PROGRAMSI PREVODIOCI

- Sintaksna analiza bazirana na relacijama prvenstva -

Sintaksni analizatori bazirani na relacijama prvenstva

- Bottom-up algoritmi bez vraćanja.
- 2 tipa gramatika:
 - Operatorske gramatike prvenstva
 - Gramatike prvenstva

Operatorske gramatike

Operatorska gramatika – Gramatika tipa 2 u kojoj ni jedna smena nije oblika:

$$C \to pABq, \quad A, B, C \in V_n, \quad p, q \in V^*$$

U jednoj smeni ne mogu da se pojave dva neterminalna simbola jedan do drugog.

Gramatike tipa 2 kojima se opisuju izrazi u programskim jezicima zadovoljavaju ovaj uslov.

Relacije prvenstva kod operatorskih gramatika

Relacija istog prioriteta:

a=b ako postoji smena oblika $C \to pabq$ ili $C \to paAbq$, gde je $C, A \in V_n$, $a, b \in V_t$, $p, q \in V^*$

Relacije prvenstva kod operatorskih gramatika

Relacija manjeg prioriteta:

 $a < \cdot b$ ako postoji smena oblika

$$C \to paAq i A \xrightarrow{*} br ili A \xrightarrow{*} Dbr,$$

gde je $C, A, D \in V_n$, $a, b \in V_t$, $p, q, r \in V^*$

Relacije prvenstva kod operatorskih gramatika

Relacija većeg prioriteta:

 $a \cdot > b$ ako postoji smena oblika

$$C \to pAbq i A \xrightarrow{*} ra ili A \xrightarrow{*} raD,$$

gde je $C, A, D \in V_n$, $a, b \in V_t$, $p, q, r \in V^*$

Operatorske gramatike prvenstva

Operatorska gramatika u kojoj za svaka dva terminalna simbola važi najviše jedna relacija prvenstva naziva se **Operatorska gramatika prvenstva**.

Kod ovih gramatika moguće je primeniti algoritam za Bottom-up analizu u kome neće biti vraćanja.

Operatorska tablica prvenstva

- Sintaksna tabela za operatorske gramatike prvenstva.
- Matrica sa onoliko vrsta i kolona koliko je terminalnih simbola u gramatici (uključujući i granični simbol #) koja sadrži relacije prvenstva.

Operatorska tablica prvenstva – Primer

Kreirati operatorsku tablicu prvenstva za gramatiku zadatu sledećle skupom smena:

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to i$$

Da bi se odredile relaciije prvenstva izmedju simbola # i stvarnih terminalnih simbola, uvodi se pomoćomsmena :

$$E' \rightarrow \#E\#$$

Operatorska tablica prvenstva – Primer

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to i$$

	i	*	+	#
i		^	>	^
*	<	>	>	>
+	<	<	>	>
#	<	<	<	=

Algoritam analize

- Skup smena gramatike se modifikuje tako da se svaki neterminalni simbol zameni jedinstvenim simbolom "p".
- U radni magacin se upisuje simbol #,
- Čita se jedan po jedan simbol iz ulaznog niza i smešta u radni magacin sve dok između poslednjeg terminalnog simbola u magacimu i pročitanog simbola važi relacija < ili =.
- Kada između poslednjeg terminalnog simbola u magacinu pročitanog simbola važi relacija >, sa vrha magacina se izbacuje fraza "obuhvaćena relacijama < i >" i ukoliko takva fraza postoji u skupu smena, u radni magaci se ubacuje oznaka neterminalnog simbola "p". Ukoliko takva fraza ne postoji u skupu smena, u ulaznom nizu postoji greska i dalja analiza se prekida.
- Ulazni niz je uspešno prepoznat ukoliko se redukuje na jednu frazu, tj. ukoliko u radnom magacinu ostanu samo simboli # i "p", a sledeći ulazni simboj je #.

Sintaksna analiza - Primer

Izvršiti analizu izraza: a + b * c

$$p \to p + p \mid p$$

$$p \to p * p \mid p$$

$$p \to i$$

	i	*	+	#
i		Λ	>	^
*	<	\	>	\
+	<	٧	^	^
#	<	<	<	=

Magacin	Ulazni niz	Relacija
#	<i>i</i> + <i>i</i> * <i>i</i> #	# < <i>i</i>
# < <i>i</i>	+ i * i #	<i>i</i> > +
# <i>p</i>	+ i * i #	# < +
# < p+	i * i #	+ < <i>i</i>
# < p+ < i	* <i>i</i> #	<i>i</i> > *
# < p+p	* <i>i</i> #	+ < *
# < p +< p*	i #	+ < <i>i</i>
# <p+<p*<i< td=""><td>#</td><td><i>i</i> > #</td></p+<p*<i<>	#	<i>i</i> > #
# < p + <p*p< td=""><td>#</td><td>*>#</td></p*p<>	#	*>#
# < p+p	#	+>#
#p	#	

Pravila prioriteta

 Ako je operator Q₁ većeg prioriteta od operatora Q₂ tada među njima važe sledeće relacije prioriteta:

$$Q_1 > Q_2 i Q_2 < Q_1$$

Primer: Za operatore * i + treba da važi:

Pravila prioriteta

 2. Ako su Q₁ i Q₂ operatori levoasocijativni operatori istog prioriteta, među njima mora da važe sledeće relacije prioriteta:

$$Q_1 > Q_2 i Q_2 > Q_1$$

a ako su desnoasocijativni:

$$Q_1 < Q_2 + Q_2 < Q_1$$

Pravila prioriteta

3. Q < id, id > Q Q < (, (< Q,) > Q, Q >), Q > #, # < Q (=), # < (, # < id, (< id, id >),) >)

Gramatike prvenstva

 Jedinstvena relacije prvenstva postoji između bilo koja 2 simbola gramatike (nebitno da li su terminalni ili neterminalni).

Relacije prvenstva kod gramatike prvenstva

1. s = t ako postoji smena oblika $A \rightarrow ustw$, gde su $s, t \in V, u, w \in V^*$ i $A \in V_n$.

- 2. s < t ako postoji smena oblika $A \to usrwi r \xrightarrow{*} tz$, gde su $s, t, r \in V$, $u, w, z \in V^*$ i $A \in V_n$.
- $3. \ s > t$ ako postoji smena oblika $A \to urtw$ i $r \stackrel{*}{\longrightarrow} zs$, ili ako postoji smena $A \to uxyw$ i izvodjenja $x \stackrel{*}{\longrightarrow} z_1s$, $y \stackrel{*}{\longrightarrow} tz_2$ gde su $s,t,r \in V$, $u,w,z,z_1,z_2 \in V$ i $A \in V_n$.

Transformacija gramatike u gramatiku prvenstva

Ako postoje smene oblika:

$$X \to \alpha \alpha Y \beta i Y \to Y \gamma$$

druga smena se zamenjuje skupom smena:

$$Y \rightarrow Y'$$

$$Y' \to Y' \gamma$$

Ako postoje smene oblika:

$$X \rightarrow \alpha Y \alpha \beta i Y \rightarrow \gamma Y$$

druga smena se zamenjuje skupom smena:

$$Y \rightarrow Y'$$

$$Y' \rightarrow \gamma Y'$$

Gramatika prvenstva - Primer

$$E \rightarrow E + T \mid T$$
 $S \rightarrow \# E \#$ $T \rightarrow T * F \mid F$ $E \rightarrow E'$ $F \rightarrow i$ $E' \rightarrow E' + T \mid T$ $T \rightarrow T'$ $T' \rightarrow T' * F \mid F$ $F \rightarrow i$

Gramatika prvenstva - Primer

$$S \rightarrow \#E\#$$
 $E \rightarrow E'$
 $E' \rightarrow E' + T \mid T$
 $T \rightarrow T'$
 $T' \rightarrow T' * F \mid F$
 $F \rightarrow i$

	Е	E'	T	T'	F	+	*	i	#
Е									Ш
E'						=			>
T						>			>
T'						>	=		>
F						>	>		>
+			=	<	<			<	
*					=			<	
i						>	>		>
#	=	<	<	<	<			<	

Algoritam analize

- U radni magacin se upisuje simbol #,
- Čita se jedan po jedan simbol iz ulaznog niza i smešta u radni magacin sve dok između poslednjeg simbola u magacimu i pročitanog simbola važi relacija < ili =.
- Kada između poslednjeg simbola u magacinu pročitanog simbola važi relacija >, sa vrha magacina se izbacuje fraza "obuhvaćena relacijama < i >. Ukoliko takva smena postoji u skupu smena, u radni magaci se ubacuje neterminalni simbol sa leve strane smene. Ukoliko takva fraza ne postoji u skupu smena, u ulaznom nizu postoji greska i dalja analiza se prekida.
- Ulazni niz je uspešno prepoznat ukoliko je redukovan na startni simbol gramatike, tj. ukoliko u radnom magacinu ostanu samo simboli # i startni simbol gramatike, a sledeći ulazni simboj je #.

Gramatika prvenstva - Primer

Izvršiti analizu izraza: a + b * c

	Е	E'	T	T'	F	+	*	i	#
Е									=
E'						=			>
T						>			>
T'						>	=		>
F						>	^		^
+			=	<	٧			\	
*					Ш			\	
i						>	>		^
#	=	<	<	<	<			<	

Magacin	Ulazni niz	Rela- cija
#	i + i * i #	# < <i>i</i>
#< <i>i</i>	+ i * i #	<i>i</i> > +
# <f< td=""><td>+ i * i #</td><td>F>+</td></f<>	+ i * i #	F>+
# <t'< td=""><td>+ i * i #</td><td>T'>+</td></t'<>	+ i * i #	T'>+
# <t< td=""><td>+ i * i #</td><td>T>+</td></t<>	+ i * i #	T>+
# <e'< td=""><td>+ i * i #</td><td>E'=+</td></e'<>	+ i * i #	E'=+
# <e'=+< td=""><td>i* i#</td><td>+ < <i>i</i></td></e'=+<>	i* i#	+ < <i>i</i>
# = E	#	

Funkcije prvenstva

$$s = t f(s) = g(t)$$

$$s < t f(s) < g(t)$$

$$s > t f(s) > g(t)$$

Funkcije prvenstva

- Za određivanje funkcija prvenstva kreira se orjentisani graf koji sadrži onoliko čvorova koliko funkcija prvenstva postoji
- Potezi u grafu:
 - Ako važi relacija s > t, postoji poteg od čvora f(s) prema čvoru g(t).
 - Ako važi relacija s < t, postoji poteg od čvora g(t) prema čvoru f(s).
 - Ako važi relacija s = t, postoje potezi od čvora f(s) prema čvoru g(t) i od čvora g(t) prema čvoru f(s).
- Vrednost funkcije se računa kao dužina najdužeg puta koji polazi iz čvpra koji odgovara toj funkciji, gde se pod dužinom puta podrazumeva broj čvorova kroz koje put

Funkcije prvenstva

	i	*	+	#
i		^	^	>
*	<	>	>	>
+	<	<	>	>
#	\	<	<	=

	i	+	*	#
f	5	3	5	0
g	6	2	4	0

