Planche nº 16. Equations différentielles linéaires

* très facile ** facile *** difficulté moyenne **** difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (**IT)

Résoudre sur l'intervalle I de \mathbb{R} proposé les équations différentielles suivantes :

1)
$$x \ln x y' + y = x$$
, $I =]1, +\infty[$

1)
$$x \ln x \ y' + y = x$$
, $I =]1, +\infty[$
2) $xy' + 3y = \frac{1}{1 + x^2} I =]0, +\infty[$
3) $(1 - x)^2 y' = (2 - x)y I =] - \infty, 1[$
4) $x(xy' + y - x) = 1$, $I =] - \infty, 0[$
5) $2xy' + y = x^4$, $I =] - \infty, 0[$
6) $y' + 2y = x^2 - 3x$, $I = \mathbb{R}$
7) $y' + y = \frac{1}{1 + 2e^x}$, $I = \mathbb{R}$
8) $y' \sin x - y \cos x + 1 = 0$, $I =]0, \pi[$

3)
$$(1-x)^2y' = (2-x)y I =]-\infty, 1[$$

4)
$$x(xy' + y - x) = 1$$
, $I =]-\infty, 0$

5)
$$2xy' + y = x^4$$
, $I =]-\infty$, 0

6)
$$y' + 2y = x^2 - 3x$$
, $I = \mathbb{F}$

7)
$$y' + y = \frac{1}{1 + 2e^x}$$
, $I = \mathbb{R}$

8)
$$y' \sin x - y \cos x + 1 = 0$$
, $I =]0, \pi$

Exercice nº 2 (**IT)

- 1) Déterminer la solution sur \mathbb{R} de l'équation différentielle y' + y th x = 0 prenant la valeur 1 en 0.
- 2) Déterminer la solution sur \mathbb{R} de l'équation différentielle $y' + y \operatorname{th} x = x \operatorname{th} x$ prenant la valeur 0 en 0.

Exercice nº 3 (***I)

Résoudre l'équation différentielle $(1-x^2)y'-2xy=x^2$ sur chacun des intervalles I suivants : I =]1, +\infty[, I =] - 1, 1[, $I =]-1, +\infty[, I = \mathbb{R}.$

Exercice nº 4 (***)

Résoudre sur] $-\infty$, 0[et sur]0, $+\infty$ [l'équation différentielle : $|x|y' + (x-1)y = x^3$.

Exercice no 5 (**)

Résoudre sur \mathbb{R} les équations différentielles :

1)
$$y'' - 2y' + 2y = \cos x \operatorname{ch} x$$
 2) $y'' + 6y' + 9y = e^{2x}$ 3) $y'' - 2y' + y = \operatorname{ch} x$ 4) $y'' - 2ky' + (1 + k^2)y = e^x \sin x$, $k \in \mathbb{R} \setminus \{1\}$.

Exercice nº 6 (**IT) (d'après Mines d'Alès 2005)

On note (E_1) l'équation différentielle :

$$-x^2z'+xz=z^2.$$

On cherche les solutions de (E_1) sur $]1, +\infty[$ qui ne s'annulent pas sur $I=]1, +\infty[$.

- 1) On pose $y = \frac{1}{z}$. Vérifier que y est solution sur I d'une équation différentielle linéaire du premier ordre notée (E_2) .
- 2) Résoudre (E_2) sur I puis déterminer les solutions de (E_1) sur $]1, +\infty[$ qui ne s'annulent pas sur $[E_1], +\infty[$.

Exercice no 7 (**IT) (***)

On considère l'équation différentielle (E): $ax^2y'' + bxy' + cy = 0$ (a, b, c réels, $a \neq 0$) pour $x \in]0, +\infty[$.

- 1) Soit y une fonction deux fois dérivable sur $]0,+\infty[$. Pour $t\in\mathbb{R}$, on pose $z(t)=y(e^t)$. Vérifier que y est deux fois dérivable sur $]0, +\infty[$ si et seulement si z est deux fois dérivable sur \mathbb{R} .
- 2) Effectuer le changement d'inconnue précédent dans l'équation différentielle (E) et vérifier que la résolution de (E) se ramène à la résolution d'une équation linéaire du second ordre à coefficients constants.
- 3) Résoudre sur $]0, +\infty[$, l'équation différentielle $x^2y'' xy' + y = 0$.

Exercice nº 8 (***)

Soit a un réel non nul. Soit f continue sur \mathbb{R} et périodique de période $T \neq 0$. Montrer que l'équation différentielle y' + ay = fadmet une et une seule solution périodique sur \mathbb{R} , de période T.

Exercice nº 9 (**IT) (quelques équations différentielles en physique)

Résoudre :

1) L'équation classique du premier ordre (activité radioactive, cinétique chimique du 1er ordre, freinage avec frottement fluide, circuits RL, ...)

$$\dot{x} + \frac{x}{\tau} = \frac{x_{\infty}}{\tau} \text{ avec } x(0) = x_0$$

où x_{∞} et x_0 sont deux réels (ou $\dot{\nu} + \frac{\nu}{\tau} = \frac{\nu_{\infty}}{\tau}$ avec $\nu(0) = \nu_0$).

2) Equation de la charge d'un condensateur

$$RC\frac{dU}{dt} + U = E \text{ avec } U(0) = U_0.$$

3) Oscillateur harmonique

$$\mathbf{a}) \ \ddot{x} + \omega_0^2 x = 0 \ \mathrm{où} \ \omega_0 = \sqrt{\frac{k}{\underline{m}}} > 0 \ \mathrm{avec} \ x(t_0) = x_0 \ \mathrm{et} \ \dot{x}(t_0) = \nu_0.$$

b)
$$\ddot{x} + \omega_0^2 x = A$$
 où $\omega_0 = \sqrt{\frac{k}{m}} > 0$ avec $x(t_0) = x_0$ et $\dot{x}(t_0) = v_0$.

4) Circuits RLC

 $\ddot{\dot{q}} + 2\lambda \dot{q} + \omega_0^2 q = \frac{E}{L} \text{ avec } q(0) = 0 \text{ et } \dot{q}(0) = 0 \text{ } (\lambda = \frac{R}{2L} \text{ est le coefficient d'amortissement et } \omega_0 = \frac{1}{\sqrt{LC}} \text{ est la pulsation propre}).$