

IIC1253 — Matemáticas Discretas — 1' 2018

TAREA 4

Publicación: Viernes 27 de Abril.

Entrega: Viernes 4 de Mayo hasta las 10:15 horas.

Indicaciones

■ Debe entregar una solución para cada pregunta (sin importar si esta en blanco).

- Cada solución debe estar escrita en LATEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Si usa más de una hoja para una misma pregunta corchetelas.
- Debe entregar una copia escrita durante la ayudantía asignada y una copia digital por el buzón del curso, ambas antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

Sea A un conjunto finito y no vacío. Para dos particiones S_1 y S_2 de A, se dice que S_1 es un refinamiento de S_2 si para todo $X \in S_1$, existe un $Y \in S_2$ tal que $X \subseteq Y$.

- 1. Sea R_1 y R_2 dos relaciones de equivalencia. Demuestre que $R_1 \subseteq R_2$ si, y solo si, A/R_1 es un refinamiento de A/R_2 .
- 2. Considere la relación \leq entre particiones de A que se define como: $S_1 \leq S_2$ si, y solo si, S_1 es un refinamiento de S_2 . Demuestre que \leq es un orden parcial entre particiones de A.
- 3. Demuestre que para todo par de particiones S_1 y S_2 , se tiene que el conjunto $\{S_1, S_2\}$ tiene un infimo bajo el orden \leq .

Pregunta 2

Sea A un conjunto finito y $f:A\to A$ una biyección. A partir de f, se define la relación $R_f\subseteq A\times A$ como:

$$(a,b) \in R_f$$
 si, y solo si, existe un $n > 0$ tal que $f^n(a) = b$

donde $f^n = f \circ \stackrel{n\text{-veces}}{\cdots} \circ f$. En otras palabras, f^n corresponde a componer la función f n-veces.

Demuestre que la relación R_f es una relación de equivalencia. Para esto:

- 1. Demuestre que R_f es una relación refleja.
- 2. Demuestre que R_f es una relación simétrica.
- 3. Demuestre que ${\cal R}_f$ es una relación transitiva.

Evaluación y puntajes de la tarea

Cada **item** de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.