Parte 0

Informazioni generali sull'insegnamento

Didattica

- 4 ore settimanali
 - mercoledì 9-11, laboratorio
 - giovedì 11-13, aulaper 12 settimane
- 6 CFU (corrispondenti a 'circa' 150 ore di lavoro da parte dello studente)
- Suddivisione: 2CFU teoria, 4CFU laboratorio (Python)
- Esame: prova pratica di laboratorio + orale
- Ricevimento: mercoledì 14.30-16.00

Didattica

- Materiale di studio
 - Slide proiettate a lezione
 - Materiale disponibile in Internet (segnalato di volta in volta)
 - Altro materiale messo a disposizione dal docente su GitHub
 - https://github.com/leoncini/Linguaggi-Dinamici-2019

 Comunicazioni e avvisi sempre sulla stessa pagina

Argomenti

Teoria:

- Linguaggi di programmazione
- > Tipizzazione forte e debole
- > Architettura generale di un l.d.
- Gestione della memoria
- Metaprogramming
- Labratorio di linguaggio Python 3
 - Sintassi e primi semplici esempi 'imperativi'
 - OOP e il modello delle classi in Python
 - Programmazione funzionale
 - Metaprogramming

Linguaggi dinamici: definizione e caratteristiche

Definizioni

Una possibile definizione (cfr. Wikipedia)

- Linguaggio statico: è un linguaggio high-level in cui le operazioni effettuate a run time sono legate quasi esclusivamente all'esecuzione del codice del programmatore (un'eccezione notevole è la gestione dello stack)
 - C, assembly

Definizioni

Una possibile definizione (cfr. Wikipedia)

- Linguaggio statico: è un linguaggio high-level in cui le operazioni effettuate a run time sono legate quasi esclusivamente all'esecuzione del codice del programmatore (un'eccezione notevole è la gestione dello stack)
 - C, assembly
- Linguaggio dinamico: è un linguaggio ad alto livello in cui le operazioni effettuate a tempo di esecuzione non sono legate esclusivamente all'esecuzione di codice
 - Perl, Python, Ruby, PHP, Javascript

Linguaggi dinamici - definizione

- Non esiste in realtà una definizione univoca ma un insieme di caratteristiche specifiche
 - Tipizzazione dei dati
 Metaprogramming
 svolte a run-time
 - Gestione dinamica di memoria ed errori
 - Modello di generazione del codice (prodotto intermedio es. bytecode)
- Alcune caratteristiche si possono ritrovare in altri linguaggi considerati non propriamente dinamici
 - Es. Gestione della memoria in Java

Linguaggio statico

- Esiste una fase di compilazione, in cui il codice sorgente viene tradotto in un formato esclusivo per l'architettura considerata
 - La traduzione da codice sorgente a codice macchina è 1:1 (rappresentazione fedele)
- Permette l'esecuzione ad una velocità elevata
- I tipi di dati sono identificati a tempo di compilazione e non sono mutabili a tempo di esecuzione
- Non fornisce strumenti di controllo, né semplificazioni, quasi tutto è lasciato al programmatore (memoria, tipizzazione)

Linguaggio dinamico

- Nella fase di compilazione il codice sorgente viene tradotto in un formato intermedio, indipendente dall'architettura (es. bytecode)
 - Il formato intermedio è interpretato
 - → linguaggio portabile
- L'interprete si serve di funzioni interne per gestire memoria ed errori in modo automatico a run-time
 - Assenza di dettagli ostici per il programmatore
- Ha una tipizzazione dinamica dei dati
 - Il 'tipo' di una variabile (ma anche di una funzione) può mutare a run-time

Linguaggio dinamico

- Include meccanismi che permettono al programma di "analizzarsi" e "modificarsi" durante l'esecuzione (Meta-programming)
- Meta-programming ha a che vedere con la possibilità di costruire funzioni e classi il cui obiettivo principale è la manipolazione di codice:
 - Generazione di "nuovo" codice
 - Modifica e wrapping di codice esistente
- Meccanismi fondamentali per il meta-programming sono
 - Decoratori
 - Meta-classi
 - Decoratori di meta-classi

Altre caratteristiche

- Possibilità di creare strutture dati, anche eterognee, variabili nel tempo
- Presenza massiccia di librerie esterne facilmente utilizzabili per diversi compiti
 - Servizi di calcolo scientifico
 - Interfacce grafiche complesse
 - Supporto per il Web

Linguaggi dinamici vs statici

Pro:

- Curva di apprendimento
- Scrittura di codice
 - La scrittura di un software diventa la scrittura del suo scheletro
 - . Presenza delle librerie esterne
 - → forte riuso del codice
 - . Prototipazione veloce
- Flessibilità e portabilità

Contro:

- Lentezza (a causa delle molte operazioni a run-time)
- Può incoraggiare uno stile "sciatto" di programmazione (sloppy coding)

Python è il linguaggio più popolare

PYPL Index - Popularity of Programming Language Index is created by analyzing how often language tutorials are searched on Google

Worldwide, Mar 2016 compared to a year ago:						
Rank	Change	Language Share		Trend		
1		Java	24.2 %	+0.3 %		
2	^	Python	11.9 %	+1.2 %		
3	•	PHP 10.7 %		-0.8 %		
4		C#	8.9 %	+0.1 %		
5		C++	7.6 %	-0.5 %		
6		С	7.5 %	+0.1 %		
7		Javascript	7.3 %	+0.3 %		
8		Objective-C	5.0 %	-0.9 %		
9	^	Swift	3.0 %	+0.4 %		
10		R	2.9 %	+0.3 %		
11	$\downarrow \downarrow$	Matlab 2.8 %		-0.3 %		
12		Ruby	2.3 %	-0.2 %		
13		Visual Basic	1.8 %	-0.4 %		
14		VBA	1.5 %	+0.1 %		
15		Perl	1.1 %	-0.1 %		

rldwide, Aug 2019 compared to a year ago:							
Rank Change		Language	Share	Trend			
1		Python	28.73 %	+4.5			
2		Java	20.0 %	-2.1			
3		Javascript	8.35 %	-0.1			
4		C#	7.43 %	-0.5			
5		PHP	6.83 %	-1.0			
6		C/C++	5.87 %	-0.3			
7		R	3.92 %	-0.2			
8		Objective-C	2.7 %	-0.0			
9		Swift	2.41 %	-0.3			
10		Matlab	1.87 %	-0.3			
11	1	TypeScript	1.76 %	+0.			
12	V	Ruby	1.44 %	-0.2			
13	ተ ተተ	Kotlin	1.43 %	+0.4			
14	4	VBA	1.41 %	-0.0			
15	ተተ	Go	1.21 %	+0.3			

Perchè ci focalizzeremo su Python

Usato nei più popolari siti Web (server-side)

Programming languages used in most popular websites*									
Websites +	Popularity (unique visitors + per month)[1]	Front- end (Client- side)	Back-end (Server- + side)	Database +	Notes				
Google.com ^[2]	1,600,000,000	JavaScript	C, C++, Go, ^[3] Java, Python	Bigtable, ^[4] MariaDB ^[5]	The most used search engine in the world				
Facebook.com	1,100,000,000	JavaScript	Hack, PHP (HHVM), Python, C++, Java, Erlang, D, ^[6] Xhp, ^[7] Haskell ^[8]	MariaDB, MySQL, ^[9] HBase Cassandra ^[10]	The most visited social networking site				
YouTube.com	1,100,000,000	JavaScript	C, C++, Python, Java, ^[11] Go ^[12]	Vitess, BigTable, MariaDB ^{[5][13]}	The most visited video sharing site				

GO

Perchè ci focalizzeremo su Python

 Popolarità in continua ascesa anche nel campo della Data Science e del Machine Learning

Popolare nel contesto della **analisi dati**Interfacciabile con software scientifico R

Trend delle Università Americane

- Python Is Now the Most Popular Introductory Teaching Language at Top U.S. Universities
 - Communications of the ACM (July 7, 2014)
- Universities finally realize that Java is a bad introductory programming language
 - thenextweb.com (Apr 24, 2017)

Python ha superato
Java (linguaggio
predominante per
molti anni)

Rilevazioni CodeEval

CodeEval = comunità di sviluppatori interessati a risolvere sfide di programmazione (contest)

Nota: le sfide possono essere risolte in un linguaggio a piacere

Rilevazioni 2019

