- About Me
- Research
- Publications
- People
- Teaching
- News
- Electrical Engineering & Computer Science
- Computer Science & Engineering
- Electrical & Computer Engineering

Academics

EECS 453 Principles of Machine Learning

Course Instructor: Prof. Qing Qu

Course Time: Mon/Wed 12:00 PM - 1:30 PM, 3 credit hour

Office Hour: Wed 3:30 PM - 5:00 PM

Prerequisite: EECS 351, or EECS 301, or any linear algebra courses

Notice: This is an entry-level ECE machine learning course targeted for senior EE & CE undergraduate, and junior master students outside SIPML area. All students outside EECS that want to learn the basics of ML are also welcome! **Compared to EECS 445, this course places slightly greater emphasis on mathematical principles and is better suited for students who have limited experience with programming and machine learning.**

Overview: The class will cover basic principles in machine learning, such as unsupervised learning (e.g., clustering, mixture models, dimension reduction), and supervised learning (e.g., regression, classification, neural networks & deep learning). For each topic, key algorithmic ideas/intuitions and basic theoretical insights will be highlighted.

Course Materials: slides and videos will be accessed via Canvas (TBA). Tentative topics that will be covered in this course are **supervised learning**, **unsupervised learning**, **and reinforcement learning**:

- Basics of probability, linear algebra, and optimization
- Regression and linear prediction
- Support vector machines and kernel methods
- Deep neural networks
- Dimension reduction: PCA, autoencoder
- Clustering (Kmeans, Mixture of Gaussians, EM)
- Representation learning: nonnegative matrix factorization, dictionary learning

Assessment: (i) 5 homework assignments (40%), (ii) mid-term exam (30%), (iii) course projects (25%), (iv) participation & course evaluation (5%)

Assessment	Percentage
Homework (5)	40%
Midterm Exam	30%
Projects	25%
Participation & Course Ev	aluation 5%

Textbook: We recommend the following books and articles, although we will not follow them closely.

- Foundations of Machine Learning, by Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar.
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction, by Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
- Deep Learning, by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
- Mathematics for Machine Learning, by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong.
- Linear Algebra and Optimization for Machine Learning, by Charu C. Aggarwal.

Related courses:

- EECS 445. Introduction to Machine Learning
- EECS 453. Applied Matrix Algorithms for Signal Processing, Data Analysis, and Machine Learning
- EECS 505. Computational Data Science and Machine Learning
- EECS 545. Machine Learning

	. .	-		
Week Week-		Topic	Contents	Homework, Review
1-1	08/29	Introduction (Remote)		
Week- 1-2	08/31	Supervised Learning (Remote)	Introduction to supervised learning, linear models, regularization	Linear Algebra Review
Week- 2-1	09/05	Labor Day	No class	
Week- 2-2	09/07	Supervised Learning	Learning Theory	Probability Review, HW1 Release
Week- 3-1	09/12	Supervised Learning	Linear regression I	
Week- 3-2	09/14	Supervised Learning	Linear regression II	Python Review
Week- 4-1	09/19	Supervised Learning	Linear Classifiers	
Week- 4-2	09/21	Supervised Learning	Linear Discriminant Analysis	HW1 Due, HW2 Release
Week- 5-1	09/26	Supervised Learning (remote)	Logistic regression	
Week- 5-2	09/28	Supervised Learning (remote)	Optimization methods I	
Week- 6-1	10/03	Supervised Learning	Optimization methods II	
Week- 6-2	10/05	Supervised Learning	Support vector machine (SVM) I	HW2 Due, HW3 Release
Week- 7-1	10/10	Supervised Learning	Support vector machine (SVM) II	
Week- 7-2	10/12	Supervised Learning	Support vector machine (SVM) III	
Week- 8-1	10/17	Fall Study Day	No class	
Week- 8-2	10/19	Supervised Learning	Dual SVM	HW3 Due
Week- 9-1	10/24	Supervised Learning	Nonlinear models, kernel methods	
Week- 9-2	10/26	Supervised Learning	Introduction to deep neural networks I	
Week- 10-1		Supervised Learning	Introduction to deep neural networks II	
Week- 10-2	11/02	Supervised Learning	Introduction to deep neural networks III	
Week- 11-1	11/07	Midterm	Midterm	
Week- 11-2	11/09	Unsupervised Learning	Introduction to unsupervised learning, clustering problem, K-means	Project Proposal Due, HW4 Release
Week- 12-1	11/14	Unsupervised Learning	K-means, mixtures of Gaussian, expectation maximization	
Week- 12-2	11/16	Unsupervised Learning	Dimension reduction, PCA	
Week- 13-1	11/21	Unsupervised Learning	Dimension reduction II	
Week- 13-2	11/23	Thanksgiving	No Class	
Week- 14-1	11/28	Unsupervised Learning (Remote)	Representation learning, matrix factorization	HW4 Due, HW5 Release
Week- 14-2	11/30	Unsupervised Learning (Remote)	Autoencoder & self-supervised learning	
Week- 15-1	12/05	Unsupervised Learning	Generative Models	HW5 Due
Week- 15-2	12/07	Final Presentation		

• Electrical and Computer Engineering

Qing Qu

<u>qingqu@umich.eduqingqu@umich.edu</u>1301 Beal Avenue Ann Arbor, MI 48109-2122

Login

© 2024 The Regents of the University of Michigan

- Privacy Policy Campus Safety Non-Discrimination Policy
- About Me
- Research
- Publications
- People
- Teaching
- News
- Electrical Engineering & Computer Science
- Computer Science & Engineering
- Electrical & Computer Engineering