Курс математической логики по Штукенбергу Д.Г.

January 22, 2015

Contents

Mykhail Volkhov, 2538, 2014Sep-2015Jan Я не отвечаю за верность написанного - много информации я придумал сам, много достал из недостоверных источников.

1 Базовые понятия

1.1 Формальные системы и модели

Сделано мной для меня самого, be careful

Мы работаем с формальными системами. Формальная система определяется сигнатурой, грамматикой, набором аксиом и набором правил вывода.

- 1. Сигнатура ФС это (Pr, F, C, Links, Misc, arity):
 - Pr описывает предикаты (Num + BigLatinChar)
 - F множество функций (большие заглавные латинские чары)
 - С описывает константы
 - Links множество связок ({"->", "∪", " "})
 - Misc дополнительные элементы ({"(", ")", " "})

- arity: $Foo \cup Pr \cup C \rightarrow N$ возвращает арность
- 2. Грамматика описывает то, как мы можем строить выражения в соответствии с нашей сигнатурой.
- 3. Аксиомы выражения в нашей грамматике.
- 4. Правила вывода пары вида (List, List), где List список утверждений. Первый элемент посылки, второй то, что из них следует.

Иногда нам хочется что-то посчитать и мы прикручиваем к формальной системе модель - корректную структуру с оценкой. Структура - это сигнатура с интерпретацией и носителем.

- 1. Сигнатура структуры (R, F, C, arity):
 - Pr множество символов для предикатов
 - F функциональных символов
 - С символов констант
 - arity функция, определяющая арность $Pr \cup F \to N$.
- 2. Интерпретация это приписывание символам значения и правил действия (отображения из $\Pr \cup F \cup C$ в носитель)
- 3. Носитель это объединение множеств, в котором обязательно присутствует V множество истинностных значений. Если же мы рассматриваем только нульместные предикаты, на этом можно остановится, otherwise часто вводится P предметное множество, в которое отображаются элементы из F, C.

ТООО Эта реализация структуры не определяет ничего в районе аксиоматики, но аксиоматически заданные структуры существуют – например в ФА есть Пеано. Если все аксиомы тавтологии, то структура корректна. В таком случае она называется моделью.

Оценку иногда определяют раньше\позже чем модель, мне удобно думать о ней, как об отдельной сущности, потому что она связывает модель с ФС. Оценка - это функция оценки и функция тавтологии.

1. Функция оценки - отображение из (множества всех формул, сгенеренных грамматикой) х (какие-нибудь допаргументы) в V модели. Дополнительные аргументы - например оценки элементов связки.

- 2. Функция тавтологии отображение из множества формул грамматики в {0, 1} является ли формула тавтологией. Тавтология использует функцию оценки. Например, тавтология
 - это выражение, оценка которого на любых аргументах

возвращает $\in V$ - какой-то элемент V.

Когда говорится "сигнатура модели" - имеется в виду ровно она. Когда говорится "сигнатура ФС" - имеется в виду скорее всего объединение сигнатур, а может только сигнатура самой ФС. Первый вариант тут предпочтительней.

2 Определения (нужно знать идеально)

Определения тут зачастую дублицируют то, что написано в самом конспекте, поэтому удаление этого блока сэкономит бумагу при печати.

2.1 ИВ

Формальная система с алгеброй Яськовского J_0 в качестве модели, множество истинностных значений $\{0,1\}$. Формальная теория нулевого порядка, кванторов нету, предикаты - это пропозициональные переменные. Аксиомы:

- 1. $a \rightarrow b \rightarrow a$
- 2. $(a \rightarrow b) \rightarrow (a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow c)$
- 3. $a \rightarrow b \rightarrow a \& b$
- 4. $a\&b \rightarrow a$
- 5. $a\&b \rightarrow b$
- 6. $a \rightarrow a \lor b$
- 7. $b \rightarrow a \lor b$
- 8. $(a \rightarrow b) \rightarrow (c \rightarrow b) \rightarrow (a \lor c \rightarrow b)$
- 9. $(a \rightarrow b) \rightarrow (a \rightarrow \neg b) \rightarrow \neg a$
- 10. $\neg \neg a \rightarrow a$

2.2 Общезначимость, доказуемость, выводимость

- Общезначимость формулы ее свойство в теории с моделью. Общезначимость можно определить как угодно, в принципе. Например в ИВ общезначимость это что оценка формулы на любых значениях свободных переменных отображает в 1. В модели крипке существование формулы во всех мирах и т.д.
- Доказуемость свойство формулы в теории, значащее, что существует доказательство для этой формулы. Доказательство для теории тоже определяется по разному (последовательность утверждений, каждое из которых есть аксиома или следует по правилу вывода из предыдущих в ИВ, дерево с выводами в S∞)
- Выводимость в общем случае часто используется как аналог доказуемости, в ИВ это доказуемость из всего, что и ранее + из посылок.

2.3 Теорема о дедукции для ИВ

Теорема, утверждающая, что из , $a \vdash b$ следует $\vdash a \to b$ и наоборот. Доказывается вправо поформульным преобразованием, влево добавлением 1 формулы. Работает в ИВ, ИИВ, предикатах.

2.4 Теорема о полноте исчисления высказываний

Типа исчисление предикатов полно относительно вот той булевой алгебры. Общий ход д-ва: строим док-ва для конкретных наборов перменных, 2^n , где n - количество возможных переменных. Потом их мерджим.

2.5 ИИВ

Это такое VВ, в котором убрали десятую аксиому, а вместо нее добавили 10i. 10i: $a \to \neg a \to b$ Кстати она доказывается и в VВ

1.
$$(a \to a \lor \neg a) \to (a \to a \lor \neg a \to (\neg a \to b)) \to a \to (\neg a \to b)$$

2.
$$a, a \lor \neg a, \neg a \vdash b$$

$$a$$

$$\neg a$$

$$\begin{array}{l} b \rightarrow a \\ b \rightarrow \neg a \\ (b \rightarrow a) \rightarrow (b \rightarrow \neg a) \rightarrow \neg b \\ \neg b \rightarrow a \\ \neg b \rightarrow \neg a \\ (\neg b \rightarrow a) \rightarrow (\neg b \rightarrow \neg a) \rightarrow \neg \neg b \\ \neg \neg b \rightarrow b \\ \end{array}$$

3.
$$a \rightarrow (\neg a \rightarrow b)$$

А еще в ИИВ главная фишка - недоказуемо $A \lor \neg A$ (можно подобрать модель).

2.6 Теорема Гливенко

Если в ИВ доказуемо а, то в ИИВ доказуемо $\neg \neg a$ Общий ход д-ва: говорим, что если в ИИВ доказуема F, то в ней же доказуема $\neg \neg F$. Доказываем руками двойное отрицание 10 аксиомы и то же самое для MP.

2.7 Порядки

Частичный порядок – рефлексивное, антисимметричное, транзитивное отношение. Частично упор. мн-во - множество с частичным порядком на элементах. Линейно упорядоч. мн-во - множество с частичным порядком, в котором два любых элемента сравнимы. Фундированное мн-во - частично упорядоч. множество, в котором каждое непустое подмножество имеет минимальный элемент. Вполне упорядоченное множество - фундированное множество с линейным порядком.

2.8 Решетки (все свойства)

• Решетка Решетка - это (L, +, *) в алгебраическом смысле и (L, \leqslant) в порядковом. Решетку можно определить как алгебраическую структуру через аксиомы: коммутативность, ассоциативность, поглощение. Решетку можно определить как упорядоченное множество через

множество с частичным порядком на нем, тогда операции +, * определяются как sup и inf:

$$\sup p = \min\{u|u \ge alls \in p\}$$

$$\inf p = \max\{u|u \le alls \in p\}$$

$$a + b = \sup\{a, b\}$$

$$a * b = \inf\{a, b\}$$

Если для двух элементов всегда можно определить a + b и a * b, то такое множество назывется решеткой.

- Дистрибутивная решетка решетка, в которой работает дистрибутивность: a * (b + c) = (a * b) + (b * c)
- Импликативная решетка всегда существует псевдодополнение b $(b \to a)$ $a \to b = \max c | c \times a \leqslant b$ Имеет свойства, что в ней всегда есть максимальный элемент $a \to a$ и что она дистрибутивна.

2.9 Булевы\псевдобулевы алгебры

- Булева алгебра можно определить так:
 - 1. (L, +, *, -, 0, 1) с выполненными аксиомами коммутативность, ассоциативность, поглощение, две дистрибутивности и а * а = 0, а + -а = 1.
 - 2. Импликативная решетка над фундированным множеством. Тогда мы в ней определим 1 как $a \to a$ (традиционно для импликативной), отрицание как $-a = a \to 0$, и тогда последняя аксиома из предыдущего определения будет свойством:

$$a*-a = a*(a \to 0) = a*(\max c: c*a \le 0) = a*0 = 0$$

Насчет второй аксиомы - должно быть 1. То есть лучше както через аксиомы определять, видимо.

$$a+-a=a+(a\rightarrow 0)=a+(maxc:c*a\leqslant 0)=a+0=a$$
 // не 1

• Псевдобулева алгебра - это импликативная решетка над фундированным множеством с $\neg a = (a \to 0)$

2.10 Топологическая интерпретация ИИВ

Булеву алгебру и алгебру Гейтинга можно интерпретировать на множестве R^n . Тогда заключения о общезначимости формулы можно делать более наглядно. Давайте возьмем в качестве множества алгебры все открытые подмножества R^n . Определим операции следующим образом:

- 1. $a+b => a \cup b$
- 2. $a * b => a \cap b$
- 3. $a \rightarrow b => Int(a^c \cup b)$
- 4. $-a => Int(a^c)$
- 5. 0 = > 0
- 6. $1 = > \emptyset \{ -L \}$

2.11 Модель Крипке

 $Var = \{P, Q, \dots\}$ Модель Крипке – это <W, \leq , v>, где

- W множество "миров"
- <- частичный порядок на W (отношение достижимости)
- v: $W \times Var \to \{0, 1, _\}$ оценка перменных на W, монотонна (если $v(x, P) = 1, x \le y$, то v(y, P) = 1 формулу нельзя un'вынудить)

Правила:

- $W, x \models P @ v(x, P) = 1P \in Var$
- $\bullet \ \ W,x\models (A\&B) @@W,x\models A\&W,x\models B$
- $\bullet \ \ W,x\models (A\vee B) \\ @@W,x\models A\vee W,x\models B$
- $W, x \models (A \rightarrow B) \otimes \otimes y \ge x (W, y \models A \otimes W, y \models B)$
- $W, x \models \neg A \otimes y \in x(W, x \neg \models A)$

В мире разрешается быть не вынужденной переменной и ее отрицанию одновремеменно. Формула называется тавтологией в ИИВ с моделью Крипке, если она истинна (вынуждена) в любом мире любой модели Крипке.

2.12 Вложение Крипке в алгебры Гейтинга

Возьмем модель Крипке, возьмем какое-то объединение поддеревьев со всеми потомками, каждое такое объединение пусть будет входить в алгебру Гейтинга. ≤ - отношение "быть подмножеством". Определим 0 как ⊚ (пустое объединение поддеревьев); Определим операции:

 $a \to b = \cup \{z \in H | z \le x^c \cup y\}$ Так созданное множество с операциями является импликативной решеткой, в которой мы определим $-a = a \to 0$, получим булеву алгебру.

2.13 Полнота ИИВ в алгебрах Гейтинга и моделях Крипке

ИИВ полно относительно алгебр Гейтинга и моделей Крипке. Общий ход доказательства первого сводится к вложению в Гейтинга алгебры Линденбаума-Тарского, а второго - к построению дизъюнктивного множества всех доказуемых формул, являющегося миром Крипке.

2.14 Нетабличность ИИВ

Не существует полной модели, которая может быть выражена таблицей (конечной – алгебра Гейтинга и Крипке не табличны, так как и там и там связки определяются иначе). От противного соорудим табличную модель и покажем, что она не полна, привев пример большой дизъюнкции из импликаций, для которой можно построить модель Крипке в которой она не общезначима.

2.15 Предикаты

Теория первого порядка, расширяющая исчисление высказываний. Добавляются две новые аксиомы $@x.A \to A[x:=]$, где θ свободна для подстановки в $A[x:=] \to \exists x.A, -//-$

Правила вывода:

$$\frac{A \to B}{A \to \forall x.B}$$

х не входит сводобно в А

$$\frac{A \to B}{\exists x. A \to B}$$

х не входит свободно в В

2.16 Теорема о дедукции в предикатах

Аналогично 1 теореме о дедукции в ИВ, но в доказательстве должны отсутствовать применения правил для кванторов по переменным входящих свободно в выражение γ , $\vdash a => \; \vdash \; \rightarrow a$

2.17 Теорема о полноте исчисления предикатов

Исчисление предикатов полно (заметим, что относительно любой модели). Суть в том, что если предикаты непротиворечивы, то у них есть модель. Если у них есть модель, то типа там можно по контрпозиции показать $\models a$.

2.18 Теории первого порядка, определение структуры и модели

Теория первого порядка - это формальная система с кванторами по функциональным символам, но не по предикатам. Рукомахательное определение – это фс с логикой первого порядка в основе, в которой абстрактные предикаты и функциональные символы определяются точно (а может такое определение даже лучше).

Структура по ДГ: Структурой теории первого порядка мы назовем упорядоченную тройку <D, F, P>, где F- списки оценок для 0-местных, 1-местных и т.д. функций, и P = hP 0, P 1, ... i- списки оценок для 0-местных, 1-местных и т.д. предикатов, D- предметное множество.

Понятие структуры — развитие понятия оценки из исчисления предикатов. Но оно касается только нелогических составляющих теории; истинностные значения и оценки для связок по-прежнему определяются исчислением предикатов, лежащим в основе теории. Для получения оценки формулы нам нужно задать структуру, значения всех свободных индивидных переменных, и (естественным образом) вычислить результат.

Структура по-моему: Все то же самое определение из ИВ. Мы просто забиваем на предикаты в ИВ (не определям их), расширяем нашу сигнатуру (добавляя конкретные предикаты и функциональные символы), определяем для нее интерпретацию.

И как всегда,.. Модель – это корректная структура (любое доказуемое утверждение должно быть в ней общезначимо).

2.19 Аксиоматика Пеано

Множество N удовлетворяет аксиоматике Пеано, если:

- 1. $0 \in N$
- 2. $x \in N, succ(x) \in N$
- 3. $x \in N : (succ(x) = 0)$
- 4. $(succ(a) = c \& succ(b) = c) \rightarrow a = b$
- 5. P(0)& $on.(P(n) \rightarrow P(succ(n))) \rightarrow on.P(n)$

2.20 Формальная арифметика - аксиомы

Формальная арифметика - это теория первого порядка, у которой сигнатура определена как: (циферки, логические связки, алгебр. связки, '), а интерпретацию сейчас будем определять. Интерпретация определяет два множества - V, P - истинностные и предметные значения. Пусть множество V = $\{0, 1\}$ по-прежнему. P = $\{$ всякие штуки, которые мы можем получать из логических связок и $0\}$ Определим оценки логических связок естественным образом. Определим алгебраические связки так: +(a, 0) = a + (a, b') = (a + b)' *(a, 0) = 0 *(a, b') = a * b + a

2.20.1 Аксиомы

1.
$$a = b \to a' = b'$$

2.
$$a = b \rightarrow a = c \rightarrow b = c$$

3.
$$a' = b' \to a = b$$

4.
$$\neg (a' = 0)$$

5.
$$a + b' = (a + b)'$$

6.
$$a + 0 = a$$

7.
$$a * 0 = 0$$

8.
$$a * b' = a * b + a$$

9.
$$\varphi[x:=0]$$
&

2.21 Рекурсивные функции

$$Z(x)=0$$

$$N(x)=x+1$$

$$U(x_1,\ldots,x_n)=x$$

$$S\langle f,g_1,\ldots,g\rangle(x_1,\ldots,x)=f(g_1(x_1\ldots x),\ldots g(x_1,\ldots,x))$$

$$R\langle f,g\rangle(x_1\ldots x,n)=\begin{cases} f(x_1\ldots x) & n=0\\ g(x_1\ldots x,n,R\langle f,g\rangle(x_1\ldots x,n-1)) & n>0 \end{cases}$$
 $\mu\langle f\rangle(x_1,\ldots,x_n)$ - минимальное k, такое что $f(x_1\ldots x_n,k)=0$

2.22 Функция Аккермана

$$A(0,n) = n + 1$$

$$A(m,0) = A(m-1,1)$$

$$A(m,n) = A(m-1,A(m,n-1))$$

2.23 Существование рек.ф-й не явл. ф-ей Аккермана (определение конечной леммы)

Пусть $f(n_1 \dots n)$ - примитивная рекурсинвная функция, $\mathbf{k} \ge 0$. $\exists J: f(n_1 \dots n) < A(J, \sum (n_1, \dots n))$ Доказывается индукцией по рекурсивным функциям.

2.24 Представимость

Функция $f:N\to N$ называется представимой в формальной арифметике, если существует отношение $a(x_1\dots x_{1})$, ее представляющее, причем выполнено следующее:

- 1. $f(a, b, ...) = x <=>\vdash a(a \sim b \sim ... x \sim)$
- 2. $\exists ! x. f(a, b, \dots x)$ (вот это свойство вроде бы не обязательно, но $\mathcal{A}\Gamma$ его писал).

2.25 Выразимость

Отношение n называется выразимым, если существует предикат N его выражающий, такой что

1.
$$n(x_1 \dots x_n) = > \vdash N(x_1 \sim \dots x \sim)$$

2.
$$n(x_1...x) = > \vdash \neg N(x_1 \sim ...x \sim)$$

2.26 Лемма о связи представимости и выразимости

Если n выразимо, то С⊚ представимо. С⊚ = 1 если n, и нулю если !n

2.27 Бета-функция Гёделя, Г-последовательность

 $\beta(b, c, i) = k \otimes \Phi$ ункция, отображающая конечную последовательность из N (a \otimes) в k \otimes . Работает через магию, математику, простые числа и Гёделеву последовательность, которая подходит под условия китайской теоремы об остатках. $\beta(b, c, i) = b \% ((i + 1) * c + 1)$

2.28 Представимость рек.ф-й в ФА (знать формулы для самых простых)

Рекурсивные функции представимы в ФА

1.
$$z(a,b) = (a=a) & (b=0)$$

2.
$$n(a,b) = (a = b')$$

3.
$$u = (x_1 = x_1) \& \dots \& (x = x) \& (x_{+1} = x)$$

4. $s(a_1 \dots a, b) = \exists b_1 \dots \exists b (G_1(a_1 \dots a, b_1) \& \dots \& Gn(a_1 \dots a, b)$
5. $r(x_1, \dots, x_n, k, a) = \exists b \exists c (\exists k (\beta(b, c, 0, k) \& \varphi(x_1, \dots, x_n, k)) \& B(b, c, x_{n+1}, a) \& \forall k (k < x_{n+1} \rightarrow \exists d \exists e (B(b, c, k, d) \& B(b, c, k', e) \& G(x_1 \dots x, k, d, e))))$
6. $m \langle F \rangle (x_1, \dots, x_{n+1}) = F(x_1, \dots, x_n, x_{n+1}, 0) \& \forall y ((y < x_{n+1}) \rightarrow \neg F(x_1, \dots, x_n, y, 0))$

2.29 Гёделева нумерация (точно)

a	$\lceil a \rceil$	описание
(3	
)	5	
,	7	
\neg	9	
\rightarrow	11	
\vee	13	
&	15	
\forall	17	
\exists	19	
x_k	$21 + 6 \cdot k$	переменные
f_k^n	$23 + 6 \cdot 2^k \cdot 3^n$	n-местные функцион. символы (′, +, *)
P_k^n	$25 + 6 \cdot 2^k \cdot 3^n$	п-местные предикаты (=)

2.30 Выводимость и рекурсивные функции (че там с Тьюрингом)

Основные тезисы по вопросу:

- $\bullet \ Emulate(input,prog) = \mathbf{plog}(R < f,g > (< `S,input,0>, \ ,pb,pc,tb,tc,steps(-//-)),1) = F$
- $Proof(term, proof) = Emulate(proof, MY_PROOFCHECKER)$ & & (plog(proof, len(proof, term))

• Любая представимая в ФА ф-я является рекурсивной $f(x_1 \dots x) = \operatorname{plog}(\langle S \langle G_{\varphi}, U_{n+1,1}, \dots, U_{n+1,n}, \operatorname{plog}(U_{n+1,n+1}, 1), \operatorname{plog}(U_{n+1,n+1}, 2) \rangle \rangle (x_1, \dots, x_n), 1).$ G_{φ} тут принимает n+2 аргумента: $x_1 \dots x_n, p, b$ и возвращает 0 если \mathfrak{p} - доказательство $\varphi(x_1 \dots x, p)$, представляющего \mathfrak{f} .

2.31 Непротиворечивость

Теория непротиворечива, если в ней нельзя одновременно вывести a и $\neg a$. Одновременная выводимость $\neg a$ и a эквивалентна выводимости a $\& \neg a$

2.32 w-непротиворечивость

Теория ω -непротиворечива, если из $\mathfrak{g}\varphi(x) \vdash \varphi(x\sim)$ следует $\mathfrak{g}\exists p\neg\varphi(p)$. Проще говоря, если мы взяли формулу, то невозможно вывести одновременно $\exists x\neg A(x)$ и $A(0),A(1),\ldots$

2.33 Первая теорема Гёделя о неполноте

- 1. Если формальная арифметика непротиворечива, то недоказуемо $\sigma('\sigma^{\sim})$
- 2. Если формальная арифметика w-непротиворечива, то недоказуемо $\neg('\sim)$

2.34 Первая теорема Гёделя о неполноте в форме Россера

Если формальная арифметика непротиворечива, то в ней найдется такая формула φ , что $\circ\!\!\!/ \varphi$ и $\circ\!\!\!/ \neg\!\!\!/ \varphi$

2.35 Consis

Consis - утверждение, формально доказывающее непротиворечивость ΦA To есть $\vdash Consis = >$ непротиворечива

2.36 Условия Г-Б (наизусть)

Пусть $\pi g(x, p)$ выражает Proof(x, p). $(x) = \exists t. g(x, t)$ действительно показывает, что выражение доказуемо, если

- 1. $\vdash a = > \vdash ('a \sim)$
- 2. \vdash ('*a*~) \rightarrow ('('*a*~)~)
- 3. $\vdash ('a\sim) \rightarrow ('(a\rightarrow b)\sim) \rightarrow ('b\sim)$

2.37 Лемма о самоприменении

a(x) - формула, тогда $\exists b$ такой что

- 1. $\vdash a(b) \rightarrow b$
- 2. $\vdash \rightarrow a(b)$

2.38 Вторая теорема Гёделя о неполноте ФА

Если теория непротиворечива, в ней @Consis

2.39 Теория множеств

Теория множеств - теория первого порядка, в которой есть единственный предикат \in (в ΦA был =), есть связка \leftrightarrow , есть пустое множество, операции пересечения и объединения. $x \cap y = z$, тогда $@t(t \in z \leftrightarrow t \in x \& t \in y)$ $x \cup y = z$, тогда $@t(t \in z \leftrightarrow t \in x \& t \in y)$ $Dj(x) @a @b(a \in x \& b \in x \& a \neq b \rightarrow a \cap b = @)$

2.40 ZFC

2.40.1 Аксиома равенства

 $@x @y @z((x=y \& y \in z) \to x \in z)$ Если два множества равны, то любой элемент лежащий в первом, лежит и во втором

2.40.2 Аксиома пары

 $@x @y (\neg (x=y) \to \exists p (x \in p \& y \in p \& @z (z \in p \to (x=z \lor y=z)))) \ x \neq y$, тогда сущ. $\{x,y\}$

2.40.3 Аксиома объединений

 $@x(\exists y(y \in x) \to \exists p @y(y \in p \leftrightarrow \exists s(y \in s \& s \in x)))$ Если х не пусто, то из любого семейства множеств можно образовать "кучу-малу", то есть такое множество р, каждый элемент у которого принадлежит по меньшей мере одному множеству s данного семейства s x

2.40.4 Аксиома степени

 $@x\exists p@y(y\in p\leftrightarrow y\in x)\ P(x)$ - множество степени x (не путать с 2@ - булеаном) Это типа мы взяли наш x, и из его элементов объединением и пересечением например понаобразовывали кучу множеств, а потом положили их в p.

2.40.5 Схема аксиом выделения

 $@x\exists b @y(y \in b \leftrightarrow (y \in x\&\varphi(y)))$ Для нашего множества x мы можем подобрать множество побольше, на котором для всех элементов, являющихся подмножеством x выполняется предикат.

2.40.6 Аксиома выбора (не входит в ZF по дефолту)

Если
$$a = Dj(x)$$
 и $a \neq 0$, то $x \in a \neq 0$

2.40.7 Аксиома бесконечности

$$\exists N (\emptyset \in N \& \emptyset x (x \in N \to x \cup \{x\} \in N))$$

2.40.8 Аксиома фундирования

⊚x(x= ⊚ ∨ $\exists y(y\in x\&y\cap x=$ ⊚)) ⊚ $x(x\neq$ ⊚ → $\exists y(y\in x\&y\cap x=$ ⊚)) Равноценные формулы.

Я бы сказал, что это звучит как-то типа "не существует бесконечно вложенных множеств"

2.40.9 Схема аксиом подстановки

 $@x\exists!y.\varphi(x,y)\to @a\exists b@c(c\in b\leftrightarrow (\exists d.(d\in a\&\varphi(d,c))))$ Пусть формула φ такова, что для при любом x найдется единственный y такой, чтобы она была истинна на x,y, тогда для любого a найдется множество b, каждому элементу которого c можно сопоставить подмножество a и наша функция будет верна на нем и на c Типа для хороших функций мы можем найти множество c отображением из его элементов в подмножество нашего по предикату.

2.41 Ординальные числа, операции

- Определение вполне упорядоченного множества (фундированное с линейный порядком).
- Определение транзитивного множества Множество X транзитивно, если $@a@b((a \in b\&b \in x) \to a \in x)$
- Ординал транзитивное вполне упорядоченное отношением \in мн-во
- Верхняя грань множества ординалов S $C|\{C=min(X)\&C\in X|X=\{z|@(y\in S)(z\geq y)\}\}$ C=Upb(S) $Upb(\{@\})=\{@\}$
- Successor ordinal (сакцессорный ординал?) Это b = a' = a \cup {a}
- Предельны ординал Ординал, не являющийся ни 0 ни successor'ом.
- Недостижимый ординал ε такой ординал, что $\varepsilon=w^{\varepsilon}\,\varepsilon_0$ = Upb $(w,w^w,w^{w^w},w^{w^w},\dots)$ минимальный из ε
- Канторова форма форма вида $\sum (a^*w^b+c)$, где b ординал, последовательность строго убывает по b. Есть слабая канторова форма, где вместо $a(a \in N)$ пишут a раз w^b . В канторовой форме приятно заниматься сложениями и прочим, потому что всякие upb слишком ниочем.

$$x + 0 = x$$

$$x + c' = (x + c)'$$

$$x + \lim(a) = \text{Upb}\{x + c \mid c < a\}$$

$$x * 0 = 0$$

$$x * c' = x * c + x$$

$$x * \lim(a) = \text{Upb}\{x * c \mid c < a\}$$

$$x^{0} = 1$$

$$x^{c'} = (x^{c}) * x$$

$$x^{\lim(a)} = \text{Upb}\{x^{c} \mid c < a\}$$

2.42 Кардинальные числа, операции

Будем называть множества равномощными, если найдется биекция. Будем называть A не превышающим по мощности B, если найдется инъекция $A \to B(|A| \le |B|)$ Будем называть A меньше по мощности, чем B, если $|A| \le |B| \& |A| \ne |B|$ Кардинальное число - число, оценивающее мощность множества. Кардинальное число @ - это ординальное число a, такое что @ x \le a $|x| \le |a| \aleph_0 = w$ по определению; $\aleph_1 =$ минимальный кардинал, следующий за \aleph_0 Кардинальное число @ - это ординальное число a, такое что a - a

2.43 Диагональный метод, теорема Лёвенгейма-Скулема

Диагональный метод - метод доказательства $|2^{X|} > |X|$

2.44 Парадокс Скулема

Мнимый парадокс, базирующийся на теореме Лёвенгейма-Скулема и том факте, что в формальной арифметике существуют несчетные множества. Заковырка в том, что "существует счетное мн-во" выражается в ФА "не существует биекции". И тогда прийти к противоречию нельзя.

2.45 Теорема Генцена о непротиворечивости ФА

Ну типа мы можем обернуть ΦA в теорию покруче, доказать что в ней невозможно доказать 0=1, а потом доказать, что если S∞ непротиворечива, то и S непротиворечива.

3 Ticket 1: ИВ

3.1 Определения (исчисление, высказывание, оценка...)

Формальная система с алгеброй Яськовского J_0 в качестве модели, множество истинностных значений $\{0,1\}$. Формальная теория нулевого порядка, кванторов нету, предикаты - это пропозициональные переменные.

3.2 Общезначимость, доказуемость, выводимость

- Общезначимость формулы ее свойство в теории с моделью. Общезначимость можно определить как угодно, в принципе. Например в ИВ общезначимость это что оценка формулы на любых значениях свободных переменных отображает в 1. В модели крипке существование формулы во всех мирах и т.д.
- Доказуемость свойство формулы в теории, значащее, что существует доказательство для этой формулы. Доказательство для теории тоже определяется по разному (последовательность утверждений, каждое из которых есть аксиома или следует по правилу вывода из предыдущих в ИВ, дерево с выводами в S∞)
- Выводимость в общем случае часто используется как аналог доказуемости, в ИВ это доказуемость из всего, что и ранее + из посылок.

3.3 Схемы аксиом и правило вывода

Аксиомы:

1.
$$a \rightarrow b \rightarrow a$$

2.
$$(a \rightarrow b) \rightarrow (a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow c)$$

3.
$$a \rightarrow b \rightarrow a \& b$$

4.
$$a\&b \rightarrow a$$

5.
$$a\&b \rightarrow b$$

6.
$$a \rightarrow a \lor b$$

7.
$$b \rightarrow a \lor b$$

8.
$$(a \rightarrow b) \rightarrow (c \rightarrow b) \rightarrow (a \lor c \rightarrow b)$$

9.
$$(a \rightarrow b) \rightarrow (a \rightarrow \neg b) \rightarrow \neg a$$

10.
$$\neg \neg a \rightarrow a$$

Правило вывода: МР:

$$\frac{A \quad (A \to B)}{B}$$

3.4 Теорема о дедукции

 \Rightarrow Если нужно переместить последнее предположение вправо, то рассматриваем случаи – аксиома или предположение, MP, это самое выражение.

$$A \to a \to A$$
$$a \to A$$

2. (там где-то сзади уже было
$$a \to A$$
, $a \to A \to B$)

$$(a \to A) \to (a \to A \to B) \to (a \to B)$$
$$(a \to A \to B) \to (a \to B)$$

$$a \to B$$

3. $A \rightarrow A$ умеем доказывать

⇐ Если нужно переместить влево, то перемещаем, добавляем

 $A \to B$ (последнее)

А (перемещенное)

B

3.5 Корректность исчисления высказываний относительно алгебры Яськовского

• Индукцией по доказательству – если аксиома, то она тавтология, все ок. Если модус поненс, то таблица истинности для импликации и все ок

Ticket 2: полнота ИВ 4

Полнота исчисления высказываний относительно алгебры Яськовского

Кстати полноту можно доказывать маханием руками как для предикатов, и я не могу утверждать, что при таком подходе ИВ не будет полно относительно любой модели.

4.1.1 Контрапозиция

Хотим:
$$(a \to b) \to (\neg b \to \neg a)$$

 $(a \to b), \neg b \vdash \neg a$
 $a \to b$
 $(a \to b) \to (a \to \neg b) \to \neg a$
 $(a \to \neg b) \to \neg a$
 $\neg b \to a \to \neg b$
 $\neg b$
 $a \to \neg b$
 $\neg a$
+2 раза дедукцию применить

Правило исключененного третьего

С помощью контрапозиции доказываем два утверждения: $\neg(A|\neg A) \rightarrow \neg A$ (один раз контрапозицию от этого обратную, там $A \rightarrow$ $(A|\neg A)$ akc) $\neg(A|\neg A) \rightarrow \neg \neg A$ Потом девятую аксиому и снимаем двойное отрицание

4.1.3 Всякие очевидные вещи типа если выводится из A и из Б то из A и Б тоже

4.1.4 Правило со звездочкой (14 доказательств)

- 1. $a, b \vdash a \lor b$ a $a \to a \lor b$ $a \lor b$
- 2. $a, \neg b \vdash a \lor b$ a $a \to a \lor b$ $a \lor b$
- 3. $\neg a, b \vdash a \lor b$ b $b \to a \lor b$ $a \lor b$
- 4. $\neg a, \neg b \vdash \neg (a \lor b)$ $(a \lor b \to a) \to (a \lor b \to \neg a) \to \neg (a \lor b)$ $\neg a \to a \lor b \to \neg a$ $a \vee b \to \neg a$ $\neg a, \neg b, a \lor b \vdash a$ $\neg a$ $\neg b$ $a \vee b$ $a \rightarrow a$... //д-во $\neg b, \neg a \vdash b \rightarrow a$ $b \rightarrow a$ $(a \to a) \to ((b \to a) \to (a \lor b \to a))$ $(b \to a) \to (a \lor b \to a)$ $a \lor b \to a$ $a \lor b \to a$ $(a \lor b \to \neg a) \to \neg (a \lor b)$ $\neg(a \lor b)$

5.
$$a, b \vdash a \& b$$

$$a$$

$$b$$

$$a \rightarrow b \rightarrow a \& b$$

$$b \rightarrow a \& b$$

$$a \& b$$

6.
$$a, \neg b \vdash \neg (a \& b)$$

 $\neg b$
 $((a \& b) \rightarrow b) \rightarrow ((a \& b) \rightarrow \neg b) \rightarrow \neg (a \& b)$
 $a \& b \rightarrow b$
 $(a \& b \rightarrow \neg b) \rightarrow \neg (a \& b)$
 $\neg b \rightarrow a \& b \rightarrow \neg b$
 $a \& b \rightarrow \neg b$
 $\neg (a \& b)$

- 7. $\neg a, b \vdash \neg (a\&b)$ аналогично
- 8. $\neg a, \neg b \vdash \neg (a\&b)$ аналогично

9.
$$a, b \vdash a \rightarrow b$$

$$b$$

$$b \rightarrow a \rightarrow b$$

$$a \rightarrow b$$

10.
$$a, \neg b \vdash \neg (a \rightarrow b)$$
 a
 $\neg b$
 $\neg b \rightarrow ((a \rightarrow b) \rightarrow \neg b)$
 $(a \rightarrow b) \rightarrow \neg b$
 $a, \neg b, a \rightarrow b \vdash b$
 a
 $a \rightarrow b$
 b
 $(a \rightarrow b) \rightarrow b$
 $((a \rightarrow b) \rightarrow b) \rightarrow ((a \rightarrow b) \rightarrow \neg b) \rightarrow \neg (a \rightarrow b)$
 $((a \rightarrow b) \rightarrow \neg b) \rightarrow \neg (a \rightarrow b)$

$$\neg b \to (a \to b) \to \neg b
 (a \to b) \to \neg b
 \neg (a \to b)$$

11.
$$\neg a, b \vdash a \rightarrow b$$

$$b$$

$$b \rightarrow a \rightarrow b$$

$$a \rightarrow b$$