

A Performance and Energy Study of the Hyperbolic PDE Solver Engine ExaHyPE

Master's Thesis in Computational Science and Engineering

Fabian Güra

Department of Informatics
Technische Universität München
September 2016

Supervisors: Univ.-Prof. Dr. Michael Bader Dr. Tobias Weinzierl

Advisor: Dr. Vasco Varduhn

A Performance and Energy Study of the Hyperbolic PDE Solver Engine ExaHyPE

Master's Thesis in Computational Science and Engineering

Fabian Güra

Department of Informatics
Technische Universität München
September 2016

Supervisors: Univ.-Prof. Dr. Michael Bader Dr. Tobias Weinzierl

Advisor: Dr. Vasco Varduhn

Abstract

... ...

Contents

Co	onten	ts		iii
1	Intr	oductio	n	1
2	The	ory		3
	2.1		limensional ADER-DG scheme with MUSCL-Hancock	
			eriori subcell limiting for non-linear hyperbolic conser-	
		vation	laws	3
		2.1.1	Notation	3
		2.1.2	PDE	3
		2.1.3	Mesh	4
		2.1.4	Weak formulation	4
		2.1.5	Restriction to finite-dimensional function spaces	5
		2.1.6	Space-time predictor	7
		2.1.7	Mappings	8
		2.1.8	Orthogonal bases for the finite-dimensional spatial and	
			space-time function spaces	10
		2.1.9	Basis functions in global coordinates	13
		2.1.10	A fully-discrete iterative method for the space-time	
			predictor	14
		2.1.11	A fully discrete update scheme for the time-discrete	
			solution	21
			A posteriori subcell limiting	27
	2.2	Profili	ng and Energy-aware Computing	29
3	A p	rofiling	infrastructure for ExaHyPE	31
4	Prel	iminar	y profiling results, case studies	33
5	Con	clusion	and Outlook	35

6 Acknowledgment

37

Introduction

- Challenges of exascale
- The ExaHyPE project (numerics, resilience, profiling) as an answer
- On the importance of profiling and performance measuring

Theory

2.1 A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Arbitrary High Order Derivatives Discontinuous Galerkin (ADER-DG)

2.1.1 Notation

We use vector notation whenever possible. Advantage: Complete derivation, direct conversion to code.

2.1.2 PDE

Task: Solve the PDE

$$\frac{\partial}{\partial t} [\mathbf{u}]_v + \frac{\partial}{\partial x_d} [\mathbf{F}(\mathbf{u})]_{vd} = [\mathbf{s}(\mathbf{u})]_v \text{ on } \mathbf{\Omega} \times (0, T)$$
 (2.1)

with initial conditions

$$[u(x,0)]_v = [u_0(x)]_v \,\forall x \in \Omega, \tag{2.2}$$

and boundary conditions

$$[u(x,t)]_v = [u_B(x,t)]_v \ \forall x \in \partial \Omega, t \in (0,T), \tag{2.3}$$

for all $v \in \mathcal{V}$, where we define the index set $\mathcal{V} = \{1, 2, ..., V\}$ for V being the number of quantities that describe the state of the physical system, $\Omega \subset \mathbb{R}^D$ is the spatial domain, D the number of space dimensions and [0, T] a time interval. The function $F : \mathbb{R}^V \to \mathbb{R}^{V \times D}$, $u \mapsto F(u) = [f_1(u), f_2(u), ..., f_D(u)]$ is called the flux function.

For the problem to be hyperbolic we require that all Jacobian matrices $A_d(u)$, $d \in \{1, 2, ..., D\} := \mathcal{D}$, defined as

$$[A_d]_{ij} = \frac{\partial [f_d]_i}{\partial u_i},\tag{2.4}$$

have D real eigenvalues in each admissible state u.

2.1.3 Mesh

Let K_h be a quadrilateral partition of Ω , i.e.

$$K \cap J = \emptyset \, \forall K, J \in \mathcal{K}_h, K \neq J,$$
 (2.5)

$$\bigcup_{K \in \mathcal{K}_h} K = \mathbf{\Omega}. \tag{2.6}$$

For the index set $\mathcal{I} := \{0, 1, ..., I - 1\}$ let $\{t_i\}_{i \in \mathcal{I}}$ be an I-fold partition of the time interval [0, T] such that

$$0 = t_0 < t_1 < \dots < t_I = T. (2.7)$$

For $i \in \mathcal{I}$ we furthermore define

$$\Delta t_i = t_{i+1} - t_i, \tag{2.8}$$

so that the interval $[t_i, t_{i+1}]$ can be written as $[t_i, t_i + \Delta t_i]$.

2.1.4 Weak formulation

Let $L^2(\mathbf{\Omega})^V$ be the space of vector-valued, square-integrable functions on $\mathbf{\Omega}$, i.e.

$$L^{2}(\mathbf{\Omega})^{V} = \left\{ \boldsymbol{w} : \mathbf{\Omega} \to \mathbb{R}^{V} \mid \int_{\mathbf{\Omega}} \|\boldsymbol{w}\|^{2} d\boldsymbol{x} < \infty \right\}. \tag{2.9}$$

Let $w \in L^2(\Omega)^V$ be a spatial test function. Multiplication of the original PDE (2.1) and integration over a space-time cell $K \times [t_i, t_i + \Delta t_i]$ yields a weak, element local formulation of the problem

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial t} \left[\boldsymbol{u} \right]_{v} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt + \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{F}(\boldsymbol{u}) \right]_{vd} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt = \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s}(\boldsymbol{u}) \right]_{v} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt, \tag{2.10}$$

which we require to hold for all $v \in \mathcal{V}$, $w \in L^2(\Omega)^V$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$.

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Integration by parts of the spatial integral in the second term yields

$$\int_{K} \frac{\partial}{\partial x_{d}} \left[\mathbf{F}(\mathbf{u}) \right]_{vd} \left[\mathbf{w} \right]_{v} d\mathbf{x} =$$

$$\int_{K} \frac{\partial}{\partial x_{d}} \left(\left[\mathbf{F}(\mathbf{u}) \right]_{vd} \left[\mathbf{w} \right]_{v} \right) d\mathbf{x} - \int_{K} \left[\mathbf{F}(\mathbf{u}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\mathbf{w} \right]_{v} d\mathbf{x}.$$
(2.11)

Application of the divergence theorem to the first term on the right-hand side of (2.11) yields

$$\int_{K} \frac{\partial}{\partial x_{d}} \left(\left[\mathbf{F}(\mathbf{u}) \right]_{vd} \left[\mathbf{w} \right]_{v} \right) d\mathbf{x} = \int_{\partial K} \left[\mathbf{F}(\mathbf{u}) \right]_{vd} \left[\mathbf{w} \right]_{v} \left[\mathbf{n} \right]_{d} ds(\mathbf{x}), \tag{2.12}$$

where $n \in \mathbb{R}^D$ is the unit-length, outward-pointing normal vector at a point x on the surface of K, which we denote by ∂K .

Inserting eqs. (2.11) and (2.12) into eq. (2.10) yields the following weak, element-local formulation of the original equation (2.1):

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial t} \left[\boldsymbol{u} \right]_{v} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt - \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{F}(\boldsymbol{u}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt + \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{F}(\boldsymbol{u}) \right]_{vd} \left[\boldsymbol{w} \right]_{v} \left[\boldsymbol{n} \right]_{d} ds(\boldsymbol{x}) dt = \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s}(\boldsymbol{u}) \right]_{v} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt. \tag{2.13}$$

Again we require the weak formulation to hold for all $v \in \mathcal{V}$, $w \in L^2(\Omega)^V$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$.

2.1.5 Restriction to finite-dimensional function spaces

To discretize eq. (2.13) we need to impose the restriction that both test and ansatz functions come from a finite-dimensional space. First, let $\mathbb{Q}_N(K)^V$ and $\mathbb{Q}_N(K \times [t_i, t_i + \Delta t_i])^V$ be the space of vector-valued, multivariate polynomials of degree less or equal N in each variable on K and $K \times [t_i, t_i + \Delta t_i]$, respectively. We then make the following choices:

• For spatial functions we restrict ourselves to

$$\mathbf{W}_h = \left\{ \mathbf{w}_h \in L^2(\mathbf{\Omega})^V : \mathbf{w}_h|_K := \mathbf{w}_h^K \in \mathbb{Q}_N(K)^V \, \forall K \in \mathcal{K}_h \right\}. \tag{2.14}$$

• For space-time functions we restrict ourselves to

$$\widetilde{\mathbf{W}}_{h}^{i} = \left\{ \widetilde{\mathbf{w}}_{h}^{i} \in L^{2} \left(\mathbf{\Omega} \times [t_{i}, t_{i} + \Delta t_{i}] \right) \mid \\
\widetilde{\mathbf{w}}_{h}^{i} \middle|_{K} := \widetilde{\mathbf{w}}_{h}^{K,i} \in \mathbb{Q}_{N} \left(K \times [t_{i}, t_{i} + \Delta t_{i}] \right) \forall K \in \mathcal{K}_{h} \right\}$$
(2.15)

for all $i \in \mathcal{I}$.

Replacing w by $w_h \in W_h$ and u by $\tilde{u}_h^i \in \tilde{W}_h^i$ in eq. (2.13) yields a finite-dimensional approximation of the weak formulation,

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial t} \left[\tilde{\boldsymbol{u}}_{h}^{K,i} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt - \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{F}(\tilde{\boldsymbol{u}}_{h}^{K,i}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt + \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}(\tilde{\boldsymbol{u}}_{h}^{K,i}, \tilde{\boldsymbol{u}}_{h}^{K+i}, \boldsymbol{n}) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} ds(\boldsymbol{x}) dt = \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s}(\tilde{\boldsymbol{u}}_{h}^{K,i}) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt, \tag{2.16}$$

which now has to hold for all $w_h \in W_h$, $K \in \mathcal{K}_h$ and $i \in \{0, 1, ..., I - 1\}$. Since for a cell $K \in \mathcal{K}_h$ and one of its Voronoi neighbors $K' \in \mathcal{V}(K)$ one has in general

$$\tilde{u}_{h}^{K,i}(x^{*}) \neq \tilde{u}_{h}^{K'i}(x^{*}), x^{*} \in K \cap K',$$
 (2.17)

i.e. \tilde{u}_h^i is double-valued at the interface between K and K', in order to compute the surface integral we need to introduce the numerical flux function $\mathcal{G}(\tilde{u}_h^{K,i}, \tilde{u}_h^{K'i}, n)$. The numerical flux at a position $x^* \in K \cap K'$ on the interface is obtained by (approximately) solving a Riemann problem in normal direction.

Riemann problem: Let x^* be a point on interface ∂K between a cell K and its Voronoi K' in X and let N be the outward pointing unit normal vector at this point. Then to obtain the numerical flux we need to solve the initial boundary value problem ("Riemann problem")

$$\frac{\partial}{\partial t} \left[\mathbf{g} \right]_v + \sum_{d=1}^D \frac{\partial}{\partial x_d} \left[\mathbf{F}(\mathbf{g}) \right]_{vd} \left[\mathbf{n} \right]_d = 0 \tag{2.18}$$

along the line $x = x^* + \alpha n$ for $\alpha \in \mathbb{R}$ with discontinuous initial conditions

$$g(\mathbf{x}^* + \alpha \mathbf{n}, 0) = \begin{cases} \tilde{\mathbf{u}}_h^{K,i} \Big|_{\mathbf{x}^*} & \text{if } \alpha < 0 \\ \tilde{\mathbf{u}}_h^{K',i} \Big|_{\mathbf{x}^*} & \text{if } \alpha > 0. \end{cases}$$
(2.19)

We then evaluate the similarity solution $\tilde{g}(\alpha/t)$ to define

$$\left[\mathcal{G}\left(\tilde{u}_{h}^{K,i},\tilde{u}_{h}^{K',i},n\right)\right]_{v} := \left[\tilde{g}|_{0}\right]_{v}.$$
(2.20)

TODO: Overview state of the art solver.

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Integration by parts in time of the first term of eq. (2.16) and noting that w_h is constant in time yields the following one-step update scheme for the cell-local time-discrete solution $\tilde{u}_h^{K,i}$:

$$\int_{K} \left[\left[\tilde{\boldsymbol{u}}_{h}^{K,i} \right]_{t_{i} + \Delta t_{i}} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} = \int_{K} \left[\left[\tilde{\boldsymbol{u}}_{h}^{K,i} \right]_{t_{i}} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} + \\
\int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\boldsymbol{F} (\tilde{\boldsymbol{u}}_{h}^{K,i}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt - \\
\int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}} (\tilde{\boldsymbol{u}}_{h}^{K,i}, \tilde{\boldsymbol{u}}_{h}^{K+i}, \boldsymbol{n}) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt - \\
\int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\boldsymbol{s} (\tilde{\boldsymbol{u}}_{h}^{K,i}) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt. \tag{2.21}$$

Again we require eq. (2.21) to hold for all $v \in V$, $w_h \in W_h$, $K \in K_h$ and $i \in I$.

Problem: We only have $\tilde{u}_h^i|_{t}$ at the discrete time steps $t \in \{t_i, t_i + \Delta t_i\}$, not within the open interval, i.e. for $t \in (t_i, t_i + \Delta t_i)$.

Idea: Replace \tilde{u}_h in $K \times (t_i, t_i + \Delta t_i)$ by an approximation $\tilde{q}_h^i \in \tilde{W}_h^i$ which we call space-time predictor.

2.1.6 Space-time predictor

To derive a procedure to compute the space-time predictor $\tilde{q}_h^i \in \tilde{W}_h^i$ we again start from the original PDE (2.1), but this time we do not use a spatial test function $w_h \in W_h$, but a space-time test function $\tilde{w}_h^i \in \tilde{W}_h^i$. If we furthermore replace the solution u by the the space-time predictor $\tilde{q}_h^i \in \tilde{W}_h^i$, integrate over the space-time element $K \times [t_i, t_i + \Delta t_i]$ and apply the divergence theorem analogously to eq. (2.12) we obtain the following relation:

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial t} \left[\tilde{\boldsymbol{q}}_{h}^{K,i} \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt - \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{F}(\tilde{\boldsymbol{q}}_{h}^{K,i}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt + \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}} \left(\tilde{\boldsymbol{q}}_{h}^{K,i}, \tilde{\boldsymbol{q}}_{h}^{K+i}, \boldsymbol{n} \right) \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt + \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s} \left(\tilde{\boldsymbol{q}}_{h}^{K,i} \right) \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt. \tag{2.22}$$

We require eq. (2.22) to hold for all $v \in \mathcal{V}$, $\tilde{w}_h^i \in \tilde{\mathbb{W}}_h^i$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$.

The assumption that the solution is balanced, i.e. that there is no net inflow or outflow for cell $K \in \mathcal{K}_h$ allows us to drop the third term. Together with integration by parts in time of the first term this yields

$$\int_{K} \left[\tilde{\boldsymbol{q}}_{h}^{K,i} \Big|_{t_{i} + \Delta t_{i}} \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \Big|_{t_{i} + \Delta t_{i}} \right]_{v} d\boldsymbol{x} - \int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\tilde{\boldsymbol{q}}_{h}^{K,i} \Big|_{v} \frac{\partial}{\partial t} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt \right] dt =$$

$$\int_{K} \left[\tilde{\boldsymbol{q}}_{h}^{K,i} \Big|_{t_{i}} \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \Big|_{t_{i}} \right]_{v} d\boldsymbol{x} + \int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\boldsymbol{F}(\tilde{\boldsymbol{q}}_{h}^{K,i}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt +$$

$$\int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\boldsymbol{s} \left(\tilde{\boldsymbol{q}}_{h}^{K,i} \right) \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{v} d\boldsymbol{x} dt, \tag{2.23}$$

which we require to hold for all $v \in \mathcal{V}$, $\tilde{w}_h^i \in \tilde{W}_h^i$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$. Together with the initial condition

$$\left. \tilde{q}_{h}^{K,i} \right|_{t_{i}} = \left. \tilde{u}_{h}^{K} \right|_{t_{i}} \tag{2.24}$$

and an initial guess

$$\tilde{q}_h^{K,i}\Big|_t = \tilde{u}_h^K\Big|_{t_i} \ \forall t \in [t_i, t_i + \Delta t_i]$$
 (2.25)

this relation can be used as a fixed-point iteration to find the cell-local space-time predictor $\tilde{q}_h^{K,i}$.

In the following two sections we will introduce mappings from spatial elements K and space-time elements $K \times [t_i, t_i + \Delta t_i]$ to spatial and space-time reference cells and orthogonal bases for the spaces \mathbb{W}_h and $\tilde{\mathbb{W}}_h^i$. We will then insert these results into eq. (2.23) and derive a fully-discrete iterative method to compute the cell-local space-time predictor $\tilde{q}_h^{K,i}$.

2.1.7 Mappings

Let $\hat{K} = [0,1]^D$ be the spatial reference element and $\xi \in \hat{K}$ be a point in the reference element. Let [0,1] be the reference time interval and $\tau \in [0,1]$ be a point in time in reference time.

We can then introduce the following mappings:

Spatial mappings: Let $K \in \mathcal{K}_h$ be a cell in global coordinates with extent Δx^K and "lower-left corner" P_K , more precisely that is

$$\left[\Delta x^{K}\right]_{d} = \max_{\mathbf{x} \in K} \left[\mathbf{x}\right]_{d} - \min_{\mathbf{x} \in K} \left[\mathbf{x}\right]_{d}$$
 (2.26)

and

$$[\mathbf{P}_K]_d = \min_{\mathbf{x} \in K} [\mathbf{x}]_d \tag{2.27}$$

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

for $d \in \mathcal{V}$. We can then define a mapping

$$\mathcal{X}_K: \hat{K} \to K, \xi \mapsto \mathcal{X}_K(\xi) = x$$
 (2.28)

via the relation

$$[x]_d = [\mathcal{X}_K(\xi)]_d = [P_K]_d + [\Delta x]_d [\xi]_d \qquad (2.29)$$

for $v \in \mathcal{V}$ (i.e. no summation on v) and for all $x \in K$, $\xi \in \hat{K}$ and $K \in \mathcal{K}_h$.

Temporal mappings: Let $(t_i, t_i + \Delta t_i), i \in \mathcal{I}$ be an interval in global time. The mapping

$$\mathcal{T}_i: [0,1] \to [t_i, t_i + \Delta t_i], \tau \mapsto \mathcal{T}_i(\tau) = t_i + \Delta t_i \tau = t$$
 (2.30)

maps a point in reference time $\tau \in [0,1]$ to a point in global time $t \in [t_i, t_i + \Delta t_i]$ for all $i \in \mathcal{I}$.

The inverse mappings, the Jacobian matrices and the Jacobi determinants of the mappings are given in the following:

Spatial mappings: The inverse spatial mappings

$$\mathcal{X}_K^{-1}: K \to \hat{K}, x \mapsto \mathcal{X}_K^{-1}(x) = \xi \tag{2.31}$$

are defined via the relation

$$\left[\boldsymbol{\xi}\right]_{d} = \left[\boldsymbol{\mathcal{X}}_{K}^{-1}(\boldsymbol{x})\right]_{d} = \frac{1}{\left[\Delta \boldsymbol{x}^{K}\right]_{d}} \left(\left[\boldsymbol{x}\right]_{d} - \left[\boldsymbol{P}_{K}\right]_{d}\right) \tag{2.32}$$

for $v \in \mathcal{V}$ and for all $\boldsymbol{\xi} \in \hat{K}$, $\boldsymbol{x} \in K$ and $K \in \mathcal{K}_h$. The Jacobian of $\boldsymbol{\mathcal{X}}_K$ is found to be

$$\left[\frac{\partial \boldsymbol{\mathcal{X}}_{K}}{\partial \boldsymbol{\xi}}\right]_{dd'} = \frac{\partial \left[\boldsymbol{\mathcal{X}}_{K}\right]_{d}}{\partial \boldsymbol{\xi}_{d'}} = \left[\Delta \boldsymbol{x}^{K}\right]_{d} \delta_{dd'},$$
(2.33)

where $d, d' \in \mathcal{D}$ (i.e. no summation on d) and for all $K \in \mathcal{K}_h$. As usual $\delta_{dd'}$ denotes the Kronecker delta defined as

$$\delta_{dd'} = \begin{cases} 0 & \text{if } d \neq d' \\ 1 & \text{if } d = d'. \end{cases}$$
 (2.34)

The Jacobi determinant of \mathcal{X}_K for $K \in \mathcal{K}_h$ then simply is

$$J_{\mathcal{X}_K} = \|\frac{\partial \mathcal{X}_K}{\partial \xi}\| = \prod_{d=1}^D \left[\Delta x^K\right]_d, \tag{2.35}$$

i.e. the determinant is constant for all $x \in K$.

Temporal mappings: The inverse temporal mappings are given as

$$\mathcal{T}_i^{-1}: [t_i, t_i + \Delta t_i] \to [0, 1], t \mapsto \mathcal{T}_i^{-1}(t) = \frac{t - t_i}{\Delta t_i} = \tau$$
 (2.36)

for all $\tau \in [0,1]$, $t \in [t_i, t_i + \Delta t_i]$ and $i \in \mathcal{I}$. In the trivial case of a one-dimensional mapping the Jacobian of \mathcal{T}_i is a scalar which in turn is its own determinant. One finds

$$\frac{d\mathcal{T}_i}{\partial \tau} = \Delta t_i = J_{\mathcal{T}_i} \tag{2.37}$$

which again is constant for all $t \in [t_i, t_i + \Delta t_i]$ for a fixed $i \in \mathcal{I}$.

2.1.8 Orthogonal bases for the finite-dimensional spatial and space-time function spaces

Lagrange interpolation

Let $f \in \mathbb{Q}_N([0,1])$ be a polynomial of degree N and for the index set $\mathcal{N} := \{0,1,\ldots,N\}$ let $\{\hat{\zeta}_n\}_{n\in\mathcal{N}}$ be a set of distinct nodes in [0,1]. The the Lagrange interpolation of f,

$$\hat{f}(\xi) = \sum_{n=0}^{N} L_n(\xi) f(\xi_n)$$
 (2.38)

with Lagrange functions

$$L_n(\xi) = \prod_{m=0, m \neq n}^{N} \frac{\xi - \hat{\xi}_m}{\hat{\xi}_n - \hat{\xi}_m}$$
 (2.39)

is exact, i.e.

$$f(\xi) = \hat{f}(\xi) \,\forall \xi \in [0, 1].$$
 (2.40)

Since every polynomial $f \in \mathbb{Q}_N([0,1])$ can be represented as a linear combination of the Legendre polynomials L_n the set of functions $\{L_n\}_{n\in\mathcal{N}}$ is a basis of $\mathbb{Q}_N([0,1])$.

The following observation is an important property of the Lagrange polynomials:

$$L_n(\hat{\zeta}_{n'}) = \delta_{nn'},\tag{2.41}$$

i.e. at each node $\hat{\xi}_n$ only L_n has value 1 and all other polynomials evaluate to 0.

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Legendre polynomials and Gauss-Legendre integration

Let $P_0 : [-1,1] \to \mathbb{R}, \xi \mapsto 1$ and $P_1 : [-1,1] \to \mathbb{R}, \xi \mapsto \xi$ be the zeroth and the first Legendre polynomial, respectively. Then the N+1-st Legendre polynomial can be defined via the following recurrence relation:

$$P_{N+1}(\xi) = \frac{1}{N+1} \left((2N+1)P_N(\xi) - nP_{N-1}(\xi) \right). \tag{2.42}$$

Let $\{\tilde{\xi}_n\}_{n\in\mathcal{N}}$ be the roots of the N+1-st Legendre polynomial L_{N+1} . Then $\{\hat{\xi}_n\}_{n\in\mathcal{N}}$ with

$$\hat{\xi}_n = \frac{1}{2}(\tilde{\xi}_n + 1) \tag{2.43}$$

are the roots of the N+1-st Legendre polynomial linearly mapped to the interval (0,1). In conjunction with a set of suitable weights $\{\hat{\omega}_n\}_{n\in\mathcal{N}}$ Gauss-Legendre integration can be used to integrate polynomials of degree up to 2N+1 over the integral [0,1] exactly, i.e.

$$\int_{0}^{1} f(\xi) d\xi = \sum_{n=0}^{N} \hat{\omega}_{n} f(\hat{\xi}_{n}) \,\forall f \in \mathbb{Q}_{2N+1} ([0,1]). \tag{2.44}$$

A script on how to find the weights $\{\hat{\xi}_n\}_{n\in\mathcal{N}}$ can be found in appendix XXX.

1d basis functions

Let $\{\hat{\psi}_n\}_{n\in\mathcal{N}}$ be the set of N+1 Lagrange polynomials with nodes at the roots of the N+1-st Legendre polynomial linearly mapped to the interval [0,1], i.e.

$$\hat{\psi}_n(x) = \sum_{n'=0}^{N} \frac{x - \hat{x}_{n'}}{\hat{x}_n - \hat{x}_{n'}}$$
(2.45)

for $n \in \mathcal{N}$. Since $\{\hat{\psi}_n\}_{n \in \mathcal{N}}$ are Lagrange polynomials and the roots $\{\hat{x}_n\}_{n \in \mathcal{N}}$ are distinct the set is a basis of $\mathbb{Q}_N([0,1])$. Since furthermore

$$\left\langle \hat{\psi}_{n}, \hat{\psi}_{m} \right\rangle_{L^{2}\left([0,1]\right)} = \int_{0}^{1} \hat{\psi}_{n}(x) \hat{\psi}_{m}(x) dx = \sum_{n'=0}^{N} \hat{w}'_{n} \hat{\psi}_{n}(\hat{x}_{n'}) \hat{\psi}_{m}(\hat{x}_{n'}) = \hat{w}_{n} \delta_{mn}$$
(2.46)

for all $m,n\in\mathcal{N}$ (i.e. no summation over n), the set is even an orthogonal basis of $\mathbb{Q}_N([0,1])$ with respect to the L^2 -scalar product as defined above. In this derivation we used the fact that $\hat{\psi}_n\hat{\psi}_m$ has degree 2N and that Gauss-Legendre integration with N+1 nodes is exact for polynomials up to degree 2N+1.

Scalar-valued basis functions on the spatial reference element

For the vector-valued index set $\mathcal{N} := \{0, 1, \dots, N\}^D$ let us define the set of scalar-valued spatial basis functions $\{\hat{\phi}_n\}_{n \in \mathcal{N}}$ on $\hat{K} := [0, 1]^D$ as

$$\hat{\phi}_{n}(\xi) = \prod_{d=1}^{D} \hat{\psi}_{[n]_{d}}([\xi]_{d}) = \hat{\psi}_{[n]_{d}}([\xi]_{d}), \tag{2.47}$$

i.e. $\{\hat{\phi}_n\}_{n\in\mathcal{N}}$ is the tensor product of $\{\hat{\psi}_n\}_{n\in\mathcal{N}}$ and as such it is a basis of $\mathbb{Q}([0,1]^D) = \mathbb{Q}(\hat{K})$. If we define

$$\left[\hat{\boldsymbol{\xi}}_{\boldsymbol{n}}\right]_{d} = \hat{\boldsymbol{\xi}}_{\left[\boldsymbol{n}\right]_{d}} \tag{2.48}$$

and

$$\prod_{d=1}^{D} \hat{\omega}_{[n]_{d'}} \tag{2.49}$$

for all $d \in \mathcal{V}$ and $n \in \mathcal{N}$, we furthermore observe that the basis is orthogonal with respect to the L^2 -scalar product, since

$$\left\langle \hat{\phi}_{n}, \hat{\phi}_{m} \right\rangle_{L^{2}(\hat{K})} = \int_{\hat{K}} \hat{\phi}_{n}(\xi) \hat{\phi}_{m}(\xi) d\xi =$$

$$\sum_{n' \in \mathcal{N}} \left(\hat{\omega}_{n'} \hat{\phi}_{n}(\hat{\xi}_{n'}) \hat{\phi}_{m}(\hat{\xi}_{n'}) \right) = \hat{\omega}_{n} \delta_{nm}$$
(2.50)

for all $n, m \in \mathcal{N}$. The natural extensions of the Kronecker delta for vector-valued indices is defined as follows:

$$\delta_{nm} = \prod_{d=1}^{D} \delta_{[n]_d[m]_d} = \delta_{[n]_d[m]_d}.$$
 (2.51)

Scalar-valued basis functions on the space-time reference element

Analogously to the procedure illustrated above for the spatial reference element \hat{K} we can define a basis $\{\hat{\theta}_{nl}\}_{n\in\mathcal{N},l\in\mathcal{N}}$ of $\mathbb{Q}_N(\hat{K}\times[0,1])$ on the reference space-time element $\hat{K}\times[0,1]$ as

$$\hat{\theta}_{nl}(\xi,\tau) = \hat{\phi}_n(\xi)\hat{\psi}_l(\tau), \tag{2.52}$$

which again is orthogonal, since

$$\left\langle \hat{\theta}_{nl}, \hat{\theta}_{mk} \right\rangle_{L^{2}(\hat{K} \times [0,1])} = \int_{0}^{1} \int_{\hat{K}} \hat{\theta}_{nl} \hat{\theta}_{mk} d\xi d\tau = \hat{\omega}_{n} \hat{\omega}_{l} \delta_{nm} \delta_{lk}$$
 (2.53)

for all $n, m \in \mathcal{N}$ and $l, k \in \mathcal{N}$.

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Vector-valued basis functions on the spatial reference element

If we define $\{\hat{\boldsymbol{\phi}}_{nv}\}_{n\in\mathcal{N},v\in\mathcal{V}}$ as

$$\hat{\boldsymbol{\phi}}_{\boldsymbol{n}\boldsymbol{v}} = \hat{\boldsymbol{\phi}}_{\boldsymbol{n}} \boldsymbol{e}_{\boldsymbol{v}},\tag{2.54}$$

where e_v is the v-th unit vector, i.e.

$$[e_v]_{v'} = \delta_{vv'} \tag{2.55}$$

for $v, v' \in \mathcal{V}$. Since

$$\left\langle \hat{\boldsymbol{\phi}}_{\boldsymbol{n}v}, \hat{\boldsymbol{\phi}}_{\boldsymbol{n}'v'} \right\rangle_{L^{2}(\hat{K})^{V}} = \int_{\hat{K}} \left[\hat{\boldsymbol{\phi}}_{\boldsymbol{n}v} \right]_{j} \left[\hat{\boldsymbol{\phi}}_{\boldsymbol{n}'v'} \right]_{j} d\boldsymbol{\xi} =$$

$$\left(\left[\boldsymbol{e}_{v} \right]_{j} \left[\boldsymbol{e}_{v'} \right]_{j} \right) \int_{0}^{1} \int_{\hat{K}} \hat{\boldsymbol{\phi}}_{\boldsymbol{n}} \hat{\boldsymbol{\phi}}_{\boldsymbol{n}'} d\boldsymbol{\xi} = \hat{\omega}_{\boldsymbol{n}} \delta_{\boldsymbol{n}\boldsymbol{n}'} \delta_{vv'}$$

$$(2.56)$$

for all $n, n' \in \mathcal{N}$ and $v, v' \in \{1, 2, ..., V\}$ the set is an orthogonal basis for $\mathbb{Q}_N(\hat{K})^V$.

Vector-valued basis functions on the space-time reference element

The set $\{\hat{\boldsymbol{\theta}}_{nlv}\}_{n\in\mathcal{N},l\in\mathcal{N},v\in\mathcal{V}}$ defined as

$$\hat{\boldsymbol{\theta}}_{nlv}(\boldsymbol{\xi}, \tau) = \hat{\boldsymbol{\theta}}_{nl}(\boldsymbol{\xi}, \tau) \boldsymbol{e}_v = \hat{\boldsymbol{\phi}}_n(\boldsymbol{\xi}) \hat{\boldsymbol{\psi}}_l(\tau) \boldsymbol{e}_v \tag{2.57}$$

is a basis of $\mathbb{Q}_N(\hat{K} \times [0,1])^V$. Since furthermore

$$\left\langle \hat{\boldsymbol{\theta}}_{nlv}, \hat{\boldsymbol{\theta}}_{n'l'v'} \right\rangle_{L^{2}\left(\hat{K}\times[0,1]\right)^{V}} = \int_{0}^{1} \int_{\hat{K}} \left[\hat{\boldsymbol{\theta}}_{nlv} \right]_{j} \left[\hat{\boldsymbol{\theta}}_{n'l'v'} \right]_{j} d\boldsymbol{\xi} d\tau = \hat{\omega}_{n} \hat{\omega}_{l} \delta_{nn'} \delta_{ll'} \delta_{vv'}, \tag{2.58}$$

for all $n, n' \in \mathcal{N}$, $l, l' \in \mathcal{N}$ and $v, v' \in \mathcal{V}$, the set is an orthogonal basis with respect to the respective L^2 -scalar product.

2.1.9 Basis functions in global coordinates

We can use the mappings derived in ch. 2.1.7 to map the basis functions to global coordinates. For the vector-valued basis functions on a spatial element *K* we obtain

$$\boldsymbol{\phi}_{nv}^{K}(\boldsymbol{x}) = \begin{cases} \left(\hat{\boldsymbol{\phi}}_{nv} \circ \boldsymbol{\mathcal{X}}_{K}^{-1}\right)(\boldsymbol{x}) & \text{if } \boldsymbol{x} \in K\\ 0 & \text{otherwise,} \end{cases}$$
 (2.59)

and for the vector-valued basis functions on a space-time element $K \times [t_i, t_i + \Delta t_i]$ we have

$$\boldsymbol{\theta}_{nlv}^{Ki}(\boldsymbol{x},t) = \begin{cases} \left(\hat{\boldsymbol{\theta}}_{nlv} \circ \left(\boldsymbol{\mathcal{X}}_{K}^{-1}, \mathcal{T}_{i}^{-1}\right)\right)(\boldsymbol{x},t) & \text{if } \boldsymbol{x} \in K \text{ and } t \in [t_{i}, t_{i} + \Delta t_{i}] \\ 0 & \text{otherwise} \end{cases}$$
(2.60)

for $n \in \mathcal{N}$, $l \in \{0, 1, ..., N\}$ as well as $v \in \mathcal{V}$ and for all $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$.

2.1.10 A fully-discrete iterative method for the space-time predictor

We recall relation (2.25) for the space-time predictor. Plugging in the initial condition (2.24) yields

$$\int_{K} \left[\tilde{\boldsymbol{q}}_{h}^{K,i} \Big|_{t_{i}+\Delta t_{i}} \right]_{j} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \Big|_{t_{i}+\Delta t_{i}} \right]_{j} d\boldsymbol{x} - \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\tilde{\boldsymbol{q}}_{h}^{K,i} \right]_{j} \frac{\partial}{\partial t} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{j} d\boldsymbol{x} dt =$$

$$\int_{K} \left[\tilde{\boldsymbol{u}}_{h}^{K,i} \Big|_{t_{i}} \right]_{j} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \Big|_{t_{i}} \right]_{j} d\boldsymbol{x} + \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{F}(\tilde{\boldsymbol{q}}_{h}^{K,i}) \right]_{jk} \frac{\partial}{\partial x_{k}} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{j} d\boldsymbol{x} dt +$$

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s} \left(\tilde{\boldsymbol{q}}_{h}^{K,i} \right) \right]_{j} \left[\tilde{\boldsymbol{w}}_{h}^{K,i} \right]_{j} d\boldsymbol{x} dt \tag{2.61}$$

which we require to hold for all $\tilde{w}_h \in \tilde{W}_h$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$.

Making use of the bases we derived in the previous section the cell-local space-time predictor $\tilde{q}_h^{K,i}$ can be represented by a tensor of coefficients $\hat{q}^{K,i}$ ("degrees of freedom") as follows:

$$\tilde{\boldsymbol{q}}_{h}^{K,i} = \left[\hat{\boldsymbol{q}}^{K,i}\right]_{nlv} \boldsymbol{\theta}_{nlv}^{Ki}.$$
 (2.62)

The initial condition $\left. \tilde{u}_h^{K,i} \right|_{t_i}$ can be represented as

$$\left. \tilde{\boldsymbol{u}}_{h}^{K,i} \right|_{t_{i}} = \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}v} \boldsymbol{\phi}_{\boldsymbol{n}v}^{K}, \tag{2.63}$$

where

$$\left[\hat{\boldsymbol{u}}^{K,i}\right]_{\boldsymbol{n}v} = \left[\left.\tilde{\boldsymbol{u}}_{h}^{K,i}\right|_{\left(\boldsymbol{\mathcal{X}}_{K}(\boldsymbol{\xi}_{\boldsymbol{n}}),t_{i}\right)}\right]_{v}.$$
(2.64)

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Inserting eqs. (2.62) and (2.63) into eq. (2.61) and introduction of the iteration index $r \in \{0, 1, ..., R\}$ leads to the following iterative scheme for the degrees of freedom of the cell-local space-time predictor:

$$\underbrace{\int_{K} \left[\left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \boldsymbol{\theta}_{nlv}^{Ki} \Big|_{t_{i}+\Delta t_{i}} \right]_{j} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \Big|_{t_{i}+\Delta t_{i}} \right]_{j} dx - \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \boldsymbol{\theta}_{nlv}^{Ki} \right]_{j} \frac{\partial}{\partial t} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \Big|_{j} dx dt \right]}_{S-III} \\
\underbrace{\int_{K} \left[\left[\hat{\boldsymbol{q}}^{K,i} \right]_{nv} \boldsymbol{\phi}_{nv}^{K} \right]_{j} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \Big|_{t_{i}} \right]_{j} dx + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[F \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{nlv} \boldsymbol{\theta}_{nlv}^{Ki} \right) \right]_{jk} \frac{\partial}{\partial x_{k}} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \right]_{j} dx dt + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[s \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{nlv} \boldsymbol{\theta}_{nlv}^{Ki} \right) \right]_{j} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \right]_{j} dx dt .}_{S-V} \tag{2.65}$$

We require this relation to hold for all $\alpha \in \mathcal{N}$, $\beta \in \mathcal{N}$ and $\gamma \in \mathcal{V}$.

As initial condition, i.e. for r = 0, we use

$$\left[\hat{\boldsymbol{q}}^{K,i,0}\right]_{nvl} = \left[\hat{\boldsymbol{u}}^{K,i}\right]_{nv} \tag{2.66}$$

for all time degrees of freedom $l \in \mathcal{N}$.

We will now proceed in a term-by-term fashion to rewrite all integrals with respect to reference coordinates so that we can finally derive a complete rule on how to compute $\hat{q}^{K,i,r+1}$ that holds for all $K \in \mathcal{K}_h$.

Term S-I

The first term of eq. (2.65) can be rewritten with respect to reference coordinates as follows:

$$\int_{K} \left[\left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlw} \boldsymbol{\theta}_{nlv}^{Ki} \Big|_{t_{i}+\Delta t_{i}} \right]_{j} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \right]_{t_{i}+\Delta t_{i}} dx =$$

$$\int_{K} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \boldsymbol{\phi}_{n}^{K} \left(\psi_{l}^{i} \Big|_{t_{i}+\Delta t_{i}} \right) \left[e_{v} \right]_{j} \boldsymbol{\phi}_{\alpha}^{K} \left(\psi_{\beta}^{i} \Big|_{t_{i}+\Delta t_{i}} \right) \left[e_{\gamma} \right]_{j} dx =$$

$$J_{\mathcal{X}_{K}} \int_{\hat{K}} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \hat{\boldsymbol{\phi}}_{n} \left(\hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right) \left[e_{v} \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha} \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \right) \left[e_{\gamma} \right]_{j} d\xi =$$

$$J_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \left(\hat{\boldsymbol{\omega}}_{\alpha'} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \hat{\boldsymbol{\phi}}_{n} (\hat{\boldsymbol{\xi}}_{\alpha'}) \left(\hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right) \left[e_{v} \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha} (\hat{\boldsymbol{\xi}}_{\alpha'}) \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \right) \left[e_{\gamma} \right]_{j} \right) =$$

$$J_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \left(\hat{\boldsymbol{\omega}}_{\alpha'} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \delta_{n\alpha'} \left(\hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right) \delta_{vj} \delta_{\alpha\alpha'} \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \right) \delta_{j\gamma} \right) =$$

$$J_{\mathcal{X}_{K}} \hat{\boldsymbol{\omega}}_{\alpha} \underbrace{\left[\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right]}_{[\hat{\boldsymbol{q}}^{K,i,r+1}]} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{\alpha l\gamma'} (\hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right) \delta_{vj} \delta_{\alpha\alpha'} \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \right) \delta_{j\gamma} \right] =$$

$$J_{\mathcal{X}_{K}} \hat{\boldsymbol{\omega}}_{\alpha} \underbrace{\left[\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right]}_{[\hat{\boldsymbol{q}}^{K,i,r+1}]} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{\alpha l\gamma'} (\hat{\boldsymbol{\psi}}_{l} \Big|_{1} \right) \delta_{vj} \delta_{\alpha'} \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{1} \right) \delta_{j\gamma}$$

where we remember from eq. (2.35) that

$$J_{\mathcal{X}_K} = \prod_{d=1}^D \left[\Delta x \right]_d. \tag{2.68}$$

Term S-II

The second term of eq. (2.65) can be rewritten with respect to reference coordinates as follows:

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \theta_{nlv}^{Ki} \right]_{j} \frac{\partial}{\partial t} \left[\theta_{\alpha\beta\gamma}^{Ki} \right]_{j} dx dt =$$

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \phi_{n}^{K} \psi_{l}^{i} \left[e_{v} \right]_{j} \phi_{\alpha}^{K} \left(\frac{\partial}{\partial t} \psi_{\beta}^{i} \right) \left[e_{\gamma} \right]_{j} dx dt =$$

$$I_{\mathcal{T}_{i}} I_{\mathcal{X}_{K}} \int_{0}^{1} \int_{\hat{K}} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \hat{\phi}_{n} \hat{\psi}_{l} \left[e_{v} \right]_{j} \hat{\phi}_{\alpha} \left(\frac{1}{\Delta t_{i}} \frac{\partial}{\partial \tau} \hat{\psi}_{\beta} \right) \left[e_{\gamma} \right]_{j} d\xi d\tau =$$

$$I_{\mathcal{T}_{i}} I_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\alpha'} \hat{\omega}_{\beta'} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \hat{\phi}_{n} (\hat{\xi}_{\alpha'}) \hat{\psi}_{l} (\hat{\tau}_{\beta'}) \left[e_{v} \right]_{j} \dots \right.$$

$$\dots \hat{\phi}_{\alpha} (\hat{\xi}_{\alpha'}) \left(\frac{\partial}{\partial \tau} \hat{\psi}_{\beta} (\hat{\tau}_{\beta'}) \right) \left[e_{\gamma} \right]_{j} \right) =$$

$$I_{\mathcal{T}_{i}} I_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\alpha'} \hat{\omega}_{\beta'} \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{nlv} \delta_{n\alpha'} \delta_{l\beta'} \delta_{vj} \dots \right.$$

$$\dots \delta_{\alpha\alpha'} \left(\frac{1}{\Delta t_{i}} \frac{\partial}{\partial \tau} \hat{\psi}_{\beta} (\hat{\tau}_{\beta'}) \right) \delta_{\gamma j} \right) =$$

$$I_{\mathcal{T}_{i}} I_{\mathcal{X}_{K}} \hat{\omega}_{\alpha} \frac{1}{\Delta t_{i}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\beta'} \left[\frac{\partial}{\partial \tau} \hat{\psi}_{\beta} (\hat{\tau}_{\beta'}) \right] \left[\hat{\boldsymbol{q}}^{K,i,r+1} \right]_{\alpha\beta'\gamma} \right),$$

$$\left[K_{XXY}^{i} \right]_{\beta\beta'} \hat{\boldsymbol{q}}_{\beta'} \hat{\boldsymbol{q}}_{\beta'} \hat{\boldsymbol{q}}_{\gamma'} \hat{\boldsymbol{q}}_{\gamma'} \right] \hat{\boldsymbol{q}}_{\beta'} \hat{\boldsymbol{q}}_{\gamma'} \hat{\boldsymbol{q}}_{\gamma'} \hat{\boldsymbol{q}}_{\gamma'}$$

where we remember from eq. (2.37) that

$$J_{\mathcal{T}_i} = \Delta t_i, \tag{2.70}$$

so that Δt_i and $1/\Delta t_i$ in eq. (2.69) cancel. In the derivation we made use of the fact that due to the chain rule

$$\frac{\partial}{\partial t}\psi_{\beta}^{i} = \frac{\partial}{\partial t}\left(\hat{\psi}_{\beta}\circ\mathcal{T}_{i}^{-1}\right) = \left(\frac{\partial}{\partial \tau}\hat{\psi}_{\beta}\right)\left(\frac{\partial}{\partial t}\mathcal{T}_{i}^{-1}\right) = \frac{1}{\Delta t_{i}}\frac{\partial}{\partial \tau}\hat{\psi}_{\beta}.$$
 (2.71)

Term S-III

The third term of eq. (2.65) can be rewritten with respect to reference coordinates as follows:

$$\int_{K} \left[\left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}v} \boldsymbol{\phi}_{\boldsymbol{n}v}^{K} \right]_{j} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \Big|_{t_{i}} \right]_{j} dx =$$

$$\int_{K} \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}v} \boldsymbol{\phi}_{\boldsymbol{n}}^{K} \left[\boldsymbol{e}_{v} \right]_{j} \boldsymbol{\phi}_{\boldsymbol{\alpha}}^{K} \left(\boldsymbol{\psi}_{\beta}^{i} \Big|_{t_{i}} \right) \left[\boldsymbol{e}_{\gamma} \right]_{j} dx =$$

$$J_{\mathcal{X}_{K}} \int_{\hat{K}} \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}v} \hat{\boldsymbol{\phi}}_{\boldsymbol{n}} \left[\boldsymbol{e}_{v} \right]_{j} \hat{\boldsymbol{\phi}}_{\boldsymbol{\alpha}} \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{0} \right) \left[\boldsymbol{e}_{\gamma} \right]_{j} d\xi =$$

$$J_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \left(\hat{\boldsymbol{\omega}}_{\alpha'} \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}v} \hat{\boldsymbol{\phi}}_{\boldsymbol{n}} (\boldsymbol{\xi}_{\alpha'}) \left[\boldsymbol{e}_{v} \right]_{j} \hat{\boldsymbol{\phi}}_{\boldsymbol{\alpha}} (\boldsymbol{\xi}_{\alpha'}) \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{0} \right) \left[\boldsymbol{e}_{\gamma} \right]_{j} \right) =$$

$$J_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \left(\hat{\boldsymbol{\omega}}_{\alpha'} \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}v} \delta_{\boldsymbol{n}\alpha'} \delta_{vj} \delta_{\alpha\alpha'} \left(\hat{\boldsymbol{\psi}}_{\beta} \Big|_{0} \right) \delta_{\gamma j} \right) =$$

$$J_{\mathcal{X}_{K}} \hat{\boldsymbol{\omega}}_{\alpha} \left[\hat{\boldsymbol{\psi}}_{\beta} \Big|_{0} \right] \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\alpha\gamma} .$$

$$(2.72)$$

Term S-IV

The third term of eq. (2.65) can be rewritten with respect to reference coordinates as follows:

$$\begin{split} &\int_{t_{i}}^{t_{i}+\Delta h_{i}}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i,r}\right]_{nlv}\boldsymbol{\theta}_{nlv}^{Ki}\right)\right]_{jk}\frac{\partial}{\partial x_{k}}\left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki}\right]_{j}dx\,dt = \\ &\int_{t_{i}}^{t_{i}+\Delta h_{i}}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i,r}\right]_{nlv}\boldsymbol{\phi}_{n}^{K}\boldsymbol{\psi}_{l}^{i}e_{v}\right)\right]_{jk}\left(\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\alpha]_{d}}^{K}([\mathbf{x}]_{d})\right)\boldsymbol{\psi}_{\beta}^{i}(t)\left[e_{\gamma}\right]_{j}\dots\\ &\dots\left(\frac{\partial}{\partial x_{k}}\boldsymbol{\psi}_{[\alpha]_{k}}^{K}\right)dx\,dt = \\ &I_{\mathcal{T}_{i}}I_{\boldsymbol{X}_{K}}\int_{0}^{1}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i,r}\right]_{nlv}\hat{\boldsymbol{\phi}}_{n}\hat{\boldsymbol{\psi}}_{l}e_{v}\right)\right]_{jk}\left(\prod_{d=1,d\neq k}^{D}\hat{\boldsymbol{\psi}}_{[\alpha]_{d}}\left[\boldsymbol{\xi}\right]_{d}\right)\boldsymbol{\psi}_{\beta}(t)\left[e_{\gamma}\right]_{j}\dots\\ &\dots\left(\frac{1}{[\Delta x]_{k}}\frac{\partial}{\partial \boldsymbol{\xi}_{k}}\hat{\boldsymbol{\psi}}_{[\alpha]_{k}}([\boldsymbol{\xi}]_{k})\right)d\boldsymbol{\xi}\,d\tau = \\ &I_{\mathcal{T}_{i}}I_{\boldsymbol{X}_{K}}\sum_{\alpha'\in\mathcal{N}}\sum_{\beta'\in\mathcal{N}}\left(\hat{\boldsymbol{\omega}}_{\alpha'}\hat{\boldsymbol{\omega}}_{\beta'}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i,r}\right]_{nlv}\hat{\boldsymbol{\phi}}_{n}(\boldsymbol{\xi}_{\alpha'})\hat{\boldsymbol{\psi}}_{l}(\hat{\boldsymbol{\tau}}_{\beta'})e_{v}\right)\right]_{jk}\dots\\ &\dots\left(\prod_{d=1,d\neq k}^{D}\hat{\boldsymbol{\psi}}_{[\alpha]_{d}}\left(\left[\boldsymbol{\xi}_{\alpha'}\right]_{d}\right)\right)\boldsymbol{\psi}_{\beta}(\hat{\boldsymbol{\tau}}_{\beta'})\left[e_{\gamma}\right]_{j}\left(\frac{1}{[\Delta x]_{k}}\frac{\partial}{\partial \boldsymbol{\xi}_{k}}\hat{\boldsymbol{\psi}}_{[\alpha]_{k}}\left(\left[\boldsymbol{\xi}_{\alpha'}\right]_{k}\right)\right)\right) = \\ &I_{\mathcal{T}_{i}}I_{\boldsymbol{X}_{K}}\sum_{\alpha'\in\mathcal{N}}\sum_{\beta'\in\mathcal{N}}\left(\hat{\boldsymbol{\omega}}_{\alpha'}\hat{\boldsymbol{\omega}}_{\beta'}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i,r}\right]_{nlv}\hat{\boldsymbol{\delta}}_{n\alpha'}\delta_{l\beta'}e_{v}\right)\right]_{jk}\dots\\ &\dots\left(\prod_{d=1,d\neq k}^{D}\delta_{[\alpha]_{d}[\alpha']_{d}}\right)\delta_{\beta\beta'}\delta_{\gamma j}\left(\frac{1}{[\Delta x]_{k}}\frac{\partial}{\partial \boldsymbol{\xi}_{k}}\hat{\boldsymbol{\psi}}_{[\alpha]_{k}}\left(\left[\boldsymbol{\xi}_{\alpha'}\right]_{k}\right)\right)\right) = \\ &I_{\mathcal{T}_{i}}I_{\boldsymbol{X}_{K}}\hat{\boldsymbol{\omega}}_{\beta}\sum_{k=1}^{D}\left(\frac{1}{[\Delta x]_{k}}\sum_{\alpha'_{k}\in\{0,1,\dots,N\}}\left(\prod_{d=0,d\neq k}^{D}\hat{\boldsymbol{\omega}}_{[\alpha]_{d}}\dots\\ &\dots\hat{\boldsymbol{\omega}}_{\alpha'_{k}}\left(\frac{\partial}{\partial \boldsymbol{\xi}_{k}}\hat{\boldsymbol{\psi}}_{[\alpha]_{k}}\left(\boldsymbol{\xi}_{\alpha'_{k}}\right)\right)\right)\left[F\left(\left[\boldsymbol{\hat{q}^{K,i,r}}\right]_{[\alpha_{0},\alpha_{1,\dots,\alpha_{k-1},\alpha'_{k},\alpha_{k+1},\dots,\alpha_{N}]}\right]\boldsymbol{\rho}_{v}}\right)\right]_{\gamma k}\right), \\ &(2.73) \end{aligned}$$

where we used that

$$\frac{\partial}{\partial x_{k}} \theta_{\alpha\beta\gamma}^{Ki}(\mathbf{x},t) = \left(\frac{\partial}{\partial x_{k}} \phi_{\alpha}^{K}(\mathbf{x})\right) \psi_{\beta}^{i}(t) e_{\gamma} = \left(\frac{\partial}{\partial x_{k}} \prod_{d=1}^{D} \psi_{[\alpha]_{d}}^{K}([\mathbf{x}]_{d})\right) \psi_{\beta}^{i}(t) e_{\gamma} = \left(\prod_{d=1,d\neq k}^{D} \psi_{[\alpha]_{d}}^{K}([\mathbf{x}]_{d})\right) \left(\frac{\partial}{\partial x_{k}} \psi_{[\alpha]_{k}}^{K}([\mathbf{x}]_{k})\right) \psi_{\beta}^{i}(t) e_{\gamma} = \left(\prod_{d=1,d\neq k}^{D} \psi_{[\alpha]_{d}}^{K}([\mathbf{x}]_{d})\right) \left(\frac{\partial}{\partial x_{k}} \hat{\psi}_{[\alpha]_{k}}\left(\left[\mathcal{X}_{K}^{-1}(\mathbf{x})\right]_{k}\right)\right) \psi_{\beta}^{i}(t) e_{\gamma} = \left(\prod_{d=1,d\neq k}^{D} \psi_{[\alpha]_{d}}^{K}([\mathbf{x}]_{d})\right) \left(\left(\frac{\partial}{\partial \xi_{k}} \hat{\psi}_{[\alpha]_{k}}\left(\left[\mathcal{X}_{K}^{-1}(\mathbf{x})\right]_{k}\right)\right) \left(\frac{\partial}{\partial x_{k}}\left[\mathcal{X}_{K}^{-1}(\mathbf{x})\right]_{k}\right)\right) \dots \dots \psi_{\beta}^{i}(t) e_{\gamma} = \left(\prod_{d=1,d\neq k}^{D} \psi_{[\alpha]_{d}}^{K}([\mathbf{x}]_{d})\right) \left(\frac{1}{[\Delta \mathbf{x}^{K}]_{k}} \frac{\partial}{\partial \xi_{k}} \hat{\phi}_{[\alpha]_{k}}\left(\left[\mathcal{X}_{K}^{-1}(\mathbf{x})\right]_{k}\right)\right) \psi_{\beta}^{i}(t) e_{\gamma}. \tag{2.74}$$

Term S-V

The fifth term of eq. (2.65) can be rewritten with respect to reference coordinates as follows:

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[s \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{nlv} \boldsymbol{\theta}_{nlv}^{Ki} \right) \right]_{j} \left[\boldsymbol{\theta}_{\alpha\beta\gamma}^{Ki} \right]_{j} dx dt =$$

$$J_{\tau_{i}} J_{\mathcal{X}_{K}} \int_{0}^{1} \int_{\hat{K}} \left[s \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{nlv} \hat{\boldsymbol{\phi}}_{n} \hat{\boldsymbol{\psi}}_{l} \boldsymbol{e}_{v} \right) \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha} \hat{\boldsymbol{\psi}}_{l} \left[\boldsymbol{e}_{\gamma} \right]_{j} d\xi d\tau =$$

$$J_{\tau_{i}} J_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\alpha'} \hat{\omega}_{\beta'} \left[s \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{nlv} \hat{\boldsymbol{\phi}}_{n} (\xi_{\alpha'}) \hat{\boldsymbol{\psi}}_{l} (\hat{\tau}_{\beta'}) \boldsymbol{e}_{v} \right) \right]_{j} \dots$$

$$\dots \hat{\boldsymbol{\phi}}_{\alpha} (\xi_{\alpha'}) \hat{\boldsymbol{\psi}}_{\beta} (\hat{\tau}_{\beta'}) \left[\boldsymbol{e}_{\gamma} \right]_{j} \right) =$$

$$J_{\tau_{i}} J_{\mathcal{X}_{K}} \sum_{\alpha' \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\alpha'} \hat{\omega}_{\beta'} \left[s \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{nlv} \delta_{n\alpha'} \delta_{l\beta'} \boldsymbol{e}_{v} \right) \right]_{j} \delta_{\alpha\alpha'} \delta_{\beta\beta'} \delta_{\gamma j} \right) =$$

$$J_{\tau_{i}} J_{\mathcal{X}_{K}} \hat{\omega}_{\alpha} \hat{\omega}_{\beta} \left[s \left(\left[\hat{\boldsymbol{q}}^{K,i,r} \right]_{\alpha\beta v} \boldsymbol{e}_{v} \right) \right]_{\gamma}$$

The complete fixed-point iteration for the space-time predictor

Now collecting the results from eqs. (2.67), (2.69), (2.72), (2.73) and (2.75) and plugging them back into eq. (2.65) and division by $J_{\mathcal{X}_K}$ yields TODO: division by omega alpha

$$\hat{\omega}_{\alpha}[\mathbf{FRm}]_{\beta\beta'} \left[\hat{\mathbf{q}}^{K,i,r+1} \right]_{\alpha\beta'\gamma} - \\
\hat{\omega}_{\alpha} \left[\mathbf{Kxi} \right]_{\beta\beta'} \left[\hat{\mathbf{q}}^{K,i,r+1} \right]_{\alpha\beta'\gamma} = \\
\hat{\omega}_{\alpha} \left[\hat{\mathbf{\psi}}_{\beta} \right]_{0} \left[\hat{\mathbf{u}}^{K,i} \right]_{\alpha\gamma} + \\
J_{\mathcal{T}_{i}} \hat{\omega}_{\beta} \sum_{k=1}^{D} \left(\frac{1}{[\Delta \mathbf{x}]_{k}} \sum_{\alpha'_{k} \in \{0,1,\dots,N\}} \left(\prod_{d=0,d\neq k}^{D} \hat{\omega}_{[\alpha]_{d}} \dots \right) \\
\dots \left[\mathbf{Kxi} \right]_{[\alpha]_{k}\alpha'_{k}} \left[F\left(\left[\hat{\mathbf{q}}^{K,i,r} \right]_{[\alpha_{0},\alpha_{1},\dots,\alpha_{k-1},\alpha'_{k},\alpha_{k+1},\dots,\alpha_{N}]\beta v} e_{v} \right) \right]_{\gamma k} \right) + \\
J_{\mathcal{T}_{i}} \hat{\omega}_{\alpha} \hat{\omega}_{\beta} \left[s\left(\left[\hat{\mathbf{q}}^{K,i,r} \right]_{\alpha\beta v} e_{v} \right) \right]_{\gamma} ,$$

which has to hold for all $\alpha \in \mathcal{N}$, $\beta \in \mathcal{N}$ and $\gamma \in \mathcal{V}$.

Next step: [K1] = [FRm] - [Kxi]. Precompute $[iK1] = ([FRm] - [Kxi])^{-1}$ in advance.

TODO: Add appendix with code that computes all matrices

2.1.11 A fully discrete update scheme for the time-discrete solution

Now that we have developed a method to compute the space-time predictor, we can go back to the original one-step, cell-local update scheme given in eq. (2.21). Inserting the local space-time predictor $\tilde{q}_h^{K,i}$ yields

$$\int_{K} \left[\tilde{\boldsymbol{u}}_{h}^{K,i} \Big|_{t_{i}+\Delta t_{i}} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} = \int_{K} \left[\tilde{\boldsymbol{u}}_{h}^{K,i} \Big|_{t_{i}} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} + \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{F}(\tilde{\boldsymbol{q}}_{h}^{K,i}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt + \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s} \left(\hat{\boldsymbol{q}}^{K,i} \right) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt - \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}} \left(\tilde{\boldsymbol{q}}_{h}^{K,i}, \tilde{\boldsymbol{q}}_{h}^{K+i}, \boldsymbol{n} \right) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} ds(\boldsymbol{x}) dt, \tag{2.77}$$

which has to hold for all $v \in \mathcal{V}$, $K \in \mathcal{K}_h$, $w_h \in \mathbb{W}_h$ and $i \in \mathcal{I}$.

Making use of the bases we derived earlier the call-local solution $\tilde{u}_h^{K,i}$ at times $t=t_i$ and $t=t_i+\Delta t_i$ can be represented by tensors of coefficients $\hat{u}^{K,i}$ and $\hat{u}^{K,i+1}$ as

$$\left. \tilde{\boldsymbol{u}}_{h}^{K,i} \right|_{t_{i}} = \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n}.\boldsymbol{v}} \boldsymbol{\phi}_{\boldsymbol{n},\boldsymbol{v}}^{K} \tag{2.78}$$

and

$$\left. \tilde{\boldsymbol{u}}_{h}^{K,i} \right|_{t_{i} + \Delta t_{i}} = \left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{n},v} \boldsymbol{\phi}_{\boldsymbol{n},v}^{K}, \tag{2.79}$$

respectively. Inserting eqs. (2.78) and (2.79) and the ansatz for the space-time predictor (2.62) into eq. (2.77) yields

$$\underbrace{\int_{K} \left[\left[\hat{\boldsymbol{\eta}}^{K,i+1} \right]_{\boldsymbol{n},v} \boldsymbol{\phi}_{\boldsymbol{n},v}^{K} \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} d\boldsymbol{x}}_{U-II} = \underbrace{\int_{K} \left[\left[\hat{\boldsymbol{\eta}}^{K,i} \right]_{\boldsymbol{n},v} \boldsymbol{\phi}_{\boldsymbol{n},v}^{K} \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j}}_{U-III} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[F\left(\left[\hat{\boldsymbol{q}}^{K,i} \right]_{\boldsymbol{n},l,v} \boldsymbol{\theta}_{\boldsymbol{n},l,v}^{Ki} \right) \right]_{jk} \frac{\partial}{\partial x_{k}} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} d\boldsymbol{x} dt}_{U-III} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i} \right]_{\boldsymbol{n},l,v} \boldsymbol{\theta}_{\boldsymbol{n},l,v}^{Ki} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} d\boldsymbol{x} dt}_{U-IV} - \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\right) \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} \right]_{j} ds(\boldsymbol{x}) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\right) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\right) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\right) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\right) dt}_{U-IV} + \underbrace{\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\boldsymbol{\mathcal{G}}\left(\boldsymbol{\mathcal{G}}\right) dt}_{U-IV} + \underbrace{\int_{t_{i}}^$$

which we require to hold for all $\alpha \in \mathcal{N}$, $\gamma \in \mathcal{V}$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$. In the following we will again proceed by simplifying each term in reference coordinates separately and then in the end assemble all terms to obtain a complete fully-discrete update scheme.

Term U-I

The first term of eq. (2.80) can be rewritten with respect to reference coordinates as follows:

$$\int_{K} \left[\left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{n},\boldsymbol{v}} \boldsymbol{\phi}_{\boldsymbol{n},\boldsymbol{v}}^{K} \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\boldsymbol{\gamma}}^{K} \right]_{j} d\boldsymbol{x} = \\
\int_{K} \left[\left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{n},\boldsymbol{v}} \boldsymbol{\phi}_{\boldsymbol{n}}^{K} \boldsymbol{e}_{\boldsymbol{v}} \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha}}^{K} \boldsymbol{e}_{\boldsymbol{\gamma}} \right]_{j} d\boldsymbol{x} = \\
J_{\boldsymbol{\mathcal{X}}_{K}} \int_{\hat{K}} \left[\left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{n},\boldsymbol{v}} \hat{\boldsymbol{\phi}}_{\boldsymbol{n}} \boldsymbol{e}_{\boldsymbol{v}} \right]_{j} \left[\hat{\boldsymbol{\phi}}_{\boldsymbol{\alpha}} \boldsymbol{e}_{\boldsymbol{\gamma}} \right]_{j} d\boldsymbol{\xi} = \\
J_{\boldsymbol{\mathcal{X}}_{K}} \sum_{\boldsymbol{\alpha}' \in \mathcal{N}} \left(\hat{\omega}_{\boldsymbol{\alpha}'} \left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{n},\boldsymbol{v}} \hat{\boldsymbol{\phi}}_{\boldsymbol{n}} (\hat{\boldsymbol{\xi}}_{\boldsymbol{\alpha}'}) \left[\boldsymbol{e}_{\boldsymbol{v}} \right]_{j} \hat{\boldsymbol{\phi}}_{\boldsymbol{\alpha}} (\hat{\boldsymbol{\xi}}_{\boldsymbol{\alpha}'}) \left[\boldsymbol{e}_{\boldsymbol{\gamma}} \right]_{j} \right) = \\
J_{\boldsymbol{\mathcal{X}}_{K}} \sum_{\boldsymbol{\alpha}' \in \mathcal{N}} \left(\hat{\omega}_{\boldsymbol{\alpha}'} \left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{n},\boldsymbol{v}} \delta_{\boldsymbol{n}\boldsymbol{\alpha}'} \delta_{\boldsymbol{v}j} \delta_{\boldsymbol{\alpha}\boldsymbol{\alpha}'} \delta_{\boldsymbol{\gamma}j} \right) = \\
J_{\boldsymbol{\mathcal{X}}_{K}} \hat{\omega}_{\boldsymbol{\alpha}} \left[\hat{\boldsymbol{u}}^{K,i+1} \right]_{\boldsymbol{\alpha},\boldsymbol{\gamma}}. \tag{2.81}$$

Term U-II

Analogously to the first term of eq. (2.80), the second term can be rewritten as follows:

$$\int_{K} \left[\left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{n},\boldsymbol{v}} \boldsymbol{\phi}_{\boldsymbol{n},\boldsymbol{v}}^{K} \right]_{j} \left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\boldsymbol{\gamma}}^{K} \right]_{j} d\boldsymbol{x} =$$

$$J_{\boldsymbol{\mathcal{X}}_{K}} \hat{\omega}_{\boldsymbol{\alpha}} \left[\hat{\boldsymbol{u}}^{K,i} \right]_{\boldsymbol{\alpha},\boldsymbol{\gamma}}.$$
(2.82)

Term U-III

The third term of eq. (2.80) can be rewritten with respect to reference coordinates as follows:

$$\begin{split} &\int_{t_{i}}^{t_{i}+\Delta t_{i}}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\theta}_{n,l,v}^{Ki}\right)\right]_{jk}\frac{\partial}{\partial x_{k}}\left[\boldsymbol{\phi}_{\boldsymbol{\alpha},\gamma}^{K}\right]_{j}dxdt = \\ &\int_{t_{i}}^{t_{i}+\Delta t_{i}}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\phi}_{n}^{K}\boldsymbol{\psi}_{i}^{i}\boldsymbol{e}_{v}\right)\right]_{jk}\frac{\partial}{\partial x_{k}}\left(\prod_{d=1}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d})\right)\left[\boldsymbol{e}_{\gamma}\right]_{j}dxdt = \\ &\int_{t_{i}}^{t_{i}+\Delta t_{i}}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,v,l}\boldsymbol{\phi}_{n}^{K}\boldsymbol{\psi}_{i}^{i}\boldsymbol{e}_{v}\right)\right]_{jk}\left(\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d})\right)\left[\boldsymbol{e}_{\gamma}\right]_{j}dxdt = \\ &J_{i,l}J_{\boldsymbol{x}_{k}}\int_{0}^{1}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,v,l}\boldsymbol{\phi}_{n}^{K}\boldsymbol{\psi}_{i}^{i}\boldsymbol{e}_{v}\right)\right]_{jk}\left(\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d})\right)\left[\boldsymbol{e}_{\gamma}\right]_{j}dxdt = \\ &J_{i,l}J_{\boldsymbol{x}_{k}}\int_{0}^{1}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\phi}_{n}\hat{\boldsymbol{\psi}}_{i}\boldsymbol{e}_{v}\right)\right]_{kj}\left(\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}([\boldsymbol{\xi}]_{d})\right)\left[\boldsymbol{e}_{\gamma}\right]_{j}dxdt = \\ &J_{i,l}J_{\boldsymbol{x}_{k}}\int_{0}^{1}\int_{K}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\phi}_{n}\hat{\boldsymbol{\psi}}_{i}\boldsymbol{e}_{v}\right)\right]_{kj}\left(\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}([\boldsymbol{\xi}]_{d})\right)\left[\boldsymbol{e}_{\gamma}\right]_{j}dxdt = \\ &J_{i,l}J_{\boldsymbol{x}_{k}}\sum_{\boldsymbol{\alpha}'\in\boldsymbol{\mathcal{N}}}\sum_{\boldsymbol{\beta}'\in\boldsymbol{\mathcal{N}}}\left(\hat{\boldsymbol{\omega}}_{\boldsymbol{\alpha}'}\hat{\boldsymbol{\omega}}_{\boldsymbol{\beta}'}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\phi}_{n}(\boldsymbol{\xi}_{\boldsymbol{\alpha}'})\hat{\boldsymbol{\psi}}(\hat{\boldsymbol{\tau}}_{\boldsymbol{\beta}'})\boldsymbol{e}_{v}\right)\right]\left[\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}\left(\boldsymbol{\xi}_{\boldsymbol{\alpha}'}\right)\right]\left[\boldsymbol{e}_{\gamma}\right]_{j}dxdt = \\ &J_{i,l}J_{\boldsymbol{x}_{k}}\sum_{\boldsymbol{\alpha}'\in\boldsymbol{\mathcal{N}}}\sum_{\boldsymbol{\beta}'\in\boldsymbol{\mathcal{N}}}\left(\hat{\boldsymbol{\omega}}_{\boldsymbol{\alpha}'}\hat{\boldsymbol{\omega}}_{\boldsymbol{\beta}'}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\phi}_{n}(\boldsymbol{\xi}_{\boldsymbol{\alpha}'})\hat{\boldsymbol{\psi}}(\hat{\boldsymbol{\tau}}_{\boldsymbol{\beta}'})\boldsymbol{e}_{v}\right)\right]\left[\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{[\boldsymbol{\alpha}]_{d}}\left(\boldsymbol{\xi}_{\boldsymbol{\alpha}'}\right)\right]\left[\boldsymbol{\xi}_{\boldsymbol{\alpha}}\right]_{k}\left(\boldsymbol{\xi}_{\boldsymbol{\alpha}'}\right]_{k}\right]dxdt = \\ &J_{i,l}J_{\boldsymbol{x}_{k}}\sum_{\boldsymbol{\alpha}'\in\boldsymbol{\mathcal{N}}}\sum_{\boldsymbol{\beta}'\in\boldsymbol{\mathcal{N}}\left(\hat{\boldsymbol{\omega}}_{\boldsymbol{\alpha}'}\hat{\boldsymbol{\omega}}_{\boldsymbol{\beta}'}\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\delta}_{\boldsymbol{\alpha}\boldsymbol{\alpha}'}\boldsymbol{\delta}_{\boldsymbol{\beta}'}\boldsymbol{e}_{v}\right)\right]\left[\prod_{d=1,d\neq k}^{D}\boldsymbol{\psi}_{\boldsymbol{\alpha}}\left(\boldsymbol{\xi}_{\boldsymbol{\alpha}'}\right)\right]\left[\boldsymbol{\xi}_{\boldsymbol{\alpha}}\right]_{k}\left(\boldsymbol{\xi}_{\boldsymbol{\alpha}'}\right]_{k}dxdt = \\ &J_{i,l}J_{\boldsymbol{\alpha}}\sum_{\boldsymbol{\alpha}'\in\boldsymbol{\mathcal{N}}}\sum_{\boldsymbol{\beta}'\in\boldsymbol{\mathcal{N}}\left(\hat{\boldsymbol{\omega}}_{\boldsymbol{\alpha}'}\hat{\boldsymbol{\omega}}_{\boldsymbol{\beta}'}\right)\left[F\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v}\boldsymbol{\delta}_{\boldsymbol{\alpha}'}\boldsymbol{\delta}_{\boldsymbol{\alpha}'}\boldsymbol{\delta}_{\boldsymbol{\alpha}'}\right)\right]\left[\prod_{d=1,d\neq k}^{D}\boldsymbol{\xi}_{\boldsymbol{\alpha}'}\right]\left[\boldsymbol{\xi}_{\boldsymbol{\alpha}}\right]_{k}dxdt = \\ &J_{i,l}J_{\boldsymbol{\alpha}}\sum$$

(2.83)

where we made use of the fact that du to the chain rule:

$$\frac{\partial}{\partial x_{k}} \left(\prod_{d=1}^{D} \psi_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d}) \right) = \left(\prod_{d=1, d \neq k}^{D} \psi_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d}) \right) \frac{\partial}{\partial x_{k}} \psi_{[\boldsymbol{\alpha}]_{k}}^{K}([\boldsymbol{x}]_{k}) =$$

$$\left(\prod_{d=1, d \neq k}^{D} \psi_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d}) \right) \frac{\partial}{\partial \xi_{j}} \hat{\psi}_{[\boldsymbol{\alpha}]_{k}} \left([\boldsymbol{\mathcal{X}}_{K}(\boldsymbol{x})]_{k} \right) \frac{\partial}{\partial x_{k}} [\boldsymbol{\mathcal{X}}_{K}(\boldsymbol{x})]_{j} =$$

$$\left(\prod_{d=1, d \neq k}^{D} \psi_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d}) \right) \frac{\partial}{\partial \xi_{j}} \hat{\psi}_{[\boldsymbol{\alpha}]_{k}} \left([\boldsymbol{\mathcal{X}}_{K}(\boldsymbol{x})]_{k} \right) \frac{1}{[\Delta \boldsymbol{x}^{K}]_{k}} \delta_{k} j =$$

$$\left(\prod_{d=1, d \neq k}^{D} \psi_{[\boldsymbol{\alpha}]_{d}}^{K}([\boldsymbol{x}]_{d}) \right) \frac{1}{[\Delta \boldsymbol{x}^{K}]_{k}} \frac{\partial}{\partial \xi_{k}} \hat{\psi}_{[\boldsymbol{\alpha}]_{k}} \left([\boldsymbol{\mathcal{X}}_{K}(\boldsymbol{x})]_{k} \right) d\boldsymbol{x} dt.$$
(2.84)

Term U-IV

The fourth term of eq. (2.80) can be rewritten with respect to reference coordinates as follows:

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v} \boldsymbol{\theta}_{n,l,v}^{Ki}\right) \right]_{j} \left[\boldsymbol{\phi}_{\alpha,\gamma}^{K}\right]_{j} dx dt =$$

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v} \boldsymbol{\phi}_{n}^{K} \boldsymbol{\psi}_{l}^{i} \boldsymbol{e}_{v}\right) \right]_{j} \boldsymbol{\phi}_{\alpha}^{K} \left[\boldsymbol{e}_{\gamma}\right]_{j} dx dt =$$

$$J_{T_{i}} J_{\boldsymbol{x}_{K}} \int_{0}^{1} \int_{\hat{K}} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v} \hat{\boldsymbol{\phi}}_{n} \hat{\boldsymbol{\psi}}_{l} \boldsymbol{e}_{v}\right) \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha} \left[\boldsymbol{e}_{\gamma}\right]_{j} d\xi d\tau =$$

$$J_{T_{i}} J_{\boldsymbol{x}_{K}} \sum_{\alpha' \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\alpha'} \hat{\omega}_{\beta'} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v} \hat{\boldsymbol{\phi}}_{n} (\hat{\boldsymbol{\xi}}_{\alpha'}) \hat{\boldsymbol{\psi}}_{l} (\hat{\boldsymbol{\tau}}_{\beta'} \boldsymbol{e}_{v}) \right) \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha} (\hat{\boldsymbol{\xi}}_{\alpha'}) \left[\boldsymbol{e}_{\gamma}\right]_{j} \right) =$$

$$J_{T_{i}} J_{\boldsymbol{x}_{K}} \sum_{\alpha' \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\alpha'} \hat{\omega}_{\beta'} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{n,l,v} \delta_{n\alpha'} \delta_{l\beta'} \boldsymbol{e}_{v}\right) \right) \right]_{j} \delta_{\alpha\alpha'} \delta_{\gamma j} \right) =$$

$$J_{T_{i}} J_{\boldsymbol{x}_{K}} \hat{\boldsymbol{\omega}}_{\alpha} \sum_{\beta' \in \mathcal{N}} \left(\hat{\omega}_{\beta'} \left[s\left(\left[\hat{\boldsymbol{q}}^{K,i}\right]_{\alpha,\beta',v} \boldsymbol{e}_{v}\right) \right]_{\gamma} \right). \tag{2.85}$$

Term U-V

Let $d \in \mathcal{D}$ and $e \in \{0,1\} := \mathcal{E}$. Then if we define the D-1-dimensional quadrilateral $\partial \hat{K}_{d,e}$ as

$$\partial \hat{K}_{d,e} = \left\{ \xi \in \hat{K} \, | \, \left[\xi \right]_d = e \right\},\tag{2.86}$$

the set $\{\partial \hat{K}_{d,e}\}_{d \in \mathcal{D}, e \in \mathcal{E}}$ is a partition of the surface $\partial \hat{K}$ of the spatial reference element. By making use of the mappings \mathcal{X}_K that maps points $\xi \in \hat{K}$ to $x \in K$ for all $K \in \mathcal{K}_h$ we can define

$$\partial K_{d,e} = \mathcal{X}_K \left(\partial \hat{K}_{d,e} \right), \tag{2.87}$$

where now the set $\{\partial K_{d,e}\}_{d\in\mathcal{D},e\in\mathcal{E}}$ is a quadrilateral partition of the surface ∂K for all cells $K\in\mathcal{K}_h$.

In consequence the surface integral in the fifth term of eq. (2.80) can be rewritten as follows:

$$\begin{split} &\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, \boldsymbol{n} \right) \right]_{j} \left[\boldsymbol{\phi}_{\alpha,\gamma}^{K} \right]_{j} ds(\boldsymbol{x}) \, dt = \\ &\int_{t_{i}}^{t_{i}+\Delta t_{i}} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \left(\int_{\partial K_{d,e}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, e_{d} \right) \right]_{j} \boldsymbol{\phi}_{\alpha}^{K} \left[e_{\gamma} \right]_{j} ds(\boldsymbol{x}) \right) \, dt = \\ &J_{\mathcal{T}_{i}} J_{\boldsymbol{X}_{K}} \int_{0}^{1} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \left(\frac{1}{\left[\Delta \boldsymbol{x}^{K} \right]_{d}} \int_{\partial \hat{K}_{d,e}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, (-1)^{e} e_{d} \right) \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha} \left[e_{d} \right]_{j} ds(\boldsymbol{\xi}) \right) \, d\tau = \\ &J_{\mathcal{T}_{i}} J_{\boldsymbol{X}_{K}} \sum_{\beta' \in \mathcal{D}} \hat{\omega}_{\beta'} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \sum_{\alpha' \in \mathcal{N}^{-}} \left(\hat{\omega}_{\alpha'} \frac{1}{\left[\Delta \boldsymbol{x}^{K} \right]_{d}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, (-1)^{e} e_{d} \right) \right]_{j} \hat{\boldsymbol{\phi}}_{\alpha'} (\hat{\boldsymbol{\xi}}_{\alpha'}) \left(\hat{\boldsymbol{\psi}}_{[\alpha]_{d}} \right|_{e} \right) \left[e_{d} \right]_{j} \right) = \\ &J_{\mathcal{T}_{i}} J_{\boldsymbol{X}_{K}} \sum_{\beta' \in \mathcal{D}} \hat{\omega}_{\beta'} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \sum_{\alpha' \in \mathcal{N}^{-}} \left(\hat{\omega}_{\alpha'} \frac{1}{\left[\Delta \boldsymbol{x}^{K} \right]_{d}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, (-1)^{e} e_{d} \right) \right]_{j} \delta_{\alpha'} \hat{\boldsymbol{\omega}}_{\alpha'} \left(\hat{\boldsymbol{\psi}}_{[\alpha]_{d}} \right|_{e} \right) \delta_{\gamma j} \right) = \\ &J_{\mathcal{T}_{i}} J_{\boldsymbol{X}_{K}} \hat{\omega}_{\alpha} \sum_{\beta' \in \mathcal{D}} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \sum_{\alpha' \in \mathcal{N}^{-}} \left(\hat{\omega}_{\alpha'} \frac{1}{\left[\Delta \boldsymbol{x}^{K} \right]_{d}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, (-1)^{e} e_{d} \right) \right]_{j} \underbrace{\hat{\boldsymbol{\psi}}_{\alpha'} \left(\hat{\boldsymbol{\psi}}_{[\alpha]_{d}} \right|_{e}} \right) \delta_{\gamma j} \right) = \\ &J_{\mathcal{T}_{i}} J_{\boldsymbol{X}_{K}} \hat{\omega}_{\alpha} \sum_{\beta' \in \mathcal{D}} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \sum_{\alpha' \in \mathcal{N}^{-}} \left(\hat{\omega}_{\alpha'} \frac{1}{\left[\Delta \boldsymbol{x}^{K} \right]_{d}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, (-1)^{e} e_{d} \right) \right]_{j} \underbrace{\hat{\boldsymbol{\psi}}_{\alpha'} \left(\hat{\boldsymbol{\psi}}_{[\alpha]_{d}} \right|_{e}} \right) \delta_{\gamma j} \right) = \\ &J_{\mathcal{T}_{i}} J_{\boldsymbol{X}_{K}} \hat{\boldsymbol{\omega}}_{\alpha} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \sum_{\alpha' \in \mathcal{N}^{-}} \sum_{\alpha' \in \mathcal{N}^{-}} \left(\hat{\boldsymbol{\omega}}_{\alpha'} \frac{1}{\left[\Delta \boldsymbol{x}^{K} \right]_{d}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K^{+},i}, (-1)^{e} e_{d} \right) \right]_{j} \underbrace{\hat{\boldsymbol{\psi}}_{\alpha'} \left(\hat{\boldsymbol{\psi}}_{\alpha'} \right)_{j} \left[\hat{\boldsymbol{\psi}}_{\alpha'} \right]_{j} \delta_{\alpha'} \left[\hat{\boldsymbol{\psi}}_{\alpha'} \left(\hat{\boldsymbol{\psi}}_{\alpha'} \right)_{j} \left[\hat{\boldsymbol{\psi}}_{\alpha'} \right]_{j} \left[\hat{\boldsymbol{\psi}}_{\alpha'} \right]_{j} \left[\hat{\boldsymbol{\psi}}_{\alpha'} \right]_{j} \left[\hat{\boldsymbol{\psi}}_{\alpha'$$

In each term we have to solve a Riemann problem in direction of the unit vector e_d defined as

$$[e_d]_{d'} = \delta_{dd'} \tag{2.89}$$

for $d' \in \mathcal{D}$.

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

The complete one-step update formula

Inserting eqs. (2.81) to (2.83), (2.85) and (2.88) into eq. (2.80) and dividing the resulting equation by $\hat{\omega}_{\alpha}$ and $J_{\mathcal{X}_{K}}$ yields

$$\begin{bmatrix}
\hat{\boldsymbol{a}}^{K,i+1} \end{bmatrix}_{\boldsymbol{\alpha},\gamma} = \begin{bmatrix}
\hat{\boldsymbol{a}}^{K,i} \end{bmatrix}_{\boldsymbol{\alpha},\gamma} + \\
J_{\mathcal{T}_{i}} \sum_{k=1}^{D} \left(\sum_{\alpha'_{k} \in \mathcal{N}} \sum_{\beta' \in \mathcal{N}} \left(\frac{\hat{\omega}_{\beta'}}{\hat{\omega}_{\alpha'_{k}}} \frac{1}{\left[\Delta \boldsymbol{x}^{K}\right]_{k}} \underbrace{\frac{\partial}{\partial \xi_{k}} \hat{\psi}_{\alpha'_{k}} \left(\left[\hat{\boldsymbol{\xi}} \right]_{\alpha'_{k}} \right)}_{Kxi_{\alpha'_{k}k}} \left[F \left(\left[\hat{\boldsymbol{q}}^{K,i} \right]_{\left[[\boldsymbol{\alpha}]_{1},[\boldsymbol{\alpha}]_{2},...,\left[\boldsymbol{\alpha}]_{k-1},\alpha'_{k'}[\boldsymbol{\alpha}]_{k+1},...,\left[\boldsymbol{\alpha}]_{D}\right],\beta',v} e_{v} \right) \right]_{\gamma,k} \right) \right] + \\
J_{\mathcal{T}_{i}} \sum_{\beta' \in \mathcal{D}} \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{E}} \sum_{\alpha'_{d} \in \mathcal{N}} \left(\frac{\hat{\omega}_{\beta'}}{\hat{\omega}_{\alpha'_{d}}} \frac{1}{\left[\Delta \boldsymbol{x}^{K}\right]_{d}} \left[\mathcal{G} \left(\hat{\boldsymbol{q}}^{K,i}, \hat{\boldsymbol{q}}^{K+,i}, (-1)^{e} \boldsymbol{e}_{d} \right) \right]_{\gamma} \underbrace{\left(\hat{\boldsymbol{\psi}}_{\alpha'_{d}} \right|_{e}}_{F0, F1} \right)}_{, (2.90)},$$

which we require to hold for $\alpha \in \mathcal{N}$, $\gamma \in \mathcal{V}$, $K \in \mathcal{K}_h$ and $i \in \mathcal{I}$.

Time step restriction

$$\Delta t \le \frac{1}{D} \frac{1}{(2N+1)} \min_{d \in \mathcal{D}} \left(\frac{[\Delta x]_d}{\Lambda^d} \right),$$
 (2.91)

where

$$\Lambda^d = \underset{v \in \mathcal{V}}{\text{maxabs}} \left[\lambda^d \right]_v \tag{2.92}$$

and λ^d is a vector containing the V real eigenvalues of the Jacobian

$$\frac{\partial}{\partial x_i} \left[F\left(u(x,t) \right) \right]_{id} \tag{2.93}$$

for the respective dimension $d \in \mathcal{D}$.

2.1.12 A posteriori subcell limiting

Motivation:

• Shock = discontinuity

- Discontinuity + high-order DG method leads to Gibbs phenomenon (oscillations)
- Reason: Discon. initial data or spontaneous formation in nonlinear problems
- Problems:
 - 1. Pointwise first order away from discontinuity
 - 2. Loss of pointwise convergence at the point of discontinuity
 - 3. Introduction of artificial and persistent oscillations at the point of discontinuity
- Positive physical quantities such as pressure or density might become negative; simulation might crash
- ADER-DG with a posteriori subcell limiting has very desirable properties (TODO)

Questions:

- 1. How do we identify cells for which limiting is needed? Troubled cell indicator.
- 2. How do we achieve high-order accuracy and still ensure non-oscillatory property close to troubled cells? Ideally replace DG solution such that additional numerical viscosity is added only at these cells but nowhere else and preferably without destroying the subcell resolution of the DG method.

Identification of troubled cells

Candidate solution: $u_h^*(x, t^{i+1})$ obtained using unlimited high-order scheme. Apply troubled cell indicator Project, recompute with more robust scheme and restrict.

Physical admissibility detection (PAD): Domain knowledge

$$\pi_k\left(u_h^*(x,t^{i+1})\right) > 0 \tag{2.94}$$

For Euler $\pi_1(\mathbf{u}) = \rho$, $\pi_2(\mathbf{u}) = p$.

Numerical admissibility detection (NAD): Relaxed discrete maximum principle:

$$\min_{\mathbf{x}' \in V(K)} \left(\mathbf{u}_h(\mathbf{x}', t^i) \right) - \delta \le \mathbf{u}_h^*(\mathbf{x}, t^{i+1}) \le \min_{\mathbf{x}' \in V(K)} \left(\mathbf{u}_h(\mathbf{x}', t^i) \right) + \delta \le$$
 (2.95)

for all Voronoi neighbors K' of $K \in \mathcal{K}_h$.

Proposed relaxation:

$$\delta = \varepsilon \left(\max_{\mathbf{x}' \in V(K)} \left(\mathbf{u}_h^*(\mathbf{x}', t^i) \right) - \min_{\mathbf{x}' \in V(K)} \left(\mathbf{u}_h^*(\mathbf{x}', t^i) \right) \right), \tag{2.96}$$

where $\varepsilon = 10^{-3}$.

Approximation: Evaluate on $_{h'}^{*}$ i.e. on the projection to linspace.

Projection

MUSCL Hancook

2.2 Profiling and Energy-aware Computing

A profiling infrastructure for ExaHyPE

- General architecture
- Architecture profiling
- Functionality

Preliminary profiling results, case studies

- Analytic benchmark: Introduction, derivation
- Pie-chart per kernel
- $\bullet \ \, \text{Case-study: Cache-misses, compile-time } (\to \text{Toolkit philosophy})$
- ullet Degree o Wallclock, Energy (AMR)
- Static mesh $\Delta x \rightarrow$ Error for polynomials (convergence tables)

Conclusion and Outlook

- PA is important
- ExaHyPE as an answer to exascale challenges
- Applications

Acknowledgment