Definição 7.1. Uma equação linear em n variáveis x_1, \ldots, x_n sobre \mathbb{K} , onde $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$, é uma equação do tipo $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$, onde $a_1, a_2, \ldots, a_n, b \in \mathbb{K}$.

Definição 7.2. Um sistema de equações lineares é um conjunto finito de equações lineares que são resolvidas simultaneamente

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n &= b_2 \\ & \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n &= b_m \end{cases}$$

Exemplo 7.3. O sistema

$$\begin{cases} 2x_1 + 3x_2 - 5x_3 &= 1\\ x_1 + 4x_3 &= 0\\ -x_1 + x_2 + 3x_3 &= -1 \end{cases}$$

é um sistema de 3 equações lineares nas incógnitas x_1, x_2, x_3 .

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 - 夕 Q (C)

O sistema da definição anterior pode ser representado na forma Ax = b , onde A, x e b são as seguintes matrizes:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

Definição 7.4. Na representação matricial Ax = b de um sistema de equações lineares chamamos matriz (simples) do sistema à matriz A, coluna das incógnitas à matriz x, coluna dos termos independentes à matriz b e matriz aumentada do sistema à matriz [A|b] obtida juntando a coluna b à matriz A, separando esta com um traço vertical.

OCV (UM) ALGA EC 08 nov'2018 3 / 26

representação matricial

Exemplo 7.5. O sistema do último exemplo, $\begin{cases} 2x_1 + 3x_2 - 5x_3 &= 1\\ x_1 + 4x_3 &= 0\\ -x_1 + x_2 + 3x_3 &= -1 \end{cases}$ representado na forma

$$\begin{bmatrix} 2 & 3 & -5 \\ 1 & 0 & 4 \\ -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

4 / 26

OCV (UM) ALGA EC 08 nov'2018

Exemplo 7.6. Podemos representar matricialmente o sistema

$$\begin{cases}
x_1 + 4x_2 - x_3 = 2 \\
2x_1 + 3x_3 = 0 \\
2x_2 = 5
\end{cases}$$

por Ax = b, onde a matriz simples é $A = \begin{bmatrix} 1 & 4 & -1 \\ 2 & 0 & 3 \\ 0 & 2 & 0 \end{bmatrix}$, a coluna das incógnitas é

 $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ e a coluna dos termos independentes é $b = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$.

A matriz aumentada do sistema é $[A|b] = \begin{bmatrix} 1 & 4 & -1 & 2 \\ 2 & 0 & 3 & 0 \\ 0 & 2 & 0 & 5 \end{bmatrix}$

Definição 7.7. Uma solução de um sistema de equações lineares nas incógnitas x_1, x_2, \ldots, x_n é uma sequência ordenada $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ de escalares tais que as substituições $x_i = \alpha_i$, $i = 1, \ldots, n$, transformam as equações do sistema em igualdades verdadeiras.

Exemplo 7.8. Consideremos o sistema
$$\begin{cases} 2x_1 + x_2 + x_3 + x_4 = 1 \\ 4x_1 + 2x_2 + 3x_3 + 4x_4 = 3 \\ -6x_1 - 3x_2 - x_3 + x_4 = -1 \end{cases}$$

(0,2,-3,2) é solução deste sistema: substituindo nas equações as incógnitas pelos valores correspondentes, obtemos:

$$\left\{ \begin{array}{l} 2\times 0 + 2 + (-3) + 2 = 1 \\ 4\times 0 + 2\times 2 + 3\times (-3) + 4\times 2 = 3 \\ -6\times 0 - 3\times 2 - (-3) + 2 = -1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 1 = 1 \\ 3 = 3 \\ -1 = -1 \end{array} \right.$$

4□ > 4□ > 4 = > 4 = > = 90

OCV (UM) ALGA EC 08 nov'2018 6 / 26

solução de um sistema

Já (1,1,1,1) não é solução do sistema, uma vez que, susbtituindo na primeira equação do sistema cada um das incógnitas por 1, obtemos

$$2 \times 1 + 1 + 1 + 1 = 1$$
,

o que é uma falsidade.

Uma sequência ordenada $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ de escalares será solução de um sistema de equações lineares em n incógnitas Ax = b se multiplicando a matriz A pela matriz coluna cujo elemento na linha i é α_i $(i = 1, \ldots, n)$ se obtém b.

OCV (UM) ALGA EC 08 nov'2018 7 / 26

Exemplo 7.9. Consideremos o sistema do exemplo anterior. A sua representação

matricial
$$Ax = b$$
 é $\begin{bmatrix} 2 & 1 & 1 & 1 \\ 4 & 2 & 3 & 4 \\ -6 & -3 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$.

Note-se que
$$\begin{bmatrix} 2 & 1 & 1 & 1 \\ 4 & 2 & 3 & 4 \\ -6 & -3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}.$$

Isto significa que (0, 2, -3, 2) é solução do sistema.

Note-se ainda que
$$\begin{bmatrix} 2 & 1 & 1 & 1 \\ 4 & 2 & 3 & 4 \\ -6 & -3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 13 \\ -9 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}.$$

Isto significa que (1,1,1,1) não é solução do sistema.

→ロト ←団ト ← 重ト ← 重 ・ の Q (*)

classificação e resolução de sistemas

Definição 7.10. Resolver um sistema de equações lineares consiste em determinar todas as suas soluções ou mostrar que não existe nenhuma.

Definição 7.11. Um sistema de equações diz-se:

possível determinado se tiver exatamente uma solução; possível indeterminado se tiver mais que uma solução; impossível se não tiver nenhuma solução.

Definição 7.12. Dois sistemas de equações lineares dizem-se sistemas equivalentes se têm exatamente as mesmas soluções.

Descreveremos, de seguida, com exemplos, como poderemos traduzir matricialmente o método da adição ordenada para a resolução de sistemas.

OCV (UM) ALGA EC 08 nov'2018 9 / 26

Exemplo 7.13. Consideremos o sistema

$$\begin{cases} 2x + y + 4z = 2 \\ 6x + y = -10 \\ -x + 2y - 10z = -4 \end{cases}$$

e o método da adição ordenada para a sua resolução. Este método pode ser traduzido matricialmente pela condensação da matriz aumentada do sistema.

$$\begin{bmatrix} 2 & 1 & 4 & 2 \\ 6 & 1 & 0 & -10 \\ -1 & 2 & -10 & -4 \end{bmatrix} \xrightarrow{L_2 \leftarrow L_2 - 3L_1} \begin{bmatrix} 2 & 1 & 4 & 2 \\ 0 & -2 & -12 & -16 \\ 0 & \frac{5}{2} & -8 & -3 \end{bmatrix} \xrightarrow{\longrightarrow}$$

$$\frac{1}{L_3 \leftarrow L_3 + \frac{5}{4}L_2} \begin{bmatrix}
2 & 1 & 4 & 2 \\
0 & -2 & -12 & -16 \\
0 & 0 & -23 & -23
\end{bmatrix}$$

OCV (UM) ALGA EC 08 nov'2018 10 / 26

Assim, o sistema

$$\begin{cases} 2x + y + 4z = 2 \\ -2y - 12z = -16 \\ -23z = -23 \end{cases}$$

representado pela matriz em forma de escada obtida, é equivalente ao sistema dado.

Usando a substituição de baixo para cima, obtemos z=1, y=2 e x=-2.

Portanto, o conjunto das soluções do sistema dado é $C.S. = \{(-2, 2, 1)\}.$

Observação 7.14. Neste primeiro exemplo temos que r(A) = r([A|b]) = 3, sendo 3 o número de incógnitas. O sistema é possível determinado.

OCV (UM) ALGA EC 08 nov'2018 11 / 26

Exemplo 7.15. Consideremos o sistema

$$\begin{cases} y+z=3\\ x+2y-z=1\\ x+y+z=4 \end{cases}.$$

A condensação da matriz aumentada seria descrita da seguinte forma:

$$[A|b] = \begin{bmatrix} 0 & 1 & 1 & | & 3 \\ 1 & 2 & -1 & | & 1 \\ 1 & 1 & 1 & | & 4 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_2} \begin{bmatrix} 1 & 2 & -1 & | & 1 \\ 0 & 1 & 1 & | & 3 \\ 1 & 1 & 1 & | & 4 \end{bmatrix} \longrightarrow$$

$$\xrightarrow{L_3 \leftarrow L_3 - L_1} \begin{bmatrix} 1 & 2 & -1 & | & 1 \\ 0 & 1 & 1 & | & 3 \\ 0 & -1 & 2 & | & 3 \end{bmatrix} \xrightarrow{L_3 \leftarrow L_3 + L_2} \begin{bmatrix} 1 & 2 & -1 & | & 1 \\ 0 & 1 & 1 & | & 3 \\ 0 & 0 & 3 & | & 6 \end{bmatrix}.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

12 / 26

OCV (UM) ALGA EC 08 nov'2018

Obtemos, assim, o sistema

$$\begin{cases} x + 2y - z = 1 \\ y + z = 3 \\ 3z = 6 \end{cases}.$$

equivalente ao sistema dado.

Usando a substituição de baixo para cima, obtemos z = 2, y = 1 e x = 1.

Logo, o conjunto de soluções do sistema é $C.S. = \{(1,1,2)\}.$

Observação 7.16. No exemplo 7.15 temos que r(A) = r([A|b]) = 3, sendo 3 o número de incógnitas. O sistema é possível determinado.

OCV (UM) ALGA EC 08 nov'2018 13 / 26

Exemplo 7.17. Consideremos o sistema

$$\begin{cases} 2x + y + z + w = 1 \\ 4x + 2y + 3z + 4w = 3 \\ -6x - 3y - z + w = \alpha \end{cases}$$

A condensação da matriz aumentada seria descrita da seguinte forma:

$$[A|b] = \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 4 & 2 & 3 & 4 & 3 \\ -6 & -3 & -1 & 1 & \alpha \end{bmatrix} \xrightarrow{L_2 \leftarrow L_2 - 2L_1} \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 2 & 4 & \alpha + 3 \end{bmatrix}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Obtemos, assim, o sistema

$$\begin{cases} 2x + y + z + w = 1 \\ z + 2w = 1 \\ 0 = \alpha + 1 \end{cases}$$

Claramente, o sistema é impossível se $\alpha \neq -1$.

Estudemos, então, o caso em que $\alpha = -1$:

$$\left\{ \begin{array}{l} 2x+y+z+w=1 \\ z+2w=1 \\ 0=-1+1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2x+y+z+w=1 \\ z+2w=1 \\ 0=0 \end{array} \right.$$

15 / 26

Note-se que a matriz em forma de escada obtida no caso em que lpha=-1 é:

$$\left[\begin{array}{ccc|cccc}
2 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

As colunas que contêm pivôs são a 1^a , correspondente à incógnita x, e a 3^a , correspondente à incógnita z. Dizemos que estas são as incógnitas básicas e que as restantes são as incógnitas livres. Escrevemos as incógnitas x e z em função das restantes variáveis (que podem variar livremente em \mathbb{R}):

$$\left\{ \begin{array}{l} 2x+y+z+w=1 \\ z+2w=1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2x=1-y-(1-2w)-w \\ z=1-2w \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x=\frac{-y+w}{2} \\ z=1-2w \end{array} \right.$$

OCV (UM) ALGA EC 08 nov'2018 16 / 26

O conjunto das soluções do sistema dado é

$$C.S. = \left\{ \left(\frac{-\lambda + \delta}{2}, \lambda, 1 - 2\delta, \delta \right) : \lambda, \delta \in \mathbb{R} \right\}.$$

Observação 7.18. No exemplo 7.17., para $\alpha \neq -1$, $r(A) = 2 \neq 3 = r([A|b])$. Nesse caso, como vimos, o sistema é impossível. Para $\alpha = -1$, r(A) = r([A|b]) = 2 < 4, sendo 4 o número de incógnitas. Neste caso, o sistema é possível indeterminado.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

OCV (UM) ALGA EC 08 nov'2018 17 / 26

Exemplo 7.19. Consideremos o sistema

$$\begin{bmatrix} 1 & 3 & -1 & 2 & 1 \\ -1 & -3 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 7 \\ 1 & 3 & -1 & 1 & 0 \\ 3 & 9 & -2 & 2 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

A condensação da matriz aumentada pode ser obtida do seguinte modo:

$$\begin{bmatrix} 1 & 3 & -1 & 2 & 1 & 1 \\ -1 & -3 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 & 7 & 0 \\ 1 & 3 & -1 & 1 & 0 & 0 \\ 3 & 9 & -2 & 2 & 7 & 0 \end{bmatrix} \xrightarrow{L_2 \leftarrow L_2 + L_1 \atop L_4 \leftarrow L_4 - L_1 \atop L_5 \leftarrow L_5 - 3L_1} \begin{bmatrix} 1 & 3 & -1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 2 & 2 & 2 & 2 \\ 0 & 0 & 1 & -1 & 7 & 0 \\ 0 & 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 1 & -4 & 4 & -3 \end{bmatrix}$$

Obtemos, assim, o seguinte sistema equivalente ao dado

$$\begin{cases} x_1 + 3x_2 - x_3 + 2x_4 + x_5 = 1 \\ x_3 - x_4 + 7x_5 = 0 \\ 2x_4 + 2x_5 = 2 \end{cases}$$

オロト (個) (重) (重) (重) のQの

Os pivôs estão na 1^a , na 3^a e na 4^a colunas, que correspondem às incógnitas x_1 , x_3 e x_4 . Escrevamos estas em função das restantes variáveis, x_2 e x_5 :

$$\begin{cases} x_1 + 3x_2 - x_3 + 2x_4 + x_5 = 1 \\ x_3 - x_4 + 7x_5 = 0 \\ 2x_4 + 2x_5 = 2 \end{cases} \Leftrightarrow \begin{cases} x_1 = 1 - 3x_2 + x_3 - 2x_4 - x_5 \\ x_3 = x_4 - 7x_5 \\ x_4 = 1 - x_5 \end{cases}$$
$$\Leftrightarrow \begin{cases} x_1 = 1 - 3x_2 + (1 - 8x_5) - 2(1 - x_5) - x_5 \\ x_3 = 1 - 8x_5 \\ x_4 = 1 - x_5 \end{cases} \Leftrightarrow \begin{cases} x_1 = -3x_2 - 7x_5 \\ x_3 = 1 - 8x_5 \\ x_4 = 1 - x_5 \end{cases}$$

O conjunto de soluções é $\{(-3x_2-7x_5,x_2,1-8x_5,1-x_5,x_5) \ : \ x_2,x_5 \in \mathbb{R}\}$.

Observação 7.20. No exemplo 7.19., r(A) = r([A|b]) = 3 < 5, sendo 5 o número de incógnitas. Neste caso, o sistema é possível indeterminado.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

OCV (UM) ALGA EC 08 nov'2018 20 / 26

algoritmo de eliminação de Gauss

Algoritmo de Eliminação de Gauss para a resolução de $Ax = b \operatorname{com} A \in \mathcal{M}_{m \times n}(\mathbb{R})$

Passo 1. Determinação de uma matriz em forma de escada [U|c] por condensação da matriz aumentada [A|b]. Seja r(A) = t e r([A|b]) = s.

Passo 2. Se $t \neq s$, o sistema é impossível e o conjunto de soluções de Ax = b é $\{\}$. Se t = s, o sistema é possível. No sistema Ux = c, equivalente ao inicial, separam-se as incógnitas em básicas [correspondentes às colunas com pivôs, em número de t] e livres [correspondentes às colunas sem pivôs, em número de n - t]. Se não houver incógnitas livres [ou seja, se n = t], o sistema é determinado. Se houver, é indeterminado.

Passo 3. Se o sistema for possível, resolve-se Ux=c de baixo para cima, usando o método da substituição. Se existirem incógnitas livres, escrevemos as incógnitas básicas em função das incógnitas livres, determinando, desta forma, o conjunto de soluções de Ax=b.

algoritmo de eliminação de Gauss

Observação 7.21. Dado um sistema de m equações lineares Ax = b a n incógnitas, a aplicação do algoritmo de eliminação de Gauss à matriz aumentada do sistema, [A|b], permite-nos determinar a característica dessa matriz mas também a característica da matriz simples do sistema, A.

De facto, basta contar o número de pivôs para obter r([A|b]) e contar o número de pivôs esquecendo a última coluna para obter r(A). Note-se que

$$r(A) \leq r([A|b])$$

Claramente, r(A) < r([A|b]) se e só se existe alguma linha em que os coeficientes são todos nulos e o termo independente é não nulo [o pivô dessa linha seria, então, o termo independente], ou seja,

$$r(A) < r([A|b]) \Leftrightarrow Ax = b \text{ \'e um sistema imposs\'el}$$

algoritmo de eliminação de Gauss

Assim,

$$Ax = b$$
 é um sistema possível $\Leftrightarrow r(A) = r([A|b])$

Um sistema possível é determinado se e somente se não existem variáveis livres, ou seja, se o número de pivôs é exactamente igual ao número de incógnitas [o que faz com que todas sejam básicas]. Podemos, então, concluir que, existindo n incógnitas,

$$Ax = b$$
 é um sistema possível determinado $\Leftrightarrow r(A) = r([A|b]) = n$

e

$$Ax = b$$
 é um sistema possível indeterminado $\Leftrightarrow r(A) = r([A \ b]) < n$

regra de Cramer

Notação 7.22. Dado um sistema de equações lineares Ax = b, onde A é uma matriz de

ordem
$$n$$
 invertível, $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ e b é do tipo $n \times 1$, denote-se por $A^{(i)}$ a matriz obtida

de A substituindo a coluna i de A pela coluna b.

Teorema 7.23. [Regra de Cramer] Nas condições do parágrafo anterior, a única solução de Ax = b é dada por

$$x_i = \frac{\det A^{(i)}}{\det A}.$$

Exemplo 7.24. Apliquemos a Regra de Cramer na resolução do sistema Ax = b, onde

$$A = \left[\begin{array}{rrr} 1 & -2 & 1 \\ 1 & 1 & 0 \\ -2 & 1 & -2 \end{array} \right], b = \left[\begin{array}{r} 1 \\ 1 \\ -1 \end{array} \right].$$

A matriz A é invertível, e portanto Ax = b é um sistema possível com uma única solução. Comecemos por definir as matrizes $A^{(1)}, A^{(2)}, A^{(3)}$:

$$A^{(1)} = \left[\begin{array}{ccc} 1 & -2 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & -2 \end{array} \right], A^{(2)} = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 0 \\ -2 & -1 & -2 \end{array} \right], A^{(3)} = \left[\begin{array}{ccc} 1 & -2 & 1 \\ 1 & 1 & 1 \\ -2 & 1 & -1 \end{array} \right].$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

OCV (UM) ALGA EC 08 nov'2018 25 / 26

De seguida, aplicamos a regra de Cramer para determinar a solução do sistema.

Temos que det A = -3, det $A^{(1)} = -4$, det $A^{(2)} = 1$ e det $A^{(3)} = 3$.

Assim, obtemos:

$$x_1 = \frac{4}{3}, \ x_2 = -\frac{1}{3}, \ x_3 = -1.$$

Os valores obtidos formam, de facto, a solução pretendida, uma vez que

$$\begin{bmatrix} 1 & -2 & 1 \\ 1 & 1 & 0 \\ -2 & 1 & -2 \end{bmatrix} \begin{bmatrix} 4/3 \\ -1/3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}.$$

O conjunto de soluções do sistema dado é $\{(4/3, -1/3, -1)\}$.