# Донейросетевые методы машинного перевода

Глазкова Екатерина, БПМИ152

#### Содержание

- Машинный и автоматизированный перевод
- Виды МП
  - Перевод на базе правил
  - Статистический МП
    - Модель перевода
    - Модель языка
    - Декодер
- Донейросетевой Яндекс Переводчик
- Метрики качества перевода
  - Word error rate
  - BLEU

## Машинный и автоматизированный перевод

#### Машинный перевод (Автоматический, Machine Translation, MT)

- Процесс перевода текстов специальной компьютерной программой
- Направление научных исследований

#### Автоматизированный перевод (Machine-Aided Translation, MAT)

- Процесс перевода осуществляется человеком, компьютер помогает перевести текст за меньшее время и с лучшим качеством
- Проверка правописания, компьютерные словари, индексаторы

#### Виды машинного перевода

- На основе правил (Rule-based machine translation RBMT)
- Статистический (Statistical machine translation SMT)
- Перевод на основе примеров (Example-Based EBMT)
- Нейронный (Neural Machine Translation NMT)
- Гибридный (Hybrid machine translation)

#### Треугольник Вокуа

#### Этапы перевода:

- Анализ исходного текста
  - Морфологический
  - Синтаксический
  - Семантический
  - Прагматический
- 2. «Перенос» на целевой язык
- 3. Формирование целевого текста





«Классический» треугольник Вокуа

#### Перевод на базе правил



plays violin .

play violin .

VERB NOUN PUNCT singular instrument

Object

- 1. Анализ исходного текста
  - Часть речи
  - Форма слова
  - Смысловая группа
- 2. «Перенос» на целевой язык



## Перевод на базе правил (продолжение)

Object



- 2. «Перенос» на целевой язык
- 3. Формирование целевого текста
- Порядок слов
- Согласование форм слов



### Статистический машинный перевод

- Разделение данных на блоки (слова/фразы)
- Перевод блока несколькими способами
- Выбор оптимального перевода

Interlingua

**Source Sentence** 

**Target Sentence** 

#### Статистический машинный перевод

#### Состоит из 3 частей:

- модель перевода
- модель языка
- декодер



Модель статистического МП на английский язык

#### Модель перевода



#### Модель перевода

- Таблица всевозможных переводов с указанием вероятности каждого
- Составляется для каждой пары языков
- Строится на параллельных текстах

## Построение модели перевода Выделение расположения слов



## Построение модели перевода Извлечение фраз





## Построение модели перевода Оценивание вероятности фраз

$$\phi(\overline{g_j}|\overline{e}) = \frac{count(\overline{e}, \overline{g_j})}{\sum_{\overline{g_i}} count(\overline{e}, \overline{g_i})}$$

 $\overline{e}$  - фраза на языке оригинала

 $\overline{g_i}$  - вариант фразы на языке таргета

#### Пример модели перевода

| English         | $\phi(ar{e} ar{f})$ | English         | $\phi(\bar{e} \bar{f})$ |
|-----------------|---------------------|-----------------|-------------------------|
| the proposal    | 0.6227              | the suggestions | 0.0114                  |
| 's proposal     | 0.1068              | the proposed    | 0.0114                  |
| a proposal      | 0.0341              | the motion      | 0.0091                  |
| the idea        | 0.0250              | the idea of     | 0.0091                  |
| this proposal   | 0.0227              | the proposal,   | 0.0068                  |
| proposal        | 0.0205              | its proposal    | 0.0068                  |
| of the proposal | 0.0159              | it              | 0.0068                  |
| the proposals   | 0.0159              |                 |                         |

Таблица перевода для немецкого слова den Vorschlag

#### Модель языка



#### Модель языка

- Частота использования фраз в языке
- Составляется для одного языка

• Учет порядка слов

```
p_{LM}(" the house is small ") > p_{LM}(" small the is house ")
```

• Учет особенностей синонимов

 $p_{LM}("I am going home") > p_{LM}("I am going house")$ 

#### Построение модели языка

Пусть W =  $w_1$ ,  $w_2$ ,...,  $w_n$  — строка Тогда

$$p(W) = p(w_1, w_2, \dots w_n) = p(w_1)p(w_2|w_1)p(w_3|w_1, w_2) \dots p(w_n|w_1, w_2, \dots, w_{n-1})$$

#### Для 2-Gram:

$$p(W) = p(w_1, w_2, \dots w_n) \simeq p(w_1)p(w_2|w_1)p(w_3|w_2) \dots p(w_n|w_{n-1})$$
$$p(w_2|w_1) = \frac{count(w_1, w_2)}{count(w_1)}$$

### Пример модели языка

| the green (total: 1748) |     |       |  |  |
|-------------------------|-----|-------|--|--|
| word                    | C.  | prob. |  |  |
| paper                   | 801 | 0.458 |  |  |
| group                   | 640 | 0.367 |  |  |
| light                   | 110 | 0.063 |  |  |
| party                   | 27  | 0.015 |  |  |
| ecu                     | 21  | 0.012 |  |  |

| the red (total. 223) |     |       |  |
|----------------------|-----|-------|--|
| word                 | C.  | prob. |  |
| cross                | 123 | 0.547 |  |
| tape                 | 31  | 0.138 |  |
| army                 | 9   | 0.040 |  |
| card                 | 7   | 0.031 |  |
| ,                    | 5   | 0.022 |  |

the red (total: 225)

| the blue (total: 54) |    |       |  |
|----------------------|----|-------|--|
| word                 | C. | prob. |  |
| box                  | 16 | 0.296 |  |
| •                    | 6  | 0.111 |  |
| flag                 | 6  | 0.111 |  |
| ,                    | 3  | 0.056 |  |
| angel                | 3  | 0.056 |  |

Модель языка при использовании 3-Gram

### Декодер



### Декодер

Решение задачи

$$e_{best} = argmax_e p(e|g) = argmax_e p(g|e)p_{LM}(e)$$

g – исходный текст

е – переведенный текст

p(e|g) – модель перевода

 $p_{LM}(e)$  — модель языка

### Донейросетевой Яндекс Переводчик

- 16 марта 2011 запуск сервиса статистического МП Яндекс.Перевод
- 14 сентября 2017 запуск гибридного переводчика
- Алгоритм:
  - Подбор всех вариантов перевода
  - Сортировка вариантов перевода
  - Оценка частоты употребления для всех вариантов с помощью модели языка
  - Выбор оптимального сочетания вероятности перевода и частоты употребления



#### Измерение качества перевода

Трудность: нет единственно правильного перевода

#### Виды метрик:

- Оценка вручную
  - смысл (Adequacy)
  - гладкость речи (Fluency)
- Автоматические метрики:
  - Word Error Rate
  - BLEU
- Task-based
  - Round-Trip Translation (source-> target -> source)
  - Объем постредактирования

#### Word Error Rate

• Редакционное расстояние Левенштейна, но для слов

$$WER = \frac{substitutions + insertions + deletions}{reference\_length}$$

## BLEU (bilingual evaluation understudy)

- Коррелирует с оцениванием перевода человеком
- Самая популярная и часто реализуемая метрика

$$BLEU = min\left(1, \frac{output\_length}{reference\_length}\right) \left(\prod_{i=1}^{n} precision_{i}\right)^{\frac{1}{n}}$$

n – максимальная длина учитываемых сочетаний слов

### Пример BLEU

Israeli officials responsibility of airport safety
2-GRAM MATCH 1-GRAM MATCH SYSTEM A:

Israeli officials are responsible for airport security REFERENCE:

airport security Israeli officials are responsible 4-GRAM MATCH SYSTEM B: 2-GRAM MATCH

| Metric            | System A | System B |
|-------------------|----------|----------|
| precision (1gram) | 3/6      | 6/6      |
| precision (2gram) | 1/5      | 4/5      |
| precision (3gram) | 0/4      | 2/4      |
| precision (4gram) | 0/3      | 1/3      |
| brevity penalty   | 6/7      | 6/7      |
| BLEU              | 0%       | 52%      |

#### Источники информации

- Philipp Koehn. Statistical Machine Translation. Cambridge University Press, 2009. 488 http://www.statmt.org/book/
- Philipp Koehn, Franz Josef Och, Daniel Marcu. Statistical Phrase-Based Translation, 2003, University of Southern California - <a href="https://www.isi.edu/~marcu/papers/phrases-hlt2003.pdf">https://www.isi.edu/~marcu/papers/phrases-hlt2003.pdf</a>
- Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a Method for Automatic Evaluation of Machine Translation. IBM T. J. Watson Research Center -<a href="http://www.aclweb.org/anthology/P02-1040.pdf">http://www.aclweb.org/anthology/P02-1040.pdf</a>
- Harold Somers. Round-Trip Translation: What Is It Good For? Manchester University, 2005 http://www.mt-archive.info/ALTW-2005-Somers.pdf
- Блог компании Systran <a href="http://blog.systransoft.com/how-does-neural-machine-translation-work">http://blog.systransoft.com/how-does-neural-machine-translation-work</a>
- Блог компании Яндекс <a href="https://yandex.ru/company/technologies/translation">https://yandex.ru/company/technologies/translation</a>
- Википедия