Binary Search Trees

CSC148, INTRODUCTION TO COMPUTER SCIENCE
DIANE HORTON, JONATHAN CALVER, MARYAM MAJEDI &
JAISIE SIN

A Binary Search Tree is a "sorted" tree

Every item is >= all items in its left subtree, and <= all items in its right subtree.

More structure → more efficiency

maximum: Return the maximum number in this BST, or None if it's empty.

items: Return all of the items in the BST in sorted order.

More structure → more efficiency? *not always!*

count: Return the number of occurrences of <item>
in this BST.

```
smaller: Return all of the items in this BST
strictly smaller than <item>
```

Representation invariants are key!

If self._root is not None, then self._left and self._right are BinarySearchTrees.

If you know that a BST is not empty, you **never** need to check if self._left or self._right are None.

You can call methods on them without an if-statement "guard".

BST efficiency

WHY SHOULD WE CARE ABOUT BINARY SEARCH TREES?

• base doenn't watter to big-Oh-

The Multiset ADT (search, insert, delete)

For a **sorted list** with *n* items...

Python list

 $\sqrt{\ }$ search is fast: O(log n) worst case, because of binary search

 \checkmark (o insert and delete can be slow, if inserting/removing from the front of the list – O(n) in the worst case

The Multiset ADT (search, insert, delete)

For a general tree with *n* items...


```
for subtree in self.subtrees:
   if subtree.__contains__(item):
     return True
return False
```

The Multiset ADT (search, insert, delete)

For a **general tree** with *n* items...

- insert can be fast, if you insert as a child of the root O(1)
- \circ search and delete can be slow, since you might need to check every item in the tree O(n) in the worst case

Worst case running times so far...

operation	Sorted List	Tree	Binary Search Tree
search	O(log <i>n</i>)	O(<i>n</i>)	
insert	O(n)	O(1)	
delete	O(n)	O(n)	

BST height vs. size

A binary search tree of size *n*...

- has a maximum height of n: $h \le n$
- has a minimum height of (approximately) $\log n$: $h \ge \log n$

We say that a BST is *balanced* if its left and right subtrees have roughly equal heights, and these subtrees are also balanced.

Balanced BSTs have height $\approx \log n$.