

Prof. Dr. I. F. Sbalzarini TU Dresden, 01187 Dresden, Germany

Exercise 10

Release: 11.01.2021 Due: 18.01.2021

Question 1: Heun's procedure

a) Implement the Heun's procedure to

$$y_{n+1}^* = \tilde{y}_n + h f(t_n, \tilde{y}_n)$$

$$\tilde{y}_{n+1} = \tilde{y}_n + \frac{h}{2} \left(f(t_n, \tilde{y}_n) + f(t_{n+1}, y_{n+1}^*) \right)$$

and solve the 2-body problem given by,

$$\dot{y}_1 = y_3$$

$$\dot{y}_2 = y_4$$

$$\dot{y}_3 = -\frac{y_1}{(y_1^2 + y_2^2)^{3/2}}$$

$$\dot{y}_4 = -\frac{y_2}{(y_1^2 + y_2^2)^{3/2}}$$

with the initial values $y_1(0) = 0.5$, $y_2(0) = 0$, $y_3(0) = 0$, $y_4(0) = \sqrt(3)$. To do this, select $t_0 = 0, t_f = 8$, use the Heun's method with two steps $h = \frac{1}{10}, \frac{1}{100}$ and draw the paths $(\tilde{y}_1(t_n), \tilde{y}_2(t_n))$

b) Compare your results with the results of MATLAB's ode23

Question 2: RK4

Consider the Linear Differential Equation system

$$\dot{x} = \left(\begin{array}{cc} -1001 & 999 \\ 999 & -1001 \end{array} \right) x$$

- a) Determine the general solution x(t).
- b) Apply the explicit Euler and Runge-Kutta 4 procedure to this system with the following initial conditions and compare the error from the analytical solution in a) for different values of h.
 - i) $x(0) = (-1, 1)^T$
 - ii) $x(0) = (1,1)^T$
 - iii) $x(0) = (2,0)^T$

Question 3: Adaptive Step Size

Consider the joint Butcher table of the Dormand-Prince method (DOPRI5),

0							
$\frac{1}{5}$	$\frac{1}{5}$						
$\frac{3}{10}$	$\frac{3}{40}$	$\frac{9}{40}$					
$\frac{4}{5}$	$\frac{44}{45}$	$-\frac{56}{15}$	$\frac{32}{9}$				
$\frac{8}{9}$	$\frac{19372}{6561}$	$-rac{25360}{2187}$	$\frac{64448}{6561}$	$-\frac{212}{729}$			
1	$\frac{9017}{3168}$	$-\frac{355}{33}$	$\frac{46732}{5247}$	$\frac{49}{176}$	$-\frac{5103}{18656}$		
_1	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$	
	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$	0
	$\frac{5179}{57600}$	0	$\frac{7571}{16695}$	$\frac{393}{640}$	$-\frac{92097}{339200}$	$\frac{187}{2100}$	$\frac{1}{40}$

- a) Using the table, derive the expressions for computing each stage of the DOPRI5 method.
- b) Using the DOPRI5 method, implement algorithm 13: "Dynamic step-size adaptation for one-step methods" from the lecture notes and apply it to the skewed logistic map ODE,

$$f'(x) = 0.01 (1 - f(x)) f(x)$$

with the initial condition f(x = -5) = 0.00669. Find the number of steps required to reconstruct the logistic function up-to f(x) = 0.99999. Also plot a graph of the step size vs step-index.