

Spectral Processing of Signals

Per Mattsson

Systems and Control
Department of Information Technology
Uppsala University

2019-09-03

► Education program? (F, E, master, etc)

- ► Education program? (F, E, master, etc)
- Course background? (Automatic control, Signal processing, System identification)

- ► Education program? (F, E, master, etc)
- Course background? (Automatic control, Signal processing, System identification)
- ► Comfortable in the frequency domain?

- ► Education program? (F, E, master, etc)
- Course background? (Automatic control, Signal processing, System identification)
- Comfortable in the frequency domain?
- ► Familiar with the concept of a (power) spectrum?

- Education program? (F, E, master, etc)
- Course background? (Automatic control, Signal processing, System identification)
- Comfortable in the frequency domain?
- Familiar with the concept of a (power) spectrum?

Basic courses to remember

Transform Methods (Fourier), Linear Algebra, Probability Theory/Statistics, Signals and Systems, Scientific Computing

Motivation

Visible light analogy

- ► Splitting (white) light into (all) the colors of the rainbow
- ► Splitting a signal into its spectral components, and quantifying them

Spectral Estimation

Informal definition

From a finite record of a stationary data sequence (signal), estimate how the total signal power is distributed over frequency, or more practically, over a set of narrow frequency intervals (bins).

Spectral Estimation

Informal definition

From a finite record of a stationary data sequence (signal), estimate how the total signal power is distributed over frequency, or more practically, over a set of narrow frequency intervals (bins).

► Assumption: signal properties (spectral content) ≈ constant

Spectral Estimation

Informal definition

From a finite record of a stationary data sequence (signal), estimate how the total signal power is distributed over frequency, or more practically, over a set of narrow frequency intervals (bins).

- ► Assumption: signal properties (spectral content) ≈ constant
- Question: Which frequencies contribute to the total signal?

Example: Power consumption (1)

What periodicities do you expect?

Example: Power consumption (2)

Example: Power consumption (3)

Clear vs. hidden periodicities

Applications

- Hidden periodicity finding: ecology, astronomy, climate/weather, seismology, econometrics, etc.
- Speech processing/coding and audio devices
- Medical diagnosis (EEG, ECG, MRI)
- Automatic control
- Vibration monitoring and fault detection
- Radar, Sonar
- Digital communications

The Course

Course structure

- ▶ 10 lectures
- 2 Exercise/discussion sessions
- 4 Homeworks, 4hp (graded)
- ▶ 4 Computer labs, 1hp (mandatory)

Computer-based course

It can be helpful to have a computer at hand when studying this course, since we will focus on using methods for spectral analysis, on data.

Field of applied mathematics

Signal processing, and in turn, spectral analysis, is based on mathematical results and algorithms. So we will need some math to understand the methods.

Course content

Content	To read
The spectral estimation problem.	1.1 – 1.5
The periodogram and Correlogram methods	2.1 - 2.4
Improved periodogram-based methods	2.5 - 2.7.2
Parametric methods for rational spectra	3.1 - 3.4, 3.7
Line spectra, NLS and rational methods for	4.1 - 4.4
Subspace methods for line spectra	4.5 - 4.8
Order selection	C.1 - C.8
Filter-bank methods	5.1 - 5.5
Summary and repetition (buffer)	
Applications (guest lectures)	
	The spectral estimation problem. The periodogram and Correlogram methods Improved periodogram-based methods Parametric methods for rational spectra Line spectra, NLS and rational methods for Subspace methods for line spectra Order selection Filter-bank methods Summary and repetition (buffer)

Prepare by looking in the book **before** the lectures! Appendix A is good for shaping up your linear algebra.

11/25 per.mattsson@it.uu.se Systems & Control, IT, UU

Homeworks

Discuss in pairs, hand in individual reports in studentportalen.

- HW 1 Periodogram Methods, C2.22: Refined Methods: Variance–Resolution Tradeoff. Deadline: 2019-09-17 23:59
- HW 2 Rational Parametric Methods, C3.20: AR and ARMA Estimators applied to Measured Data. Deadline: 2019-09-29 23:59
- **HW 3** Rational Parametric Methods for Line Spectra, C3.18: AR and ARMA Estimators for Line Spectral Estimation. Deadline: 2019-10-13 23:59
- HW 4 Parametric Methods for Line Spectra, C4.14:

 Line Spectral methods applied to Measured Data.

 Deadline: 2019-11-03 23:59

Start as soon as you can!

Computer labs

Mandatory! Oral presentation in the lab. (See schedule)

- **CL 1** Periodogram Methods, C2.19 and C2.20:

 Zero Padding Effects on Periodogram Estimators and

 Resolution and Leakage Properties of the Periodogram.
- **CL 2** Parametric Methods for Rational Spectra, C3.17: Comparison of AR, ARMA and Periodogram Methods for ARMA Signals.
- **CL 3** Parametric Methods for Line Spectra, C4.12: Resolution Properties of Subspace Methods for Estimation of Line Spectra.
- **CL 4** Filter Bank Methods, C5.13: *The Capon Method*.

► Continuous/discrete (sampled) signals:

$$y(t) = y_c(tT_s), \quad t = 0, 1, 2, \dots$$

► Continuous/discrete (sampled) signals:

$$y(t) = y_c(tT_s), \quad t = 0, 1, 2, \dots$$

▶ Sampling interval/frequency: $T_s = \frac{1}{f_s}$.

Continuous/discrete (sampled) signals:

$$y(t) = y_c(tT_s), \quad t = 0, 1, 2, \dots$$

- ► Sampling interval/frequency: $T_s = \frac{1}{f_s}$.
- Normalized frequency: $\omega = 2\pi \frac{f}{f_s}$ [rad/sampling interval]

Continuous/discrete (sampled) signals:

$$y(t) = y_c(tT_s), \quad t = 0, 1, 2, \dots$$

- ▶ Sampling interval/frequency: $T_s = \frac{1}{f_s}$.
- Normalized frequency: $\omega = 2\pi \frac{f}{f_s}$ [rad/sampling interval]
- ► Complex exponentials: $e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)$

Continuous/discrete (sampled) signals:

$$y(t) = y_c(tT_s), \quad t = 0, 1, 2, \dots$$

- ► Sampling interval/frequency: $T_s = \frac{1}{f_s}$.
- Normalized frequency: $\omega = 2\pi \frac{f}{f_0}$ [rad/sampling interval]
- ► Complex exponentials: $e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)$
- ▶ DTFT Frequency domain

$$Y(\omega) = \sum_{t=-\infty}^{\infty} y(t)e^{-i\omega t}$$

Continuous/discrete (sampled) signals:

$$y(t) = y_c(tT_s), \quad t = 0, 1, 2, \dots$$

- ► Sampling interval/frequency: $T_s = \frac{1}{f_s}$.
- Normalized frequency: $\omega = 2\pi \frac{f}{f_0}$ [rad/sampling interval]
- ► Complex exponentials: $e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)$
- ▶ DTFT Frequency domain

$$Y(\omega) = \sum_{t=-\infty}^{\infty} y(t)e^{-i\omega t}$$

Parseval's theorem (Energy preservation)

$$\sum_{t=-\infty}^{\infty} |y(t)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |Y(\omega)|^2 d\omega$$

Deterministic signals (not too interesting in practice)

Deterministic signals (not too interesting in practice)

 $\qquad \qquad \textbf{Finite energy:} \quad \sum^{\infty} \ |y(t)|^2 < \infty$

Deterministic signals (not too interesting in practice)

- Finite energy: $\sum_{t=0}^{\infty} |y(t)|^2 < \infty$
- ► Spectrum Energy spectral density (ESD)

$$S(\omega) = |Y(\omega)|^2$$

Deterministic signals (not too interesting in practice)

- Finite energy: $\sum_{t=0}^{\infty} |y(t)|^2 < \infty$
- ► Spectrum Energy spectral density (ESD)

$$S(\omega) = |Y(\omega)|^2$$

lacktriangle Autocorrelation sequence: $ho(k) = \sum_{k=0}^{\infty} y(t)y^{k}(t-k)$

Deterministic signals (not too interesting in practice)

- Finite energy: $\sum_{t=0}^{\infty} |y(t)|^2 < \infty$
- ► Spectrum Energy spectral density (ESD)

$$S(\omega) = |Y(\omega)|^2$$

- ▶ Autocorrelation sequence: $\rho(k) = \sum_{k=0}^{\infty} y(t)y^{*}(t-k)$
- ▶ DTFT of the autocorrelation also gives the ESD

$$S(\omega) = \sum_{k=-\infty}^{\infty} \rho(k)e^{-i\omega k}$$

Stochastic signals (e.g. noisy measurements)

Stochastic signals (e.g. noisy measurements)

► Assume wide-sense stationary (or 2nd order stationary):

Stochastic signals (e.g. noisy measurements)

- ► Assume wide-sense stationary (or 2nd order stationary):
 - $ightharpoonup E\{y(t)\} = 0, \ \forall t \ (can always remove a const. mean)$

Stochastic signals (e.g. noisy measurements)

- ► Assume wide-sense stationary (or 2nd order stationary):
 - $ightharpoonup E\{y(t)\} = 0, \ \forall t \ (can always remove a const. mean)$
 - Finite average power: $E\{|y(t)|^2\} < \infty$

Stochastic signals (e.g. noisy measurements)

- ► Assume wide-sense stationary (or 2nd order stationary):
 - $ightharpoonup E\{y(t)\}=0, \ \forall t \ (can always remove a const. mean)$
 - Finite average power: $E\{|y(t)|^2\} < \infty$
- ► Spectrum Power spectral density (PSD)

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\}$$

Stochastic signals (e.g. noisy measurements)

- ► Assume wide-sense stationary (or 2nd order stationary):
 - $ightharpoonup E\{y(t)\}=0, \ \forall t \ (can always remove a const. mean)$
 - Finite average power: $E\{|y(t)|^2\} < \infty$
- ► Spectrum Power spectral density (PSD)

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\}$$

► Autocovariance sequence (ACS):

$$r(k) = E\{y(t)y^*(t-k)\}$$

Stochastic signals (e.g. noisy measurements)

- ► Assume wide-sense stationary (or 2nd order stationary):
 - $ightharpoonup E\{y(t)\}=0, \ \forall t \ (can always remove a const. mean)$
 - Finite average power: $E\{|y(t)|^2\} < \infty$
- ► Spectrum Power spectral density (PSD)

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\}$$

► Autocovariance sequence (ACS):

$$r(k) = E\{y(t)y^*(t-k)\}$$

 \blacktriangleright y(t) assumed stationary $\Longrightarrow r(k)$ does not depend on t.

Stochastic signals (e.g. noisy measurements)

- ► Assume wide-sense stationary (or 2nd order stationary):
 - ▶ $E{y(t)} = 0$, $\forall t$ (can always remove a const. mean)
 - Finite average power: $E\{|y(t)|^2\} < \infty$
- Spectrum Power spectral density (PSD)

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\}$$

► Autocovariance sequence (ACS):

$$r(k) = E\{y(t)y^*(t-k)\}$$

- \blacktriangleright y(t) assumed stationary $\Longrightarrow r(k)$ does not depend on t.
- ▶ DTFT of the ACS also gives the PSD

$$\phi(\omega) = \sum_{k=-\infty}^{\infty} r(k)e^{-i\omega k}$$

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\} = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\} = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

Periodic: $\phi(\overline{\omega}) = \phi(\omega + 2\pi)$, so can focus on $\omega \in [-\pi, \pi]$.

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\} = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

- Periodic: $\phi(\omega) = \phi(\omega + 2\pi)$, so can focus on $\omega \in [-\pi, \pi]$.
- ▶ Non-negative: $\phi(\omega) \ge 0$.

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\} = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

- ▶ Periodic: $\phi(\omega) = \phi(\omega + 2\pi)$, so can focus on $\omega \in [-\pi, \pi]$.
- Non-negative: $\phi(\omega) \geq 0$.

$$r(k) = E\{y(t)y^*(t-k)\}\$$

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\} = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

- ▶ Periodic: $\phi(\omega) = \phi(\omega + 2\pi)$, so can focus on $\omega \in [-\pi, \pi]$.
- Non-negative: $\phi(\omega) \geq 0$.

$$r(k) = E\{y(t)y^*(t-k)\}\$$

 $ightharpoonup r(k) = r^*(-k)$, and $r(0) \ge |r(k)|$ for all k.

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\} = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

- ▶ Periodic: $\phi(\omega) = \phi(\omega + 2\pi)$, so can focus on $\omega \in [-\pi, \pi]$.
- Non-negative: $\phi(\omega) \geq 0$.

$$r(k) = E\{y(t)y^*(t-k)\}\$$

- $ightharpoonup r(k) = r^*(-k)$, and $r(0) \ge |r(k)|$ for all k.
- ► Inverse DTFT: $r(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) e^{i\omega k} d\omega$.

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\} = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

- Periodic: $\phi(\omega) = \phi(\omega + 2\pi)$, so can focus on $\omega \in [-\pi, \pi]$.
- Non-negative: $\phi(\omega) \geq 0$.

$$r(k) = E\{y(t)y^*(t-k)\}\$$

- $ightharpoonup r(k) = r^*(-k)$, and $r(0) \ge |r(k)|$ for all k.
- ► Inverse DTFT: $r(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) e^{i\omega k} d\omega$.
- ► Interpretation:

$$r(0) =$$

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\} = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

- ▶ Periodic: $\phi(\omega) = \phi(\omega + 2\pi)$, so can focus on $\omega \in [-\pi, \pi]$.
- Non-negative: $\phi(\omega) \geq 0$.

$$r(k) = E\{y(t)y^*(t-k)\}\$$

- $ightharpoonup r(k) = r^*(-k)$, and $r(0) \ge |r(k)|$ for all k.
- ► Inverse DTFT: $r(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) e^{i\omega k} d\omega$.
- Interpretation:

$$r(0) = E\{|y(t)|^2\} =$$

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\} = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

- ▶ Periodic: $\phi(\omega) = \phi(\omega + 2\pi)$, so can focus on $\omega \in [-\pi, \pi]$.
- Non-negative: $\phi(\omega) \geq 0$.

$$r(k) = E\{y(t)y^*(t-k)\}\$$

- $ightharpoonup r(k) = r^*(-k)$, and $r(0) \ge |r(k)|$ for all k.
- ► Inverse DTFT: $r(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) e^{i\omega k} d\omega$.
- Interpretation:

$$r(0) = E\{|y(t)|^2\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) d\omega.$$

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\} = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

- ▶ Periodic: $\phi(\omega) = \phi(\omega + 2\pi)$, so can focus on $\omega \in [-\pi, \pi]$.
- Non-negative: $\phi(\omega) \geq 0$.

$$r(k) = E\{y(t)y^*(t-k)\}\$$

- $ightharpoonup r(k) = r^*(-k)$, and $r(0) \ge |r(k)|$ for all k.
- ► Inverse DTFT: $r(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) e^{i\omega k} d\omega$.
- Interpretation:

$$r(0) = E\{|y(t)|^2\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) d\omega.$$

▶ If y(t) is real, then r(k) is real and $\phi(-\omega) = [Board] =$

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\} = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

- ▶ Periodic: $\phi(\omega) = \phi(\omega + 2\pi)$, so can focus on $\omega \in [-\pi, \pi]$.
- ▶ Non-negative: $\phi(\omega) \ge 0$.

$$r(k) = E\{y(t)y^*(t-k)\}$$

- $ightharpoonup r(k) = r^*(-k)$, and $r(0) \ge |r(k)|$ for all k.
- ► Inverse DTFT: $r(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) e^{i\omega k} d\omega$.
- ► Interpretation:

$$r(0) = E\{|y(t)|^2\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) d\omega.$$

▶ If y(t) is real, then r(k) is real and $\phi(-\omega) = [Board] = \phi(\omega)$.

Transfer function:

$$H(q) = \sum_{k=0}^{\infty} h_k q^{-k}$$

where q^{-1} is the unit delay operator, $q^{-1}y(t) = y(t-1)$.

Transfer function:

$$H(q) = \sum_{k=0}^{\infty} h_k q^{-k}$$

where q^{-1} is the unit delay operator, $q^{-1}y(t) = y(t-1)$.

$$\begin{array}{c}
u(t) \\
\hline
\phi_u(\omega)
\end{array}
\xrightarrow{H(q)} \begin{array}{c}
y(t) \\
\hline
\phi_y(\omega)
\end{array}$$

ightharpoonup y(t) = H(q)u(t)

► Transfer function:

$$H(q) = \sum_{k=0}^{\infty} h_k q^{-k}$$

where q^{-1} is the unit delay operator, $q^{-1}y(t) = y(t-1)$.

$$\begin{array}{c}
u(t) \\
\hline
\phi_u(\omega)
\end{array}
\xrightarrow{H(q)} \begin{array}{c}
y(t) \\
\hline
\phi_y(\omega)
\end{array}$$

$$y(t) = H(q)u(t) = \sum_{k=0}^{\infty} h_k u(t-k),$$

► Transfer function:

$$H(q) = \sum_{k=0}^{\infty} h_k q^{-k}$$

where q^{-1} is the unit delay operator, $q^{-1}y(t) = y(t-1)$.

Then
$$\phi_y(\omega)=|H(\omega)|^2\phi_u(\omega)$$
, where $H(\omega)=\sum_{k=0}^\infty h_k e^{-i\omega k}$

Signals and Sampling

In this course we will mainly consider discrete-time signals, but they often come from sampling of continuous-time signals.

20 / 25 per.mattsson@it.uu.se

Sinusoids

ightharpoonup Consider a continuous-time signal y_c with the spectrum

ightharpoonup and let $y(t) = y_c(tT_s)$, $t = 0, 1, \ldots$

- ightharpoonup and let $y(t) = y_c(tT_s)$, $t = 0, 1, \ldots$
- ► Sampled signal: $Y(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} Y_c(\omega n\omega_s)$

lacktriangle Consider a continuous-time signal y_c with the spectrum

- ightharpoonup and let $y(t)=y_c(tT_s)$, $t=0,1,\ldots$
- ► Sampled signal: $Y(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} Y_c(\omega n\omega_s)$

- ightharpoonup and let $y(t) = y_c(tT_s)$, $t = 0, 1, \ldots$
- ► Sampled signal: $Y(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} Y_c(\omega n\omega_s)$

- ightharpoonup and let $y(t) = y_c(tT_s)$, $t = 0, 1, \ldots$
- ► Sampled signal: $Y(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} Y_c(\omega n\omega_s)$

- ightharpoonup and let $y(t) = y_c(tT_s)$, $t = 0, 1, \ldots$
- ► Sampled signal: $Y(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} Y_c(\omega n\omega_s)$

lacktriangle Consider a continuous-time signal y_c with the spectrum

- ightharpoonup and let $y(t)=y_c(tT_s)$, $t=0,1,\ldots$
- ► Sampled signal: $Y(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} Y_c(\omega n\omega_s)$

- ightharpoonup and let $y(t) = y_c(tT_s)$, $t = 0, 1, \ldots$
- ► Sampled signal: $Y(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} Y_c(\omega n\omega_s)$

ightharpoonup Consider a continuous-time signal y_c with the spectrum

- ightharpoonup and let $y(t) = y_c(tT_s)$, $t = 0, 1, \ldots$
- ► Sampled signal: $Y(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} Y_c(\omega n\omega_s)$

▶ Nyquist frequency: Reconstruction possible if,

ightharpoonup Consider a continuous-time signal y_c with the spectrum

- ightharpoonup and let $y(t) = y_c(tT_s)$, $t = 0, 1, \ldots$
- ► Sampled signal: $Y(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} Y_c(\omega n\omega_s)$

► Nyquist frequency: Reconstruction possible if,

$$\omega_s - \omega_B$$

ightharpoonup Consider a continuous-time signal y_c with the spectrum

- ightharpoonup and let $y(t) = y_c(tT_s)$, $t = 0, 1, \ldots$
- ► Sampled signal: $Y(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} Y_c(\omega n\omega_s)$

► Nyquist frequency: Reconstruction possible if,

$$\omega_s - \omega_B > \omega_B$$

ightharpoonup Consider a continuous-time signal y_c with the spectrum

- ightharpoonup and let $y(t) = y_c(tT_s)$, $t = 0, 1, \ldots$
- ► Sampled signal: $Y(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} Y_c(\omega n\omega_s)$

► Nyquist frequency: Reconstruction possible if,

$$\omega_s - \omega_B > \omega_B \iff \frac{\omega_s}{2} > \omega_B$$

▶ Sampling: $T_s = 1$ s, dvs $\omega_s = 2\pi$ rad/s.

▶ Sampling: $T_s = 1$ s, dvs $\omega_s = 2\pi$ rad/s.

Signal:

Spectrum:

▶ Sampling: $T_s = 1$ s, dvs $\omega_s = 2\pi$ rad/s.

Signal:

Spectrum:

▶ **Sampling:** $T_s = 1$ s, dvs $\omega_s = 2\pi$ rad/s.

Signal:

Spectrum:

▶ Sampling: $T_s = 1$ s, dvs $\omega_s = 2\pi$ rad/s.

Signal:

Spectrum:

▶ **Sampling:** $T_s = 1$ s, dvs $\omega_s = 2\pi$ rad/s.

Signal:

Spectrum:

▶ **Sampling:** $T_s = 1$ s, dvs $\omega_s = 2\pi$ rad/s.

Signal:

Spectrum:

Summary

Summary

The Spectral Estimation Problem

From a finite record $\{y(1), y(2), \dots, y(N)\}$ of a stationary data sequence, determine an estimate $\hat{\phi}(\omega)$ of the PSD $\phi(\omega)$ for $\omega \in [-\pi, \pi]$ (normalized frequency).

Summary

The Spectral Estimation Problem

From a finite record $\{y(1),y(2),\ldots,y(N)\}$ of a stationary data sequence, determine an estimate $\hat{\phi}(\omega)$ of the PSD $\phi(\omega)$ for $\omega \in [-\pi, \pi]$ (normalized frequency).

Next time:

- Parametric vs. non-parametric approaches to spectral analysis
- How to estimate the PSD from data
- How to estimate the ACS from data
- The Periodogram and correlogram methods (non-parametric)
- Spectral analysis in MATLAB (useful functions)