Meta-Heuristics 1

COMP4691 / 8691

7

A2

Previously on COMP4691(8691)

Construct 4 Tue
Improve
(Stochastic) Local Search
Simulated Annealing
MH

Today:

Other ways to escape local minima / search the solution space

Problems with Local Search I

Local minima

Meta-heuristics: Properties (1)

- can address both discrete- and continuous-domain optimisation problems
- are strategies that "guide" the search process
- range from simple local search procedures to complex adaptive learning processes
- efficiently explore the search space to find good (near-optimal) feasible solutions
- provide no guarantee of global or local optimality
- are agnostic to the unexplored feasible space (i.e., no "bound" information)
- lack a metric of "goodness" of solution (often stop due to an external time or iteration limit)

Meta-heuristics: Properties (2)

- are not based on some algebraic model (unlike exact methods)
- can be used in conjunction with an exact method
 - E.g., use meta-heuristic to provide upper bounds
 - E.g., use restricted MILP as "local heuristic" (== matheuristic)
- are usually non-deterministic
- are not problem specific (but their subordinate heuristics can be)
- may use some form of memory to better guide the search

URP 3-0P75

Meta-heuristics: Overview

EXPCOITATION US EXPCORATION

Exhibit Intensification and Diversification

- Need to do both 4
- Can be explicitly controlled

Intensification (Exploitation):

- Concentrate search around already-found "good" solutions
- Look harder in a smaller area

→ Diversification (Exploration)

- Expand the area being looked at
- Find new (promising?) areas to search
- Includes mechanisms to avoid getting trapped in confined areas of the search space

Meta-heuristics: An Incomplete Survey

Meta-heuristics: An Incomplete Survey

Tabu Search

- Taboo (English): prohibited, disallowed, forbidden
- **Tabu** (*Fijian*): forbidden to use due to being sacred and/or of supernatural powers
- Starts with classic Local Search until a local minimum is found
- Choose an objective-increasing move
- Make undoing that move "tabu"
 - Place it on a "tabu list"
- Repeat

```
s \leftarrow \text{GenerateInitialSolution}()
TabuList \leftarrow \emptyset
while termination conditions not met do
s \leftarrow \text{ChooseBestOf}(\mathcal{N}(s) \setminus TabuList)
Update(TabuList)
endwhile
```

Tabu Search

- Simple version: Tabu list has fixed length
 - Moves "fall off" the list after fixed number of iterations
- Length of the list is a critical parameter
 - Too small

 Keep falling back into same local minimum
 - Too big

 Not allowed to explore new space properly
- Dynamic list length
 - If you see the same solution, increase list length
 - Decrease when new incumbent found

Tabu Search

"Aspiration Criteria"

- Allowed to keep a solution if it meets certain criteria
- Most common: a new incumbent / best solution is kept

E.g. VRP

E.g. VRP

E.g. VRP

E.g. VRP

E.g. VRP

E.g. VRP

Meta-heuristics: An Incomplete Survey

Soft Constraints

General idea: Move constraints into the objective

- Relax Constraints
 - Penalise degree of violation
 - Allows Local Search to move through "infeasibility barrier"
 - Opens new areas of search space
 - Maintain both best feasible solution "best" infeasible solution
 - Increase penalty over time to force incumbent back to feasibility
 - Often used with Simulated Annealing or Tabu Search
 - Extensively used in practice, e.g., VRP

Parameters:

- Which constraints to relax
- Penalty schedule

Not possible by changing a single node

Soft Constraints – VRP

E.g. VRP

E.g. VRP

E.g. VRP

E.g. VRP

E.g. VRP

E.g. VRP

Meta-heuristics: An Incomplete Survey

Guided Local Search

Basic idea:

- Select a *feature* that indicates a poor solution
- Penalise a solution that exhibits that feature

- Start with zero penalty
- Repeat
 - Perform Local Search to minimise original objective + penalties
 - Select elements to penalise
 - Increase penalty on selected elements

Guided Local Search

Local Search

• Do local search with an updated objective $h(s) = g(s) + \lambda \cdot \sum_{i=1}^{M} p_i \cdot I_i(s)$

10~100

MICCIONS

- Updated objective
 - h(s): Augmented objective
 - g(s): Original objective
 - λ: "normalisation" parameter
 - (p_i) Count of times feature i has been penalised
 - $I_i(s)$: Indicator function: 1 if feature i in solution s; 0 otherwise

Guided Local Search

Select elements to penalise:

- Update penalty of features that maximise Utility
- c_i: Original cost of feature
- I_i(s): Does solution s exhibit feature i
- At each iteration
 - Local Search using augmented objective
 - Select maximum utility features
 - Set p_i = p_i + 1 for all selected features
- Penalty increases each iteration
 - Local Search tries harder to eliminate feature
- Utility decreases the more often you penalise a feature
 - Eventually select other features

$$h(s) = g(s) + \lambda \cdot \sum_{i=1}^{M} p_i \cdot I_i(s)$$

Guided Local Search - TSP

- Feature: an arc (i,j)
- $I_{ij}(s) = 1$ if arc (i,j) is present; 0 otherwise
- At each iteration
 - Penalise the longest arc. 4
 - Try harder to get rid of it
- As the search progresses
 - Utility of first arc decreases
 - Other arcs start being penalised

$$h(s) = g(s) + \lambda \cdot \sum_{i=1}^{M} p_i \cdot I_i(s)$$

$$util(s_*, f_i) = I_i(s_*) \cdot \frac{c_i}{1 + p_i}$$

Meta-heuristics: An Incomplete Survey

- Generate a population of solutions (construct methods)
- Evaluate fitness (objective)
- Create next generation:
 - Choose two solutions from population
 - Combine the two (two ways)
 - [Mutate]
 - Produce offspring (calculate fitness)
 - -[Improve] LOCAL SGARCH ON OFPS.
 - Repeat until population doubles
- Apply selection:
 - − Bottom half "dies"
- Repeat

Turns it into a Memetic Algorithm

Solution Representation is key

- Needs to fulfil multiple goals
 - Easy to calculate fitness (objective)
 - Easy to perform crossover (merge)
 - Easy to manipulate (mutation)
 - Easy for local <u>search</u>
- E.g. VRP
 - First attempts used array for each route, or successor info
 - Very difficult for crossover
 - Better rep turns out to be a single array

E.g. VRP

- "Split" method
- Introduced by Prins (2004)
- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
 - Uses Dynamic Programming

6	1	9	7	3	2	10	4	8	5
---	---	---	---	---	---	----	---	---	---

4-GRAND TOUR

E.g. VRP

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
 - Uses Dynamic Programming

E.g. VRP

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
 - Uses Dynamic Programming

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
 - Uses Dynamic Programming

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
 - Uses Dynamic Programming

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
 - Uses Dynamic Programming

6 1 9 7 3 2 10 4 8	5
--------------------	---

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
 - Uses Dynamic Programming

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
 - Uses Dynamic Programming

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes

	7,	•	P		TZ					
1	4	6	2	3	8	9	5	10	7	125
1	10	8	2	5	4	9	3	6	7	132
6	1	9	7	3	2	10	4	8	5	160
1	9	7	10	8	6	4	3	2	5	198

Diversification:

- Big problem is getting a homogenous population
- Too much intensification, not enough diversification

EXPLODATION

- Some algorithms explicitly measure diversity
 - keep lower-quality solutions that maintain diversity
- Meta-meta: Soft constraints
 - Maintain a separate population of infeasible solutions

Meta-heuristics: An Incomplete Survey

By analogy to foraging behaviour of Ants

• An obstacle appears!

Everybody flip a coin

Shortest path is reinforced

TOP PACKETS IN NGT CELL COM.

E.g.: Want to find shortest paths in a communications network

- Send out ants that choose a path
 - Partly at random (our naïve heuristic)
 - Partly influenced by previous ants: Pheromone trail our meta-heuristic
- The first ant to get to a destination increases the Pheromone on its path
- Pheromone levels decrease over time
 - More ants select the best path
 - The best path gets reinforced

Advantages:

- (Relatively) Simple
- Distributed 4—
- Easy to parallelise
- Robust:
 - If the network changes, new pheromones will be deposited and a new path found

Disadvantages:

- Sensitive to parameter settings
 - Lay down too much pheromone → Lock in poor solution early (poor diversity)
 - Lay down too little → Slow to converge (poor intensification)
 - Decay pheromone too slowly → Bad paths persist
 - Decay too quickly \rightarrow Best path is forgotten

Meta-heuristics: An Incomplete Survey

Path Relinking

Basic idea:

- Take two solutions
- "Walk" between them

Meta-heuristics

Conclusions

- We've looked at the characteristics of Meta-heuristics
 - Problem independent on top of Problem-dependent heuristics
 - Often Randomised "Stochastic Local Search" (also a book by Hoos & Stützle)
 - Diversification (Intensification (Exploration / Exploitation)
- We've looked at a few Meta-heuristics
 - Accepting non-improving solutions
 - Combining solutions
- Next time
 - More Meta-heuristics

BOOK