Lecture 31

Professor Virginia R. Young Transcribed by Hao Chen

November 30, 2022

Recap: $\{N(t): t \geq 0\}$ is a $\mathcal{PP}(\lambda)$ if

- counting process
- independent, stationary increment
- $N(t) \sim \mathcal{P}(\lambda t)$

Showed that T_1, T_2, \ldots of interarrival times is iid $\text{Exp}(\lambda)$

• $\mathbb{P}(N(t) = 0) = \mathbb{P}(T_1 > t) = e^{-\lambda t}$

$$\therefore N(t) \sim \mathcal{P}(\lambda t) \implies T_1 \sim \operatorname{Exp}(\lambda)$$

- independent increments of $\{N(t)\}$ drives the independence of T_1, T_2, \ldots
- stationary increments of $\{N(t)\}$ drives the identical distributions of T_1, T_2, \ldots

Noted that:

 T_i is random between event i-1 and i.

N(t) is the number of events during [0,t] or (0,t] because N(0)=0.

 $S_n = T_1 + \cdots + T_n$ is the time of events n.

E.g.: Another quantity of interest is $S_n = T_1 + T_2 + \cdots + T_n$ because T_i are iid $\text{Exp}(\lambda)$, $S_n \sim \text{Gamma}(n, \lambda)$.

For n = 1, 2, ...

$$F_{S_n}(t) = \mathbb{P}(S_n \le t)$$

$$= \mathbb{P}(N(t) \ge n)$$

$$= \sum_{k=n}^{\infty} \mathbb{P}(N(t) = k) \qquad (N(t) \sim \mathcal{P}(\lambda t))$$

$$= \sum_{k=n}^{\infty} e^{-\lambda t} \cdot \frac{(\lambda t)^k}{k!}$$

$$\begin{split} f_{S_n}(t) &= F_{S_n}'(t) \\ &= \sum_{k=n}^{\infty} \left(-\lambda e^{-\lambda t} \frac{(\lambda t)^k}{k!} + e^{-\lambda t} \cdot \frac{\lambda^k \cdot t^{k-1}}{(k-1)!} \right) \\ &= e^{-\lambda t} \sum_{k=n}^{\infty} \left(\frac{\lambda^k \cdot t^{k-1}}{(k-1)!} - \frac{(\lambda t)^k}{k!} \right) \\ &= \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} \qquad \text{(telescoping sum)} \\ &= \frac{\lambda^n}{\Gamma(n)} t^{n-1} e^{-\lambda t} \\ &\implies S_n \sim \text{Gamma}(n, \lambda) \end{split}$$

E.g.: 5.13: Suppose people immigrate into a territory at a Poisson rate of $\lambda = 1$ per day.

1. What is the expectation time until the 10^{th} immigrant arrives?

Answer: $\mathbb{E}S_{10} = \frac{10}{1} = 10, S_{10} \sim \text{Gamma}(10, 1)$

2. What is the probability that the elapsed time between the 10^{th} and 11^{th} arrival exceeds two days?

Answer: $\mathbb{P}(T_{11} > 2) = e^{-\lambda t} = e^{-1 \cdot 2} = e^{-2}$

3. Given that four people have arrived by the end of the sixth day, what is the expected time until the tenth immigrant arrives?

Answer:
$$S_{10} = \{T_1 + \dots + T_4\}(6) + T_5 + \dots + T_{10}$$

$$\mathbb{E}(S_{10} \mid N(6) = 4) = 6 + \mathbb{E}(T_5 + \dots + T_{10}) = 6 + 6 = 12$$

where $(T_5 + \cdots + T_{10}) \sim S_6$.

4. Var(N(10) | N(6) = 4)

Answer:

$$\begin{aligned} &\operatorname{Var}(N(10) \mid N(6) = 4) \\ &= \operatorname{Var}((N(10) - N(6)) + N(6) \mid N(6) = 4) \\ &= \operatorname{Var}(N(10) - N(6) \mid N(6) = 4) + \operatorname{Var}(N(6) \mid N(6) = 4) \\ &= \operatorname{Var}(N(10) - N(6)) + \operatorname{Var}(4) \\ &= \operatorname{Var}(N(10 - 6)) \\ &= \operatorname{Var}(N(4)) \qquad (N(4) \sim \mathcal{P}(4\lambda)) \\ &= 4\lambda = 4 \end{aligned}$$

5. $Var(S_{10} | N(6) = 4)$ Answer:

$$Var(S_{10} | N(6) = 4) = Var(6 + S_6)$$

= $Var(S_6 = \frac{6}{1^2} = 6)$

5.3.3 Further properties of $\mathcal{PP}s$

Defn: Decomposing a \mathcal{PP} : Suppose that each event can be categorized (independently of other events) into one of m types with probabilities p_j such that $\sum_{j=1}^m p_j = 1$. Let $N_j(t)$ to be the number of events of type j during $(0,t], j=1,2,\ldots,m$. Then, $\{N_j(t)\}$ is a $\mathcal{PP}(\lambda p_j)$ and the processes $\{N_1(t),N_2(t),\ldots,N_m(t)\}$ are independent.

E.g.: Continue with 5.13. Immigrants arrive according to a $\mathcal{PP}(1)$. Suppose we can categorize immigrants according to country of origin, and suppose an immigrant arriving from one country is independent of an immigrant arriving from another country.

Country 1 vs Everyone else (m=2) with corresponding probabilities 2/3 and 1/3. Then, immigrants from country 1 arrive according to a $\mathcal{P}\mathcal{P}(2/3\cdot 1) = \mathcal{P}\mathcal{P}(2/3)$.