همتواني دو مجموعه

تعریف Y (همتوانی دو مجموعه). دومجموعه X و Y را همتوان گویند هرگاه بین X و Y یک تناظر یک به یک $f: X \longrightarrow Y$ نشان می دهند.

مثال ۲. مجموعه های زیر با ۱ همتوان هستند.

.\

$$X = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}, \quad f : \mathbb{N} \longrightarrow X, \quad n \mapsto \frac{1}{n}.$$

۲.

$$Y = \left\{\frac{\mathsf{1}}{n^{\mathsf{T}} + \mathsf{1}} \mid n \in \mathbb{N}\right\}, \quad g: \mathbb{N} \longrightarrow Y, \quad n \mapsto \frac{\mathsf{1}}{n^{\mathsf{T}} + \mathsf{1}}.$$

- با توجه به دومثال فوق، می توانیم نگاشتهای دوسویی $g:\mathbb{N}\longrightarrow Y$ و $f^{-1}X\longrightarrow \mathbb{N}$ و را ترکیب کنیم و $X\sim Y$ با توجه به دوسویی $X\sim Y$ درا به دست آوریم. به این ترتیب $X\sim Y$
 - ۴. در جلسات قبل ملاحظه کردیم $\mathbb N$ با $\mathbb Z$ همتوان است.
 - ۵. یک واقعیت کمی نابدیهی این است که مجموعه اعداد ${\mathbb Q}$ با ${\mathbb N}$ همتوان است.

در درسهای بعدی با مثالهای نابدیهی تر بیشتری از مجموعهها همتوان آشنا خواهیم شد.

ج. آیا می توان از دو مثال اخیر نتیجه گرفت $\mathbb Q$ با $\mathbb Z$ همتوان است؟

مثال ۳. ا. مجموعه \mathbb{R} با (1,1) همتوان است.

$$(-1,1) \longrightarrow \mathbb{R}, \quad x \mapsto \tan\left(\frac{\pi x}{7}\right).$$

۲. مجموعه \mathbb{R} با مجموعه $(\infty, +\infty)$ همتوان است.

$$\mathbb{R} \longrightarrow (\circ, +\infty), \quad x \mapsto e^x.$$

(-1, 1) همتوان است؟ آیا می توان از دو مثال بالا نتیجه گرفت (-1, 1) با

مشاهده: فرض کنید x یک مجموعه دلخواه باشد.

(الف) می دانیم تابع $X \longrightarrow X$ یک تابع یک به یک و پوشا است. پس بنابرتعریف X با «خودش همتوان است.»

 $X \sim X$ ، یعنی نتیجه گرفتیم برای هر مجموعه $X \sim X$

 $g:X\longrightarrow Y$ وجود دارد. چون $g:X\longrightarrow Y$ وجود دارد و یک تابع دوسویی $g:X\longrightarrow Y$ وجود دارد. پس بنابرتعریف یک تابع و ورون آن، $g:Y\longrightarrow Y$ هم با دوسویی است. یعنی $g^{-1}:Y\longrightarrow X$ هم با $g^{-1}:Y\longrightarrow Y$ همتوان است. یعنی $g:X\longrightarrow Y$ همتوان باشد آنگاه $g:X\longrightarrow Y$ همتوان است. یعنی $g:X\longrightarrow Y$ نتیجه گرفتیم $g:X\longrightarrow Y$

(پ) فرض کنید $X\sim Y$. پس بنابرتعریف یک تابع دوسویی $f:X\longrightarrow Y$ وجود دارد. همچنین فرض کنید $Y\sim Y$. پس بنابرتعریف یک تابع دوسویی $g:Y\longrightarrow Z$ وجود دارد. بنابراین $g\circ f:X\longrightarrow Z$ یک تابع دوسویی است و درنتیجه X با X همتوان است. یعنی از $X\sim Z$ نتیجه گرفتیم $X\sim Z$ نتیجه گرفتیم $X\sim Z$

مشاهدات فوق را می توان اثباتی برای قضیه زیر دانست.

قضیه ۴. فرض کنیم Φ یک مجموعه از مجموعه هاست و رابطه $\mathcal R$ روی Φ به صورت

 $X \sim Y \iff$ با Y همتواناست X

تعریف می کنیم. آنگاه $\mathcal R$ یک رابطه هم ارزی روی Φ است.

به این ترتیب ملاحظه می شود رابطه «همتوانی» مجموعه Φ را به رده های هم ارزی افراز می کند و هر دو عضو از یک رده هم ارزی با همتوان هستند و هر دوعضو از دو رده هم ارزی متفاوت همتوان نیستند.

قضیه A. مجموعههای X,Y,Z و W با شرط می کنیم مفروضند. همچنین فرض می کنیم $g:Z\longrightarrow W$ و $f:X\longrightarrow Y$

اثبات. تابع h که به صورت زیر تعریف می شود

$$h(a) = \left\{ egin{array}{ll} f(a) & a \in X \end{array}
ight.$$
اگر $g(a) & a \in Z \end{array}$ اگر

 \square تابعی یک به یک و پوشاست. بنابراین $X \cup Z$ با $X \cup W$ در تناظری یک به یک قرار می گیرد.

 $\mathbb{N} = \mathbb{N}_e \cup \mathbb{N}_o \sim \{\circ, -1, -7, -7, -7, -7, \dots\} \cup \{1, 7, 7, 7, \dots\} = \{\circ, \pm 1, \pm 7, \pm 7, \pm 7, \pm 7, \dots\} = \mathbb{Z}$

 $X imes Z \sim Y imes W$ و $X \sim X$ و مجموعههایی با شرط $X \sim Y$ و مجموعههایی با شرط کنیم و نتیم و نتیم نتیم و نتیم

اثبات. چون $X\sim W$ پس یک تابع دوسویی $f:X\longrightarrow Y$ وجود دارد. چون $X\sim Y$ پس یک تابع دوسویی $g:Z\longrightarrow W$ وجود دارد. حال تابع $g:Z\longrightarrow W$

$$h: X \times Z \longrightarrow Y \times W$$

$$(x, z) \mapsto (f(x), g(z))$$

تابعی دوسویی است

مثال ۸. اگر $Y \sim X$ آنگاه $X \sim Y \times Y = Y^{\dagger}$. به استقرا می توان نشان داد

$$X^n = X \times X \times \cdots \times X \sim Y \times Y \times \cdots \times Y = Y^n$$

۲. می دانیم $\mathbb{Z} \sim \mathbb{N}$. پس بنابر قضیه فوق $\mathbb{Z} \times \mathbb{Z} \sim \mathbb{N} \times \mathbb{N}$.

آموختیم برای هر $k \in \mathbb{N}$ مجموعه \mathbb{N}_k مجموعه ای متناهی است. همچنین مجموعه \mathbb{N}_k یک مجموعه نامتناهی است. از طرف دیگر مجموعه های $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ نیز نامتناهی اند و شامل \mathbb{N} .

از این مشاهده می توان نتیجه گرفت ا کوچکترین مجموعه نامتناهی است؟ به عبارت دیگر هم مجموعه نامتناهی شامل ا است؟

پاسخ: بله. همان طور که در استدلال های پیش مشاهده کردیم، می توان از هر مجموعه نامتناهی X، یک دنباله $\{x_1, x_7, \}$ که اعضایش دو به دو متمایزد، از X استخراج کرد و این دنباله با $\{x_1, x_7, \}$ در تناظر یک به یک است. این مشاهده، زمینه ساز تعریف زیر می شود.

تعریف ۹. مجموعه $X \longrightarrow \mathbb{R}$ شمارای نامتناهی ایمیده می شود هرگاه یک تابع دوسویی $g: X \longrightarrow \mathbb{R}$ وجود داشته باشد. مجموعه شمارا، مجموعه ای است که یا متناهی باشد یا شمارای نامتناهی.

به این ترتیب منظور از شمردن عناصر یک مجموعه شمارا، پیدا کردن یک تابع دوسویی $f: X \longrightarrow \mathbb{N}_k$ به این ترتیب منظور از شمردن عناصر یک مجموعه شمارا، پیدا کردن یک تابع دوسویی $g: X \longrightarrow \mathbb{N}$ است.

مثال ۱۰. مجموعه جملات تصاعد هندسی $X = \{ \mathsf{T}^n \mid n \in \mathbb{N} \}$ یک مجموعه شمارای نامتناهی است زیرا تابع

$$f:\mathbb{N}\longrightarrow X$$

$$n\mapsto \mathbf{Y}^n$$

تابعی دوسویی است.

به طور کلی مجموعه جملات تصاعد هندسی با قدر نسبت q>0، یعنی $X=\{q^n\mid n\in\mathbb{N}\}\subset X$ یک مجموعه شمارای نامتناهی است. زیرا تابع

$$f:\mathbb{N}\longrightarrow X$$

$$n \mapsto q^n$$

[\]denumerable

تابعی دوسویی است.

۲. مجموعه جملات تصاعد حسابی $\{ \mathbb{N} \in \mathbb{N} \}$ یک مجموعه شمارای نامتناهی است. زیرا تابع

 $q: \mathbb{N} \longrightarrow \mathbb{N}$

 $n \mapsto r + r$

یک تابع دوسویی است. در نتیجه بنابر تعریف Y یک مجموعه شمارای نامتناهی است.

به طور کلی مجموعه جملات یک تصاعد حسابی با قدر نسبت n، یعنی برای هر دو عدد $a,b\in\mathbb{R}$ ، با $a,b\in\mathbb{R}$ مجموعه جملات یک تصاعد حسابی با قدر نسبت $a,b\in\mathbb{R}$ مجموعه $a,b\in\mathbb{R}$ یک مجموعه شمارای نامتناهی است.

۳. یک واقعیت مهم: مجموعه $\mathbb R$ نامتناهی است ولی «شمار $\mathbb R$ نیست.

قضیه ۱۱. هر زیر مجموعه یک مجموعه شمارای نامتناهی، شمارای نامتناهی است.

اثبات. فرض کنیم Y یک زیر مجموعه نامتناهی از مجموعه شمارای نامتناهی $X = \{x_1, x_7, \dots \}$ است. $x_n \in Y$ ناتهی است، پس می توان فرض کرد x_n ، کوچکترین اندیسی است که $x_n \in Y$ همینطور، فرض کنیم $x_n \in Y$ ناتهی باشد که $x_n \in Y - \{x_n\}$ نیز به همین ترتیب از مجموعه کنیم $x_n \in Y - \{x_n\}$ نیز به همین ترتیب از مجموعه کنیم $x_n \in Y - \{x_n\}$ نیز به همین ترتیب از مجموعه کنیم $x_n \in Y - \{x_n\}$ نیز به همین ترتیب از مجموعه نیز به همین ترتیب از مجموعه کنیم $x_n \in Y - \{x_n\}$ نیز به همین ترتیب از مجموعه کنیم $x_n \in Y - \{x_n\}$ نیز به همین ترتیب از مجموعه نیز کرد روی کنیم $x_n \in Y$ انتخاب شده است.

حال n_k را کوچکترین اندیسی می گیریم که $\{x_1,\dots,x_{n_{k-1}}\}$ حال $x_k\in Y-\{x_1,\dots,x_{n_{k-1}}\}$ عارت می گیریم که $\{x_k\in \mathbb{N}\}$ میشه یک $\{x_k\in \mathbb{N}\}$ محیشه یک $\{x_k\in \mathbb{N}\}$ وجود دارد.

به این ترتیب، یک تناظر یک به یک $Y:\mathbb{N}\longrightarrow Y$ به صورت $f(k)=x_{n_k}$ ساخته ایم. پس بنابر تعریف Y شمارای نامتناهی است.

نتیجه ۱۲. هر زیر مجموعه یک مجموعه شمارا، شماراست.

مثال ۱۳. ۱. مجموعه ©، یک مجموعه شمارای نامتناهی است.

در واقغ برای هر \mathbb{Q}_+ تابع f(p/q) = f(p/q) = f(p/q) یک تابع یک به یک از \mathbb{Q}_+ در \mathbb{Q}_+ است. بنابراین \mathbb{Q}_+ با یک زیر مجموعه \mathbb{Q}_+ در تناظر یک به یک است. پس \mathbb{Q}_+ شمارای نامتناهی است.

به همین ترتیب برای هر \mathbb{Q}_- هر تابع $\mathbb{Q}_- \to \mathbb{Q}_+$ تابع هر تابع یک تابع g(r/s) = 0 که با g(r/s) = 0 تعریف می شود، یک تابع یک به یک از \mathbb{Q}_- در \mathbb{Q}_+ است. در نتیجه

$$h(u/v) = \left\{ egin{array}{ll} u^{\mathsf{T}}v^{\mathsf{T}} & u/v \in \mathbb{Q}_{+} & \mathsf{J} \mathsf{N} \\ & & u/v = \circ & \mathsf{J} \mathsf{N} \\ & & u^{\mathsf{D}}v^{\mathsf{V}} & u/v \in \mathbb{Q}_{-} & \mathsf{J} \mathsf{N} \end{array}
ight.$$

سوال ۱۴. ا. نشان دهید تابع $f:(\circ,\infty)\longrightarrow (\circ,1)$ که به صورت $f(x)=\frac{x}{1+x}$ تعریف می شود، یک تابع دوسویی است. از این خاصیت چه نتیجه ای می توان گرفت؟

۲۰ نشان دهید تابع $g(x)=\frac{x}{1-x}$ که به صورت $g(x)=\frac{x}{1-x}$ تعریف می شود تابعی یک به یک و پوشاست. از این خاصیت چه نتیجه ای می توان گرفت؟

۳. با کمک دو تمرین اخیر نشان دهید (∞,∞) با مجموعه (-1,1) همتوان است.