Generative Modeling

By Eng.Ahmed Hisham

Agenda

- 1-Neural style transfer
- -neural style transfer project (2x)
- 2-autoenconders
- -MNIST auto encoder project
- 3-deep auto enconder
- -deep mnist project
- 4- convolutional autoencoder
- -fashion mnist project CAE
- -case study between CAE and AE
- 5-Noisy convolutional autoencoder
- -fashion mnist project CAE
- 6-Varitional autoencoders moving from past to future
- -anime face generation using VAEs

Agenda

- 8-Introduction to GANs
- -mnist using GANs
- 9-DCGANs
- -fashion mnist DCGANs
- -CelebA face generation

Neural style transfer

Neural style transfer is an optimization technique used to take two images—a content image and a style reference image (such as an artwork by a famous painter)—and blend them together so the output image looks like the content image, but "painted" in the style of the style reference image.

Neural style transfer (content image)

Neural style transfer style image

Blended image

How algorithm works

Step one

Pairs preparation

1-original image

2- style image

Step 2

Pretrained model for visual feature extraction Ex VGG19, ReSNet50

Step 3

Extract style from style image Extract content from content image

Step4

Generate an image to match the output

architecture

Important notes

1-Content loss

Content loss

It helps to establish similarities between the content image and the generated image.

It is intuitive that higher layers of the model focus more on the features present in the image i.e. overall content of the image.

Content loss is calculated by Euclidean distance between the respective intermediate higher-level feature representation of input image (x) and content image (p) at layer I.

Important notes

Preprocessing stage

- 1-converts a tensor to an image
- 2-loads an image as a tensor and scales it to 512 pixels
- 3-loads the content and path images as tensors
- 4-Pretrained model to extract features VGG19
- -style layers of interest

[conv1(block1),conv1(block2),conv1(block3),conv1(block4),conv1(block5)]

Important notes

```
the content layer of interest :
block5_conv2
output_layers = style_layers + content_layers
```

Important notes content loss

$$L_{content}^l(p,x) = \sum_{i,j} (F_{ij}^l(x) - P_{ij}^l(p))^2$$

Important notes content loss

f- content representation in the generated image

p- content representation in the content image In code features will refer to generated image , while variable targets will refer to content image

Content loss

Generated image

3

Content image

1-2	2-2
3-2	4-2

Element-wise subtraction

 $(1-2)^2$ $(2-2)^2$ $(3-2)^2$ $(4-2)^2$

Element-wise square

$$1^2 + 0^2 + 1^2 + 2^2 = 6$$

(½) 6 = 3

weight

Content loss function as logic

```
Inputs /
features: tensor with shape: (height, width, channels)
  targets: tensor with shape: (height, width, channels)
Mathematical calculation
get the sum of the squared error multiplied by a scaling factor
```

Return content loss (scalar)

Get style loss

Style Loss

Element-wise subtraction

Element-wise square

$$1^2 + 0^2 + 1^2 + 2^2 = 6$$

Reduce sum

weight

Style loss

Style loss is conceptually different from Content loss.

We cannot just compare the intermediate features of the two images and get the style loss

Style loss

GRAM matrix to solve style loss dimensionality

Style loss is calculated by the distance between the gram matrices (or, in other terms, style representation) of the generated image and the style reference image.

$$E_l = rac{1}{4N_l^2 M_l^2} \sum_{i,j} (G_{ij}^l - A_{ij}^l)^2$$

Thus, the total style loss across each layer is expressed as:

$$L_{style}(a,x) = \sum_{l \in L} w_l E_l$$

Style loss equation

Style Loss

$$E_l = \frac{1}{4N_l^2 M_l^2} \sum_{i,j} (G_{i,j}^l - A_{ij}^l)^2$$

I: layer I

A^I_{ij}: Style Representation(Gram Matrix) of style image a.

 G_{ii}^{I} : Style Representation(Gram Matrix) of generated image x

Total loss

Total Loss

$$L_{total}(\overrightarrow{p}, \overrightarrow{a}, \overrightarrow{x}) = \alpha L_{content}(\overrightarrow{p}, \overrightarrow{x}) + \beta L_{style}(\overrightarrow{a}, \overrightarrow{x})$$

a : Content Weight

β : Style Weight

ImportantNotes gradient

Calculate the gradients of the loss with respect to the generated image

Arguments needed

image: generated image

style_targets: style features of the style image

content_targets: content features of the content image

style_weight: weight given to the style loss content_weight: weight given to the content loss var weight: weight given to the total variation loss

ImportantNotes update image with style

```
image: generated image
  style targets: style features of the style image
  content targets: content features of the content
image
  style weight: weight given to the style loss
  content weight: weight given to the content loss
  var weight: weight given to the total variation
loss
  optimizer: optimizer for updating the input
image
```

Style fitting

style image: image to get style features from content image: image to stylize style targets: style features of the style image content targets: content features of the content image style weight: weight given to the style loss content weight: weight given to the content loss var weight: weight given to the total variation loss optimizer: optimizer for updating the input image epochs: number of epochs steps per epoch = steps per epoch

Neural style transfer ended

Check colab

Do the same colab neural style transfer using inception instead of vgg19