# À la recherche d'une algèbre hypercyclique fermée

Fernando Costa Jr.

Laboratoire de Mathématiques d'Avignon (ATER) Université d'Avignon et des Pays de Vaucluse

Laboratoire Paul Painlevé - Lille Séminaire d'Analyse Fonctionnelle 26 Novembre 2021

## Table de matières

#### Introduction

## Grandes structures dans HC(T)

Sous-espaces hypercycliques Algèbres hypercycliques Algèbres hypercycliques fermées

## Opérateurs de translation

## Opérateurs de décalage pondérés Algèbres de Fréchet de suites Quelques problèmes ouverts

## Opérateurs de la forme P(D)Derniers problèmes ouverts

## Table de matières

### Introduction

Grandes structures dans HC(T)

Sous-espaces hypercycliques Algèbres hypercycliques Algèbres hypercycliques fermées

Opérateurs de translation

Opérateurs de décalage pondérés Algèbres de Fréchet de suites Quelques problèmes ouverts

Opérateurs de la forme P(D)Derniers problèmes ouvert

# Linéabilité, Spacéabilité et Algébrabilité

Motivation : Recherche d'une structure linéaire dans un environnement essentiellement non linéaire.

- "Conjecture" d'Ampère (1806) sur  $C^0([0,1],\mathbb{R})$ .
- ► Monstre de Weierstrass (1872) :

$$W(x) = \sum_{k=0}^{\infty} a^k \cos(b^k \pi x), \quad \text{où } a \in ]0,1[\ ,\ b \in 2\mathbb{Z}+1,\ ab > 1+\frac{2\pi}{2}.$$

- ▶ Banach (1931) : "le sous-ensemble de  $C^0([0,1],\mathbb{R})$  de fonctions quelque part dérivables est maigre".
- ▶ V. I. Gurariy (1991) : Il existe un sous-espace  $X \subset C^0([0,1],\mathbb{R})$  tel que dim  $X = +\infty$  et toute  $f \in X \setminus \{0\}$  est nulle part dérivable.
- V. Fonf, V. I. Gurariy, V. Kadec (1999): Un tel espace peut être même fermé.
- ► F. Bayart, L. Quarta (2007) : Il existe une algèbre infiniment générée de fonctions null part dérivables.

# Linéabilité, Spacéabilité et algébrabilité

Lineability / Spaceability : R. M. Aron, V. I. Gurariy, J. B. Seoane-Sepúlveda (2005).

Algebrability: R. M. Aron, D. Pérez-García, and J. B. Seoane-Sepúlveda (2006).

Un sous ensemble L d'une espace vectoriel X est :

- ► linéable lorsque L ∪ {0} contient un sous-espace de dimension infinie;
- ▶ **spacéable** losque  $L \cup \{0\}$  contient un sous-espace *fermé* de dimension infinie (déf. valable quand X est un e.v.t);
- ▶ algébrable lorsque  $L \cup \{0\}$  contient une algèbre infiniment et non-finiment générée (pour X une algèbre topologique);
- **"closely" algébrable** : lorsque  $L \cup \{0\}$  continet une sous-algèbre fermée.

# Dynamique Linéaire

- C'est un thème en l'Analyse Fonctionnelle qui étudie le comportement des itérés d'un opérateur linéaire agissant sur un espace vectoriel topologique de dimension infinie.
- ▶ Pendant cet exposé, X est supposé espace de Fréchet.
- L'hypercyclicité est le thème principal de la Dynamique Linéaire.
  - ▶ On dit que  $T: X \to X$  est hypercyclique s'il existe  $x \in X$ , appelé vecteur hypercyclique de T, tel que son orbite par l'action de T, soit orb $(x;T):=\{T^n(x):n\geq 0\}$ , est dense dans X. L'ensemble des vecteurs hypercycliques pour un opérateur T est noté HC(T).
  - ▶ On dit qu'un opérateur continu  $T: X \to X$  est topologiquement transitif si, pour tout couple d'ouverts (U, V) de X, il existe  $u \in U$  et  $N \in \mathbb{N}$  tels que  $T^N(u) \in V$ .
  - ► Sur un F-espace séparable et sans points isolés, hypercyclicité ←⇒ transitivité topologique.

## Table de matières

#### Introduction

Grandes structures dans HC(T)

Sous-espaces hypercycliques Algèbres hypercycliques Algèbres hypercycliques fermées

Opérateurs de translation

Opérateurs de décalage pondérés Algèbres de Fréchet de suites Quelques problèmes ouverts

Opérateurs de la forme P(D)Derniers problèmes ouverts

# Sous-espaces hypercycliques

Que se passe-t-il avec L = HC(T) quand T est hypercyclique?

## Théorème (Herrero-Bourdon)

Si  $x \in HC(T)$ , alors  $\{P(T)x : P \text{ polynôme}\}\setminus\{0\}$  est un sous-espace dense de points de HC(T).

En particulier, si T est hypercyclique, alors HC(T) est dense-linéable.

En Dynamique Linéaire, le concept de spacéabilité pour L = HC(T) donne origine à l'idée de **sous-espace hypercyclique**.

# Algèbres hypercycliques

Soit X une algèbre de Fréchet. La notion d'algèbre hypercyclique vient d'une formulation plus modeste : c'est un sous-ensemble de  $HC(T) \cup \{0\}$  qui est une sous-algèbre de X.

Notation : étant donnée  $u \in X$ , on note

$$A(u) = \{P(u) : P \in \mathbb{C}[X], P(0) = 0\}$$

la sous-algèbre généré par u.

### Premiers résultats :

- Aron, Conejero, Peris, et Seoane-Sepúlveda (2007) : aucune translation  $\tau_a: f(\cdot) \mapsto f(\cdot + a)$  sur  $H(\mathbb{C})$  admet une algèbre hypercyclique.
- ▶ Bayart et Matheron (2009) et Shkarin (2010) :  $D : f \mapsto f'$  sur  $H(\mathbb{C})$  admet une algèbre hypercyclique.

# La méthode de Bayart et Matheron

# Théorème (Bayart, Papathanasiou, FCJ (2020))

Soit T un opérateur linéaire continu sur une algèbre de Fréchet séparable X. On suppose que, pour tous  $1 \leq m_0 \leq m_1$  et tous U, V, W ouverts non-vides de X, avec  $0 \in W$ , on peut choisir  $m \in \llbracket m_0, m_1 \rrbracket$  et trouver  $u \in U$  et  $N \in \mathbb{N}$  tels que

$$\begin{cases} T^N(u^m) \in V \\ T^N(u^n) \in W, & \text{for } n = \llbracket m_0, m_1 \rrbracket \setminus \{m\}. \end{cases}$$

Alors T admet une algèbre hypercyclique.



# Algèbres hypercycliques fermées

# Définition (naïve)

On dit qu'un opérateur continu T est hyperstable par rapport à une suite convergente  $(x_n)_n$  dans X si, pour tout V ouvert non-vide de X, il existe  $N \in \mathbb{N}$  tel que  $T^N(x_n) \in V$  pour un nombre infini de  $n \in \mathbb{N}$ . On dit que T est hyperstable sur un sous-ensemble  $A \subset X$  si T est hyperstable par rapport a toute suite convergente  $(x_n)_n$  de points de A.



Figure 1 – Suite dans A, V quelconque

Propriété : Un opérateur T admet une algèbre hypercyclique fermée si, et seulement si, il existe  $u \in X$  tel que T est hyperstable sur A(u).

# Algèbres hypercycliques fermées

Question : L'ensemble de vecteurs qui génèrent une algèbre hypercyclique fermée, peut-il être résiduel?

Une suite  $(x_n)_n$  dans A(u) s'associe par définition à une suite  $(P_n(u))_n$ .

⚠ Une suite  $(P_n(u))_n$  peut converger pour un vecteur u qui génère une algèbre hypercyclique même si  $(P_n)_n$  ne converge pas du tout.

L'ensemble de vecteurs qui génèrent une algèbre hypercyclique peut être maigre.

## Table de matières

#### Introduction

## Grandes structures dans HC(T)

Sous-espaces hypercycliques Algèbres hypercycliques Algèbres hypercycliques fermées

## Opérateurs de translation

## Opérateurs de décalage pondérés Algèbres de Fréchet de suites Quelques problèmes ouverts

Opérateurs de la forme P(D)Derniers problèmes ouvert

# Opérateurs multiplicatifs

Si  $T: X \to X$  est une opérateur multiplicatif et P est un polynôme avec P(0) = 0, alors pour tous  $n \in \mathbb{N}$  et  $f \in X$ ,

$$T^n(P(f)) = P(T^n(f)).$$

Pour que orb(P(f), T) soit dense il suffit de fixer  $V \subset X$  un ouvert non-vide et de voir que  $P^{-1}(V)$  étant ouvert et non-vide, il existe  $n \in \mathbb{N}$  tel que

$$T^n(f) \in P^{-1}(V) \Leftrightarrow T^n(P(f)) = P(T^n(f)) \in V.$$

# Théorème (Bès, Conejero et Papathanasiou (2018))

Soit T un opérateur hypercyclique et multiplicatif sur une F-algèbre X sur  $\mathbb{K} = \mathbb{R}$  ou  $\mathbb{C}$ . Les assertions suivantes sont équivalentes :

- (a) L'opérateur T supporte une algèbre hypercyclique.
- (b) Pour tout polynôme non-constant  $P \in \mathbb{K}[t]$  avec P(0) = 0, l'image de l'application  $\Phi_P : X \to X$ ,  $f \mapsto P(f)$ , est dense dans X.
- (c) Chaque vecteur hypercyclique pour T génère une algèbre hypercyclique.

# Opérateurs de translation

Aron et al. (2007) ont montré qu'aucun opérateur de translation  $\tau_a: f(\cdot) \mapsto f(\cdot + a)$  sur  $H(\mathbb{C})$  n'admet une algèbre hypercyclique.

Mais les translations sont multiplicatives! Il faut donc chercher un espace qui satisfait (b).

# Corollaire (Bès, Conejero et Papathanasiou (2018))

Tout opérateur de translation  $T: f \mapsto f(\cdot + a)$  avec  $a \neq 0$  agissant sur  $C^{\infty}(\mathbb{R}, \mathbb{C})$  admet une algèbre hypercyclique.

Que doit-on montrer pour obtenir une algèbre hypercyclique fermée dans ce contexte?

## Théorème (Grosse-Erdmann et Papathanasiou)

Tout opérateur de translation  $T: f \mapsto f(\cdot + a)$  avec  $a \neq 0$  agissant sur  $C^{\infty}(\mathbb{R}, \mathbb{C})$  admet une algèbre hypercyclique fermée.

## Table de matières

#### Introduction

Grandes structures dans HC(T)

Sous-espaces hypercycliques Algèbres hypercycliques Algèbres hypercycliques fermées

Opérateurs de translation

Opérateurs de décalage pondérés Algèbres de Fréchet de suites Quelques problèmes ouverts

Opérateurs de la forme P(D)Derniers problèmes ouvert

# Algèbres de Fréchet de suites

On admet que X est un sous-espace de Fréchet de l'espace  $\omega=\mathbb{C}^{\mathbb{N}}.$  Deux produits classiques sont considérés dans cette situation.

Le produit coordonnée par coordonnée (cpc) :

$$(a_n)\cdot(b_n)_n=(a_nb_n)_n.$$

Le produit de convolution (ou de Cauchy) :

$$(a_n) \cdot (b_n)_n = (c_n)_n$$
 où  $c_n = \sum_{k=1}^n a_k b_{n-k}$ .

## Exemples

- ▶  $\ell_p(\mathbb{N}), c_0(\mathbb{N})$  et  $\omega$  sont des algèbres de Fréchet de suites avec le produit cpc.
- le produit cpc sur  $H(\mathbb{C})$  est aussi appelé produit de Hadamard.
- ▶  $\ell_1(\mathbb{N}), \omega$  et  $H(\mathbb{C})$  sont des algèbres de Fréchet de suites pour le produit de convolution.

# Propriété du produit cpc

« On note  $P(z) = \sum_{j=0}^t \hat{P}(j) z^j$  un polynôme  $P \in \mathbb{K}[z]$  de degré t. »

Le produit cpc satisfait

$$(a_n)_n^j = (a_n)_n \cdot \overset{j}{\cdot} \cdot (a_n)_n = (a_n \cdot \overset{j}{\cdot} \cdot a_n)_n = (a_n^j) \implies \hat{P}(j)(a_n)_n^j = (\hat{P}(j)a_n^j)$$

Par conséquent,

$$P((a_n)_n) = \sum_{j=0}^t \hat{P}(j)(a_n)_n^j = \sum_{j=0}^t (\hat{P}(j)a_n^j) = \Big(\sum_{j=0}^t \hat{P}(j)a_n^j\Big)_n = (P(a_n))_n.$$

- ▶ Une suite de polynômes complexes  $(P_k)_k$  peut converger vers  $f = 1 1_D : \mathbb{C} \to \mathbb{C}$  pour un disque fermé  $D \ni 0$ .
- ▶ Dans ce cas,  $(f(a_n))_n = (1, 1, 0, 1, ..., 1, 0, 0, ...)$  ne sera jamais hypercyclique.
- ▶ La convergence  $P_k \rightarrow f$  doit être uniforme au moins sur D.

# Opérateurs de décalage pondéré sur $\ell_p(\mathbb{N})$ et $c_0(\mathbb{N})$

# Théorème (Bayart, CJ et Papathanasiou (2020))

Soit  $X = \ell_p(\mathbb{N})$  ou  $c_0(\mathbb{N})$  muni du produit cpc. Alors, pour tout élément  $x \in X$ , l'algèbre fermée  $\overline{A(x)}$  générée par x contient un vecteur 0-1 de support borné.

### Corollaire

Aucun opérateur de décalage pondéré sur  $X = \ell_p(\mathbb{N})$  ou  $c_0(\mathbb{N})$  n'admet une algèbre hypercyclique fermée pour le produit cpc.

### Corollaire

Plus généralement, aucun opérateur de la forme  $P(B_w)$ , où P est un polynôme et  $B_w$  est un décalage pondéré sur  $X = \ell_p(\mathbb{N})$  ou  $c_0(\mathbb{N})$ , n'admet une algèbre hypercyclique fermée pour le produit cpc.

Pour fixer les idées, voyons le cas  $X=c_0(\mathbb{N})$ . On fixe  $x\in X$  et on trouve un disque D centré à l'origine et qui omet au moins un terme de x. Pour chaque  $n\in \mathbb{N}$ , on considère l'ensemble  $K_n$  comme dans l'image suivante :



On prend une fonction holomorphe f définie sur un voisinage de  $K_n$  et telle que f(z) = 0 si  $z \in D$  et f(z) = 1 si  $z \in K_n \setminus D$ .

On applique le théorème de Runge et on trouve un polynôme  $P_n$  tel que

$$\|P_n-f\|_{K_n}<\frac{1}{n}.$$

Cela défini une suite de polynômes  $(P_n)_n$  telle que

- $ightharpoonup P_n(z) o 0$  uniformément sur D;
- ▶  $P_n(z) \rightarrow 1$  ponctuellement sur  $\mathbb{C} \setminus D$ .

On peut supposer  $P_n(0) = 0$  pour tout  $n \in \mathbb{N}$  sans perte de généralité.

Puisque  $x=(x_k)_k\in c_0(\mathbb{N})$ , il existe  $k_0\in\mathbb{N}$  tel que  $x_k\in D$  pour tout  $k\geq k_0$ . Alors,  $P_n(x)$  converge vers  $y=(y_k)_k\in c_0(\mathbb{N})$  définit par

$$\begin{cases} y_k = 1 & \text{si } x_k \notin D \\ y_k = 0 & \text{si } x_k \in D. \end{cases}$$

Autrement dit,  $y \in \overline{A(x)}$  est un vecteur 0-1 de support dans  $[0, k_0]$ .

Considérons maintenant le cas  $X=\ell_p(\mathbb{N})$ . On fixe  $x\in\ell_p(\mathbb{N})$  et on définit la suite  $(P_n)_n$  comme précédemment. D'après les inégalités de Cauchy, on a

$$|P'_n(z)| \le \frac{M_n(z)}{R}$$
, où  $M_n(z) = \sup\{|P_n(w)| : |w-z| = R\}$ .

Si l'on prend R la moitié du rayon de D, on trouve que  $(P'_n)_n$  et uniformément bornée sur  $\frac{1}{2}D$ . On pose

$$C = \sup\{|P'_n(z)| : n \in \mathbb{N}, z \in \frac{1}{2}D\}$$

et on trouve

$$|P_n(z)| \le C|z|, \ \forall n \in \mathbb{N}, \ \forall z \in \frac{1}{2}D.$$
 (1)

On montre que  $||P_n(x) - y||_p \to 0$ , où y est définie comme avant.

Étant donné  $\varepsilon > 0$ , il existe  $k_0 \in \mathbb{N}$  tel que

$$k \ge k_0 \implies x_k \in \frac{1}{2}D \text{ et } \sum_{k=k_0}^{\infty} |x_k|^p \le \frac{\varepsilon^p}{2C^p}.$$

Puisque  $P_n(x_k) \to y_k$  ponctuellement, il existe  $n_0 \in \mathbb{N}$  tel que

$$n \geq n_0 \implies \sum_{k=0}^{k_0-1} |P_n(x_k) - y_k|^p < \frac{\varepsilon^p}{2}.$$

Par conséquent,

$$||P_n(x) - y||_p^p = \sum_{k=0}^{\infty} |P_n(x_k) - y_k|^p$$

$$= \sum_{k=0}^{k_0 - 1} |P_n(x_k) - y_k|^p + \sum_{k=k_0}^{\infty} |P_n(x_k)|^p$$

$$\leq \sum_{k=0}^{k_0 - 1} |P_n(x_k) - y_k|^p + C^p \sum_{k=k_0}^{\infty} |x_k|^p$$

$$< \frac{\varepsilon^p}{2} + \frac{\varepsilon^p}{2} = \varepsilon^p.$$

# Quelques problèmes ouverts

- Le dernier théorème établi une propriété particulier des espaces  $\ell_p(\mathbb{N})$  et  $c_0(\mathbb{N})$ . Quels sont les autres opérateurs sur ces espaces qui n'admettent pas d'algèbre hypercyclique fermé ? (Ex. : P(B) pour un polynôme quelconque P)
- ▶ Que se passe-t-il si l'on considère le produit de Cauchy sur  $\ell_1(\mathbb{N})$ ?

$$(a_0, a_1, a_2, ...)^2 = (a_0^2, a_0a_1 + a_1a_0, a_0a_2 + a_1^2 + a_2a_0, ...)$$

Y a-t-il d'autres produits intéressants?

## Table de matières

#### Introduction

Grandes structures dans HC(T)

Sous-espaces hypercycliques Algèbres hypercycliques Algèbres hypercycliques fermées

Opérateurs de translation

Opérateurs de décalage pondérés Algèbres de Fréchet de suites Quelques problèmes ouverts

Opérateurs de la forme P(D)Derniers problèmes ouverts

# Opérateurs de la forme P(D)

Théorème (Bayart, CJ et Papathanasiou (2020))

Aucun opérateur de convolution P(D) induit par un polynôme  $P \in \mathbb{C}[z]$  n'admet une algèbre hypercyclique fermée.

On écrit  $P(z) = \sum_{s=0}^t \hat{P}(s)z^s$  avec  $\hat{P}(t) \neq 0$ . Étant fixé  $f \in HC(P(D))$ , on montre que  $\overline{A(f)} \not\subset HC(P(D)) \cup \{0\}.$ 

On peut écrire f sous la forme

$$f(z) = a_0 + \sum_{n \geq p} a_n z^n$$
, avec  $a_p \neq 0$ .

En plus, on peut supposer  $a_p = 1$  sans perte de généralité.

Méthode : trouver par récurrence une suite  $(b_k)_k$  de nombres complexes et définir des polynômes  $P_k(z) = \sum_{l=1}^k b_l (z-a_0)^{lt}$  tels que, pour tout  $k \in \mathbb{N}^*$ ,

$$|b_k| \leq \left(\frac{|\hat{P}(0)|+1}{|\hat{P}(t)|}\right)^{\kappa \rho} \times \frac{1}{(kt\rho)!},$$

$$|P(D)^{lp}(P_k \circ f)(0)| \ge (|\hat{P}(0)| + 1)^{lp}, \ 1 \le l \le k.$$

Conclusion :  $(P_k)_k$  converge uniformément sur les ensembles compacts de  $\mathbb{C}$  vers une fonction entière g. Cette fonction satisfait donc

$$|P(D)^{lp}(g \circ f)(0)| \ge (|\hat{P}(0)| + 1)^{lp}, \quad \forall \ l \ge 1.$$

On pose h = g - g(0), ainsi  $h \circ f \in \overline{A(f)}$  et

$$\begin{aligned} \left| P(D)^{lp}(h \circ f)(0) \right| &\geq \left| P(D)^{lp}(g \circ f)(0) \right| - \left| P(D)^{lp}(g(0)) \right| \\ &\geq (|\hat{P}(0)| + 1)^{lp} - |\hat{P}(0)|^{lp}|g(0)| \\ &\xrightarrow{l \to +\infty} +\infty. \end{aligned}$$

Autrement dit,  $h \circ f \neq 0$  est un élément de  $\overline{A(f)}$  qui n'est pas vecteur hypercyclique de  $P(D)^d$ . Par conséquent,  $h \circ f \notin HC(P(D))$ .

On construit  $(b_k)_k$  par récurrence.

Rang k = 1: On calcule

$$b(f - a_0)^t = b\left(z^p + \sum_{n \geq p+1} a_n z^n\right)^t = bz^{pt} + \sum_{n \geq tp+1} c_n z^n.$$

Donc,

$$P(D)^{p}(b(f - a_{0})^{t}) = b(pt)!\hat{P}(t) + P(D)^{p} \sum_{n \geq tp+1} c_{n}z^{n}$$

$$\implies P(D)^{p}(b(f - a_{0})^{t})(0) = b(tp)!\hat{P}(t)^{p}.$$

On définit

$$b = \left(rac{|\hat{P}(0)|+1}{|\hat{P}(t)|}
ight)^{
ho} imes rac{1}{(t
ho)!}$$

et donc la conclusion est vraie pour  $b_1 = b$ .

## Supposons la construction jusqu'au rang k-1.

On calcule

$$P_{k-1} \circ f + b(f - a_0)^{kt} = P_{k-1} \circ f + bz^{ktp} + \underbrace{\sum_{n \geq ktp+1} c_n z^n}_{=:g}.$$

Pour  $1 \le l \le k$ ,

$$P(D)^{lp}(P_{k-1}\circ f+b(f-a_0)^{kt})=P(D)^{lp}(P_{k-1}\circ f)+P(D)^{lp}(bz^{ktp}+g).$$

Si  $l \le k-1$ , alors le deuxième terme s'annule en 0 (deg  $P^{lp} < ktp$ ) et donc la conclusion est conséquence de l'hypothèse de récurrence.

Si I = k, alors

$$P(D)^{kp}(P_{k-1}\circ f+b(f-a_0)^{kt})(0)=P(D)^{kp}(P_{k-1}\circ f)(0)+b(ktp)!\hat{P}(t)^{kp}.$$

Il suffit de prendre  $b \in \mathbb{C}$  dans la même direction de  $P(D)^{kp}(P_{k-1} \circ f)(0)$  et de valeur absolue

$$|b| = \left(\frac{|\hat{P}(0)|+1}{|\hat{P}(t)|}\right)^{kp} imes \frac{1}{(ktp)!}.$$

On trouve donc

$$\begin{aligned} |P(D)^{kp}(P_{k-1}\circ f + b(f-a_0)^{kt})(0)| &= |P(D)^{kp}(P_{k-1}\circ f)(0) + b(ktp)!\hat{P}(t)^{kp}| \\ &\geq |b(ktp)!\hat{P}(t)^{kp}| \\ &= (|\hat{P}(0)| + 1)^{kp}. \end{aligned}$$

La récurrence se complète si l'on prend  $b_k = b$ .

# Derniers problèmes ouverts

- ► Peut-on généraliser cette méthode? Jusqu'à quel point ces résultats négatifs s'étendent?
- ▶ Peut-on trouver une méthode incluant cos(D),  $De^D$  ou  $e^D I$ ?
- Peut-on trouver le même résultat négatif pour d'autres fonctions entières  $\phi$ ?
- Peut-on trouver une méthode générale pour montrer qu'un opérateur n'admet pas d'algèbre hypercyclique fermée?
- ▶ Que peut-on dire des opérateurs de la forme  $P(C_{\varphi})$ , où P est un polynôme et  $C_{\phi}: H(\mathbb{C}) \to H(\mathbb{C}), f \mapsto P(f \circ \phi)$  est un opérateur de composition hypercyclique?
- Que peut-on dire des opérateurs de la forme P(B) où B est l'opérateur de décalage sur  $\ell_1(\mathbb{N})$ ?

# Bibliographie (ordre de citation)

- ▶ Ampère, A. M. (1806). Recherches sur quelques points de la théorie des fonctions dérivées qui conduisent à une nouvelle démonstration de la série de Taylor, et à l'expression finie des termes qu'on néglige lorsqu'on arrête cette série à un terme quelconque. Imprimerie impériale. École Polytechnique, Band 6, Cahier 13, 148–181.
- ▶ Weierstrass, K. (1988). Über continuirliche functionen eines reellen arguments, die für keinen werth des letzteren einen bestimmten differentialquotienten besitzen. In Ausgewählte Kapitel aus der Funktionenlehre (pp. 190-193). Springer, Vienna.
- Gurarii, V. I. (1991). Linear-spaces composed of nondifferential functions. Dokladi na Bolgarskata Akademiya na Naukite, 44(5), 13-16.
- ► Fonf, V. P., Gurariy, V. I., & Kadets, M. I. (1999). An Infinite Dimensional Subspace of C[0,1] Consisting of Nowhere Differentiable Functions. Dokladi na Bulgarskata Akademia na Naukite, 52(11-12), 13-16.

# Bibliographie (ordre de citation)

- ▶ Bayart, F., & Quarta, L. (2007). Algebras in sets of queer functions. Israel Journal of Mathematics, 158(1), 285-296.
- ▶ Aron, R., Gurariy, V., & Seoane-Sepúlveda, J. (2005). *Lineability* and spaceability of sets of functions on ℝ. Proceedings of the American Mathematical Society, 133(3), 795-803.
- Aron, R. M., Pérez García, D., & Seoane-Sepúlveda, J. B. (2006). Algebrability of the set of non-convergent Fourier series. Studia Mathematica, 175(1), 83-90.
- Aron, R. M., Conejero, J. A., Peris, A., & Seoane–Sepúlveda, J. B. (2007). Powers of hypercyclic functions for some classical hypercyclic operators. Integral Equations and Operator Theory, 58(4), 591-596.
- ▶ Bayart, F., & Matheron, É. (2009). Dynamics of linear operators (No. 179). Cambridge university press.
- ▶ Shkarin, S. (2010). On the set of hypercyclic vectors for the differentiation operator. Israel Journal of Mathematics, 180(1), 271-283.

# Bibliographie (ordre de citation)

- ▶ Bayart, F., Júnior, F. C., & Papathanasiou, D. (2021). Baire theorem and hypercyclic algebras. Advances in Mathematics, 376, 107419.
- Bès, J., Conejero, J. A., & Papathanasiou, D. (2018). Hypercyclic algebras for convolution and composition operators. Journal of Functional Analysis, 274(10), 2884-2905.