PRISMS-Plasticity

Crystal Plasticity

Simple Tension Example -BCC Titanium

Figure 1: Input microstructure (3D Materials Atlas [2])

This is an illustrative example of a simple tension deformation problem. A real microstructure was tested with the material parameters of bcc β Ttitanium which were obtained from [1]

Input Parameters

```
/*FE parameters*/
#define feOrder 1 // Basis function interpolation order (1-linear)
#define quadOrder 2 // Quadrature point order n^3 (2->8 quadrature points)

/*Mesh parameters*/
//Set the length of the domain in all three dimensions
//Each axes spans from zero to the specified length
#define spanX 1.0
#define spanY 1.0
#define spanZ 1.0
// The number of elements in each direction is 2^(refineFactor) * subdivisions
// For optimal performance, use meshRefineFactor primarily to determine the element size
#define subdivisionsX 1
#define subdivisionsY 1
```

```
#define subdivisionsZ 1
#define meshRefineFactor 3 // 2^n*2^n*2^n elements(3->8*8*8 =512 elements)
#define writeMeshToEPS true //Only written for serial runs and if number of
   elements < 10000
/*Solution output parameters*/
#define writeOutput true // flag to write output vtu and pvtu files
#define outputDirectory "."
#define skipOutputSteps 0
#define output_Eqv_strain true
#define output_Eqv_stress true
#define output_Grain_ID true
/*Solver parameters*/
#define linearSolverType PETScWrappers::SolverCG // Type of linear solver
#define totalNumIncrements 100 // No. of increments
#define maxLinearSolverIterations 50000 // Maximum iterations for linear solver
#define relLinearSolverTolerance 1.0e-10 // Relative linear solver tolerance
#define maxNonLinearIterations 4 // Maximum no. of non-linear iterations
#define absNonLinearTolerance 1.0e-18 // Non-linear solver tolerance
#define relNonLinearTolerance 1.0e-3 // Relative non-linear solver tolerance
#define stopOnConvergenceFailure false // Flag to stop problem if convergence
/*Adaptive time-stepping parameters*/
#define enableAdaptiveTimeStepping false //Flag to enable adaptive time steps
#define adaptiveLoadStepFactor 0.5 // Load step factor
#define adaptiveLoadIncreaseFactor 1.25
#define succesiveIncForIncreasingTimeStep 10
//Elastic Parameters
double elasticStiffness[6][6]={{97.7e3, 82.7e3, 82.7e3, 0, 0, 0},
                                {82.7e3, 97.7e3, 82.7e3, 0, 0, 0},
                                {82.7e3, 82.7e3, 97.7e3, 0, 0, 0},
                                \{0, 0, 0, 37.5e3, 0, 0\},\
                                \{0, 0, 0, 0, 37.5e3, 0\},\
                                {0, 0, 0, 0, 0, 37.5e3}}; //
                                                                 Elastic
                                   Stiffness Matrix -Voigt Notation (MPa)
//Crystal Plasticity parameters
#define numSlipSystems 12 //
#define latentHardeningRatio 1.4 //q1
double initialSlipResistance[numSlipSystems] = {200.0, 200.0, 200.0, 200.0, 200.0,
   200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0); //CRSS of slip sytems
double initialHardeningModulus[numSlipSystems] = {1500.0, 1500.0, 1500.0, 1500.0,
    1500.0, 1500.0, 1500.0, 1500.0, 1500.0, 1500.0, 1500.0, 1500.0}; //Hardening
   moduli of slip systems
```

```
double powerLawExponent[numSlipSystems] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
    1.0, 1.0, 1.0, 1.0}; // Power law coefficient
double saturationStress[numSlipSystems] = {500.0, 500.0, 500.0, 500.0, 500.0,
   500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0}; // Saturation stress
//Backstress factor
#define backstressFactor 0.0 //(Ratio between backstress and CRSS during load
   reversal)
//Slip systems files
#define slipDirectionsFile "slipDirections.txt" // Slip Directions File
#define slipNormalsFile "slipNormals.txt" // Slip Normals File
// Crystal Plasticity Constitutive model parameters
#define modelStressTolerance 1.0e-6 // Stress tolerance for the yield surface
#define modelMaxSlipSearchIterations 1 // Maximum no. of active slip search
   iterations
#define modelMaxSolverIterations 3 // Maximum no. of iterations to achieve
   non-linear convergence
#define modelMaxPlasticSlipL2Norm 0.8 // L2-Norm of plastic slip strain-used for
   load-step adaptivity
#define adaptiveLoadStepFactor 0.5 // Load step factor
//Read Input Microstructure
unsigned int numPts[3]={20, 20, 22}; // No. of voxels in x,y and z directions
#define grainIDFile "grainID.txt" // Grain ID File
#define headerLinesGrainIDFile 5 // No. of header Lines
#define grainOrientationsFile "orientations.txt" // Slip Normals File
```

References

- [1] Lewis, Alexis C., Siddiq M. Qidwai, and Andrew B. Geltmacher. "Slip systems and initiation of plasticity in a body-centered-cubic titanium alloy." Metallurgical and Materials Transactions A 41.10 (2010): 2522-2531.
- [2] 3D Materials Atlas AL6XN+Reconstruction

Table 1: BCC	Titanium Slip	Systems
System Number		Slip Plane
1	[1 -1 1]	(0 1 1)
2	[1 1 -1]	(0 1 1)
3	[-1 1 1]	(1 0 1)
4	[11-1]	(1 0 1)
5	[-1 1 1]	(1 1 0)
6	[1 -1 1]	(1 1 0)
7	[1 1 1]	(0 -1 1)
8	[-1 1 1]	(0 -1 1)
9	[1 1 1]	(1 0 -1)
10	[1 -1 1]	(1 0 -1)
11	[1 1 1]	(-1 1 0)
12	[1 1 -1]	(-1 1 0)
13	[1 1 -1]	(1 1 2)
14	[1 -1 1]	$\frac{(1\ 1\ 2)}{(-1\ 1\ 2)}$
15	[-1 1 1]	$\frac{(-1 \ 1 \ 2)}{(1 \ -1 \ 2)}$
16	[1 1 1]	$\frac{(1-1/2)}{(1/1-2)}$
17	[1 -1 1]	$\frac{(1\ 1\ -2)}{(1\ 2\ 1)}$
18	[1 1 -1]	$\frac{(1\ 2\ 1)}{(-1\ 2\ 1)}$
19	[1 1 1]	$\frac{(-1\ 2\ 1)}{(1\ -2\ 1)}$
20	[-1 1 1]	$\frac{(1 - 2 - 1)}{(1 - 2 - 1)}$
21	[-1 1 1]	$(2\ 1\ 1)$
22	[1 1 1]	$\frac{(2\ 1\ 1)}{(-2\ 1\ 1)}$
$\frac{22}{23}$	[1 1 -1]	$\frac{(-2 \ 1 \ 1)}{(2 \ -1 \ 1)}$
23	[1 -1 1]	$\frac{(2-1-1)}{(2-1-1)}$
		$(2\ 1\ -1)$ $(1\ 2\ 3)$
$\frac{25}{26}$	[1 1 -1]	$(1\ 2\ 3)$
27	[-1 1 1]	$\frac{(-1\ 2\ 3)}{(1\ -2\ 3)}$
28		
29	[1 1 1]	$\frac{(1\ 2\ -3)}{(3\ 1\ 2)}$
$\frac{29}{30}$	[1 1 1]	$(3\ 1\ 2)$
31	[1 1 -1]	$(-3 \ 1 \ 2)$ $(3 \ -1 \ 2)$
32	[1 -1 1]	$\frac{(3-1-2)}{(3-1-2)}$
33	<u> </u>	
33	[1 -1 1]	$\begin{array}{c} (2\ 3\ 1) \\ \hline (-2\ 3\ 1) \end{array}$
35	[1 1 1]	(2 - 3 1) $(2 - 3 1)$
36	[-1 1 1]	$(2 \ 3 \ 1)$ $(2 \ 3 \ -1)$
37	[1 -1 1]	$(2\ 3\ -1)$ $(1\ 3\ 2)$
38	[1 1 -1 1]	$(-1\ 3\ 2)$
39	[1 1 -1]	$(-1\ 3\ 2)$ $(1\ -3\ 2)$
40	[-1 1 1]	(1 - 3 2) $(1 3 - 2)$
41	[1 1 -1]	$(1\ 3\ -2)$ $(2\ 1\ 3)$
41 42	[1 -1 1]	$(2\ 1\ 3)$
	[-1 1 1]	$(-2 \ 1 \ 3)$ $(2 \ -1 \ 3)$
43		
44	[1 1 1]	$(2 \ 1 \ -3)$
$\frac{45}{46}$	[1 1 1]	(3 2 1) (-3 2 1)
		$\frac{(-3\ 2\ 1)}{(3\ -2\ 1)}$
47	[1 1 -1]	
48	[1 -1 1]	(3 2 -1)