

First Look at Flavour Tagging In Stable Beam Collisions

Laurie McClymont Antonello Miucci Valerio Dao

Flavour Tagging Weekly 16/06/15

Aims

- Use dijets to compare data to MC.
- Get an early indication performance of the b-tagging algorithms in Run2 Collisions

Samples

- •user.vdao.mc15_13TeV.*.Pythia8EvtGen_jetjet_JZ*W.merge.AOD.*.BTAGNTUP_OrigV8full_BTAG STREAM/
- JZ1W-JZ6W No JZ0W
- ~ 1M Events
- user.vdao.data15_13TeV. 00267073.physics_Main.merge.AOD.f594_m1435.BTAGNTUP_V9full_BTAGSTREAM.30598468
- First stable beam collisions!
- ~11M Events from Run 267073
- 29th May Alignment

Beam Spot Quality
- Eric Torrence

Trigger Selections

- L1_RD0_Filled Trigger with P_T > 35 GeV.
- Less stringing cuts on data allow us to more data (and MC) points to reduce statistical effects.
- L1_J50 Trigger with P_T > 175 GeV In the Backup
- This trigger is used with a large P_T cut such that the trigger is at optimal efficiency

Details/Cuts

- njets ≥ 1
- Leading Jet Only (Unless otherwise specified)
- Run1MediumBadCuts == 0
- |eta| < 2.5
- Truth PV Check for MC
- abs(truth_PVz reco_PVz) < <u>0.5mm</u>
- Truth Dijet Test for MC
- $-(pt_1+pt_2)/2 < 1.4* truth_pt_1, for njet > 1$
- (pt_1 < 1.4 * truth_pt_1), for njet =1

- Good Run Cut for Data
- Run 267073
- LBN: 368-410, 413-416, 442-466, 471-485 and 491 to 724
- LabDr_HadF truth matching.
- AntiKt4EMTopoJets.

Jets

Jet P_T [GeV]

Di-jet sample re-weighting

L1_RD0_Filled #UCL

I think #events is right but we will do tests.

```
Xs(fb) Eff. Slice and Energy
7.8420E+13 6.7198E-04 #JZ1W 20-60 GeV
2.4334E+12 3.3264E-04 #JZ2W 60-160 GeV
2.6454E+10 3.1953E-04 #JZ3W 160-400 GeV
2.5464E+08 5.3009E-04 #JZ4W 400-800 GeV
4.5536E+06 9.2325E-04 #JZ5W 800-1300 GeV
2.5752E+05 9.4016E-04 #JZ6W 1300-1800 GeV
```


Event/Jet Properties

6 Jet Kinematic Distributions

Discriminants

0.5

80

sv1 3d Significance

L1_RD0_Filled AUCL

Conclusions

- There is beginning to be some agreement here.
- Algorithms are performing reasonably well given some of the caveats (d0 alignment ect.)

To Do

- Other runs, hopefully some with higher luminosity and new d0 alignments
- Add more variables to our studies.
- Study subleading jet performance.
- Further PV plots.
- Couple of tests
- Better understand re-weighting (Look at sum of weights).
- Look and drop the truth PV check.

Backup

L1_J50, P_T > 175 GeV

17 **Jet Kinematic Distributions**

L1_J50, P_T>175 ≜ UCL

L1_J50, P_T>175 ≜ UCL

L1_J50, P_T>175 🛕 UCL

IP3D d0 [mm]

IP3D d0 [mm]

L1_J50, P_T>175 ≜ UCL

