

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta jaderná a fyzikálně inženýrská

Erratum k bakalářské práci

Název práce: Generativní modely dat popsané stromovou strukturou

Autor: Jakub Bureš

1. Třetí podmínka v definici 1.2.1:

Špatné znění: $\forall A_j$ disjunktní platí $P(\sum_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j)$ **Správné znění:** $\forall A_j \in \mathscr{A}$ disjunktní platí $P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j)$

2. Druhý bod věty 1.2.1:

Špatné znění: $P(\sum_{j=1}^{n} A_j) = \sum_{j=1}^{n} P(A_j)$

Správné znění: $\forall A_j \in \mathscr{A}$ disjunktní platí $P(\bigcup_{i=1}^n A_j) = \sum_{i=1}^n P(A_j)$

3. Věta 1.2.4:

Nejedná se o větu, ale jedná se o definici nezávislosti jevů.

4. Definice 1.2.3:

Špatné znění: Máme prostor (Ω, \mathcal{A}) , potom funkci $\mathbf{X} = (X_1, \dots, X_n) : (\Omega, \mathcal{A}) \mapsto$

 $(\mathbb{R}^n, \mathcal{B}_n)$, kde \mathcal{B}_n značí borelovskou σ -algrebru v \mathbb{R}^n , nazveme náhodnou veličinou.

Správné znění: Máme prostor (Ω, \mathscr{A}) , potom funkci $\mathbf{X} = (X_1, \dots, X_n) : (\Omega, \mathscr{A}) \to (\Omega, \mathscr{A})$ $(\mathbb{R}^n, \mathscr{B}_n)$, kde \mathscr{B}_n značí borelovskou σ -algrebru v \mathbb{R}^n a když $(\forall B \in \mathscr{B}_n) (\mathbf{X}^{-1}(B) \in \mathscr{A})$, nazveme náhodnou veličinou.

5. Definice 1.2.4:

Je zde chybně uvedeno, že hustota pravděpodobnosti musí být spojitá, což není pravda.

6. Doplněk k Větě 1.2.5 o transformaci náhodné veličiny:

Regulární zobrazení: Regulární zobrazení z vektorového prostoru do vektorového prostoru je takové zobrazení, jehož Jacobián existuje a má nenulovou hodnotu v každém bodě definičního oboru daného zobrazení a všechny jeho prvky jsou spojité funkce.

7. Rovnice (1.18), lepší značení v definici rozptylu:

Původní značení: $\mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2$

Lepší značení: $\mathbb{E}\left[X^2\right] - (\mathbb{E}\left[X\right])^2$

8. Rozptyl inverzního gamma rozdělení na str. 13:

Špatný tvar: $\mathbb{D}[X] = \frac{\beta^2}{(\alpha-1)^2(\alpha-2)^2}$, pro $\alpha > 2$ Správný tvar: $\mathbb{D}[X] = \frac{\beta^2}{(\alpha-1)^2(\alpha-2)}$, pro $\alpha > 2$

9. Poznámka u inverzního gamma rozdělení:

Špatný tvar: V textu budeme používat výraz invGamma(0, 0+), kde symbol 0+ značí číslo velmi blízké 0. Budeme tím rozumět hustotu ve tvaru...

Správný tvar: V textu budeme používat výraz invGamma(0,0+), kde symbol 0+ značí číslo velmi blízké 0. Budeme tím rozumět nevlastní hustotu ve tvaru...

Nevlastní hustoty se někdy používají jako apriorní hustoty, avšak pouze jako jako apriorní. Jejich integrál je roven $+\infty$.

10. Doplnění k rovnici (1.34):

Parametr α je rozptyl jedné složky vektorů parametrů θ .

11. Poznámka v definici divergence na str. 16:

Špatné znění: Jelikož divergence nemusí splňovat podmínku symetrie a trojúhelníkové nerovnosti, nejedná se tedy o metriku, nýbrž o semimetriku.

Správný tvar: Jelikož divergence nemusí splňovat podmínku symetrie a trojúhelníkové nerovnosti, nejedná se tedy o metriku.

Semimetrika totiž nesplňuje podmínku trojúhelníkovou nerovnosti, splňuje však podmínku symetrie.

12. Vztah (1.41):

Špatný tvar: $D_f(q||p) = \int q(x) f\left(\frac{q(x)}{p(x)}\right) dx$

Správný tvar: $D_f(q||p) = \int q(x) f\left(\frac{p(x)}{q(x)}\right) dx$

13. Odstavec pro KL-diveregenci na str. 16:

Špatné znění: Pro nás bude nezbytně nutná tzv. Kullback-Leiblerova divergence, kde za funkci f bereme přirozený logaritmus. Ten je konvexní funkcí, pro kterou platí podmínka $-\log 1 = 0.$

Správné znění: Pro nás bude nezbytně nutná tzv. Kullback-Leiblerova divergence, kde za funkci f bereme záporně vzatý přirozený logaritmus. Ten je konvexní funkcí, pro kterou platí podmínka $-\log 1 = 0$.

14. Rovnost (1.47):

Špatný tvar: $L(\mathbf{w}) = \mathbb{E}_q \left[\log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z}|\mathbf{w})} \right] = \mathbb{E}_q \left[\log \frac{p(\mathbf{y}|\mathbf{z})p(\mathbf{z})}{q(\mathbf{z}|\mathbf{w})} \right] = \mathbb{E}_q \left[\log p(\mathbf{y}|\mathbf{z}) \right] - \mathbb{E}_q \left[\log \frac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{w})} \right]$ Správný tvar: $L(\mathbf{w}) = \mathbb{E}_q \left[\log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z}|\mathbf{w})} \right] = \mathbb{E}_q \left[\log \frac{p(\mathbf{y}|\mathbf{z})p(\mathbf{z})}{q(\mathbf{z}|\mathbf{w})} \right] = \mathbb{E}_q \left[\log p(\mathbf{y}|\mathbf{z}) \right] + \mathbb{E}_q \left[\log \frac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{w})} \right]$

15. Třetí rovnost ve vztahu (1.49):

Špatný tvar: $-\mathbb{E}_q\left[\log p(\mathbf{y}|\mathbf{z})\right] + \mathbb{E}_q\left[\log \frac{q(\mathbf{z}|\mathbf{w})}{p(\mathbf{z}|\mathbf{y})}\right] + \mathbb{E}_q\left[\log p(\mathbf{y})\right]$

Správný tvar: $-\mathbb{E}_q \left[\log p(\mathbf{y}|\mathbf{z}) \right] + \mathbb{E}_q \left[\log \frac{q(\mathbf{z}|\mathbf{y})}{p(\mathbf{z})} \right] + \mathbb{E}_q \left[\log p(\mathbf{y}) \right]$

16. Doplnění k rovnosti (1.51):

Původní tvar: $p(\theta, \alpha|y_1, y_2) = \frac{p(\theta, \alpha, y_1, y_2)}{p(y_1, y_2)} = \frac{p(y_1|\theta)p(y_2|\theta)p(\theta)p(\alpha)}{p(y_1, y_2)}$ Lepší tvar: $p(\theta, \alpha|y_1, y_2) = \frac{p(\theta, \alpha, y_1, y_2)}{p(y_1, y_2)} = \frac{p(y_1, y_2|\theta, \alpha)p(\theta, \alpha)}{p(y_1, y_2)} = \frac{p(y_1|\theta)p(y_2|\theta)p(\theta)p(\alpha)}{p(y_1, y_2)}$

Lepsi tvar: $p(\theta, \alpha|y_1, y_2) = \frac{p(y_1, y_2)}{p(y_1, y_2)} = \frac{p(y_1, y_2)}{p(y_1, y_2)} = \frac{p(y_1, y_2)}{p(y_1, y_2)}$ Dále předpokládáme podmíněnou nezávislost y_1 a y_2 a nezávislost θ a α . Pro zkrácení zápisu navíc místo $p(y_1|\theta,\alpha)$ píšeme $p(y_1|\theta)$, obdobně pro y_2 .

17. Definice (1.3.2), chybné značení hrany:

Špatné znění: Cestou v grafu rozumíme takovou posloupnost vrcholů a hran $(v_0, h_1, v_1, \dots, h_t, v_t)$, kde vrcholy v_0, \ldots, v_t jsou navzájem různé vrcholy grafu G a pro každé $i = 1, 2, \ldots, t$ je

 $e_i = \{v_{i-1}, v_i\} \in H$.

Správné znění: Cestou v grafu rozumíme takovou posloupnost vrcholů a hran $(v_0, h_1, v_1, \dots, h_t, v_t)$, kde vrcholy v_0, \ldots, v_t jsou navzájem různé vrcholy grafu G a pro každé $i = 1, 2, \ldots, t$ je $h_i = \{v_{i-1}, v_i\} \in H$.

18. Vzorec (2.5), chybný index sumy:

Špatný tvar: $y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n = w_0 + \sum_{i=1}^{n-1} w_i x_i$

Správný tvar: $y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_n x_n = w_0 + \sum_{i=1}^n w_i x_i$

19. Značení ve vzorcích (2.7) - (2.9):

Původní tvar: a_{j}, z_{j}, a_{k} **Lepší tvar:** $a_{j}^{(1)}, z_{j}^{(1)}, a_{k}^{(2)}$

20. Druhá rovnost ve vztahu (2.16):

Špatný tvar: arg min_{θ} $\sum_{i=1}^{n} \log \int \mathcal{N} \left(f_{\theta}(z_{j}), \sigma^{2} \right) \cdot \mathcal{N} \left(0, 1 \right) dz_{j}$

Správný tvar: arg min_{θ} $\sum_{i=1}^{n} \log \sum_{j=1}^{n} \int \mathcal{N}\left(f_{\theta}(z_{j}), \sigma^{2}\right) \cdot \mathcal{N}\left(0, 1\right) dz_{j}$

21. Příklad 3.1.2, vzorec v předposlední větě v odstavci před rovnicí (3.3) neplatí:

Špatný tvar: Celkový počet datových záznamů v každé instanci množiny b je m, platí

tedy $\sum_{i=1}^{n} \sum_{j=1}^{N_x^{(i)}} x_j^{(i)} = m$.

Správný tvar: Čelkový počet datových záznamů v každé instanci množiny b je m.