目 录

_,	实验要求:	2
=,	实验步骤:	2
	1.PLL 锁相环简介	2
	2 QuartusII 配置 PLL	2
	3 生成波形数据文件	5
	4.QuartusII 配置 ROM	7
	5.DA 模块	9
	6.项层设计文件框图	. 11
三、	DE0 外接引脚说明	.13

基于 FPGA 的信号发生器

一、实验要求:

- 1. 用 PLL 生成 100M 时钟作为计数器计数脉冲,利用计数器(如 74161 等) 或硬件描述语言生成的计数模块的输出依次扫描 ROM 的地址端读取 ROM 内容。
 - 2. 配置宽度为 8 位的 ROM, 并在 ROM 中存储 256 个地址的正弦波数据。
- 3. 将 ROM 输出的数字信号通过 DA 模块(AD9708)转换为模拟信号,利用示波器显示波形。

附加要求: 利用控制开关控制波形切换,比如当拨动开关置为 0 时,输出正弦波,当拨动开关置为 1 时,输出三角波。

二、实验步骤:

1. PLL 锁相环简介

锁相环(PLL: Phase-locked loops)是一种利用反馈(Feedback)控制原理实现的频率及相位的同步技术,其作用是将电路输出的时钟与其外部的参考时钟保持同步。当参考时钟的频率或相位发生改变时,锁相环会检测到这种变化,并且通过其内部的反馈系统来调节输出频率,直到两者重新同步,这种同步又称为"锁相"。其原理图如下。

其中:

- PD: 鉴相器 LPF: 低通滤波器 VCO: 压控振荡器 DIV: DIV 分频器 锁相环具有以下的特征:
 - a) 锁定是无剩余频差;
 - b) 具有良好的窄带载波跟踪性能;
 - c) 具有良好的宽带调制跟踪性能;

2 QUARTUSII 配置 PLL

PLL 调用步骤:

2.1 打开一个工程,建立原理图文件(plltest.bdf)做顶层文件

2.2 打开 MegaWizard Plug

2.3 创建一个 Megafunction。选第一项,点 Next

2.4 创建 PLL。1.左边选中 I/O 栏下的"ALTPLL"; 2.选择 FPGA 系列; 3.为生成的 PLL 选择语言, AHDL, VHDL, Verilog HDL 三种可以任选一种;实验中选择 VHDL 或 Verilog HDL。4. PLL 命名,此处命名为"PLL"。

2.5 进入 PLL 参数定义。根据参数需要选择 PLL 设置。

2.7 生成 PLL。参数设置完毕后,单击 finish 按钮生成 PLL 功能框图。

3 生成波形数据文件

3.1 利用 MIF 软件(WaveToMif_V1.0.exe) 生成波形数据

A) 选择数据位宽、深度、倍频和波形类型

B) 单击生成文件框中的一键生成,保存MIF文件

4. QUARTUSII 配置 ROM

4.1 找到 ROM-1PORT, 并创建 rom 文件:

4.2 配置 ROM 空间的位宽和字长:

4.3 找到 MIF 波形文件路径:

5. DA 模块

5.1 AD/DA 模块

5.2 D/A 芯片 AD9708 原理

5.2.1 原理图

5.2.2 工作原理

AD9708 输出的一对差分电流信号先经过滤波器,再经过运放电路得到一个单端的模拟电压信号。图中 RV1 为滑动变阻器,可以调节输出的电压范围,使输出的电压范围在-5V 至+5V 之间。

5.2.3 引脚配置

A) D/A 模块外接引脚

VCC 5V 1 2 GND AD D0 3 4 AD D1 AD D2 7 8 AD D3 AD D4 9 10 AD D5 AD OTR 11 12 AD CLK AD OTR 13 14 DA CLK DA D7 17 18 DA D6 DA D5 19 20 DA D4 DA D3 21 22 DA D4 DA D1 23 24 DA D0 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

B) FPGA 外接引脚

6. 顶层设计文件框图

6.1 原理框图

6.2 顶层电路原理图

6.3 示波器显示

6.3.1 正弦波

6.3.2 三角波

三、DEO 外接引脚说明

按钮开关与 Cyclone III FPGA 的连接按钮开关的引脚分配

信号名	FPGA 引脚号	说明

BUTTON [0]	PIN_ H2	Pushbutton[0]
BUTTON [1]	PIN_ G3	Pushbutton[1]
BUTTON [2]	PIN_ F1	Pushbutton[2]

拨动开关与 CycloneIII FPGA 的连接

拨动开关的引脚分配

信号名	FPGA 引脚号.	说明
SW[0]	PIN_J6	Slide Switch[0]
SW[1]	PIN_H5	Slide Switch[1]
SW[2]	PIN_H6	Slide Switch[2]
SW[3]	PIN_G4	Slide Switch[3]
SW[4]	PIN_G5	Slide Switch[4]
SW[5]	PIN_J7	Slide Switch[5]

SW[6]	PIN_H7	Slide Switch[6]
SW[7]	PIN_E3	Slide Switch[7]
SW[8]	PIN_E4	Slide Switch[8]
SW[9]	PIN_D2	Slide Switch[9]

LED 灯与 Cyclone III FPGA 的连接

LED 灯的引脚分配

信号名	FPGA 引脚号	说明
LEDG[0]	PIN_J1	LED Green[0]
LEDG[1]	PIN_J2	LED Green[1]

LEDG[2]	PIN_J3	LED Green[2]
LEDG[3]	PIN_H1	LED Green[3]
LEDG[4]	PIN_F2	LED Green[4]
LEDG[5]	PIN_E1	LED Green[5]
LEDG[6]	PIN_C1	LED Green[6]
LEDG[7]	PIN_C2	LED Green[7]
LEDG[8]	PIN_B2	LED Green[8]
LEDG[9]	PIN_B1	LED Green[9]

HEX0

七段数码管与 Cyclone III FPGA 芯片的连接示意图

七段数码管每个字段的相应编号

七段数码管的引脚配置

信号名	FPGA 引脚号	说明
HEX0_D[0]	PIN_E11	Seven Segment Digit 0[0]
HEX0_D[1]	PIN_F11	Seven Segment Digit 0[1]
HEX0_D[2]	PIN_H12	Seven Segment Digit 0[2]
HEX0_D[3]	PIN_H13	Seven Segment Digit 0[3]
HEX0_D[4]	PIN_G12	Seven Segment Digit 0[4]
HEX0_D[5]	PIN_F12	Seven Segment Digit 0[5]
HEX0_D[6]	PIN_F13	Seven Segment Digit 0[6]
HEX0_DP	PIN_D13	Seven Segment Decimal Point 0

HEX1_D[0]	PIN_A13	Seven Segment Digit 1[0]
HEX1_D[1]	PIN_B13	Seven Segment Digit 1[1]
HEX1_D[2]	PIN_C13	Seven Segment Digit 1[2]
HEX1_D[3]	PIN_A14	Seven Segment Digit 1[3]
HEX1_D[4]	PIN_B14	Seven Segment Digit 1[4]
HEX1_D[5]	PIN_E14	Seven Segment Digit 1[5]
HEX1_D[6]	PIN_A15	Seven Segment Digit 1[6]
HEX1_DP	PIN_B15	Seven Segment Decimal Point 1
HEX2_D[0]	PIN_D15	Seven Segment Digit 2[0]
HEX2_D[1]	PIN_A16	Seven Segment Digit 2[1]
HEX2_D[2]	PIN_B16	Seven Segment Digit 2[2]
HEX2_D[3]	PIN_E15	Seven Segment Digit 2[3]
HEX2_D[4]	PIN_A17	Seven Segment Digit 2[4]

HEX2_D[5]	PIN_B17	Seven Segment Digit 2[5]
HEX2_D[6]	PIN_F14	Seven Segment Digit 2[6]
HEX2_DP	PIN_A18	Seven Segment Decimal Point 2
HEX3_D[0]	PIN_B18	Seven Segment Digit 3[0]
HEX3_D[1]	PIN_F15	Seven Segment Digit 3[1]
HEX3_D[2]	PIN_A19	Seven Segment Digit 3[2]
HEX3_D[3]	PIN_B19	Seven Segment Digit 3[3]
HEX3_D[4]	PIN_C19	Seven Segment Digit 3[4]
HEX3_D[5]	PIN_D19	Seven Segment Digit 3[5]
HEX3_D[6]	PIN_G15	Seven Segment Digit 3[6]
HEX3_DP	PIN_G16	Seven Segment Decimal Point 3

时钟分配电路的方块图

时钟输入的引脚分配

信号名	FPGA 引脚 号 .	说明
CLOCK_50	PIN_G21	50 MHz clock input

扩展接头的 I/O 分配