Matrix Analysis - Review

Tiep Vu

November 5, 2017

0 Review and miscellanea

0.1 Vector spaces

• If S_1, S_2 are two subspaces of V, then

$$\dim(S_1 \cap S_2) + \dim(S_1 + S_2) = \dim S_1 + \dim S_2$$

$$\dim(S_1 \cap S_2) \ge \dim S_1 + \dim S_2 - \dim V$$

0.2 Matrices

- $\dim(\text{range }A) + \dim(\text{nullspace }A) = \text{rank }A + \text{nullity }A = n$
- $\bullet \ (AB)^* = B^*A^*, \quad (AB)^T = A^TB^T, \quad \overline{AB} = \overline{A}.\overline{B}$
- $(y^*x)^* = \overline{y^*x} = x^*y = y^T\overline{x}$
- Some definitions:

- Each $A \in M_n(\mathbb{C})$ can be written in exactly one way as A = H(A) + iK(A), in which H(A), K(A) are Hermitian.
- $\operatorname{tr} AA^* = \operatorname{tr} A^*A = \sum_{i,j} |a_{ij}|^2, A \in M_n(\mathbb{C})$
- range $A + \text{range } B = \text{range } [A \ B]$
- nullspace $A \cap$ nullspace B = nullspace $\begin{bmatrix} A \\ B \end{bmatrix}$

0.3 Determinants

• Laplace expansion by minors along a row or column

$$\det A = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \det A_{ik} = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \det A_{kj}$$

0.4 Rank

0.4.1 Rank inequalities

- If $A \in M_{m,n}(\mathbb{F})$ then: rank $A \leq \min\{m, n\}$
- If $A \in M_{m,k}(\mathbb{F}), B \in M_{k,n}(\mathbb{F})$ then:

$$(\operatorname{rank} A + \operatorname{rank} B) - k \le \operatorname{rank} AB \le \min \{\operatorname{rank} A, \operatorname{rank} B\}$$

• If $A, B \in M_{m,n}(\mathbb{F})$ then:

$$|\operatorname{rank} A - \operatorname{rank} B| \le \operatorname{rank} (A + B) \le \operatorname{rank} A + \operatorname{rank} B$$

- If rank B=1 then (changing one entry of a matrix can change its rank by at most 1): $|\operatorname{rank}(A+B) \operatorname{rank} A| \leq 1$
- (Frobenius inequality): If $A \in M_{m,k}(\mathbb{F}), B \in M_{k,p}(\mathbb{F}), C \in M_{p,n}(\mathbb{F})$ then:

$$\operatorname{rank} AB + \operatorname{rank} BC \leq \operatorname{rank} B + \operatorname{rank} ABC$$

with equality if and only if there are matrices X,Y such that B=BCX+YAB

0.4.2 Rank equalities

- If $A \in M_{m,n}(\mathbb{C})$, then: rank $A^* = \operatorname{rank} A^T = \operatorname{rank} \overline{A} = \operatorname{rank} A$
- If $A \in M_m(\mathbb{F})$ and $C \in M_n(\mathbb{F})$ are nonsingular and $B \in M_{m,n}(\mathbb{F})$, then: rank $AB = \operatorname{rank} B = \operatorname{rank} BC = \operatorname{rank} ABC$
- If $A, B \in M_{m,n}(\mathbb{F})$, then rank $A = \text{rank } B \Leftrightarrow \text{there exist a nonsingular } X \in M_m(\mathbb{F})$ and a nonsingular $Y \in M_n(\mathbb{F})$ such that B = XAY
- If $A \in M_{m,n}(\mathbb{C})$, then: rank $A^*A = \operatorname{rank} A$

- If $A \in M_{m,n}(\mathbb{F})$, then rank $A = k \Leftrightarrow A = XY^T$ for some $X \in M_{m,k}(\mathbb{F})$ and 0.7.2 The Sherman-Morrion-Woddbury formula $Y \in M_{n,k}(\mathbb{F})$ that each have independent columns
- rank $A = k \iff \exists$ nonsingular matrices $S \in M_n(\mathbb{F})$ and $T \in M_n(\mathbb{F})$ such that $A = S \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix} T$
- Let $A \in M_{m,n}(\mathbb{F})$. If $X \in M_{n,k}(\mathbb{F})$ and $Y \in M_{m,k}(\mathbb{F})$ and if $W = Y^T AX$ is nonsingular, then:

$$rank (A - AXW^{-1}Y^{T}A) = rank A - rank AXW^{-1}Y^{T}A$$

When k=1 (Wedderburn's rank-one redution formula): If $x \in \mathbb{F}^n$ and $y \in \mathbb{F}^m$, and if $\omega = y^T A x \neq 0$, then:

$$rank (A - \omega^{-1} A x y^T A) = rank A - 1$$

Conversely, if $\sigma \in \mathbb{F}$, $u \in \mathbb{F}^n$, $v \in \mathbb{F}^m$, and rank $(A - \sigma uv^T) < \text{rank } A$, then: rank $(A - \sigma uv^T) = \text{rank } A - 1$ and there are $x \in \mathbb{F}^n, y \in \mathbb{F}^m$ such that $u = Ax, v = A^Ty, y^TAx \neq 0$, and $\sigma = (y^TAx)^{-1}$

0.5 Nonsingularity

 \bullet $(A^{-1})^T = (A^T)^{-1}$

The Euclidean inner product and norm

- $\langle x, y \rangle = y^* x$, $||x||_2 = \langle x, x \rangle = (x * x)^{1/2}$
- $\langle \alpha x_1 + \beta x_2, y \rangle = \alpha \langle x_1, y \rangle + \beta \langle x_2, y \rangle, \langle x, \alpha y_1 + \beta y_2 \rangle = \overline{\alpha} \langle x, y_1 \rangle + \overline{\beta} \langle x, y_2 \rangle$

Partitioned sets and matrices

The inverse of a partitioned matrix

$$\bullet \ \ M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} (A - BD^{-1}C)^{-1} & A^{-1}B(CA^{-1}B - D)^{-1} \\ D^{-1}C(BD^{-1}C - A)^{-1} & (D - CA^{-1}B)^{-1} \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} (A - BD^{-1}C)^{-1} & (BD^{-1}C - A)^{-1}BD^{-1} \\ (CA^{-1}B - D)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{bmatrix}$$

assume that the relevent inverses exist.

Let $A \in M_n(\mathbb{F})$ be nonsingular and $B = A + XRY, X \in M_{n,r}(\mathbb{F}), Y \in M_{r,n}(\mathbb{F}), R \in$ $M_{r,r}(\mathbb{F})$. If B and $R^{-1} + YA^{-1}X$ are nonsingular, then:

$$B^{-1} = A^{-1} - A^{-1}X(R^{-1} + YA^{-1}X)^{-1}YA^{-1}$$

If $r \ll n$, then R and $R^{-1} + YA^{-1}X$ may be much easier to invert than B. If $x, y \in \mathbb{F}^n$ are nonzero vectors, $X = x, Y = y^T y^T A^{-1} x \neq 0$, and R = [1] then:

$$(A + xy^{T})^{-1} = A^{-1} - (1 + y^{T}A^{-1}x)^{-1}A^{-1}xy^{T}A^{-1}$$

In particular, if $B = I + xy^T$ for $x, y \in \mathbb{F}^n$ and $y^T x \neq -1$, then

$$B^{-1} = I - (1 + y^T x)^{-1} x y^T$$

0.7.3 Complementary nullities

Let $A \in M_n(\mathbb{F})$ is nonsingular. The law of complementary nullities is:

$$\operatorname{nullity}(A[\alpha,\beta]) = \operatorname{nullity}(A^{-1}[\beta^c,\alpha^c])$$

which is equivalent to the rank identity:

$$\operatorname{rank} (A[\alpha, \beta]) = \operatorname{rank} (A^{-1}[\beta^c, \alpha^c]) + r - s - n, \quad r = |\alpha|, s = |\beta|$$

0.7.4 Rank in a partitioned matrix and rank-principal matrices

• $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$, $A_{11} \in M_r(\mathbb{F})$, $A_{22} \in M_{n-r}(\mathbb{F})$. If A_{11} is nonsingular, then

$$\operatorname{rank} \ \begin{bmatrix} A_{11} & A_{12} \end{bmatrix} = \operatorname{rank} \ \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix} = r$$

• The converse is true:

if rank
$$A_{11} = \text{rank } \begin{bmatrix} A_{11} & A_{12} \end{bmatrix} = \text{rank } \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$$
, then A_{11} is nonsingular.

0.8 Determinants again

0.8.1 The adjugate and the inverse

- If $A \in M_n(\mathbb{F})$, n > 2, the adjugate of A is: adj $A = [(-1)^{i+j} \det A[\{i\}^c, \{i\}^c]]$
- (adj A)A = A(adj A) = (det A)I, and $det(adj A) = (det A)^{n-1}$
- adj $(A^{-1}) = A/\det A = (\text{adj } A)^{-1}$
- If rank $A \leq n-2$, then adj A=0
- If rank A = n 1 then rank adj A = 1. Suppose adj $A = \alpha xy^T$ for some $\alpha \in \mathbb{F}$ and nonzero $x, y \in \mathbb{F}^n$. From:

$$(Ax)y^{T} = A(\text{adj } A) = 0 = (\text{adj } A)A = x(y^{T}A)$$

we conclude that: Ax = 0 and $y^T A = 0$

- adj (AB) = (adj A)(adj B) for all $A, B \in M_n$
- If A is nonsingular, then:

$$\begin{array}{rclcrcl} {\rm adj} \ ({\rm adj} \ A) & = & {\rm adj} \ ((\det A)A^{-1}) & = & (\det A)^{n-1}{\rm adj} \ A^{-1} \\ & = & (\det A)^{n-1}(A/\det A) & = & (\det A)^{n-2}A \end{array}$$

• If A + B is nonsingular, then : $A(A + B)^{-1}B = B(A + B)^{-1}A$, so continuity ensures that:

$$A$$
adj $(A + B)B = B$ adj $(A + B)A$

- (adj A)B = B(adj A) whenever AB = BA, even if A is singular.
- $(adj A) = \left[\frac{\partial}{\partial a_{ij}} \det A\right]^T$

0.8.2 Minors of the inverse

$$\det A^{-1}[\alpha^c, \beta^c] = (-1)^{p(\alpha, \beta)} \frac{\det A[\beta, \alpha]}{\det A}, \text{ in which } p(\alpha, \beta) = \sum_{i \in \alpha} i + \sum_{j \in \beta} j.$$

In particular: $\det A^{-1}[\alpha^c] = \frac{\det A[\alpha]}{\det A}$

0.8.3 Schur complements and determinantal formulae

• Definition: The Schur complement of $A[\alpha]$ in A:

$$A/A[\alpha] = A[\alpha^c] - A[\alpha^c, \alpha]A[\alpha]^{-1}A[\alpha, \alpha^c]$$

- $\bullet \ \det A = \det A[\alpha] \det \Big(A[\alpha^c] A[\alpha^c,\alpha] A[\alpha]^{-1} A[\alpha,\alpha^c] \Big)$
- When α^c consists of a single element. Then:

$$\det A = \det A[\alpha] \Big(A[\alpha^c] - A[\alpha^c, \alpha] (A[\alpha]^{-1} A[\alpha, \alpha^c]) \Big)$$

= $A[\alpha^c] \det A - A[\alpha^c, \alpha] (\operatorname{adj} A[\alpha]) A[\alpha, \alpha^c]$

• Cauchy's formula for the determinant of a rank-one perturbation

$$\det \begin{bmatrix} \hat{A} & x \\ y^T & a \end{bmatrix} = a \det(\hat{A} - a^{-1}xy^T)$$
$$\det \begin{bmatrix} \hat{A} & x \\ y^T & a \end{bmatrix} = a \det(\hat{A} - y^T)(\operatorname{adj} \hat{A})x$$

$$\Rightarrow a \det(\hat{A} - a^{-1}xy^T) = a \det \hat{A} - y^T(\text{adj } \hat{A})x$$
$$a = -1 \Rightarrow \det(\hat{A} + xy^T) = \det \hat{A} + y^T(\text{adj } \hat{A})x$$

0.8.4 Determinantal identities of Sylvester and Kronecker

0.8.10 Derivative of the determinant

- $\frac{d}{dt} \det A(t) = \operatorname{tr}(\operatorname{adj} A(t))A'(t)$
- $\frac{d}{dt} \det(tI A) = \text{tr adj } (tI A)$

0.9 Special types of matrices

0.9.1 Bock diagonal matrices and direct sums

• A matric $A \in M_n(\mathbb{F})$ of the form: $A = \begin{bmatrix} A_{11} & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & A_{kk} \end{bmatrix}$ in which

 $A_{ii} \in M_{n_i}(\mathbb{F}), i = 1, \dots, k, \sum_{i=1}^k n_i = n$ is called *block diagonal*. We also write:

$$A = A_{11} \oplus A_{22} \oplus \cdots \oplus A_{kk} = \bigoplus_{i=1}^{k} A_{ii}$$

- $\det\left(\bigoplus_{i=1}^k A_{ii}\right) = \prod_{i=1}^k \det A_{ii}$
- rank $\left(\bigoplus_{i=1}^k A_{ii}\right) = \sum_{i=1}^k \operatorname{rank} A_{ii}$
- If $A \in M_n$ and $B \in M_m$ are nonsingular, then:
 - 1. $(A \oplus B)^{-1} = A^{-1} \oplus B^{-1}$
 - 2. $(\det(A \oplus B))(A \oplus B)^{-1} = (\det A)(\det B)(A^{-1} \oplus B^{-1}) = ((\det B)(\det A)A^{-1} \oplus (\det A)(\det B)B^{-1})$
- a continuity argument ensures that:

adj
$$(A \oplus B) = (\det B)$$
adj $A \oplus (\det A)$ adj B

0.9.2 Triangular matrices

- If $T \in M_n$ is triangular, has distinct diagonal entries, and commutes with $B \in M_n$, then B must be triangular of the same type as T (upper, strictly upper, lower, strictly lower).
- If a square triangular matrix is nonsingular, its inverse is a triangular matrix of the same type.
- A product of square triangular matrices of the same size and type is a triangular matrix of the same type; each i, i diagonal entry of such a matrix product is the product of the i, i entries of the factors.

0.9.3 Permutation matrices

- A squate matric *P* is a *permutation matric* if exactly one entry in each row and column is equal to 1 and all other entries are 0.
- $P^T = P^{-1}$ and $\det P = \pm 1$
- The product of two permuation matrices is again a permuation matrix.
- A matrix $A \in M_n$ such that PAP^T is triangular for some permutation matric P is called *essentially triangular*
- The n-by-n reversal matrix is the permutation matrix:

$$K_n = \begin{bmatrix} & & 1 \\ & \ddots & \\ 1 & & \end{bmatrix}$$

0.9.4 Ciculant matrices

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ a_n & a_1 & a_2 & \dots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \dots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & a_4 & \dots & a_1 \end{bmatrix}$$

0.9.5 Toplits matrices

$$A = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & \dots & a_n \\ a_{-1} & a_0 & a_1 & a_2 & \dots & a_{n-1} \\ a_{-2} & a_{-1} & a_0 & a_1 & \dots & a_{n-2} \\ a_{-3} & a_{-2} & a_{-1} & a_0 & \dots & a_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{-n} & a_{-n+1} & a_{-n+2} & a_{-n+3} & \dots & a_0 \end{bmatrix}$$

0.9.6 Hankel matrices

$$A = \begin{bmatrix} a_0 & a_1 & a_2 & \dots & a_n \\ a_1 & a_2 & a_3 & \dots & a_{n+1} \\ a_2 & a_3 & a_4 & \dots & a_{n+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n+1} & a_{n+2} & \dots & a_{2n} \end{bmatrix}$$

0.9.7 Hessenberg matrices

• A matric $A = [a_{ij}] \in M_n(\mathbb{F})$ is said to be in upper Hessenberg form or to be an upper Hessenberg matric if $a_{ij} = 0$ for all i > j + 1:

$$A = \begin{bmatrix} a_{11} & & & * \\ a_{21} & a_{22} & & & \\ & a_{32} & \ddots & & \\ & & \ddots & \ddots & \\ 0 & & & a_{n,n-1} & a_{nn} \end{bmatrix}$$

• An upper Hessenberg matrix A is unreduced if $a_{i+1,i} \neq 0$ for all $i = 1, \ldots, n-1$; the rank of such a matrix is at least n-1 since its first n-1 colums are independent.

0.9.8 Tridiagonal, bidiagonal, and other structured matrices

- A matrix that is both upper and lower Hessenberg is called tridiagonal, that is, A is tridiagonal if $a_{ij} = 0, \forall |i j| > 1$
- A Jacobi matrix is a real symmetric tridiagonal matrix with positive subdiagonal entries.
- A matrix $A = [a_{ij}] \in M_n(\mathbb{F})$ is persymmetric if $a_{ij} = a_{n+1-j,n+1-i}$ for all $i, j = 1, \ldots, n-1$
- A is persymmetric if $K_n A = A^T K_n$
- If A is persymmetric and invertible, then A^{-1} is also persymmetric since $K_nA^{-1}=(AK_n)^{-1}=(K_nA^T)^{-1}=(A^{-1})^TK_n$
- A is skew persymmetric if $K_n A = -A^T K_n$. The inverse of a nonsingular skew-persymmetric matrix is skew persymmetric.
- $A \in M_n$ is perhermitian if $K_n A = A^* K_n$, is skew perhermitian if $K_n A = -A^* K_n$
- A matrix $A = [a_{ij}] \in M_n(\mathbb{F})$ is centrosymmetric if $a_{ij} = a_{n+1-i,n+1-j}$ for all $i, j = 1, \ldots, n$. A is centrosymmetric if $K_n A = AK_n$.
- if A and B are centrosymmetric, then AB is centrosymmetric. If A and B are skew centrosymmetric, then AB is centrosymmetric.

0.9.9 Vandermonde matrices and Lagrange interpolation

• A Vandermonde matrix $A \in M_n(\mathbb{F})$ has the form

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix}$$

•
$$\det A = \prod_{1 \le i < j \le n}^{n} (x_i - x_j)$$

0.9.10 Cauchy matrices

- A Cauchy matrix $A \in M_n(\mathbb{F})$ is matrix of the form $A = [(a_i + b_j)^{-1}]_{i,j=1}^n$, in which $a_1, \ldots, a_n, b_1, \ldots, b_n$ are scalars such that $a_i + b_j \neq 0$ for all $i, j = 1, \ldots, n$.
- det $A = \frac{\prod_{1 \le i < j \le n} (a_j a_i)(b_j b_i)}{\prod_{1 \le i < j \le n} (a_i + b_j)}$
- A Hilbert matrix $H_n = [i+j-1]^{-1}]_{i,j=1}^n$ is a Cauchy matrix that is also a Hankel matrix.

$$\det H_n = \frac{(1!2!\dots(n-1)!)^4}{1!2!\dots(2n-1)!}$$

• So a Hilbert matrix is always nonsingular. The entries of its inverse $H_n^{-1} = [h_{ij}]_{i,j=1}^n$ are:

$$h_{ij} = \frac{(-1)^{i+j}(n+i-1)!(n+j-1)!}{\left((i-1)!(j-1)!\right)^2(n-i)!(n-j)!(i+j+1)!}$$

0.9.11 Involution, nilpotent, projection, coninvolution

A matrix $A \in M_n(\mathbb{F})$ is

- an involution if $A^2 = I$
- nilpotent if $A^k = 0$ for some $k \in \mathbb{N}^*$; the least such k is the index of nulpotence of A.
- a projection/idempotent if $A^2 = A$

Suppose that $\mathbb{F} = \mathbb{C}$. A matrix $A \in M_n$ is:

- a Hermitian projection/ orthogonal projection if $A^* = A$ and $A^2 = A$.
- a coninvolution/coninvolutory if $A\overline{A} = I$

0.10 Change of basis

0.11 Equivalence relations

Equivalence Relation \sim	$A \sim B$
congruence	$A = SBS^T$
unitary congruence	$A = UBU^T$
congruence	$A=SBS^$
consimilarity	$A = SB\overline{S}^{-1}$
equivalence	A = SBT
unitary equivalence	A = UBV
diagonal equivalence	$A = S_1 B D_2$
similarity	$A = SBS^{-1}$
unitary similarity	$A=UBU^*$
triangular equivalence	A = LBR

in which:

- D_1, D_2, S, T, L and R are square and nonsingular.
- \bullet *U* and *V* are unitary
- L is lower triangular
- R is upper triangular
- D_1 and D_2 are diagonal
- A and B need not be square for equivalence, unitary equivalence, triangular equivalence, or diagonal equivalence.

1 Eigenvalues, Eigenvectors and Similarity

1.1 The eigenvalue-eigenvector equation

- $A \in M_n$, p() is a given polynomial. Then if $Ax = \lambda x \Rightarrow p(A)x = p(\lambda)x$
- Theorem 1.1.6 $A \in M_n$, p() is a given polynomial. Then if $Ax = \lambda x \Rightarrow p(A)x = p(\lambda)x$. Conversely, if $k \geq 1$ and if μ is an eigenvalue of p(A), then $\exists \lambda \in \sigma(A) | \mu = p(\lambda)$
- Observation 1.1.8 Let $A \in M_n$ and $\lambda, \mu \in \mathbb{C}$ be given. Then $\lambda \in \sigma(A) \iff \lambda + \mu \in \sigma(A + \mu I)$
- Theorem 1.1.9 Let $A \in M_n$ be given. Thus, for each $(y \neq 0) \in \mathbb{C}^n$, $\exists \ a$ polynomial g(t) of degree at most n-1 such that g(A)y is an eigenvector of A.

1.2 The characteristic polynomial and algebraic multilicity

• Theorem 1.2.8 (Brauer's theorem) . Let $x, y \in C^n, x \neq 0$ and $A \in M_n$. Suppose that $Ax = \lambda x$ and let the eigenvalues of A be $\lambda, \lambda_2, \ldots, \lambda_n$. Then, the eigenvalues of $A + xy^*$ are $\lambda + y^*x, \lambda_2, \ldots, \lambda_n$. In other words,

$$(t - \lambda)p_{A+xy^*}(t) = (t - (\lambda + y^*x))p_A(t)$$

• a_k is the coefficient of t^k in $p_A(t)$. $E_k(A)$ is the sum of all k-by-k principal minors of A. Then

$$a_k = \frac{1}{k!} p_A^{(k)}(0) = (-1)^{n-k} E_{n-k}(A)$$

•
$$E_k(A) = S_k(\lambda_1, \dots, \lambda_n) = \sum_{1 \le i_1 < \dots < i_k \le n} \prod_{j=1}^k \lambda_{i_j}, \lambda_i \in \sigma(A)$$

$$p_A(t) = t^n - E_1(A)t^{n-1} + \dots + (-1)^{n-1}E_{n-1}t + (-1)^n E_n(A)$$

- Theorem 1.2.17 Let $A \in M_n$. There is some $\delta > 0$ such that $A + \varepsilon I$ is nonsingular whenever $\varepsilon \in \mathbb{C}$ and $0 < |\varepsilon| < \delta$ (See Observation 1.1.8)
- α is a zero of p(t) of multiplicity k iff $\begin{cases} p'(\alpha) = \cdots = p^{(k-1)}(\alpha) = 0 \\ p^{(k)}(\alpha) \neq 0 \end{cases}$
- Theorem 1.2.18 Let $A \in M_n$ and suppose that $\lambda \in \sigma(A)$ has algebraic multiplicity k. Then rank $(A \lambda I) \ge n k$ with equality for k = 1.
- Let $A \in M_n$ and $x, y \in \mathbb{C}^n$ be given. Let $f(t) = \det(A + txy^T)$. Then, for any $t_1 \neq t_2$

$$\det A = \frac{t_2 f(t_1) - t_1 f(t_2)}{t_2 - t_1}$$

1.3 Similarity

- Theorem 1.3.7 Let $A \in M_n$ be given. Then
 - 1. A is similar to a bloock matrix of the form

$$\begin{bmatrix} \Lambda & C \\ 0 & D \end{bmatrix}, \quad \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_k), D \in M_{n-k}, 1 \le k < n$$

iff there are k linearly independent vectors in \mathbb{C}^n , each of which is an eigenvector of A.

- 2. The matrix A is diagonalizable iff it has n linearly independent eigenvectors.
- 3. If $x^{(1)}, \ldots, x^{(n)}$ are linearly independent vectors of A and if $S = [x^{(1)}, \ldots, x^{(n)}]$, then $S^{-1}AS$ is a diagonal matrix

- 4. If A is similar to a matrix of the above form, then the diagonal entries of Λ are eigenvalues of A. If A is similar to a diagonal matrix Λ , then the diagonal entries of Λ are all of the eigenvalues of A
- Lemma 1.3.8 Let $\lambda_1, \ldots, \lambda_k, (k \geq 2)$ be distinct eigenvalues of $A \in M_n$ and suppose that $x^{(i)}$ is an eigenvector associated with λ_i for each $i = 1, \ldots, k$. Then the vectors $x^{(1)}, \ldots, x^{(k)}$ are linearly independent.
- Theorem 1.3.9 If $A \in M_n$ has n distinct eigenvalues, then A is diagonalizable.
- Lemma 1.3.10 Let $B_1 \in M_{n1}, \ldots, B_d \in M_{nd}$ be gien and let B be the direct sum

$$B = \begin{bmatrix} B_1 & & 0 \\ & \ddots & \\ 0 & & B_d \end{bmatrix} = B_1 \oplus \cdots \oplus B_d$$

Then B is diagonalizable iff each of B_1, \ldots, B_d is diagonalizable.

- Theorem 1.3.12 Let $A, B \in M_n$ be diagonalizable. Then AB = BA iff they are simultaneously diagonalizable.
- $\mathcal{F} \subseteq M_n$ is a commuting family $\Rightarrow \exists x \in \mathbb{C}^n$ that is an eigenvector of every $A \in \mathcal{F}$
- \mathcal{F} is a family of diagonalizable matrices. Then \mathcal{F} is a commuting family \Leftrightarrow it is a simultaneously diagonalizable family.
- $A \in M_{m,n}, B \in M_{n,m}, m \le n$. Then $p_{BA}(t) = t^{n-m} p_{AB}(t)$
- Theorem 1.3.28 Let $S \in M_n$ be nonsingular and let S = C + iD, in which $C, D \in M_n(\mathbb{R})$. There is a real number τ such that $T = C + \tau D$ is nonsingular.
- Theorem 1.3.29 Two real matrices that are similar over $\mathbb C$ are similar over $\mathbb R$.
- Theorem 1.3.31 (Misky) Let an interger $n \geq 2$ and complex scalars $\lambda_1, \ldots, \lambda_n$ and d_1, \ldots, d_n be given. There is an $A \in M_n$ with eigenvalues $\lambda_1, \ldots, \lambda_n$ and main diagonal entries d_1, \ldots, d_n iff $\sum_{i=1}^n \lambda_i = \sum_{i=1}^n d_i$. If $\lambda_1, \ldots, \lambda_n$ and d_1, \ldots, d_n are all real and have the same sums, there is an $A \in M_n(\mathbb{R})$ with eigenvalues $\lambda_1, \ldots, \lambda_n$ and main diagonal entries d_1, \ldots, d_n .

2 Unitary equivalence and normal

2.1 Unitary matrices

- Orthogonal: The vectors $x_1, \ldots, x_k \in \mathbb{C}^n$ form an orthogonal set if $x_i^* x_j = 0, \forall \text{ pairs } 1 \leq i < j \leq k$.
- Orthonormal: If an orthogonal set has vectors normalized, $x_i^*x_i = 1, \forall i = 1, \ldots, k$, then the set is call orthonormal. An orthonormal set of cectors is linearly independent.
- A matrix $U \in M_n$ is said to be unitary if $U^*U = I$. If, in addition, $U \in M_n(\mathbb{R})$, U is said to be real orthogonal.
- **Theorem**: For all $x \in \mathbb{C}^n$ and matrix U is unitary, the Euclidean length of y = Ux is the same as that of x; that is, y * y = x * x.
- Theorem: Let $A \in M_n$ be a nonsingular matrix. Then A^{-1} is similar to A^* iff there is a nonsingular matrix $B \in M_n$ such that $A = B^{-1}B^*$

2.2 Unitary equivalence

- **Def**: A matrix $B \in M_n$ is said to be unitarily equivalent to $A \in M_n$ if there is a unitary matrix $U \in M_n$ such that $B = U^*AU$. If U may be taken to be real, then B is said to be (real) orthogonally equivalent to A.
- Thr: If $A = [a_{ij}]$ and $B = [b_{ij}] \in M_n$ are unitary equivalent, then:

$$\sum_{i,j=1}^{n} |b_{ij}|^2 = \sum_{i,j=1}^{n} |a_{ij}|^2$$

- Householder transformations: Let $w \in C^n$ be a nonzero vector and define $U_w \in M_n$ by $U_w = I tww^*$ in which $t = 2(w^*w)^{-1}$. Then,
 - $U_w x = x$ if $x \perp w$ and $W_w w = -w$
 - U_w is both unitary and Hermitian
- Specht's Thr: Two given matrices $A, B \in M_n$ are unitarily equivalent iff: tr $W(A, A^*)$ = tr $W(B, B^*)$ for every word W(s, t) in two noncommuting variables.

$$W(A, A^*) = A^{m_1} (A^*)^{n_1} A^{m_2} (A^*)^{n_2} \dots A^{m_k} (A^*)^{n_k}$$

• **Pearcy's Thr**: Two given matrices $A, B \in M_n$ are unitarily equivalent iff $\operatorname{tr} W(A, A^*) = \operatorname{tr} W(B, B^*)$ for every word W(s, t) of degre at most $2n^2$.

2.3 Schur's unitary triangularization theorem

• Schur's Thr: Given $A \in M_n$ with eigenvalues $\lambda_1, \ldots, \lambda_n$ in any prescribed order, there is a unitary matrix $U \in M_n$ such that:

$$U * AU = T = [t_{ij}]$$

is upper triangular, with diagonal entries $t_{ii} = \lambda_i, i = 1, ..., n$. That is, every square matrix A is unitarily equivalent to a triangular matrix whose diagonal entries are the eigenvalues of A in a prescribed order.

- Thr: Let $\mathcal{F} \subseteq M_n$ be a commuting family. There is a unitary matrix $U \in M_n$ such that U^*AU is upper triangular for every $A \in \mathcal{F}$
- Thr: if $A \in M_n(\mathbb{R})$, there is a real orthogonal matrix $Q \in M_n(\mathbb{R})$ such that:

$$Q^{T}AQ = \begin{bmatrix} A_{1} & * & * & \\ & A_{2} & & \\ & & \ddots & \\ & 0 & & A_{k} \end{bmatrix} \in M_{n}(\mathbb{R}), \quad 1 \leq k \leq n$$
 (13)

where each A_i is a real 1-by-1 matrix, or a real 2-by-2 matrix with a non-real pair of complex conjugate eigenvalues. The diagonal blocks A_i may be arranged in any prescribed order.

• Thr: Let $\mathcal{F} \subseteq M_n(\mathbb{R})$ be a commuting family. There is a real orthogonal matrix $Q \in M_n(\mathbb{R})$ such that $Q^T A Q$ is of the form 13 for every $A \in \mathcal{F}$.

2.4 Some implications of Schur's theorem

- Lem: Supose that $R = [r_{ij}], T = [t_{ij}] \in M_n$ are upper triangular and that $r_{ij} = 0, 1 \le i, j \le k < n$, and $t_{k+1,k+1} = 0$. Let $T' = [t'_{ij}]RT$ then $t'_{ij} = 0, 1 \le i, j \le k+1$.
- Cayley-Hamilton Thr: Let $P_A(t)$ be the characteristic polynomial of $A \in M_n$. Then: $P_A(A) = 0$.
- Thr: Let $A = [a_{ij}] \in M_n$. For every $\epsilon > 0$, there exists a matrix $A(\epsilon) = [a_{ij}(\epsilon)] \in M_n$ that has n distinct eigenvalues (and therefore diagonalizable) and is such that:

$$\sum_{i,j=1}^{n} |a - [ij] - a_{ij}(\epsilon)|^{2}$$

• Thr: Let $A \in M_n$. For every $\epsilon > 0$, there exists a nonsingular matrix $S_{\epsilon} \in M_n$ such that

$$S_{\epsilon}^{-1}AS_{\epsilon} = T_{\epsilon} = [t_{ij}(\epsilon)]$$

is upper triangular and $|T_{ij}(\epsilon)| < \epsilon, \forall 1 \le i <, > j \le n$

- Thr: Suppose that $A \in M_n$ has eigenvalues $\lambda + i$ with multiplicity $n_i, i = 1, \ldots, k$ and that $\lambda_1, \ldots, \lambda_k$ are distint. Then A is similar to a matrix of the form
 - $\begin{bmatrix} T_1 & & 0 & \\ & T_2 & & \\ & & \ddots & \\ & 0 & & T_k \end{bmatrix}$

where $T_i \in M_{n_i}$ is upper triangular with all diagonal entries equal to $\lambda_i, i = 1, ..., k$. If $A \in M_n(\mathbb{R})$ and if all the eigenvalues of A are real, then the same result holds, and the similarity matrix may be taken to be real.

• Thr: Let $A, B \in M_n$ have eigencalues $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n respectively. If A and B commute, there is a permutation i_1, \ldots, i_n of the indices $1, \ldots, n$ such that the eigenvalues of A + B are $\alpha_1 + \beta_1, \ldots, \alpha_n + \beta_n$. In particular, $\sigma(A + B) \subseteq \sigma(A) + \sigma(B)$ if A and B are commute.

2.5 Normal matrices

- **Def**: A matrix $A \in M_n$ is said to be *normal* if $A^*A = AA^*$.
- Thm: if $A = [a_{ij}] \in M_n$ has eigenvalues $\lambda_1, \ldots, \lambda_n$, the following statements are equivalents:
 - 1. A is normal;
 - 2. A is unitary diagonalizable;
 - 3. $\sum_{i,j=1}^{n} |a_{ij}|^2 = \sum_{i=1}^{n} |\lambda_i|^2$; and
 - 4. There is an orthonormal set of n eigenvectors of A.
- A normal matrix is nondefective (the geometric's and algebraic's multiplicity are the same)
- If $A \in M_n$ is normal, $x \in \mathbb{C}^n$ then $Ax = \lambda x \Leftrightarrow x^*A = \lambda x^*$
- Thm: If $\mathcal{N} \subseteq M_n$ is a commuting family of normal matrices, then \mathcal{N} is simultaneously unitary diagonalizable.
- Lem: If $A \in M_n$ is Hermitian and $x^*Ax \ge 0$ for all $x \in \mathbb{C}^n$, then all the eigenvalues of A are nonnegative. If, in addition, tr A = 0 then A = 0.

4 Hermitian and symmetric matrices

4.1 Definitions, properties of Hermitian matrices

• Thm: Let $A = [a_{ij}] \in M_n$ be given. Then A is Hermitian iff at least one of the following holds:

- 1. x^*Ax is real for all $x \in \mathbb{C}^n$;
- 2. A is normal and all the eigenvalues of A is are real; or
- 3. S^*AS is Hermitian for all $S \in M_n$
- Thm: Let $A \in M_n$ be gien. Then A is Hermitian iff there is a nunitarry matrix $U \in M_n$ and a real diagonal matrix $\Lambda \in M_n$ s.t. $A = U\Lambda U^*$

4.2 Variational characterizations of eigenvalues of Hermitian matrices

• Thm: Let $A \in M_n$ be a Hermitian matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \dots \lambda_n$, and let k be the given integer with $1 \leq k \leq n$. Then

$$\min_{w_1,w_2,\dots,w_{n-k}\in\mathbb{C}^n}\max_{x\neq 0,x\perp w_1,\dots,w_{n-k}}\frac{x^*Ax}{x^*x}=\lambda_k$$

$$\max_{w_1, w_2, \dots, w_{k-1} \in \mathbb{C}^n} \min_{x \neq 0, x \perp w_1, \dots, w_{k-1}} \frac{x^* A x}{x^* x} = \lambda_k$$

4.3 Some apps of the variational characterizations

• Thm: Let $A, B \in M_n$ be Hermitian. Let the respective eigenvalues A, B, and A + B be $\{\lambda_1(A) \leq \lambda_2(A) \leq \cdots \leq \lambda_n(A)\}$, $\{\lambda_1(B) \leq \lambda_2(B) \leq \cdots \leq \lambda_n(B)\}$, and $\{\lambda_1(A+B) \leq \lambda_2(A+B) \leq \cdots \leq \lambda_n(A+B)\}$. Then:

$$\lambda_i(A+B) \le \lambda_{i+j}(A) + \lambda_{n-j}(B), \quad i = 1, 2, \dots, n; j = 0, 1, \dots, n-1$$

• **Thm**: Let $A, B \in M_n$ be Hermitian and let the eigenvalues $\lambda_i(A), \lambda_i(B)$, and $\lambda_i(A+B)$ be arranged in increasing order. For each $k=1,2,\ldots,n$, we have:

$$\lambda_k(A) + \lambda_1(B) \le \lambda_k(A+B) \le \lambda_k(A) + \lambda_n(B)$$

- Corollary: Let $A, B \in M_b n$ be Hermitian. Assume that B is positive semidefinite and that the eigenvalues of A and A + B are arranged in increasing order. Then: $\lambda_k(A) \leq \lambda_k(A+B)$ for all k = 1, 2, ..., n
- Thm 4.3.4: Let $A \in M_n$ be Hermitian and let $z \in \mathbb{C}^n$ be a given vector. If the eigenvalues of A and $A \pm zz^*$ are arranged in increasing order, we have:
 - 1. $\lambda_k(A \pm zz^*) \le \lambda_{k+1}(A) \le \lambda_{k+2}(A \pm zz^*), k = 1, 2, \dots, n-2$
 - 2. $\lambda_k(A) \le \lambda_{k+1}(A \pm zz^*) \le \lambda_{k+2}(A)$
- Let $A, B \in M_n$ be Hermitian and suppose that B has rank at most r. Then:
 - 1. $\lambda_k(A+B) \leq \lambda_{k+r}(A) \leq_{k+2r} (A), k=1,2,\ldots,n-2r$
 - 2. $\lambda_k(A) \le \lambda_{k+r}(A+B) \le \lambda_{k+2r}(A), k = 1, 2, ..., n-2r$
- \mathbf{C} : A, B Hermitian.

- 1. $j + k \ge n + 1$, then: $\lambda_{j+k-n}(A+B) \le \lambda_j(A) + \lambda_k(B)$.
- 2. $j + k \le n + 1$, then $\lambda_j(A) + \lambda_k(B) \le \lambda_{j+k-1}(A+B)$
- Thm: A Hermitian. $\hat{A} = \begin{bmatrix} A & y \\ y^* & a \end{bmatrix}$. Then:

$$\hat{\lambda}_1 \le \lambda_1 \le \hat{\lambda}_2 \le \lambda_2 \le \dots \le \hat{\lambda}_n \le \lambda_n \le \hat{\lambda}_{n+1}$$

- Thm 4.3.10 If: $\hat{\lambda}_1 \leq \lambda_1 \leq \hat{\lambda}_2 \leq \lambda_2 \leq \cdots \leq \hat{\lambda}_n \leq \lambda_n \leq \hat{\lambda}_{n+1}$. Let $\Lambda = \text{diag } (\lambda_1, \dots, \lambda_n)$. Then $\exists a, y \in \mathbb{R}^n \text{ s.t. } \{\hat{\lambda}_1, \dots, \hat{\lambda}_n\}$ is the set of the real symmetric matrix: $\begin{bmatrix} A & y \\ y^* & a \end{bmatrix}$
- Thm: A is Hermitian, A_r is r-by-r principal submatrix of A.

$$\lambda_k(A) \le \lambda_k(A_r) \le \lambda_{k+n-r}(A), \quad 1 \le k \le r$$

- **Def**: The vector β is said to majorize the vector α if sum of k smallest elements of $\beta \geq$ that of α , for k = 1, ..., n and equality for k = n
- **Thm**: A is Hermitian. Then the vector of diagonal entries of A majorizes the vector of eigenvalues of A.
- Thm: $a_1 \leq \cdots \leq a_n$; $\lambda_1 \leq \cdots \leq \lambda_n$ and vector $a = [a_i]$ majorizes the vector $\lambda = [\lambda_i]$, then $\exists A = [a_{ij}]$ is real symmetric s.t. $a_{ii} = a_i$ and $\{\lambda_i\}$ is the set of eigenvalues of A
- Weyl's Thm: Let $A, B \in M_n$ be Hermitian. Let the respective eigenvalues of A, B, and A + B be $\{\lambda_1(A) \le \lambda_2(A) \le \cdots \le \lambda_n(A)\}$, $\{\lambda_1(B) \le \lambda_2(B) \le \cdots \le \lambda_n(B)\}$, and $\{\lambda_1(A+B) \le \lambda_2(A+B) \le \cdots \le \lambda_n(A+B)\}$. Then:

$$\lambda_{i-k+1}(A) + \lambda_k(B) \le \lambda_i(A+B) \le \lambda_{i+j}(A) + \lambda_{n-j}(B),$$

$$i = \overline{1, n}; j = \overline{0, n-1}; k = \overline{1, i}$$

 $\circ\,$ If B has exactly π positive eigenvalues, μ negative eignenvalues:

$$\lambda_i(A+B) \le \lambda_{i+\pi}(A); i = \overline{1, n-\pi}, \tag{14}$$

$$\lambda_{i-\mu}(A) \le \lambda_i(A+B); i = \overline{\mu+1,n} \tag{15}$$

• If rank (B) = r < n:

$$\lambda_i(A+B) \le \lambda_{i+r}(A); i = \overline{1, n-r}$$
(16)

$$\lambda_{i-r} \le \lambda_i(A+B); i = \overline{r+1, n} \tag{17}$$

 $0 \neq z \in \mathbb{C}^n$:

$$\lambda_i(A) \le \lambda_i(A + zz^*) \le \lambda(A); i = \overline{1, n - 1}$$
(18)

$$\lambda_n(A) \le \lambda_n A + zz^* \tag{19}$$

$$\circ \ \lambda_k(A) + \lambda_1(B) \le \lambda_k(A+B) \le \lambda_k(A) + \lambda_n(B); k = \overline{1, n}$$

• Cauchy's Thm: Let $B \in M_n$ be Hermitian, let $y \in \mathbb{C}^n$ and $a \in \mathbb{R}$ be a given, and let $A = \begin{bmatrix} B & y \\ y^* & a \end{bmatrix} \in M_{n+1}$. Then:

$$\lambda_1(A) \le \lambda_1(B) \le \lambda_2(A) \le \dots \le \lambda_n(A) \le \lambda_n(B) \le \lambda_{n+1}(A)$$

- Thm 4.3.10 If: $\hat{\lambda}_1 \leq \lambda_1 \leq \hat{\lambda}_2 \leq \lambda_2 \leq \cdots \leq \hat{\lambda}_n \leq \lambda_n \leq \hat{\lambda}_{n+1}$. Let $\Lambda = \text{diag } (\lambda_1, \dots, \lambda_n)$. Then $\exists a, y \in \mathbb{R}^n \text{ s.t. } \{\hat{\lambda}_1, \dots, \hat{\lambda}_n\}$ is the set of the real symmetric matrix: $\begin{bmatrix} A & y \\ y^* & a \end{bmatrix}$
- If $\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \lambda_n \leq \mu_n$. Let $\Lambda = \text{diag } (\lambda_1, \dots, \lambda_2)$. There exists $z \in \mathbb{R}^n$ such that: $\sigma(\Lambda + zz^T) = \{\mu_1, \dots, \mu_n\}$

5 Norms for vectors and matrices

5.4 Analytic properties of vector norms

- Let $B = \{x^{(1)}, \dots, x^{(n)}\}$ be a basix for V. A function $f: V \to \mathbb{R}$ is said to be **pre-norm** if it satisfies:
 - a) Positive: $f(x) \ge 0$, $\forall x$; $f(x) = 0 \Leftrightarrow x = 0$
 - b) Homogeneous: $f(\alpha x) = \alpha f(x)$
 - c) Continuous: f(x(z)) is continuous on $(\mathbb{F})^n$, where $z = [z_1, \dots, z_n]^T \in (\mathbb{F})^n$ and $x(x) = z_1 x^{(1)} + \dots + z_n x^{(n)}$

A norm is always a pre-norm.

• Let f() be a pre-norm on $V = \mathbb{R}^n$ or \mathbb{C}^n . The function:

$$f^D(y) = \max_{f(x)=1} \operatorname{Re} y^* x$$

is called the **dual norm** of f. Also: $f^D(y) = \max_{f(x)=1} |y^*x|$. The dual norm of a pre-norm is always a norm.

$$\circ |y^*x| \leq f(x)f^D(y)$$

$$\circ (\|\cdot\|_1)^D = \|\cdot\|_{\infty}; \quad (\|\cdot\|_{\infty})^D = \|\cdot\|_1;$$

$$\circ (\|\cdot\|_2)^D = \|\cdot\|_2$$

$$\circ ((\|\cdot\|)^D)^D = \|\cdot\|$$

• $x \in \mathbb{C}^n$ be a given vector and let $\|\cdot\|$ be a given vector norm on \mathbb{C}^n . The set

$${y \in \mathbf{C}^n : ||y||^D ||x|| = y^*x = 1}$$

is said to be the dual of x with respec to $\|\cdot\|$

5.5 Matrix norms

- We call a function $\|\cdot\|: M_n \to \mathbb{R}$ a **matrix norm** if for all $A, B \in M_n$, it astisfies the following five axioms:
 - (1) $||A|| \ge 0$ Nonegative
 - (1a) ||A|| = 0 if and only if A = 0 Positive
 - (2) $||cA|| = |c|||A||, \forall c \in C$ Homogeneous
 - (3) $||A + B|| \le ||A|| + ||B||$ Triangle inequality
 - (4) $||AB|| \le ||A|| ||B||$ Submutiplicative
- Let $\|\cdot\|$ be a vector norm on \mathbb{C}^n . Define $\|\cdot\|$ on M_n by:

$$||A|| = \max_{||x||=1} ||Ax||$$

Then, $\|\cdot\|$ is a matrix norm. $\|\cdot\|$ is the matrix norm **induced** by the vector norm $\|\cdot\|$.

• The maximum column sum matrix norm $\|\cdot\|_1$:

$$||A||_1 = \max_{a \le j \le n} \sum_{i=1}^n |a_{ij}|$$

• The maximum row sum matrix norm $\|\cdot\|_{\infty}$:

$$||A||_{\infty} = \max_{a \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

• Spectral norm $\|\cdot\|_2$ is defined on M_n by:

$$||A||_2 = \max\{\sqrt{\lambda} \text{ is an eigenvalues of } A^*A\}$$

• Spectrul radius $\rho(A)$ of a matrix $A \in M_n$ is:

$$\rho(A) = \max\{|\lambda| : \lambda \text{ is an eigen value of } A\}$$

- If $\|\cdot\|$ is any matrix norm, then $\rho(A) \leq \|A\|$.
- Let $A \in M_n$ and $\epsilon > 0$ be given. There is a matrix norm $\|\cdot\|$ such that: $\rho(A) \leq \|A\| \leq \rho(A) + \epsilon$
- If $A \in M_n$, then th series $\sum_{k=0}^{\infty} a_k A^k$ converges if there is a matrix norm $\|\cdot\|$ on M_n such that the numerical series $\sum_{k=1}^{\infty} |a_k| \|A\|^k$ converges, or even if the partial sums of this series are bounded.
- Define $||A||^* = ||A^*||$
- A matrix norm $\|\cdot\|$ on M_n is a **minimal matrix norm** if the only matrix norm $N(\cdot)$ on M_n such that $N(A) \leq \|A\|$ for all $A \in M_n$ is $N(\cdot) = \|\cdot\|$
- Thm: Let $\|\cdot\|$ be a given matrix norm on M_n . Then:
 - a) $\|\cdot\|^*$ is an induced norm if and only if $\|\cdot\|$ is an induced norm.
 - b) If the matrix norm $\|\cdot\|$ is induced by the vector norm $\|\cdot\|$, then $\|\cdot\|^*$ is induced by the dual norm $\|\cdot\|^D$
 - c) The spectral norm $\|\cdot\|_2$ is the only matrix norm on M_n that is both induced and self-adjoint.

5.7 Vector norms on matrices

• If f is a pre-norm on M_n , then $\lim_{k\to\infty} [f(A^k)]^{1/k}$ exists for all $A\in M_n$ and:

$$\lim_{k \to \infty} [f(A^k)]^{1/k} = \rho(A)$$

• For each vectr norm $G(\cdot)$ on M_n , there is a finite positive constant c(G) such that $c(G)G(\cdot)$ is a matrix norm on M_n . If $\|\cdot\|$ is a matrix norm on M_n , and if:

$$C_m||A|| \le G(A) \le C_M||A||$$
 for all $A \in M_n$

then
$$c(G) \le \frac{C_M}{C_m^2}$$

• The vector norm $\|\cdot\|$ on \mathbb{C}^n is said to be compatible with the vector norm $G(\cdot)$ on M_n if:

$$||Ax|| \le G(A)||x||, \ \forall x \in \mathbb{C}^n, A \in M_n$$

• If $\|\cdot\|$ is a matrix norm on M_n , then there is some vectr norm on \mathbb{C}^n that is compatible with it.