Topics In Probability And Analysis Exercise Sheet 1 - Discussed on 24.09.2020

Recall that we defined the Minkowski content of a set K as $M_{\epsilon}^{\alpha}(K) = \epsilon^{\alpha}N(K,\epsilon)$ where $N(K,\epsilon)$ is the minimal amount of $\frac{\epsilon}{2}$ -balls needed to cover K. In the following we assume that K is a bounded set in \mathbb{R}^d .

Exercise 1 (Equivalence of Minkowski contents). Show that for any $\epsilon = \frac{1}{2^n}$ for $n \in \mathbb{N}$ we have

$$M_{\epsilon}^{\alpha}(K) \asymp \inf\{\sum_{j} |Q_{j}|^{\alpha}: Q_{j} \text{ are dyadic cubes}, K \subset \bigcup_{j} Q_{j}, |Q_{j}| = \epsilon\}.$$

Exercise 2 (Equivalence of Hausdorff dimension definitions). Show that

$$\dim(K) = \inf\{\alpha : \mathcal{H}^{\alpha}(K) = 0\} = \inf\{\alpha : \mathcal{H}^{\alpha}(K) < \infty\}$$
$$= \sup\{\alpha : \mathcal{H}^{\alpha}(K) = \infty\} = \sup\{\alpha : \mathcal{H}^{\alpha}(K) > 0\}$$

Exercise 3. Show that

$$\dim(K) = 0$$

holds for any countable set K.

Exercise 4. Show that $\dim(K) \leq \underline{\dim}_{M}(K) \leq \overline{\dim}_{M}(K)$.

Exercise 5. Construct a set K such that $\dim(K) < \underline{\dim}_M(K) < \overline{\dim}_M(K)$ holds.