Rectangular Prism

- Ease of Construction (5)
 - All the parts would be flat, right-angled parts
 - Could be assembled by hand (wouldn't have to be as precise)
 - Due to right angles fitting together easily
 - Simple to 3D print as parts or whole
 - The component layout is straight forward

- <u>Structural Stability (4)</u>

- Resistant to wobbling/twisting
- Beams are connected in sets of three (strong support)
- Potential for reinforcement if needed
 - Extra braces
- Electronics fit well within the shape
 - Secure mounting
- Size could affect mounting if the frame is too large for the components

- Component Fit (5)

- Electronics fit well inside the shape
- Flywheel fits tangent or just outside
 - Little wasted space
- Easy access for wiring and maintenance
- Angular shape naturally fits rectangular components

- Weight Distribution (4)

- Flywheel centred on one face, aligned or slightly outside edges
- Supported by 4 points on the frame
 - Promotes stability
- Component placement undecided
 - Heavy parts should be balanced opposite flywheel
- Design allows for adjustable component positioning during prototyping
- Likely to achieve balanced weight distribution with planning

- Aesthetics (3)

- Slightly spread out design might make wiring look less tidy
- Natural symmetry on all faces
 - Visually balanced
- Multiple sides might complicate presentation/orientation

Triangular Prism

- Ease of Construction (4)
 - Easy triangle faces in CAD and print
 - Slightly trickier beam connections
 - Could need angled ends, exact spacing, and can't be done by hand as easily
 - Easier to print as a whole body than by parts
 - Part-by-part adds would be more complex

- Structural Stability (3)

- Triangles provide great inherent strength

- The beams are rigid but the connecting beams don't follow the "rule of three"
 - Possibly will have weak points under high pressure
- Triangles resist the force of torque well, but the connecting beams might break under that stress
- The components might fit awkwardly since they're rectangular and triangular spaces
 - Would require proportionally larger triangles in comparison to the components

- Component Fit (3)

- Rectangular components don't naturally fit inside a triangle
- Triangle must be larger to accommodate rectangular electronics
 - Causes wasted space
- Maintenance access harder due to beams and angles
- Less flexibility to shrink the triangle around components

- Weight Distribution (3)

- Flywheel places at edge face of the triangle, supported by 3 points (middle of each triangle edge)
- Components clustered on the opposite end of the triangular prism for balance
- Triangular shape leads to less evenness in weight distribution along some exes
- Potential for +/- Y-axis heavy areas causing stability concerns
- Careful component placement needed to maintain overall balance and reduce instability

- Aesthetics (2)

- Naturally symmetric shape (equilateral triangle)
- Unmatched rectangular electronics mak look awkward inside
- Unusual shape makes presentation harder

Cylinder on Beams

- Ease of Construction (2)

- Cylindrical parts are easy to CAD/print
- Beams must curve and have complexer upper geometry to fit with flywheel holder
- Challenging to align beams evenly
- Needs part-by-part assembly to check if everything fits
- Needs precise measurements for structural/functional alignment

- Structural Stability (4)

- Cylinder shape naturally resists wobbling/twisting
- Multiple points of contact reinforce stability
- Beams assumed to be fairly strong if short and arranged well
- Electronic can fit inside well
- Vibration could cause some instability but manageable

- Component Fit (4)

- Circular shape fits rectangular components reasonably well if sizes align
- Flywheel fits perfectly
- Some wasted space possible, but less than triangular prism

- More beams improve strength of structure but reduces components access
 - Using the back of the cylinder as an access point could solve these issues

- Weight Distribution (4)

- Flywheel centered inside the cylinder
 - Good for balance
- Electronics tightly packed behind flywheel
 - Compact layout
- Short cylinder reduces torque effects
 - From longer lever arms
- Beams placed symmetrically & perpendicularly
 - Helps even load distribution
- Risk:
 - Improper placement of electronics could cause uneven weight

- Aesthetics (5)

- Circular shape and symmetric beams give a clean look
- Easy to present despite its unusual look
- Strong symmetry and layout is good