Zero-order - Δ[A] = K Cakulus (Δt

$$A \rightarrow P$$
, rate= $K[A]$

Half-life, to

time for 1 of reactants to be used up - can calculate from integrated ate bu ~ depends upon

$$(a t = 0, [A] = [A]_o$$
 $(a t = t_2, [A] = \frac{1}{2}[A]_o$ $(a t = t_2, [A] = \frac{1}{2}[A]_o$

$$\Rightarrow \ln\left(\frac{\frac{1}{2}[A]_0}{[A]_0}\right) = -k + \nu_2$$

$$= \frac{1}{2} = \ln(\frac{12}{2}) = -0.693$$

=> \frac{1}{2} = \frac{0.693}{\times} \times \text{ |st order \times \tau doesn't depend on origin conc of A.

ex: if
$$K = 3.8 \times 10^{-3} \text{s}^{-1}$$
 $t_{\frac{1}{2}} = 0.693$ (1st order kinetics) $3.8 \times 10^{-3} \text{s}^{-1}$

6min.

2nd order

$$Q + = 0$$
, $[A] = [A]_0$ $\frac{1}{2} = kt + \frac{1}{2}$ $Q + \frac{1}{2} = kt + \frac{1}{2}$ $Q + \frac{1}{2}$ $Q + \frac{1}{2}$ $Q + \frac{1}{2}$ $Q + \frac{1}{$

Half-Life for a First-Order Reaction

(2nd order)

ex: 1.0 M 10s > 0.50M 20s 0.25M 40s 0.125M

Zero-ordu

ran show: $\frac{1}{2} = \frac{1}{2} = \frac{1}$