JOY NYAANGA

Chicago, IL | (716) 908-4355 | jnyaan@gmail.com | www.joynyaanga.com

SUMMARY

Highly driven and results-oriented individual looking to leverage strong analytical skills to solve complex problems. Coming with expert knowledge of the R programming language, ability to work in an interdisciplinary environment, and skill in communicating complex, industry-specific concepts.

EDUCATION

Ph.D.	Northwestern University – Evanston, IL	Expected 2022
M.A.	Quantitative Biology Princeton University – Princeton, NJ	2017 - 2018
	Molecular Biology	
B.S.	John Carroll University – University Heights, OH Double Major: Biochemistry; Cell and Molecular Biology	2013 - 2017

SKILLS

Computing: R, GitHub, Python, bash, AWS

Data science: data analysis, data mining, visualization, dashboarding

Statistics: regression models, maximum likelihood, gaussian mixture modeling, model selection

RELEVANT RESEARCH AND PROJECTS

Ph.D. Candidate | Northwestern University

2018 - Present

- Investigate the genetic variation underlying differences in developmental growth using Caenorhabditis elegans
- Collaborate with mathematicians to build mechanistic models to explore complex growth relationships
- Design and optimize a high-throughput experimental platform for the acquisition of developmental traits
- Develop and implement an R package to facilitate handling and visualization of image-based data
- Mentor and train six undergraduate and high school students on independent computational research projects

Computational Biology/Data Science Intern | Celsius Therapeutics

Summer 2021

- Evaluated lineage reconstruction and trajectory analysis methods in single-cell RNAseq data
- Benchmarked and implemented multiple trajectory inference algorithms on clinical-stage data

Masters Student | Princeton University

2017 - 2018

- Probed RNA-protein interactions regulated by 8-oxoG to uncover cellular changes caused by oxidative stress
- Modeled biochemical reactions in Python to study the dynamics of protein networks

Summer Research Student | Cleveland Clinic

Summer 2016

- Computationally identified mutations that altered N-glycosylation in factor VIII, a procoagulant protein
- Constructed plasmids containing mutations of interest

Undergraduate Researcher | John Carroll University

2015 - 2016

- Studied lipid peroxidation of linoleic acid using gas chromatography mass spectrometry
- Presented results in a university poster competition (awarded special merit)

SELECT LEADERSHIP & OUTREACH

Graduate Teaching Assistant | Northwestern University

2020 - 2021

- Collaborated with faculty to instruct 100+ students across three introductory biology courses
- Facilitated in-class discussions, and provided verbal and written assessment on course progress

Campus Tour Guide | John Carroll University

2015 - 2017

- Managed correspondence with prospective students and parents
- Demonstrated the importance of clear communication while leading campus walking tours and visit programs

PUBLICATIONS

Peer-reviewed:

Nyaanga, J., Crombie, T. A., Widmayer, S. J. & Andersen, E. C. easyXpress: An R package to analyze and visualize high-throughput *C. elegans* microscopy data generated using CellProfiler. PLoS One 16, e0252000 (2021)

Nyaanga, J. *et al*. Highly scaled measurements of *C. elegans* development suggest that physical constraints guide growth trajectories and animal shape. bioRxiv 2021.04.01.438121 (2021)