

N- Body Problem

Microprocessor Systems

Presented by:

Mohit Bansal
Samir Senapati Polobody

Motivation

- Understanding of
 - Arm Cortex M4 Tiva C Launchpad
 - PC Serial Communication using any programming language.
- Real time computation and communication between a microprocessor and host
- Applications
 - Astrophysical applications which use adaptive time steps
 - N-body algorithm have numerous application in molecular dynamics and plasma physics

Problem Description

- Simulate N body Problem
- -Use the Launchpad to simulate the motion of a given set of planetary objects as governed by the effects of the forces of gravity on each other.
- ARM Cortex-M4 (Tiva C Launchpad) to be used to
 - –Two separate modes are to be made
 - Computation mode
 - Visualization mode

Technical Approach

Composition & Tasks

- GUI
 - Java Swing 8
- Microcontroller
 - ARM Cortex M-4
- Communication
 - UART

Technical Approach

Design – JAVA

- Developed required skills required for GUI development in JAVA
- Develop method of integration of JAVA and Microcontroller.
- Develop Communication protocol between Microcontroller and JAVA
- Real time simulation of the ball according to the values sent by microcontroller

Design - Microcontroller

Receive parameter from JAVA through input text file.

 Develop algorithm for the computation of N-Body Problem

 Real time computation of the position of the N-body based on the gravitational forces due to n bodies.

 Send the final computed coordinate values of the n bodies

Computation

Newton's law for Universal Gravitation

Formula for computation of position of N-Body

$$\ddot{\mathbf{y}}_i = G \sum_{j=1, j \neq i}^{N} \frac{m_j(\mathbf{y}_j - \mathbf{y}_i)}{|\mathbf{y}_j - \mathbf{y}_i|^3},$$

Results

Challenges We Faced

- Communication
 - UART
 - Real Time Updating
- Collision algorithm
- Decoding of host and target commands
- Accuracy
- Making the design scalable for dynamic number of balls
- Optimization: Max number of balls

