

Course 10240 Design Build 2 - Rational catalyst design Georg Kastlunger & Ole Trinhammer, DTU Physics, June 2024

H₂O₂ decomposition

Sabatier's principle illustrated by Catalytic decomposition of hydrogen peroxide

First a word of caution:

 H_2O_2 is strongly oxidizing, It is used for disinfection, including water sanitation (but highly diluted!)

If H2O2 or NaOH solution get in your eyes:

Flush your eyes: Immediately rinse your eyes with lukewarm water for at least 15 minutes.

Tell TA

Avoid rubbing your eyes: Rubbing your eyes can cause further irritation and spread the hydrogen peroxide.

Remove contact lenses: If you wear contact lenses and hydrogen peroxide gets into your eyes, remove your lenses as soon as possible.

Sabatier's principle illustrated by Catalytic decomposition of hydrogen peroxide

Measure activity of different catalysts by monitoring oxygen evolution

$$H_2O_2 \xrightarrow{Cat} H_2O + O_2$$

Sabatier's principle:

Activity is maximum at intermediate binding energy for key process step

Capture reactants (high binding required), release products (low binding required)

i. e. compromise gives optimum

Heterogeneous catalysis

The catalyst is in a different phase (**solid**,liquid,gas) than reactants

Industrial catalytic processes:

Process	Reactants, Product/s (not balanced)	Catalyst	Comment Hydration of SO ₃ gives H ₂ SO ₄			
Sulfuric acid synthesis (Contact process)	$SO_2 + O_2$, SO_3	vanadium oxides				
Ammonia synthesis (Haber– Bosch process)	N ₂ + H ₂ , NH ₃	iron oxides on alumina(Al ₂ O ₃)	Consumes 1% of world's industrial energy budget ^[2]			
Nitric acid synthesis (Ostwald process)	$\mathrm{NH_3} + \mathrm{O_2}, \mathrm{HNO_3}$	unsupported Pt-Rh gauze	Direct routes from N ₂ are uneconomical			
Hydrogen production by Steam reforming	CH ₄ + H ₂ O, H ₂ + CO ₂	Nickel or K ₂ O	Greener routes to H ₂ by water splitting actively sought			
Ethylene oxide synthesis	C ₂ H ₄ + O ₂ , C ₂ H ₄ O	silver on alumina, with many promoters	Poorly applicable to other alkenes			
Hydrogen cyanide synthesis (Andrussov oxidation)	NH ₃ + O ₂ + CH ₄ , HCN	Pt-Rh	Related ammoxidation process converts hydrocarbons to nitriles			
Olefin polymerization Ziegler–Natta polymerization	propylene, polypropylene	TiCl ₃ on MgCl ₂	Many variations exist, including some homogeneous examples			
Desulfurization of petroleum (hydrodesulfurization)	$H_2 + R_2S$ (idealized organosulfur impurity), RH + H_2S	Mo-Co on alumina	Produces low-sulfur hydrocarbons, sulfur recovered via the Claus process			

A catalyst speeds up reactions, but does not influence the overall energy released or consumed

In our experiment

https://en.wikipedia.org/wiki/Heterogeneous_catalysis

H_2O_2 decomposition – the overall reaction

$$H_2O_2 \rightarrow H_2O + O_2$$

3 minute discussion with neighbor:

How can you balance the reaction so the same number of H and O are on both sides?

\rightleftharpoons H₂O₂ decomposition – the overall reaction

$$H_2O_2 \rightarrow H_2O + O_2$$

3 minute discussion with neighbor:

How can you balance the reaction so the same number of H and O are on both sides?

$$H_2O_2 \to H_2O + \frac{1}{2}O_2$$

Reaction steps

5 minute discussion with neighbor:

What could be relevant intermediate steps and how could a catalyst help?

$$2H_2O_2 \rightarrow$$

$$\rightarrow$$
 2H₂O + O₂

Anders B. Laursen, Isabela Costinela Man, Ole L. Trinhammer, Jan Rossmeisl, and Søren Dahl *The Sabatier Principle Illustrated by Catalytic* H_2O_2 *Decomposition on Metal Surfaces* dx.doi.org/10.1021/ed101010x, J. Chem. Educ. 2011, **88**, 1711–1715

Trinhammer, Laursen, Man, Rossmeisl and Dahl

Vulkanplot – Sabatiers princip i heterogen katalyse

LMFK-bladet 3/2012, 43

Reaction steps

$$H_2O_{2(aq)} + 2 * \rightarrow 2OH *$$

$$20H * \rightarrow H_2O * + \frac{1}{2}O_2 + *$$

$$H_2O * \rightarrow H_2O_{(l)} + *$$

$$H_2O_{2(aq)} \rightarrow H_2O_{(l)} + \frac{1}{2}O_2$$

(slow, rate limiting step)

(fast, equilibrated steps)

Key intermediate: OH binding on catalyst surface

07. June 2024 DTU Fysik H2O2 Decomposition

10

Reaction kinetics – the rate limiting step

$$H_2O_{2(aq)} + 2 * \rightarrow 20H *$$

(slow, rate limiting step)

reaction rate, $r = k_1 c_{H_2O_2} \theta_*^2$

 $k_1 = \frac{kT}{h}e^{-\frac{\Delta G_a}{kT}}$

 $(\theta_* = \text{fraction of free catalyst sites})$

Final reaction rate:

$$r = \frac{kT}{h}e^{-\frac{\Delta G_a}{kT}}c_{H_2O_2}\theta_*^2$$

What is the value of θ_* and G_a ?

Reaction kinetics – How to get θ_*

$$20\mathrm{H} *{}\rightarrow \mathrm{H}_2\mathrm{O}_{(l)} + \frac{1}{2}\mathrm{O}_{2(\mathrm{g})} + 2* \quad \text{(fast, equilibrated step)}$$

$$K = \frac{a_{\text{H}_2\text{O}} a_{\text{O}_2}^{0.5} \theta_*^2}{\theta_{\text{OH}}^2} = \text{equilibrium constant}$$

 $\theta_{\mathrm{OH}} = 1 - \theta_{*} = ext{ fraction of surface covered in *OH}$

Reaction Coordinate

a=activity, mostly pressure for gases and concentration for dissolved species, unitless, a of H2O is generally set to 1

$$K(1 - \theta_*)^2 = p_{O_2}^{0.5} \, \theta_*^2$$

$$\theta_* = \frac{1}{1 + \sqrt{\frac{p_{O_2}^{0.5}}{K}}}$$

Can we estimate K?

Yes, from the Gibbs free energy of the reaction:

$$K = e^{-\frac{\Delta G_2}{k_B T}}$$

$$\Delta G_2 = \Delta G_{H_2O} + \frac{1}{2}\Delta G_{O2} - 2\Delta G_{OH}$$

12

Reaction kinetics – How to get ΔG_a

$$r = \frac{kT}{h}e^{-\frac{\Delta G_a}{kT}}c_{H_2O_2}\theta_*^2$$

Reaction Coordinate

13

- 1. Calculate it with density functional theory calculating transition states is tedious
- 2. Perform experiments at varying temperature $(\ln(r) = \ln(\frac{kT}{h}c_{\text{H}_2\text{O}_2}\theta_*^2) \frac{\Delta G_a}{kT})$, Arrhenius plot)
- 3. Find a simpler quantity that correlates with ΔG_a Bell-Evans-Polanyi principle (BEP)

$$\Delta G_{\alpha} = \alpha \Delta G_{OH} + \beta, \qquad \alpha > 0$$

How can we get α and β ??

Calculate several ΔG_{OH} and ΔG_a explicitly and fit.

Reaction kinetics – Summary & Sabatier principle

$$\Delta G_a = \alpha \Delta G_{\text{OH}} + \beta$$

$$\theta_* = \frac{1}{1 + \sqrt{\frac{p_{\text{O}2}^{0.5}}{K}}}$$

$$A = e^{-\frac{\Delta G_{H2O} + \frac{1}{2} \Delta G_{O2} - 2\Delta G_{OH}}{k_B T}}$$

$$\theta_* = \frac{1}{1 + \sqrt{\frac{p_{02}^{0.5}}{K}}}$$
 $r = \frac{kT}{h} e^{-\frac{\Delta G_a}{kT}} c_{H_2O_2} \theta_*^2$

DIY in the theory exercise

Limit cases:

Weak binding:
$$\Delta G_{\rm OH} \rightarrow \infty, \ K \rightarrow \infty, \ \theta_* \rightarrow 1 = 100 \ \% \ \text{(empty surface)}$$
$$r \sim k_1 c_{\rm H_2O_2} \theta_*^2 = k_1 c_{\rm H_2O_2} = \frac{kT}{h} e^{-\frac{\Delta G_{\rm a}}{kT}} c_{\rm H_2O_2} \sim e^{-\frac{\alpha \Delta G_{\rm OH}}{kT}} \rightarrow 0$$

Adsorbing reactant is limiting the process!

Strong binding:

$$\Delta G_{\rm OH} \rightarrow -\infty, \quad K \rightarrow 0, \quad \theta_*^2 = \frac{K}{p_{\rm O_2}^{0.5}} \sim e^{\frac{2\Delta G_{\rm OH}}{kT}}$$
$$r \sim e^{-\frac{\Delta G_a}{kT}} e^{\frac{2\Delta G_{\rm OH}}{kT}} \sim e^{\frac{(2-\alpha)\Delta G_{\rm OH}}{kT}} \rightarrow 0$$

Desorbing the product is limiting the process!

Reaction Coordinate

14

Sabatier's principle

Vulcano plot

15

Experimental setup (Manual on Learn)

16

Experimental data (example for powder catalyst)

4	Α	В	С	D	Е	F	G	Н	1	J	К	L	M	N
1		xygen evoluti	on from hydrog	enperoxid				Catalyst:	MnO2		Date	sep-19	2010	
2	•										Department of Physics, DTU, Ole Trinhammer			
3	Measurement	s in green fiel	ds				Area	mass	0,132	g				
4							parameters:	specific area	0,8867	m^2/g				
5														
6	Volume		Time		Time	Volume								
7	Scale reading	1				increase								
	mL		hh:mm:ss		sec	mL								
9	120		16:11:10		0	0			Temp (ambier					
10	140		16:11:30		20					оС				
11	160		16:11:50		40	40			The temperate	ure is used fo	or the molar vo	lume		
12	180		16:12:20		70				to calculate the	ne activity.				
13	200		16:12:49		99	80								
14	220		16:13:16		126	100			If you forgot to					
15	240		16:13:44		154	120			your result wi					
16									if it was done	at room tem	perature			
17														
18														
19														

Uncertainties are ± 1 on last digit if nothing else is stated

Example: wire surface area (cylinder)

$$A = 2\pi rh + 2\pi r^2 = \pi dh + \frac{1}{2}\pi d^2$$

Given absolute uncertainties δd and δh

What is the absolute uncertainty δA and what is the *relative* uncertainty

$$\frac{\delta A}{A} = 7$$

$$f = f(x, y, z, \cdots)$$

$$\delta f^{2} = \left(\frac{\partial f}{\partial x}\right)^{2} \delta x^{2} + \left(\frac{\partial f}{\partial y}\right)^{2} \delta y^{2} + \left(\frac{\partial f}{\partial z}\right)^{2} \delta z^{2} + \cdots$$

Uncertainty – why the derivatives?

Example

We have measured a certain angle:

$$\theta = 73.5^{\circ} \pm 0.5^{\circ} = 1.283 \pm 0.009$$

21

The relative uncertainty is:

$$\frac{\delta\theta}{\theta} = \frac{0.5^{\circ}}{73.5^{\circ}} = 0.0068 = 0.7\%$$

Uncertainty – why the derivatives?

Example

We have measured a certain angle:

$$\theta = 73.5^{\circ} \pm 0.5^{\circ} = 1.283 \pm 0.009$$

The relative uncertainty is:

$$\frac{\delta\theta}{\theta} = \frac{0.5^{\circ}}{73.5^{\circ}} = 0.0068 = 0.7\%$$

$$f = \sin \theta = \sin 73.5^{\circ} = 0.9588 \cdots$$

 $\frac{\partial f}{\partial \theta} = \cos \theta$
SLOPE!

$$\frac{\delta f}{f} = \left(\frac{\delta \sin \theta}{\sin \theta}\right) = \frac{0.002478\cdots}{0.9588\cdots} = 0.00258\cdots = 0.3\%$$

Uncertainty – why the Pythagorean sum?

Because we assume the variables x, y, z, \cdots in $f(x, y, z, \cdots)$ are independent The uncertainties contribute term by term

Worst case:

$$A = xy \to \delta A = (x + \delta x)(y + \delta y) - xy \approx x \, \delta y + y \, \delta x$$
$$\delta A = \frac{\partial A}{\partial x} \delta x + \frac{\partial A}{\partial y} \delta y$$

$$x \quad A=xy$$
 $y \quad x \quad \delta y$

23

Independent variation

$$\delta A \approx \sqrt{\left(\frac{\partial A}{\partial x}\right)^2 \delta x^2 + \left(\frac{\partial A}{\partial y}\right)^2 \delta y^2}$$

Uncertainty – Gaussian products

$$X(x) = \frac{1}{\sigma_X \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x - \mu_X}{\sigma_X}\right)^2}$$
$$Y(y) = \frac{1}{\sigma_Y \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y - \mu_Y}{\sigma_Y}\right)^2}$$

$$e^{-x^2} \cdot e^{-y^2} = e^{-(x^2 + y^2)} \rightarrow$$

circular contours ~

Pythagorean error propagation

