

planetmath.org

Math for the people, by the people.

SL(n;R) is connected

Canonical name SLnRIsConnected
Date of creation 2013-03-22 18:52:05
Last modified on Owner Stephaninos (23208)
Last modified by Stephaninos (23208)

Numerical id 5

Author Stephaninos (23208)

Entry type Result Classification msc 20G15 The special feature is that although not every element of $SL(n,\mathbb{R})$ is in the image of the exponential map of $\mathfrak{sl}(n,\mathbb{R})$, $SL(n,\mathbb{R})$ is still a connected Lie group. The proof below is a guideline and should be clarified a bit more at some points, but this was done intentionally.

To illustrate the point, first we show

Proposition 0.1.
$$\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \notin \exp \mathfrak{sl}(2, \mathbb{R}), \ but \ it \ is \ in \ SL(2, \mathbb{R}).$$

Proof. det $x =: \det \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} = 1$, so $x \in SL(2,\mathbb{R})$. We see that x is not diagonalizable, it already is in Jordan normal form. Moreover, it has a double eigenvalue, -1. Suppose that $x = \exp X, X \in \mathfrak{sl}(2,\mathbb{R})$, then $\operatorname{tr} X = 0$. Since x had a double eigenvalue, so does X, hence the eigenvalues of X both are 0. But this implies the eigenvalues of x are 1. This is a contradiction. \square

Lemma 0.2. We have
$$\forall x \in SL(n, \mathbb{R}) : x = \exp(X_a) \exp(X_s)$$
 with $X_a^t = -X_a, X_s^t = X_s \in \mathfrak{sl}(n, \mathbb{R})$.

Proof. The keyword here is polar decomposition. We notice that x^tx is symmetric and positive definite, since $\forall \psi \in \mathbb{R}^n : \langle \psi, x^t x \psi \rangle > 0$, with the standard inner product on \mathbb{R}^n . Hence, we can write x = RP, with $P = (x^t x)^{\frac{1}{2}}$ and $R = xP^{-1}$. P is well defined, since any real symmetric, positive definite matrix is diagonalizable. It's easy to check that $RR^t = \mathrm{id}_n$, hence $R \in O(n)$. We had $\det P > 0$ and $\det x = 1$, hence $\det(R) > 0 \Rightarrow \det R = 1 \Rightarrow R \in SO(n \ltimes)$ and so $\det P = 1$. Since the choice of positive root is unique, R and P are unique. Moreover, SO(n) is exactly generated by the set $\{X \in GL(n, \mathbb{R}) | X^t = -X\}$ and Ω , the set of real symmetric matrices of determinant 1, by $\{X \in GL(n, \mathbb{R}) | X^t = X, \operatorname{tr} X = 0\}$, we have the wanted statement: $SL(n, \mathbb{R} \subset SO(n) \times \exp \Omega$.

The reverse inclusion is simply shown: any such combination is trivially in $SL(n, \mathbb{R})$.

Corollary 0.3. $SL(n, \mathbb{R})$ is connected.

Proof. This is now clear from the fact that both SO(n) and Ω are connected and so $\forall s, t \in [0, 1] : \exp sX \exp tY \in SL(n, \mathbb{R})$, a fact easily checked by taking the determinant. So $SL(n, \mathbb{R})$ is path-connected, hence connected. \square