课上练习

用单纯形法求解下列LP问题:

min
$$26x_1 + x_2 - 3x_3$$

s.t. $10x_1 + x_2 - x_3 \ge -2$
 $-4x_1 + x_2 + x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$

最优解: $X^* = (0,1,3)^T$, 最优值: -8

第一章 线性规划

第六节 对偶规划

- 对偶问题的提出
 - 对偶规划的定义

一. 对偶问题的提出:

例:某工厂在计划期内要安排生产甲乙两种产品,它们需要在四种不同的设备上加工。加工工时数、可得利润、总工时数均列于下表。

问: 应如何安排生产才能获利最大?

	$oldsymbol{A}$	В	<i>C</i>	D	利润
甲	2	1	4	0	20
乙	2	2	0	4	30
总工时数	12	8	16	12	

建立数学模型:设 x_1,x_2 为计划期内甲、乙的产量

问题:求利润最大
$$\max S = 20x_1 + 30x_2$$

$$\begin{cases} 2x_1 + 2x_2 \le 12 \\ x_1 + 2x_2 \le 8 \\ 4x_1 + 0x_2 \le 16 \\ 0x_1 + 4x_2 \le 12 \\ x_j \ge 0, j = 1, 2 \end{cases}$$

	$oldsymbol{A}$	В	<i>C</i>	D	利润
甲	2	1	4	0	20
乙	2	2	0	4	30
总工时数	12	8	16	12	

对偶问题:不自己生产甲、乙两种产品,而将生产设 备的总工时用于出租, 收取租金。

对偶规划: $\min Z = 12y_1 + 8y_2 + 16y_3 + 12y_4$ $\begin{cases} 2y_1 + y_2 + 4y_3 + 0y_4 \ge 20 \\ 2y_1 + 2y_2 + 0y_3 + 4y_4 \ge 30 \\ y_1, y_2, y_3, y_4 \ge 0 \end{cases}$

设 y_1, y_2, y_3, y_4		A	В	<i>C</i>	D	利润
为设备 $A,B,C,$ D 每工时的价格	▋ 甲	2	1	4	0	20
	乙	2	2	0	4	30
	总工时数	12	8	16	12	

原规划(P):

对偶规划(D):

$$\max S = 20x_1 + 30x_2 \qquad \min Z = 12y_1 + 8y_2 + 16y_3 + 12y_4$$

$$\begin{cases} 2x_1 + 2x_2 \le 12 & y_1 \\ x_1 + 2x_2 \le 8 & y_2 \\ 4x_1 + 0x_2 \le 16 & y_3 \\ 0x_1 + 4x_2 \le 12 & y_4 \\ x_j \ge 0, j = 1, 2 \end{cases} \qquad \begin{cases} 2y_1 + y_2 + 4y_3 + 0y_4 \ge 20 \\ 2y_1 + 2y_2 + 0y_3 + 4y_4 \ge 30 \\ y_1, y_2, y_3, y_4 \ge 0 \end{cases}$$

-	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	
	A	В	\boldsymbol{C}	\boldsymbol{D}	利润
甲	2	1	4	0	20
乙	2	2	0	4	30
总工时数	12	8	16	12	

第一章 线性规划

第六节 对偶规划

✓对偶问题的提出
对偶规划的定义

二. 对偶规划的定义:

原规划(P):

$$\max S = 20x_1 + 30x_2$$

$$\begin{cases} 2x_1 + 2x_2 \le 12 \\ x_1 + 2x_2 \le 8 \\ 4x_1 + 0x_2 \le 16 \\ 0x_1 + 4x_2 \le 12 \\ x_j \ge 0, j = 1, 2 \end{cases}$$

对偶规划(D):

$$\min Z = 12y_1 + 8y_2 + 16y_3 + 12y_4$$

$$\begin{cases} 2y_1 + y_2 + 4y_3 + 0y_4 \ge 20 \\ 2y_1 + 2y_2 + 0y_3 + 4y_4 \ge 30 \\ y_1, y_2, y_3, y_4 \ge 0 \end{cases}$$

(P)与(D)的

对应关系:

- 1 约束条件的系数矩阵是转置关系 且不等号反向
- 2 约束右端项 ====目标函数的系数
- 3 求 $\max S$ 二 求 $\min Z$

写出对偶规划的向量形式:

与不等式约束条件相对应的对偶变量取值非负

对偶规划的定义:

(P)与(D)的

对应关系:

- 1 约束条件的系数矩阵是转置关系且不等号反向
- 2 约束右端项 ====目标函数的系数
- 3 求 $\max S$ 二 求 $\min Z$

写对偶规划的方法:
$$(LP)$$
 — min $S = CX$ — max $Z = \lambda b$ (P) $AX \ge b$ (D) $\lambda A \le C$ $\lambda \ge 0$ $\lambda \ge 0$ min $S = CX$ 对偶关系的 (D) max $Z = \lambda b$ (P) $AX = b$ 非对称形式 $\lambda A \le C$ $\lambda \ge 0$ $\lambda A \le C$ $\lambda \ge 0$ 但 λ 为自由变量
$$\begin{cases} AX \ge b \\ AX \ge -b \\ X \ge 0 \end{cases}$$
 但 λ 为自由变量
$$\begin{cases} AX \ge b \\ AX \ge -b \\ X \ge 0 \end{cases}$$
 如 max $Z = (u,v)$
$$\begin{cases} b \\ -b \end{cases} = ub - vb \\ -b \end{cases} = (u-v)b$$

$$\begin{cases} A \\ A \end{cases} X \ge \begin{pmatrix} b \\ -b \end{pmatrix} = u(m \cdot a)b$$

$$(u,v)$$

$$\begin{cases} A \\ -A \end{cases} X \ge \begin{pmatrix} b \\ -b \end{pmatrix} = u(m \cdot a)b$$

$$(u,v)$$

$$\begin{cases} A \\ -A \end{cases} X \ge \begin{pmatrix} b \\ -b \end{cases} = u(m \cdot a)b$$

$$(u,v)$$

$$\begin{cases} A \\ -A \end{cases} X \ge \begin{pmatrix} b \\ -b \end{cases} = u(m \cdot a)b$$

$$(u,v)$$

$$\begin{cases} A \\ -A \end{cases} = CX$$

$$(u-v)$$

$$\begin{cases} A \\ -A \end{cases} = CX$$

$$(u,v)$$

$$\begin{cases} A \\ -A \end{cases} = CX$$

写对偶规划的原则:

 $\min S = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ $\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \ge b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \ge b_2 \\ \dots \dots \dots \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m \\ x_1 \ge 0, x_2 \ge 0, \dots, x_n$ 自由变量

$$\min S = CX$$
 非对称 $\max Z = \lambda b$ $AX = b$ $\lambda A \le C$ $X \ge 0$

$$\max Z = b_1 \lambda_1 + b_2 \lambda_2 + \dots + b_m \lambda_m$$

$$\begin{cases} a_{11} \lambda_1 + a_{21} \lambda_2 + \dots + a_{m1} \lambda_m \leq c_1 \\ a_{12} \lambda_1 + a_{22} \lambda_2 + \dots + a_{m2} \lambda_m \leq c_2 \\ \dots \\ a_{1n} \lambda_1 + a_{2n} \lambda_2 + \dots + a_{mn} \lambda_m = c_n \\ \lambda_1 \geq 0, \lambda_2 \geq 0, \dots, \lambda_m$$
 自由变量

例1-16:

(P)
$$\min S = 2x_1 + 2x_2 + 4x_3$$
 $\min S = 2x_1 + 2x_2 + 4x_3$ $\begin{cases} 2x_1 + 3x_2 + 5x_3 \ge 2 \\ 3x_1 + x_2 + 7x_3 = 3 \end{cases}$ $\begin{cases} 2x_1 + 3x_2 + 5x_3 \ge 2 \\ 3x_1 + x_2 + 7x_3 = 3 \end{cases}$ $\begin{cases} 2x_1 + 3x_2 + 5x_3 \ge 2 \\ 3x_1 + x_2 + 7x_3 = 3 \end{cases}$ $\begin{cases} 2x_1 + 3x_2 + 5x_3 \ge 2 \\ 3x_1 + x_2 + 7x_3 = 3 \end{cases}$ $\begin{cases} x_1 - 4x_2 - 6x_3 \ge -5 \\ x_1, x_2 \ge 0, x_3 \ne 1 \implies 3 \end{cases}$ $\begin{cases} x_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ne 1 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ne 1 \end{cases}$ $\begin{cases} 2\lambda_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ne 1 \end{cases}$ $\begin{cases} 2\lambda_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ne 1 \end{cases}$ $\begin{cases} 2\lambda_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ne 1 \end{cases}$ $\begin{cases} 2\lambda_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ne 1 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - 4\lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \\ 3\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + 3\lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + \lambda_2 - \lambda_3 \le 2 \end{cases}$ $\begin{cases} 2\lambda_1 + \lambda_2 - \lambda_3 \le 2$

第一章 线性规划

第六节 对偶规划

- ✓对偶问题的提出
- ✓对偶规划的定义

作业: P96 9 (1) (2) (3)

作业: P84 1 (1) (2) (3)