- Spanish-speaking caregivers' use of referential labels with toddlers is a better predictor of later vocabulary than their use of referential gestures
- Janet Y. Bang^{1,2,*}, Manuel Bohn^{1,3,*}, Joel Ramírez, Jr^{1,4}, Virginia A. Marchman¹, & Anne
- $Fernald^1$
- ¹ Department of Psychology, Stanford University
- ² Department of Child and Adolescent Development, San José State University
- ³ Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary
- Anthropology 8
- ⁴ Department of Symbolic Systems, Stanford University
- * These authors contributed equally 10

- We are grateful to the families for their contribution to this research. We would also 12 like to thank Jazmin Reyes for her work on the reliability coding, and to Vanessa 13 Bermudez, Monica A. Munévar, Arlyn Mora, Ruby Roldan, Karina Gonzalez, and the Language Learning Lab staff for their contributions to data management and collection. 15 This work was supported by grants from the National Institutes of Health (R01 HD42235, DC008838, HD092343), the Schusterman Foundation, the W.K. Kellogg Foundation, the 17 David and Lucile Packard Foundation, and the Bezos Family Foundation to Anne Fernald, and a Postdoctoral Support Award from the Stanford Maternal and Child Health Research 19 Institute to J. Bang. Manuel Bohn received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant 21 agreement no. 749229. Joel Ramírez, Jr. received funding from the Linguistics summer 22 research internship and the Undergraduate Advising and Research program from Stanford University. The authors declare no potential conflicts of interest. Pre-registration of study design and analyses are available on the Open Science Framework: https://osf.io/s2jqy. The coding protocol is publicly available: https://osf.io/fmvyc/. All data and reproducible code are available on GitHub: https://github.com/manuelbohn/SocPop Janet Y. Bang
- ²⁹ https://orcid.org/0000-0001-6006-1348

https://orcid.org/0000-0002-6014-3009 Manuel Bohn

- The authors made the following contributions. Janet Y. Bang: Conceptualization,
- 31 Analysis, Writing Original Draft Preparation, Writing Review & Editing; Manuel Bohn:
- ³² Conceptualization, Analysis, Writing Original Draft Preparation, Writing Review &
- 33 Editing; Joel Ramírez, Jr.: Investigation, Writing Review & Editing; Virginia A.
- Marchman: Conceptualization, Writing Review & Editing; Anne Fernald:
- 35 Conceptualization, Writing Review & Editing.
- 36 Correspondence concerning this article should be addressed to Janet Y. Bang, One

Washington Square, San Jose, CA, 95192. E-mail: janet.bang@sjsu.edu

Abstract 38

Variation in how frequently caregivers engage with their children is associated with 39 variation in children's later language outcomes. One explanation for this link is that 40 caregivers use both verbal behaviors, such as labels, and non-verbal behaviors, such as 41 gestures, to help children establish reference to objects or events in the world. However, 42 few studies have directly explored whether language outcomes are more strongly associated with referential behaviors that are expressed verbally, such as labels, or non-verbally, such as gestures, or whether both are equally predictive. Here, we observed caregivers from 42 Spanish-speaking families in the US engage with their 18-month-old children during 5-min lab-based, play sessions. Children's language processing speed and vocabulary size were assessed when children were 25 months. Bayesian model comparisons assessed the extent to which the frequencies of caregivers' referential labels, referential gestures, or labels and gestures together, were more strongly associated with children's language outcomes than a 50 model with caregiver total words, or overall talkativeness. The best-fitting models showed 51 that children who heard more referential labels at 18 months were faster in language 52 processing and had larger vocabularies at 25 months. Models including gestures, or labels 53 and gestures together, showed weaker fits to the data. Caregivers' total words predicted 54 children's language processing speed, but predicted vocabulary size less well. These results suggest that the frequency with which caregivers of 18-month-old children use referential 56 labels, more so than referential gestures, is a critical feature of caregiver verbal engagement 57 that contributes to language processing development and vocabulary growth.

Keywords: communicative reference, gestures, labels, word learning, language 59 processing, vocabulary size

Word count: 7196 61

65

66

67

71

72

73

Spanish-speaking caregivers' use of referential labels with toddlers is a better predictor of
later vocabulary than their use of referential gestures

Research highlights

- We examined the frequency of referential communicative behaviors, via labels and/or gestures, produced by caregivers during a 5-min play interaction with their 18-month-old children.
- We assessed predictive relations between labels, gestures, their combination, as well
 as total words spoken, and children's processing speed and vocabulary growth at 25
 months.
 - Bayesian model comparisons showed that caregivers' referential labels at 18 months best predicted both 25-month vocabulary measures, although total words also predicted later processing speed.
- Frequent use of referential labels by caregivers, more so than referential gestures, is a critical feature of communicative behavior that supports children's later vocabulary learning.

77 Introduction

Children learn language through interactions with others. Studies of caregiver-child interactions have documented extensive variability in the frequency with which caregivers use verbal behaviors (e.g., words) and nonverbal behaviors (e.g., gestures) when they engage with their children. Individual differences among caregivers have been noted in studies of families across diverse linguistic, cultural, and socioeconomic status (SES) backgrounds (Casillas, Brown, & Levinson, 2019; Hart & Risley, 1995; Hoff, 2003; Weber, Fernald, & Diop, 2017). Moreover, variability in the frequency of caregivers' use of verbal behaviors (Gilkerson et al., 2018; Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991;

- Rowe, 2012; Shneidman & Goldin-Meadow, 2012; Walker, Greenwood, Hart, & Carta,
- 87 1994; Weisleder & Fernald, 2013) and nonverbal behaviors (Cartmill et al., 2013; Pan,
- 88 Rowe, Singer, & Snow, 2005; Rowe & Goldin-Meadow, 2009; Rowe, Özçalışkan, &
- 89 Goldin-Meadow, 2008) has been shown to be positively associated with children's later
- 90 language development.

There are multiple proposals to explain how caregivers' verbal and nonverbal 91 behaviors support later language learning. Both can be used to refer to objects and events. By using verbal behaviors, such as labels in the presence of objects, caregivers support 93 children's learning of word-referent mappings, a critical step in children's early comprehension and subsequent word production (Baldwin, 1993; Bohn & Frank, 2019; 95 McMurray, Horst, & Samuelson, 2012). Nonverbal behaviors, such as gestures, can also be used to refer to and communicate about the identity of referents (e.g., by pointing to, holding out, or giving a cup to someone). For example, caregivers' deictic gestures, such as pointing, can help children disambiguate the referent of a label from other candidate referents (Iverson, Capirci, Longobardi, & Caselli, 1999; Puccini, Hassemer, Salomo, & 100 Liszkowski, 2010; Rowe, 2000; Tfouni & Klatzky, 1983; Yuksel & Brooks, 2017; 101 Zukow-Goldring, 1996). Labels and gestures can also be used together (e.g., saying "give 102 me the cup," while pointing to a cup), providing the child with two cues to reference in 103 differing modalities. Thus, caregivers' use of labels, gestures, or both together, can help 104 children to map language onto specific concepts, strengthening their understanding of how language represents objects or events in their world. In this study, we compare Spanish-speaking caregivers' use of verbal behaviors (i.e., total words and referential labels) 107 and non-verbal behaviors (i.e., referential gestures) during a play session with their 108 18-month-old children. We then assess the degree to which these behaviors are linked to 109

children's language processing efficiency and vocabulary outcomes at 25 months.

Variation in caregivers' verbal and non-verbal behaviors

Documenting variability among caregivers in their frequency of communicative 112 behaviors is critical for establishing links between these behaviors and later child outcomes. 113 Verbal behaviors have been examined using numerous measures that capture the quantity 114 and quality of caregivers' speech – although they mostly do so ignoring the referential 115 context. Using the LENA technology, Gilkerson et al. (2017) collected daylong recordings 116 of the speech children heard in 329 American-English-speaking families with 2- to 117 48-month-old children from varying SES backgrounds. Speech recognition software provided automated estimates of the quantity of caregivers' speech, i.e., adult word counts 119 (AWC), revealing that children were exposed to as few as 8,000 and as many as 17,000 words in a 12-hour day. Bergelson, Casillas, et al. (2019) collected LENA daylong recordings with 3- to 20-month-old children in 61 American families. Instead of total 122 adult-word counts, they assessed variation in caregiver talk by measuring the amount of 123 time each child was exposed to child-directed speech (CDS). The authors found that 124 children were exposed to CDS for 11.36 min per hour, on average, with a standard 125 deviation over a third of the mean (SD = 4.24 min). Studies of caregiver-child interactions 126 in different sociocultural contexts, such as subsistence farming communities, have found 127 that children were exposed to far less speech, on average, than in other communities; 128 however, there was still substantial variability among families (Bunce et al., 2020; Casillas 129 et al., 2019; Casillas, Brown, & Levinson, 2021; Shneidman & Goldin-Meadow, 2012; 130 Yuksel & Brooks, 2017). Other studies have specifically examined caregivers' use of nouns 131 in verbal interactions and noted variability among caregivers in multiple languages, 132 including English, Italian, French, Spanish, Turkish, Mandarin, and Korean (Altınkamış, 133 Kern, & Sofu, 2014; Bergelson, Casillas, et al., 2019; Choi, 2000; Rosemberg et al., 2020; 134 Tardif, Shatz, & Naigles, 1997). 135

Substantial variability among caregivers in their use of nonverbal gestures is also well

136

documented. Studies examining caregivers' use of gestures have primarily focused on gestures that are symbolic or representational to some degree (Rowe, Wei, & Salo, 2022), 138 such as iconic gestures (e.g., flapping hands for a bird), conventional gestures (e.g., nodding 139 one's head to mean "yes" in the US), and referential gestures (e.g., holding out objects or 140 deictic gestures such as pointing). For example, Rowe et al. (2008) videotaped 90-min 141 interactions in 53 American-English-speaking families with children from 14 to 34 months. 142 They found that caregivers produced, on average, 100-115 symbolic, conventional, and 143 deictic gestures, with values ranging from only a few gestures to over 400. Other studies have examined deictic gesture use in families speaking non-English languages and living in 145 different sociocultural contexts, e.g., in families speaking Yucatec Mayan in Mexico 146 (Salomo & Liszkowski, 2013) and Lazuri in Turkey (Yuksel & Brooks, 2017), also noting 147 extensive variability among caregivers in both groups.

Variability among caregivers in their use of verbal behaviors and gestures has been 149 linked to child language outcomes. In some studies, language samples are used to capture 150 variation in the frequency of young children's production of recognizable words during 151 interactions with their caregiver (Huttenlocher et al., 1991). Studies with older school-age 152 children have also revealed links between the frequency of caregiver verbal engagement and 153 children's scores on standardized tests of language, such as vocabulary (Gilkerson et al., 154 2018). When children are infants and toddlers, many studies rely on parent-reports 155 assessments of children's vocabulary size, such as the MacArthur-Bates Communicative 156 Developmental Inventories (CDI, Fenson et al., 2007), which ask parents to indicate which 157 words their child "understands and says" from among several hundred words on a checklist (e.g., Weisleder & Fernald, 2013). Still other studies have explored links between caregivers' 159 verbal behaviors and children's performance in tasks that capture skill at processing language in real time, such as the Looking-While-Listening task (Fernald, Zangl, Portillo, & 161 Marchman, 2008). For example, in a sample of 27 Spanish-speaking caregiver-child dyads, 162 Hurtado, Marchman, and Fernald (2008) reported that children who experienced more

speech from their caregivers during a lab-based play session were reported both to know 164 more words on the CDI and to be more efficient at recognizing spoken words in real time. 165 Weisleder and Fernald (2013) reported similar findings based on estimates of caregivers' 166 child-directed word counts during daylong recordings. In both of these studies, mediation 167 models explored possible pathways among caregiver talk, vocabulary size, and processing 168 efficiency. Results suggested that frequent engagement with caregivers may be "tuning up" 169 children's abilities to map real-time spoken language onto referents in the world around 170 them, allowing for more efficient use of the input to support language learning. 171

Links between caregivers' use of gesture and children's later vocabulary abilities have 172 also been reported (Iverson et al., 1999; Pan et al., 2005; Rowe et al., 2008). Rowe and Goldin-Meadow (2009) examined socioeconomically-diverse caregivers and children across multiple home visits, beginning when children were 14 months. They found that variation 175 among children in their use of gesture at 14 months was related to their vocabulary skills 176 at 54 months, based on a standardized test. Moreover, this study and others have found 177 that the frequency of caregivers' gesture use is related to the frequency of children's gesture 178 use. In particular, caregivers' use of deictic gestures, such as pointing, is viewed as a 170 potential means of influencing children's own use of deictic gestures, an important 180 prelinguistic skill (Matthews, Behne, Lieven, & Tomasello, 2012; Rowe & Leech, 2019). 181 Other studies propose that caregivers' use of different gestures can support word learning 182 by bringing attention to an object and reducing spatial ambiguity, thus allowing children to 183 attend more effectively to the referent and/or the auditory signal (Iverson et al., 1999; 184 Puccini et al., 2010; Rowe, 2000; Tfouni & Klatzky, 1983; Yuksel & Brooks, 2017; 185 Zukow-Goldring, 1996).

Labels, gestures, or both?

Taken together, there is substantial evidence that how frequently caregivers use communicative behaviors is linked to children's language learning. However, few studies

have directly contrasted how verbal versus non-verbal behaviors that establish reference are predictive of children's outcomes. The referential function of labels and gestures is 191 important because it serves as a means to support children's early label-referent 192 associations. It is also critical to remember that these behaviors frequently occur together 193 in real time (Iverson et al., 1999; Pan et al., 2005; Puccini et al., 2010; Rowe & 194 Goldin-Meadow, 2009; Tfouni & Klatzky, 1983; Yuksel & Brooks, 2017; Zukow-Goldring, 195 1996). Thus, it is difficult to address whether links between caregiver verbal or nonverbal 196 behaviors and children's outcomes may in fact be better explained by caregivers' combined 197 use of labels and gestures. For example, Rowe (2000) proposed that there may be a shared 198 construct underlying caregivers' use of verbal behaviors and gestures, such as 199 communicativeness. This hypothesis is supported by evidence of a small to moderate 200 positive correlation between the frequency of caregivers' verbal behaviors and gestures; 201 those caregivers who used more total words also gestured more frequently than caregivers who used fewer words (Pan et al., 2005; Rowe, 2000; Rowe & Goldin-Meadow, 2009; Rowe et al., 2008; Salo, Reeb-Sutherland, Frenkel, Bowman, & Rowe, 2019). Here we ask 204 whether the predictive power of caregivers' communicative use of reference may be 205 captured more fully by measures that reflect the combined use of referential labels and 206 gestures, rather than each measure taken alone. 207

How caregivers combine labels and gestures in real time has been widely discussed in 208 the experimental literature on early word learning (Gogate, Bahrick, & Watson, 2000; 209 Tincoff, Seidl, Buckley, Wojcik, & Cristia, 2019; Villiers Rader & Zukow-Goldring, 2012; 210 Zukow-Goldring, 1996). For example, Kalagher and Yu (2006) found that novel word learning was more successful when caregivers introduced words while pointing to the 212 objects as they narrated a story than when narrating a story without pointing. Gogate et al. (2000) examined European American and Hispanic American families residing in a 214 major metropolitan area in the United States. They found that when they were teaching 215 novel labels to young infants, caregivers were more likely to use labels while moving 216

objects. Moreover, caregivers of linguistically less-advanced infants, compared to
more-advanced infants, were more likely to synchronize labels with object motion. These
findings suggest that caregivers are sensitive to children's level of language skills when
using labels and gestures together to highlight new label-referent associations.

1 The Current Study

In this longitudinal study, we observed 42 Spanish-speaking caregivers during play 222 interactions with their 18-month-old children. We coded the frequency and duration of 223 caregivers' referential labels to objects and referential gestures to objects. At 25 months, 224 children's language skills were assessed using an on-line language processing task and 225 caregiver reports of productive vocabulary size. Bayesian methods were used to construct 226 different models of the frequency of caregivers' use of labels, gestures, and both in 227 combination, as predictors of child outcomes. We hypothesized that if children's later 228 language abilities are best predicted by the frequency of caregivers' use of labels or gestures 220 taken independently, this would suggest a primary role for learning based on either 230 modality. However, if language learning is supported more by the frequency of caregivers' 231 use of reference across verbal and nonverbal modalities, then one or more models including 232 both labels and gestures would be stronger predictors of our measures of language outcomes 233 (Cartmill et al., 2013). We also included a model capturing the total number of words 234 spoken by caregivers to explore the specific contribution of their use of referential labels to children's later language skills, in contrast to a separate predictor of overall talkativeness. In all models we included covariates of children's language skills and SES. By comparing these models, we sought to identify the smallest set of caregiver's communicative behaviors 238 at 18 months that best predicts children's language outcomes at 25 months, over and above 239 covariates that reflect children's language skills and family background.

Methods 241

Participants

Participants were 42 primarily Spanish-speaking children¹ (21 females) and their 243 caregivers who were participating in a longitudinal study examining language development 244 in primarily monolingual Spanish-speaking families in the US. Families were recruited from 245 birth records or community contacts in Northern California and were excluded if the child 246 was born preterm, had a known neurodevelopmental disorder, or loss of hearing or vision. 247 As shown in Table 1, children were approximately 18 months at the start of the study and 248 approximately 25 months when we assessed language processing speed and vocabulary size. 249 We calculated SES using the Hollingshead Index, which reflects education and occupation for both mothers and fathers. SES was included as a covariate based on prior studies (Daneri, Blair, & Kuhn, 2018; Hoff, 2003; Huttenlocher, Waterfall, Vasilyeva, Vevea, & 252 Hedges, 2010), to examine the unique role of caregiver behaviors in supporting children's language skills over and above potential confounding variables. Families represented a diverse range of SES backgrounds, ranging from a score of 8 to 62 (for reference, a score of 255 40 often reflects those from college-educated backgrounds). All mothers reported that they 256 were native Spanish speakers. All families lived in the U.S. but the mothers were primarily 257 born in Mexico (33), with a few born in Central America (5) or the U.S. (4). 258

Procedure

262

Native Spanish-speaking research staff met with the caregiver to explain study 260 protocol, and all caregivers gave their informed consent prior to study participation. 261 Caregivers participated in a 15-min videotaped lab-based play session with their

¹ As seen in our pre-registration, we determined a sample size of n = 50 based on a priori frequentist power analyses, but stopped at n = 42 because at the time of analysis there were no more available families to include in the study.

18-month-old children at a community laboratory. Families first engaged in a book-sharing 263 activity (5 min) and then an activity using toys designed to elicit scaffolding (shape sorter 264 and stacking ring, 5 min). Finally, each caregiver was asked to engage with their child for 265 approximately 5 min using a standard set of toys (e.g., plates, pretend food, cutlery, pots, 266 doll) designed to elicit communicative behaviors and pretend play. The final 5 min of 267 engagement during this session was selected for analysis because it involved the most 268 diverse set of toys and caregivers, and children had sufficient opportunity to warm up and 269 feel comfortable in the context. During the session, the child wore a LENA recorder placed 270 inside a specially-designed vest to capture the adult speech spoken during the play session 271 (Marchman, Weisleder, Hurtado, & Fernald, 2021). At 18 and 25 months, children 272 participated in the Looking-While-Listening task to assess spoken language understanding 273 (Fernald et al., 2008). At both time points, caregivers completed parent-report assessments 274 of their child's productive vocabulary size (Jackson-Maldonado, Thal, & Fenson, 2003). 275

276 Measures

Coding of caregiver referential gestures and labels. A native Spanish-speaker 277 used ELAN (version 5.0, Wittenburg, Brugman, Russel, Klassman, & Sloetjes, 2006) to 278 code all caregivers' referential gestures and labels from the video recordings of the play 279 sessions. Gestures were coded first without audio. Referential gestures were defined as 280 those gestures used to attract infants' attention to the toys or other objects in the 281 environment. Gestures included holding out objects/giving, pointing, descriptive or iconic 282 gestures (e.g., making a chopping motion with their hand), and touching with an open hand. Physically playing with toys was not included as a gesture (e.g., holding the knife and pretending to cut vegetables in front of the child). A standardized protocol used to define the onset and offset of each gesture is available in our full codebook (https://osf.io/fmvyc/?view_only=7fd65681a7154f43aa5b5a67c38a1392). Frequency of 287 gestures was derived for each caregiver, and the onset and offset of gestures were used for 288

our overlap measure below.

Caregivers' use of object labels was then coded by the same coder, who listened to 290 the video and marked the onset and offset of all object labels that referred to objects in the 291 play session. Labels could occur in isolation (e.g., "manzana" [apple]) or not (e.g., 292 "¿quieres una manzana?" [do you want an apple?]). Frequency counts of label tokens were 293 derived for each caregiver. Successive repetitions of a single label were counted as 294 individual tokens. General category terms (e.g., "comida" [food], or "juguetes" [toys]) were 295 excluded because our goal was to focus on specific labels rather than on category names for 296 available objects. All English labels were excluded, given that we were assessing children's 297 later Spanish language outcomes. 298

Finally, we determined the number of times that each caregiver produced an object label while using a gesture (overlaps: labels + gestures). An R script used the duration coding of each label and gesture in the ELAN output to identify the number of labels that occurred within a 1-sec window before or after a gesture (Cartmill et al., 2013).

Figure 1 depicts examples of the final label and gesture coding for three caregivers
over the 5-min observation window. These examples illustrate variation among caregivers
in the overall frequency of labels and gestures, as well as variation in the number of
overlapping labels and gestures.

Reliability Coding. A second native Spanish-speaking research assistant coded labels and gestures for approximately 20% of the families (n = 8). The second coder was blind to the study hypotheses and to the coding by the first coder. Intraclass correlations (ICC) showed strong reliability for number of labels (ICC = .996, 95% CI [.96, 1]) and gestures (ICC = .89, 95% CI [.54, .98]), as well as the number of overlaps determined from the R script (ICC = .99, 95% CI [.98, 1]).

Caregiver verbal engagement during play session. During the play session, a
LENA audio recorder was used to provide an estimate of the number of adult word counts

(AWC) produced during the session. The AWC measure generated by the LENA speech recognition software was converted to a rate per hour based on the 5-min sample, to account for minor differences in the duration of play sessions. This measure was included as an estimate of overall caregiver talkativeness.

Spoken language processing. At each time point, the child participated in the 319 Looking-While-Listening task (LWL, Fernald et al., 2008). In this task, the child sits on 320 their caregiver's lap while viewing pictures of two familiar objects on a screen. After 2 sec, 321 a voice of a female, native-Spanish speaker names one of the objects (e.g., "¿Dónde está el 322 perro?", Where's the doggy?), followed by an attention-getter phrase (e.g., "¿Te gustan las 323 fotos?, Do you like the pictures?). On each trial, the pictures were presented in fixed pairs, 324 matched for salience, and the target words were matched in grammatical gender. At 18 325 months, auditory stimuli consisted of eight familiar words presented 6 times each as target 326 and distracter. At 25 months, auditory stimuli consisted of twelve familiar words presented 327 4 times each as target and distracter. Each word in the pair served an equal number of 328 times as target and distracter, for a total of 48 experimental trials, with target picture counterbalanced across side across trials. 330

After a brief calibration session, trials were presented in two fixed pseudo-random 331 orders such that the target picture was not presented on the same side for more than two 332 trials in a row. Patterns of children's eye-gaze were captured at 60 frames/sec by a Tobii 333 X60 eye-tracker, mounted to the bottom of the monitor. A video camera attached to the 334 top of the monitor also provided a record of children's eye gaze across the full session. All 335 video-recordings of the testing sessions were prescreened to exclude trials when the child was inattentive or if there was any concern that the caregiver was biasing the child. Based on which picture the child was fixated on at target noun onset, trials were defined as 338 distracter or target initial. Trials on which the child was not looking at either picture at 339 target noun onset were not analyzed. Trials were also later removed on a child-by-child 340 basis if the parent reported that the child did not know the target word. Due to calibration 341

failures or experimental error, some portion of the sessions (11/42, 26%) were hand-coded by trained coders following standard protocols (Fernald et al., 2008). Processing speed was 343 calculated on all distracter-initial trials as the mean reaction time (RT) in milliseconds to 344 shift from the distracter to the target picture measured from the onset of the target noun. 345 Trials were excluded if shifts were faster than 300 ms or slower than 1800 ms from target 346 noun onset, since these shifts are unlikely to be in response to the target word. Given that 347 children could have different numbers of distracter-initial trials, the mean number of trials 348 per child varied (M = 9.81, SD = 4.70), however, all children had at least 2 trials contributing to the computation of RT (range = 2 - 21). 350

Vocabulary size. Children's vocabulary size in Spanish was assessed at each time 351 point by parent report with the Mexican Spanish MacArthur-Bates Inventarios del 352 Desarollo de Habilidades Communicativas (CDI, Jackson-Maldonado et al., 2003). These 353 instruments ask parents to indicate what words their child can "understand and say" from 354 a list of hundreds of items. At 18 months, some parents completed the Inventario I form 355 and others completed Inventario II form, due to slight changes in protocol over time. For 356 those children whose parents completed Inventario I, scores were converted to proportions 357 based on the number of items on the Inventario II form. At 25 months, all parents 358 completed Inventario II. Vocabulary size was the number of words chosen (680 words 359 maximum). Due to missing data, 37 families are included for analyses with the CDI. 360

361 Analysis Strategy

We first present descriptive statistics of all variables at 18 and 25 months. We then
present a series of Bayesian model comparisons that allowed direct comparisons of
non-nested models to examine the predictive roles of labels, gestures, or their combination
(i.e., overlaps), on child outcomes (Donnellan, Bannard, McGillion, Slocombe, &
Matthews, 2020; Mahr & Edwards, 2018). This approach contrasts with prior studies that
have sought to isolate unique contributions of caregivers' verbal behaviors or gestures to

outcomes using nested hierarchical regression (Iverson et al., 1999; Pan et al., 2005). We 368 compared seven independent models per outcome measure, each representing a different 369 hypothesis about how caregivers' communicative behaviors contribute to children's 370 language processing speed and vocabulary size at 25 months. Thus, a total of 14 models 371 were tested. Language processing speed reflects how quickly children shifted from a 372 distracter picture to a named target picture, on average, and vocabulary reflects the 373 number of vocabulary words that caregivers reported children could "understand and say" 374 from a list of items. These models assessed the independent contributions of labels and 375 gestures, the conditional relation between labels and gestures, as well as the overlapping 376 use of labels and gestures (overlap). We also tested a model including AWC, to evaluate 377 the separate effect of caregiver talkativeness on children's later language skills. All models 378 included covariates of SES and 18-month language measures for the respective outcome measure. Thus, models predicting 25-month processing speed included SES and 18-month processing speed, and models predicting 25-month vocabulary size included SES and 381 18-month vocabulary size. By including 18-month language skills, we are able to ask the 382 more specific question of which input variable(s) best predict gains in language processing 383 or vocabulary size over and above SES and children's earlier language skills.

For each dependent variable (dv), we compared the same set of models²: (1) dv ~

labels; (2) dv ~ gestures; (3) dv ~ overlaps; (4) dv ~ adult_words_per_hour, which

considers all speech using AWC; (5) dv ~ labels + gestures, which assumes that both

labels and gestures contribute independently; (6) dv ~ labels * gestures, which

assumes that the contribution of labels and gestures are conditional on one another, and

(7) dv ~ covariates is the baseline model. If a model performs at or worse than the

baseline, its predictor(s) do not contribute to predicting gains in processing or vocabulary

² The preregistration did not include a) the adult word count model and b) the baseline model. We added these models later a) to see if the number of labels was simply an indicator of overall caregiver talkativeness and b) to be able to judge if the inclusion of covariates improved predictions at all.

over and above the covariates.

All models were fit in a Bayesian framework as linear models in R (Team, 2021) via 393 the function brm from the R-package brms (Bürkner, 2017) using default priors for all 394 model parameters. All caregiver behavior variables were scaled to have a mean of 0 and a 395 standard deviation of 1. Following McElreath (2020), we compared models using WAIC 396 (widely applicable information criterion) scores and weights, an indicator of the model's 397 predictive accuracy for out-of-sample data; models with lower scores are preferred. 398 Roughly speaking, WAIC scores reflect the model's predictive accuracy with a penalty for 399 the number of effective parameters. As such, model comparisons favor simpler models and 400 thereby guard against overfitting. WAIC weights are an estimate of the probability that 401 each model (compared to all models considered) will make the best predictions on new 402 data. We next inspected the posterior distributions of the model predictors in the best 403 models via their means and 95% credible intervals (CI) to inform the nature (positive or 404 negative) and strength of the influence of the respective caregiver engagement variable on 405 the dependent variable.

407 Results

108 Descriptive statistics

Figure 2A provides descriptives for the four measures of caregiver communication.

Caregivers produced approximately 3500 words per hour (M = 3,447.26, SD = 1,491.97,

range = 531.94 - 6,683.38), on average, based on the automated LENA counts. Caregivers

produced just over 40 labels (M = 44.19, SD = 25.35, range = 0 - 120) and about 18

gestures (M = 18.12, SD = 8.11, range = 2 - 41). When considering overlaps, caregivers

produced about 16 labels that were also accompanied with a referential gesture, (M = 16.31, SD = 10.88, range = 0 - 41). Conversely, parents produced on average 13 gestures

that overlapped with at least one label (M = 12.83, SD = 7.65, range = 0 - 29).

Figure 2B shows the zero-order correlations among all variables. As expected, the 417 three measures capturing caregivers' language (AWC per hour, labels, overlaps) were 418 significantly correlated. Notably, caregivers who used more labels also used more words 419 overall, reflecting an r2 of 45% shared variance, though over half of the variability is not 420 accounted for. Numbers of referential gestures also correlated with verbal behavior 421 variables (e.g., referential labels and gestures, r2 = 30%), also suggesting some shared 422 underlying variance. However, none of the correlations indicated that any two measures 423 were redundant (i.e., all r < .90), which justifies assessing their independent predictive 424 relation to the dependent variable in the model comparison. 425

426 Spanish language processing

Table 2 shows WAIC scores and weights for each model predicting children's language processing speed (RT). Only two models outperformed the baseline model: labels and AWC per hour, with both models similar in their weights (model weights: 0.23 labels; 0.18 AWC per hour). None of the models that included gestures, either as the only test predictor or in combination with labels, made better predictions compared to the baseline model than models that included labels. Thus, children's language processing speed at 25 months was best predicted by models that included some form of caregivers' verbal behavior as predictors, though differences between models are small.

Figure 3A-i shows the posterior distribution of the model estimates for number of labels to be negative ($\beta = -39.96$) and largely different from 0 (95% credible interval (CrI) = -91.91 - 12.11). This indicates a positive relation: the more labels the caregiver used at 18 months, the more the child improved in their reaction time from 18 to 25 months. However, the fact that the 95% CrI included zero, cautions against an overly strong interpretation. A similar pattern was found when investigating the estimate for adult word count in the respective model: more adult talk was related to gains in reaction time – with considerable uncertainty ($\beta = -27.88$, 95% CrI = -80.57 - 25.19). The effect of SES was

also similar. Children from families higher in SES tended to have greater developmental gains in reaction time, however, this effect was weak in magnitude ($\beta = -27.67$, 95% CrI = -79.96 - 24.31). Finally, children with a slower reaction time at 18 months were also slower at 25 months ($\beta = 52.69$, 95% CrI = 0.12 - 105.42). Figure A-ii shows the observed vs. predicted values from the model with labels as the test predictor.

448 Vocabulary size

Table 3 shows the model comparisons for vocabulary size. All predictor models made
better predictions compared to the baseline model. As with RT, the model including the
number of labels produced by the caregiver made the best predictions – this time, however,
it clearly outperformed all the other models (model weight = 0.38). Models including
gestures were given more weight only when they also included labels.

As shown in Figure 3B-i, the posterior distribution for the model estimate for labels was positive, large and reliably different from 0 ($\beta = 72.29$, 95% CrI = 21.95 - 122.26).

Children who heard more labels at 18 months increased more in their reported vocabulary size from 18 to 25 months. SES had a weak effect ($\beta = -20.34$, 95% CrI = -70.46 - 30.14).

Finally, children who had a larger reported vocabulary at 18 months also had a larger reported vocabulary at 25 months ($\beta = 83.57$, 95% CrI = 33.10 - 133.49). Figure 3B-ii shows the observed versus predicted values from the model with labels as the test predictor.

461 Comparing the contribution of labels and gestures

The model comparisons suggested that including the number of gestures as a predictor did not contribute to a model's predictive accuracy above baseline for RT, although gestures performed better than baseline for vocabulary size. Nevertheless, it is still interesting to see how the number of gestures related to the dependent variable in the different models. Thus, we compared the posterior distributions of the model estimates for

labels and gestures across the models that included them. Figure 4 shows this comparison.

Looking first at labels, regardless of model, the supportive contribution of labels was stable
whether tested as the only predictor or together with gestures for both reaction time and
vocabulary size. In contrast, gestures supported the outcome of vocabulary growth only
when considered as the sole test predictor. When combined with labels, the model
estimates were essentially zero. This pattern affirms the conclusion based on the model
comparisons, i.e., that knowing the number of gestures in the input – in addition to the
number of labels - did not improve predictions.

475 Discussion

Our goal was to compare variation among Spanish-speaking caregivers in the number 476 of words, labels, gestures, and combined labels and gestures used when interacting with 477 their toddlers, in order to determine the smallest set of caregivers' communicative 478 behaviors that best predicted children's language outcomes at 25 months. We found that 479 over and above SES and children's earlier language skills, the model with caregivers' use of 480 referential labels was the strongest predictor of children's vocabulary, when compared 481 against models including variability in total words, referential gestures, or in different combinations of labels and gestures. There were small but notable differences between models for children's processing speed whether predictors were referential labels, total words, or covariates only. We discuss two questions raised by these results: Why might 485 caregivers' use of referential labels predict children's later language processing efficiency 486 and vocabulary size? Why are labels more predictive than gestures?

Why might caregivers' use of referential labels predict children's language processing efficiency and vocabulary size?

Those caregivers who used more referential labels also used more words overall (Figure 2B), reflecting an r2 of 45% shared variance and demonstrating a strong relation

between these measures. However, while both measures of talk predicted children's 492 reaction time, only models with caregivers' use of labels better predicted their vocabulary 493 size, with a similar, albeit weaker, pattern found for reaction time. One possibility is that 494 the frequency of caregiver labels is more closely linked to children's understanding of word 495 meaning, which is reflected in outcome measures of both language processing and 496 vocabulary size. Labels themselves are symbols that refer to the objects, ideas, or events 497 they represent (Acredolo & Goodwyn, 1988; Bates, Thal, Whitesell, Fenson, & Oakes, 498 1989; Colonnesi, Stams, Koster, & Noom, 2010), and both the mapping of a label to a 490 referent and the learning of a label for a referent are directly assessed in both of our 500 outcome measures. Language processing speed reflects children's ability to map a spoken 501 object name in real time onto one of two familiar pictures, assessed only on trials when the 502 child demonstrates a clear shift from the distracter to the target picture. Thus, this task 503 taps into children's familiar knowledge of these everyday objects where children who are faster at processing the object label may have stronger conceptual and linguistic representations than those who are slower. Vocabulary size, as reported by parents on the 506 CDI, reflects children's abilities to produce the names of objects and concepts. Therefore, 507 variation among caregivers in the frequency of specific use of referential labels may provide 508 a closer link to individual differences in children's linguistic knowledge about objects or 509 events. While caregivers' use of total words may help "tune" up children's language 510 processing speed, and provide children with the practice of hearing language, our findings 511 suggest that caregivers' use of labels is more predictive of language gains because it 512 provides the linguistic information that enables early word learning. These results suggest 513 that during early stages of language learning, repeated and varied exposure to labels 514 embedded within day-to-day conversations may help children associate, prune, and 515 strengthen these links (McMurray et al., 2012), quickly process how labels map onto 516 objects in real time (Fernald, Perfors, & Marchman, 2006), and build a vocabulary that 517 reflects their understanding about the world (Weisleder & Fernald, 2013). 518

Why are labels more predictive than gestures?

Caregivers who used more referential labels also used more referential gestures, (r =520 .55, percent shared variance = 30%, Figure 2B). The strength of this association is within 521 expectations based on prior studies of children across a broad age range (i.e., 8 to 36 522 months), in spite of slightly different operationalizations of total words, labels, and gestures 523 (e.g., Pan et al., 2005: rs = .35 - .54; Rowe, 2000: r = .58; Rowe & Goldin-Meadow, 2009: 524 r = .67; Salo et al., 2019: r = .30; Salomo & Liszkowski, 2013: r = .63). However, we did 525 not find support for our hypothesis that an underlying shared characteristic of caregivers' 526 communicative reference across referential labels and gestures was predictive of children's 527 language skills (Rowe, 2000; Rowe et al., 2008). Instead, the models that included the 528 frequency in caregivers' use of labels best predicted later language outcomes, with stronger 520 evidence seen for children's vocabulary than for processing speed. Rather than the shared 530 referential function that both labels and gestures serve, there is information in the 531 linguistic signal specifically associated with caregivers' label use that supports children's later vocabulary outcomes.

It is important to note that as in previous studies, our measures of referential labels 534 and gestures were not mutually exclusive. Labels may have occurred alone in an utterance 535 or embedded in a multi-word utterance, with each instance co-occurring with a variety of 536 socio-pragmatic behaviors such as eye-gaze, facial expressions, body movement, in addition 537 to referential and non-referential gestures. Our findings suggest that variability in 538 caregivers' use of referential labels, regardless of how these labels are combined with 539 nonverbal behaviors, is most strongly associated with later vocabulary in 25-month-old 540 children. 541

These results should not be taken as evidence that caregivers' gesture use plays a less influential role in children's language learning. In exploratory analyses, we found that caregivers' use of referential gestures predicted vocabulary growth when the model included

gestures as the only test predictor, although not in combination with labels. These links are 545 in line with those of prior studies showing that variation in caregiver gestures or nonverbal 546 behaviors predicted children's later vocabulary, although those studies differed in whether 547 or not they controlled for children's earlier language skills (Cartmill et al., 2013; Rowe & 548 Goldin-Meadow, 2009). By directly contrasting the use of referential labels and gestures in 549 the same sample, our study demonstrated that knowing the number of referential gestures 550 did not improve our predictions for growth in children's language processing or vocabulary 551 size, if the number of labels was already known (Iverson et al., 1999; Pan et al., 2005). 552

It is also possible that caregivers' use of referential labels and gestures differs in 553 importance for certain words over others or at different phases of children's communicative 554 development. For example, for unfamiliar words or different types of words (e.g., actions), 555 the combination of referential labels and gestures may be especially helpful. Additionally, 556 children in our study were 17 to 19 months old, whereas prior studies linking caregivers' 557 gesture use to later outcomes examined gestures when children were around 14 to 16 558 months old (Iverson et al., 1999; Pan et al., 2005; Rowe & Goldin-Meadow, 2009). At 550 earlier ages more children are in an early pre-linguistic stage, and thus may benefit more 560 from the support for learning provided by caregivers' use of referential gestures. Children 561 who produce more gestures early in life have been found to have stronger vocabulary later 562 on (e.g., Colonnesi et al., 2010; Kirk et al., 2022, but see Donnellan et al., 2020). 563 Caregivers' gestures may be particularly supportive of children's prelinguistic gestures and 564 short-term language outcomes (Rowe & Leech, 2019), an effect that is less evident as children become more linguistically advanced. It is also important to note that the current study focused specifically on referential gestures, whereas prior work has considered a larger set of caregivers' communicative behaviors, including symbolic gestures (e.g., cutting motion with hands) and conventional gestures (e.g., nodding to mean "yes" in the United 569 States). Therefore, at any given moment, caregivers can use both referential and 570 non-referential gestures to direct children's attention to the label-object link, support 571

visual object recognition, and resolve ambiguity of the intended referent (Tincoff et al., 2019; Villiers Rader & Zukow-Goldring, 2012; Zukow-Goldring, 1996), all of which are likely to provide a foundation for stronger language learning.

75 Limitations

While our results shed light on specific features of caregiver communicative behaviors that may be important for language learning, we are unable to establish definitively the 577 direction of any causal link between caregivers' verbal behaviors and children's language 578 skills. Though we included a covariate of children's initial language skills on the respective 579 outcome measure to assess caregivers' contribution to children's growth in language skills, 580 we cannot rule out the possibility that caregivers who use more labels do so because their 581 children are more verbal. Correlational links represent average effects, with much still left 582 unexplained (Bailey, Duncan, Watts, Clements, & Sarama, 2018). Rather than a causal 583 pathway of caregivers influencing children, correlations may represent relatively stable 584 individual differences among children and families with shared genes and/or environments. 585 Correlations may also be attributable to individual differences in children's propensity or 586 ability to elicit engagement from others or in children's ability to effectively process 587 information (Pace, Luo, Hirsh-Pasek, & Golinkoff, 2017; Weisleder & Fernald, 2013). Though there is growing research examining whether intervening with caregivers in their 580 use of verbal and nonverbal behaviors can influence children's early language development 590 (Matthews et al., 2012; McGillion, Pine, Herbert, & Matthews, 2017; Rowe & Leech, 2019; 591 Suskind et al., 2016), findings to date are mixed. Our results point to the importance of caregivers' use of referential labels as a specific supportive feature to children's vocabulary growth. Ongoing research should continue to explore the effectiveness of such interventions for children's short- and long-term outcomes, as well as potential moderators that influence 595 which families are likely to benefit the most (Rowe & Leech, 2019). It is also important to 596 note that while we have identified caregivers' use of referential labels as an important 597

predictor for children's later vocabulary outcomes, explanatory research is critical to better understand how we can apply this information. For example, while we sampled children's exposure to labels when children were directly engaged with their caregivers, there is still much to understand regarding how children are exposed to and learn from labels during periods of direct engagement with others or in less child-directed settings.

In addition, the potential for short- or long-term causal impacts of caregivers' verbal 603 or nonverbal behaviors for children's language outcomes should be considered within the 604 context of broader socioeconomic and political systems that underlie families' day-to-day 605 experiences (Rowe & Weisleder, 2020). This work examined caregiver behaviors in a 606 lab-based interaction, which may be consistent with caregivers' densest periods of 607 interactions in the home; however, testing children in a lab still differs from the ebb and 608 flow of interactions over the course of a day, when children may engage with multiple 600 individuals (Bergelson et al., 2019; Reynolds, Vernon-Feagans, Bratsch-Hines, Baker, & 610 Investigators, 2019). Our study also included children with typical development from one 611 unique cultural context, primarily Spanish-speaking families raising their children in an 612 English-dominant community in the United States. More work is needed to understand if 613 these links are seen in comparative studies across cultures, languages, and in populations 614 which include neurodiverse children (Bang, Adiao, Marchman, and Feldman (2019); Choi, 615 Shah, Rowe, Nelson, and Tager-Flusberg (2020); Salomo and Liszkowski (2013)]. Across contexts, children and parenting practices may vary widely (Rowe & Weisleder, 2020), likely influencing how frequently children are exposed to labels and gestures during direct engagement with caregivers. There is still much to understand about what processes may 619 be shared, and also what may very well be different pathways that support language 620 acquisition in different populations. 621

22 Conclusion

Spanish-learning children who engage more frequently with their caregivers tend to 623 have stronger language outcomes. Here, we explored one possible explanation of that 624 relation, namely, that caregiver engagement is more supportive of learning because 625 caregivers use a variety of verbal and non-verbal behaviors to help children establish 626 reference to objects and events in the world. Specifically, we investigated how caregivers' 627 use of referential labels and gestures predicted children's later vocabulary skills, rather 628 than focusing on a single form of reference. Contrary to our predictions, our model 629 comparisons revealed that the frequency of caregivers' use of referential labels when communicating with children at 18 months, but less so their frequency of labels and 631 gestures in combination, best predicted growth in children's vocabulary skills at 25 months. Caregivers' overall talkativeness was also associated with children's later processing speed, 633 suggesting that overall experience with language supports skill in real-time language 634 comprehension. However, later vocabulary development was best predicted by models 635 including caregivers' use of labels, more strongly than overall talkativeness, suggesting that 636 it is the use of labels, per se, that provides important cues to vocabulary learning. Taken 637 together, these findings reveal that specific properties of caregiver verbal engagement may 638 support different aspects of language learning, providing important insights into the 630 pathways through which caregiver engagement supports children's learning.

References

- Acredolo, L., & Goodwyn, S. (1988). Symbolic gesturing in normal infants. *Child*
- Development, 59(2), 450-466. https://doi.org/ 10.2307/1130324
- Altınkamış, N. F., Kern, S., & Sofu, H. (2014). When context matters more than
- language: Verb or noun in French and Turkish caregiver speech. First Language, 34(6),
- 646 537–550. https://doi.org/10.1177/0142723714560179
- Bailey, D. H., Duncan, G. J., Watts, T., Clements, D. H., & Sarama, J. (2018). Risky
- business: Correlation and causation in longitudinal studies of skill development. American
- 649 Psychologist, 73(1), 81–94. https://doi.org/10.1037/amp0000146
- Baldwin, D. A. (1993). Infants' ability to consult the speaker for clues to word
- reference. Journal of Child Language, 20(2), 395–418.
- 652 https://doi.org/10.1017/S0305000900008345
- Bang, J. Y., Adiao, A. S., Marchman, V. A., & Feldman, H. M. (2019). Language
- nutrition for language health in children with disorders: A scoping review. *Pediatric*
- 655 Research, 87(2), 300–308. https://doi.org/10.1038/s41390-019-0551-0
- Bates, E., Thal, D., Whitesell, K., Fenson, L., & Oakes, L. (1989). Integrating
- language and gesture in infancy. Developmental Psychology, 25(6), 1004–1019.
- 658 https://doi.org/10.1037/0012-1649.25.6.1004
- Bergelson, E., Amatuni, A., Dailey, S., Koorathota, S., & Tor, S. (2019). Day by day,
- 660 hour by hour: Naturalistic language input to infants. Developmental Science, 22(1),
- 661 e12715. https://doi.org/10.1111/desc.12715
- Bergelson, E., Casillas, M., Soderstrom, M., Seidl, A., Warlaumont, A. S., &
- 663 Amatuni, A. (2019). What do north American babies hear? A large-scale cross-corpus
- analysis. Developmental Science, 22(1), e12724. https://doi.org/10.1111/desc.12724
- Bohn, M., & Frank, M. (2019). The pervasive role of pragmatics in early language.

- 666 Annual Review of Developmental Psychology, 1, 223–249.
- 667 https://doi.org/10.1146/annurev-devpsych-121318-%20085037
- Bunce, J., Soderstrom, M., Bergelson, E., Rosemberg, C., Stein, A., Alam, F., ...
- 669 Casillas, M. (2020). A cross-cultural examination of young children's everyday language
- experiences. https://doi.org/10.31234/osf.io/723pr
- Bürkner, P. (2017). Brms: An R package for Bayesian Multilevel Models using Stan.
- Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss
- Cartmill, E. A., Armstrong, B. F., Gleitman, L. R., Goldin-Meadow, S., Medina, T.
- N., & Trueswell, J. C. (2013). Quality of early parent input predicts child vocabulary 3
- years later. Proceedings of the National Academy of Sciences, 110(28), 11278–11283.
- 676 https://doi.org/10.1073/pnas.1309518110
- Casillas, M., Brown, P., & Levinson, S. C. (2019). Early language experience in a
- Tseltal Mayan village. Child Development, 91(5), 1819–1835.
- 679 https://doi.org/10.1111/cdev.13349
- 680 Casillas, M., Brown, P., & Levinson, S. C. (2021). Early language experience in a
- Papuan community. Journal of Child Language, 48(4), 792–814.
- 682 https://doi.org/10.1017/S0305000920000549
- Choi, B., Shah, P., Rowe, M. L., Nelson, C. A., & Tager-Flusberg, H. (2020). Gesture
- development, caregiver responsiveness, and language and diagnostic outcomes in infants at
- high and low risk for Autism. Journal of Autism and Developmental Disorders, 50(7),
- 686 2556–2572. https://doi.org/10.1007/s10803-019-03980-8
- Choi, S. (2000). Caregiver input in English and Korean: Use of nouns and verbs in
- book-reading and toy-play contexts. Journal of Child Language, 27(1), 69–96.
- 689 https://doi.org/10.1017/S0305000999004018
- Colonnesi, C., Stams, G. J. J. M., Koster, I., & Noom, M. J. (2010). The relation

```
between pointing and language development: A meta-analysis. Developmental Review,
691
   30(4), 352–366. https://doi.org/10.1016/j.dr.2010.10.001
692
         Daneri, M. P., Blair, C., & Kuhn, L. J. (2018). Maternal language and child
693
   vocabulary mediate relations between socioeconomic status and executive function during
694
   early childhood. Child Development, 90(6), 1-18. https://doi.org/10.1111/cdev.13065
695
         Donnellan, E., Bannard, C., McGillion, M. L., Slocombe, K. E., & Matthews, D.
696
   (2020). Infants' intentionally communicative vocalizations elicit responses from caregivers
697
   and are the best predictors of the transition to language: A longitudinal investigation of
698
   infants' vocalizations, gestures and word production. Developmental Science, 23(1),
   e12843. https://doi.org/10.1111/desc.12843
         Fenson, L., Marchman, V. A., Thal, D. J., Dale, P. S., Reznick, J. S., & Bates, E.
701
   (2007). MacArthur-Bates Communicative Development Inventories: User's guide and
702
   technical manual (2nd editio). Baltimore: Paul H. Brookes.
703
         Fernald, A., Perfors, A., & Marchman, V. A. (2006). Picking up speed in
704
   understanding: Speech processing efficiency and vocabulary growth across the 2nd year.
705
    Developmental Psychology, 42(1), 98–116. https://doi.org/10.1037/0012-1649.42.1.98
706
         Fernald, A., Zangl, R., Portillo, A. L., & Marchman, V. (2008). Looking while
707
   listening: Using eye movements to monitor spoken language comprehension by infants and
708
   young children. In Developmental Psycholinquistics: Online methods in children's language
700
   processing (I. A. Sekerina, E. M. Fernández, & H. Clahsen (Eds.), Vol. 44, pp. 97–135).
710
   Amsterdam, The Netherlands: John Benjamins.
711
         Gilkerson, J., Richards, J. A., Warren, S. F., Montgomery, J. K., Greenwood, C. R.,
712
   Kimbrough Oller, D., ... Paul, T. D. (2017). Mapping the early language environment
713
   using all-day recordings and automated analysis. American Journal of Speech-Language
   Pathology, 26(2), 248–265. https://doi.org/10.1044/2016 AJSLP-15-0169
```

Gilkerson, J., Richards, J. A., Warren, S. F., Oller, D. K., Russo, R., & Vohr, B.

716

- (2018). Language experience in the second year of life and language outcomes in late childhood. *Pediatrics*, 142(4), e20174276. https://doi.org/10.1542/peds.2017-4276
- Gogate, L. J., Bahrick, L. E., & Watson, J. D. (2000). A study of multimodal
- motherese: The role of temporal synchrony between verbal labels and gestures. Child
- Development, 71(4), 878-894. https://doi.org/10.1111/1467-8624.00197
- Hart, B., & Risley, T. (1995). Meaningful differences in the everyday experience of young American children. Paul H Brookes Publishing.
- Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status
- affects early vocabulary development via maternal speech. Child Development, 74(5),
- 1368–1378. https://doi.org/10.1111/1467-8624.00612
- Hurtado, N., Marchman, V. A., & Fernald, A. (2008). Does input influence uptake?
- Links between maternal talk, processing speed and vocabulary size in Spanish-learning
- children. Developmental Science, 11(6), 31–39.
- 730 https://doi.org/10.1111/j.1467-7687.2008.00768.x
- Huttenlocher, J., Haight, W., Bryk, A., Seltzer, M., & Lyons, T. (1991). Early
- vocabulary growth: Relation to language input and gender. Developmental Psychology,
- 27(2), 236-248. https://doi.org/10.1037/0012-1649.27.2.236
- Huttenlocher, J., Waterfall, H., Vasilyeva, M., Vevea, J., & Hedges, L. V. (2010).
- Sources of variability in children's language growth. Cognitive Psychology, 61(4), 343–365.
- 736 https://doi.org/10.1016/j.cogpsych.2010.08.002
- Iverson, J., M., Capirci, O., Longobardi, E., & Caselli, M. C. (1999). Gesturing in
- mother-child interactions. Cognitive Development, 14(1), 57–75.
- 739 https://doi.org/10.1016/S0885-2014(99)80018-5
- Jackson-Maldonado, D., Thal, D., J., & Fenson, L. (2003). MacArthur Inventarios
- 741 del Desarrollo de Habilidades Comunicativas: User's guide and technical manual. Brookes

- 742 Publishing.
- Kalagher, H., & Yu, C. (2006). The effects of deictic pointing in word learning. In
- Proceedings of the 5th International Conference of Development and Learning.
- 745 Bloomington, IN.
- Kirk, E., Donnelly, S., Furman, R., Warmington, M., Glanville, J., & Eggleston, A.
- 747 (2022). The relationship between infant pointing and language development: A
- meta-analytic review. Developmental Review, 64, 101023.
- 749 https://doi.org/10.1016/j.dr.2022.101023
- Mahr, T., & Edwards, J. (2018). Using language input and lexical processing to
- predict vocabulary size. Developmental Science, 21(6), e12685.
- 752 https://doi.org/10.1111/desc.12685
- Marchman, V. A., Weisleder, A., Hurtado, N., & Fernald, A. (2021). Accuracy of the
- Language Environment Analyses (LENA) system for estimating child and adult speech in
- laboratory settings. Journal of Child Language, 48(3), 605–620.
- 756 https://doi.org/10.1017/S0305000920000380
- Matthews, D., Behne, T., Lieven, E., & Tomasello, M. (2012). Origins of the human
- pointing gesture: A training study. Developmental Science, 15(6), 817–829.
- 759 https://doi.org/10.1111/j.1467-7687.2012.01181.x
- McElreath, R. (2020). Statistical rethinking: A bayesian course with examples in r
- 761 and stan. Chapman; Hall/CRC.
- McGillion, M., Pine, J. M., Herbert, J. S., & Matthews, D. (2017). A randomised
- controlled trial to test the effect of promoting caregiver contingent talk on language
- development in infants from diverse socioeconomic status backgrounds. Journal of Child
- Psychology and Psychiatry and Allied Disciplines, 58(10), 1122–1131.
- 766 https://doi.org/10.1111/jcpp.12725

- McMurray, B., Horst, J. S., & Samuelson, L. K. (2012). Word learning emerges from
 the interaction of online referent selection and slow associative learning. *Psychological*Review, 119(4), 831–877. https://doi.org/10.1037/a0029872
- Pace, A., Luo, R., Hirsh-Pasek, K., & Golinkoff, R. M. (2017). Identifying pathways between socioeconomic status and language development. *Annual Review of Linguistics*, 3, 285–308. https://doi.org/10.1146/annurev-linguistics-011516-034226
- Pan, B. A., Rowe, M. L., Singer, J. D., & Snow, C. E. (2005). Maternal correlates of growth in toddler vocabulary production in low-income families. *Child Development*, 76 (4), 763–782. https://doi.org/10.1111/j.1467-8624.2005.00876.x
- Puccini, D., Hassemer, M., Salomo, D., & Liszkowski, U. (2010). The type of shared activity shapes caregiver and infant communication. *Gesture*, 10(2-3), 279–296.

 https://doi.org/10.1075/gest.10.2-3.08puc
- Reynolds, E., Vernon-Feagans, L., Bratsch-Hines, M., Baker, C., & Investigators, T. F. L. P. K. (2019). Mothers' and fathers' language input from 6 to 36 months in rural two-parent-families: Relations to children's kindergarten achievement. *Early Childhood Research Quarterly*, 47(2), 385–395. https://doi.org/10.1016/j.ecresq.2018.09.002
- Rosemberg, C. R., Alam, F., Audisio, C. P., Ramirez, M. L., Garber, L., & Migdalek,
 M. J. (2020). Nouns and verbs in the linguistic environment of Argentinian toddlers:
 Socioeconomic and context-related differences. First Language, 40(2), 192–217.
 https://doi.org/10.1177/0142723719901226
- Rowe, M. L. (2000). Pointing and talk by low-income mothers and their 14-month-old children. First Language, 20(60), 305–330. https://doi.org/10.1177/014272370002006005
- Rowe, M. L. (2012). A longitudinal investigation of the role of quantity and quality of child-directed speech in vocabulary development: Child-directed speech and vocabulary.

 Child Development, 83(5), 1762–1774. https://doi.org/10.1111/j.1467-8624.2012.01805.x

- Rowe, M. L., & Goldin-Meadow, S. (2009). Differences in early gesture explain SES
- disparities in child vocabulary size at school entry. Science, 323(5916), 951–953.
- 794 https://doi.org/10.1126/science.1167025
- Rowe, M. L., & Leech, K. A. (2019). A parent intervention with a growth mindset
- approach improves children's early gesture and vocabulary development. Developmental
- 797 Science, 22(4), e12792. https://doi.org/10.1111/desc.12792
- Rowe, M. L., Özçalışkan, Ş., & Goldin-Meadow, S. (2008). Learning words by hand:
- Gesture's role in predicting vocabulary development. First Language, 28(2), 182–199.
- 800 https://doi.org/10.1177/0142723707088310
- Rowe, M. L., Wei, R., & Salo, V. C. (2022). Early gesture predicts later language
- development. In A. Morgenstern & S. Goldin-Meadow (Eds.), Gesture in language:
- Development across the lifespan (A. Morgenstern & S. Goldin-Meadow (Eds.), pp. 93–111).
- 804 Boston: De Gruyter Mouton. https://doi.org/10.1037/0000269-004
- Rowe, M. L., & Weisleder, A. (2020). Language development in context, 2, 201–223.
- 806 https://doi.org/10.1146/annurev-devpsych-042220-121816
- Salo, V. C., Reeb-Sutherland, B., Frenkel, T. I., Bowman, L. C., & Rowe, M. L.
- 808 (2019). Does intention matter? Relations between parent pointing, infant pointing, and
- developing language ability. Journal of Cognition and Development, 20(5), 635–655.
- 810 https://doi.org/10.1080/15248372.2019.1648266
- Salomo, D., & Liszkowski, U. (2013). Sociocultural settings influence the emergence
- of prelinguistic deictic gestures. Child Development, 84(4), 1296–1307.
- 813 https://doi.org/10.1111/cdev.12026
- Shneidman, L. A., & Goldin-Meadow, S. (2012). Language input and acquisition in a
- Mayan village: How important is directed speech? Developmental Science, 15(5), 659–673.
- https://doi.org/10.1111/j.1467-7687.2012.01168.x

```
Suskind, D. L., Leffel, K. R., Graf, E., Hernandez, M. W., Gunderson, E. A.,
817
   Sapolich, S. G., ... Levine, S. C. (2016). A parent-directed language intervention for
818
   children of low socioeconomic status: A randomized controlled pilot study. Journal of
819
    Child Language, 43(2), 366-406. https://doi.org/10.1017/S0305000915000033
820
         Tardif, T., Shatz, M., & Naigles, L. (1997). Caregiver speech and children's use of
821
   nouns versus verbs: A comparison of English, Italian, and Mandarin. Journal of Child
822
   Language, 24, 535-565. https://doi.org/10.1017/S030500099700319X
823
         Team, R. C. (2021). R: A language and environment for statistical computing.
824
   Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
   https://www.R-project.org/
         Tfouni, L. V., & Klatzky, R. L. (1983). A discourse analysis of deixis: Pragmatic,
827
   cognitive and semantic factors in the comprehension of "this", "that", "here" and "there".
828
    Journal of Child Language, 10(1), 123–133. https://doi.org/10.1017/S030500090005183
820
         Tincoff, R., Seidl, A., Buckley, L., Wojcik, C., & Cristia, A. (2019). Feeling the way
830
   to words: Parents' speech and touch cues highlight word-to-world mappings of body parts.
831
   Language Learning and Development, 15(2), 103–125.
832
   https://doi.org/10.1080/15475441.2018.1533472
833
         Villiers Rader, N. de, & Zukow-Goldring, P. (2012). Caregivers' gestures direct infant
834
   attention during early word learning: The importance of dynamic synchrony. Language
835
   Sciences, 34(5), 559–568. https://doi.org/10.1016/j.langsci.2012.03.011
836
         Walker, D., Greenwood, C., Hart, B., & Carta, J. (1994). Prediction of school
837
   outcomes based on early language production and socioeconomic factors. Child
   Development, 65(2), 606-621. Retrieved from
839
   https://doi.org/10.1111/j.1467-8624.1994.tb00771.x
```

Weber, A., Fernald, A., & Diop, Y. (2017). When cultural norms discourage talking to babies: Effectiveness of a parenting program in rural senegal. *Child Development*, 88(5),

- $_{843}$ 1513–1526. https://doi.org/10.1111/cdev.12882
- Weisleder, A., & Fernald, A. (2013). Talking to children matters: Early language
- experience strengthens processing and builds vocabulary. Psychological Science, 24 (11),
- 846 2143–2152. https://doi.org/10.3399/096016407782317928
- Wittenburg, P., Brugman, H., Russel, A., Klassman, A., & Sloetjes, H. (2006).
- ELAN: A professional framework for multimodality research. Proceedings of LREC 2006,
- Fifth International Conference on Language Resources and Evaluation. Retrieved from
- 850 https://archive.mpi.nl/tla/elan
- Yuksel, P., & Brooks, P. J. (2017). Encouraging usage of an endangered ancestral
- language: A supportive role for caregivers' deictic gestures. First Language, 37(6),
- 853 561–582. https://doi.org/10.1177/0142723717713502
- Zukow-Goldring, P. (1996). Sensitive caregiving fosters the comprehension of speech:
- When gestures speak louder than words. Early Development and Parenting: An
- International Journal of Research and Practice, 5(4), 195–211.
- https://doi.org/10.1002/(SICI)1099-0917(199612)5:4%3C195::AID-EDP133%3E3.0.CO;2-H

Table 1

Participant age and SES.

	M	SD	Range	
Age (pre-test)	18.54	0.84	17.1 - 19.8	
Age (post-test)	25.46	0.68	24.2 - 26.8	
SES (pre-test)	26.44	11.82	8 - 62	

Note. SES was calculated based on the Hollingshead Index (possible range 8 - 66).

Table 2

WAIC scores and weights for models predicting language processing speed.

Model	waic	se_waic	weight
Labels	554.55	9.99	0.23
Adult words per hour	555.04	10.05	0.18
Baseline (covariates only)	555.23	10.22	0.16
Labels + gestures	555.90	9.96	0.12
Label-gestures overlap	556.72	9.98	0.08
Gestures	557.01	9.94	0.07
Labels * gestures	557.17	9.82	0.06

Table 3 $W\!AIC\ scores\ and\ weights\ for\ models\ predicting$ $vocabulary\ size.$

Model	waic	se_waic	weight
Labels	480.08	7.61	0.38
Labels + gestures	482.46	7.69	0.12
Adult words per hour	482.55	5.96	0.11
Label-gestures overlap	482.99	6.68	0.09
Labels * gestures	484.81	7.62	0.04
Gestures	486.45	6.57	0.02
Baseline (covariates only)	486.62	6.98	0.01

Figure 1. Examples from three caregivers chosen to illustrate the variability in frequency and duration of label and gesture use. Ticks represent each instance and the size depicts the duration. For the sample, Caregiver 1 provided an average number of labels and gestures, Caregiver 2 provided an above average number of labels and a below average number of gestures, and Caregiver 3 provided an above average number of labels and gestures.

Figure 2. A) Descriptive distribution of independent variables with mean and 95% CI (in red), B) Zero-order correlations between dependent variables and input variables. Circle size and color intensity increase with the absolute magnitude of correlation.

Figure 3. Left: Posterior distributions for model estimates, right: model predictions. On the left, the green area denotes the section of the distribution that is supportive (i.e. faster reaction time and larger vocabulary). Points below each distribution show means, and error bars show 80% (thick) and 95% (thin) CrIs. A-i shows the posterior distribution of all model estimates in the labels model for reaction time. B-i shows the same in the model predicting vocabulary size. On the right, A-ii and B-ii contrast the observed (black) values with the values predicted by the model (red) for reaction time (A) and for vocabulary size (B).

Figure 4. Comparing estimates for labels and gestures across models. Points show means of the posterior distribution (95% CrIs) for the estimates. Estimates were extracted from all models that included one or both of the predictors.