Slope of a Line

Jonathan R. Bacolod

Sauyo High School

What is Slope?

Slope is the steepness of a line

How to Find the Slope?

Case 1: If two points on the line are given

The slope m of the line passing through two points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is given by

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
, where $x_1 \neq x_2$.

Case 1: If two points on the line are given

Case 1: If two points on the line are given

Case 1: If two points on the line are given

Case 1: If two points on the line are given

Let (-3, -4) be (x_1, y_1) and (4, 2) be (x_2, y_2) .

Let
$$(-3, -4)$$
 be (x_1, y_1) and $(4, 2)$ be (x_2, y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

Let
$$(-3, -4)$$
 be (x_1, y_1) and $(4, 2)$ be (x_2, y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m =$$

Let
$$(-3, -4)$$
 be (x_1, y_1) and $(4, 2)$ be (x_2, y_2) .
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{2}{2}$$

Let
$$(-3, -4)$$
 be (x_1, y_1) and $(4, 2)$ be (x_2, y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = 2 -$$

Let
$$(-3, -4)$$
 be (x_1, y_1) and $(4, 2)$ be (x_2, y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = \frac{2 - (-4)}{}$$

Let
$$(-3, -4)$$
 be (x_1, y_1) and $(4, 2)$ be (x_2, y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m=\frac{2-(-4)}{4}$$

Let
$$(-3, -4)$$
 be (x_1, y_1) and $(4, 2)$ be (x_2, y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = \frac{2 - (-4)}{4 - }$$

Let
$$(-3, -4)$$
 be (x_1, y_1) and $(4, 2)$ be (x_2, y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = \frac{2 - (-4)}{4 - (-3)}$$

Let
$$(-3, -4)$$
 be (x_1, y_1) and $(4, 2)$ be (x_2, y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = \frac{2 - (-4)}{4 - (-3)}$$

$$m = \frac{6}{100}$$

Let
$$(-3, -4)$$
 be (x_1, y_1) and $(4, 2)$ be (x_2, y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = \frac{2 - (-4)}{4 - (-3)}$$

$$m=\frac{6}{7}$$

Let
$$(-3, -4)$$
 be (x_1, y_1) and $(4, 2)$ be (x_2, y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = \frac{2 - (-4)}{4 - (-3)}$$

$$m=\frac{6}{7}$$

$$\therefore$$
 the slope is $\frac{6}{7}$

Case 1: If two points on the line are given

Case 1: If two points on the line are given

Case 1: If two points on the line are given

Case 1: If two points on the line are given

Case 1: If two points on the line are given

Let (-5,4) be (x_1,y_1) and (4,-2) be (x_2,y_2) .

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m =$$

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = -2 -$$

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = \frac{-2-4}{}$$

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = \frac{-2-4}{4}$$

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = \frac{-2-4}{4-}$$

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = \frac{-2 - 4}{4 - (-5)}$$

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = \frac{-2 - 4}{4 - (-5)}$$

$$m = \frac{-6}{-}$$

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m=\frac{y_2-y_1}{x_2-x_1}$$

$$m = \frac{-2 - 4}{4 - (-5)}$$

$$m=\frac{-6}{9}$$

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{-2 - 4}{4 - (-5)}$$

$$m=\frac{-6}{9}=\frac{-2}{}$$

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{-2 - 4}{4 - (-5)}$$

$$m = \frac{-6}{9} = \frac{-2}{3}$$

Case 1: If two points on the line are given

Let
$$(-5,4)$$
 be (x_1,y_1) and $(4,-2)$ be (x_2,y_2) .

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{-2 - 4}{4 - (-5)}$$

$$m = \frac{-6}{9} = \frac{-2}{3}$$

$$\therefore$$
 the slope is $-\frac{2}{3}$

Case 2: If the equation is given

If the linear equation is written in the form y = mx + b, m is the slope, that is, the slope is always the numerical coefficient of x.

Case 2: If the equation is given

Case 2: If the equation is given

1.
$$y = -3x - 1$$

Case 2: If the equation is given

1.
$$y = -3x - 1$$
 $m = -3$

Case 2: If the equation is given

1.
$$y = -3x - 1$$
 $m = -3$

2.
$$y = 2x$$

Case 2: If the equation is given

1.
$$y = -3x - 1$$
 $m = -3$

2.
$$y = 2x$$
 $m = 2$

Case 2: If the equation is given

1.
$$y = -3x - 1$$
 $m = -3$

2.
$$y = 2x$$
 $m = 2$

3.
$$y = -\frac{3}{4}x + 5$$

Case 2: If the equation is given

1.
$$y = -3x - 1$$
 $m = -3$

2.
$$y = 2x$$
 $m = 2$

3.
$$y = -\frac{3}{4}x + 5$$
 $m = \frac{-3}{4}$

Case 2: If the equation is given

1.
$$y = -3x - 1$$
 $m = -3$

2.
$$y = 2x$$
 $m = 2$

3.
$$y = -\frac{3}{4}x + 5$$
 $m = \frac{-3}{4}$

4.
$$2x + y = 4$$

Case 2: If the equation is given

1.
$$y = -3x - 1$$
 $m = -3$

2.
$$y = 2x$$
 $m = 2$

3.
$$y = -\frac{3}{4}x + 5$$
 $m = \frac{-3}{4}$

4.
$$2x + y = 4$$

 $y = -2x + 4$

Case 2: If the equation is given

1.
$$y = -3x - 1$$
 $m = -3$

2.
$$y = 2x$$
 $m = 2$

3.
$$y = -\frac{3}{4}x + 5$$
 $m = \frac{-3}{4}$

4.
$$2x + y = 4$$

 $y = -2x + 4$
 $m = -2$

$$slope = m = \frac{rise}{run} = \frac{vertical\ change}{horizontal\ change}$$

Case 3: If the graph is given

$$m = \frac{\text{rise}}{\text{run}}$$

$$m = \frac{\text{rise}}{\text{run}}$$

$$m = \frac{6}{}$$

$$m = \frac{\text{rise}}{\text{run}}$$

$$m=\frac{6}{7}$$

Case 3: If the graph is given

$$m = \frac{\text{rise}}{\text{run}}$$

$$m=\frac{6}{7}$$

 \therefore the slope is $\frac{6}{7}$

Case 3: If the graph is given

$$m = \frac{\text{rise}}{\text{run}}$$

$$m = \frac{\text{rise}}{\text{run}}$$

$$m = \frac{-6}{-}$$

$$m = rac{ ext{rise}}{ ext{run}}$$

$$m = \frac{-6}{9}$$

$$m=\frac{\text{rise}}{\text{run}}$$

$$m = \frac{-6}{9}$$

$$m = \frac{-2}{}$$

$$m = \frac{\text{rise}}{\text{run}}$$

$$m = \frac{-6}{9}$$

$$m=\frac{-2}{3}$$

$$m = \frac{\text{rise}}{\text{run}}$$

$$m=\frac{-6}{9}$$

$$m = \frac{-2}{3}$$

$$\therefore$$
 the slope is $-\frac{2}{3}$

1. If the line slants upward to the right, the slope is positive.

- 1. If the line slants upward to the right, the slope is positive.
- 2. If the line slants downward to the right, the slope is negative.

- 1. If the line slants upward to the right, the slope is positive.
- 2. If the line slants downward to the right, the slope is negative.
- 3. If the line is parallel to the x-axis (horizontal line), the slope is zero.

- 1. If the line slants upward to the right, the slope is positive.
- 2. If the line slants downward to the right, the slope is negative.
- 3. If the line is parallel to the x-axis (horizontal line), the slope is zero.
- If the line is parallel to the y-axis (vertical line), there is no slope. Vertical lines have undefined slope.

Thank you for watching.