OWL API for ALC-LTL Reasoning

M. Fareed Arif

June 03/04, 2013

1 / 1

Outline

- Preliminaries
- 2 Motivation
- Open Demonstration
- Appendix

2 / 1

Semantic Web & OWL

Semantic Web:

The Semantic Web is the extension of the World Wide Web that facilitates machines to understand the meaning of information on the Web.

Web Ontology Language (OWL): ([Michael K. Smith 2003])

OWL provides a family of languages (i.e., OWL Lite, OWL DL and OWL Full) which are used to author OWL Ontologies. OWL provides a common standard for representing, exchanging and deriving logical consequences from different domains. Thus, providing machine-processable descriptions of domains including World Wide Web.

The OWL API: ([Sean Bechhofer 2003])

The OWL API is a programming interface to access and manupulate OWL Ontologies.

Pizza Examples:

```
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
<!ENTITY family "http://www.example.org/family#">
1>
SubClassOf(<http://www.co-ode.org/ontologies/pizza/pizza.owl#
Soho > ObjectSomeValuesFrom(<<http://www.co-ode.org/ontologies
pizza/pizza.owl#hasTopping> <a href="http://www.co-ode.org/ontologies">http://www.co-ode.org/ontologies</a>,
pizza/pizza.owl#GarlicTopping>))
. . .
```

Soho $\sqsubseteq \exists$ has Topping . Garlic Topping

The Description Logic \mathcal{ALC}

 \mathcal{ALC} [Schmidt-Schau 1991] is a DL with conjunction (\square), disjunction(\sqcup), negation(\neg), existential restriction (\exists) and value restriction (\forall).

Syntax ([Franz Baader 2008])

Let N_C is a set of concept names, N_R is a set of role names and N_I is a set individual names. The set of \mathcal{ALC} concept descriptions is the smallest set satisfying the following properties:

- ullet Every concept name, $oxed{\top}$ and $oxed{\bot}$ are \mathcal{ALC} -concept descriptions,
- If C, D are \mathcal{ALC} concept descriptions, $r \in N_R$, then the following are \mathcal{ALC} -concept descriptions:

```
\neg C (complement)

C \sqcap D (conjunction)

C \sqcup D (disjunction)

\exists r.C (existential restriction)

\forall r.C (value restriction)
```

The Description Logic \mathcal{ALC}

General Concept Inclusion (GCI):

A general concept inclusion (GCI) is of form $C \sqsubseteq D$ where C, D are \mathcal{ALC} -concept descriptions.

Assertion:

An assertion is of the form a: C or (a, b): r where C is an \mathcal{ALC} -concept description, $r \in \mathcal{N}_C$ and $a, b \in \mathcal{N}_I$.

Example:

Person $\sqcap \exists hasChild.Person$

 $GermanCitizen \sqsubseteq \exists insured_by.HealthInsurance$

 $Germany: \exists winner.FIFA_WORLD_CUP$

The Description Logic \mathcal{ALC}

Interpretation ([Franz Baader 2008])

An \mathcal{ALC} interpretation \mathcal{I} is a pair $(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ where $\Delta^{\mathcal{I}}$ is a non-empty set, called the domain of \mathcal{I} , and a mapping $\cdot^{\mathcal{I}}$ that assigns:

- a set $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ to each concept name $A \in N_C$,
- ullet $\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $\bot^{\mathcal{I}} = \emptyset$,
- ullet an element $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ to each individual name $a \in N_I$ and
- a binary relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ to each role name $r \in N_R$.
- $\bullet \ (\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}},$
- $\bullet \ (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}},$
- $\bullet (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}},$
- $(\exists r.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \text{ there is a } y \in \Delta^{\mathcal{I}} \text{ with } (x,y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}} \},$
- $(\forall r.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \text{ for all } y \in \Delta^{\mathcal{I}}, (x,y) \in r^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}.$

Example: Pizza OWL API in ALC

```
Soho □ ∃ hasTopping . GarlicTopping
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
<!ENTITY family "http://www.example.org/family#">
1>
```

SubClassOf(http://www.co-ode.org/ontologies/pizza/pizza.owl#hasTopping http://www.co-ode.org/ontologies/pizza/pizza.owl#GarlicTopping))

. . .

The OWL API & Descripton Logic \mathcal{ALC}

The OWL API provides appropriate data structure to deal with the description logic \mathcal{ALC} .

ALC	OWL API
$a \in N_I$	OWLIndividual
$A \in N_C$	OWLClass
$r \in N_R$	OWLObjectProperty
П	OWLObjectIntersectionOf
Ш	OWLObjectUnionOf
Г	OWLObjectComplementOf
3	OWLObjectSomeValuesFrom
\forall	OWLObjectAllValuesFrom

Motivation

- The OWL API is insufficient to deal with ALC-LTL.
- **2** Extending the OWL API with appropirate data structures that are required to represent $\mathcal{ALC}\text{-LTL}$ formulae.

 $\mathcal{ALC}\text{-LTL}$ ([Franz Baader 2008]) is a temporalized extension of a logic-based knowledge representation formalism \mathcal{ALC} .

- If α is an \mathcal{ALC} -axiom (i.e., Both GCIs and Assertions are called \mathcal{ALC} -axioms), then α is an \mathcal{ALC} -LTL formula;
- If ϕ, ψ are \mathcal{ALC} -LTL formulas, then $\neg \phi, \phi \land \psi, \phi \lor \psi, \phi \lor \psi$ and $X\psi$ are \mathcal{ALC} -LTL formulas.

Example:

 $\Diamond \Box (USCitizen \sqsubseteq \exists insured_by.HealthInsurance)$

Abbreviations: true $\equiv \phi \lor \neg \phi$, $\Diamond \phi \equiv true \cup \phi$ and $\Box \phi \equiv \neg (true \cup \phi)$.

The semantics of $\mathcal{ALC}\text{-LTL}$ are described in [Franz Baader 2008] by using an $\mathcal{ALC}\text{-LTL}$ structure.

ALC-LTL Structure:

An \mathcal{ALC} -LTL structure is a sequence $\mathfrak{I} = (\mathcal{I}_i)_{i=0,1,\dots}$ of \mathcal{ALC} interpretations $\mathcal{I}_i = (\Delta, \mathcal{I}_i)$.

$$\mathcal{I}_0 \Rightarrow \mathcal{I}_1 \Rightarrow \mathcal{I}_2 \Rightarrow \dots$$

Example:

 $\Diamond \Box (\mathit{USCitizen} \sqsubseteq \exists \mathit{insured_by}. \mathit{HealthInsurance})$

$$\mathcal{I}_0 \Rightarrow \mathcal{I}_1 \Rightarrow \mathcal{I}_2 \Rightarrow \mathcal{I}_3 \Rightarrow \dots$$

The semantics of $\mathcal{ALC}\text{-LTL}$ are described in [Franz Baader 2008] by using an $\mathcal{ALC}\text{-LTL}$ structure. An $\mathcal{ALC}\text{-LTL}$ structure is a sequence of \mathcal{ALC} interpretations over a non-empty domain with unique name assumption.

ALC-LTL Structure ([Franz Baader 2008])

An $\mathcal{ALC}\text{-LTL}$ structure is a sequence $\mathfrak{I}=(\mathcal{I}_i)_{i=0,1,\dots}$ of \mathcal{ALC} interpretations $\mathcal{I}_i=(\Delta, .^{\mathcal{I}_i})$ such that $a^{\mathcal{I}_i}=a^{\mathcal{I}_j}$ for all individual names a and for all $i,j\in\{0,1,2,\dots,\}$. Given an $\mathcal{ALC}\text{-LTL}$ formula ϕ , an $\mathcal{ALC}\text{-LTL}$ structure $\mathfrak{I}=(\mathcal{I}_i)_{i=0,1,\dots,}$ and a time point $i\in\{0,1,2,\dots\}$, validity of ϕ in $\mathfrak I$ at time i (written $\mathfrak I,i\models\phi$) is defined inductively:

ALC-LTL Structure ([Franz Baader 2008])

- $\mathfrak{I}, i \models C \sqsubseteq D \text{ iff } C^{\mathcal{I}_i} \subseteq D^{\mathcal{I}_i},$
- $\mathfrak{I}, i \models a : C \text{ iff } a^{\mathcal{I}_i} \in C^{\mathcal{I}_i},$
- \mathfrak{I} , $i \models (a, b) : r \text{ iff } (a^{\mathcal{I}_i}, b^{\mathcal{I}_i}) \in r^{\mathcal{I}_i}$,
- \Im , $i \models \phi \land \psi$ iff \Im , $i \models \phi$ and \Im , $i \models \psi$,
- \Im , $i \models \phi \lor \psi$ iff \Im , $i \models \phi$ or \Im , $i \models \psi$,
- \mathfrak{I} , $i \models \neg \phi$ iff \mathfrak{I} , $i \not\models \phi$,
- \mathfrak{I} , $i \models \mathsf{X}\phi$ iff \mathfrak{I} , $i+1 \models \phi$,
- \Im , $i \models \phi \cup \psi$ iff there is $k \ge i$ such that \Im , $k \models \psi$ and \Im , $j \models \phi$ for all j, $i \le j < k$.

Structure of ALC-LTL formulae XML File

 \mathcal{ALC} -axioms are stored in an OWL ontology file. We store \mathcal{ALC} -LTL formulae in an XML file using the following mapping.

\mathcal{ALC} -LTL XML mapping:

Operators	XML Mapping
	$\langle NegationOf \rangle \dots \langle /NegationOf \rangle$
П	$\langle ConjunctionOf \rangle \dots \langle /ConjunctionOf \rangle$
	$\langle DisjunctionOf \rangle \dots \langle / DisjunctionOf \rangle$
X	$\langle NextOf \rangle \dots \langle /NextOf \rangle$
U	$\langle UntilOf \rangle \langle LeftOf \rangle \dots \langle / LeftOf \rangle$
	$\langle RightOf \rangle \dots \langle / RightOf \rangle \ \langle / UntilOf \rangle$

ALC-LTL Examples:

```
(X(X((∀r3. (c3 ⊔ c4) ⊑ ∀r2. c5 U ¬∃r4. c1 ⊑ (c4 ⊔ c5))))
... <Formula> <NextOf> <NextOf> <UntilOf> <LeftOf>
<Axiom> <Literal>1</Literal> </Axiom> </LeftOf> <RightOf> <Axiom> </Literal>2</Literal> </Axiom> </RightOf>
</UntilOf> </NextOf> </Formula> ...
```

ALC-LTL Examples:

```
\forallr3. (c3 \sqcup c4) \sqsubseteq \forallr2. c5
```

. . .

```
<SubClassOf> <Annotation> <Literal">1</Literal> </Annotation>
<ObjectAllValuesFrom> <ObjectProperty IRI="http://www.semantic
<ObjectUnionOf> <Class IRI="http://www.semanticweb.org/owlapi
<Class IRI="http://www.semanticweb.org/owlapi:ontology944#c4",
</ObjectUnionOf> </ObjectAllValuesFrom> <ObjectAllValuesFrom>
<ObjectProperty IRI="http://www.semanticweb.org/owlapi:ontology944#c5",
</ObjectAllValuesFrom> </SubClassOf>
```

. . .

Program Demo

For Further Reading

- Manfred Schmidt-Schauß and Gert Smolka. 1991
 Attributive Concept Descriptions with Complements.
- Franz Baader, Silvio Ghilardi and Carsten Lutz. 2008 LTL over Description Logic Axioms.
 - Franz Baader, Ian Horrocks and Ulrike Sattler. 2008
 Handbook of Knowledge Representation, "Description Logics".
- Michael K. Smith, Chris Welty and Deborah L. McGuinness. 2003 OWL Web Ontology Language Guide
- Sean Bechhofer, Rapheal Volz and Phillip Lord. 2003 Cooking the Semantic Web with the OWL API

Q & A