MA378 Chapter 1: Interpolation

§1.5 Wrap-up: Convergence & Runge's Example

Dr Niall Madden
January 2023

These slides are written by Niall Madden, and licensed under CC BY-SA 4.0

The celebrated Weierstrass approximation theorem states that, given f and a positive number ε , there is a polynomial p such that

$$\max_{x \in [a,b]} |f(x) - p(x)| := ||f - p||_{\infty} \le \varepsilon.$$

Now suppose that f is a continuous function on [a,b] and that $\{p_n\}_{n=0}^{\infty}$ is a sequence of polynomials that interpolate f at n+1 **equally spaced** points. One might be inclined to believe that

$$\lim_{n\to\infty} \|f-p_n\|_{\infty} = 0.$$

Another way of thinking about this is recalling the error bound:

$$|f(x) - p_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\pi_{n+1}(x)|$$

we might expect that

$$\lim_{n \to \infty} \max_{x \in [a,b]} \frac{M_{n+1}}{(n+1)!} |\pi_{n+1}(x)| = 0.$$

In order words, we might think that, in order to find an interpolating polynomial that is as accurate as we would like, we just need to choose large enough n.

$$W^{M+1} = \frac{x^{o} \in x \in x^{u}}{Wor} \mid f_{(M+1)}(x) \mid$$

And some times this is true. For example, suppose that a=-5, b=5, and $f(x)=\mathrm{e}^{\sin(x/2)}$. In Table 1 the errors for successive interpolants are shown.

Table: Errors in polynomial interpolants to $e^{\sin(x/2)}$ on [-5, 5]

n	$\ f-p_n\ _{\infty}$
2	1.27e-00
4	2.94e-01
6	8.39e-02
8	5.75e-02
16	1.07e-03

Polynomial interpolants to $e^{\sin(x/2)}$ on [-5,5], and their errors (right)

However, there is a famous example of a simple function that cannot be successfully interpolated in this manner

Runge's Example

$$f(x) = \frac{1}{1+x^2}$$
 on $[-5,5]$.

Errors for some n are shown below. Notice they *increase* with n.

n	$ f-p_n $
2	0.65
4	0.44
6	0.62
8	1.05
16	14.39
20	59.66
22	122.91
24	257.21

Polynomial interpolants to $\frac{1}{1+x^2}$ on [-5,5]

Here
$$f(x) = \frac{1}{1+x^2}$$

Converence depends on the analytic
Properties of f - that is, how $f(z)$
be haves for complex z .
But $f(i)$ & $f(-i)$ ove not
defined!

5.2 Where to from here?

So now it looks like polynomial interpolation is bad, at least on equidistant points.

However, Lab 1 might lead us to be more optimistic: we are able to find a set of points that made the approximation as good we wanted (until round-off error dominated).

Unfortunately, just because we have a good set of points for interpolating one particular function, it does not follow that that set is good for every continuous function: this is **Faber's**Theorem. This has often led numerical analysts to abandon the idea of interpolation by high-order polynomials completely.

However, there is a set of points that are useful, if f is smooth enough: the **Chebyshev** points of Lab 1. If you are interested, there read the essay **Inverse Yogiisms** by Lloyd N. (Nick) Trefethen, Notices AMS, Dec. 2016. To investigate this numerically in MATLAB, try exploring the Chebfun toolbox.

5.2 Where to from here?

The approach we will take is different. We say that if p_1 is the polynomial of degree 1 that interpolates the function f at the points x_0 and x_1 , with $h = x_1 - x_0$, then

$$\max_{x_0 \le x \le x_1} |f(x) - p_1(x)| \le \frac{1}{8} h^2 M_2.$$

So, assuming M_2 is bounded (which is reasonable), we can make p_1 as close to f as we would like by taking a small enough interval $[x_0, x_1]$. The next section of this module is devoted to seeing how this can be used in theory and practice.