

Organização e Arquitetura de Computadores I

Memória Interna

Memória

Em informática, memória são todos os dispositivos que permitem a um computador guardar dados, temporariamente ou permanentemente.

Sistemas de Memórias

- Os sistemas de memórias de computadores, podem ser mais facilmente compreendidos por meio de sua classificação, de acordo com suas características fundamentais:
 - Localização
 - Processador
 - Interna
 - Externa

Sistemas de Memórias

Capacidade

- Na memória interna é expressa em função de bytes ou palavras. Na memória externa é expressa em função de bytes.
- Tamanho da palavra
- Número de palavras

Unidade de Transferência

- Na memória interna, a unidade de transferência de dados é o número de bits que podem ser lidos ou escritos de cada vez.
 Na memória externa, os dados geralmente são transferidos em grandes quantidades, chamadas de blocos.
- Palavra
- Bloco

Sistemas de Memórias

- Método de Acesso
 - Sequencial
 - Direto
 - Aleatório
 - Associativo
- Desempenho
 - Tempo de acesso
 - Memória aleatória, é o tempo decorrido entre o instante que o endereço é apresentado à memória, até o momento em que os dados são armazenados ou tornam-se disponíveis para leitura.
 - Memória seqüencial, é o tempo necessário para posicionar o mecanismo de leitura-escrita na posição desejada.
 - Tempo de ciclo
 - Compreende o tempo de acesso e o tempo adicional requerido, antes que um segundo acesso possa ser iniciado.
 - Taxa de transferência

Sistemas de Memórias

- Tecnologia
 - Semicondutores
 - Magnética
 - Óptica
 - Magneto-óptica
- Características Físicas
 - Volátil / não-volátil
 - Apagável / não-apagável
- Organização
 - É um aspecto fundamental do projeto de memórias de acesso aleatório. É o arranjo físico dos bits para formar palavras.

Hierarquia de Memórias

- As restrições de projeto de uma memória podem ser resumidas em três questões:
 - Capacidade
 - Velocidade
 - Custo
- Uma variedade de tecnologias é utilizada para a implementação de sistemas de memória. Para essas tecnologias valem as seguintes relações:
 - Tempo de acesso mais rápido, custo de bit maior
 - Capacidade maior, custo por bit menor
 - Capacidade maior, tempo de acesso menor

Hierarquia de Memórias

• Uma solução para a implementação de projetos de memórias, levando em consideração as relações vistas anteriormente, é empregar uma hierarquia de memórias e não um único componente ou tecnologia de memória.

Hierarquia de Memórias

Hierarquia de Memórias

- À medida que descemos em uma hierarquia de memórias, temos as seguintes relações:
 - O custo por bit diminui
 - A capacidade aumenta
 - O tempo de acesso aumenta
 - A frequência de acesso à memória pelo processador diminui

Hierarquia de Memórias

• Memórias menores, mais caras e mais rápidas são combinadas com memórias maiores, mais baratas e mais lentas, de tal forma que seja diminuída a freqüência de acessos das memórias maiores pelo processador.

Hierarquia de Memórias

- Se pegarmos um processador com acesso a dois níveis de memória com as seguintes características:
 - Nível 1 contém mil palavras e o tempo de acesso é de 0,1 µs;
 - Nível 2 contém 100 mil palavras e o tempo de acesso é de 1 µ s;
 - Qual será o tempo médio para acessar uma palavra que está a 95% do tempo no nível 1?
 - Resposta: 0,15 μ s

Hierarquia de Memórias

- Ao longo da execução de um programa, as referências feitas à memória pelo processador, tanto em caso de instruções quanto no de dados, tendem a formar grupos, nos quais elas estão próximas umas das outras, princípio de localidade de referências (Denning, P. "The working set model for program behavior", 1968).
- De acordo com o princípio de localidade de referências, é possível organizar os dados de tal forma que seja minimizado o acesso direto às memórias mais lentas.

Memória Principal

• Memória principal de semicondutor, são memórias construídas pela microeletrônica e utilizam pastilhas semicondutoras e superam as memórias de núcleos magnéticos.

Tipo de Memória	Categoria	Mecanismo de Apagamento	Mecanismo de Escrita	Volatilida de
Memória de Acesso Aleatório (RAM)	Memória de Leitura/Escrita	Eletricamente em Nível de Byte	Eletricamente	Volátil
Memória apenas de leitura (ROM)	Memória apenas de Leitura		Máscara	
ROM programável (PROM)		Não é possível		
PROM apagével (EPROM)		Luz UV, em nível de pastilha	Eletricamente	Não- volátil
Memória Flash	Memória principalmente de leitura	Eletricamente em Nível de blocos		
PROM eletricamente apagável (EEPROM)		Eletricamente em Nível de Bytes		

- O principal tipo de memória é o de acesso aleatório (random-access memory- RAM);
- As memóias RAM tem as seguintes características:
 - Possibilita que novos dados sejam lidos e escritos rapidamente e de modo fácil;
 - É volátil;
 - Dinâmica : formada de capacitores; refresh constante;
 - Estática : composta por flip-flops; menos densa que a dinâmica.

- Memória Apenas de Leitura (Read Only Memory ROM): Contém um padrão permanente de dados que não pode ser alterado, é possível apenas ler os dados armazenados.
 - Possui uma vantagem que os programas ficam permanentemente armazenados, nunca precisando ser carregados a partir de um dispositivo de armazenamento secundário.
 - Possui dois problemas:
 - A etapa de gravação de dados tem um custo fixo relativamente alto, que não depende do número de cópias.
 - Não podem ocorrer erros: se algum bit estiver errado, todo o lote da memória ROM será inutilizado.

- No caso de usar um pequeno número de memórias ROM com um dado conteúdo de memória, a alternativa mais barata é a ROM programável (programable ROM – PROM);
 - Características:
 - Não-volátil;
 - Gravação pode ser feita pelo cliente;
 - Mais vantajoso no caso de produção em larga escala.

- Outra variação da memória apenas de leitura é a memória principalmente de leitura;
 - Há três formas comuns de memória principalmente de leitura:
 - EPROM
 - EEPROM
 - Memória Flash
 - Bastante útil em aplicações em que é necessário armazenamento não-volátil e quando as operações de leitura são mais freqüentes que escrita.

- Considerações:
 - EPROM: pode ser apagada por um processo óptico; para qualquer operação de escrita todas as células de memória são apagados;
 - EEPROM: os dados podem ser gravados sem necessidade de apagar todo seu conteúdo anterior;
 - Memória Flash: Introduzida em meados dos anos 80, esse tipo de memória apaga e lê dados rapidamente;

Memória Principal - Organização

- O elemento básico de uma memória de semicondutor é a célula de memória. Embora possam ser fabricadas usando diferentes tecnologias, todas as células possuem certas propriedades iguais como:
 - Exibem dois estados estáveis ou semi-estáveis que podem ser utilizados para representar os dígitos binários 1 e 0.
 - Um valor pode ser escrito na célula e o dado gravado define o estado da célula de memória.
 - O estado da célula de memória pode ser lido.

Memória Principal - Organização

- Célula de memória
 - Dispositivo ou circuito elétrico usado para armazenar um único bit (0 ou 1).
 - A célula geralmente possui três terminais funcionais capazes de carregar um sinal. São eles:
 - Terminal de Seleção
 - Terminal de Controle
 - Terceiro Terminal que funciona devido a função que esta executando no momento se é leitura ou escrita.

Memória Principal - Organização

Operação de uma célula de memória

Memória Principal – Lógica Interna

- Pastilhas: é um dispositivo composto por células de memória e possui um grande número de conexões de entrada e saída de dados.
 - A memória de semicondutores é empacotada em pastilhas, onde cada uma possui um grupo de posições de memória. Um dos principais aspectos do projeto de memórias de semi-condutores, é o número de bits de dados que podem ser lidos ou escritos simultaneamente.
 - Temos dois modos de organização das pastilhas:
 - Um arranjo físico do conjunto de células, é igual ao arranjo lógico das palavras na memória tal como é percebido pelo processador. O conjunto de células é organizado em palavras de bits cada um.
 - Um bit por pastilha, onde os dados são lidos ou gravados um bit de cada vez.

Memória Principal – Lógica Interna

- Empacotamento das Pastilhas: um circuito integrado é empacotado dentro de uma cápsula, que contém pinos para sua conexão com circuitos externos. Esses pinos contem as seguintes Linhas de Conexão:
 - O endereço da palavra que está sendo acessada.
 - Ex: para 1M de palavra é preciso um total de 20 pinos representados por A0 A19.
 - Os dados a serem lidos são constituídos de oito linhas representados por D0 D7.
 - A energia fornecida à pastilhas representada por Vcc.
 - Um pino de Terra Vss.
 - Um pino de habilitação da pastilha representada por chip enable CE. O CE é usado para indicar se o endereço é válido para a determinada pastilha e se ela pode ser utilizada.
 - Um pino de voltagem para programação que é fornecido durante a operação de escrita na pilha representado por Vpp.
 - Um pino de habilitação de escrita representado por WE.
 - Um pino de habilitação de saída representado por OE.
 - Um pino de seleção de endereço de linha representado por RAS.
 - Um pino de seleção de endereço de coluna representado por CAS.

Memória Principal – Lógica Interna

Pastilha de memória DRAM de 16Mbits

Memória Principal – Organização em Módulos

Prof. Fábio Nelson

CECOMP
Colegiado de Engenharia da Computação

Memória Principal – Organização em Módulos

Considerações:

- 4 bits são usados em cada operação de leitura e escrita;
- Memória logicamente organizada em quatro matrizes de 2.048 por 2.048 elementos;
- 11 bits de endereçamento;
- Multiplexador usado para combinar 11 bits (linha RAS) e 11 bits (coluna - CAS) da matriz de elementos;
- Em uma operação de leitura, o valor de cada um dos 4 bits é passado por um amplificador de estado e é exibido na linha de dados correspondente.

- Existem 2 tipos de Erros:
 - Falhas Graves: constitui um defeito físico permanente, onde as células afetadas não são capazes de armazenar os dados com segurança, podendo permanecer sempre com o valor 0 ou 1. Podem ser causadas pelo uso excessivo em ambiente inadequado, por defeitos de fabricação ou por desgastes.
 - Erro Moderado: é um evento aleatório e não-destrutivo, que altera o conteúdo de uma ou mais posições de memória sem danificar a memória. Podem ser causados por problemas de fornecimento de energia ou pela presença de partículas alfa.

- Processo de detecção e correção de erros:
 - Quando um dado é armazenado na memória, é feito um cálculo envolvendo esse dado (função f) para produção de um código;
 - O código é armazenado juntamente com os dados;
 - O tamanho final da palavra armazenada são os bits iniciais e o código para identificação de erros;
 - Quando a palavra é lida, o código é utilizado para detectar e, possivelmente, corrigir erros.

Código de Correção de Erros de Hamming:

- 3 Círculos com 7 compartimentos, onde 4 bits são atribuídos a compartimentos internos
- Os compartimentos restantes são preenchidos com bits de paridade

Código de Correção de Erros de Hamming:

- Ocorre uma modificação de bits no circulo C devido um erro moderado ou uma falha grave.
- Detecção do erro e fácil localização do bit onde ocorre o erro.

- Código de detecção e correção de erro único é denominado SEC – single-error-correcting.
- Código de detecção de erro duplo e correção de erro único SEC-DED – single-error-correcting, double-errordetecting.
- O uso de um código de correção de erros aumenta a confiabilidade da memória, ao custo de um acréscimo de complexidade.