

Ayudantía 8 - Funciones y Cardinalidad

26 de abril de 2024

Martín Atria, Paula Grune, Caetano Borges

Resumen

Función

Sea $f \subseteq A \times B$ diremos que f es una función de A en B si dado cualquier elemento $\forall a \in A \exists b \in B$ tal que:

$$afb \land afc \Longrightarrow b = c$$

Sea $f: A \to B$. Diremos que f es

- Inyectiva si la función es uno a uno, esto es $\forall x, y \in A$ se tiene que $f(x) = f(y) \Longrightarrow x = y$.
- Sobreyectiva si $\forall b \in B. \exists a \in A \text{ tal que } b = f(a)$
- Biyectiva si es inyectiva y sobreyectiva a la vez.

Función invertible Dada una función f de A en B, diremos que f es invertible si su relación inversa f^{-1} es una función de B en A.

Composición de funciones Dadas relaciones R de A en B y S de B en C, la composición de R y S es una relación de A en C definida como

$$S \circ R = \{(a, c) \in A \times C \mid \exists b \in B \text{ tal que } aRb \land bSc\}$$

Principio del palomar Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m > n, la función f no puede ser inyectiva. Es decir, necesariamente existirán $x, y \in \mathbb{N}_m$ tales que $x \neq y$, pero f(x) = f(y).

Equinumeroso Sean A y B dos conjuntos cualesquiera. Diremos que A es equinumeroso con B (o que A tiene el mismo tamaño que B) si existe una función biyectiva $f:A\to B$. Lo denotamos como

 $A \approx B$

Video: Les dejamos este video que puede servirles para entender numerabilidad AQUI :)

1. Funciones

Sean A, B y C subconjuntos de \mathbb{N} . Diremos que una función $f: A \to B$ es creciente si dados $x, y \in A$ tales que x < y, se tiene que f(x) < f(y).

- 1. Demuestre que si f es creciente, entonces es inyectiva.
- 2. ¿Es cierto que si $f:A\to B$ y $g:B\to C$ son crecientes, entonces $g\circ f$ es inyectiva? Demuestre o de un contarejemplo.

2. Numerabilidad

- 1. Demuestre que si A es numerable y B es numerable, entonces $A \cup B$ es numerable.
- 2. Demuestre que todo subconjunto infinito de un conjunto numerable es numerable.

3. Numerabilidad (hardcore)

Sea \mathbb{Z}^{ω} el conjunto de todas las secuencias infinitas de números en \mathbb{Z} de la forma $a_0a_1a_2\dots$

1. Considere el siguiente conjunto:

$$S_1 = \{a_0 a_1 a_2 \dots \in \mathbb{Z}^{\omega} \mid \exists c \in \mathbb{Z}. \forall i \ge 0. a_{i+1} - a_i = c\}$$

Por ejemplo, la secuencia $7, 10, 13, 16, 19, \ldots \in S_1$ ya que $(a_{i+1} - a_i) = 3$. ¿Es S_1 un conjunto numerable? Demuestre su afirmación.

2. Considere el siguiente conjunto:

$$S_2 = \{a_0 a_1 a_2 \dots \in \mathbb{Z}^{\omega} \mid \exists c \in \mathbb{Z}. \forall i \ge 0. |a_{i+1} - a_i| = c\}$$

Por ejemplo, la secuencia $7, 10, 7, 4, 1, -2, 1, \ldots \in S_2$ ya que $|a_{i+1} - a_i| = 3$. ¿Es S_2 un conjunto numerable? Demuestre su afirmación.