© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°01

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

Partie I - Définition et étude de la fonction dilogarithme

1. f est clairement de classe \mathcal{C}^1 sur $]-\infty,0[$ et sur]0,1[. Il suffit donc de prouver que f et f' admettent des limites finies en 0.

Comme $ln(1-t) \sim_{t\to 0} -t$, $lim_0 f = 1$.

Un calcul facile donne

 $\forall t \in]-\infty, 0[\cup]0, 1[, f'(t) = \frac{1}{t(1-t)} + \frac{\ln(1-t)}{t^2}$

Or

 $\frac{1}{1-t} = 1 + t + o(t)$

et

 $\ln(1-t) = -t - \frac{t^2}{2} + o(t)$

donc

$$f'(t) = \frac{1}{2} + o(1)$$

ou encore $\lim_0 f' = \frac{1}{2}$.

On peut donc prolonger f en une fonction de classe \mathcal{C}^1 sur $]-\infty,1[$.

- 2. Lest continue sur $]-\infty$, 1[en tant que primitive de f sur cet intervalle. Il suffit donc de montrer que L admet une limite finie en 1, autrement dit que l'intégrale $\int_0^1 f(t) \, dt$ converge. Or $f(t) \sim -\ln(1-t)$. Par croissances comparées, $f(t) = o\left(\frac{1}{\sqrt{1-t}}\right)$ donc f est intégrable sur [0,1[par comparaison à une intégrale de Riemann convergente. Par conséquent, $\int_0^1 f(t) \, dt$ converge et L admet bien une limite finie en 1: L est donc prolongeable par continuité en 1.
- 3. D'après le théorème fondamental de l'analyse, L est une primitive de f sur $]-\infty,1[$. L est donc dérivable sur cet intervalle et L'=f.
- **4.** Pour $t \in]0,1[$, $\ln(1-t) < 0$ donc f(t) > 0. Pour $t \in]-\infty,0[$, $\ln(1-t) > 0$ donc f(t) > 0. De plus, f(0) = 1 > 0. Ainsi L' = f est strictement positive sur $]-\infty,1[$: L est donc strictement croissante sur $]-\infty,1[$.
- 5. Puisque $\lim_{t\to-\infty}\ln(1-t)=+\infty$, $\frac{1}{t}=o(f(t))$. Or $\int_{-1}^{-\infty}\frac{\mathrm{d}t}{t}$ diverge et f est positive. On en déduit donc que $\int_0^{-\infty}f(t)\,\mathrm{d}t$ diverge. Par conséquent, $\lim_{x\to-\infty}\mathrm{F}(x)=-\infty$.

Partie II - Relations fonctionnelles et valeurs particulières

6. a. On effectue le changement de variable $u = -\ln(1-t)$ i.e. $t = 1 - e^{-u}$. $u \mapsto 1 - e^{-u}$ est une bijection de classe \mathcal{C}^1 strictement croissante de $[0, +\infty[$ sur [0, 1[. De plus, $\frac{dt}{du} = e^{-u}$ donc

1

$$L(1) = \int_0^1 \frac{-\ln(1-t)}{t} dt = \int_0^{+\infty} \frac{u}{1 - e^{-u}} \cdot e^{-u} du = \int_0^{+\infty} \frac{u}{e^u - 1} du$$

© Laurent Garcin MP Dumont d'Urville

b. Soit $k \in \mathbb{N}^*$. Par croissances comparées, $xe^{-kx} = o(1/x^2)$ donc l'intégrale définissant I_k converge. Par intégration par parties,

$$I_k = -\frac{1}{k} \left[x e^{-kx} \right]_0^{+\infty} + \frac{1}{k} \int_0^{+\infty} e^{-kx} dx$$

L'intégration par parties est légitime car $\lim_{x\to+\infty}xe^{-kx}=0$ donc le crochet converge. De plus,

$$I_k = \frac{1}{k} \int_0^{+\infty} e^{-kx} dx = -\frac{1}{k^2} \left[e^{-kx} \right]_0^{+\infty} = \frac{1}{k^2}$$

- **c.** Par convexité de exp, $e^x \ge 1 + x$ pour tout $x \in \mathbb{R}$ ou encore $x \le e^x 1$. Puisque $e^x 1 > 0$ pour tout $x \in \mathbb{R}_+^*$, $0 \le \frac{x}{e^x 1} \le 1$.
- d. Comme somme (finie) linéaire d'intégrales convergentes

$$\sum_{k=1}^{n} I_k = \int_0^{+\infty} x \sum_{k=1}^{n} e^{-kx} dx = \int_0^{+\infty} \frac{x e^{-x} (1 - e^{-nx})}{1 - e^{-x}} dx = \int_0^{+\infty} \frac{x (1 - e^{-nx})}{e^x - 1} dx$$

Par conséquent.

$$L(1) - \sum_{k=1}^{n} I_k = \int_{0}^{+\infty} \frac{xe^{-nx}}{e^x - 1} dx$$

D'après la question précédente

$$0 \le L(1) - \sum_{k=1}^{n} I_k \le \int_0^{+\infty} e^{-nx} dx = \frac{1}{n}$$

e. En passant à la limite dans la question précédente,

$$L(1) = \lim_{n \to +\infty} \sum_{k=1}^{n} I_k = \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

7. **a.** Posons $\varphi: x \mapsto L(x) + L(-x) - \frac{1}{2}L(x^2)$. Comme L est dérivable sur $]-1,1[,\varphi]$ l'est également et

$$\forall x \in]-1,1[, \varphi'(x) = L'(x) - L'(-x) - xL'(x^2) = f(x) - f(-x) - 2xf(x^2)$$

Notamment, $\varphi'(0) = 0$ et pour tout $x \in]-1, 0[\cup]0, 1[$,

$$\varphi'(x) = -\frac{\ln(1-x)}{x} - \frac{\ln(1+x)}{x} + x \cdot \frac{\ln(1-x^2)}{x^2} = \frac{-\ln((1-x)(1+x)) + \ln(1-x^2)}{x} = 0$$

Ainsi φ' est nulle sur] -1, 1[et donc φ est constante sur] -1, 1[. Par ailleurs, L est continue sur [-1, 1] donc φ l'est également. Par continuité, φ est constante sur [-1, 1]. Or $\varphi(0) = 0$ car L(0) = 0 donc φ est nulle sur [-1, 1]. Par conséquent,

$$\forall x \in [-1, 1], \ L(x) + L(-x) = \frac{1}{2}L(x^2)$$

b. En prenant x = 1, on obtient

$$L(1) + L(-1) = \frac{1}{2}L(1)$$

donc

$$L(-1) = -\frac{1}{2}L(1) = -\frac{\pi^2}{12}$$

8. a. On raisonne comme à la question précédente en posant ψ : $x \mapsto L(x) + L(1-x) + \ln(x) \ln(1-x)$. A nouveau, ψ est dérivable sur]0,1[et

$$\forall x \in]-1,1[,\ \psi'(x) = \mathrm{L}'(x) - \mathrm{L}'(1-x) + \frac{\ln(1-x)}{x} - \frac{\ln(x)}{1-x} = f(x) - f(1-x) + \frac{\ln(1-x)}{x} - \frac{\ln(x)}{1-x} = 0$$

Ainsi ψ est constante sur]0,1[. On note C cette constante

Par continuité de L en 0 et 1,

$$\lim_{x \to 0+} L(x) + L(1-x) = L(0) + L(1) = \frac{\pi^2}{6}$$

De plus, $\ln(x)\ln(1-x) \underset{x\to 0^+}{\sim} -x\ln(x)$ donc $\lim_{x\to 0^+} \ln(x)\ln(1-x) = 0$ par croissances comparées. On en déduit que $\lim_0 \psi = \frac{\pi^2}{6} = \mathbb{C}$.

b. En prenant $x = \frac{1}{2}$,

$$2L\left(\frac{1}{2}\right) = \frac{\pi^2}{6} - \ln\left(\frac{1}{2}\right)^2$$

donc

$$L\left(\frac{1}{2}\right) = \frac{\pi^2}{12} - \frac{1}{2}\ln^2(2)$$

Partie III - Une équation différentielle

On considère les équations différentielles

 $\mathcal{E}: xy'' + y' = \frac{1}{1-x}$

et

$$\mathcal{E}': xz' + z = \frac{1}{1-x}$$

9. Les solutions sur]0, 1[de l'équation homogène xz'+z=0 sont les fonctions $x\mapsto \frac{\lambda}{x}$ avec $\lambda\in\mathbb{R}$. On vérifie que f est une solution particulière de \mathcal{E}' sur]0, 1[. Les solutions de \mathcal{E}' sur]0, 1[sont donc les fonctions $x\mapsto f(x)+\frac{\lambda}{x}$ avec $\lambda\in\mathbb{R}$.

On montre de la même manière que les solutions de \mathcal{E}' sur $]-\infty,1[$ sont de cette forme.

10. Via le changement de variable z = y', on montre que les solutions de \mathcal{E} sur]0, 1[sont les primitives des solutions de \mathcal{E}' sur cet intervalle, c'est-à-dire les fonctions de la forme

$$x \mapsto L(x) + \lambda \ln(x) + \mu$$
 avec $(\lambda, \mu) \in \mathbb{R}^2$

De la même manière les solutions de \mathcal{E} sur $]-\infty,1[$ sont les fonctions de la forme

$$x \mapsto L(x) + \lambda \ln(-x) + \mu$$
 avec $(\lambda, \mu) \in \mathbb{R}^2$

11. Soit g une éventuelle solution de \mathcal{E} sur $]-\infty,1[$. Il existe donc $(\lambda_1,\mu_1,\lambda_2,\mu_2)\in\mathbb{R}^4$ tel que

$$\forall x \in]0,1[, g(x) = L(x) + \lambda_1 \ln(x) + \mu_1$$

$$\forall x \in]-\infty,1[, g(x) = L(x) + \lambda_2 \ln(x) + \mu_2$$

Comme g doit être deux fois dérivable en 0 et a fortiori continue en 0, $\lambda_1 = \lambda_2 = 0$. Le même argument de continuité montre alors que $\mu_1 = \mu_2$. Il existe donc $\mu \in \mathbb{R}$ tel que

$$\forall x \in]-\infty, 1[, g(x) = L(x) + \mu$$

Réciproquement, soit $\mu \in \mathbb{R}$. Ce qui précède montre que $g: x \mapsto L(x) + \mu$ est bien solution de \mathcal{E} sur $]-\infty,1[$ et sur]0,1[. On a donc

$$\forall x \in]-\infty, 0[\cup]0, 1[, xg''(x) + g'(x) = \frac{1}{1-x}$$

Mais L est de classe \mathcal{C}^1 sur $]-\infty,1[$ et L'=f. Or f est elle-même de classe \mathcal{C}^1 sur $]-\infty,1[$ donc L est de classe \mathcal{C}^2 sur $]-\infty,1[$. Notamment, g'' et g' sont continues en 0 de même que $x\mapsto \frac{1}{1-x}$ donc

$$\forall x \in]-\infty, 1[, xg''(x) + g'(x) = \frac{1}{1-x}$$

et g est bien solution de \mathcal{E} sur $]-\infty,1[$.

Pour récapituler, les solutions de \mathcal{E} sur $]-\infty,1[$ sont exactement les fonctions $L+\mu$ avec $\mu\in\mathbb{R}$.

Problème 2

Remarquons déjà que dans tout le problème, $t\mapsto \frac{f(t)-f(2t)}{t}$ est continue sur \mathbb{R}_+^* .

1. **a.** Etude en $+\infty$. Clairement, $f(t) = \mathcal{O}(1/t^2)$ donc $f(2t) = \mathcal{O}(1/t^2)$ puis $\frac{f(t) - f(2t)}{t} = \mathcal{O}(1/t^3)$. Puisque $t \mapsto \frac{1}{t^3}$ est intégrable sur $[1, +\infty[$, $t \mapsto \frac{f(t) - f(2t)}{t}$ l'est également.

Etude en 0+. Puisque $\frac{1}{1+u} = 1+\mathcal{O}(u)$, $f(t) = 1+\mathcal{O}(t^2)$ puis $f(2t) = 1+\mathcal{O}(t^2)$ et enfin $\frac{f(t)-f(2t)}{t} = \mathcal{O}(t)$. Comme $t \mapsto t$ est intégrable sur]0,1], $t \mapsto \frac{f(t)-f(2t)}{t}$ l'est également.

Finalement, $t\mapsto \frac{f(t)-f(2t)}{t}$ est intégrable sur \mathbb{R}_+^* : l'intégrale $\mathrm{I}(f)$ converge (absolument).

b. Décomposition en éléments simples :

$$\frac{f(t) - f(2t)}{t} = \frac{1}{t(t^2 + 1)} - \frac{1}{t(4t^2 + 1)} = \frac{1}{t} - \frac{t}{t^2 + 1} - \frac{1}{t} + \frac{4t}{4t^2 + 1} = \frac{4t}{4t^2 + 1} - \frac{t}{t^2 + 1}$$

Une primitive de $t \mapsto \frac{f(t)-f(2t)}{t}$ est donc

$$t \mapsto \frac{1}{2}\ln(4t^2+1) - \frac{1}{2}\ln(t^2+1) = \frac{1}{2}\ln\left(\frac{4t^2+1}{t^2+1}\right)$$

Ainsi

$$I(f) = \frac{1}{2} \left[\ln \left(\frac{4t^2 + 1}{t^2 + 1} \right) \right]_0^{+\infty} = \frac{1}{2} \ln 4 = \ln 2$$

Ainsi

2.

$$\frac{f(t) - f(2t)}{t} = \frac{1}{t^2 + 1} - \frac{2}{4t^2 + 1}$$

$$\mathrm{I}(f) = \left[\arctan(t) - \arctan(2t)\right]_0^{+\infty} = \frac{\pi}{2} - \frac{\pi}{2} = 0$$

3. Remarquons que

$$\frac{f(t) - f(2t)}{t} = \frac{1}{t} \left(\frac{t^2}{t^2 + 1} - \frac{4t^2}{4t^2 + 1} \right) = \frac{1}{t} \left(1 - \frac{1}{t^2 + 1} - 1 + \frac{1}{4t^2 + 1} \right) = -\left(\frac{1}{t(t^2 + 1)} - \frac{1}{t(4t^2 + 1)} \right)$$

On se ramène donc à la question $\mathbf{1}: \mathbf{I}(f)$ converge et $\mathbf{I}(f) = -\ln 2$.

4. Lorsque $n \ge 3$,

$$\frac{f(t) - f(2t)}{t} = \frac{t^{n-1}}{1 + t^2} - \frac{2^n t^{n-1}}{1 + 4t^2} \underset{n \to +\infty}{\sim} \frac{4 - 2^n}{4t^{n-3}}$$

car $4-2^n \neq 0$. Or $n-3 \geq 0$ donc $t \mapsto t^{n-3}$ n'est pas intégrable sur \mathbb{R}_+^* . L'intégrale I(f) diverge.

Partie II -

5. Etude en $+\infty$. Par croissances comparées, $\frac{f(t)-f(2t)}{t} = o(1/t^2)$. Par conséquent, $t \mapsto \frac{f(t)-f(2t)}{t}$ est intégrable sur $[1, +\infty[$.

Etude en 0⁺. On sait que $e^{-t} = 1 - t + o(t)$ et $e^{-2t} = 1 - 2t + o(t)$ donc $\frac{f(t) - f(2t)}{t} = 1 + o(1)$ i.e. $\lim_{t \to 0} \frac{f(t) - f(2t)}{t}$. Ainsi f est intégrable sur [0, 1].

Ainsi f est intégrable sur]0,1].

Finalement, $t\mapsto \frac{f(t)-f(2t)}{t}$ est intégrable sur \mathbb{R}_+^* : l'intégrale $\mathrm{I}(f)$ converge (absolument).

© Laurent Garcin MP Dumont d'Urville

6.

$$\begin{split} \int_{\varepsilon}^{+\infty} \frac{e^{-t} - e^{-2t}}{t} \; \mathrm{d}t &= \int_{\varepsilon}^{+\infty} \frac{e^{-t}}{t} \; \mathrm{d}t - \int_{\varepsilon}^{+\infty} \frac{e^{-2t}}{t} \; \mathrm{d}t \qquad \text{par linéarité de l'intégrale} \\ &= \int_{\varepsilon}^{+\infty} \frac{e^{-t}}{t} \; \mathrm{d}t - \int_{\varepsilon}^{+\infty} \frac{e^{-2t}}{t} \; \mathrm{d}t \qquad \text{par linéarité de l'intégrale} \\ &= \int_{\varepsilon}^{+\infty} \frac{e^{-u}}{u} \; \mathrm{d}t - \int_{2\varepsilon}^{+\infty} \frac{e^{-u}}{u} \; \mathrm{d}u \qquad \text{par le changement de variable } u = 2t \\ &= \int_{\varepsilon}^{2\varepsilon} \frac{e^{-u}}{u} \; \mathrm{d}u \qquad \text{via la relation de Chasles} \\ &\int_{\varepsilon}^{2\varepsilon} \frac{e^{-u} - 1}{u} \; \mathrm{d}u + \int_{\varepsilon}^{2\varepsilon} \frac{\mathrm{d}u}{u} \end{split}$$

- 7. h est continue sur \mathbb{R}^* . Il suffit de constater que $\lim_0 h = -1$ pour affimer que h est prolongeable en une fonction continue sur \mathbb{R} .
- **8.** On note H une primitive du prolongement continu de h sur \mathbb{R} . Alors pour tout $\varepsilon > 0$,

$$\int_{\varepsilon}^{+\infty} \frac{f(t) - f(2t)}{t} dt = \int_{\varepsilon}^{2\varepsilon} \frac{e^{-u} - 1}{u} du + \int_{\varepsilon}^{2\varepsilon} \frac{du}{u} = H(2\varepsilon) - H(\varepsilon) + \ln 2$$

Comme H est continue (et même de classe \mathcal{C}^1) sur \mathbb{R} en tant que primitive d'une fonction continue sur \mathbb{R} ,

$$\lim_{\epsilon \to 0^+} H(2\epsilon) = \lim_{\epsilon \to 0^+} H(\epsilon) = H(0)$$

Par conséquent,

$$I(f) = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^{+\infty} \frac{f(t) - f(2t)}{t} dt = \ln 2$$

9. On effectue le changement de variable $t = -\ln u$. Celui-ci est valide car $-\ln$ est une bijection streitement décroissante de classe \mathcal{C}^1 de]0,1] sur $[0,+\infty[$. Ainsi

$$I = \int_0^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt = \int_1^0 \frac{u - u^2}{-\ln u} \cdot \frac{-du}{u} = \int_0^1 \frac{u - 1}{\ln u} du$$

Ainsi

$$J = I(f) = \ln 2$$