Lezione 14. Rappresentazione grafica della risposta in frequenza

Schema della lezione

- 1. Rappresentazioni grafiche della risposta in frequenza
- 2. Diagramma di Bode del modulo: convenzioni
- 3. Diagramma di Bode del modulo: tracciamento
- 4. Diagramma asintotico di Bode del modulo: regole per il tracciamento
- 5. Diagramma di Bode della fase: convenzioni
- 6. Argomento di un numero complesso
- 7. Diagramma di Bode della fase: tracciamento
- 8. Diagramma asintotico di Bode della fase: regole per il tracciamento
- 9. Sistemi a fase minima
- 10. Diagramma polare
- 11. Matlab

1. Rappresentazioni grafiche della risposta in frequenza

La risposta in frequenza $G(j\omega)$ è una funzione a valori <u>complessi</u> della variabile reale (positiva) ω . Quindi, per ogni <u>valore reale positivo di</u> ω avrò un punto del piano complesso.

Esempio

$$G(s) = \frac{5}{1+5s}$$
 flt
$$G(j\omega) = \frac{5}{1+5i\omega}$$
 aif

Calcoliamo qualche punto

$$G(j0) = \frac{5}{1+5j0} = 5$$

$$G(j0.1) = \frac{5}{1+5j0.1} = 4 - 2j$$

$$G(j0.2) = \frac{5}{1+5j0.2} = 2.5 - 2.5j$$

La rappresentazione nel piano complesso della risposta in frequenza si dice diagramma polare.

E' possibile rappresentare in **due grafici separati** il **modulo** e la **fase** della risposta in frequenza.

Sia il modulo $|G(j\omega)|$ che la fase $\angle G(j\omega)$ sono funzioni a valori <u>reali</u> della variabile reale (positiva) ω .

Esempio $G(s) = \frac{5}{1+5s}$ $G(j\omega) = \frac{5}{1+5j\omega}$ $G(j\omega) = -arctg5\omega$

Le rappresentazioni di modulo e fase della risposta in frequenza in funzione della pulsazione sono **diagramma cartesiani**.

3

pulsazione ω (rad/s)

2

-80

-100

0

10

9

8

7

Ovviamente, il contenuto informativo dei diagrammi cartesiani è il medesimo del diagramma polare.

$$G(j0) = \frac{5}{1+5j0} = 5$$

$$G(j0.1) = \frac{5}{1+5j0.1} = 4 - 2j$$

$$G(j0.2) = \frac{5}{1+5j0.2} = 2.5 - 2.5j$$

$$|G(j0)| = 5$$

 $|G(j0.1)| = \sqrt{20} \cong 4.47$
 $|G(j0.2)| = \sqrt{12.5} \cong 3.54$

5

F. Previdi - Fondamenti di Automatica - Lez. 14

2. Diagramma di Bode del modulo : convenzioni

Ordinata in dB

$$|G(j\omega)|_{dB} = 20\log_{10}|G(j\omega)|$$

Ascissa in scala logaritmica
$$\log \omega_2 - \log \omega_1 = \log \frac{\omega_2}{\omega_1}$$

N.B. Logaritmo in base 10

Nota Bene

Scala lineare

 $d = x_2 - x_1 = x_4 - x_3$ Punti alla stessa distanza: uguale **differenza** delle ascisse.

Scala logaritmica

$$d = log\omega_2 - log\omega_1 = log\omega_4 - log\omega_3$$
$$= log\frac{\omega_2}{\omega_1} = log\frac{\omega_4}{\omega_3}$$

Punti alla stessa distanza: uguale **rapporto** delle ascisse.

3. Diagramma di Bode del modulo : tracciamento

$$G(s) = \frac{\mu}{s^g} \frac{\prod_i (1 + sT_i)}{\prod_i (1 + s\tau_i)} \qquad |G(j\omega)| = \frac{|\mu|}{|j\omega|^g} \frac{\prod_i |(1 + j\omega T_i)|}{\prod_i |(1 + j\omega T_i)|}$$

funzione di trasferimento

modulo della risposta in frequenza

modulo della risposta in frequenza in dB

guadagno poli o zeri nell'origine

$$|G(j\omega)|_{dB} = 20 \log |\mu| - 20 \log |j\omega|^g +$$

$$+ \sum_{i} 20 \log |1 + j\omega T_i| + \text{zeri (reali \& complessi coniugati)}$$

$$- \sum_{i} 20 \log |1 + j\omega T_i| \quad \text{poli (reali \& complessi coniugati)}$$

3.1 Guadagno

3.2 Poli o zeri nell'origine

$$-20\log|j\omega|^g = -20g\log\omega$$

retta con pendenza -20g dB/decade passante per 0 dB in $\omega = 1 \, rad/s$

Esempio esplicativo

$$G(s) = \frac{1}{s}$$
 $G(j\omega) = \frac{1}{j\omega}$ $|G(j\omega)| = \frac{1}{\omega}$

funzione di trasferimento risposta in frequenza

modulo della risposta in frequenza

F. Previdi - Fondamenti di Automatica - Lez. 14

3.3.a Zero reale

$$20 \log |1 + j\omega T| = 20 \log \sqrt{1 + \omega^2 T^2}$$
 T reale

Il disegno di questa funzione di ω non è facile.

Si può trovare un'approssimazione ragionevole guardando il comportamento ad alte e basse pulsazioni.

Basse w

se
$$\omega^2 T^2 << 1$$
, cioè $\omega << \frac{1}{|T|}$ \longrightarrow $20 \log \sqrt{1 + \omega^2 T^2} \cong \mathbf{0} \ dB$

Alte w

se
$$\omega^2 T^2 >> 1$$
, cioè $\omega >> \frac{1}{|T|}$ \Longrightarrow $20 \log \sqrt{1 + \omega^2 T^2} \cong$ $\cong 20 \log \omega |T| \cong$ $\cong 20 \log \omega + 20 \log |T|$

Approssimazione asintotica

Basse w

per
$$\omega < \frac{1}{|T|}$$
 retta costante a 0 dB

Alte w

per
$$\omega > \frac{1}{|T|}$$
 retta passante per 0 dB in $\omega = \frac{1}{|T|}$ con pendenza +1

Infatti, si può calcolare l'intersezione con l'asse delle ascisse:

$$20 \log \omega + 20 \log |T| = 0$$

$$20 \log \omega = -20 \log |T|$$

$$20 \log \omega = 20 \log \frac{1}{|T|}$$

$$\omega = \frac{1}{|T|}$$

Zero reale (esempio) G(s) = 1 + s

F. Previdi - Fondamenti di Automatica - Lez. 14

Valutazione dell'errore massimo

Si consideri
$$G(s) = 1 + sT$$

L'errore in
$$\omega = \frac{1}{|T|}$$
 vale:

$$E = 20 \log|1 + j\omega T| = 20 \log \sqrt{1 + \omega^2 T^2} =$$

$$= 20 \log \sqrt{1 + \frac{1}{T^2} T^2} = 20 \log \sqrt{2} \approx 3 \text{ dB}$$

L'errore massimo che si commette usando il diagramma asintotico è pari a 3 dB (per ogni zero), in corrispondenza della pulsazione dello zero.

3.3.b Zeri complessi coniugati

$$20 \log |1 + j\omega T| + 20 \log |1 + j\omega \overline{T}|$$
 $T \text{ complesso}$

Usiamo l'espressione con smorzamento e pulsazione naturale

$$\tilde{G}(s) = 1 + 2\frac{\xi}{\omega_n}s + \frac{s^2}{\omega_n^2}$$
 funzione di trasferimento

$$\tilde{G}(j\omega) = 1 + 2\frac{\xi}{\omega_n}j\omega + \frac{(j\omega)^2}{\omega_n^2} = \left(1 - \frac{\omega^2}{\omega_n^2}\right) + j2\xi\frac{\omega}{\omega_n}$$
 risposta in frequenza

Il modulo (in dB) vale

$$\left| \tilde{G}(j\omega) \right|_{dB} = 20 \log \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \frac{4\xi^2 \omega^2}{\omega_n^2}}$$

Cerchiamo l'approssimazione asintotica:

Basse w

per
$$\omega \ll \omega_n$$
 retta costante a 0 dB

Alte w

per
$$\omega >> \omega_n$$
 $\left| \tilde{G}(j\omega) \right|_{dB} \cong 20 \log \sqrt{\left(\frac{\omega^2}{\omega_n^2} \right)^2} =$

$$= 40 \log \frac{\omega}{\omega_n} = 40 \log \omega - 40 \log \omega_n$$

retta passante per 0 dB in $\omega = \omega_n$ con pendenza +2

Zeri complessi coniugati (esempio) $\tilde{G}(s) = 1 + s + s^2$

$$\tilde{G}(s) = 1 + s + s^2$$

$$\omega_n = 1$$

 $\xi = 0.5$

Zeri complessi coniugati (esempio) $\tilde{G}(s) = 1 + 2\xi s + s^2$ $\omega_n = 1$

Valutazione dell'errore massimo

L'errore in $\omega = \omega_n$ dipende da ξ

$$E = 20 \log \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \frac{4\xi^2 \omega^2}{\omega_n^2}} \bigg|_{\omega = \omega_n} = 20 \log \sqrt{4\xi^2} = 20 \log(2|\xi|)$$

se
$$|\xi| = 1$$
 $E = 20 \log 2 \cong 6 \text{ dB}$ (2 zeri reali coincidenti!)

se
$$\xi \to 0$$
 $E \to -\infty$

Zeri immaginari coniugati (esempio)
$$\tilde{G}(s) = 1 + s^2$$
 $\omega_n = 1$

$$\tilde{G}(s) = 1 + s^2$$

$$\omega_n = 1$$

F. Previdi - Fondamenti di Automatica - Lez. 14

Per i **poli** i diagrammi sono uguali a quelli degli zeri con il segno cambiato

Polo reale (esempio)

$$G(s) = \frac{1}{1+s}$$

F. Previdi - Fondamenti di Automatica - Lez. 14

Poli complessi coniugati (esempio) $G(s) = \frac{1}{1 + 2\xi s + s^2}$ $\omega_n = 1$

Poli immaginari coniugati (esempio) $G(s) = \frac{1}{1+s^2}$

$$G(s) = \frac{1}{1+s^2}$$

$$\omega_n = 1$$

F. Previdi - Fondamenti di Automatica - Lez. 14

Esempio esplicativo

$$G(s) = \frac{10(1+s)}{s(1+0.1s)}$$

Proviamo a disegnare i singoli contributi e poi sommiamoli

Guadagno $\mu = 10$

Un polo nell'origine $\frac{1}{s}$

Uno zero reale in $-1 \rightarrow (1+s)$

Un polo reale in $-10 \rightarrow (1 + 0.1s)$

Guadagno $\mu = 10 \rightarrow \text{retta costante a 20 dB}$

Un polo nell'origine $\frac{1}{s}$ \rightarrow retta con pendenza -1 per $\omega = 1 \, rad/s$

Uno zero reale $(1+s) \rightarrow 0$ dB fino ad $\omega = 1 \, rad/s$ e poi retta con pendenza +1

Un polo reale $\frac{1}{(1+0.1s)} \rightarrow 0$ dB fino ad $\omega = 10 \, rad/s$ e poi retta con pendenza -1

Sommando le 4 curve si ottiene il diagramma

E' un metodo un po' laborioso...

In questa zona il pol ϕ in -10 e lo zero in -1 non danno contributo.

Contano solo il polo nell'origine ed il guadagno.

Qui «interviene» lo zero in -1 provocando un cambiamento di pendenza +1 e la pendenza passa da -1 a 0.

Qui «interviene» il polo in -10 provocando un cambiamento di pendenza -1 e la pendenza passa da 0 a -1.

4. Diagramma asintotico di Bode del modulo : regole per il tracciamento

- 1. la pendenza iniziale vale -g
- 2. il tratto iniziale passa in $|\mu|_{dB}$ per $\omega = 1 \, rad/s$
- 3. cambi di pendenza in corrispondenza di poli (-1) e zeri (+1)

Osservazione

La **pendenza finale** (per $\omega \to \infty$) è data da :

$$n^{\circ}$$
 zeri – n° poli ≤ 0

E' uguale a 0 solo se G(s) è propria (non strettamente)

Esempio

$$G(s) = \frac{10(1+s)}{s(1+0.1s)}$$

- 1. la pendenza iniziale vale −1
- 2. il tratto iniziale passa in 20 dB per $\omega = 1 \, rad/s$

3. cambi di pendenza in corrispondenza di poli (-1) e zeri (+1)

Il primo che incontro (da sx a dx) è lo zero.

3. cambi di pendenza in corrispondenza di poli (-1) e zeri (+1)

Poi incontro il polo (sempre da sx a dx).

5. Diagramma di Bode della fase : convenzioni

 \triangleright Ordinata in gradi $\not\vdash G(j\omega)$

Ascissa in scala logaritmica

$$\log \omega_2 - \log \omega_1 = \log \frac{\omega_2}{\omega_1}$$

6. Argomento o fase di un numero complesso

Convenzione:

$$-180^{\circ} \le 4\lambda < 180^{\circ}$$

La fase di un numero reale negativo è – 180°

Calcolo della fase

• se
$$a \ge 0$$
 $\Longrightarrow \lambda = \operatorname{atan} \frac{b}{a}$

$$4\lambda = \operatorname{atan} \frac{b}{a}$$

$$(-90^{\circ} \le 4\lambda \le +90^{\circ})$$

• se
$$a < 0$$

 $b > 0$ $\Rightarrow \lambda = a tan \frac{b}{a} + 180^{\circ}$ $(+90^{\circ} < 4\lambda < +180^{\circ})$

$$(+90^{\circ} < 4\lambda < +180^{\circ})$$

• se
$$a < 0$$
 $\Rightarrow \lambda = a \tan \frac{b}{a} - 180^{\circ}$ $(-180^{\circ} \le 4\lambda < -90^{\circ})$

$$4\lambda = \operatorname{atan} \frac{b}{a} - 180^{\circ}$$

$$(-180^{\circ} \le 4\lambda < -90^{\circ})$$

Esempi

$$z_1 = +4 + j4$$

 $z_2 = -3 + j2$
 $z_3 = -3 - j4$
 $z_4 = +4 - j4$

$$4z_{1} = arctg\left(\frac{4}{A}\right) = 45^{\circ}$$

$$4z_{2} = arctg\left(\frac{-3}{-3}\right) + 180^{\circ} = -33^{\circ}.7 + 180 = +146^{\circ}.3$$

$$4z_{3} = arctg\left(\frac{-4}{-3}\right) - 180^{\circ} = 53^{\circ}.1 - 180^{\circ} = -126^{\circ}.9$$

$$4z_{4} = arctg\left(\frac{-4}{4}\right) = -45^{\circ}$$

7. Diagramma di Bode della fase : tracciamento

$$G(s) = \frac{\mu}{s^g} \frac{\prod_i (1 + sT_i)}{\prod_i (1 + s\tau_i)}$$
Funzione di trasferimento
$$G(j\omega) = \frac{\mu}{(j\omega)^g} \frac{\prod_i (1 + j\omega T_i)}{\prod_i (1 + j\omega T_i)}$$
Risposta in frequenza

Fase della risposta in frequenza (in gradi)

poli o zeri guadagno nell'origine
$$\angle G(j\omega) = \angle \mu - \angle (j\omega)^g + \sum_i \angle (1+j\omega T_i) - \sum_i \angle (1+j\omega \tau_i)$$
 zeri (reali & poli (reali & complessi coniugati)

7.1 Guadagno

7.2 Poli & zeri nell'origine

$$-\not \preceq (j\omega)^g = -g \not \preceq (j\omega) = -g90^\circ$$

retta costante

7.3.a Zero reale

Il disegno di questa funzione di ω è facile, ma si può comunque trovare un'approssimazione valida per alte e basse pulsazioni.

Basse w

per
$$\omega \to 0$$
 atan $(\omega T) \longrightarrow 0^{\circ}$

per
$$\omega \to \infty$$
 \longrightarrow atan(ωT) $<$ + 90° se $T > 0$ (zero a sx) $-$ 90° se $T < 0$ (zero a dx)

7.3.b Zeri complessi coniugati

Usiamo l'espressione con smorzamento e pulsazione naturale

$$\tilde{G}(s) = 1 + 2\frac{\xi}{\omega_n}s + \frac{s^2}{\omega_n^2}$$
 funzione di trasferimento

$$\tilde{G}(j\omega) = 1 + 2\frac{\xi}{\omega_n}j\omega + \frac{(j\omega)^2}{\omega_n^2} = \left(1 - \frac{\omega^2}{\omega_n^2}\right) + j2\xi\frac{\omega}{\omega_n}$$
 risposta in frequenza

per
$$\omega \to 0$$
 $\not\subset \widetilde{G}(j\omega) = \not\preceq 1 = 0^\circ$

per
$$\omega \to \infty$$
 $\Longrightarrow \tilde{\xi} > 0$

$$4\tilde{G}(j\omega) = \lim_{\omega \to \infty} \arctan \frac{\frac{2\xi\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}} \pm 180^{\circ}$$

$$(-180^{\circ} \text{ se } \xi < 0)$$

Ma
$$\lim_{\omega \to \infty} \arctan \frac{\frac{2\xi\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}} = 0^{\circ}$$

Quindi

Zeri complessi coniugati (esempio) $G(s) = 1 + 2\xi s + s^2$ $\omega_n = 1$

Zeri a SX

$$\xi = 0.1$$

$$\xi = 0.3$$

$$\xi = 0.5$$

$$\xi = 0.7$$

$$\xi = 0.9$$

Diagramma

-200 -3 10 -3

10⁻²

10⁻¹

$$\omega_n = 1$$

10⁰

Frequency (rad/s)

Zeri a DX

$$\xi = 0$$

$$\xi = -0.1$$

$$\xi = -0.3$$

$$\xi = -0.5$$

$$\xi = -0.7$$

$$\xi = -0.7$$

$$\xi = -0.9$$

10¹

10²

10³

Per i poli valgono i medesimi ragionamenti, fatto salvo il segno

Diag. asintotico ($\tau > 0$)

Poli complessi coniugati (esempio) $G(s) = \frac{1}{1 + 2\xi s + s^2}$ $\omega_n = 1$

Poli a DX

$$\xi = -0.1$$

$$\xi = -0.3$$

$$\xi = -0.5$$

$$\xi = -0.7$$

$$\xi = -0.9$$

Diagramma

$$G(s) = \frac{1}{1 + 2\xi s + s^2} \qquad \omega_n = 1$$

Poli a SX

$$\xi = 0$$

$$\xi = 0.1$$

$$\xi = 0.3$$

$$\xi = 0.5$$

$$\xi = 0.7$$

$$\xi = 0.9$$

8. Diagramma asintotico di Bode della fase : regole per il tracciamento

guadagno poli o zeri nell'origine

- 1. valore iniziale $\angle \mu g90^{\circ}$
- 2. cambi di valore in corrispondenza di poli e zeri

	semipiano sinistro	semipiano destro
poli	- 90°	+90°
zeri	+90°	- 90°

Esempio

$$G(s) = \frac{10(1+s)}{s(1+0.1s)}$$

Guadagno $\mu = 10$

Un polo nell'origine $\frac{1}{s}$

Uno zero reale in $-1 \rightarrow (1+s)$

Un polo reale in $-10 \rightarrow (1 + 0.1s)$

Il guadagno è positivo e quindi dà contributo 0°.

Il polo nell'origine dà contributo -90°.

Comincio a tracciare da SX e mi fermo quando incontro lo zero.

Lo zero è negativo e quindi dà contributo +90°. Continuo a tracciare e mi fermo ancora quando incontro il polo.

9. Sistemi a fase minima

Definizione

Un sistema dinamico LTI a tempo continuo si dice a fase minima se ha:

- guadagno positivo
- tutti i poli e gli zeri con parte reale negativa o nulla

E' quindi possibile dedurre in modo univoco il diagramma della fase da quello del modulo (in generale non è possibile senza conoscere a priori il segno del guadagno e delle singolarità).

Tutti i poli sfasano -90°, tutti gli zeri sfasano +90° ed il guadagno non introduce sfasamento.

Quindi, dove il diagramma del modulo ha pendenza -1, il diagramma della fase vale -90° e similmente dove il diagramma del modulo ha pendenza +1, il diagramma della fase vale $+90^{\circ}$.

In generale, a pendenza del diagramma del modulo -k, corrisponde valore del diagramma della fase $-k90^{\circ}$.

Sistema a fase minima

10. Diagramma polare

Punti e curve salienti del piano complesso

Metodo

- 1) Traccio i diagrammi di Bode del modulo e della fase
- 2) Individuo alcuni punti salienti dai due diagrammi, usando anche l'espressione della risposta in frequenza, per esempio:
 - G(j0) (dove inizia il grafico, per $\omega = 0$, spesso è un valore reale)
 - $G(j\infty)$ (dove termina il grafico, per $\omega \to \infty$, spesso è 0)
 - $\not\preceq G(j\infty)$ (da che lato il grafico arriva nel punto finale)
 - Se attraversa gli assi (individuo sul diagramma della fase punti con fase multipla di 90° e leggo sul diagramma del modulo il valore alla pulsazione corrispondente)
 - Se attraversa il cerchio unitario (individuo sul diagramma del modulo il punto in cui attraversa l'asse a 0 *dB* e leggo sul diagramma della fase il valore alla pulsazione corrispondente).
- 3) Un discorso a parte meritano i sistemi con tipo $g \neq 0$.

Esempio

$$G(s) = \frac{10}{(1+10s)}$$

$$\mu = 10$$

$$\tau = 10$$

$$\omega = 0.1$$
Modulo 10 (=20 dB)
$$\omega = 0.1$$

F. Previdi - Fondamenti di Automatica - Lez. 14

Per
$$\omega = 0$$
 $G(j0) = \frac{10}{(1+j10\cdot 0)} = 10$

Per
$$\omega \to \infty$$
 $G(j\infty) = \frac{10}{(1+j10\cdot\infty)} = 0$

Il diagramma polare inizia in 10 ed arriva nell'origine. Ci si poteva arrivare anche dai diagrammi di Bode.

Inoltre, osservando i diagrammi di Bode si nota che:

- il modulo "parte" dal valore 10 e decresce monotonamente verso 0;
- la fase "parte" dal valore 0° e decresce monotonamente fino a raggiungere il valore di -90° .

Esempio

$$G(s) = \frac{-10}{(1+10s)(1+2s)}$$

$$\mu = -10$$

$$\tau_1 = 10$$

$$\mu = -10 \implies \begin{cases} \text{Modulo } 10 \ (= 20 \ dB) \\ \text{Fase } -180^{\circ} \end{cases}$$

$$\omega_1 = 10$$
 $\omega_1 = 0.1$

$$\tau_2 = 2$$
 $\omega_2 = 0.5$

Attenzione! Guadagno negativo!!

69

F. Previdi - Fondamenti di Automatica - Lez. 14

per
$$\omega = 0$$
 $G(j0) = -10$

Il diagramma polare parte da –10 ed arriva nell'origine (cfr diagrammi di Bode).

per $\omega \to \infty$ $G(j\infty) = 0$

Inoltre, osservando i diagrammi di Bode si nota che:

- il modulo parte dal valore 10 e decresce monotonamente verso 0;
- la fase parte dal valore -180° e decresce monotonamente fino a raggiungere -360° ;
- la fase vale -270° per $\omega \cong 0.2$ ed in corrispondenza di questa pulsazione il modulo vale circa 12~dB cioè circa 4. Ciò significa che il diagramma polare attraversa il semiasse immaginario positivo nel punto +4j;
- il diagramma del modulo attraversa l'asse a 0 dB per $\omega \cong 0.7$ ed in corrispondenza di questa pulsazione la fase vale circa -310° . Quindi il diagramma polare attraversa la circonferenza di raggio unitario in un punto che forma un angolo di circa 50° con il semiasse reale positivo.

Esempio

$$G(s) = \frac{10(1+0.1s)}{s(1+s)} \qquad T = 0.1$$

$$\mu = 10$$
 \longrightarrow Modulo 10 (= 20 dB)
Fase 0°

$$T=0.1$$
 $\omega=10$

$$\tau = 1$$
 $\omega = 1$

tipo
$$g = 1$$

F. Previdi - Fondamenti di Automatica - Lez. 14

Per
$$\omega \to 0$$
 $|G(j\omega)| \to \infty$
 $\not \Delta G(j\omega) \to -90^{\circ}$

C'è un asintoto verticale!

Per
$$\omega \to \infty$$
 $G(j\omega) \to 0$

Il diagramma polare termina nell'origine.

La posizione dell'asintoto si ottiene risolvendo il seguente limite:

$$\lim_{\omega \to 0} \operatorname{Re} \left(G(j\omega) \right) = \lim_{\omega \to 0} \operatorname{Re} \left(\frac{10 + j\omega}{-\omega^2 + j\omega} \right) = \lim_{\omega \to 0} \operatorname{Re} \left(\frac{(10 + j\omega)(-\omega^2 - j\omega)}{\omega^4 + \omega^2} \right) =$$

$$= \lim_{\omega \to 0} \frac{-9\omega^2}{\omega^4 + \omega^2} = -9$$

Per $\omega \to \infty$ la fase vale 90° e quindi il diagramma polare dovrebbe arrivare nell'origine con quella fase, cioè «dal basso». E infatti è cosi (ma si vede solo su una «scala» più piccola)

F. Previdi - Fondamenti di Automatica - Lez. 14

11. Matlab

bode (SYS) Traccia i diagrammi di Bode di modulo e fase del sistema descritto da SYS.

bodemag (SYS) Traccia il solo diagramma del modulo.

Questi comandi hanno alcune opzioni utili: specificare il range di frequenze, restituire i valori di modulo e fase della risposta in frequenza per ulteriori manipolazioni, etc... (cfr bodeoptions).

Esempio

Con i «datatip» si possono evidenziare alcuni punti interessanti (in modo approssimativo).

bodeasin (num, den, wmin, wmax, tipo) è una funzione (creata da Alberto Leva di PoliMi) per il tracciamento dei diagrammi asintotici.

>> bodeasin([120 24], [10 21 12 1 0],1e-2, 1e2,'mod')

F. Previdi - Fondamenti di Automatica - Lez. 14

atan2 (Y, X) è il comando per il calcolo dell'arcotangente su quattro quadranti, dove X ed Y rappresentano ascissa ed ordinata del punto rispettivamente, $-\pi \le atan2(Y,X) \le \pi$.

Esempio

Calcoliamo la fase dei due numeri complessi $z_1 = 3 + 3j$ e $z_2 = -3 - 3j$. Se calcolassi la fase usando semplicemente l'arctg otterrei il medesimo risultato per entrambi i numeri. Infatti:

Invece, usando il comando corretto

```
>> (180/pi) *atan2(3,3)
ans =
    45
>> (180/pi) *atan2(-3,-3)
ans =
   -135
```

Non esiste un singolo comando Matlab per disegnare il diagramma polare. Si può usare **freqresp** e disegnare il risultato.

