18. Определен интеграл. Дефиниция и свойства. Интегруемост на непрекъснати функции. Теорема на Нютон-Лайбниц.

Авотор: Милен Колев Борисов

Понятието определен интеграл е едно от най-централните в математическия анализ. Задачи, чието решаване води по естествен начин до това понятие, са били разглеждани още в древността. Все пак се счита, че то е било въведено в окончателния си вид от Нютон и Лайбниц, през XVII век, които са работили независимо един от друг. Основният техен резултат се състои в тясната връзка, която те са установили, че съществува между такива две на пръв поглед стоящи далеч едно от друго понятия, каквито са понятията определен интеграл и производна на функция.

1. Разбиване на интервал. Суми на Дарбу.

Определение. Казваме, че е дадено едно *деление(разбиване)* на интервала [a,b], ако са дадени точките $x_0, x_1, ..., x_{n-1}, x_n$, за които $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$.

Определение. Разбиването $\gamma'=\{x'_i\}$ на [a,b] се нарича *по-дребно(по-дробно)* от разбиването $\gamma''=\{x''_i\}$, ако всяко x''_i съвпада с една от точките на γ' .

Определение. Нека имаме разбиването $\gamma = \{ x_i \}$. Под *диаметър* на разбиването γ ще разбираме дължината на най-големия сегмент на това разбиване. Бележи се с dim $\gamma = \max\{\Delta x_i\}$, където $\Delta x_i = x_{i-} x_{i-1}$ - дължината на $i^{\text{-тия}}$ сегмент $[x_{i-1}, x_i]$.

Нека в интервала [a,b] е зададена ограничената функция f(x). Нека да въведем следните означения:

- $M_i = \frac{sup}{\Delta_i} f(x)$ супремума(най-голямата стойност) на f(x) в интервала $\Delta_i = [x_{i-1}, x_i]$.
- $m_i = \frac{inf}{\Delta_i} f(x)$ инфимума(най-малката стойност) на f(x) в интервала $\Delta_i = [x_{i-1}, x_i]$. Сега вече може да дефинираме голяма и малка сума на Дарбу.

Дефиниция. Нека $\gamma = \{x_i\}$ е разбиване на [a,b]. Нека f(x) е ограничена функция в [a,b]. Тогава сумата :

- $S_{\gamma} = \sum_{i=1}^{n} M_{i}(x_{i} x_{i-1})$ се нарича голяма сума на Дарбу на функцията f(x) за разбиването γ .
- $s_{\gamma} = \sum_{i=1}^{n} m_{i}(x_{i} x_{i-1})$ се нарича *малка сума на Дарбу* на функцията f(x) за разбиването γ .

Сумите на Дарбу могат лесно да бъдат изтълкувани геометрично. За целта нека $f(x) \ge 0$ в [a,b] и е ограничена и $\gamma = \{x_i\}$ е разбиване на [a,b]. Да разгледаме сумата s_γ . Всяко нейно събираемо m_i (x_i - x_i -1) може да бъде изтълкувано като лице на един правоъгълник-правоъгълник, за основа на който служи отсечката, определена върху оста Ох от точките x_{i-1}, x_i , а за височина — отсечката с дължина m_i . Тъй като за всяко х от [x_{i-1}, x_i] имаме $f(x) \ge m_i$, ясно е, че този правоъгалник изцяло ще се съдържа във фигурата, заградена от графиката на функцията f(x), оста Ох и правите с уравнение $x = x_{i-1}$ $x = x_i$ (рис.2). Тогава сумата s_γ ще представлява лицето на един многоъгълник, който е съставен от n-правоъгълника от описания вид и очевидно ще се

съдържа в фигурата G, заградена от графиката на функцията f(x) и оста Ох и правите с уравнение х=а и х=b. Този многоъгълник ще наречем вписан във фигурата G.

Като разсъждаваме аналогично, можем да изтълкуваме S_{γ} също като лице на многоъгълник. Това ще бъде един многоъгълник, който пък изцяло съдържа фигурата G и който ще наречем описан около G. И така на всяко разбиване на интервала [a,b] на под интервали отговарят чрез описаната конструкция два многоъгълника – единият – вписан в G, другият – описан около нея (Рис.3). Естествено лицето на фигурата G, да бъде по-голямо или равно на лицето на вписания и по-малко или равно на лицето на описания многоъгълник.

Ето и някои свойства на разбиването:

Свойстово1. Нека $\gamma = \{x_i\}$ е разбиване на [a,b]. Нека образуваме ново разбиване $\gamma' = \gamma U c$,

където 'c' е нова точка, така γ' е по-дребно от γ . Тогава $S_{\gamma'} \leq S_{\gamma}$ и $s_{\gamma'} \geq s_{\gamma}$. Доказателство. Нека $c \in [x_{i-1}, x_i]$ и означим $M' = \sup_{[x_{i-1}, c]} f(x)$, $M'' = \sup_{[c, x_i]} f(x)$,

тогава $M'' \le M_i$ и $M' \le M_i$, от където

$$M'(c-x_{i-1})+M''(x_i-c) \leq M_i(c-x_{i-1})+M_i(x_i-c) \leq M_i(x_i-x_{i-1})$$
(1).

За да докажем, че $S_{\gamma} \le S_{\gamma}$, ще докажем $S_{\gamma} - S_{\gamma} \le 0$.

$$\begin{split} S_{\gamma'} - S_{\gamma} &= [\sum_{i=1}^n M_{-i}(x_i - x_{i-1}) - M_{-i}(x_i - x_{i-1}) + M_{-i}'(c - x_{i-1}) + M_{-i}'(x_i - c)] - \sum_{i=1}^n M_{-i}(x_i - x_{i-1}) \\ S_{\gamma'} - S_{\gamma} &= M_{-i}'(c - x_{i-1}) + M_{-i}'(x_i - c) - M_{-i}(x_i - x_{i-1}) \text{ , ot (1)} \\ S_{\gamma'} - S_{\gamma} &\leq M_{-i}(x_i - x_{i-1}) - M_{-i}(x_i - x_{i-1}) \leq 0 \end{split}$$

Аналогично се доказва $s_{y'} \ge s_{y}$.

Свойстово2. Ако едно разбиване γ' е по-дребно от γ , тогава $S_{\gamma'} \leq S_{\gamma}$ и $S_{\gamma'} \geq S_{\gamma}$. Доказателство. Следва след многократно прилагане на свойство 1.

Нека $f(x) \ge 0$ в [a,b] и е ограничена. Нека за произволно разбиване γ' на интервала [a,b] си образуваме голямата сума на Дарбу S_{γ} . Сега нека вземем друго разбиване на $[a,b]-\gamma''$ и образуваме $s_{\gamma'}$. Ако разгледаме геометрично, фигурата с лице $S_{\gamma'}$ съдържа фигурата с лице $s_{\gamma'}$. Тогава очевидно $s_{\gamma''} \le S_{\gamma'}$. (Рис.4) . Да обобщим казаното в Лема.

Рис.4

Лема1. Ако γ' и γ'' са две произволни разбивания на интервала [a,b], то $s_{\gamma''} \le S_{\gamma'}$.

 Доказателсво. 1сл.) Ако ү=ү'=ү" имаме $S_{\gamma} = \sum_{i=1}^n M_{-i}(x_i - x_{i-1})$ и $s_{\gamma} = \sum_{i=1}^n m_{-i}(x_i - x_{i-1})$, от $M_i \ge m_i$, следва $s_{\gamma} \le S_{\gamma}$ (т.е s_{γ} ' $\le S_{\gamma}$ ').

2сл.) $\gamma'\neq\gamma''$. Тогава взимаме разбиването $\gamma=\gamma'$ U γ'' , от където γ е по-дребно от γ' и γ'' . От свойство2 имаме : $s_{\gamma'}\leq s_{\gamma}\leq S_{\gamma'}$

2. Горен и долен интеграл на Дарбу. Риманов интеграл.

Да означим с П множеството от всички разбивания на интервала [a,b].

- Горен интеграл $\bar{I} = \inf_{\gamma \in \Pi} S_{\gamma}$ се нарича точната долна граница на множеството на големите суми на Дарбу $\{S_{\gamma}\}$ на дадена функция f(x) за всевъзможните разбивания на интервала [a,b].
- Долен интеграл $L = \sup_{\gamma \in \Pi} s_{\gamma}$ се нарича точната горна граница на множеството на малките суми на Дарбу $\{s_{\gamma}\}$ на дадена функция f(x) за всевъзможните разбивания на интервала [a,b].

Следствие1. $\underline{I} \leq \overline{I}$ (от Лема1).

Определение. Когато за дадена ограничена функция f(x) в [a,b] е изпълнено равенството : $I = \underline{I} = \overline{I}$, ще казваме , че тя е *интегруема в риманов смисъл* в интервала [a,b] или накратко интегруема. Числото I се нарича *определен интеграл или риманов* на f(x) в този интервал и се означава :

$$I = \int_{a}^{b} f(x) dx.$$

Нека обърнем внимание на следното : Определеният интеграл е едно число. Поради това е безразлично с каква буква е означена променливата в подитегралната функция f. Това ще рече :

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(u) du$$

Сумите на Дарбу, с които си послужихме да дефинираме определен интеграл, представляват очевидно едно средство за неговото пресмятане, но доста трудно и неудобно. И все пак в някои специални случай, например когато f(x)=C за всяко x \in [a,b], това не е сложно. Както и да разбиваме интервала [a,b] на под интервали, във всеки от тях точната горна и долна граница ще са равни на C. Тогава за сумите на Дарбу ще получим :

$$S_{\gamma} = \sum_{i=1}^{n} C(x_{i} - x_{i-1}) = C(b - a) \quad s_{\gamma} = \sum_{i=1}^{n} C(x_{i} - x_{i-1}) = C(b - a) , \text{ за всяко разбиване } \gamma.$$
 Следователно I = $\underline{I} = \overline{I} = C(b-a)$ или $\int_{a}^{b} C \ dx = C(b-a)$.

Лема3. За произволно разбиване γ на [a,b] имаме : $\mathbf{s}_{\gamma} \leq \int\limits_{a}^{b} f\left(x\right) \ dx \leq \mathbf{S}_{\gamma}$. Доказателство. От дефиницията на \underline{I} и \overline{I} имаме $\mathbf{s}_{\gamma} \leq \underline{I}$ и $\overline{I} \leq \mathbf{S}_{\gamma}$, от където

$$s_{\gamma} \leq \int_{a}^{b} f(x) dx \leq S_{\gamma}$$

Лема4. Ако f(x) е интегруема в [a,b] и $m \le f(x) \le M$ за всяко $x \in [a,b]$, то :

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

Доказателство. За произволно разбиване у на [a,b] имаме :

$$s_{y} = \sum_{i=1}^{n} m_{i}(x_{i} - x_{i-1}) \ge \sum_{i=1}^{n} m_{i}(x_{i} - x_{i-1}) \ge m_{i}(b - a)$$
, (or $m \le m_{i}$)

От $\underline{I} \geq s_{\gamma}$, за всяко разбиване γ , следва $\underline{I} \geq m(b-a)$. Аналогично се доказва, че $\bar{I} \leq M(b-a)$. Понеже f(x) е интегруема и имаме : $I = \underline{I} = \bar{I}$ и от горните доказателства следва : $m(b-a) \leq I \leq M(b-a)$.

2. Две теореми за интегруемост.

Теорема1. (НДУ) Функция f(x) е интегруема в Риманов смисъл в [a, b], тогава и само тогава, когато за всяко $\forall \varepsilon > 0$ съществуват разбиване γ на [a,b] такова, че S_{γ} - s_{γ} < ε .

Доказателство.

1)Нека за $\forall \varepsilon > 0$ съществува разбиване γ на [a,b], такова че $S_{\gamma} - s_{\gamma} < \varepsilon$. Ще докажем, че f(x) е интегруема (т.е $\underline{I} = \overline{I}$).

Да допуснем, че $\underline{L} < \overline{I}$. Избираме $\varepsilon = \overline{I} - \underline{L} > 0$, тогава съществува разбиване γ на [a,b], такова че S_γ - s_γ < $\varepsilon = \overline{I}$ - \underline{L} , но имаме $s_\gamma \le \underline{L} \le \overline{I} \le S_\gamma$. От където

$$\begin{array}{lll} \bar{I} - S_{\gamma} \leq 0 \text{ и} & s_{\gamma} - \underline{I} \leq 0 \\ \bar{I} - S_{\gamma} + s_{\gamma} - \underline{I} \leq 0 \\ \bar{I} - \underline{I} \leq S_{\gamma} - s_{\gamma} & \text{(от } S_{\gamma} - s_{\gamma} < \epsilon = \bar{I} - \underline{I} \) \\ \bar{I} - \underline{I} < \bar{I} - \underline{I} \end{array}$$

което е противоречие. Така допускането $\underline{I} < \overline{I}$ е грешно, следователно $\underline{I} \geq \overline{I}$. От следствие1 имаме $\underline{I} \leq \overline{I}$ или $\underline{I} = \overline{I}$, което трябваше да докажем.

2)Нека f(x) е интегруема в риманов смисъл (т.е $\underline{I} = \overline{I}$). Ще докажем, че за $\forall \varepsilon > 0$ съществуват разбиване γ на [a,b] такова, че S_{γ} - $s_{\gamma} < \varepsilon$.

Нека изберем произволно $\varepsilon > 0$. От дефиницията на $\bar{I} = \inf_{\gamma \in \Pi} S_{\gamma}$ следва, че съществува такова разбиване γ' , че $\bar{I} \leq S_{\gamma'} < \bar{I} + \varepsilon$ (едно примерно разбиване за γ' е разбиването, в което се достига инфимума на S_{γ} , за $\gamma \in \Pi$). Аналогично от дефиницията на $\underline{L} = \sup_{\gamma \in \Pi} s_{\gamma}$ следва, че съществува такова разбиване γ'' , че $\underline{L} - \varepsilon < s_{\gamma''} \leq \underline{L}$ (за γ'' може да вземем разбиването, в което се достига супремума на s_{γ} , за $\gamma \in \Pi$).

Тогава взимаме разбиването $\gamma = \gamma'$ U γ'' , от където γ е по-дребно от γ' и γ'' . От свойство2 имаме : $s_{\gamma''} \le s_{\gamma} \le S_{\gamma'} \le s_{\gamma'}$, от където

$$\begin{array}{l} S_{\gamma} + (\text{-} \; s_{\gamma}) < \bar{\it{I}} \; + \; \epsilon \; + (\; \text{-} \; \underline{\it{L}} \; + \; \epsilon \;) \\ S_{\gamma} \; \text{-} \; s_{\gamma} \leq 2\epsilon \end{array}$$

което трябваше да докажем. (т.е за $\forall \epsilon_1 = 2\epsilon > 0$, $\exists \gamma$: $S_{\gamma} - s_{\gamma} < \epsilon_1$).

Нека сега да си припомним понятията равномерна непрекъснатост и осцилация на функция.

Определение. Една функция f(x) се нарича *равномерно непрекъсната* в дадено множество M от реални числа, ако за всяко положително число ε съществува такова положително число δ , че за всеки две точки x' и x'' от M, удовлетворяващи неравенството $|x'-x''| < \delta$ е изпълнено неравенството $|f(x')-f(x'')| < \varepsilon$.

Определение. Нека имаме функцията f(x) дефинирана в интервала [a,b]. Да означим с $M = \sup_{[a,b]} f(x)$ и $m = \inf_{[a,b]} f(x)$, тогава под осцилация на функция на f(x) в [a,b] ще разбираме W(f,[a,b]) = M - m (т.е разликата между точната горна и точната долна граница на f в [a,b]). Забележка : за да съществуват M и M трябва M0 да е непрекъсната в [a,b] (т.е ограничена).

Теорема на Риман. Всяка непрекъсната функция в краен и затворен интервал е равномерно непрекъсната в този интервал.

Теорема за ограниченост. Ако функцията f(x) е непрекъсната в крайния и затворен интервал [a,b], то тя е ограничена в този интервал.

Твърдение1. Ако функцията f(x) е непрекъсната в крайния и затворен интервал [a,b], то за $\forall \varepsilon > 0$ съществува такова число $\delta_{(\varepsilon)} > 0$, че във всеки под интервал на [a,b] с дължина по-малка от δ , осцилацията на f(x) е по-малка от ε .

Доказателсво. От теоремата на Риман и теоремата за ограниченост имаме : f(x) е равномерно непрекъсната и ограничена в [a,b].

Нека си изберем едно произволно $\varepsilon>0$. От f(x) равномерно непрекъсната следва : съществува такова $\delta>0$, че за всеки две точки x' и x'' от [a,b] удовлетворяващи неравенството $|x'-x''|<\delta$ е изпълнено неравенството $|f(x')-f(x'')|<\varepsilon$ (1).

Сега нека си вземем произволен под интервал $[c,d]\subseteq[a,b]$ с дължина по-малка от δ . От факта, че f(x) е ограничена в [a,b] следва, че и f(x) е ограничена и в [c,d], от където f(x) има точна горна граница и точна долна граница в [c,d]. Нека те се достигат съответно в точките x_1 и x_2 (т.е $M=f(x_1)$, $m=f(x_2)$, за някои x_1 и x_2 от [c,d]). Имаме x_1 и x_2 принадлежащи на [c,d] следователно $|x_1-x_2|<\delta$ и от (1) за $x'=x_1$ и $x''=x_2$ следва : $W(f,[c,d])=f(x_1)-f(x_2)=|f(x_1)-f(x_2)|<\epsilon$, което трябваше да докажем.

Следствие1.

Ако f(x) е непрекъсната в крайния затворен интервал [a,b], тогава за $\forall \varepsilon > 0$ съществува разбиване $\gamma = \{x_n\}$ на [a,b] такова, че $W(f,[x_{i-1},x_i]) < \varepsilon$ за i=1...п (т.е във всеки под интервал на γ осцилацията на f(x) е по-малка от ε).

Доказателсво. Като изберем едно произволно положително число $\varepsilon>0$, знаем, че съществува такова $\delta>0$, че във всеки под интервал на [a,b] с дължина по-малка от δ , осцилацията на f(x) е по-малка от ε . Да разделим(разбием) интервала [a,b] на подинтервали така, че дължината на всеки от тях да бъде по-малка от δ . Например да разделим [a,b] на n равни части, като вземем n толкова голямо, че да е изпълнено неравенството $(b-a)/n < \delta$. Тогава във всеки от така получените подинтервали осцилацията на f(x) ще бъде по-малка от ε .

Теорема2. Ако функцията f(x) е непрекъсната в крайния и затворен интервал [a, b], то тя е интегруема в този интервал.

Доказателство.

Нека изберем произволно ε>0. От следствие1 имаме, че съществува разбиване γ на [a,b]

такова, че $W(f, [x_{i-1}, x_i]) < \epsilon$ или $M_i - m_i < \epsilon$ за i=1...n .

$$S_{\gamma} - S_{\gamma} = \sum_{i=1}^{n} (M_{i} - m_{i})(x_{i} - x_{i-1}) < \sum_{i=1}^{n} \epsilon(x_{i} - x_{i-1}) < \epsilon(b - a)$$

тоест за произволно ε_1 = $\varepsilon(b$ -a) > 0 имаме разбиване γ на [a,b] такова, че S_{γ} - s_{γ} < ε_1 . Така са изпълнени условията на теорема 1, от където f(x) е интегруема в [a,b].

3. Сума на Риман. Риманов интеграл.

Нека отново да разгледаме ограничената функция f(x) в интервала [a,b]. Нека γ е разбиване на [a,b]. Нека от всеки под интервал $[x_{i-1},x_i]$ изберем една произволна точка ξ_i .

Определение5. Сумата
$$\sigma = \sigma_{\gamma}(\xi_i) = \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$$
, се нарича *сума на Риман*.

Тя зависи очевидно от разбиването γ и начина на избора на точките ξ_i . От неравенството $m_i \leq \xi_i \leq M_i$ следва : $s_\gamma \leq \sigma_\gamma \leq S_\gamma$, за всяка риманова сума на разбиването γ . Геометрично за f(x)>0 една риманова сума е изобразена на рис.5

Нека ни е дадена една безкрайна редица от разбивания γ_0 , γ_1 , ..., γ_n , ... на интервала [a,b]. Ще казваме, че редицата $\{\gamma_n\}$ е издребняваща редица от разбивания на [a,b] на под интервали, когато редицата от числа dim γ_0 , dim γ_1 , ..., dim γ_n , ... клони към 0.

Теорема4. Нека функцията f(x) е непрекъсната в краен и затворен интервал [a,b]. Ако е дадена една издребняваща редица от разбивания $\{\gamma_n\}$ на [a,b] и ако при всяко от тези разбивания си образуваме по една риманова сума σ_{γ_i} (ξ_j) за f(x), то редицата от така получените суми

$$\sigma_{\gamma l}$$
 $(\xi_{j}), \, \sigma_{\gamma 2}$ $(\xi_{j}), \,, \, \sigma_{\gamma n}$ $(\xi_{j}), \, ...$ e сходяща и клони към интеграла $\int\limits_{a}^{b} f\left(x\right) \, dx$.

Доказателство. Нека $\varepsilon>0$ е произволно. Трябва да намерим такова число υ , че при $n>\upsilon$ да имаме : $|\sigma_{\gamma n}(\xi_j) - \int\limits_a^b f(x) \ dx | < \varepsilon$.

От твърдение1 имаме, че съществува такова число $\delta_{(\epsilon)}>0$, че за всеки под интервал $[c,d]\subseteq [a,b]$ с дължина по-малка от $\delta_{(\epsilon)}>0$, имаме $\delta_{(\epsilon)}>0$. От друга страна редицата от разбивания $\{\gamma_n\}$ е издребняваща, тоест съществува такова число $\delta_{(\epsilon)}>0$, че при $\delta_{(\epsilon)}>0$, ще имаме $\delta_{(\epsilon)}<0$ от където $\delta_{(\epsilon)}>0$ (*), за всеки под интервал $\delta_{(\epsilon)}>0$ на всяко едно от тези разбивания $\delta_{(\epsilon)}>0$.

Нека разгледаме едно разбиване $\gamma' = \gamma_n$ за $n > \upsilon$, за него имаме :

$$\mathbf{S}_{\mathbf{Y}'} \leq \mathbf{G}_{\mathbf{Y}'}(\xi_{\mathbf{j}}) \leq \mathbf{S}_{\mathbf{Y}'}$$
 и $\mathbf{S}_{\mathbf{Y}'} \leq \int_{a}^{b} f(x) dx \leq \mathbf{S}_{\mathbf{Y}'}$ $|\mathbf{G}_{\mathbf{Y}'}(\xi_{\mathbf{j}}) - \int_{a}^{b} f(x) dx | \leq \mathbf{S}_{\mathbf{Y}'} - \mathbf{S}_{\mathbf{Y}'}$

От (*) следва, че за всеки под интервал $[x_{i-1},x_i]$ на $\gamma'=\gamma_n$ имаме: M_i - m_i = $W(f,[x_{i-1},x_i]) < e/(b-a)$ = е1 и от

$$S_{\gamma} - S_{\gamma} = \sum_{i=1}^{n} (M_{i} - m_{i})(x_{i} - x_{i-1}) < \sum_{i=1}^{n} \epsilon_{1}(x_{i} - x_{i-1}) < \epsilon_{1}(b_{i} - a_{i}) < \epsilon_{1}(b_{i}$$

$$|\sigma_{Y}(\xi_{j}) - \int_{a}^{b} f(x) dx| < \varepsilon$$

което трябваше да докажем.

Така доказахме, че границата на произволна редица от риманови суми за f(x), получена от произволна издребняваща редица от разбивания на [a,b], клони към определения интеграл $f\left(x\right)\ dx$. Това ни дава възможност да дефинираме определения интеграл и по друг начин, а именно като границата на редиците от риманови суми на f(x), получени от издребняващите редици от разбивания на [a,b]. Затова определеният интеграл се нарича и риманов.

4. Основни свойства на определените интеграли.

1. Ако f(x) е една функция, непрекъсната в интервала [a,b], а C е едно реално число, то

$$\int_{a}^{b} Cf(x) dx = C \int_{a}^{b} f(x) dx$$

2. Ако функциите
$$f(x)$$
 и $g(x)$ са непрекъснати в интервала [a,b], то
$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

3. Ако функциите f(x) и g(x) са непрекъснати в интервала [a,b] и удовлетворяват неравенството $f(x) \le g(x)$ за всяко $x \in [a,b]$, то

$$\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$$

4. Ако f(x) е непрекъсната в интервала [a,b], то

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

5. Ако f(x) е непрекъсната в интервала [a,b] и ако с е една вътрешна точка от този интервал, то

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx$$

6. Ако f(x) е непрекъсната в интервала [a,b] и ако m и M са съответно една нейна долна и една нейна горна граница в този интервал, то

$$m (b -a) \leqslant \int_{a}^{b} f(x) dx \leqslant M (b -a)$$

5. Теорема за средните стойности.

Теорема5. (Теорема за средните стойности.) Ако функцията f(x) е непрекъсната в крайния и затворен интервал [a,b], то съществува поне една точка $\xi \in [a,b]$, за която е изпълнено равенството $\int_a^b f(x) \ dx = f(\xi)(b-a)$

Доказателство. Да означим с m и M съответно точната долна и точната горна граница на f(x) в интервала [a,b] (τ .e. $\forall x$ ∈ [a,b] m≤f(x)≤M) . Свойстово4.1 имаме :

$$m\ (b\ -a\)\leqslant \int\limits_{a}^{b}\ f\ (x)\ dx\ \leqslant M\ (b\ -a\)$$
 или $m\ \leqslant \dfrac{\int\limits_{a}^{b}\ f\ (x)\ dx}{(b\ -a\)}\leqslant M}(*)$

От непрекъснатостта на f(x) в [a,b] и теоремата на Вайрщрас имаме, че съществуват точките x_1 и x_2 от [a,b], за които $f(x_1) = m$ и $f(x_2) = M$.

1сл.) Ако $x_1=x_2$ следва, че f(x)=C е константа в [a,b]. Тогава $\int_a^b C \ dx = C(b-a)$, и за f(a)=C теоремата е доказана.

2сл) Ако x_1 ≠ x_2 . От f(x) непрекъсната и от (*) следва, че съществува точка ξ ∈ [a,b], за която е изпълнено равенството :

$$f(\xi) = \frac{\int\limits_a^b f(x) \ dx}{(b-a)}, \text{ от където} \quad f(\xi)(b-a) = \int\limits_a^b f(x) \ dx$$

и теоремата е доказана.

6. Теорема на Лайбниц и Нютон.

Тази теорема представя една проста връзка между понятията определен и неопределен интеграл на непрекъсната функция f(x).

Теореама6. Ако функцията f(x) е непрекъсната в един интервал D, то функцията $F(x) = \int_{a}^{x} f(t) dt$ е диференцируема в този интервал и за всяко $x \in D$ е изпълнено равенството F'(x)=f(x), т.е. F(x) е примитивна функция на f(x) в интервала D.

Доказателство. Нека x е произволна точка от интервала D. Ако x_1 =x+h е друга точка от този интервал, то :

$$\frac{F(x+h)-F(x)}{h} = \frac{1}{h} \left[\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right] =$$

$$= \frac{1}{h} \left[\int_{a}^{x} f(t) dt + \int_{x}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right] =$$

$$= \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

Като приложим теоремата за средните стойности (теорема5) към последния интеграл, ще

получим : $\exists \xi \in [\mathbf{x}, \mathbf{x} + \mathbf{h}]$, такава че $\int\limits_{x}^{x+h} f(t) \ dt = f(\xi)(x+h-x) = f(\xi)$. От където :

$$\frac{F(x+h)-F(x)}{h} = f(\xi)$$

Ако пуснем $h \rightarrow x$, то и $\xi \rightarrow x$. Ето защо, като вземем пред вид непрекъснатостта на f(x) в точката х, ще получим

$$F'(x) = \lim_{h \to \infty} \frac{F(x+h) - F(x)}{h} = \lim_{h \to \infty} f(\xi) = f(x)$$

С това равенство теоремата е доказана.

Теоремата на Лайбниц и Нютон ни дава един прост начин за пресмятане на определените интеграли от непрекъснати функции. Наистина нека да пресметнем стойността на интеграла

$$\int_{a}^{b} f(x) dx$$

където
$$f(\mathbf{x})$$
 е една функция, непрекъсната в интервала [a,b]. Ако образуваме функцията $F(x) = \int\limits_a^x f(t) \ dt$, ще имаме $F(\mathbf{b}) = \int\limits_a^b f(t) \ dt$. Така задачата е да се пресметне $F(\mathbf{b})$. Ние

видяхме, че F(x) е една примитивна на f(x). Но функцията f(x) има безбройно много примитивни, всяка от които, както знаем, се различава от F(x) с константа. Нека познаваме, някоя (коя да е) примитивна функция $\Phi(x)$ на f(x) в интервала [a,b]. Ще имаме

$$F(x) = \Phi(x) + C$$
.

За да пресметнем константа C, нека вземем x=a. Имаме $F(a) = \int_{-a}^{a} f(t) dt = 0$. Тогава : 0 =

 $F(a) = \Phi(a) + C$, следователно $C = -\Phi(a)$. И така за всяко x от интервала [a,b] е изпълнено равенството

$$F(x) = \Phi(x) - \Phi(a).$$

Специално при х=в ще получим

$$F(b) = \Phi(b) - \Phi(a).$$

или окончателно

$$\int_{a}^{b} f(t) dt = \Phi(b) - \Phi(a) = \Phi(x) \Big|_{b}^{a}$$
 (1)

От изложението се вижда, че за да пресметнем определения интеграл $\int\limits_{0}^{x}f\left(x\right) dx$, трябва да пресметнем най-напред неопределения интеграл $\int f(x) \ dx$, т.е да намерим една примитивна функция $\Phi(x)$ на f, след което да приложим формула (1).

Пример : Да се пресметне
$$\int_{0}^{1} \frac{1}{1+x^{2}} dx$$
.

Решение: От
$$\int \frac{1}{1+x^2} = arctg(x) + C$$
 следва $\int_0^1 \frac{1}{1+x^2} dx = arctg(1) - arctg(0) = \frac{\Pi}{4}$