

Steps for Spearman Correlation Coefficient

- 1. Create a new column for rank(x) and assign the rank of each variable.
- 2. Assign the rank of 2nd variable in a new column rank(y).
- 3. Calculate the difference in rank of both the variables = d.
- 4. Calculate the d-squared.
- 5. Add up d-squared score.
- 6. Put in the formula provided:

ovided:
$$\rho = 1 - \frac{6\sum_{i=1}^{n} d_{i}^{2}}{n(n^{2} - 1)}$$

$$\# of observation.$$

Question: The scores for 10 students in English and Maths are as follows:

	Marks										
English	56	75	45	71	62	64	58	80	76	61	
Maths	66	70	40	60	65	56	59	77	67	63	

Compute the Spearman rank correlation.

Solution:

Step 1,2,3 and 4:

h -> L) (L -> n.

English (mark)	Maths (mark)	Rank (English)	Rank (maths)	d	d ²
56	66	9 2	4 7	5 -5	25
75	1 70	3 8	2 9	1 -	1
45	40	10 1	10 1	0 0	0
71	60	4 7	7 4	-3 3	.9
62	65	6 1	5 (1 -1	1
64	56	5 (9 2	-4 4	16
58	59	8 3	8 3	0 6	0
80	77	1 10	1 10	0 🏻	0
76	67	2 9	3 1	-1 1	1
. 61	63	7 4	6 5	-1 1	1

Solution Contd.

Step 5:
$$\sum d_i^2 = 25 + 1 + 9 + 1 + 16 + 1 + 1 = 54$$

$$\rho = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)}$$

$$\rho = 1 - \frac{6 \times 54}{10(10^2 - 1)}$$

$$\rho = 1 - \frac{324}{990}$$

$$\rho = 1 - 0.33$$

$$\rho = 0.67$$
Weak 2×4

Hence, the Spearman Rank Coefficient is 0.67.

Points to Ponder (Correlation): Correlation dous net

Example: A few years ago a survey of employees found a strong positive correlation

between "Studying an external course" and Sick Leave Days.

Does this mean?

- Studying makes them sick?
- Sick people study a lot?
- Or did they lie about being sick so they can study more?

Without further research we can't be sure why. :-D

Example: Poor suburbs are more likely to have high pollution. Why?

- Do poor people make pollution?
- Are polluted suburbs the only place poor people can afford?
- Is it a common link, such as factories with low paying jobs and lots of pollution?

Recap - Descriptive Statistics

- Statistics? Its Importance. Population vs Sample.
- Types of variable (Quantitative, Categorical), (Ordinal, Nominal), (discrete, continuous).
- Types of charts Pie, Donut, Line, Scatterplot, Histogram, Bar chart, Box-plot
- Descriptive Stats:

Measure of central tendency -- Mean , Median & Model

Measures of Dispersion/spread -- Standard Deviation, Variance, range & IQR

Measures of symmetricity -- Skewness and Kurtosis

- 5 Number Summary Box Plot (Box and Whiskers)
- Effect of transformation on central tendency and spread.
- Outliers? How to detect? Modified Boxplot. (IQR Method)
- Covariance, Correlation. Pearson's Correlation Coefficient. Nature & Strength of Correlation. How to calculate Pearson's Correlation Coefficient and Spearman's Rank Correlation Coefficient.