Copyright - 2002 by the Genetics Society of America

Assessing Probability of Ancestry Using Simple Sequence Repeat Profiles: Applications to Maize Hybrids and Inbreds

Donald A. Berry,* Jon D. Seltzer, Chongqing Xie, Deanne L. Wright and J. Stephen C. Smith

*The University of Texas M. D. Anderson Canter Center, Houston, Texas, 77030, 'Third Wave Technologies, Inc., Madison, Wisconsin, 53719 and 'Pioneer Hi-Bred International, Inc., Johnston, Janua 50134

Manuscript received July 24, 2001 Accepted for publication March 11, 2002

ABSTRACT

Determination of parentage is fundamental to the study of biology and to applications such as the identification of pedigrees. Limitations to studies of parentage have stemmed from the use of an insulficient number of hypervariable loci and mismatches of alleles that can be caused by mutation or by laboratory error and that can generate false exclusions. Furthermore, most studies of parentage have been limited to comparisons of small numbers of specific parent-progeny triplets thereby precluding large-scale surveys of candidates where there may be no prior knowledge of parentage. We present an algorithm that can determine probability of parentage in circumstances where there is no prior knowledge of pedigree and that is robust in the face of missing data or missipped data. We present data from 54 maize hybrids and 586 maize inbreds that were profiled using 195 SSR loci including simulations of additional levels of missing and mistyped data to demonstrate the mility and flexibility of this algorithm.

DETERMINATION of parentage is fundamental to the study of reproductive and behavioral biology. The increasing availability of highly discriminant genetic markers for many diverse species provides the potential to uniquely characterize individuals at numerous lost and to unumbiguously resolve parentage where genealogical relationships are unknown, in error, or in dispute.

Identification of parent-progeny relationships in wild populations of animals and plants provides insights into the success of various reproductive strategies (ELL-STRAND 1984; SMOUSE and Meagher 1994; ALDERSON et al. 1999) and has allowed for the implementation of management programs to conserve genetic diversity (MILLER 1975; RANNALA and MOUNTAIN 1997). The association of pedigree with physical appearance or performance in domesticated animals and plants allows parents that have contributed favorable alleles for desirable traits through selective breeding programs to be identified (Bowers and Mereprin 1997; Sarc et al. 1998; Vankan and Fabby 1999). These applications of associative genetics facilitate further progress in genetic improvement through breeding. Establishment of parentage is also useful to secure legal rights of guardianship in humans, to help protect intellectual property in plant varieties, to validate breed pedigrees of domesticated animals to protect stocks of fish, and to identify

(Gotz and Thaller 1998; Primmer et al. 2000; White et al. 2000).

Most studies of pedigree have utilized exclusion analysis where the molecular marker genotypes of either one or a restricted number of potential triplets of offspring and purarive parents are compared. Often the identity of the mother is not in question; the maternal profile is subtracted from that of the offspring and the deduced paternal profile is then compared with candidate father. genotypes (Ellstrand 1984; Hamrick and Schnabel 1985). Individuals who could not have contributed the paternal genotype are excluded; the remainder are possible parents. Nonpaternity in humans is generally declared only on the basis of exclusions exhibited by at least two unlinked and independent loci. This criterion of exclusion reduces the likelihood of a false declaration of nonpaternity on the basis of marker results that are actually due to mutation within the phylogeny. Bein et al. (1998) show that evidence of nonpaternity should require exclusions at loci on different chromosomes to avoid erroneous conclusions that would be made due to nondisjunction at meiosis leading to uniparental inheritance. A requirement for at least three independent exclusions to declare nonpaternity in humans has also been instituted (GUNN et al. 1997). In studies of matural populations of animals or plants where numerous paront-progeny triplets are examined it is usual to accept

icas Al D. Anh suction to some le Mair et a give le vile Metron IX et del transcribe avandances et g

substantial netation incess overlip to graduity to their respeccensed but his parents are still alive (Hermises at al-

D. A. Berry et al.

1991; BOCKEL et al. 1992). CHASE MORELY et al. (1994) demonstrate that paternity can be determined in cases where the mother is unavailable for testing. LANG et al. (1993) partially reconstructed the DNA profile of a missing crocodile parent using profiles of the mother and progeny.

CHARRABORTY et al. (1988) and Smouse and Meagner (1994) report that reliance upon exclusion alone has usually failed to unambiguously resolve paternity. Limitations have stemmed from the use of an insufficient number of independent hypervariable loci. Other statistical methods are therefore required to calculate the likelihood of paternity for each nonexcluded male (BERRY and Guisser 1986; MEAGHER 1986; MEAGHER and Thompson 1986; Thompson and Meagher 1987; DEVLIN et al. 1988; BERRY 1991). MARSHALL et al. (1998). draw attention to the quality of data that is encountered practically in genotypic surveys. Maternal genetic data may or may not be available, data may be absent for some candidate males, data may be missing for some loci in some individuals, null affeles exist, and typing errors occur. Reconstructing or validating the pedigrees of varieties of cultivated plants often provides additional challenges because their phylogenics can reveal apparent exclusions that masquerade as non-Mendelian inheritance. For example, apparent exclusions can occur in circumstances where an individual is used as a parent prior to completion of the inbreeding process. The development of parent and progeny then continue on parallel but separate tracks thereby allowing the possibility that alleles that are subsequently lost through inbroeding in the parent can still become fixed in the progeny. It is also possible to create many offspring from a single mating and to use the same parent repeatedly in "backcrossing." Therefore, many individual inbred lines, varieties, or hybrids can be highly related. In consequence, there are numerous (and often very similar) pedigrees. The effective number of marker loci that can discriminate between alternate pedigrees is proportionally reduced as parents are increasingly related. Consequently, inbred lines can be more similar to one or more sister or other inbreds than those inbreds are to one or both of their parents.

It has not been usual to search among hundreds of individuals to identify the most probable maternal and parennal candidates for a specific progeny. Most studies of parentage are in circumstances where there is a priori information for at least one of the parents (usually the maternal parent). Limited availability of marker loci and the lack of very high throughput genotyping systems offering inexpensive datapoint costs may have focused

those undertaken on birds that practice brood parasitism (MDERSON et al. 1999) or extra-pair copulation (WETTON et al. 1992) or on species such as the wombat that are difficult to observe in the wild (Taxyrox et al. 1997)

Two circumstances favor a revised approach to the statistical analysis of pedigree. First, molecular marker technologies are rapidly developing and will allow numerous loci to be typed for thousands of individuals tapidly and inexpensively. A greater number and diversity of larger-scale studies of pedigree can be expected within the plant and animal kingdoms including individuals in which there is no prior knowledge of pedigree. A larger number of markers mean a greater chance for errors. Therefore, the second circumstance follows: Procedures that are efficient and robust in the face of apparent exclusions, missing data, and laboratory error are required.

The purpose of this article is to describe and evaluate a methodology that can be used to quantify the probability of parentage of hybrid genotypes. We focus on parentage because it is the primary focus of published literature and it is the easiest level of ancestry to understand. The method is robust in the face of mutation, pseudonon-Mendelian inheritance (apparent exclusions) due to residual heterozygosity in parental seed sources, missing data, and laboratory error. The methodology has a number of advantages: (i) It can accommodate large datasets of possible ancestors (hundreds of inbreds or hybrids each profiled by >100 marker loci), (ii) it does not require prior knowledge about either parent of the hybrid of interest, (iii) it does not require independence of the markers, and (iv) it can successfully discriminate between many highly related and genetically similar genotypes. We demonstrate the effectiveness of this approach to identify inbred parents of maize (Zen mays) L.) hybrids using simple sequence repeat (SSR) marker. profiles for 54 maize hybrids together with their parental. and grandparental genotypes included among a total of 386 inbred lines. The methodology is applicable to the investigation of parentage for all progent developed. from parental mating without subsequent generations or inbreeding

MATERIALS AND METHODS

Algorithm: Consider an index hybrid whose parentage is unknown or in dispute. Inbreds in an available database are possible ancestors of the lisbrid. The objective is to find the probabilities of closest ancestry for each inbred on the basis of intermation from SSRs from the index hybrid and the probabilities of closest ancestry for each inbred and the probabilities of closest ancestry for each system.

reproductive behavior readers mental into a critic parternal parent difficult or impossible. Examples include

the probability (har phaces and the or dance as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a second estination of a data that had been as a data that had been

The basis of the algorithm is Bayes' rule (e.g., Beiox 1991, 1996). Let P(i, j) SSRs: stand for the (posterior) probability that i and j are necessors of the index hybrid given the information from the various SSRs. Let P(i, j) stand for the unconditional (or prior) p obability of the same event. Finally P(SSRs(i, j)) is the probability of observing the various SSR results if in fact i and j are ancestors. Bayes' rule says

 $P(i, j| SSRs) = P(SSRs|i, j) \times P(i, j) / \sum \{P(SSRs|i, v) \times P(u, v)\}.$

where the sum in the denominator is over all pairs of inbreds. indexed by n and e. $P(SSRs(i, j) \times P(i, j))$ is one of the terms in the denominator. (To compute the denominator in the above expression, fix a particular order to the inbreds in the dambase and take $u \leq v$ in expressions involving the pair (u) e). If there are 586 inbreds, for example, then the number of pairs and the number of terms in the denominator is 586(587)/2 = 171,991.) Inbreds i and j may be parents or grandparents or other types of relations or bear no relationship at all to the hybrid. If there are more than two ancestors in the database, such as both parents and all four grandparents, then the possible pairs involving these ancestors will generally have the highest posterior probabilities. If the hybrid's true parents are in the database, then as a pair they will typically have the highest overall posterior probability. If both and J happen to be related to one particular parent of the hybrid, then as a pair their posterior probability will be lew because they will not usually account for many of the alleles that are contributed by the other parent of the hybrid.

We will make the "no-prior-information" assumption that P(u, v) is the same for all pairs (u, v). This implies that this factor is cancelled from both numerator and denominator in the above expression, giving:

$$P(x, j|SSRs) = P(SSRs|i, j) / \sum P(SSRsIn, w).$$

The problem is then to calculate a typical P(SSRs, i, j). Assume inbreds fand fare both ancestors. We calculate the probability of observing the resulting hybrid under this assumption. We make no assumptions about relationships among the various inbreds. Other possible ancestors will be considered implicitly in the calculation by allowing their alleles to be introduced through breedings with rand j. However, the nature of such breedings is not specified. Suppose inbred its alleles are (a. b). Each descendant of inbred i receives one of these two alleles or not. An immediate descendant receives one with probability I (barring mutations). A second generation descendant receives one of them with probability 0.5. And so on. Since degree of ancestry (if any) is unknown, we label the acrual probability of passing on one of these alleles to be PSimilarly, an allele from inbred / has been passed down to the hybrid or not, and the probability of the former is P In the following. P will be taken to equal 0.50, although we will also consider P = 0.99 in some of the calculations.

Assuming P=0.50 is consistent with the closest ancestors in the database being grandparents. However, we are not interested in grandparents $p\sigma$ so. If the closest ancestors in the database were parents, then as indicated above P should equal 1 (ignoring mutations and laboratory errors). Our primary contern is when the parents are not in the database. In this case P is no greater than 0.50. Assuming P=0.50 is robust over the middle range of possible values of P. One way in which it is robust is if there in its be mutanous and laborators.

are likely to be identified because they will usually have the lewest inismarches of the lines considered.

When i and j are ancestors there are four possibilities; (1). The alfeles of both inbreds i and i were passed to the hybrid (2) inbred i came through bit, not inbred j (3) inbred j came through bit not inbred i and (4) neither inbred came through. Assuming independence, these have respective probabilities P', P(1-P), P(1-P), (1-P)'. In the case P=0.50, all of these probabilities equal 0.25.

An instance of the law of total probability (Sec. 5.3, Berry 1996) is that the probability of obsciving a hybrid's alleles is the average of the conditional probability of this event given the above four cases. The simplest of the four cases is the first possibility. Assuming the hybrid's alleles are passed down directly from both inbreds, the probability of observing the hybrid's genotype is either 1 or 0 depending on whether the hybrid shares both inbreds' alleles. (It is especially easy when both inbreds are homozygous.) The other three cases require an assumption regarding the possibility that an inbred's allele is not passed to the hybrid but is interrupted by a mutation. a laboratory error, or intervening breeding. We regard such an allele as being selected from all known alleles with probability 1/(number of alleles), where the number of alleles is the total number of alleles known to exist at the locus in question. An alternative approach would be to use the allelic proportions that are present in the database (or in another database). However, the lines in the database may not be randomly selected from any population. For example, a line that has been highly used in breeding would have many derivative lines in the database, in which case the frequencies of its alleles will be artificially inflated. Assuming equal probabilities for the various alleles at a given locus is robust in the sense that it is not affected by adding and dropping lines from the database.

There are many cases to consider when computing the probability of observing a hybrid's alleles, depending on the zygosity of the hybrid and the inbreds, and allowing for the possibility of missing alleles or "extra alleles" in the assessment of the hybrid and inbred genotypes. These possibilities are too numerous to list. Instead we give three simple examples. All the examples have homozygous inbreds, the most common case. And each of the three hybrids has two alleles, again the most common case. We suppose that the measured alleles for three SSRs and a particular trio of hybrid and ancestor inbreds are as we have indicated in Table 1.

For SSR I there are three known alleles, one in addition to alleles a and b that are listed for the three lines invbrid. inbred i, and inbred \mathfrak{H} in Table 1. For SSR 2 and SSR 3 there are two known alleles in addition to those listed. The calculations in the right half of Table 1 will now be explained. Implicit in calculating $P(SSR)_{i,j}$ is the assumption—required m both the numerator and denominator of Bayes' rate-that inbrods i and j are angestors of the hybrid. Consider SSR 1. In case I above, both ancestors' alleles (as measured by the laborators process) are assumed to pass to the index hybrid. and so in this case the hybrid is necessarily at The probability of observing the actual hybrid's genotype is I for case I as shown in Table 1. In case 2, we assume that inbred its allele passes to the hybrid but inbred is does not. Indeed, the hybrid has an a allele. The probability of observing a b as the other allele is t_i (number of alleles) = 1/3, as shown in Table 1. Case 3 is similar. In case 4, neither ancestor illele is passed

to the question assumed in the control of the control of the control of the control of the database of the control of the cont

Fig. Specifical Cost of the property of the second cost of the second cost femine against pair of the beauty of cost of the second cost of the

\$16

D. A. Berix et al.

TABLET

Probability of observing a hybrid's alteles using three sample SSRs and four possible combinations (cases) of alleles passed, assuming that inbreds i and j are ancestors of the hybrid

					t		of observit 'a genotyp		Overall
SSR	No of alleles	Flybrid	Inbred i	Induced j	Case 1	Case 2 i, not j	Case 3 not 1, y	Case 1 not i, not j	probability P(\$5R[i,j)
1	3	cò	aa	Bb	1	1/3	1.3	2/9	17/36
2	5	bd	<i>55</i>	$C\varepsilon$	U	1/5	Q	2725	7/100
3	6	ab	cc	Dd	()	0	U	2/36	2/144

SSR, simple sequence repeat marker profile.

but it is not conclusive. For SSR 3 there is even less evidence favoring pair (i,j). It would not take many SSRs with evidence similar to that for SSR 3 to essentially rule out this pair—provided that other pairs are not similarly inconsistent.

To find the overall P(SSRsl), j), multiply the individual P(SSRl), j) over the various SSRs. There are purely computational issues to address. Each P(SSRl), j) is a number between 0 and 1. When there are a great many SSRs, the product of these numbers will be vanishingly small. To lessen problems with computational underflow, for each SSR we multiply P(SSR|u,v) by the same constant for each pair (u,v) the inverse of the largest possible such probability. For example, since 17/36 is the largest probability for a heterozygous hybrid at an SSR having three alleles (as is the case for SSR 1 in Table 1), we multiply all factors P(SSR|Iu,v) by 36/17. To eliminate remaining problems with underflow, we do calculations using logarithms (adding instead of multiplying) and take antilogs at the end.

The probability P(SSR(u, u)) is calculated for all (u, u) pairs and summed over all possible pairings in the database, including that for the inbred pair under consideration: (i, j). This gives the denominator in the expression for P(i, j|SSRs).

To determine the probability that any particular inbred, say inbred i, is the closest ancestor of the index hybrid, sum $P(SSR)_i$, i) over all inbreds v with v = l. Call this P(i|SSRs). The maximum of P(i|SSRs) for any inbred l is 1. But since there is one closest ancestor on each side of the family, the sum of P(i|SSRs) over all inbreds l is 2. If there is a particular pair (i,j) for which P(i|SSRs) is close to 1 then both P(i|SSRs) and P(j|SSRs) separately will be close to 1.

SSR data: DNA was extracted from 54 maize livbrids and from 586 maize inbreds. All of the hybrids and most inbreds are proprietary products of Pioneer Hi-Bred International, some important publicly bred inbred bines were also included. The inbred parents and grandparents of each hybrid were included within the set of inbreds. Other inbreds that were genotyped include many that are highly related by pedigree to parents and grandparents of the hybrids. The hybrids were chosen because each has a pedigree that is known to us and collectively they represent a broad array of diversity of maize germplasm that is currently grown in the United States ranging from early to late mattern.

Viold of 195 SSR for were used in this study following

(14); 17 SSR loc; have not yet been mapped. The correlations among the loci are unknown and are irrelevant for our methodology.

Sequence data for primers that allow many of these (and other) SSR loct to be assayed are available at website http:// www.agron.missouri.edu. All primers were designed to anneal and amplify under a single set of conditions for PCR in 10-p1. reactions. Genomic DNA (10 ng) was amplified in 1.5 mit MgCl₂, 50 mm KCl, 10 mm Tris-Cl (pH 3.3) using 0.3 units AmpliTaq Gold DNA polymerase (PE Corporation) oligonucleotide primer pairs (one primer of each pair was fluorescently labeled) at 0.17 μm and 0.2 mm dNTPs. This mixture was incubated at 95° for 10 min (hot start); amplified using 45 cycles of denaturation at 95° for 50 sec, annealing at 60° for 50 sec, extension at 72° for 85 sec; and then terminated at 72° for 10 min. A water bath themocycler manufactured at Pioneer Hi-Bred International was used for PCR reactions. PCR products were prepared for electrophoresis by diluting 3 µl of each product to a total of 27 µl using a combination of PCR products generated from other loci for that same maize genotype (multiplexing) and/or dH20. Dilution of 1.5 μί of this mixture to 5 μl with gel loading dye was performed: it was then electrophoresed at 1700 V for 1.5 hr on an ABI model 377 automated DNA sequencer equipped with GFNT-SCAN software v. 3.0 (PE-Applied Biosystems, Foster City, CA).

PCR products were sized automatically using the "local Southern" sizing algorithm (ELDER and SOUTHERN 1987). After sizing of PCR products using GeneScan, alleles were assigned using Genotyper software (PE-Applied Biosystems). Generally, allele assignations for each locus were made on the basis of histogram plots consisting of 0.5-bp bins. Breaks between the histogram plots of ALD were generally considered to constitute separation between allele bins; however, orther criteria, such as the presence of the nontemplated directed addition of adenune (+A addition) and naturally occurring 1-bp affeles, were used on a marker-by-marker basis to define the allele dictionary. All allele scores were made without knowing the identities of the maize genotypes.

RESULTS

A second of the second of the

558 [56] the fill to a plantage of a potentiases of a court of an inglividual material court context to total of 1 (35) (2 (2)) 3 (22), 4 (20), 5 (20), 6 (4), 7 (6), 8 (18), 9 (12), and 19

and P = 0.84 (Figure 1b). Results for the hybrids presented in Table 2 are featured at the top of Figure 1.

517

Probability of Ancests, Using SSR

 ${\it TABLC 2}$ Probability of ancestry of five hybrids using data obtained from 50, 100, and 195 SSR loci

		50 loci			100 toci			195 loci	
Hybd.	Inod.	Prob.	SE	Inbel	Prob.	SE.	Inbd.	Prob.	SE
				Α. Α	suming P =	0.50			
3417	ът D1ь5 D5ь3 b5 Se:	0.9607 0,8077 0.1016 0.0907 0.032	0.0125 0.1965 0.1035 0.0027 0.0125	P1 P2 D1P2 SP1 D1P1	0.8749 0.8141 0.1859 0.1243 0.0009	0.0252 0.2235 0.2235 0.223 0.025 0.0002	P1 P2 D1F2 D2P2 SP1	1 0000 0 9957 0.0043 F-06 E-06	E-07 0.0033 0.0033 E-06 E-07
3525	P1 P2 D1P2 GP1 GP2	0.8545 0.8188 0.1699 0.1441 0.0110	E-07 E-07 E-07 E-07 E-08	P1 P2 D1P2 CP1 SP1	0.9990 0.5437 0.4563 E=07 E=07	<f-20 <f-20 <e-20 F-18 <f-20< td=""><td>P1 P2 D1P9 SP1 GP2</td><td>1.0000 0.9635 0.0365 E-15 E-16</td><td><e-20 0.0528 0.0528 <e-20 <e-20< td=""></e-20<></e-20 </e-20 </td></f-20<></e-20 </f-20 </f-20 	P1 P2 D1P9 SP1 GP2	1.0000 0.9635 0.0365 E-15 E-16	<e-20 0.0528 0.0528 <e-20 <e-20< td=""></e-20<></e-20 </e-20
3559	P1 D1P2 GP2 D2P2	1,0000 0,9616 0,0340 0,0043 0,0009	E-06 E-08 E-10 E-09 F-10	P1 P2 D1P2 D2P2 D3P2	0.0090 0.0097 0.0003 E-03 E-06	T-10 E-10 E-14 F-15 E-17	P1 P2 D1P2 D2P2 GGP2	1.0000 1.0000 E-09 E-11 E-17	<e-20 <e-20 <e-20 <e-20 E-17</e-20 </e-20 </e-20 </e-20
8905	D1P1 SP2 D2P2 D1P2 P2	0.9822 0.4927 0.2836 0.1622 0.0565	E-08 E-07 E-07 E-07 E-07	DIPI SP2 DIP2 D2P2 PI	0.9803 0.6280 0.2321 0.1317 0.0197	0.0058 0.0976 0.0617 0.0372 0.0058	P1 D1F2 D2F2 P2 D3F2	1.0000 1.0000 E-06 E-07 E-10	E-08 E-06 E-06 E-13 E-16
3940	P2 D1P2 P1 D1P1 DP1P2	0.9997 0.9203 0.0648 0.0127 0.0014	0.0001 0.0009 E-05 E-05 0.0009	P2 P1 D1P2 D2P2 DP1P2	0,9999 0,9970 0,0030 0,0001 0,0001	E-05 0.0011 0.0011 E-05 E-07	P2 P1 D1P2 DP1P2 D2P2	1.0000 1.0000 E-11 E-17 E-19	E-09 E-09 E-11 E-17 E-18
				B. As	suming P =	0.99			
3417	SP1 P2 D1P2 D2P2 P1	0.9995 0.8836 0.0722 0.0411 0.0004	0.0001 0.1658 0.1029 0.0628 0.0001	PI P2 DIPI DIPI SPL	0 9999 0.9938 0.0061 E-05 E-05	E-05 0.0107 0.0107 E-06 0	P! P2 D1P2 D2P2 SP1	0.9999 0.9999 E-11 E-14 E-20	E-08 E-08 E-11 E-14 E-21
3523	P1 P2 D1P2 GP1 GP2	0.9999 0.8991 0.1998 E-06 E-06	0 0 E-11 0 E-17	251 D363 63 D165	0,9999 0,9749 0,025 E-20 F-24	0 0 0 0	P1 P2 D4P2 GP2 D2P2	1.6600 0.5135 0.3864 E-48 E-49	0 0.4446 0.4446 0 0
3056	P1 P2 D1P2 D1P1 D2P1	1.0000 0.9096 0.0003 E-11 E-13	0 0 0 0 0	PT P2 DTP2 O3P1 O3P1	1 0000 0,9999 E-09 E-21 E-21	() () () ()	PT 72 DTP2 DEPT DEPT	0.0999 0.9999 E-22 E-49 E-54	0 0 0 0 0
3905	D363 D163 263 D161	0 9999 0.3992 0.3006 E-03 E-66	0 0 0 0 0	D1P1 82 D1P2 SP2 D2P2	0,9999 a 0999 E-06 E-07 E-09	E-08 E-06 E-13 E-10	F1 F2 D1F2 D2F2 D1F1	1 0000 0.0047 0 0052 8-18 8-25	E 09 E-09 E-11 E-18 E-25
3940	DE165 D161 D165 D165 65	0.9999 0.9999 E-06 E-08 F-12	E-08 E-08 E-10 E-10 E-11	P2 P1 D1P2 D2P2 DP1P2	1 0000 1,9999 1: 05 E-12 1:-21	E-08 E-05 E-05 E-11 E-21	P1 P2 D1P2 DP1P2 D9P9	1.0000 1.0000 E-24 E-11 E-50	E-09 E-09 E-24 E-11 E-19

8.8

D. A. Bons et al.

Probability of Ancisary Using SSR

Fig. Re. 1.—Certinuel.

ranked as the top two places. The over parallt valuapphaned either bed sister inbreation by an about the

normation to find other grown's ranged to the other to a 1997 parentil lines traking second ranged from

O A Berry and

820

1 0000 to 0.9658. For 35 hybrids, both parents had probabilities of ancestry in excess of 0.999. Probabilities of ancestry for nonparents that ranked in first or second places were from 0.9999 to 0.7054. For the majority of hybrids, the probability of the third and highest ranked nonparental inbred was at or below b-06. This indicates that there is usually very little uncertainty about closest ancesto.5.

When the algorithm used P = 0.99 to examine each of the 54 hybrids, both parents were correctly identified for 52 (96%) of hybrids and for 98% (102/104) of the parents across all hybrids (Figure 1). Two hybrids (3914 and X0915A), in which one parent was not tanked in the top two, were also in the subset not ranked in the top two assuming P = 0.50 (above). In both cases their ranks improved (both to third rank) and the actual parent was supplanted by an inbred that was a direct progeny of the corresponding parental line. For 49 hybrids, both parents had probabilities of ancestry in excess of 0.009. Among the 5 hybrids having a parent ranking second with a probability of ancestry below 0.999, the lowest of these probabilities was 0.8976 and the highest probability for a third ranking nonparent was 0.1023. For most hybrids the probability for the third and highest ranked nonparental inbred was at or below E-10.

Table 2 also addresses data analysis in circumstances where heterozygous loci occur in inbred lines or where a hybrid is scored for the presence of more than two alleles per locus. The presence of more than a single allele per locus in inbred lines is an infrequent occurrence in well-maintained inbred development and seed increase programs but is possible because ~3-5% of loci can still be segregating and unintended pollination from genotypes not designated as parents of the hybrid can occur. For hybrids, more than two alleles per locus can be scored when DNA is extracted from a bulk of individual plants and because inbred parents are not homozygous the either to residual heteroxygosas or to commination or because one or more direct palents of the hybrid are themselves hybrids. The presence of more than one allele per focus in an inbred line and more than two alleles per focus in a hybrid therefore can be accommodated by multiple runs of the algorithm, each with a random choice of two alleles per locus. Consequently, standard errors in the case of analyzing data from 195 loo tend to be very small because there were few loci where an inbred or hybrid sample ffrom a bulk of individual plants' was scored for more

3940). First, we reduced the number of SSRs used, from the full set of 195 to 100 and then to 50 (Table 2). Use of 50 foci generated incorrect tankings of one parent for each of two hybrids (3417 and 3940) and for both parents of one hybrid (3905). All of these most highly ranked nonparental inbreds were closely related to the true parents for each of the respective hybrids; six different inbred lines were involved. Four were direct progeny of the true parents (one with additional backcrosses from the true parent) and two were full sisters (from a cross of highly related inbreds) of the actual parent of the hybrid. Using 100 loci resulted in correct parental rankings for all hybrids except for 3005 where neither parent ranked in first or second place. Four inbreds outranked the true parents of 3905. All four nonparents were closely related to the respective true parents; three were direct progeny of the true parent of the hybrid (one with additional backcrossing to that parent) and one was a full sister of the true parent. Use of data from all 195 loci corrected the placement for one of the parents of hybrid 3905. Two inbreds that were not parents of this hybrid remained ranked more highly than one of the true parents. Both were direct progeny of that parent, and one of these inbreds had additional backcrossing to that parent in its pedigree.

To address the consequences of laboratory and other sources of error, we artificially compromised data quality beyond the level originally provided by eliminating specific proportions of alleles that had been scored (establishing scenarios where various numbers of SSR alleles were not scored) and by misscoring other alleles (establishing scenarios where various numbers of SSR alleles were scored incorrectly). We also combined the scenarios of missing data and wrongly scored data. Table 3 contains a summary of the results of making these modifications in the data. For all modifications we used data from all SSR loci and we also randomly chose SSR loci to create subsets of 50 and 100 loci. In each case, the program was run 20 times for each hybridiset of loci. When all 195 loci were examined, replications differed only according to the particular choice of alleles for loci where more than two alleles had been scored.

To evaluate robustness in the face of missing data or mistyped data, we simulated individual and combined categories of these data in the hybrid and all inbred lines at levels of 2, 5, 10, and 25% of the alleles for each of five hybrids and all inbreds beyond the level of error as originally scored by the laboratory. We examined the effects of these levels and types of error for three sizes of database: 50 loci. 100 loci. and all 195 scored loci.

tion. We flight the investigated the publishes of the algorithm by examining the effects of modification on the dust for two hybrids, 3417, 3526, 3536, 0005, and

complete and armiculate could be to a 55% scale to be

Examples of cobustness in the one of additional error

Probability of Ancestry Using SSR

									Itybrid		i						
	-		3417			3525			3556			3005	ļ		3940		
ું. Ierel દો ત્રમલું	No of	93	100	195	35	CEL	199	, ₇ ,	100	SG	33	100	195	916	(8))1	135 135	Mean Senoax
		-	. 71	21	-	24	01	24	21	57	0	0			ΣI	21	33
: 50		-	21	اح	\$1		\$4	÷ı	21	24	0	D		_	21	21	23
1 40			71	5	અ	24	2,1	47	21	ರಿತಿ	o	ت		_	\$\l	71	r: [:
10			2.1	ŢΙ	24	71	C1	\$1	ΦI	24	Û	₽	_	_	ΩI	7.5	17.5
10 21		<u>-</u>	ć	÷1	_	_	-	ΔI	34	24		÷	_	_	_	-	1.0
Much % near.		2	SET		35	\$	90	100	100	(ŘÍ	=	÷	93	<u>5</u>	€6 6	Ĵ	
=		_	21	21	÷1	21	31	ΩI	21	51	2	-	~		žΙ	21	11
.7.		-	51	27	54	21	21	φ1	S1	21	၁	0	-	-	ΣI	וכ	r(r
r.		_	21	ĈΊ	91	-	21	5	2-1	3	₽	0	-	-	וכ	71	10 10 10
10				71	24	Ç1	21	21	2	C-1	þ	9	-	_	S1	2,1	73
25		-	÷	∵ 1	_	-	94	_	\$1	÷1	₽	_	-	-	51	÷ı	1 9
Mean Somax.		Ė	ŧ	Ē	8	80	<u>=</u>	₽.	10	100	\$	Ξ	8	<u> </u>	D01	ŧ	
5		_	31	51	21	5	61	31	21	Ç4	n	=	-	_	σı	± ;	22
51		-	Ξì	୍ଦୀ	21	÷4	ଚ ।	24	۵1	O1	0	0	_		٥ı	21	1.
,. . -			Ş1	21	ÞН	-		ارت	71	e)	0	=	-		٥١	٠,	Ē
<u>=</u>		_	~1	21	-	÷1	51	51	2/1	φı	0	_	-	-	21	21	1-
5.1		Ţ	_	21	⊃	C	Ð	≂	=	⊅	O	Ð	-	Ξ	つ	_	<u> </u>
Mean Semax.		=	06	100	ှု	7	70	₹	₹,	ž	D	10	<u> </u>	?	Š	₹	
		<u>-</u>	X:	1001	83	-1	52	16	413	<u> </u>	=	2	99	<u>(</u> -	683	413	

gred are the sume as those in Table 2.

 $\label{eq:table} {\it TABLE 3} \\ {\it Number of parents ranked in first and second positions (maximum is 2)}$

D. A. Berry et al.

See

for five hybrids using subsets of 50 and 100 loci and all loc, are shown in Table 3 where numbers of parents ranking into the top two places are presented. Degradation in the preferential ranking of parent inbreds at a texe) of 25% additional missing data was shown for one hybrid (3525) with usage of 50, 100, or all SSR loci. Degradation in the preferential ranking of parent inbreds at a level of 25% additional misscored data was shown for hybrid 3556. When both additional levels of missing and misscored data were similated, degradation in the ability to preferentially rank inbred parents occurred for all hybrids and for all sets of SSR (50, 100, and 195 loci) except for hybrid 3417 when data from 195 SSR loci were used. Over all five hybrids, use of 100 loci improved robustness from the use of 50 loci; use of 195 loci further improved robustness for four hybrids (3417, 3525, 3905, and 3940). The degree of improvement was small, except for hybrid 3905.

We also ranked inbreds according to their probability of ancestry of hybrids when both pareitts and all inbred derivatives and full-sister inbreds of the respective inbred parents for each hybrid were excluded from the unalysis. The results are too voluminous to present here but can be summarized as follows: Using P = 0.50, a grandparent of each respective hybrid ranked into first place for 41 (76%) hybrids; probabilities ranged from 0.4976 to 1.0 and most were above 0.9999. Other classes of inbreds that canked in first position for probability of ancestry were inbreds derived directly by pedigree from a grandparent of the respective hybrid (DGP) for 13% of hybrids, inbreds derived directly by pedigree from a great-grandparent of the respective hybrid (DGCP) for 9% of hybrids, and one class (2% of hybrids) with an inbred ranked into first place that was directly related by pedigree to the great-great-grandparent of that hybrid. Inbreds that ranked in second posifrom were related to the respective parents of the hybrid as follows. Thirty-one (57% of hybrids) were a grandpurent of the respective hybrid, 11 (20%) were classed as DGP, 7 (13%) were DGGP, 1 (2%) was class DGGGP. and 4 (7%) were a great-grandpinent (GGP) of the respective hybrid. Over all hybrids, two of the four grandparents ranked into first and second positions for 23 (43% of hybrids); three grandparents ranked into the first three positions for 5 (9% of hybrids). There were no instances where all four grandparents ranked into the first four positions. Thirty hybrids had a grandparent ranked into first position using P = 0.99. The and the company to a particle in the top fire post

DISCUSSION

The prevalent use of paternity indicas demonstrates that it is advantageous to have explicit probabilities of ancestry to distinguish among different pedigrees. Molecular marker profiles are rapidly becoming more extensive and cost effective to generate. Features that would advance the statistical analysis of molecular marker data to provide explicit probabilities of ancestry include the ability to calculate probabilities of ancestry where there is no a prior information as to the identity of one (usually the maternal) parent and robustness in the face of laboratory error.

Maize inbred lines and hybrids provide a very exacting set of materials for evaluating the discriminatory abilities of molecular data and statistical procedures that are employed to interpret those data. Hundreds of maize inbred lines of known pedigree together encompass a great diversity and complexity of pedigree relationships. Some inbred lines can be very highly related and genetically similar due to their derivation from common parentage including from parents that are themselves highly related. Consequently, relationship entegories such as "sister" or "parent" when applied to maize inbreds usually refer to closer degrees of pedigree relationship and, thus, of germplasm and molecular marker profile similarity than those of the equivalently named classes of relationship for animal species. Most maize hybrids that are widely used in the United States today are constructed from pairs of inbred lines that are unrelated by pedigree, each inbred parent having been bred from a separate "pool" of germplasm. Various degrees of relacedness are possible between hybrids according to the pedigree relationships among their constituent inbred parents.

Using P = 0.99 in the algorithm is more specific for identifying parents than using P = 0.50. However, P = 0.99 is less robust for identifying other relatives, such as grandparents. When the algorithm was run at P = 0.50 there were 6 hybrids for which one parent did not rank among the top two most probable genotypes. For the remaining 48 hybrids the correct parents were identified even in circumstances where other candidate inbreds included not only full-sister lines bred from related parents but also inbreds even more closely related to the true parent by virtue of being backcross conversions of the inbred parent of the hybrid. For each of the 6 hybrids where a comparent ranked above a true parent, that higher tranked inbred was always either a sizer or program of the outcanked true parent. The

first two productions was 6.0285 (8.0 - 9.0) = 7.15 when 8.009 (9.0001) = 6.040 (forwhere P = 0.90)

from a state of the Sea Asserment of Sea approximates a relation to between mored a and Asserted

inbred A' has been bred from a cross of inbreds A and B with between one and two additional backcrosses of the parental inbred A. A Malécor coefficient of relationship of 0,9680 closely approximates a relationship beoween inbreds A and A" where four additional back-

crosses of parental inbred A follow the initial cross of inbreds A and B.

Running the algorithm at P = 0.99 in comparison to P = 0.50 raises the probability of ancestry for the parents while diminishing the probabilities for the third and lower ranking candidate inbred lines. Use of the algorithm at P = 0.99 increased both the percentage of hybrids with both parents ranked in the first two positions (from 89 to 96%) and the percentage of parental inbreds that were ranked first and second (from 94 to 98%). Two hybrids (3914 and X0915A) did not have both parents maked first and second when the algorithm was run at P = 0.99. For both of these hybrids the nonparental inbred that outranked the true parent was itself a product by pedigree from the true parent. that had been created by an additional four backcrosses of that parent; the Malécot coefficient of relationship between the parent of the hybrid and the inbred that outranked that parent for these two hybrids was 0.9636.

Robustness was tested by evaluating the effects of using data from different numbers of loci and by simulating additional levels of missing and misscored data upto combined levels of 25% error beyond that which was provided by the laboratory. From our experience, error rates of 5 to 10% can occur in SSR profiling of maize due chiefly to the combined effects of residual heterozygosity among seed lots and by deficiencies in the scoring of heterozygoies in hybrids. The additional levels of simulated error, therefore, include values (up to ~35% total error) that are well outside of our experience. For five hybrids that were examined, increasing the number of loci from 50 to 100 (with no additional missing or misscored data) did reduce the number of instances where inbreds that were not parents of a hybrid outranked the true parent from four to one. Nonethcless, all of these more highly ranked inbreds, although they were not themselves the true parents of the respective hybrid, were either direct progeny or full sisters of the nne parent (Table 2). Consequently, if such degrees of error can be tolerated in respect of pedigrees for inbreds that are identified as parents of hybrids, then SSR data from 50 loci of equivalent discrimination ability are sufficient. Use of data from 50 loci also evidenced rohustness in the face of up to 10% additional levels of cither missing or misscored data, no degradation in the كالترابط والمقار والمعجود محصور الرابل والرواء والمرادي كالمتأسط والمراجع

levels of error: Table 3). Use of data from 195 loci provided greater resiliency against additional levels or error. However, use of data from 195 loci was unable to provide resiliency against the negative effects of adding combined levels (at 25%) of both missing and misscored data (Table 3). At the 25% level of additional poor data integrity, inbreds that were not (elated to the true parent of the hybrid outranked the true parent for four of the five hybrids. Levels of missing or misscored data should, therefore, be kept below 15-20% (assuming a level of 5-10% error in the data we analyzed prior to simulating additional error).

We have previously examined the pedigrees of inbreds that are ranked into the first two positions when the true parents are removed from the list of candidate. inbred lines. Usually, direct progeny or full sisters of the true parents then rank most highly (data not presented). We therefore examined the rankings of inbreds with respect to their ranking and probability of inclusion in the ancestry of each hybrid after the removal, not only of the true parents, but also of the progeny of the true parents and any full sisters of the true parents. In these circumstances the grandparents of the hybrids are ranked predominantly into top positions. Using P =0.50, a grandparent ranked into first position for 76%. hybrids and into second position for 57% hybrids; with P=0.99 a grandparent ranked into first place in 56%. of hybrids. At P = 0.50 two grandparents ranked into first and second positions for 43% hybrids and into the first three positions for an additional 9% hybrids. Most of the remaining inbreds that ranked into the top two positions were progeny of the grandparent. A total of 108 grandparents ranked into the top five positions when P = 0.50; 93 ranked into these positions when P =0.99. Seventy-one grandparents ranked into the top two positions when P = 0.50; 55 grandparents ranked into these positions when P=0.99. The mean probability of a grandparent in the top two positions was 0.9283. (SD 0.1454) when P = 0.50 and 0.9980 (SD 0.0104) when P = 0.99. Our algorithm was written to identify pairs of ancestors; alternative algorithms could be imlored to identify all grandparents once parents had been identified and removed from the list of condidate in-

We have demonstrated the capability and robustness of an algorithm that can be used to show probability of parentage in circumstances where the a priori pedigree identity of neither parent is known. Exclusions are taken into account, thereby allowing parentage to be shown even when the two parents are not represented in the the disea of molecular profiles that are experimed. Her-

Hor 30, occusio 7, 9, embatic correct parchis com 14 %, and operative discriminators consistent income on with the

824

D. A. Berry et al.

in the species of interest. Using P = 0.99 compared to P = 0.50 preferentially identified more true parents and with a greater difference of probability to third placed nonparents. If there is reasonable assurance that the parents are among the candidate list of inbreds, then P = 0.99 should be used, if greater robustness is required, then P = 0.50 should be used.

Applications of our algorithm include the identification of pedigrees among individuals of plant or animal species where molecular profile datasets exist that can be interpreted in terms of segregating alleles at individual marker loci and that provide a sufficient power of discrimination. Capabilities to generate large datasets of suitable molecular profile data are already available and are increasing rapidly with the advent of single nucleotide polymorphisms. One further application of our algorithm is to assist in the protection of intellectual property that is obtained on plant varieties or upon specific dams or sires of animals through the determination of pedigrees

LITERATURE CITED

ALDERSON, G. W. H. L. Cibis and S. G. Seat v. 1999. Parentage and kinship studies in an obligate brood parasitic bird, the brownheaded cowhird (Mobilinas ater), using micrositellite DNA markers. J. Hered. 90: 182-190.

BEIN G B DRILLER, M. SCHERMANN, P. M. SCHNEIDER and H. KIRGH-NER, 1998. Pseudo-corlusion from paternity due to majornal uniparental duomy 16. Int. J. Leg. Med. 111: 328-330.

BERRY, D. A. 1991 Inferences using DNA profiting in forensic identibeation and paremity cases (with discussion), Star. Sci. 6: 175-205. BERRY, D. A., 1996. Statistics: A Bayesian Perspective. Director Press,

Belmont, CA.

- BERRY, D. A., and S. Gerssek, 1986. Inferences in cases of disputed paternity pp 303-382 in Statistics and the Lair, edited by M. H. DeGroot, S. E. Fillsberg and J. K. Kadank. Wiley Publishing.
- BOCKEL, B., P. NUSNBERG and M. KRAWUZAK, 1992. Likelihoods of studences DNA imperpoints in extended families. Am. J. Hum. Genet. 51: 554-561.
- BOWERS, J. E. and G. P. MEREDITH, 1997. The pureryage of a classic wine grope, Cabecnet Surveyoon, Nat. Gener. 16: 84–87.
- CHARRAGORY, F., T. R. MEXCHER and P. E. SMOUSE, 1988. Parentage analysis with genetic markers in noticed populations. I. The experied proportion of offspring with manifoldious paternity. Gene igk 118: 19°-536
- CANDENBORTY, R. L. JEN and Y. ZHONG, 1994. Patermity evaluation. in cases lacking a mother and nondesectable albeles. Inc. J. Log-Med. 107: 127-131
- DEVILIN, B., K. ROEndramid N. C. ELLSTRAND, 1988. Fractional paterntiv assignment: theoretical development and comparison to other methods. Theor. Appl. Genet. 76: 369-380.

 ELDER, J. K. and F. M. SOUTHERS, 1987. Computer-aided analysis.
- of our dimensional resultion fragment gels, pp. 165-172 m. Anchor And and Protein Someone Analysis A Product Approach edited by M. J. Bistrop and C. J. RAWLINGS, IRI, Press, Oxford
- Eurspesso, N. C. 1984. Multiple paternas within the fraits of the sold acids Region words is Ann. Not. 123: S12-375

- Gotz, K., and G. Travitanik 1938. Assignment of individuals to popul-Tation's using time (sat. !lazz) | Norm Billed Genet (115) 50-6
- GLAS P. R., K. Thereston, P. Starbatos and D. B. Krakkowski, 1997. DNA analysis in disputed parentage, the occurrence of two applicable field stones of paternay, born at short randon. repeat (STR) bear in the one child. E echophoresis 18: Iffile
- Hysner K, J. L. and A. Schwaren 1885. Understanding the generic structure of plent populations, some sail problems and a new approach, pp. 50-70 is Population Courses in Forests, edited by H R. German's Springer-Verlag, Heidelberg, German's
- HILLMINEN P. V. JOHNSSON, G. EUSTIOLIC and L. PELIONIN, 1991 Proving paternay of children with deceased fathers. Hum. Genet. 87: 657-660
- Lang, J. W., R. K. Aggarovall, K. C. Majumbar and J. Singu, 1993. Individualization and a timation of relatedness in erocodificats by DNA fingerprinting with a Bkm-derived probe. Mot. Gen Genet 238 (1-2): 49-38.
- Manheort, G., 1948. Les Mathemanques de l'Hérédité. Masson et Cic.
- MARSHALL, T. C., J. SLATE, L. E. B. KRUDK and J. M. PEMBERTON, 1998. Statistical confidence for likelihood based paterney information natural populatanis Mol. Ecol. 7: 639-655.
- MEAGITER, T. R., 1986 Analysis of paternity within a control population of Chamachasan lateam (L). Elemphanion of most-likely male parents. Am. Nat. 128: 199-215
- MEAGUER, T. R., and E. Thosuson, 1986. The relationship between single parent and pare it pair general likelihoods in genealogy reconstruction. Theor. Popul. Biod. 29: 87-106.
- MILLER, P. S., 1975. Selective beecking programs for rare affelds examples from the Przewalski's horse and California Condor pedigrees, Conserv. Biol. 9: 1262-1273.
- PRIMITIE C. R., M. T. KOSKINEN and J. PIRONES, 2000. The one that did not get away individual assignment using interesatellite data detects a case of fishing competition fraud Proc. R. Soc. Cond. 8 Biol. Sci. 267: 1699-170 r
- RANNALA, B., and J. L. MOUNTAIN, 1997. Detecting immigration by using multilocus genotypes, Proc. Natl. Acad. Sci. USA 94: 0197-0-2(1)
- SPEC, K. M., H. STPINKEILNER, J. GLOSSE, S. KAMPKER and F. REGNER. 1998 Reconstruction of a grapevine pedigree by microsatellite analysis. Timor. Appl. Genet. 97: 227-231.
- SMITE, J. S. C., E. C., L. CHIN, H. SEW, O. S. SMITE, S. J. WALL stall, 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Get mays L.); comparisons with data from RFLPs
- and pedigree Theor. Appl. Cenct. 95: 163-173.
 SMOUNT, P. F., and T. R. MEAGIER, 1994. Genetic analysis of male reproductive contributions in Chanacitrum lateur (L.) gray (Liliaceael Genetics 136 313-322.
- TAYLOR, A. C., A. HORSDY, C. N. JOHNSON, P. SUNNECKS and B. Still revers, 1997 Relatedness structure detected by microsatellite analysis and attempted perliquee reconstruction in in contangered marsupial, the northern harry-nosed wombar Liteurhinus Sreffic Mol Écol 6, 6-19
- I postesos. E., and J. R. Missauer. 1987. Parental and sib likeli-
- hoods in generalize reconstruction. Biometrics 13, 585-460. Workers, D. M. and M. J. Frony. 1929. Estimations of the efficient and revability of paternity assignments from DNA microsofellite andysk of mulaple site in dirgs. And a. Genet. 30: 355-361
- WETTON, J. H., D. T. PARKIN and R. E. CARTER, 1992. The use of genetic markers for parentage analysis in Passer domestions chouse sparrows). Heredox 69: 243-254.
- WILLE, J. HONTER, C. DEBEIZ, R. BROST, A. BRATTON et al., 2000. Microsatellite markers for individual tree genowping application to forest crime prosecutions of Chem. Technol. Boatcalined, 75:

Communicación de datos ZB Acres