

A Helping Hand: Exoskeleton Gloves for Rehabilitation and Paralysis Recovery

Students:

Alvin Isac - s7789223

Mohsen Kashefi - s5964796

Seyed Alireza Mortazavi - s6136275

Mohammad Ali Pouryaghoub - s6063201

Professor: Maura Casadio

Co-supervisor: Danilo Canepa

The need of Exoskeletons

Psychological Impact

Financial Problems

Loss of Independence

Limited access to public spaces

Disuse Osteoporosis

G. Donald Whedon, Physiological Aspects of Disuse Osteoporosis, Calcified Tissue International. 1984

existing exoskeletion-gloves

What Makes Our Glove Different

- Low cost
- Portability
- Customizable for Patient Needs
- No external control
- low maintenance
- Solid grip
- Waterproof and Washable
- AI Control
- 2 in 1 Design
- Suitable for both Paralyzed and Rehabilitation Patients

Exo-Glove Poly II: A polymer-based soft wearable robot for the hand with a tendon-driven actuation system," Soft Robotics, vol. 3, no. 2, pp. 59–68, 2016, doi: 10.1089/soro.2016.0011.

Key Components of Our Design

- KE-1300T Silicone
- Raspberry Pi
- Lithium Battery
- Motors
- Encoders
- power consumption sensor
- Emg Sensor

Existing ML Project:

EMG-Driven Machine Learning Control of a Soft Glove for Grasping Assistance and Rehabilitation. IEEE Robotics and Au 7(2), 1566–1573.

Working Principle

How to activate & deactivate the actuator?

Review of electromyography onset detection methods for real-time control of robotic exoskeletons. Journal of NeuroEngineering and Rehabilitation, 20(1), 141

Machine Learning on Raspberry Pi is really Possible?

Sotiropoulos, G., & Al-Zawawi, S. (2023). Performance of Parallelism in Python and C++. International Journal of Computer Science, 50(2) 320. https://www.iaeng.org

Machine Learning on Raspberry Pi is really Possible?

Python:

- * Interpreted Language
- * require more computational power

C++

- * compiled into the machine language
- *requires less memory and cpu can run directly

Sotiropoulos, G., & Al-Zawawi, S. (2023). Performance of Parallelism in Python and C++. International Journal of Computer Science, 50(2), 320. https://www.iaeng.org

Cross Compiling or Customizing OS Image Using Packer

Hand Exercises also Possible

- Improves Strength and Flexibility
- Enhances Circulation
- Reduces Pain and Stiffness
- Builds Confidence
- Promotes Neuroplasticity

https://www.youtube.com/shorts/Zw6Qyr9lxl0

Gaming Control with the Glove

- Improves Engagement
- Improves Strength and Flexibility

Gaming Control with the Glove

- Improves Engagement
- Improves Strength and Flexibility

Pros & Cons of the exo-skeletion gloves

Pros

- Can provide a good grip
- Low cost
- Waterproof
- Customize based on patient needs – battery, motor
- Portable
- · No problem of wearing long time

Cons

- Sometimes can provide additional force on unknown object
- Every time need to change the algorithm for new objects and extract to c++
- Less training data

Reference

Exo-Glove Poly II: A polymer-based soft wearable robot for the hand with a tendon-driven actuation system," Soft Robotics, vol. 3, no. 2, pp. 59–68, 2016, doi: 10.1089/soro.2016.0011.

Review of electromyography onset detection methods for real-time control of robotic exoskeletons. Journal of NeuroEngineering and Rehabilitation, 20(1), 141

EMG-Driven Machine Learning Control of a Soft Glove for Grasping Assistance and Rehabilitation. IEEE Robotics and Automation Letters, 7(2), 1566–1573.

Sotiropoulos, G., & Al-Zawawi, S. (2023). Performance of Parallelism in Python and C++. International Journal of Computer Science, 50(2), 310-320. https://www.iaeng.org

Soft hand exoskeletons for rehabilitation: Approaches to design, manufacturing methods, and future prospects," Robotics,vol. 13, no. 3, p. 50, 2024. DOI: 10.3390/robotics13030050.

Thank you!!

Special thanks to professor Maura Casadio & Co-supervisor: Danilo Canepa

Team Members

Mohammad Ali Pouryaghoub

- s6063201@studenti.unige.it
- M.Sc Robotic Engineering University of Genova

Mohsen Kashefi

- s5964796@studenti.unige.it
- M.Sc Robotic Engineering University of Genova

Seyed Alireza Mortazavi

- s6136275@studenti.unige.it
- M.Sc Robotic Engineering University of Genova

Alvin Isac

- Alvin-Isac.Prem-Sunder@eleves.ec-nantes.fr
- M.Sc Robotic Engineering University of Genova & Ecole Centrale de Nantes