

ข้อสอบวิชาเคมี เพื่อคัดเลือกนักเรียนเข้ารับการอบรมค่าย 1 สอวน.

ชื่อ-สกุล	ข้อสอบวิชาเคมี
เลขประจำตัวสอบ	รหัสชุดวิชา 0000003
สถานที่สอบ	สอบวันอาทิตย์ที่ 26 สิงหาคม 2561
ห้องสอบ	เวลา 13.30-16.30 น.

คำชี้แจง

- ข้อสอบมี 16 หน้า (รวมปก) จำนวน 75 ข้อ
 ส่วนที่ I ข้อสอบปรนัยแบบเลือกตอบ จำนวน 60 ข้อ (หน้า 3-14) ข้อละ 1 คะแนน รวม 60 คะแนน ส่วนที่ II ข้อสอบอัตนัยแบบเขียนตอบ จำนวน 15 ข้อ (หน้า 14-16) ข้อละ 2 คะแนน รวม 30 คะแนน
- 2. **ใช้ปากกา** เขียนชื่อ นามสกุล เลขประจำตัวสอบ สถานที่สอบ ห้องสอบ ในข้อสอบและกระดาษคำตอบ และ **ใช้ดินสอ 2B** ระบายลงในวงกลมให้ตรงกับเลขประจำตัว และรหัสชุดวิชาที่กรอกในกระดาษคำตอบ
- 3. ข้อสอบปรนัยแบบเลือกตอบ 4 ตัวเลือก กรณีที่ตัวเลือกในข้อสอบและกระดาษคำตอบไม่ตรงกันให้ถือตาม ข้อกำหนดข้างล่างนี้

4. **วิธีตอบ** <u>ข้อสอบปรนัยแบบเลือกตอบ</u> ให้นักเรียนพิจารณาเลือกคำตอบที่ถูกต้องและเหมาะสมที่สุดเพียงคำตอบ เดียว แล้วระบายคำตอบข้อที่ถูกต้องที่สุดลงในกระดาษคำตอบ**ด้วยดินสอ 2B** ถ้าข้อใดตอบมากกว่า 1 ตัวเลือก ข้อนั้นถือเป็นโมฆะ

<u>ข้อสอบอัตนัยแบบเขียนตอบ</u> ให้เขียนคำตอบลงในช่องว่างที่กำหนดให้ในกระดาษคำตอบ (รวม 2 หน้า)

- 5. ห้ามน้ำข้อสอบและกระดาษคำตอบออกจากห้องสอบ
- 6. ห้ามเผยแพร่ข้อสอบก่อนที่มูลนิธิ สอวน. จะเผยแพร่ทางเว็บไซต์
- 7. ห้ามใช้เครื่องคำนวณ

ค่าต่าง ๆ ที่เกี่ยวข้องกับข้อสอบ ให้ใช้ค่าที่กำหนดให้ต่อไปนี้

1. เลขอะตอมและมวลอะตอมของธาตุ

ธาตุ	เลขอะตอม	มวลอะตอม
Ag	47	108
Al	13	27
Ar	18	40
В	5	11
Ва	56	137
Ве	4	9
Br	35	80
С	6	12
Ca	20	40
Cl	17	35.5
Cu	29	63.5
F	9	19
Н	1	1
K	19	39

ธาตุ	เลขอะตอม	มวลอะตอม
Mg	12	24
Mn	25	55
N	7	14
Na	11	23
0	8	16
Р	15	31
S	16	32
Sb	51	122
Si	14	28
Те	52	127.5
Ti	22	48
Xe	54	131
Zn	30	65
Zr	40	91

2. ค่าคงที่ของแก๊ส (R) = 0.082 L•atm•mol $^{-1}$ •K $^{-1}$

ส่วนที่ I. ข้อสอบปรนัยแบบเลือกตอบ จำนวน 60 ข้อ ข้อละ 1 คะแนน รวม 60 คะแนน จงเลือกคำตอบที่ถูกต้องและเหมาะสมที่สุดเพียงคำตอบเดียวในแต่ละข้อ แล้วระบายตัวเลือกนั้นใน กระดาษคำตอบด้วยดินสอ 2B (ถ้าข้อใดตอบมากกว่า 1 ตัวเลือก ข้อนั้นถือเป็นโมฆะ)

	ط	ุ่ง ๆ	ນ ၅	a	ಲ	ط	e e
1.	อะตอมหรือ	เอออนเ	นขอเ	ดมการ	เจดอเลเ	าตรอนเหม	อนกน

$$10^{-39} A^{+} \quad ^{41}_{19} A^{-} \quad ^{40}_{20} D^{+}$$

$$v.$$
 $^{35}_{17}E^{-}$ $^{36}_{17}E^{+}$ $^{40}_{18}G$

P.
$$^{35}_{17}E^ ^{41}_{19}A^ ^{40}_{20}D^+$$

4.
$$^{35}_{17}E^ ^{40}_{18}G$$
 $^{39}_{19}A^+$

- อะตอมของธาตุ imes มี 14 นิวตรอน และไอออนที่เสถียรของธาตุ imes คือ $imes^{3+}$ ซึ่งมี 10 อิเล็กตรอน 2. ธาตุ X มีเลขอะตอมและเลขมวลเป็นเท่าใดตามลำดับ
 - ก. 10 และ 14
- ข. 13 และ 14
- ค. 13 และ 27
- ง. 27 และ 13
- เส้นสเปกตรัม 5 เส้น มีความยาวคลื่นดังนี้ A=656 nm, B=486 nm, C=434 nm และ D=410 nm การเปรียบเทียบเส้นสเปกตรัมในข้อใดถูกต้อง
 - ก. ความถี่ของเส้นสเปกตรัม A > B
 - ข. พลังงานของเส้นสเปกตรัม C > B
 - ค. เส้นสเปกตรัม A และ C มีพลังงานต่างกันเท่ากับ $\frac{hc}{(656-434)}$ J
 - ง. เส้นสเปกตรัม D เกิดจากการที่อิเล็กตรอนมีการเปลี่ยนแปลงพลังงานน้อยที่สุดในกลุ่ม
- ธาตุ X อยู่ในคาบที่ 2 ของตารางธาตุ δ ธาตุ δ มีจำนวนโปรตอนมากกว่าธาตุ δ δ โปรตอน ข้อใด**ถูกที่สุด**
 - ก. ธาตุ X และธาตุ Z อยู่ในคาบเดียวกันในตารางธาตุ
 - ข. ธาตุ Z มีจำนวนอิเล็กตรอนในระดับพลังงานที่สองมากกว่า 6
 - ค. จำนวนอนุภาคมูลฐานในนิวเคลียสของธาตุ Z มากกว่าของธาตุ X 6 อนุภาค
 - ง. จำนวนอิเล็กตรอนในระดับพลังงานนอกสุดของธาตุ Z มากกว่า ธาตุ X 6 อิเล็กตรอน
- ข้อใดเป็นการจัดอิเล็กตรอนของธาตุอโลหะที่มีความว่องไวในการเกิดปฏิกิริยามากที่สุด

ข.
$$1s^2 2s^2 2p^5$$

P.
$$1s^2 2s^2 2p^6 3s^1$$

$$3. 1s^2 2s^2 2p^6 3s^2 3p^5$$

- พิจารณาธาตุสมมุติต่อไปนี้ : $_{19}$ L, $_{20}$ M, $_{34}$ Q, $_{35}$ R, $_{37}$ T ข้อใด**ผิด**เกี่ยวกับการเปรียบเทียบค่าพลังงานไอออไนเซชันลำดับที่ 2 (IE_2) ของธาตุ
 - ก. L น้อยกว่า M
- ข. M น้อยกว่า Q
- ค. O น้อยกว่า R
- ง. R น้อยกว่า T
- 7. พิจารณาธาตุต่อไปนี้ : Na, Cl, Ca, Br การเปรียบเทียบขนาดของอะตอมและไอออนในข้อใดถูกต้อง
 - ก. $Na > Na^+ > Cl$ ข. $Ca > Cl > Na^+$ ค. $Br^- > Br > Ca$ ง. Br > Cl > Na

- 8. ข้อใด**ผิด**เกี่ยวกับสมบัติของธาตุ X, T และ Z ซึ่งมีเลขอะตอม 15, 20 และ 33 ตามลำดับ
 - ก. ค่า IE₁ ของ X > T > Z

ข. ค่า EN ของ X > Z > T

- ค. ขนาดอะตอมของ T > Z > X
- ง. จุดหลอมเหลวของ T>Z>X
- 9. สารประกอบออกไซด์ X ละลายน้ำแล้วสารละลายเปลี่ยนสีกระดาษลิตมัสจากน้ำเงินเป็นแดง สารประกอบออกไซด์ Y ละลายน้ำแล้วสารละลายเปลี่ยนสีกระดาษลิตมัสจากแดงเป็นน้ำเงิน สูตรของสารประกอบออกไซด์ในข้อใดสอดคล้องกับข้อมูลข้างต้น

	Х	Y
ก.	BeO	N_2O_5
ข.	SiO ₂	CaO
ค.	Cl ₂ O ₇	Al ₂ O ₃
٩.	SO ₃	Na₂O

- 10. พิจารณาข้อมูลการทดลองต่อไปนี้
 - a. ชิ้นโลหะ M ทำปฏิกิริยากับธาตุ X ซึ่งเป็นของแข็งระเหิดง่าย ได้สารประกอบ Y ซึ่งละลายในน้ำได้ดี
 - b. แบ่งสารละลายของ Y ในน้ำมาเติมน้ำคลอรีนและคาร์บอนเตตระคลอไรด์ (CCl₄) แล้วเขย่า พบว่า ชั้น CCl₄ มีสีชมพูแกมม่วง
 - c. โลหะ M แทบไม่ทำปฏิกิริยากับน้ำที่อุณหภูมิห้อง แต่เมื่อเปลี่ยนเป็นน้ำร้อนพบว่า เกิดปฏิกิริยาทันที มีฟอง แก๊สเกิดขึ้น และสารละลายเปลี่ยนสีฟีนอล์ฟทาลีนเป็นสีชมพู มีตะกอนขาวเกิดขึ้นด้วย

ข้อใดถูกต้อง

- ก. สารประกอบ Y คือ Mgl_2
- ข. สารละลายของ X และของ Y ต่างก็มีสี
- ค. พลังงานไอออไนเซชันลำดับที่ 3 (IE₃) ของ M มีค่าน้อยกว่าของ X
- ง. ถ้าเติมสารละลาย Na₂SO₄ ลงในสารละลายของ Y จะเกิดตะกอนสีขาว
- 11. ธาตุ D อยู่ในคาบที่สามของตารางธาตุ มีเลขออกซิเดชันได้หลายค่าตั้งแต่ -3 ถึง +5ข้อใดสรุปได้ถูกต้องเกี่ยวกับธาตุนี้
 - ก. ปกติอยู่ในรูปโมเลกุล D₂
 - ข. ที่อุณหภูมิห้องอยู่ในสถานะแก๊ส
 - ค. มีเลขออกซิเดชันเป็นค่าบวกเมื่ออยู่ในสารประกอบออกไซด์
 - ง. เกิดสารประกอบคลอไรด์มากกว่า 1 ชนิด และเป็นสารมีขั้วทั้งหมด
- 12. เมื่อนำสารประกอบต่อไปนี้มาละลายในน้ำแยกกัน สารละลายในข้อใดมีสีทั้งคู่
 - ก. K₂SO₄, MnCl₂
- v. Cl₂O, Co(NO₃)₂
- ค. K₂Cr₂O₇, FeCl₃
- Ni(NH₃)₆]Cl₂, RbCl

13. นำสารละลายของสาร A, B และ C มาแบ่งทดสอบโดยเติมสารละลาย NaCl, Na $_2$ CO $_3$ และ Na $_2$ SO $_4$ แยกกัน ได้ผลดังแสดงในตาราง

สาร	NaCl	NaCl Na ₂ CO ₃		
А	ไม่เห็นการเปลี่ยนแปลง	เกิดตะกอนขาว	ไม่เห็นการเปลี่ยนแปลง	
В	ไม่เห็นการเปลี่ยนแปลง	ไม่เห็นการเปลี่ยนแปลง	ไม่เห็นการเปลี่ยนแปลง	
С	ไม่เห็นการเปลี่ยนแปลง	เกิดตะกอนขาว	เกิดตะกอนขาว	

สูตรของ A, B และ C ในข้อใดเป็นไปได้

	Α	В	С
ก.	KNO ₃	MgCl ₂	BaCl ₂
ข.	$Mg(NO_3)_2$	Ba(NO ₃) ₂	KCl
ค.	BaCl ₂	KNO ₃	$Mg(NO_3)_2$
٩.	MgCl ₂	KCl	Ba(NO ₃) ₂

- 14. เปรียบเทียบสารประกอบต่อไปนี้ ข้อใดเป็นสารประกอบเชิงซ้อนที่ธาตุแทรนซิชันมีเลขออกซิเดชันสูงที่สุด
 - ก. MnO₂
- ข. NiSO₄
- P. $K_4[Fe(CN)_6]$
- \mathfrak{q} . $[Cr(NH_3)_6]Cl_3$
- 15. การสลายตัวของธาตุกัมมันตรังสีโดยการแผ่รังสีชนิดใดส่งผลให้ธาตุใหม่มีเลขอะตอมเพิ่มขึ้น 1 หน่วย
 - ก. แอลฟา
- ข. บีตา
- ค. แกมมา
- ง. โพซิตรอน
- 16. เมื่อธาตุกัมมันตรังสี X เกิดการสลายตัว จะได้ไอโซโทปที่เสถียรของ Z โดยมีครึ่งชีวิต 20 วินาที ถ้าเริ่มต้นจาก ธาตุ X บริสุทธิ์ กราฟในข้อใดแสดงความสัมพันธ์ระหว่างมวล (m) ของ X กับเวลา (t) ได้ถูกต้อง

ข.

17. ปฏิกิริยานิวเคลียร์ในข้อใดจัดเป็นปฏิกิริยาฟิวชัน

n.
$$^{101}_{43}$$
Tc → $^{101}_{44}$ Ru + $^{0}_{-1}$ e

$$v. \frac{14}{7} N + \frac{1}{0} n \longrightarrow \frac{14}{6} C + \frac{1}{1} H$$

P.
$${}_{2}^{3}$$
 He + ${}_{1}^{2}$ H $\longrightarrow {}_{2}^{4}$ He + ${}_{1}^{1}$ H

9.
$$^{235}_{92} \cup + ^{1}_{0} n \longrightarrow ^{90}_{36} Kr + ^{144}_{56} Ba + 2^{1}_{0} n$$

18. พิจารณาธาตุที่มีสัญลักษณ์สมมุติต่อไปนี้

สารละลายในน้ำของออกไซด์ของธาตุใดที่สามารถเปลี่ยนสีฟีนอลฟ์ทาลีนจากไม่มีสีเป็นสีชมพู

- ก. ธาตุ A และธาตุ D
- ข. ธาตุ A และธาตุ L
- ค. ธาตุ D และธาตุ M
- ง. ธาตุ L และธาตุ M

19. ธาตุ X เป็นของแข็งที่อุณหภูมิห้อง มีเลขอะตอมอยู่ในช่วง 19–36 ไม่ทำปฏิกิริยากับน้ำ แต่ทำปฏิกิริยากับกรด ให้แก๊ส Y และสารละลายไม่มีสี ถ้า X 2 mol ทำปฏิกิริยาพอดีกับแก๊สคลอรีน 3 mol ได้สารประกอบคลอไรด์ ข้อสรุปใด<u>ผ**ิด**</u>

ก. X อยู่หมู่ VA

ข. X อยู่ในคาบที่ 4

ค. แก๊ส Y ที่เกิดขึ้นคือไฮโดรเจน

ง. X อยู่หมู่เดียวกับอะลูมิเนียม

20. ธาตุ M มีเลขอะตอม 37 สมการเคมีแสดงปฏิกิริยาที่เกี่ยวกับธาตุหรือสารประกอบของ M ข้อใดถูกต้อง

n.
$$M(s) + H_2O(l) \rightarrow 2MOH(ag) + H_2(g)$$

n.
$$M(s) + H2O(l) → 2MOH(aq) + H2(g)$$
 v. $M(s) + HCl(aq) → MCl2(aq) + H2(g)$

$$\text{MBr(aq)} + I_2(s) \longrightarrow MI(aq) + Br_2(l)$$

ง.
$$M_2SO_4(aq) + BaCl_2(aq) \rightarrow ไม่เกิดปฏิกิริยา$$

21. ข้อใดถูกต้องเกี่ยวกับจำนวนพันธะและจำนวนอิเล็กตรอนคู่โดดเดี่ยวในสูตรโครงสร้างของ C_2N_2 โดยทุกอะตอม ในโมเลกุลเป็นไปตามกฎออกเตต

	จำนวน						
	พันธะเดี่ยว	พันธะคู่	พันธะสาม	อิเล็กตรอนคู่โดดเดี่ยว (คู่)			
ก.	1	0	1	1			
ข.	1	0	2	2			
ค.	1	2	0	2			
٩.	2	1	2	2			

22. สารประกอบ A เกิดจากการสร้างพันธะของธาตุที่มีเลขอะตอม 6 กับ 16 ส่วนสารประกอบ B เกิดจากธาตุที่มี เลขอะตอม 14 กับ 8 ข้อใดสรุปเกี่ยวกับสารประกอบ A และ B ถูกต้อง

ก. สารประกอบ A มีแรงยึดเหนี่ยวระหว่างโมเลกุลเป็นแรงดึงดูดระหว่างขั้ว

ข. สารประกอบ A มีจุดหลอมเหลวและจุดเดือดสูงกว่าสารประกอบ B

ค. สารประกอบ B ไม่ละลายน้ำ แต่มีจุดหลอมเหลวและจุดเดือดสูง

สารประกอบ B สามารถละลายได้ดีในเฮกเซน

- 23. พิจารณาข้อความต่อไปนี้
 - 1. SbCl₅ เป็นโมเลกุลไม่มีขั้ว แต่พันธะมีขั้ว
 - 2. SiH₄ มีรูปร่างเป็นทรงสี่หน้า และโมเลกุลมีขั้ว
 - 3. TeF₆ มีรูปร่างเป็นทรงแปดหน้า และอะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว ข้อใดถูกต้อง
 - ก. 1 และ 3 เท่านั้น
- ข. 1 และ 2 เท่านั้น
- ค. 2 และ 3 เท่านั้น
- ง. 1, 2 และ 3
- 24. ข้อใดประกอบด้วยสารประกอบโคเวเลนต์ที่ละลายน้ำได้ดีทุกสาร
 - ก. กลูโคส

เบนซีน

น้ำแข็งแห้ง

ข. เอทานอล

ไฮโดรเจนฟลูออไรด์

กรดแอซีติก

ค. กรดไฮโดรคลอริก

คาร์บอนเตตระคลอไรด์

ซิลิคอนไดออกไซด์

ง. คาร์บอนไดซัลไฟด์

ออกซิเจนไดฟลูออไรด์

แอมโมเนียมคลอไรด์

25. นำสมุนไพรชนิดหนึ่งมาหั่นเป็นชิ้นเล็ก ๆ แล้วแช่ในเอทานอลเป็นเวลา 24 ชั่วโมง กรองของผสม จะได้ สารละลายสีน้ำตาลเข้ม ระเหยเอทานอล หลังจากนั้นสกัดด้วยตัวทำละลาย 3 ชนิด ตามลำดับคือ เฮกเซน (C,H,OH) ได้ผลการสกัดดังตาราง

ตัวทำละลาย สารที่สกัดได้ (ร้อยละโดยมว		
เฮกเซน	A (90) และ B (10)	
คลอโรฟอร์ม	B (80) และ C (20)	
เอทานอล	C (70) และ D (30)	

นักเรียนคนหนึ่งสรุปสมบัติของสาร A, B, C และ D ได้ดังนี้

- 1. สาร A และ B เป็นสารไม่มีขั้ว แต่สาร C และ D เป็นสารมีขั้ว
- 2. สาร C มีขั้วมากกว่าสาร B
- 3. แรงยึดเหนี่ยวระหว่างโมเลกุลของสาร D เป็นแรงระหว่างขั้ว และอาจมีพันธะไฮโดรเจน ข้อสรุปของนักเรียนคนนี้ ข้อใดถูกต้อง
- ก. 1 เท่านั้น
- ข. 2 เท่านั้น
- ค. 2 และ 3 เท่านั้น
- ง. 1, 2 และ 3
- **26.** เมื่อนำสารผสมระหว่าง เอทานอล (CH₃CH₂OH) ไดเอทิลอีเทอร์ (CH₃CH₂OCH₂CH₃) และบิวเทน (CH₃CH₂CH₂CH₃) มากลั่นลำดับส่วน ลำดับของสารที่กลั่นออกมาเป็นดังข้อใด

	ลำดับที่ 1	ลำดับที่ 2	ลำดับที่ 3
ก.	เอทานอล	ไดเอทิลอีเทอร์	บิวเทน
ข.	ไดเอทิลอีเทอร์	บิวเทน	เอทานอล
ค.	บิวเทน	ไดเอทิลอีเทอร์	เอทานอล
٩.	บิวเทน	เอทานอล	ไดเอทิลอีเทอร์

27.	พิจารณาโมเลกุลหรือไอออนต่อไปนี้ : NO_2 , BF_4^- , XeF_4 , CO_3^{2-} ข้อใดมีอะตอมกลางเป็นไปตามกฎออกเตตทั้งคู่							
	ก. NO ₂ และ BF -	ข. NO ₂ และ CO ²⁻	ค. BF - และ XeF ₄	ง. BF 4 และ CO 3				
28.	ข้อใด ผิด เกี่ยวกับไอออน N ก. มีรูปร่างเป็นทรงสี่หน้า ข. ประกอบด้วยพันธะโค ค. อะตอมกลางไม่มีอิเล็ก ง. ความยาวพันธะ N-H	เวเลนต์มีขั้ว	ท่างจากพันธะที่สี่					
29.	รูปร่างโมเลกุลในข้อใดแตก							
	ก. SO ₂	ข. CO ₂	ค. XeF ₂	₹. BeCl ₂				
30.	ถ้าพิจารณาเฉพาะมุมระหา	ว่างพันธะที่เล็กที่สุดในโมเลกุ	ุลต่อไปนี้ มุมระหว่างพันธะฯ	ของโมเลกุลใดมีค่าน้อยที่สุด				
	ก. NCl ₃	ข. PCl ₅	ค. SOCl ₂	 CH₂Cl₂ 				
31.	สารในข้อใดมีแรงยึดเหนี่ย	วระหว่างโมเลกุลเป็นแรงระเ	หว่างขั้วทั้งคู่					
	ก. PCl ₃ และ CO ₂	ข. NH ₃ และ O ₂	ค. CH ₄ และ SiH ₄	ง. PH₃ และ H₂S				
32.	 พิจารณาข้อมูลต่อไปนี้ ความยาวพันธะ C-O ใน CO₃²⁻ มากกว่าใน CO₂ BF₃ มีสภาพขั้วของโมเลกุลมากกว่า F₂ CF₄ มีจุดเดือดต่ำกว่า CHF₃ ข้อใดถูกต้อง ก. 1 เท่านั้น ข. 1 และ 3 เท่านั้น ค. 2 และ 3 เท่านั้น ง. 1, 2 และ 3 							
33.	ปรากฏว่า แก๊สคลอรีนลด	าลงร้อยละ 25 โดยปริมาตร เจนคลอไรด์ ร้อยละ 30, 50	ร และแก๊สผสมในขวดประ	หลังฉายแสงอัลตราไวโอเลต กอบด้วย แก๊สคลอรีน แก๊ส มลำดับ ข้อใดคือร้อยละโดย ง. 80				
34.	สารละลายเกลือซัลเฟตขอ	วงโลหะ (ASO ₄) 3.22 g ทำเ	ปฏิกิริยากับสารละลาย Bac	Cl ₂ (มวลสูตร = 208) ที่มาก				
		BaSO ₄ (มวลสูตร = 233) <i>ห</i>		-				
	ก. Ti	ข. Cu	ค. Zn	۹. Zr				

									9
35.						ะ 12.0, 28.0, 3.00			
						มบูรณ์ต้องใช้อากา		บางนอยกลูกบาศก	เมตร
	กำหนดให้ 1. การวัดปริมาตรแก๊สผสมและอากาศทำที่อุณหภูมิและความดันเดียวกัน								
		2. อากาศมีออก	าซิเจนร้อยละ	20.0 โดยปริมา	ภ ร				
	ก. 36.0		ข. 90.0	P	. 180		٩.	210	
36.						์ เตรเจน ทำให้เกิดเ			
	แมกนีเซียม	มในไตรด์ (Mg ₃ N	$ m I_2$) โดยมีผลได้	ัร้อยละ 40 เมื่	อนำ M	lg ₃ N ₂ มาละลายใน	น้ำเ	ที่มากเกินพอ พบ [.]	ว่า ได้
	แก๊สแอมโม	มเนียเกิดขึ้น ถ้า	ต้องการแก๊สเ	เอมโมเนียปริม	าตร 4.4	48 L ที่ STP ต้องเรื	ปิ่มต้	้นด้วยโลหะแมกน ิ	ใเซียม

ก. 12 ข. 18 ค. 36 ง. 72
 37. เมื่อผสมสารละลายโซเดียมคาร์บอเนตเข้มข้น 0.0800 mol/dm³ ปริมาตร 75.0 cm³ กับสารละลายซิลเวอร์ ในเทรตเข้มข้น 0.200 mol/dm³ ปริมาตร 25.0 cm³ ให้ตะกอนซิลเวอร์คาร์บอเนต หลังจากเกิดปฏิกิริยา

สมบูรณ์ สารตั้งต้นที่เหลือมีความเข้มข้นเท่าใดหน่วย mol/dm³

ก. 0.0100

น้อยที่สุดกี่กรัม

ข. 0.0350

ค. 0.0467

٩. 0.0700

38. โลหะผสมประกอบด้วยอะลูมิเนียม สังกะสี ซิลิคอน และทองแดง ถ้านำโลหะผสมนี้ 1000 mg มาละลายด้วย สารละลายกรดไฮโดรคลอริกมากเกินพอ จะเกิดแก๊สไฮโดรเจนปริมาตร 448 cm³ ที่ STP และมีของแข็ง เหลืออยู่ 350 mg ซึ่งประกอบด้วยซิลิคอนและทองแดง ข้อใดคือร้อยละโดยมวลของอะลูมิเนียมในโลหะผสม

ก. 17.0

ข. 24.9

ค. 31.3

٩. 36.4

39. สารละลายผสมประกอบด้วย $Fe(NH_4)_2(SO_4)_2$ เข้มข้น 0.150 mol/dm^3 , $Fe_2(SO_4)_3$ เข้มข้น 0.00150 mol/dm^3 และ H_2SO_4 เข้มข้น 0.500 mol/dm^3 เมื่อนำสารละลายผสมนี้ปริมาตร 30.0 cm^3 ไปเติม สารละลาย $KMnO_4$ เข้มข้น 0.0200 mol/dm^3 ปริมาตร 30.0 cm^3 สารละลายที่ได้มี Fe^{3+} คิดเป็นความ เข้มข้นเท่าใดในหน่วย mol/dm^3

กำหนดให้ 1. ปฏิกิริยาที่เกิดขึ้นเป็นดังสมการ

$$5Fe^{2+} + MnO_4^- + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

2. กรด H_2SO_4 ในสารละลายผสมมีปริมาณมากเกินพอ

ก. 0.0350

ข. 0.0500

ค. 0.0515

v. 0.103

40. ไดบอเรน (B_2H_6) สามารถเตรียมได้จากปฏิกิริยา

NaBH₄ + BF₃
$$\longrightarrow$$
 NaBF₄ + B₂H₆ (สมการยังไม่คุล)

ปฏิกิริยานี้มีผลได้ร้อยละเพียง 70.0 ถ้าต้องการเตรียมไดบอเรน 0.210 mol ต้องใช้ NaBH $_4$ จำนวนกี่โมลเพื่อ ทำปฏิกิริยากับ BF $_3$ มากเกินพอ

ก. 0.200

ข. 0.220

ค. 0.300

0.450

41. โซเดียมเอไซด์ (NaN₃) เป็นสารที่บรรจุในถุงลมนิรภัยในรถยนต์ แรงกระแทกเมื่อรถชนกันจะทำให้ NaN₃ สลายตัวได้ผลิตภัณฑ์เป็นแก๊สไนโตรเจนและโลหะโซเดียม แก๊สไนโตรเจนที่เกิดขึ้นจะทำให้ถุงลมนิรภัยพองขึ้น อย่างรวดเร็ว และป้องกันไม่ให้ผู้ขับกระแทกกับพวงมาลัยรถ ส่วนโลหะโซเดียมอาจเกิดการระเบิดได้เมื่อสัมผัส กับความชื้น เพื่อลดอันตรายที่จะเกิดจากโลหะโซเดียม จึงเติม KNO₃ ไว้ในถุงลมนิรภัยด้วยเพื่อทำปฏิกิริยากับ โลหะโซเดียม แล้วได้ผลิตภัณฑ์เป็น K₂O, Na₂O และแก๊สไนโตรเจนอีกจำนวนหนึ่ง ถ้าการออกแบบถุงลม นิรภัยนี้ต้องการให้เกิดแก๊สไนโตรเจน 31 L ที่อุณหภูมิ 37 °C และความดัน 760 mmHg จะต้องบรรจุ NaN₃ กี่กรัมไว้ในถุงลมนิรภัย

กำหนดให้ $2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$

$$10Na(s) + 2KNO_3(s) \longrightarrow K_2O(s) + 5Na_2O(s) + N_2(g)$$

ก. 39

ข. 49

ค. 52

٩. 59

42. แร่ Trona มีสูตรเคมีเป็น Na₂CO₃·NaHCO₃·2H₂O และมีมวลสูตรเท่ากับ 226 จะต้องใช้สารละลาย HCl เข้มข้น 0.125 mol/dm³ กี่ลูกบาศก์เซนติเมตร ในการเปลี่ยนคาร์บอเนตและไบคาร์บอเนตในตัวอย่างแร่ 0.452 g ไปเป็นคาร์บอนไดออกไซด์และน้ำอย่างสมบูรณ์

กำหนดให้ $HCO_3^-(aq) + H^+(aq) \longrightarrow CO_2(g) + H_2O(l)$

$$CO_3^{2-}(aq) + 2H^+(aq) \longrightarrow CO_2(g) + H_2O(l)$$

ก. 16.0

ข. 32.0

ค. 48.0

٩. 64.0

43. พิจารณาปฏิกิริยาต่อไปนี้

$$KO_2(s) + CO_2(g) \longrightarrow K_2CO_3(s) + O_2(g)$$
 (สมการยังไม่ดูล)

ถ้าให้แก๊สคาร์บอนไดออกไซด์ 336 cm³ ทำปฏิกิริยากับ KO₂ 0.710 g ปริมาตรสูงสุดของแก๊สออกซิเจนที่ เตรียมได้จากปฏิกิริยานี้เป็นกี่ลูกบาศก์เซนติเมตร

กำหนดให้ การวัดปริมาตรแก๊สทั้งหมดทำที่ STP

ก. 168

ๆ. 224

ค. 299

۹. 504

44. สารละลายกรด A เข้มข้น 12.0 mol/dm³ มีกรด A อยู่ร้อยละ 75.0 โดยมวล และสารละลายมีความหนาแน่น 1.57 g/cm³ กรด A ควรเป็นกรดชนิดใด

ก. HCl

ข. HBr

ค. CH₃COOH

1. H₃PO₄

45. สารละลายที่ได้จากการผสมสารละลาย Na_2SO_4 เข้มข้น 0.10 mol/dm³ ปริมาตร 20 cm³ กับสารละลาย Na_3PO_4 เข้มข้น 0.30 mol/dm³ ปริมาตร 50 cm³ มีความเข้มข้นของ Na^+ เป็นเท่าใดในหน่วย mol/dm³

ก. 0.017

ข. 0.049

ค. 0.24

٩. 0.70

46. แก๊สคลอรีนเตรียมได้จากปฏิกิริยา

 $MnO_2(s) + HCl(aq) \longrightarrow Cl_2(g) + MnCl_2(aq) + H_2O(l)$ (สมการยังไม่คุล) ถ้าต้องการเตรียมแก๊สคลอรีน 3.55 g โดยเติมกรดไฮโดรคลอริกเข้มข้นร้อยละ 36.5 โดยมวล ปริมาณมากเกิน พอลงใน MnO_2 เมื่อปฏิกิริยาดำเนินไปอย่างสมบูรณ์ กรดไฮโดรคลอริกทำปฏิกิริยาไปกี่กรัม

- ก. 7.30
- ข. 10.0
- ค. 15.0
- ٩. 20.0

47. ในการทดลองทำจรวดจากขวดน้ำโดยใช้น้ำส้มสายชูทำปฏิกิริยากับเบคกิ้งโซดา (NaHCO3) ดังสมการ

 $CH_3COOH(aq) + NaHCO_3(aq) \longrightarrow CH_3COONa(aq) + H_2O(l) + CO_2(g)$ ถ้าใช้น้ำส้มสายชูซึ่งมีกรดแอซีติก (CH_3COOH) เข้มข้นร้อยละ 5.00 โดยมวล และมีความหนาแน่น 1.15 g/cm³ ปริมาตร 200.00 cm³ ทำปฏิกิริยากับเบคกิ้งโซดา 4.200 g เมื่อสิ้นสุดปฏิกิริยา สารละลายที่ได้จะมี กรดแอซีติกเข้มข้นเท่าใดในหน่วย mol/dm³

กำหนดให้ การเติมเบคกิ้งโซดาลงในน้ำส้มสายชูไม่ทำให้ปริมาตรของสารละลายเปลี่ยนแปลง

- ก. 0.583
- ข. 0.708
- ค. 0.833
- ٩. 0.958

48. ถ้าต้องการเตรียมสารละลายที่มีความเข้มข้นของไฮดรอกไซด์ไอออนเท่ากับ 0.4016 mol/dm³ ปริมาตร 500.0 cm³ โดยใช้สารละลาย Ba(OH)₂ เข้มข้น 342 ppm ซึ่งมีความหนาแน่น 1.00 g/cm³ ปริมาตร 200.0 cm³ ผสมกับสารละลาย NaOH เข้มข้นร้อยละ 32.0 โดยมวล ซึ่งมีความหนาแน่น 1.25 g/cm³ แล้วจึงปรับ ปริมาตรของสารละลายเป็น 500 cm³ จะต้องใช้สารละลาย NaOH กี่ลูกบาศก์เซนติเมตร

- ก. 2.05
- ข. 6.40
- ค. 20.0
- **1.** 31.2

49. สารละลายที่เตรียมโดยการละลายสาร \times 2.80 g ในเบนซีน (C_6H_6) 32.0 g มีจุดเดือดสูงกว่าเบนซีน 1.40 $^{\circ}$ C มวลโมเลกุลของสาร \times เป็นเท่าใด

กำหนดให้ ค่าคงที่ของการเพิ่มขึ้นของจุดเดือดของเบนซีนมีค่าเท่ากับ 2.53 °C/m

- ก. 24.7
- ข. 87.5
- ค. 158
- ₰. 221

50. สารละลายในบีกเกอร์ที่ 1 คือ สารละลายของสาร M ในตัวทำละลาย A สารละลายนี้มีจุดเยือกแข็ง 2.0 °C สารละลายในบีกเกอร์ที่ 2 คือ สารละลายของสาร M ในตัวทำละลาย B ถ้ามวลของสาร M ในบีกเกอร์ทั้งสองเท่ากัน และมวลของตัวทำละลายในบีกเกอร์ทั้งสองเท่ากัน สารละลายใน บีกเกอร์ที่ 2 มีจุดเดือดเป็นกี่องศาเซลเซียส

กำหนดให้ M เป็นสารที่ระเหยยากและไม่แตกตัวเป็นไอออน

ตัวทำละลาย A มีจุดเยือกแข็ง 4.5 °C และ $K_f = 5.0$ °C/m

ตัวทำละลาย B มีจุดเดือด $63.0\,^{\circ}$ C และ $K_b=4.0\,^{\circ}$ C/m

- ก. 61.0
- ข. 62.5
- ค. 63.5
- ٩. 65.0

จุด

51. ต้องเติมสาร X (180 g/mol) กี่กรัมลงในน้ำ 100 cm³ ที่ 25 °C เพื่อให้ได้สารละลายที่มีจุดเดือดและ เยือกแข็งต่างกันเท่ากับ 109.48 °C

กำหนดให้ น้ำมีค่า $K_f=1.86$ °C/m, $K_b=0.51$ °C/m, จุดเยือกแข็ง = 0.00 °C, จุดเดือด = 100.00 °C และ ความหนาแน่น = 1.00 g/cm³ ที่ 25 °C

- ก. 4.00
- ข. 72.0
- ค. 126
- **1.** 720

52. ข้อความใด**ผิด**

- ก. ในน้ำแข็งแห้ง โมเลกุลของคาร์บอนไดออกไซด์ยึดเหนี่ยวกันด้วยแรงดึงดูดระหว่างขั้ว
- ข. LiF(s) ประกอบด้วย Li⁺ ไอออนและ F⁻ ไอออนยึดเหนี่ยวกันด้วยแรงดึงดูดระหว่างประจุไฟฟ้า
- ค. Kr(s) ประกอบด้วยอะตอมของคริปตอนซึ่งไม่มีขั้วยึดเหนี่ยวกันด้วยแรงลอนดอน มีสมบัติเหมือนผลึก โมเลกุล
- พันธะระหว่างอะตอมของทองคำเกิดจากแรงยึดเหนี่ยวระหว่างเวเลนซ์อิเล็กตรอนที่เคลื่อนที่ได้อย่างอิสระ กับโปรตอนในนิวเคลียสทุกทิศทาง
- **53.** พิจารณาสารต่อไปนี้ : C_2H_2 , SiO_2 , CsI, W ข้อความใด**ผิด**
 - ก. W นำไฟฟ้าเมื่อมีสถานะเป็นของแข็ง
 - ข. C_2H_2 มีสถานะเป็นแก๊สที่อุณหภูมิห้อง
 - ค. Csl ละลายในน้ำ ได้สารละลายที่นำไฟฟ้าได้
 - ง. SiO_2 มีจุดหลอมเหลวสูงกว่า C_2H_2 เนื่องจาก SiO_2 มีแรงยึดเหนี่ยวระหว่างโมเลกุลเป็นแรงดึงดูดระหว่างขั้ว
- 54. พิจารณาข้อมูลจากกราฟต่อไปนี้

ข้อความใดถูกต้อง

- 1. จุดเดือดของของเหลว A < B < C
- 2. ของเหลว C ระเหยได้ง่ายที่สุด
- 3. แรงยึดเหนี่ยวระหว่างโมเลกุลของของเหลว A มีค่าน้อยที่สุด
- ก. 1. เท่านั้น
- ข. 2. เท่านั้น
- ค. 3. เท่านั้น
- ง. 1. และ 3.

55. ที่อุณหภูมิ 25 °C สาร A, B และ C มีสถานะเป็นแก๊ส ของเหลว และของแข็ง ตามลำดับ จุดหลอมเหลวและจุดเดือดของสารทั้งสามในข้อใดเป็นไปได้

	จุดเดือด (°C)			จุดหลอมเหลว (°C)		
	А	В	С	А	В	С
ก.	-42	98	330	-188	-91	40
ข.	-42	330	98	-188	32	-91
ค.	98	-42	330	-91	-8.8	40
٩.	330	98	-42	32	-91	-188

- 56. นักเรียนคนหนึ่งศึกษาเกี่ยวกับแรงยึดเหนี่ยวระหว่างโมเลกุลของน้ำกับวัสดุต่อไปนี้
 - 1. ใบบัว
 - 2. กระดาษชำระ
 - 3. กระจกรถยนต์

ข้อใดที่แรงยึดเหนี่ยวระหว่างโมเลกุลของน้ำกับวัสดุมีค่าน้อยกว่าแรงยึดเหนี่ยวระหว่างโมเลกุลของน้ำด้วยกันเอง

- ก. 1. เท่านั้น
- ข. 2. เท่านั้น
- ค. 1. และ 3. เท่านั้น
- ง. 2. และ 3. เท่านั้น

- 57. ข้อใดถูกต้องเกี่ยวกับสมบัติของแก๊สตามทฤษฎีจลน์
 - ก. โมเลกุลของแก๊สอุดมคติมีขนาดเล็กมากจนถือได้ว่ามีมวลเป็นศูนย์
 - ข. ที่อุณหภูมิเดียวกัน โมเลกุลของแก๊ส A และแก๊ส B จะมีพลังงานจลน์เฉลี่ยเท่ากันเสมอ
 - ค. แก๊สทั่วไปจะมีสมบัติใกล้เคียงกับแก๊สอุดมคติมากที่สุด ถ้าอยู่ในภาวะที่มีความดันสูงและอุณหภูมิต่ำ
 - ง. ถ้าลดอุณหภูมิของแก๊สจาก 100 °C เป็น 50 °C โดยที่ปริมาตรคงที่ ความดันของแก๊สจะเพิ่มขึ้นเป็น 2 เท่า
- 58. พิจารณาไอของสารประกอบฟอสฟอรัสฟลูออไรด์สามชนิดคือ PF_3 , PF_5 และ P_2F_4 ซึ่งมีสมบัติเป็นแก๊สอุดมคติ ไอของสารใดมีค่าความหนาแน่นเท่ากับ 4.60 g/L ที่ความดัน 0.82 atm และอุณหภูมิ 27 °C และถ้าปล่อยให้ ไอของสารทั้งสามชนิดผ่านท่อเล็ก ๆ ในสภาวะเดียวกัน ดังรูป

ไอของสารใดแพร่จากจุด A ไปถึงจุด B ได้เร็วที่สุด

	สารที่มีค่าความหนาแน่น 4.60 g/L ที่สภาวะที่กำหนด	สารที่แพร่ถึงจุด B ได้เร็วที่สุด
ก.	PF ₅	PF ₃
ข.	PF ₅	P_2F_4
ค.	P_2F_4	PF ₃
٩.	P_2F_4	P_2F_4

59. แก๊สอุดมคติชนิดหนึ่ง มีความดัน 700 mmHg เมื่อปล่อยให้ฟุ้งกระจายที่อุณหภูมิเดิมจนกระทั่งความดันลดลง เป็น 200 mmHg อัตราส่วนระหว่างปริมาตรเดิมและปริมาตรใหม่เป็นเท่าใด

ก. 0.29:1

ข. 1:0.29

ค. 1:3.5

 1.

 3.5 : 1

60. ฟองอากาศฟองหนึ่งมีปริมาตร 2.10 cm³ ลอยจากกันทะเลสาบซึ่งมีอุณหภูมิ 10 °C และความดัน 5.66 atm ขึ้นมายังผิวน้ำซึ่งมีอุณหภูมิ 27 °C และความดัน 1.00 atm ฟองอากาศนี้จะมีปริมาตรสุดท้ายเป็นกี่ลูกบาศก์ เซนติเมตร

ก. 4.40

ข. 11.2

ค. 12.6

 32.1

ส่วนที่ II. ข้อสอบอัตนัยแบบเขียนตอบ จำนวน 15 ข้อ ข้อละ 2 คะแนน รวม 30 คะแนน จงเขียนคำตอบลงในช่องว่างที่กำหนดให้ในกระดาษคำตอบ

- 61. จงเขียนแสดงการจัดอิเล็กตรอนในระดับพลังงานย่อย (ออร์บิทัล) ของธาตุ Zr ในสถานะพื้น
- 62. กำหนดให้ อะตอมของธาตุสมมุติ A, D, E และ G มีการจัดอิเล็กตรอนชั้นนอกสุดดังต่อไปนี้

ชาตุ D = $(n+1)s^2 nd^6$

ชาตุ $E = (n+1)s^2$

ชาตุ $G = ns^2 np^5$

เมื่อ n คือ ระดับพลังงานชั้นนอกสุดของอะตอม A (การจัดเรียงอิเล็กตรอนชั้นในไม่ได้แสดงไว้ในที่นี้)

- 62.1 ธาตุใดมีขนาดอะตอมเล็กที่สุด
- 62.2 จงเขียนสูตรอย่างง่ายของสารประกอบที่เกิดจากการรวมตัวของธาตุ E และธาตุ G
- 63. คลอรีนที่พบในธรรมชาติมี 2 ไอโซโทป คือ $^{35}_{17}$ Cl และ $^{37}_{17}$ Cl โดยที่มีปริมาณ $^{35}_{17}$ Cl เป็นสามเท่าของ $^{37}_{17}$ Cl โบรมีนที่พบในธรรมชาติมี 2 ไอโซโทปเช่นกัน คือ $^{79}_{35}$ Br และ $^{81}_{35}$ Br แต่พบทั้งสองไอโซโทปในปริมาณที่เท่ากัน ปริมาณร้อยละของสารประกอบ CH $_2$ BrCl ในธรรมชาติที่มีมวลโมเลกุล 128 เป็นเท่าใด
- 64. M, L และ X เป็นธาตุแทรนซิชันแถวแรกที่มีเลขอะตอมเพิ่มขึ้นทีละ 1 ตามลำดับ
 M และ L สามารถแสดงเลขออกซิเดชันสูงสุดเท่ากับเลขหมู่ได้ในสารประกอบบางชนิด แต่ X ทำไม่ได้
 X เป็นธาตุองค์ประกอบสำคัญในเม็ดเลือดแดงของมนุษย์

กำหนดให้ ธาตุแทรนซิชันแถวแรก : Sc Ti V Cr Mn Fe Co Ni Cu Zn

- 64.1 จงเขียนสูตรสารประกอบออกไซด์ของ M โดยที่ M มีเลขออกซิเดชันสูงสุด (ใช้สัญลักษณ์ตามตารางธาตุ)
- 64.2 จงเขียนการจัดอิเล็กตรอนของอะตอม L (แสดงสัญลักษณ์ของออร์บิทัล)
- 64.3 ธาตุ X คืออะไร (ระบุชื่อหรือสัญลักษณ์ตามตารางธาตุ)
- 65. เทคโนโลยีนิวเคลียร์ทำให้สามารถสร้างธาตุใหม่ๆ ที่มีเลขอะตอมสูงมากได้ เมื่อยิงนิวเคลียสของ $^{238}_{92}$ Uด้วย นิวเคลียสของ $^{14}_{7}$ N พบว่า เกิดธาตุใหม่คือไอน์สไตเนียม ($^{248}_{99}$ Es ครึ่งชีวิต = 25 นาที) พร้อมทั้งอนุภาคนิวตรอน
 - 65.1 จงเขียนสมการแสดงปฏิกิริยานิวเคลียร์ที่เกิดขึ้น พร้อมดุลสมการ
 - 65.2 ถ้าเตรียมไอโซโทป ²⁴⁸₉₉ Es ได้ 10.0 mg เมื่อเก็บไว้นาน 2 ชั่วโมงครึ่ง จะเหลือไอโซโทปนี้กี่มิลลิกรัม
 (ตอบเลขทศนิยม 3 ตำแหน่ง)

66. เมื่อโลหะ M ทำปฏิกิริยากับแก๊ส X_2 เกิดสารประกอบไอออนิกที่มีสูตรเคมีเป็น MX ดังสมการ $M(s) + \frac{1}{2} X_2(g) \longrightarrow MX(s)$ โดยมีพลังงานของปฏิกิริยาที่เกี่ยวข้องเป็นดังนี้

ปฏิกิริยาที่เกี่ยวข้อง	พลังงาน (kJ/mol)		
1. $M(s) \rightarrow M(g)$	+150		
$2. X_2(g) \to 2X(g)$	+160		
3. $X(g) + e^- \rightarrow X^-(g)$	-300		
4. $M^+(g) + X^-(g) \rightarrow MX(s)$	-1100		
5. $M(s) + \frac{1}{2}X_2(g) \to MX(s)$	-600		

พลังงานไอออไนเซชันลำดับที่ 1 ของโลหะ M มีค่าเท่าใดในหน่วย kJ/mol

- **67.** A, X และ Y เป็นธาตุในคาบที่สองและมีเวเลนซ์อิเล็กตรอนเท่ากับ 4, 6 และ 7 ตามลำดับ จงเขียนสูตรโมเลกุล โครงสร้างลิวอิส และระบุชนิดของแรงยึดเหนี่ยวระหว่างโมเลกุลของสารประกอบระหว่างธาตุ A, X และ Y กำหนดให้ A เป็นอะตอมที่เกิดพันธะกับ X และ Y โดย X และ Y ไม่เกิดพันธะกัน
- 68. ผู้ผลิตแป้งแพนเค้กเติม sodium aluminium silicate ($xSiO_2 \cdot yAl_2O_3 \cdot zNa_2O$) ซึ่งเป็นสารป้องกันการรวมตัว เป็นก้อน (anticaking agent) ลงไปในแป้งร้อยละ 1.00 โดยมวล และ sodium aluminium silicate ที่ใช้มี Al_2O_3 ร้อยละ 10.2 โดยมวล เมื่อนำแป้งนี้ 500 g ผสมกับส่วนผสมอื่น ๆ และปั่นจนเป็นเนื้อเดียวกัน ทำเป็น แพนเค้กได้ 40 ชิ้น ๆ ละ 25 g ถ้ารับประทานแพนเค้ก 1 ชิ้น จะได้รับอะลูมิเนียมเข้าสู่ร่างกายกี่มิลลิกรัม (ตอบ เลขทศนิยม 2 ตำแหน่ง)

กำหนดให้ อะลูมิเนียม (Al) ในแพนเค้กมาจากแป้งอย่างเดียว

มวลสูตรของ
$$Al_2O_3 = 102$$

69. การวิเคราะห์ปริมาณฟอสฟอรัสในปุ๋ย ทำโดยชั่งตัวอย่างปุ๋ยหนัก 1.4200 g ละลายในน้ำ 50.00 cm³ จะได้กรด ฟอสฟอริกดังสมการ

$$P_2O_5(s) + H_2O(l) \longrightarrow H_3PO_4(aq)$$
 (สมการยังไม่ดุล)

จากนั้นเติมสารละลาย $AgNO_3$ เข้มข้น 0.0840 mol/dm 3 ปริมาตร 50.00 cm 3 เพื่อตกตะกอนฟอสเฟตดัง สมการ

$$H_3PO_4$$
 (aq) + $Ag^+(aq) \rightarrow Ag_3PO_4(s) + H^+$ (สมการยังไม่ดูล)

แล้วหาปริมาณ AgNO $_3$ ที่เหลือ พบว่า ทำปฏิกิริยาพอดีกับสารละลาย KSCN เข้มข้น $0.0600~\text{mol/dm}^3$ ปริมาตร $3.00~\text{cm}^3$ ดังสมการ

$$Ag^{+}(aq) + SCN^{-}(aq) \rightarrow AgSCN(s)$$

- **69.1** จำนวนโมลของ AgNO $_3$ ที่เหลือจากการทำปฏิกิริยากับกรดฟอสฟอริกมีค่าเท่าใด (ตอบในรูปสัญกรณ์ วิทยาศาสตร์ a.bc \times 10 $^{\rm n}$)
- **69.2** ตัวอย่างปุ๋ยนี้มีปริมาณฟอสฟอรัสคิดเป็นร้อยละโดยมวลของ P₂O₅ เท่าใด (ตอบเลขทศนิยม 2 ตำแหน่ง)

- 70. สารอินทรีย์ชนิดหนึ่งประกอบด้วย C, H และ Br ร้อยละ 30.55, 1.71 และ 67.74 โดยมวล ตามลำดับ เมื่อนำ สารนี้ 4.72 g มาละลายในตัวทำละลายอินทรีย์ ได้สารละลายปริมาตร 200 cm³ ที่มีความเข้มข้น 0.100 mol/dm³ จงเขียนสูตรเอมพิริคัลและสูตรโมเลกุลของสารอินทรีย์นี้
- 71. สาร X เป็นสารที่ไม่แตกตัวเป็นไอออนและไม่ระเหย เมื่อนำสาร X จำนวน 0.10 mol ละลายในตัวทำละลาย จำนวนหนึ่ง สารละลายที่ได้มีจุดเดือด 75.0 °C เมื่อตั้งสารละลายนี้ทิ้งไว้เป็นเวลานาน ทำให้ตัวทำละลาย บางส่วนระเหยไป นำสารละลายไปหาจุดเดือดได้ 75.5°C ตัวทำละลายที่ระเหยไปมีมวลกี่กรัม กำหนดให้ K_b ของตัวทำละลาย = 2.0 °C/m, จุดเดือดของตัวทำละลายบริสุทธิ์ = 73.0 °C
- 72. ของแข็ง Y ละลายในน้ำได้ดีโดยไม่แตกตัวเป็นไอออน ได้สารละลายที่มีมวล 1264 g และมีเศษส่วนโมลของ Y เท่ากับ 0.0400

กำหนดให้ มวลโมเลกุลของ Y = 200, มวลโมเลกุลของน้ำ = 18

- 72.1 มวลของของแข็ง Y ในสารละลายนี้เท่ากับกี่กรัม
- 72.2 ถ้าเติมน้ำ 136 g ลงในสารละลายนี้ จะได้สารละลายที่มีความหนาแน่น 1.400 g/cm³ ความเข้มข้นของ สารละลายที่ได้เป็นเท่าใดในหน่วย mol/dm³ (ตอบเลขทศนิยม 2 ตำแหน่ง)
- 73. จงเปรียบเทียบความดันไอของสารต่อไปนี้

 CH_4 C_2H_5OH $C_2H_5OC_2H_5$ SiH_4

- 74. ถังเหล็กกล้าขนาด 10.0 L สำหรับบรรจุแก๊ส มีวาวล์ระบายแก๊สที่สามารถเปิดทำงานได้เองเมื่อแก๊สมีความดัน เกิน $5.7 \times 10^4 \; \mathrm{mmHg} \;$ ถ้านำถังนี้ซึ่งบรรจุแก๊สออกซิเจนที่อุณหภูมิ 27 $^{\circ}$ C และความดัน 50.0 atm ทิ้งไว้ใน โกดังเก็บของซึ่งมีอุณหภูมิสูงถึง 48 $^{\circ}$ C
 - 74.1 ความดันของแก๊สออกซิเจนในถังจะเป็นกี่บรรยากาศ (ตอบเลขทศนิยม 1 ตำแหน่ง)
 - 74.2 วาวล์ระบายแก๊สจะเปิดทำงานหรือไม่
- 75. แก๊สตัวอย่าง 2.35×10^{-4} mol เคลื่อนที่ออกจากภาชนะบรรจุแก๊สผ่านรูเล็กมาก ๆ ภายในเวลา 100.0 วินาที ภายใต้สภาวะเดียวกัน แก๊สอาร์กอน 1.05×10^{-4} mol เคลื่อนที่ออกจากภาชนะแบบเดียวกัน ภายในเวลา 50.0 วินาที มวลต่อโมลของแก๊สตัวอย่างมีค่าเท่าใด

กระดาษคำตอบข้อสอบอัตนัยแบบเขียนตอบ วิชาเคมี

ชื่อ-สกุล	เลขประจำตัวสอบ
สถานที่สอบ	ห้องสอบ

จงเขียนคำตอบลงในช่องว่างที่กำหนดให้			คะแนน	
			ที่ได้	
61.	การจัดอิเล็กตรอนในระดับพลังงานย่อย (ออร์บิทัล) ของธาตุ Zr ในสถานะพื้น คือ	2		
62.	62.1 ชาตุที่มีขนาดอะตอมเล็กที่สุดคือ	1		
	62.2 สูตรอย่างง่ายของสารประกอบที่เกิดจากธาตุ E และ G คือ	1		
63.	ปริมาณร้อยละของ CH ₂ BrCl ในธรรมชาติที่มีมวลโมเลกุล 128 =	2		
64.	64.1 สูตรสารประกอบออกไซด์ของ M ที่ M มีเลขออกซิเดชันสูงสุดคือ(ใช้สัญลักษณ์ตามตารางธาตุ)	1		
	64.2 การจัดอิเล็กตรอนของอะตอม L คือ (แสดงสัญลักษณ์ของออร์บิทัล)	0.5		
	64.3 ธาตุ X คือ(ระบุชื่อหรือสัญลักษณ์ตามตารางธาตุ)	0.5		
65.	65.1 สมการนิวเคลียร์ที่เกิดขึ้นคือ	1		
	65.2 เหลือ ²⁴⁸ ₉₉ Es = mg (ตอบเลขทศนิยม 3 ตำแหน่ง)	1		
66.	พลังงานไอออไนเซชันลำดับที่ 1 ของโลหะ M =kJ/mol	2		
67.	สารประกอบของธาตุ A, X และ Y มีสูตรโมเลกุลเป็น	0.5		
	วาดรูปโครงสร้างลิวอิสได้ดังนี้	1		
	ชนิดของแรงยึดเหนี่ยวระหว่างโมเลกุลคือ	0.5		

ชื่อ-สกล	เลขประจำตัวสอบ
00 611 161	88100000117188100

		คะแนน	
		เต็ม	ที่ได้
68.	ถ้ารับประทานแพนเค้ก 1 ชิ้น จะได้รับ Al เข้าสู่ร่างกาย =	2	
69.	69.1 จำนวนโมลของ AgNO ₃ ที่เหลือจากการทำปฏิกิริยากับกรดฟอสฟอริก =	0.5	
	69.2 ตัวอย่างปุ๋ยนี้มีฟอสฟอรัสคิดเป็นร้อยละโดยมวลของ P ₂ O ₅ = (ตอบเลขทศนิยม 2 ตำแหน่ง)	1.5	
70.	สูตรเอมพิริคัลของสารอินทรีย์นี้คือ	0.5	
	สูตรโมเลกุลของสารอินทรีย์นี้คือ	1.5	
71.	ตัวทำละลายที่ระเหยไปมีมวล = g	2	
72.	72.1 มวลของของแข็ง Y = g	1	
	72.2 ความเข้มข้นของสารละลายที่ได้ = mol/dm ³ (ตอบเลขทศนิยม 2 ตำแหน่ง)	1	
73.	ความดันไอของ< (< หมายถึง น้อยกว่า)	2	
74.	74.1 ความดันของแก๊สออกซิเจนในถัง =	1.5	
	74.2 วาวล์จะ 🗌 เปิดทำงาน 🗌 ไม่เปิดทำงาน (จะตรวจเมื่อตอบข้อ 74.1 ด้วย เท่านั้น)	0.5	
75.	มวลโมเลกุลของแก๊สตัวอย่าง =	2	
	รวม	30	
