PROBLEM SOLVING 10

CS340

Dynamic Programming: Rod Cutting, Subset Sum, Knapsack, Sequence Alignment

Sequence Alignment

- O_CURRANCE
- OCCURRENCE
- How do the 2 words align?
 - A gap must be added to ocurrance
 - An A must be replaced by an E

Gap and Mismatch Penalties

- δ is a gap penalty.
 - Each gap we insert incurs δ cost
 - $\delta > 0$
- α is a mismatch cost
 - For each pair of letters p,q, there is a cost $\alpha_{p,q}$ for lining up letters that do not match.
 - In general, $\alpha_{p,p} = 0$. No cost to exact matches.
- δ and α are external parameters that must be determined.

Which Alignment is Preferred?

- O_CURRANCE
- OCCURRENCE

VS

- O_CURR_ANCE
- OCCURRE NCE

- Which is better?
- The first is better if $\delta + \alpha_{ae} < 3\delta$

Optimal Alignment Truth

- In an optimal alignment M of 2 strings X and Y, at least one of the following is true:
 - (m, n) ∈ M
 - the mth position of X is not matched
 - the nth position of Y is not matched

```
• opt(i, j) = min[

\alpha_{xi yj} + opt(i - 1, j - 1)
\delta + opt(i - 1, j) \longrightarrow
\delta + opt(i, j - 1)
1
```

An example

S M	8 1				
M	6				
Α	4				
Н	2				
_	0 1_	2 -	4	6	8
	_	С	L	А	M

 α vowel/vowel = 1 α consonant/consonant = 1 α vowel/consonant = 3 δ = 2

MATCH
HAMS and
CLAM

H_AMS CLAM_

- How to cut steel rods into pieces in order to maximize the revenue you can get?
 - Each cut is free. Rod lengths are always an integral number of inches.
 - Input: A length n and table of prices p_i, for i = 1, 2, ..., n.
 - Output: The maximum revenue obtainable for rods whose lengths sum to n, computed as the sum of the prices for the individual rods.

Length i	1	2	3	4	5	6	7	8
Price p _i	1	5	8	9	10	17	17	20

Can determine optimal revenue r_n by taking the maximum of

- p_n : the price we get by not making a cut,
- $r_1 + r_{n-1}$: the maximum revenue from a rod of 1 inch and a rod of n-1 inches,
- $r_2 + r_{n-2}$: the maximum revenue from a rod of 2 inches and a rod of n-2 inches, ...
- $r_{n-1} + r_1$.

That is,

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$
.

 To solve the original problem, solve problems on smaller sizes. It is recursive in nature.

Length i	1	2	3	4	5	6	7	8
Price p _i	1	5	8	9	10	17	17	20

Dynamic-programming solution

- Instead of solving the same subproblems repeatedly, arrange to solve each subproblem just once.
- Save the solution to a subproblem in a table, and refer back to the table whenever we revisit the subproblem.
- "Store, don't recompute" → time-memory trade-off.
- Can turn an exponential-time solution into a polynomialtime solution.

Length i	1	2	3	4	5	6	7	8
Price p _i	1	5	8	9	10	17	17	20

Bottom-up

 Sort the subproblems by size and solve the smaller ones first. That way, when solving a subproblem, have already solved the smaller subproblems we need.

```
BOTTOM-UP-CUT-ROD(p, n)
 let r[0..n] be a new array
 r[0] = 0
 for j = 1 to n
     q = -\infty
     for i = 1 to j
         q = \max(q, p[i] + r[j - i])
     r[j] = q
 return r[n]
```

Length i	0	1	2	3	4	5	6	7	8
Price p _i	0	1	5	8	9	10	17	17	20
Revenue r _i	0	1	5	8	10	13	17	18	22
Cuts s _i	0	1	2	3	2	2	6	1	2

What is the time complexity?

Length i	0	1	2	3	4	5	6	7	8
Price p _i	0	1	5	8	9	10	17	17	20
Revenue r _i	0	1	5	8	10	13	17	18	22
Cuts s _i	0	1	2	3	2	2	6	1	2

Record optimal choices (locations of cuts) in addition to optimal revenues.

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n) let r[0..n] and s[0..n] be new arrays r[0] = 0 for j = 1 to n q = -\infty for i = 1 to j if q < p[i] + r[j - i] q = p[i] + r[j - i] s[j] = i r[j] = q return r and s
```

```
PRINT-CUT-ROD-SOLUTION(p, n)

(r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)

while n > 0

print s[n]

n = n - s[n]
```

Interview Questions

- Show, by means of a counterexample, that the following "greedy" strategy does not always determine an optimal way to cut rods.
 - Define the density of a rod of length i to be p_i/i, that is, its value per inch.
 - The greedy strategy for a rod of length n cuts off a first piece of length i, where 1 ≤ i ≤ n, having maximum density. It then continues by applying the greedy strategy to the remaining piece of length n - i.

Length i	1	2	3	4
price	1	20	33	36
Density	1	10	11	9

Subset Sum

- You have n items {1, 2,..., n}
- Each item has a weight {w₁, w₂, ..., w_n}
- You want add as many items as possible, without exceeding a maximum weight, W

How to solve this problem

- Items = $\{2, 1, 13, 4, 3, 8, 1\}$
- Total weight = 11

Optimal solution(s)?

How about a greedy solution?

- Bag will hold W weight, there are 3 items
- Sort by weight, largest to smallest...
 - W/2 + 1, W/2, W/2
- Sort by weight, smallest to largest
 - 1, W/2, W/2
- What is the greedy solution?
- What is the optimal solution?

Optimal Solution

- At the first step, the first item is added to the knapsack
- At each successive step, either
 - The next item is added to the knapsack
 - The next item is not added to the knapsack
- One of these choices will lead to the optimal solution
 - It doesn't matter which if we calculate them all
- There are N items that can be added. Max weight is W
 - How many distinct problems are there?

Optimal Solution

- There are actually only n x W distinct subproblems to consider!
- Hence: Create an n x W matrix
- Each entry corresponds to the OPT total value for the first i items subject to a total weight of W

An example

Items
$$w_i = \{2,3,4\}$$

N = 3
W = 6

An example

```
Items = \{1,2,2,4\}
N = 4
W = 6
```

4 (4)	0						
3 (2)	0						
2 (2)	0						
1 (1)	0						
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

W

What is the complexity

- What is the complexity of each computation?
- How many computations? (nxW)
- Is this polynomial time, based on the size of the input?
 - What is the size of the input?
 - What happens if W is large?
- W is not the representation of W
 - · W depends on how many bits are used to encode it
 - Think about a binary representation of W requiring 2^k bits
 - If we double W, the input size increases by 1 bit, but running time doubles
 - Running time is exponential in $k = O(n2^k)$
- What was another algorithm with time complexity not based on size of input?

The Knapsack Problem

- A lot like subset sum, but each item has a value in addition to a weight.
- Value vector {v₁, v₂, ..., v_n}
- We want to maximize value, while not exceeding maximum weight. Some items might be proportionately more valuable than others.

The Knapsack Problem

- Each cell = OPT(i,w)
- if $w < w_i$ then OPT(i,w) = OPT(i-1,w)
- else OPT(i,w) = MAX(OPT(i-1,w), v_i + OPT(i-1, w- w_i)

What's different?

The Knapsack Problem

```
Weights = {2,1, 2, 4}
Values = {4, 6, 1, 8}
N = 4
W = 6
```

4	0						
3	0						
2	0						
1	0						
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

W

Interview Questions

 How about a greedy "density-based" algorithm for knapsack? W=6

Weight	Value	Density
1	14	
2	22	
3	18	
4	36	
5	50	