Name:

1. Let \mathbb{G} be a finite Abelian group, and recall that we defined a bilinear operator $\mu(x,y)$ on \mathbb{G} in the solution to the HSP for \mathbb{G} . State the definition of $\mu(x,y)$.

Solution: \mathbb{G} is a finite Abelian group, so by the Fundamental Theorem of Finitely Generated Abelian Groups, there are integers $m_1, \ldots, m_n \in \mathbb{N}$ such that

$$\mathbb{G}\cong\prod_k\mathbb{Z}_{m_k}.$$

Represent elements $g \in G$ as tuples $g = (g_k)_k \in \prod \mathbb{Z}_{m_k}$. Define $\mu : \mathbb{G} \times \mathbb{G} \to \mathbb{C}^{\times}$ by

$$\mu(g,h) \coloneqq \prod \omega_k^{g_k h_k}, \qquad \qquad \omega_k \coloneqq e^{2\pi i/k}.$$