RESEARCH"

DELPHION

Search: Quick/Number Boolean Advanced Derwei

The Delphion Integrated View

My Account

Get Now: PDF | More choices... Tools: Add to Work File: Create new Wor View: INPADOC | Jump to: Top ☑ Emai

> Title: JP2000020362A2: DEVICE AND METHOD FOR MANAGING DATABA

JP Japan **[®]Country:**

> A2 Document Laid open to Public inspection i

MOCHIZUKI YASUTERU;

NEC CORP

News, Profiles, Stocks and More about this company

Published / Filed: **2000-01-21** / 1998-07-01

> Application JP1998000186337

Number: FIPC Code: G06F 12/00; G06F 17/30;

1998-07-01 JP1998000186337 Priority Number:

> PROBLEM TO BE SOLVED: To provide the device and method

for managing a database, which can effectively utilize the memory of an SCP regardlessly of the number of clients of service of an intelligent network(IN), and can deal with the IN/a lot of clients.

SOLUTION: A real-time database data storage part 5 stores a real-time database, a real-time database maintenance command group 2 is a class constituted by collecting commands for managing the real-time database, a real-time database library 3 is composed of a managing part for managing the real-time database data storage part 5, and a database interface 6 provides an interface capable of accessing the real-time database for an application. Therefore, the database can be accessed in real time for application.

COPYRIGHT: (C)2000,JPO

 Family: None

DERABS G2000-165251 DERABS G2000-165251 **Other Abstract**

Info:

Nominate

THOMSON

this for the Gallery...

Copyright © 1997-2004 The Thor

Subscriptions | Web Seminars | Privacy | Terms & Conditions | Site Map | Contact U

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-20362 (P2000-20362A)

(43)公開日 平成12年1月21日(2000.1.21)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)
G06F	12/00	514	G06F	12/00	514M	5B075
		513	•		513D	5B082
	17/30			15/40	310C	
					350A	

審査請求 有 請求項の数8 OL (全 10 頁)

(22)出顧日

平成10年7月1日(1998.7.1)

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 望月 保輝

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 100084250

弁理士 丸山 隆夫

Fターム(参考) 5B075 KK07 KK13 KK33 KK37 ND20

ND23 ND40 NK54 PP30 PQ00

QR03 QT06 UU40

5B082 EA07 FA12 GA08 HA02

(54) 【発明の名称】 データベース管理装置およびデータベース管理方法

(57)【要約】

【課題】 インテリジェントネットワーク (IN)のサービスの顧客の数に係わらずSCPのメモリを有効活用できる、インテリジェントネットワーク・大量顧客に対応するデータベース管理装置およびデータベース管理方法を提供する。

【解決手段】 リアルタイムデータベースデータ記憶部 5がリアルタイムデータベースを記憶し、リアルタイム データベースメインテナンスコマンド群 2 はリアルタイムデータベースを管理するコマンドが集まり構成したクラスであり、リアルタイムデータベースデータ記憶部 5 を管理する管理部からリアルタイムデータベースライブラリ3が構成され、データベースインタフェース 6 はアプリケーションに対しリアルタイムデータベースにアクセス可能なインタフェースを提供する。従って、アプリケーションに対しリアルタイムでデータベースにアクセスが可能となる。

【特許請求の範囲】

【請求項1】 リアルタイムデータベースを記憶するリ アルタイムデータベースデータ記憶部と、

前記リアルタイムデータベースデータ記憶部に記憶されている前記リアルタイムデータベースを管理するコマンドが集まったクラスであるリアルタイムデータベースメインテナンスコマンド群と、

前記リアルタイムデータベースデータ記憶部を管理する 管理部により構成されるリアルタイムデータベースライ ブラリと、

アプリケーションに対して前記リアルタイムデータベースにアクセス可能なインタフェースを提供するデータベースインタフェースとを有することを特徴とするデータベース管理装置。

【請求項2】 前記データベース管理装置は、前記データベースインタフェースを介して前記リアルタイムデータベースデータ記憶部にアクセスするインテリジェントネットワークの各種プロセス群を有することを特徴とする請求項1記載のデータベース管理装置。

【請求項3】 前記データベース管理装置は、前記リア 20 ルタイムデータベースにアクセスするためのインタラクティブなインタフェースを提供するインタラクティブS QLを有することを特徴とする請求項1または2記載のデータベース管理装置。

【請求項4】 前記データベース管理装置は、前記アクセスをSQL文にて可能としたことを特徴とする請求項3記載のデータベース管理装置。

【請求項5】 リアルタイムデータベースデータ記憶部 にリアルタイムデータベースを記憶する工程と、

前記リアルタイムデータベースデータ記憶部に記憶され 30 た前記リアルタイムデータベースを管理するコマンドを リアルタイムデータベースメインテナンスコマンド群と して集める工程と、

前記リアルタイムデータベースデータ記憶部をリアルタ イムデータベースライブラリとして管理する工程とを有 し

アプリケーションに対して前記リアルタイムデータベースへアクセスを可能としたことを特徴とするデータベース管理方法。

【請求項6】 前記データベース管理方法は、前記データベースインタフェースを介して前記リアルタイムデータベースデータ記憶部にアクセスするインテリジェントネットワークの各種プロセス群を有することを特徴とする請求項5記載のデータベース管理方法。

【請求項7】 前記データベース管理方法は、前記リアルタイムデータベースにインタラクティブSQLによりインタラクティブなインタフェースを提供してアクセス可能とすることを特徴とする請求項5または6記載のデータベース管理方法。

【請求項8】 前記データベース管理方法は、前記アク 50 ーマンスが足りない場合には、SCPノードを追加して

セスをSQL文にて可能としたことを特徴とする請求項 7記載のデータベース管理方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、インテリジェントネットワーク・大量顧客に対応するデータベース管理装置およびデータベース管理方法に関する。

[0002]

【従来の技術】従来のデータベース管理装置およびデー 10 タベース管理方法は、例えば、図4に示すようなAIN (改良型インテリジェントネットワーク) システムにお いて用いられる。図4のAINシステムは、単一のSM S(サービス管理システム)ノード51と、複数のSC P(サービス制御ポイント)ノード52~54とから構 成される。SMSノード51では、全てのSCPノード 52~54上のデータベース内容を一致させる処理を行 ない、全てのノードでデータベース内容に矛盾が生じる ことのないシステムを維持する。この機能のために、全 てのノードで持つディスク装置上のデータベースの内容 は同一である。全てのノード上のデータベース内容を一 致させておくことにより、あるSCPノードが障害を起 こした場合、障害を起こしたSCPノードを迅速に切り 離し、他の障害を持たないSCPノードにてサービス運 用を継続することが可能である。SCPは、SMSから の指示に従いデータベースを更新する機能と呼処理する 機能とを備える。

【0003】AINシステムにおける全ての呼処理は、 信号中継点となるSTP-A55、STP-B56から の問い合わせに応じてサービス種別を特定し、SCPに てデータベースを参照しながら処理され、その出力結果 である着信番号がSTPに返される動作を行なう。この ためSCPには、ハイパフォーマンスが要求される。S CPにおけるデータベースは、ディスク装置に載せるよ りも常時メモリ装置に載せて運用することが好ましい。 【0004】しかし、メモリ装置は、ディスク装置に比 べて髙価格で低容量である。従って通常、全てのAIN の呼処理サービスの顧客データを含むディスク装置上に 記憶されている大規模データベースは、メモリ装置上に 載せきれない。そのため、ディスク装置上のデータベー スを部分的にメモリ装置上に載せて運用する方式が一般 的である。このような仕組みにおいては、使用可能なメ モリ容量の範囲内でのハイパフォーマンスが要求される サービスはメモリ装置上に載せ、そうでないものはディ スク装置上で運用される。このような利用が可能なデー タベースをリアルタイムデータベースと呼ぶ。

【0005】リアルタイムデータベースをメモリ装置へ上げる作業は、通常システムを立ち上げる時に行ない、システムがダウンするまで継続してメモリ装置上に載せておく。従来、1台のSCPノードにて呼処理のパフォーマンスが足りない場合には、SCPノードを追加して

システムを構築し、以下のように運用することで問題を 回避している。

【0006】AINの呼処理サービスが参照するテーブルを単位として、メモリ装置に載せることが可能な機能が存在している。そして、STPは、対象呼処理サービスが参照するテーブルがメモリ装置上に展開されているSCPへ向けて、問い合わせを行なう機能を持っている

【0007】例えば、SCP1はFree Phone Serviceを扱い、SCP2はPremium Charge ServiceとTelevoting 10を扱うようにする。すると、SCP1においてはFree PhoneServiceが参照するテーブルのみをメモリ装置に上げ、SCP2においてはPremium Charge ServiceとTele votingが参照するテーブルのみをメモリ装置に上げることができる。そして、全てのSTPにおいて、Free Phone Serviceを利用する呼処理は、SCP1に問い合わせ、Premium Charge ServiceとTelevotingは、SCP2に問い合わせるシステムを構築可能である。

【0008】上記従来の方式では、AINシステムのサービスを実現するために複数のテーブルを準備し、それ 20 ぞれのテーブルに関して加入者のデータをレコードとして持たせている。

【0009】AINシステムの主目的は、AINサービス番号を受けたSTPからの問い合わせに答えるために、データベースを参照して着番号を求め、それを要求してきたSTPへ返すことである。INのサービスは、サービス種別により関連する単体、もしくは複数のテーブル上の必要なレコードに記述されているルーティング情報を参照して運用される。

【0010】AIN呼処理には、以上のようにハイバフォーマンスが要求される。データベースシステムへのアクセス時間は、呼処理のパフォーマンスにおいて重要な位置を占める。通常データベースはディスク装置上に存在しており、レコード呼び出しにおけるパフォーマンスは実運用上の呼処理に耐え得ない。そこで、AINシステムでは、呼処理におけるパフォーマンス向上のため、メモリ装置上にデータベースを構築して利用している。これは、AIN呼処理において、通常データベースの更新を行なわず参照を頻繁に行なう特性の上で有効となるからである。

【0011】AINシステムにおけるSCPデータベースは、ディスク装置とメモリ装置を利用する。全レコードをディスク装置上に保存しておき、ハイパフォーマンスが求められるテーブルをディスク装置上の写しとしてメモリ装置に載せる。ディスク装置上に登録できるレコード件数には特に制限を持たせていないため、ディスク装置上に配置できる限りレコードを登録できる。

【0012】しかし、メモリ装置は、ディスク装置と比較して容量が小さいため、ディスク装置上に存在する全てのレコードをメモリ装置上に載せることはできない。

従って、テーブル毎にメモリ装置に載せることが可能なように設計されている。このようなデータベースをリアルタイムデータベースと呼ぶ。

[0013]

【発明が解決しようとする課題】しかしながら、上記従来例においては、加入者数が増大すると関連するテーブルに登録されるレコード数が増加し、一部のAINサービスの加入者数が増大するために、使用するレコードによりメモリ装置の容量を越えて対象テーブルが増大すると、テーブルを部分的にメモリ装置上に載せる手段がなくなる。このため、当該テーブルは、ディスク装置上でのリアルタイムデータベース運用にならざるを得ず、ハイパフォーマンスな呼処理が実現できないという問題が生じる。

【0014】また、AINデータベースは、顧客数に応じて大きくなる。メモリ装置上に全ての顧客データを載せられるならば問題はないが、メモリ装置の制限を越えて顧客数が増大すると、どのテーブルをメモリ装置上に載せて、どのテーブルをディスク装置上に留めておくかという問題が生じる。

【0015】また、メモリ装置は有限な資源である上、現状では大きなメモリ装置を搭載する不停止型コンピュータは高価なものとなる。コンピュータにおけるメモリ装置のコストは過去と比べて落ちてきてはいるが、数ギガ単位ではコスト高にならざるを得ないという問題が生じる。

【0016】とのようなシステムにおいては、呼処理バフォーマンスを劣化させることなしに増大した顧客数を受け入れるためには、複数のSCPノードを使用して、それぞれのSCPノードにおいて扱うAINサービスを分担させるしかない。ここで、最小限のSCPノードを利用して最大限の顧客を扱いたいという要求が出てくる。

【0017】近年、AINサービス加入者が増大するに従い、一部のサービスにおいてそのサービスを運用するのに必要な全てのレコードをメモリ装置上に載せることができなくなる見込みが生じている。従来のリアルタイムデータベースにおいて、大量順客を持つサービスのテーブルは、メモリ装置の制限によりメモリ装置に上げられなくなることにより、パフォーマンスがダウンするという問題が生じる。

【0018】本発明は、インテリジェントネットワーク (IN)サービスの顧客数に係わらずSCPのメモリ装置を有効活用できるインテリジェントネットワーク・大量顧客に対応するデータベース管理装置およびデータベース管理方法を提供することを目的とする。

[0019]

【課題を解決するための手段】前記課題を解決するため に、請求項1記載の発明は、リアルタイムデータベース を記憶するリアルタイムデータベースデータ記憶部と、

リアルタイムデータベースデータ記憶部に記憶されているリアルタイムデータベースを管理するコマンドが集まったクラスであるリアルタイムデータベースメインテナンスコマンド群と、リアルタイムデータベースデータ記憶部を管理する管理部により構成されるリアルタイムデータベースライブラリと、アプリケーションに対してリアルタイムデータベースにアクセス可能なインタフェースを提供するデータベースインタフェースとを有することを特徴とする。

【0020】請求項2記載の発明は、請求項1記載の発 10 明において、データベース管理装置は、データベースインタフェースを介してリアルタイムデータベースデータ記憶部にアクセスするインテリジェントネットワークの各種プロセス群を有することを特徴とする。

【0021】請求項3記載の発明は、請求項1または2記載の発明において、データベース管理装置は、リアルタイムデータベースにアクセスするためのインタラクティブなインタフェースを提供するインタラクティブSQLを有することを特徴とする。

【0022】請求項4記載の発明は、請求項3記載の発 20 明において、データベース管理装置は、アクセスをSQ L文にて可能としたことを特徴とする。

【0023】請求項5記載の発明は、リアルタイムデータベースデータ記憶部にリアルタイムデータベースを記憶する工程と、リアルタイムデータベースデータ記憶部に記憶されたリアルタイムデータベースを管理するコマンドをリアルタイムデータベースメインテナンスコマンド群として集める工程と、リアルタイムデータベースデータ記憶部をリアルタイムデータベースライブラリとして管理する工程とを有し、アプリケーションに対してリアルタイムデータベースへアクセスを可能としたことを特徴とする。

【0024】請求項6記載の発明は、請求項5記載の発明において、データベース管理方法は、データベースインタフェースを介してリアルタイムデータベースデータ記憶部にアクセスするインテリジェントネットワークの各種プロセス群を有することを特徴とする。

【0025】請求項7記載の発明は、請求項5または6 記載の発明において、データベース管理方法は、リアル タイムデータベースにインタラクティブSQLによりイ 40 ンタラクティブなインタフェースを提供してアクセス可 能とすることを特徴とする。

【0026】請求項8記載の発明は、請求項7記載の発明のおいて、データベース管理方法は、アクセスをSQ L文にて可能としたことを特徴とする。

[0027]

【発明の実施の形態】次に、添付図面を参照して本発明 が、どの時代においても容量のによるデータベース管理装置およびデータベース管理方法の実施の形態を詳細に説明する。図1から図3を参照 ータのメモリ装置の上限を越えすると、本発明のデータベース管理装置およびデータベ 50 在抱えている問題が再発する。

ース管理方法の実施形態が示されている。

【0028】〈解決案1〉大規模メモリ装置を持つ不停 止型コンピュータを使用して、小数SCPノードからシ ステムを構成する。

【0029】〈解決案2〉小規模メモリ装置を持つ不停止型コンピュータを使用して、多数SCPノードからシステムを構成する。大規模レコード数を持つテーブルを参照するサービスの顧客を全てのSCPノードに均等に割り当てる。全てのSCPノードにおいて保持するデータベースの内容は等しい。それ故、SCP自体に修正をかけるわけではなく、a個のSCPノードを持つシステム上で、b件の加入者を持つサービスの場合、STPノードにおいて、約b/aレコードづつ均等に重複がないようにa個のSCPに割り当てる。

【0030】メモリ装置上にテーブルを構築した呼処理の能力は、ディスク装置上のテーブルを使用する呼処理の能力に比べて、3倍ほどであるとする。すると、従来1台のSCPノードによりメモリ装置上のデータベースを用いて処理されていたサービスは、3台のSCPノードによりディスク装置上のデータベースを用いて処理されることにより、従来のものと同等の能力を発揮する。【0031】〈解決案3〉テーブル内のレコードを個別にメモリ装置上に載せる機能を提供する。

【0032】〈解決案4〉メモリ装置に載せられないほど加入者レコードが増えたテーブルに関して、テーブルを複数に分割して、それぞれを別々のSCPのメモリ装置上に載せることで対処する。例えば、7770で始まる番号から7779で始まる番号までを所有するテーブルを想定し、E_TABLE という名前とする。このテーブルは、そのままではメモリ装置に載らないサイズであるとする。7770で始まる番号から7774で始まる番号までをE_TABLE L 7775で始まる番号から7779で始まる番号までをE_TABLE L 2 と分割する。E_TABLE L 1、 E_TABLE 2 は、それぞれメモリ装置に載るサイズであるとする。

【0033】解決案1、2に示されるものは、ハードウェアの改善による解決であり、従来のAINシステムのソフトウェアの側面において変更なしに解決できる。【0034】解決案3、4に示されるものは、ソフトウェアの改善による解決である。しかし、解決案1、2、4は、以下に示される点において問題点を含んでいる。このため、本発明では、解決案3にて上記問題を解決するものである。

【0035】解決案1における問題点は、大規模メモリ 装置を搭載可能な不停止型コンピュータに買い替える必 要がある。時代に応じてハードウェア性能は向上する が、どの時代においても容量の限界は存在する。将来加 入者が、この大規模メモリ装置を持つ不停止型コンピュ ータのメモリ装置の上限を越えて増大した場合には、現 在物えている問題が再発する

小限に留めながら、呼処理のバフォーマンスを落さずに サービス加入者数の上限値を上げることが可能となる仕 組みを実現する。

【0036】解決案2における問題点は、問題点を克服 するために必要とするSCPの台数が多い。解決案2で は、メモリ装置上に載せきれなくなったサービスの呼処 理能力に応じた数だけ不停止型コンピュータを準備する 必要がある。追加されたSCPの中には、このサービス のためだけに使用されるものも存在する可能性がある。 この場合、このSCPノードは、本サービス以外の目的 において無駄なリソースとなり得る。

【0037】従って、対象サービスの加入者が増大する たびに、SCPノードの追加が必要となるためコスト高 10 である。例えば、あるサービスにおいて、現状メモリ容 **量のレコード件数(c件とする)を持つテーブルが存在** していたとして、将来、加入者の獲得によりd倍に膨れ あがるとする。この場合、解決案2では従来と同等の処 理能力を発揮させるには、メモリ装置上のデータベース アクセス能力がディスク装置上のデータベースアクセス 能力のe倍だとすると、d×e台のSCPが必要とな

【0038】解決案2における問題点は、一つの呼処理 た場合に比べてe倍ほどの処理時間を要する。しかし、 解決案1、3、4では一つの呼処理に着目しても、従来 と同等の処理能力を発揮する。

【0039】解決案4における問題点は、データベース の構造を変更させることから、他の既存の処理に対して も変更を要求する。変更範囲がデータベース自身で閉じ ていないことから好ましくない。

【0040】以上の問題点に関して上記解決案3が最も 好ましい理由を説明する。まず、解決案1の問題点に対 して、解決案3は、本問題の根本的な解決を与えるもの 30 である。

【0041】また、解決案2の問題に対して、解決案3 は、解決案2で用いられるSCPよりも少ないSCPを 要求するものである。解決案3においては、メモリ装置 上に載せきれなくなったテーブルのサイズに応じてSC Pを追加するだけでよい。例えば、あるサービスにおい て、現状メモリ容量のレコード件数(c件とする)を持 つテーブルが存在していたとして、将来加入者の獲得に よりd倍に膨れ上がるとする。この場合、解決案2で は、従来と同等の処理能力を発揮させるには、メモリ装 置上のデータベースアクセス能力がディスク装置上のデ ータベースアクセス能力のe倍だとすると、d×e台の SCPが必要となるが、解決案3ではd台のSCPの増

【0042】また、解決案3の問題に対しては、従来の ものと同等の処理能力を発揮するものである。

【0043】また、解決案4の問題に対して、解決案3 は、データベース自身で閉じた解決であるため、他の既 存処理には影響を与えない。

【0045】(実施形態の構成)図1は、本発明の実施 形態であるデータベース管理装置の構成を示すブロック 構成図である。図1において、リアルタイムデータベー スとは、SCPに提供される高速な検索を実現するデー タベースである。リアルタイムデータベースは、実体を ディスク装置上に構築し、指定レコード毎にメモリ装置 に複写し、運用されることが可能である。図1を参照す ると、本実施形態は、リアルタイムデータベースメイン テナンスコマンド群2と、リアルタイムデータベースラ イブラリ3と、リアルタイムデータベースデータ記憶部 5を有する記憶装置4と、データベースインタフェース 6と、インテリジェントネットワーク各種プロセス群7 と、インタラクティブSQL8とから構成される。

【0046】リアルタイムデータベースメインテナンス コマンド群2は、リアルタイムデータベースを管理する コマンドが集まったクラスである。このクラスは、リア に着目すると、メモリ装置上にテーブルが構築されてい 20 ルタイムデータベースの作成、メモリロード機能(ディ スク装置上のリアルタイムデータベースをメモリ装置に 引き上げる機能)、リアルタイムデータベースの正常性 診断、メモリクリア(メモリ上のリアルタイムデータベ ースを解除する機能)、の各機能を提供する。

> 【0047】リアルタイムデータベースライブラリ3 は、SQL構文の解析部と、リアルタイムデータベース データ記憶部5を管理する管理部とから構成される。と とでは、データベースインタフェース6からの要求、ま たはリアルタイムデータベースメインテナンスコマンド 群2により、テーブルの作成・削除、レコードの追加・ 削除・変更・検索等の操作をリアルタイムデータベース データ記憶部5に対して行なう。

> 【0048】各機能は、対象テーブル、対象レコードが メモリ装置上に写しを持つならばそちらにアクセスし、 必要があればディスク装置にもアクセスする。対象テー ブル、対象レコードが、メモリ装置上に写しを持たなけ れば、ディスク装置のみにアクセスする機能を有する。 リアルタイムデータベースインタフェース6は、アプリ ケーションに対し、リアルタイムデータベースにC++言 語でアクセス可能なインタフェースを提供する。これに より提供される機能は、テーブルの作成・削除、レコー ドの追加・削除・変更・検索等である。

【0049】インタラクティブSQL8は、操作者/保 守者1がSQL文にてリアルタイムデータベースにアク セスするためのインタラクティブ (双方向的) なインタ フェースを提供する。インテリジェントネットワーク各 種プロセス群7は、データベースインタフェース6を介 してリアルタイムデータベースデータ記憶部5亿アクセ スする。呼処理プロセス等がこれにあたり、データベー 【0044】本発明により、SCPノードの増設数を最 50 スインタフェース6が提供しているSelect機能を

用いて、リアルタイムデータベースデータ記憶部5 K格納されているレコードを参照している。

【0050】図2は、リアルタイムデータベースデータ 記憶部(SCP)5の構成を説明するための図2であ り、(a)がディスク装置の構成部分、(b)がメモリ 装置の構成部分を表している。この図2を参照すると、 本実施例は、ディスク装置11と、メモリ装置12とを 含む。ディスク装置11はリアルタイムデータベース1 3を備えている。リアルタイムデータベース13は、リ アルタイムデータベースシステム部分15と、リアルタ イムデータベースデータ部分16とから構成される。リ アルタイムデータベースシステム部分15は、テーブル 管理情報テーブル19と部分メモリ化管理情報テーブル 20から構成される。テーブル管理情報テーブル19 は、リアルタイムデータベース部分16上の全てのテー ブル情報を管理する。テーブル情報は、各テーブルがメ モリ装置に上がるものであるか否か、メモリ装置に上が るものであれば部分的に上げるか否かの情報を含む。

【0051】リアルタイムデータベースデータ部分16は、ディスク割当部分23と、メモリ割当部分24と、部分メモリ化部分25とから構成される。メモリ装置12上のリアルタイムデータベース14は、ディスク装置11上のリアルタイムデータベース13をメモリ装置上に写したものであるが、ディスク割当部分23の写しは作成しない。

【0052】(機能追加部分)今回の主な機能追加は、新規に部分メモリ化管理情報テーブル20を準備し、既存のテーブル管理情報テーブル19に修正をかけることにより、リアルタイムデータベースデータ部分16の一部を部分メモリ化部分25として利用可能とすることである。

【0053】次に、テーブルIDの負数化について説明する。テーブル管理情報テーブル19は、リアルタイムデータベースデータ部分16が保持する全テーブルに関して、テーブルIDを付与する。現状テーブルIDには正整数のみが使用されており、各テーブルはテーブルI*

テーブル I D テーブル名

* Dを用いて管理される。本発明は、テーブルスキーマを変更しないで部分メモリ化を達成するために、とのテーブルIDに負整数を使用する。例えば、テーブルIDとして「8」が付与されていたテーブルを部分メモリ化したいならば、テーブルIDを「-8」と変更する。この修正は、テーブル管理情報を用いてテーブルIDを求めているロジックにインバクトを与える。当該インバクトは、以下のマクロを噛ませることにより対応する。

【0054】マクロ関数:「tableID が負の数なら、テーブルIDに-1を掛けたものをリターンする。」、テーブル管理情報テーブルは、メモリ格納フラグ:(メモリ装置上に載せるならば1、そうでなければ0とする)、

テーブル I D; (正数か負数。負数ならば部分メモリ化対象テーブル)、の各情報を含む。

【0055】次に、部分メモリ化管理情報テーブル20 の追加について説明する。本発明は、リアルタイムデー タベースシステム部分15にテーブル管理情報テーブル 19を追加する。部分メモリ化されるテーブルは、部分 20 メモリ化管理情報テーブル20に登録される。

【0056】部分メモリ化管理情報テーブル20のスキーマには、テーブルID、テーブル名、フィールド名、条件式(=,!=,<,>, ←,>=, LIKE, IS NULL, IS NOT NULL)、条件値、を含める。例えば、テーブルTEST_TBLは、下記のようなスキーマを持つとする。

[0057]

Name Attribution Type

TABLE __ID PRIMARY KEY NUMBER(10)

NUM _A NUMBER(10)

CHA __A CHAR(20)

【0058】 CCで、NLM _A の355000~899700までの 範囲のものだけをメモリ装置に上げたければ、部分メモ リ化管理情報テーブル20には下記レコードが登録され る。

[0059]

[0062]

フィールド名条件式条件値

5 TEST __TBL NUM __A <= 899700

【0060】(実施例の動作の説明)次に、図1および図2を参照して本実施例の動作について詳細に説明する。

【0061】まず、テーブルの作成機能への修正について説明する。リアルタイムデータベースライブラリ13 におけるテーブルの作成は、SQL(CREATE TABLE)文を用いる。既存のCREATE文にオプションとしてPARTIAL句を追加する。構文は、'CREATE TABLEテーブル名 PARTIAL (条件式)'である。条件式は、下記にて定義される。

条件式: <expr> [(AND | OR) <expr>] ...

<expr>: フィールド名 <op> バリュー

: (= | != | < | > | <= | >= | <LIKE>)

*LIKE>: パターン文字列 (ex. 'SID__', '%#%')

【0063】この命令により作成されるテーブルは、テーブル管理情報テーブル19のテーブルIDが負数であり、部分メモリ化管理情報テーブル20上に条件式を満たす条件にてレコードが追加される。例えば、作成される。

11

なる。

A >= 355000 AND NUM A <= 899700;

[0 0 6 4] CREATE TABLE TEST __TBL PARTIAL NUM __*

テーブル I D テーブル名

フィールド名条件式条件値

5 TEST __TBL NUM __A

>= 355000

TEST __TBL NUM __A

<= 899700

【0065】次に、テーブルの削除機能への修正につい ※ て説明する。リアルタイムデータベースライブラリ13 におけるテーブルの削除は、SQL(DROP TABLE)文を用いる。構文は、'DROP TABLE テーブル名' である。この 10 命令により、メモリ割り当て部分26の一部分である、対象テーブルのメモリ装置上のレコードを全て削除し、テーブル管理情報テーブル19のテーブルIDが負数の場合には、そのテーブルIDを正整数化して既存DROP処理を走らせ、部分メモリ化管理情報テーブル20および22上に記録されているレコードから、当該テーブルに関するものを削除する。

【0066】次に、既存テーブルの部分メモリ化機能の 追加について説明する。リアルタイムデータベースライ ブラリ13において、既存テーブルを部分メモリ化する 20 場合は、SQL (CREATE CLUSTER)文を用いる。この構文※

ブル名条件式,である。この命令により既存テーブルは、一度メモリ装置上から落される。その後ディスク装) 置上のテーブル管理情報テーブル19および21のテー ブルIDに「-1」を掛けられて負数になり、部分メモ リ化管理情報テーブル20および22上に条件式を満た す条件にて、レコードが追加される。この後、メモリロ ーダによりメモリ装置に上げられる。

※は、RTDBMSでは新規構文であり、 'CREATE CLUSTER テー

【0067】例えば、TEST_TBL が既に存在するテーブルであるとすると、

'CREATE CLUSTER TEST_TBL NUM _A >= 355000 AND NU M _A <= 899700;'

により作成される部分メモリ化管理情報テーブルは下記 のようになる。

[0068]

テーブル [D テーブル名

フィールド名条件式条件値

5 TEST __TBL NUM __A

S TEST __TBL NUM __A

【0069】次に、部分メモリ化テーブルの条件式変更機能の追加について説明する。リアルタイムデータベースライブラリ13における部分メモリ化されているテーブルに関し、条件式を変更する機能として、SQL(ALT ER CLUSTER) 文を用意する。との構文は、RTDBMS 30では新規構文である。構文は、下記に示される通りである

【0070】4-1. 'ALTER CLUSTER テーブル名 INSERT 条件式'

4-2. 'ALTER CLUSTER テーブル名 UPDATE 旧条件式 TO 新条件式'

4-3. 'ALTER CLUSTER テーブル名 DELETE 条件式' 【0071】4-1. INSERTの場合、部分メモリ 化管理情報テーブル20および22に条件式を満たすレ コードを追加した後、メモリロード機能を用いてメモリ 装置に上げる。

【0072】4-2. UPDATEの場合、メモリ装置上にあがっている対象テーブルをディスク装置に落す。 部分メモリ化管理情報テーブル20および22の旧条件式を満たすレコードを削除し、新条件式を満たすレコードを追加する。この後、メモリロード機能を用いてメモリ装置に上げる。

【0073】4-3. DELETEの場合、メモリ装置上にあがっている対象テーブルをディスク装置に落す。 部分メモリ化管理情報テーブル20および22の条件式 50 >= 355000

<= 899700

を満たすレコードを削除する。このとき、当該テーブルの部分メモリ化を示すレコードが部分メモリ化管理情報テーブル20および22から完全に抹消された場合にのみ、テーブル管理情報のテーブルIDに「-1」を掛け正数とする。このあと、メモリロード機能を用いてメモリ装置に上げる。

【0074】次に、INSERT機能の修正について説明する。リアルタイムデータベースライブラリ13におけるINSERT機能として、従来のSQL構文を用いる。との構文は、'INSERT INTOテーブル名 [フィールド名,...] VALUES(値,値,...)'である。

【0075】テーブル管理情報テーブル19および21のテーブルIDが正数ならば従来のINSERT処理、 負数ならば部分メモリ化管理情報テーブル20および2 2から該当する条件式を取り出し、その範囲内であれば メモリ装置およびディスク装置の両方に書き込む。範囲 外であれば、ディスク装置のみに書き込む。

【0076】次に、UPDATE機能の修正について説明する。リアルタイムデータベースライブラリ13におけるUPDATE機能は、従来のSQL構文を用いる。 構文は、

'UPDATE < テーブル名> <set> [, <set>, ...] <where 句>:'

である。

【0077】テーブル管理情報テーブル19および21

のテーブルIDが正数ならば、従来のUPDATE処理 を行う。負数ならば部分メモリ化管理情報テーブル20 および22から該当する条件式を取り出し、その範囲内 であればメモリ装置、ディスク装置の両方に書き込む。 範囲外であれば、ディスク装置のみに書き込む。

【0078】次に、DELETE機能の修正について説 明する。リアルタイムデータベースライブラリ13にお けるDELETE機能は、従来のSQL構文を用いる。 構文は、'INSERT [FROM] <テーブル名> <where句>'、で

【0079】テーブル管理情報テーブル19および21 のテーブルIDが正数ならば従来のDELETE処理、 **負数ならば部分メモリ化管理情報テーブル20および2** 2から該当する条件式を取り出し、その範囲内であれば メモリ装置、ディスク装置の両方から削除し、範囲外で あればディスク装置から削除する。

【0080】次に、SELECT機能の修正について説 明する。リアルタイムデータベースライブラリ3におけ るSELECT機能は従来のSQL構文を用いる。構文 は、'SELECT * FROM <テーブル名>'である。テーブル管 20 理情報テーブル21のテーブルIDが正数ならば従来の SELECT処理、負数ならば部分メモリ化管理情報テ ーブル22から該当する条件式を取り出し、その範囲内 であれば部分メモリ、範囲外であればディスク装置から 読み出す。

【0081】次に、メモリロード機能の修正について説 明する。リアルタイムデータベースライブラリ13にお けるメモリロード機能はテーブル管理情報テーブル19 のメモリ格納IDが正整数であるテーブルに関して適用 される。

【0082】テーブル管理情報テーブル19のテーブル I Dが正数の場合、既存メモリロード機能を用いる。テ ーブル管理情報テーブル19のテーブルIDが負数の場 合、部分メモリ化管理情報テーブル20の対象テーブル IDに関わる条件式を利用して各レコードが条件式を満 たすかチェックして、範囲内であればメモリ装置12上 にリアルタイムデータベース14を構築する。

【0083】次に、その他コマンドの修正について説明 する。他の関連コマンドにも、既存機能が本発明の影響 を受けない処置を追加する。

【0084】(実施形態の効果)図3において、INの サービスの一つであるフリーフォンサービスが、777200 0000~7779999999までが番号付けされていると仮定す る。ディスクA37、ディスクB38、ディスクC39 には、共に7770000000~777999999までの範囲の番号に 関するデータを記録してある。なお、これらのディスク A37、B38、C39上のデータベース内容は、同一 である。

【0085】一台のSCP上でメモリ装置に登録できる

14

する。上記フリーフォンサービスの番号は最大800万 件の加入者まで対応できるが、従来のリアルタイムデー タベースの構成では、全ての番号に加入者を対応づけて しまうと一台のSCP上に載せきらない。このため、デ ィスク装置上にあるリアルタイムデータベースを利用し てサービスを実現しなくてはならず、呼処理の能力から 見て実用に耐え得ないものである。そこで、本発明によ る部分メモリ化機能を用いたシステム運用例を以下に示 す。

10 【0086】3台のSCP32、33、34を設け、そ れぞれSCP-A、SCP-B、SCP-Cとする。全 てのSCP32、33、34において、ディスク装置上 に持つリアルタイムデータベースの顧客データは同じで ある。各SCP32、33、34では、割り当てられた 番号のみ、ディスク装置上のデータベースの番号を割り 当てる。下記は、各SCP32、33、34においてメ モリ装置上に載せるための番号範囲の取り決めの一例で ある。

[0087]

SCP-A:7772000000~7773999999

SCP-B:7775000000~7777999999

SCP-C:7778000000~7779999999, 7774000000~77759999

【0088】STP35、36には、各SCPに割り当 てられた番号計画を設定する。例えば、番号7772555555 を受けたSTPは、SCP-A32に向けて問い合わせ を行ない、番号7772834567を受けたSTPは、SCP-B33に向けて問い合わせを行なうという具合に設定す

【0089】 このようにすることで、フリーフォンサー 30 ビスの全ての番号が複数のSCPのメモリ装置上に分割 されて載るため、高速な検索を享受できるようになる。 このことにより、呼処理のパフォーマンスに重大な影響 を与えずに大量顧客をもつに至ったフリーフォンサービ スを運用できるようになる。

【0090】本発明により、レコード単位でディスク装 置上のデータベースをメモリ装置上に引き上げることが 可能になる。このことは、膨大な顧客データを持つサー ビスを複数のSCPノードに分割することを可能にし、

パフォーマンスを落すことなくメモリ装置の制限を越え て増大した顧客を持つサービスに関する呼処理を扱うと とを可能にする。

【0091】尚、上述の実施形態は本発明の好適な実施 の一例である。但し、これに限定されるものではなく、 本発明の要旨を逸脱しない範囲内において種々変形実施 が可能である。

[0092]

【発明の効果】以上の説明より明かなように、本発明の データベース管理装置およびデータベース管理方法によ レコード数がハードウェアスペック上400万件と仮定 50 れば、リアルタイムデータベースデータ記憶部にリアル 15

タイムデータベースを記憶し、リアルタイムデータベー スを管理するコマンドをリアルタイムデータベースメイ ンテナンスコマンド群として集め、リアルタイムデータ ベースデータ記憶部をリアルタイムデータベースライブ ラリとして管理する。従って、インテリジェントネット ワーク(IN)のサービスの顧客の数に係わらずSCP のメモリ装置を有効活用でき、アプリケーションに対し リアルタイムでデータベースにアクセスし、インテリジ ェントネットワーク・大量顧客への対応が可能となる。

【図面の簡単な説明】

【図1】本発明のデータベース管理装置およびデータベ ース管理方法の実施形態を説明するための概念的な機能 構成のブロック図である。

【図2】図1のリアルタイムデータベースデータ記憶部 5の部分詳細図である。

【図3】動作例を説明するためのAINシステムのブロ ック図である。

【図4】従来のAINシステムのブロック図である。 【符号の説明】

1 操作者/保守者

群

リアルタイムデータベースメインテナンスコマンド 2

6 データベースインタフェース

7 インテリジェントネットワーク各種プロセス群

8 インタラクティブSQL

- 11 ディスク装置
- 12 メモリ装置

4 記憶装置

13、14 リアルタイムデータベース

*3 リアルタイムデータベースライブラリ

5 リアルタイムデータベースデータ記憶部

- 10 15、17 リアルタイムデータベースシステム部分
 - 16、18 リアルタイムデータベースデータ部分
 - 19、21 テーブル管理情報テーブル
 - 20、22 部分メモリ化管理情報テーブル
 - 23 ディスク割当部分
 - 24、26 メモリ割当部分
 - 25、27 部分メモリ化部分
 - 32, 33, 34 SCP
 - 35, 36 STP
 - 37 ディスクA
- 38 ディスクB
 - 39 ディスクC

【図1】

操作者/保守者 SCP ンテリジェント 各種プロセス群。 UNIXコマンド UNIXコマンド 8 インタラクティブ SQL リアルタイム データベース メインテナンス コマンド群 C++ C++ データベース インタフェース C++ リアルタイム データベーブ ライブラリ C++(SQL問い合わせ) 固有問い合わせ方式 記憶装置 リアルタイムデータベース データ記憶部

[図2]

