实验 09 数模电综合设计与实践

	. .		—	LV
シムウェイ	^			$\lambda =$
实验学生		ΙЯ	/Ľ^	1—

课序号: <u>04</u> 班级: <u>2307</u> 学号: <u>20232241110</u> 姓名: <u>刘晨旭</u>

实验 09 得分:

一、实验目的

仿真模拟六路流水灯控制器,在实验室中进行实际接线,并理解其背后的原理。

二、实验设备与器件

- 1、使用软件: Proteus 8
- 2、使用元件及其符号说明:

WHI 1 7011 W/(19 3 909)						
元件	符号					
LED 灯	D1,D2,D3,D4,D5,D6					
三极管 2N3904	Q1,Q2,Q3,Q4,Q5,Q6					
输入与非门芯片 74HC10	U1,U2					
译码器 74HC154	U4					
计数器 74HC161	U3					
NE555 定时器芯片	U5					
数码管						
电容	C1,C2					
电阻	R2,R1					
缓冲器 4050	U6					
示波器						

表格 1 元件及其符号说明

三、实验操作过程及结果分析

(1)设计方案

本实验项目设计并实现了一个"六路流水灯控制器"电路,该电路主要具备以下两种功能:

流水灯循环控制: 六个 LED 灯以一字排开的方式布局,其工作状态表现为从左至右依次点亮(点亮后随即熄灭),再由右向左依次点亮(点亮后随即熄灭),形成循环往复的流水灯效果。

开关控制及 LED 检测:通过引入一个开关 LOGICSTATE 来控制流水灯的工作状态。当 LOGICSTATE 的值为 0 时,所有六个 LED 灯均保持常亮状态,以便于检测 LED 灯的工作性能;而当 LOGICSTATE 的值为 1 时,电路将恢复为六路流水灯的循环控制模式。

(2) 设计思路

显示部分设计:采用 6 组 LED(元件关键字为 LED-RED)作为流水灯的显示部分。为了驱动这些 LED,我们选用了三极管 2N3904 构建驱动电路,并通过 LOGICSTATE 信号来调控 LED 红灯的开关状态。

状态产生机制: 流水灯的状态产生依赖于 6 片 3 输入与非门芯片 74HC10 和 1 片 74HC154 芯片的组合。通过精心设计的电路逻辑,结合以下真值表,实现了流水灯状态的循环产生和切换。

	计数器输出 译码输出 六路流水灯									
Q3	Q2	Qi	Qo	Yi	LI	L2	L3	L4	L5	L6
0	0	0	0	YO	1	0	0	0	0	0
0	0	0	1	Yl	0	1	0	0	0	0
0	0	1	0	Y2	0	0	1	0	0	0
0	0	1	1	Y3	0	0	0	1	0	0
0	1	0	0	Y4	0	0	0	0	1	0
0	1	0	1	Y5	0	0	0	0	0	1
0	1	1	0	Y6	0	0	0	0	1	0
0	1	1	1	Y7	0	0	0	1	0	0
I	0	0	0	Y8	0	0	1	0	0	0
1	0	0	1	Y9	0	1	0	0	0	0

表格 2 六路流水灯真值表

根据真值表,写出下面的逻辑表达式:

$$L_1 = \overline{\overline{Y_0}} \tag{1}$$

$$L_2 = \overline{\overline{Y_1} \cdot \overline{Y_9}} \tag{2}$$

$$L_3 = \overline{\overline{Y_2} \cdot \overline{Y_8}} \tag{3}$$

$$L_4 = \overline{\overline{Y_3} \cdot \overline{Y_7}} \tag{4}$$

$$L_5 = \overline{\overline{Y_4} \cdot \overline{Y_6}} \tag{5}$$

(6)

$L_6 = \overline{\overline{Y_5}}$

(3) 流水灯循环切换的实现机制

为实现流水灯从左至右再反向的循环点亮效果,我们采取数字信号序列控制策略。具体而言,数字信号 0 至 5 依次控制灯 1 至 6 的点亮,而数字信号 6 至 9 则依次控制灯 5 至 2 的点亮,形成连续的循环过程。为了实现这一循环,我们运用"异步清零法",通过 74HC161 计数器控制 74HC154 译码器的输出。当输出达到数字 9 时,利用 161 芯片的异步清零功能将 154 芯片的输出重置为零,从而确保循环的连续性和稳定性。

(4) 基于 NE555 定时器的数字时钟信号生成

为了产生所需的数字时钟信号,我们采用了一片 NE555 定时器芯片,并通过 CD4050 芯片驱动 74HC161 的时钟输入端。在此过程中,我们利用示波器对生成的数字时钟信号进行波形观测。根据公式 T=0.7(R1+2R2)C1,我们设定 $R1=R2=47.6k\Omega$ 和 C1=10uF,以调节波形频率至 1Hz,设定 $R1=R2=11.9k\Omega$ 和 C1=10uF,以调节波形频率至 4Hz。通过这一配置,我们成功生成了稳定的数字时钟信号,其波形如 附录 9.3~ 所示。

四、实验总结、建议和质疑

本实验成功设计并实现了"六路流水灯控制器",这是数字电路知识综合应用的一次重要实践。实验过程深化了对数字电路设计与应用的理解,提高了自身实践能力。

五、附录

附录 9.1 课堂实践部分最终版

附录 9.2 附录 9.2 数模电综合设计"六路流水灯控制器"

附录 9.3 基于 NE555 定时器电路设计生成的数字时钟波形