Lecture 5

Op Amp – Part 3

Inverting Adder

Consider v_1 first, and deactivate other (v_2, v_3, v_4) sources.

It is nothing but a non-inverting amplifier.

So,
$$v_{o1} = -\frac{R_f}{R_1} v_1$$

Similarly, if we active one source and deactivate others, we will get:

$$v_{o2}=-rac{R_f}{R_2}v_2$$
 , $v_{o3}=-rac{R_f}{R_3}v_3$, $v_{o4}=-rac{R_f}{R_4}v_4$

Now, using superposition principle,

$$v_o = v_{o1} + v_{o2} + v_{o3} + v_{o4}$$

So,
$$v_o = -\frac{R_f}{R_1}v_1 - \frac{R_f}{R_2}v_2 - \frac{R_f}{R_3}v_3 - \frac{R_f}{R_4}v_4$$

Or,
$$v_o = -(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3 + \frac{R_f}{R_4}v_4)$$

We can use this circuit to add any 'n' number of inputs!

Example

Implement the following function using op-amps:

$$v_0 = -(v_1 + 0 \cdot 5v_2 + v_3)$$

Solution:

Here,
$$R_f/R_1 = 1$$
, $R_f/R_2 = 0.5$, $R_f/R_3 = 1$

If
$$R_f = 1 \text{ k}\Omega$$
, $R_2 = 2 \text{ k}\Omega$, $R_3 = 1 \text{ k}\Omega$

Op Amp as Differentiator

Since v_+ is connected to ground, $v_+ = 0V$

Since there is negative feedback, from virtual short, $v_-=v_+=0V$

For the capacitor C,
$$\Rightarrow i_1 = C \frac{dv_C}{dt} = C \frac{d(v_i - v_-)}{dt} = C \frac{dv_i}{dt}$$

From Ohm's law for
$$R \Rightarrow i_2 = \frac{v_- - v_0}{R} = -\frac{v_o}{R}$$

Since ideal op-amp, $i_-=i_+=0$, so $i_1=i_2$

Review - Capacitor

$$v_{1} \xrightarrow{i_{1}} v_{2}$$

$$+ v_{C} - v_{C}$$

$$i_{1} = C \frac{dv_{C}}{dt} = C \frac{d(v_{1} - v_{2})}{dt}$$

$$\Rightarrow -\frac{v_o}{R} = C \frac{dv_i}{dt} \Rightarrow v_o = -RC \frac{dv_i}{dt} \text{ [Ans.]}$$

Op Amp as Integrator

Since v_+ is connected to ground, $v_+ = 0V$

Since there is negative feedback, from virtual short, $v_-=v_+=0V$

From Ohm's law for
$$R \Rightarrow i_1 = \frac{v_i - v_-}{R} = \frac{v_i}{R}$$

For the capacitor C,
$$\Rightarrow i_2 = C \frac{dv_C}{dt} = C \frac{d(v_- - v_o)}{dt} = -C \frac{dv_o}{dt}$$

Since ideal op-amp, $i_-=i_+=0$, so $i_1=i_2$

$$\Rightarrow \frac{v_i}{R} = -C \frac{dv_o}{dt}$$

$$= -RC \frac{dv_o}{dt}$$

$$\Rightarrow v_o = -\frac{1}{RC} \int v_i dt$$

Example

Observe the following Figure. If $v_i = 5\sin 6t$, Find the value of v_0 .

Solution:

This is a differentiator.

So,
$$v_o = -RC \frac{dv_i}{dt} = -1 \times 10^6 \times 1 \times 10^{-6} \times \frac{d(5\sin 6t)}{dt}$$

$$\Rightarrow v_o = -1 \times (5 \times 6\cos 6t) = -30\cos 6t \text{ [Ans.]}$$

Example

Analyze the circuit below to **find** an expression of f in terms of inputs x and y.

Solution:

$$v_{I1} = -\frac{dy}{dt}$$
; $v_{I3} = -\frac{1}{RC} \int x dt$; $v_{I2} = -v_{I1} = \frac{dy}{dt}$; $f = -(v_{I2} + v_{I3})$