

ARQUITECTURA Y SISTEMAS OPERATIVOS

Actividad II: Modelo TCP/IP

1. Introducción

El modelo TCP/IP (Transmission Control Protocol/Internet Protocol) es el conjunto de protocolos más utilizado en las redes actuales, incluido Internet. A diferencia del modelo OSI, que tiene siete capas, el modelo TCP/IP organiza sus funciones en cuatro capas principales: Acceso a la Red, Internet, Transporte y Aplicación.

TCP/IP fue desarrollado en la década de 1970 como parte de ARPANET, el precursor de Internet. Su diseño modular y escalable permitió que diferentes redes pudieran interconectarse fácilmente.

Mientras que el modelo OSI es más teórico y detallado, el modelo TCP/IP es práctico y refleja directamente cómo funcionan las redes modernas. Sus protocolos, como TCP e IP, son esenciales para garantizar que los datos lleguen a su destino correctamente, independientemente de las redes intermedias o la distancia entre los dispositivos.

Modelo OSI	Modelo TCP/IP	Familia de protocolo TCP/IP							
Capa de aplicación		H T T	S M	T e	F T P	D N S	R I P	S N	
Capa de presentación	Capa de aplicación	P	T P	n e t	Р	S	Р	M P	
Capa de sesión									
Capa de transporte	Capa de transporte	ТСР			Τ	UDP			
Capa de red	Capa de internet	ARP				IGMP ICMP			
Capa de enlace de datos	Capa de	E.C.		VAC E		ВТ	40/50		
Capa física	acceso a la red	Ethernet		WI-F		DI	4G/5G		

2. CAPAS DEL MODELO TCP/IP

• CAPA DE APLICACIÓN:

Es la capa más cercana al usuario, donde las aplicaciones interactúan con la red. Aunque comparte el nombre con la capa 7 del modelo OSI, no debe confundirse con ella, ya que sus funciones no son exactamente las mismas. En el modelo TCP/IP, esta capa engloba funciones que en el modelo OSI estarían distribuidas entre las capas 5, 6 y 7.

Sus funciones principales son:

- Preparar los datos según el protocolo correspondiente (ej.: HTTP, SMTP, FTP, DNS).
- Proveer servicios para las aplicaciones, separando la lógica del usuario de los detalles de la red.
- Permite que las aplicaciones (como navegadores y clientes de correo) se comuniquen con la red.

• CAPA DE TRANSPORTE:

Corresponde a la capa 4, que lleva el mismo nombre en el modelo OSI.

En TCP, garantiza la entrega confiable y en el orden correcto.

Divide los datos entregados por la capa de aplicación en bloques más chicos y manejables, llamados:

- Segmentos (si se usa el protocolo TCP): Garantizan que los datos lleguen completos y en el orden correcto.
- Datagramas (si se usa el protocolo UDP): Más rápidos, pero no garantizan el control de errores ni el orden.

Agrega los **números de puerto**, que identifican a qué aplicación deben enviarse los datos (por ejemplo, puerto 80 para HTTP).

Nota: Profundizaremos en los números de puerto en la próxima semana, pero puedes pensarlos como "puertas virtuales" que organizan el tráfico entre servicios.

CAPA DE INTERNET

Equivalente a la capa 3 (capa de red) del modelo OSI.

Asigna direcciones **IP** únicas al origen y destino a la información enviada por la capa superior, generando los paquetes IP que hemos visto en la primera semana.

Decide la mejor ruta para enviar los datos, pasando por routers intermedios.

CAPA DE ACCESO A LA RED

Corresponde a las dos primeras capas del modelo OSI (Física y de Enlace de datos), por lo cual trabaja a nivel de LAN, aunque también puede tener acceso a redes más extensas, en el caso del uso de fibra óptica.

Convierte los paquetes en tramas (nivel 2) y señales físicas (nivel 1).

- Direcciones MAC: Identifican dispositivos en la red local.
- Medios físicos: Cables, ondas de radio, o fibra óptica.

Prepara los datos para viajar físicamente por la red.

Protocolos típicos: Ethernet, WiFi, LTE (protocolo principal de la tecnología 4G), Bluetooth.

3. Práctica recomendada:

Objetivo:

Configurar una red simple y analizar cómo los datos viajan desde una PC a un servidor web.

- **1. Topología** (una topología en redes es la forma en que los dispositivos están conectados entre sí):
 - o **Dispositivos:** 1 PC, 1 Switch, 1 Servidor.
 - o **Conexiones:** Conecta la PC y el servidor al Switch usando cables Ethernet.

2. Configuración:

- o **PC:** IP: 192.168.1.1, Máscara de red: 255.255.255.0.
- o **Servidor:** IP: 192.168.1.10, Máscara de red: 255.255.255.0.

TECNICATURA UNIVERSITARIA EN PROGRAMACIÓN A DISTANCIA

Importante: Verificar que esté habilitado el servicio HTTP en la pestaña Services.

3. Verificación:

- Haz un ping desde la PC al servidor.
- Accede a 192.168.1.10 en el navegador de la PC para cargar la página del servidor.

4. Modo Simulation:

- Observa cómo los paquetes viajan a través de las capas:
 - Capa 4: TCP divide y ordena los datos.
 - Capa 3: Las direcciones IP guían los paquetes al destino.
 - Capa 2: Las direcciones MAC identifican los dispositivos locales.