CHEM 30100 (Advanced Inorganic Chemistry I) Notes

Steven Labalme

September 30, 2022

Weeks

1	A Rigorous Definition of Symmetry				
	1.1	Symmetry: Symmetry Elements and Operations	1		
	1.2	Point Groups	3		

List of Figures

1 1	Ctoroographia	nnoications	of the elementer	. armanatur	onomotions	
1.1	Stereographic	projections (or the elementary	/ symmetry	operations.	 _

List of Tables

1.1 Symbols for stereographic projections			projections.	stereographic	Symbols for	1.1
---	--	--	--------------	---------------	-------------	-----

Week 1

A Rigorous Definition of Symmetry

1.1 Symmetry: Symmetry Elements and Operations

9/28: • Dr. Anna Wuttig (AH-nuh WUH-tig).

- Teaches exclusively on the blackboard.
- Will record lectures, however; if there is a technical error, she will upload last year's lecture.
- Syllabus.
 - PSets graded on completion, not accuracy.
 - Two exams: One on the first half of the course; one on the second half of the course.
 - Cumulativeness: You'll need to understand the first half to do the second half, but there won't be questions specifically targeted to first-half material.
 - No final.
 - Participation. Showing up to class and working in groups.
- Chris, Dan, Amy, Matt, Jintong, Yibin, Ben, Sara, Ryan, Joe, Owen, Isabella, Pierce are the people.
 - People come from a diversity of chemistry subfields (physical, inorganic, organic, materials, biological).
- Every day will have a handout that we will write on (in pencil).
- Study the learning objectives!
- (Local) symmetry of a molecule helps us predict and describe bonding, spectroscopic properties, and reactivity.
 - We describe symmetry with group theory.
- **Symmetry operation**: An operation which moves a molecule into a new orientation equivalent to its original one (geometrically indistinguishable).
 - Symmetry operations that can be applied to an object always form a **group**.
- Symmetry element: A point, line, or plane about which a symmetry operation is applied.
- Symmetry operations.
 - 1. Identity operation (E): Do nothing; null operation.
 - 2. Reflection through a plane (σ) : Subdivided into...

- $-\sigma_d$: dihedral mirror planes, which contain the principle C_n axis and bisect the angles formed between adjacent C_2 axes;
- $-\sigma_h$: horizontal mirror planes, in which the mirror plane is perpendicular to the principal C_n axis;
- $-\sigma_v$: vertical mirror planes, which contain the C_n axis and are not dihedral mirror planes.
- 3. Rotation about an axis (C_n) : A clockwise^[1] rotation about the C_n axis.
- 4. Improper rotation (S_n) : A two-step symmetry operation consisting of a C_n followed by a σ that is perpendicular to C_n (i.e., σ_h).
- 5. Inversion (i): Take any point with coordinates (x, y, z) to (-x, -y, -z).
- To describe the operations, we'll introduce stereographic projections.

Table 1.1: Symbols for stereographic projections.

- We have a working area (the plane of the page is the xy-plane). It is useful to draw quadrants.
- We describe a general point which experiences our symmetry operation.
 - When the point reflects through the working area, we denote the image with an "X" instead of a circle.
- We need a gear symbol in the middle for rotations and improper rotations (see Table 1.1).
 - Must stereographic projections be drawn one at a time because it seems that the squares should not be in a reflection?
 - No the symbols are to help us and should be included somewhere, but there are no hard-and-fast rules.
- Stereographic projections for each of the five elementary symmetry operations.

Figure 1.1: Stereographic projections of the elementary symmetry operations.

- Principal C_n axis: The C_n axis for which n is the highest.
 - In a stereographic projection, the C_n axis is the one that is perpendicular to the working area (goes in/out of the page).

¹Really?

- Example: Give the symmetry elements of NH₃.
 - C_3 axis, 3 σ_v mirror planes (denoted σ_v , σ'_v , and σ''_v).
 - The symmetry operations are E, C_3 , C_3^2 , σ_v , σ_v' , and σ_v'' . These operations form the C_{3v} point group.
- Direct products of symmetry operations: YX = Z means "operation X is carried out first and then operation Y," giving the same net effect as would the carrying out of the single operation Z.
 - If YX = XY = Z, then the two operations Y and X commute.
- What is the direct product of C_2 and σ_h ?
 - $-\sigma_h C_2 = S_2 = i$. They do commute.
- Do C_4 and $\sigma_{x,z}$ commute? Take the plane of this page as xy.
 - They do not (determine by drawing out both sets of stereographic projections).
- Don't get careless, Steven. This is easy, but it's also easy to make easy mistakes.
- New symmetry operations of your group are generated by taking the direct product of two.

1.2 Point Groups

9/30:

- The symmetry operations that apply to a given molecule collectively possess the properties of a mathematical **group**.
- Group: A set of symmetry operations that satisfy the following conditions.
 - Closure: All binary products must be in the group, i.e., the product of any two operators must also be a member of the group.
 - *Identity*: Must contain an identity, i.e., E must be part of the group.
 - Inverse: All elements must have an inverse in the group, and they must commute with their inverse.
 - Associativity: The associative law $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ must hold.
- Abelian (group): A group in which all direct products commute.
 - Not all groups are Abelian.
- Question: Do C_3 and σ_v form a group?
 - No: No identity (for example).
 - Wuttig draws out a stereographic projection for $C_3 \cdot \sigma_v$ and overlays the first and last picture, showing that $C_3 \cdot \sigma_v$ is a reflection over a new mirror plane σ'_v .
 - C_3 and σ_v do **generate** the set of operations $E, C_3, C_3^2, \sigma_v, \sigma_v', \sigma_v''$, which collectively form the **point group** C_{3v} .
- To prove something on a pset or exam, it's probably a good idea to do it in terms of stereographic projections!
- Point group: A group such that at least one point in space is invariant to all operations in the group.
- Group order: The number of symmetry operations in the group. Given by h.
- Table activity: Finding E, principal C_n , σ , $C_2 \perp C_n$, C_n position relative to σ (collinear or perpendicular), and i for various point groups.

- These properties are the ones that distinguish each point group from every other point group.
- Notes on the pedagogy: Animations and/or tangible models should be used to discuss this stuff. PowerPoint slides are definitely the way to go far more tangible tools; blackboard should be a supplement. It is key to be careful what you say (element and operation must be consistently used). Dr. Wuttig is skipping a lot of key points (like naming point groups).
- Developing a flow chart that distinguishes between D_{nh} , D_{nd} , D_n , C_{nh} , C_{nv} , C_n , and S_n .