Geospatial Data Analytics for Business 1

Giorgio Chiovelli, Sebastian Hohmann

19/03/2020

Table of contents

Introduction

What are these sessions about?

Roadmap

Why GIS for Business?

Examples of GIS applications in Business

Retail

Marketing

Real Estate

Logistics

Insurance

Aside: Revolution in Commercial Satellites

Farming

Finance

Introduction to GIS

Outline

Data types

Coordinates systems and projections

QGIS

Introduction

What are these sessions about?

Four aims

- Give you a (selective) overview of how Geographic Information Systems (GIS) methods are used Business.
- Introduce you to QGIS software and (optionally) GIS scripting in python.
- Show you how you can "do GIS" for business through two use cases.

We want to make this useful for you!

- If you bring your laptop with QGIS installed, you can follow what we are doing in class.
- The course is supposed to be interactive please ask questions, give us comments!

Material for exercises. Google drive Q&A. Google doc

What we will do in each session

Today (19/03/2020)

- Overview of GIS applications in Business
- Introduction to QGIS, setup, simple examples
- Use Case 1: Spatial Analysis for Real Estate

Tomorrow (20/03/2020)

- Use Case 2: Optimal store location
- Introduction to python scripting
- Python implementation of Use Case 2

Let's keep our terms straight

- GIS Geographic Information Systems systems to read, visualize, analyze, transform, and manage geospatial data.
- geospatial data regular data but with two additions
 - co-ordinates (x, y (more rarely z)), most commonly latitude-longitude
 - a co-ordinate reference system that allows locating pieces of data vis-a-vis each other
- Why do we care?

Introduction

Why use GIS with analytics for Business?

1) Locating business data

- Everything transactions, consumers, comptetitors, assets,... is somewhere
- Attaching geographic information to a piece of data we already have

 → increase granularity, ability to predict and <u>make decisions</u> based
 on the same data

2) Analyzing movement

ullet Repeatedly observing the location of objects o can analyze $\underline{\text{change}}$ and make predictions

3) Visualizing data

- Putting data on a map is powerful. Done right, this can
 - deliver insights.
 - · convince clients.

Retail 1: Location Allocation

Market share areas

source: http://desktop.arcgis.com/en/arcmap/latest/
extensions/business-analyst/location-allocation.htm

Spider diagram

Each demand point associated with allocated facility via straight lines

Retail 1: Location Allocation

Business: Chain store

Goal: Choose the best location for a new branch among a set of "candidates"

- where do I want to set up?
- where are my customers? my competitors?
- how will my customers travel to my store?

How GIS can help: Combine (at least) three types of data to find the stores with most consumers.

- set of possible store locations
- demands points (representing number of people, their incomes...)
- network dataset to model travel times between locations and demand points (or simple distance)

Examples of firms: Establish (supply chain consulting firm), Petco (pet specialty retailer)

Marketing 1: More precise ad-targeting of consumers

source: Getty Images

Marketing 1: More precise ad-targeting of consumers

Business: Telecom company

Goal: Send ads to customer phones, but not

- on Monday morning.
- when it is raining.
- when the customers are sitting in public transport.

How GIS can help: Mobile-phone location data enables firms to target consumers when and where they are more receptive.

Examples of firms: Foursquare, xAd (location marketing companies)

Marketing 1: More precise ad-targeting of consumers

- Location based targeting of individual consumers creates enormous potential for advertisers
- Be aware of ethical and compliance issues!
 - 1) Data collection
 - 2) Data useage
 - 3) Data sale

https://www.nytimes.com/ interactive/2018/12/10/ business/

location-data-privacy-apps.
html

Marketing 2: Building audiences

source: xAd

Marketing 2: Building audiences

Business: Various

Goal: Find out about audiences: work, habits, preferences

- Where do they live?
- Where do they work?
- What do they do in their free time?
- What shops do they visit?

How GIS can help: Mobile-phone location data enables firms to segment audiences.

To be useful, location data must

- 1) see people repeatedly and often
- be able to pinpoint locations <u>precisely</u>. For wide fence, 80% of visitors seen inside fence don't ever go into business of interest. "Geo-fencing" can be of limited usefulness if want to build audiences based on real world visitation behavior.

Real Estate 1: Visualization of housing market and neighbourhood characteristics

source: illustreets.com

house prices

Real Estate 1: Visualization of housing market and neighbourhood characteristics

Business: Estate agent

Goal: Present information on neighbourhoods to potential clients

- average home values ("Do I have a great deal for you!?")
- crime rates
- average ages and incomes
- presence of amenities (schools, parks, cafes, public transport)
- ...

How GIS can help: Putting the data on the map and visualizing them is powerful when communicating a lot of information quickly.

Examples of firms: illustreets

Logistics 1: Avoiding Left Turns

In 2004, UPS instituted a "no left turn" policy for its delivery truck drivers

source:

https://wonderfulengineering.com/dont-ups-drivers-turn-left/

Logistics 1: Avoiding Left Turns

Business: Logistics Company

Goal: Avoid / minimize the amount of left turns (right in the UK) drivers make when delivering packages

- turning left = turning into oncoming traffic
- have to wait when turning left
- longer delivery times, higher petrol consumption, more accidents

How GIS can help: plan routes optimally, avoid left turns among other things.

Examples of firms: *UPS*: instituted right-turn policy in 2004, routes consist of *approx* 90% RH-turns, firm claims has allowed it to

- use 10m gallons less fuel
- emit 20k tons less CO2
- cut fleet of trucks by 1100
- cut total distance travelled by its trucks by 28.5m miles despite longer routes on average

Logistics 2: Fraud detection

source: https://www.esri.com/about/newsroom/publications/wherenext/secret-weapon-fraud/

Melbourne

Port St

FLORIDA

Logistics 2: Fraud detection

Business: Logistics Company

Goal: Detect fraud by sub-contractors

- Deliveries carried out by sub-contractor
- Given gas card to buy fuel
- Unusually high gas consumption

How GIS can help: Plot routes and location of gas purchases on map.

purchases far outside the route immediately apparent

Insurance 1: Home Insurance

source: Cape Analytics

Property Profile

123 MAIN STREET, USA

BY PERIL ATTRIBUTES: Wind	Roof Geometry	Gable
	Pool Enclosure	Yes
	Roof Condition	Fair
LIABILITY EXPOSURES	Trampoline	Yes
	Pool	Yes

CHANGE DETECTED: TRAMPOLINE

Insurance 1: Home Insurance

Business: Insurance Company

Goal: Price property damage risk more accurately

- 40% of all home losses are in some way related to the roof
- traditional data sources used by insurers to price risk
 - insurance agents:
 - public records (tax records, building permits): often inaccurate, outdated
 - inspections: accurate but expensive to collect, often available only months after policy is bound
- Insurance companies always seeking better information on the build environment: trillions of Dollars at stake!

How GIS can help: Aerial photos are objective, timely and comprehensive datasource for roof characteristics and conditions

Examples of firms: Cape Analytics (US), Landmark (UK): obtain aerial photographs and other geospatial imagery from their partners, provide API to insurance companies like XL Catlin who send lat/lon or address queries and receive structured data

roof condition ("good", "bad",...), roof geometry ("flat", "pitched",...), roof covering ("tile", "tar",...), solar panels ("yes", "no"), ...

Satellites

One set of GIS applications has exploded thanks to private investment in satellite technology

Cumulative Number of Venture Funds Investing in Space

In 2019, a record 148 new venture firms made their first investments in the Space economy, bringing the total to 769. In Q4, Earlybird Capital, a prominent European venture fund, did its first deal in the Space economy, leading (sar Aerospace's Series A round alongside Airbus Ventures.

source: Space Angels

Satellites

DAWN OF THE ENTREPRENEURIAL SPACE AGE

Farming 1: Yield Measurement

Satellite estimates of maize yields in Iowa

high yields in red, low yields in blue source: http://www.g-feed.com/2015/05/

Reported vs. satellite estimates

reported maize yields on the vertical axes, satellite estimates on the horizontal axes; columns: lowa, Illinois, Indiana, rows: 2008-201

Farming 1: Yield Measurement

Business: Corn Farmer

Goal: Find out what this season's crop is worth

- in 2016, U.S. produced 13.6 billion bushels of corn on 80.7 million hectares
- corn is used in animal feed, ethanol, corn syrup,...
- starting in August, USDA releases forecasts of corn production
 - monthly frequency
 - state and country-levels
 - surveys farmers, tours fields and creates a forecast

How GIS can help: Satellite images + machine learning improve on surveys

- weekly frequency
- geographic granularity (elevators price grain locally)
- survey every field, every day → better accuracy

Examples of firms: Descartes Labs (satellite data provider)

Other industries: logistics firms can use better forecasts to plan vehicle fleets, insurers can anticipate risks, commodity traders can forecast prices...

Finance 1: Oil supply

Floating roof oil tanks in satellite imagery

source: Orbital Insight

Shadows identify height of top (oil in tank)

Finance 1: Oil supply

Business: Quant fund

Goal: Get timely estimates of oil supplies

- Global oil inventories are held in many locations around the world
- Officially reported estimates of oil supplies are problematic
 - Lagged, up to 60 days
 - Biased (incentives to over/under report)
 - Patchy: some regions / countries do not always report

How GIS can help: Satellite images + machine learning

- Identify location of floating roof oil tanks
- ullet Height of shadow identifies height of roof o amount of oil in tank
- Global coverage, daily frequency, unbiased methodology
- Synthetic Aperture Radar (SAR) to complement electro-optical (EO): see through clouds, at night

Examples of firms: Orbital Insight (satellite data provider)

Finance 2: Counting objects

Cars in parking lots

source: Digital Globe (https://bit.ly/2V8DYeQ)

Ships in ports

Airplanes in airports

Finance 3: Estimating construction activity

Raw satellite image

Size of shadows identifies construction activity

source: Orbital Insight

Outline

We will cover three things to start with GIS

- Types of geographic data
- Coordinate systems and projections
- Introduction to QGIS

Data types – intro

Geographic data comes in a vast number of formats.

For 99.9% of all applications you will only need two:

- Feature (vector) data, files end in .shp (shapefiles)
- Raster (cell) data, files (typically) end in .tif, but other formats are also common.

It is useful to distinguish three types of feature data

- polygon features
- polyline features
- point features

Data types – polygon features

London's Boroughs can be treated as polygon features

Data types – polyline features

Roads can be treated as polylines

Data types – point features

Tube stops as points

Data types - raster data

NO₂ pollution in central London in raster format

Each cell in the

iastei iias a vaiue				
1	1	0	0	
	1	2	2	
4	0	0	2	
4	0	1	1	

- cells can be empty
- data does not need to be integer (can be float)

Coordinates systems and projections - Introduction

Why this matters

- Geospatial data are data with geographic identifiers attached to each data point.
- To view, manipulate, and make calculations with geographic data, the identifiers need to be referenced with respect to a coordinate system.
- Each coordinate system represents the Earth's sphere (or a part of it) in two dimensions.
- Results of calculations depend on the coordinate system used.
 Using the correct one is crucial!

There are two basic types of coordinate systems

- Geographic coordinate systems.
- Projected coordinate systems.

Coordinates systems and projections - Geographic coordinate systems

Geographic coordinate systems represent locations in spherical coordinates .

It is standard to write information for geographic coordinates systems in two ways

- degrees, minutes, seconds
- e.g. London is 51° 30′ 26″ N, 0° 7′ 39″ W
- decimal degrees
- London is 51.5072, -0.1275
- 30 arc minutes and 26 arc seconds = $30 \times 60 + 26 = 1826$ arc seconds = $\frac{1826}{3600} = 0.5072$ decimal degrees.

The standard geographic coordinate system is WGS 1984 ("World Geodetic System"). It is by far the most commonly used.

Coordinates systems and projections - Geographic coordinate systems

For distances between two points along the Earth's surface, can use **geodesic distance formula**: need only $((lat_1, lon_1), (lat_2, lon_2))$.

Problem

- Geographic coordinate systems are useless to calculate areas and distances along lines.
- Geographic coordinate systems distort lengths and areas: try to wrap a map around an orange!
- ullet 1° latitude is 110.6km at the equator, 111.7km at the poles
- \bullet 1° longitude is 111.3km at the equator, 55.8km at 60° N/S

► Mercator distortion example

To make accurate area and (some) distance calculations, need to **project** the data from a geographic coordinate system.

Coordinates systems and projections – Projected coordinate systems

One can think of shining a light, placed on the centre of the earth, through the earth surface, and casting a shadow on a projection surface of a certain shape.

Projecting onto a cylindrical projection surface

note stretching of data near the poles

Section based on Melita Kennedy's notes on understanding projections

Coordinates systems and projections – Projected coordinate systems

Useful three-way classification of simple projections

- conic
- cylindrical
- planar

Conic projections

Tangent conic projection, one standard parallel

Secant conic projection, two standard parallels

Coordinates systems and projections - Projected coordinate systems

Cylindrical projections

Cylindrical projections with different lines of tangency

Mercator projection is cylindrical with equator as line of tangency.

Coordinates systems and projections - Projected coordinate systems

Planar projections

Planar projections with different point of tangency (aspect)

Coordinates systems and projections - What to use when?

WGS 1984

• for distance between two points

UTM: divides surface of the earth into many regions, each gets its own projection

- distance/surface area in small regions
- length of polylines

Any equal area projection

surface area in large regions

This and the following three slides are based on Masayuki Kudamatsu's GIS course

Coordinates systems and projections - Equal area projections

Differ just in how the world is shown

Coordinates systems and projections – Equal area projections

Differ just in how the world is shown

Lambert cylindrical equal area projection

Coordinates systems and projections – Equal area projections

Differ just in how the world is shown

QGIS - What is it good for?

QGIS is a programme for analysing, modifying, and creating geo-spatial data.

Some of the things it can do:

- merge and intersect shapes based on geographical relationships
- finding nearest objects according to specified metric
- calculate slope from elevation data
- take averages within polygons
- finding shortest path in a network
- make maps
- ...

QGIS - Installing QGIS

Go here:

https://qgis.org/en/site/forusers/download.html

- Go to the tab for your operating system
- Choose the appropriate standalone installer for your system
- We recommend the "Latest release (richest on features):"
- Execute the installer, choose default options, don't install the datasets

Obstacles for Mac users

- We have encountered several problems for Mac users
- There is an issue with opening apps from unidentified developers (don't worry, QGIS is safe). See here for a solution https://kb.wisc.edu/helpdesk/page.php?id=25443
- There is an issue with GDAL tools. See here for a solution https://gis.stackexchange.com/questions/276853/ gdal-scripts-not-found-in-qgis-3-on-osx
- You may also face an issue with using ORS-tools (see lecture
 3). We will address this then.

Intalling QGIS will put a bunch of programmes on your computer.

- We will introduce you to QGIS the software which allows you to work with geospatial data.
- QGIS has a built in "Browser" a type of file viewer.
- As you will soon learn, doing anything in QGIS can produce a lot of intermediate files at every step.
- Every shapefile, for example, comes with an .shp file (which stores the feature geometry itself), a .dbf file (which stores the attribute table, see below), a .prj file (which stores the projection), and often with an .shx file (which stores a positional index of the feature geometry to allow seeking forwards and backwards quickly).
- The Browser is can make managing this soup of files easier as you always just see one file.

QGIS - What the buttons mean

- 1 "Canvas": data is visualized here
- 2 "Layers": which datasets are loaded?
- 3 "Browser": quickly load datasets from disk locations, delete data
- 4 Processing toolbox

Note: showing 2-4 is a good default configuration, but other windows can be shown (see "View" → "Panels")

- 5 Among other things, add layers (data) to canvas
- 6 Zoom in and out
- 7 Zoom to full extent (very useful)
- 8 Get information on geographic features
- 9 Select elements

QGIS - Adding data

Download some data

- on google drive
- OR go to https://data.london.gov.uk/dataset/ statistical-gis-boundary-files-london
 and download "statistical-gis-boundaries-london.zip (27.34 MB)", save to some directory and unzip

Add directory to "Favorites"

- facilitates loading data
- navigate to the folder containing the file you downloaded and add it to favorites
- sometimes may have to refresh (2) to see new data

Add the data

- In the folder you just added, right-click, double-click (or do the mac thing) to "Add Selected Layer(s) to Canvas" or single click and click on "add layer" (
- Can also go more complicated: "Layer" → "Add Layer" → "Add Vector Layer" → "Browser" → navigate to your folder and add the data (ESRI/London_Borough_Excluding_MHW.shp).

QGIS - Inspecting the data

You should see a map of London's boroughs in the main window and an entry in "Layers" listing the dataset.

We have loaded a file with polygon features. Features come with "attributes".

Attribute table

- ullet right click on $London_Borough_Excluding_MHW$ in Layers ullet Open Attribute Table
- a table opens, listing a bunch of variables
- each row in the table corresponds to one polygon feature on the map
- pick a borough and click on the small grey square at the start of its row with the number to select the row and close the attribute table
- the country you picked is highlighted
- click on Zoom to Selection ([®])
- click on ¹ to zoom back out
- play around with zooming, panning (), selecting, until you are comfortable

We can also use **Identify Features** to view the information in the attribute table for one or more features

- click on and click on Camden
- you should see the window on the right
- this lists all the variables in the attribute table for this particular feature
- we can select more than one feature this way (hold down the mouse and drag it over several features)
- then expand and collapse individual feature attribute lists to find the one(s) we are interested in

Extent and coordinate system

- back in Layers, right click on the layer and "Properties" at the bottom
- select the "Information" tab and check "Information from provider"
- select the "Source" tab

QGIS - Changing color, outline width, labelling features

Change color of boroughs and outline width

- Back under Layers, right click the London_Borough_Excluding_MHW layer
 → Properties → Symbology
- Change Fill color, outline ("Stroke") color, and outline width
- Click "OK" and "Apply" and see how the canvas display changes

Label features

- Back to Layer Properties window, select the "Labels" tab
- From the drop-down menu at the top, choose "Single Labels"
- From the "Label with" drop-down menu, select "NAME" (this is one of the variables from the attribute table)
- Click "OK" and "Apply" and see how the canvas display changes

Hide a dataset

• in Layers, uncheck London_Borough_Excluding_MHW

QGIS - Adding and inspecting some raster data

Download some data

- go to google drive
- download the data on ground-level concentrations of emissions, save to some directory and unzip note: we have transformed these data so you can open them in QGIS: the original data source is

note: we have transformed these data so you can open them in QGIS: the original data source i https://bit.ly/2UgQ7mN

Add the data for NO₂ concentration

 exactly as with the feature data (the data are under LAEI2016_2016_NO2.tif)

Inspect the data

- zoom in closely so you can make out individual cells
- use to look up individual pixel values
- look in the source tab of the Properties menu

Change the color scheme

- ullet Layer o Properties o Symbology
- Band Rendering \to Render Type \to Singleband pseudocolor \to choose Linear Interpolation and your favorite Color Ramp \to OK + Apply

QGIS - Creating latitude/longitude data

So far we have added data downloaded from the web. There is one type of spatial data that we can easily create ourselves: **Point features**.

Create point features in text editor

- open a text editor
- in the first line, type: point_name, latitude, longitude
- in the second line, type: some name, 51.5042, -0.13357
- in the third line, type: some other name, 51.6252, -0.23001
- keep adding as many points as you like, until you're bored.
- ullet make sure latitude \in [-90,90], longitude \in [-180,180]
- save the data under my_points.csv in the directory where you saved the files you downloaded

QGIS - Adding and inspecting latitude/longitude data

Add and display data

- Layer → Add Layer → Add Delimited Text Layer → Under File name, browse to the point layer; Pick a layer name
- File Format → CSV
- ullet Geometry Definition o Point coordinates
 - X field: longitude
 - Y field: latitude
 - Geometry CRS: Project CRS: EPSG: 4326 WGS 84
- Click "Add"
- dots appear on the map

Inspect the data

- look at the attribute table
- use Identify Features () to get information on individual points

Coordinates systems and projections – Area distortion in Mercator projection

The world in Mercator projection

Coordinates systems and projections – Area distortion in Mercator projection

The actual sizes of Greenland and Australia

nice The Economist article on map projections:

 $\label{lem:https://www.economist.com/blogs/graphicdetail/2016/12/daily-chart-1?fsrc=scn/fb/te/bl/ed/misleadingmaps and problematic projections$

