```
Taylor Cowley
EE 220
May 19 2016
```

Lab 06: Oscilloscope/Logic Analyzer

Toggle circuit Verilog code

```
// A D flip flop
module FF_DC(q, clk, clr, d);
input clk, clr, d;
output reg q;

always @(posedge clk)
if(clr)q<=0;
else q<=d;
endmodule
```

Toggle Circuit screen capture

// Toggle circuit module toggle(q_out, clk_out, g_clk, clr); input g_clk; input clr; output q_out; output clk_out; wire q_not; // read from the output, huh not(q_not, q_out); // Not quite sure how buf works buf(clk_out, g_clk); FF_DC flip(q_out, g_clk, clr, q_not); endmodule

Toggle circuit question and answer- Why are the waves not square?

Because outputting perfect square waves is not only impossible, it is useless for a digital device like the FPGA we are using. When we put cutoffs on the wave, and consider everything higher than the cutoff to be '1' and everything lower to be a '0', then we get our nice digital toggle signal. The end.

Bounce screen capture

Bounce circuit settling time: 180 us

4-bit shifter pattern of values 04D12AB6879FEC35

Anomalies

The first breadboard I tried to do the bounce circuit on didn't have any power going to VCC. So I had to change that. Also, when connecting up the wires for the 4-bit shifter, I initially could not get any signal on D3. But I got it.