Ocean Health: Important Indicators for Determining Healthy Marine Ecosystems

DSE 230 Scalable Data Analysis Final Project

Leslie Joe, Kate O'Laughlin, Karina Kanjaria

Dataset

- California Cooperative Oceanic Fisheries Investigations (CalCOFI) - Bottle Database:
 - https://www.kaggle.com/datasets/sohier/calcofi
- Dimensions of the dataset
 - o 864,850 x 74
- Oceanographic data collected from 1949 to present
- Taken every year on scientific cruises
- Data collected from the coast of California
- Took samples at different depths of the ocean in bottles

Problem

Can we predict chlorophyll levels in a marine ecosystem through measurements of other factors present in the marine environment?

If so, which chemicals have the highest influence on the predictions?

mydroll.com/chlorophyll-and-liquid-chlorophyll-benefits-and-risk

Importance

- Phytoplankton are single-celled organisms that are the base of the ocean's food web
- Chlorophyll are the components that perform photosynthesis to produce energy for the phytoplankton
- Chlorophyll absorb CO2 and sink to the bottom, bringing CO2 out of the atmosphere
- Measure abundance of phytoplankton through measuring chlorophyll

Data Preparation

```
correlation coefficient between
   "Depthm" and "R_Depth":
   0.9999999949168986

Null counts per column:
   +----+
| Depthm|R_Depth|
   +-----+
| 0 | 0 |
   +-----+
```

Data Cleaning

- Removed unnecessary columns and duplicate columns
- Removed "bad quality" data points using the Quality Code values
- Removed Quality Code columns
- Removed features with too few non-null entries
- Removed rows were our target value was null

Perform lasso regression to find relevant features

- \circ Filled in a temp duplicate dataframe's remaining nulls with the column means for the Lasso model, and used alpha α = 0.25
- Removed features with coefficient = 0.0
- Filled in original dataframe's null rows with the column means
- Resulting dataset dimension: 222,293 rows × 11 columns

Feature Correlation

- Found 4 additional features with highly correlations
- Removed 2 features with correlation > 0.9 to reduce redundancy
- Left with 8 final features for model

Analysis Approaches

- Categorical amounts of chlorophyll levels are more interpretable than numerical values
- For this reason, we change the data to fit a classification model rather than a regression model
 - Changed target values from chlorophyll measurements to categories
- Logistic Regression is standard for a classification problem
 - Multivariable since we have 3 categorical variables
 - Logistic Regression can also output feature coefficients
 - Helps determine feature importance
- Decision Tree Classification to see whether we can improve classification accuracy
 - Reiterates which features are important

Analysis Preparation

- Created categories of low, medium, high chlorophyll values
 - Based on research and data distribution
 - https://www.nature.com/scitable/knowledge/library/ the-biological-productivity-of-the-ocean-70631104
- Used 8 features to predict chlorophyll values into target categories
 - o low, medium, high: 0, 1, 2
- Split data 80, 10, 10: train, test, validation
- Scaled data using Min Max Scalar
- Checked for any data imbalances
 - Each of data split had proportional target counts

Target	Category	Value Range	Counts
0	low chlorophyll values	0 > x > 0.1 μg/L	113,126
1	medium chlorophyll values	0.1 ≥ x ≥ 1 μg/L	17,227
2	high chlorophyll values	x ≥ 1 µg/L	74,835

Analysis Results: Logistic Regression

Results

O Accuracy: 0.882

o False positive rate: 0.119

• True positive rate: 0.882

o F-measure: 0.880

Precision: 0.884

o Recall: 0.882

Important Features

Phaeophytin

Nitrite

Oxygen Saturation

Dynamic Height

Model Coefficients					
Feature	Low	Medium	High		
S_prec	0.102	0.000	0.000		
R_Temp	1.087	0.040	-1.231		
R_SALINITY	-1.234	-6.788	1.425		
R_DYNHT	8.066	2.345	-14.874		
R_O2Sat	-7.570	1.119	10.940		
R_NO3	4.859	-2.126	-1.308		
R_NO2	-22.395	15.225	15.436		
R_PAHEO	-222.394	19.415	137.248		

Parameter Tuning (Snippet)					
regParam	elasticNetParam	Validation Accuracy			
0.0001	0.1	0.880			
0.0005	0.3	0.880			
0.0005	0.4	0.881			
0.0005	0.5	0.881			
0.0005	0.6	0.881			
0.0005	0.7	0.881			
÷	:	ŧ			
0.0005	0.9	0.881			
0.0005	1.0	0.881			
0.0010	0.8	0.881			
0.0010	0.9	0.880			
0.0010	1.0	0.881			

Analysis Results: Decision Tree

- Training Set: 0.882 accuracy
- Validation Set: 0.881 accuracy
- Test Set: 0.878 accuracy
- Important Features Found (in order):

and the first of t

- 1. Temperature (°C)
- Phaeophytin (µg/L)
- 3. Oxygen Saturation (%)
- 4. Dynamic Height (m)

Parameter Tuning					
Min Instances per Node	Train Accuracy	Val Accuracy			
20000	0.790	0.793			
10000	0.819	0.822			
1000	0.878	0.879			
900	0.878	0.879			
800	0.880	0.879			
700	0.880	0.878			
600	0.881	0.878			
500	0.881	0.879			
400	0.882	0.880			
300	0.882	0.881			
200	0.882	0.881			
100	0.882	0.881			
50	0.883	0.881			
10	0.882	0.881			

Challenges and Solutions

- How to handle Quality Column information
 - Used quality codes and removed rows with the code indicating an "uncertain result"
- How to handle overfitting
 - Reduced number of input features to reduce noise
 - Correlation Analysis
 - Lasso Regression
 - Initially 73 features → reduced to 8 features
 - Decision tree minimum sample split
- Which analysis methods should be implemented?
 - Categorical amounts of chlorophyll levels are more interpretable than concentration amounts
 - Changed targets to categories
 - Used Logistic Regression and Decision Tree Classification models

Insights Gained

- Most important features to predict chlorophyll:
 - Phaeophytin (µg/L)
 - a chemical component prevalent in photosynthesis
 - https://link.springer.com/article/10.1023/A:1024990408747
 - Dynamic Height (depth of sample)
 - Most abundant at 200-300m depth
 - https://www.whoi.edu/know-your-ocean/ocean-topics/ocean-life/ocean-plants/ phytoplankton
 - Temperature (°C)
 - Higher temperatures increase phytoplankton growth
 - https://doi.org/10.3389/fmars.2019.00821
 - Oxygen Saturation (%)
 - Phytoplankton produces 20% of all biosphere oxygen production
 - https://oceanservice.noaa.gov/facts/ocean-oxygen.html
 - Nitrite (µg/L)
 - Phytoplankton consume nitrate for fuel
 - https://doi.org/10.4319/lo.1979.24.3.0483
- These features are able to predict chlorophyll levels in a marine ecosystem up to an accuracy of 0.88

Future Work

- Can we further reduce the number of features needed?
- Can we further increase the accuracy of our model?
 - Would other classifiers such as KNN or Cluster
 Analysis produce higher accuracy?
- What is the highest abundance of phytoplankton to increase carbon sequestering, without harming the ecosystem?

 While we know what features can predict chlorophyll concentrations, are there specific weather events or specific latitudes that cause the environment to foster high levels of chlorophyll?

