データ構造とアルゴリズム

2019年4月 - 7月

教員名:松井くにお

研究室:67・106(やつかほ)内線:75-2206

E-mail: kmatsui@neptune.kanazawa-it.ac.jp

この授業について

■ 教室と時間

- ▶ 2EP2クラス:水曜1限@23.323
- ▶ 2EP3クラス:水曜2限@23.323

■ オフィスアワー

- ▶ 火曜5限、場所は 21.405室
- できるだけ事前にメールでアポをとって下さい。
- ▶ これ以外の時間帯:必ずメールでアポをとって下さい。

■ 教科書

▶ アルゴリズムとデータ構造 第2版[森北出版]

学習計画

データ構造とアルゴリズム(松井クラス)講義日程と内容(予定)				
2EP2、2EP3 @23.323				第 1 版 4月10日
日	付	曜日	講義回数	学習内容
4月	10日	(水)	第1回	授業のガイダンス,アルゴリズムの基礎,時間計算量
	17日	(水)	第2回	基本データ構造(配列とリスト、スタックとキュー)
	24日	(水)	第3回	アルゴリズムにおける基本概念(木、再帰)
5月	8日	(水)	第4回	データの探索
	15日	(水)	第5回	ソートアルゴリズム 1 (選択ソート, 挿入ソート)
	22日	(水)	第6回	ソートアルゴリズム 2 (クイックソート,マージソート)
	29日	(水)		休講
	3 1 日	(金) 4限	第7回	ソートアルゴリズムのまとめ 2クラス合同小テスト (教室は23・221)
6月	5日	(水)	第8回	グラフアルゴリズム 1 (グラフとそのデータ構造)
	12日	(水)	第9回	グラフアルゴリズム2(重み付きグラフ、最短経路探索)
	19日	(水)2EP2穴水	第10回	総合演習/アルゴリズム設計手法(2EP3)
	26日	(水) 2EP3穴水	第11回	アルゴリズム設計手法(2EP2)/総合演習
7月	3日	(水)	第12回	総復習
	10日	(水)	第13回	達成度確認試験の過去問
	19日	(金) 4限	第14回	2クラス合同達成度確認試験(教室は23・221) アルゴリズムの限界
	24日	(水)		休講
	3 1 日	(水)	第15回	試験の解答、総復習、自己点検

前回のおさらい

- アルルゴリズムとは
 - ▶ 抽象的なプログラム
- 時間計算量
 - > n → ∞ の時に大きくなる項(係数は取る)
- オーダ記法
 - *> O*(n) (オーダエヌ)
- 漸近的な時間計算量の比較
 - ► $\log n < \sqrt{n} < n < n \log n < n^2 < n^3 < n^4 < 2^n < n!$

今回の内容

■ 基本データ構造

- ▶ 「配列とリスト」
- > 「スタックとキュー」
- ▶ それぞれ2つを対比しながら理解する

■ キーワード

- > LIFO, push, pop
- > FIFO, enqueue, dequeue

配列

- データ構造としてほとんどのプログラミング言語がサポート
- いろいろなデータ型
 - > 整数、実数、文字など
- 同じデータ型で個数がたくさん
 - ➤ C言語の場合
 - int a[6];
 - a[1] = 2;

配列の特徴

- 1次元、2次元・・・を作れる
- 入力は同じデータ型が基本
- 一般にアクセスが高速
 - よく使われるのでコンピュータがそれに合わせて設計されている
- ランダムにアクセス可能
 - ▶ a[5]の次はa[100]のように、順を追う必要なない
- 配列の大きさを決めたら変更不可
 - ▶ 宣言でa[100]と決めたら、その範囲内で使用

配列への挿入

■ 配列の2番目に新しいデータ(5)を挿入

リスト

- 貨車みたいなもの
 - ▶ データ部とポインタ部で構成されている

- ポインタ
 - ▶ 次のデータが入るアドレス
- topポインターヘッド(head)
 - ▶ 最初を表すポインタ

リストの特徴

- いろいろな構造を作れる
 - キュー、スタック、木など
 - ▶ ポインタも複数個可能
- 構造体
 - ▶ 1つの要素の中に複数種類のデータ型可能
- 一般にアクセスは低速
- ランダムアクセス不可
 - ▶ headからたどるのみ
- 実行時に要素の追加、削除が可能

リストへの追加

■ 挿入位置ポインタが指しているノード(データ 2)の後に、挿入ノードポインタが指している ノード(データ5)を挿入する

リストへの追加

- 挿入位置ポインタが指しているノード(データ 2)の後に、挿入ノードポインタが指している ノード(データ5)を挿入する
 - ① 挿入ノードポインタが指しているノードのポインタ部に、挿入 位置ポインタが指しているノードのポインタ部の内容をコピー

リストへの追加

- 挿入位置ポインタが指しているノード(データ 2)の後に、挿入ノードポインタが指している ノード(データ5)を挿入する
 - ② 挿入位置ポインタが指しているノードのポインタ部に、挿入 ノードポインタの内容をコピー

リストから削除

■ 作業ポインタが指しているノード(データ2)の 次のノード(データ3)を削除する

リストから削除

- 作業ポインタが指しているノード(データ2)の 次のノード(データ3)を削除する
 - ▶ 作業ポインタが指しているノードのポインタ部に、次のノードのポインタ部の内容をコピーする

スタック

- LIFO (Last In First Out)
 - ▶ 最後に入れたものが最初に出る
 - ➤ push: スタックにデータを入れる
 - ▶ pop: スタックからデータを取り出す

■ スタックの動き

- (a) 1,4,2を順に格納
- (b) 3を入れる
- (c) 1個データを取り出す
- (d) もう1個データを取り出す

「3」と「2」が取り出される

■ FIFO(First In First Out)

- ▶ 最初に入れたものが最初に出る
- ➤ enqueue: キューにデータを入れる
- ➤ dequeue: キューからデータを取り出す

■ キューの動き

- (a) 1,4,2を順に格納
- (b) 3を入れる
- (c) 1個データを取り出す
- (d) もう1個データを取り出す

「1」と「4」が取り出される

第2週出席課題

【出席課題】学籍番号: クラス・番号: 氏名:

以下の文章の①~⑥について、それぞれ正しい記号を下から選べ、正しい記号が複数存在する場合はすべて列挙せよ、ただし、 ⑤と⑥については、もっとも適切なものを1つだけ選ぶこと.

配列は、(1) . 一方, 連結リストは、(2) .

スタックは、(③)ためのデータ構造であり、キューは、(④) ためのデータ構造である. 配列を用いてn 個のデータを格納するスタックを実現した場合、そのスタックに対するpush とpop の時間計算量は、どちらも(⑤)である. また、配列を用いてn 個のデータを格納するキューを実現した場合、そのキューに対するenqueue とdequeue の時間計算量は、どちらも(⑥)である.

- ①: a. 格納するデータのサイズをあらかじめ決めておく必要がある
 - b. データの追加は連結リストよりつねに高速に実行できる
 - c. 任意の格納場所に対して (C) 時間でデータの読み出しと書き込みが実行 可能である
 - d. サイズが大きく変化するデータを格納するのに向いている
- ②: a. 格納するデータのサイズ変更に対応できる
 - b. 同じデータを格納する配列より必要な記憶領域はつねに小さい
 - c. 先頭のデータの削除は α (1) 時間でできる
 - d. 1つのデータをレコードと呼ばれる格納場所で管理する
- ③: a. 処理要求の順番が早いものから処理を済ませる
 - b. LIFO の順序でデータを格納する
 - c. 処理要求の順番が遅いものから処理を済ませる
 - d. FIFO の順序でデータを格納する
- ④: a. 処理要求の順番が早いものから処理を済ませる
 - b. LIFO の順序でデータを格納する
 - c. 処理要求の順番が遅いものから処理を済ませる
 - d. FIFO の順序でデータを格納する
- \mathfrak{S} : a. $\mathcal{O}(n)$ b. $\mathcal{O}(\log n)$ c. $\mathcal{O}(1)$ d. $\mathcal{O}(2^n)$
- \bigcirc : a. $\mathcal{O}(n)$ b. $\mathcal{O}(\log n)$ c. $\mathcal{O}(1)$ d. $\mathcal{O}(2^n)$