Lernkontrolle 5

HINWEIS: Zur Lösung der Aufgaben kann das Buch, Seite 98 und 99, beigezogen werden.

Aufgabe 1)

a) Entscheiden Sie, ob die folgenden Gleichungen nur Nullstellen in der linken offenen Halbebene

1)
$$7s^3 + s^2 + 2s + 1 = 0$$

1)
$$7s^3 + s^2 + 2s + 1 = 0$$
 4) $s^2 + 3s^4 + 2 + s^3 + 2s = 0$

2)
$$-s^4 - 2s^3 = 2s^2 + 3s$$
 5) $\sqrt{s} - 2 = 0$

5)
$$\sqrt{s} - 2 = 0$$

3)
$$s^3 + s^2 + s + 1 = 0$$
 6) $s^2 + 2s = \sin(2)$

6)
$$s^2 + 2s = \sin(2)$$

b) Bestimmen Sie den jeweiligen Bereich von α so dass alle Nullstellen der Polynome in der linken offenen Halbebene liegen:

1)
$$\alpha s^3 + s^2 + 2s + 1$$
 4) $s^3 + \alpha s^2 + s + \alpha$

4)
$$s^3 + \alpha s^2 + s + \alpha$$

2)
$$-s^4 - \alpha s^3 + s^2 - 4s - 5$$

2)
$$-s^4 - \alpha s^3 + s^2 - 4s - 5$$
 5) $s^5 - \alpha s^4 + 2s^3 + s^2 + 5s + 1$

Aufgabe 2)

Bestimmen Sie k jeweils so, dass der Regelkreis stabil ist.

a)
$$A = k$$
 $B = \frac{1}{s(s+2)^2}$

b)
$$A = k$$
 $B = \frac{10}{s(s+3)(s+12)}$

c)
$$A = \frac{k}{s+1}$$
 $B = \frac{s+1}{s-2}$

d)
$$\mathcal{A} = \frac{k}{s+1}$$
 $\mathcal{B} = \frac{1}{(s+1)(s-3)}$