Large scale Finite Element solvers for the large eddy simulation of incompressible turbulent flows

author: Oriol Colomés Gené supervisor:

Santiago Badia

Departament d'Enginyeria Civil i Ambiental

February 24, 2016

Mixed FE VMS

- 1. Motivation
- 2. Residual-based VMS
- 3. Mixed FE VMS
- 4. Segregated Runge-Kutta
- 5. Segregated VMS
- 6. Conclusions

Mixed FE VMS

Segregated VMS

- 1. Motivation

Thesis motivation

Highly scalable Finite Element (FE) framework for Large Eddy Simulations (LES) of incompressible turbulent flows

Thesis motivation

Highly scalable Finite Element (FE) framework for Large Eddy Simulations (LES) of incompressible turbulent flows

How to get there?

Thesis motivation

Highly scalable Finite Element (FE) framework for Large Eddy Simulations (LES) of incompressible turbulent flows

How to get there?

1. Variational MultiScale (VMS) methods as LES models.

Thesis motivation

Residual-based VMS

Highly scalable Finite Element (FE) framework for Large Eddy Simulations (LES) of incompressible turbulent flows

How to get there?

- Variational MultiScale (VMS) methods as LES models.
- 2. Time integration schemes with velocity-pressure segregation.

Thesis motivation

Residual-based VMS

Highly scalable Finite Element (FE) framework for Large Eddy Simulations (LES) of incompressible turbulent flows

How to get there?

- Variational MultiScale (VMS) methods as LES models.
- 2. Time integration schemes with velocity-pressure segregation.
- Highly scalable algorithms based on Domain Decomposition (DD) and block preconditioners.

Step by step...

Residual-based VMS as LES models.

Motivation

- Residual-based VMS as LES models.
- Mixed FE formulations LES.

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.

Motivation

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.
- High-order time integration schemes.

Motivation

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.
- High-order time integration schemes.
- Adaptive time stepping techniques.

Motivation

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.
- High-order time integration schemes.
- Adaptive time stepping techniques.
- Velocity-pressure segregation.

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.
- High-order time integration schemes.
- Adaptive time stepping techniques.
- Velocity-pressure segregation.
- Scalable solvers.

Motivation

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.
- High-order time integration schemes.
- Adaptive time stepping techniques.
- Velocity-pressure segregation.
- Scalable solvers.
- Application.

Motivation

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.
- High-order time integration schemes.
- Adaptive time stepping techniques.
- Velocity-pressure segregation.
- Scalable solvers.
- Application.

Mixed FE VMS

Motivation

2. Residual-based VMS Formulation **Energy statements** Numerical experiments Conclusions

Implicit LES

Motivation

ILES: only numerical dissipation (for stabilization) acts as turbulent model

- Not based on filtering of the Navier-Stokes equations
- Rely on numerical artifacts, no modification at the continuous level

Incomp. Navier Stokes equations

Find **u** and **p** defined in Ω

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

with appropriate boundary conditions on Γ .

Incomp. Navier Stokes equations

Mixed FE VMS

Find **u** and **p** defined in Ω

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

with appropriate boundary conditions on Γ .

The weak problem is: $\forall \mathbf{v} \in \mathcal{V}_0$ and $\forall q \in \mathcal{Q}_0$, find $\mathbf{u} \in \mathcal{V}$ and $p \in \mathcal{Q}$ such that

$$(\mathbf{v}, \partial_t \mathbf{u})_{\Omega} + (\nabla \mathbf{v}, \nu \nabla \mathbf{u})_{\Omega} + b(\mathbf{u}, \mathbf{u}, \mathbf{v}) - (\nabla \cdot \mathbf{v}, p)_{\Omega} = \langle \mathbf{v}, \mathbf{f} \rangle_{\Omega}$$

$$(q, \nabla \cdot \mathbf{u})_{\Omega} = 0$$

Incomp. Navier Stokes equations

Find **u** and **p** defined in Ω

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

with appropriate boundary conditions on Γ .

The weak problem is: $\forall \mathbf{v} \in \mathcal{V}_0$ and $\forall q \in \mathcal{Q}_0$, find $\mathbf{u} \in \mathcal{V}$ and $p \in \mathcal{Q}$ such that

$$(\mathbf{v}, \partial_t \mathbf{u})_{\Omega} + (\nabla \mathbf{v}, \nu \nabla \mathbf{u})_{\Omega} + b(\mathbf{u}, \mathbf{u}, \mathbf{v}) - (\nabla \cdot \mathbf{v}, p)_{\Omega} = \langle \mathbf{v}, \mathbf{f} \rangle_{\Omega}$$

$$(q, \nabla \cdot \mathbf{u})_{\Omega} = 0$$

where

$$b(\mathbf{a}, \mathbf{u}, \mathbf{v}) = \langle \mathbf{v}, \mathbf{a} \cdot \nabla \mathbf{u} \rangle_{\Omega}$$

Incomp. Navier Stokes equations

Find ${\bf u}$ and p defined in Ω

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p - \nu \nabla^2 \mathbf{u} = \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

with appropriate boundary conditions on Γ .

The weak problem is: $\forall \mathbf{v} \in \mathcal{V}_0$ and $\forall q \in \mathcal{Q}_0$, find $\mathbf{u} \in \mathcal{V}$ and $p \in \mathcal{Q}$ such that

$$(\mathbf{v}, \partial_t \mathbf{u})_{\Omega} + (\nabla \mathbf{v}, \nu \nabla \mathbf{u})_{\Omega} + b (\mathbf{u}, \mathbf{u}, \mathbf{v}) - (\nabla \cdot \mathbf{v}, p)_{\Omega} = \langle \mathbf{v}, \mathbf{f} \rangle_{\Omega}$$

$$(q, \nabla \cdot \mathbf{u})_{\Omega} = 0$$

where

$$b\left(\mathbf{a},\mathbf{u},\mathbf{v}\right) = \frac{1}{2} \langle \mathbf{v},\mathbf{a}\cdot\nabla\mathbf{u}\rangle_{\Omega} - \frac{1}{2} \langle \mathbf{a}\cdot\nabla\mathbf{v},\mathbf{u}\rangle_{\Omega} + \frac{1}{2} \langle \mathbf{v},\mathbf{n}\cdot\mathbf{a}\mathbf{u}\rangle_{\Gamma}$$

VMS decomposition (Hughes 1995)

A decomposition of spaces $\mathcal V$ and $\mathcal Q$ given by

$$\mathcal{V} = \mathcal{V}_h \oplus \widetilde{\mathcal{V}}, \quad \mathcal{Q} = \mathcal{Q}_h \oplus \widetilde{\mathcal{Q}}$$

VMS decomposition (Hughes 1995)

A decomposition of spaces $\mathcal V$ and $\mathcal Q$ given by

$$\mathcal{V} = \mathcal{V}_h \oplus \widetilde{\mathcal{V}}, \quad \mathcal{Q} = \mathcal{Q}_h \oplus \widetilde{\mathcal{Q}}$$

is applied to the function and test spaces

$$\mathbf{u} = \mathbf{u}_h + \widetilde{\mathbf{u}}, \quad p = p_h + \widetilde{p}$$

 $\mathbf{v} = \mathbf{v}_h + \widetilde{\mathbf{v}}, \quad q = q_h + \widetilde{q}$

VMS decomposition (Hughes 1995)

A decomposition of spaces \mathcal{V} and \mathcal{Q} given by

$$\mathcal{V} = \mathcal{V}_h \oplus \widetilde{\mathcal{V}}, \quad \mathcal{Q} = \mathcal{Q}_h \oplus \widetilde{\mathcal{Q}}$$

is applied to the function and test spaces

$$\mathbf{u} = \mathbf{u}_h + \widetilde{\mathbf{u}}, \quad p = p_h + \widetilde{p}$$

 $\mathbf{v} = \mathbf{v}_h + \widetilde{\mathbf{v}}, \quad q = q_h + \widetilde{q}$

We keep all the (eight) contributions from the splitting of the convective term

$$\mathbf{u} \cdot \nabla \mathbf{u} = \mathbf{u}_h \cdot \nabla \mathbf{u}_h + \widetilde{\mathbf{u}} \cdot \nabla \mathbf{u}_h + \mathbf{u}_h \cdot \nabla \widetilde{\mathbf{u}} + \widetilde{\mathbf{u}} \cdot \nabla \widetilde{\mathbf{u}}$$

VMS decomposition (Hughes 1995)

A decomposition of spaces \mathcal{V} and \mathcal{Q} given by

$$\mathcal{V} = \mathcal{V}_h \oplus \widetilde{\mathcal{V}}, \quad \mathcal{Q} = \mathcal{Q}_h \oplus \widetilde{\mathcal{Q}}$$

is applied to the function and test spaces

$$\mathbf{u} = \mathbf{u}_h + \widetilde{\mathbf{u}}, \quad p = p_h + \widetilde{p}$$

 $\mathbf{v} = \mathbf{v}_h + \widetilde{\mathbf{v}}, \quad q = q_h + \widetilde{q}$

We keep all the (eight) contributions from the splitting of the convective term

$$\mathbf{u} \cdot \nabla \mathbf{u} = \mathbf{u}_h \cdot \nabla \mathbf{u}_h + \mathbf{\tilde{u}} \cdot \nabla \mathbf{u}_h + \mathbf{u}_h \cdot \nabla \mathbf{\tilde{u}} + \mathbf{\tilde{u}} \cdot \nabla \mathbf{\tilde{u}}$$

and all the (four) contributions from the temporal term

$$\partial_t \mathbf{u} = \partial_t \mathbf{u}_h + \frac{\partial_t \widetilde{\mathbf{u}}}{\mathbf{u}}$$

FEM equations

Motivation

$$B((\mathbf{u}_h, p_h); (\widetilde{\mathbf{u}}, \widetilde{p}); (\mathbf{v}_h, q_h)) = L(\mathbf{v}_h, q_h)$$

$$B((\widetilde{\mathbf{u}}, \widetilde{p}); (\mathbf{u}_h, p_h); (\widetilde{\mathbf{v}}, \widetilde{q})) = L(\widetilde{\mathbf{v}}, \widetilde{q})$$

FEM equations

$$(\mathbf{v}_{h}, \partial_{t}\mathbf{u}_{h})_{\Omega} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{v}_{h}) + (\nabla \mathbf{v}_{h}, \nu \nabla \mathbf{u}_{h})_{\Omega} - (\nabla \cdot \mathbf{v}_{h}, p_{h})_{\Omega}$$
$$+ (\mathbf{v}_{h}, \partial_{t}\widetilde{\mathbf{u}})_{\Omega} + (\mathcal{L}^{*}\mathbf{v}_{h}, \widetilde{\mathbf{u}})_{\Omega^{h}} - (\nabla \cdot \mathbf{v}_{h}, \widetilde{p})_{\Omega^{h}} = \langle \mathbf{v}_{h}, \mathbf{f} \rangle_{\Omega}$$
$$(q_{h}, \nabla \cdot \mathbf{u}_{h})_{\Omega} - (\nabla q_{h}, \widetilde{\mathbf{u}})_{\Omega^{h}} = 0$$

$$\partial_t \widetilde{\mathbf{u}} + \mathbf{\tau}_m^{-1} \widetilde{\mathbf{u}} = \mathcal{P} \mathbf{R}_m$$
$$\mathbf{\tau}_c^{-1} \widetilde{\mathbf{p}} = \mathcal{P} \mathbf{R}_c$$

$$au_m = \left(\frac{c_1 \nu}{h^2} + \frac{c_2 |\mathbf{a}|}{h}\right)^{-1}, \quad au_c = \frac{h^2}{c_1 au_m}$$

$$\mathbf{a} = \mathbf{u}_h + \widetilde{\mathbf{u}}$$

FEM equations

$$(\mathbf{v}_{h}, \partial_{t}\mathbf{u}_{h})_{\Omega} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{v}_{h}) + (\nabla \mathbf{v}_{h}, \nu \nabla \mathbf{u}_{h})_{\Omega} - (\nabla \cdot \mathbf{v}_{h}, p_{h})_{\Omega}$$
$$+ (\mathbf{v}_{h}, \partial_{t}\widetilde{\mathbf{u}})_{\Omega} + (\mathcal{L}^{*}\mathbf{v}_{h}, \widetilde{\mathbf{u}})_{\Omega^{h}} - (\nabla \cdot \mathbf{v}_{h}, \widetilde{p})_{\Omega^{h}} = \langle \mathbf{v}_{h}, \mathbf{f} \rangle_{\Omega}$$
$$(q_{h}, \nabla \cdot \mathbf{u}_{h})_{\Omega} - (\nabla q_{h}, \widetilde{\mathbf{u}})_{\Omega^{h}} = 0$$

$$\partial_t \tilde{\mathbf{u}} + \tau_m^{-1} \tilde{\mathbf{u}} = \mathcal{P} \mathbf{R}_m$$
$$\tau_c^{-1} \tilde{\mathbf{p}} = \mathcal{P} \mathbf{R}_c$$

$$\mathbf{R}_m := \mathbf{f} - \partial_t \mathbf{u}_h - \mathcal{L} \mathbf{u}_h - \nabla p_h, \quad \mathbf{R}_c := -\nabla \cdot \mathbf{u}_h$$

Semidiscrete problem

FEM equations

$$\begin{aligned} (\mathbf{v}_{h}, \partial_{t}\mathbf{u}_{h})_{\Omega} + b (\mathbf{a}, \mathbf{u}_{h}, \mathbf{v}_{h}) + (\nabla \mathbf{v}_{h}, \nu \nabla \mathbf{u}_{h})_{\Omega} - (\nabla \cdot \mathbf{v}_{h}, p_{h})_{\Omega} \\ + (\mathbf{v}_{h}, \partial_{t}\widetilde{\mathbf{u}})_{\Omega} + (\mathcal{L}^{*}\mathbf{v}_{h}, \widetilde{\mathbf{u}})_{\Omega^{h}} - (\nabla \cdot \mathbf{v}_{h}, \widetilde{p})_{\Omega^{h}} = \langle \mathbf{v}_{h}, \mathbf{f} \rangle_{\Omega} \\ (q_{h}, \nabla \cdot \mathbf{u}_{h})_{\Omega} - (\nabla q_{h}, \widetilde{\mathbf{u}})_{\Omega^{h}} = 0 \end{aligned}$$

$$\partial_t \tilde{\mathbf{u}} + \tau_m^{-1} \tilde{\mathbf{u}} = \mathcal{P} \mathbf{R}_m$$
$$\tau_c^{-1} \tilde{\mathbf{p}} = \mathcal{P} \mathbf{R}_c$$

$$\mathcal{P} = I$$
 (ASGS), $\mathcal{P} = P_h^{\perp} = I - P_h$ (OSS)

FEM equations

$$(\mathbf{v}_{h}, \partial_{t}\mathbf{u}_{h})_{\Omega} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{v}_{h}) + (\nabla \mathbf{v}_{h}, \nu \nabla \mathbf{u}_{h})_{\Omega} - (\nabla \cdot \mathbf{v}_{h}, p_{h})_{\Omega}$$
$$+ (\mathbf{v}_{h}, \partial_{t}\widetilde{\mathbf{u}})_{\Omega} + (\mathcal{L}^{*}\mathbf{v}_{h}, \widetilde{\mathbf{u}})_{\Omega^{h}} - (\nabla \cdot \mathbf{v}_{h}, \widetilde{p})_{\Omega^{h}} = \langle \mathbf{v}_{h}, \mathbf{f} \rangle_{\Omega}$$
$$(q_{h}, \nabla \cdot \mathbf{u}_{h})_{\Omega} - (\nabla q_{h}, \widetilde{\mathbf{u}})_{\Omega^{h}} = 0$$

$$\frac{\partial_t \tilde{\mathbf{u}} + \tau_m^{-1} \tilde{\mathbf{u}} = \mathcal{P} \mathbf{R}_m}{\tau_c^{-1} \tilde{p} = \mathcal{P} R_c}$$

$$\mathcal{P} = I$$
 (ASGS), $\mathcal{P} = P_h^{\perp} = I - P_h$ (OSS)

$$\mathbf{a} = \mathbf{u}_h + \widetilde{\mathbf{u}}$$

Summary

Motivation

	Sgs space	Sgs dynamics	Advection
1	ASGS	Static	Linear
2	ASGS	Dynamic	Linear
3	ASGS	Dynamic	Nonlinear
4	OSS	Static	Linear
5	OSS	Dynamic	Linear
6	OSS	Dynamic	Nonlinear

- 1 It is the most standard method (SUPG for linear elements) up to the choice of the stabilization parameters. Unknown stability properties.
- 4 Strictly pointwise positive for linear elements (no backscatter).
- 5 Convergent to weak solutions of NS equations (Badia & Gutierrez 2012).

Energy statements

FE counterpart:

$$B((\mathbf{u}_h, p_h); (\widetilde{\mathbf{u}}, \widetilde{p}); (\mathbf{u}_h, p_h)) = L(\mathbf{u}_h, p_h)$$

SGS counterpart:

$$B((\widetilde{\mathbf{u}},\widetilde{p});(\mathbf{u}_h,p_h);(\widetilde{\mathbf{u}},\widetilde{p}))=L(\widetilde{\mathbf{u}},\widetilde{p})$$

TOTAL:

$$B((\mathbf{u}_h, p_h); (\widetilde{\mathbf{u}}, \widetilde{p}); (\mathbf{u}_h, p_h)) + B((\widetilde{\mathbf{u}}, \widetilde{p}); (\mathbf{u}_h, p_h); (\widetilde{\mathbf{u}}, \widetilde{p})) = L(\mathbf{u}_h, p_h) + L(\widetilde{\mathbf{u}}, \widetilde{p})$$

Energy statements

FE counterpart:

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{u}_{h})
+ (\partial_{t}\widetilde{\mathbf{u}}, \mathbf{u}_{h}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h}), \widetilde{\mathbf{u}}) - (\nabla \cdot \mathbf{u}_{h}, \widetilde{p}) = \langle \mathbf{f}, \mathbf{u}_{h} \rangle$$

Mixed FE VMS

SGS counterpart:

$$\frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{\boldsymbol{p}}\|^{2} + (\mathcal{P}(\partial_{t}\mathbf{u}_{h}), \widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h})), \widetilde{\mathbf{u}}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_{h}), \widetilde{\boldsymbol{p}}) = \langle \mathcal{P}(\mathbf{f}), \widetilde{\mathbf{u}} \rangle$$

TOTAL:

Energy statements

FE counterpart:

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{u}_{h})
+ (\partial_{t}\widetilde{\mathbf{u}}, \mathbf{u}_{h}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h}), \widetilde{\mathbf{u}}) - (\nabla \cdot \mathbf{u}_{h}, \widetilde{p}) = \langle \mathbf{f}, \mathbf{u}_{h} \rangle$$

Mixed FE VMS

SGS counterpart:

$$\frac{1}{2} \frac{d_t \|\widetilde{\mathbf{u}}\|^2 + \tau_m^{-1} \|\widetilde{\mathbf{u}}\|^2 + \tau_c^{-1} \|\widetilde{\boldsymbol{p}}\|^2}{+ (\mathcal{P}(\partial_t \mathbf{u}_h), \widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_a^*(\mathbf{u}_h, \boldsymbol{p}_h)), \widetilde{\mathbf{u}}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_h), \widetilde{\boldsymbol{p}}) = \langle \mathcal{P}(\mathbf{f}), \widetilde{\mathbf{u}} \rangle}$$

TOTAL:

$$\frac{1}{2}d_t\|\mathbf{u}_h\|^2 + \frac{1}{2}d_t\|\widetilde{\mathbf{u}}\|^2$$

Segregated VMS

Energy statements

FE counterpart:

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{u}_{h})
+ (\partial_{t}\widetilde{\mathbf{u}}, \mathbf{u}_{h}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h}), \widetilde{\mathbf{u}}) - (\nabla \cdot \mathbf{u}_{h}, \widetilde{p}) = \langle \mathbf{f}, \mathbf{u}_{h} \rangle$$

SGS counterpart:

$$\frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{\boldsymbol{\rho}}\|^{2} + (\mathcal{P}(\partial_{t}\mathbf{u}_{h}), \widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, \boldsymbol{\rho}_{h})), \widetilde{\mathbf{u}}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_{h}), \widetilde{\boldsymbol{\rho}}) = \langle \mathcal{P}(\mathbf{f}), \widetilde{\mathbf{u}} \rangle$$

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2}$$

FE counterpart:

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{u}_{h})
+ (\partial_{t}\widetilde{\mathbf{u}}, \mathbf{u}_{h}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h}), \widetilde{\mathbf{u}}) - (\nabla \cdot \mathbf{u}_{h}, \widetilde{p}) = \langle \mathbf{f}, \mathbf{u}_{h} \rangle$$

Mixed FE VMS

SGS counterpart:

$$\frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{p}\|^{2} \\
+ (\mathcal{P}(\partial_{t}\mathbf{u}_{h}),\widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_{a}^{*}(\mathbf{u}_{h},p_{h})),\widetilde{\mathbf{u}}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_{h}),\widetilde{p}) = \langle \mathcal{P}(\mathbf{f}),\widetilde{\mathbf{u}} \rangle$$

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2}$$

FE counterpart:

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{u}_{h})
+ (\partial_{t}\widetilde{\mathbf{u}}, \mathbf{u}_{h}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h}), \widetilde{\mathbf{u}}) - (\nabla \cdot \mathbf{u}_{h}, \widetilde{p}) = \langle \mathbf{f}, \mathbf{u}_{h} \rangle$$

Mixed FE VMS

SGS counterpart:

$$\frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{\boldsymbol{p}}\|^{2} \\
+ (\mathcal{P}(\partial_{t}\mathbf{u}_{h}), \widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h})), \widetilde{\mathbf{u}}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_{h}), \widetilde{\boldsymbol{p}}) = \langle \mathcal{P}(\mathbf{f}), \widetilde{\mathbf{u}} \rangle$$

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{\boldsymbol{\rho}}\|^{2}$$

FE counterpart:

Motivation

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{u}_{h})
+ (\partial_{t}\widetilde{\mathbf{u}}, \mathbf{u}_{h}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, \rho_{h}), \widetilde{\mathbf{u}}) - (\nabla \cdot \mathbf{u}_{h}, \widetilde{\rho}) = \langle \mathbf{f}, \mathbf{u}_{h} \rangle$$

SGS counterpart:

$$\frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{\boldsymbol{p}}\|^{2} + (\mathcal{P}(\partial_{t}\mathbf{u}_{h}), \widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h})), \widetilde{\mathbf{u}}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_{h}), \widetilde{\boldsymbol{p}}) = \langle \mathcal{P}(\mathbf{f}), \widetilde{\mathbf{u}} \rangle$$

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{p}\|^{2} \\
+ (\partial_{t}\widetilde{\mathbf{u}}, \mathbf{u}_{h}) + (\mathcal{P}(\partial_{t}\mathbf{u}_{h}), \widetilde{\mathbf{u}}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h}), \widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h})), \widetilde{\mathbf{u}}) \\
- (\nabla \cdot \mathbf{u}_{h}, \widetilde{p}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_{h}), \widetilde{p})$$

FE counterpart:

Motivation

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{u}_{h})
+ (\partial_{t}\widetilde{\mathbf{u}}, \mathbf{u}_{h}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h}), \widetilde{\mathbf{u}}) - (\nabla \cdot \mathbf{u}_{h}, \widetilde{p}) = \langle \mathbf{f}, \mathbf{u}_{h} \rangle$$

SGS counterpart:

$$\frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{\boldsymbol{p}}\|^{2} \\
+ (\mathcal{P}(\partial_{t}\mathbf{u}_{h}), \widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h})), \widetilde{\mathbf{u}}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_{h}), \widetilde{\boldsymbol{p}}) = \langle \mathcal{P}(\mathbf{f}), \widetilde{\mathbf{u}} \rangle$$

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{p}\|^{2}
+ (\partial_{t}\widetilde{\mathbf{u}}, \mathbf{u}_{h}) + (\mathcal{P}(\partial_{t}\mathbf{u}_{h}), \widetilde{\mathbf{u}}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h}), \widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h})), \widetilde{\mathbf{u}})
- (\nabla \cdot \mathbf{u}_{h}, \widetilde{p}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_{h}), \widetilde{p}) = \langle \mathbf{f}, \mathbf{u}_{h} \rangle + \langle \mathcal{P}(\mathbf{f}), \widetilde{\mathbf{u}} \rangle$$

FE counterpart:

Motivation

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{u}_{h})
+ (\partial_{t}\widetilde{\mathbf{u}}, \mathbf{u}_{h}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h}), \widetilde{\mathbf{u}}) - (\nabla \cdot \mathbf{u}_{h}, \widetilde{p}) = \langle \mathbf{f}, \mathbf{u}_{h} \rangle$$

SGS counterpart:

$$\frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{\boldsymbol{p}}\|^{2} \\
+ (\mathcal{P}(\partial_{t}\mathbf{u}_{h}), \widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h})), \widetilde{\mathbf{u}}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_{h}), \widetilde{\boldsymbol{p}}) = \langle \mathcal{P}(\mathbf{f}), \widetilde{\mathbf{u}} \rangle$$

TOTAL: Static subscales

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{p}\|^{2} \\
+ (\mathcal{P}(\partial_{t}\mathbf{u}_{h}), \widetilde{\mathbf{u}}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h}), \widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h})), \widetilde{\mathbf{u}}) \\
- (\nabla \cdot \mathbf{u}_{h}, \widetilde{p}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_{h}), \widetilde{p}) = \langle \mathbf{f}, \mathbf{u}_{h} \rangle + \langle \mathcal{P}(\mathbf{f}), \widetilde{\mathbf{u}} \rangle$$

FE counterpart:

Motivation

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{u}_{h})
+ (\partial_{t}\widetilde{\mathbf{u}}, \mathbf{u}_{h}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h}), \widetilde{\mathbf{u}}) - (\nabla \cdot \mathbf{u}_{h}, \widetilde{p}) = \langle \mathbf{f}, \mathbf{u}_{h} \rangle$$

SGS counterpart:

$$\frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{p}\|^{2} \\
+ (\mathcal{P}(\partial_{t}\mathbf{u}_{h}), \widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h})), \widetilde{\mathbf{u}}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_{h}), \widetilde{p}) = \langle \mathcal{P}(\mathbf{f}), \widetilde{\mathbf{u}} \rangle$$

TOTAL: Dynamic subscales - ASGS

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h} + \widetilde{\mathbf{u}}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{p}\|^{2} - 2(\nu\Delta\mathbf{u}_{h}, \widetilde{\mathbf{u}})$$

$$= \langle \mathbf{f}, \mathbf{u}_{h} \rangle + \langle \mathbf{f}, \widetilde{\mathbf{u}} \rangle$$

FE counterpart:

Motivation

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + b(\mathbf{a}, \mathbf{u}_{h}, \mathbf{u}_{h})
+ (\partial_{t}\widetilde{\mathbf{u}}, \mathbf{u}_{h}) + (\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h}), \widetilde{\mathbf{u}}) - (\nabla \cdot \mathbf{u}_{h}, \widetilde{p}) = \langle \mathbf{f}, \mathbf{u}_{h} \rangle$$

SGS counterpart:

$$\frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{p}\|^{2} \\
+ (\mathcal{P}(\partial_{t}\mathbf{u}_{h}), \widetilde{\mathbf{u}}) + (\mathcal{P}(\mathcal{L}_{a}^{*}(\mathbf{u}_{h}, p_{h})), \widetilde{\mathbf{u}}) - (\mathcal{P}(\nabla \cdot \mathbf{u}_{h}), \widetilde{p}) = \langle \mathcal{P}(\mathbf{f}), \widetilde{\mathbf{u}} \rangle$$

Dynamic subscales - OSS

$$\frac{1}{2}d_{t}\|\mathbf{u}_{h}\|^{2} + \frac{1}{2}d_{t}\|\widetilde{\mathbf{u}}\|^{2} + \nu\|\nabla\mathbf{u}_{h}\|^{2} + \tau_{m}^{-1}\|\widetilde{\mathbf{u}}\|^{2} + \tau_{c}^{-1}\|\widetilde{p}\|^{2}
- 2(\nu\Delta\mathbf{u}_{h},\widetilde{\mathbf{u}})$$

$$= \langle \mathbf{f}, \mathbf{u}_{h} \rangle + \langle \mathcal{P}(\mathbf{f}), \widetilde{\mathbf{u}} \rangle$$

Mixed FE VMS

Motivation

2. Residual-based VMS

3. Mixed FE VMS
Formulation
Block-preconditioning
Numerical experiments
Conclusions

- 4. Segregated Runge-Kutta
- Segregated VMS
- Conclusions

- 1. Motivation
- 2. Residual-based VMS
- 3. Mixed FE VMS
- 4. Segregated Runge-Kutta Formulation Numerical experiments Conclusions
- Segregated VMS
- 6. Conclusions

Mixed FE VMS

- 1. Motivation
- 2. Residual-based VMS
- 3. Mixed FE VMS
- Segregated Runge-Kutta
- 5. Segregated VMS
 Formulation
 Block-preconditioning
 Numerical experiments
 Conclusions

6. Conclusions

- 1. Motivation
- 2. Residual-based VMS
- 3. Mixed FE VMS
- 4. Segregated Runge-Kutta
- Segregated VMS
- 6. Conclusions

Outline

Line 1.

Residual-based VMS

Mixed FE VMS

Outline

- Line 1.
- Line 2.
 Less formal

Outline

- Line 1.
- Line 2. Less formal
- Line 3. Less formal, different color.

Blocks

Standard Block

This is a standard block.

Example Block

This is an example block.

Alert Block

This is an alert block.

