PODS Lab 3: Probability Theory

Hamza Alshamy

Center for Data Science, NYU ha2486@nyu.edu

02/07/25

- **Basics of Probability**
- Conditional Probability
- Bayes' Theorem
- **Random Variables**

Motivation: Why Do We Need Probability?

- ► Goal: Reason quantitatively about uncertain phenomena
- Questions:

Motivation: Why Do We Need Probability?

- ► Goal: Reason quantitatively about uncertain phenomena
- Questions:
 - ▶ Will it rain tomorrow?
 - ► Will the value of a stock drop tomorrow?
 - ► Who will win the 2026 FIFA world cup?

ample: Selecting a Random Locker

Scenario: A gym has 6 lockers labeled 1 through 6. You randomly choose one to store your backpack.

- **Sample Space** (Ω): The set of all possible outcomes.
 - The sample space is:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

- Event: A subset of the sample space.
 - ► The event "Choosing an even-numbered locker" is:

$$B = \{2,4,6\}$$

- Probability (Frequentist): The long-run relative frequency of an event occurring.
 - Since 3 out of the 6 lockers are even-numbered, the probability is:

$$P(B) = \frac{\text{\# of outcomes in } B}{\text{\# of all possible outcomes}} = \frac{3}{6} = 0.5 \text{ (or 50\%)}$$

Basic Probability Rules: Union (∪"Or")

General Union Rule:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Mutually Exclusive Case:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \qquad P(A \cup B) = P(A) + P(B) \quad (\text{if } A \cap B = 0)$$

Mutually Exclusive Events

- ► Goal: Spin the gears
- ► Sample Space: $\Omega = \{1, 2, \dots, 10\}$
- Event: The number at which the gear stops
- $P(8 \text{ and } 3) = P(8 \cap 3) = ?$

Mutually Exclusive Events

- Goal: Spin the gears
- **▶** Sample Space: $\Omega = \{1, 2, ..., 10\}$
- ► Event: The number at which the gear stops
- ► $P(8 \text{ and } 3) = P(8 \cap 3) = 0$
 - Mutually exclusive: Cannot happen at the same time!

Conditional Probability: Updating Beliefs

Key Idea: Conditional probability helps us revise our beliefs when new information is available.

Conditional Probability Formula

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

In words: What is the probability B Given that A has happened? how does this affect our belief in B?

Conditional Probability: Where does the formula come from?

Remember!

$$P(B) = rac{ ext{\# of outcomes in B}}{ ext{\# of all outcomes}} \quad \Rightarrow \quad P(B \mid A) = rac{P(B \cap A)}{P(A)}$$

- ▶ We're restricting the sample space to only cases where event A has occurred.
- In a sense, we are **zooming in** on the sample space!

Relationship Between Independence and Mutual Exclusivity

▶ **Question:** If two events *A* and *B* are mutually exclusive, does that mean they are independent?

Relationship Between Independence and Mutual Exclusivity

▶ **Question:** If two events *A* and *B* are mutually exclusive, does that mean they are independent?

- No! If two events A and B are mutually exclusive, they are NOT independent.
- ▶ Why?
 - ▶ In this case, if we know event *A* happened, we know for a fact that *B* cannot happen. We are **gaining** information by knowing that event *A* happened.

Independence: Gaining No Extra Information

Definition: Two events *A* and *B* are **independent** if knowing that *A* occurred **does not** provide any information about whether *B* occurred.

1. Without Independence:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Rewriting:

$$P(A \cap B) = P(A) \cdot P(B \mid A)$$

2. With Independence:

$$P(B \mid A) = P(B)$$

Rewriting:

$$P(A \cap B) = P(A) \cdot P(B)$$

(1) Addition Rule

General: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ Mutually Exclusive: $P(A \cup B) = P(A) + P(B)$

(2) Multiplication Rule

General: $P(A \cap B) = P(A) \cdot P(B \mid A)$ Independent: $P(A \cap B) = P(A) \cdot P(B)$

(3) Conditional Probability

General: $P(B \mid A) = \frac{P(A \cap B)}{P(A)}$ Independent: $P(B \mid A) = P(B)$

From Conditional Probability to Bayes' Rule

▶ Bayes' Rule: Allows us to "reverse" conditional probabilities.

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Rewriting:

$$P(A \cap B) = P(B \mid A) \times P(A)$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Rewriting:

$$P(A \cap B) = P(A \mid B) \times P(B)$$

Deriving Bayes' Rule

$$P(B \mid A) \times P(A) = P(A \mid B) \times P(B)$$

$$\implies P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

Some Terminology

Bayes' Rule with Interpretation

$$\underbrace{P(A \mid B)}_{\text{Posterior}} = \underbrace{\frac{P(B \mid A) \times P(A)}{P(B \mid A) \times P(A)}}_{\text{Prior (of } B)}$$

- ▶ **Prior:** Our belief about event *A* before seeing the data (e.g., how likely we thought *A* was initially).
- ► **Likelihood:** The probability of observing the data *B* assuming *A* is true.
- ▶ **Posterior:** Our updated belief about *A* after seeing the data *B*.

Example: Updating Beliefs About a Coin

Scenario:

- Prior Belief: The coin is fair.
 - ightharpoonup P(Heads) = 0.5
 - ightharpoonup P(Tails) = 0.5
- New Evidence: We flip the coin 60 times and observe heads 70% of the time (42 heads).
- ► Updated Belief (Posterior):
 - Based on the data, we update our belief: The coin may be biased toward heads.

Key Idea: Prior \rightarrow New Data \rightarrow Posterior

What is a Random Variable (RV)?

- ► Random Variable (RV): A function that maps all elements of a sample space to the real numbers
 - ▶ Mathematically: $\Omega \to \mathbb{R}$
 - **RV** Notation: $\mathfrak{X}, X, \tilde{x}$
- Intuition: Sometimes, the sample space is not represented in numbers
 - The role of RVs is to map all those elements in the sample space Ω (that are, at times, not numbers) into real numbers \mathbb{R}
- ▶ Relevance:
 - We will use RVs to describe probability distributions (next week!)
 - We use RVs to deal with probabilities

Random Variables as Functions?

Example: Flipping a Coin ($\Omega \to \mathbb{R}$)

- Scenario: You flip a coin and want to reason about the outcome quantitatively.
- Sample Space:

Random Variables as Functions?

- Scenario: You flip a coin and want to reason about the outcome quantitatively.
- **Sample Space:** $\Omega = \{ \text{Heads, Tails} \}$
- ▶ Define a Random Variable \mathfrak{X} that "transforms" the elements in the sample space to real numbers:

Random Variables as Functions? Example: Flipping a Coin $(O \rightarrow \mathbb{R})$

- Scenario: You flip a coin and want to reason about the outcome quantitatively.
- **Sample Space:** $\Omega = \{ \text{Heads, Tails} \}$
- ▶ Define a Random Variable \mathfrak{X} that "transforms" the elements in the sample space to real numbers:

$$\mathfrak{X}(\omega) \coloneqq egin{cases} 0, & ext{if } \omega = ext{Heads} \\ 1, & ext{if } \omega = ext{Tails} \end{cases}$$

- ▶ In words: The RV $\mathfrak X$ takes on the value 0 if the outcome is Heads and 1 if Tails
 - There you go! We have successfully mapped outcomes from the sample space Ω to real numbers $\mathbb R$

Random Variables and Probability

Example: Flipping a Coin

► **Question:** What is the probability of observing the outcome Heads (0)?

$$P_{\mathfrak{X}}(0) = P(\mathfrak{X} = 0) = \frac{\text{\# of outcomes in our event}}{\text{\# of all outcomes}} = \frac{1}{2} = 0.5$$

- In words: "What is the probability of the random variable $\mathfrak X$ taking the value 0?"
 - ▶ **NOT:** "What is the probability of getting heads?"
- **Key Idea:** The way we deal with probability it through RVs.
 - We ask "what is the probability of the random variable taking the value(s)?"

Two Types of Random Variables (RVs)

(1) Discrete

- Countable finite numbers of values
- **Example:** Goals scored in a soccer match

(2) Continuous

- Can take an infinite number of values, intervals
- **Example:** Marathon time

Probability Curve