

ECMM443 Introduction to Data Science

Dr P Lewis / (from Dr Xiaoyang Wang) Department of Computer Science p.lewis2@exeter.ac.uk

1/10 Phil Lewis / Xiaoyang Wang ECMM443

Working out probabilities can be tricky! The Monty Hall Problem

Frequentist Probability

Frequentist Probability

Data: Random sample

Curve: Underlining probability distribution

- Probability is about the outcomes of experiments.
- Outcomes are random.

- Probability is about the outcomes of experiments.
- Outcomes are random.
- Often there are a finite number of possible outcomes.
- For example, when flipping a coin the outcomes are
 - Heads (H) or Tails (T)

- Probability is about the outcomes of experiments.
- Outcomes are random.
- Often there are a finite number of possible outcomes.
- For example, when flipping a coin the outcomes are
 - Heads (H) or Tails (T)
- The set of possible outcomes is called the **sample space**.
 - For a coin tossing experiment S = {H,T}
 - The sample space for a standard die is $S = \{1,2,3,4,5,6\}$.

- An **event** is a particular outcome, or set of outcomes.
 - For example: the event of getting tails {T}, the event of rolling an even number {2,4,6}.

- An event is a particular outcome, or set of outcomes.
 - For example: the event of getting tails {T}, the event of rolling an even number {2,4,6}.
- Probability is a way of associating a number with every possible event.

- An **event** is a particular outcome, or set of outcomes.
 - For example: the event of getting tails {T}, the event of rolling an even number {2,4,6}.
- Probability is a way of associating a number with every possible event.
- A probability function, P, has to satisfy three properties
 - 1. P(S) = 1
 - 2. For any event E in S, $P(E) \ge 0$
 - 3. If A and B are disjoint events then $P(A \cup B) = P(A) + P(B)$

- An **event** is a particular outcome, or set of outcomes.
 - For example: the event of getting tails {T}, the event of rolling an even number {2,4,6}.
- Probability is a way of associating a number with every possible event.
- A **probability function**, P, has to satisfy three properties
 - 1. P(S) = 1
 - 2. For any event E in S, $P(E) \ge 0$
 - 3. If A and B are disjoint events then $P(A \cup B) = P(A) + P(B)$

- An **event** is a particular outcome, or set of outcomes.
 - For example: the event of getting tails {T}, the event of rolling an even number {2,4,6}.
- Probability is a way of associating a number with every possible event.
- A probability function, P, has to satisfy three properties
 - 1. P(S) = 1
 - 2. For any event E in S, $P(E) \ge 0$
 - 3. If A and B are disjoint events then $P(A \cup B) = P(A) + P(B)$

- An event is a particular outcome, or set of outcomes.
 - For example: the event of getting tails {T}, the event of rolling an even number {2,4,6}.
- Probability is a way of associating a number with every possible event.
- A probability function, P, has to satisfy three properties
 - 1. P(S) = 1
 - 2. For any event E in S, $P(E) \ge 0$
 - 3. If A and B are disjoint events then $P(A \cup B) = P(A) + P(B)$

- Disjoint events are events, that is sets, which don't have any members in common.
 - For example {2,4} and {1,5} are disjoint.
- P(A ∪ B) is read as the 'probability of A or B'.
- The third rule $P(A \cup B) = P(A) + P(B)$:
 - o for events which are disjoint
 - to get the probability of one or both happening
 - add the probabilities of the separate events.

• The probability of A and B happening is written $P(A \cap B)$.

- The probability of A and B happening is written P(A ∩ B).
- When event A and event B, overlap, so they are not disjoint, the probability of A or B, P(A ∪ B) is:
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Conditional Probability

• The probability that A happened given that B already happened.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Conditional Probability

• The probability that A happened given that B already happened.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

If

$$P(A) = P(A|B)$$

• Then A and B are independent.

If

$$P(A) = P(A|B)$$

- Then A and B are independent.
- The fact that B happened has no effect on the probability of observing A.

$$P(A) = P(A|B)$$

$$P(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$\implies P(A \cap B) = P(A)P(B)$$

$$P(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$\implies P(A \cap B) = P(A)P(B)$$

 For independent events, A and B, the probability of A and B happening is given by multiplying the individual probabilities.

Random Variables

Random Variables

- A random variable is a number associated with each event in the sample space.
- X = f(event)

- Flipping a coin twice gives the following sample space
 - {HH,TH,HT,TT}

- Flipping a coin twice gives the following sample space
 - {HH,TH,HT, TT}
- Examples of random variables:
 - the number of heads,
 - the number of tails,
 - the square root of the number of tails...

- Flipping a coin twice gives the following sample space
 - {HH,TH,HT, TT}
- Examples of random variables:
 - the number of heads,
 - the number of tails,
 - the square root of the number of tails...
- Discrete random variables: only a finite set of possible outcomes
 - flipping a coin
- Continuous random variables: where the value is a real number
 - measuring the height of a random person.
 - A random variable is often denoted by capital Roman letters such as X, Y, Z

Bernoulli Random Variable

If we are considering a discrete event where there are only two outcomes (0, 1)

Then we are dealing with a Bernoulli random variable. This arises in problems such as:

- flipping a coin,
- winning/losing a game,
- success or failure of a treatment etc.

In this case we deal with a single event probability p:

$$P(1) = p \tag{3}$$

Xiaoyang Wang ECMM443 8/10

• The probability density function

$$f(x) = P(Y = x)$$

• Is the probability of observing a random variable with the value x.

The probability density function

$$f(x) = P(Y = x)$$

- Is the probability of observing a random variable with the value x.
- If the random variable is discrete this is also called a probability mass function.

• The cumulative distribution function

$$F(x) = P(Y \le x)$$

 Is the probability of observing a value of the random variable X that is less than or equal to x.

• The expectation value of a random variable is denoted

$$\mu = E[x] = \sum_{i} x_i P(x_i)$$

• The expectation value of a random variable is denoted

$$\mu = E[x] = \sum_{i} x_i P(x_i)$$

For a Bernoulli random variable

$$E[x] = 0.(1 - p) + 1.p = p$$

• An important property of expectation is linearity

An important property of expectation is linearity

$$E[X+Y] = \sum_{i,j} (x_i + y_j) P(x_i \cap y_j)$$

An important property of expectation is linearity

$$E[X + Y] = \sum_{i,j} (x_i + y_j) P(x_i \cap y_j)$$
$$= \sum_{i,j} x_i P(x_i \cap y_j) + \sum_{i,j} y_j P(x_i \cap y_j)$$

An important property of expectation is linearity

$$E[X + Y] = \sum_{i,j} (x_i + y_j) P(x_i \cap y_j)$$

$$= \sum_{i,j} x_i P(x_i \cap y_j) + \sum_{i,j} y_j P(x_i \cap y_j)$$

$$= \sum_i x_i P(x_i) + \sum_j y_j P(y_j)$$

We used the fact that

$$\sum_{i} P(x_i \cap y_j) = P(x_i)$$

An important property of expectation is linearity

$$E[X + Y] = \sum_{i,j} (x_i + y_j) P(x_i \cap y_j)$$

$$= \sum_{i,j} x_i P(x_i \cap y_j) + \sum_{i,j} y_j P(x_i \cap y_j)$$

$$= \sum_i x_i P(x_i) + \sum_j y_j P(y_j)$$

$$= E[X] + E[Y]$$

Expectation also scales, so that for some constant a

$$E[aX] = \sum_{i} ax_{i}P(x_{i})$$
$$= a\sum_{i} x_{i}P(x_{i})$$
$$= aE[X]$$

• What is the expected number of heads after three coin tosses?

 In general the number of ways to get k successes in n trials is n choose k

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
$$n! = n(n-1)(n-2)\dots 2.1$$

What is the expected number of heads after three coin tosses?

$$E[x] = 0.\binom{3}{0}(1-p)^3 + 1.\binom{3}{1}p(1-p)^2 + 2.\binom{3}{2}p^2(1-p) + 3.\binom{3}{3}p^3$$

What is the expected number of heads after three coin tosses?

$$E[x] = 0. \binom{3}{0} (1-p)^3 + 1. \binom{3}{1} p (1-p)^2 + 2. \binom{3}{2} p^2 (1-p) + 3. \binom{3}{3} p^3$$
$$= 0 + \frac{3}{8} + \frac{6}{8} + \frac{3}{8}$$

What is the expected number of heads after three coin tosses?

$$E[x] = 0. \binom{3}{0} (1-p)^3 + 1. \binom{3}{1} p (1-p)^2 + 2. \binom{3}{2} p^2 (1-p) + 3. \binom{3}{3} p^3$$

$$= 0 + \frac{3}{8} + \frac{6}{8} + \frac{3}{8}$$

$$= \frac{3}{2}$$

• The variance of a random variable is

$$Var[X] = E[(X - \mu)^2]$$

$$Var[x] = \sum_{i} (x_i - \mu)^2 P(x_i)$$

The variance of a random variable is

$$Var[X] = E[(X - \mu)^2]$$

$$Var[x] = \sum_{i} (x_i - \mu)^2 P(x_i)$$

$$= \sum_{i} x_i^2 P(x_i) - 2\mu \sum_{i} x_i P(x_i) + \mu^2 \sum_{i} P(x_i)$$

• The variance of a random variable is

$$Var[X] = E[(X - \mu)^2]$$

$$Var[x] = \sum_{i} (x_i - \mu)^2 P(x_i)$$

$$= \sum_{i} x_i^2 P(x_i) - 2\mu \sum_{i} x_i P(x_i) + \mu^2 \sum_{i} P(x_i)$$

$$= E[x^2] - 2\mu^2 + \mu^2$$

• The variance of a random variable is

$$Var[X] = E[(X - \mu)^2]$$

$$Var[x] = \sum_{i} (x_{i} - \mu)^{2} P(x_{i})$$

$$= \sum_{i} x_{i}^{2} P(x_{i}) - 2\mu \sum_{i} x_{i} P(x_{i}) + \mu^{2} \sum_{i} P(x_{i})$$

$$= E[x^{2}] - 2\mu^{2} + \mu^{2}$$

$$= E[x^{2}] - E[x]^{2}$$

Moments

• The **second moment** of the probability distribution

$$E[x^2]$$

• The **n**th **moment** of the probability distribution

$$E[x^n] = \sum_i x_i^n P(x_i)$$

 Won't cover in this course, but moments and related functions are very useful for proving theorems about probability distributions!

Law of Large Numbers: For a sequence of independent, identically distributed random variables the sample mean gets closer and closer to the true mean $\mu = E[x]$.

Law of Large Numbers: For a sequence of independent, identically distributed random variables the sample mean gets closer and closer to the true mean $\mu = E[x]$.

• The **sample mean** is what we called the average before

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

- We imagine something like a coin tossing experiment, repeated trials where the outcomes are described by the same probability distribution.
 - This is the independent identically distributed part

- We imagine something like a coin tossing experiment, repeated trials where the outcomes are described by the same probability distribution.
 - This is the independent identically distributed part
- The sample mean is our best guess at the `typical' result after making n trials.

- We imagine something like a coin tossing experiment, repeated trials where the outcomes are described by the same probability distribution.
 - This is the independent identically distributed part
- The sample mean is our best guess at the `typical' result after making n trials.
- The law of large numbers says: if we do enough experiments the sample mean will be very close to the mean of the distribution.

Bayes Theorem

Bayes' Theorem

 Bayes Theorem allows us to update the probability of an event when we learn additional information

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayes' Theorem

 Bayes Theorem allows us to update the probability of an event when we learn additional information

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- P(A) and P(B) are called marginal probabilities
- P(A) is also sometimes called the prior probability
- P(A|B) is posterior

The Monty Hall Problem

Door 1	Door 2	Door 3	Result if stick	Result if switch
Prize	Goat	Goat	Prize	Goat
Goat	Prize	Goat	Goat	Prize
Goat	Goat	Prize	Goat	Prize

In the case of 20 doors, if we don't switch

$$P(\text{win the prize}) = \frac{1}{20}$$

$$P(\text{win a goat}) = 1 - P(\text{win the prize}) = \frac{19}{20}$$

ECMM443 3/10

The Monty Hall Problem

Door 1	Door 2	Door 3	Result if stick	Result if switch
Prize	Goat	Goat	Prize	Goat
Goat	Prize	Goat	Goat	Prize
Goat	Goat	Prize	Goat	Prize

In the case of 20 doors, if we don't switch

$$P(\text{win the prize}) = \frac{1}{20}$$

$$P(\text{win a goat}) = 1 - P(\text{win the prize}) = \frac{19}{20}$$

Having additional information: Monty shows a door with a goat behind it - it changes the decision!

FCMM443 3/10

Bayes Theorem

The Monty Hall Problem

Assume we pick door 1, and Monty Hall reveals that door 3 is a goat.

H: behind door 1 is a prize

E: evidence, door 3 is a goat

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} \tag{1}$$

P(H): prior probability, $\frac{1}{3}$

 H^c : complementary event of H, so $P(H \cup H^c) = 1$

P(E|H): given that behind door 1 is a prize, the probability of door 3 is a goat

P(E): the probability that door 3 is a goat

$$P(E) = P(E|H)P(H) + P(E|H^{c})P(H^{c})$$
 (2)

Xiaoyang Wang ECMM443 8/9

Visualisation

https://seeing-theory.brown.edu/index.html