous self-adjoint operator on the separable Hilbert space \mathcal{N} . Let $C_{\lambda} = \{\underline{u} \in \mathcal{N}: \underline{T}\underline{u} = \lambda \underline{u}\}$ be the eigenspace corresponding to the eigenvalue λ . Then

- a) T has at least one nonzero eigenvalue λ_1 and at most countably many, $\lambda_1 \geq \lambda_2 \geq \cdots$. Each eigenspace C_{λ_1} for $\lambda_1 \neq 0$ is finite-dimensional. If there are an infinite number of eigenvalues then $\lambda_1 = 0$.
- b) Let $\lambda_1, \lambda_2, \cdots$ be the eigenvalues of T, possibly including $\lambda_1 = 0$, and let $\{U_{ij}, j=1,2,\cdots, \dim C_{\lambda_i}\}$ be an ON basis for C_{λ_i} . Then $\{U_{ij}, j=1,2,\cdots, \dim C_{\lambda_i}, i=1,2,\cdots\}$ is an ON basis for C_{λ_i} .
- o) If $U \in R_{T_i} u = Tv$ for $v \in \mathcal{H}$, then $u = \sum_{i,j} (Tv_i, u_j^i) u_j^i = \sum_{i,j} (v_i, Tu_j^i) u_j^i = \sum_{i,j} \lambda_i (v_i, u_j^i) u_j^i.$

Note: Part c) follows immediately from a) and b). The sum in the expansion of u goes only over those eigenvectors corresponding to nonzero eigenvalues.

Consider the completely continuous self-adjoint integral operator $K \neq 0$ on $L_2(M)$, (example 4). The kernel K(x,Y) of K is continuous in all its arguments and satisfies K(X,Y)=K(Y,X). The preceding theorem clearly applies to K. Moreover, by making use of the special structure of K we can obtain more information about the expansion c). The eigenvectors $U_2^{-1}(X)$ are now functions in $L_2(M)$.

Theorem 2.15: 1) Let γ be a nonzero eigenvalue of K and Z(x) a corresponding eigenfunction. Then $Z(x) \in C(2m)$. 2) More generally,

then $u(x) = \sum_{i,j} (u, u_i^i) u_j^i(x) = \sum_{i,j} \lambda_i(x, u_i^i) u_j^i(x)$

where the series converges uniformly to u(x) (pointwise) for all $x \in M$.

The point of statement 3) is that the expansion of $U \in R_{\underline{N}}$ in terms of the eigenfunctions $U_{\underline{j}}^{\underline{i}}(x)$, converges not only in the norm but also pointwise uniformly.