Cryptography in Cyclic Groups

Overview

Cyclic Groups

Generalities and Basic Results Multiplicative Groups of Integer Modulo *p*

Cryptographic Constructions in Groups Diffie-Hellman Key-Exchange Elgamal Encryption

Checking and Creating Generators Lagrange's Theorem Applications

Groups

- ightharpoonup A **group** is a set \mathbb{G} along with a binary operation
 - Additive notation of multiplicative notation
- There is a neutral element (denoted by 0 or 1)
- **Each group element has an inverse** (denoted by -x or x^{-1})

In cryptology

Two kinds of groups are widely used:

- 1. Invertible integers modulo N, in particular when N is prime
- 2. Points on an elliptic curve ($y^2 = x^3 + ax + b$)
- ▶ If (G, \times) is a group, $H \subseteq G$ and (H, \times) is also a group
 - ► Then *H* is a **subgroup** of *G*.
- ▶ If G is a finite group, then |G| is the **order** of G

Cyclic Groups

Let \mathbb{G} be a finite group of order N and $g \in \mathbb{G}$

- ▶ The cyclic group generated by g is $\langle g \rangle = \{g^i \mid i \in \mathbb{Z}\}$
- ► This is obviously a subgroup of G...
- ▶ ... therefore $\langle g \rangle$ is finite of order $q \leq N$
- ightharpoonup q is the **order** of g (= of the cyclic subgroup generated by g)

Lemma

Let q denote the order of $\langle g \rangle$. If i > 0 and $g^i = 1$, then $q \le i$.

Proof.

- ▶ Let $u \in \mathbb{Z}$
- Euclidean division of u by i: u = ki + r with r < i
- $g^u = g^{ki+r} = (g^i)^k \cdot g^r = 1^k \cdot g^r = g^r$
- $ightharpoonup g^u$ can take at most *i* distinct values, therefore $q \leq i$.

Proposition

Let q denote the order of $\langle g \rangle$. Then q is the smallest i > 0 s.t. $g^i = 1$.

Proof.

- 1. For $1 \le i < q, g^i \ne 1$
 - Suppose not: $g^i = 1$ with i < q
 - Previous lemma yields $q \le i < q$
- 2. For $0 \le i < q$, the g^i are all different
 - Suppose not: $g^i = g^j$ with i < j < q
 - Therefore $g^{j-i} = 1$ and $1 \le j-i < q$
- 3. $g^q = g^k$ for some $0 \le k < q$
 - Suppose not: then q+1 elements of $\langle g \rangle$ are distinct
- **4.** k = 0
 - g^{q-k} = 1, and the previous lemma yields $q \le q-k$

Proposition

Let q denote the order of $\langle g \rangle$. Then:

$$g^u = g^v \iff u \equiv v \bmod q$$

Proof.

Suppose $u \ge v$; Euclidean division by q: u - v = qi + r (r < q)

$$g^{u} = g^{v} \Leftrightarrow g^{u-v} = 1$$

$$\Leftrightarrow g^{iq+r} = 1$$

$$\Leftrightarrow (g^{q})^{i} \cdot g^{r} = 1$$

$$\Leftrightarrow 1^{i} \cdot g^{r} = 1$$

$$\Leftrightarrow g^{r} = 1$$

$$\Leftrightarrow r = 0$$
 (by previous proposition, $r < q$)
$$\Leftrightarrow u - v = iq$$

$$\Leftrightarrow u \equiv v \mod q$$

Moral Of The Story

In a cyclic group of order q, exponents are always "mod q"

Classic Groups in Cryptology

Multiplicative Groups of Integer Modulo p

- $ightharpoonup \mathbb{Z}_p^{ imes} = \{1, 2, \dots, p-1\} = \text{invertible integers mod } p$
- ▶ Order *p* − 1

Main interest

Discrete logarithm is (presumably) hard

• Given $g^x \mod p$, no efficient algorithm to find x

Exponentiation Modulo p **Is Not Easy to Invert**

Curve25519

 $y^2 = x^3 + 486662x^2 + x$

Curve25519

$$y^2 = x^3 + 486662x^2 + x \mod 2^{255} - 19$$

Discrete Logarithm in \mathbb{Z}_p^{\times}

Given a **generator** g and a **target** $h = g^x$, find x

Observations

- Let q denote the order of g modulo p
 - = the order of g in \mathbb{Z}_p^{\times}
- ➤ x is defined "modulo q"
 - ► Choosing x uniformly in [0; q) is sufficient
- Simple approach: exhaustive search
 - ► For i = 0, 1, 2, ..., q 1: if $h = g^i$ then return i
 - Complexity: q multiplications by g and equality tests
- → Need generators of large order

Discrete Logarithm in \mathbb{Z}_p^{\times} Continued

Given a generator g of order q and a target $h = g^x$, find x

Best algorithms

- Number Field Sieve
 - ► Complexity $\mathcal{O}\left(\exp((1.92 + o(1))(\log p)^{1/3}(\log \log p)^{2/3})\right)$
 - ► (Depends only of *p*)
 - Current record: 795-bit p (2020). 3200 CPU-year.
 - Security ~→ large p (2000-3000 bits)
- Pollard rho
 - ▶ Complexity $\mathcal{O}\left(\sqrt{q}\right)$
 - Current record: 112-bit q (2012) cluster of Playstation 3
 - Security → large q (256 bits)
- Pohlig-Hellman
 - If q = uv, then project into subgroups of order u,v
 - Security → q with large prime factor (256 bits)

Discrete Logarithm in \mathbb{Z}_p^{\times}

Questions

- 1. How to find g of order q s.t. q has a prime factor $\geq 2^{256}$?
- 2. How to determine the order of *g*?
- 3. Do random g have large order modulo p?
- 4. What is the largest possible order of g modulo p?

Discrete Logarithm in \mathbb{Z}_p^{\times}

Questions

- 1. How to find g of order q s.t. q has a prime factor $\geq 2^{256}$?
 - **EASY** (if one can choose *p*)
- 2. How to determine the order of g?
 - ► HARD in general
- 3. Do random g have large order modulo p?
 - ► YES (mostly)
- 4. What is the largest possible order of g modulo p?
 - **▶** *p* − 1

Key Exchange

 (\mathbb{G},\cdot) a finite cyclic group; $\langle \mathbf{g} \rangle = \mathbb{G}$

Anissa

Billel

Eve

 (\mathbb{G},\cdot) a finite cyclic group; $\langle \mathbf{g} \rangle = \mathbb{G}$

Billel

Anissa

Eve

 (\mathbb{G},\cdot) a finite cyclic group; $\langle \mathbf{g}\rangle = \mathbb{G}$

Anissa

 (\mathbb{G},\cdot) a finite cyclic group; $\langle g
angle = \mathbb{G}$

 (\mathbb{G},\cdot) a finite cyclic group; $\langle g
angle = \mathbb{G}$

 $K_a = v_b^a = (g^b)^a = g^{ab} = (g^a)^b = v_a^b = K_b$

Whitfield Diffie (1944–)

Martin E. Hellman (1945–)

Diffie-Hellman Key Exchange: Security

Eve knows:

- **▶** g
- $\triangleright y_a = g^a$
- $\rightarrow y_b = g^b$

and should have no information on $K = g^{ab}$

▶ If finding a from y_a is easy then the DH key exchange is not secure.

Elgamal Encryption 1984

- Non-interactive version of Diffie-Hellman key-exchange
- ▶ Group \mathbb{G} , cyclic subgroup $\langle g \rangle$ of order q

Key Generation

- ► Choose random integer $0 \le x < q$
- ► Compute $h \leftarrow g^x$

Public key =
$$\mathbb{G}$$
, g , h
Secret key = x

Elgamal Encryption 1984

Encryption

- ► Message space = ©
- ▶ Choose random integer $0 \le r < q$
- ► Ciphertext: $c \leftarrow (g^r, h^r \cdot m)$

(non-deterministic)

Decryption

- ightharpoonup Ciphertext c = (a, b)
- ightharpoonup Output $(a^x)^{-1} \cdot b$

$$h = g^x, a = g^r \text{ and } b = h^r \cdot m \longrightarrow (a^x)^{-1} \cdot b = g^{-rx} \cdot h^r \cdot m = m$$

Elgamal Encryption 1984

(-1955) *طَاهر الجمل

 \ast Taher Elgamal

Relevant Algorithmic Problems

DLOG Given g, g^x , find x **CDH** Given g, g^x , g^y , find g^{xy} **DDH** Compute \mathcal{F}

(Computational Diffie-Hellman) (Decisional Diffie-Hellman)

$$\mathcal{F}(g, h, u, v) = \begin{cases} 1 & \text{if } \exists x. \ u = g^x \text{ and } v = h^x \\ 0 & \text{otherwise} \end{cases}$$

Observations

- ▶ DLOG easy ⇒ CDH easy ⇒ DDH easy
- ▶ Elgamal key recovery ⇒ DLOG
 - Public key h^x / Secret key = x
- ▶ Elgamal OW ←⇒ CDH
 - **► CDH** easy \Longrightarrow compute h^r from g, h, g^r
 - ► Elgamal not **OW** \Longrightarrow set $h = g^x$, $m \leftarrow \mathcal{A}(g^y, \alpha)$, $\alpha \cdot m^{-1} = g^{xy}$

Relevant Algorithmic Problems

DLOG Given g, g^x , find x **CDH**' Given g, h, g^x , find h^x **DDH** Compute \mathcal{F}

(equivalent CDH variation) (Decisional Diffie-Hellman)

$$\mathcal{F}(\mathbf{g},\mathbf{h},\mathbf{u},\mathbf{v}) = \begin{cases} 1 & \text{if } \exists \mathbf{x}.\ \mathbf{u} = \mathbf{g}^{\mathbf{x}} \text{ and } \mathbf{v} = \mathbf{h}^{\mathbf{x}} \\ 0 & \text{otherwise} \end{cases}$$

Observations

- ▶ DLOG easy ⇒ CDH easy ⇒ DDH easy
- ▶ Elgamal key recovery ⇔ DLOG
 - Public key h^x / Secret key = x
- ▶ Elgamal OW ←⇒ CDH
 - ▶ **CDH** easy \Longrightarrow compute h^r from g, h, g^r
 - ► Elgamal not **OW** \Longrightarrow set $h = g^x$, $m \leftarrow \mathcal{A}(g^y, \alpha)$, $\alpha \cdot m^{-1} = g^{xy}$

DDH — Alternative Point of View

- ▶ Distinguisher must tell if he is in "world b = 0"...
- ightharpoonup ... or in "world b = 1"

(Decisional Diffie-Hellman)

$$\mathcal{F}(g, h, u, v) = \begin{cases} 1 & \text{if } \exists x. \ u = g^x \text{ and } v = h^x \\ 0 & \text{otherwise} \end{cases}$$

Simple strategy to compute ${\mathcal F}$

▶ Just return a random bit! Correct with proba. 50%

Concept of advantage

- ⇒ Disqualify naive strategies
- ightharpoonup Advantage of an algorithm A:

$$\mathbf{Adv}_{\text{DDH}}(\mathcal{A}) = \left| \Pr(\mathcal{A} \rightarrow 1 \mid \textbf{\textit{b}} = \textbf{1}) - \Pr(\mathcal{A} \rightarrow 1 \mid \textbf{\textit{b}} = \textbf{0}) \right|$$

- ► Random guess / constant answer ~> advantage 0
- ► Correct all the time \rightsquigarrow advantage 1
- ▶ **DDH** hard ⇔ efficient algo. have **negligible** advantage

DDH Can be Easier than CDH

Let *g* be a primitive root modulo *p*

- **DLOG** and **CDH** are (presumably) hard in \mathbb{Z}_p^{\times}
- **DDH** is easy in $\mathbb{Z}_p^{\times}!!!$
- Argument given around 1800

Leonhard Euler 1707–1783

Adrien-Marie Legendre 1752–1833

Stay tuned for next lecture on HARDCODE PREDICATES!

Semantic Security of Elgamal (a.k.a. IND-CPA)

World **b**

$$\mathbf{Adv}_{\textit{IND}}(\mathcal{A}) = \left| \Pr(\mathcal{A} \rightarrow 1 \mid \textbf{\textit{b}} = 1) - \Pr(\mathcal{A} \rightarrow 1 \mid \textbf{\textit{b}} = 0) \right|$$

(measures capacity of ${\cal A}$ to learn information from the ciphertext)

Semantic Security of Elgamal (a.k.a. IND-CPA)

Theorem

Elgamal is **IND-CPA** ← **DDH** is hard

Proof.

- 1. Suppose **DDH** is **easy**
 - Build good IND-CPA adversary

$$h = g^{x}$$

$$\textit{m}_0 \neq 1, \textit{m}_1 = 1$$

 $(g^r, h^r \cdot m_b)$

Challenger

Adversary
$${\cal B}$$

$$\longrightarrow \mathcal{A}(g,h,g^r,m_b\cdot h^r)$$

- DDH easy:
 - ightharpoonup = \exists efficient \mathcal{A} that computes \mathcal{F} correctly w/ high proba
- $ightharpoonup m_0 \neq 1, m_1 = 1 \implies \mathcal{F}(g, h, g^r, h^r \cdot m_b) = b$
- lacktriangledown A answers DDH correctly \Longrightarrow ${\cal B}$ answers IND-CPA correctly

Semantic Security of Elgamal (a.k.a. IND-CPA)

Theorem

Elgamal is **IND-CPA** \iff **DDH** is hard

Proof.

- 1. Suppose **DDH** is easy
 - Build good IND-CPA adversary
- 2. Suppose Elgamal is not IND-CPA
 - ▶ Build efficient DDH algorithm w/ non-negligible advantage

IND-CPA

- \triangleright \mathcal{B} uses \mathcal{A} to solve DDH
- \Rightarrow Must **faithfully simulate** the challenger that $\mathcal A$ expects
- \blacktriangleright (otherwise knothing is known about the answers of A)

$$\mathcal{A}$$
 guesses $b' \iff (\mathcal{A} \to 1 \land b' = 1) \lor (\mathcal{A} \to 0 \land b' = 0)$

$$\begin{split} \Pr(\mathcal{A} \text{ guesses } b') &= \Pr(\mathcal{A} \rightarrow 1 \wedge b' = 1) + \Pr(\mathcal{A} \rightarrow 0 \wedge b' = 0) \\ &= \frac{1}{2} \Pr(\mathcal{A} \rightarrow 1 \mid b' = 1) + \frac{1}{2} \Pr(\mathcal{A} \rightarrow 0 \mid b' = 0) \end{split}$$

Recall the definition:

$$\begin{aligned} \mathbf{Adv}_{\mathit{IND}}(\mathcal{A}) &= \left| \Pr(\mathcal{A} \rightarrow 1 \mid b' = 1) - \Pr(\mathcal{A} \rightarrow 1 \mid b' = 0) \right| \\ &= \left| \Pr(\mathcal{A} \rightarrow 1 \mid b' = 1) - 1 + \Pr(\mathcal{A} \rightarrow 0 \mid b' = 0) \right| \\ &= \left| 2 \cdot \Pr(\mathcal{A} \text{ guesses } b') - 1 \right| \end{aligned}$$

Finally:

$$\Pr(\mathcal{A} \text{ guesses } b') = \frac{1}{2} \mathbf{A} \mathbf{d} \mathbf{v}_{IND}(\mathcal{A}) + \frac{1}{2}$$

World b = 1 $(g, h, g^{\mathbf{x}}, h^{\mathbf{x}})$ **DDH** IND-CPA h m_0, m_1 $b' \stackrel{\$}{\leftarrow} \{0, 1\}$ $(g^{\mathbf{x}}, h^{\mathbf{x}} \cdot m_{b'})$ Adversary AAdversary \mathcal{B} $\triangleright \mathcal{B}$ faithfully simulates the Challenger $[b' = \hat{b}']$ ▶ Proba. that \mathcal{A} guesses b' correctly? $ightharpoonup \Pr(\mathcal{B} \to 1 \mid \mathbf{b} = 1) = 0.5 + 0.5 \mathbf{Adv}_{IND}(\mathcal{A})$

 $ightharpoonup Adv_{DDH}(\mathcal{B}) = 0.5 Adv_{IND}(\mathcal{A})$

Semantic Security of Elgamal (a.k.a. IND-CPA)

Theorem

Elgamal is **IND-CPA** ← **DDH** is hard

Proof.

- 1. Suppose **DDH** is easy
 - Build good IND-CPA adversary
- 2. Suppose Elgamal is not IND-CPA
 - ▶ Build efficient DDH algorithm w/ non-negligible advantage

Joseph-Louis Lagrange (1736–1813)

Theorem (Lagrange)

Let G be a finite group and $H \subseteq G$ a subgroup of G. Then |H| divides |G|.

Proof.

- ▶ Let $x, y \in G$
- ▶ Say that $x \sim y$ iff $\exists h \in H$ (the subgroup) such that x = yh
- ightharpoonup \sim is an equivalence relation (easy)
- ► The equivalence class of x is xH
- xH has cardinality |H|
 - Multiplication by x is a bijection in G
- ▶ Write [G : H] the number of equivalence classes
 - Also known as the "index of H in G"
- The equivalence classes form a partition of G
- ▶ Therefore $|G| = [G:H] \times |H|$

Interesting Consequence

Corollary

Let G be a group and $x \in G$. The order of x divides the order of G.

Proof.

 $\langle x \rangle$ is a subgroup of G. Apply Lagrange's theorem.

Generators in \mathbb{Z}_p^{\times}

Let q denote the order of g modulo p

- $ightharpoonup \mathbb{Z}_p^{\times}$ has order p-1
 - Notice that p-1 is even
 - $ightharpoonup \{-1,1\}$ is indeed a subgroup of order 2
- ► Therefore (Lagrange's theorem) q divides p-1
 - → Considerably restricts the possible values of q
- ▶ q has a large prime factor $\Rightarrow p-1$ has a large prime factor
- $ightharpoonup \mathbb{Z}_p^{ imes}$ contains elements of order p-1
 - Non-trivial theorem (no proof given here)
 - ▶ This means that \mathbb{Z}_p^{\times} is cyclic
 - An element of order p-1, is called a **primitive root** mod p

Checking the Order of a Generator

Problem

- ▶ Someone "promises" you that g has order q modulo p
- Can you verify that it is true?

Validation?

- ► Check that q divides p-1
- ightharpoonup Check that $g \neq 1$
- Check that $g^q = 1$ (necessary, **not sufficient**)
 - This proves that the actual order of g divides q
 - It could be smaller than q
- Special case: the previous test is sufficient if q is prime,

Checking the Order of a Generator

Problem

- ▶ Someone "promises" you that g has order q modulo p
- q is not prime (relevant case: primitive roots)

Validation?

- ightharpoonup Let ℓ denote the actual order of g
- Check that $g^q = 1$ (necessary, **not sufficient**)
 - ▶ This proves that ℓ divides q
 - Write $q = \ell r$
- ▶ Suppose ℓ < q ($r \neq 1$)
 - Let f be a prime factor of r (and thus of q)
 - ► Then $g^{\frac{q}{t}} = g^{\frac{q}{t}} = g^{\ell_{\frac{t}{t}}} = 1^{\frac{t}{t}} = 1$
- Contrapositive:
 - $ightharpoonup g^{\frac{q}{t}} \neq 1$ for each prime factor f of $q \Longrightarrow g$ has order q

This procedure requires knowledge of the factorization of *q*

Application: the "Oakley Groups" (RFC 2412 and 3526) Standardized Groups for the Masses

$$p = 2^{2048} - 2^{1984} - 1 + 2^{64} \times ([2^{1918}\pi] + 124476)$$

$$g = 2$$

Claim: g has order p-1 modulo p

Proof.

- Let q denote the order of g
- $ightharpoonup \ell = (p-1)/2$ is also prime
 - p is a Sophie Germain prime or a safe prime
- ▶ Therefore $q \in \{2, \ell, 2\ell\}$
- $ightharpoonup g^2
 eq 1$ and $g^\ell
 eq 1$, therefore g has order p-1

Conclusion: $\mathbb{Z}_p^{\times} = \langle 2 \rangle$

Creating Generators of Prime Order in \mathbb{Z}_p^{\times} — Schnorr's Trick

Procedure

- 1. Choose a 256-bit prime q
- 2. Pick a random 1792-bit integer k
- 3. Set p = 1 + kq
- 4. If *p* is not prime, go back to 2.
- 5. Pick a random x modulo p
- 6. Set $g \leftarrow x^k$
- 7. If g = 1, go back to 5.
- 8. g has (prime) order q modulo p

Proof.

- $pq = x^{p-1} = 1$
 - ► By Fermat's little theorem
- ▶ Therefore, if $g \neq 1$, then g has order q
 - cf. previous slides (easy case: q is prime)

Digression: Primality Certificates 1975

If g has order n-1 modulo n, then n is prime

- $ightharpoonup \langle g \rangle \subseteq \mathbb{Z}_n^{\times}$
- ightharpoonup g has order n-1, therefore $|\mathbb{Z}_n^{\times}|=n-1$
- ▶ All integers except zero are invertible modulo *n*
- n does not have any non-trivial divisor
- n is prime
- ▶ providing g of order n-1 proves that n is prime
- lacktriangle Checking the order of g requires the factorization of n-1
- Certificate of n =
 - ع .1
 - 2. Factorization of n-1
 - 3. Certificates of the prime factors (recursively)
- ► Conclusion: PRIMES ∈ NP

Digression: Primality Certificates 1975

Vaughan Pratt (1944–)