Hermes: An Integrated CPU/GPU Microarchitecture for IP Routing

Yuhao Zhu* Yangdong Deng[‡] Yubei Chen[‡]

* Electrical and Computer Engineering
University of Texas at Austin

‡ Institute of Microelectronics Tsinghua University

Challenges in IP Router design

- Challenges in IP Router design
 - Internet traffic is still increasing

Challenges in IP Router design

Throughput & QoS!

Challenges in IP Router design

Throughput & QoS!

New network services and protocols keep appearing

Challenges in IP Router design

Throughput & QoS!

Challenges in IP Router design

Throughput & QoS!

Progammability

Traditional router solutions

Challenges in IP Router design

Throughput & QoS!

- Traditional router solutions
 - Hardware Routers: ASIC, Network Processors

Challenges in IP Router design

Throughput & QoS!

- Traditional router solutions
 - ☐ Hardware Routers: ASIC, Network Processors
 - PC based Software Routers

Challenges in IP Router design

Throughput & QoS!

- Traditional router solutions
 - Hardware Routers: ASIC, Network Processors
 - PC based Software Routers
- How about GPUs?

Challenges in IP Router design

Throughput & QoS!

- Traditional router solutions
 - Hardware Routers: ASIC, Network Processors
 - PC based Software Routers
- How about GPUs?
 - High computing power

Challenges in IP Router design

Throughput & QoS!

- Traditional router solutions
 - Hardware Routers: ASIC, Network Processors
 - PC based Software Routers
- How about GPUs?
 - High computing power
 - Mass market with strong development support

- Related Work
 - Smith et al. [ISPASS2009]
 - Mu et al. [DATE2010]
 - Han et al. [SIGCOMM2010]

- Related Work
 - Smith et al. [ISPASS2009]
 - Mu et al. [DATE2010]
 - ☐ Han et al. [SIGCOMM2010]
- Restrictions

- Related Work
 - Smith et al. [ISPASS2009]
 - Mu et al. [DATE2010]
 - Han et al. [SIGCOMM2010]
- Restrictions
 - CPU/GPU communication overhead hurts overall throughput

- Related Work
 - Smith et al. [ISPASS2009]
 - Mu et al. [DATE2010]
 - Han et al. [SIGCOMM2010]
- Restrictions
 - CPU/GPU communication overhead hurts overall throughput

- Related Work
 - Smith et al. [ISPASS2009]
 - Mu et al. [DATE2010]
 - Han et al. [SIGCOMM2010]
- Restrictions
 - CPU/GPU communication overhead hurts overall throughput
 - Batch (warp) processing hurts QoS

- Related Work
 - Smith et al. [ISPASS2009]
 - Mu et al. [DATE2010]
 - Han et al. [SIGCOMM2010]
- Restrictions
 - CPU/GPU communication overhead hurts overall throughput
 - Batch (warp) processing hurts QoS

Worst case delay:
batch_transfer_gr
anularity/linecard_rate

Throughput wins!

- Throughput wins!
 - Shared-memory mitigating communication overhead

- Throughput wins!
 - Shared-memory mitigating communication overhead
- QoS wins!

- Throughput wins!
 - Shared-memory mitigating communication overhead
- QoS wins!
 - Adaptive warp scheduler through Task FIFO and DCQ

■ How?

Why?

- How?
 - □ CPU/GPU connected to the shared, centralized memory

Why?

- How?
 - CPU/GPU connected to the shared, centralized memory

- Why?
 - Except throughput...
 - Serves as a large packet buffer impractical in traditional routers!

- How?
 - CPU/GPU connected to the shared, centralized memory
 - Execution model compatible with traditional CPU/GPU systems
- Why?
 - Except throughput...
 - Serves as a large packet buffer impractical in traditional routers!

- How?
 - CPU/GPU connected to the shared, centralized memory
 - Execution model compatible with traditional CPU/GPU systems
- Why?
 - Except throughput...
 - Serves as a large packet buffer impractical in traditional routers!
 - Avoid consistency issues in shared memory systems

Basic idea

- Basic idea
 - Deliver packets in an agile way

- Basic idea
 - Deliver packets in an agile way
- Mechanism

- Basic idea
 - Deliver packets in an agile way
- Mechanism
 - One GPU thread for one packet

- Basic idea
 - Deliver packets in an agile way
- Mechanism
 - One GPU thread for one packet
 - CPU passes #available packets to GPU through Task FIFO

- Basic idea
 - Deliver packets in an agile way
- Mechanism
 - One GPU thread for one packet
 - CPU passes #available packets to GPU through Task FIFO
 - GPU monitors the FIFO and starts processing whenever possible

- Basic idea
 - Deliver packets in an agile way
- Mechanism
 - One GPU thread for one packet
 - CPU passes #available packets to GPU through Task FIFO
 - GPU monitors the FIFO and starts processing whenever possible
 - Tradeoffs in choosing the updating/fetching frequency

- Basic idea
 - Deliver packets in an agile way
- Mechanism
 - One GPU thread for one packet
 - CPU passes #available packets to GPU through Task FIFO
 - ☐ GPU monitors the FIFO and starts processing whenever possible
 - Tradeoffs in choosing the updating/fetching frequency
- Enforce in-order commit

- Basic idea
 - Deliver packets in an agile way
- Mechanism
 - One GPU thread for one packet
 - CPU passes #available packets to GPU through Task FIFO
 - ☐ GPU monitors the FIFO and starts processing whenever possible
 - Tradeoffs in choosing the updating/fetching frequency
- Enforce in-order commit
 - Some protocols (UDP, etc.) require in-order packet committing

- Basic idea
 - Deliver packets in an agile way
- Mechanism
 - One GPU thread for one packet
 - CPU passes #available packets to GPU through Task FIFO
 - GPU monitors the FIFO and starts processing whenever possible
 - Tradeoffs in choosing the updating/fetching frequency
- Enforce in-order commit
 - Some protocols (UDP, etc.) require in-order packet committing
 - ROB-like structure called DCQ

- Enforce in-order commit
 - Some protocols (UDP, etc.) require in-order packet committing
 - ROB-like structure called DCQ

- Benchmarks: hand-coded complete software router in CUDA
 - □ Checking IP header → Packet classification → Routing table lookup → Decrementing TTL → IP fragmentation and Deep packet inspection
 - □ Various packet traces with both burst and sparse patterns

- Benchmarks: hand-coded complete software router in CUDA
 - □ Checking IP header → Packet classification → Routing table lookup → Decrementing TTL → IP fragmentation and Deep packet inspection
 - □ Various packet traces with both burst and sparse patterns
- gpgpu-sim -- cycle accurate CUDA-compatible GPU simulator
 - 8 shader cores
 - 32-wide SIMD, 32-wide warp
 - 1000MHz shared core frequency
 - ☐ 16768 registers per shader core
 - ☐ 16KByte shared memory per shared core

- Benchmarks: hand-coded complete software router in CUDA
 - □ Checking IP header → Packet classification → Routing table lookup → Decrementing TTL → IP fragmentation and Deep packet inspection
 - □ Various packet traces with both burst and sparse patterns
- gpgpu-sim -- cycle accurate CUDA-compatible GPU simulator
 - 8 shader cores
 - ☐ 32-wide SIMD, 32-wide warp
 - 1000MHz shared core frequency
 - □ 16768 registers per shader core
 - ☐ 16KByte shared memory per shared core
- Maximally allowed concurrent warps (MCW) per core
 - They compete for hardware resources
 - □ They affect the updating/fetching frequency

Throughput

Delay

Scalability

Ever-demanding need for high-quality IP Routers

- Ever-demanding need for high-quality IP Routers
 - Throughput, QoS and programmability are important metrics but often not guaranteed at the same time

- Ever-demanding need for high-quality IP Routers
 - Throughput, QoS and programmability are important metrics but often not guaranteed at the same time
- Hermes: GPU-based software router

- Ever-demanding need for high-quality IP Routers
 - Throughput, QoS and programmability are important metrics but often not guaranteed at the same time
- Hermes: GPU-based software router
 - Meet all three at the same time

- Ever-demanding need for high-quality IP Routers
 - Throughput, QoS and programmability are important metrics but often not guaranteed at the same time
- Hermes: GPU-based software router
 - Meet all three at the same time
 - □ Leverage huge and mature GPU market

- Ever-demanding need for high-quality IP Routers
 - Throughput, QoS and programmability are important metrics but often not guaranteed at the same time
- Hermes: GPU-based software router
 - Meet all three at the same time
 - Leverage huge and mature GPU market
 - Minimal hardware extensions

- Ever-demanding need for high-quality IP Routers
 - Throughput, QoS and programmability are important metrics but often not guaranteed at the same time
- Hermes: GPU-based software router
 - Meet all three at the same time
 - Leverage huge and mature GPU market
 - Minimal hardware extensions

Come to my poster to learn more!