DATS	620	2
Term	2018	R-Fal

Machine Learning I

Quiz 3 October 2, 2018

Quiz 3

Full Name:		
GWID:		

• DATS 6202, Instructor: Yuxiao Huang

Material Covered

- Perceptron
- Adaline

Note

- The quiz has 100 points.
- The quiz period is 20 minutes.
- The quiz is closed book and closed notes.
- The quiz is closed electronics (e.g., no laptops, netbooks, OLPCs, tablets, iPads, calculators, cellular phones, iPhones, Nexi, iPods, Zunes, Kindles, Nooks).
- There is only one correct answer for each Multiple Choice Question.
- For each Calculation question (if there is any), you must show the essential steps. **No mark** will be given if only the result is provided.

1 Description (50 points)

Adaptive Linear Neuron (Adaline)

Picture courtesy of the book *Raschka S. and Mirjalili V.* (2017). *Python Machine Learning. 2nd Edition*.

Consider the Adaline model in the figure above.

1. What does the Net input function do? Write down the equation that summarizes the function.

- 2. What does the Activation function do?
- 3. What is the Error? In other words, it is the difference between which two items?

- 4. Change one thing in the structure of Adaline to get the structure of logistic regression?
- 5. Change one thing in the structure of Adaline to get the structure of linear regression?

2 Calculation (50 points)

Assume the Threshold function in Adaline produces outcomes that are either 0 or 1. Specifically,

$$\hat{y} = \begin{cases} 1 & \text{if } z \ge 0\\ 0 & \text{otherwise} \end{cases}.$$

Here,

- \hat{y} is the predicted class label
- z is the output of the Activation function

Assume there are two features in the data, x_1 and x_2 , and two class labels, 0 and 1.

1. The value of the parameters obtained by gradient descent are as follows:

$$w_0 = -3$$
 and $w_1 = 2$ and $w_2 = 2$.

Calculate the value of z and \hat{y} given the value of x_1 and x_2 :

$$egin{array}{llll} x_1 = 0 & \mbox{and} & x_2 = 0, & z = & \mbox{and} & \hat{y} = \\ x_1 = 0 & \mbox{and} & x_2 = 1, & z = & \mbox{and} & \hat{y} = \\ x_1 = 1 & \mbox{and} & x_2 = 0, & z = & \mbox{and} & \hat{y} = \\ x_1 = 1 & \mbox{and} & x_2 = 1, & z = & \mbox{and} & \hat{y} = \\ \end{array}$$

2. The value of the parameters obtained by gradient descent are as follows:

$$w_0 = -1$$
 and $w_1 = 2$ and $w_2 = 2$.

Calculate the value of z and \hat{y} given the value of x_1 and x_2 :

$$x_1 = 0$$
 and $x_2 = 0$, $z =$ and $\hat{y} =$
 $x_1 = 0$ and $x_2 = 1$, $z =$ and $\hat{y} =$
 $x_1 = 1$ and $x_2 = 0$, $z =$ and $\hat{y} =$
 $x_1 = 1$ and $x_2 = 1$, $z =$ and $\hat{y} =$

THIS PAGE INTENTIONALLY LEFT BLANK

(You may use it as scratch paper, but do submit it as part of your completed exam.)