ICS-lab2 实验报告

孔浩宇 PB20000113

2022年12月11日

目录

1	实验目的	2
2	实验原理	2
	2.1 数列递推	2
	2.2 二进制数取余	2
	$2.2.1 R_j \% q \dots \dots$	2
	$2.2.2 R_i \% p \dots \dots$	2
	2.3 循环终止条件	2
3	实验步骤	3
	3.1 初始化	3
	3.2 循环	3
	3.3 储存结果	3
	3.4 结束	4
	3.5 代码	4
4	实验结果	5
5	实验改讲	5

1 实验目的

使用 LC-3 汇编语言求类斐波那契数列第 N 项 F(N). 其中

$$F(0) = F(1) = 1$$

$$F(N) = F(N-2)\%p + F(N-1)\%q \ (2 \le N \le 1024)$$

$$p = 2^k \ (2 \le k \le 10), \ 10 \le q \le 1024$$

2 实验原理

2.1 数列递推

在计算 F(N) 时,不妨用 R_i 保存 F(N-2), R_j 保存 F(N-1),令

$$R_m = F(N-2)\%p, \ R_n = F(N-1)\%q$$

则

$$F(N) = R_m + R_n.$$

此时令

$$R_i = R_j = F(N-1), R_j = F(N).$$

2.2 二进制数取余

2.2.1 $R_j\%q$

利用以下算法

- (1) $\Leftrightarrow R_i = R_i q$, $\rightleftarrows R_i < 0$, $\rightleftarrows (2)$, $\rightleftarrows (2)$.
- (2) 令 $R_i = R_i + q$, 此时 R_i 即为所求, 算法结束.

设 $R_j = J$ 不难看出在求 $R_n\%q$ 的过程中,时间花费为 1 + J/q.

2.2.2 $R_i\% p$

设 $R_i = I[15:0]$, 由 $p = 2^k$ 可得

$$R_i\%p = I[k-2:0], \ \mathbb{P}R_i\%p = I\&(p-1)$$

2.3 循环终止条件

利用寄存器 R_k 来判断当前 R_j 存储的数列下标. 初始状态 $R_k = N$, $R_j = F(0) = 1$, $R_i = 0$.

- (0) $R_k = R_k 1$, 若为负, 则转 (5)
- (1) 进行一次递推算法
- (2) 转(0)
- (3) 循环终止,输出 R_j 即为所求 F(N).

3 实验步骤

3.1 初始化

(0) 标号

```
P .FILL x3100 ; p
Q .FILL x3101 ; q
N .FILL x3102 ; N
S .FILL x3103 ; F(N)
```

(1) 读入 p,q,N

```
.ORIG x3000

LDI RO, P ; RO=P

LDI R1, Q ; R1=Q

LDI R2, N ; R2=N
```

(2) 初始化其他变量

```
ADD RO, RO, #-1 ; R AND RO = R % P ADD R3, R3, #1 ; R3 <= F(N) AND R4, R4, #0 ; R4 <= F(N-1) NOT R7, R1 ; R + R7 = R - Q
```

3.2 循环

```
ADD R2, R2, #-1
AGAIN
       BRn END
                          ; now the program end
       ADD R5, R4, #0
                          ; R5 = R4 F(N-2)
       ADD R6, R3, #0
                           ; R4 = R3 F(N-1)
       AND R5, R5, R0
                          ; R5 = F(N-2) \% P
       ADD R6, R6, R7
                          ; R6 = R6 - Q
ΒE
       BRzp BE
                          ; Re
       ADD R6, R6, R1
                          ; R6 = F(N-1) \% Q
       ADD R4, R3, #0
                          ; R4 = F(N-1)
       ADD R3, R5, R6
                          ; R3 = R4 + R5 F(N)
                           ; jump to AGAIN
       BRnzp AGAIN
```

3.3 储存结果

```
END STI R3, S ; store result
```

3.4 结束

HALT.

3.5 代码

```
.ORIG
          x3000
        LDI RO, P
                           ; RO=P
        LDI R1, Q
                            ; R1=Q
                            ; R2=N
        LDI R2, N
                           ; now R & RO = R mod P
        ADD RO, RO, #-1
                           ; R3 is the result F(N)
        ADD R3, R3, #1
        AND R4, R4, #0
                            ; R4 is F(N-1)
        NOT R7, R1
        ADD R7, R7, #1
                            ; now R + R7 = R - Q
        ; Initial
AGAIN
        ADD R2, R2, #-1
        BRn END
                            ; now the program end
        ADD R5, R4, #0
                           ; R5 = R4 F(N-2)
        ADD R6, R3, #0
                           ; R6 = R3 F(N-1)
        AND R5, R5, R0
                           ; R5 = F(N-2) \% P
                            ; R6 = R6 - Q
BE
        ADD R6, R6, R7
        BRzp BE
                            ; Re
        ADD R6, R6, R1
                            ; R6 = F(N-1) \% Q
        ADD R4, R3, #0
                            ; R4 = F(N-1)
        ADD R3, R5, R6
                           ; R3 = R4 + R5 F(N)
        BRnzp AGAIN
                            ; jump to AGAIN
        STI R3, S
                            ; store result
END
        HALT
        .FILL x3100
Ρ
        .FILL x3101
Q
        .FILL x3102
N
        .FILL x3103
S
.END
```

4 实验结果

汇编评测

3/3个通过测试用例

- 平均指令数: 2459.666666666665
- 通过 256:123:100, 指令数: 1293, 输出: 146
- 通过 512:456:200, 指令数: 2407, 输出: 818
- 通过 1024:789:300, 指令数: 3679, 输出: 1219

5 实验改进

将 F(N-2) 与 F(N-2)%p 的存储寄存器改为一个,即 $R_4 <= R_4\%q = F(N-2)\%q$,先利用 R_5 存储 F(N-1),即 $R_5 <= R_3$,再将 F(N-1) 与 F(N-1)%p 的存储寄存器改为一个,即 $R_3 <= R_3\%p = F(N-1)\%q$,之后令 $R_3 <= R_3 + R_4 = F(N)$,再令 $R_4 <= R_5 = F(N-1)$,一样可以完成循环,且节省一个寄存器.

利用节省下的寄存器改进 R_i %q 的循环过程, 令 $R_6 = -2q$, 改进算法为

- (1) 令 $R_i = R_i 2q$, 若 $R_i < 0$, 转 (2), 否则转 (1).
- (2) 令 $R_j = R_j + q$, 若 $R_j >= 0$, 转 (3), 否则转 (2).
- (3) 此时 R_i 即为所求,算法结束.

设 $R_j = J$,在改进后的求 R_n %q 的过程中,时间花费至多为 2 + J/2q,当 J 较大时可大幅减少花费指令数.