

Course Methods test 3 Year 12

Student name:	Teacher name:		
Task type:	Response		
Time allowed for this tas	k:40 mins		
Number of questions:	8		
Materials required:	Calculator with CAS capability (to be provided by the student)		
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters		
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations		
Marks available:	46 marks		
Task weighting:	_10%		
Formula sheet provided: Yes			
Note: All part questions worth more than 2 marks require working to obtain full marks.			

(1 mark)

Q1 (3 marks)

The expected value of the discrete probability distribution given below is 2.8. Determine the values of p & q and hence determine Var(X), the variance of X.

X	1	2	3	4	5
P(X = x)	0.1	p	0.2	q	0.1

Q2 (9 marks)

A students wishes to play a gambling game on mufti day involving throwing two regular fair dice, each numbered 1 to 6. To play the game the student must pay \$2 for each throw of two dice. If they score a double i.e two 1s, two 2s etc they win \$6. If they throw a total of 7 they win \$11 and anything else they receive nothing.

Let \$X equal the profit a player receives on a single play.

a) Describe the random variable X.

Discrete random variable		
Specific behaviours		
✓ states discrete		

b) Complete the following table for \boldsymbol{X} .

(3 marks)

Solution				
V	Φ0	0.4	Φ2	
X V	\$9	\$4	-\$2	
P(X = X)	<u>6</u>	<u>6</u>	$\frac{24}{}$	
	36	36	36	

Specific behaviours

- ✓ correct values for x
- ✓ at least 1 probs correct
- ✓ all probs correct
- c) Determine the expected profit by a player on a single game.

(3 marks)

Q3 (7 marks)

A factory produces toy cars. The probability that any toy car being defective is 0.15. If 20 toy cars are selected at random, let X equal the number of defective cars out of 20.

a) Describe the distribution X (2 marks)

Solution		
$X \sim Bin(20, 0.15)$		
	Specific behaviours	
✓ states Binomial		
✓ states n & p		

b) Determine that probability that exactly 4 cars will be defective. (2 marks)

Solution

c) Determine the probability that at least 4 cars will be defective given that we know at least 2 cars are defective. (3 marks)

Q4 (4 marks)

Sound loudness, L dB, is measured by comparing the intensity of the sound, I, with the intensity of a sound that is just detectable by the human ear, I_O .

$$L = 10\log_{10}\left(\frac{I}{I_o}\right)$$

a) If the noise level in a room was 65 dB, express the intensity of sound in this room in terms of .

<u>o</u> .	(1 mark)
Solution	
$65 = 10\log_{10}\left(\frac{I}{I_o}\right)$	
$65 = 10 \log_{10} \left(\frac{I}{I_o} \right)$ $\left(\frac{I}{I_o} \right) = 10^{6.5}$ $I = I_o 10^{6.5}$	
$I = I_{o} 10^{6.5}$	
Specific behaviours	
✓ states expression	

b) How many times is the intensity of a 105 dB noise level that of the intensity of a 35 dB noise level? (3 marks)

Solution $L = 10 \log_{10} \left(\frac{I}{I_o} \right)$ $\frac{I}{I_o} = 10^{\frac{L}{10}}$ $\frac{10^{105}}{10^{3.5}} = 10^7$ Specific behaviours $\checkmark \text{ uses index form}$ $\checkmark \text{ shows the powers of 10 for both levels}$ $\checkmark \text{ states simplified ratio}$

Mathema	atics Department	Perth Modern

Q5 (5 marks)

Below is a graph of $y = \log_a x$ where a is a positive constant.

a) Sketch on the axes above $y = \log_a (x - 5)$ labelling major features. (2 marks)

- ✓ shows a dotted line as asymptote and labels equation

b) Determine the values of a,b & c given that $y = \log_a(x+b) + c$ contains points (-1,-1)&(0,5)and has a vertical asymptote at x = -2. (3 marks)

Solution

$$asymptote \ b = 2$$
 $-1 = log 1 + c$
 $c = -1$
 $5 = log_a \ 2 - 1$
 $6 = log_a \ 2$
 $a^6 = 2$
 $a = 2^{\frac{1}{6}}$

Specific behaviours

✓ states value of b
✓ sets up equations containing $a \& c$

✓ states exact values of a & c

Q6 (6 marks)

a) Determine
$$\frac{d}{dx}(x^3 \ln x)$$
 . (simplify) (3 marks)

$\frac{d}{dx}(x^{3} \ln x) = x^{3} \frac{1}{x} + 3x^{2} \ln x$ $= x^{2} + 3x^{2} \ln x$

Specific behaviours

Solution

- ✓ shows use of product rule
- ✓ at least one product correct
- ✓ states simplified derivative
- b) Using your result in a) above and NOT using your classpad determine

$$\int 10x^2 \ln x \, dx$$
 . Show all working. (3 marks)

Solution

$$\frac{d}{dx}(x^{3} \ln x) = x^{2} + 3x^{2} \ln x$$

$$x^{3} \ln x = \int x^{2} dx + 3 \int x^{2} \ln x dx$$

$$\int x^{2} \ln x dx = \frac{1}{3} \left(x^{3} \ln x - \frac{x^{3}}{3} \right) + c$$

$$\int 10x^{2} \ln x dx = \frac{10}{3} \left(x^{3} \ln x - \frac{x^{3}}{3} \right) + c$$

Specific behaviours

- \checkmark uses linearity (integrates exp in (a) above)
- ✓ integrates squared term and adds a constant
- ✓ obtains exp for required integral (no need to factorise)

(zero marks for answer only- from classpad)

Mathematics Department

Perth Modern

Q7 (6 marks)

Consider the continuous random variable X and its probability density function shown below.

a) Determine the exact value of k. (2 marks)

b) Determine Prob (1.5 < X < 4.5) (4 marks)

- Specific behaviours
- ✓ determines equation of one side
- ✓ determines equations of both sides
- ✓ states integrals with correct limits for total area
- ✓ states approx. area to 4 decimal places (accept exact)

Q8 (5 marks)

Consider a continuous random variable, X, that has the following probability density function.

$$f(x) = \begin{cases} ae^{-bx} & , 0 \le x \le 5 \\ 0 & , elsewhere \text{ with } a \& b \text{ being constants.} \end{cases}$$

a) Determine the cumulative distribution function, $P(X \le x)$, in terms of a & b. (2 marks)

Solution
$$P(X \le x) = \int_{0}^{x} ae^{-bu} du$$

$$= \left[\frac{-a}{b} e^{-bu} \right]_{0}^{x} = \frac{-a}{b} (e^{-bx} - 1)$$
Specific behaviours
$$\checkmark \text{ integrates with correct limits (no need to change variables)}$$

$$\checkmark \text{ states cumulative function}$$

b) Given that $P(X \le 3) = 0.7$ solve for approximate values of a & b to two decimal places. (3 marks)

✓ solves for a & b to two decimal places (must round)