

Feature Detection

CSE 5005: Computer vision & Image Processing

a challenging problem

Harder Case

by Diva Sian

by scgbt

Harder Still?

NASA Mars Rover images

Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches (Figure by Noah Snavely)

Motivation for using local features

- Global representations have major limitations
- Instead, describe and match only local regions
- Increased robustness to
 - Occlusions

- Articulation

Intra-category variations

General Approach

- Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- Compute a local descriptor from the normalized region
- Match local descriptors

Slide credit: Bastian Leibe

Example

- Motivation: Image stitching
 - We have two images how do we combine them?

Step 1: extract features

Step 2: match features

Example

- Motivation: Image stitching
 - We have two images how do we combine them?

Step 1: extract features

Step 2: match features

Step 3: align images

Common Requirements

- Problem 1:
 - Detect the same point independently in both images

No chance to match!

We need a repeatable detector!

Common Requirements

- Problem 1:
 - Detect the same point independently in both images
- Problem 2:
 - For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor!

Invariance: Geometric Transformations

Levels of Geometric Invariance

Invariance: Photometric Transformation

Requirements

- Region extraction needs to be repeatable and accurate
 - Invariant to translation, rotation, scale changes
 - Robust or covariant to out-of-plane (? affine) transformations
 - Robust to lighting variations, noise, blur, quantization
- Locality: Features are local, therefore robust to occlusion and clutter.
- Quantity: We need a sufficient number of regions to cover the object.
- Distinctivenes: The regions should contain "interesting" structure.
- Efficiency: Close to real-time performance.

Applications

- Feature points are used for:
 - Image alignment
 - 3D reconstruction
 - Motion tracking
 - Robot navigation
 - Indexing and database retrieval
 - Object recognition

Keypoint Localization

Goals:

- Repeatable detection
- Precise localization
- Interesting content
- ? Look for two-dimensional signal changes

Finding Corners

- Key property:
 - In the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."

Proceedings of the 4th Alvey Vision Conference, 1988.

Corners as Distinctive Interest Points

- Design criteria
 - We should easily recognize the point by looking through a small window (locality)
 - Shifting the window in any direction should give a large change in intensity (good localization)

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Aperture problem

What is an interest point?

Harris Detector Formulation

Change of intensity for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \Big[I(x+u,y+v) - I(x,y) \Big]^2$$
Window Shifted intensity Intensity

Correlation

$$f \otimes h = \sum_{k} \sum_{l} f(k, l) h(k, l)$$

$$f = Image$$

$$h = Kernel$$

f

f_1	f_2	f_3
f_4	f_5	f_6
f ₇	f_8	f_9

 \otimes

h

h_1	h_2	h_3	
h_4	h_5	h ₆	
h ₇	h ₈	h ₉	

 $f * h = f_1 h_1 + f_2 h_2 + f_3 h_3$

$$+ f_4 h_4 + f_5 h_5 + f_6 h_6$$

$$+ f_7 h_7 + f_8 h_8 + f_9 h_9$$

Correlation vs SSD

$$SSD = \sum_{k} \sum_{l} \left(f(k,l) - h(k,l) \right)^{2} \qquad \text{Sum of Squares Difference}$$

$$SSD = \sum_{k} \sum_{l} \left(f(k,l)^{2} - 2h(k,l)f(k,l) + h(k,l)^{2} \right)$$
 minimize
$$SSD = \sum_{k} \sum_{l} \left(-2h(k,l)f(k,l) \right) \qquad \text{These terms do not depend on correlation}$$

$$SSD = \sum_{k} \sum_{l} \left(2h(k,l)f(k,l) \right)$$
 maximize
$$SSD = \sum_{k} \sum_{l} \left(2h(k,l)f(k,l) \right)$$
 maximize
$$f \otimes f = \sum_{k} \sum_{l} f(k,l)f(k,l)$$

Harris Detector Formulation

Change of intensity for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \Big[I(x+u,y+v) - I(x,y) \Big]^2$$
Window Shifted intensity Intensity

Taylor series

 $\mathcal{J}(x)$ Can be represented at point a in terms of its derivatives

$$f(x) = f(a) + (x-a)f_x + \frac{(x-a)^2}{2!}f_{xx} + \frac{(x-a)^3}{3!}f_{xxx} + \dots$$

Express I(x+u, y+v) at (x, y):

$$I(x+u, y+v) = I(x, y) + I_x(x+u-x) + I_y(y+v-y)$$

$$I(x+u, y+v) = I(x, y) + I_x u + I_v v$$

Mathematics of Harris detector

$$E(u,v) = \sum_{x,y} \underbrace{\left[I(x+u,y+v) - I(x,y)\right]^2}_{\text{shifted intensity}}$$

$$E(u,v) = \sum_{x,y} \underbrace{\left[I(x,y) + uI_x + vI_y - I(x,y)\right]^2}_{\text{shifted intensity}}$$

$$E(u,v) = \sum_{x,y} \left[uI_x + vI_y\right]^2$$

$$E(u,v) = \sum_{x,y} \left[uv \begin{pmatrix} I_x \\ I_y \end{pmatrix}\right]^2$$

$$E(u,v) = \sum_{x,y} \left[uv \begin{pmatrix} I_x \\ I_y \end{pmatrix}\right]^2$$

$$E(u,v) = \sum_{x,y} \left[uv \begin{pmatrix} I_x \\ I_y \end{pmatrix}\right]^2$$

$$E(u,v) = \left[uv \begin{pmatrix} I_x \\ I_y \end{pmatrix}\right]^2$$

Harris Detector Formulation

This measure of change can be approximated by:

$$E(u,v) \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a 2 ? 2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gradient with respect to x , times gradient with respect to y

Sum over image region – the area we are checking for corner

$$M = \begin{bmatrix} \sum_{I_x I_x} I_x & \sum_{I_x I_y} I_x I_y \\ \sum_{I_x I_y} I_y & \sum_{I_y I_y} \end{bmatrix} = \sum_{I_y I_y} \begin{bmatrix} I_x & I_y \\ I_y \end{bmatrix} [I_x I_y]$$

Harris Detector Formulation

Image I

where M is a 2 ? 2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gradient with respect to x , times gradient with respect to y

Sum over image region – the area we are checking for corner

$$M = \begin{bmatrix} \sum_{I_x I_x} & \sum_{I_x I_y} \\ \sum_{I_x I_y} & \sum_{I_y I_y} \end{bmatrix} = \sum_{I_y I_y} \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y]$$

What Does This Matrix Reveal?

First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

What Does This Matrix Reveal?

First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

- This means:
 - Dominant gradient directions align with x or y axis
 - If either λ is close to 0, then this is not a corner, so look for locations where both are large.
- What if we have a corner that is not aligned with the image axes?

Interpreting the Eigenvalues

Harris Corner response function

$$R = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2 = \det(M) - \alpha \operatorname{trace}(M)^2$$

 α : constant (0.04 to 0.06)

 λ_2

Determinant (det(A)):

$$|A|=egin{array}{cc} a & b \ c & d \end{array} |=ad-bc.$$

Trace (trace(A)):

$$\mathrm{tr}(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^n a_{ii}$$

Window Function w(x,y)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Option 1: uniform window
 - Sum over square window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Problem: not rotation invariant

1 in window, 0 outside

- Option 2: Smooth with Gaussian
 - Gaussian already performs weighted sum

$$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Result is rotation invariant

Summary Harris Detector [Harris88]

$$M(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

Image derivatives (optionally, blur first)

2. Square of derivatives

3. Gaussian filter $g(\sigma_i)$

4. Cornerness function – both eigenvalues are strong

$$har = \det[M(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(M(\sigma_{I}, \sigma_{D}))^{2}]$$

$$= g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

Compute corner response R

Take only the points of local maxima of R

Harris Detector – Responses [Harris88]

Harris Detector – Responses [Harris88]

Results are well suited for finding stereo correspondences

Hessian Matrix Detector

• For an Image the Hessian matrix can be expressed as

$$H = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{yx} & I_{yy} \end{bmatrix}$$

$$D = Det(H) = I_{xx}I_{yy} - I_{xy}^2$$

Result using vlfeat open library

Measuring repeatability

• Schmid, C., Mohr, R., and Bauckhage, C. (2000). Evaluation of interest point detectors. *International Journal of Computer Vision*, 37(2):151–172.

- Frequency with which interest points are detected in one image are to be within € pixels in transformed image
- Measured information content at each detected point
- Reported Harris method works best

Adaptive non-maxima suppression (ANMS)

- Local maxima leads to uneven distribution of feature points.
- Look for local maxima with a response significantly (10%) greater than that of its neighbours within a radius *r*.

Strongest 500

ANMS 500, r = 16

M. Brown; R. Szeliski; S. Winder, Multi-image matching using multi-scale oriented patches, CVPR 2005

Feature from Accelerated Segment Test (FAST)

Pixel p is considered as a corner if there are n contiguous pixels in the circle out of 16 pixels, which are all brighter than $I_p + t$, or all darker than $I_p - t$.

Rosten, R. Porter, and T. Drummond, "Faster and better: A machine learning approach to corner detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, pp. 105–119, Jan. 2010.