In []:

```
#Business Problem:

#1. The market research team at AeroFit wants to identify the characteristics of the target audience
#for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to
#2. Perform descriptive analytics to create a customer profile for each AeroFit treadmill product
#by developing appropriate tables and charts.

#3. For each AeroFit treadmill product, construct two-way contingency tables and
#compute all conditional and marginal probabilities along with their insights/impact on the business.
```

In [526]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.distributions.empirical_distribution import ECDF
from scipy.stats import norm
```

In [527]:

```
1 df = pd.read_csv('Aerofit_treadmill.csv')
2 df
```

Out[527]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

In [528]:

```
#describes numerical data and provides a statistical summary
df.describe()
```

Out[528]:

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

In [529]:

```
#describes categorical data
data.describe(include="object").T
```

Out[529]:

	count	unique	top	freq
Product	180	3	KP281	80
Gender	180	2	Male	104
MaritalStatus	180	2	Partnered	107

In [530]:

```
1 #provides structural summary of a DataFrame
2 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):
                   Non-Null Count Dtype
# Column
---
0
    Product
                   180 non-null
                                   object
                   180 non-null
                                   int64
1
    Age
    Gender
                   180 non-null
                                   object
                   180 non-null
3
    Education
                                   int64
4
    MaritalStatus 180 non-null
                                   object
5
    Usage
                   180 non-null
                                   int64
6
    Fitness
                   180 non-null
                                   int64
                   180 non-null
                                   int64
7
    Income
    Miles
                   180 non-null
                                   int64
dtypes: int64(6), object(3)
memory usage: 12.8+ KB
```

In [531]:

```
1 #checks for null values for each column and returns the sum df.isna().sum()
```

Out[531]:

Product Age 0 Gender 0 Education 0 MaritalStatus 0 0 Usage Fitness 0 Income Miles 0 dtype: int64

In [532]:

```
#Product distribution
df_product = df['Product'].value_counts()
df_product
```

Out[532]:

Product
KP281 80
KP481 60
KP781 40
Name: count, dtype: int64

```
In [91]:
```

```
1 #Gender distribution
 2 df_gender = df['Gender'].value_counts()
 3 df_gender
Out[91]:
```

Gender Male 104 Female 76

Name: count, dtype: int64

In [41]:

```
1 #Counts based on marital status
2 df['MaritalStatus'].value_counts()
```

Out[41]:

MaritalStatus 107 Partnered Single 73

Name: count, dtype: int64

In [46]:

```
1 #Counts based on fitness rating
2 df['Fitness'].value_counts()
```

Out[46]:

Name: count, dtype: int64

In [56]:

```
1 #Counts based on treadmill used per week
2 df['Usage'].value_counts()
```

Out[56]:

```
Usage
3
     69
4
     52
2
      33
5
     17
      7
6
7
      2
```

Name: count, dtype: int64

In [533]:

```
1 #segregated income into different income buckets
  df_cp = df
  df_cp['Income_levels'] = df_cp['Income']
4 df_cp["Income_levels"] = pd.cut(df_cp["Income_levels"], bins =[25000,40000,60000,80000,120000], include_lowest=Tru
5 df_cp["Income_levels"] =df_cp["Income_levels"].astype("object")
6 df_cp.head()
```

Out[533]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	Income_levels
0	KP281	18	Male	14	Single	3	4	29562	112	Low(25k-40k)
1	KP281	19	Male	15	Single	2	3	31836	75	Low(25k-40k)
2	KP281	19	Female	14	Partnered	4	3	30699	66	Low(25k-40k)
3	KP281	19	Male	12	Single	3	3	32973	85	Low(25k-40k)
4	KP281	20	Male	13	Partnered	4	2	35247	47	Low(25k-40k)

In [602]:

```
1 # Distribution of categorical variables using pie chart
 2
 3
   fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(16, 10))
   axs[0].pie(df['Product'].value_counts(),labels=['KP281','KP481','KP781'], autopct='%1.2f%%',textprops={'fontsize':
   axs[0].set_title('Product Distribution',fontsize=16)
axs[1].pie(df['Gender'].value_counts(), labels=['Male','Female'] ,autopct='%1.2f%%',textprops={'fontsize': 14})
 5
 6
   axs[1].set_title('Gender Distribution',fontsize=16)
7
   axs[2].pie(df['MaritalStatus'].value_counts(), labels=['Partnered','Single'],autopct='%1.2f%%',textprops={'fontsiz
8
   axs[2].set_title('Marital Status Distribution',fontsize=16)
9
10
   # Adjust spacing between subplots
11 plt.tight_layout()
12 plt.show()
```


In [620]:

```
plt.figure(figsize=(4,4))
df['Income_levels'].value_counts().plot(kind='pie',autopct='%1.2f%%',textprops={'fontsize': 10})
plt.title('Income level Distribution',fontsize=14)
```

Out[620]:

Text(0.5, 1.0, 'Income level Distribution')

Income level Distribution

In [601]:

```
#count of products based on the type of threadmill,count of products based on the gender,
#count of products based on their marital status

fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(18, 5))
ax1=sns.countplot(data=df, x='Product',width=0.5, ax=axs[0])
ax2=sns.countplot(data=df, x='Gender',width=0.4, ax=axs[1])
ax3=sns.countplot(data=df, x='MaritalStatus',width=0.4, ax=axs[2])
ax1.bar_label(ax1.containers[0])
ax2.bar_label(ax2.containers[0])
ax3.bar_label(ax3.containers[0])
ax1.set_title("Product", pad=10, fontsize=14)
ax2.set_title("Gender", pad=10, fontsize=14)
ax3.set_title("Marital Status", pad=10, fontsize=14)
plt.show()
```


In [376]:

```
#frequency distribution of a continious numerical variables is obtained through histplot
fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(10, 8))
fig.subplots_adjust(top=1.2)

sns.histplot(data=df, x="Age", kde=True, ax=axis[0,0])
sns.histplot(data=df, x="Education", kde=True, ax=axis[0,1])
sns.histplot(data=df, x="Usage", kde=True, ax=axis[1,0])
sns.histplot(data=df, x="Fitness", kde=True, ax=axis[1,1])
sns.histplot(data=df, x="Income", kde=True, ax=axis[2,0])
sns.histplot(data=df, x="Miles", kde=True, ax=axis[2,1])
plt.show()
```


In [372]:

```
# To identify the outliers for each category of the data using boxplot

fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12, 8))
fig.subplots_adjust(top=1.2)

sns.boxplot(data=df, x="Age", ax=axis[0,0],palette='pastel')
sns.boxplot(data=df, x="Education", ax=axis[0,1],palette='pastel')
sns.boxplot(data=df, x="Usage", ax=axis[1,0],palette='pastel')
sns.boxplot(data=df, x="Fitness", ax=axis[1,1],palette='pastel')
sns.boxplot(data=df, x="Income", ax=axis[2,0],palette='pastel')
sns.boxplot(data=df, x="Miles", ax=axis[2,1],palette='pastel')
plt.show()
```


In [307]:

```
#Calculating IQR, 25% Quartile, 75% Quartile for Miles category
IQR = np.percentile(df["Miles"],75) - np.percentile(df["Miles"],25)
Q3 = np.percentile(df["Miles"],75)
Q1 = np.percentile(df["Miles"],25)
UpperWhisker_miles = Q3 + (1.5*(IQR))
```

100

150

200

Miles

250

50

In [603]:

```
1 IQR,Q3,Q1,UpperWhisker_miles
```

Out[603]:

```
(48.75, 114.75, 66.0, 187.875)
```

30000 40000 50000 60000 70000 80000 90000 100000

Income

350

300

```
In [309]:
```

```
#To check how many values lie outside the outlier for miles category
outlier_data_miles = data[data["Miles"]>UpperWhisker_miles]
outlier_data_miles.shape[0]
```

Out[309]:

13

In [606]:

```
#Calculating IQR, 25% Quartile,75% Quartile for Income category

IQR_income = np.percentile(df["Income"],75) - np.percentile(df["Income"],25)

q3 = np.percentile(df["Income"],75)

q1 = np.percentile(df["Income"],25)

UpperWhisker_income = q3 + (1.5*(IQR_income))
```

In [605]:

```
1 IQR_income,q3,q1,UpperWhisker_income
```

Out[605]:

(14609.25, 58668.0, 44058.75, 80581.875)

In [312]:

```
#To check how many values lie outside the outlier for income category
outlier_data_income = data[data["Income"]>UpperWhisker_income]
outlier_data_income.shape[0]
```

Out[312]:

19

In [509]:

```
1 df.describe().round(3)
```

Out[509]:

	Age	Education	Usage	Fitness	Income	Miles
count	180.000	180.000	180.000	180.000	180.000	180.000
mean	28.789	15.572	3.456	3.311	53719.578	103.194
std	6.943	1.617	1.085	0.959	16506.684	51.864
min	18.000	12.000	2.000	1.000	29562.000	21.000
25%	24.000	14.000	3.000	3.000	44058.750	66.000
50%	26.000	16.000	3.000	3.000	50596.500	94.000
75%	33.000	16.000	4.000	4.000	58668.000	114.750
max	50.000	21.000	7.000	5.000	104581.000	360.000

In [558]:

```
1 #Compares count of different product types against different types of Gender and Marital status
   sns.set_style(style='whitegrid')
 2
 3
   fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(25,8))
   axs1 = sns.countplot(data=df, x='Product', hue='Fitness', width=0.8 , palette='pastel', ax=axs[0])
   axs2 = sns.countplot(data=df, x='Product', hue='Usage', width=0.8, palette='pastel', ax=axs[1])
 6
   axs[0].set_title("Product vs Fitness", pad=10, fontsize=14)
   axs[1].set_title("Product vs Usage", pad=10, fontsize=14)
 7
 8
 9
   num_bars = len(axs1.patches)
10
   # Add value on top of each bar
11
   for p in axs1.patches:
        height = p.get_height()
12
13
        axs1.text(p.get_x() + p.get_width() / 2., height + 0.2, str(round(height)), ha="center")
14
15
   # Add value on top of each bar
16
   for p in axs2.patches:
17
        height = p.get_height()
18
        axs2.text(p.get_x() + p.get_width() / 2., height + 0.2, str(round(height)), ha="center")
19
20
21
   plt.show()
```


In [463]:

```
#Compares count of different product types against diferent types of Gender and Marital status
1
3
   fig, axis = plt.subplots(nrows=1, ncols=2, figsize=(16, 3))
 4
   fig.subplots_adjust(top=1.2)
   ax1=sns.countplot(x='MaritalStatus', hue='Product',width=0.5, data=df,ax=axis[0])
5
 6 | ax2=sns.countplot(x='Gender', hue='Product', width=0.5, data=df,ax=axis[1])
   ax1.bar_label(ax1.containers[0])
 8
   ax1.bar_label(ax1.containers[1])
9 ax1.bar_label(ax1.containers[2])
10 ax2.bar_label(ax2.containers[0])
11 | ax2.bar_label(ax2.containers[1])
12 ax2.bar_label(ax2.containers[2])
```

Out[463]:

[Text(0, 0, '33'), Text(0, 0, '7')]

In [612]:

```
#count of product across different income levels
fig, axis = plt.subplots(nrows=1, ncols=1, figsize=(25, 5))
ax = sns.countplot(x='Income_levels', hue='Product', width=0.7, data=df_cp)
ax.bar_label(ax.containers[0])
ax.bar_label(ax.containers[1])
ax.bar_label(ax.containers[2])
ax.set_title('Product vs Income_levels',pad =15, fontsize=20)
```

Out[612]:

Text(0.5, 1.0, 'Product vs Income_levels')

In [615]:

```
#count of product across different age
plt.figure(figsize=(20,5))
ax = sns.countplot(x='Age', hue='Product', data=df)
ax.set_title('Product vs Age',pad =15, fontsize=20)
```

Out[615]:

Text(0.5, 1.0, 'Product vs Age')

In [573]:

```
1
      #Check if these data have any correaltion with the product type
 2
 3
      fig, axis = plt.subplots(nrows=2, ncols=3, figsize=(20, 10))
      fig.subplots_adjust(top=1.2)
 4
     sns.boxplot(x='Product', y='Age', data=df, ax=axis[0,0])
sns.boxplot(x='Product', y='Income', data=df, ax=axis[0,1])
sns.boxplot(x='Product', y='Miles', data=df, ax=axis[0,2])
sns.boxplot(x='Product', y='Education', data=df, ax=axis[1,0])
 5
 6
 7
 8
      sns.boxplot(x='Product', y='Usage', data=df, ax=axis[1,1])
 9
10
      sns.boxplot(x='Product', y='Fitness', data=df, ax=axis[1,2])
axis[0,0].set_title("Product vs Age", pad=10, fontsize=16)
11
      axis[0,1].set_title("Product vs Income", pad=10, fontsize=16)
12
      axis[0,2].set_title("Product vs Miles", pad=10, fontsize=16)
13
     axis[1,0].set_title("Product vs Education", pad=10, fontsize=16)
axis[1,1].set_title("Product vs Usage", pad=10, fontsize=16)
axis[1,2].set_title("Product vs Fitness", pad=10, fontsize=16)
14
15
16
17
      plt.show()
```


In [388]:

- 1 #Shows how data values are correlated with every other variable in the table
- 2 numeric_data = df.select_dtypes(include='number')
- 3 sns.heatmap(numeric_data.corr(),annot=True)

Out[388]:

<Axes: >

In [198]:

- 1 #creates number of scatter plots and histograms to visualize the relationships
- 2 #between all numerical variables in a dataset
- 3 sns.pairplot(df, hue ='Product')

Out[198]:

<seaborn.axisgrid.PairGrid at 0x162cf76aa50>

1 # Marginal and Conditional Probabilities

1 # Gender

```
In [567]:
```

```
#Marginal Probability of each product

df_margin =(df['Product'].value_counts()/df.shape[0] *100).round(2)

df_margin
```

Out[567]:

Product

KP281 44.44
KP481 33.33
KP781 22.22

Name: count, dtype: float64

In [258]:

```
#Conditional Probability of each product given gender which will also normalize margin values

pd.crosstab([df["Product"]],df["Gender"],margins=True)
```

Out[258]:

Gender	Female	Male	All
Product			
KP281	40	40	80
KP481	29	31	60
KP781	7	33	40
All	76	104	180

In [259]:

```
#Conditional Probability of each product given gender which normalize over all values
np.round(pd.crosstab(df['Product'],[df['Gender']], normalize=True, margins=True, margins_name='Total')*100,2)
```

Out[259]:

Gender	Female	Male	Total
Product			
KP281	22.22	22.22	44.44
KP481	16.11	17.22	33.33
KP781	3.89	18.33	22.22
Total	42.22	57.78	100.00

In [260]:

```
#Conditional Probability of each product given gender which is normalized over each column

np.round(pd.crosstab(df['Product'],[df['Gender']], normalize='columns', margins=True, margins_name='Total')*100,2)
```

Out[260]:

Gender	Female	Male	Total
Product			
KP281	52.63	38.46	44.44
KP481	38.16	29.81	33.33
KP781	9.21	31.73	22.22

1 # Fitness

In [206]:

```
#Conditional Probability of each product given Fitness which also normalize margin values

pd.crosstab([df["Product"]],df["Fitness"],margins=True)
```

Out[206]:

In [250]:

```
#Conditional Probability of each product given Fitness which normalize over all values

np.round(pd.crosstab(df['Product'],[df['Fitness']], normalize=True, margins=True, margins_name='Total')*100,2)
```

Out[250]:

Fitness	1	2	3	4	5	Total
Product						
KP281	0.56	7.78	30.00	5.00	1.11	44.44
KP481	0.56	6.67	21.67	4.44	0.00	33.33
KP781	0.00	0.00	2.22	3.89	16.11	22.22
Total	1.11	14.44	53.89	13.33	17.22	100.00

In [266]:

```
#Conditional Probability of each product given Fitness which is normalized over each column
np.round(pd.crosstab(df['Product'],[df['Fitness']], normalize='columns', margins=True, margins_name='Total')*100,2
```

Out[266]:

Fitness	1	2	3	4	5	Total
Product						
KP281	50.0	53.85	55.67	37.50	6.45	44.44
KP481	50.0	46.15	40.21	33.33	0.00	33.33
KP781	0.0	0.00	4.12	29.17	93.55	22.22

1 # MaritalStatus

In [209]:

```
#Conditional Probability of each product given MaritalStatus which will normalize margin values
pd.crosstab([df["Product"]],df["MaritalStatus"],margins=True)
```

Out[209]:

MaritalStatus	Partnered	Single	All
Product			
KP281	48	32	80
KP481	36	24	60
KP781	23	17	40
All	107	73	180

In [252]:

```
#Conditional Probability of each product given MaritalStatus which will normalize all values
np.round(pd.crosstab(df['Product'],[df['MaritalStatus']], normalize=True, margins=True, margins_name='Total')*100,
```

Out[252]:

MaritalStatus		Partnered	Single	Total	
	Product				
	KP281	26.67	17.78	44.44	
	KP481	20.00	13.33	33.33	
	KP781	12.78	9.44	22.22	
	Total	59.44	40.56	100.00	

In [268]:

```
#Conditional Probability of each product given MaritalStatus which will normalize over each column
np.round(pd.crosstab(df['Product'],[df['MaritalStatus']], normalize='columns', margins=True, margins_name='Total')
```

Out[268]:

MaritalStatus Partnered Single Total

Product			
KP281	44.86	43.84	44.44
KP481	33.64	32.88	33.33
KP781	21.50	23.29	22.22

1 # Usage

In [271]:

```
#Conditional Probability of each product given Usage which will normalize margin values

pd.crosstab(df['Product'],[df['Usage']], margins=True, margins_name='Total')
```

Out[271]:

Usage 2 3 4 5 6 7 Total Product 3 2 2 2 0 0 80 KP281 19 37 22 2 0 0 80 KP481 14 31 12 3 0 0 60 KP781 0 1 18 12 7 2 40 Total 33 69 52 17 7 2 180

In [272]:

```
#Conditional Probability of each product given Usage which will normalize all values
np.round(pd.crosstab(df['Product'],[df['Usage']], normalize=True, margins=True, margins_name='Total')*100,2)
```

Out[272]:

Usage	2	3	4	5	6	7	Total
Product							
KP281	10.56	20.56	12.22	1.11	0.00	0.00	44.44
KP481	7.78	17.22	6.67	1.67	0.00	0.00	33.33
KP781	0.00	0.56	10.00	6.67	3.89	1.11	22.22
Total	18.33	38.33	28.89	9.44	3.89	1.11	100.00

In [273]:

```
#Conditional Probability of each product given Usage which will normalize over each column
np.round(pd.crosstab(df['Product'],[df['Usage']], normalize='columns', margins=True, margins_name='Total')*100,2)
```

Out[273]:

Usage	2	3	4	5	6	7	Total
Product							
KP281	57.58	53.62	42.31	11.76	0.0	0.0	44.44
KP481	42.42	44.93	23.08	17.65	0.0	0.0	33.33
KP781	0.00	1.45	34.62	70.59	100.0	100.0	22.22

1 # Income_levels

In [539]:

```
#Conditional Probability of each product given Income_levels which will normalize margin values

pd.crosstab(df['Product'],[df['Income_levels']], margins=True, margins_name='Total')
```

Out[539]:

Income_levels	High(61k-80k)	Low(25k-40k)	Medium(41k-60k)	Very_High(81k-120k)	Total
Product					
KP281	6	23	51	0	80
KP481	7	9	44	0	60
KP781	10	0	11	19	40
Total	23	32	106	19	180

In [540]:

1	#Conditional Probability of each product given Income_levels which will normalize all values
3	np.round(pd.crosstab(df['Product'],[df['Income_levels']], normalize=True, margins=True, margins_name='Total')*100,

Out[540]:

Income_levels	High(61k-80k)	Low(25k-40k)	Medium(41k-60k)	Very_High(81k-120k)	Total
Product					
KP281	3.33	12.78	28.33	0.00	44.44
KP481	3.89	5.00	24.44	0.00	33.33
KP781	5.56	0.00	6.11	10.56	22.22
Total	12.78	17.78	58.89	10.56	100.00

In [541]:

```
#Conditional Probability of each product given Income_levels which will normalize over each column

pn.round(pd.crosstab(df['Product'],[df['Income_levels']], normalize='columns', margins=True, margins_name='Total')
```

Out[541]:

Income_levels	High(61k-80k)	Low(25k-40k)	Medium(41k-60k)	Very_High(81k-120k)	Total
Product					
KP281	26.09	71.88	48.11	0.0	44.44
KP481	30.43	28.12	41.51	0.0	33.33
KP781	43.48	0.00	10.38	100.0	22.22