Sources of variability in label-free proteomics experiments

Lieven Clement

statOmics, Ghent University

1

Contents

1 Intro

	1.1	MS-based workflow	2						
	1.2	CPTAC Spike-in Study	3						
2	Sou	Sources of variation 5							
	2.1	Intensities of one peptide	5						
	2.2	Log-transform	7						
	2.3	Filtering	8						
	2.4	Technical Variability	8						
	2.5	Normalization	10						
	2.6	Pseudo replication	12						
R	efere	nces	27						
		part of the online course Experimental Design and Data-Analysis in Label-Free Quantitative LC/M nics - A Tutorial with msqrob2 (hupo21)	IS						
Cl	ick to	see libraries that are loaded							
li li li	brary brary brary brary	y(tidyverse) y(limma) y(QFeatures) y(msqrob2) y(plotly) y(gridExtra)							

1 Intro

- 1. Background + cptac study
- 2. Sources of variability
- 3. Summarization

The summary \cdot

1.1 MS-based workflow

Quantification Identification

- Peptide Characteristics
 - Modifications
 - Ionisation Efficiency: huge variability
 - Identification
 - * Misidentification \rightarrow outliers
 - * MS 2 selection on peptide abundance
 - * Context depending missingness
 - * Non-random missingness
- \rightarrow Unbalanced pepide identifications across samples and messy data

1.2 CPTAC Spike-in Study

5 spike-in concentrations: 6A to 6E

- Same trypsin-digested yeast proteome background in each sample
- Trypsin-digested Sigma UPS1 standard: 48 different human proteins spiked in at 5 different concentrations (treatment A-E)
- Samples repeatedly run on different instruments in different labs
- After MaxQuant search with match between runs option
 - -41% of all proteins are quantified in all samples
 - 6.6% of all peptides are quantified in all samples

 $[\]rightarrow$ vast amount of missingness

1.2.1 Maxquant output

1.2.2 Read data

Click to see background and code

1. We use a peptides.txt file from MS-data quantified with maxquant that contains MS1 intensities summarized at the peptide level.

peptidesFile <- "https://raw.githubusercontent.com/statOmics/PDA21/data/quantification/fullCptacDatasSe</pre>

2. Maxquant stores the intensity data for the different samples in columns that start with Intensity. We can retreive the column names with the intensity data with the code below:

```
ecols <- grep("Intensity\\.", names(read.delim(peptidesFile)))</pre>
```

3. Read the data and store it in QFeatures object

```
pe <- readQFeatures(
  table = peptidesFile,
  fnames = 1,
  ecol = ecols,
  name = "peptideRaw", sep="\t")</pre>
```

1.2.3 Design

Click to see background and code

```
## CharacterList of length 1
## [["peptideRaw"]] Intensity.6A_1 Intensity.6A_2 ... Intensity.6E_9
```

- Note, that the sample names include the spike-in condition.
- They also end on a number.

```
- 1-3 is from lab 1,
```

- 4-6 from lab 2 and
- 7-9 from lab 3.
- We update the colData with information on the design

```
colData(pe)$lab <- rep(rep(paste0("lab",1:3),each=3),5) %>% as.factor
colData(pe)$condition <- pe[["peptideRaw"]] %>% colnames %>% substr(12,12) %>% as.factor
colData(pe)$spikeConcentration <- rep(c(A = 0.25, B = 0.74, C = 2.22, D = 6.67, E = 20),each = 9)</pre>
```

• We explore the colData

```
colData(pe)
```

```
## DataFrame with 45 rows and 3 columns
##
                        lab condition spikeConcentration
##
                  <factor> <factor>
                                                <numeric>
## Intensity.6A_1
                      lab1
                                    Α
                                                     0.25
## Intensity.6A_2
                      lab1
                                    Α
                                                     0.25
## Intensity.6A_3
                      lab1
                                    Α
                                                     0.25
## Intensity.6A_4
                      lab2
                                    Α
                                                     0.25
## Intensity.6A_5
                                    Α
                                                     0.25
                      lab2
## ...
                        . . .
## Intensity.6E_5
                                                       20
                      lab2
                                    Ε
## Intensity.6E_6
                      lab2
                                    Ε
                                                       20
                                    Ε
## Intensity.6E_7
                                                       20
                      lab3
## Intensity.6E_8
                                    Ε
                                                       20
                      lab3
                                    Ε
                                                       20
## Intensity.6E_9
                       lab3
```

2 Sources of variation

2.1 Intensities of one peptide

Peptide AALEELVK from spiked-in UPS protein P12081. We only show data from lab1.

peptide AALEELVK in lab1

• Variance increases with the mean \rightarrow Multiplicative error structure

plotLog

peptide AALEELVK in lab1 with axes on log scale

- Data seems to be homoscedastic on log-scale \rightarrow log transformation of the intensity data
- In quantitative proteomics analysis on log₂
- \rightarrow Differences on a \log_2 scale: \log_2 fold changes

$$\log_2 B - \log_2 A = \log_2 \frac{B}{A} = \log F C_{\text{B - A}}$$

$$log_2 F C = 1 \rightarrow F C = 2^1 = 2$$

$$log_2 F C = 2 \rightarrow F C = 2^2 = 4$$

2.2 Log-transform

Click to see code to log-transfrom the data

• We calculate how many non zero intensities we have for each peptide and this can be useful for filtering.

 \bullet Peptides with zero intensities are missing peptides and should be represent with a NA value rather than 0.

```
pe <- zeroIsNA(pe, "peptideRaw") # convert 0 to NA
```

• Logtransform data with base 2

```
pe <- logTransform(pe, base = 2, i = "peptideRaw", name = "peptideLog")</pre>
```

2.3 Filtering

Click to see code to filter the data

1. Handling overlapping protein groups

In our approach a peptide can map to multiple proteins, as long as there is none of these proteins present in a smaller subgroup.

```
pe <- filterFeatures(pe, ~ Proteins %in% smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))</pre>
```

2. Remove reverse sequences (decoys) and contaminants

We now remove the contaminants, peptides that map to decoy sequences, and proteins which were only identified by peptides with modifications.

```
pe <- filterFeatures(pe,~Reverse != "+")
pe <- filterFeatures(pe,~ Potential.contaminant != "+")</pre>
```

3. Drop peptides that were only identified in one sample

We keep peptides that were observed at last twice.

```
pe <- filterFeatures(pe,~ nNonZero >=2)
nrow(pe[["peptideLog"]])
```

```
## [1] 10478
```

We keep 10478 peptides upon filtering.

2.4 Technical Variability

Click to see code for plot

```
densityConditionD <- pe[["peptideLog"]][,colData(pe)$condition=="D"] %>%
  assay %>%
  as.data.frame() %>%
  gather(sample, intensity) %>%
  mutate(lab = colData(pe)[sample,"lab"]) %>%
  ggplot(aes(x=intensity,group=sample,color=lab)) +
    geom_density() +
```

```
ggtitle("condition D")

densityLab2 <- pe[["peptideLog"]][,colData(pe)$lab=="lab2"] %>%
   assay %>%
   as.data.frame() %>%
   gather(sample, intensity) %>%
   mutate(condition = colData(pe)[sample,"condition"]) %>%
   ggplot(aes(x=intensity,group=sample,color=condition)) +
   geom_density() +
   ggtitle("lab2")
```

densityConditionD

Warning: Removed 39179 rows containing non-finite values (stat_density).

densityLab2

Warning: Removed 44480 rows containing non-finite values (stat_density).

- Even in very clean synthetic dataset (same background, only 48 UPS proteins can be different) the marginal peptide intensity distribution across samples can be quite distinct
- Considerable effects between and within labs for replicate samples
- Considerable effects between samples with different spike-in concentration

\rightarrow Normalization is needed

2.5 Normalization

Normalization of the data by median centering

$$y_{ip}^{\text{norm}} = y_{ip} - \hat{\mu}_i$$

with $\hat{\mu}_i$ the median intensity over all observed peptides in sample i.

Click to see R-code to normalize the data

Click to see code to make plot

```
densityConditionDNorm <- pe[["peptideNorm"]][,colData(pe)$condition=="D"] %>%
  assay %>%
  as.data.frame() %>%
  gather(sample, intensity) %>%
  mutate(lab = colData(pe)[sample, "lab"]) %>%
  ggplot(aes(x=intensity,group=sample,color=lab)) +
    geom_density() +
    ggtitle("condition D")
densityLab2Norm <- pe[["peptideNorm"]][,colData(pe)$lab=="lab2"] %>%
  assay %>%
  as.data.frame() %>%
  gather(sample, intensity) %>%
  mutate(condition = colData(pe)[sample,"condition"]) %>%
  ggplot(aes(x=intensity,group=sample,color=condition)) +
    geom_density() +
    ggtitle("lab2")
```

 ${\tt densityConditionDNorm}$

Warning: Removed 39179 rows containing non-finite values (stat_density).

Warning: Removed 44480 rows containing non-finite values (stat_density).

2.6 Pseudo replication

```
prot <- "P01031ups|C05_HUMAN_UPS"
data <- pe[["peptideNorm"]][
    rowData(pe[["peptideNorm"]])$Proteins == prot,
    colData(pe)$lab=="lab3"] %>%
    assay %>%
    as.data.frame %>%
    rownames_to_column(var = "peptide") %>%
    gather(sample, intensity, -peptide) %>%
    mutate(condition = colData(pe)[sample,"condition"]) %>%
    na.exclude
sumPlot <- data %>%
    ggplot(aes(x = peptide, y = intensity, color = condition, group = sample, label = condition), show.legeom_text(show.legend = FALSE) +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
```

```
xlab("Peptide") +
ylab("Intensity (log2)") +
ggtitle(paste0("protein: ",prot))
```

```
sumPlot +
geom_line(linetype="dashed",alpha=.4)
```


- Sources of variability in plot:
 - Between treatment variability
 - Between sample variability
 - Between peptide variability
 - within sample variability
- Multiple peptides from same protein in a sample
- Peptide intensities in the same sample are correlated: Pseudo replication

\rightarrow Summarization!

- Strong peptide effect
- Unbalanced peptide identification

2.6.1 Illustration on subset of CPTAC study: A vs B comparison in lab 3

2.6.1.1 LFQ Click to see background and code

1. Import data

```
proteinsFile <- "https://raw.githubusercontent.com/statOmics/PDA21/data/quantification/cptacAvsB_lab3/p
ecols <- grep("LFQ\\.intensity\\.", names(read.delim(proteinsFile)))

peLFQ <- readQFeatures(
   table = proteinsFile, fnames = 1, ecol = ecols,
   name = "proteinRaw", sep = "\t"
)

cond <- which(
   strsplit(colnames(peLFQ)[[1]][1], split = "")[[1]] == "A") # find where condition is stored

colData(peLFQ)$condition <- substr(colnames(peLFQ), cond, cond) %>%
   unlist %>%
   as.factor
```

2. Preprocessing

3. Modeling and Inference

2.6.1.2 Median & robust summarization Click to see background and code

1. Import Data

```
peptidesFile <- "https://raw.githubusercontent.com/stat0mics/SGA2020/data/quantification/cptacAvsB_lab3
ecols <- grep(
   "Intensity\\.",
   names(read.delim(peptidesFile))
)

peAB <- readQFeatures(
   table = peptidesFile,
   fnames = 1,
   ecol = ecols,
   name = "peptideRaw", sep="\t")

cond <- which(
   strsplit(colnames(peAB)[[1]][1], split = "")[[1]] == "A") # find where condition is stored

colData(peAB)$condition <- substr(colnames(peAB), cond, cond) %>%
   unlist %>%
   as.factor
```

2. Preprocessing

```
rowData(peAB[["peptideRaw"]])$nNonZero <- rowSums(assay(peAB[["peptideRaw"]]) > 0)

peAB <- zeroIsNA(peAB, "peptideRaw") # convert 0 to NA

peAB <- logTransform(peAB, base = 2, i = "peptideRaw", name = "peptideLog")

peAB <- filterFeatures(peAB, ~ Proteins %in% smallestUniqueGroups(rowData(peAB[["peptideLog"]])$Protein

peAB <- filterFeatures(peAB, ~ Reverse != "+")

peAB <- filterFeatures(peAB, ~ Potential.contaminant != "+")

peAB <- filterFeatures(peAB, ~ nNonZero >=2)

nrow(peAB[["peptideLog"]])
```

[1] 7011

```
name = "proteinMedian",
fun = matrixStats::colMedians)

peAB <- aggregateFeatures(peAB,
    i = "peptideNorm",
    fcol = "Proteins",
    na.rm = TRUE,
    name = "proteinRobust")</pre>
```

```
3. Modeling and inference
peAB <- msqrob(object = peAB, i = "proteinMedian", formula = ~condition)</pre>
L <- makeContrast("conditionB=0", parameterNames = c("conditionB"))</pre>
peAB <- hypothesisTest(object = peAB, i = "proteinMedian", contrast = L)</pre>
peAB <- msqrob(object = peAB, i = "proteinRobust", formula = ~condition)</pre>
peAB <- hypothesisTest(object = peAB, i = "proteinRobust", contrast = L)</pre>
volcanoMedian <- ggplot(rowData(peAB[["proteinMedian"]])$conditionB,</pre>
                  aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)) +
  geom_point(cex = 2.5) +
  scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
  theme_minimal() +
  ggtitle(paste0("Median: TP = ",sum(rowData(peAB[["proteinMedian"]])$conditionB$adjPval<0.05&grepl(row.
volcanoRobust<- ggplot(rowData(peAB[["proteinRobust"]])$conditionB,</pre>
                  aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)) +
  geom_point(cex = 2.5) +
  scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
  theme_minimal() +
  ggtitle(paste0("Robust: TP = ",sum(rowData(peAB[["proteinRobust"]])$conditionB$adjPval<0.05&grepl(row.
ylims \leftarrow c(0,
           ceiling(max(c(-log10(rowData(peLFQ[["protein"]])$conditionB$pval),
               -log10(rowData(peAB[["proteinMedian"]])$conditionB$pval),
               -log10(rowData(peAB[["proteinRobust"]])$conditionB$pval)),
               na.rm=TRUE))
)
xlims <- max(abs(c(rowData(peLFQ[["protein"]])$conditionB$logFC,</pre>
               rowData(peAB[["proteinMedian"]])$conditionB$logFC,
               rowData(peAB[["proteinRobust"]])$conditionB$logFC)),
               na.rm=TRUE) * c(-1,1)
compBoxPlot <- rbind(rowData(peLFQ[["protein"]])$conditionB %>% mutate(method="maxLFQ") %>% rownames_to
      rowData(peAB[["proteinMedian"]])$conditionB %% mutate(method="median")%% rownames_to_column(var
      rowData(peAB[["proteinRobust"]])$conditionB%% mutate(method="robust")%% rownames_to_column(var=
      mutate(ups= grepl(protein,pattern="UPS")) %>%
    ggplot(aes(x = method, y = logFC, fill = ups)) +
    geom_boxplot() +
    geom_hline(yintercept = log2(0.74 / .25), color = "#00BFC4") +
    geom_hline(yintercept = 0, color = "#F8766D")
```

2.6.1.3 Comparison summarization methods

Warning: Removed 746 rows containing missing values (geom_point).

Warning: Removed 166 rows containing missing values (geom_point).

Warning: Removed 167 rows containing missing values (geom_point).

• Robust summarization: highest power and still good FDR control: $FDP = \frac{1}{20} = 0.05$.

compBoxPlot

Warning: Removed 1079 rows containing non-finite values (stat_boxplot).

- Median: biased logFC estimates for spike-in proteins
- maxLFQ: more variable logFC estiamtes for spike-in proteins

2.6.2 Median summarization

We first evaluate median summarization for protein P01031ups |CO5_HUMAN_UPS. Click to see code to make plot

```
dataHlp <- pe[["peptideNorm"]][
    rowData(pe[["peptideNorm"]]) Proteins == prot,
    colData(pe) lab=="lab3"] %>% assay

sumMedian <- data.frame(
    intensity= dataHlp
        %>% colMedians(na.rm=TRUE)
,
    condition= colnames(dataHlp) %>% substr(12,12) %>% as.factor )

sumMedianPlot <- sumPlot +
    geom_hline(
    data = sumMedian,
    mapping = aes(yintercept=intensity,color=condition)) +
    ggtitle("Median summarization")</pre>
```


- The sample medians are not a good estimate for the protein expression value.
- Indeed, they do not account for differences in peptide effects
- Peptides that ionize poorly are also picked up in samples with high spike-in concentration and not in samples with low spike-in concentration
- This introduces a bias.

2.6.3 Mean summarization

$$y_{ip} = \beta_i^{\text{sample}} + \epsilon_{ip}$$

```
sumMeanMod <- lm(intensity ~ -1 + sample,data)

sumMean <- data.frame(
  intensity=sumMeanMod$coef[grep("sample",names(sumMeanMod$coef))],
  condition= names(sumMeanMod$coef)[grep("sample",names(sumMeanMod$coef))] %>% substr(18,18) %>% as.fac
```

```
sumMeanPlot <- sumPlot + geom_hline(
  data = sumMean,
  mapping = aes(yintercept=intensity,color=condition)) +
  ggtitle("Mean summarization")</pre>
```

```
grid.arrange(sumMedianPlot, sumMeanPlot, ncol=2)
```

Warning: Removed 1 rows containing missing values (geom_hline).

2.6.4 Model based summarization

We can use a linear peptide-level model to estimate the protein expression value while correcting for the peptide effect, i.e.

$$y_{ip} = \beta_i^{\text{sample}} + \beta_p^{peptide} + \epsilon_{ip}$$

```
sumMeanPepMod <- lm(intensity ~ -1 + sample + peptide,data)
sumMeanPep <- data.frame(
  intensity=sumMeanPepMod$coef[grep("sample",names(sumMeanPepMod$coef))] + mean(data$intensity) - mean(
  condition= names(sumMeanPepMod$coef)[grep("sample",names(sumMeanPepMod$coef))] %>% substr(18,18) %>%
```

```
fitLmPlot <- sumPlot + geom_line(
   data = data %>% mutate(fit=sumMeanPepMod$fitted.values),
   mapping = aes(x=peptide, y=fit,color=condition, group=sample)) +
   ggtitle("fit: ~ sample + peptide")
sumLmPlot <- sumPlot + geom_hline(
   data = sumMeanPep,
   mapping = aes(yintercept=intensity,color=condition)) +
   ggtitle("Summarization: sample effect")</pre>
```

```
grid.arrange(sumMedianPlot, sumMeanPlot, sumLmPlot, nrow=1)
```

Warning: Removed 1 rows containing missing values (geom_hline).

- By correcting for the peptide species the protein expression values are much better separated an better reflect differences in abundance induced by the spike-in condition.
- Indeed, it shows that median and mean summarization that do not account for the peptide effect indeed overestimate the protein expression value in the small spike-in conditions and underestimate that in the large spike-in conditions.
- Still there seem to be some issues with samples that for which the expression values are not well separated according to the spike-in condition.

A residual analysis clearly indicates potential issues:

```
resPlot <- data %>%
  mutate(res=sumMeanPepMod$residuals) %>%
  ggplot(aes(x = peptide, y = res, color = condition, label = condition), show.legend = FALSE) +
  geom_point(shape=21) +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  xlab("Peptide") +
  ylab("residual") +
  ggtitle("residuals: ~ sample + peptide")
```



```
grid.arrange(fitLmPlot, sumLmPlot, nrow = 1)
```


- The residual plot shows some large outliers for peptide KIEEIAAK.
- Indeed, in the original plot the intensities for this peptide do not seem to line up very well with the concentration.
- This induces a bias in the summarization for some of the samples (e.g. for D and E)

2.6.5 Robust summarization using a peptide-level linear model

$$y_{ip} = \beta_i^{\text{sample}} + \beta_p^{peptide} + \epsilon_{ip}$$

• Ordinary least squares: estimate β that minimizes

$$OLS: \sum_{i,p} \epsilon_{ip}^2 = \sum_{i,p} (y_{ip} - \beta_i^{\text{sample}} - \beta_p^{\text{peptide}})^2$$

We replace OLS by M-estimation with loss function

$$\sum_{i,p} w_{ip} \epsilon_{ip}^2 = \sum_{i,p} w_{ip} (y_{ip} - \beta_i^{\text{sample}} - \beta_p^{\text{peptide}})^2$$

- Iteratively fit model with observation weights w_{ip} until convergence
- The weights are calculated based on standardized residuals

```
sumMeanPepRobMod <- MASS::rlm(intensity ~ -1 + sample + peptide,data)</pre>
resRobPlot <- data %>%
  mutate(res = sumMeanPepRobMod$residuals,
         w = sumMeanPepRobMod$w) %>%
  ggplot(aes(x = peptide, y = res, color = condition, label = condition, size=w), show.legend = FALSE) +
  geom_point(shape=21,size=.2) +
  geom_point(shape=21) +
  theme minimal() +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  xlab("Peptide") +
  ylab("residual") +
  ylim(c(-1,1)*max(abs(sumMeanPepRobMod$residuals)))
weightPlot <- qplot(</pre>
  seq(-5,5,.01),
  MASS::psi.huber(seq(-5,5,.01)),
  geom="path") +
  xlab("standardized residual") +
  ylab("weight")
```

grid.arrange(weightPlot,resRobPlot,nrow=1)

• We clearly see that the weights in the M-estimation procedure will down-weight errors associated with outliers for peptide KIEEIAAK.

```
sumMeanPepRob <- data.frame(
  intensity=sumMeanPepRobMod$coef[grep("sample",names(sumMeanPepRobMod$coef))] + mean(data$intensity) -
  condition= names(sumMeanPepRobMod$coef)[grep("sample",names(sumMeanPepRobMod$coef))] %>% substr(18,18

sumRlmPlot <- sumPlot + geom_hline(
  data=sumMeanPepRob,
  mapping=aes(yintercept=intensity,color=condition)) +
  ggtitle("Robust")</pre>
```

```
grid.arrange(sumLmPlot + ggtitle("OLS"), sumRlmPlot, nrow = 1)
```


• Robust regresion results in a better separation between the protein expression values for the different samples according to their spike-in concentration.

2.6.6 Comparison summarization methods

• maxLFQ

a >P63208

MPSIKLQSSDGEIFEVDVEIAKQSVTIKTMLEDLGMDDEGDD
DPVPLPNVNAAILKKVIQWCTHHKDDPPPPEDDENKEKRTDD
IPVWDQEFLKVDQGTLFELILAANYLDIKGLLDVTCKTVANM
IKGKTPEEIRKTFNIKNDFTEEEEAQVRKENQWCEEK

b **Peptide** Sequence Charge Mod. species 2 LQSSDGEIFEVDVEIAK P₂ 3 LQSSDGEIFEVDVEIAK 2 P_3 RTDDIPVWDQEFLK P_4 TVANMIK 2 P_5 2 TVANMIK Oxid. 3 **TPEEIRK** 2

	A	В	C	D	E	F
F	r _{FA}	r _{FB}	r _{FC}	r _{FD}	r _{FE}	
E	r _{EA}	r _{EB}	r _{EC}	r _{ED}		
D	r _{DA}	r _{DB}	r _{DC}			
С	r _{CA}	r _{CB}				
В	r _{BA}					
Α						
d						

•		
$r_{BA} = I_B / I_A$	$r_{CA} = I_C / I_A$	$r_{CB} = I_C / I_B$
$r_{DA} = I_D / I_A$	$r_{DB} = I_D / I_B$	$r_{DC} = I_D / I_C$
$r_{EC} = I_E / I_C$	$r_{ED} = I_E / I_D$	<i>I_F</i> = 0

- MS-stats also uses a robust peptide level model to perform the summarization, however, they typically first impute missing values
- Proteus high-flyer method: mean of three peptides with highest intensity

- (Sticker et al. 2020)
- doi: https://doi.org/10.1074/mcp.RA119.001624
- pdf

References

Sticker, A., L. Goeminne, L. Martens, and L. Clement. 2020. "Robust Summarization and Inference in Proteome-wide Label-free Quantification." *Mol Cell Proteomics* 19 (7): 1209–19.