

planetmath.org

Math for the people, by the people.

Cauchy matrix

Canonical name CauchyMatrix

Date of creation 2013-03-22 14:30:43 Last modified on 2013-03-22 14:30:43

Owner kshum (5987) Last modified by kshum (5987)

Numerical id 9

Author kshum (5987) Entry type Definition Classification msc 15A57

Defines Cauchy matrices

Let x_1, x_2, \ldots, x_m , and y_1, y_2, \ldots, y_n be elements in a field F, satisfying the that

- 1. x_1, \ldots, x_m are distinct,
- 2. y_1, \ldots, y_n are distinct, and
- 3. $x_i + y_j \neq 0$ for $1 \leq i \leq m, 1 \leq j \leq n$.

The matrix

$$\begin{bmatrix} \frac{1}{x_1+y_1} & \frac{1}{x_1+y_2} & \cdots & \frac{1}{x_1+y_n} \\ \frac{1}{x_2+y_1} & \frac{1}{x_2+y_2} & \cdots & \frac{1}{x_2+y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{x_m+y_1} & \frac{1}{x_m+y_2} & \cdots & \frac{1}{x_m+y_n} \end{bmatrix}$$

is called a $Cauchy\ matrix\ over\ F$.

The determinant of a square Cauchy matrix is

$$\frac{\prod_{i< j}(x_i - x_j)(y_i - y_j)}{\prod_{i \neq j}(x_i + y_j)}$$

Since x_i 's are distinct and y_j 's are distinct by definition, a square Cauchy matrix is non-singular. Any submatrix of a rectangular Cauchy matrix has full rank.