

Computer Networks I

Error Detection

(Parity check and Internet checksum)

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

Types of Errors

- An error occurs when a bit is altered between transmission and reception
- Types of errors:
 - Single bit errors
 - Burst errors

Types of Errors

- Single bit error:
 - Isolated error that alters one bit but does not affect nearby bits
 - Can occur in presence of white noise

Types of Errors

Burst error:

- Contiguous sequence of B bits in which the first and last bits and any number of intermediate bits are received in error
- Can occur due to impulse noise or fading in wireless environment
- Effects are greater at higher data rates

Error Detection


```
E, E' = error-detecting codes
f = error-detecting code function
```

Error Detection

Parity Check

- The simplest error detecting scheme is to append a parity bit to the end of a block of data
 - Even parity: Total number of ones will be even
 - Odd parity: Total number of ones will be odd
- Any odd number of bit errors is detected

Parity Check

□ Limitation: If any even number of bits are inverted due to error, an undetected error occurs

Two-dimensional Parity Check

01110 01110 01000 01011

			Ro		0	1	1	1	0	1
	$b_{1,1}$	• • •	$b_{1,j}$	r_1			1			1
	$b_{2,1}$	• • •	$b_{2,j}$	r_2	0	1	0	0	0	1
Column parity	$b_{i,1}$	• • •	$b_{i,j}$	r_i	0	1	0	1	1	1
	c_1	• • •	c_j	p	0	0	0	1	1	0

• 011101 011101 010001 010111 000110

Two-dimensional Parity Check

- A single-bit error is detected and corrected
- Any odd number of bit errors is detected
- Some even number of bit errors is also detected

0	1	1	1	0 0 0 1	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1	1	1
0	0	0	1	1	0

Two-dimensional Parity Check

 Any pattern of four errors forming a rectangle is undetectable

0	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} $	1	1	1	1	0	1
0	0	1	1	0	1	1	0
0	0	1	1	0	0	1	1
0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	0
1	1	0	0	0	1	1	0

- Ones-complement operation:
 - Replace 0 with 1, and 1 with 0

- Ones-complement addition:
 - The two numbers are treated as unsigned binary integers and added
 - If there is a carry out of the leftmost bit, add 1 to the sum (end-around carry)

• 00 01 F2 03 F4 F5 F6 F7 00 00

	0001
Partial sum	<u>F203</u>
	F204
	F204
Partial sum	<u>F4F5</u>
	1E6F9
	E6F9
Carry	1
	E6FA
	E6FA
Partial sum	<u>F6F7</u>
	1DDF1
	DDF1
Carry	1
	DDF2
Ones complement of the result	220D

Partial sum	0001 F203
r at tiat Suiti	$\frac{1203}{F204}$
	F204
Partial sum	F4F5
	1E6F9
	E6F9
Carry	1
•	E6FA
	E6FA
Partial sum	F6F7
	1DDF1
	DDF1
Carry	1
	DDF2
	DDF2
Partial sum	220D
	FFFF

FFF2

- Provides better greater error detection capability than parity check
 - Provides weak protection

 Internet checksum is used in many Internet standard protocols, including IP, TCP, and UDP

Summary

- □ Different error detection techniques discussed:
 - Parity check
 - Internet checksum