

DBMS-Session1

Course Objective

- To understand Data Storage
- Advantages of using DBMS
- To understand Data models and its types
- To understand Database keys and its types

Session Objective

- Data Storage
- Data Models
- Database Keys

Data Storage

- Information storage and retrieval (data processing) is a major part of the software application development in the IT industry.
- It is mandatory for every software professional to be aware of the approach of data storage and retrieval systems

Data and information

- Data: Known facts, figures, objects and events which can be stored
 - Structured: numbers, text, dates
 - Unstructured Data: images, video, documents
- Examples:
 - RDBMS 02/01/2016 "It is raining"
- Information: Data that is processed to be useful
- Examples:
 - Course Code is 1
 - The course name is RDBMS
 - The begin date of course is 02/01/2016
 - The temperature dropped 20 degrees and then it started raining.

Traditional approach

 The traditional approach to store and access the data is file based system

File-based System

- Data are stored as collection of records in flat-files (data files) on the disk
- Collection of application programs that perform services for the end users (e.g. reports) access these data files
- Each application defines and manages its own data

How traditional approach works?

Sales Files

PropertyForRent (propertyNo, street, city, postcode, type, rooms, rent, ownerNo)

PrivateOwner (ownerNo, fName, IName, address, telNo)

Client (clientNo, fName, IName, address, telNo, prefType, maxRent)

Contracts Files

Lease (leaseNo, propertyNo, clientNo, rent, paymentMethod, deposit, paid, rentStart, rentFinish, duration)

PropertyForRent (propertyNo, street, city, postcode, rent)

Client (clientNo, fName, IName, address, telNo)

Limitations of traditional approach

- Separation and isolation of data
 - Each program maintains its own set of data.
 - Users of one program may be unaware of potentially useful data held by other programs.
- Duplication of data
 - Same data is held by different applications.
 - Wasted space and potentially different values and/or different formats for the same item.
- No Concurrent access to data
- No simultaneous application access to data
- No data independence
 - File structure is defined in the program code

Database approach

- Data is stored in the database as a collection of data files
- Database:
 - A collection of related data.
- Database Management System (DBMS):
 - A software package/ system to facilitate the creation and maintenance of a computerized database.
- Database System:
 - The DBMS software together with the database

Advantages of database approach (DBMS)

- Control of data redundancy
- Data consistency
- Program-Data independence
- More Secure
- Concurrent access to data through application programs
- Flexible for application development

Data Model

What is data model?

 Integrated collection of concepts (Tool) for describing data, relationships between data, and constraints on the data in a database

Why data model?

To represent data in an understandable way.

Types of data models include:

- Object-based
- Record-based
- Physical

Types of data model

Object-Based Data Models

- Entity-Relationship
- Semantic
- Functional
- Object-Oriented.

Record-Based Data Models

- Relational Data Model
- Network Data Model
- Hierarchical Data Model

Physical Data Models

Hierarchical Data Model

Network Data Model

B005	22 Deer Rd	London		SL41	Jul e	Lee		Assistant	9000
B007	16 Argyl St	Aberdeen	\ \	SL21	John	White		Manager	30000
B003	163 Main St	Glasgow		SA9	Mary	Howe		Assistant	9000
B004	32 Manse Rd	Bristol		SG37	Ann	Beech		Assistant	12000
B002	56 Clover Dr	London	\ \ '	SG14	David	Ford		Supervisor	18000
			\						
			,	SG5	Susan	Brand		Manager	24000

Relational data model

Branch

branchNo	street	city	postCode	
B005	22 Deer Rd	London	SW1 4EH	
B007	16 Argyll St	Aberdeen	AB2 3SU	
B003	163 Main St	Glasgow	G11 9QX	
B004	32 Manse Rd	Bristol	BS99 1NZ	
B002	56 Clover Dr	London	NW10 6EU	

Staff

staffNo	fName	IName	position	sex	DOB	salary	branchNo
SL21	John	White	Manager	M	1-Oct-45	30000	B005
SG37	Ann	Beech	Assistant	F	10-Nov-60	12000	B003
SG14	David	Ford	Supervisor	M	24-Mar-58	18000	B003
SA9	Mary	Howe	Assistant	F	19-Feb-70	9000	B007
SG5	Susan	Brand	Manager	F	3-Jun-40	24000	B003
SL41	Julie	Lee	Assistant	F	13-Jun-65	9000	B005

Relational data model

contd...

Relational Model:

- Proposed in 1970 by E.F. Codd (IBM), first commercial system in 1981-82.
- Now in several commercial products (e.g. DB2, ORACLE, MS SQL Server, SYBASE, INFORMIX).
- Several free open source implementations, e.g. MySQL,
 PostgreSQL

Relational Model Terminology

- A table with columns and rows.
 - Only applies to logical structure of the database, not the physical structure.
- Attribute is a named column of a relation.
- Domain is the set of allowable values for one or more attributes
- Tuple is a row of a relation.
- Degree is the number of attributes in a relation.
- Cardinality is the number of tuples in a relation.
- Relational Database is a collection of normalized relations with distinct relation names

Relational Model Example

Data Base Keys

- A key is a one or more attributes, used to identify a record in a relation/table
- Relation model support different types of keys
 - Candidate key
 - Super key
 - Foreign key
 - Alternate key
 - Primary key
 - Composite key

contd...

Candidate Key

 One or more attributes, which is used to uniquely identify a record in a relation

Super key

- One or more attributes, which is used to uniquely identify a record in a relation
- super set of candidate key i.e., Candidate key + non key attributes

Student				
Stud Name	Stud ID	DOB	Address	e- m ail
Shuja	101	11-11-1978	Bangalore	Shuja@xyz.com
Amit	102	10-07-1992	Chennai	Amit@abc.com
Ipsitha	103	11-05-1989	Hyderabad	Ipsitha@bbc.com
Narendra	104	10-07-1967	Madurai	Narendra@bbc.com
Pai	106	11-08-1990	Gurgan	v.pai@ecole.com
Am y	107	19-12-1978	Delhi	Amy@ecole.com
Amit	105	11-11-1978	Bangalore	Amit@ccd.com

Candidate Key(s): 1. Stud Id 2. e-mail
Super Key(s): 1. Stud ID + Stud Name 2. Stud ID + DOB 3. e-mail + Stud Name

contd...

Foreign Key

- Used to relate one or more relations/tables
- One or more attributes, which is used to refer value of a candidate key in the same relation or a different relation

Course_Registered							
CourseName	Stud ID	Duration	Faculty Name				
OOPS	101	6	G eetha				
RDBMS	101	6	Anand				
C Prog	103	3	Ramya				
Web Tech	102	3	Hansa				
JAV A	102	6	G eetha				
Software Engg.	104	8	Kumar				
Mechanics	103	6	Hema				

Foreign Key: Stud ID in Course_Registered table refers value of Candidate key Stud ID in Student table

Alternate Key

Candidate keys that are not selected to be primary key

contd...

Primary Key

- One or more attributes, which is used to uniquely identify a record in a relation
- Used in table creation
- If a relation has several candidate keys, one is chosen arbitrarily to be the primary key

Student				
Stud Name	Stud ID	DOB	Address	e- m ail
Shuja	101	11-11-1978	Bangalore	Shuja@xyz.com
Amit	102	10-07-1992	Chennai	Amit@abc.com
Ipsitha	103	11-05-1989	Hyderabad	Ipsitha@bbc.com
Narendra	104	10-07-1967	Madurai	Narendra@bbc.com
Pai	106	11-08-1990	Gurgan	v.pai@ecole.com
Amy	107	19-12-1978	Delhi	Amy@ecole.com
Amit	105	11-11-1978	Bangalore	Amit@ccd.com

Candidate Key(s): 1. Stud Id 2. e-mail

Super Key(s): 1. Stud ID + Stud Name 2. Stud ID + DOB 3. e-mail + Stud Name

contd...

Composite Key

- A composite key is a set of more than one key that, together, uniquely identifies each record.
- For example,

Score table:

- The Score table which stores the marks scored by a student in a particular subject.
- In this table Student_id and Subject_id together will form the primary key, hence it is a composite key.

Video on Keys

Objective:

To make the Trainee understand the concept of Database keys.

Video Path:

https://www.youtube.com/watch?v=JkwbhFUftSc

Innovative Services

Passionate Employees

Delighted Customers

Thank you

www.hexaware.com