Improving MPTCP Performance by Enabling Sub-Flow Selection over a SDN Supported Network

Subhrendu Chattopadhyay¹ Samar Shailendra² Sukumar Nandi¹ Sandip Chakraborty³

 ^{1}IIT Guwahati , $\ ^{2}\text{TCS}$ Research & Innovation , $\ ^{3}\text{IIT}$ Kharagpur

October 16, 2018

Organization

- 1 Introduction and Motivation
- 2 Objectives
- 3 Solution Approach
- 4 Implementation and Results
- 5 Summary
- 6 Conclusion

- "By 2021, 94 percent of workloads and compute instances will be processed by cloud data centers; 6% will be processed by traditional data centers"[1]
 - CDN uses data centers
- Demands high bandwidth requirement for data centers
 - Data center topology allows multiple paths between nodes
 - Can exploit bandwidth aggregation
 - Bandwidth aggregation in data link layer causes management issues
- Bandwidth aggregation in transport layer
 - Multipath TCP (MPTCP)^[2]

[2] Alan Ford et al. Architectural guidelines for multipath TCP development. Tech. rep. IETF, RFC6824, 2011.

MPTCP-SDN Subhrendu 1 / 13

^[1] VNI Forecast Highlights Tool.

https://www.cisco.com/c/m/en_us/solutions/service-provider/vni-forecast-highlights.html.

- Advantages^[3]
 - Improve throughput by aggregating bandwidth
 - Do no harm to the competing flows (TCP, SCTP etc.)
 - Balance congestion by offloading data via less congested paths
 - TCP like API for application transparency. [4]

[4] MPTCP Application Interface Considerations. https://tools.ietf.org/html/draft-ietf-mptcp-api-07.

 MPTCP-SDN
 Subhrendu
 October 16, 2018
 2 / 13

^[3] Costin Raiciu, Mark Handley, and Damon Wischik. Coupled congestion control for multipath transport protocols. Tech. rep. IETF, RFC6356, 2011.

MPTCP Basics

- Advantages^[3]
 - Improve throughput by aggregating bandwidth
 - Do no harm to the competing flows (TCP, SCTP etc.)
 - Balance congestion by offloading data via less congested paths
 - TCP like API for application transparency. [4]

Figure: MPTCP connection initiation

Introduction and Motivation Objectives Solution Approach Implementation and Results Summary

MPTCP Architecture

Modules of MPTCP

- Path manager
 - Full-Mesh
 - ndiffports

- Segment scheduler
 - Round robin
 - Lowest RTT first

- Congestion control
 - LIA
 - OLIA
 - BALIA

Figure: MPTCP Modules

Introduction and Motivation

Test parameter setting (Previous work^[5])

- MPTCP v0.90
- Full-mesh
- Lowest RTT first
- BALIA congestion control
 - Revisit: MPTCP objective
 - TCP friendliness
 - Responsiveness towards network changes
 - BALIA Pareto optimizes MPTCP principle

 MPTCP-SDN
 Subhrendu
 October 16, 2018
 4 / 13

^[5] Subhrendu Chattopadhyay et al. "Primary Path Effect in Multi-Path TCP: How Serious Is It for Deployment Consideration?". In: Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing. Mobihoc '17. Chennai, India: ACM, 2017, 36:1–36:2. ISBN: 978-1-4503-4912-3.

Initial Experimentations

Introduction and Motivation

- Variable no. of sub flows used
 - Sub flows have diversified path characteristics (Delay, Bandwidth)
- Bandwidth diversity
 - Increasing path bandwidths difference
 - Observations: Increase in total bandwidth pool
 - **Observations:** The average throughput decreases.
 - Observations: Increases no. of out of order segments
 - Observations: Increases file download time
- Delay diversity
 - Increasing path RTT difference
 - **Observations:** Decreases average throughput of MPTCP.
 - Observations: Increases no. of out of order segments
 - Observations: Increases file download time

 MPTCP-SDN
 Subhrendu
 October 16, 2018
 4 / 13

Initial Experimentations

Understanding the results of [5]:

- Sub-flows with high disparity in end-to-end delay and bandwidth results in large number of out of order segments
- Increase in out of order segments results performance degradation due to spurious retransmission
- Full-mesh path manager is sub-optimal.

Analysis:

Out-of-order segments are the root cause. It creates "HOL blocking". HOL blocking causes spurious retransmissions.

^[5] Subhrendu Chattopadhyay et al. "Primary Path Effect in Multi-Path TCP: How Serious Is It for Deployment Consideration?". In: Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Mobihoc '17, Chennai, India: ACM, 2017, 36:1-36:2, ISBN: 978-1-4503-4912-3,

Problem Statement

What can we do about it?

Out-of-order segments can be estimated by the receiver buffer size. Reduction is receiver buffer signifies reduction in out-of-order segments. So, we control the size of receiver buffer size by choosing the subset of available sub-flows.

What we have?

- Set of sub-flows $(S = \{S_1, S_2 \dots S_n\})$
- Delay characteristics of S_i $(Pr_i(X=r) = \Psi(\mu_i, \sigma_i, 0, \infty; X=r))$ Assume Gaussian
- Gross characteristics of S_i ($Q_i = \{b_i, l_i, \mu_i, \sigma_i\}$)

Problem Statement

What can we do about it? Problem Formulation:

Given S sub-flows between source and destination and the path parameters $\vec{Q} = \{Q_i\}$ of sub-flows, we would like to obtain a sub-flow selection matrix I, such that the following optimization problem is solved.

maximize
$$Avg_{Th}(I)$$
 subjected to: $RL(I) \leq RL_{max}$

 MPTCP-SDN
 Subhrendu
 October 16, 2018
 5 / 13

Problem Statement

What can we do about it? Problem Formulation:

maximize
$$Avg_{Th}(I)$$
 subjected to: $RL(I) < RL_{max}$

- **Question 1:** How to find $Avg_{Th}(I)$ and RL(I)?
 - Using formal modeling of MPTCP system
 - Discrete Time Markov Chain (DTMC)
- **Question 2:** Who solves the optimization problem?
 - Hosts do not have end-to-end characteristics.
 - Use SDN.

DTMC

- Throughput modeling requires knowledge of congestion control method.
- We use BALIA

$$Y_i(t) = \frac{w_i(t)}{r_i}$$
 $\alpha_i(t) = \frac{\max\limits_{k} \{Y_k(t)\}}{Y_i(t)}$

Algorithm:

$$w_i' = \begin{cases} \frac{Y_i(t)}{r_i \left(\sum_k Y_k(t)\right)^2} \left(\frac{1+\alpha_i(t)}{2}\right) \left(\frac{4+\alpha_i(t)}{5}\right) & \text{Success} \\ \frac{w_i(t)}{2} \min\{\alpha_i(t), 1.5\} & \text{Failure} \end{cases}$$

- Oscillation factor^a increases responsiveness, but aggressive.
- Aggressiveness factor^b controls the TCP friendliness.

MPTCP-SDN Subhrendu 6 / 13

^aOscillation factor: Y:(t)

^bAggressiveness factor: $\alpha_i(t)$

ntroduction and Motivation Objectives <mark>Solution Approach</mark> Implementation and Results Summary Conclusion

DTMC

Figure: Markov Model for a MPTCP with 2 Sub-Flows

DTMC

States:

- CW size tuple
- Event CW change as state transition

Transition events and Probabilities:

- Successful transfer of segment via S_i (SS_i)
 - If $\max\{Y_k\} = Y_i (SS_{\max_i})$
 - If $\max\{Y_k\} \neq Y_i \ (SS_{max_m})$
- Unsuccessful transfer of segment via S_i (SL_i)
 - If $\max\{Y_k\} = Y_i (SL_{max_i})$
 - If $\max\{Y_k\} \neq Y_i (SL_{max_m})$

Figure: DTMC partial

 MPTCP-SDN
 Subhrendu
 October 16, 2018
 6 / 13

DTMC

Model Outcome:

- Stationary distribution of DTMC
- Average congestion window size
- Average throughput and Average receiver buffer length

 MPTCP-SDN
 Subhrendu
 October 16, 2018
 6 / 13

Introduction and Motivation Objectives Solution Approach Implementation and Results Summary Conclusion

Model Verification

Figure: Throughput Comparison

ntroduction and Motivation Objectives Solution Approach Implementation and Results Summary Conclusion

Model Verification

Figure: Receiver Buffer Size Comparison

 MPTCP-SDN
 Subhrendu
 October 16, 2018
 7 / 13

Revisit Sub-flow Selection & Heuristic

Problem statement:

Given S sub-flows between source and destination and the path parameters $\vec{Q} = \{Q_i\}$ of sub-flows, we would like to obtain a sub-flow selection matrix I, such that the following optimization problem is solved.

maximize
$$Avg_{Th}(I)$$
 subjected to: $RL(I) < RL_{max}$

- 0-1 knapsack problem^[6] and *NP*-hardness
 - Searching for a heuristic

^[6]Harvey M. Salkin and Cornelis A. De Kluyver. "The knapsack problem: A survey". In: Naval Research Logistics Quarterly 22.1 (1975), pp. 127-144.

Revisit Sub-flow Selection & Heuristic

Algorithm 1 Heuristic for sub-flow selection (Pseudo code)

- 1: Input: Sub-flow path quality vector;
- 2: Output: Sub-flow selection;
- 3: Sort sub-flows based on high effective bandwidth $(b_i(1-l_i))$ and low RTT (μ_i) (i.e $b_i(1-l_i)+\frac{1}{\mu_i}$);
- 4: for $S_i \in \mathcal{S}$ do
- 5: Select sub-flow if calculated receiver buffer length obtained from DTMC is less than RL_{max}
- 6: end for
- 7: return \vec{l}

Revisit Sub-flow Selection & Heuristic

Algorithm 1 Heuristic for sub-flow selection (Algorithm)

```
1: Input: \vec{Q};
 2: Output: I;
 3: \forall i: I_i \leftarrow 0;
 4: Sort \tilde{Q} based on T_i \leftarrow b_i(1-l_i) + \frac{1}{l_i};
       { High effective bandwidth (b_i(1-l_i)) and low RTT (\mu_i) gets priority}
 5: Find \max_i(T_i); I_i \leftarrow 1;
 6: for j \leftarrow 2 to n do 7: \vec{X} \leftarrow \vec{Q} \circ I;
 8: \mathcal{A} \leftarrow Avg_{Th}(\vec{X}):
 9: \mathcal{R} \leftarrow RL(\vec{X})
10: if \mathcal{R} \leq RL_{max} then
11:
       I_i \leftarrow 1;
12:
           end if
13: end for
14: return \bar{l}
```

9 / 13

Implementation

We develop a SDN control plane application. [6]

- Tools used
 - Open-source MPTCP kernel module^[7]
 - Open vSwitch^[8]
 - Mininet^[9]
 - Tinvdb^[10]
 - POX controller^[11]
 - "flow stat"
 - "L3_learning"
 - "host_tracker"

[11] POX. https://openflow.stanford.edu/display/ONL/POX+Wiki.

MPTCP-SDN Subhrendu October 16, 2018

^[6] https://github.com/subhrendu-subho/SDN_pathmanager

^[7] MultiPath TCP - Linux Kernel implementation. https://multipath-tcp.org.

^[8] OVS. Open vSwitch. http://openvswitch.org/.

^[9] B Lantz et al. Mininet-an instant virtual network on your laptop (or other pc). 2015.

^[10] Introduction: TinyDB 3.2.1 documentation, http://tinydb.readthedocs.io/en/latest/intro.html.

Implementation

We develop a SDN control plane application. [6]

- Tools used
- Development
 - MPTCP Path manager module
 - SDN application for sub flow selection

[6] https://github.com/subhrendu-subho/SDN_pathmanager

9 / 13

Implementation

We develop a SDN control plane application. [6]

- Tools used
- Development
- Event Handlers
 - Topology Update:
 - Invokes sub-flow selection module
 - Pro-actively notify path manager framework.
 - Packet In:
 - Find all available paths.
 - Invokes sub-flow selection module.

[6] https://github.com/subhrendu-subho/SDN_pathmanager

MPTCP-SDN Subhrendu October 16, 2018

oduction and Motivation Objectives Solution Approach Implementation and Results Summary

Results

Figure: Topology

- 15 parallel paths
- The sender generates MPTCP supported HTTP flows destined towards receiver host.
- Traffic generated by transferring 100MB file.

 MPTCP-SDN
 Subhrendu
 October 16, 2018
 10 / 13

Figure: Flow Completion Time

Optimal I Proposed I FullMesh

Observations:

Proposed method provides better performance.

Figure: Flow Completion Time Comparison

Observations:

- Full mesh is better for 2 sub flows
- Increased diversity provides better performance
 - Too much diversity reduces performance gain

Figure: Aggregated Throughput Comparison

Optimal I Proposed I FullMesh

Observations:

Effective increase in throughput from >6 sub-flows

Figure: Aggregated Throughput Comparison

Observations:

Throughput increase is closely follows optimal behaviour

Out of Order Segments (%

Figure: Out of Order Segments

Proposed I Optimal I FullMesh

Observations:

Near optimal behaviour for proposed solution

Retransmitted Segments

Figure: Retransmitted Segments

FullMesh Optimal I Proposed I

- **Observations:**
 - Near optimal behaviour for proposed solution

Figure: Lost Segments

Near optimal behaviour for proposed solution

Figure: RTT Variations

Observations:

Less fluctuations between the inter sub flow segments

Figure: Congestion Window Variation

Observations:

- Can reach higher congestion window size due to less spurious transmission
- Increase in effective aggregated throughput

 MPTCP-SDN
 Subhrendu
 October 16, 2018
 10 / 13

Summary

- We formulate an irreducible and aperiodic DTMC to model the aggregated throughput prediction of a MPTCP flow with the end-to-end path characteristics of a given set of sub-flows.
- Based on the predicted throughput from the estimator model, we develop an optimization framework to find out the optimal set of sub-flows that can maximize the aggregated throughput for a given MPTCP flow.
- The SDN controller executes this optimization framework and schedules the sub-flows accordingly.

 MPTCP-SDN
 Subhrendu
 October 16, 2018
 11 / 13

Conclusion

Conclusion

- MPTCP sub-flow management framework for enterprise data center network.
- Increases in-order delivery of segments and prevents HOL blocking
- Closely approximates the underlying NP-hard problem
- Future Work:
 - Can we generalize it for multi-homed network?
 - Can we use distributed SDN control plane application?

 MPTCP-SDN
 Subhrendu
 October 16, 2018
 12 / 13

Thank You

 MPTCP-SDN
 Subhrendu
 October 16, 2018
 13 / 13