TU: K-Nearest Neighbors

Industrial AI & Automation by Y.K.Kim

Author: Jin Kwak/21900031

Mod: 2024.09.19

Introduction

Classification with kNN

Example: Classification Using Nearest Neighbors

Distance Metrics

Use pdist2 to find the distance between a set of data and query points.

- · Euclidean distance
- Standardized Euclidean distance
- Mahalanobis distance
- · Cosine distance

k-Nearest Neighbor Search and Radius Search

- Exhaustive Search(default)
- Kd-Tree (feature <10)

Randomly generate normally distributed data into two matrices. The number of rows can vary, but the number of columns must be equal. This example uses 2-D data for plotting.

rng(1) % For reproducibility

```
% Input Data
X = randn(50,2);

% Query
Y = randn(4,2);

h = zeros(3,1);
figure
h(1) = plot(X(:,1),X(:,2),'bx');
hold on
h(2) = plot(Y(:,1),Y(:,2),'rs','MarkerSize',10);
title('Heterogeneous Data')
```

Mahalanobis distance

Find the indices of the three nearest observations in X to each observation in Y.

```
k = 3;
[Idx,D] = knnsearch(X,Y,'Distance','mahalanobis','k',k);
```

idx and D are 4-by-3 matrices.

- idx(j,1) is the row index of the closest observation in X to observation j of Y, and D(j,1) is their distance.
- idx(j,2) is the row index of the next closest observation in X to observation j of Y, and D(j,2) is their distance.
- And so on.

Identify the nearest observations in the plot.

```
for j = 1:k
    h(3) = plot(X(Idx(:,j),1),X(Idx(:,j),2),'ko','MarkerSize',10);
end
legend(h,{'\texttt{X}','\texttt{Y}','Nearest Neighbor'},'Interpreter','latex')
title('Heterogeneous Data and Nearest Neighbors')
hold off
```


Exercise

Exercise: K-NN Classification with CWRU

Dataset: CWRU dataset features

- Given dataset contains many features extracted from CWRU dataset
- We will select 2~3 features for exercise
- Normal, Outer and Inner Race Fault

```
%% Test
load("../../Dataset/CWRU_selected_dataset/Feature_data/sample_test.mat");

Xtest(:, 1) = table2array(glob_all_test(:, feature1));
Xtest(:, 2) = table2array(glob_all_test(:, feature2));
Ytest = class_cwru_test;
Ntest=size(Xtest,1);
tblTest=table(Xtest(:, 1),Xtest(:, 2),Ytest);
```

Plot Test Data

```
figure
gscatter(X(:,1),X(:,2),Y)
title('Train Data Clusters')
xlabel('Feature 1')
ylabel('Feature 2')
```


KNN Train

Construct the classifier using fitcknn.

```
rng(10); % For reproducibility
```


Training loss (all train set)

Examine the resubstitution loss, which, by default, is the fraction of misclassifications from the predictions of Md1. (For nondefault cost, weights, or priors, see loss.).

```
loss_train = loss(Mdl, X, Y)
loss_train = 0
```

The classifier predicts incorrectly for 4% of the training data.

Cross-validation (k-fold)

Construct a cross-validated classifier from the model.

Examine the cross-validation loss, which is the average loss of each cross-validation model when predicting on data that is not used for training.

```
cv_val = crossval(Mdl,'CVPartition',cv);
error = kfoldLoss(cv_val);
```

The cross-validated classification accuracy resembles the resubstitution accuracy.

Therefore, you can expect Md1 to misclassify approximately 4% of new data, assuming that the new data has about the same distribution as the training data.

Predict test data

Predict the classification of test data

```
predictClass = predict(Mdl, Xtest)

predictClass = 108×1 cell
'normal'
```

Calculate the loss of Test

```
%%% YOUR CODE GOES HERE
loss_test=loss(Mdl, Xtest, Ytest)
loss_test = 0
```

Plot Confusion matrix of Test data

```
%%% YOUR CODE GOES HERE
conf_mat = confusionchart(Ytest, predictClass);
```


Plot Test Results and Misclassified Test data

Optimization of Fitted KNN

```
Mdl = fitcknn(X,Y,'OptimizeHyperparameters','auto',...
'HyperparameterOptimizationOptions',...
struct('AcquisitionFunctionName','expected-improvement-plus'))
```

Iter	Eval	Objective	Objective	BestSoFar	BestSoFar	NumNeighbors	Distance			
	result		runtime	(observed)	(estim.)					
======	=======	=========		=========	=========	=========				
1	Best	0.013889	0.14524	0.013889	0.013889	3	minkowski			
2	Accept	0.018519	0.064981	0.013889	0.014332	18	cityblock			
3	Accept	0.078704	0.039656	0.013889	0.0153	141	euclidean			
4	Accept	0.31713	0.08292	0.013889	0.021225	2	cosine			
5	Accept	0.018519	0.035891	0.013889	0.014504	2	minkowski			
6	Accept	0.05787	0.080052	0.013889	0.014402	215	seuclidean			
7	Accept	0.11574	0.033154	0.013889	0.013982	215	minkowski			
8	Accept	0.016204	0.036409	0.013889	0.014017	1	cityblock			
9	Accept	0.016204	0.029888	0.013889	0.014523	1	seuclidean			
10	Accept	0.016204	0.029157	0.013889	0.01456	3	chebychev			
11	Accept	0.16898	0.042738	0.013889	0.013956	215	chebychev			
12	Accept	0.016204	0.030166	0.013889	0.013967	1	chebychev			
13	Best	0.011574	0.030669	0.011574	0.011584	7	seuclidean			
14	Accept	0.66667	0.04511	0.011574	0.01237	2	spearman			
15	Accept	0.016204	0.068493	0.011574	0.012467	1	mahalanobis			
16	Accept	0.17824	0.03283	0.011574	0.012051	216	mahalanobis			
17	Accept	0.66667	0.031116	0.011574	0.012301	1	jaccard			
18	Accept	0.66667	0.034893	0.011574	0.012381	1	correlation			

	19 20	Accept Accept	0.66667 0.016204	0.033241 0.024817	0.011574 0.011574	0.012373 0.01181	216 1	hamming euclidean	
	Iter	Eval result	Objective	Objective runtime	BestSoFar (observed)	BestSoFar (estim.)	NumNeighbors	Distance	
i	21	 Accept	 0.016204	 0.029917	 0.011574	 0.011942		minkowski	
i	22	Accept	0.085648	0.035829	0.011574	0.011866	215	cityblock	
İ	23	Accept	0.013889	0.030008	0.011574	0.01203	4	cityblock	
İ	24	Accept	0.018519	0.029724	0.011574	0.011975	4	euclidean	
ĺ	25	Accept	0.011574	0.042631	0.011574	0.011147	4	seuclidean	
	26	Accept	0.011574	0.031941	0.011574	0.011317	4	seuclidean	
	27	Accept	0.011574	0.027652	0.011574	0.011394	4	seuclidean	
	28	Accept	0.011574	0.03311	0.011574	0.011434	4	seuclidean	
	29	Accept	0.66667	0.027086	0.011574	0.011423	1	hamming	
	30	Accept	0.6088	0.038803	0.011574	0.011418	216	correlation	

최적화가 완료되었습니다.

MaxObjectiveEvaluations 30회에 도달했습니다. 총 함수 실행 횟수: 30

총 경과 시간: 14.838초

총 목적 함수 실행 시간: 1.2781

최선의 관측된 실현가능점:

NumNeighbors Distance

> 7 seuclidean

관측된 목적 함수 값 = 0.011574 추정된 목적 함수 값 = 0.012228 함수 실행 시간 = 0.030669

```
최선의 추정된 실현가능점(모델에 따라 다름):
   NumNeighbors Distance
             seuclidean
추정된 목적 함수 값 = 0.011418
추정된 함수 실행 시간 = 0.03375
Mdl =
 ClassificationKNN
                      ResponseName: 'Y'
              CategoricalPredictors: []
                       ClassNames: {'inner' 'normal' 'outer'}
                    ScoreTransform: 'none'
                   NumObservations: 432
   HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                          Distance: 'seuclidean'
                      NumNeighbors: 4
 Properties, Methods
```

Compare performance of KNN with other classification methods

KNN: good for low-dimension data (curse of dimensionality)

Training: Lazy Learning Algorithm

Easy to understand but slow for prediction

Depends on number of neighbors or distance