Corrigé : Feuille de travaux dirigés 2

Solution Exercice 1

1. Erratum : Dans la ligne "On paramètre le modèle pour X par $\theta = (\theta, \sigma^2) \in \mathbb{R} \times \mathbb{R}^+$," il fallait lire "On paramètre le modèle pour X par $\boldsymbol{\theta} = (\theta, \sigma^2) \in \mathbb{R} \times \mathbb{R}^+$." La question concerne l'estimation de $\boldsymbol{\theta}$ et pas l'estimation de $\boldsymbol{\theta}$.

Le modèle statistique est bien de la forme $X_i = \phi(\theta, a_i) + Z_i$ donc on peut appliquer la méthode des moindres carrés. Ici, les variables aléatoires Z_i sont interprétées comme du bruit et $\phi(\theta, a_i)$ est interprété comme le signal. Il s'agit de minimiser le carré de la norme de la différence entre les observations X_i et le signal $\phi(\theta, a_i)$. La variable d'optimisation est le paramètre d'intérêt θ . On obtient l'estimateur

$$\widehat{\theta} = \arg\min_{\theta \in \mathbb{R}} \sum_{i=1}^{n} (X_i - a_i \theta)^2.$$

Notez que c'est bien une fonction de X et de a uniquement.

Posons $f(\theta) = \sum_{i=1}^{n} (X_i - a_i \theta)^2$. Sa dérivée vaut

$$f'(\theta) = \sum_{i=1}^{n} a_i (a_i \theta - X_i).$$

Comme $\widehat{\theta}(X)$ annule f', $\widehat{\theta}$ est solution de l'équation

$$\sum_{i=1}^{n} a_i (a_i \theta - X_i) = 0$$

c'est à dire
$$\widehat{\theta} = \frac{\sum_{i=1}^{n} a_i X_i}{\sum_{j=1}^{n} a_i^2} = \frac{a^T X}{\|a\|^2}.$$

Comme $f''(\hat{\theta}) = ||a||^2 > 0$, $\hat{\theta}$ est bien un minimum local de f. Comme c'est le seul minimum local, c'est le minimum global.

- 2. On remarque qu'on retrouve le même estimateur qu'avec la méthode du maximum de vraisemblance.
- 3. Dans le calcul de la question 1, on n'a utilisé nulle part la loi de Z_i . On obtiendra donc le même résultat pour l'estimateur des moindres carrés si la loi de Z_i change. Par contre, l'estimateur du maximum de vraisemblance sera différent.

Par exemple, si $Z_i \stackrel{\text{i.i.d.}}{\sim} U([-\sqrt{3}\sigma, +\sqrt{3}\sigma])$, on a

$$p_{\theta}(x) = \prod_{i=1}^{n} \frac{1}{2\sqrt{3}\sigma} \mathbb{1}_{[a_i\theta - \frac{1}{\sqrt{3}\sigma}, a_i\theta + \frac{1}{\sqrt{3}\sigma}]}(x)$$

L'estimateur du maximum de vraisemblance devient donc

 $\widehat{\theta}_U \in \arg\min_{\theta} \min_{\sigma>0} \{ \log(2\sqrt{3}\sigma) \text{ sous la contrainte } a_i\theta - \sqrt{3}\sigma \le x_i \le a_i\theta - \sqrt{3}\sigma, \forall i \}.$

Pour chaque θ , le problème interne a pour solution $\sigma = \frac{1}{\sqrt{3}} \max_i |x_i - a_i \theta|$. Avec des bruits qui suivent une loi uniforme, on obtient

$$\widehat{\theta}_U \in \arg\min_{\theta} \max_i |x_i - a_i \theta|.$$

Autrement dit, avec la méthode du maximum de vraisemblance $\widehat{\theta}_U$ minimise la norme infinie des écarts alors que l'estimateur des moindres carrés minimise la norme 2.

Solution Exercice 2

1. Soit X la durée de vie d'une cellule choisie au hasard (uniforme) dans la population à l'étude et soit Y la variable binaire décrivant son état (Y = 0 si la cellule est pathogène, Y = 1 sinon). Par hypothèse, Y suit une loi de Bernoulli de paramètre θ . La durée de vie Z_s d'une celleule saine suit, par hypothèse, une loi exponentielle $\mathcal{E}(1)$ et une cellule pathogène Z_p vérifie $\mathbb{P}(Z_p > x) = \mathbb{P}(Z_s/2 > x) = e^{-2x}$, de sorte que $Z_p \sim \exp(2)$. Finalement, d'après les hypothèses de l'énoncé, on peut écrire :

$$X_1 \stackrel{loi}{=} Y Z_s + (1 - Y) Z_p.$$

Ainsi la fonction de répartition de X_1 s'écrit

$$\forall x \in \mathbb{R}, \quad F_{\theta}(x) = \mathbb{P}(X_1 \le x | U = 1) \mathbb{P}(U = 1) + \mathbb{P}(X_1 \le x | U = 0) \mathbb{P}(U = 0)$$
$$= \theta \mathbb{P}(Z_s \le x) + (1 - \theta) \mathbb{P}(Z_p \le x)$$
$$= \mathbb{1}_{x>0} \left[\theta(1 - e^{-x}) + (1 - \theta)e^{-2x} \right]$$

Cette fonction est continue sur \mathbb{R} et de classe \mathcal{C}^1 par morceaux (partout sauf en 0). Ainsi, X_1 admet une densité par rapport à Lebesgue donnée par

$$\forall x \neq 0, f_{\theta}(x) = F'_{\theta}(x) = \mathbb{1}_{x>0} \theta e^{-x} + 2(1-\theta)e^{-2x}$$

La valeur de f_{θ} en 0 peut être choisie arbitrairement puisque $\{0\}$ est de mesure de Lebesgue nulle.

2. La densité permet de calculer $\mathbb{E}(X^p)$:

$$\mathbb{E}_{\theta}(X^p) = \int_{\mathbb{R}} x^p f_{\theta}(x) dx$$
$$= \theta \int_{\mathbb{R}^+} x^p e^{-x} dx + 2(1 - \theta) \int_{\mathbb{R}^+} x^p e^{-2x}.$$

On reconnait dans la première intégrale la quantité $\Gamma(p+1) = p!$. Par changement de variable y = 2x, la deuxième intégrale vaut $2^{-p-1}p!$, d'où

$$\mathbb{E}_{\theta}(X^p) = p! \left(\theta + 2^{-p}(1-\theta)\right).$$

Posons $\Phi(\theta) = \mathbb{E}_{\theta}(X^p)$, dont l'expression est donnée ci-dessus et soit $\widehat{\Phi}_n$ la version empirique du moment d'ordre p, $\widehat{\Phi}_n = \frac{1}{n} \sum_{i=1}^{n} X_i^p$.

La méthode des moments consiste alors à définir $\widehat{\theta}(X)$ comme le M-estimateur

$$\widehat{\theta}_n(X) = \operatorname*{argmin}_{t \in \Theta} \|\Phi(t) - \widehat{\Phi}_n\|^2.$$

La fonction Φ est inversible de [0,1] dans son image $Im(\Phi) = \left[\frac{p!}{2^p}, p!\right]$ d'inverse pour $p \geq 1$:

$$\forall y \in Im(\Phi), \quad \Phi^{-1}(y) = \frac{\frac{2^p}{p!}y - 1}{2^p - 1}.$$

Ainsi, l'estimateur par la méthode des moments est

$$\widehat{\theta}(X) = \begin{cases} 1 & \text{si } \widehat{\Phi}_n \ge p! \\ 0 & \text{si } \widehat{\Phi}_n \le \frac{p!}{2^p} \\ \Phi^{-1}(\widehat{\Phi}_n) = \frac{\frac{2^p}{p!}\widehat{\Phi}_n - 1}{2^p - 1} & \text{sinon } . \end{cases}$$

Solution Exercice 3 Commençons par corriger la question 2.

2. On veut estimer un paramètre de dimension 2 donc il semble raisonnable d'utiliser les 2 premiers moments.

$$\mathbb{E}_{\theta}(X_{1}) = \int_{\mathbb{R}_{+}} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha} \exp(-\lambda x) dx = \int_{\mathbb{R}_{+}} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \left(\frac{y}{\lambda}\right)^{\alpha} \exp(-y) \frac{1}{\lambda} dy = \frac{1}{\lambda} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha)} = \frac{\alpha}{\lambda}$$

$$\mathbb{E}_{\theta}(X_{1}^{2}) = \int_{\mathbb{R}_{+}} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha+1} \exp(-\lambda x) dx = \int_{\mathbb{R}_{+}} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \left(\frac{y}{\lambda}\right)^{\alpha+1} \exp(-y) \frac{1}{\lambda} dy = \frac{1}{\lambda^{2}} \frac{\Gamma(\alpha+2)}{\Gamma(\alpha)}$$

$$= \frac{\alpha(\alpha+1)}{\lambda^{2}}$$

$$\operatorname{var}_{\theta}(X_1) = \mathbb{E}_{\theta}(X_1^2) - \mathbb{E}_{\theta}(X_1)^2 \frac{\alpha}{\lambda^2}$$

Ainsi, $\Phi(\theta) = \Phi(\alpha, \lambda) = (\frac{\alpha}{\lambda}, \frac{\alpha(\alpha+1)}{\lambda^2}).$

 Φ est inversible : on peut retrouver λ et α par $\lambda = \frac{\mathbb{E}_{\theta}(X_1)}{\operatorname{var}_{\theta}(X_1)}$ et $\alpha = \lambda \mathbb{E}_{\theta}(X_1) = \frac{\mathbb{E}_{\theta}(X_1)^2}{\operatorname{var}_{\theta}(X_1)}$. Par ailleurs, la version empirique de Φ est la statistique

$$\widehat{\Phi}(X) = (\frac{1}{n} \sum_{i=1}^{n} X_i, \frac{1}{n} \sum_{i=1}^{n} X_i^2).$$

On a donc,

$$\widehat{\theta}_{M} = \Phi^{-1}\left(\widehat{\Phi}(X)\right) = \left(\frac{(\frac{1}{n}\sum_{i=1}^{n}X_{i})^{2}}{\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} - (\frac{1}{n}\sum_{i=1}^{n}X_{i})^{2}}, \frac{\frac{1}{n}\sum_{i=1}^{n}X_{i}}{\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} - (\frac{1}{n}\sum_{i=1}^{n}X_{i})^{2}}\right)$$

1. Comme les observations sont i.i.d., la vraisemblance est

$$p_{\theta}(x) = \prod_{i=1}^{n} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x_i^{\alpha-1} \exp(-\lambda x_i) \mathbb{1}_{\mathbb{R}_+}(x_i).$$

On doit donc résoudre le problème

$$\widehat{\theta}_V = \arg\min_{\theta = (\alpha, \lambda)} \sum_{i=1}^n -\alpha \log(\lambda) + \log(\Gamma(\alpha)) - (\alpha - 1) \log(x_i) + \lambda x_i.$$

Notons ψ_0 la fonction digamma, qui vérifie $\psi_0(\alpha) = \frac{\Gamma'(\alpha)}{\Gamma(\alpha)}$. $\widehat{\alpha}_V$ et $\widehat{\lambda}_V$ sont donc solutions du système

$$\begin{cases} -n\log(\lambda) + n\psi_0(\alpha) - \sum_{i=1}^n \log(x_i) = 0\\ -n\frac{\alpha}{\lambda} + \sum_{i=1}^n x_i = 0 \end{cases}$$

On peut éliminer une des deux variables grâce à la deuxième équation, λ par exemple :

$$\begin{cases} \lambda = \frac{n\alpha}{\sum_{i=1}^{n} x_i} \\ n \log\left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) - n \log(\alpha) + n\psi_0(\alpha) - \sum_{i=1}^{n} \log(x_i) = 0 \end{cases}$$

L'équation qui reste doit être résolue numériquement, par exemple grâce à la méthode de Newton.