PSG COLLEGE OF TECHNOLOGY

DEPARTMENT OF APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCES

M.Sc (SS) - Design and Analysis of Algorithms

Home work 5 (Dynamic Programming)

1. Apply the bottom-up dynamic programming algorithm to the following instance of the knapsack problem:

item	weight	value	
1	3	\$25	
2	2	\$20	
3	1	\$15	capacity $W = 6$.
4	4	\$40	
5	5	\$50	

2. Apply Warshall's algorithm to find the transitive closure of the digraph defined by the following adjacency matrix:

$$\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

3. Solve the all-pairs shortest-path problem for the digraph with the following weight matrix:

$$\begin{bmatrix} 0 & 2 & \infty & 1 & 8 \\ 6 & 0 & 3 & 2 & \infty \\ \infty & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 0 & 3 \\ 3 & \infty & \infty & \infty & 0 \end{bmatrix}$$