LIGHT-EMITTING DIODE AND DISPLAY DEVICE USING THE DIODE

Patent Number:

JP10022529

Publication date:

1998-01-23

Inventor(s):

YAMADA MOTOKAZU

Applicant(s):

NICHIA CHEM IND LTD

Requested Patent:

JP10022529

Application Number:

JP19960173152 19960703

Priority Number(s):

IPC Classification:

H01L33/00

EC Classification:

Equivalents:

JP2956594B2

Abstract

PROBLEM TO BE SOLVED: To improve visibility and color mixture property by making a side which is parallel to a line formed by connecting elliptic focuses of a mold member longer than a vertical side and making condensing by a mold member and a cup shape approximately the same.

SOLUTION: A mold member 106 of a light emitting diode is elliptic viewed from a light emission observation surface side and a side of a cup 102 which is parallel to a line between focuses of the mold member 106 is longer than a vertical side and condensing by the mold member 106 and a cup outer shape are approximately the same. The light emitting diode has a wide view angle in right and left directions and a light emission surface is not viewed small distortedly to an elliptic mold member even when recognized visually from an area near a front. If each light emitting diode is arranged in a matrix at an interval of 6mm one by one and a light emitting device connected to a driving device is formed, a light emission surface is large in right and left directions, and light emission areas of each light emitting diode are close. Therefore, a light emitting device of high color mixture property can be realized.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平10-22529

(43)公開日 平成10年(1998) 1月23日

(51) Int.Cl.⁶

識別記号

FΙ

技術表示箇所

H01L 33/00

H01L 33/00

N

審査請求 未請求 請求項の数4 OL (全 10 頁)

(21)出願番号

(22)出顧日

特願平8-173152

平成8年(1996)7月3日

(71)出願人 000226057

日亜化学工業株式会社

徳島県阿南市上中町岡491番地100

(72) 発明者 山田 元量

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(54) 【発明の名称】 発光ダイオード及びそれを用いた表示装置

(57)【要約】

【課題】本願発明は、LEDチップを利用して発光させ る発光ダイオードに関し、特に、遠方及び近方において も視認性や混色性の優れた発光ダイオードに関する。

【解決手段】本願発明は、発光観測面側から見て楕円形 を有するモールド部材で、反射部を有するカップ底面に 固定させたLEDチップをモールドした発光ダイオード であって、前記カップは、モールド部材の楕円焦点間と 平行な辺が垂直な辺よりも長く、且つモールド部材によ る集光とカップ外形とが略等しい発光ダイオードであ る。

【特許請求の範囲】

【請求項1】発光観測面側から見て楕円形を有するモールド部材で、反射部を有するカップ底面に固定させたLEDチップをモールドした発光ダイオードであって、前記カップは、モールド部材の楕円焦点間と平行な辺が垂直な辺よりも長く、且つモールド部材による集光とカップ外形とが略等しいことを特徴とする発光ダイオード。

1

【請求項2】前記LEDチップの発光面形状が前記楕円 焦点間に垂直な方向に対してほぼ左右対称とされている 請求項1記載の発光ダイオード。

【請求項3】前記LEDチップが直線状に複数設けられると共に前記LEDチップと導電性ワイヤーによって接続された複数のインナー・リードを有し、前記LEDチップの配列と前記インナー・リードの配列が略垂直である請求項1記載の発光ダイオード。

【請求項4】請求項1記載の発光ダイオードを2種類以上用いマトリックス状に配置すると共に該発光ダイオードの楕円焦点間とマトリックスの左右方向が略平行である表示パネルと、該表示パネルと電気的に接続させた駆 20 動回路と、を有する表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本願発明は、LEDチップを 利用して発光させる発光ダイオードに関し、特に、遠方 及び近方においても視認性や混色性の優れた発光ダイオ ード及びそれを用いた表示装置に関する。

[0002]

【従来の技術】今日、LSI等のシリコンテクノロジー及び光通信等の発展により、大量の情報を処理及び伝送することが可能となった。これに伴い、多量な画像情報を処理可能なフルカラー化及び大型化した表示装置に対する社会の要求が、ますます高まりを見せている。このような大型表示装置に利用されるものの一つとして発光ダイオードを利用したものがある。高輝度低電圧で駆動可能な発光ダイオードをマトリックス状など所望の形状に配置し、個々の発光ダイオードをそれぞれ駆動させることによって所望の画像が得られるディスプレイなどとして利用できる。

【0003】発光ダイオードは、基本的に発光素子としてのLEDチップ及びLEDチップに電力を供給するためのリードフレーム、LEDチップとリードフレームを接続させる電気的接続部材及びLEDチップや電気的接続部材などを外部環境から保護するためのモールド部材で構成されている。発光ダイオードは、フルカラーディスプレイなどに利用されることを考慮して混色性や一方向の指向性を向上させたものが開発されている。

【0004】具体的には、図7、図8、図9に示した半 導体発光素子としてLEDチップ704を積載する円形 カップを有するマウント・リード701とインナー・リ ものが考えられる。封止樹脂外形は、半導体発光素子を 保護すると共にLEDランプの指向性などを考慮して楕 円形とさせた発光ダイオードを構成している。このよう な、楕円形の樹脂封止外形を有する発光ダイオードをそ れぞれ配置しディスプレイとして利用すると、遠方から 視認したばあい優れた視認性を有するフルカラー表示装 置とすることができる。また、楕円の焦点間をディスプ

ード703を取り囲む封止樹脂外形706で構成される

レイの水平と平行にした場合、水平方向の視野角が広がるために水平方向に移動しても混色性の低下が少ないディスプレイとすることができる。発光波長が異なるLE Dチップを利用したフルカラーディスプレイにおいては

遠方において十分な混色性を有する。

[0005]

【発明が解決しようとする課題】しかしながら、近方で 視認した場合において、光利用効率が低下する或いは混 色性が大きく低下する場合がある。また、正確に所望の 視野角に調整することが難しく所望の光特性が得られな いと言った問題を有する。したがって、遠方及び近方に おいても視認性、混色性及び光利用効率の向上が求めら れる今日においては上記構成の発光ダイオード及びそれ を用いた表示装置では十分ではなく更なる視認性、混色 性及び光利用効率が向上した発光ダイオードの開発が求 められている。本願発明は、上記課題に鑑み更なる高視 認性及び高混色性を達成し量産性の良い発光ダイオード 及びそれを用いた表示装置を提供することにある。

[0006]

【課題を解決するための手段】本願発明は、発光観測面側から見て楕円形を有するモールド部材で、反射部を有するカップ底面に固定させたLEDチップをモールド部材の楕円焦点間と平行な辺が垂直な辺よりも長く、且つモールド部材による集光とカップ外形とが略等しい発光ダイオードである。また、LEDチップの発光面形状が前記楕円焦点間に垂直な方向に対してほぼ左右対称とされている発光ダイオードであり、LEDチップが直線状に複数設けられると共にLEDチップと導電性ワイヤーによって接続された複数のインナー・リードを有し、LEDチップの配列とインナー・リードの配列が略垂直である発光ダイオードでもある。

【0007】さらに、本願発明の発光ダイオードをマトリックス状に配置し発光ダイオードの楕円焦点間とマトリックスの左右方向が略平行である表示パネルと、該表示パネルと電気的に接続させた駆動回路と、を有する表示装置でもある。

[0008]

【発明の実施の形態】本願発明者は種々の実験の結果、 発光ダイオードを近方から視認した場合における視認 性、光取りだし効率及び混色性が封止材であるモールド 部材、LEDチップが設けられた特定カップ形状によっ

て大きく変わることを見いだし、これに基づいて発明するに到った。

【0009】即ち、楕円モールド部材を利用した発光ダ イオードは、焦点間と平行な方向において視野角が広く なりレンズ外形により遠方において十分な視野角及び均 一発光光源とすることができる。しかしながら、楕円形 状モールド部材を用い指向角が広くすることは、レンズ の拡大倍率を小さくせざるを得ない。そのため、この発 光ダイオードを利用したディスプレイなどを近方正面で 視認すると、レンズ自体は大きいが強く光っているとこ ろ非常に小さく見える。これは、モールド部材を楕円形 状にすることによって楕円の焦点間と平行な倍率と垂直 方向の倍率が異なることによると考えられる。したがっ て、楕円形状モールド部材に真円形状のカップを用いて 近方から視認するとモールド部材の焦点間と垂直な方向 に楕円状にカップが光っているように見える。また、レ ンズの拡大倍率に加えてレンズ全体からの光よりもカッ プなどからの反射光の影響が大きく結果的にチップがよ り小さく見え光度及び混色性なども低くなると考えられ

【0010】本願発明は、カップ形状を、モールド部材 の焦点間と平行な辺が垂直な辺よりも長く、且つモール ド部材による集光とカップ外形とが略等しい発光ダイオ ードとすることで、楕円形モールド部材によって拡大倍 率が小さくなる発光正面での近方視認においても発光ダ イオードが光っているところは見かけ上大きく見えさす ことができる。また、フルカラーディスプレイなどに利 用するときは隣り合う発光光同士の距離も短くなり混色 性が向上できると考えられる。また、更なる非対称配光 特性を得るために発光ダイオードの発光する光の指向性 をワイドにする方向においても、反射板が邪魔になり限 界が生ずることが少ない。レンズとして働く楕円形モー ルド部材に合わせてLEDチップが配置されるマウント ・リード上のカップを特定形状に形成させることにより レンズとの焦点距離が変化しても発光光率及び混色性に 優れた発光ダイオードすることができるものである。以 下本願発明について、図面を用いて詳述する。

【0011】図1は、本願発明の発光ダイオードの概略 平面図であり、図2は、図1のX-Xの概略断面図であ る。図3は、図1のY-Yの概略断面図である。発光素 子として青色LEDチップ(発光波長480 nm)を用 いてある。LEDチップは、カップ底面上に接着剤を使 用して固定してある。LEDチップの各電極とリードフ レームとの電気的接続は、ワイヤーボンド機器を用いて 導電性ワイヤーである金線などをボンディングしてあ る。LEDチップ、導電性ワイヤー、インナー・リード やマウント・リードの先端部をエポキシ樹脂などにより 封入することによって発光ダイオードを構成させてあ る。以下各々の構成部品について説明する。

【0012】 (カップ101、102、401、40

2)本願発明に用いられるカップとは、LEDチップを配置すると共に反射板としての機能を持つ。したがって、カップはリードフレームの先端部に設けられたものや各種外部電極を利用したものなど種々のものが利用できる。リードフレーム上にカップ102を形成させたものは、マウント・リードとして働く。カップ102の大きさは、各LEDチップをダイボンド等の機器で積載するのに十分な大きさがあり、モールド部材による光の集光率に合わせて種々のものが用いられる。カップ102は、LEDチップと直接電気的に導通させ電極として利用しても良い。また、LEDチップを絶縁体を介してカップと固定させ非導電性とさせても良い。マウント・リードを各LEDチップの電極として利用する場合においては十分な電気伝導性とボンディングワイヤー等との接続性が求められる。

【0013】各LEDチップとカップとの接続は熱硬化 性樹脂などによって行うことができる。具体的には、エ ポキシ樹脂、アクリル樹脂やイミド樹脂などが挙げられ る。また、LEDチップとカップを接着させると共に電 気的に接続させるためにはAg、カーボン、ITOなど の導電性部材を含有させた導電性ペーストや金属バンプ 等を用いることができる。さらに、各LEDチップの発 光効率を向上させるためにカップ表面粗さを0.1S以 上0.8S以下とすることが好ましい。また、カップの 具体的な電気抵抗としては300μΩ-сm以下が好ま しく、より好ましくは、 $3\mu\Omega$ -cm以下である。ま た、カップ上に複数のLEDチップを積置する場合は、 LEDチップからの発熱量が多くなるため熱伝導度がよ いことが求められる。具体的には、0.01cal/c m²/cm/℃以上が好ましくより好ましくは 0.5 c $a l / c m^2 / c m / C$ 以上である。これらの条件を満 たす材料としては、鉄、銅、鉄入り銅、錫入り銅、メタ ライズパターン付きセラミック等が挙げられる。このよ うな材質を打ち込みによって形成させると反射部101 を有するカップ底面102を得ることができる。カップ は、モールド部材の楕円焦点間と平行な辺が垂直な辺よ りも長くなるよう長方形、縁なしの長方形や楕円形状と することができる。

【0014】また、カップの長手方向への視野角を増やす目的で、モールド部材の楕円焦点間と垂直な辺のみ反射部を設けることができる。同様に、モールド部材の楕円焦点間と平行な辺の反射部の底面に対する傾斜角度が垂直な辺の反射部傾斜角度よりよりも少なくすることもできる。

【0015】カップに固定されるLEDチップの発光面が異方性の場合は、楕円形のモールド部材を利用すると LEDチップの発光面形状によりレンズ外形の楕円焦点 間方向(左右方向)での指向特性にむらが生じやすい。 したがって、LEDチップの発光面形状が楕円モールド 部材の楕円焦点間に垂直な方向に対してほぼ左右対称に

配置することが好ましい。

【0016】さらに、半導体の一方の面に2以上の電極 を有するLEDチップを配置させる場合は、各インナー ・リードとLEDチップの電極を接続させる導電性ワイ ヤー間をより離すことが好ましい。したがって、各イン ナー・リードの配置と略垂直方向に各電極を構成するこ とが好ましい。即ち、LEDチップの電極を対角状に配 置し対角状の電極間とインナー・リード間を垂直に配置 することにより対角線分の長さだけ各導電性ワイヤー間 の距離を取ることができる。LEDチップが複数になり 導電性ワイヤーの数が増えた場合においても導線性ワイ ヤー同士の接触が少なく、半導体特性が優れた発光ダイ オードとすることができる。また、量産性効率が向上す るという効果も生じる。複数のLEDチップがカップ上 に配置される場合、混色性向上のために互いに近づける と共に各LEDチップの電極とインナー・リードである リードフレームと電気的に接続させる導電性ワイヤーな どがそれぞれ接触しないように各LEDチップを略直線 状に配置させることがより好ましい。

【0017】さらにまた、図1や図4の如く発光観測面から見てカップを対称にリードフレームの数が異なる場合、外来光による光反射をより均一にする目的でリードフレームがない或いはリードフレームの数が少なく配置されているカップ側に反射を補正する突起部を設けることがより好ましい。また、突起部を利用して導電性ワイヤーの接続部として利用することもできる。

【0018】(インナー・リード103、403)インナー・リード103としては、電気的接続部材であるボンディングワイヤー等との接続性及び電気伝導性が求められる。具体的な電気抵抗としては、300 μ Ω -cm以下が好ましく、より好ましくは3 μ Ω -cm以下である。これらの条件を満たす材料としては、鉄、銅、鉄入り銅、錫入り銅等が挙げられる。また、インナー・リードが導電性ワイヤーと接続される面の粗さは、導電性ワイヤーとの密着性を考慮して1.6S以上10S以下が好ましい。

【0019】(LEDチップ104、404)発光素子であるLEDチップ104は、液相成長法、有機金属気相成長法(MOCVD)、ハライド気相成長法(HDVPE)や分子線気相成長法(MBE)等により基板上にGaAlN、ZnS、ZnSe、SiC、GaP、GaAlAs、AlInGaP、InGaN、GaN、AlInGaN等の半導体を発光層として形成させた物が好適に用いられる。半導体の構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルヘテロ構成のものが挙げられる。半導体層の材料やその混晶度によって発光波長を紫外光から赤外光まで種々選択することができる。また、量子効果を持たすために単一量子井戸構造や、井戸層と井戸層よりもバンドギャップの大きい障壁層を井戸+障壁+・・・+

6

障壁+井戸或いはその逆として形成させた多重量子井戸 構造としても良い。特に窒化物半導体における多重量子 井戸構造では、井戸層は70オングストローム以下、障 壁層は150オングストローム以下の厚さにすることが 好ましい。一方、単一量子井戸構造では70オングスト ローム以下の厚さに調整することが好ましい。これによ り発光出力の高い発光素子とすることができる。一方の 発光観測面側に複数の電極を形成するためには、あらか じめマスクを用いて成膜させるか、各半導体を成膜後所 望の形状にエッチングして形成させることができる。エ ッチングとしては、ドライエッチングや、ウエットエッ チングがある。ドライエッチングとしては例えば反応性 イオンエッチング、イオンミリング、集束ビームエッチ ング、ECRエッチング等が挙げられる。又、ウエット エッチングとしては、硝酸と燐酸の混酸を用いることが できる。ただし、エッチングを行う前に所望の形状に窒 化珪素や二酸化珪素等の材料を用いてマスクを形成する ことは言うまでもない。

【0020】LEDチップの電極は、種々の方法によって形成される。導電性基板結晶上にGaP、GaAlAs等の半導体を形成させたLEDチップの場合、基板結晶を除去するためアルミナや炭化珪素の細粒によるラッピング、表面の平滑性を向上させるためのポリシング及び洗浄の工程をへた後、金や白金等を含有する材料を蒸着材料やスパッタ材料として用いそれぞれ所望の場所に蒸着方法やスパッタリング方法などによって電極を形成させる。また、形成された半導体側に蒸着方法やスパッタ方法を利用して金、白金等の金属を一部分堆積させ電極として利用することもできる。なお、堆積させた金属と半導体とを溶着合金させるために不活性ガス中において300~400℃で数秒から数分間熱処理することが好ましい。

【0021】光半導体素子の電極を介して発光させる場合は、金属薄膜等で形成させた透光性(なお、ここで透光性とは、発光素子の発光する光の波長に対して電極を通過すれば良い。)の電極とする必要がある。また、P型導電性を有する半導体と接続させる電極(以下、P型電極と呼ぶ。)としてはP型導電性を有する半導体層とオーミック接触させる必要がある。

【0022】窒化ガリウム系半導体の場合、これらの条件を満たす材料として、例えばAu、Ni、Pt、Al、Cr、Mo、W、In、Ga、Ti、Ag、Rh等の金属及びそれらの合金が挙げられる。また、透光性を有する電極材料としてITO、SnO2、NiO2等の金属酸化物もあげられる。さらには、これらの上に金属薄膜を積層することも可能である。金属等を透光性とするためには蒸着方法、スパッタ方法等を用いて極めて薄く形成させれば良い。また、金属を蒸着あるいはスパッタ方法等によって形成させた後、アニーリングして金属をP型導電性を有する半導体層中に拡散させると共に外

部に飛散させて所望の膜厚(透光性となる電極の膜厚)に調整させた電極を形成させることもできる。透光性となる金属電極の膜厚は、所望する発光波長や金属の種類によっても異なるが、好ましくは、0.001~0.1 μmであり、より好ましくは、0.05~0.2 μmである。電極を透光性とした場合、P型電極の形状としては、線状、平面状等目的に応じて形成させることができる。P型導電性を有する半導体層全体に形成された平面状電極は、電流を全面に広げ全面発光とすることができる。

【0023】さらにまた、P型電極を極めて薄く形成さ せた場合、電極上に直接ワイヤーボンディングすると、 ボールがP型電極と合金化せず接続しにくくなる傾向が あるため密着性向上のためにP型電極とは別にボンディ ング用の台座電極を形成させたり、P型電極を多層構成 とすることが好ましい。台座電極の材質としては、A u、Pt、Al等を使用することができる。台座電極の 膜厚としてはミクロンオーダーとすることが好ましい。 又、P型電極の少なくとも一部を多層構成とする場合、 窒化ガリウムと接触させる接触電極にはCr、Mo、 W、Ni、Al、In、Ga、Ti、Agから選択され る金属あるいは、これらの合金が好適に用いられボンデ ィングと接触するボンディング電極としてはAl、Au 等の金属あるいはこれらの合金が好適に用いられる。な お、半導体素子通電時、P型電極中にボンディング用電 極材料がマイグレーションする場合があるためボンディ ング用電極は、Au単体あるいはAl及び/Cr含有量 が少ないAu合金とすることが特に好ましい。

【0024】サファイヤ基板を用いた窒化ガリウム系半 導体の場合、N型導電性を有する半導体と電気的に接続 される電極(以下、N型電極と呼ぶ。)としてはCr又 はNi又は、Alの単体、合金としてはAu、Pt、M o、Ti、In、Ga、Al、Wより選択された一種の 金属と、Crとの合金、又はNiとの合金、Cr-Ni 合金又は、Ag、Al、Ti、Wやその合金を使用する ことができる。又、それらの多層膜とすることもでき る。N型電極としては、特にCr単独、Cr-Ni合 金、CrーAu合金、NiーAu合金、TiーAl又は TiーAg合金が好ましい。合金のCr、Ni、Ti、 Ag含有量は、合金材料や半導体材料によって種々選択 されるが多いほど好ましい。上記電極材料を窒化ガリウ ム系化合物半導体に形成させるにはあらかじめ合金化さ せておいた金属、又は金属単体を蒸着材料あるいはスパ ッタ材料とすることによって電極を形成させることがで

【0025】なお、窒化ガリウム半導体の場合は、電極材料と半導体材料をなじませオーミック特性を向上させるために400℃以上でアニールすることが好ましい。また、窒化ガリウム半導体の分解を抑制する目的から1100℃以下でアニールすることが好ましい。さらに、

アニーリングを窒素雰囲気中で行うことにより、窒化ガ リウム系化合物半導体中の窒素が分解して出ていくのを 抑制することができ、結晶性を保つことが出きる。

【0026】電極が形成された半導体ウエハー等をダイヤモンド製の刃先を有するブレードが回転するダイシングソーにより直接フルカットするか、又は刃先幅よりも広い幅の溝を切り込んだ後(ハーフカット)、外力によって半導体ウエハーを割る。あるいは、先端のダイヤモンド針が往復直線運動するスクライバーにより半導体ウエハーに極めて細いスクライブライン(経線)を例えば碁盤目状に引いた後、外力によってウエハーを割り半導体ウエハーからチップ状にカットする。こうしてLEDチップを形成することができる。

【0027】野外などの使用を考慮する場合、高輝度な 半導体材料として緑色及び青色を窒化ガリウム系化合物 半導体を用いることが好ましく、また、赤色ではガリウ ム、アルミニウム、砒素系の半導体やアルミニウム、イ ンジュウム、ガリウム、燐系の半導体を用いることが好 ましいが、用途によって種々利用できることは言うまで もない。

【0028】なお、窒化ガリウム系化合物半導体を使用 した場合、半導体基板にはサファイヤ、スピネル、Si C、Si、ZnO等の材料が用いられる。結晶性の良い 窒化ガリウムを形成させるためにはサファイヤ基板を用 いることが好ましい。このサファイヤ基板上にGaN、 AlN等のバッファー層を形成しその上にPN接合を有 する窒化ガリウム系半導体を形成させる。窒化ガリウム 系半導体は、不純物をドープしない状態でN型導電性を 示す。なお、発光効率を向上させる等所望のN型窒化ガ リウム系半導体を形成させる場合は、N型ドーパントと ·してSi、Ge、Se、Te、C等を適宜導入すること が好ましい。一方、P型窒化ガリウム系半導体を形成さ せる場合は、P型ドーパンドであるZn、Mg、Be、 Ca、Sr、Ba等をドープさせる。窒化ガリウム系半 導体は、P型ドーパントをドープしただけではP型化し にくいためP型ドーパント導入後に、低電子線照射させ たり、プラズマ照射等によりアニールすることでP型化 させる必要がある。

【0029】LEDチップは、所望の波長によって複数 用いることができ、例えば青色を2個、緑色及び赤色を それぞれ1個ずつとすることができる。また、発光波長 は必ずしも青色、緑色、赤色に限られる物ではなく、所 望に応じて黄色などが発光できるように半導体のバンド ギャプを調節すれば良い。具体的な例としては、青色と 緑色のLEDチップに挟まれた黄色LEDチップを用いて白色光を発光させることができる。LEDチップの配置としては、混色性を考慮して発光波長の長いLEDチップほど中央側に配置されることが好ましい。また、製造工程上それぞれの発光素子としてのLEDチップを直 線状に配置することが好ましい。なお、表示装置用の発

光ダイオードとして利用するためには、赤色の発光波長が600nmから700nm、緑色が495nmから565nm、青色の発光波長が430nmから490nmであることが好ましい。

【0030】(導電性ワイヤー105、405)導電性ワイヤー105、405は、各LEDチップ104、404の電極とのオーミック性、機械的接続性、電気伝導性及び熱伝導性がよいものが求められる。熱伝導度としては0.01cal/cm²/cm/℃以上が好ましく、より好ましくは0.5cal/cm²/cm/℃以上である。具体的には、金、銅、白金、アルミニウム等及びそれらの合金を用いたボンディングワイヤーが好適に挙げられる。作業性を考慮してアルミニウム線あるいは金線がより好ましい。

【0031】(モールド部材106、406)本願発明 のモールド部材106、406は、各LEDチップ10 4、404及び導電性ワイヤー105、405等を外部 から保護する。また、LEDチップからの光を一方の方 向に広い指向性を持たせた光源とさせるために設けられ る。異形である楕円形モールド部材106、406は、 LEDチップ、マウント・リード、やインナー・リード の少なくとも一部を楕円形凹部に入れ固定させる。この 凹部に樹脂を流し込み硬化させることによって形成でき る。モールド部材中に拡散剤を含有させることによって 発光素子であるLEDチップからの指向性を緩和させ視 野角を増やすことができる。発光観測面側から見て楕円 形状のモールド部材とすることによって一方の視野角を 向上させることができるが、さらにモールド部材中を異 なる材質によって凸レンズ形状、凹レンズ形状やそれら を複数組み合わせることによって所望の指向特性とする こともできる。また、モールド部材自体に着色させ所望 外の波長をカットするフィルターの役目をもたすことも できる。上記樹脂モールドの材料としては、エポキシ樹 脂、ユリア樹脂などの耐候性に優れた透明樹脂が好適に 用いられる。また、拡散剤としては、チタン酸バリウ ム、酸化チタン、酸化アルミニウム、酸化珪素等が好適 に用いられる。

【0032】また、本願発明においてモールド部材による集光とカップ外形とが略等しいとは、楕円形モールド部材がレンズ効果により図2、図3や図5及び図6の点線の如く焦点に向かう集光と発光観測面側から見た反射部の輪郭である反射部外形とが実質的に等しいことを言い、樹脂外形の曲率から容易に求めることができる。具体的には、焦点に向かう集光部外に発光素子が配置される、或いは集光部から45%以上内部に反射部が配置されないことを言う。

【0033】(表示装置)表示装置としては、発光ダイオードを複数個配置した表示パネルと駆動回路である点灯回路など電気的に接続されたものが用いられる。具体的には、発光ダイオードを任意形状に配置し標識などに

10

利用できるが、表示装置としては、マトリクッス状など に配置し駆動回路からの出力パルスによってデイスプレ イ等に使用できる物を言う。駆動回路としては、入力さ れる表示データを一時的に記憶させるRAM(Rand om、Access、Memory)と、RAMに記憶 されるデータから発光ダイオードを所定の明るさに点灯 させるための階調信号を演算する階調制御回路と、階調 制御回路の出力信号でスイッチングされて、発光ダイオ ードを点灯させるドライバーとを備える。階調制御回路 は、RAMに記憶されるデータから発光ダイオードの点 灯時間を演算してパルス信号を出力する。階調制御回路 から出力されるパルス信号である階調信号は、発光ダイ オードのドライバーに入力されてドライバをスイッチン グさせる。ドライバーがオンになると発光ダイオードが 点灯され、オフになると消灯される。以下、本願発明の 実施例について説明するが、本願発明は具体的実施例の みに限定されるものではないことは言うまでもない。

[0034]

【実施例】

[実施例1] 緑色、青色及び赤色が発光可能な半導体発光層として、それぞれInGaN(発光波長525nm)、InGaN(発光波長470nm)、GaAlAs(発光波長660nm)を使用したLEDチップを用いて発光ダイオードを構成させた。

【0035】具体的には、赤色を発光するLEDチップ用の半導体ウエハーは、温度差液相成長法で連続的にP型ガリウム・砒素基板上にP型GaAlAs、N型GaAlAsを成長させ、発光領域であるP型GaAlAsを形成させる。青色及び緑色を発光する半導体ウエハーは、厚さ 400μ mのサファイヤ基板上にN型及びP型窒化ガリウム化合物半導体をMOCVD成長法でそれぞれ 5μ m、 1μ m堆積させへテロ構造のPN接合を形成させたものである。なお、P型窒化ガリウム半導体は、P型ドーパントであるMgをドープした後アニールし形成させてある。

【0036】赤色LEDチップは発光観測面側電極として中心に白金を電極層として真空蒸着によって形成させた。また、非発光観測面側であるP型GaAlAs基板上に金を電極層として真空蒸着によって形成させた。

【0037】一方、緑色及び青色のLEDチップは、発光観測面側に発光中心をずらして電気的接続が形成できるようP型半導体及びN型半導体を部分的にドライエッチングする。次に、N型電極としてTiーAl合金を各半導体にスパッタリングし、P型電極としてAuを各半導体にスパッタリングして電極を形成させた。その後、各半導体ウエハーをLEDチップとして使用するためにスクライバーによってスクライブラインを引いた後、外力によって350μm角の大きさに切断した。

【0038】銅製リードフレームは、打ち抜きによって 形成してある。マウント・リード上に設けられたカップ

は、反射部を有する縁なし長方形形状とさせてある。 赤、緑及び青色の発光ダイオードすべてに同様のリード フレームを用いる。赤色LEDチップは、表面反射性の 良いカップ上にダイボンディング機器を用いてAgペー ストにより固定させた。同様に、青色及び緑色LEDチップを表面反射性の良いそれぞれのカップ上にダイボン ディング機器を用いて熱硬化性エポキシ樹脂により固定 させた。

【0039】次に、ワイヤーボンディング機器を用いて直径0.03mmのAu線をLEDチップの各電極、カップ近傍に設けられた突起部及びインナー・リードにそれぞれワイヤーボンディングした。これを楕円形の型に挿入高さを調節して入れ無着色のエポキシ樹脂を充填し120℃5時間で硬化させた。これにより、発光観測面側から見て楕円形状であって、カップがモールド部材の焦点間と平行な辺が垂直な辺よりも長く、且つモールド部材による集光とカップ外形とが略等しい発光ダイオードをそれぞれ形成した。

【0040】この発光ダイオードは、左右方向において 視野角が広く、正面近方から視認した場合においても発 光面が楕円形モールド部材に対していびつに小さく見え ることはなかった。各発光ダイオードを順に6mm間隔 でマトリックス状に配置し駆動装置と接続させた発光装 置を形成させた。発光面が左右方向において大きくなる ため各発光ダイオードの発光面積間が近くなるために混 色性の高い発光装置とすることができる。

【0041】 [実施例2] 実施例1と同様にして緑色、 青色及び赤色が発光可能なLEDチップを形成させた。 銅製リードフレームは、打ち抜きによって形成しLED チップが配置されるカップ形状及び反射板が楕円或いは 縁なしの長方形形状とさせてある。

【0042】銅製リードフレームは、打ち抜きによって形成してある。マウント・リード上に設けられたカップは、反射部を有する縁なし長方形形状とさせてある。また、図4の如くカップの長辺は各インナー・リード配置方向と略垂直に形成されている。LEDチップを表面反射性の良いカップ上に青色及び緑色のダイボンディング機器を用いて熱硬化性エポキシ樹脂により固定させた。LEDチップは、発光波長の長い赤色を発光するLEDチップが中心となっている。赤色LEDチップは、接着剤としてAgペーストを用いてカップに固定させると共に電気的にも接続もさせてある。

【0043】次に、ワイヤーボンディング機器を用いて直径0.03mmのAu線をLEDチップの各電極、カップ近傍に設けられた突起部及び各インナー・リードにそれぞれワイヤーボンディングした。これを楕円形の型に入れ無着色のエポキシ樹脂を充填し120℃5時間で硬化させることにより発光観測面側から見て楕円形状の発光ダイオードを形成した。こうして、カップがモールド部材の焦点間と平行な辺が垂直な辺よりも長く、且つ

12

モールド部材による集光とカップ外形とが略等しい発光 ダイオードを500個形成した。

【0044】次に、この発光ダイオードを基板上に7×7個のマトリックス状に配置しそれぞれ駆動回路と電気的に接続させ表示装置を10個形成した。実施例1と同様、遠方及び近方においても視認性や混色性の優れた表示装置とすることができる。

[0045]

【発明の効果】以上説明したように、本願発明の請求項1の構成とすることにより、所望の方向において視野角が広く、近方からの視認時においても発光部がいびつに小さく見えることがない発光ダイオードとすることができる。また、発光ダイオードを複数種用いた場合においても、遠方及び近方の視認時に光効率の優れものとすることができる。さらに、複数の発光波長を有する発光ダイオードを用いた場合において混色性をより高めることができる。

【0046】本願発明の請求項2の構成とすることによって、遠近に係わらず指向角及び混色性をより均一な発光ダイオードとすることができる。

【0047】本願発明の請求項3の構成とすることによって、電気的接続部材同士の配線自由度が広がり導電性ワイヤーの近接や接触性が極めて少なくなり電気的特性や量産性に優れた発光ダイオードとなる。特に、複数種の発光素子を独立に駆動させるために1つの発光素子から複数の導電性ワイヤーが用いられている場合において特に有効となる。

【0048】本願発明の請求項4の構成とすることによって、発光ダイオードが1画素として繰り返し近接し多数配置された表示パネルを用いる表示装置において、精円モールド部材の楕円焦点間方向においてより混色性を向上させることができる。特に、遠方及び近方時の視認においても混色性が崩れることを低減させることができる。

[0049]

【図面の簡単な説明】

【図1】本願発明の発光ダイオードを発光観測面側から 見た概略平面図である。

【図2】図1の発光ダイオードのX-X断面図である。

【図3】図1の発光ダイオードのY-Y断面図である。

【図4】本願発明の他の発光ダイオードを発光観測面側から見た概略平面図である。

【図5】図4の発光ダイオードのX-X断面図である。

【図6】図4の発光ダイオードのY-Y断面図である。

【図7】本願発明と比較のために示した発光ダイオード を発光観測面側から見た概略平面図である。

【図8】図7の発光ダイオードのX-X断面図である。

【図9】図7の発光ダイオードのY-Y断面図である。

【符号の説明】

101 カップに設けられた反射部

(8)

	13			14
102	LEDチップが固定されるカップ		404	LEDチップ
103	インナー・リードとなるリードフレーム		405	導電性ワイヤー
104	LEDチップ		406	発光観測面側から見て楕円形状のモールド部
105	導電性ワイヤー こうしゅう		材	
106	発光観測面側から見て楕円形状のモールド部		701	LEDチップが固定される真円形カップ
材			703	インナー・リードとなるリードフレーム
201	カップにLEDチップが固定されたマウント		704	LEDチップ
・リード			705	導電性ワイヤー
401	カップに設けられた反射部		706	発光観測面側から見て楕円形状のモールド部
402	LEDチップが固定されるカップ	10	材	
403	インナー・リードとなるリードフレーム			

【図1】

【図8】

【図9】

