1 NP-completeness of minACS

Now we show that the minACS problem is NP-complete. To do this, we prove a problem related to minACS is NP-Complete, and we reduce that problem to minACS.

Lemma 1. For a given graph G, a vertex q, and an integer k, if there exists a clique C such that $q \in C$ and |C| = k + 1, then C is the smallest solution of minACS.

Problem 1. (MCC). For a graph G(V, E) and $q \in V$, find the maximum clique that contains q.

Lemma 2. MCC is NP-Complete.

Proof. It is clear that MCC belongs to NP. We prove it by reducing Maximal Clique (MC), a well-known NP-complete problem, to MCC. For any graph G(V, E), we construct a new graph G'(V', E') by adding a vertex v_0 and connecting v_0 to all vertices in G, that is, $V' = V \cup \{v_0\}$ and $E' = E \cup \{(v_i, v_0) | v_i \in V\}$. Thus, an MCC in G' is an MC in G.

Theorem 1. minACS is NP-complete.

Proof. It is easy to see that minACS belongs to NP. Now we show that minACS is NP-complete by reducing MCC to it. Let G(V,E) be a graph, and let v_0 be the query vertex. Consider the decision problem that corresponds to the optimization problem of MCC: Determine whether G has a clique of at least size k that contains v_0 . We can construct the following decision problem for minACS. Determine whether a solution $H \subseteq V$ exists such that |H| = k and it satisfies the minACS conditions: i) $v_0 \in H$; ii) G[H] is connected; and iii) $\delta(G[H]) \geq k - 1$. If H is the answer, then apparently G[H] is a clique, as any node in H has $degree \geq k - 1$.