대학수학

• 피타고라스 정리

- 임의의 직각삼각형에서 빗변의 제곱은 다른 두 변의 제곱의 합과 같다.
- 직각삼각형 ABC에서 다음이 성립함을 의미한다.

$$b^2 = a^2 + c^2$$

 직각삼각형의 임의의 두 변의 길이를 알고 있다면, 피타고라스 정리에 의해 세 번째 변의 길이를 계산할 수 있다.

$$b = \sqrt{a^2 + c^2}$$
 $a = \sqrt{b^2 - c^2}$ $c = \sqrt{b^2 - a^2}$

$$\sin \theta = \frac{\text{대변}}{\text{빗변}} \qquad \sin \theta = \frac{BC}{AC}$$

$$cosine \theta = \frac{\text{이웃변}}{\text{빗변}} \qquad \cos \theta = \frac{AB}{AC}$$

$$\cos\theta = \frac{AB}{AC}$$

$$angent \theta = \frac{$$
대변} 이웃변 $an \theta = \frac{BC}{AB}$

이 세 개의 삼각비는 오직 직각삼각형에만 적용된다.

"직각삼각형의 문제풀기" = "미지의 변과 각을 구하는 것"

- ① 피타고라스 정리
- ② 삼각비

- > 여섯 개의 정보(세 변과 세 각에 대한 정보)로 삼각형 파악 가능
- > 적어도 세 개의 정보가 주어지면, 나머지 세 개 계산 가능

 BC는 수평인 땅이고, AB는 수직인 깃대라고 할 때,
 점 C에서 깃대의 꼭대기인 A를 올려다 본 각(앙각elevation)은,

수평선 CB에서 가상의 직선 AC까지 올려다 본 각 θ

PQ는 수직 절벽이고, **R**은 바다에 떠 있는 배라고 할 때, 점 **P**에서 배를 내려다 본 각

(부각depression)은 수평선으로부터 가상의

직선 PR 사이의 각, 즉 점 P에서 수평선으로부터 배까지 내려다 본 각 $\varphi(\angle PRQ$ 도 $\varphi \rightarrow$ 엇각)

테스트

(a) $y = \sin A$

A	0	30°	60°	90°	120°	150°	180°
$\sin A$	0	0.500	0.866	1.000	0.866	0.500	0

A	210°	240°	270°	300°	330°	360°
$\sin A$	-0.500	-0.866	-1.000	-0.866	-0.500	0

(b) $y = \cos A$

A	0	30°	60°	90°	120°	150°	180°
$\cos A$	1.000	0.866	0.500	0	-0.500	-0.866	-1.000

A	210°	240°	270°	300°	330°	360°
$\cos A$	-0.866	-0.500	0	0.500	0.866	1.000

(c) $y = \tan A$

\overline{A}	0	30°	60°	90°	120°	150°	180°
$\tan A$	0	0.577	1.732	∞	-1.732	-0.577	0

A	210°	240°	270°	300°	330°	360°
$\tan A$	0.577	1.732	∞	-1.732	-0.577	0

- 1 사인(sin)과 코사인(cos) 그래프는 최댓값/최솟값 ±1 사이에서 진동한다.
- ② 코사인(cos) 곡선은 사인(sin) 곡선과 모양은 동일하지 만, 위상은 90°만큼 차이가 난다.
- ③ 사인(sin)과 코사인(cos) 곡선은 연속이고, 360° 구간마다 반복된다. 그리고 탄젠트(tan) 곡선은 불연속이고, 180° 구간마다 반복된다.

- 원점 **0**에서 교차하는 사각형 축 *XX*'과 *YY*'
- 0의 오른쪽 위로 만들어진 측정값은 양수
- 0의 왼쪽 아래로 만들어진 측정값은 음수
- 0A가 시계 반대 방향으로 움직여서 만들어진 각을 양수로 측정
- 시계 방향으로 움직여서 만들어진 각을 음수로 측정

- 0A가 임의의 각 $heta_1$ 만큼 회전하여 제1사분면 위에 위치하였다고 가정
 - 직각삼각형 0AB를 만들기 위해 AB를
 수직을 이루도록 설정함
 - 삼각형의 모든 세 변이 양수이므로
 삼각비 sin, cos, tan는 제1사분면에서
 모두 양수

$$\sin\theta_2 = \frac{+}{+} = +, \quad \cos\theta_2 = \frac{-}{+} = -, \quad \tan\theta_2 = \frac{+}{-} = -$$

$$\sin\theta_3 = \frac{-}{+} = -, \quad \cos\theta_3 = \frac{-}{+} = -, \quad \tan\theta_3 = \frac{-}{-} = +$$

$$\sin\theta_4 = \frac{-}{+} = -, \quad \cos\theta_4 = \frac{+}{+} = +, \quad \tan\theta_4 = \frac{-}{+} = -$$

$$\sin 30^{\circ} = \frac{TS}{TO} = \frac{TS}{1}, \quad \stackrel{\sim}{=} \quad TS = \sin 30^{\circ}$$

$$\cos 30^\circ = \frac{OS}{TO} = \frac{OS}{1}, \stackrel{\text{Q}}{=} OS = \cos 30^\circ$$

- 수직 성분 TS는 TS으로 투영될 수 있으며, 이것은 각 x에 대한 y의 그래프에서 30°에 대응하는 값
- *TS*와 같은 모든 수직 성분이 투영되면 <u>사인파</u>sine wave 생성

- OS와 같은 모든 수평 성분이 각 x²에 대한 y의 그래프에서 투영되면 <u>코사인파</u>cosine wave 생성
- 코사인 곡선은 사인 곡선과 모양은 동일하나 위치는 90° (또는 $\frac{\pi}{2}$ 라디안)만큼 이동된 모습
- 사인파와 코사인파는 모두 360°마다 반복됨

- 사인파가 양의 값과 음의 값 모두를 완전히 지났을 때, 1사이클^{cycle}을 완료했다고 한다.
- 사인의 1사이클

- 진폭^{amplitude}: 사인파가 반 회전할 때 이루어지는 최댓값
 ⇒ 피크값^{peak value} 또는 최댓값^{maximum value}
- 예) $y=5\sin x \rightarrow$ 진폭 : 5 $v=200\sin 314t \rightarrow$ 진폭 : 200 $y=\sin x \rightarrow$ 진폭 : 1

- 파형 $y = \sin x$ 와 $y = \cos x$ 는 360°마다 반복됨 \rightarrow 주기 $^{\text{period}}$: 360°
- 파형 $y = \tan x$ 의 주기: 180°
- $y = 3\sin 2A$: 진폭 3, 주기 180°
- $y=\sin 3A$: 진폭 1, 주기 120°
- $y = 4\cos 2x$: 진폭 4, 주기 180°
- 일반적으로, $y = A \sin px$ 와 $y = A \cos px$ 이면, 진폭= A, 주기= $\frac{360^{\circ}}{p}$

- 사인파의 수평축 : 시간
- 주기시간periodic time T
 - 사인파가 1사이클을 이루는 시간

- 주파수frequency f
 - 1초 동안에 이루어진 회전수
 - 헤르츠[Hz]로 측정

$$f = \frac{1}{T}$$
 또는 $T = \frac{1}{f}$

그래프 $y = \sin(A - 60^\circ)$ 는 $y = \sin A$ 보다 60° 만큼 뒤처진다 $^{\log}$

그래프 $y = \cos(A + 45^\circ)$ 는 $y = \cos A$ 보다 45°만큼 앞선다^{lead}.

사인파가 $y = A\sin(\omega t \pm \alpha)$ 의 형식으로 표현된다고 할 때,

- A = 진폭
- ② $\omega =$ 각속도 $= 2\pi f \text{ rad/s}$
- **③** 주파수, $f = \frac{\omega}{2\pi}$ Hz
- **4** 주기시간, $T = \frac{2\pi}{\omega}$ s, (즉, $T = \frac{1}{f}$)
- 5 $\alpha =$ 앞선 각 또는 뒤진 각 $(y = A\sin \omega t$ 와 비교하여)

테스트