AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application:

- 1 1. (Currently Amended) A method of forming a microcrystalline thin film, comprising:
- supplying, during a first process, a first gas \underline{SiH}_4 and a second gas \underline{H}_2 to a chamber in
- 3 which a substrate is located;
- supplying, during a second process, the second gas \underline{H}_2 but not the first gas \underline{SiH}_4 to the
- 5 chamber;
- depositing a portion of the microcrystalline thin film during the second process; and
- 7 performing the first process and second process a plurality of times to form the
- 8 microcrystalline thin film <u>having a target film thickness</u> on the substrate.
- 1 2. (Cancelled)
- 1 3. (Currently Amended) The method of claim [[2]] 1, wherein performing the first process
- 2 and second process a plurality of times is performed without removing the substrate from the
- 3 chamber.
- 1 4. (Original) The method of claim 3, further comprising applying an electric field in the
- 2 chamber to break down the SiH₄ to SiH₂.
- 1 5. (Currently Amended) The method of claim 4, wherein supplying the H₂ comprises
- 2 supplying the H₂ at a generally constant rate, and wherein supplying the SiH₄ comprises
- 3 supplying the SiH₄ at a first rate during the first process but not supplying the SiH₄ during the
- 4 second process.
- 1 6. (Original) The method of claim 4, further comprising depositing the SiH₂ to a surface of
- 2 the substrate during the second process.

Appln. Serial No. 10/693,244 Amendment Dated April 6, 2006 Reply to Office Action Mailed January 9, 2006

- 1 7. (Currently Amended) The method of claim 1, further comprising:
- 2 converting the first gas $\underline{SiH_4}$ to a third gas $\underline{SiH_2}$; and
- depositing the third gas SiH_2 on the substrate during the second process.
- 1 8. (Currently Amended) The method of claim 7, wherein depositing the third gas SiH₂ on
- 2 the substrate during the second process without supplying the first gas SiH₄ reduces formation of
- a polymer of the third gas due to SiH₂ molecules encountering each other prior to depositing of
- 4 the third gas SiH₂ on the substrate.
- 1 9. (Currently Amended) A method of forming a microcrystalline thin film by activating
- 2 SiH₄ a first source gas containing an element that forms a polymer when a plurality of molecules
- 3 of the element are bonded in a vapor phase, and forming a film having a microcrystalline
- 4 structure primarily composed of said element on a film forming target object, wherein activating
- 5 the first source gas SiH₄ comprises applying an electric field to break down the first source gas
- 6 SiH₄ to a second gas SiH₂, the method further comprising:
- 7 performing a source supplying process in which said first source gas SiH₄ is supplied,
- 8 and
- performing a source depositing process in which the supply of said first source gas SiH₄
- is stopped and said second gas SiH₂ is deposited on the film forming target object to form the
- 11 microcrystalline structure.
- 1 10. (Currently Amended) The method of claim 9, wherein bonding of the second gas SiH₂ is
- 2 suppressed in the source depositing process.
- 1 11. (Currently Amended) The method of claim 9, wherein H₂ a third gas that does not form a
- 2 polymer when bonding with itself in the vapor phase is supplied in said source supplying process
- 3 and said source depositing process.
- 1 12. (Currently Amended) The method of claim 11, wherein the third gas \underline{H}_2 is supplied at a
- 2 constant flow rate throughout said source supplying process and said source depositing process.

- 1 13. (Currently Amended) The method of claim 11, wherein a flow rate ratio, r, of said first
- 2 source gas SiH₄ and said third gas H₂ satisfies
- 3 $r \ge -(7/12)xP+72.5$, where P is an electric field intensity density irradiated on said first source
- 4 gas SiH_4 and said third gas H_2 .
- 1 14. (Previously Presented) The method of claim 9, wherein performing said source
- 2 supplying process comprises performing the source supplying process for 2 seconds or less, and
- 3 performing said source depositing process comprises performing said source depositing process
- 4 for longer than said source supplying process.
- 1 15.-16. (Cancelled)
- 1 17. (Original) A method of manufacturing a thin film transistor comprising:
- 2 forming a gate electrode on the substrate;
- forming an insulation layer film on said substrate and said gate electrode,
- 4 forming at least a portion of a channel layer film on said insulation layer by using the
- 5 microcrystalline thin film forming method of claim 9; and
- 6 forming a source/drain electrode on said channel layer.
- 1 18. (Previously Presented) The method of manufacturing a thin film transistor of claim 17,
- 2 wherein forming the channel layer film comprises forming the microcrystalline thin film up to 1
- 3 nm away into the channel layer film from the interface with said insulation layer.
- 1 19.-25. (Cancelled)
- 1 26. (Currently Amended) The method of claim 1, wherein supplying the first gas SiH₄ and
- 2 second gas H₂ during the first process comprises supplying the first gas SiH₄ at a first rate and
- 3 the second gas H_2 at the a second rate, the first rate and second rate defining a flow rate ratio that
- 4 prevents a thin film formed on the substrate from becoming amorphous.

Appln. Serial No. 10/693,244 Amendment Dated April 6, 2006 Reply to Office Action Mailed January 9, 2006

- 1 27. (Previously Presented) The method of claim 26, further comprising applying an electric
- 2 field during the first process, the electric field set at an intensity that in combination with the
- 3 flow rate ratio prevents a thin film formed on the substrate from becoming amorphous.
- 1 28. (Currently Amended) The method of claim 9, further comprising supplying a third gas
- 2 H₂ during the source supplying process and during the source depositing process, the first source
- 3 gas SiH₄ and the third gas H₂ being supplied at flow rates during the source supplying process to
- 4 prevent a film formed on the film forming target object from becoming amorphous.
- 1 29. (Currently Amended) A method of forming a microcrystalline thin film, comprising:
- supplying a first-gas $\underline{SiH_4}$ and second gas $\underline{H_2}$ to a chamber in which a substrate is located;
- 3 and
- depositing the microcrystalline thin film on the substrate, wherein prior to depositing the
- 5 microcrystalline thin film, the supplying of the first gas SiH₄ to the chamber is stopped.
- 1 30. (Previously Presented) The method of claim 29, wherein depositing the microcrystalline
- 2 thin film forms a majority of the microcrystalline thin film on the substrate.
- 1 31. (New) The method of claim 29, wherein supplying SiH₄ and H₂ during the first process
- 2 comprises supplying SiH₄ at a first rate and H₂ at a second rate, the first rate and second rate
- defining a flow rate ratio that prevents a thin film formed on the substrate from becoming
- 4 amorphous.