物理学 06 级热力学统计复习材料 (不含计算和证明)

授课老师: 姜良萍

周吕文 zhou.lv.wen@gmail.com

大连大学物理学院 2008 年 01 月 02 日

目 录

1	热力	学的基本规律																	2
	1.1	平衡态									 	 	 		 				 2
	1.2	什么样的系统	是简单	系统							 	 	 		 				 2
	1.3	热平衡定律(2
	1.4																		2
	1.5	物态方程 .																	2
	1.6	广延量和强度																	2
	1.7	功的表达式																	3
		热力学三定律																	3
	1.8																		
	1.9																		3
		理想气体的定理想气体的定理																	3
		理想气体的四																	4
		克劳修斯等式																	4
		熵																	4
	1.14	自由能和吉布	5斯函数	Ž							 		 		 				 5
	., ,																		
2]物质的热力学	性质																5
	2.1	四个特性函数																	5
	2.2																		5
	2.3	气体的节流过																	5
	2.4																		5
	2.5	平衡辐射场与	温度体	权的	关系						 		 		 				 5
	2.6	磁介质系统的	的热力等	基本	方程						 	 	 		 				 6
	2.7	绝热去磁效应	<i>Ž</i>								 	 	 		 				 6
3	单元	系的相变																	6
	3.1	热动平衡判据	Ē																6
	$^{3.1}$																		6
	3.2	吉布斯函数与																	
	-	吉布斯函数与 化学势和巨热	力势								 		 		 				 7
	3.2	吉布斯函数与	力势								 		 		 				
	3.2 3.3	吉布斯函数与 化学势和巨热	、力势 目平衡象	···· 徐件 ·							 	 · ·	 		 				 7
	3.2 3.3 3.4	吉布斯函数与 化学势和巨热 单元系的复构 克拉珀龙方程	、力势 目平衡象	 徐件.					 		 	 	 	 	 	 		 	 7 7
	3.2 3.3 3.4 3.5	吉布斯函数与 化学势和巨热 单元至的发力 克拉珀龙方程 液滴的形成	A力势 目平衡条 E 	 徐件. 					 		 	 	 	 	 	 		 	 7 7 7
	3.2 3.3 3.4 3.5 3.6	吉布斯函数与 化学势和巨热 单元系的复构 克拉珀龙方程	以力势 目平衡条 呈 论 P1:	 条件. 27.		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			 	 	 	 		 	 	•	 	 7 7 7 8
	3.2 3.3 3.4 3.5 3.6 3.7 3.8	吉布斯姆斯里斯斯姆斯里斯斯斯斯斯里斯斯斯里斯斯斯里斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯	N力势 目平衡条 I · · · · · · · · · · · · · · · · · · ·	 条件 . 27 .		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			 	 	 	 		 	 	•	 	 7 7 7 8 9
4	3.2 3.3 3.4 3.5 3.6 3.7 3.8	吉布斯姆斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯	· 力势 目平衡 я E · · · · · · · · · · · · · · · · · · ·	····· ····· 27 ···· 平衡							 		 	 	 	 	•	 	 7 7 7 8 9
4	3.2 3.3 3.4 3.5 3.6 3.7 3.8	吉布斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯	· · · · · · · · · · · · · ·	 件 27 平衡							 		 		 	 		 	 77 77 78 89 9
4	3.2 3.3 3.4 3.5 3.6 3.7 3.8	吉布斯姆斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯	· · · · · · · · · · · · · ·	 件 27 平衡							 		 		 	 		 	 77 77 78 89 99
4	3.2 3.3 3.4 3.5 3.6 3.7 3.8 多元 4.1	吉化单克液液一 新野系 的大孩 有大孩孩孩 有大孩孩孩 有大孩孩孩 有大孩的 有一个人,我们就是我们就是一个人,我们就是我们就是我们就是我们就是我们就是我们就是我们就是我们就是我们就是我们就是	以力势 料 是	·件···27·· 平 (件··							 				 	 		 	 77 77 78 89 99
4	3.2 3.3 3.4 3.5 3.6 3.7 3.8 多元 4.1 4.2	吉化单克液液一 新野和的龙形径级 平角克液液 多复尔系的半二 相量的 大人 电量的 电影响 人名英格兰人姓氏 电电路 电影响	以力势 料 是	·件···27·· 平 (件··							 				 	 		 	 77 77 78 89 99 99
4	3.2 3.3 3.4 3.5 3.6 3.7 3.8 多元 4.1 4.2 4.3	吉化单克液液一 新野系 的大孩 有大孩孩孩 有大孩孩孩 有大孩孩孩 有大孩的 有一个人,我们就是我们就是一个人,我们就是我们就是我们就是我们就是我们就是我们就是我们就是我们就是我们就是我们就是	、力判 力判 ガー ガー ガー ガー ガー ガー ガー ガー ガー ガー	.件	····· ···· ···· ···· 	··· ··· ··· ··· 条件	p1'								 	 			 77 77 88 99 99 100
4	3.2 3.3 3.4 3.5 3.6 3.7 3.8 多元 4.1 4.2 4.3 4.4 4.5	吉化单克液液一 系偏多吉三绝布学元拉滴滴级 复尔系斯律熵函和的发形径红 相量的相的的数据	、力平量	· 件 · · · · · · · · · · · · · · · · · ·	····· ···· ···· ···· 	··· ··· ··· ··· 条件	p1'								 	 			 77 77 88 99 99 100 100
4	3.2 3.3 3.4 3.5 3.6 3.7 3.8 多元 4.1 4.2 4.3 4.4 4.5	吉化单克液液一 系偏多吉三绝 克斯势系珀的半二 相写的相的的 的摩元布定对 粒为系的格公 里 复纳相的的 的 化二二甲基的甲基二甲基的甲基二甲基的甲基二甲基的甲基二甲基甲基甲基甲基甲基甲基甲基	以为平量 · 计变 的 · 平 ·	·····································	·····································	··· ··· ··· ··· ··· ··· ··· ··· ···							 						77 77 88 99 99 100 100
	3.2 3.3 3.4 3.5 3.6 3.7 3.8 多元 4.1 4.2 4.3 4.4 4.5	吉化单克液液一 系偏多吉三绝布学元拉滴滴级 复尔系斯律熵函和的发形径红 相量的相的的数据	以为平量 · 计变 的 · 平 ·	·····································	·····································	··· ··· ··· ··· ··· ··· ··· ··· ···							 						77 77 78 89 99 99 100 100 100
	3.2 3.3 3.4 3.5 3.6 3.7 3.8 多元 4.1 4.2 4.3 4.4 4.5 近独	吉化单克液液一 $ξ$ 偏多吉三绝 $ξ$ $μ$ 自布学元拉滴滴级 的摩元布定对 粒空由斯势系珀的半, 复尔系斯律熵 子间粒函和的龙形径级 平 量的相的的 的及子数巨复方成的级 平 复律两表 最代和线点	以用型:1、1次变 的:甲:中支 然是这些势衡。:1P: 化:衡:达 P 分和谐机	.件件	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·													77 77 77 88 99 99 100 100 100 100
	3.2 3.3 3.4 3.5 3.6 3.7 3.8 多元 4.1 4.2 4.3 4.4 4.5 近独	吉化单克液液一 系偏多吉三绝 立 μ 有學元拉滴滴级 的摩元布定对 粒空 断势系珀的半, 复尔系斯律熵 子间 函和的龙形径级 平 量的相的的 的及 数巨复产成的级 平 复律两表 最代数巨复产权的组 衡 相 衡 根表	以用型:1、1次变 的:甲:中支 然是这些势衡。:1P: 化:衡:达 P 分和谐机	.件件	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·													77 77 77 77 88 99 99 99 100 100 100 100
	3.2 3.3 3.4 3.5 3.6 3.7 3.8 多元 4.1 4.2 4.3 4.4 4.5 近独 5.1 5.2	吉化单克液液一 系偏多吉三绝 立 μ自什布学元拉滴滴级 的摩元布定对 粒空由么斯势系珀的半二 相量的相的的 的及子系数巨复方成的相 平 复律两表 最代和统政 电复种表 最代和统	为甲星,计变 的 三甲,表式 然点、全力,一种 一、 化, 衡, 达 P 分和谐观势	件 ·? · 平件	· · · · · · · · · · · · · · · · · · ·		·····································	· · · · · · · · · · · · · · · · · · ·		·····································									77 77 77 77 88 99 99 99 100 100 100 100 110 110
	3.2 3.3 3.4 3.5 3.6 3.7 3.8 多元 4.1 4.2 4.3 4.4 4.5 近独 5.1 5.2 5.3	吉化单克液液 — 系偏多吉三绝 立 μ自什玻等布学元拉滴滴级 的摩元布定对 粒空由么色概斯势系珀的半二 相量的相的的 的及子系和原数巨复方成的级 平 复律两表 最代和统势理型点,	为甲星,比变 的 1 平,表式 然点度惊受,力,为衡,,P 1, 化,衡,达 P 分和谐观,,势 例, 一种 4 , 一种 4 , 一种 4 , 一种 4 , 一种 5 ,	件 ·? · 平件	· · · · · · · · · · · · · · · · · · ·		·····································	·····································	·····································	·····································									77 77 77 78 89 99 99 100 100 100 100 110 111 111
	3.2 3.3 3.4 3.5 3.6 3.7 3.8 多元 4.1 4.2 4.3 4.4 4.5 5.1 5.2 5.3 5.4	吉化单克液液 — 系偏多吉三绝 立 μ自什玻布学元拉滴滴级 的摩元布定对 粒空由么色斯势系珀的半二 相量的相的的 的及子系和数巨复方成的级 平 复律两表 最代和统势处理发展,该相 衡 . 相 带 表 概表终的	为甲星,比变 的 1 平,表式 然点度惊受,力,为衡,,P 1, 化,衡,达 P 分和谐观,,势 例, 一种 4 , 一种 4 , 一种 4 , 一种 4 , 一种 5 ,	件 ·? · 平件	· · · · · · · · · · · · · · · · · · ·		·····································	·····································	·····································	·····································									77 77 77 77 88 99 99 99 100 100 100 110 111 111 111

第1章 热力学的基本规律

1.1 平衡态

系统的各种宏观性质在长时间内不发生任何变化,这样的状态称为热力学平衡态.

1.2 什么样的系统是简单系统

只需要体积和压强两个状态参量便可以确定系统的状态, 我们称这样的系统为简单系统.

1.3 热平衡定律 (第零定律) 及意义

- 热平衡定律 (第零定律): 如果两个物体各自与第三个物体达到热平衡, 它们彼此也必处在热平衡.
- 意义: 根据热平衡定律可以证明处在平衡态下的系统态函数温度的存在. 热平衡定律不仅给出了温度的概念,而且指明了比较温度的方法.

1.4 三种系数

体胀系数 α

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$$

压强系数 B

$$\beta = \frac{1}{p} \left(\frac{\partial p}{\partial T} \right)_V$$

等温压缩系数 κτ

$$\kappa_T = \frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

三种系数的关系: 由于 p, V, T 三个变是之间存在函数关系 f(p,V,T) = 0(简单系统的物态方程), 其偏导数之间 将存在下述关系

$$\left(\frac{\partial V}{\partial p}\right)_T \left(\frac{\partial p}{\partial T}\right)_V \left(\frac{\partial T}{\partial V}\right)_p = -1$$

因此 α , β , κ_t 满足

$$\alpha = \kappa_t \beta p$$

1.5 物态方程

简单系统的物态方程的一般形式

$$f(p, V, T) = 0$$

理想气体的物态方程

$$pV = nRT$$

范氏方程

$$\left(p + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

1.6 广延量和强度量

- 广延量: 与系统的质量或物质的量成正比的热力学量.
- 强度量: 与系统的质量或物质的量无关的热力学量.

1.7 功的表达式

1. 在准静态过程1中, 外界对系统所作的功可以表示为

$$dW = -VdV$$

如果系统由 V_A 变到 V_B ,则外界对系统所作的功等于上式积分

$$W = -\int_{V_A}^{V_B} p \mathrm{d}V$$

2. 磁化过程功的形式2:

$$dW = Vd\left(\frac{\mu_0 \mathcal{H}^2}{2}\right) + \mu_0 V \mathcal{H} d\mathcal{M}$$

3. 准静态过程中功的一般表达式

$$dW = \sum_{i} Y_{i} dy_{i}$$

1.8 热力学三定律

1. 热力学第一定律 (能量定恒定律): 自然界一切物质都具有能量, 能量有各种不同的形式, 可以从一种形式转化为另一形式, 从一个物体传递到另一个物体, 在传递与转化中能量的数量不变. 另一个表述形式: 第一类永动机是不可能造成的. 数学形式为:

$$dU = dQ + dW$$

- 2. 热力学第二定律 (两种表述形)
 - 克氏表述: 不可能把热量从低温物体传到高温物体而不引起其它变化.
 - 开氏表述: 不可能从单一热源吸热使之完全变成有用的功而不引起其它变化. (第二类永动机是不可能造成的)

数学表达形式:

$$\oint \frac{\mathrm{d}^2 Q}{T} \le 0$$

3. 热力学第三定律

1.9 热容量与焓

等压过程中有:

$$C_{p} = \lim_{\Delta T \to 0} \left(\frac{\Delta Q}{\Delta T} \right)_{p} = \lim_{\Delta T \to 0} \left(\frac{\Delta U + p \Delta V}{\Delta T} \right)_{p} = \left(\frac{\partial U}{\partial T} \right)_{p} + p \left(\frac{\partial V}{\partial T} \right)_{p}$$

引进态函数 H, 名为焓:

$$H = U + pV$$
 $\Delta H = \Delta U + p\Delta V$

则 C_n 可表示为

$$C_p = \left(\frac{\partial H}{\partial T}\right)_p$$

1.10 理想气体的定义

- 宏观: 内能只是温度的函数, 与体积无关的气体.
- 微观: 气体足够稀薄, 分子间的平均距离足够大, 相互作用能量可以忽略, 内能就与体积无关.

对于理想气体有

$$C_V = \frac{\mathrm{d} U}{\mathrm{d} T} \ C_p = \frac{\mathrm{d} H}{\mathrm{d} T}$$

并且可以证明 (证明过程见课本 P31): $C_p - C_V = nR$

¹什么是准静态见课本 P18

²推导见课本 p23

1.11 理想气体的四种过程

• 等温膨胀过程: 气体从状态 (p_1, V_1, T_1) 等温膨胀而达到状态 (p_2, V_2, T_1) , 在这过程中外界做功

$$W = -\int_{V_1}^{V_2} p dV = -C \int_{V_1}^{V_2} \frac{dV}{V} = -RT \ln \frac{V_2}{B_1}$$

由于理想气体的等温膨胀过程中内能不变, 所以气体从外办吸收的热量为

$$Q = -W = RT \ln \frac{V_2}{B_1}$$

• 绝热膨胀过程: 气体从状态 (p_1,V_1,T) 等温膨胀而达到状态 (p_2,V_2,T) , 在这过程中外界做功

$$W = -\int_{V_1}^{V_2} p dV = -C \int_{V_1}^{V_2} \frac{dV}{V^r} = \frac{C}{r-1} \left(\frac{1}{V_2^{r-1}} - \frac{1}{V_1^{r-1}} \right)$$

但 $p_1V_1^r = p_2V_2^r = C$, 所以上式可以化为

$$W = \frac{p_2 V_2 - p_1 V_1}{r - 1} = \frac{R(T_2 - T_1)}{r - 1} = C_V(T_2 - T_1)$$

由于是**绝热**过程, 故从外界收热 Q=0.

- 等温压缩过程: 与等温膨胀过程类似.
- 绝热压缩过程: 与绝热膨胀过程类似.

1.12 克劳修斯等式和不等式

一个系统在一个循环过程中分别从 T_1 和 T_2 热源吸收的热量分别为 Q_1 和 Q_2 ,则有以下关系

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} \le 0$$

上述称之为克劳修斯等式和不等式. 可推广为 n 个热源的情形: $\sum_{i=1}^{n} \frac{Q_i}{T_i} \leq 0$

1.13 熵

A 和 B 是系统的两个平衡态. 则熵由下式定义

$$S_B - S_A = \int_A^B \frac{\mathrm{d}Q}{T}$$

微分形式

$$\mathrm{d}S = \frac{\mathrm{d}Q}{T}$$

由 dU = dQ + dW, 在可逆过程中, 如果只有体积变化功, 则有 dW = -pdV 所以有

$$\mathrm{d}S = \frac{\mathrm{d}U + p\mathrm{d}V}{T} \quad \vec{\boxtimes} \quad \mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$$

• 理想气体熵变: 对于 nmol 理想气体, 熵可表示为

$$S = nC_{V,m} \ln T + nR \ln V + S_0$$
 \vec{x} $S = nC_{p,m} \ln T + nR \ln p + S'_0$

其中 $S_0 = n(S_{m0} - R \ln n)$, 注意 $S_0 \neq S_0'$

• 熵增加原理: 系统经一过程由初态 A 变为终态 B, 则有 (推导见课本 P55)

$$S_B - S_A = \int_A^B \frac{\mathrm{d}Q}{T} \Rightarrow S_B - S_A \ge 0$$

上式指出,经过绝热过程后,系统的熵永不减少,等号适用于可逆过程,不等号适用于不可逆过程.因此系统在绝热条件下熵减少的过程是不可能实现的.这个结论称为熵增加原理.

1.14 自由能和吉布斯函数

系统由等温过程由初态 A 到达终态 B, 两态熵满足: $S_B - S_A \leq \frac{Q}{T}$. 又根据热力学第一定律, $U_B - U_A = Q + W$ 有

$$S_B - S_A \le \frac{U_B - U_A - W}{T}$$

为简化上式, 我们引进一个新的态函数:

$$F = U - TS$$

称为自由能,则前式可简化为

$$F_A - F_B \leq -W$$

上式表明, 在等温过程中, 系统对外界所作的功 -W 不大于其自由能的减少. 换句话说, 系统自由能的减少是在等温过程中从系统所能获得的最大功. 这个结论称为最大功定理.

第2章 均匀物质的热力学性质

2.1 四个特性函数的全微分

- 热力学的基本方程, 即内能的全微: dU = TdS pdV
- 由焓的定义 H = U + pV, 可得焓的全微分: dH = TdS + Vdp
- 由自由能定义 F = U TS, 可得自由能的全微分: dF = -ST pdV
- 由吉布斯函数定义 G = U Ts + pV, 可得其全微分: dG = -SdT + Vdp

2.2 麦氏关系

麦氏关系的四个表达式:

$$\begin{split} \left(\frac{\partial T}{\partial V}\right)_S &= -\left(\frac{\partial p}{\partial S}\right)_{V'} \quad \left(\frac{\partial T}{\partial p}\right)_S = -\left(\frac{\partial V}{\partial S}\right)_p \\ \left(\frac{\partial S}{\partial V}\right)_T &= -\left(\frac{\partial p}{\partial T}\right)_{V'} \quad \left(\frac{\partial S}{\partial p}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_p \end{split}$$

2.3 气体的节流过程和绝热膨胀过程

p77

2.4 能态函数

2.5 平衡辐射场与温度体积的关系

将空窖辐射看作热力学系统、选温度 T 与体积 V 为状态参量、空窖辐射的内能 U(T,V) 可以表示为

$$U(T,V) = u(T)V$$

利用热力学公式

$$\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_V - p$$

可得

$$u = \frac{T}{3} \frac{\mathrm{d}u}{\mathrm{d}T} - \frac{u}{3} \quad \mathbb{H} \quad T \frac{\mathrm{d}u}{\mathrm{d}T} = 4u$$

积分得

$$u = aT^4$$

其中 a 是积分常数, 上式指出空窖辐射的能量密度与绝对温度 T 的四次方成正比.

现求空窖辐射的熵, 将上式的 u 和 $p=\frac{1}{3}u$ (由列别节夫的实验可证明得到) 代入热力学基本方程 $\mathrm{d}S=\frac{\mathrm{d}U+p\mathrm{d}V}{T}$ 可有

$$dS = \frac{1}{T}d(aT^{4}V) + \frac{1}{3}aT^{3}dV = 4aT^{2}VdT + \frac{4}{3}aT^{3}dV = \frac{4}{3}ad(VT^{3})$$

积分可得

$$S = \frac{4}{3}aT^3V$$

积分中没有常数,因为V=0时就不存在辐射场了.在可逆绝热过程中辐射场的熵不变,这时有

$$T^3V=$$
常量

2.6 磁介质系统的热力学基本方程

当热力学系统中只包括介质而不包括磁场时, 功的表达式为

$$dW = \mu_0 \mathcal{H} dm$$

其中 m = MV 是介质的总磁矩, 如果忽略磁介质的体积变化, 磁介质的热力学基本议程为

$$dU = TdS + \mu_0 \mathcal{H} dm$$

由吉布斯函数 $G = U - TS - \mu_0 \mathcal{H} m$, 微分可得

$$\mathrm{d}G = -S\mathrm{d}T - \mu_0 m\mathrm{d}\mathcal{H}$$

2.7 绝热去磁效应

在绝热条件下减小磁场时,磁介质的温度将降低,这个效应称为绝热去磁致冷效应. 理论证明见 P93-p94.

第3章 单元系的相变

3.1 热动平衡判据

• 孤立系统在稳定平衡状态的必要和充分条件为:

$$\Delta S < 0$$

泰勒展开, 准确到二级: $\Delta S = \delta S + \frac{1}{2}\delta^2 S$, 当熵函数的一级微分 $\delta S = 0$, 熵有极值; 当熵函数的一级微分 $\delta S = 0$, 二级微分 $\delta^2 S < 0$, 熵有极大值. 由 $\delta S = 0$ 可以得到平衡条件, 由 $\delta^2 S < 0$ 可以得到平衡的稳定性 条件

• 等温等容的系统处在稳定平衡状态的必要和充分条件为

$$\Delta F < 0$$

对于 $\Delta F = \delta F + \frac{1}{2}\delta^2 F$, 由 $\delta F = 0$ 和 $\delta^2 F > 0$ 可以确定平衡条件和平衡的稳定性条件.

• 等温等压的系统处在稳定平衡状态的必要和充分条件为

$$\Delta G > 0$$

对于 $\Delta G = \delta G + \frac{1}{2}\delta^2 G$, 由 $\delta G = 0$ 和 $\delta^2 G > 0$ 可以确定平衡条件和平衡的稳定性条件.

3.2 吉布斯函数与摩尔G函数的关系

由于吉布斯函数是广延量, 系统的吉布斯函数等于物质量 n 与摩尔吉布斯函数 $G_m(T,p)$ 之积:

$$G(T, p, n) = nG_m(T, p)$$

3.3 化学势和巨热力势

 μ 称为化学势, 它等于在温度和压强保持不变的条件下, 增加 1 mol 物质时吉布斯函数的改变. 化学势等于摩尔吉布斯函数

$$\mu = \left(\frac{\partial G}{\partial n}\right)_{T,v} = G_m$$

定义 / 为巨热力势:

$$I = F - un$$
 也可表示为: $I = F - G = -pV$

它的全微分为

$$\mathrm{d}I = -S\mathrm{d}T - p\mathrm{d}V - n\mathrm{d}\mu$$

3.4 单元系的复相平衡条件

考虑一个单元两相系, 构成一个孤立系统. 用 α 和 β 表示两相, 它的总内能, 总体积和总物质的量应是恒定的, 即

$$U^{\alpha} + U^{\beta} =$$
常量; $V^{\alpha} + V^{\beta} =$ 常量; $n^{\alpha} + n^{\beta} =$ 常量

设想一虚变动, α 和 β 相的内能, 体积和物质的量分别发生虚变动 δU^{α} , δV^{α} , δn^{α} 和 δU^{β} , δV^{β} , δn^{β} , 孤立系条件要求

$$\delta U^{\alpha} + \delta U^{\beta} = 0$$
; $\delta V^{\alpha} + \delta V^{\beta} = 0$; $\delta n^{\alpha} + \delta n^{\beta} = 0$

可得两相的熵变3分别为

$$\delta S^{\alpha} = \frac{\delta U^{\alpha} + p^{\alpha} \delta V^{\alpha} - \mu^{\alpha} \delta n^{\alpha}}{T^{\alpha}} = 0; \quad \delta S^{\beta} = \frac{\delta U^{\beta} + p^{\beta} \delta V^{\beta} - \mu^{\beta} \delta n^{\beta}}{T^{\beta}} = 0;$$

根据熵的广延性质,整个系统的熵变是

$$\delta S = \delta S^{\alpha} + \delta S^{\beta} = \delta U^{\alpha} \left(\frac{1}{T^{\alpha}} - \frac{1}{T^{\beta}} \right) + \delta V^{\alpha} \left(\frac{p^{\alpha}}{T^{\alpha}} - \frac{p^{\beta}}{T^{\beta}} \right) - \delta n^{\alpha} \left(\frac{\mu^{\alpha}}{T^{\alpha}} - \frac{\mu^{\beta}}{T^{\beta}} \right)$$

整个系统达到平衡时, 总熵有极大值, 必有

$$\delta S = 0$$

因为整个系统的熵变中 δU^{α} , δV^{α} , δn^{α} 是可以独立改变的, $\delta S=0$ 要求

$$\frac{1}{T^{\alpha}} - \frac{1}{T^{\beta}} = 0; \quad \frac{p^{\alpha}}{T^{\alpha}} - \frac{p^{\beta}}{T^{\beta}} = 0; \quad \frac{\mu^{\alpha}}{T^{\alpha}} - \frac{\mu^{\beta}}{T^{\beta}} = 0;$$

即

$$T^{\alpha}=T^{\beta}; \ p^{\alpha}=p^{\beta}; \ \mu^{\alpha}=\mu^{\beta};$$

上式指出,整个系统达到平衡时,两相的温度,压强和化学势必须分别相等.这就是单元复相系达到平衡所要满足的平衡条件.

3.5 克拉珀龙方程

单元系三相共享时,三相的温度,压强和化学势势都必须相等,即

$$T^{\alpha} = T^{\beta} = T^{\gamma} = T$$
 $p^{\alpha} = p^{\beta} = p^{\gamma} = p$ $\mu^{\alpha}(T, p) = \mu^{\beta}(T, p) = \mu^{\gamma}(T, p)$

设 (T,P) 和 (T+dT,p+dp) 是两相平衡曲线上邻近的两点. 在这两点上, 两相的化学势都相等:

$$\mu^{\alpha}(T,p) = \mu^{\beta}(T,p)$$

$$\mu^{\alpha}(T+\mathrm{d}T,p+\mathrm{d}p) = \mu^{\beta}(T+\mathrm{d}T,p+\mathrm{d}p)$$

 $^{^{3}}$ 对于开系有 d $G = -SdT + Vdp + \mu dn$, 见课本 P108

两式相减,得

$$\mathrm{d}\mu^\alpha = \mathrm{d}\mu^\beta$$

上式表示, 当沿着平衡曲线由 (T,p) 变到 $(T+\mathrm{d}T,p+\mathrm{d}p)$ 时, 两相的化学势的变化相等, 化学势的全微分为 $\mathrm{d}\mu=-S_m\mathrm{d}T+V_m\mathrm{d}p$. 其中 S_m 和 V_m 分别是摩尔熵和摩尔体积, 代入上式得

$$-S_m^{\alpha} dT + V_m^{\alpha} dp = -S_m^{\beta} dT + V_m^{\beta} dp$$

或

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{S_m^{\beta} - S_m^{\alpha}}{V_m^{\beta} - V_m^{\alpha}}$$

以 L 表示 1mol 物质由 α 相转到 β 相时所吸收的相变潜热, 因为相变时物质的温度不变, 有 $L=T(S_m^\beta-S_m^\alpha)$, 代入上式, 得

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{L}{T(V_m^{\beta} - V_m^{\alpha})}$$

上式称为克拉珀龙方程, 它给出了两相平衡曲线的斜率.

3.6 液滴的形成

设液滴为 α 相, 蒸气为 β 相, 表面为 γ 相. 三相的热力学基本方程分别为

$$dU^{\alpha} = T^{\alpha} dS^{\alpha} - p^{\alpha} dV^{\alpha} + \mu^{\alpha} dn^{\alpha}$$
$$dU^{\beta} = T^{\beta} dS^{\beta} - p^{\beta} dV^{\beta} + \mu^{\beta} dn^{\beta}$$
$$dU^{\gamma} = T^{\gamma} dS^{\gamma} + \sigma dA$$

热力学中, 把表面理想为几何面, 因此表面相的物质的量 $n^{\gamma} = 0$. 系统热平衡条件:

$$T^{\alpha} = T^{\beta} = T^{\gamma}$$

设想在温度和总体积不变的条件下,系统发生一个虑变动. 三相的物质的量,体积和面积分别有 δn^{α} , δV^{α} , δn^{β} , δV^{β} , δA 的变化,由于在虑变动中系统的总物质的量和总体积保持不变,因此有

$$\delta n^{\alpha} + \delta n^{\beta} = 0; \quad \delta V^{\alpha} + \delta V^{\beta} = 0$$

在这虚变动中, 三相自由能的变化为

$$\delta F^{\alpha} = -p^{\alpha} \delta V^{\alpha} + \mu^{\alpha} \delta n^{\alpha}$$
$$\delta F^{\beta} = -p^{\beta} \delta V^{\beta} + \mu^{\beta} \delta n^{\beta}$$
$$\delta F^{\gamma} = \sigma \delta A$$

在三相温度相等的条件下,整个系统的自由能是三相的自由能之和,整个系统自由能变化

$$\delta F = \delta F^{\alpha} + \delta F^{\beta} + \delta F^{\gamma} = -(p^{\alpha} - p^{\beta})\delta V^{\alpha} + \sigma \delta A + (\mu^{\alpha} - \mu^{\beta})\delta n^{\alpha}$$

如果假定液滴是球形的,有

$$V^{lpha}=rac{4\pi}{3}r^{3},\;\;A=4\pi r^{2}$$
 $\delta V^{lpha}=4\pi r^{2}\delta r,\;\;\delta A^{lpha}=8\pi r\delta r$

则整个系统自由能变化可化为

$$\delta F = -\left(p^{\alpha} - p^{\beta} - \frac{2\sigma}{r}\right)\delta V^{\alpha} + (\mu^{\alpha} - \mu^{\beta})\delta n^{\alpha}$$

根据自由能判据, 在温度和总体积不变的条件下, 平衡态的自由能最小, 必有 $\delta F=0$. 因为 δV^{α} 和 δn^{α} 是任意的, 所以有

$$p^{\alpha} = p^{\beta} + \frac{2\sigma}{r}, \quad \mu^{\alpha} = \mu^{\beta}$$

上式是力学平衡条件,它指出,由于表面张力有使液滴收缩的趋势,液滴的压强必须大于蒸气的压强才能维持力学平衡.

3.7 液滴半径的讨论 P127

在一定的蒸气压强下 p' 下,与蒸气达到平衡的液滴半径 r_c 为

$$r_c = \frac{2\sigma v^{\alpha}}{RT \ln \frac{p'}{p}}$$

 r_c 称为中肯半径. 由上式可以看出, 对于 $r>r_c$ 的液滴, 有 $\mu^{\alpha}<\mu^{\beta}$, 因而液滴将继续凝结而增大, 对于 $r< r_c$ 的液滴, 有 $\mu^{\alpha}>\mu^{\beta}$, 因而液滴将气化而消失.

3.8 一级, 二级相变

• 一级相变: 在相变点两相的化学势连续, 但化学势的一级偏导数存在突变:

$$\mu^{(1)}(T,p) = \mu^{(2)}(T,p)$$

$$\frac{\partial \mu^{(1)}}{\partial T} \neq \frac{\partial \mu^{(2)}}{\partial T}, \quad \frac{\partial \mu^{(1)}}{\partial p} \neq \frac{\partial \mu^{(2)}}{\partial p}$$

• 二级相变: 相变点两相的化学势和化学势的一级偏导数连续, 但化学势的二级偏导数存在突变, 称为二级相变. 因为

$$c_{p} = T \left(\frac{\partial s}{\partial T} \right)_{p} = -T \frac{\partial^{2} \mu}{\partial T^{2}}$$

$$\alpha = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_{p} = \frac{1}{v} \frac{\partial^{2} \mu}{\partial T \partial p}$$

$$\kappa_{T} = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_{T} = -\frac{1}{v} \frac{\partial^{2} \mu}{\partial p^{2}}$$

第4章 多元系的复相平衡的化学平衡

4.1 偏摩尔量

• 选 $T, p, n1, \cdots, n_k$ 为状态参量, 系统的三个基本热力学函数体积, 内能, 熵分别为

$$V = V(T, p, n1 \cdots n_k); \quad U = U(T, p, n1 \cdots n_k); \quad S = S(T, p, n1 \cdots n_k)$$

如果保持系统的温度和压强不变, 令系统中各组份都增为 λ 倍, 则有

$$V = V(T, p, \lambda n 1 \cdots \lambda n_k) = \lambda V(T, p, n 1 \cdots n_k)$$

$$U = U(T, p, \lambda n 1 \cdots \lambda n_k) = \lambda U(T, p, n 1 \cdots n_k)$$

$$S = S(T, p, \lambda n 1 \cdots \lambda n_k) = \lambda S(T, p, n 1 \cdots n_k)$$

由欧勒定理可知:

$$V = \sum_{i} n_{i} \left(\frac{\partial V}{\partial n_{i}} \right)_{T,p,n_{j}}, \quad U = \sum_{i} n_{i} \left(\frac{\partial U}{\partial n_{i}} \right)_{T,p,n_{j}}, \quad S = \sum_{i} n_{i} \left(\frac{\partial S}{\partial n_{i}} \right)_{T,p,n_{j}}$$

定义

$$v_i = \left(\frac{\partial V}{\partial n_i}\right)_{T,p,n_i}$$
, $u_i = \left(\frac{\partial U}{\partial n_i}\right)_{T,p,n_i}$, $s_i = \left(\frac{\partial S}{\partial n_i}\right)_{T,p,n_i}$

 v_i, u_i, s_i 分别称为 i 组元的偏摩尔体积, 偏摩尔内能和偏摩尔熵. 它们的物理意义是, 在保持温度, 压强和其它组元物质的量不变的条件下, 增加 1mol 的 i 组元物质时, 系统的体积 (内能, 熵)r 增量.

• 同样,对于广延量熵有

$$G = \sum_{i} n_{i} \left(\frac{\partial G}{\partial n_{i}}\right)_{T,p,n_{i}} = \sum_{i} n_{i} \mu_{i}$$

其中 u_i 是 i 组元的偏摩尔吉布斯函数.

• 对于多元复相系, 每一个相各有其热力学函数和热力学基本方程, 如 α 相有

$$dU^{\alpha} = T^{\alpha} dS^{\alpha} - p^{\alpha} dV^{\alpha} + \sum_{i} \mu_{i}^{\alpha} dn_{i}^{\alpha}$$

• 根据体积, 内能, 熵和物质的量的广延性质, 整个复相系统的体积, 内能, 熵和 i 组元的物质的量为

$$V = \sum_{\alpha} V^{\alpha}$$
, $U = \sum_{\alpha} U^{\alpha}$

$$S = \sum_{\alpha} S^{\alpha}, \quad n_i = \sum_{\alpha} n_i^{\alpha}$$

4.2 多元系的复相平衡条件

设两相 α 和 β 都含 k 个组元, 并设热平衡和力学平衡条件已满足, 则多元系的相变平衡条件为

$$\mu_i^{\alpha} = \mu_i^{\beta} \quad (i = 1, 2, \cdots, k)$$

它指出整个系统达到平衡时,两相中各组元的化学势必须分别相等.

4.3 吉布斯相律

多元复相系有 φ 个相, 每个相有 k 个组元, 则总数为 $(k+1)\varphi$ 个的强度量中可以独立改变的只有 f 个 (证明见: 课本 P150):

$$f = (k+1)\varphi - (k+2)(\varphi - 1)$$
 $\square : f = k+2-\varphi$

上式称为吉布斯相律. f 称为多元复相系的自由度数, 是多元复相系可以独立改变的强度量变量的数.

4.4 三定律的两种表达形式成立的条件 p170

通常认为, 能氏定理和绝对零度不能达到原理是热力学第三定律的两种表述:

1. 能氏定理: 凝聚系的熵在等温过程中的改变随绝地温度趋于零, 即

$$\lim_{T\to 0} (\Delta S)_T = 0$$

其中 $(\Delta S)_T$ 指在等温过程中熵的改变

2. 绝对零度不能达到原理: 不可能使一个物体冷却到绝对温度的零度.

4.5 绝对熵的表达式 P172

以绝对零度为参考态, 熵 S(T,V) 可表为

$$S(T,V) = \int_0^T \frac{C_V}{T} dT$$

第5章 近独立粒子的最概然分布

5.1 *u* 空间及代表点和轨道

为了形象地描述粒子的力学运动状态, 用 q_1, \dots, q_r ;, p_1, \dots, p_r 共 2r 个变量为直角坐标, 构成一个 2r 维空间, 称为 μ 空间.

粒子在某一时刻的力学运动状态 $(q_1, \cdots, q_r; p_1, \cdots, p_r)$ 可以用 μ 空间中的一点表示, 称为粒子力学运动状态的代表点.

当粒子的运动状态随时间改变时, 代表点相应地在 μ 空间中移动, 描画出一条轨道.

5.2 自由粒子和线性谐振子

• 自由粒子是不受力的作用而作自由运动的粒子. 不存在外场时, 理想气体的分子或金属的自由电子都可近似看作自由粒子.

当粒子在三维空间运动时,它的自由度为 3. 粒子任一时刻位置可由 x, y, z 确定,动量为

$$p_x = m \cdot x$$
, $p_y = m \cdot y$, $p_z = m \cdot z$

自由粒子的能量是其本身的动能

$$\varepsilon = \frac{1}{2m}(p_x^2 + p_y^2 + p_z^2)$$

• 对于自由度为 1 的一维线性谐振子, 在任一时刻, 粒子的位置由它的位移 x 确定, 动量为 $p = m \cdot x$. 它的能量是其动能和势能之和:

$$\varepsilon = \frac{p^2}{2m} + \frac{A}{2}x^2 = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

代表点在 μ 空间中轨道是上式确定的一个椭圆, 其标准形式:

$$\frac{p^2}{2m\varepsilon} + \frac{x^2}{\frac{2\varepsilon}{m\omega^2}} = 1$$

5.3 什么叫系统的微观运动状态一气体的力学运动状态

5.4 玻色子和费米子

自然界中微观粒子可分为两类:

- 玻色子: 自旋量子数为半整数的"基本"粒子. 如电子, μ 子, 质子, 中子等.
- 费米子: 自旋量子数为整数的"基本"粒子. 如光子, π 介子等.

5.5 等概率原理

等概率原理:对于处在平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的.等概率原理是平衡态统计物理的基本假设.

5.6 玻色和费米系统的与分布 $\{a_I\}$ 相应的微观状态数

• 玻色系统与分布 $\{a_l\}$ 相应的微观状态数为

$$\Omega_{B.F.} = \prod_l rac{(\omega_l + a_l - 1)!}{a_l!(\omega_l - 1)!}$$

• 费米系统与分布 $\{a_1\}$ 相应的微观状态数为

$$\Omega_{F.D.} = \prod_{l} \frac{\omega_{l}!}{a_{l}!(\omega_{l} - a_{l})!}$$

5.7 三种分布的关系

• 玻耳兹曼分布

$$a_l = \omega_l e^{-\alpha - \beta \varepsilon_l}$$

• 玻色分布

$$a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} - 1}$$

• 费米分布

$$a_l = \frac{\omega_l}{e^{\alpha + \beta \varepsilon_l} + 1}$$

其中参数 α 和 β 由下述条件确定:

$$\sum_{l} a_{l} = N, \quad \sum_{l} \varepsilon_{l} a_{l} = E$$

三种分布的关系: 如果参数 α 满足条件: $e^{\alpha} \gg 1$ 时, 玻色和费米分布中分母中的 ±1 就可以忽略, 这时玻色分布式和费米分布式都过渡到玻耳兹曼分布.

当以下关系

$$\frac{a_l}{\omega_l} \ll 1$$
 (对所有 l)

得到满足时,有

$$\Omega_{B.E.}pprox rac{\Omega_{M.B.}}{N!}pprox \Omega_{F.D.}$$