Lab 6 Report – Reese Ford

02/26/2024

A	В	С	D	E	F	G	Н	1	J	K
	Instruction 1	Instruction 2	Instruction 3	Instruction 4	Instruction 5	Instruction 6	Instruction 7	Instruction 8	Instruction 9	Instruction 10
Instruction	LDUR X9, [X22, #64]	ADD X10, X19, X9	SUB X11, X20, X10	STUR X11, [X22, #96]	CBZ X11, -5	CBZ X9, 8	B 64	B -55	ORR X9, X10, X21	AND X9, X22, X10
Machine Instruction (hex)	F844 02C9	8B09 026A	CB0A 028B	F806 02CB	B4FF FF6B	B400 0109	1400 0040	17FF FFC9	AA15 0149	8B0A 02C9
opcode (binary)	11111000010	10001011000	11001011000	11111000000	10110100	10110100	000101	000101	10101010000	10001011000
sign_extended_output (hex)	40	N/A	N/A	60	FFFFFFFFFFFB	8	40	FFFFFFFFFFFC9	N/A	N/A
reg2_loc	N/A	0	0	1	1	1	0	0	0	0
uncondbranch	0	0	0	0	0	0	1	1	0	0
branch	0	0	0	0	1	1	0	0	0	0
mem_read	1	0	0	0	0	0	0	0	0	0
mem_to_reg	1	0	0	N/A	N/A	N/A	0	0	0	0
alu_op (binary)	00	10	10	00	01	01	0	0	10	10
mem_write	0	0	0	1	0	0	0	0	0	0
alu_src	1	0	0	1	0	0	0	0	0	0
reg_write	1	1	1	0	0	0	0	0	1	1
read_data1	16	10	30	16	0	20	N/A	N/A	30	16
read_data2	N/A	20	30	0	N/A	N/A	N/A	N/A	0	30
write_data	20	30	0	N/A	N/A	N/A	N/A	N/A	1	1
X9	20	20	20	20	20	20	20	20	1	1
X10		30	30	30	30	30	30	30	30	30
X11			0	O	0	o	0	0	0	0
X19	10	10	10	10	10	10	10	10	10	10
X20	30	30	30	30	30	30	30	30	30	30
X21	o	o	o	ō	o	o	o	o	o	o
X22	16	16	16	16	16	16	16	16	16	16

****** BEGIN TEST RESULTS ******

```
Test Case 1: | LDUR X9, [X22, #64]
```

```
+++ Step 1: Pass: |opcode| time = 7 ns | er = 11111000010 | ar = 11111000010 | er_bits = 11 | ar_bits = 11 +++
```

```
+++ Step 7: Pass: |mem to reg| time = 7 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |alu op | time = 7 ns | er = 0 | ar = 0 | er bits = 2 | ar bits = 2 +++
+++ Step 9: Pass: |mem write| time = 7 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 10: Pass: |alu src| time = 7 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |reg write| time = 7 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |read data1| time = 7 ns | er = 16 | ar = 16 | er bits = 64 | ar bits = 64 +++
Test Case 2: | ADD X10, X19, X9
+++ Step 1: Pass: |opcode| time = 17 ns | er = 10001011000 | ar = 10001011000 | er bits = 11 | ar bits = 11 +++
+++ Step 2: Pass: |reg2 | loc| time = 17 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 3: Pass: |uncondbranch| time = 17 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 4: Pass: |branch| time = 17 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 5: Pass: |mem read | time = 17 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 6: Pass: |mem| to reg| time = 17 ns |er| = 0 |ar| = 0 |er| bits = 1 |ar| bits = 1 +++
+++ Step 7: Pass: |alu op | time = 17 ns | er = 10 | ar = 10 | er bits = 2 | ar bits = 2 +++
+++ Step 8: Pass: |mem write| time = 17 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 9: Pass: |alu src| time = 17 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 10: Pass: |reg write| time = 17 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |read data1| time = 17 ns | er = 10 | ar = 10 | er bits = 64 | ar bits = 64 +++
+++ Step 12: Pass: |read data2| time = 17 ns | er = 20 | ar = 20 | er bits = 64 | ar bits = 64 +++
Test Case 3: | SUB X11, X20, X10
+++ Step 1: Pass: |opcode| time = 27 ns | er = 11001011000 | ar = 11001011000 | er bits = 11 | ar bits = 11 +++
```

```
+++ Step 2: Pass: |reg2 | loc| time = 27 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 3: Pass: |uncondbranch| time = 27 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 4: Pass: |branch| time = 27 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 5: Pass: |mem read | time = 27 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 6: Pass: |mem to reg| time = 27 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |alu op | time = 27 ns | er = 10 | ar = 10 | er bits = 2 | ar bits = 2 +++
+++ Step 8: Pass: |mem write| time = 27 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 9: Pass: |alu src| time = 27 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 10: Pass: |reg write | time = 27 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |read data1| time = 27 ns | er = 30 | ar = 30 | er bits = 64 | ar bits = 64 +++
+++ Step 12: Pass: |read data2| time = 27 ns | er = 30 | ar = 30 | er bits = 64 | ar bits = 64 +++
Test Case 4: | STUR X11, [X22, #96]
+++ Step 1: Pass: |opcode| time = 37 ns | er = 11111000000 | ar = 11111000000 | er bits = 11 | ar bits = 11 +++
+++ Step 2: Pass: |sign extended output | time = 37 ns | er = 60 | ar = 60 | er bits = 64 | ar bits = 64 +++
+++ Step 3: Pass: |reg2 | loc| time = 37 ns | er = 1 | ar = 1 | er | bits = 1 | ar | bits = 1 +++
+++ Step 4: Pass: |uncondbranch| time = 37 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 5: Pass: |branch| time = 37 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 6: Pass: |mem read | time = 37 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: | mem to reg| time = 37 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |alu op | time = 37 ns | er = 0 | ar = 0 | er bits = 2 | ar bits = 2 +++
+++ Step 9: Pass: |mem write| time = 37 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
```

```
+++ Step 10: Pass: |alu src| time = 37 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |reg write | time = 37 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |read data1| time = 37 ns | er = 16 | ar = 16 | er bits = 64 | ar bits = 64 +++
+++ Step 13: Pass: |read data2| time = 37 ns | er = 0 | ar = 0 | er bits = 64 | ar bits = 64 +++
Test Case 5: | CBZ X11, -5
+++ Step 1: Pass: | opcode | time = 47 ns | er = 10110100111 | ar = 10110100111 | er bits = 11 | ar bits = 11 +++
+++ Step 2: Pass: |sign extended output | time = 47 ns | er = fffffffffffff | ar = ffffffffffffff | er bits = 64 | ar bits = 64 +++
+++ Step 3: Pass: |reg2 | loc| time = 47 ns | er = 1 | ar = 1 | er | bits = 1 | ar | bits = 1 +++
+++ Step 4: Pass: |uncondbranch| time = 47 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 5: Pass: |branch| time = 47 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 6: Pass: |mem read | time = 47 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |mem to reg| time = 47 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |alu op | time = 47 ns | er = 1 | ar = 1 | er bits = 2 | ar bits = 2 +++
+++ Step 9: Pass: |mem write| time = 47 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 10: Pass: |alu src| time = 47 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |reg write | time = 47 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: | read | data2 | time = 47 ns | er = 0 | er | bits = 64 | ar | bits = 64 +++
Test Case 6: | CBZ X9, 8
+++ Step 1: Pass: | opcode | time = 57 ns | er = 10110100000 | ar = 10110100000 | er bits = 11 | ar bits = 11 +++
+++ Step 2: Pass: |sign extended output | time = 57 ns | er = 8 | ar = 8 | er bits = 64 | ar bits = 64 +++
+++ Step 3: Pass: |reg2 | loc| time = 57 ns | er = 1 | ar = 1 | er | bits = 1 | ar | bits = 1 +++
```

```
+++ Step 4: Pass: |uncondbranch| time = 57 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 5: Pass: |branch| time = 57 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 6: Pass: |mem read | time = 57 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |mem to reg| time = 57 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |alu op | time = 57 ns | er = 1 | ar = 1 | er bits = 2 | ar bits = 2 +++
+++ Step 9: Pass: |mem_write| time = 57 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 10: Pass: |alu src| time = 57 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |reg write| time = 57 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |read data2| time = 57 ns | er = 20 | ar = 20 | er bits = 64 | ar bits = 64 +++
Test Case 7: | B 64
+++ Step 1: Pass: |opcode| time = 67 ns | er = 10100000 | ar = 10100000 | er bits = 11 | ar bits = 11 +++
+++ Step 2: Pass: |sign extended output | time = 67 ns | er = 40 | ar = 40 | er bits = 64 | ar bits = 64 +++
+++ Step 3: Pass: |reg2 | loc | time = 67 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 4: Pass: |uncondbranch| time = 67 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 5: Pass: |branch| time = 67 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 6: Pass: |mem read | time = 67 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: | mem to reg | time = 67 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |alu op | time = 67 ns | er = 0 | ar = 0 | er bits = 2 | ar bits = 2 +++
+++ Step 9: Pass: |mem write| time = 67 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 10: Pass: |alu src| time = 67 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |reg write | time = 67 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
```

```
Test Case 8: | B -55
+++ Step 1: Pass: | opcode | time = 77 ns | er = 10111111 | ar = 10111111 | er bits = 11 | ar bits = 11 +++
+++ Step 2: Pass: |sign extended output | time = 77 ns | er = fffffffffffffc9 | ar = fffffffffffffc9 | er bits = 64 | ar bits = 64 +++
+++ Step 3: Pass: |reg2 | loc| time = 77 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 4: Pass: |uncondbranch| time = 77 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 5: Pass: |branch| time = 77 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 6: Pass: |mem read | time = 77 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |mem to reg| time = 77 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |alu op | time = 77 ns | er = 0 | ar = 0 | er bits = 2 | ar bits = 2 +++
+++ Step 9: Pass: |mem write| time = 77 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 10: Pass: |alu src| time = 77 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |reg write | time = 77 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
Test Case 9: | ORR X9, X10, X21
+++ Step 1: Pass: | opcode | time = 87 ns | er = 10101010000 | ar = 10101010000 | er bits = 11 | ar bits = 11 +++
+++ Step 2: Pass: |reg2 | loc | time = 87 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 3: Pass: |uncondbranch| time = 87 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 4: Pass: |branch| time = 87 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 5: Pass: |mem read | time = 87 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 6: Pass: |mem| to reg| time = 87 ns |er| = 0 |ar| = 0 |er| bits = 1 |ar| bits = 1 +++
+++ Step 7: Pass: |alu op | time = 87 ns | er = 10 | ar = 10 | er bits = 2 | ar bits = 2 +++
+++ Step 8: Pass: |mem_write| time = 87 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
```

```
+++ Step 9: Pass: |alu src| time = 87 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 10: Pass: |reg write| time = 87 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |read data1| time = 87 ns | er = 30 | ar = 30 | er bits = 64 | ar bits = 64 +++
+++ Step 12: Pass: |read data2| time = 87 ns | er = 0 | ar = 0 | er bits = 64 | ar bits = 64 +++
Test Case 10: | AND X9, X22, X10
+++ Step 1: Pass: | opcode | time = 97 ns | er = 10001011000 | ar = 10001011000 | er bits = 11 | ar bits = 11 +++
+++ Step 2: Pass: |reg2 | loc | time = 97 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 3: Pass: |uncondbranch| time = 97 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 4: Pass: |branch| time = 97 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 5: Pass: |mem read | time = 97 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 6: Pass: |mem to reg| time = 97 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |alu op | time = 97 ns | er = 10 | ar = 10 | er bits = 2 | ar bits = 2 +++
+++ Step 8: Pass: |mem write| time = 97 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 9: Pass: |alu src| time = 97 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 10: Pass: |reg write | time = 97 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |read data1| time = 97 ns | er = 16 | ar = 16 | er bits = 64 | ar bits = 64 +++
+++ Step 12: Pass: |read data2| time = 97 ns | er = 30 | ar = 30 | er bits = 64 | ar bits = 64 +++
```

Pass Count = 119

Fail Count = 0

***** END TEST RESULTS ******