Math 540 -Linear Algebra II Fall 2025

HW6: Diagonalizability, Projectors, Degree, Homomorphism, Inverses, Subring

Submit via Canvas by Mon. 10/27/25 at 12pm

Remarks:

- A) Definition is just a definition, there is no need to justify or explain it.
- **B)** Answers to questions with proofs should be written, as much as you can, in the following format:
- i) Statement.
- ii) Main points that will appear in your proof.
- iii) The actual proof.
- **C)** Answers to questions with computations should be written, as much as possible, in the following format:
- i) Statement and Result.
- ii) Main points that will appear in your computation.
- iii) The actual computation.
 - 1. Diagonalizability and projectors general case. Let V be a vector space, and $V_j < V$, j = 1, ..., k, subspaces.
 - (a) Define when V is a <u>direct sum</u> of V_j 's, denoted $V = V_1 \oplus ... \oplus V_k$. Recall that, an operator P on V is called <u>projector</u> onto a subspace W < V, if P(W) = W, and the restriction $P_{|W} = Id_W$.
 - (b) Show that TFAE:
 - 1. $V = V_1 \oplus ... \oplus V_k$.
 - 2. there exist projectors P_j , onto the subspaces V_j , j = 1, ..., k, such that
 - 1. $Id_V = P_1 + ... + P_k$.
 - 2. $P_i \circ P_j = 0 = P_j \circ P_i$, for every $i \neq j$.
 - (c) Suppose V is finite dimensional and $T:V\to V$, linear transformation. Show that TFAE:
 - 1. $V = \bigoplus_{\lambda \in spec(T)} V_{\lambda}$, direct sum of the eigenspaces of T, i.e., T is diagonalizable;
 - 2. there are projectors P_{λ} , for some finite collection Λ of λ 's from \mathbb{F} , such that,
 - 1. $Id_V = \sum_{\lambda \in \Lambda} P_{\lambda}$,
 - 2. $P_{\lambda} \circ P_{\mu} = 0 = P_{\mu} \circ P_{\lambda}$, for very $\lambda \neq \mu \in \Lambda$.
 - 3. $T = \sum_{\lambda \in \Lambda} \lambda \cdot P_{\lambda}$.

Moreover, show that in this case $\Lambda = spec(T)$, and for each $\mu \in speck(T)$ we have

$$P_{\mu} = \prod_{\mu \neq \lambda \in spec(T)} \left(\frac{T - \lambda \cdot Id}{\mu - \lambda} \right).$$

- 2. Degree of a polynomial. Let \mathbb{F} be a field.
 - (a) Define the ring $\mathbb{F}[X]$ of polynomials with coefficients in \mathbb{F} .
 - (b) Show that dim $\mathbb{F}[X] = \infty$.
 - (c) Now, let R be a ring and R[X] the ring of polynomials with coefficients in R. Recall that the degree $\deg(f)$ of a polynomial $f \in R[X]$ is defined to be $\deg(f) = d$ if $f = a_d X^d + ... + a_1 X + a_0$ and $a_d \neq 0$, and $\deg(f) = -\infty$ if f = 0. Show that for every $f, g \in R[X]$ we have
 - (i) $\deg(fg) \le \deg(f) + \deg(g)$,
 - (ii) $\deg(f+g) \le \max\{\deg(f), \deg(g)\}.$

Moreover, show that if R is an integral domain than the inequality in (i) is actually an equality.

- 3. Kernel of a homomorphism. Let $\varphi: R \to S$ be homomorphism of rings.
 - (a) Define the <u>kernel</u> of φ , denoted $\ker(\varphi)$, by $\ker(\varphi) = \{a \in R \text{ such that } \varphi(a) = 0\}$.
 - (b) Show that φ is one-to-one if and only if $\ker(\varphi) = \{0\}$.
- 4. Uniqueness of inverses. Suppose R is a ring.
 - (a) Define when we say that R is a ring with unit.
 - (b) Suppose R is a ring with unit. Show that for $a \in R$ invertible, i.e., there exists at most one inverse $b \in R$, i.e., such that $ab = ba = 1_R$.
 - (c) Compute all the invertible elements in the ring \mathbb{Z}_{12} , and for each find its inverse.
- 5. Subrings from ring homomorphisms. Let $\varphi: R \to S$ be a homomorphism of rings.
 - (a) Define when R' is a subring of a ring R.

Let $\varphi: R \to S$ be a homomorphism of rings. We define the image of φ , denoted $Im(\varphi)$, by $Im(\varphi) = {\varphi(r) \mid r \in R}$.

(b) Show that $Im(\varphi)$ is a subring of S and that $ker(\varphi)$ is a subring of R.

Important remarks:

- Every W-F 8:30-9am we go (only if students show up to the meeting) over HW in canvas's zoom (and record it).
- You are very much encouraged to consult the lecturer and grader on HW during office hours/appointments/discussions/lectures.

- You are very much encouraged to work with other students on the HW.
- You should submit your HW ALONE in YOUR OWN ORIGINAL DOCUMENT!!!
- Remember: "ChatGpt" will not be there for you during the quiz on the HW, so make sure you can really solve the HW problems.

Good Luck!