

# CLAIMS FRAUD MODEL

OPERATIONAL REVIEW - FINAL MODEL

OCTOBER 2020

### Exhibit Intro

- Modeling Approach
- Fraud Model Evaluations
- Database Creation and Extraction Techniques
- Feature Engineering
- Boostrapping
- Modeling Techniques (TPOT, Pipeline, Gridsearch, Etc)
- Implementation / Business Impact
- Future Steps

### **EXHIBIT INTRO - EXECUTIVE SUMMARY**

Regis University practicum course requested a project which applied techniques introduced throughout the degree program. Today's conversation will review the candidate model produced.

### **Objectives:**

- Provide an overview of the modeling processes and methodologies
- Review the Claims Fraud Model final model performance and prediction explanation
- Discuss unique machine learning techniques used
- Review applicable next steps

### **Highlights:**

- Improved method for database interaction and table creation with Pandas
- The ability to explain the prediction and put it into an actionable insight
- Feature Synthesis, Outlier correction, and Automated Pipeline
- Feature reduction to remove unnecessary data and improve overall performance

## EXHIBIT INTRO – Gini (ROC AUC) Chart Building and Interpretation



### **Building**

 Line represents the % of true positive (Sensitivity) captured compared with false positive rate (100 - Specificity) at a given cut point

#### Interpretation

- Measures the classifiers ability to distinguish the two classes
  - Is the area under the curve > .50?
- The straight diagonal line shows a random. The closer the curve is to 45 degrees, the less predictive.
  - Does the curve maximize differential between random?

## EXHIBIT INTRO – Lift Chart Building and Interpretation





### **Building**

- Sort claims from low prediction to high (probability)
- Define groups by splitting into 10 equal bins
- For each bin measure the average prediction

### Interpretation

- Predictions (line)
  - Is there an obvious upward trend?
  - Does there appear to be good separation?
- Decile lift (value at each line)
  - Total incremental difference in predictions from each decile to prior decile

- Exhibit Intro
- Modeling Approach
- Fraud Model Evaluations
- Database Creation and Extraction Techniques
- Feature Engineering
- Boostrapping
- Modeling Techniques (TPOT, Pipeline, Gridsearch, Etc)
- Implementation / Business Impact
- Future Steps

### **MODELING APPROACH - Overview**

- 1000 rows of data
- Data split 80% for Training, 20% for Testing
- Outlier removal with Gaussian Approximation
- Target Encoding for categorical features
- Deep Feature Synthesis using multiplicative and additive primitives
- Synthetic bootstrapping used to augment data samples
- Automated Pipeline for analysis assistance
- Model performance evaluated using lift and auc curve

## MODELING APPROACH – Data (Kaggle Dataset)

### Independent Features

• 38 total (Mix of categorical/numeric)

### Target

- Binary
- Y Fraud Reported
- N Fraud Not Reported

### **TARGET DISTRIBUTION (Training Dataset)**



- Exhibit Intro
- Modeling Approach

### Fraud Model Evaluations

- Database Creation and Extraction Techniques
- Feature Engineering
- Boostrapping
- Modeling Techniques (TPOT, Pipeline, Gridsearch, Etc)
- Implementation / Business Impact
- Future Steps

## FRAUD MODEL EVALUATIONS - ROC AUC Curve



### Impressions

- Excellent predictive power
- Classifier has the ability to explain ~90%
   of the correct positive in the first 20%
- Stair-stepping expected, but very smooth

## FRAUD MODEL EVALUATIONS – Lift Chart





### Impressions

- Great separation between the two classes
- Cut off was not set to reduce false positives due to reduced performance
- Volatility expected in the lower probabilities, but very little

- Exhibit Intro
- Modeling Approach
- Fraud Model Evaluations
- Database Creation and Extraction Techniques
- Feature Engineering
- Boostrapping
- Modeling Techniques (TPOT, Pipeline, Gridsearch, Etc)
- Implementation / Business Impact
- Future Steps

### DATABASE CREATION AND EXTRACTION – Server/Database

#### MySQL Server Local

 Local database server created using MySQL Workbench

#### Claims Database

- Store full, train, and test datasets as tables
- Store training dataset distribution information (later applied to test)

#### Rationale

- · Emulate a production analytics environment
- Improve query techniques for analytics ready data

#### Future Motivation

Implement SQL Replication



## DATABASE CREATION AND EXTRACTION - SQLAlchemy

### Create (and fill) a table with 3 lines of code? Straight from a Pandas?

```
Reduce table create/write time
```

```
# Connecting to mysql database using sqlalchemy. This allows us to insert and retrieve dataframes with ease
from sqlalchemy import create_engine
# Creating sqlalchemy engine
engine = create_engine(f'mysql+mysqlconnector://{user}:{password}@127.0.0.1:3306/claims', echo=False)
# Saving the datasets
df.to_sql(name='full_modeling_dataset', con=engine, if_exists = 'append', index=False)
```

#### Read it back to Pandas just as easily

```
Reduce scientist extraction/query time
```

```
# Retrieve modeling dataset from the database
from sqlalchemy import create_engine
# Create Engine
engine = create_engine(f'mysql+mysqlconnector://{user}:{password}@127.0.0.1:3306/claims', echo=False)
# Connection
dbConnection = engine.connect()
# Reading the table into a dataframe
df = pd.read_sql("select * from claims.train_dataset", dbConnection);
# Closing the connection
dbConnection.close()
```

- Exhibit Intro
- Modeling Approach
- Fraud Model Evaluations
- Database Creation and Extraction Techniques
- Feature Engineering
- Boostrapping
- Modeling Techniques (TPOT, Pipeline, Gridsearch, Etc)
- Implementation / Business Impact
- Future Steps

## FEATURE ENGINEERING - Outlier Removal & Encoding

### Censoring (Capping) Methodology for Numeric Columns

- Calculate cutoff value from training dataset mean and standard deviation
- Set low/high values at 3 standard deviations from mean
- Apply to train and test features
- Improves predictive power by removing outliers via distribution distortion



### Cutoff Value example

|   | feature               | lower         | upper        |
|---|-----------------------|---------------|--------------|
| 0 | months_as_customer    | -1.410366e+02 | 5.448916e+02 |
| 1 | age                   | 1.176904e+01  | 6.598596e+01 |
| 2 | policy_deductable     | -6.952633e+02 | 2.942763e+03 |
| 3 | policy_annual_premium | 5.307070e+02  | 1.985314e+03 |
| 4 | umbrella_limit        | -5.806608e+06 | 8.069108e+06 |

## FEATURE ENGINEERING - Outlier Removal & Encoding

- Target Encoding Methodology for Categorical Columns
  - Convert categorical to numeric



## FEATURE ENGINEERING – Feature Tools (Automated Feature Engineering)

- Deep Feature Synthesis
  - Automatically create new features from dataset
  - Provides more features to try in model with ease
  - Saves massive amounts of time
- Created several new features
- Able to work with relational database structure
  - Assists analysts understand what features are important in a large database



- Exhibit Intro
- Modeling Approach
- Fraud Model Evaluations
- Database Creation and Extraction Techniques
- Feature Engineering
- Bootstrapping
- Modeling Techniques (TPOT, Pipeline, Gridsearch, Etc)
- Implementation / Business Impact
- Future Steps

## BOOTSTRAPPING—Synthetic Sampling (SVMSMOTE)

- Increases data volume
  - Basically, gives us more data!
- Results in a more robust model
  - With such a small dataset, this technique allows us to better generalize the population



- Exhibit Intro
- Modeling Approach
- Fraud Model Evaluations
- Database Creation and Extraction Techniques
- Feature Engineering
- Bootstrapping
- Modeling Techniques (TPOT, Pipeline, Gridsearch, Etc)
- Implementation / Business Impact
- Future Steps

## MODELING TECHNIQUES – A Shameless Automation Plug: TPOT and DASK

### TPOT Automated Pipeline

- A genetic programming approach to selecting an optimal solution
- Tries many different pipelines
- Gives the analyst a good starting point with a difficult problem
- Helps, but does not replace the scientist

#### DASK

- Parallel computing for large data
- Allows for multiple processes to run at same time for quicker solve time



## MODELING TECHNIQUES – TPOT and DASK



## MODELING TECHNIQUES – Final Model and Feature Selection

### Gradient Boosting Classifier

- Best performer
- Allowed for prediction explanation
- Ensemble for smoother lift

#### KBest with Anova feature selection

- Reduce non-predictive features
- Iteratively try different combinations
- Faster predictions!



(Gradient Boosting Algorithm – Working and Improvements, n.d.)

## MODELING TECHNIQUES – Important Features

### Permutation Importance

- Gives better understanding of what is really important
- Incident severity: The real hero
- Insured hobbies: The real hero?
- All important features from FeatureTools
- High cardinality may be influencing the importance here



## MODELING TECHNIQUES - Precision vs Recall

- The chart to the left shows the difference between precision and recall
- The chart to the right shows the models tradeoff between these two metrics at various decision thresholds
- The threshold was kept at the default of .50. There was little improvement adjusting this value



Accuracy: 0.855

Precision: 0.6428571428571429 Recall: 0.9183673469387755

## MODELING TECHNIQUES – Confusion Matrix



### Impressions

- Excellent false negative rates
- False positives leave something to be desired
- Overall accuracy is excellent

#### Future Recommendation

- Create two separate models
  - One for explaining predictions
  - One for detection

- Exhibit Intro
- Modeling Approach
- Fraud Model Evaluations
- Database Creation and Extraction Techniques
- Feature Engineering
- Bootstrapping
- Modeling Techniques (TPOT, Pipeline, Gridsearch, Etc)
- Implementation / Business Impact
- Future Steps

## IMPLEMENTATION / BUSINESS IMPACT - What now?



(Weaver, 2019)

## Implementation Considerations

- High false positive rate
  - May impact customer treatment
- Cut off may need tweaking
- Beta Testing
  - Consider a pilot test group
- Training
  - Educate adjusters to maximize model effectiveness

## IMPLEMENTATION / BUSINESS IMPACT – Explaining Predictions

#### **Example of Fraudulent Claim**

y=1 (probability 0.709, score 0.446) top features

| Contribution? | Feature                                  |
|---------------|------------------------------------------|
| +1.292        | incident_severity + insured_hobbies      |
| +0.266        | collision_type * incident_severity       |
| +0.245        | incident_severity + insured_occupation   |
| +0.049        | auto_model + incident_severity           |
| +0.041        | incident_severity + policy_state         |
| -0.054        | auto_model * incident_severity           |
| -0.171        | auto_make + incident_severity            |
| -0.182        | incident_severity + insured_relationship |
| -0.278        | incident_severity + incident_state       |
| -0.305        | incident_severity * insured_relationship |
| -0.458        | <bias></bias>                            |

Based on the input, we can see that the top contributing feature in this prediction is the additive interaction between incident severity and insured hobbies

- Model has the ability to explain why a claim may be fraudulent
- Based on the input values, an adjuster will receive more information relating to the prediction.

Example of possible reason message:

#### Special Investigative Unit Referral

A fraudulent claim has been detected on policy 217938

This claim was flagged due to:

Interaction between the incident severity (Major Damage) and the insured's hobby (Sky Diving) is more likely than average to be fraudulant

- Exhibit Intro
- Modeling Approach
- Fraud Model Evaluations
- Database Creation and Extraction Techniques
- Feature Engineering
- Bootstrapping
- Modeling Techniques (TPOT, Pipeline, Gridsearch, Etc)
- Implementation / Business Impact
- Future Steps

## FUTURE STEPS – Feedback

### An iterative process

- Future products depend on business insight and suggestion
- Improved performance overtime

### Is it working?

 Hands-on experience can be the best guidance

#### More data is better

 Understanding how this impacts adjusters creates actionable insight data. What action did they take?



### **FUTURE STEPS – Two Models**

- Split the product into two separate models
  - One model focused on increasing predictive power
  - One model to focus on explaining the prediction
- The product does both fairly well, but there is always room for improvement
- Feedback loop may provide more data for the explanation model
  - Improve insight into fraudulent claims
  - Provide actionable insight based on previous predictions
- Explore other models less ideal for score reasons, more ideal for predictability

Black box models may improve results

## References

Charfaoui, Y. (2018, June). *Hands-on with Feature Engineering Techniques: Handling Outliers*. Retrieved from HeartBeat: https://heartbeat.fritz.ai/hands-on-with-feature-engineering-techniques-dealing-with-outliers-fcc9f57cb63b

Gradient Boosting Algorithm – Working and Improvements. (n.d.). Retrieved from Data Flair: <a href="https://data-flair.training/blogs/gradient-boosting-algorithm/">https://data-flair.training/blogs/gradient-boosting-algorithm/</a>

Morrison, J. (2019, December 9). *Designing Effective Supervised Machine Learning Systems*. Retrieved from Medium: <a href="https://medium.com/@joemorrison/designing-effective-supervised-machine-learning-systems-91eb7b466129">https://medium.com/@joemorrison/designing-effective-supervised-machine-learning-systems-91eb7b466129</a>

Precision and Recall. (2020, October 9). Retrieved from Wikipedia: <a href="https://en.wikipedia.org/wiki/Precision">https://en.wikipedia.org/wiki/Precision</a> and recall

Weaver, D. (2019, May 15). *Three Tips for Deferring Insurance Fraud*. Retrieved from Inform: <a href="https://www.inform-software.com/blog/post/3-tips-for-deterring-insurance-fraud">https://www.inform-software.com/blog/post/3-tips-for-deterring-insurance-fraud</a>