Representation and Processing of Instantaneous and Durative Temporal Phenomena

Manolis Pitsikalis, Alexei Lisitsa, Shan Luo

University of Liverpool, United Kingdom {E.Pitsikalis,A.Lisitsa,Shan.Luo}@liverpool.ac.uk

LOPSTR 2021

September 7-8, 2021 - Tallinn, Estonia and Virtual

Event processing systems

Pattern definition languages

Currently:

- the majority of pattern languages use either an interval-based temporal model (e.g., ETALIS¹) or a point-based temporal model (e.g., SASE+²)
- some combine instants and intervals, but don't offer Allen's relations on intervals (Event Calculi³)
- automata based languages focus on sequences of events (FlinkCEP⁴)

There is a need for a language that allows the expression of instantaneous and durative entities and is expressive enough for the definition of hierarchical events e.g. maritime events.

D. Anicic et al. ETALIS: Rule-Based Reasoning in Event Processing

²H. Kawashima et al. Complex event processing over uncertain data streams.

 $^{{}^3\!\}text{A}.$ Artikis et al. An Event Calculus for Event Recognition

⁴ https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/libs/cep/

A temporal phenomena definition language

We present a logic based language that allows the specification of instantaneous and durative temporal phenomena.

The key elements of the language are:

- events: happen on instants of time,
- states: hold true on intervals,
- dynamic temporal phenomena: hold true on intervals.

Events, states and dynamic temporal phenomena are expressed as predicates of corresponding types, and can be either **user-defined** or **input**.

Syntax

Our language is described by the triplet $\langle \mathscr{P}, L, \Phi \rangle$

- $L = \{\land, \lor, \neg\} \cup \{\rightarrowtail, \sqcup, \sqcap, \backslash\} \cup \{\text{before, meets, overlaps, finishes, starts, equals, contains}\} \cup \{\text{start, end}\}.$
- Φ is the set of formulae defined by the union of the formulae sets:
 - Φ' describe instantaneous temporal phenomena,
 - Φ⁻ describe durative temporal phenomena that hold (are true) in disjoint maximal intervals, and
 - Φ⁼ describe durative temporal phenomena that may hold in non-disjoint intervals.

5

Definitions: Events

Events are true on instants of time and they can be defined using formulae of Φ^* i.e., expressions on instants.

The set of formulae of Φ is defined as follows:

- an event predicate is a formula of Φ^{*}
- iff $\phi \in \Phi$ then $\neg \phi$ is a formula of Φ
- iff $\phi, \psi \in \Phi$ then $\phi[\wedge, \vee]\psi$ is a formula of Φ
- iff $\phi \in \Phi^-$ then start/end (ϕ) is a formula of Φ •

Logical connectives

Logical connectives

Logical connectives

Definitions: States

States are inertive and hold true for maximal intervals. States are defined in terms of Φ^- formulae i.e., with the use of the maximal range operator or with the use of the $\sqcup, \sqcap, \setminus$ interval operations.

The set of Φ^- formulae is defined as follows:

- a state predicate is formula of Φ⁻
- iff $\phi, \psi \in \Phi$ then $\phi \mapsto \psi$ is formula of Φ^-
- iff $\phi, \psi \in \Phi^-$ then $\phi[\sqcup, \sqcap, \setminus] \psi$ is formula of Φ^-

Maximal range operator

Interval operations

- Temporal union (□),
- temporal intersection (□),
- temporal complement (\).

Interval operations

- Temporal union (□),
- temporal intersection (□),
- temporal complement (\).

Interval operations

- Temporal union (□),
- temporal intersection (□),
- temporal complement (\).

Definitions: Dynamic temporal phenomena

Dynamic temporal phenomena are defined in terms of temporal relations (\square) between events, states or activities (i.e., formulae of $\Phi^{=}$).

The set of $\Phi^{=}$ formulae is defined as follows:

- a dynamic temporal phenomenon predicate is a formula of $\Phi^{=}$
- and...

Relation	Formulae sets			
	$a\in\Phi^-\cup\Phi^=$	$a\in\Phi^{ullet}$	$a\in\Phi^-\cup\Phi^=$	a ∈ Φ '
	$b\in\Phi^-\cup\Phi^=$	$b\in\Phi^-\cup\Phi^=$	$b\in\Phi^{\scriptscriptstyleullet}$	$b\in\Phi^{\scriptscriptstyleullet}$
a before b	/	/	/	√
a overlaps b	✓	-	-	-
a meets b	✓	-	-	-
a finishes b	✓	✓	-	-
a starts b	✓	✓	-	-
a contains b	✓	-	✓	-
a equals b	✓	-	-	-

$$\phi, \psi \in \Phi^- \cup \Phi^=$$

$$\phi\in\Phi^-\cup\Phi^=,\psi\in\Phi^{\scriptscriptstyle\bullet}$$

Temporal relations: instant - instant

Maritime use case: available data

Dynamic data:

- Automatic Identification System (AIS) ✓
- RADAR (stream)
- Weather (stream)
- CCTV video (stream)

Static data:

- Area polygons, points of ports etc
- Depth information (static)
- Vessel images (IHS)
- Vessel characteristics (IHS/AIS) ✓

Automatic Identification System (AIS)

The Automatic Identification System is an extensively used autonomous tracking system that allows transmission of dynamic and static vessel information.

Transmitted Data:

- **Dynamic information** Every 2-10 sec while under way, every 6 min while anchored (speed, location, heading etc)
- Static & Voyage related information: Every 6 min (Vessel type, dimensions, destination, eta)

AIS track

Maritime examples: stopped & underway

A *Vessel* is stopped for the **maximal** time intervals its speed is less than a user defined threshold e.g., 0.5 knots.

```
event stop\_start(Vessel):
ais(Vessel, Speed, ...) \land Speed \le 0.5.
event stop\_end(Vessel):
ais(Vessel, Speed, ...) \land Speed > 0.5.
state stopped(Vessel):
stop\_start(Vessel) \rightarrow stop\_end(Vessel).
```

A *Vessel* is underway for the **maximal** time intervals its speed is greater than a user defined threshold e.g., 2.7 knots.

```
state underway(Vessel):
 ais(Vessel, Speed, ...) \land Speed > 2.7 \rightarrow ais(Vessel, Speed, ...) \land Speed < 2.7.
```

Maritime examples: in port/fishing area & moored

```
In port. (In fishing area is defined in a similar manner)

state in_port(Vessel, Port):
    enters_port(Vessel, Port) → leaves_port(Vessel, Port).

A Vessel is moored when it is stopped inside a port (Port).

state moored(Vessel, Port):
    stopped(Vessel) □
    in_port(Vessel, Port).
```

Maritime examples: trip & fishing trip

A trip of a Vessel from a PortA to a PortB can be defined as follows:

```
dynamic trip(Vessel, PortA, PortB):
  end(moored(Vessel, PortA)) before
  (underway(Vessel)
  before start(moored(Vessel, PortB)).
```

A fishing trip starts from a *PortA* and ends at a *PortB*, during the trip the vessel is underway and during that period it passed through a fishing area *FArea*.

```
 \begin{array}{l} {\sf dynamic\ fishing\_trip}({\sf Vessel},{\sf PortA},{\sf AreaID},{\sf PortB}): \\ {\sf end}({\sf moored}({\sf Vessel},{\sf PortA})) \ {\sf before} \\ {\sf ((underway}({\sf Vessel})\ {\sf contains\ in\_fishing\_area}({\sf Vessel},{\sf AreaID})) \\ {\sf before\ start}({\sf moored}({\sf Vessel},{\sf PortB}))). \end{array}
```

Maritime examples: pilotage in Liverpool

Description of pilotage from a VTS expert:

- The vessel will initially be anchored in the anchorage area 1.
- The pilot will join the vessel reasonably close to "The Bar". Around 15 minutes before the pilot arrives, the vessel will get underway and be travelling 5-8 knots when the pilot joins the vessel.
- The pilot will then navigate the vessel into port (Seaforth, Garston Dock, Pier Head or elsewhere). The fast pilot boat will probably go in ahead of it.

A prototype formalisation of this activity in our language would be:

```
\label{eq:dynamic_pilotage} \begin{split} & \operatorname{dynamic\ pilotage}(\mathit{Vessel}, \mathit{Pilot}): \\ & \operatorname{end}(\mathit{anchored}(\mathit{Vessel}, \mathit{anchorage\_1})) \text{ before} \\ & (((\mathit{underway}(\mathit{Vessel}) \text{ contains} \\ & (\mathit{in\_area}(\mathit{Vessel}, \mathit{theBar}) \cap \mathit{in\_area}(\mathit{Pilot}, \mathit{theBar}))) \text{ overlaps} \\ & \mathit{in\_proximity}(\mathit{Vessel}, \mathit{Pilot})) \text{ before} \\ & \mathit{start}(\mathit{moored}(\mathit{Vessel}, \mathit{Port})) \ \land \ \mathit{Port} \in [\mathit{Seaforth}, \ldots]). \end{split}
```

Maritime use case

Processing: Evaluation order

Processing of the user defined temporal phenomena requires a valid evaluation order. For example:

Processing: Evaluation order

Processing of the user defined temporal phenomena requires a valid evaluation order. For example:

Processing: Evaluation order

Processing of the user defined temporal phenomena requires a valid evaluation order. For example:

Topological sort of the dependency graph (DAG) provides a valid evaluation order.

Processing: Streams

Processing happens at equally spaced, with a step s, query times t_q and a temporal window ω .

As the window slides, elements that fall outside should be discarded **unless** they have been classified as 'non-redundant'.

Processing: Streams

Processing happens at equally spaced, with a step s, query times t_q and a temporal window ω .

As the window slides, elements that fall outside should be discarded **unless** they have been classified as 'non-redundant'.

Processing: Streams

Processing happens at equally spaced, with a step s, query times t_q and a temporal window ω .

As the window slides, elements that fall outside should be discarded **unless** they have been classified as 'non-redundant'.

Preliminary evaluation: dataset

Attribute	Brest, France	
Period (months)	6	
Vessels	5K	
AIS signals	18M	
Fishing areas	263	
Ports	222	
Spatio-temporal events	160K	

- Source: Cyril Ray et. al. Heterogeneous integrated dataset for Maritime Intelligence, surveillance, and reconnaissance. Data in Brief, Volume 25, 2019.
- Preprocessing: M. Pitsikalis et. al. Composite Event Recognition for Maritime Monitoring. DEBS '19

Preliminary evaluation: User defined phenomena

User defined phenomena stop_end/start(Vessel) underway (Vessel) in_port(Vessel, Port) in_fishing_area(Vessel, Port) stopped(Vessel) moored(Vessel, Port) trip(Vessel, PortA, PortB) fishing_trip(Vessel, PortA, FArea, PortB)

Preliminary evaluation: efficiency (2h step)

Summary

We offer:

- a language that allows the description of phenomena that happen on instants and intervals, the relations between them and hierarchical definitions,
- a formal description of the semantics,
- the operational semantics for stream processing, and
- an open source implementation https://github.com/manospits/Phenesthe.

Although we presented examples inspired from the maritime domain, the language can be used in a wide set of applications.

Future work:

- integrate temporal stream processing with process mining techniques for the discovery of dynamic temporal phenomena,
- make the implementation scalable.

Thank you!