PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-219528

(43)Date of publication of application: 08.08.2000

(51)Int.CI.

CO3B 33/09 B23K 26/00

(21)Application number: 2000-009536

(71)Applicant: SAMSUNG SDI CO LTD

(22)Date of filing:

18.01.2000

(72)Inventor: TEI SAIKUN

SHIN SHOEL

KIN SHINKEI **RO TETSURAI** KIN KOICHI

(30)Priority

Priority number: 99 9901245

Priority date: 18.01.1999

Priority country: KR

99 9901246

18.01.1999 18.01.1999

KR

99 9901247 99 9903374 99 9903375

02.02.1999

02.02.1999

KR

KR

KR

(54) METHOD FOR CUTTING GLASS SUBSTRATE AND DEVICE THEREFOR

(57)Abstract:

PROBLEM TO BE SOLVED: To make it possible to activate the formation of microcracks, to increase a cutting speed and to improve productivity by heating a cutting part by irradiation with a laser beam which is uniform in energy density and has a longitudinally long shape in the spot in a crossing direction, then rapidly cooling the cutting part.

SOLUTION: The laser beam of the longitudinally long shape is preferably a rectangular shape or elliptic shape and the length in a major axis direction is preferably made longer by about 15 to 25 times than that in a minor axis direction. A heating stage and a cooling stage are repeated at least ≥2 times to impart thermal impact. The cutting device has a table to be mounted with a glass substrate, a laser beam generating means which is disposed in the upper part thereof, a lens unit for convergence and acceleration of the laser beam and a cooling means for rapid cooling of the cutting section. The lens unit consists of a first lens group for changing the laser beam to parallel beams and a second lens group for changing the laser beam to the longitudinally long shape in the cutting direction of the glass substrate.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

2003-07-1

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-219528 (P2000-219528A)

(43)公開日 平成12年8月8日(2000.8.8)

(51) Int.Cl.7	識別記号	ΡI	テーマコード(参考)
CO3B 33/09		C 0 3 B 33/09	
B23K 26/00	320	B 2 3 K 26/00	3 2 0 E

審査請求 未請求 請求項の数21 OL (全 12 頁)

(21)出願番号	特顏2000-9536(P2000-9538)	(71)出願人 590002817 三星エスディアイ株式会社
(22)出顧日	平成12年1月18日(2000.1.18)	大韓民國京畿道水原市八達區▲しん▼河 575番地
(31) 優先権主張番号 (32) 優先日 (33) 優先権主張國 (31) 優先権主張番号 (32) 優先日 (33) 優先權主張國 (31) 優先權主張國 (32) 優先居 (32) 優先居	99P1245 平成11年1月18日(1999.1.18) 韓国(KR) 99P1246 平成11年1月18日(1999.1.18) 韓国(KR) 99P1247 平成11年1月18日(1999.1.18) 韓国(KR)	(72)発明者 鄭 辛 勲 大韓民国京畿道城南市盆唐区亭子洞191番 地 (72)発明者 秦 尚 暎 大韓民国京畿道水原市勧善区勧善洞1265番 地 (74)代理人 100072349 中理士 八田 幹雄 (外3名)
		世界 (大統領) 一

(54) 【発明の名称】 ガラス基板の切断方法及びその装置

(57)【要約】

【課題】 マイクロクラックの生成が活性化でき、生産性の向上が図れるガラス基板の切断方法及びその装置を提供する。

【解決手段】 各部位におけるエネルギ密度が均一であり、切断方向にレーザビームのスポットが縦長形をなすレーザビームを照射してガラス基板200の切断部を加熱する加熱工程と、レーザビームの照射により加熱された切断部を急冷させてマイクロクラックを形成する冷却工程とを有している。

【特許請求の範囲】

【請求項1】 各部位におけるエネルギ密度が均一であ り、切断方向にレーザビームのスポットが縦長形をなす レーザビームを照射してガラス基板の切断部を加熱する 加熱工程と、

前記レーザビームの照射により加熱された切断部を急冷 させてマイクロクラックを形成する冷却工程とを有する ことを特徴とするガラス基板の切断方法。

【請求項2】 前記切断部に照射される縦長形のレーザ ビームは、長方形又は楕円形であることを特徴とする請 求項1に記載のガラス基板の切断方法。

【請求項3】 前記縦長形のレーザビームは、長軸方向 の長さが短軸方向の長さの15~25倍であることを特 徴とする請求項1又は2に記載のガラス基板の切断方 法。

【請求項4】 前記加熱工程は、前記ガラス基板の上面 に形成された反射膜を除去する反射膜除去工程をさらに 有することを特徴とする請求項1に記載のガラス基板の 切断方法。

前記反射膜除去工程は、Nd:YAGレ 【請求項5】 ーザを照射して反射膜を除去することを特徴とする請求 項4に記載のガラス基板の切断方法。

【請求項6】 切断しようとするガラス基板が装着され るテーブルと、該テーブルの上部に設けられるガラス基 板の切断部位を加熱するためのレーザビームを発生させ るレーザビーム発生手段と、当該レーザビーム発生手段 で発生されたレーザビームを集束及び加速するレンズユ ニットと、前記テーブルと隣接して設けられて切断部位 を急冷させる冷却手段とを有するガラス基板の切断装置 であって、

前記レンズユニットは、前記レーザビーム発生手段で発 生されたレーザビームを平行ビームに変える第1レンズ 群と、当該第1レンズ群を通ったレーザビームのエネル ギ密度をレーザビームの各領域で均一にし、レーザビー ムの断面をガラス基板の切断方向に縦長形化させる第2 レンズ群とを有することを特徴とするガラス基板の切断 装置。

【請求項7】 前記第2レンズ群がフライアイレンズで あることを特徴とする請求項6に記載のガラス基板の切 断装置。

【請求項8】 前記レンズユニットが、第2レンズ群を 通ったレーザビームの焦点を可変させる第3レンズをさ らに具備することを特徴とする請求項6に記載のガラス 基板の切断装置。

【請求項9】 ベースフレームと、

該ベースフレームに設けられ、切断されるガラス基板を 支持するテーブルをX軸方向に摺動自在に支持するとと もに前記テーブルを所定角度にて正逆転自在な支持手段 と、

前記ベースフレームに支持されるとともに前記テーブル

の上部にテーブルの移送方向と直交する方向に設けられ るクロスアームと、

当該クロスアームに設けられたヘッド移送手段により該 クロスアームに沿って移送されるヘッド部と、

05 前記ベースフレーム又はクロスアームの一側に設けられ たレーザビーム発生部、及び、当該レーザビーム発生部 で発生されたレーザビームの焦点を縦長形化させ、焦点 の各領域におけるエネルギ密度を均一にし、前記ヘッド 部に装着されたレンズユニットをもつ光学系を備えた加 10 熱手段と、

前記ヘッド部に設けられ、加熱手段により加熱されたガ ラス基板の切断部を急冷させる冷却手段と、を有するこ とを特徴とするガラス基板の切断装置。

【請求項10】 前記支持手段は、ベースフレームの上 15 部に設けられるガイドレール及びリニアモータにより支 持されるベース部材と、当該ベース部材に回転自在に設 けられる板部材と、前記ベース部材に対し板部材を正逆 転させるステッピングモータと、前記板部材に支持され て前記テーブルを支持するサポートとを有することを特 20 徴とする請求項9に記載のガラス基板の切断装置。

【請求項11】 前記テーブルの上面が凸形の曲面であ ることを特徴とする請求項9に記載のガラス基板の切断 装置。

【請求項12】 前記板部材及びテーブルに支持され、 25 該テーブルに支持されるガラス基板を昇降させる昇降手 段をさらに有することを特徴とする請求項9に記載のガ ラス基板の切断装置。

【請求項13】 前記昇降手段は、テーブルに形成され た貫通孔から引入及び引出されるピン部材と、当該ピン 30 部材を昇降させるシリンダとを有することを特徴とする 請求項12に記載のガラス基板の切断装置。

【請求項14】 前記ヘッド部は、クロスアームに設け られ、テーブルの移送方向と直交するY軸方向にヘッド 移送手段により移送される本体部と、この本体部から下 35 方に延在される支持台と、前記レンズ群を昇降させる第 2昇降手段とを有することを特徴とする請求項9に記載 のガラス基板の切断装置。

【請求項15】 前記ヘッド移送手段は、クロスアーム の内部に長手方向に設けられる前記本体部をガイドする 1対のガイドレールと、当該一側のガイドレールに平行 に設けられ、前記本体部を移送させるリニアモータとを 有することを特徴とする請求項14に記載のガラス基板 の切断装置。

【請求項16】 前記レンズユニットは、レーザビーム 45 の直径を可変させると共に物点を可変させる少なくとも 1対のレンズよりなる第1レンズ群と、前記第1レンズ 群を通ったレーザビームを平行にするフライアイレンズ よりなる第2レンズ群と、平行化したレーザビームに所 定のレーザビーム焦点を持たせる第3レンズとを有する

50 ことを特徴とする請求項9に記載のガラス基板の切断装

置。

【請求項17】 前記冷却手段は、支持台に固定された固定部と、当該固定部に設けられる第1昇降部材と、この第1昇降部材に設けられるシリンダにより昇降される第2昇降部材と、該第2昇降部材に設けられるX、Yテーブルと、該X、Yテーブルの下部に設けられて冷却水を噴射する少なくとも1つのノズルと、このノズルに冷却水を供給する冷却水供給手段とを有することを特徴とする請求項9に記載のガラス基板の切断装置。

【請求項18】 前記切断されるガラス基板の上面に形成された反射膜を除去する反射膜除去手段をさらに有することを特徴とする請求項9に記載のガラス基板の切断装置

【請求項19】 前記反射膜除去手段は、ベースフレームに設けられ、レーザビームを発生させるNd:YAGレーザビーム発生部と、このNd:YAGレーザビーム発生部で発生されたレーザビームを前記レンズユニットにより照射されるレーザビームの前面にガイドする光ファイバとを有することを特徴とする請求項18に記載のガラス基板の切断装置。

【請求項20】 前記ヘッド部に設けられ、切断されるガラス基板の切断部に初期クラックを形成する初期クラック形成手段をさらに有することを特徴とする請求項9に記載のガラス基板の切断装置。

【請求項21】 前記ヘッド部に設けられたレンズユニットを正逆転させる回転手段をさらに有することを特徴とする請求項9に記載のガラス基板の切断装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非金属物質の切断方法及びその装置に係り、具体的には、レーザビームによる熱衝撃によりガラス基板を切断するガラス基板の切断方法及びその装置に関する。

[0002]

【従来の技術】画像表示装置の基板には、非金属物質であるガラス又はセラミックなどが用いられる。そして、従来より、この材質よりなる基板は、ダイアモンド鋸や熱衝撃を用いて切断されてきた。

【0003】前記熱衝撃により非金属物質であるガラス 基板を切断する方法が、米国特許5,609,284号 に開示されている。この方法は、ガラス基板の切断部位 を加熱した後に切断部位を急冷させることにより、切断 部位にマイクロクラックを発生させて切断する方法であ る。

【0004】このようなガラス基板の切断方法は、熱伝 導率が良くないガラスの特性を用いている。すなわち、 ガラス基板の切断される部位を短時間内に加熱し、加熱 された部位を急冷させることにより、これら部位におけ る熱膨張量の違いによるマイクロクラックを形成して切 断する方法である。前述のマイクロクラックの成長は、 熱衝撃による切断部位の内部の応力によって決定され る

【0005】この応力は、レーザビームによる加熱や冷却によりガラス基板の切断部の内部に生成される熱的引 張応力、切断しようとするガラス基板の膜厚、切断されるガラスの曲否、切断されるガラス基板の拘束状態など に関わる複合的な外部応力の組み合わせによって決定される

【0006】前記熱的引張応力は、ガラス基板を切断す 10 る主な応力となる。この熱的引張応力は、レーザビーム のパワー、レーザビームの焦点形状、焦点の各部位にお けるエネルギ密度分布、切断速度、冷却条件などにより 決定される。

【0007】これら変数の内、マイクロクラック発生の 15 応力を誘発するための温度勾配形成に最も影響するもの は熱応力であり、この熱応力に鑑みて、従来よりレーザ ビームの焦点における断面を変えることが提案されてい る

【0008】しかし、変形された従来のレーザビームに 20 おけるエネルギ密度は、ガウシアン型であるため、光学 系を通って加工面に達するレーザビームもガウシアン型 のエネルギ密度をもつことになる。

[0009]

【発明が解決しようとする課題】このガウシアン型エネ 25 ルギ密度をもつレーザビームの断面においては、進行方 向に対する先端部、中央部及び後端部の内、中央部のエ ネルギ密度が相対的に高いため、ガラス基板の切断部に 達する時、先端部から中央部に行くほど切断部の温度が 上がり、中央部から後端部に行くほど温度が下がる。

30 【0010】すなわち、ガラス基板の切断部における最高の加熱温度は、レーザビーム焦点の中央部に位置することになる。加熱されたガラス基板における切断部の強制冷却は、エネルギ密度が最高のレーザビーム中央部で加熱された後、エネルギ密度が低い後端部に至る間に自然冷却されることにより行われる。したがって、加熱と冷却による温度差は大にできない。

【0011】図14を参照すると、前述の現象が一層明らかになる。ここに、図14は従来のガウシアン型エネルギ密度を持つレーザビームを用いて切断される切断部の温度分布を示す図である。

【0012】図示されるように、レーザビーム焦点の長軸方向の中央部は、切断部の加熱時にエネルギ流入量が大であり、切断部の加熱温度も最高値に達することになる (グラフA)。そして長軸方向への両端部は、エネルギ密度が低いため、最高値の温度が相対的に極めて低い(グラフB)。したがって、レーザビーム焦点の長軸方向への温度勾配が極めて大である。

【0013】また、前述のガウシアン型エネルギ密度を もつレーザビームは、長軸方向中央部のエネルギ密度が 50 高いため、加熱時にエネルギ流入による最高値がレーザ ビーム焦点の中央部でなされ、温度が最高となる。これにより、エネルギ密度の低い後端部にレーザビームが移動しつつ、最高の温度に加熱された切断部の温度が自然 冷却されて下がる。

【0014】前記加熱された切断部の強制冷却は、レーザビーム焦点の後端部を通った直後になされるので、急冷による温度下がり(図14におけるS領域)を大にできない。

【0015】この急冷時の応力分布は、図15に示されている。ここに、図15は従来のガウシアン型エネルギ密度を持つレーザビームを用いて切断部を加熱した後に急冷させた時の応力分布を示す図である。

【0016】この図に示すように、強制冷却中に切断部で発生する応力の上昇幅(図15におけるC)が大でなく緩やかであるため、切断部のマイクロクラックの発生が円滑になされないという問題がある。

【0017】そして、レーザビームがガウシアン型エネルギ密度をもつ場合、レーザビームのエネルギ密度が局部的に高いため、レーザビーム発生部からのレーザビームの出力が制限される。

【0018】以上の問題を解決するため、レーザビームの中央部に孔をつけてレーザビームが進行した最終点で切断部の温度が最高値に達するようにした提案がなされている。

【0019】しかし、このレーザビームは、レーザビームの中央部からエネルギが供給できないため、相対的に切断部に照射されるレーザビームの照射時間が短くなり、切断速度を最大にできないという問題がある。

【0020】ガラス又はセラミック基板を切断するレーザとしては、CO2レーザが用いられる。ところが、一般に、画像表示装置に用いられる基板には、製造工程から、切断前にITOよりなる透明導電膜を先に形成することになっている。したがって、透明導電膜が形成された画像表示装置の基板を切断するときに前記CO2レーザを用いると、透明導電膜がCO2レーザのエネルギを吸収できず反射するため、熱衝撃によるガラス基板の切断が期待できないという問題もある。

【0021】本発明は上記した問題に鑑みてなされたものであり、その目的は、ガラス基板の切断部を加熱するためのレーザビームのエネルギ密度を各部位で均一にして加熱及び冷却による温度勾配を大きくし、切断部位に大きな熱衝撃を加えることができるガラス基板の切断方法及びその装置を提供することである。

【0022】本発明の他の目的は、ガラス基板の切断時に、ガラス基板の上面に形成された反射膜を除去した後に切断可能なガラス基板の切断方法及びその装置を提供することである。

[0023]

【課題を解決するための手段】前記目的を達成するため、本発明は、各部位におけるエネルギ密度が均一であ

り、切断方向にレーザビームのスポットが縦長形をなす レーザビームを照射してガラス基板の切断部を加熱する 加熱工程と、前記レーザビームの照射により加熱された 切断部を急冷させてマイクロクラックを形成する冷却工 程とを有することを特徴とする。

【0024】本発明において、前記切断部に照射される 縦長形のレーザビームは長方形又は楕円形であることが 好ましく、さらに、レーザビームの長軸方向の長さを短 縮方向のそれより15~25倍ほど長くすることが好ま 10 しい。また前記加熱工程において、ガラス基板の表面に コートされた反射膜を除去する反射膜除去工程をさらに 有していることが好ましい。さらに、前記加熱工程及び 冷却工程を少なくとも2回以上繰り返すことにより熱衝撃を与えることが好ましい。

【0025】前記目的を達成するためのガラス基板の切 15 断装置は、切断しようとするガラス基板が装着されるテ ーブルと、当該テーブルの上部に設けられるガラス基板 の切断部位を加熱するためのレーザビームを発生させる レーザビーム発生手段と、該レーザビーム発生手段で発 20 生されたレーザビームの集束及び加速のためのレンズユ ニットと、前記テーブルと隣接して設けられて切断部位 を急冷させるための冷却手段とを有するガラス基板の切 断装置であって、前記レンズユニットが、前記レーザビ ーム発生手段で発生されたレーザビームを平行ビームに 25 変える第1レンズ群と、前記第1レンズ群を通ったレー ザビームのエネルギ密度をレーザビームの各領域で均一 にし、レーザビームの断面をガラス基板の切断方向に縦 長形化させる第2レンズ群とを有することを特徴とす る。

【0026】前記目的を達成するため、本発明によるガ 30 ラス基板の切断装置の他の特徴は、ベースフレームと、 該ベースフレームに設けられ、切断されるガラス基板を 支持するテーブルをX軸方向に摺動自在に支持するとと もに、前記テーブルを所定角度にて正逆転自在な支持手 35 段と、前記ベースフレームに支持され、前記テーブルの 上部にテーブルの移送方向と直交する方向に設けられる クロスアームと、前記クロスアームに設けられたヘッド 移送手段によりクロスアームに沿って移送されるヘッド 部と、前記ペースフレーム又はクロスアームの一側に設 40 けられ、レーザビームを発生させるレーザビーム発生部 及び、前記レーザビーム発生部で発生されたレーザビー ムの焦点を縦長形化させ、焦点の各領域におけるエネル ギ密度を均一にし、前記ヘッド部に装着されたレンズユ ニットをもつ光学系を備えた加熱手段と、前記ヘッド部 45 に設けられて加熱手段により加熱されたガラス基板の切 断部を急冷させる冷却手段とを有することである。

【0027】本発明において、前記加熱手段及び冷却手段は、ガラス基板の切断部を繰り返して熱衝撃を与え得るようにそれぞれ複数個を設けることができるが、この 50 とき、前記レーザとしては、CO₂レーザ及びNd:Y AGレーザを用いることが好ましい。

[0028]

【発明の実施の形態】以下、本発明によるガラス基板の 切断方法の実施形態について説明する。

【0029】本実施形態に係るガラス基板の切断方法は、熱衝撃を用いてガラス基板の切断部に作用する引張応力によりガラス基板を切断する方法であって、レーザビーム発生部で発生されたレーザビームを光学系として用い、各部位で均一なエネルギ密度を有し、切断部位の切断方向に縦長形をなすようにするレーザビーム調整工程と、当該レーザビーム調整工程で調整されたレーザビームをガラス基板の切断部に照射してガラス基板を加熱する加熱工程と、該加熱工程で加熱されたガラス基板の切断部を急冷させてマイクロクラックを形成する冷却工程とを有している。

【0030】前記レーザビーム調整工程は、光学系のフライアイレンズを用いてこれを通るレーザビームのエネルギ密度を均一にすることができ、レーザビームの焦点を縦長形化させることができる。

【0031】そして、エネルギ密度が均一で縦長形化したレーザビームは、X軸及びY軸方向にレンズの倍率が異なるレンズを用いてその形状を可変できることは勿論である。ここで、縦長形をなすレーザビームの焦点は、長方形であることが好ましく、焦点の長軸を短軸のそれより15~25倍ほど長くすることが好ましい。

【0032】前記加熱工程は、レーザビーム調整工程で 焦点が縦長形に調整されたレーザビームを切断しようと する素材(ガラス基板)に照射して短時間内にガラス基 板の切断部位を加熱する工程である。

【0033】ガラス基板の切断部位の加熱は、縦長形化した複数のレーザビームを所定時間順次照射して加熱することもできる。この複数のレーザビームとしては、その焦点の各部位におけるレーザビームの密度をそれぞれ異ならしめ、最終的に加熱される各加熱部位が均一なエネルギに加熱できるようにすることが好ましい。

【0034】前記加熱工程において、切断される素材であるガラスの表面にITOなどの反射膜が形成された場合には、これをレーザビームにより除去する反射膜除去工程をさらに行っても良い。反射膜は、Nd:YAGレーザを反射膜に照射して除去することが好ましい。

【0035】前記冷却工程は、加熱された切断部位を急冷させる工程である。冷却工程により加熱部が急冷されると、熱衝撃、すなわち、表面及び内部の熱膨張量の違いによりマイクロクラックが形成されてガラス基板の切断部が切断される。この冷却工程は、加熱工程で複数のレーザビームを用いて加熱する場合、各レーザビームによる加熱後に冷却させることが好ましい。

【0036】ガラス基板を切断する方法は、切断部の加熱がレーザビーム焦点の各部位でエネルギ密度を均一にすることにより、各部位におけるエネルギ流入時間を同

ーにして切断部の加熱効率及び冷却による熱衝撃を大に できる。

【0037】本発明のガラス切断方法による効果は、次の実験により一層明らかになる。

05 【0038】 <u>実験例1</u>

この実験では、レーザビームの焦点が光学系により長方形をなすようにし、この長方形の焦点をもつレーザビームによりガラス基板の切断部が加熱された後、冷却部により冷却されるときの温度勾配及び応力分布を測定した。

10 た。

【0039】図1から明らかなように、レーザビーム焦点の両端部(焦点の短軸方向への両端部側)の加熱温度分布(グラフD)が中央部に比べ多数自然冷却される。そしてレーザビームによる切断部の加熱温度分布は、多少偏差があるが、レーザビームの端部を除いた各部位における加熱温度による温度偏差が大でないことが分かる(グラフE)。またレーザビームの前端部から中央部及び後端部への移動時に継続して加熱されることが分かる。

20 【0040】これを詳細に説明すると、レーザビームの エネルギ密度が一定であるため、レーザビームの移動に よる単位切断部におけるレーザビームの照射時間中にレ ーザビームの前端部、中央部及び後端部で均一なエネル ギが継続して流入することが分かる。また、エネルギ密 度の違いにより切断部が自然冷却されないことが分か る。

【0041】したがって、長方形であるレーザビームの 後端部で加熱された切断部の温度が最高値に達し、この 時点で、前記冷却部のノズルを介して供給される冷却媒 30 体により急冷されて温度が急激に下がる(図1における F区間)。

【0042】図2は、切断部の急激な冷却によりガラス 基板の切断部に加えられる応力の分布を示すものであ る。図2から明らかなように、切断部の加熱中に、切断 35 部の応力が次第に上がり(図2におけるG領域)、冷却 媒体により冷却される時点で応力が急に上がる(図2に おけるH領域)。

【0043】以上の結果から、レーザビームの焦点が長 方形である場合、切断部に大の熱衝撃を与えることがで 40 き、さらには、引張応力が大にできることが明らかであ ス

【0044】 実験例2

この実験では、光学系を用いてレーザビームの焦点形状を楕円形に形成し、この楕円形の焦点をもつレーザビー 45 ムによりガラス基板の切断部が加熱された後、冷却部により冷却されるときの温度勾配及び応力分布を測定した。

【0045】図3は、断面が縦長形の楕円形であるレーザビームのエネルギ密度が各部位で均一なレーザビーム 50 を用いて切断される切断部の温度分布を示す図である。 図3から明らかなように、温度分布は、前記第1実施形態と大差ないが、グラフIに示されるように、レーザビームの両端部におけるレーザビームの照射時間(レーザビームの移動によるエネルギ流入時間)が短く、これによりレーザビームの長手方向に中央部から切断部に照射されるレーザビームの照射時間中に僅かな自然冷却がおこった。

【0046】しかし、前述したレーザビームの焦点が長方形のときと同じく、レーザビーム焦点の長軸方向の端部を除いた各部位における加熱温度による温度勾配が大でなく(グラフJ)、レーザビームの前端部から中央部及び後端部への移動時に継続して加熱されることが分かる。

【0047】したがって、楕円形であるレーザビームの 後端部で加熱された切断部の温度が最高値に達する時点 で前記冷却部のノズルを介して供給される冷却媒体によ り急冷されて温度が急激に下がる(図3におけるK区 間)。

【0048】図4は、切断部の急激な冷却によりガラス 基板の切断部に加えられる応力の分布を示す図である。 図4から明らかなように、切断部の加熱中に切断部の応 力が次第に上がり(図4におけるし領域)、冷却媒体に より冷却される時点で応力が急に上がる(図4における M領域)。

【0049】図5は、前記方法を実施する本発明によるガラス基板の切断装置の一実施形態を示す斜視図である。図5に示されるように、ガラス基板の切断装置10は、ベースフレーム11と、当該ベースフレーム11に設けられ、切断される素材を支持するテーブル12をX軸方向に摺動自在に支持し、所定角度にて正逆転自在とする支持手段20と、前記ベースフレーム11の上部にテーブル12の移送方向と直交する方向に設けられるクロスアーム13と、当該クロスアーム13に招助自在に設けられたヘッド部40と、前記クロスアーム13に設けられ、ヘッド部40を移送させるヘッド移送手段50とを有している。

【0050】また、ガラス基板の切断装置10は、ベースフレーム11の一側に設けられるレーザビーム発生部81と、当該レーザビーム発生部81で発生されたレーザビームの焦点を縦長形化させるとともに、焦点の各部位でエネルギ密度を均一にするものであって、ヘッド部40に装着されたレンズユニット90を有する光学系を備えた加熱手段80と、前記ヘッド部40に設けられ、テーブル12に装着されたガラス基板の切断部を急冷させる冷却手段100(図6参照)とを有している。

【0051】ここに、図6は図5に示されたガラス基板の切断装置の正面図、図7は同切断装置の側面図である。前記支持手段20は、ベースフレーム11に設けられたテーブル12を正逆転させたりX軸方向に移送させるものであって、図6及び図7を参照すると、前記ベー

スフレーム11の上部に設けられるガイドレール21及 びリニアモータ22により支持されるベース部材23 と、該ベース部材23に回転自在に設けられる板部材2 4と、前記ベース部材23に対し板部材24を正逆転さ 05 せるステッピングモータ25とを有している。

【0052】前記板部材24は、ベース部材23に設けられたステッピングモータ25の回転軸に直接設けることもできる。板部材24の上部には、サポート26により所定間隔離隔されるようにテーブル12が設けられ、このテーブル12には、切断されるガラス基板200を

このテーブル12には、切断されるガラス基板200を 吸着できるように吸入圧及び吐出圧が選択的に提供され る複数個の支持孔12aが形成されている。

【0053】図8は図6に示されたテーブルのA-A線による断面図であるが、前記吸入圧及び吐出圧は、図815に示されるように分割されて支持孔12aに作用しうる。前記テーブル12の上面は、膨らみをもった曲面に形成され、ガラス基板200の装着に際し、切断部位の上面に引張力が加えられるようにすることが好ましい。

【0054】そして、前記板部材24は、テーブル12 20 により支持されるガラス基板200を昇降させる第1昇 降手段27を具備する。第1昇降手段27は、テーブル 12に形成された貫通孔12bから引入及び引出される ピン部材27aと、該ピン部材27aを昇降させる第1 昇降シリンダ27bとを有している。

5 【0055】ここで、前記ベースフレーム11に対する ベース部材23の移送は、リニアモータに限定されるも のではなく、ボールスクリュー、油圧シリンダなどにより移送可能である。

【0056】図9はヘッド部を抜悴して示す斜視図である。前記ヘッド部40は、クロスアーム13に設けられ、テーブル12の移送方向と直交するY軸方向にヘッド移送手段50により移送されるものであって、図9に示されるように、本体部41と、この本体部41から下方に延在される支持台42とを有している。

35 【0057】支持台42には、第2昇降手段60により 昇降されるレンズユニット90が設けられ、このレンズ ユニットは、別途の回転手段(図示せず)によりて軸を 中心に回転される。かかる回転は、レンズユニットに設 けられたウォームホイール及び支持台に設けられモータ 40 により正逆回転されるウォームにより行われうる。

【0058】前記ヘッド移送手段50は、クロスアーム 13の内部に長手方向に設けられる前記本体部41をガ イドする1対のガイドレール51、52と、一側のガイ ドレール51と平行する方向に設けられて前記本体部4 1を移送させるリニアモータ53とを有している。

【0059】前記第2昇降手段60は、図9に示されるように、レンズユニット90を支持台42の長手方向である2軸方向に昇降させるものであって、支持台41の長手方向に設けられる1対のガイドレール61、62

50 と、これらガイドレール61、62に沿って移送される

レンズユニット支持部材63と、ガイドレール61、62と平行する方向に設けられて支持部材63の一側と螺合され、モータ64により正逆転されるボールスクリュー65とを有している。

【0060】前記第2昇降手段は、前述の実施形態に限定されるものではなく、レンズユニットを昇降できる構造ならばどのような構造も採用可能である。

【0061】図10は加熱手段を概略的に示す側面図、図11はレンズユニットを概略的に示す斜視図であるが、加熱手段80は、図5及び図10に示されるように、レーザビーム発生部81と、前記ヘッド部40に設けられたレンズユニット90と、前記レーザビーム発生部81とレンズユニット90との間に位置づけられ、レーザビーム発生部81で発生されたレーザビームがレンズユニット90に照射されるようにする複数個のミラー83、84、85、86と、このような光経路上に設けられたエキスペンダー部87とを有している。前記レーザビーム発生部81は、固体又は気体を用いてレーザを発生できる装置ならばどのようなものでもよいが、特にCO、レーザが好ましい。

【0062】前記レンズユニット90は、支持台42 (図9参照)に設けられ、前記ベースフレーム11に設けられたレーザ発生部81で発生されたレーザビームをヘッド部40に装着されたレンズ群に流入できるようにレーザビームの経路を可変させると共に、レーザビームスポットを切断方向に縦長形化させ、スポットの各部位におけるエネルギ密度を均一にするものであって、その実施形態を図10及び図11に示す。

【0063】レンズユニット90は、鏡筒90aと、この鏡筒90aに設けられる複数個のレンズとを有している。前記レンズは、レーザビームの直径を可変させるとともに、物点を可変させる第1レンズ群91と、この第1レンズ群91を通ったレーザビームを平行にするための第2レンズ92とを有している。

【0064】第2レンズ92は、フライアイレンズを用いることが好ましい。そして、この第2レンズ92を通りながら平行化したレーザビームに所定のレーザビーム 焦点を持たせる第3レンズ93を有している。

【0065】第3レンズ93は、Y軸方向の曲率半径をX軸方向の曲率半径より大きくしてレーザビームをガラス基板の切断方向に縦長形化させることが好ましい。ここで、第2及び第3レンズ92、93は1つのレンズよりなるが、負のパワーを持つレンズと正のパワーをもつレンズとを組み合わせて構成しても良い。

【0066】また、図示していないが、前記レンズを支持する鏡筒を分割して相互摺動自在に結合し、この鏡筒を相対移動させる駆動部を設けることにより、レンズ群間の距離が可変できる。前記駆動部は、鏡筒の外周面、又は昇降部材に受光案子及び発光素子を設けてフォーカシング状態を自動で調節できる。

【0067】図12は冷却手段の斜視図であるが、この冷却手段100は、ヘッド部40の支持台42(図9参照)に設けられ、レーザビームにより加熱されたガラス基板200の切断部を急冷させるものである。

 【0068】この冷却手段100は、図9及び図12を 参照すると、支持台42に固定された固定部101と、 該固定部101に設けられる第1昇降部材102と、こ の第1昇降部材102に設けられるシリンダ103によ り昇降される第2昇降部材104と、前記第2昇降部材 104に設けられるX、Yテーブル105と、該X、Y テーブル105の下部に設けられ、冷却媒体を噴射する 少なくとも1つのノズル106とを有している。

【0069】このノズル106を介して噴射される冷却 媒体としては、ヘリウムガス、窒素、CO₂ガス又は空 気に乗って噴射される水が用いられる。冷却媒体は、別 途の冷却媒体供給手段により供給されるが、これは通常 前記ノズル106及び供給管に連結され、冷却媒体であ るヘリウム、窒素またはCO₂ガスが充填されたガスタ ンクと、前記供給管の一側に設けられて供給管を通って 供給される冷却媒体を冷却させるための熱交換部と、前 記熱交換部とノズルとの間に設けられて冷却媒体の供給 を断続する弁とを有している。

【0070】前記熱交換部は、供給管を冷却させてこれを通る冷却媒体を冷却させるものであって、供給管の冷 25 却のペルチェ効果(Peltier effect)を 用いたペルチェ索子を用いることが好ましい。前記熱交 換部における供給管の冷却は前記実施形態により限定さ れるものではなく、供給管を冷却できる構成ならば、ど のようなものでもよい。

30 【0071】前述のように構成されたガラス基板の切断 装置は、切断しようとするガラス基板の上面に反射膜が 形成されている場合、これを除去するための反射膜除去 手段をさらに有することも可能であるが、図5に示され るように、反射膜除去手段110は、ベースフレームに 設けられるNd:YAGレーザビーム発生部111で発生され たレーザビームを前記レンズユニットにより照射される レーザビームの前面にガイドする光ファイバ112とを 有している。前記光ファイバ112の出口側には別のレ

【0072】前記ヘッド部40には、テーブルに装着されて切断されるガラス基板に初期クラックを形成するためのクラック形成部をさらに有している。

40 ンズ群をさらに有することも可能である。

【0073】該クラック形成部120(図6及び図7参45 照)は、支持台に固定されたアクチュエータ(図示せず)及びこのアクチュエータにより昇降されるチップ(図示せず)を有している。この初期クラック形成部は、前述の実施形態に限定されるものではなく、切断されるガラス基板に初期クラックを形成できる構造なら50 ば、どのようなものであってもよい。

【0074】前記のように構成された切断装置は、これを制御するための制御手段(図示せず)をさらに有しているが、この制御手段は、クロスアームの下部に設けられ、切断されるガラス基板を位置合わせするためのカメラ130(図5参照)及び入力された情報に基づき前記各駆動部を制御するデータプロセッサをさらに有している。そして前記テーブル12の前後又は側面にガラス基板を間歇的に移送して供給するコンベヤが設置でき、切断されたガラス基板をローディング及びアンローディングさせるためのマニピュレータをさらに有している。

【0075】次に、前述のように構成されたガラス基板の切断装置の作用について具体的に説明する。

【0076】本実施形態によるガラス基板の切断装置を用いてガラス基板200を切断するには、テーブル12の上面に切断しようとするガラス基板200を載置する。この状態で、テーブル12の支持孔12aに真空圧が加えられるようにして、ガラス基板200を吸着する。

【0077】このとき、前記テーブル12の上面は、膨 らみをもった曲面から形成されているため、前記ガラス 基板200は、テーブル12の上面に沿って曲がり、こ れにより切断部位に引張力が加えられる。

【0078】この状態で、前記制御手段のカメラ130を用いて基板の装着状態を確認し、ずれた場合には、支持手段20のステッピングモータ25を駆動させてテーブルを正回転または逆転させることにより、ガラス基板200の整列状態を調整する。

【0079】前記のように、ガラス基板200の固定が完了すると、カメラ130を用いてガラス基板200の装着状態を撮影した後、この映像信号に基づきテーブル12を移送させる支持手段20及びヘッダ部40を移送させるヘッド移送手段50と、レンズユニットを昇降させる第2昇降手段50とを用いてガラス基板200の切断部位がレンズユニット90の垂直下部に位置するようにする。

【0080】このようにして整列が完了すると、クラック形成部120のアクチュエータを下降させ、この端部に設けられたチップにより切断部位に初期クラックを形成する。ガラス基板の切断部に初期クラックが形成されると、レーザビーム発生部81で発生されたレーザビームは、前記レンズユニット90の第1ンズ群91を通りながら平行ビームに変えられる。

【0081】このように平行ビームに変換されたレーザビームは、第2レンズ群92であるフライアイレンズを通りながらレーザビームの各部位で均一なエネルギ密度を有することになる。

【0082】さらに、出射側面の曲率が非対称であるフライアイレンズの単位レンズ92を通りながら焦点が、各部位でエネルギ密度が同一の長方形又は楕円形にされる。このようにして縦長形化されたレーザビームは、

X、Y軸方向への曲率が異なる第3レンズ93を通りながらレーザビームの長軸方向の長さが短軸方向の長さの15~25倍となるように調整される。

【0083】切断部にレーザビームが照射されると、へ 5 ッド移送手段50によりヘッド部40はクロスアーム13に沿ってY方向に移送され、テーブルは支持手段のリニアモータ22によりX方向に移送されながら、断面の変わったレーザビームがガラス基板に照射されて切断部を加熱する。

0 【0084】切断部の加熱は、レーザビームの焦点の各部位におけるエネルギ密度が均一であるため、切断部の各部位を短時間内に加熱でき、加熱部位の温度勾配が小さくできるほか、切断部の端部の自然冷却を減らすことができる。

15 【0085】以上のように、ヘッド部が移送されながら、レンズ群から照射されるレーザビームにより切断部が加熱されると、ヘッド部に設けられた冷却手段100のノズル106から噴射されるヘリウム、窒素ガスまたは空気に乗った水により切断部が急冷される。冷却手段20による切断部の急冷により切断部位に熱衝撃が加えられ、これによりマイクロクラックが形成される。

【0086】一方、ガラス基板の上面に反射膜202が 形成されている場合には、Nd:YAGレーザを用いて 反射膜202を先に除去する(図13参照)。

25 【0087】このように、熱衝撃によりガラス基板の切断部に形成されたマイクロクラックは、曲面から形成されたテーブルの上面又は支持孔12aによる吸着力の違いによりガラス基板の切断部に引張力が加えられ、成長することになり、終には当該ガラス基板の切断部は、切30 断されることになる。

【0088】ガラス基板の切断が完了すると、テーブル 12及びヘッド部40が最初の位置に戻るとともに、テ ーブル12の支持孔に加えられた真空圧は解放され、シ リンダ27bによりピン部材27aが貫通孔12bを貫 35 通して突き出されることにより、切断されたガラス基板 を上昇させる。この上昇されたガラス基板は、別途のマ ニピュレータによりアンローディングされる。

【0089】以上、本発明を、図面に示す実施の形態に基づいて説明したが、これは単なる例示的なものに過ぎず、本技術分野の通常の知識を有する者ならば、これより様々な変形及び均等な他の実施例が可能なことは自明である。よって、本発明の真の技術的な保護範囲は、添付された請求範囲の技術的な思想により定まるべきである。

45 [0090]

【発明の効果】以上述べたように、本発明によるガラス 基板の切断方法及びその装置によると、レーザビームに よる切断部の加熱維持時間中に自然冷却を最小化して冷 却時に熱衝撃を大にすることにより、マイクロクラック の生成が活性化でき、切断速度を速めて生産性の向上を 図ることができる。

【図面の簡単な説明】

【図1】 本発明によるレーザビームの断面が長方形であり、エネルギ密度が各部位で均一なレーザビームを用いて切断される切断部の温度分布を示す図である。

【図2】 本発明によるレーザビームの断面が長方形であり、エネルギ密度が各部位で均一なレーザビームを用いて切断される切断部を加熱した後に急冷させた時の応力分布を示す図である。

【図3】 本発明によるレーザビームの断面が縦長形の 精円形であり、エネルギ密度が各部位で均一なレーザビ ームを用いて切断される切断部の温度分布を示す図であ る。

【図4】 本発明によるレーザビームの断面が楕円形であり、エネルギ密度が各部位で均一なレーザビームを用いて切断される切断部を加熱した後に急冷させた時の応力分布を示す図である。

【図5】 本発明によるガラス基板の切断装置の斜視図である。

【図6】 図7に示されたガラス基板の切断装置の正面図である。

【図7】 図7に示されたガラス基板の切断装置の側面 図である。

【図8】 図8に示されたテーブルのA-A線による断面図である。

【図9】 ヘッド部を抜悴して示す斜視図である。

【図10】 加熱手段を概略的に示す側面図である。

【図11】 レンズユニットを概略的に示す斜視図である。

【図12】 冷却手段の斜視図である。

【図13】 ガラス基板を切断する状態を概略的に示す 斜視図である。

【図14】 従来のガウシアン型エネルギ密度を持つレーザビームを用いて切断される切断部の温度分布を示す 図である。

【図15】 従来のガウシアン型エネルギ密度を持つレーザビームを用いて切断部を加熱した後に急冷させた時の応力分布を示す図である。

【図8】

【符号の説明】

10…ガラス基板切断装置、

11…ペースフレーム、

12…テーブル、

05 12a…貫通孔、

13…クロスアーム、

20…支持手段、

22…リニアモータ、

23…ベース部材、

10 24…板部材、

25…ステッピングモータ、

26…サポート、

27…昇降手段、

27a…ピン部材、

15 27b…シリンダ、

40…ヘッド部、

4 1 …本体部、

4 2…支持台、

50…ヘッド移送手段、

20 53…リニアモータ、

60…第2昇降手段、

61、62…ガイドレール、

80…加熱手段、

90…レンズユニット、

25 91…第1レンズ群、

92…第2レンズ群、

9 3…第3 レンズ、

100…冷却手段、

101…固定部、

30 102…第1昇降部材、

103…シリンダ、

104…第2昇降部材、

105…X、Yテーブル、

106…ノズル、

35 111…レーザビーム発生部、

112…光ファイバ、

200…ガラス基板、

202…反射膜。

【図13】

【図10】

25

フロントページの続き

(31) 優先権主張番号 99 P 3 3 7 4

平成11年2月2日(1999. 2. 2) (32)優先日

(33)優先権主張国 韓国(KR)

(31)優先権主張番号 99P3375

(32)優先日

平成11年2月2日(1999. 2. 2)

韓国(KR) (33)優先権主張国

(72) 発明者 金 振 圭

大韓民国京畿道水原市八達区▲しん▼洞

575番地 三星エスディアイ株式会社内

(72)発明者 盧 ▲てつ▼ 来

大韓民国京畿道水原市八達区▲しん▼洞

575番地 三星エスディアイ株式会社内

30 (72)発明者 金 光 一

大韓民国京畿道水原市八達区▲しん▼洞 575番地 三星エスディアイ株式会社内