第4回小テスト

講師:安永憲司

問題 1.

識別不能安全である 1 ビットメッセージ (つまり $\mathcal{M}_n=\{0,1\}$) に対する暗号方式 $\Pi=(\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$ を考える $\ell(n)$ ビットメッセージに対する暗号方式 $\Pi' = (\mathsf{Gen}', \mathsf{Enc}', \mathsf{Dec}')$ を以下のように定義する .

- 1. $Gen'(1^n) = Gen(1^n)$.
- 2. $\operatorname{Enc}_{pk}'(m_1 m_2 \cdots m_{\ell(n)}) = (\operatorname{Enc}_{pk}(m_1), \operatorname{Enc}_{pk}(m_2), \dots, \operatorname{Enc}_{pk}(m_{\ell(n)})).$ ただし, 各 $i \in \{1, ..., \ell(n)\}$ について, $m_i \in \{0, 1\}$.
- 3. $\operatorname{Dec}'_{sk}(c_1c_2\cdots c_{\ell(n)}) = (\operatorname{Dec}_{sk}(c_1), \operatorname{Dec}_{sk}(c_2), \dots, \operatorname{Dec}_{sk}(c_{\ell(n)})).$

このとき $, \Pi'$ は識別不能安全であることを示せ .

ヒント:

メッセージ $m_0, m_1 \in \{0,1\}^\ell$ に対して,以下の分布 H^i を定義する.

$$H^{i} = \{(pk, \mathsf{Enc}_{pk}(m_{1}^{0}), \dots, \mathsf{Enc}_{pk}(m_{i}^{0}), \mathsf{Enc}_{pk}(m_{i+1}^{1}), \dots, \mathsf{Enc}_{pk}(m_{\ell}^{1})) \mid (pk, sk) \leftarrow \mathsf{Gen}(1^{n})\}.$$

ただし, $i\in\{0,1,\ldots,\ell\}$ であり, $m_0=(m_1^0,m_2^0,\ldots,m_\ell^0),m_1=(m_1^1,m_2^1,\ldots,m_\ell^1)$ である. この分布 H^i を利用して, Π' が識別不能安全であることを証明してみよう.

問題 2.

識別不能安全である暗号方式 $\Pi=(\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$ を利用して , 暗号方式 $\Pi'=(\mathsf{Gen}',\mathsf{Enc}',\mathsf{Dec}')$ を以下の ように定義する.

- 1. $\operatorname{\mathsf{Gen}}'(1^n): (pk, sk) \leftarrow \operatorname{\mathsf{Gen}}(1^n), r \xleftarrow{R} \{0, 1\}^n, pk' = (pk, r), sk' = sk, (pk', sk')$ を出力.
- 2. $\operatorname{Enc}_{pk'}'(m) = \begin{cases} (0,\operatorname{Enc}_{pk}(pk')) & m = pk'$ のとき $(1,\operatorname{Enc}_{pk}(m)) & \operatorname{ぞれ以外} \end{cases}$ 3. $\operatorname{Dec}_{sk'}'(b,y) = \begin{cases} pk' & b = 0 \text{ のとき} \\ \operatorname{Dec}_{sk}(y) & \operatorname{ぞれ以外} \end{cases}$

このとき , Π' は , 識別不能安全であるが , IND-CPA 安全でないことを示せ .