XỬ LÝ THÔNG TIN MÒ TOK

CHƯƠNG 6 – HỆ MỜ

- Hệ mờ
- Xây dựng hệ mờ

6.1. HỆ MỜ

 Ứng dụng lý thuyết tập mờ và logic mờ, khi thông tin không đầy đủ, không chắc chắn, nhiễu; tri thức chuyên gia biểu diễn dạng ngôn ngữ tự nhiên; ranh giới các lớp đối tượng không rõ ràng; hệ thống phức tạp ...

CẤU TRÚC HỆ MỜ

RULES IN MAMDANI'S FORM

IF x_1 is A_1^k and x_2 is A_2^k THEN y^k is B_2^k , for k = 1, 2, ..., r,

RULES IN TSK'S FORM

IF x is A and y is B, THEN z is z = f(x, y).

Min or product B_1 $z_1 = p_1 x + q_1 y + r_1$ w_1 A_2 B_2 $z_2 = p_2 x + q_2 y + r_2$ w_2 X Weighted average

TSUKAMOTO FUZZY MODEL

Membership functions of output are monotone

6.2. XÂY DỰNG HỆ MỜ

Các bước:

- Lựa chọn cấu trúc mô hình: Biến vào, biến ra, các giá trị ngôn ngữ cho mỗi biến, các hàm thuộc, phép toán t, s, khử mờ, hợp thành, ...
- Huấn luyện: Tính toán hàm thuộc cho các giá trị ngôn ngữ, các luật mờ
- Kiểm tra, điều chỉnh các tham số (luật, hàm thuộc)
 để đầu ra của hệ mờ phù hợp với đầu ra thực tế

HUẨN LUYỆN TẬP LUẬT MỜ

Input: Tập mẫu dữ liệu (x₁^p, ..., x_n^p; y^p), với p=1..N Output: Tập luật mờ

- Bước 2: Với mỗi mẫu dữ liệu: x_i^p∈ supp(A_{ij}) với độ thuộc μ_{ii}^p, thì sinh các luật mờ:

If X_1 is A_{1j} and ... and X_n is A_{nj} then Y is B_j , với độ thuộc $\Pi \mu_{ij}{}^p$

 Bước 3: Loại bỏ các luật dư thừa, loại bỏ các luật mâu thuẫn

PHƯƠNG PHÁP GRADIENT NGƯỢC

Hệ mờ: n Input, 1 Output, k luật mờ, tập mờ tam giác cân (tâm c., bán kính b.), hợp thành max-product, ...

- $\begin{array}{lll} \bullet & B_{li}(x_i) = (1-|x_i-c_{li}|)\,/\,b_{li}, & \text{n\'eu} & c_{li}-b_{li} \leq x_i \leq c_{li}+b_{li} \\ & 0, & \text{ngược lại} \\ & c_{li}, b_{li} & \text{là tham số của tập mờ tam giác cân} \\ \end{array}$
- $zl = \prod B_{1i}(x_i)$ với l = 1,2,...,k $a = \sum y_1 z_1 \qquad b = \sum z_1$
- Output f = a/b
- Cần điều chỉnh các tham số y_l, c_{li}, b_{li}

$$\begin{split} &y_{1}(j+1) = y_{1}(j) - \alpha \cdot \partial e / \partial y_{1}|_{j} \partial e / \partial y_{1} = (f-d).(\partial f / \partial a).(\partial a / \partial y_{1}) = (f-d).z_{1}/b \\ &c_{li}(j+1) = c_{li}(j) - \alpha \cdot \partial e / \partial c_{li}|_{j} \partial e / \partial c_{li} = \pm (f-d).(y_{l}-f).z_{1}/(b.b_{li}.B_{li}(x_{i})) \\ &b_{li}(j+1) = b_{li}(j) - \alpha \cdot \partial e / \partial b_{li}|_{j} \partial e / \partial b_{li} = (f-d).(y_{l}-f).|x_{i}-c_{li}|.z_{1}/(b.b_{li}^{2}.B_{li}(x_{i})) \end{split}$$

VÍ DỤ (CON LẮC NGƯỢC)

Fuzzy Rules:

 $e, \Delta e \rightarrow \Delta q$

e\Δe	NB	NM	NS	ZO	PS	PM	РВ
NB				РВ			
NM				PM			
NS				PS			
ZO	РВ	PM	PS	ZO	NS	NM	NB
PS				NS			
PM				NM			
PB				NB			

CASE STUDY

ĐIỀU KHIỂN HƯỚNG

Input Variable: Deviation

Output Variable: Steering

ĐIỀU KHIỂN HƯỚNG

```
RULE1: IF deviation IS farleft THEN steering IS hardright;

RULE2: IF deviation IS left THEN steering IS right;

RULE3: IF deviation IS middle THEN steering IS straight;

RULE4: IF deviation IS right THEN steering IS left;

RULE5: IF deviation IS farright THEN steering IS hardleft;
```

ĐIỀU KHIỂN VẬN TỐC

Input Variable: Distance, Lightstatus, Deviation

Output Variable: Speed


```
RULE1: IF lightstatus IS green AND deviation IS middle THEN speed IS medium;
RULE2: IF lightstatus IS green AND deviation IS left THEN speed IS slow;
RULE3: IF lightstatus IS green AND deviation IS right THEN speed IS slow;
RULE4: IF lightstatus IS green AND deviation IS farleft THEN speed IS slower;
RULE5: IF lightstatus IS green AND deviation IS farright THEN speed IS slower;
RULE6: IF distance IS far AND deviation IS middle THEN speed IS medium;
RULE7: IF distance IS far AND deviation IS left THEN speed IS slow;
RULE8: IF distance IS far AND deviation IS right THEN speed IS slow;
RULE9: IF distance IS far AND deviation IS farleft THEN speed IS slower;
RULE10: IF distance IS far AND deviation IS farright THEN speed IS slower;
RULE11: IF lightstatus IS yellow AND distance IS medium AND deviation IS middle THEN
speed IS slow;
RULE12: IF lightstatus IS yellow AND distance IS medium AND deviation IS left THEN
speed IS slower;
```

RULE13: IF lightstatus IS yellow AND distance IS medium AND deviation IS right THEN speed IS slower;

RULE14: IF lightstatus IS yellow AND distance IS medium AND deviation IS farleft THEN speed IS slower;

RULE15: IF lightstatus IS yellow AND distance IS medium AND deviation IS farright THEN speed IS slower;

RULE16: IF lightstatus IS yellow AND distance IS near THEN speed IS stop;

RULE17: IF lightstatus IS red AND distance IS medium AND deviation IS middle THEN speed IS slow;

RULE18: IF lightstatus IS red AND distance IS medium AND deviation IS left THEN speed IS slower;

RULE19: IF lightstatus IS red AND distance IS medium AND deviation IS right THEN speed IS slower;

RULE20: IF lightstatus IS red AND distance IS medium AND deviation IS farleft THEN speed IS slower;

RULE21: IF lightstatus IS red AND distance IS medium AND deviation IS farright THEN speed IS slower;

RULE22: IF lightstatus IS red AND distance IS near THEN speed IS stop;

RULE23: IF lightstatus IS less_green AND distance IS medium AND deviation IS middle THEN speed IS medium;

RULE24: IF lightstatus IS less_green AND distance IS medium AND deviation IS left THEN speed IS slow;

RULE25: IF lightstatus IS less_green AND distance IS medium AND deviation IS right THEN speed IS slow;

RULE26: IF lightstatus IS less_green AND distance IS medium AND deviation IS farleft THEN speed IS slower;

RULE27: IF lightstatus IS less_green AND distance IS medium AND deviation IS farright THEN speed IS slower;

RULE28: IF lightstatus IS less_green AND distance IS near AND deviation IS middle THEN speed IS slower;

RULE29: IF lightstatus IS less_green AND distance IS near AND deviation IS left THEN speed IS slower;

RULE30: IF lightstatus IS less_green AND distance IS near AND deviation IS right THEN speed IS slower;

RULE31: IF lightstatus IS less_green AND distance IS near AND deviation IS farleft THEN speed IS stop;

RULE32: IF lightstatus IS less_green AND distance IS near AND deviation IS farright THEN speed IS stop;

RULE33: IF lightstatus IS less_red AND distance IS medium AND deviation IS middle THEN speed IS slow;

RULE34: IF lightstatus IS less_red AND distance IS medium AND deviation IS left THEN speed IS slower;

RULE35: IF lightstatus IS less_red AND distance IS medium AND deviation IS right THEN speed IS slower;

RULE36: IF lightstatus IS less_red AND distance IS medium AND deviation IS farleft THEN speed IS slower;

RULE37: IF lightstatus IS less_red AND distance IS medium AND deviation IS farright THEN speed IS slower;

RULE38: IF lightstatus IS less_red AND distance IS near THEN speed IS stop;

KHI GĂP VẬT CẢN

Input Variable: Distance, Deviation

Output Variable: Speed

KHI GĂP VẬT CẢN

```
RULE1: IF distance IS near THEN speed IS stop;

RULE2: IF distance IS medium AND deviation IS farleft THEN speed IS slower;

RULE3: IF distance IS medium AND deviation IS farright THEN speed IS slower;

RULE4: IF distance IS medium AND deviation IS left THEN speed IS slow;

RULE5: IF distance IS medium AND deviation IS right THEN speed IS slow;

RULE6: IF distance IS medium AND deviation IS middle THEN speed ISmedium;
```