Machine Learning & Big Data Assignment – 2

Arda Harman

Let me first demonstrate you my data graph

This graph shows about real-life data...

x-axis is for the population of the city and y-axis is for the earned profit

A model gives us estimations about situations

For example, if population of a city is 5.0, model can say we will earn -\$5 money (losing Money) but if the population is 10.0 it can say we will earn \$7.5

If a model is good, it's predictions are closer to the reality

In other words, a model gets better as it's error rate decreases

Our objective is to finding the most optimal model, which has the least error rate...

• Finding "most optimal" model means, "finding the best w and b values"

• Which also means, "finding the best w and b values" which yields the least error

Cost Function

• There are this many w and b values... we need one with creates the smallest error (smallest value in the z-index)

In order to finding the best model, we should be able to do these 3 things:

- 1st step: Calculating the error rate
 - In order to understand "how good our model" right now, we must be able to calculate it's error rate
 - o It is the J(w, b) function

- 2nd step: Calculating the gradient
 - o In order to improve our model, (after measuring it's success with first step) we must be able to take the derivative of J(w, b)
 - This makes us change our w and b inputs
 - We use the derivative of J(w, b) to change our w and b values

- 3rd step: Improving until finding the best
 - We use gradient descent algorithm to find the best w and b values

```
def gradient_descent(x, y, w_in, b_in, cost_function, gradient_function, alpha, num_iters):
Performs batch gradient descent to learn theta. Updates theta by taking
num iters gradient steps with learning rate alpha
Args:
         (ndarray): Shape (m,)
         (ndarray): Shape (m,)
 w_in, b_in : (scalar) Initial values of parameters of the model
 cost_function: function to compute cost
 gradient_function: function to compute the gradient
 alpha: (float) Learning rate
 num_iters : (int) number of iterations to run gradient descent
Returns
 w : (ndarray): Shape (1,) Updated values of parameters of the model after
      running gradient descent
 b : (scalar) Updated value of parameter of the model after
      running gradient descent
 J_history : (ndarray): Shape (num_iters,) J at each iteration,
      primarily for graphing later
w = w_in
b = b in
J history = np.zeros(num iters)
for iter in range(num_iters):
    dw, db = gradient_function(x, y, w, b)
    w -= alpha * dw
    b -= alpha * db
    J_history[iter] = cost_function(x, y, w, b)
return w, b, J_history
```

Proof that all my functions passes the tests

While finding the optimal values, this is how does the cost decreases continously

Finally, this is our model with the "most optimal values" $\,$

