

Instituto Superior de Engenharia de Coimbra

Conhecimento e Raciocínio

Tema 1 - Redes Neuronais

Licenciatura Eng. Informática

2°Ano/2°Semestre

2019/20

Carolina Ferreira, nº 2018018459

Marco Domingues, nº 2018016632

Índice

Introdução	3
Enquadramento Geral	4
Testes e Resultados	7
Pasta_1	7
Variar a função de treino	7
Variar o número de neurónios em cada função de treino	9
Variar o número de camadas e de neurónios com várias combinações de	funções de ativação
	13
Variar o número de épocas	14
Alterar o tipo de rede	14
Pasta_2	15
Variar o número de neurónios	16
Variar a função de treino	18
Variar a função de ativação	19
Conclusão	20

Introdução

O presente trabalho insere-se na unidade curricular de Conhecimento e Raciocínio. Foram propostos, pelos docentes responsáveis pela unidade curricular, quatro temas principais: Redes Neuronais, Sistemas Periciais, Lógica Difusa e CBR, sendo o primeiro o eleito por nós.

O objetivo deste trabalho consiste na implementação de uma rede neuronal capaz de classificar corretamente carateres alfabéticos – as cinco vogais (A, E, I, O, U). De modo a possibilitar todo esse processo, foram-nos fornecidos os ficheiros de imagens a preto e branco, separadas por **três** pastas diferentes, que devem ser usadas nas tarefas pedidas no enunciado. A Pasta_1 contém um exemplar de cada letra, ou seja, um total de apenas 5 imagens, a Pasta_2 contém 5 subpastas – uma para cada letra – e cada uma dessas subpastas contém 200 imagens com representação da respetiva letra e, por fim, a Pasta_3, é em tudo semelhante à pasta 2, mas com 100 imagens para representar cada letra.

Ao longo da implementação fomos realizando alguns testes com o intuito de verificar se as redes treinadas conseguiam classificar, ou não, corretamente e, para além disso, fomos também avaliando várias topologias de redes neuronais.

Enquadramento Geral

O presente trabalho divide-se essencialmente em 4 pontos principais:

1.

1.1. Converter as imagens fornecidas em matrizes binárias:

```
input = zeros(784,5);
i = 1;
for n = 1 : size(d)
    folder = getfield(d, {i}, 'folder'); % folder é a pasta
    nome = getfield(d, {i}, 'name'); % vai buscar cada imagem
    img = strcat(folder, '/', nome); % cria localização final
    imagem_arr = imbinarize(imread(img));
    vector = imagem arr(:);
    input(:, i) = vector;
    i = i + 1;
end
```

NOTA: Como as imagens são de 28x28 pixels, o que se traduz em 784 inputs, não considerámos necessário fazer um redimensionamento prévio às imagens.

1.2. Começar por uma rede neuronal de uma camada com 10 neurónios e usar essa rede para treinar o reconhecimento dos caracteres da Pasta_1 e, posteriormente, testar outras topologias, funções de ativação e de treino, registando e comparando os resultados obtidos:

```
target = [1 0 0 0 0,
          0 1 0 0 0,
          0 0 1 0 0,
          0 0 0 1 0,
          0 0 0 0 1];
 % %Criação de rede neuronal com 10 neurónios com 1 camada escondida
%net = feedforwardnet(10);
%net = feedforwardnet([3 2 2 1]);
net = patternnet(10);
% FUNCAO DE ATIVACAO DA CAMADA DE SAIDA
%net.layers{1}.transferFcn = 'tansig';
% FUNCAO DE ATIVACAO DA CAMADA DE SAIDA
net.layers{1}.transferFcn = 'purelin';
% FUNCAO DE ATIVACAO DA CAMADA DE SAIDA
%net.layers{3}.transferFcn = 'purelin';
% FUNCAO DE TREINO
net.trainFcn = 'trainlm';
% NUMERO DE EPOCAS DE TREINO
net.trainParam.epochs=100;
net.divideFcn = 'dividerand';
                                                                                       4
net.divideParam.trainRatio = 1;
```

net.divideParam.valRatio = 0; net.divideParam.testRatio = 0;

```
% treinar a rede
[net,tr] = train(net, input, target);
view(net);
disp(tr)
% % SIMULAR
out = sim(net, input);
% % Treinar a rede
%net2 = net;
% %VISUALIZAR DESEMPENHO

plotconfusion(target, out) % Matriz de confusao
plotperf(tr) % Grafico com o desempenho da rede nos 3 conjuntos
```

- Fazer as alterações necessárias para implementar e testar várias topologias e parametrizações de RN de forma a obter um bom desempenho para a classificação das vogais fornecidas na pasta Pasta_2.
 - 2.1. Começar por usar uma segmentação do dataset de 70%, 15%, 15% para treino, validação e teste;

```
% NUMERO DE EPOCAS DE TREINO net.trainParam.epochs=100;
```

```
net.divideFcn = 'dividerand';
net.divideParam.trainRatio = 0.7;
net.divideParam.valRatio = 0.15;
net.divideParam.testRatio = 0.15;
```

- 2.2. Observar a matriz de confusão, erros de treino e teste; (anexada na secção "Testes e Resultados".)
- 2.3. Explorar e comparar várias configurações da rede;

```
net = feedforwardnet(10);
%net = patternnet(10);
```

2.4. Testar diferentes funções de treino/ativação, diferentes segmentações na divisão dos exemplos;

```
% FUNCAO DE ATIVACAO DA CAMADA DE SAIDA
net.layers{1}.transferFcn = 'tansig';
% FUNCAO DE ATIVACAO DA CAMADA DE SAIDA
%net.layers{2}.transferFcn = 'purelin';
% FUNCAO DE ATIVACAO DA CAMADA DE SAIDA
%net.layers{3}.transferFcn = 'purelin';
% FUNCAO DE TREINO
net.trainFcn = 'trainlm';
% FUNCAO DE TREINO
% net.trainFcn = 'traingdx';
```

2.5. Gravar a(s) rede(s) neuronal(ais) com melhor(es) desempenho(s) no ficheiro excel.

3. Utilizar as imagens da Pasta_3 que não foram usadas no treino anterior e, sem treinar a rede, verificar se a classificação dada pela RN é correta.

(resultados a observar no capítulo "Testes e Resultados".)

- 3.1. Voltar a treinar a rede só com a Pasta_3. Testar a rede separadamente para as imagens da Pasta_1, Pasta_2 e Pasta_3. Comparar e registar os resultados obtidos.
- 3.2. Voltar a treinar a rede com todas as imagens fornecidas (Pasta1 + Pasta_2 +Pasta_3). Testar a rede para as imagens da Pasta_1, Pasta_2 e Pasta_3 em separado. Comparar e registar os resultados obtidos.

4. Desenhar manualmente algumas vogais com semelhanças com os

exemplos usados no treino da rede. Transcrever os desenhos para

matrizes binárias. Desenvolver um pequeno programa para ler um

ficheiro correspondente a uma destas imagens e aplicá-lo à melhor rede

neuronal obtida em c)

Testes e Resultados

Todos os resultados dos testes efetuados são apresentados neste capítulo.

Alínea a): Pasta_1

Configuração padrão:

Tipo de rede: feedforwardnet

Número de camadas: 1

Número de neurónios: 10

Função de treino: trainlm

Função de ativação: purelin

net.divideFcn: dividerand

TrainRatio: 1.0

ValRatio: 0

TestRatio: 0

Épocas: 100

Variar a função de treino

Função de treino: trainlm

7

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média	
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Precisão de treino	NaN											

Figura 1. Melhor matriz de confusão

Função de treino: traingd

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média	
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Precisão de treino	NaN											

Figura 2. Melhor matriz de confusão

Função de treino: trainbr

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média	
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Precisão de treino	NaN											

Figura 3. Melhor matriz de confusão

Função de treino: traingd

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média	
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Precisão de treino	NaN											

Figura 4. Melhor matriz de confusão

Variar o número de neurónios em cada função de treino

Função de treino: trainml Nº de neurónios: 5

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Precisão de treino	NaN										

Função de treino: trainml Nº de neurónios: 20

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média	
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Precisão de treino	NaN											

Função de treino: trainml Nº de neurónios: 50

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Precisão de treino	NaN										

Figura 5. Melhor matriz de confusão

Função de treino: traincgf Nº de neurónios: 5

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Precisão de treino	NaN										

Função de treino: traincgf **Nº de neurónios:** 20

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Precisão de treino	NaN										

Função de treino: traincgf Nº de neurónios: 50

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média	
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Precisão de treino	NaN											
	1 1002 1											

Figura 6. Melhor matriz de confusão

Função de treino: traincgp Nº de neurónios: 50

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Precisão de treino	NaN										

Função de treino: traincgp Nº de neurónios: 100

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Precisão de treino	NaN										

Função de treino: traincgp Nº de neurónios: 150

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média	
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Precisão de treino	NaN											

Figura 7. Melhor matriz de confusão

Variar o número de camadas e de neurónios com várias combinações de funções de ativação

Nº de execuções	Nº de camadas	Nº de neurónios	Funções ativação	Precisão do treino	Média
1	1	5	tansig	100%	
2	1	5	tansig	100%	
3	1	5	tansig	100%	100%
4	1	5	tansig	100%	
5	1	5	tansig	100%	
I	1	5	purelin	100%	
2	1	5	purelin	100%	
3	1	5	purelin	100%	100%
4	1	5	purelin	100%	
5	1	5	purelin	100%	
1	2	5, 5	tansig, purelin	100%	
2	2	5, 5	tansig, purelin	100%	
3	2	5, 5	tansig, purelin	100%	100%
4	2	5, 5	tansig, purelin	100%	
5	2	5, 5	tansig, purelin	100%	
1	2	5, 5	purelin, tansig	80%	
2	2	5, 5	purelin, tansig	80%	
3	2	5, 5	purelin, tansig	100%	76%
4	2	5, 5	purelin, tansig	60%	
5	2	5, 5	purelin, tansig	60%	
1	3	2, 2, 1	tansig, purelin, tansig	100%	
2	3	2, 2, 1	tansig, purelin, tansig	100%	
3	3	2, 2, 1	tansig, purelin, tansig	100%	100%
4	3	2, 2, 1	tansig, purelin, tansig	100%	
5	3	2, 2, 1	tansig, purelin, tansig	100%	
1	3	2, 2, 1	purelin, purelin, purelin	100%	
2	3	2, 2, 1	purelin, purelin, purelin	100%	
3	3	2, 2, 1	purelin, purelin, purelin	100%	100%
4	3	2, 2, 1	purelin, purelin, purelin	100%	
5	3	2, 2, 1	purelin, purelin, purelin	100%	

Variar o número de épocas

Nº de épocas: 10

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Épocas Realizadas	10	10	10	10	10	10	10	10	10	10	

Nº de épocas: 50

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média	
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Épocas Realizadas	35	28	23	30	27	14	22	24	29	25		

Nº de épocas: 100

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Épocas Realizadas	29	53	45	23	35	32	32	32	26	30	

Nº de épocas: 1000

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média	
Precisão Global	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
-												
Epocas	23	32	30	39	21	47	30	29	32	31		
Realizadas												

Alterar o tipo de rede

Configuração padrão:

Tipo de rede: Patternnet

Nº de camadas: 1

Função de treino: trainlm

Função de ativação: purelin

Net.divideFcn: dividerand

Nº de neurónios: 10

TrainRatio: 1.0

ValRatio: 0

TestRatio: 0

Épocas: 100

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Global	60%	100%	100%	40%	80%	100%	100%	60%	100%	100%	84%
Épocas	42	14	18	13	8	11	20	11	16	16	
Realizadas											

Alínea b): Pasta_2

Variar tipo de rede

Tipo de rede: patternnet

•	Camadas	Nº de neurón	ios	Funções de ativação	Fun de tr	•	Divisão exemp		Prec Glo		Precisão Teste
Configuração	1	10		tansig, purelin	trair	ılm	divider {0.7,0.15				
Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Global	94.4	88.0	93.2	91.7	94.1	92.8	93.3	90.6	90.5	94.9	92.35
Precisão de trein	0 88.7	81.4	80.7	87.4	83.4	81.4	83.4	82.1	76.1	84.1	82.87

Tipo de rede: feedforwardnet

C	amadas	Nº de neurć		Funçõe de ativação	de	nção ino	Divisão exempl		Preci Globa		Precisão Teste
Configuração 1		10		tansig, purelin	trai	nlm	dividera {0.7,0.1				
Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Global	92.9	92.4	93.3	92.4	93.0	93.1	90.0	92.2	94.9	87.8	92,2
Precisão de treino	84.7	81.4	77.4	81.4	79.4	86.0	73.5	76.1	89.4	68.2	79,75

Variar o número de neurónios

Nº de execuções	Camadas	Nº de neurónios	Funções de ativação	Função de treino	Divisão dos exemplos	Precisão Global	Precisão Teste	Média
1	2	5,5	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	94.2	82.7	
2	2	5,5	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	91.4	80.7	Precisão Global: 90,88
3	2	5,5	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	93,0	81.4	
4	2	5,5	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	82.2	63.5	Precisão Teste: 77,02
5	2	5,5	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	93.6	76.8	
1	2	10,10	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	93.0	82.7	

2	2	10,10	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	94.4	84.7	Precisão Global:
3	2	10,10	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	76.4	70.8	89,66
4	2	10,10	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	93.7	82.7	Precisão Teste: 80,46
5	2	10,10	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	90.8	81.4	
1	2	20,20	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	94.8	86.0	
2	2	20,20	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	93.8	82.7	Precisão Global: 94,74
3	2	20,20	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	94.9	86.7	
4	2	20,20	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	95.5	88.0	Precisão Teste: 85,22
5	2	20,20	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	94.7	82.7	
1	2	50,50	tansig, tansig, purelin	trainlm	dividerand = {0.7,0.15,0.15}	91.4	74.8	

Variar a função de treino

Nº de execuções	Camadas	Nº de neurónios	Funções de ativação	Função de treino	Divisão dos exemplos	Precisão Global	Precisão Teste	Média
1	1	10	tansig, purelin	traingd	dividerand= {0.7,0.15,0.15}	19.9	19.8	
2	1	10	tansig, purelin	traingd	dividerand= {0.7,0.15,0.15}	31.6	29.8	Precisão Global: 22,22
3	1	10	tansig, purelin	traingd	dividerand= {0.7,0.15,0.15}	19.9	15.2	
4	1	10	tansig, purelin	traingd	dividerand= {0.7,0.15,0.15}	19.8	15.2	Precisão Teste:
5	1	10	tansig, purelin	traingd	dividerand= {0.7,0.15,0.15}	19.9	22.5	20,5
1	1	10	tansig, purelin	trainbfg	dividerand= {0.7,0.15,0.15}	19.9	13.2	
2	1	10	tansig, purelin	trainbfg	dividerand= {0.7,0.15,0.15}	19.9	19.8	Precisão
3	1	10	tansig, purelin	trainbfg	dividerand= {0.7,0.15,0.15}	19.9	14.6	Global: 19,9
4	1	10	tansig, purelin	trainbfg	dividerand= {0.7,0.15,0.15}	19.9	31.1	Precisão
5	1	10	tansig, purelin	trainbfg	dividerand= {0.7,0.15,0.15}	19.9	22.5	Teste: 20,24
1	1	10	tansig, tansig	traincgf	dividerand= {0.7,0.15,0.15}	20.3	24.5	Dunaisão
2	1	10	tansig, tansig	traincgf	dividerand= {0.7,0.15,0.15}	20.3	24.5	Precisão Global: 20,68
3	1	10	tansig, tansig	traincgf	dividerand= {0.7,0.15,0.15}	20.3	20.5	Precisão
4	1	10	tansig, tansig	traincgf	dividerand= {0.7,0.15,0.15}	20.3	17.8	Teste: 21,56

5	1	10	tansig, tansig	traincgf	dividerand= {0.7,0.15,0.15}	22.2	20.5	
1	1	10	purelin, purelin	traincgp	dividerand= {0.7,0.15,0.15}	20.3	18.5	
2	1	10	purelin, purelin	traincgp	dividerand= {0.7,0.15,0.15}	19.9	23.1	Precisão Global:
3	1	10	purelin, purelin	traincgp	dividerand= {0.7,0.15,0.15}	19.9	19.8	21,56
4	1	10	purelin, purelin	traincgp	dividerand= {0.7,0.15,0.15}	20.3	20.5	Precisão Teste: 21,28
5	1	10	purelin, purelin	traincgp	dividerand= {0.7,0.15,0.15}	27.4	27.1	,

Variar a função de ativação

Nº de execuções	Camadas	Nº de neurónios	Funções de ativação	Função de treino	Divisão dos exemplos	Precisão Global	Precisão Teste	Média
1	1	10	logsig, purelin	trainlm	dividerand= {0.7,0.15,0.15}	91.9	76.8	
2	1	10	logsig, purelin	trainlm	dividerand= {0.7,0.15,0.15}	94.2	87.4	Precisão
3	1	10	logsig, purelin	trainlm	dividerand= {0.7,0.15,0.15}	85.3	80.1	Global: 91,4
4	1	10	logsig, purelin	trainlm	dividerand= {0.7,0.15,0.15}	89.6	76.1	Precisão Teste: 82,22
5	1	10	logsig, purelin	trainlm	dividerand= {0.7,0.15,0.15}	94.2	90.7	62,22
1	1	10	tansig, logsig	trainlm	dividerand= {0.7,0.15,0.15}	91.4	80.1	
2	1	10	tansig, logsig	trainlm	dividerand= {0.7,0.15,0.15}	92.8	80.7	

3	1	10	tansig, logsig	trainlm	dividerand= {0.7,0.15,0.15}	88.5	79.4	Precisão Global: 92,26
4	1	10	tansig, logsig	trainlm	dividerand= {0.7,0.15,0.15}	94.3	82.7	Precisão
5	1	10	tansig, logsig	trainlm	dividerand= {0.7,0.15,0.15}	94.3	79.4	Teste: 80,46
1	1	10	hardlim, purelin	trainlm	dividerand= {0.7,0.15,0.15}	26.8	29.1	
2	1	10	hardlim, purelin	trainlm	dividerand= {0.7,0.15,0.15}	40.9	38.4	Precisão Global: 37,16
3	1	10	hardlim, purelin	trainlm	dividerand= {0.7,0.15,0.15}	36.0	34.4	
4	1	10	hardlim, purelin	trainlm	dividerand= {0.7,0.15,0.15}	39.6	37.7	Precisão Teste: 36,52
5	1	10	hardlim, purelin	trainlm	dividerand= {0.7,0.15,0.15}	42.5	43.0	30,32

Alínea c): Parte 1

Utilizando as imagens da Pasta_3, sem treinar a rede, e usando a melhor configuração resultante dos testes anteriores, obtivemos uma precisão total média de 84,98%.

Configuração utilizada:

4	2	20,20	tansig. tansig. purelin	trainlm.	dividerand = {0.7,0.15,0.15}	95.5	88.0

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Global	88.0	79.4	87.8	85.6	83.4	88.0	86.8	87.0	79.8	84.0	84,98%

Alínea c): Parte 2

TESTES PASTA_1:

Tipo de rede: feedforwardnet

Treino: Pasta_3

	Camadas	Nº de neurói	nios	Funç ativa	rões de ção		Função o treino	le	Divisão exempl			Precisão Teste
Configuração	1	10	10		tansig, purelin		trainlm		divider {1,0,0}			
N° de execuçõe	5	1	2	3	4	5	6	7	8	9	10	Média
												meatu
Precisão Teste		100	80	40	40	20	40	80	20	80	80	58%

Melhor matriz de confusão.

	Camada.		de urónios		Funções ativação		Funçõ treino		Divis	ão dos ex	xemplos	Precisão Teste
Configuração	onfiguração 2 5,5		í		tansig, tansig, purelin			n	dividerand = {0.7,0.15,0.15}			
Nº de execuçõe	s	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste		80	40	80	60	40	60	60	60	100	60	64%

Tipo de rede: patternnet

Treino: Pasta_3

	Camadas	Nº de neurónios	Funções de ativação	Função de treino	Divisão dos exemplos	Precisão Teste
Configuração	1	10	tansig, purelin	trainIm	dividerand = {1,0,0}	

Figura 8. Melhor matriz de confusão

Figura 9. Melhor performance

		Camadas	Nº de neurónios		de	Funções de ativação		Função de treino		/isão a emplos		Precisão Global		Precisão Teste
Conf	iguração	2	5,5		tan	tansig, tansig, purelin		inlm		ideran 0, 0}	d =		·	
	Nº de exe	cuções	I	2	3	4	5	6	7	8	9	10	Médi	а
	Precisão	Teste	60	60	80	40	40	80	60	40	60	40	56%	

Melhor matriz de confusão.

TESTES PASTA_2:

Tipo de rede: feedforwardnet

Treino: Pasta_3

	Camada	s Nº de neurón	ios	Funções ativação		Funçã treino		Divisã exemp			recisão este
Configuração	1	10		tansig, p	ourelin	trainlr	n	divide {1,0,0	rand = }		
Nº de execuçõe	es 1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	65.	3 72.9	74.3	71.3	81.1	69.0	75.4	77.5	78.3	72.9	73.8%

Matriz exemplar para a precisão de 65,3%

	Cama	ıdas	Nº de neurónio	os	Funções ativação		Funçã treino		Divisã exemp			Precisão Eeste
Configuração	2	5,5		tansig, tansig, p	urelin	trainln	n	divide: {1,0,0				
Nº de execuçõe	s	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste		77.6	78.1	74.3	65.4	75.7	73.2	78.3	79.8	74.3	76.5	75.32%

Matriz exemplar para a precisão de 77,6%

Tipo de rede: patternnet

Treino: Pasta_3

Teste: Pasta_2

	Can	nadas				Funções de ativação		Função de treino		Divisão dos exemplos		recisão este
Configuração	1 10 tansig, pu		urelin trainlm		dividerand = {1,0,0}							
N° de execuções	s.	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste		71.0	76.2	70.7	71.9	82.4	75.3	74.6	71.2	69.2	79	74,15%
	Can	nadas	Nº de neurónio	o s	Funções ativação		Funçã treino		Divisã exemp			recisão este
Configuração	2		5,5		tansig, tansig, p	urelin	trainlr	n	divider { 1,0,0			
Nº de execuções	r	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste		80.2	76.4	70.9	71.3	76.6	74.5	77.2	74.9	75.1	72.1	74,92%

TESTES PASTA_3:

Tipo de rede: feedforwardnet

Treino: Pasta_3

	Camadas Nº de neurónios		Funções de ativação		Função de treino		Divisão dos exemplos		Precisão Teste			
Configuração	1	1	10		tansig, purelin		trainlm		dividera {1,0,0}	nd =		
Nº de execuçõe	s	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste		100	100	100	100	100	100	100	100	100	100	100%

	Camada	as Nº de neurónios			Funções de ativação		Função de treino		Divisão dos exemplos				Precisão Teste
Configuração	2 5,5			tansig, tansig, purelin		trainlm		dividerand = {0.7,0.15,0.			-		
Nº de execuçõe	s i	I	2	3	4	5	6	7		8	9	10	Média
Precisão Teste	1	100	100	100	100	99.6	100	99.8	8	100	100	100	99,94%

Tipo de rede: patternnet

Treino: Pasta_3

	Came	adas	Nº de neurónio	os	Funções de ativação		Função de treino		exemplos			Precisão Teste
Configuração	1		10		tansig, p	ourelin	train	lm	divi {1,0	derand =	=	
N° de execuçõe.	s	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste		100	100	99.8	100	100	100	100	100	100	100	99,98%
	Came				Funções de ativação		Função de treino		Divisão dos exemplos		Precisão Teste	
			tansig, tansig, purelin		trainlm		dividerand = {1,0,0}		-			

alínea c): Parte 3

5

99.8

100

7

79.8

3

100

100

Nº de execuções

Precisão Teste

1

100

2

100

Pasta_1:

Tipo de rede: patternet

Treino: Pasta_1+Pasta_2+Pasta_3

Teste: Pasta_1

10

100

100

99.4

Média

97,9%

	Cama			Funções de ativação		Função de treino		Divisão dos exemplos		Precisão Teste		
Configuração	uração 1		10		tansig, purelin		trainIm		dividerand = {1,0,0}			
Nº de execuçõ	ies	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	9	100	100	100	100	100	100	100	100	100	100	100%

	Camadas		Nº de neurónios		Funções de ativação		Função de treino		Divisão dos exemplos		Precisão Teste	
Configuração	2		5,5		tansig, tansig, p	ourelin	trainIm	1	dividers {1,0,0}	and =		
Nº de execuçô	íes	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	Э	100	100	100	100	100	100	100	100	100	100	100%

Tipo de rede: feedforwardnet

Treino: Pasta_1+Pasta_2+Pasta_3

	Camadas	Nº de neurónios	Funções de ativação	Função de treino	Divisão dos exemplos	Precisão Teste
Configuração	1	10	tansig, purelin	trainlm	dividerand = {1,0,0}	_

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	100	100	100	100	100	100	100	100	100	100	100%

	Camadas	s Nº de neurónio	os	Funções a ativação	de	Função c treino	le	Divisão a	los exem _l	plos	Precisão Teste
Configuração	2	5,5		tansig, tansig, pu	relin	trainlm		divideran {0.7,0.15			
N° de execuçõe	s 1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	10	00 100	100	100	100	100	100	100	100	100	100%

Tipo de rede: patternnet

 $\textbf{Treino:}\ Pasta_1 + Pasta_2 + Pasta_3$

	Camadas	Nº de neurónios	Funções de ativação	Função de treino	Divisão dos exemplos	Precisão Teste
Configuração	1	10	tansig, purelin	trainlm	dividerand = {1,0,0}	

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	92.9	90.6	90.3	95.7	93.4	90.9	94.1	95.0	93.8	91.1	92.78

	Camadas	N° de neuróni	os	Funções ativação	de	Função treino	o de	Divisão exempl		Pre Tes	ecisão te
Configuração	2	5,5		tansig, tansig, pu	ırelin	trainlm	l	divider {1,0,0}			
Nº de execuçõe	s I	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	95.	8 91.6	90.7	97.9	94.4	94.7	92.3	94.3	95.1	91.3	93.81

Tipo de rede: feedforwardnet

Treino: Pasta_1+Pasta_2+Pasta_3

	Camadas	Nº de neuróni	os	Funções ativação		Funçã treino	o de	Divisão dos exemplos		Precisão Teste	
Configuração	1	10		tansig, purelin		trainlm		dividerand = {1,0,0}			
Nº de execuçõe	s I	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	89.8	3 95.8	93.3	93.0	94.5	90.3	94.7	92.1	90.8	92.4	92.67

	Camadas	Nº de neurónio		Funções a ativação		Função d treino	le D	ivisão do	s exemplo		ecisão ste
Configuração	2	5,5		tansig, tansig, pu				viderand 0.7,0.15,0			
Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	91.9	89.7	93.3	97.6	97.5	90.3	92.7	95.0	97.1	93.4	93.85

Tipo de rede: patternnet

Treino: Pasta_1+Pasta_2+Pasta_3

	Camad		Nº de neurónios	s	Funções a	le	Função treino	de	Divisão exemplo.		Prec Teste	
Configuração	1	10		tansig, pu	relin	trainlm		dividerand = {1,0,0}				
Nº de execuçõe	s .	I	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	Ç	96.0	93.0	93.8	95.6	94.3	95.0	92.8	94.8	94.4	93.2	94.30

	Camadas	Nº de neuróni	os	Funções ativação		Funçã treino		Divisâ exemp			recisão este
Configuração	2	5,5		tansig, tansig, purelin		trainlm		dividerand = {1,0,0}			
Nº de execuçõe	s 1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	96.0	94.8	96.6	94.0	94.6	94,3	96,4	94,9	96,2	94,8	95,26

Tipo de rede: feedforward

Treino: Pasta_1+Pasta_2+Pasta_3

	Camadas	Nº de neurónio	os.	Funções ativação		Função treino	o de	Divisão exempl		Pre Tes	ecisão ste
Configuração	1 10			tansig, purelin		trainlm		dividerand = {1,0,0}			
Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	93.0	94.4	92.1	92.8	95.2	94.1	93.8	92.1	90.7	94.6	93.28

	Cam	adas	Nº de neurónio	os	Funções ativação	de	Função d treino	de .	Divisão d	os exemp	olos	Precisão Teste
Configuração	2		5,5		tansig, tansig, pu	relin	trainlm		divideran {0.7,0.15			
Nº de execuçõe.	S	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste		96.4	95.2	94.4	92.8	95.0	92.8	93.4	95.4	95.9	94.2	2 94,55%

Desenho das Vogais

PATTERNET

	Camadas	Nº d€ neur	e ónios	Funço de ativaç		Funçã de tre		Divisão exemplo		Precisa Global		Precisão Teste
Configuração	1			tansiç pureli		trainIn		dividera {1,0,0}	nd =			
Nº de execuçõe	es 1	2	3	4	5	6	7	8	9	10	Média	a
Precisão Globa		28.0	-	32.0	-		12.0	28.0	34.0	24.0	24.6	
Precisão de tre	ino NaN											

	Camadas	Nº de neurá		Funça de ativaç		Funçâ de tre		Divisão exemple		Precisá Global	
Configuração	2	5,5		tansiç tansiç pureli	g,	trainIm	า	dividera {1,0,0}	nd =		
Nº de execuçô	ies 1	2	3	4	5	6	7	8	9	10	Média

Precisão Global	20.0	24.0	28.0	20.0	32.0	24.0	12.0	24.0	22.0	22.0	22.8
Dunning of the trains	NI-NI										
Precisão de treino	NaN										

	n (plotconfusio					- 0	×
File Edit	View Insert	Tools Desi	ctop Window	w Help			,
			Confusi	on Matrix			
1	3 12.0%	3 12.0%	2 8.0%	3 12.0%	2 8.0%	23.1% 76.9%	
2	1 4.0%	2 8.0%	3 12.0%	1 4.0%	3 12.0%	20.0% 80.0%	
Class	1 4.0%	0 0.0%	0 0.0%	1 4.0%	0.0%	0.0% 100%	
Output Class	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0.0%	NaN% NaN%	
5	0 0.0%	0 0.0%	0 0.0%	0.0%	0 0.0%	NaN% NaN%	
	60.0% 40.0%	40.0% 60.0%	0.0% 100%	0.0% 100%	0.0% 100%	20.0% 80.0%	
	^	ı	ე Target	Class	6		

feedforward

	Camadas	Nº de neurónios	Funções de ativação	Função de treino	Divisão dos exemplos	Precisão Global	Precisão Teste
Configuração	1	10	tansig, purelin	trainIm	dividerand = {1,0,0}		

Nº de execuções	1	2	3	4	5	6	7	8	9	10	Média
Precisão Teste	24.0	22.0	28.0	28.0	32.0	12.0	24.0	16.0	18.0	20.0	22.402
Precisão de treino	NaN										

	Camadas		Nº de neurónios		Funções de ativação			Divisão dos exemplos		Precisão Global		Precisão Teste
Configuração	2	5,5	5,5		tansig, tansig, purelin			dividerand = {0.7,0.15,0.15}				
Nº de execuçõ	ies 1	2	3	4	5	6	7	8	9	10	Média	a
Precisão Teste	24.	0 36.0	16.0	24.0	8.0	28.0	32.0	24.0	28.0	20.0	24.00	
Precisão de tre	eino Na	N										

Conclusão

Conclusões para a alínea a): Pasta_1:

Para as diferentes funções de treino testadas, com a mesma configuração (restantes parâmetros em igualdade), verificou-se que a precisão se manteve constante em 100%. Variando o número de neurónios, o número de épocas e o tipo de rede, verificámos que não ocorreu nenhuma alteração, logo, não influência as funções de ativação. Notámos ainda que, ao testar para número de épocas de treino 5, 10, 50, 100 e 1000, o programa nunca alcançou realmente o valor máximo de épocas de treino, atingindo um valor máximo de 53.

Por sua vez, ao variar o número de neurónios e o número de camadas com diferentes combinações de funções de ativação, obtivemos resultados diferentes de precisão de treino máxima: com a combinação "purelin, tansig" a precisão baixou de 100% para um valor médio de 76%.

Alterando o tipo de rede, mas mantendo a restante configuração padrão inicial - (detalhada no início do capítulo "Testes e Resultados") – a precisão baixou para um valor médio de 84%. Concluímos então que o melhor tipo de rede para o caso da Pasta_1 é a feedforwardnet.

Conclusões para a alínea b): Pasta_2:

Mantendo os restantes parâmetros em igualdade e alternando o tipo de rede entre patternnet e feedforwardnet, concluímos que a diferença não é significativa para esta amostra uma vez que a precisão global média da primeira foi de 92,35% e a precisão média da segunda foi de 92,2%.

Concluímos que a função de treino mais adequada à situação é a trainml uma vez que para as restantes – traincgf, traincgp, trainbfg e traingd – a precisão rondou os 20% e na trainml, usada nos testes iniciais, passou os 90%. Assim, os testes para as restantes variáveis mantiveram constantes o tipo de rede patternnet e a função de treino trainml.

Comparando os resultados obtidos ao variar o número de neurónios em 10, 20 e 50, notámos que a melhor precisão obtida foi na configuração com duas camadas com

número de neurónios configurado em 20,20. Em relação ao número de camadas, observámos que para um mesmo número de neurónios, numa única camada, a precisão foi ligeiramente superior à registada para duas camadas. A primeira, rondou os 92% e, a segunda, os 90%.

Por fim, a conclusão sobre a função de ativação (ou combinação de funções) mais adequada foi que esta seria a que combina tansig e purelin, atingindo na sua melhor configuração os 94,74%. Em contrapartida, observámos que a combinação mais desadequada foi a que combinou handlim com purelin.

Conclusões para a alínea c):

<u>Parte 1:</u> Partindo de um treino anterior, sem treinar novamente a rede para testar os exemplos contidos na Pasta_3, e usando a melhor configuração obtida da alínea anterior para a Pasta_2 (precisão média de 10 execuções = 94,74%), era previsível que a precisão baixasse, o que se verificou. O valor obtido foi de 84,98% que, não sendo perfeito ou sequer ideal, pode ser considerado razoavelmente aceitável.

Parte 2: Os melhores resultados obtidos foram observados para a pasta_3 como seria de esperar, uma vez que o treino da rede foi feito precisamente para essa pasta. Assim, a precisão atingiu os 100% quando usado o tipo de rede feedforward para uma camada com 10 neurónios. No entanto, para a pasta_3, com outras configurações, os valores foram sempre superiores a 99%. Para a pasta_1, o valor de precisão máximo atingido foi de apenas 64% e, para a pasta_2, 75%.

<u>Parte 3:</u> Nos primeiros testes a precisão de 100% foi facilmente atingida e seria de esperar que esse valor se mantivesse constante (ou próximo disso) nos restantes testes. Isso não se verificou porque os nossos testes tiveram apenas 20 épocas como default. Se esse valor fosse superior, a precisão seria a esperada.