

ETC3550 Applied forecasting for business and economics

Ch7. Exponential smoothing OTexts.org/fpp3/

Outline

- 1 Exponential smoothing
- 2 The level
- 3 The trend
- 4 Seasonal methods
- 5 Innovations state space models
- 6 Forecasting with ETS models

Outline

- 1 Exponential smoothing
- 2 The level
- 3 The trend
- 4 Seasonal methods
- 5 Innovations state space models
- 6 Forecasting with ETS models

Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Average forecasts

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Average forecasts

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

- Want something in between these methods.
- Most recent data should have more weight.

Exponential smoothing: level/intercept

Exponential smoothing: level/intercept

Exponential smoothing: trend/slope

Exponential smoothing: trend/slope

Exponential smoothing: seasonality

Exponential smoothing: seasonality

Big idea: control the rate of change (smoothing)

 α controls the flexibility of the **level**

- If α = 0, the level never updates (mean)
- If α = 1, the level updates completely (naive)

 β controls the flexibility of the **trend**

- If β = 0, the trend is linear (regression trend)
- If β = 1, the trend updates every observation

 γ controls the flexibility of the **seasonality**

- If γ = 0, the seasonality is fixed (seasonal means)
- If γ = 1, the seasonality updates completely (seasonal naive)

Optimising smoothing parameters

- Need to choose best values for the smoothing parameters (and initial states).
- Similarly to regression, choose optimal parameters by minimising SSE:

SSE =
$$\sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$$
.

■ Unlike regression there is no closed form solution — use numerical optimization.

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$$

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$$

Perhaps a mix of both?

$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$$

Exponential smoothing

General notation ETS: ExponenTial Smoothing

∠ ↑ △

Error Trend Season

Error: Additive ("A") or multiplicative ("M")

Exponential smoothing

```
General notation ETS: ExponenTial Smoothing

∠ ↑ ✓

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Exponential smoothing

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Seasonality: None ("N"), additive ("A") or multiplicative ("M")

Outline

- 1 Exponential smoothing
- 2 The level
- 3 The trend
- 4 Seasonal methods
- 5 Innovations state space models
- 6 Forecasting with ETS models

Starting simple

Suppose our model contains no trend or seasonality.

This is compactly represented by ETS(A,N,N).

$$y_t = \ell_{t-1} + \varepsilon_t$$

We design ℓ_t to weight recent observations more.

$$\ell_t = \alpha \mathbf{y}_t + (\mathbf{1} - \alpha)\ell_{t-1}$$

Need to choose α and ℓ_0 .

Simple Exponential Smoothing

Component form

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t$$

Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

- ℓ_t is the level (or the smoothed value) of the series at time t.
- $\hat{y}_{t+1|t} = \alpha y_t + (1 \alpha)\hat{y}_{t|t-1}$ Iterate to get exponentially weighted moving average form.

Weighted average form

$$\hat{\mathbf{y}}_{T+1|T} = \sum_{i=0}^{T-1} \alpha (\mathbf{1} - \alpha)^{i} \mathbf{y}_{T-i} + (\mathbf{1} - \alpha)^{T} \ell_{0}$$

Simple Exponential Smoothing

Forecast equation

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1 - \alpha) y_{T-1} + \alpha (1 - \alpha)^2 y_{T-2} + \cdots$$

where $0 \le \alpha \le 1$.

Simple Exponential Smoothing

Forecast equation

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1 - \alpha) y_{T-1} + \alpha (1 - \alpha)^2 y_{T-2} + \cdots$$

where $0 \le \alpha \le 1$.

Weights assigned to observations for:				
Observation	α = 0.2	α = 0.4	α = 0.6	α = 0.8
Ут	0.2	0.4	0.6	0.8
y _{T-1}	0.16	0.24	0.24	0.16
y _{T-2}	0.128	0.144	0.096	0.032
y _{T-3}	0.1024	0.0864	0.0384	0.0064
y _{T-4}	$(0.2)(0.8)^4$	$(0.4)(0.6)^4$	$(0.6)(0.4)^4$	$(0.8)(0.2)^4$
y _{T-5}	$(0.2)(0.8)^5$	$(0.4)(0.6)^5$	$(0.6)(0.4)^5$	$(0.8)(0.2)^5$

Methods v Models

Methods

Algorithms that return point forecasts.

Methods v Models

Methods

■ Algorithms that return point forecasts.

Models

- Generate same point forecasts but can also generate forecast distributions.
- A stochastic (or random) data generating process that can generate an entire forecast distribution.
- Allow for "proper" model selection.

Component form

Forecast equation

$$\hat{\mathbf{y}}_{t+h|t} = \ell_t$$

Smoothing equation

$$\ell_t = \alpha \mathsf{y}_t + (1 - \alpha)\ell_{t-1}$$

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$

Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Component form

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t$$

Smoothing equation
$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Forecast error:
$$e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$$
.

Error correction form

$$\begin{aligned} \mathbf{y}_t &= \ell_{t-1} + e_t \\ \ell_t &= \ell_{t-1} + \alpha (\mathbf{y}_t - \ell_{t-1}) \\ &= \ell_{t-1} + \alpha e_t \end{aligned}$$

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Error correction form

$$y_t = \ell_{t-1} + e_t$$

$$\ell_t = \ell_{t-1} + \alpha(y_t - \ell_{t-1})$$

$$= \ell_{t-1} + \alpha e_t$$

Specify probability distribution for e_t , we assume $e_t = \varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(A,N,N)

Measurement equation
$$y_t = \ell_{t-1} + \varepsilon_t$$

State equation $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

- "innovations" or "single source of error" because equations have the same error process, ε_t .
- Measurement equation: relationship between observations and states.
- Transition/state equation(s): evolution of the state(s) through time.

ETS(M,N,N)

SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

 - $e_t = y_t \hat{y}_{t|t-1} = \ell_{t-1}\varepsilon_t$

ETS(M,N,N)

SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

Measurement equation
$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

ETS(M,N,N)

SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

 - $e_t = y_t \hat{y}_{t|t-1} = \ell_{t-1}\varepsilon_t$

Measurement equation
$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

ETS(A,N,N): Specifying the model

```
ETS(y ~ error("A") + trend("N") + season("N"))
```

By default, an optimal value for α and ℓ_0 is used. α can be chosen manually in trend().

```
trend("N", alpha = 0.5)
trend("N", alpha_range = c(0.2, 0.8))
```

Example: Algerian Exports

```
algeria_economy <- tsibbledata::global_economy %>%
  filter(Country == "Algeria")
fit <- algeria_economy %>%
  model(ANN = ETS(Exports ~ error("A") + trend("N") + season("N")))
report(fit)
```

```
## Series: Exports
## Model: ETS(A,N,N)
##
     Smoothing parameters:
##
       alpha = 0.84
##
##
    Initial states:
##
   39.54
##
##
##
     sigma: 5.969
##
##
##
    AIC AICc
                 BIC
```

Example: Algerian Exports

components(fit) %>%

```
## # A tsibble: 59 x 7 [1Y]
##
  # Key: Country, .model [1]
##
    Country .model Year Exports level remainder .fitted
           <chr>
                 <dbl>
                        <dbl> <dbl> <dbl>
                                            <dbl>
##
     <fct>
                        NA 39.5
                                            NA
##
   1 Algeria ANN 1959
                                    NA
##
   2 Algeria ANN 1960 39.0 39.1 -0.496
                                            39.5
##
   3 Algeria ANN 1961 46.2 45.1 7.12
                                            39.1
##
   4 Algeria ANN 1962 19.8 23.8
                                   -25.3
                                            45.1
##
   5 Algeria ANN
                  1963
                        24.7 24.6
                                     0.841
                                            23.8
   6 Algeria ANN
                  1964
                        25.1 25.0
                                     0.534
                                            24.6
##
   7 Algeria ANN
                        22.6 23.0
                                    -2.39
##
                  1965
                                            25.0
   8 Algeria ANN
                  1966
                        26.0 25.5
                                     3.00
                                            23.0
##
   9 Algeria ANN
                        23.4 23.8
                                    -2.07
                                            25.5
##
                  1967
  10 Algeria ANN
                  1968
                        23.1 23.2
                                    -0.630
                                             23.8
## # ... with 49 more
                  rows
```

left_join(fitted(fit), by = c("Country", ".model", "Year"))

Example: Algerian Exports

```
fit %>%
  forecast(h = 5) %>%
  autoplot(algeria_economy) +
  ylab("Exports (% of GDP)") + xlab("Year")
```


Outline

- 1 Exponential smoothing
- 2 The level
- 3 The trend
- 4 Seasonal methods
- 5 Innovations state space models
- 6 Forecasting with ETS models

Adding a trend

What if our data is trended? Add b_t to the model.

This is compactly represented by ETS(A,A,N).

$$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$$

We design b_t to weight recent slopes more.

$$b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1}$$

Need to choose α , β^* , ℓ_0 and b_0 .

Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$
Trend $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$,

Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$
Trend $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1},$

- Two smoothing parameters α and β^* (0 < α , β^* < 1).
- ℓ_t level: weighted average between y_t and one-step ahead forecast for time t, $(\ell_{t-1} + b_{t-1} = \hat{y}_{t|t-1})$
- b_t slope: weighted average of $(\ell_t \ell_{t-1})$ and b_{t-1} , current and previous estimate of slope.

ETS(A,A,N)

Holt's linear method with additive errors.

- Assume ε_t = $y_t \ell_{t-1} b_{t-1} \sim \text{NID}(0, \sigma^2)$.
- Substituting into the error correction equations for Holt's linear method

$$\begin{aligned} y_t &= \ell_{t-1} + b_{t-1} + \varepsilon_t \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t &= b_{t-1} + \alpha \beta^* \varepsilon_t \end{aligned}$$

For simplicity, set $\beta = \alpha \beta^*$.

ETS(M,A,N)

Holt's linear method with multiplicative errors.

- Assume $\varepsilon_t = \frac{y_t (\ell_{t-1} + b_{t-1})}{(\ell_{t-1} + b_{t-1})}$
- Following a similar approach as above, the innovations state space model underlying Holt's linear method with multiplicative errors is specified as

specified as
$$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$$

$$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$$

$$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$$
 where again $\beta = \alpha \beta^*$ and $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(A,A,N): Specifying the model

```
ETS(y ~ error("A") + trend("A") + season("N"))
```

By default, an optimal value for β and b_0 is used.

 β can be chosen manually in trend().

```
trend("N", beta = 0.004)
trend("N", beta_range = c(0, 0.1))
```

Example: Australian population

```
aus_economy <- global_economy %>% filter(Code == "AUS")
fit <- aus_economy %>%
 model(AAN = ETS(Population ~
                   error("A") + trend("A") + season("N")))
report(fit)
## Series: Population
## Model: ETS(A,A,N)
##
    Smoothing parameters:
## alpha = 0.9999
   beta = 0.3257
##
##
##
   Initial states:
##
##
   10067191 228013
##
##
```

33

Example: Australian population

components(fit) %>%

```
left_join(fitted(fit), by = c("Country", ".model", "Year"))
## # A tsibble: 59 x 8 [1Y]
## # Key: Country, .model [1]
     Country .model Year Population level slope
##
   <fct> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
##
##
   1 Austra~ AAN 1959
                               NA 1.01e7 2.28e5
##
   2 Austra~ AAN 1960 10276477 1.03e7 2.22e5
##
   3 Austra~ AAN 1961
                         10483000 1.05e7 2.17e5
   4 Austra~ AAN 1962
                         10742000 1.07e7 2.31e5
##
   5 Austra~ AAN 1963
                         10950000 1.10e7 2.23e5
##
##
   6 Austra~ AAN 1964
                         11167000 1.12e7 2.21e5
   7 Austra~ AAN 1965
                         11388000 1.14e7 2.21e5
##
##
   8 Austra~ AAN 1966
                         11651000 1.17e7 2.35e5
##
   9 Austra~ AAN 1967
                         11799000 1.18e7 2.07e5
## 10 Austra~ AAN 1968
                         12009000 1.20e7 2.08e5
```

with 40 mars rows and 2 mars variables:

Example: Australian population

```
fit %>%
   forecast(h = 10) %>%
   autoplot(aus_economy) +
  ylab("Population") + xlab("Year")
  3.0e + 07 -
  2.5e+07 -
Population
                                                                       level
  2.0e+07 -
                                                                           80
                                                                           95
  1.5e+07 -
  1.0e+07 -
                                          2000
         1960
                          1980
                                                          2020
                                     Year
```

Damped trend method

Component form

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

Damped trend method

Component form

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

- Damping parameter $0 < \phi < 1$.
- If ϕ = 1, identical to Holt's linear trend.
- As $h \to \infty$, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

Your turn

■ Write down the model for ETS(A,Ad,N)

Example: Australian Population

1980

1.5e+07 -

1.0e+07 -

```
aus_economy %>%
  model(holt = ETS(Population ~
                     error("A") + trend("Ad") + season("N"))) %>%
  forecast(h = 10) %>%
  autoplot(aus_economy)
  3.0e+07 -
  2.5e+07 -
Population
                                                                    level
  2.0e+07 -
```

80 95

Example: Australian Population

```
fit <- aus_economy %>%
  filter(Year <= 2010) %>%
  model(
    ses = ETS(Population ~ error("A") + trend("N") + season("N")),
    holt = ETS(Population ~ error("A") + trend("A") + season("N")),
    damped = ETS(Population ~ error("A") + trend("Ad") + season("N")))
)
```

```
tidy(fit)
accuracy(fit)
```

Example: Sheep in Asia

term	SES	Linear trend	Damped trend
α	1.00	1.00	1.00
eta^*		0.30	0.42
ϕ			0.98
ℓ_{O}	11272847.32	10067190.61	10067190.04
b_0		228458.45	277893.91
Training RMSE	279368.61	64642.01	67111.29
Test RMSE	1632602.00	147969.40	196836.92
Test MASE	6.18	0.55	0.71
Test MAPE	6.09	0.55	0.70
Test MAE	1453007.44	130252.30	166362.49

Your turn

fma::eggs contains the price of a dozen eggs in the United States from 1900–1993

- Use SES and Holt's method (with and without damping) to forecast "future" data.

 [Hint: use h=100 so you can clearly see the differences between the options when plotting the forecasts.]
- Which method gives the best training RMSE?
- Are these RMSE values comparable?
- Do the residuals from the best fitting method look like white noise?

Outline

- 1 Exponential smoothing
- 2 The level
- 3 The trend
- 4 Seasonal methods
- 5 Innovations state space models
- 6 Forecasting with ETS models

Adding seasonality

What if our data is seasonal? Add s_t to the model.

This is compactly represented by ETS(A,A,A).

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

We design s_t to weight slopes more.

$$s_t = \gamma (y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma) s_{t-m}$$

Need to choose α , β^* , γ , ℓ_0 , b_0 , s_0 , s_{-1} , ..., s_{-m+1} .

Holt-Winters additive method

Holt and Winters extended Holt's method to capture seasonality.

Component form

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t+h-m(k+1)} \\ \ell_t &= \alpha (y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1} \\ s_t &= \gamma (y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma) s_{t-m} \end{split}$$

- k = integer part of (h-1)/m. Ensures estimates from the final year are used for forecasting.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality (e.g. m = 4 for quarterly data).

Holt-Winters additive method

- Seasonal component is usually expressed as $s_t = \gamma^*(y_t \ell_t) + (1 \gamma^*)s_{t-m}$.
- Substitute in for ℓ_t :

$$s_t = \gamma^* (1 - \alpha)(y_t - \ell_{t-1} - b_{t-1}) + [1 - \gamma^* (1 - \alpha)]s_{t-m}$$

- We set $\gamma = \gamma^*(1 \alpha)$.
- The usual parameter restriction is $0 \le \gamma^* \le 1$, which translates to $0 \le \gamma \le (1 \alpha)$.

ETS(A,A,A)

Holt-Winters additive method with additive errors.

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$$

Observation equation $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$
State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$
 $b_t = b_{t-1} + \beta \varepsilon_t$
 $s_t = s_{t-m} + \gamma \varepsilon_t$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1}$
- k is integer part of (h-1)/m.

Your turn

■ Write down the model for ETS(A,N,A)

Holt-Winters multiplicative method

For when seasonal variations are changing proportional to the level of the series.

Component form

$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$$

$$\ell_t = \alpha \frac{y_t}{s_{t-m}} + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$$

$$s_t = \gamma \frac{y_t}{(\ell_{t-1} + b_{t-1})} + (1 - \gamma)s_{t-m}$$

- k is integer part of (h-1)/m.
- With additive method s_t is in absolute terms: within each year $\sum_i s_i \approx 0$.
- With multiplicative method s_t is in relative terms: within each year $\sum_i s_i \approx m$.

Example: Australian holiday tourism

```
aus_holidays <- tourism %>%
  filter(Purpose == "Holiday") %>%
  summarise(Trips = sum(Trips))
fit <- aus_holidays %>%
  model(
   additive = ETS(Trips ~ error("A") + trend("A") + season("A")),
   multiplicative = ETS(Trips ~ error("M") + trend("A") + season("M")))
)
fc <- fit %>% forecast()
```


Estimated components

components(fit)

Holt-Winters damped method

Often the single most accurate forecasting method for seasonal data:

$$\hat{y}_{t+h|t} = [\ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t]s_{t+h-m(k+1)}$$

$$\ell_t = \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}$$

$$s_t = \gamma \frac{y_t}{(\ell_{t-1} + \phi b_{t-1})} + (1 - \gamma)s_{t-m}$$

Your turn

Apply Holt-Winters' multiplicative method to the Gas data from aus_production.

- Why is multiplicative seasonality necessary here?
- Experiment with making the trend damped.
- Check that the residuals from the best method look like white noise.

Outline

- 1 Exponential smoothing
- 2 The level
- 3 The trend
- 4 Seasonal methods
- 5 Innovations state space models
- 6 Forecasting with ETS models

Exponential smoothing methods

		Seasonal Component		
	Trend	N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	(N,N)	(N,A)	(N,M)
Α	(Additive)	(A,N)	(A,A)	(A,M)
A_d	(Additive damped)	(A_d,N)	(A_d,A)	(A_d,M)

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A_d,N): Additive damped trend method

(A,A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method

ETS models

- Each model has an observation equation and transition equations, one for each state (level, trend, seasonal), i.e., state space models.
- Two models for each method: one with additive and one with multiplicative errors, i.e., in total 18 models.
- ETS(Error,Trend,Seasonal):
 - ► Error = {A,M}
 - $Trend = \{N,A,A_d\}$
 - Seasonal = {N,A,M}.

Additive error models

Trend		Seasonal	
	N	A	M
N	$y_t = \ell_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1} s_{t-m} + \varepsilon_t$
	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$
	$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$
A	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1})$
	$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + \varepsilon_t$
A_d	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + \phi b_{t-1})$

Multiplicative error models

Trend	Seasonal				
	N	Α	$\begin{aligned} \mathbf{M} \\ y_t &= \ell_{t-1} s_{t-m} (1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1} (1 + \alpha \varepsilon_t) \\ s_t &= s_{t-m} (1 + \gamma \varepsilon_t) \end{aligned}$		
N	$y_t = \ell_{t-1}(1 + \varepsilon_t)$ $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	$\begin{aligned} y_t &= (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1} + \alpha (\ell_{t-1} + s_{t-m}) \varepsilon_t \\ s_t &= s_{t-m} + \gamma (\ell_{t-1} + s_{t-m}) \varepsilon_t \end{aligned}$			
A	$\begin{aligned} y_t &= (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t) \\ \ell_t &= (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t) \\ b_t &= b_{t-1} + \beta (\ell_{t-1} + b_{t-1}) \varepsilon_t \end{aligned}$	$\begin{aligned} y_t &= (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha (\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t \\ b_t &= b_{t-1} + \beta (\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t \\ s_t &= s_{t-m} + \gamma (\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t \end{aligned}$	$y_{t} = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_{t})$ $\ell_{t} = (\ell_{t-1} + b_{t-1})(1 + \alpha\varepsilon_{t})$ $b_{t} = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_{t}$ $s_{t} = s_{t-m}(1 + \gamma\varepsilon_{t})$		
A _d	$\begin{aligned} y_t &= (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_t) \\ \ell_t &= (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t) \\ b_t &= \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t \end{aligned}$	$\begin{aligned} y_t &= (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1} + \phi b_{t-1} + \alpha (\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_t \\ b_t &= \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_t \\ s_t &= s_{t-m} + \gamma (\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_t \end{aligned}$	$y_{t} = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_{t})$ $\ell_{t} = (\ell_{t-1} + \phi b_{t-1}) (1 + \alpha \varepsilon_{t})$ $b_{t} = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_{t}$ $s_{t} = s_{t-m} (1 + \gamma \varepsilon_{t})$		

Estimating ETS models

- Smoothing parameters α , β , γ and ϕ , and the initial states ℓ_0 , b_0 , s_0 , s_{-1} , . . . , s_{-m+1} are estimated by maximising the "likelihood" = the probability of the data arising from the specified model.
- For models with additive errors equivalent to minimising SSE.
- For models with multiplicative errors, not equivalent to minimising SSE.

Innovations state space models

Let
$$\mathbf{x}_t = (\ell_t, b_t, s_t, s_{t-1}, \dots, s_{t-m+1})$$
 and $\varepsilon_t \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.

$$y_{t} = \underbrace{h(\mathbf{x}_{t-1})}_{\mu_{t}} + \underbrace{k(\mathbf{x}_{t-1})\varepsilon_{t}}_{e_{t}}$$

$$\mathbf{x}_{t} = f(\mathbf{x}_{t-1}) + g(\mathbf{x}_{t-1})\varepsilon_{t}$$

Additive errors

$$k(x) = 1.$$
 $y_t = \mu_t + \varepsilon_t.$

Multiplicative errors

$$k(\mathbf{x}_{t-1}) = \mu_t.$$
 $\mathbf{y}_t = \mu_t(\mathbf{1} + \varepsilon_t).$ $\varepsilon_t = (\mathbf{y}_t - \mu_t)/\mu_t$ is relative error.

Innovations state space models

Estimation

$$L^*(\boldsymbol{\theta}, \mathbf{x}_0) = n \log \left(\sum_{t=1}^n \varepsilon_t^2 / k^2(\mathbf{x}_{t-1}) \right) + 2 \sum_{t=1}^n \log |k(\mathbf{x}_{t-1})|$$

= -2 log(Likelihood) + constant

Estimate parameters $\theta = (\alpha, \beta, \gamma, \phi)$ and initial states $\mathbf{x}_0 = (\ell_0, b_0, s_0, s_{-1}, \dots, s_{-m+1})$ by minimizing L^* .

Parameter restrictions

Usual region

- Traditional restrictions in the methods $0 < \alpha, \beta^*, \gamma^*, \phi < 1$ (equations interpreted as weighted averages).
- In models we set $\beta = \alpha \beta^*$ and $\gamma = (1 \alpha)\gamma^*$.
- Therefore $0 < \alpha < 1$, $0 < \beta < \alpha$ and $0 < \gamma < 1 \alpha$.
- $lue{}$ 0.8 < ϕ < 0.98 to prevent numerical difficulties.

Parameter restrictions

Usual region

- Traditional restrictions in the methods $0 < \alpha, \beta^*, \gamma^*, \phi < 1$ (equations interpreted as weighted averages).
- In models we set $\beta = \alpha \beta^*$ and $\gamma = (1 \alpha)\gamma^*$.
- Therefore $0 < \alpha < 1$, $0 < \beta < \alpha$ and $0 < \gamma < 1 \alpha$.
- \blacksquare 0.8 < ϕ < 0.98 to prevent numerical difficulties.

Admissible region

- To prevent observations in the distant past having a continuing effect on current forecasts.
- Usually (but not always) less restrictive than the traditional region.
- For example for ETS(A,N,N): traditional $0 < \alpha < 1$ admissible is $0 < \alpha < 2$.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Bayesian Information Criterion

$$BIC = AIC + k(\log(T) - 2).$$

AIC and cross-validation

Minimizing the AIC assuming
Gaussian residuals is asymptotically
equivalent to minimizing one-step
time series cross validation MSE.

Automatic forecasting

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data.
 Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AICc:
- Produce forecasts using best method.
- Obtain forecast intervals using underlying state space model.

Method performed very well in M3 competition.

Some unstable models

- Some of the combinations of (Error, Trend, Seasonal) can lead to numerical difficulties; see equations with division by a state.
- These are: ETS(A,N,M), ETS(A,A,M), $ETS(A,A_d,M)$.
- Models with multiplicative errors are useful for strictly positive data, but are not numerically stable with data containing zeros or negative values. In that case only the six fully additive models will be applied.

Exponential smoothing models

Additive Error		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	A,N,N	A,N,A	<u> </u>
Α	(Additive)	A,A,N	A,A,A	Δ,Δ,Δ
A_d	(Additive damped)	A,A_d,N	A,A_d,A	<u> </u>

Multiplicative Error		Seasonal Component		
	Trend	N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	M,N,N	M,N,A	M,N,M
Α	(Additive)	M,A,N	M,A,A	M,A,M
A_d	(Additive damped)	M,A _d ,N	M,A_d,A	M,A_d,M

The ETS() function

- Automatically chooses a model by default using the AIC, AICc or BIC.
- Can handle any combination of trend, seasonality and damping
- Ensures the parameters are admissible (equivalent to invertible)

Example: Australian holiday tourism

```
fit <- aus_holidays %>% model(ETS(Trips))
report(fit)
## Series: Trips
## Model: ETS(M,N,M)
    Smoothing parameters:
##
      alpha = 0.3578
##
##
      gamma = 0.0009686
##
##
    Initial states:
##
   l s1 s2 s3 s4
   9667 0.943 0.9268 0.9684 1.162
##
##
##
    sigma: 0.0464
##
##
##
   ATC ATCC BTC
## 1331 1333 1348
```

Example: International tourists

Model selected: ETS(M,N,M)
$$\begin{aligned} \mathbf{y}_t &= \ell_{t-1} \mathbf{s}_{t-m} (\mathbf{1} + \varepsilon_t) \\ \ell_t &= \ell_{t-1} (\mathbf{1} + \alpha \varepsilon_t) \\ \mathbf{s}_t &= \mathbf{s}_{t-m} (\mathbf{1} + \gamma \varepsilon_t). \end{aligned}$$

$$\hat{\alpha}$$
 = 0.3578, and $\hat{\gamma}$ = 0.000969.

Example: International tourists

```
components(fit) %>%
   gather("Term", "Value", -.model, -Quarter) %>%
   ggplot(aes(x = Quarter, y = Value)) +
   geom_line() +
   facet_grid(Term ~ ., scales = "free_y")
```


Example: International tourists

```
residuals(fit) %>%
  mutate(Type = "Residuals") %>%
  bind_rows(residuals(fit, type = "response") %>%
  mutate(Type = "Forecast errors")) %>%
  ggplot(aes(x = Quarter, y = .resid)) +
   geom_line() + ylab(NULL) +
  facet_grid(Type ~ ., scales = "free_y")
```


Residuals

Response residuals

$$\hat{e}_t = \mathsf{y}_t - \hat{\mathsf{y}}_{t|t-1}$$

Innovation residuals

Additive error model:

$$\hat{\varepsilon}_t = \mathbf{y}_t - \hat{\mathbf{y}}_{t|t-1}$$

Multiplicative error model:

$$\hat{\varepsilon_t} = \frac{y_t - \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}}$$

```
h02 %>% model(ETS(Cost)) %>% report
## Series: Cost
## Model: ETS(M,Ad,M)
    Smoothing parameters:
##
##
      alpha = 0.3071
##
      beta = 0.0001007
##
      gamma = 0.0001007
##
      phi = 0.9775
##
##
    Initial states:
##
        1
          b s1 s2 s3 s4 s5
                                                  56
   417269 8206 0.8717 0.826 0.7563 0.7733 0.6872 1.284
##
##
      s7 s8 s9 s10
                           s11
                                  s12
##
   1.325 1.18 1.164 1.105 1.048 0.9806
##
##
##
    sigma:
            0.0678
##
```

```
h02 %>% model(ETS(Cost ~ error("A") + trend("A") + season("A"))) %>% report
```

```
## Series: Cost
## Model: ETS(A,A,A)
##
    Smoothing parameters:
##
      alpha = 0.1702
##
      beta = 0.006311
##
      gamma = 0.4546
##
##
    Initial states:
##
       1 h s1 s2 s3 s4 s5
   409706 9097 -99075 -136602 -191496 -174531 -241437
##
##
       s6
         s7 s8 s9
                              s10
                                   s11
                                          s12
##
   210644 244644 145368 130570 84458 39132 -11674
##
##
##
    sigma: 59151
##
```

```
h02 %>% model(ETS(Cost)) %>% components()
```

```
## # A dable:
                            216 x 7 [1M]
##
  # Key:
                            .model [1]
    ETS(M,Ad,M) Decomposition: Cost = (lag(level, 1) +
##
## # 0.977528003332348 * lag(slope, 1)) * lag(season,
## # 12) * (1 + remainder)
##
     .model
               Month Cost level slope season remainder
##
     <chr>
               <mth> <dbl> <dbl> <dbl> <dbl>
                                              <dbl>
##
   1 ETS(C~ 1990 Jul
                       NA
                            NA
                                  NA 0.981
                                                 NA
##
   2 ETS(C~ 1990 Aug
                       NA
                            NA
                                  NA 1.05
                                                 NA
##
   3 ETS(C~ 1990 Sep
                       NA
                            NA
                                  NA 1.10
                                                 NA
   4 ETS(C~ 1990 Oct
                       NA
                             NA
##
                                  NA 1.16
                                                 NA
##
   5 ETS(C~ 1990 Nov
                       NA
                             NA
                                  NA 1.18
                                                 NA
##
   6 ETS(C~ 1990 Dec
                       NA
                             NA
                                  NA 1.32
                                                 NA
   7 ETS(C~ 1991 Jan
                       NA
                             NA
                                  NA 1.28
                                                 NA
##
   8 ETS(C~ 1991 Feb
##
                       NA
                             NA
                                  NA
                                    0.687
                                                 NA
##
   9 ETS(C~ 1991 Mar
                       NA
                             NA
                                  NA 0.773
                                                 NA
##
  10 ETS(C~ 1991 Apr
                       NA
                             NA
                                  NA
                                     0.756
                                                 NA
```



```
h02 %>%
model(
   auto = ETS(Cost),
   AAA = ETS(Cost ~ error("A") + trend("A") + season("A"))) %>%
accuracy()
```

Outline

- 1 Exponential smoothing
- 2 The level
- 3 The trend
- 4 Seasonal methods
- 5 Innovations state space models
- 6 Forecasting with ETS models

Forecasting with ETS models

Point forecasts: iterate the equations for

$$t = T + 1, T + 2, \dots, T + h$$
 and set all $\varepsilon_t = 0$ for $t > T$.

Forecasting with ETS models

Point forecasts: iterate the equations for t = T + 1, T + 2, ..., T + h and set all $\varepsilon_t = 0$ for t > T.

- Not the same as $E(y_{t+h}|\mathbf{x}_t)$ unless trend and seasonality are both additive.
- Point forecasts for ETS(A,x,y) are identical to ETS(M,x,y) if the parameters are the same.

Example: ETS(A,A,N)

etc.

$$\begin{aligned} y_{T+1} &= \ell_T + b_T + \varepsilon_{T+1} \\ \hat{y}_{T+1|T} &= \ell_T + b_T \\ y_{T+2} &= \ell_{T+1} + b_{T+1} + \varepsilon_{T+2} \\ &= (\ell_T + b_T + \alpha \varepsilon_{T+1}) + (b_T + \beta \varepsilon_{T+1}) + \varepsilon_{T+2} \\ \hat{y}_{T+2|T} &= \ell_T + 2b_T \end{aligned}$$

Example: ETS(M,A,N)

```
\begin{aligned} y_{T+1} &= (\ell_T + b_T)(1 + \varepsilon_{T+1}) \\ \hat{y}_{T+1|T} &= \ell_T + b_T. \\ y_{T+2} &= (\ell_{T+1} + b_{T+1})(1 + \varepsilon_{T+2}) \\ &= \left\{ (\ell_T + b_T)(1 + \alpha \varepsilon_{T+1}) + [b_T + \beta(\ell_T + b_T)\varepsilon_{T+1}] \right\} (1 + \varepsilon_{T+2}) \\ \hat{y}_{T+2|T} &= \ell_T + 2b_T \\ \text{etc.} \end{aligned}
```

Forecasting with ETS models

Prediction intervals: cannot be generated using the methods, only the models.

- The prediction intervals will differ between models with additive and multiplicative errors.
- Exact formulae for some models.
- More general to simulate future sample paths, conditional on the last estimate of the states, and to obtain prediction intervals from the percentiles of these simulated future paths.

Prediction intervals

PI for most ETS models: $\hat{y}_{T+h|T} \pm c\sigma_h$, where c depends on coverage probability and σ_h is forecast standard deviation.

Your turn

- Use ETS() on some of these series: tourism, gafa_stock, pelt
- Does it always give good forecasts?
- Find an example where it does not work well.
 Can you figure out why?