Algorytmy skalowalnego przetwarzania danych — projekt 3

dr Piotr Przymus, mgr Mikołaj Fejzer, dr Krzysztof Rykaczewski 7 maja 2020

Spis treści

1	Definicje, oznaczenia										
	1.1	Reprezentacja macierzy gęstych	1								
	1.2	Reprezentacja macierzy rzadkiej	1								
2	2 Zadania: MapReduce — mnożenie macierz-wektor, macierz-macierz										
2.1 Macierz · wektor — wektor mieści się w pamięci (20 pkt)											
	2.2	Macierz · wektor — rozmiar wektora przekracza rozmiar pamięci (20 pkt)	4								
	2.3	Macierz · macierz — kilka kroków MapReduce (30 pkt)	7								
	2.4	Macierz · macierz — pojedynczy krok MapReduce (30 pkt)	11								

1 Definicje, oznaczenia

1.1 Reprezentacja macierzy gęstych

Macierz jest zwyczajowo przetrzymywana w tablicy jedno lub dwuwymiarowej. Dostęp do elementów macierzy dany jest poprzez dwa indeksy i oraz j (dla jednowymiarowej i łatwo wyliczyć). Przyjmuje się, że i oznacza numer/indeks wiersza (od góry do dołu), a j oznacza numer kolumny (od lewej do prawej). Dla macierzy $n \times p$ pamięć potrzebna do przetrzymania jej jest proporcjonalna do iloczynu $n \cdot p$.

1.2 Reprezentacja macierzy rzadkiej

Macierz rzadka to macierz, w której większość elementów jest zerowa.

Do trzymania oraz manipulowania rzadką macierzą na komputerze stosuje się specjalistyczne algorytmy i struktury danych, które biorą pod uwagę rzadkość wypełnienia macierzy. Tradycyjne algorytmy stosowane dla gęstych macierzy są nieefektywne w przypadku macierzy rzadkich, gdyż moc obliczeniowa oraz pamięć są marnowane na przetwarzanie zer.

W przypadku rzadkiej macierzy pamięć potrzebna na przetrzymanie takiej macierzy jest zredukowana poprzez operowanie tylko na niezerowych elementach. W zależności od rozkładu tych elementów istnieje wiele różnych form reprezentacji macierzy rzadkich.

W naszym przypadku warto rozważyć następującą postać (i, j, a_{ij}) . Taka postać potrafi znacząco zredukować rozmiar przetrzymywanych danych.

2 Zadania: MapReduce — mnożenie macierz-wektor, macierz-macierz

Celem zadania jest napisanie programu realizującego podstawowe operacje na macierzach, czyli mnożenie macierz-wektor oraz macierz-macierz. Te operacje są intensywnie wykorzystywane przez wiele zaawansowanych algorytmów przetwarzania danych.

2.1 Macierz · wektor — wektor mieści się w pamięci (20 pkt)

2.1.1 Wstęp

Dane są macierz $A = [a_{ij}]_{1 \leq i,j \leq n}$ (przez a_{ij} oznaczamy element *i*-tym wierszu oraz *j*-tej kolumnie) oraz wektor $v = [v_1, v_2, \dots, v_n]$. Niech $x = A \cdot v$, tzn.

$$x_i = \sum_{j=1}^n a_{ji} v_j, \quad 1 \le i \le n. \tag{1}$$

Zakładamy, że n jest duże jednak na tyle małe, że wektor v mieści się w pamięci każdego węzła obliczeniowego, a zatem jest dostępny dla każdego zadania Map. Przyjmujemy również, że mamy bezpośredni dostęp do każdego z elementów macierzy A, albo poprzez jego pozycję w pliku lub dlatego, że jest składowany wraz z koordynatami, tzn. jako trójka (i, j, a_{ij}) .

Na podobnej zasadzie mamy dostęp do elementów v_i wektora v.

2.1.2 Funkcja Map

Funkcja Map działa na jednym elemencie macierzy A. Każde zadanie Map będzie operowało na kawałku macierzy A. Dla każdego elementu a_{ij} produkuje parę klucz-wartość $(i, a_{ij} \cdot v_j)$. W ten sposób wszystkie składniki sumy definiującej x_i posiadają ten sam klucz i.

2.1.3 Funkcja Reduce

Reduce sumuje wszystkie wartości powiązane z kluczem i. Rezultatem będzie para (i, x_i) .

2.1.4 Przykład

Uwaga: na początku pliku wejściowego mogą być współrzędne wektora, a później macierzy.

Wektor v mieści się w pamięci, macierz A niekoniecznie. Mamy Av = x, a x[i] = suma po j wyrażeń m[i,j]*v[j].

```
# i to nr wiersza
map(i, j, m[i,j]) -> (i, m[i,j]*v[j])
# reduce robi sume po tych kolumnach
reduce(i, [m[i,j]*v[j]]_j) -> (i, suma_po_j(m[i,j]*v[j]))
```

Rozważmy

$$\begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = ? \tag{2}$$

W naszej rzadkiej reprezentacji będzie:

0;0;1 1;0;2 1;1;-1

mapowanie:

0; 2 1; 2*2 = 4 1; (-2)*(-1) = 2

reduce:

0; 2 1; 6

Stąd

$$\begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix} \tag{3}$$

W mnożeniu macierzy przez wektor, który nie mieści się w pamięci wybieramy po kolei wiersze z macierzy i mnożymy przez dany element tego wektora (wczytujemy je na bieżąco). Należy gdzieś w danych dodać część wektora, którą mnożymy, żeby wiedzieć, z którego pliku czytać odpowiednią część wektora/macierzy.

2.1.5 Zadanie

Policz na tablicy/kartce przykład mnożenia macierz-wektor.

2.1.6 Zadanie

Przygotuj kod realizujący mnożenie macierz-wektor i przetestuj go.

2.2 Macierz · wektor — rozmiar wektora przekracza rozmiar pamięci (20 pkt)

2.2.1 Wstęp

W większości przypadków wektor v i macierz A będą na tyle duże, że nie będą mieścić się w pamięci węzła obliczeniowego. Oczywiście v nie musi mieścić się w pamięci, jednak narazi nas to na spory koszt związany z wymianą fragmentów pomiędzy pamięcią a dyskiem.

Alternatywnym rozwiązaniem jest podzielenie macierzy A oraz wektora v na taką samą liczbę horyzontalnych pasków równej szerokości. Celem jest taki podział danych, aby fragment wektora mieścił się w pamięci węzła obliczeniowego.

Rysunek 1: Przykładowy podział macierzy i wektora na 5 fragmentów.

Ponieważ k-ty fragment macierzy mnożony jest tylko przez k-ty fragment wektora, możemy podzielić macierz na wiele plików (jeden plik na fragment). Analogicznie postępujemy w przypadku wektora.

Każde zadanie Map ma przypisany fragment macierzy oraz odpowiadający mu fragment wektora. Map i Reduce są jak poprzednio.

2.2.2 Przykład

Wówczas k-ty fragment macierzy mnożony jest tylko przez k-ty fragment wektora.

Niech slice_length = 3. Załóżmy, że mamy początkową macierz A w postaci:

- (3, 3), 7
- (3, 2), 1
- (2, 1), -1
- (1, 1), 2.5
- (0, 1), 3.2
- (2, 4), 16
- (1, 6), 3
- (1, 5), 10.5
- (3, 8), 8

oraz wektor v w postaci:

- 0; 2
- 1; -3
- 2; 0
- 3; 9
- 4; 1
- 5; 2
- 6; 2
- 7; 0
- 8; 1

Następnie za pomocą jednego wykonania Map Reduce możemy podzielić macier
z na paski: wystarczy brać pod uwagę j i w ten sposób dopisywać elementy do odpowiedniego pliku, tzn. element

dopisz do pliku/fragmentu M_k , gdzie $k = floor(j/slice_length)$.

Mamy wówczas paski:

 $M_0:$

- (0, 1), 3.2
- (1, 1), 2.5
- (3, 2), 1
- (2, 1), -1

 $M_{1}:$

(3, 3), 7

```
(2, 4), 16
(1, 5), 10.5
M_2:
(1, 6), 3
(3, 8), 8
```

Te fragmenty możemy potem znów zebrać (lub nie) do wspólnego pliku (przecież i tak wszystko będzie szło strumieniem).

Podobnie dostajemy:

v_0:

0; 2
1; -3
2; 0

v_1:

3; 9
4; 1
5; 2

v_2:

6; 2
7; 0
8; 1

Zauważmy, że elementy macierzy w jednym pliku nie muszą być posortowane.

Wówczas dla elementu, który trafił do mappera można dopasować fragment wektora, na którym mają być wykonane obliczenia za pomocą wzoru $k = floor(j/slice_length)$. Wówczas $v = v_k$.

Dzięki takiemu podziałowi macierzy wymiany wektora v będziemy dokonywać tylko wtedy, gdy skończą nam się elementy z jednego pasma macierzy i będziemy musieli przejść na nowe.

2.2.3 Zadanie

Przygotuj odpowiedni przykład demonstrujący omówioną technikę i przetestuj go.

Macierz najwygodniej zapisać w kilku plikach, każdy plik to jeden pasek np. A_1, A_2, A_3, A_4, A_5. Wektor najwygodniej zapisać w kilku plikach np. v_1, v_2, v_3, v_4, v_5.

Napisać program, który będzie wczytywał odpowiednie fragmenty wektora w zależności od tego, który pasek macierzy jest przetwarzany (tzn. sprawdzamy, które kolumny analizujemy w kroku Map).

2.3 Macierz - macierz - kilka kroków MapReduce (30 pkt)

2.3.1 Wstęp

Dane są macierz $A=[a_{ij}]_{1\leq i\leq n, 1\leq j\leq p}$ oraz macierz $B=[b_{jk}]_{1\leq j\leq p, 1\leq k\leq q}.$

Niech macierz C będzie wynikiem mnożenia $C = A \cdot B = [c_{ik}]_{1 \leq i \leq n, 1 \leq k \leq q}$, tzn.

$$c_{ik} = \sum_{j=1}^{p} a_{ij} b_{jk}, \quad 1 \le i \le n, 1 \le k \le q.$$
 (4)

2.3.2 Część pierwsza

2.3.2.1 Funkcja Map

Dla macierzy A postaci $(i, j, a_{ij})_A$ generujemy pary klucz-wartość $(j, (I_A, i, a_{ij}))$, gdzie I_A jest identyfikatorem macierzy A.

Analogicznie postępujemy dla macierzy B postaci $(j, k, b_{jk})_B$, tzn. generujemy pary $(j, (I_B, k, b_{jk}))$, gdzie I_B jest identyfikatorem macierzy B.

2.3.2.2 Funkcja Reduce

Dla każdego klucza j przetwarza listę zasocjowanych wartości. Dla każdej z wartości pochodzącej z macierzy A (np. (I_A, i, a_{ij})) oraz dla każdej wartości pochodzącej z macierzy B (np. (I_B, k, b_{jk})) tworzy parę klucz-wartość z kluczem równym (i, k) oraz wartością elementu równą $(a_{ij} \cdot b_{jk})$

2.3.3 Część druga

2.3.3.1 Funkcja Map

Funkcja identycznościowa. Dla każdej pary (k, v) produkuje dokładnie tę parę.

$$map((i, k), a_{ij} b_{jk}) \rightarrow ((i, k), a_{ij} b_{jk})$$

2.3.3.2 Funkcja Reduce

Dla każdego klucza (i, k) wytwarza sumę wszystkich wartości zasocjowanych z tym kluczem. Wynikiem jest para ((i, k), v), gdzie v jest wartością elementu c_{ik} macierzy C = AB.

2.3.4 Przykład

Rozważmy

$$\begin{bmatrix} 1 & 2 & -3 \\ 6 & 8 & 0 \\ 0 & 0 & 3 \\ 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} 9 & 0 & 4 \\ 3 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} = ?$$
 (5)

W reprezentacji rzadkiej przedstawia się to jako:

Α	:				В	:			
		(1,	1,	1)			(1,	1,	9)
		(1,	2,	2)			(1,	3,	4)
		(1,	3,	-3)			(2,	1,	3)
		(2,	1,	6)			(2,	2,	2)
		(2,	2,	8)			(3,	2,	1)
		(3,	3,	3)			(3,	3,	2)
		(4,	1,	4)					

2.3.4.1 Krok 1

2.3.4.1.1 Map nr 1:

```
(1, 1, 9) \rightarrow (1, (B, 1, 9))
(1, 1, 1) \rightarrow (1, (A, 1, 1))
(1, 2, 2) \rightarrow (2, (A, 1, 2))
                                          (1, 3, 4)
                                                       -> (1, (B, 3, 4))
(1, 3, -3) \rightarrow (3, (A, 1, -3))
                                          (2, 1, 3)
                                                       -> (2, (B, 1, 3))
(2, 1, 6) \rightarrow (1, (A, 2, 6))
                                          (2, 2, 2)
                                                       -> (2, (B, 2, 2))
           -> (2, (A, 2, 8))
                                                       -> (3, (B, 2, 1))
(2, 2, 8)
                                          (3, 2, 1)
            \rightarrow (3, (A, 3, 3))
                                          (3, 3, 2)
                                                       -> (3, (B, 3, 2))
(3, 3, 3)
(4, 1, 4) \rightarrow (1, (A, 4, 4))
```

Sortujemy po kluczach, generujemy wszystkie możliwe kombinacje A i B, mnożymy każdą parę.

2.3.4.1.2 Reduce nr 1:

(1,	(A,	1,	1))		[(A,	1,	1),	(B,	1,	9)]	->	((1,	1),	1*9)
(1,	(A,	2,	6))		[(A,	1,	1),	(B,	3,	4)]	->	((1,	3),	1*4)
(1,	(A,	4,	4))	~	[(A,	2,	6),	(B,	1,	9)]	->	((2,	1),	6*9)
(1,	(B,	1,	9))		[(A,	2,	6),	(B,	3,	4)]	->	((2,	3),	6*4)
(1,	(B,	3,	4))		[(A,	4,	4),	(B,	1,	9)]	->	((4,	1),	4*9)
					[(A,	4,	4),	(B,	3,	4)]	->	((4,	3),	4*4)
(2,	(A,	1,	2))		[(A,	1,	2),	(B,	1,	3)]	->	((1,	1),	2*3)
(2,	(A,	2,	8))	~	[(A,	1,	2),	(B,	2,	2)]	->	((1,	2),	2*2)
(2,	(B,	1,	3))		[(A,	2,	8),	(B,	1,	3)]	->	((2,	1),	8*3)
(2,	(B,	2,	2))		[(A,	2,	8),	(B,	2,	2)]	->	((2,	2),	8*2)
(3,	(A,	1,	-3))		[(A,	1,	-3),	(B,	, 2	, 1)]	->	((1,	2),	-3*1)
(3,	(A,	3,	3))	~	[(A,	1,	-3),	(B,	, 3	, 2)]	->	((1,	3),	-3*2)
(3,	(B,	2,	1))		[(A,	3,	3),	(B,	2,	1)]	->	((3,	2),	3*1)
(3,	(B,	3,	2))		[(A,	3,	3),	(B,	3,	2)]	->	((3,	3),	3*2)

2.3.4.2 Krok 2

2.3.4.2.1 Map nr 2:

Identyczność, więc po prostu zwracamy w nim to samo co z poprzedniego reduce:

- ((1, 1), 9) ((1, 3), 4)
- ((2, 1), 54)
- ((2, 3), 24)

Sortujemy po kluczach, a potem robimy sumę po kluczach.

2.3.4.2.2 Reduce nr 2:

$$((1, 1), 9)$$

$$((1, 1), 6) \longrightarrow ((1, 1), 6+9)$$

$$((1, 2), 4)$$

$$((1, 2), -3) \longrightarrow ((1, 2), 4-3)$$

$$((1, 3), 4)$$

$$((1, 3), -6) \longrightarrow ((1, 3), 4-6)$$

$$((2, 1), 54)$$

$$((2, 1), 24) \longrightarrow ((2, 1), 54+24)$$

$$((2, 2), 16) \longrightarrow ((2, 2), 16)$$

$$((2, 3), 24) \longrightarrow ((2, 3), 24)$$

$$((2, 3), 24) \longrightarrow ((2, 3), 24)$$

$$((3, 2), 3) \longrightarrow ((3, 2), 3)$$

$$((3, 2), 3) \longrightarrow ((3, 2), 3)$$

$$((4, 1), 36) \longrightarrow ((4, 1), 36)$$

$$((4, 1), 36) \longrightarrow ((4, 3), 16)$$
Czyli
$$\begin{bmatrix} 1 & 2 & -3 \\ 6 & 8 & 0 \\ 0 & 0 & 3 \\ 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} 9 & 0 & 4 \\ 3 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 15 & 1 & -2 \\ 78 & 16 & 24 \\ 0 & 3 & 6 \\ 36 & 0 & 16 \end{bmatrix}$$
(6)

Istotnie

2.3.5 Zadanie

Policz na tablicy/kartce przykład mnożenia macierz-macierz w dwu krokach.

2.3.6 Zadanie

Przygotuj odpowiedni przykład demonstrujący omówioną technikę. Przetestuj kod.

2.4 Macierz · macierz — pojedynczy krok MapReduce (30 pkt)

2.4.1 Zadanie

Zaprojektuj, zaimplementuj oraz przetestuj algorytm mnożenia macierzy, który wykorzystuje tylko pojedynczy krok Map Reduce.