Hoofdstuk 1: Basis en Datasets

Functies en Methodes (Datasets)

Functie/Methode	unctie/Methode Omschrijving Voorbeeld		Output (voorbeeld)
read_csv()	Leest een CSV-bestand in een DataFrame	<pre>titanic = pd.read_csv('https://raw.githubusercontent.com/DataRepo2019/Data- files/master/titanic.csv')</pre>	DataFrame met Titanic- data geladen
head()	Toont de eerste rijen van een DataFrame	erijen titanic.head() en	
tail()	Toont de laatste rijen van een DataFrame	<pre>print(not_null_df.tail(3))</pre>	Laatste 3 rijen
info()	Toont informatie over kolommen en datatypes	<pre>titanic.info() en</pre>	
describe()	Geeft statistische samenvatting	<pre>print(titanic.Survived.describe())</pre>	Count, mean, std, min, max enz.
count()	Telt niet-NA waarden per kolom	<pre>print(titanic.count())</pre>	Aantal niet- NA per kolom
sum()	Som van waarden	<pre>print(not_null_df.sum())</pre>	Som per kolom of rij
mean()	Gemiddelde van waarden	avg age = titanic['Age'].mean()	
unique()	Unieke waarden in een kolom	den in print(titanic.Embarked.unique())	
value_counts()	Telt hoe vaak unieke waarden voorkomen	<pre>print(titanic.dtypes.value_counts()) en</pre>	
astype()	Zet kolom om naar een ander datatype	<pre>titanic.Survived = titanic.Survived.astype('category')</pre>	Kolomtype aangepast
drop()	Verwijdert kolommen of rijen	titanic.drop("PassengerId", axis="columns")	DataFrame zonder opgegeven kolom

Functie/Methode	Omschrijving	Voorbeeld	Output (voorbeeld)
dropna()	Verwijdert rijen met NA- waarden	<pre>cleaned = titanic.dropna()</pre>	DataFrame zonder NA- rijen
fillna()	Vult NA- waarden op	<pre>titanic = titanic.fillna(value={'Age' : avg_age})</pre>	DataFrame met ingevulde waarden
set_index()	Zet een kolom als index	titanic.set_index(['PassengerId'])	DataFrame met nieuwe index
map()	Past een functie toe op een Series	<pre>titanic['Sex'] = titanic['Sex'].map(mapping_dict)</pre>	Kolom met aangepaste waarden
query()	Filtert data met een query-string	<pre>titanic.query("(Sex=='male') and (Age < 18)")</pre>	Gefilterde DataFrame
round()	Rondt waarden af	<pre>print(f"(Rounded) Average age of passengers: {round(avg_age)}")</pre>	Afgerond getal
notnull()	Controleert of waarden niet null zijn	<pre>not_null_df = titanic.notnull()</pre>	DataFrame met True/False waarden

Extra (niet direct pandas maar gezien in notebook)

Functie	Omschrijving	Voorbeeld	Output (voorbeeld)
print()	Print tekst naar console	<pre>print(f"Number of rows: {len(titanic)}")</pre>	"Number of rows: 891" (bijv.)
len()	Geeft lengte van object	<pre>print(f"Number of rows: {len(titanic)}")</pre>	Getal met aantal rijen
and	Logische EN	titanic.query("(Sex=='male') and (Age < 18)")	Gefilterde DataFrame

Visualisaties (Grafieken)

Naam Grafiek	Functie	Omschrijving	Voorbeeld	Output (voorbeeld)
Countplot	t countplot()	Toont telling van	<pre>sns.countplot(data=titanic,</pre>	Balkgrafiek met tellingen per
		categorieën	<pre>x='Embarked');</pre>	categorie

Hoofdstuk 2: Univariate Analysis

Functies en Methodes

Functie/Methode	Omschrijving	Voorbeeld	Output (voorbeeld)
load_dataset()	Laadt voorbeelddataset (Seaborn)	<pre>tips = sns.load_dataset("tips")</pre>	DataFrame met tips- data
head()	Toont eerste rijen van DataFrame	tips.head()	Eerste 5 rijen
mean()	Gemiddelde	<pre>print(f"Mean: {tips.tip.mean()}")</pre>	Gemiddelde waarde

Functie/Methode	Methode Omschrijving Voorbeeld		Output (voorbeeld)
median()	Mediaan	<pre>print(f"Median: {tips.tip.median()}")</pre>	Mediaanwaarde
mode()	Modus	tips.mode()	Waarde(n) die het vaakst voorkomen
min()	Minimumwaarde	<pre>print(f"Minimum: {tips.tip.min()}")</pre>	Kleinste waarde
max()	Maximumwaarde	<pre>print(f"Maximum: {tips.tip.max()}")</pre>	Grootste waarde
var()	Variantie	<pre>print(f"Variance: {tips.tip.var()}")</pre>	Variantie (n-1 in noemer)
std()	Standaardafwijking	<pre>print(f"Standard deviation: {tips.tip.std()}")</pre>	Std-dev
quantile()	Percentielen	<pre>print(f"Percentiles {percentiles}\n{tips.tip.quantile(percentiles)}")</pre>	Waarden op percentielen
describe()	Statistische samenvatting	tips.day.describe()	Count, mean, std, min, max enz.
kurtosis()	Scheefheid (spitsheid)	<pre>print(f"Kurtosis: {tips.tip.kurtosis()}")</pre>	Kurtosis-waarde
skew()	Scheefheid	<pre>print(f"Skewness: {tips.tip.skew()}")</pre>	Skewness-waarde
iqr()	Interkwartielafstand	<pre>print(f"Inter Quartile Range: {stats.iqr(tips.tip)}")</pre>	IQR-waarde
array()	Maakt numpy-array	a = np.array([4, 8, 6, 5, 3, 2, 8, 9, 2, 5])	Numpy-array
arange()	Maakt range-array	population = np.arange(0, 101)	Array van 0 tot 100
choice()	Willekeurige selectie uit array	<pre>sample = np.random.choice(population, size=sample_size)</pre>	Array met random waarden
sum()	Som van waarden	mean = sum(x) / n	Totale som
len()	Lengte van object	n = len(x)	Getal met lengte
sqrt()	Vierkantswortel	return np.sqrt(pop_var(x))	Wortelwaarde

Visualisaties (Grafieken)

Naam Grafiek	Functie	Omschrijving	Voorbeeld	Output (voorbeeld)
Displot	displot()	Histogram met verdelingscurve	<pre>sns.displot(data=tips, x='tip');</pre>	Histogram
KDE Plot	kdeplot()	Kernel Density Estimate plot	<pre>sns.kdeplot(data=tips, x='tip');</pre>	Gladde verdelingslijn
Boxplot	boxplot()	Boxplot	<pre>sns.boxplot(data=tips, x='tip');</pre>	Boxplot met mediaan, IQR enz.
Violinplot	violinplot()	Violinplot	<pre>sns.violinplot(data=tips, x='tip');</pre>	Violinvormige plot
Catplot (count)	catplot(kind='count')	Categorische tellingen plot	<pre>sns.catplot(data=tips, x='day', kind='count');</pre>	Balkgrafiek met tellingen

Hoofdstuk 3: Probability

Functies en Methodes

Functie/Methode Omsc	chrijving Vo	porbeeld	Output (voorbeeld)
----------------------	--------------	----------	--------------------

Functie/Methode	Omschrijving	Voorbeeld	Output (voorbeeld)
arange()	Maakt een array met stappen	x = np.arange(4)	Array [0,1,2,3]
linspace()	Verdeelt bereik in evenredige stappen	<pre>x = np.linspace(mu - 4 * sigma, mu + 4 * sigma, num=201)</pre>	Array met 201 waarden
randint()	Genereert willekeurige gehele getallen	random.randint(1,6)	Getal tussen 1-6
normal()	Genereert normale verdeling	<pre>observations = np.random.normal(loc=m, scale=s, size=n)</pre>	Array met normaal verdeelde waarden
full()	Array vullen met constante waarde	y = np.full(6, 1/6)	Array [1/6,1/6,]
append()	Voegt waarde toe aan lijst	<pre>l_game_1.append(number_of_times_won / index)</pre>	Gewijzigde lijst
range()	Genereert reeks getallen	<pre>for index in range(1, number_of_games + 1):</pre>	1 tot number_of_games
pdf()	Probability density function (scipy.stats)	y = stats.norm.pdf(x, mu, sigma)	Waarden van de kansdichtheid
cdf()	Cumulative density function (scipy.stats)	stats.norm.cdf(1.62, loc=0, scale=1)	Kanswaarde
sf()	Survival function (1 - CDF) (scipy.stats)	stats.norm.sf(1.62, loc=0, scale=1)	Complementaire kanswaarde
isf()	Inverse survival function (scipy.stats)	stats.norm.isf(0.05, loc=0, scale=1)	Waarde bij gegeven overlevingskans
interval()	Bereken betrouwbaarheidsinterval	<pre>stats.norm.interval(confidence, loc=m, scale=s/√n)</pre>	Tuple met (lower, upper) grens
sqrt()	Vierkantswortel	lo = m - z * s / np.sqrt(n)	Wortelwaarde
subplots()	Maakt figuur en subplot	fig, tplot = plt.subplots(1, 1)	Lege figuur met as
plot()	Lijnplot tekenen	<pre>tplot.plot(x, stats.norm.pdf(x, 0, 1))</pre>	Lijngrafiek
legend()	Voeg legenda toe aan plot	tplot.legend(loc='best')	Legenda op plot

Visualisaties (Grafieken)

Naam Grafiek/Plot	Functie	Omschrijving	Voorbeeld	Output (voorbeeld)
Lijnplot (seaborn)	lineplot()	Lijnplot voor trends	<pre>sns.lineplot(ax=ax, x='number of games', y='game 1 die', data=data)</pre>	Lijngrafiek
Staafdiagram (bar)	bar()	Staafdiagram	ax.bar(x, y, 0.35)	Staafdiagram
Histogram	histplot()	Histogram met KDE	<pre>sns.histplot(observations, kde=True)</pre>	Histogram met verdelingslijn
Vulgebied	fill_between()	Kleurt gebied onder curve	<pre>plt.fill_between(dist_x, 0, dist_y, where=dist_x <= x, color='lightblue')</pre>	Ingekleurde grafiek
Verticale lijn	axvline()	Verticale lijn in grafiek	plt.axvline(75, color='green')	Verticale lijn

Naam Grafiek/Plot	Functie	Omschrijving	Voorbeeld	Output (voorbeeld)
Subplots	subplots()	Meerdere grafieken naast elkaar	f, ax = plt.subplots(1, 1)	Lege subplot
Figure	figure()	Nieuwe figuur starten	<pre>fig = plt.figure()</pre>	Lege figuur
Add Axes	add_axes()	Handmatig assen toevoegen	ax = fig.add_axes([0,0,1,1])	Assen toegevoegd
Show Plot	show()	Toon de plot	plt.show()	Toont plot op scherm
Plot (lijn)	plot()	Lijnplot (matplotlib)	plt.plot(x, stats.norm.pdf(x, 0, 1))	Lijngrafiek
X-as label	xlabel()	Zet label op x-as	plt.xlabel('number of games')	Label op x-as
Y-as label	ylabel()	Zet label op y-as	plt.ylabel('win percentage')	Label op y-as
Set X Label	set_xlabel()	Zet label op x-as via Axes	<pre>ax.set_xlabel('x')</pre>	Label op x-as
Set Y Label	set_ylabel()	Zet label op y-as via Axes	<pre>ax.set_ylabel('P(X = x)')</pre>	Label op y-as
Titel toevoegen	title()	Voeg titel toe aan plot	plt.title('Standard Normal Distribution')	Titel boven plot
X-limieten	xlim()	Beperk x-as bereik	plt.xlim((0,20))	X-as limiet
Y-limieten	ylim()	Beperk y-as bereik	plt.ylim((0,1))	Y-as limiet
Legenda toevoegen	legend()	Voeg legenda toe	plt.legend()	Legenda op plot

Symbolische Notaties

Symbool	Naam	Betekenis
Λ	Doorsnede	A én B (snijpunt van gebeurtenissen)
U	Unie	A of B (alles wat in A of B zit)
Ac	Complement	Alles wat niet in A zit
		Voorwaardelijke kans
μ (mu)	Gemiddelde (verwachtingswaarde)	Gemiddelde van verdeling
σ (sigma)	Standaardafwijking	Spreiding rond het gemiddelde
α (alpha)	Significantieniveau	Kans buiten betrouwbaarheidsinterval (bijv. 0,05)

Kansregels en Formules

Begrip	Betekenis	Formule
Kans	Kans dat gebeurtenis A gebeurt	P(A)
Complementregel	Kans dat A niet gebeurt	$P(A^c) = 1 - P(A)$
Productregel (onafhankelijk)	Kans op A én B als onafhankelijk	$P(A \cap B) = P(A) * P(B)$
Productregel (afhankelijk)	Kans op A én B als afhankelijk	$P(A \cap B) = P(A) * P(B$

Begrip	Betekenis	Formule
Somregel (disjunct)	Kans op A of B (disjunct)	$P(A \cup B) = P(A) + P(B)$
Somregel (niet-disjunct)	Kans op A of B	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
CDF (cumulatief)	Kans dat X kleiner of gelijk aan x	$P(X \le x) = CDF(x)$
SF (survival)	Kans dat X groter is dan x	P(X > x) = SF(x) = 1 - CDF(x)
Z-score (kritieke waarde)	Kritieke waarde uit standaardnormale verdeling	$z = isf(\alpha/2)$
Standaardfout (SE)	Standaardafwijking van steekproefgemiddelde	SE = s / √n
Bereken z-score voor interval	Stap 1 voor betrouwbaarheidsinterval	$z = stats.norm.isf(\alpha/2)$
Bereken SE voor interval	Stap 2 voor betrouwbaarheidsinterval	SE = s / √n
Bereken onder- en bovengrens	Stap 3 voor betrouwbaarheidsinterval	lo = m - z _ SE; hi = m + z _ SE
α (alpha)	Kans buiten interval (significantieniveau)	α = 1 – confidence

Formule (handmatig):

```
    Bereken z-score: z = stats.norm.isf(α/2)
    Bereken standaardfout: SE = s / √n
    Ondergrens: lo = m - z * SE
    Bovengrens: hi = m + z * SE
```

Uitleg: (Standaard)normale verdeling

De **standaardnormale verdeling** is een speciale normale verdeling met gemiddeld $\mu = 0$ en standaardafwijking $\sigma = 1$. Het is een klokvormige symmetrische curve die wordt gebruikt om veel natuurlijke verschijnselen te modelleren.

Eigenschappen:

- Symmetrisch rond het gemiddelde $\mu = 0$
- 68% van de waarden ligt binnen 1 standaardafwijking (σ)
- 95% van de waarden ligt binnen 2 standaardafwijkingen (σ)
- 99,7% van de waarden ligt binnen 3 standaardafwijkingen (σ)

Python-voorbeeld:

```
x = np.linspace(-4, 4, 100)
y = stats.norm.pdf(x, 0, 1)
plt.plot(x, y)
plt.title("Standaardnormale verdeling")
plt.show()
```

Uitleg: Wat is een z-score?

Een z-score geeft aan hoeveel standaardafwijkingen een waarde van het gemiddelde af ligt.

Formule:

```
z = (x - \mu) / \sigma
```

Wat doet het? Het zet elke waarde uit een normale verdeling om naar de standaardnormale schaal, zodat je kanswaarden kunt opzoeken met bijvoorbeeld cdf(), sf() of isf().

Voorbeeld: Stel je hebt een waarde x = 80, met een gemiddelde $\mu = 70$ en een standaardafwijking $\sigma = 5$, dan geldt:

```
z = (80 - 70) / 5 = 10 / 5 = 2
```

Dit betekent dat de waarde 2 standaardafwijkingen boven het gemiddelde ligt.

Wat is α (alpha)? De α -waarde (significantieniveau) geeft aan hoeveel kans je buiten een betrouwbaarheidsinterval laat. Bijvoorbeeld:

- Bij 95% betrouwbaarheidsinterval: $\alpha = 1 0.95 = 0.05$
- Bij 99% betrouwbaarheidsinterval: $\alpha = 1 0.99 = 0.01$

Omdat de interval symmetrisch verdeeld is, gebruik je vaak $\alpha/2$ voor de bovenste of onderste kant.

Python-voorbeeld:

```
confidence = 0.95
m = 50
s = 10
n = 100
z = stats.norm.isf((1 - confidence) / 2)
lo = m - z * s / np.sqrt(n)
hi = m + z * s / np.sqrt(n)
print(f"Confidence interval: [{lo:.2f}, {hi:.2f}]")
```

Hypothesis Testing: Overzicht en Voorwaarden

Wanneer gebruik je welke test?

- z-test → als je een grote steekproef hebt (n ≥ 30), de standaardafwijking σ van de populatie kent, en de data normaal verdeeld zijn.
- **t-test** \rightarrow als je een kleine steekproef hebt (n < 30) of σ onbekend is.

Stappenplan Hypothesis Testing

1 Formuleer de hypotheses

- H₀: nulhypothese (bijvoorbeeld: er is geen verschil)
- H₁: alternatieve hypothese (bijvoorbeeld: er is wél verschil)

2 Kies significantieniveau

• Meestal $\alpha = 0.05 (5\%)$

3 Bereken de teststatistiek

- $z = (\bar{x} \mu) / (\sigma / \sqrt{n}) \rightarrow bij z$ -test
- $t = (\bar{x} \mu) / (s / \sqrt{n}) \rightarrow bij t-test$

4 Bepaal het kritieke gebied

- Right-tailed: kijk naar bovenkant (H₁: μ > μ₀)
- Left-tailed: kijk naar onderkant (H1: $\mu < \mu_0$)
- Two-tailed: kijk naar beide kanten (H_1 : $\mu \neq \mu_0$)

5 Maak een beslissing

- Als p-waarde $\leq \alpha \rightarrow \text{verwerp H}_0$
- Als p-waarde > $\alpha \rightarrow$ behoud H_0

Python formules voor variabelen right tailed z test

Symbool	uitleg	Python formule
n	grootte van steekproef	len(array)
μ (mu)	gemiddelde (niet van steekproef)	/
m_sample	gemiddelde (steekproef)	np.mean(array)
р	/	<pre>stats.norm.sf(m_sample, loc=mu, scale=sigma/np.sqrt(n))</pre>

Symbool	uitleg	Python formule
g	/	<pre>stats.norm.isf(1-alpha, loc=mu, scale=(sigma/ np.sqrt(n)))</pre>

Python formules voor variabelen left tailed z test

Symbool	uitleg	Python formule
n	grootte van steekproef	len(array)
μ (mu)	gemiddelde (niet van steekproef)	/
m_sample	gemiddelde (steekproef)	np.mean(array)
р	/	<pre>stats.norm.cdf(m_sample, loc=mu, scale=sigma/np.sqrt(n))</pre>
g	/	stats.norm.isf(1-alpha, loc=mu, scale=(sigma/ np.sqrt(n)))

Python formules voor variabelen two-tailed z test

Symbool	uitleg	Python formule
n	grootte van steekproef	len(array)
μ (mu)	gemiddelde (niet van steekproef)	/
m_sample	gemiddelde (steekproef)	np.mean(array)
р	/	<pre>stats.norm.sf(m_sample, loc=mu, scale=sigma/np.sqrt(n))</pre>
g1	linkerkant	<pre>mu - stats.norm.isf(1-alpha, loc=mu, scale=(sigma/ np.sqrt(n)))</pre>
g2	rechterkant	<pre>mu + stats.norm.isf(1-alpha, loc=mu, scale=(sigma/ np.sqrt(n)))</pre>

Voorbeeld: Right-tailed z-test

```
n = 50
x_bar = 105
mu = 100
sigma = 10
z = (x_bar - mu) / (sigma / np.sqrt(n))
p_value = stats.norm.sf(z)
```

Voorbeeld: Left-tailed z-test

```
n = 50
x_bar = 95
mu = 100
sigma = 10
z = (x_bar - mu) / (sigma / np.sqrt(n))
p_value = stats.norm.cdf(z)
```

Voorbeeld: Two-tailed z-test

```
n = 50
x_bar = 105
mu = 100
sigma = 10
z = (x_bar - mu) / (sigma / np.sqrt(n))
p_value = 2 * stats.norm.sf(abs(z))
```

Voorbeeld: Right-tailed t-test

```
n = 15
x_bar = 105
mu = 100
s = 10
t = (x_bar - mu) / (s / np.sqrt(n))
p_value = stats.t.sf(t, df=n-1)
```

Voorbeeld: Left-tailed t-test

```
n = 15
x_bar = 95
mu = 100
s = 10
t = (x_bar - mu) / (s / np.sqrt(n))
p_value = stats.t.cdf(t, df=n-1)
```

Voorbeeld: Two-tailed t-test (met ttest_1samp)

```
sample = np.array([98, 102, 100, 105, 97])
mu = 100
t_stat, p_value = stats.ttest_1samp(sample, popmean=mu)
```

Symbolen en Formules

Symbool Betekenis

H ₀	Nulhypothese
H ₁	Alternatieve hypothese
α	Significantieniveau (bijv. 0,05)
р	p-waarde, kans op verkregen resultaat onder H_{0}
z	z-score bij z-test
t	t-score bij t-test
μ	Populatiegemiddelde
x	Steekproefgemiddelde
σ	Populatiestanda ardafwijking
S	Steek proefstandaarda fwijking
n	Steekproefgrootte

Wat is een Type I en Type II fout?

- Type I fout (α): je verwerpt H_0 terwijl die waar is \rightarrow vals alarm.
- Type II fout (β): je behoudt H_0 terwijl H_1 waar is \rightarrow je mist een effect.

Gevolgen:

- Type I fout: je denkt dat er effect is, maar dat is er niet.
- Type II fout: er is wél effect, maar je ziet het niet.

Hoofdstuk 4: Chi-Squared & Associaties

Welke test gebruik je wanneer?

Onafhankelijke Variabele (Independent)	Afhankelijke Variabele (Dependent)	Test/Metric
Kwalitatief	Kwalitatief	χ²-test, Cramér's V
Kwalitatief	Kwantitatief	two-sample t-test, Cohen's d
Kwantitatief	Kwantitatief	Regressie, correlatie

Uitleg per test

- χ^2 -test: Verband tussen twee categorische variabelen.
- · Goodness-of-Fit test: Vergelijkt verdeling van één categorische variabele met een verwachte verdeling.
- Cramér's V: Sterkte van het verband tussen categorische variabelen.
- Two-sample t-test: Vergelijkt gemiddelden tussen twee onafhankelijke groepen.
- Gepaalde t-test: Vergelijkt gemiddelden tussen twee gekoppelde metingen (voor/na).
- Cohen's d: Effectgrootte van verschil tussen twee groepen.
- **Regressie (least squares):** Voorspelt waarden van een afhankelijke kwantitatieve variabele uit een onafhankelijke kwantitatieve variabele.
- Covariantie: Meet hoe twee kwantitatieve variabelen samen variëren.
- Correlatie (Pearson): Meet de sterkte en richting van een lineair verband tussen twee kwantitatieve variabelen.
- Coëfficiënt van determinatie (R²): Geeft aan hoeveel van de variantie verklaard wordt door het model.

Wat doet de χ^2 -test?

De χ^2 -test controleert of er een verband is tussen twee categorische variabelen door de geobserveerde frequenties in een kruistabel te vergelijken met de verwachte frequenties als er géén verband zou zijn.

Wat doet de Goodness-of-Fit test?

De **Goodness-of-Fit test** controleert of de verdeling van één categorische variabele overeenkomt met een verwachte verdeling (bijvoorbeeld een uniforme verdeling of een andere theoretische verdeling).

Beste grafieken (met voorbeeld)

Grafiektype	Omschrijving	Voorbeeldcode
Mozaïekdiagram	Visualiseert frequenties tussen categorieën	mosaic(data, ['col1', 'col2'])
Gestapelde staafdiagram (met percentages)	Vergelijkt proporties per categorie	<pre>pd.crosstab(df['col1'], df['col2'], normalize='index').plot(kind='bar', stacked=True)</pre>

Functies voor χ², Goodness-of-Fit en Cramér's V

Functie/Methode	Omschrijving	Voorbeeld
pd.crosstab()	Maakt een kruistabel (contingency table)	table = pd.crosstab(df['col1'], df['col2'])
chi2_contingency()	Voert de χ²-test uit op een kruistabel	<pre>chi2, p, dof, expected = stats.chi2_contingency(table)</pre>
chisquare()	Voert de goodness-of-fit test uit	chi2, p = stats.chisquare(observed, f_exp=expected)
Handmatige Cramér's V	Berekent Cramér's V	zie functie hieronder

Handmatige berekening van Cramér's V

```
dof = min(observed.shape) - 1
cramers_v = np.sqrt(chi_squared / (n * dof))
```

```
print(cramers_v)
```

Cramér's V	Interpretation
0	No association
0.1	Weak association
0.25	Moderate association
0.50	Strong association
0.75	Very strong association
1	Complete association

Stappenplan χ²-test (contingentie)

1 Formuleer de hypotheses

- ullet H_0 : Er is geen verband tussen de variabelen.
- H₁: Er is wel een verband tussen de variabelen.

2 Maak een kruistabel

• Gebruik bijvoorbeeld pd.crosstab().

3 Voer de test uit

• Gebruik stats.chi2_contingency().

4 Bekijk de resultaten

• χ²-waarde, p-waarde, vrijheidsgraden, expected counts.

5 Maak een beslissing

- Als $p \le \alpha \to \text{verwerp } H_0$.
- Als $p > \alpha \rightarrow behoud H_0$.

Stappenplan Goodness-of-Fit test

1 Formuleer de hypotheses

- H₀: De geobserveerde verdeling komt overeen met de verwachte.
- H₁: De verdeling wijkt af van de verwachte.

2 Bereken de teststatistiek

• Gebruik stats.chisquare(observed, f_exp=expected).

3 Maak een beslissing

- Als $p \le \alpha \to \text{verwerp } H_0$.
- Als $p > \alpha \rightarrow behoud H_0$.

Voorbeeld χ² Goodness-of-Fit test in Python

```
import numpy as np
from scipy import stats

observed = np.array([30, 50, 20])
expected = np.array([33.3, 33.3, 33.3])
chi2, p = stats.chisquare(observed, f_exp=expected)
print(f"Chi²: {chi2:.2f}, p-waarde: {p:.4f}")
```

Symbolen en Formules

Symbool	Betekenis
χ²	Chi-kwadraat statistiek
р	p-waarde, kans onder nulhypothese
dof	Degrees of freedom (vrijheidsgraden)
Cramér's V	Sterkte van het verband tussen variabelen

Hoofdstuk 5: t-tests & Effectgrootte

Beste grafieken (met voorbeeld)

Grafiektype	Omschrijving	Voorbeeldcode
Density plot	Toont verdeling van een continue variabele	<pre>sns.kdeplot(data, x='value', hue='group')</pre>
Staafdiagram met foutbalken	Vergelijkt gemiddelden met onzekerheid (error bars)	<pre>sns.barplot(data=df, x='group', y='score', ci='sd')</pre>

Functies voor t-tests en Cohen's d

Functie/Methode	Omschrijving	Voorbeeld
ttest_ind()	t-test voor twee onafhankelijke steekproeven	<pre>stats.ttest_ind(group1, group2)</pre>
ttest_rel()	t-test voor gepaarde steekproeven	stats.ttest_rel(before, after)
cohen d() (zelf gedefinieerd)	Berekent Cohen's d (effectgrootte) handmatig	Zie functie hieronder

Formule van Cohen's d

```
def cohen_d(a, b):
    na = len(a)
    nb = len(b)
    pooled_sd = np.sqrt(((na - 1) * np.var(a, ddof=1) + (nb - 1) * np.var(b, ddof=1)) / (na + nb - 2))
    return (np.mean(b) - np.mean(a)) / pooled_sd
```

Interpretatie van Cohen's d (Effect Size)

d	Effectgrootte	
0,01	Zeer klein	
0,20	Klein	
0,50	Gemiddeld	
0,80	Groot	
1,20	Zeer groot	
2,00	Enorm	

Stappenplan t-test

1 Formuleer de hypotheses

- H₀: Er is geen verschil tussen de groepen.
- ullet H_1 : Er is wel een verschil tussen de groepen.

2 Kies de juiste test

- Onafhankelijke groepen → ttest_ind()
- Gepaalde metingen (voor/na) → ttest_rel()

3 Bereken de teststatistiek

• t-waarde en p-waarde met stats.ttest_ind() of stats.ttest_rel()

4 Bereken de effectgrootte (optioneel)

• Cohen's d met de handmatige cohen_d() functie

5 Maak een beslissing

- Als $p \le \alpha \to \text{verwerp } H_0$.
- Als $p > \alpha \rightarrow behoud H_0$.

Voorbeeld: t-test voor twee onafhankelijke steekproeven

```
from scipy import stats
t_stat, p_value = stats.ttest_ind(group1, group2)
print(f"t: {t_stat:.3f}, p: {p_value:.4f}")
```

Voorbeeld: t-test voor gepaarde steekproeven

```
from scipy import stats
t_stat, p_value = stats.ttest_rel(before, after)
print(f"t: {t_stat:.3f}, p: {p_value:.4f}")
```

Voorbeeld: Cohen's d

```
d = cohen_d(group1, group2)
print(f"Cohen's d: {d:.3f}")
```

Symbolen en Formules

Symbool	Betekenis
t	t-statistiek
р	p-waarde, kans onder nulhypothese
μ	Populatiegemiddelde
x	Steekproefgemiddelde
S	Steekproefstandaardafwijking
n	Steekproefgrootte
Cohen's d	Effectgrootte, verschil in standaarddeviaties

Hoofdstuk 6: Regressie, Covariantie & Correlatie

Beste grafieken (met voorbeeld)

Grafiektype	Omschrijving	Voorbeeldcode
Rel plot	Scatterplot met regressielijn of trends	<pre>sns.relplot(data=df, x='x', y='y', kind='scatter')</pre>

Grafiektype	Omschrijving	Voorbeeldcode
Danis adat	Lijnfit met	<pre>sns.regplot(x='x', y='y', data=df) of sns.lmplot(x='x', y='y',</pre>
regressiepiot	betrouwbaarheidsbanden	data=df)

Methode van de kleinste kwadraten (Method of Least Squares)

De kleinste-kwadratenmethode vindt de lijn (of regressievergelijking) die de som van de kwadraten van de residuen (afstanden tussen werkelijke waarden en voorspelde waarden) minimaliseert.

Formules:

- Regressielijn: $y = \beta_0 + \beta_1 \times x$
- Hellingscoëfficiënt (β_1): $\beta_1 = Cov(X, Y) / Var(X)$
- Intercept (β_0): $\beta_0 = \bar{y} \beta_1 \times \bar{x}$

Voorbeeld β₀ en β₁ berekenen

```
import numpy as np
x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 4, 5, 4, 5])

beta_1 = np.cov(x, y, ddof=1)[0, 1] / np.var(x, ddof=1)
beta_0 = np.mean(y) - beta_1 * np.mean(x)

print(f"β₁ (helling): {beta_1:.2f}")
print(f"β₀ (intercept): {beta_0:.2f}")
```

Covariantie

Begrip	Omschrijving	Voorbeeldcode
Covariantie	Meet de mate waarin twee variabelen samen variëren; positief = samen omhoog/omlaag,	np.cov(x, y)[0,
Covariantie	negatief = tegengesteld	1]

Correlatie

- Meet de sterkte en richting van een lineair verband tussen twee variabelen.
- Waarden tussen -1 en 1; dicht bij 0 = geen lineair verband.

Functie en voorbeeld:

```
corr = np.corrcoef(x, y)[0, 1]
print(f"Correlatie: {corr:.2f}")
```

Coëfficiënt van determinatie (R2)

- Geeft het percentage verklaarde variantie aan (hoe goed past het model?).
- $R^2 = r^2$, waar r de correlatiecoëfficiënt is.

Voorbeeld:

```
r = np.corrcoef(x, y)[0, 1]
r_squared = r ** 2
print(f"R<sup>2</sup>: {r_squared:.2f}")
```

R R² Verklaarde variantie Lineair verband

R	R ²	Verklaarde variantie	Lineair verband
< 0,3	< 0,1	< 10%	zeer zwak
0,3 - 0,5	0,1 - 0,25	10% - 25%	zwak
0,5 - 0,7	0,25 - 0,5	25% - 50%	matig
0,7 - 0,85	0,5 - 0,75	50% - 75%	sterk
0,85 - 0,95	0,75 - 0,9	75% - 90%	zeer sterk
> 0,95	> 0,9	> 90%	uitzonderlijk sterk

Tabel met gebruikte termen

Term	Betekenis
Regressielijn	De beste lijn door de data (voorspelling)
Intercept (β ₀)	Snijpunt met de y-as
Hellingscoëfficiënt (β ₁)	Hoeveel y verandert als x met 1 stijgt
Covariantie	Samenhang in variatie tussen x en y
Correlatie (R)	Sterkte en richting lineair verband
Coëfficiënt van determinatie (R²)	Hoeveel variantie door model verklaard wordt
Residuen	Verschil tussen geobserveerde en voorspelde waarden

Hoofdstuk 7: Time Series Analyse

Belangrijkste componenten

Component	Definitie
Level	Het gemiddelde of basisniveau van de reeks over tijd
Trend	Langetermijnbeweging (stijgend of dalend patroon)
Seasonal	Terugkerende patronen of fluctuaties over vaste perioden

Wanneer gebruik je welke methode?

Methode	Wanneer gebruiken?	Voorbeeldcode
Simple Moving Average (SMA)	Als je kortetermijnschommelingen wilt gladstrijken	<pre>series.rolling(window=3).mean()</pre>
Simple Exponential Smoothing (SES)	Voor tijdreeksen met alleen level, zonder trend of seizoen	SimpleExpSmoothing(series).fit()
Double Exponential Smoothing (DES)	Voor tijdreeksen met level én trend, maar zonder seizoen	<pre>ExponentialSmoothing(series, trend='add').fit()</pre>
Triple Exponential Smoothing (TES, Holt- Winters)	Voor tijdreeksen met level, trend én seizoen (add => mul om van additief naar multiplicatief verband)	ExponentialSmoothing(series, trend='add', seasonal='add', seasonal_periods=12).fit() * add = schommelingen zijn even groot mul = schommelingen worden groter

Uitgewerkte voorbeelden

Simple Moving Average (SMA)

```
import pandas as pd
sma = series.rolling(window=3).mean()
print(sma.head())
```

Dit berekent het gemiddelde van telkens 3 opeenvolgende waarden om ruis weg te filteren.

Simple Exponential Smoothing (SES)

```
from statsmodels.tsa.holtwinters import SimpleExpSmoothing
model = SimpleExpSmoothing(series).fit()
pred = model.predict(start=0, end=len(series)-1)
print(pred.head())
```

Gebruik SES als er geen trend of seizoen is, enkel een stabiel gemiddelde.

Double Exponential Smoothing (DES)

```
from statsmodels.tsa.holtwinters import ExponentialSmoothing
model = ExponentialSmoothing(series, trend='add').fit()
pred = model.predict(start=0, end=len(series)-1)
print(pred.head())
```

Gebruik DES als de data een duidelijke stijgende of dalende trend vertoont.

Triple Exponential Smoothing (TES / Holt-Winters)

```
model = ExponentialSmoothing(series, trend='add', seasonal='add', seasonal_periods=12).fit()
pred = model.predict(start=0, end=len(series)-1)
print(pred.head())
```

Gebruik TES als je ook seizoensinvloeden wilt meenemen (bijvoorbeeld maandelijkse data met jaarcyclus).

Fvaluatiematen

Maat	Definitie	Voorbeeldcode
MAE	Gemiddelde absolute fout tussen voorspelde en werkelijke waarden	<pre>from sklearn.metrics import mean_absolute_error mae = mean_absolute_error(y_true, y_pred)</pre>
MSE	Gemiddelde van de kwadraten van de fouten (straft grotere fouten sterker)	<pre>from sklearn.metrics import mean_squared_error mse = mean_squared_error(y_true, y_pred)</pre>

Decomposing a Time Series

Decompositie splitst een tijdreeks op in zijn level, trend, seasonal en residual componenten om patronen beter te begrijpen.

Voorbeeld decompositie

```
from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib.pyplot as plt

result = seasonal_decompose(series, model='additive', period=12)
result.plot()
plt.show()
```

Samengevat

- **SMA**: gladstrijken van korte termijn fluctuaties.
- **SES**: voor stabiele reeksen zonder trend/seizoen.
- **DES**: voor reeksen met trend.
- **TES**: voor reeksen met trend én seizoenspatronen.
- **MAE/MSE**: beoordelen hoe nauwkeurig je voorspellingen zijn.
- **Decompositie**: inzicht krijgen in de bouwstenen van je tijdreeks.