

(✓)	Preliminary Specifications
()	Final Specifications

Module	15.6"HD 16:9 Color TFT-LCD with LED Backlight design
Model Name	B156XTN04.2
Note (♠)	LED Backlight with driving circuit design

Customer	Date		Approved by	Date
Checked & Approved by	Date		Prepared by	Date
			<u>Justie Lee</u>	<u>2014/1/13</u>
Note: This Specification is subject to change without notice.			NBBU Market AU Optronics	

Contents

1. Handling Pre	ecautions	4
2. General Des	scription	5
2.1 General S	pecification	5
2.2 Optical Cl	haracteristics	6
3. Functional B	lock Diagram	10
4. Absolute Mo	aximum Ratings	
4.1 Absolute F	Ratings of TFT LCD Module	11
	Ratings of Environment	
5. Electrical Ch	naracteristics	
5.1 TFT LCD M	odule	12
5.2 Backlight	Unit	14
6. Signal Interfe	ace Characteristic	
6.1 Pixel Form	at Image	15
6.2 Integration	n Interface Requirement	16
6.3 Interface	Timing	18
6.4 Power sec	quence:	19
7. Panel Reliab	oility Test	20
7.1 Vibration 1	Test	20
7.2 Shock Test	t	20
7.3 Reliability	Test	20
8. Mechanical	Characteristics	21
8.1 LCM Outli	ne Dimension	21
9. Shipping and	d Package	23
_	abel Format	
9.2 Carton Pa	ıckage	24
9.3 Handling	guide	25
9.4 Shipping F	ackage of Palletizing Sequence	27
10. Appendix:	EDID Description	28
10 1 FDID Des	scription	錯誤!尚未完美書築。

......

Record of Revision

Version and Date Page		Date Page Old description		New Description	Remark
0.1	2014/1/13	All	First Edition for Customer		

AU OPTRONICS CORPORATION

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electronic breakdown.

AU OPTRONICS CORPORATION

2. General Description

B156XTN04.2 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:9 HD, 1366(H) x768(V) screen and 262k colors (RGB 6-bits data driver) with LED backlight driving circuit. All input signals are LVDS interface compatible.

B156XW04.2 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

Items	Specificat	lions				
Screen Diagonal	[mm]	394.9				
Active Area	[mm]	344.2 X193	3.5			
Pixels H x V	1366x3(RC	∍B) x 768				
Pixel Pitch	[mm]	0.252X0.25	52			
Pixel Format		R.G.B. Ver	tical Stripe)		
Display Mode		Normally '	White			
White Luminance (ILED=20mA) (Note: ILED is LED current)	[cd/m ²]	220 typ. (5	points av	erage)		
Luminance Uniformity		1.25 max.	(5 points)			
Contrast Ratio		500 typ.				
Response Time	[ms]	8 typ/16 N	Лах			
Nominal Input Voltage VDD	[Volt]	+3.3 typ.				
Power Consumption	[Watt]	3.5 max. (Include Logic and Blu power)				
Weight	[Grams]	420 max.				
Physical Size			Min.	Тур.	Max.	
Include bracket	[mm]	Length	359.0	359.5	360.0	
	[]	Width	223.3	223.8	224.3	
Flacking at hat out a co		Thickness	LIVE		3.8	
Electrical Interface	F 1	1 channe	I LVD3			
Glass Thickness	[mm]	0.5				
Surface Treatment		Glare, hardness 3H				
Support Color	262K colors (RGB 6-bit)					
Temperature Range Operating Storage (Non-Operating)	[°C]	0 to +50 -20 to +60				
RoHS Compliance		RoHS Con	npliance			

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25° C (Room Temperature):

Item		Symbol	Conditions	Min.	Тур.	Мах.	Unit	Note
White Luminance ILED=20mA			5 points average		220	-	cd/m²	1, 4, 5.
Violeina A	a al a	θ _R θ _L	Horizontal (Right) CR = 10 (Left)	40 40	45 45		degre e	
Viewing A	igie	Ψн Ψ∟	Vertical (Upper) CR = 10 (Lower)	10 30	15 35			4, 9
Luminan Uniformi		δ_{5P}	5 Points	-	_	1.25		1, 3, 4
Luminan Uniformi		δ _{13P}	13 Points	-	-	1.60		2, 3, 4
Contrast R	atio	CR		400	500	-		4, 6
Cross ta	lk	%				4		4, 7
Response ⁻	Гime	T_{RT}	Rising + Falling	-	8	16		4, 8
	Red	Rx		0.550	0.580	0.610		
	Red	Ry		0.305	0.335	0.365		
	Green	Gx		0.300	0.330	0.360		
Color / Chromaticity	010011	Gy	CIE	0.535	0.565	0.595		
Coodinates	Dloop	Bx	1931	0.125	0.155	0.185		4
	Blue	Ву		0.110	0.140	0.170		
	\	Wx		0.283	0.313	0.343		
	White	Wy		0.299	0.329	0.359		
NTSC		%		-	45	_		

......

Note 1: 5 points position (Ref: Active area)

Note 2: 13 points position (Ref: Active area)

Note 3: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

2 _	Maximum Brightness of five points
δ _{W5} =	Minimum Brightness of five points
6	Maximum Brightness of thirteen points
$\delta_{W13} =$	Minimum Brightness of thirteen points

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after

lighting Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.

Center of the screen

Note 5: Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points, $Y_L = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$

L (x) is corresponding to the luminance of the point X at Figure in Note (1).

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Brightness on the "White" state Contrast ratio (CR)= Brightness on the "Black" state

Note 7: Definition of Cross Talk (CT)

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

Y_B = Luminance of measured location with aray level 0 pattern (cd/m₂)

AU OPTRONICS CORPORATION

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 9. Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

The following diagram shows the functional block of the 15.6 inches wide Color TFT/LCD 40 Pin (One CH/connector Module)

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating	TOP	0	+50	[°C]	Note 4
Operation Humidity	HOP	5	95	[%RH]	Note 4
Storage Temperature	TST	-20	+60	[°C]	Note 4
Storage Humidity	HST	5	95	[%RH]	Note 4

Note 1: At Ta (25° C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

Operating Range

Storage Range

+

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25°C and frame frenguency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	_	-	0.8	[Watt]	Note 1
IDD	IDD Current	-	ı	166	[mA]	Note 1
IRush	Inrush Current	-	ı	2000	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV] p-p	

Note 1: Maximum Measurement Condition: Black Pattern at 3.3V driving voltage. (Pmax=V3.3 x lblack)

Typical Measurement Condition: Mosaic Pattern

Note 2: Measure Condition

Vin rising time

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Max	Unit
V _{TH}	Differential Input High Threshold (Vcm=+1.2V)		100	[mV]
V _{TL}	Differential Input Low Threshold (Vcm=+1.2V)	-100	-	[mV]
V _{ID}	Differential Input Voltage	100	600	[mV]
V _{CM}	Differential Input Common Mode Voltage	1.125	1.375	[V]

Note: LVDS Signal Waveform

Single-end Signal

5.2.1 LED characteristics

Parameter	Symbol	Min	Тур	Max	Units	Condition
Backlight Power Consumption	PLED	-	-	2.7	[Watt]	(Ta=25 $^{\circ}$ C), Note 1 Vin =12V
LED Life-Time	N/A	15,000	-	-	Hour	(Ta=25°C), Note 2 I=20 mA

Note 1: Calculator value for reference PLED = VF (Normal Distribution) * IF (Normal Distribution) / Efficiency

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

5.2.2 Backlight input signal characteristics

Parameter	Symbol	Min	Тур	Max	Units	Remark
LED Power Supply	VLED	6.0	12.0	21.0	[Volt]	
LED Enable Input High Level		2.5	-	5.5	[Volt]	
LED Enable Input Low Level	VLED_EN	-	-	0.5	[Volt]	Define as
PWM Logic Input High Level		2.5	-	5.5	[Volt]	Connector
PWM Logic Input Low Level	VPWM_EN	-	-	0.5	[Volt]	Interface (Ta=25°C)
PWM Input Frequency	FPWM	200	1K	10K	Hz	
PWM Duty Ratio	Duty	5	-	100	%	

Note 1: Recommend system pull up/down resistor no bigger than 10kohm

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

		1									13	66)
1st Line	R	G	В	R	G	В		R	G	В	R	G	В
							•						
		•			•		•						
							•						
		•											
		•			•							•	
							•						
		'			•		ı		'			'	
768th Line	R	G	В	R	G	В		R	G	В	R	G	В

6.2 Integration Interface Requirement

6.2.1 Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Signal Connector
Manufacturer	IPEX or Compatible
Type / Part Number	IPEX 20455-040E-12R or Compatible
Mating Housing/Part Number	IPEX 20453-040T-01 or Compatible

6.2.2 Pin Assignment

LVDS is a differential signal technology for LCD interface and high speed data transfer device

PIN#	Signal Name	Description
1	NC	No Connection (Reserve)
2	VDD	Power Supply +3.3V
3	VDD	Power Supply +3.3V
4	VEDID	EDID +3.3V Power
5	NC	No Connect (Reserve)
6	CLK_EDID	EDID Clock Input
7	DAT_EDID	EDID Data Input
8	RxOIN0-	-LVDS Differential Data INPUT(Odd R0-R5,G0)
9	RxOIN0+	+LVDS Differential Data INPUT(Odd R0-R5,G0)
10	VSS	Ground
11	RxOIN1-	-LVDS Differential Data INPUT(Odd G1-G5,B0-B1)
12	RxOIN1+	+LVDS Differential Data INPUT(Odd G1-G5,B0-B1)
13	VSS	Ground
14	RxOIN2-	-LVDS Differential Data INPUT(Odd B2-B5,HS,VS,DE)
15	RxOIN2+	+LVDS Differential Data INPUT(Odd B2-B5,HS,VS,DE)
16	VSS	Ground
17	RxOCKIN-	-LVDS Odd Differential Clock INPUT
18	RxOCKIN+	-LVDS Odd Differential Clock INPUT
19	NC	No connection (Reserve)

20	NC	No connection
21	NC	No connection
22	NC	No connection
23	NC	No connection
24	NC	No connection
25	NC	No connection
26	NC	No connection
27	NC	No connection
28	NC	No connection
29	NC	No connection
30	NC	No connection
31	VLED_GND	LED Ground
32	VLED_GND	LED Ground
33	VLED_GND	LED Ground
34	NC	No Connection (Reserve)
35	VPWM_EN	PWM logic input level
36	VLED_EN	LED enable input level
37	NC	No connection (Reserve)
38	VLED	LED Power Supply
39	VLED	LED Power Supply
40	VLED	LED Power Supply

Note1: start from right side

Note2: Input signals shall be low or High-impedance state when VDD is off.

......

6.3 Interface Timing

6.3.1 Timing Characteristics

Basically, interface timings should match the 1366x768 /60Hz manufacturing guide line timing.

Parar	meter	Symbol	Min.	Тур.	Max.	Unit
Frame	e Rate	-	-	60	-	Hz
Clock fre	equency	1/T _{Clock}	66.9	72	80	MHz
Vertical Section	Period	Tv	788	824	768+A	
	Active	T _{VD}	768			T_{Line}
	Blanking	T∨B	20	56	Α	
	Period	TH	1416	1456	1366+B	
Horizontal	Active	T _{HD}		1366		T_{Clock}
Section	Blanking	Тнв	50	90	В	

Note 1: The above is as optimized setting

Note 2: DE mode only

Note 3: The maximum clock frequency = (1366+B)*(768+A)*60<80MHz

AU OPTRONICS CORPORATION

6.4 Power sequence:

Power on/off sequence is as follows. Interface signals and LED on/off sequence are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off

Note 1: If T3<200ms, the display garbage may occur. (T3>200ms is recommended)

Note 2: If T1 or T12<0.5ms, the inrush current may cause the damage of fuse. If T1 or T12<0.5ms, the inrush current It is under typical melt of fuse Spec, there is no mentioned problem

7. Panel Reliability Test

7.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

• Frequency: 5 - 500Hz Random

30 Minutes each Axis (X, Y, Z) Sweep:

7.2 Shock Test

Test Spec:

Test method: Non-Operation

Acceleration: 220 G, Half sine wave

Active time: 2 ms

Pulse: X.Y.Z. one time for each side

7.3 Reliability Test

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40℃, 90%RH, 300h	
High Temperature Operation	Ta= 50℃, Dry, 300h	
Low Temperature Operation	Ta= 0℃, 300h	
High Temperature Storage	Ta= 60℃, 35%RH, 300h	
Low Temperature Storage	Ta= -20℃, 50%RH, 250h	
Thermal Shock Test	Ta=-20℃to 60℃, Duration at 30 min, 100 cycles	
ESD	Contact : ±8 KV	Note 1
ESD	Air: ±15 KV	

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed.

Self-recoverable. No data lost, No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

AU OPTRONICS CORPORATION

8. Mechanical Characteristics

8.1 LCM Outline Dimension

8.1.1 Standard Front View

The drawing following 2D standard drawing and remark.

B156XTN04.2 Document Version : 0.1 21 of 28

AU OPTRONICS CORPORATION

8.1.2 Standard Rear View

- 9. Shipping and Package
 - 9.1 Shipping Label Format

TBD

The outside dimension of carton is 480(L)mm x 341 (W)mm x 302 (H)mm

9.3 Handling guide

This is a thin and slime LCD model, and please be cautious when pulling it out of package or assembling it onto platform. Careless handlings, e.g. twist, bending, pressing, or collision, will result malfunction of LCD models.

(1) Handling method notice

Do not lift and hold the panel with single hand at right or left side from tray.

Lift and hold the panel up with both hands from tray.

(2) On the table notice

Do not press edge of panel to avoid glass broken.

Do not press the surface of the panel to avoid the glass broken or polarizer scratch.

Do not put anything or tool on the panel to avoid the glass broken or

(3) Cable assembly notice

Do not insert the connector with single hand and touching the PCBA.

Insert the connector by pushing right and left edge.

9.4 Shipping Package of Palletizing Sequence

10. Appendix: EDID Description

TBD