Math 140B: Homework 5

Merrick Qiu

Problem 1

Since F is equicontinuous, for all $\epsilon>0$ there exists $\delta>0$ such that for all points x,y where $|x-y|<\delta$

$$|f_c(x) - f_c(y)| < \epsilon$$

for all $c \in S$. Assume that f is not constant and choose x,y and $\epsilon > 0$ such that $|f_c(x) - f_c(y)| > \epsilon$ for some $c \in S$. Let $L < \frac{\delta}{|x-y|}$ and let p = Lx, p = Ly, and $k \in S$ such that $k \geq \frac{c}{L}$. Note that

$$|p - q| = L|x - y| < \delta$$

but that

$$|f(kp) - f(kq)| = |f(kLx) - f(kLy)| > |f(cx) - f(cy)| > \epsilon$$

which contradicts the equicontinuity of F. Thus f must be constant.

For every fixed n,

$$\int_{t}^{T} f_n(x) dx \le \left| \int_{t}^{T} f_n(x) dx \right| \le \int_{t}^{T} g(x) dx \le \int_{0}^{\infty} g(x) dx < \infty$$

so as $T \to \infty$ $\int_t^\infty f_n(x) dx$ converges. If we define h(t) to be

$$h_n(t) = \int_t^\infty f_n(x) dx$$
 $h(t) = \int_t^\infty f(x) dx$

then we just need to show that

$$\lim_{n \to \infty} \lim_{t \to 0} h_n(t) = \lim_{t \to 0} \lim_{n \to \infty} h_n(t) = \lim_{t \to 0} h(t)$$

which is true if $h_n \to h$ uniformly. Since $\int_0^\infty g(x) dx$ converges, we can choose $0 < a < b < \infty$ such that

$$\int_0^a g(x) \, dx < \frac{\epsilon}{2} \qquad \int_b^\infty g(x) \, dx < \frac{\epsilon}{2}$$

Since $f_n \to f$ uniformly on [a, b], there exists N such that for n > N,

$$|f_n(x) - f(x)| < \frac{\epsilon}{b-a}$$

Thus $h_n \to h$ converges uniformly since

$$|h_n(t) - h(t)| = \int_t^{\infty} |f_n(x) - f(x)| dx$$

$$\leq \int_t^a |f_n(x) - f(x)| dx + \int_a^b |f_n(x) - f(x)| dx + \int_b^{\infty} |f_n(x) - f(x)| dx$$

$$\leq 2 \int_0^a g(x) dx + \frac{\epsilon}{b - a} (b - a) + 2 \int_b^{\infty} g(x) dx$$

$$< 3\epsilon$$

Since $\{f_n\}$ is equicontinuious, for all $\epsilon>0$ there exists $\delta>0$ such that for all points x,y where $|x-y|<\delta$

$$|f_n(x) - f_n(y)| < \epsilon$$

for all n. Since $\{f_n\}$ converges pointwise there exists N such that,

$$|f_n(x) - f(x)| < \epsilon.$$

for a fixed x and for n > N. By the triangle inequality

$$|f_n(x) - f(y)| \le |f_n(x) - f_n(y)| + |f_n(y) - f(y)|$$

< 2ϵ

for all $|x-y|<\delta.$ Since ϵ was arbitrary, $\{f_n\}$ is uniformly convergent.

Since $\{f_n\}$ is uniformly bounded, there exists M such that $|f_n(x)| \leq M$ for all n and x. F_n is uniformly bounded as well since $|F_n(x)| \leq M(b-a)|$. For all $\epsilon > 0$, $|y-x| < \frac{\epsilon}{M}$ implies

$$|F_n(y) - F_n(x)| = \left| \int_x^y f_n(t) \right| < M|x - y| < \epsilon$$

so $\{f_n\}$ is equicontinuous. Thus by the Arzela-Ascoli theorem, $\{f_n\}$ is also sequentially compact.

For the backwards direction, by Arzela-Ascoli we have that closed, pointwise bounded, and equicontinuous implies S is sequentially compact.

For the forwards direction, suppose that S was not equicontinuous. Thus for some $\epsilon > 0$ and for all $\delta > 0$, there exists x, y and $f \in S$ such that $d(x, y) < \delta$ and $|f(x) - f(y)| \ge \epsilon$. Let x_n and y_n be sequences of point in K such that $d(x_n, y_n) < \frac{1}{n}$ and $|f_n(x) - f_n(y)| \ge \epsilon$ for a sequence (f_n) . No subsequence of (f_n) is equicontinuous, so no subsequence of (f_n) can converge uniformly, which contradicts the fact that S is compact.