Devoir à la maison n°12 : corrigé

Problème 1 — D'après ESCP 1988

Partie I - Étude d'un endomorphisme

- 1. Évident.
- 2. Notons a_n le coefficient dominant de P. On a donc $a_n \neq 0$. Le coefficient de X^n dans $(X^2 1)P'' + 4XP'$ est alors $n(n-1)a_n + 4na_n$. Puisque $f(P) = \lambda P$, $n(n-1)a_n + 4na_n = \lambda a_n$ et donc $\lambda = n(n+3)$ puisque $a_n \neq 0$.
- 3. Soit $P \in \mathbb{R}[X]$ non nul tel que $f(P) = \lambda_n P$. En notant d son degré, la question précédente montre que $\lambda_n = d(d+3)$ i.e. n(n+3) = d(d+3). La fonction $x \mapsto x(x+3)$ est strictement croissante et donc injective sur \mathbb{R}_+ de sorte que n=d
- **4.** Soit $P \in \mathbb{R}_n[X]$. Alors deg $P \le n$ donc deg $P' \le n 1$ et deg $P'' \le n 2$. On en déduit que deg $XP' \le n$ et deg $(X^2 1)P'' \le n$ puis que deg $f(P) \le n$. Ainsi $f(P) \in \mathbb{R}_n[X]$. $\mathbb{R}_n[X]$ est donc stable par f et f induit alors un endomorphisme f_n de $\mathbb{R}_n[X]$.
- **5. a.** Soit $P \in \mathbb{R}_n[X]$ et notons a le coefficient de X^n dans P (éventuellement nul). Alors le coefficient de X^n dans $f_n(P) \lambda_n P$ est n(n-1)a + 4na n(n+3)a = 0. Ainsi $f_n(P) \lambda_n P \in \mathbb{R}_{n-1}[X]$. On en déduit que

$$G_n \subset \mathbb{R}_{n-1}[X]$$

Puisque $f_n - \lambda_n I_n \in \mathcal{L}(\mathbb{R}_n[X])$,

$$\dim \mathbb{R}_n[X] = \operatorname{rg}(f_n - \lambda_n I_n) + \dim \operatorname{Ker}(f_n - \lambda_n I_n) = \dim F_n + \dim G_n$$

d'après le théorème du rang. Or dim $\mathbb{R}_n[X] = n+1$ et dim $G_n \leq \dim \mathbb{R}_{n-1}[X] = n$ puisque $G_n \subset \mathbb{R}_{n-1}[X]$. On en déduit que dim $F_n \geq 1$.

b. Soit $P \in F_n \cap \mathbb{R}_{n-1}[X]$. Supposons P non nul. Puisque $f(P) = \lambda_n P$, la question **I.3** montrer que deg P = n, ce qui est absurde puisque $P \in \mathbb{R}_{n-1}[X]$. Ainsi P = 0 et $F_n \cap \mathbb{R}_{n-1}[X] = \{0\}$. On peut alors affirmer que

$$\dim(\mathcal{F}_n \oplus \mathbb{R}_{n-1}[\mathcal{X}]) = \dim \mathcal{F}_n + \dim \mathbb{R}_{n-1}[\mathcal{X}] \ge 1 + n = n+1$$

Par ailleurs, $F_n \oplus \mathbb{R}_{n-1}[X] \subset \mathbb{R}_n[X]$ donc dim $(F_n \oplus \mathbb{R}_{n-1}[X]) \leq n+1$. Finalement, dim $(F_n \oplus \mathbb{R}_{n-1}[X]) = n+1$ et donc $F_n \oplus \mathbb{R}_{n-1}[X] = \mathbb{R}_n[X]$.

c. On déduit de la question précédente que

$$\dim F_n = \dim \mathbb{R}_n[X] - \dim \mathbb{R}_{n-1}[X] = 1$$

Notamment, il existe un polynôme $P_n \in \mathbb{R}_n[X]$ non nul tel que $F_n = \text{vect}(P_n)$. Puisque $P_n \in F_n$, $f(P_n) = f_n(P_n) = \lambda_n P_n$. Quitte à diviser P_n par son coefficient dominant, on peut supposer P_n unitaire.

De plus, $f(P_n) = \lambda_n P_n$ et $P_n \neq 0$ donc deg $P_n = n$ d'après la question **I.3**.

Reste à prouver l'unicité. Soit alors $Q \in \mathbb{R}[X]$ unitaire tel que $f(Q) = \lambda_n Q$. A nouveau, la question **I.3** montre que deg Q = n. Ainsi $Q \in \mathbb{R}_n[X]$ de sorte que $f_n(Q) = f(Q) = \lambda_n P$ et donc $Q \in F_n = \text{vect}(P_n)$. Finalement, Q et P_n sont donc colinéaires mais comme ils sont tous deux unitaires, ils sont égaux.

6. Remarquons que $Q'_n = -(-1)^n P'_n(-X)$ et $Q''_n = (-1)^n P''_n(-X)$. Or on sait que

$$(X^2 - 1)P_n'' + 4XP_n' = n(n+3)P_n$$

donc en substituant -X à X,

$$(X^2 - 1)P_n''(-X) - 4XP_n'(-X) = n(n+3)P_n(-X)$$

puis en multipliant par $(-1)^n$

$$(X^{2}-1)(-1)^{n}P_{n}''(-X) - 4X(-1)^{n}P_{n}'(-X) = n(n+3)(-1)^{n}P_{n}(-X)$$

ou encore $f(Q_n) = \lambda_n Q_n$. Or on vérifie aisément que Q_n est unitaire puisque P_n l'est. L'unicité du polynôme P_n montre alors que $P_n = Q_n$. Ceci signifie que P_n a la parité de n.

7. Soit un entier $n \ge 2$. Puisque P_n est unitaire, de degré n et de même parité que n, on peut affirmer qu'il existe un réel α_n et un polynôme $\tilde{P}_n \in \mathbb{R}_{n-3}[X]$ tel que

$$P_n = X^n + \alpha_n X^{n-2} + \tilde{P}_n$$

Par linéarité de f,

$$f(P_n) = f(X^n) + \alpha_n f(X^{n-2}) + f(\tilde{P}_n)$$

Or

$$f(X^n) = n(n+3)X^n - n(n-1)X^{n-2}$$

$$f(X^{n-2}) = (n-2)(n+1)X^{n-2} - (n-2)(n-3)X^{n-4}$$

et $f(P_n) \in \mathbb{R}_{n-3}[X]$ car $\mathbb{R}_{n-3}[X]$ est stable par f d'après la question **I.4**. Ainsi il existe un polynôme $\hat{P}_n \in \mathbb{R}_{n-3}[X]$ tel que

$$f(P_n) = n(n+3)X^n + (\alpha_n(n-2)(n+1) - n(n-1))X^{n-2} + \hat{P}_n$$

Mais on sait que

$$f(P_n) = \lambda_n P_n = \lambda_n X^n + \lambda_n \alpha_n X^{n-2} + \lambda_n \tilde{P}_n$$

En identifiant les coefficients de X^{n-2} , on obtient,

$$\alpha_n(n-2)(n+1) - n(n-1) = \lambda_n \alpha_n = n(n+3)\alpha_n$$

ou encore

$$\alpha_n = -\frac{n(n-1)}{2(2n+1)}$$

8. Puisque P_0 est unitaire et de degré $P_0 = 1$.

 P_1 est impair, unitaire et de degré 1 donc $P_1 = X$.

Enfin, P_2 est pair, unitaire, de degré 2 et son coefficient constant est $-\frac{1}{5}$ d'après la question I.7. Ainsi $P_2 = X^2 - \frac{1}{5}$.

9. a. Tout d'abord

$$R'_n = 2XP'_n + (X^2 - 1)P''_n - nP_n - nXP'_n = (X^2 - 1)P''_n - (n - 2)XP'_n - nP_n$$

Or $f(P_n) = \lambda_n P_n$ donc

$$(X^2 - 1)P_n'' = \lambda_n P_n - 4XP_n' = n(n+3)P_n - 4XP_n'$$

Ainsi

$$R'_n = n(n+3)P_n - 4XP'_n - (n-2)XP'_n - nP_n = n(n+2)P_n - (n+2)XP'_n = (n+2)(nP_n - XP'_n)$$

On en déduit ensuite que

$$\mathbf{R}_n'' = (n+2)(n\mathbf{P}_n' - \mathbf{P}_n' - \mathbf{X}\mathbf{P}_n'') = (n+2)(n-1)\mathbf{P}_n' - (n+2)\mathbf{X}\mathbf{P}_n''$$

puis que

$$(X^2 - 1)R_n'' = (n + 2)(n - 1)(X^2 - 1)P_n' - (n + 2)X(X^2 - 1)P_n''$$

Or on rappelle que

$$(X^2 - 1)P_n'' = n(n+3)P_n - 4XP_n'$$

donc

$$(X^{2} - 1)R''_{n} = (n+2)(n-1)(X^{2} - 1)P'_{n} - (n+2)X(n(n+3)P_{n} - 4XP'_{n})$$

= $(n+2)(n-1)(X^{2} - 1)P'_{n} - n(n+2)(n+3)XP_{n} + 4(n+2)X^{2}P'_{n}$

Or

$$4XR'_n = 4X(n+2)(nP_n - XP'_n) = 4n(n+2)XP_n - 4(n+2)X^2P'_n$$

donc

$$\begin{split} f(\mathbf{R}_n) &= (\mathbf{X}^2 - 1)\mathbf{R}_n'' + 4\mathbf{X}\mathbf{R}_n' \\ &= (n+2)(n-1)(\mathbf{X}^2 - 1)\mathbf{P}_n' - n(n+2)(n+3)\mathbf{X}\mathbf{P}_n + 4n(n+2)\mathbf{X}\mathbf{P}_n \\ &= (n+2)(n-1)(\mathbf{X}^2 - 1)\mathbf{P}_n' - n(n+2)(n-1)\mathbf{X}\mathbf{P}_n \\ &= (n+2)(n-1)((\mathbf{X}^2 - 1)\mathbf{P}_n' - n\mathbf{X}\mathbf{P}_n) = (n+2)(n-1)\mathbf{R}_n = \lambda_{n-1}\mathbf{R}_n \end{split}$$

b. Soit $n \in \mathbb{N}^*$. La question **I.5.c** montrer que R_n est colinéaire à P_{n-1} . Il existe donc $\beta_n \in \mathbb{R}$ tel que $R_n = \beta_n P_{n-1}$. Puisque P_{n-1} est unitaire, β_n est en fait le coefficient de X^{n-1} dans R_n . En reprenant les notations de la question **I.7**,

$$P_n = X^n + \alpha_n X^{n-2} + \tilde{P}_n$$

où l'on rappelle que $\tilde{P}_n \in \mathbb{R}_{n-3}[X]$. Cette relation est valable même si n=1, puisque $\alpha_1=0$. Un calcul donne alors

$$R_n = -(n+2\alpha_n)X^{n-1} - (n-2)X^{n-3} + (X^2 - 1)\tilde{P}'_n - nX\tilde{P}_n$$

ou encore, en posant $\hat{P}_n = -(n-2)X^{n-3} + (X^2 - 1)\tilde{P}'_n - nX\tilde{P}_n$

$$R_n = -(n + 2\alpha_n)X^{n-1} + \hat{P}_n$$

avec deg $\hat{P}_n \le n - 2$. Ainsi le coefficient de X^{n-1} dans R_n est

$$\beta_n = -(n+2\alpha_n) = -n + \frac{n(n-1)}{2n+1} = -\frac{n(n+2)}{2n+1}$$

On en déduit donc bien que

$$R_n + \frac{n(n+2)}{2n+1} P_{n-1} = 0$$

c. En dérivant la relation de la question précédente, on obtient

$$R'_n + \frac{n(n+2)}{2n+1}P'_{n-1} = 0$$

Or on a vu que $R'_n = (n+2)(nP_n - XP'_n)$ de sorte que

$$(n+2)(nP_n - XP'_n) + \frac{n(n+2)}{2n+1}P'_{n-1} = 0$$

ou même, en simplifiant par n + 2

$$nP_n - XP'_n + \frac{n}{2n+1}P'_{n-1} = 0$$

En multipliant par $(X^2 - 1)$, on obtient

$$n(X^2 - 1)P_n - X(X^2 - 1)P'_n + \frac{n}{2n+1}(X^2 - 1)P'_{n-1} = 0$$

Or

$$(X^2 - 1)P'_n = R_n + nXP_n = -\frac{n(n+2)}{2n+1}P_{n-1} + nXP_n$$

et

$$(X^{2}-1)P'_{n-1} = R_{n-1} + (n-1)XP_{n-1} = -\frac{(n-1)(n+1)}{2n-1}P_{n-2} + (n-1)XP_{n-1}$$

donc

$$n(X^{2}-1)P_{n} + \frac{n(n+2)}{2n+1}XP_{n-1} - nX^{2}P_{n} - \frac{(n-1)n(n+1)}{4n^{2}-1}P_{n-2} + \frac{n(n-1)}{2n+1}XP_{n-1} = 0$$

En simplifiant par n

$$(X^2 - 1)P_n + \frac{n+2}{2n+1}XP_{n-1} - X^2P_n - \frac{(n-1)(n+1)}{4n^2 - 1}P_{n-2} + \frac{n-1}{2n+1}XP_{n-1} = 0$$

ce qui donne

$$-P_n + XP_{n-1} - \frac{n^2 - 1}{4n^2 - 1}P_{n-2} = 0$$

et enfin, en passant à l'opposé,

$$P_n - XP_{n-1} + \frac{n^2 - 1}{4n^2 - 1}P_{n-2} = 0$$

Partie II - Comportement asymptotique d'une suite

10. On a clairement

$$\frac{1}{4X^2-1} = \frac{1}{(2X-1)(2X+1)} = \frac{1}{2} \frac{(2X+1)-(2X-1)}{(2X+1)(2X-1)} = \frac{1}{2} \left(\frac{1}{2X-1} - \frac{1}{2X+1} \right)$$

On en déduit par télescopage que

$$S_n = \frac{1}{2} \sum_{k=2}^{n} \frac{1}{2k-1} - \frac{1}{2k+1} = \frac{1}{2} \left(\frac{1}{3} - \frac{1}{2n+1} \right)$$

puis que

$$\lim_{n \to +\infty} S_n = \frac{1}{6}$$

11. a. On a clairement $u_1 \ge u_0 \ge 1$. Supposons que $u_{n-1} \ge u_{n-2} \ge 1$ pou un certain entier $n \ge 2$. Alors

$$\frac{1}{9} \left[u_{n-1} - u_{n-2} + \frac{3}{4n^2 - 1} \right] \ge 0$$

donc $u_n \ge u_{n-1}$. Mais on sait déjà que $u_{n-1} \ge 1$ donc $u_n \ge u_{n-1} \ge 1$. Par récurrence, ceci est vrai pour tout $n \in \mathbb{N}^*$.

b. Soit un entier $n \ge 2$. Pour tout $k \in [2, n]$

$$u_k = u_{k-1} + \frac{1}{9} \left[u_{k-1} - u_{k-2} + \frac{3}{4k^2 - 1} u_{k-2} \right]$$

En additionnant ces inégalités et en télescopant, on obtient le résultat voulu.

c. On a clairement $u_0 \le u_1 \le \frac{6}{5}$. De plus, pour $n \ge 2$,

$$u_n = u_1 + \frac{1}{9} \left[u_{n-1} - u_0 + \sum_{k=2}^{n} \frac{3}{4k^2 - 1} u_{k-2} \right] \le u_1 + \frac{1}{9} (u_n - u_0 + S_n u_n) = 1 + \frac{1}{9} u_n + \frac{1}{3} S_n u_n$$

par croissance de la suite (u_n) et car (S_n) est positive. Par ailleurs, la suite (S_n) est également croissante (évident) et converge vers $\frac{1}{6}$ donc elle est majorée par $\frac{1}{6}$. On en déduit

$$u_n \le 1 + \frac{1}{9}u_n + \frac{1}{18}u_n = 1 + \frac{1}{6}u_n$$

On en déduit immédiatement que $u_n \leq \frac{6}{5}$.

La suite (u_n) étant croissante et majorée, elle converge.

12. a. On rappelle que $P_0 = 1$ et $P_1 = X$. Ainsi, pour tout $t \in \mathbb{R}$,

$$f_0(t) = 1$$
 $f_1(t) = \frac{2 \operatorname{ch} t}{e^t} = 1 + e^{-2t}$

Soit maintenant un entier $n \ge 2$. On rappelle que

$$P_n - XP_{n-1} + \frac{n^2 - 1}{4n^2 - 1}P_{n-2} = 0$$

En fixant $t \in \mathbb{R}$ et en évaluant en ch t, on obtient

$$P_n(\operatorname{ch} t) - \operatorname{ch}(t)P_{n-1}(\operatorname{ch} t) + \frac{n^2 - 1}{4n^2 - 1}P_{n-2}(\operatorname{ch} t) = 0$$

ou encore

$$\frac{e^{nt}}{2^n}f_n(t) - \operatorname{ch}(t)\frac{e^{(n-1)t}}{2^{n-1}}f_{n-1}(t) + \frac{n^2 - 1}{4n^2 - 1}\frac{e^{(n-2)t}}{2^{n-2}}f_{n-2}(t) = 0$$

En multipliant par $\frac{2^n}{e^{nt}}$, on obtient

$$f_n(t) - 2\operatorname{ch}(t)e^{-t}f_{n-1}(t) + \frac{4(n^2 - 1)}{4n^2 - 1}e^{-2t}f_{n-2}(t) = 0$$

ou encore

$$f_n(t) - (1 + e^{-2t})f_{n-1}(t) + \left(1 - \frac{3}{4n^2 - 1}\right)e^{-2t}f_{n-2}(t) = 0$$

puis

$$f_n(t) - f_{n-1}(t) = e^{-2t} \left[f_{n-1}(t) - f_{n-2}(t) + \frac{3}{4n^2 - 1} f_{n-2}(t) \right]$$

b. Tout d'abord, $f_0: t \mapsto 1$ et $f_1 - f_0: t \mapsto e^{-2t}$ sont bien positives et décroissantes sur \mathbb{R} . Supposons que f_{n-2} et $f_{n-1} - f_{n-2}$ soient positives et décroissantes sur \mathbb{R} pour un certain entier $n \ge 2$.

Tout d'abord, $f_{n-1} = f_{n-2} + (f_{n-1} - f_{n-2})$ est positive et décroissante sur \mathbb{R} en tant que somme de telles fonctions.

Puisque pour tout $t \in \mathbb{R}$,

$$f_n(t) - f_{n-1}(t) = e^{-2t} \left[f_{n-1}(t) - f_{n-2}(t) + \frac{3}{4n^2 - 1} f_{n-2}(t) \right]$$

 f_n-f_{n-1} est bien positive sur \mathbb{R} . De plus, les fonctions $t\mapsto e^{-2t}$ et $f_{n-1}-f_{n-2}+\frac{3}{4n^2-1}f_{n-2}$ sont décroissantes sont décroissante et *positives* sur \mathbb{R} (la seconde est une somme de fonctions décroissantes) : leur produit f_n-f_{n-1} est donc décroissant sur \mathbb{R} .

Par récurrence, f_{n-1} et $f_n - f_{n-1}$ sont bien positives et décroissantes sur \mathbb{R} pour tout $n \in \mathbb{N}^*$.

- 13. ch est continue et strictement croissante sur \mathbb{R}_+ . Puisque ch(0) = 1 et \lim_{∞} ch = $+\infty$, elle induit une bijection de \mathbb{R}_+ sur $[1, +\infty[$. Sa bijection réciproque est également strictement croissante.
- **14. a.** Par définition, $\operatorname{ch} \alpha = \frac{e^{\alpha} + e^{-\alpha}}{2} = \frac{5}{3}$. Ainsi $e^{\alpha} + e^{-\alpha} = \frac{10}{3}$ ou encore $e^{2\alpha} \frac{10}{3}e^{\alpha} + 1 = 0$. Les racines du polynôme $X^2 \frac{10}{3}X + 1$ sont $\frac{1}{3}$ et 3. Or $\alpha \ge 0$ par définition de argch de sorte que $e^{\alpha} \ge 1$. Ainsi $e^{\alpha} = 3$.

On a clairement $u_1 = 1 = f_0(\alpha)$. De plus, $f_1(\alpha) = 1 + e^{-2\alpha} = 1 + \frac{1}{9} = \frac{10}{9}$. Supposons que $u_{n-1} = f_{n-1}(\alpha)$ et $u_{n-2} = f_{n-2}(\alpha)$ pour un certain entier $n \ge 2$. Alors

$$\begin{split} f_n(\alpha) &= f_{n-1}(\alpha) + e^{-2\alpha} \left[f_{n-1}(\alpha) - f_{n-2}(\alpha) + \frac{3}{4n^2 - 1} f_{n-2}(\alpha) \right] \\ &= u_{n-1} + \frac{1}{9} \left[u_{n-1} - u_{n-2} + \frac{3}{4n^2 - 1} u_{n-2} \right] = u_n \end{split}$$

Par récurrence double, $u_n = f_n(\alpha)$ pour tout $n \in \mathbb{N}$.

b. Soit $n \in \mathbb{N}^*$. Comme la fonction $f_n - f_{n-1}$ est positive sur \mathbb{R} , $f_n(\operatorname{argch} x) \ge f_{n-1}(\operatorname{argch} x)$. La suite de terme général $f_n(\operatorname{argch} x)$ est donc croissante.

Soit $n \in \mathbb{N}$. Par croissance de argch, argch $x \ge \alpha$. Par décroissance de f_n ,

$$f_n(\operatorname{argch} x) \le f_n(\alpha) = u_n \le \frac{6}{5}$$

La suite de terme général $f_n(\operatorname{argch} x)$ est donc également majorée par $\frac{6}{5}$.

Cette suite étant croissante et majorée, elle converge vers un réel $\ell(x)$. Par ailleurs, la croissance de la suite de terme général $f_n(\operatorname{argch} x)$ montre que pour tout $n \in \mathbb{N}$, $f_n(\operatorname{argch} x) \geq f_0(\operatorname{argch} x) = 1$. Par passage à la limite, $\ell(x) \geq 1 > 0$.

Par définition de f_n ,

$$P_n(x) = \frac{e^{n \operatorname{argch} x}}{2^n} f_n(\operatorname{argch} x)$$

Comme $\ell(x) \neq 0$, on peut alors affirmer que

$$P_n(x) \sim \frac{\ell(x)e^{n\operatorname{argch} x}}{2^n}$$

Si on pose $u = \operatorname{argch} x$, alors $x = \operatorname{ch}(u) = \frac{e^u + e^{-u}}{2}$. Ainsi e^u est racine du polynôme $X^2 - 2xX + 1$. Ses racines sont $x + \sqrt{x^2 - 1}$ et $x - \sqrt{x^2 - 1}$. Ces deux racines sont positives et leur produit vaut 1. Or $u \ge 0$ donc $e^u \ge 1$: e^u est la plus grande de ces deux racines, c'est-à-dire $x + \sqrt{x^2 - 1}$. Finalement,

$$e^{n \operatorname{argch} x} = (e^u)^n = \left(x + \sqrt{x^2 - 1}\right)^n$$

Finalement,

$$P_n(x) \underset{n \to +\infty}{\sim} \left(\frac{x + \sqrt{x^2 - 1}}{2} \right)^n \ell(x)$$