第九章、工具:期望

9.1微积分储备知识

泰勒级数: 如果 f 是 n 次可微分的 (其中 $f^{(k)}(x)$ 表示 f 在 x 处的 k 阶导数), 那么 f 在 a 点处的 n 阶泰勒级数就是

$$T_n(x) := f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x - a)^k.$$

我们把 $f^{(k)}(a)/k!$ 称为 f 关于 a 的第 k 个 泰勒系数. 在很多应用中, 我们希望得到原点处的泰勒级数, 所以 a=0 (在一些教材中, 这被称作麦克劳林级数). 泰勒级数给出了函数及其导数在一点处的性质, 由此可以估算出该函数在其他点处的值.

类似的是, 掌握大量相关信息后, 可以很好 地得到近似

9.2 期望值和矩

期望值, 矩: 设 X 是定义在 \mathbb{R} 上的随机变量, 它的概率密度函数是 f_X . 函数 g(X) 的期望值是

$$\mathbb{E}[g(X)] = \begin{cases} \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx & \text{若 } X \text{ 是连续的} \\ \sum_{n} g(x_n) \cdot f_X(x_n) & \text{若 } X \text{ 是离散的.} \end{cases}$$

最重要的情形是 $g(x) = x^r$. 我们把 $\mathbb{E}[X^r]$ 称为 X 的 r 阶矩, 把 $\mathbb{E}[(X - \mathbb{E}[X])^r]$ 称为 X 的 r 阶中心矩.

期望(一阶矩)

方差(二阶中心矩)

9.3均值和方差

均值和方差:设X是一个连续型或离散型的随机变量,它的概率密度函数是 f_X .

(1) X 的均值 (即平均值或期望值) 是一阶矩. 我们把它表示为 $\mathbb{E}[X]$ 或 μ_X (当随机变量很明确时, 通常不给出下标 X, 而只写 μ). 具体地说,

$$\mu = \begin{cases} \int_{-\infty}^{\infty} x \cdot f_X(x) dx & \text{若 } X \text{ 是连续的} \\ \sum_{n} x_n \cdot f_X(x_n) & \text{若 } X \text{ 是离散的.} \end{cases}$$

(2) X 的**方差** (记作 σ_X^2 或 Var(X)) 是二阶中心距, 也可以说是 $g(X) = (X - \mu_X)^2$ 的期望值. 同样, 当随机变量很明确时, 通常不给出下标 X, 而只写 σ^2 . 把它完整地写出来, 就是

$$\sigma_X^2 = \begin{cases} \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx & \text{若 } X \text{ 是连续的} \\ \sum_{n=0}^{\infty} (x - \mu_X)^2 f_X(x_n) & \text{若 } X \text{ 是离散的.} \end{cases}$$

因为 $\mu_X = \mathbb{E}[X]$, 所以在一系列代数运算后 (参见引理 9.5.3), 我们有

$$\sigma^2 = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

这个式子把方差和 X 的前二阶矩联系起来, 在很多计算中都非常有用. **标准差**是方差的平方根, 即 $\sigma_X = \sqrt{\sigma_X^2}$.

(3) **技术说明**: 为了保证均值存在, 我们希望 $\int_{-\infty}^{\infty} |x| f_X(x) dx$ (在连续的情形下) 或 $\sum_n |x_n| f_X(x_n)$ (在离散的情形下) 是有限的.

方差与标准差:与方差相比,标准差的优势在于它和均值有相同的单位.因此,标准差是衡量结果在均值附近波动幅度的自然尺度.

在均值相同的情况下,可以用方差来区分户对于.

关于技术说明·①均值有限才有意义· ②关于"1×1"

① 反例: X+(x) = Sinx X.

9.4 联后分布

联合概率密度函数: 设 X_1, X_2, \dots, X_n 都是连续型随机变量,它们的概率密度函数分别是 $f_{X_1}, f_{X_2}, \dots, f_{X_n}$. 假设每个 X_i 都定义在 \mathbb{R} (实数集) 的一个子集上. 那么, (X_1, \dots, X_n) 的联合概率密度函数就是一个非负的可积函数 f_{X_1, \dots, X_n} , 满足: 对于每一个恰当的集合 $S \subset \mathbb{R}$, 均有

$$Prob((X_1, \dots, X_n) \in S) = \int \dots \int_S f_{X_1, \dots, X_n}(x_1, \dots, x_n) dx_1 \dots dx_n,$$

并且

$$f_{X_i}(x_i) = \int_{x_1 = -\infty}^{\infty} \cdots \int_{x_{i-1} = -\infty}^{\infty} \int_{x_{i+1} = -\infty}^{\infty} \cdots \int_{x_n = -\infty}^{\infty}$$

没有 x_i $f_{X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) \prod_{\substack{j=1 \ j \neq i}}^n \mathrm{d}x_j.$

我们把 f_{X_i} 称为 X_i 的**边缘概率密度函数**, 可以通过对其他 n-1 个变量求积分来得到.

这 n 个随机变量 X_1, \dots, X_n 相互独立, 当且仅当

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n) = f_{X_1}(x_1)\dots f_{X_n}(x_n).$$

对于离散型随机变量,只需要把积分替换成求和即可.

这是一个极其一般的情况,一般不考虑。

联后概率密度函数是体现变量同相互体赖 关系的方法之一 结定了n元组的概率

表 9-2 (X,Y) 的联合概率密度函数. X 表示独立地抛掷 5 枚均匀硬币,前 3 次掷出正面的次数; Y 表示后 2 次掷出正面的次数

	Prob(Y=0)	Prob(Y=1)	Prob(Y=2)	
Prob(X=0)	1/32	2/32	1/32	1/8
Prob(X=1)	3/32	6/32	3/32	3/8
Prob(X=2)	3/32	6/32	3/32	3/8
Prob(X=3)	1/32	2/32	1/32	1/8
	1/4	2/4	1/4	

不独立:

$$f_{U,V}(0,2) = 0 \neq \frac{1}{8} \cdot \frac{2}{4} = f_U(0)f_V(2).$$

表 9-3 (U,V) 的联合概率密度函数, 其中 U 表示独立地抛掷 5 枚均匀硬币时前 3 次 掷出正面的次数, V 表示后 2 次掷出正面的次数

	Prob(V=0)	Prob(V=1)	Prob(V=2)	
Prob(U=0)	1/16	1/16	0/16	1/8
Prob(U=1)	2/16	3/16	2/16	3/8
Prob(U=2)	1/16	3/16	2/16	3/8
Prob(U=3)	0/16	1/16	1/16	1/8
	1/4	2/4	1/4	

一个连续型联合概率密度函数。

X的边缘概率密度函数:

$$t_{X}(x) = \int_{y=-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy$$
.

$$\frac{2}{\sqrt{1-x^2}}$$

9.5 期望的线性摄

定理 9.5.1 (期望的线性性质) 设 X_1, \dots, X_n 是随机变量, 并设 g_1, \dots, g_n 是 满足下列条件的函数: $\mathbb{E}[|g_i(X_i)|]$ 存在且有限. 令 a_1, \dots, a_n 表示任意实数. 那 么

$$\mathbb{E}[a_1g_1(X_1) + \cdots + a_ng_n(X_n)] = a_1\mathbb{E}[g_1(X_1)] + \cdots + a_n\mathbb{E}[g_n(X_n)].$$
 注意,随机变量不一定是相互独立的. 另外,如果 $g_i(X_i) = c$ (这里的 c 是固定常数),那么 $\mathbb{E}[g_i(X_i)] = c$.

加斯坦等于期望的亦"

1期得打证明了.

引理 9.5.2 设 X 是一个随机变量, 它的均值为 μ_X , 方差为 σ_X^2 . 如果 a 和 b 是任意两个固定常数, 那么随机变量 Y = aX + b 有下列结果

$$\mu_Y = a\mu_X + b$$
 \mathcal{F} $\sigma_Y^2 = a^2 \sigma_Y^2$.

$$\sigma_Y^2 = \mathbb{E}[(Y - \mu_Y)^2]$$

$$= \mathbb{E}\left[((aX + b) - (a\mu_X + b))^2\right]$$

$$= \mathbb{E}\left[(aX - a\mu_X)^2\right]$$

$$= \mathbb{E}[a^2(X - \mu_X)^2] = a^2\mathbb{E}[(X - \mu_X)^2] = a^2\sigma_X^2.$$

引理 9.5.3 设 X 是一个随机变量,那么

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

$$Var(X) = \mathbb{E}[(X - \mu_X)^2]$$

$$= \mathbb{E}[X^2 - 2\mu_X X + \mu_X^2]$$

$$= \mathbb{E}[X^2] - \mathbb{E}[2\mu_X X] + \mathbb{E}[\mu_X^2]$$

$$= \mathbb{E}[X^2] - 2\mu_X \mathbb{E}[X] + \mu_X^2$$

$$= \mathbb{E}[X^2] - 2\mu_X \cdot \mu_X + \mu_X^2$$

$$= \mathbb{E}[X^2] - \mu_X^2 = \mathbb{E}[X^2] - \mathbb{E}[X]^2,$$

9.6均值和方差的准振

定理 9.6.1 如果 X 和 Y 是相互独立的随机变量, 那么

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$$

一种特别重要的情况是

$$\mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[X - \mu_X]\mathbb{E}[Y - \mu_Y] = 0.$$

定理 9.6.2 (随机变量之和的均值与方差) 设 X_1, \dots, X_n 是 n 个随机变量, 它 们的均值是 $\mu_{X_1}, \dots, \mu_{X_n}$, 方差是 $\sigma_{X_1}^2, \dots, \sigma_{X_n}^2$. 如果 $X = X_1 + \dots + X_n$, 那么

$$\mu_X = \mu_{X_1} + \dots + \mu_{X_n}.$$

如果随机变量是相互独立的, 那么还能得到

$$\sigma_X^2 = \sigma_{X_1}^2 + \dots + \sigma_{X_n}^2$$
 \Re $\operatorname{Var}(X) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n).$

如果这些随机变量是独立同分布的 (因此, 每个随机变量的均值都是 μ , 方差都是 σ^2), 那么

$$\mu_X = n\mu \quad \text{If} \quad \sigma_X^2 = n\sigma^2.$$

对于方差而言,需要保证事件之间的独立性

友例: X与-X.

$$Var(X-x) = 0$$

But. Var(X) + Var(-X) = 2 Var(X).

对于随机变量之和的方差计算的证明。重写代数表达式。

$$\sigma_X^2 = \mathbb{E}[(X - \mu_X)^2]$$

$$= \mathbb{E}\left[((X_1 + X_2) - (\mu_{X_1} + \mu_{X_2}))^2\right]$$

$$= \mathbb{E}\left[((X_1 - \mu_{X_1}) + (X_2 - \mu_{X_2}))^2\right]$$

$$= \mathbb{E}\left[(X_1 - \mu_{X_1})^2 + 2(X_1 - \mu_{X_1})(X_2 - \mu_{X_2}) + (X_2 - \mu_{X_2})^2\right].$$

利用期望的线性性质, 可以把和的期望改写成期望的和, 即

$$\sigma_X^2 = \mathbb{E}\left[(X_1 - \mu_{X_1})^2 \right] + \mathbb{E}\left[2(X_1 - \mu_{X_1})(X_2 - \mu_{X_2}) \right] + \mathbb{E}\left[(X_2 - \mu_{X_2})^2 \right]$$
$$= \sigma_{X_1}^2 + 2\mathbb{E}\left[(X_1 - \mu_{X_1})(X_2 - \mu_{X_2}) \right] + \sigma_{X_2}^2.$$

因为Xi与Xi独立。(Xi-uxi)与(Xi-uxi) 也独立。

所以,有
$$\sigma_{x}^{2} = \sigma_{x_{1}}^{2} + 2\bar{E}(x_{1} - \mu_{x_{1}}) \cdot \bar{E}(x_{2} - \mu_{x_{2}})$$

$$+ 6^{2}x_{2}$$

$$= 6^{2}x_{1} + 6^{2}x_{2}$$

一利用期望的线性指

9.7偏斜度与峰度 2 三阶中心距 四阶中心距

偏斜度衡量了概率分布的对称性、如:正态分布的偏斜度是 0. 完全对称。偏斜度 > 0. 则右侧尾巴北左侧更厚长 ~ 0. 则左侧尾巴更厚、长

避瘦衡量的是概率密度函数到达上峰值的方式.

J路段越小、到达崎值越平稳, 反之有一个尖的点和陆崎的落点。

9、8十办方差

协方差: 设 X 和 Y 是两个随机变量. X 和 Y 的协方差记作 σ_{XY} 或者 Cov(X,Y), 它的表达式为

$$\sigma_{XY} = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)].$$

注意, Cov(X,X) 等于 X 的方差. 另外, 如果 X_1, \dots, X_n 都是随机变量, 并且 $X = X_1 + \dots + X_n$, 那么

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) + 2 \sum_{1 \leqslant i < j \leqslant n} \operatorname{Cov}(X_i, X_j).$$

- DXI,Xi的协方差为D并不代表两变量相互独立。
- ②十办方差衡量了两个变量的线性相关程度.

相关系数二

$$\rho = \frac{Cov(X,Y)}{6x\cdot6Y}$$

是对协方差的标准化·P6[-1,1]绝对值越大越相关.

对于任意两变量X,Y有 $Cov(X,Y) = E(X,Y) - \mu_X\mu_Y$

证明 = $Cov(X,Y) = E[(X-M_X)(Y-M_Y,T)]$ = $E(XY-X-M_X-Y-M_Y+M_XM_Y)$

= E(XY) - Mx/47