3.2

Una carica è distribuita all'interno di una sfera di raggio R con densità non uniforme $\rho(r) = c/r$ essendo c una costante.

Determinare le espressioni del campo elettrostatico E(x)e del potenziale V(r) per $0 \le r \le \infty$.

Formule utilizzate

Gauss: $\Phi(\vec{E}) = \oint \vec{E} \vec{u_n} d\Sigma$

Soluzione punto a

Gauss:
$$\Phi(\vec{E}) = \oint \vec{E} \vec{u_n} d\Sigma$$
 ma se $\vec{E} \parallel \vec{u_n} \to \vec{E} \vec{u_n} = E$

$$\Phi(\vec{E}) = \oint \vec{E} \vec{u_n} d\Sigma = \oint E d\Sigma$$
 ma E è costante lungo $d\Sigma$

$$\Phi(\vec{E}) = E \oint d\Sigma = E\Sigma \text{ con } \Sigma \text{ superfice sferica } \Sigma = 4\pi r^2$$

$$\Phi(\vec{E}) = E_r * 4\pi r^2 \text{ con anche } \phi = \frac{q_{int}}{\epsilon_0}$$
per $r \leq R$ (interno sfera)
$$4\pi r^2 E_{int}(x) = \frac{q_{int}(r)}{\epsilon_0}$$

$$\text{con } q_{int}(r) = \int_0^r \frac{c}{r} 4\pi r^2 dr = 2\pi c r^2$$

$$E_{int}(r) = \frac{C}{2\epsilon} \text{ costante}$$

per
$$r > R$$
 (estero sfera)
 $E_{est} = \frac{q}{4\pi\epsilon_0 r^2}$ con $q = 2\pi c R^2$
 $E_{est} = \frac{cR^2}{2\epsilon_0 r^2}$ $r(r \gg R) = \int_r^{\infty} E_{est} dr = \frac{cR^2}{2\epsilon_0 r}$
in particolare $V(R) = \frac{cR^2}{2\epsilon_0}$

Soluzione punto b

per
$$r \ll R$$

$$V(r) - V(R) = \int_r^R E_{int} dr = \frac{C}{2\epsilon_0} (R - r)$$

$$V(r) = \frac{c}{2\epsilon_0} (2R - r)$$
 al centro $V(0) = \frac{cR}{\epsilon_0}$