# Задача распознавания образов

 $A = \{a_1, ..., a_n\}$  — множество объектов;

 $X = (X_1, ..., X_m)$  — набор признаков,  $x_{i,j} = X_j(a_i)$ ; таблица данных

$$\mathbf{X} = (x_{i,j})$$
.



| A  | A            | В           | C            | D           | E       |  |
|----|--------------|-------------|--------------|-------------|---------|--|
| 1  | sepal_length | sepal_width | petal_length | petal_width | species |  |
| 2  | 5.1          | 3.5         | 1.4          | 0.2         | setosa  |  |
| 3  | 4.9          | 3           | 1.4          | 0.2         | setosa  |  |
| 4  | 4.7          | 3.2         | 1.3          | 0.2         | setosa  |  |
| 5  | 4.6          | 3.1         | 1.5          | 0.2         | setosa  |  |
| 6  | 5            | 3.6         | 1.4          | 0.2         | setosa  |  |
| 7  | 5.4          | 3.9         | 1.7          | 0.4         | setosa  |  |
| 8  | 4.6          | 3.4         | 1.4          | 0.3         | setosa  |  |
| 9  | 5            | 3.4         | 1.5          | 0.2         | setosa  |  |
| 10 | 4.4          | 2.9         | 1.4          | 0.2         | setosa  |  |
| 11 | 4.9          | 3.1         | 1.5          | 0.1         | setosa  |  |
| 12 | 5.4          | 3.7         | 1.5          | 0.2         | setosa  |  |
| 13 | 4.8          | 3.4         | 1.6          | 0.2         | setosa  |  |
| 14 | 4.8          | 3           | 1.4          | 0.1         | setosa  |  |
| 15 | 4.3          | 3           | 1.1          | 0.1         | setosa  |  |
| 16 | 5.8          | 4           | 1.2          | 0.2         | setosa  |  |
| 17 | 5.7          | 4.4         | 1.5          | 0.4         | setosa  |  |
| 18 | 5.4          | 3.9         | 1.3          | 0.4         | setosa  |  |
| 19 | 5.1          | 3.5         | 1.4          | 0.3         | setosa  |  |
| 20 | 5.7          | 3.8         | 1.7          | 0.3         | setosa  |  |
| 21 | 5.1          | 3.8         | 1.5          | 0.3         | setosa  |  |

Y – зависимая **качественная** переменная,  $D_Y = \{\omega_1, .....\omega_K\}$ ,  $\omega_l$  -  $\underline{l}$ -й «класс», «образ» (или  $D_Y = \{1,...,\omega,...,K\}$ )

**Требуется** построить по наблюдениям оптимальное по некоторому критерию качества решающее правило классификации:

для любого нового  $x = (x_1, ..., x_m) \in \mathbb{R}^m$ :  $x \xrightarrow{f} \omega$ .

L(y',y) - функция потерь, возникающих в случае принятия решения f(x) = y', когда истинное значение есть y.

$$L(y',y) \ge 0.$$

функция потерь может быть несимметричной:

$$L(y', y) \neq L(y, y')$$
.

$$L(y',y) = \begin{cases} 0, & y' = y \\ 1, & y' \neq y \end{cases}$$
 - индикаторная функция потерь.



Критерий качества решающей функции – например, риск неправильного распознавания  $R_f = E_{X,Y} L(f(X),Y)$ .

Если функция потерь — индикаторная, то  $R_f = 1 \cdot P[f(X) \neq Y] + 0 \cdot P[f(X) = Y] = P[error] \text{ - вероятность}$  ошибки классификации.

# Пример: задача распознавания спама



Признаки: слова из заданного набора;

значения:  $X_j = 1$  - слово встречается в письме;  $X_j = 0$  иначе.

Образ  $\omega = 1$  - письмо – спам,  $\omega = 2$  – не спам.

# Байесовское распознавание образов

# Вероятностная модель

Предположим, известны:

 $P(\omega)$  - априорная вероятность образа  $\omega$ ;

 $P(x \mid \omega)$  - закон условного распределения переменных для образа  $\omega$ ,

Тогда по формуле Байеса:

$$P(\omega \mid x) = \frac{P(\omega)P(x \mid \omega)}{P(x)},$$

где

 $P(\omega|x)$  - апостериорная вероятность класса  $\omega$  для точки x,

$$P(x) = \sum_{\omega=1}^{K} P(\omega)P(x \mid \omega)$$
 (по формуле полной вероятности).

Пример. Решающая функция: f(x)=1при  $x \in D_1$  и f(x) = 2 при  $x \in D_2$  $\omega = 1$  $\omega = 2$  $D_{\scriptscriptstyle 1}$ 

$$P[error] = P(1) \int_{D_2} p(x|1) dx + P(2) \int_{D_1} p(x|2) dx$$

# Байесовская решающая функция

$$f_B: x \to \omega^*: P(\omega^* \mid x) = \arg\max_{\omega} P(\omega \mid x)$$

- максимизирует апостериорную вероятность образа в точке x.

Формула Байеса 
$$\Rightarrow P(\omega^* \mid x) = \arg \max_{\omega} P(\omega) P(x \mid \omega)$$

(так как P(x) не зависит от  $\omega$ ).

Так как  $P(\omega) p(x | \omega) = P(\omega | x) \cdot P(x)$ , то для б.р.ф. выполняется:

$$P(1) p(x|1) < P(2) p(x|2)$$
 при  $x \in D_2$   $P(1) p(x|1) > P(2) p(x|2)$  при  $x \in D_1$ .

Вероятность ошибки распознавания:

$$P[error] = \int_{D_2} P(1) p(x|1) dx + \int_{D_1} P(2) p(x|2) dx$$

**Теорема.** Байесовская решающая функция минимизирует вероятность ошибочного распознавания.

# Случай двух классов и одной переменной

Модель нормального распределения для каждого класса:  $\omega_1$ : плотность  $p_1(x) \sim N(\mu_1, \sigma_1)$ ,  $\omega_2$ : плотность  $p_2(x) \sim N(\mu_2, \sigma_2)$ ; заданы априорные вероятности P(1), P(2) (P(1)+P(2)=1).



На границе принятия решения для б.р.ф. должно выполняться:

$$P(1)p(x|1) = P(2)p(x|2)$$
 или 
$$\ln \frac{p(x|1)}{p(x|2)} + \ln \frac{P(1)}{P(2)} = 0.$$

$$\ln \left( \frac{e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}}{\sqrt{2\pi}\sigma_1} \middle/ \frac{e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}}{\sqrt{2\pi}\sigma_2} \right) + \ln \frac{P(1)}{P(2)} = 0;$$

$$\ln \frac{\sigma_2}{\sigma_1} + \left( -\frac{(x-\mu_1)^2}{2\sigma_1^2} + \frac{(x-\mu_2)^2}{2\sigma_2^2} \right) + \ln \frac{P(1)}{P(2)} = 0;$$

$$\frac{(x-\mu_2)^2}{\sigma_2^2} - \frac{(x-\mu_1)^2}{\sigma_1^2} = 2\ln \left( \frac{P(2)}{P(1)} \frac{\sigma_1}{\sigma_2} \right)$$

- квадратное уравнение; получим варианты решения:

а) единственный корень  $x^*$ :



б) два корня  $x_1^*, x_2^*$ :



в) нет корней:



# Вместо параметров подставим их оценки:

$$\hat{P}(1) = \frac{n_1}{n}, \ \hat{P}(2) = \frac{n_2}{n},$$

$$\hat{\mu}_1 = \frac{1}{n_1} \sum_{i:Y(i)=1} x_i, \qquad \hat{\mu}_2 = \frac{1}{n_2} \sum_{i:Y(i)=2} x_i,$$

$$\hat{\sigma}_1^2 = \frac{1}{n_1} \sum_{i:Y(i)=1} (x_i - \hat{\mu}_1)^2, \qquad \hat{\sigma}_2^2 = \frac{1}{n_2} \sum_{i:Y(i)=2} (x_i - \hat{\mu}_2)^2,$$

где  $n_1, n_2$  - число объектов 1 и 2-го образа в выборке.

Получим уравнение оптимальной выборочной разделяющей функции.

#### «Наивный» байесовский классификатор

#### Рассмотрим случай произвольных качественных переменных

$$X_1, X_2$$
. Пусть  $X_1 \in \{u_1, ..., u_L\}, X_2 \in \{v_1, ..., v_Q\}$ .

Предположим, все переменные независимы.

Тогда  $\forall x = (u_l, v_q)$ :

$$P(x \mid \omega) = P(u_l \mid \omega) \cdot P(v_q \mid \omega), \ \omega = 1, 2.$$

#### Байесовская решающая функция:

$$x \to \omega^*$$
:  $P(\omega^* \mid x) = \arg \max_{\omega} P(\omega) P(u_l \mid \omega) \cdot P(v_q \mid \omega)$ .

Выборочные оценки:

$$\hat{P}(u_l \mid \omega) = \frac{n_{\omega}(u_l)}{n_{\omega}}, \quad \hat{P}(v_q \mid \omega) = \frac{n_{\omega}(v_q)}{n_{\omega}}, \quad \hat{P}(\omega) = \frac{n_{\omega}}{n},$$

где  $n_\omega(u_l),\,n_\omega(v_q)$  - число объектов образа  $\omega$ , у которых переменная  $X_1$  приняла значение  $u_l$ , а  $X_2$  приняла значение  $v_q$ .

Аналогично для переменных  $X_1,...,X_m,\ m>2,$   $x=(u_{l,1},...,u_{l,m})$ :

$$P(x \mid \omega) = P(u_{l,1} \mid \omega) \cdot \dots \cdot P(u_{l,m} \mid \omega).$$

Таким образом, многомерная условная вероятность определяется путем нахождения одномерных условных вероятностей.

<u>Пример.</u> 10 булевых переменных; n = 100.  $|X| = 2^{10} = 1024$ , поэтому для большинства точек x выполняется  $\hat{P}(x \mid \omega) = 0$ , хотя наверняка  $P(x \mid \omega) > 0$ .

Для одномерных условных вероятностей частоты  $\hat{P}(u_{l,1} \mid \omega)$  будут положительными  $\Rightarrow$  можно оценить вероятность  $P(x \mid \omega)$  более точно.

#### Логистическая регрессия

Метод, позволяющий использовать аппарат регрессионного анализа в распознавании образов

Пусть  $Y \in \{0,1\}$ . Предположим, вероятность P(Y=1|x) = f(x), где f(x) - заданная функция, тогда P(Y=0|x) = 1 - f(x), или  $P(y|x) = f(x)^y (1 - f(x))^{1-y}$ .

Логистическая функция —  $\sigma(x) = \sigma(x; \beta) = \frac{1}{1 + e^{-(\beta_0 + \sum \beta_j x_j)}}$  (сигмоид).



По таблице данных  $(x^{(i)}, y^{(i)})$ , i = 1,...,N требуется найти параметры модели, оптимальные по некоторому критерию.

Например, пусть максимизируется логарифмическая функция

правдоподобия: 
$$\log L(\beta) = \log \prod_{i=1}^N P(Y = y^{(i)} \mid X = x^{(i)}) =$$
 
$$= \sum_{i=1}^N \log P(Y = y^{(i)} \mid x = x^{(i)})$$
 
$$= \sum_{i=1}^N (y^{(i)} \log \sigma(x^{(i)}; \beta) + (1 - y^{(i)}) \log (1 - \sigma(x^{(i)}; \beta)).$$

Можно показать, что задача выпукла, т.е. решение единственно. поиск оптимального решения — градиентный метод (после преобразования  $\nabla \log L(\beta)$ ):

$$\beta := \beta + \tau \nabla \log L(\beta) = \beta + \tau \sum_{i=1}^{N} (y^{(i)} - \sigma(x^{(i)}; \beta)) x^{(i)},$$

где  $\tau > 0$  - параметр.

Принятие решения:

если 
$$\sigma(x;\beta) > \frac{1}{2}$$
, то  $y = 1$ , иначе  $y = 0$ .

# Характеристики качества решения бинарного классификатора

Рассмотрим бинарную задачу распознавания:

$$D_Y = \{True, False\} = \{+, -\},\$$

и некоторую решающую функцию.

Таблица сопряженности

|                | Predicted class |             |  |
|----------------|-----------------|-------------|--|
| True class     | Positive        | Negative    |  |
| Positive (Pos) | TP              | FN=Pos - TP |  |
| Negative (Neg) | FP              | TN=Neg - FP |  |

accuracy = (TP+TN)/(Pos+Neg);

recall = TP/Pos (true positive rate, TPR, sensitivity, полнота); precision = TP/ (TP+FP);

F1= 2•(precision-recall)/(precision+recall)

гармоническое средняя precision и recall (отражает особенности решений в случае несбалансированных классов)

## Эмпирическая ошибка

Вместо вероятности ошибки можно использовать ее оценку — частоту ошибки (эмпирическую, подстановочную ошибку) для решающей функции f:

$$\hat{P}_f[error] = \frac{1}{n} \sum_{i=1}^{N} \mathbf{I}[f(x_i) \neq y_i],$$

где 
$$\mathbf{I}[U] = \begin{cases} 1, U = true \\ 0, U = false. \end{cases}$$

- метод минимизации эмпирической ошибки:

Найти 
$$f^*$$
:  $\hat{P}_{f^*}[error] = \min_f \hat{P}_f[error]$ .

Например, нужно найти линейную разделяющую функцию, для которой частота ошибок на обучающей выборке минимальна.

#### Недостатки метода:

- при ограниченной выборке, частотная оценка может обладать большой погрешностью («занижает» вероятность ошибки); решения далеки от оптимальных.
- проблема «переобучения»: если класс решающих функций сложный, то можно подобрать такую решающую функцию, которая на обучающей выборке дает низкую частоту ошибки («подстраивается» под шум), но при распознавании новых объектов вероятность ошибки велика.



## Экспериментальное оценивание вероятности ошибки

Разделение выборки на обучающую (по которой находится решающая функция) и контрольную (по которой определяется качество решающей функции).

Контрольной (экзаменационной) выборкой называют выборку, которая не используется при формировании решающей функции, а служит для оценки ее качества путем вычисления относительного числа ошибок.

- Более объективно отражает «истинную» неизвестную ошибку.
- При условии независимости наблюдений, частота ошибок подчиняется биномиальному распределению. Зная число ошибок на контрольной выборке, можно найти доверительный интервал, в котором с заданной вероятностью находится неизвестное значение вероятности ошибки.

Номограмма для определения доверительных интервалов в зависимости от частоты и объема выборки.



#### Метод скользящего экзамена.

Поочередно каждый объект выборки «выбрасывается» из нее, по оставшейся части выборки строится классификатор, с помощью которого затем находится прогноз для данного объекта. Прогнозируемое значение сравнивается с наблюдаемым, после чего объект возвращается в исходную выборку. Процент ошибок показывает качество метода.

- Большая трудоемкость, так как необходимо решить *n* задач построения решающей функции (*n* - объем выборки). Скользящий экзамен оценивает не конкретную решающую функцию, но метод ее построения

Mетод L-кратной перекрестной проверки ("L-fold cross-validation").

Исходная выборка случайным образом делится на L частей, приблизительно одинаковых по объему. Затем каждая часть поочередно выступает как контрольная выборка, а оставшиеся части объединяются в обучающую. Показателем качества метода служит усредненная по контрольным выборкам ошибка.