

Termodinámica (FIS1523) Calores específicos

Felipe Isaule felipe.isaule@uc.cl

Lunes 5 de Mayo de 2025

Resumen clase anterior

• Definimos el **trabajo de frontera**:

$$dW = PdV$$
.

- Definimos distintos tipos de procesos:
 - ightharpoonup Adiabáticos: Q=0 \longrightarrow $\Delta U=\pm W$.
 - \rightarrow Isocóricos: $V = \text{cte.} \longrightarrow W = 0$
 - \rightarrow Isobáricos: P = cte.
 - \rightarrow Isotérmicos: T = cte.
 - → Isotrópicos: $P = CV^{-n}$,

Clase 15: Calores específicos

- Calor específico.
- Calores específicos en gases ideales.
- Calores específicos en sólidos y líquidos.

- Bibliografía recomendada:
 - → Cengel (4.3, 4.4, 4.5).

Clase 15: Calores específicos

- Calor específico.
- Calores específicos en gases ideales.
- Calores específicos en sólidos y líquidos.

Calores específicos

• Distintas sustancias requieren cantidades de energía distintas para aumentar su temperatura, incluso si su masa es la misma.

- Tales cantidades de energía se cuantifican con el **calor específico**.
- El calor específico se define como la energía requerida para elevar en un grado la temperatura de una unidad de masa de una sustancia

Calores específicos

- En termodinámica utilizamos dos tipos de calores específicos:
 - \rightarrow Calor específico a **volumen constante** c_V .
 - \rightarrow Calor específico a **presión constante** c_P .

Calor específico a volumen constante

Por conservación de la energía se tiene que

$$\delta e_{\text{entrada}} - \delta e_{\text{salida}} = du,$$

donde u es la energía interna específica.

- A volumen constante no existe trabajo de frontera.
- Por tanto, el lado izquierdo de la ecuación corresponde a la diferencia de energía buscada. Entonces, el **calor específico** es:

$$c_V dT = du \longrightarrow c_V = \left(\frac{\partial u}{\partial T}\right)_V.$$

3.12 kJ

Calor específico a presión constante

- A **presión constante** el volumen cambia, por tanto sí hay trabajo de frontera.
- Para obtener una formula para c_P debemos usar la entalpía:

$$h = u + P\nu$$
, $H = U + PV$.

$$dH = dU + PdV + VdP$$

$$= \delta Q - PdV + PdV + VdP$$

$$= \delta Q + VdP$$
 Presión constante: dP =0
$$= \delta Q$$

Entonces, el calor específico:

$$dH = c_P m dT \longrightarrow c_P = \left(\frac{\partial h}{\partial T}\right)_P$$

Calores específicos

- El calor específico **depende de la temperatura**. Además, en principio también depende del resto de propiedades termodinámicas.
- El calor específico usualmente se escribe en unidades de kJ/kg°C o kJ/kg°K.
 - *Ambas son equivalentes ya que se trabaja con diferencias de temperatura.
- A veces también se escriben en base molar (kJ/kmol°C o kJ/kmol°K), donde se denotan como

$$\bar{c}_V, \quad \bar{c}_P.$$

Clase 15: Calores específicos

- Calor específico.
- Calores específicos en gases ideales.
- Calores específicos en sólidos y líquidos.

- Se ha demostrado experimentalmente que en gases ideales el calor específico es sólo una función de la temperatura.
- Por tanto, podemos escribir:

$$du = c_V(T)dT, \qquad dh = c_P(T)dT.$$

• Entonces, las diferencias de energía interna y de entalpía:

$$\Delta u = \int_{T_1}^{T_2} c_V(T) dT, \qquad \Delta h = \int_{T_1}^{T_2} c_P(T) dT.$$

- Calores específicos de gases reales a presiones bajas son llamados calores específicos de gas ideal.
- Se denotan como $c_{V,0}$ y $c_{P,0}$.
- Estos calores específicos se encuentran **tabulados**:

<i>a</i>) A 300 K				
Gas	Fórmula	Constante de gas, <i>R</i> kJ/kg · K	$c_{_{\mathcal{P}}}$ kJ/kg \cdot K	c_v k J/k g \cdot K
Aire	_	0.2870	1.005	0.718
Argón	Ar	0.2081	0.5203	0.3122
Butano	C_4H_{10}	0.1433	1.7164	1.5734
Dióxido de carbono	CO ₂	0.1889	0.846	0.657
Etano	C_2H_6	0.2765	1.7662	1.4897
Etileno	C_2H_4	0.2964	1.5482	1.2518
Helio	He	2.0769	5.1926	3.1156
Hidrógeno	H_2	4.1240	14.307	10.183
Metano	CĤ₄	0.5182	2.2537	1.7354
Monóxido de carbono	CO	0.2968	1.040	0.744
Neón	Ne	0.4119	1.0299	0.6179
Nitrógeno	N_2	0.2968	1.039	0.743
Octano	C ₈ H ₁₈	0.0729	1.7113	1.6385
Oxígeno	02	0.2598	0.918	0.658
Propano	C ₃ H ₈	0.1885	1.6794	1.4909
Vapor	H ₂ O	0.4615	1.8723	1.4108

Nota: La unidad kJ/kg · K es equivalente a kJ/kg · °C.

Calores específicos de gas ideal de varios gases comunes (continuación)

 b) A div 	ersas tem	peraturas.
------------------------------	-----------	------------

Temperatura,	$\frac{c_{\rho}}{\text{kJ/kg}} \cdot \text{K}$	c_{ν} kJ/kg \cdot K	k	$\frac{c_p}{\text{kJ/kg} \cdot \text{K}}$	$c_{ m v}$ kJ/kg \cdot K	k	c_g kJ/kg · K	<i>c₀</i> kJ/kg - K	k	
K		Aire		Dióx	ido de carbo	no, CO ₂	Monóxi	Monóxido de carbono, CC		
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400	
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399	
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398	
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395	
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392	
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387	
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382	
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376	
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370	
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364	
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358	
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353	
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343	
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335	
		Hidrógeno,	H_2		Nitrógeno,	N_2	O)	rígeno, O ₂		
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398	
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395	
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389	
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382	
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373	
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365	
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358	
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350	
650	14.57 1	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343	
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337	
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332	
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327	
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319	
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313	

De manera gráfica:

 Debido a que las tablas proporcionan datos discretos, las integrales se deben resolver numéricamente.

• Notar que el calor específico de gases monoatómicos permanece constante.

También existen ajustes para facilitar la integración.

• Para cambios pequeños de temperaturas, podemos **integrar** utilizando **valores promedios**:

$$\Delta u = c_{V,\text{prom}} \Delta T, \qquad \Delta h = c_{P,\text{prom}} \Delta T, \qquad \Delta T = T_2 - T_1.$$

donde

$$c_{V/P,\text{prom}} = \frac{c_{V/P}(T_1) + c_{V/P}(T_2)}{2}.$$

 Una relación especial entre los calores específicos en gases ideales se obtiene al utilizar que

$$h = u + P\nu = u + RT \longrightarrow dh = du + RdT.$$

• Al diferenciar por dT:

$$\frac{dh}{dT} = \frac{du}{dT} + R \longrightarrow \boxed{c_P = c_V + R.}$$

De forma molar:

$$\bar{c}_P = \bar{c}_V + R_u$$
.

Finalmente, se define la relación de calores específicos:

$$k = \frac{c_P}{c_V}.$$

- Aire a 300 °K y 200 kPa se calienta a presión constante hasta 600 K.
 Determine el cambio de energía interna específica del aire usando:
 - Datos de tabla.
 - El ajuste del calor específico.
 - El calor específico promedio.

- Aire a 300 °K y 200 kPa se calienta a presión constante hasta 600 K.
 Determine el cambio de energía interna específica del aire usando:
 - Datos de tabla.

	n .		II.		S"	7	b		Ш		5"
	k1/kg	P_{γ}	kl/kg	V_{p}	kJ/kg - K	K	k.l/kg	P_{r}	k.l/kg	v_r	kJ/kg - h
co	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.3734
10	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.3914
20.	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.4090
30	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	10:2	2.4264
40	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2,4435
50	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.4604
60	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.4771
70	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.4938
80	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2,5099
85	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	79.61	2.5258
90	290.16	1.2311	206.91	676.1	1.65802	680	691.82	25.65		75.50	2.5417
95	295.17	1.3068	210.49	647.9	1.68515	600	702.52	27.29	504.45	72.56	2.5573
98	298.18	1.3543	212.64		1.59528	700	713.27	28.80	512.33	69.76	2.5727
00	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.5981
05	305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2,6031
10	310.24	1.5546	221.25	572.3	1.73498	730	745.62	33.72	536.07	62.13	2.6180
15	315.27	1.6442	224.85	549.8	1.75106	740	756.44	35.50	544.02	59.82	2.6328
20	320.29	1.7375	228.42	528.6	1.76690	750	767.29	37.35	551.99	57.63	2.6473
25	325.31	1.8345	232.02	508.4	1.78249	760	778.18	39.27	560.01	55.54	2.6617
30	330.34	1.9352	235.61	489.4	1.79783	780	800.03	43.35	576.12	51.64	2.6901
40	340.42	2.149	242.82	454.1	1.82790	800	821.95	47.75	592.30	48.08	2.7178
50	350.49	2.379	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.7450
60	360.58	2.626	257.24	393.4	1.89543	840	866.08	57.60	624.95	41.85	2.7717
70 80	370.67 380.77	2.892 3.176	264.46 271.69	367.2 343.4	1.91313 1.94001	860 880	988.27 910.55	63.09 68.98	641.40 657.95	39.12 36.61	2.7978
90	390.88	3.481	278.93	321.5	1.98633	900	932.93	75.29	674.58	34.31	2.848
00	400.98	3.806	286.16	301.6	1.99194	920	955.38	82.05	691.28	32.18	2.8732
10	411.12	4.153	293.43	283.3	2.01699	940	977.92	89.28	708.08	30.22	2.8974
20	421.26	4.522	300.69	265.5	2.04142	960	1000.55	97.00	725.02	28.40	2.9212
30	431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2,9446
40	441.61	5.332	315.30	236.8	2.08870	1000	1046.04	114.0	758.94	25.17	2.9677
50	451.80	5.775	322.62	223.5	2.11161	1020	1068.89	123.4	776.10	23.72	2.990
60	462.02	6,245	329,97	211.4	2.13407	1040	1091.85	133.3	793.36	23.29	3.012
70	472.24	6.742	337.32	200.1	2.15604	1060	1114.85	143.9	810.62	21.14	3.034
80	482.49	7.268	344.70	189.5	2.17760	1080	1137.89	155.2	827.88	19.98	3.056
90	492.74	7.824	352.08	179.7	2.19876	1100	1161.07	167.1	845.33	18.896	3.0773
00	503.02	8.411	359.49	170.6	2.21952	1120	1184.28	179.7	862.79	17.886	3.0982
10	513.32	9.031	366.92	162.1	2.23993	1140	1207.57	193.1	880.35	16.946	3.1189
20	523.63	9.684	374.36	154.1	2.25997	1160	1230.92	207.2	897.91	16.064	3.139
30	533.98	10.37	381.84	146.7	2.27967	1180	1254.34	222.2	915.57	15.241	3.159
40	544.35	11.10	389.34	139.7	2.29906	1200	1277.79	238.0	933.33	14.470	3.1789
50	555.74	11.86	396.86	133.1	2.31809	1220	1301.31	254.7	951.09	13.747	3.1983
60	565.17	12.66	404.42	127.0	2.33685	1240	1324.93	272.3	968.95	13.069	3.2175
70	575.59	13.50	411.97	121.2	2.35531	I					

Propiedades de gas ideal del aire

\overline{T}	h		и
K	kJ/kg	P_r	kJ/kg
600	607.02	16.28	434.78
300	300.19	1.3860	214.07

Utilizamos directamente los datos de tabla:

$$\Delta u = 434.78 \text{ kJ/kg} - 214.07 \text{ kJ/kg}$$

$$\longrightarrow \Delta u = 220.71 \text{ kJ/kg}$$

Este corresponde al valor experimental ("real").

- Aire a 300 °K y 200 kPa se calienta a presión constante hasta 600 K.
 Determine el cambio de energía interna específica del aire usando:
 - El ajuste del calor específico.

c) Como una			e varios gases comu					
c) como una	runcion de	ia tempe						
			$\overline{c}_p = a$	$+$ $bT + cT^2 + dT^3$				
			(Ten K	., <i>c_p</i> en kJ/kmol · K)				
						Rango de	% de	error
Sustancia	Fórmula	а	ь	С	d	temp., K	Máx.	Prom.
Acetileno	C ₂ H ₂	21.8	9.2143 × 10 ²	-6.527 × 10 5	18.21 × 10 ⁹	272 1500	1.46	0.59
Aire	-22	28.11	0.1967 × 10 2	0.4802 × 10 5	-1.966×10^{-9}	273-1800	0.72	0.33
Amoniaco	NH ₃	27.568	2.5630×10^{-2}	0.99072×10^{-5}	-6.6909×10^{-9}	273-1500	0.91	0.36
Azufre	S ₂	27.21	2.218 × 10 ²	-1.628×10^{-5}	3.986×10^{-9}	273-1800	0.99	0.38
Benceno	C ₆ H ₆	-36.22	48.475×10^{-2}	-31.57×10^{-5}	77.62×10^{-9}	273-1500	0.34	0.20
i-Butano	C ₄ H _{1D}	-7.913	41.60×10^{-2}	-23.01×10^{-5}	49.91×10^{-9}	273-1500	0.25	0.13
n-Butano Cloruro de	C ₄ H ₁₀	3.96	37.15 × 10 ²	-18.34×10^{-5}	35.00 × 10 ⁹	273-1500	0.54	0.24
hidrógeno Dióxido de	HCI	30.33	-0.7620×10^{-2}	1.327 × 10 ⁻⁵	-4.338×10^{-9}	273-1500	0.22	0.08
azufre Dióxido de	SO ₂	25.78	5.795×10^{-2}	-3.812×10^{-5}	8.612×10^{-9}	273-1800	0.45	0.24
carbono Dióxido de	CO ₂	22.26	5.981 × 10 ⁻²	-3.501×10^{-5}	7.469×10^{-9}	273–1800	0.67	0.22
nitrógeno	NO ₂	22.9	5.715×10^{-2}	-3.52×10^{-5}	7.87×10^{-9}	273-1500	0.46	0.18
Etano	C ₂ H ₆	6.900	17.27 × 10 ⁻²	-6.406×10^{-5}	7.285×10^{-9}	273-1500	0.83	0.28
Etanol	C ₂ H ₆ O	19.9	20.96 × 10 ²	-10.38×10^{-5}	20.05×10^{-9}	273-1500	0.40	0.22
Etileno	C ₂ H ₄	3.95	15.64 × 10 2	-8.344×10^{-5}	17.67×10^{-9}	273-1500	0.54	0.13
n-Hexano	C ₆ H ₁₄	6.938	55.22 × 10 ²	-28.65×10^{-5}	57.69×10^{-9}	273-1500	0.72	0.20
Hidrógeno	H ₂	29.11	-0.1916×10^{-2}	0.4003×10^{-5}	-0.8704×10^{-9}	273-1800	1.01	0.26
Metano	CH ₄	19.89	5.024 × 10 ²	1.269×10^{-5}	-11.01×10^{-9}	273-1500	1.33	0.57
Metanol Monóxido de	CH ₄ O	19.0	9.152 × 10 ⁻²	-1.22×10^{-6}	-8.039×10^{-9}	273-1000	0.18	0.08
carbono	CO	28.16	0.1675×10^{-2}	0.5372×10^{-5}	-2.222×10^{-9}	273-1800	0.89	0.37
Nitrógeno	N_2	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273-1800	0.59	0.34
Óxido nítrico	NO	29.34	-0.09395×10^{-2}	0.9747×10^{-5}	-4.187×10^{-9}	273-1500	0.97	0.36
Óxido nitroso	N ₂ O	24.11	5.8632×10^{-2}	-3.562×10^{-5}	10.58×10^{-9}	273-1500	0.59	0.26
Oxígeno	02	25.48	1.520×10^{-2}	-0.7155×10^{-6}	1.312×10^{-9}	273-1800	1.19	0.28
n-Pentano	C ₅ H ₁₂	6.774	45.43×10^{-2}	-22.46×10^{-5}	42.29×10^{-9}	273-1500	0.56	0.21
Propano	C ₃ H ₈	-4.04	30.48 × 10 ⁻²	-15.72×10^{-5}	31.74×10^{-9}	273-1500	0.40	0.12
Propileno Trióxido de	C ₃ H ₆	3.15	23.83 × 10 ⁻²	-12.18×10^{-5}	24.62 × 10 ⁻⁹	273-1500	0.73	0.17
azufre Agua (vapor)	SO ₃ H₂O	16.40 32.24	14.58×10^{-2} 0.1923×10^{-2}	-11.20×10^{-9} 1.055×10^{-9}	32.42×10^{-9} -3.595×10^{-9}	273-1300 273-1800	0.29	0.13

Sustancia	Fórmula	nula <i>a b</i>		С	d
Aire	_	28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}

Utilizamos que:

$$\bar{c}_P = a + bT + cT^3 + dT^3$$

Sin embargo, debido a que queremos obtener la energía interna, debemos utilizar c_V . Entonces:

$$\bar{c}_P = \bar{c}_V + R_u \longrightarrow \bar{c}_V = a + bT + cT^2 + dT^3 - R_u$$

El cambio de energía interna por unidad de mol:

$$\Delta \bar{u} = \int_{T_1}^{T_2} \bar{c}_V dT = \int_{T_1}^{T_2} (a + bT + cT^2 + dT^3 - R_u) dT$$
$$= (a - R_u) \Delta T + \frac{b}{2} (\Delta T)^2 + \frac{c}{3} (\Delta T)^3 + \frac{d}{4} (\Delta T)^4$$

- Aire a 300 °K y 200 kPa se calienta a presión constante hasta 600 K.
 Determine el cambio de energía interna específica del aire usando:
 - La interpolación del calor específico.

Sustancia	Fórmula <i>a b</i>		b	С	d
Aire	_	28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}

Utilizando los datos de la tabla, que ΔT =300°K , y que R_u =8.114 kJ/kmol°K :

$$\longrightarrow \bar{u} = 6447 \text{ kJ/kmol}$$

Para obtener la energía interna por unidad de masa debemos dividir por la masa molar del aire:

$$M = 28.97 \text{ kg/kmol}$$
 \longrightarrow $u = \frac{\overline{u}}{M} = \frac{6447 \text{ kJ/kmol}}{28.97 \text{ kg/kmol}}$ \longrightarrow $u = 222.5 \text{ kJ/kg}$

Es una buena aproximación al valor experimental.

- Aire a 300 °K y 200 kPa se calienta a presión constante hasta 600 K.
 Determine el cambio de energía interna específica del aire usando:
 - El calor específico **promedio**.

	c_p k $_J/$ k $_J \cdot K$	c_v kJ/kg \cdot K	k
Temperatura, K	KJ/Kg / K	Aire	
10		7000	
250	1.003	0.716	1.401
300	1.005	0.718	1.400
350	1.008	0.721	1.398
400	1.013	0.726	1.395
450	1.020	0.733 📉	1.391
500	1.029	0.742	1.387
550	1.040	0.753	1.381
600	1.051	0.764	1.376
650	1.063	0.776	1.370
700	1.075	0.788	1.364
750	1.087	0.800	1.359
800	1.099	0.812	1.354
900	1.121	0.834	1.344
1000	1.142	0.855	1.336

La temperatura promedio es:

$$T_{\text{prom}} = \frac{T_1 + T_2}{2} = \frac{300^{\circ} \text{K} + 600^{\circ} \text{K}}{2} = 450^{\circ} \text{K}$$

El calor específico (a volumen constante) a esta temperatura:

$$c_V = 0.733 \text{ kJ/kg}^{\circ} \text{K}$$

La diferencia de energía interna:

$$\Delta u = c_V \Delta T = 0.733 \text{ kJ/kg}^{\circ} \text{K } 300^{\circ} \text{K}$$

$$\longrightarrow \Delta u = 220 \text{ kJ/kg}$$

También es una buena aproximación al valor experimental.

Clase 15: Calores específicos

- Calor específico.
- Calores específicos en gases ideales.
- Calores específicos en sólidos y líquidos.

Sustancias incompresibles

- Las sustancias incompresibles son aquellas donde el volúmen específico se mantiene constante.
- **Líquidos** y, especialmente, **sólidos** se pueden aproximar como sustancias incompresibles.
- En sustancias incompresibles los calores específicos a presión y volumen constante son idénticos:

$$c = c_V = c_P$$
.

Cambios de energía interna y de entalpía

• En una sustancia incompresible, una diferencia de energía interna es simplemente:

$$du = c(T)dT \longrightarrow \Delta u = \int_{T_1}^{T_2} c(T)dT \approx c_{\text{prom}} \Delta T.$$

Por otro lado, una diferencia de entalpía:

$$dh = du + \nu dP \longrightarrow \Delta u = \Delta u + \nu \Delta P \approx c_{\text{prom}} \Delta T + \nu \Delta P.$$

$$d\nu = 0$$

- En sólidos $dP \approx 0$, entonces: $dh = du \approx c_{\text{prom}} \Delta T$.
- En líquidos:
 - Presión constante (ej: calentadores): $dh = du \approx c_{\text{prom}} \Delta T$.
 - Temperatura constante (ej: bombas): $dh \approx \nu \Delta P$.

Ejemplo 2:

• Un bloque de hierro de **50 kg** a **80 °C** se sumerge en un recipiente aislado que contiene **0.5 m³** de agua líquida a **25 °C**. Determine la **temperatura** cuando se alcanza el **equilibrio térmico**.

Ejemplo 2:

• Un bloque de hierro de **50 kg** a **80 °C** se sumerge en un recipiente aislado que contiene **0.5 m³** de agua líquida a **25 °C**. Determine la **temperatura** cuando se alcanza el **equilibrio térmico**.

El sistema completo:

$$E_{\rm entrada} - E_{\rm salida} = \Delta E_{\rm sistema}$$

Al ser un sistema cerrado sin intercambio de calor:

$$0 = \Delta U$$

Debido a que la energía interna es una propiedad extensiva:

$$\Delta U = \Delta U_{\text{hierro}} + \Delta U_{\text{agua}} = 0$$

$$[mc(T_2 - T_1)]_{\text{hierro}} + [mc(T_2 - T_1)]_{\text{agua}} = 0$$

Para obtener la masa del agua utilizamos que su volumen específico a temperatura ambiente es:

$$\nu = 0.001 \text{ m}^3/\text{kg}$$

$$\longrightarrow m = V/\nu = \frac{0.5 \text{ m}^3}{0.001 \text{ m}^3/\text{kg}} = 500 \text{ kg}$$

Ejemplo 2:

 Un bloque de hierro de 50 kg a 80 °C se sumerge en un recipiente aislado que contiene **0.5 m³** de agua líquida a **25 °C**. Determine la temperatura cuando se alcanza el equilibrio térmico.

ropiedades de líq Llouidos	y							Propiedades de líquidos, se			epto que se indique otra cosa)			
riquiaus	0	ullición a 1 atm	0	congelación		Propiedades	eta Marriedan	D) Solidos (los Valores soli			spio que se maique on a cosa/			Do table cabomae que:
	Punto de ebulli-	Calor latente de vaporización	Punto de conge	Calor latente de fusión	Temperatura	Densidad	Calor específico	Sustancia	Densidad, ρ kg/m³	Calor específico, c _p k.l/kg · K	Sustancia	Densidad, ι ρ kg/m³	Calor especifico, c,, kJ/kg - K	De tabla, sabemos que:
ustancia	ción normal, °C	C h _e , kl/kg	lación, °C	h _{in} klikg	°C	p, kg/m ²	c_{or} k.l.fkg - K	Metales			No metales			
ceite comestible lgero) gua	100	2257	0.0	333.7	25	910 1000	1.80	Acero dulce Aluminio	7,830	0.500	Arena Arcilla	1520 1000	0.800 0.920	
ıa	100	SS01	G.G	333.7	25	997	4.18	200 K		0.797	Asfalto Caucho (blando)	2110 1100	0.920 1.840	$\rightarrow c_{\text{agua}} = 4.18 \text{ kJ/kg}^{\circ} \text{K}$
					50	988	4.18	300 K	2.700	0.902	Caucho (duro)	1100	1.840	-
					75 100	975 958	4.19 4.22	350 K		0.929	Concreto	2300	0.653	$C_{a\sigma_{11}a} = 4.10 \text{ MJ/Mg/M}$
cohal etilica	78.6	855	-156	108	20	789	2.84	400 K 450 K		0.949 0.973	Diamante Grafito	2420 2500	0.616	7 0
moniaco	-33.3	1357	-77.7	322.4	-33.3 -20	682 665	4.43 4.52	450 K 500 K		0.973	Granito	2700	1.017	-
					-20	639	4.60	Bronce (76% Cu. 2% Zn.	8,280	0,400	Hielo	2,00	1.017	
					25	602	4.80	2% AI)			200 K		1.56	$c_{\text{hierro}} = 0.45 \text{ kJ/kg}^{\circ} \text{K}$
gón enceno	-185.9 80.2	161.6 394	-189.3 5.5	28 126	-185.6 20	1394	1.14	Cobre			220 K		1.71	$ C_1 \cdot = \prod A \cap K \mid / K \cap K$
-Butano	-0.5	385.2	-138.5	80.3	-0.5	601	2.31	-173°C -100°C		0.254	240 K 260 K		1.86	Chierro — 0.40 No / No 11
ióxido de carbono		230.5 (a 0°C)	-56.6		0	298	0.59	-50°C		0.367	273 K	921	2.01	/ 0
tanol tilén elicel	78.2 198.1	838.3 800.1	-114.2 -10.8	109 181.1	25 20	783 1109	2.46	0°C		0.381	Ladrillo común	1922	0.79	
licerina	179.9	974	18.9	200.6	20	1261	2.32	27°C	8,900	0.386	Ladrillo refractario (500°C)	2300	0.960	
lelic	-268.9	22.8			-268.9	146.2	22.8	100°C 200°C		0.393	Madera contractapada (aceto Douglas)	EAE	1.21	
Hidrógeno sobutano	-252.8 -11.7	445.7 367.1	-259.2 -160	59.5 105.7	-252.8 -11.7	70.7 593.8	10.0	Hierro	7.840	0.465	Maderas duras (manie, encino, etc.	3 721	1.26	
Marcurio	356.7	294.7	-38.9	11.4	25	13,560	0.139	Latón amarillo (65% Cu,	8 310	0.400	Maderas suaves (abeto, pino, etc.)	513	1.38	
Metano	-161.5	510.4	-182.2	58.4	-161.5 -100	423 301	3.49 5.79	35% Zn)			Mármol	2600	0.880	
Matanol	64.5	1100	-97.7	99.2	25	787	2.55	Magnesio Niquel	1,730 8.890	1.000 0.440	Piedra Piedra caliza	1500 1650	0.800	Entonces:
litrogeno	-195.8	198.6	-210	25.3	-195.8	809	2.06	Plata	10,470	0.235	Vidrio para ventanas	2700	0.800	Littorices.
Octano	124.8	306.3	-57.5	180.7	-160 20	596 703	2.97	Plomo	11,310	0.128	Vidrio pirex	2230	0.840	
Oxigeno	-183	212.7	-218.8	13.7	-183	1141	1.71	Tunesteno	19.400	0.130	Yeso o tabla de veso	800	1.0	
Petróleo		230-384			20	640	2.0							
Propane	-42.1	427.8	-187.7	90.0	-42.1	581 529	2.25							
					50	449	3.13							
uercseno	204-293	251	-24.9		20	820	2.00							
tetrigerante 134a ialmuera (20% de loruro de sodio	-26.1	217.0	-96.6	-	-50	1443	1.23				[ma(')]	T_{-}		$[T_1]_{\text{hierro}} + [mc(T_2 - T_1)]_{\text{agua}} = 0$
base másica)	103.9	_	-17.4	_	20	1150	3.11				- 1777.CX	IO		$+11$ Hbiomo ± 1000 $+10$ $+11$ Here -10
					-26.L	1374	1.27				1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 4		$\pm 1/1111e110 + 1/100(\pm 2 \pm 1/11agua)$
					0	1295	1.34				_ \			/

$$50 \, \mathrm{kg} \, 0.45 \frac{\mathrm{kJ}}{\mathrm{kg}^{\circ} \mathrm{K}} (T_2 - (80 + 273)^{\circ} \mathrm{K})$$
 $+500 \, \mathrm{kg} \, 4.18 \frac{\mathrm{kJ}}{\mathrm{kg}^{\circ} \mathrm{K}} (T_2 - (25 + 273)^{\circ} \mathrm{K}) = 0$ Despejando T_2 : $\longrightarrow \boxed{T_2 = 25.6^{\circ} \mathrm{C}}$

Procesos a temperatura constante

 Anteriormente vimos que a temperatura constante, el cambio de entalpía está dado por:

$$dh \approx \nu \Delta P$$
.

- Consideremos el caso en que:
 - \rightarrow El **estado 2** corresponde a **líquido comprimido** a una temperatura T y presión P.
 - → El estado 1 corresponde a líquido saturado a la misma temperatura.

$$\longrightarrow$$
 $h = h_{\text{sat}} + \nu (P - P_{\text{sat}}).$

Resumen

- Definimos el **calor específico**, incluyendo su forma para procesos a **volúmen** y **presión constante**.
- Revisamos la forma que toma el calor específico en gases ideales y también en sustancias incompresibles.
- Próxima clase:
 - → Procesos adiabáticos en gases ideales.