APC 523 - Pret#1

Cristian Lacey Mar. 12

1) WLOG. consider 200 s.l. 7 = (2 b, 2 m). 2e

min ||x|| = 2 -1 2 e

consider bp+1 = 0

 $x - rd(x) = \frac{2}{5} \cdot b_n 2^{-n} \cdot 2^e - \frac{5}{5} \cdot b_n 2^{-n} \cdot 2^e$

= \\ \frac{2}{1-p11} \b_{n} \\ \frac{2}{1} \\ \frac{2} $\max_{x \in \mathbb{Z}} |x - rd(x)| = \frac{2}{2} z^{-n} \cdot z^{e} = z^{-p-2} (\frac{1-z}{z}) \cdot z^{e}$

= 2 -1 . 2 -P . 2 e

max 1/2 - rd(x)// 2-1.2

consider bp+1 = 1:

 $x - rd(x) = \sum_{n=1}^{\infty} b_n 2^{-n} \cdot 2^{e} - \left(\sum_{n=1}^{\infty} b_n 2^{-n} + 2^{-p}\right) \cdot 2^{e}$ $= \sum_{n=1}^{\infty} b_n 2^{-n} - e$

= 2 b, 2". 2° - 2-P. 2°

max //x - rda1/1 = 2-P-1. 2e - 2-P. 2e

" max 11x-rd(2)11 = (2-P-1 - 2-P) 28 min ||x||

for worst case of round-by down and rounding up.

2) See port a) of code. WOTE: of a kills trailing zero b) converges to 244.71 for k = 18 (see code).
a) See port a) of code. I in output, but everything is rounded to \$ 500, 8135.
b) converges to 244.71 for k = 18 (see code).
Comparison and rel. error to math.exp()
in code.
c) Yes, summing right to left introduced less error, since we add the smallest
less error, since we add the smallest
values first, so that by the time
we are adding the larger values, the sim
of all the previous small values is or
a similar order as the subsequent large
values, and we don't losse vinformation due to limited precision. (as much)
ave to limited production.
(Again, see code)
d) i) / (-
d) ii) { See code) iv)
Quichest convergence. d)iii)
Lowest Error: d)ii)
Error 13 worse for x < 0. compared to x > 0.
e) Perform e, then take the reciprocal.
(See code) You get O error when rounding to 5 siz. digs.
to 5 sig. digs.

```
flen(x)) = ln x (1+ En) where |En| = eps
      assuming near controllated through multiplication:
       fl(n) = n besome muchine number according
to almighty Gabe, viz Pizzza)
    :. fl (fl(n) fl(2nx)) = nlnx (1+ ten) (1+ Emult)
    f(\exp(y)) = e^{n\ln x(1+\epsilon_{m+\epsilon_{m+1}})} (1+\epsilon_{e_{m+\epsilon_{m+1}}})
                          = e rlnx (Ean+Emois) (1+ Eexp)
                           = x (1+ nlnx(Een + Emvi) (1 + Eexp)
                     where | Exp, Edn | Emult all & eps
         -: Eerp + nlnx (Em + Emill). = eps (1 + Indnx)
      assume nenx calc by adding low, n times:
    fl(fl(hx)+fl(lnx)) = (lnx(1+Em) + lnx(1+Em))(1+E)
                                              = 2lnx (1+Eln+E,)
  repeating sums;

n\ln x \left(1 + \epsilon_{ln} + \epsilon_{l} + \dots + \epsilon_{n-1}\right) = y

fl\left(exp(y)\right) = e^{n\ln x \left(1 + \epsilon_{ln} + \epsilon_{l} + \dots + \epsilon_{n-1}\right)} \left(1 + \epsilon_{exp}\right)

by some procedure:

= x'(1 + \epsilon_{exp} + n\ln x \left(\epsilon_{ln} + \epsilon_{l} + \dots + \epsilon_{n-n}\right)\right)
         i. | Eexp + nlnx (Ein+E,+...+En-1) = eps (1+ n2lnx)
```

since error for rejected multiplication is bounded based on n, and assuming when 3 colculated with multiplication, then the log-exponential method 3 bounded by a function of lax. That 3 repeated multiplication would be better for all x except where xall and $|\ln x| < 1$. Otherwise the lax term just increases the error bound for the log-expression that

i. $f(x^{\alpha}) = x^{\alpha} (1 + \epsilon_{p})$ $\begin{cases} \xi_{p} = \alpha \xi_{a} \ln x \end{cases} \text{ even } x \approx 0 \text{ since } \ln x \\ \text{blows up. Also, if } x \approx 0 \end{cases}$ $\begin{cases} \chi(1+\epsilon_{x})^{\alpha} = \chi^{\alpha} (1+\epsilon_{x})^{\alpha} \end{cases} \text{ Very large.}$ $= \chi^{\alpha} (1+\alpha \epsilon_{x})$

So if $f(x^{\alpha}) = x^{\alpha} (1 + \epsilon_p)$ then $\int \epsilon_p = \alpha \epsilon_x$

Propagated error

ind. of x. But,

gets large for large

a, which is especially important

for x 21 where x a doesn't

everflow.

(i)
$$f(x) = 1 - e^{-x}$$

$$f(x) = e^{-x}$$

where $E_n = \frac{|x_A - x|}{|x|}$ and from part a), $E_f = \frac{x f'(x)}{f(x)} E_a$ where Ex = Esub -e-x (Eexp + Esub) so Ea is not bounded by She ce $f(x_{\Lambda}) = f_{\Lambda}(x)$ perfect

algo

algo

input e - 2 $E_{sub} - e^{-x} (E_{exp} + E_{sub})$ and Erus and Earp both bounded by eps - RHS expression max when Esub = - Earp = eps eps = eps = eps = epsCond A so condA(x) = e where condA(1) = e >1 and and A(x) = ex (-x=1) < 0 on [0,1]

$$N = \frac{1}{xe^{-x}} = condA(x)$$

$$\frac{1}{xe^{-x}} = \operatorname{cond} A(x)$$

$$\frac{1}{xe^{-x}} = \operatorname{cond} f(x)$$

$$\frac{(xe^{-x})}{1-e^{-x}} = \operatorname{cond} f(x)$$

c) See graph attached. The cause of the poor conditioning is the subtraction in 1-e-x. As x gets close to zero e approaches 1. As a result, two smilar magnitude terms are subtracted, yielding catastrophic!! error. d) 2-21- 2 < 7-9

For 1 bit 1055! b=1 $x_{min} = 0.69315$ 2 bits: b=2 $x_{min} = 0.28768$ 3 bits: b=3 $x_{min} = 0.13353$ 4 bits: b=4 $x_{min} = 0.0645385$

plugging in xmin's from part d) and using eps = 2-53 for double precision:

	17x - y
	171 max
15+	2 eps
26:+	4 eps
3 6:4	8 eps
46.4	16eps

f) Try to get rid of subtraction?

$$1-e^{-x}\left(\frac{1+e^{-x}}{1+e^{-x}}\right) = \frac{1-(e^{-x})^2}{1+e^{-x}} \quad \text{where } e^{-x} = \frac{\cosh x - \sinh x}{1+e^{-x}}$$

$$= \frac{2\sinh(x)e^{-x}}{1+e^{-x}} = \frac{2\sinh(x)}{e^{x}+1}$$

where sublex) can be represented by a Taylor series with all positive terms (no subtraction). or, alternatively, take Taylor series for e^{-x} ! $\begin{array}{lll}
+ & (1 - x + \frac{x^2}{2} - \dots) \\
= & x \left(1 - \frac{x}{2} + \frac{x^2}{6} - \dots\right) \\
= & x \left(1 + x \left(\frac{1}{2} - (\dots)\right)\right) \\
\text{where} \quad 1 - e^{-x} \quad \text{can be approx. by} \\
\text{N terms. Subtraction introduced in} \\
\text{the above method is no longer between} \\
\text{sm:larly sized quantities (for <math>x \approx 0$),}
\end{array}

(5) (see code). Converges to 1. This makes sense, since as n becomes larger and larger, in becomes smaller. Eventually, in becomes. so small that 1.+ in simply evaluates to I within the machine precision (that is, the difference in scales of I and in exceeds the ability of the mantissa to capture them simultaneously). Of course, I to any exponent will then simply evaluate to ! thus the loop conveges to 1. i.e. when $n = 10^{16}$, $e = 1 \frac{b}{c}$; then $e = (1 + 10^{-16})^{10^{16}}$ but 10-16 = ? 2 x -16 Pn/0 = x lnz e = (1 + 2 -53.15)10

with 53 bit mentissa, -: e = 1

6) If we write $x^{\frac{1}{2}i}$ as $e^{\frac{1}{i}lnx}$ (See code)

then take the Taylor series: $1 + lnx^{\frac{1}{2}i} + ...$ we see that for i = 52: $x^{\frac{1}{2}s_2} = 1 + lnx^{\frac{1}{2}s_2} + ...$

If $x = e^n$ then $x^{\frac{1}{252}} = 1 + n^{\frac{n}{2}-52} + \dots$

but in double precision, we only have a 53 bit monthissa, so if n=1, then = 1 + 0.0...01 + ...

than 2 the information is lost when the first two terms are added, due to limited machine precision. Since the result of the sum is then squired 52 times, a small deviation from 1 is important. Yt is the sme for exxee since the same number is squared 52 times. We is observe only integer powers of e as jumps.

 $x^{\frac{1}{25}i} = 1 + ln \times 2^{-51} + ...$

since low is only shifted 51 places, the first binary decimal place for $n = ln \times will not be lost due to precision limitations. As a result, half integer powers of e are also shown as jumps, similar arguments can be made for other i values shown.$

al (see code) b) Yes, it converges to 20 (about). The alternative method also converges to 20. c) The largest root becomes imaginosy in each case, but the Newton weethed noot-firder mearreetly locates a nearby real noot. It cannot find imaginary roots. d) Same issue. Root 16 and 17 are imaginary, but the Wenton method connot accomodate e), p(se+sse) = = = 2 a/(se+sse) + (a;+sa;)(se+sse) + (se+sse) + (se+sse) $= \frac{\sum_{k=0}^{1} \alpha_{k} \Omega_{k}^{\ell} (1 + \frac{\delta \Omega_{k}}{\Omega_{k}})^{\ell} + (\alpha_{i}^{*} + \delta \alpha_{i}^{*}) \Omega_{k}^{*} (1 + \frac{\delta \Omega_{k}}{\Omega_{k}})^{*} + \Omega_{k}^{*} (1 + \frac{\delta \Omega_{k}}{\Omega_{k}})^{*}$ = 2 9 Nx (1+2 50k) + (9: + 89;) 1/2 (1+ i 50k) + Nx (1+n 50k) = Ž'alski + aiski + shi + Ž'allski ssh + aiishi ssh + nshi ssh P(S2k) . 0 and p(Nu+SNu)=0 since Nu+SNk 3 also a : 0 = P'(sh,) Sh, + Saishi => Ssi = -1h, Sai = P'(sh,)

$$: \quad \operatorname{cond} \Omega_{k}(\underline{\alpha}) = \tilde{Z} T_{ke}(\underline{\alpha})$$

$$\operatorname{Cond}_{N_k}(a) = \frac{2}{2} \left| \frac{\alpha_k \Omega_k^{\ell-1}}{P(\Omega_k)} \right|$$

ii) (See code).

Since the condition numbers are so large for Ω_k 's for 14, 16, 17, 20 this means that small perturbations in the coefficients as lead to large changes in the resulting roots.

iii) Since the problem itself is ill-conditioned, we can't use a clever algorithm to fix it. There will always be certain cases that belove poorly.

$$y_n = \frac{\left(e - y_{n+1}\right)}{\left(n+1\right)}$$

$$\frac{e}{n-1} - \frac{e-\gamma_n}{n(n-1)n-2}$$

reversed recurrence relation:

$$-1 \cdot y_{N} = \frac{k!}{N!} \left(\alpha - \left(b - \left(\dots \left(e - y_{N} \right) \right) \right)$$

$$\frac{1}{|A|} = \frac{k!}{N!} \left(a - \left(b - \left(\dots \left(e - y_{N} \right) \right) \right)$$

$$\frac{|A|}{|A|} = \frac{k!}{N!} = 1 \quad \text{cond} \quad g_{K} = \left| \frac{|K! \cdot y_{N}|}{|N! \cdot y_{K}|} \right|$$

b)
$$\mathcal{E}_{k} = \frac{g_{k} y_{N}}{y_{k}} \mathcal{E}_{N}$$
with $\mathcal{E} = \mathcal{E}_{k} \quad \text{and}$

$$\mathcal{E}_{k} = \frac{k!}{N!} \quad y_{N} \quad \mathcal{E}_{n}$$

well-anditioned if!

and from the definition of $y_N = \int e^x dx$ then $y_N < y_k$ for N > k

assumity

EN = 1:

$$E \geq \frac{k!}{N!}$$

$$\frac{20!}{2^{-55}} = 2.19 \times 10^{34}$$
So, For $N = 32$ · $32! = 2.163 \times 10^{35} > 2.19 \times 10^{36}$

integral from 0 to 1 of x^20 * e^x

Definite integral:

Fewer digits

$$\int_0^1 x^{20} e^x dx =$$

 $209(4282366656425369e - 11640679464960000) \approx 0.123803830762570$

