How Do Vehicle Characteristic Impact Severity of Accident & What are the possible High-Risk Vehicle Profile

Research Tasks

Data Pre-Processing

2 Correlation Analysis

3 Supervised Learning Prediction Model

Unsupervised learning Clustering

5 High Risk Vehicle Profile

Vehicle Characteristic

Choosing our **feature variables** that are related to vehicle characteristic

We chose it based on 5 categories

- 1. physical structure
- 2. weight and size
- 3.mechanical and engine
- 4. identification and manufacturing
- 5. appearance and visibilities

Dataset before processing

- 1.VEHICLE_TYPE,
 VEHICLE_BODY_STYLE,
 SEATING_CAPACITY,
 CONSTRUCTION_TYPE.
- 2.TARE_WEIGHT,
 VEHICLE_WEIGHT,
 CARRY_CAPACITY.
- 3.NO_OF_CYLINDERS, CUBIC_CAPACITY, VEHICLE_POWER, FUEL_TYPE.
- 4.VEHICLE_MAKE,
 VEHICLE_MODEL,
 VEHICLE_YEAR_MANUF.
- 5.VEHICLE_COLOUR_1, VEHICLE_COLOUR_2.

Pre-Processing

- 1. **Missing data removal** column wise delete those where missing value > 80%
- 2. **Delete constant variables** column with single value are removed
- 3. **Missing data fill in** numerical use mean, categorical use mode
- 4. **Outlier detection** five number summary and box plot
- 5. **Text cleaning** remove stop words and punctuation.
- 6.**Create 'AGE' column** = Year of accident Year of vehicle manufactured
- 7. **Datasets Merging** merge accident.csv and filtered_vehicle.csv

Processed Data

- VEHICLE_MAKE
- VEHICLE_TYPE
- FUEL_TYPE
- NO_OF_CYLINDER
- SEATING_CAPACITY
- TARE_WEIGHT
- VEHICLE_BODY_STYLE
- VEHICLE_COLOUR_1
- AGE
- SEVERITY

Accident Severity

Choose **target variable** "Severity" and create categories for severity levels

- 1 = **Fatal** accident
- 2 = **Serious** accident
- 3 = **Other injury** accident
- 4 = **None injury** accident

We decide to drop severity level = 4 (none injury) with only 4 samples

Severity Distribution

W10G07 May 29, 2025

Pearson Correlation

Linear relationship & continuous variables

- Exploring linear relationship between continuous variable (tare weight and age) and severity levels (1, 2, 3)
- P-value of O and Pearson correlation
 (r<0.05) suggest a very weak negative
 linear relationship between weight & age of
 vehicle and accident severity levels
- However, they could have non-linear relationship
- Imbalanced data of vehicle tare weight

Feature	Pearson r	p-value	
TARE WEIGHT	-0.0429	0	
AGE	-0.0298	0	

Mutual Information

Both linear & non-linear relationships

- For continuous variable, we discretise them before calculate the entropy
- Applied ordinal encoding to categorical variable to avoid artificial order
- Vehicle type, seating capacity and number of wheels could be more associated with accident severity

Section 3 - Supervised Learning

Feature Importance

- Top 10 important features selected by Random Forest Classifier
- Tare weight is the most important feature

Decision Tree (depth = 3)

Section 3 - Supervised Learning

Classification Report

- Zero-R Baseline shows the highest accuracy, but 0 recall on fatal and serious accidents
- Random Forest model has the most balanced recall for each severity levels of accidents
- Logistic Regression model has the best recall on fatal accident but relatively low precision
- Low generalisation ability on fatal accident due to imbalanced data

	Zero-R Baseline								
	Fatal Serious Other Macro Avg Weighted Avg Accuracy								
Precision	0	0	0.65	0.22	0.42				
Recall	0	0	1	0.33	0.65				
F1-score	0	0	0.79	0.26	0.51	0.64			
Support	1096	26281	50456	77833	77833	77833			

Random Forest Model								
	Fatal	Serious	Other	Macro Avg	Weighted Avg	Accuracy		
Precision	0.01	0.34	0.65	0.33	0.54			
Recall	0.02	0.4	0.58	0.33	0.51			
F1-score	0.02	0.37	0.61	0.33	0.52	0.51		
Support	3653	87602	168187	259442	259442	259442		

	Logistic Regression Model							
Fatal	Fatal	Serous	Other	Macro Avg	Weight Avg	Accuracy		
Precision	0.02	0.34	0.67	0.34	0.55			
Recall	0.52	0.16	0.53	0.4	0.4			
F1-score	0.04	0.22	0.59	0.28	0.46	0.41		
Support	1079	26051	50092	77222	77222	77222		

Section 3 - Supervised Learning

Logistic Regression

Fitting Curves

- Possibility of fatal accident could be increased as vehicle weight increased
- Other injury possibility of accident could be decreased as vehicle weight increased

Unsupervised Leanring Clustering Section 4

Feature selection

For distance-based clustering KMeans

Groupby (categorical)

- VEHICLE_MAKE
- VEHICLE_BODY_STYLE
- VEHICLE_TYPE_DESC
- FUEL_TYPE
- VEHICLE_COLOUR_1

Clustering (numerical)

- TARE_WEIGHT
- SEATING_CAPACITY
- NO_OF_WHEELS
- NO_OF_CYLINDERS

Elbow method

- The point at which the rate of improvement in WCSS significantly slows down
- We choose k = 3 as our
 number of clusters

KMeans & PCA

- Clustered using KMeans, then reduced to
 2D via PCA to enable visualisation while
 preserving data interpretability
- First 2 components explain 91.32% of variance in vehicle structure
- Clusters show compact intra-group distance, indicating strong internal cohesion
- Clusters are well–separated with large inter– cluster distances, suggesting clear groups distinctions

Cluster Profile

Numerical Data - median

cluster	TARE_ WEIGHT	AGE	SEATING_ CAPACITY	NO_OF_ CYLINDERS	NO_OF_ WHEELS
0	1547.83	9.94	5.0	4.0	4.0
1	10695.07	8.89	43.0	6.0	4.0
2	9546.22	9.39	2.0	6.0	6.0

Categorical Data - mode

cluster	VEHICLE_ TYPE_DESC	VEHICLE_ MAKE	VEHICLE_ BODY_STYLE	VEHICLE_ COLOUR_1	FUEL_ TYPE
0	CAR	TOYOTA	SEDAN	WHI	P
1	BUS/COACH	UNKNOWN	BUS	WHI	D
2	HEAVY VEHICLE	UNKNOWN	PMVR	WHI	D

Vehicle with average age 9–10,
 color in white, and made by Toyota
 is most likely to be invloved in accident
 recorded by the VIC government

- Cars, low tare weight, 5 seating capacity, fewer cylinders and wheels
- Buses & coaches, large seating capacity, highest tare weight
- Prime Mover, high tare weight, small seating capacity, more wheels

W10G07 May 29, 2025

W10G07 May 29, 2025

Section 5 - Risk Profile

Distribution of Vehicle Type Across Clusters

- Reveals the fact of data imbalance
- Light vehicles contribute to a large number of accidents
- While heavy vehicles are involved far less often
- Car and wagon are widely used and exposed, especially in urban areas

Vehicle Risk Profile

For imbalanced Data

- Fatal rate (dash line) reveals structural
 risks heavy vehicles could be more
 likely to be involved in fatal outcomes
- Prime Movers and Buses may have
 higher momentum and multiple
 passengers, which may increase the
 severity in collisions.
- Small cars have greater agility, which may reduce collision severity
- The **average severity** (red line) across clusters appears similar

W10G07 May 29, 2025

Vehicles with different weight and size exhibit different risk patterns across accident severity levels

• It is difficult to determine which vehicle types are at higher risk due to data imbalances and small sample sizes for some categories.

- Our investigation is only focus on vehicle characteristic
- Ignore other factors may influence accident severity of different vehicles
- 3 Limitations of vehicle age

Driver

Driver for heavy vehicles could be more professional and more experienced

Environment

Visibility of vehicles with different colors could depend on different light condition

Vehicle Age

We considered vehicle age but ignored that newer models may perform better due to technology improvements

Vehicle Owner

Older cars may degrade, but this could depends on maintenance and driving habits

