HUDK 4050:00 RE

Today	Diagnostics, Vectr Activity, Assignment 7, Catch up on Assignments 2-6
11/29	Visit from Vectr App team, Quantified Student
12/4	Quantified Student, Assignment 8 Group Work
12/6	Assignment 8 Group Work
12/11	Assignment 8 Groupwork (A7 Due) <u>Last in person class</u>
12/13	Assignment 8 Due - start watching and rating
12/18	Assignment 8 - finish watching and rating
12/20	EVERYTHING DUE - LAST CHANCE

Diagnostic Metrics

How to determine how well your model is doing

Diagnostic Metrics

Classification

- Accuracy
- Cohen's Kappa
- ROC/AUC/A'
- Correlation
- RMSE

Regression

- MAE/RMSE
- Pearson's
 Correlation/R²
- · AIC/BIC

Terms

- Ground truth: data that is available, relevant, and most trustworthy to train your model
- **Baseline**: initial measurement
- Gold standard: (expensive) comparative measurement

Inference: data that is inferred from logic + data

Diagnostics for Classifiers

Accuracy

correct predictions

total predictions

- Gotcha: unequal categories
- EG Predicting fraudulent credit card transactions
- False positives/negatives (over/ under predict)

Precision & Recall

True Positive

Precision =

True Positive + False Positive

True Positive

Recall

True Positive + False Negative

Precision & Recall

Precision

The fraction (probability) of predictions that are *relevant*

Recall

The fraction (probability) of relevant instances that are *predicted*

Cohen's Kappa (k)

- Traditionally used for inter-rater reliability
- We will use it to look at the reliability between the data and our model

$$p_o = (4 + 3)/12 = 0.58$$

 $p_e = (7/12) \times (6/12) + (5/12) \times (6/12) = 0.5$
 $\kappa = (0.58 - 0.5)/(1 - 0.5) = 0.16$

Is this good? Depends on the context

Gotchas with Kappa

- Again, rare categories pose a problem and will incur a higher penalty than common categories
- Does the marginal probability represent "chance"?

Probabilities

- Model assigns a probability of belonging to a class, rather than a class directly
- Then choose a probability threshold to assign to a class
- Allows us to choose a preference based on the consequences of false positives/negatives
- http://www.navan.name/roc/

Receiver Operating Characteristic (ROC)

- Relationship between the false positive and the true positive rates
- World War II for detecting enemy objects on radar in response to Pearl Harbor
- Demonstrates the sensitivity vs specificity tradeoff

Receiver Operating Characteristic (ROC)

Area Under the ROC Curve:

- AUC is the collapsed metric to compare models
- AUC is the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one
- It is equivalent to the Wilcoxon Sum-Rank
 Test and can therefore generate a probability
 test
- Is sometimes called A' (A Prime) depending on how it is calculated

Diagnostics for Regressors

Mean Absolute Error

Mean of observed values minus predicted values

$$MAE = \frac{\sum |x - \overline{x}|}{n}$$

Root Mean Squared Error

 Square root of the observed values minus predicted values squared

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (p_i - a_i)^2}{n}}$$

Pearson's Correlation

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

- Measure of the <u>linear</u> dependence between two variables
- Covariance between two variables divided by the product of the standard deviation of those variables
- Development began ~ 1880s by Galton and then Pearson
- · Gotcha: must be a linear relationship

- The proportion of the variance in the dependent variable that is predicted from the independent variable
- There are several ways to calculate R²
- If it involves two variables it is the square of the correlation (OLS classes will go more in depth)

Akaike Information Criterion (AIC)

AIC = number of parameters - goodness of fit

- Developed by Akaike in 1971 based on thermodynamics
- Relative estimate of the information lost when a given model is used to represent the process that generates the data
- Model with lowest AIC "wins"
- Represents the trade off between goodness-of-fit with model complexity
- It compares models, cannot give an estimate of model fit in an absolute sense
- Gatcha: Software implementation was not always reliable

Bayesian Information Criterion (BIC)

BIC = number of parameters x sample size - goodness of fit

- Developed by Schwarz in 1978
- Uses Bayes Theorem to penalize the addition of parameters
- Penalty for adding parameters is great than in AIC
- Represents the trade off between goodness-of-fit with model complexity
- Lowest BIC "wins"
- Gotcha: Does poorly when dealing with many parameters

Coursera Co-Founder Andrew Ng Wants to Bring 'Al to Everyone' in Latest Course EdSurge

Smarter Al—machine learning without negative data

November 26, 2018, RIKEN

Amazon opens its internal machine learning courses to all for free

The Future Of Learning? Well, It's Personal

