

$$B = \{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}, C = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \}$$

(2) Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^n . Then $\vec{u}\vec{v}^T$ is an $n \times n$ matrix. Prove that $\det(\mathbb{I}_n + \vec{u}\vec{v}^T) = 1 + u_1v_1 + u_2v_2 + \cdots + u_nv_n.$

(6) Let V be the set consisting of 5×5 real matrices with the property that the entries in each row and column sum to zero. More concretely, a 5×5 matrix $A = [a_{ij}]$ belongs to the set V if and only if

 $a_{i1} + a_{i2} + \dots + a_{i5} = 0$ and $a_{1j} + a_{2j} + \dots + a_{5j} = 0$ for any $1 \le i, j \le 5$.

It is not hard to see that $\,V\,$ is a vector space. Find the dimension of $\,V\,$, and prove

your answer

(7) Let V_1, V_2, V_3 be real vector spaces, and $T: V_1 \to V_2$, $S: V_2 \to V_3$ be linear transformations. Prove that the following two statements are equivalent to each other:

Ker (T)= V

Im (T) = 1R9

- (a) $\operatorname{Im}(S \circ T) = \operatorname{Im}(S)$;
- (b) $Ker(S) + Im(T) = V_2$.

$$V_1 \xrightarrow{T} V_2 \xrightarrow{\xi} V_3$$

Im(SoT) & Im(S) is always true

(5) Let A be a square matrix. Suppose there exists a positive integer k such that $A^k = 0$ (here 0 denotes the zero matrix). Prove that the matrix $\mathbb{I} - A$ is invertible.

- (a) Prove that n is even.
- (b) Give an example of such a linear transformation T.

(4) Let A and B be $m \times n$ matrices. Then A + B also is an $m \times n$ matrix. Prove that

$$rank(A + B) \le rank(A) + rank(B).$$

$$tk(B)$$
 - $rk(AB)$ = $dim(ker(T_A) \cap Col(B))$
 $\leq dim(ker(T_A))$
 $= n - sk(A)$