

SITUATION

Afin d'étudier la continuité d'une fonction f en un réel a, il faut comparer $\lim_{x o a} f(x)$ et f(a) .

ÉNONCÉ

On considère la fonction f définie sur $[3;+\infty[$ par :

$$\begin{cases} f(3) = 0 \\ \forall x > 3, \ f(x) = \sqrt{x - 3} \end{cases}$$

Etudier la continuité de la fonction *f* en 3.

Etape 1Rappeler le cours

On rappelle qu'une fonction f est continue en x=a si et seulement si $\lim_{x o a}f\left(x
ight)=f\left(a
ight)$.

APPLICATION

La fonction f est continue en x=3 si et seulement si $\lim_{x o 3} f\left(x
ight) = f\left(3
ight)$.

Etape 2

Calculer $\lim_{x o a} f\left(x ight)$

On calcule $\lim_{x
ightarrow a}f\left(x
ight) .$

APPLICATION

On a:

$$\forall x > 3, \ f\left(x\right) = \sqrt{x-3}$$

Ainsi:

$$\lim_{x
ightarrow3}f\left(x
ight) =0$$

Etape 3

Rappeler la valeur de f(a)

On rappelle la valeur de f(a).

APPLICATION

D'après l'énoncé, $f\left(3\right)=0$.

Etape 4Conclure

On conclut:

- Si $\lim_{x o a} f\left(x
 ight) = f\left(a
 ight)$ alors f est continue en a.
- Si $\lim_{x o a} f\left(x
 ight)
 eq f\left(a
 ight)$ alors f n'est pas continue en a.

APPLICATION

Ainsi, on a:

$$\lim_{x
ightarrow3}f\left(x
ight) =f\left(3
ight)$$

La fonction f est donc continue en $\,x=3$.