# Adversarial Machine Learning: A review of the "Adversarial Robustness Toolbox (ART)"

Habtamu Desalegn Woldeyohannes 877159

Ca' Foscari University of Venice Department of Environmental Sciences, Informatics and Statistics

Master's Thesis

Supervisor: Cloudio Lucchesse



### Adversarial Robustness Toolbox (ART) V1.5.1 <sup>1</sup>

- Open source ML Security Library developed by IBM. (current version 1.6.1)
- Written in Python, ML Framework/Library agnostic toolbox: TF, Pytorch, MXNet, Scikit-learn, LightGBM, ...
- Consist of SOTA Adversarial Attacks, Defences and Model Robustness Metrics Algorithms. And supports all data types: Tabular, Images, Video, Audio, ...
- ART Adversarial Attacks
  - Security Attacks on ML (Poisoning Attacks and Evasion Attacks)
  - Privacy Attacks on ML (Inference Attacks and Extraction Attacks))



<sup>&</sup>lt;sup>1</sup>M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig, I. Molloy, and B. Edwards. Adversarial robustness toolbox v1.2.0. CoRR, 2018



### ML Models: Attack unaware models Scikit-learn models: SVM, DT & RF LightGBM model: GBDT

Adult Census Income dataset:

E constant and all

Experimental original result boldface) amples. (best results Baseline models Precision Recall  $F_1$  score MCC

| SVM  | 0.635 | 0.325 | 0.430 | 0.346 |
|------|-------|-------|-------|-------|
| DT   | 0.609 | 0.760 | 0.676 | 0.565 |
| RF   | 0.689 | 0.714 | 0.701 | 0.605 |
| GBDT | 0.719 | 0.707 | 0.713 | 0.624 |
| ,    |       |       |       |       |

| Experimental    | result on | 1500   | original             | examples |
|-----------------|-----------|--------|----------------------|----------|
| Baseline models | Precision | Recall | F <sub>1</sub> score | e MCC    |
| SVM             | 0.628     | 0.350  | 0.449                | 0.363    |
| DT              | 0.592     | 0.781  | 0.673                | 0.568    |
| RF              | 0.667     | 0.723  | 0.694                | 0.599    |
| GBDT            | 0.694     | 0.714  | 0.704                | 0.615    |

MNIST handwritten digit database Experimental result on 14k MNIST test data.

| Baseline models | Accuracy |
|-----------------|----------|
| SVM             | 0.9957   |
| DT              | 0.9749   |
| RF              | 0.9922   |
| GBDT            | 0.9959   |

Experimental result on MNIST 100 original examples.

| Baseline models | Accuracy |
|-----------------|----------|
| SVM             | 0.994    |
| DT              | 0.972    |
| RF              | 0.986    |
| GBDT            | 0.998    |

#### Skleam tree

- DecisionTreeClassifier
- DecisionTreeRegressor
- ExtraTreeClassifier
- Sklearn.ensemble AdaBoostClassifier
- AdaBoostClassifier
- GradientBoostingClassifier
- ExtraTreesClassifier RandomForestClassifier

sklearn.linear model.LogisticRegression sklearn.naive bayes.GaussianNB sklearn.svm.SVC.

sklearn.svm.LinearSVC lightgbm.Booster

lightgbm.sklearn



### ART Adversarial Attack Algorithms

### ART 1.5.1: Statistics and Issues

# of Issues: 21

Ref: Table 5.1

 ART 1.5.1 library has a total of 37 security attacks on ML Models, including 32 evasion attacks and 5 data poisoning attacks.



#### Estimator (Model) Issues

- AutoAttack
- Auto Projected Gradient Descent Attack
- Threshold Attack
- High Confidence Low Uncertainty Attack
- Pixel Attack
- Spatial Transformation Attack
- Robust DPatch Attack
- ShapeShifter Attack
- Adversarial Patch Attack 'DPatch'
- Frame Saliency Attack
- Adversarial Patch Attack
- Feature Adversaries Attack
- Brendel & Bethge Adversarial Attack

# Evasion Attacks

#### Object has no attribute issues

- Wasserstein Attack
- Simple Black-box Adversarial (SimBA)

#### Unrecognized input dimension issues

- Square Attack
  - Shadow Attack

#### Poison Attacks

- Adversarial Embedding Attack
- Clean-Label Backdoor Attack
  - Backdoor Attacks
- Feature Collision Poisoning Attack



# (1) Decision tree-based attack ART Decision tree Attack (2016)

#### ART Decision tree Attack



• Traversing the learned tree structure



Table 4.10: Experimental results using ART DecisionTree attack against decision

| trees | on census. |           |        |          |       |                 |
|-------|------------|-----------|--------|----------|-------|-----------------|
|       | Test data  | Precision | Recall | F1 score | MCC   | Fooling rate(%) |
|       | Original   | 0.592     | 0.781  | 0.673    | 0.568 | 4               |
|       |            |           |        |          |       |                 |



Offset=20



#### Untargeted Attack

Offset=0.001





### Evasion Attacks

(2) Gradient-based Attacks

| Algorithms                          |            | Objec. | Support | Distance Metrics         |                   |
|-------------------------------------|------------|--------|---------|--------------------------|-------------------|
| Fast Gradient Sign Method (FGSM)    | '14        | T, U   | SVM     | FGM(L1),FGM(L2),FGSM(L∞) |                   |
| Basic Iterative Method (BIM)        | '16        | T, U   | SVM     | BIM(L∞)                  | Maximum           |
| Projected Gradient Descent (PGD)    | '17        | T, U   | SVM     | PGD(L1),PGD(L2),PGD(L∞)  | Loss<br>attacks   |
| Carlini & Wagner Attack (C&W)       | '16        | T, U   | SVM     | C&W(L2), C&W(L∞)         | in a di atta alsa |
| Elastic-Net Attack (EAD)            | <b>'17</b> | T, U   | SVM     | EAD(L2), EAD(EN)         | ized attacks      |
| Jacobian Saliency Map Attack (JSMA) | '16        | U      | SVM     | JSMA(L0)                 |                   |
| NewtonFool                          | '17        | U      | SVM     | NewtonFool(L2)           |                   |

SVM

SVM

SVM

VAT(L2)

DeepFool(L2)

U

U

U.T

'16/'19

DeepFool

Virtual Adversarial Method (VAT)

Universal Perturbations (UP/TUP)

White-Box Attacks

Minimum distance attacks



## (2) Gradient-based Attacks ART FGSM, BIM and PGD Attacks

Experimental results on 1500 census adversarial examples in targeted setting.

| Attack Algorithm                                      | Parameters                                   |
|-------------------------------------------------------|----------------------------------------------|
| $FGM(\ell_1)$ , $FGM(\ell_2)$ , $FGSM(\ell_{\infty})$ | ε=0.1, 0.3, 0.5, 0.7, 0.9, 1.0               |
|                                                       | $\varepsilon_{step}=0.1$ ;                   |
|                                                       | minimal perturbation=True                    |
| $BIM(\ell_{\infty})$                                  | ε=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;              |
|                                                       | $\varepsilon_{step}=0.1$ ;                   |
|                                                       | maximum iteration-2                          |
| $PGD(\ell_1), PGD(\ell_2), PGD(\ell_{\infty})$        | $\varepsilon$ =0.1, 0.3, 0.5, 0.7, 0.9, 1.0; |
|                                                       | $\varepsilon_{\text{step}} = 0.1;$           |
|                                                       |                                              |

|     |     | FGSM  |       |       |        |                   | BIM   |       |       |        |                   | PGD   |       |       |        |                   |
|-----|-----|-------|-------|-------|--------|-------------------|-------|-------|-------|--------|-------------------|-------|-------|-------|--------|-------------------|
|     | ε   | Prec. | Rec.  | F1    | мсс    | Fooling<br>rate % | Prec. | Rec.  | F1    | мсс    | Fooling<br>rate % | Prec. | Rec.  | F1    | мсс    | Fooling<br>rate % |
|     | 0.1 | 0.06  | 0.216 | 0.094 | -0.859 | 95.06             |       | -     | -     | -      | -                 | 0.054 | 0.192 | 0.084 | -0.874 | 95.6              |
|     | 0.3 | 0.054 | 0.192 | 0.084 | -0.874 | 95.6              |       |       |       |        |                   | 0.054 | 0.192 | 0.084 | -0.874 | 95.6              |
| 1.1 | 0.5 | 0.028 | 0.096 | 0.043 | 0.022  | 97.8              |       | -     | -     | -      | -                 | 0.054 | 0.192 | 0.084 | -0.874 | 95.6              |
| LI  | 0.7 | 0.009 | 0.032 | 0.014 | -0.979 | 99.26             | -     | -     | -     | -      | -                 | 0.054 | 0.192 | 0.084 | -0.874 | 95.6              |
|     | 0.9 | 0.009 | 0.032 | 0.014 | -0.979 | 99.26             |       |       |       |        |                   | 0.054 | 0.192 | 0.084 | -0.874 | 95.6              |
|     | 1   | 0.009 | 0.032 | 0.014 | -0.979 | 99.26             |       | -     | -     | -      | -                 | 0.054 | 0.192 | 0.084 | -0.874 | 95.6              |
|     | 0.1 | 0.057 | 0.204 | 0.089 | -0.866 | 95.33             | -     | -     | -     | -      | -                 | 0.033 | 0.114 | 0.051 | -0.926 | 97.39             |
|     | 0.3 | 0.033 | 0.114 | 0.051 | -0.926 | 97.39             |       |       |       |        |                   | 0.033 | 0.114 | 0.051 | -0.926 | 97.39             |
| 12  | 0.5 | 0.009 | 0.032 | 0.014 | -0.979 | 99.26             |       | -     | -     | -      | -                 | 0.033 | 0.114 | 0.051 | -0.926 | 97.39             |
| LZ  | 0.7 | 0.009 | 0.032 | 0.014 | -0.979 | 99.26             | -     | -     | -     | -      | -                 | 0.033 | 0.114 | 0.051 | -0.926 | 97.39             |
|     | 0.9 | 0.009 | 0.032 | 0.014 | -0.979 | 99.26             |       | -     |       | -      | -                 | 0.033 | 0.114 | 0.051 | -0.926 | 97.39             |
|     | 1   | 0.009 | 0.029 | 0.014 | -0.981 | 99.33             |       |       | -     |        |                   | 0.033 | 0.114 | 0.051 | -0.926 | 97.39             |
|     | 0.1 | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              |
|     | 0.3 | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              |
| 100 | 0.5 | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              |
| Loo | 0.7 | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              |
|     | 0.9 | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              |
|     | 1   | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              | 0.028 | 0.096 | 0.043 | -0.937 | 97.8              |







## (2) Gradient-based Attacks ART FGSM( $L\infty$ ), BIM( $L\infty$ ) and PGD( $L\infty$ ) Attacks

Experimental results on 100 MNIST adversarial examples in targeted and untargeted settings.

Table 4.14: MNIST: Experimental results on 100 adversarial examples  $FGSM(\ell_{\infty})$ ,  $BIM(\ell_{\infty})$ , and  $PGD(\ell_{\infty})$  attacks bounded with different values of  $\varepsilon$  in the targeted and untargeted settines (best attack success rate in boldface).

|            |                          | FGS  | $SM(\ell_{\infty})$ | BI   | $M(\ell_{\infty})$ | PG   | $\mathrm{D}(\ell_{\infty})$ |
|------------|--------------------------|------|---------------------|------|--------------------|------|-----------------------------|
| Objective  | Epsilon( $\varepsilon$ ) | Acc. | Fooling             | Acc. | Fooling            | Acc. | Fooling                     |
|            |                          |      | rate(%)             |      | rate(%)            |      | rate(%)                     |
|            | 0.1                      | 0.97 | 0                   | 0.97 | 0                  | 0.97 | 0                           |
| Targeted   | 0.2                      | 0.85 | 5                   | 0.83 | 4                  | 0.83 | 3                           |
| Targeted   | 0.3                      | 0.85 | 5                   | 0.83 | 4                  | 0.72 | 14                          |
|            | 0.4                      | 0.18 | 75                  | 0.83 | 4                  | 0.61 | 21                          |
|            | 0.1                      | 0.89 | 12                  | 0.88 | 13                 | 0.88 | 13                          |
| Untargeted | 0.2                      | 0.59 | 42                  | 0.56 | 45                 | 0.55 | 46                          |
| Untargeted | 0.3                      | 0.59 | 42                  | 0.56 | 45                 | 0.38 | 63                          |
|            | 0.4                      | 0.1  | 91                  | 0.56 | 45                 | 0.28 | 73                          |

| 3 1 Nov 2 100 9 0 1 100 100 1 20 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 1 | 4vs7     | 9        | 0vs2 | 3                | 6vs8 | 4vs7       | lvs9       | 7vs2      | 2vs5      | 8vs      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------|------------------|------|------------|------------|-----------|-----------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4        | S<br>A   | 7952 | 3                |      | ZZ<br>SWS8 | 1<br>6vs8  | 7         | 2         | f<br>6vs |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Í        | 2        | 7    | ${\cal I}$       | 9    | 5          | Ŀ          | 6         | 黎         | 6        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4        | WS2      | 3    | 2                | O    | 5          | 20         | 4         | 1         | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000     | 2055     | 7    | 6                | 3    | 9          | 2          | 3         | 9         | S        |
| \$\frac{1}{2} \begin{array}{cccccccccccccccccccccccccccccccccccc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Đ        |          | 4    | 7                | 2    | 3          | 1          | 8         | 7         | 2        |
| 5 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3        | 9        | 2    | 5                | 7    | 6          | 9          | 5         | 9         | C)       |
| 7 5 0 7 2 0 4 1 7 2 0<br>2vs5 8vs7 1vs9 9 5vs8 4vs7 0vs2 4vs7 7vs2 5vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>5</b> | SVS7     | ų.   | O.               | 9    | 2          | $\Delta r$ | 5         | 4         | 6vs      |
| 7 5 0 2 0 4 4 2 7 6 0<br>2vs5 8vs7 1vs9 9 5vs8 4vs7 0vs2 4vs7 /vs2 5vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7V52     | Svs8     | Ovs2 | <b>9</b><br>8vs7 | Ş    | 7<br>4vs7  | 4vs9       | 6<br>1vs9 | 6<br>2VS5 | 6        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7        | <b>5</b> |      | 8                | 0    | 4          | E Christ   | Aug /     |           | a        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>6</b> | 7        | 4    | 7                |      | 4          | ð          | Z         | _         | 5        |

Figure: FGSM (L $\infty$ )  $\varepsilon$ =0.4 with untargeted attack



### (2) Gradient-based Attacks ART FGSM(L $\infty$ ), BIM(L $\infty$ ) and PGD(L $\infty$ ) Attacks (Cont.)



Fig: Image of original and perturbed images generated by ART FGSM, BIM, and PGD attacks under  $\ell_{\infty}$  norm bounded by  $\epsilon=0.3$  on MNIST and predicted class labels by SVM model.

### 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 5 5 7 8 7



Fig: ART FGSM attacks under  $\ell_2$  norm bounded by  $\varepsilon=10$  on MNIST.



# (2) Gradient-based Attacks ART FGSM(L∞) (Cont.)

Increasing  $\varepsilon$  value will increase misclassification, but the adversarial image is very different from the original image.



Figure:  $\varepsilon = 1, \varepsilon$ \_step=0.1, 98%



Figure:  $\varepsilon = 0.1, \varepsilon\_step = 0.01, 1\%$ 



# (2) Gradient-based Attacks ART FGSM(L $\infty$ ) with $\varepsilon$ = 0.3 (Cont.)



Figure: Untargeted setting: Attack success rate of 42%

Figure: Targeted setting: Attack success rate of 5%



# (2) Gradient-based Attacks

| ART Attack Algorithms  |     | Tan | geted |      |     | Unta | rgeted |               |
|------------------------|-----|-----|-------|------|-----|------|--------|---------------|
|                        | SVM | DT  | RF    | GBDT | SVM | DT   | RF     | GBDT          |
| TABULAR DATA TYPE      |     |     |       |      |     |      |        | $\overline{}$ |
| $FGM(\ell_1)$          | ++  |     |       |      | ++  |      |        |               |
| $FGM(\ell_2)$          | ++  |     |       |      | ++  |      |        |               |
| $FGSM(\ell_{\infty})$  | ++  |     |       |      | ++  |      |        |               |
| $BIM(\ell_{\infty})$   | ++  |     |       |      | ++  |      |        |               |
| $PGD(\ell_1)$          | ++  |     |       |      | ++  |      |        |               |
| $PGD(\ell_2)$          | ++  |     |       |      | ++  |      |        |               |
| $PGD(\ell_{\infty})$   | ++  |     |       |      | ++  |      |        |               |
| $UP(\ell_{\infty})$    |     |     |       |      | +   |      |        |               |
| $UAP(\ell_{\infty})$   | +   |     |       |      |     |      |        |               |
| JSMA(ℓ <sub>0</sub> )  |     |     |       |      | ++  |      |        |               |
| $C&W(\ell_2)$          | ++  |     |       |      | ++  |      |        |               |
| $C&W(\ell_{\infty})$   | ++  |     |       |      | +   |      |        |               |
| EAD(EN)                |     |     |       |      | ++  |      |        |               |
| NewtonFool( $\ell_2$ ) |     |     |       |      |     |      |        |               |
| $DeepFool(\ell_2)$     |     |     |       |      |     |      |        |               |
| $VAT(\ell_2)$          |     |     |       |      | -   |      |        |               |
| IMAGE DATA TYPE        |     |     |       |      |     |      |        |               |
| $FGM(\ell_1)$          |     |     |       |      |     |      |        |               |
| $FGM(\ell_2)$          |     |     |       |      |     |      |        |               |
| $FGSM(\ell_{\infty})$  | ++  |     |       |      | ++  |      |        |               |
| $BIM(\ell_{\infty})$   | -   |     |       |      | +   |      |        |               |
| $PGD(\ell_1)$          |     |     |       |      |     |      |        |               |
| $PGD(\ell_2)$          |     |     |       |      |     |      |        |               |
| $PGD(\ell_{\infty})$   | -   |     |       |      | +   |      |        |               |
| $UP(\ell_{\infty})$    |     |     |       |      | +   |      |        |               |
| $UAP(\ell_{\infty})$   | +   |     |       |      |     |      |        |               |
| $JSMA(\ell_0)$         |     |     |       |      | ++  |      |        |               |
| C&W(\ell_2)            | +   |     |       |      | ++  |      |        |               |
| $C&W(\ell_{\infty})$   | ++  |     |       |      | ++  |      |        |               |
| EAD(EN)                |     |     |       |      | ++  |      |        |               |
| NewtonFool( $\ell_2$ ) |     |     |       |      | -   |      |        |               |
| $DeepFool(\ell_2)$     |     |     |       |      | -   |      |        |               |
| $VAT(\ell_2)$          |     |     |       |      | -   |      |        |               |

| Attack Algorithm                                      | Parameters                                   |
|-------------------------------------------------------|----------------------------------------------|
| $FGM(\ell_1)$ , $FGM(\ell_2)$ , $FGSM(\ell_{\infty})$ | ε=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;              |
|                                                       | $\varepsilon_{step}=0.1$ ;                   |
|                                                       | minimal perturbation=True                    |
| $BIM(\ell_{\infty})$                                  | ε=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;              |
|                                                       | ε <sub>step</sub> =0.1;                      |
|                                                       | maximum iteration=2                          |
| $PGD(\ell_1)$ , $PGD(\ell_2)$ , $PGD(\ell_\infty)$    | ε=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;              |
|                                                       | $\varepsilon_{step}=0.1$ ;                   |
|                                                       | maximum iteration=2                          |
| $UP(\ell_1)$ , $UP(\ell_2)$ , $UP(\ell_{\infty})$     | ε=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;              |
|                                                       | $\varepsilon_{step} = 0.1$ ;                 |
|                                                       | maximum iteration=1                          |
| $UAP(\ell_1)$ , $UAP(\ell_2)$ , $UAP(\ell_{\infty})$  | ε=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;              |
|                                                       | $\varepsilon_{step} = 0.1$ ;                 |
|                                                       | maximum iteration=1                          |
| $C&W(\ell_2), C&W(\ell_\infty)$                       | $\varepsilon$ =0.1, 0.3, 0.5, 0.7, 0.9, 1.0; |
|                                                       | $\varepsilon_{step}=0.1$ ;                   |
|                                                       | maximum iteration=2                          |
| JSMA( $\ell_0$ )                                      | $\theta$ =0.1, 0.3, 0.5, 0.7, 0.9, 1.0;      |
|                                                       | $\gamma = 0.1$ ;                             |
|                                                       | maximum iteration=2                          |
| NewtonFool( $\ell_2$ )                                | $\eta$ =0.1, 0.3, 0.5, 0.7, 0.9, 1.0;        |
|                                                       | maximum iteration=2                          |
| $DeepFool(\ell_2)$                                    | $\varepsilon$ =0.1, 0.3, 0.5, 0.7, 0.9, 1.0; |
|                                                       | nb_grads=10;                                 |
|                                                       | maximum iteration=2                          |
| $EAD(\ell_1)$ , $EAD(\ell_2)$ , $EAD(EN)$             | ε=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;              |
|                                                       | maximum iteration=2                          |
| $VAT(\ell_2)$                                         | ε=0.1, 0.3, 0.5, 0.7, 0.9, 1.0;              |
|                                                       | finite_diff= $1e - 6$ ;                      |
|                                                       | maximum iteration=2                          |



### (3) Score-based Attack ART Zeroth-order optimization ZOO(L2) (2017)

|       |      |       |       | Targeted | i      |         |       |       | Untargete | ed     |         |
|-------|------|-------|-------|----------|--------|---------|-------|-------|-----------|--------|---------|
| Model | eps. | Pre.  | Rec.  | F1       | MCC    | Fooling | Pre.  | Rec.  | F1        | MCC    | Fooling |
|       | (ε)  |       |       |          |        | rate(%) |       |       |           |        | rate(%) |
|       | 0.1  | 0.094 | 0.35  | 0.148    | -0.767 | 92      | 0.229 | 1     | 0.373     | 0      | 86.73   |
|       | 0.3  | 0.094 | 0.35  | 0.148    | -0.767 | 92      | 0.229 | 1     | 0.373     | 0      | 86.73   |
| SVM   | 0.5  | 0.094 | 0.35  | 0.148    | -0.767 | 92      | 0.229 | 1     | 0.373     | 0      | 86.73   |
|       | 0.7  | 0.094 | 0.35  | 0.148    | -0.767 | 92      | 0.229 | 1     | 0.373     | 0      | 86.73   |
|       | 0.9  | 0.094 | 0.35  | 0.148    | -0.767 | 92      | 0.229 | 1     | 0.373     | 0      | 86.73   |
|       | 0.1  | 0.089 | 0.21  | 0.125    | -0.361 | 67.26   | 0.194 | 0.397 | 0.261     | -0.078 | 65.66   |
|       | 0.3  | 0.089 | 0.21  | 0.125    | -0.358 | 67      | 0.195 | 0.397 | 0.262     | -0.075 | 65.4    |
| DT    | 0.5  | 0.09  | 0.21  | 0.126    | -0.353 | 66.6    | 0.195 | 0.394 | 0.261     | -0.073 | 64.93   |
|       | 0.7  | 0.091 | 0.21  | 0.127    | -0.343 | 65.73   | 0.198 | 0.391 | 0.263     | -0.066 | 64      |
|       | 0.9  | 0.107 | 0.21  | 0.142    | -0.259 | 57.93   | 0.234 | 0.379 | 0.289     | 0.009  | 55.93   |
|       | 0.1  | 0.024 | 0.044 | 0.227    | -0.405 | 61.8    | 0.181 | 0.306 | 0.227     | -0.09  | 61.46   |
|       | 0.3  | 0.028 | 0.044 | 0.241    | -0.355 | 56.46   | 0.204 | 0.294 | 0.241     | -0.042 | 55.86   |
| RF    | 0.5  | 0.028 | 0.044 | 0.239    | -0.355 | 56.46   | 0.202 | 0.292 | 0.239     | -0.045 | 55.8    |
|       | 0.7  | 0.028 | 0.044 | 0.24     | -0.353 | 56.2    | 0.204 | 0.292 | 0.24      | -0.042 | 55.53   |
|       | 0.9  | 0.028 | 0.044 | 0.24     | -0.351 | 56.06   | 0.204 | 0.292 | 0.24      | -0.04  | 55.4    |
|       | 0.1  | 0.162 | 0.114 | 0.134    | -0.07  | 33.73   | 0.212 | 0.099 | 0.135     | -0.013 | 30.33   |
|       | 0.3  | 0.162 | 0.114 | 0.134    | -0.07  | 33.73   | 0.316 | 0.146 | 0.200     | 0.072  | 27.93   |
| GBDT  | 0.5  | 0.154 | 0.111 | 0.129    | -0.078 | 34.2    | 0.254 | 0.105 | 0.149     | 0.019  | 28.59   |
|       | 0.7  | 0.178 | 0.134 | 0.153    | -0.055 | 33.93   | 0.287 | 0.125 | 0.174     | 0.046  | 28.46   |
|       | 0.9  | 0.152 | 0.111 | 0.128    | -0.082 | 34.46   | 0.31  | 0.143 | 0.196     | 0.067  | 28.06   |

Census: Experimental results on 1500 adversarial examples generated by ART ZOO(L2) attacks with different values of  $\varepsilon$  in the targeted and untargeted settings (best attack success rate in boldface).

 $\begin{aligned} & \text{Attack Algorithm} & & \text{Parameters} \\ & & \text{ZOO}(\ell_2) & & \text{Step size } (c = [0.1, 0.3, 0.5, 0.7, 0.9]) \\ & & \text{Maximum number of iterations } (\text{max_iter} = 2) \\ & & \text{confidence} = 0 \\ & & \text{Isaming\_rate} = 0.01 \\ & & \text{binity\_coret} = 0.001 \end{aligned}$ 

batch\_size=1



### (3) Score-based Attack

ART Zeroth-order optimization ZOO(L2) (cont...)

|       |      | T            | argeted |         | Untargeted   |      |         |  |
|-------|------|--------------|---------|---------|--------------|------|---------|--|
| Model | eps. | Avg. Time    | Acc.    | Fooling | Avg. Time    | Acc. | Fooling |  |
|       | (c)  | (per attack) |         | rate(%) | (per attack) |      | rate(%) |  |
|       | 0.1  | 91.29 sec    | 0.98    | 0       | 91.41 sec    | 0.97 | 3       |  |
|       | 0.3  | 72.95 sec    | 0.98    | 0       | 72.98 sec    | 0.97 | 3       |  |
| SVM   | 0.5  | 74.07 sec    | 0.98    | 0       | 74.06 sec    | 0.97 | 3       |  |
|       | 0.7  | 76.59 sec    | 0.98    | 0       | 76.59 sec    | 0.97 | 3       |  |
|       | 0.9  | 79.72 sec    | 0.98    | 0       | 79.72 sec    | 0.97 | 3       |  |
|       | 0.1  | 2.69 sec     | 0.65    | 26      | 3.83 sec     | 0.23 | 83      |  |
|       | 0.3  | 3.69 sec     | 0.66    | 25      | 3.76 sec     | 0.27 | 76      |  |
| DT    | 0.5  | 3.72 sec     | 0.68    | 23      | 3.75 sec     | 0.27 | 74      |  |
|       | 0.7  | 3.61 sec     | 0.68    | 23      | 3.87 sec     | 0.27 | 74      |  |
|       | 0.9  | 3.56 sec     | 0.75    | 16      | 3.42 sec     | 0.3  | 71      |  |
|       | 0.1  | 2.87 sec     | 0.67    | 28.9    | 2.86 sec     | 0.26 | 76      |  |
|       | 0.3  | 2.88 sec     | 0.73    | 23      | 3 sec        | 0.3  | 72      |  |
| RF    | 0.5  | 2.85 sec     | 0.75    | 21      | 3 sec        | 0.31 | 71      |  |
|       | 0.7  | 2.85 sec     | 0.74    | 21      | 2.88 sec     | 0.3  | 72      |  |
|       | 0.9  | 2.88 sec     | 0.72    | 23      | 2.87 sec     | 0.34 | 68      |  |
|       | 0.1  | 7.46 sec     | 0.95    | 3       | 7.19 sec     | 0.82 | 19      |  |
|       | 0.3  | 7.37 sec     | 0.95    | 3       | 6.96 sec     | 0.86 | 15      |  |
| GBDT  | 0.5  | 7.35 sec     | 0.94    | 4       | 6.48 sec     | 0.9  | 11      |  |
|       | 0.7  | 7.42 sec     | 0.95    | 3       | 5 sec        | 0.84 | 16      |  |
|       | 0.9  | 7.29 sec     | 0.95    | 3       | 4.95 sec     | 0.8  | 21      |  |

MNIST: Experimental results on 100 adversarial examples generated by ART ZOO(L2) attacks with different values of  $\varepsilon$  in the targeted and untargeted settings (best attack success rate in boldface).



Fig: Perturbed images generated by ART ZOO(L2) attack against DT on MNIST with 10 iterations.



Fig: Perturbed images generated by ART ZOO(L2) attack against RF on MNIST with 10 iterations.



# (4) Decision-based Attacks ART Boundary Attack (2018) — BA( $\ell_2$ ) with $\varepsilon = 0.01$ and $\delta = 0.01$

#### Census: max iter=2

| Model | Objective  | Avg. time    | Prec. | Rec.  | F1    | MCC    | Fooling |
|-------|------------|--------------|-------|-------|-------|--------|---------|
|       |            | (per attack) |       |       |       |        | rate    |
| SVM   | Targeted   | 0.26 sec     | 0     | 0     | 0     | -0.128 | 28.13   |
| OVM   | Untargeted | 0.33 sec     | 0     | 0     | 0     | 0      | 13.26   |
| DT    | Targeted   | 0.01 sec     | 0.123 | 0.472 | 0.195 | -0.68  | 89.2    |
| DI    | Untargeted | 0.01 sec     | 0.18  | 0.697 | 0.286 | -0.326 | 81.13   |
| RF    | Targeted   | 1.29 sec     | 0.1   | 0.376 | 0.158 | -0.749 | 91.4    |
| RF    | Untargeted | 1.6 sec      | 0.177 | 0.688 | 0.282 | -0.345 | 86.4    |
| GBDT  | Targeted   | 0.01 sec     | 0.108 | 0.408 | 0.171 | -0.727 | 90.66   |
| GRDI  | Untargeted | 0.01 sec     | 0.184 | 0.729 | 0.294 | -0.328 | 85.93   |

#### MNIST: may iter-100

| IVIIVI | . IIIax_Itel- | _100         |          |              |
|--------|---------------|--------------|----------|--------------|
| Model  | Objective     | Avg. Time    | Accuracy | Fooling rate |
| Model  |               | (per attack) |          | (%)          |
| SVM    | Targeted      | 16.73 sec    | 0.66     | 33           |
| SVIVI  | Untargeted    | 34.83 sec    | 0.02     | 98           |
| DT     | Targeted      | 0.49 sec     | 0.39     | 57.99        |
| DI     | Untargeted    | 0.83 sec     | 0.01     | 100          |
| RF     | Targeted      | 0.27 sec     | 0.79     | 20           |
| I(I'   | Untargeted    | 1.24 sec     | 0.1      | 89           |
| GBDT   | Targeted      | 3.97 sec     | 0.66     | 31           |
| GDDI   | Untercoted    | 11.46 000    | 0.09     | 00           |







### (4) Decision-based Attacks ART HopSkipJump Attack (2019) — $HJSA(\ell_{\infty})$ , $HJSA(\ell_{2})$



Image of original and perturbed images generated by  ${\rm HSJA}(\ell_{\infty})$  attack against DT, RF, GBDT, and SVM models on MNIST with 10 iterations and  $\epsilon=0.01.$  As a result, the predicted class labels for adversarial images by DT, RF, GBDT, and SVM models.

| Model | Objective  | Dist.           | Avg. Time<br>(per attack) | Prec. | Rec.  | F1    | MCC    | Fooling |
|-------|------------|-----------------|---------------------------|-------|-------|-------|--------|---------|
|       |            | _               |                           | _     | _     | _     | _      |         |
|       | Targeted   | $\ell_{\infty}$ | 0.4 sec                   | 0.094 | 0.35  | 0.148 | -0.767 | 92      |
| SVM   | Targeteu   | $\ell_2$        | 0.33 sec                  | 0.094 | 0.35  | 0.148 | -0.767 | 92      |
| 3431  | Untargeted | $\ell_{\infty}$ | 0.49 sec                  | 0.229 | 1     | 0     | 0      | 86.73   |
|       | Omargeted  | L2              | 0.4 sec                   | 0.229 | 1     | 0     | 0      | 86.73   |
|       | Targeted   | $\ell_{\infty}$ | 0.03 sec                  | 0.184 | 0.738 | 0.295 | -0.348 | 80.66   |
| DT    | Targeted   | $\ell_2$        | 0.02 sec                  | 0.186 | 0.741 | 0.297 | -0.318 | 79.86   |
| DI    | Untargeted | $\ell_{\infty}$ | 0.03 sec                  | 0.23  | 0.956 | 0.371 | 0.012  | 67.2    |
|       | Untargeted | $\ell_2$        | 0.02 sec                  | 0.228 | 0.95  | 0.368 | -0.004 | 68.73   |
|       | Targeted   | $\ell_{\infty}$ | 7.82 sec                  | 0.176 | 0.682 | 0.280 | -0.349 | 80.26   |
| RF    | Targeted   | $\ell_2$        | 5.98 sec                  | 0.175 | 0.679 | 0.278 | -0.362 | 80.66   |
| RF    | Untargeted | $\ell_{\infty}$ | 8.44 sec                  | 0.229 | 0.939 | 0.368 | 0.003  | 71.86   |
|       | Untargeted | $\ell_2$        | 6.73 sec                  | 0.229 | 0.927 | 0.367 | 0.006  | 71.86   |
|       | Targeted   | $\ell_{\infty}$ | 0.11 sec                  | 0.176 | 0.685 | 0.28  | -0.361 | 80.66   |
| GBDT  | Targeted   | $\ell_2$        | 0.09 sec                  | 0.167 | 0.644 | 0.276 | -0.405 | 81.73   |
| GDD1  | Untranstal | $\ell_{\infty}$ | 0.06 sec                  | 0.233 | 0.959 | 0.375 | 0.037  | 72.66   |
|       | Untargeted | $\ell_2$        | 0.05 sec                  | 0.231 | 0.959 | 0.372 | 0.02   | 73.46   |

#### MNIST.

| VIIVI | VIIVIOI.   |                 |                           |          |                |      |
|-------|------------|-----------------|---------------------------|----------|----------------|------|
| Model | Objective  | Distance        | Avg. Time<br>(per attack) | Accuracy | Fooling<br>(%) | rate |
|       |            | <u> </u>        |                           |          |                |      |
|       | Targeted   | $\ell_{\infty}$ | 0.17 sec                  | 0.79     | 19             |      |
| SVM   |            | $\ell_2$        | 0.14 sec                  | 0.82     | 17             |      |
| 0111  | Untargeted | $\ell_{\infty}$ | 0.71 sec                  | 0.1      | 91             |      |
|       | Cheargeted | $\ell_2$        | 0.59 sec                  | 0.09     | 92             |      |
| DT    | Targeted   | $\ell_{\infty}$ | 0.01 sec                  | 0.8      | 11             |      |
|       | Targeted   | 62              | 0.01 sec                  | 0.8      | 10             |      |
|       | Untargeted | $\ell_{\infty}$ | 0.04 sec                  | 0.12     | 87             |      |
|       | Untargeted | $\ell_2$        | 0.03 sec                  | 0.11     | 92             |      |
|       | Targeted   | $\ell_{\infty}$ | 0.08 sec                  | 0.86     | 11             |      |
| RF    | Targeted   | $\ell_2$        | 0.08 sec                  | 0.81     | 15             |      |
| RF    | Untargeted | $\ell_{\infty}$ | 0.56 sec                  | 0.12     | 87             |      |
|       | Citargeted | $\ell_2$        | 0.42 sec                  | 0.09     | 92             |      |
|       | Targeted   | $\ell_{\infty}$ | 0.02 sec                  | 0.79     | 20             |      |
| GBDT  | rangeted   | $\ell_2$        | 0.01 sec                  | 0.79     | 20             |      |
| GDD1  | Untargeted | $\ell_{\infty}$ | 0.06 sec                  | 0.11     | 89             |      |
|       | Omargeted  | fo.             | 0.04 sec                  | 0.11     | 89             |      |



## Poisoning Attack ART Poisoning Attack on SVM

| Attack Algorithms        | Parameters                                                                                                                                                                                                                                                                                                      |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Poisoning Attacks on SVM | $\varepsilon=0.3$ or $\varepsilon=1$ , $\varepsilon_{stg=0}=0.1$ , maximum iteration=10 maximum iteration=10 15 examples (Attack data points on census data) 315 training sets-180 test sets (For census data) 10 examples (Attack data points on MNIST data) 1169 training sets-565 test sets (For MNIST data) |

Experimental results on clean and poison SVM model on 180 **census** original examples.

| Trained SVM model             | Precision | Recall | F1 score | MCC   |
|-------------------------------|-----------|--------|----------|-------|
| Clean                         | 0.667     | 0.4    | 0.5      | 0.404 |
| Poison( $\varepsilon = 0.3$ ) | 0.6       | 0.2    | 0.3      | 0.244 |
| $Poison(\varepsilon = 1)$     | 0.667     | 0.178  | 0.281    | 0.257 |
|                               |           |        |          |       |

Experimental results on clean and poison SVM model on 565 **MNIST** original examples.

| Trained SVM model             | Accuracy |
|-------------------------------|----------|
| Clean                         | 0.9947   |
| Poison( $\varepsilon = 0.3$ ) | 0.9733   |
| $Poison(\varepsilon = 1)$     | 0.9760   |



### Conclusions and Future work

- We are identifying Adversarial Attacks from ART that supports our chosen Machine Learning Models.
- We shows the strength and weakness of these attack algorithms on chosen ML models for the untargeted and targeted cases in tabular data (Adults Census Income dataset) and Images (MNIST).

#### Future work:

 We extend this work to incorporate Adversarial training of GBDT <sup>2</sup> And ART defense mechanisms such as adversarial training methods and evaluate adversarial examples generated by ART evasion and poisoning attacks on the resilient ML models.

<sup>&</sup>lt;sup>2</sup>Stefano Calzavara, Claudio Lucchese, and Gabriele Tolomei. Adversarial training of gradient-boosted decision trees. In CIKM '19: Proceedings of the The 28th ACM International Conference on Information and Knowledge Management, 2019.