Knaster-Tarski theorem

문순원

December 1, 2023

Basic definitions

Definition (Bottom and top element)

A bottom (top) element of a poset is an element less (greater) than or equal to any elements in the poset. We write \bot and \top for a bottom element and a top element, respectively.

$$\forall x \in L, \bot \sqsubseteq x$$

$$\forall x \in L, x \sqsubseteq \top$$

Definition (Infimum and supremum)

Let (L, \sqsubseteq) be a poset and A be a subset of L. Then α is an infimum (meet) of A if α is a lower bound of A and $l \sqsubseteq \alpha$ for every lower bound l of A. Similary, β is a supremum (join) of A if β is an upper bound of A and $\beta \sqsubseteq u$ for every upperbound u of A.

Bottom and top elements, as well as infimum and supremum, are unique if they exist.

Basic definitions

Definition (Complete lattice)

A poset (L, \sqsubseteq) is a complete lattice if every subset of L has an infimum and a supremum. We write $\prod A$ and $\coprod A$ for the infimum and the supremum of A, respectively.

Example (Power set lattice)

Given a set A, $(\mathcal{P}(A), \subseteq)$ forms a complete lattice.

Lemma

Complete lattice has the bottom and the top element, and they can be represented as follows.

$$\bot = \prod L = \bigsqcup \varnothing$$
$$\top = \prod \varnothing = \bigsqcup L$$

Remark

Existence of supremum is enough for a poset to be a complete lattice. Let (L, \sqsubseteq) be a poset where every subset of L has a supremum, and let A be a subset of L. Define $D = \{l \mid l \text{ is a lower bound of } A\}$ and $\alpha = \bigsqcup D$. Then α is the infimum of A.

Knaster-Tarski theorem

Definition (Fixed point)

Let (L, \sqsubseteq) be a complete lattice, and $f: L \to L$. Then $x \in L$ is said to be a fixed point, prefixed point, or postfixed point when it satisfies x = f(x), $f(x) \sqsubseteq x$, $x \sqsubseteq f(x)$, respectively.

Lemma

Let (L, \sqsubseteq) be a complete lattice, and $f: L \to L$ be an order-preserving function. Then f has the least fixpoint $\mu = \bigcap \{x \in L \mid f(x) \sqsubseteq x\}$ and the greatest fixpoint $\nu = \bigcup \{x \in L \mid x \sqsubseteq f(x)\}.$

Proof.

Let $D = \{x \in L \mid x \in f(x)\}$ and $\nu = \bigsqcup D$. Let $x \in D$. Then $x \in f(x)$ and $x \in \nu$, from which we know $x \in f(x) \in f(\nu)$ by monotonicity of f. Since x is arbitrary, $f(\nu)$ is an upper bound of D, and thus $\nu \in f(\nu)$. Again, by monotonicity of f, $f(\nu) \in f(f(\nu))$. But then $f(\nu) \in D$ and thus $f(\nu) \in \nu$. Then $\nu = f(\nu)$ by the antisymmetry of \subseteq . The same argument can be used to show that μ is the least fixpoint.

Knaster-Tarski theorem

Theorem (Knaster-Tarski)

Let (L, \sqsubseteq) be a complete lattice, and $f: L \to L$ be an order-preserving function. Let $P \subseteq L$ be the set of fixpoints of f. Then (P, \sqsubseteq) forms a complete lattice.

Proof.

Let W be a subset of P. Define D as the set of upper bounds of W, and suppose $x \in D$, $w \in W$. Then $w \subseteq x$ and $w = f(w) \subseteq f(x)$, by monotonicity of f. Since w is arbitrary, $f(x) \in D$ for all $x \in D$, and thus $f(D) \subseteq D$. Consider a restriction of f from D to D. Then f has the least fixpoint in D. Call it α . Then it is evident that α is the supremum of W in P.

Inductively defined set

$$\frac{1}{\mathsf{nil} \in \mathsf{Tree}} \quad \frac{t_0 \in \mathsf{Tree}}{\mathsf{bin}(t_0, t_1) \in \mathsf{Tree}}$$

Figure: An inductive definition of binary tree

Inductively defined set

$$\frac{1}{\mathsf{nil} \in \mathsf{Tree}} \quad \frac{t_0 \in \mathsf{Tree}}{\mathsf{bin}(t_0, t_1) \in \mathsf{Tree}}$$

Figure: An inductive definition of binary tree

Consider the power set lattice $(\mathcal{P}(T), \subseteq)$ where

$$\alpha \in \mathbf{2}^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, \ldots\}$$

$$\hat{t} \in T = \mathbf{2^2}^*$$

Define $f: \mathcal{P}(T) \to \mathcal{P}(T)$ as follows.

$$\begin{aligned} \mathsf{nil}(\alpha) &= 0 \\ \mathsf{bin}(\hat{t}_0, \hat{t}_1)(\alpha) &= \begin{cases} 1 & \text{if } \alpha = \varepsilon \\ \hat{t}_0(\beta) & \text{if } \alpha = 0\beta \\ \hat{t}_1(\beta) & \text{if } \alpha = 1\beta \end{cases} \\ f(X) &= \{\mathsf{nil}\} \cup \{\mathsf{bin}(t_0, t_1) \mid t_0, t_1 \in X\} \end{aligned}$$

Inductively defined set

f is an order-preserving function.

$$f(X) = \{\mathsf{nil}\} \cup \{\mathsf{bin}(t_0, t_1) \mid t_0, t_1 \in X\}$$

By using Knaster-Tarski theorem, we can define the set of binary trees with following properties as the least fixpoint of f.

$$\mathsf{Tree} = \boldsymbol{\mu}(f)$$

$$\mathsf{Tree} = f(\mathsf{Tree})$$

$$f(X) \subseteq X \Rightarrow \mathsf{Tree} \subseteq X$$

Inductively defined relation

$$\frac{1}{\mathsf{nil} \lesssim_{\mathsf{Tree}} t} \quad \frac{t_0 \lesssim_{\mathsf{Tree}} t_0' \quad t_1 \lesssim_{\mathsf{Tree}} t_1'}{\mathsf{bin}(t_0, t_1) \lesssim_{\mathsf{Tree}} \mathsf{bin}(t_0', t_1')}$$

Figure: Inductive definition of tree relation

Consider $(\mathcal{P}(\mathsf{Tree} \times \mathsf{Tree}), \subseteq)$. We can define following partial order on Tree.

$$\begin{split} g_{\mathsf{Tree}}(R) = & \{ (\mathsf{nil}, t) \mid t \in \mathsf{Tree} \} \cup \{ (\mathsf{bin}(t_0, t_1), \mathsf{bin}(t_0', t_1')) \mid (t_0, t_0') \in R, (t_1, t_1') \in R \} \\ & (\lesssim_{\mathsf{Tree}}) = \mu(g_{\mathsf{Tree}}) \\ & (\lesssim_{\mathsf{Tree}}) = g_{\mathsf{Tree}}(\lesssim_{\mathsf{Tree}}) \\ & g_{\mathsf{Tree}}(R) \subseteq R \Rightarrow (\lesssim_{\mathsf{Tree}}) \subseteq R \end{split}$$

Inductive proof

The following proof is an example of inductive proof using Tarski's principle.

Example (Reflexivity of ≤_{Tree})

Let $X=\{t\mid t\lesssim_{\mathsf{Tree}} t\}$. We have to show that $\mathsf{Tree}\subseteq X$. By using Tarski's principle, it is enough to show $f(X)\subseteq X$. Let $t\in f(X)$. By unfolding the definition of f and X, we have to show $(t,t)\in (\lesssim_{\mathsf{Tree}})$ whenever

$$t \in \{\mathsf{nil}\} \cup \{\mathsf{bin}(t_0, t_1) \mid t_0 \lesssim_{\mathsf{Tree}} t_0, t_1 \lesssim_{\mathsf{Tree}} t_1\}$$

(i) When t = nil,

$$(\mathsf{nil}, \mathsf{nil}) \in (\lesssim_{\mathsf{Tree}}) = g_{\mathsf{Tree}}(\lesssim_{\mathsf{Tree}}) = \{(\mathsf{nil}, t) \mid t \in \mathsf{Tree}\} \cup \{\ldots\}$$

(ii) When $t = bin(t_0, t_1)$ for some t_0, t_1 s.t. $t_0 \lesssim_{\mathsf{Tree}} t_0$ and $t_1 \lesssim_{\mathsf{Tree}} t_1$,

$$\begin{split} (\mathsf{bin}(t_0,t_1),\!\mathsf{bin}(t_0,t_1)) \in (\lesssim_{\mathsf{Tree}}) &= g_{\mathsf{Tree}}(\lesssim_{\mathsf{Tree}}) = \\ & \{(\mathsf{nil},t) \mid t \in \mathsf{Tree}\} \cup \{(\mathsf{bin}(t_0,t_1),\mathsf{bin}(t_0',t_1')) \mid t_0 \lesssim_{\mathsf{Tree}} t_0', t_1 \lesssim_{\mathsf{Tree}} t_1'\} \end{split}$$

Coinductively defined set and relation

The greatest fixpoint of f is a set of non-wellfounded trees.

$$\begin{split} f(X) &= \{\mathsf{nil}\} \cup \{\mathsf{bin}(t_0,t_1) \mid t_0,t_1 \in X\} \\ &\quad \mathsf{CoTree} = \boldsymbol{\nu}(f) \\ &\quad \mathsf{CoTree} = f(\mathsf{Tree}) \\ &\quad X \subseteq f(X) \Rightarrow X \subseteq \mathsf{CoTree} \end{split}$$

Define a partial order of CoTree.

$$\begin{split} g_{\mathsf{CoTree}}(R) &= \{(\mathsf{nil},t) \mid t \in \mathsf{CoTree}\} \cup \{(\mathsf{bin}(t_0,t_1),\mathsf{bin}(t_0',t_1')) \mid (t_0,t_0') \in R, (t_1,t_1') \in R\} \\ &\qquad \qquad (\lesssim_{\mathsf{CoTree}}) = \boldsymbol{\nu}(g_{\mathsf{CoTree}}) \\ &\qquad \qquad (\lesssim_{\mathsf{CoTree}}) = g_{\mathsf{CoTree}}(\lesssim_{\mathsf{CoTree}}) \\ &\qquad \qquad R \subseteq g_{\mathsf{CoTree}}(R) \Rightarrow R \subseteq (\lesssim_{\mathsf{CoTree}}) \end{split}$$

Coinductive proof

Example (Transitivity of \lesssim_{CoTree})

Let $R = \{(t,t'') \mid \exists t', t \lesssim_{\mathsf{CoTree}} t', t' \lesssim_{\mathsf{CoTree}} t''\}$. We will show that $R \subseteq (\lesssim_{\mathsf{CoTree}})$. By using Tarski's principle, it is enough to show $R \subseteq g_{\mathsf{CoTree}}(R)$. Let $(t,t'') \in R$. Then there is t' s.t. $t \lesssim_{\mathsf{CoTree}} t'$ and $t' \lesssim_{\mathsf{CoTree}} t''$. By unfolding the definition of g_{CoTree} , we have to show

$$(t,t'') \in \{(\mathsf{nil},t) \mid t \in \mathsf{CoTree}\} \cup \{(\mathsf{bin}(t_0,t_1),\mathsf{bin}(t_0',t_1')) \mid (t_0,t_0') \in R, (t_1,t_1') \in R\}$$

By using $(\lesssim_{CoTree}) = g_{CoTree}(\lesssim_{CoTree})$, we know that

$$\begin{split} (t,t'),(t',t'') &\in \{(\mathsf{nil},t) \mid t \in \mathsf{CoTree}\} \\ &\quad \cup \{(\mathsf{bin}(t_0,t_1),\mathsf{bin}(t_0',t_1')) \mid t_0 \lesssim_{\mathsf{CoTree}} t_0',t_1 \lesssim_{\mathsf{CoTree}} t_1'\} \end{split}$$

Then there are two possible cases.

(i) When t = nil,

$$(\mathsf{nil},t'') \in \{(\mathsf{nil},t) \mid t \in \mathsf{CoTree}\}$$

(ii) When $t = \text{bin}(t_0, t_1)$, $t' = \text{bin}(t'_0, t'_1)$, and $t'' = \text{bin}(t''_0, t''_1)$ for some $t_0, t_1, t'_0, t'_1, t''_0, t''_1$ s.t. $t_0 \lesssim_{\text{CoTree}} t'_0, t_1 \lesssim_{\text{CoTree}} t'_1$, and $t''_0 \lesssim_{\text{CoTree}} t''_1$,

$$(\mathsf{bin}(t_0,t_1),\mathsf{bin}(t_0'',t_1'')) \in \{(\mathsf{bin}(t_0,t_1),\mathsf{bin}(t_0',t_1')) \mid (t_0,t_0') \in R, (t_1,t_1') \in R\}$$