2.7 Precise Definition of Limits

Definition (Limit of a Function). Assume f(x) is defined for all x in some open interval containing a, except possibly at a. We say the limit of f(x) as x approaches a is L, written

$$\lim_{x \to a} f(x) = L$$

if for any number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - a| < \delta$

If we know L and $\varepsilon > 0$ is given, we can draw horizontal lines $L - \varepsilon$ and $L + \varepsilon$. Using the intersections of the graph and the horizontal lines, we can solve for $\delta > 0$ such that for values of x in the interval $(a - \delta, a + \delta)$, $x \neq a$, we have $L - \varepsilon \leq f(x) \leq L + \varepsilon$.

Note: As ε becomes smaller, δ will become smaller as well.

Example. Use the graph of f below to find a number δ such that if $0 < |x - 2.25| < \delta$ then |f(x) - 2.159| < 1.

Example. Use the graph of $g(x) = \sqrt{x+1}$ to help find a number δ such that if $|x-4| < \delta$ then $\left| \left(\sqrt{x} + 1 \right) - 3 \right| < \frac{1}{2}$.

$$|(\sqrt{x} + 1) - 3| < \frac{1}{2}$$

$$-\frac{1}{2} < \sqrt{x} - 2 < \frac{1}{2}$$

$$1.5 < \sqrt{x} < 2.5$$

$$2.25 < x < 6.25$$

$$=) S = min \left\{ 4-2.25, 6.25-4 \right\}$$

$$= min \left\{ 1.75, 2.25 \right\}$$

Example. Use the graph of the following linear function where $\lim_{x\to 3} h(x) = 5$ to find $\delta > 0$ such that |h(x) - 5| < 1 whenever $0 < |x - 3| < \delta$.

$$S=2$$

Note: Slope is $\frac{1}{2}$

So $S=\frac{\varepsilon}{m}$

=) {=1,75

Steps for proving that $\lim_{x\to a} f(x) = L$

- 1. Find δ . Let ε be an arbitrary positive number. Use the inequality $|f(x) L| < \varepsilon$ to find a condition of the form $|x a| < \delta$, where δ depends only on the value of ε .
- 2. Write a proof. For any $\varepsilon > 0$, assume $0 < |x a| < \delta$ and use the relationship between ε and δ found in Step 1 to prove that $|f(x) L| < \varepsilon$.

Example. Use the $\varepsilon - \delta$ definition of a limit to prove $\lim_{x \to 4} (2x - 5) = 3$.

B Find 8

Want
$$|f(x)-3|< \varepsilon$$

$$|(2x-5)-3|< \varepsilon$$

$$|2x-8|< \varepsilon$$

$$|2x-4|< \varepsilon$$

$$|x-4|< \frac{\varepsilon}{\varepsilon} =: \delta$$

2) Show this works

Let
$$\varepsilon > 0$$
 and $\delta = \frac{\varepsilon}{2}$, then

for $1x - 4 < \delta$, we have

$$|(2x-5) - 3| = |2x-8|$$

$$= 2|x-4|$$

$$< 2 \delta$$

$$< 2 \delta$$

$$= 2(\frac{\varepsilon}{2}) = \varepsilon$$
Ilimit to prove $\lim_{\delta \to 0} \frac{x}{\varepsilon} = \frac{2}{\varepsilon}$.

Example. Use the $\varepsilon - \delta$ definition of a limit to prove $\lim_{x\to 2} \frac{x}{5} = \frac{2}{5}$.

$$\begin{array}{c|c}
\hline
 & F : x d & \delta \\
\hline
 & f(x) - \frac{2}{5} \middle| < \varepsilon \\
\hline
 & | \frac{x}{5} - \frac{2}{5} \middle| < \varepsilon \\
\hline
 & \frac{1}{5} \middle| x - 2 \middle| < \varepsilon \\
\hline
 & = | |x - 2| | < 5\varepsilon = : \delta
\end{array}$$

D Show this works

Let
$$\varepsilon > 0$$
 and $\delta = 5\varepsilon$, then

for $1x-21<\delta$, we have

$$\left| \zeta(x) - \frac{2}{5} \right| = \left| \frac{x}{5} \cdot \frac{2}{5} \right|$$

$$= \frac{1}{5}(5\varepsilon) = \varepsilon$$

Example. Use the $\varepsilon - \delta$ definition of a limit to prove $\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = 5$.

$$\frac{\mathcal{O}_{F,nol} \delta}{\text{Want}} = \frac{\chi^2 + \chi - 6}{\chi - 2} - \frac{5}{6} \left(\frac{\mathcal{E}}{\chi} \right) \\
= \frac{(\chi + 3)(\chi - 2)}{\chi - 2} - \frac{5}{6} \left(\frac{\mathcal{E}}{\chi} \right) \\
= \frac{|(\chi + 3) - 5|}{|(\chi + 3) - 5|} < \frac{\mathcal{E}}{\chi}$$

$$= \frac{|(\chi + 3) - 5|}{|(\chi + 2)|} < \frac{\mathcal{E}}{\chi} = \frac{1}{2} \delta$$

Show it works

Let
$$\varepsilon > 0$$
 and $\delta = \varepsilon$, then

for $|x-2| < \delta$, we have

$$\left| \frac{\chi^2 + \chi - 6}{\chi - 2} - 5 \right| = \left| \frac{(\chi r_3)(\chi - 2)}{\chi - 2} - 5 \right|$$

$$= \left| \chi + 3 - 5 \right|$$

$$= \left| \chi - 2 \right| \int |\chi - 2| < \delta$$

$$< \delta = \varepsilon$$

$$= \left| f(\chi) - 5 \right| < \varepsilon$$

Example. Use the $\varepsilon - \delta$ definition of a limit to prove $\lim_{x \to 3} \frac{x^2 + 2x - 15}{2x - 6} = 4$.

$$\begin{array}{c|c}
\hline
\text{D Find } \delta \\
\hline
\text{Want} & \frac{\chi^2 + 2\chi - 15}{2\chi - 6} - 4 \middle| \angle \mathcal{E} \\
& \left| \frac{(\chi + 5)(\chi - 3)}{2(\chi - 3)} - 4 \middle| \angle \mathcal{E} \\
& \left| \frac{1}{2}(\chi + 5) - \frac{1}{2}(\mathcal{E}) \right| \angle \mathcal{E} \\
& \left| \frac{1}{2}(\chi - 3) \right| \angle \mathcal{E} \\
\Rightarrow |\chi - 3| \angle \mathcal{E} = : \mathcal{E}
\end{array}$$

Show it works

Let
$$\varepsilon > 0$$
 and $\delta = 2\varepsilon$, then

for $1x-31 < \delta$, we have

$$\left|\frac{x^2+2x-15}{2x-6} - 4\right| = \left|\frac{(x+5)(x-3)}{2(x-3)} - 4\right|$$

$$= \left|\frac{1}{2}(x+5) - \frac{1}{2}(8)\right|$$

$$= \frac{1}{2}\left|x-3\right| = \frac{1}{2}\left|x-3\right| = \varepsilon$$

$$= \frac{1}{2}\left|x-3\right| = \varepsilon$$

Fall 2018 Class notes