

Università degli Studi dell'Aquila

Seconda Prova Parziale di **Algoritmi e Strutture Dati con Laboratorio**

Martedì 4 Febbraio 2014 - Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

1. Dato un albero AVL T contenente n elementi, si consideri l'inserimento di una sequenza di 2^n elementi in T. L'altezza dell'AVL risultante sarà:

*a) $\Theta(n)$ b) $\Theta(n^2)$ c) $\Theta(\log^2 n)$ d) $\Theta(\log n)$

2. Si supponga di inserire la sequenza di chiavi 3,7,4,2 (in quest'ordine) in una tavola hash di lunghezza m=4 (ovvero con indici 0,1,2,3) utilizzando l'indirizzamento aperto con funzione hash $h(k)=k \mod 4$, e risolvendo le collisioni con il metodo della scansione lineare. Quale sarà la tavola hash finale?

a) $A = \begin{bmatrix} 2, 4, 7, 3 \end{bmatrix}$ b) $A = \begin{bmatrix} 4, 2, 7, 3 \end{bmatrix}$ c) $A = \begin{bmatrix} 7, 4, 3, 2 \end{bmatrix}$ *d) $A = \begin{bmatrix} 7, 4, 2, 3 \end{bmatrix}$

3. Quanti archi è necessario rimuovere dal seguente grafo pesato per renderlo aciclico?

a) 5 *b) 4 c) 9 d) 3

4. Si consideri il grafo di cui alla domanda (3) e si orientino gli archi dal nodo con lettera minore al nodo con lettera maggiore secondo l'ordine alfabetico. Quanti rilassamenti esegue in totale alla fine della prima passata l'algoritmo di Bellman e Ford con sorgente a e con l'ipotesi che gli archi vengano considerati in ordine lessicografico?

a) 0 *b) 5 c) 9 d) 2

5. Si consideri il grafo di cui alla domanda (3) e si supponga di applicare l'algoritmo di Dijkstra per determinare l'albero dei cammini minimi radicato in e. Qual è la sequenza di vertici aggiunti alla soluzione?

a) $\langle e, b, a, c, f, d \rangle$ b) $\langle e, b, d, a, c, f \rangle$ *c) $\langle e, b, d, f, a, c \rangle$ d) $\langle e, d, f, c, a, b \rangle$

6. Dato un grafo pesato G=(V,E) con n vertici ed m archi, e presi 2 vertici u,v tali che l'arco $(u,v)\in E$, trovare il cammino minimo tra u e v in G applicando l'algoritmo di Dijkstra realizzato con una heap binario costa:

a) $\Theta(1)$ b) $\Theta(m)$ c) $O(n^2)$ *d) $O(m \log n)$

7. Si consideri il grafo di cui alla domanda (3) e si numerino i vertici nel seguente modo: a := 1; b := 2; c := 3, d := 4; e := 5; f := 6. Si orientino ora gli archi dal nodo con numero minore al nodo con numero maggiore. Qual è il costo di un cammino minimo 3-vincolato dal nodo 1 al nodo 6?

a) 3 *b) 10 c) 22 d) $+\infty$

8. Si consideri la gestione di n insiemi disgiunti sottoposti ad n-1 operazioni di Union e ad O(1) operazioni di Find mediante l'utilizzo di alberi QuickFind con euristica dell'unione pesata. Quanto costa complessivamente la gestione della sequenza di operazioni?

a) O(1) b) $\Theta(n)$ *c) $O(n \log n)$ d) $\Theta(n^2)$

9. Si consideri il grafo di cui alla domanda (3) e si supponga di applicare l'algoritmo di Kruskal per determinare il minimo albero ricoprente. Quale tra le seguenti è una sequenza ammissibile di inserimenti di archi nella soluzione?

*a) $\langle (b,e), (b,d), (a,c), (d,f), (a,b) \rangle$ b) $\langle (b,e), (b,d), (e,d), (a,c), (a,b) \rangle$ c) $\langle (b,e), (b,d), (e,d), (a,c), (d,f) \rangle$ d) $\langle (a,c), (a,b), (b,e), (b,d), (d,f) \rangle$

10. Si consideri il grafo di cui alla domanda (3) e si supponga di applicare l'algoritmo di Prim per determinare il minimo albero ricoprente. Supponendo di partire dal nodo c, qual è la sequenza di vertici aggiunti alla soluzione?

a) $\langle c, a, f, d, b, c \rangle$ b) $\langle c, a, b, d, e, f \rangle$ c) $\langle c, f, d, e, b, a \rangle$ *d) $\langle c, a, b, e, d, f \rangle$

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
С										
d										