MSE-101 ADVANCED COMPUTATIONAL MATHEMATICS

UNIT 1

Linear Algebra: Linear transformation, vector spaces, hash function, Hermite polynomial, Heavisite's unit function and error function. Elementary concepts of Modular mathematics

UNIT 2

Solution of Partial Differential Equation (PDE) by separation of variable method, numerical solution of PDE (Laplace, Poisson's, Parabolic) using finite difference methods, Elementary properties of FT, DFT, WFT, Wavelet transform, Haar transform.

UNIT 3

Probability, compound probability and discrete random variable. Binomial, Normal and Poisson's distributions, Sampling distribution, elementary concept of estimation and theory of hypothesis, recurred relations.

UNIT 4

Stochastic process, Markov process transition probability transition probability matrix, just and higher order Markov process, Application of Eigen value problems in Markov Process, Markov chain. Queuing system, transient and steady state, traffic intensity, distribution queuing system, concepts of queuing models (M/M/1: Infinity/ Infinity/ FC FS), (M/M/1: N/ Infinity/ FC FS), (M/M/S: Infinity/ Infinity/ FC FS)

UNIT 5

Operations of fuzzy sets, fuzzy arithmetic & relations, fuzzy relation equations, fuzzy logics. MATLAB introduction, programming in MATLAB scripts, functions and their application.

Reference Books:

- 1. Higher Engineering Mathematics by B.V. Ramana, Tata Mc Hill.
- 2. Advance Engineering Mathematics by Ervin Kreszig, Wiley Easten Edd.
- 3. Applied Numerical Methods with MATLAB by Steven C Chapra, TMH.
- 4. Advance Engg Mathematics, O' Neil, Cengage (Thomson)
- 4. Introductory Methods of Numerical Analysis by S.S. Shastry,
- 5. Introduction of Numerical Analysis by Forberg
- 6. Numerical Solution of Differential Equation by M. K. Jain
- 7. Numerical Mathematical Analysis By James B. Scarborogh
- 8. Fourier Transforms by J. N. Sheddon
- 9. Fuzzy Logic in Engineering by T. J. Ross
- 10. Fuzzy Sets Theory & its Applications by H. J. Zimmersoms

MSE-102 ADVANCED DATA STRUCTURES AND ALGORITHM

UNIT 1

INTRODUCTION: Basic concepts of OOPs – Templates – Algorithm Analysis – ADT - List (Singly, Doubly and Circular) Implementation - Array, Pointer, Cursor Implementation

UNIT 2

BASIC DATA STRUCTURES: Stacks and Queues – ADT, Implementation and Applications - Trees – General, Binary, Binary Search, Expression Search, AVL, Splay, B-Trees – Implementations - Tree Traversals.

UNIT 3

ADVANCED DATA STRUCTURES: Set – Implementation – Basic operations on set – Priority Queue – Implementation - Graphs – Directed Graphs – Shortest Path Problem - Undirected Graph - Spanning Trees – Graph Traversals

UNIT 4

MEMORY MANAGEMENT; Issues - Managing Equal Sized Blocks - Garbage Collection Algorithms for Equal Sized Blocks - Storage Allocation for Objects with Mixed Sizes - Buddy Systems - Storage Compaction

UNIT 5

SEARCHING, SORTING AND DESIGN TECHNIQUES: Searching Techniques, Sorting – Internal Sorting – Bubble Sort, Insertion Sort, Quick Sort, Heap Sort, Bin Sort, Radix Sort – External Sorting – Merge Sort, Multi-way Merge Sort, Polyphase Sorting - Design Techniques - Divide and Conquer - Dynamic Programming - Greedy Algorithm – Backtracking - Local Search Algorithms

Reference Books:

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", Pearson P
- 2. Aho, Hopcroft, Ullman, "Data Structures and Algorithms", Pearson Education P
- 3. Drozdek, Data Structures and algorithm in Jawa, Cengage (Thomson)
- 4. Gilberg, Data structures Using C++, Cengage
- 3. Horowitz, Sahni, Rajasekaran, "Computer Algorithms", Galgotia,
- 4. Tanenbaum A.S., Langram Y, Augestien M.J., "Data Structures using C & C++", Prentice Hall of India, 2002

MSE-103 SOFTWARE ENGINEERING

Unit: 1

System Engineering : Hierarchy of system engineering, Product engineering, Requirements Engineering, System Modeling, Requirement Analysis, Analysis Principles, Software Prototyping, Software Requirement Specification, Software Engineering Process.

Unit: 2

Analysis Modeling : Elements of Analysis modeling, Data Modeling, Function Modeling and information flow, Behavioral modeling, Mechanics of structured analysis, data dictionary and other classical analysis methods, USE CASE modeling, UML Scenario, activities and class diagram.

Unit:3

Design Concepts and Principles: Design Process, Design Concepts, Effective Modular Design Functional Independence, coupling and cohesion, Software Architectural Design-Data Design Architectural Styles, Mapping Requirements into a Software Architecture, Transform Mapping, Transaction Mapping, User Interface Design, Task Analysis and Modeling, Implementation tools, Design Evaluation, Component Level design.

Unit: 4

Software Testing Techniques & Stragies : White Box Testing, Basis Path Testing, Control Structure Testing Black Box Testing, Graph Based Testing Methods, Equivalence Partitioning, Boundary Value Analysis, Comparison Testing, Orthogonal Array Testing, Strategic Issues, Unit testing, Integration testing, Validation testing, System Testing, Formal Technical Review.

Unit: 5

Software Technical Metrics: Software Quality – McCall's Quality Factors, FURPS, Framework for technical software Metrics, Metrics for the analysis model, function based Metrics, Bang Metric, Metrics for design Model-Architectural Design Metrics, Component Level Design Metrics, Interface Design Metrics, Metrics for source code, Metrics for Testing and Maintenance.

Reference Books

- 1. R.S.Pressman, "Software Engineering: A Practitioner's Approach", Sixth edition 2006, McGraw-Hill
- 2. Sommerville, "Software Engineering", Pearson Education
- 3. Rechard H.Thayer, "Software Engineering & Project Managements", Willey India
- 4. Mustafa & Khan, "Software Testing-Concepts and Practices", Narosa Pub House.
- 5. Behforooz & Hudson, "Software Engineering Fundamentals", Oxford Univ. Press.

MSE-104 OBJECT ORIENTED TECHNOLOGY

UNIT 1

Overview of object oriented concepts: Need for object oriented programming, characterization of object oriented languages.

Unit 2

Object oriented Design: object structure concepts, methodology for object oriented design (Booch, and chen and chen), Design modelling, system design life cycle.

Unit 3

Object oriented programming: An overview of c++ programming, loops and decisions, structures and functions, objects and classes, Array and pointers, Inheritence, virtual function, files and stream.

Unit 4

Object oriented Databases: Relational v/s object oriented databases, The architecture of OO databases, Query languages for OO databases, Gemstone/O2/orion.

Unit 5

Distributed object oriented systems: Object management group, CORBA.

Reference Books:

- 1. Object Oriented Analysis and Design, Satzinger, Cengage (Thomson)
- 2. Object Oriented S/W Development by Mc. Gregor & Sykes DA, Van Nostrand.
- 2. OOP in C++ by Lafore, Galgotia Pub.
- 3. The C++ Programming Language by Stroustrup B, Addison Wesely
- 4. Introduction to OOP by Witt KV, Galgotia Pub.
- 5. Object Data Management by Cattel R., Addison Wesely
- 6. Modern Data Base System by Kim W, ACM Press, Addison Wesely
- 7. OOP by Blaschek G, Springer Verlag
- 8. An Introduction to Jawa Programming and OOAD, Johnson, Cengage

MSE-105 ADVANCED COMPUTER NETWORKING

UNIT 1

Review of Networking and O.S. fundamentals, ISO-OSI Model, different layers and their functions, LAN, MAN, WAN, Communication media & principles IEEE standards etc.

UNIT 2

Internetworking with TCP/IP, Basic concepts, Principles, Protocols and Architecture, Address handling Internet protocols and protocol layering. DNS, Applications: TELNET, RLOGN, FTP, TFTP, NFS, SMTP, POPL, IMAP, MIME, HTTP,STTP,DHCP, VOIP, SNMP.

UNIT 3

Introduction to Router, Configuring a Router, Interior & Exterior Routing, RIP, Distance Vector Routing, OSPF, BGP, Uni-cast, Multicast and Broadcast. Multicast routing protocols: DVMRP, MOSPF, CBT, PIM, MBONE, EIGRP, CIDR, Multicast Trees, Comparative study of IPv6 and IPv4.

UNIT 4

VPN addressing and routing, VPN Host management, ATM Concepts, Services Architecture, Equipments and Implementation

UNIT 5

Introduction to wireless transmission and medium access control, wireless LAN: IEEE 802.11, Hipher LAN, Bluetooth Mobile Network and Transport layer, WAP GSM and CDMA: Network architecture and management

Reference Books:

- 1. Computer Networks: Tanenbaum.
- 2. Internetworking with TCP/IP: Comer.
- 3. Data Communications, Computer Networks and Open Systems: Hallsall.
- 4. Data Communications, Stalling.
- 5. Mobile Communication: Schiller, Pearson Education
- 6. Computer Communications and network Technology, Gallo, Cengage (Thomson)
- 7. Wireless and Mobile Network Architecture: Yi Bing Lin, Wiley
- 8. ATM Network: Kasara, TMH
- 9. TCP/IP protocol Suite, Forouzan, TMH

References:

- 1. Rambaugh, Object Oriented Modeling and Design with UML, Pearson Edu.
- 2. Simon Bennett, Steve McRobb and Ray Farmer, Object Oriented system Analysis and Design Using UML, TMH
- 3. Docherty, Object Oriented Analysis & Design with UML, Wiley India
- 4. Ivar Jacobson, Patrik Jonsson: ,Object Oriented Software Engineering , Pearson.Edu