## DINÂMICA DOS MOVIMENTOS CIRCULARES

FÍSICA - EXERCÍCIOS

**Q u e s t ã o 1** A figura mostra uma pequena esfera que descreve um MCUV sobre uma circunferência de raio 2m. Se no instante mostrado, a esfera possui uma aceleração de módulo  $2, 5 \ m/s^2$ , determine o módulo de sua aceleração normal depois de 2 segundos. ( $\alpha = 37^{\circ}$ )



 ${\bf Q}$   ${\bf u}$   ${\bf e}$   ${\bf s}$   ${\bf t}$   ${\bf \tilde{a}}$   ${\bf o}$   ${\bf 2}$  Uma plataforma circular se encontra inicialmente em repouso, cujo raio é de 10 m, e a plataforma começa a rodar com uma aceleração angular  $\alpha=2$   $\frac{rad}{s^2}$ . Passados 2 segundos, um pequeno objeto, que se encontra a 6 m do eixo de rotação, se desprende da plataforma e começa a deslizar sobre ela. Determine a velocidade angular da plataforma quando o objeto a abandona. (Despreze todas as formas de atrito.)

<sup>&</sup>quot;O guerreiro de sucesso é um homem médio, mas com um foco apurado como um raio laser." (Bruce Lee)

 ${f Q}$   ${f u}$   ${f e}$   ${f s}$   ${f o}$   ${f 3}$  No instante em que o tubo começa a rodar com uma aceleração angular constante  $\alpha$ , o dispositivo P começa a se mover, a partir da extremidade inferior do tubo, com velocidade constante v, em direção a extremidade superior. Determine a velocidade do dispositivo após t segundos do início da rotação do tubo.



 ${f Q}$  u e s t  ${f \tilde{a}}$  o 4 Na figura temos uma barra de 0,75 m de comprimento unida a duas cordas que estão enroladas as polias A e B, de raios 6 cm e 4 cm respectivamente. Se as polias rodam com velocidade angular constante de 0,2 rad/s a partir do instante mostrado, qual é o intervalo de tempo necessário para que a barra se encontre na posição horizontal?



<sup>&</sup>quot;O guerreiro de sucesso é um homem médio, mas com um foco apurado como um raio laser." (Bruce Lee)

 ${\bf Q}$   ${\bf u}$   ${\bf e}$   ${\bf s}$   ${\bf t}$   ${\bf \tilde{a}}$   ${\bf o}$   ${\bf 5}$  Na figura, o jovem se encontra empurrando horizontalmente com velocidade v um mastro. Determine a velocidade angular do mastro no instante ilustrado. (Considere h << H.)



 ${\bf Q}$   ${\bf u}$   ${\bf e}$   ${\bf s}$   ${\bf t}$   ${\bf \tilde{a}}$   ${\bf o}$   ${\bf 6}$  A figura mostra uma pessoa empurrando um cilindro, de tal maneira que a barra lisa articulada se eleva com uma velocidade angular  $\omega$ . Para o instante mostrado, determine a velocidade angular com que roda o cilindro (o cilindro não desliza pela superfície horizontal).



<sup>&</sup>quot;O guerreiro de sucesso é um homem médio, mas com um foco apurado como um raio laser." (Bruce Lee)

## $\underline{G\ A\ B\ A\ R\ I\ T\ O}$

1) 
$$a_2 = 12,58 \ m^2$$

$$2) \ w'_F = \frac{14}{3} \frac{rad}{s}$$

$$3) v_D = v\sqrt{1 + \alpha^2 t^4}$$

4) 
$$t = 150s$$

5) 
$$\omega = \frac{v}{H} sen^2 \beta$$

6) 
$$\omega_C = \frac{\omega}{2sen^2\beta/2}$$

<sup>&</sup>quot;O guerreiro de sucesso é um homem médio, mas com um foco apurado como um raio laser." (Bruce Lee)