Bleeding Detection by Multi-View Correlation Clustering of Central Venous Pressure

* Machine Learning Department, Carnegie Mellon University ** Auton Lab, Carnegie Mellon University *** School of Medicine, University of Pittsburgh

Carnegie Mellon Auton Lab

Exploiting Vital Sign Correlations Between Inspiration and Expiration Phases of Breathing

Introduction

- One question in medicine is whether the presence of bleeding is correlated with central venous pressure (CVP), the blood pressure in an area of the heart.
- Several studies argue that CVP has no clinical utility even though it is used in practice (Fig. B) because patient movements induce noise.
- The problem of filtering noise is separate from the intrinsic utility of CVP. We investigate CVP within a laboratory setting that restricts noise, which has rarely been studied.
- A CVP waveform has several peaks and troughs (Fig. A). The differences in amplitude are thought to be significant, such as the difference CQ.

- We apply a classification method based on multi-view correlation clustering to detect bleeding from CVP.
- We reveal how the relationship between CVP during inspiration and expiration changes depending on whether bleeding exists.

Data

- The data were collected from an experiment in which 38 sedated pigs were subjected to controlled bleeding at a constant rate of 20mL/min.
- A pair of CVP waveforms was measured from each pair of inspiration and expiration phases.
- The dataset covers 20 minutes before and 30 minutes after the onset of bleeding, for an average of 556 observations per pig.
- Twenty-one features were extracted from each waveform as averages and ratios between different points.

Experiments

Bleeding Detection as Classification

 We tried classifying individual points as well as consecutive windows.

Wind	ow Size	AUC	TPR@10FPR	FPR@50TPR
	1	87.9 ± 5.3	72.8 ± 14.4	5.5 ± 5.5
	12	89.4 ± 6.0	76.5 ± 16.9	4.7 ± 5.6
All obse	rvations	92.3 ± 15.4	-	-

- Fig. E shows the ROCs of pigs in the test set.
- Some pigs have high TPR at low FPR and the rest do not.

- Fig. F shows the classification score over time on a particular pig at window sizes G = 1 and G = 12.
- The score increases after bleeding starts.

- Fig. G shows the predicted cluster membership of the pig.
- Non-bleeding clusters are below the green line.
- There are 3 to 4 predicted phenotypes for this pig's behavior.

- Fig. H shows latent variable residuals from Cluster 2.
- The residuals diverge from 0 after bleeding starts.

Multi-View Correlation Clustering

- Multi-view data have features that are partitioned into two views or sets: inspiration and expiration in this case.
- In multi-view correlation clustering, observations can be clustered based on the relationship between views (Fig. C).

Method

- We apply a novel EM-like algorithm to estimate multi-view correlation clusters.
- The correlations are found by a technique called Canonical Least
 Squares (CLS), which resembles
 Canonical Correlation Analysis (CCA):

$$\sum_{i} \min_{U^{(i)}, V^{(i)}} ||R^{(i)}(XU^{(i)} - YV^{(i)})||_{\mathcal{F}}^{2}$$
$$V^{(i)\mathsf{T}}V^{(i)} = I, \ i = 1, \dots, k$$

- CLS clustering alternates between an update phase, solving CLS for each cluster, and assignment phase.
- CLS clusters are fitted separately on data from each class to get parameters U_0, V_0, U_1, V_1 .
- A set of points (\tilde{X}, \tilde{Y}) is scored by comparing the best fitting cluster from each class (Fig. D):

$$\arg\min_{i} \|\tilde{X}U_{1}^{(i)} - \tilde{Y}V_{1}^{(i)}\|_{\mathcal{F}}^{2} - \arg\min_{j} \|\tilde{X}U_{0}^{(j)} - \tilde{Y}V_{0}^{(j)}\|_{\mathcal{F}}^{2}$$

■ The score is averaged over multiple initializations of clusters.

Procedure

- The problem was framed as a binary classification between bleeding and nonbleeding.
- Data from all pigs were pooled.
- Points from the same pig were constrained to the same cluster.
- Using LOOCV over pigs, hyperparameters were selected as 5 clusters for pre-bleeding and 6 for postbleeding to maximize AUC.
- The final model was evaluated on a hold-out set of 13 pigs.

Summary

- CVP waveforms can help predict bleeding when the level of noise is controlled.
- The presence of bleeding can change the correlation between waveforms during inspiration and expiration.
- In the future, we will investigate whether noise in CVP can be filtered.