Math 4317 (Prof. Swiech, S'18): HW #1

Peter Williams

1/31/2018

Section 1

F. Show that the symmetric difference D, defined in the preceding exercise is also given by $D = (A \cup B) \setminus (A \cap B)$ Show $D = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$:

First, $x \in (A \setminus B) \cup (B \setminus A) \implies x \in (A \setminus B)$ or $x \in (B \setminus A) \implies$, x is in A but not B, or, x is in B but not $A \implies x$ is in A or B but not in A and $B \implies x \in (A \cup B) \setminus (A \cap B)$.

In the other direction, $x \in (A \cup B) \setminus (A \cap B) \implies x \in (A \cup B)$ but not in $(A \cap B) \implies x$ is in A but not B, or, x is in B but not $A \implies x \in (A \setminus B)$ or $x \in (B \setminus A) \implies x \in (A \setminus B) \cup (B \setminus A) \implies (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$

I. If $\{A_1, A_2, ..., A_n\}$ is a collection of sets, and if E is any set, show that:

(i)
$$E \cap \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n (E \cap A_i)$$
, and (ii), $E \cup \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n (E \cup A_i)$

- (i) $x \in E \cap \bigcup_{j=1}^n A_j \implies x \in E \text{ and } x \in \{A_1 \text{ or } A_2 \dots \text{ or } A_n\} \implies x \in E \text{ and that there exists for some } j=1,2,...,n \text{ an } A_j \text{ such that } x \in A_j \text{ and } x \in E \implies (x \in E \text{ and } A_1) \text{ or } (x \in E \text{ and } A_2) \dots \text{ or } (x \in E \text{ and } A_n) \implies x \in \bigcup_{j=1}^n (E \cap A_j).$ In the other direction, $x \in \bigcup_{j=1}^n (E \cap A_j) \Leftrightarrow x \in (E \cap A_1) \cup (E \cap A_2) \dots \cup (E \cap A_n) \implies x \in E \text{ and } A_1 \text{ or } E \text{ and } A_2 \dots \implies \text{ there exists a } j=1,...,n \text{ such that } x \in (E \cap A_j) \implies x \in E \text{ and } x \in A_1 \text{ or } A_2, \dots, \text{ or } A_n \implies x \in E \text{ and } \bigcup_{j=1}^n A_j \implies x \in E \cap \bigcup_{j=1}^n A_j.$
- (ii) $x \in E \cup \bigcup_{j=1}^{n} A_j \implies x \in E$ or $x \in A_1$ or $A_2 \dots$ or $A_n \implies$ for some j = 1, ..., n that $x \in E \cup A_j \implies x \in E \cup A_1$ or $x \in E \cup A_2 \dots$ or $x \in E \cup A_n \implies x \in \bigcup_{j=1}^{n} (E \cup A_j)$. In the other direction, $x \in \bigcup_{j=1}^{n} (E \cup A_j) \Leftrightarrow x \in E \cup A_1$ or $x \in E \cup A_2 \dots$ or $x \in E \cup A_n \implies$ there exists some j = 1, ..., n such that $x \in E \cup A_j \implies (x \in E \text{ or } x \in A_1)$ or $(x \in E \text{ or } x \in A_2) \dots$ or $(x \in E \text{ or } x \in A_n) \implies x \in E$ or $x \in \bigcup_{j=1}^{n} A_j \implies x \in E \cup \bigcup_{j=1}^{n} A_j$.
- J. If $\{A_1, A_2, ..., A_n\}$ is a collection of sets, and if E is any set, show that:

(i)
$$E \cap \bigcap_{j=1}^{n} A_j = \bigcap_{j=1}^{n} (E \cap A_j)$$
, and (ii), $E \cup \bigcap_{j=1}^{n} A_j = \bigcap_{j=1}^{n} (E \cup A_j)$

- (i) $x \in \cap \cap_{j=1}^n A_j \implies x \in E$ and $x \in \cap_{j=1}^n A_j \implies x \in E$ and $x \in A_j$ for all $j=1,...,n \implies x \in E$ and $[x \in A_1 \text{ and } x \in A_2 \dots \text{ and } x \in A_n] \implies [x \in E \text{ and } A_1] \text{ and } \dots \text{ and } [x \in E \text{ and } A_n] \implies x \in \bigcap_{j=1}^n (E \cap A_j)$. In the other direction, $x \in \cap_{j=1}^n (E \cap A_j) \implies x \in (E \cap A_1)$ and $a \in (E \cap A_2) \dots$ and $x \in (E \cap A_n) \implies x \in (E \cap A_j)$ for all $j=1,...,n \implies x \in E$ and $x \in A_1$ and $x \in A_2 \dots$ and $x \in A_n \implies x \in E$ and $x \in \cap_{j=1}^{nA_j} \implies x \in E \cap \cap_{j=1}^{nA_j}$.
- (ii) $x \in E \cup \cap_{j=1}^n A_j \implies x \in E \text{ or } x \in \cap_{j=1}^n A_j \implies x \in E \text{ or } [x \in A_1 \text{ and } x \in A_2 \dots \text{ and } x \in A_n] \implies x \in E \text{ or } A_1 \text{ and } x \in E \text{ or } A_2 \dots \text{ and } x \in E \text{ or } A_n \implies x \in \cap_{j=1}^n (E \cup A_j).$ In the other direction, $x \in \cap_{j=1}^n (E \cup A_j) \implies x \in (E \text{ or } A_1) \text{ and } x \in (E \text{ or } A_2) \dots \text{ and } x \in (E \text{ or } A_n) \implies \text{that for all } j = 1, \dots, n \text{ , } x \in (E \text{ or } A_j) \implies x \in E \text{ or } (x \in A_1 \text{ and } x \in A_2 \dots \text{ and } x \in A_n) \implies x \in \cap_{j=1}^n A_j \text{ or } x \in E \implies x \in E \cup \cap_{j=1}^n A_j.$

K. Let E be a set and $\{A_1, A_2, ..., A_n\}$ be a collection of sets. Establish the De Morgan laws:

(i)
$$E \setminus \bigcap_{j=1}^n A_j = \bigcup_{j=1}^n (E \setminus A_j)$$
, and, (ii) $E \setminus \bigcup_{j=1}^n A_j = \bigcap_{j=1}^n (E \setminus A_j)$

- (i) $x \in E \setminus \bigcap_{j=1}^n A_j \implies x \in E$ but not $(A_1 \text{ and } A_2 \dots \text{ and } A_n) \implies$ there exists a j=1,...,n such that $x \in E$ but not $A_j \implies x \in E$ but not A_1 , or $x \in E$ but not $A_2,...$, or $x \in E$ but not $A_n \implies x \in E \setminus A_1$ or $x \in E \setminus A_2 \dots$ or $x \in E \setminus A_n \implies x \in \bigcup_{j=1}^n (E \setminus A_j)$. In the other direction, $x \in \bigcup_{j=1}^n (E \setminus A_j) \implies x \in (E \text{ but not } A_1)$ or $(E \text{ but not } A_2)$ or $(E \text{ but not } A_n) \implies$ there exists $j=1,...,n, \ x \in E \text{ but not } A_j \implies x \in E \text{ but not } (A_1 \text{ and } A_2 \dots \text{ and } A_n) \implies x \in E \setminus \bigcap_{j=1}^n A_j$.
- (ii) $x \in E \setminus \bigcup_{j=1}^n \implies x \in E$ but A_1 or $A_2 \ldots$ or $A_n \implies x \in E$ and $x \notin A_j$ for all $j=1,...,n \implies x \in E$ but not A_1 , and $x \in E$ but not A_2, \ldots , and $x \in E$ but not $A_n \implies x \in (E \setminus A_1)$ and $x \in (E \setminus A_2) \ldots$ and $x \in (E \setminus A_n) \implies x \in \bigcap_{j=1}^n (E \setminus A_j)$. In the other direction, $x \in \bigcap_{j=1}^n (E \setminus A_j) \implies x \in (E \setminus A_1 \text{ and } E \setminus A_2 \ldots \text{ and } E \setminus A_n) \implies x \in E$ but not A_j for all $j=1,...,n \implies x \in E$ but A_1 or $A_2 \ldots$ or $A_n \implies x \in E$ but not $\bigcup_{j=1}^n A_j \implies x \in E \setminus \bigcup_{j=1}^n A_j$

Section 2

C. Consider the subset of $\mathbb{R} \times \mathbb{R}$ defined by $D = \{(x,y) : |x| + |y| = 1\}$. Describe this set in words. Is it a function?

This set consists of points on the line segments connecting a rotated square in the (x,y) plane with vertices $(1,0),\ (0,1),\ (-1,0),\$ and (0,-1). If we attempt to define a function, with the elements (x,y) from the set D, i.e. $y=f(x),f:x\to y$, we have $|x|+|y|=1\implies \sqrt{y^2}=1-|x|\implies y=\pm\sqrt{(1-|x|)^2}.$ $f(x)=y=\pm\sqrt{(1-|x|)^2}$ does not fit the defintion of a function, since, as an example, the set D includes the elements (0,1) and (0,-1), which if, f is a function, $f:x\to y\implies -1=1$, which is clearly not true.

E. Prove that if f is an injection from A to B, then $f^{-1} = \{(b, a) : (a, b) \in f\}$ is a function. Then prove it is an injection.

If f is an injection, and $(a,b) \in f$, and $(a',b) \in f$, then a=a'. $f^{-1}=\{(b,a):(a,b) \in f\}$ contains the pair (b,a) and (b,a'), and we know that a=a' from the definition of f, so we can assume that f^{-1} is a function. Since f is injective, each unique element b=f(a), is mapped to by a unique element a, and by definition $f^{-1}=\{(b,a):(a,b) \in f\}$ maps the unique element a back to a, meaning a and a and a and only if a is also injective.

H. Let f, g be functions such that

$$g \circ f(x) = x$$
, for all x in $D(f)$

$$f \circ g(y) = y$$
, for all y in $D(g)$

Prove that $g = f^{-1}$

For two elements $x, x' \in D(f)$, if $f(x) = f(x') \implies g \circ f(x) = g(f(x)) = g(f(x')) \implies g(f(x)) = x = g(f(x')) = x'$, that is $x = x' \implies g \circ f$ is an injection. For two elements $y, y' \in D(g)$, if $g(y) = g(y') \implies f \circ g(y) = f(g(y')) = f(g(y')) \implies f(g(y)) = y = f(g(y')) = y'$, that is $y = y' \implies f \circ g$ is an injection, and implies f and g are injections as well.

This implies g can be defined $g = \{(f(x), x) : (x, f(x)) \in f\}$, which is the definition for f^{-1} , implying $g = f^{-1}$.

J. Let f be the function on \mathbb{R} to \mathbb{R} given by $f(x) = x^2$, and let $E = \{x \in \mathbb{R} - 1 \le x \le 0\}$ and $F = \{x \in \mathbb{R} : 0 \le x \le 1\}$. Then $E \cap F = \{0\}$ and $f(E \cap F) = \{0\}$ while $f(E) = f(F) = \{y \in \mathbb{R} : 0 \le y \le 1\}$. Hence $f(E \cap F)$ is a proper subset of $f(E) \cap f(F)$. Now delete 0 from E and F.

The sets E and F with 0 deleted are denoted $E' = \{x \in \mathbb{R} : -1 \le x < 0\}$ and $F' = \{x \in \mathbb{R} : 0 < x \le 1\}$, respectively. We still have the equality $f(E') = f(F') = \{y \in \mathbb{R} : 0 < y \le 1\} = f(E') \cap f(F')$. We also have $E' \cap F' = \emptyset$, and thus $f(E' \cap F') = \emptyset$, and $\emptyset = f(E' \cap F') \subseteq F(E') \cap f(F')$, since the empty set is a subset of all sets.

Section 3

B. Exhibit a one-to-one correspondence between the set O of odd natural numbers and $\mathbb N$

The function $f(x) = \frac{x+1}{2}, x \in \mathbb{N}$ maps the set of odd natural numbers, $O = \{2k-1 : k \in \mathbb{N}\} \to \mathbb{N}$.

D. If A is contained in some initial segment of \mathbb{N} , use the well-ordering property of \mathbb{N} to define a bijection of A onto some initial segment of \mathbb{N} .

If $A \neq \emptyset$ is a subset of some initial segment \mathbb{N} , by the well-ordering principle, there exists an $m \in A$ such that $m \leq k$ for all $k \in A$. A bijection f can be defined by the mapping from set A consisting of elements $\{a_1, a_2, ..., a_k\}$ to elements of some initial segment $S_k = \{1, 2, ..., k\}$ as a set of ordered pairs $\{(a_1, 1), (a_2, 2), ..., (a_k, k)\}$, such that $a_1 \leq a_2 \leq ... \leq a_k$ and clearly the corresponding elements in the pairs from set S_k , $1 \leq 2 \leq ... \leq k$. Here the number of elements in A and A0 are the same, which has a one-one correspondence A1 and A2 and the A3 and the A4 and the A5 and the A6 and the A8

F. Use the fact that every infinite set has a denumerable subset to show that every infinite set can be put into one-one correspondence with a proper subset of itself.

By defintion, having a denumberable subset \implies there exists a bijective function that maps a proper subset of an infinite set, B, onto \mathbb{N} . If we take infinite set $B = \{b_1, b_2, ..., b_n, ...\}$ and $B_1 = \{b_2, b_3, ..., b_n, b_{n+1}, ...\}$, $B_1 \subseteq B$, we can create a one-one correspondence $f: B \to B_1$ defined by the set or ordered pairs $\{(b_n, b_{n+1}): n \in \mathbb{N}\}$ which maps B to $B_1 = B \setminus \{b_1\}$.

H. Show that if the set A can be put into one-one correspondence with a set B, and if B can be put into one-one correspondence with a set C, then A can be put into one-one correspondence with C.

If A can be put into one-one correspondence with a set $B \Longrightarrow$ there exists an injective function, f from $A \to B$. This means that for $a, a' \in A$, and $b \in B$, $f(a) = f(a') = b \Longrightarrow a = a'$. Similarly, if B can be put into one-one correspondence with a set $B \Longrightarrow$ there exists an injective function, g from $B \to C$, and with $b, b' \in A$, $g(b) = g(b') = c \in C \Longrightarrow b = b'$. By these properties, the composition of these two injective functions, $g \circ f(a) = g \circ f(a') \Longrightarrow f(a) = f(a') \Longrightarrow a = a'$ putting A and C in one-one correspondence.

I. Using induction on $n \in \mathbb{N}$, show that the initial segment determined by n cannot be put into one-one correspondence with the initial segment determined by $m \in \mathbb{N}$, if m < n.

Let $S_n = \{1, 2, 3, ..., n\}$ be the initial segment determined by $n \in N$ and S_m be the initial segment determined by $m \in N, m < n$. If S_n can be put into one-one correspondence with $S_m \Longrightarrow$ there exists and injection $f: S_n \to S_m$. For n=1 we have $f: \{1\} \to S_m$, m < 1, but S_m does not exist by definition for m < 1 implying the function is not valid for the case n=1, m < n. For, the case n=k+1, we again have a map $f: \{1,2,...,k+1\} \to \{1,...,m\}, \ m < k+1$ which implies a mapping of k+1 elements to m < k+1 elements m < k+1 where exists at least two elements m < k+1 for which m < k+1 and m < k+1 are injection does not exist between these sets.

Section 4

C. Prove part (b) of Theorem 4.4, that is, Let $a \neq 0$ and b be arbitrary elements of \mathbb{R} . Then the equation $a \cdot x = b$ has the unique solution $x = \frac{1}{a}b$

Let x_1 be any solution to the equation, that is, $a \cdot x_1 = b$. By (M4) we have that there is exists for each element $a \neq 0$ in \mathbb{R} there exists an element $\frac{1}{a}$ such that $a(\frac{1}{a}) = 1$. Thus we have $(\frac{1}{a})ax_1 = b(\frac{1}{a}) \implies 1 \cdot x_1 = b(\frac{1}{a}) \implies a \cdot x_1 = b$ has the unique solution $x_1 = \frac{b}{a}$.

F. Use the argument in Theorem 4.7 to show that there does not exist a rational number s such that $s^2 = 6$.

If we assume that $s^2 = (\frac{p}{q})^2 = 6$, where $p, q \in \mathbb{Z}, q \neq 0$ and assume that p and q have no common integral factors, since $p^2 = 2(3q^2) \implies$ that p^2 , and p is even for some $p = 2k, k \in \mathbb{N} \implies p^2 = 4k^2 = 2(3q^2) \implies 2k^2 = 3q^2 \implies q^2$, and q must be even, which is a contradiction of the assumption that p and q have no common integral factors, and thus a rational number s such that $s^2 = 6$ does not exist.

G. Modify the argument in Theorem 4.7 to show there there does not exists a ration number t such that $t^2 = 3$.

If we assume that $t^2=(\frac{p}{q})^2=3$, where $p,q\in\mathbb{Z},q\neq 0$ and assume that p and q have no common integral factors, we have $p^2=3q^3$ which implies that p^2 and p are divisible by $3\Longrightarrow$ there exists $k\in\mathbb{N}$ such that $p=3k\Longrightarrow p^2=9k^2=3q^2\Longrightarrow 3k^2=q^2$. This implies that q^2 is also divisible by $3\Longrightarrow q$ is divisible by 3. This is again a contradiction of assumption p and q have no common integral factors, and thus a rational number t such that $t^2=3$ does not exist.

H. If $\xi \in \mathbb{R}$ is irrational and $r \in \mathbb{R}$, $r \neq 0$, is rational, show that $r + \xi$ and $r\xi$ are irrational.

If we take another rational number $c=\frac{a}{b},\ a,b\in\mathbb{Z},b\neq0$, and assume the contradiction that $r+\xi,r=\frac{p}{q},\ p,q\in\mathbb{Z},q\neq0$ is rational, that is $r+\xi=c$, we have $\xi=c-r=\frac{a}{b}-\frac{p}{q}=\frac{aq-bp}{bq}$ where $\frac{aq-bp}{bq}$ is a rational number, but clearly ξ cannot not be equal to a rational number. Similarly for $r\xi=c\implies \xi=\frac{c}{r}=\frac{aq}{bp}$ where $\frac{aq}{bp}$ is clearly a rational number, again implying the contradiction that ξ is equal to a rational number. Thus, by contradiction, $r+\xi$ and $r\xi$ must be irrational.

Section 5

B. If $n \in \mathbb{N}$, show that $n^2 \geq n$ and hence $\frac{1}{n^2} \leq \frac{1}{n}$.

If $n \in \mathbb{N}$, then $n \ge 1 \implies n^2 \ge n$, since $n^2 = n \cdot n \cdot 1 \ge n \cdot 1 \implies n \ge \frac{n \cdot 1}{n \cdot 1} \implies n \ge 1$, a condition of n being a natural number.

C. If $a \ge -1$, $a \in \mathbb{R}$, show that $(1+a)^n \ge 1 + na$ for all $n \in \mathbb{N}$.

Let S be the set of all $n \in \mathbb{N}$ for which $(1+a)^n \ge 1+na$ is true. For n=1 we have $(1+a)^1 \ge 1+(1)a=1+a$. For $k \in S$, we assume $(1+a)^k \ge 1+ka$ is true. For case n=k+1, we have, using the binomial theorem,

$$(1+a)^{k+1} = (1+a)(1+a)^k = (1+a)\sum_{j=0}^k \binom{k}{j}a^j = (1+a)(\binom{k}{0}a^0 + \binom{k}{1}a^1 + \ldots + \binom{k}{k}a^k) = (1+a)(1+ka+\ldots + a^k)$$

This implies, $(1+a)^{k+1} \ge (1+a)(1+ka) = 1+ka+a+ka^2 = 1+(k+1)a+ka^2 \ge 1+(k+1)a$, since $ka^2 \ge 0$. Thus, $(1+a)^{k+1} \ge 1+(k+1)a$ holds, for $k+1 \in S$.

F. Suppose that 0 < c < 1. If m > n, $m, n \in \mathbb{N}$, show that $0 < c^m < c^n < 1$.

By property 5.6(c), for $a,b,c \in \mathbb{R}$, if a>b and c>0, then ac>bc. Applying this property here we have, $0 < c < 1 \implies 1 > c$ and $c>0 \implies c = 1 \cdot c > c \cdot c = c^2$, thus $0 < c^2 < c < 1 \implies 1 > c$ and $c^2 > 0$, and $c^2 > c^3$, up to $c^k > c^{k+1}$, $k \in \mathbb{N}$. Thus for $m,n \in \mathbb{N}$, $m \ge n$, we have $0 < c^m \le c^n < 1$.

G. Show that $n < 2^n$ for all $n \in \mathbb{N}$. Hence $(1/2)^n < 1/n$ for all $n \in \mathbb{N}$.

Applying induction, for case n=1 we have true statement $1<2^1$. We assume the inequality is valid for $k \in \mathbb{N}$, and for case n=k+1, we have $k+1<2^{k+1}=2\cdot 2^k$. For all $k \geq 1$ we have first, $k+1 \leq k+k=2k$, and since $2k \leq 2^{k+1}$, i.e. $k \leq 2^k \implies k+1 \leq 2^{k+1}$. Since the inequality holds for n=k+1, we assume it holds for all $n \in \mathbb{N}$.

K. If $a, b \in \mathbb{R}$ and $b \neq 0$, show that |a/b| = |a|/|b|

- (i) For the case, $a \ge 0$, b > 0, $a \cdot 1/b \ge 0$, and we thus have $|a/b| = |a \cdot 1/b| = a/b = |a| \cdot |1/b|$, thus a/b = |a|/|b|.
- (ii) For the case, $a \ge 0$, b < 0, we have $a/b \le 0 \ \forall a,b$, thus $|a/b| = |a \cdot 1/b| = -(a/b) = a \cdot 1/-b$, and $a, -b \in \mathbb{P} \implies a \cdot 1/-b > 0$, thus a/-b = |a|/|b|.
- (iii) For the case, $a \le 0$, b < 0, we have $a/b \ge 0$, $\forall a, b$, thus, $|a/b| = |a \cdot 1/b| = (a/b) = -a \cdot 1/-b$, thus -a/-b = a/b = |a|/|b|.
- (iv) For the case, $a \le 0$, b > 0 we have $a/b \le 0 \ \forall a, b$, thus, |a/b| = -(a/b) = -a/b = -a/|b| = |a|/|b|.

L. If $a, b \in \mathbb{R}$, then |a + b| = |a| + |b| if and only if $ab \ge 0$.

 $ab \ge 0 \implies a, b \in \mathbb{P}$ or $-a, -b \in \mathbb{P}$. For the case, $a, b \in \mathbb{P}$, we have $|a+b| = a+b = |a|+|b| \ \forall \ a, b \in \mathbb{P}$. For the case, $-a, -b \in \mathbb{P}$, we have, |a+b| = -(a+b) = -a-b = |a|+|b|.

Section 6

B. Show that if a subset S of \mathbb{R} contains an upper bound, then this upper bound is the supremum of S.

Let the upper bound of $S \subseteq \mathbb{R}$ be $u \in \mathbb{R}$, then assume for all $s \in S$, $u \ge s$. If $s \le v \ \forall s \in S$, then $u \le v$, then there is another number that satisfies the supremum and u is not a supremum of S.

C. Give an example of a set of rational numbers which is bounded but does not have a rational supremum.

Take the set $S = \{x \in \mathbb{Q} : x^2 < 3\}$, bounded above by the irrational $\sqrt(3)$, where $\mathbb{Q} = \{\frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0\}$.

G. If S is a bounded set in \mathbb{R} and if S_0 is a non-empty subset of S, then show that inf $S \leq \inf S_0 \leq \sup S$

By definition, $S_0 \subseteq S \implies$ there exists either, an element in S that is not in S_0 or S_0 exhausts all of S (i.e. they are equal). Let $u = \inf S \implies u \le s \ \forall s \in S$ and $s \in S_0$. Let $u_0 = \inf S_0 \implies u_0 \le s \ \forall s \in S_0 \subseteq S \implies u \le u_0 \implies \inf S \le \inf S_0$. Let $w = \sup S \implies w \ge s \forall s \in S$ and $s \in S_0$. Let $w_0 = \sup S_0 \implies w_0 \ge s \ \forall s \in S_0$, but not necessarily for all $s \in S$. This implies $w \ge w_0 \ \forall s \in S$. Since by definition $\sup S_0 \ge \inf S$, and since $w \ge w_0 \implies u \le u_0 \le w_0 \le w \Leftrightarrow \inf S \le \inf S_0 \le \sup S_0 \le \sup S$.

H. Let X and Y be non-empty sets and let $f: X \times Y \to \mathbb{R}$ have a bounded range in \mathbb{R} . Let, $f_1(x) = \sup\{f(x,y): y \in Y\}$, and $f_2(y) = \sup\{f(x,y): x \in X\}$. Establish the Principle of Iterated Suprema: $\sup\{f(x,y): x \in X, y \in Y\} = \sup\{f(x,y): y \in Y\} = \sup\{f(x,y): x \in X\}$.

Let $u = \sup \{f(x,y) : x \in X, y \in Y\} \implies u \ge f(x,y) \ \forall f(x,y) \text{ where } x \in X, y \in Y.$ This implies that $f_1(x) \le u \ \forall y \in Y$. Conversely, let $u_0 = \sup f_1(x) = \sup \{f(x,y) : y \in Y\}$. This implies $u_0 \ge u \ \forall x \in X, y \in Y$. This implies that $u = u_0$, and thus $\sup \{f(x,y) : x \in X, y \in Y\} = f_1(x) = \sup \{f(x,y) : y \in Y\}$. By extension the same argument hold for $\sup \{f(x,y) : x \in X, y \in Y\} = \sup f_2(y) = \sup \{f(x,y) : x \in X\}$.

J. Let X be a non-empty set and let $f: X \to \mathbb{R}$ have a bounded range in \mathbb{R} . If $a \in \mathbb{R}$, show that: $\sup\{a+f(x): x \in X\} = a + \sup\{f(x): x \in X\}$, and $\inf\{a+f(x): x \in X\} = a + \inf\{f(x): x \in X\}$.

Let $u = \sup\{a + f(x) : x \in X\} \implies u \ge a + f(x) \ \forall x \in X \implies u - a \ge f(x) \ \forall x \in X \implies \sup\{f(x) : x \in X\} = u - a$. This implies that $u = a + \sup\{f(x) : x \in X\}$, and thus $\sup\{a + f(x) : x \in X\} = a + \sup\{f(x) : x \in X\}$.

Using the same argument, let $w = \inf\{a + f(x) : x \in X\} \implies w \le a + f(x) \quad \forall x \in X \implies w - a \le f(x) \quad \forall x \in X \implies \inf\{f(x) : x \in X\} = w - a$. This implies that $w = a + \inf\{f(x) : x \in X\}$, and thus $\inf\{a + f(x) : x \in X\} = a + \inf\{f(x) : x \in X\}$.

K. Let X be a non-empty set and let f and g be defined on X have a bounded ranges in \mathbb{R} . Show that: $\inf \{ f(x) : x \in X \} + \inf \{ g(x) : x \in X \} \le \inf \{ f(x) + g(x) : x \in X \} \le \inf \{ f(x) : x \in X \} + \sup \{ g(x) : x \in X \} \le \sup \{ f(x) + g(x) : x \in X \} \le \sup \{ f(x) : x \in X \} + \sup \{ g(x) : x \in X \}$

- (i) Let $l = \inf \{f(x) : x \in X\}$ and $l_0 = \inf \{g(x) : x \in X\}$, thus, $l \le f(x) \ \forall x \in X$ and $l_0 \le g(x) \ \forall x \in X$, summing these inequalities we have $l + l_0 \le f(x) + g(x) \ \forall x \in X \implies l + l_0 = \inf \{f(x) : x \in X\} + \inf \{g(x) : x \in X\} \le \inf \{f(x) + g(x) : x \in X\}.$
- (ii) Since $l + l_0 \le \inf \{f(x) + g(x) : x \in X\} \le \inf \{f(x) : x \in X\} + \sup \{g(x) : x \in X\} \implies l + l_0 \le l + \sup \{g(x) : x \in X\} \implies l_0 \le \sup \{g(x) : x \in X\}$, which must be true, since $\inf \{g(x) : x \in X\} \le \sup \{g(x) : x \in X\}$ by definition.
- (iii) Let $w = \sup \{f(x) + g(x) : x \in X\}$, inf $\{f(x) : x \in X\} + \sup \{g(x) : x \in X\} \le w \implies w \ge f(x) + g(x) \ \forall x \in X \implies w \ge u_0 + l$, where again $u_0 \ge g(x) \ \forall x \in X$, thus $w u_0 \ge f(x) \ \forall x \in X$, implying $w u_0$ is an upper bound for f(x). Thus $w u_0$, must be greater than $\inf \{f(x) : x \in X\} \implies \inf \{f(x) : x \in X\} + \sup \{g(x) : x \in X\} \le \sup \{f(x) + g(x) : x \in X\}$.

(iv) Let $u = \sup \{f(x) : x \in X\}$ and $u_0 = \sup \{g(x) : x \in X\}$, thus, $u \ge f(x) \ \forall x \in X$ and $u_0 \ge g(x) \ \forall x \in X$, summing these inequalities we have $u + u_0 \ge f(x) + g(x) \ \forall x \in X \implies u + u_0 = \sup \{f(x) : x \in X\} + \sup \{g(x) : x \in X\} \ge \sup \{f(x) + g(x) : x \in X\}.$

An example of a strict inequality: the functions f,g, on the set $X=\{x\in\mathbb{R}:0< x<1\}$ for f(x)=g(x)=x. Clearly $\inf\{x:0< x<1\}=0$, thus $\inf\{f(x):x\in X\}+\inf\{g(x):x\in X\}=0$ which is less than $\inf\{f(x)+g(x):0< x<1\}>0$, since, f(x)>0 and g(x)>0 $\forall x\in X$. $\inf\{f(x)+g(x):x\in X\}\leq\inf\{f(x):x\in X\}+\sup\{g(x):x\in X\}$, holds, since $\sup\{x:0< x<1\}=1$, which is clearly greater than $\inf\{f(x)+g(x):x\in X\}$, since the bound $\inf\{f(x)+g(x):x\in X\}$ is close to zero and is clearly less than 1.

For the inequality inf $\{f(x): x \in X\} + \sup\{g(x): x \in X\} \le \sup\{f(x) + g(x): x \in X\}$, clearly the left hand side is 1, since $\sup\{x: x \in X\} = 1$, and the right hand must be greater than one since f(x) + g(x) can clearly equate to a number greater than 1 given range and domain.

Lastly, $\sup\{f(x): x \in X\} + \sup\{g(x): x \in X\} = 2$, clearly, which is greater than $\sup\{f(x) + g(x): 0 < x < 1\}$, since f(x) < 1, and $g(x) < 1 \ \forall x \in X$.

Section 7

F. Let $J_n = (0, \frac{1}{n})$, for $n \in \mathbb{N}$. Show that this sequence of intervals is nested, but that there is no common point.

First, $J_1 \supseteq J_2 \supseteq ... \supseteq J_n \supseteq ...$, clearly, since for n = 1, $(0,1) \supseteq (0,\frac{1}{2})$, and for $(0,\frac{1}{n}) \supseteq (0,\frac{1}{n+1})$, for $n \in \mathbb{N}$. Using corollary 6.7(b), there exists a natural number $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < z$, $z \in \mathbb{R}$, z > 0, which implies there are arbitrarily small rational numbers of the form 1/n. The sequence J_n has no common point, since $\bigcap_{j=1}^n J_n = \emptyset$, since for each open interval $(0,\frac{1}{n})$, there is a narrower open cell for $n \in \mathbb{N}$, such that the elements in that cell are always less than 1/n.

G. K.