Lecture 19 – Closure Properties of Context-Free Languages COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Recall

• A context-free grammar (CFG) is a 4-tuple:

$$G = (V, \Sigma, S, R)$$

where

- V: a finite set of variables (nonterminals)
- Σ: a finite set of **symbols** (terminals)
- $S \in V$: the start variable
- $R \subseteq V \times (V \cup \Sigma)^*$: a set of **production rules**.
- A context-free language (CFL) is a language generated by a CFG.
- We have learned that the class of regular languages is closed under various operations.
- For which operations is the class of CFLs closed?

Contents

1. Closure Properties of Context-Free Languages

Union

Concatenation

Kleene Star

Homomorphism

Reversal

2. Non-Closure Properties of Context-Free Languages

Intersection

Complement and Difference

3. Closure Properties of CFLs with Regular Languages

Intersection with Regular Languages

Difference with Regular Languages

Closure Properties of CFLs

Definition (Closure Properties)

The class of CFLs is **closed** under an n-ary operator op if and only if $op(L_1, \dots, L_n)$ is regular for any regular languages L_1, \dots, L_n . We say that such properties are **closure properties** of CFLs.

The class of CFLs is closed under the following operations:

- Union
- Concatenation
- Kleene Star
- Homomorphism
- Reverse

Closure under Union

Theorem (Closure under Union)

If L_1 and L_2 are context-free languages, then so is $L_1 \cup L_2$.

Proof) For given two CFLs L_1 and L_2 , we can always construct two CFGs:

$$G_1 = (V_1, \Sigma, S_1, R_1)$$

 $G_2 = (V_2, \Sigma, S_2, R_2)$

such that $L_1 = L(G_1)$ and $L_2 = L(G_2)$.

Note that the variables of G_1 and G_2 should be disjoint. (i.e., $V_1 \cap V_2 = \emptyset$)

Then, $L_1 \cup L_2$ is accepted by the CFG $G = (V, \Sigma, S, R)$ where:

- $V = V_1 \cup V_2 \cup \{S\}$
- S is a new start variable (i.e., $S \notin V_1 \cup V_2$)
- $R = R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\}$

Closure under Union - Example

For example, consider the following two CFLs:

$$L_1 = \{ ab^n \mid n \ge 0 \}$$
 $L_2 = \{ ac^n \mid n \ge 0 \}$

Then, L_1 is accepted by:

$$S_1 o \mathtt{a} X \qquad X o \mathtt{b} X \mid \epsilon$$

and L_2 is accepted by:

$$S_2
ightarrow a X \qquad X
ightarrow c X \mid \epsilon$$

But, the same variable X is used in both grammars.

So, we need to rename it to different variables, such as B and C.

Closure under Union - Example

For example, consider the following two CFLs:

$$L_1 = \{ ab^n \mid n \ge 0 \}$$
 $L_2 = \{ ac^n \mid n \ge 0 \}$

Then, L_1 is accepted by:

$$S_1
ightarrow aB \qquad B
ightarrow bB \mid \epsilon$$

and L_2 is accepted by:

$$S_2 \rightarrow aC$$
 $C \rightarrow cC \mid \epsilon$

Then, $L_1 \cup L_2$ is accepted by the following CFG:

$$\begin{array}{lll} S & \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow \mathtt{a}B & B \rightarrow \mathtt{b}B \mid \epsilon \\ S_2 \rightarrow \mathtt{a}C & C \rightarrow \mathtt{c}C \mid \epsilon \end{array}$$

Closure under Concatenation

Theorem (Closure under Concatenation)

If L_1 and L_2 are context-free languages, then so is $L_1 \cdot L_2$.

Proof) For given two CFLs L_1 and L_2 , we can always construct two CFGs:

$$G_1 = (V_1, \Sigma, S_1, R_1)$$

 $G_2 = (V_2, \Sigma, S_2, R_2)$

such that $L_1 = L(G_1)$ and $L_2 = L(G_2)$.

Note that the variables of G_1 and G_2 should be disjoint. (i.e., $V_1 \cap V_2 = \emptyset$) Then, $L_1 \cdot L_2$ is accepted by the CFG $G = (V, \Sigma, S, R)$ where:

- $V = V_1 \cup V_2 \cup \{S\}$
- S is a new start variable (i.e., $S \notin V_1 \cup V_2$)
- $R = R_1 \cup R_2 \cup \{S \to S_1 S_2\}$

Closure under Union - Example

For example, consider the following two CFLs:

$$L_1 = \{ ab^n \mid n \ge 0 \}$$
 $L_2 = \{ ac^n \mid n \ge 0 \}$

Then, L_1 is accepted by:

$$S_1
ightarrow aB \qquad B
ightarrow bB \mid \epsilon$$

and L_2 is accepted by:

$$S_2 \rightarrow aC$$
 $C \rightarrow cC \mid \epsilon$

Then, $L_1 \cdot L_2$ is accepted by the following CFG:

$$\begin{array}{lll} S & \rightarrow S_1 S_2 \\ S_1 \rightarrow \mathtt{a} B & B \rightarrow \mathtt{b} B \mid \epsilon \\ S_2 \rightarrow \mathtt{a} C & C \rightarrow \mathtt{c} C \mid \epsilon \end{array}$$

Closure under Kleene Star

Theorem (Closure under Kleene Star)

If L is a context-free language, then so is L^* .

Proof) For a given CFL *L*, we can always construct a CFG:

$$G = (V, \Sigma, S, R)$$

such that L = L(G).

Then, L^* is accepted by the CFG $G' = (V', \Sigma, S', R')$ where:

- $V' = V \cup \{S'\}$
- S' is a new start variable (i.e., $S' \notin V$)
- $R' = R \cup \{S' \rightarrow \epsilon, S' \rightarrow SS'\}$

Closure under Kleene Star – Example

For example, consider the following CFL:

$$L = \{a^n b^n \mid n \ge 0\}$$

Then, L is accepted by:

$$\mathcal{S}
ightarrow \epsilon \mid \mathtt{a} \mathcal{S} \mathtt{b}$$

Then, L^* is accepted by the following CFG:

$$\begin{array}{l} {\cal S}' \rightarrow \epsilon \mid {\cal S}{\cal S}' \\ {\cal S} \rightarrow \epsilon \mid {\bf a}{\cal S}{\bf b} \end{array}$$

Closure under Homomorphism

Theorem (Homomorphism)

Suppose Σ and Γ are two finite sets of symbols. Then, a function $h: \Sigma \to \Gamma^*$ is called a homomorphism. For a given word $w = a_1 a_2 \cdots a_n$,

$$h(w) = h(a_1)h(a_2)\cdots h(a_n)$$

For a language L, $h(L) = \{h(w) \mid w \in L\}$.

For example, $h:\{0,1\}\to\Gamma=\{a,b\}^*$ be a homomorphism such that:

$$h(0) = ab$$
 $h(1) = a$

Then,

$$h(10) = aab$$
 $h(010) = abaab$ $h(1100) = aaabab$

Closure under Homomorphism

Theorem (Closure under Homomorphism)

If h is a homomorphism and L is a context-free language, then so is h(L).

Proof) For a given CFL *L*, we can always construct a CFG:

$$G = (V, \Sigma, S, R)$$

such that L = L(G).

Then, for a given homomorphism $h: \Sigma \to \Gamma^*$, h(L) is accepted by the CFG $G' = (V', \Gamma, S, R')$ where:

- $V' = V \cup \{X_a \mid a \in \Sigma\}$
- $R' = \{Y \to Y'_1 \cdots Y'_n \mid Y \to Y_1 \cdots Y_n \in R\} \cup \{X_a \to h(a) \mid a \in \Sigma\}$ where $\forall 1 \le i \le n$. $Y'_i = \{ \begin{array}{c} Y_i & \text{if } Y_i \in V \\ X_a & \text{if } Y_i = a \in \Sigma \end{array} \}$

Closure under Homomorphism - Example

For example, consider the following CFL:

$$L = \{ww^R \mid w \in \{0,1\}^*\}$$

Then, L is accepted by:

$$S \rightarrow \epsilon \mid 0S0 \mid 1S1$$

If a homomorphism $h: \{0,1\} \to \{a,b\}^*$ is defined as follows:

$$h(0) = ab$$
 $h(1) = a$

Then, h(L) is accepted by the following CFG:

$$egin{aligned} S &
ightarrow \epsilon \mid X_0 S X_0 \mid X_1 S X_1 \ X_0 &
ightarrow ext{ab} \ X_1 &
ightarrow ext{a} \end{aligned}$$

Closure under Reverse

Theorem (Closure under Reverse)

If L is a context-free language, then so is L^R .

Proof) For a given CFL L, we can always construct a CFG:

$$G = (V, \Sigma, S, R)$$

such that L = L(G).

Then, L^R is accepted by the CFG $G' = (V, \Sigma, S, R')$ where:

•
$$R' = \{X \to \alpha^R \mid X \to \alpha \in R\}$$

Closure under Reverse – Example

For example, consider the following CFL:

$$L = \{(\mathtt{ab})^n \mathtt{c}^n \mathtt{d}^m \mid n, m \geq 0\}$$

Then, L is accepted by:

$$S o X \mid Sd$$

 $X o \epsilon \mid abXc$

Then, L^R is accepted by the following CFG:

$$S o X \mid dS$$

 $X o \epsilon \mid cX$ ba

Non-Closure Properties of CFLs

Definition (Closure Properties)

The class of CFLs is **closed** under an n-ary operator op if and only if $op(L_1, \dots, L_n)$ is regular for any regular languages L_1, \dots, L_n . We say that such properties are **closure properties** of CFLs.

The class of CFLs is NOT closed under the following operations:

- Intersection
- Complement
- Difference

We will prove it by using the fact that the following language is not a CFL:

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

We will learn how to prove that L is not a CFL in the next lecture (Pumping Lemma for CFLs).

Theorem (Non-Closure under Intersection)

The class of CFLs is **NOT** closed under intersection.

Proof) Consider the following two languages:

$$L_1 = \{a^n b^n c^m \mid n, m \ge 0\}$$
 $L_2 = \{a^m b^n c^n \mid n, m \ge 0\}$

Then, L_1 is accepted by:

$$S_1
ightarrow X \mid S_1$$
c $X
ightarrow \epsilon \mid$ a X b

and L_2 is accepted by:

$$S_2
ightarrow Y \mid aS_2 \qquad Y
ightarrow \epsilon \mid bYc$$

Thus, they are both CFLs. However, their intersection is not a CFL:

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$$

Non-Closure under Complement and Difference

Definition (Non-Closure under Complement)

The class of CFLs is NOT closed under complement.

Proof) Assume that the class of CFLs is closed under complement. Then, for any two CFLs L_1 and L_2 , $L_1 \cap L_2$ is also a CFL:

$$L_1\cap L_2=\overline{\overline{L_1}\cup\overline{L_2}}$$

However, we have already proved that the class of CFLs is not closed under intersection. Thus, the class of CFLs is not closed under complement. \Box

Definition (Non-Closure under Difference)

The class of CFLs is NOT closed under difference.

Proof) Similarly, we can prove it using the following fact:

$$L_1 \cap L_2 = L_1 \setminus (L_1 \setminus L_2)$$

Closure Properties of CFLs with Regular Languages **PLRG**

Definition (Closure Properties)

The class of CFLs is **closed** under an *n*-ary operator op if and only if $op(L_1, \dots, L_n)$ is regular for any regular languages L_1, \dots, L_n . We say that such properties are closure properties of CFLs.

The class of CFLs is closed under the following operations with RLs:

- Intersection
- Difference

Closure under Intersection with RLs

Theorem (Closure under Intersection with RLs)

If L_1 Is a CFL and L_2 is a RL, then $L_1 \cap L_2$ is a CFL.

There exists a PDA P that accepts L_1 by final states and a DFA D that accepts L_2 . We will construct a PDA P that accepts $L_1 \cap L_2$ as follows:

Theorem (Closure under Intersection with RLs)

If L_1 Is a CFL and L_2 is a RL, then $L_1 \cap L_2$ is a CFL.

Proof) Consider a PDA $P = (Q_P, \Sigma, \Gamma, \delta_P, q_P, Z, F_P)$ and a DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ such that:

$$L_F(P) = L_1 \qquad L(D) = L_2$$

Then, $L_1 \cap L_2$ is accepted by the PDA $P' = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$ by final states, where:

- $Q = Q_P \times Q_D$
- $\delta((p,q),\epsilon,X) = \{((p',q),\alpha) \mid (p',\alpha) \in \delta_P(p,\epsilon,X)\}$
- $\delta((p,q),a,X) = \{((p',q'),\alpha) \mid (p',\alpha) \in \delta_P(p,a,X) \land q' = \delta_D(q,a)\}$
- $q_0 = (q_P, q_D)$
- $F = F_P \times F_D$

Closure under Intersection with RLs - Example

For example, consider the following PDA P and DFA D:

$$P = \bigcap_{\substack{a \ [Z \to XZ] \\ a \ [X \to XX] \ b \ [X \to \epsilon] \\ \text{start } [Z] \longrightarrow \bigcap_{p_0} \epsilon [X \to X] \bigcap_{p_1} \epsilon [Z \to Z] \bigcap_{p_2} e \bigcap_{p_2} a$$

Then, a PDA P' that accepts $L_F(P) \cap L(D)$ by the final states can be constructed as follows:

Closure under Difference with RLs

Theorem (Closure under Difference with RLs)

If L_1 Is a CFL and L_2 is a RL, then $L_1 \setminus L_2$ is a CFL.

Proof) We know the following fact:

$$L_1\setminus L_2=L_1\cap \overline{L_2}$$

Since the class of RLs is closed under complement, $\overline{L_2}$ is a RL. In addition, we know that the class of CFLs is closed under intersection with RLs.

Thus,
$$L_1 \setminus L_2$$
 is a CFL.

Closure under Difference with RLs - Example

For example, consider the following PDA P and DFA D:

Then, a DFA \overline{D} that accepts $\overline{L}(D)$ and a PDA P' that accepts $L_F(P) \setminus L(D) = L_F(P) \cap \overline{L(D)}$ can be constructed as follows:

Summary

1. Closure Properties of Context-Free Languages

Union

Concatenation

Kleene Star

Homomorphism

Reversal

2. Non-Closure Properties of Context-Free Languages

Intersection

Complement and Difference

3. Closure Properties of CFLs with Regular Languages

Intersection with Regular Languages

Difference with Regular Languages

Next Lecture

• The Pumping Lemma for Context-Free Languages

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr