Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

(1 - 1 de 3

Roteiro

Autômatos finitos e gramáticas regulares (29 – 42 de 932)

INF/UFG – LFA 2021/1 – H. Longo

Gramática regular

- ▶ Uma gramática $G = (V, \Sigma, P, S)$ é regular se é uma GLC e toda regra de derivação está numa das seguintes formas:
 - 1. $A \rightarrow aB$
 - $2. A \rightarrow a$
 - 3. $A \rightarrow \varepsilon$,

onde $A, B \in V$ e $a \in \Sigma$.

- ▶ Uma derivação é terminada por uma regra da forma $A \rightarrow a$ ou $A \rightarrow \varepsilon$.
- ► A linguagem gerada por uma gramática regular é chamada regular.

Gramáticas regulares e autômatos

Exemplo 1.19

INF/UFG - LFA 2021/1 - H. Longo

▶ Linguagem a^+b^+ .

D	erivação	Processamento	Cadeia
S	$\Rightarrow aS$	$[S, aabb] \mapsto [S, abb]$	а
	$\Rightarrow aaA$	$\mapsto [A, bb]$	aa
	$\Rightarrow aabA$	$\mapsto [A,b]$	aab
	$\Rightarrow aabb$	$\mapsto [Z, \varepsilon]$	aabb

Gramáticas regulares e autômatos

- O diagrama de estados de um NFA N pode ser construído diretamente a partir das regras de derivação de uma gramática G:
 - Estados de *N* são as variáveis de *G* e, possivelmente, um estado final adicional.
 - No exemplo 1.19 as transições $\delta(S,a) = S$, $\delta(S,a) = A$ e $\delta(A,b) = A$ de N correspondem às regras $S \to aS$, $S \to aA$ e $A \to bA$ de G.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e gramáticas regulares (32 - 42 de 932)

Gramáticas regulares e autômatos

Teorema 1.20

- ▶ Se $G = (V, \Sigma, P, S)$ é uma gramática regular, então o NFA $N = \langle \Sigma, Q, q_0, \delta, F \rangle$, definido como segue, é tal que $\mathcal{L}(N) = \mathcal{L}(G)$:
 - 1. $Q = \begin{cases} V \cup \{Z\}, & \text{se } (A \to a) \in P, \text{ onde } Z \notin V. \\ V, & \text{caso contrário.} \end{cases}$
 - 2. $\delta(A, a) = B$, sempre que $A \rightarrow aB \in P$. $\delta(A, a) = Z$, sempre que $A \rightarrow a \in P$.
 - $3. \ F = \left\{ \begin{array}{ll} \{A \mid A \rightarrow \varepsilon \in P\} \cup \{Z\}, & \text{se } Z \in Q. \\ \{A \mid A \rightarrow \varepsilon \in P\}, & \text{caso contrário.} \end{array} \right.$

Autômatos

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e gramáticas regulares (33 - 42 de 932

Gramáticas regulares e autômatos

Demonstração.

- 1. $\mathcal{L}(G) \subseteq \mathcal{L}(N)$
 - A construção das transições de N a partir das regras de derivação de G permite que toda derivação em G seja mapeada para um processamento em N.
 - ▶ A derivação de uma cadeia de terminais tem uma das formas $S \Longrightarrow \varepsilon, S \xrightarrow{*} wC \Longrightarrow wa$ ou $S \xrightarrow{*} wC \Longrightarrow w$, onde a derivação $S \xrightarrow{*} wC$ consiste de regras da forma $S \to aB$.
 - ▶ Se $\varepsilon \in \mathcal{L}(G)$, então $S \in F$ e $\varepsilon \in \mathcal{L}(N)$.
 - Existe um processamento em N que processa a cadeia w e termina no estado C, sempre que wC é uma forma sentencial de G.
 - Prova por indução (Exercício).

Gramáticas regulares e autômatos

Demonstração.

- 1. $\mathcal{L}(G) \subseteq \mathcal{L}(N)$
 - ▶ A derivação de uma cadeia não nula é encerrada pela aplicação de uma regra $C \to a$ ou $C \to \varepsilon$.
 - ► Em uma derivação da forma $S \xrightarrow{\cdot} wC \Longrightarrow wa$, a aplicação da regra final corresponde à transição $\delta(C,a) = Z$, levando N para um estado final.
 - ▶ Uma derivação da forma $S \stackrel{*}{\Longrightarrow} wC \Longrightarrow w$ é encerrada por uma ε -regra.
 - ▶ Como $C \rightarrow \varepsilon \in P$, C é um estado final em N.
 - A aceitação de w por N é dada pelo processamento que corresponde à derivação $S \stackrel{\circ}{\Longrightarrow} wC$.

Gramáticas regulares e autômatos

Demonstração.

- 2. $\mathcal{L}(N) \subseteq \mathcal{L}(G)$
 - ▶ O processamento de $w = ua \in \mathcal{L}(M)$ tem a forma $[S, w] \stackrel{*}{\longmapsto} [B, \varepsilon]$, onde $B \neq Z$, ou $[S, w] \stackrel{*}{\longmapsto} [A, a] \longmapsto [Z, \varepsilon].$
 - No primeiro caso, B é o lado esquerdo de uma ε -regra de G. A cadeia wB pode ser derivada pela aplicação de regras que correspondam às transições. A geração de w é completada pela aplicação de uma ε -regra.
 - ► A derivação de *uA* pode ser construída a partir de regras que correspondem às transições no processamento $[S, w] \stackrel{*}{\longmapsto} [A, a]$. A cadeia w é obtida ao encerrar a derivação com a regra $A \rightarrow a$.
 - Portanto, toda cadeia aceita por *N* pertence à linguagem de *G*.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e gramáticas regulares (36 - 42 de 932)

Gramáticas regulares e autômatos

Exemplo 1.21

▶ Linguagem $a^*(a \cup b^+)$.

Gramática G:

$$S \to aS \mid bB \mid aZ$$

$$B \to bB \mid \varepsilon$$

$$Z \to \varepsilon$$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e gramáticas regulares (37 - 42 de 932

Gramáticas regulares e autômatos

- Construção de uma gramática regular a partir de um NFA:
 - ► Transição $\delta(A, a) = B$ produz a regra $A \rightarrow aB$.
 - ▶ Se C é um estado final, a regra $C \to \varepsilon$ é produzida.
- ▶ Uma gramática G construída a partir de um NFA N, pode ser transformada em um autômato equivalente:
 - $N \longrightarrow G \longrightarrow N'$
- ▶ Uma gramática regular pode ser convertida em um NFA N, o qual pode ser transformada em uma gramática G'.
 - $ightharpoonup G \longrightarrow N \longrightarrow G'$.

Gramáticas regulares e autômatos

- Conclusão das técnicas de conversão:
 - As linguagens geradas por gramáticas regulares são exatamente aquelas aceitas por autômatos finitos.
 - ► A linguagem gerada por uma gramática regular é um conjunto regular (consegüência dos Teoremas 1.20 e 5.33).
 - A conversão de autômato para gramática regular garante que todo conjunto regular é gerado por alguma gramática regular.
 - Caracterização de conjuntos regulares: linguagens geradas por gramáticas regulares.

Gramáticas regulares e autômatos

Exemplo 1.22

► Conjunto de cadeias, sobre $\Sigma = \{a, b, c\}$, que não contêm abc.

Gramática G: $S \rightarrow bS \mid cS \mid aB \mid \varepsilon$ $B \rightarrow aB \mid cS \mid bC \mid \varepsilon$ $C \rightarrow aB \mid bS \mid \varepsilon$ NFA N: $C \rightarrow aB \mid bS \mid \varepsilon$ $C \rightarrow aB \mid bS \mid \varepsilon$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e gramáticas regulares (40 - 42 de 932)

Gramáticas regulares e autômatos

Exemplo 1.23

► Cadeias, sobre $\Sigma = \{a, b\}$, com nr. par de *a*'s e ímpar de *b*'s.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e gramáticas regulares (41 - 42 de 932)

Gramáticas regulares e autômatos

Exemplo 1.24

 $\mathcal{L}(M_{11}) = (0 \cup 1^+00)^*1^+01(0 \cup 1)^*.$

Gramática G:
$S \rightarrow 0S \mid 1A$
$A \rightarrow 0B \mid 1A$
$B \rightarrow 0S \mid 1C$
$C \rightarrow 0C \mid 1C \mid \varepsilon$

Livros texto

R

R. P. Grimaldi

Discrete and Combinatorial Mathematics – An Applied Introduction. Addison Wesley, 1994.

D. I. Volloman

How To Prove It – A Structured Approach.

Cambridge University Press, 1996.

J. E. Hopcroft; J. Ullman.

Introdução à Teoria de Autômatos, Linguagens e Computação.

Ed. Campus.

T. A. Sudkamp.

Languages and Machines – An Introduction to the Theory of Computer Science.

Addison Wesley Longman, Inc. 1998.

J. Carroll; D. Lor

Theory of Finite Automata – With an Introduction to Formal Languages.

Frentice-Hall, 18

Introduction to the Theory of Computation.

PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou

Elementos de Teoria da Computação.

Bookman, 2000.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e gramáticas regulares (42 - 42 de 932)

INF/UFG - LFA 2021/1 - H. Longo

Bibliografia (932 – 932 de 932)