ÜBUNGEN ZUR "EICHFELDTHEORIE" ABGABE: 29.06.2015

Aufgabe 20. Sei M eine zusammenhängende Mannigfaltigkeit und $m_0 \in M$. Sei $\pi \colon P \to M$ ein G-Prinzipalbündel und fixiere $p_0 \in \pi^{-1}(m_0)$. Sei ferner $\omega \in \Omega^1(P,\mathfrak{g})$ ein flacher Prinzipalzusammenhang. Für jeden Pfad $\gamma \colon [0,1] \to M$ mit $\gamma(0) = m_0$ bezeichne h_{γ,p_0} den horizontalen Lift mit $h_{\gamma,p_0}(0) = p_0$. Für eine Schleife γ mit $\gamma(0) = m_0$, ist dann $h_{\gamma(1),p_0} = p_0 \cdot g_{\gamma}$ für ein eindeutiges $g \in G$. Man zeige, dass

$$\operatorname{hol}_{\omega,p_0} : \pi_1(M,m_0) \longrightarrow G, \ [\gamma] \mapsto g_{\gamma}$$

wohldefiniert ist und einen Gruppenhomomorphismus definiert.

Hinweis: Man zeige zunächst, dass $g_{\gamma_1} = g_{\gamma_2}$ für zwei homotope Wege γ_1 und γ_2 . Dazu sei $H \colon [0,1] \times [0,1] \to M$ eine Homotopie von γ_1 nach γ_2 . Man wende Aufgabe 18 an, um eine horizontale Abbildung $[0,1] \times [0,1] \to H^*(P)$ zu konstruieren.

Aufgabe 21. Sei T der Torus und fixiere den Basispunkt $m_0 = (1, 1)$. Sei $\pi \colon \mathbb{R}^2 \to T$ die Projektion $(x, y) \mapsto (\exp(2\pi i x), \exp(2\pi i y))$. Sei G eine zusammenhängende Lie-Gruppe und sei

$$\alpha \colon \pi_1(T, m_0) \longrightarrow G$$

ein Homomorphismus.

(a) Man zeige, dass

$$\mathbb{R}^2 \times_{\pi_1(T,m_0)} G \longrightarrow T, [(x,y),g] \mapsto \pi(x,y)$$

ein G-Prinzipalbündel definiert. Hierbei wirkt $\pi_1(T, m_0) = \mathbb{Z} \times \mathbb{Z}$, vermöge $(x, y) \cdot (n, m) \mapsto (x + n, y + m)$ von rechts auf \mathbb{R}^2 und vermöge α von links auf G.

(b) Man zeige, dass die Distribution

$$T\mathbb{R}^2 \hookrightarrow T\mathbb{R}^2 \times_{\pi_1(T,m_0)} TG \cong T(\mathbb{R}^2 \times_{\pi_1(T,m_0)} G)$$

einen flachen Zusammenhang ω_{α} definiert. (Hinweis: Aufgabe 18.)

(c) Man zeige, dass $\text{hol}_{\omega_{\alpha},(0,0,e)} = \alpha$.