Elektronische Eigenschaften von Festkörpern II

Das "fast" freie Elektronengas
Blochwellen
Elektronische Zustände von Rumpfelektronen
Elektronische Bandstruktur

Periodisches Hintergrundpotential im Kristall

"Leeres" Gitter:

Reduziertes Zonenschema:

Erweitertes Zonenschema:

Abb. 7.3. Bänderschema für das freie Elektronengas in einem kubisch primitiven Gitter (Gitterkonstante a), dargestellt als Schnitt längs k_x innerhalb der ersten Brillouin-Zone. Das periodische Potential ist als verschwindend angenommen ("leeres" Gitter). Die verschieden dargestellten Äste rühren von Parabeln her, deren Ursprung im reziproken Raum mittels der Miller-Indizes h k l angegeben ist. (—)000, (—)100, $\overline{100}$, (---)010, $0\overline{10}$, 001, $00\overline{1}$, (---)110, $10\overline{10}$, $10\overline{10}$, $10\overline{10}$, $10\overline{10}$, $10\overline{10}$, $10\overline{10}$

Bloch-Wellen

Kopitzki/Herzog, 5. Aufl., S.

Blochwellen:

Wellenfunktion $cos(kx+\delta)$

Blochwelle $u_k(x) \cos(kx + \delta)$

Ortskoordinate x

"Quasifreies" Elektronengas:

Abb. 7.5

Aufspaltung von E am Rand der BZ

Ausbildung "erlaubter" und "verbotener" Bänder (1D)

Störungspotential für stark gebundene Rumpfelektronen

Stark gebundene Elektronen: Energieabsenkung und Verbreiterung

atomar Festkörper Rumpfelektron

sp3 Hybridisierung

Interatomarer Abstand

Bandstruktur Aluminium:

Fermiflächen Al:

Bandstruktur freier Elektronen im fcc-Gitter

Ashcroft/Mermin, Internat. Ed., S. 161

