La Comunicazione tra Computer e le Reti

Prof. Vincenzo Auletta

Rete di Computer

- ➤ Insieme di computer, opportunamente collegati tra loro, che trasmettono informazioni.
- Stazione/Nodo: Apparecchio collegato alla rete
 - 🖎 Stampante, computer, unità di backup
 - \cong Stazione \equiv Computer
- ➤ Una rete di computer può essere collegata ad un'altra rete di computer.

Prof. Vincenzo Auletta

Perché Collegare Computer?

- ➤ Risolvono insieme lo stesso problema.
 - 🕝 previsioni del tempo, GPS
- ➤ Permettono di accedere agli stessi dati per scopi differenti
 - F Ufficio ragioneria, Ripartizione affari generali
 - F Ufficio riscatti e pensioni, Ufficio del personale
- > Condivisione di risorse di rete

Prof. Vincenzo Auletta

Applicazioni delle Reti

- ➤ Posta elettronica: servizio che consente di spedire messaggi ad altre persone tramite il PC.
- ➤ Condivisione delle periferiche: dischi, stampanti, unità di backup
 - Riducono i costi di gestione e manutenzione
- > Condivisione dei file
 - Tun unico documento in un ufficio
 - Si evita di dover "sincronizzare" le varie copie

Prof. Vincenzo Auletta

5

Accesso alle Risorse

- ➤ Avviene tramite un'identificazione inserendo:
 - identificativo utente e password
 - *L'identificativo utente è assegnato dall'amministratore di rete.
 - Pla password è scelta dall'utente.
- Amministratore di rete: figura responsabile dell'attuazione delle procedure per l'uso della rete
 - Thserimento e cancellazione utenti,
 - *Stabilisce, per ogni utente, i livelli di accesso alle risorse.

Prof. Vincenzo Auletta

Gestione della Password

- Scegliere una password difficile da indovinare
 - Deve contenere numeri e caratteri non alfanumerici
 - *Non usare il proprio nome o una data di nascita
- ➤ Utilizzare password lunghe (almeno 7 caratteri)
- ➤ Non distribuire la propria password ad altri
- ➤ Non scrivere la password su fogli

Prof. Vincenzo Auletta

Protocollo di Comunicazione

- > Protocollo: Insieme di regole e passi da seguire in una determinata procedura.
 - > Esempio: protocollo usato nella sperimentazione di un farmaco
- Insieme di modalità (regole) che permettono a due computer di comunicare.
 - regni protocollo è diviso in livelli comunicanti
 - © Ogni livello non modifica né interpreta i dati ricevuti dal livello inferiore/superiore, ma toglie/aggiunge informazioni.

Prof. Vincenzo Auletta

Fondamenti dell'Informatica A.A. 2001-2002 Esempio dei Filosofi (I) protocollo di comunicazione virtuale F1: Filosofo Russo F2: Filosofo Israeliano T1: Traduttore T2: Traduttore interfaccia di collegamento TE2: Tecnico esperto TE1: Tecnico esperto in collegamenti in collegamenti Prof. Vincenzo Auletta

Esempio dei Filosofi (II)

- ➤ I filosofi sono in grado di discutere dei massimi sistemi ma parlano un'unica lingua e non sanno usare mezzi di comunicazione (e.g., e-mail).
- > I traduttori parlano più lingue, ma non sanno usare mezzi di comunicazione.
 - non devono comprendere il senso di quello che stanno traducendo
- ➤ Gli esperti in collegamenti sanno usare mezzi di comunicazione.
 - region non devono capire quello che stanno trasmettendo e nemmeno sapere in che lingua è scritto

Coordinamento

- ➤ I nodi della rete devono coordinare la velocità di trasmissione per evitare la perdita di dati.
- SINCRONO: tutti gli apparecchi collegati alla rete adottano la stessa velocità di trasmissione.
 - serve un controllo globale
 - 🕦 tutti i dispositivi si devono adeguare al più lento
- ASINCRONO: ogni apparecchio collegato alla rete ha una propria velocità di trasmissione.
 - 🗻 due dispositivi si accordano sulla velocità prima di trasmetter
 - usato in reti complesse (es. collegamento tra modem)

Prof. Vincenzo Auletta

11

Metodi di Trasmissione

- > Seriale: si trasmette un bit alla volta.
 - [©] Usata da modem, mouse e tastiera.
- > Parallela: si trasmettono più bit contemporaneamente.
 - Tusata da stampanti o dischi esterni.
- Simplex: il dispositivo può solo ricevere o trasmettere (radio).
- Malf Duplex: il dispositivo può ricevere e trasmettere ma mai contemporaneamente (radio ricetrasmittente).
- Duplex: ogni stazione può ricevere e trasmettere nello stesso momento (telefono).

Prof. Vincenzo Auletta

Commutazione

- Modalità con cui i dati vengono scambiati tra due stazioni.
- Commutazione di circuito
 - dispositivi collegati per tutta la durata della comunicazione (es. telefonata)
- > Commutazione di pacchetto
 - redispositivi non collegati.
 - dati trasmessi in blocchi di grandezza fissata (pacchetti) attraverso nodi intermedi (Es. sistema postale -- nodi=uffici postali)

Prof. Vincenzo Auletta

13

Esempi di commutazione

Prof. Vincenzo Auletta

 m_1

14

pacchetto

Fondamenti dell'Informatica A.A. 2001-2002

Caratteristiche della commutazione di circuito

- ➤ Collegamenti ad uso esclusivo delle stazioni.
 - Alta velocità di trasmissione.
 - Capacità di trasmissione sfruttata al massimo.
 - ratti di rete occupati anche se non si trasmette
- > Protocolli di gestione semplici ed efficienti ma ...
 - ... tutti gli utenti devono per forza usare gli stessi protocolli.
- ➤ Gli utenti "pagano" in base al tempo di collegamento e non in proporzione alla quantità di dati scambiati

Prof. Vincenzo Auletta

15

Caratteristiche della commutazione di pacchetto

- Collegamenti condivisi da più utenti
 - diminuisce la velocità di trasmissione
 - collegamento non sfruttato al massimo perché ogni pacchetto deve contenere informazioni di controllo
- ➤ Ogni utente usa i protocolli che preferisce ma ...
 - 🕝 la gestione è complessa
- ➤ I nodi intermedi devono memorizzare i pacchetti e provvedere a calcolare la via più breve su cui istradarli (routing)
- ➤ Utenti pagano in proporzione alla quantità di dati effettivamente trasmessi..

Prof. Vincenzo Auletta

Circuito Commutato

- Lo stesso circuito è usato per mettere in comunicazione più stazioni.
 - Ttilizzato nella rete telefonica.
 - bisogna specificare con chi si vuole "parlare" (comporre il numero di telefono).

Prof. Vincenzo Auletta

Circuito Dedicato

- Due stazioni sono collegate in maniera diretta da un circuito.
 - ➤ Collegamento veloce, ma costoso.

- Esempi:
 - Rete dell'Università di Salerno collegata al nodo GARR di Napoli
 - Provveditorato agli Studi di Salerno collegato al Ministero P.I.

Prof. Vincenzo Auletta

18

Larghezza di Banda

- Le connessioni alle reti sono chiamate canali.
 - Più grandi sono i canali, più veloce è la trasmissione
 - ranalogo alle tubazioni dell'acqua o al numero di corsie di una strada
- La dimensione del canale è detta larghezza di banda e si misura in Hz
 - data dalla differenza tra le frequenze più alte e quelle più basse che un mezzo di comunicazione può trasmettere
 - Una linea telefonica trasmette frequenze da 300 a 3000Hz (larghezza di banda = 2700Hz)

Prof. Vincenzo Auletta

19

Velocità di Trasmissione

- La velocità di trasmissione tra computer si misura in bit per secondo (bps):
 - Fixidobit per secondo (Kbps) = 10^3 bps
 - megabit per secondo (Mbps) = 106 bps
 - Figigabit per secondo (Gbps) = 10^9 bps

Prof. Vincenzo Auletta

Un Video su Rete (esempio)

Risoluzione 640x480	307.200 bit
Colori: 265	8 bit
Totale bit dello schermo	2.457.600 bit
Fotogrammi al secondo	30
Totale bit al secondo	73.728.000 bit

➤ È necessaria una velocità di 73Mbps, con tecniche di compressione sono sufficienti 1.5Mbps

Prof. Vincenzo Auletta

21

Conversione AD⇔DA

- ➤ I computer collegati alla rete hanno bisogno di dispositivi per convertire segnali digitali in analogici e viceversa
 - Schede di rete -- Modem.
- > Tramite la linea telefonica è possibile far comunicare computer dislocati in tutto il mondo
- ➤ In genere
 - 🕝 il collegamento tra il telefono e la centrale è analogico
 - 🕝 il collegamento tra le centrali è digitale

Prof. Vincenzo Auletta

II Modem Analogico

- ➤ Permette ad un computer di collegarsi ad un altro tramite la linea telefonica.
 - Può essere interno (scheda alloggiata in uno slot di espansione del PC) od esterno (collegato ad una porta seriale del PC).
 - © Connesso alla rete telefonica tramite un semplice cavo telefonico.
- ➤ Il nome deriva da **MOD**ulazione **DEM**odulazione.
 - **☞** Modulazione: converte il segnale digitale in analogico.
 - *Demodulazione: converte il segnale analogico in digitale.

Prof. Vincenzo Auletta

Caratteristiche del Modem

- ➤ Velocità di trasmissione
 - Elimite teorico velocità linea analogica: 64Kbps.
 - Velocità limite modem: 115.2Kbps.
 - Velocità raggiungibile: 56.6Kbps (molti di meno a causa di interferenze).
- > Funzioni di controllo della trasmissione
 - PRiconoscimento e ripristino di errori
 - Capacità di compressione dati
 - Chiamata e risposta automatica, ripetizione, call back
- ➤ Molti modem possono svolgere anche funzioni di fax
 - ron usa il supporto cartaceo e costa meno

Prof. Vincenzo Auletta

25

Collegamento Tramite Porte I/O

- ➤ Collegare mediate un cavo due computer mediante la porta seriale (ci vuole del software di comunicazione).
- ➤ Un PC può vedere anche il disco rigido dell'altro.
- Esempio: un portatile collegato al PC di casa o dell'ufficio.

Prof. Vincenzo Auletta

Connessioni Private a Larga Banda

- > ISDN: Integrated Services Digital Network
 - *Non si usa un modem analogico ma un adattatore terminale ISDN detto anche modem ISDN
 - Si sfruttano due linee a 64Kbps, velocità di trasmissione tra 115,2Kbps e 128Kbps.
- ➤ DirectPC: Si ricevono (downstream) dati a 400Kbps su un PC via satellite e si inviano dati (upstream) tramite linee telefoniche.

Prof. Vincenzo Auletta

Tecnologia ADSL

- ➤ Asymmetrical Digital Subscriber Line
 - *Velocità Downstream: 9Mbps
 - © Velocità Upstream: 800Kbps
- ➤ In generale non tutta la capacità della linea è utilizzata:
 - © Quando si telefona, solo il 5% della capacità è usata (le linee telefoniche sono molto disturbate)
 - ADSL riesce ad usare il restante 95%

Prof. Vincenzo Auletta

29

Ulteriori Tecnologie

- ➤ Cable Modem: si sfruttano i cavi usati per la televisione via cavo per inviare dati è necessario un modem particolare.
 - © Downstream 1.5Mbps -- Upstream 300Kbps
- ➤ Rete senza fili Impiega trasmettitori per inviare dati in un'area circoscritta utilizzando onde radio
 - Velocità da 128Kbps a 1Mbps

Prof. Vincenzo Auletta

Metodi di Trasferimento Dati

- > Store and Forward: Memorizza ed Invia
 - Tutilizzato in reti MAN, WAN e GAN.
 - © Ogni nodo memorizza il pacchetto di dati prima di inviarlo al nodo più vicino al destinatario.
- ➤ Broadcast: *Diffusione*
 - Ttilizzato nelle reti LAN
 - © Ogni nodo delle rete legge "l'indirizzo" del pacchetto di dati. Lo "cattura" se i dati sono per lui, altrimenti lo lascia passare.

Prof. Vincenzo Auletta

31

Store and Forward destinatario memorizzano i dati poi li trasferiscono Prof. Vincenzo Auletta 32

Broadcast

Prof. Vincenzo Auletta

33

Fondamenti dell'Informatica A.A. 2001-2002

Mezzi Trasmissivi

- La trasmissione di dati digitali richiede che ad essi venga associato un fenomeno fisico attraverso il mezzo trasmissivo utilizzato.
- ➤I mezzi trasmissivi, a seconda del fenomeno fisico usato, si dividono in tre categorie
 - F Mezzi elettrici (fili di rame, doppini telefonici)
 - Onde radio
 - Mezzi ottici (fibre ottiche)

Prof. Vincenzo Auletta

Problemi dei Mezzi Trasmissivi

- **≻** Attenuazione
 - Diminuzione dell'energia trasmessa
 - F I segnali si indeboliscono a lunga distanza
 - Aumenta all'aumentare della frequenza
- **▶** Diafonia
 - Rumore presente nei mezzi trasmissivi elettrici
 - Si utilizza un frullatore vicino la radio
 - Si utilizza un cellulare vicino la televisione

Prof. Vincenzo Auletta

35

Fondamenti dell'Informatica A.A. 2001-2002

Elementi di una Rete

- > Nodo
 - P Qualsiasi dispositivo hardware del sistema
- > Hub
 - P Dispositivo per collegare i nodi della rete
- **≻**Dorsale
 - Cavo ad alta capacità a cui sono connessi hub oppure altri nodi

Prof. Vincenzo Auletta

L'Hub

> Detto anche concentratore, ha la funzione di semplificare la connessione fisica dei nodi, ritrasmette il segnale ricevuto su di una porta sulle altre porte.

Fondamenti dell'Informatica A.A. 2001-2002

La Classificazione delle Reti

- **▶** Dimensione
- > Metodi di trasferimento dati
- **≻**Topologia

Prof. Vincenzo Auletta

39

La Dimensione

LAN: Local Area Network

- © collega dispositivi nello stesso edificio o in edifici vicini (campus)
- relocità da pochi Mbps a oltre 1 Gbps

➤ MAN: Metropolitan Area Network

- 🕝 collega dispositivi sparsi nella stessa città o in paesi limitrofi
- velocità fino a 140 Mbps

►WAN: Wide Area Network

- recollega dispositivi sparsi in tutto il mondo
- 🕝 velocità da 64 Kbps a 155 Mbps

Prof. Vincenzo Auletta

Reti Locali (LAN)

- > Reti utili per collegare dispositivi in ambienti di ridotte dimensioni.
- ➤ Topologia usata:
 - Stella
 - Anello
 - Bus
 - Albero (non ne discuteremo)

Prof. Vincenzo Auletta

41

Architettura a Stella

- > Tutti i nodi sono collegati ad un computer centrale detto host.
- > Tutte le comunicazioni tra computer non sono dirette, ma passano attraverso quello centrale

Caratteristiche dell'Architettura a Stella

- > Economica e facilmente espandibile
 - ranne che per il costo dell'host
- ➤ Tempi di trasmissione uguali per tutti i nodi
- ➤ Avaria di nodi o collegamenti non mandano in avaria tutta la rete
 - " l'avaria dell'host centrale blocca tutta la rete
- Esiste un *collo di bottiglia*: stazione centrale
- ➤ i nodi non possono distare molto dalla stazione centrale (al più 100m)

Prof. Vincenzo Auletta

43

Architettura ad Anello

- ➤ I computer sono disposti in modo da formare una configurazione circolare.
 - ogni computer è collegato sia al computer che lo precede sia a quello che lo segue.

è possibile prevedere un doppio anello per tamponare problemi derivanti da avarie di collegamenti.

Caratteristiche dell'Architettura ad Anello

- > Economica e facilmente espandibile
- ➤ Non è necessaria una stazione centrale
- ➤ Sono facilmente prevedibili i tempi di attesa per il proprio turno per la trasmissione di messaggi.
 - ☞ i tempi aumentano al crescere del numero dei computer collegati
- L'avaria di un nodo implica l'avaria dell'intera rete.
- ➤ Difficilmente adattabile alle esigenze di un'azienda (difficoltà di cablaggio).

Prof. Vincenzo Auletta

45

Architettura a Bus

- Tutti i nodi condividono un unico canale (cavo) trasmissivo.
 - *L'utilizzo del canale deve essere regolato da meccanismi di arbitraggio (MAC).
- Molto diffuso nelle reti locali dove il cavo è sostituito da un hub.

Prof. Vincenzo Auletta

Fondamenti dell'Informatica A.A. 2001-2002

Caratteristiche dell'Architettura a Bus

- ➤ Economica e facilmente espandibile
- ➤L'avaria di un nodo non implica l'avaria dell'intera rete.
- ➤Il collegamento principale può essere usato da una sola stazione (nodo) per volta
- ➤II danneggiamento del cavo principale provoca l'avaria dell'intera rete

Prof. Vincenzo Auletta

47

II MAC

- Medium Access Control: protocollo che riguarda l'accesso al mezzo trasmissivo.
- > Architettura ad anello
 - Token Ring
 - Slotted Ring
- ➤ Architettura a bus (Ethernet)
 - © CSMA/CD

Prof. Vincenzo Auletta

Fondamenti dell'Informatica A.A. 2001-2002

Collegamento tra Reti

- > I dati trasmessi su di una rete devono essere:
 - rinviati nella giusta direzione
 - si usano router e bridge
 - amplificati per poter raggiungere posti lontani
 - si usano ripetitori
 - rasferiti a reti diverse
 - si usano gateway

Prof. Vincenzo Auletta

49

Dispositivi di Rete

> Ripetitori

- Collegano segmenti di rete amplificando e rigenerando i segnali che li attraversano
- > Bridge
 - Permettono di collegare reti che utilizzano collegamenti fisici differenti o separare reti in sottoreti
- > Router
 - controllano l'indirizzo dei pacchetti e li istradano sul percorso più breve
- Gateway
 - © collegano reti differenti (in genere coincidono con i router)

 Prof. Vincenzo Auletta

Modalità di Interazione tra i Nodi di una Rete

- ➤ Esistono due modelli
 - Modello client/server
 - Rete paritetica

Prof. Vincenzo Auletta

51

Fondamenti dell'Informatica A.A. 2001-2002

Modello Client/Server

- ➤ Un computer detto server è a disposizione di altri computer (detti client) per poter eseguire dei compiti particolari
 - F Stampare i documenti dei client
 - Conservare ed effettuare copie di back-up dei dati dei client
 - Eseguire calcoli complessi al posto del client

F ...

Prof. Vincenzo Auletta

- ➤ Inizia la chiamata
- **≻** Esempi
 - *Browser WWW
 - Lettori di mail
- ➤ Installazione facile
- ➤ Locazione non rilevante

server

- > Risponde alla chiamata
- **≻** Esempi
 - Server WWW
 - Mail Server
- ➤ Gestione complessa
- ➤ Locazione nota
 - www.unisa.it

Prof. Vincenzo Auletta

53

Rete Paritetica

- ➤ Dette anche reti *peer-to-peer*
- ➤ Si evita di utilizzare l'architettura client-server
- > Tutti i nodi sono sullo stesso piano/livello
- ➤ Un PC usato da un utente per editate testi può essere usato da un altro utente per stampare i propri documenti

Prof. Vincenzo Auletta