Entity-Relationship Model Slides adapted from http://infolab.stanford.edu/~ullman/fcdb.html

Purpose of E/R Model

- The E/R model allows us to sketch database schema designs.
 - Includes some constraints, but not operations.
- Designs are pictures called entityrelationship diagrams.
- Later: convert E/R designs to relational DB designs.

Framework for E/R

- Design is a serious business.
- The "boss" knows they want a database, but they don't know what they want in it.
- Sketching the key components is an efficient way to develop a working database.

3

Entity Sets

- Entity = "thing" or object.
- Entity set = collection of similar entities.
 - Similar to a class in object-oriented languages.
- Attribute = property of (the entities of) an entity set.
 - Attributes are simple values, e.g. integers or character strings, not structs, sets, etc.

E/R Diagrams

- In an entity-relationship diagram:
 - Entity set = rectangle.
 - Attribute = oval, with a line to the rectangle representing its entity set.

5

Beers(name, manf)
Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

Relationships

- A relationship connects two or more entity sets.
- It is represented by a diamond, with lines to each of the entity sets involved.

/

Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

Relationship Set

- The current "value" of an entity set is the set of entities that belong to it.
 - Example: the set of all bars in our database.
- The "value" of a relationship is a relationship set, a set of tuples with one component for each related entity set.

9

Example: Relationship Set

• For the relationship Sells, we might have a relationship set like:

Bar	Beer	
Joe's Bar	Bud	
Joe's Bar	Miller	
Sue's Bar	Bud	
Sue's Bar	Pete's Ale	
Sue's Bar	Bud Lite	

Multiway Relationships

- Sometimes, we need a relationship that connects more than two entity sets.
- Suppose that drinkers will only drink certain beers at certain bars.
 - Our three binary relationships Likes, Sells, and Frequents do not allow us to make this distinction.
 - But a 3-way relationship would.

1

Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

A Sample 3-Way Relationship Set

Bar	Drinker	Beer
Joe's Bar	Ann	Miller
Sue's Bar	Ann	Bud
Sue's Bar	Ann	Pete's Ale
Joe's Bar	Bob	Bud
Joe's Bar	Bob	Miller
Joe's Bar	Cal	Miller
Sue's Bar	Cal	Bud Lite

13

Many-Many Relationships

- Cardinality of binary relationships: many-many, many-one, one-one
- In a many-many relationship, an entity of either set can be connected to many entities of the other set.
 - E.g., a bar sells many beers; a beer is sold by many bars.

Many-One Relationships

- Some binary relationships are *many-one* from one entity set to another.
- Each entity of the first set is connected to at most one entity of the second set.
- But an entity of the second set can be connected to zero, one, or many entities of the first set.

Example: Many-One Relationship • Favorite, from Drinkers to Beers is many-one. • A drinker has at most one favorite beer. • But a beer can be the favorite of any number of drinkers, including zero.

One-One Relationships

- In a one-one relationship, each entity of either entity set is related to at most one entity of the other set.
- Example: Relationship Best-seller between entity sets Manfs (manufacturer) and Beers.
 - A beer cannot be made by more than one manufacturer, and no manufacturer can have more than one best-seller (assume no ties).

Representing "Multiplicity"

- Show a many-one relationship by an arrow entering the "one" side.
 - Remember: Like a functional dependency.
- Show a one-one relationship by arrows entering both entity sets.

2

Example: Many-One Relationship Drinkers Likes Beers Notice: two relationships connect the same entity sets, but are different.

Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

Example: One-One Relationship

- Consider Best-seller between Manfs and Beers.
- Some beers are not the best-seller of any manufacturer, so a rounded arrow to Manfs would be inappropriate.
- But a beer manufacturer has to have a bestseller.

23

Participation

- The participation of an entity set E in a relationship set R is said to be total if every entity in E participates in at least one relationship in R.
 - Indicated by double lines
- If only some entities in E participate in relationships in R, the participation is said to be partial.

Attributes on Relationships

- Sometimes it is useful to attach an attribute to a relationship.
- Think of this attribute as a property of tuples in the relationship set.

Subclasses

- Subclass = special case = fewer entities = more properties.
- Example: Ales are a kind of beer.
 - Not every beer is an ale, but some are.
 - Let us suppose that in addition to all the *properties* (attributes and relationships) of beers, ales also have the attribute color.

33

Subclasses in E/R Diagrams

- Assume subclasses form a tree.
 - i.e., no multiple inheritance.
- Isa triangles indicate the subclass relationship.
 - Point to the superclass.

E/R Vs. Object-Oriented Subclasses In OOP, objects are in one class only.

- Subclasses inherit from superclasses.

- In contrast, E/R entities have representatives in all subclasses to which they belong.
 - Rule: if entity e is represented in a subclass, then e is represented in the superclass (and recursively up the tree).

Keys

- A key is a set of attributes for one entity set such that no two entities in this set agree on all the attributes of the key.
 - It is allowed for two entities to agree on some, but not all, of the key attributes.
- We must designate a key for every entity set.

Keys in E/R Diagrams

- Underline the key attribute(s).
- In an ISA hierarchy, only the root entity set has a key, and it must serve as the key for all entities in the hierarchy.

39

Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

Weak Entity Sets

- Occasionally, entities of an entity set need "help" to identify them uniquely.
- Entity set E is said to be weak if in order to identify entities of E uniquely, we need to follow one or more many-one relationships from E and include the key of the related entities from the connected entity sets.

Example: Weak Entity Set

- name is almost a key for football players, but there might be two with the same name.
- number is certainly not a key, since players on two teams could have the same number.
- But number, together with the team name related to the player by Plays-on should be unique.

Weak Entity-Set Rules

- A weak entity set has one or more many-one relationships to other (supporting) entity sets.
 - Not every many-one relationship from a weak entity set need be supporting.
 - But supporting relationships must have a rounded arrow (entity at the "one" end is guaranteed).

45

Weak Entity-Set Rules - (2)

- The key for a weak entity set is its own underlined attributes and the keys for the supporting entity sets.
 - E.g., (player) number and (team) name is a key for Players in the previous example.

Design Techniques

- 1. Avoid redundancy.
- 2. Limit the use of weak entity sets.
- 3. Don't use an entity set when an attribute will do.

47

Avoiding Redundancy

- Redundancy = saying the same thing in two (or more) different ways.
- Wastes space and (more importantly) encourages inconsistency.
 - Two representations of the same fact become inconsistent if we change one and forget to change the other.
 - Recall anomalies due to FD's.

Entity Sets Versus Attributes

- An entity set should satisfy at least one of the following conditions:
 - It is more than the name of something; it has at least one nonkey attribute.

or

- It is the "many" in a many-one or many-many relationship.

Don't Overuse Weak Entity Sets

- Beginning database designers often doubt that anything could be a key by itself.
 - They make all entity sets weak, supported by all other entity sets to which they are linked.
- In reality, we usually create unique ID's for entity sets.
 - Examples include social-security numbers, automobile VIN's etc.

When Do We Need Weak Entity Sets?

- The usual reason is that there is no global authority capable of creating unique ID's.
- Example: it is unlikely that there could be an agreement to assign unique player numbers across all football teams in the world.

57

From E/R Diagrams to Relations

- Entity set -> relation.
 - Attributes -> attributes.
- Relationships -> relations whose attributes are only:
 - The keys of the connected entity sets.
 - Attributes of the relationship itself.

Combining Relations

- OK to combine into one relation:
 - 1. The relation for an entity-set E
 - 2. The relations for many-one relationships of which *E* is the "many."
- Example: Drinkers(name, addr) and Favorite(drinker, beer) combine to make Drinker1(name, addr, favBeer).

61

62

Risk with Many-Many Relationships

 Combining Drinkers with Likes would be a mistake. It leads to redundancy, as:

Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

Handling Weak Entity Sets

- Relation for a weak entity set must include attributes for its complete key (including those belonging to other entity sets), as well as its own, non-key attributes.
- A supporting relationship is redundant and yields no relation (unless *it* has attributes).

Subclasses: Three Approaches

- 1. Object-oriented: One relation per subset of subclasses, with all relevant attributes.
- 2. Use nulls: One relation; entities have NULL in attributes that don't belong to them.
- 3. E/R style: One relation for each subclass:
 - Key attribute(s).
 - Attributes of that subclass.

65

Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

