MAC0323 ALGORITMOS E ESTRUTURAS DE DADOS II FOLHA DE SOLUÇÃO

Nome: Leonardo Heidi Almeida Murakami

NUSP: 11260186

Assinatura

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: Exercício Teórico I - MAC0323

SOLUÇÃO

1. Exercício 1

Seja T uma Árvore Binária Completa (ABC) com N nós, onde $N \ge 1$. Seja $N = (b_n b_{n-1} \dots b_0)_2$ a representação binária de N, onde $b_n = 1$ (e portanto, $n = \lfloor \lg N \rfloor$). Sejam T_1 e T_2 as subárvores esquerda e direita da raiz de T, com N_1 e N_2 nós, respectivamente.

Queremos provar que se $b_{n-1}=1$, então $N_1=2^n-1$ e $N_2=(b_{n-1}\ldots b_0)_2$.

Prova. Definições e Propriedades da ABC:

- $Uma\ ABC\ com\ N\ n\'os\ tem\ altura\ h=n=|\lg N|.$
- Todos os níveis $0, 1, \ldots, n-1$ estão completamente preenchidos, contendo 2^n-1 nós.
- O nível n (último nível) contém os $k = N (2^n 1) = N 2^n + 1$ nós restantes, preenchidos da esquerda para a direita.
- O número total de nós é $N = 1(raiz) + N_1 + N_2$.
- A representação binária de N é $N = \sum_{i=0}^{n} b_i 2^i$. Como $b_n = 1$, temos $N = 2^n + \sum_{i=0}^{n-1} b_i 2^i = 2^n + (b_{n-1} \dots b_0)_2$.
- O número de nós no último nível é $k = N 2^n + 1 = (2^n + (b_{n-1} \dots b_0)_2) 2^n + 1 = (b_{n-1} \dots b_0)_2 + 1.$

Tamanhos das Subárvores N_1 **e** N_2 : A subárvore esquerda T_1 consiste nos nós da subárvore esquerda completa até o nível n-1, mais os nós que "caem"na subárvore esquerda no último nível.

- Nós em T_1 dos níveis 1 a n-1 (relativos a T): $\frac{(2^n-1)-1}{2}=2^{n-1}-1$.
- Nós em T_1 do nível n (último nível de T): Os primeiros $\min(k, 2^{n-1})$ nós do último nível k vão para a subárvore esquerda (pois a capacidade da subárvore esquerda no nível $n \notin 2^{n-1}$).
- Portanto, $N_1 = (2^{n-1} 1) + \min(k, 2^{n-1}).$

Date: 13 de Abril de 2025.

A subárvore direita T_2 consiste nos nós da subárvore direita completa até o nível n-1, mais os nós restantes do último nível.

- Nós em T_2 dos níveis 1 a n-1: $2^{n-1}-1$.
- Nós em T_2 do nível n: Os nós restantes $\max(0, k-2^{n-1})$.
- Portanto, $N_2 = (2^{n-1} 1) + \max(0, k 2^{n-1}).$

Caso $b_{n-1} = 1$: Se $b_{n-1} = 1$, então o valor $(b_{n-1} \dots b_0)_2$ é no mínimo 2^{n-1} .

- $(b_{n-1} \dots b_0)_2 = 1 \cdot 2^{n-1} + (b_{n-2} \dots b_0)_2 \ge 2^{n-1}$.
- Consequentemente, $k = (b_{n-1} \dots b_0)_2 + 1 \ge 2^{n-1} + 1$. Logo, $k > 2^{n-1}$.

1 Agora, calculamos N_1 e N_2 sob esta condição:

- $N_1 = (2^{n-1} 1) + \min(k, 2^{n-1})$. Como $k > 2^{n-1}$, $\min(k, 2^{n-1}) = 2^{n-1}$. $N_1 = (2^{n-1} 1) + 2^{n-1} = 2 \cdot 2^{n-1} 1 = \boxed{2^n 1}$. (Isto significa que a subárvore esquerda é uma árvore binária completa de altura n 1).
- $N_2 = (2^{n-1} 1) + \max(0, k 2^{n-1})$. Como $k > 2^{n-1}$, $\max(0, k 2^{n-1}) = k 2^{n-1}$. $N_2 = (2^{n-1} 1) + (k 2^{n-1}) = k 1$.
- Substituindo $k = (b_{n-1} \dots b_0)_2 + 1$: $N_2 = ((b_{n-1} \dots b_0)_2 + 1) - 1 = (b_{n-1} \dots b_0)_2$.

Assim, provamos que se $b_{n-1} = 1$, então $N_1 = 2^n - 1$ e $N_2 = (b_{n-1} \dots b_0)_2$.

2. Exercício 2

Usando a mesma notação do Exercício 1, queremos provar que se $b_{n-1}=0$, então $N_1=(1b_{n-2}\dots b_0)_2$ e $N_2=2^{n-1}-1$.

Prova. Utilizamos as mesmas definições e as fórmulas gerais para N_1 e N_2 derivadas no Exercício 1:

- $N = (1b_{n-1} \dots b_0)_2$, $n = \lfloor \lg N \rfloor$.
- $k = N 2^n + 1 = (b_{n-1} \dots b_0)_2 + 1$.
- $N_1 = (2^{n-1} 1) + \min(k, 2^{n-1}).$
- $N_2 = (2^{n-1} 1) + \max(0, k 2^{n-1}).$

Caso $b_{n-1} = 0$: Se $b_{n-1} = 0$, então o valor $(b_{n-1} \dots b_0)_2 = (0b_{n-2} \dots b_0)_2 = (b_{n-2} \dots b_0)_2$.

- $(b_{n-1} \dots b_0)_2 = \sum_{i=0}^{n-2} b_i 2^i < 2^{n-1}$.
- Consequentemente, $k = (b_{n-1} \dots b_0)_2 + 1 \le (2^{n-1} 1) + 1 = 2^{n-1}$.

Agora, calculamos N_1 e N_2 sob esta condição:

- $N_1 = (2^{n-1} 1) + \min(k, 2^{n-1})$. Como $k \le 2^{n-1}$, $\min(k, 2^{n-1}) = k$. $N_1 = (2^{n-1} 1) + k$.
- Substituindo $k = (b_{n-1} \dots b_0)_2 + 1$: $N_1 = (2^{n-1} - 1) + ((b_{n-1} \dots b_0)_2 + 1) = 2^{n-1} + (b_{n-1} \dots b_0)_2$.
- Como $b_{n-1} = 0$, $(b_{n-1} \dots b_0)_2 = (b_{n-2} \dots b_0)_2$. $N_1 = 2^{n-1} + (b_{n-2} \dots b_0)_2$.
- Este valor é precisamente a representação binária $(1b_{n-2} \dots b_0)_2$. (O 1 está na posição n-1).
- $N_2 = (2^{n-1} 1) + \max(0, k 2^{n-1})$. Como $k \le 2^{n-1}$, $\max(0, k 2^{n-1}) = 0$. $N_2 = (2^{n-1} 1) + 0 = \boxed{2^{n-1} 1}$. (Isto significa que a subárvore direita é uma árvore binária completa de altura n 2).

Assim, provamos que se $b_{n-1} = 0$, então $N_1 = (1b_{n-2} \dots b_0)_2$ e $N_2 = 2^{n-1} - 1$.

3. Exercício 3

Seja T uma ABC com N nós. Seja h(x) a altura do nó x em T (definida como o comprimento do caminho mais longo de x até uma folha na subárvore enraizada em x). Seja $S_N = \sum_{x \in T} h(x)$ a soma das alturas de todos os nós em T. Seja u_N o número de bits 1 na representação binária de N. Queremos provar que $S_N = N - u_N$.

Prova. Procederemos por indução forte sobre o número de nós N.

Base da Indução: Para N=1.

- A árvore T consiste apenas no nó raiz r.
- A representação binária é $N = (1)_2$.
- O número de bits 1 é $u_1 = 1$.
- A altura da raiz (que também é folha) é h(r) = 0.
- A soma das alturas \acute{e} $S_1 = h(r) = 0$.
- A fórmula $N u_N$ resulta em $1 u_1 = 1 1 = 0$.
- Como $S_1 = N u_N$, a base da indução é válida.

Hipótese Indutiva (HI): Assuma que para todo k tal que $1 \le k < N$, a soma das alturas S_k em uma ABC com k nós satisfaz $S_k = k - u_k$.

Passo Indutivo: Considere uma ABC T com N > 1 nós. Seja r a raiz de T. Sejam T_1 e T_2 as subárvores esquerda e direita com N_1 e N_2 nós, respectivamente, onde $N = 1 + N_1 + N_2$.

- A altura da raiz $r \notin h(r) = n = \lfloor \lg N \rfloor$.
- A soma das alturas em T pode ser calculada recursivamente: A altura de cada nó x na subárvore T_i (onde i=1 ou i=2) contribui para a soma S_N . A soma das alturas dos nós dentro de T_1 (calculadas como se T_1 fosse uma árvore independente) é S_{N_1} . Similarmente para T_2 , a soma é S_{N_2} . A altura da raiz h(r) deve ser adicionada.
- Assim, a relação recursiva é: $S_N = h(r) + S_{N_1} + S_{N_2}$.
- Note que $N_1 \ge 0$ e $N_2 \ge 0$. Como N > 1, pelo menos uma subárvore não é vazia. Se $N_1 = 0$ (ou $N_2 = 0$), então $S_{N_1} = 0$ (ou $S_{N_2} = 0$), e a HI ainda se aplica (formalmente, $u_0 = 0$, então $S_0 = 0 0 = 0$). Como $N \ge 1$, temos $N_1 < N$ e $N_2 < N$.
- Aplicando a Hipótese Indutiva para S_{N_1} e S_{N_2} (assumindo $N_1, N_2 \ge 1$, ou tratando $S_0 = 0, u_0 = 0$ se N_1 ou N_2 for 0):

$$S_N = n + (N_1 - u_{N_1}) + (N_2 - u_{N_2})$$

• $Usando\ N_1 + N_2 = N - 1$:

$$S_N = n + (N - 1) - (u_{N_1} + u_{N_2})$$

Queremos mostrar que $S_N = N - u_N$. Para isso, precisamos verificar se a seguinte igualdade é verdadeira:

$$n + (N - 1) - (u_{N_1} + u_{N_2}) = N - u_N$$

Rearranjando os termos, a igualdade acima é equivalente a:

$$u_N = u_{N_1} + u_{N_2} - n + 1$$

Vamos verificar esta relação usando os resultados dos Exercícios 1 e 2. Seja $N = (1b_{n-1} \dots b_0)_2$. O número de bits 1 em N é $u_N = 1 + \sum_{i=0}^{n-1} b_i$.

Caso 1: $b_{n-1} = 1$.

- Do Exercício 1, $N_1 = 2^n 1 = (11 \dots 1)_2$ (n uns) $e N_2 = (b_{n-1} \dots b_0)_2 = (1b_{n-2} \dots b_0)_2$.
- $u_{N_1} = n$.
- u_{N_2} é o número de bits 1 em $(b_{n-1} \dots b_0)_2$, que é $\sum_{i=0}^{n-1} b_i$. Verificando a relação: $u_{N_1} + u_{N_2} n + 1 = n + \left(\sum_{i=0}^{n-1} b_i\right) n + 1 = 1 + \sum_{i=0}^{n-1} b_i$.
- Este resultado é exatamente $u_N = 1 + \sum_{i=0}^{n-1} b_i$. À relação é válida neste caso.

Caso 2: $b_{n-1} = 0$.

- Do Exercício 2, $N_1 = (1b_{n-2} \dots b_0)_2$ e $N_2 = 2^{n-1} 1 = (11 \dots 1)_2$ $(n-1 \ uns)$.
- u_{N_1} é o número de bits 1 em $(1b_{n-2} \dots b_0)_2$. O bit mais significativo (posição n-1) é 1. Os outros bits são $b_{n-2}, ..., b_0$. Então $u_{N_1} = 1 + \sum_{i=0}^{n-2} b_i$.
- $u_{N_2} = n 1$.
- Verificando a relação: $u_{N_1} + u_{N_2} n + 1 = \left(1 + \sum_{i=0}^{n-2} b_i\right) + (n-1) n + 1 = 1 + 1$ $\sum_{i=0}^{n-2} b_i + n - 1 - n + 1 = 1 + \sum_{i=0}^{n-2} b_i.$
- Agora, vejamos u_N . Como $N = (1b_{n-1} \dots b_0)_2$ e $b_{n-1} = 0$: $u_N = 1 + b_{n-1} + \sum_{i=0}^{n-2} b_i = 0$ $1 + 0 + \sum_{i=0}^{n-2} b_i = 1 + \sum_{i=0}^{n-2} b_i.$
- Novamente, o resultado $u_{N_1} + u_{N_2} n + 1$ é igual a u_N . A relação é válida neste caso tamb'em.

Como a relação $u_N = u_{N_1} + u_{N_2} - n + 1$ foi verificada em ambos os casos possíveis para b_{n-1} , a equação $S_N = n + (N-1) - (u_{N_1} + u_{N_2})$ se simplifica corretamente para $S_N = N - u_N$.

Conclusão da Indução: Pelo princípio da indução forte, provamos que para qualquer ABC T com $N \ge 1$ nós, a soma das alturas de todos os nós é $S_N = N - u_N$.