МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №8

по дисциплине «Организация ЭВМ и систем»

Тема: Обработка вещественных чисел. Программирование математического сопроцессора.

Вариант 2

	Кузнецов Н.А.
	Ефремов М.А.
_	

Санкт-Петербург

2022

Цель работы.

Составить программу для освоения навыков работы с математическим сопроцессором на языке ассемблера, вычисляющая значение гиперболического косинуса.

Задание.

Разработать подпрограмму на языке Ассемблера, обеспечивающую вычисление заданной математической функции с использованием математического сопроцессора. Подпрограмма должна вызываться из головной программы, разработанной на языке С. При этом должны быть обеспечены заданный способ вызова и обмен параметрами. Альтернативный вариант реализации: разработать на языке Ассемблера фрагмент программы, обеспечивающий вычисление заданной математической функции с использованием математического сопроцессора, который включается по принципу inline в программу, разработанную на языке С.

ВАРИАНТ 2.

* function

Name cosh - hyperbolic function:

Usage double cosh(double x);

Prototype in math.h

Description cosh computes the hyperbolic cosine of the input value.

$$\cosh(x) = (\exp^{\wedge}(x) + \exp^{\wedge}(-x)) / 2$$

Выполнение работы.

Программа начинается с ввода значения x, для которого нужно рассчитать значение функции $\cosh(x)$, а так же создается переменная в которую будет записано значение экспоненты. Для возведения экспоненты в степень x, применяется следующее математическое преобразование, которое будет применено в ассемблерной вставке: $a^b = 2^b$ 0 в соответствии с этим ассемблерный блок разбивается на подзадачи.

Возведение экспоненты в степень. Получение из этого $e^{-}(-x)$ путем работы с регистрами. Суммирование полученных $e^{-}(x)$ и $e^{-}(-x)$. И деление суммы на два. Полученный результат выводится в консоль, а так же выводится абсолютная погрешность вычислений.

Тестирование.

№ Теста	Ввод	Вывод	Результат
1	3.14	Вычисленное значение cosh(x): 11.573575	Верно
		Абсолютная погрешность вычисления:	
		0.0000000000000177636	
2	-2,71	Вычисленное значение cosh(x): 7.547906	Верно
		Абсолютная погрешность вычисления:	
		0.0000000000000177636	
3	0.691311	Вычисленное значение cosh(x): 1.248625	Верно
		Абсолютная погрешность вычисления:	
		0.00000000000000022204	

Таблица фиксации изменений стека и регистров при х=3.

Команда	До выполнения	После выполнения
fld qword ptr[x]	ST0 = +0.0000000000000000e+0000	ST0 = +3.0000000000000000e+0000
fld qword ptr[e]	ST0 = +3.0000000000000000e+0000	ST0 = +2.7182818284590450e+0000
	ST1 = +0.0000000000000000e+0000	ST1 = +3.0000000000000000e+0000
fyl2x	ST0 = +2.7182818284590450e+0000	ST0 = +4.3280851226668899e+0000
fld st	ST0 = +4.3280851226668899e+0000	ST0 = +4.3280851226668899e+0000
	ST1 = +0.00000000000000000e+0000	ST1 = +4.3280851226668899e+0000
frndint	ST0 = +4.3280851226668899e+0000	ST0 = +4.0000000000000000e+0000
fsub st(1), st	ST1 = +4.3280851226668899e+0000	ST1 = +3.2808512266688999e-0001
fxch st(1)	ST0 = +4.0000000000000000e+0000	ST0 = +3.2808512266688999e-0001
	ST1 = +3.2808512266688999e-0001	ST1 = +4.0000000000000000e+0000
f2xm1	ST0 = +3.2808512266688999e-0001	ST0 = +2.5534605769922903e-0001
fld1	ST0 = +2.5534605769922903e-0001	ST0 = +1.0000000000000000e+0000
	ST1 = +4.0000000000000000e+0000	ST1 = +2.5534605769922903e-0001

	ST2 = +0.0000000000000000e+0000	ST2 = +4.00000000000000000e+0000
faddp st(1), st	ST0 = +1.0000000000000000e+0000	ST0 = +1.2553460576992290e+0000
	ST1 = +2.5534605769922903e-0001	ST1 = +4.00000000000000000e+0000
	ST2 = +4.000000000000000000e+0000	ST2 = +0.0000000000000000e+0000
fscale	ST0 = +1.2553460576992290e+0000	ST0 = +2.0085536923187664e+0001
fstp st(1)	ST1 = +4.0000000000000000e+0000	ST1 = +0.0000000000000000e+0000
fst qword ptr[res]	-	-
fld1	ST0 = +2.0085536923187664e+0001	ST0 = +1.0000000000000000e+0000
	ST1 = +0.0000000000000000e+0000	ST1 = +2.0085536923187664e+0001
fdiv qword ptr[res]	ST0 = +1.000000000000000e+0000	ST0 = +4.9787068367863951e-0002
fadd st, st(1)	ST0 = +4.9787068367863951e-0002	ST0 = +2.0135323991555527e+0001
fdiv qword ptr[two]	ST0 = +2.0135323991555527e+0001	ST0 = +1.0067661995777763e+0001
fstp qword ptr[res]	ST0 = +1.0067661995777763e+0001	ST0 = +2.0085536923187664e+0001
	ST1 = +2.0085536923187664e+0001	ST1 = +0.0000000000000000e+0000

Вывод.

Составлена программа для вычисления $\cosh(x)$, а так же освоены навыки работы с математическим сопроцессором ассемблера.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lab8.cpp

```
#include <math.h>
#include <iostream>
long double x;
long double two = 2;
long double e = exp(1);
long double res;
int main() {
   system("chcp 1251 > nul");
   setlocale(LC CTYPE, "rus");
   std::cout << "Введите значение x...\n";
   std::cin >> x;
     __asm{
      ; Возведение е^х
      fld qword ptr[x]
      fld qword ptr[e]
      fyl2x
      fld st
      frndint
      fsub st(1), st
      fxch st(1)
      f2xm1
      fld1
      faddp st(1), st
      fscale
      fstp st(1)
      fst qword ptr[res]
      ; Деление 1 / e^x
      fld1
      fdiv qword ptr[res]
      ; Получение e^x + 1 / (e^x)
      fadd st, st(1)
      ; Получение \cosh(x)
      fdiv qword ptr[two]
      ; Запись ответа
      fstp qword ptr[res]
   printf("Вычисленное значение cosh(x): %lf\n", res);
   printf("Абсолютная погрешность вычисления: %.20lf\n", abs(res -
cosh(x));
    return 0;
}
```