HCAL Reconstruction: MC Correction Functions Update

Edmund Berry

Thursday, April 25, 2014

Introduction

- Have derived MC correction functions for OOT PU
- Same derivation method as used for data
- Procedure:
 - Run Alexandre's ratio method on zero PU MC
 - Derive correction functions based on the pulse shape
 - Use the same definitions, fits, and methods as in data
 - Validate results on MC with OOT PU

Method

- Process a high- p_T QCD sample in two ways:
 - No pileup: for MC truth comparison (DONE)
 - With pileup: for validation (Processing)
- Compare results event-by-event, channel-by-channel:
 - No pileup
 - vs. with pileup and no corrections
 - vs. with pileup and corrections

Datasets

Consider two GEN-SIM datasets (no PU) at T1_US_FNAL:

Dataset	Production release
/MinBias_TuneZ2star_13TeV-pythia6/Summer13-START53_V7C-v1/GEN-SIM	CMSSW_5_3_10_patch2
/QCD_Pt-1800_TuneZ2star_13TeV_pythia6/Fall13-POSTLS162_V1-v1/GEN-SIM	CMSSW_6_2_0_patch1

- QCD_Pt-1800 dataset:
 - DAS link
 - 93453 (\sim 100k) events, 95 files
 - HcalNoiseAnalyzer ntuples on FNAL EOS: /eos/uscms/store/user/eberry/QCD1800MC/
- MinBias dataset:
 - DAS link
 - **9999424** (\sim 10M) events, 946 files
 - HcalNoiseAnalyzer ntuples on FNAL EOS: /eos/uscms/store/user/eberry/MinBiasMC/

Processing pileup sample

- Need to overlay QCD with MinBias
- Use MixingModule in CMSSW_6_2_8
- Pileup scenario: AVE_50_BX_25ns
- Two stages:
 - 1) DIGI, L1, DIGI2RAW, HLT
 - 2) RAW2DIGI L1Reco RECO
- Stage 1 all done: cmsDriver and python cfg
- Stage 2 part done: cmsDriver and python cfg
- High PU is VERY CPU intensive: 2 minutes/event

Pileup vs. No Pileup pulse shape comparison

single DIGI comparison: HB

single DIGI comparison: HE

- HE as expected.
- HB as expected in TS3. Strangeness in TS4 + TS5.
- Bug in MixingModule? Investigating with M. Hildreth.

Function validation on zero pileup sample: a_1

- Sample has zero pileup
- Sample size is much smaller in HE (more events coming)

Function validation on zero pileup sample: a1

- Sample has zero pileup
- Tails need investigation
- Sample size is much smaller in HE (more events coming)

Function validation on zero pileup sample: a2

- Sample has zero pileup
- Tails need investigation
- Sample size is much smaller in HE (more events coming)

Function validation on zero pileup sample: a3

- Sample has zero pileup
- Tails need investigation
- Sample size is much smaller in HE (more events coming)

Effect of corrections

- Corrected mean (blue) = 2.21 fC, RMS = 16.1 fC
- Uncorrected mean (red) = 0.76 fC, RMS = 16.6 fC

Conclusion

- Processed zero-pileup samples: OK for shape studies
- Processed high-pileup samples: OK for validation
 - Processing takes MUCH longer than expected
 - Strange features. Small effect in the end.
 - Investigating further.
- Preliminary results ready using Alexandre's method
 - Fit functions used for data model MC pulse shape well
 - Request from Salavat to increase the fit range: coming
- Working on validating results to put into CMSSW
- Suggestion from Artur: look at MC that approximates Alexandre's data

Selection

- Event selection:
 - No trigger requirement
 - No OfficialDecision requirement
 - NumberOfGoodPrimaryVertices > 0
- Channel selection:
 - Only HBHE considered
 - Rings: HB, HE: {17:20, 21:23, 24:25, 26:27, 28:28}
 - No channels in bad channels list.
 - RecHit energy > 1 GeV
 - Charge > 5 fC
- Analyzer code:
 - Git page

N(vertex)

Number of primary vertices: QCD sample

- 92612 events passing event selection
- Confirms no pileup, as expected

Definitions

- The following plots show TProfile distributions
- One entry per HCAL digi in the ZS-collection
- x-axis corresponds to charge in TS4 [fC]
- y-axis corresponds to one of several charge ratios:
 - a 1: charge in TS3 [fC] / charge in TS4 [fC]
 - a1: charge in TS5 [fC] / charge in TS4 [fC]
 - a2: charge in TS6 [fC] / charge in TS4 [fC]
 - a3: charge in TS7 [fC] / charge in TS4 [fC]

a 1(TS4) in the QCD sample

■ Fit with exponential + polynomial:

$$a_1(TS4) = [0] + [1] \cdot TS4 + Exp([2] + [3] \cdot TS4)$$

0.4

0.2

a1(TS4) in the QCD sample

a1(TS4) in HB TS5/TS4 0.8 0.6

a1(TS4) in HE 17:20

- Fit with multiple polynomials (same shape as in data)
- Fit function describes the shape well
- Numeric results and data comparison next slide

TS4 [fC], for HB

a1(TS4) Data vs QCD MC

a1(TS4) Data vs Monte Carlo in HB

- Blue points: MC
- Red line: MC fit
- Black line: data fit (from Alexandre)

a2(TS4) in the QCD sample

a2(TS4) in HB

a2(TS4) in HE 17:20

a2(TS4) in the QCD sample

a2(TS4) Data vs QCD MC

a2(TS4) Data vs Monte Carlo in HB

- Blue points: MC
- Red line: MC fit
- Black line: data fit (from Alexandre)

a3(TS4) in the QCD sample

a3(TS4) in HE 17:20

a3(TS4) Data vs QCD MC

a3(TS4) Data vs Monte Carlo in HB

- Blue points: MC
- Red line: MC fit
- Black line: data fit (from Alexandre)

