Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Направление подготовки 09.03.04 «Программная инженерия»

Системное и прикладное программное обеспечение

Отчёт

По лабораторной работе №1

Перевод чисел между различными системами счисления

Вариант: 29

Работу выполнил:

Поленов Кирилл Александрович

Группа Р3113

Работу принял:

Рыбаков Степан Дмитриевич

Оглавление

Задание	
Основные этапы вычисления	5
Заключение	16
Список литературы	17

Задание

Перевести число «А», заданное в системе счисления «В», в систему счисления «С». Числа «А», «В» и «С» взять из представленных ниже таблиц.

1			5		
A	В	С	A	В	С
50882	10	9	25,23	16	2
		2			6
A	В	С	A	В	С
85667	9	10	63,56	8	2
3		7			
A	В	С	A	В	С
10101	5	15	0,110101	2	16
4		8			
A	В	С	A	В	С
68,82	10	2	0,101111	2	10

		9			10
A	В	С	A	В	С
B7,93	16	10	94	10	Фиб
11				12	
A	В	С	A	В	С
{^1}{^2}{^3}21	7C	10	10010010	Фиб	10
		13		l	
A	В	С			
100101.001001	Berg	10			

Основные этапы вычисления

Задание 1:

Переведём число 50822 из 10 с. с. в девятиричную путём деления исходного числа на основание новой с. с., записывая остатки от деления (Рисунок 1).

Рисунок 1

Задание 2:

Переведём число 85667 из 9 с.с. в 10 с. с., используя формулу для перевода из с.с. с основанием N в 10 с.с. (Рисунок 2)

Рисунок 2

Задание 3:

Сначала переведем 10101 из 5 с. с. в 10 с. с. при помощи формулы перевода из с. с. с основанием N в 10 с. с.. Затем результат переведём из 10 с. с. в 16 с. с. путём деления исходного числа на основание новой с. с., записывая остатки от деления (Рисунок 3).

Рисунок 3

Задание 4:

Сначала переведём целую часть числа по формуле. Затем переведём дробную, путём умножения числа на основание новой системы счисления и отделения целой части после каждого умножения, после чего полученные целые части объединим и округлим дробь до 5 знака после запятой (Рисунок 4)

Рисунок 4

Ответ: 1000100,11010

Задание 5:

Переведём 25,23 из 16 с. с., используя метод быстрых переводов. Числу 2 в 16 с. с. соответствует 0010 в 2 с. с., числу 5 — 0101. В левой части числа слева мы добавляем незначащие нули, чтобы количество цифр в итоговом числе было кратно системе счисления. В правой справа. По аналогии, числу 3 в 16 с. с. соответствует 0011 в 2 с. с. (Рисунок 5)

Рисунок 5

Задание 6:

Используем метод быстрого перевода. Числу 6 в 8 с. с. соответствует 110 в 2 с. с. и так далее по аналогии. Дополняем правую и левую части числа незначащими нулями, чтобы получить триады. (Рисунок 6)

Рисунок 6

Задание 7:

Воспользуемся методом быстрого перевода. Добавляем незначащие нули, чтобы получить количество цифр кратное 4, т. к. $2^4 = 16$ (Рисунок 7)

Рисунок 7

Задание 8:

Воспользуемся формулой перевода из N с. с. в 10 с. с., пронумеровав разряды после запятой. (Рисунок 8)

Рисунок 8

Задание 9:

Переведем, используя формулу, сначала целую часть числа в 16 с. с., затем дробную по той же формуле и результат округлим до 5 знаков после запятой. (Рисунок 9)

Ответ: 183, 57422

Рисунок 9

Задание 10:

Воспользуемся базисом Фибоначчиевой с. с. и воспользуемся формулой перевода из N с. с. в десятичную, пронумеровав разряды. (Рисунок 10)

Рисунок 10

Задание 11:

Распишем базис 7-ричной симметричной с. с. Затем проведем перевод, используя формулу. (Рисунок 11)

Рисунок 11

Задание 12:

Переведем число в Фибоначчеву с. с., используя базис Фиб. с. с. (1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...). Пронумеруем разряды исходного числа справа-налево, начиная с нуля. И воспользуемся формулой для перевода в 10 с.с. (Рисунок 12)

Рисунок 12

Задание 13:

Воспользуемся формулой перевода из N с. с. в 10 с. с., пронумеровав разряды. Число z в с. с. Бергмана, так называемое золотое сечение $(\frac{1+\sqrt{5}}{2})$ (Рисунок 13)

Рисунок 13

Заключение

В ходе выполнения данной лабораторной работы я познакомился с ранее неизвестными мне системами счисления. Например, симметричная, факториальная, Фибоначчева и негапозиционная системы счисления. И также научился работать с ними. Закрепил знания по работе с позиционными системами счисления и научился переводить дробную часть числа из одной системы счисления в другую.

Список литературы

Алексеев Е.Г. Богатырев С.Д. Информатика. Мультимедийный электронный учебник, - Раздел 3 "Системы счисления", - URL: http://inf.e-alekseev.ru/text/Schisl.html (Дата обращения: 26.09.2023)

П.В. Балакшин, В.В. Соснин, И.В. Калинин, Т.А. Малышева, С.В. Раков, Н.Г. Рущенко, А.М. Дергачев Информатика: лабораторные работы и тесты [Электронный ресурс] — URL: (Дата)