35 - Теорема Гаусса и теорема о циркуляции магнитного поля в веществе. Связь между векторами J , B и H .

Этот билет во многом ссылается на предыдущий

Теорема Гаусса и теорема о циркуляции магнитного поля в веществе

Теорема Гаусса для магнитного поля

Убеждаемся, что все осталось как было

Теорема Гаусса выражает фундаментальный факт отсутствия в природе магнитных зарядов и была выражена нами для токов проводимости:

$$\oint_S ec{B}_0 \cdot dec{S} = 0$$

Однако по из аналогичных соображений это же соотношение верно и для токов проводимости (силовые линии остаются замкнутыми)

$$\oint_{\mathcal{S}} ec{B}^{\,\prime} \cdot dec{S} = 0$$

А соответственно и сумма полей не даст нам потока отличного от нуля:

$$\oint_{S} \vec{B} \cdot d\vec{S} = \oint_{S} (\vec{B}_0 + \vec{B}') \cdot d\vec{S} = \oint_{S} \vec{B}_0 \cdot d\vec{S} + \oint_{S} \vec{B}' \cdot d\vec{S} = 0 + 0 = 0.$$

А вот для теоремы о циркуляции намечаются изменения

Теорема о циркуляции вектора В в веществе

В магнетиках, если есть внешнее поле, возникают токи намагничивания. То есть циркуляция теперь определяется не только токами проводимости I, но и токами намагничивания I_m :

$$\oint_{\Gamma} \vec{B} \cdot d\vec{l} = \mu_0 \cdot (I + I_m),$$

Появление токов проводимости делает эту теорему малополезной для нахождения \vec{B} (токи проводимости слишком сложно считать даже при наличии симметрий, получим диффуры)

Для решения проблемы введем циркуляцию вектора намагничивания:

$$\oint_{\Gamma} ec{J} \cdot dec{l} = I_m$$

Будем полагать, что циркуляция идет по одному и тому же контуру. Поделим обе части теоремы Гаусса на μ_0 , получим:

$$\oint_{\Gamma}rac{ec{B}}{\mu_0}\cdot dec{l} = I + I_m = I + \oint_{\Gamma}J\cdot dec{l}$$

Перенесем интегралы в одну часть и соберем:

$$\oint_{\Gamma} rac{ec{B}}{\mu_0} \cdot dec{l} - \oint_{\Gamma} ec{J} \cdot dec{l} = I \Rightarrow \oint_{\Gamma} \left(rac{ec{B}}{\mu_0} - ec{J}
ight)$$

Теперь назовем величину в скобках вектор напряжённости магнитного поля или просто вспомогательный вектор \vec{H} (важно понимать, что у нее нет глубокого философского или физического смысла - с ней просто считать проще). Размерность его впадает с размерностью намагниченности:

$$[H] = [J] = \frac{A}{M}$$

Теперь теорему Гаусса можно переписать в виде:

$$\oint_{\Gamma} ec{H} \cdot dec{l} = I$$

Циркуляция вектора H^{\rightarrow} по произвольному замкнутому контуру равна алгебраической сумме токов проводимости, охватываемых этим контуром – теорема о циркуляции магнитного поля в веществе (интегральная форма)

Знаки нового закона совпадают со знаками вектора \vec{B} .

по историческим причинам напряжённостью магнитного поля в веществе называют вектор \vec{H} , а вектор \vec{B} получил неудачное название магнитной индукции. Такая нерациональная терминология сложилась потому, что исторически учение о магнетизме развивалось по аналогии с электростатикой. Источниками магнитного поля считались магнитные заряды, а их, как было установлено позднее, в действительности не существует. Но, терминология осталась прежней

Найдем дифференциальную форму этой теоремы , уже знакомым по предыдущим билетам образом применив к ней формулу Стокса. Нужно это для расширения области

ее применимости:

е применимости:
$$\oint_{\Gamma} \vec{H} \cdot d\vec{l} = \int_{S_{\Gamma}} \operatorname{rot} \vec{H} \cdot d\vec{S} \, .$$

$$I = \int_{S_{\Gamma}} \vec{J} \cdot d\vec{S} \, .$$

$$\Rightarrow \int_{S_{\Gamma}} \operatorname{rot} \vec{H} \cdot d\vec{S} = \int_{S_{\Gamma}} \vec{J} \cdot d\vec{S} \, \implies \operatorname{rot} \vec{H} = \vec{J}$$

Связь Между векторами $\vec{J}, \vec{B},$ и \vec{H}

Слабые магнетики (диамагнетики и парамагнетики)

У диамагнетиков и парамагнетиков зависимость между векторами \vec{J} и \vec{H} :

$$ec{J} = \chi \cdot ec{H}$$

Где χ - магнитная восприимчивость вещества. (по факту просто перегонный коэффициент. Чистая математика)

В отличии от диэлектрической восприимчивости κ , χ бывает как положительной (для парамагнетиков), так и отрицательной (для диамагнетиков)

Для нахождения зависимости $ec{B}$ от $ec{H}$ произведем следующие преобразования:

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{J}.$$

$$\vec{B} = \mu_0 \cdot (\vec{H} + \vec{J}) = \mu_0 \cdot (\vec{H} + \chi \cdot \vec{H}) = \mu_0 \cdot (1 + \chi) \cdot \vec{H} \implies \vec{B} = \mu_0 \cdot \mu \cdot \vec{H},$$

Где μ - магнитная проницаемость среды: $\mu = 1 + \chi$. При чем у диамагнетиков и парамагнетиков μ не так и далеко от единицы:

диамагнетики: $\mu_{\rm H_2(ra3)} = 0.999937,$ $\mu_{\text{вода}} = 0,999987,$

> $\mu_{\text{30,000}} = 0,999963;$ $\mu_{\text{серебро}} = 0,999981,$

парамагнетики: $\mu_{\text{воздух(газ)}} = 1,000038$, $\mu_{\text{алюминий}} = 1,000023$, $\mu_{\text{платина}} = 1,000253$.

Сильные магнетики (ферромагнетики)

Зависимость \vec{J} от \vec{H} имеет сложный характер - она не линейна и зависит от предыстории. В общем и целом мы делали лабу по этой теме - дамы и господа - его величество гистрезис:

В общем случае если мы помрем нахрен находить поля \vec{B} , потому что $\vec{B} = \vec{B}_0 + \vec{B}'$, а искать \vec{B}' вы не найдете, так как она зависит от "конфигурации токов намагничивания". Не то, чтобы найти это нельзя, но это удовольствие, пожалуй, только для Дани: решение системы дифференциальных уравнений в частных производных

Единственный случай где останется жив кто-то кроме Дани - когда все поле \vec{B}_0 заполнено однородным и изотропным ферромагнетиком. Тогда поле просто увеличится в μ раз

Пример: магнитное поле бесконечного длинного соленоида, заполненного однородным изотропным магнетиком

Дано	Найти
R - радиус основания соленоида I - сила тока в проводе n - число витков провода на единицу длины соленоида μ - магнитная проницаемость магнетика ($\mu>1$)	B(r) внутри и снаружи

В силу симметрии задачи и однородности и изотропности магнетика вектор \vec{H} оказывается таким же, как и в вакууме - он однороден внутри бесконечного длинного соленоида и равен нулю вне его. Если кто-то понял, что имелось в виду и как они до этого дошли авторы - просьба написать мне в личку и пояснить

Для нахождения вектора Н воспользуемся:

$$\oint_{\Gamma} ec{H} \cdot dec{l} = I$$

возьмем прямоугольник 12341 как на рисунке и обойдем по часовой стрелке:

$$C_{\Gamma} = \oint_{\Gamma} \vec{H} \cdot d\vec{l} = \oint_{12341} \vec{H} \cdot d\vec{l} = \int_{1 \to 2} \underbrace{\vec{H} \cdot d\vec{l}}_{=0,} + \int_{2 \to 3} \underbrace{\vec{H}}_{=0} \cdot d\vec{l} + \int_{3 \to 4} \underbrace{\vec{H} \cdot d\vec{l}}_{=0,} + \int_{4 \to 1} \vec{H} \cdot d\vec{l} =$$

$$= \int_{4 \to 1} H_{41} \cdot d\vec{l} = H \cdot \int_{4 \to 1} d\vec{l} = H \cdot \vec{l}.$$

Протекающий ток найдем узнав, сколько витков соленоида мы пересекаем нашей вспомогательной площадкой:

$$I_{\Gamma} = N \cdot I = n \cdot l \cdot I$$

Ток при обходе по часовой получается положительным, следовательно:

$$H \cdot l = n \cdot l \cdot I \Rightarrow H = n \cdot I$$

Как уже было сказано, для ферромагнетика, который заполняет целиком внешнее поле. Магнитное поле увеличивается в μ раз - проверим же это:

$$B = \mu_0 \cdot \mu \cdot H = \mu \cdot \mu_0 \cdot n \cdot I = \mu \cdot B_0$$

Что и требовалось показать