

Data Collection and Preprocessing Phase

Date	21 June 2024
Team ID	739772
Project Title	Gem Valuation Revolution:Predicting Diamond Prices With Artificial Neural Networks
Maximum Marks	6 Marks

Data Exploration and Preprocessing Report

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	Descripti	on								
Data Overview	Descriptive statistics: df.describe()									
			carat	depth	table	price	×	у	z	
		count	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	
		mean	0.797940	61.749405	57.457184	3932.799722	5.731157	5.734526	3.538734	
		std	0.474011	1.432621	2.234491	3989.439738	1.121761	1.142135	0.705699	
		min	0.200000	43.000000	43.000000	326.000000	0.000000	0.000000	0.000000	
		25%	0.400000	61.000000	56.000000	950.000000	4.710000	4.720000	2.910000	
		50%	0.700000	61.800000	57.000000	2401.000000	5.700000	5.710000	3.530000	
		75%	1.040000	62.500000	59.000000	5324.250000	6.540000	6.540000	4.040000	
		max	5.010000	79.000000	95.000000	18823.000000	10.740000	58.900000	31.800000	
	- 2 1 1									
Univariate Analysis										

Feature

Save

Data

Engineering

Processed


```
#Dropping the outliers.
                    df = df[(df["depth"]<75)&(df["depth"]>45)]
                   df = df[(df["table"]<80)&(df["table"]>40)]
                   df = df[(df["x"]<30)]
                    df = df[(df["y"]<30)]
Outliers and
                    df = df[(df["z"]<30)&(df["z"]>2)]
Anomalies
                    df.shape
                    (53907, 10)
Data Preprocessing Code Screenshots
                                              cut color clarity depth table price x
                             Unnamed: 0 carat
                                      0.23
                                                         SI2 61.5 55.0
                                                                        326 3.95 3.98 2.43
                                                    Е
                                       0.21 Premium
                                                          SI1
                                                              59.8 61.0 326 3.89 3.84 2.31
                                                    Е
                                       0.23
                                             Good
                                                         VS1
                                                              56.9
                                                                   65.0
                                                                        327 4.05 4.07 2.31
Loading Data
                           3
                                      0.29 Premium
                                                         VS2
                                                              62.4 58.0 334 4.20 4.23 2.63
                                      0.31
                                             Good
                                                          SI2
                                                              63.3 58.0 335 4.34 4.35 2.75
Data
Transformation
```

Attached the codes in final submission.