Approximation Methods Homework 2

Michael Nameika

1.29. Let **A** and **D** be (real) $n \times n$ matrices.

(a) Suppose **A** is symmetric and has n distinct eigenvalues. Find a two-term expansion of the eigenvalues of the perturbed matrix $\mathbf{A} + \varepsilon \mathbf{D}$, where **D** is positive definite. What you are finding is known as a Rayleigh-Schrödinger series for the eigenvalues.

Soln. We begin by noting that since A is real symmetric and has n distinct eigenvalues, the eigenvectors of A for a complete orthonormal basis for \mathbb{R}^n . Now, consider the perturbed eigenvalue problem

$$(\mathbf{A} + \varepsilon \mathbf{D})v = \lambda v$$

and assume

$$\lambda \sim \lambda_0 + \varepsilon^{\alpha} \lambda_1 + \cdots$$

and

$$v \sim v_0 + \varepsilon^{\beta} v_1 + \cdots$$

Plugging these expansions into our eigenvalue problem, we find

$$(\mathbf{A} + \varepsilon \mathbf{D})(v_0 + \varepsilon^{\beta} v_1 + \cdots) = (\lambda_0 + \varepsilon^{\alpha} \lambda_1 + \cdots)(v_0 + \varepsilon^{\beta} v_1 + \cdots)$$

$$\implies \mathbf{A}(v_0 + \varepsilon^{\beta} v_1 + \cdots) + \varepsilon \mathbf{D}(v_0 + \varepsilon^{\beta} v_1 + \cdots) = \lambda_0 v_0 + \varepsilon^{\alpha} \lambda_1 v_0 + \cdots + \varepsilon^{\beta} \lambda_0 v_1 + \varepsilon^{\alpha + \beta} \lambda_1 v_1 + \cdots$$

From the $\mathcal{O}(1)$ terms, we have the system

$$\mathbf{A}v_0 = \lambda_0 v_0$$

which gives us that λ_0 is an eigenvalue of \mathbf{A} with associated eigenvector v_0 . Further, we see that from the $\mathcal{O}(\varepsilon)$ term, either $\alpha=1$ or $\beta=1$. Consider the case $\beta=1$ and $\alpha<\beta$. If $\alpha\in\mathbb{R}\setminus\mathbb{Q}$, then from balancing terms on the right hand side of the above equation, we have $\lambda_1=\lambda_2=\cdots=0$ since the powers on the right hand side are of the form $\alpha+k, k\in\mathbb{N}$ so there is no perturbation of λ . If $\alpha\in\mathbb{Q}$, then there is an integer n such that $\lambda_1,\cdots,\lambda_{n-1}=0$ and $\lambda_n\neq 0$, which will recover the case $\alpha=1$ with reordering. The cases $\alpha>\beta$ or $\alpha=1$ with $\alpha<\beta$ or $\alpha>\beta$ follow similarly leading us to conclude $\alpha=\beta=1$. Thus the $\mathcal{O}(\varepsilon)$ terms give

$$\mathbf{A}v_1 + \mathbf{D}v_0 = \lambda_1 v_0 + \lambda_0 v_1.$$

Now project onto v_0 :

$$\langle v_0, \mathbf{A} v_1 \rangle + \langle v_0, \mathbf{D} v_0 \rangle = \langle v_0, \lambda_1 v_0 \rangle + \lambda_0 \langle v_0, v_1 \rangle. \tag{1}$$

Since \mathbf{A} is real symmetric, A is self-adjoint, so

$$\langle v_0, \mathbf{A} v_1 \rangle = \langle \mathbf{A} v_0, v_1 \rangle$$

= $\lambda_0 \langle v_0, v_1 \rangle$.

Then equation (1) becomes

$$\langle v_0, \mathbf{D} v_0 \rangle = \langle v_0, \lambda_1 v_0 \rangle$$

= λ_1^*

and since **D** is positive definite, we have $\langle v_0, \mathbf{D} v_0 \rangle > 0$ so that $\lambda_1^* = \lambda_1$ giving us

$$\lambda_1 = \langle v_0, \mathbf{D} v_0 \rangle$$

and so our two term expansion for λ is

$$\lambda \sim \lambda_0 + \varepsilon \langle v_0, \mathbf{D} v_0 \rangle$$

with λ_0 an eigenvalue of **A** and v_0 the associated eigenvector.

(b) Suppose **A** is the identity and **D** is symmetric. Find a two-term expansion of the eigenvalues for the matrix $\mathbf{A} + \varepsilon \mathbf{D}$.

Soln. Consider the perturbed eigenvalue problem

$$(\mathbf{A} + \varepsilon \mathbf{D})v = \lambda v.$$

Following the same argument in part (a), we can asssume

$$\lambda \sim \lambda_0 + \varepsilon \lambda_1 + \cdots$$

and

$$v \sim v_0 + \varepsilon v_1 + \cdots$$

Note that, since **A** is the identity matrix, **A** has only one eigenvalue, $\lambda_{\mathbf{A}} = 1$. Plugging these expansions into our eigenvalue problem, we find

$$(\mathbf{A} + \varepsilon \mathbf{D})(v_0 + \varepsilon v_1 + \cdots) = (\lambda_0 + \varepsilon \lambda_1 + \cdots)(v_0 + \varepsilon v_1 + \cdots)$$

$$\implies \mathbf{A}(v_0 + \varepsilon v_1 + \cdots) + \varepsilon \mathbf{D}(v_0 + \varepsilon v_1 + \cdots) = \lambda_0 v_0 + \varepsilon \lambda_1 v_0 + \cdots + \varepsilon \lambda_0 v_1 + \cdots$$

The $\mathcal{O}(1)$ terms gives

$$\mathbf{A}v_0 = \lambda_0 v_0$$

and since **A** is the identity, $\lambda_0 = 1$ and v_0 is to be determined. The $\mathcal{O}(\varepsilon)$ terms gives

$$\mathbf{D}v_0 + \mathbf{A}v_1 = \lambda_1 v_0 + \lambda_0 v_1$$

$$\implies \mathbf{D}v_0 + v_1 = \lambda_1 v_0 + v_1$$

$$\implies \mathbf{D}v_0 = \lambda_1 v_0$$

which gives us λ_1 is an eigenvalue of **D** with associated eigenvector v_0 . Further, since **D** is symmetric, we have λ_1 is real, and so our two term expansion for λ is

$$\lambda \sim 1 + \varepsilon a$$

where a is an eigenvalue of **D**.

(c) Considering

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \ \mathbf{D} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

show that $\mathcal{O}(\varepsilon)$ perturbation of a matrix need not result in a $\mathcal{O}(\varepsilon)$ perturbation of the eigenvalues. This example also demonstrates that a smooth perturbation of a matrix need not result in a smooth perturbation of the eigenvalues.

Proof: Notice

$$\mathbf{A} + \varepsilon \mathbf{D} = \begin{pmatrix} 0 & 1 \\ \varepsilon & 0 \end{pmatrix}.$$

Computing the eigenvalues, we find

$$\begin{vmatrix} -\lambda & 1 \\ \varepsilon & -\lambda \end{vmatrix} = 0$$

$$\implies \lambda^2 - \varepsilon = 0$$

$$\implies \lambda^2 = \varepsilon$$

$$\implies \lambda = \pm \sqrt{\varepsilon}.$$

And note that the eigenvalues of \mathbf{A} are $\lambda=0$. Thus a $\mathcal{O}(\varepsilon)$ perturbation in the matrix results in a $\mathcal{O}(\varepsilon^{1/2})$ perturbation of the eigenvalues.

1.33. Find a two-term asymptotic expansion, for small ε , of the solution of the following problems. Also, comment on how the boundary conditions help determine the form of the expansion.

(c)
$$y'' - y + \varepsilon y^3 = 0$$
, where $y(0) = 0$ and $y(1) = \varepsilon$.

Soln. Assume $y \sim \varepsilon^{\alpha}(y_0 + \varepsilon^{\beta}y_1 + \cdots)$ and that

$$y'' \sim \varepsilon^{\alpha} (y_0'' + \varepsilon^{\beta} y_1'' + \cdots)$$

and

$$y^{3} = \varepsilon^{3\alpha} \left(y_{0} + \varepsilon^{\beta} y_{1} + \cdots \right)^{3}$$
$$= \varepsilon^{3\alpha} \left(y_{0}^{3} + 3\varepsilon^{\beta} y_{0}^{2} y_{1} + \cdots \right).$$

Applying our boundary conditions to this expansion gives

$$y(0) = \varepsilon^{\alpha}(y_0(0) + \varepsilon^{\beta}y_1(0) + \cdots)$$
$$= 0$$
$$\implies y_0(0) = y_1(0) = \cdots = 0$$

and

$$y(1) = \varepsilon^{\alpha} (y_0(1) + \varepsilon^{\beta} y_1(1) + \cdots)$$
$$= \varepsilon$$
$$\implies y_1(1) = y_2(1) = \cdots = 0$$

and balancing gives $\alpha = 1$ with $y_0(1) = 1$. Plugging this expansion into our differential equation yields

$$\varepsilon y_0'' + \varepsilon^{1+\beta} y_1'' + \dots - \varepsilon y_0 - \varepsilon^{1+\beta} y_1 - \dots + \varepsilon^4 y_0^3 + 3\varepsilon^{\beta+2} y_0^2 y_1 + \dots = 0.$$

Now, the $\mathcal{O}(\varepsilon)$ term gives the ODE

$$y_0'' - y_0 = 0$$
, $y_0(0) = 0$ and $y_0(1) = 1$.

which has general solution

$$y_0(t) = a_0 \cosh(t) + b_0 \sinh(t)$$

From the boundary conditions, we find $y_0(0) = a_0 = 0$ and $y_0(1) = b_0 \sinh(1) = 1 \implies b_0 = \frac{1}{\sinh(1)}$. Balancing the next lowest order terms in the differential equation gives us $\beta = 3$. Thus the $\mathcal{O}(\varepsilon^4)$ terms yield

$$y_1'' - y_1 + \frac{\sinh^3(t)}{\sinh^3(1)} = 0,$$
 $y_1(0) = 0$ and $y_1(1) = 0.$

The general solution to the homogeneous equation is again $y_{1,h} = a \cosh(t) + b \sinh(t)$. To get the particular solution, we apply variation of parameters. Let $g(t) = -\frac{\sinh^3(t)}{\sinh^3(1)}$. Then from variation of parameters, we have $y_{1,p} = u_1 x_1 + u_2 x_2$ with $x_1 = \cosh(t)$ and $x_2 = \sinh(t)$ and

$$u_1 = -\int_0^t \frac{g(s)x_2}{W} ds$$
$$u_2 = \int_0^t \frac{g(s)x_1}{W} ds$$

where $W = W(\cosh(t), \sinh(t)) = 1$ so

$$u_{1} = \frac{1}{\sinh^{3}(1)} \int_{0}^{t} \sinh^{4}(s) ds$$
$$u_{2} = -\frac{1}{\sinh^{3}(1)} \int_{0}^{t} \cosh(s) \sinh^{3}(s) ds.$$

Let's now compute the above integrals. For u_2 , let $v = \sinh(s)$ so that $dv = \cosh(s)ds$ and

$$\int_0^t \cosh(s) \sinh^3(s) ds = \int_0^{\sinh(t)} v^3 dv$$
$$= \frac{\sinh^4(t)}{4}$$
$$\implies u_2 = -\frac{\sinh^4(t)}{4 \sinh^3(1)}.$$

For u_1 , notice

$$\int_0^t \sinh^4(s)ds = \int_0^t \sinh^2(s)(\cosh^2(s) - 1)ds$$
$$= \int_0^t \sinh^2(s)\cosh^2(s)ds - \int_0^t \sinh^2(s)ds.$$

For the second integral, using the identity $\sinh^2(s) = \frac{\cosh(2s)-1}{2}$ so that

$$\int_0^t \sinh^2(s)ds = \frac{1}{2} \int_0^t (\cosh(2s) - 1)ds$$
$$= \frac{\sinh(2t)}{4} - \frac{t}{2}.$$

For the first integral, we use the above identity for $\sinh^2(s)$ with the identity $\cosh^2(s) = \frac{\cosh(2s)+1}{2}$ so that

$$\int_0^t \sinh^2(s) \cosh^2(s) ds = \int_0^t \left(\frac{\cosh(2s) - 1}{2} \right) \left(\frac{\cosh(2s) + 1}{2} \right) ds$$

$$= \frac{1}{4} \int_0^t (\cosh^2(2s) - 1) ds$$

$$= \frac{1}{8} \int_0^t (\cosh(4s) + 1) - \frac{t}{4}$$

$$= \frac{\sinh(4t)}{32} + \frac{t}{8} - \frac{t}{4}$$

$$= \frac{\sinh(4t)}{32} - \frac{t}{8}.$$

Thus

$$\int_0^t \sinh^4(s)ds = \frac{\sinh(4t)}{32} - \frac{\sinh(2t)}{4} - \frac{t}{8} + \frac{t}{2}$$
$$= \frac{\sinh(4t)}{32} - \frac{\sinh(2t)}{4} + \frac{3t}{8}.$$

Thus our solution to this differential equation is

$$y_1(t) = a\cosh(t) + b\sinh(t) + \frac{\cosh(t)}{\sinh^3(1)} \left(\frac{\sinh(4t)}{32} - \frac{\sinh(2t)}{4} + \frac{3t}{8}\right) - \frac{\sinh^5(t)}{4\sinh^3(1)}$$

And from our boundary conditions, we have

$$y_1(0) = a = 0$$

$$y_1(1) = b \sinh(1) + \frac{\cosh(1)}{\sinh^3(1)} \left(\frac{\sinh(4)}{32} - \frac{\sinh(2)}{4} + \frac{3}{8} \right) - \frac{\sinh^2(1)}{4} = 0$$

$$\implies b = -\frac{\cosh(1)}{\sinh^4(1)} \left(\frac{\sinh(4)}{32} - \frac{\sinh(2)}{4} + \frac{3}{8} \right) + \frac{\sinh(1)}{4}.$$

Thus our two term expansion for the differential equation is

$$y(t) \sim \varepsilon \frac{\sinh(t)}{\sinh(1)} + \varepsilon^4 \left(b \sinh(t) + \frac{\cosh(t)}{\sinh^3(1)} \left(\frac{\sinh(4t)}{32} - \frac{\sinh(2t)}{4} + \frac{3t}{8} \right) - \frac{\sinh^5(t)}{4 \sinh^3(1)} \right).$$

1.36. The eigenvalue problem for the vertical displacement, y(x), of an elastic string with variable density is

$$y'' + \lambda^2 \rho(x, \varepsilon) y = 0$$
, for $0 < x < 1$,

where y(0) = y(1) = 0. For small ε assume $\rho \sim 1 + \varepsilon \mu(x)$, where $\mu(x)$ is positive and continuous. In this case the solution y(x) and eigenvalue λ depend on ε , and the appropriate expansions are $y \sim y_0(x) + \varepsilon y_1(x)$ and $\lambda \sim \lambda_0 + \varepsilon \lambda_1$ (better expansions will be discussed in Sect. 3.6).

(a) Find y_0 and λ_0 .

Soln. Plugging the above expansions into our differential equation, we have

$$y_0'' + \varepsilon y_1'' + (\lambda_0 + \varepsilon \lambda_1)^2 (1 + \varepsilon \mu(x))(y_0 + \varepsilon y_1) = 0$$

which, up to $\mathcal{O}(\varepsilon)$ becomes

$$y_0'' + \varepsilon y_1'' + \lambda_0^2 y_0 + \varepsilon (\lambda_0^2 y_1 + \lambda_0^2 y_0 \mu(x) + 2\lambda_0 \lambda_1 y_0) = 0$$

For the $\mathcal{O}(1)$ terms, we have

$$y_0'' + \lambda_0^2 y_0 = 0, \quad y_0(0) = 0, y_0(1) = 0$$

which has general solution $y_0 = a_0 \cos(\lambda_0 x) + b_0 \sin(\lambda_0 x)$. From the boundary conditions, we have

$$y_0(0) = a_0 = 0$$

 $y_0(1) = b_0 \sin(\lambda_0)$

Since this is an eigenvalue problem, $b_0 \neq 0$ giving $\lambda_0 = n\pi$ $n \in \mathbb{Z}$, $n \neq 0$. Thus

$$y_0 = b_0 \sin(n\pi x)$$
$$\lambda_0 = n\pi.$$

(b) Find y_1 and λ_1 .

Soln. From the $\mathcal{O}(\varepsilon)$ terms in the expansion in part (a), we find

$$y_1'' + \pi^2 n^2 y_1 + \sin(n\pi x)(\mu(x)n^2\pi^2 + 2\lambda_0\lambda_1) = 0.$$

Which admits the homogeneous solution $y_{1,h} = a_1 \cos(n\pi x) + b_1 \sin(n\pi x)$. Let $g(x) = -\sin(n\pi x)(\mu(x)n^2\pi^2 + 2\lambda_0\lambda_1)$ and $x_1 = \cos(n\pi x)$ and $x_2 = \sin(n\pi x)$. From variation of parameters, we seek functions u_1 , u_2 such that $y_p = u_1x_1 + u_2x_2$ where

$$u_1 = -\int_0^x \frac{g(s)x_2(s)}{W(x_1, x_2)} ds$$

$$u_2 = -\int_0^x \frac{g(x)x_1(s)}{W(x_1, x_2)} ds.$$

Now,

$$W(x_1, x_2) = \begin{vmatrix} \cos(n\pi x) & \sin(n\pi x) \\ -n\pi \sin(n\pi x) & n\pi \cos(n\pi x) \end{vmatrix}$$
$$= n\pi(\cos^2(n\pi x) + \sin^2(n\pi x))$$
$$= n\pi.$$

Then

$$u_{1} = \frac{1}{n\pi} \left(b_{0} \int_{0}^{x} \sin^{2}(n\pi s) \mu(x) ds + 2b_{0} n\pi \lambda_{1} \int_{0}^{x} \sin^{2}(n\pi s) ds \right)$$
$$= n\pi b_{0} \int_{0}^{x} \sin^{2}(n\pi x) \mu(s) ds + \lambda_{1} b_{0} \left(x - \frac{\sin(2n\pi x)}{2\pi n} \right)$$

and

$$u_{2} = -\frac{1}{n\pi} \left(n\pi a_{0} \int_{0}^{x} \sin(n\pi s) \cos(n\pi s) \mu(s) ds - 2\lambda_{1} b_{0} \int_{0}^{x} \sin(n\pi s) \cos(n\pi s) ds \right)$$

$$= -\frac{b_{0} n\pi}{2} \int_{0}^{x} \sin(2n\pi s) \mu(s) ds - \lambda_{1} b_{0} \int_{0}^{x} \sin(2n\pi s) ds$$

$$= -\frac{b_{0} n\pi}{2} \int_{0}^{x} \sin(2n\pi s) \mu(s) ds + \frac{\lambda_{1} b_{0}}{2n\pi} (\cos(2n\pi x) - 1)$$

so that our general solution for y_1 takes the form

$$y_{1} = n\pi b_{0} \cos(n\pi x) \int_{0}^{x} \sin^{2}(n\pi s)\mu(s)ds + n\pi \lambda_{1} b_{0} \cos(n\pi x) \left(x - \frac{\sin(2n\pi x)}{2n\pi}\right) - \frac{n\pi b_{0}}{2} \sin(n\pi x) \int_{0}^{x} \sin(2n\pi s)\mu(s)ds + \frac{\lambda_{1} b_{0}}{2} \sin(n\pi x)(\cos(2n\pi x) - 1) + a\cos(n\pi x) + b\sin(n\pi x).$$

From the boundary conditions, notice $y_1(0) = a = 0$ and

$$y_1(1) = n\pi a_0 \cos(n\pi) \int_0^1 \sin^2(n\pi s) \mu(s) ds + \lambda_1 b_0 \cos(n\pi) = 0$$

$$\implies \lambda_1 = -n\pi \int_0^1 \sin^2(n\pi s) \mu(s) ds$$

and so

$$y_{1} = n\pi a_{0} \cos(n\pi x) \int_{0}^{x} \sin^{2}(n\pi s)\mu(s)ds + \lambda_{1}b_{0} \cos(n\pi x) \left(x - \frac{\sin(2n\pi x)}{2n\pi}\right) - \frac{n\pi}{2} \sin(n\pi x) \int_{0}^{x} \sin(2n\pi s)\mu(s)ds + \frac{\lambda_{1}b_{0}}{2n\pi} \sin(n\pi x)(\cos(2n\pi x) - 1) + b_{1} \sin(n\pi x).$$

1.41. In quantum mechanics, the perturbation theory for bound states involves the time-independent (normalized) Schrödinger equation

$$\Psi'' - [V_0(x) + \varepsilon V_1(x)]\Psi = -E\Psi, \quad \text{for} \quad -\infty < x < \infty,$$

where $\psi(-\infty) = \psi(\infty) = 0$. In this problem the eigenvalue E is the energy, V_1 is the perturbing potential, and ε is called the coupling constant. The potentials V_0 and V_1 are given continuous functions. This exercise examines what is known as a logarithmic perturbation expansion to fin dthe corrections to the energy. To do this, it is assumed that the unperturbed ($\varepsilon = 0$) state is nonzero (more specifically, it is a nondegenerate ground state).

(a) Assuming $\psi \sim \psi_0(x) + \varepsilon \psi_1(x) + \varepsilon^2 \psi_2(x)$ and $E \sim E_0 + \varepsilon E_1 + \varepsilon^2 E_2$, find what problem the first term in these expansions satisfies. In this problem assume

$$\int_{-\infty}^{\infty} \psi_0^2 dx = 1 \quad \text{and} \quad \int_{-\infty}^{\infty} |V_1(x)| dx < \infty.$$

Soln. Plugging these expansions into our differential equation, we find the following:

$$\psi_0'' + \varepsilon \psi_1'' + \varepsilon^2 \psi_2'' - [V_0(x) + \varepsilon V_1(x)](\psi_0 + \varepsilon \psi_1 + \varepsilon^2 \psi_2) = -(E_0 + \varepsilon E_1 + \varepsilon^2 E_2)(\psi_0 + \varepsilon \psi_1 + \varepsilon^2 \psi_2)$$

and notice the $\mathcal{O}(1)$ terms give us the following equation:

$$\psi_0'' - V_0(x)\psi_0 = -E_0\psi_0.$$

That is, the first terms of the expansions satisfy the standard time independent Schrödinger equation.

(b) Letting $\psi = e^{\varphi(x)}$, find the problem $\varphi(x)$ satisfies.

Soln. For $\psi = e^{\varphi(x)}$, we have

$$\psi' = \varphi' e^{\varphi}$$
$$\psi'' = \varphi'' e^{\varphi} + (\varphi')^2 e^{\varphi}.$$

Plugging this into our equation, we have

$$\varphi''e^{\varphi} + (\varphi')^2 e^{\varphi} - [V_0 + \varepsilon V_1]e^{\varphi} = -Ee^{\varphi}$$

$$\Longrightarrow \varphi'' + (\varphi')^2 - [V_0 + \varepsilon V_1] = -E.$$

(c) Expand $\varphi(x)$ for small ε , and from this find E_1 and E_2 in terms of ψ_0 and the perturbing potential.

Soln. Assume $\varphi \sim \varphi_0 + \varepsilon^{\alpha} \varphi_1 + \varepsilon^{2\alpha} \varphi_2$ and $\varphi'' \sim \varphi_0'' + \varepsilon^{\alpha} \varphi_1'' + \varepsilon^{2\alpha} \varphi_2''$. Plugging this expansion into our differential equation gives

$$\varphi_0'' + \varepsilon^{\alpha} \varphi_1'' + \varepsilon^{2\alpha} \varphi_2'' + \dots + \left(\varphi_0' + \varepsilon^{\alpha} \varphi_1' + \varepsilon^{2\alpha} \varphi_2' + \dots\right)^2 - V_0 - \varepsilon V_1 = -E_0 - \varepsilon E_1 - \varepsilon^2 E_2.$$

From the $\mathcal{O}(1)$ terms, we have

$$\varphi_0'' + (\varphi_0')^2 - V_0 = -E_0$$

and from the $\mathcal{O}(\varepsilon)$ term, we have $\alpha = 1$ and so

$$\varphi_1'' + 2\varphi_0'\varphi_1' - V_1 = -E_1$$

and finally the $\mathcal{O}(\varepsilon^2)$ term gives

$$\varphi_2'' + (\varphi_1')^2 + 2\varphi_0'\varphi_2' = -E_2.$$

Now, relating the asymptotic expansion of ψ with the asymptotic expansion for φ , notice

$$\psi \sim e^{\varphi_0 + \varepsilon \varphi_1 + \varepsilon^2 \varphi_2 + \cdots}$$

$$= e^{\varphi_0} e^{\varepsilon \varphi_1 + \varepsilon^2 \varphi_2 + \cdots}$$

$$= e^{\varphi_0} \left(1 + \varepsilon (\varphi_1 + \varepsilon \varphi_2 + \cdots) + \frac{\varepsilon^2}{2} (\varphi_1 + \varepsilon \varphi_2 + \cdots)^2 + \cdots \right)$$

$$= \psi_0 + \varepsilon \psi_1 + \varepsilon^2 \psi_2 + \cdots$$

$$\implies \psi_0 = e^{\varphi_0}$$

$$\psi_1 = e^{\varphi_0} \varphi_1 = \psi_0 \varphi_1$$

$$\psi_2 = e^{\varphi_0} \left(\frac{\varphi_1^2}{2} + \varphi_2 \right) = \psi_0 \left(\frac{\varphi_1^2}{2} + \varphi_2 \right).$$

Now, we wish to solve for E_1 and E_2 , so for the $\mathcal{O}(\varepsilon)$ ODE for φ_1 , multiply each side by $e^{2\varphi_0}$ so that the equation becomes

$$e^{2\varphi_0}\varphi_1'' + 2\varphi_0'e^{2\varphi_0}\varphi_1' - V_1e^{2\varphi_0} = -E_1e^{2\varphi_0}$$

$$\Rightarrow \frac{d}{dx}\left(e^{2\varphi_0}\varphi_1'\right) = e^{2\varphi_0}(V_1 - E_1)$$

$$\Rightarrow \int_{-\infty}^{\infty} \frac{d}{dx}\left(e^{2\varphi_0}\varphi_1'\right)dx = \int_{-\infty}^{\infty} e^{2\varphi_0}(V_1 - E_1)dx$$

$$\Rightarrow \psi_0^2(\infty)\varphi_1'(\infty) - \psi_0^2(-\infty)\varphi_1'(-\infty) = \int_{-\infty}^{\infty} V_1\psi_0^2dx - E_1\int_{-\infty}^{\infty} \psi_0^2dx.$$

And since $\varphi_1 = \frac{\psi_1}{\psi_0}$, we have $\varphi_1' = \frac{\psi_1'\psi_0 - \psi_0'\psi_1}{\psi_0^2}$ so that the above equation becomes

$$\psi_1'(\infty)\psi_0(\infty) - \psi_0'(\infty)\psi_1(\infty) - \psi_1'(-\infty)\psi_0(\infty) + \psi_0'(-\infty)\psi_1(-\infty) = \int_{-\infty}^{\infty} V_1\psi_0^2 dx - E_1.$$

Now using the fact that $\psi_0(\pm \infty) = \psi_1(\pm \infty) = 0$, it follows that (see lemma 1) $\psi_0'(\pm \infty) = \psi_1'(\pm \infty) = 0$ so that the above equation becomes

$$E_1 = \int_{-\infty}^{\infty} V_1 \psi_0^2 dx.$$

For E_2 , multiply the $\mathcal{O}(\varepsilon^2)$ ODE for φ_2 by $e^{2\varphi_0}$:

$$e^{2\varphi_0}\varphi_2'' + e^{2\varphi_0}(\varphi_1')^2 + 2e^{2\varphi_0}\varphi_0'\varphi_2' = -E_2e^{2\varphi_0}$$

$$\Rightarrow \frac{d}{dx}\left(\psi_0^2\varphi_2'\right) = -\psi_0^2(E_2 + (\varphi_1')^2)$$

$$\Rightarrow \int_{-\infty}^{\infty} \frac{d}{dx}(\psi_0^2\varphi_2')dx = -\int_{-\infty}^{\infty} \psi_0^2(E_2 + (\varphi_1')^2)dx.$$

$$\Rightarrow \psi_0^2(\infty)\varphi_2'(\infty) - \psi_0^2(-\infty)\varphi_2'(-\infty) = -\int_{-\infty}^{\infty} \psi_0^2(E_2 + (\varphi_1')^2)dx.$$

Now notice

$$\varphi_2'\psi_0^2 = \psi_2'\psi_0 - \psi_0'\psi_2$$

$$\implies \varphi_2'(\pm \infty)\psi_0^2(\pm \infty) = \psi_2'(\pm \infty)\psi_0(\pm \infty) - \psi_0'(\pm \infty)\psi_2(\pm \infty)$$

$$= 0$$

by lemma 1. Thus

$$0 = -E_2 \int_{-\infty}^{\infty} \psi_0^2 dx - \int_{-\infty}^{\infty} \psi_0^2 (\varphi_1')^2 dx$$

$$\implies E_2 = -\int_{-\infty}^{\infty} \psi_0^2 (\varphi_1')^2 dx.$$

And from out work in finding E_1 , recall

$$\frac{d}{dx}(\psi_0^2 \varphi_1') = \psi_0^2 (V_1 - E_1)$$

$$\implies \varphi_1'(x) = \psi_0^{-2} \int_{-\infty}^x \psi_0^2 (V_1 - E_1) dt$$

$$\implies (\varphi_1'(x))^2 = \psi_0^{-4} \left(\int_{-\infty}^x \psi_0^2 (V_1 - E_1) dt \right)^2.$$

Thus

$$E_{2} = \int_{-\infty}^{\infty} \psi_{0}^{-2} \left(\int_{-\infty}^{x} \psi_{0}^{2} (V_{1} - E_{1}) dt \right)^{2} dx.$$

$$E_{1} = \int_{-\infty}^{\infty} V_{1} \psi_{0}^{2} dx.$$

with

Lemma 1: If $f: \mathbb{R} \to \mathbb{R}$ is differentiable and

$$\lim_{x \to \pm \infty} |f(x)| = M < \infty$$

then

$$\lim_{x \to \pm \infty} |f'(x)| = 0.$$

The purpose of this lemma is to show that $\lim_{x\to\pm\infty} f(x)f'(x) \neq 0$ cannot be the case.

Proof: It suffices to show that if $\lim_{x\to\infty} f(x)=0$, then $\lim_{x\to\infty} f'(x)=0$. The case where $x\to -\infty$ will follow similarly. Let $\{x_n\}$ be a sequence of positive real numbers such that $x_n\to\infty$ as $n\to\infty$. In particular, suppose x_n satisfies the relation $x_n=2x_{n-1}$. By the mean value theorem, there exists a $c(x_n)\in (x_{n-1},x_n)$ such that

$$f'(c) = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}.$$

$$\implies |f'(c)| \le \frac{|f(x_n)| + |f(x_{n-1})|}{|x_n - x_{n-1}|}$$

$$\implies |f'(c(x))| \le \frac{4M}{x_n}$$

and as $n \to \infty$, $\frac{4M}{x_n} \to 0$, so that $\lim_{x \to \infty} f'(x) = 0$, as desired.

(d) For a harmonic oscillator (thus, $V_0 = \lambda^2 x^2$ with $\lambda > 0$) with perturbing potential $V_1 = \alpha x e^{-\gamma x^2}$ (where α and γ are positive) show that

$$E \sim \lambda - \frac{1}{4} \left(\frac{\varepsilon \alpha}{\gamma + \lambda} \right)^2 \sqrt{\frac{\lambda}{\lambda + 2\gamma}}.$$

Proof: We assume $\psi \sim \psi_0 + \varepsilon \psi_1 + \varepsilon^2 \psi_2$, $E \sim E_0 + \varepsilon E_1 + \varepsilon^2 E_2$ and $\psi_0 = a e^{-\lambda x^2/2}$ where a is a scaling constant to be determined that allows ψ_0 to satisfy the normalization condition

$$\int_{-\infty}^{\infty} \psi_0^2 dx = 1.$$

Notice

$$\int_{-\infty}^{\infty} \psi_0^2 dx = \int_{-\infty}^{\infty} a^2 e^{-\lambda x^2} dx.$$

$$= \frac{a^2}{\sqrt{\lambda}} \int_{-\infty}^{\infty} e^{-u^2} du$$

$$= a^2 \sqrt{\frac{\pi}{\lambda}} = 1$$

$$\implies a = \left(\frac{\lambda}{\pi}\right)^{1/4}.$$

With $u = \sqrt{\lambda}x$. To get E_0 , we plug this equation into the equation found in part (a):

$$\frac{d^2}{dx^2} \left(ae^{-\lambda x^2/2} \right) - \lambda^2 x^2 a e^{-\lambda x^2/2} = -E_0 e^{-\lambda x^2/2}$$

$$\implies -\lambda e^{-\lambda x^2/2} + \lambda^2 x^2 e^{-\lambda x^2/2} - \lambda^2 x^2 e^{-\lambda x^2/2} = -E_0 e^{-\lambda x^2/2}$$

$$\implies E_0 = \lambda.$$

Now, notice

$$E_1 = \int_{-\infty}^{\infty} V_1 \psi_0^2 dx$$
$$= \int_{-\infty}^{\infty} \alpha \sqrt{\frac{\lambda}{\pi}} x e^{-(\gamma + \lambda)x^2} dx.$$

And since the integrand is odd and the integral converges (*), we have that $E_1 = 0$. Now, solving for E_2 , let us first evaluate $\int_{-\infty}^{x} \psi_0^2 V_1 dt$:

$$\int_{-\infty}^{x} \psi_0^2 V_1 dt = \alpha \sqrt{\frac{\lambda}{\pi}} \int_{-\infty}^{x} t e^{-(\gamma + \lambda)t^2} dt$$

$$= \frac{\alpha}{2(\gamma + \lambda)} \sqrt{\frac{\lambda}{\pi}} \int_{\infty}^{(\gamma + \lambda)x^2} e^{-u} du$$

$$= \frac{\alpha}{2(\gamma + \lambda)} \sqrt{\frac{\lambda}{\pi}} [-e^{-u}] \Big|_{\infty}^{(\gamma + \lambda)x^2}$$

$$= -\frac{\alpha}{2(\gamma + \lambda)} \sqrt{\frac{\lambda}{\pi}} \left(e^{-(\gamma + \lambda)x^2} \right)$$

$$\implies \left(\int_{-\infty}^{x} \psi_0^2 V_1 dt \right)^2 = \frac{\lambda}{4\pi} \left(\frac{\alpha}{\gamma + \lambda} \right)^2 e^{-2(\gamma + \lambda)x^2}$$

with $u = (\gamma + \lambda)t^2$. Thus

$$E_{2} = \frac{\lambda}{4\pi} \left(\frac{\alpha}{\gamma + \lambda}\right)^{2} \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} e^{-(\lambda + 2\gamma)x^{2}} dx$$

$$= \frac{1}{4} \sqrt{\frac{\lambda}{\pi(\lambda + 2\gamma)}} \left(\frac{\alpha}{\gamma + \lambda}\right)^{2} \int_{-\infty}^{\infty} e^{-u^{2}} du$$

$$= \frac{1}{4} \sqrt{\frac{\lambda}{\pi(\lambda + 2\gamma)}} \left(\frac{\alpha}{\gamma + \lambda}\right)^{2} \sqrt{\pi}$$

$$= \frac{1}{4} \left(\frac{\alpha}{\gamma + \lambda}\right)^{2} \sqrt{\frac{\lambda}{2\gamma + \lambda}}.$$

With $u = \sqrt{2\gamma + \lambda}x$. Hence

$$E \sim \lambda - \frac{1}{4} \left(\frac{\varepsilon \alpha}{\gamma + \lambda} \right)^2 \sqrt{\frac{\lambda}{2\gamma + \lambda}}$$

as desired.

Proof of (*): By a change of variables, it suffices to inspect the integral

$$\int_{-\infty}^{\infty} x e^{-x^2} dx.$$

We split the integral from $-\infty$ to 0 and 0 to ∞ :

$$\int_{-\infty}^{\infty} x e^{-x^2} dx = \int_{-\infty}^{0} x e^{-x^2} dx + \int_{0}^{\infty} x e^{-x^2} dx.$$

Further, it is sufficients to show $\int_0^\infty xe^{-x^2}dx < \infty$ since $\int_{-\infty}^0 xe^{-x^2}dx = -\int_0^\infty xe^{-x^2}dx$. From letting $u=x^2$, we find

$$\int_0^\infty x e^{-x^2} dx = \frac{1}{2} \int_0^\infty e^{-u} du$$
$$= -\frac{1}{2} [e^{-u}] \Big|_0^\infty$$
$$= \frac{1}{2}$$

Thus, the integral converges, as desired.