Note: In the following table q = 1 - p.

Name .	p.d.f	mean	variance
Binomial(n, p)	$f(x) = \binom{n}{x} p^x q^{n-x}$	np	npq
,	$x=0,1,2,\ldots,n$		·
$\operatorname{Geometric}(p)$	$f(x) = q^{x-1}p$	$\frac{1}{p}$	$rac{q}{p^2}$
	$x=1,2,\ldots$		m a
Negative	$x = 1, 2, \dots$ $f(x) = {x-1 \choose r-1} p^r q^{x-r}$	$\frac{r}{p}$	$\left rac{rq}{p^2} ight $
Binomial (r, p)	$x=r,r+1,r+2,\dots$	-	-
$\operatorname{Poisson}(\lambda t)$	$f(x) = \frac{e^{-\lambda t}(\lambda t)^x}{x!}$	λt	λt
	$x = 0, 1, 2, \dots$		
Uniform (a,b)	$f(x) = \frac{1}{b-a}, a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\text{Exponential}(\beta)$	$f(x) = \frac{1}{\beta} e^{-x/\beta}$	β	eta^2
	$0 \le x < \infty$		
$\text{Gamma } (\alpha,\beta)$	$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$	αβ	$lphaeta^2$
,	$0 \le x < \infty$		
$ ext{Chi-Square}(v)$	$f(x) = \frac{1}{\Gamma(\frac{v}{2})2^{\frac{v}{2}}} x^{v/2-1} e^{-x/2}$	$oldsymbol{v}$	2v
	$0 \le x < \infty$		
$Normal \ N(\mu,\sigma^2)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$	μ	σ^2
	$-\infty < x < \infty$		

In the following, \overline{X} and S are the sample mean and sample standard deviation defined respectively as

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}, \quad S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}.$$

Assumptions	Sampling Distributions
$X_1, X_2, \ldots, X_n \sim N(\mu, \sigma^2)$ σ^2 is known	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$
$X_1, X_2, \dots, X_n \sim N(\mu, \sigma^2)$ σ^2 is unknown,	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim T(n-1)$
X_1, X_2, \dots, X_n from any population, n large, usually $n \ge 30$	$Z = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim N(0, 1)$
$X_1, X_2, \ldots, X_n \sim N(\mu, \sigma^2)$	$X_0 - \overline{X} \sim N\left(0, \sigma^2 + \frac{\sigma^2}{n}\right)$
X_0 is a new observation $X_1, X_2, \ldots, X_n \sim N(\mu, \sigma^2)$	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$
$X \sim Binomial(n, p)$ $np \geq 5, nq \geq 5$	$X \sim N(np, npq)$
$X_1, X_2, \dots, X_n \sim Bernoulli(p)$ $\widehat{p} = \frac{\sum_{i=1}^n X_i}{n},$	$\widehat{p} \sim N\left(p, \frac{pq}{n}\right)$

Assumptions	Sampling Distributions
$X_1, X_2, \dots, X_{n_1} \sim N(\mu_1, \sigma_1^2)$ $Y_1, Y_2, \dots, Y_{n_2} \sim N(\mu_2, \sigma_2^2)$	$Z = rac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}} \sim N(0, 1)$
2 samples are independent variances known	
$X_1, X_2, \ldots, X_{n_1} \sim N(\mu_1, \sigma^2)$ $Y_1, Y_2, \ldots, Y_{n_2} \sim N(\mu_2, \sigma^2)$ 2 samples are independent variances unknown but equal	$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim T(n_1 + n_2 - 2)$ $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$
$X_1, X_2, \dots, X_{n_1} \sim N(\mu_1, \sigma_1^2)$ $Y_1, Y_2, \dots, Y_{n_2} \sim N(\mu_2, \sigma_2^2)$ 2 samples are independent	$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2\sigma_2^2}{S_2^2\sigma_1^2} \sim F(n_1 - 1, n_2 - 1)$
$X_1, X_2, \dots, X_{n_1} \sim Bernoulli(p_1)$ $Y_1, Y_2, \dots, Y_{n_2} \sim Bernoulli(p_2)$ $\widehat{p_1} = \frac{\sum_{i=1}^{n_1} X_i}{n_1}, \widehat{p_2} = \frac{\sum_{i=1}^{n_2} Y_i}{n_2}$	$Z = \frac{(\widehat{p}_1 - \widehat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}} \sim N(0, 1)$

- (1) In an one-sided test about μ with a desired significance level α and a Type II error β , we can choose $n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{\delta^2}$, where $\delta = |\mu \mu_0|$. In the case of a two-sided test, replace z_{α} in the above formula by $z_{\alpha/2}$.
- (2) In a Goodness-of-fit test between observed and expected frequencies of k cells, $\sum_{i=1}^{k} \frac{(o_i e_i)^2}{e_i} \sim \chi^2(k-1)$ where o_i and e_i represent the observed and expected frequencies, respectively, from the i-th cell.

For least square regression, here are some notations and formulas:

$$\left|S_{xx}=\sum_{i=1}^n(x_i-\overline{x})^2
ight|S_{yy}=\sum_{i=1}^n(y_i-\overline{y})^2\left|S_{xy}=\sum_{i=1}^n(x_i-\overline{x})(y_i-\overline{y})
ight|$$

$$b_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}}$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

$$SSE = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

$$s = \sqrt{MSE} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{S_{yy} - b_1 S_{xy}}{n-2}}$$

Assumptions	Statistics and their Sampling distribution
inference on regression slope β_1	$T = \frac{b_1 - \beta_1}{s/\sqrt{S_{xx}}} \sim T(n-2)$
inference on mean response $\mu_{Y x_0}$	$T = \frac{\hat{Y}_0 - \mu_{Y x_0}}{s\sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}} \sim T(n-2)$
inference on a single response Y_0	$T = \frac{\hat{Y}_0 - Y_0}{s\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}} \sim T(n - 2)$

Coefficient of Determination
$$R^2 = 1 - \frac{SSE}{SST}$$
, where $SST = \sum_{i=1}^{n} (y_i - \overline{y})^2 = S_{yy}$

Tab	ole A.3 (e	ontinued)	Areas ur	ider the N	Jormal Cr	uve				
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	. 0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.01,1	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	-0.9713-	0.9719 -	0.9726	0.9732	-0:9 73 8-	-0 .9744 -	-0.9750	0.9756	-0.9761 -	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	_0.9940_	0.9941	_0.9943_		0.9946	0.9948	0.9949	0.9951	
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Table VI: The t Distribution

							
) 			$P(T \le t)$	(P
	0.60	0.75	0.90	0.95	0.975	0.99	0.995
r	t _{0.40} (r)	$t_{0.25}(r)$	$t_{0.10}(r)$	$t_{0.05}(r)$	$t_{0.025}(r)$	$t_{0.01}(r)$	$t_{0.005}(r)$
1 2 3 4 5 6_	0.325 0.289 0.277 0.271 0.267	1.000 0.816 0.765 0.741 0.727	3.078 1.886 1.638 1.533 1.476	6.314 2.920 2.353 2.132 2.015	12.706 4.303 3.182 2.776 2.571	31.821 6.965 4.541 3.747 3.365	63.657 9.925 5.841 4.604 4.032
7 8 9 10	0.265 0.263 0.262 0.261 0.260	0.718 0.711 0.706 0.703 0.700	1.440 1.415 1.397 1.383 1.372	1.943 1.895 1.860 1.833 1.812	2,447 2,365 2,306 2,262 2,228	3.143 2.998 2.896 2.821 2.764	3.707 3.499 3.355 3.250 3.169
11 12 13 14 15	0.260 0.259 0.259 0.258 0.258	0.697 0.695 0.694 0.692 0.691	1.363 1.356 1.350 1.345 1.341	1.796 1.782 1.771 1.761 1.753	2.201 2.179 2.160 2.145 2.131	2.718 2.681 2.650 2.624 2.602	3.106 3.055 3.012 2.997 2.947
16 17 18 19 20	0.258 0.257 0.257 0.257 0.257	0.690 0.689 0.688 0.688 0.687	1.337 1.333 1.330 1.328 1.325	1.746 1.740 1.734 1.729 1.725	2.120 2.110 2.101 2.093 2.086	2.583 2.567 2.552 2.539 2.528	2.921 2.898 2.878 2.861 2,845
21 22 23 24 25	0.257 0.256 0.256 0.256 0.256	0.686 0.686 0.685 0.685 0.684	1.323 1.321 1.319 1.318 1.316	1.721 1.717 1.714 1.711 1.708	2.080 2.074 2.069 2.064 2.060	2.518 2.508 2.500 2.492 2.485	2.831 2.819 2.807 2.797 2.787
26 27 28 29 30	0.256 0.256 0.256 0.256 0.256	0.684 0.684 0.683 0.683 0.683	1.315 1.314 1.313 1.311 1.310	1.706 1.703 1.701 1.699 1.697	2.056 2,052 2.048 2.045 2.042	2.479 2.473 2.467 2.462 2.457	2.779 2.771 2.763 2.756 2.750
∞ This to	0.253	0.674	1.282	1.645	1.960	2.326	2.576

This table is taken from Table III of Fisher and Yates. Statistical Tables for Biological, Agricultrual, and Medical Research, published by Longman Group Ltd., London (previously published by Oliver and Boyd, Edinburgh).

Table IV: The Chi-Square Distribution 0.10 0.10 0.10 0.10 0.10 $x^{1}(8)$ 0.05 $x^{2}(8)$ $x^{2}(8)$

				P(X)	≤ x)		-	
	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0,990
_ <u>r</u>	$\chi^2_{0.99}(r)$	χ _{0.975} (r)	$\chi^2_{0.95}(r)$	$\chi^2_{0.90}(r)$	$\chi^2_{0.10}(r)$	$\chi^2_{0.05}(r)$	$\chi^2_{0.025}(r)$	$\chi^2_{0,01}(r)$
1	0,000	0.001	0.004	0.016	2.706	3.841	5.024	6.635
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34
4	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28
5	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09
6 7 8 9 10	0.872 1.239 1.646 2.088 2.558 3.053	1.237 1.690 2.180 2.700 3.247 3,816	1.635 2.167 2.733 3.325 3.940 4.575	2.204 2.833 3.490 4.168 4.865 5.578	10.64 12.02 13.36 14.68 15.99	12.59 14.07 15.51 16.92 18.31 19.68	14.45 16.01 17.54 19.02 20.48 21.92	16.81 18.48 20.09 21.67 23.21 24.72
12	3.571	4.404	5.226	6.304	18.55	21.03	23.34	26.22
13	4.107	5.009	5.892	7.042	19.81	22.36	24.74	27.69
14	4.660	5.629	6.571	7.790	21.06	23.68	26.12	29.14
15	5.229	6.262	7.261	8.547	22.31	25.00	27.49	30.58
16	5.812	6,908	7.962	9.312	23.54	26.30	28.84	32.00
17	6.408	7,564	8.672	10.08	24.77	27.59	30.19	33.41
18	7.015	8,231	9.390	10.86	25.99	28.87	31.53	34.80
19	7.633	8,907	10.12	11.65	27.20	30.14	32.85	36.19
20	8.260	9,591	10.85	12.44	28.41	31.41	34.17	37.57
21	8.897	10.28	11,59	13.24	29.62	32.67	35.48	38.93
22	9.542	10.98	12.34	14.04	30.81	33.92	36.78	40.29
23	10.20	11.69	13.09	14.85	32.01	35.17	38.08	41.64
24	10.86	12,40	13.85	15.66	33.20	36.42	39.36	42.98
25	11.52	13.12	14.61	16.47	34.38	37.65	40.65	44.31
26	12.20	13.84	15.38	17.29	35.56	38.88	41.92	45.64
27	12.88	14.57	16.15	18.11	36.74	40.11	43.19	46.96
28	13.56	15.31	16.93	18.94	37.92	41.34	44.46	48.28
29	14.26	16.05	17.71	19.77	39.09	42.56	45.72	49.59
30	14.95	16.79	18.49	20.60	40.26	43.77	46.98	50.89
40	22.16	24.43	26.51	29.05	51.80	55.76	59.34	63.69
50	29.71	32.36	34.76	37.69	63.17	67.50	71.42	76.15
60	37.48	40.48	43.19	46.46	74.40	79.08	83.30	88.38
70	45.44	48.76	51.74	55.33	85.53	90.53	95.02	100.4
80	53.34	57.15	60.39	64.28	96.58	101.9	106.6	112.3

This table is abridged and adapted from Table III in Biometrika Tables for Statisticians, edited by E.S.Pearson and H.O.Hartley.

The F Distribution

Table VII: continued

 $P(F \le f) = \int_0^f \frac{\Gamma[(r_1 + r_2)/2](r_1/r_2)^{r_1/2}w^{r_1/2 - 1}}{\Gamma(r_1/2)\Gamma(r_2/2)(1 + r_1w/r_2)^{(r_1 + r_2)/2}}\,dw$

		Den.	Den. Numerator Degrees of Freedom, r ₁									
α	$P(F \leq f)$	r ₂	1	2	3	4	5	6	7	8	9	10
0.05	0.95	1	161-4	199-5	215·7	224-6	230-2	234·0	236.8	238.9	240.5	241.9
0.025	0.975		647-79	799-50	864·16	899-58	921-85	937·11	948.22	956.66	963.28	968.63
0.01	0.99		4052	4999-5	5403	5625	5764	5859	5928	5981	6022	6056
0.05	0.95	. 2	18·51	19·00	19·16	19-25	19·30	19.33	19-35	19-37	19.38	19.40
0.025	0.975		38·51	39·00	39·17	39-25	39·30	39.33	39-36	39-37	39.39	39.40
0.01	0.99		98·50	99·00	99·17	99-25	99·30	99.33	99-36	99-37	99.39	99.40
0.05	0.95	3	10-13	9·55	9·28	9·12	9·01	8.94	8·89	8-85	8-81	8·79
0.025	0.975		17-44	16·04	15·44	15·10	14-88	14.73	14·62	14-54	14-47	14·42
0.01	0.99		34-12	30·82	29·46	28·71	28·24	27.91	27·67	27-49	27-35	27·23
0.05 0.025	0.95 0.975	4	7·71 12·22	6⋅94 10⋅65	6-59 9-98	6-39 9-60	6·26 9·36	6·16 9·20	6·09 9·07	6·04 8·98	6-00 8-90	5-96
0.01	0.99		21.20	18-00	16-69	15.98	15-52	15.21	14.98	14·80	<u>a-90</u> 14.66	
0.05	0.95	5	6.61	5-79	5 41	5·19	5·05	4.95	4·88	4·82	4:77	4.74
0.025	0.975		10.01	8-43	7 76	7·39	7·15	6.98	6·85	6·76	6-68	6.62
0.01	0.99		16.26	13-27	12 06	11·39	10·97	10.67	10·46	10·29	10:16	10.05
0.05	0.95	6	5-99	5-14	4.76	4·53	4-39	4-28	4·21	4·15	4·10	4·06
0.025	0.975		8-81	7-26	6.60	6·23	5-99	5-82	5·70	5·60	5·52	5·46
0.01	0.99		13-75	10-92	9.78	9·15	8-75	8-47	8·26	8·10	7·98	7·87
0.05	0.95	7	5-59	4·74	4·35	4-12	3.97	3⋅87	3·79	3.73	3.68	3.64
0.025	0.975		8-07	6·54	5·89	5-52	5.29	5⋅12	4·99	4.90	4.82	4.76
0.01	0.99		12-25	9·55	8·45	7-85	7.46	7⋅19	6-99	6.84	6.72	6.62
0.05	0.95	8	5·32	4.46	4·07	3.84	3.69	3-58	3.50	3-44	3·39	3·35
0.025	0.975		7·57	6.06	5·42	5.05	4.82	4-65	4.53	4-43	4·36	4·30
0.01	0.99		11·26	8.65	7·59	7.01	6.63	6-37	6.18	6-03	5·91	5·81
0.05	0.95	9	5·12	4·26	3.86	3.63	3.48	3·37	3·29	3·23	3·18	3·14
0.025	0.975		7·21	5·71	5.08	4.72	4.48	4·32	4·20	4·10	4·03	3·96
0.01	0.99		10·56	8·02	6.99	6.42	6.06	5·80	5·61	5·47	5-35	5·26
0.05	0.95	10	4-96	4·10	3-71	3·48	3·33	3·22	3·14	3.07	3·02	2.98
0.025	0.975		6-94	5·46	4-83	4·47	4·24	4·07	3·95	3.85	3·78	3.72
0.01	0.99		10-04	7·56	6-55	5·99	5·64	5·39	5·20	5.06	4·94	4.85