- Q1. Compute BOW, TF, IDF, and then TF.IDF values for each term in the following three sentences.
- S1: "data science is one of the most important courses in computer science"
- **S2:** "this is one of the best data science courses"
- S3: "the data scientists perform data analysis"

	analysi	bes	compute	course	dat	importan	i	i	mos	0	on	perfor	scienc	scientist	th	thi
	S	t	r	S	а	t	n	S	t	f	е	m	е	S	е	S
S	0	0	1	1	1	1	1	1	1	1	1	0	2	0	1	0
1																
S	0	1	0	1	1	0	0	1	0	1	1	0	1	0	1	1
2																
S	1	0	0	0	2	0	0	0	0	0	0	1	0	1	1	0
3																

TF table:

	analysi	bes	compute	course	dat	importan	in	is	mos	of	on	perfor	scienc	scientist	th	thi
	S	t	r	S	а	t			t		е	m	е	S	е	S
S	0	0	1	1	1	1	1	1	1	1	1	0	2	0	1	0
1			12	12	12	12	$\overline{12}$	<u>12</u>	12	<u>12</u>	12		$\overline{12}$		$\overline{12}$	
S	0	1	0	1	1	0	0	1	0	1	1	0	1	0	1	1
2		9		- 9	9			9		9	9		- 9		9	9
S	1	0	0	0	2	0	0	0	0	0	0	1	0	1	1	0
3	- 6				6							- 6		- 6	6	

IDF
$log(\frac{3}{1})$
$log(\frac{3}{1})$
$log(\frac{3}{1})$
$log(\frac{3}{1})$
$log(\frac{3}{13})$
$log(\frac{3}{1})$
$log(\frac{3}{1})$
$log(\frac{3}{2})$ $log(\frac{3}{1})$
$log(\frac{\overline{3}}{1})$

of	$log(\frac{3}{2})$
one	$log(\frac{3}{2})$
perform	$log(\frac{3}{1})$
science	$log(\frac{3}{2})$
scientists	$log(\frac{3}{1})$
the	$log(\frac{3}{3})$
this	$log(\frac{3}{1})$

Term	S1	S2	S3
analysis	0.000000	0.000000	0.079520
best	0.000000	0.053013	0.000000
computer	0.039760	0.000000	0.000000
courses	0.014674	0.019566	0.000000
data	0.000000	0.000000	0.000000
important	0.039760	0.000000	0.000000
in	0.039760	0.000000	0.000000
is	0.014674	0.019566	0.000000
most	0.039760	0.000000	0.000000
of	0.014674	0.019566	0.000000
one	0.014674	0.019566	0.000000
perform	0.000000	0.000000	0.079520
science	0.029349	0.019566	0.000000

scientists	0.000000	0.000000	0.079520
the	0.000000	0.000000	0.000000
this	0.000000	0.053013	0.000000

Q2. Compute the similarity between S1, S2, and S3 using cosine, manhattan, and euclidean distances.

Cosine similarity: (using BOW vectors)

Cosine Similarity between S1 and S2:

Dot Product =
$$0x0 + 0x1 + 1x0 + 1x1 + 1x1 + 1x0 + 1x0 + 1x1 + 1x0 + 1x1 + 1x1 + 0x0 + 2x1 + 0x0 + 1x1 + 0x1$$

= 7

Magnitude of S1 =
$$\sqrt{0^2 + 0^2 + 1^$$

$$=\sqrt{12}$$

Magnitude of S2 =
$$\sqrt{0^2 + 0^2 + 1^$$

 $=\sqrt{9}$

cosine (S1,S2) =
$$\frac{7}{\sqrt{12} X \sqrt{9}}$$

= 0.712

Cosine Similarity between S2 and S3:

$$= 0X1 + 0X0 + 1X0 + 1X0 + 1X2 + 1X0 + 1X0 + 1X0 + 1X0 + 1X0 + 1X0 + 0X1 + 2X0 + 0X1 + 1X1 + 0X0$$

Magnitude of S3 =
$$\sqrt{1^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2}$$

$$=\sqrt{7}$$

```
cosine (S1,S3) = \frac{3}{\sqrt{12} X\sqrt{7}}
```

=0.2835

= 0.3536

= 11

Cosine Similarity between S2 and S3:

```
S2: [0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1]

S3: [1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0]

= 0X1 + 1X0 + 0X0 + 1X0 + 1X2 + 0X0 + 0X0 + 1X0 + 0X0 + 1X0 + 0X1 + 1X0 + 0X1 + 1X1 + 1X0

= 3

\cos (S2,S3) = \frac{3}{\sqrt{9} X\sqrt{7}}
```

Manhattan Distance:

Manhattan Distance between S1 and S2:

```
S1: [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0]

S2: [0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1]

= |0-0|+|0-1|+|1-0|+|1-1|+|1-0|+|1-0|+|1-1|+|1-0|+|1-1|+|0-0|+|2-1|+|0-0|+|1-1|+|0-1|

= 0+1+1+0+0+1+1+0+1+0+0+1+0+0+1=70+1+1+0+0+1+1+0+0+0+1+0+0+1

=7
```

Manhattan Distance between S1 and S3:

Manhattan Distance between S2 and S3:

```
S2: [0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1]
S3: [1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0]
= |0-1|+|1-0|+|0-0|+|1-0|+|1-2|+|0-0|+|0-0|+|1-0|+|0-0|+|1-0|+|0-1|+|1-0|+|0-1|+|1-1|+|1-0|+|0-1|+|1-0|+|0-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-0|+|1-
```

Euclidean Distance:

Euclidean Distance between S1 and S2:

S1: [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0]

S2: [0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1]

$$= \sqrt{0 + (-1)^2 + 1^2 + 0^2 + 0^2 + 1^2 + 1^2 + 0^2 + 0^2 + 1^2 + 0^2 + (-1)^2}$$

=2.6458

Euclidean Distance between S1 and S3:

S1: [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0]

S3: [1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0]

$$= \sqrt{(-1)^2 + 0^2 + 1^2 + 1^2 + (-1)^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + (-1)^2 + 0^2 + 0^2}$$

= 4.0

Euclidean Distance between S2 and S3:

S2: [0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1]

S3: [1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0]

$$\sqrt{(-1)^2 + 1^2 + 0^2 + 1^2 + (-1)^2 + 0^2 + 0^2 + 1^2 + 0^2 + 1^2 + 1^2 + (-1)^2 + 1^2 + (-1)^2 + 0^2 + 1^2}$$

= 3.3166

cosine similarity: (using TF vectors) Between S, & Sz:

5,: (0,0,0.083,0.083,0.083,0.083,0.083,0.083 0.083, 0.083, 0.083, 0, 0.1667, 0, 0.083, 0] Sz: { 0, 0.11, 0, 0.11, 0.11, 0, 0, 0, 11, 6, 0.11, 0.11,0,0.11,0,0.11,0.11]

\$ 51.052 = 0x0 + 0x0.11 + 0 .833 x0 + 0.883x0.11 + 0.083 x 0.11 + 0.083 x 0 + 0.083 x 0 + 0.083 x 0.11 +0.683 x0+ 0.083 x0.11 +0.083 x 0.11+ 0 + 0.1667 x 0. 11 + 0 x 0 + 0.083 x 0. 11 + 0

= 0.065073

 $|S_1| = \int (0.083)^2 + (0.083$ + (0083) + (0.083) + (0.083) + (0.083) + (0.1667)

(52) = 5 (0.41) 2 + (0.11) 2 + (0.11) 2 + (0.11) + (0.11) + (0.11) + (0.11) + (0.11) 2

15,1 = 0.2996

15,1 = 0,34785

15,11521 = 0.1042

cos(51,52) = 0.065073 16.2996 x 10.347851

2 9.7/217

Between Sad S3:

$$S_1. S_3 = 0 + 0 + 0 + 0 + 0.0278 + 0.013889$$

$$= 0.04166$$

$$|S_1| = \sqrt{0.041667}$$

$$|S_3| = \sqrt{0.1111}$$

$$\cos(S_1, S_3) = 0.2835$$

Between Sz & Sz:

$$S_2 \cdot S_3 = 0.012346 + 0.037037 + 0.12346$$

+ 0.012345
= 0.074074
 $|S_2| = \sqrt{0.074074} \times$
 $|S_3| = \sqrt{0.1111}$
 $|S_3| = \sqrt{0.1111}$

 $us(S_2, S_3) = \frac{0.074074}{\int 0.074074 \times \int 0.111}$

= 0.3536

Manhattan Distance b/w S, & Sz:

distance (81, 52) = 0 +0.11 +0.003 + 0.0277 +0.027 +0.277 +0.0277 +0.0277 +0.55 t 0.0277 t 0.111

Between S, & Sz:

= 0.1667 + 0.833 + 0.833 + 0.25 + 0.083 + 0.083 + 0.083 + 0.083 + 0.083 + 0.083 + 0.083 + 0.083 + 0.083 + 0.083

= 1.6667

Between Sz & Sz.

= 0.1667 + 0.11 + 0.111 + 0.222 + 0.11 + 0.1667 + 0.11 + 0.1667 + 0.11 + 0.1667 + 0.11 + 0.1667 + 0.1556

Euchidean Distance

Between S, & Sz:

= 0.0123 + 0.0069 + 0.000772 + 0.0007 3 + ---

8 grus = Jo. 060 109 = 0.2453

Between S, &s:

= 54959

= 0.4714

Cosine similarity (using TF-9DF): Between S. & Sz:

 $S_1 = \{0, 6, 0.03976, 0.0146, 0.03976, 0.039, 0.0146, 0.03976, 0.0397, 0.01467, 0.0397, 0.01467, 0.0146, 0.00293, 0, 0, 0, 0]$

 $S_2 = \{0, 0.053013, 0, 0.01956, 0, 0, 0, 0.019, 0, 0.019, 0, 0.019, 0, 0.019, 0, 0.019, 0, 0, 0.053\}$ $S_3 = \{0.079, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0.079, 0$

51.52 = 0.400028 + 0+0+0+0.00028+0
+0+0.00628+0+0.000574+0
= 0.001438

 $|S_1| = \sqrt{0.0059}$ $|S_2| = \sqrt{0.007417}$

cos (5,,52) = 0.2126

```
Between S, &Sz:,
5, . 53 = 0
ws (5, , S3) = 0
 Between Sz & Sz:
 82.53 = 0
 ( S ( S 2 , S 3 ) = 0
Manhattan Distance (using TF-90F)
   Between S. 852:
   = 0+0.053013 +0.039 +0.004 + -- +0.053
    = 0.778
   Between S, & S3:
    = 0.079 + 0.03976 + 0.0146 + 0 + 04 0
    = 1.667
   Between Sz &S3:
    = 0.0795 + 0.83013 + 0.019566+ -. 0US3
    = 1.555
Eculidean Distance Losing (F-9DF)
Between S, & Sz.
      = 0 + 0.0028 + 0.00 (57 +0.00024 + -- + 0.0628
```

= 10.060109

= 0.2453

= 0.0063 + 0.00157 + 0.000215 + 0.00159 + 0.001579 + 0.000215 + 0.001579 + 0.000215 + 0.00215 + 0.006327 + 0.006862 + 0.006323 = 0.026176 $= \sqrt{0.026176}$ = 0.4859

Between Sz &Sz:

= 0.0063 + 0.0828 + 0.00838 + 0.08038 + 0.000382 + 0.000382+0.000382 + 0.0063 + 0.000382 + 0.0063 + 0.000382

= 0-026176

20.1618