

# MM54HC4020/MM74HC4020 14-Stage Binary Counter MM54HC4040/MM74HC4040 12-Stage Binary Counter

## **General Description**

The MM54HC4020/MM74HC4020, MM54HC4040/MM74HC4040, are high speed binary ripple carry counters. These counters are implemented utilizing advanced silicongate CMOS technology to achieve speed performance similar to LS-TTL logic while retaining the low power and high noise immunity of CMOS.

The 'HC4020 is a 14 stage counter and the 'HC4040 is a 12-stage counter. Both devices are incremented on the falling edge (negative transition) of the input clock, and all their outputs are reset to a low level by applying a logical high on their reset input.

These devices are pin equivalent to the CD4020 and CD4040 respectively. All inputs are protected from damage due to static discharge by protection diodes to  $V_{CC}$  and ground.

#### **Features**

- Typical propagation delay: 16 ns
- Wide operating voltage range: 2-6V
- Low input current: 1 µA maximum
- Low quiescent current: 80 µA maximum (74HC Series)
- Output drive capability: 10 LS-TTL loads

## **Connection Diagrams**

#### **Dual-In-Line Packages**



TL/F/5216-1



TL/F/5216-3

Order Number MM54HC4020/4040 or MM74HC4020/4040

## Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage (V <sub>CC</sub> )                             | -0.5 to $+7.0$ V              |
|---------------------------------------------------------------|-------------------------------|
| DC Input Voltage (V <sub>IN</sub> )                           | -1.5 to V <sub>CC</sub> +1.5V |
| DC Output Voltage (V <sub>OUT</sub> )                         | $-0.5$ to $V_{CC} + 0.5V$     |
| Clamp Diode Current (I <sub>CD</sub> )                        | $\pm$ 20 mA                   |
| DC Output Current, per pin (IOUT)                             | $\pm$ 25 mA                   |
| DC V <sub>CC</sub> or GND Current, per pin (I <sub>CC</sub> ) | $\pm$ 50 mA                   |
| Storage Temperature Range (T <sub>STG</sub> )                 | -65°C to $+150$ °C            |
|                                                               |                               |

Power Dissipation (P<sub>D</sub>)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T<sub>L</sub>)

(Soldering 10 seconds)

## **Operating Conditions**

| Supply Voltage (V <sub>CC</sub> )              | Min<br>2 | <b>Max</b><br>6 | Units<br>V |
|------------------------------------------------|----------|-----------------|------------|
| DC Input or Output Voltage $(V_{IN}, V_{OUT})$ | 0        | $V_{CC}$        | V          |
| Operating Temp. Range (TA)                     |          |                 |            |
| MM74HC                                         | -40      | +85             | °C         |
| MM54HC                                         | -55      | +125            | °C         |
| Input Rise or Fall Times                       |          |                 |            |
| $(t_r, t_f)$ $V_{CC} = 2.0V$                   |          | 1000            | ns         |
| $V_{CC} = 4.5V$                                |          | 500             | ns         |
| $V_{CC} = 6.0V$                                |          | 400             | ns         |

### **DC Electrical Characteristics** (Note 4)

| Symbol          | Parameter                            | Conditions                                                                                               | v <sub>cc</sub>      | V <sub>CC</sub> T <sub>A</sub> =25°C |                    | 74HC<br>T <sub>A</sub> = -40 to 85°C | 54HC<br>T <sub>A</sub> =-55 to 125°C | Units       |
|-----------------|--------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|--------------------|--------------------------------------|--------------------------------------|-------------|
|                 |                                      |                                                                                                          |                      | Тур                                  |                    | <b>Guaranteed Limits</b>             |                                      | O milo      |
| $V_{IH}$        | Minimum High Level Input<br>Voltage  |                                                                                                          | 2.0V<br>4.5V<br>6.0V |                                      | 1.5<br>3.15<br>4.2 | 1.5<br>3.15<br>4.2                   | 1.5<br>3.15<br>4.2                   | V<br>V<br>V |
| V <sub>IL</sub> | Maximum Low Level Input<br>Voltage** |                                                                                                          | 2.0V<br>4.5V<br>6.0V |                                      | 0.5<br>1.35<br>1.8 | 0.5<br>1.35<br>1.8                   | 0.5<br>1.35<br>1.8                   | ><br>><br>> |
| V <sub>OH</sub> | Minimum High Level Output<br>Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT}  \le 20 \mu A$                                            | 2.0V<br>4.5V<br>6.0V | 2.0<br>4.5<br>6.0                    | 1.9<br>4.4<br>5.9  | 1.9<br>4.4<br>5.9                    | 1.9<br>4.4<br>5.9                    | V<br>V<br>V |
|                 |                                      | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 4.0 \text{ mA}$<br>$ I_{OUT}  \le 5.2 \text{ mA}$ | 4.5V<br>6.0V         | 4.2<br>5.7                           | 3.98<br>5.48       | 3.84<br>5.34                         | 3.7<br>5.2                           | V<br>V      |
| V <sub>OL</sub> | Maximum Low Level Output<br>Voltage  | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 20 \mu A$                                         | 2.0V<br>4.5V<br>6.0V | 0<br>0<br>0                          | 0.1<br>0.1<br>0.1  | 0.1<br>0.1<br>0.1                    | 0.1<br>0.1<br>0.1                    | V<br>V<br>V |
|                 |                                      | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT}  \le 4.0 \text{ mA}$ $ I_{OUT}  \le 5.2 \text{ mA}$       | 4.5V<br>6.0V         | 0.2<br>0.2                           | .26<br>.26         | 0.33<br>0.33                         | 0.4<br>0.4                           | V<br>V      |
| I <sub>IN</sub> | Maximum Input Current                | V <sub>IN</sub> =V <sub>CC</sub> or GND                                                                  | 6.0V                 |                                      | ±0.1               | ± 1.0                                | ±1.0                                 | μΑ          |
| Icc             | Maximum Quiescent Supply<br>Current  | V <sub>IN</sub> =V <sub>CC</sub> or GND<br>I <sub>OUT</sub> =0 μA                                        | 6.0V                 |                                      | 8.0                | 80                                   | 160                                  | μΑ          |

260°C

Note 1: Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V ±10% the worst case output voltages (V<sub>OH</sub>, and V<sub>OL</sub>) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V<sub>H</sub> and V<sub>IL</sub> occur at V<sub>OC</sub>=5.5V and 4.5V respectively. (The V<sub>IH</sub> value at 5.5V is 3.85V.) The worst case leakage current (I<sub>IN</sub>, I<sub>CC</sub>, and I<sub>OZ</sub>) occur for CMOS at the higher voltage and so the 6.0V values should be used.

<sup>\*\*</sup>V<sub>IL</sub> limits are currently tested at 20% of V<sub>CC</sub>. The above V<sub>IL</sub> specification (30% of V<sub>CC</sub>) will be implemented no later than Q1, CY'89.

# AC Electrical Characteristics $v_{CC}\!=\!5\text{V}, T_A\!=\!25^{\circ}\text{C}, C_L\!=\!15\text{ pF}, t_r\!=\!t_f\!=\!6\text{ ns}$

| Symbol                              | Parameter                                   | Conditions | Тур | Guaranteed<br>Limit | Units |
|-------------------------------------|---------------------------------------------|------------|-----|---------------------|-------|
| f <sub>MAX</sub>                    | Maximum Operating Frequency                 |            | 50  | 30                  | MHz   |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay Clock to Q     | (Note 5)   | 17  | 35                  | ns    |
| t <sub>PHL</sub>                    | Maximum Propagation<br>Delay Reset to any Q |            | 16  | 40                  | ns    |
| t <sub>REM</sub>                    | Minimum Reset<br>Removal Time               |            | 10  | 20                  | ns    |
| t <sub>W</sub>                      | Minimum Pulse Width                         |            | 10  | 16                  | ns    |

# $\textbf{AC Electrical Characteristics} \ \ V_{CC} = 2.0 \ \ \text{to 6.0V}, \ C_L = 50 \ \ \text{pF}, \ t_r = t_f = 6 \ \text{ns (unless otherwise specified)}$

| Symbol                              | Parameter                                                                                                                        | Conditions    | v <sub>cc</sub>      | T <sub>A</sub> =25°C |                    | 74HC<br>T <sub>A</sub> = -40 to 85°C | 54HC<br>T <sub>A</sub> = -55 to 125°C | Units             |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|----------------------|--------------------|--------------------------------------|---------------------------------------|-------------------|
|                                     |                                                                                                                                  |               |                      | Тур                  |                    | Guaranteed                           | Guaranteed Limits                     |                   |
| f <sub>MAX</sub>                    | Maximum Operating<br>Frequency                                                                                                   |               | 2.0V<br>4.5V<br>6.0V | 10<br>40<br>50       | 6<br>30<br>35      | 5<br>24<br>28                        | 4<br>20<br>24                         | MHz<br>MHz<br>MHz |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay Clock to Q <sub>1</sub>                                                                             |               | 2.0V<br>4.5V<br>6.0V | 80<br>21<br>18       | 210<br>42<br>36    | 265<br>53<br>45                      | 313<br>63<br>53                       | ns<br>ns<br>ns    |
| T <sub>PHL</sub> , t <sub>PLH</sub> | $\begin{array}{c} \text{Maximum Propagation} \\ \text{Delay Between Stages} \\ \text{from } Q_n \text{ to } Q_{n+1} \end{array}$ |               | 2.0V<br>4.5V<br>6.0V | 80<br>18<br>15       | 125<br>25<br>21    | 156<br>31<br>26                      | 188<br>38<br>31                       | ns<br>ns<br>ns    |
| t <sub>PHL</sub>                    | Maximum Propagation<br>Delay Reset to any Q<br>('4020 and '4040)                                                                 |               | 2.0V<br>4.5V<br>6.0V | 72<br>24<br>20       | 240<br>48<br>41    | 302<br>60<br>51                      | 358<br>72<br>61                       | ns<br>ns<br>ns    |
| t <sub>REM</sub>                    | Minimum Reset<br>Removal Time                                                                                                    |               | 2.0V<br>4.5V<br>6.0V |                      | 100<br>20<br>16    | 126<br>25<br>21                      | 149<br>50<br>25                       | ns<br>ns<br>ns    |
| t <sub>W</sub>                      | Minimum Pulse Width                                                                                                              |               | 2.0V<br>4.5V<br>6.0V |                      | 90<br>16<br>14     | 100<br>20<br>18                      | 120<br>24<br>20                       | ns<br>ns<br>ns    |
| t <sub>TLH</sub> , t <sub>THL</sub> | Maximum Output Rise and Fall Time                                                                                                |               | 2.0V<br>4.5V<br>6.0V | 30<br>10<br>9        | 75<br>15<br>13     | 95<br>19<br>16                       | 110<br>22<br>19                       | ns<br>ns<br>ns    |
| t <sub>r</sub> , t <sub>f</sub>     | Maximum Input Rise and Fall Time                                                                                                 |               |                      |                      | 1000<br>500<br>400 | 1000<br>500<br>400                   | 1000<br>500<br>400                    | ns<br>ns<br>ns    |
| C <sub>PD</sub>                     | Power Dissipation<br>Capacitance (Note 6)                                                                                        | (per package) |                      | 55                   |                    |                                      |                                       | pF                |
| C <sub>IN</sub>                     | Maximum Input<br>Capacitance                                                                                                     |               |                      | 5                    | 10                 | 10                                   | 10                                    | pF                |

Note 5: Typical Propagation delay time to any output can be calculated using:  $t_P = 17 + 12(N-1)$  ns; where N is the number of the output,  $Q_W$ , at  $V_{CC} = 5V$ .

Note 6:  $C_{PD}$  determines the no load dynamic power consumption,  $P_D = C_{PD}$   $V_{CC}^2$   $f + I_{CC}$ .  $V_{CC}$ , and the no load dynamic current consumption,  $I_S = C_{PD}$   $V_{CC}$   $f + I_{CC}$ .











Order Number MM54HC4020J, MM54HC4024J, MM54HC4040J, MM74HC4020J, MM74HC4024J, or MM74HC4040J NS Package J14A



Order Number MM74HC4020N, MM74HC4024N or MM74HC4040N NS Package N14A

### Physical Dimensions inches (millimeters) (Continued)



Order Number MM74HC4020N, MM74HC4024N or MM74HC4040N NS Package N16E

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



**National Semiconductor** 

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

**National Semiconductor** Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** 

Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408