CS 525: Theory of Computation Midterm 2

Dustin Ingram

February 28, 2012

1. Solution:

(a) To show that the set of nodes in T is countable, we must show that there is a one-to-one, onto function f for which f(A) = B if:

A =the set of natural numbers $\{1, 2, 3, \dots\}$ B =the set of nodes $\in T$

For the nodes in T, this function is simply f(n) = n.

(b) Here, we let S represent the infinite list of all paths from the root, and thus let each s_1, s_2, s_3 , etc. represent each unique path. Because any path can be represented as a unique sequence of 'directions' at each node, each path is equivalent to a series of 'lefts' and 'rights', since every node in T has exactly two children. Therefore, if we let 'left'= 0 and 'right'= 1, each s_n can be represented as a series of 0's and 1's.

Based on the diagonalization argument, this also means that, for any given set S', it is possible to construct a sequence s_{OPP} from the 'diagonalization' of S such that $s_{0,n} = opposite(s_{n,n})$. This sequence s_{OPP} is therefore not contained in S, but a valid sub-sequence of S. Therefore, S is uncountable.

- 2. **Solution:** To test if a DFA A has no useless states, for every state $q_n \in A$, we create a new DFA A_n which has the same states and transitions as A, except q_n is the only accepting state. Then, if for any A_n , $L(A_n) = \emptyset$, reject (because q_n is a useless state); otherwise, accept.
- 3. **Solution:** If we assume that TM M decides L_3 , then we can construct TM N such that it decides the (undecidable) reduction of L_3 as follows:

N: on input (O, w)

- (a) Design TM P such that it only accepts the input word w;
- (b) Run M(O, P);

(c) Accept if M(O, P) accepts, reject otherwise.

Thus, M(O, P) will only accept if $w \in L(O)$; however, this would also decide the reduction of M, and thus is a contradiction.

- 4. **Solution:** Since the complement of M must also be non-Turing recognizable, this would mean that M accepts all input except some single input w, which might never be found by M, and thus M is not Turing recognizable.
- 5. **Solution:** To prove that any infinite subset of MIN_{TM} is not Turing recognizable, let us first assume that there is some Turing recognizable subset $S \in MIN_{TM}$; each element $n \in S$ is therefore enumerable by some TM N. We then design a Turing machine as follows:

M: on input (N, w)

- (a) Obtain the description of M^[1]
- (b) Determine the length m of M
- (c) Use N to list all $n \in S$
- (d) For each N determine the length n of N
- (e) If n > m, simulate N(w)

The result is a TM N which recognizes the same langague as M, but has a longer length, thus resulting in a contradiction.

6. Solution:

(a) $\forall x \exists y [x \cdot y = 1] \notin \text{Th}(\mathbb{N}, \cdot)$

Reason: This can be proven by letting x > 1; there is no natural number by which we can multiply x to produce 1.

(b) $\forall x \exists y [x \cdot y = 1] \in \text{Th}(\mathbb{Q}, \cdot)$

Reason: This proven based on the definition of rational numbers; if x is a rational number, it can be represented by the quotient of two integers.

(c) $\forall x, y \exists z [z \cdot z + x = y] \in \text{Th}(\mathbb{R}, +, \cdot)$

Reason: This implements the operator 'less than or equal to' such that $x \leq y$; no matter what z is, its square can represent the positive difference between two rational numbers.

^[1]Theorem 6.3, pg. 220