$u^{(1)}$ to $u^{(n_i)}$ to an output $u^{(n)}$. This defines a computational graph where each node computes numerical value $u^{(i)}$ by applying a function $f^{(i)}$ to the set of arguments $\mathbb{A}^{(i)}$ that comprises the values of previous nodes $u^{(j)}$, i < i, with $j \in Pa(u^{(i)})$. The input to the computational graph is the vector x, and is set into the first n_i nodes $u^{(1)}$ to $u^{(n_i)}$. The output of the computational graph is read off the last (output) node $u^{(n)}$. for $i = 1, \ldots, n_i$ do $u^{(i)} \leftarrow x_i$

Algorithm 6.1 A procedure that performs the computations mapping n_i inputs

$$u^{(i)} \leftarrow x_i$$
 \mathbf{end} for $i = n_i + 1, \dots, n$ do
$$\mathbf{A}^{(i)} \leftarrow \mathbf{C}^{(i)} + i \in \mathbf{R}^{(i)}(i)$$

 $\mathbb{A}^{(i)} \leftarrow \{u^{(j)} \mid j \in Pa(u^{(i)})\}\$

 $u^{(i)} \leftarrow f^{(i)}(\mathbb{A}^{(i)})$

end for

return $u^{(n)}$