Face Mask Detection using CNN Deep Learning - Research Survey Papers

Literature Review Table

This document contains a comprehensive tabulated list of 20 research papers related to Face Mask Detection using Convolutional Neural Networks (CNN) and Deep Learning algorithms. The table includes paper titles, authors, methodologies, key findings, and accuracy results.

S.No	Paper Title	Authors	Year	Journal/ Conferen ce	Methodology	Key Findings	Accuracy/ Results	Туре
1	Deep learning techniques for detecting and recognizing face masks: A survey	Alturki, R., Alharbi, M., AlAnzi, F., & Albahli, S.	2022	Frontiers in Public Health	Survey of CNN, MFR, OFR techniques	Comprehe nsive review of deep learning approache s	Survey Paper	Survey Paper
2	A Comprehen sive Survey of Masked Faces: Recognitio n, Detection, and Unmasking	Mahmoud , M., Kasem, M. S., & Kang, H. S.	2024	ArXiv	Comprehensiv e analysis of MFR, FMR, and FU techniques	Analysis of deep learning methodol ogies for masked face challenge s	Survey Paper	Survey Paper
3	Face mask detection using deep learning: An approach to reduce risk of Coronaviru s spread	Sethi, S., Kathuria, M., & Kaushik, T.	2021	Journal of Biomedic al Informati cs	Ensemble of single and two stage detectors with ResNet50	Improved precision and recall performan ce	98.2%	Resear ch Paper
4	Face mask detection using deep convolution al neural network	Umer, M., Ashraf, I., Mehmood , A., et al.	2023	Image and Vision Computin g	CNN, YOLO v3, Faster R- CNN with custom dataset	High performan ce on MAFA and MOXA	High Performanc e	Resear ch Paper

5	and multi- stage image processing A convolution al neural network for face mask detection in crowded scenes	Bose, S., Mondal, B., Sarkar, R., & Basu, S.	2023	Signal Processin g: Image Communi cation	CNN with YOLOv3 and MobileNetV2	datasets with custom CNN Effective detection in crowded environm ents	99.2%, F1- score: 0.99	Resear ch Paper
6	Enhancing Facemask Detection using Deep learning Models	Abdirahm an, A. A., Hashi, A. O., Dahir, U. M., et al.	2023	Internatio nal Journal of Advanced Computer Science and Applicati ons	MobileNet, ResNet50, Inceptionv3, VGG19 comparison	ResNet50 achieved superior performan ce	99.4% precision, 98.6% recall	Resear ch Paper
7	Face Mask Detection System Using Deep Learning	Bera, A.	2023	Project Report - Bangabasi Morning College	MobileNetV2 with real-time processing	Real-time face mask detection system with high accuracy	High Accuracy	Project Report
8	Face mask detection using convolution al neural network	Project Team - JUIT	2024	Jaypee Universit y Project Report	Two-stage CNN with face detection and mask classification	Real-time monitorin g achieved with low loss	96% accuracy, 11% loss	Project Report
9	Face Mask Detection System	Various Authors	2022	Internatio nal Journal of Research and Analytical Reviews	MobileNetV2 with dataset preprocessing	High accuracy dependent on dataset quality and preproces sing	Dataset Dependent	Resear ch Paper
10	Face Mask Detection Using CNN Techniques and Machine Learning	Date, M. S., Thoke, S. K., Chatur, S. A., et al.	2022	Internatio nal Journal of Scientific Developm ent and Research	Single Shot Detector (SSD) with transfer learning	Excellent performan ce using MobileNe tV2 architectu re	100% precision, 99% recall	Resear ch Paper
11	Survey on Face Mask	Various Authors	2022	Internatio nal	Survey of CNN, Transfer	Comprehe nsive	Survey Paper	Survey Paper

12	Detection Using Machine learning Survey on Face Mask detection using Deep	Various Authors	2021	Journal of Research in Engineeri ng and Science Internatio nal Journal of Data	Learning, and YOLO methods Deep learning model review for face and mask	analysis of machine learning approache s Highlight s importanc e of	Survey Paper	Survey Paper
	Learning			Science and Machine Learning Applications	prediction	object detection in deep learning		
13	Face Mask Detection using Convolutio nal Neural Network (CNN) to reduce the spread of Covid-19	Various Authors	2023	Academia .edu Publicatio n	CNN-based approach for COVID-19 prevention	Effective CNN implemen tation for pandemic control measures	Effective Implementa tion	Resear ch Paper
14	Face Mask Detection Using Deep Learning	Ponkiran, S., Nikitha, M., Tamilselv an, K., et al.	2021	Internatio nal Journal of Advanced Research in Engineeri ng Science and Managem ent	Faster R-CNN for worker safety monitoring	Effective detection for road project safety applicatio ns	Safety Application Focus	Resear ch Paper
15	Deep Learning Approaches for Face Mask Detection	Various Authors	2024	Eudoxus Press	Comprehensiv e review of 11 key studies from 2016- 2024	Analysis of deep learning evolution in face mask detection	Survey Paper	Survey Paper
16	Face Mask Detection and Recognitio n Using	Various Authors	2024	Springer Professio nal	CNN with primary dataset of 65 images	Performa nce evaluation based on probabilit	Probability- based Evaluation	Resear ch Paper

	CNN Daar					v and		
	CNN Deep					y and		
	Learning					accuracy		
	Model					metrics		
17	Compariso	Yahya, A.	2021	Internatio	AlexNet,	GoogleNe	>95% with	Comp
	n of	A., et al.		nal	GoogleNet,	t and	fewer	arative
	Convolutio			Journal of	ResNet-18,	ResNet	images	Study
	nal Neural			Advanced	ResNet-50,	achieved		
	Network			Computer	ResNet-101	superior		
	Architectur			Science		performan		
	es for Face			and		ce		
	Mask			Applicati				
	Detection			ons				
18	Masked	Shukla,	2023	Computer	MobileNet V2	Excellent	99.82%	Resear
	Face	S., et al.		Systems	with Transfer	accuracy		ch
	Recognitio	,		Science	Learning	for		Paper
	n Using			and	8	masked		F
	MobileNet			Engineeri		face		
	V2 with			ng		recognitio		
	Transfer			l ng		n		
	Learning					III		
19	Deep	Mar-	2022	PLOS	NasNetMobile	ResNet	ResNet:	Resear
	transfer	Cupido,	2022	ONE	, MobileNetv2,	models	Best	ch
	learning for	R., et al.		OIVE	ResNet101v2,	provided	Performanc	Paper
	the	κ., οι αι.			ResNet152v2	best	e	1 aper
	recognition				Residentia	performan		
	of types of					ce for		
	face masks					different		
	lace masks					mask		
20	Face mask	Lindal C	2022	Multimed	Strategic	types	Stratagia	Ctuataa
20	detection in	Jindal, C., et al.	2022	ia Tools	review of ML	Comprehe nsive	Strategic Review	Strateg
		et ai.					Keview	10
	COVID-19:			and	and DL	analysis		Revie
	a strategic			Applicati	techniques	of face		W
	review			ons		mask		
						detection		
						methods		
						during		
						COVID-		
						19		

Summary Statistics

Total Research Papers: 20

Survey Papers: 5 Research Papers: 11 Project Reports: 2 Comparative Studies: 1

Key Methodologies Covered

- CNN Architectures: ResNet, MobileNet, VGG, InceptionV3, AlexNet, GoogleNet
- Object Detection: YOLO (v3, v4, v5), Faster R-CNN, SSD
- Transfer Learning: Pre-trained model fine-tuning
- Ensemble Methods: Multi-stage detection and classification