NASA Technical Memorandum

NASA TM -103574

1N-47 77742 P-45

ATMOSPHERIC ENVIRONMENT FOR SPACE SHUTTLE ATLANTIS (STS-39) LAUNCH

By G.L. Jasper and G.W. Batts

Space Science Laboratory Science and Engineering Directorate

January 1992

(NASA-TM-103574) ATMOSPHERIC ENVIRONMENT FOR SPACE SHUTTLE ATLANTIS (STS-39) LAUNCH (NASA) 45 p CSCL 04B N92-20411

Unclas G3/47 0077742

George C. Marshall Space Flight Center

REPORT DOCUMENTATION PAGE

Form-Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway. Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22202-430.		and the same of th	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND D	ATES COVERED Memorandum
4. TITLE AND SUBTITLE	January 1992		FUNDING NUMBERS
Atmospheric Environment for Launch	or Space Shuttle Atlantis		-
6. AUTHOR(S)			
G.L. Jasper and G.W. Batts*	•		
7. PERFORMING ORGANIZATION NAM	E(S) AND ADDRESS(ES)	8.	PERFORMING ORGANIZATION REPORT NUMBER
George C. Marshall Space Fl	light Center		
Marshall Space Flight Center	_		
9. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRESS(ES	10	. SPONSORING / MONITORING AGENCY REPORT NUMBER
National Aeronautics and Sp	ace Administration		
Washington, DC 20546			NASA TM-103574
11. SUPPLEMENTARY NOTES Prepared by Space Science I *New Technology Incorpora	ted, Huntsville, Alabam	a.	
12a. DISTRIBUTION / AVAILABILITY STA	ATEMENT .	12	b. DISTRIBUTION CODE
Unclassified — Unlimited			
13. ABSTRACT (Maximum 200 words)		,, 	
This report presents shuttle Atlantis STS-39 laur ambient pressure, temperatu are included. The sequence report. The final atmospheri altitude, for STS-39 vehicle has been constructed by Ma provide an internally consis represents the best estimate by the STS-39 vehicle.	ore, moisture, ground with of prelaunch Jimsphere ic tape, which consists of ascent has been constructed. Space Flight Centre that data set for use in p	91, at Kennedy Space ands, visual observation measured vertical winf wind and thermodynated. The STS-39 ascer's Earth Science and ostflight performance	Center, Florida. Values of as (cloud), and winds aloft d profiles is given in this amic parameters versus ent atmospheric data tape l Applications Division to assessments and
14. SUBJECT TERMS			15. NUMBER OF PAGES 45
STS-39 Launch Atmospheri	▼ *		16. PRICE CODE
Humidity, Winds, Winds Al	•		NTIS
17. SECURITY CLASSIFICATION 18. OF REPORT	SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICAT OF ABSTRACT	TION 20. LIMITATION OF ABSTRACT
	Unclassified	Unclassified	Unlimited

ACKNOWLEDGMENTS

The authors wish to thank the personnel of the NASA Kennedy Space Center (KSC), along with those at the Cape Canaveral Air Force Station and their Computer Sciences Raytheon contractors, for the acquisition and distribution of all related KSC atmospheric data received at MSFC.

Thanks are due to Calvin Prather of Sverdrup Technology, Inc., for his help in extracting atmospheric data that are used in this report. Appreciation is also expressed to Kimberly Wilkie of NTI for the computer support in attaining pad measurements.

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	1
П.	SOURCES OF DATA	1
Ш.	GENERAL SYNOPTIC SITUATION AT LAUNCH TIME	1
IV.	SURFACE OBSERVATIONS AT LAUNCH TIME	2
V.	UPPER AIR MEASUREMENTS DURING LAUNCH	2
	A. Wind Speed B. Wind Direction C. Prelaunch/Launch Wind Profiles D. Thermodynamic Data E. SRB Upper Air and Surface Measurements	2 2 3 3 3
REF	FERENCES	36

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Surface synoptic chart 27 min after the launch of STS-39	26
2.	500 mb map 27 min after launch of STS-39	27
3.	GOES-7 visible imagery of cloud cover 2 min before the launch of STS-39 (1131 u.t., April 28, 1991). 500-mb heights (meters) and wind barbs are also included for 1200 u.t.	28
4.	Enlarged view of GOES-7 visible imagery of cloud cover taken 2 min before the launch of STS-39 (1131 u.t., April 28, 1991). Surface temperatures, isobaric parameters, and wind barbs for 1100 u.t. are also included	29
5.	Scalar wind speed and direction at launch time of STS-39	30
6.	STS-39 prelaunch/launch Jimsphere-measured wind speeds (ft/s)	31
7.	STS-39 prelaunch/launch Jimsphere-measured wind directions (degrees)	32
8.	STS-39 prelaunch/launch Jimsphere-measured in-plane component winds (ft/s). Flight azimuth = 39°	33
9.	STS-39 prelaunch/launch Jimsphere-measured out-of-plane component winds (ft/s). Flight azimuth = 39°	34
10.	STS-39 temperature profiles versus altitude for launch (ascent)	35

LIST OF TABLES

Table	Title	Page
1.	Selected atmospheric observations for the flights of the space shuttle vehicles	4
2.	Systems used to measure upper air wind data for STS-39 ascent	7
3.	KSC surface observations at STS-39 launch time	8
4.	STS-39 prelaunch through launch KSC pad 39A atmospheric measurements	9
5.	STS-39 ascent atmospheric data tape	10

TECHNICAL MEMORANDUM

ATMOSPHERIC ENVIRONMENT FOR SPACE SHUTTLE ATLANTIS (STS-39) LAUNCH

I. INTRODUCTION

This report presents an evaluation of the atmospheric environmental data taken during the launch of the Space Shuttle *Atlantis*/STS-39 vehicle. This space shuttle vehicle was launched from pad 39A at Kennedy Space Center (KSC), Florida, on a flight azimuth of 90° east of north, at 1133 u.t. (0733 e.d.t.) on April 28, 1991.

This report presents a summary of the atmospheric environment at launch time (L+0) of the STS-39, together with the sequence of prelaunch Jimsphere-measured winds-aloft profiles from L-3 h 37 min through liftoff. The general atmospheric situation for the launch and flight area is described, and surface and upper level wind/thermodynamic observations near launch time are given. Since a ship was unavailable for STS-39 duty, the solid rocket booster (SRB) descent/impact atmospheric data were not taken. However, one can use the STS-39 ascent data for SRB studies as the best substitute.

Previous MSFC-related launch vehicle atmospheric environmental conditions have been published as appendix A of individual MSFC Saturn Flight Evaluation Working Group reports. Office memorandums have been issued for previous flights giving launch pad wind information. A report has also been published which summarizes most launch atmospheric conditions observed for the past 155 MSFC/ABMA-related vehicle launches through SA-208 (Skylab 4). Reports summarizing ASTP, STS-1 through STS-37 launch conditions are presented in references 3 through 35, respectively. Table 1 gives the atmospheric L+0 launch conditions for all the space shuttle missions.

II. SOURCES OF DATA

Atmospheric observational data used in this report were taken from synoptic maps made by the National Weather Service, plus all available surface observations and measurements from around the launch area. Upper air observations were taken from balloon-released instruments sent aloft from Cape Canaveral Air Force Station (CCAFS). High-altitude winds and thermodynamic data were measured by rocketsondes launched from the CCAFS. Table 2 presents a listing of systems used to obtain the upper level wind profiles used in compiling the final ascent atmospheric data tape. Data cutoff altitudes are also given in table 2.

III. GENERAL SYNOPTIC SITUATION AT LAUNCH TIME

An area of high pressure, just east of Southern Florida, dominated the Cape Kennedy region during the launch of STS-39. Light southerly winds were prevalent at the surface prior to the liftoff of STS-39. Figure 1 depicts the surface map 27 min after the launch. Westerly winds

dominated the flow aloft over the KSC region. Figure 2 shows the winds aloft condition at the 500-mb level 27 min after the launch of STS-39.

Clouds were scattered over the launch area prior to and during the launch of STS-39. Figure 3 depicts the GOES-7 visible satellite picture at 1131 u.t. (2 min before the liftoff) with 500-mb heights denoted in meters and wind barbs superimposed. Figure 4 gives an up-close shot of the Florida peninsula as recorded by GOES-7 also taken at 1131 u.t. with surface temperature wind barbs and pressure superimposed.

IV. SURFACE OBSERVATIONS AT LAUNCH TIME

Surface observations at launch time for selected KSC locations are given in table 3. Included are pad 39A, shuttle runway, and CCAFS balloon release station observations. Neither precipitation nor lightning was observed at launch time.

Table 4 presents pad 39A wind data along with other standard hourly atmospheric measurements and sky observations for the 6-h period prior to launch of STS-39. Values for wind speed and direction are given for the 18-m (60-ft) pad light pole level.

V. UPPER AIR MEASUREMENTS DURING LAUNCH

The FPS-16 Jimsphere (1148 u.t.), MSS Rawinsonde (1031 u.t.), and Super-Loki Robin (1305 u.t.) were used to measure the upper level wind and thermodynamic parameters for STS-39 launch. At altitudes above the rocket-measured data, the Global Reference Atmosphere Model (GRAM)³⁶ parameters for April KSC conditions were used. A tabulation of the STS-39 final atmospheric data for ascent is presented in table 5 which lists the wind and thermodynamic parameters versus altitude. A brief summary of parameters is given in the following paragraphs.

A. Wind Speed

At launch time, wind speeds were 12.8 ft/s (7.6 kn) at the 60-ft level and increased to a maximum of 48.4 ft/s (28.7 kn) at 800 ft (244 m). Wind speeds decreased above this level with a minimum of 2.9 ft/s (1.7 kn) recorded at 8,500 ft (2,591 m). The wind speeds increased consistently above the 8,500 ft (2,591 m) level, with a maximum of 102.9 ft/s (60.9 kn) occurring at 51,200 ft (15,606 m) and 51,300 ft (15,636 m). Wind speeds fluctuated above this level, and the last measurable maximum wind speed was 101.2 ft/s (59.9 kn) at 168,000 ft (51,206 m).

B. Wind Direction

At launch time, the 60-ft wind direction was from the south and shifted through the southeast and took on a west to northwest direction at the 8,400 ft (2,560 m) altitude. The winds were westerly above 21,700 ft (6,614 m) and remained westerly until the 57,000-ft (17,374-m) altitude where winds became northwesterly. The winds fluctuated from the northwest to the northeast throughout the last measurable wind speed direction which was 224,000 ft (68,275 m).

C. Prelaunch/Launch Wind Profiles

Prelaunch/launch wind profiles given in figures 6 through 9 were measured by the Jimsphere FPS-16 system. Data are shown for four measurement periods beginning at L-3.62 h and extending through L+15 min. The wind speed and direction profiles for the 3.62-h period prior to and including L+15 min are shown in figures 6 and 7.

The in-plane (head-tail wind) and out-of-plane (left-right crosswind) profiles are given in figures 8 and 9. The in-plane profiles (fig. 8) show a slight head wind component near and below 10,000 ft and a tail wind component for all other altitudes. The out-of-plane profiles (fig. 9) depict mostly left crosswind values with the exception of the altitudes near and below 10,000 ft where there were right crosswind values.

D. Thermodynamic Data

The thermodynamic data, taken at STS-39 launch time, consisted of atmospheric temperature, dew-point temperature, pressure, and density. These data have been compiled as the STS-39 ascent atmospheric data and are presented in table 5. Missing data are indicated by -9999.00 in table 5. The vertical structure of temperature and dew-point temperature for STS-39 ascent are shown graphically versus altitude in figure 10.

E. SRB Upper Air and Surface Measurements

As has been mentioned in the introduction, since there was no ship available, an SRB descent atmospheric data tape has not been constructed. The tabular values for the ascent atmospheric tape, as presented in table 5, should be used for SRB descent/impact studies since it is the closest measured data source.

Table 1. Selected atmospheric observations for the flights of the space shuttle vehicles.

		Count Down and Launch Comments of Meteorological Signifficance			Wind directional change observed at Pad just prior to L+0. Onset of sea breeze.					17-min countdown delay due to adverse weather conditions.						1-day delay due to excessive wind loads, calculated at high altitudes.	1-day delay due to extreme cold surface temperatures.
ditions	Wind),000 ft	Dir. (°)	250	286	250	329	336	277	278	349	252	288	289	270	303	272	265
Inflight Conditions	Max. Wind Below 60,000 ft	Speed (ft/s)	86	158	119	37	146	155	92	30	117	143	176	44	82	131	199
Infl	Be	Alt. (ft)	44,300	36,300	45,000	47,900	40,600	46,100	45,900	45,100	47,100	38,200	37,700	40,300	40,600	33, 100	42,900
	1 _p	Dir. (°)	125 120	345 355	50 ^e 145 ^e	133g 141g	06	63	10 ^e 350 ^e	269	183	0 NA	320 275	106 39	73 58	10	228 253
vations	Wind ^b	Speed (ft/s)	11.8 15.2	27.0 27.0	7.0 ^e 8.0 ^e	5.8g	22.0 35.0	12.7 16.4	5.9 ^e 10.3 ^e	8.8 14.0	19.1 32.0	0.0 NA	21.5 18.6	3.0	16.5 14.8	23.0 31.1	17.1
Surface Observations	nic ^a	Rel. Hum. (%)	82	61	11	7.0	89	55	80	97	83	75	ည	18	09	50	46
Surfac	Thermodynamic ^a	Temp.	21	23	24	29	22	23	25	24	24	17	16	56	23	20	18
	Тћег	$^{ m c}_{ m N/cm}^{ m c}$	10.234 ^d	10.166	10.160	10.200	10.227	10.183	10.146	10.111	10.153	10.173	10.149	10.172	10.210	10.227	10.173
		Time (EST) Nearest Minute	0700	1010	1100	1100f	0719	1330	0733 [£]	0232^{f}	1100	0080	0858	0842^{f}	0703^{f}	0715	1450
	Vehicle Data ^h	Launch Date	4/12/81	11/12/81	3/22/82	6/27/82	11/11/82	4/4/83	6/18/83	8/30/83	11/28/83	2/3/84	4/6/84	8/30/84	10/5/84	11/8/84	1/24/85
	Vehicle	Vehicle No.	STS-1 Columbia	STS-2 Columbia	STS-3 Columbia	STS-4 Columbia	STS-5 Columbia	STS-6 Challenger	STS-7 Challenger	STS-8 Challenger	STS-9 (SL-1) Columbia	STS-11 (41-B) Challenger	STS-13 (41-C) Challenger	STS-41D Discovery	STS-41G Challenger	STS-51A Discovery	STS-51C Discovery
		Seq. No.	Ħ	67	က	4	ç	9	7	∞	6	10	=	13	13	14	15

Table 1. Selected atmospheric observations for the flights of the space shuttle vehicles (continued).

		Count Down and Launch Comments of Meteorological Significance	55-min delay due to a ship in the SRB impact area, and concerns over potential weather related impacts (cloud cover).			(2) 8/24 launch scrub due to	unexceptable weather in launch area. Rain during countdown.	ശയ	IAW sites. 1/10 launch scrub due to heavy rain in launch area.	(25) 1/26 launch scrub due in part to potential bad weather	associated with irontal passage. 1/27 launch scrub due in part to strong cross winds at X68.		(26) 1-hr and 37-min delay due to light winds.	(27) 1-day delay due to excessive wind loads, calculated at high altitudes.	28) 2-hr delay due to fog and strong winds aloft.	(29) 59-min delay due to cloud cover over the launch area.
itions	o ff	Dir. (°)	265	320 297	298 302	035	123	283	218	270	263	264	304	245	283	255
	Max. Wind Below 60,000	Speed (ft/s)	134	89 89	55	53	43	48	81	75	221	174	44	187	105	157
Inflig	Belc	Alt. (ft)	42,600	32,900 40,700	40,100 46,700	48,000	41,000	48,000	43,000	49,300	40,000	42,000	53,100	40,200	45,200	44,200
	qp	Dir. (°)	828	005 337	201	101 113	073 070	213 171	217	165	323	331 262	058	314 352	242	106
tions	Wind ^b	Speed (ft/s)	19.9 22.3	11.5 18.4	2.9 11.8	14.9 13.4	14.2 16.6	17.0	12.7	10.1	15.4	20.1 15.3	13.7	25.5 22.0	16.9	21.6
Surface Observations	ic ^a	Rel. Hum. (%)	55	65	91	72	98	7.9	72	81	84	27	56	20	82	57
Surface	Thermodynamic ^a	Temp.	21	27	23	28	24	788	88	23	12	က	29	14	18	26
	Ther	Press. N/cm ²	10.257	10.128	10.201	10.174	10.225	10.185	10.059	10.202	10.206	10.253	10.182	10.270	10.190	10.200
		Time (EST) Nearest Minute	1359	1202^{f}	$0733^{\mathbf{f}}$	1700 [£]	0658 ^f	1115 ^f	1200	1929	0655	1138	1137 ^f	930	957	1437 ^f
	Vehicle Data ^h	Launch Date	4/12/85	4/29/85	6/17/85	7/29/85	8/27/85	10/3/85	10/30/85	11/26/85	1/12/86	1/28/86	9/29/88	12/2/88	3/13/89	5/4/89
	Vehicle	Vehicle No.	STS-51D Discovery	STS-51B Challenger	STS-51G Discovery	STS-51F Challenger	STS-511 Discovery	STS-51J Atlantis	STS-61A Challenger	STS-61B Atlantis	STS-61C Columbia	STS-51L ¹ Challenger	STS-26 Discovery	STS-27 Atlantis	STS-29 Discovery	STS-30 Atlantis
		Seq. No.	16	17	18	19	20	21	22	23	-24	25j	26	27j	28j	29,

Table 1. Selected atmospheric observations for the flights of the space shuttle vehicles (continued).

So. T. Vehicle Launch Launch Thermodynamic ^a Nind Speed Dir. Count Down and Launch Manute Thermodynamic ^a Nind Speed Dir. Count Down and Launch Manute All Time (EST) Trans (Th) <													
Thermodynamica Thermodynamica Thermodynamica Thermodynamica Nindb Below 60,1000 ft			Count Down and Launch Comments of Meteorological Significance		_		(33) 1-day delay due to cloud cover over the launch area.						
Surface Observations q. Vehicle Datah Minute LeST) Thermodynamica Minute LeST) Thermodynamica Minute LeST) Fress, Coch Minute LeST Thum. Speed Liss Speed Dir. Additional Minute LesT) Rei. Speed Liss Speed	itions	¥	Dir. (°)	286	287	237	242	289	307	293	273	262	284
Surface Observations q. Vehicle Datah Minute LeST) Thermodynamica Minute LeST) Thermodynamica Minute LeST) Fress, Coch Minute LeST Thum. Speed Liss Speed Dir. Additional Minute LesT) Rei. Speed Liss Speed	ght Cond	ax. Wind w 60,000	Speed (ft/s)	35	61	110	160	177	96	98	148	149	103 103
Surface Observations q. Vehicle Datah No. Time (EST) Time (EST) No. Press, Columbia Temporamical (Hum. Styled) Wind Discovery Nind Discovery Time (EST) (Time) Press, Columbia Temporamical (Hum. Styled) Wind Discovery Time (EST) (Time) Press, Columbia Time (EST) (Time) Tim	Inflig	Belor	Alt. (ft)	24,100	45,800	41,900	43,800	41,600	31,300	41,300	41,500	46,400	51,200 51,300
Surface Observation Vehicle Datah No. Time (EST) Time (EST) Time (EST) No. Thermodynamical (#) Rel. Special (III) Special (III) Rel. Special (III) Special (IIII) Special (IIII) Special (IIII) Special (IIII) Special (IIIII) Special (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		q	Dir.	252	193	208	246	72	08		84	· · · · · · · · · · · · · · · · · · ·	
Thermoon Time (EST) Thermoon q. Vehicle Databe Launch Date Time (EST) Press, c In	vations	Wind	Speed (ft/s)	12.5	13.5	16.9	6.8	23.6	18.6	23.6	28.7	18.6	12.8
Thermoon Time (EST) Thermoon q. Vehicle Databe Launch Date Time (EST) Press, c In	e Obser	nic ^a		80	52	80	100	12	63	73	63	84	95
Vehicle Datah Time (EST) Predicted Date q. Vehicle Date Time (EST) Predicted Date STS-28 8/8/89 0837f 10. STS-34 10/18/89 1254f 10. Atlantis 11/22/89 1254f 10. STS-33 11/22/89 1254 10. Discovery 2/28/90 0735 10. STS-36 2/28/90 0250 10. Atlantis 4/24/90 0834f 10. STS-31 11/15/90 1848 10. Atlantis 4/5/91 0923 10. STS-38 4/5/91 073f 10. Atlantis 4/5/91 0923 10. STS-39 4/28/91 073f 10.	Surfac	modynan	Temp.	2.2	30	19	12	18	22	27	21	23	22
Typehicle Datah 9. Vehicle Date No. Launch Date Date STS-28 Columbia 8/8/89 STS-34 Atlantis 10/18/89 STS-33 11/22/89 Discovery STS-36 Atlantis 2/28/90 STS-31 10/6/90 Discovery STS-31 Discovery STS-38 Atlantis 11/15/90 STS-37 Atlantis 4/5/91 STS-37 Atlantis 2/28/91 STS-39 Discovery STS-38 Atlantis 11/15/90 Discovery Discover Discover Discover Discover Discover Discover		Ther	Press. N/cm ²	10.120	10.152	10.132	10.194	10.268	10.186	10.176	10.254	10.256	10.149
Vehicle q. Vehicle No. STS-28 Columbia STS-34 Atlantis STS-32 Discovery STS-36 Atlantis STS-41 Discovery STS-41 Discovery Atlantis STS-37 Atlantis STS-37 Atlantis STS-39 Discovery Discovery			Time (EST) Nearest Minute	1,280	1254 ^f	1924	0735	0220	0834^{f}	····	1848		
STS-23 Columb STS-3 Atlanti STS-3 Atlanti STS-3 Columb STS-3 Columb STS-3 STS-31 Discove STS-31 Atlanti STS-31 Atlanti STS-37 Atlanti STS-37 Atlanti		ole Data ^h	Launch Date	68/8/8	10/18/89	11/22/89	1/9/90	2/28/90	4/24/90	10/6/90	11/15/90	4/5/91	4/28/91
σ		Vehic		STS-28 Columbia	STS-34 Atlantis	STS-33 Discovery	STS-32 Columbia	STS-36 Atlantis	STS-31 Discovery	STS-41 Discovery	STS-38 Atlantis	STS-37 Atlantis	STS-39 Discovery
			Seq. No.	30 ^j	31,	32 ^j	33	34			37	39.	40

Pad 39A thermodynamic measurements taken at approximately 1.2 m (4 ft) above natural grade at camera site No. 3.

1-min average prior to L+0 of 60-ft PLP winds measured above natural grade. 275-ft FSS wind measurements were not available after sequence No. 27.

Pressure measurement applicable to 21 ft above MSL unless otherwise indicated.

Pressure measurement applicable to 14 ft above MSL.

10-sec average prior to L+0.

Eastern daylight time.

e Q

³⁰⁻sec average prior to L+0.
All vehicles launched from LC 39A except where noted. Shuttle exploded in flight. Vehicle launched from 39B.

Table 2. Systems used to measure upper air wind data for STS-39 ascent.

	Date: April 28, 1991	8, 1991		Portion of	Portion of Data Used	
	Release Time	Time	Start	ţ	End	
Type of Data	Time (u.t.) (h:min)	Time After L+0 (min)	Altitude m (ft)	Time After L+0 (min)	Altitude m (ft)	Time After L+0 (min)
FPS-16 Jimsphere	11:48	15	6 (21)	15	16,764 (55,000)	70
MSS Rawinsonde	10:31	-62	17,069 (56,000)	9-	30,175 (99,000)	37
Super-Loki Rocketsonde (Robin)	13:05	92	68,275 (224,000)	92	30,480 (100,000)	94

Table 3. KSC surface observations at STS-39 launch time.

								Sky Cover*		M	Wind
Location ^a	Time After L+0 (min)	Pressure (MSL) N/cm ² (psia)	Temperature K (°F)	Dew Point K (°F)	Relative Humidity (%)	Visibility km (miles)	Cloud	Cloud Type	Height of Base Meters (ft)	Speed ft/s (kt)	Direction (°)
NASA Space Shuttle Runway X68 ^e Winds Measured of	0	10.163 (14.740)	297.0 (75.0)	295.9 (73.0)	93	16 (10)	-	Stratus	366 (1,200)	10.1 (6.0)	190
10.4 m (34 ft)							4	Cirrostratus	6,401 (21,000)		
CCAFS XMR ^c Surface Measurements	0	10.163	298.7	296.5	88	16		Cumulus	427	10.1	190
		(0441)	(2:01)	():- 		(or)	-	Altocumulus	4,572	(0:0)	
							-	Cirrus	(15,000) 6,401 (21,000)		
Pad 39A ^d Lightpole SE 18.3 m (60.0 ft) ^b	0	10.149 (14.720)	295.4 (72.0)	294.3 (70.0)	95	*	ı	ŀ	1	12.8 (7.6)	191

^{* 4/10} total sky cover at X68 and 3/10 total sky cover at XMR.

a. Altitudes of measurements are above natural grade, except where noted.

b. Approximately 1-min average prior to L+0.

c. Balloon release site.

d. Pad 39A thermodynamic measurements are taken at camera site No. 3, approximately 6.4 m (21 ft) above MSL.

e. Official STS-39 sky observational site.

Table 4. STS-39 prelaunch through launch KSC pad 39A atmospheric measurements.^a

Sky Condition ^b	Total Vie	Cover (mi.) Other Remarks	XO ft 2/10 10	000 ft 2/10 10	1/10 10	0 ft 2/10 10	000 ft 3/10 10	5,500 4/10 10	000 ft 4/10 10
		Clouds	Scattered at 5,000 and 21,000 ft	Scattered at 5,000 and 21,000 ft	Scattered at 5,000 ft	Scattered at 300 and 21,000 ft	Scattered at 5,500 and 21,000 ft	Scattered at 1,000, 2,500, 5,500 and 21,000 ft	Scattered at 1,200 and 21,000 ft
	eve]	,QM	166	176	172	159	181	184	191
	60' Level (SE)	WS Kt	14	12	7	10	6	7	∞
surements	Relative	(%)	06	68	68	06	91	91	95
ospheric Mea	Dew	roint (°F)	73	73	73	72	72	71	70
Hourly Atmospheric Measurements ^a	F	(°F)	76	92	76	7.5	7.5	74	72
	1001	Zime u.t.	0090	0040	080	0060	1000	1100	L+0° 1133

a. Hourly pad observations (obtained via MSFC/HOSC) averaged over 5 min, centered on the hour.

b. Sky observations taken at the shuttle runway site X68.

c. L+0 pad 39A wind and thermodynamic parameters obtained from HOSC strip charts. The SE anemometer was used at the 60-ft level for L+0 wind conditions (approximately 1-min average prior to L+0).

tape.
data
atmospheric
ascent
STS-39
Table 5.

WIND SPEED (FT/SEC)	WIND DIRECTION (DEG)	TEMPERATURE (DEG C)	PRESSURE (MILLIBARS)	DENSITY (GRAM/M3)	DEW POIN (DEG C)
	191.00	22.20		Ξ:	د .
	194.00	22.31	0.1012E+04	0.1182E+04	21.29
. (n	190.00	22.60	O 1009E F04	0.1177E+04	21.27
^	189.00	22.75	0.1002E+04	٠,	21.23
	œ	22.89	0.9981E+03		21.21
.	က၊	23.03	0.9946E+03	Τ.	21.19
~ ~	ם מ	23, 18	0.9912E+03	Τ.	21.17
n c	00.00	23.32	0.9877E+03	٦,	21.15
v w	7 (23.47	0.9842E+03	0.1145E+04	21.13
7	186.00	23.44	0.9774E+03		21.08
m	185.00	23.27	0.9740E+03	Ξ	21.05
m	188.00	23.10	0.9706E+03	O.1130E+04	21.02
m /	191.00	22.93		=	20.99
m ,	189.00	22.76		Ξ.	20.96
_ <	196.00	22.59	0.9606E+03	-	20.93
. .	195.00	22.42	0.9572E+03		20.90
o -	198.00	22.23	0.9539E+03	0.1114E+04	20.87
	194 00	22.52	0.9308E+03	-	20.04
ດ	202.00	21.80	0.9440E+03		20.95
2	202.00	21.69		Ξ.	20.09
0	192.00	21.58	0.9374E+03		19.73
C I.	199.00	21.47	0.9341E+03		19.37
က (198.00	21.36	0.9309E+03		19.01
oc c	192.00	21.25	0.9276E+03		٠
N 0	196.00	21.14	0.9244E+03	•	18.29
າແ	20.00	20 OS	0.32115+03	0.1082E+04	17.83
. 4	189.00	20.81	0.9147E+03		10.71
4	179.00	20.67	0.9115E+03		17.05
0	165.00	20.53	0.9083E+03	0.1069E+04	16.89
άο	168.00	20.39	0.9051E+03	•	16.73
۵.	163.00	20.25	0.9020E+03	Ξ.	
4 (159.00	20.11	O.8988E+O3	Ξ.	16.41
ט ת	168 00	19.97	0.8957E+03	0.1056E+04	16.25
o LC	158 00	00 OF	O RROAFFOR	. •	0 ر
, m	158.00	19:55	0.8863E+03	٠,	
_	152.00	4			
_	144.00	19.16	O.8801E+03		
_	144.00	18.91	O.8770E+03	O. 1038E+04	
	139.00	9	0.8739E+03		15.70
_	133.00	18.41	O.8708E+03	•	۲.
~ <		18.16			15.76
n -	134.00	17.91	0.8646E+03	0.1027E+04	15.79
	139 00	•			οα
	138.00			0.1021E+04	
	1.				

Table 5. STS-39 ascent atmospheric data tape (continued).

DEW POINT (DEG C)		14.99	14.53	14.07	13.61	12.69	Ġ	11.77	11.31	10.81	 	9.31	8.81	8 0	7.81	E	0 0	. r.	5.45	5.02	4.59	4 . 16		3,30	2.87	44.7	- 6E	-1.23	-2.85	-4.47	60.9-	- 6- 33		-12.57	- 14 19	ကျ	S	-14.76	.*	. C	່ຕ	-15.71	
DENSITY (GRAM/M3)	. ,	0.1010E+04		0 1004E + 04	O. 9986F+O3			O. 9901E+03	0.9873E+03	0.9844E+03			O.9726E+03		0.9668E+03	0.9638E+03		0.9550E:03	0.9524E+03	0.9495E+03	O.9467E+O3	0.9439E+03	0.9411E+03	0.93836+03	0.9355E+03	0.9327E+03	0.93726+03	0.9243E+03	0.9215E+03	O.9186E+03	0.9158E+03	0.9100F+03	0.9070E+03	0.9041E+03	0.9012E+03	O.8986E+03		O.8934E+03		O. 8856F+03	0.8831E+03	O.8805E+03	0.8779E+03
PRESSURE (MILLIBARS)	0.8495E+03	0.8464E+03	0.8434E+03	0.8404E+03	0.8344F±03		0.8285E+03	0.8255E+03	0.8226E+03	0.8197E103 0.8167E+03		0.8109E+03	O. 8080E+03	0.8051E+03	0.8022E+03	0.7993E+03	0.79535103	0 7907F+03	0.7879E+03	0.7851E+03	O. 7822E+03	0.7794E+03	0.7766E+03	19	0.7/10E+03	0.76555.03	0.7627F+03	0.7600E+03	0.7572E+03	0 7545E+03	0.7517E+03	0.7463F+03	0.7436E+03	O.7409E+03	O.7382E+03	0.7355E+03		0.7301E+03		O 7222E+03	0.7195E103	0.7169E+03	7
TEMPERATURE (DEG C)	16.75	16.59	4	16.27	15. F.	15.79	15,63	15.47	15:31	15. 19 15. 07	14.95	14.83	14.71	14.59	14.47	14 35	14 23	13 96	13.81	13.66	13.51	13.36	13.21	13.06	•	12.76	12.61		12.40	12.33	12.26	12.13	12.05	11.98	11.91	11.70	11.49	11.28	10.11 86.01	10.65	10.44	10.23	10.02
WIND DIRECTION (DEG)	141.00	135.00	137.00	143.00	00 (81	133.00	132.00	133.00	132.00	00.75	00.861	149.00	153.00	153.00	157.00	151.00	187 00	164.00	167.00	158.00	166.00	167.00	164.00	172.00	169.00	183.00	219:00	210.00	256.00	293.00	280.00	319.00	279.00	274.00	290.00	249.00	269.00	261.00	06.3.00	261.00	247.00	259.00	262.00
WIND SPEED (FT/SEC)	20	19.42	9		16 61					15.03		13.52	10.63	13.32	10.63	12.66	5.00 5.00 5.00	13.68	11, 15	9.61	10.63	7.41	10.14	9.28	7.25	11.32	7.78	6.92	6.92	4.56	2.69	3 7 1		6.40	5.05	5.58	8.27	8.96	= α	-		14.70	11.15
ALTITUDE (FF) 5000	5100	5200.	5300.	5:100	5600	5700.	5800.	5900.	. 6000	6100.	6300.	6400.	6500	6600	6700.	9800	7000	7 100	7200.	7300.	7400.	7500.	7600.	7700.	7800.	. 2007	8100	8200.	8300	8400.	8500.	8700	8800.	.0068	.0006	9100.	9200.	9300.	9400.	9600	9700.	.0086	.0066

Table 5. STS-39 ascent atmospheric data tape (continued).

DEW POINT	(DEG C)	- 16.09	.15 77	-15.61	- 15.45	- 15.29	- 15, 13	-14.97	-14.81	- 14 . 65	- 14.49	-14.46	-14.43	- 14 . 40	-14.37	-14.34	-14.31	- 14 . 28	- 14 . 25	- 14 . 22	-14,19	-14.34	- 14.49	-14.64	-14.79	-14.94	- 15.09	- 15.24	- 15.39	- 15.54	- 15.69	- 16.06	- 16.43	-16.80	117.17	+0.7+-	- 18.28	- 18 65	- 19.02	- 19.39	- 18.95	-18.51	-18.07	-17.63	-17, 19	- 16.75	-16.31	- 15.87
DENSITY		0.8754E+03				0.8624E+03	0.8599E+03	O.8573E+03	O.8547E+03	O.8522E+03	O.8497E+03	O.8470E+03	O.8444E+03	O.8418E+O3	O.8392E+03	O.8366E+O3	O.8340E+03	0.8314E+03	O.8289E+03	0.8263E+03	0.8237E+03	O.8214E+03	O.8190E+03	O.8166E+03	O.8143E+03	O.8119E+03	O.8096E+03	O.8072E+03	O.8049E+03	O.8026E+03	O.8003E+03.	0.7979E+03	0.7956E+03	0.7932E+03	O. 7909E+03	0.78665103	0.7840F+03	0 78175+03	0.7794E+03	0.7771E+03	0.7748E+03		O.7703E+03	O.7681E+03	O.7659E+03	0.7636E+03	O.7614E+03	0.7592E+03
PRESSURE	(MILLIBARS)	0.7117E+03	O 70816103		0.7013F+03	0.6987E+03	O. 6962E+03	O.6936E+03	0.6911E+03	O.6885E+03	O.6860E+03	O.6835E+03	O.6809E+03	0.6784E+03	0.6759E+03	0.6734E+03	0.6709E+03	0.6685E+03	O. 6660E+03	O. 6635E+03	O.6611E+03	O.6586E+03	0.6562E+03	O.6537E+O3	0.6513E+03	O.6489E+03	O.6465E+03	0.644 1E+03	O.6417E+03	O.6393E+03	O.6369E+03	0.6345E+03	O. 6321E+03	0.6298E+03	0.62/45+03	0.6230E103		O 6180F+03	0.6157E+03	0.6134E+03	0.6111E+03		O.6065E+03	0.6042E+03	O. 6019E+03	O.5996E+03	0.5973E+03	0.5951E+03
	(DEG C)	တင်		0.00		8.8		8.41	8.21		7.81	•	7.47	7.30	7, 13	96.9	6.79	6.62	6.45	6.28	6.11	5.88	5.65	5.42	5.19	4.96	4.73	4.50	4.27		3.81	3.59	3.37	3.15	2.93	7 . 7 . 0	2.73	2 03	. 83	1.61	1.36	+.11	0.86	0.61	0.36	0.11	-0.14	-0.39
WIND DIRECTION	(DEG)	241.00	05.00	950.00	259.00	266.00	271.00	268.00	270.00	273.00	268.00	272.00	278.00	276.00	277.00	283.00	282.00	284.00	301.00	296.00	295.00	297.00	299.00	292.00	299.00	302.00	296.00	302.00	301.00	300.00	305.00	305.00	302.00	312.00	307.00	00.00	00 : 60s 00 : 90s	303.00	307.00	298.00	299.00	306.00	302.00	292.00	302.00	299.00	300.00	305.00
•	ς.	11,48			C			21.78	24 . 15	Τ.	o.	24.31	•	22.28	22.44		•	•	о О	18.04	20.93	21,59	20.77		24.31	22.28	24.31				26.15	22.97	m 1		24.31	26.35	23.36	26 67		24.31	26.15	25.13	7	24.80	24.97	23.95	24.80	26.67
ALTITUDE	(+1)	10000	0000	10300	10400	10500.	10600.	10700.	10800	10900	11000.	11100.	11200.	11300.	11400.	11500.	11600.	11700.	11800.	11900.	12000.	12100.	12200.	12300.	12400.	12500.	12600.	12700.	12800.	12900.	13000.	13100.	13200.	13300.	13400.	13500	13700	13800	13900.	14000.	14 100.	14200.	14300.	14400.	14500.	14600.	14700.	14800.

Table 5. STS-39 ascent atmospheric data tape (continued).

	S	WIND DIRECTION	TEMPERATURE	PRESSURE	DENSITY	DEW POINT
	1/5	(DEG)	(DEG C)	(MILLIBARS)	(GRAM/M3)	(DEG C)
	27.49	304.00	-0.89	O. 5906E+03	.7548E+0	4
	26.31	306.00	61 1-	0.5883E+03		-14.48
	25.82	303.00	-1.49	586 i E	9	ο.
	27.85	305.00	-1.79	O.5839E+O3	7485E+0	
	16.51	308.00	-2.09	5816E+0	7464E+0	12.9
	27.49	303.00	-2.39	5794E+0	443E+0	12.4
	27.85		-2.69	0.5772E+03	7422E+0	-11.93
	5.66		-2.99	5750E	7402E+0	-
	28.51		-3.29	5728E	7381E+0	σ.
	97 .19		-3.59	5706E+0	7360E+0	4
	25.66	302.00	-3.89	5684E	7340E+0	-9.89
	69. 73		-4.17	2662E+0	7319E+0	_
	27.17	310.00	-4.45	5640E+0	7299E+0	4
	17.00		-4.73	5618E	7278E	- 10.73
	18.02	309.00	-5.01	O.5597E+03	7258E+0	-11.01
	26. 15		-5.29	O.5575E+03	7238E+0	-11.29
	9.04		-5.57	O.5553E+03	7218E+0	-11.57
	29.04		-5.85	O.5532E+03	7197E+0	œ
	31.89		-6.13	0.5511E+03	7177E+0	- 12.13
	30.87		-6.41	0.5489E+03	0.7157E+03	
	31.73		-6.69	O.5468E+03	7137E+0	œ,
	32.41		-6.90	O 5447E+03	7115E+0	-12.66
	32.41		-7.11	O.5426E+03	O.7093E+03	5
	33.23		-7.32	O.5404E+03	7071E+0	ဖ
	32.74		-7.53	O.5383E+03	7049E+0	
	34.42		-7.74	O.5362E+03	0.7027E+03	ري ا
	32.74		-7.95	O.5342E+03	7005E+0	വ
	33.07		-8.16	O.5321E+03	3983E+0	- 12.48
	34.25		-8.37	O. 5300E +03	5962E+0	4
	33.92		80 (1 80 (1 1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (0.5280E + 03	5940E+0	- 12 . 42
	36 12		6/.8=	0.5259E+03	5918E+0	- 12, 39
	35 / 39 7.00	283.00	8 78	0.5238E+03	O. 6896E+03	- 12.74
400. 400. 600.	22 60		- C	0.32186103	0.68/08103	00.00
500. 500. 700.	20.10		יינים מיינים נינים	0.31876103	O. 6633E+O3	1 CT
600. 700.	10 CI	276.00	9.74	O 5156F+03	0.68095+03	. .
700.	14 39		- en - en - en - en - en - en - en - en	O 5136F+03		
	13.21	8	- 10. 12	0.5116E+03		8
000	14.39		-10.31	0.5096E+03	.6745E+0	. T
900.	n		0.5	5076E+0	E+0	ល
4	က			O.5056E+03		- 15.89
100.	4			O. 5036E+03		က.
200.	ď.		6.0	O. 5016E+03	0+	-
300.	o I		0	O. 4996E +O3		S
400.	ල (- <i>j</i>	0.4977E+03	.6611E+0	-21.65
500.	ດ : ຕ :		. 2	4957E+0	.6589E+0	0 1
4.	9 i		- ;	1937E+0	.6566E+0	
700.	υ. 4 (4918E+	6543	
च १	14.88			899E	. 65	-27.41
900.) -	294.00	-11.68	9 / 3	0.6498E+03	

Table 5. STS-39 ascent atmospheric data tape (continued).

i C	-30,29	-28.95	-28.28	27.	-26.94		24	-24.26	-23.59	23.6	23.6	123.74	23.8	3	6	3	-24.04	-24.09		-23.55		~			7	2	-21.39		-22.13	8	-23.24		-23.98		-25.09	ເດ	ıÖ.	4	5.5	IJ.	25.8	25.9	-26.05	-26.17
	0.6475E+03				0.6372E+03		0.6311E+03	O. 6291E+03		O.6248E+03	6226	.*			0.6117E+03				0.6031E+03	0.6010E+03				0.5903E+03	O.5882E+03	•			0.5803E+03				0.5713E+03					O.5604E+03	O.5586E+O3	.5567E+0	. 5549E	. 5531E	. 55 13E	0.5495E+03
PRESSURE (MILLIBARS)	0.4860E+03	0.4841E+03		•	0.4764E+03			O.4689E+03		.4651E+0		0.4614E+03	7	4			•	.4487E+0	0.4469E+03	0.4451E+03			٠		0.4345E+03	4	•	0.4293E+03	0.4275E+03 0.4258F+03	0.4241E+03	٠		0.4190E+03			7*	4	٠						0.3989E+03
TEMPERATURE (DEG C)	-11.79	-12.21	7.	9	-12.84		4	-13.68	- 13.89	0	- 44. 43	- 14.23	7	-14.61	-14.73	-14.85	~14.97	•	15.21	.* .	٠.	•	-15.81	- 15.93					-16.98		-17.44	•	-17.90	9	0 80		-18.99	- 19, 19	о О	ი ი	ق	σ.	•	-20.39
WIND DIRECTION (DEG)	296.00	298.00	294.00	293.00	296.00 293.00	295.00	293.00	292.00	290.00	287.00	288.00	283 00	283.00	282.00	280.00	274.00	278.00	211.00	273.00	273.00	267.00	267.00	264.00	•	271 00	268.00	269.00	270.00	263.00	268.00	266.00	268.00	265.00	26.00	270.00	269.00	269.00	271.00	273.00	•	•	•	۲.	275.00
0 S	45.41	6.7	47.24	50.62	53.84 4 4	54,33	55.51	56.69	58.56	58.23	61.78	57 S	61.42	57.87	58.89	63.78	61.42	00.00	59.25	57.03 54.53	54.00	52.66	55.51	57.38	56.89	60.07	62.11	98.07	61.09	59.58	59.25	58.73	59.42	100 H	61.25	61.09	61.42	₹	2	ന		ന	•	59.91
ALTITUDE (FT)	20000.	20200.	20300.	20400	20500.	20700.	20800.	20900.	21000.	21100.	21200.	21400	21500.	21600.	21700.	21800.	21900.	22000.	22100.	22300	22400.	22500.	22600.	22700.	22800.	22900.	23000.	33300	23300.	23400.	23500.	23600.	23700.	23900	24000.	24100.	4	ব	4.	24500.	24600.	24700.	24800.	24900.

Table 5. STS-39 ascent atmospheric data tape (continued).

ALTIUDE	WIND SPEED	WIND DIRECTION	TEMPERATURE	PRESSURE	DENSITY	DEW POINT
(ET)	(FI/SEC)	(DEG)	(DEG C)	(MILLIBARS)	(GRAM/M3)	(DEG C)
25000.	7.8	278.00	-20.59	O.3973E+O3	O. 5476E+03	-26.29
25100.	8.7	274.00	- 20. 78	0.3957E+03	0.5458E+03	-26.74
25200.	9.4	277.00	-20.97	0.3940E+03	0.5440E+03	-27.19
25300.	Э. Б.	S	-21.16	0.3924E+03	0.5422E+03	7.6
25400.	Τ.	275.00	C	O.3908E+03	0.5404E+03	
25500.	60.60	276.00	S	O.3892E+03	O.5386E+03	
25600.	ব	274.00	7	O.3876F+03	O.5368E+03	-28:99
25700.	9	m	-21.92			-29.44
25800.	63.78	271.00	-22.11		O.5332E+03	-29.89
25900.	62.11	275.00	-22.30	0.3829E+03	0.5315E+03	-30.34
26000.	63.29	m	-22.49		0.5297E+03	
26100.	64.47	274.00	-22.71	•		-31.18
26200.	63.45	277.00	-22.93		0.5262E+03	-31.57
26300.	64.30	276.00	-23,15			
26400.	63.12	279.00	-23.37	O.3750E+03	0.5228E+03	-32.35
26500.	63.98	277.00	-23.59	0.3735E+03	0.5211E+03	-32.74
26600.	65.32	278.00	-23.81	0.3719E+03	0.5194E+03	~33.13
26700.	65.32	278.00	-24.03			-33.52
26800.	67.68	275.00	-24.25		0.5161E+03	-33.91
26900.	66 99	279.00	-24.47			-34.30
27000.	67.68	276.00	-24.69	O.3658E+03		-34.69
27100.	9	278.00	-24.93	O.3643E+O3		-34.98
27200.	65.32	279.00	-25.17	O.3627E+03		-35.27
27300.	66.50	276.00	25.4	O.3612E+03		-35.56
27400.	64.96		25			-35.85
27500.	66.83			O.3582E+O3	•	-36.14
27600.	ဖ	8	26.13	O.3567E+03		-36.43
27700.	62.96	ດ	-26.37	O.3552E+O3	٠	-36.72
27800.	66.50		26.	0.3537E+03		-37.01
27900.	64.80	277.00		0.3523E+03		-37.30
28000	56.34			O.3508E+03	٠	-37.59
20100	03.30		77	O.3493E+03		-37.80
20202	07.08				4	0
28300	99.79		-27.90			
28500	68.01	275.00	28.1/	0.3449E+03		-38.43
28600	2 C C C C C C C C C C C C C C C C C C C	273 00		0.3434E+03		38.64
28700.			- 0		0.46/ZE+03	-38.85
28800.	63. 12		•		•	76 96-
28900	S		-29.52		• ' /	1 4
29000	60.07			O.3362E+03		9
29100.	~	274.00	-30.05	O.3348E+03		-39.84
29200.		274.00	-30.31	٠.		6
29300.	Ö.	273.00	-30.57	O.3319E+03		
29400.	9.0	273.00	-30.83	O.3305E+03	0.4750E+03	-40.29
29500.	9.7	73.		0.3291E+03	0.4735E+03	-40.44
29600.			-31.35		0.4720E+03	-40.59
29700.	2 .	69	1.6		•	-40.74
0,0	9.0	73.	-31.87		4	-40.89
29900.	61.94	276.00	-32, 13	0.3235E+03	0.4675E+03	-41.04

Table 5. STS-39 ascent atmospheric data tape (continued).

OMIN CHARACTER	MAIND DIDECTION	TEMPEDATIDE	, und	VENOUS	DEW DOTAIT
(FI/SFC)	(DEG)	(DFG C)	(MILLIBARS)	(GRAM/M3)	
	273.00	-32.39	0.3221E+03	O. 4660E+03	•
	273.00	-32.66	0.3207E+03		-41.46
	270.00	-32.93	O.3193E+03	O.4630E+03	-41.73
	273.00	-33.20	3180E	٠	
	74	-33.47	•		Ŋι
	273.00	-33.74	0.3152E+03	0.4586E+03	-42.34 -42.84
	273.00	-34.55	. ,		-43.35
		ω			-43.62
	268.00	-35.09	٠.	0.4514E+03	-43.89
	271.00	-35.34			-44.17
		-35.59		•	-44.45
	266.00	-35.84	.3045E		
	271.00	-36.09		•	0
	268.00	-36.34	O.3018E+03		-45.29
		-36.59		•	-45.57
	267.00	-36.84			-45.85
		-37.09	•	•	
		-37.34		•	-46.41
	•	-37.59	0.2953E+03		-46.69
	281.00	-37.83	0.2940E+03		
	79	-38.07			<u>ი</u> (
	273.00	-38.31	٠		
		-38.55			-47.93
	278.00	97.08°-	0.2888E+03	0.4283E+03	140.24 78 85
		20.00-	0.28/3E-03		ά
	- m	13.00 - 13.00 -	0.2850E+03		-49.17
	79	-39.75	2838E		-49.48
		ത			-49.79
	273.00	-40.24	0.2812E+03	O.4206E+03	
	278.		•	4	-50.35
		-40.74		4	-50.63
	280.	-40.99		0.4164E+03	თ -
		. 7		4.	
	276.00	-41.49	0.2751E+03	0.4136E+03	-51.4/
		. 0		7	: c
		•		7	
		14			
	76.				
	78.			O.4053E+03	-53.07
		-43.24	0.2666E+03	O.4039E+03	-53,31
		-43.49	0.2654E+03	•	ເນ
	282.00	-43.74	O.2642E+03	•	
	80.	-43.99		•	-54.03
		7	. 26 18E		-54.27
	283.00	-44.49	606E		134.51
	280.00	-44.74	0.2595E+03	0.3957E+03	-04.10

Table 5. STS-39 ascent atmospheric data tape (continued).

DEW POINT (DEG C)	-54.89 -55.20	-55.41		-55.83	-56.04	2	-56.46	-56.67	-56.88	-57.09	-57.27	-57.45	-57.63	-57.81	-57.99	-58.17	-58.35	-58.53	-58.71	-58.89	-59.12	-59.35	-59.58	-59.81	-60.04	-60.27	-60.50	-60.73	96.09-	-61 19	-61.42	-61.65	-61.88	-62.11	-62.54	-62.80	-63.03	-63.26	-63.49	-63.71	-63.93	-64.15	-64.37	-64.59	-64.81	0	2	-65.47
	0.3944E+03 0.3930E+03		0.3902E+03	~		O.3861E+O3	O.3847E+O3	3834E+0	,=	٠	-	0.3779E+03					0.3711E+03	0.3698E+03				0.3645E+03	O.3632E+03	O.3619E+03	O.3606E+03	O.3593E+03	0.3581E+03	O.3568E+O3	O.3555E+03	0.3542E+03	0.3530E+03	0.3518E+03	0.3505E+03	0.3493E+03	0.3481E:03	0.3457E+03	0.3444E+03	O.3432E+O3	O.3420E+03		O.3396E+O3	3384E+0	O.3372E+03	.3360E+0	0.3348E+03		0.3324E+03	0.3312E+03
PRESSURE (MILLIBARS)	0.2583E+03	0.2559E+03				0.2513E+03	. 2501E+0	.2490E+0		O.2467E+03	2456E	0	0.2433E+03	0.2422E+03	0.2411E+03	0.2400E+03	0.2389E+03	0.23/8E+03	0.2367E+03	0.2356E+03	0.2345E+03	O.2334E+03	0.2323E+03	0.2313E+03	0.2302E+03	0.2291E+03	0.2281E+03	O.2270E+03	0.2259E+03	0.2249E+03	0.2238E+03	0.2228E+03	0.221/E+03	0.2207E+03	•		- 1	O.2155E+03	*		O.2125E+03	-	2105E+0				•	0.2056E+03
A S	-44.89	! 4	IJ	-45.95	Ψ.		9	ŋ	7		_	7.8	о. 8	8	-48.49	8.7	∞	=49. 15 20. 07	ຫ ^ເ	- 49.59	-49.83	-50.07	-50.31	-50.55	-50.79	-51.03	-51.27	-51.51	-51.75	-51.99	-52.26	-52.53	152.80	-53.0/ -53.0/	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-53.88	-54.15	-54.42	- 54 . 69	0	-55.19	-55.44	9	55.9	÷	6.4	- 56 . 69	56.94
WIND DIRECTION (DEG)	280.00	277.00	278.00	279.00	280.00	283.00	281.00	279.00	283.00	278.00	285.00	281.00	281.00	283.00	284.00	281.00	280.00	279.00	280.00	280.00	282.00	279.00	277.00	276.00	274.00	278.00	276.00	275.00	279.00	274.00	276.00	276.00	273.00	278.00		274.00	272.00	275.00	274.00	275.00	272.00	275.00	279.00	275.00	274.00	274.00	ത്.	281.00
s 0	76.28	79,99	80.15	79.33	79.66	79.33	79.82	84.38	86.06	88.62	88.78	89.44		88.78	94.68	95.70	96.19	95.87	95.70	96.52	94.85	94.52	94.68	92.81	95.18	91.80	92.32	93.67	89.27	90.29	90.45	91.31	36.88	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	94.32	92 65	94.00	90.78	94.16	93.50	93,34	94.85	95.34	97.38	97.21		4	92.49
ALTITUDE (FI)	35 400 .	35200.	35300.	35400.	35500.	35600.	35700.	35800.	35900.	36000.	36100.	36200	36300.	36400.	36500.	36600	36,700	36800.	36900.	37000.	37100.	37200.	37300.	37400.	37500.	37600.	37700.	37800.	37900.	38000.	38 100	38200.	38300.	38400.	38600	38700.	38800.	38900.	39000	39100.	39200.	39300	39400.	39500.	39600.	39700.	39800.	39900.

Table 5. STS-39 ascent atmospheric data tape (continued).

	T 0 4 10 1	-66.14 -66.89 -67.04 -67.19	00 . 6666 - 00 . 6	00 . 6666 - 00 . 6666 - 00 . 66		00 . 6666	00 . 66 66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
		0,3209E+03 0,3196E+03 0,3183E+03 0,3170E+03		0.3087E+03 0.3075E+03 0.3064E+03 0.3052E+03 0.3040E+03	0.3016E+03 0.3004E+03 0.2992E+03 0.2980E+03 0.2969E+03	0.2945E+03 0.2932E+03 0.2910E+03 0.2910E+03 0.289E+03 0.2887E+03 0.2875E+03	0.2852E+03 0.2841E+03 0.2829E+03 0.2818E+03 0.2730E+03 0.2777E+03 0.2776E+03 0.2750E+03 0.2750E+03 0.2750E+03 0.2750E+03 0.2750E+03 0.2750E+03
σ. Σ	. 2016E . 2007E . 1997E	0.1978E+03 0.1968E+03 0.1958E+03 0.1949E+03	0. 1930E+03 0. 1921E+03 0. 1912E+03 0. 1902E+03 0. 1893E+03	0. 1884E+03 0. 1875E+03 0. 186E+03 0. 1857E+03 0. 1848E+03 0. 1839E+03			0. 1708E+03 0. 1700E+03 0. 1691E+03 0. 1683E+03 0. 165E+03 0. 165E+03 0. 1650E+03 0. 1650E+03 0. 1635E+03 0. 1635E+03 0. 1635E+03 0. 1635E+03 0. 1625E+03
× + c v	-57.73 -57.91 -58.09 -58.27	-58.45 -58.63 -58.81 -58.99	- 599 65 - 599 65 - 599 87 - 60 09	-60.53 -60.75 -60.97 -61.19 -61.59	-61.39 -61.99 -62.19 -62.39 -62.59	-62.79 -63.19 -63.57 -63.76 -63.95 -64.14	-64.52 -64.71 -64.90 -65.09 -65.11 -65.13 -65.13 -65.21 -65.23 -65.23
WIND DIRECTION (DEG) 277.00 283.00 281.00		283.00 278.00 280.00 284.00	288.00 286.00 282.00 288.00 287.00	290.00 292.00 289.00 296.00	296.00 300.00 298.00 298.00	298.00 297.00 304.00 301.00 297.00 301.00 297.00	303.00 297.00 298.00 295.00 291.00 287.00 288.00 286.00 291.00
WIND SPEED (FT/SEC) 97.90 97.90	100.26 98.88 100.07	95.87 98.39 98.56 96.19	947.90 96.75 96.35 94.68	95.34 95.35 92.98 91.44	92.16 89.80 92.49 91.96	8.9.11 8.9.17 8.9.96 8.5.07 8.4.22 7.9.49 7.9.66	78.81 73.26 73.92 74.25 74.25 74.25 75.44 75.95 78.81
ALTITUDE (FT) 40000. 40100.	40400. 40500. 40500.	40700. 40800. 40900. 41100.	4 1 1 2 0 0	4 1 700 . 4 1 800 . 4 2 1 00 . 4 2 1 00 .	4 2 2 5 0 0	42800. 43900. 43300. 43300. 43300. 43500.	43700 43800 44000 44400 44400 44400 44400 44400 44400 44400

Table 5. STS-39 ascent atmospheric data tape (continued).

ALTITUDE	D SP	WIND DIRECTION	TEMPERATURE	PRESSURE	DENSITY	DEW POINT
1.1.	`	(DEG)	(DEG C)	(MILLIBARS)	(GRAM/M3)	
45000.	8	288.00	-65.29	O. 1601E+03		00.6666-
45100.	82.87	286.00	-65.28	O. 1593E+03	0.2670E+03	00.6666-
45200.	8	288.00	-65.27	Ξ.		00'6666-
45300.	77.30	279.00	-65.26	Τ.		00.6666-
45400.	6.2	277.00	2	O. 1569E+03		00.6666-
C)	5.7	270.00	Ç	_		00.6666-
45600.	6.2	267.00	3	Τ.		-9999.00
45700.	9.	267.00	-65.22	O.1546E+03		-9999.00
45800.	4	265.00	-65.21	-		00.6666-
45900.		268.00	-65.20	٠,		00.6666-
46000.	0.7	271.00	-65.19	O. 1523E+03	O.2551E+03	00.6666-
46100.	တ်	270.00	-65.28	- .	0.2540E+03	-9999.00
46200.		270.00	-65.37	-	٠	00.6666-
46300.		261.00	-65.46	O. 1500E+03	0.2517E+03	-9999.00
46400.	69.19	263.00	-65.55	*	O.2505E+03	00.6666-
46500.		261.00	-65.64	O. 1486E+03	O.2494E+03	-9999.00
46600.		260.00	-65.73	7	2483E	-9999.00
46700.		269.00	-65.82	O. 1471E+03		-9999.00
46800.		269.00	-65.91	-		
46900.		265.00	-66.00	-		-9999.00
47000.		265.00	60.99-			
47100.		264.00	-66, 19	0.1442E+03	0.2427E+03	
47200.		264.00	-66.29	_	0.2416E+03	00.6666-
47300.	78.31	262.00	-66.39	-	0.2405E+03	-9999.00
47400.		268.00	-66.49	-	0.2394E+03	-9999.00
47500.		262.00	-66.59	0.1413E+03		-9999.00
47600.		263.00	-66.69	Τ.	0.2372E+03	-9999.00
47700.	77.62	265.00	-66.79	O. 1399E+03	O.2362E+03	00.6666-
47800.	77.99	265.00	-66.89	Τ.	0.2351E+03	00 : 6666-
47900.		268.00	-66.99	Τ.	O. 2340E+03	00.6666-
48000.		268.00	-67.09	Τ.		00.6666-
48100.		270.00	-67.08	O. 1371E+03	0.2318E+03	-9999.00
48200.	69.03	266.00	-67,07	. 1364E	,	00.6666-
48300.	67,16	268.00	•	_	0.2295E+03	-9999.00
48400.	0	266.00	-67.05	_	0.2283E+03	00.6666-
48500.	ı ا	266.00	-67.04	. 1344E		00.8666-
48600.	63.78	262.00	EO 79-	0.1337E+03		00.6666-
49700		238.00			0.2249E+03	00.8888-
48800		256.00	10.79-	0.1324E+03	0.2238E+03	00.8888-
48900.	;		00.18	0.13186103		00.6666-
49000		234.00	66.00	- -		00.6666
49.00.	62.27	253.00	56.93		0.2204E+03	00.6666
σ		254.00	- 66 81			00.8666-
0	0	260.00	-66.75	_		00.6666-
49500	2	265.00	69.99-	Ξ.		00.666-
49600.	Θ.	265.00	-66.63	_	2.1	-9999.00
49700.	7.9	271.00	-66.57	O. 1266E+03	0.2135E+03	00.6666 -
49800.	•	270.00	-66.51	. 1260E	2.	00.6666-
49900.		270.00	-66.45	_	2.1	00.6666-

Table 5. STS-39 ascent atmospheric data tape (continued).

ALTITUDE	WIND SPEED	WIND DIRECTION	TEMPERATURE	PRESSURE	DENSITY	DEW POIN
(FT)	(FT/SEC)	(DEG)	(DEG C)	(MILLIBARS)		(DEC C)
50000	85.40	272.00	-66.39			00.6666-
50100.	85.07	276.00	-66.30			-9999.00
50200.	87.07	276.00	-66.21	_	O.2078E+03	00.6666-
50300.	88.78	277.00	-66. 12	. 1228E		-9999.00
50400	89.80		-66.03	. 1222E		00 6666-
50500.	86.06	281.00	-65.94	O. 1216E+03	0.2045E+03	00.6666-
50600.	94.16	285.00	-65.85	O. 12 10E+03		00.6666-
50700.	97.38	284.00	-65.76	O. 1204E+03	0.2022E+03	00 6666-
50800.	90.86	284.00	•	Ξ	0.2011E+03	-9999, 00
50900	96.19	287.00	-65.58	0.1192E+03	O. 2000E+03	00.6666-
51000.	99.57	287.00	-65.49	O.1186E+03	O. 1990E+03	-9999.00
51100.	101.94	286.00	-65.60	O.1180E+03	O. 1981E+03	00.6666-
51200.	102.95	284.00	-65.71	O.1174E+03	O. 1972E+03	00.6666-
51300.	102.95	279.00	65.82	Ξ	O. 1963E+03	00.6666-
51400.	102.26	282.00	-65.93	O. 1162E+03	O. 1954E+03	00.6666-
51500.	101.25	279.00	-66.04	O.1157E+03	O. 1946E+03	00.6666-
51600.	101.08	282.00	-66.15	O.1151E+03	O. 1937E+03	00.6666-
51700.	99.57	284.00	-66.26	O.1145E+03	0.1928E+03	00.6666-
51800.	95.87	284.00	-66.37	0.1139E+03	O. 1920E+03	00.6666-
51900.	96.72	285.00	-66.48	O.1134E+03	O. 1911E+03	00.6666-
52000.	92.49	286.00	-66.59	O. 1128E+03	O. 1902F+03	-9999.00
52100.	92.49	289.00	-66.78	O.1122E+03	O. 1895E+03	00.6666-
52200.	91,31	290.00	-66.97	O.1117E+03	O. 1887E+03	00.6666-
52300.	88.25	290.00	-67.16	O.1111E+03	O. 1879E+03	-9999.00
52400.	84.71	291.00	-67.35	O. 1106E+03	O. 1872E+03	00.6666-
52500.	83.37	292.00	-67.54	O. 1100E+03	O. 1864E+03	00.6666-
52600.	80.35	295.00	-67.73	O. 1095E+03	O. 1856E+03	00.6666-
52700.	76.12	290.00	-67.92	O. 1089E+03	O. 1849E+03	00.6666-
52800.	70.37	292.00	-68.11			00.6666-
52900.	67.68	293.00	-68.30		O. 1834E+03	00.6666-
53000.	65.32	294.00	-68.49	O. 1073E+03	O. 1826E+03	-9999.00
53100.	62.11	294.00	-68.61	-	O. 1818E+03	-9999.00
53200.	58.23	293.00			₹.	00.6666-
53300.	56.04	290.00			Τ.	00.6666-
53400.	55.71	290.00			٠,	00 6666-
53500.	54. 17	289.00		٠		00.6666-
53600.	50.62	280.00		. •	7	-9999 .00
53700.	49.28	281.00			-	00.8888-
53800.	47.41	277.00			٦,	00.8888-
53900.	44.88	276.00	ິດ			00.8888-
34000·	44.23	270.00	ا ع		-	00.8888-
54 100.	43.86	264.00			- ·	-9999.00
54200.	44.06	261.00	۱ ۲			00.6666-
54300.	47.24	258.00	-69.78		٠.	00.8888-
54400.	49.28	259.00	ω 1	•	•	00.8686-
54500.	48.95	263.00	Φ.		٠.	-9999.00
54600.	α	265.00		0.9893E+02	•	-9999.00
54700.	(C)		σ,	•	٠.	00.6666-
▽	ن ق	265.00		.9793E	0.1679E+03	00.6666-
54900.	57.22	266.00	96 ' 69 -	0.9743E+02	0.1671E+03	00.6666-

Table 5. STS-39 ascent atmospheric data tape (continued).

DEW POINT (DEG C) -9999:00 -9999:00	00.6666. 00.6666. 00.6666.	00.6666 00.6666 00.6666 00.6666	OO 66666 -	00. 66666 - 00. 66	OO: 66666 - OO: 66	00 66666 - 00 666666 - 00 666666 - 00 66
DENSITY (GRAM/M3) 0.1662E+03 0.1568E+03 0.1493E+03	0. 1434E+03 0. 136EE+03 0. 1308E+03 0. 1248E+03 0. 1183E+03		the second second second			0.2035E+02 0.1947E+02 0.1847E+02 0.1777E+02 0.1634E+02 0.1620E+02 0.1545E+02 0.1475E+02
PRESSURF (MILLIBARS) 0.9694E+02 0.9214E+02 0.8761E+02	0.8327E+02 0.7911E+02 0.7515E+02 0.7136E+02 0.6775E+02					0. 1354E +02 0. 1295E +02 0. 1239E +02 0. 1185E +02 0. 1148E +02 0. 1099E +02 0. 1052E 102 0. 1008E +02 0. 1008E +02
TEMPERATURE (DEG C) -69:99 -68:39 -68:79	-70.89 -71.39 -72.99 -73.99 -73.59	64 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- 62 . 29 - 59 . 59 - 58 . 69 - 57 . 19 - 56 . 69 - 55 . 09	- 54 . 19		141.39 141.49 141.49 140.79 136.88 135.93 14.06
WIND DIRECTION (DEG) 270 00 282 00 303 00	324.00 344.00 344.00 221.00 228.00	97.00 95.00 52.00 71.00 85.00	113.00 76.00 46.00 43.00 51.00 32.00	18.00 22.00 40.00 58.00 114.00 121.00 128.00	169.00 194.00 251.00 295.00 298.00 299.00	299.00 313.00 292.00 254.00 241.00 237.00 228.00
WIND SPEED (FT/SEC) 57.87 52.17 44.62	39.37 23.95 5.25 7.22 6.56 6.56	10. 17 9. 84 20. 67 35. 10 36. 09 30. 05	22.97 15.75 10.70 17.72 21.33 17.39 13.45		Unicio 6 4 + + + 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ALTITUDE (FT) 55000. 56000.	58000 59000 60000 61000 63000	6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	70000 . 71000 . 72000 . 74000 . 75000 .	78000 79000 8 1000 8 2000 8 3000 8 83000 8 85000 8 6000	880000 890000 90000 92000 93000 94000	95000. 97000. 98000. 100000. 101000. 103000.

Table 5. STS-39 ascent atmospheric data tape (continued).

	Ladie	5. 515-59 ascent	S1S-39 ascent atmospheric data tape (continued)	ape (continued).		
ALTITUDE	WIND SPEED	WIND DIRECTION	TEMPERATURE	PRESSURE	DENSITY	DEW POIN
(FT)	_	$\overline{}$	(DEG C)	(MILLIBARS)	(GRAM/M3)	ш
105000.	10.14	215.00		0.9247E+01	-	-9999.00
106000	11.81	214.00	-32.31	O. 8860E FO		-9999.00
107000.	11.81	217.00	32.23	O.8489E+01		-9999.00
108000	11.81	229.00	0	.8134E+	O. 1180E+02	-9999.00
109000	11.81	252.00		7793E+		00.6666-
110000.	13.52	279.00	-34.58	7464E+		00.6666-
111000.	20.24	297.00	7.	7149E+	0.1045E+02	-9999.00
112000.	23.62	294.00		.6848E+		-9999.00
113000.	25.33	289.00	-33.47	6560	0.9535E+01	00.6666-
114000.	27.00	296.00		6285E+		-9999.00
115000.	25.33	300.00	-33.57	.6022E+	0.8756E+01	00.6666-
116000.	20.24	289.00		5769		00.6666-
117000.	15, 19	257.00	4	0.5527E+01	O.7999E+01	00.6666-
118000.	16.86	233.00		O.5297E+O1		00.6666-
119000.	18.57	235.00	-30.76		O.7295E+O1	-9999.00
120000.	16.86	230.00	-28.96		.6942E+	-9999.00
121000.	15.19	207.00		O.4667E+01	.6592E+	00.6666-
122000.	10.14	181.00		O.4477E+O1	O.6309E+01	-9999.00
123000.	10.14	142.00	-24.93	O.4295E+01	.6028E+	-9999 . 00
124000	11.81	138.00		0.4122E+01		-9999.00
125000.	10.14	141.00	-21.78		.5483E+	00.6666-
126000.	11.81	153.00			0.5232E+01	00.6666-
127000.	15.19	169.00	8	0.3647E+01		00.6666-
128000.	16.86	182.00	-17.48	O. 3504E+01	0.4774E+01	00.6666-
129000.	13.52	201.00	- 16.38	O.3366E+O1	0.4567E+01	-9999 . 00.
130000.	.81	234.00	- 15.60	O 3234E+01	0.4374E+01	-9999.00
131000	13.52	269.00	- 14 . 87	0.3108E+01	0.4192E+01	00.6666-
132000.	15. 19	299.00	-14.16	0.2987E+01	0.4018E+01	-9999.00
133000.	16.86	321.00	-13.43	O. 2871E+O1		00.6666-
134000.	16.86	333.00	0.1	0.2760E+01	0.3692E+01	00.8888-
135000.	16.86	339.00	-12.34	0.2654E+01		00.8889-
136000.	18.57	349.00	-12.72	0.2551E401	0.3412E+01	00.8888-
137000.	23.62	338.00		0.2453E+01	0.32836+01	00.6666-
. 30000	23.05	000	12.24	0.2330E+01	0.31486401	00.6666
140000	38.81	00.4	י נ	O 2180F+01	0.38185101	00 6666-
14 1000	43.86	17.00	•	O 2097F+01		00.6666-
142000.	47.24	00.61		0.2017E+01		00.6666-
143000.	50.62	21.00	S	0.1940E+01		00.6666-
144000.	59.06	29.00	7	+		00.6666-
145000.	47.24	28.00		_		-9999.00
146000.	43.86	23.00	6.	1728E+		00.6666-
147000.	59.06	58.00	ъ.	_		00.6666-
148000.	70.87	90.00	-5.85	0 1600E+01	. 2085E+	00.6666-
149000.	77.62	110.00	7	-		-9999.00
150000.	67.52	112.00	ω.	-	Ţ. '	00.8888-
151000.		104.00	ω ι Ο ι	1426E+	0.1874E+01	00.6888-
152000.	75.95		. 5	Ξ.	- :	00.8888-
153000	•		7.02	0.1320E+01	0.1/28E+01	00.8889-
154000	D	106 . 00	C.	Ξ.		00.000

able 5. STS-39 ascent atmospheric data tape (continued).

	Table	o.	N1S-39 ascent atmospheric data tape (continued)	tape (continued).		
ALTITUDE	WIND SPEED	WIND DIRECTION	TEMPERATURE	PRESSURE	DENSITY	DEW POINT
(FT)	(FI/SEC)	(DEG)	(DEG C)	(MILLIBARS)	(GRAM/M3)	ш
155000.	9	96.00	-6.11	O. 1222E+O1	1594	
156000.	50.62	96.00	ıc	O. 1176E+O1	. 15	-9999.00
157000.	_	97.00	-5.13	O.1132E+01	Τ.	-9999 .00
158000.	- 2	93.00	-4.74	O. 1090E+01	0.1415E+01	00.6666-
159000.	4	73.00			_	00.6666-
160000.	7	72.00	o,		Τ.	
16 1000.	J.	92.00	3.56	0.9723E+00	O.1256E+01	-9999.00
162000.		107 : 00	Τ.	0.9361E+00	Τ,	00.6666-
163000.		00.66	7			00.6666-
164000.	50.62	88.00		O.8679E+00		-9999.00
165000.		88.00	က.	O.8356E+00	O. 1079E+01	00.6666-
166000.	თ	78.00		0.8045E+00		00.6666-
167000	94.52	73.00	ď	0.7744E+00		00.6666-
168000.		77.00	-6.22	0.7454E+00	0.9728E+00	00.6666-
169000.	96.19	87.00	-7.19	0.7173E+00	O.9396E+00	00.6666-
170000		101.00	-8.07	0.6902E+00	O. 9071E+00	-9999.00
17 1000.	86.06	113.00		O.6640E+00	٠.	00.6666-
172000.	77.62	119.00	-9.57	O.6388E+00	0.8443E+00	00 6666-
173000.		119.00		0.6145E+00	O.8117E+00	00.6666-
174000.		114.00	-9.32			-9999.00
175000.	0	00.66	-9.21	O.5687E+00		00.6666-
176000.		68.00	-9.17	O. 5471E+00		-9999.00
177000.	Ŋ.	50.00	-9,10			-9999.00
178000.	5. 8	51.00	86.8-	0.5064E+00		00.6666-
179000.	4	00.99	-9.13	0.4871E+00		00.6666-
180000.	•	83.00				00.6666-
18 1000	O.I	90.06	96.6-	0.4508E+00		
182000.	55.71	83.00		0.4337E+00		00 . 6666-
183000	រ ខា	80.00	- 10.77	0.4171E+00		
184000.		85.00	1.24	0.4012E+00		
185000.	35.43	91.00	9.1	0.3858E+00		-9999 .00
186000.	•	88.00 3.00	-11.97	0.37 f0E +00		
187000		92.00		0.3568E+00	•	
188000	23.62	23.00	7.	0.3431E+00	0.4592E+00	-9999.00
183000	38.81	33.00	1 G . Z G	0.3299E+00	0.4423E+00	00.6889-
19,000		77.00		0.31/ze+00	0.4260E±00	
192000	- σ	00:02	14.50	0.30436100	0.41036400	00.8888-
193000	. प	00 08		0.28186+00		00.6666-
194000		00 86				
195000.	92.81	114.00	-16.34			
196000	91.14	128.00	-17.08			00.6666-
197000.	91.14	136.00	-17.98			00.6666-
198000.	91.14	139.00	- 18.70		O.3163E+00	00.6666-
199000	. .	143.00	-19.41		0.3047E+00	-9999.00
200000.	75	145.00	- 19.99			00.6666-
201000.	T :	150.00	~		٠	00.6666-
202000.	9.6	159.00	9	_	•	00.6666-
	4.6	ଓ ଏ	d,	0. 1888E+00	ci.	00.6666-
204000.	84.38	174.00	-24.67	0.1812E+00	0.2540E+00	-9999,00

Table 5. STS-39 ascent atmospheric data tape (continued).

DEW POINT					•	•	•	٠	•	٠	•		•	•	•	•	•	•	•	•	•		•		*	•		•	•			•				٠	00.6666-	•	•	-	•	•		•		00.6666-	•		00.6666-	00.6666-
DENSITY (GDAM/M3)	0.2450E+00				7	C.	Ξ,	7.	_	Ψ.		0.1583E+00			┺.	•		. •				.9151E	. 7987E	.6973E	O. 6090E-01	. 5337E	O.4668E-01	.4083E	.3566E	.3105E	. 2689E	. 2351E	. 2043E		0.1521E-01	1312E	. 1131E	.9748E	.84 TSE	.7258E	0.6263E-02	. 540 1E	.4654E	0.4008E-02	.34 15E	O.2892E-02	.2457E-0	. 2095E-0	0.1775E-02	. 1504E-0
PRESSURE (MILIRADS)	0.1739F+00	Ξ.	+	₹.	٠.	Τ.	-	Τ.	₹.	۲,	O.1142E+00	O. 1095E+00	O. 1050E+00	. 1006E		0.9250E-01		•	0.8140E-01	O.7790E-01	0.7028E-01	0.6023E-01	0.5161E-01		O.3790E01	0.3290E-01			:•	O. 1850E-01	. 1590E	. 1380E				.7530E		. 5540E	. 4 /60E	.4080E	.3500E			O.2200E-02	O. 1870E-02	0.1580E-02	. 1340E	O.1140E-02	0.9640E-03	.8180E
TEMPERATURE	•	7.6	0	-30.05	0	-	•	-32.04	-31.65	-32.22	-32.20	-32.22	-32.61	2	-32.09	-32.47	-34.27	-35.24	-35.99	-36.94	39.71	-43.87	-48.03	Ξ.	-56.35	-58.41	-60.46	•	-64.07	-65.60	Ξ.		•		2.2	3	3		76.1	7.3	4	9	-80.79	-81.95	-82.41	-82.80	6	ĸ,	-83.97	9.6
WIND DIRECTION	183 00	183.00	180.00	173.00	162.00			50.00	37.00	35.00	38.00	44.00	55.00	74.00	98.00	120.00	134.00	139.00	142.00	143.00	143.50	144.79	148.14	174.31	308.16	331.06	355.17	12.15	21.80	29.56	35.68	40.66	44.60	60.90	83.60	104.80	10	131.14	132.54	õ	œ	94.17	79.67	66.93	75.30	107.22	4	232.43	243.66	48.1
WIND SPEED	79.33	70.87	90 76	50.62	37.14	23.62	27.00	47.24	64.14	70.87	74.25	72.57	65.81	57.38	54.00	60.76	67.52	70.87	69.19	62.43	51.82	35.92	20.06	4.75	12.27	10.98	11.69	13.56	15.02	16.82	18.90	21.15	23.50	20.91	20.01	22.23	26.78	32.76	35.18	31,33	28.80	27.99	29.08	31.81	21.98	10.30	12.76	2.1	58.72	
ALTITUDE	205000	206000.	207000.	208000.	209000.	210000.	211000.	212000.	213000.	214000.	215000.	216000	217000.	218000.	219000.	220000.	221000.	222000.	223000.	224000.	226000.	229000.	232000.	235000.	238000.	24 1000.	244000.	247000.	250000.	253000.	256000.	259000.	262000.	265000.	268000.	27 1000.	274000.	277000.	280000	283000.	286000.	289000.	292000.	295000.	298000.	301000.	304000.	307000.	310000.	313000.

	Ta	Table 5. STS-39 ascent	STS-39 ascent atmospheric data tape (continued).	tape (continued).		
.TITUDE	WIND SPEED	WIND DIRECTION	TEMPERATURE	PRESSURE	DENSITY	DEW POINT
(FT)	_	(DEG)	(DEG C)	(MILLIBARS)	(GRAM/M3)	(DEG C)
316000.	79.53	247.77	-82.42	O. 6950E-03	O. 1269E-02	
319000.	78.39	247.22	-81.19	0.5900E-03		-9999.00
322000.		246.37	-79.95	0.5010E-03	0.9034E-03	-9999.00
325000.		244.94	-78.72	O. 4250E-03	0.7615E-03	00.6666-
328000.	50.39	242.00	-77.49	O.3610E-03	0.6428E-03	
331000.		243.51	-73.41	O. 3090E - 03	O. 5389E-03	-9999,00
33.4000.	58.88	245.33	-69.26	0.2650E-03	0.4528E-03	-9999.00
337000.	63.33	247.55	-65.10	O. 2270E-03	0.3801E-03	-9999.00
340000		250.29	-60.94	O. 1940E-03	0.3185E-03	00.866-
343000.	70.93	253.80	-56.78	O. 1660E-03	0.2673E-03	- 9999.00
346000	73.37	257.00	-51.00	O. 1450E 03	0.2274E-03	-9999.00
349000.	75.10	256.74	-43.63	O. 1270E-03	O. 1928E-03	00 6666-
352000.	75.15	256.36	-36.25	O.1120E-03	0.1647E-03	-9999.00
355000.	72.91	255.86	-28.88	0.9840E-04	0.1403E-03	00.6666-
358000.		255.05	-21.50	O.8640E-04	O. 1196E-03	-9999.00
36 1000 .		259.40	- 14.03	O. 7590E -04	O. 1020E-03	-9999.00
364000.		257.36	-4.16	O.6870E-04	0.8897E-04	-9999.00
167000.		254.64	5.71	O 6220E-04	0.7770E-04	
370000.	52.99	250.77	15.58	O. 56 10E - 04	0.6769E-04	-9999 .00
173000.		244.87	25.46	O. 5060E-04	0.5903E-04	-9999.00
376000	42.69	235.24	35.33	O. 4560E -04	0.5150E-04	-9999.00
.000678		245.62	45.84	O.4150E-04	0.4532E-04	-9999.00
382000	30.77	241.47	57.12	O.3810E-04	0.4019E-04	-9999.00
185000	29.85	236.89	68.73	0.3510E-04	0.3577E-04	- 9999.00
88000	29.18	231.80	80.64	O.3240E-04	0.3190E-04	-9999.00
19 1000 .	28.78	226.39	92.82	O.3000E-04	O.2856E-04	-9999.00
9.1000	28.64	220.59	105.26	O.2780E-04	0.2559E-04	-9999,00
.000768	28.87		117.91	O.2590E-04	O. 2307E-04	-9999.00
.000001	29.41	208.60	130.73	O. 2420E -04	0.2087E-04	00 6666-

Surface synoptic map at 1200 u.t. April 28, 1991—isobaric, frontal, and precipitation patterns are shown in standard symbolic form.

Figure 1. Surface synoptic chart 27 min after the launch of STS-39.

500-mb height Contours at 1200 u.t. April 28, 1991

Continuous lines indicate height contours at feet above sea level. Dashed lines are isotherms in degrees centigrade. Arrows show wind direction and speed at the 500-mb level.

Figure 2. 500-mb map 27 min after the launch of STS-39.

Figure 3. GOES-7 visible imagery of cloud cover 2 min before the launch of STS-39 (1131 u.t., April 28, 1991). 500-mb heights (meters) and wind barbs are also included for 1200 u.t.

Figure 4. Enlarged view of GOES-7 visible imagery of cloud cover taken 2 min before the launch of STS-39 (1131 u.t., April 28, 1991). Surface temperatures, isobaric parameters, and wind barbs for 1100 u.t. are also included.

Figure 5. Scalar wind speed and direction at launch time of STS-39.

Figure 6. STS-39 prelaunch/launch Jimsphere-measured wind speeds (ft/s).

Figure 7. STS-39 prelaunch/launch Jimsphere-measured wind directions (degrees).

32

Figure 8. STS-39 prelaunch/launch Jimsphere-measured in-plane component winds (ft/s). Flight azimuth = 39°

Figure 9. STS-39 prelaunch/launch Jimsphere-measured out-of-plane component winds (ft/s). Flight azimuth = 39°.

Figure 10. STS-39 temperature profiles versus altitude for launch (ascent).

REFERENCES

- 1. Saturn Flight Evaluation Working Group: "Saturn Launch Vehicle Flight Evaluation Report—Appendix A—Atmosphere," (a separate report is prepared for each Saturn vehicle launch operation). George C. Marshall Space Flight Center, Alabama.
- 2. Johnson, D.L.: "Summary of Atmospheric Data Observations for 155 Flights of MSFC/ABMA Related Aerospace Vehicles." NASA TM X-64796, December 5, 1973.
- 3. Johnson, D.L.: "Atmospheric Environment for ASTP (SA-210) Launch." NASA TM X-64990, February 1976.
- 4. Johnson, D.L., Jasper, G., and Brown, S.C.: "Atmospheric Environment for Space Shuttle (STS-1) Launch." NASA TM 82436, July 1981.
- 5. Johnson, D.L., and Brown, S.C.: "Atmospheric Environment for Space Shuttle (STS-2) Launch." NASA TM 82463, December 1981.
- 6. Johnson, D.L., Brown, S.C., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-3) Launch." NASA TM 82480, April 1982.
- 7. Johnson, D.L., Hill, C.K., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-4) Launch." NASA TM 82498, July 1982.
- 8. Johnson, D.L., Hill, C.K., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-5) Launch." NASA TM 82515, March 1983.
- 9. Johnson, D.L., Hill, C.K., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-6) Launch." NASA TM 82529, May 1983.
- 10. Johnson, D.L., Hill, C.K., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-7) Launch." NASA TM 82542, July 1983.
- 11. Johnson, D.L., Hill, C.K., Turner, R.E., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-8) Launch." NASA TM 82560, October 1983.
- 12. Johnson, D.L., Hill, C.K., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-9) Launch." NASA TM 82572, January 1984.
- 13. Johnson, D.L., Hill, C.K., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-11) Launch." NASA TM 82580, March 1984.
- 14. Johnson, D.L., Hill, C.K., Jasper, G., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-13) Launch." NASA TM 82588, May 1984.
- 15. Johnson, D.L., Hill, C.K., Jasper, G., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-41D) Launch." NASA TM 86484, October 1984.

- 16. Johnson, D.L., Hill, C.K., Jasper, G., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-41G) Launch." NASA TM 86486, November 1984.
- 17. Johnson, D.L., Jasper, G., Hill, C.K., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-51A) Launch." NASA TM 84697, December 1984.
- 18. Jasper, G.L., Johnson, D.L., Hill, C.K., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-51C) Launch." NASA TM 86508, April 1985.
- 19. Jasper, G.L., Johnson, D.L., Hill, C.K., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-51D) Launch." NASA TM 86524, June 1985.
- 20. Jasper, G.L., Johnson, D.L., Hill, C.K., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-51B) Launch." NASA TM 86525, July 1985.
- 21. Jasper, G.L., Johnson, D.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-51L) Launch." NASA TM 86577, December 1986.
- 22. Jasper, G.L., Johnson, D.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-26) Launch." NASA TM 100359, March 1989.
- 23. Jasper, G.L., Johnson, D.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-27) Launch." NASA TM 100370, May 1989.
- 24. Jasper, G.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-29) Launch." NASA TM 100376, July 1989.
- 25. Jasper, G.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-30) Launch." NASA TM 100381, July 1989.
- 26. Jasper, G.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-28) Launch." NASA TM 100386, July 1990.
- 27. Jasper, G.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-34) Launch." NASA TM 100396, December 1989.
- 28. Jasper, G.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-33) Launch." NASA TM 100399, March 1990.
- 29. Jasper, G.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-32) Launch." NASA TM 100400, March 1990.
- 30. Jasper, G.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-36) Launch." NASA TM-100403, May 1990.
- 31. Jasper, G.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-31) Launch." NASA TM 103508, June 1990.
- 32. Jasper, G.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-41) Launch." NASA TM 103525, November 1990.

- 33. Jasper, G.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-38) Launch." NASA TM 103530, February 1991.
- 34. Jasper, G.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-35) Launch." NASA TM 103538, June 1991.
- 35. Jasper, G.L., and Batts, G.W.: "Atmospheric Environment for Space Shuttle (STS-37) Launch." NASA TM 103556, August 1991.
- 36. Justus, C.G., et al.: "The NASA/MSFC Global Reference Atmospheric Model—1990 Version (GRAM-90)." NASA TM 4268 Part I, April 1991.

APPROVAL

ATMOSPHERIC ENVIRONMENT FOR SPACE SHUTTLE ATLANTIS (STS-39) LAUNCH

By G.L. Jasper and G.W. Batts

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

E. TANDBERG-HANSSEN

Director, Space Science Laboratory

E. Tandlin - Hanson