CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes

- NP-Completeness Via Reductions
 - Examples: kSAT

- o kSAT
 - Satisifiability problem, where input instances are in CNF with exactly k distinct literals in clause.
- 2SAT is kSAT for k=2
- 2SAT can be solved in polynomial time.

4/25/2015

2SAT IS IN ₽

- Exercise: Reduce 2SAT to a problem on directed graphs that is efficiently solvable:
 - 1. Note that L1 | L2 is equivalent to !L1 --> L2.
 - Given a formula F in 2CNF, construct a directed graphG:
 - add vertices labeled x and !x for each variable x occurring in the formula.
 - 2. add an edge from L1 to L2 if L1 --> L2 is a clause in F
 - 3. Argue that:

there is a path in G from x to !x for some variable x
iff

F is not satisfiable.

PROBLEMS: 2SAT vs. HORN-SAT

- 2SAT can be solved in polynomial time.
- Exercise:
 - 1. Can you reduce 2SAT to HORN-SAT?
 - HORN-SAT is satisfiability of Horn formulas.
 - A Horn formula is a conjunction of Horn clauses and
 - a Horn clause is of the form x --> y (i.e. !x | y)

[Note that HORN-SAT is solvable in polynomial time.

Refer to *Huth & Ryan: Logic in CS* for an algorithm for HORN-SAT.]

PROBLEM: 3SAT

- 3CNF-SAT (which is commonly referred to as 3SAT):
 - Given a Boolean expression in CNF with *exactly 3* distinct literals in each clause,
 - find whether there is an input assignment such that the expression is satisfied.
- Solving 3SAT:
 - There is no known polynomial time algorithm to solve 3SAT.

25/2015 S

3SAT IS N₽-COMPLETE

- o 3SAT is №-complete
 - 3SAT is in №
 - o Proof: Trivial
 - 3SAT is NP-hard
 - o Proof: CNF-SAT ≾ 3SAT
 - o Reduction:
 - Map each clause in the CNF expression to one or more 3-literal clauses.
 - (see next slide for the mapping)

CNF-SAT ≾ 3SAT

Mapping M: Let the input formula F be the conjunction AND_i C_i

Then for each i:

- case C_i is L: Replace C_i with
 (L | p | q) & (L | !p | q) & (L | p | !q) & (L | ! | !q)
- 2. case C_i is $L_1 \mid L_2$: Replace C_i with $(L_1 \mid L_2 \mid p) & (L_1 \mid L_2 \mid !p)$
- p and q are new case $\mathbf{C_i}$ is $\mathbf{L_1} \mid \mathbf{L_2} \mid \mathbf{L_3}$: Replace $\mathbf{C_i}$ with $\mathbf{C_i}$ variables introduced.
- 4. case C_i is $L_1|L_2|L_3|L_4$: Replace C_i with $(p \mid L_3 \mid L_4)$ & $(!p \mid L_1 \mid L_2)$ & $(p \mid !L_1)$ & $(p \mid !L_2)$ and recursively handle the last two clauses.
- 1. case C_i is $L_1 \mid ... \mid L_k$ (k>4): Replace C_i with (p | $L_3 \mid L_4 \mid ... \mid L_k$) & (!p | $L_1 \mid L_2$) & (p | ! L_1) & (p| ! L_2) and recursively handle the first clause and the last two clauses.

o Note:

• The last three clauses in the replaced expression for the fourth case correspond to $(p < --> (L_1 \mid L_2))$.

- Claim (about the mapping M described in the previous slide):
 - M is a polynomial time algorithm that
 - o given an input F outputs F' in 3CNF such that
 - oF' is satisfiable iff F is satisfiable and
 - othe size of F' is a polynomial function of the size of F.

• Exercises:

- Implement the algorithm M.
- Derive the time complexity of M.
- Estimate the size of the output of M as a function of the size of its input.

KSAT IS №P-COMPLETE

- Exercise:
 - Prove that kSAT is NP-complete