Câmera e Transformação Projetiva

Projeção

- Projeção
 - Representação de objetos 3D em meios 2D

Aprimoramentos

http://www.stedwards.edu/hum/randle /s32/SSgotpint/FrameSet.htm

Câmeras Fotográficas

Pinhole

Câmara escura - Leonardo da Vinci -1545

Projeção cônica

Perspectiva

- + Tamanho varia inversamente à distância: realista
- Distância e ângulos (em geral) não preservados
- Linhas paralelas (em geral) não permanecem paralelas

Paralela

- + Boa para medições precisas
- + Linhas paralelas permanecem paralelas
- Ângulos (em geral) não são preservados
- Aparência menos realista

Projeção Paralela

- Centro de Projeção no infinito
- DOP → Direção de Projeção
 - Mesma para todos os pontos

Projeções Ortográficas

- DOP
 - Perpendicular ao view plane

Projeções Oblíquas

• DOP não é perpendicular ao view plane

Cabinet (DOP $\alpha = 63.4^{\circ}$) tan(α) = 2

Projeção Perspectiva

- Objetos mais próximos parecem maiores
- Linhas paralelas convergem a 1 único ponto

Projeção Perspectiva

Quantos pontos de fuga?

3-Point Perspective

2-Point Perspective

1-Point Perspective

Projeção Perspectiva

3 pontos de fuga

Projeções de um cubo

Paralelas

Cônicas

