BAYESIAN PCA

Evgeny Burnaev

Skoltech, Moscow, Russia

OUTLINE

- CONTINUOUS LATENT VARIABLES
- 2 Principal Component Analysis
- 3 Probabilistic PCA
- BAYESIAN PCA

CONTINUOUS LATENT VARIABLES

2 Principal Component Analysis

- ③ PROBABILISTIC PCA
- 4 BAYESIAN PCA

Introduction

- Real datasets: data points lie close to a manifold of much lower dimensionality than that of the original data space
- ullet 100 imes 100 grey-scale image, i.e. 10^4 dimensional data space
- three degrees of freedom of variability: the vertical and horizontal translations and the rotations, described by some latent variables
- three dimensional nonlinear manifold
- real digit image data: a further degrees of freedom arising from scaling, due to the variability in an individuals writing as well as the differences in writing styles
- In practice, the data points will not be confined precisely to a smooth low-dimensional manifold: can be interpreted as noise

CONTINUOUS LATENT VARIABLES

2 Principal Component Analysis

- ③ PROBABILISTIC PCA
- 4 BAYESIAN PCA

MAXIMUM VARIANCE FORMULATION

- ullet $\{\mathbf{x}_n\}_{n=1}^N$, $\mathbf{x}_n \in \mathbb{R}^D$ is a sample
- ullet Goal: project the data onto a space (principal subspace) having dimensionality M < D, while maximizes the variance of the projected points
- Let M=1 and denote by $\mathbf{u}_1 \in \mathbb{R}^D$ a D-dimensional vector, s.t. $\mathbf{u}_1^{\mathrm{T}}\mathbf{u}_1=1$

MAXIMUM VARIANCE FORMULATION

• If we denote by $\overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$, then the variance of the projected data is

$$\frac{1}{N} \sum_{n=1}^{N} \{\mathbf{u}_1^{\mathrm{T}} \mathbf{x}_n - \mathbf{u}_1^{\mathrm{T}} \overline{\mathbf{x}} \}^2 = \mathbf{u}_1^{\mathrm{T}} \mathbf{S} \mathbf{u}_1,$$

where
$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{x}) (\mathbf{x}_n - \overline{x})^{\mathrm{T}}$$

• Setting the derivative of $\mathbf{u}_1^T\mathbf{S}\mathbf{u}_1 + \lambda_1(1-\mathbf{u}_1^T\mathbf{u}_1)$ to zero, we get that

$$\mathbf{S}\mathbf{u}_1 = \lambda_1\mathbf{u}_1$$

• By induction: the optimal linear projections for which the variance of the projected data is maximized are defined by the M eigenvectors $\mathbf{u}_1,\ldots,\mathbf{u}_M$ of the data covariance matrix \mathbf{S} , corresponding to the M largest eigenvalues $\lambda_1,\ldots,\lambda_M$

MINIMUM-ERROR FORMULATION

• We introduce a complete orthonormal set of D-dimensional basis vectors $\{\mathbf{u}_i\}_{i=1}^D$, s.t.

$$\mathbf{u}_i^{\mathrm{T}}\mathbf{u}_j = \delta_{ij}$$

- Thus it holds for any \mathbf{x}_n : $\mathbf{x}_n = \sum_{i=1}^D \alpha_{ni} \mathbf{u}_i$
- Due to orthonormality we get that $\alpha_{nj} = \mathbf{x}_n^{\mathrm{T}} \mathbf{u}_j$, i.e.

$$\mathbf{x}_n = \sum_{i=1}^D (\mathbf{x}_n^{\mathrm{T}} \mathbf{u}_i) \mathbf{u}_i$$

• The M-dimensional linear subspace is represented by the first M of the basis vectors, so the approximation of \mathbf{x}_n is

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^M z_{ni} \mathbf{u}_i + \sum_{i=M+1}^D b_i \mathbf{u}_i,$$

where $\{b_i\}$ are constants, that are the same for all data points

MINIMUM-ERROR FORMULATION

The distortion measure

$$J = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \tilde{\mathbf{x}}_n\|^2$$

Setting derivatives to zero we get that

$$\{z_{nj} = \mathbf{x}_n^{\mathrm{T}} \mathbf{u}_j\}_{j=1}^M, \ \{b_j = \overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_j\}_{j=M+1}^D$$

• Since $\mathbf{x}_n - \tilde{\mathbf{x}}_n = \sum_{i=M+1}^D \{(\mathbf{x}_n - \overline{\mathbf{x}})^T \mathbf{u}_i\} \mathbf{u}_i$, then

$$J = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=M+1}^{D} (\mathbf{x}_n^{\mathrm{T}} \mathbf{u}_i - \overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_i)^2 = \sum_{i=M+1}^{D} \mathbf{u}_i^{\mathrm{T}} \mathbf{S} \mathbf{u}_i$$

MINIMUM-ERROR FORMULATION

• E.g. in case D=2: by minimizing

$$\tilde{J} = \mathbf{u}_2^{\mathrm{T}} \mathbf{S} \mathbf{u}_2 + \lambda_2 (1 - \mathbf{u}_2^{\mathrm{T}} \mathbf{u}_2)$$

we get that

$$\mathbf{S}\mathbf{u}_2 = \lambda_2\mathbf{u}_2, J = \lambda_2,$$

i.e. we should choose the principal subspace to be aligned with the eigenvector having the larger eigenvalue

• In general case $\{\mathbf{u}_i\}_{i=1}^M$ are eigenvectors $\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i$ and

$$J = \sum_{i=M+1}^{D} \lambda_i$$

.0/31 Burnaev BMI

APPLICATIONS OF PCA

Mean

• PCA approximation to a data vector \mathbf{x}_n

$$\begin{split} \tilde{\mathbf{x}}_n &= \sum_{i=1}^M (\mathbf{x}_n^{\mathrm{T}} \mathbf{u}_i) \mathbf{u}_i + \sum_{i=M+1}^D (\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_i) \mathbf{u}_i \\ &= \overline{\mathbf{x}} + \sum_{i=1}^M (\mathbf{x}_n^{\mathrm{T}} - \overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_i) \mathbf{u}_i, \end{split}$$

where we used the relation $\overline{\mathbf{x}} = \sum_{i=1}^{D} (\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{u}_i) \mathbf{u}_i$

APPLICATIONS OF PCA

FIGURE : Eigenvalue spectrum (left). Sum of the discarded eigenvalues (right)

FIGURE : PCA reconstructions of the off-line digits data set. $M=D=28\times 28=784$ is already perfect reconstruction

CONTINUOUS LATENT VARIABLES

- 2 Principal Component Analysis
- PROBABILISTIC PCA
- 4 BAYESIAN PCA

13/31 BURNAEV BML

BENEFITS OF THE PROBABILISTIC PCA

- Probabilistic PCA represents a constrained form of the Gaussian distribution
- Provides EM algorithm for PCA: computationally efficient since we can calculate only needed components
- ullet Probabilistic model + EM = to deal with missing values
- Mixtures of probabilistic PCA models can be formulated in a principled way and trained using the EM algorithm
- Necessary for the Bayesian treatment of PCA
- The existence of a likelihood function ⇒ direct comparison with other probabilistic density models
- Probabilistic PCA can be used to model class-conditional densities
- The probabilistic PCA model can be run generatively to provide samples from the distribution

PROBABILISTIC PCA

- We assume that $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I}), \ \mathbf{z} \in \mathbb{R}^M$, (M < D)
- Similarly $p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2\mathbf{I}), \text{ i.e. } \mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}, \, \mathbf{x} \in \mathbb{R}^D$ where $\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{\epsilon}|\mathbf{0}, \sigma^2\mathbf{I})$

Probabilistic PCA

• We would like to determine ${\bf W}$ and σ^2 . Thus we need a marginal $p({\bf x})$

$$p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

• We get that $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{C})$, where

$$\mathbf{C} = \mathbf{W}\mathbf{W}^{\mathrm{T}} + \sigma^2 \mathbf{I}$$

• There is redundancy in this parameterization corresponding to rotations of the latent space coordinates: for $\tilde{\mathbf{W}} = \mathbf{W}\mathbf{R}$, where \mathbf{R} is an orhtogonal matrix, we get that

$$\tilde{\mathbf{W}}\tilde{\mathbf{W}}^T = \mathbf{W}\mathbf{R}\mathbf{R}^T\mathbf{W}^T = \mathbf{W}\mathbf{W}^T$$

PROBABILISTIC PCA

• Inversion of $D \times D$ matrix **C**:

$$\mathbf{C}^{-1} = \sigma^{-1} \mathbf{I} - \sigma^{-2} \mathbf{W} \mathbf{M}^{-1} \mathbf{W}^{\mathrm{T}},$$

where $M \times M$ matrix **M** has the form

$$\mathbf{M} = \mathbf{W}^{\mathrm{T}}\mathbf{W} + \sigma^{2}\mathbf{I}$$

- Thus the cost of inverting C is reduced from $O(D^3)$ to $O(M^3)$
- The posterior $p(\mathbf{z}|\mathbf{x})$

$$p(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\mathbf{M}^{-1}\mathbf{W}^{\mathrm{T}}(\mathbf{x} - \boldsymbol{\mu}), \sigma^{-2}\mathbf{M})$$

.7/31 Burnaev BMI

MAXIMUM LIKELIHOOD PCA

ullet Given a data set $\mathbf{X} = \{\mathbf{x}_n\}$ the log-likelihood

$$\log p(\mathbf{X}|\mathbf{W}, \boldsymbol{\mu}, \sigma^2) = \sum_{n=1}^{N} \log p(\mathbf{x}_n|\mathbf{W}, \boldsymbol{\mu}, \sigma^2)$$
$$= -\frac{ND}{2} \log(2\pi) - \frac{N}{2} \log|\mathbf{C}| - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{C}^{-1} (\mathbf{x}_n - \boldsymbol{\mu})$$

MAXIMUM LIKELIHOOD PCA

ullet Optimizing w.r.t. μ we get $\mu=\overline{\mathbf{x}}$ and

$$\log p(\mathbf{X}|\mathbf{W}, \boldsymbol{\mu}, \sigma^2) = -\frac{N}{2} \{ D \log(2\pi) + \log |\mathbf{C}| + \text{Tr}(\mathbf{C}\mathbf{S}^{-1}) \},$$

where **S** is the data covariance matrix

• ML for **W** and σ^2

$$\mathbf{W}_{ML} = \mathbf{U}_M (\mathbf{L}_M - \sigma^2 \mathbf{I})^{1/2} \mathbf{R}, \ \sigma^{ML} = \frac{1}{D - M} \sum_{i=M+1}^{D} \lambda_i$$

where

- $\mathbf{U}_M \in \mathbb{R}^{D \times M}$ is a matrix whose columns are given by any subset (of size M) of the eigenvectors of the data covariance matrix \mathbf{S} ,
- \mathbf{L}_M is a $M \times M$ diagonal matrix with elements λ_i ,
- \mathbf{R} is an arbitrary $M \times M$ orthogonal matrix

MAXIMUM LIKELIHOOD PCA

• For a unconditional $p(\mathbf{x})$ we get that

$$\mathbb{E}[\mathbf{x}] = \mathbb{E}[\mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}] = \boldsymbol{\mu}$$
$$\operatorname{cov}[\mathbf{x}] = \mathbb{E}[(\mathbf{W}\mathbf{z} + \boldsymbol{\epsilon})(\mathbf{W}\mathbf{z} + \boldsymbol{\epsilon})^{\mathrm{T}}] = \mathbf{W}\mathbf{W}^{\mathrm{T}} + \sigma^{2}\mathbf{I} = \mathbf{C}$$

- Thus C is independent of R for $\mathbf{W}_{ML} = \mathbf{U}_M (\mathbf{L}_M \sigma^2 \mathbf{I})^{1/2} \mathbf{R}$
- If ${\bf v}$ is orthogonal to the principal subspace, then ${\bf v}^T{\bf U}={\bf 0}$, i.e. ${\bf v}^T{\bf C}{\bf v}=\sigma^2$
- If $\mathbf{v} = \mathbf{u}_i$, then $\mathbf{v}^{\mathrm{T}} \mathbf{C} \mathbf{v} = (\lambda_i \sigma^2) + \sigma^2 = \lambda_i$
- \bullet For $\mathbf{R}=\mathbf{I}$ we get a usual PCA, otherwise columns of \mathbf{W} need not be orthogonal

CONVENTIONAL PCA VS. BAYESIAN PCA

- Conventional PCA: projection of points from the D-dimensional data space onto an M-dimensional linear subspace (D>M)
- Probabilistic PCA: mapping from the latent space into the data space. We can reverse this mapping using Bayes theorem (visualization and data compression)
- The mean is given

$$\mathbb{E}[\mathbf{z}|\mathbf{x}] = \mathbf{M}^{-1}\mathbf{W}_{\mathit{ML}}^{\mathrm{T}}(\mathbf{x} - \overline{\mathbf{x}})$$

ullet The posterior covariance is $\sigma^2 \mathbf{M}^{-1}$

CONVENTIONAL PCA VS. BAYESIAN PCA

• Usual Gaussian distribution: D(D+1)/2 parameters. Probabilistic PCA: define D-dimensional Gaussian retaining the M most significant correlations. The number of degress of freedom in the covariance matrix ${\bf C}$ is given by

$$DM + 1 - M(M - 1)/2,$$

since

- -DM+1 for **W** and σ^2
- minus M(M-1)/2 parameters for ${\bf R}$ (redundancy in parameterization associated with rotations)

EM ALGORITHM FOR PCA

- We have already obtained an exact closed-form solution for the MLE. Why do we need EM?
- In spaces of high dimensionality, there may be computational advantages in using an iterative EM procedure rather than working directly with the sample covariance matrix
- General framework for EM
 - we write down the complete-data log likelihood
 - take its expectation w.r.t. the posterior distribution of the latent distribution with "old" parameters
 - maximization of this expected complete data log-likelihood then yields the "new" parameter values

BURNAEV BML

EM ALGORITHM FOR PCA

The complete-data log likelihood function takes the form

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \mathbf{W}, \sigma^2) = \sum_{n=1}^{N} \{\log p(\mathbf{x}_n | \mathbf{z}_n) + \log p(\mathbf{z}_n)\}$$

• MLE for μ is equal to \overline{x} , thus substituting the sample mean, and taking the expectation with respect to the posterior distribution over the latent variables

$$\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \mathbf{W}, \sigma^2)] = -\sum_{n=1}^{n} \left\{ \frac{D}{2} \log(2\pi\sigma^2) + \frac{1}{2} \text{Tr}(\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\mathrm{T}}]) + \frac{1}{2\sigma^2} \|\mathbf{x}_n - \boldsymbol{\mu}\|^2 - \frac{1}{\sigma^2} \mathbb{E}[\mathbf{z}_n]^{\mathrm{T}} \mathbf{W}^{\mathrm{T}}(\mathbf{x}_n - \boldsymbol{\mu}) + \frac{1}{2\sigma^2} \text{Tr}(\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\mathrm{T}}] \mathbf{W}^{\mathrm{T}} \mathbf{W}) \right\}$$

EM ALGORITHM FOR PCA

In the ${\rm E}$ step we use the old parameter values to evaluate

$$\mathbb{E}[\mathbf{z}_n] = \mathbf{M}^{-1}\mathbf{W}^{\mathrm{T}}(\mathbf{x}_n - \overline{\mathbf{x}})$$

$$\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\mathrm{T}}] = \text{cov}[\mathbf{z}_n] + \mathbb{E}[\mathbf{z}_n]\mathbb{E}[\mathbf{z}_n]^{\mathrm{T}}$$

In the M step we maximize w.r.t. W and σ^2 :

$$\mathbf{W}_{\text{new}} = \left[\sum_{n=1}^{N} (\mathbf{x}_{n} - \overline{\mathbf{x}}) \mathbb{E}[\mathbf{z}_{n}]^{\text{T}} \right] \left[\sum_{n=1}^{N} \mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\text{T}}] \right]^{-1}$$

$$\sigma_{\text{new}}^{2} = \frac{1}{ND} \sum_{n=1}^{N} \{ \|\mathbf{x}_{n} - \overline{\mathbf{x}}\|^{2} - 2\mathbb{E}[\mathbf{z}_{n}]^{\text{T}} \mathbf{W}_{\text{new}}^{\text{T}} (\mathbf{x}_{n} - \overline{\mathbf{x}}) + \text{Tr} \left(\mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\text{T}}] \mathbf{W}_{\text{new}}^{\text{T}} \mathbf{W}_{\text{new}} \right)$$

EM vs. MLE

- benefit of the iterative EM algorithm for PCA: computational efficiency for large-scale applications
- \bullet PCA: $O(D^3)$ for an eigendecomposition or $O(MD^2)$ if we need the first M eigenvectors
- However, we need $O(ND^2)$ to calculate the covariance matrix. In case of EM algorithm we need only O(NDM) steps which is better than $O(ND^2)$ for $D\gg M$
- We can do EM incrementally
- Probabilistic PCA can deal with missing values by marginalizing over the distribution over unobserved variables

EFFECTIVE NUMBER OF PARAMETERS

- Probabilistic PCA: visualization of 100 data points.
- Left: the posterior mean projections of the data points on the principal subspace.
- ullet Right: is obtained by first randomly omitting 30% of the variable values and then using EM to handle the missing values

CONTINUOUS LATENT VARIABLES

- 2 PRINCIPAL COMPONENT ANALYSIS
- ③ PROBABILISTIC PCA
- Bayesian PCA

28/31 BURNAEV BML

PCA MODEL SELECTION

- How to select M?
- We need to marginalize out the model parameters ${m \mu},\,{f W}$ and σ^2
- Here we consider a simpler approach: evidence approximation
- ullet lpha governs which latent dimensions should be pruned

PCA MODEL SELECTION

 We use ARD prior (Automatic Relevance Determination) that allows surplus dimensions in the principal subspace to be pruned out of the model

$$p(\mathbf{W}|\alpha) = \prod_{i=1}^{M} \left(\frac{\alpha_i}{2\pi}\right)^{D/2} \exp\left\{-\frac{1}{2}\alpha_i \mathbf{w}_i^{\mathrm{T}} \mathbf{w}_i\right\}$$

• The values of α_i are re-estimated during training by maximizing the log marginal likelihood given by

$$p(\mathbf{X}|\boldsymbol{\alpha}, \boldsymbol{\mu}, \sigma^2) = \int p(\mathbf{X}|\mathbf{W}, \boldsymbol{\mu}, \sigma^2) p(\mathbf{W}|\boldsymbol{\alpha}) d\mathbf{W}$$

Burnaev

PCA MODEL SELECTION

Since the integral is not tractable, we use the Laplace approximation and an iterative estimation algorithm:

- Initialize α_i
- Apply EM-algorithm to estimate W and σ^2 . The only change is to the M-step equation for W

$$\mathbf{W}_{\text{new}} = \left[\sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) \mathbb{E}[\mathbf{z}_n]^{\text{T}} \right] \left[\sum_{n=1}^{N} \mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\text{T}}] + \sigma^2 \mathbf{A} \right]^{-1},$$

- where $\mathbf{A} = \operatorname{diag}(\alpha_i)$. The value of $\boldsymbol{\mu}$ is given by the sample mean, as before
- Re-estimate α_i maximizing $p(\mathbf{X}|\boldsymbol{\alpha},\boldsymbol{\mu},\sigma^2)$:

$$\alpha_i^{\text{new}} = \frac{D}{\mathbf{w}_i^{\text{T}} \mathbf{w}_i}$$

— Usually we start from some $M \leq D-1$. If some α_i go to infinity we can delete the corresponding dimensions