Cosmic Tag Team:

How LIGO and Gravitational Waves "Wrestle" with the Universe

What are Gravitational Waves?

"Space-time tells matter how to move; matter tells space-time how to curve." -Dr. John Wheeler

"Space-time tells matter how to move; matter tells space-time how to curve."

-Dr. John Wheeler

"Space-time tells matter how to move; <u>matter tells space-time</u> <u>how to curve</u>."

-Dr. John Wheeler

When objects accelerate through space

How matter respond to Gravitational Waves- Stretching and Squishing

How matter respond to Gravitational Waves- Stretching and Squishing

h,

 h_{\perp}

What creates a Gravitational Wave?

- Most things can produce gravitational waves
 - May be too small to be detected
- What can potentially be detected
 - Black hole binary
 - Neutron star binary
 - Supernovae

- Most things can produce gravitational waves
 - May be too small to be detected
- What can potentially be detected
 - Black hole binary
 - Neutron star binary
 - Supernovae

Types of Black Holes

- Stellar Origin Black Holes
 2 100M
- Intermediate Mass Black Holes
 100-10⁵ M
- Supermassive Black Holes
 10⁵-10¹⁰ M_o

Detecting Gravitational Waves

LIGO

LIGO

LIGO - A GIGANTIC INTERFEROMETER

LIGO

What has LIGO Detected?

GRAVITATIONAL WAVE MERGER DETECTIONS

→ SINCE 2015

KEY

UNITS ARE SOLAR MASSES 1 SOLAR MASS = 1.989 x 1030 kg Note that the mass estimates shown here do not include uncertainties, which is why the final mass is sometimes larger than the sum of the primary and secondary masses. In actuality, the final mass is smaller than the primary plus the secondary mass.

The events listed here pass one of two thresholds for detection. They either have a probability of being astrophysical of at least 50%, or they pass a false alarm rate threshold of less than 1 per 3 years.

Notable Events

- GW150914: First GW event detected
- GW170817: First Binary Neutron Star
- GW190521: First GW with a remnant in the IMBH mass range

How does LIGO extract information from a signal?

GW Signal

GW Signal Hanford, Washington (H1) Livingston, Louislana (L1) 1.0 1.0 1.1 distorred inheal injuries 1.1 distorred inheal injuries

Parameter

i, RA, Dec, distance, ...

 m_1

03 Results

O3a

What astrophysics can we do with these gravitational waves?

One example: Gravitational Waves and Cosmology

Cosmological inference is easy in theory

Cosmological inference - Measuring the Hubble constant is really easy (in theory)

distance

Cosmological inference is not so easy in practice

Measuring the Hubble constant is not so easy...

Notable Events

- GW150914: First GW event detected
- GW170817: First Binary Neutron Star THE BIRTH OF MULTIMESSENGER ASTRONOMY!!!
- GW190521: First GW with a remnant in the IMBH mass range

Summary

- Gravitational waves are ripples in spacetime caused by compact binary coalescences.
- We can detect gravitational waves using the advanced interferometry of the LIGO, Virgo, and KAGRA detectors, and determine the properties of these merging objects.
- The numbers and types of events observed give us a better astrophysical understanding of the universe writ large.