First Person Shooter level generation using Generative Adversarial Networks

Edoardo Giacomello

22 gennaio 2018

Abstract

Estratto in lingua Italiana

 $To\ someone...$

Acknowledgments

Contents

A	bstra	act	3
E	strati	to in lingua Italiana	5
A	ckno	wledgments	9
1	Intr	roduction	17
	1.1	Background: Level Design	17
	1.2	State of the Art	17
		1.2.1 Procedurally Generated Content	17
		1.2.2 Procedural Content Generation via Machine Learning (PCGML)	17
	1.3	Scope	17
	1.4	Thesis Structure	17
	1.5	Summary	17
2	Tow	vards learn-based level generation	19
	2.1	Generative Adversarial Networks	19
		2.1.1 Overview	19
		2.1.2 Deep Convolutional GAN	19
		2.1.3 Wesserstein GAN	19
		2.1.4 Wesserstein GAN with Gradient Penalty	19
		2.1.5 Recent results	19
	2.2	Game of choice: DOOM	19
		2.2.1 Description	19
		2.2.2 Motivation	19
		2.2.3 Level Data Format	19
	2.3	Summary	19
3	Dat	aset and Data Representation	21
	3.1	Data Sources	21
	3.2	Native Data Format: WAD Files	21
	3.3	Target Data Format: Feature Maps and Vectors	21
		3.3.1 Overview and Motivation	21
		3.3.2 Feature Maps	21
		3.3.3 Graph Representation	21
		3.3.4 Scalar Features	21
		3.3.5 Data Encoding	21
	3.4	Input and Output Pipelines	21
	3.5	Summary	21
4	Sys	tem Design and Overview	23
	4.1	System Overview	23

5	\mathbf{Sys}	tem Architecture	25
	5.1	Component View	25
	5.2	Neural Network Architecture	25
6	Exp	periment Design and Results	27
	6.1	Parameter Tweaking and Training Phase	27
		6.1.1 Techniques and "GAN Tricks" used	27
		6.1.2 Resulting Model	27
	6.2	Sampling the network	
	6.3	Generated Samples	
	6.4	In-Game Demonstration	
	6.5	Summary	
7	Res	ults Evaluation and Conclusions	29
	7.1	Results Evaluation	29
		7.1.1 Evaluation metric	
		7.1.2 Samples Evaluation	29
		7.1.3 Loss of accuracy	29
	7.2	Summary	29
8	Fut	ure Work	31
	8.1	Open Problems	31
	8.2	Possible Applications and future develops	

List of Figures

List of Tables

Introduction

- 1.1 Background: Level Design
- 1.2 State of the Art
- 1.2.1 Procedurally Generated Content
- 1.2.2 Procedural Content Generation via Machine Learning (PCGML)
- 1.3 Scope
- 1.4 Thesis Structure
- 1.5 Summary

Towards learn-based level generation

- 2.1 Generative Adversarial Networks
- 2.1.1 Overview
- 2.1.2 Deep Convolutional GAN
- 2.1.3 Wesserstein GAN
- 2.1.4 Wesserstein GAN with Gradient Penalty
- 2.1.5 Recent results
- 2.2 Game of choice: DOOM
- 2.2.1 Description
- 2.2.2 Motivation
- 2.2.3 Level Data Format
- 2.3 Summary

Dataset and Data Representation

Overview This chapter aims to be an overview of the processes that led to the creation of the dataset the model is trained and evaluated with. In section 3.1 a reference to the data sources is given, then the focus of section 3.2 will be on how data is natively encoded for the game engine in order to give some hints on what are the difficulties to face in converting to and from that format in an automatic way. Section 3.3 will describe in detail what data is provided the dataset, that is how levels are converted from the native format and what features are extracted in order to provide an input for the neural network. Lastly, section 3.4 will give a brief overview of data formats used and transformation steps that have been done in order to give the possibility to replicate the dataset generation.

- 3.1 Data Sources
- 3.2 Native Data Format: WAD Files
- 3.3 Target Data Format: Feature Maps and Vectors
- 3.3.1 Overview and Motivation
- 3.3.2 Feature Maps
- 3.3.3 Graph Representation
- 3.3.4 Scalar Features
- 3.3.5 Data Encoding
- 3.4 Input and Output Pipelines
- 3.5 Summary

System Design and Overview

4.1 System Overview

System Architecture

- 5.1 Component View
- 5.2 Neural Network Architecture

Experiment Design and Results

- 6.1 Parameter Tweaking and Training Phase
- 6.1.1 Techniques and "GAN Tricks" used
- 6.1.2 Resulting Model
- 6.2 Sampling the network
- 6.3 Generated Samples
- 6.4 In-Game Demonstration
- 6.5 Summary

Results Evaluation and Conclusions

- 7.1 Results Evaluation
- 7.1.1 Evaluation metric
- 7.1.2 Samples Evaluation
- 7.1.3 Loss of accuracy
- 7.2 Summary

Future Work

- 8.1 Open Problems
- 8.2 Possible Applications and future develops