

Source

Welcome to Week 3 Lecture 2!

Data Science in Python & Machine Learning

Week 3 CORE Assignments

These must be submitted by **Sunday February 13th**:

- Belt exam takes priority, though!!!
- 1) Average Height Exercise (Core)
- 2) Histograms & Boxplots (Core)
- 3) Project 1 Part 3 (Core)

- Belt exam is this weekend!
- Eligibility:
 - 90 % of Week 1 & 2 Assignments (Including resubmits)
 - No more than 1 missing/pending resubmissions
 - Due: 9 AM PST on Thursday (02/10/22)
 - 80% attendance (no more than 1 missed lecture)
- Unlock Codes:
 - Sent via email after class tonight
 - Note: once unlocked, you have up to 24 hours to complete exam
 - You may wait until Sunday morning to start exam
 - but need to submit it by 11:59 PM PST Sunday (so <24 hours)

Belt Exam Rules and Policies

- You can unlock the exam any time after you receive the unlock code provided in your email. Once you unlock the exam, you will have **24 hours** to submit your work. So make sure not to unlock the exam until you are ready to start working.
 - Recommend doing at least 2 of Week 3's assignments BEFORE unlocking exam!
- The belt exam must be submitted by end of day Sunday on 02/13/21.
- You may use any materials on the exam (notes, classwork, Google, Stackoverflow, etc.) BUT YOU MUST
 CITE YOUR SOURCES!!! Include a comment or a text cell with a link to any sources used.
 - Example:
 - "# Code adapted from: https://stackoverflow.com/questions/19966018/pandas-filling-missing-values-by-mean-in-each-group"
- You must complete the belt exam entirely on your own.
- You may NOT work with anyone else on this exam. Any collaboration is cause for expulsion.
- Do NOT post anything related to the belt exam on Github or anywhere on the internet. This will be interpreted as collaboration and is cause for expulsion.

Belt Exam Rules and Policies

- I will check email on Friday in case you have issues on the platform (not content or coding questions). I will NOT check Discord. (jirving@codingdojo.com)
- NOTE: NO exam codes will be sent from Friday 02/11/22 through Sunday 02/13/22.
- You can contact a TA through direct message on Discord if you have <u>process</u> questions! (TAs can help with your week 3 assignments, just not the belt exam)
- **Do NOT contact any other students** regarding the belt exam, even if they are questions about instructions or policies.
- Do NOT post questions or comments about the belt exam in our Discord Channel
- If something goes wrong on the platform when trying to submit, don't stress, just email me your completed materials <u>as a backup</u> within the 24 hour time period (jirving@codingdojo.com).

Accessing the Belt Exam:

- 1) To take your Belt exam, go to https://login.codingdojo.com/exams.
- 2) Enter in your code:(To be emailed to you)
- 3) Then select "Unlock and Start Exam."

Belt Exam:

- Your first belt exam consists of one part:
 Submitting your commented code file
- Optional Starter Notebook with Checklist rubric!
 - o In our notes repo (https://github.com/sensei-jirving/Online-DS-PT-01.24.22-cohort-notes)
 - StarterNotebooks folder > <u>Belt Exam 1 Starter Notebook 01-24-22.ipynb</u>

- Please be aware that every data set and problem is different.
- The sample solutions for this mock belt exam cannot be applied in the same way to other data sets/problems.
- Attempting to copy/paste this code or any other code into your belt exam without understanding what you are doing and why you are doing it will lead to bad outcomes!

Exploratory Data Analysis: Understanding your Data

Source

Overview of The EDA Process (Suggestion)

- 1) **Initial Exploration:** Get a feel for your data set
 - What are the columns?
 - What is the type of data for each column
 - How much data do you have?
 - Are you missing data points?
- 2) **Clean:** Prepare the data for analysis
 - Make sure you have the appropriate data type (are numerical values actually numerical data types?)
 - Make sure your categorical data is consistent
 - Address missing values
 - Address any other obvious errors in your data (Example: Age can't be 230!)
- 3) Univariate Visuals: Explore the distribution of each column of data
 - Histograms and boxplots
 - Bar charts
- 4) **Multivariate Visuals:** Explore relationships between variables and differences in groups
 - Scatterplots
 - Correlation Heatmaps
 - Multivariable bar charts or boxplots

Go back and repeat any step as needed

Learning Goals

By the end of this lesson you will be able to:

- 1. Multivariate Data Visualizations
- 2. Interpret Correlation Plots
- 3. Identify Correlations with Scatter Plots
- 4. Create a Three Variable Plot using Seaborn

Warm up:

Why would we do univariate exploratory analysis on our data?

Multivariate Analysis

- Exploring multiple variables at the same time
- We mostly look at just two variables which is also known as <u>bivariate</u> analysis
- Consider relationships or patterns

Correlation: Related Variables

When two or more variables tend to change together:

When one goes up, the other tends to go up.

OR

When one goes up the other tends to go down.

Correlation Coefficient (r)

- We can quantify the extent to which two variables are correlated by using a correlation coefficient (r)
- The sign (+ or -) indicates the direction of correlation
- The numerical quantity indicates the extent of correlation
- r can range from -1 to 1
- The closer the value is to 0, the weaker the correlation

Correlation Values

Low Correlation: 0.3 to 0.5

Moderate Correlation: 0.5 to 0.7

Strong Correlation: Greater than 0.7

Be Careful: Correlation does NOT mean causation!

Looking for Correlations

[65]	cereal.corr()				
		calories per serving	grams of protein	grams of fat	milligrams of sodium d
	calories per serving	1.000000	0.019066	0.498610	0.300649
	grams of protein	0.019066	1.000000	0.208431	-0.054674
	grams of fat	0.498610	0.208431	1.000000	-0.005407
	milligrams of sodium	0.300649	-0.054674	-0.005407	1.000000
	grams of dietary fiber	-0.293413	0.500330	0.016719	-0.070675
	grams of complex carbohydrates	0.250681	-0.130864	-0.318043	0.355983
	grams of sugars	0.562340	-0.329142	0.270819	0.101451

Shows r for every combination of numerical value...this is only a section of the output!

Visualizing correlation with a heat map

```
import seaborn as sns

corr = cereal.corr()
plt.figure(figsize=(10,10))
sns.heatmap(corr, cmap='Blues', annot=True)
```


- 0.4

- 0.2

-0.0

--0.2

- -0.4

--0.6

Scatter Plots

Correlation with Scatter Plots

Source

Scatter Plot in Python

This is a positive correlation.

On average, cereals with more sugar also have more calories and cereals with more calories also have more sugar.

Use Groupby to make bar charts

```
manu cal = cereal.groupby('Manufacturer')['calories per serving'].mean()
  manu cal
Manufacturer
American Home Food Products 100.000000
General Mills
                               111.363636
Kelloggs
                               108.695652
Nabisco
                                86.666667
Post
                               108.888889
Ouaker Oats
                                95.000000
Ralston Purina
                               115.000000
Name: calories per serving, dtype: float64
```

Vertical Bar Chart

Horizontal bar chart

Notice that plt.barh is used to create a horizontal barchart.

Horizontal bar charts are especially useful when the labels are long

Sorted Vertical Bar Chart

```
manu_cal = manu_cal.sort_values()
plt.figure(figsize=(10,5))
plt.barh(manu_cal.index, manu_cal.values)
plt.ylabel('Manufacturer')
plt.xlabel('Average Calories')
plt.xticks(rotation=30)
plt.show()
```


<u>Seaborn</u>

More advanced plots and trivariate analysis!!

import seaborn as sns

Comparing 3 variables in a barplot:

```
1 manufact = cereal.groupby(['Manufacturer', 'type']).mean().reset index()
2 manufact = manufact.sort values(by='calories per serving')
3 sns.barplot(data=manufact, x='calories per serving', y='Manufacturer', (hue='type
4 plt.title('Average Calories in Cereal by Manufacturer and Type')
5 plt.legend(bbox to anchor=(1, 1))
6 plt.show()
                        Average Calories in Cereal by Manufacturer and Type
                                                                         Cold
                Nabisco
                                                                         Hot
             Ouaker Oats
 American Home Food Products
                Kelloggs
                   Post
             General Mills
            Ralston Purina
                                            60
                             20
                                                    80
                                                           100
                                                                   120
```

3rd Variable

开 Coding Dojo 29

calories per serving

Color Coding Categories in a Scatterplot

Distributions

Pair Plot

import seaborn as sns
sns.pairplot(cereal.iloc[:, [3,7,8,9,10]])
plt.show()

Visualization Topics Saved for Next Week

- We will be covering Explanatory Visualizations next week (visualizations intended to tell a story for a larger/broader audience)
 - We are saving most of the visualization aesthetics concepts/questions until then.
- Topics saved for next week:
 - Formatting ticks
 - Matplotlib styles/seaborn themes
 - Font customization (titles/axis labels, etc)
 - Figures with multiple subplots
 - Multiple subplots with DIFFERENT figure sizes.
- In the meantime, I am happy to answer any questions about these in office hours after class today.

Multivariate Codealong!

Notebook

Cleaned Data