Генеративные модели

Виктор Китов

victorkitov.github.io

Курс поддержан фондом 'Интеллект'

Победитель конкурса VK среди курсов по IT

Содержание

- 1 Минимизация ожидаемого штрафа и числа ошибок

Штрафы за неправильные классификации

- Предсказываем $y \in \{1, 2, ... C\}$
- λ_{vf} штраф за прогноз класса y классом f.
- Примеры задач, где штрафы важны:
 - медицина: классификация болезни, методов лечения
 - финансы: детекция мошеннических сделок
 - почта: фильтрация спама
 - сети: обнаружение вторжений (intrusion detection)

Матрица штрафов

• Матрица штрафов

	f = 1	f=2	• • •	f = C
y = 1	λ_{11}	λ_{12}		λ_{1C}
y=2	λ_{21}	λ_{22}		λ_{2C}
		• • •		
y = C	λ_{C1}	λ_{C2}	• • •	λ_{CC}

• Ожидаемая цена прогноза $\widehat{y}(x) = f$:

$$\mathcal{L}(f) = \sum_{y} p(y|x) \lambda_{yf}$$

- Байесовское правило минимального риска
 - англ. Bayes minimum risk decision rule

$$\widehat{y}(x) = \arg\min_{f} \mathcal{L}(f)$$

УПРОЩЕНИЕ 1: за *любые* ошибки на классе y платим λ_y .

$$\lambda_{yf} \equiv \lambda_y \mathbb{I}[y \neq f]$$

УПРОЩЕНИЕ 1: за *любые* ошибки на классе y платим λ_y .

$$\lambda_{yf} \equiv \lambda_y \mathbb{I}[y \neq f]$$

Матрица штрафов:

	f = 1	f=2	• • •	f = C
y=1	0	λ_1		λ_1
y = 2	λ_2	0		λ_2
• • •				
y = C	λ_{C}	λ_{C}		0

• Ожидаемый штраф за прогноз f:

$$\mathcal{L}(f) = \sum_{y} p(y|x)\lambda_{y}\mathbb{I}[f \neq y] = \sum_{y} p(y|x)\lambda_{y} - p(f|x)\lambda_{f}$$

• Байесовское правило минимального риска становится:

$$\widehat{y}(x) = \arg\min_{f} \mathcal{L}(f) = \arg\min_{f} \left(\underbrace{\sum_{y} p(y|x)\lambda_{y}}_{f} - p(f|x)\lambda_{f} \right) =$$

$$= \arg\min_{f} \left(-p(f|x)\lambda_{f} \right) = \arg\max_{f} \lambda_{f} p(f|x)$$
(1)

 Важна не только вероятность класса, но и штраф при пропуске класса.

- УПРОЩЕНИЕ 2: одинаковый штраф при любых ошибках $\lambda_v \equiv \lambda \, \forall y$.
- Байесовское правило минимального риска становится

$$\widehat{y}(x) = \arg\max_{f} p(f|x) \tag{2}$$

- Это Байесовское правило минимальной ошибки.
 - т.к. прогноз максимально вероятным классом минимизирует ожидаемое число ошибок.

- УПРОЩЕНИЕ 2: одинаковый штраф при любых ошибках $\lambda_v \equiv \lambda \, \forall y$.
- Байесовское правило минимального риска становится

$$\widehat{y}(x) = \arg\max_{f} p(f|x) \tag{2}$$

- Это Байесовское правило минимальной ошибки.
 - т.к. прогноз максимально вероятным классом минимизирует ожидаемое число ошибок.
- УПРОЩЕНИЕ 3: Если x и y независимы, то p(f|x) = p(f) и (2) становится

$$\widehat{y}(x) = \arg\max_{f} p(f|x) = \arg\max_{f} p(f)$$

Генеративные и дискриминативные модели

$$\widehat{y}(x) = \arg \max_{y} p(y|x) = \arg \max_{y} \frac{p(x,y)}{p(x)} = \arg \max_{y} p(y)p(x|y)$$

Можно строить прогноз по

- p(y|x): дискриминативная модель
 - моделируем только то, что нужно; простота оценивания
- p(y)p(x|y) = p(x,y): генеративная модель
 - p(y) легко оценить, p(x|y) сложно
 - возможное упрощение: предположение наивного Байеса

$$p(x|y) = p(x^{1}|y)p(x^{2}|y)...p(x^{D}|y)$$

- ullet можно подстраивать модель под изменяемые p(y)
- \bullet если x^i пропущено, то оценивается

$$p(y) p(x \setminus \{x^i\} | y) = p(y) \int_{x^i} p(x|y) dx^i$$

• легко фильтровать выбросы - малое p(x)

Содержание

- 🕕 Минимизация ожидаемого штрафа и числа ошибок
- 2 Гауссов классификатор
- 3 Генеративные модели классификации текстов

Гауссов классификатор

• Гауссов классификатор - генеративная модель с $x|y \sim \mathcal{N}(\mu_{v}, \sigma_{v}^{2})$:

$$p(x|y) = \frac{1}{(2\pi)^{D/2} |\Sigma_y|^{1/2}} exp\left\{ -\frac{1}{2} (x - \mu_y)^T \Sigma_y^{-1} (x - \mu_y) \right\}$$

Гауссов классификатор

• Гауссов классификатор - генеративная модель с $x|y \sim \mathcal{N}(\mu_y, \sigma_v^2)$:

$$p(x|y) = \frac{1}{(2\pi)^{D/2} |\Sigma_y|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu_y)^T \Sigma_y^{-1} (x - \mu_y) \right\}$$

• Дискриминатная функция

$$\log p(y|x) = \log p(x|y) + \log p(y) - \log p(x)$$

$$= -\frac{1}{2}(x - \mu_y^T)\Sigma_y^{-1}(x - \mu_y) - \frac{1}{2}\log|\Sigma_y|$$

$$-\frac{D}{2}\log(2\pi) + \log p(y) - \log p(x)$$

Гауссов классификатор

• Гауссов классификатор - генеративная модель с $x|y \sim \mathcal{N}(\mu_{V}, \sigma_{V}^{2})$:

$$p(x|y) = \frac{1}{(2\pi)^{D/2} |\Sigma_y|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu_y)^T \Sigma_y^{-1} (x - \mu_y) \right\}$$

• Дискриминатная функция

$$\log p(y|x) = \log p(x|y) + \log p(y) - \log p(x)$$

$$= -\frac{1}{2}(x - \mu_y^T)\Sigma_y^{-1}(x - \mu_y) - \frac{1}{2}\log|\Sigma_y|$$

$$-\frac{D}{2}\log(2\pi) + \log p(y) - \log p(x)$$

• Уберем общие для всех дискр. ф-ций константы:

$$g_{y}(x) = \log p(y) - \frac{1}{2} \log |\Sigma_{y}| - \frac{1}{2} (x - \mu_{y})^{T} \Sigma_{y}^{-1} (x - \mu_{y})$$
 (3)

Практическое применение

• Заменяем $p(y), \mu_{v}, \Sigma_{v}$ их оценками макс. правдоподобия:

$$\widehat{p}(y) = \frac{N_y}{N}, \quad \widehat{\mu}_y = \frac{1}{N_y} \sum_{n: y_n = y} x_n$$

$$\widehat{\Sigma}_y = \frac{1}{N_y} \sum_{n: y_n = y} (x_n - \widehat{\mu}_y) (x_n - \widehat{\mu}_y)^T$$

- Модель опирается на предположение $x|y \sim \mathcal{N}(\mu_y, \sigma_y^2)$, в частности, унимодальность распределения.
- p(y) : 1 параметр, μ_{y} : D параметров
- Σ_y : $\frac{D(D+1)}{2}$ параметров
- Всего параметров для y = 1, 2, ... C:

$$C\left(1+D+\frac{D(D+1)}{2}\right)$$

Упрощение модели

- Гауссов классификатор квадратично зависит от #признаков.
- Упрощающие предположения:
 - $\Sigma_1, \Sigma_2, ... \Sigma_C$ диагональные (naive Bayes)
 - уменьшить #признаков (отбор признаков / снижение размерности)
 - $\Sigma_1 = \Sigma_2 = \dots = \Sigma_C = \Sigma$
 - $\Sigma_1 = \alpha_1 \Sigma$, $\Sigma_2 = \alpha_2 \Sigma$, ... $\Sigma_C = \alpha_C \Sigma$.

Регуляризация модели

- Если число наблюдений класса y мало, а D велико, то Σ_y может получиться вырожденной.
- Регуляризация для обратимости и плавного контроля сложности:

$$\Sigma_y' = \Sigma_y + \lambda I$$

$$\Sigma_y' = \Sigma_y + \lambda \operatorname{diag}\{\Sigma_y\}$$

$$\lambda > 0$$

QDA vs. LDA

Метод Гауссова классификатора называется:

- квадратичным дискриминантным анализом, когда $\Sigma_1, \Sigma_2, ... \Sigma_C$ произвольные.
 - границы между классами квадратичные¹
- ullet линейным дискриминантным анализом, когда $\Sigma_1 = \Sigma_2 = ... = \Sigma_C$ общие
 - др. название линейный дискриминант Фишера
 - границы между классами линейные²

 $^{^{1}}$ Докажите.

²Докажите

Линейный и квадратичный дискриминант

LDA (вверху) и QDA (внизу): p(x|y), границы.

Содержание

- 1 Минимизация ожидаемого штрафа и числа ошибок
- 2 Гауссов классификатор
- 3 Генеративные модели классификации текстов

Токены в текстах

Требуется представить текст вектором $\in \mathbb{R}^D$ Будем учитывать встречаемость D токенов $w_1, w_2, ... w_D$

- в простейшем случае: все уникальные слова языка
 - можно в разных формах или нормализованной
 - единственное число, именительный падеж, начальная форма глагола.
- убрать слишком частые слова и слишком редкие
- убрать неинформативные "стоп-слова" из словаря
 - а, но, если, конечно, зато, или, ...

Токены в текстах

- можно ограничить словами предметной области
- можно добавить биграммы/триграммы:
 - мне фильм не понравился -> 'мне фильм', 'фильм не', 'не понравился'.
 - мне фильм не понравился -> 'мне фильм не', 'фильм не понравился'.
- либо можно добавить только коллокации (неслучайно часто совстречающиеся слова)
 - линейная регрессия показала точность... -> 'линейная регрессия'

$$\frac{p(w_1w_2)}{p(w_1)p(w_2)} > threshold$$

Генеративные модели классификации текстов

- Генеративные модели классификации текстов:
 - Модель Бернулли
 - $x^i = \mathbb{I}[w_i$ встретилось в документе]
 - Мультиномиальная
 - $x^{i} = [$ сколько раз w_{i} встретилось в документе]
- Могут применяться и в др. областях:
 - изображения (кодирование bag-of-visual-words)
 - ДНК цепочка нуклеотидов
 - покупки в магазине
 - использованные услуги в тарифе

Модель Бернулли³

- w₁, w₂, ...w_D токены
- \bullet $x \in \mathbb{R}^D$, $x^d = \mathbb{I}[w_d]$ встретилось в документе], $d = \overline{1,D}$
- N = #[документов $], N^y := \#[$ документов класса y]
- $N_d^y = \#[$ документов класса y, содержащих d-й токен]
- $\theta_d^y = p(x^d = 1|y)$
- Частотные оценки (макс. правдоподобия):

$$p(y) \approx \frac{N^y}{N}, \qquad \theta_d^y \approx \frac{N_d^y}{N^y}$$

³Является ли она линейным классификатором?

Модель Бернулли⁶

• Решающее правило (минимальной ошибки):

$$\widehat{y}(x) = \underset{y}{\operatorname{arg max}} p(y)p(x|y)$$

- ullet Генерация документа класса y: для каждого токена w_d генерируется его присутствие в документе $\sim Bernoulli(heta_y^d)$.
 - не зависит от встречаемости др. токенов (naive Bayes)
- $p(x|y) = \prod_{d=1}^{D} (\theta_d^y)^{x^d} (1 \theta_d^y)^{1-x^d}$
- ullet Сглаживание Лапласа 4,5 : $heta_y^d = rac{N_y^d + lpha}{N^y + 2lpha}$

⁴Проинтерпретируйте добавлением новых наблюдений в выборку.

⁵Как сглаживать, чтобы приближать к априорному распределению слов?

⁶Оцените сложность обучения модели Бернулли.

Мультиномиальная модель

- W₁, W₂, ... W_D токены
- Решающее правило (минимальной ошибки):

$$\widehat{y}(x) = \underset{y}{\operatorname{arg max}} p(y)p(x|y)$$

- ullet $x \in \mathbb{R}^D$, $x^i =$ [сколько раз w_i встретилось в документе].
- Генерация документа класса y: для каждой словопозиции $i=1,2,...n_{document}$ сгенерировать токен $z_i \sim \textit{Categorical}\left(\theta_1^y,\theta_2^y,...\theta_D^y\right).$
- $\theta_i^y = [$ вероятность w_i на словопозиции]
 - не зависит от встречаемости др. токенов (naive Bayes)

Мультиномиальная модель

$$p(x|y) = rac{\left(\sum_i x^i
ight)!}{\prod_i (x^i)!} \prod_{i=1}^D \left(heta_i^y
ight)^{x^i}$$
 мультиномиальное распределение

Интерпретация мультиномиального коэффициента:

- $(\sum_i x^i)! = n!$ число перестановок различимых токенов
- перестановки токена 1 неразличимы => делим на $(x^1)!$
- перестановки токена 2 неразличимы => делим на $(x^2)!$
- ... в итоге: $\frac{(\sum_i x^i)!}{\prod_i (x^i)!}$ #способов расставить $w_1, ... w_D$ в количествах $x^1, ... x^D$ по $n = \sum_i x^i$ ячейкам.

⁷Является ли она линейным классификатором?

Вывод мультиномиального коэффициента

#число способов, как можно расставить D слов по n позициям в количествах $x_1, ... x_D$:

$$C_{x_{1}}^{n}C_{x_{2}}^{n-x_{1}}...C_{x_{D-1}}^{n-x_{1}-...-x_{D-2}}C_{x_{D}}^{n-x_{1}-...x_{D-1}}$$

$$= \frac{n!}{x_{1}!(n-x_{1})!} \times \frac{(n-x_{1})!}{x_{2}!(n-x_{1}-x_{2})!} \times$$

$$... \times \frac{(n-x_{1}-x_{D-2})!}{x_{D-1}!(n-x_{1}-...x_{D-1})!} \frac{(n-x_{1}-...-x_{D-1})!}{x_{D}!(n-x_{1}-...-x_{D})!}$$

$$= \frac{\left(\sum_{i} x^{i}\right)!}{\prod_{i} (x^{i})!}$$

Оценки параметров 10

- Частотные оценки (макс. правдоподобия):
 - $\widehat{p}(y) = \frac{N^y}{N}$, где
 - N=#[документов]
 - $N^{y} = \#[$ документов $\in y]$,
 - ullet $heta_i^ypprox n_i^y/n^y$, где
 - $n_i^y = \#$ [токен w_i встречался в документах∈ y],
 - $n^{y} = \#[$ токенов в документе $\in y]$,
- Сглаживание Лапласа^{8,9}:

$$\theta_y^d = \frac{n_{yd} + \alpha}{n_y + \alpha D}$$

⁸Проинтерпретируйте добавлением новых наблюдений в выборку.

 $^{^{9}}$ Как сглаживать, чтобы приближать к априорному распределению слов?

¹⁰Оцените сложность обучения мультиномиальной модели.

Заключение

- Байесовское правило
 - минимального риска: минимизирует ожидаемые потери
 - минимальной ошибки: минимизирует #ошибок
 - оптимально в случае одинакового штрафа для любых ошибок
- Генеративные модели моделируют p(y)p(x|y) = p(x,y).
- Предположение наивного Байеса:

$$p(x|y) = p(x^{1}|y)p(x^{2}|y)...p(x^{D}|y)$$

- Дискриминативные модели моделируют только p(y|x).
 - предпочтительны в большинстве случаев
- Модели Бернулли и мультиномиальная имеют линейную относительно длин текстов сложность оценивания.
 - естественный бейзлайн для классификации текстов.