Considere o sistema abaixo onde $G(s) = \frac{1}{s^2 + 2s + 2}$.

Deseja-se projetar um controlador PID C(s) utilizando o método de Ziegler-Nichols. O controlador é implementado na forma $C(s) = K_p + \frac{K_i}{s} + K_d s$. Com essas informações, marque as alternativas corretas.

0

Escolha uma ou mais:

- \square A soma dos ganhos K_p , K_i e K_d é 36,9.
- \square A soma dos ganhos K_p , K_i e K_d é 21,3.

- A G(s) não pode ser aproximada pelo 1° método, pois, tem polos complexos dominantes na planta em malha aberta
- Verificado por RH que não existe K crítico que torne o sistema instável

Pode-se utilizar o primeiro método de Ziegler-Nichols.

Nenhum dos métodos de Ziegler-Nichols podem ser utilizados.

Pode-se utilizar o segundo método de Ziegler-Nichols.

tão 2 a não

ondida 1.0

to(s).

Aarcar stão Considere um sistema em malha fechada como o da figura abaixo, onde $G(s) = \frac{1}{s(s+2)}$. Marque todas as alternativas verdadeiras.

- Dado o ganho já chega no lugar desejado, descartando a utilização do controlador de avanço

Escolha uma ou mais:

- Deseja-se polos de malha fechada em $s=-1\pm j1$ e erro em regime permanente para entrada rampa menor do que 0.2. Para isso, e necessário um controlador de avanço-atraso.
- \square Deseja-se polos de malha fechada em $-2 \pm j2$. Para isso, é necessário um controlador de atraso.
- Deseja-se reduzir o erro em regime permanente para entrada do tipo rampa. Para isso, utiliza-se um controlador de atraso.
- Deseja-se reduzir o erro em regime permanente para uma entrada rampa para 0,2 e deseja-se polos de malha fechada dominantes com ζ = 0, 707 e ω_n = 2,89 rad/s. Para isso, emprega-se compensação de avanço-atraso.

Próxima Página

agina Anterior

Seguir para...

vestão 3 inda não espondida Vale 1,0 ponto(s). Marcar

questão

Considere o sistema descrito na figura abaixo.

Este sistema, tem polo dominante em s=-0,7. Para uma referência R(s) do tipo degrau unitário, o erro E(s) em regime permanente é de $e(\infty)=0,625$. Para uma referência do tipo degrau unitário, deseja-se que $e(\infty)=0$, 05 sem alterar o polo dominante s=-0, 7. Projete um compensador de atraso da forma $C(s)=K_c\frac{s+z}{s+p}$ e complete as lacunas com as respostas ladequadas. Considere 2 algarismo significativos.

Para o problema, deve-se considerar a Constante de Erro Estático de Posição 🕏 . O valor mínimo desta constante para atender o problema é 19

Para atender os requisitos de projeto o valor mínimo de β é:

Considerando lo valor de β definido acima, e que o zero do compensador esteja em s=-0,1, seu polo deve estar em s=-0,0032

Considerando o polo dominante s=-0,7, o ganho do compensador projetado é $K_c=-1,1615$

Página Anterior

Considere um sistema em malha fechada como o da figura abaixo, onde $G(s) = \frac{1}{s(s+2)}$. Marque todas as alternativas verdadeiras.

Escolha uma ou mais:

- Deseja-se polos de malha fechada em $s=-1\pm j1$ e erro em regime permanente para entrada rampa menor do que 0,2. Para isso, é necessário um controlador de avanço-atraso.
- Deseja-se reduzir o erro em regime permanente para uma entrada rampa para 0,2 e deseja-se polos de malha fechada dominantes com $\zeta=0$, 707 e $\omega_n=2$, 89 rad/s. Para isso, emprega-se compensação de avanço-atraso.
- lacksquare Deseja-se polos de malha fechada em $-2\pm j2$. Para isso, é necessário um controlador de atraso.
- Deseja-se reduzir o erro em regime permanente para entrada do tipo rampa. Para isso, utiliza-se um controlador de atraso.

De

Anterior

Próxima Página

Considere um sistema em malha fechada como o da figura abaixo, onde $G(s) = \frac{1}{s(s+2)}$. Marque todas as alternativas verdadeiras.

Escolha uma ou mais:

- Deseja-se polos de malha fechada em $s=-1\pm j1$ e erro em regime permanente para entrada rampa menor do que 0,2. Para isso, é necessário um controlador de avanço-atraso.
- Deseja-se reduzir o erro em regime permanente para uma entrada rampa para 0.2 e deseja-se polos de malha fechada dominantes com $\zeta = 0.707$ e $\omega_n = 2.89 \ rad/s$. Para isso, emprega-se compensação de avanço-atraso.
- Deseja-se polos de malha fechada em $-2\pm j2$. Para isso, é necessário um controlador de atraso.
- Deseja-se reduzir o erro em regime permanente para entrada do tipo rampa. Para isso, utiliza-se um controlador de atraso.

Próxima Página

Considere o sistema descrito na figura abaixo.

Este sistema, tem polo dominante em s=-0,7. Para uma referência R(s) do tipo degrau unitário, o erro E(s) em regime permanente é de $e(\infty)=0,625$. Para uma referência do tipo degrau unitário, deseja-se que $e(\infty)=0$, 05 sem alterar o polo dominante s=-0, 7. Projete um compensador de atraso da forma $C(s)=K_c\frac{s+s}{s+s}$ e complete as lacunas com as respostas adequadas. Considere 2 algarismo significativos.

Para o problema, deve-se considerar a Constante de Erro Estático de Posição De valor mínimo desta constante para atender o problema é 20,00

Para atender os requisitos de projeto o valor mínimo de β é: 12,50

Considerando o valor de β definido acima, e que o zero do compensador esteja em s=-0,1, seu polo deve estar em s=0.008

Considerando o polo dominante s=-0, 7, o ganho do compensador projetado é $K_c=0.867$

nsidere o sistema descrito na figura abaixo.

ste sistema, tem polo dominante em s=-0, 7. Para uma referência R(s) do tipo degrau unitário, o erro E(s) em regime permanente é de $e(\infty)=0$, 625. Para uma eferência do tipo degrau unitário, deseja-se que $e(\infty)=0$, 05 sem alterar o polo dominante s=-0, 7. Projete um compensador de atraso da forma $C(s)=K_c\frac{s+z}{s+p}$ e complete as lacunas com as respostas adequadas. Considere 2 algarismo significativos.

Para o problema, deve-se considerar a Constante de Erro Estático de Posição 💠 . O valor mínimo desta constante para atender o problema é 19,00

Para atender os requisitos de projeto o valor mínimo de β é: 31,66

Considerando o valor de β definido acima, e que o zero do compensador esteja em s=-0,1, seu polo deve estar em s=0,0031

Considerando o polo dominante s=-0,7, o ganho do compensador projetado é $K_c=-0.861$

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{1}{s(s+3)(s+6)}$. Deseja-se que o sistema, em malha fechada, tenha um par de polos conjugados complexos com coeficiente as lacunas com as respostas adequadas considerando 2 algarismos significativos.

Para atender esse requisito, esses polos devem estar em:

2,00

±j 2,00

A contribuição angular que o compensador de avanço deve inserir no lugar das raízes é $\phi = 45,00$

Considerando que o zero do compensador esteja em -2, seu polo deve estar em s=-4,00

O ganho do compensador projetado é $K_c = 40,00$

Próxima Página

Seguir para...

Considere um sistema em malha fechada como o da figura abaixo, onde $G(s) = \frac{1}{s(s+2)}$. Marque todas as alternativas verdadeiras.

Escolha uma ou mais:

- Deseja-se polos de malha fechada em $s=-1\pm j1$ e erro em regime permanente para entrada rampa menor do que 0,2. Para isso, é necessário um controlador de avanço-atraso.
- $oxed{\square}$ Deseja-se polos de malha fechada em $-2\pm j2$. Para isso, é necessário um controlador de atraso.
- Deseja-se reduzir o erro em regime permanente para entrada do tipo rampa. Para isso, utiliza-se um controlador de atraso.
- Deseja-se reduzir o erro em regime permanente para uma entrada rampa para 0,2 e deseja-se polos de malha fechada dominantes com $\zeta=0$, 707 e $\omega_n=2$, 89 rad/s. Para isso, emprega-se compensação de avanço-atraso.

terior

Próxima Página

Observador

Seguir para...

Prova 1 CP

Considere o sistema descrito na figura abaixo.

Este sistema, tem polo dominante em s=-0, 7. Para uma referência R(s) do tipo degrau unitário, o erro E(s) em regime permanente é de $e(\infty)=0$, 625. Para uma referência do tipo degrau unitário, deseja-se que $e(\infty)=0$, 05 sem alterar o polo dominante s=-0, 7. Projete um compensador de atraso da forma $C(s)=K_c\frac{s+z}{s+p}$ e complete as lacunas com as respostas adequadas. Considere 2 algarismo significativos.

Para o problema, deve-se considerar a Constante de Erro Estático de Posição 💠 . O valor mínimo desta constante para atender o problema é 19,00

Para atender os requisitos de projeto o valor mínimo de β é: 31,66

Considerando o valor de β definido acima, e que o zero do compensador esteja em s=-0,1, seu polo deve estar em s=-0,0031

Considerando o polo dominante s=-0, 7, o ganho do compensador projetado é $K_c=-0.86$