HW3 Report

學號:B05901005 系級: 電機三 姓名:賴沂謙

1. (2%) 請說明你實作的 CNN model, 其模型架構、訓練參數和準確率為何?並 請用與上述 CNN 接近的參數量, 實做簡單的 DNN model, 同時也說明其模 型架構、訓練參數和準確率為何?並說明你觀察到了什麼?

CNN:

Layer (type) Output Shape Param # conv2d_1 (Conv2D) (None, 48, 48, 64) leaky_re_lu_1 (LeakyReLU) (None, 48, 48, 64) batch_normalization_1 (Batch (None, 48, 48, 64) max_pooling2d_1 (MaxPooling2 (None, 24, 24, 64) dropout_1 (Dropout) (None, 24, 24, 64) flatten_1 (Flatten) (None, 4608) 1179904 (None, 256) dense_1 (Dense) batch normalization 5 (Batch (None, 256) 1024 dropout_5 (Dropout) (None, 256) x3層 Total params: 2,871,815 Trainable params: 2,868,359 Non-trainable params: 3,456

DNN:

Layer (type)	Output Shape	Param #
flatten_1 (Flatten)	(None, 2304)	0
dense_1 (Dense)	(None, 1024)	2360320
leaky_re_lu_1 (Leaky	ReLU) (None, 1024)	0
batch_normalization_1 (Batch (None, 1024)		4096
dropout_1 (Dropout)	(None, 1024)	0
dense_2 (Dense)	(None, 512)	524800
leaky_re_lu_2 (Leaky	ReLU) (None, 512)	0
batch_normalization_2 (Batch (None, 512)		2048
dropout_2 (Dropout)	(None, 512)	0
dense_3 (Dense)	(None, 7)	3591
activation_1 (Activation	on) (None, 7)	0
=======================================		
Total params: 2,894,8	55	
Trainable params: 2,8	91,783	

兩者都用了差不多兩百八十幾萬的參數,用batch_size = 128, epoch = 50的參數訓練,結果看起來,CNN的方法效果好很多。

Non-trainable params: 3,072

2. (1%) 承上題,請分別畫出這兩個model的訓練過程 (i.e., loss/accuracy v. s. epoch)

CNN: DNN:

兩張圖中上面兩條線(綠色、紅色)分別代表training和validation的loss,而下面兩條線(藍色、橘色)分別代表training和validation的accuracy。

3. (1%) 請嘗試 data normalization, data augmentation, 說明實作方法並且說明實行前後對準確率有什麼樣的影響?

	public acc	private acc
No data normalization & no data augmentation	0.65394	0.62635
Only data normalization	0.63722	0.63137
Both data normalization & data augmentation	0.68347	0.67957

做了data augmentation會增加training data的量,所以會訓練得比較好,結果也是如此,再來,做data normalization也會進步一些。但data augmentation才是結果變好的主要原因。

4. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion m atrix 分析]

從confusion matrix中分析,發現錯誤的predict中,sad最容易被辨認成neutral。