Statistical Learning for Halide Perovskite Discovery

Panayotis Manganaris¹

¹Purdue Materials Science and Engineering Mannodi Group

June 20, 2022

Outline

- Al Background
- Chemistry Background
- 3 Pipeline
- 4 Feature Engineering
- Supervised Architectures

Artificial Intelligence

AI Background

The Four Approached to Al

Thinking Humanly

- Turing test approach (The Six Fields of AI)¹
- NI P
- Knowledge Representation
- automated reasoning
- Machine Learning
- computer vision
- robotics

Acting Humanly

- cognitive modeling approach

- neuromorphic algorithms

Thinking Rationally

- Laws of Thought
- logical positing - proven algorithms
- correct inference
- syllogistic reason

Acting Rationally

- The rational agent
- inference + reflex
- inference vs deduction

^aStuart Russell and Peter Norvig. Artificial intelligence: a modern approach. Upper Saddle River, New Jersey: Prentice Hall, 2010. ISBN: 9780136042594

Machine Learning I

AI Background

ML Contributes to Al

- Adaptable agent
 - Contextual judgment of percept relevance
 - Autonomous utilization of percept sequence
- Learning
 - function performance improves with exposure to more percepts

Definition (Artifical Agency)

agent self-contained sensor->function->action pipeline function Set of all possible responses for all possible percepts percept sensory input

percept sequence history of sensory input

Machine Learning II

Supervised Training

Encourage the agent to behave "correctly"

- Minimize Loss
- Maximize Score

Unsupervised Training

The agent determines something principally true about its environment using mathematical/logical characterization methods.

- find eigenvectors and eigenvalues
- differentially calculate optima

Inverse Design

A Type of AI Implementation

senses maps points in many dimensions

function reliably navigates it's environment searching for optima

action returns its findings to human interpreters

Perovskite Structure and Chemistry

AI Background

Example² of hybrid organic-inorganic MAPbl₃

²Arun Mannodi-Kanakkithodi and Maria K. Y. Chan. "Data-Driven Design of Novel Halide Perovskite Alloys". In: Energy Environ. Sci. 15 (5 2022), pp. 1930-1949. DOI: 10.1039/D1EE02971A. URL: http://dx.doi.org/10.d039/@1EE02971A =)

Our Dataset

AI Background

DFT Simulations

- geometry optimization
- Static band structure and optical absorption

Levels of Theory

- PBE
- HSE06
- PBE+HSE06(SOC)
- Experimental

Formula	bg_{eV}	η	LoT
MAPbCl3	3.03	0.002	EXP
CsPbI0.375Br2.625	1.68	0.153	PBE
RbSnBr2.625Cl0.375	1.44	NaN	HSE
CsGeCl3	1.05	0.176	PBE
MASr0.5Pb0.5Cl3	5.31	NaN	HSE
MABa0.25Pb0.75I3	1.99	0.015	PBE
MASnI3	2.57	NaN	HSE
MACa0.5Pb0.5Cl3	5.32	NaN	HSE

Band Gap Fidelity I

Figure 1: PBE vs HSE Band Gaps

Band Gap Fidelity II

Comparing computational with experimental³ band gaps

Figure 2: PBE vs Almora BG

Figure 3: HSE vs Almora BG

³Osbel Almora et al. "Device Performance of Emerging Photovoltaic Materials (Version 1)". In: Advanced Energy Materials 11.11 (2020), p. 2002774. DOI: 10.1002/aenm.202002774. URL: http://dx.doi.org/10.1002/ænm.202002\footnote{774}

Data Pre-Processing

Figure 4: Data Preprocessing Workflow to Implement with Python Pandas

Machine Learning Pipeline

Figure 5: Machine Learning Pipeline to Implement with Python SciKit-Learn


```
import sys, os
sys.path.append(os.path.expanduser("~/src/cmcl"))
sys.path.append(os.path.expanduser("~/src/spyglass"))
import pandas as pd
import numpy as np
import cmcl
from spyglass.model imaging import parityplot
from sklearn.pipeline import make pipeline
from sklearn.compose import ColumnTransformer
from sklearn.<module> import NumPreProcessor1
from sklearn.<module> import CatPreProcessor1
from sklearn.<module> import NumPreProcessor2
from sklearn.<module> import CatPreProcessor2
from sklearn. < module > import Estimator
df = pd.read <data>('./file.<data>')
df = df.groupby('Formula', as index=False).agg(
    {'bg eV': 'median', 'efficiency': 'median'})
```

Implementation in Jupyter Python II

```
dc = df.ft.comp()
dc = dc.assign(label='label')
numeric features = dc
.select dtypes(np.number)
. columns
.to list()
numeric pipeline = make pipeline(NumPreProcessor1(),
                                   NumPreProcessor2())
categorical features = mc
.select dtypes('object')
. columns
.to list()
catagorical pipeline = make pipeline(CatPreProcessor1(),
                                       CatPreProcessor2())
```

Implementation in Jupyter Python III

```
preprocessor = ColumnTransformer(
    transformers=[
        ("num", numeric pipeline, numeric features),
        ("cat", categorical pipline, categorical features),
ss = ShuffleSplit(n splits=1, train size=0.8,
                  random state=None)
train idx, test idx = next(ss.split(dc))
dc tr, dc ts = dc.iloc[train idx], dc.iloc[test idx]
df tr, df ts = df.iloc[train idx], df.iloc[test idx]
pipe = make pipeline(preprocessor, Estimator())
pipe.fit(dc tr, df tr.<target>)
```

Implementation in Jupyter Python IV

```
p, data = parityplot(pipe,
                      dc ts, df ts.<target>.to frame(),
                      aspect = 1.0)
p. figure.show()
```

PCA

$$UAU^{\dagger} = Q^{-1}SQ$$

Figure 6: Learn transformation matrix U to diagonalizes the matrix A. The Principal Components in Q corresponding to the largest two Singular Values in S contain the majority of the variance in the data

tSNE

Figure 7: Learn a low-dimensional (2 or 3D) embedding space in which statistical similarity governs the proximity of high-dimensional data points

UMAP

Figure 8: Learn a manifold embedding space in which nearest neighbors form clusters

Linear regressions on BG I

Figure 9: OLS determines \vec{w} so that $f(x) = \vec{x}^T \vec{w}$, $y_i = f(x_i) + \epsilon_i$ and all ϵ_i are as small as possible

Linear regressions on BG II

Figure 10: elasticnet determines \vec{w} as before, but also works to sparsify the model

OLS weights

site	element	
Α	Cs	23.771206
Α	FA	25.794831
Α	K	22.774475
Α	MA	25.452629
Α	Rb	23.282988
В	Ba	-32.603053
В	Ca	-31.378385
В	Ge	-45.001044
В	Pb	-42.526511
В	Sn	-46.868114
В	Sr	-32.068490
Χ	Br	0.939374
Χ	Cl	1.769032
Χ	1	0.140658

	RSS
Α	54.213044
В	95.426246
Χ	2.007905

elasticnet weights

site	element	
Α	Cs	-0.191057
Α	FA	1.589015
Α	K	-1.081903
Α	MA	1.214167
Α	Rb	-0.530437
В	Ba	5.139688
В	Ca	6.424156
В	Ge	-5.879154
В	Pb	-3.673012
В	Sn	-7.689152
В	Sr	5.678253
X	Br	0.000000
Χ	Cl	0.819669
Χ	1	-0.786942

	RSS
A	2.342552
В	14.391222
Χ	1.136281

Random Forest Regression on BG I

Figure 11: RFR initializes an ensemble of Decision Trees and averages their results to return its prediction. This leverages the DT's ability to strongly bias itself to the data and relies on randomness to explain variance in the underlying process

Gaussian Process or BG I

Figure 12: GPR picks functions from a distribution derived from the data covariance. The functions that satisfy the data form the fit.

Gaussian Process or BG II

Regularization with Priors

Conditional Probablity
$$P(x|y) = \frac{P(x)P(y|x)}{P(x)}$$

Conditional Odds
$$O(x|y) = O(x) \frac{P(x|y)}{P(x|y)}$$

Isolated Bayesian Prior
$$B = \frac{P(x|y)}{P(x|\neg y)}$$

- http://dx.doi.org/10.1002/aenm.202002774 (cit. on p. 10).

 Mannodi-Kanakkithodi, Arun and Maria K. Y. Chan. "Data-Driven Design of Novel Halide Perovskite Alloys". In: Energy Environ. Sci. 15 (5 2022), pp. 1930–1949. DOI: 10.1039/D1EE02971A. URL: http://dx.doi.org/10.1039/D1EE02971A (cit. on p. 7).
- Russell, Stuart and Peter Norvig. *Artificial intelligence : a modern approach*. Upper Saddle River, New Jersey: Prentice Hall, 2010. ISBN: 9780136042594 (cit. on p. 3).