Corrigé 8 du mardi 8 novembre 2016

Exercice 1 (* A rendre).

Soit $f:[0,+\infty[\to\mathbb{R}$ uniformément continue. Alors il existe α,β tels que $\forall x,y\in[0,\infty[$ on a $|f(x)|\leq\alpha x+\beta$.

 $D\'{e}monstration$:

- 1.) En prenant $\varepsilon = 1$, par continuité uniforme, il existe $\delta > 0$ tel que $|f(x) f(y)| \le 1$ si $|x y| \le \delta$, $x, y \in [0, +\infty[$.
- 2.) Si $n \in \mathbb{N}$ on a en utilisant le point 1.), $|f(n\delta) f(0)| \le |f(n\delta) f((n-1)\delta)| + |f((n-1)\delta) f((n-2)\delta)| + \dots + |f(\delta) f(0)| \le n$.
- 3.) Si $x \in [0, +\infty[$ et si $m = [\frac{x}{\delta}]$, on a $|x m\delta| \le \delta$ et donc $|f(x) f(m\delta)| \le 1$. Ainsi $|f(x)| \le |f(x) f(m\delta)| + |f(m\delta)| \le 1 + |f(m\delta)| \le 1 + m + |f(0)| \le 1 + \frac{x}{\delta} + |f(0)|.$

Il suffit donc de prendre $\alpha = \frac{1}{\delta}$ et $\beta = 1 + |f(0)|$.

Exercice 2.

Soit $a \in \mathbb{R}$ et $f:]a, \infty[\to \mathbb{R}$ une fonction continue. On suppose que

$$\lim_{\substack{x \to a \\ x \to a}} f(x) = \ell_1 \qquad \text{et} \qquad \lim_{\substack{x \to \infty}} f(x) = \ell_2.$$

Montrons que f est uniformément continue.

Soit $\epsilon > 0$.

- Puisque $\lim_{x \to \infty} f(x) = \ell_2$, il existe $\beta > a$ tel que $\forall t \ge \beta, |f(t) \ell_2| \le \frac{\epsilon}{4}$. On en tire alors que $\forall x, y \ge \beta, |f(x) f(y)| \le \frac{\epsilon}{2}$.
- Puisque $\lim_{\substack{x \to a \\ >}} f(x) = \ell_1$, la fonction f se prolonge par continuité à droite en a. Ainsi, f est uniformément continue sur $[a, \beta]$ et il existe $\delta > 0$ tel que $\forall x, y \in]a, \beta]$ avec $|x y| \le \delta$, on ait $|f(x) f(y)| \le \frac{\epsilon}{2}$.
- Pour $a < x \le \beta \le y$ avec $y x \le \delta$, on a:

$$|f(x) - f(y)| \le |f(x) - f(\beta)| + |f(\beta) - f(y)| \le \epsilon.$$

Finalement, $\forall x,y \in]a,\infty[$ avec $|x-y| \leq \delta,$ on a $|f(x)-f(y)| \leq \epsilon,$ ce qui montre que f est uniformément continue sur $|a,\infty[$.

Exercice 3.

Soit a < b et $f : [a, b] \rightarrow [a, b]$ croissante. Alors f admet un point fixe.

 $D\acute{e}monstration:$ Posons $E=\{x\in[a,b] \text{ tel que } f(x)\leq x\}$. Puisque $f(b)\leq b$, on a que $b\in E$ et donc $E\neq\varnothing$. En outre, $x\in E\Rightarrow a\leq x$; E est donc minoré par a. On peut alors poser $c=\inf E$. Montrons que c est le point fixe cherché. Clairement $c\in[a,b]$ et on a soit c=f(c), soit c>f(c), soit c< f(c).

- 1) Supposons que c < f(c). On a donc $a \le c < f(c) \le b$, ainsi que $c \notin E$ puisque f(c) > c. Par les propriétés de l'inf, il existe $d \in E$ tq c < d < f(c). Puisque f est croissante, on a $f(c) \le f(d)$, et avec d < f(c), il vient d < f(d). Ce qui contredit le fait que $d \in E$.
- 2) Supposons maintenant que c > f(c). On a donc $a \le f(c) < c \le b$. Soit d tel que f(c) < d < c. Puisque $d < c = \inf E, \ d \notin E$. Puisque f est croissante, on a $f(d) \le f(c)$ et donc f(d) < d et alors $d \in E$. Contradiction.

3) Il reste donc c = f(c), donc c est un point fixe.

Le résultat est faux si f est décroissante. En effet, la fonction $f:[0,1] \to [0,1]$ définie par

$$f(x) = \begin{cases} 1/2, & \text{si} \quad 0 \le x < 1/2, \\ 1/4, & \text{si} \quad 1/2 \le x \le 1, \end{cases}$$

n'a pas de point fixe dans [0,1].

Exercice 4.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2π -périodique, continue. On pose $g(x) = f(x + \pi) - f(x)$.

- 1.) Montrer qu'il existe $\alpha \in \mathbb{R}$ tq $g(\alpha) = 0$. Si $g(x) = 0, \forall x \in \mathbb{R}$, c'est fini. Sinon, soit $x \in \mathbb{R}$ tq $g(x) \neq 0$. Alors $g(x + \pi) = f(x + 2\pi) - f(x + \pi) = f(x) - f(x + \pi) = -g(x)$. Puisque g est continue sur $[x, x + \pi]$ et que $g(x)g(x + \pi) < 0$, il existe par le TVI un $\alpha \in [x, x + \pi]$ tq $g(\alpha) = 0$.
- 2.) En déduire que sur l'équateur terrestre, il y a toujours au moins 2 points diamétralement opposés avec la même température. On suppose que la température en fonction de la longitude sur l'équateur est continue; elle est trivialement périodique.