# 模型研究系列 半角模型

一粒沙整理 安徽省霍邱县龙潭中心校

2020年6月11日

## 文章导航

| 1 | 什么是半角模型?                  | 1 |
|---|---------------------------|---|
| 2 | 半角模型"破解"策略                | 1 |
| 3 | "半角模型"的类型                 | 2 |
|   | 3.1  正方形内含半角 90° + 45°    |   |
|   | 3.1.2 模型变式                |   |
|   | 3.2 等腰直角三角形内含半角 90° + 45° |   |
|   | 3.3 正三角形内含半角 120° + 60°   | 5 |
|   | 3.4 一般情况半角模型 α + 2α       | 5 |
| 4 | 习题演练                      | 5 |

## 1 什么是半角模型?

所谓"半角模型"指的是题目中出现了两个角,小角等于大角的一半,故称为"半角模型",有最普通的半角问题,但是多数"半角模型"问题都是特殊角之间的"半角模型"。常见的有"30°与60°"、"45°与90°(又称为"正方形半角模型")"、"60°与120°"等类型。

# 2 半角模型"破解"策略

记住一句话:"半角模型,必旋转"

### 注意:

- (1) 旋转角度通常为大角的角度;
- (2) 旋转后, 往往涉及三点共线问题 (须简单证明);
- (3) 旋转后, 一般需要再证一对共旋转点的三角形全等(SAS).

## 3 "半角模型"的类型

### **3.1** 正方形内含半角 $90^{\circ} + 45^{\circ}$

#### 3.1.1 基本模型

如图,在正方形 ABCD 中,点 E,F 分别为边 BC,CD 上点,且  $\angle EAF = 45^{\circ}$ ,连接 EF, AH  $\bot$  EF.



结论①: EF = BE + DF;

结论②:  $\triangle CEF$  的周长 C = 2AB:

结论③: AE 平分  $\angle BEF$ , AF 平分  $\angle DFE$ ;

结论④: AH = AB;

结论⑤:  $S_{\triangle ABE} + S_{\triangle ADF} = S_{\triangle AEF}$ .





证法①: (旋转法)

如图 1, 将  $\triangle ADF$  绕点 A 顺时针旋转 90° 得到  $\triangle ABG$ . (亦可旋转  $\triangle ABE$ )

易得  $\triangle ADF \cong \triangle ABG \dashrightarrow AG = AF, DF = BG, \angle 1 = \angle 2;$ 

再证  $\triangle AEG \cong \triangle AEF \dashrightarrow EF = EG$ ;

综上: EF = EG = BE + BG = BE + DF.(结论①得证)

 $\triangle CEF$  的周长 C = EF + CE + CF = BE + DF + CE + CF = BC + DC = 2AB.(结论②得证)

由  $\triangle AEG \cong \triangle AEEF \longrightarrow AE$  平分  $\angle BEF$ , 同理可证 AF 平分  $\angle AFE$ .(结论③得证)

利用结论③易证  $\triangle ABE \cong \triangle AHE(AAS) \dashrightarrow AB = AH.(结论④得证)$ 

由①易证  $S_{\triangle ABE} + S_{\triangle ADF} = \frac{1}{2}EF \cdot AB$ ,而  $S_{\triangle AEF} = \frac{1}{2}EF \cdot AH$ ,由④易得  $S_{\triangle ABE} + S_{\triangle ADF} = S_{\triangle AEF}$ .(结论⑤得证)

证法②: (截长补短法)

如图 2, 延长 CD 至点 G 使得 DG = BE.

易证:  $\triangle ABE \cong \triangle ADG(SAS) \longrightarrow AE = AG, \angle GAF = 45^{\circ};$ 

易证:  $\triangle AFE \cong \triangle AFG(SAS) \dashrightarrow EF = GF$ ;

综上: EF = GF = GD + DF = BE + DF.

#### 其它结论证法同证法①.

进一步地,连接对角线后还可以得出下面 8 个结论: 如图,连接 BD,分别交 AE, AF 于点 M, N.



结论①:  $MN^2 = BM^2 + DN^2$ ;

结论②:  $2AM^2 = BM^2 + DM^2$ ,  $2AN^2 = DN^2 + BN^2$ ;

结论③:  $\triangle AEN$  为等腰直角三角形,  $\triangle AFM$  为等腰直角三角形;

结论④:  $\triangle ANM \sim \triangle DNF \sim \triangle BEM \sim \triangle AEF \sim \triangle BNA \sim \triangle DAM$ ;

结论⑤:  $\sqrt{2}BN = AB + BE, \sqrt{2}DM = AD + DF;$ 

结论⑥:  $\sqrt{2}DN = CE, \sqrt{2}BM = CF, \sqrt{2}MN = EF;$ 

结论②:  $S_{\triangle AMN} = S_{\square \square \square NNFE}$  (即  $S_{\triangle AMN} = \frac{1}{2} S_{AEF}$ );

结论®: A, M, F, D 四点共圆; A, B, E, N 四点共圆; M, N, F, C, E 五点共圆.

下面我们来进行证明,对于结论①,我们用两种方法证明:



#### 证法①:

将  $\triangle AMB$  逆时针 90° 旋转到  $\triangle AHD$ , 如图 1.

则  $\angle 2 = \angle 1 = \angle 3 = 45^{\circ}$ 

 $\therefore \angle HDN = \angle 1 + \angle 3 = 90^{\circ}$ 

∴△HDN 是直角三角形

:: 易证  $\triangle ANH \cong \triangle ANM$ 

 $\therefore NH = NM$ 

在  $Rt \triangle HDN$  中,  $HD^2 + DN^2 = HN^2$ 

 $\mathfrak{X} : NH = NM, HD = MB$ 

 $\therefore BM^2 + DN^2 = MN^2$ 



#### 证法②:

过A作AH垂直EF于H,连接MH,NH,如图2.

易证,  $\triangle ABM \cong \triangle AHM$ ,  $\triangle ADN \cong \triangle AHN$ 

 $\therefore \angle AHM = \angle ABM = 45^{\circ}, \angle AHN = \angle ADN = 45^{\circ}$ 

 $\therefore \angle MHN = 90^{\circ}$ 

 $MH^2 + NH^2 = MN^2$ 

 $\mathcal{X} : MH = MB, NH = ND$ 

 $\therefore BM^2 + DN^2 = MN^2$ 

结论②,我们也用两种方法予以证明,过程如下:

#### 证法①:

将  $\triangle AMB$  逆时针  $90^{\circ}$  旋转到  $\triangle AHD$ , 连接 MH, 如图 1.

$$\therefore AH = AM, \angle HAD + \angle DAN + \angle NAM = \angle HAM = 90^{\circ}$$

$$\therefore HM = \sqrt{2}AM$$

$$\mathfrak{X} : HD^2 + DM^2 = HM^2, HD = BM$$

$$BM^2 + DM^2 = HM^2 = 2AM^2$$

同理 
$$2AN^2 = BN^2 + DN^2$$



过M作 $MP \perp AD$  于P,  $MH \perp AB$  于H, 如图 2.

设 
$$HM = HB = x, PM = PD = y$$

$$\therefore BM^2 = 2x^2, PM^2 = 2y^2$$

$$X : AM^2 = AH^2 + HM^2 = x^2 + y^2$$

$$\therefore 2AM^2 = BM^2 + DM^2$$

同理 
$$2AN^2 = BN^2 + DN^2$$





过M作 $MP \perp AD$ 于P, $MH \perp AB$ 于H,如图2.

设 
$$HM = HB = x, PM = PD = y$$

$$BM^2 = 2x^2, PM^2 = 2y^2$$

$$X : AM^2 = AH^2 + HM^2 = x^2 + y^2$$

$$\therefore 2AM^2 = BM^2 + DM^2$$

同理 
$$2AN^2 = BN^2 + DN^2$$







#### 3.1.2 模型变式

### **3.2** 等腰直角三角形内含半角 $90^{\circ} + 45^{\circ}$

如图,在  $\triangle ABC$  中, $AB = AC, \angle BAC = 90^{\circ}$ ,点 D, E 在 BC 上且  $\angle DAE = 45^{\circ}$ .

性质: ①:
$$\triangle BAE \sim \triangle ADE \sim \triangle CDA$$

$$@:BD^2 + CE^2 = DE^2$$

### **3.3** 正三角形内含半角 $120^{\circ} + 60^{\circ}$

如图,已知  $\triangle ABC$  是正三角形,点 D 是  $\triangle ABC$  外一点,DB = DC 且  $\angle BDC = 120^\circ, \angle EDF = 60^\circ$ ,DE, DF 分别交 AB, AC 于点 E, F. 此时可以推导出以下结论:

结论①: EF = BE + CF; 结论②:  $C_{\triangle AEF} = 2AB$ .





### **3.4** 一般情况半角模型 $\alpha + 2\alpha$

## 4 习题演练