EE315 - Electronics Laboratory

Experiment - 3

BJT Transistor and DC Biasing

Preliminary Work

- 1. For the circuit given in Figure 1
- a) Calculate the value of R_{adj} that makes V_{CE} equal to 5 V.
- **b)** Calculate V_{RB} (voltage drop accross R_B).
- c) Explain the reason for choosingV_{CE} equal to 5 V.
- 2. For the circuit given in Figure 2, determine I_B , I_C , V_B , V_E , and V_{CE} .

- **3.** For the circuit given in Figure **3**, derive an expression for $v_0 = v_C$ as a function of v_{drv} . Specify the v_{drv} levels where the transistor turns off completely $(i_C = 0)$ and it goes into saturation $(i_C < \beta i_B)$.
- **4.** For the circuit given in Figure **4**, find the values of R_C and R_B , so that I_{Csat} = **2** mA and ν_o changes between **10** V and **0** V while ν_{drv} is a **1** kHz square wave signal switching between **0** V and **10** V.

Draw $v_{
m drv}$ and $v_{
m O}$ as a function of time.

Figure 1. Emitter-stabilized bias circuit

Figure 2. Voltage divider biasing circuit

Figure 3. Switching circuit

Figure 4. Switching circuit

Procedure

- **1.** Build the circuit given in Figure **1**. Turn on the power supply on and adjust R_{adj} so that V_{CE} is **5** V.
- **1.a)** Measure V_{BE} and the voltages across R_B , and R_C while V_{CE} is still at **5** V. Measure the resistance values for R_{adj} , R_B , R_C , and R_E . Calculate I_B , I_C , and β based on your measurements.

$$V_{BE} = V_{RB} = V_{RC} =$$
 $R_{adj} = R_B = R_C = R_E =$
 $I_B = I_C = \beta =$

- **1.b)** Which value(s) among R_B , R_C , R_E , β , and $V_{BE(on)}$ is/are the most significant cause of error between the calculated and measured values of R_{adi} ?
- 2.a) Build the circuit in Figure 2. Measure the values of IB, IC, VB, VBE, and VCE.
- **2.b)** Replace the transistor with another transistor with the same part number (i.e. replace BC238 with another BC238) and repeat the measurements.

Measurement	1st Transistor	2nd Transistor
I _C		
IΒ		
V _B		
V _{BE}		
V _{CE}		

2.c) In practice, all component values are specified with a tolerance range. Tolerance range determines the minimum and maximum of the actual values that will be obtained if several of these components are tested. For example, a **100 k\Omega** resistor with **5** % tolerance may have an actual value between **95 k\Omega** and **105 k\Omega**. Similarly, the minimum and maximum values of β are given in transistor datasheets.

If thousands of this circuit are to be manufactured, then you had to make sure that \mathbf{V}_{CE} will be reasonable within the tolerance range of all components. Indicate in the table below, which end ("min" or "max") of the tolerance range should be used for each parameter in calculation of the lowest and highest values of \mathbf{V}_{CE} .

Component parameter	For lowest V _{CE}	For highest V _{CE}
R ₁		
R ₂		
R _C		
R _E		
β		
V _{BE(on)}		

3.a) Build the circuit given in Figure **3**. Increase v_{drv} slowly, from **0V** up to the value where v_0 becomes constant. Record at least 10 values in order to plot a v_0 versus v_{drv} graph.

3.b) Measure the range of $v_{
m drv}$ values in which the transistor acts as a switch.

 $v_{\text{drv-Low-Max}} =$ (where $v_{\text{O}} > 90\%$ of V_{CC})

 $v_{\text{drv-High-Min}} =$ (where $v_{\text{O}} < 10\% \text{ of } V_{\text{CC}}$)

3

4.a) Setup the circuit in Figure **4** using the R_B and R_C values previously calculated in the preliminary work. Observe and plot V_O (Vp-p) versus V_{drv} (Vpeak) for different frequency and amplitude settings of input signal. Choose a range of V_{drv} values to cover the minimum and maximum possible V_O amplitudes at **10** kHz in your measurements. Use two more frequency settings where the V_O amplitude decreases by **20** % and **50** % at the maximum V_{drv} value used at **10** kHz.

Freq. (kHz)	ν _{drv} (Vpeak)	ν _Ο (Vp-p)	ν _ο / (Vp-p)	}	 	 	 		 ! !	 	 	
						 	 		 	 		
10					 	 	 					
					 	 	 	ļ 		<u> </u> 		
					 	 	 	! ! 	 	 	 	
						 	 	: 	 			
				·		 	 	 				
										v_{drv}	(Vpe	ak)

4.b) Comment on the difference in the output signals resulting from the changes in input parameters.