Electrical Science - | (IEC-102)

Lecture-07

General RL Circuits

General RL Circuits

The time constant of a single-inductor circuit will be $\tau = L/R_{eq}$ where R_{eq} is the resistance seen by the inductor.

General RL Circuits

The time constant of a single-inductor circuit will be $\tau = L/R_{eq}$ where R_{eq} is the resistance seen by the inductor.

$$R_{eq} = R_3 + R_4 + R_1 R_2 / (R_1 + R_2)$$

General RC Circuits

General RC Circuits

The time constant of a single-capacitor circuit will be $\tau=R_{eq}C$ where R_{eq} is the resistance seen by the capacitor.

General RC Circuits

The time constant of a single-capacitor circuit will be $\tau=R_{eq}C$ where R_{eq} is the resistance seen by the capacitor.

$$R_{eq} = R_2 + R_1 R_3 / (R_1 + R_3)$$

 \Box The voltage across a capacitor or current through an inductor is the same prior to and after switching at t=0.

- lacktriangle The voltage across a capacitor or current through an inductor is the same prior to and after switching at t=0.
- Resistor voltage (or current) prior to the switch $v(0^-)$ can be different from the voltage after the switch $v(0^+)$.

- \Box The voltage across a capacitor or current through an inductor is the same prior to and after switching at t=0.
- Resistor voltage (or current) prior to the switch $v(0^-)$ can be different from the voltage after the switch $v(0^+)$.
- \Box All voltages and currents in an RC or RL circuit follow the same natural response $e^{-t/\tau}$.

Example: L and R Current

Find τ , $i_I(t)$ and $i_L(t)$ for $t \ge 0$. Given that the circuit is in steady state at t=0-.

Example: L and R Current

Find τ , $i_I(t)$ and $i_L(t)$ for $t \ge 0$. Given that the circuit is in steady state at t = 0.

Answer: $\tau = 20 \text{ }\mu\text{s}$; $i_1 = -0.24e^{-t/\tau}$; $i_L = 0.36e^{-t/\tau}$ for $t \ge 0$

The Unit Step Function

The unit-step function u(t) is a convenient notation to represent change.

The Unit Step Function

The unit-step function u(t) is a convenient notation to represent change.

The Unit Step Function

The unit-step function u(t) is a convenient notation to represent change.

A single-throw switch shown is open circuit for t < 0, not short circuit.

A single-throw switch shown is open circuit for t < 0, not short circuit.

The unit step models a double-throw switch.

A single-throw switch shown is open circuit for t < 0, not short circuit.

Rectangular pulse

Rectangular pulse

$$v(t) = V_0[u(t-t_0) - u(t-t_1)]$$

Rectangular pulse

$$v(t) = V_0[u(t-t_0) - u(t-t_1)]$$

Pulsed sine wave

Rectangular pulse

$$v(t) = V_0[u(t-t_0) - u(t-t_1)]$$

Pulsed sine wave

$$v(t) = V_{\text{m}} \sin(w_0 t) [u(t-t_0) - u(t-t_1)] \text{ where } t_1 = t_0 + 7x \cdot 10^{-8} \text{ s}$$

Driven RL and RC Circuits

The two circuits shown both have i(t) = 0 for t < 0 and are also the same for t > 0.

The two circuits shown both have i(t) = 0 for t < 0 and are also the same for t > 0.

Find both the natural response and the forced response due to the source V_{0}

The total response is the combination of the natural response and the forced response.

$$i(t) = \frac{V_0}{R} \left(1 - e^{-Rt/L} \right) u(t)$$

$$i(t) = \frac{V_0}{R} \left(1 - e^{-Rt/L} \right) u(t)$$

Example: RL Circuit with Step

Find i(t) for $t \ge 0$.

Given that the circuit is in steady state at t=0-

Example: RL Circuit with Step

Find i(t) for $t \ge 0$.

Given that the circuit is in steady state at t=0-

$$i(t)=25+25(1-e^{-t/2})u(t)$$
 A

Example: RL Circuit with Step

Find i(t) for $t \ge 0$.

Given that the circuit is in steady state at t=0-.

$$i(t)=25+25(1-e^{-t/2})u(t)$$
 A

