Course project

Modified DP

Instruction set

- rrr register
- Aaaaaa –MA
- iiiiiiii imm.

Instruction	Encoding	Operation	Comment	
Data movement instructions				

Data movement	insiructions			
LDA A,rrr	0001 0rrr	$A \leftarrow R[rrr]$	Load accumulator from register	
STA rrr,A	0010 0rrr	$R[rrr] \leftarrow A$	Load register from accumulator	
LDM A,aaaaaa	0011 0000	$A \leftarrow M[aaaaaa]$	Load accumulator from memory	
	00aaaaaa			
STM aaaaaa,A	0100 0000	M[aaaaaa] ← A	Load memory from accumulator	
	00 aaaaaa			
LDI A,iiiiiiii	0101 0000	A ← iiiiiiii	Load accumulator with immediate	
	iiiiiiii		value (iiiiiiii is a signed number)	

Arithmetic and logical instructions

AND A,rrr	1010 Orrr	$A \leftarrow A \text{ AND R[rrr]}$	Accumulator AND register
OR A,rrr	1011 Orrr	$A \leftarrow A \text{ OR R[rrr]}$	Accumulator OR register

ADD A,rrr	1100 Orrr	$A \leftarrow A + R[rrr]$	Accumulator + register
SUB A,rrr	1101 Orrr	$A \leftarrow A - R[rrr]$	Accumulator – register
NOT A	1110 0000	$A \leftarrow NOT A$	Invert accumulator
INC A	1110 0001	$A \leftarrow A + 1$	Increment accumulator
DEC A	1110 0010	$A \leftarrow A - 1$	Decrement accumulator
SHFL A	1110 0011	$A \leftarrow A \ll 1$	Shift accumulator left
SHFR A	1110 0100	$A \leftarrow A >> 1$	Shift accumulator right
ROTR A	1110 0101	$A \leftarrow Rotate_right(A)$	Rotate accumulator right

Instruction set

Jump instructions

• Smmm –Sign and magn.

	<u> </u>	
0110 0000	PC = aaaaaa	Absolute unconditional jump
00 aaaaaa		
0110 smmm	if (smmm != 0) then	Relative unconditional jump (smmm
	if $(s == 0)$ then $PC = PC + mmm$	is in sign and magnitude format)
	else $PC = PC - mmm$	
0111 0000	if (A == 0) then PC = aaaaaa	Absolute jump if A is zero
00 aaaaaa		
0111 smmm	if $(A == 0 \text{ and smmm } != 0)$ then	Relative jump if A is zero (smmm is
	if $(s == 0)$ then $PC = PC + mmm$	in sign and magnitude format)
	else $PC = PC - mmm$	
1000 0000	if (A!=0) then PC = aaaaaa	Absolute jump if A is not zero
00 aaaaaa		
1000 smmm	if (A != 0 and smmm != 0) then	Relative jump if A is not zero
	if $(s == 0)$ then PC = PC + mmm	(smmm is in sign and magnitude
	else $PC = PC - mmm$	format)
1001 0000	if(A == positive) then PC = aaaaaa	Absolute jump if A is positive
00 aaaaaa		
1001 smmm	if(A == positive and smmm!= 0) then	Relative jump if A is positive (smmm
	if $(s == 0)$ then $PC = PC + mmm$	is in sign and magnitude format)
	else $PC = PC - mmm$	
	0110 smmm 0111 0000 00 aaaaaa 0111 smmm 1000 0000 00 aaaaaa 1000 smmm 1001 0000 00 aaaaaa	0110 0000 PC = aaaaaa 01 aaaaaa if (smmm != 0) then if (s == 0) then PC = PC + mmm if (A == 0) then PC = aaaaaa 0111 0000 if (A == 0) then PC = aaaaaa 0111 smmm if (A == 0 and smmm != 0) then if (s == 0) then PC = PC + mmm else PC = PC - mmm 1000 0000 if (A != 0) then PC = aaaaaa 1000 smmm if (A != 0 and smmm != 0) then if (s == 0) then PC = PC + mmm else PC = PC - mmm 1001 0000 if (A == positive) then PC = aaaaaa 1001 smmm if (A == positive and smmm != 0) then if (s == 0) then PC = PC + mmm

Input / Output and Miscellaneous

In A	1111 0000	$A \leftarrow input$	Input to accumulator
Out A	1111 0001	$output \leftarrow A$	Output from accumulator
HALT	1111 0010	Halt	Halt execution
NOP	0000 0000	no operation	No operation

Suggested as a solution in the textbook (Dig. Logic and MP design, E. Hwang)

- ➤ Problems related to efficiency:
- Opcode is available to CU at the beginning of the second cycle (after fetch), and thus only at the third cycle CU can assert signals to the DP. A void cycle is included.
- The immediate operand is also not available until 3rd cycle.
- Memory address will overwrite the instruction and the opcode will not be available

Modified DP

Fetch in Cycle 0

Fetch in Cycle 0 and Decode in Cycle 1

- IR loaded in Cycle 0 with the first byte (could be the only byte) of Instruction.
- It is provided to CU in the beginning of the Cycle 1
- PC is incremented and loaded
- Cycle 1 is empty; allowing CU to decode

LDM Cycle 3: reads the IR. The byte is the memory addres and it is given to Memory for reading data into

storing Accumulator. Done Load 8-bit Register
Clear IR
IR₁₋₀ IRload_dp imm_dp IR_dp_{7-0} MRload rěl LoadClear MA Pmux_dp D₅₋₀ Load 6-bit Register Cload_dp -8 1c_amuxout Clear A coumulator Q_{7-0} MemInst_dp → 64 locations x 8 bits $+^3_{IR_{2-0}}$ RAM Address_{s-0} MemWr_dp → the timing former cory access. Asel_dp₂₋₀ → A load_dp → WE 8 Register File clock. c_rfout Aeq0_dp -Apos_dp ◀ RFwr_dp → ALU $\texttt{ALUsel_dp}_{2,1,0} \bullet$ _c_aluout sel_{i,0} Shifter $\verb|Shiftsel_dp|_{1,0}$ _c_shiftout outen_dp → OutputReg output_dp

STM Cycle 3: reads Memory address is given to Memory f storing Accumulator. Done

value is loaded: Load 8-bit Register PC is incremented IRload_dp $-IR_{7-0}$ imm_dp IR_dp_{7-0} MRload rěl Load→ Clear MA JMPmux_dp +1 Load 6-bit Register
Clear PC
PC₅₋₀ PCload_dp -8 __amuxout A coumulator 64 locations x 8 bits $MemInst_dp \rightarrow$ c_accout RAM −3 IR₂₋₀ MSB Address_{s-o} WE $MemWr_dp \rightarrow$ This inverter is needed to connect the timing former many access. WE 8 Register File Asel_ $dp_{2-0} \rightarrow$ A load_ $dp \rightarrow$ clock - Clock c_rfout Aeq0_dp -Apos_dp -RFwr_dp → ALU $ALUsel_dp_{2,1,0} \Rightarrow$ _c_aluout Shiftsel_dp_10 _c_shiftout outen_dp → OutputReg output_dp

Register ALU op Cycle 2: perform the operation; increment PC

Read 6 bits ofthe 2 nd byte to PC

FSM

- Some instructions complete in 2 cycles, such as NOP and Halt
- Some in 3 cycles: jumps and arithmetic, in, out
- LDM and STM complete in 4 cycles