Матрицы и операции над ними

Матрица

Матрица

 $A \in M_{m \times n}$

Множество матриц размера m на n

Умножение на скаляр:

$$\mu A = \mu \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} = \begin{pmatrix} \mu a_{11} & \mu a_{12} \\ \mu a_{21} & \mu a_{22} \\ \mu a_{31} & \mu a_{32} \end{pmatrix}$$

Умножение на скаляр:

$$\mu A = \mu \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} = \begin{pmatrix} \mu a_{11} & \mu a_{12} \\ \mu a_{21} & \mu a_{22} \\ \mu a_{31} & \mu a_{32} \end{pmatrix}$$

Сложение матриц:

$$A + B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \\ a_{31} + b_{31} & a_{32} + b_{32} \end{pmatrix}$$

Умножение на скаляр:

$$\mu A = \mu \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} = \begin{pmatrix} \mu a_{11} & \mu a_{12} \\ \mu a_{21} & \mu a_{22} \\ \mu a_{31} & \mu a_{32} \end{pmatrix}$$

$$A, B \in M_{m \times n}$$

$$\downarrow \downarrow$$

$$A, B \in M_{m \times n}$$

$$\downarrow \downarrow$$

$$A + B \in M_{m \times n}$$

Сложение матриц:

$$A + B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \\ a_{31} + b_{31} & a_{32} + b_{32} \end{pmatrix}$$

Умножение матриц:

$$\frac{(23-1)(-5)}{(-6)} = 2.2 + 3.(-5) + (-1).(-6) =$$

$$= 4-15+6 = -5$$

$$(\times)$$

Умножение матриц:

$$\begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix} \stackrel{?}{=} \begin{pmatrix} 5 & 5 \\ 0 & -5 \end{pmatrix}$$
 2×2
 2×2
 2×2

$$\left(\frac{1-2}{1-3}\right)\left(\frac{2-3}{1-1}\right) = \left(\frac{0.5}{50}\right) \Rightarrow AB \neq BA$$

 $A \in M_{m \times k} \\ B \in M_{k \times n} \Rightarrow AB \in M_{m \times n}$

Умножение матриц:

$$AB = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} =$$

$$= \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} \end{pmatrix}$$

Умножение матриц:

Ocobbe monpusses

Hyrebal

$$A+D=A$$
, $D=\begin{pmatrix} Q-D \\ \dot{o}-D \end{pmatrix}$ - where A

Equipment gre Minn
$$A \cdot E = E \cdot A = A$$
, $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Смена системы координат

Не сижу, а лежу.

А я не сижу, я лежу. Просто у меня другая система координат.

Система координат

$$K = (O; \overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$$

Система координат

$$K = (O; \overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$$

Смена системы координат

«старая» с.к.

$$K_1 = (O; \overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3) \longrightarrow K_2 = (O'; \overrightarrow{e}_1', \overrightarrow{e}_2', \overrightarrow{e}_3')$$

«новая» С.К

I.
$$O \longrightarrow O'$$

III.
$$\overrightarrow{e}_1$$
, \overrightarrow{e}_2 , \overrightarrow{e}_3 \longrightarrow \overrightarrow{e}_1' , \overrightarrow{e}_2' , \overrightarrow{e}_3'

Смена начала системы

Смена начала системы

$$C$$
двиг: $O \longrightarrow O'$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$
emaple.

«старый» базис

$$\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3 \rightarrow \overrightarrow{e}_1, \overrightarrow{e}_2', \overrightarrow{e}_3'$$

$$e'_1 = t_1 e_1 + t_2 e_2 + t_3 e_3 = \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix}$$

«новый» базис

«старый» базис

$$\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3 \longrightarrow \overrightarrow{e}_1', \overrightarrow{e}_2', \overrightarrow{e}_3'$$

«новый» базис

$$(\overrightarrow{e}_{1}' \ \overrightarrow{e}_{2}' \ \overrightarrow{e}_{3}') = (\overrightarrow{e}_{1} \ \overrightarrow{e}_{2} \ \overrightarrow{e}_{3}) \begin{pmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{pmatrix}$$

матрица перехода

«старый» базис
$$\overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3} \longrightarrow \overrightarrow{e}_{1}', \overrightarrow{e}_{2}', \overrightarrow{e}_{3}'$$
«новый» базис
$$\overrightarrow{V} = X \overrightarrow{e}_{1} + y \overrightarrow{e}_{2} + 2 \overrightarrow{e}_{3} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3}) \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

$$\overrightarrow{V} = X \overrightarrow{e}_{1} + y (\overrightarrow{e}_{2} + 2 \overrightarrow{e}_{3}) = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{2} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{3} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{3} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{3} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{3} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{3} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1} \end{pmatrix} = (\overrightarrow{e}_{1} \overrightarrow{e}_{3} \overrightarrow{e}_{3} \overrightarrow{e}_{3}) \begin{pmatrix} X^{1} \\ Y^{1} \\ Y^{1}$$

«старый» базис

$$\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3 \rightarrow \overrightarrow{e}_1, \overrightarrow{e}_2', \overrightarrow{e}_3'$$

«новый» базис

$$\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3 \rightarrow \overrightarrow{e}_1, \overrightarrow{e}_2', \overrightarrow{e}_3'$$

«новый» базис

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} t_{11} \\ t_{21} \\ t_{22} \\ t_{31} \end{pmatrix} \begin{pmatrix} x_{13} \\ t_{22} \\ t_{33} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$
 х=Тх координаты \overrightarrow{e}_1' , \overrightarrow{e}_2' , \overrightarrow{e}_3'

Смена системы координат

«старая» с.к.

$$K_{1} = (O; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad K_{2} = (O'; \overrightarrow{e}'_{1}, \overrightarrow{e}'_{2}, \overrightarrow{e}'_{3})$$

$$\downarrow K_{1} = (O; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad K_{2} = (O'; \overrightarrow{e}'_{1}, \overrightarrow{e}'_{2}, \overrightarrow{e}'_{3})$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3}) \qquad (HOBASI'' C.K.)$$

$$\downarrow K_{1} = (O'; \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e$$

Смена системы координат

«старая» с.к.

$$K_1 = (O; \overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3) \longrightarrow K_2 = (O'; \overrightarrow{e}_1', \overrightarrow{e}_2', \overrightarrow{e}_3')$$

Формула перехода:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$

Задача 1
Доло:
$$0^{1}(-1,3)^{T}$$
, $\overline{e}_{1}^{1}=(2,3)^{T}$, $\overline{e}_{2}^{1}=(4,1)^{T}$
Наизти: Решение: $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y^{1} \end{pmatrix} + \begin{pmatrix} -1 \\ 3 \end{pmatrix}$

Задача 1

$$\triangle$$
 ano: $O((-1,3))$, $e'_1=(2,3))$, $e'_2=(1,1)$

-1,3), $e'_{1}=(2,3)$, $e'_{2}=(1,1)$ Reputyly repetage Oxy \longrightarrow Oxy

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

Howimu: Koopgunaron b 0xy' τ , $A(2,-1)^T$ X = 2x+y'-1

$$\int x = 2x + y' - 1$$

$$y = 3x' + y' + 3$$

$$\begin{cases} 2 = 2x + y - 1 \\ -1 = 3x + y + 3 \end{cases} = \begin{cases} (y = 3x + y + 3) \\ 2x + y = 3 \end{cases} \Rightarrow \begin{cases} x = -7 \\ y = 17 \end{cases}$$

Задача (КР 2019)

4. Даны точки

$$A = (2, -1, 2), B = (5, 0, 3), C = (3, -2, 3), D = (5, 1, 1)$$

и плоскость x-3y-4z+5=0. Составьте уравнение этой плоскости в новой системе координат $A, \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}$.

A)
$$\overline{AB} = (3,1,1)^T$$
, $\overline{AC} = (1,-1,1)^T$, $\overline{AD} = (3,2,-1)^T$
Popuyra neprexaga: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 & 1 & 3 \\ 1 & -1 & 2 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x^1 \\ y^1 \\ z^1 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$

2)
$$(x = 3x + y + 3z + 2$$

 $y = x - y + 2z - 1$
 $(z = x + y - 2 + 2)$

Nogemabhaem
$$6$$

 $x-3y-42+5=0$

Решение

$$(3x+y+32+2)-3(x-y+22-1)-4(x+y-2+2)+5=0$$

-4x+2+2=0
 $(3x+y+32+2)-3(x-y+22-1)-4(x+y-2+2)+5=0$

"Bropas enocas" penners re nucerts, 2 70
on ennerson zanymannelle nonyminest

=)

Задача (КР 2020)

4. Дана точка A и векторы $\vec{v}_1, \vec{v}_2, \vec{v}_3,$

$$A = (-1, 0, 2), \ \vec{v}_1 = (3, 1, -1), \ \vec{v}_2 = (2, 2, 1), \ \vec{v}_3 = (1, 3, -1).$$

Записать уравнение плоскости 2x-y-z+5=0 в системе координат $(A, \vec{v}_1, \vec{v}_2, \vec{v}_2 \times (\vec{v}_2 \times \vec{v}_3)).$

Замена координат

Замена координат

Прямоугольная с.к.
$$K_1 = (O; \overrightarrow{e}_1, \overrightarrow{e}_2)$$
 $K_2 = (O; \overrightarrow{e}_1', \overrightarrow{e}_2')$

Поворот:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$