Übungsblatt 6

Abgabefrist: 19. Juli 2024 um 10:00 Uhr

Eine Abbildung $f: X \to Y$ zwischen zwei topologischen Räumen X und Y heißt lokaler Homöomorphismus, wenn es zu jedem Punkt $x \in X$ eine Umgebung $U \subseteq X$ von x gibt, die unter f homöomorph auf eine Umgebung $V \subseteq Y$ von f(x) abgebildet wird.

Aufgabe 1 Zeigen Sie, dass jede Überlagerung ein lokaler Homöomorphismus ist, aber nicht jeder lokale Homöomorphismus eine Überlagerung ist.

Aufgabe 2 Man zeige:

- 1. Jeder lokale Homöomorphismus bildet offene Mengen auf offene Mengen ab.
- 2. Sind $f: X \to Y$ und $g: Y \to Z$ Überlagerungen und gelte für jeden Punkt $z \in Z$, dass $|g^{-1}\{z\}| < \infty$ ist, dann ist auch $g \circ f$ eine Überlagerung.

Aufgabe 3 Sei X ein Hausdorff-Raum. Zeigen Sie:

- 1. Operiere eine endliche Gruppe G frei auf X, so ist diese Gruppenoperation auch frei diskontinuierlich.
- 2. Ist G nicht endlich, so ist diese Aussage im Allgemeinen falsch.

Aufgabe 4 Sei (X,*) eine Gruppe ausgestattet mit einer Topologie, sodass

$$X\times X\to X,\ (a,b)\mapsto a*b\quad \text{und}\quad X\to X,\ a\mapsto a^{-1}$$

stetige Abbildungen sind. Bezeichne mit $e \in X$ das neutrale Element. Zeigen Sie, dass die Fundamentalgruppe $\pi_1(X, e)$ abelsch ist.

Hinweis: Zeigen Sie die Gleichung: $\alpha \bullet \beta = (\alpha \bullet \varepsilon) \cdot (\varepsilon \bullet \beta)$, wobei ε den konstanten Weg ε bei e bezeichnet.