Equilibrium Welfare Properties

230333 Microeconomics 3 (CentER) – Part II Tilburg University

Introduction

- ► In this section we will prove:
 - ► The *First Welfare Theorem:* The allocation from any competitive equilibrium with transfers is Pareto optimal.
 - ► The *Second Welfare Theorem:* For any Pareto optimal allocation, there is a price vector that can support it as an equilibrium with transfers.
- ▶ Both theorems require complete markets, rational and locally nonsatiated preferences, and nonempty and closed production sets.
- However, the second welfare theorem requires a number of additional assumptions.

Price Equilibrium with Transfers

Definition

Given an economy specified by $\{(X_i, \geq_i)\}_{i=1}^I, \{Y_j\}_{j=1}^J, \bar{\omega}\}$, an allocation $(\mathbf{x}^*, \mathbf{y}^*)$ and a price vector \mathbf{p} constitute a *price equilibrium with transfers* if there is an assignment of wealth levels (w_1, \ldots, w_l) with $\sum_{i=1}^l w_i = \mathbf{p} \cdot \bar{\omega} + \sum_{i=1}^J \mathbf{p} \cdot \mathbf{y}_i^*$ such that

(i) For every j, \mathbf{y}_{j}^{\star} maximizes profits in Y_{j} ; that is,

$$\boldsymbol{p} \cdot \boldsymbol{y}_j \leq \boldsymbol{p} \cdot \boldsymbol{y}_j^* \text{ for all } \boldsymbol{y}_j \in Y_j$$

(ii) For every $i, \mathbf{x}_{i}^{\star}$ is maximal for \geq_{i} in the budget set:

$$\{\boldsymbol{x}_i \in X_i : \boldsymbol{p} \cdot \boldsymbol{x}_i \leq w_i\}$$

(iii)
$$\sum_{i=1}^{I} \mathbf{x}_{i}^{\star} = \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \mathbf{y}_{j}^{\star}$$
.

If $w_i = \boldsymbol{p} \cdot \boldsymbol{\omega}_i + \sum_{j=1}^J \theta_{ij} \boldsymbol{p} \cdot \boldsymbol{y}_j \ \forall i$, then there are no transfers.

The First Fundamental Theorem of Welfare Economics

Theorem

If preferences are locally nonsatiated, and if $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{p})$ is a price equilibrium with transfers, then the allocation $(\mathbf{x}^*, \mathbf{y}^*)$ is Pareto optimal.

Proof:

- 1. Because $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{p})$ is an equilibrium, if $\mathbf{x}_i >_i \mathbf{x}_i^*$, then $\mathbf{p} \cdot \mathbf{x}_i > w_i$.
- 2. Furthermore, if $\mathbf{x}_i \succeq_i \mathbf{x}_i^{\star}$, then $\mathbf{p} \cdot \mathbf{x}_i \succeq w_i$.
 - ▶ Suppose there is an \mathbf{x}'_i satisfying $\mathbf{x}'_i \succeq_i \mathbf{x}^*_i$ but $\mathbf{p} \cdot \mathbf{x}'_i < w_i$.
 - ▶ By LNS, $\exists x_i''$ arbitrarily close to x_i' where $x_i'' >_i x_i'$ and $p \cdot x_i'' < w_i$.
 - But this contradicts that \mathbf{x}_i^* was maximal in i's budget set, because by transitivity $\mathbf{x}_i'' >_i \mathbf{x}_i^*$.

First Welfare Theorem Proof

- 3. Suppose $\exists (x', y')$ that Pareto dominates (x^*, y^*) .
 - ▶ By (1) & (2), $\mathbf{p} \cdot \mathbf{x}'_i \ge w_i \ \forall i \ \text{and} \ \mathbf{p} \cdot \mathbf{x}'_i > w_i \ \text{for at least one } i$.
 - So $\sum_{i=1}^{I} \boldsymbol{p} \cdot \mathbf{x}_{i}' > \sum_{i=1}^{I} w_{i} = \boldsymbol{p} \cdot \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \boldsymbol{p} \cdot \mathbf{y}_{j}^{\star}$.
- 4. Because \mathbf{y}_{j}^{\star} is profit-maximizing at \mathbf{p} , for all j we have $\mathbf{p} \cdot \mathbf{y}_{j}^{\star} \geq \mathbf{p} \cdot \mathbf{y}_{j} \ \forall \mathbf{y}_{j} \in Y_{j}$.
 - ► Therefore $\mathbf{p} \cdot \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \mathbf{p} \cdot \mathbf{y}_{j}^{\star} \geq \mathbf{p} \cdot \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \mathbf{p} \cdot \mathbf{y}_{j}^{\prime}$.
- 5. Because $(\mathbf{x}', \mathbf{y}')$ is Pareto improving: $\sum_{i=1}^{J} \mathbf{x}'_i = \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \mathbf{y}'_j$.
 - ► This implies $\sum_{i=1}^{I} \mathbf{p} \cdot \mathbf{x}'_{i} = \mathbf{p} \cdot \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \mathbf{p} \cdot \mathbf{y}'_{j}$
- 6. But (3) & (4) imply $\sum_{i=1}^{J} \boldsymbol{p} \cdot \boldsymbol{x}'_{i} > \boldsymbol{p} \cdot \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \boldsymbol{p} \cdot \boldsymbol{y}'_{j}$.
 - But this contradicts (5).

Separating and Supporting Hyperplane Theorems

We will use these two theorems to prove certain propositions:

Theorem (Separating Hyperplane Theorem)

Suppose that the convex sets $\mathcal{A} \subset \mathbb{R}^N$ and $\mathcal{B} \subset \mathbb{R}^N$ are disjoint. Then there is $\mathbf{p} \in \mathbb{R}^N$ with $\mathbf{p} \neq \mathbf{0}$ and a value $c \in \mathbb{R}$ such that $\mathbf{p} \cdot \mathbf{x} \geq c$ for every \mathbf{x} in \mathcal{A} and $\mathbf{p} \cdot \mathbf{y} \leq c$ for every $\mathbf{y} \in \mathcal{B}$.

▶ There is a hyperplane that separates *A* and *B*, with *A* and *B* on different sides of it.

Theorem (Supporting Hyperplane Theorem)

Suppose that $\mathcal{B} \subset \mathbb{R}^N$ is convex and that \mathbf{x} is not an element of the interior of the set \mathcal{B} . Then there is a $\mathbf{p} \in \mathbb{R}^N$ with $\mathbf{p} \neq \mathbf{0}$ such that $\mathbf{p} \cdot \mathbf{x} \geq \mathbf{p} \cdot \mathbf{y}$ for every $\mathbf{y} \in \mathcal{B}$.

Examples

- Example 1: 2 convex, disjoint sets. SHT can be applied.
- Example 2: 2 nonconvex, disjoint sets. SHT can't be applied.

SHT Example in the Robinson Crusoe Economy

- ► Suppose (x_1^*, y_1^*) is Pareto optimal.
- ► Crusoe's "better than set" is $V_1 = \{x_1 \in X_1 : x_1 >_1 x_1^*\}$.
- ► The two sets V_1 and $Y_1 + \{\bar{\omega}\}$ are:
 - b disjoint (by Pareto the optimality of (x_1^*, y_1^*)), and
 - ▶ convex (if \geq_1 and Y_1 are convex).
- ► The separating hyperplane theorem can be applied.

SHT Example in the Robinson Crusoe Economy

► The SHT says $\exists \boldsymbol{p} \neq \boldsymbol{0}$ and a c such that $\boldsymbol{p} \cdot \boldsymbol{x}_1 \geq c \ \forall \boldsymbol{x}_1 \in V_1$ and $\boldsymbol{p} \cdot (\boldsymbol{y}_1 + \bar{\boldsymbol{\omega}}) \leq c \ \forall \boldsymbol{y}_1 + \bar{\boldsymbol{\omega}} \in Y_1 + \{\bar{\boldsymbol{\omega}}\}.$

▶ What we will show: if we transfer wealth $w_1 = c = \boldsymbol{p} \cdot \boldsymbol{x}_1^{\star}$ to Crusoe, $(\boldsymbol{x}_1^{\star}, \boldsymbol{y}_1^{\star}, \boldsymbol{p})$ is an equilibrium.

The Second Fundamental Theorem of Welfare Economics

Theorem

Consider an economy specified by $(\{(X_i, \geq_i)\}_{i=1}^I, \{Y_j\}_{j=1}^J, \bar{\omega})$, and suppose that

- ightharpoonup Every X_i is convex with $\mathbf{0} \in X_i$.
- ▶ Every preference relation \geq_i is convex, continuous and locally nonsatiated.
- \triangleright Every Y_i is convex and exhibits free disposal.

If $(\mathbf{x}^{\star}, \mathbf{y}^{\star})$ is a Pareto optimal allocation, where $\mathbf{x}_{i}^{\star} \gg \mathbf{0}$ for all i, there exists a price vector $\mathbf{p} \geq \mathbf{0}$, $\mathbf{p} \neq \mathbf{0}$ such that $(\mathbf{x}^{\star}, \mathbf{y}^{\star}, \mathbf{p})$ is a price equilibrium with transfers.

Thus, there is a price vector and an assignment of wealth levels (w_1, \ldots, w_l) satisfying $\sum_{i=1}^{l} w_i = \boldsymbol{p} \cdot \bar{\boldsymbol{\omega}} + \sum_{j=1}^{l} \boldsymbol{p} \cdot \boldsymbol{y}_j^{\star}$ such that $(\boldsymbol{x}^{\star}, \boldsymbol{y}^{\star}, \boldsymbol{p})$ is a Walrasian equilibrium.

Second Welfare Theorem Proof: Preliminaries

The goal is to show that the wealth levels $w_i = \mathbf{p} \cdot \mathbf{x}_i^*$ for all i support $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{p})$ as a price equilibrium with transfers.

Define the sets:

- $V_i = \left\{ \boldsymbol{x}_i \in X_i : \boldsymbol{x}_i >_i \boldsymbol{x}_i^{\star} \right\} \subset \mathbb{R}^L$
- $V = \sum_{i=1}^{I} V_i = \left\{ \sum_{i=1}^{I} \mathbf{x}_i \in \mathbb{R}^L : \mathbf{x}_1 \in V_1, \dots, \mathbf{x}_I \in V_I \right\}$
- $Y = \sum_{j=1}^{J} Y_j = \left\{ \sum_{j=1}^{J} \mathbf{y}_j \in \mathbb{R}^L : \mathbf{y}_1 \in Y_1, \dots, \mathbf{y}_J \in Y_J \right\}$
- ▶ V is the set of aggregate consumption bundles that *could* be split across the I individuals with each i preferring it to x_i^* .
- $Y + \{\bar{\omega}\}\$ is the set of aggregate bundles producible with the given technology and endowments.

With this, we split the proof into multiple steps.

Second Welfare Theorem Proof Outline

- Step 1 Every set V_i is convex.
- Step 2 The sets V and $Y + {\bar{\omega}}$ are convex.
- Step 3 V and $Y + {\bar{\omega}}$ are disjoint.
- Step 4 There is a vector $p \ge 0$, $p \ne 0$ and a number c such that $p \cdot z \ge c$ for every $z \in V$ and $p \cdot z \le c$ for every $z \in Y + \{\bar{\omega}\}$.
- Step 5 If $\mathbf{x}_i \geq_i \mathbf{x}_i^*$ for every i, then $\mathbf{p} \cdot \left(\sum_{i=1}^{I} \mathbf{x}_i\right) \geq c$.
- Step 6 $\boldsymbol{p} \cdot \left(\sum_{i=1}^{J} \boldsymbol{x}_{i}^{\star}\right) = \boldsymbol{p} \cdot \left(\bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \boldsymbol{y}_{j}^{\star}\right) = c.$
- Step 7 For every j, we have $\mathbf{p} \cdot \mathbf{y}_j \leq \mathbf{p} \cdot \mathbf{y}_j^*$ for all $\mathbf{y}_j \in Y_j$.
- Step 8 For every *i*, if $x_i >_i x_i^*$, then $p \cdot x_i > p \cdot x_i^*$.
- Step 9 Steps 7 & 8 with feasibility from the Pareto optimal allocation implies that the wealth levels $w_i = \mathbf{p} \cdot \mathbf{x}_i^*$ for all i support $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{p})$ as a price equilibrium with transfers.

Step 1

Every set $V_i = \{ \mathbf{x}_i \in X_i : \mathbf{x}_i >_i \mathbf{x}_i^* \}$ is convex.

- We need to show that if $\mathbf{x}_i \in V_i$ and $\mathbf{x}_i' \in V_i$, then $\mathbf{x}_i^{\alpha} = \alpha \mathbf{x}_i + (1 \alpha) \mathbf{x}_i' \in V_i$ for all $\alpha \in [0, 1]$.
- First, by the convexity of X_i , $\mathbf{x}_i^{\alpha} \in X_i$.
- $ightharpoonup x_i, x_i' \in V_i \text{ means } x_i >_i x_i^* \text{ and } x_i' >_i x_i^*.$
- ▶ Suppose wlog that $\mathbf{x}_i \succeq_i \mathbf{x}'_i$.
- ▶ Because preferences are convex: $\mathbf{x}_{i}^{\alpha} \succeq_{i} \mathbf{x}_{i}' \forall \alpha \in [0, 1]$
- ► Then by transitivity $\mathbf{x}_i^{\alpha} >_i \mathbf{x}_i^{\star}$.
- ► Hence $\mathbf{x}_i^{\alpha} \in V_i$.

Step 2

The sets V and $Y + {\bar{\omega}}$ are convex.

- ► The sum of convex sets is convex.
 - See note at end of slide deck for I = 2 case.

Step 3

V and $Y + {\bar{\omega}}$ are disjoint.

- ▶ *V* contains all bundles that can be distributed such that everyone is strictly better off than with x_i^* .
- $Y + \{\bar{\omega}\}$ is the set of all feasible bundles.
- ▶ If they were not disjoint, then (x^*, y^*) would not be Pareto optimal.

Step 4

There is a vector $p \ge 0$, $p \ne 0$ and a number c such that $p \cdot z \ge c$ for every $z \in V$ and $p \cdot z \le c$ for every $z \in Y + \{\overline{\omega}\}$.

- ► That such a $p \in \mathbb{R}^L$, $p \neq 0$ exists follows directly from the separating hyperplane theorem (two disjoint convex sets).
- ▶ We only need to rule out the possiblity of p_{ℓ} < 0 for any ℓ .
- ▶ Because firms have free disposal, if $p_{\ell} < 0$ then $\mathbf{p} \cdot \mathbf{y}_{j}$ could become unboundedly large, violating $\mathbf{p} \cdot \mathbf{z} \le c$ for all $\mathbf{z} \in Y + \{\bar{\boldsymbol{\omega}}\}$.

Step 5

If $\mathbf{x}_i \succeq_i \mathbf{x}_i^*$ for every i, then $\mathbf{p} \cdot \left(\sum_{i=1}^l \mathbf{x}_i\right) \geq c$.

- ► Take $\mathbf{x}_i \succeq_i \mathbf{x}_i^*$. By LNS we have, $\forall \varepsilon > 0$, $\exists \hat{\mathbf{x}}_i$ satisfying $||\hat{\mathbf{x}}_i \mathbf{x}_i|| \le \varepsilon$ such that $\hat{\mathbf{x}}_i \succ_i \mathbf{x}_i$.
- ▶ By transitivity $\hat{\mathbf{x}}_i >_i \mathbf{x}_i^*$ so $\hat{\mathbf{x}}_i \in V_i$.
- ▶ Such a $\hat{\mathbf{x}}_i$ exists for every consumer, so $\sum_{i=1}^{I} \hat{\mathbf{x}}_i \in V$.
- ▶ By Step 4: $\mathbf{p} \cdot \left(\sum_{i=1}^{I} \hat{\mathbf{x}}_i\right) \geq c$.
- ▶ As $\varepsilon \to 0$ (so $\hat{\mathbf{x}}_i \to \mathbf{x}_i \ \forall i$), we have $\mathbf{p} \cdot \left(\sum_{i=1}^I \mathbf{x}_i\right) \geq c$.
 - Limits preserve inequalities.

► As a consequence of Step 5, because $\mathbf{x}_{i}^{\star} \geq_{i} \mathbf{x}_{i}^{\star}$, we have $\mathbf{p} \cdot \left(\sum_{i=1}^{I} \mathbf{x}_{i}^{\star}\right) \geq c$

Step 6

$$\boldsymbol{p} \cdot \left(\sum_{i=1}^{J} \boldsymbol{x}_{i}^{\star}\right) = \boldsymbol{p} \cdot \left(\bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \boldsymbol{y}_{j}^{\star}\right) = c.$$

- ▶ By feasibility, $\sum_{i=1}^{J} \mathbf{x}_{i}^{\star} = \sum_{j=1}^{J} \mathbf{y}_{j}^{\star} + \bar{\boldsymbol{\omega}} \in Y + \{\bar{\boldsymbol{\omega}}\}.$
- ► Therefore $\mathbf{p} \cdot \left(\sum_{i=1}^{l} \mathbf{x}_{i}^{\star}\right) \leq c$ because $\mathbf{p} \cdot \mathbf{z} \leq c$ for every $\mathbf{z} \in Y + \{\bar{\omega}\}$.
- ▶ But Step 5 implies that $\mathbf{p} \cdot \left(\sum_{i=1}^{I} \mathbf{x}_{i}^{\star}\right) \geq c$
- ► Therefore $\boldsymbol{p} \cdot \left(\sum_{i=1}^{I} \boldsymbol{x}_{i}^{\star}\right) = c$.

Step 7

For every j, we have $\mathbf{p} \cdot \mathbf{y}_j \leq \mathbf{p} \cdot \mathbf{y}_j^*$ for all $\mathbf{y}_j \in Y_j$.

- ▶ For all firms, $\forall y_j \in Y_j$ we have $y_j + \sum_{h\neq j} y_h^* \in Y$.
- ► From Steps 4 and 6, $\forall y_i \in Y_j$:

$$\boldsymbol{p} \cdot \left(\bar{\boldsymbol{\omega}} + \boldsymbol{y}_j + \sum_{h \neq j} \boldsymbol{y}_h^{\star}\right) \leq c = \boldsymbol{p} \cdot \left(\bar{\boldsymbol{\omega}} + \boldsymbol{y}_j^{\star} + \sum_{h \neq j} \boldsymbol{y}_h^{\star}\right)$$

► Cancelling terms yields $\mathbf{p} \cdot \mathbf{y}_j \leq \mathbf{p} \cdot \mathbf{y}_j^*$ for all $\mathbf{y}_j \in Y_j$, for all j.

Step 8

For every i, if $\mathbf{x}_i >_i \mathbf{x}_i^*$, then $\mathbf{p} \cdot \mathbf{x}_i > \mathbf{p} \cdot \mathbf{x}_i^*$.

▶ If $x_i >_i x_i^*$, then $x_i \in V_i$. From Steps 5 and 6 above we have:

$$\boldsymbol{p} \cdot \left(\boldsymbol{x}_i + \sum_{k \neq i} \boldsymbol{x}_k^{\star} \right) \geq c = \boldsymbol{p} \cdot \left(\boldsymbol{x}_i^{\star} + \sum_{k \neq i} \boldsymbol{x}_k^{\star} \right)$$

- ► Cancelling terms yields $\mathbf{p} \cdot \mathbf{x}_i \ge \mathbf{p} \cdot \mathbf{x}_i^{\star}$.
- Now we just need to rule out the $\mathbf{p} \cdot \mathbf{x}_i = \mathbf{p} \cdot \mathbf{x}_i^*$ case.

- Suppose toward a contradition there is a $\mathbf{x}_i' \in \mathbb{R}_+^L$ satisfying $\mathbf{x}_i' >_i \mathbf{x}_i^*$ such that $\mathbf{p} \cdot \mathbf{x}_i' = \mathbf{p} \cdot \mathbf{x}_i^*$.
- ▶ Because $\mathbf{0} \in X_i$ and X_i is convex, $\alpha \mathbf{x}'_i + (1 \alpha) \mathbf{0} \in X_i$ for all $\alpha \in [0, 1]$.
- ▶ Because $p \ge 0$, $p \ne 0$ and $x_i^* \gg 0$, we know that $p \cdot x_i^* > 0$
- $\forall \alpha \in [0, 1), \alpha \boldsymbol{p} \cdot \boldsymbol{x}_{i}' + (1 \alpha) \boldsymbol{p} \cdot \boldsymbol{0} < \boldsymbol{p} \cdot \boldsymbol{x}_{i}^{\star}.$
- **>** By continuity, for *α* close enough to 1, $\alpha x_i' >_i x_i^*$.
- As we have found a bundle that is preferred to \mathbf{x}_{i}^{\star} and is strictly cheaper, we have found a contradiction to what we found above.

Step 9

If we assign wealth levels $w_i = \boldsymbol{p} \cdot \boldsymbol{x}_i^*$ to each consumer, $(\boldsymbol{x}^*, \boldsymbol{y}^*, \boldsymbol{p})$ is a price equilibrium with transfers.

This satisfies all the conditions for equilibrium:

- ▶ By Step 8: If $\mathbf{x}_i >_i \mathbf{x}_i^*$, then $\mathbf{p} \cdot \mathbf{x}_i > w_i$, $\forall i$.
 - ▶ x_i^* is maximal for \geq_i in the budget set.
- ▶ By Step 7: $\mathbf{p} \cdot \mathbf{y}_j \leq \mathbf{p} \cdot \mathbf{y}_j^*$ for all $\mathbf{y}_j \in Y_j$, $\forall j$
 - y_i^* maximizes profits in Y_j .
- Because (x^*, y^*) is Pareto optimal, we have feasibility and hence market clearing in each good:

$$\sum_{i=1}^{J} \mathbf{x}_{i}^{\star} = \bar{\boldsymbol{\omega}} + \sum_{j=1}^{J} \mathbf{y}_{j}^{\star}$$

Utility Possibilities Set and Pareto Frontier

Recall the utility possibility set:

$$\mathcal{U} = \left\{ (u_1, \dots, u_l) \in \mathbb{R}^l : \exists \text{ feasible } (\mathbf{x}, \mathbf{y}) \text{ s.t. } u_i \leq u_i (\mathbf{x}_i) \ \forall i \right\}$$

The Pareto frontier is:

$$\mathcal{UP} = \left\{ (u_1, \dots, u_l) \in \mathcal{U} : \text{there is no } (u'_1, \dots, u'_l) \in \mathcal{U} \right\}$$

such that $u'_i \geq u_i \ \forall i \ \text{and} \ u'_i > u_i \ \text{for some } i \right\}$

Theorem

A feasible allocation (\mathbf{x}, \mathbf{y}) is a Pareto optimum if and only if $(u_1(\mathbf{x}_1), \dots, u_l(\mathbf{x}_l)) \in \mathcal{UP}$

Social Welfare

Suppose we have the linear social welfare function:

$$W(u_1,\ldots,u_l)=\sum_{i=1}^l\lambda_iu_i$$

where $\lambda_i \geq 0 \ \forall i$.

► The planner's problem is then:

$$\max_{u \in \mathcal{U}} \lambda \cdot u$$

- ▶ The optimum of every linear social welfare function with $\lambda \gg 0$ is Pareto optimal.
- If $\mathcal U$ is convex, every Pareto optimal allocation is the solution to the planner's problem for *some* welfare weights.

All Social Welfare Optima are Pareto Optimal

Theorem

If \mathbf{u}^{\star} is a solution to the social welfare maximization problem

$$\max_{u \in \mathcal{U}} \lambda \cdot u$$

with $\lambda \gg 0$, then $\mathbf{u}^{\star} \in \mathcal{UP}$.

Proof: If not, there is another $u' \in \mathcal{U}$ where $u' \geq u^*$ and $u' \neq u^*$. Then, since $\lambda \gg 0$, we have $\lambda \cdot u' > \lambda \cdot u^*$, contradicting that u^* solved the planner's problem.

All Pareto Optimal Allocations are a Social Welfare Optimum

Theorem

If the set \mathcal{U} is convex, then for any $\widetilde{\mathbf{u}} \in \mathcal{UP}$, there is a vector of welfare weights $\lambda \geq \mathbf{0}$, $\lambda \neq \mathbf{0}$, such that $\lambda \cdot \widetilde{\mathbf{u}} \geq \lambda \cdot \mathbf{u}$ for all $\mathbf{u} \in \mathcal{U}$.

Proof: If $\widetilde{\boldsymbol{u}} \in \mathcal{UP}$, then $\widetilde{\boldsymbol{u}} \in bd\left(\mathcal{U}\right)$. Using the convexity of \mathcal{U} , by the supporting hyperplane theorem, $\exists \boldsymbol{\lambda} \neq \boldsymbol{0}$ such that $\boldsymbol{\lambda} \cdot \widetilde{\boldsymbol{u}} \geq \boldsymbol{\lambda} \cdot \boldsymbol{u} \ \forall \boldsymbol{u} \in \mathcal{U}$. Moreover $\boldsymbol{\lambda} \geq \boldsymbol{0}$ since otherwise you could choose a $u_i < 0$ large enough in absolute value to get $\boldsymbol{\lambda} \cdot \boldsymbol{u} > \boldsymbol{\lambda} \cdot \widetilde{\boldsymbol{u}}$.

When is \mathcal{U} convex?

▶ If each X_i and Y_i is convex and each $u_i(\mathbf{x}_i)$ is concave, then \mathcal{U} is convex (part of tutorial 3).

First-Order Conditions for Pareto Optimality

- Assume now $X_i = \mathbb{R}^L$ for all *i*.
- $\triangleright \geq_i$ is represented by $u_i(\mathbf{x}_i)$ which is twice continuously differentiable and satisfies $\nabla u_i(\mathbf{x}_i) \gg \mathbf{0}$ and $u_i(\mathbf{0}) = 0$.
- Firm j's production set is $Y_i = \{ \mathbf{y} \in \mathbb{R}^L : F_i(\mathbf{y}) \leq 0 \}$, where $F_i : \mathbb{R}^L \to \mathbb{R}$ is twice continuously differentiable, $F_i(\mathbf{0}) \leq 0$ and $\nabla F_i(\mathbf{y}_i) \gg \mathbf{0}$.
- (x, y) is Pareto optimal if it solves:

$$\max_{\left(\boldsymbol{x} \in \mathbb{R}_{+}^{L}, \boldsymbol{y} \in \mathbb{R}^{L}\right)} u_{1}\left(\boldsymbol{x}_{1}\right)$$

subject to:

- ► $u_i(\mathbf{x}_i) \ge \overline{u}_i$ for all i = 2, ..., I. ► $F_j(\mathbf{y}_i) \le 0$ for all j = 1, ..., J
- $\sum_{i=1}^{I} x_{\ell i} \leq \bar{\omega}_{\ell} + \sum_{i=1}^{J} y_{\ell i} \text{ for all } \ell = 1, \dots, L.$

First-Order Conditions for Pareto Optimality

The Lagrangian is:

$$\mathcal{L}(\cdot) = u_{1}(\mathbf{x}_{1}) + \sum_{i=2}^{I} \delta_{i}(u_{i}(\mathbf{x}_{i}) - \bar{u}_{i}) + \sum_{i=1}^{I} \sum_{\ell=1}^{L} \xi_{\ell i} x_{\ell i} - \sum_{j=1}^{J} \gamma_{j} F_{j}(\mathbf{y}_{j}) + \sum_{\ell=1}^{L} \mu_{\ell} \left(\bar{\omega}_{\ell} + \sum_{j=1}^{J} y_{\ell j} - \sum_{i=1}^{I} x_{\ell i}\right)$$

- ▶ All constraints except for nonnegativity (with multipliers $\xi_{\ell i}$) will necessarily bind at the optimum.
- ► The first-order conditions are (where $\delta_1 = 1$):

$$x_{\ell i}: \delta_{i} \frac{\partial u_{i}}{\partial x_{\ell i}} + \xi_{\ell i} - \mu_{\ell} = 0 \text{ for all } i, \ell \text{ where } \xi_{\ell i} = 0 \text{ if } x_{\ell i} > 0$$

$$y_{\ell j}: \mu_{\ell} - \gamma_{j} \frac{\partial F_{j}}{\partial y_{\ell}} = 0 \text{ for all } j, \ell$$

First-Order Conditions for Pareto Optimality

At an interior solution $x_i \gg 0$ for all i:

Equal
$$MRS_{i\ell\ell'}$$
 across i :
$$\frac{\frac{\partial u_i}{\partial x_{\ell i}}}{\frac{\partial u_i}{\partial x_{\ell' j'}}} = \frac{\frac{\partial u_{i'}}{\partial x_{\ell i'}}}{\frac{\partial u_{i'}}{\partial x_{\ell' j'}}} \qquad \text{for all } i, i', \ell, \ell'$$
Equal $MRTS_{j\ell\ell'}$ across j :
$$\frac{\frac{\partial F_j}{\partial y_{\ell j}}}{\frac{\partial F_j}{\partial y_{\ell' j}}} = \frac{\frac{\partial F_{j'}}{\partial y_{\ell j'}}}{\frac{\partial F_{j'}}{\partial y_{\ell' j'}}} \qquad \text{for all } j, j', \ell, \ell'$$

$$MRS_{i\ell\ell'} = MRTS_{j\ell\ell'} \text{ for each } i, j: \qquad \frac{\frac{\partial u_i}{\partial x_{\ell i}}}{\frac{\partial u_i}{\partial x_{\ell' j}}} = \frac{\frac{\partial F_j}{\partial y_{\ell j'}}}{\frac{\partial F_j}{\partial y_{\ell' j}}} \qquad \text{for all } i, j, \ell, \ell'$$

Note: If V_1 and V_2 are convex, $V = V_1 + V_2$ is convex

- ► Take $\mathbf{x}' = \mathbf{x}'_1 + \mathbf{x}'_2 \in V$ and and $\mathbf{x}'' = \mathbf{x}''_1 + \mathbf{x}''_2 \in V$.
- ▶ WTS: $\forall \alpha \in [0, 1]$ that $\alpha x' + (1 \alpha) x'' \in V$.
- ▶ Because V_1 and V_2 are convex, $\forall \alpha \in [0, 1]$, $\mathbf{x}_1^{\alpha} = \alpha \mathbf{x}_1' + (1 \alpha) \mathbf{x}_1'' \in V_1$ and similarly $\mathbf{x}_2^{\alpha} \in V_2$.
- ► So, by the definition of *V*:

$$\alpha \mathbf{x}' + (1 - \alpha) \mathbf{x}'' = \alpha \left(\mathbf{x}_1' + \mathbf{x}_2' \right) + (1 - \alpha) \left(\mathbf{x}_1'' + \mathbf{x}_2'' \right)$$
$$= \alpha \mathbf{x}_1' + (1 - \alpha) \mathbf{x}_1'' + \alpha \mathbf{x}_2' + (1 - \alpha) \mathbf{x}_2''$$
$$= \mathbf{x}_1^{\alpha} + \mathbf{x}_2^{\alpha}$$

▶ This is an element of V since it is the sum of two vectors which are each elements of V_1 and V_2 .

Note: Limits Preserve Inequalities

- ► Consider the sequence $\sum_{i=1}^{l} \widehat{\mathbf{x}}_i \to \sum_{i=1}^{l} \mathbf{x}_i$ where $\mathbf{p} \cdot \left(\sum_{i=1}^{l} \widehat{\mathbf{x}}_i\right) \geq c$.
- We want to show that this inequality is preserved at the limit: $\mathbf{p} \cdot \left(\sum_{i=1}^{l} \mathbf{x}_{i}\right) \geq c$.
- ▶ Suppose toward a contradiction that instead $\mathbf{p} \cdot \left(\sum_{i=1}^{l} \mathbf{x}_i\right) = d < c$.
- From the definition of the limit of a function:

$$\lim_{\sum_{i=1}^{l} \widehat{\mathbf{x}}_{i} \to \sum_{i=1}^{l} \mathbf{x}_{i}} \mathbf{p} \cdot \left(\sum_{i=1}^{l} \widehat{\mathbf{x}}_{i} \right) = d$$

implies that $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $\forall \sum_{i=1}^{I} \widehat{\mathbf{x}}_i$, $0 < \left| \sum_{i=1}^{I} \widehat{\mathbf{x}}_i - \sum_{i=1}^{I} \mathbf{x}_i \right| < \delta$ implies that $\left| \mathbf{p} \cdot \left(\sum_{i=1}^{I} \widehat{\mathbf{x}}_i \right) - d \right| < \varepsilon$.

- This holds for all $\varepsilon > 0$. Choose $\varepsilon = c d$. $\exists \delta > 0$ s.t. $\forall \sum_{i=1}^{I} \widehat{\mathbf{x}}_{i}$,
 - $0 < \left| \sum_{i=1}^{I} \widehat{\mathbf{x}}_{i} \sum_{i=1}^{I} \mathbf{x}_{i} \right| < \delta \Longrightarrow \left| \mathbf{p} \cdot \left(\sum_{i=1}^{I} \widehat{\mathbf{x}}_{i} \right) d \right| < \varepsilon = c d.$
- ▶ But then:

$$-\varepsilon < \boldsymbol{p} \cdot \left(\sum_{i=1}^{I} \widehat{\boldsymbol{x}}_{i}\right) - d < \varepsilon = c - d \quad \Longrightarrow \quad \boldsymbol{p} \cdot \left(\sum_{i=1}^{I} \widehat{\boldsymbol{x}}_{i}\right) < c \quad \Longrightarrow \quad \text{Contradiction}$$