Report to Boss

Sets

- J Set of Juices
- F Set of Fruits
- Q Set of Quarters
- L Set of locations

Data

- $P_{f,i}$ Part, as a per cent figure, of a fruit $f \in F$ in a juice $j \in I$
- B_i The blend, as a per cent description, of fruit in a given juice $i \in I$
- C_f Cost in dollars per kilolitre of the purchasing and processing of a given fruit $f \in F$
- Anticipated kilolitres of demand for a given juice, $j \in J$, in a given quarter $q \in Q$
- Supply of orange juice fruit concentrate from Brisbane in kilolitres for a given quarter $q \in Q$
- Determination of whether a given juice, $j \in J$ is gourmet
- $H_{l,l}$ Cost, in dollars, of travel from a given location, $l \in L$, to another, $l \in L$

Variables

- $X_{j,q}$ Number of kilolitres produced of a given juice, $j \in J$, in a given quarter $q \in Q$
- $T_{f,q}$ Number of trucks delivering a given fruit, $f \in F$, in a given quarter $q \in Q$
- $G_{j,q}$ (Purpose?) juice $j \in J$ in a given quarter $q \in Q$
- $T_{l,l}$ (Purpose?) location $l \in L$ to a given location $l \in L$

Objective

$$\max \sum_{j \in J} \sum_{q \in Q} X_{j,q} * sell \ price - X_{j,q} * blendprice \ for \ B_j$$

$$\max \sum_{j \in J} \sum_{q \in Q} \sum_{f \in F} X_{j,q} * sell \ price \ - T_{f,q} * Truck \ load \ size * C_f - X_{j,q} * B_j(Orange?)$$

* Orange juice cost

$$\min \sum_{l, \in I_l} T_{l,l} * H_{l,l}$$

Constraints

Commented [WU1]: Needs another letter in the code, two variables for T

Commented [WU2]: How do we deal with constants in our objective? Set as data?

$$\sum_{j \in J} \sum_{q \in Q} X_{j,q} \leq D_{j,q} \qquad \forall j \in J, \forall q \in Q \qquad (1)$$

$$\sum_{j \in J} \sum_{q \in Q} X_{j,q} * B_{j}(Orange?) \leq E_{q} \qquad \forall j \in J, \forall q \in Q \qquad (2)$$

$$\sum_{j \in J} \sum_{q \in Q} \sum_{j \in F} X_{j,q} * B_{j}[F] \leq T_{f,q} * Truck \ load \ size \qquad \forall j \in J, \forall q \in Q \quad \forall f \in F \qquad (3)$$

$$\sum_{j \in J} \sum_{q \in Q} K_{j}, G_{j,q} = 2 \qquad \forall j \in J, \forall q \in Q \quad (4)$$

$$\sum_{j \in J} \sum_{q \in Q} G_{j,q} * X_{j,q} = X_{j,q} \qquad \forall j \in J, \forall q \in Q \quad (5)$$

$$\sum_{j \in J} \sum_{q \in Q} G_{j,q} * X_{j,q} = X_{j,q} \qquad \forall j \in J, \forall q \in Q \quad (6)$$

$$\sum_{j \in J} \sum_{q \in Q} G_{j,q} + G_{j,q+1} \geq 1 \qquad \forall l \in L \quad (7)$$

$$\sum_{l \in L} T_{l,l} = 1 \qquad \forall l \in L \quad (8)$$

$$\sum_{l \in L} T_{l,l} = 1 \qquad \forall l \in L \quad (9)$$

Commented [WU3]: How do we indicate that mathematically?

Commented [WU4]: Is this hard coding/necessary in this report? Same question for (7), (8), (9)

Commented [WU5]: How do we indicate that mathematically?

Constraint purpose:

- 1. Production does not exceed demand
- 2. Production does not exceed orange juice concentrate supply received from Brisbane
- 3. Production from any juice does not exceed the supply received from the trucks in that quarter
- 4. "if the juice is gourmet, and it's being used, it consumes a spot" ??
- 5. "essentially if G then X else 0"??
- 6. ProduceOnePerTwoQuarters?
- 7. Only one truck arrives at each location
- 8. Only one truck leaves each location
- 9. NoTwoLocationLoops?

Commented [WU6]: Confirm and then I will full-sentence it.