KAO KITICHOTKUL

rkitich@bu.edu | (650) 334-9533 | rkitichotkul.github.io | linkedin.com/in/rkitichotkul | Boston, MA

EDUCATION

Boston University Ph.D. in Electrical Engineering, advised by Vivek Goyal
Stanford University M.S. in Electrical Engineering
GPA 4.0/4, Expected Dec 2025
GPA 4.0/4.3, Jun 2022
Stanford University B.S. in Electrical Engineering, distinction
GPA 4.1/4.3, Jun 2022

RESEARCH INTERESTS

Computational Imaging, Statistical Signal Processing, Machine Learning, Lidar

WORK EXPERIENCE

Mitsubishi Electric Research Laboratories

May - Dec 2024 & Jun - Nov 2025

Research Scientist Intern

- · Invent Doppler SPL, enabling direct velocity estimation using single-photon lidar (SPL) for the first time.
- · Develop a velocity-aware **probabilistic model** of SPL and design a maximum likelihood algorithm with Fourier analysis to jointly estimate range (sub-centimeter) and velocity ($\leq 0.1 \text{ m/s}$) at 50 frames/s under high noise.
- · Design research agenda, build codebase, and conduct optics experiments in collaboration with the team.
- · Result in first-author publications in ICASSP 2025 and Optica (12% acceptance rate).

Boston University

Sep 2023 - May 2024 & Jan - May 2025

Teaching Assistant

- · Teach "Probability, Statistics, and Data Science for Engineers" for 3 semesters with 200+ students per term.
- · Deliver lectures, design exams, facilitate discussions, manage course communications, and grade assessments.

Agoda Jun 2021 - Aug 2021

Data Science Intern

- · Build LLM-based system to generate travel content with text and images, cutting writing time by $\sim 70\%$.
- $\cdot \ \ \text{Finetune language models and design data retrieval and prompting pipeline for multimodal article generation}.$

RESEARCH EXPERIENCE

Boston University

Sep 2022 - Present

Doctoral Researcher

- · Conduct research in **computational imaging** and **statistical signal processing** with 6 publications to date.
- · Plan research agenda, collaborate cross-functionally within the lab, and present findings in weekly meetings.
- · High-flux Free-running Single-Photon Lidar [ICCV 2025]
 - · Derive estimators and error bounds for high-flux SPL using **random point process theory**, allowing 4x higher flux than traditional high-flux SPL with 100x speed-up over previous free-running methods.
 - · Develop 3D regularization algorithm leveraging pretrained diffusion models for point cloud denoising.
- · Equivariant Self-supervised Learning for Deep Equilibrium Models
 - · Develop algorithm for training **deep equilibrium models** for imaging inverse problems without ground truths by leveraging data symmetries, achieving performance within 1.3 dB PSNR of supervised learning.
 - · Mentor an undergraduate student in designing and conducting experiments on CT and MRI reconstruction.
- · Plug-and-play Particle Beam Microscopy Denoising [IEEE Trans. Comp. Imag.]
 - · Propose algorithms for particle beam microscopy denoising by combining **convex optimization** algorithms with **deep learning**, achieving 4x reduction in root-mean-square error compared to conventional methods.
 - · Analyze convergence of proposed methods via monotone operator theory and conduct experiments.
- · Image Reconstruction from Readout-Multiplexed Single-Photon Detector Arrays [CVPR 2025, highlight]
 - · Propose image reconstruction algorithms for row-column coupled superconducting nanowire detector arrays, achieving 4x speed-up without loss of accuracy and enabling scalability to megapixel resolutions.

Stanford Computational Imaging Lab

Jun 2020 - Jun 2022

Undergraduate Researcher

· Develop model-based deep learning algorithms with per-pixel uncertainty quantification using Stein's unbiased risk estimate for accelerated MRI [ICASSP 2021], along with self-supervised method for on-the-fly finetuning.

Undergraduate Researcher

- · Investigate effect of topological constraints on bacterial DNA using Monte Carlo simulation and knot theory.
- · Contribute to Fortran codebase for molecular dynamic simulation of biological polymers.

PUBLICATIONS

- R. Kitichotkul, J. Rapp, Y. Ma, and H. Mansour, "Simultaneous Range and Velocity Measurement with Doppler Single-Photon Lidar," *Optica*, 12:604-613, 2025. **12**% acceptance rate.
- R. Kitichotkul, J. Rapp, Y. Ma, and H. Mansour, "Doppler Single-Photon Lidar," in ICASSP 2025.
- R. Kitichotkul, J. Rapp, and V. K. Goyal, "The Role of Detection Times in Reflectivity Estimation With Single-Photon Lidar," *IEEE J. Sel. Topics Quantum Electron.*, 30(1):1-14, Jan-Feb 2024.
- R. Kitichotkul, C. A. Metzler, F. Ong, and G. Wetzstein, "SUREMap: Predicting Uncertainty in CNN-Based Image Reconstructions Using Stein's Unbiased Risk Estimate" in *ICASSP* 2021.
- S. Bharadwaj, <u>R. Kitichotkul</u>, A. Agarwal, V. K. Goyal, "Image Reconstruction from Readout-Multiplexed Single-Photon Detector Arrays," in *CVPR* 2025. **Highlight** (13.5%).
- A. Agarwal, L. Kasaei, X. He, <u>R. Kitichotkul</u>, et al., "Shot noise-mitigated secondary electron imaging with ion count-aided microscopy," *Proc. Nat. Acad. Sci.*, 121(31):e2401246121, 2024. **14% acceptance rate.**
- S. Bharadwaj, R. Kitichotkul, A. Agarwal, and V. K. Goyal, "Mitigating Misattributions in Single-Photon Detector Arrays with Row-Column Readouts" in *CLEO*, 2024.
- M. Peng, <u>R. Kitichotkul</u>, S. W. Seidel, C. Yu, and V. K Goyal, "Denoising Particle Beam Micrographs With Plug-and-Play Methods," *IEEE Trans. Comput. Imaging*, 9:581-593, 2023.

SKILLS

Programming	Python, Pytorch, C, C++, MATLAB, Linux, Git
Technical Skills	Machine Learning, Generative AI, Convex Optimization, Inverse Problems, Lidar
Languages	Thai (native), Japanese (JLPT N3)
AWARDS	

IEEE Signal Processing Society Travel Grant for ICASSP 2025	
Distinguished Fellowship in Intelligent, Autonomous & Secure Systems, Boston University	
Terman Scholastic Award (top 5% of graduating class), School of Engineering, Stanford University	
Project Design Award, Department of Electrical Engineering, Stanford University	
King's Scholarship, Thai Government	
Gold medal, International Chemistry Olympiad	
Silver medal, International Chemistry Olympiad	

SERVICE AND ACTIVITIES

Boston University RISE High School Program

2023 - 2025

- Mentor
- · Mentor high school student to conduct research on machine learning and signal processing for electron microscopy.
- · Guide development of self-supervised learning algorithms for deep equilibrium models for inverse problems.

ECE PhD Open House, Boston University

2023 - 2024

Panelist

· Speak on panels about academics and student life for the department's open house for prospective PhD students.

Stanford Thai Student Association

2019 - 2020

Financial Officer

· Manage budget and led the organization of high-impact events, such as industry recruiting sessions, meetings with government officials, and cultural gatherings with 400+ participants.

Reviewer for IEEE {TPAMI, TCI, JSTQE}, APL Photonics, and Optics Express.

INVITED TALKS

High-flux Free-running Single-Photon Lidar, CISE Graduate Student Workshop, Boston University

Model-based Deep Learning for Imaging Inverse Problems, Chulalongkorn University

2025

PROJECTS

Training Input-Convex Neural Networks using Convex Optimization

2021

Signal Processing for Machine Learning Class Project

Individual project

· Develop method for training two-layer input-convex neural networks via convex optimization, enabling training to global optimality in polynomial time. Demonstrate applications in model predictive control.

Text-guided Image Generation using Score-based Model

2021

Deep Generative Models Class Project

Group of 2

· Propose method for generating images that align with the semantic meaning of text captions by leveraging CLIP-based loss to guide the diffusion model's generative process.

Sparse + Low-rank Approximation of Matrix Inverse

2021

Convex Optimization Class Project

Group of 3

· Propose and implement scalable convex optimization approach to estimate low-rank correction of sparse approximate matrix inverse, improving preconditioning in the preconditioned conjugate gradient algorithm.

Combining CTC with Seq2Seq Produces Better Transcriptions

2021

Natural Language Understanding Class Project

Group of 3

- · Propose sequence-to-sequence framework for improving transcription accuracy of outputs from end-to-end automatic speech recognition (ASR) systems by leveraging pretrained end-to-end models.
- · Finetune sequence-to-sequence models. Found that BART outperforms encoder-decoder systems pretrained with masked-language modeling in reducing the word error rate.

Training CNN for Mixed Poisson-Gaussian Noisy Images Without Ground Truth

2020

Machine Learning Class Project

Group of 2

· Develop loss function for self-supervised training of image denoisers without requiring ground truths under mixed Poisson-Gaussian noise using unbiased risk estimate. Demonstrate training CNN denoisers for astrophotography.

Real-time Classification of Musical Chords with Non-Negative Least Squares

2020

Digital Signal Processing Class Project

Group of 2

- · Propose method for musical chord detection based on digital signal processing and constrained least squares.
- · Implement the detection system for real-time chord classification in C and C++ on the iOS platform.
- · Win 2020 Project Design Award from the Department of Electrical Engineering, Stanford University.

Variants of SURE-LET Approach to Image Denoising

2020

Computational Imaging and Display Class Project

Individual project

· Implement Gaussian and Poisson denoising algorithms based on the SURE-LET approach which minimizes an estimated error by combining denoised images with different denoising strengths.

Reducing Regret in Q-Learning with Ensemble Mechanics

2019

Artificial Intelligence: Principles and Techniques Class Project

Group of 3

· Propose adaptive algorithm for action-selection strategy in Q-learning which improves upon Value-Based Difference Exploration. Demonstrate proposed approach with reinforcement learning tasks from OpenAI Gym.