

planetmath.org

Math for the people, by the people.

subset construction

Canonical name SubsetConstruction
Date of creation 2013-03-22 19:02:00
Last modified on 2013-03-22 19:02:00

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Definition
Classification msc 68Q05
Classification msc 03D10
Classification msc 68Q42

Synonym powerset construction

Related topic DeterministicFiniteAutomaton

Defines ϵ -closure

The subset construction is a technique of turning a non-deterministic automaton into a deterministic one, while keeping the accepting language the same. This technique shows that an NDFA is no more powerful in terms of word acceptance than a DFA.

We begin by looking at a semiautomaton (S, Σ, δ) . The transition function δ is a function from $S \times \Sigma$ to P(S), which maps a pair (s, a) to a subset $\delta(s, a)$ of S. Observe that δ can be extended to a function δ' from $P(S) \times \Sigma$ to P(S) by setting

$$\delta'(T, a) := \bigcup \{ \delta(t, a) \mid t \in T \}$$
 (1)

for any subset T of S and $a \in \Sigma$. Note that $\delta'(\emptyset, a) = \emptyset$. What we have just done is turning a semiautomaton (S, Σ, δ) into a deterministic semiautomaton (S', Σ, δ') , where S' = P(S), the powerset of S.

It is easy to see, by induction on the length of u, that $\delta'(T, u) = \bigcup \{\delta(t, u) \mid t \in T\}.$

Next, given an NDFA $A=(S,\Sigma,\delta,I,F)$, we turn it into a DFA $A':=(S',\Sigma,\delta',I',F')$ as follows:

- (S', Σ, δ') is derived from (S, Σ, δ) by the construction above,
- I' = I, and
- $F' = \{ T \subseteq S \mid T \cap F \neq \emptyset \}.$

Since I' is an element of S' = P(S), and $F' \subseteq S'$, A' is a well-defined DFA.

Proposition 1. L(A) = L(A').

Proof.
$$u \in L(A)$$
 iff $\delta(q,u) \cap F \neq \emptyset$ (where $q \in I$) iff $\delta'(I,u) \in F'$ iff $u \in L(A')$.

What happens if the NDFA in question contains http://planetmath.org/EpsilonTransition transitions? Suppose $p \stackrel{\epsilon}{\to} q$ is an ϵ -transition, and $p \neq q$. Then $\delta'(\{p\}, \epsilon) = \{q\} \neq \{p\}$, which is not allowed in a DFA.

To get around this difficulty, we make a small modification on A'. First, define, for any $T \subseteq S$, the ϵ -closure $C_{\epsilon}(T)$ of T as the set

$$C_{\epsilon}(T) := \{ t \mid t \in \delta'(T, \epsilon^k), k \ge 0 \}$$
 (2)

For any $T \subseteq S$, $\delta'(C_{\epsilon}(T), a) = C_{\epsilon}(T)$. If the automaton does not contain any ϵ -transitions, then $C_{\epsilon}(T) = T$.

Now, let NDFA A be an http://planetmath.org/EpsilonAutomaton ϵ -automaton, define $A'' := (S', \Sigma, \delta'', I'', F'')$ as follows:

- S' = P(S),
- $\delta''(T, a) = \delta'(C_{\epsilon}(T), a)$, where δ' is defined in (1) above,
- $I'' = C_{\epsilon}(I)$, and
- $F'' = \{ T \subseteq S \mid C_{\epsilon}(T) \cap F \neq \emptyset \}.$

By definition, A'' is a DFA, and it can be shown that L(A'') = L(A). The proof is very similar to the one given http://planetmath.org/EveryEpsilonAutomatonIsEquival