Are Observational Studies Valid?

Hamsa S. Bastani 5/11/15

LaLonde (1986)

- "Evaluating the Econometric Evaluations of Training Programs with Experimental Data"
 - Field experiment, random assignment of participants
 - NSW (National Supported Work) for ex drug addicts, ex convicts, etc.
 - Followed for 5 years

LaLonde (1986)

- Non-experimental group
 - PSID (Panel Study of Income Dynamics)
 - longitudinal survey of 9000 families about economic, social, and health behavior
 - CPS (Current Population Survey)
 - monthly survey of households about labor, employment, and unemployment

Results

 Non-experimental methods fail to recover true estimate

Control group	Regression	DID	
Experimental grou NSW	p 798	856	
Non-experimental groups PSID1-PSID3 [-8,067 ; -509] [-1,325 ; -65 CPS1-CPS3 [-4,416 ; 224] [-1,388 ; 198			

Diff-in-Diff

What's the problem?

- Lack of overlap of match variables
- Inappropriate weighting

Dehejia-Wahba (1999)

- "Causal Effects in Nonexperimental Studies: Reevaluating the Evaluation in Training Programs"
 - Used propensity score matching
 - Restricted sample to individuals whose 1974 income was known (~60%)

Dehejia-Wahba (1999)

Control group	Regression	Stratification	PSM	
Experimental gro	oup 1,672	1,672	1,672	
Non-experimental groups				
PSID1	731	1,494	1,473	
PSID2	683	2,220	1,480	
PSID3	825	2,235	1,549	
CPS1	972	1,774	1,616	
CPS2	790	1,622	1,563	
CPS3	1,326	2,219	662	

Smith-Todd (2005)

- Dispute sample restriction in Dehejia-Wahba
- Estimates without restriction are much more biased
- Need to adapt estimator to context / support

Key Assumptions

• Common support: $\forall X, 0 < E(T|X = x) < 1$

Key Assumptions

- In a natural experiment, we have strong ignorability: $(Y_0, Y_1) \perp \!\!\! \perp T$
- In matching, we need the Conditional Independence Assumption (CIA):

$$Y_{i0}, Y_{i1} \perp \perp T \mid X$$

For propensity score matching,

$$p(X) = P(T = 1|X) = E(T|X)$$

$$Y_{i0}, Y_{i1} \perp \perp T|X \Rightarrow Y_{i0}, Y_{i1} \perp \perp T|p(X)$$

Abadie and Imbens (2006)

- "Large Sample Properties of Matching Estimators for Average Treatment Effects"
- Matching estimators with fixed # matches
 - Highly non-smooth function of data
 - Not sqrt-N consistent in general
 - Even when consistent, does not achieve semiparametric efficiency bound (exception: PSM)
 - Bootstrap fails, Abadie-Imbens give a consistent variance estimator

Types of matching...

- Propensity score matching
 - assumes model is known
 - uni-variate CIA
- Multiple covariates
 - integer linear program to get best balance
 - not sqrt-N statistically consistent
 - unsure which covariates to balance more, especially in higher dimensions
 - Bias-variance tradeoff