Sensibilidade de Sistemas Lineares

Efeitos dos Erros de Arredondamento

Fig. 1.6. Types of errors in a computational process

1. Erro do Modelo (e_m)

Ocorre ao simplificar a realidade física (PP) em um modelo matemático (MP). Está além do controle computacional.

Fig. 1.6. Types of errors in a computational process

2. Erro Algorítmico (e_a)

Erros introduzidos durante a resolução computacional do modelo matemático, principalmente devido a arredondamentos na representação numérica.

Fig. 1.6. Types of errors in a computational process

3. Erro de Truncamento (e_t)

Erros introduzidos ao aproximar sequências infinitas por operações finitas. Ocorre quando a solução numérica (x_n) difere da solução exata (x).

Fig. 1.6. Types of errors in a computational process

4. Erro Computacional (e_c)

O erro total que surge a partir da soma do erro algorítmico (e_a) e do erro de truncamento (e_t).

Este é o erro de interesse ao resolver problemas numéricos.

Precisão Numérica

A precisão numérica é afetada pela ordem das operações aritméticas (pelo algoritmo).

Como ilustração, suponha uma máquina com dois algarismos significativos e que desejamos calcular

$$1 + \epsilon + \epsilon + \ldots + \epsilon$$
,

onde $\epsilon = 3.0 imes 10^{-2}$ e que tenhamos n=11 parcelas.

Algoritmo Ingênuo de Soma

```
s = 0
for i in range(n):
  s += epsilon
```

Algoritmo de Soma de Kahan

```
s = 0
c = 0
for i in range(n):
    # y : parcela + compensação
    y = epsilon - c
    # soma efetiva
    t = s + y
    # c : erro de arredondamento
    c = (t - s) - y
    s = t
```

Algoritmo de Soma de Kahan

k	$y=\epsilon-c$	t = s + y	c=(t-s)-y	s = t
1	$3.0 imes10^{-2}$	1.0	$(1.0-0.0)-3.0 imes 10^{-2}=-3.0 imes 10^{-2}$	1.0
2	$6.0 imes10^{-2}$	1.0	$(1.0-0.0)-6.0 imes 10^{-2}=-3.0 imes 10^{-2}$	1.0
3	$9.0 imes 10^{-2}$	1.0	$(1.0-0.0)-9.0 imes 10^{-2}=-6.0 imes 10^{-2}$	1.0
4	$1.2 imes 10^{-1}$	1.1	$(1.1-1.0)-1.2 imes 10^{-2}=-2.0 imes 10^{-2}$	1.1
5	$5.0 imes10^{-2}$	1.1	$(1.1-1.1)-5.0 imes 10^{-2}=-5.0 imes 10^{-2}$	1.1
6	$8.0 imes10^{-2}$	1.1	$(1.1-1.1)-8.0 imes 10^{-2}=-8.0 imes 10^{-2}$	1.1
7	$1.1 imes 10^{-1}$	1.2	$(1.2-1.1)-1.1 imes 10^{-1}=-1.0 imes 10^{-2}$	1.2

Caso de estudo

Para a matriz A, calcule a solução dos sistemas lineares Ax=b e $A\hat{x}=\hat{b}$ onde

$$A = egin{bmatrix} 1000 & 999 \ 999 & 998 \end{bmatrix}, \quad b = egin{bmatrix} 1999 \ 1998 \end{bmatrix} \quad ext{e} \quad \hat{b} = egin{bmatrix} 1999 \ 1998.001 \end{bmatrix}.$$

Escrevendo $\hat{x}=x+\delta x$ e $\hat{b}=b+\delta b$, compare as variações relativas $\frac{\delta x}{x}$ e $\frac{\delta b}{b}$.

Norma de um vetor

Uma norma (ou **norma vetorial**) em \mathbb{R}^n é uma função que atribui a cada $x \in \mathbb{R}^n$ um número real não-negativo $\|x\|$, tal que para todos $x,y \in \mathbb{R}^n$ e todos $\alpha \in \mathbb{R}$:

1. Positividade

$$\|x\| \geq 0$$
 para todo x , e $\|x\| = 0$ se e somente se $x = 0$

2. Homogeneidade absoluta

$$\| \alpha x \| = | \alpha | \| x \|$$

3. Desigualdade triangular

$$||x + y|| \le ||x|| + ||y||$$

Exemplos

1. Norma euclidiana

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

2. Norma de Manhattan (ou norma do valor absoluto ou norma 1)

$$||x||_1 = |x_1| + |x_2| + \cdots + |x_n|$$

3. Norma infinita

$$||x||_{\infty}=\max(|x_1|,|x_2|,\cdots,|x_n|)$$

4. Norma p

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}$$

Norma de uma matriz

Para todos $A,B\in\mathbb{R}^{n imes n}$ e $lpha\in\mathbb{R}$:

1. Positividade

$$\|A\| \geq 0$$
 para todo A , e $\|A\| = 0$ se e somente se $A = 0$

2. Homogeneidade absoluta

$$||A\alpha|| = |\alpha|||A||$$

3. Desigualdade triangular

$$||A + B|| \le ||A|| + ||B||$$

4. Submultiplicatividade

$$||AB|| \le ||A|| ||B||$$

Exemplos

1. Norma de Frobenius

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2}$$

2. Norma de Schatten p

$$||A||_p = \left(\sum_{i=1}^n \sigma_i^p
ight)^{1/p},$$

onde σ_i são os valores singulares de A.

Norma Matricial Induzida

Seja $A \in \mathbb{R}^{n imes n}$. A norma induzida por uma norma vetorial $\|\cdot\|$ é definida como

$$||A|| = \max_{x
eq 0} rac{||Ax||}{||x||}.$$

A norma induzida mede a amplificação máxima de um vetor x por uma matriz A.

Teorema 2.1.26

A norma matricial induzida é uma norma matricial.

Teorema 2.1.24

Uma norma vetorial e sua norma matricial induzida satisfazem a desigualdade

$$||Ax|| \leq ||A||\,||x||$$

para todo $A \in \mathbb{R}^{n \times n}$ e $x \in \mathbb{R}^n$.

Além disso, sempre existe um vetor x tal que $||Ax|| = ||A|| \, ||x||$.

Retornando ao caso de estudo

- 1. Ax=b e $A(x+\delta x)=b+\delta b$ implica em $A\delta x=\delta b$, portanto $\delta x=A^{-1}\delta b$.
- 2. Uma vez que $||Az|| \leq ||A|| \, ||z||$ para todo $z \in \mathbb{R}^n$, temos
 - 2.1 $||\delta x|| \leq ||A^{-1}|| \, ||\delta b||$.

2.2
$$||b|| \leq ||A||\,||x|| \Longrightarrow ||x|| \geq rac{||b||}{||A||}$$
 .

Portanto,

$$rac{||\delta x||}{||x||} \leq ||A|| \, ||A^{-1}|| rac{||\delta b||}{||b||}.$$

Número de Condição

Seja A uma matriz não singular. O número de condição de A é definido como

$$\kappa(A) = ||A||||A^{-1}||.$$

- 1. O número de condição mede a sensibilidade da solução de um sistema linear às variações dos dados.
- 2. Em um sistema linear com número de condição alto, pequenas variações nos dados podem causar grandes variações na solução.

Retornando ao caso de estudo...

Calcule o número de condição da matriz ${\cal A}$ para a norma de Frobenius.

Exemplo: Matrizes de Hilbert

Um dos exemplos mais famosos de matrizes mal condicionadas são as **matrizes** de Hilbert, definidas por $h_{ij}=1/(i+j-1)$.

Essas matrizes são simétricas, podem ser mostradas como positivas definidas e se tornam cada vez mais mal condicionadas à medida que n aumenta. Por exemplo, $\kappa_2(H_4) \approx 1.6 \times 10^4$ e $\kappa_2(H_8) \approx 1.5 \times 10^{10}$.

$$H_4 = egin{bmatrix} 1 & 1/2 & 1/3 & 1/4 \ 1/2 & 1/3 & 1/4 & 1/5 \ 1/3 & 1/4 & 1/5 & 1/6 \ 1/4 & 1/5 & 1/6 & 1/7 \end{bmatrix},$$

PERGUNTAS?