Міністерство освіти та науки України Національний технічний університет України "Київський політехнічний інститут" Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

ЛАБОРАТОРНА РОБОТА № 2 3 дисципліни «Архітектура комп'ютерів-1»

На тему «СИНТЕЗ БЛОКІВ МІКРОПРОГРАМНОГО УПРАВЛІННЯ»

Виконав: студент 2 курсу ФІОТ групи ІВ-71 Мазан Я. В. Залікова — 7109

ПЕРЕВІРИВ: доц. Верба О. А.

Мета роботи:

Дослідити засоби побудови блоків мікропрограмного управління. Одержати навички в проектуванні й налагодженні схем пристроїв управління з мікропрограмним управлінням.

Завдання:

IB-71, 9 у списку → 7409

 $7409_{10} = 11100111110001_2$

a_6	\mathbf{a}_{5}	a ₄	Функція	Розрядність операндів (без знаку)
1	1	0	3-й спосіб множення	6

a ₄	\mathbf{a}_2	Спосіб адресації мікрокоманд	Ємність ПМК, слова	Використати зону β4 для перевірки слова МК		
0	0	примусовий 32		На непарність		

a_6	а ₆ а ₅ а ₄ Тривалість операції підсумовування, такти						
1 1 0 5							
	Інші мікрооперації виконуються за один такт						

Операційна та функціональна схеми

Змістовний і закодований мікроалгоритми

Формат зони β_1

Враховуючи, що ємність ПМК дорівнює 32 слова, розрахуємо розрядність адреси:

$$n = log_2 32 = 5$$
.

3 розрядності адреси отримаємо довжину поля константи:

$$K = n - 1 = 4$$
.

Довжина поля управління мультиплексором:

$$k = 2;$$
 $q = log_2(k+2) = 2.$

 $({X, Z} -$ множина зовнішніх умов)

$$n_M = q = 2$$

$$n_K = K = 4$$

$$n_{\beta 1} = n_M + n_K = 6$$

Формат зони β_2

Використовуємо горизонтальне мікропрограмування і виділяємо на ожен керуючий сигнал 1 біт

Формат зони β_3

Максимальна тривалість МО дорівнює 5.

$$\Delta t_{max} = 4$$

$$n_{\beta 3} = \log_2 4 + 1 = 3$$

Формат зони β4

Для перевірки на непарність у зоні $\beta 4$ необхідно виділити один розряд.

Отримуємо наступний формат мікрокоманди:

Визначимо спосіб управління мультиплексором

m_2	УС	
0	0	0
0	1	X
1	0	Z
1	1	1

Розміщуємо команди в ПМК

Адреса	ПМК
00000	П(1) —
00001	<u></u>
00010	3
00011	► K(7)
00100	4
00101	5 🖚
00110	6

Карта програмування БМУ

Nº	Адреса	β_1		β_2	β_3		β_4
MK		K	M	$\mathbf{y}_1 \mathbf{y}_2 \mathbf{y}_3$	3P		
Π (1)	00000	0000	11	000	0	000	1

2	00001	0001	00	100	0	000	0
3	00010	0010	01	000	0	000	0
4	00100	0010	11	010	1	100	1
5	00101	0011	00	001	0	000	0
6	00110	0001	10	000	0	000	1
K (7)	00011	_	_	-	-	-	-

Робоча схема в AFDK

Висновок

В даній лабораторній роботі було побудовано схему, що виконує обчислення згідно варіанту. Змінні записуються у відповідні регістри, змінна В є лічильником. У ролі управляючого пристрою використано блок мікропрограмного управління з примусовим способом адресації.