Name:	
VIP ID:	

- Write your name and VIP ID in the space provided above.
- The test has six (6) pages including this one.
- Enter your answers in the boxes provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books or notes may be used on this test. An approved calculator is allowed (and recommended).

Page	Max. points	Your points
2	10	
3	30	
4	30	
5	20	
6	10	
Total	100	

Problem 1 (10 pts). The expression below gives parametric equations and parameter interval for the motion of a particle in the xy-plane.

$$\begin{cases} x(t) = t^2 \\ y(t) = t + 1 \end{cases} \quad (-1 \le t \le 1)$$

(a) Identify the particle's path by finding a Cartesian equation for it (one in terms of x and y, without the t).

- (b) Graph the Cartesian equation.
- (c) Indicate the portion of the graph traced by the particle, and the direction of motion.

Problem 2 (10 pts). Find the tangent to the curve $x(t) = \sec t$, $y(t) = \tan t$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ at the point $(\sqrt{2}, 1)$ (where $t = \pi/4$).

Problem 3 (10 pts). Consider the region enclosed by the astroid $x(t) = \cos^3 t$, $y(t) = \sin^3 t$, $0 \le t \le 2\pi$. Express its area as an integral on the parameter variable t, and compute its value.

Problem 4 (10 pts). Consider the astroid $x(t) = 2\cos^3 t$, $y(t) = 2\sin^3 t$, $0 \le t \le 2\pi$. Express its length as an integral on the parameter variable t, and compute its value.

Problem 5 (10 pts). Find Cartesian coordinates of the point given in polar coordinates by $P(\sqrt{2},\pi/4)$.

Problem 6 (10 pts). Find a polar equation for the circle $x^2 + (y-3)^2 = 9$.

Problem 7 (10 pts). Sketch the graph and find a Cartesian equation for the curve given in polar coordinates by $r \cos \theta = -4$.

Problem 8 (10 pts). Consider the region in the xy-plane enclosed by the cardioid with polar equation $r=2(1+\cos\theta)$ (assume $0\leq\theta\leq2\pi$). Express its area with an integral in terms of the parameter θ , and compute its value.

Problem 9 (10 pts). Consider the cardioid $r = 1 - \cos \theta$ (assume again $0 \le \theta \le 2\pi$). Express its length as an integral of the parameter θ , and compute its value.

MATH 142 Test#4 Fall 2016 Page 6/6

Problem 10 (10 pts). Find the area and length of one of the leaves of the eight-leaved rose $r = \cos 4\theta$. Sketch the graph, and make sure to label all intersections with the x and y-axis.