Relational database

2 and 3 NORMAL FORM

- √ Understand what is a composite key
- √ Understand the 2nd normal form

√ Understand the 3rd normal form

COMPOSITE KEY

A composite key is a primary key that is composed of more than one column

COMPOSITE KEY

A composite key is a primary key that is composed of more than one column

- 1. Get data for **student of id 1001**
- 2. Get data for course of id 2
- Get data for student of id 1001and course of id 2

SCORE

Student ID	Course ID	Score
1001	1	70
1001	2	80
1002	1	100
1003	2	45
1003	3	30
1004	1	66

A composite key is a primary key that is composed of more than one column

composite key

Student ID	Course ID	Score		
1001	1	70		
1001	2	80		
1002	1	100		
1003	2	45		
1003	3	30		
1004	1	66		

Why not just create a score id column?

Score id	Student ID	Course ID	Score
1	1001	1	70
2	1001	2	80
3	1002	1	100
4	1003	2	45
5	1003	3	30
6	1002	1	100

Because it can lead to the repetition of one record

Score id	Student ID	Course ID	Score
1	1001	1	70
2	1001	2	80
3	1002	1	100
4	1003	2	45
5	1003	3	30
6	1002	1	88

For 1 student and 1 course, we should have only 1 score, and here we have 2 records! (But sometimes, this is what we want)

In these following table schema, tell what column(s) compose the primary key

HACKER RANK RESULTS

Member ID	Contest ID	Result	Time
1	1	40	5
2	3	50	10
1	2	100	40
2	2	50	60
3	2	60	40
3	1	70	10
1	2	100	30

In these following table schema, tell what column(s) compose the primary key

STUDENT

Student ID	Student Name	Date of birth	Province	Classroom ID
1001	Lyhour	XX	XX	2
1002	Kunthy	XX	XX	1
1003	Chum	XX	XX	2
1004	Sauth	XX	XX	6
1005	Cham	XX	XX	4
1006	Smey	XX	XX	5
1007	Ravy	XX	XX	5

ACTIVITY 3

In these following table schema, tell what column(s) compose the primary key

ENROLMENT

Enrolment ID	Student ID	Course ID
10011002	1001	1002
10021002	1002	1002
10031002	1003	1002
10031001	1003	1001
10041001	1004	1001
10051001	1005	1001
10011004	1001	1004
10021004	1002	1004

Normalization process

DIRTY DB

The table should already be in 1st Normal Form

This table is **NOT NF1**:

	Course	Name	Student id
X	Javascript, English	Lyhour	1001
X	French, Python	Thon	1002
	Spanish	Kunthy	1003
X	Database, Khmer	Channary	1004

Each column of the table must be single values

2NF RULE 2

All non key attributes are dependent of every columns that compose the primary key

Here:

- STUDENT_ID and COURSE_ID are the composite KEY
- SCORE fully depends on STUDENT_ID +COURSE_ID
- COMMENT fully depends on STUDENT_ID +COURSE_ID

Let's have an example

PRIMARY KEY

Student id	Course id	Score	Teacher
1001	1	70	Clément
1001	2	80	Sopheak
1002	1	100	Clément
1002	3	70	Rady
1003	2	85	Sopheak
1004	4	90	Edouard
1004	3	55	Rady

COURSE

Course id	Course name
1	Javascript
2	English
3	Python
4	Database

Student id	Course id	Score	Teacher
1001	1	70	Clément
1001	2	80	Sopheak
1002	1	100	Clément
1002	3	70	Rady
1003	2	85	Sopheak
1004	4	90	Edouard
1004	3	55	Rady

Does **Score** depends of Course_id + Student_id ?

Student id	Course id	Score	Teacher
1001	1	70	Clément
1001	2	80	Sopheak
1002	1	100	Clément
1002	3	70	Rady
1003	2	85	Sopheak
1004	4	90	Edouard
1004	3	55	Rady

Does **Score** depends of Course_id + Student_id ?

Score depends of Student id and Course id so it respects the second normal Form

Student id	Course id	Score	Teacher
1001	1	70	Clément
1001	2	80	Sopheak
1002	1	100	Clément
1002	3	70	Rady
1003	2	85	Sopheak
1004	4	90	Edouard
1004	3	55	Rady

Does **Teacher** depends of Course_id + Student_id?

Student id	Course id	Score	Teacher
1001	1	70	Clément
1001	2	80	Sopheak
1002	1	100	Clément
1002	3	70	Rady
1003	2	85	Sopheak
1004	4	90	Edouard
1004	3	55	Rady

Does **Teacher** depends of Course_id + Student_id ?

Teacher only depends of course id and does not depends of Student id so it does not respect the second normal form

So Teacher columns need to be moved to another table

Score id	Student id	Course id	Score	Teacher
1	1001	1	70	Clément
2	1001	2	80	Sopheak
3	1002	1	100	Clement
4	1002	3	70	Fady
5	1003	2	85	Sopheak
6	1004	4	90	Edouard
7	1004	3	55	Rady

COURSE Course Teacher Course id name Clément Javascript Sopheak English 2 Python Rady 3 Edouard Database 4

1. What is the primary key of the following table?

2. Does it respect the 2nd NF? Explain why

HACKER RANK RESULTS

Member ID	Contest ID	Member nickname	Result	Time
1	1	The warrior	40	5
2	3	The crazy	50	10
1	2	The warrior	100	40
2	2	The crazy	50	60
3	2	The amazing	60	40
3	1	The amazing	70	10
1	2	The warrior	100	30

ACTIVITY 3

1. Take the example of last activity and remove the attributes and put them in the right tables

HACKER RANK RESULTS

Member ID	Contest ID	Member nickname	Result	Time	Programmi ng language
1	1	The warrior	40	5	PYTHON
2	3	The crazy	50	10	JAVASCRIPT
1	2	The warrior	100	40	PYTHON
2	2	The crazy	50	60	PYTHON
3	2	The amazing	60	40	PYTHON
3	1	The amazing	70	10	JAVASCRIPT
1	2	The warrior	100	30	PYTHON

HACKER RANK CONTEST

Contest ID	Contest name
1	Python basics
2	Python Advanced
3	Javascript DOM

HACKER RANK MEMBERS

Member ID	Member name
1	Lyhour
2	Vun
3	Sinet

TO SUM UP 2NF:

- ✓ Check if the table respect the 1NF
- ✓ What is the primary key? Is it a composite key?
- ✓ Check if each attribute is dependant of each column of the primary key

The table should already be in 2nd Normal Form

Student id	Course id	Score	Teacher
1001	1	70	Clément
1001	2	80	Sopheak
1002	1	100	Clénlent
1002	3	70	RATy
1003	2	85	Sopheak
1004	4	90	Edouard
1004	3	55	Rady

Table has no transitive dependencies

This table is NOT 3NF

- > CourseName depends on CourseCode
- and CourseCode is NOT the Primary key

This table is 3NF

> Each column depends on the primary key

We have a transitive dependency if:

changing a non-key column can cause another column to also change

id	Student Name	Street	Town
1	Lyhour	St. 271 Toul Kok	Phnom Penh
2	Thon	St. 5 Riverside	Phnom Penh
3	Kunthy	St. 2006 Resiy Koe	Phnom Penh

- Change street may change town
- Street is not a key attribute

Does the following table respect the 3rd NF?

COURSE

COURSE ID	COURSE NAME	DEPARTMENT ID	DEPARTMENT NAME
1234	DATABASE	1	COMPUTING
5678	C++	1	COMPUTING
7895	OPERATING SYSTEM	1	COMPUTING
4765	ООР	2	BUSINESS & COMPUTING

How to fix it?

✓ We have a **transitive dependency** between Street and Town :

id	Student Name	Street	Town
1	Lyhour	St. 271 Toul Kok	Phnom Penh
2	Thon	St. 5 Riverside	Phnom Penh
3	Kunthy	St. 2006 Resiy Koe	Phnom Penh

✓ We create a table address and link the 2 table with the address ID

id	Student Name	Address_id
1	Lyhour	1
2	Thon	2
3	Kunthy	3

Id	Street	Town
1	St. 271 Toul Kok	Phnom Penh
2	St. 5 Riverside	Phnom Penh
3	St. 2006 Resiy Koe	Phnom Penh

Apply the rule 2 of the 3rd NF to the following table

COURSE CODE	COURSE NAME	DEPARTMENT CODE	DEPARTMENT NAME
1234	DATABASE	1	COMPUTING
5678	C++	1	COMPUTING
7895	OPERATING SYSTEM	1	COMPUTING
4765	ООР	2	BUSINESS& COMPUTING

TO SUM UP 3NF:

- ✓ Check if the table respect the 2NF
- ✓ Check if there is a dependency between 2 columns (non key columns)
 - ✓ If so, move those columns to a new table

NORMAL FORMS

- Higher Normal Forms more closely model relations between entities
- This is often good, but not always!
 - ✓ **DENORMALISED** tables can <u>sometimes</u> perform faster, or are easier to use, but are often less safe
- It can be OK for different parts of the database can have different Normal Forms
 - ✓ e.g. we could have students/class/teacher in 3NF and books/library/students in 1NF, inside the same database