Same State, Different Task: Continual Reinforcement Learning without Interference

RL 논문 리뷰 스터디 10기 민예린 2023.03.20

Contents

- 1 Introduction
- 2 Related work
- 3 COntinual RL Without ConfLict
- 4 Experiments

Introduction

Catastrophic forgetting

A key challenge in CL is catastrophic forgetting, which arises when performance on a previously mastered task is reduced when learning a new task.

Interference

we call "interference" which can in turn induce forgetting, as the agent directly optimizes for an opposing policy.

COntinual RL Without ConfLict (OWL)

- Previous <u>CRL methods</u> used <u>different environments as different tasks</u> then the agents can learn that the different state spaces correspond to different optimal behaviors and so interference is rarely exhibited.
- We show that <u>existing CL methods based on single neural network</u> predictors with <u>shared replay buffers fail</u> in the presence of interference.
 - existing replay based methods such as (Rolnick et al. 2019) fail to address this issue, as the experience replay buffer will contain tuples of the same state-action pairs but different rewards for different tasks.
 - Thus, the agent will not converge.
- OWL makes use of <u>shared feature extraction layers</u>, while acting based on <u>separate independent</u> <u>policy heads</u>.

Related Work

Continual Learning

Continual Learning (CL) considers the problem of training an agent sequentially on a set of tasks while seeking to retain performance on all previous tasks.

figure 1. Domain adaptation and continual learning in semantic segmentation figure 2. Brain-inspired replay for continual learning with artificial neural networks

Continual Reinforcement Learning

Observation and Interference

• This <u>observation</u> has <u>important</u> consequences: methods which are <u>task agnostic and do not condition on the task or do not use task specific parameters</u> are susceptible to interference.

Observation 4.1. Consider two tasks \mathcal{T}_i and \mathcal{T}_j . Let both tasks' input distributions $p_k(X)$ share the same support but have different conditional distributions $p_k(Y|X) = \mathcal{N}(f^k(X), \beta^{-1})$, where f^k is a mean function with $f^i \neq f^j$ and β^{-1} is data noise. Then the multi-task distribution is bi-modal and using a Gaussian likelihood will result in interference.

 Consider a partially observable MDP (<u>POMDP</u>) where we receive an initial observation but <u>do not</u> know the goal location or reward function then an <u>agent might require different policies for each task</u>

COntinual RL Without ConfLict (OWL)

Key insight

- 1) we can use a single network with a <u>shared feature extractor but multiple heads</u>, parameterized by linear layers to fit individual tasks.
- 2) we flush the experience replay buffer when starting to learn in a new task.

Factorized Q-Functions

To address forgetting in the shared neural network feature extractors we use regularization methods.

Algorithm 1: OWL: Training

Input: Tasks $\mathcal{T} = \{\mathcal{T}_i\}_{i=1}^M$.

Initialize: θ and ϕ , $\Omega^Q = \Omega^\pi = \emptyset$.

for t = 1, 2, ..., M do

1. See Task \mathcal{T}_t

shared

- 2. Train Q-function with parameters $\{\theta_i, \theta_i\}$ and regularization Ω^Q .
- if A is continuous then
 - 3. Train policy with parameters $\{\phi_z, \phi_i\}$ with regularization Ω^{π} .
- 4. Calculate Q-function EWC regularization and $\Omega^Q := \{\mathcal{L}^Q_{\text{EWC}}, \Omega^Q\}.$
- if A is continuous then
 - 5. Calculate policy EWC regularization and $\Omega^{\pi} := \{\mathcal{L}_{\text{EWC}}^{\pi}, \Omega^{\pi}\}.$
- 6. Empty the experience reply buffer $\mathcal{D} = \emptyset$.
- 7. Evaluate according to Algorithm 2.

- As we see more and more tasks new heads can easily be added and so we do not need to pre-specify the number of tasks or policy heads M ∈ {1, ..., ∞}.
- slowing down learning on the weights important for those tasks.

Elastic Weight Consoliation(Kirkpatrick et al., 2017)

Selecting Policies as a Multi-Armed Bandit Problem

At test time we do not tell OWL which task it is being evaluated on.

- We consider the set of arms M to be the set of policies which can be chosen to act at each time step of the test task.
- The aim is to find the policy which achieves the highest reward on a given test task.

Algorithm 2: OWL: Testing

Input: tasks seen so far $\mathcal{T} = \{\mathcal{T}_1, \dots, \mathcal{T}_{\tau}\}$, Q-functions $\{\phi_i\}_{i=1}^M$, step size η , maximum number of timesteps T.

Initialize: \mathbf{p}_{ϕ}^{1} as a uniform distribution, s_{1} as the initial state of the test task.

for
$$\mathcal{T}_j \in \mathcal{T}$$
 do

for
$$t = 1, ..., T - 1$$
 do

- 1. Select $i_t \sim \mathbf{p}_{\phi}^t$, and set $\pi_{\text{test}} = \pi_{\phi_{i_t}}$.
- 2. Take action $a_t \sim \pi_{\text{test}}(s_t)$, and receive reward r_t
- and the next state s_{t+1} from \mathcal{T}_j . 3. Use Equation 2 to update \mathbf{p}_{ϕ}^t with $l_{i_t}^t =$

Experiments

Experiments (1)

Experiments (2)

Q&A