3

étude des fonctions

þage

1.

On considère la fonction numérique f définie par : $f(x) = x + \frac{2}{\sqrt{x+1}}$, et soit (C_f) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) (unité de 1 cm).

<u>1.</u> .

- $\underline{\mathbf{a}}_{\mathbf{c}}$ Déterminer $\mathbf{D}_{\mathbf{f}}$ domaine de définition de la fonction \mathbf{f} .
- $\underline{\underline{b}}$ Calculer: $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -1^+} f(x)$, puis interpréter géométriquement le deuxième résultat.
- $frac{d_{\cdot}}{d_{\cdot}}$ Etudier la position relative de la courbe $\left(C_{_{\mathrm{f}}}
 ight)$ et la droite $\left(\Delta
 ight)$.

2. .

- <u>a.</u> Montrer que: $f'(x) = 1 \frac{1}{(x+1)\sqrt{x+1}}$ pour tout x de D_f .
- Montrer que : pour tout x de]-1,0] on a $\frac{1}{(x+1)\sqrt{x+1}}$ ≥ 1 puis en déduire le signe de f'(x) sur]-1,0].
- Montrer que : pour tout x de $\left[1,+\infty\right[$ on a $\frac{1}{(x+1)\sqrt{x+1}} \le 1$ puis en déduire le signe de f'(x) sur $\left[1,+\infty\right[$.
- $\underline{\mathbf{d}}_{\mathbf{c}}$ Dresser le tableau de variations de la fonction $\mathbf{f}_{\mathbf{c}}$ sur $\mathbf{D}_{\mathbf{f}}$.
- $\underline{\mathbf{c}}$ Donner l'équation de la tangente $\left(T\right)$ à la courbe $\left(C_{\mathrm{f}}\right)$ au point $x_{\mathrm{0}}=0$.
- 3. Montrer que : l'équation $x \in]-1;+\infty[$; f(x)=x admet une solution unique α tel que : $0 < \alpha < 1$.
- 4. Construire la droite (Δ) et la tangente (T) et la courbe (C_f) de f dans le même repère (O,\vec{i},\vec{j}) .

5. ..

- <u>a.</u> Montrer que la fonction f admet une fonction réciproque f^{-1} définie sur l'intervalle J dont le déterminera .
- $\underline{\mathbf{b}}_{\underline{\mathbf{c}}}$ Montrer que : la fonction réciproque f $^{-1}$ est dérivable sur l'intervalle J .
- $\underline{\mathbf{c}}$ Calculer $\left(f^{-1}\right)'(\alpha)$ en fonction de α .
- $\underline{\underline{d}}$. Construire dans le même repère $\left(O,\vec{i},\vec{j}\right)$ la courbe représentative $\left(C_{f^{-1}}\right)$ de la fonction f^{-1} .

2.

PREMITERE PARTIE

On considère la fonction numérique f définie par : $f(x) = \frac{3(x+1)}{\sqrt{2x-1}}$, et soit (C_f) sa courbe représentative dans

étude des fonctions

un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$ (unité de 1 cm).

1. ..

- $\underline{\mathbf{a}}$ Déterminer $\mathbf{D}_{\mathbf{f}}$ domaine de définition de la fonction \mathbf{f} .
- $\underline{\underline{b}}$. Calculer: $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to \frac{1}{2} \atop x > 0} f(x)$, puis interpréter géométriquement le deuxième résultat.
- $\underline{\mathbf{c}}$ Montrer que : la courbe $\left(\mathbf{C}_{\mathrm{f}}\right)$ admet , au voisinage de $+\infty$ une branche parabolique dont on déterminera la direction

2. ..

- a. Montrer que: $f'(x) = \frac{3(x-2)}{(2x-1)\sqrt{2x-1}}$ pour tout x de D_f .
- **<u>b.</u>** Montrer que la fonction f est décroissante sur $\left[\frac{1}{2},2\right]$ et la fonction f est croissante sur $\left[2,+\infty\right[$.
- $\underline{\mathbf{c}}$ Dresser le tableau de variations de la fonction f sur D_f .

<u>3.</u>

- $\underline{\underline{a}}. \quad \text{Montrer que}: \ \forall x \in D, f''(x) = \frac{3(5-x)}{(2x-1)^{\frac{5}{2}}} \ \text{pour tout } x \text{ de } D_f.$
- $\underline{\underline{b}}$ Etudier le signe de la fonction dérivée seconde de f puis déterminer les coordonnées du point I d'inflexion à la courbe $\left(C_f\right)$.
- $\underline{\underline{\mathsf{c}}}$ Donner l'équation de la tangente $\left(T\right)$ à la courbe $\left(C_{\mathrm{f}}\right)$ au point I .
- 4. Construire la tangente (T) et la courbe (C_f) de f dans le même repère (O,\vec{i},\vec{j}) .
- **5.** On considère g la restriction de la fonction f sur $I = [2, +\infty[$.
 - $\underline{\mathbf{a}}$. Montrer que la restriction g admet une fonction réciproque \mathbf{g}^{-1} définie sur l'intervalle J dont le déterminera .
 - <u>b.</u> Calculer g(5) puis montrer que la fonction réciproque g^{-1} est dérivable en 6 puis calculer $\left(g^{-1}\right)^{'}(6)$
 - $\underline{\underline{c}} \quad \text{Construire dans le même repère } \left(O, \vec{i}, \vec{j}\right) \text{la courbe représentative } \left(C_{g^{-1}}\right) \text{ de la fonction } \mathbf{g}^{-1} \ .$

<u>DIDUXI DIMIDIDI PARINID</u>

La figure ci-contre représente $\left(C_h\right)$ la courbe représentative de la fonction h définie sur $\left]\frac{1}{2},+\infty\right[$ par :

$$h(x) = f(x) - x$$
.

<u>1.</u>

étude des fonctions

- a. α est un réel tel que : 6,4 < α < 6,5 (voir la figure). En déduire graphiquement la seule solution de l'équation h(x) = 0 en déduire $f(\alpha)$.
- **b.** Déterminer le signe de h(x) sur $I = [5, \alpha]$.
- **2.** Soit (u_n) la suite numérique définie par $u_0 = 5$ et $u_{n+1} = f(u_n)$ pour tout n de $\mathbb N$.
 - a. Calculer U₁.
 - **b.** Montrer par récurrence que : $5 \le u_n \le \alpha$ pour tout n de $\mathbb N$.
 - $\underline{\mathbf{c}}$ montrer que la suite (\mathbf{u}_n) est convergente.
 - $\underline{\mathbf{d}}$ En déduire que la suite (\mathbf{u}_n) est convergente.
 - $\underline{\mathbf{e}}$ Calculer la limite de la suite $\left(\mathbf{u}_{\mathbf{n}}\right)$.

3.

On considère la fonction numérique f définie par : $f(x) = \frac{x-1}{\sqrt{x^2-2x+2}}$, et soit (C_f) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) (unité de 2 cm).

- **1.** ..
 - **a.** Montrer que f est définie sur $D_f = \mathbb{R}$.
 - $\underline{\underline{b}}$ Calculer: $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$, puis interpréter géométriquement les deux résultats.
 - $\underline{\underline{c}}$ Montrer que : la courbe $\left(C_f\right)$ admet , au voisinage de $+\infty$ une branche parabolique dont on déterminera la direction
- **2.** ..
 - $\underline{a}. \quad \text{Montrer que}: f'(x) = \frac{1}{\left(x^2 2x + 2\right)\sqrt{x^2 2x + 2}} \text{ pour tout } x \text{ de } \mathbb{R}.$
 - $\underline{\underline{\textbf{b}}}_{\underline{\textbf{c}}}$ Montrer que la fonction f est croissante sur $D_{\underline{\textbf{f}}}$.
 - $\underline{\mathbf{c}}$ Dresser le tableau de variations de la fonction f sur \mathbb{R} .
- 3.
 - **a.** Montrer que : le point I(1;0) est un centre de symétrie de la courbe (C_f) .
- 4. Construire la tangente (T) et la courbe (C_f) de f dans le même repère (O,\vec{i},\vec{j}) .

étude des fonctions

5.

- $\underline{\mathbf{a}}$ Montrer que la fonction f admet une fonction réciproque f^{-1} définie sur l'intervalle J dont le déterminera .
- $\underline{\underline{b}}$. Construire dans le même repère (O,\vec{i},\vec{j}) la courbe représentative $(C_{f^{-1}})$ de la fonction f^{-1} .
- $\underline{\mathbf{c}}$ Calculer $\mathbf{f}(1)$ puis montrer que la fonction réciproque \mathbf{f}^{-1} est dérivable en $\mathbf{0}$ puis calculer $\left(\mathbf{f}^{-1}\right)'(\mathbf{0})$

4.

On considère la fonction numérique f définie par : $\begin{cases} f\left(x\right) = \frac{x}{x-1} & ; \ x < 0 \\ f\left(x\right) = x + \sqrt{x^2 + 2x} & ; \ x \ge 0 \end{cases}$, et soit $\left(C_f\right)$ sa courbe

représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$ (unité de 2 cm).

1. ..

- $\underline{\mathbf{a}}_{\mathbf{c}}$ Montrer que f est définie sur $D_{\mathbf{f}} = \mathbb{R}$.
- **<u>b.</u>** Etudier la continuité de la fonction f au point $X_0 = 0$.

2. ..

- <u>a.</u> Calculer: $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$, puis interpréter géométriquement le deuxième résultat.
- $\underline{\mathbf{b}}. \quad \text{V\'erifier que}: \ \mathbf{x} + \sqrt{\mathbf{x}^2 + 2\mathbf{x}} \left(2\mathbf{x} + 1\right) = \frac{-1}{\mathbf{x} + 1 + \sqrt{\mathbf{x}^2 + 2\mathbf{x}}} \quad \text{pour tout } \mathbf{x} \text{ de } \left[0, +\infty\right[\ .$
- En déduire la position relative de la courbe $\left(C_f\right)$ et la droite $\left(\Delta\right)$ d'équation y=2x+1 sur l'intervalle $\left[0,+\infty\right[$.
- $\underline{\underline{\mathbf{d}}}$ Calculer: $\lim_{x \to +\infty} \mathbf{f}(x) (2x+1)$, puis interpréter géométriquement le résultat.

<u>3.</u> ..

- <u>a.</u> Calculer: $\lim_{\substack{x\to 0\\y>0}} \frac{f(x)-f(0)}{x}$ puis interpréter géométriquement le résultat.
- **b.** Etudier la dérivabilité à gauche de la fonction f au point $X_0 = 0$.
- $\underline{\mathbf{c}}$ Est-ce que la fonction f est dérivable au point $\mathbf{x}_0 = \mathbf{0}$.

<u>4.</u> ..

- Montrer que la fonction f est dérivable sur $]0,+\infty[$, puis vérifier que $f'(x)=1+\frac{x+1}{\sqrt{x^2+2x}}$ pour tout x de $]0,+\infty[$, en déduire le signe de sur $]0,+\infty[$.
- <u>b.</u> Vérifier que : f'(x) = $\frac{-1}{(x+1)^2}$ pour tout x de]-∞,0[, en déduire le signe de sur]0,+∞[.
- ${f c.}$ Dresser le tableau de variations de la fonction ${f f}$ sur ${\Bbb R}$.

étude des fonctions

- **5.** Construire la courbe (C_f) de f dans le repère (O, \vec{i}, \vec{j}) .
- **6.** On considère g la restriction de la fonction f sur $\mathbf{I} = [0, +\infty[$.
 - $\underline{\mathbf{a}}$. Montrer que la restriction g admet une fonction réciproque \mathbf{g}^{-1} définie sur l'intervalle J dont le déterminera .
 - $\underline{\underline{b}}_{\underline{i}}$ Construire dans le même repère $\left(O,\vec{i},\vec{j}\right)$ la courbe représentative $\left(C_{g^{-1}}\right)$ de la fonction g^{-1} .
 - $\underline{\underline{c}}$ Calculer: $g\left(\frac{1}{4}\right)$ puis $\left(g^{-1}\right)'\left(1\right)$.
 - $\underline{\mathbf{d}}$ Déterminer la fonction réciproque \mathbf{g}^{-1} .
 - Sans calculer la limite $\lim_{\substack{x \to 0 \\ x > 0}} \frac{g^{-1}(x)}{x}$ interpréter géométriquement le résultat on utilise le résultat de la question $3 \cdot a$.

5.

On considère la fonction numérique f définie sur $\left[0,+\infty\right[$ par : $\begin{cases} f\left(x\right) = \frac{\sqrt{x}-1}{x-1} \; ; \; x \in \left[0;1\right[\cup\left]1;+\infty\right[\\ f(1) = \frac{1}{2} \end{cases} \end{cases}$ et

soit $\left(C_{f}\right)$ sa courbe représentative dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ (unité de 2 cm).

- <u>1.</u> .
 - $\underline{\mathbf{a}}_{\underline{\mathbf{c}}}$ Calculer : $\lim_{x \to +\infty} \mathbf{f}(\mathbf{x})$, puis interpréter géométriquement le résultat.
 - **<u>b.</u>** Etudier la continuité de la fonction f au point $X_0 = 1$.
 - $\underline{\mathbf{c}}$ Etudier la continuité à droite de la fonction f au point $\mathbf{x}_0 = \mathbf{0}$.
- **2.** ..
 - <u>a.</u> Montrer que la fonction f est dérivable au point $X_0 = 1$ et le nombre dérivé est $f'(1) = -\frac{1}{8}$
 - **b.** Donner l'équation de la tangente (T) à la courbe (C_f) au point $X_0 = 1$.
 - <u>c.</u> Etudier la dérivabilité à droite de la fonction f au point $\mathbf{x}_0 = \mathbf{0}$.
 - $oxdot{d}$ Est-ce que la fonction f est dérivable sur $\left]0,+\infty
 ight[ackslash\{1\}
 ight]$ puis vérifier la fonction dérivée de f sur

$$]0,+\infty[\setminus\{1\} \text{ est } f'(x) = \frac{-(\sqrt{x}-1)^2}{2\sqrt{x}(x-1)^2}.$$

- $\underline{\mathbf{e}}$ Dresser le tableau de variations de la fonction \mathbf{f} sur $[0,+\infty[$.
- 3. Construire la courbe (C_f) de f dans le repère (O, \vec{i}, \vec{j}) .
- **4.** On considère g la restriction de la fonction f sur $I = [0, +\infty[$.

étude des fonctions

- $\underline{\mathbf{a}}$. Montrer que la fonction g admet une fonction réciproque \mathbf{g}^{-1} définie sur l'intervalle J dont le déterminera .
- $\underline{\underline{b}}$. Construire dans le même repère (O,\vec{i},\vec{j}) la courbe représentative $(C_{g^{-1}})$ de la fonction g^{-1} .
- Calculer g(4) puis montrer que la fonction réciproque g^{-1} est dérivable en $\frac{1}{3}$ puis calculer $\left(g^{-1}\right)'\left(\frac{1}{3}\right)$.

PREMIERE PARIE

On considère la fonction numérique g définie sur \mathbb{R} par : $g(x) = x^3 - 3x + 2$.

<u>1.</u> ..

- $\underline{\mathbf{a}}$ Calculer: g(-2).
- $\underline{\underline{b}}$ Calculer: $\lim_{x\to -\infty} g(x)$ et $\lim_{x\to +\infty} g(x)$.

2. ..

- **a.** Calculer: g'(x) pour tout x de \mathbb{R} .
- **b.** Etudier le signe de g'(x) puis dresser le tableau de variations de g sur $\mathbb R$.
- \underline{c} Déterminer le signe de la fonction g sur $\mathbb R$, on précise les deux valeurs pour lesquelles g(x) s'annule.
- **d.** Montrer que : $g([3,+\infty[)\subset[3,+\infty[$.

DEUXIÈMIE PARNIE

Soit la fonction numérique g définie sur $\mathbb{R} \setminus \{-1\}$ par : $\begin{cases} f(x) = \frac{x^3 - 1}{x^2 - 1}, & x \neq -1 \text{ et } x \neq 1 \\ f(1) = \frac{3}{2} \end{cases}$

Soit $\left(C_{_f}\right)$ sa courbe représentative dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ (unité de 1 cm).

<u>1.</u> ..

- **a.** Etudier la continuité de la fonction f au point $X_0 = 1$.
- $\underline{\underline{b}}$ Calculer les limites suivantes : $\lim_{\substack{x \to -1 \\ x > -1}} f(x)$ et $\lim_{\substack{x \to -1 \\ x < -1}} f(x)$ puis interpréter géométriquement les résultats

2. ..

- <u>a.</u> Calculer: $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} f(x) x$ puis interpréter géométriquement les résultats
- $\underline{\underline{b}}_{\underline{t}} \quad \text{Calculer}: \lim_{x \to -\infty} f\left(x\right) \text{ puis déterminer la branche infinie de } \left(C_f\right) \text{ au voisinage de } -\infty \ .$
- \subseteq Déterminer la position relative de la droite (D) d'équation y = x et la courbe (C_f)
- 3. Etudier la dérivabilité de la fonction f au point $X_0 = 1$ (remarquer que $2x^3 3x^2 + 1 = (x-1)^2(2x-1)$

étude des fonctions

- <u>a.</u> Vérifier que : $f'(x) = \frac{xg(x)}{(x^2-1)^2}$ pour tout x de $\mathbb{R} \setminus \{-1;1\}$.
- $\underline{\mathbf{b}}_{\cdot}$ Déterminer le signe de f (\mathbf{x}) pour tout \mathbf{x} de $\mathbb{R} \setminus \{-1;1\}$.
- $\underline{\mathbf{c}}$ Dresser le tableau de variations de la fonction f sur $\mathbb{R}\setminus\{-1\}$
- **4.** Construire dans le repère $\left(O,\vec{i},\vec{j}\right)$ la droite $\left(D\right)$ et la courbe $\left(C_{f}\right)$. (unité de 1 cm).

TROISIÈMEE PARIE

Soit a est un nombre réel , on considère la suite (u_n) définie par : $u_0 = a$ et $u_{n+1} = g(u_n) - u_n$ pour tout n de $\mathbb N$.

- 1. On prend le cas: a = 2, montrer que: $u_n = 2$ pour tout n de N
- 2. On prend le cas : a=-2 , montrer que : $u_n=2$ pour tout n de $\operatorname{\mathbb{N}}^*=\operatorname{\mathbb{N}}\setminus\left\{0\right\}$.
- 3. On prend le cas : a=0, montrer que : $u_n=2$ pour tout n de $\mathbb{N}^*=\mathbb{N}\setminus\{0\}$.
- **4.** On prend le cas: a = 3, Montrer que: $u_n \ge 3$ pour tout n de \mathbb{N} .

7.

On considère la fonction numérique f définie sur $\left[0,+\infty\right[$ par : $f\left(x\right)=x-2\sqrt{x}+2$, et soit $\left(C_{f}\right)$ sa courbe représentative dans un repère orthonormé $\left(O,\overrightarrow{i},\overrightarrow{j}\right)$ (unité de 2 cm).

- <u>1.</u>
 - <u>a.</u> Calculer la limite suivante : $\lim_{x\to +\infty} f(x)$.
 - <u>b.</u> Calculer les limites suivantes : $\lim_{x \to +\infty} \frac{f(x)}{x}$ et $\lim_{x \to +\infty} f(x) x$ puis interpréter géométriquement les résultats obtenus .
 - $\underline{\mathbf{c}}$ Etudier la position relative de la courbe $\left(C_f\right)$ et la droite $\left(\Delta\right)$ d'équation $\left(\Delta\right)$: y=x.
- 2.
 - a. Etudier la dérivabilité à droite de la fonction f au point $x_0 = 1$ (remarquer que $2x^3 3x^2 + 1 = (x-1)^2(2x-1)$
 - **b.** Calculer f'(x) pour tout x de $]0,+\infty[$ puis vérifier que $f'(x) = \frac{\sqrt{x}-1}{\sqrt{x}}$.
 - $\underline{\mathbf{c}}$ Déterminer le signe de $\mathbf{f}'(\mathbf{x})$ pour tout \mathbf{x} $]0,+\infty[$.
 - $\underline{\mathbf{d}}$ dresser le tableau de variations de la fonction f sur $[0,+\infty[$
- 3. Construire dans le repère $\left(O,\vec{i},\vec{j}\right)$ la droite $\left(\Delta\right)$ et la courbe $\left(C_{f}\right)$. (unité de 2 cm) .
- **4.** On considère g la restriction de la fonction f sur $I = [1, +\infty[$.
 - $\underline{\underline{a}}$. Montrer que la fonction g admet une fonction réciproque g^{-1} définie sur l'intervalle J dont le déterminera .

étude des fonctions

- **b**. Construire dans le même repère $(0,\vec{i},\vec{j})$ la courbe représentative $(C_{g^{-1}})$ de la fonction g^{-1} .
- $\underline{\mathbf{c}}$ Déterminer: $\mathbf{g}^{-1}(\mathbf{x})$ (remarquer que $\mathbf{x} 2\sqrt{\mathbf{x}} + 2 = (\sqrt{\mathbf{x}} 1)^2$)
- 5. Soit (u_n) la suite numérique définie par $u_0 = 2$ et $u_{n+1} = g(u_n)$ pour tout n de $\mathbb N$.
 - $\underline{a_{\scriptscriptstyle L}}$ Montrer par récurrence que : $u_{\scriptscriptstyle n}>1\,$ pour tout n de $\,\mathbb{N}\,$.
 - $\underline{\mathbf{b}}_{\mathbf{n}}$ Montrer que la suite $\left(\mathbf{u}_{\mathbf{n}}\right)$ est décroissante .
 - $\underline{\underline{c}}$ En déduire que la suite (\underline{u}_n) est convergente.
 - $\underline{\mathbf{d}}$ Calculer la limite de la suite (\mathbf{u}_n) .

8.

On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = x + 3 - \sqrt{x^2 + 5}$, et soit (C_f) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) (unité de 1 cm).

- <u>1.</u> ..
 - <u>a.</u> Montrer que : $\lim_{x\to +\infty} f(x) = 3$, puis interpréter géométriquement le résultat.
 - $\underline{\underline{\mathbf{b}}}$ Calculer: $\lim_{x\to-\infty} f(x)$.

 - $\underline{\mathbf{d}}_{\mathbf{f}}$ déterminer l'intersection de la courbe $\left(\mathbf{C}_{\mathbf{f}}\right)$ et l'axe des abscisses.

2. ..

- a. Calculer f'(x) pour tout x de \mathbb{R} puis vérifier que $f'(x) = \frac{-x + \sqrt{x^2 + 5}}{\sqrt{x^2 + 5}}$.
- **b.** Montrer que: $\sqrt{x^2+5}-x\geq 0$ puis en déduire les variations de sur $\mathbb R$.
- ${f \underline{c}}$. dresser le tableau de variations de la fonction ${f f}$ sur ${\Bbb R}$.
- <u>d.</u> Ecrire l'équation réduite de la tangente à (C_f) au point $x_0 = -\frac{2}{3}$.
- $\underline{\underline{c}}$ Déterminer : f([1,2]) et f([2,3]).

<u>3.</u> ..

- <u>a.</u> Etudier le signe de : f(x)-x (remarquer que $f(x)-x=\frac{4-x^2}{3+\sqrt{x^2+5}}$).
- $\underline{\mathbf{b}}_{\mathbf{t}}$ Etudier la position relative de la droite $\left(\Delta\right)$ et la courbe $\left(\mathbf{C}_{\mathbf{f}}\right)$.

4.

- $\underline{a}_{\cdot} \quad \text{Montrer que la fonction f admet une fonction réciproque } f^{-1} \quad \text{définie sur l'intervalle } J = \left] -\infty, 3 \right[$
- $\underline{\underline{b}}$ Construire dans le même repère $\left(O,\vec{i},\vec{j}\right)$ la courbe représentative $\left(C_{f^{-1}}\right)$ de la fonction f^{-1} .

- **<u>c.</u>** Montrer que : la fonction réciproque f⁻¹ est dérivable en 2.
- d. Calculer: f(2) puis $(f^{-1})'(2)$.
- 5. Soit (u_n) la suite numérique définie par $u_0 = 1$ et $u_{n+1} = f(u_n)$ pour tout n de \mathbb{N} .

 - $\underline{\mathbf{b}}_{\mathbf{a}}$ Montrer que la suite $(\mathbf{u}_{\mathbf{n}})$ est croissante.
 - $\underline{\mathbf{c}}$ En déduire que la suite (\mathbf{u}_n) est convergente.
 - $\underline{\mathbf{d}}$ Calculer la limite de la suite (\mathbf{u}_n) .
- **6.** Soit (v_n) la suite numérique définie par $v_0 = 3$ et $v_{n+1} = f(v_n)$ pour tout n de $\mathbb N$.
 - **a.** Montrer par récurrence que : $2 \le v_n \le 3$ pour tout n de $\mathbb N$.
 - **<u>h.</u>** Montrer que la suite (v_n) est décroissante
 - \underline{c} En déduire que la suite (v_n) est convergente.
 - $\underline{\mathbf{d}}$ Calculer la limite de la suite (\mathbf{v}_n) .

9.

On considère la fonction numérique f définie par : $f(x) = -2 + \frac{x+2}{\sqrt{x+1}}$.

et soit $\left(C_{_f}\right)$ la courbe représentative de la fonction f dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ (unité de 1 cm) .

I.

- 1. Montrer que : $D_f =]-1,+\infty[$ (D_f ensemble de définition de la fonction f)
- <u>a.</u> Calculer: $\lim_{\substack{x \to -1 \\ x > -1}} f(x)$ puis interpréter géométriquement le résultat.
- $\underline{\underline{\mathbf{b}}}$ Calculer: $\lim_{x\to +\infty} f(x)$.
- Montrer que (C_f) admet au voisinage de $+\infty$ une branche parabolique de direction asymptotique au voisinage de $+\infty$ dont on déterminera sa direction .

2.

- a. Calculer f'(x) pour tout x de $]-1,+\infty[$ puis vérifier que $f'(x) = \frac{x}{2(x+1)\sqrt{x+1}}$.
- $\underline{\mathbf{b}}$ Etudier le signe de $\mathbf{f}'(\mathbf{x})$ sur $]-1,+\infty[$.
- $\underline{\mathbf{c}}$ dresser le tableau de variations de la fonction f sur $\mathbb R$.
- <u>d.</u> Ecrire l'équation réduite de la tangente à (C_f) au point $x_0 = -\frac{2}{3}$.

<u>3.</u> ..

- a. Montrer que : pour tout x de $]-1,+\infty[$ que $f''(x) = \frac{2-x}{4(x+1)^2\sqrt{x+1}}$.
- $\underline{\mathbf{b}}_{\mathbf{c}}$ En déduire la concavité de la courbe $\left(\mathbf{C}_{\mathbf{f}}\right)$ et les coordonnées de l'unique point d'inflexion de $\left(\mathbf{C}_{\mathbf{f}}\right)$.

étude des fonctions

- 4. Construire dans le repère (O,\vec{i},\vec{j}) la droite (Δ) et la courbe (C_f) . (unité de 1 cm).
- **5.** On considère g la restriction de la fonction f sur $I = [0, +\infty[$.
 - \underline{a} . Montrer que la fonction g admet une fonction réciproque g^{-1} définie sur l'intervalle J dont le déterminera .
 - $\underline{\underline{b}}_{\underline{i}} \quad \text{Construire dans le même repère } \left(O,\vec{i},\vec{j}\right) \text{la courbe représentative } \left(C_{g^{-1}}\right) \text{ de la fonction } \mathbf{g}^{-1} \ .$
 - $\underline{\underline{c}}$ Calculer g(3) puis montrer que : la fonction réciproque g^{-1} est dérivable en $\frac{4}{3}$.
 - $\underline{\underline{d}}$. Calculer : $\left(g^{-1}\right)'\left(\frac{4}{3}\right)$.
- **6.** Soit (u_n) la suite numérique définie par $u_0 = 3$ et $u_{n+1} = g(u_n)$ pour tout n de $\mathbb N$.
 - **a.** Montrer par récurrence que : $0 \le u_n \le 3$ pour tout n de \mathbb{N} .
 - $\underline{\mathbf{b}}_{\mathbf{n}}$ Montrer que la suite $\left(\mathbf{u}_{\mathbf{n}}\right)$ est décroissante .
 - \underline{c} En déduire que la suite (u_n) est convergente .
 - $\underline{\mathbf{d}}$ Calculer la limite de la suite $\left(\mathbf{u}_{\mathbf{n}}\right)$.

10.

On considère la fonction numérique f définie sur $\mathbf{D}_{\mathbf{f}} =]-\infty, -1[\ \ \]-1, +\infty[$ par :

$$\begin{cases} f(x) = \frac{x^4}{x^3 + x^2} ; x \neq -1 \text{ et } x \neq 0 \\ f(0) = 0 \end{cases}$$

et soit $\left(C_{_f}\right)$ la courbe représentative de la fonction f dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$ (unité de 1 cm) .

1.

- Calculer: $\lim_{\substack{x \to -1 \\ y \to -1}} f(x)$ et $\lim_{\substack{x \to -1 \\ y \to -1}} f(x)$ puis interpréter géométriquement les résultats.
- $\underline{\underline{b}}$ Calculer: $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} f(x) (x-1)$ puis interpréter géométriquement les résultats.
- $\underline{\underline{c}}$ Calculer: $\lim_{x\to-\infty} f(x)$.
- <u>d.</u> Montrer que (C_f) admet au voisinage de $-\infty$ une asymptote oblique au voisinage de $-\infty$ dont on déterminera son équation .
- Etudier la position relative de la courbe (C_f) et la droite (D) d'équation y = x 1 sur D_f .

2.

- $\underline{\underline{a}}$ Calculer : $\lim_{x \to 0} \frac{f(x)}{v}$ puis interpréter géométriquement le résultat .
- $\underline{\mathbf{b}}. \quad \text{Calculer } \mathbf{f}'(\mathbf{x}) \text{ pour tout } \mathbf{x} \text{ de }] -\infty, -1[\cup] -1, 0[\cup] 0, +\infty[\text{ puis vérifier que } \mathbf{f}'(\mathbf{x}) = \frac{\mathbf{x}^5(\mathbf{x}+2)}{(\mathbf{x}^3+\mathbf{x}^2)^2}.$

étude des fonctions

- \subseteq Etudier le signe de f'(x) sur $]-\infty,-1[\cup]-1,0[\cup]0,+\infty[$.
- $\underline{\textbf{d}}_{\!_{L}}$ dresser le tableau de variations de la fonction f sur $D_{\!_{f}}$.
- Ecrire l'équation réduite de la tangente à (C_f) au point $X_0 = 0$.

<u>3.</u> ..

- <u>a.</u> Vérifier que : $f(x)-(x-1)=\frac{x^2}{x^3+x^2}$ puis en déduire la position de la courbe (C_f) et la droite (D).
- **b.** Etudier l'intersection de la droite (Δ) d'équation : y = x et la courbe (C_f) .
- **4.** On considère g la restriction de la fonction f sur I =]-1,0].
 - $\underline{\underline{a}}$. Montrer que la fonction g admet une fonction réciproque g^{-1} définie sur l'intervalle J dont le déterminera .
 - $\underline{\underline{b}}$. Construire dans le même repère $\left(O,\vec{i},\vec{j}\right)$ la courbe représentative $\left(C_{g^{-1}}\right)$ de la fonction g^{-1} .
 - $\underline{\underline{c}}$ Calculer $g\left(\frac{1}{2}\right)$ puis montrer que : la fonction réciproque g^{-1} est dérivable en $\frac{1}{6}$.
 - $\underline{\underline{\mathbf{d}}}$ Calculer : $\left(\mathbf{g}^{-1}\right)'\left(\frac{1}{6}\right)$.
- 5. Soit (u_n) la suite numérique définie par $u_0 = 1$ et $u_{n+1} = g(u_n)$ pour tout n de $\mathbb N$.
 - $\underline{\underline{a}}_{\scriptscriptstyle L}$ Montrer par récurrence que : $0 \! \leq \! u_{\scriptscriptstyle n} \! \leq \! 1$ pour tout n de $\mathbb N$.
 - $\underline{\mathbf{b}}_{\mathbf{n}}$ Montrer que la suite $\left(\mathbf{u}_{\mathbf{n}}\right)$ est décroissante.
 - $\underline{\mathbf{c}}$ En déduire que la suite (\mathbf{u}_n) est convergente.
 - $\underline{\mathbf{d}}_{n}$ Calculer la limite de la suite (\mathbf{u}_{n}) .