Лабораторна робота №6

Тема: ДОСЛІДЖЕННЯ РЕКУРЕНТНИХ НЕЙРОННИХ МЕРЕЖ

Meтa: використовуючи спеціалізовані бібліотеки та мову програмування Руthon навчитися дослідити деякі типи нейронних мереж.

Хід роботи:

Завдання 1. Ознайомлення з Рекурентними нейронними мережами

Лістинг програми

```
def backprop(self, d y, learn rate=2e-2):
```

					ДУ «Житомирська політехніка».23.121.02.000— Лрб			.000 — Лр6
Змн.	Арк.	№ докум.	Підпис	Дата				•
Розр	0 δ.	Бойко Д.€.				Лim.	Арк.	Аркушів
Пере	евір.	Голенко М.Ю.			Звіт з	12		
Керіє	зник							
Н. контр.					лабораторної роботи	ФІКТ Гр. ІПЗ-20-1[1]		
Зав. каф.								

```
d bh = np.zeros(self.bh.shape)
vocab = list(set([w for text in train data.keys() for w in text.split(' ')]))
vocab size = len(vocab)
print('%d unique words found' % vocab size)
word to idx = { w: i for i, w in enumerate(vocab) }
idx to word = { i: w for i, w in enumerate(vocab) }
def createInputs(text):
```

		Бойко Д.Є.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
rnn = RNN(vocab size, 2)
  random.shuffle(items)
    loss -= np.log(probs[target])
```

		Бойко Д.Є.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
import numpy as np
from numpy.random import randn
     self.Whh = randn(hidden_size, hidden_size) / 1000
self.Wxh = randn(hidden_size, input_size) / 1000
self.Why = randn(output_size, hidden_size) / 1000
     h = np.zeros((self.Whh.shape[0], 1))
     d Whh = np.zeros(self.Whh.shape)
     d Wxh = np.zeros(self.Wxh.shape)
```

		Бойко Д.Є.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
# dL/db = dL/dh * (1 - h^2)
d_bh += temp

# dL/dWhh = dL/dh * (1 - h^2) * h_{t-1}
d_Whh += temp @ self.last_hs[t].T

# dL/dWxh = dL/dh * (1 - h^2) * x
d_Wxh += temp @ self.last_inputs[t].T

# Next dL/dh = dL/dh * (1 - h^2) * Whh
d_h = self.Whh @ temp

# Clip to prevent exploding gradients.
for d in [d_Wxh, d_Whh, d_Why, d_bh, d_by]:
    np.clip(d, -1, 1, out=d)

# Update weights and biases using gradient descent.
self.Whh -= learn_rate * d_Whh
self.Wxh -= learn_rate * d_Wxh
self.Why -= learn_rate * d_Dh
self.bb -= learn_rate * d_Dh
self.by -= learn_rate * d_Dh
self.by -= learn_rate * d_Dh
```

```
18 unique words found
--- Epoch 100
--- Epoch 200
Train: Loss 0.671 | Accuracy: 0.621
Test: Loss 0.721 | Accuracy: 0.500
--- Epoch 300
Train: Loss 0.566 | Accuracy: 0.655
--- Epoch 600
Train: Loss 0.259 | Accuracy: 0.914
Test: Loss 0.372 | Accuracy: 0.800
Train: Loss 0.089 | Accuracy: 0.966
Test: Loss 0.088 | Accuracy: 1.000
--- Epoch 800
Test: Loss 0.009 | Accuracy: 1.000
--- Epoch 900
Train: Loss 0.002 | Accuracy: 1.000
Test: Loss 0.004 | Accuracy: 1.000
--- Epoch 1000
Process finished with exit code 0
```

Рис.1 Виконання файлу main.py

		Бойко Д.Є.			
		Голенко М.Ю.			ДУ «Житомирська політехніка».23.121.02.000 – Лр6
Змн.	Арк.	№ докум.	Підпис	Дата	

```
18 unique words found
--- Epoch 100
Train: Loss 0.688 | Accuracy: 0.552
Test: Loss 0.696 | Accuracy: 0.500
--- Epoch 200
Train: Loss 0.665 | Accuracy: 0.569
Test: Loss 0.720 | Accuracy: 0.500
--- Epoch 300
Train: Loss 0.129 | Accuracy: 0.948
Test: Loss 0.239 | Accuracy: 0.950
--- Epoch 400
Train: Loss 0.012 | Accuracy: 1.000
Test: Loss 0.013 | Accuracy: 1.000
--- Epoch 500
Train: Loss 0.005 | Accuracy: 1.000
Test: Loss 0.006 | Accuracy: 1.000
--- Epoch 600
Train: Loss 0.003 | Accuracy: 1.000
Test: Loss 0.004 | Accuracy: 1.000
--- Epoch 700
Train: Loss 0.002 | Accuracy: 1.000
Test: Loss 0.003 | Accuracy: 1.000
--- Epoch 800
Train: Loss 0.002 | Accuracy: 1.000
Test: Loss 0.002 | Accuracy: 1.000
--- Epoch 900
Train: Loss 0.001 | Accuracy: 1.000
Test: Loss 0.002 | Accuracy: 1.000
--- Epoch 1000
Train: Loss 0.001 | Accuracy: 1.000
Test: Loss 0.001 | Accuracy: 1.000
```

Рис.2 Виконання файлу task1.py

Ми спостерігаємо повідомлення на рисунку 1-2 "18 unique words found" це означає, що зміна vocab тепер буде мати перелік всіх слів, які вживаються щонайменше в одному навчальному тексті. Рекурентна нейронна мережа не розрізняє слів — лише числа. Тому у словнику 18 унікальних слів, кожне буде 18-мірним унітарним вектором. І далі відбувається тренування мережі. Виведення кожної сотої епохи для відслідковування прогресу

		Бойко Д.Є.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 2. Дослідження рекурентної нейронної мережі Елмана (Elman Recurrent network (newelm))

```
<mark>import neurolab as nl</mark>
import numpy as np
net = nl.net.newelm([[-2, 2]], [10, 1], [nl.trans.TanSig(), nl.trans.PureLin()])
net.layers[0].initf = nl.init.InitRand([-0.1, 0.1], 'wb')
net.layers[1].initf = nl.init.InitRand([-0.1, 0.1], 'wb')
net.init()
pl.subplot(211)
pl.plot(error)
pl.xlabel('Epoch number')
pl.ylabel('Train error (default MSE)')
pl.subplot(212)
pl.plot(target.reshape(80))
pl.plot(output.reshape(80))
pl.legend(['train target', 'net output'])
```

```
Epoch: 100; Error: 0.24987329902179783;
Epoch: 200; Error: 0.1308049361804294;
```

Рис. 3 Виконання файлу task2.py

Рис. 4 Виконання програми

		Бойко Д.Є.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 2.3. Дослідження нейронної мережі Хемінга (Hemming Recurrent network)

Рис. 5 Виконання програми

		Бойко Д.Є.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 2.4. Дослідження рекурентної нейронної мережі Хопфілда Hopfield Recurrent network (newhop)

```
import numpy as np
import neurolab as nl
chars = ['N', 'E', 'R', 'O']
target[target == 0] = -1
net = nl.net.newhop(target)
output = net.sim(target)
print("Test on train samples:")
print("\nTest on defaced E:")
out = net.sim([test])
```

```
Test on train samples:

N True
E True
R True
O True

Test on defaced E:
False Sim. steps 3
```

Рис. 6 Виконання програми

		Бойко Д.Є.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Арк.

```
Test on train samples:

N True
E True
R True
O True

Test on defaced A:
False Sim. steps 4

Process finished with exit code 0
```

Рис. 7 Виконання програми

Рис. 8 Виконання програми

Як бачимо, навчання пройшло правильно і мережа при невеликій кількості помилок вгадала букви правильно.

		Бойко Д.Є.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 2.5. Дослідження рекурентної нейронної мережі Хопфілда для ваших персональних даних

```
((out[0] == target[0]).all(), 'Sim. steps',len(net.layers[0].outs))
```

```
Test on defaced V:
True Sim. steps 1
Process finished with exit code 0
```

Рис. 9 Виконання програми

Зробив деякі заміни. Результат був True. Якщо навчання пройшло правильно то мережа при невеликій кількості помилок буде вгадувати букву правильно. Значить все вірно.

		Бойко Д.Є.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Висновок: під час виконання лабараторної роботи, використовуючи спеціалізовані бібліотеки та мову програмування Python навчився досліджувати деякі типи нейронних мереж.

Репозиторій: https://github.com/BOYYYKO/ai/tree/main/lr6

		Бойко Д.Є.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата