DEPARTAMENTO DE ENGENHARIA ELETROTÉCNICA
LICENCIATURA EM ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

Eletrónica de Potência - 3º ano

ÉPOCA NORMAL

20 de janeiro de 2020

Nome:	Número:
	· · · · · · · · · · · · · · · · · · ·

Esta prova de avaliação é individual, **sem consulta**, com duração máxima de **120 minutos**. Durante a prova é **expressamente proibido** o uso de calculadoras, telemóveis ou qualquer outro dispositivo que permita o acesso a qualquer rede de dados: Wi-Fi, GPRS, Bluetooth, etc.

Na questão 1 assinale o valor lógico de cada afirmação: (V) Verdadeira ou (F) Falsa. Nas afirmações que considere falsas, justifique a resposta de forma sucinta mas objetiva. <u>Se a justificação estiver errada ou incompleta, a resposta é considerada errada</u>.

A cotação de cada afirmação é de 0,5 valores. Cada resposta errada desconta 0,2 valores.

1a)	O tiristor é um semicondutor unipolar
1b)	Um tirístor sai de condução quando a corrente ânodo-cátodo é inferior à corrente de lançamento
1c)	Num sistema de correção de fator de potência ideal, a corrente fornecida pela fonte não tem harmónicos
1d)	Numa montagem retificadora PD3 controlada carga RE (com E positivo), o valor médio da tensão na carga pode ser negativo
1e)	Em qualquer montagem retificadora não controlada com filtro capacitivo na saída, a tensão na carga pode ser aproximadamente constante
1f)	Nas montagens retificadoras semi-controladas (mistas) pode haver instantes em que só conduz um dos semicondutores
1g)	Num conversor CC/CC elevador adequadamente dimensionado, a componente alternada da tensão de saída é desprezável
1h)	Num conversor CC/CC de 2 quadrantes, o valor médio da tensão de saída pode variar entre $+V_i$ e $-V_i$
1i)	O comando PWM sinusoidal permite controlar o valor eficaz do 1º harmónico da tensão de saída
1 j)	Num inversor com comando em onda quadrada de dois níveis (<i>phase shifted</i>), é possível controlar o valor eficaz da tensão de saída.

- 2) [2,0 val] Desenhe o circuito de potência de um retificador controlado de meia onda com carga RL. Explique o princípio de funcionamento do circuito e desenhe uma possível forma de onda da tensão de saída e da corrente de saída. Supondo que aumenta a resistência da carga, mantendo constante as restantes condições, identifique 2 consequências desse aumento.
- 3) Considere um retificador P3 totalmente controlado com uma carga puramente resistiva (R = 100 Ω). O sistema trifásico de tensões é caraterizado por tensões compostas com valor de pico igual a $500\sqrt{3}$ V. Os tiristores são disparados com um ângulo de disparo de $\pi/3$ rad (60°).
- a) [0,5 val] Esboce o esquema elétrico da parte de potência deste retificador. Identifique todos os semicondutores representados.
- **b)** [2,5 val] Esboce as formas de onda de $v_0(t)$, $v_{T3}(t)$ e $i_{T3}(t)$, respeitando as relações temporais entre elas. Represente os intervalos de condução de todos os tiristores.
- c) [0,5 val] Considerando que os tirístores são de 1000 V / 20 A diga, justificando, se estes tirístores são uma escolha adequada.
- d) [1,0 val] Apresente o integral que lhe permite calcular o valor médio da tensão na carga.
- e) [1,5 val] Apresente a expressão (com todo o detalhe possível) que lhe permite calcular o fator de potência na fonte.

ELTRP-EC/2019-2020 1/2

- **4)** Considere o conversor CC/CC ilustrado na figura com $V_i = 200 \text{ V}$, E = 100 V, $R = 10 \Omega$, L = 2 H, f = 10 kHz e corrente na carga negativa e constante.
- a) [2,5 val] Respeitando as relações temporais entre todas as variáveis, represente possíveis formas de onda das seguintes variáveis (indicando os respetivos valores mínimos e máximos), compatíveis com as condições acima apresentadas:

sinal de controlo de M_1 , $v_{\mathrm{con_MI}}(t)$, sinal de controlo de M_2 , $v_{\mathrm{con_M2}}(t)$, tensão na carga, $v_o(t)$, tensão em D_1 , $v_{\mathrm{D1}}(t)$, tensão em D_2 , $v_{\mathrm{D2}}(t)$, corrente em D_1 , $i_{\mathrm{D1}}(t)$, corrente em D_2 , $i_{\mathrm{D2}}(t)$. Indique também que semicondutores conduzem em cada instante.

- **b)** [1,0 val] Apresente o integral que lhe permite calcular valor eficaz da tensão na carga.
- Considere o inversor e o respetivo circuito de controlo representado na figura ao lado.Em baixo estão representados os dois sinais a utilizar para

um comando PWM sinusoidal.

a) [2,0 val] Identifique os sinais I_1 e I_2 a colocar à entrada do comparador e desenhe na grelha em baixo a forma de onda do correspondente sinal S_1 .

b) [1,5 val] Com base na resposta da alínea anterior, faça a ligação das saídas S_1 e S_2 aos terminais de porta dos mosfet e represente na grelha em baixo a forma de onda da tensão de saída v_o (indique os valores máximo e mínimo).

ELTRP-EC/2019-2020 2/2