4-Esercitazione 19/04/2024

1) In un recipiente metallico chiuso, riempito con la massa $m_1 = 5 kg$ di acqua alla temperatura $T_1 = 20^{\circ}C$, viene immerso un blocco di alluminio di massa $m_2 = 1 kg$ alla temperatura $T_2 = 90^{\circ}C$. Dopo che si è stabilito l'equilibrio termico, la temperatura dell'acqua diventa $T_f = 22^{\circ}C$. Trascurando scambi di calore con l'ambiente esterno, si calcoli la capacità termica del recipiente.

[II calore specifico dell'AI è $c_2 = 0.22 \frac{kcal}{ka^2C}$]

▶ A66, Edniribrio LERMICO: 18 = 55°C

r calote scambioto dal roccipiente:
$$Q_{tr} = C_{tr} (T_g - T_1)$$

• Sistema acqua- recipiente - blocco Al:
$$Q_{TOT} = O$$

Qrot = $Q_1 + Q_2 + Q_R = O$

=> $m_1 c_1 (T_8 - T_1) + m_2 c_2 (T_8 - T_2) + C_R (T_8 - T_1) = O$

=> $C_R (T_8 - T_1) = -m_1 c_1 (T_8 - T_1) - m_2 c_2 (T_8 - T_2)$
 $T_8 - T_1$

=> $C_R = m_2 c_2 (T_2 - T_8) - m_1 c_1$
 $T_8 - T_1$

= 1 kg. 0.22 kcal $(90 - 22)^\circ (-5 kg \cdot 1) kcal = 2.48 kcal kg°c$

2) In un recipiente cilindrico chiuso superiormente da un pistone scorrevole senza attrito sono contenute $n=10 \ moli$ di un gas ideale monoatomico alla temperatura $T_1=300 \ K$ e a pressione atmosferica. La superficie laterale del cilindro ed il pistone sono adiabatici, mentre la base del recipiente conduce il calore. Il recipiente viene poggiato su un blocco metallico a temperatura $T_2 = 1000 \, K$. Il blocco è di massa $m = 1 \ kg$ ed è costituito da un materiale con calore specifico $c = 400 \ \frac{J}{kgK}$. Ipotizzando trascurabili le capacità termiche del cilindro e del pistone e il calore scambiato dal blocco metallico con l'ambiente, si calcolino la temperatura finale del gas e il lavoro compiuto dal gas durante la trasformazione.

- The lawor complicate dark gas mella trasformatione:

 Wg: $mR(Tg-T_1) = 38300$ J
- 3) Un gas ideale monoatomico è contenuto in un cilindro di sezione $S=0.01~m^2$, dotato di un pistone scorrevole senza attrito e di massa trascurabile. Il gas è in equilibrio con l'atmosfera esterna a pressione ambiente ($P_{atm}=10^5~Pa$). Successivamente, viene fornito al gas in maniera reversibile il calore Q=500~J. Si calcoli l'innalzamento del pistone.

· TRASFORMATIONE ISOBARA REVERSIBILE (P = cost = Patom)

- · Variatione di V: DV = \$ x
- · Legge dei gas ideali: PDV = mRDT => DV = mRDT

 Parton

 Parton
 - → Ricavando AT = Parm Sx

 MR
- · Sostituendo im Q:

+ Si puo' raicovare l'immaltamento x del pistone:

$$x = \frac{2}{5} \frac{Q}{S Ratm} = \frac{2}{5} \cdot \frac{500 \text{ J}}{0.04 \text{ m}^2 \cdot 10^5 \text{ Pa}} = 0.2 \text{ m}$$

4) Un gas ideale monoatomico si trova inizialmente alla temperatura $T_0 = 300 \, K$ ed occupa il volume $V_0 = 2*10^{-3} m^3$.

Il gas viene fatto espandere, fino a raddoppiarne il volume, seguendo la trasformazione: $P = a + b V^2$

Dove $a = 10^5 Pa$; $b = 5*10^{10} Pa/m^6$.

Si calcolino:

- a. La temperatura finale del gas
- b. Il lavoro compiuto dal gas durante la trasformazione
- c. Il calore scambiato dal gas durante la trasformazione

· Collectore: a) Tg yas: b) Wg: c) Qg

La trasformazione
$$t: P = a + bV^2$$
 con $a = 10^5 Pa$

$$b = 5.10^{10} Pa$$

$$m^6$$

▶ La Pimiziale (a Vo):

$$P_0 = a + b V_0^2 = 10^5 P_a + 5 \cdot 10^{10} \frac{P_0}{m^6} \left(2 \cdot 10^{-3} \, \text{m}^3\right)^2 = 3 \cdot 10^5 P_a$$

▶ La P gimale (a 2Vo):

· Eq di stato gas ideali: Po Vo = m R To

* Possiamo rcicovare la T ginale Tg:

> Lavorco compiuto dal gas durante on trassitumarione:

$$W_{g} = \int_{V_{0}}^{ev_{0}} P dV = \int_{V_{0}}^{ev_{0}} (a + b V^{e}) dV$$

$$= \int_{V_{0}}^{ev_{0}} (a + b V^{e}) dV$$

$$= \left[aV + \frac{b}{3}V^{3}\right]_{V_{0}}^{ev_{0}}$$

$$\begin{pmatrix}
a : 10^{5} P_{3} \\
b : 5 \cdot 10^{10} P_{3/m/6}
\end{pmatrix} = 2aV_{0} + \frac{b}{3} \cdot 8V_{0}^{3} - aV_{0} - \frac{b}{3}V_{0}^{3}$$

$$= > W_{0} = aV_{0} + \frac{7}{3}bV_{0}^{3} = 1130 \text{ J}$$

D De calore assorbito dal gas mella traspormazione (I Principio della Termodinatica):

· La variazione dell' E interna del gas:

$$\Delta U = m \alpha \Delta T = m \frac{3}{2} R (T_8 - T_0)$$

$$= \frac{3}{2} (mRT_8 - mRT_0)$$

$$= \frac{3}{2} (R_8 V_8 - P_0 V_0) = 4500 T$$