Outline

- Motivation: efficient sorting
- Trees
 - Binary Trees
- Heap
- Heapsort

HeapSort (One Slide)

using a data-structure (DS) as part of the algorithm design

DS-property

(Recall) The Sorting Problem

Input: sequence of *n* numbers $< a_1, a_2, ..., a_n >$

Output: permutation (reordering) of the input

$$\sigma(a_i) = b_j$$
 such that $b_1 \le b_2 \dots \le b_n$

Note: the sets $\{a_1, a_2, ..., a_n\} = \{b_1, b_2, ..., b_n\}$

Example:

- input: <31,41,59,26,41,58>
- output: <26,31,41,41,58,59>

Motivation For Sorting

- Among the most frequently used algorithms in CS
- Allows:
 - Binary search in O(log N) time
 - -O(1) time access to k^{th} largest element
 - Easy detection of any duplicates

Motivation For Heap Sorting

How to solve the sorting problem efficiently in terms of

- Time complexity
- Space complexity

Insertion-sort uses only constant number of extra storing cells (But
what is the worst case running time?)
Merge-sort * takes O(nlogn) but it is not in-place

We are seeking an efficient ADT that both operates *in-place* and takes *O(nlogn) time*!

^{*}coming soon

Trees

A *Tree* is a data structure with the following properties:

- Consisting of layers
- Has a single element in the top layer
- Each element in layer i points to elements in layer i+1
- Only a single element in layer i
 points to an element in layer i+1

How many edges in a tree with N nodes?

N-1 edges

Tree Recursive Definition

A tree is a set of nodes, either

- It is an empty set of nodes, or
- It has one node called the root from which zero or more trees (subtrees) descend

Tree Terms

Child: B is a child of A iff A points to B

Parent: A is a parent of B iff A points to B

Sibling: A and B are siblings if they have the

same parent

Root: a node with no parent

Leaf: a node with no children

Path: sequence of connected nodes

Examples of Tree Terms

A is the root

A-F are nodes

AD is an edge (one out of 5)

B,E,F,D are the leaves

A is the parent of C

E,F are children of C

B,C,D are siblings

A-C-E is a path

C is the root of the subtree consisting of C,E,F

More Tree Terms

Length of a path = number of edges between two nodes

Depth of a node A = length of path from root to A

Depth of tree = depth of deepest node

Height of node *A* = length of longest path from A to a leaf **Height of tree** = height of the root

Implementation of Trees

Each node includes:

Option 1: a value + one pointer to each child

How many pointers should we allocate space for?

Other options?

Binary Tree

Each node has at most two children

- Popular data structure in computer science
- Will talk about it again latter in the course

Implementation of **Binary** Trees

Each node is implemented by a structure with value (key) and two pointers (left child & right child)

Left child Right child

Binary Tree Trivia

Amongst all binary trees with **N** nodes:

- Which tree has the <u>maximal</u> depth?
- Which tree has the <u>minimal</u> depth?

Tree With Maximal Depth

Which tree has the maximal depth?

- Degenerate case: a linked list
- Depth = N-1

The Tree With Minimal Depth

Which tree has the minimal depth?

Is it unique?

Complete Binary Tree

Complete Binary Tree: All nodes are in use

Nearly Complete Binary Tree

(Nearly) Complete Binary Tree: All nodes are in use (except for possibly the right part of the bottom row.)

Nearly Complete Binary Tree Trivia

Consider a <u>nearly complete</u> binary tree with **N** nodes:

- How many nodes in depth i?
- How many nodes in height j?
- What is the height(=depth) of the tree?

Nodes No. In Depth i

Consider a <u>nearly complete</u> binary trees with **N** nodes:

How many nodes in depth i?

Nodes No. In Height j: Intuition

Consider a <u>nearly</u> complete binary tree with **N** nodes:

How many nodes in total in a tree with depth d?

$$a\left(\frac{r^n-1}{r-1}\right)$$
 $N = \sum_{i=0}^d 2^i = 2^{d+1} - 1$

→ adding a complete level " ~ doubles" the number of elements

Equivalently: How many elements in the deepest (it is a complete) level h=0?

Answer: approximately half

Nodes No. In Height j: Intuition

Consider a <u>nearly</u> complete binary trees with **N** nodes:

How many nodes in height j?

Formally: Height *j* includes at most $\left[\frac{N}{2^{j+1}}\right]$

Tree Height: Intuition

Consider a <u>nearly complete</u> binary trees with **N** nodes:

What is the height(=depth) of the tree?

Tree Depth Analysis: Formally

Using the above observation:

- At depth i, there are 2^i nodes
- At depth d (tree depth), there may be 1 to 2^d nodes

Let N denote the total number of nodes:

$$\sum_{i=0}^{d-1} 2^i + 1 \le N \le \sum_{i=0}^{d-1} 2^i + 2^d$$

$$2^d \le N \le 2^{d+1} - 1$$

Depth Analysis

$$2^d \le N \le 2^{d+1} - 1$$

- From the left inequality: $d \leq \log N$
- From the right inequality: $\log(N+1) \le d+1$

and: $\log(N) < d + 1$

In total: $\log(N) - 1 < d \le \log N$

Equivalently: $d = \lfloor \log_2(N) \rfloor$

Nearly Complete Binary Trees

How many nodes in depth d?

 $\sim 2^d$

- How many nodes in height h? $\frac{N}{2}$, $\frac{N}{2^2}$,...
- $\sim \left[\frac{N}{2^{h+1}}\right]$
- What is the height(=depth) of the tree?
- ~[log(N)]

Heap

It is convenient to view a (binary) heap as a nearly complete binary tree.

The Max-heap property:

the key of the parent is equal or greater than the key of the children.

Heap Properties

- Binary heaps provide limited ordering information
- Each path is sorted, but siblings are not sorted
- Binary heap is ≠ binary search tree (future ...)

This is a binary heap

Examples

Min / Max Heap

We focus on Max-heaps.

By symmetry, the statements, procedures and definitions are relevant for Min-heaps.

ADT: Max-Heap

Operations:

Empty (T)
Insert (T,x)
Min(Q)
Del_Max(Q)

Max-heap property: the key of the parent is equal or greater than the keys of both children

Heap Implementation

Binary Heap as array object:

The rules (of how to insert and delete elements) allow us to view it as a nearly complete binary tree.

Heap as a Complete Binary Tree

- Basic operations run in time that is proportional to the root height*
- The height is $\Theta(\log N)$ (as proved above):

The Heap ADT is potentially useful for sorting in order O(NlogN) instead of $O(N^2)$

^{*} We will prove or demonstrate it later in this lecture

Binary Heap Space Analysis

- Space needed for heap of at most MaxN nodes: O(MaxN)
 - An array of size MaxN, plus a variable to store the current size N of the heap

HeapSort (One Slide)

Heap using a data-structure (DS) as part of the algorithm design

Max-Heapify Pseudocode

```
Max-Heapify(A, i)
    l = LEFT(i)
   r = RIGHT(i)
                                                 Largest =
   if l \le A. heap-size and A[l] > A[i]
                                                 Index of the node
        largest = l
 4
                                                 with highest values
   else largest = i
   if r \le A. heap-size and A[r] > A[largest]
 7
        largest = r
    if largest \neq i
 9
        exchange A[i] with A[largest]
                                                 Percolate into deeper level
        MAX-HEAPIFY(A, largest)
10
```

Cormen 6.2

Max-Heapify Visualization

Running time of Max-Heapify on a node of height h is O(h)

Cormen 6.2

Max-Heapify (A,9)

Build-Heap Pseudocode

```
BUILD-MAX-HEAP(A)

1  A.heap-size = A.length

2  \mathbf{for}\ i = \lfloor A.length/2 \rfloor \mathbf{downto}\ 1

3  \mathbf{MAX}-HEAPIFY(A, i)
```


Build Heap Visualization

Idea: using Max-Heapify in a bottom-up manner

from $\left\lfloor \frac{N}{2} \right\rfloor$ to 1 (e.g. from 5 to 1, when N=10)

Correctness of Build Heap

• For n=1, a tree with a single node is a heap.

Hence, trees rooted at $\left\lfloor \frac{n}{2} \right\rfloor < i \leq n$ are heaps.

• For $i \leq \left| \frac{n}{2} \right|$, children are heaps.

Hence, after calling Max-Heapify we obtain heap.

Time Complexity Build Heap

Claim: The running time of Build-Max-Heap is O(n)

Proof:

BuildHeap performs Heapify on nodes with height $j \ge 1$ Heapify on node of height j costs at most cj

Recall:

- at most $\left[\frac{N}{2^{j+1}}\right]$ elements at level in height j
- the height of the tree is at most [log(N)]

$$\sum_{j=1}^{\lfloor \log(n)\rfloor} \left\lceil \frac{N}{2^{j+1}} \right\rceil cj$$

Time Complexity of Build Heap

$$\sum_{j=1}^{\lfloor \log(N)\rfloor} \left\lceil \frac{N}{2^{j+1}} \right\rceil cj \leq$$

$$\sum_{j=0}^{\lfloor \log(N)\rfloor} \frac{N}{2^{j}} cj = cN \sum_{j=0}^{\lfloor \log(N)\rfloor} \frac{j}{2^{j}}$$

$$< cN \sum_{j=0}^{\infty} \frac{j}{2^{j}} = 2cN$$

Heapsort Pseudocode

```
HEAPSORT (A)

Iteratively:

Retrieve maximum

&&

Maintain DS-property

HEAPSORT (A)

1 BUILD-MAX-HEAP (A)

2 for i = A.length downto 2

exchange A[1] with A[i]

4 A.heap-size = A.heap-size -1

5 MAX-HEAPIFY (A, 1)
```

Retrieve Maximum

Retrieve maximum: Easy!

- Return root value (that is A[1])
- Run time = ?

Maintain DS-property: harder!

- why ?

The Challenge of Retrieve Maximum

<u>Challenge:</u> Following retrieve maximum (remove root), the tree will have one less node → temporarily it is not a tree

Solution: Replace the root with the "last element" yet not sorted Why is it not a Heap?

Iteratively:
Retrieve maximum
&&
Maintain DS-property

Heapsort Visualizaion

Time Complexity HeapSort

Claim: The running time of HeapSort is *O(nlogn)*Proof:

- HeapSort performs Max-Heapify on n-1 nodes
- Each Max-Heapify costs at most clogn
 In total, HeapSort costs at most cnlogn.

Summary – What Is Heap?

The Heapsort Idea: using a data structure that

- returns the maximum in O(1)
- maintains the heap property in O(logn).

Heap ~ Nearly Complete Tree

Max-heap property: the key of the parent is equal or greater than the keys of both children.

Summary – HeapSort Analysis

using a data-structure(DS) as part of the algorithm design

