

GM6256

指纹平台微控制器

V1.2

2019-05-05

====== 免责声明======

本出版物中所述的器件应用信息及其他类似内容仅为您提供便利,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。深圳市汇顶科技股份有限公司(以下简称"Goodix")对这些信息不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。Goodix 对因这些信息及使用这些信息而引起的后果不承担任何责任。未经 Goodix 书面批准,不得将 Goodix 的产品用作生命维持系统中的关键组件。在 Goodix 知识产权保护下,不得暗中或以其他方式转让任何许可证。

目录

1.	产品	概述	4
	1.1	概述	4
	1.2	特性	4
2.	功能	详解	7
	2.1	芯片电路框图	7
	2.2	系统应用框图	8
	2.3	管脚说明	
	2.4	接口说明	
		2.4.1 SPI 接口	13
		2.4.2 I ² C 接口	
		2.4.3 UART 接口	13
	2.5	供电电源	
	2.6	上电时序	14
	2.7	参考原理图	16
	2.8	工作模式	16
		2.8.1 Active 模式	17
		2.8.2 Sleep 模式	17
		2.8.3 Deep Sleep 模式	17
3.	电气	参数	17
	3.1	极限电气参数	17
	3.2	推荐工作条件	18

	3.3	直流特性	18
	3.4	交流特性	21
	3.5	上电复位特性	21
	3.6	时钟电气特性	21
4.	封装		22
	4.1	封装示意图	22
	4.2	封装标识	23
5.	附录	一 安全模块概览	23
6.	修订 [·]	记录	24

1 产品概述

1.1 概述

GM6256 是一款集指纹快速匹配、低功耗以及安全功能的高性能 MCU((Microcontroller Unit),提升了产品的综合用户体验及安全级别。

GM6256 具有丰富的片上外设,支持 2 个 QSPI Master (其中一个为 Flash 控制器), 1 个 SPI Master, 1 个 SPI Slave 以及 1 个 I²C Master, 最多 3 个 UART。GM6256 最高工作主频达到 144MHz,在低功耗模式下工作频率可降低到 32kHz 以减少工作电流。极低的待机功耗也是GM6256 的主要特点,Deepsleep 模式电流可以达到 3uA,最多支持三个管脚唤醒和实时时钟定时唤醒。GM6256 采用 QFN60 封装,主要面向智能门锁市场。

GM6256 安全芯片通过了 ISCCC 中国信息安全认证中心 EAL4+安全认证,内嵌了对称加密 AES、HMAC-SHA256 和非对称 ECC/RSA 算法,真随机数模块,密钥管理,访问控制和电压、温度、光安全传感器。采用模数混合技术设计,内部集成多种功能的模拟模块,减少外围电路设计,有效降低板级系统的成本。

1.2 特性

CPU

- 。 完全支持 RV32I 基本指令集
- 。 完全支持 RV32C 标准扩展压缩指令集
- 。 完全支持 RV32M 内部集成乘法器除法器扩展指令集
- 。 完全支持 RV32F 单精度浮点扩展指令
- 。 特殊的扩展指令包括
 - 向后载入和存储

- 支持扩展乘加
- 支持扩展运算逻辑单元

• 片上存储

- ∘ 指令 ROM(IROM): 128KB
- 数据 ROM(DROM): 32KB
- 指令 RAM(IRAM): 128KB
- 数据 RAM(DRAM): 64KB
- 。 缓存 RAM(BRAM): 192KB
- o EFUSE: 4096bits

• 功能模块

- 片上图像匹配硬件加速算法模块,主要包括预处理算法、特征提取算法和匹配算法法
 - 模块内部包含 13 个硬件加速算子,软件串行方式调用
 - Command queue 队列方式调用算子
 - MOC(Match on chip)通过 Local bus 接口访问 buffer RAM
 - Command queue 命令队列执行完成可发送完成中断
- 。 支持 2 通道 DMA
- o 2个Timer
- 1 个 Watchdog
- 。 1个中断控制器
- o 1个RTC

- 安全模块(详细信息请参见附录一)
 - 。 支持 AES-128/192/256
 - 。 支持 HMAC-SHA256
 - 。 支持 ECC-256/RSA-2048
 - 。 支持真随机/伪随机,包含:
 - FRO 环振数字真随机源和模拟混沌开关电流真随机源
 - 数字随机数后处理单元
 - 。 光、电压、温度安全传感器
- 外设模块
 - 。 一个带 QSPI 接口的 Flash 控制器,最高通信速率为 48Mbps
 - 。 一路 QSPI Master,最高通信速率为 24Mbps
 - 。 一路 SPI Master,最高通信速率为 24Mbps
 - 。 一路 SPI Slave, 最高通信速率为 24Mbps
 - 。 最多三路 UART 接口,最高支持波特率为 115200 baud/s
 - 。 最多支持 45 个可配置 GPIO (全可作为中断输入,其中有两个只支持输入方向)
 - \circ 一路 I^2 C 主设备接口,最高通信速率为 400Kbps
 - 。 JTAG 调试口
- 模拟特性
 - 内部集成 48MHz 和 32kHz 振荡器
 - 。 支持外部 12MHz 和 32kHz 晶振输入
 - 。 集成电源管理模块

- 。 集成上电复位和掉电复位模块
- 。 集成安全传感器
- 。 集成开关电流随机数发生器
- 。 集成3路发光二极管驱动

2 功能详解

2.1 芯片电路框图

图 1 GM6256 电路框图

2.2 系统应用框图

图 2 GM6256 指纹门锁 MOC 应用系统框图

注:

- (1) GM6256+GF1208DL3应用系统框图只做参考,详细设计请参考原理图。
- (2) GF1208DL3 芯片基板内置 Touch KEY 电极,KEY_PAD 为连接 PIN 与对应 Touch 芯片相连。

2.3 管脚说明

图 3 GM6256 管脚示意图(顶部视图)

表 1 GM6256 管脚描述

管脚号	管脚名称	管脚类型	描述
1	OSC32_IN	I	32kHz 晶振输入
2	AVDD	P 3.3V 模拟电源	
3	3 VDDIO P IO 通信电平		IO 通信电平
4	UART0_RX	Ι	UARTO 接收数据口
4		I/O	通用 IO
	UART0_TX	0	UARTO 发送数据口
5		I/O	通用 IO
		0	带 PWM 控制的 LED 驱动口
6	GPIO_A	I/O	通用 IO

管脚号	管脚名称	管脚类型	描述
		0	带 PWM 控制的 LED 驱动口
7	CDIO D	I/O	通用 IO
7	GPIO_B	0	带 PWM 控制的 LED 驱动口
0	ADC DIO	I	保留
8	ADC_IN0	I/O	通用 IO
9	ADC INI	I	保留
9	ADC_IN1	I/O	通用 IO
10	ADC IN2	I	保留
10	ADC_IN2	I/O	通用 IO
11	ADC_IN3	I	保留
11	ADC_IN3	I/O	通用 IO
12	GND	S	数字地
12	CDIM1 CCO	0	SPI 主设备 1 片选 0
13	SPIM1_CS0	I/O	通用 IO
1.4	SPIM1_MOSI	I/O	SPI 主设备 1 IO 口 0
14		I/O	通用 IO
15	CDIM1 CLV	0	SPI 主设备 1 时钟口
13	SPIM1_CLK	I/O	通用 IO
16	(GDDA1 103		SPI 主设备 1 IO 口 3
10	SPIM1_IO3	I/O	通用 IO
17	CDIM1 IO2	I/O	SPI 主设备 1 IO 口 2
17	SPIM1_IO2	I/O	通用 IO
18	SPIM1_MISO	I/O	SPI 主设备 1 IO 口 1
10	SPIWI_WISO	I/O	通用 IO
19	SPIM1_CS1	О	SPI 主设备 1 片选 1
19	SPIMI_CS1	I/O	通用 IO
20	HADTI TV	О	UART1 发送数据口
	UART1_TX	I/O	通用 IO
21	IIADTI DV	I	UART1 接收数据口
21	UART1_RX	I/O	通用 IO
22	GPIO_C	I/O	通用 IO
23	GPIO_D	I/O	通用 IO

管脚号	管脚名称	管脚类型	描述
24	GD 4	I/O	I ² C 数据口
24	SDA	I/O	通用 IO
25	25 SCL		I ² C 时钟口
25	SCL	I/O	通用 IO
26	GPIO_E	I/O	通用 IO
27	TDI	I	JTAG 输入数据口
21	IDI	I	通用 IO (仅用于输入)
28	TCK	I	JTAG 时钟口
20	ICK	I	通用 IO (仅用于输入)
29	TMS	I	JTAG 模式选择
30	TDO	О	JTAG 数据输出
31	TRST	I	JTAG 复位口
32	GPIO_F	I/O	通用 IO
33	GPIO_G	I/O	通用 IO
	SPIS_MOSI	I/O	SPI 从设备 IO
34		I/O	通用 IO
		0	SPI 主设备 2 片选 0
		I/O	SPI 从设备 IO
35	SPIS_MISO	I/O	通用 IO
		0	SPI 主设备 2 时钟口
		I/O	SPI 从设备 IO
36	SPIS_IO2	I/O	通用 IO
		I/O	SPI 主设备 2 IO
		I/O	SPI 从设备 IO
37	SPIS_IO3	I/O	通用 IO
		I/O	SPI 主设备 2 IO
38	SPIM2_CS1	О	SPI 主设备 2 片选 1
30	SF 11V12_CS1	I/O	通用 IO
39	GPIO_H	I/O	通用 IO
		I	SPI 从设备时钟口
40	SPIS_CLK	I/O	通用 IO
		О	UART2 发送数据口

管脚号	管脚名称	管脚类型	描述
		I	SPI 从设备片选
41	SPIS_CS	I/O	通用 IO
		I	URAT2 接收数据口
42	GPIO_I	I/O	通用 IO
43	VDDIO	P	IO 电源
44	GPIO_J	I/O	通用 IO
45	SPIM0_IO3	I/O	SPI 主设备 0 IO
43	SPIMO_IOS	I/O	通用 IO
46	SPIM0_IO2	I/O	SPI 主设备 0 IO
40	SPINIO_IO2	I/O	通用 IO
47	CDD 40 CLV	О	SPI 主设备时钟口
47	SPIM0_CLK	I/O	通用 IO
48	40		SPI 主设备 0 IO
48	SPIM0_MISO	I/O	通用 IO
40	SPIM0_MOSI	I/O	SPI 主设备 0 IO
49		I/O	通用 IO
50	app to ag		SPI 主设备 0 片选
30	SPIM0_CS	I/O	通用 IO
<i>5</i> 1	ED INT	I	外部中断信号
51	FP_INT	I/O	通用 IO
50	WAKELID	I	外部唤醒信号
52	WAKEUP	I/O	通用 IO
53	DOWED EN	I/O	外部芯片电源使能开关
33	POWER_EN	I/O	通用 IO
54	/RST	I	外部复位
55	VEFUSE	P	EFUSE 的 2.5V 编程电源
56	DVDD11	P	1.1V 内核电源
57	OSC_OUT	0	12MHz 晶振输出
58	OSC_IN	I	12MHz 晶振输入
59	SAVDD	P	3.3V 电源输出
60	OSC32_OUT	0	32kHz 晶振输出
61	GND	G	系统地

注:

管脚类型:输入输出口(I/O),输入口(I),输出口(O),电源(P)以及地(G)。

2.4 接口说明

2.4.1 SPI 接口

GM6256支持1个带QSPI接口的Flash控制器接口、2个SPI master(其中一个支持QSPI)和一个SPI Slave (SPI Slave 与不支持QSPI的 SPI master 管脚复用)。其中Flash 控制器接口支持最高接口速度为48 MHz。

2.4.2 I²C 接口

GM6256 内部包含 1 个 I²C master 接口,支持 7bits/10bits 广播地址,最高速度 400Kbps。

2.4.3 UART 接口

GM6256 包含 3 个 UART 接口。支持常见波特率,最高支持 115200 baud/s。

2.5 供电电源

GM6256 采用单电源供电,供电电源的电压范围为 2.8-3.6V。GM6256 有两个内部电源,分别为 1.8V LDO 和 1.1V LDO。1.8V LDO 给芯片 IO 供电,需要外接 1uF 电容;1.1VLDO 给内核数字电路供电,需要外接 2.2uF 电容。在 Active 模式下,两种 LDO 的驱动能力强,耗电大,在睡眠模式下,两种 LDO 切换成低功耗模式,以节省功耗。

图 4 GM6256 电源拓扑图

注:

- (1) 芯片由 AVDD 单电源供电。
- (2) VDDIO 是 IO 通信电平,可以内部提供,也可以由外部提供。当 VDDIO 短接到 AVDD 时,内部 LDO18 会自动关闭,VDDIO 通信电平与 AVDD 一样。
- (3) DVDD11 是内核电源。
- (4) LDO18_STB、LDO11_STB 分别是 VDDIO、DVDD11 的是 Standby 电源。

2.6 上电时序

主控给 GM6256 模组上电时,上电时序如图 5 所示。

Power Up Sequence, Supply by AVDD, VDDIO not short with AVDD

Power Up Sequence, Supply by AVDD, VDDIO short with AVDD

图 5 GM6256 上电时序图

2.7 参考原理图

图 6 GM6256 参考原理图(门锁应用,以"GF1208DL1+GM6256+BS83A02A"为例)

2.8 工作模式

图 7 工作模式转换图

GM6256 支持的工作模式有 Active 模式、Sleep 模式和 Deep Sleep 模式。

GM6256 支持 Active 模式和 Sleep 模式的切换, Sleep 模式的进入和唤醒都由 CPU(软件) 控制。当 GM6256 进入待机状态时(软件触发),芯片进入 Deep sleep 模式,从而芯片的功耗 消耗达到最低。当芯片收到外部唤醒信号(IO),就能被唤醒并进入 Active 模式。

2.8.1 Active 模式

Active 模式为芯片的正常工作模式。在此模式下, GM6256 保持正常供电, CPU 正常运行, 各个功能模块根据应用需求处于工作状态或者门控状态。

2.8.2 Sleep 模式

在此模式下, GM6256 保持正常供电, CPU 处于休眠状态, 所有外设皆能继续运行, 并且 可以通过中断/事件唤醒 CPU。软件可配置外设时钟源为低速时钟源,也可关闭部分外设的时 钟,以降低功耗。

2.8.3 Deep Sleep 模式

在此模式下,GM6256 数字电路和模拟电路大多处于掉电或者关闭状态,芯片消耗超低功 耗。Deep sleep 模式提供最低待机功耗,只支持数字 IO 唤醒或者 RTC 实时时钟模块唤醒,唤 醒后直接从 Boot Rom 启动或者直接跳转到 IRAM 执行指令。

电气参数 3

3.1 极限电气参数

参数

IO 口输入电压

最小值 最大值 单位 芯片供电电压 V -0.3 4

4

表 2 GM6256 极限电气参数

符号

VIN

VDD-VSS

V

-0.3

符号	参数	最小值	最大值	单位
VEFUSE	EFUSE 烧写电压	-0.3	3	V
T_A	工作温度范围	-40	+85	°C
T_{STG}	存储温度范围	-40	+125	°C
$T_{\rm j}$	最大结温	-	+125	°C
V	HBM (人体模型)	-	±4	kV
V_{ESD}	CDM (带电器件模型)	-	±500	V

注:

- (1) 超出极限工作条件可能会对芯片造成永久性损坏;
- (2) 表中仅是芯片工作所能承受的最大极限值,并不表明在上述或任何其他超出极值的情况下,芯片功能一定可以正常运行;
- (3) 若长时间处于极限工作条件,芯片可靠性可能会受到影响。

3.2 推荐工作条件

表 3 GM6256 推荐工作条件

符号	参数	最小值	典型值	最大值	单位
AVDD	芯片供电电压	2.8	3.3	3.6	V
VDDIO	IO 供电电压	1.8	3.3	3.6	V
T _A	工作温度范围	-40	+25	+85	°C

3.3 直流特性

工作条件: AVDD = 3.3V,VDDIO = 3.3V,环境温度 25°C(如无特别注明,以下数据默 认此条件下测得)

表 4 GM6256 直流特性参数

符号	参数	条件	最小值	典型值	最大值	单位
I _{deep sleep}	Deep sleep	 CORE-VDD=0.9V RC32K AON 	-	3	-	uA

符号	参数	条件	最小值	典型值	最大值	单位
	模式电流	1. CORE-VDD=0.9V 2. RC32K 3. AON、IRAM0 1. CORE-VDD=0.9V 2. RC32K 3. AON、IRAM	-	14	-	
$I_{ m sleep}$	Sleep 模式电流	1. CORE-VDD=0.9V 2. RC32K 3. CPU(32kHz)、AON、IRAM0、DRAM	-	2	/-	mA
		1. CORE-VDD=1.1V 2. RC32K、RC48M、PLL 3. CPU(48MHz)、AON、SRAM 1. CORE-VDD=1.1V 2. RC32K、RC48M、PLL 3. CPU(48MHz)、AON、SRAM 4. 外设时钟打开	-	9 20		mA
$I_{ m active}$	工作模式电流	1. CORE-VDD=1.1V 2. RC32K、RC48M、PLL 3. CPU(128MHz)、AON、SRAM 4. 外设时钟打开		27	-	mA
		 CORE-VDD=1.1V RC32K、RC48M、PLL CPU(128MHz)、AON、SRAM 外设时钟打开 MOC 全速运行 		-	45	mA
V _{OL}	低电平电 压输出值	VDDIO=3.3V	-	-	0.4	
V _{OH}	高电平电 压输出值	I _{IO} =2 mA	-	2.8	-	
V _{OL}	低电平电 压输出值	VDDIO=3.3V	-	-	0.4	
V _{OH}	高电平电 压输出值	I _{IO} =4 mA	-	2.9	-	***
V _{OL}	低电平电 压输出值	VDDIO=3.3V	-	-	0.4	V
V_{OH}	高电平电 压输出值	I _{IO} =8 mA	-	3.0	-	
V _{OL}	低电平电 压输出值	VDDIO=3.3V	-	-	0.4	
V _{OH}	高电平电 压输出值	I _{IO} =12 mA	-	3.1	-	

符号	参数	条件	最小值	典型值	最大值	单位
R_{PU}	内部上拉	VDDIO=3.3V	_	12	_	kΩ
10	电阻					
R_{PD}	内部下拉	VDDIO=3.3V	-	10	_	kΩ
	电阻					
	低电平抽					
I_{OL}	取电流			4		
(@0.2VDDIO)	(GPIO 灌		-		-	
	电流)	VDDIO=3.3V				
	高电平输	2 mA I/O			7 <	
I_{OH}	出电流			5		
(@0.8VDDIO)	(GPIO 拉		-	5	-	
	电流)			/ <		
	低电平抽					
I_{OL}	取电流		,			
(@0.2VDDIO)	(GPIO 灌	X	-	8	-	
	电流)	VDDIO=3.3V				
	高电平输	4 mA I/O	1			
I_{OH}	出电流			10		
(@0.8VDDIO)	(GPIO 拉		-	10	-	
	电流)					mA
	低电平抽					
I _{OL}	取电流					
(@0.2VDDIO)	(GPIO 灌		-	15	-	
	电流)	VDDIO=3.3V				
	高电平输	8 mA I/O				
I _{OH}	出电流			4.0		
(@0.8VDDIO)	(GPIO 拉		-	18	-	
	电流)					
	低电平抽					
I_{OL}	取电流					
(@0.2VDDIO)	(GPIO 灌	VDDIO=3.3V	-	22	-	
	电流)	12 mA I/O				
I _{OH}	高电平输			25		
(@0.8VDDIO)	出电流		-	27	-	

符号	参数	条件	最小值	典型值	最大值	单位
	(GPIO 拉					
	电流)					

3.4 交流特性

表 5 GM6256 交流特性参数

符号	参数	条件	最小值	典型值	最大值	单位
V _{RST}	Reset pin 复位电平	-	- /-	9	0.3	V
T_{RST}	Reset pin 最短复位时间要求	-	-	20	-	us
$T_{\rm r}$	GPIO 反转上升沿	VDDIO=3.3V	4	-) '	10	ns

3.5 上电复位特性

表 6 GM6256 复位特性参数

符号	参数	最小值	典型值	最大值	单位
V_{POR}	上电复位阈值	2.2	2.3	2.4	V
V_{PDR}	掉电复位阈值	2.1	2.2	2.3	V
T_{POR}	复位延迟时间	-	4	-	ms

3.6 时钟电气特性

工作条件: AVDD = 3.3V, VDDIO = 3.3V, 环境温度 25℃

表7内部高速时钟(RC48)特性

符号	参数	条件	最小值	典型值	最大值	单位
$f_{ m HSI}$	RC48 频率	After Coarse Trim	47.04	48	48.96	MHz
Duty	振荡器占空比	-	45	50	55	%
т	振荡器工作电流	-	-	220	-	uA
I _{DDHSI}	振荡器暂停电流	-	-	0.1	-	uA
t_{SUHSI}	振荡器启动时间	-	-	2	-	us

表 8 内部低速时钟(RC32K)特性

符号	参数	条件	最小值	典型值	最大值	单位
f_{LSI}	RC32K 频率	After Coarse Trim	31.4	32	32.6	kHz
I_{DDHSI}	振荡器工作电流	AVDD=3.3V, T _A =25°C	-	0.1	-	uA

4 封装

4.1 封装示意图

Bottom View

图 8 GM6256 封装示意图

Pin 1 Corner

4.2 封装标识

同一批次产品具有相同的封装标识(Marking)信息,详细信息定义如下。

图 9 封装片示意图 (顶部视图)

5 附录一 安全模块概览

安全功能	安全特性	参考标准
对称算法 AES 协处理器	支持 AES128/192/256,ECB/CBC,防 SPA/ DPA 攻击设计	FIPS-197, NIST800-38A
摘要算法 SHA 协处理器	支持 HMAC-SHA256 算法	FIPS180-3
随机数发生器	支持真随机数	NIST800-22,AIS31-P2/20-K3
週	支持伪随机数	AIS20-K3
非对称公钥 PKE 协处理器	ECC, 256 bits	FIPS186-3 curve
非对你公钥 PKE 协处理益	RSA, 2048 bits	
密钥生成和管理	私钥安全存储、One-Time-Password 会 话密钥/认证密钥	
数字证书	PKI 证书体系	
存储器访问权限保护机制	支持安全访问方式和权限	
存储器数据加密,总线加扰	AES 加密	
存储器固件、数据完整性保护 校验	签名/验签, HMAC 认证	
通信过程中支持建立 TLS 安	采用会话密钥,保证每次建立安全通	
全通道保护机制	道的加密传输密钥是唯一的	
测试端口保护	交付用户后测试模式关闭/不可逆	
Secure Boot	在程序执行前,Boot 程序对 Flash 程序验签/校验	
安全传感器	电压检测/温度检测/光检测	模拟传感器实现

安全功能	安全特性	参考标准	
非对称算法防 DPA/EMA/FA/DFA 攻击设计	安全签名、验签 • 安全密钥交换 • 安全非对称加密/解密	对应安全 TLS SW stack	

6 修订记录

文件版本	修改时间	修订	
V0.1	2018-06-14	初版	
V0.2	2018-07-26	更新原理图	
V0.3	2018-11-15	更新原理图 更新管脚示意图以及管脚定义 更改封装示意图 更新封装标识 更新部分直流电气参数	
V1.0	2019-01-10	更新原理图和门锁 MOC 应用框图 更新概述部分描述	
V1.1	2019-03-15 删除表 2 中"IO 输入输出电流" 部分编辑优化		
V1.2	2019-05-05	更新原理图 删除 USB 接口相关描述 删除 ADC 相关描述 更新 RC48 频率最大值和最小值	