Input: the policy π to be evaluated

Semi-gradient TD(0) for estimating $\hat{v} \approx v_{\pi}$

Input: a differentiable function $\hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R}$ such that $\hat{v}(\text{terminal},\cdot) = 0$

Choose $A \sim \pi(\cdot|S)$

Take action A, observe R, S'

Algorithm parameter: step size $\alpha > 0$

Loop for each step of episode:

 $\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})] \nabla \hat{v}(S, \mathbf{w})$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Initialize S

 $S \leftarrow S'$ until S is terminal

