

CLASSROOM CONTACT PROGRAMME

(Academic Session : 2024 - 2025)

DICAL: ENTHUSIAST COURSE PHASE -

PHASE: ALL PHASE TARGET: PRE MEDICAL 2025

Test Type : MAJOR Test Pattern : NEET (UG)

TEST DATE: 01-02-2025

ANSWER KEY																														
Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	2	4	3	3	1	4	3	3	4	1	4	3	3	3	2	4	1	1	3	3	2	2	4	3	1	1	3	3	4	4
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	1	2	3	3	3	1	4	1	2	4	3	4	3	2	3	4	2	2	4	3	2	1	1	4	1	1	2	3	4	4
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	4	3	4	2	2	3	2	1	2	2	2	2	1	2	1	2	2	4	4	4	4	3	2	2	4	3	4	4	1	2
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	3	3	3	3	4	1	1	1	3	2	4	3	4	3	1	2	2	3	1	3	2	2	1	1	2	4	2	4	2	1
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	3	3	3	3	3	3	2	4	3	4	1	4	4	4	3	3	3	2	4	2	2	2	2	4	2	3	4	3	3	2
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	3	2	4	2	1	3	3	4	3	3	4	1	1	3	1	3	2	4	4	1	4	4	3	3	1	2	3	2	2	1

HINT - SHEET

1. Ans (2)

Acidic Nature ∝ +ve O.S. of Non-Metal

2. Ans (4)

Due to lanthanoid contraction size of $4d \approx 5d$ series elements

3. Ans (3)

Iodine can show oxidation state from -1 to +7

4. Ans (3)

$$\begin{split} B_2 &= Total \ el^- = 10 \\ \sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^{*2} \sigma_{2s}^{*2} \ [\pi_2 p_x^1 = \pi_2 p p^1] \\ B.O &= 1 \ \& \ Paramagnetic \end{split}$$

5. Ans (1)

Ionic character $\propto \frac{1}{\text{Polarising power of cation}}$ As positive oxidation state increases or, size of cation decreases, polarizing power of cation increases hence, the correct order of ionic character is: $\text{MCl} > \text{MCl}_2 > \text{MCl}_3$

6. Ans (4)

NCERT XIth Pg # 104, Table 4.2

7. $\operatorname{Ans}(3)$

B. E.
$$\propto \frac{1}{\text{no. of L. P.}}$$

NCERT XI Pg. # 108 (Part-I)

8. Ans (3)

$$\begin{array}{c}
O \\
\parallel \\
N - OH \\
\downarrow \\
O
\end{array}$$
Covalency = 4

9. Ans (4)

$$\begin{split} \mu &= NH_3 > NF_3 > BF_3 \\ \mu &= 1.47 \ D \ \mu = 0.24 \ D \ \mu = 0 \end{split}$$

10. Ans (1)

Ionisation Isomerism

11. Ans (4)

$$[Cu (NH_3)_4]^{+2}$$

 $Cu^{+2} = 4s^0 3d^9$

dsp2, paramagnetic

12. Ans (3)

IUPAC

[Ag(H₂O)₂] [Ag(CN)₂]

Coordination number = 2,

Oxidation state = Ag^{+1}

Diaquasilver(I) dicyanidoargentate(I)

13. Ans (3)

As per surface area.

14. Ans (3)

 $NF_3 + H_2O \rightarrow No reaction$

15. Ans (2)

$$\operatorname{CrO}_{4}^{2-} \xrightarrow{\operatorname{H}^{+}} \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}$$

16. Ans (4)

NCERT-XII, Part-II; Page-321, 322

17. Ans (1)

NCERT XII, Pg. # 271, Part - 2

18. Ans (1)

Duo to localized lone pair $\begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){1$

20. Ans (3)

Fact

22. Ans (2)

Fact

26. Ans (1)

Fact

28. Ans (3)

Theory based NCERT page no. 349

31. Ans (1)

$$: 2\pi r = 2\lambda$$

$$2\pi r = 2x$$

$$r = \frac{X}{\pi}$$

32. Ans (2)

$$\Delta x \cdot m \Delta V = \frac{h}{4\pi}$$

$$\Rightarrow \Delta V = \frac{h}{4\pi m(\Delta x)}$$

$$= \Delta V = 0.57 \times 10^7 \text{ ms}^{-1}$$

33. Ans (3)

By LCP,

If pressure ↑, Eqm will shift

where volume is less

 $V_{ice} > V_{water} \Rightarrow$ Forward direction will be forward.

34. Ans (3)

$$\begin{split} N_2O_4 & \rightleftharpoons 2NO_2 \\ 1 & 0 \\ 1 - \alpha & 2\alpha \\ K_p &= \frac{\left(n_{NO_2}\right)^2}{\left(n_{N,O_4}\right)} \times \left\lceil \frac{P_1}{\Sigma n} \right\rceil^1 \end{split}$$

$$K_p = \frac{(2 \times 33)^2}{67} \times \left[\frac{P_1}{133}\right]^1$$

For 50% dissociation

$$K_{p} = \frac{(2 \times 50)^{2}}{50} \times \left[\frac{P_{2}}{150}\right]^{1}$$

$$\therefore \frac{P_{1}}{P_{2}} = \frac{133 \times 67 \times (2 \times 50)^{2}}{(2 \times 33)^{2} \times 150 \times 50} = \frac{8}{3}$$

35. Ans (3)

BaF₂
$$\rightleftharpoons$$
 Ba⁺² + 2F⁻
K_{sp} = [Ba⁺²] (0.1)²
[Ba⁺²] = $\frac{10^{-6}}{(0.1)^2}$
[Ba⁺²] = 10⁻⁴ M

36. Ans (1)

CH₃COOH + NaOH \rightarrow CH₃COONa + H₂O 0 millimoles 5 millimoles 0 0 \downarrow \downarrow 5 millimoles 0 5 millimoles so final solution is buffer having (salt) = (acid)

$$pH = Pk_a + log \frac{[Salt]}{[Acid]}$$
since (Salt) = (Acid)
$$\Rightarrow pH = Pk_a = 4.7$$

37. Ans (4)

$$\Delta S = 4 \times \log\left(\frac{20}{2}\right) \times 2.3 = 9.2$$

38. Ans (1)

In adiabatic expansion temperature decrease and isothermal expansion temperature is constant, area under the curve \propto work.

39. Ans (2)

Fe(OH)₃ is lyophobic sol so can be prepared by special method.

40. Ans (4)

$$\Delta G_3^0 = \Delta G_2^0 - -\Delta G_1^0$$

$$E_3^0 = 3E_2^0 - -2E_1^0 = 0.772$$

41. Ans (3)

$$\frac{W_1}{E_1} = \frac{W_2}{E_2} \Rightarrow \frac{W_1}{W_2} = \frac{108}{31.5}$$

42. Ans (4)

$$K = \frac{2.303}{t} \log \left(\frac{(n-1)P^{\circ}}{nP^{\circ} - P_{t}} \right)$$

43. Ans (3)

$$K = \frac{2.303}{t} \log \left(\frac{a}{a - x} \right)$$

$$K = \frac{2.303}{32} \log \left(\frac{100}{1} \right)$$

$$t = \frac{2.303 \times 16}{2.303} \log \left(\frac{100}{0.1} \right) = 48 \text{ min}$$

44. Ans (2)

The one which shows negative deviation from raoults law form maximum boiling azeotropes.

45. Ans (3)

$$\begin{split} &P_S = P_A^{\text{ o}} X_A + P_B^{\text{ o}} \left(1 - X_A \right) X_B = 0 \\ &\text{If } X_A = 0 \text{ then} \qquad P_S = P_A^{\text{ o}} \left(1 - X_B \right) + P_B^{\text{ o}} X_B \\ &P_S = P_B^{\text{ o}} \qquad P_S = P_A^{\text{ o}} \\ &P = 254 - 119 \ X_A \\ &P = 254 - 119 \ X_0 \\ &P = P_B^{\text{ o}} = 254 \\ &P = 254 - 119 \ (1 - X_B) \\ &P = P_A^{\text{ o}} = 254 - 119 = 135 \end{split}$$

46. Ans (4)

$$\pi r = L$$

$$\therefore \mathbf{r} = \frac{\mathbf{L}}{\pi}$$

$$\therefore \mathbf{I} = \frac{2\mathbf{M}\mathbf{L}^2}{\mathbf{L}^2}$$

47. Ans (2)

$$\begin{split} &I_{Remaing} = I_{Large} - I_{small} \\ &I_{Remaing} = \frac{(9m)R^2}{2} - \left\{ \frac{m^{'}}{2} \left(\frac{R}{3} \right)^2 + m^{'} \left(\frac{2R}{3} \right)^2 \right\} \end{split}$$

$$\therefore$$
 m' = m

$$\therefore I_{\text{Remaining}} = 4 \text{mR}^2$$

48. Ans (2)

G = galvanometer resistance

$$= \frac{\text{current sensitivity}}{\text{voltage sensitivity}} = \frac{5}{1} = 5\Omega$$

Full scale deflection current $i_g = 100 \times \frac{1mA}{5} = 20mA$

To convert in to voltmeter of range $1V \times 100 = 100 \text{ V}$

$$R = \frac{V}{I_g} - G \Rightarrow R = \frac{100}{20 \times 10^{-3}} - 5 = 4995\Omega$$
.

49. Ans (4)

Using KCL of junction X:-

$$\begin{split} \frac{X-20}{2} + \frac{X-0}{2} + \frac{X+2}{1} &= 0 \\ X-20 + X + 2X + 4 &= 0 \\ 4X &= 16 \implies X = 4V \\ I_{1\Omega} &= \frac{4-(-2)}{1} = 6A \; . \end{split}$$

50. Ans (3)

$$P = \frac{{V_1}^2}{{R_1}} = \frac{{V_2}^2}{{R_1}} \Rightarrow \frac{{R_1}}{{R_2}} = \left({\frac{{V_1}}{{V_2}}} \right)^2 = \left({\frac{{220}}{{110}}} \right)^2 = \frac{4}{1}$$

51. Ans (2)

$$O = \frac{6k}{1} + \frac{3kQ}{1} + \frac{2kQ}{2}$$
$$Q = -\frac{3}{2}C$$

52. Ans (1)

$$q = Ze$$
= 79 × 1.6 × 10⁻¹⁹ C
$$V = \frac{kq}{r}$$
=
$$\frac{9 \times 10^9 \times 1.26 \times 10^{-17}}{6.6 \times 10^{-15}} = 1.72 \times 10^7 \text{ V}$$

53. Ans (1)

Interference and diffraction can be observed for both transverse and longitudinal waves, however polarization can occur only in transverse waves.

54. Ans (4)

$$\beta = \frac{\lambda D}{d} = \frac{2 \times 10^{-6} \times 0.9}{0.3 \times 10^{-3}} = 6 \times 10^{-3} \text{ m}$$

$$\beta = 6 \text{ mm}$$

55. Ans (1)

capacitance of small drop $C = 4\pi\epsilon_0 r$ 64 such drops combine to form 1 large drop.

 \therefore Volume of large drop = 64 × volume of small drop

$$\frac{4}{3}\pi R^3 = 64 \times \frac{4}{3}\pi r^3$$

$$R = 4r$$

: capacitance of big drop

$$C_{big} = 4\pi \,\epsilon_0 R = 4\pi \,\epsilon_0 4r = 4C$$

Formula method:

$$C = n^{1/3} C_0 = 64^{1/3} C_0 = 4 C_0$$

56. Ans (1)

efficiency =
$$\frac{P_0}{P_i} \times 100$$

 $60 = \frac{\text{(mgh/time)}}{P_i} \times 100$
 $P_i = \frac{100}{60} \frac{\text{mgh}}{3600} = \frac{5}{3} \times \frac{36000 \times 10 \times 90}{3600} = 15 \text{ KW}$

57. Ans (2)

$$\begin{split} \frac{2T}{r} &= h \rho g \\ r &= \frac{2T}{\rho g h} = \frac{2 \times 0.07}{10^3 \times 10 \times 0.4} = 0.035 \text{ mm} \\ D &= 2r = 0.07 \text{ mm} \end{split}$$

58. Ans (3)

$$\rho = \frac{m}{v} = \frac{4.237g}{2.5cm^3} = 1.6948 \text{ g/cm}^3$$
rounding off the number = 1.7 g/cm³

59. Ans (4)

$$H_n = e^{2n}H_0$$

= $e^4n_0 = \left(\frac{1}{2}\right)^4 \times 20 = \frac{20}{16} = \frac{5}{4} = 1.25m$

60. Ans (4)

Output of OR gate is 0 when all inputs are 0 & output is 1 when atleast one of the input is 1. Observing output x:- It is 0 when all inputs are 0 & it is 1 when atleast one of the inputs is 1.

∴ OR gate

61. Ans (4)

$$\begin{split} F_T - mg &= ma \\ \frac{vdm}{dt} - mg &= ma \\ \frac{dm}{dt} \frac{m(g+a)}{v} &= \frac{2000 \, (10+10)}{500} = 80 kg s^{-1} \end{split}$$

62. Ans (3)

$$v = v_0 + mx$$

$$\frac{dv}{dx} = m$$
acceleration = $v \frac{dv}{dx} = (v_0 + mx) m$
(straight lines)
(with +ve slope & +ve intercept).

63. Ans (4)

$$A \stackrel{u=0}{\longrightarrow} v' \qquad v = 0$$

$$A \stackrel{B}{\longrightarrow} B$$

$$v' = a_1 t_1 \qquad(1)$$

$$B \stackrel{D}{\longrightarrow} C$$

$$v' = a_2 t_2 \qquad(2)$$
Solve (1) & (2) $\frac{t_1}{t_2} = \frac{a_2}{a_1} = \frac{6}{4} = \frac{3}{2}$

64. Ans (2)

Newton's law of cooling:

$$\frac{\Delta T}{\text{time}} = K \left(\frac{\theta_1 + \theta_2}{2} - \theta_0 \right)$$

$$\frac{61 - 59}{4} = K \left[\frac{61 + 59}{2} - 30 \right] \dots (1)$$

$$\frac{51 - 49}{t} = K \left[\frac{51 + 49}{2} - 30 \right] \dots (2)$$
On dividing, (1) & (2) $\Rightarrow \frac{t}{4} = \frac{30}{20} \Rightarrow t = 6 \text{ min.}$

65. Ans (2)

Breaking stress =
$$\frac{F}{A}$$

$$\frac{1.5 \times 10^5}{\pi \left(\frac{3}{2}\right)^2} = \frac{F}{\pi \left(\frac{1.5}{2}\right)^2}$$

$$F = \frac{1.5 \times 10^5}{4} = 0.375 \times 10^5 \text{ N}$$

66. Ans (3)

$$T \sin \theta = \frac{mv^2}{R} \dots (1)$$
$$T \cos \theta = mg \dots (2)$$

Divide equation (1) by equation (2):
$$\tan \theta = \frac{v^2}{Rg}$$

$$v = \sqrt{Rg \tan \theta}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

$$v = \sqrt{\frac{Rg}{\cot \theta}}$$

67. Ans (2)

$$B_0 = \frac{E_0}{\frac{C}{C}}$$
$$= \frac{100}{3 \times 10^8} = 0.33 \times 10^{-6} \text{ T}$$

68. Ans (1)

$$E_{avg} = -L \frac{\Delta i}{\Delta t}$$

$$E_{avg} = -(5 \times 10^{-3}) \left(\frac{10 - 20}{0.1}\right)$$

$$E_{avg} = 0.5 \text{ V}$$

69. Ans (2)

If current leads voltage and angle between their phasors $<\frac{\pi}{2}$, it indicates that elements in circuit must contain R and C. It may contain L also, but then $X_C > X_L$. From given options, L is not there, so elements are R & C

70. Ans (2)

$$\frac{1}{\lambda} = \frac{1}{912 \text{ Å}} \left(\frac{1}{1^2} - \frac{1}{(3)^2} \right)$$
$$\frac{1}{\lambda} = \left(\frac{8}{9} \right) \left(\frac{1}{912 \text{ Å}} \right)$$
$$\lambda = \frac{9 \times 912}{8} \text{ Å} = 1026 \text{ Å}$$

71. Ans (2)

Neutral point will be near to the small current carrying wire and in outside at which

$$\frac{\mu_0 9}{2\pi x} = \frac{\mu_0 \times 16}{2\pi (7+x)} \implies x = 9 \text{ cm}$$

 \therefore From wire of 16A current d = 7 + 9 = 16 cm

72. Ans (2)

$$\begin{split} B &= \mu_0 n I \\ \Rightarrow \frac{B_1}{B_2} &= \frac{n_i i_i}{n_2 i_2} \Rightarrow \frac{6.28 \times 10^{-2}}{B_2} = \frac{200 \times \hat{i}}{100 \times i} \times 2 \\ B_2 &= \frac{6.28 \times 10^{-2}}{4} = 1.57 \times 10^{-2} \text{ Wb/m}^2 \end{split}$$

73. Ans (1)

$$M = N i A$$

$$= 2 \times 0.5 \times \pi r^{2}$$

$$6.28 = (2\pi r) \times 2$$

$$r = \frac{6.28}{4\pi} = \frac{1}{2}$$

$$M = 1 \times \pi \times \frac{1}{4} = \frac{\pi}{4} Am^{2}$$

74. Ans (2)

$$\frac{\frac{1}{\rho}}{T} = \text{constant}$$

$$\frac{1}{\rho T} = \text{constant}$$

$$\rho T = \text{constant}$$

$$\rho T \propto P = \text{constant}$$
isobaric
$$\frac{P}{\rho} = \frac{RT}{M}$$

$$\rho T = \frac{\rho T}{R}$$

75. Ans (1)

$$\begin{split} \Delta W &= nR\Delta T = 3 \times \frac{25}{3} \times 100 = 2500 \text{ J} \\ \Delta U &= nC_v\Delta T = 3 \times \frac{5R}{2} \times 100 = 6250 \text{ J} \\ Q &= \Delta U + W = 8750 \text{ J} \\ \frac{\Delta U}{\Delta W} &= \frac{6250}{2500} = 2.5 \end{split}$$

76. Ans (2)

They are in same phase after n oscillation by large length pendulum and (n + 1) oscillation by small length pendulum.

 \therefore for smaller pendulum \Rightarrow n + 1 = 1 + $\frac{1}{4} = \frac{5}{4}$

77. Ans (2)

$$v = \frac{V}{K} \frac{\mu}{30 \text{m/s}}$$

$$30 = \sqrt{\frac{T}{0.16}}$$

$$30 = \sqrt{\frac{T \times 100}{16}}$$

$$\therefore T = 144 \text{ N}$$

78. Ans (4)

Let
$$R_1 = R$$
, then $R_2 = 2R$

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$\frac{1}{6} = (1.5 - 1) \left(\frac{1}{R} - \frac{1}{-2R} \right)$$

$$R = R_1 = 4.5 \text{ cm}$$

$$R_2 = 9 \text{ cm}$$

79. Ans (4)

$$^{2}\mu_{1}\times {}^{3}\mu_{2}\times {}^{4}\mu_{3}=\frac{\mu_{1}}{\mu_{2}}\times \frac{\mu_{2}}{\mu_{3}}\times \frac{\mu_{3}}{\mu_{4}}=\frac{\mu_{1}}{\mu_{4}}={}^{4}\mu_{1}$$

80. Ans (4)

Value of
$$g = g_s \left(1 + \frac{h}{R}\right)^{-2}$$

= $g_s (1+2)^{-2} = \frac{g_s}{q}$

Here g_s = gravitational acceleration at surface

Force =
$$mg = 90 \times \frac{g_s}{9} = 100 \text{ N}$$

82. Ans (3)

Since only 6 different wavelength are excited, therefore highest excited state is n = 4.

Two wavelengths are shorter than λ_0 , initially atoms were in excited state n = 2

Corresponding transitions are $4 \rightarrow 3$, $4 \rightarrow 2$, $4 \rightarrow 1$, $3 \rightarrow 2$, $3 \rightarrow 1$, $2 \rightarrow 1$.

83. Ans (2)

B.E of Helium = $(2m_P + 2m_N - m_{He}) c^2 = 28.4 \text{ MeV}$

84. Ans (2)

$$\lambda = \frac{h}{mv} \\ \lambda_P = \lambda_a$$

$$m_P v_P = m_{\alpha} v_{\alpha}$$

$$m_P v_P = 4 m_p v_{\alpha}$$
 $(m_{\alpha} = 4 m_P)$

$$\frac{v_P}{v_\alpha} = 4$$
 (Option 2) is correct

85. Ans (4)

Measured value = 10 mm + 4(0.1 mm)

- = 10.4 mm
- = 1.04 cm

86. Ans (3)

(i) $V_A > V_B \implies$ diode is in FB

$$\Rightarrow$$
 RAB = 3Ω

(ii) $V_A < V_B \Rightarrow$ diode is in RB

$$\Rightarrow$$
 R_{AB} = 12 Ω

87. Ans (4)

Initial volume = final volume

$$\begin{split} \frac{\pi d^2 \ell}{4} &= \frac{\pi d^2 L}{16} \ \boxed{\underline{L=4\ell}} \ A_f = \frac{A_i}{4} \\ R_i &= \frac{\rho \ell}{A_i} \ R_f = \rho \left(\frac{4\ell}{A_i}\right) = 16 \ R_i \end{split}$$

88. Ans (4)

$$f = \frac{1}{0.2} \text{cm}$$

$$P = \frac{100}{f} = 100 \times 0.2 = 20 \text{ D}$$

89. Ans (1)

$$x_{cm} = \frac{A_1 x_1 - A_2 x_2}{A_1 - A_2}$$

$$A_1 = \pi (3R)^2 = 9\pi R^2$$

$$\boldsymbol{A}_2 = \pi \boldsymbol{R}^2$$

$$x_1 = 0, x_2 = 2R$$

$$x_{cm} = \frac{0 - \pi R^2 \times 2R}{9\pi R^2 - \pi R^2}$$
$$x_{cm} = -\frac{R}{4}$$

90. Ans (2)

The output $(Y) = \bar{A} \cdot \bar{B} = A + B$

91. Ans (3)

NCERT-XI, Pg. # 32

92. Ans (3)

NCERT Pg. No. # 27 & Module

93. Ans (3)

XI NCERT Pg. No. # 11

94. Ans (3)

NCERT Pg. No. 68

95. Ans (4)

NCERT, Pg # 67

Both (1) & (2)

96. Ans (1)

NCERT-XI, Pg # 146

97. Ans (1)

NCERT, Pg. # 141

ALLEN®

- 98. Ans (1) NCERT-XI, Pg # 144
- 99. Ans (3) NCERT XI, Pg. # 150
- **100.** Ans (2) NCERT-XI, Page No. # 144,146
- **101. Ans (4)** NCERT XI Pg # 146
- **102. Ans (3)** NCERT-XI, Pg # 139
- 103. Ans (4) NCERT-XI, Pg. 65
- **105. Ans (1)** NCERT-XI, Pg. No. # 14
- **106. Ans (2)** NCERT-XII Pg. 12,13,14
- 107. Ans (2) NCERT XII Page No. 7
- 108. Ans (3) NCERT (XII) Pg # 9,10
- **109. Ans (1)** NCERT XII Pg. # 6
- 110. Ans (3) NCERT XII Pg. # 12,18
- 111. Ans (2) NCERT-XII, Pg. # 67
- 112. Ans (2) NCERT XII Pg. # 60,61,69
- 113. Ans (1) XII NCERT Pg # 59
- 114. Ans (1) NCERT-XII Pg. # 67, 70
- 115. Ans (2) NCERT-XII, Pg. # 59
- 116. Ans (4) NCERT-XII, Pg. # 63

- **117. Ans (2)** NCERT XII Page No. # 70
- 118. Ans (4) NCERT-XII, Pg. # 61, 62
- 119. Ans (2) NCERT-XII, Pg # 95
- **120. Ans (1)** NCERT-XII Pg # 86
- 121. Ans (3) NCERT-XII, Page No. # 88,89
- **122. Ans (3)** NCERT-XII, Page No. # 91
- 123. Ans (3) NCERT-XII, Page No. #83,85
- **124.** Ans (3) NCERT-XII, Page No. # 94,95
- 125. Ans (3) NCERT-XII, Page No. # 91,93,95
- **126.** Ans (3) NCERT-XII, Pg. # 103,105
- 127. Ans (2) NCERT XII Pg No. # 212
- **128. Ans (4)** NCERT-XII, Pg. No. # 207
- **129. Ans (3)**NCERT XII Pg # 207
- **130. Ans (4)**NCERT XII Pg. # 197
- 131. Ans (1)
 Module
- 132. Ans (4) NCERT-XII Pg. # 201, 202
- 133. Ans (4) NCERT XII Pg # 196
- **134. Ans (4)** NCERT XII, Page No. 193

ALLEN®

- 135. Ans (3) NCERT XII, Pg. 222, 225
- 137. Ans (3) NCERT Pg, 160
- **139. Ans (4)** NCERT Page No. 123
- 140. Ans (2) NCERT XII Pg # 117
- 141. Ans (2) NCERT Pg. # 48
- 142. Ans (2) NCERT, Pg # 44
- 143. Ans (2) NCERT Pg. # 46
- **144.** Ans (4)
 Module-6 Page No.#19
- 145. Ans (2) NCERT Pg. # 334
- **147. Ans (4)** NCERT Pg. No. # 101
- 148. Ans (3) NCERT Pg. # 48
- **149. Ans (3)** NCERT Pg. # 193
- 150. Ans (2) NCERT Pg. # 199
- **151. Ans (3)** NCERT Pg # 35-36
- 152. Ans (2) NCERT, Pg. # 27
- **153. Ans (4)** NCERT Pg. # (E)-37, (H)-41

- 154. Ans (2) NCERT, Pg. # 35
- **155. Ans (1)** NCERT-XI Pg. # 317
- **156. Ans (3)** NCERT Pg#236
- **157. Ans (3)** NCERT-XI Pg#304, Ist para
- 158. Ans (4) NCERT, Pg. # 310
- **163. Ans (1)** NCERT XII Pg # 199
- **164. Ans (3)** NCERT-XII, Pg. # 196
- **165. Ans (1)** NCERT-XII, Pg. # 184,185
- **167. Ans (2)** NCERT (XIth) Pg. # 168 : 10.4.1
- **168. Ans (4)** NCERT-XI, Pg # 137 and 138
- **169. Ans (4)** NCERT-XI, Pg # 143
- 173. Ans (3)
 NCERT Pg. # 114
- 175. **Ans (1)**NCERT Pg. # 243
- 176. Ans (2) NCERT Pg. # 244
- 177. **Ans (3)**NCERT, Pg. # 43
- **180. Ans (1)** NCERT Pg. # 208