作业五

Noflowerzzk

2025.3.19

P82 T2

(1)
$$\overline{\lim_{n \to \infty}} \left(\frac{a^n}{n} + \frac{b^n}{n^2} \right)^{\frac{1}{n}} = a$$
, 收敛半径为 $R = \frac{1}{a}$. 又 $x = \frac{1}{a}$ 时,原式为 $\sum_{n=1}^{\infty} \left(\frac{1}{n} + \frac{b^n}{n^2 a^n} \right)$ 发散; $x = -\frac{1}{a}$ 时,原式为 $\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{n} - \frac{(-1)^n b^n}{n^2 a^n} \right)$ 收敛。所以收敛区间为 $\left[-\frac{1}{a}, \frac{1}{a} \right)$.

$$(2) \ \overline{\lim_{n \to \infty}} \sqrt[n]{\frac{1}{a^n + b^n}} = \frac{1}{a}. \ \ \textbf{收敛半径为} \ \ a. \ \ x = \pm a \ \ \textbf{时均不收敛,故收敛域为} \ (-a,a)$$

(3) 令
$$c_n = \begin{cases} a^n, & n \text{ 为奇数} \\ b^n, & n \text{ 为偶数} \end{cases}$$
 有 $\overline{\lim_{n \to \infty}} \sqrt[n]{c_n} = \sqrt{a}$. 收敛半径为 $\frac{1}{\sqrt{a}}$. $x = \pm \frac{1}{\sqrt{a}}$ 时均不收敛,故收敛域为 $\left(-\frac{1}{\sqrt{a}}, \frac{1}{\sqrt{a}}\right)$

P82 T3

- (1) 显然为 $\sqrt{R_1}$.
- (2) $R_1 \neq R_2$ 时,为 $\min\{R_1, R_2\}$. $R_1 = R_2$ 时,收敛半径大于等于 $\min\{R_1, R_2\}$.
- (3) 由于 $\overline{\lim}_{n\to\infty} \sqrt[n]{|a_nb_n|} \le \overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} \overline{\lim}_{n\to\infty} \sqrt[n]{|b_n|}$ 有收敛半径 $\ge R_1R_2$.

P82 T4

(4) 由于
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
,故收敛半径为 1. 又 $x = \pm 1$ 时级数收敛. 故和函数定义域为 $[-1,1]$. 令 $S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$,则 $f(x) = xS(x)$,又 $f''(x) = \sum_{n=1}^{\infty} x^{n-1} = \frac{1}{1-x}$,因此 $S(x) = 1 - \left(1 - \frac{1}{x}\right) \ln(1-x)$, $x \in [-1,1)$,又 $x = 1$ 时, $S(1) = 1$,故 $S(x) = \begin{cases} 1 - \left(1 - \frac{1}{x}\right) \ln(1-x), & x \in [-1,1) \\ 1, & x = 1 \end{cases}$

(5) 由定义,收敛半径为 1, 又
$$x = \pm 1$$
 时发散,定义域为 $(-1,1)$. 令 $f(x) = S(x)/x$, 有
$$\int_0^x f(x) dx = \sum_{n=1}^\infty (n+1)x^2 = \frac{1}{(1-x)^2} - 1 \text{ 故 } S(x) = xf'(x) = \frac{2x}{(1-x)^2}$$

2025.3.19 作业五

(6) 定义域为 \mathbb{R} . $S'(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{(2n-1)!}$. 注意到 $S(x) + S'(x) = e^x$, $S(x) - S'(x) = e^{-x}$, 得 $S(x) = \frac{1}{2}(e^x + e^{-x})$.

(7) 定义域为
$$\mathbb{R}$$
. $\int_0^x S(x) = \sum_{x=1}^\infty x(e^x - 1)$. 故 $S(x) = (x+1)e^x - 1$.

P82 T5

证明. 当
$$x \in (0,r)$$
 时,有 $\int_0^x f(x) \mathrm{d}x = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}$. 又 $\sum_{n=0}^\infty \frac{a_n}{n+1} r^{n+1}$ 收敛,故 $\sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}$ 收敛,故 $\sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}$ 化敛,故 $\sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}$.
$$f(x) = \frac{1}{x} \ln \frac{1}{1-x}$$
 时,有 $\int_0^1 \frac{1}{x} \ln \frac{1}{1-x} \mathrm{d}x = \sum_{n=0}^\infty \frac{1}{n^2}$

P82 T6

(1) 显然
$$y^{(4)} = \sum_{n=1}^{\infty} \frac{x^{4n-4}}{(4n-4)!} = y$$
.

$$(2) \ \ y' = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!n!}, y'' = \sum_{n=2}^{\infty} \frac{x^{n-2}}{(n-2)!n!}, \ \ \mathbb{M} \ \ xy'' + y' = 1 + \sum_{n=2}^{\infty} \frac{nx^{n-1}}{(n-1)!n!} = \sum_{n=0}^{\infty} \frac{x^n}{(n!)^2} = y.$$

P82 T7

(4)
$$\Rightarrow f(x) = \sum_{n=0}^{\infty} (n+1)^2 x^n$$
. $\int_0^x f(x) dx = \frac{x}{(1-x)^2}$. $above f(x) = \frac{1+x}{(1-x)^3}$. $above f(\frac{1}{2}) = 12$

(5) 令
$$f(x) = x \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$$
, 对照 $\arctan x$ 的 Taylor 级数有 $f(x) = \arctan x$. 有原式为 $\frac{\sqrt{3}}{6}\pi$.

(6) 易得
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \ln(x+1)$$
. 令 $f(x) = x \sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 - 1} x^n$,有 $g'(x) = x \ln(x+1)$ 故原式为 $\frac{1}{2} \left(x - \frac{1}{x} \right) \ln(x+1) - \frac{1}{4} x + \frac{1}{2}$,带入 $x = \frac{1}{2}$ 有原式为 $\frac{3}{8} - \frac{3}{4} \ln \frac{3}{2}$.

(7) 令
$$f(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^{n+1} = e^{-x}$$
, 代入 $x = 2$, 有原式为 $\frac{2}{e^2}$

P82 T8

由于 $\sum_{n=1}^{\infty} a_n x^n$ 收敛半径小于等于 1. 另一方面,由于 $\lim_{n\to\infty} \frac{A_n}{A_{n+1}} = \lim_{n\to\infty} \frac{A_{n+1} - a_{n+1}}{A_{n+1}} = 1$, 得级数 $\sum_{n=1}^{\infty} A_n x^x$ 的收敛半径为 1, 又显然 $\sum_{n=1}^{\infty} A_n x^x$ 的收敛半径大于 $\sum_{n=1}^{\infty} a_n x^n$, 故其收敛半径为 1.

2025.3.19 作业五

P82 T9

(1) 证明. 判断易得其收敛半径为 $\frac{1}{2}$, 且 $x=\pm\frac{1}{2}$ 有原级数为 $\sum_{n=1}^{\infty}\frac{1}{n^2}$ 显然收敛. 因此 f(x) 在 $\left[-\frac{1}{2},\frac{1}{2}\right]$ 上连续.

又
$$f'(x) = \sum_{n=1}^{\infty} \frac{2^n}{n} x^{n-1}$$
 在 $\left[-\frac{1}{2}, \frac{1}{2} \right]$ 上內闭一致收敛. 因此 $f(x)$ 在 $\left[-\frac{1}{2}, \frac{1}{2} \right]$ 上可导.

(2) 不存在. $f(x) = \sum_{n=1}^{\infty} \frac{(2x)^n}{n^2} = g(t), t = 2x$. 有 $g(t) = \int_0^t -\frac{\ln(1-u)}{u} du$. 当 $t \to 1$ - 时, $\frac{g(x) - g(1)}{x - 1} \to \infty$,故其积分不存在.