Add a comment...

Learning Objectives

- Define the terms "virus" & "prion"
- Explain how viruses & prions differ from other organisms
- Classification of the viruses Describe the structure and life cycle of a typical virus & a prion
- List some medically important viruses & prions
- Discuss reasons for studying viruses & prions

Differentiate Virus from Other Microbes

Characteristics of Virus

- $\bullet \quad \text{Small, infectious, obligate intracellular parasite.}$
- Molecular building blocks. Machinery and energy.
- Replicates itself in a host cell.
- Genome is enclosed in a protein coat. Non-cellular organism.
- Approximately 20-200 nm (Electron Microscopy).

Genome Size

Organism	Genome size (b = Base pair)	No. of Protein Coding Genes*
Human	3 Gb	~21,000
Yeast (S. cerevisiae)	12.1 Mb	~ 6,300
E. coli	4.6 Mb	~4,000
Pandoraviruses	1.9 - 2.5 Mb (dsDNA)	-1,500 - 2,500
Herpes viruses	120 - 230 kb (dsDNA)	60 - 120
Coronaviruses	27 -32kb - (+ssRNA)	14 - 16
Influenza virus	14 kb (-ssRNA)	14
Hepatitis B virus	3 kb (dsDNA-RT)	4
Hepatitis D virus	~~1.7 kb (-ssRNA)	1 (with 2 isoforms)

Rhabdoviridae

Method	Mechanism	
Morphology	Helical Icosahedral Complex morphologies	
Envelop	(Non-)Enveloped	
Genome	dsDNA ssDNA dsRNA ssRNA Linear; Circular	
Mechanism of mRNA production	Baltimore classification (mechanism of mRNA production)	

▼ Enveloped Virus

- Capsid (Inner: genome + virus proteins.) • Envelop (Outer: Holds Antigenic glycoproteins) o Hemagglutinin (HA) - Help Entering Cell
- o Neuraminidase (NA) Help Spreading Spreading Method: ° Take a lipid layer → "bud" from it

Non-Envelop Virus (Naked)

- Virus Protein
- VP2: icosahedral capsomers o VP1/3: Virus Proteins(VP) with dsRNA in the capsid
- VP4/6/7: "Spike" protein
- Spreading Method: o Lyse infected cell membrane

Poxviridae

Component

Viral Spikes

Morphology

Virus Structure

(二十面体)

Poxviridae

Helical-structured viruses

Icosahedral-structured viruses Closed shell

Nucleic acid (genome)

Capsid (protein shell, matrix)

Envelope (with or without)

[Made of glycoprotein]

Structure of Viruses

Description

* Segmented or in one piece;

* Inside the capsid (often with virus proteins)

* Accounts for the major mass of virus

* Lipid bilayer lying outside of the capsid

★ Highly antigenic (bind to cell) * Targeted by the immune response

Shape

Spiral capsid

* Made of protein subunit called capsomeres (protomeres)

★ Protruding from (突出于) the envelope or matrix

* Providing antigenic structures of lipid, protein and carbohydrate molecules

★ Have enzymatic and/or adsorption and/or hemagglutinating activity (血凝活性)

Morphology

★ Paramyxoviridae

★ Coronaviridae

pack lots of Genes

Robust viruses

★ Orthomyxoviridae

Examples

🜟 Influenza

Dengue Virus

HPV

* Measles, Mumps

* SARS / MERS, Common Colds

Variola virus → Small pox

			d	dsDNA genome				
Rhabditida		Bullet-shaped	Bullet-shaped Comple RNA ge		x Envelope Rabies virus		us	
Genome								
	Virion Structure	dsDNA	ssDNA		dsRNA		ssRNA	
	Maland Tananhadual	-/	-/		-/		-/	

Brick-shaped/oval-shaped | Complex Envelope

Transcription - Baltimore classification

Class (mechanism of mRNA production)	Type Virus
I (ds):	 ★ Adenovirus ★ Herpesvirus ★ Poxvirus
II (ss):	★ Parvovirus
III (ds)	★ Reovirus (e.g. rotavirus)
IV(+ss):	 ★ Picornavirus (eg EV71) ★ Astrovirus Coronavirus (eg SARS-CoV)
V(-ss):	 ★ Orthomyxovirus (eg flu) ★ Paramyxovirus (eg Nipah) ★ Rhabdovirus (eg rabies) ★ Deltavirus (eg HDV)
VI (RT)	★ Retroviruses (e.g. HIV)
VII (RT)	★ Hepadnaviruses (e.g. HBV)

Virus Life Cycle - AETTGAE

- Contacts a cell receptor for attachment (adsorption) → penetration Virus surface protein can attach to receptors from specific type of host cells
- ° Key (virus) fits → Unlock and enter the cell. Extract viral genome in the cytoplasm
- cellular proteolytic enzymes digest the viral capsid → nucleic acid Protein synthesis
- ° Uses the host cell's machinery → Protein Needed for replication of new virions. Transcription Protein Translation structural Protein
- Functional proteins
- Replication of the virus' genome Uses the host's cellular machinery to replicate.
- Maturation of virus particle Assembly of synthesized nucleic acid, proteins, capsid, envelopes Release of particles from the host cell
- o lysis of cell or virus "buds" from cell PAETTGAE: Attachment, Entry, Transcription, Genome replication, Assembly, Exit

Transmission and

host defense

Some Chemically Important Viruses

Disease	Virus
Gastroenteritis	Rotavirus, norovirus, adenovirus, astrovirus
Common cold	Rhinovirus and enteroviruses, coronavirus, influenza viruses, adenoviruses, respiratory syncytial virus, parainfluenza viruses, metapneumovirus
Seasonal epidemics (A, B, C)	Influenza virus
Liver failure / Cancer	Hepatitis virus (A, B, C, others)
AIDS	Human Immunodeficiency Virus
SARS/MERS	SARS/MERS coronavirus
COVID-19	SARS-CoV-2
Zika, Dengue, Yellow fever, Japanese encephalitis	Vector (mosquito) borne viruses (Flaviviruses)
Pandemics (influenza A)	Influenza A virus

Strategy used by Virus

- Δ receptors & transmission routes A Host
- Integrate within chromosome → replicate at a slow rate o Symptomless carriers → Wait lowered host defense (e.g.: HIV)
- RNA viruses have † mutation rates & evolve rapidly Type of Evolution: ▼ Recombination:
 - Genome from two different viruses (that have infected the same cell) combine to form a new virus
 - Segmented genomes in viruses like influenza can lead to the mixing and matching of genome segments from two different viruses. • This process can create a new virus with new combinations of genetic material.
 - ▼ Mutation: • RNA viruses are prone to mutations due to lack of proofreading ability during genome replication • Mutations can lead to creation of new strains or variants
 - o Escape treatment or immune response $^{\circ}~\Delta$ clinical illness spectrum
- Reassortment & recombination → generate novel variants

▼ Recap: Diagnosis of Viral Infection Virus detection

- Antigen detection hours
 - Nucleic acid detection hours-days Shell viral cultures — days
- Culture weeks Inclusion bodies — days Direct electron microscopy — days
- Serology (acute infection) IgM — Days Rinsing antibody titres — Weeks
- Serology (post-infection/serostatus) ° IgG — Hours

▼ Remarks: HDV - Smallest Virus

Small size (< 100 nm)

@ Lymphoreticular system

Insoluble globular (β-sheet)

Enzyme Resistant

▼ Remarks: SARS-CoV-2

• Group: Group IV((+)ss RNA)

• Viral genome encoding >29 protein

• Order: Nidovirales

Family: Coronaviridae

- Subviral satellite depending on HBV
- Closed circular ssRNA of 1679nt 200 molecules of HDAg (hepatitis D antigen)
- 2 Isoforms of HDAg (L, S)

- Envelope from host Envelope proteins from HBV

Differentiate Prions from Other Microbes

Pefinition: A prion is an infectious agent composed entirely of protein material, called PrP (prion protein)

Characteristic of Prions - Proteinaceous infectious particles Misfolded of a normal cellular protein - Host-derived glycoproteins Neurodegenerative disorders

- → Transmissible Spongiform Encephalopathies (TSEs). Degenerative Large vacuoles in the CNS Motor disturbances. Both PrPSc & PrPc: Highly similar sequence
- Differ in structure & protease resistance PrPSc A 30-35 kDa (Size) glycoprotein derived from PrPc Associated with intracellular fibrils in diseased tissue
- 。 @ lymphoreticular system (淋巴网状系统) Tonsils, Spleen & Neurological tissue Carried in the blood by lymphocytes
- o a naturally occurring cellular prion protein
- coded by a single copy gene on chromosome 20 in humans
- ▶ Prion caused diseases Most infectious agents have mutations at a.a. residue 129
- Cannot be cultured in vitro (體外) Not elicit immune & inflammatory responses Slow Replication Rate Long incubation period (Except Variant CJD [vCJD]) (Except Variant CJD [vCJD]) Susceptible to † Conc.: Extreme resistance: heat, disinfectants & irradiation NaOH, NaOCl, Phenol, Periodate Ingestion of contaminated tissues & medical procedures Interspecies transmissible PrPc (Cellular Prion Protein) PrPSc (Prion protein scrapie) True Prions Normal Prion Misfolded induce Misfold Function natively

@ Surface of nerve cells

Soluble, linear (α-helices)

Enzyme Susceptible

 $PrP^{c} \xrightarrow{misfold} PrP^{Sc} \xrightarrow{Induce} n * PrP^{Sc} \xrightarrow{accumulate} \beta \text{-sheet rich amyloid fibrils} \rightarrow Neurodegeneration$

Lack of a nucleic acid genome

PrPc (alpha helices) PrPsc (beta-pleated sheets) PrPsc associates with PrPc PrPc released from cell PrPc converted to PrPsc conformational changes cell produces (more stable, resistant to proteolysis) PrPsc accumulates & aggregates into amyloid fibrils and plaques

Chemically Important Prions

• PrPc - with unknown function

▼ Transmission alimentary tract :

▼ Treatment

- prions survive digestion → taken up across the intestinal mucosa → carried in lymphoid cells → transferred into neural tissues & enter the CNS
- chemotherapeutic strategies → reduce, stop or destabilize PrPSc formation polyanionic compounds tricyclic compounds
- Immunomodulation & mucosal immunization Potential therapeutic
- ▼ Confirmed histologically post mortem [尸檢]
 - Tonsillar tissue o source of PrPSc in clinical cases

By enzyme immunoassays

o By immunoblotting or immunohistochemistry Tissue homogenates

Name	Target
Scrapie	Sheep
Creutzfeldt-Jakob diseases (CJD)	Humans
Gerstmann-Sträussler-Scheinker disease	Humans
Kuru	Humans
Fatal familial insomnia	Humans
Sporadic CJD	Humans
Bovine spongiform encephalopathy (BSE)	Cattle
TO A COUNTY OF THE PART	

Variant CJD (vCJD) - From BSE