Parameterization, Curvature

1. Given the parameterization

$$\mathbf{r}(t) = \langle 2\cos(t), 3\sin(t) \rangle, \quad 0 \le t \le 2\pi.$$

(a) Show that x(t) and y(t) satisfy the equation for the ellipse

$$\frac{x^2}{4} + \frac{y^2}{9} = 1.$$

(b) Draw this ellipse on the axes below.

(c) Find $\mathbf{v} = \mathbf{r}'(0)$ and $\mathbf{a} = \mathbf{r}''(0)$ and find $\kappa = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^3}$ at t = 0.,

2. Given the parameterization for a spiral,

$$\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle.$$

(a) Find the unit tangent vector \mathbf{T} and the unit normal vector \mathbf{N} at time t = 1. [Hint: you can find the normal direction by taking $\mathbf{v} \times \mathbf{a} \times \mathbf{v}$.]

(b) Find an equation for a line tangent to the spiral at time t_0 .

(c) Given $t_0 = \pi$, find the point at which the tangent line intersects the plane z = 0.

- 3. Give examples of the following.
 - (a) An equation for a cylinder so that the point (1, 2, 3) is on its surface.

(b) The point P on the plane 3x+2y+z=6 that is closest to the point Q(7,7,-1).

(c) A paraboloid that opens downwards in the z direction and intersects the xy-plane in the ellipse $4x^2 + 9y^2 = 36$.

(d) Two parallel lines L_1 and L_2 in the parallel planes x + 2y + 2z = 3 and x + 2y + 2z = 6 so that the distance between L_1 and L_2 is 3.

- 4. Given the points A(1,2,3) and B(5,4,-2).
 - (a) Find both the parametric and symmetric equations of the straight line connecting A and B.

(b) Find the plane perpendicular to this line that goes through the point (1, 2, 4).

(c) Find a plane that this line does not intersect.