		Derive from an observer's use of his senses at a particular place and time					
		Significant condition (what to write down):					
		Need theory to guide what factors are relevant and distinguish irrelevant ones					
	Observation	Theory is built into even our most basic "observation statements"					
		Unless we can eliminate some 'irrelevant' factors, we will never be able to generalize					
		As science progresses, new theoretical terms and observational language are invented					
		Never absolutely certain, due to some assumptions/errors/lack of theory					
	Hypothesis	Write down a general hypothesis that captures all these observations					
		Every detail of the theory is needed for the predictions (Hard to vary when wrong)					
		Able to easily generate multiple predictions that could be easily falsified or tested					
	Good	Good theory may not convince everyone (VS mythical stories)					
	Theory	Theories govern all events of a particular kind at all places and all times					
		Unknown parameters: Measure them via experiments, use these obtained values to make					
	Occam's Razor:	more quantitative predictions, compare predictions with other experiments to confirm/falsify					
ਰ		Have as few parameters (assumptions) as possible, and make as many predictions as possible					
S.		Complicated curve more likely to be wrong than simple one, may only fit for specific data					
Te 1		Only use when cannot tell which hypothesis is true					
2		Describe why cannot use a simple relationship (Why can't we use a straight line?)					
ţį	Prediction	Theory cannot be ambiguous, predictions should be as concrete as possible (use math)					
ien	Experiment	Test the hypothesis, see if the predictions match with the results of the experiment:					
Sci		Confirm: Continue to derive other consequences with the theory/make a more general theory					
Sc		Commin. Continue to derive other consequences with the theory/make a more general theory					
he Sc	Confirmation	Falsify (mismatch between theory and experiment): Return to the observational phase					
The Scientific Method	Confirmation	Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory)					
The Sc	Confirmation Falsification	Falsify (mismatch between theory and experiment): Return to the observational phase					
The Sc		Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory)					
The Sc		Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory) • Compare predictions from theory with experiments as much as possible • Theories can only be falsified, never sure if it is 100% correct Induction: Generalize from a large number of observation statements.					
The Sc		Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory) • Compare predictions from theory with experiments as much as possible • Theories can only be falsified, never sure if it is 100% correct Induction: Generalize from a large number of observation statements, under a wide variety of conditions (may be wrong) CE→R					
The Sc		Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory) • Compare predictions from theory with experiments as much as possible • Theories can only be falsified, never sure if it is 100% correct Induction: Generalize from a large number of observation statements, under a wide variety of conditions (may be wrong) CE→R Abduction: Just a proposed explanation for observation for a single					
The Sc	Falsification	Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory) • Compare predictions from theory with experiments as much as possible • Theories can only be falsified, never sure if it is 100% correct Induction: Generalize from a large number of observation statements, under a wide variety of conditions (may be wrong) CE→R Abduction: Just a proposed explanation for observation for a single observation (may be wrong) RE→C					
The Sc	Falsification	Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory) • Compare predictions from theory with experiments as much as possible • Theories can only be falsified, never sure if it is 100% correct Induction: Generalize from a large number of observation statements, under a wide variety of conditions (may be wrong) CE→R Abduction: Just a proposed explanation for observation for a single observation (may be wrong) RE→C Deduction: Find specific consequences given a law (No ambiguity) RC→E					
The Sc	Falsification Reasoning	Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory) • Compare predictions from theory with experiments as much as possible • Theories can only be falsified, never sure if it is 100% correct Induction: Generalize from a large number of observation statements, under a wide variety of conditions (may be wrong) CE→R Abduction: Just a proposed explanation for observation for a single observation (may be wrong) RE→C Deduction: Find specific consequences given a law (No ambiguity) RC→E 1. Start with basic information (use round numbers (round answer), explain the reasoning)					
The Sc	Falsification	Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory) • Compare predictions from theory with experiments as much as possible • Theories can only be falsified, never sure if it is 100% correct Induction: Generalize from a large number of observation statements, under a wide variety of conditions (may be wrong) CE→R Abduction: Just a proposed explanation for observation for a single observation (may be wrong) RE→C Deduction: Find specific consequences given a law (No ambiguity) RC→E 1. Start with basic information (use round numbers (round answer), explain the reasoning) 2. Make reasonable assumptions 3. Break down problem into manageable parts					
The Sc	Falsification Reasoning	Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory) • Compare predictions from theory with experiments as much as possible • Theories can only be falsified, never sure if it is 100% correct Induction: Generalize from a large number of observation statements, under a wide variety of conditions (may be wrong) CE→R Abduction: Just a proposed explanation for observation for a single observation (may be wrong) RE→C Deduction: Find specific consequences given a law (No ambiguity) RC→E 1. Start with basic information (use round numbers (round answer), explain the reasoning) 2. Make reasonable assumptions 3. Break down problem into manageable parts Estimate answer within a factor of 10 Geometric mean: √max × min					
The Sc	Falsification Reasoning	Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory) • Compare predictions from theory with experiments as much as possible • Theories can only be falsified, never sure if it is 100% correct Induction: Generalize from a large number of observation statements, under a wide variety of conditions (may be wrong) CE→R Abduction: Just a proposed explanation for observation for a single observation (may be wrong) RE→C Deduction: Find specific consequences given a law (No ambiguity) RC→E 1. Start with basic information (use round numbers (round answer), explain the reasoning) 2. Make reasonable assumptions 3. Break down problem into manageable parts Estimate answer within a factor of 10 Geometric mean: √max × min An idealized representation or example for thinking about a real-life phenomenon					
The Sc	Falsification Reasoning Guesstimation	Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory) • Compare predictions from theory with experiments as much as possible • Theories can only be falsified, never sure if it is 100% correct Induction: Generalize from a large number of observation statements, under a wide variety of conditions (may be wrong) CE→R Abduction: Just a proposed explanation for observation for a single observation (may be wrong) RE→C Deduction: Find specific consequences given a law (No ambiguity) RC→E 1. Start with basic information (use round numbers (round answer), explain the reasoning) 2. Make reasonable assumptions 3. Break down problem into manageable parts Estimate answer within a factor of 10 Geometric mean: √max × min An idealized representation or example for thinking about a real-life phenomenon Express our hypothesis in terms of equations and numerical parameters, make predictions					
The Sc	Falsification Reasoning	Falsify (mismatch between theory and experiment): Return to the observational phase Hypothesis need not completely discard right away (many possible explanations, lack theory) • Compare predictions from theory with experiments as much as possible • Theories can only be falsified, never sure if it is 100% correct Induction: Generalize from a large number of observation statements, under a wide variety of conditions (may be wrong) CE→R Abduction: Just a proposed explanation for observation for a single observation (may be wrong) RE→C Deduction: Find specific consequences given a law (No ambiguity) RC→E 1. Start with basic information (use round numbers (round answer), explain the reasoning) 2. Make reasonable assumptions 3. Break down problem into manageable parts Estimate answer within a factor of 10 Geometric mean: √max × min An idealized representation or example for thinking about a real-life phenomenon					

Difference Equations				Differential Equations	
Each term is defined as a function of preceding term(s)				Separable:	2 nd Order Linear Homogeneous:
0	Ι	Туре	Solution (closed form)	$\frac{dy}{dx} = \frac{g(x)}{f(y)}, f(y) \neq 0$	$y^{\prime\prime} - y^{\prime} - 2y = 0$
1	Ν	$x_n = x_{n-1} + b$	$x_n = x_0 + nb \text{ (A.S.)}$	$\frac{d}{dx} = \frac{1}{f(y)}, f(y) \neq 0$	$\lambda^2 - \lambda - 2 = 0$
1	Υ	$x_n = rx_{n-1}$	$x_n = r^n x_0$ H: No const. or n	f(y) dy = g(x) dx	$\lambda = -1 \text{ or } \lambda = 2$
1	Ν	$x_n = rx_{n-1} + b$	$x_n = r^n \left(x_0 + \frac{b}{r-1} \right) - \frac{b}{r-1}$	$\int f(y) dy = \int g(x) dx$	$y = Ae^{(-1)x} + Be^{(2)x}$
		$x_n = r^{-1} \left(x_0 + \frac{1}{r-1} \right) - \frac{1}{r-1}$			y = 4y - 4y
2	Υ	$x_n = Ax_{n-1} + Bx_{n-2}$		F(y) = G(x) + C	$\lambda^2 - 4\lambda + 4 = 0$
		$x_n - x_{n-1} - 2x_{n-1}$	$x_{n-2} = 0$ $x_n = 4x_{n-1} - 4x_{n-2}$	<i>y</i> – ···	$\lambda = 2$ (Double root)
General Sol.	ar Sol	$\lambda^2 - \lambda - 2 =$	$0 \qquad \lambda^2 - 4\lambda + 4 = 0$	Sub question to solve C	$y = Ae^{2x} + Bxe^{2x}$
neral	ticul	$\lambda = -1 \text{ or } \lambda =$		Singular solution: $y \equiv 0$	General solution, put in initial
Ger	Par	$x_n = A(-1)^n + 1$	$B(2)^{n}$ $x_n = A(2)^{n} + B_{n}(2)^{n}$	When $deg(f) < 0$	conditions to solve for A, B

Given Prob. (<1)

 $H_0: p_1 = \frac{1}{4}, p_2 = \frac{1}{2}, p_3 = \frac{1}{4}$

 $= X^2 < \chi^2_{0.05,(3-1)} = 5.99$

Not rejected, follow A,B,C

Reject H₀ if $X^2 > \chi^2_{\alpha,(d.f.)}$ (from appendix)

Otherwise, follow trend (H₀)

Given Freq (>1)

 $41.601 = X^2 > \chi^2_{0.05,4} = 9.49$

Rejected, dependent/have

relationship bet. R and C

 $r_i = sum(row i)$

n = sum(all cells)