Zestaw 2

Legenda:

Liczba użytkowników: 2

Liczba serwerów (komputerów): 1

Możliwości:

x = 0 (0 zalogowanych użytkowników na serwerze)

x = 1 (1 zalogowany użytkownik na serwerze)

x = 2 (2 zalogowanych użytkowników na serwerze)

Prawdopodobieństwo logowania:

Niezalogowani użytkownicy:

 $P_{logowania} = 0.2$

 $P_{\text{pozostania niezalogowanym}} = 0.8$

Zalogowani użytkownicy:

 $P_{\text{wylogowania}} = 0.5$

 $P_{\text{pozostania zalogowanym}} = 0.5$

Zadanie A

- a) Wyznaczyć macierz przejść P
- **b)** Znaleźć rozkład graniczny/stan stacjonarny na podstawie P^N dla dużych N
- **c)** Sprawdzić kryterium zbieżności typu $|P^N P^{N-1}| < \epsilon$
- d) Narysować wykres typu

gdzie ∏_{ii} oznacza P_{ii}^N dla N→∞

Zadanie B

Wyznaczyć eksperymentalnie Π_i^{EXP} :

Program: Start z wybranego węzła x = 0,1,2 → Losowanie kolejnego węzła zgodnie z prawdopodobieństwem → Przejście do nowego węzła → Losowanie kolejnego węzła → ... → ...

Warunki: Przeprowadzenie $N_{\text{max}} = 10^4$ losowań

Obliczenia: $\Pi_i^{\text{EXP}} = \frac{N_i}{N}$, gdzie N_i - ile razy odwiedzony został węzeł "i" (x=0,1,2), N \rightarrow (0, N_{max})

Sporządzić wykres zbieżności jak w Zadaniu A Do wykonania:

Przeprowadzić taką samą analizę dla startu z pozostałych węzłów

Porównać otrzymane wyniki z Zadaniem A

Pytanie: Dlaczego opuściliśmy rozważanie Π po drugim indeksie?

Zadanie C

Powtórzyć Zadanie B (bez podpunktu o porównywaniu wyników oraz bez ostatniego pytania) dla sytuacji gdy mamy 100 użytkowników (możliwe węzły to teraz x = 0,1,2,......,100)

Zadanie D

Powtórzyć **Zadanie C** dla innych prawdopodobieństw logowania (zależnych od węzła x): Niezalogowani użytkownicy:

 $P_{\text{logowania}} = 0.2$

 $P_{\text{pozostania niezalogowanym}} = 0.8$

Zalogowani użytkownicy:

 $P_{\text{wylogowania}} = 1 - (0.008 x + 0.1)$

 $P_{\text{pozostania zalogowanym}} = (0.008 x + 0.1)$