Genetic Algorithms and Ant Colony Optimisation

Introduction: Optimisation

- Optimisation : find an extremum
- Extrema can be local / global
- In Rⁿ (real numbers): methods with and without gradients
- Local:
 - □ With derivative (ok : space = Rⁿ) → gradient (possibly: first degree or even more)
 - Without derivative : select a point, explore the neighborood, take the best, do it again. (type hill climber, local search)
- Global :
 - = local with different initial conditions.
 - □ Method without derivatives → GA

- Combinatorial optimisation problems.
- Deterministic algorithms : Explore too much and take too much time → meta-heuristiques : find rapidly a satisfactory solution
- Example : Scheduling problem, packing or ordering problems
- The classics of the classics : TSP
 - The travelling salesman problem
 - N cities
 - Find the shortest path going through each city only once
 - Benchmarking problems
 - Problems NP-complete (the time to find grows exponentially with the size of the problem (N! ~ N^(N+1/2)))

Genetic Algorithms: Introduction

Evolutionary computing

■ 1975 : John Holland → Genetic algorithms

1992 : John Koza -> Genetic programming

Genetic algorithms

- Darwinian inspiration
- Evolution = optimisation:

Reproduction

- 2 genetic operators:
 - Cross-over (recombination)
 - Mutation
- Fitness

The standard algorithm

- Generate random population
- Repeat
 - \Box Evaluate fitness f(x) for each individual of the population
 - Create a new population (to repeat until a stopping critetion)
 - Selection (according to fitness)
 - Crossover (according to probability of crossover)
 - Mutation (according to probability of mutation)
 - evaluate the new individuals in the population (replacement)
 - Replace the old population by the new (better) ones
- Until stop condition; return the best solution of the current population

The GA lingo

Chromosones encoding

- Can be influenced by the problem to solve
- Examples:
 - Binary encoding
 - Permutation encoding (ordening problems) e.g.
 TSP problem)
 - Real value encoding (evolutionary strategies)
 - Tree encoding (genetic programming)

Binary Encoding

Chromosome A 10110010110010111100101 Chromosome B 1111111000001110000011111

- Binary encoding is the most common, mainly because first works about GA used this type of encoding. In binary encoding every chromosome is a string of bits, 0 or 1.
- **Example** of **Problem**: Knapsack problem

The problem: There are things with given value and size. The knapsack has given capacity. Select things to maximize the value of things in knapsack, but do not extend knapsack capacity. Encoding: Each bit says, if the corresponding thing is in knapsack.

,

Permutation Encoding

```
Chromosome A 1 5 3 2 6 4 7 9 8
Chromosome B 8 5 6 7 2 3 1 4 9
```

- In permutation encoding, every chromosome is a string of numbers, which represents number in a sequence.
- **Example of Problem:** Traveling salesman problem (TSP)

The problem: There are cities and given distances between them. Travelling salesman has to visit all of them, but he does not to travel very much. Find a sequence of cities to minimize travelled distance. **Encoding:** Chromosome says order of cities, in which salesman will visit them.

Value Encoding

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545
Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT
Chromosome C (back), (back), (right), (forward), (left)

- In value encoding, every chromosome is a string of some values. Values can be anything connected to problem, form numbers, real numbers or chars to some complicated objects.
- Example of Problem: Finding weights for neural network

The problem: There is some neural network with given architecture. Find weights for inputs of neurons to train the network for wanted output.

Encoding: Real values in chromosomes represent corresponding weights for inputs.

Tree Encoding

Chromosome A

Chromosome B

wall

- (do until step wall)
- In tree encoding every chromosome is a tree of some objects, such as functions or commands in programming language. Used in genetic programming
- Example of Problem: Finding a function from given values is a function from given values

The problem: Some input and output values are given. Task is to find a function, which will give the best (closest to wanted) output to all inputs. [SEP]

Encoding: Chromosome are functions represented in a tree.

Crossover - Recombination

C1: 1011|10001

C2: 0110|11100

■ → D1: 1011|11100

■ → D2: 0110|10001

Variants, many points of crossover

Crossover – Binary Encoding

- Single Point Crossover
 - \square 11001011 et 10011111 \rightarrow 11001111
- Two Point Crossover
 - \square 11001011 et 10011111 \rightarrow 11011111
- Uniform Crossover
 - □ 11001011 et 10011111 → 11011111
- Difference operators:
 - □ 11001011 AND 10011111 → 10001011

Crossover - variants

- Permutation encoding
 - Single Point Crossover
 - (123456789) et (453689721) \rightarrow (123459768)
- Tree encoding

Mutation

D1: 101111100

D2: 011010001

■ →M1: 100111100

■ →M2: 001010101

variants

Mutation - Variants

- Binary Encoding
 - □ Bit inversion 101111100 → 111111100
- Permutation Encoding
 - □ Order changing (123456897) → (183456297)
- Value Encoding
 - □ +/- one number (1.29 5.68 2.86 4.11 5.55) \rightarrow (1.29 5.68 2.73 4.22 5.55)
- Tree Encoding: (ex)-change nodes

Selection

- By roulette wheel
- By rank
- By tournement
- Steady-State

Roulette wheel

Selection according to fitness

Selection by rank

Sorting of the population (n →1)

Selection by tournament

- Size k
- Take randomly k individuals
- Make them compete and select the best

Elitism

 Elitism: copy the single or many bests in the population then construct the remaining ones by genetic operations

So many parameters

- Crossover probability
- Mutation probability
- Population size

Ant Colony

In biology:

Ant Colony

Adaptivity

Ants Foraging Behavior Example: The Double Bridge Experiment

Goss et al., 1989, Deneubourg et al., 1990

Simple bridge

% of ant passages on the two branches

Ant Colony

Navigation

- At first: random
- Using pheromones as previous search experience

Recruitment (communication)

- Indirect via the environment

Ants Trail

Ant System Applied to the TSP

Ant System is the ancestor of all Ant Colony Optimization algorithms

Dorigo, Maniezzo, Colorni, 1991 Dorigo & Gambardella, 1996

Pheromone trail depositing

Probabilistic rule to choose the path

Ant Algorithms

In computer science:

Decay over time

Pheromone update

 $\tau_{ij}(t+1) = (1-\rho) \cdot \tau_{ij}(t) + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}(t) \quad \forall (i,j)$

The better the solution found by the ant, the more pheromone

$$\Delta \tau_{ij}^k(t) = \begin{cases} 1/L^k(t) & \text{if arc } (i,j) \text{ is used by ant } k \\ 0 & \text{otherwise} \end{cases}$$

Probability of selecting node j in i

$$p_{ij}^k(t) = \frac{[\tau_{ij}(t)]^{\alpha} \cdot [\eta_{ij}]^{\beta}}{\sum_{l \in \mathcal{N}_i^k} [\tau_{il}(t)]^{\alpha} \cdot [\eta_{il}]^{\beta}}$$

if $j \in \mathcal{N}_i^k$

Ants Movie

Assumes optimisation problem represented as a graph problem

Heuristic information

Ant Algorithms

For all iterations

```
For all ants

choose and perform action

(i.e. choose next node to visit)

Update pheromone
```

Ant System (AS): Some Results

Evolution of trail distribution

Tour length std deviation