Function (ফাংশন)

- ১। ফাংশনের প্রধান বৈশিষ্ট্য ঃ y=f(x)
- (i) $\pmb{\chi}$ এর প্রতিটি মানের জন্য \pmb{y} এর অবশ্যই কোন না কোন মান থাকতে হবে ।
- (ii) χ এর একটি মানের জন্য γ এর কখনই দুইটি মান থাকতে পারবে না।

২। ফাংশনের প্রতীক ঃ
$$f\colon A \to B$$
 ডোমেন কো-ডোমেন

ডোমেন এর বিভিন্ন মানের জন্য y এর যে সকল মান পাওয়া যায় তাদেরকে রেঞ্জ (Range) বলে।

যেমনঃ
$$f\colon A \to B$$
 , $f(x)=x^2$, $A=\{1,2,3\}$, $B=\{1,4,9,16\}$ হলে ডোমেন = $A=\{1,2,3\}$ কো-ডোমেন = $B=\{1,4,9,16\}$

Now: $f(1) = 1^2 = 1$, $f(2) = 2^2 = 4$, $f(3) = 3^2 = 9$:: (3) $f(3) = 3^2 = 9$:: (3)

৩। এক এক ফাংশন ঃ

(i) ফাংশনের ডোমেন χ এর প্রতিটি মানের জন্য γ এর ভিন্ন ভিন্ন মান থাকতে হবে।

(ii) যেমন
$$g(x) = x^2$$
; $x = 1$ হলে $y = 1^2 = 1$ আবার, $x = -1$ হলে $y = (-1)^2 = 1$

$$x_1 \neq x_2$$
 কিন্তু $f(x_1) = f(x_2)$ $f(x) = x^2$ এক এক নয় ।

$$(iii)$$
 আবার $f(x)=x^3$, $x=1$ হলে $y=1$; $x=-1$ হলে $y=-1$

$$x_1 \neq x_2$$
 এবং $f(x_1) \neq f(x_2)$ $f(x) = x^3$ এক এক ফাংশন

8। সার্বিক ফাংশন ঃ কোন ফাংশনের রেঞ্জ = কোডোমেন হলে তাকে সার্বিক ফাংশন বলে।

৫। প্রতিষঙ্গ ফাংশন ঃ যে ফাংশনটি এক-এক এবং সার্বিক তাকে প্রতিষঙ্গ ফাংশন বলে।

৬। বিপরীত ফাংশন ঃ $f_1\colon A o B$ হলে যদি $f_2\colon B o A$ হয় তবে, f_2 কে f_1 এর বিপরীত ফাংশন বলে।

$$\therefore f_2 = f_1^{-1}$$
, $f_1 = f_2^{-1}$ যেমন ঃ $f(x) = y$ হলে $x = f^{-1}(y)$

Remember: (i) বিপরীত ফাংশন হতে হলে অবশ্যই এক-এক এবং সার্বিক হতে হবে।

(ii) বিপরীত ফাংশন বলতে
$$y=\chi$$
 রেখার সাপেক্ষে প্রতিচ্ছবি বুঝায় ।

৭। অভেদক ফাংশন ঃ $f:A \to A$ অর্থাৎ ডোমেন = কোডোমেন যেমন ঃ f(x)=x

৮। ধ্রুব ফাংশন ঃ
$$f(x) = constant$$
 যেমন ঃ $f(x) = 70$, $f(x) = a^2 + b^2 + c^2$; a,b,c ধ্রুবক

৯। সংযোজিত ফাংশন ঃ $f\colon A\to B$; $g\colon B\to C$ হলে

$$(i)\ (fog)\ (x)=f(\ g\ (x)\)$$
 অর্থাৎ $g\ (x)$ এর রেঞ্জ হবে $(fog)\ (x)$ এর ডোমেন

$$(ii)\ (gof)\ (x)=g(\ f\ (x)\)$$
 অর্থাৎ $f\ (x)$ এর রেঞ্জ হবে $(gof)\ (x)$ এর ডোমেন

$$(iii)\ (fof)\ (x)=f(\ f(x)\)$$
 অর্থাৎ $f(x)$ এর রেঞ্জ হবে $(fof)\ (x)$ এর ডোমেন

$$(iv)(gog)(x)=g(g(x))$$
 অর্থাৎ $g(x)$ এর রেঞ্জ হবে $(gog)(x)$ এর ডোমেন

১০। **ফাংশনের ডোমেন, রেঞ্জ** ঃ (H S C সিলেবাসের অন্তর্ভূক্ত গুলি)

$$(i) \ f \ (x) = Ax + B$$
 ডোমেন $\mathbb R$ রেঞ্জ $\mathbb R$

$$(ii) \ f(x) = \sqrt{Ax + B}$$
 ডোমেনের জন্য ঃ $Ax + B \geqslant 0$ রেঞ্জ ঃ $f(x) \geqslant 0$

$$(iii) \ f(x) = rac{Ax+B}{Cx+D}$$
 ডোমেনের জন্য ঃ $Cx+D
eq 0$ রেঞ্জ ঃ $\mathbb{R}-\left\{rac{A}{C}
ight\}$

রেঙাঃ
$$\mathbb{R}-\left\{\frac{A}{C}\right\}$$