Klassifizierung von Webcam-basierten Eyetracking-Daten

ERGEBNISSE MEINER BA-ARBEIT

STARTING POINT

Zemblys Paper

We conclude that machine-learning techniques lead to superior detection compared to current state-of-the-art event detection algorithms [...].

Behav Res DOI 10.3758/s13428-017-0860-3

Using machine learning to detect events in eye-tracking data

Raimondas Zemblys 1,2 · Diederick C. Niehorster 3,4 · Oleg Komogortsev 5 · Kenneth Holmqvist 2,6

© Psychonomic Society, Inc. 2017

Abstract Event detection is a challenging stage in eye movement data analysis. A major drawback of current event detection methods is that parameters have to be adjusted based on eye movement data quality. Here we show that a fully automated classification of raw gaze samples as belonging to fixations, saccades, or other oculomotor events can be achieved using a machine-learning approach. Any already manually or algorithmically detected events can be used to train a classifier to produce shints can data without the need for a user to set parameters. In this learning technique for the detection of fixations, saccades, and post-saccadic escillations (PSOs). In an effort to show practical utility of the proposed method to the applications that employ eye movement classification algorithms, we provide an example where the method is employed in an eye movement-driven biometric application. We conclude that machine-learning techniques lead to superior detection

compared to current state-of-the-art event detection algorithms and can reach the performance of manual coding.

 $\begin{tabular}{ll} \textbf{Keywords} & Eye movements \cdot Event detection \cdot Machine \\ learning \cdot Fixations \cdot Saccades \\ \end{tabular}$

Introduction

In eye movement research, the goal of *event detection* is to robustly extract events, such as fixations and saccades, from the stream of raw data samples from an eye tracker, based on a set of basic rules and criteria which are appropriate for the recorded signal. Until recently, researchers who ventured to record eye movements were required to conduct time-consuming manual event detection. For instance, Hartridge and Thomson (1948) devised a method to analyze eye movements at a rate of 10000 s (almost 3 h) of analysis time for 1 s of recorded data, and as Monty (1975) remarked: "It is not uncommon to spend days processing data that took only minutes to collect" (p. 331–332).

Computers have fundamentally changed how eye movement data are analyzed. Today, event detection is almost exclusively done by applying a detection algorithm to the raw gaze data. For a long time, two broad classes

 [⊠] Raimondas Zemblys r.zemblys@tf.su.lt

Department of Engineering, Siauliai University, Siauliai, Lithuania

FIRST DATA

ADVANTAGES OF MACHINE-LEARNING

Zemblys Paper

Most of these algorithms work well within the assumptions they make of the data. Examples of common assumptions are that the input must be high-quality data, or data recorded at high sampling frequencies [...]. When the sampling frequency is too low, or too high, or the precision of the data is poor, or there is data loss, many of these algorithms fail (Holmqvist et al. 2012, 2016).

Behav Res DOI 10.3758/s13428-017-0860-3

Using machine learning to detect events in eye-tracking data

Raimondas Zemblys $^{1,2}\cdot \text{Diederick C. Niehorster}^{3,4}\cdot \text{Oleg Komogortsev}^5\cdot \text{Kenneth Holmqvist}^{2,6}$

© Psychonomic Society, Inc. 2017

Abstract Event detection is a challenging stage in eye movement data analysis. A major drawback of current event detection methods is that parameters have to be adjusted based on eye movement data quality. Here we show that a fully automated classification of raw gaze samples as belonging to fixations, saccades, or other oculomotor events can be achieved using a machine-learning approach. Any already manually or algorithmically detected events can be used to train a classifier to produce similar classification of other data without the need for a user to set parameters. In this study, we explore the application of random forest machinelearning technique for the detection of fixations, saccades, and post-saccadic oscillations (PSOs). In an effort to show practical utility of the proposed method to the applications that employ eye movement classification algorithms, we provide an example where the method is employed in an eye movement-driven biometric application. We conclude that machine-learning techniques lead to superior detection

compared to current state-of-the-art event detection algorithms and can reach the performance of manual coding.

Keywords Eye movements · Event detection · Machine learning · Fixations · Saccades

Introduction

In eye movement research, the goal of *event detection* is to robustly extract events, such as fixations and saccades, from the stream of raw data samples from an eye tracker, based on a set of basic rules and criteria which are appropriate for the recorded signal. Until recently, researchers who ventured to record eye movements were required to conduct time-consuming manual event detection. For instance, Hartridge and Thomson (1948) devised a method to analyze eye movements at a rate of 10000 s (almost 3 h) of analysis time for 1 s of recorded data, and as Monty (1975) remarked: "It is not uncommon to spend days processing data that took only minutes to collect" (p. 331–332).

Computers have fundamentally changed how eye movement data are analyzed. Today, event detection is almost exclusively done by applying a detection algorithm to the raw gaze data. For a long time, two broad classes

 [⊠] Raimondas Zemblys r.zemblys@tf.su.lt

Department of Engineering, Siauliai University, Siauliai, Lithuania

RANDOM FOREST

WebGazer data

	timestamp	X	У
401	127833	420.594802	760.075459
402	127890	423.654510	756.349346
403	127946	395.596778	701.915289

RANDOM FOREST

WebGazer data

Features

	timestamp	X	y	1Z	distance	velocity	acceleration
401	127833	420.594802	760.075459 19.23076	69	42.527993	0.817846	0.015728
402	127890	423.654510	756.349346 17.54386	60	4.821382	0.084586	0.001484
403	127946	395.596778	701.915289 17.85714	13	61.239717	1.093566	0.019528

14 Features

Festure	Description
fs	sampling frequency (Hz). As some features may provide different information at different sampling rates (e.g., SMI BeGaze uses velocity for data sampled at 200 Hz and more and dispersion at lower frequencies), providing the classifier with information about sampling frequency may allow it to make better decision trees
rms	root mean square (*) of the sample-to-sample displacement in a 100-ms window centered on a sample. The most used measure to describe eye-tracker noise (Holmqvist et al., 2011)
std	ntendend deviation (*) of the recorded gaze position in a 100-ms window centered on a sample. Another common noise measure (Holmqvist et al., 2011)
bces	bivariate contour ellipse area (*2). Measures the area in which the recorded gaze position in a 100-ms window is for P % of the time (Blignaut and Beelders, 2012). $P = 68$
disp	dispersion (*). The most common measure in dispersion-based algorithms (Salvucci & Goldberg, 2000). Calculated as $(x_{max} - x_{min}) + (y_{max} - y_{min})$ over a 100-ms window
vel, acc	velocity ("/s) and acceleration ("/s ²), calculated using a Savitzky-Golay filter with polynomial order 2 and a window size of 12 ms—half the duration of shortest saccade, as suggested by Nyström and Holmqvist (2010)
med-diff	distance (*) between the median gaze in a 100-ms window before the sample, and an equally sized window after the sample. Proposed by Olsson (2007)
mean-diff	distance (*) between the mean gaze in a 100-ms window before the sample, and an equally sized win- dow after the sample. Proposed by Olsson (2007) and used in the default fixation detection algorithm in Tobii Studio
Rayleightest	a feature used by Larsson et al. (2015) that indicates whether the sample-to-sample directions in a 22-ms window are uniformly distributed
i2me	introduced by Hessels et al. (2016) to find saccades in very noisy data. We used the final weights provided by the two-means clustering procedure as generated by the original implementation of the algorithm. A window size of 200 ms, centered on the sample was used
rms-diff, std-diff, bcea-diff	features inspired by Olsson (2007), but instead of differences in position, we take the difference between noise measures calculated for 100-ms windows preceding and succeeding the sample

Zemblys Paper

A minimum of three samples are used in case there are not enough samples in the defined window, as may happen for lower frequency data

WebGazer data

Features

			i				
	timestamp	X	У	${ m hz}$	distance	velocity	acceleration
401	127833	420.594802	760.075459	19.230769	42.527993	0.817846	0.015728
402	127890	423.654510	756.349346	17.543860	4.821382	0.084586	0.001484
403	127946	395.596778	701.915289	17.857143	61.239717	1.093566	0.019528

https://upload.wikimedia.org/wikipedia/commons/7/76/Random_forest_diagram_complete.png

PROBLEM

For all Machine Learning Systems we need classified data for training.

timestamp	X	У	label
127833	420.595	760.075	???
127890	423.655	756.349	???
127946	395.597	701.915	???

We don't have.

FIRST APPROACH

FIRST APPROACH

> Heuristic

- Drag & Drop -> Saccade
- Click -> Fixation

DATA PER SESSION

Beispielobjekt aus der Datenbank

```
id: ObjectId("5f4e0828a6ba17062570a2bd")
 timestamp: 1598949413945
                                                    Array von Koordinaten der Zielkreise
 name: "Daniel"
 glasses: "true"
                                                    x : Float
 browser: "Netscape"
                                                    y: Float
 windowInnerWidth: 1440
 windowInnerHeight: 803
 marginHeight: 80.3000000000001
 marginWidth: 288
                                                    Array von WebGazer-Daten mit Label
> calibrationTargets: Array
> clickTargets: Array
                                                    timestamp: Float
> gazeTargets: Array
                                                    x: Float
> calibrationData: Array
                                                    y : Float
> clickData: Array
                                                    label: String ("fixation" | "saccade")
> gazeData: Array
```

DATA FROM 2 SESSIONS

DATA FROM 2 SESSIONS

MORE DETAIL

RESULT FIRST APPROACH

- Heuristic works
- WebGazer can produce Fixations and Saccades
- Simple algorithms can detect those events
 - finding the correct thresholds is difficult
 - up to 85 % could be classified correctly
- Data can be created easily
 - can be done by everyone
 - can be repeated infinitely by the same person
- Heuristic can be tweaked by hand labeling

RESULT FIRST APPROACH

Can we use this **classified** dataset to train a Machine Learning Model?

No.

- Heuristic is good, but needs correction by hand
 - hand labeling is time consuming
 - and needs an expert
- Data is not realistic enough

SECOND APPROACH

MAIN PAGE

CALIBRATION

PRECISION

DATA

					*:	Constitute (ADOS)	Comp Delimby (ADCC)	0
	timestamp	х	У		timestamp	GazePointX (ADCSpx)	GazePointY (ADCSpx)	GazeEventType
0	125382	805.724813	598.797895	17150	1.603962e+12	932.0	494.0	Fixation
1	125442	830.150531	575.433364	17151	1.603962e+12	931.0	513.0	Fixation
2	125527	853. 1 16613	571.833358	17152	1.603962e+12	931.0	527.0	Fixation
3	125578	840.831675	574.131049	17153	1.603962e+12	970.0	551.0	Fixation
4	125628	841.620069	571.197856	17154	1.603962e+12	984.0	553.0	Fixation
1098	194304	992.337366	583.112148	25449	1.603962e+12	889.0	490.0	Fixation
1099	194358	939.116101	544.840858	25450	1.603962e+12	890.0	488.0	Saccade
1100	194409	925.749212	530.538707	25451	1.603962e+12	903.0	457.0	Unclassified
1101	194490	928.691400	529.659512	25452	1.603962e+12	898.0	492.0	Saccade
1102	194542	1021.360609	556.513418	25453	1.603962e+12	845.0	557.0	Saccade
dura	tion = 19 = 69	4542 - 12 160	5382	> tin	l nestampFo	rSync < time	stampForSync +	duration

WebGazer-Daten

Tobii-Pro-Daten

COMBINATION BINATION

1 125442 60 830.150531 575.433364 17151 1.603962e+12 8.0 931.0 513.0 8 2 125527 145 853.116813 671.833368 17152 1.603962e+12 17.0 931.0 527.0 8 3 125578 196 840.831675 574.131049 17153 1.603962e+12 25.0 970.0 551.0 8 4 125628 246 841.820069 571.197856 17154 1.603962e+12 33.0 984.0 553.0 8 1098 194304 68922 992.337366 583.112148 25449 1.603962e+72 69126.0 889.0 490.0 8 1099 194358 68976 939.116104 544.840856 25460 1.603962e+12 69134.0 890.0 488.0 8 1100 194409 69027 925.749212 530.538707 25461 1.603962e+12 69151.0 898.0 492.0 8 1101 194490 69108 928.891400 529.659512 25462 1.603962e+12 69151.0 898.0 </th <th>ixation ixation ixation ixation ixation ixation accade assified accade</th>	ixation ixation ixation ixation ixation ixation accade assified accade
2 125527 145 853.118613 571.833358 17152 1.603962e+12 17.0 931.0 527.0 F 3 125578 196 840.831675 574.131049 17153 1.603962e+12 25.0 970.0 551.0 F 4 125628 248 841.620069 571.197856 17164 1.603962e+12 33.0 984.0 553.0 F 1098 194304 68922 992.337366 583.112148 25449 1.603962e+72 69126.0 889.0 490.0 F 1099 194358 66975 939.115101 544.840658 25450 1.603962e+12 69134.0 890.0 488.0 S 1100 194409 69027 925.749212 530.538707 25461 1.603962e+12 69142.0 903.0 457.0 Unck 1101 194490 69108 928.691400 \$29.659512 25452 1.803962e+12 69151.0 898.0 492.0 S 1102 194542 69160 1021.360609 555.513416 25453 1.603962e+12 69150.0 845.0 557.0 S 2	ixation ixation ixation ixation accade assified accade
3 125578 196 810.831675 574.131049 17153 1.6039629+12 25.0 970.0 551.0 8 4 125628 248 841,620069 571.197856 17164 1.6039629+12 33.0 984.0 553.0 8 1098 194304 68922 992.337366 583.112148 25449 1.6039629+12 69126.0 889.0 490.0 8 1099 194356 68975 935.116101 544.840856 25460 1.6039629+12 69134.0 890.0 488.0 Si 1100 194409 69108 928.691400 529.859512 25461 1.6039629+12 69142.0 903.0 457.0 Uncle 1101 194490 69108 928.691400 529.859512 25462 1.6039629+12 69151.0 898.0 492.0 Si 1102 194542 69160 1021.360609 555.513416 25453 1.6039629+12 69159.0 845.0 557.0 Si	ixation ixation ixation accade assified
4 125628 248 841\820069 571.197856 17184 1.8039628+72 33.0 984.0 553.0 F 1098 194304 68922 992.337366 583.112148 25449 1.8039628+72 69126.0 889.0 490.0 F 1099 194358 68976 939.116104 544.840856 25450 1.8039628+12 69134.0 890.0 488.0 S 1100 194409 69108 928.691400 529.659512 25452 1.8039628+12 69151.0 898.0 492.0 S 1101 194490 69108 928.691400 529.659512 25452 1.8039628+12 69151.0 898.0 492.0 S 1102 194542 69160 1021.360609 556.513416 25453 1.6039628+12 69159.0 845.0 557.0 S 1	ixation ixation accade assified accade
1098 194304 68922 992.337366 583.112148 25449 1.6039626+72 69126.0 889.0 490.0 Fe	ixation accade assified accade
1098 194304 68922 982.337366 583.112148 25449 1.6039629+72 69126.0 889.0 490.0 F8 1099 194358 68976 939.116104 544.840858 25450 1.6039629+12 69134.0 890.0 488.0 S8 1100 194409 69027 926.749212 530.538707 25461 1.6039629+12 69142.0 903.0 457.0 Uncle 1101 194490 69108 928.691400 529.659512 25462 1.6039629+12 69151.0 898.0 492.0 S8 1102 194542 69160 1021.360609 556.513418 25463 1.6039629+12 69159.0 845.0 557.0 S8 X	accade assified accade
1099 194358 68976 939.115104 544.840856 25460 1.603962e+12 69134.0 890.0 488.0 80100 194409 69027 925.749212 530.538707 25461 1.603962e+12 69142.0 903.0 457.0 Unclaim 194490 69108 928.691400 529.859512 25462 1.603962e+12 69151.0 898.0 492.0 80100 1000 1000 1000 1000 1000 1000 1	accade assified accade
1100 194409 69027 925,749212 530.538707 25461 1.603962e+12 69142.0 903.0 457.0 Unclaim 194490 69108 928.691400 529.659512 25452 1.603962e+12 69151.0 898.0 492.0 St. 1102 194542 69160 1021.360609 556,513416 25463 1.603962e+12 69159.0 845.0 557.0 St.	accade
1101 194490 69108 928.691400 529.659512 25452 1.603962e+12 69151.0 898.0 492.0 St. 1102 194542 69160 1021.360609 556.513416 25453 1.603962e+12 69159.0 845.0 557.0 St. X	accade
1102 194542 69160 1021.360609 556.513416	
x y timeDiff GazePointX (ADCSpx) GazePointY (ADCSpx) GazeEventType 0 805.725 598.798 0.0 932 494 Fixation 1 8.0 931 513 Fixation 2 17.0 931 527 Fixation 3 25.0 970 551 Fixation 4 33.0 984 553 Fixation	accade
0 805.725 598.798 0.0 932 494 Fixation 1 8.0 931 513 Fixation 2 17.0 931 527 Fixation 3 25.0 970 551 Fixation 4 33.0 984 553 Fixation	
1 8.0 931 513 Fixation 2 17.0 931 527 Fixation 3 25.0 970 551 Fixation 4 33.0 984 553 Fixation	
2 17.0 931 527 Fixation 3 25.0 970 551 Fixation 4 33.0 984 553 Fixation	
3 \ 25.0 970 551 Fixation 4 \ 33.0 984 553 Fixation	
4 \ 33.0 984 553 Fixation	
5 \ 42.0 948 531 Fixation	8
	30 =
6 \ 50.0 985 549 Fixation 8	1
7 \ \ 58.0 971 557 Fixation	90
8304 830.151 575.433 60.0	ιΩ
8 \ 67.0 973 537 Fixation	102.5
9 \ 75.0 930 557 Fixation	
10 83.0 976 562 Fixation (1)	60 + 42.5
11 \ 92.0 948 567 Fixation	4
12 \ 100.0 934 567 Fixation	9
13 \ 108.0 954 558 Fixation	
14 117.0 955 558 Fixation	
15 125.0 967 546 Fixation	
16 \ \ 133.0 Fixation	
17 \ \142.0 956 550 Fixation	
8305 853.117 571.833 145.0	
18 150.0 964 552 Fixation	

COMBINATION

	x	\ у	timeDiff	GazePointX (ADCSpx)	GazePointY (ADCSpx)	GazeEventType
0	805.725	598.798	0.0	932	494	Fixation
1		\	8.0	931	513	Fixation
2	\		17.0	931	527	Fixation
3	\		25.0	970	551	Fixation
4		\	33.0	984	553	Fixation
5		\ \	42.0	948	531	Fixation
6		\	50.0	985	549	Fixation
7		\	58.0	971	557	Fixation
8304	830.151	575.433	60.0			
8		\	67.0	973	537	Fixation
9			75.0	930	557	Fixation
10		\	83.0	976	562	Fixation
11			92.0	948	567	Fixation
12			100.0	934	567	Fixation
13		\	108.0	954	558	Fixation
14			117.0	955	558	Fixation
15			125.0	967	546	Fixation
16			133.0			Fixation
17			142.0	956	550	Fixation
8305	853.117	571.833	145.0			
18			150.0	964	552	Fixation

60 - 30 = 30

60 + 42.5 = 102.5

(before)

(after)

DATA RESULT

We now have:

- data from 16 sessions
- > 17955 classified data points

• Fixation: 13458

• Saccade: 3126

Unclassified: 1371

- 1	timestamp	x	у	hardXMean	hardYMean	labelMax
0	125382	805.724813	598.797895	941.000000	521.250000	Fixation
1	125442	830.150531	575.433364	961.000000	553.333333	Fixation
2	125527	853.116613	571.833358	963.571429	553.714286	Fixation
3	125578	840.831675	574.131049	961.333333	558.500000	Fixation
4	125628	841.620069	571.197856	884.857143	409.857143	Saccade
5	125699	842.518537	575.987936	808.875000	253.500000	Fixation
6	125760	874.386016	589.937787	735.428571	243.000000	Saccade
7	125810	904.827436	570.694648	564.571429	208.142857	Fixation
8	125881	927.766794	559.070929	561.571429	207.714286	Fixation
9	125932	889.724340	488.029719	564.142857	217.000000	Fixation
10	125992	866.871291	433.887626	628.571429	221.714286	Saccade
11	126046	816.148375	365.926099	706.000000	221.000000	Fixation
12	126125	657.384092	300.498369	745.375000	221.125000	Saccade
13	126174	606.804005	263.939244	860.571429	242.000000	Fixation
14	126243	595.516829	220.890731	866.000000	252.400000	Unclassified
15	126310	572.425903	178.137413	NaN	NaN	Unclassified

RESULT SECOND APPROACH

Can we use this **classified** dataset to train a Machine Learning Model?

No.

- Method of data collection is good
- Data is realistic
- Synchronizing of data was successful
- > BUT: Classification seems to be wrong

PROBLEMATIC CLASSIFICATION

