LED цепи управления приводом

ТМ1640 является СИДОМ (светоизлучающий диод дисплей) управления приводом Схема интеграции цифрового интерфейса МСU, цифровой защелки, светодиодные цепи привода высокого напряжения и т.д. Продукт имеет превосходную производительность и надежное качество, и в основном применяется в приводе отображения для электронных весов и других мелкая бытовая техника. Кроме того, он принимает режим SOP28 упаковки.

II. Особенности

- **Ø** Техника питания CMOS
- Ø Режим отображения (8 секций × 16 бит) поддерживают вывод цифровой трубки общего катода
- Ø Яркость Регулирующая схема (рабочий цикл регулируется между 8 уровней)
- Ø Двойная линия последовательный интерфейс (CLK, DIN)
- Ø Режим колебаний: встроенный RC колебаний (450KHz + 5%)
- Ø Встроенный блок-схема сброса на
- **Ø** Встроенные схемы автоматического обратного хода луча
- Ø Способ упаковки: SOP28

III. Определения штифтов

1	GRID12	GRID11 28	3
2	GRID13	GRID10 27	7
3	GRID14	GRID9 20	5
4	GRID15	GRID8 25	5
5	GRID16	GRID7 2	1
6	VSS	GRID6 23	3
7	DIN	GRID5 22	2
8	SCLK	GRID4 21	L
9	SEG1	GRID3 20)
10	SEG2	GRID2 19)
11	SEG3	GRID1 18	3
12	SEG4	VDD 17	7
13	SEG5	SEG8 16	5

TM1640

15

SEG7

SEG6

<u>Внутривенно Функции пи</u> нс

LED цепи управления приводом

Выходная бит, N-трубка выход с открытым стоком

 $5V \pm 10\%$

Подключение к системе заземления

Подписать	имя	Нет.	Описание
DIN	Ввод данных	7	Последовательный ввод данных; Входные данные изменены на низком уровне и переносили на высоком уровне SCLK
SCLK	вход Clock	8	Входные данные на переднем фронте
SG1-SG8	Выход (секция)	9-16	Выходная секция, Р трубка выход с открытым стоком

18-28

1-5

17

6

V. Электрические параметры

CETKA1-GRID11

VDD

 BCC

GRID12-GRID16 выход (бит)

Параметры Предельные (Ta = 25 °C, Vss = 0 В)

Логика питания

поставка

Логика

заземления

параметры	Подписать	Объем	Единица измерения
Напряжение питания логики	VDD	-От 0,5 до 7,0	В
Входное напряжение Logic	VI1	-От 0,5 до VDD + 0.5	В
LED SEG выходной ток привода	IO1	- 200	мА
Выходной ток возбуждения LED GRID	IO2	+ 20	мА
потребляемая мощность	PD	400	мВт
Рабочая температура	Topt	- 40 до +85	°C
Температура хранения	Tstg	- 65 до +150	°C

V1.0

N <u>НП условие работы (Та знак равно -40 до +8 5 °С, Vss =</u> 0 В)

параметры	Подписать	Минимум	типичный	Максимум.	Единица из	Состояние мерения испытания
Напряжение питания логики	VDD		5		В	-
входное напряжение высокого уровня	VIH	0.7 VDD	- VDD		В	-
входное напряжение низкого уровня	вил	0	ı	0,3 VDD	В	-

Электрические характеристики (Ta = -40 до +85 °C, VDD = от 4,5 до 5,5 B, Vss = 0 В)

параметры	Подписать	Минимум	типичный	Максимум.	Единица из	мерени <mark>©</mark> остояние испытания
Выходной Высокий уровень	loh1	- 20	- 25	- 40	мА	CETKA1 ~ GRID16 , Vo = VDD-2V
ток	loh2	- 20	- 30	- 50	мА	CETKA1 ~ GRID16 , Vo = VDD-3V
Выход Низкий уровень ТОК	IOL1	80	140	- мА		SEG1 ~ SEG8 Vo = 0.3V
Выход Низкий уровень ТОК	Idout	4	-	-	мА VO	= 0.4B , DOUT
Выходной ток высокого уровня резерва	Itolsg	-	- 5		% VO	= VDD - 3V , CETKA1 ~ GRID16
Входное значение	II	-	- ± 1		мкА	VI = VDD / VSS
Высокий уровень входного напряжение	VIH	0.7 VDD	-		В	CLK , DIN
Низкий уровень входного сиг напряжение	^{нала} ВИЛ	-	-	0,3 VDD	В	CLK , DIN
Отставание напряжение	B.X.	-	0,35	- B		CLK , DIN
Динамический ток потребления	IDDdyn	-	- 5		Не мА Не	т нагрузки и дисплей выключен

LED цепи управления приводом

Импульсные характеристики (Та = -40 до +85 °C, VDD = от 4,5 до 5,5 В)

параметры	Подписать	Минимум	типичный	Максимум.	Единица измер	ения Состоя	ние испытания
частота колебаний	FOSC	-	450	-	KHz		
Задержка Время передачи	tPLZ	-	-	300	нс	CLK	→ DIO
время передачи	tPZL	-	-	100	нс		→ DIO Þ, RL = 10K
время Восходящего	TTZH 1	-	- 2		МКС	CL =	CETKA1 B GRID16
время Восходящего	TTZH 2	-	-	0,5	мкс	CL =	SEG1 B SEG8
Отбрасывание время	TTHZ	-	-	120	мкс	300p F CL = 300pF , Segn , Gridn	
Максимум. тактовая частота	Fmax	1	-	-	МГц	скважность 50%	
Входная емкость	CI	-	-	15	пФ		-

характеристики временной последовательности (Ta = от -40 до +85 °C, VDD = от 4,5 до 5,5 B)

параметры	Подписать	Минимум	Типичный	Макс.	Единица из	ме рания яние испытания
Ширина импульса Часы	PWCLK	400	-	-	нс	-
Длительность импульса строба	PWSTB	1	1	-	мкс	-
время установки данных	Tsetup	100	1	i	нс	-
время хранения данных	Thold	100	ı	ı	нс	-
Время ожидания	tWAIT	1	-	-	мкс	CLK ↑ → CLK ↓

VI. Описание интерфейсов

Данные в микропроцессоре связи с ТМ1640 через интерфейс шины. Во время ввода данных, если СLК находится на высоком уровне, то сигнал на DIN остается неизменным; оно может быть изменено только если сигнал синхронизации на СLК находится на низком уровне. Низкий уровень входных данных всегда передается до того высокого уровня. Начиная условие ввода данных: когда СLК высок,

DIN становится низким от высокого; окончание условия: когда CLK высок, DIN становится высокой с низки.

Рисунок 2: Команда Формат передачи данных

Рисунок 3: Формат записи данных автоматического адреса

Команда1: набор данных команда2: установить адрес Данные1-N: передача данных дисплея command3: дисплей управления

Рисунок 4: Формат фиксированного адреса записи данных

Команда1: набор данных команда2: установить адрес Данные1-N: передача данных дисплея command3: дисплей управления

VII. команда данных

Команды используются для установки режима отображения и состояния светодиодного драйвера. Когда команда ПУСК вступает в силу, первый входной байт по DIN берется в качестве первой команды. Посредством декодирования, самые высокие В7 и В6 бит принят, чтобы различать разные команды.

В7	В6	команда
0	1	Настройка команды Data
1	0	Настройка команды управления отображением
1	1	Настройка адреса команды

Таблица 7: Командная классификация установки

Если END вступает в силе во время передачи команды или данных, последовательная связь будет инициализирована и команда или данные в рамках передач станет недействительной (те завершениями передачи остается в силе).

Настройка команды Data:

B7 B6	8 B5 B4	B3 B2 B1 B0					Описание	
<u>0</u>	1			0			Адрес авто + 1	
<u>0</u>	1	Заполните 0 для		1	Заполните 0 для элементов не относится		Фиксированный адрес	
0	1	элементов не	0				Нормальный режим	
0	1	отполноя	1		CINOCHI		Режим тестирования (внутреннее использование	

Адрес установки команды:

B7 B6	B5 B4	В3 В2 В1 В0 П	оказать	адрес			
<u>1</u>	1		0	0	0	0	00H
	1		0	0	0	1	01H
<u>1</u>	1		0	0	1	0	02H
1 1 1 1 1 1 1 1	1		0	0	1	1	03H
<u>1</u>	1		0	1	0	0	04H
<u>1</u>	1		0	1	0	1	05H
<u>1</u>	1	Заполните 0	0	1	1	0	06H
1_	1	для элементов	0	1	1	1	07H
<u>1</u>	1	непригоді	ный1	0	0	0	08H
<u>1</u>	1		1	0	0	1	09H
<u>1</u>	1		1	0	1	0	0AH
<u>1</u>	1		1	0	1	1	0BH
<u>1</u>	1		1	1	0	0	0CH
<u>1</u>	1		1	1	0	1	0DH
<u>1</u>	1		1	1	1	0	0EH
1	1		1	1	1	1	0FH

Таблица 8: Настройка адреса команды Display

При включении питания, адрес по умолчанию устанавливаются как 00H.

LED цепи управления приводом

Отношения между отображаемыми данными, булавки чипа и отображения адресов приведены в следующей таблице:

SEG8 S	EG7 SEG	6 SEG5 S	EG4 SEG	3 SEG2 S	EG1				
В7	B6	B5	B4	В3	Би 2	B1	В0	_	
		Отобрах	кение адреса	памяти 00Н			·	CETKA1	
		Отобрах	кение адреса	памяти 01Н				CETKA2	
		Отобрах	ение адреса	памяти 02Н				Grid3	
		Отобрах	ение адреса	памяти 03Н				GRID4	
		Отобрах	кение адреса	памяти 04Н				GRID5	
		Отобрах	кение адреса	памяти 05Н				GRID6	
		Отобрах	кение адреса	памяти 06Н				GRID7	
		Отобрах	кение адреса	памяти 07Н				GRID8	
		Отобрах	кение адреса	памяти 08Н				GRID9	
		Отобрах	кение адреса	памяти 09Н				GRID10	
		Отображ	ение адреса	памяти 0АН				GRID11	
		Отображ	ение адреса	памяти 0ВН		1		GRID12	
		GRID13							
	Отображение адреса памяти 0DH GRID14								
	Адрес Видеопамять 0EH GRID15								
		Отображ	ение адреса	памяти 0FH				GRID16	

Таблица 9: Взаимосвязь между отображаемыми данными, адресами и булавкой чипа

Управление Дисплей:

MSB

B7 B6 B5 B4 B3 B2 B1 B0 функция Описание 0 0 0 0 1 Установка длительности импульса 1/1 0 1 0 0 1 1 Установка длительности импульса к 2 <u>1</u> 0 1 0 1 0 Установка длительности импульса к 4 Установка Исчезновение 1 0 0 1 1 Установка длительности импульса к 10 Заполните 0 для <u>1</u> 0 1 0 0 (настройка яркости) Установка длительности импульса к 11 элементов не <u>1</u> 0 1 1 0 1 Установка длительности импульса к 12 относится <u>1</u> 0 1 1 0 Установка длительности импульса к 13 <u>1</u> 0 1 Установка длительности импульса к 14/ <u>1</u> XXX 0 0 переключатель Дисплей выключен

LSB

Таблица 10: Индикация команды управления режимом

установка

0

Дисплей на

VIII. Дисплей цикла

Рисунок 7: Цикл отображения данных

IX. Схема подключения аппаратного

Цифровые трубки, показанные на диаграмме являются общим катод цифровых трубками:

ИКС. IC упаковки Чертеж: (SOP28)

0	Dimen	sions In Milli	meters	Dimensions In Inches			
Symbol	Min	Nom	Max	Min	Nom	Max	
Α	2.15	2.35	2.55	0.085	0.093	0.100	
A1	0.05	0.15	0.25	0.002	0.006	0.010	
b		0.40	_	_	0.016		
С		0.25			0.010	_	
D	17.40	17.70	18.00	0.685	0.697	0.709	
E	7.40	7.65	7.90	0.291	0.301	0.311	
е		1.27		_	0.050		
Н	10.15	10.45	10.75	0.400	0.411	0.423	
L	0.60	0.80	1.00	0.024	0.031	0.039	
θ	0°	_	8°	0°		8	

L Все данные и приложения, приведенные выше, могут быть изменены без предварительного уведомления