Quantum Computing

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

Goal: Quantum dynamics simulation on quantum circuits

Quantum Computing (QC) for Science

- U.S. Congress (Dec. 21, '18) signed National Quantum Initiative Act (NQIA) to ensure leadership in quantum computing & its applications
- Quantum supremacy demonstrated by Google [F. Arute, Nature 574, 505 ('19)]
- Quantum computing for science:
 Universal simulator of quantum many body systems [R. P. Feynman, Int. J. Theo. Phys. 21,
 467 ('82); S. Lloyd, Science 273, 1073 ('96)]
- Success in simulating static properties of quantum systems (i.e., ground-state energy of small molecules) [A. Aspuru-Guzik et al., Science 309, 1704 ('05)]
- Challenge: Simulate quantum manybody dynamics on current-to-near-future noisy intermediate-scale quantum (NISQ) computers [J. Preskill, Quantum 2, 79 ('18)]

54-qubit Google Sycamore

Quantum Dynamics Simulations

- An exciting scientific application of quantum computers is as a universal simulator of quantum many-body dynamics, as envisioned by Richard Feynman [Int. J. Theor. Phys. 21, 467 ('82)]
- Seth Lloyd provided concrete algorithms and analysis [Science 273, 1073 ('96)]
- Second edition of Feynman Lectures on Computation will add a section on "Simulating quantum dynamics" by John Preskill [arXiv:2106.10522 ('21)]
- Simulated nontrivial quantum dynamics on publicly available IBM's Q16 Melbourne & Rigetti's Aspen NISQ computers, *i.e.*, ultrafast control of emergent magnetism by THz radiation in 2D material [L. Bassman et al., Phys. Rev. B 101, 184305 ('20)

Quantum computing utilizes quantum properties such as superposition & entanglement for computation

Emergent Magnetism: Structural Transition via Doping

- Experiment at Rice showed 2H-to-1T' phase transformation by alloying MoSe₂ with Re
- Simulations at USC elucidated its electronic origin
- Simulation & experiment showed novel magnetism centered at Re atoms

V. Kochat et al., Adv. Mater. 29, 1703754 ('17)

Transverse Field Ising Model

• Electromagnetic-field control of quantum states in a chain of rhenium-magnets in MoSe₂ monolayer to realize desired material properties on demand, thereby pushing the envelope of "quantum materials science"

$$H(t) = -J_z \sum_{j=1}^{N-1} \sigma_z^j \sigma_z^{j+1} - \varepsilon_{ph} \sin(\omega_{ph} t) \sum_{j=1}^{N} \sigma_x^j$$

$$= H_z + H_x(t)$$
Phonon-induced energy split

$$\sigma_z^j = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; \ \sigma_x^j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 // Act on *j*-th qubit

Effective in-plane magnetic field

1.4 E'' displacement $\Delta d_s = 0.1 \text{Å } \hat{y}$ 0.8

0.6

Phonon

Spin-orbit coupling

D. Shin et al., Nat. Commun. 9, 638 ('18)

Quantum Computing of Magnetism

• Simulated quantum many-body dynamics on IBM's Q16 Melbourne & Rigetti's Aspen quantum processors

L. Bassman et al., Phys. Rev. 101, 184305 ('20)

Will derive & implement the circuit in the hands-on session

Quantum Dynamics on NISQ Computers

• Time-evolution operator for wave function $|\Psi(t)\rangle$ for small time interval Δt (atomic unit, $\hbar=1$)

$$|\Psi(\Delta t)\rangle = U(\Delta t)|\Psi(t=0)\rangle$$

 $U(\Delta t) = \exp(-iH\Delta t)$

• Time discretization with time-step Δt and Trotter expansion

$$U(n\Delta t) \cong \prod_{k=0}^{n-1} \exp(-iH_z\Delta t) \exp(-iH_x(k+1/2)\Delta t)$$

• One simulation run provides measurement for only one time instance $(t = n\Delta t)$ — if you can see intermediate time steps, it's not quantum computing

Quantum Computing Runs

For each time instance, many runs to obtain statistics

Quantum Computing Results

 Quantum-dynamics simulations on a NISQ computers show dynamic suppression of magnetization by THz radiation

L. Bassman et al., Phys. Rev. B 101, 184305 ('20)

Circuit Size vs. Simulation Fidelity

Reduced circuit size improves the fidelity of simulation

Naïve compiler: circuit size ∝ time

Smart compile: Constant circuit size w.r.t. time

Quantum Compiler: Math

- Problem: High gate errors make long-time simulations impractical
- Solution: Domain-specific compiler = use algebraic identities to derive an equivalent circuit with reduced circuit size

L. Bassman et al., Quantum Sci. Tech. 6, 014007 ('21)

Algorithm for IBM Native Gates

1: while $-RX(\theta)$ | exists do

- Heuristic algorithm similar to unit propagation in artificial intelligence (AI)
- The heuristic order & types of identities applied are specific to the particular quantum dynamics we simulated

replace with $-H - RZ(\theta) - H$ replace with -H3: while -Hreplace with -4: while - $RZ(\theta)$ exists do $RX(\frac{\pi}{2})$ replace with $-RZ(\frac{\pi}{2})$ $RX(\frac{\pi}{2})$ $RZ(\theta + \pi)$ $RZ(\frac{\pi}{2})$ 5: while exists do $RZ(\theta_i)$ $RZ(\theta_i)$ replace with — $RZ(\theta_i + \theta_i)$ $RZ(\theta)$ 6: while -Hexists do replace with $-RZ(\frac{\pi}{2})$ $-RX(\frac{\pi}{2})$ $RZ(\theta + \frac{\pi}{2})$ $RZ(\theta_j)$ 7: while $-RZ(\theta_i)$ exists do replace with $RZ(\theta_i + \theta_i)$

L. Bassman et al., Quantum Sci. Tech. 6, 014007 ('21)

Domain-Specific Quantum Compiler

- Take advantage of specific problem structure
- AI-inspired quantum compiler reduced the circuit size by 30% to mitigate environmental noise

Vendor compiler

Al-inspired compiler

Performance of Domain-Specific Compiler

Absolute gate count difference (IBM Compiler - DS Compiler)

$\frac{\textit{Percent gate count difference}}{\textit{IBM Compiler}} \times 100$ $\frac{\textit{IBM Compiler}}{\textit{IBM Compiler}} \times 100$

Domain-specific compiler reduces gate count compared to IBM compiler

Speed of Domain-Specific Compiler

Percent compile-time difference

 $\frac{IBM\ Compiler-DS\ Compiler}{IBM\ Compiler} \times 100$

... and does it faster

Extension: Constant Circuit-Depth Algorithm

• Mathematical identities allow constant circuit depth independent of the number of time steps n for arbitrary number of spins N in a linear spin chain

L. Bassman et al., arXiv: 2103.07429v4 ('21)

Richer Physics: Heisenberg Model

$$H = -\sum_{j=1}^{N-1} \left(J_x \sigma_x^j \sigma_x^{j+1} + J_y \sigma_y^j \sigma_y^{j+1} + J_z \sigma_z^j \sigma_z^{j+1} \right) - h \sum_{j=1}^{N} \sigma_z^j$$
Exchange coupling

Magnetic field

Pauli spin-1/2 matrices

$$\sigma_x^j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \ \sigma_y^j = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \ \sigma_z^j = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ // Act on } j\text{-th qubit}$$

Domain-wall dynamics (6-, 8- & 10-site spin chains)

A. Smith et al., npJ Quantum Info. 5, 106 ('19)

Open-Source Quantum Software

• Full-stack, cross-platform software for quantum dynamics simulations on NISQ computers was made available open-source

MISTIQS

Multiplatform
Software for
Time-dependent
Quantum
Simulation

Paper: C. Powers et al., SoftwareX 14, 100696 ('21)

Software: https://github.com/USCCACS/MISTIQS

Extension: Machine Learning

 Alternative noise mitigation using machine learning: Autoencoder, trained with quantum simulations of small systems, is capable of filtering noise from dynamic simulations of larger systems run on quantum computers

C. Powers et al., NeurIPS workshop ('21)

Variational Quantum Simulator

Hybrid quantum/classical approach: Boost the power of a classical supercomputer using a quantum co-processor

• A variational approach similar to variational quantum eigensolver (VQE) can be applied to quantum dynamics

$$\delta \int_{t_i}^{t_f} dt \left\langle \psi(t) \middle| \left(i \frac{\partial}{\partial t} - H \right) \middle| \psi(t) \right\rangle = 0$$

• Short-time propagation of a many-body wave function on a quantum computer is mapped back to a parameterized variational wave function, $|\psi(t)\rangle = |\psi(\lambda_1(t),...,\lambda_P(t))\rangle$, which is tractable on a classical computer

Where to Go from Here

- New MS degree in Quantum Information Science (MSQIS) started in 2021
- Required foundational courses
 - 1. EE 520: Introduction to Quantum Information Processing
 - 2. EE 514: Quantum Error Correction
 - 3. Phys 513: Applications of Quantum Computing
- Core at least two courses from
 - 1. EE 589: Quantum Information Theory
 - 2. Phys 550: Open Quantum Systems
 - 3. Phys 559: Quantum Devices
 - 4. Phys 660: Quantum Information Science & Many-Body Physics
- Phys 513: Application of Quantum Computing (co-taught with Prof. Rosa Di Felice) quantum simulations on quantum circuits & adiabatic quantum annealer (syllabus)
- Phys 516 (this course): Core elective for MSQIS