01.112/50.007 Machine Learning

Lecture 8 Support Vector Machines (Part 2)

Recap

Support Vector Machine (SVM)

- SVMs maximize the margin around the separating hyperplane. A.k.a. large margin classifiers.
- The decision function is fully specified by a subset of training samples, *the support vectors*.
- Solving SVMs is a quadratic programming problem.
- Seen by many as the most successful current text classification method*

^{*}but other discriminative methods often perform very similarly 3

Support Vector Machine (SVM)

Distance of each point from decision boundary

$$\gamma^{(t)}(\theta, \theta_0) = \frac{y^{(t)}(\theta \cdot x^{(t)} + \theta_0)}{\|\theta\|}$$

Goal: Maximize minimum distance to the boundary

$$\min_{t=1,\dots,n} \gamma^{(t)}(\theta,\theta_0)$$

Formulate the goal as quadratic programming problem (SVM)

$$\min \frac{1}{2} \|\theta\|^2$$
 subject to $y^{(t)}(\theta \cdot x^{(t)} + \theta_0) \ge 1, t = 1, \dots, n$

Constrained Optimization

Want to minimize some function f(x), but there are some *constraints* on the values of x.

Method 1 (Dual Problem)

Solve a *dual optimization problem* where the constraints are nicer, and where it is easier to implement gradient descent.

Method 2 (Exact Solution)

Solve the *Lagrangian* system of equations.

Equality Constraints

Problem.

minimize f(x)subject to $h_1(x) = 0, ..., h_l(x) = 0$

Lagrangian.

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Example.

minimize
$$f(x) = n_1 \log x_1 + \dots + n_d \log x_d$$

subject to $h(x) = x_1 + \dots + x_d - 1 = 0$
 $L(x, \lambda) = n_1 \log x_1 + \dots + n_d \log x_d + \lambda(x_1 + \dots + x_d - 1)$

Two-Player Game

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Rules.

- You get to choose the value of x. Your goal is to minimize $L(x, \lambda)$.
- Your adversary gets to choose the value of λ . His goal is to maximize $L(x, \lambda)$.

Primal Game

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Primal Game. You go first.

Your Strategy.

- Ensure that $h_1(x) = 0, ..., h_l(x) = 0$.
- Find x that minimizes f(x).

Final Score.
$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$

The optimal x^* , λ^* are saddle points of $L(x, \lambda)$.

Dual Game

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Dual Game. You go second.

Adversary's Strategy.

- For each λ , compute $\ell(\lambda) = \min_{x} L(x, \lambda)$
- Find λ that maximizes $\ell(\lambda)$.

Final Score.
$$d^* = \max_{\lambda} \min_{x} L(x, \lambda)$$

Max-Min Inequality

Primal.
$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$

Dual.
$$d^* = \max_{\lambda} \min_{x} L(x, \lambda)$$

"you do better if you have the last say"

Weak Duality

$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$

$$\geq \max_{\lambda} \min_{x} L(x, \lambda) = d^*$$

If $p^* = d^*$, we can solve the primal by solving the dual.

Strong duality

Max-Min Inequality

Example.

	x = 1	x = 2
$\lambda = 1$	1	4
$\lambda = 2$	3	2

$$p^* = \min_{x} \max_{\lambda} L(x, \lambda) = 3$$

Primal.
$$p^* = \min_{x} \max_{\lambda} L(x, \lambda) = 3$$

Dual. $d^* = \max_{\lambda} \min_{x} L(x, \lambda) = 2$

Exact Solution

Problem.

minimize f(x)subject to $h_1(x) = 0, ..., h_l(x) = 0$

Lagrange multipliers.

1. Write down the Lagrangian.

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

2. Solve for critical points x, λ .

$$\nabla_{x}L(x,\lambda) = 0, h_{1}(x) = 0, ..., h_{l}(x) = 0$$

3. Pick critical point which gives global minimum.

Example

minimize
$$f(x) = n_1 \log x_1 + \dots + n_d \log x_d$$

subject to $h(x) = x_1 + \dots + x_d - 1 = 0$

Lagrangian

$$L(x, \lambda) = n_1 \log x_1 + \dots + n_d \log x_d + \lambda (x_1 + \dots + x_d - 1)$$

Critical points

$$0 = n_i/x_i + \lambda$$

$$0 = x_1 + \dots + x_d - 1$$

$$x_i = n_i/(-\lambda)$$

$$(-\lambda) = n_1 + \dots + n_d$$

Inequality Constraints (Primal-Dual)

Primal Problem.

minimize f(x)subject to $g_1(x) \le 0, ..., g_m(x) \le 0$

Lagrangian.

$$L(x,\alpha) = f(x) + \alpha_1 g_1(x) + \dots + \alpha_m g_m(x)$$

Dual Problem.

maximize $\ell(\alpha)$ subject to $\alpha_1 \ge 0, ..., \alpha_m \ge 0$

where $\ell(\alpha) = \min_{x \in \mathbb{R}^d} L(x, \alpha)$

Box constraints are easier to work with!

Inequality Constraints (Exact Solution)

minimize
$$f(x)$$

subject to $g_1(x) \le 0, ..., g_m(x) \le 0$

Lagrangian.

$$L(x,\alpha) = f(x) + \alpha_1 g_1(x) + \dots + \alpha_m g_m(x)$$

Solve for x, α satisfying

- 1. $\nabla_{x}L(x,\alpha)=0$
- 2. $g_1(x) \leq 0, ..., g_m(x) \leq 0$
- 3. $\alpha_1 \geq 0, ..., \alpha_m \geq 0$
- 3. $\alpha_1 \ge 0, \dots, \alpha_m = 0$ 4. $\alpha_1 g_1(x) = 0, \dots, \alpha_m g_m(x) = 0$ Complementary Slackness

SVM: Maximum Margins

Computing the margin

Computing the margin

Maximum Margin

Our goal is to

maximize $1/\|\theta\|$ subject to $y(\theta^{T}x + \theta_0) \ge 1$ for all data (x, y)

Or equivalently,

minimize $\frac{1}{2} \|\theta\|^2$ subject to $y(\theta^T x + \theta_0) \ge 1$ for all data (x, y)

Lagrangian

Primal.

minimize
$$\frac{1}{2} \|\theta\|^2$$

subject to $y(\theta^T x) \ge 1$ for all data (x, y)

Lagrangian.

$$L(\theta, \alpha) = \frac{1}{2} \|\theta\|^2 + \sum_{(x,y)} \alpha_{x,y} (1 - y(\theta^{\mathsf{T}}x))$$

To find $\ell(\alpha) = \min_{\theta} L(\theta, \alpha)$, we solve

$$0 = \nabla_{\theta} L(\theta, \alpha) = \theta - \sum_{(x,y)} \alpha_{x,y} yx$$

to get $\theta = \sum_{(x,y)} \alpha_{x,y} yx$. Substituting into $L(\theta,\alpha)$ gives

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} yy'(x^{\mathsf{T}}x').$$

Primal-Dual

Primal.

minimize $\frac{1}{2} \|\theta\|^2$

subject to $y(\theta^T x) \ge 1$ for all data (x, y)

Dual.

maximize $\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} y y'(x^{\mathsf{T}} x')$ subject to $\alpha_{x,y} \geq 0 \text{ for all } (x,y)$

It can be shown that the primal

and dual problems are

equivalent (strong duality).

After solving the dual to get the optimal $\alpha_{x,y}$'s, we obtain the optimal θ using $\theta = \sum_{(x,y)} \alpha_{x,y} yx$.

Support Vectors

Complementary Slackness.

$$\hat{\alpha}_{x,y} > 0$$
: $y(\hat{\theta}^{\mathsf{T}}x) = 1$

$$\hat{\alpha}_{x,y} > 0$$
: $y(\hat{\theta}^{T}x) = 1$
 $\hat{\alpha}_{x,y} = 0$: $y(\hat{\theta}^{T}x) > 1$

Support Vectors Non-Support Vectors

Sparsity

Since very few data points are support vectors, most of the $\hat{\alpha}_{\chi,\nu}$ will be zero.

Extensions

SVM with offset

Primal.

minimize $\frac{1}{2} \|\theta\|^2$ subject to $y(\theta^T x + \theta_0) \ge 1$ for all data (x, y)

Dual.

maximize $\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} y y' (x^{\mathsf{T}} x')$ subject to $\alpha_{x,y} \ge 0 \text{ for all } (x,y)$ $\sum_{(x,y)} \alpha_{x,y} y = 0$

SVM with offset

Dual.

maximize
$$\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} y y' (x^{\mathsf{T}} x')$$
 subject to
$$\alpha_{x,y} \geq 0 \text{ for all } (x,y)$$

$$\sum_{(x,y)} \alpha_{x,y} y = 0$$

Parameters.
$$\hat{\theta} = \sum_{(x,y)} \alpha_{x,y} \, yx \\ \hat{\theta}_0 = y - \hat{\theta}^\top x \qquad \text{where } (x,y) \text{ is a support vector}$$

Derivation for $\hat{\theta}_0$

$$y^{(t)}(\hat{\theta} \cdot x^{(t)} + \hat{\theta}_0) = y^{(t)}(\sum_{t'=1}^n \hat{\alpha}_{t'} y^{(t')}(x^{(t')} \cdot x^{(t)}) + \theta_0) = 1$$
$$\hat{\theta}_0 = y^{(t)} - (\sum_{t'=1}^n \hat{\alpha}_{t'} y^{(t')}(x^{(t')} \cdot x^{(t)}))$$

• Effect of errors in labelling training examples:

- Allowing misclassified points, yet maximize the margin
- Convert hard constraints to soft constraints
- Slack variables allow constraints to be violated for a cost.
- Regularization parameter balances favouring between increasing the margin and misclassifications.

Primal.

minimize
$$\frac{\lambda}{2} \|\theta\|^2 + \frac{1}{n} \sum_{(x,y)} \xi_{x,y}$$
 subject to
$$y(\theta^\top x + \theta_0) \ge 1 - \xi_{x,y} \quad \text{for all data } (x,y)$$

$$\xi_{x,y} \ge 0 \quad \text{for all data } (x,y)$$

Linearly Separable

Not Linearly Separable

Primal.

minimize
$$\frac{\lambda}{2} \|\theta\|^2 + \frac{1}{n} \sum_{(x,y)} \xi_{x,y}$$
 subject to
$$y(\theta^\top x + \theta_0) \ge 1 - \xi_{x,y} \text{ for all data } (x,y)$$

$$\xi_{x,y} \ge 0 \qquad \text{for all data } (x,y)$$

Equivalent Primal.

minimize
$$\frac{\lambda}{2} \|\theta\|^2 + \frac{1}{n} \sum_{(x,y)} \text{Loss}_{H} (y(\theta^{T}x + \theta_0))$$

Hinge-loss classifier with regularization!

Primal.

minimize
$$\frac{\lambda}{2} \|\theta\|^2 + \frac{1}{n} \sum_{(x,y)} \xi_{x,y}$$
 subject to
$$y(\theta^\top x + \theta_0) \ge 1 - \xi_{x,y} \quad \text{for all data } (x,y)$$

$$\xi_{x,y} \ge 0 \quad \text{for all data } (x,y)$$

Dual.

maximize
$$\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} y y' (x^{\mathsf{T}} x')$$
 subject to
$$1/\lambda \ge \alpha_{x,y} \ge 0 \text{ for all } (x,y)$$
 There are many
$$\sum_{(x,y)} \alpha_{x,y} y = 0$$

Putting limits on what the adversary can do.

efficient solvers for quadratic problems with box constraints.

Complementary slackness

$$\begin{split} \hat{\alpha}_t &= 0 \Rightarrow y^{(t)} (\sum_{t'=1}^n \hat{\alpha}_{t'} y^{(t')} (x^{(t')} \cdot x^{(t)}) + \hat{\theta}_0) \geq 1 \\ \hat{\alpha}_t &\in (0, 1/\lambda) \Rightarrow y^{(t)} (\sum_{t'=1}^n \hat{\alpha}_{t'} y^{(t')} (x^{(t')} \cdot x^{(t)}) + \hat{\theta}_0) = 1 \\ \hat{\alpha}_t &= 1/\lambda \Rightarrow y^{(t)} (\sum_{t'=1}^n \hat{\alpha}_{t'} y^{(t')} (x^{(t')} \cdot x^{(t)}) + \hat{\theta}_0) \leq 1 \end{split} \tag{SVs, on the margin}$$

Summary

Lagrange Multipliers

- Lagrangian
- Primal-Dual Problems
- Inequality Constraints
- Complementary Slackness

Support Vector Machines

- Maximum Margins
- o Dual Problem
- Support Vectors

Regularization

- Slack Variables
- Regularized Hinge Loss
- Bounded Multipliers

Intended Learning Outcomes

Extensions

- Describe the dual problem for the SVM with offset.
- Describe the primal problem for SVM with slack variables.
 Show that the primal is equivalent to regularized hinge loss.
 Explain how the regularizing parameter λ affects the margins.
 Describe the dual problem in terms of box constraints.