# PCI Express

## Advances in PC Bus Technology



### PCI Express

Why do we care about PCI Express?



#### It's FAST

- Serial interconnect at 2.5Gb/s
  - PCI transactions are packetized and then serialized
  - LVDS signaling, point-to-point, 8B/10B encoded
  - x1 (by 1) gives real-world performance of 200 MB/s/direction
  - x16 (by 16) gives real-world performance of 3.2 GB/s/direction
- Evolutionary version of PCI
  - Uses same software model

- Point-to-point connection
- Serial bus means fewer pins
- Scaleable: x1, x2, x4, x8, x12, x16, x32
- Gen 1 2.5Gbits/s transfer/direction/s
- Gen 1 Bandwidth: 0.5, 1, 2, 4, 6, 8, 16 GByte/s respectively
- Dual Simplex connection
- Packet based transaction protocol



- Switches used to interconnect multiple devices
- Packet based protocol
- Bandwidth and clocking
- Same memory, IO and configuration address space as PCI
  - Similar transaction types as PCI with additional message transaction
- PCI Express Transactions include:
  - memory read/write, memory read lock, IO read/write, configuration read/write, message requests
- Split transaction model for non-posted

- Data Integrity and Error Handling
  - ✓ RAS capable (Reliable, Available, Serviceable)
  - ✓ Data integrity at: 1) Link level, 2) end-to-end
- Virtual channels (VCs) and traffic classes (TCs) to support differentiated traffic or Quality of Service (QoS)
  - ✓ The ability to define levels of performance for packets
    of different TCs
  - √ 8 TC's and 8 VC's available

- Hot Plug and Hot Swap support
  - Native
  - ✓ No sideband signals
- PCI compatible software model
  - PCI configuration and enumeration software can be used to enumerate PCI Express hardware
  - ✓ PCI Express system will boot existing OS
  - ✓ PCI Express supports existing device drivers
  - New additional configuration address space requires OS and driver update

#### PCI Express Topology



#### **PCI Express Layers**



#### Physical Layer: 8b/10b Encoding



#### **PCI Express Packet Layering**



#### **Conventional PC Type Architecture**



## PCI Express



### **PCI Express Type PC Architecture**



#### PCI Express 8x and 16x Sockets



#### PCI and PCIe Slots on a Motherboard



#### What is the PCI Express Bandwidth?

| Bus                  | Bandwidth (MB/s) |
|----------------------|------------------|
| PCI (32-bit, 33 MHz) | 132 (shared)     |
| x1 PCI Express       | 250 (per slot)   |
| x4 PCI Express       | 1000 (per slot)  |
| x16 PCI Express      | 4000 (per slot)  |

- Some report both directions versus single directions
- Example: x1 PCI Express
  - 500 MB/s (Both Directions)
  - 250 MB/s (Single Direction)
  - 200 MB/s (Single Direction, packet overhead correction)

#### **Evolution of Industry Standard Buses**



### PCI Express Industry Adoption

- First PCI Express desktops shipped mid 2004
- First ExpressCard laptops shipped January 2005
- PCI and PCI Express are side-by-side in all Intel/Dell roadmaps
- Primary consumer drive is graphics processing (gamers, video editing)
  - PCle x16 slot replacing AGP

## Summary

- PCI and PCI Express will be offered side-by-side in Desktop PCs
- Mainstream acceptance of PCI indicates PCI availability for decades
  - ISA still available today, remains popular in industrial segments
  - PCI market size drove software compatibility for PCI Express
- PCI Express will enable new applications for Virtual Instrumentation
- Work to integrate PCI Express and PXI is underway
  - Specifications in 2005, products in 2006
  - Compatibility will preserve investment, while increasing system performance