Конспект занятия №1

Strim_22_1

Каков смысл данного задания? Вам предоставлен файл, содержащий данные о вычислительных процессах, каждый из которых характеризуется определённой продолжительностью выполнения. Эти процессы могут быть выполнены как параллельно, так и последовательно.

Говорится, что процесс В зависит от процесса А, если выполнение процесса В возможно лишь после полного завершения процесса А. В этом случае такие процессы должны выполняться строго последовательно, т.е. один за другим.

Данные о процессах представлены в файле в формате таблицы. Первый столбец содержит идентификаторы процессов, второй – продолжительность их выполнения, третий – процессы, от которых зависит текущий процесс (те, завершение которых необходимо ожидать). Если процесс не имеет зависимостей, в соответствующей ячейке указано значение 0.

Далее ставятся вопросы так или иначе связанные со временем протекания процессов. Рассмотрим разные варианты подобных задач.

Задача № 1 (5516)

В файле <u>22-0.xls</u> содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. B этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241224?t=0h2m30s

Решение

Используем для визуализации решения этой задачи диаграмму Ганта. В верхней строке создадим временную шкалу в миллисекундах, и нарисуем, как располагаются процессы по времени.

4	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	5	T	U	V	W	X
1		Время										вреи	менн	ая ш	кала	(MC)								
2	ID процесса В	выполнения процесса В (мс)	ID процесса (ов) A	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
3	1	4	0																					
4	2	3	0																					
5	3	1	1; 2																					
6	4	7	3																					
7	5	6	3																					
8	6	3	5																					
9 10	7	1	4; 6																					
10	8	2	7																					
11	9	7	0																					
12	10	8	0																					
13	11	6	9																					
14	12	6	10																					

Даны 12 процессов и их длительности. Указано, от каких они зависят или не зависят. Постараемся каждый процесс расположить на диаграмме так, чтобы запускать их как можно раньше. Первый процесс ни от кого не зависит. Его длительность — 4 миллисекунды. Значит, он будет работать первые 4 миллисекунды. Запустим его сразу. Второй процесс также ни от кого не зависит. Мы тоже запустим его сразу. Он продлится 3 миллисекунды. Они будут работать параллельно, поскольку у них нет взаимной зависимости.

1	A	В	С	D	Ε	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	٧	W	X
1		Время										врег	менн	ая ш	кала	(MC)								
2	ID процесса В	выполнения процесса В (мс)	ID процесса (ов) A	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
3	1	4	0																					
4	2	3	0																					
5	3	1	1; 2																					
6	4	7	3																					
7	5	6	3																					
8	6	3	5																					
9	7	1	4; 6																					
10	8	2	7																					
11	9	7	0																					
12	10	8	0																					
13	11	6	9																					
14	12	6	10																					

Третий процесс зависит от первого и второго. Это означает, что его нельзя запускать раньше, чем закончатся эти процессы. Его можно запустить только после четвёртой миллисекунды. Он будет работать одну миллисекунду.

Четвёртый процесс зависит от третьего. Поэтому он может быть запущен только после завершения третьего процесса. Длится четвёртый процесс 7 миллисекунд.

_4	A	В	С	D	Ε	F	G	н	1	J	K	L	M	Ν	0	Р	Q	R	S	Т	U	٧	W	X
1		Время										вре	менн	ая ш	кала	(mc)								
	ID процесса В	выполнения	ID процесса (ов)																					
	ib ripotecca b	процесса В	A																					
2		(MC)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
3	1	4	0	1																				
4	2	3	0	2																				
5	3	1	1; 2					3																
6	4	7	3						4															
7	5	6	3																					
8	6	3	5																					
9	7	1	4; 6																					

Пятый процесс тоже зависит от третьего. Он может запуститься после третьего и продлится 6 миллисекунд. Шестой процесс зависит от пятого. Он запустится после пятого и продлится 3 миллисекунды. Седьмой процесс зависит от четвёртого и шестого. Он сможет запуститься только после их завершения и продлится одну миллисекунду. Восьмой процесс зависит от седьмого Он начнётся после седьмого и продлится две миллисекунды.

	Α	В	С	D	Ε	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т
1		Время										врег	иенн	ая ш	кала	(MC)				
2	ID процесса В	выполнения процесса В (мс)	ID процесса (ов) A	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
3	1	4	0	1																
4	2	3	0	2																
5	3	1	1; 2					3												
6	4	7	3						4											
7	5	6	3						5											
8	6	3	5												6					
9	7	1	4; 6															7		
10	8	2	7																8	

Девятый процесс ни от кого не зависит, поэтому его можно запустить с самого начала. Он продлится 7 миллисекунд. Десятый процесс тоже можно запустить сразу. Он продлится 8 миллисекунд.

	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	T
1		Время										врег	иенн	ая ш	кала	(mc)				
2	ID процесса В	выполнения процесса В (мс)	ID процесса (ов) A	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
3	1	4	0	1																
4	2	3	0	2																
5	3	1	1; 2					3												
6	4	7	3						4											
7	5	6	3						5											
8	6	3	5												6					
9	7	1	4; 6															7		
10	8	2	7																8	
11	9	7	0	9																
12	10	8	0	10																

Одиннадцатый процесс зависит от девятого. Он запустится после девятого и продлится 6 миллисекунд. Двенадцатый процесс зависит от десятого. Он запустится после десятого и продлится 6 миллисекунд. Таким образом, минимально возможное размещение процессов на временной шкале выглядит следующим образом:

	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	T	U	V	W
2	ID npoцесса B	Время выполнения процесса В (мс)	ID процесса (ов) А	1	2	3	4	5	6	7	врем	9	10					15	16	17	18	19	20
3	1	4	0	1																			
4	2	3	0	2																			
5	3	1	1; 2					3															
6	4	7	3						4														
7	5	6	3						5														
8	6	3	5												6								
9	7	1	4;6															7					
10	8	2	7																8				
11	9	7	0	9																			
12	10	8	0	10																			
13	11	6	9								11												
14	12	6	10									12											

каждый процесс запускается сразу после завершения тех процессов, от которых он зависит.

Это минимальное расположение. Процессы можно было бы запускать позже, но тогда общее время выполнения увеличилось бы.

Диаграмма Ганта позволяет наглядно увидеть, когда завершатся все процессы. Видно, что все процессы заканчивают своё выполнение к 17-й миллисекунде. Таким образом, весь набор процессов завершится за 17 миллисекунд.

Решение задачи без использования диаграммы Ганта.

Добавим к исходной таблице еще один столбец справа (D), в котором, анализируя время выполнения процессов и их зависимости рассчитаем минимальное время окончания процесса (мс).

	Α	В	С	D
1	ID процесса B	Время выполнения процесса В (мс)	ID процесса (ов) A	Минимальное время окончания процесса (мс)
2	1	4	0	4
3	2	3	0	3
4	3	1	1; 2	5
5	4	7	3	12
6	5	6	3	11
7	6	3	5	14
8	7	1	4; 6	15
9	8	2	7	17
10	9	7	0	7
11	10	8	0	8
12	11	6	9	13
13	12	6	10	14
14				
15				17

Первый процесс не зависит от других, поэтому он начинается немедленно и завершается через 4 миллисекунды.

Второй процесс также независим, и его выполнение занимает 3 миллисекунды. Следовательно, он завершится через 3 миллисекунды.

Третий процесс требует завершения как первого, так и второго процессов перед началом своего выполнения. Поскольку первый процесс завершается через 4 миллисекунды, а второй — через 3, необходимо выбрать наибольшее из этих значений. Таким образом, третий процесс начнется после 4 миллисекунд и продлится еще 1 миллисекунду, заканчивая свое выполнение через 5 миллисекунд.

Четвертый процесс зависит от завершения третьего процесса, который оканчивает свою работу через 5 миллисекунд. Длительность четвертого процесса составляет 7 миллисекунд, следовательно, его завершение произойдет через 12 миллисекунд (5+7).

Пятый процесс начинает выполняться после завершения третьего процесса, занимая 6 миллисекунд. Завершение происходит через 11 миллисекунд (5+6).

Шестой процесс ожидает завершения пятого процесса, которое наступает через 11 миллисекунд. Продолжительность шестого процесса равна 3 миллисекундам, таким образом, его окончание приходится на 14 миллисекунд (11 + 3).

Седьмой процесс ждет завершения четвертого и шестого процессов. Из их времени завершения (12 и 14 миллисекунд соответственно) выбираем большее значение, прибавляем к нему продолжительность седьмого процесса (1 миллисекунда), получая итоговое время завершения в 15 миллисекунд.

Восьмой процесс следует за седьмым процессом, заканчивающимся через 15 миллисекунд. Восьмой процесс длится 2 миллисекунды, и его завершение происходит через 17 миллисекунд (15 + 2).

Девятый процесс выполняется независимо и завершает свою работу через 7 миллисекунд.

Десятый процесс выполняется независимо и завершает свою работу через 8 миллисекунд.

Одиннадцатый процесс зависит от завершения девятого процесса, которое происходит через 7 миллисекунд. Одиннадцатый процесс длится 6 миллисекунд, поэтому его завершение будет через 13 миллисекунд (7+6).

Таким образом, последнее завершение одного из процессов происходит через 17 миллисекунд.

Ответ: 17

Задача №2 (5569)

В файле <u>22-2e.xls</u> содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс В зависит от процесса А, если для выполнения процесса В необходимы результаты выполнения процесса А. В этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241224?t=0h21m30s

Решение

Мы хотим автоматически подсчитать время окончания каждого процесса. Для начала разберём числа, записанные через точку с запятой, на отдельные ячейки. Сейчас у нас в одной ячейке записано два числа, а нужно, чтобы каждое находилось в своей ячейке.

Выделяем столбец и выбираем инструмент Данные $\to «$ Текст по столбцам», указав точкой с запятой в качестве разделителя.

После нажатия кнопки «Готово» получаем разделение данных на два столбца. Теперь у нас каждый процесс (ID) находится в отдельной ячейке.

	A	В	С	D
		Время	l II	D
	ID процесса В	выполнения	проц	цесса
1		процесса В (мс)	(OB	s) A
2	1	1	0	
3	2	1	1	
4	3	8	0	
5	4	4	0	
6	5	3	1	3
7	6	3	4	
8	7	7	0	
9	8	11	1	
10	9	6	5	7
11	10	3	0	
12	11	4	6	
13	12	11	11	

Добавим справа еще две области.

В одной из них будем рассчитывать минимальное время окончания процесса A(т.к. ID процессов A сейчас оказались записаны в двух столбцах, область тоже будет из двух столбцов), а в другой (из одного столбца) — минимальное время окончания процесса B. Все расчёты будут производиться в миллисекундах.

	Α	В	С	D	E	F	G
1	ID процесса В	Время выполнения процесса В (мс)	проц	D цесса s) A	Минимал время око процесса	нчания	Минимальное время окончания процесса В (мс)
2	1	1	0				
3	2	1	1				
4	3	8	0				
5	4	4	0				
6	5	3	1	3			
7	6	3	4				
8	7	7	0				
9	8	11	1				
10	9	6	5	7			
11	10	3	0				
12	11	4	6				
13	12	11	11				

Чтобы рассчитать минимальное время окончания каждого процесса, возьмём его длительность. Однако часто процесс запускается не сразу, а после завершения других зависимых процессов. Время этих процессов мы протянем в розовое поле. Таким образом, к длительности процесса добавляется время ожидания окончания всех предшествующих процессов.

G2 = B2 + MAKC(E2:F2), протянем эту формулу на весь столбец G

1	Α	В	С	D	E	F	G
1	ID процесса В	Время выполнения процесса В (мс)	проц	D цесса s) A	Минимал время око процесса	нчания	Минимальное время окончания процесса В (мс)
2	1	1	0				=B2+MAKC(E2:F2)
2	2	1	4				

Пока, временно, здесь оказалась длительность процессов

1	Α	В	С	D	E	F	G
1	ID процесса В	Время выполнения процесса В (мс)		D Jecca s) A	Минимал время око процесса	ончания	Минимальное время окончания процесса В (мс)
2	1	1	0				1
3	2	1	1				1
4	3	8	0				8
5	4	4	0				4
6	5	3	1	3			3
7	6	3	4				3
8	7	7	0				7
9	8	11	1				11
10	9	6	5	7			6
11	10	3	0				3
12	11	4	6				4
13	12	11	11				11

Добавим ещё один процесс, отсутствующий в начальной таблице, — нулевой процесс. Его время окончания установим равным нулю. Это означает, что нулевой процесс завершается мгновенно.

	Α	В	С	D	Е	F	G
1	ID процесса В	Время выполнения процесса В (мс)	проц	O Jecca) A	Минимал время окс процесса	нчания	Минимальное время окончания процесса В (мс)
2	1	1	0				1
3	2	1	1				1
4	3	8	0				8
5	4	4	0				4
6	5	3	1	3			3
7	6	3	4				3
8	7	7	0				7
9	8	11	1				11
10	9	6	5	7			6
11	10	3	0				3
12	11	4	6				4
13	12	11	11				11
14	0						0

Теперь используем функцию ВПР() для поиска времени окончания процесса с заданным идентификатором. Указываем, что функция должна искать процесс с указанным ID в той же таблице, и берём значение из соответствующего столбца, это последний столбец во всей этой таблице, включая добавленные нами цветные области, столбец под номером 7.

	Α	В	C D	Е
1	ID процесса В	Время выполнения процесса В (мс)	ID процесса (ов) А	Минимальное время окончания процесса А
2	1	1	0	=BΠP(C2;\$A:\$G;7;0)

Для корректной работы функции важно добавить нулевой процесс, иначе возникнет ошибка, поскольку для нулевого процесса не найдётся времени окончания.

Зафиксируем диапазон A:G с помощью знаков доллара, чтобы при копировании формулы она оставалась неизменной. Значения в столбцах будут пересчитываться автоматически, и мы увидим время окончания каждого процесса с учётом предыдущих.

 $E2 = B\Pi P(C2; A : G; 7; 0)$, заполним этой формулой всё выделенную розовым цветом область, диапазон E2:G13

Таким образом, таблица самостоятельно просчитает все взаимосвязи между процессами, и мы узнаем точное время окончания каждого из них. Чтобы узнать, через сколько времени завершатся все процессы, достаточно посмотреть, когда закончится последний процесс.

	Α	В	С	D	Е	F	G
1	ID процесса B	Время выполнения процесса В (мс)	процесса		Минимальное время окончания процесса A (мс)		Минимальное время окончания процесса В (мс)
2	1	1	0		0	0	1
3	2	1	1		1	0	2
4	3	8	0		0	0	8
5	4	4	0		0	0	4
6	5	3	1	3	1	8	11
7	6	3	4		4	0	7
8	7	7	0		0	0	7
9	8	11	1		1	0	12
10	9	6	5	7	11	7	17
11	10	3	0		0	0	3
12	11	4	6		7	0	11
13	12	11	11		11	0	22
14	0						0

Ответ: 22

Задача № 3 (6772)

В файле <u>22-74.xls</u> содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем

говорить, что процесс В зависит от процесса А, если для выполнения процесса В необходимы результаты выполнения процесса А. В этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241224?t=0h34m40s

Решение (LO Calc)

Автоматизируем расчет, аналогично предыдущему примеру. Имеются процессы, завершение которых требуется ожидать. Выделяем соответствующий столбец и разбиваем его содержимое по столбцам, используя точку с запятой в качестве разделителя. В результате получаем четыре столбца с числовыми значениями.

	А	В	С	D	Е	F
1	<u>ID</u> проце 	Время выполнени	ĬĎι	ιροι	цес	COB
2	1	20	0	0	0	0
3	2	26	0	0	0	0
4	3	22	13	0	0	0
5	4	28	0	0	0	0
6	5	29	2	0	0	0
7	6	25	5	7	8	15
8	7	31	5	0	0	0
9	8	32	1	0	0	0
10	9	28	3	4	0	0
11	10	34	7	0	0	0
12	11	30	9	0	0	0
13	12	29	0	0	0	0
14	13	32	10	12	0	0
15	14	33	11	15	0	0
16	15	39	9	0	0	0
17	16	33	14	15	0	0
18	17	36	13	0	0	0

Эти значения представляют собой идентификаторы (ID) процессов, ожидание завершения которых необходимо.

Следует учесть, что для корректного функционирования функции ВПР() в Calc, в отличие от Excel, требуется предварительно заполнить все пустые ячейки нулями. После выполнения этой операции резервируем следующие четыре столбца для хранения значений времени завершения соответствующих процессов, обязательно закрасив эти области. Рассчитываем минимальные временные интервалы завершения каждого процесса в диапазоне от 1 до 17.

Далее определяем максимальное значение среди времен завершения ожидаемых процессов и прибавляем к нему длительность текущего процесса. Для этого используем формулу.

K2=MAKC(G2:J2)+B2

Копируем эту формулу на диапазон столбца К

Эта формула позволяет вычислить время завершения каждого процесса с учетом предшествующих зависимых процессов. Также вручную вводим данные для нулевого процесса с продолжительностью 0 секунд.

16	15	39	9	0	0	0	202	0	0	0	241
17	16	33	14	15	0	0	274	241	0	0	307
18	17	36	13	0	0	0	152	0	0	0	188
19	0										0

Затем применяем функцию ВПР(), указывая ID процесса в соответствующей ячейке. Далее выделяем диапазон ячеек от А:К. Необходимо выбрать последний столбец под номером 11, содержащий информацию о времени завершения процессов. Четвертым параметром устанавливаем значение "0" и нажимаем Enter для получения результата.

Для удобства работы зафиксируем диапазон А:К, чтобы предотвратить их смещение при прокрутке.

Формулу из ячейки $G2=B\Pi P(C2;A:K;11;0)$ распространим на диапазон G2:J18

	A	В	С	D	Е	F	G	Н	- 1	J	K
1	<u>ID</u> проце 	Время выполнени	<u>ID</u> ı								
2	1	20	0	0	0	0	=ВПР	(<mark>C2;\$</mark> /	4:\$ <u>K</u> ;1	1;0)	20
3	2	26	0	0	0	0	0	0	0	0	26
4	3	22	13	0	0	0	152	0	0	0	174
5	4	28	0	0	0	0	0	0	0	0	28
6	5	29	2	0	0	0	26	0	0	0	55
-	_	35	г	7	0	1.5		0.0	F 2	241	200

Продолжая расчеты, последовательно определяю время завершения остальных процессов. Например, второй процесс завершается через 26 миллисекунд, а добавление его продолжительности дает результат 55 миллисекунд. Аналогичным образом выполняется расчет для всех последующих процессов, учитывая зависимости между ними.

В итоге, минимальное время, необходимое для завершения всех процессов, составляет 307 миллисекунд.

	А	В	С	D	Е	F	G	Н	- 1	J	К
1	<u>ID</u> проце 	Время выполнени	ĬĎι	проц	цес	COB					
2	1	20	0	0	0	0	<u>=ΒΠΡ</u>	(C2;\$ <u>A</u>	\:\$ <u>K</u> ;1	1;0)	20
3	2	26	0	0	0	0	0	0	0	0	26
4	3	22	13	0	0	0	152	0	0	0	174
5	4	28	0	0	0	0	0	0	0	0	28
6	5	29	2	0	0	0	26	0	0	0	55
7	6	25	5	7	8	15	55	86	52	241	266
8	7	31	5	0	0	0	55	0	0	0	86
9	8	32	1	0	0	0	20	0	0	0	52
10	9	28	3	4	0	0	174	28	0	0	202
11	10	34	7	0	0	0	86	0	0	0	120
12	11	30	9	0	0	0	202	0	0	0	232
13	12	29	0	0	0	0	0	0	0	0	29
14	13	32	10	12	0	0	120	29	0	0	152
15	14	33	11	15	0	0	232	241	0	0	274
16	15	39	9	0	0	0	202	0	0	0	241
17	16	33	14	15	0	0	274	241	0	0	307
18	17	36	13	0	0	0	152	0	0	0	188
19	0										0

Этот результат является решением поставленной задачи.

Ответ: 307

Задача № 4 (5683)

В файле <u>22-32.xls</u> содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0. Определите максимально возможное целочисленное неизвестное время выполнения процесса t, при котором выполнение всей совокупности процессов может завершиться не более чем за 134 мс.

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241224?t=0h43m20s

Решение

Рассмотрим файл, содержащий информацию о 20 процессах. Время выполнения 16-го процесса обозначено как t. Сначала установим значение t=1 миллисекунда и выделим его жёлтым цветом для удобства отслеживания изменений. Далее определим время завершения каждого процесса. Разделим данные третьего столбца по точке c запятой и сформируем три новых столбца, также выделенные цветом. Рядом создаем еще один столбец для указания времени завершения соответствующих процессов.

	А	В	С	D	Ε	F	G	н	1
1	ID процесса В	Время выполнения процесса В (мс)	ID проц есса (ов) Д						
2	1	23	4	18					
3	2	17	3	4	18				
4	3	7	0						
5	4	23	0						
6	5	21	3	19	20				
7	6	20	3	5					
8	7	13	16						
9	8	3	3	4					
10	9	9	12	15					
11	10	14	20						
12	11	22	6	16					
13	12	23	16						
14	13	34	1	2					
15	14	24	3	4					
16	15	40	3	5	18				

Для определения времени завершения процесса суммируем максимальное время завершения ожидаемых процессов с временем самого процесса. Формула в ячейке: I2=MAKC(F2:H2)+B2

Применив данную формулу ко всем строкам столбца І. Добавим нулевой процесс и используем функцию ВПР().

 $F2=B\Pi P(C2;A:I;9;0)$. Заполним этой формулой диапазон F2:H22. На данном этапе последний процесс завершает свою работу спустя 131 миллисекунду после старта.

	Α	В	С	D	E	F	G	Н	1
1	ID процесса В	Время выполнения процесса В (мс)	ID проц есса (ов) А						
2	1	23	4	18		23	20	0	46
3	2	17	3	4	18	7	23	20	40
4	3	7	0			0	0	0	7
5	4	23	0			0	0	0	23
6	5	21	3	19	20	7	19	61	82
7	6	20	3	5		7	82	0	102
8	7	13	16			1	0	0	14
9	8	3	3	4		7	23	0	26
10	9	9	12	15		24	122	0	131
11	10	14	20			61	0	0	75
12	11	22	6	16		102	1	0	124
13	12	23	16			1	0	0	24
14	13	34	1	2		46	40	0	80
15	14	24	3	4		7	23	0	47
16	15	40	3	5	18	7	82	20	122
17	16	1	0			0	0	0	1
18	17	10	1	18		46	20	0	56
19	18	20	0			0	0	0	20
20	19	12	3			7	0	0	19
21	20	38	3	4	16	7	23	1	61
22	0								0

Согласно условиям задачи, требуется найти минимальное значение t, при котором общее время выполнения всех процессов не превышает 134 миллисекунды. Постепенно увеличивая значение \$, наблюдаем изменение временных показателей. При значении t = 27 миллисекунд общее время выполнения процессов достигает 135 миллисекунд, что превышает допустимое значение. Следовательно, максимальное допустимое значение t равно 26 миллисекундам, при котором совокупное время выполнения всех процессов составит ровно 134 миллисекунды.

		Время	טו					Н	
1	ID процесса В	выполнения процесса В (мс)	проц есса (ов)						
2	1	23	4	18		23	20	0	46
3	2	17	3	4	18	7	23	20	40
4	3	7	0			0	0	0	7
5	4	23	0			0	0	0	23
6	5	21	3	19	20	7	19	64	85
7	6	20	3	5		7	85	0	105
8	7	13	16			26	0	0	39
9	8	3	3	4		7	23	0	26
10	9	9	12	15		49	125	0	134
11	10	14	20			64	0	0	78
12	11	22	6	16		105	26	0	127
13	12	23	16			26	0	0	49
14	13	34	1	2		46	40	0	80
15	14	24	3	4		7	23	0	47
16	15	40	3	5	18	7	85	20	125
17	16	26	0			0	0	0	26
18	17	10	1	18		46	20	0	56
19	18	20	0			0	0	0	20
20	19	12	3			7	0	0	19
21	20	38	3	4	16	7	23	26	64
22	0								0

Ответ: 26

Задача №5 (5666)

В файле <u>22-31.xls</u> содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0. При составлении таблицы была потеряна информация о том, после какого процесса начался процесс ID = 12. Однако известно, что вся совокупности процессов завершилась за минимальное время 25 мс. Определите ID процесса, после которого начался процесс с ID = 12. В ответе укажите только число.

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241224?t=0h54m25s

Решение (LO Calc)

Рассмотрим аналогичную задачу, в которой вместо времени выполнения процесса необходимо определить ID процесса, от которого зависит запуск процесса с ID12. Из-за утраты данных при формировании таблицы неизвестно, какой именно процесс предшествовал процессу с ID12. Однако известно, что суммарная продолжительность всех процессов составляет 25 миллисекунд. Для начала примем предположение, что ID равен нулю, т.е. процесс с ID12 стартует независимо. Затем рассчитаем общую продолжительность выполнения всех процессов. Данные в столбце С (ID процесса (ов) A) разделим по столбцам .

	Α	В	С	D
1	<u>ID</u> процесса <u>В</u>	Время выполнения процесса <u>В</u> (мс)	<u>ID</u> проце сса (ов) А	
2	1	2	0	0
3	2	5	0	0
4	3	1	0	0
5	4	7	1	2
6	5	4	1	3
7	6	4	4	0
8	7	5	5	0
9	8	7	4	7
10	9	16	3	0
11	10	3	6	0
		-	_	_

Т.к. мы выполняем решение задачи в LO Calc добавим нули во все ячейки. Выделим еще два столбца для отображения времени окончания процессов. Для каждого процесса будем рассчитывать максимальное значение времени завершения предыдущего процесса и прибавлять к нему длительность текущего процесса. Формула из ячейки G2= MAKC(E2:F2)+B2 будет скопирована вниз по столбцу G.

	Α	В	С	D	Ε	F	G
1	<u>ID</u> процесса <u>B</u>	Время выполнения процесса <u>В</u> (мс)	ID проце сса (ов) А				
2	1	2	0	0	0	0	=MAKC(E2:F2)+
3	2	5	0	0	0	0	5
4	3	1	0	0	0	0	1
5	4	7	1	2	2	5	12
	_	-					

Далее введем фиктивный нулевой процесс с нулевым временем завершения. С помощью функции ВПР() найдем время завершения процессов. Зафиксируем диапазон формул, добавив символ доллара перед диапазонами A:G, в качестве диапазона для искомого значения укажем столбец 7. Скопируем формулу $E2=B\Pi P(C2;A:G;7;0)$. вправо и вниз для расчета времени завершения каждого процесса с учетом его предшественников.

	Α	В	С	D	E	F	G	н	1
1	<u>ID</u> процесса <u>В</u>	Время выполнения процесса <u>В</u> (мс)	ID проце сса (ов) А						
2	1	2	0	0	0	0	2		23
3	2	5	0	0	0	0	5		
4	3	1	0	0	0	0	1		
5	4	7	1	2	2	5	12		
6	5	4	1	3	2	1	6		
7	6	4	4	0	12	0	16		
8	7	5	5	0	6	0	11		
9	8	7	4	7	12	11	19		
10	9	16	3	0	1	0	17		
11	10	3	6	0	16	0	19		
12	11	6	7	9	11	17	23		
13	12	19	0	0	0	0	19		

На этом этапе общая продолжительность выполнения всех процессов составляет 23 миллисекунды, тогда как условием задачи установлено 25 миллисекунд. Необходимо подобрать такой ID процесса, который обеспечит выполнение этого условия. При установке ID равным 1 изменений не произойдет. Установка ID=2 даст нам 24 миллисекунды, что приближает нас к необходимому значению, но всё еще недостаточно. Продолжим тестирование с ID=3, ID=4 и так далее, пока не достигнем нужного результата. При установке ID=5 общая продолжительность процессов достигает 25 миллисекунд. Проверим остальные возможные значения: ID=6, ID=7, ID=8, ID=9, ID=10, ID=11, ID=12.

Оптимальным решением является ID=5, обеспечивающий необходимую продолжительность в 25 миллисекунд.

	A	В	С	D	E	F	G	Н	1
1	<u>ID</u> процесса <u>B</u>	Время выполнения процесса <u>В</u> (мс)	<u>ID</u> проце сса (ов) А						
2	1	2	0	0	0	0	2		25
3	2	5	0	0	0	0	5		
4	3	1	0	0	0	0	1		
5	4	7	1	2	2	5	12		
6	5	4	1	3	2	1	6		
7	6	4	4	0	12	0	16		
8	7	5	5	0	6	0	11		
9	8	7	4	7	12	11	19		
10	9	16	3	0	1	0	17		
11	10	3	6	0	16	0	19		
12	11	6	7	9	11	17	23		
13	12	19	5	0	6	0	25		
14	0						0		

В итоге можно заключить, что определение подходящего ID представляет собой простую задачу последовательного перебора возможных вариантов.

Ответ: 5

Задание №6 (5689)

В файле <u>22-38.xls</u> содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно. Если процесс B зависит от процесса A, то процесс B может начать выполнение не раньше, чем через 5 мс после завершения процесса A. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Ссылка на видео-разбор с таймингом: https://vk.com/video- 205546952 456241224?t=1h2m0s

Решение

Начальный этап решения задачи будет аналогичным решению всех предыдущих задач. Следует разделить данные столбца с ID процессов A на отдельные колонки (С, D, Е), вычислить время завершения всех процессов I2 = MAKC(F2:H2) + B2.

В ячейке F2 так же будет использоваться ВПР(), но в составе условия. F2=ECЛИ(C2>0; BПP(C2;A:I;9;0)+5;0) эту формулу распространим на диапазон

F2:H21

Все процессы запускаются одновременно. После завершения одного процесса другой начинается немедленно, что позволяет минимизировать общее время выполнения. Однако в этой задаче существует определённая задержка: если процесс В зависит от процесса А, то процесс В может начаться не ранее, чем через 5 миллисекунд после завершения процесса А. Эта задержка должна быть учтена при расчёте времени выполнения последовательности зависимых процессов.

Таким образом, если процесс В следует за процессом А, то время его старта будет рассчитываться как сумма времени завершения процесса А, 5 миллисекунд задержки и времени выполнения самого процесса В. Этот принцип применяется для всех последовательных зависимостей.

Необходимо учитывать эту задержку для всех процессов, за исключением первого (нулевого). Поскольку первый процесс не имеет предшествующих ему зависимостей, добавление задержки к его времени выполнения не требуется.

Для остальных процессов нужно прибавить 5 миллисекунд к их времени завершения, чтобы отразить требуемую задержку.

В результате применения этих правил суммарное время выполнения всех процессов составит 141 миллисекунду, включая все необходимые задержки.

Альтернативным способом учёта задержки является использование условного оператора: если ячейка содержит ненулевой ID процесса, к её значению добавляется 5 миллисекунд, иначе возвращается 0, так как этот элемент не представляет собой процесс.

Ответ: 141

Задание № 7(5880)

В файле <u>22-55.xls</u> содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Для запуска некоторых процессов необходимы данные, которые получаются как результаты выполнения одного или двух других процессов – поставщиков данных. Независимые процессы (не имеющие поставщиков данных) можно запускать в любой момент времени. Если процесс В (зависимый процесс) получает данные от процесса А (поставщика данных), то процесс В может начать выполнение сразу же после завершения процесса А. Любые процессы, готовые к выполнению, можно запускать параллельно, при этом количество одновременно выполняемых процессов может быть любым, длительность процесса не зависит от других параллельно выполняемых процессов. В таблице представлены идентификатор (ID) каждого процесса, его длительность и ID поставщиков данных для зависимых процессов. Определите, какое наибольшее количество процессов может быть завершено за первые 60 мс с момента запуска первого процесса.

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241224?t=1h14m0s

Решение (LO Calc)

У нас есть 20 процессов. Разбиваем по столбцам через точку с запятой.

Выделим два столбца под время окончания этих процессов и один столбец (столбец) под время окончания каждого процесса. Т.к. мы выполняем решение задачи в LO Calc добавим нули во все ячейки.

Высчитаем промежуточное значение, когда закончится тот или иной процесс G = MAKC(E2:F2) + B2.

(столбец G)

Далее используем функцию ВПР(): берем ID, ищем этот ID в той же таблице, берем значение из столбца номер 7 и ноль. Фиксируем диапазон I:G и аккуратно тянем вправо и вниз. Получаем время окончания каждого процесса. Формулу из ячейки $E2=B\Pi P(C2;A:G;7;0)$ распространим на диапазон E2:F21

СЧЁТ	ЕСЛИ	$\vee \mid f_X \times \checkmark$	=BΠP(C2;\$A:\$	G;7;0)		
	А	В	С	D	E	F	G
1	<u>ID</u> процесса	Время выполнения процесса (мс)	пост авщ иков данн ых				Через сколько мс закончит ся
2	17	23	0	0	= <u>BΠP(C2;\$</u>	A:\$G;7;0)	23
3	15	28	0	0	0	0	28
4	18	34	0	0	0	0	34
5	20	36	0	0	0	0	36
6	19	7	15	18	28	34	41
7	3	11	15	18	28	34	45
8	12	24	17	0	23	0	47
9	2	17	17	18	23	34	51
10	1	20	18	0	34	0	54
11	10	4	2	0	51	0	55
12	8	12	12	20	47	36	59
13	7	27	15	20	28	36	63
14	11	18	3	20	45	36	63
15	14	34	20	0	36	0	70
16	13	38	18	0	34	0	72
17	6	25	1	0	54	0	79
18	9	38	1	0	54	0	92
19	4	27	13	14	72	70	99
20	16	23	6	20	79	36	102
21	5	34	13	0	72	0	106
22	0						0

Теперь посмотрим, сколько процессов может завершиться за первые 60 миллисекунд. Сортируем по столбцу «через сколько ms закончится» по возрастанию. Видим, что некоторые процессы завершатся через 23, 28, 34, 36, 41 и т.д. миллисекунды. Нужно подсчитать, сколько процессов завершится за первые 60 миллисекунд.

СЧЁТ	ЕСЛИ	∨ f _X × ✓	=BΠP(C2;\$A:\$	G;7;0)		
	Α	В	С	D	Ε	F	G
1	JD процесса	Время выполнения процесса (мс)	пост авщ, иков данн ых				Через сколько мс закончит ся
2	17	23	0	0	= <u>BΠP(C2;\$</u>	<u>A</u> :\$ <u>G</u> ;7;0)	23
3	15	28	0	0	0	0	28
4	18	34	0	0	0	0	34
5	20	36	0	0	0	0	36
6	19	7	15	18	28	34	4:
7	3	11	15	18	28	34	45
8	12	24	17	0	23	0	47
9	2	17	17	18	23	34	51
10	1	20	18	0	34	0	54
11	10	4	2	0	51	0	55
12	8	12	12	20	47	36	59
13	7	27	15	20	28	36	63
14	11	18	3	20	45	36	63
15	14	34	20	0	36	0	70
16	13	38	18	0	34	0	72
17	6	25	1	0	54	0	79
18	9	38	1	0	54	0	92
19	4	27	13	14	72	70	99
20	16	23	6	20	79	36	102
21	5	34	13	0	72	0	100
22	0						(

Ответ: 11

Задание №8 (6290)

В файле <u>22-62.xls</u> содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс В зависит от процесса А, если для выполнения процесса В необходимы результаты выполнения процесса А. В этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем

«;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите, сколько процессов будут активны на 200-й мс после старта первого процесса при условии, что все независимые друг от друга процессы могут выполняться параллельно и каждый процесс начинает выполняться сразу, как только для этого есть возможность.

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241224?t=1h19m30s

Решение

Помимо определения момента окончания процесса, необходимо учитывать момент его начала. Важно, чтобы процесс начинался до интересующего нас временного интервала и продолжал выполняться к этому моменту. Разбиваем ID поставщиков данных по столбцам через точку с запятой.

4	Α	В	С	D
1	ID процесса	Время выполнения процесса (мс)	ID поставщиков данных	٧
2	1005	50	1120	1046
3	1014	42	1213	
4	1015	53	1194	
5	1017	37	1263	
6	1020	26	1185	1187
7	1021	61	0	
8	1027	25	0	
9	1028	50	1267	
10	1043	51	0	
11	1044	65	1206	
12	1045	36	0	
13	1046	57	1194	
14	1047	26	0	
15	1052	18	0	
16	1053	27	1164	

Выделим два столбца под время окончания этих процессов и один столбец (столбец) под время окончания каждого процесса. Добавим строки с нулевым процессом и временем равным нулю. Затем используем формулу

$$G2=MAKC(E2:F2)+B2$$

чтобы вычислить окончание процесса, откопируем ее на весь столбец таблицы G

Применяем функцию =BПР(), чтобы найти конкретные значения для каждого процесса, указывая ID и извлекая соответствующее значение из седьмого столбца. При этом важно зафиксировать диапазон ячеек.

 $E2=B\Pi P(C2;A:G;7;0)$, эту формулу мы распространим на диапазон, выделенный желтым цветом E2:F101

После расчета времени окончания всех процессов, следует учесть, что знание только времени окончания недостаточно для ответа на поставленный вопрос. Необходимо дополнительно рассчитать время начала каждого процесса путем вычитания длительности процесса из времени его окончания. Таким образом, можно получить временной интервал, когда процесс был активен.

СУ	MM - i	× .	fx =G2-B2					
1	Α	В	С	D	Е	F	G	Н
1	ID процесса	Время выполнения процесса (мс)	ID поставщиков данных	٧	v	¥	Через сколько мс закончился	Через сколько мс начался
2	1005	50	1120	1046	89	191	241	=G2-B2
3	1014	42	1213		95	0	137	95

Далее сортируем процессы по времени начала, применяя фильтры для удобства анализа. Анализируя полученные данные, видно, что ни один процесс не начинается точно на 200-й миллисекунде. Важно понимать, что активность процесса начинается лишь после того, как пройдет указанный период ожидания. Например, если задержка составляет 191 миллисекунду, процесс начнет свою работу только с 192-й миллисекунды. Следовательно, для получения точного результата необходимо подсчитать процессы, которые начали выполнение до 200-й миллисекунды и продолжают оставаться активными на ней.

Кроме времени окончания, чтобы ответить на этот вопрос, нужно также знать время начала. Ведь нам нужно, чтобы процесс начался до этого времени и не завершился до него. Важно, чтобы между началом и концом была эта миллисекунда.

A	A	В	С	D	E	F	G	Н	- 1
	ID процесса	выполнения	ID поставщиков				Через	Через	
	процесса	процесса (мс)	данных				сколько мс	сколько мс	
2	*	mpodecea (mi.	*	*	*	¥	закончился *	начался	
2	1005	50	1120	1046	89	191	241	191	
3	1014	42	1213		95	0	137	95	
4	1015	53	1194		134	0	187	134	
5	1017	37	1263		14	0	51	14	
5	1020	26	1185	1187	77	210	236	210	
7	1021	61	0		0	0	61	0	
8	1027	25	0		0	0	25	0	
9	1028	50	1267		82	0	132	82	
0	1043	51	0		0	0	51	0	
1	1044	65	1206		86	0	151	86	
2	1045	36	0		0	0	36	0	
3	1046	57	1194		134	0	191	134	
4	1047	26	0		0	0	26	0	
5	1052	18	0		0	0	18	0	
6	1053	27	1164		72	0	99	72	
7	1057	98	1053	1113	99	55	197	99	
8	1059	51	1274		44	0	95	44	
9	1060	74	1267	1280	82	37	156	82	
0.0	1061	28	1193	1249	39	125	153	125	
1	1064	91	1061		153	0	244	153	
2	1066	24	1057	1120	19	90	112	90	

Можно воспользоваться фильтром, отсеивающим процессы, начало которых приходится на момент позднее 200 миллисекунд, а завершение – на более ранний срок. Этот метод также дает результат в 16 активных процессов.

Ответ: 16

Задание №9(6291)

В файле <u>22-62.xls</u> содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс В зависит от процесса А, если для выполнения процесса В необходимы результаты выполнения процесса А. В этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем

«;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите, сколько процессов будут в состоянии ожидания на 150-й мс после старта первого процесса при условии, что все независимые друг от друга процессы могут выполняться параллельно и каждый процесс начинает выполняться сразу, как только для этого есть возможность.

Ссылка на видео-разбор с таймингом: https://vk.com/video-205546952 456241224?t=1h30m20s

Решение (LO Calc)

Наша цель — вычислить количество процессов, которые к моменту времени 150 миллисекунд еще не начали свою работу и ждут завершения других процессов, чтобы начать выполнение.

Разделим данные об ID процессов A по отдельным колонкам

	А	В	С	D
1	<mark>JD</mark> процесса	Время выполнения процесса (мс)	ID поставщиков данных	
2	1021	61	0	
3	1027	25	0	
4	1043	51	0	
5	1045	36	0	
6	1047	26	0	
7	1052	18	0	
8	1087	57	0	
9	1113	55	0	
10	1120	89	0	
11	1126	85	0	
12	1135	91	0	
13	1161	49	0	
14	1162	63	0	
15	1164	72	0	
16	1180	62	0	
17	1181	23	0	
18	1193	39	0	
19	1199	70	0	
20	1207	63	0	
21	1263	14	0	
22	1267	82	0	
23	1271	94	0	
24	1274	44	0	
25	1280	37	0	
26	1287	47	0	

Добавим нули во все ячейки, соответствующие незаполненным данным.

	A	В	С	D
1	<u>і</u> Д процесса	Время выполнения процесса (мс)	ID поставщиков данных	
2	1021	61	0	0
3	1027	25	0	0
4	1043	51	0	0
5	1045	36	0	0
6	1047	26	0	0
7	1052	18	0	0
8	1087	57	0	0
9	1113	55	0	0
10	1120	89	0	0
11	1126	85	0	0
12	1135	91	0	0
13	1161	49	0	0
14	1162	63	0	0
15	1164	72	0	0
16	1180	62	0	0
17	1181	23	0	0
18	1193	39	0	0
19	1199	70	0	0
20	1207	63	0	0
21	1263	14	0	0
22	1267	82	0	0
23	1271	94	0	0
24	1274	44	0	0
25	1280	37	0	0
26	1287	47	0	0

Далее создается дополнительный столбец, который будет содержать время окончания каждого процесса. Это время рассчитывается как сумма продолжительности процесса и максимального значения времени окончания всех процессов, от которых он зависит.

G2=MAKC(E2:F2)+B2, следует заполнить этой формулой весь столбец D нашей таблицы.

В ячейке E2 запишем формулу для определения времени завершения текущих процессов =BПР(C2;A:G;7;0). Распространим ее на диапазон E2:F102

Создадим еще один столбец, в котором будет храниться информация о времени начала каждого процесса. Время начала процесса определяется как разность между временем его окончания и продолжительностью самого процесса. Те процессы, которые начинают выполняться после 150 миллисекунд, учитываются в окончательном расчете.

N22		$\vee \mid f_X \Sigma \cdot = [$						
	A	В	С	D	E	F	G	Н
1	<u>ID</u> процесса	Время выполнения процесса (мс)	ID поставщиков данных	•	v	•	Через сколько закончитс я	Через скольк о начнёт ся ▼
2	1021	61	0	0	0	0	61	0
3	1027	25	0	0	0	0	25	0
4	1043	51	0	0	0	0	51	0
5	1045	36	0	0	0	0	36	0
6	1047	26	0	0	0	0	26	0
7	1052	18	0	0	0	0	18	0
8	1087	57	0	0	0	0	57	0
9	1113	55	0	0	0	0	55	0
10	1120	89	0	0	0	0	89	0
11	1126	85	0	0	0	0	85	0
12	1135	91	0	0	0	0	91	0
13	1161	49	0	0	0	0	49	0
14	1162	63	0	0	0	0	63	0
15	1164	72	0	0	0	0	72	0
16	1180	62	0	0	0	0	62	0
17	1181	23	0	0	0	0	23	0
18	1193	39	0	0	0	0	39	0
19	1199	70	0	0	0	0	70	0
20	1207	63	0	0	0	0	63	0
21	1263	14	0	0	0	0	14	0
	4267	00					00	

Необходимо учесть, что процессы, которые начинаются именно на 150-й миллисекунде, также считаются находящимися в состоянии ожидания, поскольку их запуск возможен только после прохождения указанного временного интервала.

После учета всех вышеописанных факторов исключаем те процессы, которые уже начали выполняться до 150 миллисекунд.

-												
0	1241	23	1014	0	137	0	160	137				
31	1294	44	1014	0	137	0	181	137			, , , , , , ,	, , , , , , ,
32	1109	53	1021	1111	61	141	194	141	_		150Mc	
33	1273	24	1232	0	146	0	170	146				240
4	1089	60	1208	1267	150	82	210	150 за	туск —			210
5	1149	96	1208	0	150	0	246	150 за	туск —	задержка	процесс	
6	1064	91	1061	0	153	0	244	153	1_			
7	1217	59	1061	0	153	0	212	153	2 –			
8	1264	16	1061	0	153	0	169	153	3 —			
9	1094	77	1043	1259	51	159	236	159	4			
0	1188	90	1195	0	159	0	249	159	5	' '		· ' '
1	1269	68	1205	0	162	0	230	162	6			
2	1211	55	1216	0	163	0	218	163	7			
3	1292	27	1052	1192	18	183	210	183	8			
4	1005	50	1120	1046	89	191	241	191	9			
5	1240	20	1057	0	197	0	217	197	10			
6	1275	23	1271	1057	94	197	220	197	11			
7	1020	26	1185	1187	77	210	236	210	12			
8	1122	29	1092	1217	116	212	241	212	13			
9	1229	86	1162	1217	63	212	298	212	14			
00	1146	94	1269	1180	230	62	324	230	15			
)1	1102	40	1267	1122	82	241	281	241	16			
)2	1075	75	1064	1192	244	183	319	244	17			
13												

В результате остается 17 процессов, которые находятся в состоянии ожидания на 150-й миллисекунде. Следовательно, правильным ответом на задачу является число 17.

Ответ: 17

Telegram: @fast_ege