Лабораторная работа №5 Программирование целочисленных вычислений

Цель работы:

- знакомство с работой центрального процессора и памяти;
- изучение арифметических команд Ассемблера;
- получение навыков работы с отладчиком.

Немного теории...

Краткое описание арифметических команд

ADD	Сложение			
ADC	Сложение с переносом			
SUB	Вычитание			
SBB	Вычитание с заемом			
IMUL	Знаковое умножение			
MUL	Беззнаковое умножение			
IDIV	Знаковое деление			
DIV	Беззнаковое деление			
INC	Инкремент			
DEC	Декремент			

Команда ADD выполняет арифметическое сложение двух операндов $onepand_1$ и $onepand_2$. Операнды должны иметь одинаковый размер. Результат записывается на место $onepand_1$.

Команда ADC (Add with Carry) производит целочисленное сложение двух знаковых или беззнаковых операндов и флага переноса. Первый операнд может быть переменной в регистре или в памяти (r8, r16, r32, r/m8, r/m16, r/m32). Второй операнд — непосредственным значением (imm8, imm16, imm32), переменной в регистре или в памяти. При этом оба операнда одновременно не могут быть переменными в памяти.

ADC операнд_1, операнд_2 операнд_1 = операнд_1 + операнд_2 + флаг
$$CF$$

Команда ADC обычно используется в многобайтных или многословных операциях сложения:

```
xor\ edx,\ edx ; EDX=0 ; EAX=4\ 294\ 967\ 295_{10} add eax,\ 0FFFF\ FFFFh ; EAX=EAX+4\ 294\ 967\ 295_{10} ; EDX=EDX+CF (учитываем перенос) ; EDX:EAX=0000\ 0001h:FFFF\ FFFEh
```

Команда SUB (SUBtract) выполняет арифметическое вычитание двух операндов $onepand_1$ и $onepand_2$. Операнды должны иметь одинаковый размер. Результат записывается на место $onepand_1$.

В процессорах x86 для умножения чисел без знака предназначена команда MUL. У этой команды только один операнд — второй множитель, который должен находиться в регистре или в памяти. Местоположение первого множителя и результата задаётся неявно и зависит от размера операнда:

Размер операнда	1-й множитель	Результат		
1 байт	AL	AX		
2 байта	AX	DX:AX		
4 байта	EAX	EDX:EAX		

Запись «DX:AX» означает, что старшее слово результата будет находиться в DX, а младшее — в AX.

Пример:

```
mul bl ; AX = AL \cdot BL
mul ax ; DX:AX = AX \cdot AX
```

Если старшая часть результата равна нулю, то флаги СF и ОF будут иметь нулевое значение. В этом случае старшую часть результата можно отбросить. Это свойство можно использовать в программе, если результат должен быть такого же размера, как множители.

Команда IMUL умножает целые числа со знаком и может использовать один, два или три операнда:

- один операнд, аналогично MUL;

- два операнда

$$IMUL$$
 операнд_1, операнд_2 операнд_1 = операнд_1 * операнд_2

варианты: IMUL reg, reg

IMUL reg, mem IMUL reg, imm

Пример:

imul edx, ecx; EDX = EDX * ECXimul ebx, A; EBX = EBX * Aimul ecx, 6; ECX = ECX * 6

- три операнда

$$IMUL$$
 операнд_1, операнд_2, операнд_3 операнд $1 =$ операнд $2 *$ операнд $3 *$

варианты: IMUL reg, reg, imm

IMUL reg, mem, imm IMUL reg, imm, imm.

Пример:

imul ebx, A, 9; EBX = A * 9imul ecx, edx, 11; ECX = EDX * 11

В процессорах x86 для деления чисел без знака предназначена команда DIV. У этой команды только один операнд — делитель, который должен находиться в регистре или в памяти. Местоположение делимого и результата задаётся неявно и зависит от размера операнда:

Размер операнда	Делимое	Частное	Остаток	
1 байт	AX	AL	АН	
2 байта	DX:AX	AX	DX	
4 байта	EDX:EAX	EAX	EDX	

Запись «DX:AX» означает, что старшее слово результата будет находиться в DX, а младшее — в AX.

Пример:

```
div bl ; AL = AX / BL
div bx ; AX = DX:AX / BX
```

Команда IDIV используется для деления чисел со знаком, синтаксис ее такой же, как у команды DIV.

Пример линейной программы

Написать программу, вычисляющую значение выражения

```
x = (a + b) \cdot (b - 1) / (d + 8).
```

```
.data
a sword 25
b sword -6
d sword 11
.data?
x sword?
.code
start:
                                       : CX = d
      mov cx, d
      add cx, 8
                                       CX = d + 8
                                       BX = b
      mov bx. b
                                       BX = b - 1
      dec bx
                                       : AX = a
      mov ax, a
      add ax, d
                                       AX = a + d
                                        DX:AX = (a + d) \cdot (b - 1)
      imul bx
                                       ; AX = (a + d) \cdot (b - 1) / cx
      idiv cx
      mov x, ax
                                       x = AX
      invoke ExitProcess, NULL
```

Задание.

end start

1. Написать программу, вычисляющую заданное в соответствии с номером студента в журнале выражение:

```
1. a = (b^2 - (c + 1) \cdot d) / b;

2. c = a / c - k + (d + 1) \cdot 5;

3. b = a \cdot j - j^2 / (k + 2);

4. a = a \cdot (a + b / 4) / (k - 1);

5. d = 3 \cdot a \cdot x / [5 \cdot (b - 5)];

6. a = a \cdot x - 3 \cdot (b + 3 / k);

7. a = a^3 / 3 - c \cdot (x + 3);

8. d = (k - 5)^2 / 4 + 2 \cdot k;

9. d = a \cdot x / 2 - (a + b) / 2;
```

10.
$$a = (b^2 - 2 \cdot b) / (3 \cdot a + b);$$

11. $b = (a^2 - b^2) / 2 + a \cdot (k + 1);$
12. $e = (a - c)^2 + 2 \cdot a \cdot c / k;$
13. $p = (t^3 - 1) / (j - 4) - 5;$
14. $a = b^2 \cdot (y + d) + (d - 1) / c;$
15. $s = q^3 - 2 \cdot a \cdot q + a^2 / q;$
16. $n = q^2 / 3 - a \cdot d + 5;$
17. $m = a \cdot c^2 - b \cdot a / c + a / b;$
18. $x = a \cdot y \cdot (b - a) / 4 + a^2 - 2;$
19. $n = a \cdot x^2 - b \cdot y / a + x / (y + a);$
20. $k = (1 - a)^2 / c + k - 1 + c / 2;$
21. $s = (a - b^2) / (y - a) + a^2 - c;$
22. $b = (m - 5) \cdot (m + 2) + m + a / 2;$
23. $c = (a + b) / d - d^2 \cdot a - b;$
24. $a = b \cdot (c - d) - c / (d - 1);$
25. $q = a^2 / 2 - b^3 / (4 - a) + b;$
26. $s = a \cdot b / 2 - k + a / 2 - b;$

2. Открыть программу в отладчике. Указать адреса расположения переменных в памяти, заполнив таблицу:

Имя переменной	Адрес	Порядок байт в памяти		

3. Выполнить программу в пошаговом режиме. После выполнения каждого шага заносить данные в таблицу:

Регистры			Флаги			прочее		
EAX	EBX			FC	FZ	•••	•••	

^{*} в таблицу должны быть включены те элементы (регистры, флаги и пр.), которые имеют место в конкретном варианте программы

4. По результатам п.3 и п.4 сделайте выводы.

Содержание отчёта.

- 1. Название работы.
- 2. Цель работы.
- 3. Постановка задачи.
- 4. Текст программ с комментариями.
- 5. Результаты выполнения программы в пошаговом режиме в отладчике.
 - 6. Выводы.