Para entender melhor o que motiva a criação da teoria dos tipos, essas notas serão iniciadas com o cálculo λ não tipado.

0.1 Definições

O cálculo lambda serve como uma abstração em cima do conceito de função. Uma função é algo que pega um input e retorna um output, por exemplo a função $f(x) = x^2$ pega um input x e retorna seu quadrado x^2 . No cálculo lambda, essa função é denotada por $\lambda x.x^2$, onde λx . simboliza que essa função espera receber como entrada x. Quando queremos receber uma resposta específica de uma função, usamos números no lugar das variáveis, como por exemplo $f(3) = 3^2 = 9$. No cálculo lambda, isso é feito na forma de $(\lambda x.x^2)(3)$.

Esses dois principrios de construção são definidos como:

Definition 0.1.

- Abstração: Seja M uma expressão e x uma variável, podemos construir uma nova expressão $\lambda x.M$. Essa expressão é chamada de Abstração de x sobre M
- Aplicação: Sejam M e N duas es expressões, podemos construir uma expressão MN. Essa expressão é chamada de Aplicação de M em N.

Dadas essas definições, precisamos também de uma definição que dê conta do processo de encontrar o resultado após a aplicação em uma função. Esse processo é chamado de β -redução. Ela faz uso da substituição e usa como notação os colchetes.

Definition 0.2 (β -redução). A β -redução é o processo de resscrita de uma expressão da forma ($\lambda x.M$)N em outra expressão M[x:=N], ou seja, a expressão M na qual todo x foi substituido por N.