Algebra II Winter 2021 Frank Sottile

Ninth Homework: Canonical Forms

15 March

Write your answers neatly, in complete sentences, and prove all assertions. Start each problem on a new page (this makes it easier in Gradescope). Revise your work before handing it in, and submit a .pdf created from a LaTeX source to Gradescope. Correct and crisp proofs are greatly appreciated.

Due Monday 22 March.

Let $\mathbb F$ be a field and V a finite-dimensional vector space over $\mathbb F$. Fix a linear transformation $T\in \operatorname{End}_{\mathbb F}(V)$ of the vector space V. Let t be an indeterminate and consider the map $\varphi_T\colon \mathbb F[t]\to \operatorname{End}_{\mathbb F}(V)$ given by $t\mapsto T$ (and $\mathbb F\ni 1\mapsto Id_V$, where Id_V is the identity linear transformation on V).

Exercise 1: Show that φ_T is a ring homomorphism.

Definition. The *minimal polynomial* of T is the monic generator of the kernel of φ_T . (Recall that $\mathbb{F}[t]$ is a principal ideal domain.)

Lemma. Under the map φ_T , V is a finitely generated torsion $\mathbb{F}[t]$ -module.

Exercise 2: Provide a proof of this statement.

Example. Let $f = a_0 + a_1 t + \dots + a_{d-1} t^{d-1} + t^d$ be monic polynomial in $\mathbb{F}[t]$. Consider the quotient $\mathbb{F}[t]/\langle f \rangle$ as an \mathbb{F} -vector space and an $\mathbb{F}[t]$ -module. Elements of $\mathbb{F}[t]$ act on this quotient by mutiplication.

Exercise 3: Show that $\{1,t,t^2,\ldots,t^{d-1}\}$ forms a basis for the $\mathbb F$ -vector space $\mathbb F[t]/\langle f\rangle$.

What is the matrix R for the action of t on the vector space $\mathbb{F}[t]/\langle f \rangle$ with respect to this ordered basis? (Treat elements of $\mathbb{F}[t]/\langle f \rangle$ as column vectors.)

Example. Let $\alpha \in \mathbb{F}$, $m \in \mathbb{N}$ positive, and consider the $\mathbb{F}[t]$ -module $\mathbb{F}[t]/\langle (t-\alpha)^m \rangle$.

Exercise 4: Show that $\{1, (t-\alpha), (t-\alpha)^2, \dots, (t-\alpha)^{m-1}\}$ is a basis for the \mathbb{F} -vector space $\mathbb{F}[t]/\langle (t-\alpha)^m \rangle$. What is the matrix J for the action of t on $\mathbb{F}[t]/\langle (t-\alpha)^m \rangle$ with respect to this basis?

Definition. Let T,V be as above. An eigenvector of T is a nonzero vector $0 \neq v \in VB$ such that there exists $\lambda \in \mathbb{F}$ with $Tv = \lambda v$. The scalar λ is the eigenvalue of T corresponding to the eigenvector v.

Exercise 5: Let $\alpha \in \mathbb{F}$ and $m \in \mathbb{N}$ be positive.

- (a) Show that $(t-\alpha)^{m-1}$ is the unique eigenvector for the action of t on the vector space $\mathbb{F}[t]/\langle (t-\alpha)^m \rangle$.
- (b) Let $h \in \mathbb{F}[t]$. What are its eigenvectors and eigenvalues on the vector space $\mathbb{F}[t]/\langle (t-\alpha)^m \rangle$?

Theorem. (Rational Canonical Form) Let \mathbb{F} , T, V be as above. There is an ordered basus for V such that, in this basis, the linear transformation T has the block diagonal form

$$\begin{pmatrix} R_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & R_t \end{pmatrix} ,$$

where each diagonal block R_i has the form of the matrix in Exercise 3, for a polynomial $q_i(t)$ with $q_1|q_2|\cdots|q_t$. This diagonal form is unique.

Exercise 6: Prove this, using the decomposition of torsion modules over $\mathbb{F}[t]$ via invariant factors.

Theorem. (Jordan Canonical Form) Let \mathbb{F} , T, V be as above, and suppose that the minimal polyomial of T factors into liner factors (or that \mathbb{F} is algebraically closed). There is an ordered basus for V such that, in this basis, the linear transformation T has the block diagonal form

$$\begin{pmatrix} J_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & J_t \end{pmatrix} ,$$

where each diagonal block J_i has the form of the matrix in Exercise 4. This diagonal form is unique. The J_i are called Jordan blocks for T.

Exercise 7: Prove this, using the decomposition of torsion modules over $\mathbb{F}[t]$ via elementary divisors. What are the eigenvectors of T in this basis?

Example. A submodule M of \mathbb{Z}^n is a free abelian group of rank $m \leq n$. Let

$$\varphi: \mathbb{Z}^m \longrightarrow \mathbb{Z}^n$$

be any \mathbb{Z} -linear map with image M (with our assumptions, it is an injection).

Exercise 8: Show that there are bases for \mathbb{Z}^m and \mathbb{Z}^n such that

$$\varphi = \begin{pmatrix} \delta_1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & \ddots & 0 & \vdots & \ddots & \vdots \\ 0 & 0 & \delta_m & 0 & \cdots & 0 \end{pmatrix} ,$$

with $\delta_1 | \delta_2 | \cdots | \delta_m$ (and $\delta_m \neq 0$).

This is called the *Smith normal form of* φ More generally, (and classically) we may take φ to be a map between free modules $(\mathbb{F}[t])^m \to (\mathbb{F}[t])^n$ (with no assumptions on m,n, or φ (or much less classically, between free modules over a PID). Then there are bases so that φ is a diagonal matrix whose entries δ_i satisfy $\delta_1|\delta_2|\cdots|\delta_{\min\{m,n\}}$, with possibly $\delta_{\min\{m,n\}}=0$. (Note that for all elements r, r|0.)

Bonus: Show that the diagonal entry δ_i is the greatest common divisor of the determinants of all $i \times i$ submatrices in the matrix representation of φ .