Review of structures

Ordered lists of length r with items from $\{1,...,n\}$

Repetitions allowed: An item from our input set $\{1, ..., n\}$ can be re-used multiple times for each selection.

Order matters: There is a difference between choosing item A then B, and choosing item B then A.

Example

You are filling in your name in the high-score list, and there are 3 slots to fill in your name. You can repeat letters, and the order you enter them matters ("RJM" is different from "MRJ"). Assuming 26 letters, the result is 26³.

Unordered lists of length r with items from $\{1,...,n\}$

Repetitions allowed: An item from our input set $\{1, ..., n\}$ can be re-used multiple times for each selection.

Order doesn't matter: Any grouping of selections from the set are considered the same, such as {a, b, c} and {b, c, a}.

Example

The number of bags of r pieces of fruit that can be bought at a store with n types of fruit available is C(r + n - 1, r).

Permutations of length r with items from $\{1,...,n\}$

No repetitions: Once one item is selected from the set $\{1, ..., n\}$, it is no longer an option for subsequent items.

Example

Pulling cards from a deck... First you have 52 options, then 51 options, then 50 options...

Order matters: The order that you select something matters, so in a way, different "slots" represent different things.

Example

Electing President, VP, and Secretary

Combinations (Sets) of length r with items from $\{1,...,n\}$

No repetitions: Once one item is selected from the set $\{1, ..., n\}$, it is no longer an option for subsequent items.

Order doesn't matter: If any two items are selected, the order doesn't matter. Combinations deal with sets, and with sets, {a, b} and {b, a} are considered equivalent.

Example

If there are 5 different dinners, and we need to feed 3 people, then there are C(5,3) possible dinner combinations.

Types of structures							
	Repeats	Order					
Type	allowed?	matters?	Formula				
Ordered list of length r	yes	yes	n^r				
Unordered list of length r	yes	no	C(r+n-1,r)				
Permutations of length r	no	yes	$P(n,r) = \frac{n!}{(n-r)!}$				
Sets of length r	no	no	$C(n,r) = \frac{n!}{r!(n-r)!}$				

Question 1 ____ / 1

How many arrangements are there of the letters in the word MATCH?

Are repetitions allowed? no

Does order matter? yes

What is n? 5

What is r? 5

Equation to use? $P(n,r) / C(n,r) / n^r / C(r+n-1,r)$ P(n,r)

Solution: P(5,5) = 120

Question 2 ____ / 1

There are five red, three green, and eight blue marbles in a box. In how many ways can a sample of four be selected?

Are repetitions allowed? yes

Does order matter? no

What is n? 5 + 3 + 8 = 16

What is r? 4

Equation to use? $P(n,r) / C(n,r) / n^r / C(r+n-1,r)$ C(n,r)

Solution: C(16, 4) = 1820

Question 3 _ / 1

We can choose from four types of muffins: Blueberry, Orange, Chocolate Chip, or Cream Cheese. You're going to select muffins in this order: First for yourself, second for your sister, and third for your brother. It is OK if several people have the same muffin type.

```
Are repetitions allowed? yes
Does order matter? yes
What is n? 4
What is r? 3
Equation to use? P(n,r) / C(n,r) / n^r / C(r+n-1,r) n^r
Solution: 4^3
```

Question 4

How many bags of 20 pieces of candy can one buy from a store that sells four types of candy?

```
Are repetitions allowed? yes
Does order matter? no
What is n? 20
What is r? 4
Equation to use? P(n,r) / C(n,r) / n^r / C(r+n-1,r) C(r+n-1,r)
Solution: C(20+4-1,20)=C(23,20)
```

6.1 Introduction

6.1.1 Experiments, Outcomes, and Events

Vocabulary

For this chapter, we will be talking about experiments and their outcomes. For any given experiment, we will have a **sample space** of possible outcomes. This will be written as the set S.

Within an experiment, we want to see if some **event** occurs, and how often it does. In cases where the event occurs, we call it a **success**.

Definition Given an experiment with a sample space S of equally likely outcomes and an event E, the *probability of the event* (denoted by Prob(E)) is the ratio of the number of successful outcomes to the total number of outcomes: a

$$Prob(E) = \frac{n(E)}{n(S)}$$

(Recall that n(S) is how we symbolically write, "the amount of elements of the set S".)

Question 5 _____ / 3

Finish the following table to log all possible equally-likely outcomes for rolling a red four-sided die and a green four-sided die.

	Green 1	Green 2	Green 3	Green 4
Red 1	(1, 1)	(1, 2)	(1, 3)	(1, 4)
Red 2	(2, 1)	(2, 2)	(2, 3)	(2, 4)
$\operatorname{Red} 3$	(3, 1)	(3, 2)	(3, 3)	(3, 4)
Red 4	(4, 1)	(4, 2)	(4, 1)	(4, 4)

Using the definition above describe the following:

a. Both the red and green dice have the same values.

$$n(E) = 4$$
 $n(S) = 16$ $Prob(E) = \frac{4}{16} = \frac{1}{4}$

b. The sum of both dice values is 4.

$$n(E) = 3$$
 $n(S) = 16$ $Prob(E) = \frac{3}{16}$

^aFrom Discrete Mathematics by Ensley and Crawley

Question 6

Consider the experiment of drawing two cards from the top of a standard deck of 52 cards, and the event E of the two cards having the same value. ¹

a. Describe the set S of all outcomes, represented so that they are equally likely.

Hint

This means what structure type is this? What kind of formula are we using to choose 2 items from a deck of 52?

$$n(S) = P(52, 2).$$

b. Describe the event E in terms of your representation.

Hint

We're interested in the event where both our selections have the same value. This can be broken down as:

- 1. Choose any card (52 possible)
- 2. Choose a card with the same value (3 possible)
- 3. Combine with "AND" (The Rule of Product)

$$n(E) = (52)(3)$$

c. Compute $Prob(E) = \frac{n(E)}{n(S)}$.

$$Prob(E) = \frac{n(E)}{n(S)} = \frac{(52)(3)}{(52)(51)}$$

Question 7 _____ / 3

Consider the experiment of tossing a coin five successive times, and the event E that the last two tosses have the same result.

(
$$_$$
 $_$ $_$ Heads Heads) OR ($_$ $_$ $_$ Tails Tails)

- a. Describe the set S of all outcomes, represented so they are equally likely Ordered lists of length 5 with entries from $\{H, T\}$
- b. Describe the event E in terms of your representation.

$$n(S) = 2^5 = 32$$
 $n(E) = 2^3 \cdot 1 \cdot 1 + 2^3 \cdot 1 \cdot 1 = 16$

c.
$$Prob(E) = \frac{n(E)}{n(S)} = \frac{16}{32} = 0.5$$

¹From Discrete Mathematics by Ensley and Crawley

6.1.2 The complement of the Event

Proposition 1

Given an event E,

$$Prob(E) + Prob(\bar{E}) = 1$$

Where \bar{E} is the complement of the event E.

Question 8 _____ / 3

What is the probability that for a six-sided die rolled three times the same result comes up more than once?

- a. What is the sample space S? $\{1, 2, 3, 4, 5, 6\}$
- b. What is the event E (in English)? The set of outcomes that... use the same # more than once.
- c. What is the complement of \bar{E} (in English)? The set of outcomes that... are all different numbers.
- d. What structure type is \bar{E} ? What is n and r? Permutation, n = 6, r = 3
- e. Calculate $Prob(\bar{E})$ $Prob(\bar{E}) = n(\bar{E})/n(S) = \frac{P(6,3)}{6^3} = \frac{5}{9} = 0.\overline{5}$
- f. Calculate the probability for the Event Prob(E) using the proposition. $1-Prob(\bar{E})=1-0.55\approx 0.44$

2.

Please write down all people in your team.

3. 4.

Grading

1.

Question	Weight	0-4	Adjusted score
1	5%		
2	6%		
3	12%		
4	15%		
5	25%		