Annexe 7: Modèle Physique

December 11, 2018

1 Sources d'énergie

Nos quatre sources d'énergie étaient donc:

- Energie Elastique E_{elast} : Un ressort de piège à rat
- $\bullet\,$ Energie Potentielle $E_{pot}\colon$ Un poids tombant du véhicule, faisant tourner les roues
- Energie Cinétique de Rotation E_{rot} : Volant d'inertie
- Energie Cinétique de Translation E_{cin} : Rampe de lancement avant t_0

L'énergie totale pouvait se calculer comme étant la somme de ces quatres énergies.

$$E_{tot} = E_{elast} + E_{pot} + E_{rot} + E_{cin}$$

$$= k \cdot \frac{\theta_0^2}{2} + m_{weight} \cdot g \cdot h + \frac{k \cdot m \cdot r^2 \cdot \omega^2}{2} + m_{car} \cdot g \cdot h_{ramp}$$
(1)

2 Paramètres Réglables et Frottements

Les paramètres réglables étaient θ_0 , l'angle de rotation du ressort, m_{weight} , la masse du poids tombant, ω , la vitesse angulaire du volant d'inertie et éventuellement h_{ramp} , la hauteur de rampe depuis laquelle la voiture allait rouler. Pour ce qui est des frottements, nous avons vite remarqué qu'ils étaient de l'ordre du dixième de Newton: lorsque nous placions le véhicule sur un plan et l'inclinions de ne fût-ce que 5, le véhicule se mettait déjà en mouvement, indiquant que le μ était vraiment minuscule.

3 Conclusions

Les points forts de cette façon de calculer l'énergie étaient qu'il était facile d'implémenter ce modèle dans un programme Python avec le module Numpy et que donc les paramètres à adapter étaient faciles à calculer (si nous avions su combien de frottements il y avaient dans le système). Le point faible était que ce modèle ne tenait pas compte du fait que certaines transformations d'énergie ne se faisaient pas en t_0 . Nous aurions pu faire un modèle plus exhaustif tenant compte de ça. La partie physique de ce projet est définitement là où l'on a le plus appris, vu que c'est la matière principale concernée par ce projet.