Curso: Engenharia de Computação

Arquitetura de Computadores

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Representação de grandezas numéricas

- Notação posicional
- Notação polinomial

Representação de grandezas numéricas

Notações posicional e polinomial

$$1457 = 1x10^{3} + 4x10^{2} + 5x10^{1} + 7x10^{0}$$
+significative

• Dígitos do conjunto $D=\{0,1,2,3,...,9\}$, base decimal

Notação posicional

$$N_b = d_{m-1} d_{m-2} \dots d_0$$

- N é a grandeza,
- b é a base,
- m é o número de dígitos usados na representação
- os índices 0 a m−1 representam a posição do dígito.

Notação polinomial

$$N_b = d_{m-1} \times b^{m-1} + d_{m-2} \times b^{m-2} \dots + d_0 \times b^0$$

- N é a grandeza,
- b é a base,
- m é o número de dígitos usados e
- os índices 0 a m-1 representam a posição do dígito.

Representação em binário puro

Representação binária

- bit (binary digit): 0 / 1
- 1 byte (B) = 8 bits
- Múltiplos:

Kilo (k)	2 ¹⁰
Mega (M)	2 ²⁰
Giga (G)	230
Tera (T)	240

Rev. agosto 2022

bases numéricas: binária decimal hexadecimal

Base 2	Base 10	Base 16
0	0	0
1	1	1
10	2	2
11	3	3
100	4	4
101	5	5
110	6	6
111	7	7
1000	8	8
1001	9	9
1010	10	A
1011	11	В
1100	12	C
1101	13	D
1110	14	E
1111	15	F
10000	16	10
10001	17	11

6 + CH3 CL Cat C6 H6 - CH3 + HCL
R1 CaCL CHO

Conversão de bases

Conversão de bases

• Base 10 para base 2: divisões sucessivas

$$N=(r_n r_{n-1} r_{n-2} ... r_0)_2$$

Conversão de bases

Base 2 para base 10: notação polinomial

$$b_n \times 2^n + b_{n-1} \times 2^{n-1} \dots + b_0 \times 2^0$$

Conversão de bases

Base <u>2 para base 16</u> e vice-versa

bn	 b6	b5	b4	b3	b2	b1	b0	base	2
					d	base	16		

Obs. Representação das grandezas hexadecimais na forma *Nh*, *NH* ou *0xN*, por exemplo endereço *0x10A* ou *10Ah* ou *10AH*

Aritmética binária

- Adição binária
- Subtração binária

Aritmética binária: adição

• Sejam dois dígitos binários (bits) a e b,

	L _	L)	
a+	D –	0	1	
	0	0	1	
a	1	1	10	carry ou vai um

Aritmética binária: adição

- Adição binária de dois números binários A e B de m bits, ou seja, A = a_{m-1} ... a_1 a_0 e B = b_{m-1} ... b_1 b_0 , A+B é obtida por
 - 1. Realizar a operação bit a bit do menos ao mais significativo (da direita para a esquerda)
 - 2. Aplica-se a tabela anterior
 - 3. Se houver bit 1 de *carry* transporta-se para a soma dos bits seguintes mais significativos (à esquerda)
 - 4. Repete-se o processo até alcançar o bit mais significativo.

Aritmética binária: <u>subtração</u>

• Sejam dois dígitos binários (bits) a e b,

	a-b =		k)	
			0	1	
		0	0	11	carry ou vai menos um
	a	1 1	0		

Aritmética binária: subtração

- Subtração binária de dois números binários A e B de m bits, ou seja, A = a_{m-1} ... a_1 a_0 e B = b_{m-1} ... b_1 b_0 , onde A é o minuendo e B é o subtraendo, A-B é obtida por
 - 1. Operação bit a bit, do menos ao mais significativo
 - 2. Aplica-se a tabela anterior
 - 3. Se houver bit -1 de carry transporta-se para a subtração dos dígitos seguintes (à esquerda mais significativos),
 - 4. Repete-se o processo até alcançar o bit mais significativo.
 - 5. Se o minuendo for menor do que o subtraendo inverter a operação e representar o **número negativo**

Adição hexadecimal

- 1. Processo similar à aritmética binária. A adição se implementa dígito por dígito, do menos ao mais significativo.
- 2. Para cada par de dígitos hexa, se a soma S for menor ou igual a 15 decimal (F, em hexadecimal), o resultado é o dígito hexadecimal equivalente...
- 3. ...se a soma S for maior do que 15, transporta-se 1 (carry) ao dígito seguinte (mais significativo)...
- 4. ...o resultado é o dígito equivalente a S-16...
- 5. ...com o dígito seguinte somado ao carry.
- P. ex. 0x8 + 0xA = 0x12

Subtração hexadecimal

- 1. Para cada par de dígitos hexa, do menos ao mais significativo, se o minuendo M for superior ou igual ao subtraendo S realiza-se a operação normalmente...
- 2. ...se M for inferior a S, toma-se 1 (borrow) do dígito seguinte (mais significativo), soma-se 16 a M e realiza-se a subtração...
- 3. ...decrementa-se 1 do M do dígito seguinte para prosseguir com a operação.
- 4. P. ex. 0x18 + 0x0A = 0x0E

Tipos de notação

Seja um número binário negativo com *m* bits, ele pode ser representado das seguintes notações:

- 1. Representação em bit sinal (sinal e magnitude)
- 2. Representação em complemento de 1
- 3. Representação em complemento de 2
- 4. Representação em excesso 2^{m-1}

Representação em sinal e magnitude (bit sinal)

Seja um número **negativo** $B = b_{m-1} \dots b_1 b_0$

Usando a notação em bit sinal

- 1. Na posição mais significativa, utiliza-se o **bit sinal** para os números **positivos e negativos**
- 2. Os demais bits representam o valor representado em binário puro
- 3. $B = bit sinal ... b_1 b_0$

Características

- Dos m bits, 1 bit fica reservado ao sinal
- Faixa de representação: $-(2^{m-1}-1)a + (2^{m-1}-1)$
- Dupla representação do 0 todos os bits iguais a 0, com bit sinal 0 ou 1

Exemplo: representação em bit sinal de palavras com 3 bits

+3	0	1	1			
+2	0	1	0			
+1	0	0	1			
0	0	0	0	1	0	0
-1	1	0	1			
-2	1	1	0			

Adição e subtração em bit sinal

- 1. Para uma adição/subtração de número com m bits, ...
- 2. aplica-se a adição/subtração da representação binária, ...
- 3. comparando-se os números...
- 4. e observando o sinal.

Complemento de números

- 1. O complemento de um número de *n* dígitos é a diferença entre o maior número de *n* dígitos naquela base e o número considerado.
 - Por exemplo, na base 10, o complemento de 12 é 87, pois 99 (maior número com 2 dígitos) menos 12 é igual a 87.
- 2. Na base 2, para obter o complemento basta inverter os bits do número binário
 - Por exemplo C(1011) = 1111-1011 = 0100 (inversão dos bits de 1011)
- 3. Na base 2, o complemento é chamado complemento de 1

Complemento de números

- 4. Na base 2, utiliza-se a soma do complemento de 1 com o bit 1, chamado de complemento de 2
 - Por exemplo $C_1(1011) = 0100$, logo o $C_2(1011) = 0100 + 1 = 0101$

Representação em complemento de 1

Seja um número **negativo** $B = b_{m-1} \dots b_1 b_0$

Usando a notação complemento de 1

- 1. Na posição mais significativa, utiliza-se o **bit sinal** para os números **positivos**
- 2. Os números da **faixa dos positivos** são representados pelo bit sinal seguido do binário puro
- 3. Os números da **faixa dos negativos** são representados pelo bit sinal seguido do complemento de 1 dos respectivos simétricos positivos

Características

- Dos m bits, 1 fica reservado ao bit sinal
- Faixa de representação: $-(2^{m-1}-1)a + (2^{m-1}-1)$
- Dupla representação do 0 todos os bits iguais a 0 ou iguais a 1

Exemplo: representação em complemento de 1 de palavras com 3 bits

+3	0	1	1			
+2	0	1	0			
+1	0	0	1			
0	0	0	0	1	1	1
-1	1	1	0			
-2	1	0	1			
-3	1	0	0			

Adição binária em complemento de 1

- 1. Para uma soma de número com *m* bits, ...
- 2. pode-se generalizar a operação do menos ao mais significativo direita para a esquerda, ...
- 3. 'carregando' o bit 1 de carry para a soma dos dígitos seguintes...
- 4. até alcançar o bit mais significativo.
- 5. Se houver carry 1 no bit mais significativo, transporta-se o bit 1 e o soma ao número do resultado obtido

Subtração binária em complemento de 1

- Soma-se o minuendo com a representação negativa do subtraendo do mesmo modo anteriormente apresentado
- Exemplo: complemento de 1 de palavras de 4 bits, seja A B, A = 0110, B = 0011, A B = A + (-B) = 0110 + 1100 = 110010 = 0010 + 1 = 0011

Representação em complemento de 2

Seja um número **negativo** $B = b_{m-1} \dots b_1 b_0$

Usando a notação complemento de 2

- 1. Utiliza-se o bit sinal para os números positivos
- 2. Os números da faixa dos positivos são representados pelo bit sinal seguido do binário puro
- 3. Os números da **faixa dos negativos** são representados pelo bit sinal seguido do **complemento de 2** dos respectivos simétricos positivos
- 4. A faixa dos negativos possui uma palavra bit sinal.0...0, que não possui simétrico positivo

Características

- Dos m bits, 1 fica reservado ao bit sinal
- Faixa de representação:

$$-(2^{m-1})a + (2^{m-1}-1)$$

 Não possui dupla representação do 0 – todos os bits iguais a 0 ou iguais a 1 Exemplo: representação em complemento de 2 de números de 3 bits

+3	0	1	1
+2			
	011	010	0 1 0

Adição binária em complemento de 2

- 1. Para uma soma de número com *m* bits,...
- 2. pode-se generalizar a operação do menos ao mais significativo...
- 3. 'carregando' o bit 1 de carry para a soma dos dígitos seguintes...
- 4. até alcançar o bit mais significativo.
- 5. Se houver carry 1 no bit mais à esquerda, despreza-se o carry

Subtração binária em complemento de 2

- Similar à soma na notação em complemento de 1...soma-se o minuendo com a representação negativa do subtraendo
- Exemplo: complemento de 2 de palavras de 4 bits, seja A B, A = 0110, B = 0011, A B = A + (-B) = 0110 + 1101 = 110011 = 0011

Representação em excesso 2^{m-1} para números de m bits

Seja um número **negativo** $B = b_{m-1} \dots b_1 b_0$

Usando a notação em excesso 2^{m-1}

- 1. O número mais negativo é o decimal -2^{m-1} , representado por todos m bits iguais a 0
- 2. Incrementa-se 1 a cada número seguinte até o número mais positivo
- 3. Corresponde a soma de 2^{m-1} a todas as grandezas a representar, desde as negativas. Por exemplo, +3 em representação excesso 8 (2³, 4 bits) é o equivalente a 11, ou seja, 1011

Características

• Faixa de representação: $-(2^{m-1})a + (2^{m-1}-1)$

Exemplo: representação em excesso 4

b2	b1	b0	
1	1	1	+3, em b10
1	1	0	+2, em b10
1	0	1	+1, em b10
1	0	0	0, em b10
0	1	1	-1, em b10
0	1	0	-2, em b10
0	0	1	-3, em b10
0	0	0	-4, em b10

Adição binária em excesso 2^{m-1}

- 1. Para uma soma de número com *m* bits,...
- 2. pode-se generalizar a operação do menos ao mais significativo...
- 3. 'carregando' o bit 1 de carry para a soma dos dígitos seguintes...
- 4. até alcançar o bit mais significativo.
- 5. Subtrair o resultado do excesso 2^{m-1}
- Por exemplo 1: +3 + (-5). Em excesso 8, A = 1011 e B = 0011, A + B = 1110 1000 = 0110. Ex 2: +4 + 2, 1100 + 1010 = 1110.

Subtração binária em 2^{m-1}

- 1. Subtrai-se normalmente, bit a bit, o subtraendo do minuendo, do menos ao mais significativo.
- 2. Somar o resultado ao excesso 2^{m-1}
- Por exemplo 1: +3 (-2). Em excesso 8, A = 1011 e B = 0110, A B = 0101 + 1000 = 1101. Ex 2: +7 4, 1111 1100 = 1011.

ibmec.br

Exemplo: Comparação palavras de 4 bits

base 10	bit sinal				compl 1			compl 2				excesso 8				
+7	0	1	1	1	0	1	1	1	0	1	1	1	1	1	1	1
+6	0	1	1	0	0	1	1	0	0	1	1	0	1	1	1	0
+5	0	1	0	1	0	1	0	1	0	1	0	1	1	1	0	1
+4	0	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0
+3	0	0	1	1	0	0	1	1	0	0	1	1	1	0	1	1
+2	0	0	1	0	0	0	1	0	0	0	1	0	1	0	1	0
+1	0	0	0	1	0	0	0	1	0	0	0	1	1	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
-1	1	0	0	1	1	1	1	0	1	1	1	1	1	1	0	1
-2	1	0	1	0	1	1	0	1	1	1	1	0	1	0	0	1
-3	1	0	1	1	1	1	0	0	1	1	0	1	0	1	0	1
-4	1	1	0	0	1	0	1	1	1	1	0	0	0	0	0	1
-5	1	1	0	1	1	0	1	0	1	0	1	1	1	1	0	0
-6	1	1	1	0	1	0	0	1	1	0	1	0	1	0	0	0
-7	1	1	1	1	1	0	0	0	1	0	0	1	0	1	0	0
-8	nã	ío e	xis	te	nã	io e	xis	te	1	0	0	0	0	0	0	0

Observações

- As máquinas possuem palavras com tamanho definido de m bits
- Se a operação resultante ultrapassar a capacidade do sistema representar o número obtido...
- caracteriza-se overflow = 'estouro'

Representação em ponto flutuante

- Notação científica: $N = f \times 10^e$
- , onde f fração ou mantissa; e expoente
- Pela representação em ponto flutuante equivalente computacional, quando se convenciona o número de dígitos para representar mantissa e expoente:
 - a faixa de representação é determinada pelo número de dígitos do expoente e
 - a precisão é determinada pelo número de dígitos da mantissa.

Representação em ponto flutuante

 A versão de ponto flutuante nos sistemas computacionais requer a representação da mantissa e do expoente no sistema binário.

Codificação binária

Códigos de detecção e correção de erros

- bit de paridade
- Distância de Hamming número de posições de bits em que duas palavras de um código são diferentes
- Em um código com distância de Hamming igual a d+1 é possível detectar d erros de bits únicos
- Em um código com distância de Hamming igual a 2d+1 é possível corrigir d erros de bits únicos

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

