PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-016274

(43)Date of publication of application: 19:01.2001

(51)Int.CI.

H04L 12/66

G06F 13/00

G06F 13/12 G06F 17/60

H04L 29/06

(21)Application number: 2000-132851

(71)Applicant: HITACHI LTD

(22)Date of filing:

27.04.2000

(72)Inventor: WATABE YOSHIKUNI

SATO NOBLIHIKO KITAGAWA MAKOTO

HASHIMOTO TETSUYA

(30)Priority

Priority number: 11123508

Priority date: 30.04.1999

Priority country: JP

(54) INTER-SYSTEM LINKAGE SYSTEM AND METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To shorten the communication time of a memory through a hub or the response time until obtaining a response memory by performing path discrimination corresponding to a received message and directly transmitting the message without applying protocol conversion when a specified protocol online path is selected.

SOLUTION: A message transmitted from a sales shop system 203 is received by an adapter 220 and corresponding to that message, the adapter 220 determines which one of ordinary path, adapter online path and specified protocol online path is to be utilized. In this case, when it is determined the specified protocol online path is to be utilized for the message, the adapter 220 directly transmits that message to an adapter 270 and that message is received by the adapter 270. In this case, protocol conversion is not required and the adapter 270 transmits the received message to an accounting system 205. A response message is similarly returned through the specified protocol online path as well.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-16274 (P2001 - 16274A)

(43)公開日 平成13年1月19日(2001.1.19)

(51) Int.Cl. ⁷	識別記号	F I				テーマコード(参考)		
H 0 4 L 12/66			H 0 4	4 L 11/2	20		В	
G06F 13/00	353		G 0 (6 F 13/0	00		3 5 3 C	
13/12	3 5 Q			13/	12		350	
17/60	2 1 8			17/6	30		218	
,	240						240	
		審査請求	未請求	請求項の	数12	OL	(全 19 頁)	最終頁に続く
(21)出願番号 特願2000-132851(P2000-132851)		(71)	出願人 0	000051	08			

(22)出願日 平成12年4月27日(2000.4.27)

(31) 優先権主張番号 特願平11-123508

平成11年4月30日(1999.4.30) (32)優先日

(33)優先権主張国 日本(JP)

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 渡部 芳邦

神奈川県川崎市幸区鹿島田890番地 株式

会社日立製作所金融システム事業部内

(72)発明者 佐藤 信彦

神奈川県川崎市幸区鹿島田890番地 株式 会社日立製作所金融システム事業部内

(74)代理人 100075096

弁理士 作田 康夫

最終頁に続く

(54) 【発明の名称】 システム間連携システムおよび方法

(57) 【要約】

(修正有)

【課題】ハブ・アンド・スポーク方式のシステムではメ ッセージ通信の時間や応答メッセージを得るまでのレス ボンス時間が長くなるという問題があった。

【解決手段】第1の情報システムと第2の情報システム との間に介在して、それらを連携させて動作させるシス テム間連携システムにおいて、第1の情報システムから 送信されるメッセージに対し、第2の情報システムに渡 す経路として、特定プロトコル直結パスまたはそれ以外 のパスの何れかを、受け付けたメッセージに基づいて選 択する。第1の情報システムと第2の情報システムとが 同じプロトコルを使用するものである場合は、特定プロ トコル直結パスを選択し、プロトコル変換を施すことな く直接メッセージを転送する。そうでないときは、特定 プロトコル直結パス以外のパスを選択し、いったん連携 システム内のプロトコルに変換して転送する。

【特許請求の範囲】

【請求項1】任意の数の第1の情報システムと任意の数の第2の情報システムとの間に介在して、該第1の情報システムと第2の情報システムとを連携させて動作させるシステム間連携システムであって、

第1の情報システムから送信されるメッセージを受け付ける受け付け手段と、

第1の情報システムからのメッセージで使用しているプロトコルと連携システム内で使用しているプロトコルとの間でプロトコル変換を行なうプロトコル変換手段と、第1の情報システムからのメッセージを転送すべき送信先を取得する送信先取得手段と、

受け付けたメッセージを第2の情報システムに渡す経路 として、特定プロトコル直結パスまたはそれ以外のパス の何れかを、受け付けたメッセージに基づいて選択する パス判定手段と、

前記パス判定手段で特定プロトコル直結パスが選択されたときは、受け付けた第1の情報システムからのメッセージに対し前記プロトコル変換手段によるプロトコル変換を施すことなく前記送信先に送信し、前記パス判定手段でそれ以外のパスが選択されたときは、受け付けた第1の情報システムからのメッセージに対し前記プロトコル変換手段によるプロトコル変換を施して前記送信先に送信する手段とを備えたことを特徴とするシステム間連携システム。

【請求項2】任意の数の第1の情報システムと任意の数の第2の情報システムとの間に介在して、該第1の情報システムと第2の情報システムとを連携させて動作させるシステム間連携システムであって、

前記各第1の情報システムに対応する第1のアダプタ と、前記各第2の情報システムに対応する第2のアダプ タとを備え、

前記各第1のアダプタは、

第1の情報システムから送信されるメッセージを受け付ける受け付け手段と、

第1の情報システムからのメッセージで使用しているプロトコルと連携システム内で使用しているプロトコルとの間でプロトコル変換を行なうプロトコル変換手段と、第1の情報システムからのメッセージを転送すべき送信先を取得する送信先取得手段と、

受け付けたメッセージを第2の情報システムに渡す経路 として、特定プロトコル直結パスまたはそれ以外のパス の何れかを、受け付けたメッセージに基づいて選択する パス判定手段とを備え、

前記パス判定手段で特定プロトコル直結パスが選択されたときは、受け付けた第1の情報システムからのメッセージに対し前記プロトコル変換手段によるプロトコル変換を施すことなく前記送信先である第2のアダプタに送信し、前記第1のアダプタ内の前記パス判定手段でそれ以外のパスが選択されたときは、受け付けた第1の情報

システムからのメッセージに対し前記プロトコル変換手 段によるプロトコル変換を施して前記送信先に送信する ことを特徴とするシステム間連携システム。

【請求項3】任意の数の第1の情報システムと任意の数の第2の情報システムとの間に介在して、該第1の情報システムと第2の情報システムとを連携させて動作させるシステム間連携システムであって、

前記各第1の情報システムに対応する第1のアダプタと、与えられたメッセージにしたがって所定の複数の第2の情報システムにアクセスして一連の業務処理を実行させるフロー制御手段と、前記各第2の情報システムに対応する第2のアダプタとを備え、

前記各第1のアダプタは、

第1の情報システムから送信されるメッセージを受け付ける受け付け手段と、

受け付けたメッセージを第2の情報システムに渡す経路 として、特定プロトコル直結パスまたはそれ以外のパス の何れかを、受け付けたメッセージに基づいて選択する パス判定手段と、

第1の情報システムからのメッセージで使用しているプロトコルと連携システム内で使用しているプロトコルとの間でプロトコル変換を行なうプロトコル変換手段と、第1の情報システムからのメッセージを転送すべき送信先として、前記特定プロトコル直結パスが選択されたときは前記第2のアダプタを送信先とし、それ以外のパスが選択されたときは前記第2のアダプタまたは前記フロー制御手段を送信先とする送信先取得手段と、を備え、

前記パス判定手段で特定プロトコル直結パスが選択されたときは、受け付けた第1の情報システムからのメッセージに対し前記プロトコル変換手段によるプロトコル変換を施すことなく前記送信先である第2のアダプタに送信し、前記第1のアダプタ内の前記パス判定手段でそれ以外のパスが選択されたときは、受け付けた第1の情報システムからのメッセージに対し前記プロトコル変換手段によるプロトコル変換を施して前記送信先である第2のアダプタまたはフロー制御手段に送信することを特徴とするシステム間連携システム。

【請求項4】前記パス判定手段は、前記第1の情報システムと前記第2の情報システムとで同じプロトコルを使用しているとき、特定プロトコル直結パスを選択することを特徴とする請求項1から3の何れか1つに記載のシステム間連携システム。

【請求項5】前記特定プロトコル直結パス以外のパスが選択された場合、前記送信先取得手段は、前記受け付けたメッセージに対応して1つの第2の情報システムで処理するかまたは複数の第2の情報システムで処理するかを判定し、1つの第2の情報システムで処理するときは送信先として当該第2の情報システムに対応する第2のアダプタを指定し、複数の第2の情報システムで処理す

るときは送信先として前記フロー制御手段を指定することを特徴とする請求項3に記載のシステム間連携システム。

【請求項6】前記パス判定手段は、第1の情報システムからのメッセージ中に含まれる業務種別を抽出する業務種別抽出手段を持ち、業務種別に応じて使用するパスを選択することを特徴とする請求項1から5の何れか1つに記載のシステム間連携システム。

【請求項7】前記パス判定手段は、第1の情報システムからのメッセージから業務の優先度または重要度を抽出する優先度抽出手段を持ち、優先度または重要度の高いメッセージの場合は、高速に処理することができるパスを選択することを特徴とする請求項1から5の何れか1つに記載のシステム間連携システム。

【請求項8】前記パス判定手段は、第1の情報システムからのメッセージからユーザ情報を抽出するユーザ情報 抽出手段を持ち、メッセージ中のユーザ情報に応じて使用するパスを選択することを特徴とする請求項1から5の何れか1つに記載のシステム間連携システム。

【請求項9】請求項2および3に記載のシステム間連携システムにおいて、前記第一の情報システムは、前記第1のアダプタはメッセージを受け付ける第1の情報システムごちに使用するパスを設定し、どの第1の情報システムからメッセージを受け付けたかに応じて使用するパスを選択することを特徴とするシステム間連携システム。

【請求項10】前記第1の情報システムにおけるメッセージ形式と前記第2の情報システムにおけるメッセージ形式との間のメッセージ変換を行なうメッセージ変換手段を、さらに備えた請求項1から9の何れか1つに記載のシステム間連携システム。

【請求項11】任意の数の第1の情報システムと任意の数の第2の情報システムとの間に介在して、該第1の情報システムと第2の情報システムとを連携させて動作させるシステム間連携方法であって、

第1の情報システムから送信されるメッセージを受け付けるステップと、

受け付けたメッセージを第2の情報システムに渡す経路 として、特定プロトコル直結パスまたはそれ以外のパス の何れかを、受け付けたメッセージに基づいて選択する ステップと、

特定プロトコル直結パスが選択されたときには、プロトコル変換を施すことなく、前記受け付けたメッセージを直接前記第2の情報システム側に転送するステップと、特定プロトコル直結パス以外のパスが選択されたときには、前記第1の情報システムからのメッセージで使用しているプロトコルから連携システム内で使用しているプロトコルへとプロトコル変換を行なって転送するステップとを備えたことを特徴とするシステム間連携方法。

【請求項12】任意の数の第1の情報システムと任意の

数の第2の情報システムとの間に介在して、該第1の情報システムと第2の情報システムとを連携させて動作させるシステム間連携システムであって、前記各第1の情報システムに対応する第1のアダプタと、前記各第2の情報システムに対応する第2のアダプタとを備えた連携システムに適用する連携方法であって、

前記第1のアダプタにより、第1の情報システムから送信されるメッセージを受け付けるステップと、

受け付けたメッセージを第2の情報システムに渡す経路 として、特定プロトコル直結パスまたはそれ以外のパス の何れかを、受け付けたメッセージに基づいて選択する ステップと、

特定プロトコル直結パスが選択されたときは、受け付けた第1の情報システムからのメッセージに対しプロトコル変換を施すことなく送信先である第2のアダプタに送信するステップと、

特定プロトコル以外のパスが選択されたときは、受け付けた第1の情報システムからのメッセージに対し、第1の情報システムのプロトコルから連携システム内で使用しているプロトコルへとプロトコル変換を施し、該メッセージを転送すべき送信先を取得し、該メッセージを該送信先に転送するステップとを備えたことを特徴とするシステム間連携方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複数の情報システム間の機能連携を実現するシステム間連携システムおよび方法に関する。

[0002]

【従来の技術】従来より、各種の業務に対応した情報システムがそれぞれ個々に開発・運用されてきている。近年では、それら既存の情報システムを連携させることにより、さらに多種多様なサービスを実現する試みが為されている。

【0003】図10に、従来の情報システム間の連携の 一例を示す。営業店システム1001は営業店で各種の 営業業務を行なう際に使用するシステム、勘定系システ ム1002は銀行で金銭のやり取りに関するサービスを 行なう際に使用するシステム、投資信託系システム10 0.3 は証券会社で投資信託に関するサービスを行なう際 に使用するシステムとする。例えば、営業店システム1 001で発生した金銭の授受に対し、営業店システム1 001から勘定系システム1002にその情報を送信 し、所定の口座間でその金銭授受を自動的に行なうため には、営業店システム1001と勘定系システム100 2とを接続し連携して動作させるようにする必要があ る。また、インターネット・パンキング・システム10 ,04の導入により、各顧客がクライアント1005から インターネット1006を介してインターネット・パン キング・システム1004に接続し各種の銀行サービス

を受けるためには、インターネット・バンキング・システム1004と銀行の勘定系システム1002とを接続 し連携して動作させるようにする必要がある。

【0004】以上のように各情報システムを接続して連 携させる場合、従来は個別に対処していた。すなわち、 連携させたい情報システムを個別に変更(機能追加な ど) して連携できるようにしていた。しかし、情報シス テムの種類は多種多様であり、それらの接続の組み合わ せの数も非常に多い。したがって、連携させたいシステ ムを個別に変更する方式では、開発が面倒で、迅速・安 価な多様化が困難である。また、図10の勘定系システ ム1002のような他の複数のシステムと連携するシス テムが変更された場合、他システムへの影響が大きく、 システム間で整合性が取れなくなることも考えられる。 【0005】そこで、近年では各種の情報システムを経 路制御やメッセージの変換を行なう機能をもつコアとな るシステムに接続し、このコアとなるシステムを介して システム間を連携させる方式が提案されている。(本明 細書では、このような方式をハブ・アンド・スポークと 呼び、コアの部分をハブと呼ぶものとする。)図11 は、ハブ・アンド・スポークでの接続例を示す。ハブ1 101に、営業店システム1102、インターネット・ バンキング・システム1103、コール・センタ・シス テム1104、投資信託系システム1105、CRM (カスタマ・リレーションシップ・マネジメント) シス テム1106、および勘定系システム1107などが接 続されている。営業店システム1102、インターネッ ト・バンキング・システム1103、投資信託系システ ム1105、および勘定系システム1107は、図10 で説明した各システム1001~1004と同様のもの である。コール・センタ・システム1104は、例えば フリーダイヤル(登録商標)で顧客からかかってきた電 話をオペレータが受け、その顧客からの要求に応じて端 末を操作して各種の業務を行なう、いわゆるコール・セ ンタのシステムである。CRMシステム1106は、顧 客との関係を管理するシステムであり、例えば過去に顧 客が購入した商品がどのようなものであるかをDB(デ ータベース)に蓄積し、その購入状況に応じて最適な商 品を提案するなど、顧客との一対一の適切な関係を築く ための管理システムである。

【0006】これらの各システム1102~1107は、ハブ1101に接続することにより、お互いのシステムを意識することなく連携できる。例えば、営業店システム1102から他システムに業務を依頼するメッセージは、まずハブ1101に入力する。ハブ1101は、そのメッセージを送るべき相手先システムを判断し、その相手先システムに合わせたプロトコルおよびメッセージ形式に変換して、その相手先に送る。このように各システム間の差違をハブ1101が吸収するので、各システムはハブ1101に接続すれば連携が容易にな

る。新たなサービスを構築する場合、各システムは無変 更(あるいはユーザインターフェースなどに関する少な い変更)で、ハブ内に各システムを連携させる処理手順 を定義することにより、各システムの連携を容易に実現 できる。

【0007】例えば、投資信託を個人が購入するときは、通常、自分の普通預金口座から金を引き出し(勘定系システムでの金の引き出し)、それを投資信託系に預け入れる(投資信託系システムに金を送って投資信託を購入)という操作が必要になるが、そのような複数のシステムにまたがった処理を簡単にハブ中に定義でき、これにより営業店やインターネット経由での複合サービスを実現できる。システムの構成や連携のパターンを変更する場合も、ハブ中の定義を変更することにより対処することができ、1つのシステムの変更が他システムに影響することがほとんどない。

[8000]

【発明が解決しようとする課題】ところで、上述したような従来のハブでは、どのようなメッセージを入力した場合でも、ハブ内で経路判定しプロトコル変換およびメッセージ変換を施して相手先のシステムに転送する。したがって、メッセージ通信の時間や応答メッセージを得るまでのレスポンス時間が長くなるという問題があった。

【0009】本発明は、複数の情報システム間の機能連携を実現するハブ・アンド・スポークのシステムにおいて、ハブを経由するメッセージの通信時間や応答メッセージを得るまでのレスポンス時間を短くすることを目的とする。

[0010]

【課題を解決するための手段】上記目的を達成するた め、本発明は、任意の数の第1の情報システムと任意の 数の第2の情報システムとの間に介在して、該第1の情 報システムと第2の情報システムとを連携させて動作さ せるシステム間連携システムであって、第1の情報シス テムから送信されるメッセージを受け付ける受け付け手 段と、第1の情報システムからのメッセージで使用して いるプロトコルと連携システム内で使用しているプロト コルとの間でプロトコル変換を行なうプロトコル変換手 段と、第1の情報システムからのメッセージを転送すべ き送信先を取得する送信先取得手段と、受け付けたメッ セージを第2の情報システムに渡す経路として、特定プ ロトコル直結パスまたはそれ以外のパスの何れかを、受 け付けたメッセージに基づいて選択するパス判定手段 と、前記パス判定手段で特定プロトコル直結パスが選択 されたときは、受け付けた第1の情報システムからのメ ッセージに対し前記プロトコル変換手段によるプロトコ ル変換を施すことなく前記送信先に送信し、前記パス判 定手段でそれ以外のパスが選択されたときは、受け付け た第1の情報システムからのメッセージに対し前記プロ

トコル変換手段によるプロトコル変換を施して前記送信 先に送信する手段とを備えたことを特徴とする。

【0011】また本発明は、任意の数の第1の情報シス テムと任意の数の第2の情報システムとの間に介在し て、該第1の情報システムと第2の情報システムとを連 携させて動作させるシステム間連携システムであって、 前記各第1の情報システムに対応する第1のアダプタ と、前記各第2の情報システムに対応する第2のアダプ タとを備え、前記各第1のアダプタは、第1の情報シス テムから送信されるメッセージを受け付ける受け付け手 段と、第1の情報システムからのメッセージで使用して いるプロトコルと連携システム内で使用しているプロト コルとの間でプロトコル変換を行なうプロトコル変換手 段と、第1の情報システムからのメッセージを転送すべ き送信先を取得する送信先取得手段と、受け付けたメッ セージを第2の情報システムに渡す経路として、特定プ ロトコル直結パスまたはそれ以外のパスの何れかを、受 け付けたメッセージに基づいて選択するパス判定手段と を備え、前記パス判定手段で特定プロトコル直結パスが 選択されたときは、受け付けた第1の情報システムから のメッセージに対し前記プロトコル変換手段によるプロ トコル変換を施すことなく前記送信先である第2のアダ プタに送信し、前記第1のアダプタ内の前記パス判定手 段でそれ以外のパスが選択されたときは、受け付けた第 1の情報システムからのメッセージに対し前記プロトコ ル変換手段によるプロトコル変換を施して前記送信先に 送信することを特徴とする。

【0012】また本発明は、任意の数の第1の情報シス テムと任意の数の第2の情報システムとの間に介在し て、該第1の情報システムと第2の情報システムとを連 携させて動作させるシステム間連携システムであって、 前記各第1の情報システムに対応する第1のアダプタ と、与えられたメッセージにしたがって所定の複数の第 2の情報システムにアクセスして一連の業務処理を実行 させるフロー制御手段と、前記各第2の情報システムに 対応する第2のアダプタとを備え、前記各第1のアダプ 夕は、第1の情報システムから送信されるメッセージを 受け付ける受け付け手段と、受け付けたメッセージを第 2の情報システムに渡す経路として、特定プロトコル直 結パスまたはそれ以外のパスの何れかを、受け付けたメ ッセージに基づいて選択するパス判定手段と、第1の情 報システムからのメッセージで使用しているプロトコル と連携システム内で使用しているプロトコルとの間でプ ロトコル変換を行なうプロトコル変換手段と、第1の情 報システムからのメッセージを転送すべき送信先とし て、前記特定プロトコル直結パスが選択されたときは前 記第2のアダブタを送信先とし、それ以外のパスが選択 されたときは前記第2のアダプタまたは前記フロー制御 手段を送信先とする送信先取得手段と、を備え、前記パ

ス判定手段で特定プロトコル直結パスが選択されたとき

は、受け付けた第1の情報システムからのメッセージに対し前記プロトコル変換手段によるプロトコル変換を施すことなく前記送信先である第2のアダプタに送信し、前記第1のアダプタ内の前記パス判定手段でそれ以外のパスが選択されたときは、受け付けた第1の情報システムからのメッセージに対し前記プロトコル変換手段によるプロトコル変換を施して前記送信先である第2のアダプタまたはフロー制御手段に送信することを特徴とする。

【0013】さらに本発明は、前記パス判定手段は、前 記第1の情報システムと前記第2の情報システムとで同 じプロトコルを使用しているとき、特定プロトコル直結 パスを選択することを特徴とする。また、前記特定プロ トコル直結パス以外のパスが選択された場合、前記送信 先取得手段は、前記受け付けたメッセージに対応して1 つの第2の情報システムで処理するかまたは複数の第2 の情報システムで処理するかを判定し、1つの第2の情 報システムで処理するときは送信先として当該第2の情 報システムに対応する第2のアダプタを指定し、複数の 第2の情報システムで処理するときは送信先として前記 フロー制御手段を指定することを特徴とする。また、前 記第1の情報システムにおけるメッセージ形式と前記第 2の情報システムにおけるメッセージ形式との間のメッ セージ変換を行なうメッセージ変換手段を、さらに備え たことを特徴とする。

【0014】本発明は、任意の数の第1の情報システム と任意の数の第2の情報システムとの間に介在して、該 第1の情報システムと第2の情報システムとを連携させ て動作させるシステム間連携方法であって、第1の情報 システムから送信されるメッセージを受け付けるステッ プと、受け付けたメッセージを第2の情報システムに渡 す経路として、特定プロトコル直結パスまたはそれ以外 のパスの何れかを、受け付けたメッセージに基づいて選 択するステップと、特定プロトコル直結パスが選択され たときには、プロトコル変換を施すことなく、前記受け 付けたメッセージを直接前記第2の情報システム側に転 送するステップと、特定プロトコル直結パス以外のパス が選択されたときには、前記第1の情報システムからの メッセージで使用しているプロトコルから連携システム 内で使用しているプロトコルへとプロトコル変換を行な って転送するステップとを備えたことを特徴とする。

【0015】また本発明は、任意の数の第1の情報システムと任意の数の第2の情報システムとの間に介在して、該第1の情報システムと第2の情報システムとを連携させて動作させるシステム間連携システムであって、前記各第1の情報システムに対応する第1のアダプタと、前記各第2の情報システムに対応する第2のアダプタとを備えた連携システムに適用する連携方法であって、前記第1のアダプタにより、第1の情報システムから送信されるメッセージを受け付けるステップと、受け

付けたメッセージを第2の情報システムに渡す経路として、特定プロトコル直結パスまたはそれ以外のパスの何れかを、受け付けたメッセージに基づいて選択するステップと、特定プロトコル直結パスが選択されたときは、受け付けた第1の情報システムからのメッセージに対しブタに送信するステップと、特定プロトコル以外のパスが選択されたときは、受け付けた第1の情報システムが選択されたときは、受け付けた第1の情報システムからのメッセージに対し、第1の情報システムのプロトコルの連携システム内で使用しているプロトコルへとプロトコル変換を施し、該メッセージを転送するステップとを備えたことを特徴とする。

[0016]

【発明の実施の形態】以下、図面を用いて本発明の実施 の形態を説明する。

【0017】図1は、本発明を適用した実施の形態であるハブ・アンド・スポーク・システムの概要を示す。クライアント側の情報システムとして、営業店システム111、インターネット・バンキング・システム112、およびコール・センタ・システム113が、ハブ100に接続されている。サーバ側の情報システムとして、勘定系システム121、CRMシステム122、および投資信託系システム121、CRMシステム122、および投資信託系システム123が、ハブ100に接続されている。これらの各システム111~113、121~123は、従来技術の欄で説明したのと同様の各業務を行なう情報システムである。

【0018】ハブ100は、クライアント側アダプタ101、サービス・ファインダ102、フロー制御AP103、およびサーバ側アダプタ104を備える。これら各部は、分散オブジェクト環境を提供するCORBA

(Common Object Request Broker Architecture—CORBAは Object Management Group が提唱する分散処理環境アーキテクチャの名称である) 仕様の通信制御手段105を介して基本的に相互にメッセージを交換する。特に、本システムでは、通信制御手段105を介さずにアダプタ101と104間でメッセージをやり取りするパスを備えていることを特徴とするが、それについては後述する。

【0019】クライアント側アダプタ101は、各クライアント側システムに対応して設けられ、クライアント側システムとの間のチャネルI/F(インターフェース)制御、各クライアント側システムのプロトコルとハブ内のCORBA仕様のプロトコルとの間のプロトコル変換、および各クライアント側システムのメッセージ形式とそのメッセージの送り先であるサーバ側システムのメッセージ形式との間のメッセージ変換などの機能を備える。

【0020】サーバ側アダプタ104は、各サーバ側システムに対応して設けられ、サーバ側システムとの間の

サーバ I / F制御、ラッパを利用したレガシー・システムへの接続、各サーバ側システムのプロトコルとハブ内のCORBA仕様のプロトコルとの間のプロトコル変換、および各サーバ側システムのメッセージ形式との間のメッセージ変換などの機能を備える。

【0021】サービス・ファインダ102は、メッセージ・ルーティング情報を管理する。

【0022】例えば、クライアント側アダプタ101やフロー制御AP103で受信したメッセージをどこに送信するか、その送信先を取得するときに、サービス・ファインダ102に問い合わせる。フロー制御AP103は、ワーク管理を利用した複合サービスを提供する。すなわち、クライアント側アダプタ101で受信したメッセージに対応して、複数のサーバで連携した処理を行なう場合に、どのサーバ側アダプタ104にどのような順でメッセージを送信するか、その流れをフロー制御AP103で制御する。

【0023】図2は、ハブ・アンド・スポーク・システ ムの実行環境の概要であり、図1のシステム概要のうち ハブ100の構成をさらに詳細に記載したものである。 図2では、ハブ200に、クライアント側システムとし て営業店システム203とテラー端末204が接続さ れ、サーバ側システムとして勘定系システム205と投 資信託系システム206が接続されている。これらのシ ステム203~206は、図1で説明したクライアント 側システムおよびサーバ側システムと同様のものであ る。テラー端末204は、いわゆる窓口端末であり、営 業店窓口やコール・センタなどでオペレータが顧客の要 求に応じて各種の情報を入力する端末である。ハブ20 0には、別拠点のハブ201や202が接続されてい る。ここではハブ200に接続されている情報システム 間の連携について説明するが、ハブ201,202に接 続されている情報システムとの間の連携も同様にして行 なえる。

【0024】マネージャ210は、ハブ200内の各部の運用管理、システム構成管理、およびログ取得指定制御などを行なう。

【0025】クライアント側システム203,204から送信されたメッセージは、ハブ200を介してサーバ側システム205,206に送信されるが、ハブ200内ではメッセージの経路(パス)として3つのパスを用意している。通常パス、アダプタ直結パス、および特定プロトコル直結パスの3つである。

【0026】通常パスについて説明する。アダプタ230は、テラー端末204に対応したアダプタである。テラー端末204から送信されたメッセージは、アダプタ230で受信される。アダプタ230は、テラー端末204からのメッセージを受信すると、3つのパスのうちどのパスを利用するかを当該メッセージに応じて決定する。ここでは、通常パスを利用するメッセージであった

とする。その場合、アダプタ230は、プロトコル変換 機能231により当該メッセージのプロトコルをハブ内 部のプロトコルに変換し、送信先取得(宛先問い合わ せ)機能232によりサービス・ファインダ250にそ のメッセージをどこに送信するか送信先を問い合わせ る。ファインダ250は、ハブ200内のアダプタ22 0,230,270,280およびフロー制御AP26 0の構成情報やメッセージ送付先システムの管理情報な どを管理している。通常パスの場合、ファインダ250 は、メッセージをフロー制御AP260に送信すること を指示する。アダプタ230は、それを受けて、必要に 応じてメッセージ変換機能233によりメッセージ変換 を行ない、ハブ内メッセージ送受信機能234により当 該メッセージをフロー制御AP260に送信する。メッ セージ変換を行なう場合は、共通サービス240のメッ セージ変換エンジン241やコード変換エンジン242 を利用する。また、ハブ200内での処理については、 ログ取得機能243により、処理履歴がログとして記録 される。

【0027】フロー制御AP260は、受け取ったメッ セージに応じて、幾つかのサーバ側システムを決められ た流れにしたがって順にアクセスし、当該メッセージに 応じた処理を行なう。どのサーバ側システムをアクセス するかは、ファインダ250に問い合わせてその管理情 報を利用して決定する。ここでは、まず勘定系システム 205にアクセスして所定の処理を行ない(261)、 次に投資信託系システム206にアクセスして所定の処 理を行なう(262)ものとする。勘定系システム20 5へのアクセス(261)では、勘定系システム205 に対応するアダプタ270に所定のメッセージを送り、 それに対する応答メッセージを得る。その後、投資信託 系システム206へのアクセス(262)では、投資信 託系システム206に対応するアダプタ280に所定の メッセージを送り、それに対する応答メッセージを得 る。得られた応答メッセージは、必要に応じて加工し、 フロー制御AP260から元のアダプタ230に返す。 アダプタ230は、プロトコル変換やメッセージ変換な どの必要な処理を行なって、対応するテラー端末204 に応答メッセージを返す。

【0028】勘定系システム205へのアクセス処理(261)によりフロー制御AP260から送信されたメッセージは、勘定系システム205に対応するアダブタ270のハブ内メッセージ送受信機能274により受信される。アダブタ270は、プロトコル変換機能271により当該メッセージのプロトコルをハブ内部のプロトコルから勘定系システム205のプロトコルに変換し、必要に応じてメッセージ変換機能273によりメッセージ変換を行ない、当該メッセージを勘定系システム205に送信する。勘定系システム205は、受信したメッセージに応じて所定の業務処理を行ない、応答メッ

セージを作成してアダプタ270に返す。アダプタ27 0は、当該応答メッセージを受信し、プロトコル変換機能271により当該応答メッセージのプロトコルをハブ内部のプロトコルに変換し、送信先取得機能272によりファインダ250に当該応答メッセージをどこに送信するか送信先を問い合わせる。ここでは送信先はフロー制御AP260である。アダプタ270は、必要に応じてメッセージ変換機能273によりメッセージ変換を行ない、送受信機能274により要求発行元であるフロー制御AP260に応答メッセージを送る。

【0029】投資信託系システム206へのアクセス処理(262)で送信されたメッセージは、投資信託系システム206に対応するアダプタ280で受信される。アダプタ280での処理は、アダプタ270と同様であるので、説明は省略する。

【0030】以上のように、通常パスでは、クライアント側システムから発行されたメッセージに対し、クライアント側アダプタでプロトコル変換などの必要な変換を施し、フロー制御APに渡し、フロー制御APが所定の流れでサーバ側アダプタ経由でサーバ側システムにアクセスして業務処理を進めていく。クライアント側およびサーバ側のアダプタとフロー制御APとの間のメッセージの送受信は、ハブ内のプロトコル(CORBA仕様)で行なわれる。

【0031】次に、アダプタ直結パスについて説明する。上記通常パスでは、フロー制御APで複数のサーバを連携させた処理を行なうことができる。しかし、フロー制御を必要としない場合は、フロー制御APを介することなく、アダプタ直結パスにより、クライアント側アダプタから直接サーバ側アダプタにメッセージを送ることができる。以下では、営業店システム203から勘定系システム205にメッセージを送る場合を例にしてアダプタ直結パスについて説明する。営業店システム203で用いているプロトコルと勘定系システム205で用いているプロトコルは異なるものとする。

【0032】アダプタ220は、営業店システム203 に対応したアダプタである。営業店システム203から 送信されたメッセージは、アダプタ220で受信され る。アダプタ220は、営業店システム203からのパステム203からのパスのうちどのパスを利用するかを当該メッセージに応じて決定する。ここでは、アダプタ直結パスを利用するメッセージであったとする。その場合、アダプタ220は、プロトコルをハブロトコルに変換し、送信先取得(宛先問い合わせ)のプロトコルに変換し、送信先取得(宛先問い合わせ)とこに送信するか送信先を問い合わせる。アダプタを当該メッセージをどこに送信するか送信先を問い合わせる。アダプタを追送パスの場合、ファインダ250は、メッセージを直送のべきサーバ側システムのアダプタを当該メッセージの送信先として返す。ここでは、送信先として勘定系シス テム205のアダプタ270が指示されたとする。アダプタ220は、それを受けて、必要に応じてメッセージ変換機能223によりメッセージ変換を行ない、ハブ内メッセージ送受信機能224により当該メッセージを勘定系システム205に対応するアダプタ270に送る。アダプタ270の処理は、通常パスで説明したのと同様である。ただし、応答メッセージは、アダプタ270からアダプタ220に直接返される。図2の矢印291、292は、アダプタ直結パスでのメッセージの直接のやり取りを示す。

【0033】以上のように、アダプタ直結パスでは、ク ライアント側アダプタから発行されたメッセージが直接 サーバ側アダプタに送信され、フロー制御AP260を 経由しない。したがって、通常パスより通信速度が速く レスポンスも速い。なお、上述のアダプタ直結パスで は、クライアント側アダプタ220でクライアント側シ ステム203のプロトコルからハブ内のプロトコル (C ORBA仕様)に変換し、サーバ側アダプタ270でハ ブ内のプロトコルからサーバ側システム205のプロト コルに変換している。そのようなプロトコル変換を行な う代わりに、クライアント側アダプタ220でクライア ント側システム203のプロトコルからサーバ側システ ム205のプロトコルに変換して、ハブ内のプロトコル を介することなくメッセージを直接送ってもよい。これ により、ハブ内のプロトコルを介さない分だけ高速な通 信が行なえる。

【0034】次に、特定プロトコル直結パスについて説明する。上記アダプタ直結パスでは、クライアント側のプロトコルとサーバ側のプロトコルが異なるため、プロトコル変換が必須であった。しかし、クライアント側のプロトコルとサーバ側のプロトコルが同じ場合は、プロトコル変換を行なうことなく、特定プロトコル直結パスにより、クライアント側アダプタから直接サーバ側アダプタにメッセージを送ることができる。以下では、営業店システム203から勘定系システム205にメッセージを送る場合を例にして特定プロトコル直結パスについて説明する。営業店システム203で用いているプロトコルと勘定系システム205で用いているプロトコルと勘定系システム205で用いているプロトコルは同じであるものとする。

【0035】営業店システム203から送信されたメッセージは、アダプタ220で受信される。アダプタ22 0は、営業店システム203からのメッセージを受信すると、3つのパスのうちどのパスを利用するかを当該メッセージに応じて決定する。

【0036】ここでは、特定プロトコル直結パスを利用するメッセージであったとする。その場合、アダプタ220は直接アダプタ270に当該メッセージを送信し、アダプタ270で当該メッセージを受信する。プロトコル変換は不要であり、アダプタ270は、受信したメッセージを勘定系システム205に送信する。応答メッセ

ージも、同様にして特定プロトコル直結パスで返される.

【0037】以上のように、特定プロトコル直結パスでは、クライアント側アダプタから発行されたメッセージが直接サーバ側アダプタに送信され、プロトコル変換の必要もない。すなわち、CORBAでメッセージを交換するハブ内メッセージ送受信機能224,274を用いて通信するのではなく、営業店システム203および勘定系システム205で用いているプロトコルで直接通信する。したがって、アダプタ直結パスより通信速度が速くレスポンスも速い。なお、メッセージ変換は必要に応じてクライアント側アダプタ220またはサーバ側アダプタ270の何れかで行なえばよい。

【0038】図3は、図1および図2で説明した本実施 の形態におけるハブのシステム構成例を示す。ここで は、3台の計算機(ハブ・サーバ)301~303でハ ブを構成している。ハブ・サーバ301~303には、 それぞれ、OS (オペレーティング・システム) 31 1,321,331とCORBA(分散オブジェクト通 信ミドルウェア)312、322、332が実装されて いる。ハブ・サーバ301では、クライアント・プログ ラム313、クライアント側アダプタ・プログラム31 4、サーバ側アダプタ・プログラム315、およびサー バ・プログラム316が動作している。ハブ・サーバ3 02では、ファインダ・プログラム323、フロー制御 プログラム324、サーバ側アダプタ・プログラム32 5、およびサーバ・プログラム326が動作している。 ハブ・サーバ303では、共通サービス・プログラム3 33、クライアント側アダプタ・プログラム334、ク ライアント・プログラム335、およびサーバ・プログ ラム336が動作している。

【0039】 クライアント・プログラム313, 335は、図1や図2で説明したクライアント側システム(11-11-113, 203, 204)を実現するプログラムである。クライアント側アダプタ・プログラム314, 334は、図1や図2で説明したクライアント側アダプタ(101, 220, 230) を実現するプログラムである。サーバ側アダプタ・プログラム315, 325は、図1や図2で説明したサーバ側アダプタ(104, 270, 280) を実現するプログラムである。

【0040】サーバ・プログラム316, 326, 336は、図1や図2で説明したサーバ側システム(121~123, 205, 206)を実現するプログラムである。ファインダ・プログラム323は、図1や図2で説明したファインダ(102, 250)を実現するプログラムである。フロー制御プログラム324は、図1や図2で説明したフロー制御AP(103, 260)を実現するプログラムである。

【0041】共通サービス・プログラム333は、図2 で説明した共通サービス (240) を実現するプログラ ムである。

【0042】これらの各プログラムは、LAN(ローカル・エリア・ネットワーク)で接続された適当な台数の計算機上で動作し、複数の計算機でハブを構成する場合は、各計算機上でどのプログラムを動作させるかは任意である。さらに、各プログラムについてCORBA上で複数の計算機に機能分散してもよい。なお、クライアント・プログラム313,335とサーバ・プログラム316,326,336は、個々の業務処理を行なうプログラムであり、ハブ内に含まれるものではないが、ハブを構成する計算機内にクライアントやサーバを実装することもできるので、図3ではそのような例を示した。各クライアントおよびサーバは、特別なハードウェアを用いた固有の端末などを備えたものでもよい。

【0043】図4は、本実施の形態におけるアダプタの内部構成を示す。クライアント側アダプタとサーバ側アダプタは、同じ構成とする。図3に示したようにアダプタはハブを構成する任意の計算機上に実装される機能(プログラム)であり、図4ではその計算機の中央処理装置(CPU)401、ディスプレイ402、キーボード403、メモリ404、およびディスク装置407を図示した。

【0044】メモリ404上のアダプタを構成するプログラムは、アダプタ・プロトコル依存部プログラム(以下、単に依存部と呼ぶ)405とアダプタ・プロトコル非依存部プログラム(以下、単に非依存部と呼ぶ)406に分けられる。依存部405は、メッセージ受付部451、パス判定部452、およびプロトコル変換部453を備える。非依存部406は、宛先問い合わせ(送信先取得)部461、メッセージ変換部462、およびハプ内メッセージ送受信部463を備える。

【0045】依存部405のメッセージ受付部451は、このアダプタに対応するクライアント側あるいはサーバ側システムのプロトコルで発行されたメッセージの受付処理を行なう。パス判定部452は、受け付けたメッセージに応じて、パス判定ルール471に基づいて、通常パス、アダプタ直結パス、および特定プロトコル直結パスのうちの何れを利用するかを判定する。プロトコル変換部453(図2の221,231,271,281に対応)は、クライアント側あるいはサーバ側システムのプロトコルとハブ内のCORBA仕様のプロトコルとの間の変換を行なう。以上の各部451~453は、このアダプタに対応するクライアント側あるいはサーバ側システムのプロトコルに依存した処理が必要な部分である。

【0046】非依存部406の宛先問い合わせ部(図2の222,232,272,282に対応)461は、ファインダにメッセージの送信先を問い合わせる処理を行なう。メッセージ変換部462は、メッセージ変換ルール472に基づいて、クライアント側システムのメッ

セージ形式とサーバ側システムのメッセージ形式との間のメッセージ形式の変換を行なう。なお、メッセージ変換はクライアントとサーバとの間の任意の位置で行なえばよいから、メッセージ変換部462はクライアント側アダプタまたはサーバ側アダプタの何れか一方に備えれば充分である。

【0047】また、物理層での通信手順に加えてシステム間のメッセージ形式の変換をも含んで「プロトコル」と言う場合があるが、本実施の形態では「プロトコル」はメッセージ形式の変換を含まないものとする。ハプ内メッセージ送受信部463は、ハブ内でのCORBA仕様のプロトコルにしたがうメッセージの送受信を行なう。以上の各部461~463は、このアダプタに対応するクライアント側あるいはサーバ側システムのプロトコルに非依存な処理を行なう部分であり、CORBA上で動作する部分である。

【0048】なお、アダプタを実現する上記各部のプログラムは、別プロセスで実行されるように構成してもよいし、1つのプロセスで実行されるように構成してもよい。

【0049】図5は、3つのパスの説明図である。

【0050】図5(a)は、特定プロトコル直結パスで のメッセージの流れを示す。上述したようにクライアン ト側システムとサーバ側システムとが同じプロトコルを 使用している場合は、特定プロトコル直結パスによりメ ッセージを送受信する。すなわち、クライアント側シス テム511から発行されたメッセージは、クライアント 側アダプタ512内のメッセージ受付部513 (図4の 451) で受信され、パス判定部514 (図4の45 2) でパス判定される。この場合、特定プロトコル直結 パスと判定され、パス判定部514から直接サーバ側ア ダプタ515に送信され、アダプタ515からサーバ側 システム516に送信される。この一連のメッセージの 送受信は、クライアントとサーバのプロトコルで実行さ れ、アダプタ512,515では依存部(図4の40 5) 内のプログラムのみ使用する。依存部内のプロトコ ル変換部や、非依存部内の宛先問い合わせ部、メッセー ジ変換部、およびハブ内メッセージ送受信部は使用しな い。したがって、非常に高速にメッセージの送受信を行 なうことができる。なお、メッセージ変換が必要な場合 は、アダプタ512または515の何れかで行なえばよ 61

【0051】図5(b)は、アダプタ直結パスでのメッセージの流れを示す。上述したようにクライアント側システムとサーバ側システムとが異なるプロトコルを使用しているが、フロー制御は必要でない場合は、アダプタ直結パスによりメッセージを送受信する。すなわち、クライアント側システム521から発行されたメッセージは、クライアント側アダプタ522内のメッセージ受付部523(図4の451)で受信され、パス判定部52

4 (図4の452) でパス判定される。この場合、アダプタ直結パスと判定されるので、プロトコル変換部525 (図4の453) でハブ内のプロトコルに変換し、宛先問い合わせ部526 (図4の461) で送信先がアダプタ528であることを知り、必要に応じてメッセージ変換部527 (図4の462) でメッセージ変換して、サーバ側アダプタ528に送る。

【0052】アダプタ528では、メッセージに対しプロトコル変換などの必要な処理を施してサーバ側システム529に送信する。アダプタ522と528の間にはフロー制御処理が介在しないので、通常パスよりも高速にメッセージの送受信を行なうことができる。

【0053】図5(c)は、通常パスでのメッセージの流れを示す。通常パスでは、クライアント側アダプタ532内のメッセージの流れは、図5(b)のアダプタ直結パスのアダプタ522と同様である。ただし、パス判定部534では通常パスと判定され、宛先問い合わせ部536で取得する送信先はフロー制御AP538になる。フロー制御AP538は、メッセージに応じて、アダプタ539を介してサーバ540にアクセスし、その後、アダプタ540を介してサーバ542にアクセスする、というように複数のサーバを連携させた処理を行なう。

【0054】図6は、クライアント側アダプタの処理フ ローを示す。ステップ601でクライアント側システム からメッセージを受け付けると、ステップ602でその メッセージの種別を取得する。ステップ603では、パ ス判定情報を取得する。これは、図4のパス判定ルール 471を参照すると言うことである。次に、ステップ6 04で、特定プロトコル直結パス用メッセージであるか 否か判定する。特定プロトコル直結パス用メッセージで ないときは、ステップ605でハブ内で使用しているC ORBA仕様のプロトコルに変換し、ステップ606で ファインダに送信先を問い合わせる。ファインダから送 信先を取得したら、ステップ607で当該メッセージを その送信先に送信して、処理終了する。なお、クライア ント側アダプタでは、送信先がアダプタ直結パスのサー バ側アダプタであるか通常パスのフロー制御APである かを意識することなく、どちらでも処理は変わらない。 ファインダから取得した送信先に送信する処理を行なう だけである。ステップ604で特定プロトコル直結パス 用メッセージであると判定されたときは、ステップ60 8で、特定プロトコル直結パスでメッセージ送信し、処 理を終了する。

【0055】図7は、特定プロトコル直結パス経由でメッセージを受信するサーバ側アダプタの処理フローを示す。ステップ701でメッセージを受信する。これは、クライアントやサーバ固有のプロトコルである特定プロトコルに依存する処理を行なう依存部(図4の405)でメッセージを受信するものである。ステップ702

で、依存部は、特定プロトコルで当該メッセージをサーバ側システムに送信する。サーバ側システムから業務処理の結果の応答メッセージが返答されたら、ステップ703でその応答メッセージを受信する。ステップ704で、依存部は、当該応答メッセージを呼び出し元のクライアント側アダプタに返し、処理を終了する。なお、図7ではメッセージ変換を行なわない場合を示したが、メッセージ変換が必要なときは図7の処理中で行なうようにしてもよい。

【0056】図8は、アダプタ直結パスまたは通常パス経由でメッセージを受信するサーバ側アダプタの処理フローを示す。ステップ801でメッセージを受信する。これは、ハブ内で使用されているCORBA仕様のプロトコルでメッセージを受信する処理であり、図4の非依存部406のハブ内メッセージ送受信部463によるメッセージの受信である。次にステップ802で、メッセージ変換が必要か否か判別する。必要な場合は、ステップ804で、メッセージ変換を行なう。次に、(図4の405)に渡す。ステップ805で、依存部は、サーバに固有のプロトコルに変換して当該メッセージをサーバ側システムに送信する。サーバ側システムから業務処理の結果の応答メッセージが返答されたら、ステップ806でその応答メッセージを受信する。

【0057】ステップ807でその応答メッセージをハブ内のCORBA仕様のプロトコルに変換し、ステップ808で当該応答メッセージを呼び出し元のクライアント側アダプタに返し、処理を終了する。なお、応答メッセージについても、必要に応じてメッセージ変換を行なってもよい。

【0058】図9は、本実施の形態で授受されるメッセージの例を示す。メッセージは、制御情報901、業務コード902、および業務固有情報903を備えている。制御情報901は、当該メッセージの送り元および送り先の情報、あるいはデータ長や形式などを表す制御情報である。業務コード902は、どのような業務を依頼するメッセージであるかを示すコード情報である。業務固有情報903は、依頼する業務に固有の各種の情報である。

【0059】上記図6のクライアント側アダブタの処理フローにおいて、ステップ604のパス判定は、例えば図9の制御情報901や業務コード902に基づいて行なう。図12はパス判定の処理フロー例を示す。ステップ1201で、メッセージ中から、制御情報901および業務コード902が「投信申込」であるかどうかを調べ、そうである場合は、ステップ1208で通常パスを判定結果とする。そうでない場合はステップ1203で、業務コード902が「普通預金預入れ」か「普通預金引出」であるかどうかを調べる。どちらでもない場合は、

ステップ1207で対応するパスが見つからなかったと判定する。業務コード902が「普通預金預入れ」か「普通預金引出」のどちらかである場合は、ステップ1204で送り元と送り先が同一プロトコルであるかどうかを調べる。同一プロトコルである場合は、ステップ1205で特定プロトコル直結パスが選択され、同一プロトコルでない場合はステップ1206でアダプタ直結パスを選択する。

【0060】さらに、例えば業務コードが「普通預金預 け入れ」のときは業務固有情報としてその預け入れ金額 が設定されているので、その金額に応じてパス判定する ようなことが行なえる。例えば、金額が所定値より少な いときは特定プロトコル直結パスを用い、金額が所定値 以上のときは通常パスを用いてクライアント側に広告を 出したり顧客分析システムを連動させるシステムにもア クセスする、というようなことが行なえる。図13は預 金預入れ金額によるパス判定フローを示す。ステップ1 301で、メッセージ中の制御情報901および業務コ ード902を読み出す。ステップ1302で業務コード 902が「投信申込」であるかどうかを調べ、そうであ る場合は、ステップ1312で通常パスを判定結果とす る。ステップ1303で業務コードが「普通預金預入 れ」であるかどうかを調べ、そうである場合は、ステッ プ1304でメッセージ中の預入れ金額を読み出し、そ の金額とあらかじめ定めてあった所定値と比較する。金 額が所定値以上である場合はステップ1306で通常パ スが選択される。金額が所定値未満の場合は、ステップ 1308に進む。ステップ1303で業務コードが「普 通預金預入れ」でない場合は、ステップ1307で業務 コードが「普通預金引出」であるかを調べる。「普通預 金引出」でない場合は、ステップ1311で、対応する パスが見つからなかったと判定する。「普通預金引出」 である場合は、ステップ1308で送り元と送り先が同 ープロトコルであるかを判定する。同一プロトコルであ る場合はステップ1309で特定プロトコル直結パスを 選択する。同一プロトコルでない場合はステップ131 0でアダプタ直結パスを選択する。

【0061】さらに、アダプタにアクセスするチャネルの種類によって使用パスを変えることも可能である。この方法は、営業店の端末など特定のチャネルからの処理を特に高速に処理させたい場合に有効である。例えば、特定のチャネルからの処理のみを特定プロトコル直結パスを通るようにし、他のチャネルからの同じ要求は通常パスを通るようにすることができる。このようにすることで、特定プロトコル直結パスの負荷を下げることができるため、特定プロトコル直結パス上の処理をより高速に実行することができる。

【0062】図14はチャネル毎の使用パスを示すテーブルの例である。当該アダプタにより接続されているシステム1401のフィールドは、当該アダプタにアクセ

スするチャネルを示す。パス1402のフィールドは、 1401のフィールドで示されるチャネルからの要求 を、どのパスを用いて処理するかを示す。例えば、Au tomated Teller Machine用のアダ プタからの要求は、特定プロトコル直結パスで処理する ことを示している。

【0063】図15は、チャネルにより使用パスを変え る場合の処理フローを示す。ステップ1501で、アダ プタは図14に示すテーブルから要求を受けたチャネル に対応するパスを読み出す。例えば、Automate d Teller Machineから要求を受けたアダ プタは、図14のテーブルの1401のフィールドか 5. Automated Teller Machine に該当するレコードを取得し、パス1402フィールド の値を読み出す。ステップ1502で、パス1402の 値が特定プロトコル直結パスであるかどうかを調べ、そ うである場合はステップ1508で特定プロトコル直結 パスを選択する。特定プロトコル直結パスでない場合 は、ステップ1503でアダプタ直結パスであるかどう かを調べ、そうである場合はステップ1507でアダブ 夕直結パスを選択する。アダプタ直結パスでない場合 は、ステップ1504で通常パスであるかどうかを調 べ、そうである場合はステップ1507で通常パスを選 択し、そうでない場合はステップ1505で対応するパ スが見つからなかったと判定する。

【0064】さらに、ユーザ情報をパス判定ルールに用いることによって、特定の顧客からの処理を高速に処理することができる。例えば、優良顧客からの要求のみを特定プロトコル直結パスで処理することができる。図16はユーザ情報とパスの対応を示すテーブルの例である。ユーザ情報1601のフィールドは、ユーザの種別を示す。例えば、自行ユーザであるか、他行ユーザであるか、または高額所得者であるか等の種別を示す。パス1602のフィールドは、ユーザ種別毎の使用パスを示す。例えば自行ユーザは特定プロトコル直結パスを使用するように設定することができる。

【0065】図17はユーザ情報によって使用パスを変える場合の処理フローを示す。ステップ1701でメッセージ中のユーザ情報を読み出し、ユーザ種別を判定する。ステップ1702で図16のテーブルから、そのユーザ種別に対応するパスを読み出す。例えば、自行ユーザである場合は図16のテーブルのユーザ情報1601フィールドから自行ユーザに該当するレコードを取得し、パス1602の値を読み出す。ステップ1703でパス1602の値が特定プロトコル直結パスであるかどうかを調べ、そうである場合はステップ1609で特定プロトコル直結パスを選択する。特定プロトコル直結パスであるかどうかを調べ、そうである場合はステップ1708でアダプタ直結パスを選択する。アダプタ直結パスを選択する。アダプタ直結パスを選択する。アダプタ直結パスを選択する。アダプタ直結パスを選択する。アダプタ直結パスを選択する。アダプタ直結パスを選択する。アグプタ直結パスを選択する。アグプタ直結パスを選択する。アグプタ直結パスを選択する。アグプタ直結パスを選択する。アグプタ直結パスを選択する。アグプタ直結パスを選択する。アグプタ直続アス

でない場合は、ステップ1705で通常パスであるかどうかを調べ、そうである場合はステップ1707で通常パスを選択し、そうでない場合はステップ1706で対応するパスが見つからなかったと判定する。

【0066】このようなパス判定のルールは、図4のパス判定ルール471に設定しておく。

【0067】なお、通信制御手段でCORBA仕様を用いているが、これはアダプタ間の通信を制御できるものであればCORBAには限定しない。

[0068]

【発明の効果】以上説明したように、本発明によれば、受け付けたメッセージに応じてパス判定し、特定プロトコル直結パスが選択されたときには、プロトコル変換を施すことなく直接メッセージを送信するので、連携システムを経由するメッセージの通信時間や応答メッセージを得るまでのレスポンス時間を短くすることができる。

【図面の簡単な説明】

【図1】本発明の実施の形態であるハブ・アンド・スポーク・システムの概要図

【図2】ハブ・アンド・スポーク・システムの実行環境 の概要図

- 【図3】ハブのシステム構成例を示す図
- 【図4】アダプタの内部構成を示す図
- 【図5】3つのパスの説明図
- 【図6】クライアント側アダプタの処理フロー図
- 【図7】特定プロトコル直結パス経由でメッセージを受信するサーバ側アダプタの処理フロー図

【図8】アダプタ直結パスまたは通常パス経由でメッセージを受信するサーバ側アダプタの処理フロー図

【図9】本実施の形態で授受されるメッセージの例を示す図

【図10】従来の情報システム間の連携の一例を示す図 【図11】従来のハブ・アンド・スポークでの接続例を 示す図

【図12】業務コードおよびプロトコルによってパスを 判定する場合の処理フロー図

【図13】預金預入れ金額によってパスを判定する場合 の処理フロー図

【図14】接続システムと使用パスの対応の一例を示す 図

【図15】接続システムによってパスを判定する場合の 処理フロー図

【図16】ユーザ種別と使用パスの対応の一例を示す図 【図17】ユーザ種別によってパスを判定する場合の処 理フロー図

【符号の説明】

100…ハブ、111…営業店システム、112…インターネット・バンキング・システム、113…コール・センタ・システム、121…勘定系システム、122… CRMシステム、123…投資信託系システム、101 …クライアント側アダプタ、102…サービス・ファインダ、103…フロー制御AP、104…サーバ側アダプタ、105…CORBA。

【図1】

【図7】

図 7

図1

[図2]

【図3】

[図6]

図 3

図6

メッセージ例

【図4】

図4

【図5】

图 5

【図16】

【図8】

図8

アダプタの処理フロー (サーバ側) アダプタ直結パスまたは通常パスの場合

【図10】

.図10

[図11]

図11

1104

【図14】

図14

1401	1402				
当該アダプタにより接続されているシステム	パス				
Automated Teller Machine	特定プロトコル直結パス				
Computer Telephony Integration Server	アダプタ直結パス				
Teller Machine (Low Counter)	通常パス				
WWW Server	通常パス				
	•				

[図12]

【図13】

【図15】

【図17】

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコード(参考)

H 0 4 L 29/06

H 0 4 L 13/00

(72) 発明者 北川 誠

神奈川県川崎市幸区鹿島田890番地 株式 会社日立製作所ビジネスソリューション開 発本部内

(72)発明者 橋本 哲也

神奈川県川崎市幸区鹿島田890番地 株式 会社日立製作所ビジネスソリューション開 発本部内

305B