SCRUM Domain Optimization Model

${\bf Truely Most Wanted}$

August 12, 2025

Contents

1	Sets (Entities)	2
2	Indices	2
3	Goals	3
4	Conditions	4
5	DecisionVariables	6

1 Sets (Entities)

- P (Projects): The product or initiative to be developed.
- T (Teams): Self-organized, cross-functional development teams.
- W (Workers): Individual team members working on the project.
- **F** (Features): Mid-sized functionality.
- S (Skills): Professional or social competences of workers.
- R (Roles): Defined responsibilities within the Scrum team.
- PO (Product Owners): Responsible for product vision and Product Backlog.
- SM (Scrum Masters): Support teams in applying Scrum.
- **PB** (Product Backlogs): Ordered list of all requirements.
- **SP** (Sprints): Fixed time periods for creating an increment.
- SPP (Sprint Plannings): Kick-off meetings for Sprint preparation.
- **DS** (Daily Scrums): Daily 15-minute team meetings.
- SR (Sprint Reviews): Presentation and acceptance of results.
- SRE (Sprint Retrospectives): Retrospectives for process improvement.
- SBL (Sprint Backlogs): Selected backlog items + implementation plan.
- SG (Sprint Goals): Objectives to be achieved within the sprint.
- E (Epics): Large requirements that can be split into stories.
- US (User Stories): Requirements from the perspective of a user.
- TSK (Tasks): Smallest work units within a sprint.
- **DEV** (Development Snapshots): Product at the end of a sprint.
- **BL** (Blockers): Obstacles hindering progress.
- SH (Stakeholders): Interested parties in the product.
- **VEL** (Velocities): Average amount of work per sprint (per team).
- **REP** (Release Plans): Plans for releasing specific features.
- RM (Roadmaps): Long-term planning across releases.
- SCB (Scrum Boards): Visual representations of sprint tasks.
- **FED** (Feature Documentations): Documentation for a specific feature.

2 Indices

• $p \in \mathbf{P}, t \in \mathbf{T}, w \in \mathbf{W}, f \in \mathbf{F}, s \in \mathbf{S}, r \in \mathbf{R}, po \in \mathbf{PO}, sm \in \mathbf{SM}, pb \in \mathbf{PB}, sp \in \mathbf{SP}, spp \in \mathbf{SPP}, ds \in \mathbf{DS}, sr \in \mathbf{SR}, sre \in \mathbf{SRE}, sbl \in \mathbf{SBL}, sg \in \mathbf{SG}, e \in \mathbf{E}, us \in \mathbf{US}, tsk \in \mathbf{TSK}, dev \in \mathbf{DEV}, bl \in \mathbf{BL}, sh \in \mathbf{SH}, vel \in \mathbf{VEL}, rep \in \mathbf{REP}, rm \in \mathbf{RM}, scb \in \mathbf{SCB}, fed \in \mathbf{FED}.$

Attribute Parameters (from Entities.csv). For any entity set X and attribute name a listed in Entities.csv, we use parameter notation a_x (or $a_{x,y}$ if relational) to refer to the data value on element(s) $x \in \mathbf{X}$. Examples (non-exhaustive): $team_size_t$, $availability_w$, $story_points_{us}$, $effort_{tsk}$, $avgSP_{vel}$ for avg._story_points, etc. Dates/status/labels act as parameters or logical flags as appropriate.

3 Goals

We aggregate multiple goals via a weighted sum; "min" goals appear with a negative sign. Let ω_g be the weight of goal g and $\phi_g(\cdot)$ its contribution. The scalarized objective is:

$$\max \sum_{g \in \mathcal{G}_{\text{max}}} \omega_g \, \phi_g \, - \, \sum_{g \in \mathcal{G}_{\text{min}}} \omega_g \, \phi_g.$$

Each goal below defines ϕ_q (sums apply over the referenced entity set when IsSum=True).

• G0 maximize_team_velocity (Velocity / avg._story_points; weight 1.0)

Logical: Increase average story points delivered across velocity records. Mathematical:
$$\phi_{G0} = \sum_{vel \in \mathbf{VEL}} avgSP_{vel}$$
.

• G1 maximize_peak_velocity (Velocity / max_velocity; weight 0.8)

Logical: Reward higher observed peak velocity.

Mathematical:
$$\phi_{G1} = \max_{vel \in \mathbf{VEL}} max_velocity_{vel}$$
.

• G2 minimize_velocity_variation (Velocity / min_velocity; weight 0.6)

Logical: Reduce variability by shrinking the gap between peak and trough (proxy via raising minima).

Mathematical (penalty):
$$\phi_{G2} = \sum_{vel \in \mathbf{VEL}} (\overline{M} - min_velocity_{vel})$$
, where \overline{M} is a constant upper bound.

• G3 minimize_open_blocker_severity (Blocker / severity; weight 1.0)

Logical: Reduce cumulative severity of open blockers. Let $open_{bl} \in \{0,1\}$ flag open status.

Mathematical:
$$\phi_{G3} = \sum_{bl \in \mathbf{RI}} open_{bl} \cdot severity_{bl}$$
.

• G4 minimize_blocker_age (Blocker / detected_on; weight 0.4)

Logical: Minimize age of blockers. Let
$$age_{bl} := now - detected_on_{bl}$$
. Mathematical: $\phi_{G4} = \sum_{bl \in \mathbf{BL}} age_{bl}$.

• G5 maximize_sprint_goal_achievement (Sprint / achievement_of_goal; weight 1.0)

Logical: Increase achieved sprint goals (binary or rate).

Mathematical:
$$\phi_{G5} = \sum_{sp \in \mathbf{SP}} achievement_of_goal_{sp}$$
.

• G6 minimize_sprint_overrun (Sprint / end_date; weight 0.3)

Logical: Penalize late sprint end vs. planned end $planEnd_{sp}$.

Mathematical:
$$\phi_{G6} = \sum_{sp \in \mathbf{SP}} \max\{0, end_date_{sp} - planEnd_{sp}\}.$$

• G7 maximize_feature_throughput (Feature / status; weight 0.7)

Logical: Reward completed features; let $done_f \in \{0, 1\}$.

Mathematical: $\phi_{G7} = \sum_{f \in \mathbf{F}} done_f$.

• G8 minimize_story_points_in_progress (UserStory / story_points; weight 0.9)

Logical: Reduce WIP story points; let $inProg_{us} \in \{0, 1\}$.

Mathematical: $\phi_{G8} = \sum_{us \in \mathbf{US}} inProg_{us} \cdot story_points_{us}.$

• G9 maximize_team_utilization (Worker / availability; weight 0.9)

Logical: Increase usable worker capacity.

Mathematical: $\phi_{G9} = \sum_{w \in \mathbf{W}} availability_w$.

• G10 minimize_task_effort (Task / effort; weight 1.0)

Logical: Reduce total implementation effort selected for sprints (uses DV $b_{tsk,sp}$).

Mathematical: $\phi_{G10} = \sum_{sp \in \mathbf{SP}} \sum_{tsk \in \mathbf{TSK}} b_{tsk,sp} \cdot effort_{tsk}$.

• G11 maximize_release_readiness (ReleasePlan / status; weight 0.5)

Logical: Reward release plans marked ready; let $ready_{rep} \in \{0, 1\}$.

Mathematical: $\phi_{G11} = \sum_{rep \in \mathbf{REP}} ready_{rep}$.

4 Conditions

Decision Variables (symbols). We use the following symbols (defined fully in Section 5):

 $x_{w,t} \in \{0,1\}$ (worker w assigned to team t)

 $y_{us,sp} \in \{0,1\}$ (user story us scheduled in sprint sp)

 $z_f \in \{0, 1\}$ (feature f selected for next release)

 $r_f \in \mathbb{Z}_+$ (backlog rank of feature f)

 $a_t \in \mathbb{Z}_+$ (story points capacity allocated to team t)

 $m_{sm,t} \in \{0,1\}$ (Scrum Master sm supports team t)

 $po_{po,pb} \in \{0,1\}$ (Product Owner po manages backlog pb)

 $b_{tsk.sp} \in \{0, 1\}$ (task tsk selected for sprint sp)

 $g_{sp} \in \{0, 1\}$ (sprint sp commits to its goal)

 $u_{bl} \in \{0, 1\}$ (blocker bl marked resolved)

 $B_f \in \mathbb{R}_+$ (budget allocated to feature f)

 $d_{sp} \in \mathbb{Z}_+$ (duration in days of sprint sp)

Operating Constraints (from Conditions.csv).

- C0 min_team_size (must-match). Ensure teams meet minimum size $\underline{n}^{\text{team}}$. $\sum_{w,t} \geq \underline{n}^{\text{team}}$, $\forall t \in \mathbf{T}$.
- C1 max_team_size (must-match). Keep teams below upper size bound $\overline{n}^{\text{team}}$. $\sum_{w,t} \leq \overline{n}^{\text{team}}$, $\forall t \in \mathbf{T}$.

• C2 worker_must_be_available (must-match). Assign only available workers ($availability_w \in [0,1]$).

$$\sum_{t \in \mathbf{T}}^{17} x_{w,t} \leq \mathbf{1} \{availability_w > 0\}, \quad \forall w \in \mathbf{W}.$$

• C3 story_points_cap_per_sprint (must-match). Limit total story points per sprint to cap \overline{SP}_{sp} .

$$\sum_{us \in \mathbf{US}} story_points_{us} y_{us,sp} \leq \overline{SP}_{sp}, \quad \forall sp \in \mathbf{SP}.$$

• C4 task_effort_cap_per_sprint (must-match). Limit total task effort per sprint to cap \overline{E}_{sp} .

$$\sum_{tsk \in \mathbf{TSK}} effort_{tsk} \, b_{tsk,sp} \, \leq \, \overline{E}_{sp}, \quad \forall sp \in \mathbf{SP}.$$

• C5 feature_priority_floor (may-match). Enforce minimum priority level $\underline{\pi}$ for selected features.

$$r_f \leq \overline{r} \cdot \mathbf{1} \{ priority_f \geq \underline{\pi} \}, \quad \forall f \in \mathbf{F}.$$

- C6 epic_effort_ceiling (may-match). Control epic estimated effort by ceiling \overline{EE} . estimated_effort_e $\leq \overline{EE}$, $\forall e \in \mathbf{E}$.
- C7 sprint_within_dates (must-match). Sprints must fit the calendar window [planStart_sp, planEnd_sp]. $start_date_{sp} \geq planStart_{sp}, \ end_date_{sp} \leq planEnd_{sp}, \ \forall sp \in \mathbf{SP}.$
- C8 sprint_end_before_release (must-match). Sprint ends before planned release date planned_date_{rep}.

$$end_date_{sp} \leq planned_date_{rep}, \quad \forall sp \in \mathbf{SP}, \forall rep \in \mathbf{REP} \text{ linked to } sp.$$

• C9 backlog_status_active (must-match). Only active backlogs considered ($status_{pb} = active$).

$$\sum_{po \in \mathbf{PO}} po_{po,pb} \le \mathbf{1} \{ status_{pb} = \text{active} \}, \quad \forall pb \in \mathbf{PB}.$$

- C10 blocker_status_must_be_open_for_penalty (must-match). Only open blockers incur penalties; resolution switches them off. $open_{bl} \leq 1 u_{bl}, \quad \forall bl \in \mathbf{BL}.$
- C11 skill_level_requirement (must-match). Required skill level $\underline{\ell}_{f,s}$ when assigning workers to features needing skill s. Let $hasSkill_{w,s} \in \{0,1\}$. $hasSkill_{w,s} \geq \mathbf{1}\{level_{w,s} \geq \underline{\ell}_{f,s}\}$ whenever worker w is allocated to feature f.

Structural Constraints (from Relationships.csv).

- R1 is_assigned_to_project (Team \rightarrow Project; 1:N). Each team belongs to exactly one project: $\sum_{p \in \mathbf{P}} \tau_{t,p} = 1$, $\forall t \in \mathbf{T}$; a project can have many teams $(\tau_{t,p} \in \{0,1\})$.
- **R2 belongs_to_team** (Worker \rightarrow Team; N:1). Workers belong to exactly one team: $\sum_t x_{w,t} = 1, \ \forall w.$
- R3 has_skill (Worker \leftrightarrow Skill; N:M). Skill coverage: $\sigma_{w,s} \in \{0,1\}$ free; many-to-many allowed.
- R4 takes_on_role (Worker \leftrightarrow Role; N:M). Role assignment $\rho_{w,r} \in \{0,1\}$, many-to-many.

- **R5 manages_backlog** (PO \leftrightarrow PB; 1:1). Unique manager: $\sum_{po} po_{po,pb} = 1$, $\sum_{pb} po_{po,pb} = 1$.
- R6 is_supported_by (Team \leftrightarrow SM; 1:1). Unique Scrum Master per team: $\sum_{sm} m_{sm,t} = 1$, $\sum_{t} m_{sm,t} \leq 1$.
- R7 contains_feature (PB \rightarrow Feature; 1:N). Assignment $\chi_{pb,f} \in \{0,1\}$ with $\sum_{pb} \chi_{pb,f} = 1$.
- R8 contains_epic (PB \rightarrow Epic; 1:N). Assignment $\eta_{pb,e} \in \{0,1\}$ with $\sum_{pb} \eta_{pb,e} = 1$.
- R9 contains_user_story (Epic \rightarrow UserStory; 1:N). Link $\gamma_{e,us} \in \{0,1\}$ with $\sum_{e} \gamma_{e,us} = 1$.
- R10 consists_of_tasks (UserStory \rightarrow Task; 1:N). Link $\kappa_{us,tsk} \in \{0,1\}$ with $\sum_{us} \kappa_{us,tsk} = 1$.
- R11 is_in_sprint_backlog (UserStory \leftrightarrow SprintBacklog; N:M). Scheduling $y_{us,sp}$ induces sbl inclusion.
- R12 belongs_to_sprint (SprintBacklog \leftrightarrow Sprint; 1:1). Each sbl tied to exactly one sp.
- R13 pursues_goal (Sprint \leftrightarrow SprintGoal; 1:1). Commitment $g_{sp} = 1 \Rightarrow$ exactly one goal.
- R14 contains_tasks (ScrumBoard \rightarrow Task; 1:N). Board-task incidence $\beta_{scb,tsk} \in \{0,1\}$.
- R15 documents_feature (FeatureDocumentation ↔ Feature; 1:1). Unique documentation per feature.
- **R16** is_blocked_by (Task \leftrightarrow Blocker; N:M). If $b_{tsk,sp} = 1$ and $\iota_{tsk,bl} = 1$ with $open_{bl} = 1$, task is blocked.
- R17 participates_in (Stakeholder \leftrightarrow SprintReview; N:M). Attendance matrix $\psi_{sh,sr} \in \{0,1\}$.
- R18 moderates_retrospective (SM \rightarrow SRE; 1:N). Moderation $\mu_{sm,sre} \in \{0,1\}$ with $\sum_{sm} \mu_{sm,sre} = 1$.
- R19 refers_to_team (Velocity \rightarrow Team; 1:1). Map $a_{vel,t} \in \{0,1\}$ with $\sum_t a_{vel,t} = 1$.
- R20 plans_release (REP \rightarrow Feature; 1:N). Release selection z_f implies inclusion in some $rep: \sum_{rep} \lambda_{rep,f} = z_f$.
- **R21 is_part_of_roadmap** (REP \rightarrow RM; N:1). Each plan belongs to one roadmap: $\sum_{rm} \pi_{rep,rm} = 1$.
- **R22 generates_snapshot** (Sprint \to DEV; 1:1). Each sprint generates exactly one snapshot: $\sum_{dev} \delta_{sp,dev} = 1$.

5 DecisionVariables

- **DV0** assign_worker_to_team $(x_{w,t})$: binary, domain $\{0,1\}$, min 0, max 1. Worker w is assigned to team t.
- **DV1 assign_user_story_to_sprint** $(y_{us,sp})$: binary, domain $\{0,1\}$, min 0, max 1. User story us scheduled in sprint sp.

- DV2 select_feature_for_release (z_f) : binary, domain $\{0,1\}$, min 0, max 1. Feature f included in a release plan.
- DV3 prioritize_feature_rank (r_f) : integer, domain [1,100], min 1, max 100. Rank position of feature f.
- **DV4 allocate_story_points_to_team** (a_t) : integer, domain [0, 500], min 0, max 500. Capacity allocated to team t.
- **DV5** assign_scrum_master_to_team $(m_{sm,t})$: binary, domain $\{0,1\}$, min 0, max 1. SM sm supports team t.
- **DV6** assign_product_owner_to_backlog ($po_{po,pb}$): binary, domain $\{0,1\}$, min 0, max 1. PO po manages backlog pb.
- DV7 select_task_for_sprint_backlog ($b_{tsk,sp}$): binary, domain $\{0,1\}$, min 0, max 1. Task tsk included in sprint sp.
- DV8 set_sprint_goal_commitment (g_{sp}) : binary, domain $\{0,1\}$, min 0, max 1. Sprint sp commits to a specific goal.
- **DV9 mark_blocker_resolved** (u_{bl}) : binary, domain $\{0,1\}$, min 0, max 1. Blocker bl resolution decision.
- **DV10** allocate_budget_to_feature (B_f) : real, domain $[0, 10^6]$, min 0, max 1,000,000. Budget amount for feature f.
- **DV11 plan_sprint_duration_days** (d_{sp}) : integer, domain [7, 30], min 7, max 30. Number of days in sprint sp.

Capacity Coupling (illustrative). To link capacity, velocity and assignment:

$$\sum_{us \in \mathbf{US}} \mathit{story_points}_{us} \ y_{us,sp} \ \leq \ \sum_{t \in \mathbf{T}} a_t \cdot \alpha_{t,sp}, \quad \forall sp \in \mathbf{SP},$$

where $\alpha_{t,sp} \in \{0,1\}$ indicates team t works in sprint sp, and a_t may be calibrated using **VEL** via $a_t \leq \sum_{vel} a_{vel,t} \cdot avgSP_{vel}$.