

MINISTRY OF EDUCATION AND TRAINING

FPT UNIVERSITY

Capstone Project Document

Research SDN (Software-Defined Networking) and build test models.

GFA23IA06			
Group Member	Phan Huyền Trâm - SE151121 Phạm Thanh Tân - SE151045 Phạm Quang Linh - SE150083 Trần Doãn Anh - SE150630 Mai Duy Nam - SE151347		
Supervisor	Mai Hoàng Đỉnh		
Ext Supervisor			
Capstone Project code	FA23IA06		

- Hồ Chí Minh, 12/2023 -

TABLE OF CONTENTS

LIST OF TABLES	6
LIST OF FIGURES	7
CHAPTER 1: INTRODUCTION	10
1.1. Project Information	10
1.2. The Participants	10
1.2.1. Instructors	10
1.2.2. Team Members	10
1.3. The problems	10
1.3.1. Overview	10
1.3.2. Solution	11
CHAPTER 2: PROJECT MANAGEMENT PLAN	
2.1. Problem Setting	
2.1.1. Name of Capstone Project	
2.1.2. Problem Abstraction	
2.1.3. Project Overview	
2.2. Project Organization	14
2.2.1. Solution Process Model	14
2.2.2. Roles and Responsibilities	
2.2.3. Tools and Techniques	17
2.3. Project Management Plan	
2.3.1. Tasks	
2.3.1.1. Brainstorming	18
2.3.1.2. Researching	
2.3.1.3. Developing Solutions	19
2.3.1.4. Evaluating	19
2.3.2. Task Sheet: Assignments and Timetable	19
2.3.3 All Meeting Minutes	20
CHAPTER 3: RISK ASSESSMENT	21
3.1. The Essential of Assessment	21
3.2. Identity Sensitive Assets	21

3.2.1. Asset Classification	21
3.2.1.1. Information Asset Classification	21
3.2.1.2. Other Asset Classification	22
3.2.2. SDN System Characterization	22
3.3. Risk Identification	23
3.3.1. Threat Identification	23
3.3.2. Vulnerability Identification	23
3.4. Risk Analysis	24
3.4.1. Impact Assessment	24
3.4.2. Likelihood Assessment	25
3.4.3. Risk Determination	26
3.4.3.1. Risk-Level Matrix	26
3.4.3.2. Description of Risk Level	26
3.5. Control Identification and Assessment	27
3.5.1. Control Methods	27
3.5.1.1. Technical	27
3.5.1.2. Non-technical	27
3.5.2. Control Types	28
3.5.3. Risk Monitoring and Controlling	28
CHAPTER 4: RISK MANAGEMENT PLAN	30
4.1. Objectives of RMP	30
4.1.1. Lists of Threats / Vulnerabilities	30
4.1.2. Costs Associated with Risks	30
4.1.3. Recommendations to Reduce Risks	32
4.1.4. Cost-Benefit Analysis (CBA)	33
4.2. Assigning Responsibilities	35
4.3. Describing Procedures and Schedules for Accomplishment	35
4.4. Reporting Requirements	36
4.4.1. Present Recommendations	36
4.4.2. Document Management Response to Recommendations	36
4.4.3. Document and Track Implementation of Accepted Recommendations	37

4.5. Plan of Action and Milestones	37
4.6. Charting the Progress of an RMP	38
4.6.1. Milestone Plan Chart	38
4.6.2. Gantt Chart	39
4.7. Tools and Practices	39
CHAPTER 5: DEVELOPMENT AND IMPLEMENTATION PLAN	41
5.1. Risk Response Planning	41
5.1.1. Major Risk Treatment	41
5.1.2. Risk Mitigation Plan (RPM)	41
5.2. Theoretical Basis	42
5.2.1. SDN	42
5.2.1.1. Introduction	42
5.2.1.2. SDN Data Plane	43
5.2.1.3. SDN Control Plane	43
5.2.1.4. SDN Management Plane	44
5.2.2. Kubernetes	45
5.2.2.1. Introduction	45
5.2.2.2. Kubernetes architecture	45
5.2.2.3. Other concepts	47
5.2.3. Container Networking Interface (CNI)	47
5.2.3.1. Introduction	47
5.2.3.2. CNI operation	48
5.2.4. Kubernetes Networking	49
5.2.4.1. Introduction	49
5.2.4.2. Container-to-container Networking	49
5.2.4.3. Pod-to-Pod Networking	49
5.2.4.4. Pod-to-service Networking	50
5.2.4.5. External-to-service Networking	50
5.3. Project Implementation	51
5.3.1. Preparation	51
5.3.2 Install and Configure	52

5.3.2.1. Configure HAProxy	52
5.3.2.2. Install Keepalived	54
5.3.2.3. Create Kubernetes cluster	56
5.3.2.4. Set up kubectl	61
5.3.2.5. Install K9s and np-viewer	62
5.3.2.6. Install Prometheus	64
5.3.3. Demonstration	67
5.3.3.1. Case 1: Isolate a Node in Kubernetes Cluster	67
5.3.3.2. Case 2: Implement security policy for the network	70
5.3.3.3. Case 3: Maintain system availability	85
CHAPTER 6: VALIDATING DOCUMENTATION	95
6.1. Repeat Risk Assessment Process.	95
6.1.1. Check and Add for a New Critical Asset Appeared	95
6.1.2. Check for a Change of IT Environment	96
6.2. Risk Analysis	96
6.2.1. Qualitative Analysis	96
6.2.2. Quantitative Analysis	97
6.2.3. Provable Risk Mitigation	98
6.3. Advantages and Disadvantage of Solutions	99
6.3.1. Advantages	99
6.3.2. Disadvantages	99
6.4. Future Plan	100
REFERENCES	101

LIST OF TABLES

Table 1.2.1. Supervisors	10
Table 1.2.2. Team members	10
Table 2.2.1. Roles and Responsibilities	17
Table 2.2.2. Tools and Techniques	18
Table 2.3.1. Assignments and Timetable	20
Table 2.3.2. All Meeting Minutes	20
Table 3.2.1. Information Asset Classification	22
Table 3.2.2. Other Asset Classification	22
Table 3.3.1. Threat Identification	23
Table 3.3.2. Vulnerability Identification	24
Table 3.4.1. Impact Assessment	25
Table 3.4.2. Likelihood Assessment	25
Table 3.4.3. Risk-Level Matrix	26
Table 3.4.4. Description of Risk Level	27
Table 3.5.1. Control Types	28
Table 4.1.1. Lists of Threats/Vulnerabilities	30
Table 4.1.2. The Cost Associated with Risks	31
Table 4.1.3. List of Recommendations to Reduce the Risks	32
Table 4.1.4. Cost-Benefit Analysis (CBA)	34
Table 4.2.1. Assigning Responsibilities	35
Table 4.3.1. Describing Procedures and Schedules for Accomplishment	36
Table 4.4.1. Management Response to Recommendations	37
Table 4.4.2. Track Implementation of Accepted Recommendations	37
Table 4.5.1. Plan of Action and Milestones	38
Table 4.7.1. Tools and Practices	40
Table 5.1.1. Major Risk Treatment	41
Table 5.1.2. Risk Mitigation Plan	41
Table 5.3.1. Preparation	51
Table 5.3.2. Information of devices	52

LIST OF FIGURES

Figure 1.3.1. Growth in Internet users	
Figure 2.2.1. Solution Process Model	. 14
Figure 4.6.1. Milestone Plan chart	. 38
Figure 4.6.2. Gantt chart	. 39
Figure 5.2.1. Software Defined Networking (SDN) Architecture	. 42
Figure 5.2.2. Software Defined Networking.	. 43
Figure 5.2.3. Simplified view of an SDN architecture	. 44
Figure 5.2.4. Kubernetes Cluster	. 45
Figure 5.2.5. Details of Kubernetes components	. 46
Figure 5.2.6. CNI components	. 48
Figure 5.2.7. CNI operation	
Figure 5.2.8. Kubernetes Networking methods	. 49
Figure 5.3.1. SDN Network model	. 51
Figure 5.3.2. Detailed 3-layer SDN Network model	. 52
Figure 5.3.3. Install HAProxy 1	. 53
Figure 5.3.4. Install HAProxy 2	. 53
Figure 5.3.5. HAProxy Configure File	. 53
Figure 5.3.6. HAProxy's monitor page	. 53
Figure 5.3.7. HAProxy status	. 54
Figure 5.3.8. Install Keepalived	. 54
Figure 5.3.9. Indentify Keepalived port	. 54
Figure 5.3.10. Configuration for Active	. 55
Figure 5.3.11. Keepalived status	. 56
Figure 5.3.12. Swap disable	. 57
Figure 5.3.13. Add Kernel parameters	. 57
Figure 5.3.14. Container dependencies	. 58
Figure 5.3.15. Enable Docker repository	. 58
Figure 5.3.16. Containerd configure	. 59
Figure 5.3.17. Add apt repository	
Figure 5.3.18. Install Kubectl, Kubeadm and Kubelet	
Figure 5.3.19. Initialize Kubernetes Cluster	
Figure 5.3.20. Join master node 2 to Kubernetes Cluster	. 61
Figure 5.3.21. Join worker node to Kubernetes Cluster	. 61
Figure 5.3.22. Set Kubectl as environment variable	. 61
Figure 5.3.23. Test Kubectl	. 62
Figure 5.3.24. K9s dashboard	. 62
Figure 5.3.25. Git	. 62
Figure 5.3.26. Krew release	. 63
Figure 5.3.27. Start krew installation	. 63
Figure 5.3.28. Check krew installation	. 64
Figure 5.3.29. Install np-viewer	. 64
Figure 5.3.30. Download promethesus	. 65

Figure 5.3.31.	Prometheus configuration	65
Figure 5.3.32.	Upgrade helm chart	66
Figure 5.3.33.	Install Alert Manager	66
Figure 5.3.34.	Prometheus namespace	67
Figure 5.3.35.	Case 1 model	67
Figure 5.3.36.	Check node status with k9s	68
Figure 5.3.37.	List of pods in Node 4	68
Figure 5.3.38.	Start isolate Node	68
Figure 5.3.39.	Node is being isolate	68
Figure 5.3.40.	Create more pods	69
Figure 5.3.41.	New pods were not created inside Node 4	69
Figure 5.3.42.	Drain Node 4	69
Figure 5.3.43.	Drain Node 4 successfully	70
Figure 5.3.44.	Case 2 model	70
Figure 5.3.45.	Three applications are created	72
	Check pods status	
Figure 5.3.47.	Steps to apply policy that deny all traffic from app to app with our tool	72
	Apply network policy	
Figure 5.3.49.	Complete packet loss from app A to app B	73
Figure 5.3.50.	App B can communicate with app A	74
Figure 5.3.51.	App C can communicate with app B	74
Figure 5.3.52.	Create an application named web	75
Figure 5.3.53.	Code of Deny_all_traffic_to_an_application.py file	75
Figure 5.3.54.	Set rule number 1 with Network management tool	76
Figure 5.3.55.	Query web service	76
Figure 5.3.56.	Query web service from different namespace	79
Figure 5.3.57.	Apply rule number 4	80
Figure 5.3.58.	Check rule status	80
Figure 5.3.59.	Query web service in the same namespace	80
Figure 5.3.60.	Apply rule number 4 for namespace "tools"	82
Figure 5.3.61.	Apply rule number 2 for app web	83
Figure 5.3.62.	Query app web successfully from outside namespace "tools"	83
Figure 5.3.63.	Deny_all_none_whitelisted_traffic_to_a_name_space.py file	84
Figure 5.3.64.	Apply rule number 3 for app web	85
Figure 5.3.65.	Case 3 model	86
Figure 5.3.66.	Create Nginx pod	87
Figure 5.3.67.	Create service for Nginx pod by YAML file	87
Figure 5.3.68.	Information of Nginx service	88
Figure 5.3.69.	Access Nginx service	88
Figure 5.3.70.	Apply HPA	89
	Minimum number of pods	
Figure 5.3.72.	Information of Nginx service after applying HPA	89
Figure 5.3.73.	Internet outage on Node 1	90

Figure 5.3.74. Status of Node 1	90
Figure 5.3.75. Node 1 state in the system after self-check more than 3 times	91
Figure 5.3.76. Node 1 was deleted after 5 minutes	91
Figure 5.3.77. DoS the system by Apache Bend mark	91
Figure 5.3.78. Number of Nginx pods before perform DoS	91
Figure 5.3.79. Number of Nginx pods after perform DoS	92
Figure 5.3.80. Nginx information after perform DoS	92
Figure 5.3.81. Alert High CPU pod	92
Figure 5.3.82. Additional configuration for HAProxy	93
Figure 5.3.83. Nginx web access by VIP	93
Figure 5.3.84. Status report of HAProxy	94

CHAPTER 1: INTRODUCTION

1.1. Project Information

Capstone Project Name: Research SDN (Software-Defined Networking) and build test models.

Project Group Name: GFA23IA06

Timeline: 04/09/2023 - 02/12/2023

1.2. The Participants

1.2.1. Instructors

Full name	Phone	E-Mail	Title
Mai Hoàng Đỉnh			Lecture

Table 1.2.1. Supervisors

1.2.2. Team Members

Full name	Student	Phone	E-mail	Role in
	code			Group
Phan Huyền Trâm	SE151121			Leader
Phạm Thanh Tân	SE151045			Member
Phạm Quang Linh	SE150083			Member
Trần Doãn Anh	SE150630			Member
Mai Duy Nam	SE151347			Member

Table 1.2.2. Team members

1.3. The problems

1.3.1. Overview

A robust network infrastructure in an enterprise provides several advantages, including connectivity and information sharing, enhanced collaboration, rapid service deployment, efficient resource management, data security, integration of new services, and improved user experience.

The current capacity of the Internet is quickly becoming inadequate to handle the increasing volumes of traffic generated by new services and technologies such as mobile devices, virtualization, cloud services, and big data. This is due to the growing number of users, sensors, and applications. Globally, the total number of Internet users is projected to grow from 3.9 billion in 2018 to 5.3 billion by 2023 at a CAGR of 6 percent. In terms of population, this represents 51 percent of the global population in 2018 and 66 percent of global population penetration by 2023.

Figure 1.3.1. Growth in Internet users

In addition, to implement network-wide policies and support new services, managers today must configure thousands of network devices and protocols, which makes it difficult to apply a consistent set of QoS, security, and other policies. Networks become vastly more complex with the addition of thousands of network devices that must be configured and managed. These devices have their control and forwarding logic parts both integrated in monolithic, closed, and mainframe-like boxes. Consequently, only a small number of external interfaces are standardized (e.g., packet forwarding) but all their internal flexibility is hidden. The internals differ from vendor to vendor, with no open software platform to experiment with new ideas. Traditional networks based on static Ethernet switches arranged in a hierarchical tree topology are no longer suitable for the dynamic computing and storage needs of modern hyper-scale data centers, campuses, and carrier environments.

A lack of standard open interfaces limits the ability of network operators to tailor the networks to their individual environments and to improve either their hardware or software. Hence, there is a need for a new network equipment architecture that decouples the forwarding and control planes of the routers to dynamically associate forwarding elements and control elements. These infrastructures should also enhance network speed, scalability, and reliability to meet the demands of today and the future.

1.3.2. Solution

Software-Defined Networking (SDN) provides a new way of designing, deploying, and managing networks. A new concept that is used by famous technology corporations such as Google, Facebook... It does this by decoupling the network's control (logical) plane from the data (forwarding) plane, allowing network administrators to programmatically control and optimize network resources via open interfaces. This approach directly addresses several key problems with the current state of networking as below:

Complexity and Management Overhead

SDN's centralized control function can simplify network design and operation by consolidating the control plane into a single logical point. Network administrators can manage the entire network from this central point, reducing the burden of configuring and managing thousands of devices individually. In SDN, the control plane is abstracted and centralized, making it possible to configure and manage the entire network from a single point. This simplifies the implementation of network-wide policies and the configuration of thousands of devices.

• Lack of Flexibility

SDN is fundamentally more adaptable than traditional networking technologies. By leveraging programmability, SDN allows network administrators to dynamically adjust network traffic, implement complex network-wide policies, and integrate new services more easily. Network administrators can program SDN to dynamically control the network, adjust traffic flow, implement complex policies, and introduce new services. This reduces manual configuration, increasing efficiency and reducing errors.

• Vendor Lock-in

SDN supports open protocols, such as OpenFlow, that enable multi-vendor hardware and software solutions. This breaks the cycle of vendor lock-in and promotes a more competitive and innovative networking market. Because SDN uses open protocols, it can work with any vendor's hardware or software, promoting a more innovative and competitive market.

Scalability and Adaptability

With the separation of the control and data planes, SDN enables dynamic, on-demand scalability to handle increasing traffic volumes and network complexity, making it a more suitable approach for large-scale, dynamic environments such as cloud services, big data, and mobile applications. SDN can scale on demand to manage growing traffic and network complexity. It can quickly adapt to changes in business needs and technology trends, making it ideal for modern, hyper-scale data centers, campuses, and carrier environments.

CHAPTER 2: PROJECT MANAGEMENT PLAN

2.1. Problem Setting

2.1.1. Name of Capstone Project

English: Research SDN (Software-Defined Networking) and build test models.

Vietnamese: Nghiên cứu SDN (Software-Defined Networking) và xây dựng mô hình thử nghiệm.

2.1.2. Problem Abstraction

Networks become vastly more complex with the addition of thousands of network devices that must be configured and managed. One of the solutions to handle this situation is SDN (Software-Defined Networking) which offers benefits such as improved network management, scalability, agility, security, and performance optimization for enterprises. It empowers organizations to efficiently manage their networks, adapt to changing requirements, and embrace new technologies and innovations.

2.1.3. Project Overview

Currently, the traditional architecture is inadequate for meeting the computing needs of the features, traditional architecture approaches based on manual configuration of proprietary devices are cumbersome and error-prone, and they cannot fully utilize the capability of physical network infrastructure. Due to the scale, heterogeneity, and complexity of current and future computer networks, traditional methods for configuration, optimization, and troubleshooting will become ineffective and, in some cases, this is not enough. One of the fundamental features of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) in particular is the self-managed service. In addition, effective network access to enterprise resources is becoming essential to meet today's computing requirements. SDN is touted as a most promising solution for those problems. SDN's main principle is to separate the control plane from the data plane to enable flexible and effective network management and operation by software. Specifically, devices (e.g., switches and routers) in the data plane perform packet forwarding, based on rules installed by controllers. Controllers in the control plane oversee the underlying network and provide a flexible and efficient platform to implement various network applications and services. Under this new paradigm, innovative solutions for specific purposes (e.g., network security, network virtualization) can be rapidly implemented in the form of software and deployed in networks with real traffic.

In this project, we will concentrate on creating a simulation model to test out SDN solutions. On the PNETLab platform, we will create a straightforward simulation of the Kubernetes model that corresponds to the real model used by enterprises. We will use CNI Calico to administer the network, K8s to manage resources, centralized management system, and K9s to display the model.

2.2. Project Organization

2.2.1. Solution Process Model

Figure 2.2.1. Solution Process Model

In this model, there are several phases:

Phase 1: Meet & Plan

During this phase, we organize and participate in group meetings to discuss topics, propose goals, and plan the implementation of this project.

Phase 2: Research SDN

During this phase, we collect documents and articles related to our topic to gain a deeper understanding of the SDN concept and its structure.

Phase 3: Analyze SDN and Design SDN model

After having a basic knowledge of the SDN concept, we discuss and analyze how it works. Then we find tools, and environments that suit our expectations to build a test model.

Phase 4: Build SDN feature

We choose and develop some outstanding features of SDN.

Phase 5: Test SDN feature

After building the model and its features, we create a test plan for each feature to ensure it works as we expect.

Phase 6: Feedback

We present and collect feedback from instructor and review board.

2.2.2. Roles and Responsibilities

Phase	Full name	Role	Responsibilities
Planning	Phan Huyền Trâm	Team Leader,	Delegating tasks
		Consultant,	Analyzing goals
		Document	Planning milestones
			Monitoring working
			progress
			Setting working rules
	Phạm Thanh Tân	Technical,	Reviewing the plan
		Consultant,	Collecting documents
		Document	Identifying project
			process model
	Phạm Quang Linh	Technical,	Reviewing the plan
		Consultant,	Collecting documents
		Document	Identifying resources
	Trần Doãn Anh	Technical,	Reviewing the plan
		Consultant,	Collecting documents
		Document	Identifying project
			process model
	Mai Duy Nam	Technical,	Reviewing the plan
		Consultant,	Collecting documents
		Document	Identifying resources
Risk Assessment	Phan Huyền Trâm	Team Leader,	Analyzing the risks of the
		Consultant,	organization.
		Document	Identifying scope for the
			assessment.

			Assigning tools among
			Assigning tasks among members.
	D1 T1 1 T2	TD 1 1 1	Reviewing the document.
	Phạm Thanh Tân	Technical,	Analyzing the risks of the
		Consultant,	organization.
	71 0 711	Document	Documenting.
	Phạm Quang Linh	Technical,	Analyzing the risks of
		Consultant,	the organization.
	,	Document	Documenting.
	Trần Doãn Anh	Technical,	Analyzing the risks of the
		Consultant,	organization.
		Document	Documenting.
	Mai Duy Nam	Technical,	Analyzing the risks of the
		Consultant,	organization.
		Document	Documenting.
Risk Analysis	Phan Huyền Trâm	Team Leader,	Proposing risk migration
		Consultant,	plan.
		Document	Documenting.
			Reviewing.
	Phạm Thanh Tân	Technical,	Proposing risk migration
		Consultant,	plan.
		Document	Documenting.
	Phạm Quang Linh	Technical,	Proposing risk migration
		Consultant,	plan.
		Document	Documenting.
	Trần Doãn Anh	Technical,	Proposing risk migration
		Consultant,	plan.
		Document	Documenting.
			6
	Mai Duy Nam	Technical,	Proposing risk migration
		Consultant,	plan.
		Document	Documenting.
Solution	Phan Huyền Trâm	Team Leader,	Developing Solution.
Deployment		Consultant,	Reviewing.
		Document	Documenting.
	Phạm Thanh Tân	Technical,	Developing Solution.
		Consultant,	Documenting.
		Document	
	Phạm Quang Linh	Technical,	Developing Solution.
	1 min Amil Film	1 common,	

	Consultant,	Documenting.
	Document	
Trần Doãn Anh	Technical,	Developing Solution.
	Consultant,	Documenting.
	Document	
Mai Duy Nam	Technical,	Developing Solution.
	Consultant,	Documenting.
	Document	

Table 2.2.1. Roles and Responsibilities

2.2.3. Tools and Techniques

No	Tools and Tools and Tools and	Function
1	Techniques PNETLab	PNETLab (Packet Network Emulator Tool Lab) is a platform that allows you to download and share labs with
2	Kubernetes	the community. Orchestrates containerized applications to run on a cluster of hosts
3	Ubuntu	OS Platform to run all these services
4	k9s	A terminal-based UI to manage Kubernetes clusters that aims to simplify navigating, observing, and managing our applications in K8s
5	SSH	Connect to VMs in cluster of hosts
6	HA Proxy	HAProxy acts as a Load Balancer in a system, distributing requests to services, ensuring load balancing, connection control, high availability, and security.
7	Calico	Calico defines and manages network connectivity for containerized applications, ensuring that each container has a unique IP address and allowing for secure communication and access controls through network policies.
8	Metric Server	Metric Server in Kubernetes collects real-time CPU and memory metrics for pods and nodes, supporting Horizontal Pod Autoscaling (HPA) and enabling efficient resource management and scaling decisions within the cluster.
9	Container	In Kubernetes, containers provide lightweight, isolated environments for running applications, ensuring portability, scalability, and efficient resource utilization across clusters.

10	Apache Bench	It is a tool for benchmarking your Apache Hypertext
		Transfer Protocol (HTTP) server.
11	Keepalived	Used to maintain high availability by managing a virtual IP in a cluster, ensuring uninterrupted service by automatically redirecting network traffic to a backup node if the primary node fails.
12	Prometheus	An open-source monitoring system with a dimensional data model, flexible query language, efficient time series database and modern alerting approach.
13	Alertmanager	The Alertmanager handles alerts sent by client applications such as the Prometheus server. It takes care of deduplicating, grouping, and routing them to the correct receiver integration such as email, PagerDuty, or OpsGenie. It also takes care of silencing and inhibits alerts.

Table 2.2.2. Tools and Techniques

2.3. Project Management Plan

2.3.1. Tasks

2.3.1.1. Brainstorming

Description: Each member discussed the content and scope of the project.

Distribution: Each member shows their opinion and debates the best solution.

Resources needed: All knowledge related to network, SDN and its components in general, internet.

Dependencies and Constraints:

- Each member is assigned different tasks based on their ability.
- Understanding the project ideas and objectives.
- Communication

Risks: Conflicts between team members.

2.3.1.2. Researching

Description: All members researched the information about the SDN solution.

Distribution: Gathering information about SDN solution including concept, architecture.

Resources Needed: Documentation about the traditional networking and SDN, internet.

Dependencies and Constraints: Gathering relevant information carefully, share knowledge for other members of the team

2.3.1.3. Developing Solutions

Description: The team builds integrated system to experiment with SDN solutions.

Distribution: PNETLab, Kubernetes, Calico

Resources Needed: Determined timeline, research results, internet.

Dependencies and Constraints: Find and summarize information, share knowledge with other members of the team.

2.3.1.4. Evaluating

Description: The team evaluates whether the system is stable and efficient enough.

Distribution: Document the methods used in the project.

Resources Needed: Report form provided by FPT University.

Dependencies and Constraints: Reporting format.

2.3.2. Task Sheet: Assignments and Timetable

Task	Start date	End date
Project Initiating	05/09/2023	11/09/2023
Research on SDN	12/09/2023	22/09/2023
Research Kubernetes architecture	12/09/2023	22/09/2023
Reporting and proposing solutions	23/09/2023	02/10/2023
Write and submit report No.1	25/09/2023	27/09/2023
Write and submit report No.2	25/09/2023	27/09/2023
Design a Network system	03/10/2023	05/10/2023
Set up lab environment	06/10/2023	10/10/2023
Install Kubernetes cluster	11/10/2023	15/10/2023
Install K9s	11/10/2023	15/10/2023
Configure Kubernetes Cluster	16/10/2023	18/10/2023
Write configuration to YAML	18/10/2023	20/10/2023
Discuss the SDN demo scenario	19/10/2023	22/10/2023
Discuss about risk assessment and management	19/10/2023	22/10/2023
Identify risks of SDN solution	19/10/2023	22/10/2023
Write and submit report No.3	22/10/2023	23/10/2023
Write and submit report No.4	22/10/2023	23/10/2023
Develop support tool	21/10/2023	11/11/2023
Design test plan	07/11/2023	10/11/2023
Test the system	12/11/2023	15/11/2023
Write and submit report No.5	16/11/2023	21/11/2023

Write and submit report No.6	22/11/2023	23/11/2023
Complete demo	24/11/2023	30/11/2023
Complete fully report	26/11/2023	02/12/2023
Practice presentation	02/12/2023	12/12/2023

Table 2.3.1. Assignments and Timetable

2.3.3 All Meeting Minutes

Subject	SPM401	
From Date	04/09/2023	
Lecture	Mai Hoàng Đỉnh	
Time	13h30 – 15h	
Location	Room 029 – FPT HCM Campus	
Attendees	Phan Huyền Trâm	
	Phạm Thanh Tân	
	Phạm Quang Linh	
	Trần Doãn Anh	
	Mai Duy Nam	
Absent		

Table 2.3.2. All Meeting Minutes

CHAPTER 3: RISK ASSESSMENT

3.1. The Essential of Assessment

Risk is where vulnerabilities and threats intersect. At its core, risk refers to the possible impact of damage or loss of business assets and data. For that reason, Risk Assessment (RA) is one of the most important tasks that businesses need to focus on and implement to minimize its impact. Risk Assessment include several procedures:

- Identify potential hazards
- Consider the risks associated with each hazard
- Evaluate the risk and apply control measure
- Record significant findings
- Review and update Risk Assessments

3.2. Identity Sensitive Assets

3.2.1. Asset Classification

Assets are classified based on their sensitivity level, the possibility of exploitation, and estimated impact.

3.2.1.1. Information Asset Classification

Asset Categories	Classifications	Details	Likelihood of asset being exploited	Impact
Information	Non - Confidential	Corporation's registered office address, and the names and addresses of its directors	Most of this information is already public and cannot be used for any other purposes	No harm to the company and the information is validated before it is made public
	Confidential	Personal Information (Home address, phone, birthdate)	This data is protected at an elevated level to prevent exploitation.	Cause great harm to the target being exploited
	Restricted	Financial account numbers of credit card numbers, personal	Although this information has the highest level of security, it continues to be the most	Information leaks of this type can result in identity theft, news coverage, and public exposure,

medical and	frequently	as well as
medical	exploited.	inflicting
insurance		significant harm
information,		and financial
passwords		expenses to the
		company.

Table 3.2.1. Information Asset Classification

3.2.1.2. Other Asset Classification

Asset Categories	Classifications	Details	Impact
Physical	Network	Switch,	Can cause unplanned operational
		Router	downtime, product loss, customer
	Computing	Laptop, PC	churn, brand reputation damage,
	Storage	Hard Disk,	broken vendor or supplier
		Clouds	relationships, and loss of investor
			confidence.
Software	Applications,	PNETLab,	Can lead to large fines from
	tools	Pfsense, VM	vendors for non-compliance,
		ESXI	unnecessary spending on licenses,
			and cyber security vulnerabilities.
	OS	Linux,	
		Windows,	
		Switch OS	

Table 3.2.2. Other Asset Classification

3.2.2. SDN System Characterization

SDN has an open network architecture with separate control and forwarding planes, which enables centralized control and network programmability. SDN has three planes (Data, Control and Application) with two APIs used for communication between the planes.

By centralizing network state in the management level, SDN gives network managers the versatility to configure, take care of, secure, and also enhance network sources using compelling, automatic SDN programs. Therefore, Enterprises and vendors gain vendor-independent management of the whole network from a single logical perspective, which greatly simplifies network layout and functionality.

3.3. Risk Identification

3.3.1.Threat Identification

A threat is anything that could potentially cause harm to the system. In an SDN environment, these threats could arise from diverse sources.

Potential Threat	Describe Threat
Unauthorized Access	In SDN, control plane and data plane are
	decoupled. If attackers gain unauthorized
	access to the control plane, they could
	control network flows, change network
	policies, or even shut down the network
Denial of Service (DoS) Attacks	If a threat actor floods the network with
	excessive data packets, it can overload the
	SDN controller, resulting in a DoS attack
Insider Threats	Individuals with legitimate access to the
	SDN could misuse their permissions to
	cause harm.
Spoofing Attacks	Attackers can impersonate legitimate users
	or devices to manipulate the SDN
	controller.
Malware	Threat actors could introduce malicious
	software into the network, impacting
	network performance or stealing sensitive
	data.

Table 3.3.1. Threat Identification

3.3.2. Vulnerability Identification

Vulnerability refers to weaknesses that could be exploited to compromise the system. In SDN, these can include:

Potential Vulnerability	Describe Vulnerability
Inadequate Security Measures	Insufficient protection mechanisms for the
	control plane or improper authentication
	processes can lead to vulnerabilities.
Lack of Encryption	If data transmission between the control
	plane and data plane is not encrypted, it
	becomes vulnerable to interception.
Outdated Software	Older software versions may have known
	vulnerabilities that can be exploited.
Misconfigurations	Incorrectly configured elements of the
	SDN, such as firewalls or flow tables, can
	lead to vulnerabilities.

Poorly Implemented SDN Protocols	SDN protocols, such as OpenFlow, if not
	implemented correctly, can be
	manipulated by attackers.

Table 3.3.2. Vulnerability Identification

Risk identification is the first step in risk management. After identifying potential threats and vulnerabilities, they need to be assessed, and appropriate mitigation strategies need to be put in place to manage these risks.

3.4. Risk Analysis

3.4.1. Impact Assessment

Software-Defined Networking (SDN) has significantly impacted the networking field since its inception. Here are some key areas where SDN has made an impact.

Area	Describe	Improvement
Network	SDN has brought	This enables dynamic network
Programmability	programmability to network	configuration, centralized
	infrastructure, allowing network	management, and automation,
	administrators to control and	which simplifies network
	manage their networks through	operations and reduces manual
	software.	configuration tasks.
Centralized	SDN separates the control plane	This centralized control enables
Control	from the data plane for a	better network visibility, easier
	centralized view and control	policy enforcement, and efficient
	over the entire network.	resource allocation.
Network	SDN facilitates network	This capability enhances network
Virtualization	virtualization, which enables the	scalability, security, and multi-
	creation of virtual networks that	tenancy support.
	are logically isolated from each	
	other, even if they share the	
	same physical infrastructure.	
Cost Efficiency	SDN can contribute to cost	It helps optimize resource
	savings by reducing the need	utilization, reduce downtime, and
	for expensive proprietary	minimize operational costs.
	networking hardware and	
	simplifying network	
	management.	
Innovation and	SDN's programmable nature	It provides a platform for
Experimentation	encourages innovation by	network researchers and
	enabling the development and	developers to experiment with

	deployment of new network	new protocols, algorithms, and	
	services and applications.	network architectures.	
Cloud and Data	SDN has revolutionized	It provides the flexibility and	
Center	networking in cloud	scalability needed to support	
Networking	environments and data centers.	dynamic workloads,	
		orchestration, and resource	
		management in highly virtualized	
		environments.	
IoT and Edge	SDN can play a crucial role in	It allows for centralized	
Computing	managing and securing the	management, efficient traffic	
	networks in IoT and edge	routing, and integration with	
	computing deployments.	other technologies such as	
		network function virtualization	
		(NFV) to support edge	
		computing capabilities.	

Table 3.4.1. Impact Assessment

Overall, SDN has had a transformative impact on networking, bringing increased flexibility, scalability, efficiency, and security to modern network infrastructures. It has paved the way for further advancements in network technology and continues to evolve as new use cases and challenges emerge.

3.4.2. Likelihood Assessment

The process of examining the likelihood and effects of risk occurrences is known as likelihood assessment. This evaluation's outcomes are then used to evaluate risk in order of most-to-least-critical relevance.

Level	Probability Characteristic	Range of Probability
Very Low	Rare event, may occur in exceptional cases	0 - 0.15
Low	The risk event may occur within 4 years	0.15 - 0.4
Medium	The risk event may occur within 2 years	0.4 - 0.6
High	The risk event can occur within 1 year	0.5 - 0.85
Very High	Risk event. Most likely to happen within 1 year, there is statistics of multiple occurrences of the event within 1 year in the past	0.85 - 1

Table 3.4.2. Likelihood Assessment

3.4.3. Risk Determination

3.4.3.1. Risk-Level Matrix

A risk-level matrix can be a helpful tool to assess and prioritize risks associated with Software-Defined Networking (SDN). Here is an example of a risk-level matrix considering both the likelihood and potential impact of risks:

	High	Medium	High	High
Impact level	Medium	Medium	Medium	High
	Low	Low	Medium	High
		Low	Medium	High
	Likelihood level			

Table 3.4.3. Risk-Level Matrix

3.4.3.2. Description of Risk Level

When assessing the risk level of Software-Defined Networking (SDN), it is important to consider the potential risks and their impact on the network infrastructure and operations. Here is a description of each risk level associated with SDN:

Risk Level	Description	Example
Low Risk	Risks categorized as low are those with	Minor software bugs or
	a low likelihood and low potential	occasional network congestion
	impact on SDN. These risks may not	that can be addressed through
	pose an immediate threat to the network,	routine monitoring and
	but they still require monitoring and	performance optimization.
	management.	
Medium	Risks categorized as medium have a	Intermittent controller failures,
Risk	moderate likelihood or potential impact	limited interoperability between
	on SDN. These risks may require more	different SDN components, or
	proactive monitoring and management	moderate security
	to prevent their escalation. Mitigation	vulnerabilities that can be
	measures should be implemented to	addressed through proactive
	reduce the likelihood or impact of these	measures and network
	risks.	resilience planning.
High Risk	Risks categorized as high are those with	Severe security breaches,
	a high likelihood of or potential impact	widespread controller failures,
	on SDN. These risks pose a significant	or critical interoperability
	threat to the network infrastructure and	issues can disrupt network
	operations and require immediate	services and require immediate
	attention and action. High-risk scenarios	remediation measures.
	should be carefully managed and	

mitigated to minimize their impact or	
eliminate them altogether.	

Table 3.4.4. Description of Risk Level

It is important to note that risk levels may change over time as new vulnerabilities are discovered, technologies evolve, and threat landscapes evolve. Regular risk assessments and monitoring are essential to identify and address emerging risks in SDN deployments. By understanding the risk levels associated with SDN, organizations can prioritize their efforts and allocate resources effectively to manage and mitigate potential risks.

3.5. Control Identification and Assessment

3.5.1. Control Methods

3.5.1.1. Technical

Penetration Testing: Perform controlled simulated attacks to assess the effectiveness of the implemented controls and identify any exploitable vulnerabilities. Penetration testing helps uncover potential security gaps and provides insights into the overall security posture of the SDN environment.

Traffic Analysis: Monitor and analyze network traffic within the SDN environment to detect any anomalies or suspicious activities. Intrusion detection and prevention systems, as well as network traffic analysis tools, can be employed to identify potential security breaches or abnormal behavior.

Vulnerability Assessments: Conduct regular vulnerability assessments of the SDN infrastructure to identify potential security weaknesses. This involves using scanning tools and techniques to identify vulnerabilities in the SDN components, such as controllers, switches, and network applications.

Secure Code Review: Evaluate the security of the code used in SDN applications, controllers, and other components. Conducting secure code reviews helps identify potential vulnerabilities and coding errors that could be exploited by attackers.

3.5.1.2. Non-technical

Policy and Procedure Reviews: Review existing security policies, procedures, and guidelines to ensure they are comprehensive, up-to-date, and aligned with SDN security requirements. Assess the effectiveness of policies in enforcing access controls, managing user privileges, and protecting sensitive data.

Risk Assessments: Perform regular risk assessments to identify potential threats, vulnerabilities, and associated risks to the SDN environment.

Security Awareness and Training: Promote security awareness and provide training to SDN users and administrators. This helps ensure that individuals are knowledgeable

about security best practices, understand the risks involved, and follow proper procedures to maintain the security of the SDN infrastructure.

Incident Response Planning: Develop and test an incident response plan specific to SDN to ensure a swift and coordinated response in the event of a security incident.

3.5.2. Control Types

- **Preventative controls** in Software-Defined Networking (SDN) are measures implemented to proactively mitigate risks and prevent security incidents from occurring.
- **Detective controls** in Software-Defined Networking (SDN) are implemented to identify and detect security incidents, anomalies, or unauthorized activities within the SDN environment.
- Corrective controls in Software-Defined Networking (SDN) are measures implemented to address and mitigate the impact of security incidents, vulnerabilities, or unauthorized activities within the SDN environment.
- Compensating controls in Software-Defined Networking (SDN) are measures implemented to address security requirements when the primary controls are not feasible or cannot be implemented

Preventative	Detective	Corrective	Compensatory
Access Control	Network Traffic	Incident Response	Network
	Monitoring:		Segmentation
Network	Intrusion Detection	System Recovery	Virtual Private
Segmentation	Systems (IDS)		Networks (VPNs)
Threat Intelligence	Centralized	User Access	Redundancy and
and Detection	Logging and	Management	High Availability
	Monitoring		
Secure	Security Auditing	Security Awareness	Third-Party
Configuration		and Training	Security Services
Management			
Security Monitoring	Threat Intelligence		Cloud-based
and Logging	Integration		Security Services
	Incident Response		
	and Forensics		

Table 3.5.1. Control Types

3.5.3. Risk Monitoring and Controlling

While the project team and team leader are carefully categorizing all the risks, we are aware that there is always a set of inherent risks associated with some aspect of the project. The project team leader will choose the best course of action once we have accurately

categorized and structured all the potential risks. Risk monitoring and controlling refers to the complete process of detecting these risks and devising strategies to deal with them.

To determine whether risk mitigation strategies have been implemented as anticipated, their effectiveness and whether they need to be updated, this procedure entails tracking and describing identified risks. It also involves determining whether new or lingering threats that were not previously recognized have materialized.

CHAPTER 4: RISK MANAGEMENT PLAN

4.1. Objectives of RMP

4.1.1. Lists of Threats / Vulnerabilities

The list of vulnerabilities brought on by threats is shown in the table below so that threat management can be carefully planned.

No.	Threats	Vulnerability
		- Flood, Fireetc.
1	Disaster	- Natural disasters (earthquakes,
		hurricanes, etc.).
		- Hardware Error.
2	Equipment malfunction	- Aging (Too old).
		- Storage equipment losing memory
		- Damage caused by a third party.
		- Administrators change system
		configuration causing errors or down
3	System problem	services.
		- Physical damage caused by
		individuals trying to destroy the data
		center or workstations.
		- Weak authorized access control.
		- Un permission user can read or
4	Unauthorized access	change information.
		- Password policy weak.
		- User forgets the password.
		- Using the cracking program.
5	Malicious program	- User violates the Acceptable Uses
3		Policy.
		- OS, Software out of date or licenses.
6	Supplier problem	- Electronic problem.
U	Supplier problem	- Network ISP problem.

Table 4.1.1. Lists of Threats/Vulnerabilities

4.1.2. Costs Associated with Risks

We define the cost in 4 levels below:

Level 0 (Non):

- The risk has been resolved or does not affect the organization's assets, mission, or interests.
 - The cost to resolve the risk is below 10% of the acceptable line.

Level 1 (Low):

- The risk has mostly been resolved but may affect some services that are not part of the organization's main mission.
 - The risk does not interrupt the working of the organization.
 - The cost to resolve the risk is between 10% and 40% of the acceptable line.

Level 2 (Medium):

- The risk has not been resolved and may affect some services that are part of the organization's main mission.
 - The risk may interrupt the working of the organization.
 - The cost to resolve the risk is between 50% and 80% of the acceptable line.

Level 3 (High):

- The risk has not been resolved and affects most services in the organization's main mission.
 - The risk significantly interrupts the working of the organization.
- The cost to resolve the risk exceeds 90% of the acceptable line or is beyond the acceptable line.
- These levels provide a framework for categorizing risks based on their impact and the associated costs to resolve them. Organizations can use these levels to prioritize and allocate resources effectively for risk mitigation and management.

Every risk entails a cost. Equipment, processes, and survey results may be impacted by the damage. It establishes the risks and displays the expenses incurred. One of the things to undertake while conducting the inquiry is the table below.

Risk	Cost Level	
User forgets the password	Level 0 (Non)	
Aging equipment	Level 1 (Low)	
Hardware error	Level 1 (Low)	
Password policy weak	Level 1 (Low)	
OS, Software out of date/licenses	Level 1 (Low)	
Weak authorize access control	Level 2 (Medium)	
Un permissioned user access	Level 2 (Medium)	
Damage caused by third party	Level 2 (Medium)	
Electronic problem (Supplier)	Level 2 (Medium)	
Network ISP problem (Supplier)	Level 2 (Medium)	
Physical damage	Level 3 (High)	
Flood, fire, natural disasters	Level 3 (High)	
Malicious programs	Level 3 (High)	
Unauthorized access	Level 3 (High)	

Table 4.1.2. The Cost Associated with Risks

4.1.3. Recommendations to Reduce Risks

Following threat management in the plan, we have suggested a way to lessen or eliminate the threat. The list of threats suggested to participants for prevention, and associated costs are shown in the table below.

Risk	Recommendations	Cost Level	
	- Implement proactive maintenance schedules.		
Equipment	- Regularly monitor hardware performance and		
Equipment malfunction	health. Level 1 (Lo		
manunction	- Maintain an inventory of spare parts and		
	replacement equipment.		
	- Implement strong access controls.		
System	- Regularly review and update system		
System problem	configurations.	Level 2 (Medium)	
problem	- Implement intrusion detection and prevention		
	systems.		
	- Enforce a strong password policy.		
Unauthorized	- Implement multi-factor authentication.	Level 2 (Medium)	
access	- Regularly review and update user access	Level 2 (Medium)	
	privileges.		
	- Establish strong service level agreements		
	(SLAs) with suppliers.		
Supplier	- Regularly monitor and assess supplier	Level 2 (Medium)	
problem	performance and security.	Level 2 (Medium)	
	- Have contingency plans in place to mitigate		
	disruptions caused by supplier issues.		
	- Implement a robust disaster recovery plan		
	including data backups, off-site storage, and		
	redundant systems.		
Disaster	- Conduct regular drills and exercises to test the	Level 3 (High)	
	effectiveness of the plan.		
	- Protect critical infrastructure and equipment		
	against potential disasters.		
	- Keep operating systems and software up to date		
Malicious	with security patches.		
program	- Implement robust antivirus and anti-malware	Level 3 (High)	
program	solutions.		
	- Educate users about safe computing practices.		

Table 4.1.3. List of Recommendations to Reduce the Risks

4.1.4. Cost-Benefit Analysis (CBA)

The CBA is dependent upon the implementation's timing and specifics. Comparing various times shows the difference in cost and hence makes a reasonable choice.

Risk	Recommendations	Cost Level	Potential Benefits
Equipment malfunction	 Implement proactive maintenance schedules. Regularly monitor hardware performance and health. Maintain an inventory of spare parts and replacement equipment. 	Level 1 (Low)	 Reduced downtime and disruptions due to equipment failures. Improved performance and reliability of equipment. Extended lifespan of equipment resulting in cost savings from delayed replacements or repairs.
System problem	 Implement strong access controls. Regularly review and update system configurations. Implement intrusion detection and prevention systems. 	Level 2 (Medium)	- Enhanced security and reduced risk of unauthorized access or breaches Minimized disruptions and downtime caused by system issues Protection of sensitive data and information Compliance with regulatory requirements.
Unauthorized access	 Enforce a strong password policy. Implement multi-factor authentication. Regularly review and update user access privileges. 	Level 2 (Medium)	- Increased security and reduced risk of unauthorized access Protection of confidential data and information Compliance with data protection regulations.
Supplier problem	- Establish strong service level agreements (SLAs) with suppliers.	Level 2 (Medium)	- Improved reliability and availability of supplier services.

	 Regularly monitor and assess supplier performance and security. Have contingency plans in place to mitigate disruptions caused by supplier issues. 		 Minimized disruptions and delays caused by supplier problems. Mitigated financial losses and reputational damage.
Disaster	- Implement a robust disaster recovery plan including data backups, off-site storage, and redundant systems Conduct regular drills and exercises to test the effectiveness of the plan Protect critical infrastructure and equipment against potential disasters.	Level 3 (High)	 Minimized downtime and data loss in the event of a disaster. Fast recovery and restoration of services. Protection of critical business operations and customer trust.
Malicious program	- Keep operating systems and software up to date with security patches Implement robust antivirus and anti-malware solutions Educate users about safe computing practices.	Level 3 (High)	 Enhanced security and reduced risk of malware infections. Protection of sensitive data and information. Prevention of unauthorized access and data breaches. Compliance with data protection and privacy regulations.

Table 4.1.4. Cost-Benefit Analysis (CBA)

4.2. Assigning Responsibilities

Full name	Role	Responsibilities
Phan Huyền Trâm	Leader	Project Planning, Offering
		Solutions, Tracking
		Progress Management,
		Assigning Tasks
Phạm Thanh Tân	Technical Developer	Developing, Testing and
		Reporting
Phạm Quang Linh	Technical Developer	Developing, Testing and
		Reporting
Trần Doãn Anh	Technical Developer	Developing, Testing and
		Reporting
Mai Duy Nam	Document Writer	Document writer, Quality
		Assurance

Table 4.2.1. Assigning Responsibilities

4.3. Describing Procedures and Schedules for Accomplishment

Phase	Sub-Phase	Task	
Planning and	Requirement	Understand network requirements,	
Design	Analysis	potential solutions, and create a roadmap	
	Network Design	Develop the network design suitable for	
		SDN	
	Vendor Selection	Choose SDN vendors based on	
		requirements and network design	
Infrastructure Setup	Hardware Setup	Acquire and set up the necessary hardware	
	Software	Install the SDN controller and relevant	
	Installation	software applications	
	Testing	Validate initial setup functionality and	
		compatibility	
Implementation	Network	Define network operation using software	
	Programming		
	Network Integration	Integrate the programmed network with	
		existing infrastructure	
	Validation	Test new network setup for performance,	
		security, reliability	

Deployment	Live Deployment	Begin deploying the SDN solution on the	
		live network environment	
	Monitoring	Regularly monitor the network for any	
		issues or anomalies	
	Optimization	Continually optimize the network based	
		on the monitoring reports	
Maintenance and	Troubleshooting	Address any issues or problems in the	
Support		network	
	Updates and	Keep the network updated with the latest	
	Upgrades	software updates and patches	
	Training	Train IT staff to manage the SDN network	

Table 4.3.1. Describing Procedures and Schedules for Accomplishment

4.4. Reporting Requirements

4.4.1. Present Recommendations

The requirements in the previous part can all be used to deal with project risks. But for the time currently, here are some suggestions for effective security:

- Update software and operating systems with security patches.
- Implement a robust disaster recovery plan including data backups, off-site storage, and redundant systems.
- Install robust access controls
- Continually check the health and performance of hardware.

4.4.2. Document Management Response to Recommendations

Assessing the benefits and costs leads to finishing this work. The team decides whether to approve and implement. The group arrived at the following conclusions and suggestions.

Recommendation	Action By	Management Response
Update software and	Technical Team	Agreed
operating systems with		
security patches.		
Implement a robust disaster	Technical Team	Agreed
recovery plan including		
data backups, off-site		
storage, and redundant		
systems.		
Install robust access	Technical Team	Agreed
controls		

Continually check the	Technical Team	Agreed
health and performance of		
hardware.		

Table 4.4.1. Management Response to Recommendations

4.4.3. Document and Track Implementation of Accepted Recommendations

No.	Task	Accepted	Rejected
1	Update software and operating	X	
	systems with security patches.		
2	Implement a robust disaster	X	
	recovery plan including data		
	backups, off-site storage, and		
	redundant systems.		
3	Install robust access controls	X	
4	Continually check the health and	X	
	performance of hardware.		

Table 4.4.2. Track Implementation of Accepted Recommendations

4.5. Plan of Action and Milestones

Action Plans and Milestones are a way of breaking down goals into specific steps that can be followed and tracked easily.

Action	Author	Start date	End date
Brainstorm	ing	5/9/2023	11/9/2023
Initiating Project	Group	5/9/2023	8/9/2023
Identifying goals, planning	Phan Huyền Trâm,	9/9/2023	11/9/2023
and delegating tasks	Phạm Thanh Tân		
Researchi	ng	12/9/2023	2/10/2023
Research on SDN	Phan Huyền Trâm	12/9/2023	22/9/2023
Research Kubernetes architecture	Phạm Quang Linh	12/9/2023	22/9/2023
Research Kubernetes features	Phạm Thanh Tân	12/9/2023	22/9/2023
Research K9s	Trần Doãn Anh	12/9/2023	22/9/2023
Research Calico CNI	Mai Duy Nam	12/9/2023	22/9/2023
Reporting and proposing solutions	Group	23/9/2023	2/10/2023
Developing So	olution	3/10/2023	15/11/2023
Design a Network system	Group	3/10/2023	5/10/2023
Build the virtual environment	Group	6/10/2023	10/10/2023

Install Kubernetes Cluster	Group	11/10/2023	15/10/2023
Install K9s	Group	11/10/2023	15/10/2023
Install Calico	Group	11/10/2023	15/10/2023
Install Kubernetes feature	Group	11/10/2023	15/10/2023
Configure Kubernetes Cluster	Group	16/10/2023	18/10/2023
Write configuration YAML file	Group	18/10/2023	20/10/2023
Develop support tool	Group	21/10/2023	11/11/2023
Test the system	Group	12/11/2023	15/11/2023
Evaluate	2	16/11/2023	
Write complete the report	Group	16/11/2023	2/12/2023
Present the project	Group	27/11/2023	12/12/2023

Table 4.5.1. Plan of Action and Milestones

4.6. Charting the Progress of an RMP

4.6.1. Milestone Plan Chart

Figure 4.6.1. Milestone Plan chart

4.6.2. Gantt Chart

	Sep	teml	ber							Oct	ober									Nov	remb	oer								Dec	emb	er		
Brainstorming	5	8	11	14	17	20	23	26	29	2	5	8	11	14	17	20	23	26	29	1	4	7	10	13	16	1	9 22	25	28	1	4	7	10	12
Initiating Project																																		
Identifying goals, planning and delegating tasks																																		
Researching																																		
Research on SDN																																		
Research Kubernetes architecture																																		
Research Kubernetes features																																		
Research K9s																																		
Research Calico CNI																																		
Reporting and proposing solutions																																		
Developing Solution																																		
Design a Network system																																		
Build the virtual environment																																		
Install Kubernetes Cluster																																		
Install K9s																																		
Install Calico																																		
Install Kubernetes feature																																		
Configure Kubernetes Cluster																																		
Write configuration YAML file																																		
Develop support tool																																		
Test the system																																		
Evaluate																																		
Write complete the report																																		
Present the project																																		

Figure 4.6.2. Gantt chart

4.7.Tools and Practices

	1 Tools and Fractices	
No	Tools and Techniques	Function
1	PNETLab	PNETLab (Packet Network Emulator Tool Lab) is a
		platform that allows you to download and share labs
		with the community.
2	Kubernetes	Orchestrates containerized applications to run on a
		cluster of hosts
3	Ubuntu	OS Platform to run all these services
4	k9s	A terminal-based UI to manage Kubernetes clusters that
		aims to simplify navigating, observing, and managing
		our applications in K8s
5	SSH	Connect to VMs in cluster of hosts
6	HA Proxy	HAProxy acts as a Load Balancer in a system,
		distributing requests to services, ensuring load
		balancing, connection control, high availability, and
		security.
7	Calico	Calico defines and manages network connectivity for
		containerized applications, ensuring that each container

		has a unique IP address and allowing for secure communication and access controls through network policies.
8	Metric Server	Metric Server in Kubernetes collects real-time CPU and memory metrics for pods and nodes, supporting Horizontal Pod Autoscaling (HPA) and enabling efficient resource management and scaling decisions within the cluster.
9	Container	In Kubernetes, containers provide lightweight, isolated environments for running applications, ensuring portability, scalability, and efficient resource utilization across clusters.
10	Apache Bench	Is a tool for benchmarking your Apache Hypertext Transfer Protocol (HTTP) server
11	Keepalived	Used to maintain high availability by managing a virtual IP in a cluster, ensuring uninterrupted service by automatically redirecting network traffic to a backup node if the primary node fails
12	Prometheus	An open-source monitoring system with a dimensional data model, flexible query language, efficient time series database and modern alerting approach.
13	Alertmanager	The Alertmanager handles alerts sent by client applications such as the Prometheus server. It takes care of deduplicating, grouping, and routing them to the correct receiver integration such as email, PagerDuty, or OpsGenie. It also takes care of silencing and inhibits alerts.

Table 4.7.1. Tools and Practices

CHAPTER 5: DEVELOPMENT AND IMPLEMENTATION PLAN

5.1. Risk Response Planning

5.1.1. Major Risk Treatment

Risk	Risk Treatment
Failures or Disaster	Develop a robust business continuity and
	disaster recovery plan
Hardware Error	Ensure that the SDN solution supports the
	hardware devices deployed in the
	enterprise network or evaluate the need for
	hardware upgrades or replacements.
Unauthorized access	Define and enforce granular access
	controls to restrict unauthorized access to
	critical components and resources
System change-making error	Multi-vendor strategy: Design an SDN
	architecture that supports multi-vendor
	environments
Malicious actors	- Encrypt communication channels
	between SDN controllers, switches, and
	other network devices.
	- Regularly update and patch.
Performance and Scalability	- Conduct a detailed analysis of network
	traffic patterns, bandwidth requirements,
	and performance expectations
	- Implement QoS mechanisms

Table 5.1.1. Major Risk Treatment

5.1.2. Risk Mitigation Plan (RPM)

Job	Time	Cost
Design a Network system	3 days	Manpower
Build the virtual environment	4 days	Manpower
Install Kubernetes Cluster	5 days	Manpower
Install K9s	5 days	Manpower
Install Calico	5 days	Manpower
Install Kubernetes feature	5 days	Manpower
Configure Kubernetes Cluster	3 days	Manpower
Write configuration YAML file	3 days	Manpower
Develop support tool	3 weeks	Manpower

Table 5.1.2. Risk Mitigation Plan

5.2. Theoretical Basis

5.2.1. SDN

5.2.1.1. Introduction

In SDN, the software is decoupled from the hardware. SDN moves the control plane that determines where to send traffic to software and leaves the data plane that actually forwards the traffic in the hardware. This allows network administrators who use software-defined networking to program and control the entire network via a single pane of glass instead of on a device-by-device basis.

Figure 5.2.1. Software Defined Networking (SDN) Architecture

There are three parts to a typical SDN architecture, which may be in different physical locations:

- **Applications**, which communicate resource requests or information about the network as a whole
- **Controllers**, which use the information from applications to decide how to route a data packet
- **Networking devices**, which receive information from the controller about where to move the data

Physical or virtual networking devices actually move the data through the network. In some cases, virtual switches, which may be embedded in either the software or the hardware, take over the responsibilities of physical switches and consolidate their functions into a single, intelligent switch. The switch checks the integrity of both the data packets and their virtual machine destinations and moves the packets along.

Software Defined Networking (SDN)

Figure 5.2.2. Software Defined Networking

5.2.1.2. SDN Data Plane

The data plane, also known as the forwarding plane, is one of the key components in Software-Defined Networking (SDN).

- It is responsible for the forwarding and processing of network traffic.
- It consists of network devices, such as switches or routers that forward packets based on predetermined rules.
- The data plane performs tasks like packet forwarding, filtering, traffic classification, and Quality of Service (QoS) enforcement.

5.2.1.3. SDN Control Plane

The control plane is responsible for managing and controlling the behavior of the network devices in an SDN architecture. It includes the logic, protocols, and formulas that govern network-wide management and decision-making.

- It decouples the control logic from the network devices and centralizes it in a software-based controller.
- The control plane establishes and maintains network state information, determines forwarding behavior, and calculates optimal paths for network traffic.
- It communicates with the data plane using protocols like OpenFlow to program the forwarding rules.

5.2.1.4. SDN Management Plane

The management plane is responsible for the overall management and operation of the SDN infrastructure. It handles tasks related to configuration, monitoring, provisioning, performance management, and security management of the SDN environment.

- The management plane facilitates the configuration of network devices, controllers, and applications in the SDN environment.
- It provides tools and interfaces for network administrators to define and manage network policies, rules, monitoring, analysis, optimization, and parameters.
- It includes mechanisms for access control, authentication, authorization, and encryption of network communications.

Figure 5.2.3. Simplified view of an SDN architecture

Figure 5.2.3 depicts the SDN architecture illustrating the separation between the applications, control plane and data plane:

• Applications use the northbound API supported by the control plane to enforce their policies in the data plane without directly interacting with the data plane.

• The interface between the control and data plane is supported by southbound APIs, where a SDN controller will use these APIs to communicate with the network equipment in the data plane.

5.2.2. Kubernetes

5.2.2.1. Introduction

Kubernetes, or "k8s" for short, is an open-source container orchestration system. It manages containerized applications across clusters of nodes for deploying, monitoring, and scaling containers. Containers run on a shared operating system (OS) across hosts but are isolated from each other unless users choose to connect them.

In Kubernetes, there are several concepts such as "deployments" and "services" that allow user to declare the desired state of an application. Kubernetes resources can be created directly on the command line but are usually specified using Yet Another Markup Language (YALM).

5.2.2.2. Kubernetes architecture

Kubernetes uses a client-server architecture. Groups of machines are networked together in multiple data centers. Each of those machines hosts one or more Docker containers. Those worker machines are called nodes. Other machines run special coordinating software that schedules containers on the nodes. These machines are called masters. A Kubernetes cluster is a set of physical or virtual machines and other infrastructure resources that are used to run applications. In other words, clusters are collections of masters and nodes.

Kubernetes cluster

Figure 5.2.4. Kubernetes Cluster

Master

- *API Server:* nearly all the components on the master and nodes accomplish their respective tasks by making API calls. These are handled by the API Server running on the master.
- *Etcd:* Etcd is a service whose job is to keep and replicate the current configuration and run state of the cluster by distributed key-value store
- *Scheduler and Controller Manager:* These processes schedule containers (pods) onto target nodes. They also make sure that the correct numbers of these things are always running.

Worker node

- *Kubelet:* a special background process that respond to commands from the master to create, destroy, and monitor the containers on that host
- *Proxy:* a simple network proxy that manages networking rules so connections to service IP addresses are correctly routed to pods
- The master node is also usually configured as a worker node within the cluster. Therefore, the master node also runs the standard node services such as: kubetlet, kube proxy, container run time.

Figure 5.2.5. Details of Kubernetes components

Pods

A pod is purely a Kubernetes concept, which is a collection of containers and volumes that are scheduled together. The kubelet configures the container engine to place multiple

containers in the same network namespace so those containers share an IP address and communicate with one another via localhost.

5.2.2.3. Other concepts

Kube-DNS

All services and pods (when enabled) on Kubernetes are assigned a domain name that is resolved by the DNS. Kube-DNS is a pod and service on Kubernetes that handles and resolves DNS of all services in the cluster.

Volumes

A volume is a virtual file system that containers can see and use. In Kubernetes, volume is defined at the pod level because:

- *Duration:* The data can survive the death and rebirth of any container in the pod addresses data loss when a container dies.
- *Communication:* Since volumes exist at the pod level, any container in the pod can see and use them. That makes moving temporary data between containers super easy.

Namespace

Namespaces are the mechanism by which we can separate groups of resources (such as Pods, Deployments or Services...) within the same cluster. The names of these resources are unique within that Namespace but may be used in other Namespaces.

ReplicaSet

One of the control loops available in Kubernetes that ensures that the desired number of pods are running.

5.2.3. Container Networking Interface (CNI)

5.2.3.1. Introduction

The Container Network Interface (CNI) is a plug-in which is used for managing network connectivity in Kubernetes clusters. As an essential component of the Kubernetes system, CNI enables seamless communication and connectivity between containers and external networks.

A CNI plug-in is not a K8s component, and it does not depend on K8s. In a K8s cluster, a CNI simply acts as a middleware between pods and the container engine being used. It serves as a bridge between the container runtime and the network plugins, allowing for the dynamic configuration of networking for Kubernetes pods. CNI plugins handle tasks such as assigning IP addresses, creating network interfaces, and setting up network routes for containers.

Figure 5.2.6. CNI components

5.2.3.2. CNI operation

When a pod is created in Kubernetes, the container runtime calls the CNI plugins and requests that the pod be added or removed from the cluster network. CNI works with other plug-ins to establish network connectivity for the pod. The plugins can be written in various programming languages and communicate with the container runtime via standard input and output. They leverage the Linux networking stack to configure networking for containers.

Figure 5.2.7. CNI operation

5.2.4. Kubernetes Networking

5.2.4.1. Introduction

Kubernetes is a container orchestration platform. These containers need to be able to communicate with each other as well as with other parts of the infrastructure, such as external services and databases. Therefore, the Kubernetes networking is an integral part of management and makes communication easier and more secure.

The difference Kubernetes components use different networking methods to communicate. They include container-to-container communication, Pod-to-Pod communication, Pod-to-service communication, and External-to-service communication.

Figure 5.2.8. Kubernetes Networking methods

5.2.4.2. Container-to-container Networking

The simplest scenario consists of communication between containers within the same pod. Containers within the same pod share the same network namespace and communicate over localhost. It represented by the green line in the Figure 5.2.4.1

5.2.4.3. Pod-to-Pod Networking

Pod-to-Pod communication is the foundation of Kubernetes. There are two cases in these methods: two pods communicate in the same worker node (yellow line in Figure 5.2.4.1) and two pods communicate in different worker nodes (purple line in Figure 5.2.4.1). All pods in a Kubernetes cluster reside in a single, flat, shared network-address

space that means all pods within a Kubernetes cluster are assigned unique IP addresses and can access every other pod at the other pod's IP address.

Communication between pods in the same node

Kubernetes creates a virtual Ethernet adapter (veth) for each pod, and it is connected to the network adaptor of the node.

In a Kubernetes node, there is a network bridge called cbr0, which facilitates the communication between pods in a node. All the pods are a part of this network bridge. When a network request is made, the bridge checks for the correct destination (pod) and directs the traffic.

Communication between pods in the different nodes

When the requested IP address cannot be found within the pod, the network bridge directs the traffic to the default gateway. This would then look for the IP within the cluster level.

Kubernetes keeps a record of all the IP ranges associated with each node. Then an IP address is assigned to the pods within the nodes from the range assigned to the node.

5.2.4.4. Pod-to-service Networking

A service is an abstraction that routes traffic to a set of pods. In other words, a service will map a single IP address to a set of pods called ClusterIP service. All pods used by an application share a common label that K8s uses for grouping the pods.

When a ClusterIP Service is created, it gets a static IP which never changes during the lifetime of the Service. Instead of connecting directly to Pods, clients connect to the ClusterIP Service through its IP address. The ClusterIP Service then makes sure that one of the Pods receives the connection, regardless of where the Pod is running and what its IP address is.

5.2.4.5. External-to-service Networking

There are several ways to expose services to external clients in Kubernetes:

NodePort

This service assigns the service to a static port on every node in the cluster. It can be accessed from outside the cluster using the node's IP address and the statically assigned port number. The traffic will route like this: External client \rightarrow Worker Node IP \rightarrow NodePort \rightarrow ClusterIP \rightarrow Service Pod.

Load Balancer

K8s exposes the service through a cloud-provider's load balancer. Requests arriving at the cloud-provider's load balancer are subsequently routed to a NodePort service, which in turn routes it to a ClusterIP service. The traffic goes through a path like this: External client \rightarrow Loadbalancer \rightarrow Worker Node IP \rightarrow NodePort \rightarrow ClusterIP Service \rightarrow Pod.

5.3.Project Implementation

5.3.1. Preparation

Equipment/Tool	Version
Ubuntu	22.04
OpenVPN	1.6.0.02712
Pfsense	2.6.0
Pnetlab	4.2.10
window	10
HTML console	None
Vm Exsi	6.5.0 (Build 5310538)
WinSCP	5.21.3
K9s	0.27.04
Calico	v3.26.0
HAProxy	2.4.22
Kubernetes	1.28.x
Apache Benchmark	2.4
Prometheus	2.47.2
Telegram	
Alert Manager	0.26.0

Table 5.3.1. Preparation

Figure 5.3.1. SDN Network model

Figure 5.3.2. Detailed 3-layer SDN Network model

Node	Domain name	IP
Node1k8s	node1k8s.k8sdemo.com	192.168.50.4
Node2k8s	node2k8s.k8sdemo.com	192.168.50.5
Node3k8s	node3k8s.k8sdemo.com	192.168.50.6
Node4k8s	node4k8s.k8sdemo.com	192.168.50.7
MasterNode1	k8scontroler1.k8sdemo.com	192.168.50.2
MasterNode2	k8scontroler2.k8sdemo.com	192.168.50.3
HAProxy1		192.168.51.1
HAProxy2		192.168.51.2
Virtual IP		192.168.50.10

Table 5.3.2. Information of devices

5.3.2 Install and Configure

5.3.2.1. Configure HAProxy

Install HAProxy

```
kube@Haproxy1:~$ sudo apt install haproxy -y
[sudo] password for kube:
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
haproxy is already the newest version (2.4.22-0ubuntu0.22.04.2).
0 upgraded, 0 newly installed, 0 to remove and 44 not upgraded.
kube@Haproxy1:~$ |
```

Figure 5.3.3. Install HAProxy 1

```
kube@Haproxy2:~$ sudo apt install haproxy -y
[sudo] password for kube:
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
haproxy is already the newest version (2.4.22-0ubuntu0.22.04.2).
0 upgraded, 0 newly installed, 0 to remove and 24 not upgraded.
kube@Haproxy2:~$
```

Figure 5.3.4. Install HAProxy 2

Start HAProxy by the command: sudo systemctl start haproxy

Edit HAProxy configure file that apply for 2 master nodes

```
frontend kubernetes
bind 192.168.50.10:6443
mode tcp
option tcplog
default_backend kubernetes-master-nodes
backend kubernetes-master-nodes
mode tcp
option tcp-check
balance roundrobin
server k8s-master-1 k8scontroler1.k8sdemo.com:6443 weight 1 check
server k8s-master-2 k8scontroler2.k8sdemo.com:6443 weight 1 check
```

Figure 5.3.5. HAProxy Configure File

Edit HAProxy's Monitor page

```
frontend stats

mode http

bind 192.168.50.10:9000

stats enable

stats uri /status

stats refresh 10s

stats admin if LOCALHOST
```

Figure 5.3.6. HAProxy's monitor page

Restart and check the status

Figure 5.3.7. HAProxy status

5.3.2.2. Install Keepalived

```
y3:~$ sudo apt install -y keepalived
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
 keepalived
\theta upgraded, 1 newly installed, \theta to remove and 93 not upgraded.
Need to get 361 kB of archives.
After this operation, 1,250 kB of additional disk space will be used.
Get:1 http://vn.archive.ubuntu.com/ubuntu focal-updates/main amd64 keepalived amd64 1:2.0.19-2ubuntu0.2 [361 kB]
Fetched 361 kB in 0s (1,863 kB/s)
Selecting previously unselected package keepalived.
(Reading database ... 72298 files and directories currently installed.)
Preparing to unpack .../keepalived_1%3aZ.0.19-2ubuntu0.2_amd64.deb ...
Unpacking keepalived (1:2.0.19-2ubuntu0.2) ...
Setting up keepalived (1:2.0.19-2ubuntu0.2)
Processing triggers for man-db (2.9.1-1) ...
Processing triggers for dbus (1.12.16-2ubuntu2.3) ...
Processing triggers for systemd (245.4-4ubuntu3.20)
```

Figure 5.3.8. Install Keepalived

Identify Keepalived port as ens160

```
kube@Haproxy3:** ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00:00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
        valid_lft forever preferred_lft forever
2: ens160: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
    link/ether 00:50:56:ae:cb:61 brd ff:ff:ff:ff:
    inet 192.168.51.3/23 brd 192.168.51.255 scope global dynamic ens160
        valid_lft 6632sec preferred_lft 6632sec
    inet6 fe80::250:56ff:feae:cb61/64 scope link
        valid_lft forever preferred_lft forever
kube@Haproxy3:**
```

Figure 5.3.9. Indentify Keepalived port

Edit Keepalived configure file and set priority number

```
kube@Haproxy1: ~
   kube@Haproxy3: ~
 GNU nano 4.8
vrrp_script haproxy-check {
    script "killall -0 haproxy"
    interval 2
    weight 10
vrrp_instance kubernetes {
    state MASTER
   priority 101
    interface ens160
    virtual_router_id 61
    advert_int 2
    authentication {
        auth_type AH
        auth_pass viettq
    virtual_ipaddress {
        192.168.50.10
    track_script {
        haproxy-check
```

Figure 5.3.10. Configuration for Active

Configuration for Backup 1 Configuration for Backup 2 vrrp_script haproxy-check { vrrp_script haproxy

```
vrrp_script haproxy-check {
  script "killall -0 haproxy"
                                               script "killall -0 haproxy"
  interval 2
                                               interval 2
  weight 10
                                               weight 10
vrrp_instance kubernetes {
                                            vrrp_instance kubernetes {
  state BACKUP1
                                               state BACKUP2
  priority 100
                                               priority 99
  interface ens160
                                               interface ens160
  virtual_router_id 61
                                               virtual_router_id 61
  advert_int 2
                                               advert_int 2
  authentication {
                                               authentication {
    auth_type AH
                                                 auth_type AH
    auth_pass viettq
                                                 auth_pass viettq
  virtual_ipaddress {
                                               virtual_ipaddress {
     192.168.50.10
                                                 192.168.50.10
```

```
track_script {
    haproxy-check
}

track_script {
    haproxy-check
}
```

Start Keepalived service and check status

sudo service keepalived start sudo service keepalived status

Figure 5.3.11. Keepalived status

5.3.2.3. Create Kubernetes cluster

Set up hostname for worker and master node with the command: "hostnamectl set-hostname"

Disable swap & add kernel parameters

```
Run the following commands on all the nodes

swapoff -a

sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab

tee /etc/modules-load.d/containerd.conf <<EOF

overlay

br_netfilter

EOF

sudo modprobe overlay

sudo modprobe br_netfilter
```

```
kube@node9k8s:~$ sudo swapoff -a
kube@node9k8s:~$ sudo sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab
kube@node9k8s:~$ sudo tee /etc/modules-load.d/containerd.conf <<EOF
> overlay
br_netfilter
EOF> br_netfilter
> EOF
overlay
br_netfilter
kube@node9k8s:~$ sudo modprobe overlay
kube@node9k8s:~$ sudo modprobe br_netfilter
kube@node9k8s:~$
```

Figure 5.3.12. Swap disables

```
tee/etc/sysctl.d/kubernetes.conf <<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
EOF
```

```
kube@Haproxy1: ~
                                                                    kube@node9k8s
                                   PowerShell
kube@node9k8s:~$ sudo tee /etc/sysctl.d/kubernetes.conf <<EOF
> net.bridge.bridge-nf-call-ip6tables = 1
> net.bridge.bridge-nf-call-iptables = 1
4.ip_forward = 1
EOF> net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
kube@node9k8s:-$ sudo sysctl --system
* Applying /etc/sysctl.d/10-console-messages.conf ...
kernel.printk = 4 4 1 7
* Applying /etc/sysctl.d/10-ipv6-privacy.conf ...
net.ipv6.conf.all.use_tempaddr = 2
net.ipv6.conf.default.use_tempaddr = 2
* Applying /etc/sysctl.d/10-kernel-hardening.conf ...
kernel.kptr_restrict = 1
```

Figure 5.3.13. Add Kernel parameters

Install Containerd runtime

Install containerd dependencies

apt install -y curl gnupg2 software-properties-common apt-transport-https cacertificates

```
Reading package lists... Done

Building dependency tree

Reading state information... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:
    girl.2-packagekitglib-1.0 libappstream# libcurl# libglib2.0-bin libgstreamer1.0-0 libpackagekit-glib2-18 libstemmer0d openss!
    packagekit-tools python3-certif1 python3-chardet python3-distro-info python3-idna python3-requests python3-requests-unixsocke
    python3-software-properties python3-urllib3 unattended-upgrades

Suggested packages:
    gstreamer1.0-tools appstream python3-cryptography python3-openss! python3-socks bsd-mailx default-mta | mail-transport-agent

The following NEW packages will be installed:
    apt-transport-https ca-certificates curl girl.2-packagekitglib-1.0 gnupg2 libappstream# libcurl# libglib2.0-bin libgstreamer!
    libpackagekitglib2-18 libstemmer0d openss! packagekit packagekit-tools python3-certif1 python3-chardet python3-distro-info python3-requests python3-requests python3-software-properties python3-urllib3 software-properties-common unattende
    upgraded, 24 newly installed, 0 to remove and 92 not upgraded.
```

Figure 5.3.14. Container dependencies

Enable Docker repository

dearmour -o /etc/apt/trusted.gpg.d/docker.gpg

add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu \$(lsb_release -cs) stable" ware-properties-common apt-transport-https ca-certificates

Figure 5.3.15. Enable Docker repository

Install containerd

```
apt update

apt install -y containerd.io
```

Configure containerd so that it starts using systemd as cgroup

```
containerd config default | sudo tee /etc/containerd/config.toml >/dev/null 2>&1

sed -i 's/SystemdCgroup \= false/SystemdCgroup \= true/g'
/etc/containerd/config.toml
```

```
de948s:-$ sudo apt install -y containerd.io
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be upgraded:
 containerd.io
1 upgraded, 8 newly installed, 0 to remove and 91 not upgraded.
Need to get 28.7 MB of archives.
After this operation, 237 kB of additional disk space will be used.

Get:1 https://download.docker.com/linux/ubuntu focal/stable amd64 containerd.io amd64 1.6.25-1 [28.7 MB]

Fetched 28.7 MB in 3s (8,752 kB/s)
(Reading database ... 68921 files and directories currently installed.)
Preparing to unpack .../containerd.io_1.6.25-1_amd64.deb ...
Unpacking containerd.io (1.6.25-1) over (1.6.24-1) ...
Setting up containerd io (1.6.25-1)
Processing triggers for man-db (2.9.1-1) ...
kube@node9k8s:~$ containerd config default | sudo tee /etc/containerd/config.toml >/dev/null 2>&1
 nube@node9k6s:~$ sudo sed ~i 's/SystemdCgroup \= false/SystemdCgroup \= true/g' /etc/containerd/config.toml
 cube@node9k8s:~$ sudo systemctl restart containerd
 cube@node9k8s:-$ sudo systemctl enable containerd
```

Figure 5.3.16. Containerd configure

Add Apt Repository for Kubernetes

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo gpg --dearmour -o /etc/apt/trusted.gpg.d/kubernetes-xenial.gpg

\$ sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-xenial main"

```
hubu@nudeFh8s1=$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo gpg --deareour -o /etc/apt/trusted.gpg.d/kubernetes-senial
.gpg
file '/etc/apt/trusted.gpg.d/kubernetes-senial.gpg' exists. Overwrite? (y/N) y
subednudeSh8s1=$ sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-zenial main*
Htt:1 http://vn.archive.ubuntu.com/ubuntu fecal InRelease
Htt:2 http://vn.archive.ubuntu.com/ubuntu fecal-updates InRelease
Htt:3 http://vn.archive.ubuntu.com/ubuntu fecal-backports InRelease
Htt:8 http://vn.archive.ubuntu.com/ubuntu fecal-backports InRelease
Htt:8 http://vn.archive.ubuntu.com/ubuntu fecal-security InRelease
Htt:8 https://ouenload.docker.com/limux/ubuntu fecal InRelease
Got:6 https://duenload.docker.com/limux/ubuntu fecal InRelease
fetchod 8,963 B in 2s (4,843 M/s)
Reading package lists... Oone
```

Figure 5.3.17. Add apt repository

Install Kubectl, Kubeadm and Kubelet

apt update

apt install -y kubelet kubeadm kubectl

apt-mark hold kubelet kubeadm kubectl

```
node9k8s:~$ sudo apt install -y kubelet kubeadm kubectl
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 conntrack cri-tools ebtables kubernetes-cni socat
Suggested packages:
 nftables
The following NEW packages will be installed:
 conntrack cri-tools ebtables kubeadm kubectl kubelet kubernetes-cni socat
0 upgraded, 8 newly installed, 0 to remove and 91 not upgraded.
Need to get 87.1 MB of archives.
After this operation, 336 MB of additional disk space will be used.
Get:2 http://vn.archive.ubuntu.com/ubuntu focal/main amd64 conntrack amd64 1:1.4.5-2 [30.3 kB]
Get:4 http://vn.archive.ubuntu.com/ubuntu focal/main amd64 ebtables amd64 2.0.11-3build1 [80.3 k8]
Get:5 http://vn.archive.ubuntu.com/ubuntu focal/main amd64 socat amd64 1.7.3.3-2 [323 kB]
Get:1 https://packages.cloud.google.com/apt kubernetes-xenial/main amd64 cri-tools amd64 1.26.0—00 [18.9 MB]
Get:3 https://packages.cloud.google.com/apt kubernetes-xenial/main amd64 kubernetes-cni amd64 1.2.0-00 [27.6 MB]
Get:6 https://packages.cloud.google.com/apt kubernetes-xenial/main amd64 kubelet amd64 1.28.2-00 [19.5 MB]
Get:7 https://packages.cloud.google.com/apt kubernetes-xenial/main amd64 kubectl amd64 1.28.2-00 [10.3 MB]
Get:8 https://packages.cloud.google.com/apt kubernetes-xenial/main amd64 kubeadm amd64 1.28.2-00 [10.3 MB]
Fetched 87.1 MB in 8s (11.2 MB/s)
```

Figure 5.3.18. Install Kubectl, Kubeadm and Kubelet

Initialize Kubernetes Cluster with Kubeadm

Run the following Kubeadm command on the master node only.

sudo kubeadm init --control-plane-endpoint=192.168.50.10 --upload-certs --apiserver-advertise-address=192.168.50.3

In master node 1, do the following commands

mkdir -p \$HOME/.kube sudo cp -i /etc/kubernetes/admin.conf \$HOME/.kube/config sudo chown \$(id -u):\$(id -g) \$HOME/.kube/config

```
Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Alternatively, if you are the root user, you can run:

export KUBECONFIG-/etc/kubernetes/admin.conf

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
 https://kubernetes.io/docs/concepts/cluster-administration/addons/

You can now join any number of the control-plane node running the following command on each as root:
 kubeadm join 192.168.50.10:6443 --token yvyoqq.nzdi4lzefhdejvfw \
 -discovery-token-ca-cert-hash sha256:3fa10bbe233bf930dd3e43f8995ebed81217424a69e5ef2b9fa4caf9d55412b8 \
 -control-plane --certificate-key 44f7759789071d86ac1b7869fa9fc871a129bdd66397af3657befb14c5ff356e
```

Figure 5.3.19. Initialize Kubernetes Cluster

In master node 2 do a command as below

```
kubeadm join 192.168.50.10:6443 --token yvyoqq.nzd14lzefhdejvfw \
--discovery-token-ca-cert-hash sha256:3fa10bbe233bf939dd3e43f8995ebed81217424a69e5ef2b9fa4caf9d55412b8 \
--control-plane --certificate-key 44f7759789071d86ac1b7869fa9fc871a129bdd66397af3657befb14c5ff356e
```

Figure 5.3.20. Join master node 2 to Kubernetes Cluster

Join Worker Nodes to the Cluster. After that do these commands:

```
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
```

```
kubeadm join 192.168.50.10:6443 --token yvyoqq.nzd14lzefhdejvfw \
--discovery-token-ca-cert-hash sha256:3fa10bbe233bf939dd3e43f8995ebed81217424a69e5ef2b9fa4caf9d55412b8
```

Figure 5.3.21. Join worker node to Kubernetes Cluster

5.3.2.4. Set up kubectl

Download kubectl.exe by the command: curl.exe -LO https://dl.k8s.io/release/v1.28.3/bin/windows/amd64/kubectl.exe

Set kubectl as environment variable

Figure 5.3.22. Set Kubectl as environment variable

Test kubectl on windows

NAME	STATUS	ROLES	AGE	VERSION	INTERNAL-IP
k8scontroler1.k8sdemo.com 22	Ready	control-plane	62d	v1.28.1	192.168.59.2
k8scontroler2.k8sdemo.com 22	Ready	control-plane	62d	v1.28.0	192.168.50.3
nodelk8s.k8sdemo.com 22	Ready	<none></none>	60d	v1.28.1	192.168.50.4
node2k8s.k8sdemo.com 22	Ready	<none></none>	62d	v1.28.0	192.168.50.5
node3k8s.k8sdemo.com 22	Ready	<none></none>	62d	v1.28.9	192.168.50.6
node4k8s.k8sdemo.com 22	Ready	<none></none>	62d	v1.28.1	192.168.50.7

Figure 5.3.23. Test Kubectl

5.3.2.5. Install K9s and np-viewer

Download k9s at: https://github.com/derailed/k9s/releases

Extract downloaded folder and copy k9s.exe to C:\Windows\system32

Start k9s by cmd by type "k9s" after that k9s is running

Figure 5.3.24. K9s dashboard

Install np-viewer

Install Git for Windows at: https://gitforwindows.org/

Figure 5.3.25. Git

Download krew.exe from the Releases page to a directory

```
    https://github.com/kubernetes-sigs/krew/releases/download/v0.4.4/krew-linus_arm64.tar.gz.sha256
    https://github.com/kubernetes-sigs/krew/releases/download/v0.4.4/krew-linus_ppc64le.tar.gz.sha256
    https://github.com/kubernetes-sigs/krew/releases/download/v0.4.4/krew-linus_ppc64le.tar.gz.sha256
    https://github.com/kubernetes-sigs/krew/releases/download/v0.4.4/krew-windows_arm664.tar.gz.sha255
    https://github.com/kubernetes-sigs/krew/releases/download/v0.4.4/krew-windows_arm664.tar.gz.sha255
    https://github.com/kubernetes-sigs/krew/releases/download/v0.4.4/krew-ese.sha256
    https://github.com/kubernetes-sigs/krew/releases/download/v0.4.4/krew-ese.sha256
    https://github.com/kubernetes-sigs/krew/releases/download/v0.4.4/krew-ese.sha256
```

Figure 5.3.26. Krew release

Change name of file to krew.exe and launch a command prompt with administrator privileges (since the installation requires use of symbolic links) and navigate to krew directory and run the command: ".\krew install krew"

```
PS C:\Users\TANPT\Downloads\krew-windows_amd64> .\krew install krew
Adding "default" plugin index from https://github.com/kubernetes-sigs/krew-index.git.
Updated the local copy of plugin index.
Installing plugin: krew
Installed plugin: krew
   Use this plugin:
        kubectl krew
   Documentation:
         https://krew.sigs.k8s.io/
      krew is now installed! To start using kubectl plugins, you need to add
      krew's installation directory to your PATH:
         * macOS/Linux:
           - Add the following to your ~/.bashrc or ~/.zshrc:
export PATH="${KREW_ROOT:-$HOME/.krew}/bin:$PATH"
- Restart your shell.
         * Windows: Add %USERPROFILE%\.krew\bin to your PATH environment variable
       To list krew commands and to get help, run:
        $ kubectl krew
       For a full list of available plugins, run:
         $ kubectl krew search
       You can find documentation at
         https://krew.sigs.k8s.io/docs/user-guide/quickstart/.
PS C:\Users\TANPT\Downloads\krew-windows_amd64>|
```

Figure 5.3.27. Start krew installation

Add the "%USERPROFILE%\.krew\bin" directory to PATH environment variable Run "kubectl krew" to check the installation.

Administrator: Command Prompt Microsoft Windows [Version 10.0.22631.2715] (c) Microsoft Corporation. All rights reserved. C:\Windows\System32>kubectl krew krew is the kubectl plugin manager. You can invoke krew through kubectl: "kubectl krew [command]..." Usage: kubectl krew [command] Available Commands: Help about any command help Manage custom plugin indexes index Show information about an available plugin info install Install kubectl plugins

Figure 5.3.28. Check krew installation

Install np-viewer with krew

Figure 5.3.29. Install np-viewer

5.3.2.6. Install Prometheus

Using helm to install prometheus on Cluster with chart prometheus-community by this command: "helm install prometheus prometheus-community/prometheus—f value-capstone.yaml—namespace=Prometheus"

```
NAME: prometheus

LAST DEPLOYED: Wed Nov 22 17:20:42 2023

NAMESPACE: prometheus

STATUS: deployed

REVISION: 28

TEST SUITE: None

NOTES:

The Prometheus server can be accessed via port 80 on the following DNS name from withis prometheus-server.prometheus.svc.cluster.local

Get the Prometheus server URL by running these commands in the same shell:

export POD_NAME=$(kubectl get pods ---namespace prometheus -- l "app.kubernetes.io/name ="{.items[0].metadata.name}")

kubectl ---namespace prometheus port-forward $POD_NAME 9090
```

Figure 5.3.30. Download promethesus

Configure file value and upgrade Prometheus with our configuration

```
alunce-capstone yaml > () serverFiles > () alerting_rules yml > () groups > () 0 > () rules > () 0 > () alert

## retention: "15d"

## Prometheus server ConfigHap entries for rule files (allow prometheus labels interpolation)

## Prometheus server ConfigHap entries

## Ref: https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

## Ref: https://prometheus.io/docs/prometheus/latest/configuration/prometheus/latest/configuration/alerting_rules/

## Prometheus server ConfigHap entries for rule files (allow prometheus labels interpolation)

## Prometheus server ConfigHap entries for rule files (allow prometheus labels interpolation)

## Prometheus server ConfigHap entries for rule files (allow prometheus labels interpolation/alerting_rules/

## Prometheus server ConfigHap entries for rule files (allow prometheus labels interpolation/alerting_rules/

## Prometheus server ConfigHap entries for rule files (allow prometheus labels interpolation/alerting_rules/

## Prometheus server ConfigHap entries for rule files (allow prometheus labels interpolation)

## Ref: https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/

## Ref: https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
```

Figure 5.3.31. Prometheus configuration

After that upgrade helm chart with command "helm upgrade –install prometheus-community/prometheus --create-namespace –namespace prometheus –values values-capstone.yaml". And the result

```
NAME: prometheus
LAST DEPLOYED: Wed Nov 22 17:20:42 2023
NAMESPACE: prometheus
STATUS: deployed
REVISION: 28
TEST SUITE: None
NOTES:
The Prometheus server can be accessed via port 80 on the following DNS name from within your cluster:
prometheus-server.prometheus.svc.cluster.local

Get the Prometheus server URL by running these commands in the same shell:
    export POD_NAME=$(kubectl get pods --namespace prometheus -l "app.kubernetes.io/name=prometheus.app.kubernetes.io/instance"{.items[0].metadata.name}")
    kubectl --namespace prometheus port-forward $POD_NAME 9090
```

Figure 5.3.32. Upgrade helm chart

After install Prometheus we will install Alert Manager (will push alert to telegram) with this configuration

Figure 5.3.33. Install Alert Manager

Set a namespace for Alert manager same as Prometheus by the command: "helm upgrade –install alertmanager Prometheus-community/alertmanager –create-namespace – namespace Prometheus –value values_alert_manager.yaml"

After that we will have prometheus and alert manager in same namespace

Cluster: User: K9s Rev:	kubernetes kubernetes-admin		oll promettw default	<d><d><d><</d><7></d></d>		Desc Edit Help			t> p> shift-f s> n> f>	> Port Shell Show	Previo		45
				Pods (pr	ovethe		17]						
NAMET		P	FREADY	RESTARTS			CPU	MEM	WCPU/R	HCPU/L	MMEM/R		
elertna		•		0	Runn:	ing	3	30	n/a	979	n/a		172,17,171,288
prometh	eus-kube-state-metrics-6b464f5b88-jgc2n	-	1/1		Runni	ing	- 3	13	n/a	n/a	n/a	n/a	172.17.15.145
prometh	eus-kube-state-metrics-6b464f5b88-kbbws		1/1	0	Runn:	ing	- 3	17	n/a	n/a	n/a	m/a	172,17,171,243
prometh	eus-prometheus-node-exporter-2n5d7		1/1		Runni	Log		14	n/a	n/a	n/a	n/a	192.168,58,12
prometh	eus-prometheus-node-exporter-5xxxk		1/1	0	Runn:	ing			n/a	n/a	n/a	n/a	192.168.58.6
prometh	eus-prometheus-node-exporter-fbyzg		1/1	0	Runn	ing		9	n/a	n/a	n/a	n/a	192.168.58.2
	eus-prometheus-node-exporter-m4xbp			e	Runn:	ing		15	m/a-	n/a	n/a	n/a	192,168,58,11
	And the department of the second of the second of		1.41		Burner			1.3	and the	0.60	10.500	- 1	102 168 50 0

Figure 5.3.34. Prometheus namespace

5.3.3. Demonstration

5.3.3.1. Case 1: Isolate a Node in Kubernetes Cluster

Purpose

Node isolation is used to repair devices without affecting services running in the system. When Applications are created and moved across Nodes in the system, they are also automatically configured with the necessary parameters desired by the administrator (nodes will have their own IP range or private IP address). Policy for that node, when an application is moved from one Node to another, those configurations are still guaranteed.

Model

Figure 5.3.35. Case 1 model

Step by step

Start k9s and check the node status

Figure 5.3.36. Check node status with k9s

Access Node 4 (node4k8s.k8sdemo.com) to see list of pods are running by Enter

Figure 5.3.37. List of pods in Node 4

This node has 7 pods running, then we begin to isolate this node. Click "ESC" to return to the node page list. Navigate to Node 4 and type "C" to start the isolation process and confirm with "OK".

Figure 5.3.38. Start isolate Node

The node is being isolate

Figure 5.3.39. Node is being isolate

We will test the isolation by creating 8 more Nginx pods

Figure 5.3.40. Create more pods

The creation was successful, but no pods were created inside Node 4 except the existing Nginx. So, we have successfully isolated Node 4. Then we need to push the pods in Node 4 out for maintenance

Figure 5.3.41. New pods were not created inside Node 4

Back to the Node page list. Type "R" to execute the push command and select option as below, then "OK"

Figure 5.3.42. Drain Node 4

After confirming, these pods will be moved out of Node 4

Go to the pod page list, we will see the existing Nginx pod in Node4 are moved to Node1

text: kubernetes-admingkubernete ister: kubernetes r: kubernetes-admin Rev: v0.27.4 Pev: v1.28.1 !: 59%	8		485 415 415 435 415 455	all demo3 default nginx1 tools kube-sys	ten	- 6 h	ube-node-	lease	<pre><d> <d> <d> <d> <d> <e>ctrl-d> <d> <e>ctrl-d> </e></d></e></d></d></d></d></d></pre>	Descri Edit Help		Logs Logs Prev Port-Forw Shell Show Node Show Port	1
377						Ped	s(demoi)	8]					
MET	PF	READY	RESTARTS	STATUS	CPU	MEM.	MCPU/R	NCPU/L	MEM/R	MEN/L	Ip	NODE	
inx-deployment-6c74477476-429r0		1/1	0	Running	5	14	5	1	6	1	172.17.15.145	node3k8s	.WSsdemn.
inx-deployment-6c74477476-kfnxs	٠	1/1	8	Running	1	4.	- 1	- 8	- 6	1	172,17,188,56	node148s	. k8sdeno.
inx-deployment-6c74477476-kmjcj	•	1/1	0	Running	.5	14	- 5	1	6	1	172,17,15,147	node33x8s	. 48sdemo.
inx-deployment-6c74477476-liskth	٠	1/1		Running							172.17.15.146	node3%8s	. 48sdepp.
inx-deployment-6c74477476-rnc8h	٠	1/1		Runnang				0		1	172, 17, 219, 102	node2k8s	. k8sdemo.
inx-deployment-6c74477476-sskjs		1/1	8	Running					6	1	172.17.188.55	nodelk8s	. k8sdeeo.
inx-deployment 6c74477476-wn4s4	٠	1/1	. 0	Running		2	1			1	172.17.219.183	node2k8s	. k8sdemo.
inx-deployment-6c74477476-x4xr1		1/1	- 6	Running	1	48	1	. 0	6	1	172.17.188.57	nodelkBy	.k8sdemo.

Figure 5.3.43. Drain Node 4 successfully

5.3.3.2. Case 2: Implement security policy for the network

Purpose

This demo demonstrates the advantages of SDN in improving system security by centralized management through the Master Node (Control node). Administrators can easily deploy and control communication and policies between pods, services in the system and machines in the system.

Model

Figure 5.3.44. Case 2 model

Use case in this demo

Environment separation: In an environment with multiple development, staging, and production environments running in the same cluster, you may want to prevent teams in the development environment from communicating with teams in the production environment. Therefore, we use simple commands to test the communication between applications.

Network Management tool user guide

In this demo, we have a network management tool made by us. This tool has a menu interface with simple steps that can apply a network policy to the target pods, applications...

When you have a policy that want to apply to cluster, it can be made by our management tool with several step:

- Step 1: Select namespace by option 2
- Step 2: Choose a namespace
- Step 3: Choose a pod in selected namespace with option 3
- Step 4: Choose a policy template and apply it with the option "Execute". Another option which is "Export to a YAML file with the name of your choices". In this option, your policy is not applied automatically to the cluster. Besides that, you can view your policy in the selected namespace by option "View network menu"

Step by step

Create a YAML file as follows named "demo-networkpolicy.yaml" to create 3 app pods containing testing tools such as ping

```
apiVersion: v1
                               args: ["-c", "sleep
                                                              apiVersion: v1
kind: Namespace
                          3600"]
                                                              kind: Pod
metadata:
                                                              metadata:
 name: tools
                               apiVersion: v1
                                                               name: appc-pod
                               kind: Pod
                                                               namespace: tools
                               metadata:
                                                               labels:
apiVersion: v1
kind: Pod
                                name: appb-pod
                                                                 app: AppC
metadata:
                                namespace: tools
                                                              spec:
                                labels:
 name: appa-pod
                                                               containers:
 namespace: tools
                                 app: AppB
                                                                - name: alpine
 labels:
                                                                 image: alpine:latest
                               spec:
  app: AppA
                                containers:
                                                                 command: ["/bin/sh"]
                                - name: alpine
                                                                 args: ["-c", "sleep
spec:
                                                          3600"1
                                 image: alpine:latest
 containers:
 - name: alpine
                                 command: ["/bin/sh"]
  image: alpine:latest
                                 args: ["-c", "sleep
  command: ["/bin/sh"]
                          3600"1
```

We used the YAML file above to initiate three pods. Go to CMD and type the command "kubectl apply –f.\demo-networkpolicy.yaml".

```
PS C:\unsers\TAMPT\Omedrive - Bal hoc FPT- FPT University\FALL23\SDM\configure\YWM. FILE> kubectl apply - \domo-networkpolicy.yaml
Warming: resource numespaces/tools is missing the kubectl.kubernetes.io/last-applied-configuration aroutation which is required by kubectl apply. Numeerically or last applied configuration aroutation will be patched automatically numespace/tools configured
pod/appa-pod created
pod/appa-pod created
pod/appc-pod created
pod/appc-pod created
PS C:\ulsers\TAMPT\Omedrive - Doi boc FPT- FPT University\FALL23\SDM\configure\YWM. FILE> |
```

Figure 5.3.45. Three applications are created

After running, go to K9s to check pods status

Figure 5.3.46. Check pods status

Access the CLI of app A (appa-pod) to perform a ping to app B (appb-pod). Select app A and type "S" to access the Shell. After that, execute ping command and it was successful

At here, we have two options for create a network policy for this application:

Create network policy by network management tool

```
Main MENU
1. View Network Menu
2. Display the Namespace list and select Namespace
3. Select Pod in Namespace
4. Exit
Select options: 2
List of Namespaces:

    default

2. demo3
3. kube-node-lease
kube-public
5. kube-system
6. nginx1
7. prometheus
8. tools
Select Namespace (enter the corresponding number): 8
==== Main MENU =====
1. View Network Menu
2. Display the Namespace list and select Namespace
3. Select Pod in Namespace
4. Exit
Select options: 3
List of Labels :
   { 'app': 'AppA'}
{ 'app': 'AppB'}
{ 'app': 'AppC'}
{ 'app': 'web'}
Select Pod (enter the corresponding number): 2
```

```
Menu Network Policy:
01. Deny all traffic to an application
02. Allow_traffic_to_an_application_from_all_namespaces
03. Deny_all_none_whitelisted_traffic_to_a_name_space
04. Deny_all_traffic_from_other_namespace
05. Deny_all_traffic_from_app_to_app
Select Policy for seleted Label: 5
Select the Label you want to deny all traffic to AppB:
1. { 'app': 'AppA' }
   { 'app': 'AppB'}
   {'app': 'AppC'
{'app': 'web'}
3.
Select Pod (enter the corresponding number): 1
1. Execute
2. Export to a yaml file with a name of your choice
Select an option (1 or 2): 1
networkpolicy.networking.k8s.io/deny-from-appa-to-appb created
==== Main MENU =====
1. View Network Menu
2. Display the Namespace list and select Namespace
3. Select Pod in Namespace
4. Exit
Select options: 4
Thanks for using this Tools!!
```

Figure 5.3.47. Steps to apply policy that deny all traffic from app to app with our tool

Create network policy by manual

Create a YAML file contain network policy named "policy-blockping.yaml" to block the pings from app A to app B

```
apiVersion: networking.k8s.io/v1
                                                policyTypes:
kind: NetworkPolicy
                                                - Ingress
metadata:
                                                ingress:
 name: deny-appa-to-appb
                                                - from:
 namespace: tools
                                                 - podSelector:
spec:
                                                    matchExpressions:
podSelector:
                                                     - {key: app, operator: NotIn,
  matchLabels:
                                            values: ["AppA"]}
   app: AppB
```

Apply to the system and check again

Figure 5.3.48. Apply network policy

Access the Shell of app A and ping to app B to test the policy. There is 100% packet loss, so we successfully block ping traffic from A to B. But to ensure the policy works well we execute several steps further, ping from app B to app A and ping from app C to app B. And as expected, ping is still working.

```
--- 172.17.180.60 ping statistics ---
167 packets transmitted, 167 packets received, 0% packet loss round-trip min/avg/max = 0.541/12.588/845.806 ms
/ # ping 172.17.180.60
PING 172.17.180.60 (172.17.180.60): 56 data bytes
^C
--- 172.17.180.60 ping statistics ---
11 packets transmitted, 0 packets received, 100% packet loss
/ # ping 172.17.180.60
PING 172.17.180.60 (172.17.180.60): 56 data bytes
^C
--- 172.17.180.60 ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss
/ # ping 172.17.180.60
PING 172.17.180.60 (172.17.180.60): 56 data bytes
^C
--- 172.17.180.60 ping statistics ---
1 packets transmitted, 0 packets received, 100% packet loss
/ # packets transmitted, 0 packets received, 100% packet loss
/ # packets transmitted, 0 packets received, 100% packet loss
/ # packets transmitted, 0 packets received, 100% packet loss
```

Figure 5.3.49. Complete packet loss from app A to app B

```
Command Prompt - k9s × PowerShell × PowerShe
```

Figure 5.3.50. App B can communicate with app A

Figure 5.3.51. App C can communicate with app B

Other policy templates

a. Deny_all_traffic_to_an_application

Purpose

This Network policy will drop all traffic to pods of an application, selected using Pod Selectors.

Step by step

Start a web service on tools namespace by command: "kubectl run web -- namespace=tools --image=nginx --labels="app=web" --expose --port=80"

Figure 5.3.52. Create an application named web

Create 01_Deny_all_traffic_to_an_application.py file

Figure 5.3.53. Code of Deny_all_traffic_to_an_application.py file

Apply file 01_Deny_all_traffic_to_an_application.py for namespace=tools and app=web with these steps

```
Select options: 2
List of Namespaces:
1. default
2. demo3
3. kube-node-lease
4. kube-public
5. kube-system
6. nginx1
7. prometheus
Select Namespace (enter the corresponding number): 8
    --- Main MENU -----
1. View Network Menu
2. Display the Namespace list and select Namespace
3. Select Pod in Namespace
4. Exit
Select options: 3
List of Labels:

    ('app': 'AppA')
    ('app': 'AppB')

3. { 'app': 'AppC' }
4. { 'app': 'web' }
Select Pod (enter the corresponding number): 4
Menu Network Policy:
01. Deny all traffic to an application
02. Limit traffic to an application
03. Deny_all_none_whitelisted_traffic_to_a_name_space
04. Deny all traffic from other namespace
05. Deny all traffic from app to app
Select Policy for: 1

    Execute

2. Export to a YAML file with a name of your choice
Select an option (1 or 2): 1
networkpolicy.networking.k8s.io/web-deny-all-policy created
```

Figure 5.3.54. Set rule number 1 with Network management tool

Let us check to see if this file has been applied successfully

```
PS C:\Users\PC> kubectl exec -i -t --namespace=nginx1 test-duynam -- sh

/ # wget -q0- --timeout=2 http://web.tools

wget: download timed out

/ # |
```

Figure 5.3.55. Query web service

b. Deny_all_traffic_from_other_namespaces

Purpose

This Network policy will deny all the traffic from other namespaces while allowing all the traffic coming from the same namespace the pod deployed to.

Step by step

Create file python: 04_Deny_all_traffic_from_other_namespaces.py

```
import yaml
import subprocess
import kubernetes
import json
```

```
with open("namespace.json", "r") as config file:
    config = json.load(config file)
namespace = config["namespace"]
network policy = {
        "kind": "NetworkPolicy",
        "apiVersion": "networking.k8s.io/v1",
        "metadata": {
            "namespace": namespace,
            "name": "deny-from-other-namespace-to-namespace-" +
namespace
        },
        "spec": {
            "podSelector": {
                "matchLabels": {}
            "ingress": [
                    "from": [
                        {
                            "podSelector": {}
                    1
                }
            1
        }
    }
def apply kubernetes yaml(yaml file path):
        # The command you would normally type in the terminal
        cmd = ['kubectl', 'apply', '-f', yaml file path]
        # Execute the command
        result = subprocess.run(cmd, check=True, capture output=True,
text=True)
        # Print the output from the command
        print(result.stdout)
    except subprocess.CalledProcessError as e:
        # If the command failed, it will raise this exception
        print("Error applying YAML:", e.stderr)
    except Exception as e:
        # Catch-all for any other exceptions
```

```
print("An error occurred:", str(e))
while True:
        print("1. Execute")
        print("2. Export to a yaml file with a name of your choice")
        choice = input("Select an option (1 or 2): ")
        if choice == "1":
            # Limit traffic to an application yaml =
yaml.dump(network policy, default flow style=False)
            # with open("Limit traffic to an application yaml", "w")
as temp file:
temp file.write(Limit traffic to an application yaml)
apply kubernetes yaml('Limit traffic to an application yaml')
            yaml string = yaml.dump(network policy,
default flow style=False)
            new yaml filename = f"deny-all-traffic-from-other-
namespaces.yaml"
            with open (new yaml filename, "w") as temp file:
                temp file.write(yaml string)
            apply kubernetes yaml (new yaml filename)
            break
        elif choice == "2":
            filename = input("Enter the file name you want to save
(for example, data(.yaml)): ")
            with open(filename, 'w') as file:
                yaml.dump(network policy, file)
            print(f"Saved to {filename}.yaml!")
        else:
           print("Invalid selection. Please select again.")
```

Start a web service in namespace nginx1 by the command "kubectl run web --namespace=nginx1 --image=nginx --labels="app=web" --expose --port=80"

Query this web service from the tools namespace

```
kubectl run test-tidiay --namespace=tools --rm -i -t --image=alpine -- sh
If you don't see a command prompt, try pressing enter.
/ # wget -q0- --timeout=2 http://web.nginx1
<!DOCTYPE html> <html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.
For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.
<em>Thank you for using nginx.</em>
</body>
</html>
/#
```

Figure 5.3.56. Query web service from different namespace

Apply file "04_Deny_all_traffic_from_other_namespaces.py for namespace=nginx1" to restrict the traffic with a few steps

```
Main MENU
1. View Network Menu
2. Display the Namespace list and select Namespace
3. Select Pod in Namespace
4. Exit
Select options: 2
List of Namespaces:

    default

2. demo3
3. kube-node-lease
4. kube-public
5. kube-system
6. nginx1
7. prometheus
8. tools
Select Namespace (enter the corresponding number): 6
----- Main MENU -----
1. View Network Menu
Display the Namespace list and select Namespace
3. Select Pod in Namespace
4. Exit
Select options: 3
List of Labels :

    {'app': 'nginx', 'pod-template-hash': '6ccd454948'}
    {'app': 'web'}

Select Pod (enter the corresponding number): 2
Menu Network Policy:
01. Deny_all_traffic_to_an_application
02. Allow traffic to an application from all namespaces
03. Deny all none whitelisted traffic to a name space
04. Deny_all_traffic_from_other_namespace
05. Deny all traffic from app to app
```

```
Select Policy for seleted Label: 4

1. Execute

2. Export to a yaml file with a name of your choice
Select an option (1 or 2): 1
networkpolicy.networking.k8s.io/deny-from-other-namespace-to-namespace-nginx1 created
```

Figure 5.3.57. Apply rule number 4

Check the rule from query this service from namespace "tools" as a result it is fail

```
/ # wget -q0- --timeout=2 http://web.nginx1
wget: download timed out
/ #
```

Figure 5.3.58. Check rule status

Test again with another app in namespace nginx1 to see if this policy works

```
PS C:\Users > kubectl run test-tidiay2 --namespace=nginxl --rm -i -t --image=alpine -- sh
If you don't see a command prompt, try pressing enter.
/ # wget -q0- --timeout=2 http://web.nginx1
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.
For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.
<em>Thank you for using nginx.</em>
</body>
</html>
```

Figure 5.3.59. Query web service in the same namespace

c. Allow_traffic_to_an_application_from_all_namespaces

Purpose

This Network policy will allow traffic from all pods in all namespaces to a particular application.

Step by step

Create 02_Allow_traffic_to_an_application_from_all_namespaces.py template file written by python

```
import subprocess
import kubernetes
import json
with open("namespace.json", "r") as config file:
    namespace config = json.load(config file)
    namespace = namespace config["namespace"]
    selected_label = namespace_config.get("label", {}).get("app", "")
network policy = {
    "kind": "NetworkPolicy",
    "apiVersion": "networking.k8s.io/v1",
    "metadata": {
        "namespace": namespace,
        "name": selected label.lower() + "-allow-all-namespaces"
    },
    "spec": {
        "podSelector": {
            "matchLabels": {
                "app": selected label,
            },
        },
        "ingress": [
            {
                "from": [
                    {"namespaceSelector": {}}
                1
            }
        1
    }
def apply kubernetes yaml(yaml file path):
    try:
        # The command you would normally type in the terminal
        cmd = ['kubectl', 'apply', '-f', yaml file path]
        # Execute the command
        result = subprocess.run(cmd, check=True, capture output=True,
text=True)
        # Print the output from the command
        print(result.stdout)
    except subprocess.CalledProcessError as e:
        # If the command failed, it will raise this exception
        print("Error applying YAML:", e.stderr)
    except Exception as e:
        # Catch-all for any other exceptions
```

```
print("An error occurred:", str(e))
while True:
       print("1. Execute")
        print("2. Export to a yaml file with a name of your choice")
        choice = input("Select an option (1 or 2): ")
        if choice == "1":
            yaml string
                                                  yaml.dump(network policy,
default flow style=False)
                               = f"Allow-traffic-to-an-application-from-
            new_yaml filename
all-namespaces.yaml"
            with open (new yaml filename, "w") as temp file:
                temp file.write(yaml string)
            apply kubernetes yaml (new yaml filename)
            break
        elif choice == "2":
            filename = input("Enter the file name you want to save (for
example, data(.yaml)): ")
            with open(filename, 'w') as file:
                yaml.dump(network policy, file)
            print(f"Saved to {filename}.yaml!")
            break
        else:
              print("Invalid selection. Please select again.")
```

We restrict namespace "tools" with the rule number 4

```
1. View Network Menu
                                                                   2. Display the Namespace list and select Namespace
                                                                   3. Select Pod in Namespace
     = Main MENU :
                                                                   4. Exit
1. View Network Menu
2. Display the Namespace list and select Namespace
                                                                   Select options: 3
3. Select Pod in Namespace
                                                                   List of Labels :
4. Exit

    ('app': 'AppA')
    ('app': 'App8')

                                                                       ('app': 'AppC'
Select options: 2
                                                                       {'app': 'web'}
List of Namespaces:

    default

                                                                   Select Pod (enter the corresponding number): 4
2. demo3
                                                                   Menu Network Policy:
3. kube-node-lease
                                                                   01. Deny all traffic to an application
                                                                   02. Allow traffic to an application from all namespaces
03. Deny all none whitelisted traffic to a name space
04. Deny all traffic from other namespace
4. kube-public
5. kube-system
6. nginx1
                                                                   05. Deny all traffic from app to app
Select Policy for seleted Label: 4
7. prometheus
8. tools
Select Namespace (enter the corresponding number): 8
                                                                   1. Execute
                                                                   2. Export to a yaml file with a name of your choice
                                                                   Select an option (1 or 2): 1
                                                                   networkpolicy.networking.k8s.io/deny-from-other-namespace-to-namespace-tools created
```

Main MENU

Figure 5.3.60. Apply rule number 4 for namespace "tools"

Apply template policy created before for app named "web" by our tool with these steps

```
== Main MENU =
1. View Network Menu
2. Display the Namespace list and select Namespace
3. Select Pod in Namespace
4. Exit
Select options: 3
List of Labels :

    {'app': 'AppA'}
    {'app': 'AppB'}

3. {'app': 'AppC'}
4. {'app': 'web'}
Select Pod (enter the corresponding number): 4
Menu Network Policy:
01. Deny_all_traffic_to_an_application
02. Allow traffic to an application from all namespaces
03. Deny all none whitelisted traffic to a name space
04. Deny all traffic from other namespace
05. Deny all traffic from app to app
Select Policy for seleted Label: 2
1. Execute
2. Export to a yaml file with a name of your choice
Select an option (1 or 2): 1
networkpolicy.networking.k8s.io/web-allow-all-namespaces created
```

Figure 5.3.61. Apply rule number 2 for app web

Check to see if this file has been applied successfully

```
/ # wget -q0- -
<!DOCTYPE html>
              --timeout=2 http://web.tools
<html>
<head>
<title>Welcome to nginx!</title>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.
For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.
<em>Thank you for using nginx.</em>
</body>
</html>
```

Figure 5.3.62. Query app web successfully from outside namespace "tools"

d. Deny_all_none_whitelisted_traffic_to_a_name_space Purpose

This is a fundamental policy, blocking all cross-pod networking other than the ones whitelisted via the other Network Policies you deploy.

Step by step

Create 03_Deny_all_none_whitelisted_traffic_to_a_name_space.py file

```
with open("namespace.json", "r") as config_file:
    config = json.load(config_file)
namespace = config["namespace"]
selected_label = config.get("label", {}).get("app", "")
network_policy = {
    "kind": "NetworkPolicy",
    "apiVersion": "networking.k8s.io/v1",
        "name": f"{selected_label.lower()}-deny-all-none-whitelisted",
        "namespace": namespace
   },
"spec": {
        "podSelector": {},
        "policyTypes": ["Ingress"],
        "ingress": [
                "from": [
                        "podSelector": {
                            "matchLabels": {
                                # Add labels for whitelisted pods
                                "whitelist-label-key": "whitelist-label-value"
```

Figure 5.3.63. Deny_all_none_whitelisted_traffic_to_a_name_space.py file

Apply file 03_Deny_all_none_whitelisted_traffic_to_a_name_space.py for namespace tools and app web <u>with these steps</u>

```
Select options: 2
List of Namespaces:
1. default
2. demo3
3. kube-node-lease
4. kube-public
5. kube-system
6. nginx1
7. prometheus
8. tools
Select Namespace (enter the corresponding number): 8
==== Main MENU =====
1. View Network Menu
2. Display the Namespace list and select Namespace
3. Select Pod in Namespace
4. Exit
Select options: 3
List of Labels:

    {'app': 'AppA'}
    {'app': 'AppB'}
    {'app': 'AppC'}

4. {'app': 'web'}
Select Pod (enter the corresponding number): 4
Menu Network Policy:
01. Deny all traffic to an application
02. Limit_traffic_to_an_application
03. Deny all none whitelisted traffic to a name space
04. Deny_all_traffic_from_other_namespace
05. Deny_all_traffic_from_app_to_app
Select Policy for: 3
1. Execute
2. Export to a yaml file with a name of your choice
Select an option (1 or 2): 1
networkpolicy.networking.k8s.io/web-deny-all-none-whitelisted created
```

Figure 5.3.64. Apply rule number 3 for app web

5.3.3.3. Case 3: Maintain system availability

Purpose

One of the key goals of Software-Defined Networking (SDN) is to improve system performance by minimizing downtime and ensuring high availability for the entire system. SDN provides the ability to automatically direct network traffic to the appropriate servers, with Scale Up and Scale Down features creating load balancing between servers and system flexibility.

Model

Figure 5.3.65. Case 3 model

Step by step

Create a YAML file as below to create a Nginx pod. Then apply it to the system and check pod status

```
apiVersion: v1
                                                 containers:
kind: Namespace
                                                   - name: nginx
                                                    image: nginx:latest
metadata:
 name: demo3
                                                    ports:
                                                     - containerPort: 80
apiVersion: apps/v1
                                                    resources:
kind: Deployment
                                                     limits:
                                                      cpu: "0.5"
metadata:
                                                      memory: "256Mi"
 name: nginx-deployment
 namespace: demo3
                                                     requests:
                                                      cpu: "0.1"
spec:
 minReadySeconds: 10
                                                      memory: "64Mi"
 selector:
                                                    readinessProbe:
  matchLabels:
                                                     httpGet:
                                                      path:/
   app: nginx
 template:
                                                      port: 80
                                                     initialDelaySeconds: 15
  metadata:
   labels:
                                                     periodSeconds: 5
    app: nginx
                                                     failureThreshold: 3
  spec:
```


Figure 5.3.66. Create Nginx pod

The Nginx pod has been created in Node 2.

We configure "NodePort" service to Nginx as below and apply to the system

```
apiVersion: v1app: nginxkind: Serviceports:metadata:- protocol: TCPname: nginx-serviceport: 80namespace: demo3targetPort: 80spec:nodePort: 30000selector:type: NodePort
```

Service has been created

Figure 5.3.67. Create service for Nginx pod by YAML file

Press Enter to see the information of this service

```
Command Prompt - k9s
Context: kubernetes-admin@kubernetes
                                                              Сору
Cluster: kubernetes
                                                              Next Match
User:
        kubernetes-admin
                                                   <shift-n> Prev Match
K9s Rev: v0.27.4
                                                              Toggle Auto-Refresh
                                                              Toggle FullScreen
K8s Rev: v1.28.1
CPU:
         14%
MEM:
         59%
                                                               Describe(demo3/nginx-service)
 Name:
                           nginx-service
 Namespace:
                           demo3
 Labels:
                           <none>
                           <none>
                           app=nginx
                           NodePort
 IP Family Policy:
                           SingleStack
                           IPv4
 IP:
                           10.97.171.151
                           10.97.171.151
 Port:
                           <unset> 80/TCP
                           80/TCP
 TargetPort:
 NodePort:
                           <unset> 30000/TCP
                           172.17.219.104:80
                           None
 External Traffic Policy: Cluster
```

Figure 5.3.68. Information of Nginx service

We can access this Nginx pod from any Node in the system thanks to this service.

Figure 5.3.69. Access Nginx service

Create additional HPA using YAML file as below so that the system can automatically expand according to needs. We need the system to always have 2 apps running and a maximum of 8 apps.

apiVersion: autoscaling/v2 minReplicas: 2 kind: HorizontalPodAutoscaler maxReplicas: 8 metadata: metrics: name: nginx-hpa - type: Resource namespace: demo3 resource: spec: пате: сри scaleTargetRef: target: apiVersion: apps/v1 type: Utilization kind: Deployment averageUtilization: 50 name: nginx-deployment

Apply successfully

Figure 5.3.70. Apply HPA

Check the number of pods to verify that they are created according to the minimum requirement of 2

Figure 5.3.71. Minimum number of pods

Check the service information again to see the difference

```
Mane:
Name:
```

Figure 5.3.72. Information of Nginx service after applying HPA

Scenario 1: We will perform an Internet outage on Node 1

Figure 5.3.73. Internet outage on Node 1

Access Node 1 to view the system's automated check status

Figure 5.3.74. Status of Node 1

Go to the service description page after Node 1 checks its status more than 3 times. We see that IP Node 1 was automatically deleted but Node 1 is still in the system

```
Command Prompt - k9s
                     X PowerShell
Context: kubernetes-admin@kubernetes
Cluster: kubernetes
        kubernetes-admin
   Rev: v0.27.4
K8s Rev: v1.28.1
         68
Name:
                           nginx-service
                           demo3
                           <none>
                           <none>
                           app=nginx
                           NodePort
                           SingleStack
                            IPv4
                           10.97.171.151
                           10.97.171.151
                           <unset> 80/TCP
                           80/TCP
 NodePort:
                           <unset> 30000/TCP
                           172.17.219.104:80
 Endpoints:
                           None
 External Traffic Policy:
                           Cluster
                           <none>
```


Figure 5.3.75. Node 1 state in the system after self-check more than 3 times

Nginx on Node 1 was automatically deleted after 5 minutes Node 1 crashed and the system created a new Node to replace it.

Constant Prorest - Mis X X PowerShall		×	kutandi	Haprosy't -								
Context: kubernetes-admin@kubernetes Cluster: kubernetes Ser: kubernetes-admin (% Rev: v0.27.4 ds Rev: v1.28.1 PUB: 8%		4		Attach Delete Describ Edit Help Hill		L> pb shift- %> n> f>	Shell Shell	Previo	d	<y≻ th="" yam<=""><th>ı</th><th></th></y≻>	ı	
				- Pods		/ngim		ment)[3	1			
NAMET	F HEA	DY RESTAR	IS STA	TUS	CPU	HEH 1	ACPU/R	NCPU/L	MMEH/R	WHEH/L	TP	WODE
ngiox-deployment-6c74477476-55r9r	1/1	POSSESSES AND ADDRESS OF THE PARTY NAMED IN	O Ter	minating	0	10		9			172.17.189.61	nodeliels, kBsdeno.co
nginx-deployment-6c74477476-bzdl6	1/1		0 Run	ning	0	0	0	0		0	172.17.219.164	node2k8s.k8sdeeo.co
mginx-deployment-6274477476-hys7s	11/1		9 Bur									

Figure 5.3.76. Node 1 was deleted after 5 minutes

Scenario 2: We will perform a Denial of Services (DoS) using ab tool

```
kube@Haproxyl:~$ ab -n 1000000 -c 1000 http://k8scontroler1.k8sdemo.com:30000/
This is ApacheBench, Version 2.3 <$Revision: 1879490 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/
Benchmarking k8scontroler1.k8sdemo.com (be patient)

Completed 100000 requests
Completed 200000 requests
```

Figure 5.3.77. DoS the system by Apache Bend mark

The system notices unusual traffic so it pushes the Nginx Pod number up to accommodate that traffic

Figure 5.3.78. Number of Nginx pods before perform DoS

Comment Prompt - Mis - X - Prompt Red				interditionness -									
Contest: kubernetes admin@Nubernetes Cluster: kubernetes Nubernetes admin Was Rev: v0.27.4 KBs Rev: v1.28.1 CRU: 148 Rem: 538			48 42 43 44 45	all demo3 default nginx1 tools kube-syste		in fee	be node	lease	ctrl-do	Descri Edit Help	ela viii be cuhist-i cua cua cia	Logs Logs Prev Port-Form Shell Show Node Show Port	
						Foots	(Cospo)	[9] —					
NAMET	量	READY	RESTART	STATUS	CPL	No.	MCPU/R	%CPU/L	MAEM/R	MEH/L	IP	NODE	
ngine-deployment-6c74477476-55r9r		1/1		0 Terminatin		Œ	1	- 1			172:17:180:0	kl modelkii	i. liftschamm. zon
ngins-deployment-6c74477476-88p9d	•	1/1	3-1	8 Hunning	167		167	33	7	.1	172 17.45.65	nad#4k8;	kBadeno.com
ngina-deployment-6c74977476-bzdl6	٠	1/1		Running	146		146	29			172.17.219.1	194 node2k8s	.kBsdemo.com
ngins-deployment-6c74477476-de916	۰	1/1		@ Running	191		191	38			172 17 18 38	nede3h8s	.kBsdemo.com
ngins-deployment-6c74477476-ham7s	۰	1/1		Running	194		194	38		1	172 17 46 60	node4k8s	. WBsdemo.com
ngina-deployment-6c74477476-m5s26	۰	1/1		Running	155	1	155	31			172 17 219	185 node2k8s	. kBsdeno con
	۰	1/1		0 Running	156	1	156	31			172 17 219	86 node2h8s	. Hillsdeno: com
ngina-deployment-6c74477%76-wggz4		1/1		0 Running	1.54		159				172 17 96 66	nadeuhits	. klisdeno: coe
ngina-deployment-6c74477476-29x27		1/1		0 Running	234		236	47			172 . 17 . 15 . 13	to and other	. kiladeno . com

Figure 5.3.79. Number of Nginx pods after perform DoS

And the service description page also changes in the "Endpoints" field

```
CPU:
MEM:
        53%
                                                                Describe(demo3/nginx-service
                           nginx-service
                           demo3
                           <none>
                           <none>
                           app=nginx
                           NodePort
                           SingleStack
                           IPv4
IP:
                           10.97.171.151
                           10.97.171.151
IPs:
                           <unset> 80/TCP
TargetPort:
                           80/TCP
NodePort:
                           <unset> 30000/TCP
                           172.17.15.151:80,172.17.15.152:80,172.17.219.104:80 + 5 more...
External Traffic Policy: Cluster
                           <none>
```

Figure 5.3.80. Nginx information after perform DoS

When the CPU percentage increases more than 50% due to DoS, we will get a high CPU alert

```
Alerts Firing:
Labels:
- alertname = HighCPUPod
- severity = critical
Annotations:
- summary = High CPU usage in demo3 namespace
Source: http://prometheus-server-768c47577b-rm6hh:9090/graph?
g0.expr=sum%28rate%28container_cpu_usage_seconds_total%7Bna
mespace%3D%22demo3%22%7D%5B10m%5D%29%29+%2A+1000+
%3E+50&g0.tab=1
```

Figure 5.3.81. Alert High CPU pod

There is one more thing we do in this demo, which is to use it with the Haproxy system to enhance the availability and flexibility of the system. This ensures that service is still provided even if a failure occurs in one part of the system. Helps adapt to changes in system needs or size.

We do an additional configure for 2 server HAProxy

```
frontend nginx
  bind 192.168.50.10:80
 mode tcp
 option tcplog
 default_backend nginx-nodes
backend nginx-nodes
mode tcp
option tcp-check
balance leastconn
option redispatch
server nodels nodelk8s.k8sdemo.com:30000 check
server node2s node2k8s.k8sdemo.com:30000 check
#server node2s node2k8s.k8sdemo.com:31319 check
server node3s node3k8s.k8sdemo.com:30000 check
server node4s node4k8s.k8sdemo.com:30000 check
server control1 k8scontroler1.k8sdemo.com:30000 check
server control2 k8scontroler2.k8sdemo.com:30000 check
```

Figure 5.3.82. Additional configuration for HAProxy

After that, restart the HAProxy by the command "sudo Systemctl restart haprox" and user can access by the IP 192.168.50.10 (VIP)

Figure 5.3.83. Nginx web access by VIP

We can see the statistics report of HAProxy

Figure 5.3.84. Status report of HAProxy

CHAPTER 6: VALIDATING DOCUMENTATION

6.1. Repeat Risk Assessment Process

6.1.1. Check and Add for a New Critical Asset Appeared

Software-Defined Networking, as a dynamic and programmable infrastructure, can often witness the addition of new assets. An asset is any resource, service, or component that is a part of the network, contributing to its functionality and value. An asset becomes 'critical' when its confidentiality, integrity, or availability has a major influence on the network's overall operation.

When a new critical asset is added to the SDN:

• Identification:

Start by identifying the new asset. It may include new nodes, applications, or even a new software-defined service that has been introduced into the network.

• Assessment:

Evaluate the criticality of the asset based on factors like its role in the network, the sensitivity of the data it handles, and its importance to the network's overall functionality.

• Update Inventory:

Update your asset inventory to include the new asset. This inventory should provide a comprehensive view of all assets on your SDN, including their properties and how they interact with other components on the network.

• Risk Assessment:

Conduct a risk assessment for the new critical asset. This involves identifying potential threats and vulnerabilities that could affect the asset, analyzing these risks for their potential impact and likelihood, and then prioritizing them based on these factors.

• Mitigation Strategy:

Develop and implement strategies to mitigate the identified risks. This might involve measures like improving the asset's security protocols, integrating it into the network's monitoring systems, or training personnel on how to handle the asset securely.

• Documentation:

Document the entire process and update existing documentation to include information about the new critical asset and the risks associated with it. This not only helps to maintain an accurate record of your network's security posture but also provides a resource for future reference during subsequent risk assessments.

6.1.2. Check for a Change of IT Environment

• Regular Monitoring

Keep an eye on your IT environment for any changes. Monitoring tools can help detect alterations in software, hardware, configurations, network traffic, and user behavior.

• Change Identification

Once a change is detected, identify its nature and scope. For instance, a change could be an update to an existing application, the introduction of new devices into the network, or a modification in network configurations.

• Impact Analysis

Analyze the potential impact of the identified change on the network's security and functionality. Some changes might expose the network to new vulnerabilities or even enhance its security.

• Risk Assessment

Conduct a risk assessment for the change, following the same process as for new critical assets. This includes identifying potential threats and vulnerabilities, analyzing their likelihood and potential impact, and then prioritizing them.

• Mitigation Strategy

Based on the risk assessment, update your mitigation strategies to address the risks associated with the change. This could involve updating security protocols, altering configurations, or deploying additional security tools.

Documentation

Document the change, its impact, the risk assessment process, and the updated mitigation strategies. This documentation not only serves as a record of changes in your IT environment but also aids in future risk assessments and audits.

6.2. Risk Analysis

6.2.1. Qualitative Analysis

• User Experience

Investigate the experiences and perceptions of users who interact with SDN systems. This can involve collecting qualitative data through interviews, focus groups, or surveys to understand their satisfaction, challenges, and suggestions for improvement. Explore topics such as ease of use, performance, reliability, and the impact of SDN on their daily tasks.

• Network Administrator Perspectives

Examine the viewpoints of network administrators or IT professionals responsible for managing SDN deployments. Gain insights into their experiences with configuration, monitoring, troubleshooting, and overall network management. Explore their perceptions of the benefits and challenges associated with SDN, such as network programmability, automation, security, and scalability.

• Organizational Impact

Analyze the organizational impact of implementing SDN. This can involve exploring how SDN affects business processes, collaboration among different teams, or the overall network architecture. Investigate the changes in roles and responsibilities, the challenges faced during the transition, and the benefits achieved after adopting SDN.

Performance Evaluation

Assess the SDN model's performance in network latency, throughput, scalability, and reliability. Use qualitative methods such as capturing network traces or conducting experiments to understand the performance characteristics under different scenarios. Gain insights into the effectiveness of traffic engineering, load balancing, or quality of service (QoS) mechanisms provided by the SDN model.

• Security and Privacy Considerations

Investigate the perceptions and concerns related to security and privacy in SDN environments. Explore how network administrators and users perceive the security features and capabilities of SDN, as well as potential vulnerabilities or risks associated with the technology. Analyze their attitudes towards data privacy, access control, and the ability to enforce security policies in an SDN context.

6.2.2. Quantitative Analysis

• Network Performance Metrics

Measure and analyze performance metrics such as network latency, throughput, packet loss, and jitter in an SDN environment. Use tools like network monitoring software or SDN controllers to collect relevant data and perform statistical analysis to assess the performance of the network.

• Traffic Engineering and Load Balancing

Quantitatively evaluate the effectiveness of traffic engineering and load balancing techniques in SDN. Collect data on network traffic patterns, flows, and utilization. Analyze the distribution of traffic across different paths, the efficiency of load balancing algorithms, and the impact on network performance and resource utilization.

• Resource Allocation and Scalability

Quantify the ability of an SDN model to allocate network resources dynamically and efficiently. Measure resource utilization, such as CPU, memory, and bandwidth, under different traffic loads. Assess the scalability of the SDN solution by analyzing the

performance impact as the network grows in terms of the number of switches, controllers, or connected devices.

• Security Analysis

Quantitatively analyze the security aspects of SDN, such as network intrusion detection, anomaly detection, or DoS (Denial of Service) mitigation. Collect relevant security-related data, such as network traffic logs, and apply statistical techniques to identify patterns, detect anomalies, or evaluate the effectiveness of security mechanisms.

- Energy Efficiency: Quantify the energy consumption and efficiency of SDN deployments. Measure power consumption at different network components, such as switches or controllers, and analyze the impact of SDN on energy savings. Compare energy efficiency metrics between traditional network architectures and SDN to assess the potential benefits of adopting SDN in terms of reduced power consumption.
- QoS (Quality of Service) Evaluation: Quantitatively assess the QoS provided by SDN in terms of network performance and user experience. Collect data on latency, jitter, and packet loss for distinct types of traffic or service classes. Analyze the adherence to defined QoS policies, the impact of SDN on meeting QoS requirements, and the effectiveness of QoS mechanisms implemented in the SDN model.

6.2.3. Provable Risk Mitigation

• Risk Assessment

Conduct a comprehensive risk assessment to identify and evaluate potential risks associated with SDN deployment. This involves analyzing the impact and likelihood of various risks, such as security vulnerabilities, performance bottlenecks, or configuration errors. By conducting a thorough risk assessment, you can proactively address and mitigate the identified risks.

• Security Measures

Implement robust security measures in the SDN environment to mitigate security risks. This can include features such as access controls, authentication mechanisms, encryption, intrusion detection and prevention systems (IDPS), and security monitoring tools. Regularly assess the effectiveness of these security measures through audits, penetration testing, and vulnerability assessments.

• Redundancy and Resilience

Implement redundancy and resilience mechanisms in the SDN infrastructure to mitigate the risks of single points of failure. This can involve deploying redundant controllers, switches, or network paths to ensure continuous network operation even in the event of failures. Validate the effectiveness of these mechanisms through testing and monitoring.

• Traffic Engineering and QoS Mechanisms

Utilize SDN's traffic engineering capabilities to optimize network resource utilization, load balancing, and quality of service (QoS) provisioning. By effectively managing traffic flows and prioritizing critical applications or services, you can mitigate risks associated

with performance degradation or service disruptions. Monitor and measure network performance to ensure the desired QoS levels are achieved.

• Change Management and Configuration Control

Establish robust change management and configuration control processes for SDN deployments. Implement version control, configuration baselining, and change tracking mechanisms to mitigate risks introduced by unauthorized or erroneous changes. Regularly review and validate configuration changes to ensure adherence to policies and best practices.

• Monitoring and Analytics

Deploy monitoring and analytics tools to continuously monitor the SDN environment and detect anomalies or potential risks. Utilize network telemetry, flow data, and log analysis to identify security incidents, performance bottlenecks, or abnormal behavior. Proactively address the identified risks based on the insights gained from monitoring and analytics.

6.3. Advantages and Disadvantage of Solutions

6.3.1. Advantages

SDN has completely changed the network world by driving several advantages over the traditional network:

- Efficient Resource Management: SDN offers the flexibility and efficiency needed for effective network resource management.
- Flexibility and Automation: SDN enables flexible network configurations and automates deployment and management processes.
- Integrated Network Services: Seamless integration of network services such as security system, load balancing, and monitoring.

In our project, we gave an overview of the SDN concept and how it can adapt to the business environment to bring benefits and improve the quality of work performance. Additionally, the advantages make SDN a different approach to network management

6.3.2. Disadvantages

Beside the advantages we notice above, SDN still have some drawback that should be focus when deployment it:

- Deployment Costs: Implementing SDN infrastructure may involve a substantial upfront investment.
- Steep Learning Curve: Learning and implementing SDN can require considerable time and resources from administrators.

In this project, we still do not have the opportunity to develop in a physical environment, everything is virtual. Additionally, our self-grown network management tool has few policy templates and an unattractive interface.

6.4. Future Plan

In the future, we want to study deep dive into SDN concept that can help us develop a specific system that adapt to our plan:

- SDN for Enterprise Networks: Providing comprehensive network solutions to optimize performance and costs for businesses.
- Integration with Emerging Networks: Combining SDN with new networks to leverage high speeds and extensive connectivity, particularly in applications like future cloud services.

REFERENCES

1	Software-Defined Networking: Challenges and research opportunities for
	Future Internet
	Authors: Akram Hakiri, Aniruddha Gokhale, Pascal Berthou, Douglas C.
	Schmidt, Gayraud Thierry
2	A comprehensive review on SDN architecture, applications and major benefits
	<u>of SDN</u>
	Authors: V. Thirupathi, Ch. Sandeep, S. Naresh Kumar, P. Pramod Kumar
3	Security Issues in Software Defined Networking (SDN): Risks, Challenges and
	<u>Potential Solutions</u>
	Authors: Maham Iqbal, Farwa Iqbal, Fatima Mohsin, Dr. Muhammad Rizwan,
	Dr. Fahad Ahmad
4	<u>Kubernetes: Documentation</u>
5	<u>Understanding the Security Implications of Kubernetes Networking</u>
6	Cisco Annual Internet Report (2018–2023) White Paper
7	How to Install Kubernetes Cluster on Ubuntu 22.04
0	V. h A. M. to a al. D. li D. sin a
8	<u>Kubernetes Network Policy Recipes</u>
9	Kubernetes Network Policy Tutorial
	Kubernetes Network I oucy I utoritat
10	Kubernetes Client Libraries
	Midernetes Citent Libraries
11	Kubernetes Python Client
12	What is Software-Defined Networking?
L	