УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа _	P3110	К работе допущен <u>18.02.2021</u>
Студент	Романов Артём Максимович	Работа выполнена <u>05.03.2021</u>
Преподаватель Коробков М.П.		Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.01

Изучение электростатического поля

методом моделирования

1. Цель работы.

Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля на основе экспериментального моделирования распределения потенциала в слабо проводящей среде.

2. Измерительные приборы

Nº	Наименование	Предел	Цена	Класс	$\Delta_{\scriptscriptstyle M}$
		измерений	деления	точности	
1	Вольтметр цифровой	20 B	0.01 B/ дел	-	
	в составе				0,01 B
	комбинированного				0,016
	прибора АВ1				

3. Объект исследования

- Распределение потенциала в модели плоского конденсатора
- Распределение потенциала при наличии проводящего тела

4. Метод экспериментального исследования.

- 1. Однократные и многократные прямые измерения
- 2. Косвенные измерения

5. Рабочие формулы и исходные данные

$$ec{E}(ec{r}) = rac{ec{F}(ec{r})}{q}$$
 — силовая характеристика электрического поля

$$arphi(ec{r})=rac{W_\Pi(ec{r})}{q}$$
 — потенциал $A_{12}=q(arphi_1-arphi_2)$ — работа

$$ec{E}=-\mathrm{grad}\ arphi\equiv-ec{
abla}arphi$$
 - соотношения напряженности и потенциала электростатического $arphi_2-arphi_1=-\int_1^2ec{E}\,dec{\ell}$ - соотношения напряженности и потенциала электростатического

$$\vec{\nabla}\varphi = \hat{e}_x \frac{\partial \varphi}{\partial x} + \hat{e}_y \frac{\partial \varphi}{\partial y} + \hat{e}_z \frac{\partial \varphi}{\partial z}$$

$$ec{
abla} ec{\phi} = \hat{e}_x rac{\partial arphi}{\partial x} + \hat{e}_y rac{\partial arphi}{\partial y} + \hat{e}_z rac{\partial arphi}{\partial z}$$
 $\langle E_{12}
angle pprox rac{arphi_1 - arphi_2}{\ell_{12}} -$ средняя напряжённость

 $ec{j} = \sigma ec{E}$ - закон Ома в дифференциальной форме

$$\varphi(x) = \varphi_0 + Ex$$

$$\vec{\nabla} \cdot \vec{\imath} = 0$$

$$\vec{\nabla} \cdot \vec{j} = 0 \qquad \qquad \sigma(\vec{\nabla} \cdot \vec{E}) = 0 \Rightarrow \vec{\nabla} \cdot \vec{E} = 0 \qquad \vec{\nabla} \times \vec{E} = 0 \qquad \qquad \sigma' = \varepsilon_0 E_n \qquad \qquad \sigma' \approx -\varepsilon_0 \frac{\Delta \varphi}{\Delta \ell_n}$$

$$\vec{\nabla} \times \vec{E} = 0$$

$$\sigma' = \varepsilon_0 E_n$$

$$\sigma' \approx -\varepsilon_0 \frac{\Delta \varphi}{\Delta \ell_n}$$

Схематичное изображение электрического поля в плоском конденсаторе

6. Расчёт результатов косвенных измерений Задание 1

1) Расчёт величины напряженности в центре электролитической ванны и в окрестности одного из электродов.

$$\langle E_{\text{II}} \rangle \approx \frac{\varphi_1 - \varphi_2}{\ell_{12}} = \frac{9,34 - 5,34}{0,085 \text{ M}} = 47 \pm 7,9 \text{ B/M}$$

$$\langle E_{\text{OK}} \rangle \approx \frac{\varphi_1 - \varphi_2}{\ell_{12}} = \frac{3,34 - 1,34}{0,045 \text{ M}} = 44,44 \pm 1,4 \text{B/M}$$

2) Оценка поверхностной плотности электрического заряда на электродах по формуле

$$\sigma 1' \approx -\varepsilon_0 \frac{\Delta \varphi}{\Delta \ell_n} = -8.85 * 10^{-12} \frac{\Phi}{M} * \frac{1.34}{0.028 \text{ M}} \approx -4.23 * 10^{-10} \frac{\text{K} \pi}{M^2}$$

$$\sigma 2' \approx -\varepsilon_0 \frac{\Delta \varphi}{\Delta \ell_n} = -8.85*10^{-12} \frac{\Phi}{M} * \frac{2.66}{0.056 \text{ M}} \approx -4.20*10^{-10} \frac{\text{K}_{\pi}}{M^2}$$

3) Для конфигурации поля при наличии проводящего кольца найдём на построении области с минимальной E_{min} и максимальной E_{max} напряжённостью

 $\langle E_{min} \rangle = 0 \text{ B/M} - \text{внутри кольца, так как напряжение в нём постоянно, значит разница$ потенциалов равна 0 и $E_{min} = 0$

Точки E_{max} расположены справа и слева от кольца, т.к. там плотность эквипотенциальных

слева
$$E_{max} = \frac{6,69-5,69}{0.011} = 90\frac{\text{B}}{\text{m}}$$
 справа $E_{max} = \frac{7,69-6,69}{0.008} = 125\frac{\text{B}}{\text{m}}$

7. Расчёт погрешностей измерений (для прямых и косвенных измерений)

 $\varphi_1 - \varphi_2$:

2.
$$\Delta_{\varphi_1 - \varphi_2} = \sqrt{0.01^2 + 0.01^2} = 0.014B$$
1.
$$\varepsilon_{\varphi_1 - \varphi_2} = \frac{0.014}{2} * 100\% = 0.7\%$$
2.
$$\Delta_{\varphi_1 - \varphi_2} = \sqrt{0.01^2 + 0.01^2} = 0.014B$$
2.
$$\varepsilon_{\varphi_1 - \varphi_2} = \frac{0.014}{2.1} * 100\% = 0.7\%$$

2.
$$\varepsilon_{\varphi_1 - \varphi_2} = \frac{0.014}{2.1} * 100\% = 0.7\%$$

 l_{12} :

E:

1.
$$\varepsilon_{E} = \sqrt{\varepsilon_{\varphi_{1}-\varphi_{2}}^{2} + \varepsilon_{l_{12}}^{2}} = \sqrt{0.7^{2} + 1.6^{2}} = 1.7\%$$

$$\Delta_{E} = \frac{\varepsilon_{E}*E}{100} = \frac{1.7*47.05}{100} = 7.9 \frac{B}{M}$$

$$\varepsilon_{E} = \sqrt{\varepsilon_{\varphi_{1}-\varphi_{2}}^{2} + \varepsilon_{l_{12}}^{2}} = \sqrt{0.7^{2} + 3.1^{2}} = 3.2\%$$

$$\Delta_{E} = \frac{\varepsilon_{E}*E}{100} = \frac{3.2*44.44}{100} = 1.4 \frac{B}{M}$$

8. Графики

График 1 (приложение 2) – зависимость $\varphi = \varphi(X)$

9. Окончательные результаты

$$E_{\text{центра}} = (47 \pm 7.9) \frac{\text{B}}{\text{M}}, \varepsilon = 1.7 \%,$$
 $\alpha = 0.95$ $E_{\text{электрода}} = (44.44 \pm 1.4) \frac{\text{B}}{\text{M}}, \varepsilon = 3.2 \%,$ $\alpha = 0.95$

10. Выводы и анализ результатов работы

Задание 1: Построена схема эквипотенциальных и силовых линий, подсчитана напряжённость в центре ванны и на электроде. Подсчитана поверхностная плотность заряда вблизи левого электрода. Соотнося значения напряжённости, можно сделать вывод, что ближе к электродам они меньше т.к. электроды оказывают влияние на форму эквипотенциальных линий как проводящие тела, из-за чего линии не параллельны на всей плоскости ванне.

Задание 2: Построена схема эквипотенциальных и силовых линий, определены места наибольшей и наименьшей напряжённости и оценены их значения. Построен график зависимости потенциала от координаты для обоих заданий. По графику можно сделать вывод, что потенциал растёт линейно в зависимости от расстояния при отсутствии проводящего тела. Проводящее тело же останавливает рост потенциала, поэтому потенциал растёт быстрее на частях оси, на которых нет тела.

