|                                                                                                                                                                                       |        | Note           | 9    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|------|
|                                                                                                                                                                                       |        |                |      |
|                                                                                                                                                                                       |        | I              | П    |
| Name Vorname                                                                                                                                                                          | 1      |                |      |
|                                                                                                                                                                                       |        |                |      |
| Matrikelnummer Studiengang                                                                                                                                                            |        |                |      |
|                                                                                                                                                                                       | 3      |                |      |
|                                                                                                                                                                                       |        |                |      |
| Unterschrift der Kandidatin/des Kandidaten                                                                                                                                            | 4      |                |      |
|                                                                                                                                                                                       | 5      |                |      |
| TECHNISCHE UNIVERSITÄT MÜNCHEN                                                                                                                                                        |        |                |      |
| Fakultät für Mathematik                                                                                                                                                               | 6      |                |      |
|                                                                                                                                                                                       |        |                |      |
| Klausur                                                                                                                                                                               | 7      |                |      |
| Mathematik für Physiker 4                                                                                                                                                             |        |                |      |
| (Analysis 3)                                                                                                                                                                          |        |                |      |
| Prof. Dr. M. Wolf                                                                                                                                                                     | $\sum$ |                |      |
| 21. Februar 2019, 10:30 – 12:00 Uhr                                                                                                                                                   | I      | <br>Erstkorrek | tur  |
| Hörsaal: Reihe: Platz:                                                                                                                                                                | П      | <br>Zweitkorre | ktur |
| Hinweise:<br>Überprüfen Sie die Vollständigkeit der Angabe: <b>7</b> Aufgaben                                                                                                         |        |                |      |
| Bearbeitungszeit: 90 min                                                                                                                                                              |        |                |      |
| Hilfsmittel: Ein selbsterstelltes Din A4 Blatt                                                                                                                                        |        |                |      |
| Bei Multiple-Choice-Aufgaben sind <b>genau</b> die zutreffenden Aussagen anzukreuzen.<br>Bei Aufgaben mit Kästchen werden nur die Resultate <b>in diesen Kästchen</b> berücksichtigt. |        |                |      |
| Nur von der Aufsicht auszufüllen:                                                                                                                                                     | _      |                |      |
| Hörsaal verlassen von bis                                                                                                                                                             |        |                |      |
| Vorzeitig abgegeben um                                                                                                                                                                |        |                |      |

 $Musterl\ddot{o}sung \quad \ \ ({\rm mit\;Bewertung})$ 

Besondere Bemerkungen:

## 1. Volumenberechnung

[8 Punkte]

Bestimmen Sie das Volumen der Menge

$$M := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^4 \le 4\} \subseteq \mathbb{R}^3.$$

LÖSUNG:

Die Menge ist ein Normalbereich, daher ist

$$\operatorname{vol}(M) = \int_{M} d^{3}x \stackrel{[2]}{=} \int_{x^{2} + y^{2} \le 4} dxdy \int_{-\sqrt[4]{4 - x^{2} - y^{2}}}^{\sqrt[4]{4 - x^{2} - y^{2}}} dz \stackrel{[1]}{=} \int_{x^{2} + y^{2} \le 4} 2\sqrt[4]{4 - x^{2} - y^{2}} dxdy$$

$$\stackrel{\text{Polarkoord. [2]}}{=} \int_{0}^{2} dr \int_{0}^{2\pi} d\phi \, 2r(4 - r^{2})^{1/4} \stackrel{[2]}{=} 2\pi \left[ -\frac{4}{5}(4 - r^{2})^{5/4} \right]_{0}^{2} = \frac{8}{5}\pi \cdot 4^{5/4} = \frac{32\sqrt{2}}{5}\pi. \quad [1]$$

Alternativ: Nach dem Cavalierischen Prinzip ist

$$\operatorname{vol}(M) \stackrel{[\mathbf{2}]}{=} 2 \int_{0}^{\sqrt{2}} \operatorname{vol}_{2}(\{(x,y) \in \mathbb{R}^{2} | x^{2} + y^{2} \le 4 - z^{4}\}) dz \stackrel{\text{Kreisscheibe}[\mathbf{3}]}{=} 2 \int_{0}^{\sqrt{2}} \pi \left(\sqrt{4 - z^{4}}\right)^{2} dz$$

$$\stackrel{[\mathbf{1}]}{=} 2\pi \int_{0}^{\sqrt{2}} (4 - z^{4}) dz \stackrel{[\mathbf{1}]}{=} 2\pi \left[4z - \frac{z^{5}}{5}\right]_{0}^{\sqrt{2}} = 2\pi (4\sqrt{2} - \frac{(\sqrt{2})^{5}}{5}) = \frac{32}{5}\pi\sqrt{2}. \quad [\mathbf{1}]$$

## 2. Flächeninhalt und Kurvenintegral

[14 Punkte]

Gegeben sei die Fläche

$$A := \{(x, y, z) \in \mathbb{R}^3 \mid z \in [0, 1], \ z = 1 - x^2 - y^2 \},\$$

mit einem Normalenfeld, das in die negative z-Richtung zeigt.

- (a) Berechnen Sie den Flächeninhalt von A.
- (b) Berechnen Sie das Kurvenintegral des Vektorfelds

$$v(x, y, z) = (2 - y, x - 1, 1)$$

entlang der Randkurve  $\partial A$ .

LÖSUNG:

(a) Parametrisierung 
$$\Phi(r,\phi) = \begin{pmatrix} r\cos\phi\\r\sin\phi\\1-r^2 \end{pmatrix}, \ r\in(0,1), \ \phi\in[0,2\pi].$$
 [2] Gramsche Determinante:

Gramsche Determinante:

$$\sqrt{g(r,\phi)} = |\partial_r \Phi(r,\phi) \times \partial_\phi \Phi(r,\phi)| = \left| \begin{pmatrix} \cos \phi \\ \sin \phi \\ -2r \end{pmatrix} \times \begin{pmatrix} -r \sin \phi \\ r \cos \phi \\ 0 \end{pmatrix} \right| = \left| \begin{pmatrix} 2r^2 \cos \phi \\ 2r^2 \sin \phi \\ r \end{pmatrix} \right| = r\sqrt{1 + 4r^2}$$

$$\operatorname{vol}_{2}(A) = \int_{A} dS = \int_{0}^{1} dr \int_{0}^{2\pi} d\phi \sqrt{g(r,\phi)} = 2\pi \int_{0}^{1} r \sqrt{1 + 4r^{2}} dr = 2\pi \left[ \frac{1}{8} \cdot \frac{2}{3} (1 + 4r^{2})^{3/2} \right]_{0}^{1}$$
$$= \frac{\pi}{6} (5\sqrt{5} - 1) \qquad [4]$$

(b) Wegen der Orientierung der Fläche nach unten, wird die Randkurve im Uhrzeigersinn durchlaufen. Wird die Randkurve von A also durch  $\gamma(t) = \begin{pmatrix} \cos t \\ \sin t \\ 0 \end{pmatrix}$ ,  $t \in [0, 2\pi]$  parametrisiert, so ist

$$\int_{\partial A} v(r) \cdot dr = -\int_{0}^{2\pi} v(\gamma(t)) \cdot \dot{\gamma}(t) dt = -\int_{0}^{2\pi} \begin{pmatrix} 2 - \sin t \\ \cos t - 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -\sin t \\ \cos t \\ 0 \end{pmatrix} dt$$

$$= -\int_{0}^{2\pi} \left( -2\sin t + \sin(t)^{2} + \cos(t)^{2} - \cos(t) \right) dt$$

$$= 2\int_{0}^{2\pi} \sin(t) dt + \int_{0}^{2\pi} \cos(t) dt - \int_{0}^{2\pi} dt = 0 + 0 - 2\pi = -2\pi. \quad [4]$$

| 3. Frag | gen zur Funktionentheorie [13 Punktionentheorie                                                                                                                                                                                                                                                                                                                            | $\mathbf{te}]$                         |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| (a)     | $f(z)=\frac{1}{(1-z^2)\sin(z)}$ besitzt eine konvergente Laurent-Reihe mit Entwicklungspunkt 0 auf Kreisringen                                                                                                                                                                                                                                                             | den [2]                                |
|         | $\boxtimes K_{0,1}(0), \qquad \qquad \Box K_{0,\pi}(0), \qquad \qquad \boxtimes K_{1,\pi}(0), \qquad \qquad \Box K_{\pi,\infty}(0).$                                                                                                                                                                                                                                       |                                        |
| (b)     | Sei $n \in \mathbb{N}$ fest und $f(z) = \frac{1}{\sin(z)^n}$ mit der Laurentreihendarstellung $f(z) = \sum_{k=-\infty}^{\infty} c_k z^k$ auf $K_{0,\pi}$ Dann gilt                                                                                                                                                                                                         | (0).<br>[ <b>2</b> ]                   |
|         | $\boxtimes c_{-2n^2}=0, \qquad \boxtimes c_{-n}\neq 0, \qquad \Box c_k=0 \text{ für alle } k\in \mathbb{N}, \qquad \Box c_{-k}\neq 0 \text{ für alle } k\in \mathbb{N},$                                                                                                                                                                                                   |                                        |
| (c)     | Sei $g:B_2(0)\to\mathbb{C}$ holomorph mit $g(\frac{1}{n})=\frac{2+n}{2n-1}$ für alle $n\in\mathbb{N}$ . Begründen Sie, warum $g(i)$ ist.                                                                                                                                                                                                                                   | = i                                    |
| (d)     | Sei $g:\mathbb{C}\to\mathbb{C}$ holomorph mit $ g(z) \leq  z $ und $g(1)=$ i. Begründen Sie, warum $g(i)=-1$ ist                                                                                                                                                                                                                                                           |                                        |
| Löst    | JNG:                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| (a)     | $f$ hat Pole bei $\pm 1$ und für $z \in \pi \mathbb{Z}$ .                                                                                                                                                                                                                                                                                                                  |                                        |
| (b)     | $f$ hat einen Pol $n$ -ter Ordnung im Ursprung und $2n^2 > n$ für $n \in \mathbb{N}$ .                                                                                                                                                                                                                                                                                     |                                        |
| (c)     | $g(\frac{1}{n}) = \frac{2+n}{2n-1} = \frac{\frac{2}{n}+1}{2-\frac{1}{n}},$                                                                                                                                                                                                                                                                                                 | [1]                                    |
|         | Für die Funktion $h(z) = \frac{2z+1}{2-z}$ gilt also $g(\frac{1}{n}) = h(\frac{1}{n})$ für alle $n \in \mathbb{N}$ .<br>Da beide Funktionen auf $B_2(0)$ holomorph sind,                                                                                                                                                                                                   | [1]                                    |
|         | sind sie nach dem Identitätssatz dort gleich. Somit ist $g(i) = h(i) = \frac{2i+1}{2-i} = i$ .                                                                                                                                                                                                                                                                             | $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ |
| (d)     | $h(z)=\frac{g(z)}{z}$ ist beschränkt, $ h(z) \leq 1$ , die isolierte Singularität von $h$ im Ursprung ist nach dem Riemannschen Hebbarkeitssatz also hebbar. Nach Liouville ist die analytische Fortsetzung von $h$ also konstant, $\frac{g(z)}{z}=c\in\mathbb{C}$ . Wegen $g(1)/1=\mathrm{i}$ folgt $c=\mathrm{i}$ , bzw., $g(z)=\mathrm{i}z$ , also $g(\mathrm{i})=-1$ . | [1]<br>[1]<br>[1]<br>[1]               |

## 4. Komplexe Kurvenintegrale

[12 Punkte]

Gegeben ist die Menge  $G := \{z \in \mathbb{C} \mid \operatorname{Re}(z) + \operatorname{Im}(z) \le 2, \ \left(\operatorname{Re}(z-1)\right)^2 + \left(\operatorname{Im}(z-1)\right)^2 \le 1\}.$ 

(a) Skizzieren Sie die Menge 
$$G$$

[2]



(b) Geben Sie unter Beachtung der Umlaufrichtung eine Parametrisierung von  $\partial G$  durch zwei Kurvenstücke an.

$$\gamma_1(t) = 2 + t(-1 + i), t \in [0, 1]$$

$$\gamma_2(t) = 1 + e^{it}, t \in [\frac{\pi}{2}, 2\pi]$$

(c) Berechnen Sie (mit kurzer Begründung) den Wert des Integrals  $\int\limits_{\partial G} \frac{z^3}{(2z-1-\mathrm{i})(2z-3-3\mathrm{i})} \mathrm{d}z.$ 

$$\int_{\partial G} \frac{z^3}{(2z-1-\mathrm{i})(2z-3-3\mathrm{i})} \mathrm{d}z = 2\pi \mathrm{i} \mathrm{Res}_{\frac{1+\mathrm{i}}{2}} \left( \frac{z^3}{(2z-1-\mathrm{i})(2z-3-3\mathrm{i})} \right) = 2\pi \mathrm{i} \frac{(\frac{1+\mathrm{i}}{2})^3}{2(2(\frac{1+\mathrm{i}}{2})-3-3\mathrm{i})}$$

$$= \pi \mathrm{i} \frac{(1+\mathrm{i})^3}{8(-2-2\mathrm{i})} = -\pi \mathrm{i} \frac{(1+\mathrm{i})^2}{16} = \frac{\pi}{8},$$
wegen Residuensatz,
denn der Integrand ist holomorph bis auf die Pole  $\frac{1+\mathrm{i}}{2}$  und  $3\frac{1+\mathrm{i}}{2}$ 

denn der Integrand ist holomorph bis auf die Pole $\frac{1+\mathrm{i}}{2}$  und  $3\frac{1+\mathrm{i}}{2}$  und  $\partial G$ umschließt nur  $\frac{1+\mathrm{i}}{2}.$ 

[2]

5. Residuenkalkül [8 Punkte]

Sei  $f(z) = \frac{z}{z^2 + a^2}$  mit a > 0.

- (a) Wo in der komplexen Ebene verläuft der Hilfsweg zur Berechnung des Integrals  $\lim_{R\to\infty}\int\limits_{-R}^R f(x){\rm e}^{-{\rm i}kx}{\rm d}x \ {\rm f\"{u}r} \ k>0? \eqno(2)$ 
  - $\square$  In der rechten Halbebene.  $\square$  In der oberen Halbebene.
  - □ In der linken Halbebene. □ In der unteren Halbebene.
- (b) Welchen Wert hat  $\lim_{R \to \infty} \int_{-R}^{R} f(x) e^{-ikx} dx$  für k > 0? [3]

$$-\pi i e^{-ka}$$

(c) Welchen Wert hat  $\lim_{R \to \infty} \int_{-R}^{R} f(x) e^{-ikx} dx$  für k < 0? [3]

$$\pi \mathrm{i}\mathrm{e}^{ka}$$

Lösung:

- (a)  $e^{-\mathrm{i}kz}$  fällt für negative Imaginärteile von z exponentiell ab, wenn k>0 ist.
- (b) Hier wird untenrum integriert: Für k>0 ist  $\int\limits_{-\infty}^{\infty}f(x)\mathrm{e}^{-\mathrm{i}kx}\mathrm{d}x=-2\pi\mathrm{i}\mathrm{Res}_{-\mathrm{i}a}\big(\tfrac{\mathrm{e}^{-\mathrm{i}kz}}{z^2+a^2}\big)=-2\pi\mathrm{i}\tfrac{-\mathrm{i}a\mathrm{e}^{ka}}{-2\mathrm{i}a}=-\pi\mathrm{i}\mathrm{e}^{kc}.$
- (c) Für k < 0 ist  $\int_{-\infty}^{\infty} f(x) e^{-ikx} dx = 2\pi i \operatorname{Res}_{ia} \left( \frac{e^{-ikz}}{z^2 + a^2} \right) = 2\pi i \frac{iae^{kc}}{2ia} = \pi i e^{ka}.$

## 6. Fouriertransformation in $\mathcal{S}(\mathbb{R})$

[7 Punkte]

[1]

Sei  $f \in \mathcal{S}(\mathbb{R})$  und damit auch  $\widehat{f} \in \mathcal{S}(\mathbb{R})$ .

- (a) Zeigen Sie elementar, dass  $\widehat{f'}(k) = \mathrm{i} k \widehat{f}(k)$  für alle  $k \in \mathbb{R}$  gilt.
- (b) Berechnen Sie  $\widehat{h}$  für h(x)=xf'(x). HINWEIS: Für g(x)=xf(x) ist bekannterweise  $\widehat{g}(k)=\mathrm{i}(\widehat{f})'(k)$ .

LÖSUNG:

(a) Mit partieller Integration ergibt sich:

with particular integration eight sich.
$$\sqrt{2\pi} \, \widehat{f'}(k) = \int_{-\infty}^{\infty} e^{-ikx} f'(x) dx = \left[ e^{-ikx} f(x) \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} (-ik) e^{-ikx} f(x) dx$$

$$= 0 - 0 + ik \int_{-\infty}^{\infty} e^{-ikx} f(x) dx = \sqrt{2\pi} ik \widehat{f}(k), \qquad [3]$$

$$\text{denn } f(x) \xrightarrow{x \to \pm \infty} 0 \text{ für jede Schwartz-Funktion } f. \qquad [1]$$

(b) 
$$\hat{h}(k) \stackrel{\text{Hinweis}}{=} i(\hat{f}')'(k) = i \frac{d}{dk} \hat{f}'(k) \stackrel{\text{(a)}}{=} i \frac{d}{dk} (ik \hat{f}(k)) = -\hat{f}(k) - k(\hat{f})'(k).$$
 [3]

7. Hilbertraum [14 Punkte]

Die Funktionen  $\chi_{[a,b]} \in L^2(\mathbb{R})$  sind für a < b gegeben durch  $\chi_{[a,b]}(x) = \begin{cases} 1 & \text{für } x \in [a,b], \\ 0 & \text{sonst.} \end{cases}$ 

- (a) Zeigen Sie, dass  $(\chi_{[n,n+1]})_{n\in\mathbb{Z}}$  eine orthonormale Familie aber keine ONB von  $L^2(\mathbb{R})$  ist.
- (b) Sei  $\psi \in L^2(\mathbb{R})$ . Zeigen Sie, dass  $\left| \int_{[a,b]} \psi(x) dx \right| \leq \sqrt{b-a} \left( \int_{[a,b]} |\psi(x)|^2 dx \right)^{\frac{1}{2}}$  ist. Hinweis: Cauchy-Schwarz-Ungleichung.
- (c) Zeigen Sie, dass für jedes  $\psi \in L^2(\mathbb{R})$  gilt:  $\lim_{n \to \infty} \int_{[n,n+1]} \psi(x) dx = 0$ .

Lösung:

(a) Dies ist eine orthonormale Familie, denn für  $m, n \in \mathbb{Z}$  ist

$$\langle \chi_{[m,m+1]}, \chi_{[n,n+1]} \rangle = \int_{\mathbb{R}} \chi_{[m,m+1]}(x) \chi_{[n,n+1]}(x) dx = \int_{m}^{m+1} \chi_{[n,n+1]}(x) dx = \delta_{m,n}.$$
 [2]

Für 
$$f = \chi_{[0,\frac{1}{2}]} - \chi_{[\frac{1}{2},1]} \in L^2(\mathbb{R})$$
 gilt aber offenbar  $\langle f, \chi_{[n,n+1]} \rangle = 0$  für alle  $n \in \mathbb{Z}$ .

Also liegt keine ONB vor. [1]

(b) Die Cauchy-Schwarz-Ungleichung besagt für  $\phi, \psi \in L^2(\mathbb{R})$ : [1]

$$|\langle \phi, \psi \rangle| \le ||\phi||_2 ||\psi||_2.$$

Somit gilt für  $a \leq b$  wegen  $\chi^2_{[a,b]} = \chi_{[a,b]}$ : [4]

$$\left| \int_{[a,b]} \psi(x) dx \right| = \left| \int_{\mathbb{R}} \chi_{[a,b]}(x) (\chi_{[a,b]} \psi)(x) dx \right| = \left\langle \chi_{[a,b]}, \chi_{[a,b]} \psi \right\rangle \le \|\chi_{[a,b]}\|_2 \|\chi_{[a,b]} \psi\|_2$$

$$= \left( \int_{\mathbb{R}} |\chi_{[a,b]}(x)|^2 dx \right)^{\frac{1}{2}} \|\chi_{[a,b]} \psi\|_2 = \sqrt{b-a} \left( \int_{[a,b]} |\psi(x)|^2 dx \right)^{\frac{1}{2}}.$$

(c)  $x \mapsto |\psi(x)|^2$  ist integrierbar. [1]

Somit ist 
$$\sum_{n=-\infty}^{\infty} \int_{n}^{n+1} |\psi(x)|^2 dx = \int_{\mathbb{R}} |\psi(x)|^2 dx < \infty.$$
 [1] Daher muss 
$$\lim_{n \to \infty} \int_{n}^{n+1} |\psi(x)|^2 dx = 0 \text{ sein,}$$

Daher muss 
$$\lim_{n \to \infty} \int_{n}^{n+1} |\psi(x)|^2 dx = 0$$
 sein, [1]

da die Summanden einer konvergenten Reihe eine Nullfolge bilden. Mit (a) folgt nun [1]

$$0 \le \Big| \int_{n}^{n+1} \psi(x) \mathrm{d}x \Big| \le \sqrt{1} \sqrt{\int_{n}^{n+1} |\psi(x)|^2 \mathrm{d}x} \to 0,$$

also auch  $\lim_{n\to\infty} \int_{-\infty}^{n+1} \psi(x) dx = 0.$ 

**Alternativ:** Die Funktionenfolge  $\phi_n(x) := |\psi(x)|^2 \chi_{n,n+1}(x)$  konvergiert offensichtlich punktweise für jedes  $x \in \mathbb{R}$  gegen 0. Wegen  $\psi \in L^2(\mathbb{R})$  ist  $|psi(x)|^2$  eine integrierbare Majorante. Somit gilt mit majorisierter Konvergenz:

$$\lim_{n \to \infty} \int_{n}^{n+1} |\psi(x)|^2 dx = \lim_{n \to \infty} \int_{\mathbb{R}} \phi_n(x) dx \int_{\mathbb{R}} \lim_{n \to \infty} \phi_n(x) dx = 0,$$

Also ist auch  $\left|\int_{n}^{n+1} \psi(x) dx\right| \leq \sqrt{\int_{n}^{n+1} |\psi(x)|^2} dx$ . eine Nullfolge