課題

FRAPの蛍光回復曲線を描こう

FRAPと蛍光回復曲線

Fluorescent Intensity

Time

FRAPと蛍光回復曲線

FRAPと蛍光回復曲線

手順

- 1. ROI(Region of Interest) を決める
- 2. 各画像の ROI 内の輝度を計算
- 3. 蛍光回復曲線をプロット
- 4. 拡散係数を導出し、考察

お好みのコースで

- ●手法
 - ・プログラムで
 - ●Excelで

- ●データ
 - ●高解像度画像
 - ●低解像度画像

http://keio.jp の「教材」からダウンロード

- ●高解像度版 (HQ.zip)
 - ●TIFFファイル:20枚
 - ●CSVファイル:20枚
- ●低解像度版 (LQ.zip)
 - ●TIFFファイル:20枚
 - ●CSVファイル:20枚

http://keio.jp の「教材」からダウンロード

●TIFFファイル (frap01.tiff ~ frap20.tiff)

●CSVファイル (frap01.csv ~ frap20.csv)

Excelで画像表示

- CSVファイルを開く
- セルを全選択
- [書式] → [条件付き書式]
- セルの値の範囲に応じて 異なる色に設定

HQ	
画像サイズ	172 x 271
Δχ	0.225 µm
Δγ	0.225 µm
Δt	1 sec
bit/画素	8 bit

LQ	
画像サイズ	43 x 67
Δχ	0.9 µm
Δγ	0.9 µm
Δt	1 sec
bit/画素	8 bit

アドバイス

- ROIの領域を正確に決めるのは難しい
- Excel でやるなら低解像度なデータじゃないと きつい
- プログラミング言語はなんでもいい
 - TIFF を使うなら MATLAB, Octave, C, Java
 - CSVを使うなら Perl, Python とか
- 「ImageJを使いました」はNG

レポート

- レポートは PDF か doc (Word)で作成
- どちらの画像(高解像度 or 低解像度)に対して 行なったかを明記すること
- 自分が行った画像処理の説明、またその結果に 対する考察を必ず書いてください
- 課題は自分でやる
- 提出先: keio.jp の「レポート課題」から提出
- 〆切: 2020年6月29日(月) 23:59:59