Problem 24: The equation $z^6 + z^3 + 1 = 0$ has one complex root with argument (angle) θ between 90° and 180° in the complex plane. Determine the degree measure of θ . (Source: AIME)

Let $u = z^3$. Then $u^2 + u + 1 = 0$.

$$u = \frac{-1 \pm \sqrt{1 - 4}}{2}$$
$$= \frac{-1 \pm \sqrt{-3}}{2}$$
$$= -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

Putting u in exponential form, we get

$$u = \{e^{2\pi i/3}, e^{4\pi i/3}\}$$

Now we can solve for z.

$$z^{3} = e^{2\pi i/3} \implies z = \{e^{2\pi i/9}, e^{8\pi i/9}, e^{14\pi i/9}\}$$
$$z^{3} = e^{4\pi i/3} \implies z = \{e^{4\pi i/9}, e^{10\pi i/9}, e^{16\pi i/9}\}$$

Combining all six solutions, we have

$$z = \{e^{2\pi i/9}, e^{4\pi i/9}, e^{8\pi i/9}, e^{10\pi i/9}, e^{14\pi i/9}, e^{16\pi i/9}\}$$

Only one of these roots is between 90° and 180°, and that root is $z = e^{8\pi i/9}$.

The angle measure of $\frac{8\pi}{9}$ radians is equivalent to 160°.

Thus $\theta = 160^{\circ}$.