Rec'd PCT/PTO 19 ADD 3

日本国特許庁 JAPAN PATENT OFFICE

U 19 APR 2005

22.10.03

RECEIVED 1 2 DEC 2003

PCT

WIPO

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年10月22日

出 願 番 号 Application Number:

特願2003-361345

[ST. 10/C]:

[JP2003-361345]

出 願 人
Applicant(s):

三菱樹脂株式会社

二変倒脂株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN OMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年11月28日

今井康

【書類名】 特許願 【整理番号】 KP3439

【あて先】 特許庁長官殿 【国際特許分類】 B29K 67/00 C08J 5/00

【発明者】

【住所又は居所】 滋賀県長浜市三ツ矢町5番8号 三菱樹脂株式会社 長浜工場内 【氏名】 田中 一也

【発明者】

【住所又は居所】 滋賀県長浜市三ツ矢町 5 番 8 号 三菱樹脂株式会社 長浜工場内 【氏名】 高木 潤

【発明者】

【住所又は居所】 神奈川県平塚市西真土二丁目1番35号 三菱樹脂株式会社 平 塚工場内

【氏名】 加藤 幸男

【発明者】 【住所 V は 目

【住所又は居所】 滋賀県長浜市三ツ矢町5番8号 三菱樹脂株式会社 長浜工場内 【氏名】 大橋 暁弘

【特許出願人】

【識別番号】 000006172

【氏名又は名称】 三菱樹脂株式会社

【代理人】

【識別番号】 100107939

【弁理士】

【氏名又は名称】 大島 由美子 【電話番号】 03-5287-1466

【選任した代理人】

【識別番号】 100100413

【弁理士】

【氏名又は名称】 渡部 温

【手数料の表示】

【予納台帳番号】 072052 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0107148

【請求項1】

(A) 乳酸系樹脂と、(B) ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/g である芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/g である、乳酸系樹脂以外の脂肪族ポリエステルとを含有し、該(B)ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/g である芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/g である、乳酸系樹脂以外の脂肪族ポリエステルを5 \sim 2 5 質量%含有することを特徴とする樹脂組成物。

【請求項2】

(A) 乳酸系樹脂と、(B) ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g~30 J/gである芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g~30 J/gである、乳酸系樹脂以外の脂肪族ポリエステルとを、合計質量で90~70質量%、及び、(C)ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が50 J/g~70 J/gである乳酸系樹脂以外の脂肪族ポリエステルを、10~30質量%含有することを特徴とする請求項1記載の樹脂組成物。

【請求項3】

(D) 平均粒径が1~5μmの無機フィラーを5~20質量%の範囲内で、更に含有することを特徴とする請求項1又は2記載の樹脂組成物。

【請求項4】

前記(A)乳酸系樹脂と、前記(B)ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/g である芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/g である、乳酸系樹脂以外の脂肪族ポリエステルと、前記(C)ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 0 J/g \sim 7 0 J/g である、乳酸系樹脂以外の脂肪族ポリエステルとの合計質量が100質量部に対して、カルボジイミド化合物を0.5 \sim 10質量部含有することを特徴とする請求項1から3のいずれか1項記載の樹脂組成物。

【請求項5】

前記(A)乳酸系樹脂と、前記(B)ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/g である芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/g である、乳酸系樹脂以外の脂肪族ポリエステルと、前記(C)ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 0 J/g \sim 7 0 J/g である、乳酸系樹脂以外の脂肪族ポリエステルとの合計質量が100質量部に対して、分子量が200~2,000 の範囲にあるエステル化合物を0.5 \sim 5 質量部配合することを特徴とする請求項1か54のいずれか1項記載の樹脂組成物。

【請求項6】

前記(A)乳酸系樹脂と、前記(B)ガラス転移温度(Tg)が0 C以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/gである芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が0 C以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/g である、乳酸系樹脂以外の脂肪族ポリエステルと、前記(C)ガラス転移温度(Tg)が0 C以下で、結晶融解熱量(Δ Hm)が5 0 J/g \sim 7 0 J/gである、乳酸系樹脂以外の脂肪族ポリエステルとの合計質量が1 0 0 質量部に対して、屈折率が2 . 0 以上である隠蔽性向上剤を0 . $1\sim5$ 質量部の範囲内で配合することを特徴とする請求項1 から5 のいずれか1 項記載の樹脂組成物。

【請求項7】

請求項1から6のいずれかに記載の樹脂組成物を射出成形することにより形成されるこ

とを特徴とする射出成形体。

【請求項8】

射出成形によって形成された成形体を、更に、温度60℃~130℃の範囲で結晶化させることを特徴とする請求項7記載の射出成形体。

【書類名】明細書

【発明の名称】樹脂組成物及びこの樹脂組成物を用いて形成された成形体 【技術分野】

[0001]

本発明は、生分解性を有する樹脂組成物及びこの樹脂組成物を用いて成る射出成形体に 関するものである。

【背景技術】

[0002]

プラスチックの用途は、今や日常生活及び産業のあらゆる分野に浸透しており、全世界のプラスチックの年間生産量は約1億トンにも達している。その大半は使用後廃棄等されることが多く、焼却や埋立て等の処分が問題となっている。また、プラスチックの原料となる石油資源は枯渇が懸念されている。このように、プラスチックの廃棄処分は、地球規模での環境問題へと発展しつつある。

そのため、環境負荷を低減するプラスチックとして、自然環境下で経時的に分解、消失し、かつ、枯渇資源を原料としない材料の研究が行われている。このような材料として、植物原料プラスチックが、今日注目を集めている。植物原料プラスチックは、更に、リサイクル性にも優れている、循環型資源を利用したプラスチックであるという利点もある。

植物原料プラスチックの中でも、特に、乳酸系樹脂は澱粉の発酵により得られる乳酸を原料としており、化学工学的に量産可能であり、かつ、透明性、剛性、耐熱性等に優れていることから、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)等の代替材料として、フィルム分野や射出成形分野において利用され始めている。

[0003]

しかし、乳酸系樹脂は、家電製品、自動車部品、射出成形品等に用いられているABS 樹脂と比較すると耐衝撃性が低いので、ABS樹脂の代替材料にはなれない。

乳酸系樹脂の耐衝撃性を改良するために、脂肪酸エステルを添加し、結晶化処理を行うことが知られている(例えば、特許文献 1 参照)が、脂肪酸エステルが核剤として働き、耐衝撃性を向上させる一方で、可塑剤としても機能するので、著しい耐熱性の低下をもたらす。また、室温における弾性率が低下するので、剛性を要求される用途には使用できないものであった。

特開平10-87976号公報(特許文献2参照)には、ポリプチレンサクシネート、ポリプチレンサクシネート/アジペート共重合体等のような、ガラス転移温度(Tg)が0℃以下の脂肪族ポリエステルを配合することにより、耐衝撃性を改良できることが開示されているが、これらの脂肪族ポリエステルは結晶融解熱量(ΔHm)が30J/gより少ない。そのため、これらの脂肪族ポリエステルの配合量を多くしなければ耐衝撃性を改良できない。そのため、これらの脂肪族ポリエステルの配合量を多くしなければ耐衝撃性を改良することができない。ところが、乳酸系樹脂以外の脂肪族ポリエステルの配合量を多くすることができない。ところが、乳酸系樹脂以外の脂肪族ポリエステルの配合量を多くすることができない。ところが、乳酸系樹脂以外の脂肪族ポリエステルの配合量を多くすることができる。製出成形体に占める乳酸系樹脂の配合量が多い方が、製品を安定して、かつ安価に供養できる。

30004

さらに、これらの脂肪族ポリエステル系樹脂は、成形した後の製品が、長期に保管されたり、比較的長期にわたって使用される場合には、空気中の水蒸気や外部からの水分、あるいは成形品に収めた内容物からの水分によって、加水分解を起こし、機械物性の低下を招くなど、実用上大きな問題があった。特に、60%RH以上の高温多湿の雰囲気下では、脂肪族ポリエステルは短期間で分解して、数時間から数週間で使用できなくなることがあった。

【特許文献1】特開平11-116784号公報

【特許文献2】特開平10-87976号公報

【発明の開示】

[0005]

本発明は、乳酸系樹脂が本来有している生分解性をほとんど損なうことなく、優れた耐 衝撃性及び耐熱性を有する樹脂組成物及びこの樹脂組成物を用いて形成された射出成形体 を提供することを目的とする。

【課題を解決するための手段】

[0006]

本発明者らは、このような現状に鑑み、鋭意検討を重ねた結果、本発明を完成するに至った。

[0007]

ここで、(A)乳酸系樹脂と、(B)ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g~30 J/gである芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g~30 J/g である、乳酸系樹脂以外の脂肪族ポリエステルとを、合計質量で90~70質量%、及び、(C)ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が50 J/g~70 J/gである乳酸系樹脂以外の脂肪族ポリエステルを、10~30質量%含有することができる。

また、 (D) 平均粒径が $1\sim 5~\mu$ mの無機フィラーを $5\sim 2~0$ 質量%の範囲内で、更に含有することができる。

[0008]

また、前記(A)乳酸系樹脂と、前記(B)ガラス転移温度(Tg)が0℃以下で、結晶解解熱量(Δ Hm)が5 J/g~30 J/gである芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g~30 J/gである、乳酸系樹脂以外の脂肪族ポリエステルと、前記(C)ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が50 J/g~70 J/gである、乳酸系樹脂以外の脂肪族ポリエステルとの合計質量が100質量部に対して、カルボジイミド化合物を0.5~10質量部含有することができる。

[0009]

また、前記(A)乳酸系樹脂と、前記(B)ガラス転移温度(Tg)が0 $\,$ C以下で、結晶融解熱量($\,$ $\,$ H m)が5 $\,$ J / $\,$ g $\,$ $\,$ G $\,$ J / $\,$ g $\,$ である芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が0 $\,$ C以下で、結晶融解熱量($\,$ $\,$ H m)が5 $\,$ J / $\,$ g $\,$ である、乳酸系樹脂以外の脂肪族ポリエステルと、前記(C)ガラス転移温度(Tg)が0 $\,$ C以下で、結晶融解熱量($\,$ A H m)が50 $\,$ J / $\,$ g $\,$ である、乳酸系樹脂以外の脂肪族ポリエステルとの合計質量が100質量部に対して、分子量が200~2,0000 mm mm control matrix control matrix

[0010]

また、前記(A)乳酸系樹脂と、前記(B)ガラス転移温度(Tg)が0 \mathbb{C} 以下で、結晶解解熱量(Δ Hm)が5 J/g \sim 30 J/gである芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が0 \mathbb{C} 以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 30 J/gである、乳酸系樹脂以外の脂肪族ポリエステルと、前記(C)ガラス転移温度(Tg)が0 \mathbb{C} 以下で、結晶融解熱量(Δ Hm)が50 J/g \sim 70 J/gである、乳酸系樹脂以外の脂肪族ポリエステルとの合計質量が100質量部に対して、屈折率が2.0以上

である隠蔽性向上剤を $0.1\sim5$ 質量部の範囲内で配合することができる。

[0011]

本発明の射出成形体は、上記いずれかの樹脂組成物を射出成形することにより形成されることを特徴とする。

ここでは、射出成形によって形成された成形体を、更に、温度60℃~130℃の範囲で結晶化させることが好ましい。

【発明の効果】

[0012]

以上、詳しく説明したように、本発明によれば、乳酸系樹脂が本来有している生分解性をほとんど損なうことなく、優れた耐衝撃性及び耐熱性を有する樹脂組成物及びこの樹脂組成物を用いて形成された射出成形体を提供することができる。

また、本発明によれば、更に耐加水分解性にも優れる樹脂組成物及びこの樹脂組成物を用いて形成された射出成形体を提供することができる。

【発明を実施するための形態】

[0013]

以下に、本発明を詳細に説明する。

本発明の樹脂組成物は、(A)乳酸系樹脂と、(B)ガラス転移温度(Tg)が0 C以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/g である芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が0 C以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/g である、乳酸系樹脂以外の脂肪族ポリエステルとを含有する。

ここで、(B)ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g~30 J/gである芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が5 J/g~30 J/gである、乳酸系樹脂以外の脂肪族ポリエステルは、樹脂組成物中、5~25 質量%含有されることが必要であり、7~20 質量%含有することが好ましい。(B)成分の含有量が5 質量%未満では、耐衝撃性の改良効果が得られず、25 質量%より多いと、形成された成形体に軟質化や耐熱性の低下が生じる。

[0014]

本発明に用いられる乳酸系樹脂は、構造単位がL-乳酸であるポリ(L-乳酸)、構造単位がD-乳酸であるポリ(D-乳酸)、構造単位がL-乳酸及びD-乳酸である、ポリ(DL-乳酸)や、これら二種類以上の組み合わせからなる混合体である。

乳酸系樹脂のD乳酸(D体)とL乳酸(L体)との構成比は、L体:D体=100:0~90:10、もしくは、L体:D体=0:100~10:90であることが好ましく、L体:D体=100:0~94:6、もしくは、L体:D体=0:100~6:94であることがより好ましく、L体:D体=99.5:0.5~94:6、もしくは、L体:D体=0.5:99.5~6:94であることが特に好ましい。D体とL体との構成比がこの範囲内であれば、シートや成形体の耐熱性が得られ易く、用途の制限を受けずに広範囲、の用途に用いることができる。

を発明においては、L体とD体との共重合比が異なる乳酸系樹脂をブレンドしてもよい。この場合には、複数の乳酸系樹脂のL体とD体との共重合比の平均値が上記範囲内に入るようにすれば良い。L体とD体のホモポリマーと、共重合体をブレンドすることにより、ブリードのしにくさと耐熱性の発現とのバランスをとることができる。

[0015]

乳酸系樹脂の重合法としては、縮合重合法、開環重合法等の公知の方法を採用することができる。例えば、縮合重合法では、L-乳酸またはD-乳酸、あるいはこれらの混合物等を直接脱水縮合重合して任意の組成を有する乳酸系樹脂を得ることができる。

また、開環重合法(ラクチド法)では、乳酸の環状二量体であるラクチドを、必要に応じて重合調節剤等を用いながら、適当な触媒を使用して任意の組成、結晶性を有する乳酸系樹脂を得ることができる。ラクチドには、L-乳酸の二量体であるL-ラクチド、D-乳酸の二量体であるDL-ラクチドが

あり、これらを必要に応じて混合して重合することにより、任意の組成、結晶性を有する 乳酸系樹脂を得ることができる。

[0016]

乳酸系樹脂は、さらに、上記いずれかの乳酸と、乳酸以外のα-ヒドロキシカルボン酸等の他のヒドロキシカルボン酸単位との共重合体であっても、脂肪族ジオール及び/又は脂肪族ジカルボン酸との共重合体であってもよい。

他のヒドロキシーカルボン酸単位としては、乳酸の光学異性体(L-乳酸に対してはD-乳酸、D-乳酸に対してはL-乳酸)、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、2-ヒドロキシーn-8酸、2-ヒドロキシー3, 3-ジメチル酪酸、2-ヒドロキシー3-メチル酪酸、2-ヒドロキシー3-メチル酪酸、2-ヒドロキシカプロン酸等の2官能脂肪族ヒドロキシカルボン酸やカプロラクトン、ブチロラクトン、バレロラクトン等のラクトン類が挙げられる。

乳酸系樹脂に共重合される脂肪族ジオールとしては、エチレングリコール、1, 4 ーブタンジオール, 1, 4 ーシクロヘキサンジメタノール等が挙げられる。また、脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸およびドデカン二酸等が挙げられる。

[0017]

さらに、耐熱性向上等の必要に応じて、少量の共重合成分を添加することもでき、テレフタル酸等の非脂肪族ジカルボン酸及び/又はビスフェノールAのエチレンオキサイド付加物等の非脂肪族ジオール等を用いることもできる。

さらにまた、分子量増大を目的として、少量の鎖延長剤、例えば、ジイソシアネート化 合物、エポキシ化合物、酸無水物等を使用することもできる。

[0018]

本発明に使用される乳酸系樹脂は、重量平均分子量が5万~40万の範囲であることが好ましく、さらに好ましくは10万~25万の範囲である。乳酸系樹脂の重量平均分子量が5万より小さいと、機械物性や耐熱性等の実用物性がほとんど発現されず、40万より大きいと溶融粘度が高くなりすぎて成形加工性に劣ることがある。

[0019]

本発明に好ましく使用される乳酸系樹脂としては、三井化学(株)製のレイシアシリーズ、カーギル・ダウ社製のNature Worksシリーズ等が挙げられる。

[0020]

樹脂組成物を構成する(B)成分の芳香族脂肪族ポリエステル及び乳酸系樹脂以外の脂肪族ポリエステルは、それぞれ、ガラス転移温度(Tg)が0℃以下である。結晶融解熱量(Δ Hm)は、5J/g以上であることが必要であり、 Δ Hmが10J/g以上であることが好ましい。また、結晶融解熱量(Δ Hm)は、30J/g以下であることが必要であり、 Δ Hmが25J/g以下であることが好ましい。(B)成分の結晶融解熱量(Δ Hm)が5J/gより小さいと、結晶性が低く、耐熱性が低下し、一方、30J/gより大きいと、形成された成形体に軟質化や耐熱性の低下が起こる。

また、(B)成分の芳香族脂肪族ポリエステル及び乳酸系樹脂以外の脂肪族ポリエステルは、それぞれ独立して、重量平均分子量が1万~50万であることが好ましく、5万~30万であることが更に好ましく、10万~30万であることが特に好ましい。これらのポリマーは、可塑剤として使用される低分子量の脂肪族ポリエステルとは区別され、両者の相違は、配合する乳酸系樹脂のガラス転移温度(Tg)を低下させるか否かとして現れる。

[0021]

(B) 成分の芳香族脂肪族ポリエステルとしては、脂肪族鎖の間に芳香環を導入することによって結晶性を低下させたものを用いることができる。例えば、芳香族ジカルボン酸成分、脂肪族ジカルボン酸成分、および脂肪族ジオール成分を縮合して得られる。

[0022]

芳香族ジカルボン酸成分としては、例えば、イソフタル酸、テレフタル酸、2,6-ナ 出証特2003-3098558

フタレンジカルボン酸等が挙げられ、脂肪族ジカルボン酸成分としては、例えば、コハク酸、アジピン酸、スペリン酸、セバシン酸、ドデカン二酸等が挙げられる。また、脂肪族ジオールとしては、例えば、エチレングリコール、1, 4ープタンジオール、1, 4ーシクロヘキサンジメタノール等が挙げられる。なお、芳香族ジカルボン酸成分、脂肪族ジカルボン酸成分あるいは脂肪族ジオール成分は、それぞれ2種類以上を用いてもよい。

本発明において、最も好適に用いられる芳香族ジカルボン酸成分はテレフタル酸であり、脂肪族ジカルボン酸成分はアジピン酸であり、脂肪族ジオール成分は1,4-ブタンジオールである。

[0023]

脂肪族ジカルボン酸および脂肪族ジオールからなる脂肪族ポリエステルは生分解性を有することが知られているが、芳香族ジカルボン酸成分、脂肪族ジカルボン酸成分、および脂肪族ジオール成分からなるポリエステルにおいて生分解性を発現させるためには芳香環と芳香環との間に脂肪族鎖が存在することが必要である。そのため、芳香族ジカルボン酸成分は50モル%以下であることが好ましい。

[0024]

ガラス転移温度(Tg)が0 C以下であり、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/g である芳香族脂肪族ポリエステルとしては、具体的には、テトラメチレンアジペートとテレフタレートの共重合体、ポリブチレンアジペートとテレフタレートの共重合体として、East man Ch emicals 社製の「Eastar Bio」を商業的に入手することができ、また、ポリブチレンアジペートとテレフタレートの共重合体として、BASF 社製の「Ecofless Cofless Cofless

[0025]

(B) 成分の乳酸系樹脂以外の脂肪族ポリエステルとしては、例えば、乳酸系樹脂を除く、ポリヒドロキシカルボン酸、脂肪族ジオールと脂肪族ジカルボン酸とを縮合して得られる脂肪族ポリエステル、環状ラクトン類を開環重合して得られる脂肪族ポリエステル、合成系脂肪族ポリエステル、菌体内で生合成される脂肪族ポリエステル等を挙げることができる。

[0026]

ここで使用されるポリヒドロキシカルボン酸としては、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、2-ヒドロキシーn- 酪酸、2-ヒドロキシー3, 3-ジメチル酪酸、2-ヒドロキシー3-メチル酪酸、2-ヒドロキシカプロン酸等のヒドロキシカルボン酸の単独重合体又は共重合体を挙げることができる。

[0027]

また、ここで使用される脂肪族ジオールとしては、エチレングリコール、プロピレングリコール、1, 4 ーブタンジオール、1, 4 ーシクロヘキサンジメタノール等が挙げられ、脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等が挙げられる。脂肪族ジオールと脂肪族ジカルボン酸とを縮合重合して得られる脂肪族ポリエステルは、上記脂肪族ジオールと、上記脂肪族ジカルボン酸の中から、それぞれ1種類以上を選んで縮合重合することにより得られる。また、必要に応じて、イソシアネート化合物等で分子量をジャンプアップして所望のポリマー(高分子)を得ることができる重合体とすることもできる。

[0028]

環状ラクトン類を開環重合して得られる脂肪族ポリエステルとしては、 ϵ ーカプロラクトン、 δ ーバレロラクトン、 β ーメチルー δ ーバレロラクトン等の環状モノマーの中から、1種類以上を選んで重合して得られるものが挙げられる。

[0029]

合成系脂肪族ポリエステルとしては、例えば、環状酸無水物とオキシラン類、具体的には、無水コハク酸と、エチレンオキサイド、プロピレンオキサイド等との共重合体等が挙げられる。

菌体内で生合成される脂肪族ポリエステルとしては、アルカリゲネスユートロファスをはじめとする菌体内でアセチルコエンチームA(アセチルCoA)により生合成される脂肪族ポリエステル等を挙げることができる。この脂肪族ポリエステルは、主にポリー β ーヒドロキシ酪酸(ポリ3HB)であるが、プラスチックとしての実用特性向上のために、吉草酸ユニット(HV)を共重合し、ポリ(3HB-CO-3HV)の共重合体にすることが工業的に有利である。一般的には、HV共重合比は $0\sim40\%$ である。さらに、長鎖のヒドロキシアルカノエートを共重合してもよい。

[0031]

従来から、乳酸系樹脂の耐衝撃性を改良するためには、乳酸系樹脂以外の脂肪族ポリエステルを配合することが行われてきた。乳酸系樹脂以外の脂肪族ポリエステルとしては、脂肪族ジカルボン酸またはその誘導体と脂肪族多価アルコールとを縮合した脂肪族ポリエステルが用いられていた。代表的なものとして、昭和高分子(株)製のビオノーレシリーズ等が知られている。

[0032]

しかし、ビオノーレシリーズ等の脂肪族ポリエステルは、結晶融解熱量(ΔHm)が30J/gよりも大きいので、耐衝撃性の改良効果を発現させるためには、脂肪族ポリエステルを多量に配合する必要がある。乳酸系樹脂以外の脂肪族ポリエステルを多量に配合すると、成形体の軟質化や耐熱性の低下を生じるので、実用的な射出成形体が得られないという問題がある。

ところが、本発明のように、 Δ Hmが5J/g~30J/gである(B)成分を用いれば、(B)成分を5~25質量%配合することによって、ビオノーレシリーズ等の脂肪族ポリエステルを25質量%より多く配合した場合と同等以上の耐衝撃性の改良効果が得られる。したがって、本発明のように(B)成分を使用すれば、耐衝撃性と耐熱性を共に有する射出成形体の提供が可能になる。

[0033]

本発明の樹脂組成物は、更に、(C)ガラス転移温度(Tg)が0℃以下で、結晶融解熱量(Δ Hm)が50 J/g~70 J/gである、乳酸系樹脂以外の脂肪族ポリエステルを含有することができる。本発明の樹脂組成物は、(A)成分及び(B)成分の合計が90質量%~70質量%、(C)成分が10~30質量%の割合で、かつ、(A)成分、(B)成分及び(C)成分の合計が100質量%となるように含有することが好ましい。(C)成分を含有することによって、形成された成形体の弾性率を向上させることができ、成形体を金型等から取り出す際に、成形体が変形することを防止したり、成形後、成形体を結晶化する場合に成形体の変形を抑制することができる。

[0034]

(C) 成分の乳酸系樹脂以外の脂肪族ポリエステルとしては、上記例示されたものと同様のもので、結晶化熱量 (Δ H m) が 5 0 J / g以上のものを使用することができる。例えば、このような脂肪族ポリエステルとして、昭和高分子 (株) 製の商品名「ビオノーレ 1 0 0 1 」が挙げられる。

[0035]

本発明の樹脂組成物は、更に、(D)粒径が $1\sim5~\mu$ mの無機フィラーを含有することができる。粒径が $1\sim5~\mu$ mの無機フィラーを含有することによって、耐衝撃性の低下を最小限に抑えることができ、かつ、樹脂組成物中への分散性が良好になる。

無機フィラーの含有量は、樹脂組成物中、5~20質量%であることが好ましい。このように無機フィラーを配合することにより、射出成形体を金型等から取り出す際に、成形体が変形することを防止することができ、また、加熱時に成形体が収縮したり、反りが生じたりすることを防止することができる。無機フィラーの添加量が20質量%より多いと、成形体の強度低下が生じることがある。

[0036]

本発明に用いられる無機フィラーの具体例としては、タルク、カオリン、炭酸カルシウ

ム、ベントナイト、マイカ、セリサイト、ガラスフレーク、黒鉛、水酸化マグネシウム、水酸化アルミニウム、三酸化アンチモン、硫酸バリウム、ホウ酸亜鉛、含水ホウ酸カルシウム、アルミナ、マグネシア、ウォラストナイト、ゾノトライト、セピオライト、ウィスカー、ガラス繊維、金属粉末、ビーズ、シリカバルーン、シラスバルーン、層状ケイ酸塩等や、珪酸カルシウム、珪酸マグネシウム、珪酸アルミニウム等の珪酸化合物あるいは珪酸化合物を主成分とする鉱物等が挙げられる。ここで、珪酸化合物を主成分とする鉱物とは、10~100質量%含有することを意味し、珪酸化合物を主成分とする鉱物としては、例えば、珪酸カルシウムを主成分とするウォラストナイト、珪酸マグネシウムを主成分とするタルク、珪酸アルミニウムを主成分とするマイカ等が挙げられる。なお、珪酸化合物あるいは珪酸化合物を主成分とする鉱物は、光屈折率が1.5~1.8程度であることが好ましい。また、上記無機フィラーの表面を、チタン酸、脂肪酸、シランカップリング剤等で処理しておいてもよい。このように無機フィラーの表面を処理しておくと、樹脂との接着性が良好になり、無機フィラーの効果を向上させることができる。

[0037]

本発明においては、(A)成分、(B)成分及び(C)成分の合計質量が100質量部に対して、(E)カルボジイミド化合物を $0.5\sim10$ 質量部配合することが好ましい。但し、(C)成分は0の場合もある。このようにカルボジイミド化合物を $0.5\sim10$ 質量部の範囲で配合することにより、得られる射出成形体に耐加水分解性を付与することができる。カルボジイミド化合物の添加量が10質量部より多いと、カルボジイミド化合物のブリードアウトが起こることがあり、そのため成形体の外観不良や、可塑化による機械物性の低下が起こることがある。また、生分解性やコンポスト分解性が損なわれることがある。

[0038]

本発明に用いられるカルボジイミド化合物としては、下記一般式 (1) に示す基本構造 を有するものが挙げられる。

$$- (N = C = N - R -)_{n} - (1)$$

式中、nは1以上の整数であり、Rは有機系結合単位を示す。例えば、Rは、脂肪族、脂環族、芳香族のいずれかであることができる。また、nは、通常、 $1\sim50$ の間の適等な整数が選択される。nが2以上の整数である場合に、2以上のRは同一でも異なっていてもよう。

[0039]

具体的には、例えば、ビス(ジプロピルフェニル)カルボジイミド、ビス(ジプロピルフェニル)カルボジイミド、ポリ(4, 4'ージフェニルメタンカルボジイミド)、ポリ(カーフェニレンカルボジイミド)、ポリ(トリルカルボジイミド)、ポリ(トリルカルボジイミド)、ポリ(トリルカルボジイミド)、ポリ(シイソプロピルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)等、および、これらの単量体が、カルボジイミド化合物として挙げられる。一れらのカルボジイミド化合物は、単独で使用しても、あるいは、2種以上組み合わせて使用してもよい。本発明においては、ビス(ジプロピルフェニル)カルボジイミドを使用することが好ましい。

[0040]

本発明の樹脂組成物は、(F)分子量が200~2, 000の範囲内にあるエステル化合物を更に含有することができる。なお、エステル化合物の分子量は250~1, 000の範囲内であることが更に好ましい。エステル化合物の分子量が200未満であると、耐衝撃性の改良効果が得られず、成形体の表面にエステル化合物がブリードアウトする惧れがあり、分子量が2,000より大きいと、耐衝撃性の改良効果が得られないだけでなく、成形体の耐衝撃性を低下させることがある。このエステル化合物は、(A)成分、(B

)成分及び(C)成分の合計質量が100質量部に対して、0.5~5質量部の範囲内で配合することが好ましい。但し、(C)成分は0の場合もある。このように、上記エステル化合物を0.5~5質量部含有することにより、形成される射出成形体の耐衝撃性を更に向上させることができる。かかるエステル化合物の配合量が5質量部より多いと、射出成形体を形成する樹脂組成物の可塑化を招き、耐熱性の低下が生じることがある。

[0041]

[0042]

本発明の樹脂組成物は、(G)屈折率が2.0以上である隠蔽性向上剤を更に含有することができる。隠蔽性向上剤の配合量は、(A)成分、(B)成分及び(C)成分の合計質量が100質量部に対して、0.1~5質量部の範囲内であることが好ましい。但し、(C)成分は0の場合もある。このように隠蔽性向上剤を配合することにより、形成される成形体の外観不良の主原因となるウェルドラインの外観を改善することができる。ただし、隠蔽性向上剤の配合量が5質量部を超えると、隠蔽性が過剰になって着色性の問題が生じることがあるので、配合量は5質量部以下であることが好ましい。

本発明に使用される屈折率が2.0以上の隠蔽性向上剤としては、酸化チタン、チタン酸鉛、チタン酸カリウム、酸化ジルコン、硫化亜鉛、酸化アンチモン、酸化亜鉛等が挙げられる。隠蔽性を効率よく向上させるためには屈折率の最も高い酸化チタンを配合することが特に好ましい。

[0043]

また、本発明の効果を損なわない範囲で、熱安定剤、抗酸化剤、UV吸収剤、光安定剤、顔料、着色剤、滑剤、核剤、可塑剤等の添加剤を添加することもできる。

[0044]

次に、本発明の射出成形体の成形方法について説明する。

(A) 乳酸系樹脂と、(B) 成分である芳香族脂肪族ポリエステル等、及び、必要に応じて、(C) 成分である芳香族脂肪族ポリエステル等、(D) 無機フィラー、(E) カルボジイミド化合物、(F) エステル化合物、(G) 隠蔽性向上剤、その他添加剤等の各原料を、同一の射出成形機に投入し、直接混合して射出成形することにより、射出成形体を得ることができる。あるいはまた、ドライブレンドした原料を、二軸押出機を用いてストランド形状に押し出してペレット化し、その後、ペレットを、再度、射出成形機に戻し、射出成形体を形成することもできる。

[0045]

いずれの方法で射出成形体を形成するにしても原料の分解による分子量の低下を考慮する必要があるが、各原料を均一に混合するためには後者を選択することが好ましい。

具体的には、例えば、(A)乳酸系樹脂と、(B)成分である芳香族脂肪族ポリエステル等、及び、必要に応じて、(C)成分である芳香族脂肪族ポリエステル等、(D)無機フィラー、(E)カルボジイミド化合物、(F)エステル化合物、(G)隠蔽性向上剤、その他添加剤等の各原料を、それぞれ十分に乾燥して水分を除去した後、二軸押出機を用いて溶融混合し、ストランド形状に押し出してペレットを形成する。ただし、乳酸系樹脂はLー乳酸構造とDー乳酸構造の組成比によって融点が変化すること、芳香族脂肪族ポリ

9/

エステルの混合の割合によって混合樹脂の融点が変化すること等を考慮して、溶融押出温度を適宜選択することが好ましい。通常、100~250℃の温度範囲内で選択される。

[0046]

形成したペレットを十分に乾燥し、水分を除去した後、例えば熱可塑性樹脂を成形する場合に一般的に採用される射出成形方法等を用いて、射出成形を行う。

具体的には、射出成形法、ガスアシスト成形法、射出圧縮成形法等の射出成形法によって射出成形体を得ることができる。また、その他目的に応じて、上記の方法以外でもインモールド成形法、ガスプレス成形法、2色成形法、サンドイッチ成形法、PUSH-PULL、SCORIM等を採用する事もできる。ただし、射出成形方法は、これらに限定されるものではない。

[0047]

本発明に用いられる射出成形装置は、一般的な射出成形機、ガスアシスト成形機及び射 出圧縮成形機等と、これらの成形機に用いられる成形用金型及び付帯機器、金型温度制御 装置及び原料乾燥装置等を備えている。

[0048]

成形条件は、射出シリンダー内での樹脂の熱分解を避けるために、溶融樹脂温度が170℃~210℃の範囲で成形することが好ましい。

[0049]

射出成形体を非晶状態で得る場合には、成形サイクル(型閉〜射出〜保圧〜冷却〜型開〜取出)の冷却時間を短くするために、金型温度は可能な限り低温であることが好ましい。金型温度は、一般的には15 \mathbb{C} \sim 55 \mathbb{C} であることが好ましく、チラーを用いることも望ましい。ただし、後結晶化時の成形体の収縮、反り、変形等を抑制するためには、15 \mathbb{C} \sim 55 \mathbb{C} ∞ の範囲内でも高温側に設定することが好ましく、例えば、40 \mathbb{C} \sim 55 \mathbb{C} であることが好ましい。

[0050]

また、無機フィラーを添加した成形体では、添加量が多いと成形体の表面にフローマークが発生し易くなるので、射出速度を、無機フィラーを添加しない場合より低速にする事が好ましい。具体例を示すと、例えば、タルクを13質量%添加した樹脂組成物を、肉厚2mmのプレート金型を備えたスクリュー径25mmの射出成形機を用いて射出成形する場合には、射出速度が30mm/秒以下であればフローマークの発生しない成形体が得られる。一方、無機フィラーを添加しない場合には、射出速度が50mm/秒でもフローマークは発生しない。

ヒケが発生しやすい場合には、保持圧力及び保持時間を十分に取ることが好ましい。例えば、保持圧力は30 M P $a\sim100$ M P a の範囲で設定されることが好ましく、保持時間は成形体の形状や肉厚によって1 秒~15 秒の範囲内で適宜設定されることが好ましい。例えば、上記の肉厚2 mmのプレート金型を備えた射出成形機を用いて成形する場合に、保持時間は3 秒前後である。

[0051]

を発明においては、射出成形によって得られた成形体に、熱処理を行って結晶化させることが好ましい。このように成形体を結晶化させることにより、成形体の耐熱性をさらに向上させることができる。熱処理温度は、 $60\sim130$ ℃の範囲であることが好ましく、 $70\sim90$ ℃の範囲であることがより好ましい。熱処理温度が60℃より低いと、成形体の結晶化が進行せず、熱処理温度が130℃より高いと、形成された成形体を冷却する際に、成形体に変形や収縮が生じる。

熱処理時間は、材料の組成や熱処理装置、および熱処理温度に応じて適宜設定されるが、例えば、熱処理温度が70℃の場合には15分~3時間熱処理を行うことが好ましく、また、熱処理温度が130℃の場合には、10秒~30分間熱処理を行うことが好ましい。成形体を結晶化させる方法としては、射出成形後に金型の温度を上げて金型内で結晶化させる方法や、射出成形体を非晶状態で金型から取り出した後、熱風、蒸気、温水、遠赤外線ヒーター、IHヒーターなどで結晶化させる方法等が挙げられる。熱処理の際には、

射出成形体を固定しなくてもよいが、成形体の変形を防止するためには、金型、樹脂型などで固定することが好ましい。また、生産性を考慮すると、梱包した状態で熱処理を行うことが好ましい。

[0052]

金型内で結晶化させるためには、加熱した金型内に溶融樹脂を充填した後、一定時間金型内で保持する。金型温度は60 \mathbb{C} \mathbb{C}

[0053]

[0054]

本発明における射出成形体は、優れた耐熱性、耐衝撃性、さらには耐加水分解性を備えているので、家電製品、自動車部品、その他の一般的な成形品として、使用することができる。例えば、本発明によって、電卓型成形体を形成することができる。図1 (a) は、本発明の実施形態の1つである電卓型成形体の平面図であり、(b) はその正面図である。 $1\sim6$ は貫通孔の穴明き部であり、1 は計算結果等を表示する窓部となる部分、2 、3 は数字等のキー部分となる部分、4 、5 、6 は爪を掛ける部分である。

【実施例】

[0055]

以下に、実施例を示して、本発明を具体的に説明するが、これらにより本発明は何ら制限を受けるものではない。なお、実施例中に示す測定値は次に示すような条件で測定を行い、算出した。

[0056]

(1) 耐衝整件

JISK-7110に基づいて、ノッチ付き2号A試験片(長さ64 $mm \times m12.7$ $mm \times 厚さ4 mm$)を作製し、衝撃試験機(安田精機(株)製の「万能衝撃試験機No.258」)を用いて、23℃におけるアイゾット衝撃強度の測定を行った。アイゾット衝撃強度は、15 k I/m^2 を実用基準とした。

[0057]

(2) 耐熱性

JISK-7191に基づいて試験片(長さ120 $mm \times m11mm \times p23mm$)を作製し、荷重たわみ温度試験装置(東洋精機(株)製の「S-3M」)を用いて、荷重たわみ温度の測定を行った。ただし、測定は、エッジワイズ方向、試験片に加える曲げ応力は1.80MPaの条件で行った。荷重たわみ温度は、50C以上を実用基準とした。

[0058]

(3) 寸法安定性

電卓型金型を準備し、東芝機械(株)製の射出成形機「IS50E」を用い、図1に示すような形状の電卓型非晶性成形体を得た(X=約7.6cm、Y=12.2cm)。この時の成形条件は、シリンダー温度195℃、金型温度25℃、射出圧力110MPa、射出時間1.5秒、保持圧力80MPa、保持時間3.0秒、背圧10MPa、スクリュー回転数110rpmであった。

成形後、測定室内(温度23℃、湿度50%RH)で成形体を24時間静置し、図1に示すXとYの寸法を測定した。その後、70℃で3.5時間、熱処理を行った。ただし、熱処理は、恒温恒湿オーブンを用い、成形体に負荷のかからない状態で静置させて行った。熱処理後、直ちに成形体を取り出し、測定室内で24時間静置した後、再度、XとYの

寸法を測定し、熱処理による収縮率を算出した。ただし、XとYの寸法の測定には三次元 測定機を用いた。また、評価は下記評価基準に基づいて行った。

評価基準:

「〇」 XとYの収縮率が共に1.0%未満であり、反りが生じなかったもの

「 \triangle 」 $X \ge Y$ の収縮率のいずれかが 1.0以上、 2.0未満であり、また、反りは生じるが、用途によっては実用範囲内であるもの

「×」 XとYの収縮率が共に2.0以上であり、大きな反りが生じたもの

[0059]

(4) 脂肪族ポリエステル系樹脂の重量平均分子量

ゲルパーミエーションクロマトグラフィーを用いて、溶媒クロロホルム、溶液濃度 0.2 w t / v o 1 %、溶液注入量 2 0 0 μ L、溶媒流速 1.0 m L / 分、溶媒温度 4 0 ℃で測定を行い、ポリスチレン換算で、乳酸系樹脂の重量平均分子量を算出した。ただし、用いた標準ポリスチレンの重量平均分子量は、200000、430000、110000、35000、10000、4000、600である。

[0060]

(5) 耐加水分解性

85℃、80%RHの条件で湿熱試験を行い、100時間経過後の分子量保持率を下記式により算出した。分子量保持率は、70%以上を実用基準とした。

[0061]

(実施例1)

乳酸系樹脂としてカーギル・ダウ社製の「Nature Works 4032D」(L-乳酸/D-乳酸=98.5/1.5、重量平均分子量20万)と、芳香族脂肪族ポリエステルとして Eastman Chemicals 社製の「Eastar Bio」(テレフタル酸22モル%、アジピン酸28モル%、1,4ーブタンジオール50モル%、ΔHm=21.6 J/g)を用いた。「Nature Works 4032D」と「Eastar Bio」とを、質量比で90:10の割合でドライブレンドした後、三菱重工(株)製の40mm ϕ 小型同方向二軸押出機を用いて180℃でコンパウンドし、ペレット形状にした。得られたペレットを東芝機械(株)製の射出成形機「IS50E」(スクリュー径25mm)を用い、L100mm×W100mm×t3mm、またはt=4mmの、厚さが異なる2種類の板材(以下、それぞれ「3mm板」、「4mm板」と称す)を射出成形した。主な成形条件は以下の通りである。

- 1) 温度条件:シリンダー温度 (195℃)、金型温度 (20℃)
- 2)射出条件:射出圧力(115MPa)、保持圧力(55MPa)
- 3) 計量条件:スクリュー回転数 (65 r p m) 、背圧 (15 M P a)

次に、得られた射出成形体をベーキング試験装置((株)大栄科学精器製作所製、「DKS-5S」)内に静置し、70℃で3.5時間熱処理を行った。4mm板を用いてアイゾット衝撃強度、3mm板を用いて荷重たわみ温度の評価を行った。結果を表1に示す。

[0062]

(実施例2)

実施例 1 において、「N a t u r e W o r k s 4 0 3 2 D」と、「E a s t a r B i o」とを、質量比が 8 5 : 1 5 の割合でドライブレンドした以外は実施例 1 と同様にして、射出成形体を作製した。得られた射出成形体について、実施例 1 と同様の評価を行った。その結果を表 1 に示す。

[0063]

(実施例3)

[0064]

(実施例4)

Tgが0 ℃以下であり、かつ Δ H mが3 0 J / g以下である芳香族脂肪族ポリエステルとして、BASF社製の「Ecoflex F」(テレフタル酸2 4 モル%、アジピン酸2 6 モル%、1, 4 - ブタンジオール5 0 モル%、 Δ H m : 2 1. 0 J / g)を用いた。実施例1において、「Nature Works 4 0 3 2 D」と「Eastar Bio」とをドライブレンドする替わりに、「Nature Works 4 0 3 2 D」と「Ecoflex F」とを、質量比が8 5 : 1 5 の割合でドライブレンドした以外は実施例1 と同様にして、射出成形体を作製した。得られた射出成形体について、実施例1 と同様の評価を行った。その結果を表1 に示す。

[0065]

(実施例5)

Tgが0℃以下であり、かつ Δ Hmが $50\sim70$ J/gである芳香族脂肪族ポリエステルとして、ポリプチレンサクシネート(昭和高分子(株)製の「ビオノーレ1001J、 Δ Hm=58.0J/g)を用いた。実施例1において、「Nature Works 4032D」と「Eastar Bio」とをドライブレンドする替わりに、「Nature Works 4032D」、「Ecoflex F」、及び、「ビオノーレ1001Jを、質量比が65:15:20の割合でドライブレンドした以外は実施例1と同様にして、射出成形体を作製した。得られた射出成形体について、実施例1と同様の評価を行った。その結果を表1に示す。

[0066]

(実施例6)

樹脂Aの作製:

1, 4-ブタンジオールが 3 0 モル%、1, 4-シクロヘキサンジメタノールが 2 0 モル%、コハク酸が 4 0 モル%、アジピン酸が 1 0 モル%の組成となるように、下記方法で樹脂 A の重合を行った。

すなわち、1, 4-ブタンジオール、1, 4-シクロへキサンジメタノール、コハク酸、および、アジピン酸を、反応器中で窒素雰囲気下において200 $\mathbb C$ で2時間反応させた後、窒素を停止して10 mm H gの減圧下において4時間エステル化反応を行った。反応生成物に、触媒としてテトライソプロポキシチタンを添加し、220 $\mathbb C$ 、5 mm H gの減圧下において7時間、脱グリコール反応を行った。凝集水を取り除いた後、ヘキサメチレンジイソシアネートを添加し、200 $\mathbb C$ で1時間カップリング反応を行って、樹脂Aを作製した。得られた樹脂Aの重量平均分子量は20万であり、結晶融解熱量(Δ H m)は23. 7 J / gであった。

ガラス転移温度(Tg)が0 C以下であり、かつ Δ Hmが5 ~ 3 0 J/g である乳酸系樹脂以外の脂肪族ポリエステルとして、樹脂Aを使用した。実施例1 において、「N a ture Works 4 0 3 2 D 」と「E a star B io」とをドライブレンドする替わりに、「N a ture Works 4 0 3 2 D 」と、「樹脂A」とを、質量比が8 5 : 1 5 0 割合でドライブレンドした以外は実施例1 と同様にして、射出成形体を作製した。得られた射出成形体について、実施例1 と同様の評価を行った。その結果を表1 に示す。

[0067]

		実施例	実施例	実施例	実施例	実施例	実施例
配	Nature Works 4032D	90	85	80	85	5 65	6 85
合	Eastar Bio (Hm=21.6J/g)	10	15	20			
	Ecoflex F (Hm=21.0J/g)				15	15	
	ピオノーレ 1001 (Hm=58.0J/g)					20	
	樹脂A (Hm=23.7J/g)						15
(k	ソ [*] ット衝撃強度 J/m²)	18	28	34	28	32	24
	重たわみ温度 ℃)	59	57	56	57	55	58

[0068]

表 1 から明らかなように、実施例 $1\sim 6$ の射出成形体は、アイゾット衝撃強度が 1 5 k J / m 2 以上、荷重たわみ温度が 5 0 \mathbb{C} 以上であり、耐衝撃性及び耐熱性ともに優れていることが分かった。

[0069]

(実施例7)

[3070]

(実施例8)

実施例 7 において、「Nature Works 4032D」と、「Eastar B 10 と、「SG-95」とを、質量比が 75:15:10 の割合でドライブレンドした以外は実施例 7 と同様にして、射出成形体を作製した。得られた射出成形体について、実施第7と同様の評価を行った。その結果を表 2 に示す。

ឺ: j71]

: 一班例9)

実施例 7 において、「N a t u r e W o r k s 4 0 3 2 D」と、「E a s t a r B i o」と、「S G - 9 5」とを、質量比が 7 0:1 5:1 5 の割合でドライブレンドした以外は実施例 7 と同様にして、射出成形体を作製した。得られた射出成形体について、実施例 7 と同様の評価を行った。その結果を表 2 に示す。

[0072]

(実施例10)

出証特2003-3098558

レ1001」とを、質量比が55:15:10:20の割合でドライブレンドした以外は 実施例7と同様にして、射出成形体を作製した。得られた射出成形体について、実施例7 と同様の評価を行った。その結果を表2に示す。

【0073】 【表2】

	· · · · · · · · · · · · · · · · · · ·	実施例	実施例	実施例	実施例
		7	8	9	10
	Nature Works 4032D	80	75	70	55
配合	Eastar Bio (ΔHm=21.6J/g)	15	15	15	15
	SG-95	5	10	15	10
	ビオノーレ 1001 (ΔHm=58. 0J/g)				20
Щ					
71	ゾット衝撃強度(kJ/m²)	24	21	17	25
	重たわみ温度 (℃)	57	57	58	57
寸:	法安定性	Δ	0	0	0

[0074]

表 2 から明らかなように、実施例 $7 \sim 10$ の射出成形体は、アイゾット衝撃強度が 15 k J / m 2 以上、荷重たわみ温度が 50 \mathbb{C} 以上であり、耐衝撃性及び耐熱性ともに優れていることが分かった。

また、電卓型の成形体について行った寸法安定性の評価は良好な結果を示した。

[0075]

(比較例1)

実施例 1 において、芳香族脂肪族ポリエステルを配合せずに、乳酸系樹脂として「N a ture W or k s 4 0 3 2 D」を 1 0 0 質量部用いてペレットを作製した。このペレットを用いて実施例 1 と同様にして射出成形体を作製した。得られた射出成形体について、実施例 1 と同様の評価を行った。その結果を表 3 に示す。

[0076]

(比較例2)

実施例1において、Tgが0℃以下、ΔΗmが30J/g以下である芳香族脂肪族ポリエステルの替わりに、脂肪族ポリエステルとしてポリブチレンサクシネート(昭和高分子(株)製の「ビオノーレ1001」、ΔΗm=58.0J/g)を用い、「Nature Works 4032D」と、「ビオノーレ1001」とを、質量比が75:25の割合でドライブレンドした以外は実施例1と同様にして、射出成形体を作製した。得られた射出成形体について、実施例1と同様の評価を行った。その結果を表3に示す。

[0077]

(比較例3)

実施例1において、芳香族脂肪族ポリエステルの替わりに、脂肪族ポリエステルとして、ポリブチレンサクシネート80モル%/アジペート20モル%共重合体(昭和高分子(・株)製の「ビオノーレ3003」、 $\Delta Hm=43.0$ J/g)を用い、「Nature Works 4032 D」と「ビオノーレ3003」とを、質量比85:15の割合でドライブレンドした以外は実施例1と同様にして、射出成形体を作製した。得られた射出成形体について、実施例1と同様の評価を行った。その結果を表3に示す。

[0078]

(比較例4)

実施例1において、芳香族脂肪族ポリエステルの替わりに、脂肪族ポリエステルとして、ポリブチレンサクシネート80モル%/アジペート20モル%共重合体(昭和高分子 (

株)製の「ビオノーレ3003」、 Δ Hm=43.0J/g)を用い、「Nature Works 4032D」と「ビオノーレ3003」とを質量比70:30の割合でドライブレンドした以外は実施例1と同様にして、射出成形体を作製した。得られた射出成形体について、実施例1と同様の評価を行った。その結果を表3に示す。

[0079]

【表3】

		比較例	比較例	比較例	比較例
<u>_</u>		1	2	3	4
	Nature Works 4032D	100	75	85	70
配合			25		
	ビオノーレ 3003 (ΔHm=43.0J/g)			15	30
	イゾット衝撃強度 (kJ/m²)	4	8	10	17
荷	重たわみ温度(℃)	67	54	48	44

[0080]

表3から明らかなように、比較例 $1\sim3$ の射出成形体は、アイゾット衝撃強度が1.5~k J/m^2 未満であり、耐衝撃性に劣っていることが分かった。また、比較例 $3\sim4$ の射出成形体は、荷重たわみ温度が5.0 \mathbb{C} 未満であり、耐熱性に劣っていることが分かった。

[0081]

(実施例11、12)

実施例 1 において、さらに、カルボジイミド化合物として、ラインケミー社製の「スタバクゾールP」(芳香族ポリカルボジイミド:シリカ=95:5)を用いた。実施例 1 において、「Nature Works 4032D」と「Eastar Bio」とをドライブレンドする替わりに、「Nature Works 4032D」と、「Eastar Bio」と、「スタバクゾールP」とを、質量比85:15:1.5、あるいは、質量比85:15:3.0の割合でドライブレンドした以外は実施例 1 と同様にして、射出成形体を作製した。得られた射出成形体のそれぞれについて、耐加水分解性の評価として分子量保持率を求めた。その結果を表4 に示す。

[0082]

(実施例13)

実施例1において、さらに、カルボジイミド化合物として、ビス(ジプロピルフェニル)カルボジイミド(ラインケミー社製の「スタバクゾールI」)を用いた。実施例1において、「Nature Works 4032D」と「Eastar Bio」とをドライブレンドする替わりに、「Nature Works 4032D」と、「Eastar Bio」と、「スタバクゾールI」とを、質量比85:15:1.5の割合でドライブレンドした以外は実施例1と同様にして、射出成形体を作製した。得られた射出成形体について、耐加水分解性の評価として分子量保持率を求めた。その結果を表4に示す。

[0083]

		実施例	実施例	実施例
L		11	12	13
	Nature Works 4032D	85	85	85
	Eastar Bio (ΔHm=21.6J/g)	15	15	15
	スタパクゾールP	1. 5	3. 0	
	スタバクゾール!			1. 5
分	子量保持率(%)	93	98	94

[0084]

表4から明らかなように、実施例11~13の射出成形体は、70%以上の分子量保持率を示し、耐加水分解性の評価において良好な結果を示した。

[0085]

(実施例14)

実施例1において、「Nature Works 4032D」と「Eastar Bio」とをドライブレンドする替わりに、「Nature Works 4032D」と、「Ecoflex F」と、「ビオノーレ1001」と、「SG-95」と、「スタバクゾールP」とを、質量比55:10:25:10:1. 5の割合でドライブレンドした以外は実施例1と同様にして、射出成形体を作製した。得られた射出成形体について、実施例1と同様にして、耐衝撃性及び耐熱性の評価を行い、また、耐加水分解性の評価として分子量保持率を求めた。その結果を5に示す。

【0086】 【表5】

		実施例	
		14	
	Nature Works	ee.	
	4032D	55	
配	Ecoflex F	10	
合	$(\Delta Hm=21.0J/g)$	10	
	ビオノーレ 1001	0.5	
	$(\Delta Hm=58.0J/g)$	25	
	SG-95	10	
	スタバクゾールP	1.5	
ア	イゾット衝撃強度	00	
	(kJ/m²)	30	
荷:	重たわみ温度(℃)	57	
寸	法安定性	0	
分	子量保持率(%)	93	

[0087]

表5から明らかなように、実施例14の射出成形体は、アイゾット衝撃強度が15kJ/m²以上、荷重たわみ温度が50℃以上であり、耐衝撃性及び耐熱性ともに優れていることが分かった。さらに、寸法安定性にも優れたものであることが分かった。また、分子量保持率を算出したところ、90%以上の分子量保持率を示し、耐加水分解性の評価にお

いて良好な結果を示した。

[0088]

すなわち、本発明の射出成形体は、生分解性に優れており、また、日本工業規格JIS K-7110に基づくアイゾット衝撃強度(ノッチ付き、23 C)が15 k J / m 2 以上であり、日本工業規格JIS K-7191 に基づく荷重たわみ温度(A 法、エッジワイズ方向)が50 C以上であり、耐衝撃性及び耐熱性ともに優れている。さらにまた、乳酸系樹脂の配合量を多くすることができるので、製品を安定して、かつ安価に供給することができる。樹脂組成物に更に加水分解防止剤を配合した場合には、成形体が、長期に保管されたり、長期にわたって使用されても、また、高温多湿下で保存されても、空気中の水蒸気や外部からの水分等によって加水分解を起こすこともなく、機械物性の低下を招くこともない。

本発明の樹脂組成物は、リサイクルが可能であり、また、地球温暖化防止に役立つ、環境型社会に適応しうる樹脂組成物である。また、本発明によれば、枯渇性資源の節約を図ることができる。

【図面の簡単な説明】

[0089]

【図1】(a)は、本発明の第1の実施形態にかかる射出成形体の平面図であり、(b)は正面図である。

【符号の説明】

[0090]

1~6 穴あき部

【書類名】図面 【図1】

【課題】 乳酸系樹脂が本来有している生分解性をほとんど損なうことなく、優れた耐衝撃性及び耐熱性を有する樹脂組成物を提供すること。

【解決手段】 樹脂組成物は、(A)乳酸系樹脂と、(B)ガラス転移温度(Tg)が 0 C以下で、結晶融解熱量(Δ Hm)が5 J/g \sim 3 0 J/gである芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が 0 C以下で、結晶融解熱量(Δ Hm)が 5 J/g \sim 3 0 J/gである、乳酸系樹脂以外の脂肪族ポリエステルとを含有し、(B)ガラス転移温度(Tg)が 0 C以下で、結晶融解熱量(Δ Hm)が 5 J/g \sim 3 0 J/g である芳香族脂肪族ポリエステル、及び/又は、ガラス転移温度(Tg)が 0 C以下で、結晶融解熱量(Δ Hm)が 5 J/g \sim 3 0 J/gである、乳酸系樹脂以外の脂肪族ポリエステルを 5 \sim 2 5 質量%含有する。

【選択図】

なし

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-361345

受付番号

50301747769

書類名

特許願

担当官

第六担当上席

0095

作成日

平成15年10月23日

<認定情報・付加情報>

【提出日】

平成15年10月22日

特願2003-361345

出願人履歴情報

識別番号

[000006172]

1. 変更年月日 [変更理由]

1990年 8月 6日 新規登録

住 所 氏 名 東京都千代田区丸の内2丁目5番2号

三菱樹脂株式会社