

Algorithmen und Datenstrukturen

Wintersemester 2018/19
8. Vorlesung

Sortieren – mit dem Würfel!

Anmelden zum 1. Kurztest

- Anmeldung im WueCampus-Kurs unter "Teilnahme am 1. Kurztest am 22.11.2018"
- Deadline: Di, 20.11., 13:00 Uhr
- Wer sich nicht anmeldet, kann nicht mitschreiben :- (

Und noch einmal: Sortieren!

Zur Erinnerung: MergeSort...

- + gute Worst-Case-Laufzeit (durch Teile-und-Herrsche)
- kein in-situ-Verfahren (benötigt extra Felder beim Mergen)

Ziel: Teile-&-Herrsche-Verfahren, das trotzdem in situ sortiert!

Sortiere ein Teilfeld $A[\ell..r]$ wie folgt: |QuickSort(int[] A, int ℓ , r)

Teile:

Bestimme einen Index $m \in \{\ell, \ldots, r\}$ und teile $\begin{array}{c} \text{Partition}(A,\ell,r) \\ \text{[liefert } m \text{ zurück]} \end{array} \begin{array}{c} A[\ell..r] \text{ so in } A[\ell..m-1] \text{ und } A[m+1..r] \text{ auf,} \\ \text{dass alle Element im ersten Teilfeld kleiner gleich} \end{array}$ A[m] sind und alle im zweiten größer als A[m].

durch rekursives Sortieren der beiden Teilfelder. Herrsche:

Kombiniere:

Schreiben Sie QuickSort in Pseudocode unter Verwendung von Partition(A, ℓ, r)!

QuickSort

QuickSort(A, $\ell=1$, r=A. length)

if $\ell < r$ then $m = \text{Partition}(A, \ell, r)$ QuickSort(A, ℓ , m-1)
QuickSort(A, m+1, m)

Schleifeninvariante:

- (i) Für $k = \ell, ..., i 1$ gilt $A[k] \leq pivot$.
- (ii) Für k = i, ..., j 1 gilt A[k] > pivot.
- (iii) A[r] = pivot.
- (iv) $A[\ell..j-1]$ enthält die gleichen Elemente wie zu Beginn.

int Partition(int[] A, int ℓ , int r)

$$pivot = A[r]$$
 $i = \ell$
for $j = \ell$ to $r - 1$ do
if $A[j] \leq pivot$ then
$$Swap(A, i, j)$$

$$i = i + 1$$

Swap(A, i, r) return i

Ein Beispiel

```
87 90 72 53 61 62 99
 5 6 4 1 2 3 7
 5 6 4 1 2 3 7 -
1 2 3 5 6 4
```

```
\mathsf{QuickSort}(A,\ell=1,r=...)
egin{aligned} \mathbf{if} \ \ell < r \ \mathbf{then} \ m = \mathsf{Partition}(A,\ell,r) \ \mathsf{QuickSort}(A,\ell,m-1) \ \mathsf{QuickSort}(A,m+1,r) \end{aligned}
```

```
int Partition(A, \ell, r)
  pivot = A[r]
  i = \ell
  for j = \ell to r - 1 do
      if A[j] \leq pivot then
         Swap(A, i, j)
       i = i + 1
  Swap(A, i, r)
  return i
```

Laufzeit

Zähle Anzahl der Vergleiche!

Beob. Partition benötigt *immer* $r - \ell$ Vergleiche.

Wovon hängt dann die Laufzeit ab?

$$T_{QS}(n) = T_{QS}(m-1) + T_{QS}(n-m) + n-1$$

1. Extremfall: m immer erstes Element

$$egin{aligned} T_{\mathrm{QS}}(n) &= T_{\mathrm{QS}}(0) + T_{\mathrm{QS}}(n-1) + n - 1 \ &= (T_{\mathrm{QS}}(n-2) + n - 2) + n - 1 \ &dots \ &= T_{\mathrm{QS}}(1) + 1 + 2 + \dots + n - 2 + n - 1 \ &\in \varTheta(n^2) \end{aligned}$$

2. Extremfall: m immer mittleres Element

$$T_{\text{QS}}(n) \approx 2T_{\text{QS}}(n/2) + n - 1 \in \Theta(n \log n)$$

 $\mathsf{QuickSort}(A,\ell=1,r=...)$ $egin{aligned} \mathbf{if} \ \ell < r \ \mathbf{then} \ m = \mathsf{Partition}(A,\ell,r) \ \mathsf{QuickSort}(A,\ell,m-1) \ \mathsf{QuickSort}(A,m+1,r) \end{aligned}$

 $egin{aligned} & \operatorname{Partition}(A,\ell,r) \ & pivot = A[r] \ & i = \ell \ & \mathbf{for} \ j = \ell \ & \mathbf{to} \ r - 1 \ & \mathbf{do} \ & \mathbf{if} \ & A[j] \leq pivot \ & \mathbf{then} \ & Swap(A,i,j) \ & L \ & i = i + 1 \end{aligned}$

Swap(A, i, r) return i

Wo ist die Wahrheit?

M.a.W. was passiert im Durchschnittsfall (average case)?

Vgl. InsertionSort:

Bester Fall $= n - 1 \in \Theta(n)$ Vergleiche

Schlechtester Fall $= \binom{n}{2} \in \Theta(n^2)$ Vergleiche

Durchschnittsfall = $\Theta(n^2)$

Mittle die Laufzeit über alle Permutationen der Eingabe! Schwierig. . .

Statt dessen:

Berechne erwartete Laufzeit $E[T_{IS}]$ einer zufälligen Permutation Schätze

 $E[T_{\mathsf{IS}}] \geq E[\mathsf{Aufwand\ für\ letzte\ } \frac{n}{4}\ \mathsf{Elem.}] \geq \frac{n}{4} \cdot \frac{1}{2} \cdot \frac{n}{4} \in \Omega(n^2)$

Zurück zu QuickSort

Seien z_1, z_2, \ldots, z_n die Elemente von A in sortierter Reihenfolge.

Wann vergleicht Alg. z_i und z_i ?

* höchstens ein Mal: wenn eins von beiden pivot ist.

Definiere Indikator-Zufallsvariable:

$$V_{ij} = \begin{cases} 1, & \text{falls Alg. } z_i \text{ und } z_j \text{ vergleicht,} \\ 0 & \text{sonst.} \end{cases}$$

Sei V ZV für Gesamtanz. von Vgl.

Dann gilt
$$V = \sum_{1 \le i < j \le n} V_{ij}$$
.

$$\Rightarrow E[V] = \sum_{1 \le i \le n} E[V_{ij}]$$

RandomizedPartition(A, ℓ , r) $k = \mathsf{Random}(\ell, r) \in \{\ell, \dots, r\}.$ $\mathsf{Swap}(A, r, k)$ $\mathsf{return} \; \mathsf{Partition}(A, \ell, r)$

```
Partition(A, \ell, r)
  pivot = A[r]
  i = \ell
  for j = \ell to r - 1 do
      if A[j] \leq pivot then
          Swap(A, i, j)
        \lfloor i = i + 1
  Swap(A, i, r)
  return i
```

First come, first serve

 $E[V_{ij}] = Pr[Alg. vergleicht z_i und z_j] =$?

Betrachte die Menge $Z_{ij} := \{z_i, z_{i+1}, \ldots, z_j\}$.

Sei z^* die erste Zahl in Z_{ij} , die Pivot wird.

Es gilt: Alg. vergleicht z_i und $z_j \Leftrightarrow z^* = z_i$ oder $z^* = z_j$.

 \Rightarrow Pr[Alg. vergleicht z_i und z_j] = Pr[$z^* = z_i$ oder $z^* = z_j$] = Pr[$z^* = z_i$] + Pr[$z^* = z_j$] = $\frac{1}{|Z_{ij}|} + \frac{1}{|Z_{ij}|}$

Auf zum letzten Gefecht...

$$E[V_{ij}] = Pr[Alg. vergleicht z_i und z_j] = \frac{2}{j-i+1}$$

Wir wissen:

$$E[V] = \sum_{1 \le i < j \le n} E[V_{ij}] = \sum_{1 \le i < j \le n} \frac{2}{j - i + 1}$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$
Trick: ersetze $j-i$ durch $k!$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

Auf zum letzten Gefecht...

$$E[V_{ij}] = Pr[Alg. vergleicht z_i und z_j] = \frac{2}{i-i+1}$$

Wir wissen:

$$E[V] = \sum_{1 \le i < j \le n} E[V_{ij}] = \sum_{1 \le i < j \le n} \frac{2}{j - i + 1}$$

$$=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\frac{2}{j-i+1}$$
 Trick: ersetze $j-i$ durch $k!$

$$=\sum_{i=1}^{n-1}\sum_{k=1}^{n-i}\frac{2}{k+1}<\sum_{i=1}^{n-1}\sum_{k=1}^{n}\frac{2}{k}\in O(n\log n)$$

Satz: RandomizedQuickSort sortiert n Zahlen in $O(n \log n)$ erwarteter Zeit.

Zusammenfassung Sortierverfahren

	InsertionSort	MergeSort	HeapSort	QuickSort
Worst-Case- Laufzeit	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$
AvgCase- Laufzeit	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$
Best-Case- Laufzeit	$\Theta(n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$
in situ ¹ (in place)		X		$(\checkmark)^{\star}$
stabil ²			X	X

¹) Ein *in-situ-*Algorithmus benötigt nur O(1) extra Speicher.

²) Sortieralg. *stabil*, wenn er gleiche Schlüssel in Ursprungsreihenf. belässt.

^{*)} QuickSort muss für jeden rekursiven Aufruf die Variable m zwischenspeichern. Dafür wird im worst case $\Omega(n)$ zusätzlicher Speicherplatz benötigt. Mit Tricks kann man dieses Problem umgehen und so QuickSort in-situ machen.