Bewijs	*	Pagina	Belangrijkheid
Hoofdstuk 1	•	,	
$\forall s \in S : s \in f^{-1}(f(S)).$	*	9	1
Samenstelling functies associatief	*	12	1
Elke functie heeft hoogstends 1 invers	*	13	1
Hoofdstuk 2			
Somprincipe	**	22	2
Injecties Tellen	*	25	1
Identiteit van Pascal	***	27	3
Herhalingscombinaties	*	28	1
Binomium van Newton	**	29	2
(2n n)	*	29	1
Inclusie en exclusie	**	31	2
Hoofdstuk 3			
Symmetrische en neutrale elementen zijn uniek (ring)	*	41	1
Welorde: a <= b dan -b <= a	*	43	1
Principe van bewijs per inductie	**	44	2
Quotient en rest	*	44	1
r en q zijn uniek	*	45	1
$d \mid n \wedge c \mid \frac{n}{d} \Rightarrow c \mid n \wedge d \mid \frac{n}{c}$			1
$d \rightarrow c + n \wedge a + c$	*	46	_
d en d'	*	47	1
a = bq + r. Dan is $ggd(a, b) = ggd(b, r)$	*	47	1
Bézout	***	48	3
a & rel. priem dan g = ma + nb	*	49	1
Eigenschap 12	*	49	1
Elk natuurlijk getal > 1 heeft ontbinding in priem	*	49	1
Stelling 16	*	50	1
Stelling 17	*	51	1
$m^2 != 2n^2$	*	51	1
Oneindig veel priemgetallen	**	52	2
Lemma 1	*	52	1
ggd(m, n) * kgv(m, n) = mn	*	53	1
Gevolg 5	*	53	1
$\forall n \in \mathbb{N}_0 : \sum_{d n} \varphi(d) = n.$			
d n	*	55	1
$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right)$			
	*	55	1
equivalentierelatie => partitie	**	57	2
modulo is een equivalentierelatie	*	58	1
modulo is compatibel met +	*	58	1
De 9 proef	**	58	2
(Z, +, .) is een commutatieve ring met eenheid (TODO)	*	60	1
Als inverteerbaar, dan invers uniek	*	61	1
Chinese resttelling	***	63	4
Hoofdstuk 4			

Handshakeprincipe	***	78	3	
even aantal toppen met oneven graad	**	78	2	
$d: V(\mathcal{G}) \times V(\mathcal{G}) \longrightarrow \mathbb{N} \cup \{\infty\} \colon (u, v) \longmapsto d(u, v)$	*	79	1	
Euler	***	81	3	
Hamilton: Toppen weglaten	**	83	2	
Dirac	***	83	3	
Stelling 33	*	85	1	
Een toernooi heeft een gericht hamiltonpad	*	86	1	
Toernooi heeft gericht hamiltoncyclus als samenhangend	*	86	1	
Boom: minimaal samenhangen & geen cyclus	**	89	2	
Boom op n >= 2 toppen heeft twee bladeren	**	90	2	
Een boom met n toppen heeft n-1 bogen	**	90	2	
n toppen, k samenhangc. Heeft n-k bogen	*	91	1	
Cayley	***	91	3	
Het aantal gewortlde genummerde bos op n top is (n+1)^n-1	*	92	1	
Lemma 6	*	93	1	
gierigheids algoritme	***	94	3	
Kirchhoff	***	95	3	
Stelling 41	*	96	1	
Stelling 42	**	97	2	
bipartiet als geen cyclus van oneven lengte	**	98	2	
driehoeksgraf	*	99	1	
Turan	**	99	2	
Petersen	***	102	3	
P Hall	***	104	3	
König-Egerváry	***	107	3	
v- e + f = 2 (Euler 2)	***	108	3	
Stelling 53	*	109	1	
Samenh. Ong. Plan. Graf heeft een top van gr <= 5	**	109	2	
Samenh. Ong. Plan. Graf kan met 5 kleuren gekleurd wrdn	*	114	1	
Hoofdstuk 6				
Oplossing rec. verg. Vorm an = r^n ao	*	138	1	