Convolutional neural network

2024年9月12日 22:23

- 3 Components: Conv layers, Pooling, Normalization
- 1 Convolution Layers

2° す以有主多 filters, 提取不同符征→ act- maps, stack them together.

3° Batch of img $2\times3\times32\times32$ $\xrightarrow{6\times3\times5\times5}$ filters $2\times6\times28\times28$ Botch of out \times $C_{in}\times H\times W$ $\xrightarrow{C_{out}\times C_{in}\times K_b\times K_b}$ $N*C_{out}*H'*W'$

2) Stacking Convolutions

10 inp
$$\longrightarrow$$
 Conv \longrightarrow 1st hid \longrightarrow Conv \longrightarrow 2nd hid \longrightarrow Conv \longrightarrow 2nd hid \longrightarrow Conv \longrightarrow N×3×32×32 W₁: 6×3×5×5 N×6×28×28 W₂: 10×6×3×3 N×10×26×26 ... b₁: 6 32-5+1 b₂: 10 28-3+1 oriented edges, opposing colors

Stacking 2 conv -> another conv y=W2W1x linear classifier

2° Size

- ① In· W 7×7
 - Fil: K 3x3

Out W-K+1 5 x 5

Feature maps Shrink, lim #layers, sol

- 2 Padding, + Os around +4 input
 - In: W
 - Fil: K
 - Pad: P

Out: W-K+1+2P

(common: $\beta = (K-1)/2$ to make size in = out)

3° Receptive Fields

L Layer receptive field size =
$$1 + L \times (K-1)$$

filsize

e.g. input 1000 x 1000, K=3, L=?

$$1000 = 1 + L \times (3-1)$$

$$L = 999 \div 2 = 499.5$$

Large imgs need many layers for each outps to "see" the whole img, sol:
(gloabal context)

4° Downsample inside the network

Controlling the stride: indirectly downsampling : fewer data pt are being processed.

@ Strided conv:

In W

3×32×32

Fil K

10×5×5

In W
$$\frac{3}{3} \times \frac{32}{32}$$

Fil K $\frac{10 \times 5 \times 5}{5}$

Pad P 2

Str S $\frac{1}{5}$

Out $\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}$

Where $\frac{1}{5} \times \frac{1}{5} \times \frac{1$

5° Other conv

2 Pooling Layer: downsample 3-17

1° Max Pooling

3 Convolutional Networks

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	

Spatial Size I (pl 2 strided)
channels 7 (total volume is preserved)

ReLU 不一定需要.

Deep NN: hard to train (converge), sol:

4 Normalization

Butch Nor in fully connected
 Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance
 Why? Helps reduce "internal covariate shift", improves optimization
 We can normalize a batch of activations like this:

Why? Helps reduce "internal covariate shift", improves optimization

We can normalize a batch of activations like this:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

This is a differentiable function, so we can use it as an operator in our networks and backprop through it!

convert inp -> more standardized dist

 $\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} \chi_{i,j}$ per channel mean, shape D

std, shape D $\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$

Normalized X, $N \times D$ $\hat{\chi}_{i,j} = \frac{\chi_{i,j} - \mu_j}{\int \sigma_{,i}^2 + \epsilon}$

What if $\mu=0$, unit vec: too hard of a constrained, sol:

2° + Learnable scale & shift para: 8, B; D Learning $\delta = \sigma$, $\beta = \mu$, recover identity func.

$$\emptyset \textcircled{3}$$

$$y_{i,j} = y_j \hat{x}_{i,j} + \beta_j \quad \textcircled{n} \times \mathbb{D}$$

0~3 Estimated depend on minibatch; x do this at test-time! sol:

3° Test-Time use Uj, oj2 got from training

During testing batchnorm becomes a linear operator! Can be fused with the previous v. 海\$含. fully-connected or conv layer

2) Batch N- in Conv

only on batch

on batch, spatial dims

4) Others Norm

Behaves differently during training and testing: this

Not well-understood theoretically (yet)

is a very common source of bugs!