

IPv4

- IPv4 (Internet Protocol) provides 32bit addresses for addressing computing devices that span the globe.
- These 32bit addresses are usually partitioned into four bytes and shown as decimal.(iwaki is 150.203.24.2)
- The IANA (Internet Assigned Numbers Authority) are in control of assigning these numbers.
- There are also some special addresses, these include:
- 0.0.0.0 This host (only source).
- 127.X.X.X loopback.
- 10.X.X.X private network
- 192.168.X.X private network
- 255.255.255.255 Broadcast on the local network.

Eric McCreath

Australian National University

IPv4

bit offset	0-3	4-7	8-13	14-15	16-18	19-31								
o	Version	Internet Header Length Differentiated Services Code Point Congestion Notification Total Length												
32		Identification Flags Fragment Offset												
64	Time to Live Protocol Header checksum													
96	Source IP Address													
128	Destination IP Address													
160	Options (if Header Length > 5)													
160														
or 192+		Data												

http://en.wikipedia.org/wiki/IPv4

Routing

IPv4 is used to move datagrams between hosts. Each host makes some routing decision based on the IP address. Basically the host looks at the IP address and uses a table to work out the best places to send the packet to.

2

TCP

TCP

- TCP(Transmission Control Protocol) provides a way of sending larger amounts of data to particular 'ports' on a host.
- TCP works by partitioning the data and sending it through the IP layer.
- TCP will resend missing packets and check that packets arrive in the correct order.

												T	CP	He	ade	r																		
Offsets	0										1								2								3							
Octet	Bit	0 1 2 3 4 5 6 7						8	9	10	11	13	2 13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31			
0	0	Source port Destination port																																
4	32	Sequence number																																
8	64	Acknowledgment number (if ACK set)																																
12	96	Data	off	set	Res	en 0	ved 0	N S	C W R	E C E	U R G	A C K	S	R	S Y N	F I N	Window Size																	
16	128	Checksum Urgent pointer (if URG set)																																
20	160	Options (if Data Offset > 5, padded at the end with "0" bytes if necessary)																																
•••	• • •	···																																

http://en.wikipedia.org/wiki/Transmission_Control_Protocol

UDP

UDP (User Datagram Protocol) provides an unreliable way of sending datagrams from a process on one host to a process on another host without requiring a connection to be set up (datagrams may be dropped, duplicated, or arrive out of order).

offset (bits)	0 - 15	16 - 31							
0	Source Port Number	Destination Port Number							
32	Length	Checksum							
64+	D	ata							

http://en.wikipedia.org/wiki/User_Datagram_Protocol