EEL7052-Sistemas Lineares

Avaliação 3 - Semestre 2016/1 - 07/07/2016

Departamento de Engenharia Elétrica e Eletrônica - UFSC

Profs. Bartolomeu F. Uchôa Filho e Márcio Holsbach Costa

- 1) Determine pelo método de convolução gráfica a saída de um sistema discreto com resposta ao impulso h[n]=(0,9)ⁿu[n] a uma entrada x[n]=u[n+1]-u[n-4]. Apresente as equações (em formulação fechada) do sinal de saída para cada um dos trechos analisados.
- 2) Seja o sistema discreto dado pela seguinte equação de diferenças $y[n]=(1-\alpha)y[n-1]+\alpha x[n]$, para $\alpha=0,1$: (a) determine a sua função de transferência H(z); (b) classifique-o (justificando) quanto a: (i) causalidade, (ii) memória e (iii) estabilidade; (c) apresente as equações de módulo (dB) e fase (rad) que determinem a sua resposta em frequência; (d) assumindo que y[-1]=2 e que $x[n]=20\cos(\Omega n)u[n]$, para $\Omega=\omega T_s=0,2\pi$, determine a resposta total, identificando as parcelas referentes às respostas de estado nulo e entrada nula.
- 3) Para a transformada z unilateral apresentada a seguir: (a) determine a equação do sinal discreto correspondente; (b) apresente o diagrama em blocos do filtro digital representado por H(z) nas formas direta I ou II, identificando a forma escolhida.

$$H(z) = \frac{z^2 + 2z - 3}{z^2 + 0.6z - 0.27}$$

4) Para o diagrama de polos e zeros de uma sequência x[n] apresentado a seguir, determine o que pode ser concluído sobre a região de convergência caso: (a) o sinal x[n] seja causal; (b) a transformada de Fourier de x[n] converge; (c) a transformada de Fourier de x[n] não converge; (d) o sinal x[n] seja anti-causal.

FORMULÁRIO Transformadas z e prop<u>riedades</u>

าานาเราูบาก			
x(n)	$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$		
δ(n-m)	Z ^{-m}		
u(n)	z/(z-1) RC: z >1		
n.u(n)	z/(z-1) ² RC: z >1		
n².u(n)	$z(z+1)/(z-1)^3$		
$\gamma^n u(n)$	z/z-γ RC: z > γ		
$\gamma^n u(-n)$	$\gamma / (\gamma - z)$ RC: $ z < \gamma $		
γ ⁿ⁻¹ u(n-1)	1/(z-γ)		
n.γ ⁿ u(n)	γ z/(z-γ) ²		
γ ⁿ cos(βn).u(n)	$\frac{z(z- \gamma \cos(\beta))}{z^2-(2 \gamma \cos(\beta))z+ \gamma ^2}$		
γ ⁿ sen(βn).u(n)	$\frac{z y sen(\beta)}{z^2-(2 y cos(\beta))z+ y ^2}$		

Domínio do tempo		Domínio de z		
x(n)		8		
		$X(z)=\sum x(n) z^{-n}$		
		n=-∞		
x(n-m)		z ^{-m} X(z)		
∞ (¬)*(¬) ∇(¬¬)(¬¬	\			
$x_1(n)^* x_2(n) = \sum x_1(m)x_2(n-m)$		$X_1(z).X_2(z)$		
m=-∞				
Transfor	da z unilatoral			
Transformada z unilateral				
x(n)	$X_{u}(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$			
	Λ_{l}	$u(\zeta) - \sum_{n=0}^{\infty} x(n)\zeta$		
u(n 1)	0			
x(n-1)	$z^{-1}X_u(z) + x(-1)$			
x(n-2)	$z^{-2}X_u(z) + z^{-1}x(-1) + x(-2)$			
$\sum_{k=m}^{n} r^{k} = \frac{r^{n+1} - r^{m}}{r - 1} \qquad r \neq 1$				

Pares de transformadas de Fourier

x(t)	X(jω)
$\delta(t)$	1
1	2πδ(ω)
u(t)	$\pi\delta(\omega) + 1/(j\omega)$
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
$sen(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
ret(t/τ)	τ .sinc($\omega \tau/2$)
$(W/\pi).sinc(Wt)$	ret(ω/2W)
$e^{-at} u(t)$, a>0	1/(a+jω)
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0), \omega_0 = \frac{2\pi}{T}$

Propriedades da transformada de Fourier

x(t)	X(jw)
y(t)	Υ(jω)
a.x(t)+b.y(t)	$a.X(j\omega)+b.Y(j\omega)$
$x(t-\tau)$	$e^{-j\omega\tau}.X(j\omega)$
$e^{jWt}.x(t)$	$X(j(\omega-W))$
$x^*(t)$	$X^*(-j\omega)$
x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
x(t)*y(t)	$X(j\omega).Y(j\omega)$
x(t).y(t)	$(1/2\pi).X(j\omega)*Y(j\omega)$
$\frac{d}{dt}x(t)$	$j\omega.X(j\omega)$

Expansão em Frações Parciais	SFTD	TFTD
$K_i = \frac{N(z)}{D(z)}(z - p_i)$	$x[n] = \sum_{r=0}^{N-1} D_r e^{jr\Omega n}$	
12-11	r=0	$x[n] = \frac{1}{2\pi} \int_{\Omega} X(\Omega) e^{j\Omega n} d\Omega$
$K_{1r} = \frac{N(z)}{D(z)} (z - p_1)^r \Big _{z=p_1}$	$D_r = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jr\Omega n}$	2π ∞
$K_{1 r-j} = \frac{1}{j!} \frac{d^j}{dz^j} \frac{N(z)}{D(z)} (s - p_1)^r$	N = 0 $N = 0$	
$\int_{z=p_1}^{n_1} j! dz^j D(z)^{\binom{n_1}{j}} \Big _{z=p_1}$	$\Omega = 2\pi / N$	<i>n</i> =-∞