APM32E103xE 与 APM32F103xE 和 Sxx32F103xE 的差异

版本履历

日期	版本	变更内容
2021.07.13	1.0	新建

APM32E103xE 是基于 Cortex M3 内核的微控制器,它与 Sxx32F103xE、APM32F103xE 兼容,可以完全取代 Sxx32F103 大容量芯片,与 Sxx32F103xE、APM32F103xE 相比运行功耗更低,主频更高;增加了 CAN2 功能;同时也提供了内部合封一块 2M 的 SDRAM 的型号。

一、性能优势

- 系统时钟为 96MHz、120MHz 下, USB 可以获得 48MHz, USB 可以正常工作, Sxx32 的不行
- 144pin 封装可以支持连接最大 256MB 大小的 SDRAM,100pin 封装还拥有内部合封 2M 的 SDRAM 型号
- 可移植性好,减少工程师工作量
- 主频标称可以到 120MHz
- 支持浮点运算
- 运行及睡眠功耗较低

二、相同点

- 管脚定义:相同封装的管脚定义相同,新增的功能通过管脚复用来完成
- 内存映射:内存以及寄存器地址相同,新增的功能占用了保留的地址区域
- 编译环境:编译仿真工具相同,使用 keil 完成编译,JTAG 下载
- 库函数,范例程序:可以使用相同的库函数和范例程序,新增的功能通过添加对应驱动 文件来完成

三、两者的不同点

3.1. 系统

3.1.1. 系统基本信息

内容	APM32E103xE	Sxx32F103xE	APM32F103xE
主频	120MHz	72MHz	96MHz
FLASH	512KB	512KB	512KB
SRAM	128KB(可配置)	64KB	128KB
SDRAM	2M (APM32E103xES)	无	可外挂
	非合封型号可外挂 SDRAM		
封装	QFN48,LQFP48/64/100/144	LQFP64/100/144	LQFP48/64/100/144

3.1.2. FPU

- APM32F103xE 和 APM32E103xE 均存在内部硬件 FPU 模块,可以进行单精度浮点运算。
- Sxx32 无 FPU。

备注: APM32 的 FPU 是专门用于浮点运算的协处理器单元,挂在 AHB 总线上,它能够高效处理较为复杂的浮点运算,比如,扫描枪的解码算法、电机的闭环控制、PID 算法、快速傅里叶变换等,可以加快系统的处理能力。

FPU 运算加速效果只针对 LIB 库中的函数,对其他的例如+、-、×、÷、矩阵置换运算等无明显加速效果。

3.1.3. 时钟

2.1.2.2 HSI

	APM32E103xE	Sxx32F103xE	APM32F103xE
精度	-1.4%~1.15%	-0.89%~-0.06%	-1.86%~1.36%

2.1.2.3 HSE

- APM32F103 HSE 启动时间的 timeout 值建议设定为 0x3200, 最大 0xffff。
- APM32E103 和 Sxx32 HSE 启动时间的 timeout 值为 0x0500

备注:标准的晶振电路下,APM32 与 Sxx32 的 t_{SU(HSE)}实测值均小于 2ms,但晶振起振容易受外部电路和晶振参数的影响,个别客户 Timeout 设定为 0x0500,晶振无法启动,可能与外部电路和晶振型号有关,为了保证晶振正常启动,可以修改 HSE_STARTUP_TIMEOUT 宏定义。V3.x 版库函数,宏定义在 XXX32F10x.h 中; V3.0 之前的库,宏定义在 XXX32f10x_RCC.c 中。建议的晶振电路如下(电容值需根据晶振型号匹配):

#define HSE_STARTUP_TIMEOUT ((uint16_t)0x3200) (建议 0x3200, 最大 0xffff)。

2.1.2.3 LSI

	APM32E103xE	Sxx32F103xE	APM32F103xE
频率范围	51.145~74.155	37.63~41.44	38.69~46.15

3.1.4. FLASH

代码运行速度:

延时类型	i++	For 循环	While 循环	调用函数 for 循环	调用函数 while 循环
APM32F103ZE	106us	125.5us	125.47us	125.92us	125.92us
Sxx32F103ZE	106.2us	125.78us	125.81us	126.03us	98.44us
APM32E103ZE	106us	126us	126us	126us	126us

备注:上述运行结果条件均为主频 72MHz,2 个等待周期

CoreMark 跑分:

主频	等待周期	APM32E103xE	Sxx32F103xE	APM32F103xE
72MHz	2	138.995066	131.156141	140.15417
120MHz	2	231.696015	218.627022	195.036326

备注: 1、以上数据均在常温常压下测试

2、APM32F103xE 主频为 120MHz 时, 等待周期为 3 个

	APM32E103xE	Sxx32F103xE	APM32F103xE
16 位编程时间	46us	56us	37us
页擦时间	7ms	22ms	3ms
片擦时间	9ms	22ms	26ms
读速度	50MHz	50MHz	37MHz

备注: 以上数据均为全温全压数据

3.1.5. USB 与 CAN 可以同时使用

	APM32E103xE	Sxx32F103xE	APM32F103xE
CAN	2	1	1

- APM32F103xE 的 USB2 与 CAN1 可以同时使用, USB1 与 USB2 不可以同时使用
- APM32E103xE 的 USB1 与 CAN2 可以同时使用, USB2 与 CAN1 可以同时使用, USB1 与 USB2 不可以同时使用, CAN1 与 CAN2 可以同时使用
- Sxx32 的 USB 与 CAN 不能同时使用

备注:使用 CAN2 重映射功能时,需要将 GPIO 重映射函数放在其他重映射函数之后。 (GPIO_PinRemapConfig())

3.1.6. WFE 事件中断

- APM32 执行 WFE 指令第一次无效,第二个 WFE 指令才可以正常工作。导致此问题的原因是 M3 内核版本不同。
- Sxx32 执行一次 WFE 指令即可。

3.1.7. GPIO

- 软件模式下 NSS 管脚的定义, 在 SPI 硬件主机/NSS 使能情况下, NSS 管脚需要配置成复推挽输出; 在 SPI 设置成软件模式, 需要把 NSS 管脚成推挽模式即设置成 GPIO 口功能防止复用模式下有不确定情况出现。PIO 口功能以防止复用模式下有不确定情况出现。
- 复用推挽以及推挽模式区分应用。 针对 SPI 硬件/软件模式下 NSS 管脚的定义,在 SPI 硬件主机/NSS 使能情况下, NSS 管脚需要配置成复用推挽输出; 在 SPI 设置成软件模式, 需要把 NSS 管脚成推挽模式即设置成 GPIO 口功能以防止复用模式下有不确定情况出现。

3.1.8. TSENSOR

	APM32E103xE	Sxx32F103xE	APM32F103xE
转换斜率	3.6~3.74	4.2	4.02~4.51

备注: 斜率越低,表示转换精度越高

3.2. 电气特性

3.2.1. 功耗

	APM32E103xE	Sxx32F103xE	APM32F103xE
运行功耗	20.95mA	70.14mA	45.115mA
睡眠模式功耗	14.49mA	49.52mA	31.21mA
停机模式1功耗	47.896uA	27.84uA	29.506uA
停机模式 2 功耗	41.821uA	20.15uA	18.962uA
待机模式1功耗	5.65uA	4.14uA	4.912 uA
待机模式 2 功耗	5.484uA	3.56uA	4.363 uA
待机模式 3 功耗	3.742uA	2.39uA	3.545uA
Vbat 功耗	1.94uA	1.72uA	1.645uA

备注: 1、以上数据测试条件为: 程序在 Flash 中运行, 外设使能、系统时钟为 96MHz、25℃、

3.6V 供电。

- 2、停机模式在高温情况下 APM32F103 和 APM32E103 功耗基本在 350uA 左右, Sxx32 基本在 400uA 以上。
- 3、待机模式在高温情况下,APM32F103 功耗在常温的 5 倍左右,APM32E103 功耗在常温的 3 倍左右,Sxx32 基本与常温相近。

四、与友商参数对比

功耗数据是典型值(25℃、3.3V供电)

Symbol	Ratings	APMF103ZE	Sxx103ZE	APME103ZE
TA	Ambient temperature	-40~105°C	-40~105°C	-40~105°C
$V_{ m DD}$	Standard operating temperature	2.0~3.6V	2.0~3.6V	2.0~3.6V
V _{DDA}	Analog operating voltage	2.4~3.6V	2.4~3.6V	2.4~3.6V
V _{BAT}	Backup operating voltage	1.6~3.6V	1.8~3.6V	1.6~3.6V
f _{HCLK}	Internal AHB clock frequency	96MHz	72MHz	120MHz
f _{APB1}	Internal APB1 clock frequency	48MHz	36MHz	60MHz
	Internal reference voltage			
V _{refint}	$-40 ^{\circ}\text{C} < \text{T}_{\text{A}} < +105 ^{\circ}\text{C}$	1.2~1.22V	1.202~1.206V	1.188~1.2002
	Run mode - External clock, all			
i _{DD}	peripherals enabled - 72MHz -in Flash	32.9mA	51mA	15mA
	Run mode - External clock, all			
idd	peripherals disabled - 72MHz -in Flash	19.4mA	30.5mA	11.61mA
	Sleep mode - External clock, all			
	peripherals enabled - 72MHz - in Flash or			
idd	RAM	21.5mA	29.5mA	9.76mA
	Sleep mode - External clock, all			
idd	peripherals disabled - 72MHz- in Flash or	5.2mA	6.4mA	2.35mA

	RAM			
idd	Stop mode - Regulator in Low-power mode - LSI/HSI/HSE OFF -IWDG OFF	18.48uA	25uA	46uA
idd	Standby mode -LSI ON -IWDG OFF - RTC ON	3.83uA	3.6uA	5uA
I _{DD_VBAT}	-RTC ON	1.45uA	1.4uA	1.7uA