Quantifying model fit

INTRODUCTION TO REGRESSION IN R

Richie Cotton

Learning Solutions Architect at DataCamp

Bream and perch models

Bream Perch

Coefficient of determination

Sometimes called "r-squared" or "R-squared".

the proportion of the variance in the response variable that is predictable from the explanatory variable

- 1 means a perfect fit
- means the worst possible fit

summary()

Look at the value titled "Multiple R-Squared"

```
mdl_bream <- lm(mass_g ~ length_cm, data = bream)</pre>
summary(mdl_bream)
# Some lines of output omitted
Residual standard error: 74.15 on 33 degrees of freedom
Multiple R-squared: 0.8781, Adjusted R-squared: 0.8744
F-statistic: 237.6 on 1 and 33 DF, p-value: < 2.2e-16
```


glance()

```
library(broom)
library(dplyr)
mdl_bream %>%
  glance()
```

```
# A tibble: 1 × 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
<dbl> <dd> <dbl> <dbl>
```

```
mdl_bream %>%
  glance() %>%
  pull(r.squared)
```

0.8780627

It's just correlation squared

```
bream %>%
  summarize(
    coeff_determination = cor(length_cm, mass_g) ^ 2
)
```

```
coeff_determination

1 0.8780627
```

Residual standard error (RSE)

a "typical" difference between a prediction and an observed response

It has the same unit as the response variable.

summary() again

Look at the value titled "Residual standard error"

summary(mdl_bream)

```
# Some lines of output omitted

Residual standard error: 74.15 on 33 degrees of freedom

Multiple R-squared: 0.8781, Adjusted R-squared: 0.8744

F-statistic: 237.6 on 1 and 33 DF, p-value: < 2.2e-16
```

glance() again

```
library(broom)
library(dplyr)
mdl_bream %>%
  glance()
```

```
mdl_bream %>%
  glance() %>%
  pull(sigma)
```

```
74.15224
```


Calculating RSE: residuals squared

```
bream %>%
  mutate(
    residuals_sq = residuals(mdl_bream) ^ 2
)
```

```
species mass_g length_cm residuals_sq
            242
                    23.2
                             138.9571
   Bream
                    24.0
                             260.7586
   Bream
            290
3
            340
                    23.9
                            5126.9926
   Bream
            363
                    26.3
                            1318.9197
   Bream
   Bream
            430
                    26.5
                             390.9743
                    26.8
   Bream
            450
                             547.9380
```

Calculating RSE: sum of residuals squared

```
bream %>%
  mutate(
    residuals_sq = residuals(mdl_bream) ^ 2
) %>%
  summarize(
    resid_sum_of_sq = sum(residuals_sq)
)
```

```
resid_sum_of_sq
1 181452.3
```

Calculating RSE: degrees of freedom

Degrees of freedom equals the number of observations minus the number of model coefficients.

```
bream %>%
  mutate(
    residuals_sq = residuals(mdl_bream) ^ 2
) %>%
  summarize(
    resid_sum_of_sq = sum(residuals_sq),
    deg_freedom = n() - 2
)
```

```
resid_sum_of_sq deg_freedom
1 181452.3 33
```

Calculating RSE: square root of ratio

```
bream %>%
  mutate(
    residuals_sq = residuals(mdl_bream) ^ 2
) %>%
  summarize(
    resid_sum_of_sq = sum(residuals_sq),
    deg_freedom = n() - 2,
    rse = sqrt(resid_sum_of_sq / deg_freedom)
)
```

```
resid_sum_of_sq deg_freedom rse
1 181452.3 33 74.15224
```

Interpreting RSE

mdl_bream has an RSE of 74.

The difference between predicted bream masses and observed bream masses is typically about 74g.

Root-mean-square error (RMSE)

Residual standard error

```
bream %>%
  mutate(
    residuals_sq = residuals(mdl_bream) ^ 2
) %>%
  summarize(
    resid_sum_of_sq = sum(residuals_sq),
    deg_freedom = n() - 2,
    rse = sqrt(resid_sum_of_sq / deg_freedom)
)
```

Root-mean-square error

```
bream %>%
  mutate(
    residuals_sq = residuals(mdl_bream) ^ 2
) %>%
summarize(
    resid_sum_of_sq = sum(residuals_sq),
    n_obs = n(),
    rmse = sqrt(resid_sum_of_sq / n_obs)
)
```

Let's practice!

INTRODUCTION TO REGRESSION IN R

Visualizing model fit

INTRODUCTION TO REGRESSION IN R

Richie Cotton

Learning Solutions Architect at DataCamp

Hoped for properties of residuals

- Residuals are normally distributed
- The mean of the residuals is zero

Bream and perch again

Bream: the "good" model

mdl_bream <- lm(mass_g ~ length_cm, data = bream)</pre>

Perch: the "bad" model

mdl_perch <- lm(mass_g ~ length_cm, data = perch)</pre>

Residuals vs. fitted values

Bream Perch

Q-Q plot

Bream

Perch

Scale-location

autoplot()

```
library(ggplot2)
library(ggfortify)
autoplot(model_object, which = ???)
```

Values for which

- 1 residuals vs. fitted values
- 2 Q-Q plot
- 3 scale-location

autoplot() with the perch model

```
autoplot(
  mdl_perch,
  which = 1:3,
  nrow = 3,
  ncol = 1
)
```


'Autoplots, roll out!' - Plotimus Prime

INTRODUCTION TO REGRESSION IN R

Outliers, leverage, and influence

INTRODUCTION TO REGRESSION IN R

Richie Cotton

Learning Solutions Architect at DataCamp

Roach dataset

```
roach <- fish %>%
  filter(species == "Roach")
```

species	length_cm	mass_g
Roach	12.9	40
Roach	16.5	69
Roach	17.5	78
Roach	18.2	87
Roach	18.6	120
•••	•••	•••

Which points are outliers?

```
ggplot(roach, aes(length_cm, mass_g)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```


Extreme explanatory values

```
roach %>%
  mutate(
    has_extreme_length = length_cm < 15 | length_cm > 26
) %>%
  ggplot(aes(length_cm, mass_g)) +
  geom_point(aes(color = has_extreme_length)) +
  geom_smooth(method = "lm", se = FALSE)
```


Response values away from the regression line

```
roach %>%
  mutate(
    has_extreme_length = length_cm < 15 | length_cm > 26,
    has_extreme_mass = mass_g < 1
  ) %>%
  ggplot(aes(length_cm, mass_g)) +
  geom_point(
    aes(
      color = has_extreme_length,
      shape = has_extreme_mass
  geom_smooth(method = "lm", se = FALSE)
```


Leverage

Leverage is a measure of how extreme the explanatory variable values are.

```
mdl_roach <- lm(mass_g ~ length_cm, data = roach)</pre>
hatvalues(mdl_roach)
0.3137 0.1255 0.0935 0.0763 0.0684 0.0619 0.0605
    8
                10 11 12 13
                                          14
0.0568 0.0503 0.0501 0.0501 0.0506 0.0509 0.0581
   15
          16 17 18 19
                                    20
0.0581 0.0593 0.0884 0.0995 0.1334 0.3947
```

The .hat column

```
library(broom)
augment(mdl_roach)
```

```
A tibble: 20 \times 8
 mass_g length_cm .fitted
                          .resid .hat .sigma .cooksd .std.resid
  <dbl>
           <dbl>
                   <dbl>
                          <dbl> <dbl>
                                        <dbl>
                                                 <dbl>
                                                           <dbl>
                   -28.6
     40
            12.9
                          68.6
                                0.314 33.8 1.07
                                                          2.17
     69
            16.5
                   55.4
                          13.6
                                0.126 39.1 0.0104
                                                          0.381
3
     78
            17.5
                   78.7
                          -0.711 \ 0.0935
                                        39.3 0.0000197
                                                         -0.0196
     87
            18.2
                   95.0
                          -8.03 0.0763 39.2 0.00198
                                                          -0.219
4
            18.6
                          15.6
                                0.0684 39.1 0.00661
                                                          0.424
5
    120
                   104.
```

Highly leveraged roaches

```
mdl_roach %>%
  augment() %>%
  select(mass_g, length_cm, leverage = .hat) %>%
  arrange(desc(leverage)) %>%
  head()
```

```
# A tibble: 6 x 3
  mass_g length_cm leverage
   <dbl>
            <dbl>
                   <dbl>
             29.5
                    0.395
                           # really long roach
     390
1
             12.9
                    0.314
                           # really short roach
     40
2
                    0.133
             25
3
     272
             16.5
                    0.126
     69
             24
                    0.0995
5
     290
                    0.0935
      78
             17.5
```

Influence

Influence measures how much the model would change if you left the observation out of the dataset when modeling.

Cook's distance

Cook's distance is the most common measure of influence.

```
cooks.distance(mdl_roach)
```

```
1 2 3 4 5 6

1.07e+00 1.04e-02 1.97e-05 1.98e-03 6.61e-03 3.12e-01
7 8 9 10 11 12

8.53e-04 1.99e-04 2.57e-04 2.56e-04 2.45e-03 7.95e-03
13 14 15 16 17 18

1.37e-04 4.82e-03 1.15e-02 4.52e-03 6.12e-02 1.50e-01
19 20

2.06e-02 3.66e-01
```

The .cooksd column

```
library(broom)
augment(mdl_roach)
```

```
# A tibble: 20 x 9
   mass_g length_cm .fitted .se.fit
                                    .resid
                                             .hat .sigma
                                                         .cooksd .std.resid
                    <dbl>
   <dbl>
             <dbl>
                            <dbl>
                                  <dbl> <dbl>
                                                  <dbl>
                                                            <dbl>
                                                                      <dbl>
              12.9
                     -28.6
                            21.4
                                           0.314
                                                   33.8 1.07
      40
                                    68.6
                                                                     2.17
      69
              16.5
                            13.5
                                           0.126
                                                   39.1 0.0104
                                                                     0.381
                     55.4
                                    13.6
                            11.7
 3
      78
              17.5
                     78.7
                                    -0.711 \ 0.0935
                                                   39.3 0.0000197
                                                                    -0.0196
      87
              18.2
                            10.5
                                    -8.03
                                                   39.2 0.00198
                                                                    -0.219
                    95.0
                                          0.0763
                                                   39.1 0.00661
 5
     120
              18.6
                     104.
                             9.98
                                    15.6
                                           0.0684
                                                                     0.424
```

Most influential roaches

```
mdl_roach %>%
  augment() %>%
  select(mass_g, length_cm, cooks_dist = .cooksd) %>%
  arrange(desc(cooks_dist)) %>%
  head()
```

```
# A tibble: 6 x 3
  mass_g length_cm cooks_dist
   <dbl>
            <dbl>
                       <dbl>
                             # really short roach
1
     40
             12.9
                      1.07
                      0.366 # really long roach
2
    390
             29.5
3
             19
                      0.312 # zero mass roach
      0
                      0.150
    290
             24
    180
             23.6
                      0.0612
    272
             25
                      0.0206
```

Removing the most influential roach

```
roach_not_short <- roach %>%
filter(length != 12.9)
```

```
ggplot(roach, aes(length_cm, mass_g)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  geom_smooth(
    method = "lm", se = FALSE,
    data = roach_not_short, color = "red"
)
```


autoplot()

```
autoplot(
  mdl_roach,
  which = 4:6,
  nrow = 3,
  ncol = 1
)
```


Let's practice!

INTRODUCTION TO REGRESSION IN R

