

INTRODUCCIÓN

El Protocolo de Árbol de Extensión (STP) es un protocolo esencial en el ámbito de las redes conmutadas, desarrollado para prevenir bucles de red y asegurar una comunicación eficiente. Este protocolo es fundamental para mantener la estabilidad y el rendimiento de las redes, especialmente en configuraciones complejas.

En este trabajo se abordarán las prácticas 8.1 y 8.2 del capítulo 8 del curso CCNA 3. Estas prácticas se centran en la selección del puente raíz y el recálculo del árbol de extensión, proporcionando una comprensión detallada de los procedimientos y configuraciones necesarios para implementar STP en una red conmutada.

A través de una serie de pasos, se configurarán los switches, se verificarán las conexiones y se observará el comportamiento del algoritmo STP ante cambios en la topología de la red. El objetivo es desarrollar habilidades prácticas en la configuración y gestión de redes conmutadas, así como comprender el funcionamiento del STP para mejorar la eficiencia y estabilidad de las redes.

Montaje con el que se realizara la practica

La imagen muestra una topología básica de red utilizada para prácticas de configuración en switches. Se observan dos computadoras conectadas cada uno a un **Switch**, ambos por el puerto **FAo/7** y otra por el **FAo/8**.

Paso 1: Configuración de los switches

1. Configurar los nombres de host y las contraseñas:

• Switch A:

Switch> enable

Switch# configure terminal

Switch(config)# hostname Switch_A

Switch A(config)# enable secret class

Switch_A(config)# line console o

Switch_A(config-line)# password CISCO

Switch A(config-line)# login

Switch_A(config-line)# exit

Switch A(config)# line vty o 4

Switch_A(config-line)# password CISCO

Switch_A(config-line)# login

Switch_A(config-line)# exit

Switch_A(config)# interface vlan 1

Switch_A(config-if)# ip address 192.168.1.2 255.255.255.0

Switch_A(config-if)# ip default-gateway 192.168.1.1

Switch_A(config-if)# exit

Switch A(config)# end

Switch A#

• Switch_B:

Switch> enable

Switch# configure terminal

Switch(config)# hostname Switch B

Switch B(config)# enable secret class

Switch_B(config)# line console o

Switch B(config-line)# password CISCO

Switch_B(config-line)# login

Switch B(config-line)# exit

Switch B(config)# line vty o 4

```
Switch_B(config-line)# password CISCO

Switch_B(config-line)# login

Switch_B(config-line)# exit

Switch_B(config)# interface vlan 1

Switch_B(config-if)# ip address 192.168.1.3 255.255.255.0

Switch_B(config-if)# ip default-gateway 192.168.1.1

Switch_B(config-if)# exit

Switch_B(config)# end

Switch_B#
```

Paso 2: Configurar los Hosts

- Configura los hosts para utilizar la misma subred IP que los switches:
 - Host conectado a Switch A:
 - IP: 192.168.1.10
 - Máscara de subred: 255.255.255.0
 - Gateway predeterminado: 192.168.1.1
 - Host conectado a Switch_B:
 - IP: 192.168.1.11
 - Máscara de subred: 255.255.255.0
 - Gateway predeterminado: 192.168.1.1

Paso 3: Comprobar la Conectividad

```
C:\> ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

```
C:\> ping 192.168.1.3

Pinging 192.168.1.3 with 32 bytes of data:
Reply from 192.168.1.3: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.1.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

Los ping fueron exitosos

Paso 4: Mirar las opciones VLAN de show interface

```
Switch_A#show interface vlan 1 ?
                    Per-protocol accounting
  accounting
 brief
                    Brief information
 description
                     Interface specific description
                     IP interface parameters
                     Show interface MAC address
 mac-address
                     Show Performance Monitor
 private-vlan
                     Private VLAN
                    Show interface reliability
  reliability
  status
                     Status of the interface
                   Output modifiers
  <cr>
```

Paso 5: Mirar la información de la interfaz VLAN

```
Switch_A#show interface vlan 1
Vlan1 is up, line protocol is up
Hardware is CPU Interface, address is 000a.b811.cdef (bia 000a.b811.cdef)
...
```

d. ¿Cuál es la dirección MAC del switch?

```
Switch_B#show interface vlan 1
Vlan1 is up, line protocol is up
Hardware is CPU Interface, address is 000b.c122.34ab (bia 000b.c122.34ab)
...
```

e. ¿Qué switch debe ser el raíz del árbol de extensión para VLAN 1?

Respuesta: Switch A, porque tiene la dirección MAC más baja.

Paso 6: Mirar la tabla del árbol de extensión de los switches

```
Switch_A#show spanning-tree brief
VLAN1
                           Spanning tree enabled protocol ieee
                     000a.b811.cdef
                     1 (Fa0/1)
          Age
Max Age 20 Hello Time 2 Forward Delay 15
Bridge ID Priority 32768 (priority 32768 sys-id-ext 0)
Address 000a.b811.cdef
           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
           Aging Time 20
               Role Sts Cost
Interface
                                  Prio.Nbr Type
Fa0/1
                Root FWD 4
                                             P2p
Fa0/4
                Desg FWD 4
                                   128.4
                                             P2p
```

```
Switch_B#show spanning-tree brief
VLAN1
                        Spanning tree enabled protocol ieee
         Priority 32768
Root ID
         Address 000a.b811.cdef
                    1 (Fa0/1)
         Port
          Age
Max Age
          20 Hello Time 2 Forward Delay 15
Bridge ID Priority 32768 (priority 32768 sys-id-ext 0)
                   000b.c122.34ab
          Address
          Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
          Aging Time 20
              Role Sts Cost
Interface
                               Prio.Nbr Type
Fa0/1
               Altn BLK 4
                                        P2p
               Desg FWD 4 128.4
Fa0/4
                                        P2p
```

1. ¿Cuál es la prioridad del switch raíz?

Respuesta: 32768

2. ¿Cuál es el ID de puente del switch raíz? Respuesta: 32768 000a.b811.cdef

3. ¿Qué puertos están enviando en el switch raíz?

Respuesta: Fao/1 y Fao/4

4. ¿Qué puertos están bloqueados en el switch raíz? Respuesta: Ninguno

5. ¿Cuál es la prioridad del switch no raíz?

Respuesta: 32768

6. ¿Cuál es el ID de puente del switch no raíz?

Respuesta: 32768 000b.c122.34ab

7. ¿Qué puertos están enviando en el switch no raíz?

Respuesta: Fao/4

8. ¿Qué puertos están bloqueando en el switch no raíz?

Respuesta: Fao/1