

Conception Avancée de Bases de Données

Data Base Partitioning

Database Partitioning

 Database partitioning is a technique for distributing a single database across many database instances that work together to form a single large database server.

Objective

- Reduce IO
 - Block Partitioning
 - Blocks Even distribution
- Parallel processing
 - MPP

Horizontal and Vertical partitioning

- Horizontal partitioning divides a table into multiple tables.
 - Sharding
- Vertical partitioning divides a table into multiple tables that contain fewer columns.

Horizontal Partitioning: sharding

Horizontal Partitioning: sharding

Horizontal Partitioning

Vertical Partitioning: Column

Devices Partitioning

 Devices Partitioning is a method for distributing data evenly across devices.

Blocks Partitioning

Horizontal Partitioning methods

- List Partitioning
- Range Partitioning
- Hash Partitioning
- Composite Partitioning

Partitioning: Turn Over By City

City List

<u> </u>
Amien
Bordeaux
Brest
Dunkerque
Lille
Metz
Montpellier
Nancy
Narbone
Rennes
Strasbourg
Toulouse
Toulouse

List partitioning

 Segmentation of data based on a pre-defined list of values.

Turn Over By City

list

City List

Amien
Bordeaux
Brest
Dunkerque
Lille
Metz
Montpellier
Nancy
Narbone
Rennes
Strasbourg
Toulouse
Toulouse

North Area
Lille
Dunkerque
Amien

West Area	
Rennes	
Brest	
Bordeaux	
	-

South Area
Toulouse
Montpellier
Narbone

East Area
Strasbourg
Toulouse
Metz
Nancy

By region

Range Partitioning

- Range partitioning maps data to partitions based on ranges of partition key values.
- Exemple :
 - Dates partitioning.
 - Partition data into monthly partitions.
- Range partitioning maps rows to partitions based on ranges of column values.

Turn Over By City

Range Partition

City List

J
Amien
Bordeaux
Brest
Dunkerque
Lille
Metz
Montpellier
Nancy
Narbone
Rennes
Strasbourg
Toulouse
Toulouse

Time Partition

Janvier/Fév Mars/Avril Mai/Juin Juille/Aout Sept/Oct Nov/Dec

Hash partitioning

- Hash partitioning maps data to partitions based on hash value.
- Each partition being associated either with one join attribute value or a range or set of such values.
- Hashing distributes rows among partitions,
 - Giving partitions the same size
- Uses linear hashing algorithm to prevent data from clustering within specific partitions,
- Number of partitions by a power of two
 - **2**, 4, 8, 16, 32.

Hash Partitioning

Hash Partitioning

Hash Partitioning Tree (Merkle tree)

R partitions

S partitions

Composite partitioning

- Composite partitioning is a combination of the basic data distribution methods;
- A table is partitioned by one data distribution method and then each partition is further subdivided into subpartitions using a second data distribution method.
- All subpartitions for a given partition together represent a logical subset of the data.

Turn Over By City

List

City List

Amien

Bordeaux

Brest

Dunkerque

Lille

Metz

Montpellier

Nancy

Narbone

Rennes

Strasbourg

Toulouse Toulouse

Ranges

Janvier/Fév

West Area

Rennes

Brest

Bordeaux

South Area

Toulouse

Narbone

Montpellier

Mars/Avril

Mai/Juin

Sept/Oct

Nov/Dec

East Area

Strasbourg

Toulouse

Metz

Nancy

