

Decadal Survey Tier 2 Mission Study Summative Progress Report

Geo-CAPE Ocean Science and STM

Antonio Mannino November 15, 2010

Advantages of Coastal Observations from Geo

- Observations analogous to "weather" for coastal waters
 - water quality, primary production, harmful blooms, etc.
- Discriminate physical from biological forcing
 - Rates of processes possible:
 Primary productivity, photooxidation, transport of materials, etc.
- Resolve sub-mesoscale processes (lateral scales <1km)
- Study short time scales associated with dynamic coastal processes (tides, wind-driven currents, storm surges, algal blooms)
- More opportunities for cloud-free viewing
- High signal-to-noise at finer spatial resolution (~300m) can be achieved by longer integration time
- Opportunity to monitor hazardous events on high frequency time scales (oil slicks, HABs, etc.)

Summary of Accomplishments

- Developed Science Traceability Matrix
- Supported Instrument Design Lab study
- Supported Mission Design Lab study
- Atmospheric correction studies
- Additional science studies underway to inform on requirements
- Joint ACE/Geo-CAPE Ocean product assessments
- Completed draft white paper

Geo-CAPE Coastal Ocean Ecosystem STM

Science Focus	Science Questions	Approach Science Question	Measurement Requirements	Instrument Requirements	Platform Requirem.	Ancillary Data Requirem.			
Short-Term Processes Land- Ocean Exchange	1 How do short-term coastal and open ocean processes interact with and influence larger scale physical, biogeochemical and ecosystem dynamics? (OBB1) 2 How are variations in exchanges across the land-ocean interface related to changes within the watershed, and how do such exchanges influence coastal and open ocean	PRODUCTS Standing Stocks: Aquatic chlorophyll a, POC, DOC, PIC, DIC*, inherent & apparent optical properties, total suspended matter, phytoplankton biomass*, pigments* and key functional groups, terrigenous DOC*, & black carbon*. Rate Measurements: Aquatic primary productivity, respiration*, air-sea CO2 fluxes*, photopxidation, phytoplankton fluorescence responses*, phytoplankton vertical migration*, net community production of DOC* and POC*, and other associated trophic responses* Hazards: Aquatic HABs, petroleum-derived hydrocarbons, and other pollutants*. *Products not currently derived from ocean color observations. Targeted, high-frequency, episodic event-based monitoring and evaluation of tidal and	Water-leaving radiances in the near-UV, visible & NIR for separating absorbing & scattering constituents & chlorophyll fluorescence Product uncertainty TBD Temporal Resolution: Targeted Events: • Threshold: 1 hour • Goal: 0.5 hour Routine Coastal U.S.: • Threshold: ≤3 hours • Goal: 0.5 hour Regions of Special Interest	Spectral Range: Hyperspectral UV-VIS-NIR Threshold: 345-900 nm; 3 SWIR bands 1245, 1640, 2135 nm Goal: 340-1100 nm; 3 SWIR bands 1245, 1640, 2135 nm Spectral Resolution: Threshold: UV-VIS: 0.5 nm FWHM; NIR: 1 nm; SWIR: 20-50 nm Goal: UV-VIS: 0.25 nm FWHM; NIR: 0.5 nm; SWIR: 20-50 nm Retrieval of NO ₂ and O ₂ A-band for atm. corrections? (TBD)	Geostationary orbit to permit sub-hourly observations of coastal waters adjacent to the continental U.S., Central and South America Storage and download of full spatial data and spectral data.	Western hemisphere data sets from models, missions, or field observations: Measurement Requirements (1) Ozone (2) Total water vapor (3) Surface wind velocity (4) Surface barometric pressure (5) NO2 concentration (6) Vicarious (alibration &			
Impacts of Climate Change & Human	decosystem dynamics? ‡ (OBB1 & 2) How do natural and anthropogenic changes including climate-related forcing impact coastal ecosystem biodiversity and productivity? ‡	based monitoring and evaluation of tidal and diurnal variability of Standing Stocks, Rate Measurements and Hazards from river mouths to the coastal ocean (and lakes). Routine sampling of seasonal and interannual variations in the Standing Stocks, Rate Measurements and Hazards for estuarine and continental shelf regions with linkages to open-ocean processes at appropriate spatial scales.	(RSI): Threshold: 1 RSI 3 scans/day • Goal: multiple RSI 3 scans/day Other Coastal N. & S. America 50°N to 45°S: • Threshold: 4 times/yr • Goal: ≤3 hours Spatial Resol. (nadir): • Threshold: 375 x 375 m	Signal-to-Noise Ratio (SNR): • Threshold: 1000:1 for 10 nm FWHM 600:1 for 40 nm FWHM in NIR; 300:1 SWIR bands (20-50nm FWHM) • Goal: 1500:1 for 10 nm (380-800 nm nm FWHM in NIR; 300:1 to 200:1 for 5 (20-50nm FWHM); 400:1 NO ₂ band (T see Measurement Requirements for To Spatial Resolutions and Field of View. Field of Regard: ±9° N to S & E to W imaging capabili	to 100:1 for b); 600:1 for 40 SWIR bands BD) emporal &	validation - coastal (7) Full prelaunch characterization Science Requirements (1) SST (2) SSH (3) PAR (4) UV (5) MLD (6) CO2 (7) pH			
SYNERGY Impacts of Airborne- Derived Fluxes Episodic	How do airbornederived fluxes from precipitation, fog and episodic events such as fires, dust storms & volcanoes significantly affect the ecology and biogeochemistry of coastal and open ocean ecosystems? (OBB1 & 2) How do episodic hazards, contaminant	Observe coastal region at sufficient spatial scales to resolve near-shore processes, coastal fronts, eddies, and track carbon pools and pollutants. Integrate GEO-CAPE observations with field measurements, models and other satellite data: 1. To derive coastal carbon budgets and determine whether coastal ecosystems are sources or sinks of carbon to the atmosphere 2. To quantify the responses of coastal ecosystems and biogeochemical cycles to river discharge, land use change, airbornederived fluxes, hazards and climate change.	Goal: 250 x 250 m Field of Regard for Ocean Color Retrievals¹: 50°N to 45°S; ~145°W to 45°W Coastal Coverage: width from coast to ocean: Threshold: 375 km Goal: 500 km RSI: Amazon & Orinoco River plumes, Peruvian upwelling, Cariaco Basin, Bay of Fundy, Rio Plata, etc. (TBD)	for Lunar & Solar Cals. Jitter • Threshold: <25% pixel size during site Goal: TBD Non-saturating detector array(s) at longular Calibration: • Monthly Lunar Calibration at ≤7° phate Solar Calibration (TBD) Polarization: <0.5% Relative Radiometric Precision: • Threshold: 1% through mission lifetime Mission lifetime: Threshold: 3 years;	ngle exposure Lmax use angle me	(8) Ocean circulation (9) Tidal & other coastal currents (10) Aerosol & dust deposition (11) run-off loading in coastal zone (12) Wet deposition in coastal zone Validation Requirements Conduct high frequency field measurements and modeling to validate GEO-CAPE retrievals from river			
Events & Hazards	loadings, and alterations of habitats impact the biology and ecology of the coastal zone? (OBB4)	3. To estimate fishery yields, extent of oxygen minimum zones, and ecosystem health (including ocean acidification).	sensors (GOES, etc.) for on • To bypass scanning mostly Pre-launch characterization	e: Near Real-Time satellite data downlon- board autonomous decision making: (' y cloudy scenes; Targeting events (e.g. on: to achieve radiometric precision abo ivity1: Threshold: <70°; Goal: <75°	mouths to beyond the edge of the continental margin.				

‡ Climate change-related science questions

GEO-CAPE Science Questions are traceable to NASA's OBB Advanced Planning Document ...

D.C. to several hundred kilometers offshore (total width of 375 km threshold).

Draft v.2.7 - March 24, 2010

Geo-CAPE Ocean Science Questions

Draft v.2.7 - March 24, 2010

Short-Term Processes

1. How do short-term coastal and open ocean processes interact with and influence larger scale physical, biogeochemical and ecosystem dynamics?

Land-Ocean Exchange

2. How are variations in exchanges across the land-ocean interface related to changes within the watershed, and how do such exchanges influence coastal and open ocean biogeochemistry and ecosystem dynamics?

Impacts of Climate Change & Human Activity

3. How do natural and anthropogenic changes including climate-related forcing impact coastal ecosystem biodiversity and productivity?

Impacts of Airborne-Derived Fluxes

4. How do airborne-derived fluxes from precipitation, fog and episodic events such as fires, dust storms & volcanoes significantly affect the ecology and biogeochemistry of coastal and open ocean ecosystems?

Episodic Events & Hazards

5. How do episodic hazards, contaminant loadings, and alterations of habitats impact the biology and ecology of the coastal zone?

Studies Enabled by Geo-CAPE

What cannot be achieved with existing sensors but possible with Geo-CAPE?

- Estimate surface oil film thickness (with multi-angle illumination)
- Study vertical migration of harmful and non-harmful algae
- Trace origin and evolution of hazardous events more effectively
- Assess impacts more precisely (e.g., changes in species)

Changes in color contrast are due to changes in solar/viewing angles

Oil spill volume assessment possible

HAB detection from diurnal vertical migration of the toxic Karenia brevis

Ocean Data Products

Mission Critical Products (drive requirements; algorithms exist)

- Spectral remote sensing reflectances (& water-leaving radiances)
- Chlorophyll-a, Primary Productivity
- Particulate Organic Carbon, Dissolved Organic Carbon, Particulate Inorganic Carbon (coccolithophore blooms)
- Total Suspended Matter
- Absorption coefficients of Colored Dissolved Organic Matter, Particles & Phytoplankton; Particle backscatter coefficient
- Water clarity (k_d[490nm]; euphotic depth)
- Photosynthetically Available Radiation
- Fluorescence Line Height, Phytoplankton Carbon
- Trichodesmium, Harmful Algal Bloom detection & magnitude
- Aerosol & other atmospheric products for atmospheric corrections

Highly Desirable Products (experimental products)

- Particle size distributions & composition, other plant pigments, Functional/ taxonomic group distributions, Phytoplankton physiological properties, Vertical migration detection
- Net Community Production, Export production, Respiration
- Air Sea CO₂ fluxes, pCO₂(aq)
- Terrigenous Dissolved Organic Carbon
- Petroleum detection and thickness, Photooxidation

Approach

- Survey mode for evaluation of diurnal, seasonal and interannual variability
 - U.S. coastal waters
 - Regions of special interest
 - All other coastal waters from 50°N to 45°S
- Targeted observations of high-frequency and episodic events including evaluation of tidal and diurnal variability
- High spatial resolution to resolve near-shore processes, fronts, eddies, and track carbon pools and pollutants
- Integrate Geo-CAPE observations with field measurements, models and other satellite data:
 - To derive coastal carbon budgets and determine whether coastal ecosystems are sources or sinks of carbon to the atmosphere.
 - To quantify the responses of coastal ecosystems and biogeochemical cycles to river discharge, land use change, airborne-derived fluxes, hazards and climate change.
 - To improve estimates of **fishery yields**, extent of **oxygen minimum zones**, and **ecosystem health** (including ocean acidification).

Measurement & Instrument Requirements

Threshold	Goal			
375 m x 375 m	250 m x 250 m			
1 hour	0.5 hour			
≤3 hours	0.5 hour			
1 RSI at 3 scans/day	≤3 hours			
50°N to 45°S; ~145°W to 45°W	same as threshold			
375 km	500 km			
345-900 nm; 1245, 1640, 2135 nm	340-1100 nm; 1245, 1640, 2135 nm			
UV-VIS: 0.5 nm FWHM; NIR: 1 nm; SWIR: 20-50 nm	UV-VIS: 0.25 nm FWHM; NIR: 0.5nm; SWIR: 20-50nm			
1000:1 for 10 nm FWHM (380-800 nm) ; 600:1 for 40 nm FWHM in NIR; 300:1 to 100:1 for SWIR bands (20-50nm FWHM)	1500:1 for 10 nm (380-800 nm) 600:1 for 40 nm FWHM in NIR; 300:1 to 200:1 for SWIR bands (20-50nm FWHM)			
<25% of pixel size	within 10% of pixel size			
Monthly at 7° phase angle	same as threshold			
1% through mission lifetime	<0.5% mission lifetime			
	1 hour ≤3 hours 1 RSI at 3 scans/day 50°N to 45°S; ~145°W to 45°W 375 km 345-900 nm; 1245, 1640, 2135 nm UV-VIS: 0.5 nm FWHM; NIR: 1 nm; SWIR: 20-50 nm 1000:1 for 10 nm FWHM (380-800 nm); 600:1 for 40 nm FWHM in NIR; 300:1 to 100:1 for SWIR bands (20-50nm FWHM) <25% of pixel size Monthly at 7° phase angle			

Science Studies for Evaluation of Requirements

Spatial & Temporal measurement requirements

- GOCI, high latitude polar orbiters, and HICO data analysis
- Dissipation/dispersion of phytoplankton, contaminants and sediments
 - Lagrangian experiments show particle stocks and turnover times tracking net community production. (Salisbury)
- Exchange across land-sea interface
 - Tidal exchange yields optical & biogeochemical variability at hourly time scales. (Tzortziou)
 - Optical signature from tidal marsh is distinguishable to 1km distance.
- Sensitivity studies on observing strategies
- Diurnal phytoplankton physiology from fluorescence dawn to dusk sensitivity
- Atmosphere-ocean synergistic science
- Vertical migration of phytoplankton
- Process observations for algorithm development
- Atmospheric correction studies for ocean color

Atmospheric Correction Studies

- Considerable day-to-day and diurnal variability in total column ozone.
 - Real-time ozone correction will lead to <0.3% error in water-leaving radiances at 551nm, while climatology could result in 0.5 to 3% error.
- Variability of NO₂ can exceed 0.5 DU over a period of an hour at near-coastal land sites.
 - Such changes in NO₂ results in ~15-20% error in water leaving radiances at 410nm for larger solar zenith (>40°) and look angles expected with GEO-CAPE.

NO₂ and possibly ozone must be measured nearly simultaneously with ocean color measurements to reduce errors in water-leaving radiances.

1 DU = $2.69 \times 10^{16} \text{ NO}_2 \text{ molecules cm}^{-2}$

35

30

25

20

Percent Error

Algorithm Assessment & Development Plan

- Develop advanced algorithms to take advantage of full spectral range & high spectral resolution
 - Initial approach to emulate SeaWiFS, MODIS and MERIS algorithms
 - Joint activity with PACE and ACE missions
 - Apply near real-time atmospheric correction
 - Coincident NO₂, O₃, aerosols, etc.
- Joint ACE/Geo-CAPE Ocean product assessments
 - Field ocean product uncertainty documentation
 - Planned satellite ocean product uncertainty assessment
- Further development work identified
 - Planning field activities with specific observational objectives
 - in situ sensor development (spectral range and resolution)

Cal/Val Plans & Requirements

Calibration: Radiometric, Spectral, and Spatial

- Follow approaches for SeaWiFS and MODIS
- Extensive pre-launch calibration and characterization
- Hyperspectral spectrometer enables the use of solar Fraunhofer spectrum for on-orbit spectral calibration
- Post-launch (in-orbit) vicarious calibration
 - Requires continuous field vicarious calibration site
- Post-launch stability monitoring (lunar, solar and stable target)

Validation

- Directed field campaigns
 - Optical closure experiments
 - Diurnal variability
- Existing observation networks
- Opportunistic validation (research cruises, buoys, moorings)

Complementary Science Missions

Global ocean color missions:

- PACE (2018), ACE (>2020)
 - Joint Cal/Val activities
- JAXA S-GLI; ESA MERIS-follow-on
- Geo constellation:
 - Korean GOCI-2
 - ESA's OCAPI

View Limit and Resolution

Resolution at 95W

Resolution ratio (to nadir view)

Decadal Survey Tier 2 Mission Study Summative Progress Report

Geo-CAPE Instrument Design Lab Study (GSFC) Coastal Ecosystem Dynamics Imager (CEDI)

Antonio Mannino November 15, 2010

Instrument Design Lab Study Goals

- (1) to develop an instrument design that meets requirements established in the Coastal Oceans STM
- (2) to reduce size and cost from a previous IDL design concept

(includes calibration assy. Volume)

Note: dimensions in millimeters

Summary of Geo-CEDI

Instrument Concept

- Enables scientific objectives of coastal ocean and atmospheric retrievals.
- Capable of pointing anywhere on Full Disk.
- Spatial Resolution: 375 m x 375 m (nadir)
- Telescope focal length set for 1:1 Offner Spectrograph
- Effective focal length = 1717.7 mm, F/3.44 focal ratio
- Employs three focal planes
 - (1) 345-600 nm, (2) 600-1100 nm
 - Two Teledyne custom HyViSi ROIC: 1k (spectral)
 x 2k (spatial) detectors (UV-A or NIR coating)
 - (3) 1225-2160 nm
 - One HgCdTe Hawaii-2RG ROIC: 2k x 2k detector (SWIR)
- All detectors have 18 µm pixels
- Spectral Resol: 0.5 nm (UV-NIR) and 2.5 nm (SWIR)

Instrument Characteristics

- Volume 7.5 m³
- Mass 621.4 kg
- Power 392 W
- Data Rate 88.4 Mbps
- Scene: 750 km N-S x variable E-W
- Scene Integration Time: 9-17 min
- Pointing ~0.5 arc-sec
- Lifetime 3 yr (design); 5 yr (goal)

Technology Development Needs

- Scan mirror pointing mechanism requires further study and technology enhancements.
- Dedicated effort required to investigate, characterize, and mitigate all sources of disturbances to scan mirror.
- 100Hz Attitude Determination may exceed existing proven technologies (133MHz BAE Rad750).

Coastal Ecosystem Dynamics Imager (CEDI) Block Diagram

CEDI Conceptual Scanning Plan

- >72 scenes per day (~750km x 375km nadir)
 - ~18 hours of operation per day
 - ~4 scenes per hour (15 minutes each)
 - 1000+ iFOV scans per scene
- Avoid scanning cloudy scenes
- Targeted Events scheduled as necessary
- Survey Mode

U.S. Coastal Waters

- East Coast 4 scenes (3-4x/day)
- Gulf Coast 4 scenes (3-4x/day)
- West Coast 3 scenes (3-4x/day)
- Puerto Rico 1 scene (3-4x/day)
- Great Lakes 4 scenes (3x/day)

Regions of Interest

- Other coastal waters of North & South America
- Anywhere within Field of Regard (50°N to 45°S; ~145°W to ~45°W)

Radiometry Requirements & Results 70° Solar Zenith Angle case

λ _o - Bands	FWHM	W/m^2 - $\Delta\lambda$ um - s	ter	Req'd	Well_Capacity	Averages	Ltyp	Lmax	eff		Req'd	Ltyp
nm	$\Delta\lambda$ – nm	Ltyp	Lmax	Dynamic Range	Dynamic Range	Δλ	Well_Volume	Well_Volume	Opt. Tx	Det. QE	SNR _{req}	SNR _{actual}
350	15	39.26	117.5	2.99	21.49	60.00	46,538	139,247	0.24	0.65	500	1512
360	15	38.00	124.1	3.27	16.71	60.00	59,840	195,393	0.31	0.65	500	1750
385	10	32.16	125.7	3.91	17.65	40.00	56,656	221,513	0.31	0.68	1000	1385
412	10	41.77	198.7	4.76	8.65	40.00	115,662	550,095	0.43	0.72	1000	2061
425	10	40.63	193.1	4.75	8.70	40.00	114,935	546,085	0.42	0.73	1000	2054
443	10	37.51	219.1	5.84	9.61	40.00	104,106	608,151	0.39	0.74	1000	1947
460	10	33.14	238.9	7.21	10.60	40.00	94,319	679,962	0.38	0.75	1000	1844
475	10	30.25	238.3	7.88	10.96	40.00	91,250	718,621	0.39	0.75	1000	1811
490	10	29.25	226.4	7.74	10.45	40.00	95,675	740,472	0.41	0.75	1000	1859
510	10	24.23	218.8	9.03	13.08	40.00	76,441	690,354	0.38	0.75	1000	1641
532	10	20.09	214.8	10.69	15.96	40.00	62,645	669,884	0.36	0.75	1000	1467
555	10	16.11	212.2	13.17	18.57	40.00	53,862	709,431	0.37	0.75	1000	1345
583	10	14.56	205.9	14.14	22.22	40.00	45,007	636,418	0.33	0.74	1000	1210
617	10	11.25	192.1	17.07	22.34	40.00	44,758	764,026	0.33	0.9	1000	1206
640	10	9.39	186.1	19.82	25.53	40.00	39,177	776,529	0.33	0.91	1000	1114
655	10	8.33	176.6	21.20	26.51	40.00	37,718	799,554	0.35	0.91	1000	1088
665	10	7.83	176.9	22.59	25.58	40.00	39,087	882,988	0.38	0.91	1000	1112
678	10	7.37	171.3	23.24	26.66	40.00	37,510	871,697	0.38	0.91	1000	1085
710	15	5.36	161.4	30.10	35.39	60.00	28,256	850,622	0.38	0.9	1000	1114
748	10	4.89	147.5	30.17	36.82	40.00	27,156	819,179	0.38	0.9	600	887
765	40	3.62	141.9	39.18	51.32	160.00	19,486	763,516	0.36	0.9	600	1428
820	15	2.82	129.7	46.04	62.24	60.00	16,067	739,677	0.36	0.89	600	766
865	40	4.50	139.0	30.89	37.36	160.00	26,770	826,886	0.36	0.88	600	1758
1245	20	0.88	59.5	67.61	67.72	368.00	1,477	99,843	0.336	0.85	300	637
1640	40	0.29	17.6	60.69	156.00	736.00	641	38,903	0.336	0.85	250	514
2135	50	0.08	4.7	58.75	424.41	920.00	236	13,843	0.336	0.87	100	263

Challenge to overcome ocean requirements of high sensitivity (SNR) without saturating the detectors.

Conclusions

- Geo-CAPE Oceans STM requirements are achievable with CEDI or similar class of instrument.
- Scan mirror pointing mechanism requires further study and technology enhancements.
 - e.g., SCH2OO3NERS IIP-heritage fast scanning mirror concept
 - Dedicated effort required to investigate, characterize, and mitigate all sources of disturbances to scan mirror.
- Additional design studies recommended
 - To reduce instrument size and cost
 - To extend design to meet goal requirements for temporal and spatial resolution

EXTRA SLIDES

Ltyp = ~TOA Radiances at 70° SZA*

Total integration time = ~17.1 min per scene
0.8 sec integration time per scan line
Co-add 2 frames for UV-VIS-NIR & 46 for SWIR

Ltyp & Lmax equivalent to SeaWiFS values

Total integration time = ~10.3 min per scene
0.4 sec integration per scan line
Co-add 3 frames for UV-VIS-NIR & 23 for SWIR
Saturation of 1245 and 1640nm bands possible for extremely bright scenes.
Lmax(Barnes) based on SeaWiFS data, only 0.2% of pixels saturated