Ki Hyun Kim

nlp.with.deep.learning@gmail.com

- Resolve Sparsity
 - Training set
 - 고양이는 좋은 반려동물 입니다.
 - Test set
 - 강아지는 훌륭한 애완동물 입니다.

Unseen Word Sequence

- Resolve Sparsity
 - Training set
 - 고양이는 좋은 반려동물 입니다.
 - Test set
 - 강아지는 훌륭한 애완동물 입니다.

Unseen Word Sequence

- Because we know (and we can approximate that)
 - 고양이 ≈ 강아지
 - 좋은 ≈ 훌륭한
 - 반려동물 ≈ 애완동물
- But n-gram CANNOT, because words are discrete symbols.

Find parameter that maximize likelihood for given training corpus.

$$egin{aligned} \mathcal{D} &= \{x^i\}_{i=1}^N \ \hat{ heta} &= rgmax \sum_{ heta \in \Theta}^N \sum_{i=1}^N \log P(x^i; heta) \ &= rgmax \sum_{ heta \in \Theta}^N \sum_{i=1}^n \log P(x^i_j | x^i_{< j}; heta) \end{aligned}$$

Take a step of gradient descent to minimize negative log-likelihood.

$$egin{aligned} \mathcal{L}(heta) &= -\sum_{i=1}^N \sum_{j=1}^n \log P(x^i_j | x^i_{< j}; heta) \ heta &\leftarrow heta - lpha
abla_{ heta} \mathcal{L}(heta) \end{aligned}$$

$$\log P(x_t|x_{< t}; heta) = x_t^T \cdot \log f_{ heta}(x_{t-1}, h_{t-1}),$$
 where x_t is one-hot vector, and $f_{ heta}$ is model with parameter $heta$.

• Detail:

$$\log P(x_t|x_{< t}; heta) = x_t^T \cdot \log f_{ heta}(x_{t-1}, h_{t-1}),$$

where x_t is one-hot vector, and f_{θ} is model with parameter θ .

$$egin{aligned} f(x_{t-1},h_{t-1}) &= \operatorname{softmax}(\operatorname{RNN}(\operatorname{emb}(x_{t-1}),h_{t-1})\cdot W), ext{ where } W \in \mathbb{R}^{\operatorname{hidden_size} imes |V|} \ &= \operatorname{softmax}(h_t\cdot W), ext{ where } h_t \in \mathbb{R}^{\operatorname{batch_size} imes \operatorname{hidden_size}} \ &= \hat{x}_t \ &= \hat{x}_t ext{ is a probability distribution that } P(\cdot|x_{< t}; heta). \end{aligned}$$

Loss Function of NNLM

Find theta that minimize negative log-likelihood.

• Find theta that minimize cross entropy with ground-truth probability distribution.

Cross Entropy Loss

Summary

n-gram (previous method)

- 단어를 <u>discrete symbol로 취급</u>
 - Exact matching에 대해서만 count
- 따라서 generalization issue 발생
 - Markov Assumption 도입 (n-gram)
 - Smoothing & Discounting
 - Interpolation & Back-off
 - Unseen sequence에 대한 대처 미흡
- 빠른 연산 & 쉽고 직관적
 - 단순한 look-up table 방식
 - 문장 fluency 비교 task에서는 괜찮음

Neural Network Language Model

- Word embedding을 통해, unseen sequence에 대해 대처 가능
- Generation task에서 특히 강점
- 연산량 많음 (feed forward 연산)
 - 해석(XAI) 난이도 증가

