Introduction to Bluetooth Networking

Ramiro Liscano

Independent Consultant – Spontaneous Networking
Adjunct Professor at Carleton University
rliscano@ieee.org

Overview

- Where is Bluetooth Positioned in the Wireless World? (5 min.)
- Bluetooth Protocol Stack (25 min.)
- Bluetooth Applications (15 min.)
- The Future of Bluetooth (5 min.)

What is Bluetooth?

- It is a specification that attempts to provide a standard method of wireless communication between various personal devices
- Devices with ranging complexity can utilize Bluetooth technology: from cellular telephones to laptop computers
- Has a complete software framework and its own protocol stack.
- Specifications are driven by a Consortium that was founded in 1998 by Ericsson Microelectronics, Nokia, IBM, Toshiba and Intel. http://www.bluetooth.org

Goals

- Cable replacement
- Low Cost (a \$5 solution)
- Low Power
- Small Size

 Dynamic networking for devices that are constantly mobile (not in motion)

FOR MORE INFO...

Specifications are driven by a Consortium that was founded in 1998 by Ericsson Microelectronics, Nokia, IBM, Toshiba and Intel. http://www.bluetooth.org

Bluetooth and Wireless

Bluetooth & WiFi

WiFi

- Wireless Ethernet
- 11 MBits/s
- 1 Watt
- Cost > \$ 5.00
- 3 Chips

<u>Bluetooth</u>

- Cable Replacement
- 1 Mbit/s
- 1 mW

-AN Access

- Cost < \$5.00
- 1-2 Chips
- Supports:
 - Audio
 - Application Profiles
- Peer to Peer Comm.

Bluetooth Protocol Stack

Baseband

Radio

Technical Specifications

- Bluetooth devices come in three classes
 - Class 1 (100mW, 100m range)
 - Class 2 (2.5mW, 10m range)
 - Class 3 (1mW, 1m range)
- RF Specs
 - Resides in the unlicensed ISM band between 2.4-2.485GHz
 - Uses frequency hopping over 79 channels, 1600 hops/second
 - 723Kbps throughput (Asymmetrical)
- Current Hardware Solutions
 - Modules that are soldered directly to a USB
 - PCMCIA cards
 - USB and RS232 dongles (SD from Palm)

Radio Link Characteristics

Link Manager (LM)

Baseband

Radio

FH: Frequency Hopping

TDD: Time Division Duplex

Baseband

Defines many fundamental operations between devices

- Channel Control
- Packet Formats
- Error Corrections
- BT Addressing
- Connections

Baseband

Typical Bluetooth Networks

Link Manager (LM)

Baseband

Radio

Master / Slave Piconet Configurations

Baseband

Radio

Piconet Characteristics

- Maximum 7 active nodes or 255 parked.
- Everything is controlled by the master.
 - Hopping sequence is unique for a piconet and is determined by the Master's BT address.
 - The piconet is synchronized by the system clock of the Master.
 - Channel bandwidth.
 - Master can broadcast to slaves.

Baseband

Radio

Connection Modes

- Asynchronous Connection-Less (ACL)
 - One ACL connection supported in Slave mode.
 - 761/57.6 Kps or 432.6 Kps both ways.
- Synchronous Connection Oriented (SCO)
 - Point to point connection between a Master and Slave device. Slots are reserved therefore similar to circuit-switch.
 - Up to 3 SCO Links can be supported.
 - 64 Kps, adequate for voice communication.

Baseband

Radio

Device Modes

- Stand by Not connected, default state low power mode.
- Inquiry Search for new devices in range. Master operation.
- Page Construct a specific connection to a slave device. Slave address required generally acquired from Inquiry.
- Active Data transmission occurring. Devices are connected.
- Sniff Listening duty cycle is reduced.
- Hold- Slave will not support ACL anymore.
- Park Slave no longer active but still synchronized with piconet.

Inquiry Mode

Link Manager (LM)

Baseband

Radio

Obtain BT Device Address

Obtain Clock Offset

ID. 24 Bit Device Address

M Wants to find devices

Devices are listening

Baseband

Radio

After Inquiry Mode

Master has all Device Addresses and

Clock Offsets

•Radios respond in different slots.

 Master now has device addresses and can start peer to peer connection by paging device

Connection – Paging (1)

Link Manager (LM)

Baseband

Radio

Master wants to connect with "3"

- M pages "3" with ID₃
- S₃ Replies with ID₃

Connection – Paging (2)

Link Manager (LM)

Baseband

Radio

Clocks are synchronized

- M sends "3" its Device ID and clock
- S₃ Can update its clock and change its hopping frequency to match M

Connection Established

Link Manager (LM)

Baseband

Radio

• S₃ is connected to M

Baseband

Radio

240 Bits 72 Bits 54 Bits **Access Code** Header **Payload** HV_1 10 Bytes + 1/3 FEC HV_2 20 Bytes + 2/3 FEC HV₃ 30 Bytes

FEC = Forward Error Correction

Data Packet Format

Link Manager (LM)

Baseband

Radio

Symmetric	Asym	metric
108.8	108.8	108.8
258.1	387.2	54.4
286.7	477.8	36.3

	DH_1	
NO FEC	DH_3	
	DH_5	

Symmetric	Asym	metric
172.8	172.8	172.8
390.4	585.6	86.4
433.9	723.2	57.6

LMP

Set up and Manage Baseband Connections

- Piconet Mgmt.
- Security
- Power Mgmt.
- Link Configutation

LMP

Pairing & Authentication

L2CAP

Link Manager (LM)

Baseband

Pairing

Headset

Phone

Authentication

- Access to both devices
- Manual PIN entered
- Secret keys generated

- Devices connect automatically
- Keys are exchanged
- Authentication based on 128 bit shared key

Protocol Stack and HCI

L2CAP

The HCI Layer

Host Controller Interface

Link Manager (LM)

- Allows a host device (ie. processor) to perform upper layer stack functions through a physical transport. In other words, allows the stack to be divided between two pieces of hardware
- Three transports defined: UART, USB, and RS232

L2CAP

Logical Link Control and Adaptation Protocol

- Protocol Multiplexing
- Segmentation and Reassembly of up to 64 Kbyte packets
- Quality of Service Negotiation

L2CAP

Protocol Architecture

RFComm

L2CAP

Host Controller Interface

- Creates logical connections with upper layers
 - A channel identifier CID is used to identify the different channels.
 - Channel is assumed to be full duplex.
 - QoS is assigned to each direction of a channel.
 - Connection-oriented, connection-less, and signalling channels can be created.
- Datagram based therefore no streaming of data is possible.
 - Note that audio does not pass through L2CAP.

L2CAP Channels

RFComm

L2CAP

Host Controller Interface

RFComm

RFComm

- Serial port emulation.
- Cable replacement scenario.
- Creates no flow rate limitations, this is left up to an upper layer application (ie. Serial Port Profile)

Serial Line Emulation

Application

RFComm

L2CAP

RFComm
L2CAP
L2CAP
L2CAP

Design considerations

- Framing: assemble bit stream into bytes and subsequently into packets.
- Transport: reliable in-sequence delivery of serial stream.
- Control signals: RTS, CTS, DTR

Service Discovery Protocol (SDP)

SDP

- Client server model ironically the client is a Master device.
- Local Service Repository.
- Service advertising.
- Service browsing.

Application

SDP

L2CAP

SDP Overview

- All devices must provide this capability, it is part of the specification
- Establish L2CAP connection to remote device
- Query for services
 - search for specific class of service, or
 - browse for services
- Retrieve attributes that detail how to connect to the service.
- Establish a separate (non-SDP) connection to use the service.

SDP Transaction

Application

SDP

L2CAP

Service Record

Application

SDP

L2CAP

- ServiceClassIDlist
- ServiceID
- ProtocolDescriptorList
- ProviderName
- IconURL
- ServiceName
- ServiceDescription

Service Record

Service Attribute 1 Service Attribute 2 Service Attribute 3 Service Attribute 4 Service Attribute 5

...

...

Application

Application

 Majority of applications conform to the Bluetooth Profiles in order to guarantee interoperability

Application

SDP

L2CAP

- Define how devices provide different services in the Bluetooth environment
- There are currently 13 profiles defined by Bluetooth V
 1.1
 - Generic Access, Service Discovery Application, Cordless Telephony, Intercom, Serial Port, Headset, Dial-Up Networking, Fax, LAN Access, Generic Object Exchange, Object Push, File Transfer, Synchronization
- 12 Additional Profiles have been defined since V 1.1
 - Advanced Audio Distribution, Advance Video Remote Control, Basic Imaging, Basic Printing, Common ISDN Access, Extended Service Discovery, Hands Free, Hardcopy Cable Replacement, Human Interface Device, Personal Area Networking, SIM Access

Application Profile Layer

Application

SDP

L2CAP

Generic Access Profile

Service Discovery Application Profile **Telephony Control Protocol Specification**

Cordless Telephony
Profile

Intercom Profile

Serial Port Profile

Dial-Up Networking
Profile

FAX Profile

Headset Profile

LAN Access
Profile

Generic Object Exchange Profile

File Transfer Profile

Object Push Profile

Synchronization Profile

Application

SDP

L2CAP

- Provide a clear specification of the protocol and features of a service for a given end-user function.
 - Originated from the ISO/IEC TR 10000
 - Applications share the same features.
 - Parameters are the same.
 - Mechanisms for communicating with other required profiles defined.
 - User interface guidelines are defined.
- Facilitates modular construction of new profiles upon existing profiles.
- Common Look and Feel for Consumers.

BT Service Profiles (2)

Application

SDP

L2CAP

- All Profiles are development by the Bluetooth SIG Community.
 - Expensive to Participate.
 - Custom Application Services can be developed but there is no mechanism by which they can be adopted, except the through the Bluetooth SIG.
- The approach is not conducive to "Green" devices.
 Support for the profile must already exist in the device.
- Difficult to leverage existing services since they do not conform to a BT profile.
- A Service Profile definition is not machine readable, therefore the core work is performed by the developer of a profile in interpreting the profile.

Headset Profile (1)

Application
SDP
L2CAP

Defines 2 Roles

- Audio Gateway (AG) Device that is the gateway for the audio channel.
- Headset (HS) Device acting as remote mechanism.

Audio Gateway Headset **Audio Port Emulation Audio Port Driver Headset Control Headset Control** SDP SDP **RFCOMM RFCOMM** L2CAP L2CAP HCI / Link Layer HCI / Link Layer Radio Radio

Headset Profile (2)

Application

SDP

L2CAP

Constraints:

- The profile mandates the usage of CVSD for transmission of audio.
- Between headset and audio gateway, only one audio connection at a time is supported;
- The audio gateway controls the SCO link establishment and release.
- The profile offers only basic interoperability for example, handling of multiple calls at the audio gateway is not included;
- The only assumption on the headset's user interface is the possibility to detect a user initiated action (e.g. pressing a button).

Headset Profile - Incoming Call

SCO Link Establishment

Device Management

Device Management

• How does an application present devices and make connections in a Bluetooth environment?

Device Management

 Generally, a solution provider creates a proprietary device management entity that conforms to the Generic Access Profile

Applications		
Device Management	RFCOMM/SDP	
	L2CAP	
Host Controller Interface		

New Bluetooth Initiatives

- Scatternets Ad hoc Bluetooth networks.
 - The problem is one of properly coordinating the Master / Slave roles in order to create the scatternet properly.
- WLAN Profile IP over Bluetooth.
 - An important profile driven by Microsoft in order to support short range wireless ethernet.
- 802.15 Initiatives
 - High Bandwidth WPAN 802.15.3
- Java APIs for Bluetooth Wireless Technology (JSR-82).
 - Java Open Communities Effort by Motorola.

What is the Future for Bluetooth?

"The future of Bluetooth looks bright because it meets the basic need of connectivity in close proximity."

References

- Core Bluetooth Specification v1.1, Feb 2001.
- Personal Area Networks over Bluetooth,
 Presentation, Stefan Mahlknecht, ICT, Tu-Wien.
- Bluetooth Revealed by Brent A. Miller, Chatschik Bisdikian.
- Bluetooth 1.1: Connect Without Cables (2nd Edition),
 by Jennifer Bray, Charles F. Sturman, Joe Mendolia.
- Bluetooth Profiles, Dean Gratton, 2002.