Počítačové a komunikačné siete

Relačná, prezentačná vrstva Úvod do transportnej vrstvy

Prednáška 3

Opakovanie minulej prednášky

- » HTTP
 - Používa TCP,IP,Ethernet/WiFi
- » DHCP
 - Získanie IP adresy
- » DNS
 - K menu získať IP adresu

Čo nás čaká na prednáške

- » Relačná vrstva (HTTPS)
- » Prezentačná vrstva
- » UDP (transportná vrstva)
 - CRC (Overenie správnosti prenosu)
- » TCP (Transportná vrstva)
- » Detaily používania wiresharku

Prezentačná a Relačná vrstva

Aplikačná vrstva Prezentačná Aplikačná vrstva vrstva Relačná vrstva Transportná vrstva Transportná vrstva Sieťová vrstva Sieťová vrstva Linková vrstva Linková vrstva

Prezentačná vrstva

- » Vytvára kontext na prenos dát medzi entitami aplikačnej vrstvy
- » Príkladom je TLS, SSL
- » Nie je aplikačný protokol

TLS

- » Transport Layer Security
- » Zabezpečuje komunikáciu (šifruje) pre vyššie vrstvy
 - HTTP \rightarrow HTTPS

TLS tok správ

TLS Wireshark

Relačná vrstva

- » Riadi spojenia medzi entitami
- » Vytvára, riadi a ukončuje pripojenia (TCP v skutočnosti patrí do tejto vrstvy)
- » SDP (Session Description Protocol), RPC (Remote Procedure Call), RTCP (Real Time Transport Control Protocol)
 - Protokoly, ktoré "pomáhajú" iným protokolom

Transportná vrstva

Aplikačná vrstva Prezentačná Aplikačná vrstva vrstva Relačná vrstva Transportná vrstva Transportná vrstva Sieťová vrstva Sieťová vrstva Linková vrstva Linková vrstva

Pohľad vrstiev na topoloógiu siete Transportná vrstva

Transportná vrstva RM OSI

- » poskytovateľ (relačnej vrstve) a žiadateľ služby (od sieťovej vrstvy)
- » služby so spojením a bez spojenia, s potvrdením a bez potvrdenia
- » multiplexovanie spojov

Protokolový zásobník TCP/IP

Ukážka iba niektorých protokolov

aplikačná vrstva SNMP BOOTP Ping Telnet **SMTP** DNS DHCP FTP Traceroute transportná **TCP UDP** vrstva sieťová **ICMP IGMP** vrstva **ARP RARP** vrstva lokálne ovládače, sieť ového sieťové karty rozhrania prenosové médium

Transportná vrstva TCP/IP

TCP (Transmission Control Protocol)

- služby so spojením, s potvrdením
- TCP ~ protokol triedy TP4
- prenos dát = prenos prúdu bajtov segmenty
- multiplexovanie a demultiplexovanie

UDP (User Datagram Protocol)

- služby bez spojenia, bez potvrdenia
- blokový prenos dát datagramy
- multiplexovanie a demultiplexovanie

DCCP (Datagram Congestion Control Protocol)

Protokol UDP

- protokol bez spojenia, bez potvrdenia, nespoľahlivý
- klient server aplikácie
- Balí aplikačné dáta do "datagramov"
- multiplexovanie a demultiplexovanie datagramov
- podporuje broadcast, multicast

Protokol UDP

Čo nevie:

- nezriad'uje spojenie pred prenosom dát
- nepotvrdzuje prijaté dáta
- nedeteguje straty
- nie je možnosť požadovať opakovanie prenosu dát
- negarantuje doručenie dát
- nezaručuje, že dáta sú prijímané v rovnakom poradí ako boli vyslané
- nemá mechanizmus na riadenie toku dát medzi koncovými uzlami resp. na riadenie zahltenia

UDP datagram

Co je checksum?

Detekčné kódy

paritný kód

kontrolná suma (Internet suma) (checksum)

CRC (Cyclic Redundancy Check Code) kód (FCS (Frame Check Sequence))

Ethernet: G (x)=
$$x32 + x26 + x23 + x22 + x16 + x12 \times x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1$$

Separovateľné kódy

dĺžka (k+1) bitov, v najvyššom bite je 1

non-ekvivalencia

Cyclic Redundancy Code

- » (r+1) dlhý generátor G, ktorý je známy ako vysielajúcej tak prijímajúcej strane
- » Dátové bity D
- » Cieľ je nájsť také R, že (D, R) sú delitelné G
- » Inými slovami:

$$R = zvyšok (D \times 2^r / G)$$

CRC priklad (1)

```
D = 1101 \ 0110 \ 11
G = 100 \ 11 \ (r=4)
(D*2^r):G = 1101 0110 11 0000: 10011
                 1001 1
                 0100 11
                  100 11
                                       Používa
                        010 11 0
                         10 01 1
                                       sa XOR
                         00 10 1000
                                       operácia
                            00 11
                       R= 0 01 110
```


CRC priklad (2)

```
D = 1101 \ 0110 \ 11

G = 100 \ 11 \ (r=4)
```

Vysielač vyšle / prijímač príjme sekvenciu: 1101 0110 11 **1110**

Kontrola prebieha ako v predchádzajucom kroku:

```
1101 0110 11 1110: 10011
```


CRC príklad 2

D = 10110011101000100101

$$G = 101111101$$

$$R = 111001$$

UDP datagram

Koľko dát vložím do datagramu?

- » Obmedzenie UDP length
- » Udáva dĺžku vrátane UDP hlavičky
 - Minimálne 8 bajtov
 - Maximálne 65535 bajtov (z toho 8 bajtov hlavička)
 - Segmentácia/znovu poskladanie dát

Protokol UDP

Akú prenosovú rýchlosť potrebujem na prenos 1MB stránky?

- » Keby sa HTTP prenášal v UDP?
- » Je rozdiel 1 súbor 1MB a 10súborov po 100 KB?

Stručný úvod do TCP

- protokol so spojením, s potvrdením, spoľahlivý prenos
- prenos dát prúd bajtov, počet vyslaných bajtov aplikáciou a TCP entitou môže byť rôzny
- vyrovnávacie pamäte segmentácia prúdu bajtov
- interaktívny a neinteraktívny prenos dát (typ aplikácie)
- TCP spojenie plný duplex, dvojbodové
- urgentné dáta
- príjem dát aplikáciou príznak PUSH

Protokol TCP

TCP segment

pseudohlavička

Niektoré voliteľné položky (options):

<u>kind</u>	length	<u>význam</u>
2	4	MSS
3	3	zväčšenie okna
4	2	povolenie SACK
5	prem.	SACK

0	78 1	5 16	23 24	31		
Source IP Address						
Destination IP Address						
zero	Protocol	TC	P Length			

Protokol TCP – zriadenie spojenia

• výmena troch segmentov (three-way-handshake)

Zriadenia TCP spojenia a HTTP prenos

HTTP 1.1 tok sprav Keepalive/persistent

Protokol TCP – zriadenie spojenia

Kde sa SYN a ACK vlastne nechádzajú a načo mi sú?

Protokol TCP

TCP segment

pseudohlavička

Niektoré voliteľné položky (options):

<u>kind</u>	length	<u>význam</u>
2	4	MSS
3	3	zväčšenie okna
4	2	povolenie SACK
5	prem.	SACK

Akú prenosovú rýchlosť potrebujem na prenos 1MB stránky?

- » Je rozdiel 1 súbor 1MB a 10súborov po 100 KB?
- » Koľko má TCP hlavička?

Zhrnutie prednášky

- » Prezentačná vrstva
 - TLS
- » Relačná vrstva
 - SDP nebolo na prednáške
- » Transportná vrstva prenos cez sieť
 - UDP využíva sa na zadaní
 - TCP (Je využívané hlavne HTTP)

Čo nás čaká na budúcej prednáške

- » TCP dokončenie
 - Riadenie toku (pomalé / rýchle linmky)
 - Potvrdzovanie dát (ACK, NACK)
 - Ukončenie spojenia
 - Znovuodoslanie dát

