Complexidade de Algoritmos

Mariana Kolberg

Análise da complexidade pessimista

Plano

Uma hierarquia de abstrações:

Análise de Complexidade Pessimista - ACP

- A complexidade pessimista é o critério mais utilizado para verificar a eficiência de algoritmos
- Lembrando que

$$C_p^{=}[a](n) = \max\{desemp[a](d) \in R_+ \mid tam(d) = n\}$$

$$C_p^{\leq}[a](n) = \max\{desem p[a](d) \in R_+ \mid tam(d) \leq n\}$$

- Iremos estudar a complexidade das seguintes estruturas:
 - Atribuição : v← e
 - Seqüência: S;T
 - Condicional : se b então S senão T (ou se b então S)
 - Iteração definida : para i de j até m faça S
 - Iteração indefinida : enquanto b faça S

Análise de Complexidade Pessimista - ACP

Para operarmos ponto a ponto com funções precisamos

Soma pontual: (f+g)(d) := f(d) + g(d)

Máximo pontual: $\max(f, g)(d) = \max[f(d), g(d)]$

Mínimo pontual: $\min(f, g)(d) = \min[f(d), g(d)]$

Considere
$$f(n) = n + 1 e g(n) = n^2 de N em N$$

n	0	1	2	3	$n > 3$
f(n)	1	2	3	4	n+1
g(n)	0	1	4	9	n^2
(f+g)(n)	1	3	7	13	$n^2 + n + 1$
$\max(f,g)(n)$	1	2	4	9	n^2
min(f,g)(n)	0	1	3	4	n+1

Conceitos Preliminares

- O desempenho de um algoritmo é obtido a partir dos desempenhos das suas várias partes.
 - a complexidade de um algoritmo também
- Um algoritmo é composto basicamente de componentes conjuntivas

```
Por exemplo, no (trecho de) algoritmo

j ← i + 1 ; k ← i - 1;

essas duas atribuições são suas componentes conjuntivas.
```

e componentes disjuntivas:

```
Por outro lado, no (trecho de) algoritmo

<u>se</u> i ≠ j <u>então</u> j ← i + 1 <u>senão</u> k ← i - 1;

essas duas atribuições são suas componentes disjuntivas.
```

Conceitos Preliminares

▶ Considere um algoritmo a_0 composto de duas componentes a_1 e a_2 .

Para uma entrada **d** com tam(d) \leq **n**, a complexidade pessimista dá uma cota superior para a função **desem**p

desemp[a_j](d) $\leq c_P^{\leq}$ [a_j](n), para j = 0, 1, 2.

Sabendo que a_1 e a_2 são componentes conjuntivas de a_0 temos

$$desemp[a_0](d) = desemp[a_1](d) + desemp[a_2](d)$$

Usando as cotas superiores temos

desemp[
$$a_0$$
](d) $\leq c_P^{\leq}$ [a_1](n) + c_P^{\leq} [a_2](n). (para uma entrada d específica)

pela definição de complexidade pessimista temos a seguinte cota $c_P^{\leq} [a_0](n) \leq c_P^{\leq} [a_1](n) + c_P^{\leq} [a_2](n)$.

Sabendo que os custos das partes dão cotas inferiores, temos desemp[a_j](d) < desemp[a₀](d), para cada j = 1, 2.

Como a complexidade pessimista é cota superior para o custo temos $desemp[a_i](d) \le c_p^{\le} [a_0](n)$, para cada i = 1, 2.

Pela definição de complexidade pessimista temos a seguinte cota c_P^{\leq} [a_j](n) $\leq c_P^{\leq}$ [a_0](n), para cada j = 1, 2.

Logo temos Máx (c_P^{\leq} [a_1], c_P^{\leq} [a_2])(n) $\leq c_P^{\leq}$ [a_0](n).

Por que não o minimo?

 Sendo assim, a complexidade pessimista de um algoritmo com partes conjuntivas é limitada por

$$\text{Máx } (c_P^{\leq} \, [\, a_1 \,], \, c_P^{\leq} \, [\, a_2 \,] \,) \leq c_P^{\leq} \, [\, a_0 \,] \leq c_P^{\leq} \, [\, a_1 \,] + c_P^{\leq} \, [\, a_2 \,].$$

Portanto a_0 tem ordem $\Theta(c_P^{\leq} [a_1] + c_P^{\leq} [a_2])$.

• Mostre que $c_P^{\leq}[a_0] = \Theta(c_P^{\leq}[a_1] + c_P^{\leq}[a_2])$

▶ Mostre que $c_P^{\leq}[a_0] = \Theta(c_P^{\leq}[a_1] + c_P^{\leq}[a_2])$ $(\exists \, c, c' \in \mathbb{R}_+) (\exists \, n_0 \in \mathbb{N}) (\, \forall \, n \geq n_0 \,\,) (c_P^{\leq}[a_0](n) \leq c \cdot (c_P^{\leq}[a_1](n) + c_P^{\leq}[a_2](n)) \wedge c_P^{\leq}[a_0](n) \geq c' \cdot (c_P^{\leq}[a_1](n) + c_P^{\leq}[a_2](n))$

 $\begin{array}{ll} \text{Mostre que} & c_P^{\leq}\left[a_0\right] = \Theta(c_P^{\leq}\left[a_1\right] + c_P^{\leq}[a_2]) \\ (\exists \, c, c' \in \mathbb{R}_+) (\, \exists \, n_0 \, \in \mathbb{N}) (\, \forall \, n \geq n_0 \, \,) (c_P^{\leq}\left[a_0\right](n) \leq c \cdot \, (c_P^{\leq}\left[a_1\right](n) + c_P^{\leq}[a_2](n)) \wedge \\ & c_P^{\leq}\left[a_0\right](n) \geq c' \cdot \, (c_P^{\leq}\left[a_1\right](n) + c_P^{\leq}[a_2](n)) \\ \\ c_P^{\leq}\left[a_0\right](n) & \geq \text{Máx} \, (c_P^{\leq}\left[a_1\right](n) \, , \, c_P^{\leq}[a_2](n)) \end{array}$

 $\begin{array}{l} \text{Mostre que } c_P^{\leq}\left[a_0\right] = \Theta(c_P^{\leq}\left[a_1\right] + c_P^{\leq}[a_2]) \\ (\exists\, c, c' \in \mathbb{R}_+) (\,\exists\, n_0 \in \mathbb{N}) (\,\forall\, n \geq n_0\,\,) (c_P^{\leq}\left[a_0\right](n) \leq c \cdot \,(c_P^{\leq}\left[a_1\right](n) + c_P^{\leq}[a_2](n)) \wedge \\ c_P^{\leq}\left[a_0\right](n) \geq c' \cdot \,(c_P^{\leq}\left[a_1\right](n) + c_P^{\leq}[a_2](n)) \\ c_P^{\leq}\left[a_0\right](n) & \geq \text{M\'ax} \,(c_P^{\leq}\left[a_1\right](n) \,,\, c_P^{\leq}[a_2](n)) \\ \geq \left(\frac{1}{2}\right) \,c_P^{\leq}\left[a_1\right](n) + \left(\frac{1}{2}\right) c_P^{\leq}[a_2](n) \end{array}$

▶ Mostre que $c_P^{\leq}[a_0] = \Theta(c_P^{\leq}[a_1] + c_P^{\leq}[a_2])$ $(\exists c,c' \in \mathbb{R}_+)(\exists n_0 \in \mathbb{N})(\forall n \geq n_0)(c_P^{\leq}[a_0](n) \leq c \cdot (c_P^{\leq}[a_1](n) + c_P^{\leq}[a_2](n)) \wedge c_P^{\leq}[a_0](n) \geq c' \cdot (c_P^{\leq}[a_1](n) + c_P^{\leq}[a_2](n))$

$$\begin{split} c_P^{\leq} \ [a_0 \,](n) & \geq \text{M\'ax} \ (c_P^{\leq} \ [a_1 \,](n) \,, \ c_P^{\leq} [a_2 \,](n)) \\ & \geq \left(\frac{1}{2}\right) \, c_P^{\leq} \ [a_1 \,](n) + \left(\frac{1}{2}\right) c_P^{\leq} [a_2 \,](n) \\ & \geq \left(\frac{1}{2}\right) \, (c_P^{\leq} \ [a_1 \,](n) + c_P^{\leq} [a_2 \,](n)), \, e \end{split}$$

 $\begin{array}{l} \text{Mostre que} \quad c_P^{\leq}\left[a_0\right] = \Theta(c_P^{\leq}\left[a_1\right] + c_P^{\leq}[a_2]) \\ (\exists\, c,\! c'\in\mathbb{R}_+) \, (\,\exists\, n_0\in\mathbb{N}) \, (\,\forall\, n\!\geq\! n_0\,\,) (\,c_P^{\leq}\left[a_0\right] (n) \leq c\cdot\, (\,c_P^{\leq}\left[a_1\right] (n) + c_P^{\leq}[a_2] (n)) \wedge \\ \\ c_P^{\leq}\left[a_0\right] (n) \geq c'\cdot\, (\,c_P^{\leq}\left[a_1\right] (n) + c_P^{\leq}[a_2] (n)) \\ \\ c_P^{\leq}\left[a_0\right] (n) \qquad \geq \text{M\'ax} \, (\,c_P^{\leq}\left[a_1\right] (n)\,,\, c_P^{\leq}[a_2] (n)) \\ \\ \geq \left(\frac{1}{2}\right) \, c_P^{\leq}\left[a_1\right] (n) + \left(\frac{1}{2}\right) \, c_P^{\leq}[a_2] (n), \\ \\ \geq \left(\frac{1}{2}\right) \, (\,c_P^{\leq}\left[a_1\right] (n) + c_P^{\leq}[a_2] (n)), \, e \end{array}$

$$c_P^{\leq}[a_0](n) \leq (c_P^{\leq}[a_1](n) + c_P^{\leq}[a_2](n))$$

▶ Mostre que $c_P^{\leq}[a_0] = \Theta(c_P^{\leq}[a_1] + c_P^{\leq}[a_2])$ $(\exists c,c' \in \mathbb{R}_+)(\exists n_0 \in \mathbb{N})(\forall n \geq n_0)(c_P^{\leq}[a_0](n) \leq c \cdot (c_P^{\leq}[a_1](n) + c_P^{\leq}[a_2](n)) \wedge c_P^{\leq}[a_0](n) \geq c' \cdot (c_P^{\leq}[a_1](n) + c_P^{\leq}[a_2](n))$

$$\begin{split} c_P^{\leq} \ [a_0 \](n) & \geq \text{M\'ax} \ (c_P^{\leq} \ [a_1 \](n) \ , \ c_P^{\leq} [a_2 \](n)) \\ & \geq \left(\frac{1}{2}\right) \ c_P^{\leq} \ [a_1 \](n) + \left(\frac{1}{2}\right) c_P^{\leq} [a_2 \](n) \\ & \geq \left(\frac{1}{2}\right) \ (c_P^{\leq} \ [a_1 \](n) + c_P^{\leq} [a_2 \](n)) , \ e \\ c_P^{\leq} \ [a_0 \](n) & \leq (c_P^{\leq} \ [a_1 \](n) + c_P^{\leq} [a_2 \](n)) \\ & n_0 = 1, \ c = 1, \ c' = 1/2 \end{split}$$

 Exemplo: considere um algoritmo a que determina o máximo e o mínimo de uma seqüência de naturais

$$M \leftarrow \max(v); m \leftarrow \min(v)$$

O desempenho de a é dado por

$$desemp[a](v) = desemp[M \leftarrow \max(v)] + desemp[m \leftarrow \min(v)]$$

As complexidades das partes conjuntivas são

$$c_p[M \leftarrow \max(v)](n) = n$$

 $c_p[m \leftarrow \min(v)](n) = n$

Portanto

$$desemp[a](d) \le c_p[M \leftarrow \max(v)](n) + c_p[m \leftarrow \min(v)](n) = n + n$$
$$c_p[a](n) \le 2n$$

 Exemplo: considere um algoritmo a que ordena uma sequência de naturais e determina seu somatório

$$v \leftarrow ordn(u); w \leftarrow soma(u)$$

O desempenho de a é dado por

$$desemp[a](d) = desemp[v \leftarrow ordn(u)](d) + desemp[w \leftarrow soma(u)](d)$$

Considere que as complexidades das partes conjuntivas são

$$c_p[v \leftarrow ordn(u)](n) = n^2$$

$$c_p[w \leftarrow som a(u)](n) = n$$

Sabemos que

$$desem p[a](d) \le c_p[v \leftarrow ordn(u)](n) + c_p[w \leftarrow som a(u)](n) = n^2 + n$$

Portanto
$$c_p[a](n) \le n^2 + n$$

Por outro lado, sabemos que para entrada \mathbf{d} com $tam(d) \leq n$

$$desemp[v \leftarrow ordn(u)](d) \le desem[a](d) \le c_p[a](n)$$

$$desemp[w \leftarrow soma(u)](d) \le desem[a](d) \le c_p[a](n)$$

Lembrando que

$$c_p[a](n) \ge c_p[w \leftarrow soma(u)](n) = n$$

 $c_p[a](n) \ge c_p[v \leftarrow ordn(u)](n) = n^2$

Temos

$$c_p[a](n) \ge \max\{c_p[v \leftarrow ordn(u)](n), c_p[w \leftarrow soma(u)](n)\}$$

$$c_p[a](n) \ge \max\{n^2, n\} = n^2$$

$$n^2 \le c_p[a](n) \le n^2 + n$$

$$c_p[a](n) = \Theta(n^2)$$

Partes Disjuntivas

Exemplo: considere um algoritmo a que recebe uma seqüência não nula e dependendo de seu primeiro elemento, ordena-a ou determina seu somatório

Se hd(u)=0 então
$$v \leftarrow ordn(u)$$
 senão $s \leftarrow soma(u)$

Como o algoritmo a executa um dos dois processos para cada entrada u, temos

se
$$hd(u) = 0 : desem p[a](d) = desem p[v \leftarrow ordn(u)]$$

se
$$hd(u) \neq 0$$
: $desem p[a](d) = desem p[s \leftarrow som a(u)]$

Logo,

$$desemp[a](d) \le \max\{desemp[v \leftarrow ordn(u)], desemp[s \leftarrow soma(u)]\}$$

Considerando

$$c_p[v \leftarrow ordn(u)](n) = n^2$$
 e $c_p[s \leftarrow soma(u)](n) = n$

temos

$$c_p[a](n) \le \max\{c_p[v \leftarrow ordn(u)], c_p[s \leftarrow soma(u)]\} = n^2$$

Partes Disjuntivas

Considere um algoritmo $\mathbf{a_0}$ cujas duas componentes $\mathbf{a_1}$ e $\mathbf{a_2}$ sejam disjuntivas. É possível garantir que $\mathbf{c_P^{\leq}} [\mathbf{a_0}](\mathbf{n}) \leq \mathbf{Máx} (\mathbf{c_P^{\leq}} [\mathbf{a_1}], \mathbf{c_P^{\leq}} [\mathbf{a_2}])(\mathbf{n})$.

Sabendo que a_1 e a_2 são componentes disjuntivas de a_0 temos desemp[a_0](d) = desemp[a_1](d) ou desemp[a_0](d) = desemp[a_2](d)

Como as complexidades dão cotas superiores temos $desemp[a_0](d) \le c_P^{\le}[a_1](n)$ ou $desemp[a_0](d) \le c_P^{\le}[a_2](n)$.

Logo $desemp[a_0](d) \le Máx (c_P^{\le} [a_1], c_P^{\le} [a_2])(n)$

Pela definição de complexidade pessimista temos, a seguinte cota superior

$$c_{P}^{\leq} [a_{0}](n) \leq Máx (c_{P}^{\leq} [a_{1}], c_{P}^{\leq} [a_{2}])(n).$$

Partes Disjuntivas

É possível garantir que o mínimo das complexidades das componentes disjuntivas de um algoritmo a dá uma cota inferior para a complexidade pessimista deste algoritmo?

Sabendo que a_1 e a_2 são componentes disjuntivas de a_0 temos se $desemp[a_0](d) = desemp[a_1](d)$, então: $desemp[a_1](d) \le c_P^{\le} [a_0](n)$; se $desemp[a_0](d) = desemp[a_2](d)$, então: $desemp[a_2](d) \le c_P^{\le} [a_0](n)$.

Portanto

$$c_p^{\leq}[a_0](n) \geq c_p^{\leq}[a_1](n)$$
 ou $c_p^{\leq}[a_0](n) \geq c_p^{\leq}[a_2](n)$

A cota inferior para a complexidade do algoritmo a_0 é

$$c_p^{\leq}[a_0](n) \geq \min(c_p^{\leq}[a_1], c_p^{\leq}[a_2])(n)$$

Partes Conjuntivas e Disjuntivas

 A complexidade pessimista de um algoritmo com partes conjuntivas é limitada por

Máx
$$(c_P^{\leq} [a_1], c_P^{\leq} [a_2]) \leq c_P^{\leq} [a_0] \leq c_P^{\leq} [a_1] + c_P^{\leq} [a_2].$$

Ou seja, tem ordem

$$\Theta(c_{P}^{\leq} [a_{1}] + c_{P}^{\leq} [a_{2}]).$$

A complexidade pessimista de um algoritmo com partes disjuntivas é limitada por

$$\max(c_p^{\leq}[a_1](n), c_p^{\leq}[a_2](n)) \geq c_p^{\leq}[a_0](n) \geq \min(c_p^{\leq}[a_1](n), c_p^{\leq}[a_2](n))$$