Differential Equations & Functional Data Analysis

Parameter Estimations for Differential Equations

Whitney Huang

Clemson ENVR Group, November 11, 2020

Agenda

Motivation

The Estimation Procedure of Ramsay et al. 2007

Example: Groundwater Levels

Differential Equations

A differential equation is an equation that relates some function of one or more variables with its derivatives.

Ordinary differential equation:

$$m\ddot{x} + b\dot{x} + kx = F_{\text{ext}}$$

Partial differential equation:

$$\frac{\partial u}{\partial t} - \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = 0$$

Differential Equations

- Widely used to model dynamic systems
 - Maxwell's equations in electromagnetism
 - Navier-Stokes equations in fluid dynamics
 - ► The Black-Scholes PDE in Economics
- Forward problem (i.e. solving differential equations) has been studied extensively by mathematicians

Suppose a given data set can be reasonably model by a differential equation but with unknown coefficients. Can we make a statistical inference?

Differential Equations

- Widely used to model dynamic systems
 - Maxwell's equations in electromagnetism
 - Navier-Stokes equations in fluid dynamics
 - ► The Black-Scholes PDE in Economics
- Forward problem (i.e. solving differential equations) has been studied extensively by mathematicians

Suppose a given data set can be reasonably model by a differential equation but with unknown coefficients. Can we make a statistical inference?

Differential Equations & Functional Data Analysis

Most dynamic systems defined by the solutions of their differential equations are not fit to data, they intend to capture gross shape features in the specified context. **However**, ...

- Solutions of differential equations are functions
- ► We can treat the data as an approximated solution of the corresponding differential equation with unknown coefficients

FDA framework can help for solving this inverse problem

Set-up

Differential equations:

$$f(t, x, \dot{x}, \ddot{x}, \dots; \boldsymbol{\theta}) = 0$$
, e.g., $f = \dot{x} + \beta x - \mu = 0$

Observed data:

$$y_i = x(t_i) + \epsilon_i, \qquad \epsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathrm{N}(0, \sigma^2), \quad i = 1, \cdots, n.$$

Goal: to estimate the unknown $m{\theta}$ in the differential equation from the data and to quantify the uncertainty of the estimates

The Basic Idea of the Estimation Procedure

- 1. Use basis function expansion to approximate x(t), i.e., $x(t) = \sum_{k=1}^{K} c_k^T \phi_k(t)$
- 2. Estimate the coefficients $c = \{c_k\}_{k=1}^K$ of the chosen basis functions by incorporating differential equation defined penalty
- 3. Estimate the parameters θ in the differential equation
- 4. Choosing the amount of smoothing λ

Basic Function Expansion

$$\hat{x}(t) = \sum_{k=1}^{K} c_k \phi_k(t)$$

- Choice of basis function: splines are usually the logical choice because of the compact support and the capacity to capture transient localized features
- Number of basis function: usually large because it requires not only to approximate x(t) but also its derivatives

Data Fitting Criterion

$$J(\boldsymbol{c}|\boldsymbol{\theta}) = \underbrace{\ell\left(\hat{x}(t_i), y(t_i)\right)}_{\text{data fidelity}} + \lambda \underbrace{\int \left[f(\hat{x}(t); \boldsymbol{\theta})\right]^2 \ dt}_{\text{DE defined penalty}}$$

- ► The first part of the criterion function is the fidelity of basis function approximation to the data
- \blacktriangleright the second part is the penalty term with respect to differential equation (DE) given θ
- ightharpoonup smoothing parameter λ controls the relative emphasis on these two objectives

The Parameter Hierarchy

There are three classes of parameters to estimate:

- ▶ The coefficients *c* in the basis function expansion
- ightharpoonup The parameters heta defining the differential equation
- ightharpoonup The smoothing parameter λ

The Roles of the Three Parameter Levels

- ightharpoonup c are not of the direct interest \Rightarrow nuisance parameters
- We are primary interest in θ , the parameters that define the differential equation
- lacktriangle Smoothing parameter λ control the overall complexity of the model

- $\lambda \to 0 \Rightarrow$ high complexity in $\hat{x}(t)$
- $\lambda \to \infty \Rightarrow$ low complexity in $\hat{x}(t)$

The Parameter Cascade Algorithm

- $m{c}$ are nuisance parameters are defined as a smooth functions $m{c}(m{ heta},\lambda)$
- Structural parameters θ are defined as functions $\theta(\lambda)$ of the complexity parameter
- ► These functional relationships are defined implicitly by specifying a different conditional fitting criterion at each level of the parameter hierarchy

The Multi-Criterion Optimization Strategy

Nuisance parameter functions $c(\theta, \lambda)$ are defined by optimizing the regularized fitting criterion

$$J(\boldsymbol{c}|\boldsymbol{\theta}) = \sum_{i=1}^{n} \{y_i - \hat{x}(t_i)\}^2 + \lambda \int [f(\hat{x}(t);\boldsymbol{\theta})]^2 dt$$

A purely data-fitting criterion $H(\theta)$ is then optimized with respect to the structural parameters θ alone

$$H(\boldsymbol{\theta}) = \sum_{i=1}^{n} \{y_i - \hat{x}(t_i; \boldsymbol{\theta})\}^2$$

 \blacktriangleright At the top level, a complexity criterion, is optimized with respect to λ

Rain & Groundwater

Rain & Groundwater: A Smaller Time Scale

Differential Equation for Groundwater Level

$$\frac{dG(t)}{dt} = -\beta G(t) + \alpha R(t - \delta) + \mu,$$

where

- lacktriangledown eta specifies the the rate of change of G(t) with itself
- ightharpoonup α defines the impact of R(t)
- ho μ is a baseline level, required here because the origin for level G(t) is not meaningful
- ightharpoonup lag δ is the time for rainfall to reach the groundwater level, and is known to be about 3 hours

The Constant Coefficient Fit

Allowing ODE Coefficients Time Varying

- As groundwater level G(t) changes, the dynamics change, too, because water move through different types of sub-soil structures
- We weren't given sub-soil transmission rates, so we needed to allow $\beta(t)$; $\alpha(t)$ and $\mu(t)$ to vary slowly over time:

$$\frac{dG(t)}{dt} = -\beta(t)G(t) + \alpha(t)R(t - \delta) + \mu(t)$$

The Time-Varying Coefficient Fit

