(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-93153

(P2002-93153A) (43)公開日 平成14年3月29日(2002.3.29)

テーマコード(参考) 5 B O 2 4

G11C 11/22 G11C 11/22 14/00 11/34

352A

審査請求 未請求 請求項の数11 OL (全 20 頁)

(21) 出願番号

特局2000-274222(P2000-274222)

(22)出願日

平成12年9月8日(2000.9.8)

(71)出職人 000003078

FI

株式会社東芝

東京都港区芝浦一丁目1番1号

(72)発明者 穂谷 克彦

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝マイクロエレクトロニクスセン ター内

(72) 発明者 高島 大三郎

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝マイクロエレクトロニクスセン

ター内

(74)代理人 100092820 弁理士 伊丹 勝

最終頁に続く

(54) 【発明の名称】 強誘電体メモリ

(57) 【要約】

【課題】 ワード線位置に依らず略一定の読み出し信号 マージンが得られるようにしたTC並列ユニット直列接 統型強誘電体メモリを提供する。

【解決手段】 独誘電体キャパシタCとセルトランジスタTを並列接続してなるメモリセルMCを端子N1.N Cを端子N1.N Cを端子N1.N Cを端子N1.M Cを端子N1.N Cを端子N1.M Cを端子N1.M CB1.M C

【特許請求の範囲】

【請求項1】 セルトランジスタのソース、ドレイン間 に強誘電体キャパンタを接続してユニットセルが構成さ れ、第1の端子と第2の端子の間に複数個のユニットセ ルが直列接続されてセルブロックが構成され、各セルブ ロックの第1の端子がブロック選択トランジスタを介し てビット線に接続され、各セルブロックの第2の端子が ブレート線に接続され、前記各セルトランジスタのゲー トがワード線に接続されたメモリセルアレイと、

1

前記ユニットセルの強誘電体キャパシタから前記ビット 10 線に読み出される信号を検知増幅するセンスアンブ回路

前記プレート線を駆動するプレート線駆動回路と、

データ読み出し時、前記センスアンブ回路の活性化前 に、前記ビット線に対して前記セルブロック内の選択さ れたユニットセルの位置に応じて異なるオフセット電圧 を印加するオフセット電圧印加回路と、を備えたことを 特徴とする強誘電体メモリ。

【請求項2】 前記オフセット電圧印加回路は、選択されたユニットセルが接続されるビット線に対して、選択 20 されたユニットセルのセルブロック内の位置がビット線 から遠いほど高くなるオフセット電圧を与えるものであることを特徴とする請求項 記載の強誘電体メモリ。

【請求項3】 前記オフセット電圧印加回路は、選択されたユニットセルが接続されるビット線と対をなす参照側のビット線に対して、選択されたユニットセルのセルブロック内の位置がビット線から遠いほど低くなるオフセット電圧を与えるものであることを特徴とする請求項1 記載の強誘電体メモリ。

【請求項4】 前記オフセット電圧発生回路は、一端が 30 ビット線に接続された少なくとも一つのキャパシタの他 端に駆動電圧を与えて、容量カップリングによりビット 線にオフセット電圧を印加するものであることを特徴と する請求項1記載の強誘電体メモリ。

【請求項5】 前記オフセット電圧印加回路は、一端が ビット線に接続される複数のキャパシタと、これらのキャパシタの他端に選択されるワード線位置に応じて駆動 電圧を与えるデコードゲートとを備えて構成されること を特徴とする請求項 紀配報の強誘電体メモリ。

【請求項6】 前記オフセット電圧印加回路は、一場が 40 ビット線に接続される一つのキャパンタと、このキャパシタの他端に接続されたそれぞれ異なる駆動電圧を与えるための複数の駆動トランジスタと、これらの駆動トランジスタを選択されるワード線位置に応じて選択するデコードゲートとを備えて構成されることを特徴とする請求項4日配機の嫌誘電体メモリ。

【請求項7】 セルトランジスタのソース、ドレイン間 に強誘電体キャバシタを接続してユニットセルが構成さ れ、第1の端子と第2の端子の間に複数額のユニットセ ルを直列接続してセルブロックが構成され、各セルブロ 50

ックの第1の端子がブロック選択トランジスタを介して ビット線に接続され、各セルブロックの第2の端子がブ レート線に接続され、前記各セルトランジスタのゲート がワード線に接続されたメモリセルアレイと、

前記ユニットセルの強誘電体キャバシタから前記ピット 線に読み出される信号を検知増幅するセンスアンブ回路 と.

前記プレート線を駆動するプレート線駆動回路と、

スタンパイ時に前紀セルブロックの内部ノードを、前紀 ビット線に読み出される二値データの信号電位の間にあ る第1の電位に設定するブリチャージ回路と、を備えた ことを特徴とする強誘電体メモリ。

【請求項8】 前記プリチャージ回路は、前記プレート線を介して各セルプロックの内部ノードを前記第1の電 位にプリチャージするものであり、且つ前記プレート線 駆動回路とプリチャージ回路とは、スタンバイ時に前記第1の電位を発生し、アクティブ時に選択されたユニットセルの強誘電体キャパシタに服力加速される、前記第1の電位より高い第2の電位及で前記第1の電位より高い第2の電位及で前記第1の電位より高い第2の電位及で前記第1の電位より高い第2の電位及で前記第1の電位より高い第2の電位及で前記第1の電位より高い第2の電位を発生する3値電圧発生回路として一体構成されていることを特徴とする請求項7記載の強誘電体メモリ。

【請求項9】 セルトランジスタのソース、ドレイン間 に強誘電体キャパシタを接続してユニットセルが構成さ れ、第1の端子と第2の端子の間に複数側のユニットセ ルを直列接続してセルブロックが構成され、各セルブロ ックの第1の端子がブロック選択トランジスタを介して ピット線に接続され、各セルブロックの第2の端子がブ レート線に接続され、前記各セルトランジスタのゲート がワード線に接続されなメモリセルアレイと、

前記ユニットセルの強誘電体キャパシタから前記ビット 線に読み出される信号を検知増幅するセンスアンブ回路 ト

前記プレート線を駆動するプレート線駆動回路と、

データ読み出し時、選択されたセルブロックが接続され るビット線と対をなす参照ピット線に、選択されるユニ ットセルの位置に応じて異なる寄生容量を付加するよう に配置されたダミーセルブロックと、を備えたことを特 徴とする強誘電体メモリ。

【請求項10】 前記ダミーセルブロックは、前記セルブロックのユニットセルと同数のダミーセルトランジス 夕が直列接続され、各ダミーセルトランジスタのゲート にダミーワード線が接続されて構成され且つ、前記セルブロックの選択されたワード線に対応するダミーワード線が同時に選択されることを特徴とする請求項9記載の 電話館体メモリ。

【請求項11】 データ読み出し時、選択されたビット 総と対をなす参照ビット線に対して、キャパンタの容量 カップリングにより参照電位を与える参照電位発生回路 を偏えたことを特徴とする請求項1、7、9のいずれか に記載の強誘電体メモリ。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、強誘電体キャパ シタを用いてデータを不揮発に記憶する強誘電体メモリ に係り、特に強誘電体キャパシタとセルトランジスタを 並列接続してなるユニットセルを複数個直列接続してセ ルブロックを構成する強誘電体メモリに関する。 [0002]

【従来の技術】強誘電体メモリは、強誘電体キャパシタ 10 の残留分極の大きさによって二値データを不揮発に記憶 する。従来の強誘電体メモリのメモリセルは一般に、D RAMと同様に強誘電体キャパシタとトランジスタを直 列接続して構成される。しかしDRAMと異なり、強誘 電体メモリでは残留分極量でデータを保持するため、信 号電荷をピット線に読み出すには、プレート線を駆動す ることが必要になる。このため、従来型の強誘電体メモ リでは、プレート線駆動回路が大きな面積を必要とす

【0003】これに対して、プレート線駆動回路の面積 20 を小さくできる強誘電体メモリのセルアレイ方式が高島 等によって提案されている。これは、セルトランジスタ (T) のソース、ドレインに強誘電体キャパシタ (C) の両端をそれぞれ接続してユニットセルを構成し、この ユニットセルを複数個直列接続してセルブロックを構成 するものである (D. Takashima et al., "High-density c hain feroelectric random memory (CFRAM)" in Proc. VSLI Symp. June 1997, pp. 83-84) 。このTC並列ユニ ット直列接統型強誘電体メモリでは、例えば8個のユニ ットセルでプレート線駆動回路を共有できるため、セル 30 アレイを高集積化することができる。

【0004】図24は、この様なTC並列ユニット直列 接続型強誘電体メモリのメモリセルアレイ1の構成を示 している。ユニットMCは、強誘電体キャパシタCとセ ルトランジスタTの並列接続により構成されている。こ の様なユニットセルMCが図の例では8個直列接続され て、セルブロックMCBが構成される。図では、一対の ピット線BI.. BBLに接続される二つのセルプロック MCBO, MCB1を示している。

【0005】セルブロックMCB0, MCB1の各一端 40 は、ブロック選択トランジスタBST0、BST1を介 してビット線BBL、BLに接続され、各他端はプレー ト線BPL、PLに接続される。各セルブロックのセル トランジスタのゲートは、ワード線WL0~WL7に接 続される。ビット線BL、BBLには読み出しデータを 検知増幅するセンスアンプ回路SAが接続される。

【0006】図25は、この様な強誘電体メモリの基本 動作のタイミング図である。ユニットセルは、強誘電体 キャバシタの残留分極が正の状態をデータ"1"、残留

る。スタンバイ時、全てのワード線WLは"H"、プロ ック選択信号BS0, BS1は"L"、ピット線BL, BBL及びプレート線PL、BPLはVSSに保たれ る。このとき、強誘電体キャパシタCはオン状態のセル トランジスタにより端子間が短絡されており、データを 安定に保持する。

【0007】アクティブ動作に入り、例えばワード線W L2によりピット線BL側のユニットセルを選択する場 合には、ピット線BLをフローティングとし、ワード線 WL2を"L"にした後、ブロック選択信号BS0を "H" とし、プレート線PLをVSS (接地電位)から VAA (正電位) に上げる。これにより、選択されたユ ニットセルのキャパシタに電圧が印加され、データ "O". "1"に応じて信号電圧がビット線BLに読み 出される。

【0008】ビット線BLに読み出された信号電圧は、 対をなすビット線BBLに与えた参照電位Vrefとの 比較により検出される。即ち、センタアンプ活性化信号 SEを立ち上げることにより、センスアンプ回路SAに よって、ビット線BLは、データ"1"の場合、VAA に、データ"0"の場合にはVSSになる。その後、セ ンスアンプ回路SAを非活性にすることにより、読み出 されたデータは、再書き込みされる。

【0009】この読み出しと再書き込み動作において、 "1" データの場合には破壊読み出しとなり、"0"デ ータの場合は非破壊読み出しとなる。即ち、"1"デー タの場合には、プレート線PLからの正電圧の印加によ り、強誘電体キャパシタの残留分極が大きく減少して分 極反転を生じる。そして読み出し後、プレート線の電圧 を下げると、ピット線が読み出しデータにより高電位と なっているために、読み出し時とは逆電圧が強誘電体キ ャパシタにかかって、再度残留分極が+Prの状態まで 再書き込みされる。"0"データの場合には、プレート 線電圧による分極反転し生ぜず、また読み出し後に逆電 圧が掛かることもなく、元の負の残留分極状態に再書き

[0010]以上の動作において、読み出し信号量は、 ビット線の容量と強誘電体キャパシタの特性曲線により 決まる。図26は、強誘電体キャパシタの特性曲線(ヒ ステリシス曲線)と読み出し信号量の関係を示してい る。ここで、プレート線側から強誘電体キャパシタに与 えられる正電圧VAAは、電圧軸上では負軸に-VAA で示し、ビット線側から強誘電体キャパシタに与えられ る正電圧VAAを正軸に示している。ビット線容量をC bとすると、図26に示すように、"1", "0"デー タの読み出し時のピット線電位上昇は、傾き-Cbの負 荷直線とヒステリシス曲線の交点位置として求められ る。但しビット線の電位上昇を-VAAを基準として示 している。図26から明らかなように、"1", "0" 分極が負の状態をデータ"O"として記憶するものとす 50 データの読み出し電位は、ビット線容量Cbの増加と共

に減少するので、その電位差である読み出し信号量もビット練容量 C h の値に依存する。その読み出し信号量のビット練容量 依存性は、通常のD R A M と異なり、ある値のピット練容量で最大値をとる。

【0011】ところで、TC並列ユニット直列接続型強 誘電体メモリでは、その特有の性質として、ビット線の 負荷容量Cらが、セルブロック内の選択フード線の位置 により異なる。即ち、ワード線WL0によりビット線に 最も近いメモリセルを選択した場合に比べて、ワード線 WL7によりビット線から最も遠いメモリセルを選択し たときには、ビット線自体の容量Cbに加えて、ワード 線WL0ーWL6に接続されたユニットセルの寄生容量 が負荷として入るため、実質的にビット線容量が大きく なるからである。

【0012】図27は、この様に、選択ワード線位置に よりピット線容量に bが実質的に変化し、従って読み出 し信号量が変化する様子を示している。選択ワード線が WL0の場合に比べて、WL7の場合には、"1"、 "0" データ共に読み出し信号電位は減少する。

[0013]

(2.9. 1) (発明が解決しようとする課題) ところで、データセン ス時には、対をなすビット線目し、BBLの一方が選択 されたとき、他方を参照ビット線としてこれに図27に 示すような参照電位V refは、"1"データの時の読み出しビット線電位と "0"データの時の読み出しビット線電位と 設定される。しかし、参照電位V refを一定とすると、TC並列ユニット直列接続型速減電体メモリの場合、図27から明らかなように、選択ワード線がWL0 からWL7になると、"1"データでは読み出し電位と か照電位V refとの差が小さくなり、"0"データの場合には逆に、読み出し電位と参照電位を事理でと参照電位をで、読み出し電位と参照電と参照電とでは、読み出し電位と参照電とをの議なは、「1"データの読み出し電位の中間値である。

【0014】この様にTC並列ユニット直列接統型強誘電体メモリにおいては、選択ワード線の位置に応じて読み出しメモリセルの負荷容易が変化する結果、参照電位Vrefを一定とすると、アクセスするワード線位置により"0"、"1"データの信号マージンにアンバラン 40スが生じるという問題がある。

[0015] この発明は、上記事情を考慮してなされた もので、ワード線位置に依らず略一定の読み出し信号マ ージンが得られるようにしたTC並列ユニット直列接統 型の強誘電体メモリを提供することを目的としている。 [0016]

【課題を解決するための手段】この発明に係る強誘電体 メモリは、第1に、セルトランジスタのソース、ドレイ ン間に強誘電体キャパシタを接続してユニットセルが構 成され、第1の端子と第2の端子の間に複数個のユニッ ⁵⁰ 6

トセルが直列接続されてセルブロックが構成され、各セルブロックの第1の端子がプロック選択トランジスタを かしてビット線に接続され、 お配各セルブロックの第2の編 子がブレート線に接続され、 前配各セルトランジスタの ゲートがワード線に接続されたメモリセルアレイと、前 認ユニットセルの強誘電体キャバシタから前記ピット線 に読み出される信号を検知増幅するセンスアンプ回路 と、前記プレート線を駆動するプレート線駆動回路と、 データ読み出し時、 前記センスアンプ回路の活性化前 に、 前記ピット線に対して前記セルブロック内の選択低 に、前記ピット線に対して前記セルブロック内の選取低 ないユニットセルの位置に応じて異なるオフセット電に を印加するオフセット電圧印加回路と、を備えたことを 特徴とする。

[0017] この様に、ビット線に対して、選択された ユニットセル位置に応じて異なるオフセット電圧を与え ることにより、TC並列ユニット直列接終型強誘電体メ モリに特有の現象であるセルブロックの寄生容量に起因 する読み出し信号のアンバランスを補正することができ る。

【0018】オフセット電圧印加回路は、(a)選択されたユニットセルが接続されるビット線に対して、選択されたユニットセルの比がプロック内の位置がビット線から違いほど高くなるオフセット電圧を与えるものとして構成することができ、或いは(b)選択されたユニットセルが接続されるビット線と対るセオット線のビック内の位置がビット線から違いほど低くなるオフセット電圧を与えるものとして構成することもできる。

【0019】また、オフセット電圧発生回路は、一端が ビット線は接続された少なくとも一つのキャパシタの他 端に駆動電圧を与えて、容量カップリングによりビット 線にオフセット電圧を印加するものとして構成すること ができる。この容量カップリング方式を利用したオフセ ット電圧印加回路は、具体的には例えば、一端がビット 線に接続される複数のキャパシタと、これらのキャパシ タの他端に選択されるワード線位置に応じて駆動電圧を 与えるデコードゲートとを備えて構成される。或いはま た、一端がビット線に接続されるでのキャパシタと このキャパシタの他端に接続されたそれぞれ異なる駆動 電圧を与えるための複数の駆動トランジスタと、これら の駆動トランジスタを選択されるワード線位置に応じて 選択するデコードゲートとを備えて構成される。 ご扱むるデコードゲートとを備えて構成される。

【0020】この発明に係る強誘電体メモリは、第2に、セルトランジスタのソース、ドレイン間に強誘電体キャパシタを接続してユニットセルが構成され、第1の端子と第2の端子の間に複数配のユニットセルを直列接続してセルブロックが構成され、各セルブロックの第1の端子がブロック選択トランジスタを介してピット線に接続され、各セルブロックの第2の端子がブレート線に接続され、6世の大・ランジスタのゲートがワード線

に接続されたメモリセルアレイと、前記ユニットセルの 強誘館体キャパシタから前記ビット線に読み出される信 号を検知増幅するセンスアンプ回路と、前記プレート線 を駆動するプレート線駆動回路と、スタンパイ時に前記 セルブロックの内部ノードを、前記ビット線に読み出さ れる二値データの信号電位の間にある第1の電位に設定 するプリチャージ回路と、を備えたことを特徴とする。

【0021】この発明によると、スタンバイ時のプレー

ト線側からのセルブロックのブリチャージにより、ビッ ト線側からオフセット電圧を与える場合と同様に、TC 10 並列ユニット直列接統型強誘電体メモリに特有の現象で あるセルプロックの寄生容量に起因する読み出し信号の アンバランスを補正することができる。ここで、プリチ ャージ回路は例えば、プレート線を介して各セルブロッ **クの内部ノードを前記第1の電位にプリチャージするも** のとして、プレート線駆動回路と一体構成することがで きる。この場合、プレート線駆動回路は、スタンバイ時 に第1の電位を発生し、アクティブ時に選択されたユニ ットセルの強誘電体キャパシタに順次印加される、第1 の電位より高い第2の電位及び第1の電位より低い第3 20 の電位を発生する3値電圧発生回路として構成される。

【0022】この発明に係る強誘電体メモリは、第3 に、セルトランジスタのソース、ドレイン間に強誘電体 キャパシタを接続してユニットセルが構成され、第1の 端子と第2の端子の間に複数個のユニットセルを直列接 続してセルブロックが構成され、各セルブロックの第1 の端子がプロック選択トランジスタを介してビット線に 接続され、各セルブロックの第2の端子がプレート線に 接続され、前記各セルトランジスタのゲートがワード線 に接続されたメモリセルアレイと、前記ユニットセルの 30 強誘電体キャパシタから前記ビット線に読み出される信 号を検知増幅するセンスアンプ回路と、前記プレート線 を駆動するプレート線駆動回路と、データ読み出し時、 選択されたセルブロックが接続されるビット線と対をな す参照ビット線に、選択されるユニットセルの位置に応 じて異なる寄生容量を付加するように配置されたダミー セルブロックと、を備えたことを特徴とする。

【0023】この様に、ダミーセルによって、選択ビッ ト線に付加される寄生容量と同等の寄生容量を参照ビッ ト線に与えることによっても、TC並列ユニット直列接 40 続型強誘電体メモリに特有の現象であるセルブロックの 寄生容量に起因する読み出し信号のアンバランスを補正 することができる。ダミーセルプロックは例えば、セル プロックのユニットセルと同数のダミーセルトランジス 夕が直列接続され、各ダミーセルトランジスタのゲート にダミーワード線が接続されて構成され且つ、セルブロ ックの選択されたワード線に対応するダミーワード線が 同時に選択されるようにすればよい。

【0024】なおこの発明において、好ましくは、デー

ト線に対して、キャパシタの容量カップリングにより参 照電位を与える参照電位発生回路を備える。

[0025]

【発明の実施の形態】以下、図面を参照して、この発明 の実施の形態を説明する。

[実施の形態1] 図1は、この発明の実施の形態による TC並列ユニット直列接統型強誘電体メモリの要部構成 を示す等価回路である。基本構成は、図24に示す回路 と同様であり、ユニットセルMCは、セルトランジスタ Tのソース、ドレインに強誘電体キャパシタCの両端を それぞれ接続して構成されている。この様なユニットセ ルMCが図の例では端子N1、N2間に8個直列接続さ れて、セルブロックMCBが構成される。図では、一対 のビット線BL、BBLに接続される二つのセルブロッ クMCBO、MCB1を示している。

【0026】セルプロックMCB0、MCB1の一端N 1は、プロック選択トランジスタBST0, BST1を 介してビット線BBL、BLに接続され、他端N2はブ レート線BPL、PLに接続される。各セルブロックの セルトランジスタTのゲートは、ワード線WL0~WL 7に接続される。ビット線BL、BBLには読み出しデ ータを検知増幅するセンスアンプ(SA)回路2が接続 され、プレート線PL,BPLには、プレート線駆動回 路3が接続されている。

【0027】この実施の形態においては、選択されるワ ード線の位置に応じて変動する読み出し信号マージンを 補正するために、ビット線BL,BBLの一方に対して 所定のオフセット電圧を印加するためにオフセット電圧 印加回路4が設けられている。このオフセット電圧印加 回路4は、具体的には、データ読み出し時、センスアン ブ回路2が活性化される前に、選択されるワード線位置 に応じて異なるオフセット電圧をビット線BL、BBL の一方に与えるように構成される。

【0028】オフセット電圧印加回路4の具体的構成の 説明に先立って、その基本的な回路方式と機能を説明す

[選択ビット線にオフセット電圧を与える方式] オフセ ット電圧印加回路4は、データ読み出しがなされる選択 ビット線に対して、オフセット電圧を印加する方式とす ることができる。この場合、オフセット電圧は、セルブ ロック内の選択されたユニットセル位置がビット線から 遠いほど、高くなるように選択される。これにより、寄 生容量による信号減少を補償することが可能になる。 具 体的には、(a)セルブロック内のビット線から遠い側 のユニットセルが選択された時に、正のオフセット電圧 を与える方式と、逆に(b)ビット線に近い側のユニッ トセルが選択された時に負のオフセット電圧を与える方 式とが考えられる。

【0029】図2Aは、(a) の方式を適用した場合の 夕読み出し時、選択されたビット線と対をなす参照ビッ50 オフセット電圧 Δ Vの印加の様子をヒステリシス曲線と の関係で示している。最も単純には、ワード線WL0-WL7 ϵ WL0-WL7 ϵ WL0-WL7 ϵ WL0-WL7 ϵ WL0-WL7 ϵ WL0-WL7 ϵ WL0-WL7 ϵ WL0-WL9 ϵ WL9 ϵ

【0030】図2Aでは、代表的に、ワード線WL0が 選択された場合と、ワード線WL7が選択された場合を 示している。ワード線WL7が選択された場合。即ちピット線から遠いユニットセルが選択された場合に、その 選択ピット線に正のオフセット電圧ΔVを与える。先に 説明し、また図2Aにも示したように、ワード線位置に よりピット線に接続される寄生容量が異なり、ワード線 WL0が選択された時の負荷直線一Cb(WL0)と、 ワード線WL7が選択された時の負荷直線一Cb(WL フード線WL7が選択された時の負荷直線一Cb(WL

【0031】ワード線WL7が選択された時に、選択ビット線に正のオフセット電圧ΔVを与えると、図2Aに示すように、破線で示した負荷直線-Cb(WL7) 次質的には、実線で示すように、スタート点が正電 ²⁰ 圧側にシフトしたと等価になる。この結果、"0"、

"1" データいずれの場合にも、ワード線WL 0 が選択 された時とワード線WL 7 が選択された時の負荷直線と ヒステリシス曲線の交点、即き読み出し信号電位の差が 殆どない状態に補正される。

【0032】図2Bは、(b)の方式を適用した場合のオフセット電圧 Δ Vの印加の様子をヒステリシス曲線との関係で示している。ここでも図2A と同様に、ワード線WL 7 が選択された場合と、ワード線WL 7 が選択された場合を示しているが、図2A とは逆に、ワード線W 10 とし、ワード線WL 0 小選択された場合には、アード線WL 0 ーWL 3 が選択された場合には、その選択ビット線に負のオフセット電圧 − Δ Vを与える。これにより、実質的に負荷直線一C b (WL 7)のスタート点が負電圧側にシフトしたと等価になる。従って、"0"、"1"データいずれの場合にも、ワード線WL 0 が選択された時とフード線WL 7 が選択された時の負荷直線とヒステリシス曲線の交点、即ち読み出し目号電位の差が殆どない状態に補正される。

10

オフセット電圧を与える方式とが考えられる。

【0034】図3Aは、(a)の方式を適用した場合の特性曲線である。この場合も単純には、ワード線WL0ーWL3のグループと、WL4ーWL7のグループに分け、前者のグループ内のワード線が選択された時は、負のオフセット電圧 Δ V を与え、後者のグループが選択された時は、よフセット電圧 Δ V とする。図3Aにおいても、代表的にワード線WL0とWL7が選択された場合を示している。即ちワード線

【0035】図3Bは、(b)の方式を適用した場合の特性曲線である。この場合は、ワード線WL7が選択された場合の破線で示す参照電位Vref(WL7)に対して、ワード線WL0が選択された場合の参照電位Vrfe(WL0)をオフセット電任印加により正側にシフトさせる。これにより、図3Aの場合と同様に、ワード線WL0が選択された時の"0"、"1"データの読み出し信号マージンと、ワード線WL7が選択された時の"0"、"1"データの読み出し信号マージンとを同等の状態とすることができる。

(0036) なお、図1に示したオフセット電圧印加回 路4は、選択されるワード線位置に応じてビット線電位 を調整するためのものであり、これとは別に、ビット線 BL、BBLの一方が選択された時に他方に参照電位 V refを与える参照電位発生回路が必要である。

【0037】図4は、図1の基本構成に、参照電位発生 回路5を加えた構成を示している。参照電位発生回路5 は、一端が駆動線DPLにより駆動されるキャパシタC rを用いて構成される。キャパシタCrの他端は、スタ ンパイ時はリセット用NMOSトランジスタQN13を テンジスタQN11、QN12により選択的にビット身 BBL、BLに接続される。これにより、データ読み時に はビット線BLにデータが読み出される時 はビット線BBLにデータが読み出される時 は、ビット線BBLに対してキャパシタCrのJードを 接続する。そして、駆動線DPLに与えられる電圧をキャパシタCrにより容量カップリングさせることによ り、参照電位Vrefが与えられる。

電圧を選択すればよい。具体的には、(a) セルブロッ ク内のビット繋から遠いほど、低くなるようにオフセット 電圧を選択すればよい。具体的には、(a) セルブロッ ク内のビット繋から遠い側のユニットセルが選択された 時に、負のオフセット電圧を与える方式と、逆に(b) ビット線に近い側のユニットセルが選択された時に正の 50 パシタC r には、メモリセルの "0" データ状態と同様 の残留分極状態が書き込まれるものとする。但し、駆動 線DPLをブレート線PLと同様の電圧で駆動して参照 電位Vrefとして"0"、"1"の読み出し電位の中 間の値を得るためには、例えばキャパシタCrの面積を セルユニットMCの強誘電体キャパシタCのそれより大 きくする。

【9039】図6は、図1、図4或いは図5におけるオフセット電圧発生回路4の部分を具体化した構成例を示している。オフセット電圧発生回路4の要部は、ピット線BL、BBLに容量カップリングによりオフセット電 10 圧を与えるためのキャパシタCA、CBである。これらのキャパシタCA、CBの駆動端子CKA、CKBは、それぞれデコーダゲートであるNANDゲートG1、G2とそれらの出力に設けられたインパータ1NV1、INV2により選択的に駆動される。

【0040】ここでは、アドレスの3ビットA0-A2により、8本のワード線WL0-WL7の一つが選択され、またアドレスピットA3により、ピット線対BL. BBLの一方(即ち、セルブロックMCB1、MCB0の一方)が選択される場合を想定している。そして、図2Aで説明したオフセット電圧印加方式の応用として、アード線WL0-WL3が選択されたときにはオフセット電圧を印加せず、ワード線WL4-WL7が選択された時に選択ビット線にオフセット電圧を印加せる方式を採用しているを

【0041】そのために、ピット線BL側のNANDゲートG1には、括性化信号TCK0と共に、アドレスA2、A3が入力され、ピット線BBL側のNANDゲートG2には、括性化信号TCK0と共に、アドレスA2、A3が入力される。即ち、A3=0でピット線BL個が選択され、且つワード線WL4ーWL7の範囲が選択されるA2="1"のとき、キャパシタCA側のNANDゲートG1の出力が"L"となり、駆動端子CKAにオフセット電圧発生のための電圧V0が与えられる。また、A3=1でピット線BBL側が選択され、且つワード線WL4ーWL7の範囲が選択され、且つワード線WL4ーWL7の範囲が選れされるA2="1"のとき、キャパシタCB側のNANDゲートG2の出力が"L"となり、駆動端子CKBにオフセット電圧発生のための電圧V0が与えられるたフェ"1"、A3="1"のとき、キャパシタCB側のNANDゲートG2の出力が"L"となり、駆動端子CKBにオフセット電圧発生のための電圧V0が

【0042】図7Aは、A2="1", /A3="1"により、セルブロックMCB1が選択され、且つワード線WL7が選択された場合の強誘電体メモリの動作タイミングを示している。ワード線WL7が選択され(時刻 t1)、その後セルブロックMCB1を選択するブロック選択信号BS1が"H"になり、ブレート線PLに"H"が与えられる(時刻 t2)。そして、括性化信号でCK0が"H"になる、NANDゲートG1が括性になり、駆動信号CKAが出力される(時刻 t3)。

【0043】これにより、データが読み出されるビット 50

12

線BLに、キャバンタCAを介してオフセット電圧が与えられる。その後、センスアンプ回路が活性化され(時刻14)、"0"、"1"データが検知増幅される。その後、ブレート線PLを"比"をして(時刻15)。 読み出しデータの両書き込みがなされた後、センスアンブ回路が非活性にされる(時刻16)。ワード線WL4、WL5、WL6が選択された場合も同様の動作になる。[0044]図7時は、/A3="1"により、セルブロックMCB1が選択され且つ、ワード線WL1が選択された場合の動作タイミング図である。この場合、図7Aと異なり、時刻14で駆動端子線

0、WL2、WL3が選択されたときも同様の動作となる。 【0045】この様にして、ビット線BLから遠いユニットセルのグループが選択されたときに、そのビット線 BLにオフセット電圧が与えられ、前述のようにワード 線WL0-WL3が選択されたときとの信号マージンの

BLにオフセット電圧は与えられない。ワード線WL

バランスが補正される。
【0046】図6の場合、オフセット電圧発生回路4が
発生するオフセット電圧は一種である。これに対して、
図8は、二種のオフセット電圧を発生するオフセット電
圧発生回路4の構成を示している。この場合、各ビット 線BL、BBLに容量カップリングのために、二つずつ のキャパシタCA、CB、CC、CDが用意される。こ れらのキャパシタCA、CB、CC、CDの駆動端子C KA、CKB、CKC、CKDを駆動するためにそれぞ れ、NANAゲートG11、G12、G21、G22と インパータINV11、INV12、INV21、IN V2 2 が認好られる。

【0047】ここでは、図6の場合と同様に、アドレスの3ピットの0-42により、8本のワード線WL00WL7の一つが選択され、またアドレスビットA3により、ビット線対BL、BBLの一方(即ち、セルブロックMCB1、MCB0の一方)が選択される場合を想定している。更に、ワード線WL4-WL7のうち、WL7以近し5が選択されたときと、WL6又はWK7が選択されたときとで異なるオフセット電圧を選択ビット線に与えるために、6ビット線毎に2系統の電圧印加回路が構成されている。

【0048】即ち、A2="1"、/A3="1"のとき、セルブロックMCB1が選択され且つ、ワード線WL4~WL7が選択され、このときNANDゲートG1が活性になって、キャパシタCAが駆動される。更に、A1="1"で且つ/A3="1"により、ワード線WL4~WL7の造、NANDゲートG12が活性化され、キャパシタCBが駆動される。即ち、ワード線WL4、Nが選択される。このとき、NANDゲートG12が活性化され、キャパシタCBが駆動される。即ち、ワード線WL4 XUU5が選択されたときはキャパシタCAのみが、また

13

ワード線WL6又はWL7が選択されたときは、キャパ シタCAとCBが同時に駆動される。

【0049】これにより、ワード線WL4又はWL5が 選択された時に選択ピット線BLに与えられるオフセッ ト電圧に比べて、ワード線WL6又はWL7が選択され た時にはより大きなオフセット電圧が選択ビット線BL に与えられる。セルブロックMCBOが選択されて、ビ ット線BBLにデータが読み出される場合も同様であ る。この場合には、ワード線WL4又はWL5が選択さ れたときはNANDゲートG21が活性化してキャパシ 10 タCCのみが、またワード線WL6又はWL7が選択さ れたときは、更にNANDゲートG22が活性化してキ ャパシタCCとCDが同時に駆動される。

[0050] 図9は、A1="1", A2="1"且つ /A3= "1" により、セルブロックMCB1が選択さ れ、且つワード線WL7が選択された場合の強誘電体メ モリの動作タイミングを示している。ワード線WL 7 が 選択され(時刻t1)、その後セルブロックMCB1を 選択するブロック選択信号BS1が"H"になり、プレ ート線PLに"H"が与えられる(時刻t2)。そし て、活性化信号TCK 0 が "H" になると、二つのNA NDゲートG11, G12が活性になり、駆動信号CK A. CKBが出力される(時刻t3)。

【0051】これにより、データが読み出されるビット 線BLに、キャパシタCA、CBを介してオフセット電 圧が与えられる。その後、センスアンプ回路が活性化さ れ (時刻 t 4) 、 "0", "1" データが検知増幅され る。その後、プレート線PLを"L"として(時刻 t 5)、読み出しデータの再書き込みがなされた後、セン スアンプ回路が非活性にされる (時刻 t 6) 。ワード線 30 WL6が選択された場合も同様の動作になる。ワード線 WL4又はWL5が選択された場合は、駆動信号CKA のみが"H"となり、キャパシタCAのみが駆動され

【0052】図6及び図8に示したオフセット電圧発生 回路4では、回路電源電圧V0を用いて、これをキャパ シタの駆動電圧としている。そのため、図8では、二種 のオフセット電圧を発生するために、各ピット線BL, BBLに二個ずつのキャパシタCA, CB, CC, CD が必要であった。これに対して、異なるキャパシタ駆動 40 電圧を用意すれば、一つずつのキャパシタで複数段階の オフセット電圧を発生することが可能である。

【0053】図10は、その様なオフセット電圧発生回 路4の構成例を示している。ここでは、ビット線BL. BBLに接続されたカップリング用キャパシタCA、C Bの駆動端子CKA, CKBに対して、4種の駆動電圧 VSS, V0, 2V0, 3V0を選択的に与えて、4ス テップのオフセット電圧が与えられるようにしている。 即ち、8本のワード線WL0-WL7に対して、WL0 又はWL 1が選択された時、WL 2 又はWL 3 が選択さ 50 夕が検知増幅される。その後、プレート線PLを"L"

れた時、WL4又はWL5が選択された時、WL6又は WL7が選択された時に応じて、それぞれ異なるオフセ ット電圧をピット線に与えるようにする。

【0054】そのために、キャパシタCAの駆動端子C KAには、電圧3V0、2V0、V0及びVSSを与え るための駆動用PMOSトランジスタQP21, QP2 2、QP23、QP24が設けられている。同様に、キ ャパシタCBの駆動端子CKBには、電圧3V0、2V VO及びVSSを与えるための駆動用PMOSトラ ンジスタQP31、QP32、QP33、QP34が設 けられている。NMOSトランジスタQN21, QN3 1は、活性化信号TCKOが"L"のときに、駆動端子 CKA, CKBをVSSにリセットするためのリセット トランジスタである。

【0055】駆動用PMOSトランジスタQP21、Q P22、QP23、QP24をアドレスに応じて選択的 にオン駆動するためのデコードゲートとして、NAND ゲートG101, G102, G103, G104が設け られている。同様に、駆動用PMOSトランジスタQP 31, QP32, QP33, QP34をアドレスに応じ て選択的にオン駆動するためのデコーダゲートとして、 NANDゲートG201, G202, G203, G20 4が設けられている。

[0056] NANDゲートG101, G102, G1 03, G104は、セルブロックMCB1. MCB0を 選択するアドレスピットA3が、/A3="1"のと き、即ちセルブロックMCB1が選択されるときに活性 化される。NANDゲートG201,G202,G20 3. G204は、A3="1"のとき、即ちセルブロッ クMCBOが選択されるときに活性化される。更にこれ らのNANDゲートには8本のワード線の二本ずつを選 択するA1、/A1、A2、/A2の組み合わせが入 り、ワード線位置に応じてオンになる。

【0057】図11は、/A3="1"によりセルブロ ックMCB1即ちビット線BLが選択され、A1=A2 = "1"によりワード線WL6又はWL7が選択された 場合の強誘電体メモリの動作タイミングを示している。 例えばワード線WL7が選択され(時刻 t 1)、その後 セルブロックMCB1を選択するブロック選択信号BS 1が"H"になり、プレート線PLに"H"が与えられ る (時刻 t 2) 。 そして、活性化信号TCK 0 が "H" になると、A1=A2=/A3="1"によりNAND ゲートG101が活性になり、駆動トランジスタQP2 1がオンして、駆動端子CKAに3V0が出力される (時刻t3)。

【0058】これにより、データが読み出されるビット 線BLに、3V0で駆動されたキャパシタCAにより大 きなオフセット電圧が与えられる。その後、センスアン プ回路が活性化され(時刻 t 4)、"0", "1"デー

(9)

として (時刻 t 5) 、読み出しデータの再書き込みがなされた後、センスアンプ回路が非活性にされる (時刻 t 6)。ワード線WL6が選択された場合も同様の動作になる

【0059】ワード線WL4又はWL5が選択された時は、NANDゲートG102がオンになり、駆動トランジスタQP22がオンとなって、駆動端子CKAには2V0が与えられる。これにより、ワード線WL6、WL7が選択された場合に比べて小さいオフセット電圧がビット線BLに与えられる。ワード線WL2又はWL3が10選択された時は、NANDゲートG103がオンになり、駆動トランジスタQP23がオンとなって、駆動端子CKAにはV0が与えられる。これにより、ワード線WL4、WL5が選択された場合に比べて更に小さいオフセット電圧がビット線BLに与えられる。以下同様に、選択されるワード線位置に応じて細かくステップ分けされたオフセット電圧がビット線に与えられ、信号マーシンのパランス補正がなされる。

【0060】以上の実施の形態において、図7A、図7B、図9、図11において、オフセット電圧発生回路42を非括性にするタイミング、即ち括性化信号TCK0を"L"にするタイミングは、センスアンプ回路2によるセンス動作を行い、ブレート線PLを"L"に戻した後、センスアンプ回路2を非活性にする前としている。しかしオフセット電圧発生回路4は、読み出しデータが確定すれば、オフにしても差し支えなく、例えばプレート線PLを"L"にするより前に括性化信号TCK0を"L"にするよともできる。

【0061】ここまでの実施の形態では、TC並列ユニット直列接焼型強誘電体メモリのワード線位置による読 30 み出し信号マージンのアンパランスを、データが読み出されるビット線に所定のオフセット電圧を与えることにより補正した。これに対して、セルブロックのプレート線側からセルブロックの内部ノードをプリチャージすることにより、同様にワード線位置による読み出し信号のマージンのアンバランスを補正することが可能である。以下にその様な実施の形態を説明する。

【0062】 [実施の形態2] 図12は、その様な実施の形態によるTC並列ユニット直列接続型強誘電体メモリの要部構成を示す等値回路である。基本構成は、図244に示す回路と同様であり、ユニットセルMCは、セルトランジスタTのソース、ドレインに強誘電体キャパシタCの両端をそれぞれ接続して構成されている。この様なユニットセルMCが図の例では端子N1、N2間に8個直列接接されて、セルブロックMCBが構成される。のでは、一対のビット線BL、BBLに接続されるニコのセルブロックMCB0、MCB1を示している。

【0063】セルプロックMCB0, MCB1の一端N 1は、プロック選択トランジスタBST0, BST1を 介してビット線BBL, BLに接続され、他端N2はプ⁵⁰

レート線BPL、PLに接続される。各セルブロックの セルトランジスタのゲートは、ワード線WL0~WL7 に接続される。ビット線BL、BBLには読み出しデー タを検知増幅するセンスアンプ(SA)回路2が接続さ れ、プレート線PL、BPLには、プレート線駆動回路 3が接続されている。

【0064】ここで、ブレート線駆動回路3は、アクティブ時にブレート線PL、BPLを駆動する本来のブレート線駆動回路としての機能の他に、スタンバイ時にむ ルブロックMCB0,MCB1の内部ノードを所定電位 にブリチャージするためのブリチャージ間路の機能を併せ持つ3億電圧発生回路として構成されている。ブリチャージ電位は、"0"、"1"データのときにビット線 で読み出される電位の間にある電位(好ましくは参照電位と同じ中間電位)とする。ブレート線駆動回路3は、アクティブ時には、上述したブリチャージ電位より高い電位と、ブリチャージ電位より低い電位を順次ブレート線に出力することになる。

【0065】図14は、プレート線駆動回路3のうちーつのプレート線PLを駆動する部分について具体的な構成を示している。PMOSトランジスタQP41は、クロックの1= "L" によりオン駆動されて、プレート線PLに高電位VPLHを与える。NMOSトランジスタ QN41は、クロックの2= "H" によりオン駆動されて、プレート線PLに低電位VSSを与える。NMOSトランジスタQN42とPMOSトランジスタQP42は、それぞれクロックの3= "L"、/の3= "L"によりオン駆動されて、プレート線PLにプリチャージ電位(図の場合参照電位Vref)を与える。

【0066】このプレート線駆動回路3の動作波形は、 図15のようになる。即ち、スタンパイ時、 φ1=

【0067】図12の強誘電体メモリの動作を、セルブロックMCB Liを育し、且つアクティブ時にワード線 WL2が選択される場合について、図13のタイミング 図を参照して次に説明する。クロックの3= "H"のスタンパイ時、前述のようにブレート線駆動回路3からブレート線P Licはブリチャージ電位V re fが与えられる。この間、全ワード線WL0-WL7は "H"であり、ブレート線PLのプリチャージ電位V re f はオンしているセルトランジスタを介して、セルブロックMC-B1の内部/一ドに転送される。

【0068】クロックφ3が"L"になり、同時に選択

ワード線WL 2が "L" になって、アクティブ動作に入る (時刻 t 1)。そして、ブロック選択信号BS 1が選択されて "H" になり (時刻 t 2)、セルブロックMC B1の選択メモリセルの強誘電体キャパシクがビット線 BLに接続される。そして、クロックの 1が "L" になって、ブレート線P Lに高電位 V P L H (図 1 3 の例では、電源電位 V A A) が与えられ、ビット線へのデータ読み出しが行われる。この後、センスアンブ活性化信号SEが "H" になり、ビット線BBLに与えられた参照を位 V r e f との比較により、ビット線BLは、データ 10 "0"、"1" に応じて、V S S、V A A L P 幅 に 入

○・ [0069] その後、クロックの1が"L"になり、代わってクロックの2が"H"になることで、ブレート線 P L は低電位 V S S に戻される (時刻15)。 センスアンブ回路 2 を引き続き活性に保たれ、その間に、前述のように"1"データの場合には連誘電体キャパシタに逆電圧が掛飾り、"0"データの場合には加速電圧でとなって、可事き込みがなされる。そして、ブロック選択信号B S 1を"L"にしてセルブロックをビット線B L 20 から切り離し、更にセンスアンブ回路 2 を非活性にする (時刻16)。この後、クロックの2を"L"とし、更にア・ド線W L 2 を"H"、クロックの3を"L"として、スタンバイ状態に戻る。

【0070】この実施の形態の場合の強誘電体キャパシタに印加される電圧の航跡を、図27と比較して示すと、図16のようになる。この実施の形態では、セルブロックの内部ノードがVrefにプリチャージされる。従って、データ読み出し時、選択メモリセル位置からビット線側にあるメモリセルのノードに蓄積されている電が信号電荷に加算されて近った線に読み出される。この信号電荷に加算される電荷値は、ワード線WL0により選択されるビット線に最も近いメモリセルの場合には最も小さく、ワード線WL7により選択されるビット線、ありまない。

【0071】セルブロック内部ノードのプリチャージの 結果として、ワード線WL0を選択した場合に比べて、 ワード線WL7を選択した場合の信号電荷量は公Qだけ 大きくなるとすると、図16に示したように、負荷直線 40 - Cbのスタート点が、ワード線WL0を選択した場合 に比べて、ワード線WL7を選択した場合の方が電荷量 公Qの分だけシフトしたと等価になる。

【0072】以上の結果、図16に示すように、"1" データの場合のビット線数み出し電位は、ワード線WL 0を選択した場合に比べて、ワード線WL7を選択した 場合より減少するが、その減少分は図27と比べてごく 小さい。"0"データについては、ワード線WL7を選 収した場合に比べて、ワード線WL7を選択した場合の 方が値かに増加する。図17は、従来の図28に対応さ 50 10

せて、読み出しピット線電位のワード線位置依存性を示している。"0"データの場合、実質的に読み出し電位はワード線位置がWL0からWL7に変化するにつれて、確かに大きくなるが、略一定である。"1"データの場合は逆に、ワード線位置がWL0からWL7に変化するにつれて読み出し電位が確かに減少するが、略一定である。従って、参照電位(同時にプリチャージ電位でもある) Vrefを"0"、"1"データのピット線洗め出し電位の略中間電位に固定して、自動的にワード線位置による信号マージンのアンパランスが補正される。そしてどのワード線が選択された場合でも、略一定の信号量が得られる。

[0073] ピット線にオフセット電圧を与える方式では、ワード線位置に応じてオフセット電圧を選択する必要があり、アドレス選択の機能を必要とした。これに対してこの実施の形態の場合には、セルブロックの内部ノードにブリチャージされた電荷は、ワード線の選択の自動的に、ワード線で置よりピット線側にある電荷のみが信号電荷に加算されて読み出しされる。従って、アドレス選択機能を持つ回路の格別に用意する必要がなく、回路は個単になる。

【10074】図12の回路に対して、参照電位発生回路を含めた回路構成を示すと、図18のようになる。参照電位発生回路4は、一端が駆動線DPLにより駆動されるキャパシタCrを用いて構成される。キャパシタCrの他端は、スタンパイ時はリセット用NMOSトランジスタQN13を介してVSSに接続され、アクティブ時にはNMOSトランジスタQN111、QN12により選択的にビット線BBL、BLに接続される。

【0075】この回路構成の場合の動作タイミングを図 19に示す。その基本動作は、図12の場合と同様であ るので、参照電位発生の動作に着目して説明する。選択 ワード線WL 2 が "L" になってアクティブ動作に入り (時刻 t 1) 、その後プロック選択信号BS1が "H" になると同時に、参照電位発生回路4の選択信号DBS 0が"H"になる(時刻t2)。続いて、プレート線P **LにVAAを与える時に同時に、駆動線DPLに"H"** を与える(時刻 t 3)。これにより、トランジスタQN 11を介してキャパシタCェがビット線BBLに接続さ れ、駆動線DPLに与えられる電圧がピット線BBLに 所定の結合比で参照側のビット線BBLに容量結合さ れ、参照電位Vrefがビット線BBLに与えられる。 そして、選択信号DBS0を"L"にした後、プレート 線PLおよび駆動線DPLを"L"レベルにする(時刻 t 5)。再書き込みが終了した後、リセット信号DRS を "H" にして、キャパシタCrのノードをVSSにリ セットし(時刻 t 6)、センスアンプ回路 2 を非活性に する (時刻 t 7)。

【0076】以上のように、一つのキャパシタCrを用いた簡単な参照電位発生回路4により、参照ビット線側

に与える参照電位 V r e f を固定した状態で、且つセル ブロックのプリチャージ動作によってワード線位置によ る読み出し信号量の補正が可能である。

【0077】図20は、図18における参照電位発生回路4のキャバシタCrとして、常該電体キャバシタではなく、メモリセルと同様の強誘電体キャバシタを用いた例である。それ以外は図18と変わらない。この場合、キャバシタCrには、メモリセルの"0"データ状態と同様の残留分極状態が書き込まれるものとする。但し、駆動線DPLをブレート線PLと同様の電圧で駆動して10参照電位Vrefとして"0"、"1"の読み出し電位の中間の値を得るためには、例えばキャバシタCrの面積をセルユニットMCの強誘電体キャバシタCのそれより大きくする。

【0078】図21は、図20の回路構成の場合の動作 タイミングを、図19に対応させて示している。図19 と異なるのは、参照電位発生回路5の駆動線DPLをデータ読み出し動作の間、"H"に保む、センス動作が終 了した後、時刻 t8で"L"にしている点である。これ は、キャパシタCrとして強誘電体キャパシタを用いて²⁰ いるため、誤って"1"データが書かれるのを防止する なかである。

[0079] ここまでの実施の形態では、ワード線位置に応じて選択されるセルユニットの強誘電体キャパシタの負荷が実質的に変動することによる読み出し信号量変 動を結正するために、ビット線側に或いはビット線と反対のブレート線側に所定の補正用電圧を与えるようにした。これに対し、積極的に電圧印加を行うことなく、ビット線対の寄生容量のパランスをとることにより信号量のアンパランスを補正することも可能である。その様な30実施の形態を次に説明する。

【0080】 [実施の形態3】図22は、その様な実施の形態のTC並列ユニット直列接線型強誘電体メモリの要部構成を示す等価回路である。基本構成は、図24に示す回路と同様である。この実施の形態では、ビット線対BL、BBLに対して設けられるセルブロックMCB1、MCB0と別に、ダミーセルブロックDMCBが設けられている。セルブロックMCB0、MCB1が8個のセルトランジスタTと強誘電体キャパシタCにより構成される場合に、ダミーセルブロックDMCBは、8個40がミーセルトランジスタDTの直列接続により構成される。

【0081】ダミーセルトランジスタDTの一端は接地され、他端は選択ゲートトランジスタDBST0、DBST1を介してそれぞれピット線BBL、BLに選択的に接続される。ダミーセルトランジスタDTのゲートはダミーワード線DWL0-DWL7により駆動される。選択ゲートトランジスタDBST0、DBST1は、ブロック選択信号DBS0、DBS1により駆動される。なお図では省略したが、ダミーセルブロックMKBと 50

20

は別に、ビット線BL、BBLに参照電位Vrefを与えるために、図18或いは図20と同様の参照電位発生 回路5が設けられる。

【0082】ダミーセルブロックDMCBは、セルブロックMCB0、MCB1の一方が選択された時に、その選択されたユニットセル位置に応じて異なる寄生容量と同等の寄生容量を警照側のピット線に付加するために用いられる。選択されたユニットセルよりビット線側にあるされているから、選択されたセルブロックの寄生容量は、選択されたユニットセルよりピット線側にあるセルトランジスタのゲート容量と拡散層容量によりほぼ決まる。従って、グラーセルトランジスタフトを、セルブロックに用いられるセルトランジスタフトを、セルブロックに用いられるセルトランジスタアと同じ寸法のものとすれば、ワード線と対応するダミーワード線が選択されるようにして、参照ビット線に選択ビット線と同じ寄生容量を付加することが可能になる。

【0083】図23は、この実施の形態の場合の動作タイミング図である。スタンバイ時、ワード線WL0-W L7が"用"に保持される間、同様にダミーワード線 WL0-DWL7も"H"に保持される。そして、アクティブ時、ワード線WL0-WL7の一本が"L"とされるときに、同時にダミーワード線DWL0-DWL7の中の対応するもの一本が"L"とされる。図23の例では、セルブロックMCBIが選択され、ワード線WL7と同時に対応するダミーワード線DWL7が選択される(時刻 t1)。そしてブロック選択信号BSIが"H"になって、セルブロックMCBIが選択されるときに同時に、ブロック選択信号DBSIが"H"になって、セルブロックMCBIが選択するときに同時に、ブロック選択信号DBSOが"H"になって、ダーセルブロックMCBがピット線BBLに接続される「時刻 t2)。

【0084】これにより、セルブロックMCB1のワード線WL7により選択されたユニットセルがピット線 しに接続され、同時にダミーセルブロックDMCBのダ ミーワード線DWL7により選択されたダミーセルトラ ンジスタDTが参照側のピット線BBLに接放される。 整照側のピット線BBLには、図22では省略した参照 電位発生回路により所定の参照電位Vrefが与えられ 30。そして、センスアンブ回路を活性化することによ り、"0"、"1"データの判別が行われる(時刻 t 3)。その後、先の実施の形態と同様に、プレート線 した"L"にして読み出しデータの再書き込みを行い (時刻 t 5)。

[0085] この実施の形態の場合、セルブロックMC Bの読み出しにおいて、ワード線位置に応じて異なるセ ルブロックの寄生容量がビット線台Bに接続される時 に、同時に参照側のビット線 BB にも 参ミーセルブロ ックDMC Bによりワード線位置に応じて異なる寄生容 最が接続されることになる。このことは、言い換えれば、セルブロックの選択ワード線位置に応じて、参照側のビット線に与える参照電位Vrefを実質的に変えたと等価になる。この結果、ワード線位置による信号量のアンパランスが補正される。

[0086] この実施の形態において、ダミーセルブロ ックはセルトランジスタのみにより構成され、再書き込 み等の動作は必要がない。従って、図23に破線で示し たように、センスアンブ回路2を活性化してデータが確 定した後は、選択されたブロック選択信号DBS0を "L"とし、また選択されたグミーワード線DWL7を "1"ともったとができる。

[0087]

【発明の効果】以上述べたようにこの発明によれば、T C 並列ユニット直列域原型協善能大チリの選択される ワード線位置により負荷が愛動することに起因する "0"、"1"データの信号マージンのアンパランスが 施工され、ワード線位置に依らず略一定の信号マージン 本得ることが可能になる。

【図面の簡単な説明】

【図1】この発明の実施の形態による強誘電体メモリの 構成を示す等価回路図である。

[図2A] 選択ビット線にオフセット電圧を与える方式 による信号アンバランス補正の原理を説明するための特 性図である。

【図2B】選択ビット線にオフセット電圧を与える他の 方式による信号アンバランス補正の原理を説明するため の特性図である。

【図3A】参照ビット線にオフセット電圧を与える方式 による信号アンパランス補正の原理を説明するための特 30 性図である。

[図3B]参照ビット線にオフセット電圧を与える他の 方式による信号アンバランス補正の原理を説明するため の特性図である。

【図4】図1の構成に参照電位発生回路を付加した回路 構成を示す図である。

【図5】図1の構成に他の参照電位発生回路を付加した 同路機成を示す図である。

回路構成を示す図である。 【図6】オフセット電圧発生回路を具体化した回路構成

例を示す図である。 【図7A】図6のオフセット電圧印加回路を用いた場合

の動作タイミング図である。

【図7B】図6のオフセット電圧印加回路を用いた場合 の動作タイミング図である。

【図8】オフセット電圧発生回路を具体化した他の回路

22

構成例を示す図である。

【図9】図8のオフセット電圧印加回路を用いた場合の 動作タイミング図である。

【図10】オフセット電圧発生回路を具体化した他の回 路構成例を示す図である。

【図11】図10のオフセット電圧印加回路を用いた場合の動作タイミング図である。

【図12】この発明の他の実施の形態による強誘電体メ モリの構成を示す等価回路である。

0 [図13] 同強誘電体メモリの動作タイミング図である。

【図14】同強誘電体メモリのプレート線駆動回路の構成を示す図である。

【図15】同プレート線駆動回路の動作波形を示す図である。

「図16] 同強誘電体メモリの読み出し信号の電圧軌跡 を示す図である。

【図17】同強誘電体メモリのビット線読み出し電位の ワード線位置依存性を示す図である。

20 【図18】図12の回路に参照電位発生回路を付加した回路構成を示す図である。

【図19】図18の回路の動作タイミング図である。

【図20】図18の参照電位発生回路を変形した回路構成を示す図である。

【図21】図20の回路の動作タイミング図である。

【図22】この発明の他の実施の形態による強誘電体メ モリの構成を示す等価回路である。

【図23】同強誘電体メモリの動作タイミング図であ

0 【図24】TC並列ユニット直列接続型強誘電体メモリ の基本構成を示す等価回路である。

【図25】同強誘電体メモリの動作タイミングである。
【図26】同強誘電体メモリの動作原理を説明するため

のヒステリシス特性である。 【図27】同強誘電体メモリのワード線位置による読み

出し信号電位の変化を示す図である。 【図28】同強誘電体メモリの読み出し信号電位のワー ド線位置依存性を示す図である。

【符号の説明】

1 …メモリセルアレイ、2 …センスアンプ回路、3 …ブレート線駆動回路、4 …オフセット電圧発生回路、5 …参照電位発生回路、MC …メモリセル、MC B 0 . MC B 1 …セルブロック、B L . B B L …ビット線、WL 0 ~WL 7 …ワード線。

【図1】

[図28]

[図18]

[図20]

[図24]

[図22]

フロントページの続き

Fターム(参考) 5B024 AA04 BA01 BA02 BA07 BA27 BA29 CA07