CEE526/MAE527 Finite Element for Engineers

Structural Dynamics Examples

Example 1: Modal Analysis of a Shear Frame

Compute the lowest frequency and mode shape for the frame shown in Fig. 1.1.

Fig. 1.1 Three-story shear frame building [Example 10.3: Tedesco, McDougal and Ross, Addison Wesley]

Solution: Method 1

In this method, the building is approximated as a stick structure with the mass lumped as shown in Fig. 1.2. The stiffness and mass matrices are computed as follows.

Mass

$$m_1 = 0.8 \frac{k}{ft} \frac{20 ft}{386.4 in/s^2} = 0.04141 \frac{k-s^2}{in}$$

$$m_2 = 0.75 \frac{k}{ft} \frac{20 ft}{386.4 in/s^2} = 0.03882 \frac{k - s^2}{in}$$

$$m_3 = 0.5 \frac{k}{ft} \frac{20 ft}{386.4 in/s^2} = 0.02588 \frac{k - s^2}{in}$$

Stiffness

$$k_1 = \frac{12EI}{L^3} + \frac{3EI}{L^3} = \frac{12(29000\,ksi)(2)(600)}{\left(15 \times 12\,in\right)^3} + \frac{3(29000\,ksi)(2)(600)}{\left(15 \times 12\,in\right)^3} = 89.506\frac{k}{in}$$

$$k_2 = \frac{12EI}{L^3} + \frac{12EI}{L^3} = 2\frac{12(29000 \, ksi)(1.5)(600)}{\left(12 \times 12 \, in\right)^3} = 209.78 \frac{k}{in}$$

$$k_1 = \frac{12EI}{L^3} + \frac{12EI}{L^3} = 2\frac{12(29000 \, ksi)(600)}{(17 \times 12 \, in)^3} = 49.189 \frac{k}{in}$$

Hence

$$\mathbf{M}_{3\times 3} = \begin{bmatrix} 0.04141 & 0 & 0\\ 0 & 0.03882 & 0\\ 0 & 0 & 0.02588 \end{bmatrix}$$

$$\mathbf{K}_{3\times3} = \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix} = \begin{bmatrix} 299.29 & -209.78 & 0 \\ -209.78 & 258.97 & -49.189 \\ 0 & -49.189 & 49.189 \end{bmatrix}$$

Solving $\mathbf{K}_{3\times 3}\mathbf{\Phi}_{3\times 3} = \mathbf{\Lambda}_{3\times 3}\mathbf{M}_{3\times 3}\mathbf{\Phi}_{3\times 3}$ we have results from Generalized Jacobi Method¹.

Generalized Jacobi RESULTS ============

Eigenvalue: 628.803

Eigenvector:

[2]2.87453 [1]2.20683

[3]4.29569

Eigenvalue: 2870.61

Eigenvector:

[1]-2.63866 [2]-2.26934 [3]4.44685

Eigenvalue: 12299.8

Eigenvector:

[1]3.50944

[2] -3.51384 [3] 0.642229

¹ ASUTruss solution

Solution: Method 2 (Finite Element Method. Units: slg, lb, ft, s)²

An approximate model needs to be built since all relevant data to build the FE model are not available. Fig. 1.3 shows the FE model.

Fig. 1.3 FE model

GS-USA V9.43

Table 1.1 Material & Cross-sectional Properties

Material	Mass Density	Modulus of Elasticity	X/S Area	Moment of Inertia
Steel (columns)	15.2407	4.176(10°)	$A = 28 in^2$	$I = 600 in^4$
			$A = 0.19 ft^2$	$I = 0.029 ft^4$
			$A = 30 in^2$	$1.5I = 900 in^4$
			$A = 0.21 ft^2$	$1.5I = 0.043 ft^4$
			$A = 32 in^2$	$2I = 1200 in^4$
			$A = 0.22 ft^2$	$2I = 0.058 ft^4$
Concrete (beams)	4.66	0.8352(10°)	$3.33' \times 1' \Rightarrow 500 \frac{lb}{ft}$	
			$5' \times 1' \Rightarrow 750 \frac{lb}{ft}$	
			$5.33' \times 1' \Rightarrow 800 \frac{lb}{ft}$	

-

² GS-USA Frame solution

Eigenvalue: $\lambda_1 = 374.1$, $\lambda_2 = 2059.6$, $\lambda_3 = 9513.1$, $\lambda_4 = 18972.4$, $\lambda_5 = 27911.7$.

Frequency: 3.0785 Hz

Fig. 1.4 Lowest mode shape

GS-USA V9.43

Note: $f_1 = \frac{\omega_1}{2\pi} = \frac{\sqrt{\lambda_1}}{2\pi} = \frac{\sqrt{374.1}}{2\pi} = 3.078 \, Hz$

Example 3: Structural Dynamics (Wilson-Theta Method)

Use Wilson-Theta Method to evaluate the dynamic response of the frame shown in Fig. 3.1 using the loading described in Fig. 3.2 in the interval $0 \le t \le 5.0s$. Select $\theta = 1.4$, $\Delta t = 0.001s$. Take $k = 60 \frac{k}{in}$, $c = 0.5 \frac{k-s}{in}$, W = 300k.

Fig. 3.1 Three-story shear frame building [Example 13.2: Tedesco, McDougal and Ross, Addison Wesley]

Solution³

The system matrices are defined below.

$$\mathbf{M}_{4\times4} = \begin{bmatrix} 1.1641 & & & \\ & 1.5528 & & \\ & & 1.5528 & \\ & & & 1.5528 \end{bmatrix} \frac{k - s^2}{in}$$

$$\mathbf{K}_{4\times4} = \begin{bmatrix} 120 & -120 \\ -120 & 360 & -240 \\ & -240 & 600 & -360 \\ & & -360 & 720 \end{bmatrix} \frac{k}{in}$$

_

³ ASUTruss solution

$$\mathbf{C}_{4\times4} = \begin{bmatrix} 0.5 & -0.5 & & \\ -0.5 & 1.0 & -0.5 & \\ & -0.5 & 1.5 & -1.0 \\ & & -1.0 & 2.0 \end{bmatrix} \frac{k-s}{in}$$

Fig. 3.3 Displacement graph

Fig. 3.4 Velocity graph

Fig. 3.5 Acceleration graph

Assignment Problem 1

A planar cantilever beam of length 2 m has the following properties:

$$E = 200 \, GPa, A = 0.01 m^2, I = 10^{-4} \, m^4, \rho = 7850 \, \frac{kg}{m^3}$$

Assume that there is no damping in the system. The loading is applied at the tip of the beam as shown in the figure below.

Use a one-element beam model, Wilson-Theta method and a time step of 0.2 s for 0 < t < 10s to determine the displacement, velocity and accelerations in the system.