

HTML, CSS e JavaScript

Disciplina DPW

HTML: Linguagem de Marcação de HiperTexto

várias páginas interligadas (escrita não-linear)

HTML: Linguagem de Marcação de HiperTexto

O que é HiperTexto?

O termo hipertexto foi criado por Theodore Nelson, na década de sessenta, para denominar a forma de escrita/leitura não linear na informática.

HTML: Linguagem de Marcação de HiperTexto

DESENVOLVIMENTO DE PÁGINAS WEB

HTML: Linguagem de Marcação de HiperTexto

- HTML define:
 - VOCABULÁRIO: conjunto de "palavras" (elementos, atributos e valores) para a escrita de páginas Web
 - SINTAXE: regras de como escrever as marcações
 - USO: evolui ao longo do tempo (v 2.0 / 3.2 / 4.0 / 4.01 / 5.0), algumas palavras caem em desuso (*deprecated*) e outras são adicionadas.

DESENVOLVIMENTO DE PAGINAS WEB

HTML: Linguagem de Marcação de HiperTexto

- HTML (1991) linguagem limitada (apenas texto)
- HTML 2.0 (1995) novas formatações (voltada para design), hypermedia, consulta a base de dados, etc
- HTML 3.2 (1997) suporta extensões dos navegadores
- HTML 4 (1999) suporta CSS
- XHTML (2000) HTML + rigor do XML (Extensible Markup Language)
- HTML 5 (2014) HTML 4 + XHTML (em desenvolvimento)

HTML x CSS (Folhas de Estilo em Cascata)

- HTML
- Estruturação do documento em elementos
 - (estrutura, semântica, tipos de informação)
- CSS: Cascading Style Sheets
- Formatação dos elementos
 - (visual, apresentação, aparência das informações)

```
HTML: elemento parágrafo

CSS: formatação do parágrafo

proportion parágrafo

proportion
```


O que se constrói com HTML e CSS

HTML

- Estruturação do Documento
- Texto
- Imagem
- Ligações (links)
- Embutir Objetos (imagem, som, vídeo...)
- Tabela
- Formulário

CSS

- Estilos para formatação dos elementos
- Diagramação (sem Tabela, *Tableless*)

DE PÁGINAS WEB

JavaScript

- Não é Java
- É uma linguagem de programação do lado do cliente (*client-side*).
- Não é uma linguagem mantida pela W3C.
- É uma linguagem orientada a objeto.
- Permite moldar um comportamento dinâmico das páginas.

HTML, CSS e JavaScript

Resumindo

Primeira Página HTML

- Estrutura Básica
- O primeiro arquivo
- Validação das páginas
- Case sensitive
- Indentação dos comandos

Estrutura HTML

Primeira Página: doctype, html, head, body


```
<!DOCTYPE html> <html>
```

```
<head>
<title>Teste de HTML</title>
<meta charset="UTF-8">
</head>
```

```
<body>
<h1>Título do Conteúdo da Página</h1>
Parágrafo... 
Parágrafo... 
Parágrafo... 
Parágrafo... 
</body>
```

</html>

Valide o Documento

http://validator.w3.org/

Letras maiúsculas X Letras minúsculas

• As etiquetas (tags) não são case sensitive.

• O W3C recomenda letras minúsculas em HTML.

Indentação

```
<!DOCTYPE html>
<html>
   <head>
      <title>Teste de HTML</title>
      <meta charset="UTF-8">
   </head>
   <body>
      <h1>Título do Conteúdo da Página</h1>
      Parágrafo... 
      Parágrafo... 
      Parágrafo... 
   </body>
</html>
```



```
<!DOCTYPE html>
<html>
  <head>
     <title>Teste de HTML</title>
     <meta charset="UTF-8">
  </head>
  <body>
     <h1 style="text-align: center;">Título do Conteúdo da Página</h1>
     Parágrafo... 
     Parágrafo... 
     Parágrafo... 
  </body>
</html>
```


O que é Unicode?

O que é UTF-8?

Primeira Página

- <head>
 <title>Teste de HTML</title>
 <meta charset="UTF-8">
 </head>
- Metadado ou metainformação: descreve as características de um item como tamanho, tipo, data de criação, alteração, etc.
- Use a codificação UTF-8 como padrão nas páginas, pois oferece suporte a vários idiomas. **Unicode** é o conjunto de caracteres. **UTF-8** é a codificação.

Organização de Computadores

- Bits e bytes
- Bases: decimal, binária, octal e hexadecimal

Bits e Bytes

Por que sistema binário?

O processador de um computador trabalha com comandos de Ligado e Desligado através de seus transistores que nada mais fazem do que interpretar correntes elétricas.

Um processador pode ter bilhões de transistores

Bases

Decimal	Binário	Octal	Hexadecimal
0	0000	0	.0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

• Unicode é uma lista de caracteres onde cada caractere corresponde a um número decimal único.

$$A = 65$$
, $B = 66$, $C = 67$,
 $a = 97$, $b = 98$, $c = 99$, ...

- O **Unicode** define uma correspondência entre símbolos e números.
- O **Unicode** pode representar todos os caracteres específicos de diversos idiomas.
- Outras codificações de caracteres: ASC-II, ISO-8859-1, ISO-8859-15, etc.

UNICODE

Dec Hx Oct Char	Dec Hx Oct Html Chr Dec Hx Oct Html Chr Dec Hx Oct Html Chr
0 0 000 NUL (null)	32 20 040 6#32; Space 64 40 100 6#64; 0 96 60 140 6#96; `
l 1 001 SOH (start of heading)	33 21 041 6#33; ! 65 41 101 6#65; A 97 61 141 6#97; a A, a
2 2 002 STX (start of text)	34 22 042 6#34; " 66 42 102 6#66; B 98 62 142 6#98; b
3 3 003 ETX (end of text)	35 23 043 6#35; # 67 43 103 6#67; C 99 63 143 6#99; C
4 4 004 EOT (end of transmission)	36 24 044 @#36; \$ 68 44 104 @#68; D 100 64 144 @#100; d
5 5 005 ENQ (enquiry)	37 25 045 6#37; \$ 69 45 105 6#69; E 101 65 145 6#101; e
6 6 006 <mark>ACK</mark> (acknowledge)	38 26 046 6#38; 6 70 46 106 6#70; F 102 66 146 6#102; f
7 7 007 BEL (bell)	39 27 047 6#39;
8 8 010 <mark>BS</mark> (backspace)	40 28 050 6#40; (
9 9 011 TAB (horizontal tab)	41 29 051 6#41;) 73 49 111 6#73; I 105 69 151 6#105; i
10 A 012 LF (NL line feed, new line	
<pre>11 B 013 VT (vertical tab)</pre>	43 2B 053 6#43; + 75 4B 113 6#75; K 107 6B 153 6#107; k
12 C 014 FF (NP form feed, new page	
13 D 015 CR (carriage return)	45 2D 055 6#45; - 77 4D 115 6#77; M 109 6D 155 6#109; M
14 E 016 SO (shift out)	46 2E 056 6#46; . 78 4E 116 6#78; N 110 6E 156 6#110; n
15 F 017 SI (shift in)	47 2F 057 6#47; / 79 4F 117 6#79; 0 111 6F 157 6#111; 0
16 10 020 DLE (data link escape)	48 30 060 6#48; 0 80 50 120 6#80; P 112 70 160 6#112; p
17 11 021 DC1 (device control 1)	49 31 061 6#49; 1 81 51 121 6#81; Q 113 71 161 6#113; q
18 12 022 DC2 (device control 2)	50 32 062 6#50; 2 82 52 122 6#82; R 114 72 162 6#114; r
19 13 023 DC3 (device control 3)	51 33 063 6#51; 3 83 53 123 6#83; 5 115 73 163 6#115; 5
20 14 024 DC4 (device control 4)	52 34 064 6#52; 4 84 54 124 6#84; T 116 74 164 6#116; t
21 15 025 NAK (negative acknowledge)	53 35 065 6#53; 5
22 16 026 SYN (synchronous idle)	54 36 066 6#54; 6 86 56 126 6#86; V 118 76 166 6#118; V
23 17 027 ETB (end of trans. block)	55 37 067 6#55; <mark>7</mark>
24 18 030 CAN (cancel)	56 38 070 6#56; 8 88 58 130 6#88; X 120 78 170 6#120; X
25 19 031 EM (end of medium)	57 39 071 6#57; 9 89 59 131 6#89; Y 121 79 171 6#121; Y
26 1A 032 SUB (substitute)	58 3A 072 6#58; : 90 5A 132 6#90; Z 122 7A 172 6#122; Z
27 1B 033 ESC (escape)	59 3B 073 6#59; ; 91 5B 133 6#91; [123 7B 173 6#123; {
28 1C 034 FS (file separator)	60 3C 074 6#60; < 92 5C 134 6#92; \ 124 7C 174 6#124;
29 1D 035 GS (group separator)	61 3D 075 6#61; = 93 5D 135 6#93;] 125 7D 175 6#125; }
30 1E 036 RS (record separator)	62 3E 076 > > 94 5E 136 ^ ^ 126 7E 176 ~ ~
31 1F 037 US (unit separator)	63 3F 077 6#63; 95 5F 137 6#95; 127 7F 177 6#127; DEL

hello 104 101 108 108 111

Unirio 85 110 105 114 105 111

UNICODE

UNICODE

Veja: https://unicode-table.com/pt/


```
0
```


- UTF-8 = 8-bit Unicode Transformation Format (1 a 4 bytes depende do que está codificando)
- Codificar é como esses números são transformados em números binários para serem armazenados no computador.

- A especificação HTML5 recomenda o uso de UTF-8.

Exemplo

Suponha que uma aplicação ler os dados abaixo de um disco.

O aplicativo converte os dados binários para números decimais.

85 110 105 114 105 111

E depois para caracteres.

Unirio

Resumindo

