Klausur im Lehrgebiet

Signale und Systeme

- Prof. Dr.-Ing. Thomas Sikora -

Na	me:				□ Bachel	or	□ ET
					□ Master		□ TI
Vor	mame:				□ Diplom	1	\square KW
					☐ Magist	er	□
Ma	tr.Nr:				☐ Erasmı	1S	
	Ich bin mit der Veröffentlic	hung	des Kl	ausure	rgebnisses im	ı Web	
	unter meiner verkürzten M	Iatrike	elnumr	ner eir	verstanden.		
		A1	A2	A3	Summe		
		711	112	710	Dumme		
	J						
Hinv	veise:						
1.	Füllen Sie vor Bearbeitung d	ler Kla	usur da	s Deck	blatt vollständ	l ig und	sorgfältig aus.
2.	Schreiben Sie die Lösungen	jeweils	direkt	auf de	n freien Platz ι	ınterha	lb der Aufgabenstellung.
3.	Die Rückseiten können bei	i Beda	rf zusä	tzlich l	oeschrieben w	erden.	Sollte der Platz auf der
	Rückseite nicht ausreichen,					zu verv	venden. Die Klausurauf-
	sicht teilt auf Anfrage zusät z	zliche	leere E	Blätter	aus.		
4.	Ein nichtprogrammierbare		henrecl	nner ur	nd ein einseiti	g hand	beschriebenes DIN-A4-
	Blatt sind als Hilfsmittel erla	aubt.					
5.	Bearbeitungszeit: 90 min.						
6.	Keinen Bleistift und auch k	einen	Rotstif	t verwe	enden!		
7.	Bei Multiple-Choice-Fragen	gibt es	je richt	tiger Ar	ntwort einen ha	alben Pı	unkt, je falscher Antwort
	wird ein halber Punkt abge	zogen	. Im sc	hlechte	sten Fall wird	die Au	ıfgabe mit null Punkten
	bewertet.						
8.	Grundsätzlich müssen bei al	len Ski	izzen d	ie Achs	en vollständig	g besch	riftet werden.
Ich h	abe die Hinweise gelesen und	voreta	ndon:				(Unterschrift)
1011 11	are minweise geresen und	7 C15ta					··· (ontersemmt)
	Technische Universität Berlin			Klausu	r im Lehrgebiet		
	Fachgebiet Nachrichtenübertragung	:		Signal	e und Systeme		Blatt: 1

am 25.02.2021

Prof. Dr.-Ing. T. Sikora

Erklärung zur Prüfungsfähigkeit

ch erkläre, dass ich mich prüfungsfähig fühle. (§7 (10) Satz 5+6 AllgPO vom 13. Juni 2012)
(Datum und Unterschrift der Studentin/ des Studenten)

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 2
Prof. DrIng. T. Sikora	am 25.02.2021	

Inhaltsverzeichnis

1	Zeitkontinuierliche Signale	4
2	Zeitkontinuierliche Systeme und Abtastung	6
3	Zeitdiskrete Signale und Systeme	11

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 3
Prof. DrIng. T. Sikora	am 25.02.2021	

1 Zeitkontinuierliche Signale

12,5 Punkte

1.1 Gegeben sei das folgende, zeitkontinuierliche Signal $u_1(t)$:

4,5 P

- a) Geben Sie eine geschlossene mathematische Beschreibung von $u_1(t)$ unter Zuhilfenahme von Elementarsignalen an.
- b) Skizzieren Sie das Signal $u_2(t) = B \cdot \frac{1}{2}u_1(-(t-3T))$. 1,5 P
- c) Das Signal $u_1(t)$ werden mit $T_P=5T$ periodisch fortgesetzt. Berechnen Sie 1,5 P die Leistung des periodisch fortgesetzten Signals $u_P(t)=u_1(t)*\delta_{T_P}(t)$.
- d) Wie groß ist die Gesamtleistung des **ursprünglichen** Signals $u_1(t)$? 0,5 P
- 1.2 Gegeben seien die folgenden beiden Signale u(t) und v(t). 6 P

- a) Berechnen Sie die Kreuzkorrelation $r_{uv}(\tau)$ zwischen den beiden Signalen. 4,5 P
- b) Skizzieren Sie $r_{uv}(\tau)$ im Bereich $-4T \le \tau \le 4T$.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 4
Prof. DrIng. T. Sikora	am 25.02.2021	

1.3 Berechnen Sie die Fouriertransformierte des folgenden Signals w(t). Fassen Sie das Ergebnis so weit wie möglich zu trigonometrischen Funktionen zusammen.

1* P 1.4 Wie lautet die Unschärferelation (oder das Zeitgesetz) der Nachrichtentechnik?

es gibt kompromiss swischen der seidemer eines synch und seine Brandbreite

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 5
Prof. DrIng. T. Sikora	am 25.02.2021	

2 Zeitkontinuierliche Systeme und Abtastung

9,5 Punkte

2.1 Gegeben seien die Übertragungsfunktionen $H_1(s) = \frac{1}{(s+j)}$, $H_2(s) = \frac{j}{s(s-j)}$ 2 P und das folgende Blockschaltbild. Geben Sie die Gesamtübertragungsfunktion $H_{\text{Ges}}(s)$ an und zeichnen Sie das zugehörige PN-Diagramm.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 6
Prof. DrIng. T. Sikora	am 25.02.2021	

- Von einem realen, zeitkontinuierlichen System seien nachfolgende Eigenschaften bekannt. Skizzieren Sie das PN-Diagramm des Systems. Erläutern Sie Ihre Schlussfolgerungen aus den genannten Eigenschaften.
 - a) Das System hat 5 Extremstellen.
 - b) Der Imaginärteil einer Polstelle ist -2.
 - c) |H(0)| = 1
 - d) Das System besitzt mehr Nullstellen als Polstellen.
 - e) H(2j) = 0
 - f) Das System ist stabil.
 - g) Der Realteil einer Nullstelle ist -2.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 7
Prof. DrIng. T. Sikora	am 25.02.2021	

2.3 Gegeben sei die Funktion $u(t) = A \cdot sin(\frac{2\pi t}{4T})$.

- 3,5 P
- a) Das Signal u(t) werde nun ideal mittels eines Deltakamms $\delta_T(t)$ abgetastet. Skizzieren Sie $u_a(t) = u(t) \cdot \delta_T(t)$ im Bereich $-7T \le t \le 7T$. Achten Sie auf eine vollständige Achsenbeschriftung.

1 P

b) Wie groß ist die Amplitude $u_a(t)$ an der Stelle t = T?

- 0,5 P
- c) Berechnen Sie die Fouriertransformierte $U_a(j\omega)$ des abgetasteten Signals $u_a(t) = A \cdot sin(\frac{2\pi t}{4T}) \cdot \delta_T(t)$. Fassen Sie das Ergebnis soweit wie möglich zusammen. (Hinweis: Falls vorhanden, lösen Sie das Faltungssymbol auf.)

$$(N_{A}(t) = S(t-T) - S(t-T))$$
 $(N_{A}(t) = S(t-T) - S(t-T))$
 $(N_{A}(t) = S(t-T) - S(t-T))$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 8
Prof. DrIng. T. Sikora	am 25.02.2021	

2.4 Gegeben sei nachfolgendes Amplitudenspektrum $|V(j\omega)|$.

1,5 P

- a) Welche Abtastfrequenz muss bezüglich des Amplitudenspektrums $|V(j\omega)|$ 0,5 P mindestens gewählt werden, damit kein Aliasing entsteht?
- b) Nun werde das Signal v(t) ideal mit $\omega_T=2\omega_v$ abgetastet. Skizzieren Sie 1 P $|V_a(j\omega)|$ im Bereich $-4\omega_v\leq\omega\leq 4\omega_v$. Achten Sie auf eine vollständige Achsenbeschriftung.

a) WT> 2. Wu = 4Wv

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 9
Prof. DrIng. T. Sikora	am 25.02.2021	

mit gleichen Verstärkug und ohne Phasenheverhieby übertry	mil	aleichen	Verstärkny	und	ohus	Phasenterhiely	übertn	yen
---	-----	----------	------------	-----	------	----------------	--------	-----

2.5 Definieren Sie ein verzerrungsfreies System im Zeitbereich. Welche Eigenschaft weist der Amplituden- und der Phasengang eines verzerrungsfreien Systems im Frequenzbereich auf?

Technische Universität Berlin

Fachgebiet Nachrichtenübertragung

Prof. Dr.-Ing. T. Sikora

Klausur im Lehrgebiet

Signale und Systeme

Blatt: 10

3 Zeitdiskrete Signale und Systeme

10 Punkte

3.1 PN-Diagramme zeitdiskreter Systeme

4 P

3 P

a) Gegeben sei das folgende PN-Diagramm eines zeitdiskreten Systems. Kreuzen Sie rechts die entsprechenden Eigenschaften des Systems an.

- b) Skizzieren Sie den Amplitudengang $A(\Omega)$ des Systems $(b_0 = 1)$. Achten Sie 1 P auf eine vollständige Achsenbeschriftung.
- c) Gehen Sie davon aus, dass das PN-Diagramm aus Teilaufgabe 3.1 a) die Polund Nullstellen eines entsprechenden zeitkontinuierlichen Systems nach der
 Abtastung zeigt. Skizzieren Sie im untenstehenden Koordinatensystem die PNVerteilung des Systems **vor** der Abtastung.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 11
Prof. DrIng. T. Sikora	am 25.02.2021	

3.2 Gegeben sei das folgende PN-Diagramm eines zeitdiskreten Systems.

a) Bestimmen Sie die Systemfunktion H(z) ($H_0 = 1$). 0,5 P

1 P

3,5 P

(= +1)(++1) = +3+3=2+++1 b)

$$A(3) = X(3) \left(\frac{3}{5}, -7(3) \right) - A(3) \left(\frac{3}{5}, \frac{45}{7}, \frac{45}{7}, \frac{45}{5}, \frac{45}{7} \right)$$

$$A(3) = X(3) \cdot \frac{3}{3} + \frac{3}{5}, \frac{45}{15}, \frac{45}{15}, \frac{45}{15}, \frac{45}{15}, \frac{45}{15}, \frac{45}{15}, \frac{45}{15}$$

$$y(n) = x(n-1) - 2x(n-2) - 2y(n-1) - y(n-2) - 1y(n-3)$$

c) Zerlegen Sie das gegegebene System in eine Reihenschaltung aus Allpass und 2 P minimalphasigen System.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 12
Prof. DrIng. T. Sikora	am 25.02.2021	

3.3 Die Impulsantwort eines FIR-Filters sei $h=\{2;-1;3\}$. Berechnen Sie die Antwort des Filters auf das Eingangssignal $x=\{2;-3;1\}$.

X+h= 34,-8,11,-10,3}

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 13
Prof. DrIng. T. Sikora	am 25.02.2021	