Entangled black holes as ciphers of hidden information

Samuel L. Braunstein Computer Science, University of York, York YO10 5DD, UK

Karol Życzkowski

Institute of Physics, Jagiellonian University 30-059 Krakow, Poland and Center for Theoretical Physics Polish Academy of Science, 02-668 Warszawa, Poland

The black-hole information paradox has fueled a fascinating effort to reconcile the predictions of general relativity and those of quantum mechanics. Gravitational considerations teach us that black holes swallow everything around them. Quantum mechanically the mass of a black hole leaks away as featureless (Hawking) radiation. If this description of evaporation is accurate, information is irretrievably lost, violating a fundamental axiom of quantum mechanics: that of unitary evolution. Here we show that in order to preserve the equivalence principle the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. Further, we show that information entering a black hole becomes encoded in correlations within a tripartite quantum system — the quantum analog of a one-time pad — and only becomes decoded into the outgoing radiation very late in the evaporation. Before this decoding stage the radiation is completely uncorrelated with the state of the in-fallen matter.

Conventional wisdom provides a heuristic picture of the microscopic process by which a black hole evaporates as an analog of the Penrose process [1] for farming energy from rotating a black hole: As originally suggested by Hawking [2], sufficient energy is momentarily borrowed through the uncertainty principle for the creation of a virtual pair of particles outside the event horizon; one of the pair falls into the black hole releasing enough gravitational potential energy to repay what was borrowed and to allow the other of the pair to fly off as Hawking radiation. A serious problem with Hawking's heuristic mechanism is that the dimensionality of the interior of the black hole (or more precisely the rank of trans-event horizon entanglement) increases with each and every evaporation event. There is no way for such a mechanism to allow a black hole to unitarily evaporate away entirely, yet a remnant would itself be tantamount to a failure of unitarily [3]. It is because of this fundamental incompatibility that no serious attempt has been made at providing a unitary description of black hole evaporation consistent with our best heuristic understanding of the 'low energy' physics of a black hole (much smaller than the Planck scale where quantum gravity might be expected to dominate).

Fortunately, a much simpler mechanism was recently uncovered which

fits naturally with the reduction in dimensionality one might expect from any unitary model of evaporation. In particular, Parikh and Wilczek [4] have convincingly and quantitatively shown that each evaporation event may be thought of as a tunneling process, whereby particles tunnel across the classically forbidden barrier associated with the event horizon to emerge as Hawking radiation. Starting with the standard decomposition of Hilbert space into a tensor product between the interior (int) and exterior (ext) of a black hole as [5]

$$\mathcal{H}_{\text{int}} \otimes \mathcal{H}_{\text{ext}},$$
 (1)

evaporation naturally selects some subsystem from the black hole interior and moves it to the exterior; which we might write as $\mathcal{H}_{int} \to \mathcal{H}_B \otimes \mathcal{H}_R$ via

$$|i\rangle_{\rm int} \to (U|i\rangle)_{BR},$$
 (2)

where $|i\rangle$ denotes the initial state of the black hole interior, B denotes the reduced size subsystem corresponding to the remaining interior after evaporation and R denotes the subsystem which escapes as radiation. Here U denotes the unitary process which might be thought of as 'selecting' the subsystem to eject. Initially, one might suppose that any in-fallen matter would be well within the interior of the black hole, far inside the event horizon, and so would not be selected by tunneling across this boundary. Only after the black hole had sufficiently 'scrambled' the internal states (after what might be called the global thermalization time for the black hole) would the subspace encoding the state of the in-fallen matter be accessible for selection and ejection by tunnneling. Recent analyses suggest that black holes are fast scramblers [6, 7] with the scrambling time being little more than the time for a single Hawking photon to evaporate. We shall suppose that this description is correct, however, it makes little difference to our overall conclusions even if the scrambling time were as long as 99.99% of the black hole's life time [8] — encoding into and decoding from the quantum tripartite one-time pad structure occurs much faster than the time remaining even after such slow scrambling.

In fact, such a unitary model for evaporation is not new, however, nobody had previously shown its consistency with our best understanding of a microscopic mechanism by which a black hole evaporates. This unitary model was originally formulated [9] assuming that all the in-falling matter was in a pure state and hence that the initial black hole state $|i\rangle$ was pure, as in Eq. (2). The original analysis suggested that a 'discernable information' (corresponding to the deficit of the entropy of a subsystem from its maximal value) would yield a suitable metric for information content in the radiation [9]. In order to find the "typical" behavior of an evaporating black hole it calculated the mean discernable information averaged over random unitaries. A key

assumption of any random matrix calculation is the dimensionality of the space on which the random matrices act. For black hole evaporation it was argued [9, 10] that the dimensionality of the initial black hole Hilbert space should be well approximated by the *thermodynamic* entropy $S_{\rm BH} = \mathcal{A}/4 \ln 2$ of a black hole of area \mathcal{A} , giving a dimensionality $\dim(\mathcal{H}_{\rm int}) = BR = 2^{S_{\rm BH}}$ — where we reuse subsystem labels for Hilbert space dimensionalities and for later convenience we evaluate entropies using base-two logarithms. We might say that the black hole interior comprises $n \equiv \log_2[\dim(\mathcal{H}_{\rm int})] = S_{\rm BH}$ qubits.

Starting with a pure-state interior, the mean discernable information of the radiation remains almost zero until half the qubits of the initial black hole had been radiated, after which it rises at the rate of roughly two bits for every qubit radiated [9]. This behavior suggests that first entanglement is created, followed by dense coding of *classical* information about the initial state. In order to get a much clearer picture of quantum information flow in this model we can rely on modern techniques from quantum information theory.

In particular, entangling the state of the in-fallen matter with some distant reference (ref) subsystem, allows one to track the flow of quantum information [7, 11]. In this way Eq. (2) becomes

$$\frac{1}{\sqrt{K}} \sum_{i=1}^{K} |i\rangle_{\text{ref}} \otimes |i\rangle_{\text{int}} \to \frac{1}{\sqrt{K}} \sum_{i=1}^{K} |i\rangle_{\text{ref}} \otimes (U|i\rangle)_{\text{BR}}.$$
 (3)

Here $k = \log_2 K$ is the number of qubits describing the quantum state of the matter used to form the black hole. 't Hooft [12] has shown that the maximum von Neumann entropy of ordinary matter S_{matter} that can collapse to form a black hole will be bounded by the black hole's thermodynamic entropy via $S_{\text{matter}} \lesssim S_{\text{BH}}^{3/4}$. Thus, the entropic contribution from in-fallen matter is negligible, i.e., $k \ll n = S_{\text{BH}}$, for anything but Planck scale black holes. Using the decoupling theorem [13] (see the Appendix) we may show that, for any positive number c, prior to $\frac{1}{2}(S_{\text{BH}} - k) - c$ qubits having been radiated, the quantum information about the in-fallen matter is encoded within the black hole interior with fidelity at least $1 - 2^{-c}$; whereas after a further k + 2c qubits have been radiated, the information about the in-fallen matter is encoded within the radiation with fidelity at least $1 - 2^{-c}$ (see also Ref. 7 for this latter result). The quantum information about the in-fallen matter appears to leave in a narrow 'pulse' at the radiation emission rate.

Now consider what happens if additional matter is dumped into the black hole after its creation. Following Ref. 7, we model this process via cascaded random unitaries on the black hole interior — one unitary before each radiated qubit. Within the pure state model of Eq. (3), it was argued [7] that *after*

half of the initial qubits had radiated away, any information about matter subsequently falling into the black hole would be "reflected" immediately at roughly the radiation emission rate [7]. By contrast, in the early stages of evaporation information about matter subsequently thrown in would only begin to emerge after half of the initial qubits of the black hole had radiated away [7]. These very different *behaviors* in the first and second halves of its life suggest that such a black hole acts almost as two different species: as storage during the first half of its radiated qubits and as a reflector during the second half.

A subtle flaw to this argument of Ref. 7 is due to the omission of the fact that a black hole's entropy is non-extensive, typically scaling as the square of the black hole's mass M^2 : for every q qubits dumped into a black hole, the entropy increases by $O(qM) \gg q$. Likewise, the number of unentangled qubits within the black hole will increase by O(qM). Therefore, within the cascaded unitary pure-state model, the reflection described in Ref. 7 would not begin immediately, but only after a large delay in time of $O(qM^2)$. Notwithstanding the delay, the pure-state model of a black hole behaves effectively as two distinct species as described above.

Because this behavior seems so bizarre it is worth going back over the key assumptions that went into it: i) That the behavior of a specific unitary in Eq. (2) is well described by Haar averages over all random unities. This appears to be a natural consequence of Levy's lemma [14], which says that the logarithm of the probability of their difference scales as minus the dimensionality of the Hilbert space upon which the unitaries are acting. For a stellar mass black hole such dimensionalities must be at least $10^{10^{77}}$ so any deviations from the average behavior occur with vanishingly small probability. ii) That the number of qubits comprising the initial black hole Hilbert space is $n \simeq S_{BH}$. This assumption is well supported by the holographic principle [12] and by the amount of Hawking radiation that would be generated consistent with energy conservation. Finally, iii) that the black hole is initially in a pure state up to a negligible amount of entanglement that may come from the matter content. In fact, it is this last assumption which is weakest and at odds with the well known quantum physics of condensed matter systems where entanglement across boundaries is generic [15]; for such systems in a globally pure state the (von Neumann) entropy of the exterior (or interior) with-respect-to any boundary is just the entropy of entanglement, and for states near the ground state this entropy is typically proportional to the area of the boundary. In axiomatic quantum field theory, entanglement across boundaries for fields in their vacuum state is implicit in the Reeh-Schlieder theorem [16]. For a black hole, the equivalence principle tells us that an observer freely-falling past an event horizon would see

no Hawking radiation, only a zero temperature vacuum state, just as in the absence of a gravitational well [10].

Our key point of departure from previous work [7, 9] therefore will be to incorporate entanglement across the event horizon in Eq. (2). We will see that this modification leads to a radically different picture of information flow from black holes and provides a surprising way out of the cloning [10] that might be apparent for certain 'nice time' slices in black hole spacetimes [17]. As with Refs. 7, 11 we tag the information about the matter that collapsed to form the black hole by entanglement with some distant reference (ref) subsystem. If we assume that there is no "bleaching" mechanism that can strip away all or part of the information about the in-fallen matter as it collapses to form a black hole, then the exterior Hilbert space can contain no information about it. By invoking the no-hiding theorem [11], therefore, the initial quantum state of a newly formed black hole interior (int) and its surroundings must have the unique form

$$\frac{1}{\sqrt{K}} \sum_{i=1}^{K} |i\rangle_{\text{ref}} \otimes \sum_{j} \sqrt{p_{j}} (|i\rangle \otimes |j\rangle \oplus 0)_{\text{int}} \otimes |j\rangle_{\text{ext}}, \tag{3a}$$

up to overall int-local and ext-local unitaries. Here $\oplus 0$ means we pad any unused dimensions of the interior space by zero vectors [11] and $\rho_{\rm ext} = \sum_j p_j |j\rangle_{\rm ext} \exp(j|$ is the reduced density matrix for the external (ext) modes neighboring the black hole. Again we take the dimension of the interior space as $\dim(\mathcal{H}_{\rm int}) = BR = 2^{S_{\rm BH}}$ and use Eq. (2) to describe evaporation as per the Parikh and Wilczek tunneling mechanism, so with evaporation Eq. (3a) becomes

$$\rightarrow \frac{1}{\sqrt{K}} \sum_{i=1}^{K} |i\rangle_{\text{ref}} \otimes \sum_{j} \sqrt{p_{j}} \left[U(|i\rangle \otimes |j\rangle \oplus 0) \right]_{BR} \otimes |j\rangle_{\text{ext}}. \tag{3b}$$

It will be convenient to define

$$\chi^{(q)} \equiv S_{\rm BH} - k - H^{(q)}(\rho_{\rm ext}), \quad 0 \le \chi^{(q)} \le S_{\rm BH} - k,$$
(4)

which for any q = O(1) roughly quantifies the number of excess unentangled (pure) qubits within the initial black hole state in Eq. (3a). Here $H^{(q)}(\rho) \equiv \log_2(\operatorname{tr} \rho^q)/(1-q)$ is the qth Rényi entropy.

Applying the decoupling theorem [13] to this entangled-state model allows us to show, for any positive number c, that for all but the final $k + \frac{1}{2}\chi^{(2)} + c$ qubits radiated, the information about the in-fallen matter is encoded in the combined space of external neighborhood modes and black hole interior with fidelity at least $1 - 2^{-c}$. Similarly, for all but the initial $k + \frac{1}{2}\chi^{(2)} + c$ qubits radiated, this information is encoded in the combined

radiation and external neighborhood modes with fidelity at least $1 - 2^{-c}$. In addition, at all times this information is encoded with unit fidelity within the joint radiation and interior subsystems.

In other words, between the initial and final $k + \frac{1}{2}\chi^{(2)} + c$ qubits radiated, the information about the in-fallen matter is effectively *deleted* from each individual subsystem [11, 18], instead being encoded in any two of the three of subsystems (consisting of the out-going radiation, the external neighborhood modes, and the black hole interior). During this time, the information about the in-fallen matter is to an excellent approximation encoded within the perfect correlations of a *quantum one-time pad* [11, 19] of these three subsystems. This might be contrasted to a classical one-time pad cipher system which consists of two parts: the key and the encrypted ciphertext. Having access to any one of these two parts tells you nothing about the original plaintext message, but having both allows you to retrieve the original message.

Further, using a generalization to the decoupling theorem (see the Appendix) we may show, for any positive c, that prior to the first $\frac{1}{2}\chi^{(1/2)} - c$ qubits radiated, the information about the in-fallen matter is still encoded solely within the black hole interior, with a fidelity of at least $1-2^{-c}$. Similarly, within the final $\frac{1}{2}\chi^{(1/2)} - c$ qubits radiated, the information about the in-fallen matter is encoded within the out-going radiation, with a fidelity of at least $1-2^{-c}$. Combining these with the above results we see that both the encoding and decoding of the tripartite quantum one-time pad occur during the radiation of $k + \frac{1}{2}(\chi^{(1/2)} - \chi^{(2)}) + 2c$ qubits. Since typically $\chi^{(1/2)} - \chi^{(2)} \lesssim O(1)$ and this quantity cannot be negative, this implies that the black hole's quantum one-time pad encoding (and decoding) occurs at roughly the radiation emission rate. (A heuristic picture showing a smooth flow of information within this entangled-state model is given in the Appendix.)

How does this entangled-state description of black hole evaporation respond to matter subsequently swallowed after its formation? Instead of the two distinct behaviors of storage and reflection found in the pure-state model, here, assuming negligible $\chi^{(q)}$, any additional qubits thrown in will immediately begin to be encoded into the tripartite one-time pad. The decoding into the radiation subsystem of the information about *all* the in-fallen matter will only occur at the very end of the evaporation. (The non-extensive increase in black hole entropy is taken up as entanglement with external neighborhood modes so no further delays occur.) Thus, instead of behaving almost as two distinct species, a highly entangled-state black hole has one principle behavior — forming a tripartite quantum one-time pad between the black hole interior, the modes neighboring the black hole and the radiation from the black hole, with release of that information only at the end of

the evaporation.

The above analysis uses (generalized) decoupling to follow the flow of entanglement between the black hole interior and the distant reference (ref) subsystem. We may similarly consider the dual problem of the flow of entanglement between the black hole interior and the external (ext) neighborhood modes. In particular, for any positive c, once $S_{\rm BH} - \frac{1}{2}\chi^{(1/2)} + c$ qubits have been radiated away, the trans-event horizon entanglement (initially between the int and ext subsystems) has effectively vanished and instead has been transferred to entanglement between the external neighborhood modes and the outgoing radiation, with a fidelity of at least $1 - 2^{-c}$ (see the Appendix).

In an arbitrary system where trans-boundary entanglement has vanished, the quantum field cannot be in or anywhere near its ground state. Applied to black holes, a loss of trans-event horizon entanglement implies that in the vicinity of the event horizon the quantum fields must be far from the vacuum state. However, this would be in contradiction with a key prediction of the equivalence principle. This loss of trans-event horizon entanglement can therefore only occur when the equivalence principle is no longer expected to hold — for microscopic black holes where the spacetime curvature near the event horizon becomes non-negligible. For a sufficiently small observer this would be as late as the black hole having evaporated to the Planck scale. This implies then that to preserve the equivalence principle the thermodynamic entropy of a black hole must be primarily entropy of entanglement, i.e., $S_{\rm BH} \approx H^{(1/2)}(\rho_{\rm ext})$.

Can we reconcile the information retrieval behavior of the pure-state model of a black hole with its entangled counterpart? Naively, if the purestate model were run on twice as many qubits, but stopped just after the information about the in-fallen matter had escaped as a narrow pulse then there would be broad agreement between the two models. This doubling of the number of qubits would make some crude sense if we supposed that the pure-state model was not making a split between interior and exterior at the event horizon, but somewhat further out at some arbitrary boundary where trans-boundary entanglement would not be participating in the evaporation. The dimensionality of the Hilbert space within this extended boundary would then be dominated by the product of the dimensionality of the original black hole interior, and the nearby external modes entangled with them. This would be roughly twice the number of qubits within the black hole interior itself. Once the original number of qubits had evaporated away (now half the total for our extended boundary pure-state model) the black hole interior would be exhausted of Hilbert space and evaporation would cease. This suggests that despite the general incompatibility between the two models, a pure-state analysis, if thoughtfully set up, could capture important features of information retrieval from an entangled-state black

hole.

Recently, the no-hiding theorem [11, 18] was used to prove that Hawking's prediction of featureless radiation implied that the information about the in-fallen matter could not be in the radiation field, but must reside in the remainder of Hilbert space — then presumed to be the black hole interior. That work presented a strong form of the black hole information paradox pitting the predictions of general relativity against those of quantum mechanics [11]. Here we have shown that trans-event horizon entanglement provides a way out, since now the "remainder of Hilbert space" comprises both the black hole interior and external neighborhood modes. Because the evaporating black hole actually involves three subsystems, the information may be encoded within them as pure correlations via a quantum one-time pad [11, 19]: the information is in principle retrievable from any two of the three subsystems, yet inaccessible from any single subsystem alone. This simultaneous encoding of information externally (in the combined radiation and external neighborhood modes) and 'internally' (if one stretches the horizon to envelope the bulk of the external neighborhood modes in addition to the black hole interior) is reminiscent of Susskind's principle of black hole complementarity [10]. Recall that Susskind introduced this principle to account for the apparent cloning suggested by the possibility of choosing a 'nice time' slice through the black hole spacetime that crosses most of the out-going radiation as well as the collapsing body well inside the event horizon but still far from the singularity [17]. If such slices are drawn after the encoding of the information into the tripartite quantum one-time pad uncovered here the 'cloning' would be nothing more than a manifestation of the multiple ways of reading out the information from the tripartite structure. If such slices are drawn before the encoding occurred then too little of the out-going radiation would be crossed for a potential violation of the no-cloning theorem (note that the number of qubits radiated may be used as a surrogate for a time coordinate).

One consequence of our analysis is that for an entangled-state black hole, the Hawking radiation would be completely uncorrelated with the state of the in-fallen matter for all but the very latest times in the evaporation process. Thus, the behavior Hawking found so indicative of a loss of unitarity from his semi-classical calculations is in fact completely typically for the unitary evaporation of such black holes.

Finally, the curious coincidence that entropy of entanglement across a boundary scales with the area, exactly like the thermodynamic entropy of a black hole, has led a small but growing number of physicists to conjecture that a black hole's thermodynamic entropy is actually entropy of entanglement [20–25]. Indeed, it unavoidably holds for some models of eternal black holes [23, 24] and even resolves some difficulties associated with comput-

ing their entropy at the microscopic level [25]. The conventional riposte to this conjecture is made by noting that the entropy of entanglement of quantum fields piercing a black hole's event horizon would be proportional to the number of matter fields that exist; but a black hole's thermodynamic entropy is purely geometric, so there should be no *a priori* relationship between these quantities (see, e.g., Ref. 26). Our result overturns this conventional wisdom. Importantly, our argument is based on models of dynamically evolving black holes not merely static ones [20–25]. Equating a black hole's entropy with entropy of entanglement implies the existence of a sum rule to constrain the number and types of matter fields in any fundamental theory.

SLB gratefully acknowledges the hospitality of the Abe Watssman Institute for Innovative Thinking, where this work was initiated. KZ acknowledges financial support by the Deutsche Forschungsgemeinschaft under the project SFB/TR12 and grant number N202 090239 of the Polish Ministry of Science and Higher Education. The authors greatfully aknowledge H.-J. Sommers' original calculation of Eq. (20) and several fruitful discussions.

APPENDIX

Because one of the key claims in the paper is about loss of trans-event horizon entanglement and its implications for consistency with the equivalence principle, we shall repeat the key calculation here using a simpler model of a black hole with trans-event horizon entanglement only and take that entanglement to be uniform. This allows us to repeat the analysis solely using results already available in the literature.

I. Uniform entanglement

Consider the model for black hole evaporation with uniform trans-event horizon entanglement as

$$\frac{1}{\sqrt{E}} \sum_{j=1}^{E} |j\rangle_{\text{int}} \otimes |j\rangle_{\text{ext}} \to \frac{1}{\sqrt{E}} \sum_{j=1}^{E} (U|j\rangle)_{\text{BR}} \otimes |j\rangle_{\text{ext}}.$$
 (5)

Here $\log_2 E$ is the entropy of entanglement between the external (ext) modes neighboring the event horizon and the interior of the black hole. Except for the interpretation of the source of entanglement, this model has been recently analyzed by Hayden and Preskill [7]. We may therefore quote their key result in our terms: For any positive c, once $\frac{1}{2}S_{\rm BH} + \frac{1}{2}\log_2 E + c$ qubits have radiated away, the initial trans-event horizon entanglement between

the external neighborhood and the interior subsystems will have virtually vanished, with it appearing instead (with a fidelity of at least $1-2^{-c}$) as entanglement between external neighborhood modes and the outgoing radiation. Here (as in the manuscript) c is a free parameter, but will be dwarfed by any of the entropies involved. If this loss of trans-event horizon entanglement is to be delayed until roughly $S_{\rm BH}$ qubits have been radiated away (when the black hole has evaporated to roughly the Planck scale), then

$$S_{\rm BH} \approx \log_2 E.$$
 (6)

Below we shall see that when the uniform entanglement of the above analysis is replaced with general trans-event horizon entanglement, the measure of entanglement $\log_2 E$ is replaced by the Rényi entropy $H^{(1/2)}(\rho_{\text{ext}})$.

II. General entanglement

Note that all Rényi entropies are bounded above by the logarithm of the Hilbert space dimension, so $0 \le H^{(q)}(\rho_{\text{ext}}) \le n = S_{\text{BH}}$ for the state we study. Of particular interest to us here will be two Rényi entropies for $q = \frac{1}{2}$, 2, so

$$H^{(1/2)}(\rho_{\text{ext}}) = \log_2 \left[(\text{tr } \sqrt{\rho_{\text{ext}}})^2 \right] H^{(2)}(\rho_{\text{ext}}) = -\log_2 \left(\text{tr } \rho_{\text{ext}}^2 \right).$$
 (7)

Our key result is based on a generalization of the decoupling theorem of Ref. 11. Consider now the tripartite state

$$\rho_{XYZ} = \rho_{XY_1Y_2Z'} \tag{8}$$

where the joint subsystems $Y = Y_1Y_2$ will be decomposed as either the radiation modes and interior black holes modes RB or vice-versa BR. This allows us to define

$$\sigma_{XY_2Z}^U \equiv \operatorname{tr}_{Y_1} (U_Y \, \rho_{XYZ} \, U_Y^{\dagger}). \tag{9}$$

In keeping with the naming convention of Ref. 13, we call the result below the Mother-in-law decoupling theorem.

Generalized decoupling theorem:

$$\left(\int_{U \in U(Y)} dU \, \|\sigma_{XY_{2}Z}^{U} - \sigma_{X}^{U} \otimes \sigma_{Y_{2}Z}^{U} \|_{1}\right)^{2} \\
\leq \operatorname{tr} \rho_{X}^{2\nu} \operatorname{tr} \rho_{Z}^{2\mu} \left\{ \left[\operatorname{tr} \rho_{XZ}^{2} (\rho_{X}^{-2\nu} \otimes \rho_{Z}^{-2\mu}) \right. \right. \\
\left. - 2 \operatorname{tr} \rho_{XZ} (\rho_{X}^{1-2\nu} \otimes \rho_{Z}^{1-2\mu}) \right. \\
\left. + \operatorname{tr} \rho_{XZ}^{2-2\nu} \operatorname{tr} \rho_{Z}^{2-2\mu} \right] \right. \\
\left. + \frac{Y_{2}}{Y_{1}} \left[\operatorname{tr} \rho_{XYZ}^{2} (\rho_{X}^{-2\nu} \otimes \rho_{Z}^{-2\mu}) \right. \\
\left. + \operatorname{tr} \rho_{X}^{2-2\nu} \operatorname{tr} \rho_{YZ}^{2} \rho_{Z}^{-2\mu} \right] \right\} \tag{10}$$

$$\leq \frac{Y_{2}}{Y_{1}} \operatorname{tr} \rho_{X}^{2\nu} \operatorname{tr} \rho_{Z}^{2\mu} \left[\operatorname{tr} \rho_{XYZ}^{2} (\rho_{X}^{-2\nu} \otimes \rho_{Z}^{-2\mu}) \right. \\
\left. + \operatorname{tr} \rho_{X}^{2-2\nu} \operatorname{tr} \rho_{YZ}^{2} \rho_{Z}^{-2\mu} \right] \tag{11}$$

 $\leq 2 \frac{Y_2}{Y_1} 2^{H_X + H_Z}, \tag{12}$

where $H_A \equiv H^{(1/2)}(\rho_A)$ and $0 \le 2\nu, 2\mu \le 1$. Here, to go from Eq. (10) to Eq. (11), we would require $\rho_{XZ} = \rho_X \otimes \rho_Z$; and to go from Eq. (11) to Eq. (12), we would require ρ_{XYZ} is pure and we take $2\nu = 2\mu = \frac{1}{2}$.

Proof: Using the Cauchy-Schwarz inequality we may write

$$\|\sigma_{XY_{2}Z}^{U} - \sigma_{X}^{U} \otimes \sigma_{Y_{2}Z}^{U}\|_{1}$$

$$\leq \|\rho_{X}^{\nu} \otimes \mathbb{1}_{Y_{2}} \otimes \rho_{Z}^{\mu}\|_{2} \|\rho_{X}^{-\nu} \otimes \rho_{Z}^{-\mu} (\sigma_{XY_{2}Z}^{U} - \sigma_{X}^{U} \otimes \sigma_{Y_{2}Z}^{U})\|_{2},$$

$$(13)$$

where without loss of generality we may assume that ρ_X^{ν} and ρ_Z^{μ} are invertible; then using the methods already outlined in Ref. 13 the results are easily obtained.
• We note that the statement of the result reduces to the conventional decoupling theorem for the choice ν = 0 and subsystem Z is one-dimensional.

Of particular interest here is the case where $2\nu = \frac{1}{2}$ and $\rho_{\text{ext},Y}$ is pure, which gives

$$\int_{U \in U(Y)} dU \, \left\| \sigma_{\text{ext}, Y_2}^U - \sigma_{\text{ext}}^U \otimes \sigma_{Y_2}^U \right\|_1 \le \left(2 \, \frac{Y_2}{Y_1} \, 2^{H_{\text{ext}}} \right)^{\frac{1}{2}}. \tag{14}$$

Now $1 - F(\rho, \sigma) \le \frac{1}{2} \|\rho - \sigma\|_1$, where the trace norm is defined by $\|X\|_1 = \text{tr}|X|$ and the fidelity by $F(\rho, \sigma) = \|\sqrt{\rho}\sqrt{\sigma}\|_1$. As a consequence, the fidelity

with which the initial trans-event horizon entanglement is encoded within the combined ext, Y_1 subsystem is bounded below by $1 - \sqrt{2^{H_{\text{ext}}}Y_2/Y_1}$. Now allowing this in turn to be bounded from below by $1 - 2^{-c}$ and choosing $Y_1 = R$ and $Y_2 = B$ gives the result quoted in the manuscript.

Interestingly, the opposite choice $Y_1 = B$ and $Y_2 = R$ tells us that for fewer than $\frac{1}{2}(S_{\rm BH} - H_{\rm ext}) - c$ qubits radiated away, the initial trans-event horizon entanglement remains encoded between the external neighborhood and the interior subsystems with fidelity of at least $1 - 2^{-c}$. This effectively gives the number of qubits that must be radiated before trans-event horizon entanglement *begins* to be reduced from its initial value; for $S_{\rm BH} \approx H_{\rm ext}$ this occurs almost immediately.

III. Heuristic flow via correlations

The rigorous results from the manuscript may be heuristically visualized by following how the correlations with the distant reference system behave. For a pure tripartite state *XYZ*, these correlations satisfy

$$C(X:Y) + C(X:Z) = S(X), \tag{15}$$

Here S(X) is the von Neumann entropy for subsystem X and $C(X:Y) \equiv \frac{1}{2}[S(X) + S(Y) - S(X,Y)]$, one-half the quantum mutual information, is a measure of correlations between subsystems X and Y. Relation (15) is additive for a pure tripartite state, so the correlations with subsystem X smoothly move from subsystems Y to Z and vice-versa.

For simplicity, here we restrict ourselves to the case where

$$\rho_{\text{ext}} = \frac{1}{N} \sum_{j=1}^{N} |j\rangle_{\text{ext ext}} \langle j|, \qquad (16)$$

and where $\chi^{(q)}$ = 0. We computed the above measure of correlations, Eq. (15), from von Neumann entropies approximated using the average purity (see the Appendix); numerical calculations showed this as a good approximation for systems of even a few qubits. Fig. 1 shows a typical scenario (assuming no excess unentangled qubits): A black hole is assumed to be created from in-fallen matter comprising k qubits of information and negligible excess unentangled qubits. Within the first k qubits radiated, information about the in-fallen matter (a) vanishes from the black hole interior at roughly the radiation emission rate and (b) appears in the joint radiation and external neighborhood subsystem. From then until just before the final k qubits are radiated, the in-fallen matter's information is encoded in a tripartite state,

FIG. 1: Correlations to the reference subsystem as a function of the number of qubits radiated ($\log_2 R$). Correlations between the reference (ref) subsystem and: (a) black hole interior, B; (b) radiation, A, and external (ext) neighborhood modes; (c) black hole interior and external neighborhood modes; and (d) radiation alone. Note that, as expected from Eq. (15), the sum of C's in subplots (a) and (b) is a constant, as is that of subplots (c) and (d). In each subplot, the in-fallen matter consists of k = 10 qubits and the black hole initially consists of $\log_2 RB = 100$ qubits with $\chi^{(q)} = 0$. (Entropies are evaluated using base-two logarithms.)

involving the radiation, external neighborhood and interior subsystems, subplots (b) and (c). In the final k qubits radiated the information about the in-fallen matter is released from its correlations and appears in the radiation subsystem alone, subplot (d). This qualitative picture is in excellent agreement with the results from the decoupling theorem and its generalization.

Evaluation of purities

In order to approximate the computation of the correlation measure described above, we use a lower bound for a subsystem with density matrix ρ

$$\langle\langle S(\rho)\rangle\rangle \ge -\langle\langle \log_2 p(\rho)\rangle\rangle \ge -\log_2\langle\langle p(\rho)\rangle\rangle.$$
 (17)

Here $S(\rho) = -\text{tr} \rho \log_2 \rho$ is the von Neumann entropy of ρ , $p(\rho) = \text{tr} \rho^2$ is its purity, and here $\langle\langle \cdots \rangle\rangle$ denotes averaging over random unitaries with the Haar measure. The former inequality above is a consequence of the fact that the Rényi entropy is a non-increasing function of its argument [27], and the latter follows from the concavity of the logarithm and Jensen's inequality.

We may estimate the von Neumann entropies required then by the rather crude approximation $\langle \langle S(\rho) \rangle \rangle \approx -\log_2 \langle \langle p(\rho) \rangle \rangle$, which turns out to be quite reasonable for spaces with even a few qubits.

Although traditional methods [28] may be used to compute these purities, a much simpler approach is to use the approach from Ref. 11. In particular, for a typical purity of interest we use the following decomposition

$$\operatorname{tr} \sigma_{R,\operatorname{ext}}^{U\,2} = \operatorname{tr} \left(\sigma_{R,\operatorname{ext}}^{U} \otimes \sigma_{R',\operatorname{ext}'}^{U} \mathcal{S}_{R,\operatorname{ext};R',\operatorname{ext}'} \right)$$

$$= \operatorname{tr} \left(\rho_{\operatorname{ref},RB,\operatorname{ext}} \otimes \rho_{\operatorname{ref}',R'B',\operatorname{ext}'} \times U_{RB}^{\dagger} \otimes U_{R'B'}^{\dagger} \mathcal{S}_{\operatorname{ext};\operatorname{ext}'} \right)$$

$$\times U_{RB}^{\dagger} \otimes U_{R'B'}^{\dagger} \mathcal{S}_{R;R'} U_{RB} \otimes U_{R'B'} \mathcal{S}_{\operatorname{ext};\operatorname{ext}'} \right)$$

$$(18)$$

where $S_{A;A'}$ is the swap operator between subsystems A and A', similarly, $S_{AB;A'B'} = S_{A;A'}S_{B;B'}$. Then the average over the Haar measure is accomplished by an application of Schur's lemma [13]

This approach allows us to straight-forwardly compute the required purities as

$$p(\text{ref}) = \frac{1}{K}, \quad p(\text{ext}) = \frac{1}{N}, \quad p(\text{ref,ext}) = \frac{1}{KN},$$

$$p(R) = \frac{1}{(RB)^2 - 1} \left(R(B^2 - 1) + \frac{B(R^2 - 1)}{KN} \right),$$

$$p(R, \text{ext}) = \frac{1}{(RB)^2 - 1} \left(\frac{R(B^2 - 1)}{N} + \frac{B(R^2 - 1)}{K} \right),$$
(20)

with p(B, ext) and p(B, ext) given by the above expressions under the exchange $R \leftrightarrow B$, similarly the exchange $K \leftrightarrow N$ gives us expressions for p(ref, R), etc.

^[1] R. Penrose, Riv. Nuovo Cimento, 1, 252 (1969).

^[2] S. W. Hawking, Commun. Math. Phys. 43, 199-220 (1975).

^[3] S. B. Giddings, Phys. Rev. D 51, 6860 (1995).

^[4] M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000).

^[5] S. W. Hawking, Phys. Rev. D 14, 2460-2473 (1976).

^[6] Y. Sekino and L. Susskind, JHEP 2008(10), 065 (2008).

^[7] P. Hayden and J. Preskill, JHEP 2007(09), 120 (2007).

- [8] S. B. Giddings, Phys. Rev. D 76, 064027 (2007).
- [9] D. N. Page, Phys. Rev. Lett. 71, 3743-3746 (1993).
- [10] L. Susskind, L. Thorlacius and J. Uglum, Phys. Rev. D 48, 3743-3761 (1993).
- [11] S. L. Braunstein and A. K. Pati, Phys. Rev. Lett. 98, 080502 (2007).
- [12] G. 't Hooft, in *Salamfestschrift: A collection of talks*, Vol. 4, ed. A. Ali, J. Ellis and S. Randjbar-Daemi (World Scientific, Singapore, 1993).
- [13] A. Abeyesinghe, I. Devetak, P. Hayden and A. Winter, Proc. R. Soc. A 465, 2537-2563 (2009).
- [14] see V. Milman and G. Schechtman, "Asymptotic Theory of Finite Dimensional Normed Spaces" (Springer, New York, 2001).
- [15] J. Eisert, M. Cramer and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010).
- [16] S. Schlieder, Comm. Math. Phys. 1, 256-280 (1965).
- [17] D. A. Lowe et al., Phys. Rev. D 52, 6997 (1995).
- [18] D. Kretschmann, D. Schlingemann, and R. F. Werner, J. Funct. Analysis, 255, 1889-1904 (2008).
- [19] D. W. Leung, Quantum Inf. Comput. 2, 14 (2001).
- [20] G. 't Hooft, Nucl. Phys. B 256, 727-745 (1985).
- [21] L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, Phys. Rev. D 34, 373-383 (1986).
- [22] M. Srednicki, Phys. Rev. Lett. 71, 666-669 (1993).
- [23] S. Hawking, J. Maldacena and A. Strominger, JHEP 2001(05), 001 (2001).
- [24] R. Brustein, M. B. Einhorn and A. Yarom, JHEP 2006(01), 098 (2006).
- [25] R. Emparan, JHEP **2006**(06), 012 (2006).
- [26] T. Nishioka, S. Ryu and T. Takayanagi, J. Phys. A 42, 504008 (2009).
- [27] I. Bengtsson and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement. (Cambridge University Press, Cambridge, 2006).
- [28] P. A. Mello, J. Phys. A 23, 4061-4080 (1990).