Exercises: Vector Derivative

Problem 1. Let f(x) = 3x + 5. Clearly, $\lim_{x\to 2} f(x) = 11$. Answer the following questions:

- Set $\delta = 1$. By definition of limit, we know that we can find an $\epsilon > 0$, such that for any x satisfying $|x 2| < \epsilon$, it holds that $|f(x) 11| < \delta$. Give such an ϵ .
- Repeat the above for $\delta = 0.001$.
- Repeat the above for $\delta = 0.000001$.

Problem 2. Solve the following limits:

- $\lim_{t\to 3} \mathbf{f}(t)$, where $\mathbf{f}(t) = [5t + 3, \frac{\sin(t-3)}{t-3}]$.
- $\lim_{t\to 0} \mathbf{f}(t)$, where $\mathbf{f}(t) = [5t^2 + 3t, t^2, \frac{e^t 1}{t}]$.
- $\lim_{t\to 0} f(t)$, where

$$f(t) = \begin{cases} [5t^2 + 3t, t^2, \frac{e^t - 1}{t}] & \text{if } t \neq 0 \\ [10, 10, 10] & \text{otherwise} \end{cases}$$

Problem 3. Discuss the continuity of f(t) at t = 0.

- $f(t) = [5t^2 + 3t, t^2, \frac{e^t 1}{t}].$
- $f(t) = [5t^2 + 3t, t^2, \frac{e^t 1}{t}]$ if $t \neq 0$; otherwise, f(t) = [10, 10, 10].
- $f(t) = [5t^2 + 3t, t^2, \frac{e^t 1}{t}]$ if $t \neq 0$; otherwise, f(t) = [0, 0, 1].

Problem 4. Suppose that $f(t) = [\sin(t), \cos(t^3), 5t^2]$. Answer the following questions:

- Give the function f'(t).
- Give the function f''(t) (which is the derivative of f'(t)).
- Give the function f'''(1) (where f'''(t) is the derivative of f''(t)).

Problem 5. Suppose that $\mathbf{f}(t) = [t^2, \sin(t), 2t]$ and $\mathbf{g}(t) = 2t\mathbf{i} + \frac{1}{\sin(t)}\mathbf{j} + 3t^2\mathbf{k}$.

- Give the function $h(t) = \mathbf{f}(t) \cdot \mathbf{g}(t)$.
- Give the function h'(t).
- Give the function f'(t) and g'(t).
- Verify that $h'(t) = f'(t) \cdot g(t) + g'(t) \cdot f(t)$.

Problem 6. Suppose that $f(t) = [t, t^2, 1]$ and $g(t) = [1, t, t^2]$.

- Give the function $h(t) = f(t) \times g(t)$.
- Give the function h'(t).