Scatter Plot

Skewness

Varience

/ariance					
Population			Imaginary population		
1	Mean	3.00	1	Mean	3.20
2	Population variance	2.00	1	Population variance	2.96
3	Sample variance	2.50	1		
4	-		2		
5			3		
			4		
			5		
			5		
			5		
			5		

Standard Deviation

Coefficient of Variation (CV)

COEFFICIENT OF VARIATION (CV)

$$c_{v} = \frac{\sigma}{\mu}$$

Population formula

Sample formula

$$\widehat{c}_{v} = \frac{s}{\overline{x}}$$

Standard deviation is the most common measure of variability for a SINGLE DATASET

Comparing TWO OR MORE datasets

Comparing the standard deviations of two different data sets is meaningless but Comparing coefficient of coefficients is meaningful

ard deviation and coefficient of variation

\$	1.00	MXN	18.81
\$	2.00	MXN	37.62
\$	3.00	MXN	56.43
\$	3.00	MXN	56.43
S	5.00	MXN	94.05
S	6.00	MXN	112.86
S	7.00	MXN	131.67
\$	8.00	MXN	150.48
S	9.00	MXN	169.29
S	11.00	MXN	206.91

NY Dollars

 Mean
 Dollars
 Pesos

 Sample variance
 \$ 5.50
 MXN
 103.46

 Sample standard deviation
 \$ 3.27
 MXN
 61.59

Sample standard deviation

$$\sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n-1}}$$

ep 1: Sample or population?

ep 2: Find the mean

ep 3: Find the sample variance

Step 4: Find the sample standard deviation

ard deviation and coefficient of variation

NY	Dollars		Pesos
S	1.00	MXN	18.81
S	2.00	MXN	37.62
S	3.00	MXN	56.43
S	3.00	MXN	56.43
S	5.00	MXN	94.05
S	6.00	MXN	112.86
S	7.00	MXN	131.67
S	8.00	MXN	150.48
S	9.00	MXN	169.29
S	11.00	MXN	206.91

	D	ollars		Pesos
Mean	S	5.50	MXN	103.46
Sample variance	S2	10.72	MXN ²	3793.69
Sample standard deviation	S	3.27	MXN	61.59
Sample coefficient of variation		0.60		0.60
			_	

- does not have a unit of measurement
- universal across datasets
- perfect for comparisons

Covariance and Liner corelation coefficient

Sample formula

$$S_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) * (y_i - \bar{y})}{x_{-1}}$$

Population formula

$$S_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) * (y_i - \bar{y})}{n-1} \qquad \sigma_{xy} = \frac{\sum_{i=1}^{N} (x_i - \mu_x) * (y_i - \mu_y)}{N}$$

Covariance Housing data

Size (ft.)	Price (\$)
650	772,000
785	998,000
1200	1,200,000
720	800,000
975	895 000

The two variables are correlated and the main statistic to measure this correlation is called covariance

corelation coefficient

Correlation adjusts covariance, so that the relationship between the two variables becomes easy and intuitive to interpret

-1 ≤ correlation coefficient ≤ 1

NEGATIVE CORRELATION

Perfect negative correlation of - 1

Imperfect negative correlation: (-1,0)

