

/ Numerical Encoding

/ Numerical features are:

Discrete numbers (aka ordinal features)

Example: Age of the person.

- Continuous numbers
 - Example: Height of the person.
 - Example: Weight of the person.

A) Scaling

- Min-max scaling <u>MinMaxScaler()</u>
- Max-abs scaling MaxAbsScaler()
- Standard scaling <u>StandardScaler()</u>
- Robust scaling <u>RobustScaler()</u>

B) Normalization

- Manually
 - Logarithm np.log(1+x)
 - Square root <u>np.sqrt</u>(x+2/3)
- PowerTransformer()
 - Box-Cox
 - Yeo-Johnson
- QuantileTransformer()
 - o (aka GaussRank)

C) Create groups

- Binarize data <u>Binarizer()</u>
 - Set feature values to 0 or 1 according to a threshold.
- Create bins <u>KBinsDiscretizer()</u>
 - Bin continuous data into intervals.

D) Create more features

- PolynomialFeatures()
 - Generate polynomial and interaction features.

This is useful for linear models only

/ A) Scaling

Transforming your data so that it fits within a specific scale, like 0-100 or 0-1.

/ B) Normalization

Changing the shape of the distribution to a Normal distribution ("bell curve")

Normal distribution (aka Gaussian distribution)

Other types of distributions

- / A number to determine the asymmetry of the distribution.
- / Normal distribution have skewness = 0

pandas.kurt()

/ from Greek: κυρτός meaning "curved, arching" is a measure of the "tailedness" of the distribution.

/ Normal distribution have kurtosis = 0

/ Preprocessing of numerical feats

The rule of thumb is:

- Tree models: Does not need anything
- Other models: Scaling or Normalization

Kaggle example

/ Q&A

What are your doubts?

