Rappels

Définition d'une fonction : f[x] := ...

Les fonctions prédéfinies par Mathematica se note avec une majuscule : Sin, Cos, ... $\sin x$ par exemple se note Sin[x]

Q1 Rentrer la fonction qui à x associe $\sin x + \sin 2x$ puis tracer la courbe de f, x variant de 0 à 2π

Listes : $\{a,b,c\}$ correspond à la liste mathématique (a,b,c) Table $[f[k], \{k,a,b\}]$ renvoit la liste des f(k), k variant de a à b Map [f,L] applique la fonction f à chaque élément de la liste L

Q2 Le coefficient $\binom{n}{p}$ se note Binomial [n,p] en mathematica Rentrer la fonction f qui à n associe la liste $\binom{n}{0}$, $\binom{n}{1}$, $\binom{n}{2}$, ..., $\binom{n}{n}$)

Q3 Taper la commande ci dessous et interpréter : $\label{lefn} {\tt Table[f[n],\{n,0,10\}]} \// {\tt TableForm}$

Problème

Soient f : $x \mapsto \text{valeur approchée de } \frac{1-x}{2-x} \text{ et } \Delta \text{ la droite d'équation } y = x$

Q 4 Tracer la courbe de f et Δ sur un même graphique, x et y variant de -1,1 à 5 On se mettra en repère orthonormé et on utilisera des couleurs. On définit une suite de façon récurrente par : $u_0 = 2,75$ et pour tout $n \in N$, $u_{n+1} = f(u_n)$

Q 5 Construire la liste L1= ($u_0, u_1, ..., u_{20}$) en utilisant NestList

Q 6 Rentrer $g: x \mapsto ((x, x), (x, f(x)))$

Q 7 Appliquer la fonction g à la liste L1

Q 8 Que fait la commande Flatten?

Q 9 Construire $L = ((u_0, u_0), (u_0, u_1), (u_1, u_1), (u_1, u_2), ..., (u_{20}, u_{21}))$

 ${f Q}$ 10 Tracer L et la courbe de la question Q 4 sur un graphique dont on donnera un nom : utiliser la commande Show qui permet de tracer deux courbes sur un même graphique