Suppose the d dimensional vector of complete records. Each observation $\mathbf{W}_i = (W_{i1}, \dots, W_{id})$ can be decomposed as:

$$\mathbf{W}_{i} = \mathbf{O}_{i}^{\top} \mathbf{O}_{i} \mathbf{W}_{i} + \mathbf{M}_{i}^{\top} \mathbf{M}_{i} \mathbf{W}_{i}$$
$$= \mathbf{O}_{i}^{\top} \mathbf{W}_{i}^{(o)} + \mathbf{M}_{i}^{\top} \mathbf{W}_{i}^{(m)},$$

where $\mathbf{W}_i^{(o)} = \mathbf{O}_i \mathbf{W}_i$ is a d_i^o -dimensional vector comprising only observed entries in the i^{th} observation, $\mathbf{W}_i^{(m)} = \mathbf{M}_i \mathbf{W}_i$ is a $d - d_i^o$ -dimensional vector comprising of missing entries in the i^{th} observation, \mathbf{O}_i and \mathbf{M}_i are observed and missing entries extraction matrices of dimensions $d_i^o \times d$ and $(d - d_i^o) \times d$, respectively.

To obtain the marginal densities of the observed data, we first define the hierarchical structure comprising only the observed entries.

$$W_{ij}^{(o)} \mid Y_{ij}^{(o)} \sim \text{Poisson}(e^{\mathbf{o}_j^\top Y_i}) \quad \text{and} \quad \mathbf{Y}_i^{(o)} \sim \mathscr{N}_{d_i^{(o)}}(\mathbf{O}_i \boldsymbol{\mu}, \mathbf{O}_i \boldsymbol{\Sigma} \mathbf{O}_i^\top),$$

where \mathbf{o}_{j} is the j^{th} row of the matrix \mathbf{O}_{i} .

Thus, for the mixtures of MPLN distribution, the marginal density of the observed entries can be written as

$$\begin{split} f(\mathbf{w}_i \mid \boldsymbol{\vartheta}) &= \sum_{g=1}^G \pi_g f_{\mathbf{W}_i}(\mathbf{w}_i^{(o)} \mid \mathbf{O}_i \boldsymbol{\mu}_g, \mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top) \\ &= \sum_{g=1}^G \pi_g f_{\mathbf{W}_i}(\mathbf{O}_i \mathbf{w}_i \mid \mathbf{O}_i \boldsymbol{\mu}_g, \mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top) \end{split}$$

In model-based clustering, an additional component membership indicator variable **Z** is introduced which is assumed to be unknown and $Z_{ig} = 1$ if the observation i^{th} belongs to group g and $Z_{ig} = 0$ otherwise. Hence, the complete data now comprises of observed expression levels \mathbf{y} , underlying latent variable $\boldsymbol{\theta}$, and unknown group membership \mathbf{z} and the complete-data likelihood is defined as

$$L_c(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathbf{w}, \mathbf{z}) = \prod_{g=1}^G \prod_{i=1}^n \left[\pi_g f(\mathbf{w}_i^{(o)} \mid \mathbf{O}_i \boldsymbol{\mu}_g, \mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top) \right]^{z_{ig}}.$$

and the complete-data log-likelihood can be written as

$$l_c(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathbf{w}, \mathbf{z}) = \sum_{g=1}^G \sum_{i=1}^n z_{ig} \log \pi_g + \sum_{g=1}^G \sum_{i=1}^n z_{ig} \log f(\mathbf{w}_i^{(o)} \mid \mathbf{O}_i \boldsymbol{\mu}_g, \mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top).$$

The marginal probability density of observed entries in the i^{th} observation $\mathbf{W}_i^{(o)}$ can be written as:

$$f_{\mathbf{w}}(\mathbf{w}_i^{(o)}) = f_{\mathbf{w}}(\mathbf{O}_i \mathbf{w}_i) = \int_{\mathbb{R}^{d_i^o}} \left[\prod_{j=1}^{d_i^o} p(w_j^{(o)} \mid y_j^{(o)}) \right] \ \phi_{d_i^o}(\mathbf{Y}_i^{(o)} \mid \mathbf{O}_i \boldsymbol{\mu}_g, \mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top) \ d\mathbf{Y}_i^{(o)},$$

where $w_j^{(o)}$ and $y_j^{(o)}$ are the j^{th} element of $\mathbf{w}^{(o)}$ and $\mathbf{y}^{(o)}$ respectively, $p(\cdot)$ is the probability mass function of the Poisson distribution with mean $\lambda_j = e^{y_j^{(o)}}$ and $\phi_{d_i^o}(\cdot)$ is the probability density function of d_i^o -dimensional Gaussian distribution with mean $\mathbf{O}_i \boldsymbol{\mu}_g$ and covariance $\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^{\top}$. (Subedi and Browne, 2020) proposed variational approximations for approximating the marginal of \mathbf{W} and developed an EM-type framework for parameter estimation for the mixtures of MPLN distributions. Here, we will develop a similar framework for parameter estimation for the mixtures of MPLN with partial records.

Suppose, we have an approximating density $q(\mathbf{y}_i^{(o)}) = q(\mathbf{O}_i \mathbf{y}_i)$, the log of the marginal density can be written as

$$\log f(\mathbf{w}_i^{(o)}) = \log f(\mathbf{O}_i \mathbf{w}_i) = F(q, \mathbf{w}_i^{(o)}) + D_{KL}(q || f),$$

where $D_{KL}(q||f) = \int_{\mathbb{R}^d} q(\mathbf{y}_i^{(o)}) \log \frac{q(\mathbf{y}_i^{(o)})}{f(\mathbf{y}_i^{(o)}|\mathbf{w}_i^{(o)})} d\mathbf{y}$ is the Kullback-Leibler (KL) divergence between $f(\mathbf{y}_i^{(o)} | \mathbf{w}_i^{(o)})$ and approximating distribution $q(\mathbf{y}_i^{(o)})$, and

$$F(q, \mathbf{w}_i^{(o)}) = \int_{\mathbb{R}^{d_i^o}} \left[\log f(\mathbf{w}_i^{(o)}, \mathbf{y}_i^{(o)}) - \log q(\mathbf{y}_i^{(o)}) \right] q(\mathbf{y}_i^{(o)}) d\mathbf{y}_i^{(o)}$$

is called the evidence lower bound (ELBO). Replacing the $f(\mathbf{w}_i^{(o)})$ by the sum of ELBO and KL divergence, the complete data log-likelihood of the mixtures of MPLN distributions can be written as:

$$l_c(\boldsymbol{\vartheta} \mid \mathbf{y}) = \sum_{g=1}^{G} \sum_{i=1}^{n} z_{ig} \log \pi_g + \sum_{g=1}^{G} \sum_{i=1}^{n} z_{ig} \left[F(q_{ig}, \mathbf{w}_i^{(o)}) + D_{KL}(q_{ig} || f_{ig}) \right],$$

where $D_{KL}(q_{ig}||f_{ig}) = \int_{\mathbb{R}^{d_i^o}} q(\mathbf{y}_{ig}^{(o)}) \log \frac{q(\mathbf{y}_{ig}^{(o)})}{f(\mathbf{y}_i^{(o)}|\mathbf{w}_i^{(o)}, Z_{ig}=1)} d\mathbf{y}_{ig}^{(o)}$ is the Kullback-Leibler (KL) divergence between $f(\mathbf{y}_i^{(o)} | \mathbf{w}_i^{(o)}, Z_{ig}=1)$ and approximating distribution $q(\mathbf{y}_{ig}^{(o)})$.

Assuming that given $Z_{ig} = 1$, we assume $q(\mathbf{y}_i^{(o)}) = \mathcal{N}_{d_i^o}(\mathbf{m}_{ig}, \mathbf{S}_{ig})$ and the ELBO for each observation \mathbf{w}_i becomes

$$F(q_{ig}, \mathbf{w}_{i}^{(o)}) = \frac{1}{2} \log |\mathbf{S}_{ig}| - \frac{1}{2} (\mathbf{m}_{ig} - \mathbf{O}_{i} \boldsymbol{\mu}_{g})^{\top} (\mathbf{O}_{i} \boldsymbol{\Sigma}_{g} \mathbf{O}_{i}^{\top})^{-1} (\mathbf{m}_{ig} - \mathbf{O}_{i} \boldsymbol{\mu}_{g}) - \frac{1}{2} \operatorname{tr}((\mathbf{O}_{i} \boldsymbol{\Sigma}_{g} \mathbf{O}_{i}^{\top})^{-1} \mathbf{S}_{ig})$$

$$+ \frac{1}{2} \log |(\mathbf{O}_{i} \boldsymbol{\Sigma}_{g} \mathbf{O}_{i}^{\top})^{-1}| + \frac{d_{i}^{o}}{2} + \mathbf{m}_{ig}^{\top} \mathbf{O}_{i} \mathbf{y}_{i} - \sum_{i=1}^{d_{i}^{o}} \left(e^{(m_{igj} + \frac{1}{2} S_{ig,jj})} + \log(y_{ij}^{(o)}!) \right),$$

where m_{igj} is the j^{th} element of the \mathbf{m}_{ig} and $S_{ig,jj}$ is the j^{th} diagonal element of the matrix \mathbf{S}_{ig} . The variational parameters that maximize the ELBO will minimize the KL divergence between the true posterior and the approximating density. Parameter estimation can be done in an iterative EM-type approach such that the following steps are iterated.

1. Conditional on the variational parameters \mathbf{m}_{ig} , \mathbf{S}_{ig} and on $\boldsymbol{\mu}_g$ and $\boldsymbol{\Sigma}_g$, the $\mathbb{E}(Z_{ig})$ is computed using only the observed data. Given $\boldsymbol{\mu}_g$ and $\boldsymbol{\Sigma}_g$,

$$\mathbb{E}(Z_{ig} \mid \mathbf{w}_i^{(o)}) = \frac{\pi_g f(\mathbf{w}_i^{(o)} \mid \mathbf{O}_i \boldsymbol{\mu}_g, \mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top)}{\sum_{h=1}^G \pi_h f(\mathbf{w}_i^{(o)} \mid \mathbf{O}_i \boldsymbol{\mu}_h, \mathbf{O}_i \boldsymbol{\Sigma}_h \mathbf{O}_i^\top)}.$$

Note that this involves the marginal distribution of **W** which is difficult to compute. Hence, following Subedi and Browne (2020), we use an approximation of $\mathbb{E}(Z_{ig})$ where we replace the marginal density of the exponent of ELBO such that

$$\widehat{Z}_{ig} \stackrel{\text{def}}{=} \frac{\pi_g \exp\left[F\left(q_{ig}, \mathbf{w}_i\right)\right]}{\sum_{h=1}^{G} \pi_h \exp\left[F\left(q_{ih}, \mathbf{w}_i\right)\right]}.$$

- 2. Given \hat{Z}_{ig} , variational parameters \mathbf{m}_{ig} and \mathbf{S}_{ig} is updated conditional on $\boldsymbol{\mu}_g$ and $\boldsymbol{\Sigma}_g$ as following:
 - (a) fixed-point method for updating \mathbf{S}_{ig} is

$$\mathbf{S}_{ig}^{(t+1)} = \left\{ (\mathbf{O}_i \mathbf{\Sigma}_g \mathbf{O}_i^\top)^{-1} + \mathbf{I} \odot \exp \left[\mathbf{m}_{ig}^{(t)} + \frac{1}{2} \operatorname{diag} \left(\mathbf{S}_{ig}^{(t)} \right) \right] \mathbf{1}_{d_i^o}^\top \right\}^{-1}$$

where the vector function $\exp[\mathbf{a}] = (e^{a_1}, \dots, e^{a_{d_i^o}})^{\top}$ is a vector of exponential each element of the d_i^o -dimensional vector \mathbf{a} , $\operatorname{diag}(\mathbf{S}) = (\mathbf{S}_{11}, \dots, \mathbf{S}_{d_i^o d_i^o})$ puts the diagonal elements of the $d_i^o \times d_i^o$ matrix \mathbf{S} into a d_i^o -dimensional vector, \odot the Hadmard product and $\mathbf{1}_{d_i^o}$ is a d_i^o -dimensional vector of ones.

(b) Newton's method to update \mathbf{m}_{ig} is

$$\mathbf{m}_{ig}^{(t+1)} = \mathbf{m}_{ig}^{(t)} - \mathbf{S}_{ig}^{(t+1)} \left\{ \exp \left[\mathbf{m}_{ig}^{(t)} + \frac{1}{2} \operatorname{diag} \left(\mathbf{S}_{ig}^{(t+1)} \right) \right] + (\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top)^{-1} \left(\mathbf{m}_{ig}^{(t)} - \mathbf{O}_i \boldsymbol{\mu}_g \right) - \mathbf{O}_i \mathbf{y}_i \right\}.$$

3. Given \hat{z}_{ig} and the variational parameters \mathbf{m}_{ig} and \mathbf{S}_{ig} , the updates for the parameters $\boldsymbol{\pi}$, $\boldsymbol{\mu}_g$ and $\boldsymbol{\Sigma}_g$ are obtained by maximizing the variational lower bound of the complete data log-likelihood. The updates for π_g and $\boldsymbol{\mu}_g$ have closed form solutions:

$$\hat{\pi}_g = \frac{\sum_{i=1}^n \widehat{Z}_{ig}}{n}, \quad \text{and} \quad \hat{\boldsymbol{\mu}}_g = \left(\sum_{i=1}^n \widehat{Z}_{ig} \mathbf{O}_i^\top (\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^T)^{-1} \mathbf{O}_i\right)^{-1} \left(\sum_{i=1}^n \widehat{Z}_{ig} \mathbf{O}_i^\top (\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top)^{-1} \mathbf{m}_{ig}\right).$$

The update for Σ_g however does not have a closed form solution. Thus, we will utilize gradient descent to update Σ_g . Thus, we write the approximation of the complete data log-likelihood with ELBO as:

$$\begin{split} l_c &= -\sum_{g=1}^G \sum_{i=1}^n \frac{z_{ig}}{2} (\mathbf{m}_{ig} - \mathbf{O}_i \boldsymbol{\mu}_g)^\top (\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top)^{-1} (\mathbf{m}_{ig} - \mathbf{O}_i \boldsymbol{\mu}_g) \\ &- \sum_{g=1}^G \sum_{i=1}^n \frac{z_{ig}}{2} \operatorname{tr}((\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top)^{-1} \mathbf{S}_{ig}) + \sum_{g=1}^G \sum_{i=1}^n \frac{z_{ig}}{2} \log |(\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top)^{-1}| + C \\ &= -\sum_{g=1}^G \sum_{i=1}^n \frac{z_{ig}}{2} \operatorname{tr} \left[(\mathbf{m}_{ig} - \mathbf{O}_i \boldsymbol{\mu}_g) (\mathbf{m}_{ig} - \mathbf{O}_i \boldsymbol{\mu}_g)^\top (\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top)^{-1} \right] \\ &- \sum_{g=1}^G \sum_{i=1}^n \frac{z_{ig}}{2} \operatorname{tr} \left[\mathbf{S}_{ig} (\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top)^{-1} \right] - \sum_{g=1}^G \sum_{i=1}^n \frac{z_{ig}}{2} \log |(\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top)| + C, \end{split}$$

where C is a constant with respect to Σ_g . Setting

$$\mathbf{\Omega}_{ig} = (\mathbf{m}_{ig} - \mathbf{O}_i oldsymbol{\mu}_q) (\mathbf{m}_{ig} - \mathbf{O}_i oldsymbol{\mu}_q)^ op + \mathbf{S}_{ig},$$

the approximation of the complete data log-likelihood can be written as

$$l_c = -\sum_{g=1}^G \sum_{i=1}^n \frac{z_{ig}}{2} \operatorname{tr} \left[\mathbf{\Omega}_{ig} (\mathbf{O}_i \mathbf{\Sigma}_g \mathbf{O}_i^\top)^{-1} \right] - \sum_{g=1}^G \sum_{i=1}^n \frac{z_{ig}}{2} \log |(\mathbf{O}_i \mathbf{\Sigma}_g \mathbf{O}_i^\top)| + C.$$

Thus,

$$\nabla_{\boldsymbol{\Sigma}_g} l_c = \sum_{i=1}^n \frac{z_{ig}}{2} \mathbf{O}_i^\top (\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top)^{-1} \boldsymbol{\Omega}_{ig} (\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top)^{-1} \mathbf{O}_i - \sum_{i=1}^n \frac{z_{ig}}{2} \mathbf{O}_i^\top (\mathbf{O}_i \boldsymbol{\Sigma}_g \mathbf{O}_i^\top)^{-1} \mathbf{O}_i$$

and Σ_g can be updated using gradient ascent algorithm as:

$$\Sigma_q^{(t+1)} = \Sigma_q^{(t)} + \gamma \nabla_{\Sigma_q} l_c,$$

where γ is the learning rate and is set to 0.001.

References

Subedi, S. and Browne, R. P. (2020), 'A family of parsimonious mixtures of multivariate poisson-lognormal distributions for clustering multivariate count data', $Stat\ \mathbf{9}(1)$, e310. e310 sta4.310.

URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.310