

1.Raspberry Pi platform------Color_LED

1) Preparation

1-2 RGB module

2) Purpose of Experimental

After running the Color_LED executable in the Raspberry Pi system and you can see the lights in 7 different colors.

3) Principle of experimental

3 LEDs (red, green, blue) are packaged in the RGB lamp module. We can mix different colors(256*256*256) by controlling the brightness of the three LEDs.

According to the circuit schematic, the RGB lamp is a common cathode LED, one pin is connect to GND, and the remaining three pins are respectively connected to the wiringPi port 3, 2, 5 on the

Raspberry Pi board. Each LED needs to be connected in series with a 220Ω resistor as the current limiting resistor. We can control the LED by controlling the corresponding pin to be high level of Raspberry Pi board.

4) Experimental Steps

4-1 About the schematic

4-1 Raspberry Pi interface circuit diagram

4-2 RGB module interface circuit diagram

wiringPi	ВСМ	Funtion	Physical pin		Funtion	всм	wiringPi
		3.3V	1	2	5V		
8	2	SDA.1	3	4	5V		
9	3	SCL.1	5	6	GND		
7	4	GPIO.7	7	8	TXD	14	15
		GND	9	10	RXD	15	16
0	17	GPIO.0	11	12	GPIO.1	18	1
2	27	GPIO.2	13	14	GND		
3	22	GPIO.3	15	16	GPIO.4	23	4
		3.3V	17	18	GPIO.5	24	5
12	10	MOSI	19	20	GND		
13	9	MISO	21	22	GPIO.6	25	6
14	11	SCLK	23	24	CE0	8	10
		GND	25	26	CE1	7	11
30	0	SDA.0	27	28	SCL.0	1	31
21	5	GPIO.21	29	30	GND		
22	6	GPIO.22	31	32	GPIO.26	12	26
23	13	GPIO.23	33	34	GND		
24	19	GPIO.24	35	36	GPIO.27	16	27
25	26	GPIO.25	37	38	GPIO.28	20	28
		GND	39	40	GPIO.29	21	29

4-3 Raspberry Pi 40 pins comparison table

4-2 According to the circuit schematic:

LED_R----15(Physical pin)----- 3(wiringPi)

LED_G----13(Physical pin)---- 2(wiringPi)

LED_B---- 5(wiringPi)

(Note: We use the wiringPi library to write code.)

4-3 About the code

Please view .py and.c file

(1) Before compiling the code, we can see the mode and level state changes of the pins by inputting gpio readall. As shown in the figure below.

			+	+	Pi	3	+	+	+	t	+
BCM	wPi	Name	Mode	V	Phys	ical	I V	Mode	Name	wPi	BCM
		3.3v			1 1	1 2			5v		
	8	SDA.1	IN	1	3			ì	5v		i
	9	SCL.1	IN	1	5 [i	i i	0v		i
4	7	GPIO. 7	IN	1	7		1	IN	TxD	15	14
		0v			9	1 10	1 1	IN	RxD	16	15
17	0	GPIO. 0	IN	0	11	12		IN	GPIO. 1		18
27	2	GPIO. 2	IN	0	13	1 14		I	0v		
22	3	GPIO. 3	IN	0	15	16	0	IN	GPIO. 4	4	23
		3.3v			17	18	0	IN	GPIO. 5	5	24
10	12	MOSI	IN	1	19	1 20			0v		
	13	MISO	IN	1	21	22	1	IN	GPIO. 6		25
11	14	SCLK	IN	1 1	23	24	1 1	IN	CE0	10	8
		0v	l		25	1 26		IN	CE1	11	7
0	30	SDA.0	IN	1	27	28		IN	SCL.0	31	
5	21	GPI0.21	IN	1	29	30			0v		
	22	GPIO.22	IN	1	31	32	0	IN	GPIO.26	26	12
13	23	GPIO.23	IN	0	33	34			0v		
19	24	GPIO.24	IN	0	35	36	0	IN	GPIO.27	27	16
26	25	GPIO.25	IN	0	37	38	0	IN	GPIO.28	28	20
		0v			39	40	0	IN	GPIO.29	29	21

A. For .c code

1) We need to compile this file in the Raspberry Pi system. (Note: we need to add -lwiringPi to the library file.)

We need to input: gcc ColorLED.c -o ColorLED -lwiringPi

2) We need to run the compiled executable file in the Raspberry Pi system. We need to

input: ./ColorLED

As shown in the figure below.

```
pi@yahboom4wd:~/SmartCar $ gcc ColorLED.c -o ColorLED -lwiringPi
pi@yahboom4wd:~/SmartCar $ ./ColorLED
```

- 3) We can input: ctrl+c to stop this process, which mean is send a signal to the linux kernel to terminate the current process, but the state of the relevant pin is uncertain at this time, we also need to run a script to initialize all pins.
- 4)We can input: gpio readall to see the mode and level state changes of the pins. You will find that the level and mode of the corresponding pin has changed.

			+								
BCM wPi		Name	Mode	V	Physical		V	Mode	Name	wPi	BCM
		3.3v			1	1 2			5 v		
2		SDA.1	IN	1	3	4	İ	i	5v	i	i
3		SCL.1	IN	1	5		i	į i	0v		ĺ
4	7	GPIO. 7	IN	1	7		1	IN	TxD	15	14
		0 v			9	1 10	1	IN	RxD	16	15
17	0	GPIO. 0	IN	0	11 [12	1	IN	GPIO. 1	1	18
27	2	GPIO. 2	OUT		13	14	1	I	0 v	1	ĺ
22		GPIO. 3	OUT	0	15	16	0	IN	GPIO. 4	4	23
		3.3⊽			17	18	0	OUT	GPIO. 5	5	24
10	12	MOSI	IN		19	20	Ī		0v		
	13	MISO	IN		21	22	1	IN	GPIO. 6	6	25
11	14	SCLK	IN		23	24	1	IN	CE0	10	8
		0v			25	26	1	IN	CE1	11	1 7
0	30	SDA.0	IN	1 1	27 [28	1	IN	SCL.0	31	1
5	21	GPIO.21	IN		29	30		I	0v	I	I
6	22	GPIO.22	IN		31	32	0	IN	GPIO.26	26	12
13	23	GPIO.23	IN	0	33	34	I	ĺ	0v	1	ĺ
19	24	GPIO.24	IN	0	35	36	0	IN	GPIO.27	27	16
26	25	GPIO.25	IN	0	37	38	0	IN	GPIO.28	28	20
		0.0			39	40	0	IN	GPIO.29	29	21
BCM	wPi	Name	Mode	I V	Phys	ical	I V	Mode	Name	wPi	BCM

You need to input: chmod 777 initpin.sh

./initpin.sh

```
pi@yahboom4wd:~/SmartCar $ sudo chmod 777 initpin.sh
pi@yahboom4wd:~/SmartCar $ ./initpin.sh
```

B. For python code

1) We need to input following command to run python code.

python ColorLED.py

```
pi@yahboom4wd:~/python $ python ColorLED.py
```

- 2) We can input: ctrl+c to stop this process, which mean is send a signal to the linux kernel to terminate the current process, but the state of the relevant pin is uncertain at this time, we also need to run a script to initialize all pins.
- 3) You need to input: chmod 777 initpin.sh

./initpin.sh

```
pi@yahboom4wd:~/SmartCar $ sudo chmod 777 initpin.sh
pi@yahboom4wd:~/SmartCar $ _/initpin.sh
```

After completing the above steps, the experiment is over.

5) Experimental phenomenon

When we run the program, we can see that the colorful searchlight will switch to different colors every second.