# Data Mining 2

Topic 01: Module Introduction

Lecture 01: Module Overview

Dr Kieran Murphy

Department of Computing and Mathematics, WIT. (kmurphy@wit.ie)

Spring Semester, 2021

#### Outline

- Module motivation and aims.
- Selection of Date Science prespectives.
- The three components of a Machine Learning Problem

# Outline

1. What? Why? and How?

We are drowning in data but starving for knowledge!

Necessity is the mother of invention  $\Rightarrow$  Data Mining  $\approx$  Automated analysis of massive data sets.

### Definition 1 (Data Mining)

The non-trivial extraction of implicit, previously unknown and potentially useful knowledge from data in large data repositories

```
non trivial — obvious knowledge is not useful (we already know it) implicit — hidden difficult to observe knowledge previous unknown — if known then, why go to this effort? potentially useful — actionable easy to understand
```

### Data Mining vs Knowledge Discovery in Data (KDD)

- Data mining and KDD are often used interchangeably.
- Actually data mining is only a part of the KDD process.



## Data Mining (Model Building) is less than half of Data Mining



## Data Mining (Model Building) is less than half of Data Mining



- Boxplots: median is 20% on collecting data, 20% on preparing data, and 10% on changing data representation — all before starting on model.
- Bar chart data cleaning and preparation consumes at least 80% of project time for 25% of the participants, and 61% to 80% for another 39%.

# Related Disciplines — Data Mining vs Data Analytics vs Data Science<sup>†</sup>

- Data Mining is about finding the patterns in a data set, and using these patterns to make predictions.
- Data Science is a field of study which includes everything from Big Data Analytics, Data Mining, Predictive Modelling, Data Visualisation, Mathematics, and Statistics.





<sup>\*</sup>AKA have we titled this module correctly? Probably not, and it should be called Data Analytics or Data Science

### How Much Data?





**2016** What happens in an INTERNET MINUTE?

- 30,754,000,000
   Facebook logins
- 105,235,200,000 Google searches
- 912,038,400,000
   WhatsApp messages sent
- 6,577,200,000,000 emails sent
- 3.044.980.512
   Hours watched on Netflix



#### How Much Data?

2017 This Is What Happens In An Internet Minute

- 39,463,200,000 Facebook logins
- 153,468,000,000 Google searches
- 701,568,000,000 Text messages sent
- 6,840,288,000,000 emails sent



2018 This Is What Happens In An Internet Minute

- 42,033,600,000
   Facebook logins
- 162,237,600,000 Google searches
- 1,641,600,000,000 WhatsApp messages sent
- 8,078,400,000,000 emails sent



2019 This Is What Happens In An Internet Minute

- Facebook logins and google searches increased, but only marginally.
- Netflix viewing increased by factor of 2.6 in 2019, in comparison to growth factor of 3.8 times in 2018.
- Tinder swipes increased by 27%, twitch by 20%.
- Small increases for emails (3%).
- Big winners are GIPHY, smart speakers and music streaming subscriptions.
- Big loser is snapchat, due to its redesign issues.



#### How Much Data?

2020 This Is What Happens In An Internet Minute

- Instagram doubled !!
- Online shopping and Netflix both increased by only ≈10%!
- Facebook logins up by 30% greater "news" consumption.
- Twitter more than doubled what happened here?
- Smart speakers increased by 70%.
- Tinder swipes increased by 14%
- Number of emails sent nearly static.
- New additions Tic Toc
- While SMS only increased. by 5%, messaging increased by 44%.



### Assessment Structure — 100% Continuous Assessment

### Covering skills

Data Wrangling + Feature Engineering

(pandas and friends) (regex)

NLP, Text processing

Model fitting and optimisation

(skilearn, tensorflow, ...)

#### Breakdown

- 20% Student engagement
  - Moodle quizzes based on analysing datasets.
- 80% Demonstration of skills/understanding
  - Date parsing using regular expressions.
  - Reconciling primary key lists from similar but incompatible database systems.
  - Using tensorflow to do something.

Week 14/15 end of semester individual review interview (zoom)

## Outline

2. Three Components of a Machine Learning Problem

### Three Components of a Machine Learning Problem

It is easy to get lost among the multitude of choices one needs to make when given data mining problem. A good decomposition is the following:

| Representation            | Evaluation            | Optimization               |
|---------------------------|-----------------------|----------------------------|
| Instances                 | Accuracy/Error rate   | Combinatorial optimization |
| K-nearest neighbor        | Precision and recall  | Greedy search              |
| Support vector machines   | Squared error         | Beam search                |
| Hyperplanes               | Likelihood            | Branch-and-bound           |
| Naive Bayes               | Posterior probability | Continuous optimization    |
| Logistic regression       | Information gain      | Unconstrained              |
| Decision trees            | K-L divergence        | Gradient descent           |
| Sets of rules             | Cost/Utility          | Conjugate gradient         |
| Propositional rules       | Margin                | Quasi-Newton methods       |
| Logic programs            |                       | Constrained                |
| Neural networks           |                       | Linear programming         |
| Graphical models          |                       | Quadratic programming      |
| Bayesian networks         |                       |                            |
| Conditional random fields |                       |                            |

<sup>&</sup>lt;sup>†</sup>A Few Useful Things to Know about Machine Learning, Domingos, 2012.

## 3 Components — Representation

| Representation          | Evaluation           | Optimization               |
|-------------------------|----------------------|----------------------------|
| Instances               | Accuracy/Error rate  | Combinatorial optimization |
| K-nearest neighbor      | Precision and recall | Greedy search              |
| Support vector machines | Squared error        | Beam search                |

Representation refers to formulating the problem as a machine learning problem — typically a classification problem, a regression problem or a clustering problem.

- How do we represent the input?
- What features to use?
- How do we learn additional features?
- With each type of problem, we have multiple subtypes.

  For example which classifier? a decision tree, a neural network, a support vector machine, a hyperplane that separates the two classes etc.

### 3 Components — Evaluation

| Representation          | Evaluation           | Optimization               |  |
|-------------------------|----------------------|----------------------------|--|
| Instances               | Accuracy/Error rate  | Combinatorial optimization |  |
| K-nearest neighbor      | Precision and recall | Greedy search              |  |
| Support vector machines | Squared error        | Beam search                |  |
|                         |                      |                            |  |

Evaluation refers to an objective function or a scoring function, to distinguish good models from a bad model.

- For a classification problem, we need this function to know if a given classifier is good or bad. A typical function can be based on the number of errors made by the classifier on a test set, using precision and recall.
- For a regression problem, it could be the squared error, or likelihood. Do we include regularisation?
   etc

# 3 Components — Optimisation

| Representation          | Evaluation           | Optimization               |
|-------------------------|----------------------|----------------------------|
| Instances               | Accuracy/Error rate  | Combinatorial optimization |
| K-nearest neighbor      | Precision and recall | Greedy search              |
| Support vector machines | Squared error        | Beam search                |

Optimisation is concerned with searching among the models in the language for the highest scoring model.

- How do we search among all the alternatives?
- Can we use some greedy approaches, branch and bound approaches, gradient descent, linear programming or quadratic programming methods.