CSE 331 COMPUTER ORGANIZATION

HOMEWORK 4

ŞEYDA ÖZER 171044023

I put the xor operation instead of set-less-than operator.

Register File

Memory

Control

Instruction	Reg Dst	Mem Read	Mem to Reg	ALU Op	Mem Write	ALU Src	Reg write 1	Reg write 2	Jr	J	Jal	Branch	Branch Not	Ori	Lui
R-type 000000	1	0	0	11	0	0	1	1	0	0	0	0	0	0	0
lw 100011	0	1	1	00	0	1	1	0	0	0	0	0	0	0	0
sw 101011	Х	0	X	00	1	1	0	0	0	0	0	0	0	0	0
beq 000100	Х	0	Х	01	0	0	0	0	0	0	0	1	0	0	0
bne 000101	X	0	Х	01	0	0	0	0	0	0	0	0	1	0	0
j 000010	Х	0	X	Х	0	Х	0	0	0	1	0	0	0	0	0
jal 000010	X	0	Х	Х	0	Х	1	0	0	0	1	0	0	0	0
jr 001000	Х	0	Х	Х	0	Х	0	0	1	0	0	0	0	0	0
ori 001101	0	0	0	10	0	1	1	0	0	0	0	0	0	1	0
lui 001111	0	0	Х	Х	0	Х	1	0	0	0	0	0	0	0	1

Instruction	R-type	lw	SW	beq	bne	j	jal	jr	ori	lui
Opcode	000000	100011	101011	000100	000101	000010	000010	001000	001101	001111

ALUOp1 = R-type + ori

ALUOp0 = R-type + beq + bne

RegDst = R-type

MemRead = lw

MemtoReg = lw

MemWrite = sw

ALUSrc = Iw + sw + ori

RegWrite1 = R-type + lw + jal + ori + lui

RegWrite2 = R-type

Jr = jr

J = j

Jal = jal

Branch = beq

BranchNot = bne

Ori = ori

Lui = lui

ALU Control

Instruction opcode	ALUOp	Instruction Operation	Function Field	Desired ALU action	ALU control
lw	00	Load word	XXXXXX	add	010
sw	00	Store word	XXXXXX	add	010
beq	01	Branch equal	XXXXXX	subtract	110
bne	01	Branch not equal	XXXXXX	subtract	110
ori	10	Or immediate	XXXXXX	or	001
R-type	11	addn	100000	add	010
R-type	11	subtractn	100010	subtract	110
R-type	11	ANDn	100100	and	000
R-type	11	ORn	100101	or	001
R-type	11	XORn	100110	xor	111

Truth Table for ALU Control

ALUop				Functio	Operation					
ALUop1	ALUop0	F5	F4	F3	F2	F1	F0	ALUctr2	ALUctr1	ALUctr0
0	0	Х	Χ	Х	Χ	X	X	0	1	0
0	1	X	X	X	Χ	X	Χ	1	1	0
1	0	Χ	Х	Х	Χ	Х	Χ	0	0	1
1	1	1	0	0	0	0	0	0	1	0
1	1	1	0	0	0	1	0	1	1	0
1	1	1	0	0	1	0	0	0	0	0
1	1	1	0	0	1	0	1	0	0	1
1	1	1	0	0	1	1	0	1	1	1

line1 = F5.F4'.F3'.F2'.F1'.F0' , line2 = F5.F4'.F3'.F2'.F1.F0'

line4 = F5.F4'.F3'.F2.F1'.F0 , line5 = F5.F4'.F3'F2.F1.F0'

ALUctr2 = ALUop1'.ALUop0 + ALUop1. ALUop0.line2 + ALUop1. ALUop0.line5

ALUctr1 = ALUop1'. ALUop0' + ALUop1'. ALUop0 + ALUop1. ALUop0.line1 + ALUop1. ALUop0.line2 + ALUop1. ALUop0.line5

ALUctr0 = ALUop1. ALUop0' + ALUop1. ALUop0.line4 + ALUop1. ALUop0.line5

About Homework:

- InstructionMemory
- Registers
- DataMemory
- ALU (oneBitALU, oneBitMsbALU)
- Control

These modules are working. But ALUControl module is not working correctly. ALUctr is produced incorrectly.

I could not run the Mips32 module. so I did not change the clock and increment the counter. I couldn't test the whole assignment, but the modules I mentioned above have testbenches.

Test Instructions:

 Addn 000000_10000_10001_01000_00000_100000 rs=\$16, rt=\$17, rd=\$8, function field = 20 (hex)

 Addn 000000_10001_10010_01001_00000_100000 rs=\$17, rt=\$18, rd=\$9, function field = 20 (hex)

3. subbn 000000_10000_10001_01010_00000_100010 rs=\$16, rt=\$17, rd=\$10, function field = 22 (hex)

4. subbn 000000_10001_10010_01011_00000_100010 rs=\$17, rt=\$18, rd=\$11, function field = 22 (hex)

5. andn 000000_10000_10001_01100_00000_100100 rs=\$16, rt=\$17, rd=\$12, function field = 24 (hex)

6. andn 000000_10001_10010_01101_00000_100100 rs=\$17, rt=\$18, rd=\$13, function field = 24 (hex)

7. orn 000000_10000_10001_01110_00000_100101 rs=\$16, rt=\$17, rd=\$14, function field = 25 (hex)

8. orn 000000_10001_10010_01111_00000_100101 rs=\$17, rt=\$18, rd=\$15, function field = 25 (hex)

9. xorn 000000_10000_10001_11000_00000_100110 rs=\$16, rt=\$17, rd=\$24, function field = 26 (hex) 10. xorn

000000_10001_10010_11001_00000_100110 rs=\$17, rt=\$18, rd=\$25, function field = 26 (hex)

11. Ori

001101_10000_10111_000000001011110 rs=\$16, rt=\$23

12. Ori

001101_10001_10110_000000001011110 rs=\$17 , rt=\$22

13. Lui

001111_00000_10101_0000000011100110 rs=X , rt=\$21

14. Lui

001111_00000_10100_000000011100110 rs=X , rt=\$20