$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (t) e^{-j\omega t} dt$$

$$f(t) = \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

Baron Jean Baptiste Joseph Fourier

$$F(k) = \frac{1}{N} \sum_{n=0}^{N-1} f(n) e^{-j\frac{2n}{N}nk}$$

$$f(n) = \sum_{k=0}^{N-1} F(k) e^{j\frac{2\pi nk}{N}}$$

FFT Analysis 101

FFT Analysis 101

- Introduction
- Practical Set Up of FFT Analysers
- Pitfalls of an FFT Analyser
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- FFT Summary

The Measurement Chain

Sources of Machine Vibration

The moving parts of machines create vibration at different frequencies.

Easier Than This...

Imagine trying to determine all of the previous from just this!

The Fourier Transform

$$G(f) = \int_{-\infty}^{+\infty} g(t) e^{-j2\pi f t} dt$$

$$g(t) = \int_{-\infty}^{+\infty} G(f) e^{j2\pi f t} df$$

"All Complex Waves..."

All Complex Waves are the Sum of Many Sine and Cosine Waves

Fourier Transform is a Mathematical Filter!

Types of Signals

Types of Signals

FFT Analysis 101

- Introduction
- Practical Set Up of FFT Analysers
- Pitfalls of an FFT Analyser
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- FFT Summary

Filter Types

Constant Bandwidth

Constant Percentage Bandwidth (CPB) or Relative Bandwidth

$$B = x Hz$$

$$B = y\% = \frac{y \times f_0}{100}$$

What is the Fast Fourier Transform?

- An algorithm for increasing the speed of the computer calculation of the Discrete Fourier transform.
 - Reduces the number of multiplications from N² to (N/2)log₂N
 - Computation speed increased by a factor of 372 for an 800 line FFT
- Block analysis of time data samples to provide equivalent frequency domain description
- Analysis with constant bandwidth filters
- "Rediscovered" in 1962 by Bell Lab scientists Cooley and Tukey

FFT Analyzer

FFT Time Assumption

Input signal

Analysed signal

Rectangular or Uniform weighting

Hanning weighting

FFT Fundamentals

- Lines = resolution
- Span = upper freq. range
- df = Span/Lines
- \bullet T = 1/df
- dt = 1/(Span * 2.56)

Most important Law in Frequency Analysis

 $B \times T \geq 1$

B = bandwidth

T = measurement time

Uncertainty Principle Example

If the FFT Analyzer is:

Uncertainty Principle – Stationary Signals

If BT = 1 then we are 'Certain'...but then accuracy is not very high. If we obtain more cycles then accuracy will improve greatly.

Uncertainty Principle – Non Stationary Signals

With transients things get more complicated. More resolution is not always the best...

Are You Certain About Uncertainty (1)?

Are You Certain About Uncertainty (2)?

Are You Certain About Uncertainty (3)?

What Happened? Which Is Correct?

Whichever best fit the time block!

Ensuring Repeatable Measurements

- Think about the signal you are measuring
 - Stationary
 - Transient
 - Combination...
- Always report:
 - Lines
 - Span
 - Window used
 - Overlap
 - Averaging Type
 - # of Averages
 - Start Trigger?

FFT Analysis 101

- Introduction
- Practical Set Up of FFT Analysers
- Pitfalls of an FFT Analyser
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- FFT Summary

Pitfalls in DFT

Time Frequency

Sampling gives Aliasing

Time limitation gives Leakage

Periodic repetition gives Picket Fence Effect

ALIASING

 Insufficient sampling allows a high frequency signal to masquerade under a low frequency "alias"

Copyright @ 1994, 1995, 1996, 1997 The Learning Company, Inc. All Rights Reserved.

Aliasing

Anti-aliasing Filter

Leakage

"Picket Fence" Effect

How to Avoid the Pitfalls of DFT

1. Aliasing: Caused by sampling in time

Solution:

• Use anti-aliasing filter (f_c) and sampling rate f_s>2 f_c

2. Leakage: Caused by time limitation

Solutions:

• Use correct weighting (signals)

Increase the frequency resolution (systems)

3. Picket fence effect: Caused by sampling in frequency

Solutions: • Use correct weighting (signals)

Increase the frequency resolution (systems)

FFT Analysis 101

- Introduction
- Practical Set Up of FFT Analysers
- Pitfalls of an FFT Analyser
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- FFT Summary

Discontinuities in the Time Record

Windows "smooth" the discontinuity

Windows

Use of Weighting Functions in Signal Analysis

	Weighting					
	Rect- angular	Hanning	Transient	Expo- nential	Kaiser- Bessel	Flat Top
Transients:						·
 General purpose 		+ overlap				
Short transient	/		/			
 Long decaying transients 				V		
 Very long transients 		+ overlap				
Continuous signals:						
General purpose, RTA						
Two-tone separation					/	
Calibration						*
Pseudo random	/					

FFT Analysis 101

- Introduction
- Practical Set Up of FFT Analysers
- Pitfalls of an FFT Analyser
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- FFT Summary

Overlap Analysis with Hanning Weighting (1)

No overlap

66²/₃% overlap

• 50% overlap

• 75% overlap

Overlap Analysis with Hanning Weighting (2)

No overlap

$$(1 - \cos x)^2 = 1 - 2\cos x + \cos^2 x$$

66²/₃% overlap

1/3 [
$$(1 - \cos x)^2 + (1 - \cos(x - \frac{2\pi}{3}))^2 + (1 - \cos(x - \frac{4\pi}{3}))^2$$
] = 1.5

Time

50% overlap
 1/2 [(1 -cosx)² = (1 + cosx)²] 1 = cos²x

75% overlap

1/4 [
$$(1 - \cos x)^2 + (1 - \sin x)^2 + \cos x)^2$$

+ $(1 - \cos(x + \sin x)^2] = 1.5$
W(t) Time

Window Summary

Window	Noise Bandwidth	Ripple	Highest Sidelobe
Rectangle	1.0 ∆F	3.92 dB	-13 dB
Hanning	1.5∆F	1.42 dB	-31 dB
Kaiser-Bessel	1.8∆F	0.98 dB	-68 dB
Flat Top	3.8∆F	0.009 dB	-93 dB

FFT Analysis 101

- Introduction
- Practical Set Up of FFT Analysers
- Pitfalls of an FFT Analyser
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- FFT Summary

Signal Types and Spectrum Units

Correct use of Units

FFT - Summary

The Discrete Fourier Transform:

- The DFT has properties very similar to the integral Fourier Transform
- The DFT has certain pitfalls: aliasing, leakage and picket fence effect
- Recording time, sampling interval, sampling frequency, frequency span and frequency resolution are all related

Weighting functions, leakage and picket fence effect:

- Many different weightings exist for different purposes
- Use of the proper weighting can reduce leakage and picket fence effect errors
- Weightings can be regarded as filters

Real-time Analysis, Overlap Analysis and Triggering:

- Condition for real-time analysis: T ≥ T_{calc.}
- Other weightings than rectangular may require overlap analysis to avoid loss of data or to get a flat overall weighting function
- Many different trigger functions exist for different purposes

CPB Advantages & Disadvantages

Pros	Cons
Excellent response time	Limited, but optimized freq. resolution (1/1,1/3,1/12,1/24)
Can measure 'peak', 'RMS'	Stereotyped as an acoustics analyzer
Internationally standardized	Not as common as FFT in North America
Results are consistent	Higher Processor Demands
Optimized, but limited freq. resolution	

FFT Advantages & Disadvantages

Pros	Cons		
High freq. resolution !ZOOM!	Poor response time		
Wide selection of averaging types	Block time analysis		
Constant bandwidth filters, make harmonic patterns obvious	Leakage		
Very common	Windows		
Great for 'exact' freq. determinations	No true 'peak' detection		
Lower Processor Demands	"Ambiguous" results		
[Pa] Time(Acoustic Signal) - Input Working : Input : Realtime FFT 0	Not sta [dB/20.0u Pa] Autospectrum(Acoustic Signal) - Input2 Working : Input : FFT Waterfall : Realtime FFT 40 20 0 200 400 600 800 1k 1.2k 1.4k 1.6k		

Literature for Further Reading

- Frequency Analysis by R.B.Randall
 (Brüel & Kjær Theory and Application Handbook BT 0007-11)
- The Fast Fourier Transform by E. Oran Brigham (Prentice-Hall, Inc. Englewood Cliffs, New Jersey)
- The Discrete Fourier Transform and FFT Analyzers by N. Thrane (Brüel & Kjær Technical Review No. 1, 1979)
- Zoom-FFT by N. Thrane
 (Brüel & Kjær Technical Review No. 2, 1980)
- Dual Channel FFT Analysis by H. Herlufsen (Brüel & Kjær Technical Review No. 1 & 2, 1984)
- Windows to FFT Analysis by S. Gade, H. Herlufsen
 (Brüel & Kjær Technical Review No. 3 & 4, 1987)
- Who is Fourier?

Questions

Jason Kunio
Application Engineer
678-250-7684
jason.kunio@bksv.com

