ECE421 - Winter 2022 University of Toronto

Assignment 3: Unsupervised Learning and Probabilistic Models

Due date: Monday, April 4, 2022

Student name: Mingyu Zheng

Student number: 1003797661

1. K-means

1.1 Learning K-means

1. Implement distance func():

Derivation:

$$\mathcal{L}(\boldsymbol{\mu}) = \sum_{n=1}^{N} \min_{k=1}^{K} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|_{2}^{2},$$

= $(\mathbf{x}_{n})^{2} - 2 * \mathbf{x}_{n} * \min_{k} + (\min_{k})^{2}$

Implementation:

```
# Distance function for K-means
def distance_func(X, mu):
    """ Inputs:
        X: is an NxD matrix (N observations and D dimensions)
        mu: is an KxD matrix (K means and D dimensions)

Output:
        pair_dist: is the squared pairwise distance matrix (NxK)

"""

# TODO

X_sqr = tf.reduce_sum(tf.square(X), axis=1, keepdims=False, name=None)
X_sqr = tf.reshape(X_sqr, [-1, 1])

mu_T = tf.transpose(mu)
X_mu = tf.matmul(X, mu_T)

mu_sqr = tf.reduce_sum(tf.square(mu), axis=1, keepdims=False, name=None)
mu_sqr = tf.reshape(mu_sqr, [1, -1])

pair_dist = X_sqr - 2*(X_mu) + mu_sqr

return pair_dist
```

Numerical result:

Plot:

Figure 1. K-means train loss vs number of updates when K=3, using Adam optimizer: learning_rate = 0.1, beta1 = 0.9, beta2 = 0.99, epsilon = 1e-5

2. ¹/₃ validation data, for K = 1, 2, 3, 4, 5: Train a K-means model, including 2D scatter plot.

(a) + (b) Table 1: Train for K-means model for K = [1, 5], tran loss vs number of updates ploat and 2D scatter plot

(c)
Table 2: Summary of percentage of training data points belonging to each of the K clusters

K/ Class	Class 1	Class 2	Class 3	Class 4	Class 5
K = 1	100%	N/A	N/A	N/A	N/A
K = 2	50.247%	49.752	N/A	N/A	N/A
K = 3	38.398%	37.363%	24.239%	N/A	N/A
K = 4	37.618%	12.149%	13.949%	36.283%	N/A
K = 5	36.523%	10.679%	8.8796%	34.858%	9.0595%

(d) loss function over validation data

Comment:

Based on the scatter plots, the best number of clusters to use is K=3. Although when K is bigger, the training loss and validation loss are smaller. However, K can go to as much as the number of data points, and the loss can be zero at that time. From the scatter plots, we can notice that when K equals 3, the percentages of the three classes are evenly distributed. In addition, there isn't much difference between the validation loss of K=3 and K=4 or 5, compared with K=1 and 2. Therefore, in conclusion, among the 5 numbers provided, 3 is the best number of clusters to use.

2. Mixtures of Gaussians

2.1 The Gaussian cluster mode

1. Implement log_gauss_pdf, use distance_func

Derivation:

```
Since N(x | mu_k^2, sigma_k^2) = P(x | mu_k^2, sigma_k^2),

log(N(x | mu_k^2, sigma_k^2)) = log(P(x | mu_k^2, sigma_k^2))

= log(\frac{1}{\sqrt{2\pi\sigma^2k}}e^{\frac{-(x-\mu k)^2}{2\sigma k^2}})

= log(\Pi dim \frac{1}{\sqrt{2\pi\sigma^2k}}) + \frac{-(x-\mu k)^2}{2\sigma k^2}

= \frac{dim}{2}log(\frac{1}{2\pi\sigma k^2}) - \frac{(x-\mu k)^2}{2\sigma k^2}
```

Implementation:

```
def log gauss pdf(X, mu, sigma):
    """ Inputs:
            X: N X D
            mu: K X D
            sigma: K X 1
        Outputs:
            log Gaussian PDF (N X K)
    . . .
    # TODO
    # dimension conversion
    sigma = tf.squeeze(sigma)
    coef = tf.log(2 * np.pi * sigma)
    exp = distance_func(X, mu) / (2 * sigma)
    dim = tf.to_float(tf.rank(X))
    gauss_pfd = (-dim / 2) * coef - exp
    return gauss pfd
```

Figure 1: screenshot of log gauss pdf implementation.

2. Implement vectorized function that computes logP(z|x), use log_gauss_pdf and reduce_logsumexp()

Derivation:

```
Since P(z = k | \mathbf{x}) = P(\mathbf{x}, z = k) / \sum_{j=1}^{K} P(\mathbf{x}, z = j).

And from Bayer's rule: P(x, z = k) = P(x | z = k) * P(z = k), P(x, z = j) = P(x | z = k) * P(z = j).

Therefore, \log(P(z = k | x))

= \log(P(x | z = k)) + \log(P(z = k)) - \log\Sigma P(x | z = k) * P(z = j)

= \log \text{ gauss pdf} + \log \text{ pi} - \log\Sigma \exp(\log \text{ gauss pdf} + \log \text{ pi})
```

Implementation:

Figure 2: screenshot of log posterior implementation

Comment on why use log-sum-exp instead of tf.reduce sum:

Because from the derivation we know that we want to add the log of sum to the returned value, not the sum of logs.

2.2 Learning the MoG

$$P(\mathbf{X}) = \prod_{n=1}^{N} P(\mathbf{x}_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} P(z_n = k) P(\mathbf{x}_n \mid z_n = k)$$
$$= \prod_{n=1}^{N} \sum_{k=1}^{K} \pi^k \mathcal{N}(\mathbf{x}_n ; \boldsymbol{\mu}^k, \sigma^{k^2})$$

1. Implement loss function using logsumexp, logsoftmax Use data2D.npy, set K=3

Best model parameters learned:

Plot of the loss vs number of updates:

Figure 3: MoG train loss vs number of updates, when K = 3

2. $\frac{1}{3}$ validation data, for each K = 1, 2, 3, 4, 5 Table 1: Train for MoG model for K = [1, 5], validation loss vs number of updates plot and 2D scatter plot

Figure 4: screenshot of validation loss of MoG when K=1,2,3,4,5

Comment: based on validation loss of different K, we can conclude that 3 is the best. Because after K reaches 3, there isn't much change in terms of validation loss. In addition, from the cluster plots, we noticed that when K is bigger than 3, there are many overlaps, which can be avoided by decreasing K value.

3. Use data100D.npy, run both K-means and MoG algorithms, for K = 5, 10, 15, 20, 30. $\frac{1}{3}$ validation data.

Figure 5: screenshot of K-means validation loss for K=5,10,15,20,30

Figure 6: screenshot of MoG validation loss for K=5,10,15,20,30

	K-means final validation loss	MoG final validation loss
K=5	71741.75	22485.6875
K=10	71076.0234375	22485.7109375
K=15	69727.46875	22485.693359375
K=20	69793.5859375	22485.673828125
K=30	68923.8046875	22485.7421875

Comment: Based on the validation loss, K=15 is the best validation loss for K-means and K=5 is the best for MoG. This is because for K-means, after K=15 the validation loss changes are slight. And for MoG, the final validation losses are similar for these K values, so choosing the smallest number would be preferred. In addition, from the two validation loss figures above, these trends can also be demonstrated.