Stochastic-Process Simulators

$generate_ar - AR(1)$ Core of the Cascade

Parameters

Symbol	Meaning
$\overline{\phi}$	AR(1) coefficient (b1 in the script)
σ^2	innovation variance (s_2^2)
x_0	initial value $(X_0^{(2)})$
α (optional)	intercept if present in the code

$1 \cdot Model$

$$x_t = \phi x_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{N}(0, \sigma^2).$$

If the script adds a constant term α , replace the equation with $x_t = \alpha + \phi x_{t-1} + \varepsilon_t$.

$2 \cdot \text{Closed-Form Solution}$

Iterating the recursion:

$$x_t = \phi^t x_0 + \sum_{j=0}^{t-1} \phi^j \varepsilon_{t-j}.$$

$3 \cdot Mean$

$$\mathbb{E}[x_t] = \phi^t x_0.$$

With an intercept α :

$$\mathbb{E}[x_t] = \phi^t x_0 + \frac{\alpha}{1 - \phi} (1 - \phi^t) \xrightarrow[t \to \infty]{} \mu = \frac{\alpha}{1 - \phi}.$$

4 · Variance

$$Var(x_t) = \sigma^2 \sum_{i=0}^{t-1} \phi^{2i} = \sigma^2 \frac{1 - \phi^{2t}}{1 - \phi^2}.$$

Unconditional (stationary) variance

$$Var(x_{\infty}) = \frac{\sigma^2}{1 - \phi^2} \quad \text{for } |\phi| < 1.$$

5 · Autocovariance and Autocorrelation

In the stationary regime ($|\phi| < 1$):

$$\gamma(k) = \text{Cov}(x_t, x_{t+k}) = \frac{\sigma^2}{1 - \phi^2} \phi^{|k|}, \qquad \rho(k) = \phi^{|k|}.$$

6 · Mean-reversion half-life

Define $k_{1/2}$ so that

$$\left| \mathbb{E}[x_{t+k_{1/2}}] - 0 \right| = \frac{1}{2} \left| \mathbb{E}[x_t] \right|,$$

i.e. $\phi^{k_{1/2}} = \frac{1}{2}$. Hence

$$\boxed{k_{1/2} = -\frac{\ln 2}{\ln |\phi|}}.$$

 $(Larger |\phi| \Rightarrow slower decay.)$

7 · Recap of One-Step Simulation

For each t

$$\begin{split} X_t^{(1)} &= b + \varepsilon_t^{(1)}, \\ X_t^{(2)} &= b_1 X_t^{(1)} + \varepsilon_t^{(2)}, \qquad \qquad \varepsilon_t^{(k) \text{ i.i.d.}} \approx \mathcal{N}(0, s_k^2). \\ X_t^{(3)} &= b_2 X_t^{(2)} + \sqrt{|X_t^{(1)}|} + \varepsilon_t^{(3)}, \end{split}$$

If $|b_1| < 1$ and $|b_2| < 1$ the first two coordinates behave like a linear AR(1) cascade; the third adds a non-linear square-root coupling.

8 · Moments of the Linear Sub-System

8.1 Mean of $X_t^{(1)}$ Because $X_t^{(1)} = b + \varepsilon_t^{(1)}$ is i.i.d.,

$$\mathbb{E}[X_t^{(1)}] = b, \quad \text{Var}[X_t^{(1)}] = s_1^2.$$

8.2 Mean and Variance of $X_t^{(2)}$ Conditional on $X_t^{(1)}$, $X_t^{(2)} = b_1 X_t^{(1)} + \varepsilon_t^{(2)}$. Thus

$$\mathbb{E}[X_t^{(2)}] = b_1 b, \quad \operatorname{Var}[X_t^{(2)}] = b_1^2 s_1^2 + s_2^2.$$

8.3 Stationarity of $X_t^{(2)}$ Because there is *no* recursion in time, stationarity holds unconditionally—no AR lag exists beyond one step.

9 · Mean of the Non-Linear Third Coordinate

Write
$$X_t^{(3)} = b_2 X_t^{(2)} + \sqrt{|X_t^{(1)}|} + \varepsilon_t^{(3)}$$
.

$$\mathbb{E}[X_t^{(3)}] = b_2 \mathbb{E}[X_t^{(2)}] + \mathbb{E}[\sqrt{|X_t^{(1)}|}],$$

because $\varepsilon_t^{(3)}$ has mean 0.

The square-root term has no closed form in elementary functions, but for $X_t^{(1)} \sim \mathcal{N}(b, s_1^2)$ one can use the folded-normal result

$$\mathbb{E}\left[\sqrt{|X_t^{(1)}|}\right] = \sqrt{\frac{s_1}{\sqrt{\pi}}} \exp\left(-\frac{b^2}{2s_1^2}\right) + b \operatorname{erf}\left(\frac{b}{\sqrt{2}s_1}\right),$$

where erf is the error function.

$\mathbf{10}\cdot\mathbf{Covariance}$ Between $X_t^{(2)}$ and $X_t^{(3)}$

Since $X_t^{(2)}$ and $\varepsilon_t^{(3)}$ are independent,

$$Cov(X_t^{(2)}, X_t^{(3)}) = b_2 Var(X_t^{(2)}) + Cov(X_t^{(2)}, \sqrt{|X_t^{(1)}|}).$$

The second term is non-zero because both variables depend on $X_t^{(1)}$; it can be evaluated numerically or via series expansion.

11 · Key Take-Aways

- First two coordinates are linear in the innovations; third coordinate is non-linear and non-Gaussian.
- No temporal recursion \Rightarrow simulation is O(n) for n observations (all paths independent in time).
- Stationarity requires only $|b_1|, |b_2| < 1$ for the linear moments; the non-linear term always retains finite variance because $\sqrt{|X_t^{(1)}|}$ is square-integrable for Gaussian $X_t^{(1)}$.

generate_garch — GARCH(2,0) Conditional Variance

Parameters

Parameter	Role
$\overline{\alpha_0}$	long-run variance contribution
α_1, α_2	ARCH weights (positivity ≥ 0)
n	length retained after burn-in
x0	initial value (discarded)

$1 \cdot Model$

$$\sigma_t^2 = \alpha_0 + \alpha_1 x_{t-1}^2 + \alpha_2 x_{t-2}^2,$$

$$x_t = \sigma_t \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{N}(0, 1).$$

(Burn in 50 steps before keeping the series.)

2 · Unconditional Variance

Let $v_t = \mathbb{E}[x_t^2] = \mathbb{E}[\sigma_t^2]$. Taking expectations:

$$v_t = \alpha_0 + (\alpha_1 + \alpha_2) v_{t-1}.$$

In stationarity $(v_t = v_{t-1} = \bar{v})$:

$$\bar{v} = \frac{\alpha_0}{1 - (\alpha_1 + \alpha_2)} \quad \text{if } \alpha_1 + \alpha_2 < 1.$$

3 · Heavy Tails, Fourth Moment and Kurtosis

The return is a scale-mixture of normals $x_t = \sigma_t \varepsilon_t$ with $\varepsilon_t \sim \mathcal{N}(0,1)$ i.i.d. Conditional on σ_t , x_t is Gaussian; unconditionally it exhibits excess kurtosis.

Fourth moment

$$\mathbb{E}[x_t^4] = \mathbb{E}[\sigma_t^4 \, \varepsilon_t^4] = 3 \, \mathbb{E}[\sigma_t^4], \qquad \text{because } \mathbb{E}[\varepsilon^4] = 3.$$

To obtain $\mathbb{E}[\sigma_t^4]$, square the variance recursion and take expectations (stationarity assumed):

$$\sigma_t^4 = \left(\alpha_0 + \alpha_1 x_{t-1}^2 + \alpha_2 x_{t-2}^2\right)^2$$

$$= \alpha_0^2 + 2\alpha_0(\alpha_1 + \alpha_2) x_{t-1}^2 + (\alpha_1^2 + 2\alpha_1\alpha_2 + \alpha_2^2) x_{t-1}^4 + 2\alpha_0\alpha_2 x_{t-2}^2 - 2\alpha_2(\alpha_1 + \alpha_2) x_{t-1}^2 x_{t-2}^2.$$

Taking expectations and using symmetry $\mathbb{E}[x_{t-1}^2 x_{t-2}^2] = \mathbb{E}[x_t^2]^2$,

$$\mathbb{E}[\sigma_t^4] = \alpha_0^2 + 2\alpha_0(\alpha_1 + \alpha_2)\,\bar{v} + (\alpha_1^2 + 2\alpha_1\alpha_2 + \alpha_2^2)\,\frac{\mathbb{E}[x_t^4]}{3},$$

where $\bar{v} = \mathbb{E}[x_t^2]$ from Subsec. 2. Solve for $\mathbb{E}[x_t^4]$:

$$\mathbb{E}[x_t^4] = \frac{3\left[\alpha_0^2 + 2\alpha_0(\alpha_1 + \alpha_2)\bar{v}\right]}{1 - 3(\alpha_1^2 + \alpha_2^2) - 2\alpha_1\alpha_2}, \quad \text{denominator} > 0.$$

Excess kurtosis

$$\kappa = \frac{\mathbb{E}[x_t^4]}{\bar{v}^2} = 3 \frac{\left[1 - (\alpha_1 + \alpha_2)\right]^2}{1 - 3(\alpha_1^2 + \alpha_2^2) - 2\alpha_1\alpha_2}, \qquad \kappa \downarrow 3 \text{ only when } \alpha_1 = \alpha_2 = 0.$$

As $\alpha_1 + \alpha_2 \to 1$ the denominator approaches zero $\implies \kappa \to \infty$ (very heavy tails).

4 · Dynamics of Squared Returns

Starting from the variance recursion and replacing $x_{t-1}^2 = \sigma_{t-1}^2 \varepsilon_{t-1}^2$, one shows (after algebra and martingale–difference terms)

$$x_t^2 = \alpha_0 + (\alpha_1 + \alpha_2) x_{t-1}^2 - \alpha_2 x_{t-2}^2 + \underbrace{\left(\sigma_t^2 \varepsilon_t^2 - \sigma_t^2\right)}_{\text{martingale noise}}.$$

Hence the predictable part of x_t^2 is an AR(2) with characteristic polynomial $1 - (\alpha_1 + \alpha_2)z + \alpha_2 z^2 = 0$. Its roots determine the shape of the ACF of x_t^2 .

5 · Half-Life of Volatility Shocks

Consider the conditional variance forecast

$$\mathbb{E}[\sigma_{t+h}^2 \mid \mathcal{F}_t] = \alpha_0 + (\alpha_1 + \alpha_2) \, \mathbb{E}[x_{t+h-1}^2 \mid \mathcal{F}_t].$$

Iterating the expectation (keep x_{t+h-k}^2 inside each step) gives

$$\mathbb{E}[\sigma_{t+h}^2 \mid \mathcal{F}_t] = \bar{v} + (\alpha_1 + \alpha_2)^h (\sigma_t^2 - \bar{v}), \qquad \bar{v} = \frac{\alpha_0}{1 - (\alpha_1 + \alpha_2)}.$$

Define the volatility half-life $h_{1/2}$ by

$$\left| \mathbb{E}[\sigma_{t+h_{1/2}}^2 \mid \mathcal{F}_t] - \bar{v} \right| = \frac{1}{2} \left| \sigma_t^2 - \bar{v} \right|.$$

Thus

$$(\alpha_1 + \alpha_2)^{h_{1/2}} = \frac{1}{2} \implies h_{1/2} = -\frac{\ln 2}{\ln(\alpha_1 + \alpha_2)}$$

It counts how many steps it takes for a variance shock to decay by 50

6 · Positivity & Stability Checklist

- 1. Strict positivity $\alpha_0 > 0$ and $\alpha_1, \alpha_2 \ge 0 \implies \sigma_t^2 > 0$ a.s.
- 2. Second-moment stationarity $\alpha_1 + \alpha_2 < 1$ ensures $\mathbb{E}[x_t^2] < \infty$.
- 3. Fourth-moment finiteness Denominator in the kurtosis formula must be positive: $1 3(\alpha_1^2 + \alpha_2^2) 2\alpha_1\alpha_2 > 0$.
- 4. **ACF decay of** x_t^2 Both roots of $1 (\alpha_1 + \alpha_2)z + \alpha_2 z^2 = 0$ must lie inside the unit circle (automatically true when 1 and 2 hold).

7 · Key Take-Aways

- Captures volatility clustering and heavy tails with only three parameters.
- Stationarity hinge: $\alpha_1 + \alpha_2 < 1$; its proximity to 1 controls persistence and kurtosis.
- Volatility half-life $h = -\ln 2/\ln(\alpha_1 + \alpha_2)$ provides an intuitive scale for how long shocks linger.

${\tt generate_ou-Seasonal~Ornstein-Uhlenbeck}$

Parameters

Parameter	Role
$\overline{ heta}$	mean-reversion speed
μ	long-run mean
σ	volatility
A	seasonal amplitude
$\mathtt{freq}\;(f)$	seasonal frequency $(1, 4, 12 = annual, quarterly, monthly)$
$\mathtt{dt}\ (\Delta t)$	time step (default $1/252 \approx 1$ trading day)

1 · Recap of the Simulation Step

For each time increment Δt

$$x_{t+\Delta t} = x_t + \underbrace{\theta(\mu - x_t) \, \Delta t + \sigma \sqrt{\Delta t} \, Z_t}_{\text{"pure" OU core}} + \underbrace{A \sin(2\pi f \, t \Delta t + \phi) \, \Delta t}_{\text{deterministic seasonality}}, \qquad Z_t \sim \mathcal{N}(0, 1).$$

If A = 0 we recover the classical Ornstein-Uhlenbeck SDE

$$dx_t = \theta(\mu - x_t) dt + \sigma dW_t,$$

where many texts write κ instead of θ .

$2 \cdot$ Detailed Closed-Form Solution of the Core OU

Integrating-factor derivation

- 1. Rewrite the SDE as $dx_t + \theta x_t dt = \theta \mu dt + \sigma dW_t$.
- 2. Multiply by $e^{\theta t}$ (the integrating factor):

$$e^{\theta t}dx_t + \theta e^{\theta t}x_t dt = \theta \mu e^{\theta t}dt + \sigma e^{\theta t}dW_t$$

- 3. Recognise the left side as an exact differential: $d(e^{\theta t}x_t) = \theta \mu e^{\theta t} dt + \sigma e^{\theta t} dW_t$.
- 4. Integrate from 0 to t:

$$e^{\theta t}x_t - x_0 = \theta \mu \int_0^t e^{\theta s} ds + \sigma \int_0^t e^{\theta s} dW_s.$$

5. Evaluate the deterministic integral $\int_0^t e^{\theta s} ds = (e^{\theta t} - 1)/\theta$.

Putting it together

$$e^{\theta t}x_t = x_0 + \mu(e^{\theta t} - 1) + \sigma \int_0^t e^{\theta s} dW_s, \quad \Longrightarrow \quad \boxed{x_t = \mu + (x_0 - \mu)e^{-\theta t} + \sigma \int_0^t e^{-\theta(t-s)} dW_s}.$$

3 · Expectation and Variance

Expectation

$$\mathbb{E}[x_t] = \mu + (x_0 - \mu)e^{-\theta t},$$

because the stochastic integral has mean 0.

Variance (Itô isometry)

$$\mathbb{V}[x_t] = \sigma^2 \mathbb{E}\left[\left(\int_0^t e^{-\theta(t-s)} dW_s\right)^2\right]$$
$$= \sigma^2 \int_0^t e^{-2\theta(t-s)} ds$$
$$= \frac{\sigma^2}{2\theta} \left(1 - e^{-2\theta t}\right).$$

Stationary limits

$$x_{\infty} \sim \mathcal{N}(\mu, \ \sigma^2/(2\theta)).$$

4 · Autocovariance and Autocorrelation

For $0 \le s \le t$:

$$Cov(x_s, x_t) = \sigma^2 \int_0^s e^{-\theta(s-u)} e^{-\theta(t-u)} du$$
$$= \frac{\sigma^2}{2\theta} e^{-\theta(t-s)} (1 - e^{-2\theta s}).$$

In the stationary regime $(s \to \infty)$:

$$\operatorname{Cov}(x_0, x_\tau) = \frac{\sigma^2}{2\theta} e^{-\theta \tau}, \qquad \rho(\tau) = e^{-\theta \tau}.$$

$5 \cdot Mean$ -Reversion Half-Life

Define $t_{1/2}$ such that $|\mathbb{E}[x_{t_{1/2}}] - \mu| = \frac{1}{2}|x_0 - \mu|$. Since $\mathbb{E}[x_t] - \mu = (x_0 - \mu)e^{-\theta t}$, we have $e^{-\theta t_{1/2}} = \frac{1}{2} \Longrightarrow \boxed{t_{1/2} = \ln 2/\theta}$. Large $\theta \Rightarrow$ short half-life (fast mean-reversion); small $\theta \Rightarrow$ sluggish adjustment.

6 · Effect of the Seasonal Term

With $A \neq 0$ the mean becomes

$$m(t) = \mu + \frac{A}{2\pi f} \left[1 - \cos(2\pi f t + \phi) \right],$$

so the raw series is non-stationary in mean. If we detrend via $\tilde{x}_t := x_t^{\text{seasonal}} - m(t)$, then \tilde{x}_t obeys all stationary results in §§2–5.

7 · Key Take-Aways

- The OU core has constant mean μ , variance $\sigma^2/(2\theta)$, exponential ACF $e^{-\theta\tau}$.
- Exact half-life: $t_{1/2} = \ln 2/\theta$.
- Seasonality adds deterministic non-stationarity; subtract m(t) to isolate the stationary core.
- Euler-Maruyama is accurate for daily dt; shrink dt or use higher-order schemes if you need more precision.

generate_bs — Geometric Brownian Motion (Black-Scholes)

Parameters

Parameter	Role
\overline{r}	risk-free rate / drift $(\mu = r \text{ under } Q)$
σ	volatility (annualised)
x0	initial asset level S_0

$1 \cdot \text{Continuous-Time Model}$

$$dS_t = \mu S_t dt + \sigma S_t dW_t, \qquad S_0 > 0.$$

1.1 Exact Solution (Itô)

- 1. Divide by S_t : $\frac{dS_t}{S_t} = \mu dt + \sigma dW_t$.
- 2. Integrate $\int_0^t \ln \frac{S_t}{S_0} = \left(\mu \frac{1}{2}\sigma^2\right)t + \sigma W_t$.
- 3. Exponentiate:

$$S_t = S_0 \exp \left[\left(\mu - \frac{1}{2} \sigma^2 \right) t + \sigma W_t \right].$$

1.2 Moments

Because $W_t \sim \mathcal{N}(0, t)$,

$$\mathbb{E}[S_t] = S_0 e^{\mu t},$$

$$\operatorname{Var}[S_t] = S_0^2 e^{2\mu t} \left(e^{\sigma^2 t} - 1 \right),$$

$$\ln S_t \sim \mathcal{N}(\ln S_0 + (\mu - \frac{1}{2}\sigma^2)t, \ \sigma^2 t).$$

1.3 Key Observations

- No mean-reversion drift scales with level ⇒ exponential growth/decay.
- Constant volatility cannot capture clustering or smiles.
- Analytic tractability closed-form option prices via Black–Scholes.
- Empirical limitation fails to match skew & excess kurtosis.

2 · Discrete-Time Simulation (Exact Step)

For step length Δt (e.g. 1/252):

$$S_{t+\Delta t} = S_t \exp\left[\left(r - \frac{1}{2}\sigma^2\right)\Delta t + \sigma\sqrt{\Delta t} Z_t\right], \qquad Z_t \sim \mathcal{N}(0, 1).$$

This update reproduces the *exact* log-normal law; no discretisation bias.

2.1 One-Step Conditional Moments

$$\mathbb{E}[S_{t+\Delta t} \mid S_t] = S_t e^{r\Delta t},$$

$$\operatorname{Var}[S_{t+\Delta t} \mid S_t] = S_t^2 e^{2r\Delta t} (e^{\sigma^2 \Delta t} - 1).$$

Over n steps $(t = n\Delta t)$ these accumulate to the continuous-time expressions.

2.2 Practical Caveats

- Step size larger Δt inflates Monte-Carlo error but does not bias the law.
- Real vs. risk-neutral drift set $\mu \neq r$ to obtain real-world (historical) paths.
- Path-dependent options barrier/lookback pay-offs may need sub-day steps for accuracy.

3 · Deeper Insights

3.1 Martingale Property Under Q ($\mu = r$) the discounted process $\tilde{S}_t = e^{-rt}S_t$ satisfies $\mathbb{E}^Q[\tilde{S}_t \mid \mathcal{F}_s] = \tilde{S}_s$ —the fundamental no-arbitrage requirement.

3.2 Log-Return Stationarity

$$\ln \frac{S_{t+\tau}}{S_t} \sim \mathcal{N}((\mu - \frac{1}{2}\sigma^2)\tau, \ \sigma^2\tau),$$

independent across non-overlapping intervals. Scaling: daily $\sigma_d \Rightarrow$ yearly $\sigma_{yr} = \sigma_d \sqrt{252}$.

3.3 Moment-Generating Function

$$M_S(u) = \mathbb{E}[e^{u \ln S_t}] = \exp(u \ln S_0 + u(\mu - \frac{1}{2}\sigma^2)t + \frac{1}{2}u^2\sigma^2t),$$

hence all moments $\mathbb{E}[S_t^k]$ are finite $(k \in \mathbb{R})$.

4 · Summary

- Continuous GBM solved analytically; moments closed-form.
- Discrete implementation exact exponential step preserves the continuous-time distribution.
- Use cases baseline for option pricing; benchmark for testing stochastic-volatility extensions.

generate_heston_vol — CIR Variance Process

Parameters

Parameter	Role
κ	speed of mean-reversion
θ	long-run (target) variance
ξ	volatility of variance ("vol of vol")
${\rm dt}\ (\Delta t)$	simulation time step (e.g. $1/252$)

1 · Continuous-Time Model

$$dv_t = \kappa(\theta - v_t) dt + \xi \sqrt{v_t} dW_t, \qquad v_0 \ge 0$$

1.1 Closed-Form Moments

- Expectation $\mathbb{E}[v_t] = \theta + (v_0 \theta) e^{-\kappa t}$.
- Variance

$$\operatorname{Var}[v_t] = \frac{\xi^2 \theta}{2\kappa} \left(1 - e^{-\kappa t} \right)^2 + (v_0 - \theta) \frac{\xi^2}{\kappa} e^{-\kappa t} \left(1 - e^{-\kappa t} \right).$$

• Stationary distribution $(t \to \infty)$

$$v_{\infty} \sim \Gamma\left(\frac{2\kappa\theta}{\xi^2}, \frac{\xi^2}{2\kappa}\right), \qquad \operatorname{Var}[v_{\infty}] = \frac{\xi^2\theta}{2\kappa}.$$

1.2 Autocovariance, ACF and Half-Life

$$\operatorname{Cov}(v_s, v_{s+\tau}) = \frac{\xi^2 \theta}{2\kappa} e^{-\kappa \tau}, \qquad \rho(\tau) = e^{-\kappa \tau}.$$

Half-life of a deviation from θ :

$$e^{-\kappa t_{1/2}} = \frac{1}{2} \implies \boxed{t_{1/2} = \frac{\ln 2}{\kappa}.}$$

1.3 Transition Density

$$v_t \sim \frac{\xi^2 (1 - e^{-\kappa t})}{4\kappa} \chi^2 (d, \lambda), \quad d = \frac{4\kappa \theta}{\xi^2}, \ \lambda = \frac{4\kappa e^{-\kappa t} v_0}{\xi^2 (1 - e^{-\kappa t})}.$$

2 · Discrete-Time Simulation (Euler-Maruyama)

$$v_{t+\Delta t} = v_t + \kappa(\theta - v_t) \Delta t + \xi \sqrt{v_t \Delta t} Z_t, \qquad Z_t \sim \mathcal{N}(0, 1)$$

2.1 Interpretation

- Drift term $\kappa(\theta v_t)\Delta t$ pulls v_t toward θ .
- Diffusion term $\xi \sqrt{v_t \Delta t} Z_t$ mirrors the continuous-time volatility $\xi \sqrt{v_t}$.
- For small Δt , Euler-Maruyama is a good approximation; for larger steps bias and negative draws can appear.

2.2 Practical Caveats

- 1. Positivity & Feller condition $2\kappa\theta \ge \xi^2$ guarantees $v_t > 0$ in continuous time; the discrete scheme does not enforce it.
- 2. Alternative schemes Full-truncation Euler, Quadratic-Exponential (QE), or exact non-central χ^2 sampling remove bias/negativity.
- 3. Parameter estimation MLE via the transition density or method of moments using $\mathbb{E}[v_t]$, $Var[v_t]$.
- 4. **Standalone vs. sub-routine** Used alone for interest-rate/volatility modelling, or as the variance driver inside the full Heston model.

3 · Advanced Insights

- Stationary Gamma law implies skewed, heavy-tailed variance.
- Leverage in the Heston price model arises when this v_t is correlated with the asset Brownian motion.
- Half-life $\ln 2/\kappa$ equals that of an OU process exponential mean-reversion of the first moment.
- Calibration tip: rapid reversion in implied vols \Rightarrow choose large κ relative to ξ .

${\tt generate_heston_2-Alternative\ Heston\ Implementation}$

- Uses a bivariate normal draw each step: $(Z_{1t}, Z_{2t}) \sim \mathcal{N}(0, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix})$.
- Updates S directly (not $\ln S$) but multiplies by exp drift; algebraically equivalent for small Δt .
- Demonstrates two common simulation styles for correlated diffusions.

generate_sine — Pure Sinusoid with Random Frequency & Phase

For each feature $k = 1, \ldots, d$:

$$x_j^{(k)} = \sin(\text{freq} \cdot j + \text{phase}), \quad \text{freq} \sim U(0, 0.1), \text{ phase} \sim U(0, 2\pi).$$

- Afterwards rescale to [0,1] via (data + 1)/2.
- Deterministic except for randomised frequency/phase baseline for seasonality or spectral methods.
- Add noise if stochastic periodic data are desired.

generate_ar_multi — Gaussian Vector AR(1)

Parameters

Parameter	Role
$\overline{\phi}$	scalar AR coefficient (common to all components)
σ	controls cross-correlation of the noise
d	dimensionality
n	length

Equations

$$\mathbf{x}_{t} = \phi \, \mathbf{x}_{t-1} + \boldsymbol{\varepsilon}_{t},$$

$$\boldsymbol{\varepsilon}_{t} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}),$$

$$\boldsymbol{\Sigma} = \sigma \, (\mathbf{1}\mathbf{1}^{\top}) + (1 - \sigma) \, I_{d}.$$

- Stationary if $|\phi| < 1$; unconditional covariance $Var(\mathbf{x}_t) = \Sigma/(1 \phi^2)$.
- Noise structure: off-diagonal entries all equal σ , letting you dial from independent ($\sigma = 0$) to perfectly collinear ($\sigma \to 1$).
- Use-cases: multivariate forecasting, PCA on correlated AR data.

General Tips & Caveats

- 1. **Time step (dt) vs. accuracy** GBM and Heston use the exact exponential solution for prices but Euler for variance; keep dt small (daily) or switch to higher-order schemes (Milstein, QE).
- 2. **Parameter sampling** all parameters are drawn *independently uniform*; real-world processes often show parameter correlations (e.g. κ and θ in interest-rate models).

- 3. **Burn-in** the GARCH routine discards the first 50 observations; consider longer burn-in for slow mean reversion.
- 4. **Positivity of variance** CIR/Heston paths can hit zero if the Feller condition fails; restrict parameter ranges or use an exact CIR sampler if zeros are undesirable.
- 5. **Reproducibility** all functions rely on NumPy's global RNG; set np.random.seed() before calling for deterministic results.