Universidade Federal do Rio Grande do Sul Instituto de Informática

Organização de Computadores

Aula 17

Memória cache segunda parte

INF01113 - Organização de Computadores

Memória cache segunda parte

- 1. Mapeamento completamente associativo
- 2. Mapeamento direto
- 3. Mapeamento conjunto associativo

INF01113 - Organização de Computadores

endereço gerado pelo processador miss: memória é acessada cache comparação simultânea com todos os endereços hit processador MF01113 - Organização de Computadores

Mapeamento completamente associativo

- vantagem: máxima flexibilidade no posicionamento de qualquer palavra (ou linha) da memória principal em qualquer palavra (ou linha) da cache
- desvantagens
 - custo em hardware da comparação simultânea de todos os endereços armazenados na cache
 - algoritmo de substituição (em hardware) para selecionar uma linha da cache como conseqüência de um miss
- utilizado apenas em memórias associativas de pequeno tamanho
 - tabelas

Mapeamento direto

- · endereço é dividido em 2 partes
 - parte menos significativa: índice, usado como endereço na cache onde será armazenada a palavra
 - parte mais significativa: tag, armazenado na cache junto com o conteúdo da posição de memória
- quando acesso é feito, índice é usado para encontrar palavra na cache
 - se tag armazenado na palavra da cache é igual ao tag do endereço procurado, então houve hit
- endereços com mesmo índice são mapeados sempre para a mesma palavra da cache

Quantos bits tem a cache no total?

- supondo cache com mapeamento direto, com 64 KB de dados, linha com uma palavra, endereços de 32 bits
- 64 KB -> 16 Kpalavras, 214 palavras, neste caso 214 linhas
- cada linha tem 32 bits de dados mais um tag (32-14-2 bits) mais um bit de validade:

$$2^{14} \times (32 + 32 - 14 - 2 + 1) = 2^{14} \times 49 = 784 \times 2^{10} = 784 \text{ Kbits}$$

• 98 KB para 64 KB de dados, ou 50% a mais

INF01113 - Organização de Computadores

Mapeamento direto

- · vantagens
 - não há necessidade de algoritmo de substituição
 - hardware simples e de baixo custo
 - alta velocidade de operação
 - especulação é possível
- · desvantagens
 - desempenho cai se acessos consecutivos são feitos a palavras com mesmo índice
 - hit ratio inferior ao de caches com mapeamento associativo
- demonstra-se no entanto que hit ratio aumenta com o aumento da cache, aproximando-se de caches com mapeamento associativo
 - tendência atual é de uso de caches grandes

INF01113 - Organização de Computadores

3. Mapeamento conjunto – associativo

INF01113 - Organização de Computadores

Mapeamento conjunto - associativo

- mapeamento direto: todas as palavras armazenadas na cache devem ter índices diferentes
- mapeamento associativo: linhas podem ser colocadas em qualquer posição da cache
- compromisso: um nº limitado de linhas, de mesmo índice mas diferentes tags, podem estar na cache ao mesmo tempo (num mesmo conjunto)
- nº de linhas no conjunto = associatividade

INF01113 - Organização de Computadores

INF01113 - Organização de Computadores

Mapeamento conjunto - associativo

- vantagem em relação ao mapeamento completamente associativo: comparadores são compartilhados por todos os conjuntos
- algoritmo de substituição só precisa considerar linhas dentro de um conjunto
- · muito utilizado em microprocessadores
 - Motorola 68040: 4-way set associative
 - Intel 486: 4-way set associative
 - Pentium: 2-way set associative

Desvantagem da cache conjunto-associativo

• conjunto-associativa N-way X mapeamento direto

— dado tem atraso extra do multiplexador

— dado vem DEPOIS da decisão Hit/Miss e da seleção do conjunto

• numa cache com mapeamento direto, linha da cache está disponível

ANTES da decisão Hit/Miss

— possível assumir um hit e continuar. Recuperar depois se for miss.

Cache Index

Cache Data

Cache Data

Cache Tag

Valid

Linha 0

Linha 0

Linha 0

Linha

Hit

Impacto da associatividade da cache

Fontes de misses

- compulsórios (cold start ou chaveamento de processos, primeira referência): primeiro accesso a uma linha
 - é um "fato da vida": não se pode fazer muito a respeito
 - se o programa vai executar "bilhões" de instruções, misses compulsórios são insignificantes
- · de conflito (ou colisão)
 - múltiplas linhas de memória acessando o mesmo conjunto da cache conjunto-associativa ou mesma linha da cache com mapeamento direto
 - solução 1: aumentar tamanho da cache
 - solução 2: aumentar associatividade
- · de capacidade
 - cache não pode conter todas as linhas accessadas pelo programa
 - solução: aumentar tamanho da cache
- · invalidação: outro processo (p.ex. I/O) atualiza memória

INF01113 - Organização de Computadores

Quantidade de misses segundo a fonte

	Mapeam. direto	Conjassociat. N-way	Complet. associativa
Tamanho da cache	Grande	Médio	Pequeno
Misses compulsórios	Mesmo	Mesmo	Mesmo
Misses de conflito	Alto	Médio	Zero
Misses de capacidade	Baixo	Médio	Alto
Misses de invalidação	Mesmo	Mesmo	Mesmo