# UQ on Two-Group, 2D Criticality Diffusion A simple problem for testing and learning

#### Paul Talbot

November 20, 2013

## 1 Introduction

While the eventual goal of my doctoral work is implementation of stochastic collocation and generalized polynomial chaos as a method of uncertainty quantification within the RAVEN framework in the greater MOOSE environment, it is useful to develop a "toy" problem of smaller dimension and simpler focus on which to develop algorithms. We intend to develop uncertainty quantification in a step-by-step process:

- 1. Develop a benchmarkable 2-group 2-dimensional criticality diffusion problem with nonlinearity in k-effective.
- 2. Increase nonlinearity by introducing delayed neutron precursors and material-temperature feedback.
- 3. Build a framework for non-intrusive uncertainty quantification on the diffusion criticality code.
- 4. Develop a Monte Carlo sampling algorithm for uncertainty propagation.
- 5. Develop a Stochastic Collocation sampling algorithm for uncertainty propagation with only uniform uncertainties.
- 6. Expand the Stochastic Collocation sampling algorithm to include Gaussian-normal uncertainties.
- 7. Develop a sparse grid method for sampling large numbers of uncertain parameters.

## 2 Diffusion Criticality Code

#### 2.1 Equations

$$-\nabla \cdot D\nabla \phi + \sigma_a \phi = \frac{1}{k} \nu \sigma_f \phi, \tag{1}$$

#### 2.2 1D-like Problem

The system in question is a two-dimensinoal reactor with a 25 cm reflector on either end, and two 50 cm materials between them. The top and bottom boundaries are reflectors, effectively creating a one-dimensional problem. The basic problem parameters are as follows:

| Material  | D  (cm) | $\sigma_a(~{\rm cm}^{-1})$ | $\nu \sigma_f (\mathrm{cm}^{-1})$ |
|-----------|---------|----------------------------|-----------------------------------|
| Core 1    | 0.65    | 0.12                       | 0.10                              |
| Core 2    | 0.75    | 0.10                       | 0.11                              |
| Reflector | 1.15    | 0.01                       | 0.00                              |



Figure 1: Problem Geometry

### 2.3 2D Quarter Core problem

The two-dimensional core is shown in Fig. 2.

# 3 Nonlinear Temperature Feedback

## 4 Monte Carlo Sampling

#### 4.1 Results

An example of sampling is introducing 30% uniform uncertainty in the absorption and fission cross sections. Using 3000 histories, we arrive at a response surface as shown in Fig. 3. Each black dot is a sampling point, and the black lines indicate the contours of k-eff as a function of changing cross sections. As expected, the highest k is found when the fission cross section is large and the absorption cross section low. Interestingly, the fission cross section has a more dominant effect as the absorption cross section increases, and vice versa.



Figure 2: core map



Figure 3: MC Sampling Results

- 5 Sampling Framework
- 6 Monte Carlo sampling
- 7 Simple Stochastic Collocation sampling
- 8 Mixed Stochastic Collocation<sup>3</sup>sampling
- 9 Sparse Grid Development