NHL Goalie and Skater Heat Maps

Sasank Vishnubhatla January 10, 2019

Last Update: 2019-01-10 14:22:33

GitHub Repository: sv4u/goalie-and-skater-heat-maps

Introduction

In the NHL, players have their *sweet-spots*. For skaters, it can be the top of a certain circle, or right in-front of the net. For goalies, it could be where their vision is best and where they have the best angle to cut down a shot. All players have these sweet-spots, but it is difficult to analytically say where they are. By using shot location data, we can determine these locations and create models show where goalies and skaters need improvement and where they succeed.

Data Formatting

To start, we need to read in our data. Our data is formatted nicely in CSV format. We have data from the 2016-2017 season, 2017-2018 season, and 2018-2019 season (up to 1/7/19). This data was downloaded from MoneyPuck. Let's first start by loading in all three seasons of data:

```
data.2016 = read.csv("data/2016.csv")
data.2017 = read.csv("data/2017.csv")
data.2018 = read.csv("data/2018.csv")
```

Note: this will take a *relatively* long time to compute as the datasets are large. Each dataset contains all shot data (**including** playoffs).

We'll only look at regular season data. The playoffs in the NHL are a beast of their own.

```
get.regular.season = function(data) {
    subset(data, isPlayoffGame == 0)
}
season.2016 = get.regular.season(data.2016)
season.2017 = get.regular.season(data.2017)
season.2018 = get.regular.season(data.2018)
```

Now that we have our data, we can remove extraneous columns. Here is a table of what columns we are keeping, and what we are renaming them to:

Old Column	New Column
xCordAdjusted	X
yCordAdjusted	У
goal	goal
${\it shotAngleAdjusted}$	angle
goalie Name For Shot	$goalie_name$
shooterName	$skater_name$
game_id	game

Now, here is the R code to do this subsetting of the original dataset.

Now, we have all the data we need.

Function Definitions

Generic

From our data, we can calculate some very important statistics like the following:

- Goal Percent: goals per total shots
- Save Percent: saves (total shots goals) per total shots
- Shots per Goal: total shots per goal

Additionally, we can break up our data by game. There are some generic functions we can write to help for both goalies and skaters. Let's write them now!

```
get.goal.percent = function(data) {
    shots = length(data$goal)
   temp = subset(data, goal == 1)
   goals = length(temp$goal)
    goals / shots
}
get.save.percent = function(data) {
    shots = length(data$goal)
   temp = subset(data, goal == 1)
   goals = length(temp$goal)
    (shots - goals) / shots
}
get.shots.per.goal = function(data) {
    shots = length(data$goal)
    temp = subset(data, goal == 1)
    goals = length(temp$goal)
    shots / goal
}
```

Note: when using get.shots.per.goal, if there were no goals scored, R will handle the division by zero by returning infinity. This will be problematic when graphing data. I am still working

on a good solution to this problem. Earlier, I used 200 as a substitute value. However, 200 still skews graphs, which is unideal.

Goalies

Skaters
Analysis
Goalies
Matt Murray
Casey DeSmith
Marc-Andre Fleury
Andrei Vasilevskiy
Carey Price
Braden Holtby
John Gibson
Skaters
Sidney Crosby
Evgeni Malkin
Alex Ovechkin
Nikita Kucherov
Jake Guentzel
Erik Karlsson
Kris Letang