Exercise of Chapter 1

Written by Hsin-Jung, Wu.

My mail is hsinjungwu@gmail.com

- 1. For each of the following sets S, find $\sup(S)$ and $\inf(S)$ if they exist:
 - (a) $\{x \in \mathbb{R} \mid x^2 < 5\}$ Solution: $\sup(S) = \sqrt{5}$; $\inf(S) = -\sqrt{5}$.
 - (b) $\{x \in \mathbb{R} \mid x^2 > 7\}$ Solution: Neither $\sup(S)$ nor $\inf(S)$ exist.
 - (c) $\{1/n \mid n, \text{ an integer }, n > 0\}$ Solution: $\sup(S) = 1; \inf(S) = 0.$
 - (d) $\{-1/n \mid n, \text{ an integer }, n > 0\}$ Solution: $\sup(S) = 0$; $\inf(S) = -1$.
 - (e) $\{.3, .33, .333, ...\}$ Solution: $\sup(S) = 1/3$; $\inf(S) = 0.3$.

The proof is easy, so I omit it.

2. Review the proof that $\sqrt{2}$ is irrational. Generalize this to \sqrt{k} for k a positive integer that is not a perfect square. Solution: The proof that $\sqrt{2}$ is irrational is easy, so I omit it. Let $k = \prod_{i=1}^n p_i^{m_i}$, where p_i is prime, m_i is positive integer for all i. Since k is not a perfect square, there exists some m_i which is odd. May assume m_1 is odd. If \sqrt{k} is rational, say $\sqrt{k} = \frac{r}{q}$, where integers r, q are relative prime. So $k = \frac{r^2}{q^2}$, i.e. $kq^2 = r^2$. Then $p_1 \mid r^2$, we have $p_1 \mid r$. We know $p_1^{m_1} \mid r^2$, but m_1 is odd, thus we must have $p_1 \mid q^2$. So $p_1 \mid q$. Hence $\gcd(p,q) > 1$, then we have a contradiction. \square

- 3. (a) Let $x \ge 0$ be a real number for any $\varepsilon > 0$, $x \le \varepsilon$. Show that x = 0Solution: If x > 0, choose $\varepsilon = \frac{x}{2}$, so $x \le \frac{x}{2}$. Thus $\frac{x}{2} \le 0$, then $x \le 0$. Hence we get a contradiction. Then x must be 0.
 - (b) Let x =]0,1[. Show that for any $\varepsilon > 0$ there exists an $x \in S$ such that $x < \varepsilon$.

Solution: If $\varepsilon \geq 1$, choose $x = \frac{1}{2}$. If $1 > \varepsilon > 0$, choose $x = \frac{\varepsilon}{2}$ then $x \in S$ and $x < \varepsilon$.

4. Show that $d = \inf(S)$ iff d is a lower bound for S and for any $\varepsilon > 0$ there is an $x \in S$ such that $d \ge x - \varepsilon$.

Solution: It is trivial that d is a lower bound of S. Choose $x = d + \frac{\varepsilon}{2}$, then $x - \varepsilon = d - \frac{\varepsilon}{2} \le d$.

On the other side, assume d' is another lower bound and d' > d. Choose $\varepsilon = \frac{d'-d}{2}$, there is an $x = d + \varepsilon \in S$. But $x = d + \varepsilon = \frac{d'+d}{2} < d'$, then we have a contradiction. then d is $\inf(S)$.

5. Let x_n be a monotone increasing sequence bounded above and consider the set $S = \{x_1, x_2, \dots\}$. Show that x_n converges to $\sup(S)$. Make a similar statement for decreasing sequences.

Solution: Let $\sup(S) = x$, so for all $\varepsilon > 0$, there is an x_N such that $x_N > x - \varepsilon$, and it's easy to see that $x + \varepsilon > x \ge x_n$ for all n. Thus $x + \varepsilon > x_n \ge x_N > x - \varepsilon$ whenever $n \ge N$. Hence $|x_n - x| < \varepsilon$, so x_n converges to $x = \sup(S)$. Let y_n be a monotone decreasing sequence bounded below and consider the set $S = \{y_1, y_2, \dots\}, y_n$ converges to $\inf(S)$.

6. Let A and B be two nonempty sets of real numbers with the property that $x \leq y$ for all $x \in A$, $y \in B$. Show that there exists a number $c \in \mathbb{R}$ such that $x \leq c \leq y$ for all $x \in A$, $y \in B$. Give a counterexample to this statement

for rational numbers (it is, in fact, equivalent to the completeness axiom and is the basis for another way of formulating the completeness axiom known as **Dedekind cuts**).

Solution: Choose $c=\frac{\sup(A)+\inf(B)}{2}$. Claim $\sup(A)\leq\inf(B)$. Let $a=\sup(A)$, $b=\inf(B)$ Suppose not, choose $\varepsilon=a-b>0$. So there is a $y< b+\varepsilon=a< x$, so we have a contradiction. Then $a\leq b$, hence $x\leq a\leq c\leq b\leq y$.

Choose $A = \{x \mid x < \pi\}, B = \{y \mid y > \pi\}$ and there is no $c \in \mathbb{Q}$ satisfied this property.

7. For nonempty set $A, B \subset \mathbb{R}$, let $A + B = \{x + y \mid x \in A \text{ and } y \in B \text{. Show that } \sup(A + B) = \sup(A) + \sup(B).$

Solution: Let $\sup(A) = a$, $\sup(B) = b$. Since x < a and y < b, we have x + y < a + b. Then a + b is an upper bound of A + B, thus $\sup(A + B) \le \sup(A) + \sup(B)$.

For all $\varepsilon > 0$, $a - \varepsilon < x$ and $b - \varepsilon < y$. Then $a + b - 2\varepsilon < x + y < \sup(A + B)$. Since ε is arbitrary, $a + b \le \sup(A + B)$. Thus we get the conclusion.

- 8. For nonempty sets $A, B \subset \mathbb{R}$ determine which of the following statements are true. Prove the true statements and give a counterexample for those that are false:
 - (a) $\sup(A \cap B) \le \inf\{\sup(A), \sup(B)\}\$

Solution: True.

For all $x \in A \cap B$, $x \le \sup(A)$ and $\sup(B)$, then $x \le \inf(\sup(A), \sup(B))$. So $\sup(A \cap B) \le \inf(\sup(A), \sup(B))$.

(b) $\sup(A \cap B) = \inf\{\sup(A), \sup(B)\}\$

Solution: False.

Let A = (0,1), B = (1,2). $A \cap B = \emptyset$. So $\sup(A \cap B)$ is infinite, $\inf(\sup(A), \sup(B)) = 1$.

- (c) $\sup(A \bigcup B) \ge \sup\{\sup(A), \sup(B)\}$ Solution: True. It is trivial that $\sup(A) \le \sup(A \bigcup B)$.
- (d) $\sup(A \bigcup B) = \sup\{\sup(A), \sup(B)\}$ Solution: True.

For all $x \in A \bigcup B$, $x \leq \sup(A)$ or $x \leq \sup(B)$. Then $\sup(\sup(A), \sup(B))$ is an upper bound of $A \bigcup B$, so $\sup(A \bigcup B) \leq \sup(\sup(A), \sup(B))$. By (c) we have the conclusion $\sup(A \bigcup B) = \sup(\sup(A), \sup(B))$. Then we complete the proof.

9. Let x_n be a bounded sequence of real numbers and $y_n = (-1)^n x_n$. Show that $\limsup y_n \le \limsup |x_n|$. Need we have equality? Make up a similar inequality for \liminf .

Solution: Since $y_n \leq |y_n| = |x_n|$, we can use the following theorem:

If $a_n \leq b_n$ for each $n = 1, 2, \ldots$ Then we have

$$\limsup(a_n) \le \limsup(b_n)$$

$$\lim\inf(a_n)\leq \lim\inf(b_n)$$

Proof of the Thm:

It is easy to see that $\sup\{a_{n+1}, a_{n+2}, \dots\} \leq \sup\{b_{n+1}, b_{n+2}, \dots\}$, then $\lim \sup(a_n) = \inf\{\sup\{a_{n+1}, a_{n+2}, \dots\} \mid n = 1, 2, \dots\}$ $\leq \inf\{\sup\{b_{n+1}, b_{n+2}, \dots\} \mid n = 1, 2, \dots\}$ $= \lim \sup(b_n).$ Similarly, $\inf\{a_{n+1}, a_{n+2}, \dots\} \leq \inf\{b_{n+1}, b_{n+2}, \dots\}$. Then $\lim \inf(a_n) = \sup\{\inf\{a_{n+1}, a_{n+2}, \dots\} \mid n = 1, 2, \dots\}$ $\leq \sup\{\inf\{b_{n+1}, b_{n+2}, \dots\} \mid n = 1, 2, \dots\}$ $= \lim \inf(b_n).$

Equality need not old, let $x_n = (-1)^{n+1}$. Then $\limsup y_n = -1$, $\limsup |x_n| = 1$. $\lim \inf |y_n| < \lim \inf |x_n|$.

10. Verify that the bounded metric in Example 1.7.2d is indeed a metric.

Solution: It is easy to check positivity, nondegeneracy and symmetry. Given positive numbers a, b, c with $c \le a + b$. Since $c \le a + b + abc + 2ab$, so $abc + ac + bc + c \le abc + ac + bc + a + b + abc + 2ab$. Then

$$c(1+a)(1+b) \le a + ab + ac + abc + b + ab + bc + abc$$
$$= a(1+b)(1+c) + b(1+a)(1+c).$$

Hence

$$\frac{c}{1+c} \le \frac{a}{1+a} + \frac{b}{1+b}.$$

So we have

$$\rho(x,z) + \rho(z,y) = \frac{d(x,z)}{1 + d(x,z)} + \frac{d(z,y)}{[1 + d(z,y)]}$$

$$\geq \frac{d(x,y)}{1 + d(x,y)}$$

$$= \rho(x,y)$$

if we put d(x,z) = a, d(z,y) = b, d(x,y) = c.

11. Show that **i** and **ii** of Theorem **1.3.4** both imply the completeness axiom for an ordered field.

Solution: Let x_n be an increasing sequence bounded above and consider the set $S = \{x_1, x_2, \dots\}$. Thus by **i** we have S has a least upper bound sup(S). By exercise (5), x_n converges to sup(S). So **i** implies the completeness. Similarly way to do **ii** implies the completeness.

12. In an inner product space show that

(a)
$$2 \| x \|^2 + 2 \| y \|^2 = \| x + y \|^2 + \| x - y \|^2$$
 (parallelogram law).

Solution:

$$\| x + y \|^{2} + \| x - y \|^{2} = \langle x + y, x + y \rangle + \langle x - y, x - y \rangle$$

$$= \langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle + \langle y, y \rangle$$

$$+ \langle x, x \rangle - \langle y, x \rangle - \langle x, y \rangle + \langle y, y \rangle$$

$$= 2(\langle x, x \rangle + \langle y, y \rangle)$$

$$= 2\| x \|^{2} + 2\| y \|^{2}.$$

(b) $||x + y|| ||x - y|| \le ||x||^2 + ||y||^2$.

Solution:

$$0 \le (\parallel x + y \parallel - \parallel x - y \parallel)^{2}$$

$$= \parallel x + y \parallel^{2} + \parallel x - y \parallel^{2} - 2 \parallel x + y \parallel \parallel x - y \parallel$$

$$= 2 \parallel x \parallel^{2} + 2 \parallel y \parallel^{2} - 2 \parallel x + y \parallel \parallel x - y \parallel.$$

So $||x + y|| ||x - y|| \le ||x||^2 + ||y||^2$.

(c) $4 < x, y >= \|x + y\|^2 - \|x - y\|^2$ (polarization identity). Solution:

$$\parallel x + y \parallel^2 - \parallel x - y \parallel^2 = < x + y, x + y > + < x - y, x - y >$$

$$= < x, x > + < y, x > + < x, y > + < y, y >$$

$$- < x, x > + < y, x > + < x, y > - < y, y >$$

$$= 2(< y, x > + < x, y >)$$

$$= 4 < x, y >$$

13. What is the orthogonal complement in \mathbb{R}^4 of the space spanned by (1,0,1,1) and (-1,2,0,0)?

Solution: The space spanned by $\{(2,1,-2,0),(2,1,0,-2)\}$. It's easy to calculate, then I omit it.

14. (a) Prove Lagrange's indetity

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 = \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right) - \sum_{1 \le i < j \le n} (x_i y_j - x_j y_i)^2$$

and use this to give another proof of the Cauchy-Schwarz inequality. Solution: It is easily to solved by induction.

Note Cauchy-Schwarz inequality is

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 \le \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right).$$

(b) Show that

$$\left(\sum_{i=1}^{n} (x_i + y_i)^2\right)^{1/2} \le \left(\sum_{i=1}^{n} x_i^2\right)^{1/2} + \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}$$

Solution:

$$\sum_{i=1}^{n} (x_i + y_i)^2 = \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} y_i^2 + 2 \sum_{i=1}^{n} x_i y_i$$

$$\leq \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} y_i^2 + 2 \sum_{i=1}^{n} |x_i y_i|$$

$$\leq \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} y_i^2 + 2 \{ (\sum_{i=1}^{n} x_i^2) (\sum_{i=1}^{n} y_i^2) \}^{1/2}$$

$$= \{ (\sum_{i=1}^{n} x_i^2)^{1/2} + (\sum_{i=1}^{n} y_i^2)^{1/2} \}^2$$

15. Let x_n be a sequence in \mathbb{R} such that $d(x_n, x_{n+1}) \leq d(x_{n-1}, x_n)/2$. Show that x_n is a Cauchy sequences.

Solution: It is easy to calculate $d(x_n, x_{n+1}) \leq \frac{d(x_1, x_2)}{2^{n-1}}$ For all $\varepsilon > 0$, there is a positive integer $N > 3 + \frac{\ln \frac{d(x_1, x_2)}{\varepsilon}}{\ln 2}$ such that $|x_n - x_m| < \varepsilon$, whenever $n \geq m \geq N$.

Since

$$d(x_{n}, x_{m}) \leq d(x_{n}, x_{N}) + d(x_{m}, x_{N})$$

$$\leq d(x_{n}, x_{n-1}) + \dots + d(x_{N+1}, x_{N})$$

$$+ d(x_{m}, x_{m-1}) + \dots + d(x_{N+1}, x_{N})$$

$$\leq d(x_{N+1}, x_{N}) \left(\frac{1}{2^{n-N-1}} + \dots \frac{1}{2} + 1\right)$$

$$+ d(x_{N+1}, x_{N}) \left(\frac{1}{2^{m-N-1}} + \dots \frac{1}{2} + 1\right)$$

$$\leq 4d(x_{N+1}, x_{N})$$

$$\leq \frac{d(x_{1}, x_{2})}{2^{N-3}}$$

$$< \varepsilon$$

So x_n is a Cauchy sequence.

16. Prove Theorem **1.6.4**. In fact, for vector spaces V_1, \ldots, V_n , show that $V = V_1 \times \cdots \times V_n$ is a vector space.

Solution: I think this question is easy if you have learned Linear Algebra!!

17. Let $S \subset \mathbb{R}$ be bounded below and nonempty. Show that

$$\inf(S) = \sup\{x \in \mathbb{R} \mid x \text{ is a lower bound for } S\}.$$

Solution: Since $\inf(S)$ is the greatest lower bound of S, then $x \leq \inf(S)$ for all x is a lower bound for S. Hence $\sup\{x \in \mathbb{R} \mid x \text{ is a lower bound for } S\} \leq \inf(S)$. And $\inf(S)$ is a lower bound for S, then $\sup\{x \in \mathbb{R} \mid x \text{ is a lower bound for } S\} \geq \inf(S)$. Hence $\sup\{x \in \mathbb{R} \mid x \text{ is a lower bound for } S\} = \inf(S)$. \square

18. Show that in \mathbb{R} , $x_n \to x$ iff $-x_n \to -x$. Hence, prove that the completeness axiom is equivalent to the statement that every decreasing sequence $x_1 \geq x_2 \geq x_3 \cdots$ bounded below and converges. Prove that the limit of the sequence is $\inf\{x_1, x_2 \dots\}$.

Solution: I think this question is easy, so I omit it.

- 19. Let $x = (1, 1, 1) \in \mathbb{R}^3$ be written $x = y_1 f_1 + y_2 f_2 + y_3 f_3$, where $f_1 = (1, 0, 1)$, $f_2 = (0, 1, 1)$, and $f_3 = (1, 1, 0)$. Compute the components y_i .

 Solution: It is easy to compute it, then I omit it.
- 20. Let S and T be nonzero orthogonal subspaces of \mathbb{R}^n . Prove that if S and T are orthogonal complements (that is, S and T span all of \mathbb{R}^n), then $S \cap T = \{0\}$ and $\dim(S) + \dim(T) = n$, where $\dim(S)$ denotes dimension of S. Given examples in \mathbb{R}^3 where $\dim(S) + \dim(T) = n$ holds and examples where it fails. Can it fail in \mathbb{R}^2 ?

Solution: If you have learned Linear Algebra, you can solve this problem. So I omit it. \Box

- 21. Show the sequence in Worked Example 1.2 can be chosen to be increasing. Solution: If $x \in S$, let $x_k = x$. Otherwise, $x_k < x$ for all k. Let $y_1 = x_1$, y_2 be the first element of $\{x_2, x_3, \dots\}$ with $y_2 \geq y_1$, etc.
- 22. (a) If x_n and y_n are bounded sequences in \mathbb{R} , prove that

$$\lim \sup (x_n + y_n) \le \lim \sup x_n + \lim \sup y_n.$$

Solution: Since

$$\sup\{x_{n+1} + y_{n+1}, x_{n+2} + y_{n+2}, \dots\}$$

$$\leq \sup\{x_{n+1}, x_{n+2}, \dots\} + \sup\{y_{n+1}, y_{n+2}, \dots\}$$

for all n then

$$\lim \sup(x_n + y_n) = \inf \{ \sup \{ x_{n+1} + y_{n+1}, x_{n+2} + y_{n+2}, \dots \} \mid n = 1, 2, \dots \}$$

$$\leq \inf \{ \sup \{ x_{n+1}, x_{n+2}, \dots \} \mid n = 1, 2, \dots \}$$

$$+ \inf \{ \sup \{ y_{n+1}, y_{n+2}, \dots \} \mid n = 1, 2, \dots \}$$

$$= \lim \sup(x_n) + \lim \sup(y_n)$$

(b) Is the product rule true for lim sups?

Solution: Yes. Similarly way as above.

23. Let $P \subset \mathbb{R}$ be a set such that $x \geq 0$ for all $x \in P$ and for any integer k there is an $x_k \in P$ such that $kx_k \leq 1$. Prove that $0 = \inf(P)$.

Solution: We only need to check for all $\varepsilon > 0$, there is an $x_k \in P$ such that $x_k < \varepsilon$. Given $\varepsilon > 0$, by Archimedean property there is an integer k > 0 such that $0 < \frac{1}{k} < \varepsilon$. So $x_k \le \frac{1}{k} < \varepsilon$, then we complete the proof.

- 24. If $\sup(P) = \sup(Q)$ and $\inf(P) = \inf(Q)$, dose P = Q?

 Solution: No. You may take P = (0, 1) and Q = [0, 1] as counterexample.
- 25. We say that $P \leq Q$ if for each $x \in P$, there is a $y \in Q$ with $x \leq y$.
 - (a) If $P \leq Q$, then show that $\sup P \leq \sup Q$.

 Solution: If $x \in P$, there is a $y \in Q$, such that $x < y < \sup(Q)$ then $\sup(Q)$ is upper bound of P.
 - (b) Is it true that $\inf(P) \leq \inf(Q)$? Solution: False. choose $P = \{1\}, Q = \{0,1\} \inf(P) = 1$, $\inf(Q) = 0$.
 - (c) If $P \leq Q$ and $Q \leq P$, does P = Q?

 Solution: No. Consider the example above.

26. Assume that $A = \{a_{m,n} \mid m = 1, 2, 3, ... \text{ and } n = 1, 2, 3, ...\}$ is a bounded set and that $a_{m,n} \geq a_{p,q}$ whenever $m \geq p$ and $n \geq q$. Show that

$$\lim_{n \to \infty} a_{n,n} = \sup A.$$

Solution: Let $\lim_{n\to\infty} a_{n,n} = a$. Claim $a = \sup(A)$. Since $a_{n,n}$ is an increasing sequence and bounded above, we have $a = \sup\{a_{n,n} \mid n = 1, 2, 3, \dots\} \leq \sup(A)$.

Claim a is an upper bound of A. Given $a_{m,n} \in A$, we can choose $a_{k,k}$ such that $a_{m,n} \leq a_{k,k} \leq a$ where k = m + n, thus a is an upper bound of A. So $\sup(A) \leq a$. Then we complete the proof.

27. Let $S = \{(x,y) \in \mathbb{R}^2 \mid xy > 1\}$ and $B = \{d(x,y), (0,0) \mid (x,y) \in S\}$. Find $\inf(B)$.

Solution: Claim $\inf(B) = \sqrt{2}$. For all $(x,y) \in S$, $\sqrt{2} \le \left(\frac{x^2+1}{x^2}\right)^{1/2} < \left(x^2+y^2\right)^{1/2}$ so $\sqrt{2}$ is a lower bound of B. For all $\varepsilon > 0$, there is a pair $(x,y) = (1,\sqrt{1+\frac{\varepsilon}{2}})$ such that $d((x,y),(0,0)) = (1+1+\frac{\varepsilon}{2})^{1/2} < (2+\varepsilon)^{1/2} < \sqrt{2}+\varepsilon$. Hence $\sqrt{2}$ is $\inf(B)$.

28. Let x_n be a converge sequence in \mathbb{R} and define $A_n = \sup\{x_n, x_{n+1}...\}$ and $B_n = \inf\{x_n, x_{n+1}...\}$. Prove that A_n converges to the same limit as B_n which in turn is the same as the limit of x_n .

Solution: Since x_n is convergent sequence, we have that it is bounded. Then sequence of A_n and B_n are bounded. Since A_n is a decreasing sequence, then $\lim A_n = \inf A_n = \inf \{\sup \{x_n, x_{n+1}, \dot{j} \mid n \in \mathbb{N}\} = \limsup x_n$. Similarly we have $\lim B_n = \liminf x_n$. So $\lim A_n = \limsup x_n = \lim x_n = \lim x_n = \lim B_n$.

- 29. For any $x \in \mathbb{R}$ satisfying $x \geq 0$, prove the existence of $y \in \mathbb{R}$ such that $y^2 = x$. Solution: If x is perfect square, it is trivial. Otherwise let $A = \{y \in \mathbb{R} \mid y^2 < x\}$, and let $\sup(A) = a$. It is clearly that $a \geq 0$. Claim $a^2 = x$. If $a^2 > x$, choose $\varepsilon = 2a+1$, then there is $y \in A$ such that $y > a-\varepsilon$. So $y^2 > (a-\varepsilon)^2 = (a+1)^2 > a^2 > x$, a contradiction. If $a^2 < x$, then $a \in A$. By Archimedean property there is a positive integer p, such that $0 < \frac{1}{p^2} < x$. Pick $y = a + \frac{x-a^2}{a+px} > a$, Then $y^2 x = \frac{a^2-x}{xp^2-1}a + px^2 < 0$. Thus y > a and $y \in A$, a contradiction. So a^2 must be x, then we complete the proof.
- 30. Let V be the vector space C([0,1]) with norm $||f||_{\infty} = \sup\{|f(x)| \mid x \in [0,1]\}$. Show that the parallelogram law is fails and conclude that this norm does not

come from any inner product. (Refer to Exercise 12.)

Solution: Let f(x) = 1, g(x) = x, then $|| f + g ||_{\infty} = 2$, $|| f - g ||_{\infty} = 1$, $|| f ||_{\infty} = 1$, $|| g ||_{\infty} = 1$. Thus $|| f + g ||_{\infty}^2 + || f - g ||_{\infty}^2 = 5 \neq 4 = 2|| f ||_{\infty}^2 + 2|| g ||_{\infty}^2$.

Suppose $||f||_{\infty}$ comes from some inner product, i.e. $||f||_{\infty}^2 = \langle f, f \rangle$. Then

$$\| f + g \|^{2} + \| f - g \|^{2} = \langle f + g, f + g \rangle + \langle f - g, f - g \rangle$$

$$= \langle f, g \rangle + \langle g, f \rangle + \langle f, g \rangle + \langle g, g \rangle$$

$$+ \langle f, g \rangle - \langle g, f \rangle - \langle f, g \rangle + \langle g, g \rangle$$

$$= 2(\langle f, f \rangle + \langle g, g \rangle)$$

$$= 2\| f \|^{2} + 2\| g \|^{2}.$$

Thus we have a contradiction. So it cannot come from some inner product. \Box

31. Let $A, B \subset \mathbb{R}$ and $f: A \times B \to \mathbb{R}$ be bounded. Is it true that

$$\sup\{f(x,y) \mid f(x,y) \in A \times B\} = \sup\{\sup\{f(x,y) \mid x \in A\} \mid y \in B\}$$

or, the same thing in different notation,

$$\sup_{(x,y)\in A\times B} f(x,y) = \sup_{y\in B} (\sup_{x\in A} f(x,y)).$$

Solution: True. Fixed $y \in B$,

$$\sup\{f(x,y) \mid x \in A\} \le \sup\{f(x,y) \mid (x,y) \in A \times B\}.$$

Then

$$\sup \{ \sup \{ f(x,y) \mid x \in A \} \mid y \in B \} \le \sup \{ f(x,y) \mid (x,y) \in A \times B \}.$$

Given $(x_0, y_0) \in A \times B$, $f(x_0, y_0) \le \sup\{f(x, y_0) \mid x \in A\}$. But

$$\sup\{f(x, y_0) \mid x \in A\} \le \sup\{\sup\{f(x, y) \mid x \in A\} \mid y \in B\}$$

, hence $\sup\{\sup\{f(x,y)\mid x\in A\}\mid y\in B\}$ is an upper bound of f(x,y). So

$$\sup\{f(x,y) \mid (x,y) \in A \times B\} \le \sup\{\sup\{f(x,y) \mid x \in A\} \mid y \in B\}.$$

- 32. (a) Give a reasonable definition for what $\lim_{n\to\infty}=\infty$ should mean. Solution: For all M>0, there is an integer N>0 such that $|x_n|>M$, whenever $n\geq N$.
 - (b) Let $x_1 = 1$ and define inductively $x_{n+1} = (x_1 + \dots + x_n)/2$. Prove that $x_n \to \infty$.

Solution:

$$x_{n+1} - x_n = \frac{x_1 + \dots + x_n}{2} - \frac{x_1 + \dots + x_{n-1}}{2}$$

= $\frac{x_n}{2}$, for $n > 1$

hence $x_{n+1} = \frac{3x_n}{2}$, for n > 1. This means

$$x_n = \begin{cases} 1, & \text{if } n = 1; \\ \frac{3^{n-2}}{2^{n-1}}, & \text{for } n > 1. \end{cases}$$

For each M>0, there is a positive integer $N>1+\frac{\ln\sqrt{3M}}{\ln\frac{3}{2}}$ such that $|x_n|>M,$ whenever $n\geq N.$

- 33. (a) Show that $(\log x)/x \to 0$ as $x \to \infty$. (You may consult your calculus text and use, for example, l'Hôpital's rule.)
 - (b) Show that $n^{1/n} \to 1$ as $n \to \infty$.

Solution: This is easy if you have learned Calculus!! \Box

- 34. Express the following complex numbers in the form a + bi:
 - (a) (2+3i)(4+i)
 - (b) $(8+6i)^2$
 - (c) $(1+3/(1+i))^2$

Solution: It is easy, then we omit it.

35.	What is the complex conjugate of $(3+8i)^4/(1+i)^{10}$?
	Solution: It is easy, then we omit it. \Box
36.	Find the solutions to
	(a) $(z+1)^2 = 3+4i$.
	(b) $z^4 - i = 0$.
	Solution: It is easy, then we omit it. \Box
37.	Find the solutions to $z^2 = 3 - 4i$.
	Solution: It is easy, then we omit it. $\hfill\Box$
38.	If a is real and z is complex, prove that $Re(az) = a Re(z)$ and that $Im(az) = a$
	Im (z) . Generally, show that Re: $\mathbb{C} \to \mathbb{R}$ is a real linear map; that is, that Re
	$(az + bw) = a \operatorname{Re}(z) b \operatorname{Re}(w)$ for a, b real and z, w complex.
	Solution: It is easy, then we omit it. $\hfill\Box$
39.	Find the real and imaginary parts of the following, where $z = x + iy$:
	(a) $1/z^2$
	(b) $1/(3z+2)$
	Solution: It is easy, then we omit it. \Box
40.	(a) Fix a complex number $z = x + iy$ and consider the linear mapping ϕ_z :
	$\mathbb{R}^2 \to \mathbb{R}^2$ (that is, of $\mathbb{C} \to \mathbb{C}$) defined by $\phi_z(w) = z \cdot w$ (that is, multiplica-
	tion by z). Prove that the matrix of ϕ_z in the standard basis (1,0), (0,1)
	of \mathbb{R}^2 is given by
	$\left(\begin{array}{cc} x & -y \\ y & -x \end{array}\right)$
	(b) Show that $\phi_{z_1 z_2} = \phi_{z_1} \circ \phi_{z_2}$.
	Solution: It is easy to proof if you have learned Linear Algebra!! $\hfill\Box$

41. Show that Re(iz) = -Im(z) and that Im(iz) = Re(z) for all complex number z.

Solution: It is easy, then we omit it.

42. Letting z = x + iy, prove that $|x| + |y| \le \sqrt{2}|z|$.

Solution: Since $|z| = (x^2 + y^2)^{1/2}$, then

$$(\sqrt{2}|z|)^2 = 2(x^2 + y^2) \ge |x|^2 + 2|xy| + |y|^2 = (|x| + |y|)^2$$

The inequality comes from $(|x| - |y|)^2 \ge 0$. So we complete the proof.

43. If $a, b \in \mathbb{C}$, prove the **parallelogram identity:**

$$|a - b|^2 + |a + b|^2 = 2(|a|^2 + |b|^2).$$

Solution: It is easy, then we omit it.

44. Prove Lagrange's identity for complex numbers:

$$|\sum_{k=1}^{n} z_k w_k|^2 = (\sum_{k=1}^{n} |z_k|^2) (\sum_{k=1}^{n} |w_k|^2) - (\sum_{k < j} |z_k \bar{w}_j - z_j \bar{w}_k|^2).$$

Solution: It is a little complicated but it is easy, then we omit it.

45. Show that if |z| > 1 then $\lim_{n \to \infty} z^n/n = \infty$.

Solution: It is easy, so we omit it. \Box

46. Prove that any nonempty set S bounded above has a least upper bound as follows: Choose $x_0 \in S$ and M_0 an upper bound. Let $a_0 = (x_0 + M_0)/2$. If a_0 is an upper bound, let $M_1 = a_0$ and $x_1 = x_0$; otherwise let $M_1 = M_0$ and $x_1 > a_0$, $x_1 \in S$. Repeat, generating sequences x_n and M_n . Prove that they both converge to $\sup(S)$.

Solution: It is easy to see that x_n is an increasing sequence and M_n and $M_n - x_n$ are decreasing sequences. And M_n is upper bound of S and $x_n \in S$ for all

n. By completeness of \mathbb{R} , we have x_n and M_n are convergent sequences. Let $\lim_{n\to\infty}x_n=x$ and $\lim_{n\to\infty}M_n=M$. We need to do is check $x=M=\sup(S)$. Claim $\lim_{n\to\infty}M_n-x_n=0$. We observe that $|M_n-x_n|\leq \frac{|M_0-x_0|}{2^n}$. For all $\varepsilon>0$, there is a positive integer $N>\frac{\ln|M_0-x_0|\varepsilon}{\ln 2}$ such that $|M_n-x_n|\leq \frac{|M_0-x_0|}{2^n}\leq \frac{|M_0-x_0|}{2^n}<\varepsilon$. So $0=\lim_{n\to\infty}M_n-x_n=M-x$, i.e. x=M. Claim M is an upper bound of S. If not, there is some $s\in S$ such that s>M. Given $\varepsilon=s-M$, there is a positive integer N such that $M_n-M<\varepsilon=s-M$ whenever $n\geq N$, Then we have $s>M_n$, a contradiction. Since $\lim_{n\to\infty}x_n=x=M$, for all $\varepsilon>0$, there exist an integer N>0, such that $x-x_n=M-x_n<\varepsilon$, whenever $n\geq N$. And we know $x_n\in S$. Hence $M=\sup(S)$.

47. **The long line** Construct a non-Archimedean order field as follows: Let \mathbb{F} be the union of two distinct copies of \mathbb{R} ; let us put primes on the second copy to distinguish them. Define x + y as usual, x + y' = (x + y)', and x' + y' = x + y. Define xy as usual, xy' = (xy)', and x'y' = xy. Define $x \leq y$ as usual, $x \leq y'$ for any x, y, and $x' \leq y'$ if $x \leq y$. Show that \mathbb{F} meets the requirements. Demonstrate directly that \mathbb{F} is **not** complete.

Solution: Author: Delete this exercise; it will be fixed in the next edition. \Box