Functional Regression Using the fda Package in R

Spencer Graves, Giles Hooker, James Ramsay

Ramsay, Hooker and Graves (2009) Functional Data Analysis with R and Matlab (Springer)

This Presentation

- What Is Functional Regression?
- Different types of Functional Regression
- fRegress.numeric: Scalar Response
- fRegress.fdPar: Functional response, x = scalar
- fRegress.fdPar: Concurrent Functional Model
- fRegress.formula: Simple fRegress Setup
- linmod: Full Integration Regression
- pda.fd: Estimating a Differential Equation
- Closing Remarks
- References

What Is Functional Regression?

Functional Data Analysis extends spline smoothing to:

- an arbitrary finite basis approximation to a function space
- smoothing with an arbitrary linear differential operator

Functional regression = fitting a model where

- the response or
- an explanatory variable

is a function.

Different types of Functional Regression

Functional regression = fitting a model where

- the response or
- an explanatory variable

is a function.

	Explanatory Variable	
response	scalar	function
scalar	lm	fRegress.numeric
function	fRegress.fdPar	fRegress.fdPar / linmod / pda.df

R code for all of these appears in script files in the fda package

fRegress.numeric: Scalar Response

$$y_i = \alpha_0 + \int x_i(t)\beta(t)dt + \epsilon_i.$$

 $\label{log-constraint} {\tt log(annual\ precipitation)\ \~{\tt (temperature\ profile)}}$

log(annual precipitation) ~ temperature(t)

Conclusion: Wetter locations tend to be

- cooler in February and August and
- warmer in May and November

Ramsay, Hooker, Graves (2009, Fig. 9.1)

fRegress.numeric: functional response, x = scalar

$$y_i(t) = \beta_0(t) + \sum x_{ij}\beta_j(t) + \epsilon_i(t)$$

temperature ~ region; Region Deviation:

Ramsay, Hooker, Graves (2009, Fig. 10.1)

fRegress.fdPar: Concurrent Functional Model

$$y_i(t) = \beta_0(t) + \sum x_{ij}(t)\beta_j(t) + \epsilon_i(t)$$

(knee angle) ~ (hip angle)

Hip Coefficient and Squared Multiple Correlation

Ramsay, Hooker and Graves (2009, Fig. 10.7)

 $fRegress.formula: \ Simple \ fRegress \ Setup$

linmod: Full Integration Regression

Ramsay, Hooker and Graves (2009) Functional Data Analysis with R and Matlab (Springer, ch. 10)

pda.fd: Estimating a Differential Equation

Ramsay, Hooker and Graves (2009) Functional Data Analysis with R and Matlab (Springer, ch. 11)

Closing Remarks

References