CS 260: Assignment #4 Regular Expression

Due on Tuesday, November 24, 2015 $\label{eq:prof.} Prof.\ Hardekopf$

Chad Spensky

1 Abstraction Domain Lattice

Let our original lattice $L = (\mathbb{P}(S), \leq)$ and our abstract-domain lattice $L^{\#} = (\mathbf{regExpSet}(x), x \in \mathbb{P}(S \cup \{|,*,+,(,)\}) \cup \{\top,\bot\},\sqsubseteq)$ where S is the set of all strings (including the empty string) where $\top = S$ and \bot is undefined. For connivence let all regular expressions, expr, denote the set of all possible strings that can be constructed from the expression, $\mathbf{regExpSet}(expr)$, and s denote the singleton set $\{s\}$, thus $\sqsubseteq = \subseteq$ in our lattice. Intuitively, $\mathbf{regExpSet}(s) = s$. Also, let $\mathbf{genRegExp}(\{a,b,c\})$ be the function that will generate the most concise regular expression to that contains all the elements in the set (Note that \top will never be returned because of the | operator, i.e. a regular expression can always be generated).

$$\alpha(x): L \to L^{\#} = \begin{cases} \bot & \text{if } x \text{ is } \{\} \\ \mathbf{genRegExp}(s) & \text{Otherwise} \end{cases}$$

Meet $(x \in L^{\#})$

- $\bot \sqcap x = \bot, \forall x$
- $\bullet \ \ \top \cap x = x, \forall x$
- $x \sqcap y = x$, genRegExp(regExpSet(x) \cap regExpSet(y))

Join $(x \in L^{\#})$

- $\bullet \perp \sqcup x = x, \forall x$
- $\bullet \ \top \sqcup x = \top, \forall x$
- $x \sqcup y = \mathbf{genRegExp}(\mathbf{regExpSet}(x) \cup \mathbf{regExpSet}(y))$

The lattice is infinite, and also of infinite height because of the inclusion of the | operator. The + can only express strings which have common subsequences, and are not expressive enough to grow infinitely since our **genRegExp**() will always return the most concise possible regular expression. Since the | operator is our pain point, our widening operator must remove the |'s. Let our widening operator be defined as follows:

$$x \bigtriangledown_{lim} y : L^{\#} \times L^{\#} \to L^{\#} = \begin{cases} x \sqcup y & \text{# of |'s in } x \sqcup y \leq lim \\ \top & \text{Otherwise} \end{cases}$$

This definition trivially satisfies condition 1, $x \sqsubseteq x \bigtriangledown_{lim} y, y \sqsubseteq x \bigtriangledown_{lim} y$. Similarly, because of our definition, no chains can be strictly ascending, as they will be limited by lim.

	1	y	Т			\perp	y	Т
\perp	1	y	Т			T	T	\overline{T}
x	x	$x \sqcup y$	T		x	F	$x \sqsubseteq y?$ T, F	T, F
Τ	Т	T	Τ		Т	F	T, F	T, F
(a) Addition (+)				(b) Comparator (≤)				

Figure 1: Arithmetic Tables

1.1 Monotone Operators

Concatenation (+) For + to be monotone the following must hold: $x + y \le x' + y' \Rightarrow \alpha(x) + \alpha(y) \sqsubseteq \alpha(x') + \alpha(y')$, where $x, y, x', y' \in \mathbb{P}(S)$ $x + y \Rightarrow x \cup y$. Similarly $x \le y \Rightarrow x \subseteq y$.

- For case where x = y =", this holds trivially.
- Otherwise, we need to show that $\operatorname{\mathbf{genRegExp}}(x) \sqcup \operatorname{\mathbf{genRegExp}}(y) \sqsubseteq \operatorname{\mathbf{genRegExp}}(x') \sqcup \operatorname{\mathbf{genRegExp}}(y')$. We know that $x \cup y \subseteq x' \cup y'$. Thus since $\operatorname{\mathbf{genRegExp}}(y)$ returns the most concise regular expression that represents all $a \in x$, $x \subseteq \operatorname{\mathbf{regExpSet}}(\operatorname{\mathbf{genRegExp}}(x))$. Thus, $x \cup y \subseteq \operatorname{\mathbf{regExpSet}}(\operatorname{\mathbf{genRegExp}}(x \cup y))$ and $x' \cup y' \subseteq \operatorname{\mathbf{regExpSet}}(\operatorname{\mathbf{genRegExp}}(x \cup y))$, $z \notin \operatorname{\mathbf{regExpSet}}(\operatorname{\mathbf{genRegExp}}(x \cup y))$, this would imply that there are elements that are represented by $\operatorname{\mathbf{genRegExp}}(x \cup y')$ that are not represented by $\operatorname{\mathbf{genRegExp}}(x' \cup y')$, which we know can't happen since $x \cup y \subseteq x' \cup y'$. Therefore our assertion must hold.

Comparison (\leq) The same logic follows for \leq . For \leq to be monotone the following must hold: $x \leq y \Rightarrow \alpha(x) \sqsubseteq \alpha(y)$, where $x, y \in \mathbb{P}(S)$ and $x \leq y \Rightarrow x \subseteq y$.

- For case where $x = y = \{\}$, this holds trivially.
- Otherwise, we must show that $\mathbf{genRegExp}(x) \sqsubseteq \mathbf{genRegExp}(y)$. Since $\mathbf{genRegExp}()$ returns the most concise regular expression, we not that $x \subseteq \mathbf{regExpSet}(\mathbf{genRegExp}(x))$. Thus $\mathbf{regExpSet}(\mathbf{genRegExp}(x)) \sqsubseteq \mathbf{regExpSet}(\mathbf{genRegExp}(y))$, which by similar logic to above, i.e. $z \in \mathbf{regExpSet}(\mathbf{genRegExp}(x)) \Rightarrow \mathbf{regExpSet}(\mathbf{genRegExp}(y))$, that is the regular expression for $\alpha(y)$ must at least express everything can be expressed by $\alpha(x)$.

1.2 Galois Connection

$$\gamma(\hat{x}): L^{\#} \to L = \begin{cases} \{\} & \text{if } \hat{x} \text{ is } \bot \\ \mathbf{regExpSet}(x) & \text{if } \hat{x} \text{ is a regular expression} \end{cases}$$

$$S & \text{if } \hat{x} \text{ is } \top$$

We must show that $\alpha(x) \sqsubseteq \hat{x} \iff x \subseteq \gamma(\hat{x})$.

$$\alpha(x) \sqsubseteq \hat{x} \Rightarrow x \subseteq \gamma(\hat{x})$$
:

- If $x = \{\}$, this holds trivially.
- Otherwise, either $\hat{x} = \top$, which holds trivially, or \hat{x} is a regular expression. Since our regular expression are the most concise possible expressions that represent all elements the input set, we know that $x \subseteq \gamma(\hat{x})$ must be true.

$$x \subseteq \gamma(\hat{x}) \Rightarrow \alpha(x) \sqsubseteq \hat{x}$$
:

- If $x = \{\}$, this holds trivially.
- Otherwise, every element in x can be represented by \hat{x} , thus $\alpha(x) \sqsubseteq \hat{x}$ must be true since, $\alpha(x)$ returns the most precise regular expression representing all of x. Any other conclusion would be a contradiction to our definition.

1.3 Soundness

Because a Galois connection exists, our approximation is sound. However, because we are using a widening operator, we lose precision. However, in the best case, i.e. we never hit our limit of |'s, we will actually return the exact input. Otherwise, we will only lose precision on those few cases.