路由基础

路由技术是Internet得以持续运转的关键所在。

路由是极其有趣而又复杂的课题,永远的话题。

企业网络的拓扑结构一般会比较复杂,不同的部门,或者总部和分支可能 处在不同的网络中, 此时就需要使用路由器来连接不同的网络, 实现网络 之间的数据转发。

关键术语:

•	路由 (Routing)	从源头到目标的路径 不同网络间的转发过程	类似火车
	路由表 (Routing Table)	路由信息的集合 路由的依据	类似时刻表
	路由器(Router)	具有路由功能、维护路由表的 设备	类似火车站
	默认网关 (Default Gateway)	通常是路由设备的接口IP地址	类似火车站的地址

路由过程图解:

当路由器(或其他三层设备)收到一个IP数据包时,会查看数据 包的IP头部中的目的IP地址,并在路由表中进行查找,在匹配到最优的路由后,将数据包扔给该路由所指的出接口或下一跳。

路由器的工作内容:

- 收到数据包查看目标IP地址
- 在路由表中选择最佳路径
- 维护路由表

路由表解析:

• display ip routing-table

查看路由表

IP路由表

```
[Huawei]display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public Destinations: 2
                                   Routes: 2
Destination/Mask Proto Pre Cost Flags NextHop Interface
0.0.0.0/0 Static 60
                              D 120.0.0.2 Serial1/0/0
             RIP 100 3
                              D 120.0.0.2 Serial1/0/0
8.0.0.0/8
             OSPF 10 50
9.0.0.0/8
                              D 20.0.0.2 Ethernet2/0/0
            RIP 100 4
                              D 120.0.0.2 Serial1/0/0
9.1.0.0/16
            Static 60 0
11.0.0.0/8
                              D 120.0.0.2 Serial2/0/0
20.0.0.0/8
            Direct 0
                        0
                              D 20.0.0.1 Ethernet2/0/0
20.0.0.1/32 Direct 0 0 D 127.0.0.1 LoopBack0
```

- 路由表中包含了路由器可以到达的目的网络。
- 目的网络在路由表中不存在的数据包会被丢弃。

目的地址 Destination	用来标识IP包的目标地址或目标网络。
掩码 Mask	在路由表中网络掩码也具有重要的意义 选择最佳路由的重要判断依据(最长匹配原则)
下一跳 NextHop	指明IP包所经由的下一个路由器的接口地址
出接口 Interface	指明IP包将从该路由器的哪个接口转发出去
协议 Protocol	路由的来源、学习方式
优先级 Preference	比较不同路由来源到达相同目标网络的优先级 越低越优先
度量值 Cost	比较相同路由来源到达相同目标网络的不同路径的优先级 越低越优先

等价路由(ECMP, Equal Cost Multi-Path):

• 同一个路由来源,当达到同一个目标网络有几条相同度量值的路由时,这些路由都会被加入到路由表中,数据包会在这几个链路上进行负载分担。

最长匹配原则:最终数据包匹配最佳路由的算法

最长匹配举例

目的地址为9.1.2.1的数据报文,将命中9.1.0.0/16的路由

[Huawei] display	ip rout	ing-tal	ole		
Routing Tables:					
Destination/Mask	proto	pref	Cost	Nexthop	Interface
0.0.0.0/0	Static	60	0	120.0.0.2	Serial0/1
8.0.0.0/8	RIP	100	3	120.0.0.2	Serial0/1
9.0.0.0/8	OSPF	10	50	20.0.0.2	Ethernet0/0
9.1.0.0/16	RIP	100	4	120.0.0.2	Serial0/1
11.0.0.0/8	Static	60	0	120.0.0.2	Serial0/1
20.0.0.0/8	Direct	0	0	20.0.0.1	Ethernet0/2
20.0.0.1/32	Direct	0	0	127.0.0.1	LoopBack0

路由表的形成、路由的来源:

•	直连路由	路由器接口上的网络(只要接口配置了IP地址并且开启)
	静态路由	管理员手工添加的网络
	动态路由	路由器之间动态学习到的网络

总结

- 路由器选择最优路由的顺序是什么?
- Preference字段在路由表中代表什么含义?