第十章 静电场中的导体和电介质

一. 选择题

- 1. 有一带正电荷的大导体,欲测其附近 P 点处的场强,将一电荷量不是足够小的正点电荷 q_0 放在该点,如图,测得它所受电场力大小为 F,则
 - (A) F/q_0 比 P 点处场强的数值大
 - (B) F/q_0 比 P 点处场强的数值小
 - (C) F/q_0 与 P 点处场强的数值相等
 - (D) F/q_0 与 P 点处场强的数值哪个大无法确定

Γ

1

- 2. 带电导体达静电平衡时
- (A) 表面电荷密度较大处电势较高
- (B) 表面曲率较大处电势较高
- (C) 导体内部的电势比导体表面电势高
- (D) 导体内任一点与其表面上任一点的电势差等于零

(题3图)

(题1图)

- 3. 同心导体球与导体球壳周围电场的电场线分布如图,由电场 线分布可知球壳上所带总电荷
 - (A) q > 0
 - (B) q = 0
 - (C) q < 0
 - (D) 无法确定

[]

Γ

]

- 4. 一无限大均匀带电平面 A,其附近放一与它平行的有一定厚度的无限大导体板 B,如图示,已知 A 上的电荷面密度为 $+\sigma$,则在导体板 B 的两个表面 1 和 2 上的感生电荷面密度为:
 - (A) $\sigma_1 = -\sigma$, $\sigma_2 = +\sigma$

(B)
$$\sigma_1 = -\frac{1}{2}\sigma$$
, $\sigma_2 = +\frac{1}{2}\sigma$

(C)
$$\sigma_1 = -\frac{1}{2}\sigma$$
, $\sigma_2 = -\frac{1}{2}\sigma$

(D)
$$\sigma_1 = -\sigma$$
, $\sigma_2 = 0$

5. 一不带电导体球半径为 R ,将一电量为 $+q$ 的点电荷放在距球心 O 为 $d(d>R)$ 的一	点,
这时导体球中心的电势为(无限远处电势为零)	
(A) 0	
(B) $q/4\pi\epsilon_0 R$	
(C) $q/4\pi\epsilon_0 d$	
(D) $q/4\pi\varepsilon_0(d-R)$	
[]	
6. 关于有介质存在时的高斯定理,下列说法正确的是	
(A) 高斯面内不包围自由电荷,则 \vec{D} 通量和 \vec{E} 通量均为零	
(B) 高斯面内各点 \vec{D} 处处为零,则 \vec{D} 通量必为零	
(C) 穿过高斯面的 \vec{D} 通量由高斯面内自由电荷决定	
(D) 穿过高斯面的 \vec{E} 通量由高斯面内自由电荷决定	
[]	
7. 一空气平板电容器,充电后两极板上带有等量异号电荷,现在两极板间平行插入	.一块
电介质板,如图示,则电介质中的场强 E 与空气部分中的场强 E_0 相比较有:	
(A) $E > E_0$,两者方向相同	
(B) $E = E_0$,两者方向相同 E	
(C) $E < E_0$,两者方向相同	
(D) $E < E_0$,两者方向相反	
[]	
8. 两半径相同的金属球,一为实心,一为空心,把两者各自孤立时的电容值相比较	有:
(A) 空心球电容值大	
(B) 实心球电容值大	
(C) 两球电容值相等	
(D) 大小关系无法确定	
[]	
9. 空气平板电容器保持与电源相连,在两板间充满电介质,则电容 C 、板间场强 E	与充
入介质前相比有:	
(A) C 不变, E 不变	
(B) C 不变, E 增大	
(C) C 增大, E 不变	
(D) C 增大, E 增大	
(D) C增入,C增入	

10. 真空中有"孤立的"均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等,则它们静电能之间的关系是 (A) 球体的静电能等于球面的静电能 (B) 球体的静电能大于球面的静电能 (C) 球体的静电能小于球面的静电能
(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能 []
二. 填空题
11. 一导体球壳内外半径为 R_1 和 R_2 ,带电荷 Q ,在球心处放一电荷为 q 的点电荷,则球
壳内表面的电荷面密度 $\sigma_1 =$
<u></u>
12. 一孤立带电导体球,其表面处场强的方向表面;当把另一带电体放到这
个导体球附近时,该导体球表面处场强的方向表面.
13. 空气的击穿电场强度为 $2 \times 10^6 \text{V} \cdot \text{m}^{-1}$,则直径为 0.10m 的导体球在空气中时最多能带
的电荷为
14. 一半径为 R 的薄金属球壳,带有电荷 q ,球壳内为真空,壳外是无限大的相对电容率
为 $\epsilon_{ m r}$ 的各向同性电介质,设无穷远处为电势零点,则球壳的电势为
15. 电容量为 C 平板电容器,充电后与电源保持联接,然后在两极板间充满相对电容率为 $\varepsilon_{ m r}$
的电介质,则电容量是原来的
量是原来的倍.
16. 一带有一定电量的导体球置于真空中,其电场能量为 W_0 ,若保持其带电量不变,将其
浸没在相对电容率为 ε_r 的无限大均匀电介质中,这时它的电场能量 $W=$

三. 计算题

17. 两个带等量异号电荷的同心导体球面,半径分别为 $R_1=0.03$ m 和 $R_2=0.1$ m,已知内外球的电势差为 450V,求内球上所带的电量.

- 18. 两块无限大带电平板导体如图排列,证明:
- (1) 相向的两面(图中的2和3), 其电荷面密度总是大小相等而符号相反;
- (2) 背向的两面(图中的1和4), 其电荷面密度总是大小相等且符号相同.

(题18图)

- 19. 一球形电容器,内球壳半径为 R_1 ,外球壳半径为 R_2 ,两球壳间充满了相对电容率为 $\varepsilon_{\rm r}$ 的各向同性均匀电介质,设两球壳间电势差为 U,求:
 - (1) 电容器电容;
 - (2) 电容器储存的能量.

- 20. 两根平行 "无限长" 均匀带电直导线,相距为 d,导线半径都是 R (R<<d),导线上电荷线密度分别为 $+\lambda$ 和 $-\lambda$. 试求:
 - (1) 两导线间电势差;
 - (2) 导线组单位长度的电容.