Power Laws and Rich-Get-Richer Phenomena

Ana Paula Fabrício Benevenuto

Distribuição dos graus

 Problema: determine a distribuição de probabilidade que melhor ajuste ("best-fit") a um conjunto de dados experimentais de uma rede.
 Proponha uma coleta de dados e faça o fitting!

Distribuições Power Law

 A distribuição do grau k de uma rede real muitas vezes segue uma power law.

$$p(k) = Ck^{-\alpha}$$

 Distribuição Power-law leva a uma linha reta num gráfico log-log.

$$\log p(k) = -\alpha \log k + \log C$$

α : expoente power-law (tipicamente 2 ≤ α ≤ 3)

Exemplos

Degree distribution on the Web

Power-laws are everywhere

Many other quantities follow heavy-tailed distributions

Not everyone likes power-laws ©

Rede Aleatória ----- Distribuição de Gráus

Faloutsos³

[Faloutsos, Faloutsos and Faloutsos, 1999]

Barabasi&Albert

[Barabasi-Albert, 1999]

Degrees in real networks (2)

Plot the same data on log-log axis:

Power vs. Exponential Distribution

Power vs. Exponential Distribution

Exponential tail vs. Power-law tail

The Heavy Tail

- The power law implies that
 - The probability to have elements very far from the average is not neglectable
 - The big number counts, the tail of the distribution counts
 - On the other hand, the "area" of "big ks" in an exponential distribution tend to zero with k→∞

Power law degree exponents

- Power law degree exponent is typically $2 < \alpha < 3$
 - Web graph [Broder et al. 00]:
 - $\alpha_{in} = 2.1, \alpha_{out} = 2.4$
 - Autonomous systems [Faloutsos et al. 99]:
 - $\alpha = 2.4$
 - Actor collaborations [Barabasi-Albert 00]:
 - $\alpha = 2.3$
 - Citations to papers [Redner 98]:
 - $\alpha \approx 3$
 - Online social networks [Leskovec et al. 07]:
 - $\alpha \approx 2$

The Power Law in Real Networks

Average k

Average k Power law exponents									
Network	Size	$\langle k \rangle$	К	Yout	γ_{ln}	l real	Prand	l pow	Reference
www	325 729	4.51	900	2.45	2.1	11.2	8.32	4.77	Albert, Jeong, and Barabási 1999
WWW	4×10^{7}	7		2.38	2.1				Kumar et al., 1999
www	2×10^{8}	7.5	4000	2.72	2.1	16	8.85	7.61	Broder et al., 2000
WWW, site	260 000				1.94				Huberman and Adamic, 2000
Internet, domain*	3015-4389	3.42-3.76	30-40	2.1-2.2	2.1-2.	. 4	6.3	5.2	Faloutsos, 1999
Internet, router*	3888	2.57	30	2.48	2.48	12.15	8.75	7.67	Faloutsos, 1999
Internet, router*	150 000	2.66	60	2.4	2.4	11	12.8	7.47	Govindan, 2000
Movie actors*	212 250	28.78	900	2.3	2.3	4.54	3.65	4.01	Barabási and Albert, 1999
Co-authors, SPIRES*	56 627	173	1100	1.2	1.2	4	2.12	1.95	Newman, 2001b
Co-authors, neuro.*	209 293	11.54	400	2.1	2.1	6	5.01	3.86	Barabási et al., 2001
Co-authors, math.*	70 975	3.9	120	2.5	2.5	9.5	8.2	6.53	Barabási et al., 2001
Sexual contacts*	2810			3.4	3.4				Liljeros et al., 2001
Metabolic, E. coli	778	7.4	110	2.2	2.2	3.2	3.32	2.89	Jeong et al., 2000
Protein, S. cerev.*	1870	2.39		2.4	2.4				Jeong, Mason, et al., 2001
Ythan estuary*	134	8.7	35	1.05	1.05	2.43	2.26	1.71	Montoya and Solé, 2000
Silwood Park*	154	4.75	27	1.13	1.13	3.4	3.23	2	Montoya and Solé, 2000
Citation	783 339	8.57			3				Redner, 1998
Phone call	53×10^{6}	3.16		2.1	2.1				Aiello et al., 2000
Words, co-occurrence*	460 902	70.13		2.7	2.7				Ferrer i Cancho and Solé, 2001
Words, synonyms*	22 311	13.48		2.8	2.8				Yook et al., 2001b

Power law exponents

The 20-80 Rule

Examples

- The 20% of the Web sites gests the 80% of the visits
- The 20% of the Internet routers handles the 80% of the total Internet traffic
- The 20% of world industries hold the 80% of the world's income
- The 20% of the world population consumes the 80% of the world's resources
- The 20% of the earthquakes caused the 80% of the victims
- The 20% of the rivers in the world carry the 80% of the total sweet water
- The 20% of the proteins handles the 80% of the most critical metabolic processes
- Does this derive from the power law distribution? YES!

Hubs and Connectors

- Scale free networks exhibit the presence of nodes that
 - Act as hubs, i.e., as point to which most of the other nodes connects to
 - Act as connectors, i.e., nodes that make a great contributions in getting great portion of the network together
 - "smaller nodes" exists that act as hubs or connectors for local portion of the network
- This may have notable implications, as detailed below

Why "Scale-Free" Networks

- Why networks following a power law distribution for links are called "scale free"?
 - Whatever the scale at which we observe the network
 - The network looks the same, i.e., it looks similar to itself
- The overall properties of the network are preserved independently of the scale
- In particular:
 - If we cut off the details of a network – skipping all nodes with a limited number of links – the network will preserve its powerlaw structure
 - If we consider a sub-portion of any network, it will have the same overall structure of the whole network

Random vs. Scale-free network

Random network

(Erdos-Renyi random graph)

Scale-free (power-law) network

Degree distribution is Power-law

Function is scale free if: f(ax) = c f(x)

Evolving Networks

- More in general...
 - Networks grows AND
 - Network evolves
- The evolution may be driven by various forces
 - Connection age
 - Connection satisfaction
- What matters is that connections can change during the life of the network
 - Not necessarily in a random way
 - But following characteristics of the network...
- Qual seria um modelo que leva a uma rede power law?

Model: Preferential attachment

- Preferential attachment [Price 1965, Albert-Barabasi 1999]:
 - Nodes arrive in order
 - A new node creates m out-links
 - Prob. of linking to a previous node i is proportional to its degree d_i

The Preferential Attachment Algorithm

- Start with a limited number of initial nodes
- At each time step, add a new node that has m edges that link to m existing nodes in the system
- When choosing the nodes to which to attach, assume a probability P for a node i proportional to the number ki of links already attached to it
- It can be shown that this leads to a power law network!

$$P(k_i) = \frac{k_i}{\sum_{j} k_j}$$

Rich-get-richer

- New nodes are more likely to link to nodes that already have high degree
- Herbert Simon's result
 - Power-laws arise from "Rich get richer" (cumulative advantage)
- Examples [Price 65]:
 - Citations: new citations of a paper are proportional to the number it already has

Error Tolerance

- Scale free networks are very robust to errors
 - If nodes randomly "break" of disconnect to the network
 - The structure of the network, with high probability, will not be significantly affected by such errors
 - At least only a few small clusters of nodes will disconnect to the network
 - The average path length remains the same

Attack Tolerance

- Scale free networks are very sensitive to targeted attacks
 - If the most connected nodes get deliberately chosen as targets of attacks
 - The average path length of the network grows very soon
 - It is very likely that the network will break soon into disconnected clusters
 - Although these independent clusters still preserves some internal connection

Implications for Everyday Systems: Scale Free Networks and Terrorism

- The network of terrorism is growing
 - And it is a social network with a scale free structure
- How can we destroy such network?
 - Getting unimportant nodes will not significantly affect the network
 - Getting the right nodes, i.e., the hubs (as Bin Laden) is extremely important
 - But it may be very difficult to identify and get the hubs
 - In any case, even if we get the right nodes, other connected clusters will remains that will likely act in any case
- As far as breaking the information flow among terrorists
 - This is very difficult nowadays

Implications for Everyday Systems: Scale Free Networks and Trends

- Who decide what is in and what is "out" in music, fashion, etc.?
 - How can an industry have its products become "in"?
- Industries spend a lot of money in trying to influence the market
 - A lot of commercial advertising, a lot of "free trials", etc.
 - Still, many new products fail and never have market success!
- Who is the king? Content or dissemination?

Does Content Determine Information Popularity in Social Media?

A Case Study of YouTube Videos' Content and their Popularity

Flavio Figueiredo¹, Jussara M. Almeida¹, Fabrício Benevenuto¹

Department of Computer Science, UFMG, Brazil

{flaviov,jussara,fabricio}@dcc.ufmg.br

Krishna P. Gummadi² ²MPI-SWS, Germany gummadi@mpi-sws.org

Máquinas de Busca e Sistemas de Recomendação

- Google foi tão bom em seu algoritmo, que ele mudou a forma como as pessoas usam a Web
 - Procurou no Google, não achou. Busca de novo
 - Não está na primeira página, busca de novo
 - Buscar na "long tail" requer uma query elaborada

Máquinas de Busca e Sistemas de Recomendação

- Recomendações e links para sites eram muito mais importantes no passado
- Máquinas de busca acabaram com o bookmarking e mudaram a navegação na Web
- Hoje as pessoas recomendam conteúdo pelas redes sociais.
 Talvez as máquinas de busca despertaram novamente essa necessidade
- O que vem depois?