RAPPELS

Définition

La boule ouverte centrée en $m \in M$ de rayon r > 0 est l'ensemble

$$B_r(m) = \{m' \in M : d(m, m') < r\}.$$

Définition

Un sous-ensemble $U \subset M$ est dite ouvert si

$$\forall m \in U \quad \exists r > 0 \quad \text{tq} \quad B_r(m) \subset U.$$

Définition

Une suite (x_n) dans un espace métrique (M, d) converge vers $x \in M$ lorsque $n \to \infty$ si $\forall \varepsilon > 0$ $\exists N > 0$ tq pour tout $n \ge N$ on a $d(x_n, x) < \varepsilon$.

1/28

RAPPELS II

Définition

Soient d, d' deux métriques sur l'ensemble M. Elles sont dites Lipschitz équivalentes (ou simplement équivalentes) s'il existe A, B > 0 tel que pour tout $x, y \in M$ $Ad(x, y) \le d'(x, y) \le Bd(x, y).$

Soient d et d' Lipschitz équivalentes. La suite (x_n) converge par rapport à d ssi (x_n) converge par rapport à d'.

Théorème (Critère des suites pour un fermé)

Soit M un espace métrique. Un sous-ensemble $A \subset M$ est fermé si et seulement si, pour toute suite (a_n) d'éléments de A qui converge vers $m \in M$ on a que $m \in A$.

RAPPELS III

Théorème

Les conditions suivantes sont équivalentes :

- 1. $f:(M,d_M) \rightarrow (N,d_N)$ est continue;
- 2. $\forall m \in M \text{ et } \forall \varepsilon > 0 \ \exists \delta = \delta(m, \varepsilon) > 0 \text{ tq}$ $d_M(m', m) < \delta \implies d_N(f(m'), f(m)) < \varepsilon.$
- 3. $\forall m \in M \text{ et pour chaque suite } (x_n) \text{ de points de } M \text{ on a que}$

$$\lim_{n\to\infty}x_n=m\qquad\Longrightarrow\qquad\lim_{n\to\infty}f(x_n)=f(m).$$

3/28

LA TOPOLOGIE INDUITE

Soit (M, d) un espace métrique. Pour tout $A \subset M$ on obtient une métrique sur A par restriction : $d_A: A \times A \to \mathbb{R}$, $d_A = d|_{A \times A}$. d_A s'appelle la métrique induite (de celle de M sur A).

Exemple

Considérons $\mathbb{Z} \subset (\mathbb{R}, d_E)$. La métrique induite est $d_{\mathbb{Z}}(n, m) = |n - m|$. Remarquez que $\mathfrak{T}_{d_{\mathbb{Z}}}$ est la topologie discrète (parce que $B_1(n) = \{n\}$) bien que $d_{\mathbb{Z}}$ et la métrique discrète ne soient pas Lipschitz équivalents.

Exercice

Montrer que $B_r^A(a) = \{ a' \in A \mid d_A(a', a) < r \} = B_r^M(a) \cap A$.

Par exemple, soit $M = \mathbb{R}^2$ muni de la métrique euclidienne et $A = \mathbb{R}^2 \setminus \{[-10, 10] \times \{0\}\}$. $B_2^A((0,1))$ est non-connexe.

Proposition

Un sous-ensemble $U \subset A$ est ouvert par rapport à d_A ssi $\exists V \subset M$ qui est ouvert dans (M, d) tq $U = V \cap A$.

Démonstration.

Supposons que $U \subset A$ et un ouvert. Alors, $\forall u \in U \ \exists r = r(u) > 0$ tq $B_r^A(u) = \{u' \in U \mid d_A(u', u) < r\} \subset U$. Considérons

$$V := \bigcup_{u \in U} B_{r(u)}^{M}(u).$$

V est ouvert comme la réunion des ouverts et

$$V \cap A = \bigcup_{u \in U} (B_{r(u)}^M(u) \cap A) = \bigcup_{u \in U} B_{r(u)}^A(u) = U.$$

Inversement, supposons que $V \subset M$ est ouvert et $U = V \cap A$. Alors, $V \in \mathcal{T}_M$ $\Longrightarrow \forall v \in V \quad \exists B^M_{r(v)}(v) \subset V$. En particulier, $\forall u \in U$

$$B_{r(u)}^{A}(u) = B_{r(u)}^{M}(u) \cap A \subset V \cap A \Longrightarrow V \cap A \text{ est ouvert dans } (A, d_A).$$

5/28

Ainsi, on a démontré que

$$\mathcal{T}_{d_A} = \{ V \cap A \mid V \in \mathcal{T}_{(M,d)} \}. \tag{*}$$

Pour les espaces topologiques on définit la top. induite en utilisant (*) :

Définition

Soit $A \subset (X, \mathfrak{T})$ un sous-ensemble non-vide d'un espace topologique. Définissons une collection de sous-ensembles de A par

$$\mathfrak{T}|_{\mathcal{A}} = \{ U \cap \mathcal{A} \mid U \in \mathfrak{T} \}.$$

 $\mathfrak{T}|_A$ est une topologie sur A appelée la topologie induite.

Remarque

Quand on pense à $A \subset X$ comme étant un espace topologique pour la topologie induite, on dit que A est un sous-espace de X.

On va démontrer plus tard que la top. induite est bien une topologie.

Exemple

- 1. $(0,1) \subset \mathbb{R} : U \subset (0,1)$ est ouvert ssi U est ouvert dans \mathbb{R} parce que si V est ouvert dans \mathbb{R} et $U = V \cap (0,1)$, U est ouvert dans \mathbb{R} .
- 2. $[0,1] \subset \mathbb{R}$:
 - [0, 0, 1) est ouvert parce que $[0, 0, 1) = (-2, 0, 1) \cap [0, 1]$.
 - [0, 0, 1] n'est pas ouvert.
 - (0,5, 1] est ouvert.
 - En général, un ouvert de [0, 1] est de la forme suivante

$$[0,\varepsilon)\cup V\cup (\delta,1]$$
 ou $[0,\varepsilon)\cup V$ ou $V\cup (\delta,1]$ ou $V,$

où V est ouvert dans (0,1).

3. $\mathbb{R} \subset \mathbb{R}^2$: la topologie induite est la topologie standard parce que $(a,b) = B_r(m) \cap \mathbb{R}$ si $m = \left(\frac{a+b}{2}, 0\right)$ et $r = \frac{b-a}{2}$.

Attn: Un ensemble ouvert dans A n'est pas nécessairement ouvert dans X!

7/28

Lemma

La topologie induite $\mathfrak{T}|_A$ est bien une topologie sur A.

Démonstration.

T1.
$$A = X \cap A$$
, $\emptyset = \emptyset \cap A$.

T2. Soient $V_1, \ldots, V_k \in \mathcal{T}|_A$. Alors il existe $U_1, \ldots, U_k \in \mathcal{T}$ t.q. $V_j = U_j \cap A$. Or $V_1 \cap \cdots \cap V_k = U_1 \cap A \cap \cdots \cap U_k \cap A = U_1 \cap \cdots \cap U_k \cap A$.

Puisque \mathcal{T} est une topologie, $U_1 \cap \cdots \cap U_k \in \mathcal{T}$. Donc $V_1 \cap \cdots \cap V_k \in \mathcal{T}|_{\mathcal{A}}$.

T3. Soit $\{V_i : i \in I\}$ une collection quelconque d'éléments de $\mathfrak{T}|_A$. Alors pour tout $i \in I$, il existe $U_i \in \mathfrak{T}$ t.q. $U_i \cap A = V_i$. Or

$$\bigcup V_i = \bigcup (U_i \cap A) = (\bigcup U_i) \cap A.$$

Puisque Υ est une topologie, $\bigcup U_i \in \Upsilon$. Donc $\bigcup V_i \in \Upsilon|_A$.

Proposition

- 1. Soient (X, \mathcal{T}) un espace topologique et $\emptyset \neq A \subset X$. Soit $\iota: A \to X$ l'inclusion. Alors ι est $(\mathcal{T}|_A, \mathcal{T})$ -continue.
- 2. Soit $f:(X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ continue et $\emptyset \neq A \subset X$. Alors, $f|_A := f \circ \iota : A \to Y$ est $(\mathcal{T}_X|_A, \mathcal{T}_Y)$ -continue.
- 3. Soient (X, T_X) , (Y, T_Y) deux espaces topologiques et $\emptyset \neq B \subset Y$. Alors une application $f: X \to B$ est $(T_X, T_Y|_B)$ -continue si et seulement si $\iota \circ f$ est (T_X, T_Y) -continue.

Démonstration de 2.

Soit $U \in \mathcal{T}_{Y}$. Alors,

$$(f \circ \iota)^{-1}(U) = \iota^{-1}(f^{-1}(U)) = f^{-1}(U) \cap A$$

est ouvert comme l'intersection des ouverts.

Exercice

Démontrer 1. et 3.

9/28

BASES D'UNE TOPOLOGIE

Définition

Soit (X, \mathcal{T}) un espace topologique. *Une base de la topologie* est un sous-ensemble $\mathcal{B} \subset \mathcal{T}$, $\mathcal{B} = \{B_j \mid j \in J\}$ tq tout ensemble ouvert de X est la réunion d'ensembles appartenant à \mathcal{B} :

$$\forall U \in \mathfrak{T} \quad \exists K \subset J \quad \text{tq} \quad U = \bigcup_{k \in K} B_k.$$

On observe:

- Tout $B \in \mathcal{B}$ est un ouvert de X;
- \mathcal{B} est une base de la topologie ssi $\forall U \in \mathcal{T}$ et $\forall x \in U \quad \exists B \in \mathcal{B}$ tq $x \in B \subset U$.

Exemple

1. Pour un espace topologique quelconque (X, \mathcal{T}) , $\mathcal{B} = \mathcal{T}$ est toujours une base de la topologie.

Exemple (suite)

- 2. Pour $(X, \mathfrak{I}^{discr})$, $\mathfrak{B} = \{\{x\} \mid x \in X\}$ est une base. Donc, une base de la topologie n'est pas unique en général (en fait, presque jamais).
- 3. Dans un espace métrique, $\mathcal{B} := \{B_r(m) \mid m \in M, r \in (0, \infty)\}$ est une base. $\mathcal{B}' := \{B_r(m) \mid m \in M, r \in \mathbb{Q}, r > 0\}$ est une base aussi.
- 4. $\mathcal{B} := \{B_r(p) \mid p \in \mathbb{Q}^n, r \in \mathbb{Q}, r > 0\}$ est une base de la topologie de \mathbb{R}^n . En particulier, \mathbb{R}^n admet une base de la topologie dénombrable.

Si $\mathcal{B} \subset \mathcal{T}$ est une base de la topologie, on a que

- B1 $\forall x \in X \quad \exists B \in \mathcal{B} \quad \mathsf{tq} \quad x \in B.$
- B2 $\forall B_1, B_2 \in \mathcal{B}$ et $\forall x \in B_1 \cap B_2$ $\exists B \in \mathcal{B}$ tq $x \in B \subset B_1 \cap B_2$.

En effet, B1 est évidente. $B_1, B_2 \in \mathcal{T} \Longrightarrow B_1 \cap B_2 \in \mathcal{T} \Longrightarrow B2$.

11/28

- B1 $\forall x \in X \quad \exists B \in \mathcal{B} \quad \text{tq} \quad x \in B.$
- B2 $\forall B_1, B_2 \in \mathcal{B}$ et $\forall x \in B_1 \cap B_2$ $\exists B \in \mathcal{B}$ tq $x \in B \subset B_1 \cap B_2$.

Proposition

Soit \mathcal{B} et une famille de sous-ensembles d'un ensemble $X \neq \emptyset$ quelconque. Si B1 et B2 sont satisfaites, il existe une unique topologie \mathcal{T} tq \mathcal{B} est une base de \mathcal{T} .

Démonstration.

On définit $\mathcal{T} := \{ U_K := \bigcup_{k \in K} B_k \mid K \subset J \} \cup \{\emptyset\}$. Alors, \mathcal{T} est une topologie parce que

- B1 $\Longrightarrow X \in \mathcal{T}$; De plus, T3 est évident.
- $V_K \cap V_L = (\bigcup_{k \in K} B_k) \cap (\bigcup_{\ell \in L} B_\ell) = \bigcup_{k \in K, \ell \in L} (B_k \cap B_\ell);$ $B_k \cap B_\ell \stackrel{B2}{=} \bigcup_{X \in B_k \cap B_\ell} B'_{k,l} \in \mathfrak{T} \Longrightarrow V_K \cap V_L \in \mathfrak{T}.$

Par définition de \mathcal{T} , \mathcal{B} est une base de \mathcal{T} .

L'unicité : l'exercice.

TOPOLOGIE DU PRODUIT

Soit (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) des espaces topologiques. On est tenté de définir la topologie sur $X \times Y$ par

$$\{U \times V \mid U \in \mathcal{T}_X, V \in \mathcal{T}_Y\}.$$
 (*)

Pourtant, (*) n'est pas une topologie parce que T3 n'est pas satisfaite en général.

Lemme

(*) a les propriétés B1 et B2.

La démonstration : exercice.

Corollaire

(*) est la base d'une topologie sur $X \times Y$. Cette topologie s'appelle la topologie produit.

13/28

Exercice

Si \mathcal{B}_X et \mathcal{B}_Y sont des bases des topologies de X et Y respectivement, alors $\mathcal{B}_X \times \mathcal{B}_Y := \{B \times C \mid B \in \mathcal{B}_X, C \in \mathcal{B}_Y\}$ est une base de la topologie du produit.

Exemple

Considérons \mathbb{R}^2 comme le produit : $\mathbb{R}^1 \times \mathbb{R}^1$. Une base de la topologie du produit est constituée de rectangles $(a,b) \times (c,d)$. La topologie du produit coïncide avec la topologie standard (= celle induite par la métrique de Manhattan) parce que :

- Si *U* est ouvert par rapport à la topologie standard, on a ∀u ∈ U ∃r > 0 tq B_r^{Manh}(u) ⊂ U. Alors, U est ouvert par rapport à la topologie produit, parce que B_r^{Manh}(u) est un rectangle.
- Si *U* est ouvert par rapport à la topologie du produit, $\forall u \in U$ $\exists (a,b) \times (c,d) \subset U$ tq $u \in (a,b) \times (c,d) \Longrightarrow \exists r > 0$ tq $B_r^{Manh}(u) \subset U$. Alors, *U* est ouvert par rapport à la topologie standard.

Attention

Un ouvert dans $X \times Y$ <u>n'est pas</u> nécessairement de la forme $U \times V$. Par exemple, la boule ouverte $B_1(0) = \{x_1^2 + x_2^2 < 1\} \subset \mathbb{R}^2$ n'est pas un rectangle!

Exercice

Généraliser l'exemple précédent pour montrer ce qui suit : Si (M, d_M) et (N, d_N) sont des espaces métriques, alors la topologie du produit sur $M \times N$ coïncide avec \mathfrak{T}_{d_1} où

$$d_1((m_1,n_1),(m_2,n_2)) = d_M(m_1,m_2) + d_N(n_1,n_2).$$

Exercice

Soient X et Y deux espaces topologiques. Choisissons un $y \in Y$ et identifions X avec $X \times \{y\} \subset X \times Y$. Montrer que la topologie induite sur $X \times \{y\}$ coïncide avec la topologie initiale de X.

15/28

Proposition

Les projections $p_1: X \times Y \to X$ et $p_2: X \times Y \to Y$ sont continues.

Démonstration.

$$U \in \mathcal{T}_X \implies p_1^{-1}(U) = U \times Y \in \mathcal{T}_{X \times Y} \implies p_1 \text{ est continue.}$$

Proposition

Soit $f: Z \to X \times Y$ une application où X, Y, Z sont des espaces topologiques. Alors f est continue ssi $p_1 \circ f: Z \to X$ et $p_2 \circ f: Z \to Y$ sont continues.

Démonstration.

f est continue $\implies p_1 \circ f$ et $p_2 \circ f$ sont continues en tant que composition des applications continues.

Démonstration (suite).

Supposons que $p_1 \circ f$ et $p_2 \circ f$ sont continues. Soit $W \subset X \times Y$ ouvert pour la topologie produit et $z \in f^{-1}(W)$ quelconque. On va montrer qu'il existe un ouvert $T_Z \subset f^{-1}(W)$ tq $z \in T_Z$. Il s'ensuivra que $f^{-1}(W)$ est ouvert, puisque

$$f^{-1}(W) = \bigcup_{z \in W} T_z$$

est une union d'ouverts.

Écrivons $f(z) = (x, y) \in W$. Alors il existe des ouverts $x \in U \subset X$ et $y \in V \subset Y$ tq $U \times V \subset W$. L'hypothèse implique que $T_1 = (p_1 \circ f)^{-1}(U)$ et $T_2 = (p_2 \circ f)^{-1}(V)$ sont des ouverts. De plus $z \in T_1 \cap T_2$.

Il reste à vérifier que $T_1 \cap T_2 \subset f^{-1}(W)$. Mais si $\hat{z} \in T_1 \cap T_2$ alors $p_1(f(\hat{z})) \in U$ et $p_2(f(\hat{z})) \in V$, donc $f(\hat{z}) \in U \times V \subset W$.

17/28

HOMÉOMORPHISMES

Définition

Une application $f: X \to Y$ est un homéomorphisme si

- 1. *f* est bijective.
- 2. f est continue. 3. f^{-1} est continue.

S'il existe un homéomorphisme entre X et Y, on dit que ces espaces sont homéomorphes.

En topologie, les homéomorphismes jouent un rôle similaire aux

- isomorphismes entre deux groupes en algèbre ou
- isomorphismes entre deux espaces vectoriels en algèbre linéaire.

Attention

1. et 2. \longrightarrow 3. car $id:(X, \mathcal{T}^{discr}) \to (X, \mathcal{T}^{gros})$ est bijective et continue, mais $id^{-1} = id: (X, \mathfrak{I}^{gros}) \to (X, \mathfrak{I}^{discr})$ n'est pas continue (si X contient au moins 2 points).