Ch 37: Early Quantum Theory and Models of the Atom

Blackbody Radiation, Photoelectric Effect, & Wave Nature of Matter

Objective:

- I. Solve problems involving Blackbody Radiation
 - \rightarrow By using **Wien's Law** that relates the wavelength of radiation to an object's radiation
- II. Solve problems involving the **Photoelectric Effect**
 - \rightarrow By identifying the **work function** W_0 of the material
- III. Solve problems that relates waves and particles
 - → By applying the **de Broglie wavelength** equation to find a particle's wavelength

Content Review:

I. Wien's Law

The peak (max intensity) wavelength λ of the thermal radiation emitted by an object at temperature T is given by

$$\lambda = \frac{2.9 \times 10^{-3}}{T}$$

II. Photoelectric Effect

The energy of a Photon is given by Planck's Law

$$E = h f = h \frac{c}{\lambda}$$

where f is the frequency of the photon and λ is the wavelength of the photon.

By Conservation of Energy, the "Photoelectric equation" is

Incoming Energy = Outgoing Energy
$$E_{\text{photon}} = KE + W_0$$

III. Wave Nature of Matter

The de Broglie wavelength is given by

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

Guided Practice (leader - student)

[10mins]

Wien's Law

How hot is metal being welded if it radiates most strongly at $460\,\mathrm{nm}$

Solution

 $T=6300\,\mathrm{K}$

Group Activity

(student - student)

[10mins]

Photoelectric Effect

Light is incident on a metal. No current flows unless the wavelength is LESS than $520\,\mathrm{nm}$.

- (a) What is the work function W_0 of this material?
- (b) What is the stopping voltage required if light of wavelength $470\,\mathrm{nm}$ is used?

Solution

- (a) $W_0 = 2.4 \,\mathrm{eV}$
- (b) $V = 0.25 \,\mathrm{V}$

Group Activity (student - student)

[10mins]

Wave Nature of Matter

Calculate the wavelength of a $0.23\,\mathrm{kg}$ ball traveling at $0.10\,\mathrm{m/s}.$

Solution

$$\lambda = 2.9 \times 10^{-32} \, \mathrm{m}$$

An electron has a de Broglie wavelength $\lambda = 6.0 \times 10^{-10}\,\mathrm{m}$

- (a) What is its momentum?
- (b) What is its speed?
- (c) What voltage was needed to accelerate it to this speed?

Solution

(a)
$$p = 1.1 \times 10^{-24} \,\mathrm{kg}\,\mathrm{m/s}$$

(b)
$$v = 1.2 \times 10^6 \,\mathrm{m/s}$$

(c)
$$V = 4.2 \,\mathrm{V}$$