5.7 Consider the following set of processes, with the length of the CPU burst given in milliseconds:

Process	Burst Time	Priority
P_1	2	2
P_2	1	1
P_3	8	4
P_4	4	2
P_5	5	3

The processes are assumed to have arrived in the order P_1 , P_2 , P_3 , P_4 , P_5 , all at time 0.

- a. Draw four Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: FCFS, SJF, non-preemptive priority (a larger priority number implies a higher priority), and RR (quantum = 2).
- b. What is the turnaround time of each process for each of the scheduling algorithms in part a?
- c. What is the waiting time of each process for each of these scheduling algorithms?
- d. Which of the algorithms results in the minimum average waiting time (over all processes)?
- Consider a preemptive priority scheduling algorithm based on dynamically changing priorities. Larger priority numbers imply higher priority When a process is waiting for the CPU (in the ready queue, but running), its priority changes at a rate α . When it is running, its priority changes at a rate β . All processes are given a priority of 0 when the enter the ready queue. The parameters α and β can be set to give mandifferent scheduling algorithms.
 - a. What is the algorithm that results from $\beta > \alpha > 0$?
 - b. What is the algorithm that results from $\alpha~<~\beta~<0?$