Homework 6

Brian Detweiler March 11, 2017

- 1. Consider three seperate AR(1) models: $\phi = 0.1, \phi = 0.5$, and $\phi = 0.8$.
- (a) For each model, calculate ρ_1 and ρ_7 .

$$Y_t = 0.1Y_{t-1} - e_t$$

We must find $\rho_k = \frac{\gamma_k}{\gamma_0}$. First we need γ_0 in each case.

$$\begin{split} \gamma_0 &= Cov(Y_t, Y_t) = Var(Y_t) \\ &= Var(0.1Y_{t-1} - e_t) \\ &= 0.01Var(Y_{t-1}) + Var(e_t) \\ &= 0.01\gamma_0 + \sigma_e^2 \\ \gamma_0 - 0.01\gamma_0 &= \sigma_e^2 \\ 0.99\gamma_0 &= \sigma_e^2 \\ \gamma_0 &= \frac{\sigma_e^2}{0.99} \end{split}$$

More generally, $\gamma_0 = \frac{\sigma_e^2}{1 - \phi_1^2}$.

We will expand the Yule-Walker equations,

$$\gamma_k = \phi_1 \gamma_{k-1}$$
$$\rho_k = \phi_1 \rho_{k-1}$$

So we now have

$$\begin{split} \gamma_1 &= \phi_1 \gamma_0 \\ &= 0.1 \gamma_0 \\ &= \frac{0.1 \sigma_e^2}{0.99} \\ &= 0.10101010 \tau_e^2 \\ \rho_1 &= \frac{\gamma_1}{\gamma_0} \\ &= \frac{0.10101010 \tau_e^2}{\frac{\sigma_e^2}{0.99}} \\ &= 0.1010101(0.99) \\ &= 0.1 \\ &= \phi_1 \\ \rho_2 &= \phi_1 \rho_1 \\ \rho_2 &= \phi_1^2 \end{split}$$

Now we can see the pattern emerging. $\rho_k = \phi_1^k$, and hence $\rho_7 = \phi_1^7 = (0.1)^7$.

The autocorrelation function shows a decaying sequence.

ACF for first 7 lags for phi_1 = 0.1

Now, since we've generalized it, we can easily apply this to the other models.

$$Y_t = 0.5Y_{t-1} - e_t$$

$$\gamma_0 = \frac{\sigma_e^2}{1 - \phi_1^2} \\
= \frac{\sigma_e^2}{1 - 0.5} \\
= \frac{\sigma_e^2}{0.5} \\
\gamma_1 = \phi_1 \gamma_0 \\
= 0.5 \gamma_0 \\
= \frac{0.5 \sigma_e^2}{0.5} \\
= \frac{\sigma_e^2}{0.5} \\
= \sigma_e^2 \\
\rho_1 = \frac{\gamma_1}{\gamma_0} \\
= \frac{\sigma_e^2}{\frac{\sigma_e^2}{0.5}} \\
= 0.5 \\
= 0.5 \\
= \phi_1 \\
\rho_2 = \phi_1 \rho_1 \\
\rho_2 = 0.5(0.5) \\
\rho_2 = \phi_1^2 \\
\rho_7 = \phi_1^7 = 0.5^7$$

ACF for first 7 lags for phi_1 = 0.5

$$Y_t = 0.8Y_{t-1} - e_t$$

$$\rho_1 = \phi_1 = 0.8$$

$$\rho_7 = \phi_1^7 = 0.2097152$$

ACF for first 7 lags for phi_1 = 0.8

(b) For each model, calculate $Var(r_1)$ and $Var(r_7)$.

We define the sample ACF as

$$r_{k} = \frac{\sum_{t=k+1}^{n} (Y_{t} - \overline{Y})(Y_{t-k} - \overline{Y})}{\sum_{t=1}^{n} (Y_{t} - \overline{Y})^{2}}$$

For an AR(1) process with $\rho_k = \phi^k$ for k > 0,

$$Var(r_k) \approx \frac{1}{n} \left[\frac{(1+\phi^2)(1-\phi^{2k})}{1-\phi^2} - 2k\phi^{2k} \right]$$

We'll create a helper function to calculate the numerical parts of the variance in R:

```
partial.var.rk <- function(phi, k) {
  return(((1 + phi^2) * (1 - phi^(2 * k)) / (1 - phi^2) - 2 * k * phi^(2 * k)))
}</pre>
```

So for the given models and k = 1, 7, we have

Model 1, $\phi_1 = 0.1$

$$Var(r_1) \approx \frac{1}{n} \left[\frac{(1 + (0.1)^2)(1 - (0.1)^2)}{1 - (0.1)^2} - 2(0.1)^2 \right]$$

$$\approx \frac{0.99}{n}$$

$$Var(r_7) \approx \frac{1}{n} \left[\frac{(1 + (0.1)^2)(1 - (0.1)^{14})}{1 - (0.1)^2} - 14(0.1)^{14} \right]$$

$$\approx \frac{1.020202}{n}$$

Model 2, $\phi_1 = 0.5$

$$Var(r_1) \approx \frac{1}{n} \left[\frac{(1 + (0.5)^2)(1 - (0.5)^2)}{1 - (0.5)^2} - 2(0.5)^2 \right]$$

$$\approx \frac{0.75}{n}$$

$$Var(r_7) \approx \frac{1}{n} \left[\frac{(1 + (0.5)^2)(1 - (0.5)^{14})}{1 - (0.5)^2} - 14(0.5)^{14} \right]$$

$$\approx \frac{1.6657104}{n}$$

Model 3, $\phi_1 = 0.8$

$$Var(r_1) \approx \frac{1}{n} \left[\frac{(1 + (0.8)^2)(1 - (0.8)^2)}{1 - (0.8)^2} - 2(0.8)^2 \right]$$

$$\approx \frac{0.36}{n}$$

$$Var(r_7) \approx \frac{1}{n} \left[\frac{(1 + (0.8)^2)(1 - (0.8)^{14})}{1 - (0.8)^2} - 14(0.8)^{14} \right]$$

$$\approx \frac{3.7394736}{n}$$

(c) For each model, use the arima.sim function to simulate a time series of length n = 60. Then use the acf function to calculate r_1 and r_7 . Remember to set up a random seed for your simulation.

```
set.seed(0)
phi1 <- 0.1

model1.r1 <- c()
model1.r7 <- c()
for (i in 1:999) {
    sim <- arima.sim(n = 60, model = list(ar=(phi1)))
    r <- acf(sim, plot = FALSE)
    model1.r1 <- c(model1.r1, r[[1]][1])
    model1.r7 <- c(model1.r7, r[[1]][7])
}
r <- acf(sim)</pre>
```



```
model1.r1 <- c(model1.r1, r[[1]][1])
model1.r7 <- c(model1.r7, r[[1]][7])

phi1 <- 0.5

model2.r1 <- c()
model2.r7 <- c()
for (i in 1:999) {
    sim <- arima.sim(n = 60, model = list(ar=(phi1)))
    r <- acf(sim, plot = FALSE)
    model2.r1 <- c(model2.r1, r[[1]][1])
    model2.r7 <- c(model2.r7, r[[1]][7])
}

r <- acf(sim)</pre>
```



```
model2.r1 <- c(model2.r1, r[[1]][1])
model2.r7 <- c(model2.r7, r[[1]][7])

phi1 <- 0.8

model3.r1 <- c()
model3.r7 <- c()
for (i in 1:999) {
    sim <- arima.sim(n = 60, model = list(ar=(phi1)))
    r <- acf(sim, plot = FALSE)
    model3.r1 <- c(model3.r1, r[[1]][1])
    model3.r7 <- c(model3.r7, r[[1]][7])
}

r <- acf(sim)</pre>
```


(d) Based on your results in parts (a) and (b), are r_1 and r_7 from part (c) within 2 standard deviations of ρ_1 and ρ_7 respectively?

 $\phi = 0.1$

For an AR(1), we know that $c_{ii} = \frac{1}{n} \left[\frac{(1+\phi^2)(1-\phi^{2i})}{1-\phi^2} - 2i\phi^{2i} \right]$. Given the standard error of $r_k = \sqrt{\frac{c_{ii}}{n}}$. We've calculated these previously in part (b), so we just need values for n.

We can investigate increasing values of n to to get an idea of how the variance behaves with more data. We'll use n = 1, 100, 1000.

Model 1, $\phi_1 = 0.1$

$$n = 1$$

$$SE(r_1) \approx 0.9949874$$

$$SE(r_7) \approx 1.0100505$$

$$n = 100$$

 $SE(r_1) \approx 0.0994987$
 $SE(r_7) \approx 0.1010051$

$$n = 1000$$

$$SE(r_1) \approx 0.0314643$$

$$SE(r_7) \approx 0.0319406$$

Model 2, $\phi_1 = 0.5$

$$n = 1$$

 $SE(r_1) \approx 0.8660254$
 $SE(r_7) \approx 1.2906241$

$$n = 100$$

$$SE(r_1) \approx 0.0866025$$

$$SE(r_7) \approx 0.1290624$$

$$n = 1000$$

 $SE(r_1) \approx 0.0273861$
 $SE(r_7) \approx 0.0408131$

Model 3, $\phi_1 = 0.8$

$$n = 1$$

$$SE(r_1) \approx 0.6$$

$$SE(r_7) \approx 1.9337719$$

$$n = 100$$

$$SE(r_1) \approx 0.06$$

$$SE(r_7) \approx 0.1933772$$

$$n = 1000$$

 $SE(r_1) \approx 0.0189737$
 $SE(r_7) \approx 0.0611512$

In all cases, the standard error falls within 2 standard deviations.

(e) Repeat part (c) for 1000 times. Draw histograms for r_1 's and r_7 's for each model. What proportion of r_1 's and r_7 's are within 2 standard deviations of ρ_1 and ρ_7 ?

Model 1, $\phi_1 = 0.1$

```
phi1 <- 0.1
lower <- phi1 - (2 * sd(model1.r1))
upper <- phi1 + (2 * sd(model1.r1))

within.sd <- (1 - sum((model1.r1 < lower) + (model1.r1 > upper)) / length(model1.r1)) * 100
hist(model1.r1, breaks=100, freq=F, xlim=c(min(lower, model1.r1), max(upper, model1.r1)))
abline(v = lower, col="red")
abline(v = upper, col="red")
```

Histogram of model1.r1

For r_1 in model 1, 95.2% fall within 2SE.

```
phi1 <- (0.1)^7
lower <- phi1 - (2 * sd(model1.r7))
upper <- phi1 + (2 * sd(model1.r7))

within.sd <- (1 - sum((model1.r7 < lower) + (model1.r7 > upper)) / length(model1.r7)) * 100
hist(model1.r7, breaks=100, freq=F, xlim=c(min(lower, model1.r7), max(upper, model1.r7)))
abline(v = lower, col="red")
abline(v = upper, col="red")
```

Histogram of model1.r7

For r_7 in model 1, 96.1% fall within 2SE.

Model 2, $\phi_1 = 0.5$

```
phi1 <- 0.5
lower <- phi1 - (2 * sd(model2.r1))
upper <- phi1 + (2 * sd(model2.r1))

within.sd <- (1 - sum((model2.r1 < lower) + (model2.r1 > upper)) / length(model2.r1)) * 100
hist(model2.r1, breaks=100, freq=F, xlim=c(min(lower, model2.r1), max(upper, model2.r1)))
abline(v = lower, col="red")
abline(v = upper, col="red")
```

Histogram of model2.r1

For r_1 in model 2, 93.7% fall within 2SE.

```
phi1 <- (0.5)^7
lower <- phi1 - (2 * sd(model2.r7))
upper <- phi1 + (2 * sd(model2.r7))

within.sd <- (1 - sum((model2.r7 < lower) + (model2.r7 > upper)) / length(model2.r7)) * 100
hist(model2.r7, breaks=100, freq=F, xlim=c(min(lower, model2.r7), max(upper, model2.r7)))
abline(v = lower, col="red")
abline(v = upper, col="red")
```

Histogram of model2.r7

For r_7 in model 2, 93.9% fall within 2SE.

Model 3, $\phi_1 = 0.8$

```
phi1 <- 0.8
lower <- phi1 - (2 * sd(model3.r1))
upper <- phi1 + (2 * sd(model3.r1))

within.sd <- (1 - sum((model3.r1 < lower) + (model3.r1 > upper)) / length(model3.r1)) * 100
hist(model3.r1, breaks=100, freq=F, xlim=c(min(lower, model3.r1), max(upper, model3.r1)))
abline(v = lower, col="red")
abline(v = upper, col="red")
```

Histogram of model3.r1

For r_1 in model 3, 87.9% fall within 2SE.

```
phi1 <- (0.8)^7
lower <- phi1 - (2 * sd(model3.r7))
upper <- phi1 + (2 * sd(model3.r7))

within.sd <- (1 - sum((model3.r7 < lower) + (model3.r7 > upper)) / length(model3.r7)) * 100
hist(model3.r7, breaks=100, freq=F, xlim=c(min(lower, model3.r7), max(upper, model3.r7)))
abline(v = lower, col="red")
abline(v = upper, col="red")
```

Histogram of model3.r7

For r_7 in model 3, 86.2% fall within 2SE.

15

- 2. Consider an AR(1) model with $\phi = 0.6$.
- (a) Use the arima.sim function to simulate three time series of lengths n=15, 75, and 100.

```
phi1 <- 0.6

sim1 <- arima.sim(n = 15, model = list(ar=(phi1)))
sim2 <- arima.sim(n = 75, model = list(ar=(phi1)))
sim3 <- arima.sim(n = 100, model = list(ar=(phi1)))

sim1.r <- acf(sim1)</pre>
```



```
sim1.r1 <- sim1.r[[1]][1]
sim2.r <- acf(sim2)</pre>
```


sim2.r1 <- sim2.r[[1]][1]
sim3.r <- acf(sim3)</pre>

Series sim3

sim3.r1 <- sim3.r[[1]][1]

(b) For each set of simulated data, calculate r_1 .

sim1.r1## [1] 0.2202908 n = 75 sim2.r1## [1] 0.5290287 n = 100

[1] 0.5929305

(c) For each n, what is $Var(r_1)$? Is r_1 within 2 standard deviations of ρ_1 for each sample?

Using the function we defined earlier, partial.var.rk, we just need to substitute in our values for n.

n = 15

sim3.r1

n = 15

$$Var(r_1) = 0.0426667$$

n = 75

$$Var(r_1) = 0.0085333$$

n = 100

$$Var(r_1) = 0.0064$$

(d) Repeat part (a) for 1000 times. For each n, draw a histogram of the 1000 r_1 's, and find what proportion of r_1 's are within 2 standard deviations of ρ_1 .

```
phi1 <- 0.6

model4.r1 <- c()
for (i in 1:999) {
    sim <- arima.sim(n = 60, model = list(ar=(phi1)))
    r <- acf(sim, plot = FALSE)
    model4.r1 <- c(model4.r1, r[[1]][1])</pre>
```

```
}
r <- acf(sim)</pre>
```



```
model4.r1 <- c(model4.r1, r[[1]][1])

lower <- 0.6 - (2 * sd(model4.r1))

upper <- 0.6 + (2 * sd(model4.r1))

within.sd <- (1 - sum((model4.r1 < lower) + (model4.r1 > upper)) / length(model4.r1)) * 100

hist(model4.r1, breaks=100, freq=F, xlim=c(min(lower, model4.r1), max(upper, model4.r1)))
abline(v = lower, col="red")
abline(v = upper, col="red")
```

Histogram of model4.r1

91.5% of the observations fall within 2SE.

20

3. Consider an MA(1) model with $\theta = 0.6$

(a) Use the arima.sim function to simulate three time series of lengths n = 15, 75, and 150. Note that R uses the negative of the MA coefficients.

```
theta1 <- -0.6

sim1 <- arima.sim(n = 15, model = list(ma=(theta1)))
sim2 <- arima.sim(n = 75, model = list(ma=(theta1)))
sim3 <- arima.sim(n = 100, model = list(ma=(theta1)))

sim1.r <- acf(sim1)</pre>
```

Series sim1

sim2.r <- acf(sim2)</pre>

sim3.r <- acf(sim3)

Series sim3

(b) For each set of simulated data, calculate r_1 .

n = 15

sim1.r[[1]][1]

[1] -0.3478818

n = 75

sim2.r[[1]][1]

[1] -0.4811163

n = 100

sim3.r[[1]][1]

[1] -0.5332678

(c) For each n, what is $Var(r_1)$? Is r_1 within 2 standard deviations of ρ_1 for each sample?

For an MA(1) model, $c_{11} = 1 - 3\rho_1^2 + 4\rho_1^4$.

Thus, $Var(r_1) = \frac{c_{11}}{n}$.

 $rho1 <- -0.6 / (1 + (0.6)^2)$

For an MA(1) model, $\rho_1 = \frac{-\theta}{1+\theta^2}$. In this case, $\rho_1 = \frac{-0.6}{1+(0.6)^2} = -0.4411765$.

$$Var(r_1) = \frac{c_{11}}{n} = \frac{1 - 3\rho_1^2 + 4\rho_1^4}{n}$$
$$= \frac{1 - 3(-0.4411765)^2 + 4 - 0.4411765^4}{n}$$
$$= \frac{0.5676237}{n}$$

n = 15

$$Var(r_1) = \frac{0.5676237}{15}$$
$$= 0.0378416$$

n = 75

$$Var(r_1) = \frac{0.5676237}{75}$$
$$= 0.0075683$$

n = 100

$$Var(r_1) = \frac{0.5676237}{100}$$
$$= 0.0056762$$

(d) Repeat part (a) for 1000 times. For each n, draw a histogram of the 1000 r_1 's, and find what proportion of r_1 's are within 2 standard deviations of ρ_1 .

```
theta1 <- -0.6

rho1 <- -0.6 / (1 + (0.6)^2)

model5.r1 <- c()
for (i in 1:999) {
    sim <- arima.sim(n = 60, model = list(ma=(theta1)))
    r <- acf(sim, plot = FALSE)
    model5.r1 <- c(model5.r1, r[[1]][1])
}

r <- acf(sim)</pre>
```

Series sim


```
model5.r1 <- c(model5.r1, r[[1]][1])
lower <- rho1 - (2 * sd(model5.r1))
upper <- rho1 + (2 * sd(model5.r1))
within.sd <- (1 - sum((model5.r1 < lower) + (model5.r1 > upper)) / length(model5.r1)) * 100
```

```
hist(model5.r1, breaks=100, freq=F, xlim=c(min(lower, model5.r1), max(upper, model5.r1)))
abline(v = lower, col="red")
abline(v = upper, col="red")
```

Histogram of model5.r1

95.1% of the observations fall within 2SE.

25

4. The dataset days contains accounting data. The data is the number of days it took to receive payment for 130 consecutive orders from a particular distributor.

```
data(days)
```

(a) Plot the times series. Are there any unusual values?


```
day1 <- which(days == 55)
day2 <- which(days == 49)
day3 <- which(days == 63)</pre>
```

There are three highly unusual days, at days 63, 106, and 129.

(b) Draw the sample ACF and sample PACF plots. What do you find?

```
acf(days)
```

Series days

pacf(days)

Series days

(c) Replace the unusual values with a value of 35 days. Redraw the sample ACF and sample PACF plots. Are they different from part (b)?

```
days.tmp <- days
days.tmp[which(days.tmp == 55)] <- 35
days.tmp[which(days.tmp == 49)] <- 35
days.tmp[which(days.tmp == 63)] <- 35
plot(days.tmp)
abline(reg=lm(days.tmp~time(days.tmp)))</pre>
```


The time series appears to have a slightly decreasing trend, and although the variance appears to be constant, the mean is not, so it is not yet stationary.

(d) What ARMA model would you specify for this series after removing the outliers? Explain.

We'll take the first difference to get a stationary time series.

```
plot(diff(days.tmp))
```


acf.val <- acf(diff(days.tmp), lag.max = 60)</pre>

Series diff(days.tmp)

phi1 <- acf.val[[1]][1]
pacf.val <- pacf(diff(days.tmp), lag.max = 60)</pre>

Series diff(days.tmp)


```
theta1 <- pacf.val[[1]][1]</pre>
```

The ACF cuts off after 1 lag, so the simplest model we could choose would be an MA(1). This is confirmed using auto.arima.

```
suggested.model <- auto.arima(days.tmp)</pre>
suggested.model
## Series: days.tmp
## ARIMA(0,1,1)
##
## Coefficients:
##
              ma1
          -0.8910
##
## s.e.
          0.0432
## sigma^2 estimated as 33.78: log likelihood=-410.36
## AIC=824.73
                 AICc=824.82
                                BIC=830.45
theta1 <- suggested.model$coef[[1]]</pre>
p <- 0
d \leftarrow 1
q <- 1
sim1 \leftarrow arima.sim(n = 130,
                   start.innov=(40/ -theta1),
                   n.start=1,
                   innov=c(0, rnorm(130 - 1)),
                   model = list(order=c(p, d, q),
                                  sd=sd(days.tmp),
```

```
ma=c(-theta1)))
plot(sim1)
lines(days.tmp, col="red")
```


This model does not fit very well though.

31