

Mixed Layer Processes in the Labrador Sea from a **High Resolution Atlantic and Pan-Arctic Ocean-ice Model Configuration (ANHA12)**

Xianmin Hu and Paul G. Myers

Department of Earth and Atmosphere Sciences University of Alberta

CMOS2014 Rimouski, QC, June 4th, 2014

GEOTRACES VITALS

People. Discovery. Innovation.

Outline

- Background
- Model configuration and experiment
- Results
 - simulated seasonal and inter-annual MLD in Labrador Sea
 - surface fluxes and MLD
 - cross section flux and MLD
- Summary

Labrador Sea

-- a vital element of climate system

Holloway and Proshutinsky 2007

Receiving Arctic Ocean outflows

- Canadian Arctic Archipelago
- Fram Strait

Deep convection site

- deep water ventilated
- gas exchanges
- heat and freshwater

Model Configuration

ANHA: Arctic and Northern Hemisphere Atlantic

Experiment Setup

Initialization:

3D T, S, U and V (GLORYS1v1, Jan02) **Sea Ice**

Atmospheric forcing (CGRF, hourly):

T2, Q2, U10, V10 Precipitation Radiation (SW & LW)

Snow: CORE2 (IA)

Runoff: Dai and Trenberth climatology

OBC:

U, V, T and S (GLORYS1v1)

NO temperature & salinity restoring

Jan 2002 - 2008 -- > 2010

CGRF: CMC GDPS reforecasts

GDPS: Global Deterministic Prediction System

CMC: Canadian Meteorological Centre

GLORYS: GLobal Ocean ReanalYses and Simulations

Simulated Fields in the Labrador Sea

- Ice concentration
- Ice thickness
- Mixed layer depth (MLD)
- Ocean current (speed) at 55m

Result I:

Labrador Sea Mixed Layer Depth

- Seasonal cycle
- Inter-annual variability

MLD Seasonal Cycle

- Nov ~ Dec --> Mar ~ Apr --> the mid of May
- re-stratification process: ~ 1 month
- north --> south, shelf --> interior

MLD: 0.01 kg m⁻³

solid lines : 2003 – 2008

dotted lines: 2003 – 2007

MLD Inter-annual Variability

Result II:

Surface Fluxes and MLD

MLD and Surface Fluxes

Result III:

Cross Section Flux and MLD

Larger outflow

Deeper MLD

Less buoyancy into the interior

R < 0, flux is leading

Larger inflow

Deeper MLD

Deeper MLD

Larger outflow

Deeper MLD

Larger outflow

Summary

MLD in the Labrador Sea

- from the end of November to the mid of next May
- starts deepening on shelf from the north to south and interior
- re-stratification is much faster than the development process

MLD variability in the deep basin (>3000m)

- highly related to the surface heat and virtual salt fluxes
- surface fluxes lead MLD change by ~ 1.5 months
- relation between the cross section transport and MLD varies by location
 - less buoyancy input from the north or larger upper layer inflow from the south leads to a deeper MLD
 - deeper MLD leads to larger outflow to the south