Week 3 Exercises

Gov January Linear Algebra Review 2021-01-19

- 1. (Strang 4.1.13) Put bases for the subspaces ${\bf V}$ and ${\bf W}$ into the columns of the matrices V and W. Explain why the test for orthogonal subspaces can be written $V^TW=$ zero matrix. This matches ${\bf v}^T{\bf w}=0$ for orthogonal vectors.
- 2. (Strang 4.1.25) Find A^TA if the columns of A are unit vectors, all mutually perpendicular.
- 3. (Strang 4.2.13) Suppose A is the 4 by 4 identity matrix with its last column removed. A is 4 by 3. Project $\boldsymbol{b}=(1,2,3,4)$ onto the column space A. What shape is the projection matrix P and what is P?
- 4. (Strang 4.2.21) Multiply the matrix $P=A(A^TA)^{-1}A^T$ by itself. Cancel to prove that $P^2=P$. Explain by $P(P\boldsymbol{b})$ always equals $P\boldsymbol{b}$. The vector $P\boldsymbol{b}$ is in the column space of A so its projection onto that column space is
- 5. (Strang 4.2.22) Prove that $P=A(A^TA)^{-1}A^T$ is symmetric by computing P^T . Remember that the inverse of a symmetric matrix is symmetric.
- 6. (Strang 4.2.23) Is the error vector e orthogonal to b or p or e or \hat{x} ? Show that $||e||^2$ equals e^Tb which equals $b^Tb p^Tb$.