Bike Sharing Demand

Max Llewellyn

https://www.kaggle.com/c/bike-sharing-demand

Agenda

- Problem and Data Overview
 - o Who, What, Why, Where, How
- Exploratory Data Analysis
- Other Solutions
 - EDA & Ensemble Model (Top 10 Percentile)
 - Comprehensive EDA with XGBoost (Top 10 percentile)
 - bikes
- Modeling

Problem and Data Overview

What is Bike Sharing?

- Stations with bikes to rent
- Users ride the bike from station to station
- Popular in most metro areas

• CDPHP Cycle! bike Sharing is expanding in the capital district!

Where/Who is this data from?

- Located in Washington DC
- Capital Bikeshare provided data on each individual ride and Hadi Fanaee Tork condensed it into day to day data for Kaggle.

How is the Data Formatted

	datetime	season [‡]	holiday	workingday	weather	temp [‡]	atemp [‡]	humidity	windspeed	casual [‡]	registered	count
1	2011-01-01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000	3	13	16
2	2011-01-01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000	8	32	40
3	2011-01-01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000	5	27	32
4	2011-01-01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000	3	10	13
5	2011-01-01 04:00:00	1	0	0	1	9.84	14.395	75	0.0000	0	1	1
6	2011-01-01 05:00:00	1	0	0	2	9.84	12.880	75	6.0032	0	1	1
7	2011-01-01 06:00:00	1	0	0	1	9.02	13.635	80	0.0000	2	0	2
8	2011-01-01 07:00:00	1	0	0	1	8.20	12.880	86	0.0000	1	2	3
9	2011-01-01 08:00:00	1	0	0	1	9.84	14.395	75	0.0000	1	7	8
10	2011-01-01 09:00:00	1	0	0	1	13.12	17.425	76	0.0000	8	6	14

How is the Data Formatted

	datetime [‡]	season [‡]	holiday	workingdaŷ	weather	temp [‡]	atemp [‡]	humiditŷ	windspeed	casual [‡]	registered	count [‡]
1	2011-01-01 00:00:00	spring	FALSE	FALSE	Good	9.84	14.395	81	0.0000	3	13	16
2	2011-01-01 01:00:00	spring	FALSE	FALSE	Good	9.02	13.635	80	0.0000	8	32	40
3	2011-01-01 02:00:00	spring	FALSE	FALSE	Good	9.02	13.635	80	0.0000	5	27	32
4	2011-01-01 03:00:00	spring	FALSE	FALSE	Good	9.84	14.395	75	0.0000	3	10	13
5	2011-01-01 04:00:00	spring	FALSE	FALSE	Good	9.84	14.395	75	0.0000	0	1	1
6	2011-01-01 05:00:00	spring	FALSE	FALSE	Fair	9.84	12.880	75	6.0032	0	1	1
7	2011-01-01 06:00:00	spring	FALSE	FALSE	Good	9.02	13.635	80	0.0000	2	0	2
8	2011-01-01 07:00:00	spring	FALSE	FALSE	Good	8.20	12.880	86	0.0000	1	2	3
9	2011-01-01 08:00:00	spring	FALSE	FALSE	Good	9.84	14.395	75	0.0000	1	7	8
10	2011-01-01 09:00:00	spring	FALSE	FALSE	Good	13.12	17.425	76	0.0000	8	6	14

Why are we analyzing it?

kaggle

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(a_i + 1))^2}$$

- TO WIN
- Goal: To predict the total number of rides on a future day based on the temp, windspeed, weather, date, type of day (eg: weekday, holiday), humidity
- Room Mean Squared Log Error (RMSLE) is the evaluation metric

Exploratory DataAnalysis

Exploratory Data Analysis

Exploratory Data Analysis

Other Solutions

Kaggle Kernels

Kernel	Features	Modeling Approach	Performance (RSMLE)	
EDA & Ensemble Model (Top 10 Percentile)	-New cols from Datetime -Coercing of columns to "categorical" data type	Linear Regression Ridge Regression Lasso Regression Random Forest Gradient Boost	0.977996 0.977996 0.978133 0.102804 0.189973	
Comprehensive EDA with XGBoost (Top 10 percentile)	-Transforming count to log(count) -Creation of dummy vars for categorical data	XGBoost Random Forest	Did not put in notebook :-(
bikes	- Creation of dayofweek, hour, month and year columns from the datetime column	Random Forest	0.106703	

Modeling

Modeling: Linear Regression

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                                    11.808 < 2e-16 ***
(Intercept)
               128.1877
                           10.8558
                 9.4333
                            1.4031
                                     6.723
                                           1.9e-11 ***
temp
                 1.2011
                            1.2275
                                     0.979 0.327853
atemp
humidity
                            0.1117 -25.484 < 2e-16 ***
                -2.8475
windspeed
                            0.2379 2.410 0.015981 *
                0.5734
                 5.1365
                            6.4424 0.797 0.425307
seasonsummer
seasonfall
                            8.2776
                                    -3.634 0.000281 ***
               -30.0799
seasonwinter
                68.2408
                            5.4584
                                    12.502 < 2e-16 ***
holidayTRUE
                -6.1375
                           11.1109
                                    -0.552 0.580702
workingdayTRUE
                -0.8556
                            3.9533
                                    -0.216 0.828661
weatherFair
                                     3.641 0.000274 ***
                15.6759
                            4.3059
                                    -1.359 0.174287
weatherPoor
                -9.9765
                            7.3427
                                     1.205 0.228357
weatherBad
               187, 1072
                          155.3143
```

- "Default" Season was spring
- "Default" weather was dood
- Error = 1.383519

0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Signif. codes:

Modeling Decision Tree

Error = 1.358835

Error = 1.335442

17

humidity

p < 0.001

> 66

temp

p < 0.00\

humidity

p < 0.001

≤7€ >75

≤ > 29.52{Good, Poor}

29

weather

p < 0.001

Modeling Random Forest

No pretty picture

But the best error of 1.287416!

Questions

Thank you for your time!

Sources

- https://www.flickr.com/photos/volvob12b/21562863658
- https://www.flickr.com/photos/taedc/14248535232
- https://commons.wikimedia.org/wiki/File:Kaggle_logo.png
- https://www.kaggle.com/c/bike-sharing-demand

TOO FAR

Thank you for your time!

EDA & Ensemble Model (Top 10 Percentile)

- https://www.kaggle.com/viveksrinivasan/eda-ensemblemodel-top-10-percentile.
- By Vivek Srinivasan

Comprehensive EDA with XGBoost (Top 10 percentile)

- https://www.kaggle.com/miteshyadav/comprehensive-e
 da-with-xgboost-top-10-percentile
- By Mitesh Yadav

bikes

- https://www.kaggle.com/meenaj/bikes
- By meena