

#### **Last Lecture**

- The CMOS Inverter: Dynamic Behavior
  - » Capacitors in MOS transistors
- Summary:
  - » Gate Capacitances (Thin Oxide)
    - Channel voltage-dependent
    - -Overlap constant
  - » Drain- and Source Junction (Depletion)
    - -Bottom CJ, MJ
    - -Side-wall CJSW, MJSW

**Digital Integrated Circuits** 

Inverter

# **Today**

- Propagation Delay
- CMOS Inverter sizing for optimum delay

Digital Integrated Circuits

Inverter



# CMOS Inverter Propagation Delay Approach 1



# CMOS Inverter Propagation Delay Approach 2







# **Design for Performance**

- Keep capacitances small
- Increase transistor sizes» watch out for self-loading!
- Increase V<sub>DD</sub> (????)

**Digital Integrated Circuits** 

Inverter

© Prentice Hall 1999

# Delay as a function of $V_{\text{DD}}$











#### **Inverter Chain**

If  $C_L$  is given:

- How many stages are needed to minimize the delay?
- How to size the inverters?

May need some additional constraints.

**Digital Integrated Circuits** 

Inverter

© Prentice Hall 1999

2W

# **Inverter Delay**

- Minimum length devices, L=0.25μm
- Assume that for  $W_P = 2W_N = 2W$ 
  - same pull-up and pull-down currents
  - approx. equal resistances  $R_N = R_P$
- approx. equal rise  $t_{pLH}$  and fall  $t_{pHL}$  delays Analyze as an RC network

$$R_P = R_{unit} \left( \frac{W_P}{W_{unit}} \right)^{-1} \approx R_{unit} \left( \frac{W_N}{W_{unit}} \right)^{-1} = R_N = R_W$$

Delay (D): 
$$t_{pHL} = (\ln 2) R_N C_L$$
  $t_{pLH} = (\ln 2) R_P C_L$ 

Load for the next stage: 
$$C_{gin} = 3 \frac{W}{W_{unit}} C_{unit}$$

**Digital Integrated Circuits** 

## Inverter with Load





*k* is a constant, equal to 0.69 Assumptions: no load -> zero delay

$$W_{unit} = 1$$

Digital Integrated Circuits

Inverte

© Prentice Hall 1999

## Inverter with Load





 $\begin{aligned} &\text{Delay} = kR_W(C_{int} + C_L) = kR_WC_{int} + kR_WC_L = kR_WC_{int} (1 + C_L/C_{int}) \\ &= \text{Delay (Internal)} + \text{Delay (Load)} \end{aligned}$ 

Digital Integrated Circuits

Inverter

## **Delay Formula**

Delay ~ 
$$R_W (C_{int} + C_L)$$

$$t_p = kR_W C_{int} \left( 1 + C_L / C_{int} \right) = t_{p0} \left( 1 + f / \mathbf{g} \right)$$

$$C_{int} = gC_{gin}$$
 with  $g \gg 1$   
 $f = C_L/C_{gin}$  - effective fanout  
 $R = R_{unit}/W$ ;  $C_{int} = WC_{unit}$   
 $t_{p0} = 0.69R_{unit}C_{unit}$ 

**Digital Integrated Circuits** 

Inverter

© Prentice Hall 1999

# Apply to Inverter Chain

In Out
$$t_{p} = t_{p1} + t_{p2} + ... + t_{pN}$$

$$t_{pj} \sim R_{unit}C_{unit} \left(1 + \frac{C_{gin,j+1}}{\mathbf{g}C_{gin,j}}\right)$$

$$t_{p} = \sum_{j=1}^{N} t_{p,j} = t_{p0} \sum_{i=1}^{N} \left(1 + \frac{C_{gin,j+1}}{\mathbf{g}C_{gin,j}}\right) C_{gin,N+1} = C_{L}$$

**Digital Integrated Circuits** 

Inverte

## Optimal Tapering for Given N

Delay equation has N - 1 unknowns,  $C_{\mathrm{gin,2}} - C_{\mathrm{gin,N}}$ 

Minimize the delay, find N - 1 partial derivatives

Result:  $C_{gin,j+1}/C_{gin,j} = C_{gin,j}/C_{gin,j-1}$ 

Size of each stage is the geometric mean of two neighbors

$$C_{gin,j} = \sqrt{C_{gin,j-1}C_{gin,j+1}}$$

- each stage has the same effective fanout  $(C_{out}/C_{in})$
- each stage has the same delay

**Digital Integrated Circuits** 

Inverter

© Prentice Hall 1999

# Optimum Delay and Number of Stages

When each stage is sized by f and has same eff. fanout f.

$$f^{N} = F = C_{L} / C_{gin.1}$$

Effective fanout of each stage:

$$f = \sqrt[N]{F}$$

Minimum path delay

$$t_p = Nt_{p0} \left( 1 + \sqrt[N]{F} / \mathbf{g} \right)$$

**Digital Integrated Circuits** 

Inverter

## Example



 $C_L/C_1$  has to be evenly distributed across N=3 stages:

$$f = \sqrt[3]{8} = 2$$

**Digital Integrated Circuits** 

Inverter

© Prentice Hall 1999

## **Optimum Number of Stages**

For a given load,  $C_L$  and given input capacitance  $C_{in}$ Find optimal sizing f

$$C_{L} = F \cdot C_{in} = f^{N} C_{in} \text{ with } N = \frac{\ln F}{\ln f}$$

$$t_{p} = N t_{p0} \left( F^{1/N} / \mathbf{g} + 1 \right) = \frac{t_{p0} \ln F}{\mathbf{g}} \left( \frac{f}{\ln f} + \frac{\mathbf{g}}{\ln f} \right)$$

$$\frac{\partial t_{p}}{\partial f} = \frac{t_{p0} \ln F}{\mathbf{g}} \cdot \frac{\ln f - 1 - \mathbf{g}/f}{\ln^{2} f} = 0$$

For g = 0, f = e, N = ln F f = exp(1 + g/f)

**Digital Integrated Circuits** 





# Normalized delay function of F

$$t_p = Nt_{p0} \left( 1 + \sqrt[N]{F} / \mathbf{g} \right)$$

| F      | Unbuffered | Two Stage | Inverter Chain |
|--------|------------|-----------|----------------|
| 10     | 11         | 8.3       | 8.3            |
| 100    | 101        | 22        | 16.5           |
| 1000   | 1001       | 65        | 24.8           |
| 10,000 | 10,001     | 202       | 33.1           |

Digital Integrated Circuits

Inverter

© Prentice Hall 1999

# **Buffer Design**

