Semaine du 05/05 - Colle MP2I v.hanecart@orange.fr

I Questions de cours

- 1 Énoncer et démontrer la caractérisation de l'injectivité et la surjectivité par l'image d'une base.
- 2 Énoncer et démontrer les propriétés d'un projecteur ainsi que la caractérisation algébrique.
- 3 Énoncer et démontrer les propriétés d'une symétrie ainsi que la caractérisation algébrique.

II Exercices

Exercice 1:

Soit $u: \mathbb{R}_3[X] \longrightarrow \mathbb{R}^2$ défini par u(P) = (P(1), P(-1)).

- 1 Vérifier que u est une application linéaire.
- 2 Donner une base du noyau de $\boldsymbol{u}.$
- 3 Préciser l'image de u.

Exercice 2:

Soient n un entier supérieur ou égal à 3 et $E = \mathbb{R}_n[X]$.

Pour tout $P \in E$, on note f(P) le polynôme $(X^2 + 1)P'' - 2XP'$.

- 1 Préciser f(1), f(X), $f(X^2)$ et $f(X^3)$.
- 2 Montrer que f est un endomorphisme de E.
- 3 Montrer que $\operatorname{Ker}(f) \subseteq \mathbb{R}_3[X]$ puis donner une base de $\operatorname{Ker}(f)$.
- 4 Donner une base de l'image de f.

Exercice 3:

On note $E = \mathbb{R}_4[X]$ et pour $P \in E$, on note $\Psi(P)$ le polynôme $\frac{1}{2}(P + P(2 - X))$ (où conformément à l'usage P(2 - X) désigne $P \circ (2 - X)$ par abus de notation).

- 1 Vérifier que $\Psi(X+1)=2$.
- 2 Vérifier que Ψ est un projecteur de E.
- 3 Montrer que $(1, (X-1), (X-1)^2, (X-1)^3, (X-1)^4)$ est une base de E et préciser l'image par Ψ des vecteurs de cette base.
- 4 En déduire une base de $\operatorname{Im}(\Psi)$ et une base de $\operatorname{Ker}(\Psi)$.

Exercice 4:

Soient E un espace vectoriel sur \mathbb{R} de dimension $p \in \mathbb{N}^*$ et u un endomorphisme de E. Pour $n \in \mathbb{N}$, on note $K_n = \text{Ker}(u^n)$ et $L_n = \text{Im}(u^n)$.

1 - Soit $n \in \mathbb{N}$.

Vérifier que $K_n \subseteq K_{n+1}$ et montrer que si $K_n = K_{n+1}$, alors $K_{n+1} = K_{n+2}$.

2 - Montrer qu'il existe $n \in \mathbb{N}$ tel que $K_n = K_{n+1}$.

Indication: Utiliser la suite $(\dim_{\mathbb{K}}(K_n))_{n\in\mathbb{N}}$.

3 - Soit $n_0 \in \mathbb{N}$ tel que $K_{n_0} = K_{n_0+1}$.

Montrer que $L_{n_0} = L_{n_0+1}$ puis que $L_{n_0} \cap K_{n_0} = \{0_E\}$ et enfin que ces sous-espaces sont supplémentaires dans E.

Exercice 5:

Soit f un endomorphisme de \mathbb{R}^3 non nul vérifiant $f \circ f = 0_{\mathcal{L}(\mathbb{R}^3)}$.

Déterminer les dimensions du noyau et de l'image de f.

Exercice 6:

Soient E un \mathbb{K} -espace vectoriel et p et q deux projecteurs de même image.

- 1 Montrer que $q \circ p = p$ et $p \circ q = q$.
- 2 Soient $\lambda \in \mathbb{R}$ et $f = \lambda p + (1 \lambda)q$.

Montrer que f est un projecteur. Quelle est son image?