CS 3186 --- Assignment #14

(I) State the Pumping Lemma for regular languages and the Pumping lemma for context-free languages.

The pumping lemma proves the language is not regular using:

W = XYZ

 $|xy| \le m$

 $|y| \ge 1$

The pumping lemma proves the language is not context free using:

w = uvxyz

 $|vxy| \le m$

 $|vv| \ge 1$

(II) Given a CFL L₁ described by grammar

 $G_1: S_1 \rightarrow aS_1b \mid \lambda$

CFL L₂ described by

 $G_2: S_2 \rightarrow cS_2d \mid \lambda$

(i) Show that L₁ U L₂ is context free by constructing a complete grammar.

 $G_1 \Rightarrow L_1 \Rightarrow \{a^x b^x\}$ [same amount of a's and b's] $G_2 \Rightarrow L_2 \Rightarrow \{c^y d^y\}$ [same amount of c's and d's]

 $L_1 U L_2 = \{a^x b^x\} U \{c^y d^y\} => S_1 | S_2|$

(ii) Using this grammar derive a string that belongs to L₁

 $L_1 => S_1 => aS_1b => aaS_1bb => aa\lambda bb => aabb$

(iii) Using this grammar derive a string that belongs to L₂

$$L_2 \Rightarrow S_2 \Rightarrow cS_2d \Rightarrow ccS_2dd \Rightarrow cc\lambda dd \Rightarrow ccdd$$

(III) Consider the grammars G_1 and G_2 above. Show that L_1 L_2 is context free by constructing a complete grammar.

$$L_1L_2 = a^xb^xc^yd^y => S_1S_2$$

(i) Derive any string w1 that belongs to L_1 and any string w_2 that belongs to L_2 .

$$w_1 => S_1 => aS_1b => a\lambda b => ab$$

 $w_2 => S_2 => cS_2d => c\lambda d => cd$

(ii) Show that $w_1 w_2$ that belongs to $L_1 L_2$

$$w_1w_2 => S_1S_2 => aS_1bS_2 => a\lambda bS_2 => abcS_2d => abc\lambda d => abcd => L_1L_2$$

(IV) Consider the grammars G_1 above. Show that L_1^* is context free by constructing a complete grammar.

$$L_1^* => S_1 -> SS_1 | \lambda$$

- (V) Name two closure properties that are true for regular languages that are not necessarily true for CFL
- Intersection
- Complementation
- Set Difference