Multinomial Logistic Regression

Zhen Trinh

Read in data

```
subjects.new <- read.csv("Data/subjects.new.csv")
train <- read.csv("Data/train.csv")
test <- read.csv("Data/test.csv")
validation <- read.csv("Data/validation.csv")</pre>
```

We will use the multinom() function from the nnet package to estimate multinomial logistic regression model because it does not require the data to be reshaped (as the mlogit package does).

Fit the model

```
library(nnet)
model.lr <- multinom(Activity ~., data = train)</pre>
```

Check model performance

```
# Apply the model on validation dataset
pred.lr <- predict(model.lr, validation)

# Load the caret package
library(caret)
library(e1071)

# Create a confusion matrix comparing the predicted and true activity types
confusionMatrix(pred.lr, validation$Activity)</pre>
```

Confusion Matrix and Statistics

Reference

```
Prediction L1 L10 L11 L12 L2
                                              L9
                             L4 L5
                                    L6 L7 L8
                          L3
     L1 620
              0 0
                    0
                        0
                              0
                                     0
                                               0
     L10 0 456 141 110
                        0
                           0
                              0
                                  0
                                     0
                                        0
                                            0
                                               0
     L11
          0 106 447
                   46
                        0
                           0
                              0
                                1
                                     0
                                        0
                                           0
                                               0
     L12
          0 36 13 48
                        0
                           0
                              0
                                0
                                               0
     L2
                    0 596
                           0
                                 23
          0
             0
                 0
                              4
                                     0
                                               0
     L3
                    0
                        0 634
                              0
                                 0
                                     0
                                          0
          0
              0
                 0
                                        0
                                               0
                           0 533 110
     L4
          0
             0
                 2 0
                        0
                                     2
                                       2
                                          0
                                               0
     L5
          0 0 1 0
                        0
                           0 65 350
                                     8 29 24
                                               0
     L6
          0 3 0 0
                        0
                             1 12 471 17
                                           69
                                               0
                           0
     L7
          0 0 0 0
                        0
                           0
                              0
                                 29
                                    29 593 20
                                               0
     L8
          0 1 0 1
                        0
                          0
                             2 41 29
                                               0
                                        7 566
     L9
                           0
```

Overall Statistics

Accuracy : 0.8577

95% CI : (0.8492, 0.8658)

No Information Rate : 0.0978 P-Value [Acc > NIR] : < 2.2e-16

 $\label{eq:Kappa: 0.844} {\tt Mcnemar's Test P-Value: NA}$

Statistics by Class:

	Class: L1	Class: L10	Class: L11	Class: L12	Class: L2
Sensitivity	1.00000	0.75748	0.74007	0.234146	1.00000
Specificity	0.99937	0.96041	0.97586	0.992727	0.99575
Pos Pred Value	0.99359	0.64498	0.74500	0.494845	0.95666
Neg Pred Value	1.00000	0.97658	0.97524	0.977064	1.00000
Prevalence	0.08931	0.08672	0.08701	0.029530	0.08585
Detection Rate	0.08931	0.06569	0.06439	0.006914	0.08585
Detection Prevalence	0.08989	0.10184	0.08643	0.013973	0.08974
Balanced Accuracy	0.99968	0.85894	0.85796	0.613437	0.99787
	Class: L3	Class: L4 (Class: L5 C	lass: L6 Cla	ass: L7
Sensitivity	1.00000	0.88099	0.61404	0.87384	0.91512
Specificity	1.00000	0.98169	0.98007	0.98407	0.98761
Pos Pred Value	1.00000	0.82126	0.73375	0.82199	0.88376
Neg Pred Value	1.00000	0.98856	0.96597	0.98932	0.99123
Prevalence	0.09133	0.08715	0.08211	0.07764	0.09334
Detection Rate	0.09133	0.07678	0.05042	0.06785	0.08542
Detection Prevalence	0.09133	0.09349	0.06871	0.08254	0.09666
Balanced Accuracy	1.00000	0.93134	0.79705	0.92896	0.95137
	Class: L8	Class: L9			
Sensitivity	0.83358	1.00000			
Specificity	0.98707	1.00000			
Pos Pred Value	0.87481	1.00000			
Neg Pred Value	0.98205	1.00000			
Prevalence	0.09781	0.09219			
Detection Rate	0.08153	0.09219			
Detection Prevalence	0.09320	0.09219			
Balanced Accuracy	0.91032	1.00000			

The 95% prediction interval for the model is (84.92%, 86.58%), we can tune the parameters to get a higher accuracy result.

10-fold cross validation

```
# Set train control using 10-fold cross validation
ctrl <- trainControl(method = "cv", number = 10, savePredictions = TRUE)

# set seed to obtrain reproducible result
set.seed(7)

# Set up tuning parameters for multinomial logistic regression model</pre>
```

```
m.lr <- train(Activity ~., data = rbind(train, validation), method = 'multinom',</pre>
              trControl = ctrl, tuneLength = 5)
# Examine the result of 10-fold cross validation
m.lr
Penalized Multinomial Regression
28195 samples
   8 predictor
   12 classes: 'L1', 'L10', 'L11', 'L12', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'L9'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 25377, 25374, 25375, 25376, 25376, 25376, ...
Resampling results across tuning parameters:
  decay Accuracy
                    Kappa
  0e+00 0.8541591 0.8402171
  1e-04 0.8551169 0.8412656
  1e-03 0.8549394 0.8410734
  1e-02 0.8549747 0.8411051
  1e-01 0.8540526 0.8400996
Accuracy was used to select the optimal model using the largest value.
```

As the footnote describes, the model with the largest accuracy was selected. This was the model that used a penalized multinomial regression with decay = 0. However, the accuracy did not improve much as compared to the previous model.

Apply tuned model on unseen test data

The final value used for the model was decay = 1e-04.

```
# Make prediction
p.lr <- predict(m.lr, test)
confusionMatrix(p.lr, test$Activity)</pre>
```

Confusion Matrix and Statistics

Reference

```
Prediction L1 L10 L11 L12 L2
                              L3
                                  L4 L5
                                         L6
                                            L7
                                                 L8 L9
      L1 611
                                          0
                                                  0
                                                      0
                0
                    0
                       0
                           0
                               0
                                       4
                                              0
                                   1
      L10
           0 496 108 85
                           0
                               0
                                   0
                                       1
                                          0
                                                  0
                                                      0
      L11
            0 106 468
                      44
                           0
                               0
                                   0
                                       0
                                          0
                                              0
                                                      0
      L12
               21
                  17
                      48
                           0
                               0
                                                      0
      L2
                0
                       0 611
                               0
                                   6
                                      19
                                          0
                                                  0
                                                      0
            0
                   0
                                              0
      L3
                0
                    0
                       0
                           0 568
                                   0
                                       0
                                          0
                                                      0
            0
      L4
                0
                       0
                               0 553 107
                                                      0
            0
                   1
                           0
                                          1
                                              0
                                                 0
      L5
            0
                0
                   1 0
                           0
                               0
                                  59 368
                                         14 20 13
                                                      0
      L6
            0
                   0 0
                           0
                                   0
                                     20 545
                                                 80
                                                      0
               1
                               0
                                             15
      L7
            0
               2
                   0 0
                           0
                               0
                                   1
                                      34
                                         35 575
                                                 24
                                                      0
      L8
              0
                   0
                       2
                           0
                               0
                                              3 529
            0
                                  1 64
                                         40
                                                      0
      L9
               2
                   0
                           0
                               0
                                   0
                                      0
                                          0
                                              0
                                                  0 654
```

Overall Statistics

Accuracy : 0.8634

95% CI : (0.8552, 0.8714)

No Information Rate : 0.0937 P-Value [Acc > NIR] : < 2.2e-16

 $\label{eq:Kappa:0.8503} \texttt{Mcnemar's Test P-Value: NA}$

Statistics by Class:

	Class: L1	Class: L10	Class: L11	Class: L12	Class: L2
Sensitivity	1.00000	0.78981	0.78655	0.266667	1.00000
Specificity	0.99921	0.96945	0.97650	0.994411	0.99607
Pos Pred Value	0.99188	0.71884	0.75728	0.558140	0.96069
Neg Pred Value	1.00000	0.97901	0.98003	0.980850	1.00000
Prevalence	0.08755	0.08998	0.08526	0.025792	0.08755
Detection Rate	0.08755	0.07107	0.06706	0.006878	0.08755
Detection Prevalence	0.08826	0.09887	0.08855	0.012323	0.09113
Balanced Accuracy	0.99961	0.87963	0.88153	0.630539	0.99804
	Class: L3	Class: L4 0	Class: L5 Cl	lass: L6 Cl	ass: L7
Sensitivity	1.00000	0.89050	0.59643	0.85827	0.93801
Specificity	1.00000	0.98286	0.98318	0.98172	0.98492
Pos Pred Value	1.00000	0.83535	0.77474	0.82451	0.85693
Neg Pred Value	1.00000	0.98924	0.96172	0.98575	0.99398
Prevalence	0.08139	0.08898	0.08841	0.09099	0.08783
Detection Rate	0.08139	0.07924	0.05273	0.07809	0.08239
Detection Prevalence	0.08139	0.09486	0.06806	0.09471	0.09615
Balanced Accuracy	1.00000	0.93668	0.78981	0.91999	0.96146
	Class: L8	Class: L9			
Sensitivity	0.81889	1.00000			
Specificity	0.98263	0.99953			
Pos Pred Value	0.82786	0.99543			
Neg Pred Value	0.98155	1.00000			
Prevalence	0.09256	0.09371			
Detection Rate	0.07580	0.09371			
Detection Prevalence	0.09156	0.09414			
Balanced Accuracy	0.90076	0.99976			

The 95% prediction interval for the tuned model is (85.53%, 86.26%), which is a tighter range than that of the previous model.