The Power of Choice in Data-Aware Cluster Scheduling

Shivaram Venkataraman¹, Aurojit Panda¹ Ganesh Ananthanarayanan², Michael Franklin¹, Ion Stoica¹

¹UC Berkeley, ²Microsoft Research

Trends: Big Data

Data grows faster than Moore's Law

Trends: Big Data

Microsoft Scope Cluster "The number of daily jobs has doubled every six months for the past two years."

Trends: Low Latency

Big Data or Low Latency?

SQL Query: 2.5 TB on 100 machines

> 15 minutes

1-5 Minutes

< 10s

Applications

Approximate Query Processing blinkdb, presto, minitable

Machine learning algorithms stochastic gradient, coordinate descent

Choices

Choices

Sampling -> Smaller Inputs + Choice

Example

Existing

Choice-Aware

Choice-Aware

KMN Scheduler

- How much can KMN improve locality
- Propagate benefits across stages
- Handling stragglers

Job > DAG

One-to-One Stages

Locality

Disk ~ 100MB/s

Network ~ 10 Gbps (~1GB/s)

Memory ~ 50GB/s

KMN Locality

Locality, K=100

K – Number of blocks chosen K/N=1.0 - K/N=0.5 - K/N=0.1N – Number of blocks available Sality 8.0 KMN significantly improves locality **Prob.** 0.4 0.2 0.4 8.0 0.6 Utilization

Many-to-One Stages

Many-to-One Stage

15 transfers

Many-To-One Transfers

Bottleneck Link

Bottleneck Link

Link with Max. transfers

Cross Rack Data Skew

Maximum transfers

Minimum transfers

$$=\frac{6}{2}=3$$

Facebook Trace

Cross Rack Data Skew

Maximum transfers

Minimum transfers

Power of Choice

Load balancing: balls and bins

Insight: Run extra tasks (M > K)

Cross Rack Data Skew = 3

Power of Choice

Technique:

Spread out choice of K tasks to reduce skew

M = 7, K = 5 Cross Rack Data Skew = 2

Handling Stragglers

Using KMN

```
// Create Spark RDD
file = sc.textFile("tpc-h.data")
// Select a 10% sample using KMN
sample = file.blockSample(0.1)
// RDD operations
sample.map { li =>
  (li.linestatus, li.quantity)
}.collect()
```

Also in the paper

User-defined sampling functions

Placing reduce tasks

Killing extra tasks

Evaluation

Facebook traces replay

Long DAGs (Stochastic Gradient Descent)

SQL queries from Conviva

Reducer placement

Varying Utilization

Baseline: Use a pre-selected random sample

Setup: 100 m2.4xlarge EC2 machines, 60GB RAM/mc

Facebook Overall

Cross Rack Skew

How many extra tasks?

Stochastic Gradient Descent

Gradient

KMN Stages	Time (s)
Gradient	15.27
Gradient + Agg1	12.72

KMN Stages	Time (s)
Gradient	15.27
Gradient + Agg1	12.72
Gradient + Agg2	11.79

KMN Stages	Time (s)
Gradient	15.27
Gradient + Agg1	12.72
Gradient + Agg2	11.79
Gradient + Agg3	12.09

Related Work

```
Power of Choice
Power-of-Two choices [TPDS'01]
```

Sparrow [SOSP'13]

```
Improving Cluster Scheduling
Quincy [SOSP'09]
alsched [SOCC'12]
Dolly [NSDI'13]
```

KMN Scheduler

Emerging applications: ML algorithms, AQP Improves locality, Balances network transfers