Tipos compleios

eq < T >: secuencia de tipo T	T >: secue	ia de t	tipo T	
-------------------------------	------------	---------	--------	--

crear	$\langle \rangle, \langle x, y, z \rangle$	
tamaño	s , length(s)	
pertenece	$i \in s$	
ver posición	s[i]	
cabeza	head(s)	
cola	tail(s)	
concatenar	concat(s1, s2), s1 + s2	
subsecuencia	subseq(s, i, j), s[ij]	
setear posición	setAt(s, i, val)	
$\operatorname{conj} < T > :$ conjunto de tipo T		
crear	$ $ $\{\}, \{x,y,z\}$	
tamaño	c , length(c)	
pertenece	$i \in c$	
unión	$c1 \cup c2$	
intersección	$c1 \cap c2$	
diferencia	c1-c2	
dict <k, v="">: diccionario que asocia claves de tipo K con valores de tipo V</k,>		
crear	{}, {"juan" : 20, "diego" : 10}	
tamaño	d , length(d)	
pertenece (hay clave)	$k \in d$	
valor	d[k]	
setear valor	setKey(d, k, v)	
eliminar valor	delKey(d, k)	
tupla <t1,, tn="">: tupla de tipos T1,, Tn</t1,,>		
crear	$\langle x,y,z \rangle$	
campo	s[i]	
struct <campo1: campon:="" t1,,="" tn="">: tupla con nombres para los campos.</campo1:>		
crear	$\langle x:20,y:10\rangle$	
campo	s_x, s_y	

Precondición más débil (wp) La *precondición más débil* es la condición mínima necesaria antes de ejecutar una sentencia para garantizar que una postcondición dada se cumpla.

Lógica de Hoare
Una forma de razonar sobre la corrección de programas es a través de las triples de Hoare $\{P\}C\{Q\}$. El objetivo es obtener una fórmula lógica α tal que α es verdadera si y solo si $\{P\}C\{Q\}$ es verdadero.

Predicado $\det(E)$: Definición Dada una expresión E, llamamos $\det(E)$ a las condiciones necesarias para que E esté definida.

Predicado O^x : Definición Dada una expresión E, el predicado O^x se obtiene reemplazando...

Predicado Q_E^x : Definición. Dado un predicado Q, el predicado Q_E^x se obtiene reemplazando...

- Axiomas WP

 Axioma 1. $\operatorname{wp}(x:=E,Q) \equiv \operatorname{def}(E) \wedge Q_E^x$ Axioma 2. $\operatorname{wp}(\operatorname{skip},Q) \equiv Q$.

 Axioma 3. $\operatorname{wp}(S1;S2,Q) \equiv \operatorname{wp}(S1,\operatorname{wp}(S2,Q))$.

 Axioma 4. Si $S = \operatorname{if} B$ then S1 else S2 endif, entonces

$$wp(S,Q) \equiv def(B) \wedge_L ((B \wedge wp(S1,Q)) \vee (\neg B \wedge wp(S2,Q)))$$

■ Axioma 5. wp(while B do S endwhile, Q) $\equiv (\exists_{i>0})(H_i(Q))$ no podemos usar mecanicamente el Axioma 5 para demostrar la corrección de un ciclo con una cantidad no acotada a priori de iteraciones

Asignación a elementos de una secuencia

Aplicando el Axioma 1, obtenemos:

$$wp(b[i] := E, Q) \equiv wp(b := setAt(b, i, E), Q)$$
$$\equiv (def(b) \land def(i)) \land 0 \le i < |b| \land def(E) \land Q_{setAt(b, i, E)}^{b}$$

Dado que $0 \le i, j < |b|$, se sabe que:

 $\operatorname{setAt}(b, i, E)[j] = \begin{cases} E & \text{si } i = j \\ b[j] & \text{si } i \neq j \end{cases}$

Propiedades:

- Monotonía: Si Q implica R, entonces wp(S,Q) implica wp(S,R).
- Distributividad: $\operatorname{wp}(S, Q \wedge R)$ equivale a $\operatorname{wp}(S, Q) \wedge \operatorname{wp}(S, R)$.
- Excluded Miracle: wp(S, false) equivale a false.

Definición. Un predicado I es un invariante de un ciclo si:

- 1. I vale antes de comenzar el ciclo, y
- 2. Si vale $I \wedge B$ al comenzar una iteración arbitraria, entonces sigue valiendo I al finalizar la ejecución del cuerpo del ciclo.

Un invariante describe un estado que se satisface cada vez que comienza la ejecución del cuerpo de un ciclo y también se cumple cuando la ejecución del cuerpo del ciclo concluye. Teorema del Invariante. Si existe un predicado I tal que:

- 1. $P_C \Rightarrow I$,
- 2. $\{I \land B\}S\{I\} \iff (I \land B) \implies wp(S,I)$
- 3. $I \wedge \neg B \Rightarrow Q_C$,

entonces $\{P_C\}$ while B do S endwhile $\{Q_C\}$ es válida.

Función variante

La función variante representa una cantidad que se va reduciendo

- Si existe una función variante f_v tal que:
 - 1. $\{I \wedge B \wedge f_v = v_0\} S\{f_v < v_0\} \iff (I \wedge B \wedge f_v = v_0) \implies wp(S, f_v < v_0)$
 - 2. Si $I \wedge f_v \leq 0$ implica $\neg B$

Correctitud de un Programa Completo

Para demostrar la correctitud de un programa completo utilizando la lógica de Hoare, seguimos estos pasos:

1. Código antes del ciclo: Debemos demostrar que las precondiciones implican la precondición más débil del código previo al ciclo, es decir,

$$Pre \Rightarrow wp(C\acute{o}digo_previo, P_c)$$

2. Correctitud del ciclo: Utilizamos el teorema del invariante, ya que no podemos calcular la precondición más débil del ciclo en general. El teorema del invariante se expresa de la siguiente manera:

a)
$$P_c \Rightarrow I$$

$$(I \land B) \Rightarrow \operatorname{wp}(Ciclo, I)$$

$$(I \land \neg B) \Rightarrow Q_c$$

3. Código posterior al ciclo: Comprobamos que las postcondiciones del ciclo implican la precondición más débil del código posterior al ciclo, es decir.

$$Q_c \Rightarrow \text{wp}(C\'{o}digo_posterior, Post)$$

4. Conclusión: Si probamos estas tres cosas, podemos concluir, por corolario de monotonía, que el programa completo es correcto con respecto a la especificación:

$$Pre \Rightarrow wp(Programa_completo, Post)$$

Especificación y Relaciones de Fuerza

Especificación:

La especificación define qué es lo que debe hacer un algoritmo, en términos de relación entre sus entradas y sus salidas, sin determinar cómo lo hace. Las relaciones de fuerza entre especificaciones son importantes para entender cuán restrictiva o general es una especificación con respecto a otra.

Subespecificación:

Implica otorgar una precondición más restrictiva o una postcondición más débil que lo deducido del enunciado del problema. Una precondición más restrictiva excluye casos de entrada posibles. Una postcondición más débil permite soluciones no deseadas.

Sobreespecificación:

Consiste en proporcionar una postcondición más restrictiva o una precondición más débil que lo necesario. Una precondición más débil obliga al algoritmo a considerar casos innecesarios. Una postcondición más restrictiva limita las posibles soluciones.

Decimos que A es más fuerte que B cuando $A \to B$ es una tautología. También podemos afirmar que A fuerza a B o que B es más débil que A. Ejemplos:

- $p \wedge q$ es más fuerte que p.
- $p \lor q$ no es más fuerte que p.
- p es más fuerte que $p \to q$.
- lacksquare p no es más fuerte que q.
- False es la fórmula más fuerte de todas.
- True es la fórmula más débil de todas.

Truco algebraico para sacar términos del último rango

$$(\forall k : \mathbb{Z}) (i \leq k < |s| \longrightarrow_L p(k)) \equiv p(i) \land (\forall k : \mathbb{Z}) (i < k < |s|) \longrightarrow_L (p(k))$$
 Por otro lado, para sumatorias, tenemos que:
$$\sum_{k=i}^{|s|-1} p(k) = p(i) + \sum_{k=i+1}^{|s|-1} p(k)$$

Por otro lado, para sumatorias, tenemos que:
$$\sum_{k=i}^{|s|-1} p(k) = p(i) + \sum_{k=i+1}^{|s|-1} p(k)$$

 $ejemplo: \sum_{j=0}^{5} j = \sum_{j=0}^{4} j + 5$

Esto nos permite sacar el término correspondiente a i fuera de la sumatoria.