Date de rendu: 07/10/2020

Devoir maison 2

1. On montre dans un premier temps que $S(\tau) \subset S(\sigma)$. Une première justification est qu'il serait sous optimal pour le joueur 2 de jouer une stratégie que le joueur 1 ne joue pas puisque le premier obtient un gain non nul uniquement s'il joue la même stratégie que le second. Formellement soit $k \in \{1, \ldots, N\}$ tel que $\sigma(k) = 0$, on montre qu'alors $\tau(k) = 0$. La fonction de paiement du joueur 2 pour le jeu mixte est donnée par

$$g_2(\sigma,\tau) = \sum_{i=1}^n \sum_{j=1}^n \sigma(i)\tau(j)\delta_{i,j} = \sum_{i=1}^n \sigma(i)\tau(i).$$

Supposons par l'absurde que $\tau(k) > 0$, soit $h \in \{1, ..., n\}$ tel que $\sigma(h) > 0$, on peut définir une nouvelle distribution de probabilité $\tilde{\tau}$ comme suit

$$\tilde{\tau}(l) = \begin{cases} \tau(l) & \text{si } l \notin \{k, h\} \\ 0 & \text{si } l = k \\ \tau(k) + \tau(j) & \text{si } l = j \end{cases}.$$

On a bien $\sum_{j=1}^n \tilde{\tau}(j) = \sum_{j=1}^n \tau(j) = 1$ par definition de $\tilde{\tau}$. Ainsi on obtient

$$g_2(\sigma,\tau) = \sum_{i=1}^n \sigma(i)\tau(i) < \sum_{i=1, i\neq j,k}^n \sigma(i)\tau(i) + \sigma(j)(\tau(j) + \tau(k)) = g_2(\sigma,\tilde{\tau}),$$

mais ceci contredit le fait que (σ, τ) soit un équilibre de Nash.

Avec les notations de l'énoncé on montre à présent l'inclusion $S(\sigma) \subset \{i \in I, \ x_i \text{ minimise } \|x_i - z\|^2\}$. D'une part on a

$$-\|x_i - z\|^2 = -\|x_i\|^2 - \|\sum_j \tau(j)y_j\|^2 + \langle x_i, \sum_j \tau(j)x_j \rangle$$

=
$$-\|x_i\|^2 + 2\sum_j \langle x_i, y_j \rangle + \|\sum_j \tau(j)y_j\|^2,$$

et on remarque que le dernier terme ne dépend pas de x_i . On a d'autre part

$$g_1(i,\tau) = \sum_j \tau(j)(-\|x_i - y_j\|^2)$$

$$= \sum_j -\tau(j)(\|x_i\|^2 + \|y_j\|^2 - 2\langle x_i, y_y \rangle)$$

$$= -\|x_i\|^2 + 2\sum_j \tau(j)\langle x_i, y_j \rangle - \sum_j \tau(j)\|y_j\|^2,$$

on remarque encore que le dernier terme est également indépendant de x_i . Ainsi on remarque que minimiser $||x_i - z||^2$ revient à maximiser $g_1(i, \tau)$ comme les parties dépendantes de x_i sont égales au signe près. Comme σ est un équilibre de Nash et que

$$g_1(\sigma,\tau) = \sum_{i \in I} \sigma(i) g_1(i,\tau),$$

on a $\sigma(i) > 0$ lorsque x_i minimise $||x_i - z||^2$.

2. Dons un premier temps, on a par inégalité triangulaire on a

$$||x_m - x_{N+1}|| \leq 2\varepsilon$$
,

aussi d'après la question précédente on a

$$S(\sigma_N) \subset \{i \in I, x_i \text{ minimise } ||x_i - z||^2\},$$

avec $z = x_{N+1} = \sum_{j=1}^{N} \tau(j) y_j$. Ainsi on obtient que

$$\{x_i, i \in S(\sigma_N)\} \subset B(z, 2\varepsilon),$$

et donc comme $z = x_{N+1} \in B(x^*, \varepsilon)$ on a par encore inégalité triangulaire,

$$\{x_i, i \in S(\sigma_N)\} \subset B(x^*, 3\varepsilon).$$

Puis, on obtient par les deux résultats précédents,

$$\{x_i, i \in S(\tau N)\} \subset \{x_i, i \in S(\sigma_N)\} \subset B(x^*, 3\varepsilon).$$

Enfin

$$x_{N+1} = \sum_{i \in I} \tau_N(i) y_i = \sum_{i \in S(\tau_N)} \tau_N(i) y_i,$$

et cette dernière somme est dans l'enveloppe convexe $Co(\{y_i, i \in S(\tau_N)\})$. De plus

$$Co(\{y_i, i \in S(\sigma_N)\}) \subset Co(\{\cup_{x_i} F(x_i), i \in S(\sigma_N)\}) \subset Co(\{\cup_z F(z), z \in B(x^*, 3\varepsilon)\}),$$

ainsi

$$x_{N+1} \in Co(\{\cup_z F(z), z \in B(x^*, 3\varepsilon)\}).$$

3. On va prouver que $x^* \in F(x^*)$. D'après la question précédente

$$x_{N+1} \in Co(\{\cup_z F(z), z \in B(x^*, 3\varepsilon)\}).$$

Comme x^* est un point d'accumulation on extrait une sous suite $(x_{\beta(k)})_{k\in\mathbb{N}}$ qui converge vers x^* . On pose $\varepsilon_k := \frac{1}{k}$, alors pour tout $k \in \mathbb{N}$ on a l'existence d'un N > 0 tel que pour tout $i \geq N$ on a

$$||x_{\beta(i)} - x^*|| \le \varepsilon_k.$$

On a donc que $x_{\beta(i+1)}$ respecte les conditions de la question précédente avec $x_N = x_{\beta(i)}$. On a convergence vers x^* des $x_{\beta(k)}$ et donc également de l'enveloppe convexe $Co(\{\cup_z F(z), z \in B(x^*, 3\varepsilon_k)\})$ par convergence de la boule $B(x^*, 3\varepsilon_k)$ vers le singleton $\{x^*\}$.