CSC 525: Computer Networks

Outline

ISP interconnection and settlement model

AS relationship and routing policy

Inferring AS relationship based on BGP routing paths

ISP Interconnection

- ISPs compete with each other for customers (end users and smaller ISPs).
- ISPs have to cooperate in order to deliver data.
- Thus they must
 - Interconnect
 - Have a settlement model to share profit and/or distribute cost
 - Make routing conform to the business relationship

Private Links

- High cost, configuration/maintenance overhead
- Dedicated bandwidth
- You know whom to call when there's a problem

Exchange Router

- An exchange router provided by a neutral party (Internet Exchange Point, IXP) connects with every participating ISP.
- Rely on the exchange router for routing decision.

Exchange LAN

- Use Gigabit Ethernet to provide the physical connectivity
- Up to individual ISPs to decide whether to establish BGP sessions between them or not.
- Exchange LAN and private links are common in practice.

Financial Settlement

- Telephony:
 originator pays the
 entire path.
- Internet: sender and receiver each pays part of the path.
 - Customer pays providers for transit service
 - No money change hand between peers.

Routing Hierarchy

• The top tier ISPs (a dozen or so worldwide) peer with each other in a **full-mesh** to guarantee global reachability.

Lower-tier ISPs pay upper tier ISPs for transit

service.

Peering

- In reality, some lower tier ISPs peer with each other
 - Reduce cost by bypassing providers
 - Improve data delivery performance (shorter delay to users)
- To peer or not to peer
 - A contentious issue in the ISP business
 - Potential peers are also potential customers
 - Potential peers are also competitors.
 - Trial period and periodic re-negotiation
- Large ISPs tend to have restricted peering policy, while content providers tend to have open peering policy.

AOL's Settlement-free Interconnection Policy

- Operational requirements on a peer network
 - Handle a single-node outage w/o traffic impact
 - Single AS number
 - Network Operations Center staffed at all times
- Backbone capacity
 - At least 10 gigabits/sec between 8 or more cities
 - Minimum peering link speed of 622 megabits/sec
- Peering locations (in U.S.)
 - At least four locations
 - Must include D.C. area, middle of country, Bay area, and NYC or Atlanta
- http://www.atdn.net/settlement_free_int.shtml

AOL's Settlement-free Interconnection Policy

- Consistent routing advertisements
 - All customer routes
 - At all peering points
 - With the same AS path length
- Address blocks
 - Routes aggregated as much as possible
 - No address blocks smaller than /24
 - Address blocks are registered (e.g., with ARIN)
- No default routing
 - Only send traffic to destinations advertised by AOL.

AS Relationship

Customer and provider

- Customers pay provider for the traffic

Peers

- Peers don't pay each other.
- Sibling
 - Same company but multiple ASes, merger, acquisition
 - Mutual transit service, like within the same AS
- Backup
 - Use only when the primary provider link fails
- Geography-specific or prefix-specific
 - Customer in US, but peer in Europe
- Others
 - Generally AS relationship and arrangement is confidential, and can be quite complicated.

Implement AS Relationship in BGP

- Path selection: which path to pick as the best path?
 - To control *outgoing* traffic
 - Set local preference: customer > peer > provider
- Path export: which path to advertise to which neighbor?
 - To control *incoming* traffic
 - Outbound filtering of routing updates

So Many Choices

Path Selection

Implement AS Relationship in BGP

- Path selection: which path to pick as the best path?
 - To control outgoing traffic
 - Set local preference: customer > peer > provider
- Path export: which path to advertise to which neighbor?
 - To control incoming traffic
 - If I don't announce route to a neighbor, that neighbor will not send me traffic for that prefix.
 - Therefore need to control what routes/prefixes to announce to which neighbor.

Import Routes

Export Routes

Paths You Should Never See ("Invalid Paths")

Provider-to-customer

--- Peer-to-peer

Pattern of Valid BGP Paths

- Uphill: a sequence of edges that are either customer-provider or sibling-to-sibling
- Downhill: a sequence of edges that are either provider-to-customer or sibling-to-sibling
- A Valley-free path has
 - Zero or one uphill sequence, followed by zero or one peer-peer link, followed by zero or one downhill sequence.

Why to infer AS Relationship

- Scientific understanding
 - Understanding Internet structure and evolution
 - Understanding why certain paths are used for traffic
- Placement of servers
 - Want to be close to most customer networks
- Business decisions
 - Selecting new peer or provider, or re-negotiating relations
- Security policies
 - Knowing which BGP routes are suspicious
- Analyzing BGP convergence
 - Relationships have a big impact

Type-of-Relationship Problem

- Given the input
 - AS graph G(V,E) with vertices V and edges E
 - Set of paths *P* on the graph *G* (from RouteViews etc)
- Find a solution that
 - Labels each edge with an AS relationship
 - Minimizes the number of "invalid" paths in P
- Rich area of research work
 - http://www-unix.ecs.umass.edu/-lgao/ton.ps
 - http://www.cs.princeton.edu/-jrex/papers/infocomo2.pdf
 - http://www.cs.berkeley.edu/-sagarwal/research/BGP-hierarchy/

- ...

The Basic Idea

- Need to identify the top of the hill
 - Customer-to-provider before the top
 - Provider-to-customer after the top
- Assumption:
 - higher node degree => bigger ISP => more likely to be a provider => more likely to be on the top of the hill.
 - comparable node degrees => comparable ISP sizes=> more likely to be peers to each other.

Provider, Customer, Sibling

- Count every node's degree in the topology.
- Parse all BGP paths. For each path,
 - Pick the node with highest degree as the top provider
 - Assign transit service direction between every pair of neighbor ASes
- Assign relationship. Given an AS link,
 - If two ASes provide transit service for each other, they're siblings.
 - Otherwise, the one providing transit service is provider, the other is customer.

Peer

- The peer-to-peer edge is between the top provider and one of its neighbors only.
 - The neighbor with higher degree.
- The degree ratio between two peers should be no more than R times.

Result

- Provider and Customer
 - 90.5% relationships are provider-customer.
- Peer
 - -8%
 - Caveat: peer-to-peer links can only be observed by monitors at lower tiers (recall valley-free paths). We don't know how many peer-peer links are missing in the observed topology and BGP updates.
- Sibling
 - -1.5%

Verification

- With AT&T data
 - Overall 96% 99% confirmed.
 - Most errors are at peer-to-peer edges and sibling edges
- With WHOIS data
 - Confirmed about half of the sibling edges.

Reasons for Inaccuracy

- Router Misconfiguration
 - Typo
 - Routes shouldn't be announced
- Special AS relationship
- Inaccuracy of the heuristic
 - The assumption on node degree

Summary

- Physical connectivity
 - Router level, exchange points
- BGP session
 - Logical links in AS graph
- BGP routes
 - Subject to AS relationship and policy
 - Dictate how data flow
 - Significantly less number of paths than what are physically possible.