- 1. (30%)
 - (a) (10%) Assume that f(t) has the Fourier series $f(t)=a_0/2+\sum_{n=1}^{\infty}a_ncos(\frac{n\pi t}{L})+b_nsin(\frac{n\pi t}{L})$. Find $\frac{1}{L}\int_{\tau}^{\tau+2L}f^2(t)\ dt$ in terms of a_n and b_n .
 - (b) (10%) Find the Fourier series of the following periodic function $f(t)=t^2$ over the interval $[-\pi,\pi]$.
 - (c) (10%) Use (a) to prove that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.
- 2. (30%) Let $F(s) = L[f(t)] = \int_0^\infty e^{-st} f(t) dt$, s > 0 be the Laplace Transform of f(t).
 - (a) (8%) Show that $\frac{d}{ds}F(s) = L[-tf(t)](s)$
 - (b) (12%) Let y=f(t) and Y(s)=L[f(t)] be its Laplace Transform. Show that L(ty')= $-\frac{d}{ds}$ (sY(s)) and L(ty'')= $-\frac{d}{ds}$ [s²Y(s)-sy(0)].
 - (c) (10%) Calculate $L^{-1}[1/(s^2(s^2+1))]$.
- 3. (15%) Use the method of exact equations to solve the differential equation $0.5x \cot(y) y'=-1$.
- 4. (15%) Solve the differential equation $y''-y'-2y=4x^2$ using the method of <u>variation of parameters</u>.
- 5. (10%) Find the general solution of $y^{(4)} + 2y'' + y = 0$.