数学科教育法 レポート印 解答

課題 11-1

- (1) $A = \{p \in \mathbb{Q} \mid -1 とおく.十分小さい任意の <math>\varepsilon > 0$ に対して, $1 \varepsilon を満たす有理数 <math>p$ が 存在するので $\sup A = 1$ (有理数の稠密性).同様に $\inf A = -1$. $\max A, \min A$ は存在しない.
- (2) $\inf \mathbb{N} = \min \mathbb{N} = 1$. $\sup \mathbb{N}$, $\max \mathbb{N}$ は存在しない (アルキメデスの原理).
- (3) $B = \{a_n \mid a_n \text{ は } \pi \text{ の小数第 } n \text{ 位までとった近似値 } (n \in \mathbb{N})\}.$ $\sup B = \pi, \inf B = \min B = 3.1. \max B \text{ は存在しない } (\pi \text{ は無理数だから}).$

課題 11-2

- 「 $b \in \mathbb{R}$ が集合 A の上界である」とは、「 $\forall a \in A \ (b \geq a)$ 」が成り立つことである.
- 「 $a_0 \in \mathbb{R}$ が上に有界な集合 A の上限である」とは、「 a_0 は A の上界」かつ「 $\forall \varepsilon > 0 \exists a \in A \ (a_0 \varepsilon < a)$ 」が成り立つことである。
- 「 $b \in \mathbb{R}$ が集合 A の下界である」とは、「 $\forall a \in A \ (b \le a)$ 」が成り立つことである.
- 「 $a_0 \in \mathbb{R}$ が下に有界な集合 A の下限である」とは、「 a_0 は A の下界」かつ「 $\forall \varepsilon > 0$ $\exists a \in A \ (a < a_0 + \varepsilon)$ 」が成り立つことである。

課題 11-3 「空でなく、下の有界な ℝ の部分集合は必ず下限を持つ」

(使える道具は切断を用いた「実数の連続性の公理」だけなので、これを使う以外ない)

 $C \subset \mathbb{R}$ を下に有界な部分集合とする $(C \neq \emptyset$ を仮定). C の下界全体を A とし、 $B = \mathbb{R} - A$ とする. このとき,

Claim 1: (A, B) は \mathbb{R} の切断である.

上で定義した部分集合の組(A,B)が実数の切断であるためには

- (i) $A \neq \emptyset$, (ii) $B \neq \emptyset$, (iii) $A \cap B = \emptyset$, (iv) $A \cup B = \mathbb{R}$,
- (v) $a \in A, b \in B$ ならば、常に a < b

が成り立たなくてはならない。C は下に有界(下界が存在する)だから (i) は明らか。 $C \subset B$ であるから (ii) も成り立つ。 $A \in B$ の定め方から (iii) と (iv) も明らか。

((v) の証明)(v) を否定して矛盾を導こう(背理法)(v) を否定すると「 $a \ge b$ を満たすような $a \in A$ と $b \in B$ の組が少なくとも 1 つ存在する」となる.ここで A は C の下界全体なので, $a \ge b$ ならば b も C の下界となり $b \in A$ となるがこれは「(iii) $A \cap B = \emptyset$ 」に反する.

以上で Claim 1 が示された.

(A,B) が \mathbb{R} の切断であるから、実数の連続性より

- (1) Aの最大元が存在し、Bの最小元は存在しない。
- (2) Aの最大元が存在せず、Bの最小元は存在する.

のいずれか一方が成り立つ。(1) が成り立てば、A の最大元が C の下限なので、以下を示す;

Claim 2:(2) はの場合は起こり得ない.

x を B の最小元とする。x \notin A であるから c < x を満たす c \in C が存在する(どんな c \in C に対しても,x \leq c なら,x は C の下界となり,x \in A となる)。このとき,c < $\frac{c+x}{2}$ < x であるから $\frac{c+x}{2}$ \in B となるが,これは x が B の最小元であることに矛盾する.

以上で Claim 2 が示され、課題の命題が示された。