

Diseño de un dispositivo HID mejorado con datalogger y pulsómetro

Autor: Juan Domingo Jímenez Jerez

Director: Miguel Ángel Mateo Plá

ÍNDICE

- 1. Introducción
- Objetivos
- 3. Diseño: background y USB HID
- 4. Flujograma
- 5. Pruebas del dispositivo HID
- 6. Pulsometría: teoría, desarrollo y pruebas
- 7. Conclusiones

Introducción

#Dispositivo para experimentos psicológicos con computadores

Como método de análisis y diagnóstico.

Registrar el tiempo en que ocurren diferentes eventos (Precisión)

Corregir el retardo producido por el Hardware de E/S (Exactitud)

Objetivos

- # Implementar teclado USB HID
 - Con al menos dos teclas programables (pulsadores)
 - Capaz de registrar eventos
- # Almacenar, leer y borrar información de eventos en la memoria Flash (Datalogger).
- # Sincronizar relojes.
- # Diseñar una consola de control por puerto serie.
- # Implementar un pulsioxímetro.

Background

USB background

- #Arquitectura maestro / esclavo.
- ## Multiples Velocidades: Low=1.5Mbps, Full=12 Mbps, High=480Mbps, Super=5Gbps

Enumeración

- Se conecta el dispositivo al puerto USB.
- 2. El hub detecta al dispositivo.
- 3. El Host es notificado del nuevo dispositivo.
- 4. El hub detectar si el dispositivo es Low speed o Full Speed.
- 5. El hub resetea el dispositivo.
- 6. Se notifica al Host y los dispositivos FS soportan HS.
- 7. El hub establece un camino de señal entre dispositivo y bus.
- 8. El Host envia un *request* GetDescriptor para conocer el tamaño máximo de paquete de la tubería por defecto.
- El Host asigna una dirección al dispositivo (Set Address Request).
- 10. Lee los descriptores del dispositivo (Get Descriptor Request).
- 11. El Host asigna y carga los drivers del dispositivo.
- 12. El driver del Host selecciona una configuración.

Endpoints

- El Host los usa para obtener info a través de los descriptores.
- De control y de datos
- Endpoint 0: bidireccional. Los de datos: Unidireccionales

Descriptores

Permite al host tomar información del dispositivo y como comunicarse con él.

Interface

Representa a un dispositivo lógico USB

USB: Clase HID

- # Clases de dispositivos: definen el comportamiento y protocolos comunes para dispositivos con funciones similares.
- # Clase HID: "Human Interface Device"
 - Dispostivos usado por humanos para controlar operaciones en sistemas informaticos.
 - ☐ Típicos: ratón, teclado, joystick, pads...
- **Requisitos** de los dispositivos de clase HID:

 - □ Deben responder a los request (estándart y de clase HID).
 - □ "Get Report y "Set Report" requests.
 - ☑ Get Report: Devuelve todos los descriptores no opcionales

Librería USB Device de STM

Archivo	Descripción
usbd_core (.c, .h)	Contiene las funciones para manejar todas las comunicaciones USB y máquinas de estado.
usbd_req(.c, .h)	Incluye las implementaciones de solicitudes (request)
usbd_ioreq (.c, .h)	Manejalos resultados de las transacciones USB.
usbd_conf.h	Contiene la configuración del dispositivo: ID de proveedor, Id de producto, Strings, etc
usbd_hid (.c, .h)	Contiene las devoluciones de llamada de la clase HID (driver) y los descriptores de configuración de clase.

■ Discovery STM32F407D

- Cmsis
 - Core cm4.h
- User
 - Stm32f4 usb hid device
 - Defines.h
 - Main.c
 - Usb bsp.c
 - Usb conf.h
 - Usbd conf.h
 - ☑ Usbd_desc.c
 - Usbd desc.h
 - Usbd_desc.n
 Usbd_usr.c
- Usb_Hid_Device

MS19708V1

- Usb bsp.h
- Usb_core.c
- ☑ Usb_dcd.c
- Usb_dcd_int.c
- Usb_defines.h
- Usbd_core.c
- Usbd_ioreq.c
- Usbd_req.c
- Usbd usr.h
- Usbd_hid_core.c
- Usbd_hid_core.h

Flujograma: Registro eventos

Flujograma: Consola de control en UART

Prueba del dispositivo USB HID

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Byte 0	Report ID = 0x01									
Byte 1	Right GUI	Right ALT	Right SHIFT	Right CTRL	Left GUI	Left ALT	Left SHIFT			
Byte 2	Padding = siempre 0x00									
Byte 3	Key 1									
Byte 4	Key 2									
Byte 5	Key 3									
Byte 6	Key 4									
BYTE 7	Key 5									
BYTE 8		Key 6								

el valor de la tecla 2 es: y

Prueba del dispositivo USB HID: orden *time*

270138 ms/10 182723ms/10 -- P1I1

184823ms/10 -- P1F1 190019ms/10 -- P2I1

192017ms/10 -- P2F1

225073ms/10 -- EI1

243949ms/10 -- EF1

Prueba del dispositivo USB HID: orden *hora*

h 3102545 ACK

Pletismografía

Cambios de volumen producidos por variaciones del flujo sanguíneo

Fotopletismografía

- Luz es absorbida en mayor o menor cantidad dependiendo de la cantidad del flujo sanguíneo.

Obtención de la Frecuencia Cardiaca mediante FFT

♯ FFT: "Fast Fourier Transform"

Frecuencia de Nyquist: Es la frecuencia más alta que puede ser capturada por el analizador.

- **# Frecuencia de Muestreo**
- **★ Tamaño de FFT**
- **Resolución en frecuencia**

$$250$$
ppm $\rightarrow 4,16$ Hz = $Fmax$

$$Fs > 2Fmax \rightarrow Fs > 8,33Hz$$

Finalmente Fs=100Hz

$$\Delta f = \frac{\text{fs}}{\text{N}} = \frac{100}{2048} = 0.04883 \ Hz$$

Sonda, filtrado y amplificación

Implementación del pulsómetro

 $ppm = \Delta f \cdot \text{testIndex} \cdot 60$

Prueba del pulsómetro

Conclusiones Técnicas

#Todos los objetivos cumplido exceto:

- Oxímetro:
 - Sin posibilidad de comprobar el resultado
- #Qué más se podría hacer...
 - Pruebas de funcionamiento más exhaustivas para el pulsómetro
 - Primer resultado de ppm más rápido
 - Circuito impreso encapsulado

Conclusiones Personales

#Objetivos personales.

Realizar un PFC elaborado.

Poner a prueba conceptos aprendidos a lo largo de la titulación

Diseño de un dispositivo HID mejorado con *data-logger* y pulsómetro

Autor: Juan Domingo Jímenez Jerez

Director: Miguel Ángel Mateo Plá