FORMULAE

MASS & VOLUMETRIC COVERSIONS

PET/PSR/CP

DISTANCE TO PET OR
$$CP = \frac{D \times H}{O + H}$$
 TIME TO PET OR

$$\textit{TIME TO PET OR CP} = \frac{\textit{DISTANNCE TO PET}}{\textit{O}}$$

$$Dpnr = \frac{E \times O \times H}{O + H} \qquad Tpnr = \frac{E \times H}{O + H}$$

$$E(Endurance) = \frac{FOB - RESERVE}{(FUEL\ CONSUMPTION)}$$

$$Dpnr = \frac{FOB - RES}{\left[\left(\frac{F \setminus Co}{O}\right) + \left(\frac{F \setminus CH}{H}\right)\right]}$$

 $HW \setminus TW = V \times COS\theta$ $X \setminus W = V \times SIN\theta$

"WHERE Θ = ANGLE BETWEEN RUNWAY DIRECTION & WIND DIRECTION"

$$MACH\ NO = \frac{TAS}{LSS}$$

BASIC NAVIGATION

SHAPE OF EARTH - OBLATE SPHEROID/ ELLIPSOID

ED=6888NM

$$COMPRESSION = \frac{ED - PD}{ED}$$

COMPRESSION RATIO AS $\% = (1 \ 300) * 100 = 0.3\%$

EARTH ROTATION- WEST TO EAST

ROTATION OF EARTH VIEWD FROM:

NORTH POLE	ANTICLOCKWISE (OVER NP)
SOUTH POLE	CLOCKWISE(BELOW SP)

1-60 RULE:

<u>1MINUTE = 1NM = 1852 METRES</u>

 $1^{\circ} = 60' = 60NM = (60 \times 1.852)KM = 111.12KM$

GEODETIC & GEOCENTRIC LATITUDE:

MAX DIFFERENCE OCCURS AT 45°N/S BETWEEN GC & GD =11.6 MINUTES.

DEPARTURE

 $GC DISTANCE = CH^{\circ} \times 60$ $RL DISTANCE = CH^{\circ} \times 60 \times COS \theta$

NOTE- EARTH AT 60 DEG N/S IS H THE SIZE OF EARTH AT EQUATOR

CONVERGENCY

 <u> </u>	
CONVERGENCY = GC DEPARTURE - GC ARRIVAL	$CONVERGENCY = CH \ LONG \times SINE \ MEAN \ LATITUDE$
$CONVERSION \ ANGLE = \frac{1}{2} \times CONVERGENCY$	CONVERSION ANGLE = $\frac{1}{2} \times CH$ LONG IN DEG \times SINE MEAN LAT

GC READINGS	EAST	WEST
NORTHERN HEMISPHERE	INCREASE 'I'	DECREASE 'D'
SOUTHERN HEMISPHERE	DECREASE 'D'	INCREASE 'I'

EAST'-' WEST'+'

VARIATION EAST MAGNETIC LEAST; VARIATION WEST MAGNETIC BEST

DEVIATION EAST COMPASS LEAST; DEVIATION WEST COMPASS BEST

COMPASS HDG	DEVIATION	MAGNETIC HDG	VARIATION	TRUE HDG
HDG(T)	DRIFT	TMG	TRACK ERROR	TRACK REQUIRED

DRIFT PORT HDG MORE; DRIFT STARBOARD HDG LESS

SOUTHERN / NOTHERN VERTEX :

CHANGE NORTH LATITUDE TO SOUTH AND VICE VERSA

ADD 180 DEG TO LONGITUDE

SOUTHERN / NOTHERN VERTEX FROM EQUATOR:

ADD 90 DEG & SUBSTRACT 90 DEG FROM LNGITUDE WHERE GC CUTS EQUATOR

MAPS & CHARTS

$$\frac{DA}{DB} = \frac{COSA}{COSB}$$

$$SCALE = \frac{CHART \ LENGTH}{EARTH \ LENGTH} \ (in \ same \ units \ pref \ cms)$$

THE SOLAR SYSTEM

TIME

LONGITUDE EAST GMT LEAST, LONGITUDE WEST GMT BEST

$$HOUR \ ANGLE = \frac{LONGITUDE}{15 \ DEG}$$

$15^{\circ} = 1 HOUR$

FLIGHT PLANNING

$HT(feet) = A \times R(nm) \times 101$	$ROD(fpm) = A \times GS \times \frac{100}{60}$
$\% = \frac{HT}{RANGE} \times 100$	$\% = \frac{ROD}{GS} \times \frac{6000}{6080}$