Hoja 10

Bases Ortogonales

Problema 10.1 Determinar cuáles de los siguientes conjuntos de vectores de \mathbb{R}^n son ortogonales, respecto al producto escalar usual:

a)
$$\{(-1,4,-3)^t, (5,2,1)^t, (3,-4,-7)^t\}$$
.

b)
$$\{(3,-2,1,3)^{t}, (-1,3,-3,4)^{t}, (3,8,7,0)^{t}\}.$$

c)
$$\{(2,-7,-1)^{t},(6,3,-9)^{t},(3,1,-1)^{t}\}.$$

d)
$$\{(5, -4, 0, 3)^{t}, (-4, 1, -3, 8)^{t}, (3, 3, 5, -1)^{t}\}.$$

Problema 10.2 Probar que (u_1, u_2, u_3) es una base ortogonal de \mathbb{R}^3 respecto al producto escalar usual y expresar x como combinación lineal de los u_i 's.

a)
$$u_1 = (1,0,1)^t$$
, $u_2 = (-1,4,1)^t$, $u_3 = (2,1,-2)^t$, $x = (8,-4,-3)^t$.

$$b) \ u_1 = (3, -3, 0)^{\mathsf{t}} \quad u_2 = (2, 2, -1)^{\mathsf{t}} \,, \quad u_3 = (1, 1, 4)^{\mathsf{t}} \,, \quad x = (5, -3, 1)^{\mathsf{t}}.$$

Problema 10.3 Demostrar que cada uno de los siguientes conjuntos es linealmente independiente. Sea *W* el espacio vectorial generado por cada conjunto. Usar el método de Gram-Schmidt para obtener una base ortogonal de *W*. Finalmente encontrar una base ortonormal de *W*.

- a) $\{(3,0,-1)^t,(8,5,-6)^t\}$.
- b) $\{(1, -4, 0, 1)^{t}, (7, -7, -4, 1)^{t}\}.$
- c) $\{(0,4,2)^{t}, (5,6,-7)^{t}\}.$
- d) $\{(3,-1,2,-1)^{t},(-5,9,-9,3)^{t}\}.$

Problema 10.4 Sea W el subespacio de \mathbb{R}^3 dado por

$$\{(x,y,z)^{t}: x-2y+3z=0\}$$
.

Encontrar una base ortonormal de W. Extender la base obtenida a una base ortonormal de \mathbb{R}^3 .

Problema 10.5 Consideremos la transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ que satisface $T(e_1) = e_1 + e_2$ y $T(e_2) = -e_1 + e_2$.

- 1. ¿Preserva la longitud?
- 2. Encontrar el núcleo y la imagen de esta transformación y sus correspondientes dimensiones.

Problema 10.6 Encontrar una base ortogonal para el espacio columna de las siguientes matrices:

a)
$$\begin{pmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{pmatrix}$$
.

b)
$$\begin{pmatrix} 1 & 2 & 5 \\ -1 & 1 & -4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1 \end{pmatrix}.$$

c)
$$\begin{pmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{pmatrix}.$$

$$\begin{pmatrix}
1 & 3 & 5 \\
-1 & -3 & 1 \\
0 & 2 & 3 \\
1 & 5 & 2 \\
1 & 5 & 8
\end{pmatrix}.$$

Problema 10.7 Encontrar, si es posible, la factorización QR de las matrices del Problema 10.6.

Problema 10.8 Demostrar que $S = (v_1, v_2, v_3)$ es una base de \mathbb{R}^3 , siendo $v_1 = (1, 0, 1)^t$, $v_2 = (2, -1, 1)^t$ y $v_3 = (1, 1, 5)^t$.

- 1. Hallar una base ortonormal B de \mathbb{R}^3 .
- 2. Encontrar las coordenadas de v_2 y v_3 respecto a la base B.
- 3. Obtener la matriz de cambio de base T_{SB} para pasar de la base S a la base B. Comprobar que $[v_3]_S = T_{SB} [v_3]_B$.