ABO Blood Group System

Andrea Nadas MBA, MLS (ASCP)^{CM}

Discovery of ABO Blood Group System

- 1901 by Karl Landsteiner
- Mixed cells + serum of associates
- Performed first forward and reverse grouping

ABO Antigens and Antibodies

	Group A	Group B	Group AB	Group O
Red blood cell type	4	В	B	
Antibodies in Plasma	Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens in Red Blood Cell	₽ A antigen	† B antigen	P† A and B antigens	None

RBCs

ABO Compatibility for ABO Compatibility for Plasma

Forward Grouping (Front Type)

1 drop reagent (Anti-A,B, or D)

1 drop 3-5% patient red cell suspension

Centrifuge 30 seconds

Forwarding Grouping Results

Blood	Anti-A +	Anti-B + Patient		Group A	Group B	Group AB	Group O
Type	Patient RBCs	RBCs	Dod blood	32.20	*		
0	0	0	Red blood cell type	A	В	AB	0
Α	4+	0	Antibodies in Plasma	1	1		学学
В	0	4+		Anti-B	Anti-A	None	Anti-A and Anti-B
AB	4+	4+	Antigens in Red Blood Cell	♥ A antigen	† B antigen	A and B antigens	None

Reverse Grouping (Back Type)

1 drop A1 or B cells

2 drops patient plasma

Centrifuge 30 seconds

Reverse Grouping Results

	A1 cells + Serum	B cells + Serum
0	4+	4+
Α	0	4+
В	4+	0
AB	0	0

	Group A	Group B	Group AB	Group O
Red blood cell type	4	<u> </u>	B	
Antibodies in Plasma	Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens in Red Blood Cell	♥ A antigen	† B antigen	A and B antigens	None

Full ABO Blood Type Results

	Forward	Grouping	Revers	se Grouping
Blood Type	Anti-A	Anti-B	A1 cells	B cells
O	0	0	4+	4+
A	4+	0	0	4+
В	0	4+	4+	0
AB	4+	4+	0	0

Frequency of ABO Blood Types in the Population

Blood Group	Whites	African American	Hispanic	Asian
0	45%	50%	56%	40%
A	40%	26%	31%	28%
В	11%	20%	10%	25%
AB	4%	4%	3%	7%

ABO Antibody Characteristics

	АВО
Enzymes	Increased
	Anti-A and Anti-B = IgM
IgM vs. IgG	(Anti-A,B = IgG)
Cold or Warm Reacting	4°C (some 37)
Natural vs. Immune	Natural
Hemolytic Transfusion	
Reaction (HTR)	Yes
Hemolytic Disease of the	
Fetus and Newborn (HDFN)	Yes
Binds Complement	Yes
Dosage	No

ABO Antibody Levels Throughout Life

ABO Antigen Characteristics

- Develop in early fetal life
- Newborns = 20-50% of antigen sites
- A and B expression fully developed at 2-4 years
- Formed on:
 - RBC membranes
 - Endothelial cells
 - Platelets
 - Lymphocytes
 - Epithelial cells

Inheritance of ABO Genes

- Genes: A, B, or O
- Chromosome 9
- O = amorph
- Codominant Expression

ABO Genotype vs. Phenotype

Genotype	AA	AO	ВВ	ВО	AB	00
Phenotype	,	A	Е	3	AB	0

Example: same phenotypes, different genotypes:

	Α		
		Α	Α
0	0	AO	AO
	0	AO	AO

	Α		
		Α	0
0	0	AO	00
	0	AO	00

Inheritance of Hh and Se genes

- FUT1 (H gene)
- FUT2 (Se gene)
- Closely linked on Chromosome 19
- Code for glycosyltransferases

TYPE I Secretions

TYPE 2 RBCs

Formation of "O" Blood Type (RBCs)

Genotype: HH or Hh, OO

Gene	Glycosyltransferase	Immunodominant sugar	Antigen
H (FUT1)	α-2-L-fucosyltransferase	L-fucose	Н

Formation of "A" Blood Type (RBCs)

Genotype: HH or Hh, AA or AO

Gene	Glycosyltransferase	Immunodominant sugar	Antigen
H (FUT1)	α-2-L-fucosyltransferase	L-fucose	Н
А	α-3-N-acetylgalactosaminly- transferase	N-acetyl-D- galactosamine (GalNAc)	Α

Formation of "B" Blood Type (RBCs)

Genotype: HH or Hh, BB or BO

Gene	Glycosyltransferase	Immunodominant sugar	Antigen
H (FUT1)	α-2-L-fucosyltransferase	L-fucose	Н
В	α-3-D-galactosyltransferase	D-galactose	В

Formation of "AB" Blood Type (RBCs)

Genotype: HH or Hh, AB

Gene	Glycosyltransferase	Immunodominant sugar	Antigen
H (FUT1)	α-2-L- fucosyltransferase	L-fucose	Н
Α	α-3-N- acetylgalactosaminly- transferase	N-acetyl-D- galactosamine (GalNAc)	Α
В	α-3-D- galactosyltransferase	D-galactose	В

A antigen sites: 600,000

B antigen sites: 720,000

Formation of Blood Type in Secretions

- Glycoproteins
- Inherit SeSe or Sese

80% Secretors (SeSe/Sese)
20% Nonsecretors (sese)

Gene	Glycosyltransferase	Immunodominant sugar	Antigen
Se (FUT2)	α-2-L-fucosyltransferase	L-fucose	Soluble H
A or B	α-3-N-acetylgalactosaminly- transferase α-3-D-galactosyltransferase	N-acetyl-D-galactosamine (GalNAc) D-galactose	Soluble A or B

Precursor
Substance:
Type 1

Se H soluble antigen A or B
A and B
soluble
antigens

H Antigen Present by Blood Type

Greatest Amount of H Least Amount of H

Anti-H in A₁ and A₁B Individuals

- Most H antigen is converted to A and B
- H is so well hidden patients can make anti-H
- Reacts best with O cells
- Interferes with antibody screens due to type O reagents

A Subgroups

	A ₁	A_2	
Reactivity	Anti-A and Anti-A ₁	Anti-A only	
Frequency	80%	20%	
Inheritance	A gene normal	A gene mutated (single base substitution and single base deletion)	
Enzyme	α-3-N-acetylgalactosaminly-transferase	α-3-N-acetylgalactosaminly-transferase with altered active site (less effective)	
Immunodominant sugar	N-acetyl-D-galactosamine (GalNAc)	N-acetyl-D-galactosamine (GalNAc)	
Produce Anti-A ₁	No	1-8% of A ₂ individuals 22-35% of A ₂ B individuals	

A₁ vs A₂ Structure

- 4 different H antigens:
 - H_1 and H_2 = unbranched straight chains
 - H_3 and H_4 = complex branched chains
- Terminal sugars are identical
- H₁ and H₂ converted to A^a and A^b antigens by both A₁ and A₂ enzymes (A₂ is less efficient)
- H₃ and H₄ converted to A^c and A^d antigens by A₁ enzyme and very poorly by A₂ enzymes or not at all

A₁ and A₂ Quantitative and Qualitative Differences

Quantitative	Qualitative
A_2 has decreased # of antigen sites (A_1 = 1,170,000/RBC, A_2 = 290,000/RBC)	Differences in precursor chains
A ₂ has decreased amount of transferase enzymes	Differences in transferase
A ₂ has decreased amount of branched A	A ₂ individuals can form an anti-A ₁
antigens	

Anti-A1 Lectin Testing

- Anti-A₁ lectin: reagent made from seed extract of Dolichos biflorus plant
 - Agglutinates A₁ but not A₂ cells
- Reactions of Patients' RBCs with:

	Anti-A (Anti-A plus Anti-A ₁)	Anti-A ₁ lectin
A ₁	+	+
A_2	+	0

The Bombay Phenotype (O_h)

- Results from double dose of h gene
 (hh) extremely rare
 - Prevalence in India = 0.048%
 - Prevalence in Europe = 0.0003%
- No H gene means no H antigens which means no ABO genes expressed
- No H antigen also means they form anti-H

Bombay Phenotype Genetics

- Mutation in *FUT1* (*H* gene)
 - Silenced unable to code for fucosyltransferase
 - No α-2-L-fucosyltransferase, no Lfucose attached, no H substance present
- FUT2 gene (Se gene) also silenced
 - No ABO antigens form in secretions
- Normal ABO genes, but can't form ABO antigens due to lack of H
 - Genes written as Oh, Oh^A, Oh^B,
 Oh^{AB}

Bombay Phenotype Testing

- Phenotype as O blood group (lack all ABH antigens)
- Screen is all positive
- Use Anti-H lectin (extract of Ulex europaeus)
 - Reacts with type O, but not with Bombay

Blood	Forward Group		Reverse Group			
Group	Anti-A	Anti-B	Anti-A,B	A1 Cells	B Cells	O Cells
Α	+	-	+	-	+	-
В	-	+	+	+	-	-
AB	+	+	+	-	-	-
0	-	-	-	+	+	-
Bombay	-	-	-	+	+	+

Anti-H in Bombay

	Anti-H (in A1 and A1B)	Anti-H in Bombay
IgM/IgG	IgM	IgM
Temperature of Reactivity	4°C and Room Temperature	Strongly at 37°C
Natural or Immune	Natural	Natural
Transfusion Reactions	No – Insignificant	Yes – binds complement & causes RBC lysis
HDFN	No	No

^{*}Bombay patients must receive Bombay blood (H negative)

Para-Bombay

	Gene	RBC Antigens	Antigens in Secretions
Bombay	hh sese Silenced FUT1 and FUT2	None	None
Parabombay (Red cell H partially deficient, nonsecretor)	hh (weak variant) sese Mutated FUT1 gene With or without active FUT2 gene	Very small amounts of H, A, and B	None
Parabombay (Red cell H deficient, secretor)	hh Se Silenced FUT1 (H) gene Active FUT2 (Se) gene	Little to none of H, A, and B (absorbed onto RBC from plasma)	H, A, and B

THE FUTURE OF HEALTHCARE SINCE 1921

