Extração de Regras de Associação no Consumo de Filmes

MARIA EDUARDA MACIEL RENATA CAVALHEIRO DA SILVA

Introdução

Contexto

- O streaming dos filmes cada vez mais comum
- Objetivo de construir um perfil de consumo de seus usuários
- Relevância da funcionalidade levou ao desenvolvimento de sistemas de recomendação
- Análise geral ao invés de apenas a individual, considerando o cenário geral de consumo

Técnicas de mineração de→ dados e de regras de associação

Algoritmos para mineração de regras de associação: *Partition, FP-Growth, Eclat e Apriori*

Introdução

Fundamentação Teórica

REGRAS DE ASSOCIAÇÃO

Dado um conjunto de transações, sendo cada transação um conjunto de itens e sendo X e Y dois conjuntos de itens, uma regra de associação seria $X \rightarrow Y$.

SUPORTE E CONFIANÇA

Suporte é a frequência com a qual são localizados padrões específicos entre os dados da base. A confiança mede a força das regras, ou seja, a quantidade percentual de um $determinado X \rightarrow$ Y.

MINSUP E MINCONF

minsup: é a parcela de transações que satisfaz a união dos itens do antecedente com o consequente; minconf: define que no mínimo c% das transações que satisfazem o antecedente de uma regra, também satisfaçam o consequente dessa regra.

Métodos

SELEÇÃO E PRÉ-PROCESSAMENTO DA BASE DE DADOS

- Primeira etapa: selecionar a base de dados que seria utilizada para o experimento
- Base escolhida: "Large Movie Dataset", disponível no Kaggle
- A base possui os dados de mais de 7.000 usuários, mais de 200.000 títulos - sendo desses, 58.958 filmes diferentes
- Para esse estudo, foram utilizados os dados de consumo de 5.000 usuários, levando em consideração apenas os títulos assistidos

ESCOLHA DA TÉCNICA E DO ALGORITMO

- O algoritmo aplicado nesse estudo foi o *Apriori*
- Implementado em Python, utilizando a biblioteca *Apyori*, disponível no *Python Package Index (PyPI)*
- O *Apriori* funciona encontrando todos os conjuntos de itens frequentes de uma base de dados, e utiliza funções para criar os candidatos e eliminar os itens que não são frequentes dentro dos conjuntos
- Foram retirados do conjunto os usuários com o identificador (id) maior do que 5000
- Nova tabela de dados utilizando 4 passos

Tabela utilizada

PASSOS

- 1. Criação de uma lista para adicionar todos os filmes assistidos por cada usuário
- 2. Iteração na base de dados de zero até 5.000, adicionando os filmes de acordo com o id do usuário
- 3. Uma lista para adicionar cada lista de filmes de cada usuário
- 4. Transformação dessa lista de listas em uma tabela de dados em que a primeira coluna corresponde ao id do usuário e as colunas subsequentes contém cada uma o título de um filme

PARÂMETROS DO ALGORITMO

min_confidence: 0,4; é a medida da proporção dos usuários que assistiram ao filme X e que também assistiram ao filme Y. A confiança entre dois itens (filme X e filme Y) é definida como o número total de usuários que assistiram tanto o filme X quanto o Y, sobre o número total de usuários que assistiram X. Isto é: número de usuários que assistiram X

min_lift: 2; é a relação entre a confiança e o suporte, dado por: confiança ($X \rightarrow Y$)/suporte(Y)

min_length: 10; é o número mínimo de filmes que devem estar na lista de filmes assistidos de cada usuário

COM OS PARÂMETROS

Confiança dos filmes assistidos de pelo menos 40%, o que indica que de todas as pessoas que assistiram ao filme X, o resultado deve mostrar pelo menos 40% que também assistiram ao filme Y; e número de filmes no mínimo 10 para evitar resultados apenas com sequências (por exemplo, se fosse selecionado três como min_length, teríamos uma sequência óbvia de filmes nas regras como: assistir o primeiro "Senhor dos Anéis" implica em assistir também o segundo "Senhor dos Anéis")

APÓS A EXECUÇÃO DO ALGORITMO

A estrutura de exibição dessa regra mostra primeiramente quais foram os dois itens associados e o valor de suporte


```
Association 1 is: RelationRecord(items=frozenset({'2001: A Space Odyssey (196
8)', 'Alien (1979)'}), support=0.10702140428085617, ordered_statistics=[OrderedS
tatistic(items_base=frozenset({'2001: A Space Odyssey (1968)'}), items_add=froze
nset({'Alien (1979)'}), confidence=0.6430288461538463, lift=2.9654070128441674),
OrderedStatistic(items_base=frozenset({'Alien (1979)'}), items_add=frozenset({'2
001: A Space Odyssey (1968)'}), confidence=0.4935424354243543, lift=2.9654070128
441674)])
Association 2 is: RelationRecord(items=frozenset({'2001: A Space Odyssey (196
8)', 'Back to the Future (1985)'}), support=0.11002200440088018, ordered_statist
ics=[OrderedStatistic(items_base=frozenset({'2001: A Space Odyssey (1968)'}), it
ems_add=frozenset({'Back to the Future (1985)'}), confidence=0.6610576923076924,
lift=2.2480458529565674)])
Association 3 is: RelationRecord(items=frozenset({'2001: A Space Odyssey (196
8)', 'Blade Runner (1982)'}), support=0.11302260452090418, ordered_statistics=[0
rderedStatistic(items_base=frozenset({'2001: A Space Odyssey (1968)'}), items_ad
d=frozenset({'Blade Runner (1982)'}), confidence=0.6790865384615385, lift=3.0945
794036182597), OrderedStatistic(items_base=frozenset({'Blade Runner (1982)'}), i
tems_add=frozenset({'2001: A Space Odyssey (1968)'}), confidence=0.5150410209662
716, lift=3.0945794036182592)])
Association 4 is: RelationRecord(items=frozenset({'2001: A Space Odyssey (196
8)', 'Godfather, The (1972)'}), support=0.10802160432086418, ordered_statistics=
[OrderedStatistic(items_base=frozenset({'2001: A Space Odyssey (1968)'}), items_
add=frozenset({'Godfather, The (1972)'}), confidence=0.6490384615384616, lift=2.
1054790845105575)])
```

Regra	Suporte	Antecedente	Consequente	Confiança	Lift
Regra de associação 1	0.1070	2001: A Space Odyssey (1968)	Alien (1979)	0.6430	2.9654
		Alien (1979)	2001: A Space Odyssey (1968)	0.4935	2.9654
Regra de associação 2	0.1100	2001: A Space Odyssey (1968)	Back to the Future (1985)	0.6610	2.2480
	0.1130	2001: A Space Odyssey (1968)	Blade Runner (1982)	0.6790	3.0945
Regra de associação 3		Blade Runner (1982)	2001: A Space Odyssey (1968)	0.5150	3.0945
Regra de associação 4	0.1080	2001: A Space Odyssey (1968)	Godfather, The (1972)	0.6490	2.1054
Regra de associação 5	0.1138	2001: A Space Odyssey (1968)	Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981)	0.6838	2.0657

Regra de associação 6	0.1218	2001: A Space Odyssey (1968)	Star Wars: Episode V - The Empire Strikes Back (1980)	0.7319	2.0957
Regra de associação 7	0.1122	2001: A Space Odyssey (1968)	Star Wars: Episode VI - Return of the Jedi (1983)	0.6742	2.0453
Regra de associação 8	0.1012	2001: A Space Odyssey (1968)	Terminator, The (1984)	0.6081	2.6739
		Terminator, The (1984)	2001: A Space Odyssey (1968)	0.4450	2.6739
Regra de associação 9	0.1076	Ace Ventura: Pet Detective (1994)	Ace Ventura: When Nature Calls (1995)	0.4487	3.4141
		Ace Ventura: When Nature Calls (1995))	Ace Ventura: Pet Detective (1994)	0.8188	3.4141
Regra de associação 10	0.1504	Aladdin (1992)	Ace Ventura: Pet Detective (1994)	0.6271	2.3241
		Ace Ventura: Pet Detective (1994)	Aladdin (1992)	0.5574	2.3241

Conclusão

Recomendar um filme aleatório pode não ser uma boa ideia para manter os usuários ativos na plataforma, já que o filme pode não ser interessante para quem está assistindo

Sistemas de recomendação podem ser úteis para manter os clientes fiéis e interessados, que irão enxergar na plataforma que assinam um bom catálogo com filmes que atendem aos seus gostos

Pode-se criar uma lista com algumas sugestões do que recomendar para o usuário. Por exemplo, na regra que mostra que 64,3% dos usuários que assistiram "2001: Uma Odisseia no Espaço" também assistiram "Alien", pode-se inferir que recomendar "Alien" para aqueles usuários que acabaram de assistir "2001: Uma Odisseia no Espaço" tem uma grande chance de lhes parecer interessante

Obrigada!

Referências

Hipp, J., Güntzer, U. e Nakhaeizadeh, G. (2000) "Algorithms for Association Rule Mining – A General Survey and Comparison." ACM SIGKDD Explorations Newsletter, 58–64.

Romão, W., Niederauer, C., Martins, A., Tcholakian, A., Pacheco, R. e Barcia, R. (1999) "Extração De Regras De Associação em C&t: O Algoritmo Apriori". Programa de Pós-Graduação em Engenharia de Produção - PPGEP Universidade Federal de Santa Catarina, Centro Tecnológico, Florianópolis, Brasil.

Phorasim, P. e Yu, L. (2017) "Movies recommendation system using collaborative filtering and k-means". International Journal of Advanced Computer Research, Vol 7(29).

Bourreau, M. e Gaudin, G. (2018) "Streaming Platform and Strategic Recommendation Bias". CESifo Working Paper No. 7390, Munique, Alemanha