<u>Probability measure</u> is a function that assigns a number between 0 and 1 to "nice" sets in the sample space, subject to the axioms of probability (WMS p.30 - below).

Suppose S is a sample space associated with an experiment. To every event A in S (A is a subset of S), we assign a number, P(A), called the probability of A, so that the following axioms hold:

Axiom 1: $P(A) \ge 0$.

Axiom 2: P(S) = 1.

Axiom 3: If A_1, A_2, A_3, \ldots form a sequence of pairwise mutually exclusive events in S (that is, $A_i \cap A_j = \emptyset$ if $i \neq j$), then

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = \sum_{i=1}^{\infty} P(A_i).$$

A random variable (rv) is a function from the sample space to the real line.

 $\frac{(Cumulative) \ distribution \ function \ (cdf)}{F(x) = Pr(X \leq x) \ \text{for every} \ x \in \mathbb{R}.}$

Properties

- ▶ F is nondecreasing
- $ightharpoonup F(x) \in [0,1]$ for every valid x
- $ightharpoonup F(\infty) = 1.$

Q: Why?

A rv X is called <u>discrete</u> iff there are at most <u>countably</u> many values x_1, x_2, \ldots such that $\sum_{i=1}^n Pr(X=x_i)=1$.

Aside: a set is *countable* if it can be enumerated ("counted") using positive integers.

$$F(x) = Pr(X \le x)$$

$$= Pr(X = xi) = \sum_{i:xi \le x} Pr(X=x)$$

$$i:xi \le x$$

The function defined as $f(x_i) = Pr(X = x_i)$ is called the probability mass function (pmf) of the rv X.

Q: How does the cdf of any discrete rv look like?

1 4		•	•	F(x)
0.5	•	0		
0	P	7 -	3	→×

colf F(x)

15 made enfirely

of "jumps".

1	×	1+(x)	
	1	0.5	
	2	0.3	
	3	0.2	
	1	*	

4日とは即とくまとり等に、第二

Some standard discrete distributions/rvs (WMS)

Distribution	Probability Function	Mean	Variance	Moment- Generating Function
Binomial	$p(y) = {n \choose y} p^{y} (1-p)^{n-y};$ $y = 0, 1, \dots, n$	пр	np(1-p)	$[pe^t + (1-p)]^n$
Geometric	$p(y) = p(1-p)^{y-1};$ y = 1, 2,	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t}$
Hypergeometric	$p(y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}};$ $y = 0, 1, \dots, n \text{ if } n \le r,$ $y = 0, 1, \dots, r \text{ if } n > r$	$\frac{nr}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$	*
Poisson	$p(y) = \frac{\lambda^{y} e^{-\lambda}}{y!};$ y = 0, 1, 2,	λ	λ .	$\exp[\lambda(e^t-1)]$

・ロ・・西・・オ・・モ・ を りゃつ

A rv X is called <u>continuous</u> if Pr(X = x) = 0 for every $x \in \mathbb{R}$.

Q: How does the cdf of any continuous rv look like?

A: continuous non-decreasing function.

=> "jumps are not allowed".

If X is a continuous rv and has differentiable cdf F, then the probability density function (pdf) of X is defined as

$$f(x) = \frac{\partial}{\partial x} F(x). = 7 F(x) = \int_{-\infty}^{\infty} f(t) dt$$

$$\approx \frac{F(x+\Delta) - F(x)}{\Delta}$$

Some standard continuous distributions/rvs (WMS)

	densiff		Moment- Generating	
Distribution	Probability Function	Mean	Variance	Function
Uniform	$f(y) = \frac{1}{\theta_2 - \theta_1}; \theta_1 \le y \le \theta_2$	$\frac{\theta_1 + \theta_2}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$	$\frac{e^{t\theta_2} - e^{t\theta_1}}{t(\theta_2 - \theta_1)}$
Normal	$f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\left(\frac{1}{2\sigma^2}\right)(y-\mu)^2\right]$ $-\infty < y < +\infty$	μ	σ^2	$\exp\left(\mu t + \frac{t^2\sigma^2}{2}\right)$
Exponential	$f(y) = \frac{1}{\beta} e^{-y/\beta}; \beta > 0$ $0 < y < \infty$	β	$oldsymbol{eta^2}$	$(1-\beta t)^{-1}$
Gamma	$f(y) = \left[\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right] y^{\alpha-1} e^{-y/\beta};$ $0 < y < \infty$	αβ	$lphaeta^2$	$(1-\beta t)^{-\alpha}$

Indicator function h of a set or event A is defined as $h(x) = \mathbb{I}(x \in A)$, where

$$\mathbb{I}(x \in A) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A. \end{cases}$$