Math 240 Tutorial Solutions

June 20

Question 1. Show the following for \mathbb{R}^n .

(a) Show that scalar multiplication is a linear transformation.

Fix $a \in \mathbf{R}$, and let $T : \mathbf{R}^n \to \mathbf{R}^n$ be the map $T(\vec{v}) = a\vec{v}$. Then $T(b\vec{v}) = ab\vec{v} = ba\vec{v} = bT(\vec{v})$ and $T(\vec{v} + \vec{u}) = a(\vec{v} + \vec{u}) = a\vec{v} + a\vec{u} = T(\vec{v}) + T(\vec{u})$. We have shown that T is linear.

(b) When is this linear map invertible?

This map is invertible precisely in the case the scalar by which we are multiplying is nonzero.

(c) Is its inverse a linear transformation?

Let T be as in part (a), and assume that $a \neq 0$. Then T is invertible and T^{-1} is given by multiplication by a^{-1} . Since this is multiplication by a scalar, it is linear.

(d) Fix an element $a \in \mathbf{R}^n$. What is the matrix corresponding to the linear transformation $\vec{v} \mapsto a\vec{v}$ with respect to the standard spanning vectors?

Recall the standard spanning vectors are $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ where \vec{e}_i is the vector with a 1 in position i and zeros everywhere else. Then the matrix corresponding to multiplication by a is givn by

$$[T(\vec{e}_1)|T(\vec{e}_2)|\cdots|T(\vec{e}_n)] = [a\vec{e}_1|a\vec{e}_2|\cdots|a\vec{e}_n] = aI.$$

Question 2. Construct the standard matrix for the transformation that rotates the vectors of \mathbf{R}^2 by $-\pi/6$ radians.

Note that

$$e_1 = (1,0) \mapsto (\cos(-\pi/6), \sin(-\pi/6)) = (\sqrt{3}/2, -1/2),$$

 $e_2 = (0,1) \mapsto (\cos(\pi/3), \sin(\pi/3)) = (1/2, \sqrt{3}/2).$

It follows that the standard matrix is given by

$$\left(\begin{array}{cc} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{array}\right).$$

Question 3. Define $T: \mathbf{R}^3 \to \mathbf{R}^4$ by

$$T(\vec{x}) = (x_1 - x_3, x_1 + x_2, x_3 - x_2, x_1 - 2x_2).$$

1

(a) Is T linear?

It is easily verified that $T(\vec{x}_1 + \vec{x}_2) = T(\vec{x}_1) + T(\vec{x}_2)$ and $T(\alpha \vec{x}) = \alpha T(\vec{x})$ for every $\alpha \in \mathbf{R}$ and $x_1, \vec{x}_2 \in \mathbf{R}^3$.

(b) What is T(1, -2, 3)?

By definition, T(1, -2, 3) = (-2, -1, 5, 5).

(c) Find a vector $\vec{x} \in \mathbf{R}^3$ such that $T(\vec{x}) = (8, 9, -5, 0)$.

We solve the system

$$x_1 - x_3 = 8,$$

 $x_1 + x_2 = 9,$
 $x_3 - x_2 = -5,$
 $x_1 - 2x_2 = 0$

to find the unique preimage is (6, 3, -2).

(d) What is the standard basis for T?

Observe

$$e_1 \mapsto (1, 1, 0, 1),$$

 $e_2 \mapsto (0, 1, -1, -2),$
 $e_3 \mapsto (-1, 0, 1, 0)$

so the standard matrix is

$$\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 0 \\
0 & -1 & 1 \\
1 & -2 & 0
\end{array}\right).$$

Question 4. Calculate the following determinants.

(a)

$$\det \left(\begin{array}{cccc} 6 & 9 & 39 & 49 \\ 5 & 7 & 32 & 37 \\ 3 & 4 & 4 & 4 \\ 1 & 1 & 1 & 1 \end{array} \right).$$

Note

$$\begin{pmatrix} 6 & 9 & 39 & 49 \\ 5 & 7 & 32 & 37 \\ 3 & 4 & 4 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 30 & 40 \\ 0 & 0 & 0 & -\frac{10}{3} \end{pmatrix}$$

2

where we have made 2 row swaps. So the determinant is $30(-\frac{10}{3}) = -100$.

(b)
$$\det \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & -1 & 2 & 0 \\ 2 & -1 & 3 & 1 \\ 4 & 17 & 0 & 5 \end{pmatrix}.$$

Note

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & -1 & 2 & 0 \\ 2 & -1 & 3 & 1 \\ 4 & 17 & 0 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & -1 \\ 0 & -1 & 1 & -1 \\ 4 & 17 & 0 & -5 \end{pmatrix}.$$

So the determinant is 0 (there are two equal rows in a row equivalent matrix).

(c)
$$\det \begin{pmatrix} 13 & 3 & -8 & 6 \\ 0 & 0 & -4 & 0 \\ 1 & 0 & 7 & -2 \\ 3 & 0 & 2 & 0 \end{pmatrix}.$$

Note

$$\begin{pmatrix} 13 & 3 & -8 & 6 \\ 0 & 0 & -4 & 0 \\ 1 & 0 & 7 & -2 \\ 3 & 0 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 & 7 \\ 0 & 3 & 32 & -99 \\ 0 & 0 & 6 & -19 \\ 0 & 0 & 0 & -4 \end{pmatrix}$$

where we have had to do 3 row swaps and 1 column swap. Therefore, the determinant is given by (3)(6)(-4) = -72.

Question 5. Solve the following equation for x.

$$\det \begin{pmatrix} 3 & -4 & 7 & 0 & 6 & -2 \\ 2 & 0 & 1 & 8 & 0 & 0 \\ 3 & 4 & -8 & 3 & 1 & 2 \\ 27 & 6 & 5 & 0 & 0 & 3 \\ 3 & x & 0 & 2 & 1 & -1 \\ 1 & 0 & -1 & 3 & 4 & 0 \end{pmatrix} = 0.$$

Evaluating the determinant, we have 3685x + 7370 = 0 so that x = -2.

Question 6. Let M be the matrix

$$\left(\begin{array}{cccc}
5 & 4 & -2 & 3 \\
5 & 7 & -1 & 8 \\
5 & 7 & 6 & 10 \\
5 & 7 & 1 & 9
\end{array}\right).$$

The following hold.

(a) $\det M$ can be expressed as the constant 5 times the determinant of

$$\left(\begin{array}{ccc} 3 & 1 & 5 \\ 3 & & \\ 3 & & \end{array}\right).$$

(b) The determinant of the 3×3 is part (a) can be expressed as the constant 3 times the determinant of

$$\begin{pmatrix} 7 & 2 \\ 2 \end{pmatrix}$$
.

The determinant of the 2×2 matrix in part (b) is what? Thus the determinant of M is what?

The 2×2 matrix is $\begin{pmatrix} 7 & 2 \\ 2 & 1 \end{pmatrix}$. The determinant of the 2×2 matrix is 7 - 4 = 3, so the determinant of M is (5)(3)(3) = 45.

Question 7. Consider again the vector space P_3 , and let $Q \subseteq P_3$ be the subset of polynomials of degree at most 3 that vanish when x = 3. Is Q a subspace? If it is, give a spanning set of Q.

Let $p(x) \in \mathbf{P}_3$ have 3 as a root. Then p(x) = (x-3)q(x) for some polynomial q of degree at most 2. So, the subspace under consideration has dimension at most 3. In fact, $\{x-3, (x-3)^2, (x-3)^3\}$ are linearly independent, so their span is Q.