TD -1

24 janvier 2014

Sommaire

1 Étude cinématique d'un robot 3 axes

Ce TD a pour objectif de mettre en place les techniques de calcul des vecteurs vitesse et accélération d'un point lié à un solide par rapport à un repère.

Nous nous intéressons pour cela au robot manipulateur de la figure 1. Ce type de robot est en particulier utilisé dans des cellules d'assemblage (Pick and Place). Ce robot possède trois axes c'est à dire trois articulations en série pilotées indépendamment : un axe de translation et deux axes de rotation.

La figure 2 constitue une première modélisation en représentant de manière simplifiée la structure du robot. La figure 3 représente le schéma cinématique du robot.

DESCRIPTION DU SYSTEME : Le robot considéré est essentiellement constitué :

- d'un bâti fixe 1;
- d'un corps 2 qui peut se translater par rapport à 1;
- d'un bras 3 mobile en rotation par rapport à 2;
- d'un avant-bras 4 mobile en rotation par rapport à 3;
- d'une pince (effecteur) solidaire de l' avant-bras 4.

CARACTERISTIQUES CINEMATIQUES ET GEOMETRIQUES DU SYSTEME :

Étude cinématique d'un robot 3 axes

Question 1 : Exprimer les coordonnées opérationnelles définissant la position C dans R_1 en fonction des variables coordonnées articulaires θ_3 , θ_4 , λ_2 et de L.

Question 2 : Déterminer le vecteur vitesse du point A lié à 2 par rapport à 1

Étude cinématique d'un robot 3 axes

Question 1: Exprimer les coordonnées opérationnelles définissant la position C dans R_1 en fonction des variables coordonnées articulaires θ_3 , θ_4 , λ_2 et de L.

TD -1

en fonction des variables coordonnées articulaires θ_3 , $\underline{\theta_4}$, λ_2 et de L.

Q1: Par relation de Chasles : $O_1\vec{C} = O_1\vec{A} + \overrightarrow{AB} + \overrightarrow{BC} = \lambda_2 \vec{z_1} + L\vec{x_3} + L\vec{x_4}$ Soit en projetant dans R_1 ...

On a donc : Les 3 équations...

Question 2 : Déterminer le vecteur vitesse du point A lié à 2 par rapport à 1

24 janvier 2014

Étude cinématique d'un robot 3 axes

Question 1: Exprimer les coordonnées opérationnelles définissant la position C dans R_1 en fonction des variables coordonnées articulaires θ_3 , θ_4 , λ_2 et de L.

en fonction des variables coordonnées articulaires θ_3 , $\underline{\theta_4}$, λ_2 et de L.

Q1: Par relation de Chasles : $O_1\vec{C} = O_1\vec{A} + \overrightarrow{AB} + \overrightarrow{BC} = \lambda_2 \vec{z_1} + L\vec{x_3} + L\vec{x_4}$ Soit en projetant dans R_1 ...

On a donc : Les 3 équations...

Question 2: Déterminer le vecteur vitesse du point A lié à 2 par rapport à 1 **Q2**: Par définition :

$$\overrightarrow{V_{A,2/1}} = \frac{\mathrm{d}\overrightarrow{O_1}A}{\mathrm{d}t|_{R_1}} \tag{1}$$