Compito di "Fondamenti di Automatica" - 20/07/2005

FILA: A

Cognome: Nome: Matricola:

Esercizio 1.

Con riferimento allo schema di controllo riportato in figura, dove

$$P(s) = \frac{(s+2)}{s(s+1)(s+5)} e^{-sT},$$

si risponda ai seguenti punti:

- |T| per T=0, utilizzando la sintesi per tentativi progettare C(s) in modo da soddisfare alle specifiche:
 - l'errore a regime di inseguimento ad una rampa unitaria in ingresso sia non superiore a $e_{rp} = 0.05$;
 - un disturbo $d_1(t)$ costante venga attenuato di almeno 40 dB sull'uscita;
 - la sovraelongazione della risposta al gradino sia inferiore al 30%.
 - la banda passante sia circa uguale a 10 rad/s;
 - /3 calcolare il valore di attenuazione sull'uscita di un disturbo $d_2(t)$ sinusoidale con frequenza f = 1 Hz;
 - /3 valutare il ritardo critico T_c per il sistema controllato.

Esercizio 2.

Assegnato il sistema di controllo schematizzato in figura, dove

$$P(s) = \frac{s - 3}{s(s + 1)^2},$$

si risponda ai seguenti punti:

per
$$C(s) = K$$
, $K \in \mathbf{R}$,

- /6 tracciare il luogo delle radici (positivo e negativo) di P(s);
- /6 tracciare il diagramma di Nyquist di P(s);
- 6 determinare per quali valori del guadagno K il sistema di controllo risulta stabile internamente.
- Progettare il controllore C(s) attraverso il metodo di sintesi diretta in modo che il sistema ad anello chiuso garantisca errore nullo di inseguimento a regime di un riferimento a gradino unitario e abbia una coppia di poli complessi coniugati con pulsazione naturale $\omega_n = 1 \text{ rad/s}$ e coefficiente di smorzamento $\epsilon = 0.5$.