$12n_{0200} (K12n_{0200})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^7 - u^6 - 4u^5 - 3u^4 - 4u^3 - 2u^2 + b, \ u^7 + u^6 + 5u^5 + 4u^4 + 7u^3 + 4u^2 + a + 2u, \\ &u^{11} + 2u^{10} + 8u^9 + 12u^8 + 22u^7 + 24u^6 + 24u^5 + 16u^4 + 9u^3 + u^2 + 2u + 1 \rangle \\ I_2^u &= \langle b + 1, \ -u^2 + a + u - 2, \ u^3 + 2u + 1 \rangle \\ I_3^u &= \langle b + 1, \ u^3 + a + u - 1, \ u^4 - u^3 + 2u^2 - 2u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 18 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^7 - u^6 - 4u^5 - 3u^4 - 4u^3 - 2u^2 + b, \ u^7 + u^6 + 5u^5 + 4u^4 + 7u^3 + 4u^2 + a + 2u, \ u^{11} + 2u^{10} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{7} - u^{6} - 5u^{5} - 4u^{4} - 7u^{3} - 4u^{2} - 2u\\u^{7} + u^{6} + 4u^{5} + 3u^{4} + 4u^{3} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} - u^{4} - 3u^{3} - 2u^{2} - 2u\\u^{7} + u^{6} + 4u^{5} + 3u^{4} + 4u^{3} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 3u^{7} - u^{6} + 12u^{5} - 3u^{4} + 12u^{3} - 2u^{2} + 2\\u^{9} + 4u^{8} + 5u^{7} + 17u^{6} + 7u^{5} + 18u^{4} + 2u^{3} + u^{2} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{8} + u^{7} + 4u^{6} + 4u^{5} + 3u^{4} + 3u^{3} - 2u^{2} - u + 1\\u^{8} + 5u^{6} + u^{5} + 7u^{4} + 2u^{3} + 2u^{2} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3}\\-u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3}\\-u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2u^{10} + 2u^{9} + 12u^{8} + 10u^{7} + 24u^{6} + 16u^{5} + 16u^{4} + 8u^{3} + u^{2} + 1\\-2u^{10} - 3u^{9} + \dots - u - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

$$= 4u^{10} + 8u^9 + 33u^8 + 46u^7 + 87u^6 + 82u^5 + 79u^4 + 38u^3 + 14u^2 - 8u + 11$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{11} + 30u^{10} + \dots + 93u + 1$
c_2, c_4	$u^{11} - 8u^{10} + \dots + 13u - 1$
c_{3}, c_{7}	$u^{11} - u^{10} + \dots - 64u - 128$
c_5, c_6, c_{10}	$u^{11} - 2u^{10} + \dots + 2u - 1$
c_8, c_{11}, c_{12}	$u^{11} + 12u^9 + 38u^7 + 2u^6 + 14u^5 + 12u^4 + 13u^3 + u^2 - 1$
<i>c</i> ₉	$u^{11} + 2u^{10} + \dots - 15u^2 - 8$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{11} - 202y^{10} + \dots + 8901y - 1$
c_2, c_4	$y^{11} - 30y^{10} + \dots + 93y - 1$
c_{3}, c_{7}	$y^{11} + 81y^{10} + \dots + 192512y - 16384$
c_5, c_6, c_{10}	$y^{11} + 12y^{10} + \dots + 2y - 1$
c_8, c_{11}, c_{12}	$y^{11} + 24y^{10} + \dots + 2y - 1$
c ₉	$y^{11} + 12y^{10} + \dots - 240y - 64$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.810323 + 0.554853I		
a = -2.69043 - 1.72437I	15.5955 - 2.6821I	1.82264 + 2.33402I
b = 2.74686 + 0.14673I		
u = -0.810323 - 0.554853I		
a = -2.69043 + 1.72437I	15.5955 + 2.6821I	1.82264 - 2.33402I
b = 2.74686 - 0.14673I		
u = -0.096709 + 1.327340I		
a = 0.467034 + 0.177497I	-3.51172 - 1.71507I	5.41681 + 3.29736I
b = 0.180346 - 0.216613I		
u = -0.096709 - 1.327340I		
a = 0.467034 - 0.177497I	-3.51172 + 1.71507I	5.41681 - 3.29736I
b = 0.180346 + 0.216613I		
u = 0.303421 + 0.399714I		
a = 0.70061 - 1.79618I	-1.58612 + 0.99841I	0.02750 - 3.98074I
b = -0.761956 + 0.436521I		
u = 0.303421 - 0.399714I		
a = 0.70061 + 1.79618I	-1.58612 - 0.99841I	0.02750 + 3.98074I
b = -0.761956 - 0.436521I		
u = 0.09711 + 1.51180I		
a = -0.238461 - 0.866072I	-8.01829 + 2.43510I	-1.52628 - 1.69137I
b = -1.01867 + 1.25733I		
u = 0.09711 - 1.51180I		
a = -0.238461 + 0.866072I	-8.01829 - 2.43510I	-1.52628 + 1.69137I
b = -1.01867 - 1.25733I		
u = -0.29124 + 1.55535I		
a = -0.51989 - 1.85777I	8.71098 - 6.75197I	-1.02074 + 2.56276I
b = 2.80237 + 0.46328I		
u = -0.29124 - 1.55535I		
a = -0.51989 + 1.85777I	8.71098 + 6.75197I	-1.02074 - 2.56276I
b = 2.80237 - 0.46328I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.404507		
a = 0.562272	0.648477	15.5600
b = 0.102109		

II.
$$I_2^u = \langle b+1, -u^2+a+u-2, u^3+2u+1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} - u + 2 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} - u + 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^2 3u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_7	u^3
c_4	$(u+1)^3$
c_5, c_6, c_8	$u^3 + 2u + 1$
<i>c</i> ₉	$u^3 - 3u^2 + 5u - 2$
c_{10}, c_{11}, c_{12}	$u^3 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_7	y^3
c_5, c_6, c_8 c_{10}, c_{11}, c_{12}	$y^3 + 4y^2 + 4y - 1$
<i>c</i> 9	$y^3 + y^2 + 13y - 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.22670 + 1.46771I		
a = -0.329484 - 0.802255I	-11.08570 + 5.13794I	-0.78288 - 3.73768I
b = -1.00000		
u = 0.22670 - 1.46771I		
a = -0.329484 + 0.802255I	-11.08570 - 5.13794I	-0.78288 + 3.73768I
b = -1.00000		
u = -0.453398		
a = 2.65897	-0.857735	3.56580
b = -1.00000		

III.
$$I_3^u = \langle b+1, u^3+a+u-1, u^4-u^3+2u^2-2u+1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} - u + 1\\-1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} - u\\-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u\\u^{3} - u + 1\\-1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1\\-u^{3} - 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} - 2u\\u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2u^{3} - u^{2} + 3u - 3\\-u^{3} + u^{2} - u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1\\-u^{3} - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-5u^3 + 2u^2 6u + 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_7	u^4
<i>c</i> ₄	$(u+1)^4$
c_5, c_6, c_8	$u^4 - u^3 + 2u^2 - 2u + 1$
<i>c</i> 9	$(u^2+u+1)^2$
c_{10}, c_{11}, c_{12}	$u^4 + u^3 + 2u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_7	y^4
$c_5, c_6, c_8 \\ c_{10}, c_{11}, c_{12}$	$y^4 + 3y^3 + 2y^2 + 1$
c_9	$(y^2+y+1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.621744 + 0.440597I		
a = 0.500000 - 0.866025I	-4.93480 + 2.02988I	2.26314 - 3.67497I
b = -1.00000		
u = 0.621744 - 0.440597I		
a = 0.500000 + 0.866025I	-4.93480 - 2.02988I	2.26314 + 3.67497I
b = -1.00000		
u = -0.121744 + 1.306620I		
a = 0.500000 + 0.866025I	-4.93480 - 2.02988I	-0.76314 + 2.38721I
b = -1.00000		
u = -0.121744 - 1.306620I		
a = 0.500000 - 0.866025I	-4.93480 + 2.02988I	-0.76314 - 2.38721I
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^7)(u^{11} + 30u^{10} + \dots + 93u + 1)$
c_2	$((u-1)^7)(u^{11} - 8u^{10} + \dots + 13u - 1)$
c_3, c_7	$u^{7}(u^{11} - u^{10} + \dots - 64u - 128)$
C4	$((u+1)^7)(u^{11}-8u^{10}+\cdots+13u-1)$
c_5, c_6	$(u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)(u^{11} - 2u^{10} + \dots + 2u - 1)$
c ₈	$(u^{3} + 2u + 1)(u^{4} - u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{11} + 12u^{9} + 38u^{7} + 2u^{6} + 14u^{5} + 12u^{4} + 13u^{3} + u^{2} - 1)$
<i>c</i> 9	$((u^{2}+u+1)^{2})(u^{3}-3u^{2}+5u-2)(u^{11}+2u^{10}+\cdots-15u^{2}-8)$
c_{10}	$(u^3 + 2u - 1)(u^4 + u^3 + 2u^2 + 2u + 1)(u^{11} - 2u^{10} + \dots + 2u - 1)$
c_{11}, c_{12}	$(u^{3} + 2u - 1)(u^{4} + u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{11} + 12u^{9} + 38u^{7} + 2u^{6} + 14u^{5} + 12u^{4} + 13u^{3} + u^{2} - 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^7)(y^{11} - 202y^{10} + \dots + 8901y - 1)$
c_2, c_4	$((y-1)^7)(y^{11}-30y^{10}+\cdots+93y-1)$
c_3, c_7	$y^7(y^{11} + 81y^{10} + \dots + 192512y - 16384)$
c_5, c_6, c_{10}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{11} + 12y^{10} + \dots + 2y - 1)$
c_8, c_{11}, c_{12}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{11} + 24y^{10} + \dots + 2y - 1)$
<i>C</i> 9	$((y^2 + y + 1)^2)(y^3 + y^2 + 13y - 4)(y^{11} + 12y^{10} + \dots - 240y - 64)$