SCC0284 – Sistemas de Recomendação

Aula 03: Filtragem Colaborativa Parte 2

(<u>mmanzato@icmc.usp.br</u>)

FC baseada em modelo

- Baseada em um pré-processamento offline ou fase de "aprendizado de modelo"
- Em tempo de execução, apenas o modelo treinado é usado para calcular predições
- Modelos s\(\tilde{a}\) o atualizados / re-treinados periodicamente
- Construção e atualização do modelo podem ser caras computacionalmente

FC baseada em modelo

- Alguns modelos que veremos no curso:
 - Método baseline
 - Fatoração de matrizes via:
 - Singular Value Decomposition
 - Gradiente Descendente
 - FunkSVD
 - SVD++

- Método simples para predição de avaliações baseado em tendências de cada usuário e item
- Exemplo:
 - Média global: $\mu = 3.7$
 - Filme Titanic, avaliado com 0.5 estrelas acima da média:

$$b_i = 0.5$$

 Usuário Joe, que avalia filmes com 0.3 estrelas abaixo da média:

$$b_{u} = -0.3$$

$$r_{ui} \approx \mu + b_{i} + b_{u} = b_{ui}$$

$$b_{ui} = 3.7 + 0.5 - 0.3 = 3.9$$

- Estimativas de b_i e b_i:
 - Média global:

$$\mu = \frac{1}{|r_{ui} \in R|} \sum_{r_{ui} \in R} r_{ui}$$

R = conj. de todas as notas

– Viés de item:

$$b_{i} = \frac{1}{\lambda_{1} + |R(i)|} \sum_{u \in R(i)} r_{ui} - \mu$$

R(i) = conj. de usuários que avaliaram i λ_1 = constante

Viés de usuário:

$$b_{u} = \frac{1}{\lambda_{2} + |R(u)|} \sum_{i \in R(u)} r_{ui} - \mu - b_{i}$$

R(u) = conj. de itens que foram avaliados por u $\lambda_2 = constante$

 (Exemplo) Que nota Dave daria para Ocean's Eleven?

Jessica	5	2	4	3	2	3
Marta	4	3	5	4	3	2
Jose	1	5	3	4	4	5
Dave	1	?	2	3	4	2

Código em R:

```
setwd("/Users/manzato/Documents/Ensino/USP/2018-1o/SCC0284 - RecSys/Aula 03")
r = read.table("svd.csv", header=TRUE, sep=",", row.names=1)
mean <- mean(as.matrix(r), na.rm = TRUE)
item_bias <- function (col) {
    return(mean(col - mean, na.rm = TRUE))
}
bi <- apply(r, 2, FUN=item_bias)
user_bias <- function (row) {
    return(mean(row - mean - bi, na.rm = TRUE))
}
bu <- apply(r, 1, FUN=user_bias)
pred <- mean + bu[4] + bi[2]</pre>
```

 É possível também estimar b_u e b_i por meio da resolução de um problema de mínimos quadrados:

$$\min_{b^*} \sum_{(u,i)\in K} (r_{ui} - \mu - b_u - b_i)^2 + \lambda \left(\sum_{u} b_u^2 + \sum_{i} b_i^2\right)$$

Detalhes adiante neste curso.

Fatoração de Matriz (FM)

- Competição Netflix mostrou que métodos de FM podem ser muito úteis na melhoria da acurácia de predições
- Derivam um conjunto de fatores latentes (escondidos) a partir dos padrões de interação
- Caracterizam ambos usuários e itens em termos de um vetor de fatores
 - Fator: aspecto do domínio (interpretável ou não)
- Recomendação é feita quando os fatores do usuário u e do item i são similares

FM

- Idéia de explorar fatores latentes vem da área de Recuperação de Informação (RI)
- Em RI, a fatoração é feita em uma matriz de termos vs. documentos
 - Cada célula representa um peso indicando a importância (ou existência) de um termo para aquele documento
- Em SR, a matriz é de usuários vs. itens
 - Cada célula é uma avaliação / interação

Singular Value Decomposition (SVD)

 Para uma matriz R, t x d, sua decomposição é a fatoração de R em três matrizes tal que:

$$R = P \sum Q^T$$

sendo que Σ é uma matriz diagonal cujos elementos σ_i são valores singulares da decomposição, P e Q são ortogonais

 Na forma simples, P tem dimensões t x f, ∑ tem dimensões f x f e Q tem dimensões d x f, onde f é o rank (posto) de R

SVD

• Decomposição:

$$R = P \sum Q^T$$

SVD

- Redução de dimensionalidade
 - Consiste em considerar apenas os k maiores valores singulares de ∑, resultando em uma matriz ∑_k de dimensão k x k

Vantagens:

- Redução do espaço vetorial, sendo que os mesmos termos e documentos podem agora ser representados por vetores de dimensão k
- Redução de ruído e pequenas protuberâncias por meio da eliminação dos valores singulares menos relevantes

SVD

• A computação de SVD na matriz de termo vs. documento resulta na seguinte fatoração:

R	d_1	d_2	d_3	d_4	d_5	d_6
ship boat	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

\mathbf{Q}^{T}	d_1	d_2	d_3	d_4	d_5	d_6
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

Código em R:

```
r = read.table("tdm.csv", header=TRUE, sep=",", row.names=1)
svd <- svd(r)
rownames(svd$v) <- colnames(r)
rownames(svd$u) <- rownames(r)
svd$u
svd$u
svd$d
svd$v</pre>
```

	1	2	3	4	5	
-0.4	14 –	-0.30	0.00	0.00	0.00	
-0.1	l3 –	-0.33	0.00	0.00	0.00	
า -0.4	18 –	-0.51	0.00	0.00	0.00	
$\mid \mid -0.7$	70	0.35	0.00	0.00	0.00	
-0.2	26	0.65	0.00	0.00	0.00	
1	2	3	4	5		
2.16	0.00	0.00	0.00	0.00	_	
0.00	1.59	0.00	0.00	0.00		
0.00	0.00	0.00	0.00	0.00		
0.00	0.00	0.00	0.00	0.00		
0.00	0.00	0.00	0.00	0.00		
d_1		d_2	d_3	d_4	d_5	d_6
-0.75	-0 .	.28 –	0.20	-0.45	-0.33	-0.12
-0.29	-0.	.53 –	-0.19	0.63	0.22	0.41
0.00	0.	.00	0.00	0.00	0.00	0.00
0.00	0.	.00	0.00	0.00	0.00	0.00
0.00	0.	.00	0.00	0.00	0.00	0.00
	$ \begin{vmatrix} -0.1 \\ -0.4 \\ -0.7 \\ -0.2 \end{vmatrix} $ $ \begin{vmatrix} 1 \\ 2.16 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -0.75 \\ -0.29 \\ 0.00 \\ 0.00 $		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Redução de dimensionalidade (k = 2)

• Código em R:

```
\begin{array}{l} p2 <- \, \text{svd} \\ \text{$^{1:2}$} \\ \text{$^{2$} <- \, \text{svd} \\ \text{$^{1:2}$} \\ \text{$^{2$} <- \, \text{svd} \\ \text{$^{1:2}$} \\ \\ \text{$^{2$} <- \, \text{svd} \\ \text{$^{
```

R	d_1	d_2	d_3	d_4	d_5	d_6
ship boat	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

D						
K ₂	d_1	d_2	d_3	d_4	d_5	d_6
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

$$R_2 = P\Sigma_2 Q^T$$

Similaridade entre d_2 e d_3 no espaço original: 0. Similaridade entre d_2 e d_3 no espaço reduzido:

 $0.52 * 0.28 + 0.36 * 0.16 + 0.72 * 0.36 + 0.12 * 0.20 + -0.39 * -0.08 \approx 0.52$ \rightarrow d₂ tem 'boat' e d₃ tem 'ship'

• Código em R:

```
r2 <- p2 %*% diag(s2) %*% t(q2)
r2
r
sum(r2[,2] * r2[,3])
sum(r[,2] * r[,3])
```

Que nota Dave daria para Ocean's Eleven?

Jessica	5	2	4	3	2	3
Marta	4	3	5	4	3	2
Jose	1	5	3	4	4	5
Dave	1	?	2	3	4	2

 Aplica-se o mesmo princípio na matriz de avaliações...

SVD:
$$R_k = P_k \times \Sigma_k \times Q_k^T$$

Predição:
$$\hat{r}_{ui} = \sum_{f=1}^{k} p_{uf} \sigma_f q_{if}$$
 (notas absolutas)

ou

$$\hat{r}_{ui} = b_{ui} + \sum_{f=1}^{k} p_{uf} \sigma_f q_{if}$$
 (notas relativas)

```
r = read.table("svd.csv", header=TRUE, sep=",", row.names=1)
svd <- svd(r)
rownames(svd$v) <- colnames(r)</pre>
rownames(svd$u) <- rownames(r)</pre>
p2 <- svd$u[,1:2]
q2 <- svd$v[,1:2]
s2 <- svd$d[1:2]
x = c(p2[,1], q2[,1])
y = c(p2[,2], q2[,2])
label = c(rownames(p2), rownames(q2))
df \leftarrow data.frame(x = x, y = y, label = label)
ggplot(df) + geom_point(data = df, aes(x, y)) + geom_text(data = df, aes(x,
y-0.02), label=label)
pred <- p2[4,] %*% diag(s2) %*% q2[2,]
pred
```

- Como obter P, Q e Σ?
 - Técnica SVD vem da Álgebra Linear
 - Pacotes disponíveis:
 - R, Matlab, SciPy
 - LINPACK, ARPACK
 - Java matrix libraries

Vantagens

- Elimina ruídos nos dados devido à redução de dimensionalidade
- Detecta correlações não triviais nos dados

Desvantagens

- Avaliações originais não são consideradas (apenas a aproximação)
- Diferentemente de RI, os "zeros" representam valores desconhecidos
 - O usuário poderia gostar de um item se o conhecesse
 - "Zero" em RI indica que aquele termo n\u00e3o aparece no documento

- Resolve dois problemas específicos do SVD:
 - Lentidão na decomposição
 - Matriz incompleta
- Considera apenas os valores conhecidos da matriz de interações
- Utiliza uma métrica de erro (e.g. RMSE) para otimizar as matrizes da decomposição
 - Encontrar a melhor aproximação rank-k ao invés de calcular formalmente o SVD usando toda a matriz

- Simplificação de SVD
 - SVD original:

$$R = P \times \Sigma \times Q^T$$
 ou $R = B + P \times \Sigma \times Q^T$

- Modelo de decomposição:

$$R = B + P \times Q^{T}$$

– Predição:

$$\hat{r}_{ui} = b_{ui} + \sum_{f=1}^{k} p_{uf} q_{if}$$
 onde $b_{ui} = \mu + b_{u} + b_{i}$

- Simplificação de SVD
 - Idéia é minimizar o erro (RMSE)

$$RMSE = \sqrt{\frac{1}{|K|} \sum_{(u,i) \in K} (r_{ui} - \hat{r}_{ui})^2}$$

onde K é o conjunto de pares (u,i) conhecidos

- Ajustar P e Q por meio de gradiente descendente
- Raiz quadrada e divisão por constante podem ser eliminados
 - Minimizar soma dos erros quadráticos: $\sum_{(u,i)\in K} (r_{ui} \hat{r}_{ui})^2$

O que queremos:

$$\min_{b_*, p_*, q_*} \sum_{(u,i) \in K} \left(r_{ui} - \mu - b_u - b_i - \sum_{f=1}^k p_{uf} q_{if} \right)^2$$

- Resolver por diferentes métodos de otimização
 - Gradiente descendente
 - Alternating least squares
 - Etc.

- Variante: Gradiente Descendente Estocástico (SGD)
 - Chutar um conjunto de valores iniciais para os parâmetros
 - Calcular o erro comparando os dados reais de K com a predição do modelo
 - Usar a derivada do erro para ajustar os valores das matrizes

suponha $f: \mathbb{R}^n \to \mathbb{R}$

para n = 1 temos:

suponha $f: \mathbb{R}^n \to \mathbb{R}$

para n = 2 temos:

$$\varepsilon_{ui} = r_{ui} - \hat{r}_{ui} = r_{ui} - \mu - b_{u} - b_{i} - \sum_{f=1}^{k} p_{uf} q_{if}$$

$$\frac{\partial}{\partial b_{u}} \varepsilon_{ui}^{2} = 2\varepsilon_{ui} \frac{\partial}{\partial b_{u}} \varepsilon_{ui} = 2\varepsilon_{ui} \frac{\partial}{\partial b_{u}} (r_{ui} - \mu - b_{u} - b_{i} - \sum_{f'=1}^{k} p_{uf'} q_{if'}) = -2\varepsilon_{ui}$$

$$\frac{\partial}{\partial b_{i}} \varepsilon_{ui}^{2} = 2\varepsilon_{ui} \frac{\partial}{\partial b_{i}} \varepsilon_{ui} = 2\varepsilon_{ui} \frac{\partial}{\partial b_{i}} (r_{ui} - \mu - b_{u} - b_{i} - \sum_{f'=1}^{k} p_{uf'} q_{if'}) = -2\varepsilon_{ui}$$

$$\frac{\partial}{\partial p_{uf}} \varepsilon_{ui}^{2} = 2\varepsilon_{ui} \frac{\partial}{\partial p_{uf}} \varepsilon_{ui} = 2\varepsilon_{ui} \frac{\partial}{\partial p_{uf}} (r_{ui} - b_{ui} - \sum_{f'=1}^{k} p_{uf'} q_{if'}) = -2\varepsilon_{ui} q_{if}$$

$$\frac{\partial}{\partial q_{if}} \varepsilon_{ui}^{2} = 2\varepsilon_{ui} \frac{\partial}{\partial q_{if}} \varepsilon_{ui} = 2\varepsilon_{ui} \frac{\partial}{\partial q_{if}} (r_{ui} - b_{ui} - \sum_{f'=1}^{k} p_{uf'} q_{if'}) = -2\varepsilon_{ui} p_{uf}$$

 $\min_{b_*, p_*, q_*} \sum_{(u, i) \in K} (r_{ui} - \mu - b_u - b_i - \sum_{i=1}^{\kappa} p_{uf} q_{if})^2$

Ajuste dos parâmetros:

$$\Theta_{j} = \Theta_{j-1} - \gamma \vec{\nabla} (\Theta_{j-1})$$

- Valores no próximo passo (Θ_j) dependem de:
 - Valores do passo anterior (Θ_{j-1})
 - Taxa de aprendizado (γ)
 - Gradiente do erro

Ajuste dos parâmetros:

$$\varepsilon_{ui} = r_{ui} - \hat{r}_{ui}$$

$$b_{u} = b_{u} + \gamma \varepsilon_{ui}$$

$$b_{i} = b_{i} + \gamma \varepsilon_{ui}$$

$$q_{if} = q_{if} + \gamma (\varepsilon_{ui} p_{uf})$$

$$p_{uf} = p_{uf} + \gamma (\varepsilon_{ui} q_{if})$$

- Parâmetros:
 - γ : taxa de aprendizado (quão rápido converge)

Ajuste dos parâmetros:

$$\varepsilon_{ui} = r_{ui} - \hat{r}_{ui}$$

$$b_{u} = b_{u} + \gamma \varepsilon_{ui} - \lambda b_{u}$$

$$b_{i} = b_{i} + \gamma \varepsilon_{ui} - \lambda b_{i}$$

$$q_{if} = q_{if} + \gamma (\varepsilon_{ui} p_{uf} - \lambda q_{if})$$

$$p_{uf} = p_{uf} + \gamma (\varepsilon_{ui} q_{if} - \lambda p_{uf})$$

- Parâmetros:
 - γ : taxa de aprendizado (quão rápido converge)
 - λ : regularização (viés contra modelos extremos)

FunkSVD

```
inicializar vetores b_u e b_i inicializar matrizes P e Q para f = 1 até k faça repita para (u,i) \subseteq K calcular predição para r_{ui} atualizar b_u, b_i, p_{uf}, q_{if} até convergir
```

```
funkSVD < -function(R, k, Ir = 0.05, reg = 0.02, miter = 10) {
       global mean <- mean(as.matrix(R), na.rm = TRUE)
       bu \leftarrow rep(0, nrow(R))
       bi \leftarrow rep(0, ncol(R))
       P \leftarrow matrix(0.1, nrow = nrow(R), ncol = k)
       Q \leftarrow matrix(0.1, nrow = ncol(R), ncol = k)
       K <- which(!is.na(R), arr.ind = TRUE)</pre>
       for(f in sample(k)) {
              for(l in 1:miter) {
                      for(j in 1:nrow(K)){
                             u < - K[j,1]
                             i < -K[j,2]
                             r_ui <- R[u,i]
                             if(!is.na(r_ui)){
                                     pred <- global mean + bu[u] + bi[i] + P[u, ] %*% Q[i, ]
                                     e ui <- r ui - pred
                                     bu[u] \leftarrow bu[u] + Ir * e ui
                                     bi[i] <- bi[i] + lr * e ui
                                     temp uf <- P[u,f]
                                     P[u,f] \leftarrow P[u,f] + Ir * (e ui * Q[i,f] - reg * P[u,f])
                                     Q[i,f] \leftarrow Q[i,f] + Ir * (e ui * temp uf - reg * Q[i,f])
       return(list(bu = bu, bi = bi, P = P, Q = Q))
```

Chamada

```
r = read.table("funksvd.csv", header=TRUE, sep=",", row.names=1)
source("funksvd.r")
svd <- funkSVD(r, 4)
global_mean <- mean(as.matrix(r), na.rm = TRUE)

rating <- global_mean + svd$bu[4] + svd$bi[2] + svd$P[4, ] %*% svd$Q[2,]
```

SVD otimizado

```
inicializar vetores b_u e b_i com zero inicializar matrizes P e Q com distribuição normal (média = ??, desvio padrão = ??) para l = 1 até max_iter faça para (u,i) \subseteq K calcular predição para r_{ui} atualizar b_u, b_i para f = 1 até k faça atualizar p_{uf}, q_{if}
```

```
svdopt <- function(R, k, Ir = 0.05, reg = 0.002, miter = 10) {
      global mean <- mean(as.matrix(R[,3]), na.rm = TRUE)
      bu <- rep(0, max(R[,1]))
      bi <- rep(0, max(R[,2]))
      nusers <- max(R[,1])
      nitems <- max(R[,2])
      P <- matrix(rnorm(nusers*k, mean=0, sd=0.1), nusers, k)
      Q <- matrix(rnorm(nitems*k, mean=0, sd=0.1), nitems, k)
      error <- list()
      for(l in 1:miter) {
             sq error <- 0
             for(j in 1:nrow(R)) {
                    u < -R[j,1]
                    i < -R[j,2]
                    r ui <- R[j,3]
                    pred <- global mean + bu[u] + bi[i] + P[u, ] %*% Q[i,]
                    e ui <- r ui - pred
                    sq_error <- sq_error + e_ui^2
                    bu[u] <- bu[u] + lr * e ui
                    bi[i] <- bi[i] + lr * e ui
                    for(f in 1:k) {
                           temp uf <- P[u,f]
                           P[u,f] \leftarrow P[u,f] + Ir * (e ui * Q[i,f] - reg * P[u,f])
                           Q[i,f] \leftarrow Q[i,f] + Ir * (e ui * temp uf - reg * Q[i,f])
             error <- c(error, sqrt(sq_error/nrow(R)))
      return(list(bu = bu, bi = bi, P = P, Q = Q, error = error))
```

- Código em R
 - Utilizando base MovieLens-100k
 - Chamada:

```
r = read.table("ua.base", header=FALSE, sep="\t")
R <- as.matrix(r[1:3])
source("svdopt.r")
svd <- svdopt(R, 2)

# visualização do RMSE diminuíndo:
x <- seq(1, length(svd$error), 1)
plot(x, svd$error)

# nota do usuário id. 500 para o item id. 100:
global_mean <- mean(as.matrix(R[,3]), na.rm = TRUE)
pred <- global_mean + svd$bu[500] + svd$bi[100] + svd$P[500,] %*% svd$Q[100,]
```

- SVD++
 - Combina feedback explícito e implícito em um único modelo

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T \left(p_u + |N(u)|^{-\frac{1}{2}} \sum_{j \in N(u)} y_j \right)$$
viés do tatores normafeedback usuário do item lização implícito e item

fatores do usuário

- SVD++
 - Treinamento do modelo segue o mesmo esquema
 - Parâmetros: Θ= $\{b_u, b_i, p_u, q_i, y_i\}$

$$\begin{cases} b_{u} = b_{u} + \gamma(\varepsilon_{ui} - \lambda b_{u}) \\ b_{i} = b_{i} + \gamma(\varepsilon_{ui} - \lambda b_{i}) \end{cases}$$

$$q_{i} = q_{i} + \gamma(\varepsilon_{ui}(p_{u} + |N(u)|^{-\frac{1}{2}} \sum_{j \in N(u)} y_{j}) - \lambda q_{i})$$

$$p_{u} = p_{u} + \gamma(\varepsilon_{ui}q_{i} - \lambda p_{u})$$

$$\forall j \in N(u):$$

$$y_{j} = y_{j} + \gamma \left(\varepsilon_{ui} |N(u)|^{-\frac{1}{2}} q_{i} - \lambda y_{j}\right)$$

```
svdpp < -function(R, N, k, Ir = 0.05, reg = 0.002, miter = 10) {
        global mean <- mean(as.matrix(R[,3]), na.rm = TRUE)
        bu <- rep(0, max(R[,1]))
        bi <- rep(0, max(R[,2]))
        nusers \leftarrow max(R[,1])
        nitems <- max(R[,2])
        P <- matrix(rnorm(nusers*k, mean=0, sd=0.1), nusers, k)
        Q <- matrix(rnorm(nitems*k, mean=0, sd=0.1), nitems, k)
        Y <- matrix(rnorm(nitems*k, mean=0, sd=0.1), nitems, k)
        for(I in 1:miter) {
                for(r in 1:nrow(R)) {
                        u <- R[r,1]
                        i < -R[r,2]
                        r_ui <- R[r,3]
                        N u <- N[N[,1] == u,2]
                        y sum \leftarrow rep(0, k)
                        for(j in N u) {
                                y_sum <- y_sum + Y[j,]
                        p plus y \leftarrow P[u, ] + (1/sqrt(length(N u))) * y sum
                        pred <- global mean + bu[u] + bi[i] + p plus y %*% Q[i,]
                        e ui <- r ui - pred
                        sq_error <- sq_error + e_ui^2
                        bu[u] \leftarrow bu[u] + Ir * e ui
                        bi[i] <- bi[i] + lr * e ui
                        for(f in 1:k) {
                                P[u,f] \leftarrow P[u,f] + Ir * (e ui * Q[i,f] - reg * P[u,f])
                                temp_if <- Q[i,f]
                                Q[i,f] \leftarrow Q[i,f] + Ir * (e_ui * p_plus_y[f] - reg * Q[i,f])
                                for(j in N u) {
                                        Y[j,f] \leftarrow Y[j,f] + Ir * (e ui * (1/sqrt(length(N u))) * temp if - reg * Y[j,f])
        return(list(bu = bu, bi = bi, P = P, Q = Q, Y = Y, error = error))
```

• Chamada:

```
r = read.table("ua.base", header=FALSE, sep="\t")
R <- as.matrix(r[1:3])
# feedback implícito:
N \leftarrow as.matrix(r[1:2])
source("svdpp.r")
svdpp <- svdpp(R, N, 2)</pre>
# nota do usuário id. 500 para o item id. 100:
N u <- N[N[,1] == 500,2]
y_sum <- rep(0, ncol(svdpp$Y))</pre>
for(j in N u) {
     y sum <- y sum + svdpp$Y[j,]
p_plus_y <- svdpp P[500,] + (1/sqrt(length(N_u))) * y_sum
pred <- global_mean + svdpp$bu[500] + svdpp$bi[100] + p_plus_y %*% svdpp$Q[100,]
```

Comparação entre os modelos SVD e SVD++

SVD

no. fatores = 4 no. iterações = 40 RMSE = 1.0303

SVD++

no. fatores = 4 no. iterações = 40 RMSE = 1.0187

Filtragem colaborativa

- Baseada em vizinhança
 - Boa para detectar relacionamentos fortes entre itens próximos entre si (visão local)

- Baseada em fatores latentes (FM)
 - Boa para capturar relações não aparentes na base de dados (visão global)

Filtragem colaborativa

Vantagens:

- Técnica bem estudada e entendida
- Funciona bem em vários domínios
- Não precisa de conhecimento especializado

Desvantagens:

- Requer colaboração da comunidade
- Esparsidade dos dados
- Sem integração com outras fontes de conhecimento
- Na baseada em modelos, é difícil explicar as recomendações

Referências

- [Sarwar et al. 2000a] Application of dimensionality reduction in recommender systems – a case study, Proceedings of the ACM WebKDD Workshop (Boston), 2000
- [Koren et al. 2009] Matrix factorization techniques for recommender systems, Computer 42 (2009), no. 8, 30–37
- https://github.com/JacintoCC/FunkSVD/blob/ master/FunkSVD.R