MM104/MM106/BM110 Statistics and Data Presentation

Lecture 6-4: Confidence Intervals t distribution

Chris Robertson

- The standard normal distribution has a mean of zero and a standard deviation of 1.
- It is a very useful distribution and has many uses
- With the standard normal distribution
- 95% of the population lies within the range -2 to 2 and
- 99.7% of the population lies in the range -3 to 3
- Sometimes this spread is not enough and you need a symmetric distribution which has a bigger range of values
- The t distribution is the simplest extension of the normal distribution which as a bigger standard deviation and is also symmetric

• Student's t-distribution was derived in 1908

Student
W S Gossett
Worked for
Guinness

Student's t-distribution was derived in 1908

Student's t-distribution was derived in 1908

Student's t-distribution was derived in 1908

t-distribution tables

t-distribution - degrees of freedom

The t distribution has an extra parameter compared to the standard normal distribution. This is known as the degrees of freedom (ν) which, in our examples, is an integer greater than or equal to 1. As the degrees of freedom increase the t distribution becomes more like the standard normal distribution

Inverse Calculations:

- Find with the value t for the t-distribution with ν degrees of freedom that has the tails described by the following probabilities P(T < t) = 0.39, with $\nu = 41$
 - Use Inverse T table

Solution:

- We are interested in finding t such that P(T < t) = 0.39
- Since we have < in the bracket we will use the low option

Inverse Calculations:

- Find with the value t for the t-distribution with ν degrees of freedom that has the tails described by the following probabilities P(T < t) = 0.39, with $\nu = 41$
 - Use Inverse T table

Solution:

- We are interested in finding t such that P(T < t) = 0.39
- Since we have < in the bracket we will use the low option

Inverse Calculations:

• Find the value t for the t-distribution with ν degrees of freedom that has the tails described by the following probabilities P(T < -t or T > t) = 0.07, with $\nu = 33$

Solution:

Since we have < and > in the bracket we will use the both option

Statistical Tables Probability Inverse Normal P(X < -1.872645) or P(X > 1.872645) = 0.07Tail O Lower O Upper Both 0.3 -**A** 0.07 > 0.2 · Decrees of Freedom • 33 0.1 -0.0ò

- Symmetric distribution like the normal
- Mean of zero
- T-distribution has more probability in the tails than the standard normal
- Parameter known as the degrees of freedom
- Probabilities and percentiles calculated like the standard normal distribution – from tables