Learning Deep Features for Discriminative Localization

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba

Motivation

- 1) Weakly-Supervised Localization
 - Need for an end-to-end model
 - Fast inference at test time

2) CNN Visualization Techniques

 Easy to implement and understand CNN visualization

Related Work

1) Weakly-Supervised Localization

Re-localization and refinement

Related Work

2) CNN Visualization Techniques

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." *Computer vision–ECCV 2014.* Springer International Publishing, 2014. 818-833.

Related Work

2) CNN Visualization Techniques

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." *Computer vision–ECCV 2014.* Springer International Publishing, 2014. 818-833.

Methodology - Global Average Pooling Model

Methodology - Class Activation Mapping

Methodology - Weakly-supervised Object Localization

GoogleNet Network Setup

Methodology - Weakly-supervised Object Localization

GoogleNet Network Setup

Methodology - Weakly-supervised Object Localization

Results - Classification Examples

Results - Classification Examples

Results - Classification

Table 1. Classification error on the ILSVRC validation set.

Networks	top-1 val. error	top-5 val. error
VGGnet-GAP	33.4	12.2
GoogLeNet-GAP	35.0	13.2
AlexNet*-GAP	44.9	20.9
AlexNet-GAP	51.1	26.3
GoogLeNet	31.9	11.3
VGGnet	31.2	11.4
AlexNet	42.6	19.5
NIN	41.9	19.6
GoogLeNet-GMP	35.6	13.9

- Small performance drop during classification.
- GAP works slightly better than GMP during classification.

For each CAM on the top-5 predicted categories.

For each CAM on the top-5 predicted categories.

1) Threshold the heatmap. Select regions with values > 20% of max heat.

For each CAM on the top-5 predicted categories.

- 1) Threshold the heatmap. Select regions with values > 20% of max heat.
- 2) Get biggest connected component.

For each CAM on the top-5 predicted categories.

- 1) Threshold the heatmap. Select regions with values > 20% of max heat.
- 2) Get biggest connected component.
- 3) Generate BBox covering the component

Results - Bounding Box Generation Examples

Results - Bounding Box Generation

Table 2. Localization error on the ILSVRC validation set. *Back-prop* refers to using [22] for localization instead of CAM.

top-1 val.error	top-5 val. error
56.40	43.00
57.20	45.14
60.09	49.34
63.75	49.53
67.19	52.16
65.47	54.19
61.31	50.55
61.12	51.46
65.17	52.64
57.78	45.26
	56.40 57.20 60.09 63.75 67.19 65.47 61.31 61.12 65.17

Table 3. Localization error on the ILSVRC test set for various weakly- and fully- supervised methods.

Method	supervision	top-5 test error
GoogLeNet-GAP (heuristics)	weakly	37.1
GoogLeNet-GAP	weakly	42.9
Backprop [22]	weakly	46.4
GoogLeNet [24]	full	26.7
OverFeat [21]	full	29.9
AlexNet [24]	full	34.2

 GAP, although is weakly trained, gets closer to the full supervision methods

Heuristic: select two bounding boxes (one tight and one loose) from the top 1st and 2nd predicted classes and one loose from the top 3rd predicted class.

- GAP works better than [22]
- GAP works slightly better than GMP during localization

[22] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. *International Conference on Learning Representations Workshop*, 2014.

Results - Fine-grained Recognition

Use a linear SVM on the extracted features

CUB200 Dataset, 200 bird classes

Table 4. Fine-grained classification performance on CUB200 dataset. GoogLeNet-GAP can successfully localize important image crops, boosting classification performance.

Methods	Train/Test Anno.	Accuracy
GoogLeNet-GAP on full image	n/a	63.0%
GoogLeNet-GAP on crop	n/a	67.8%
GoogLeNet-GAP on BBox	BBox	70.5%
Alignments [7]	n/a	53.6%
Alignments [7]	BBox	67.0%
DPD [31]	BBox+Parts	51.0%
DeCAF+DPD [3]	BBox+Parts	65.0%
PANDA R-CNN [30]	BBox+Parts	76.4%

- GAP weakly supervised gets comparable results (63.0%) to other methods
- Improves more (67.8%) if the localized crop is used again for classification
- Close to R-CNN (fully supervised) when using BBoxes for training (also fully supervised).

Results - Pattern Discovery

Use a linear SVM on the extracted features

Results - Pattern Discovery

Text Detector

Question answering

What is the color of the horse? Prediction: brown Prediction: texting

What is the sport? Prediction: skateboarding

Prediction: on the grass

Concept localization

Frequent object: wall:0.99 chair:0.98 floor:0.98 table:0.98 ceiling:0.75 window:73

Conclusions

- They propose a **simple yet effective weakly-supervised** object localization method (CAM).
- Easy to interpret **visualization technique**.
- Easy to use on the top of a pre-trained CNN.
- With potential uses on several problems:
 - Classification
 - Localization
 - Concept detection
 - Activity recognition
 - Text detection
 - Q&A