Sve izmjene e biti pisane ovim fontom i bojom (oldgateLANEoutline ili sl.), neki dio teksta e biti highlightan(žuto), strelice, pokušaj slika itd. :) ali nijedan originalan dio ne e biti brisan! (samo strelice i sl. ne e biti zelene nego crvene)

Komunikacijske mreže

Sve primjedbe, greške, možda dodatne komentare koje imate vi u bilj. pa da ih dodam i sve što može pomo i poboljšanju ovoga javite na PM!

By:egislav

- u najjednostavnijem slučaju informacija se prenosi između dvaju izravno povezanih uređaja
- ovaj način prijenosa se naziva prijenos od točke do točke (point-to-point)
 - uređaji mogu biti udaljeni stotinama i tisućama kilometara
 - neekonomično je graditi komunikacijski sustav koji će povezati samo dva uređaja

 ukoliko se rabi skup uređaja od kojih svaki treba povezati s sa svakim nepraktično je zasebnom vezom povezati svaki par uređaja

- rješenje je priključivanje uređaja na komunikacijsku mrežu
 - zamjenjuje prijenosni sustav u općem modelu komunikacijskog sustava
 - čine ju međusobno povezani komunikacijski sustavi na koje se spaja korisnička i druga potrebna oprema
 - građena je od čvorova (node) i grana ili veza (link)

- čvorovi i grane
 - uređaji na izvoru i odredištu se povezuju na čvorove
 - čvorovi razmjenjuju informaciju i prenose je od izvora do odredišta
 - provode usmjeravanje (routing) informacije kroz mrežu, komutaciju odnosno prospajanje (switching) sa svojih ulaza na izlaze te po potrebi procesiranje i pohranjivanje informacije
 - izvor i odredište se nazivaju još i krajnji čvorovi
 - na izvoru i odredištu se nalazi korisnička oprema koja se spaja na mrežne čvorove
 - grane međusobno povezuju čvorove u mrežu
- korisnik (user)
 - uređaj ili sustav priključen na mrežu
 - rabi mrežu za različite informacijske i komunikacijske usluge i aplikacije
 - korisnički uređaj je npr. mobilni telefon koji se preko bazne postaje (čvor) priključuje na komunikacijsku mrežu, a s baznom postajom je povezan putem radijskog prijenosa (grana)

- - način prijenosa podataka
 - namjena
 - postupak komutacije
 - topologija
 - smjer prijenosa informacije
 - veličina i rasprostranjenost
 - vrsta informacije, itd.
- kriteriji se međusobno ne isključuju već se nadopunjuju

- u odnosu na način spajanja uređaja i čvorova veze mogu biti
 - komutirane veze (switched connections) -> op e javne mreže
 - čvorovi služe za komutaciju (switching)
 - komutacija je usmjeravanje informacije na određeni prijenosni put od čvora do čvora i konačno do željenog odredišta
 - određeni izvor i određeno odredište mogu se povezati na različite načine

- zakupljene veze (leased-line connections) pr. banke
 - privatne veze kod kojih su dvije lokacije ili dva uređaja stalno međusobno povezani, a prijenos informacije se odvija uvijek istim putem
- namjenske veze (dedicated connections)
 - isto što i zakupljene veze, ali krajnji korisnici su vlasnici veze za važnije primjene, gdje nesmijemo izgubiti vezu Elektroničke komunikacije

- u odnosu na način prijenosa podataka mreže mogu biti
 - - komunikacija između izvora i odredišta obavlja se preko međusobno povezanih čvorova koji usmjeravaju podatke
 - čvor može biti komutator ili preklopnik (switch), usmjerivač (router) i sl.
 - mreže s neusmjerenim odašiljanjem (broadcast network) → npr. prostdrom
 - nemaju međučvorove za komutaciju (intermediate switching nodes)
 - informacija se prenosi od izvora svih čvorova u mreži istodobno
 - ukoliko se prijam omogućen samo podskupu čvorova način prijenosa se naziva višesmjerno odašiljanje (multicasting)
 - primjeri: lokalne mreže, satelitska radiodifuzija itd.

Satelitska radiodifuzija

Radijska lokalna mreža

Lokalna mreža sa sabirnicom

- u odnosu na namjenu mreža može biti
 - javna mreža (public network)
 - dostupna korisnicima (pretplatnicima) s ugovornim odnosom s mrežnim operatorom (network operator)
 - pretplatniku je omogućeno komuniciranje s pretplatnicima i korisnicima vlastite ili drugih mreža te davateljima usluga (service provider) u zemlji i inozemstvu, bez vremenskih i prostornih ograničenja
 - privatna mreža (private network)
 - namijenjena ograničenoj skupini korisnika unutar određene zajednice
 - privatne mreže povezuju se s javnim mrežama, uz ograničenja određena namjenom privatne mreže
 - primjeri: korporacijska mreža (corporate network), akademska istraživačka mreža (ARN, Academic Research Network) – Hrvatska akademska istraživačka mreža (CARNet, Croatian Academic Research Network)
- javne mreže su u manjinskom, većinskom ili potpunom privatnom vlasništvu, a privatne mreže u državnom (npr. akademska istraživačka mreža) ili privatnom vlasništvu (npr. bankovna mreža)

- izvedba javnih mreža uključuje
 - fiksne (nepokretne) mreže:
 - javna komutirana telefonska mreža (PSTN, Public Switched Telephony Network)
 - digitalna mreža integriranih usluga (ISDN, Integrated Services Digital Network)
 - pokretne mreže:
 - globalni sustav mobilnih komunikacija (GSM, Global System for Mobile Communications), s proširenjima za komunikaciju podacima:
 - opća usluga paketskog radijskog prijenosa (GPRS, General Packet Radio Service)
 - poboljšane brzine prijenosa za razvoj GSM-a (EDGE, Enhanced Data rates for GSM Evolution)
 - univerzalni sustav mobilnih telekomunikacija (UMTS, Universal Mobile Telecommunication System)

Vrste mreža → Važno!

- u odnosu na postupak komutacije mreže se dijele na
 - mreže s komutacijom kanala (circuit switching networks)
 - između izvora i odredišta uspostavlja se namjenski prijenosni put (dedicated transmission line) koji se naziva kanal
 - za vrijeme trajanja veze svi podaci se prenose uspostavljenim putem
 - mreže s komutacijom paketa (packet switching networks)
 - u izvoru informacije se formiraju paketi podataka u kojima se nalazi adresa odredišta
 - izvor šalje pakete čvoru na koji je spojen, a on ga šalje do drugog čvora najpovoljnijim putem u danom trenutku
 - paketi se šalju od čvora do čvora sve do odredišta
 - dvije su vrste komutacije paketa
 - komutacija paketa u obliku datagrama (datagram packet switching)
 - komutacija paketa virtualnim kanalima (*virtual-circuit packet switching*)

Zapravo, nešto izme u komutacije paketa i kanala

- topologija mreže
 - raspored i način povezivanja čvorova komunikacijske mreže fizičkim (stvarnim) ili logičkim (virtualnim) putem
 - dvije mreže imaju istu topologiju ako je konfiguracija veza ista, iako se mreže mogu razlikovati u fizičkom povezivanju čvorova, udaljenosti između čvorova, brzini prijenosa i/ili vrsti signala
- standardne topologije mreže
 - potpuna povezanost (full mesh)
 - stablo (tree)
 - sabirnica (bus)
 - prsten (ring)
 - zvijezda (star)
 - kombinacija navedenih topologija

- potpuna povezanost
 - svaki mrežni čvor je izravno povezan sa svim ostalim mrežnim čvorovima u mreži
 - prednost:
 - olakšano usmjeravanje informacije kroz mrežu
 - pouzdan prijenos
 - prilikom prekida komunikacije zbog kvara u jednoj grani, informacija se preusmjerava na drugu granu
 - nedostatak
 - visoki troškovi izvedbe mreže
 - primjena
 - povezivanje manjeg broja mrežnih čvorova na ograničenom području

stablo

- hijerarhijska struktura
 - na glavni čvor vežu glavne (primarne) grane na koje se povezuju čvorovi niže razine (sekundarni čvorovi), na sekundarne čvorove se vežu tercijarni čvorovi itd.

 komunikacija između čvora više razine i s njim povezanog čvora niže razine je izravna, a svaka druga komunikacija zahtijeva posredovanje jednog ili više čvorova

– prednost

- jednostavno proširenje mreže
- segmentacija mreže olakšava otkrivanje kvarova
- nedostatak
 - kvarovi glavnog čvora onemogućavaju komunikaciju između različitih segmenata mreže
- primjena: telefonska mreža
 - međunarodna, nacionalna, regionalna, gradska i lokalna razina

sabirnica

- svi čvorovi su priključeni na zajednički prijenosni medij
- svaki čvor može odašiljati podatke u bilo kojem vremenskom trenutku
- podaci odaslani s pojedinog čvora mogu biti primljeni na svim ostalim čvorovima
- čvorovi ne sudjeluju u prosljeđivanju podataka (pasivna topologija)
- prednost
 - ekonomična uporaba kabela
 - proširenje mreže je jednostavno
- nedostatak
 - osjetljivost na kvarove
 - zbog kvara u glavnoj grani veliki broj mrežnih čvorova može ostati bez mogućnosti komuniciranja
- primjena: lokalne mreže

prsten

- svi čvorovi su povezani na zajednički prijenosni medij koji čini zatvorenu petlju (prsten), a komunikacija duž petlje je jednosmjerna
- aktivna topologija
 - čvorovi sudjeluju u prosljeđivanju podataka
 - podaci odaslani s pojedinog čvora se primaju i obrađuju na sljedećem čvoru u prstenu te prosljeđuju do idućeg čvora

prednost

 moguć prijenos na velike udaljenosti jer svaki čvor na putu od izvora do odredišta sudjeluje u komunikaciji i omogućava obnavljanje signala

nedostatak

- osjetljivost na kvarove jer jedan čvor izvan funkcije prekida petlju
- proširenje mreže novim čvorovima zahtijeva prekid rada cijele mreže
- primjena: mreže velikog kapaciteta (optičke mreže)

zvijezda

- svi čvorovi su povezani na središnji čvor preko kojeg se obavlja sva komunikacija
- središnji čvor uvijek sudjeluje u prosljeđivanju podataka
- ova topologija omogućava centralizirano upravljanje mrežom
- prednost
 - olakšano određivanje mjesta kvara te otklanjanje kvarova
 - jednostavno proširenje mreže novim čvorovima bez utjecaja na postojeće čvorove

nedostatak

- potreba za velikom količinom kabela kako bi se svi čvorovi povezali na središnji čvor
- pogreška ili kvar središnjeg čvora onemogućava funkcioniranje cijele mreže
- primjena: lokalne mreže

Vrste mreža VAŽNO

- u odnosu na smjer prijenosa informacije mreže mogu biti
 - jednosmjerne (simplex)
 - poludvosmjerne (half-duplex)
 - dvosmjerne (full-duplex)
- jednosmjerne mreže
 - informacija se može odašiljati u samo jednom smjeru (jedan čvor je odašiljač, a drugi prijamnik)

- poludvosmjerne mreže
 - informacija se može odašiljati u oba smjera, ali ne istodobno (čvor može biti i odašiljač i prijamnik ali ne u istom trenutku)

 potrebno je rabiti proceduru kojom će se jedan čvor odrediti kao odašiljač, a drugi kao prijamnik (walkie-talkie)

- dvosmjerne mreže
 - informacija se može odašiljati u oba smjera istodobno
 - pojedini čvor istodobno može biti i odašiljač i prijamnik, a podaci se prenose u oba smjera u isto vrijeme
 - djelotvoran način komunikacije, jer nema potrebe za određivanjem načina djelovanja čvora u određenom vremenskom trenutku

- u odnosu na veličinu, mreže mogu biti
 - osobne mreže (PAN, Personal Area Network)
 - lokalne mreže (LAN, Local Area Network)
 - gradske mreže (MAN, Metropolitan Area Network)
 - regionalne mreže ili mreže širokih područja (WAN, Wide Area Network)

brojke su samo otprilike, nije ih važno znati

Udaljenost	Mreza se nalazi na
1 m	na istom kvadratnom metru
10 m	u istoj prostoriji
100 m	u istoj zgradi
1 km	u istoj organizacijskoj jedinici
10 km	u istom gradu
100 km	u istoj državi
1 000 km	na istom kontinentu
10 000 km	na više kontinenata

Osobna mreža

Lokalna mreža

Gradska mreža

Regionalna mreža

osobne mreže

- namijenjene su jednoj osobi
- primjer: radijska mreža koja povezuje središnju jedinicu računala s mišem, tipkovnicom i pisačem

lokalne mreže

- privatne mreže unutar jedne zgrade ili više zgrada koje pripadaju istom organizacijskom području
- najčešće se rabe za povezivanje osobnih računala i radnih postaja radi razmjene podataka između korisnika mreže (elektronička pošta, prijenos datoteka i sl.), te radi raspodjele i zajedničkog korištenja namjenske programske podrške, uređaja i opreme (npr. pisača, poslužitelja i sl.).
- brzine prijenosa su u pravilu veće nego u MAN i WAN mrežama
- najčešće se rabi neusmjereno odašiljanje, a tipične topologije su topologija sabirnice i topologija prstena

gradske mreže

- mreže koje pokrivaju područje jednog grada ili većeg naselja
- primjeri: mreže za kabelsku televiziju, mreže za fiksni širokopojasni radijski pristup (FBWA, Fixed Broadband Wireless Access) kao što je npr. WiMAX
 - mreže za kabelsku televiziju omogućavaju distribuciju velikog broja televizijskih programa te pristup Internetu
 - mreže za fiksni širokopojasni radijski pristup omogućavaju povezivanje korisnika radijskim putem na javnu ili privatne mreže, a služe za dvosmjerni prijenos podataka visokim brzinama

mreže širokih područja

- pokrivaju veliko geografsko područje
- sadrže veliki broj međusobno povezanih komutacijskih čvorova te u najvećem dijelu pripadaju skupini javnih mreža
 - izvode se i kao mreže s komutacijom kanala i kao mreže s komutacijom paketa

komunikacija se obavlja u tri faze

- uspostavljanje kanala
 - izvor signalizacijskim porukama komunicira s mrežom i izražava želju za uspostavljanjem veze s određenim odredištem (signal poziva)
 - mreža određuje namjenski prijenosni put, tj. grane i čvorove, kojima će se prenositi informacija između izvora i odredišta
 - prijenosni put se ne uspostavlja ako potrebni kapacitet kanala nije raspoloživ na prijenosnom putu od izvora do odredišta (poziv je odbačen i komunikacija je neuspješna)
 - kanal zauzima fiksni kapacitet pojedine grane za vrijeme cijelog trajanja veze
 - kapacitet koji se ne rabi unutar uspostavljenog kanala ne može biti iskorišten u drugim kanalima koji se prenose istom granom
- prijenos podataka
 - prijenos podataka započinje nakon uspostavljanja prijenosnog puta
 - za cijelo vrijeme trajanja veze svi podaci se prenose istim prijenosnim putem
- raskidanje veze
 - nakon završetka komunikacije između izvora i odredišta veza se raskida
 - zahtjev za raskid dolazi iz izvora ili odredišta
 - nakon raskida veze mreža oslobađa sve resurse koje mogu rabiti druge veze

čvor u mreži s komutacijom kanala

mreža s komutacijom kanala

Mreže s komutacijom kanala važno!

kašnjenje signala u mreži s komutacijom kanala

- kašnjenje signala u mreži s komutacijom kanala
 - uspostavljanje veze unosi kašnjenje u prijenos informacije
 - signal kojim se rezervira put kroz mrežu (signal poziva) mora doći do odredišta, koje potvrđuje da li želi prihvatiti komunikaciju s izvorom
 - potvrda se šalje od odredišta natrag prema izvoru
 - nakon uspostavljanja poziva jedino kašnjenje u prijenosu izazvano je širenjem signala kroz prijenosni medij (kašnjenje zbog propagacije)
 - ovisi o vrsti prijenosnog medija i duljini grane
 - komutatori ne unose znatnije kašnjenje u prijenos informacije

- prednost mreže s komutacijom kanala
 - omogućava kontinuirani prijenos informacije s malim kašnjenjem
 - omogućava komunikaciju u stvarnom vremenu
- nedostatak mreže s komutacijom kanala
 - kanal zauzima fiksni kapacitet za vrijeme cijelog trajanja veze neovisno o tome da li se i koliko se informacije prenosi
 - ovakav način komutacije može biti neučinkovit i skup ukoliko se mali dio kapaciteta kanala rabi za prijenos informacije
- primjeri mreža s komutacijom kanala
 - telefonska mreža (PSTN, Public Switched Telephone Network)
 - digitalna mreža s integriranim uslugama (ISDN, Integrated Services Digital Network)

- podaci se odašilju o obliku paketa
 - paket je oblikovani slijed bita
 - informacija se u izvoru informacije dijeli na pakete, svakom paketu se dodjeljuje redni broj i paketi se šalju jedan za drugim u mrežu
 - paketi se prenose od čvora do čvora prema odredištu
 - ako u određenoj grani na putu prema odredištu nema slobodnog kapaciteta, paketi čekaju u spremnicima
 - u ovisnosti o stanju u mreži mijenja se kašnjenje u prijenosu paketa
 - paket se sastoji se od zaglavlja (header), podataka (data) i završnog dijela (trailer)
 - zaglavlje i završni dio prenose upravljačke informacije čiji sastavni dio mora biti adresa odredišta

čvor u mreži s komutacijom paketa

- komutacija paketa u obliku datagrama
 - datagrami su paketi s neovisnim usmjeravanjem
 - mrežni čvorovi procesiraju svaki paket neovisno o ostalim paketima
 - npr. ukoliko računalo A šalje dva paketa računalu B putem datagramske mreže, čvorovi u mreži ne znaju da paketi pripadaju jedan drugom tako da se paketi mogu usmjeravati kroz mrežu do računala B različitim putovima
 - datagrami omogućavaju nespojnu (connectionless) mrežnu uslugu
 - prije prijenosa paketa kroz mrežu nije potrebno prethodno uspostaviti vezu između izvora i odredišta
 - zaglavlje svakog paketa mora sadržavati potpunu adresu odredišta
 - posljedica neovisnog procesiranja paketa u čvorovima
 - slijed paketa može biti primljen u promijenjenom redoslijedu u odnosu na redoslijed paketa pri odašiljanju
- glavni primjer mreže s komutacijom datagrama je Internet

mreža s komutacijom datagrama

- kašnjenje signala u mreži s komutacijom datagrama
 - prije prijenosa paketa kroz mrežu nije potrebno prethodno uspostaviti vezu između izvora i odredišta, tako da uspostavljanje veze ne unosi kašnjenje u prijenos paketa
 - zbog čekanja paketa u spremnicima čvora može se pojaviti značajno kašnjenje u prijenosu paketa
 - u slučaju zagušenja u mreži kašnjenje u prijenosu paketa raste
 - kašnjenje zbog propagacije izazvano je širenjem signala kroz prijenosni medij (ovisi o duljini grane i vrsti prijenosnog medija)
 - kašnjenje u prijenosu informacije ovisi u duljini paketa i kapacitetu pojedine grane
 - smanjenjem duljine paketa kašnjenje se smanjuje
 - porastom kapaciteta kašnjenje se smanjuje

kašnjenje signala u mreži s komutacijom datagrama

- komutacija paketa virtualnim kanalima
 - objedinjuje načela komutacije kanala i komutacije paketa
 - podaci se odašilju u obliku paketa
 - svi paketi koji pripadaju jednom slijedu paketa prenose se unaprijed uspostavljenim virtualnim kanalom
 - zajamčeno je dostavljanje paketa u točno određenom slijedu
 - paketi različitih virtualnih kanala mogu biti isprepleteni u prijenosu
- primjeri mreža s komutacijom paketa virtualnim kanalima
 - X.25 mreže
 - razvijene 70-ih godina prošlog stoljeća i korištene za javnu mrežu s komutacijom paketa
 - mreže s asinkronim načinom prijenosa (ATM, Asynchronous Transfer Mode)
 - razvijene 80-ih godina prošlog stoljeća za prijenos govora, videa i podataka jedinstvenom mrežom

mreža s komutacijom paketa virtualnim kanalima

Mreže s komutacijom paketa

- mreža s komutacijom paketa virtualnim kanalima
 - virtualnim kanalom oponaša se koncept stvarnog kanala kojim se uspostavlja put kroz mrežu od izvora i odredišta, a koji se dodjeljuje na zahtjev ili trajno
 - najprije se uspostavlja put kojim će prolaziti svi paketi za traženu komunikaciju izvor-odredište
 - taj put se označava u čvorovima mreže na putu te se nakon toga svi paketi prenose tim putem
 - paketi u nepromijenjenom redoslijedu dolaze do odredišta
 - nakon završetka komunikacije virtualni kanal se prekida

Mreže s komutacijom paketa

 kašnjenje signala u mreži s komutacijom paketa virtualnim kanalima

Mreže s komutacijom paketa

- prednost mreže s komutacijom paketa
 - kapaciteti mreže su zauzeti samo za vrijeme prijenosa paketa
 - broj i veličina paketa može se prilagoditi značajkama izvora informacije
 - u vremenskim intervalima u kojima jedan izvor ne odašilje pakete, mogu se prenositi paketi drugih izvora
- nedostatak mreže s komutacijom paketa
 - zbog kašnjenja i promjenjivosti kašnjenja otežana je komunikacija u stvarnom vremenu
 - dio kapaciteta mreže se troši na prijenos upravljačkih informacija (zaglavlja paketa)
 - -- paketi se nesmiju previše smanjiti jer e tada zaglavlje biti ve e od korisne informacije

Usporedba komutiranih mreža-jako važno!

Komutacija kanala	Komutacija datagrama	Komutacija paketa virtualnim kanalima
 namjenski prijenosni put 	• ne rabi se namjenski prijenosni put	 ne rabi se namjenski prijenosni put
 kontinuirani prijenos 	 prijenos paketa 	 prijenos paketa
 isti prijenosni put za vrijeme trajanja veze 	 neovisni prijenos paketa različitim prijenosnim putovima 	 isti prijenosni put za slijed paketa
 kašnjenje zbog uspostavljanja	 nema kašnjenja zbog	 kašnjenje zbog uspostavljanja
veze	uspostavljanja veze	veze
 zanemarivo kašnjenje u	 znatno kašnjenje u prijenosu za	 znatno kašnjenje u prijenosu za
prijenosu	svaki paket	svaki paket
 nema kašnjenja zbog čekanja	 prisutno kašnjenje zbog čekanja u	 prisutno kašnjenje zbog čekanja u
u čvorovima	čvorovima	čvorovima
 fiksna širina pojasa za svaki	 paketi dijele raspoloživu širinu	 paketi dijele raspoloživu širinu
kanal	pojasa	pojasa
 u slučaju zagušenja u mreži	 zagušenje u mreži povećava	 zagušenje u mreži povećava
veza se ne uspostavlja	kašnjenje paketa	kašnjenje paketa
 nakon uspostavljanja poziva prenosi se samo korisna informacija 	 u svakom paketu su uz korisnu prisutne i upravljačke informacije 	 u svakom paketu su uz korisnu prisutne i upravljačke informacije

Usporedba komutiranih mreža

- za vrednovanje svojstava mreže s komutacijom kanala rabi se vjerojatnost blokiranja
 - vjerojatnost da pozivajući korisnik ne dobije vezu
 - ovisi o brojnim parametrima kao što su: topologija (građa) mreže, ulazni promet, kapaciteti grana, način usmjeravanja
 - vjerojatnost blokiranja i-te grane ovisi o broju kanala u grani i ulaznom prometu
 - razmatrajući uspostavljanje veze preko svih grana na putu od izvora do odredišta određuje se vjerojatnost blokiranja koja predstavlja kriterij kvalitete u ovoj vrsti mreža

Usporedba komutiranih mreža

- za vrednovanje svojstava mreže s komutacijom paketa rabi se kašnjenje paketa
 - srednja vrijednost vremena zadržavanja paketa u mreži
 - ovisi o brojnim parametrima kao što su: topologija (građa) mreže, ulazni promet, kapaciteti grana, način usmjeravanja
 - karakteristike i-te grane ovise o ulaznom prometu, prosječnoj duljini paketa te brzini prijenosa u grani
 - razmatrajući mrežu u cijelosti može se odrediti srednja vrijednost vremena kašnjenja paketa u mreži koja predstavlja kriterij kvalitete u ovoj vrsti mreža

u ovom dijelu texta kanal se n[‡]odnosi samo na fekv. podru je,

nego ima šire zna enje

- multipleksiranje (multiplexing)
 - postupak kojim se većem broju izvora i odredišta omogućava istodobna uporaba iste grane ili veze (*link*) u mreži
 - prijenosni medij, koji se rabi u određenoj grani, višestruko je iskorišten
 - omogućena je optimalna uporaba kapaciteta veze uz što manje preopterećenja i podopterećenja
 - višestruka uporaba prijenosnog medija omogućena je raspodjelom kapaciteta prijenosnog medija na nekoliko načina
 - raspodjela po frekvenciji
 - raspodjela po vremenu
 - raspodjela po kodu
 - raspodjela po valnoj duljini
 - statistička raspodjela, itd.

svakome korisniku njegov kod

🔷 (niz 0 i 1) po kojem se njemu dodijeljuje

odre eno frekv. ili vremensko

podru je

- načelo multipleksiranja
 - u uređaj za multipleksiranje (MUX) ulazi N grana
 - uređaj za multipleksiranje povezan je s uređajem za demultipleksiranje (DEMUX) preko zajedničkog prijenosnog medija, tj. jednom vezom od točke do točke
 - uređaj za multipleksiranje kombinira podatke iz N grana u jedan zajednički signal koji se šalje prema uređaju za demultipleksiranje
 - DEMUX izdvaja pojedine podatke i dostavlja ih na odgovarajući izlaz

- multipleksiranje po frekvenciji (FDM, Frequency Division Multiplexing)
 - raspoloživi pojas frekvencija B dijeli se na manje dijelove kanale
 - svakom paru, jednoj ulaznoj i jednoj izlaznoj grani, dodjeljuje se određeni frekvencijski kanal u koji se smještaju modulirani signali za prijenos podataka (SVakom korisniku B/N dio frekv. podru ja, gdje je N
 - između susjednih kanala ostavlja se zaštitni pojas frekvencija broj korisnika)
 - zaštitni pojas je potreban kako bi se spriječilo da sporedne spektralne komponente moduliranog signala, koje padaju izvan dodijeljenoga kanala, ometaju susjedne kanale
 - zaštitni pojasevi uzrokom su frekvencijske neučinkovitosti FDM-a
 - zaštitni se pojasevi ne koriste za prijenos podataka pa je time smanjen kapacitet prijenosa u FDM-sustavu
 - rabi se za radiodifuziju radijskih i televizijskih programa, satelitske komunikacije, prijenos analognog telefonskog signala govora
 - npr. u analognoj telefonskoj mreži potrebna je širina pojasa za prijenos govora od 3,1 kHz, za prijenos se dodjeljuje 4 kHz, a u kanalu širine pojasa 64 kHz može se prenositi 16 razgovora $4\chi16=64$

• multipleksiranje po frekvenciji najjednostavnije i prvo korišteno, N kanala naj eš e se koristi u analognom

∃kanali

Tehnike multipleksiranja

- multipleksiranje po vremenu (TDM, *Time Division Multiplexing*)
 - raspoloživo vrijeme dijeli se na vremenske okvire T (frame), a svaki
 okvir na manje vremenske odsječke jednakog trajanja odsje ci=korisnici=
 - svakom paru, jednoj ulaznoj i jednoj izlaznoj grani, dodjeljuje se određeni vremenski odsječak (time slot) unutar okvira (fixno)
 - okviri se ponavljaju, a odsječci ciklički izmjenjuju
 - dijelovi signala iz pojedinog izvora isprepleteni su u vremenu s dijelovima ostalih signala
 - vremenski slijed odsječaka namijenjen jednom paru ulazne i izlazne grane naziva se kanal
 - fiksna dodjela vremenskih odsječaka uzrokuje neučinkovitost TDM-a
 - vremenski odsječak dodijeljen pojedinom paru ulazne i izlazne grane ima fiksno trajanje, a trajanje vremenskog odsječka ne mijenja se bez obzira na to da li ima ili nema podataka za prijenos u tom odsječku
 - rabi se u prijenosu digitalnog telefonskog signala, prijenosu podataka, satelitskim komunikacijama, itd.

multipleksiranje po vremenu

- primjer multipleksiranja po vremenu s tri ulazne grane
 - vremenski odsječci (T/3) mogu predstavljati bitove ili oktete
 - svaki kanal može na zajedničkom prijenosnom putu koristiti samo 1/3 vremena izvornog kanala
 - brzina prijenosa (kapacitet) zajedničkog prijenosnog puta je tri puta veća od brzine svakoga ulaznog kanala (kako ne bi svaki kanal ekao-slao- ekao)

1 okvir, ponavlja se svakih T

- statističko multipleksiranje (SM, Statistical Multiplexing) poboljšanje TDM
 primjenjuje se na podatke koji su organizirani u pakete postupka
 - temelji se na činjenici da izvori spojeni na ulaz uređaja za multipleksiranje uglavnom ne šalju podatke stalno, a različiti izvori rijetko šalju podatke istodobno
 - vremenski odsječci se dinamički dodjeljuju pojedinim izvorima u skladu s količinom podataka koju izvor generira
 - paketi se prije odašiljanja pohranjuju u međuspremniku
 - kako nije unaprijed poznato kojem izvoru će biti pridružen koji vremenski odsječak neophodno je podacima pridružiti adresu kako bi se omogućila točna isporuka podataka
 - veći broj vremenskih odsječaka dodjeljuje se izvoru koji generira veći broj paketa
 - u TDM sustavu se skupu od N ulaznih grana pridružuje N vremenskih odsječaka u okviru
 - u SM sustavu se skupu od N ulaznih grana pridružuje M vremenskih odsječaka pri čemu je M < N

usporedba TDM i SM Prazni vremenski odsječak Adresa koja se TDM signal dodaje podacima Izvor 1 Izvor 2 T_2 T_3 T_4 MUX TDM- ili SM-signal Izvor 3 SM signal Izvor 4 N=4 ulazne grane Treći Četvrti Prvi ciklus ciklus ciklus

- usporedba TDM i SM; primjer, nije tol'ko važan slajd
 - na ulaz uređaja za multipleksiranje spojene su 4 grane (N = 4), a na svaku granu jedan izvor informacije
 - proces multipleksiranja započinje u trenutku t_0 , u trenutku t_1 na raspolaganju su paketi iz izvora 1 i 2, dok izvori 3 i 4 ne odašilju podatke, u intervalu od t_1 do t_2 niti jedan izvor nije generirao pakete, a u intervalu od t_2 do t_3 izvori 2 i 3 generiraju podatke
 - uređaj za multipleksiranje u TDM sustavu
 - podaci iz intervala od t_0 do t_1 iz izvora 1 i 2 smještaju se u odgovarajuće vremenske odsječke, a odsječci koji pripadaju izvorima 3 i 4 prenose se prazni (*empty slot*)
 - u intervalu od t_1 do t_2 svi odsječci se prenose prazni i nastavlja se multipleksiranje podataka iz intervala od t_2 do t_3
 - uređaj za multipleksiranje u SM sustavu
 - podaci iz intervala od t_0 do t_1 iz izvora 1 i 2 smještaju se u odgovarajuće vremenske odsječke, a iza njih smještaju podaci iz intervala od t_2 do t_3 jer u intervalu od t_1 do t_2 niti jedan izvor nije generirao pakete

- multipleksiranje po valnoj duljini (WDM, Wavelength Division
 Multiplexing); zapravo isto što i FDM, jer je lambda=c/f, samo druga jed nica
 - rabi se samo u optičkim komunikacijskim sustavima
 - svakom paru, jednoj ulaznoj i jednoj izlaznoj grani, dodjeljuje se određena valna duljina koja se naziva optički kanal
 - više različitih valnih duljina se multipleksira i prenosi jednim svjetlovodom
 - kako je valna duljina proporcionalna recipročnoj vrijednosti frekvencije, WDM je koncepcijski sličan FDM-u
 - raspoloživa širina pojasa u WDM-u iznosi nekoliko THz (zato je brža optika)
 - razvijena su dva sustava WDM-a: rijetki (Coarse CWDM) i gusti (Dense - DWDM)
 - kod CWDM se koristi 2 do 10 kanala po svjetlovodu s razmakom kanala od 5 do 50 nm manje kanala s ve im razmakom
 - kod DWDM se koristi 10 do 100 kanala po svjetlovodu s razmakom kanala od 0,1 do 5 nm više kanala s manjim razmakom

multipleksiranje po valnoj duljini

multipleksiranje po valnoj duljini

Komunikacijski protokol

- zadatak komunikacijske mreže je omogućiti razmjenu informacija između uređaja
 - ovaj zadatak može biti vrlo složen i zahtijeva visoki stupanj suradnje između uključenih strana
 - suradnja se postiže kroz obvezivanje strana uključenih u komunikaciju da se pridržavaju skupa pravila (protokola) za komunikaciju
 - složenost zadatka, koji treba ispuniti komunikacijska mreža, reducira se podjelom u podzadatke
 - svaki podzadatak treba biti implementiran neovisno o ostalima
 - svaki podzadatak treba pružiti usluge drugom podzadatku
 (kao kod programiranja, procedure i funkcije, a ne sve u gl.
 programu)

Komunikacijski protokol

- protokol
 - skup pravila i dogovora koji se rabe pri komunikaciji entiteta različitih sustava
 - entitet je aktivni dio sustava koji ima sposobnost slanja i prijama informacije
 - entiteti mogu biti uređaji, programska podrška, čvorovi pa čak i ljudi
 - kljušni elementi protokola su sintaksa, semantika i vrijeme
 - sintaksa
 - format, veličina i sadržaj poruke ili paketa
 - semantika
 - značenje poruke ili paketa, radnje koje treba poduzeti kao odgovor na prijam različitih poruka ili paketa
 - vrijeme
 - kada odbaciti poruku ili paket, ponovno ih odaslati, odustati od slanja, itd.

- protokoli mogu postati vrlo složeni
 - rješenje: organizacija mreže vertikalnom podjelom na slojeve (layer)
- slojevi mreže
 - sloj se sastoji od jednog ili više entiteta
 - entiteti, koji se nalaze na istom sloju ali na različitim uređajima, nazivaju se ravnopravni entiteti (peer entities)
 - svaki sloj provodi točno definirane funkcije
 - entitet N-tog sloja provodi funkcije sloja N
 - komunikacijom između ravnopravnih entiteta N-tog sloja upravlja odgovarajući protokol koji se naziva protokol sloja N
 - skup protokola koje rabi određeni sustav (jedan ili više protokola po sloju) naziva se protokolni složaj (protocol stack) (tj. stog)

- slojevi mreže
 - za svaki sloj definirane su
 - usluge sloja
 - sučelja sa susjednim slojevima
 - protokoli
 - pojedini sloj pruža uslugu višem sloju (viši sloj rabi uslugu nižeg sloja)
 ne opterećujući ga detaljima njezine realizacije
 - usluga sloja N je usluga koju sloj N pruža sloju N+1
 - za svaki sloj specificiraju se sučelja sa susjednim slojevima
 - sloj N koristi usluge sloja N-1 i pruža usluge sloju N+1
 - sučelje (*interface*) između slojeva može biti skup instrukcija i podataka (objekt), operacija ili usluga koju jedan sloj pruža višem sloju
 - protokol sloja N određuje komunikacijsko ponašanje dva entiteta koji se nalaze na istom sloju u različitim sustavima
 - dva procesa, dva računala, dva korisnika i sl.

- komunikacija između slojeva
 - komunikacija se ne provodi izravno između sloja N jednog sustava i sloja N drugog sustava
 - viši sloj prosljeđuje podatke i upravljačke informacije sloju neposredno ispod sebe dok se ne dođe do najnižeg sloja
 - najviši sloj je uvijek aplikacijski sloj koji predočava aplikacije i usluge za korisnike
 - najniži sloj je uvijek fizički sloj ispod kojeg se nalazi fizički medij kroz koji se stvarno provodi komunikacija
- arhitektura mreže
 - skup slojeva i protokola koji omogućavaju razmjenu informacije između entiteta
 - detalji realizacije i specifikacija sučelja nisu dio arhitekture mreže

izme u 2 sloja postoji su elje

- komunikacija između slojeva
 - jedinica podataka koju koristi protokol sloja N naziva se protokolna jedinica podataka sloja N (N-PDU, N-Protocol Data Unit)
 - N-PDU se sastoji od protokolne upravljačke informacije (PCI, Protocol Control Information) i jedinice podataka usluge (SDU, Service Data Unit)
 - PCI se naziva i zaglavlje (H, *Header*)

nije važno znati naziv, to je zaglavlje

- primjer: mreža s 5 slojeva
 - stvarna komunikacija označena je punom crtom, a prividna komunikacija isprekidanom crtom

zaglavlja smanjuju u inkovitost jer im informacija ide niže zaglavlja se dodaju i sve ih je više

primjer: Ivica šalje pismo Ani

- tok podataka u mreži s 5 slojeva ; primjer
 - poruka M generira se u sloju 5 na strani pošiljatelja i prenosi u sloj 4, koja dodaje zaglavlje H4
 - ukoliko je veličina paketa koja se može slati protokolom sloja 3 ograničena, u sloju 3 provodi se podjela dolazne poruke na dva dijela (M1 i M2), dodaju se zaglavlja H3 i sve se prosljeđuje sloju 2
 - sloj 2 dodaje vlastita zaglavlja i provodi prosljeđivanje sloju 1 koji fizički šalje podatke
 - na strani primatelja uklanjaju se zaglavlja uzlazno od sloja do sloja
 - ravnopravni slojevi virtualno komuniciraju u horizontalnom smjeru pomoću odgovarajućeg protokola

- projektiranje slojeva
 - funkcije koje mora obavljati svaki sloj
 - raspoznavanje pošiljatelja i primatelja
 - zbog postojanja više mogućih odredišta za određivanje s kim se želi komunicirati rabi se određeni oblik adresiranja
 - određivanje pravila prijenosa prijenosa informacije
 - treba odrediti da li radi o jednosmjernom, poludvosmjernom ili dvosmjernom prijenosu
 - protokolom treba odrediti broj logičkih kanala po vezi i njihov prioritet
 - funkcije koje može obavljati svaki sloj
 - upravljanje pogreškama (*error control*)
 - odnosi se na otkrivanje pogrešaka (error detection) i ispravljanje pogrešaka (error correction)
 - pogreške su slučajne, a događaju se pojedinačno (pogreške jednog bita 0 postaje 1 ili 1 postaje 0) ili u snopu (burst error), tj. skupini bita u slijedu

- održavanje ispravnog redoslijeda paketa (grupiranje)
 - u mrežama s komutacijom paketa može u prijenosu doći do promjene redoslijeda paketa
 - protokolom se mora predvidjeti mehanizam za uspostavljanje ispravnog redoslijeda paketa
- upravljanje tokom podataka (flow control) ;da ne do e do zagušenja
 - u svakom sloju može se javiti problem neusklađenosti brzine odašiljanja i prijama tako da primatelj može biti preopterećen velikim brojem paketa koje ne može obraditi
 - rješenje ovog problema postiže se uporabom upravljanja tokom podataka
 - primjeri upravljanja tokom podataka su slanje povratne poruke pošiljatelju o trenutnom stanju primatelja ili ograničenje brzine odašiljanja na unaprijed dogovorenu vrijednost
- upravljanje dužinom paketa
 - neki procesi ne mogu prihvatiti pakete velike dužine, a u nekim slučajevima je rad s kratkim paketima neučinkovit
 - rabe se mehanizmi rastavljanja i sastavljanja paketa
- multipleksiranje/demultipleksiranje
 - višestrukom uporabom raspoložive veze povećava se djelotvornost prijenosa
 Elektroničke komunikacije
 © FER, ZRK

su putevi virtualni)

- sloj može sloju iznad sebe ponuditi dvije različite vrste usluga
 - spojne usluge (connection-oriented service)
 - usluge s uspostavljanjem izravne veze
 - prijenosu informacije prethodi uspostavljanje veze kojim se određuje put kroz mrežu, a po završetku prijenosa podataka veza se prekida (tuneliranje,|ako
 - sve jedinice podataka prenose se na isti način
 - veza može biti: stvarna, virtualna, logička, itd.
 - primjer: telefonski razgovor (podižemo slušalicu, biramo broj, razgovaramo, spuštamo slušalicu)
 - nespojne usluge (connectionless service)
 - usluge bez uspostavljanja izravne veze
 - svaka jedinica podataka izmjenjuje se neovisno o ostalima, odnosno usmjerava i isporučuje na odredištu neovisno o ostalim jedinicama
 - ne jamči se isporuka podataka na odredištu (usluga je nepouzdana)
 - primjer: poštanski sustav (kada na istu adresu istodobno šaljemo dva pisma, svako pismo sadrži punu adresu odredišta i svako se neovisno usmjerava tako da se može dogoditi da jedno stigne prije drugog)

- s obzirom na potvrdu prijama usluge mogu biti
 - usluge s potvrdom prijama
 - pouzdane usluge jer omogućavaju prijenos bez gubitaka
 - pouzdanost se postiže time što primatelj mora potvrditi prijam jedinice podataka tako da pošiljatelj bude siguran da je ona stigla na odredište
 - potvrđivanje prijama zahtijeva dodatne kapacitete mreže i unosi kašnjenje
 - pouzdanost je jedan od parametara usluge koji djeluje na kvalitetu usluge (OPS) (nevažno)
 - usluge bez potvrde prijama
 - nepouzdane usluge u kojima odredište ne potvrđuje prijam jedinica podataka te je moguć njihov gubitak

- odnos između usluga i protokola
 - ova dva pojma se često izjednačavaju iako su jasno razgraničeni
 - usluga je skup osnovnih operacija koje niži sloj pruža višem sloju unutar jednog sustava
 - usluga se definira preko sučelja između slojeva pri čemu je niži sloj davatelj usluge, a viši sloj korisnik usluge
 - sloj provodi određene operacije za korisnika ali je način njihove provedbe korisniku potpuno skriven
 - protokol je skup pravila i dogovora koji vrijede u komunikaciji između istih slojeva različitih sustava
 - protokol se odnosi na realizaciju usluge i nije vidljiv korisniku usluge
 - protokoli se mogu promijeniti u skladu s potrebama ali pri tome mora biti ispunjen uvjet da usluge vidljive korisnicima ostanu nepromijenjene (korisnik ne smije uočiti promjenu protokola)

- prednosti slojevite arhitekture mreže
 - olakšano projektiranje mreža
 - mreža se projektira po slojevima pri čemu treba slijediti pravila odgovarajućeg protokola
 - olakšana rekonstrukcija mreže
 - u slučaju promjena unutar sloja od nove inačice sloja zahtijeva se samo da sloju iznad sebe ponudi isti skup usluga kao i ranije
- nedostaci slojevite arhitekture mreže
 - nedjelotvornost (zaglavlja)
 - svaki sloj mreže dodaje vlastite upravljačke informacije
 - ograničenost
 - sloj N ne može pristupiti slojevima ispod sloja N-1 (može samo onom do sebe)
 - redundancija (suvišnost)
 - neke funkcije (adresiranje, upravljanje tokom podataka, kontrola pogrešaka) ponavljaju se u svakom sloju

Referentni modeli

- referentni modeli slojevite arhitekture mreže
 - definiraju koncepte i postavljaju norme
 - utvrđuju pravila povezivanja sustava u mrežu te mreža međusobno
 - omogućavaju stvaranje otvorenih rješenja, neovisnih o proizvođaču opreme ili mrežnom operatoru
- osnovni modeli
 - referentni model OSI

 teorijski
 - referentni model povezivanja otvorenih sustava (OSI, Open System Interconnection)
 - normirala ga je Međunarodna organizacija za normizaciju (ISO, International Organisation for Standardisation)
 - referentni model TCP/IP, tzv. internetski model realni model
 - nosi naziv prema dvama najvažnijim protokolima koji se u modelu rabe: protokolu za upravljanje prijenosom (TCP, *Transmission Control Protocol*) i internetskom protokolu (IP, *Internet Protocol*)

Referentni model OSI VAŽNO

- referentni model OSI
 - sastoji se od sedam slojeva
 - ne predstavlja arhitekturu mreže jer se njime ne određuju stvarne usluge i protokoli za svaki sloj

- fizički sloj (Physical Layer)
 - omogućava prijenos signala (nestrukturiranog slijeda bita) u komunikacijskom kanalu
 - bavi se mehaničkim, električkim/ optičkim, funkcijskim i proceduralnim karakteristikama sučelja za pristup prijenosnom mediju
 - značajke prijenosnog medija nisu dio fizičkog sloja

7	Aplikacijski sloj
6	Prezentacijski sloj
5	Sloj sjednice
4	Transportni sloj
3	Mrežni sloj
2	Sloj podatkovne veze
1	Fizički sloj

- sloj podatkovne veze (Data Link Layer)
 - osigurava komunikaciju između dva izravno povezana čvora u mreži
 - omogućava pouzdani prijenos informacije podjelom ulaznih podataka na okvire podataka (data frame) koji se šalju jedan za drugim
 - ako je usluga pouzdana, primatelj
 potvrđuje prijam svakog okvira šaljući
 pošiljatelju okvir za potvrdu
 (acknowledgement frame)(može ali nemora)
 - osnovne funkcije
 - prijenos okvira
 - upravljanje pogreškama
 - upravljanje tokom podataka

- usluge koje sloj podatkovne veze pruža mrežnom sloju
 - nespojne usluge bez potvrde prijama (unacknowledged connectionless service)
 - izvor šalje neovisne okvire bez prethodnog uspostavljanja veze između izvora i odredišta, a odredište ne potvrđuje prijam okvira
 - rabi se za prijenos podataka u mrežama gdje je vjerojatnost pogreške bita mala (npr. LAN) te komunikaciju u stvarnom vremenu
 - nespojne usluge s potvrdom prijama (acknowledged connectionless service)
 - izvor šalje neovisne okvire bez prethodnog uspostavljanja veze između izvora i odredišta, a odredište potvrđuje prijam svakog okvira
 - pogodno za sustave s izraženim smetnjama (npr. radijske sustave)
 - spojne usluge s potvrdom prijama
 (acknowledged connection-oriented service)
 - prije razmjene podataka uspostavlja se veza između izvora i odredišta
 - rabi se u sustavima gdje je zahtijevana visoka pouzdanost

- mrežni sloj (Network Layer)
 - osigurava višim slojevima neovisnost o tehnologijama prijenosa i komutacije
 - sloj podatkovne veze osigurava vezu između dva izravno povezana (susjedna) čvora, ali ako se između dvaju čvorova pojavljuju međučvorovi mora se aktivirati mrežni sloj
 - osnovne funkcije
 - uspostava, održavanje i raskidanje veza
 - usmjeravanje jedinica podataka (npr. paketa) od izvora prema odredištu
 - upravljanje pogreškama
 - upravljanje tokom podataka
 - povezivanje heterogenih mreža

7	Aplikacijski sloj
6	Prezentacijski sloj
5	Sloj sjednice
4	Transportni sloj
3	Mrežni sloj
2	Sloj podatkovne veze
1	Fizički sloj

- transportni sloj (*Transport Layer*)
 - osigurava pouzdan i transparentan prijenos podataka između izvora i odredišta (s kraja na kraj mreže)
 - osnovne funkcije
 - definiranje transportnih usluga koje se nude sloju sjednice
 - npr. prijenos od točke do točke s ispravljanjem pogrešaka i održavanjem redoslijeda ili prijenos izoliranih poruka bez jamčenja redoslijeda pristizanja
 - upravljanje pogreškama s kraja na kraj
 - upravljanje tokovima podataka s kraja na kraj

SLOJEVI:

7	Aplikacijski sloj
6	Prezentacijski sloj
5	Sloj sjednice
4	Transportni sloj
3	Mrežni sloj
2	Sloj podatkovne veze
1	Fizički sloj

Elektroničke komunikacije

- sloj sjednice (Session Layer)
 - usklađuje sustave koji međusobno komuniciraju i omogućava korisnicima različitih sustava da međusobno uspostave sjednicu
 - osnovne funkcije
 - provodi uspostavljanje, upravljanje i raskidanje veza (sjednica) između aplikacija koje međusobno surađuju
 - nudi usluge kao što su:
 - upravljanje dijalogom između aplikacija (određivanje čiji je red za slanje poruka)
 - dodjela prava za komuniciranje (onemogućavanje sudionika da istodobno pokrenu istu operaciju)
 - sinkronizacija (provjeravanje dugih nizova podataka kako bi se u slučaju prekida komunikacije, komunikacija mogla nastaviti od točke prekida)

Elektroničke komunikacije

- prezentacijski sloj (Presentation Layer)
 - omogućava aplikacijskim procesima neovisnost o razlikama u načinu prikaza podataka (sintaksa)
 - osnovne funkcije
 - obrađuje apstraktne strukture podataka nastale kodiranjem, kompresijom i šifriranjem
 - omogućava promjenu formata podataka koji se prenose i time komunikaciju između sustava različitih svojstava

7	Aplikacijski sloj
6	Prezentacijski sloj
5	Sloj sjednice
4	Transportni sloj
3	Mrežni sloj
2	Sloj podatkovne veze
1	Fizički sloj

nikacije

- aplikacijski sloj (Application Layer)
 - omogućava korisnicima pristup okruženju OSI i stvara uvjete za realizaciju usluga
 - osnovne funkcije
 - sadrži skup protokola najčešće potrebnih korisnicima

7	Aplikacijski sloj
6	Prezentacijski sloj
5	Sloj sjednice
4	Transportni sloj
3	Mrežni sloj
2	Sloj podatkovne veze
1	Fizički sloj

- komunikacija između dva sustava
 - aplikacijski sloj jednog sustava poziva aplikacijski sloj drugog sustava koji treba primiti podatke i s njim uspostavlja ravnopravan odnos rabeći protokol sloja 7
 - protokol sloja 7 zahtijeva od sloja 6 potrebne usluge tako da sloj 6 uspostavlja ravnopravan odnos s drugim istim slojem uz pomoć protokola sloja 6
 - protokol sloja 6 zahtijeva potrebne usluge od sloja 5, itd., sve do fizičkog sloja
 - protokoli slojeva 4-7 protežu se izravno između ravnopravnih slojeva jednog i drugog sustava (boli ih briga za niže slojeve)
 - na slojevima 1-3 protokoli se lančano vežu jedan na drugi, tako da veza između odgovarajućih ravnopravnih slojeva nije izravna (1-3 me usobno komuniciraju i nisu toliko odvojeni jedni od drugih)

Jedinica podataka

VAŽAN SLAJD! Referentni model OSI

>> okviri + zaglavlje

komunikacija između dva sustava

- podjelu na slojeve moguće je primijeniti na korisničke i upravljačke informacije
 - prva četiri sloja obavljaju zadatak transporta korisničkih i upravljačkih informacija
 - slojevi 1 i 2 izvode operaciju prijenosa, a slojevi 3 i 4 operaciju komutacije
 - slojevi 5, 6 i 7 izvode operaciju procesiranja upravljačke informacije u komutacijskim čvorištima

- doprinosi modela OSI
 - uspostavio je jasne granice između usluge, sučelja i protokola
 - svaki sloj obavlja usluge za sloj iznad sebe, a definicija usluge odnosi se samo na ono što sloj treba obaviti (ne definira kako to obavlja)
 - sučelje ukazuje entitetima gornjeg sloja kako pristupiti donjem sloju, koje parametre rabiti i kakvi se rezultati mogu očekivati (ne ovisi o tome kako donji sloj radi)
 - protokoli određenog sloja odnose se samo na taj sloj, a sloj može rabiti bilo kakve protokole sve dok obavlja predviđene zadatke (obavlja usluge
 - općenit model koji se može rabiti za različite skupove protokola i za opisivanje različitih mreža
 - napretkom tehnologije stari protokoli se mogu jednostavno zamijeniti novim protokolima

- kritika modela OSI
 - model je izuzetno složen, a protokoli se teško implementiraju i nedjelotvorni su u radu
 - protokoli OSI pojavili su se prekasno kada su konkretni TCP/IP protokoli već bili u široj uporabi u akademskom okruženju
 - raspodjela funkcija slojeva je neujednačena tako da su sloj podatkovne veze i mrežni sloj jako opterećeni, a sloj sjednice i prezentacijski sloj gotovo prazni
 - u mrežnom sloju podržava spojne i nespojne usluge, ali u transportnom sloju podržava samo spojne usluge (transportnu uslugu vide i korisnici, koji u tom slučaju nemaju izbor vrste usluge)
 - neke funkcije (adresiranje, upravljanje tokom podataka, upravljanje pogreškama) ponavljaju se u svakom sloju

- referentni model TCP/IP
 - sastoji se od četiri sloja
 - odnosi se na mreže s komutacijom paketa gdje se svaki paket usmjerava zasebno (komutacija datagrama)
 - pokriva iste funkcije kao i referentni model OSI, ali se raspodjela funkcija po slojevima razlikuje u odnosu na referentni model OSI

- sloj pristupa mreži
 - nije posebno obrađen
 - može se temeljiti na bilo kojoj normi
 - uključuje funkcije fizičkog sloja i sloja podatkovne veze referentnog modela OSI
 - omogućava razmjenu podataka između krajnjeg čvora i mreže
 - protokol za povezivanje s mrežom nije definiran i mijenja se od čvora do čvora i od jedne mreže do druge

4	Aplikacijski sloj
3	Transportni sloj
2	Mrežni sloj
1	Sloj pristupa mreži

- mrežni/internetski sloj (Network/Internet Layer)
 - temelji se na internetskom protokolu (IP)
 - definira format paketa i adresiranje
 - usmjerava pakete prema odredištu ili u drugu mrežu
 - omogućava međusobno povezivanje mreža i podmreža (*internetworking*)
 - osim temeljnog protokola (IP) uključuje i upravljačke protokole, protokole za usmjeravanje, protokole za preslikavanje između IP adresa i fizičkih adresa sučelja

4	Aplikacijski sloj
3	Transportni sloj
2	Mrežni sloj
1	Sloj pristupa mreži

- transportni sloj
 - osigurava pouzdan i transparentan prijenos paketa između izvora i odredišta (s kraja na kraj mreže)
 - u njemu su definirana dva protokola koji se spajaju od kraja do kraja
 - protokol za upravljanje prijenosom (TCP)-
 - protokol za korisničke datagrame (UDP, User Datagram Protocol)
 - Nespojne i nepouzdane (u stvarnom vremenu)

> spojne(Transmission Control Protocol)

- protokol za upravljanje prijenosom (TCP) (komutacija kanala)
 - pouzdan protokol s uspostavljanjem izravne veze (spojna usluga) koji omogućava prijenos bez pogrešaka u nepromijenjenom redoslijedu
 - početni tok podataka dijeli se na zasebne poruke i svaka se prosljeđuje mrežnom sloju
 - upravlja tokom podataka tako da brzi pošiljatelj ne može zagušiti sporog primatelja velikim brojem poruka
- 4 Protokoli aplikacijskog sloja
 3 TCP UDP
 2 IP
 1 Sloj pristupa mreži
- protokol za korisničke datagrame (UDP, *User Datagram Protocol*)
 - nepouzdan protokol bez uspostavljanja izravne; ali zato koristimo raznorazne veze i očuvanja redoslijeda datagrama metode zaštite (npr. paritetni bitovi)
 - namijenjen je aplikacijama koje same (umjesto protokola TCP) uređuju pakete i upravljaju tokom podataka
 - rabi se za aplikacije gdje brzina isporuke i malo kašnjenje ima prednost pred točnošću (prijenos govora ili videosignala)

- aplikacijski sloj
 - sadrži aplikacijske protokole koji pružaju uslugu korisniku
 - korisnički protokoli:
 - SMTP (Simple Mail Transfer Protocol) za elektroničku poštu
 - HTTP (Hyper Text Transfer Protocol) za preuzimanje stranica s WWW (World Wide Web)
 - protokoli sustava:
 - DNS (Domain Name System) sustav za imenovanje domena radi preslikavanja imena računala u njegovu mrežnu adresu
 - SNMP (Simple Network Management Protocol) za upravljanje mrežom

4	Aplikacijski sloj
3	Transportni sloj
2	Mrežni sloj
1	Sloj pristupa mreži

nije toliko važno

Usporedba OSI i TCP/IP

 odnos referentnih modela TCP/IP i OSI s označenim načinom implementacije pojedinih slojeva

- doprinosi modela TCP/IP
 - jednostavan model
 - protokoli TCP i IP su pažljivo projektirani i izvrsno prilagođeni modelu
 - u transportnom sloju podržava spojne i nespojne usluge nudeći korisnicima izbor vrste usluge
- kritika modela TCP/IP
 - model nije povukao jasnu granicu između usluge, sučelja i protokola pa da su promjene unutar mreže, do kojih dolazi napretkom tehnologije, otežane
 - model nije dovoljno općenit
 - model je nastao nakon pojave odgovarajućih protokola, tako da je uklapanje modela u drugi skup protokola neizvedivo
 - fizički sloj i sloj podatkovne veze nisu dio modela što model čini nepotpunim

