Electronic Circuits for Mechatronics (ELCT 609)

Spring 2021

Lecture 6: BJT Amplifiers Configurations

Course Instructor: Dr. Eman Azab

BJT Amplifier Configurations

Basic Configurations and their Characteristics

Contact: eman.azab@guc.edu.eg

Analysis of BJT Amplifiers

 Objective: Calculate the Voltage gain, Input Resistance and Output Resistance

Solution Steps:

- DC Analysis: Determine the DC operating Point (Deactivate AC signals & All External Capacitors impedances are considered open Circuit)
- 2. Calculate the small signal model parameters: g_m , r_{π}
- 3. Replace the BJT with its small signal model (DC sources are deactivated& All External Capacitors impedances are considered Short Circuit) (AC Analysis)
- 4. Analyze the circuit to calculate the voltage gain, Input and Output Resistances

- Objective: Calculate the voltage gain, Input and Output Resistances
 - Input terminal Base
 - Output Terminal Collector

Figure from Sedra/Smith, Copyright © 2010 by Oxford University Press, Inc.

Calculate the DC Current (DC Analysis) 1.

Calculate g_m and r_{π} 2.

3. AC Analysis: Draw the equivalent small signal model (Include r_o if given)

- 3. AC Analysis: Draw the equivalent small signal model (Include r_o if given)
- 4. Calculate the gain, input and output Resistance

Calculate the gain, input and output Resistance

$$A_{v} = \frac{v_{O}}{v_{sig}} = -g_{m}(r_{o} // R_{C} // R_{L}) \frac{R_{B} // r_{\pi}}{R_{B} // r_{\pi} + R_{sig}}$$

$$R_{\rm in} = R_{\rm B} // r_{\pi}$$

$$R_{out} = r_o // R_C // R_L$$

- Notes on Common Emitter Configuration:
 - Inverting Amplifier
 - Modulus of Gain is greater than one
 - High Input Resistance
 - High Output Resistance

- Objective: Calculate the voltage gain, Input and Output Resistances
 - Input terminal Emitter
 - Output Terminal Collector

Step 1: DC Analysis

Common Base Amplifier

Step 2 :Draw small signal model

Common Base Amplifier

Voltage gain (r_o is neglected)

$$A_{v} = \frac{v_{0}}{v_{sig}} = \frac{g_{m}(R_{C} // R_{L})}{1 + \frac{R_{S}}{(R_{E} // \frac{r_{\pi}}{1 + \beta})}}$$

Common Base Amplifier

Input and Output Resistance (r_o is neglected)

$$R_{in} = R_S + (R_E // \frac{r_{\pi}}{1 + \beta})$$

$$R_{out} = R_C // R_L$$

- Notes on Common Base Configuration:
 - Non-Inverting Amplifier
 - Gain is greater than unity
 - Low Input Resistance
 - High Output Resistance

- Objective: Calculate the voltage gain, Input and Output Resistances
 - Input terminal Base
 - Output Terminal Emitter

Step 1 and 2:

Voltage gain

$$A_{v} = \frac{v_{0}}{v_{sig}} = \frac{(1 + \beta) (r_{o} // R_{L})}{(r_{\pi} + (1 + \beta) (r_{o} // R_{L})) \left(1 + \frac{R_{sig}}{R_{B}}\right) + R_{sig}}$$

☐ Input and Output Resistance

$$R_{in} = R_B // (r_{\pi} + (1 + \beta)(r_o // R_L))$$

$$R_{out} = r_o // \left(\frac{r_{\pi} + (R_B // R_{sig})}{1 + \beta} \right)$$

- Notes on Common Collector Configuration:
 - Non-Inverting Amplifier
 - Gain is less than unity
 - Source Follower (Buffer)
 - High Input Resistance
 - Low Output Resistance

Exercise:

☐ Find the Voltage gain, input and Output Resistance

Figure from Sedra/Smith, Copyright © 2010 by Oxford University Press, Inc.

Course Instructor: Dr. Eman Azab Contact: eman.azab@guc.edu.eg