

Facial Expression Recognition with Attention Technique

Adarsh Ghimire (100058927)

Selina Shrestha (100058926)

Youssef Ibrahim (100058639)

Outline

- Introduction
- Literature Review
- Research Questions
- Methodology
- **Results & Discussion**
- Conclusion and Future works

Introduction

What is Facial Expression Recognition (FER)?

Introduction

How is Facial Expression Recognition different than other Image classification tasks?

- Certain areas of face are used more while expressing feelings
- So, certain parts of face play bigger role in identifying expressions
- Need for mechanism to identify important regions and assign greater weights to such features

Important Regions

Introduction

Literature Review

Earlier Works: Handcrafted features and traditional Machine Learning

Paper	Features	Classifier
[1]	Histogram of oriented gradients (HOG)	SVM
[2]	Local binary patterns (LBP), Haar Features	Random Forest
[3]	Local binary patterns (LBP), Gabor wavelets	SVM

Later Works: Deep Neural Networks and Convolution Neural Networks

Paper	Model Description		
[4]	CNN with residual blocks		
[5]	Multiple CNN networks trained in parallel and ensembled		
[6]	2 parallel feature extraction blocks inspired by GoogleNet		

Recent Works: Convolution Neural Networks with Attention Network

Paper	Model Description	
[7]	Images are cropped and passed to Region Attention Network	
[8]	Attentional Convolutional Network using Spatial Transformer Network	

Research Questions

- Which CNN architecture works best for Facial Expression Recognition task?
- Can the addition of attention network improve the accuracy on facial expression recognition?
- Where can we add the attention network?

Dataset

- Facial Expression Recognition 2013 (FER-2013) Dataset
 - contains partial and occluded faces
 - previous works have not been able to achieve very high accuracies

Set/ Classes	Angry	Disgust	Fear	Нарру	Neutral	Sad	Surprise
Training	3,995	436	4,097	7,215	4,965	4,830	3,171
Validation	467	56	496	895	607	653	415
Test	491	55	528	879	626	594	416

Facial Expression Recognition with Attention Technique

1. Dataset Preparation

Methodology

2. Data Augmentation and Class weights

Data Augmentation Metrics		
Rescaling		
Rotation		
Width Shift		
Height Shift		
Horizontal Flip		

$$categoryweight = \frac{Totalnumber of training samples}{Number of classes \times Number of samples in the category}$$

Major Task

- Finding the best architecture for transfer learning
- Adding attention network on top of best architecture

Facial Expression Recognition with Attention Technique

Finding the best architecture for transfer learning

1. Finding the best architecture for transfer learning

VGG16

1. VGG16 network pre-trained on Imagenet/ VGG Face

- Finding the best architecture for transfer learning VGG16
 - 2. VGG16 network pre-trained on VGG Face

Finding the best architecture for transfer learning Resnet50

Resnet50 network pre-trained on Imagenet/VGG Face

Finding the best architecture for transfer learning InceptionV3

InceptionV3 network pre-trained on Imagenet

Adding Attention on top of best performing architecture

Facial Expression Recognition with Attention Technique

Using Deep CNN only

Using Deep CNN + CBAM

(?, 7)

Output

(Softmax)

Methodology

Details of Convolutional Block Attention Module (CBAM)

Facial Expression Recognition with Attention Technique

VGG16 Convolutional Base

Methodology

Training proposed network approach

Results & Discussion

- different **Tested** models to improve the model with highest potential
- Models:
 - ResNet-50
 - **VGG16**
 - InceptionV3

Results & Discussion

Validation Accuracy

Results & Discussion

Results & Discussion

	Validation Accuracy (Public dataset)	Test Accuracy (Private Dataset)
Top Team in Kaggle Leaderboard	69.76 %	71.16%
Proposed Model	70.78 %	71.43 %

Conclusion

the challenge Overcome partial faces and occlusion

- VGG16 pretrained on VGGFace
- **Convolutional Block Attention** Module (CBAM)
- **Dataset Problems**

Pose variations, occlusion [7].

Future works

- Attention after each convolution layer
- Filtering FER2013 dataset from watermarks and images include cartoon faces, not actual human faces
- Utilizing the Transformer network

References

- [1] M. Usman, S. Latif, and J. Qadir, "Using deep autoencoders for facial expression recognition," in 2017 13th International Conference on Emerging Technologies (ICET), pp. 1–6, 2017.
- [2] F. Farooq, J. Ahmed, and L. Zheng, "Facial expression recognition using hybrid features and self-organizing maps," in 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 409–414, 2017.
- [3] S. Bellamkonda and N. Gopalan, "An enhanced facial expression recognition model using local feature fusion of gabor wavelets and local directionality patterns," International Journal of Ambient Computing and Intelligence, vol. 11, pp. 48–70, 11 2019.
- [4] S. Samsani and V. A. Gottala, "A real-time automatic human facial expression recognition system using deep neural networks," in Information and Communication Technology for Sustainable Development(M. Tuba,S. Akashe, and A. Joshi, eds.), (Singapore), pp. 431–441, Springer Singapore, 2020.
- [5] H. Siqueira, S. Magg, and S. Wermter, "Efficient facial feature learning with wide ensemble-based convolutional neural networks," arXiv preprint arXiv:2001.06338, 2020.
- [6] P. Burkert, F. Trier, M. Z. Afzal, A. Dengel, and M. Liwicki, "Dexpression:Deep convolutional neural network for expression recognition," 2016.
- [7] K. Wang, X. Peng, J. Yang, D. Meng, and Y. Qiao, "Region attention networks for pose and occlusion robust facial expression recognition," IEEE Transactions on Image Processing, vol. 29, pp. 4057–4069, 2020.
- [8] S. Minaee and A. Abdolrashidi, "Deep-emotion: Facial expression recognition using attentional convolutional network," 2019.
- [9] S. Woo, J. Park, J.Y. Lee, and I. S. Kweon, "Cbam: Convolutional block attention module," 2018.

Thank You