

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:	-	(11) International Publication Number: VV 0 94/13032
A61L 27/00	A1	(43) International Publication Date: 21 July 1994 (21.07.94)
(21) International Application Number: PCT/GB (22) International Filing Date: 17 January 1994 ((30) Priority Data: 9300746.6 15 January 1993 (15.01.93)	17.01.9	DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
 (71) Applicant (for all designated States except US): UNIVOF SOUTHAMPTON [GB/GB]; Highfield, Sou SO9 5NH (GB). (72) Inventors; and (75) Inventors/Applicants (for US only): EVANS, Samu [GB/GB]; 94 Radcliffe Road, Northam, Southampt SO2 0PR (GB). GREGSON, Peter, John [GB/GB]; Way, Romsey, Hants SO51 7IZ (GB). (74) Agent: PENNANT, Pyers; Stevens, Hewlett & PSerjeants' Inn, Fleet Street, London EC4Y 1LL (GREGE) 	el, Lev ton, Ha 14 Bro Perkins,	rin nts ok
(54) Title: LOAD BEARING IMPLANTABLE PROSTI	ÆSIS	

(57) Abstract

A prosthesis comprises a load-bearing core and, bonded on or integral with a surface thereof, an interlayer of an organic polymeric material which interlayer has a shear modulus below that of the load-bearing core, and an outer layer of particles of a biocompatible material, the particles being adhesively bonded at the outer surface of the interlayer.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	DE	Ireland	NZ	New Zealand
BJ	Benin	П	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Кепуа	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Мовасо	TT	Trinidad and Tobago
ÐK	Denmark	MID	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	U2	Uzbekistan
FR	France	MIN	Mongolia	VN	Vict Nam
GA	Gabon		-		

30

Load bearing implantable prosthesis

This invention is concerned with a 5 prosthesis having a desirable combination of biological, chemical and mechanical properties. invention is particularly concerned with load-bearing structural implantable prostheses for humans or 10 mammals, e.g. for orthopaedic or dental or maxillofacial purposes. An example of such a loadbearing orthopaedic implantable prosthesis is a hip ioint.

U.S. Patent 4,202,055 (Battelle) describes a hip joint prosthesis in which the anchorage has a non-15 porous outer coating comprising calcium phosphate particles embedded in an epoxy adhesive. The calcium phosphate particles dissolve in vivo, creating an open-pore continuous network for ingrowth of bone. The problem which arises from the generally differing 20 mechanical characteristics of the core of the prosthesis, in comparison with the surrounding bone tissue, is not addressed.

In load bearing prostheses, such as for example replacement hip joints, the mechanical characteristics are substantially different from those of the bone which the prosthesis replaces, and this leads to an unnatural stress distribution in the vicinity of the implant. R. Shirandami and I. I. Esat describe (Journal of Biomedical Engineering, 1990, Vol. 12, January, pages 19-22) a prosthesis having a layered structure in which the outer layer has a lower tensile modulus (stiffness) than the core. treatment is mathematical, and the authors did not address the effect of the lower modulus layer on the 35 stresses across the interface between the implant and

10

15

25

30

35

host tissue. Furthermore the biological and chemical properties of the prosthesis are not discussed.

There have been difficulties in bonding bioactive coatings to metallic prosthesis cores. Plasma spraying has been used, but the resulting ceramic layer may be chemically degraded and is poorly bonded to the substrate.

L. M. Boulton et al. describe (Materials Letters 12, 1991, pages 1-6) an adhesively bonded hydroxyapatite coating, using a single part toughened epoxy adhesive, and hydroxyapatite granules embedded uniformly within the adhesive. After curing the adhesive, loose hydroxyapatite granules were removed from the surface using a high pressure water jet. Improved stress distribution, when compared with plasma-sprayed hydroxyapatite, was demonstrated.

 $\,$ EP 0 413 492 describes a prosthetic implant which is at least partially coated with demineralized bone powder.

US 5,047,054 describes prostheses in which the core is coated to provide a seal for the substrate. The effect of the coating on the mechanical performance of the implant is not mentioned.

In one aspect this invention provides prosthesis comprising a load-bearing core and, bonded on or integral with a surface thereof, an interlayer of an organic polymeric material which interlayer has a shear modulus below that of the load-bearing core, and an outer layer of particles of biocompatible material, the particles being adhesively bonded at the outer surface of the interlayer.

In another aspect, the invention provides a method of making a prosthesis, which method comprises providing a load-bearing core, applying to a surface thereof an organic polymeric material to form an interlayer thereon, and applying to the interlayer

10

15

20

25

30

35

particles of a biocompatible material under conditions to cause the particles to be adhesively bonded at the surface of the interlayer.

The nature of the load-bearing core is not material to the invention. Suitable for many purposes are metallic cores based on Co-Cr-Mo alloys, titanium alloys and stainless steel. Also suitable are polymeric materials, which may be unreinforced or reinforced e.g. with carbon or other fibres. Polymers which have been used include acetal, epoxy, polyether ether ketone, polyether sulphone, acrylic, and UHMW polyethylene. The core needs to have strength and stiffness properties sufficient to withstand the stresses to be encountered in vivo.

Bonded on or integral with a surface of the core is an interlayer of an organic polymeric material. This interlayer extends over the whole, or more usually over a part, of the surface of the core. The interlayer performs several functions:

- It has a lower shear modulus than the core, and as a result acts to spread the load when the prosthesis is under stress in vivo.
- It provides chemical protection for the surrounding tissues from the core.
- It acts as an interlayer onto which the surface layer is bonded.

The shear modulus of the interlayer is preferably 1-30 GPa, particularly 2-10 GPa.

The interlayer is preferably 0.1 to 10 mm, more particularly 0.2 to 1.0 mm, thick. Below these ranges, the interlayer may not be effective to spread the load and reduce damage to surrounding bone. Thicker layers provide no added advantage, and merely reduce the overall mechanical properties of the prosthesis. In a hip joint prosthesis, the thickness of the interlayer may vary from the proximal to the

distal regions.

10

The organic polymeric material of the interlayer may be any biocompatible thermoplastic or thermosetting polymer with adhesive properties. Suitable are those polymers noted above for use in the 5 core. Toughened epoxy resins are preferred. polymer may be applied to the core as a fluid coating. A viscosity adjuster, such as fumed silica, or other fine particulate material, may be included. biocompatible filler or reinforcement may also be provided, e.g. 1 to 50% by weight of hydroxyapatite particles having an average size in the range 0.1 to 20 um.

The outer layer of the prosthesis of this 15 invention comprises particles of biocompatible material, preferably but not necessarily inorganic. and an adhesive which bonds the particles to the interlayer. The particles are preferably 20 µm up to 2 mm, particularly 100 µm up to 1.0 mm, in diameter. 20 The particles may be bioinert ceramics such as alumina, but are preferably bioactive, meaning that they interact with living bone tissue. Preferred are calcium phosphate particles e.g. hydroxyapatite, whose chemical composition may vary depending on the 25 CaO:P₂O₅ ratio, or other bioactive materials e.g. fluoroapatite. These particles are preferably sintered and slightly porous. They may be coated with an organosilane, to improve their adhesion to the These particles are adhesively bonded to adhesive. the outer surface of the interlayer, preferably by 30 being at least partly embedded in the adhesive of the outer layer. The outer layer may not entirely overlie the interlayer.

The adhesive of the outer layer may be an organic polymeric material, the same as or different 35 to that of the interlayer. A toughened epoxy resin is preferred.

5

10

15

20

25

30

35

The outer layer thus comprises the particles of inorganic material and the adhesive in which they are bonded. Preferably the inorganic particles comprise at least 30% of the surface. Other bioactive materials, such as for example suitable proteins and antibiotics may be incorporated in the outer layer.

As described in the example below, we prefer to lay down the coating as two separate layers. The first applied or interlayer is a toughened one-part epoxy adhesive, which is unfilled but may contain a viscosity adjuster. The thickness of this layer is varied to provide the desired mechanical properties for the prosthesis. The second or outer layer comprises a toughened one-part epoxy adhesive which is filled with relatively fine (e.g. 1 µm) particles of a biocompatible material such as hydroxyapatite. The thickness of this outer layer is sufficient merely to bind and embed the subsequently applied larger particles.

When the load-bearing core is of metal, the interlayer overlies and is adhesively bonded to a surface of the core, which may be profiled or otherwise prepared for this purpose. When the core is of a polymeric material, then the transition from core to interlayer may be less clear-cut. The interlayer may be formed of the same organic polymeric material as the core. The desired differing shear modulus and other mechanical properties may be achieved by providing different levels of filler or reinforcement in the interlayer and in the core. The core and interlayer may be designed together to have functionally graded properties.

This invention also provides a method of making a prosthesis, which prosthesis is preferably but not necessarily a prosthesis as described above.

10

15

20

25

30

The method involves applying to a surface of a loadbearing prosthesis core an organic polymeric adhesive to form an interlayer of desired thickness thereon. This may then be partially or fully cured; viscosity may be arranged to be so high that the interlayer is not significantly penetrated by the subsequently applied bioactive material particles. Then particles of a biocompatible material are adhesively bonded to the outer surface of this interlayer. Slightly porous hydroxyapatite particles are preferred, but other materials such as fluoroapatite or tricalcium phosphate are possible alternatives. The particles may be sprinkled on to the adhesive of the outer layer or applied in a stream of air, or the prosthesis carrying the adhesive layer may be dipped in a bed of the particles.

The adhesive of the outer layer (and perhaps also the interlayer) is then cured, e.g. by heating. During curing, the adhesive penetrates the pores of the particles, thus reinforcing them.

Superficial particles are then removed, preferably together with the outer part of the base layer of particles and any adhesive which may be covering them. This removal may be effected by any appropriate mechanical treatment, but is preferably performed by bead blasting. This step results in a layer of strongly bonded half-particles with a large area of exposed hydroxyapatite or other bioactive material. These particles are reinforced by the adhesive which has penetrated into them during curing.

The following example illustrates the method and prosthesis of the invention.

20

25

30

35

EXAMPLES

EXAMPLE 1

A hip joint prosthesis of the Freeman design with a Ti-Al-V stem was used for this experiment. The stem had a bead blasted surface. To regions around the stem were applied two layers to form together a coating:

- a) The first layer (the interlayer) was of a one-part toughened epoxy heat curable resin sold by Permabond under the reference ESPP770. The adhesive contained 3.5% by weight of Cab-o-Sil fumed silica as a thickener. The resin was applied by spray or dipping to form a layer about 100 μm thick around the proximal part of the stem. The device was heated to 160°C for 20 minutes and allowed to cool.
 - b) The same epoxy resin was used, but the 3.5% by weight of fumed silica was replaced by 35% by weight of hydroxyapatite powder of 1 µm average diameter. This adhesive was applied by spraying or dipping to form a layer approximately 150 µm thick over the adhesive a).

While this surface layer was still fluid, a supply of hydroxyapatite particles of average size 250 μ m was poured over it. A monolayer of the particles adhered to the resin and sank into it as a result of surface tension effects, forming a layer at the surface of the interlayer. The prosthesis was then heated at 160°C for 70 minutes to cure the epoxy resin.

The coated prosthesis was then bead blasted with 100 to 150 μm glass beads at 140 kPa for 30 seconds. This had the effect of taking off the tops of the hydroxyapatite surface particles, together with any overlying adhesive, so that the remaining outer

15

30

surface was substantially formed of hydroxyapatite.

The following Examples 2, 3, 4, 5 and 6
demonstrate the improved properties of implant
materials coated according to the invention, over
conventional plasma sprayed coatings. In each case,
coatings were applied in the manner described in
Example 1. In some cases, comparative test specimens
were coated by plasma spray coating.

10 Example 2

Coatings applied to implant materials in the manner described in Example 1 were examined to assess the exposed hydroxyapatite after bead blasting. As shown in Figure 1, a substantial area of exposed hydroxyapatite was produced for a range of air pressures used.

- A represents bead blasting for 10 sec at 15° to the surface.
 - B represents bead blasting for 10 sec at 90° to the surface.
- 25 C represents bead blasting for 60 sec at 90° to the surface.

At an air pressure of 50 psi, all conditions produced a desired hydroxyapatite exposure of 30 - 50%. Without bead blasting the hydroxyapatite exposure was close to 0%.

Example 3

35 X-ray diffraction results for an adhesively bonded coating according to the invention and for a

20

conventional plasma sprayed coating are shown in Figures 2a and b respectively. The adhesive bonding process avoids the detrimental microstructural changes that result from plasma spraying, and which are visible at 29.5° and 31° .

Example 4

Rolls-Royce rotating bend fatigue tests were carried out in flowing, aerated Ringer's solution. Hourglass-shaped specimens of annealed Ti-6Al-4V alloy were coated with a conventional plasma-sprayed hydroxyapatite coating or with an adhesively bonded coating. Figure 3 shows S-N curves for each condition and clearly illustrates the improved performance of the adhesively coated specimens. In Figure 3:

- A. Conventional plasma sprayed coating;
- B. Adhesively bonded coating.

Uncoated specimens performed the same as B. It is apparent that plasma spraying has damaged the substrate, viz the lower curve A.

25 Example 5

A modified Boeing wedge cleavage test was carried out on adhesively bonded coatings to Ti-6Al-4V alloy, and on plasma-sprayed coatings. The tests were carried out in Ringer's solution at 37°C . Figure 4 shows the critical strain energy release rate G_{C} as a function of the slow crack growth rate da/dt. The adhesively bonded coating has a greater strength of adhesion.

35

30

10

15

Example 6

Axisymmetric finite element analysis was performed on the proximal femur. Figure 5 shows stress distribution in the femur, around the distal tip of a hip prosthesis in:

- A. Natural femur;
- B. Prosthesis according to the invention, with adhesively bonded coating;
- C. Conventional plasma sprayed prosthesis.

In B and C, a metal implant has been inserted to approximately two thirds of the way down the femur as shown. A downwards axial load of 5kN was applied and a bending movement to the left of 150 Nm was applied at the top.

The more natural stress distribution around the adhesively bonded coated prosthesis is evident.

20

25

30

35

CLAIMS

- A prosthesis comprising a load-bearing core and, bonded on or integral with a surface thereof, an interlayer of an organic polymeric material which interlayer has a shear modulus below that of the load-bearing core, and an outer layer of particles of a
- biocompatible material, the particles being adhesively bonded at the outer surface of the interlayer.
 - 2. A prosthesis as claimed in claim 1, wherein the interlayer is of an epoxy resin.
 - 3. A prosthesis as claimed in claim 1 or claim
- 15 2, wherein the interlayer is 0.1 10 mm thick.
 - 4. A prosthesis as claimed in any one of claims 1 to 3, wherein the biocompatible material is a bioactive material based on a calcium phosphate.
- 5. A prosthesis as claimed in any one of claims 1 to 4, wherein the particles are from 20 μm to 2 mm in diameter.
 - 6. A prosthesis claimed in any one of claims 1 to 5, wherein the particles are porous.
- A prosthesis as claimed in any one of claims 1 to 6, which is for an orthopaedic prosthesis.
 A method of making a prosthesis, which method comprises providing a load-bearing core, applying to a surface thereof an organic polymeric material to form an interlayer thereon, applying to
- 30 the interlayer a surface of particles of a biocompatible material under conditions to cause the particles to be adhesively bonded at the surface of the interlayer.
- A method as claimed in claim 8, wherein the
 prosthesis is as claimed in any one of claims 1 to 7.

PCT/GB94/00085

WO 94/15652

- 12 -

10. A method as claimed in claim 8 or claim 9, wherein, after curing the adhesive, the prosthesis is bead-blasted to remove parts of the inorganic particles on the surface.

Fig.2. **SUBSTITUTE SHEET**

SUBSTITUTE SHEET

WO 94/15652

3/3

CONTOUR VALUE 0.2000E+08 0.2600E+08 0.320GE+08 0.3800E+08 0.4400E+08 0.5000E+08 0.5600E+08 C. 6200E+08 0.6800E+08 0.7400E+08 0.8000E+08 0.8600E+08 Fig.5. C В Α

SUBSTITUTE SHEET

A. CLASSI	FICATION OF SUBJECT MATTER A61L27/00		
110 3	A0102/700		
A A	o International Patent Classification (IPC) or to both national classifi	cation and IPC	
	S SEARCHED	Caudii alia ii C	
	ocumentation searched (classification system followed by classification	on symbols)	
IPC 5	A61L		
Documentat	ion searched other than minimum documentation to the extent that s	ich documents are included in the fields se	arched
Document.			
	·		
Electronic d	ata base consulted during the international search (name of data base	and, where practical, search terms used)	
		•	
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
			1_4 7 0
X,P	DE,A,41 26 800 (W-D. MÜLLER) 11 F	ebruary	1-4,7,8
	see column 2, line 26 - line 33;	claims;	
	example 2		
x	EP,A,O 340 174 (G. CREMASCOLI S.P	.A) 2	1,2
	November 1989		
	see column 2, line 9 - line 53; c	1411115	
A	US,A,4 202 055 (H. HELMUT) 13 May	1980	
	cited in the application		
A	EP,A,O 159 036 (K. DRAENERT) 23 0	ctober	
	1985		
Fur	ther documents are listed in the continuation of box C.	Patent family members are listed	in annex.
* Special ca	ategories of cited documents:	To later document published after the int	ernational filing date
	nent defining the general state of the art which is not dered to be of particular relevance	or priority date and not in conflict we cited to understand the principle or the invention	neory underlying the
	document but published on or after the international	"X" document of particular relevance; the	t be considered to
'L' docum	nent which may throw doubts on priority claim(s) or	involve an inventive step when the de 'Y' document of particular relevance; the	ocument is taken alone
citatio	on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or	cannot be considered to involve an II document is combined with one or II	nore other such docu-
other	means ment published prior to the international filing date but	ments, such combination being obvious in the art.	ous to a person skilled
later	than the priority date claimed	*&* document member of the same patern Date of mailing of the international s	
Date of the	e actual completion of the international search		taren report
:	14 April 1994	2 5. 04. 94	
Name and	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	O THE WAR CHARL	- 0
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Cousins-Van Stee	1, L

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH

information on patent family members

Inter 3al Application No
PCT/GB 94/00085

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE-A-4126800	11-02-93	NONE	
EP-A-0340174	02-11-89	NONE	
US-A-4202055	13-05-80	DE-A- 2620907 CH-A- 613112 FR-A,B 2350827 GB-A- 1541793 NL-A- 7704660 SE-B- 424810 SE-A- 7705418	17-11-77 14-09-79 09-12-77 07-03-79 15-11-77 16-08-82 13-11-77
EP-A-0159036	23-10-85	DE-A- 3414924 DE-A- 3586438 JP-A- 61033660 US-A- 4713076	31-10-85 10-09-92 17-02-86 15-12-87

THIS PAGE BLANK (USPTO)