Apprentissage supervisé Forêts aléatoires.

Marie Chavent

Université de Bordeaux

Le Bagging

- ► En 1996 Breiman introduit le Bagging, une des premières méthodes d'ensemble qui consiste à agréger une collection de classifieurs pour obtenir un meilleur classifieur
- En classification, on aggrège les prédictions par vote majoritaire.
- Bagging=Boostrap aggregating: principe non limité aux arbres de classification mais CART est le classifieur de base le plus courramment utilisé.

La méthode :

- ▶ On construit q échantillons bootstrap $E^{(1)}, ..., E^{(q)}$ à partir de l'échantillon E des observations $(X_i, Y_i)_{i=1,...,n}$.
- ▶ Un échantillon bootstrap $E^{(\ell)}$ est obtenu par tirage avec remise de n observations dans E, chaque observation ayant une probabilité $\frac{1}{n}$ d'être tirée à chaque tirage.
- Pour $\ell=1,...q$, on constuit l'arbre CART g_ℓ à partir de l'échantillon bootstrap $E^{(\ell)}$.
- On aggréger les prédictions des arbres g_1, \ldots, g_q par vote majoritaire :

$$g_{\mathrm{bag}}(x) = \underset{k \in \{1, \dots, K\}}{\mathrm{arg\ max}} \sum_{\ell=1}^q \mathbb{1}_{g_\ell(x)=k}$$

Forêts aléatoires

La méthode :

- On construit q échantillons bootstrap $E^{(1)},...,E^{(q)}$ à partir de l'échantillon E des observations $(X_i,Y_i)_{i=1,...,n}$
- Sur chaque échantillon boostrap $E^{(\ell)}$ on applique une variante de CART appelée RI (Random Input) :
 - à chaque division, on tire aléatoirement m variables variables parmi p (sans remise) pour constuire les questions binaires.
 - on construit l'arbre de longueur maximale (pas d'élagage).
- On aggréger des arbres g₁,...,g_q ainsi obtenus avec cette variante par vote majoritaire:

$$g_{\mathsf{RF}}(x) = \underset{k \in \{1, \dots, K\}}{\mathsf{arg max}} \sum_{\ell=1}^{q} \mathbb{1}_{g_{\ell}(x)=k}$$

Le taux d'erreur OOB (Out Of Bag) de la forêts aléatoire est calculé de la manière suivante :

- Pour chaque observation (X_i, Y_i) , i = 1, ..., n:
 - on sélectionne les échantillons bootstrap $E^{(\ell)}$ ne contenant pas (X_i, Y_i) . Pour ces échantillons, on dit que l'observation (X_i, Y_i) est OOB.
 - on prédit cette observation avec tous les arbres construits sur ces échantillons bootstrap.
 - on aggrège ces prédictions par vote majoritaire et on note $\hat{\mathbf{Y}}_i$ la prédiction OOB de X_i .
- ▶ Le taux d'erreur OOB de g_{RF} est alors : $errOOB = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\hat{Y}_i \neq Y_i}$.

L'échantillon OOB d'un arbre g_ℓ est l'ensemble des observations de E qui ne sont pas dans $E^{(\ell)}$. On notera :

- n_{ℓ} le nombre d'observations OOB de $E^{(\ell)}$,
- $E_{oob}^{(\ell)}$ l'échantillon OOB de l'arbre g_{ℓ} .

L'importance d'une variable X^j est calculée de la manière suivante :

- Pour chaque échantillon $E_{oob}^{(\ell)}$:
 - on calcule $errOOB^{(\ell)}$, le taux d'erreur de g_{ℓ} sur $E_{oob}^{(\ell)}$.
 - lacktriangle on permute aléatoirement les valeurs de X^j selon une permutation ϕ :

et on calcule $errOOB_j^{(\ell)}$ le taux d'erreur de g_ℓ sur $E_{oob,j}^{(\ell)}$ l'échantillon $E_{oob}^{(\ell)}$ permuté sur X^j .

- on calcul l'augmentation du taux d'erreur induite par la permutation des valeurs de $X^j: errOOB_i^{(\ell)} errOOB^{(\ell)}$.
- L'importance VI de la variable X^j est alors une mesure de lien entre Y et X^j définie par :

$$VI(X^{j}) = \frac{1}{q} \sum_{\ell=1}^{q} (errOOB_{j}^{(\ell)} - errOOB^{(\ell)}).$$