Tema 1 Introducción a los sistemas dinámicos Sistemas Dinámicos Discretos y Continuos

Dra. Neus Garrido Sàez

Máster en Ingeniería Matemática y Computación Escuela Superior en Ingeniería y Tecnología

Contenido

- Introducción
 - Clasificación de los sistemas dinámicos
- Sistemas dinámicos continuos (SDC)
 - El circuito RL
 - El tiro parabólico
 - La ecuación de onda
- 3 Sistemas dinámicos discretos (SDD)
 - Método de Newton para la obtención de raíces
 - Procesos migratorios

1

Introducción

Ejemplo introductorio: Modelización epidemiológica del COVID-19

Ejemplo introductorio: Modelización epidemiológica del COVID-19

Figura 6: Predicción para conocer cuando aparecerá el pico de los casos reportados activos.

Ejemplo introductorio: Modelización epidemiológica del COVID-19

Modelo SIR

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t)$$

- $S(t) \rightarrow Población susceptible$
- I(t) > Población infectada
- R(t) > Población recuperada
- $N o Población total, \qquad N = S + R + T$
- $\beta \Rightarrow$ Tasa de transmisión
- γ \rightarrow Tasa de recuperación

Objetivos

- Definir cualitativamente los sistemas dinámicos
- Describir y clasificar los sistemas dinámicos
- Discreto vs. Continuo
- Autónomo vs. Forzado
- Omportamiento vs. Solución analítica

→ ¿Qué son los sistemas dinámicos?

→ ¿Cómo se describen matemáticamente?

→ ¿Ejemplos?

- → ¿Qué son los sistemas dinámicos?
 - El tiempo juega un papel fundamental
 - Susceptibles de tener variaciones en el tiempo
- → ¿Cómo se describen matemáticamente?

→ ¿Ejemplos?

- → ¿Qué son los sistemas dinámicos?
 - El tiempo juega un papel fundamental
 - Susceptibles de tener variaciones en el tiempo
- → ¿Cómo se describen matemáticamente?
 - Variación temporal
 - Estudio del comportamiento que van a tener a largo plazo
- → ¿Ejemplos?

- → ¿Qué son los sistemas dinámicos?
 - El tiempo juega un papel fundamental
 - Susceptibles de tener variaciones en el tiempo
- → ¿Cómo se describen matemáticamente?
 - Variación temporal
 - Estudio del comportamiento que van a tener a largo plazo
- → ¿Ejemplos?
 - Trayectoria de una partícula
 - Procesos de nacimiento y muerte
 - Evolución de la población

→ ¿Qué programas podemos utilizar?

Contenidos

- Introducción
 - Clasificación de los sistemas dinámicos
- Sistemas dinámicos continuos (SDC)
- 3 Sistemas dinámicos discretos (SDD)

Clasificación de los sistemas dinámicos

- > En función del tiempo
- > En función del estímulo externo

Clasificación de los sistemas dinámicos

- En función del tiempo
- > En función del estímulo externo

Clasificación de los SD en función del tiempo

■ Continuos:

EDO:
$$\dot{x} = F(x)$$

EDP:
$$\frac{\partial x}{\partial t} = F\left(\frac{\partial x}{\partial y}, x\right)$$

■ Discretos:

ED:
$$x_{n+1} = \phi(x_n), \quad x_n = x(t_n)$$

Clasificación de los sistemas dinámicos

- En función del tiempo
- > En función del estímulo externo

Clasificación de los SD en función del estímulo externo

Autónomos: no contienen estímulo externo

$$\dot{x} = F(x), \qquad \frac{\partial x}{\partial t} = F\left(\frac{\partial x}{\partial y}, x\right), \qquad x_{n+1} = \phi(x_n)$$

■ Forzados: la variable t aparece en la ecuación, indicando ese estímulo externo

$$\dot{x} = F(x, t), \qquad x_{n+1} = \phi(x_n, t_n)$$

2

Sistemas dinámicos continuos (SDC)

Contenidos

- Introducción
- 2 Sistemas dinámicos continuos (SDC)
 - El circuito RL
 - El tiro parabólico
 - La ecuación de onda
- 3 Sistemas dinámicos discretos (SDD)

El circuito RL

Formado por un resistor y una bobina en serie

i(t) intensidad de la corriente

L \Rightarrow autoinducción de la bobina

 $R \rightarrow$ resistencia del resistor

 $V \Rightarrow \mathsf{potencial}$

El circuito RL

Formado por un resistor y una bobina en serie

i(t) \Rightarrow intensidad de la corriente

 $L \rightarrow$ autoinducción de la bobina

 $R \rightarrow$ resistencia del resistor

 $V \rightarrow$ potencial

Aplicando la segunda Ley de Kirchhoff:

$$V = Ri + L\frac{di}{dt}$$
 \Rightarrow $i' = -\frac{R}{L}i + \frac{V}{L}$

$$i' = -\frac{R}{L}i + \frac{V}{L}$$

El circuito RL

Formado por un resistor y una bobina en serie

i(t) \Rightarrow intensidad de la corriente

 $L \rightarrow$ autoinducción de la bobina

 $R \rightarrow$ resistencia del resistor

potencial

Aplicando la segunda Ley de Kirchhoff:

$$V = Ri + L\frac{di}{dt}$$
 \Rightarrow $i' = -\frac{R}{L}i + \frac{V}{L}$

$$i' = -\frac{R}{L}i + \frac{V}{L}$$

Solución:

$$i(t) = V\left(1 - e^{-\frac{R}{L}t}\right)$$

Contenidos

- Introducción
- 2 Sistemas dinámicos continuos (SDC)
 - El circuito RL
 - El tiro parabólico
 - La ecuación de onda
- 3 Sistemas dinámicos discretos (SDD)

El tiro parabólico

■ Dos dimensiones: x(t), y(t)

h → altura del lanzamiento

 v_0 \Rightarrow velocidad

lpha \Rightarrow ángulo con la horizontal

El tiro parabólico

■ Dos dimensiones: x(t), y(t)

h → altura del lanzamiento

 v_0 \Rightarrow velocidad

 α \Rightarrow ángulo con la horizontal

■ A partir de la segunda Ley de Newton $(\vec{F} = m\ddot{\vec{x}})$ y que la única fuerza que actúa es la gravedad:

$$\begin{cases} \ddot{x} &= 0 \\ \ddot{y} &= -g \end{cases} \quad \text{s.a.} \begin{cases} x(0) &= 0 \\ y(0) &= h \\ \dot{x}(0) &= v_0 \cos(\alpha) \\ \dot{y}(0) &= v_0 \sin(\alpha) \end{cases}$$

Contenidos

- Introducción
- 2 Sistemas dinámicos continuos (SDC)
 - El circuito RL
 - El tiro parabólico
 - La ecuación de onda
- 3 Sistemas dinámicos discretos (SDD)

La ecuación de onda

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

- $\mathbf{u}(x,t)$ \Rightarrow expresión de la onda
- c → velocidad de propagación
- f(x) = u(x,0)
- $g(x) = \frac{\partial}{\partial t}u(x,0)$

La ecuación de onda

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

- $\mathbf{u}(x,t) \Rightarrow$ expresión de la onda
- c → velocidad de propagación
- f(x) = u(x,0)
- $g(x) = \frac{\partial}{\partial t}u(x,0)$
- Solución (desarrollo de d'Alembert):

$$u(x,t) = \frac{f(x-ct) + f(x+ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} g(\tau) d\tau$$

3

Sistemas dinámicos discretos (SDD)

Contenidos

- Introducción
- 2 Sistemas dinámicos continuos (SDC)
- 3 Sistemas dinámicos discretos (SDD)
 - Método de Newton para la obtención de raíces
 - Procesos migratorios

- Proceso iterativo
- Obtención de la solución de f(x) = 0
- Depende del valor inicial tomado

Método de Newton

$$x_{n+1} = \phi(x_n) = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad n = 0, 1, 2, \dots$$

Ejemplo 1. Utiliza el método de Newton para calcular una aproximación a la solución de la ecuación $\sin(x)=1-x^2$

Ejemplo 1. Utiliza el método de Newton para calcular una aproximación a la solución de la ecuación $\sin(x)=1-x^2$

- $f(x) = \sin(x) + x^2 1$
- $f'(x) = \cos(x) + 2x$
- \blacksquare Método de Newton: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$

$$x_{n+1} = x_n - \frac{\sin(x_n) + x_n^2 - 1}{\cos(x_n) + 2x_n}, \quad n = 0, 1, 2, \dots$$

■ Tomamos $x_0 = \{0.5, 1, 2\}$ y $n = 0, 1, \dots, 9$

Ejemplo 1. Utiliza el método de Newton para calcular una aproximación a la solución de la ecuación $\sin(x)=1-x^2$

$$x_{n+1} = x_n - \frac{\sin(x_n) + x_n^2 - 1}{\cos(x_n) + 2x_n}, \quad n = 0, 1, 2, \dots$$

x_0	0.5	1	2
n=1	10.5429	1.0000	2.0000
n=2	5.3832	1.5765	1.5266
n=3	2.5480	1.4228	1.4164
n=4	1.7154	1.4097	1.4096
n=5	1.4488	1.4096	1.4096
n=6	1.4105	1.4096	1.4096
n=7	1.4096	1.4096	1.4096
n=8	1.4096	1.4096	1.4096

Contenidos

- Introducción
- 2 Sistemas dinámicos continuos (SDC)
- 3 Sistemas dinámicos discretos (SDD)
 - Método de Newton para la obtención de raíces
 - Procesos migratorios

- Elementos que migran de un lugar a otro
- l → población en Logroño (miles)
- v → población en Valencia (miles)
- Valencia → Logroño: 5 %
- Logroño → Valencia: 10 %

- Elementos que migran de un lugar a otro
- l → población en Logroño (miles)
- v → población en Valencia (miles)
- Valencia → Logroño: 5 %
- Logroño → Valencia: 10 %

$$\begin{array}{ccc} l_{n+1} & = & 0.9l_n + 0.05v_n \\ v_{n+1} & = & 0.1l_n + 0.95v_n \end{array} \right\} \quad \bigstar \quad \begin{bmatrix} l_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.05 \\ 0.1 & 0.95 \end{bmatrix} \begin{bmatrix} l_n \\ v_n \end{bmatrix}$$

$$\qquad \bigstar \quad \vec{p}_{n+1} = A\vec{p}_n$$

$$\begin{bmatrix} l_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.05 \\ 0.1 & 0.95 \end{bmatrix} \begin{bmatrix} l_n \\ v_n \end{bmatrix} \quad \Rightarrow \quad \vec{p}_{n+1} = A\vec{p}_n$$

$$\begin{bmatrix} l_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.05 \\ 0.1 & 0.95 \end{bmatrix} \begin{bmatrix} l_n \\ v_n \end{bmatrix} \quad \Rightarrow \quad \vec{p}_{n+1} = A\vec{p}_n$$

Población cuando hayan transcurrido N años:

$$\vec{p}_{n+N} = A\vec{p}_{n+N-1} = \dots = A^N \vec{p}_n$$

$$\begin{bmatrix} l_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.05 \\ 0.1 & 0.95 \end{bmatrix} \begin{bmatrix} l_n \\ v_n \end{bmatrix} \quad \Rightarrow \quad \vec{p}_{n+1} = A\vec{p}_n$$

lacktriangle Población cuando hayan transcurrido N años:

$$\vec{p}_{n+N} = A\vec{p}_{n+N-1} = \dots = A^N \vec{p}_n$$

■ Para N>> tendremos $\vec{p}_{\infty}=A\vec{p}_{\infty}$:

$$\begin{bmatrix} l_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.05 \\ 0.1 & 0.95 \end{bmatrix} \begin{bmatrix} l_n \\ v_n \end{bmatrix} \quad \bigstar \quad \vec{p}_{n+1} = A\vec{p}_n$$

lacktriangle Población cuando hayan transcurrido N años:

$$\vec{p}_{n+N} = A\vec{p}_{n+N-1} = \dots = A^N \vec{p}_n$$

■ Para N >> tendremos $\vec{p}_{\infty} = A\vec{p}_{\infty}$:

$$\begin{bmatrix} l \\ v \end{bmatrix} = \begin{bmatrix} 0.9 & 0.05 \\ 0.1 & 0.95 \end{bmatrix} \begin{bmatrix} l \\ v \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} 0.1 & -0.05 \\ -0.1 & 0.05 \end{bmatrix} \begin{bmatrix} l \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{aligned} l = l \\ v = 2l \end{aligned} \right\}$$

$$\begin{bmatrix} l_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.05 \\ 0.1 & 0.95 \end{bmatrix} \begin{bmatrix} l_n \\ v_n \end{bmatrix} \quad \Rightarrow \quad \vec{p}_{n+1} = A\vec{p}_n$$

lacktriangle Población cuando hayan transcurrido N años:

$$\vec{p}_{n+N} = A\vec{p}_{n+N-1} = \dots = A^N \vec{p}_n$$

■ Para N >> tendremos $\vec{p}_{\infty} = A\vec{p}_{\infty}$:

$$\begin{bmatrix} l \\ v \end{bmatrix} = \begin{bmatrix} 0.9 & 0.05 \\ 0.1 & 0.95 \end{bmatrix} \begin{bmatrix} l \\ v \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} 0.1 & -0.05 \\ -0.1 & 0.05 \end{bmatrix} \begin{bmatrix} l \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{aligned} l = l \\ v = 2l \end{aligned}$$

→ La población se estabiliza cuando la población de Valencia es el doble que la de Logroño

$$\begin{bmatrix} l_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.05 \\ 0.1 & 0.95 \end{bmatrix} \begin{bmatrix} l_n \\ v_n \end{bmatrix} \quad \Rightarrow \quad \vec{p}_{n+1} = A\vec{p}_n$$

Población cuando hayan transcurrido N años:

$$\vec{p}_{n+N} = A\vec{p}_{n+N-1} = \dots = A^N \vec{p}_n$$

Para N >> tendremos $\vec{p}_{\infty} = A\vec{p}_{\infty}$:

$$\begin{bmatrix} l \\ v \end{bmatrix} = \begin{bmatrix} 0.9 & 0.05 \\ 0.1 & 0.95 \end{bmatrix} \begin{bmatrix} l \\ v \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} 0.1 & -0.05 \\ -0.1 & 0.05 \end{bmatrix} \begin{bmatrix} l \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{aligned} l = l \\ v = 2l \end{aligned} \right\}$$

- → La población se estabiliza cuando la población de Valencia es el doble que la de Logroño
- Población en 2015: $\begin{bmatrix} l \\ v \end{bmatrix} = \begin{bmatrix} 151 \\ 785 \end{bmatrix}$
- Solución en que la población se estabiliza:

$$\begin{array}{ccc} v - 2l & = & 0 \\ v + l & = & 936 \end{array} \right\} \rightarrow \begin{bmatrix} l \\ v \end{bmatrix} = \begin{bmatrix} 312 \\ 624 \end{bmatrix}$$

$$\begin{bmatrix} l_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} 151 \\ 785 \end{bmatrix}$$

$$\begin{bmatrix} l_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} 151 \\ 785 \end{bmatrix}$$

$$\begin{bmatrix} l_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0.9 & 0.05 \\ 0.1 & 0.95 \end{bmatrix} \begin{bmatrix} 151 \\ 785 \end{bmatrix} = \begin{bmatrix} 171.15 \\ 760.85 \end{bmatrix}$$

$$\begin{bmatrix} l_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} 195.68 \\ 740.32 \end{bmatrix}$$

$$\begin{bmatrix} l_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} 195.68 \\ 740.32 \end{bmatrix}$$

$$\begin{bmatrix} l_n \\ v_n \end{bmatrix} = \begin{bmatrix} 312 \\ 624 \end{bmatrix}$$

Para finalizar...

- Lección magistral de SciLab → Campus Virtual
- Artículo EL PAÍS: "Así evoluciona la curva del coronavirus en España y en cada autonomía"

```
https://elpais.com/sociedad/2020/03/17/actualidad/1584436648\_230452.html \\ \#click=https://t.co/7Xbyaydqt6
```

- https://covid-19-risk.github.io/map/spain/es/
- http://covid19.webs.upv.es/
- https://ourworldindata.org/coronavirus

...Y por supuesto:

TEST DE APRENDIZAJE!!

