Humpback whales: Northern Atlantic

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.3a [January-08-2018]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 10 compute nodes are available.

Program started at Sun Oct 28 09:28:20 2018

Program finished at Sun Oct 28 10:14:08 2018 [Runtime:0000:00:45:48]

Options

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Data set was subsampled: used a random sample of size:

20 and seed 163

Random number seed: (with internal timer) 753380850

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

d = row population split off column population, D = split and then migration

Population 1

1 north atlantic *

Order of parameters:

 $1 \hspace{1cm} \Theta_1 \hspace{1cm} \text{<displayed>}$

Mutation rate among loci: Mutation rate is constant

Analysis strategy:
-Population size estimation:

Bayesian inference
Exponential Distribution

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Metropolis sampling
Divergence Metropolis sampling
Divergence Spread Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Prior Minimum MeanMaximum Delta Bins UpdateFreq 1 Theta -祖xponential 0.000000 0.020 0.900 - 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings: Long chain

Number of chains 1
Recorded steps [a] 10000

Recorded steps [a] 10000
Increment (record every x step [b] 1000

Number of concurrent chains (replicates) [c] 10
Visited (sampled) parameter values [a*b*c] 100000000

Number of discard trees per chain (burn-in) 5000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

1000000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: infile.humpback_northern

Haplotyping is turned on:

Output file: outfile_humpbacknorth_0.6

Posterior distribution raw histogram file: bayesfile

Raw data from the MCMC run: bayesallfile_humpbacknorth_0.6

Print data: No

Print genealogies [only some for some data type]:

Data summary

Data file: infile.humpback_northern
Datatype: Haplotype data

Number of loci:

Mutationmodel:

Locus Sublocus Mutationmodel Mutationmodel parameters

1 1 Felsenstein 84 [Bf:0.33 0.19 0.13 0.35, t/t ratio=18.080]

Data set was subsampled: used a random sample of size: 20

Sites per locus

Locus Sites

1 283

Site rate variation and probabilities:

Locus Sublocus Region type Rate of change Probability Patch size

1	1	1	0.418	0.706	1.000
1	1	2	2.260	0.283	1.000
1	1	3	6.161	0.011	1.000

Population Locus Gene copies data (missing)

1 north atlantic 1 188

1 north_atlantic 1 188

Total of all populations 1 188

Total of all populations 1 188 (0)

Subsampled dataset

Data set was subsampled randomly per population: 20 samples taken Locus Population Individuals

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.04380	0.06780	0.07770	0.08760	0.12000	0.08250	0.08458

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution for locus 1

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[In(Prob(D | thisModel) - In(Prob(D | otherModel) or as LBF = 2 (In(Prob(D | thisModel) - In(Prob(D | otherModel)) shows the support for thisModel]

Locus	TI(1a)	BTI(1b)	SS(2)	HS(3)
1	-643.71	-542.41	-391.42	-526.61

(1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures (1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!

- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets.

In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods, Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio	
Θ_1	1017824/20002866	0.05088	
Genealogies	8738664/79997134	0.10924	

Average temperatures during the run

Chain	Temperatures
1	0.00000
1	
2	0.00000
3	0.00000
4	0.00000

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou tes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run