

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta071

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ Filiera\ Vocațională,\ profil\ Militar,\ Specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea\ profil\ Militar,\ Specializarea\ profil\ Militar,\ profil\ Militar,\ profil\ Militar,\ Specializarea\ profil\ Militar,\ profil\ Mi$

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze distanța de la punctul A(1, 2) la dreapta x + y = 1.
- (4p) b) Să se calculeze modulul numărului complex $z = \frac{1+i}{1-i}$.
- (4p) c) Să se calculeze $\sin \frac{\pi}{2} \cdot \cos \frac{\pi}{2}$.
- (4p) d) Să se calculeze $\sin x$, dacă $x \in (0,\pi)$ și $\cos x = \frac{1}{2}$.
- (2p) e) Să se determine ecuația planului care trece prin punctul A(1, 1, 1) și este paralel cu planul x y + 3z = 2.
- (2p) f) Să se scrie ecuația tangentei la cercul $x^2 + y^2 = 2$ în punctul T(1, 1).

SUBIECTUL II (30p)

1.

- (3p) a) Să se determine numărul funcțiilor surjective $f: \{1, 2, 3\} \rightarrow \{0, 1\}$.
- (3p) b) Se consideră funcțiile $f, g: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 2x + 1$, g(x) = x + 1. Să se calculeze f(g(x)), pentru $x \in \mathbf{R}$.
- (3p) c) Să se calculeze numărul submulțimilor cu trei elemente ale unei mulțimi cu cinci elemente.
- (3p) d) Să se calculeze $\hat{1} + \hat{3} + \hat{5} + ... + \hat{11}$ în grupul $(Z_{12}, +)$.
- (3p) e) Să se calculeze probabilitatea ca un element din \mathbb{Z}_{12} să fie soluție a ecuației $\hat{x}^2 = \hat{x}$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = e^x x 1$.
- (3p) a) Să se calculeze $\lim_{x\to\infty} f(x)$.
- (3p) b) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) c) Să se arate că funcția f este convexă.
- (3p) d) Să se arate că funcția f este strict crescătoare pe intervalul $[0, \infty)$.
- (3p) e) Să se arate că $e^x \ge x+1$, $\forall x \in \mathbb{R}$.

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ și mulțimea

 $G = \{A \in M_3(\mathbf{R}) \mid A \cdot A^T = I_3 \text{ si } \det(A) > 0 \}$, unde A^T este transpusa matricei A. Se stie că $\det(X \cdot Y) = \det(X) \cdot \det(Y)$, $\forall X, Y \in M_3(\mathbf{R})$.

- (4p) a) Să se arate că $I_3 \in G$ și $C \in G$.
- (4p) b) Să se arate că dacă, $A, B \in G$ atunci $A \cdot B \in G$.
- (4p) c) Să se arate că dacă $A \in G$, atunci matricea A este inversabilă şi $A^{-1} \in G$.
- (2p) d) Să se arate că det(A) = 1, $\forall A \in G$.
- (2p) e) Să se arate că pentru orice $A \in G$, $(A^T I_3) \cdot A = I_3 A$.
- (2p) | f) Să se arate că pentru orice $A \in G$, $det(A I_3) = 0$.
- (2p) g) Să se arate că pentru orice $A \in G$, există $X \in M_{3,1}(\mathbf{R}), X \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, astfel încât $A \cdot X = X$.

SUBIECTUL IV (20p)

Se consideră funcțiile $t_n: \mathbf{R} \to \mathbf{R}$, $f_n: \mathbf{R} \to \mathbf{R}$, unde $t_n(x) = (x^2 - 1)^n$ și $f_n(x) = t_n^{(n)}(x)$, $\forall n \in \mathbf{N}^*$.

Prin $u^{(n)}(x)$ am notat derivata de ordinul n a funcției $u: \mathbf{R} \to \mathbf{R}$ în punctul x.

- (4p) a) Să se calculeze $f_1(x)$, $x \in \mathbb{R}$.
- (4p) b) Să se calculeze $f_2'(x)$, $x \in \mathbb{R}$
- (4p) c) Să se calculeze $\int_{-1}^{1} f_1(x) dx$.
- (2p) d) Dacă $f_n(x) = a_n x^n + ... + a_0$, cu $a_i \in \mathbf{R}$, $\forall i \in \{0, 1, ..., n\}$ să se determine coeficientul a_n , $n \in \mathbf{N}^*$.
- (2p) e) Să se arate că $t_n^{(k)}(1) = t_n^{(k)}(-1) = 0, \forall k \in \{1, 2, ..., n-1\}.$
- (2p) **f**) Să se arate că dacă $g : \mathbf{R} \to \mathbf{R}$ este o funcție de n ori derivabilă pe \mathbf{R} , cu $g^{(n)}$ continuă pe \mathbf{R} , atunci $\int_{-1}^{1} f_n(x) \cdot g(x) \, dx = (-1)^n \int_{-1}^{1} (x^2 1)^n \cdot g^{(n)}(x) \, dx$.
- (2p) g) Să se arate că $\int_{-1}^{1} f_n(x) \cdot h(x) dx = 0$, pentru orice funcție polinomială $h : \mathbf{R} \to \mathbf{R}$ de grad mai mic sau egal cu n-1.