Permutation-based multiple testing with \mathbb{R} - theory 1/2

Livio Finos livio.finos@unipd.it

University of Padua

Ribno (Bled), Slovenia, 23/09/18

Outline

- 1 Introduction
- 2 A toy example
- 3 A Naive approach to Permutation Testing
- 4 Theory (very short)
- **6** Other cases
- **6** Multivariate Testing

Introduction

- Well established nonparametric approach to **inference**: Fisher. 1935: Pitman. 1937: Pitman. 1938.
- (In general) it requires less assumptions about the data generating process than the parametric counterpart.
- Very good inferential properties, typically:
 - exactness (i.e. exact control of the type I error)
 - asymptotically optimality and convergence to the parametric counterpart when it does exist.

Introduction

- Fisher exact test is a prototypical example, but
- the general approach has restricted applicability without the support of a computer.

Renewed interest toward permutation testing

- A milestone: Westfall and Young (1993). Resampling-Based Multiple Testing: Examples and Methods for p-value Adjustment. Wiley.
- Many actives areas of research adopt these methods in their daily statistical analysis (e.g. genetics and neuroscience: Nichols and Holmes (2002); Pantazis et al. (2009); Winkler et al. (2014)).
- Permutation approach:
 - Ideal for randomized experimental design
 - deals with very complex models, without formal definition of the data generating process.

Outline

- 1 Introduction
- 2 A toy example
- 3 A Naive approach to Permutation Testing
- 4 Theory (very short)
- **6** Other cases
- **6** Multivariate Testing

Comparison of Two Samples (i.e. one factor with two levels)

- · Control: 3 observations,
- Treated: 3 observations:

1.025, 1.949, 3.477, **2.391**, **3.676**, **4.816**

Hypothesis testing

- H_0 : Two groups are equal
- H_1 : Treated is greater than Control (on average)

p-value: probability to get the observed evidence against H_0 if the two groups were equal (i.e. H_0 were true)

Test: if $p \le \alpha$ (e.g. $\alpha = .05$): we decide for H_1 , otherwise: we stay with H_0

Parametric approach

Assumptions on y_1, y_2, \ldots, y_6

- independent
- identically distributed
 - normally distributed OR
 - have finite mean and variance (but inference is only asymptotically valid in this case!)

Parametric approach

Assumptions on y_1, y_2, \ldots, y_6

- independent
- identically distributed
 - normally distributed OR
 - have finite mean and variance (but inference is only asymptotically valid in this case!)

We can perform a t-test:

$$T = \frac{\bar{y}(\textit{Treated}) - \bar{y}(\textit{Control})}{sd(\bar{y}(\textit{Treated}) - \bar{y}(\textit{Control}))} \sim t_4$$

(i.e. T test statistic follow a t distribution with n-2=4 d.f.)

Parametric approach

```
With toy data:

t = -1.4545,

df = 4,

p-value = 0.1098
```

Remark

The hypotheses tested are:

- $H_0: \mu_{Treated} = \mu_{Control}$
- $H_1: \mu_{Treated} > \mu_{Control}$ (only a difference in mean is allowed)

Outline

- 1 Introduction
- 2 A toy example
- 3 A Naive approach to Permutation Testing
- 4 Theory (very short)
- Other cases
- **6** Multivariate Testing

The p-value is computed **under** H_0 : Controls and **Treated** have the **same distribution**.

Collection of equally likely outcomes:

 $f(1.025, 1.949, 3.477, \mathbf{2.391}, \mathbf{3.676}, \mathbf{4.816}) =$

The p-value is computed **under** H_0 : Controls and **Treated** have the **same distribution**.

Collection of equally likely outcomes:

```
f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) = 
= <math>f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =
```

The p-value is computed **under** H_0 : Controls and **Treated** have the **same distribution**.

Collection of equally likely outcomes:

```
f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =
= f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =
= f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =
```

The p-value is computed **under** H_0 : Controls and **Treated** have the **same distribution**.

Collection of equally likely outcomes:

$$f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =$$

= $f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =$
= $f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =$
= ...

There are
$$\binom{6}{3} = \frac{6!}{3!3!} = 20$$
 equally likely outcomes

Compute the difference in mean of the two samples

Compute the same difference on another hypothetical experiment

...and compute the p-value!

Summary

The Permutation Test:

- Conditioned to observed data (i.e. the distribution of the test statistic depends on the data).
- Under H₀ cases and controls have the same distribution (eg. they have the same probability to get hight values),
- explore all possible experiments that we can observe with the data (ie. exchanging cases and controls),
- compute the p-value as the proportion of experiments providing equal or more evidence against H₀ with respect to observed data.

Outline

- 1 Introduction
- 2 A toy example
- 3 A Naive approach to Permutation Testing
- 4 Theory (very short)
- Other cases
- **6** Multivariate Testing

(see also Pesarin, 2001) = $(y_1, y_2, ..., y_n)$ the vector of observed data

Orbit: the set of all samples having the same likelihood under H_0 .

$$G = \{^*: f(^*) = f()\}$$

(and |G| number of elements of G)

If we assume exchangeability of observations, then:

$$\mathbf{G} = \{\text{all permutations of the observed data }\} = \{^*: \pi^* \circ \}$$

 $(\pi^* \in \Pi, \Pi \text{ set of all possible permutations})$

Remark: exchangeable observations: $f(y_1, y_2) = f(y_2, y_1)$. It implies observations:

- are identically distributed
 t-test and linear models assume normality, only asymptotic control of the tye I error
- have the same dependence
 t-test and linear models assume independence, which is just a special case, i.e. more stringend assumptions

p-value: proportion of experiments providing equal or more evidence against H_0 with respect to observed data.

To compute it, we need the **Orbit G** and a

p-value: proportion of experiments providing equal or more evidence against H_0 with respect to observed data.

To compute it, we need the **Orbit G** and a **Test statistic** $(T: \mathbb{R}^n \to \mathbb{R})$ quantifies the evidence against H_0

- higher values provide more evidence against H_0
- compute a test statistic for each element of the Orbit G, this induces an ordering on G.

In our example: $T = \bar{y}(Treated) - \bar{y}(Control)$ is the difference in mean, higher the difference, higher the evidence for H_1 .

$$f(^*|\mathbf{G}) = \frac{f(^*\cap\mathbf{G})}{f(\mathbf{G})} = \frac{f(^*)}{f(\mathbf{G})} = \frac{f(^*)}{f(\cup_{y\in\mathbf{G}}y)} = \frac{1}{|\mathbf{G}|} \ \forall \ ^* \in \mathbf{G}$$

i.e. each permutation is equally likely in the Orbit G.

The **p-value**:

$$P(T(^*) \ge T()|^* \in \mathbf{G}, H_0) =$$

$$= \int_{T()}^{+\infty} f(T(^*)) dT(^*) =$$

$$= \sum_{* \in \mathbf{G}} I(T(^*) \ge T()) / |\mathbf{G}| \quad \forall \mathbf{G}$$

The package flip

```
It is on CRAN and on github (https://github.com/livioivil/flip)
To install the github version type (in R):
library(devtools)
install_github('livioivil/flip')
```


Seeds data (Pesarin, 2001)

Standard fertilizer (grp=0) vs New fertilizer (grp=1) Total weight of the plant and average leaves length is recorded.

Hypothesis testing

About weight:

- $H_0(weight)$: F(weight|grp = 0) = F(weight|grp = 1)vs
- $H_1(weight)$: F(weight|grp = 0) > F(weight|grp = 1)

And about leaf length:

- $H_0(leaf.len)$: F(leaf.len|grp = 0) = F(leaf.len|grp = 1)vs
- $H_1(leaf.len) : F(leaf.len|grp = 0) > F(leaf.len|grp = 1)$

Hypothesis testing

res=flip(. \sim grp, data=seeds, tail=1)

	Test	Stat	tail	p-value
weight	t	1.320	>	0.098
leaf.length	t	2.061	>	0.030

together with some visualization hist(res)

Two-tailed tests

About weight:

- $H_0(weight)$: F(weight|grp = 0) = F(weight|grp = 1) vs
- $H_1(weight) : F(weight|grp = 0) \neq F(weight|grp = 1)$

And about leaf length:

- $H_0(leaf.len)$: F(leaf.len|grp = 0) = F(leaf.len|grp = 1)vs
- $H_1(leaf.len)$: $F(leaf.len|grp = 0) \neq F(leaf.len|grp = 1)$

Two-tailed tests

 $\texttt{res=flip(.} \sim \texttt{grp, data=seeds, tail=0)}$

	Test	Stat	tail	p-value
weight	t	1.320	><	0.202
leaf.length	t	2.061	><	0.049

Also very negative values provide evidence against H_0

Properties

- Exact control of the Type I Error: $P(p \le \alpha | H_0) < \alpha \ \forall \ (attainable)\alpha$
- Consistency: $P(p \le \alpha | H_1) \to 1$ when $n \to \infty$
- Converges to parametric counterpart (i.e. asymptotic optimality if the parametric test is optimal)

Remark

The number of possible permutations (size of the Orbit $|\mathbf{G}|$) is often huge, we can not compute the test statistic for all elements. Common use to sample from the Orbit (i.e. randomly permute the labels B times).

The properties remain the same.

Simulation: normal distribution

- Comparison of Two groups (labels A, B) of size 5
- $y_i \sim N(0, 1)$
 - $H_0: f(y|grp = A) = f(y|grp = B)$
 - H₀: f(y|grp = A) ≠ f(y|grp = B)
 (i.e. two-sided alternatives)
- 10000 replications
- 1000 random permutations for each test

Simulation: H_0

Empirical Type I error					
Permutation	0.00	0.05	0.09	0.49	0.74.
Paramatric t.test	0.01	0.04	0.09	0.49	0.75

Simulation: H_1

now $(y|grp = A) \sim N(0, 1), (y|grp = B) \sim N(2, 1)$

Empirical Power	≤0.01	≤0.05	≤0.1	≤0.5	≤0.75
Permutation	0.40	0.78	0.89	0.99	1.00
Paramatric t.test	0.41	0.77	0.88	0.99	1.00

Simulation: Cauchy distribution

- Comparison of Two groups (labels A, B)
- $y_i \sim Cauchy$
 - $H_0: f(y|grp = A) = f(y|grp = B)$
 - H₀: f(y|grp = A) ≠ f(y|grp = B)
 (i.e. two-sided alternatives)
- 10000 replications
- 1000 random permutations for each test

Simulation: H_0

Empirical Type I error	≤0.01	≤0.05	≤0.1	≤0.5	≤0.75
Permutation	0.00	0.04	0.09	0.49	0.74
Paramatric t.test	0.00	0.01	0.04	0.62	0.84

Simulation: H_1

now $(y|grp = A) \sim Cauchy(0)$, $(y|grp = B) \sim Cauchy(10)$

Empirical Power Permutation	≤0.01	≤0.05	≤0.1	≤0.5	≤0.75	XX5:
Permutation	0.66	0.78	0.81	0.89	0.92	SK.
Paramatric t.test	0.53	0.68	0.75	0.91	0.96	Whi.

Outline

- 1 Introduction
- 2 A toy example
- 3 A Naive approach to Permutation Testing
- 4 Theory (very short)
- **5** Other cases
- **6** Multivariate Testing

A very general approach

This approach (Orbit G + Test statistic T) is very general. It includes:

- ChiSquare test
- Fisher exact test
- McNemar test
- rank tests
- ANOVA tests
- linear models
- other models difficult to deal within the parametric framework
- . . .

The case of contingency table

$X \setminus y$	0	1	2
Α	4	3	0
В	1	2	4

> chisq.test(x,y)

Pearson's Chi-squared test

data: x and y

X-squared = 6, df = 2, p-value = 0.04979

Warning message:

In chisq.test(x, y): Chi-squared approximation may

be incorrect

The case of contingency table

```
Use: simulate.p.value = TRUE
> chisq.test(x,y,simulate.p.value = TRUE)
Pearson's Chi-squared test (based on 2000 replicates)
data: x and y
X-squared = 6, df = NA, p-value = 0.09345
```

Same schema:

- Orbit **G**: all possible permutation of (under H_0 and are independent)
- test statistic T(*): the χ^2 statistic computed (higher is better)
- p-value: proportion of T^* greater than the one computed on observed data : $p = \sum_{* \in \mathbf{G}} I(T(*) \ge T())/|\mathbf{G}|$.

The case of experimental design with blocks (or within-subject)

For example: n lots/subjects, each with two treatments (A vs B) we can assume a specific effect for each lot/subject:

$$y_{ij} \sim (\nu_i + \mu_j, \sigma_i) \ i = 1, \ldots, n, \ j = A, B$$

$$H_0: \mu_A = \mu_B \Leftrightarrow \mu_A - \mu_B = 0$$

Parametric approach:

- define: $z_i = y_{iB} y_{iA} \sim (\mu_B \mu_A, 2 \cdot \sigma_i) \ i = 1, ..., n$
- assume $\sigma_i = \sigma$, $\forall i = 1, ..., n$
- perform a 1-sample t-test (i.e. t-test for 2 paired samples)
- test is exact only it z_i is normal, it is approximated otherwise

The case of experimental design with blocks (or within-subject)

What about permutation approach? how to define the Orbit **G**? $H_0 \Rightarrow \mu_A = \mu_B = \mu \Rightarrow y_{ij} \sim (\nu_i + \mu, \sigma_i) \ i = 1, \dots, n, \ j = A, B$ $f(y_{1A}, \mathbf{y_{1B}}, y_{2A}, \mathbf{y_{2B}}, \dots, y_{nA}, \mathbf{y_{nB}}) (\mathrm{observed}) =$ $= f(\mathbf{y_{1A}}, y_{1B}, y_{2A}, \mathbf{y_{2B}}, \dots, \mathbf{y_{nA}}, y_{nB}) =$

- We exchange observations only within the same lot/subject!
- There are 2^n possible configurations: $|\mathbf{G}| = 2^n$

 $= f(y_{1A}, \mathbf{y_{1B}}, \mathbf{y_{2A}}, y_{2B}, \dots, \mathbf{y_{nA}}, y_{nB}) \dots$

- we don't need to assume: $\sigma_i = \sigma$, $\forall i = 1, ..., n$
- (even we may allow non addictive effect: $\nu_{ij} \neq \nu_i + \mu_j$)
- A part from **G**, the procedure is the same.

Outline

- 1 Introduction
- 2 A toy example
- 3 A Naive approach to Permutation Testing
- 4 Theory (very short)
- Other cases
- **6** Multivariate Testing

Multivarite hypotheses

Testing $H_0(weight)$ + Testing $H_0(leaf.length)$ is different from testing

- H₀: H₀(weight) ∩ H₀(leaf length)
 (i.e. simultaneously true)
- *H*₁ : *H*₁(weight) ∪ *H*₁(leaf length) (i.e. at least one null hypo is false)

Here test H_0 : the New is equal to the Standard in both variables For 1-tailed alternative:

 $p_{weight} = .098$ and $p_{leaf\ length} = .030$. Shall we reject the multivariate H_0 ?

Multivariate hypotheses

Common approaches:

- MANOVA test.
 - is OK but only for linear models (2 or more samples). assumes multivariate normality.
 - Does not allow for one-sided alternatives.
- Bonferroni correction $(p = min(p_1, p_2) * 2)$
 - very simple, always valid does not take in account dependences among data
 - (i.e. may be very conservative, i.e. high final p-value)

Joint distributions of the data

The two variables are dependent:

Joint distributions of test statistics

This dependence induce a dependence into the joint distribution of the test statistic

Joint distributions of the p-values

... and into the p-values joint distributions (i.e. compute the p-values for observed samples and all elements $^* \in \mathbf{G}$)

Nonparametric Combination methodology (Pesarin, 2001)

The Orbit is now defined in a multivariate framework:

$$\mathbf{G} = \{(1,2)^* : f((1,2)^*) = f((1,2))\}$$

(in practice: when you permute one observation in a variable, do the same in the other variables)

Also compute the p_1^* , p_2^* associated to each $\frac{*}{1}$, $\frac{*}{2}$.

Nonparametric Combination methodology (Pesarin, 2001)

The Orbit is now defined in a multivariate framework:

$$\mathbf{G} = \{(1,2)^* : f((1,2)^*) = f((1,2))\}$$

(in practice: when you permute one observation in a variable, do the same in the other variables)

Also compute the p_1^* , p_2^* associated to each $\frac{*}{1}$, $\frac{*}{2}$.

Define a Combining Function $\psi(p_1, \ldots, p_m)$ having the following properties:

- i is non-increasing in each argument: $p_k < p_k'$ implies $\psi(\ldots, p_k, \ldots) \ge \psi(\ldots, p_k', \ldots)$;
- **ii** attains its supremum ψ° if at least one argument attains 0;
- iii $\alpha>0$ implies the critical value is such that $T_{\psi\alpha}<\psi^\circ$, i.e. no concentration of points at ψ° under H_0 .

Apply $T((p_1, p_2)^*) = \psi((p_1, p_2)^*)$ and compute the p_{global} .

Fisher combining function

$$\psi = -2 \cdot (log(p_1) + log(p_2)) = 6.029$$

$$p_{global} = 0.0400$$

Tippett (min-p) combining function

 $\psi=1-min(p_1,p_2)=1-0.0280$ $p_{global}=0.0460~(\le 2\cdot 0.0280=0.0560$ similar to Bonferroni, but more powerfull)

 Here we only have global p-values (in analogy to Manova, F-tests etc).

- Here we only have global p-values (in analogy to Manova, F-tests etc).
- If the test is significant at least one among $H_0(weight)$ or $H_0(leaf.len)$ is false.
- We don't know which one! (weak control of the FamilyWise Error)

- Here we only have global p-values (in analogy to Manova, F-tests etc).
- If the test is significant at least one among $H_0(weight)$ or $H_0(leaf.len)$ is false.
- We don't know which one! (weak control of the FamilyWise Error)
- How to cast them into multiple testing procedures?

- Here we only have global p-values (in analogy to Manova, F-tests etc).
- If the test is significant at least one among $H_0(weight)$ or $H_0(leaf.len)$ is false.
- We don't know which one! (weak control of the FamilyWise Error)
- How to cast them into multiple testing procedures?
- (strong) control of the FWER is easy!

Take Home Message

Permutation approach:

- very general uni/multi-variate approach
- few assumptions on the data-generating process
- natural approach in randomized experimental design
- good inferential properties
 (in most of the cases: exact control of the type I error, consistency, asymptotic optimality)
- very convenient for multiplicity control methods, since it deals easily with dependent tests.

Warnings:

- more complex experimental design can be dealt, but with caution (Pesarin, 2001)
- multiple (generalized) linear models need some care (Solari, Finos & Goeman, 2014; Hemerik, Goeman & Finos 2018)

Software 'R': libraries 'coin', 'flip', 'permuco'