经典卷积神经网络结构

CAT DOG

CAT & DOG?

CNN EXPLAINER Learn Convolutional Neural Network (CNN) in your browser!

(64, 64, 3)

Red channel

Green

0.0 0.5 1.0

(62, 62, 10)

-2.93

0.00

relu_1_1

(62, 62, 10)

-7,88

0.00

7.88

(60, 60, 10)

relu_1_2

(60, 60, 10)

(30, 30, 10)

-13.85

0.00

13.85

-sport car

0.0 1.0

0.00

20,04

-20.04

- 一个卷积块为连续M 个卷积层和b个汇聚层
 - (M通常设置为2~5,b为0或1)。
- 一个卷积网络中可以堆叠N 个连续的卷积块, 然后在接着K 个全连接层
 - (N的取值区间比较大,比如1~100或者更大;K一般为0~2)。

典型的卷积网络

卷积神经网络

• CNN模型结构变迁

■ 针对移动端的轻量型网络

- LeNet-5 是一个非常成功的神经网络模型。
 - 基于 LeNet-5 的手写数字识别系统在 90 年代被美国很多银行使用,用来识别支票上面的手写数字。
 - LeNet-5 共有 7 层。

https://atcold.github.io/pytorch-Deep-Learning/zh/week03/03-2/

LeNet-5 卷积网络结构

https://atcold.github.io/pytorch-Deep-Learning/zh/week03/03-2/

2012 ILSVRC winner

- (top 5 error of 16% compared to runner-up with 26% error)
- 第一个现代深度卷积网络模型,首次使用了很多现代深度卷积网络的一些技术方法,
 - •比如使用GPU进行并行训练,采用了ReLU作为非线性激活函数,使用Dropout防止过拟合,使用数据增强
- 5个卷积层、3个汇聚层和3个全连接层

Inception网络

• 2014 ILSVRC winner (22层)

■ 参数: GoogLeNet: 4M VS AlexNet: 60M

■ 错误率: 6.7%

■ Inception网络是由有多个inception模块和少量的汇聚层堆叠而成。

Inception模块 v1

- 在Inception网络中,一个卷积层包含多个不同大小的卷积操作,称为Inception模块。
 - Inception模块同时使用1×1、3×3、5×5等不同大小的卷积核,并将得到的特征映射在深度上拼接(堆叠)起来作为输出特征映射。

Inception模块 v3

- 用多层的小卷积核来替换大的卷积核,以减少计算量和参数量。
 - 使用两层3x3的卷积来替换v1中的5x5的卷积
 - 使用连续的nx1和1xn来替换nxn的卷积。

图 1 左图为 5×5 卷积分解为两层 3×3 卷积,右图为 3×3 卷积分解为连续的 1×3 和 3×1 的卷积

Inception模块 v3

- 用多层的小卷积核来替换大的卷积核,以减少计算量和参数量。
 - 使用两层3x3的卷积来替换v1中的5x5的卷积
 - 使用连续的nx1和1xn来替换nxn的卷积。

Figure 5. Inception modules where each 5×5 convolution is replaced by two 3×3 convolution, as suggested by principle $\boxed{3}$ of Section $\boxed{2}$.

http://blog.esdn.net/xbinworld

Figure 6. Inception modules after the factorization of the $n\times n$ convolutions. In our proposed architecture, we chose n=7 for the 17×17 grid. (The filter sizes are picked using principle 3)

- 残差网络(Residual Network, ResNet)是通过给非线性的卷积层增加<mark>直连边</mark>的方式来提高信息的传播效率。
 - 假设在一个深度网络中,我们期望一个非线性单元(可以为一层或多层的卷积层)f(x,θ)去逼近一个目标函数为h(x)。

• 将目标函数拆分成两部分: 恒等函数和残差函数

$$h(\mathbf{x}) = \mathbf{x} + (h(\mathbf{x}) - \mathbf{x})$$
 恒等函数 — 残差函数 — $f(\mathbf{x}, \theta)$

• 2015 ILSVRC winner (152层)

■ 错误率: 3.57%

k: Growth Rate

表 2 常用卷积神经网络总结

Table 2 Summary of popular DNNs

方法	top-1 精度/%	top-5 精度/%	输入分辨率/像素	卷积核大小	卷积层深度	参数量
AlexNet	56. 6	80. 2	224 × 224	3,5,11	5	6.14×10^7
VGG-16	70. 3	89. 4	224×224	3	13	1.38×10^{8}
GoogLeNet	68. 9	89. 1	224×224	1,3,5,7	21	7.0×10^6
ResNet-50	75. 1	92. 3	224 × 224	1,3,7	49	2.55×10^7
MobileNetV2	72. 2	90. 5	224×224	3	20	3.4×10^6

注:表中的精度与特定数据集相关联。

图 1 神经网络结构搜索过程

Fig. 1 Illustration of neural architecture search

论文引用格式: Tang L, Li H X, Yan C Q, Zheng X W and Ji R R. 2021. Survey on neural architecture search. Journal of Image and Graphics, 26(02): 0245-0264(唐浪,李慧霞,颜晨倩,郑侠武,纪荣嵘. 2021. 深度神经网络结构搜索综述. 中国图象图形学报, 26(02): 0245-0264) [DOI:10.11834/jig. 200202]

常用CNN结构

表 5 不同 NAS 算法在 ImageNet 数据集的性能 Table 5 Performance of different NAS

methods on ImageNet dataset

方法	测试集 Top1 准确率/%	FLOPs/M	搜索时间/ GPU hours
NASNet-A	74	564	48 000
DARTS	73. 1	595	96
MnasNet	74	317	40 000
ChamNet-B	73.8	323	28 000
FBNet-C	74. 9	375	216
ProxylessNAS	74. 6	320	200
SinglePathNAS	74. 7	328	312
AutoSlim	74. 2	305	180
MobileNetV3-L	75. 2	219	_
OFA	76. 4	238	40
FBNetV2-F4	76	238	200

方法	top-1 精度/%		
AlexNet	56. 6		
VGG-16	70. 3		
GoogLeNet	68. 9		
ResNet-50	75. 1		
MobileNetV2	72. 2		

注:"-"表示未知。

总结

- LeNet,
- AlexNet,
- VGG,
- ResNet,
- DenseNet

Thank You!

Q&A