

Risk-Constrained Kelly Gambling

Optimization and Algorithms Project Presentation

Diogo Silva Luís Alves Rúben Tadeia Pedro Falcão

December 12, 2017

Supervisors

Prof. António Simões

Outline

Part I – Implementation in CVX

- Kelly Problem
- Risk-Constrained Kelly Problem
- Our implementation
- Results

Part II – The Optimal Strategy

- Problem Formulation
- Our implementation
- Results

Part I - Implementation in CVX

- 1. Kelly Problem
- 2. Risk-Constrained Kelly Problem
- 3. Our implementation
- 4. Results

1. Kelly problem

Implementation in CVX

1. Kelly problem

2. Risk-Constrained Kelly Problem

3. Our implementation

4. Results

 We consider the classic Kelly gambling problem with general distributions of outcomes.

 John Kelly proposed a systematic way to allocate a total wealth across a number of bets so as to maximize the long term growth rate when the gamble is repeated [1].

1. Kelly problem

Implementation in CVX

1. Kelly problem

Risk-Constrained Kelly Problem

3. Our implementation

4. Results

 With this strategy – Kelly optimal bets – there is a risk of the wealth dropping substantially from its original value before increasing.

The wealth growth is given by

$$w_t = (r_1^T b) \dots (r_{t-1} b)$$

with t equal to 1,2,... with I.I.D. returns.

1. Kelly problem

Implementation in CVX

1. Kelly problem

2. Risk-Constrained Kelly Problem

3. Our implementation

4. Results

• The goal is to chose b so that the wealth becomes larger.

• In Kelly gambling we want to find a b in order to maximize $E \log(r^T b)$, the growth rate of wealth.

$$maximize \qquad E \log(r^T b)$$

subject to
$$\mathbf{1}^T b = 1, b \ge 0$$

The solution of b optimal values is called Kelly Optimal bets.

Part I - Implementation in CVX

- 1. Kelly Problem
- 2. Risk-Constrained Kelly Problem
- 3. Our implementation
- 4. Results

2. Risk-Constrained Kelly Problem

Implementation in CVX

1. Kelly problem

2. Risk-Constrained Kelly Problem

3. Our implementation

4. Results

In Risk-Contrained Kelly we add a drawdown risk contraint:

maximize
$$E \log(r^T b)$$

subject to $\mathbf{1}^T b = 1, b \ge 0$
 $Prob(W^{min} < \alpha) < \beta$

The new contraint limits the probability of a drop in wealth to value α to be no more than β .

2. Risk-Constrained Kelly Problem

Implementation in CVX

1. Kelly problem

2. Risk-Constrained Kelly Problem

3. Our implementation

4. Results

 A bound of the drawdown risk is developed to make the problem easly solvable in CVX.

$$Prob(W^{min} < \alpha) < \alpha^{\lambda} = \beta$$

• It is valid as long α and β are between 0 and 1 and $\lambda = \frac{\log(\beta)}{\log(\alpha)}$.

2. Risk-Constrained Kelly Problem

Implementation in CVX

1. Kelly problem

2. Risk-Constrained Kelly Problem

3. Our implementation

4. Results

• The parameter λ is the risk aversion parameter.

A higher value means the problem only considers risk-free bets while a low value limits the ratio of variance to the mean growth.

Part I - Implementation in CVX

- 1. Kelly Problem
- 2. Risk-Constrained Kelly Problem
- 3. Our implementation
- 4. Results

3. Our implementation

Implementation in CVX

- 1. Kelly problem
- 2. Risk-Constrained Kelly Problem
- 3. Our implementation
 - 4. Results

• The Kelly gambling problem is a convex optimization problem since the objective is concave and the contraints are convex.

 We inserted the function to maximize and the contraints directly on CVX.

3. Our implementation

Implementation in CVX

1. Kelly problem

2. Risk-Constrained Kelly Problem

3. Our implementation

4. Results

· For the Kelly problem we used

maximize
$$\sum_{i=1}^{K} \pi_i \log(r^T b)$$
subject to
$$\mathbf{1}^T b = 1, b \ge 0$$

And for the Risk-constrained Kelly problem we used

Part I - Implementation in CVX

- 1. Kelly Problem
- 2. Risk-Constrained Kelly Problem
- 3. Our implementation
- 4. Results

Implementation in CVX

1. Kelly problem

2. Risk-Constrained Kelly Problem

3. Our implementation

4. Results

Wealth trajectories for the Kelly optimal bet.

Implementation in CVX

1. Kelly problem

2. Risk-Constrained Kelly Problem

3. Our implementation

4. Results

Wealth trajectories for the Risk-Constrained Kelly optimal bet.

Implementation in CVX

1. Kelly problem

2. Risk-Constrained Kelly Problem

3. Our implementation

4. Results

· Wealth trajectories for a random bet.

Implementation in CVX

- 1. Kelly problem
- 2. Risk-Constrained Kelly Problem
 - 3. Our implementation
 - 4. Results

- We can conclude that:
 - The Risk-Contrained Kelly with the selected parameters represent a conservative approach for betting;
 - Solving an optimization problem translates in a better final result given the contraints.

Part II – The Optimal Strategy

- 1. Problem Formulation
- 2. Our implementation
- 3. Results

The Optimal Strategy

1. Problem Formulation

2. Our mplementation

3 Regulte

· Only one bet;

- We cannot evaluate the performance of the optimal strategy;
- Still using Kelly gambling;

The Optimal Strategy

1. Problem Formulation

Our mplementatior

3 Results

• We have L hypothesis for vector π_i

• Consider no drawdown $\lambda = 0$

The Optimal Strategy

1. Problem Formulation

2. Our mplementation

3 Regulte

The goal is to chose b so that the wealth becomes larger.

In Kelly gambling we wanted to find a b in order to maximize $E \log(r^T b)$, the growth rate of wealth.

maximize
$$\pi_i \log(r^T b)$$

subject to $\mathbf{1}^T b = 1, b \ge 0$

• The solution of b optimal values cannot depend on π_i .

The Optimal Strategy

1. Problem Formulation

2. Our mplementation

3 Results

We came up with 2 solutions

Since we bet just one...

$$...r \in R_+$$

The First one:

$$\overline{\boldsymbol{\pi_i}} = \sum_{i=1}^{L} \left(\frac{1}{L} * \boldsymbol{\pi_i}\right) \qquad \begin{array}{c} maximize \ \overline{\boldsymbol{\pi_i}} * \log(r^T b) \\ b \\ subject \ to \\ \mathbf{1}^T b = 1, b \ge 0 \\ \mathbf{1}^T \boldsymbol{\pi_i} = 1, \boldsymbol{\pi_i} \ge 0 \end{array}$$

The Optimal Strategy

1. Problem Formulation

2. Our mplementation

3 Regulte

• It was an approximation of the L, π_i vectors;

 So in average we could still get the best probability outcome for the best value of the return matrix but with a low probability to happen;

The Optimal Strategy

1. Problem Formulation

Our mplementation

3. Results

The Second one:

$$\sum_{i=1}^{L} \left(\sum_{i=1}^{K} \boldsymbol{\pi_i} * log(r_i^T \boldsymbol{b}) \right)$$

maximize
$$\sum_{i=1}^{L} \left(\sum_{i=1}^{K} \boldsymbol{\pi_i} * log(r_i^T \boldsymbol{b}) \right)$$

subject to
$$\mathbf{1}^T b = 1, b \ge 0$$

 $\mathbf{1}^T \boldsymbol{\pi_i} = 1, \boldsymbol{\pi_i} \ge 0$

The Optimal Strategy

1. Problem Formulation

2. Our mplementation

3 Results

Wrapping up our final formulation of the problem is:

subject to
$$\mathbf{1}^T b = 1, b \ge 0$$

 $\mathbf{1}^T \boldsymbol{\pi_i} = 1, \boldsymbol{\pi_i} \ge 0$

Which would give us a sub-optimal solution, instead of na optimal, since it depends on the π_i vector.

Part II – The Optimal Strategy

- 1. Problem Formulation
- 2. Our implementation
- 3. Results

2. Our Implementation

The Optimal Strategy

1. Problem Formulation

2. Our implementation

3 Results

$$maximize\ Elog(r^Tb) - \sum_{K=1}^{N-1} \emptyset_K(b_K)$$

subject to
$$\sum b = 1$$
, $b \ge 0$

How to compute Ø???

2. Our Implementation

The Optimal **Strategy**

2. Our implementation

$$\emptyset_{k \ left} = \beta * x + b_{left}$$

$$\emptyset_{k \ left} = \beta * x + b_{left}$$

$$\emptyset_{k \ right} = \beta * x + b_{right}$$

 $b_{left}?b_{right}?$

$$\emptyset_k = 0$$

$$b_{left} = -\beta * b_{ref}$$
; $b_{right} = -\alpha * b_{ref}$

2. Our Implementation

The Optimal Strategy

1. Problem Formulation

2. Our implementation

3. Results

$$\phi_k = \frac{\phi_{k \; left} + abs(\phi_{k \; left})}{2} + \frac{\phi_{k \; right} + abs(\phi_{k \; right})}{2}$$

Part II – The Optimal Strategy

- 1. Problem Formulation
- 2. Our implementation
- 3. Results

The Optimal Strategy

1. Problem Formulation

Our implementation

3. Results

β	α	b_{ref}	b	ϕ	f
-0,0091	0,00222	3,15E-02	5,58E-10	1,44E-05	0,02599
-0,0126	0,00313	3,80E-02	3,90E-02	6,32E-11	0,02599
-0,0026	0,00164	1,03E-11	3,14E-10	6,22E-05	0,02267
-0,0062	0,00901	6,71E-02	1,02E-01	1,82E-04	0,02530
-0,0043	0,00816	4,35E-02	1,14E-09	2,34E-05	0,02596
-0,0057	0,00780	5,36E-11	3,07E-10	2,96E-04	0,02267
-0,0075	0,00175	2,40E-02	1,14E-01	2,45E-05	0,02510
-0,0068	0,00136	2,49E-02	8,61E-10	1,79E-05	0,02517
-0,0165	0,00439	3,60E-02	8,07E-10	8,88E-06	0,02597
-0,0084	0,00036	7,34E-12	3,09E-10	1,35E-05	0,02267
-0,0124	0,00364	3,14E-02	7,27E-10	2,42E-05	0,02572
-0,0193	0,00194	7,27E-02	3,37E-01	6,69E-04	0,02491
-0,0159	0,00843	5,83E-12	2,66E-10	3,20E-04	0,02267
-0,0025	0,00382	1,47E-11	2,77E-10	1,45E-04	0,02267
-0,0005	0,00227	5,23E-12	2,33E-10	8,61E-05	0,02267
-0,0133	0,00901	3,92E-11	8,52E-10	3,42E-04	0,02267
-0,0153	0,00580	5,52E-02	2,50E-02	2,64E-04	0,02576
-0,0159	0,00884	3,56E-02	8,36E-02	2,07E-05	0,02596
-0,0084	0,00767	6,72E-02	3,00E-01	2,46E-04	0,02529
0,0000	0,00000	4,73E-01	4,51E-10	0	-0,01161

Thank you for your attention

Risk-Constrained Kelly Gambling

Optimization and Algorithms Project Presentation

Diogo Silva Luís Alves Rúben Tadeia Pedro Falcão

December 12, 2017

Supervisors

Prof. António Simões