第3.2节 边缘分布

- 一、边缘分布函数
- 二、离散型随机变量的边缘分布律
- 三、连续型随机变量的边缘分布
- 四、小结

一、边缘分布函数

问题:已知(X,Y)的分布,如何确定X,Y的分布?

$$F(x,y) = P\{X \le x, Y \le y\}, F(x) = P\{X \le x\},$$

$$P\{X \le x\} = P\{X \le x, Y < \infty\} = F(x, \infty) = F_X(x)$$

(X,Y)关于X的边缘分布函数.

定义 设F(x,y)为随机变量(X,Y)的分布函数,

则
$$F(x,y) = P\{X \le x, Y \le y\}$$
 令 $y \to \infty$, 称

$$P\{X \le x\} = P\{X \le x, Y < \infty\} = F(x, \infty),$$

为随机变量 (X,Y)关于X的边缘分布函数.

记为
$$F_X(x) = F(x,\infty)$$
.

同理令 $x \to \infty$,

$$F_Y(y) = F(\infty, y) = P\{X < \infty, Y \le y\} = P\{Y \le y\}$$

为随机变量 (X,Y)关于Y 的边缘分布函数.

二、离散型随机变量的边缘分布律

定义 设二维离散型随机变量 (X,Y)的联合分布

律为
$$P\{X = x_i, Y = y_j\} = p_{ij}, i, j = 1, 2, \dots$$

记
$$p_{i\bullet} = \sum_{j=1}^{\infty} p_{ij} = P\{X = x_i\}, \quad i = 1, 2, \dots,$$

$$p_{\bullet j} = \sum_{i=1}^{\infty} p_{ij} = P\{Y = y_j\}, \quad j = 1, 2, \dots,$$

分别称 $p_{i\bullet}$ $(i = 1, 2, \cdots)$ 和 $p_{\bullet j}$ $(j = 1, 2, \cdots)$ 为 (X, Y) 关于 X 和关于 Y 的边缘分布律 .

概率论与数理统计

YX	\boldsymbol{x}_1	\boldsymbol{x}_{2}	•••	\boldsymbol{x}_{i}	•••
y_1	p ₁₁	p_{21}		<i>p</i> _{<i>i</i>1}	
\boldsymbol{y}_2	$p_{_{_{12}}}$	$p_{_{22}}$		p_{i2}	
	•			:	
y_{j}	$\stackrel{\pmb{p}}{:}_{1j}$	p_{2j}	•••	$p_{_{ij}}$	•••
				•	

$$P\{X = x_i\} = \sum_{j=1}^{\infty} p_{ij}, i = 1,2,\dots;$$

$$P{Y = y_j} = \sum_{i=1}^{\infty} p_{ij}, j = 1,2,\dots$$

因此得离散型随机变量关于X和Y的边缘分布函数分别为

$$F_X(x) = F(x,\infty) = \sum_{x_i \le x} \sum_{j=1}^{\infty} p_{ij},$$

$$F_{Y}(y) = F(\infty, y) = \sum_{y_{j} \leq y} \sum_{i=1}^{\infty} p_{ij}.$$

例1 已知下列分布律求其边缘分布律.

0	1
16	12
49	49
12	9
49	49
	16 49 12 49

解	YX	0	1	$p_{\bullet j} = P\{Y = y_j\}$					
	0	12	12	4					
		42	42	7					
		12	6	3					
	1	42	+ 4 2	7					

注意 联合分布 边缘分布

 $p_{i\bullet} = P\{X = x_i\}$

三、连续型随机变量的边缘分布

定义 对于连续型随机变量 (X,Y), 设它的概率 密度为 f(x,y), 由于

$$F_X(x) = F(x, \infty) = \int_{-\infty}^x \left[\int_{-\infty}^\infty f(x, y) \, \mathrm{d} y \right] \, \mathrm{d} x,$$

记
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d} y,$$

称其为随机变量 (X,Y) 关于 X 的边缘概率密度.

同理可得 Y 的边缘分布函数

$$F_{Y}(y) = F(\infty, y) = \int_{-\infty}^{y} \left[\int_{-\infty}^{\infty} f(x, y) dx \right] dy,$$

Y 的边缘概率密度.

例2 设随机变量 X 和 Y 具有联合概率密度

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x, \\ 0, & 其它. \end{cases}$$

求边缘概率密度 $f_X(x)$, $f_Y(y)$.

解 当 $0 \le x \le 1$ 时,

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d} y$$
$$= \int_{x^2}^{x} 6 \, \mathrm{d} y$$

概率论与数理统计

$$=6(x-x^2).$$

当x < 0或x > 1时,

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = 0.$$

因而得 $f_X(x) = \begin{cases} 6(x - x^2), & 0 \le x \le 1, \\ 0, &$ 其它.

当 $0 \le y \le 1$ 时,

$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

$$= \int_{y}^{\sqrt{y}} 6 dx = 6(\sqrt{y} - y)$$

$$= 6(\sqrt{y} - y).$$

当
$$y < 0$$
 或 $y > 1$ 时, $f_{Y}(y) = \int_{-\infty}^{\infty} f(x, y) dx = 0$.

得
$$f_{Y}(y) = \begin{cases} 6(\sqrt{y} - y), & 0 \le y \le 1, \\ 0, & 其它. \end{cases}$$

例4 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\cdot \exp \left\{ \frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

$$-\infty < x < \infty, -\infty < y < \infty,$$

其中 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 都是常数,且 $\sigma_1 > 0, \sigma_2 > 0$, $-1 < \rho < 1$.

试求二维正态随机变量的边缘概率密度.

解
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
,

曲于
$$\frac{(y-\mu_2)^2}{\sigma_2^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}$$

$$= \left[\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1}\right]^2 - \rho^2 \frac{(x-\mu_1)^2}{\sigma_1^2},$$

于是
$$f_X(x) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}\int_{-\infty}^{\infty}e^{\frac{-1}{2(1-\rho)}\left[\frac{y-\mu_2}{\sigma_2}-\rho\frac{x-\mu_1}{\sigma_1}\right]^2}dy,$$

$$\Rightarrow t = \frac{1}{\sqrt{1-\rho^2}} \left(\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1} \right),$$

则有
$$f_X(x) = \frac{1}{2\pi\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} dt$$

即
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}, \quad -\infty < x < \infty.$$

同理可得

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}}, -\infty < y < \infty.$$

二维正态分布的两个边缘分布都是一维正态分布,并且都不依赖于参数 ρ .

请同学们思考

边缘分布均为正态分布的随机变量,其联合分布一定是二维正态分布吗?

答 不一定. 举一反例以示证明.

令(X,Y)的联合密度函数为

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} (1 + \sin x \sin y),$$

显然,(X,Y)不服从正态分布,但是

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}, \quad f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{\frac{-y^2}{2}}.$$

因此边缘分布均为正态分布的随机变量,其联合分布不一定是二维正态分布.

四、小结

$$F_X(x) = F(x, \infty) = \int_{-\infty}^x \left[\int_{-\infty}^\infty f(x, y) \, \mathrm{d} y \right] \, \mathrm{d} x.$$

$$f_X(x) = \int_{-\infty}^\infty f(x, y) \, \mathrm{d} y.$$

$$F_Y(x) = F(\infty, y) = \int_{-\infty}^y \left[\int_{-\infty}^\infty f(x, y) \, \mathrm{d} x \right] \, \mathrm{d} y.$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d} x.$$

联合分布 边缘分布

备份题

例1 设
$$(X,Y) \sim f(x,y) = \begin{cases} e^{-y}, & 0 < x < y, \\ 0, & 其它. \end{cases}$$

求 (1)
$$f_X(x)$$
; (2) $P\{X + Y \le 1\}$.

解 当x > 0时,

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{x}^{\infty} e^{-y} dy = e^{-x}.$$

当
$$x \le 0$$
 时, $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = 0$.

故
$$f_X(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & 其它. \end{cases}$$

(2)
$$P{X + Y \le 1}$$

$$= \iint_{x+y\leq 1} f(x,y) \,\mathrm{d} x \,\mathrm{d} y$$

$$= \int_0^{\frac{1}{2}} dx \int_x^{1-x} e^{-y} \, \mathrm{d} y$$

$$=-\int_0^{\frac{1}{2}} \left[e^{-(1-x)}-e^{-x}\right] dx = 1+e^{-1}-2e^{-\frac{1}{2}}.$$

例2 一整数 N 等可能地在1,2,3,…,10 十个值中取一个值.设 D = D(N) 是能整除 N 的正整数的个数,F = F(N) 是能整除 N 的素数的个数.试写出 D 和 F 的联合分布律.并求边缘分布律.

 样本点
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 D
 1
 2
 2
 3
 2
 4
 2
 4
 3
 4

 F
 0
 1
 1
 1
 1
 2
 1
 1
 1
 2

由此得 D 和 F 的联合分布律与边缘分布律:

概率论与数理统计

样本点	1	2	3	4	5	6	7	8	9	10
D	1	2	2	3	2	4	2	4	3	4
\overline{F}		1	1	1	1	2	1	1	1	2

F D	1	2	3	4	$P{F=j}$
0	1/10	0	0	0	1/10
1	0	4/10	2/10	1/10	7/10
2	0	0	0	2 /10	2/10
$P\{D=i\}$	1/10	4/10	2/10	3/10	1

或将边缘分布律表示为

D	1	2	3	4	F	0	1	2
p_{k}	1/10	4/10	2/10	3/10	$p_{_k}$	1/10	7/10	2/10

