2018年度 参学期末試験問題・解答

試験実施日 2018 年 7月 30 日 3 時限

出題者記入欄

試 験 科 目 名 微分方程式		出題者名佐藤弘康			
試 験 時 間 <u>60</u> 分	平常授業	(日<u>月</u>曜日<u>3</u>時限			
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください			
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ	・コピーも可) ・電卓 ・辞書)			
本紙以外に必要とする用紙 解答用紙 <u>0</u> 枚 計算用紙 <u>0</u> 枚					
通信欄					

受験者記入欄

学 科	学 年	!	学 籍	番	号	氏	名
		1					

採点者記入欄

	31.7.11 H HZ; 11/13
採点欄	評価

次の各間に答えなさい.

(1) $f(D)e^{2x}$ を求めなさい.

 $\mathbf{1}$ $f(t) = t^2 + 3t + 2$ とおく. また, D を微分演算子とする.

について以下の間に答えなさい.

(1) 線形同次微分方程式 y'' - 2y' + 2y = 0 の一般解を 求めなさい.

(2) 微分方程式 (*) の特殊解をひとつ求めなさい. なお,この微分方程式の特殊解が

$$y = ax^2 + bx + c$$
 (a, b, c は定数)

と書けることを利用してもよい.

(2) 微分方程式 f(D)y = 0 の一般解を求めなさい.

(3) $\frac{1}{f(D)}[12e^{2x}]$ を求めなさい.

(3) (*) の一般解を求めなさい.

3 定数係数線形微分方程式

$$y'' - 4y' + 4y = 25\sin x \tag{**}$$

について次の間に答えなさい.

(1) 線形同次微分方程式 y'' - 4y' + 4y = 0 の一般解を求めなさい.

(2) 微分方程式 (**) の特殊解をひとつ求めなさい. なお, この微分方程式の特殊解が

$$y = a \sin x + b \cos x$$
 (a,b は定数)

と書けることを利用してもよい.

(3) 微分方程式 (**) の一般解を求めなさい.

4 2 階定数係数線形微分方程式

$$f(D)y = F(x)$$

の一般解が

$$y = c_1 e^{-x} \cos \sqrt{3}x + c_2 e^{-x} \sin \sqrt{3}x + e^{2x} + x \qquad (\dagger)$$

であるとき、多項式 f(t) および 関数 F(x) を求めなさい. ただし、 c_1, c_2 は任意定数とする.