CS218 Data Structures

Spring 2020 FAST-NU, Lahore

Assignment 6 – Huffman Codes and Hashing

Question 1. A file contains only colons, spaces, newlines, commas, and digits in the following frequency: colon (100), space (605), newline (100), comma (705), 0 (431), 1 (242), 2 (176), 3 (59), 4 (185), 5 (250), 6 (174), 7 (199), 8 (205), 9 (217). Construct the Huffman codes.

Question 2. Given the following tree

where sp represents space.

Decode the following stream of data:

000111100101000101011001111101100110

We've already discussed that we take every left branch as 0 and right branch as 1.

Question 3. Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function $h(x) = x \mod 10$, show the resulting

- a. separate chaining hash table
- b. hash table using linear probing
- c. hash table using quadratic probing

What is the load factor (λ) of these tables?

Question 4. Following 7 values were inserted using hash function $h(x) = x \mod 10$ in a linear probing hash table of size 10:

0	
1	121
2	512
3	343
4	81
5	1225
6	482
7	144
8	
9	

Give a possible sequence in which these values were inserted.

Question 5. A linear probing hash table with hash function $h(x) = x^2 \mod 7$ is populated with these values: 6, 5, 8, 9, 7

0	7
1	6 8
2	8
3	
4	5
5	9
6	

- a. What is the load factor (λ) of this table?
- b. Rehash the table to size 13, update the hash function to $h(x) = x^2 \mod 13$ and give the resulting hash table after rehashing.

(Rehashing has been discussed in book in section 5.5)