Année universitaire : 2020-2021

L1-MPI

Examen d'algèbre 1 - Durée : 3H

Exercice 1. Donner la valeur de vérité des propositions suivantes en justifiant votre réponse :

1.
$$\forall a, b \in \mathbb{R}^+, \ \frac{b}{a+1} = \frac{a}{b+1} \Longrightarrow a = b.$$
 (1pt.)

2. Toute fonction continue sur
$$\mathbb{R}$$
 est dérivable sur \mathbb{R} . (1 pt.)

3.
$$\forall n \in \mathbb{N}, \exists p \in \mathbb{N}, \ n(n+1) = 2p.$$
 (1 pt.)

Exercice 2. Soient A et B deux parties d'un ensemble E. On suppose que $A \cap B \neq \emptyset$ et $A \cup B \neq E$.

1. Montrer que Si
$$A \subset B$$
 alors $\overline{B} \subset \overline{A}$. Comparer $\overline{A \cap B}$ et $\overline{A} \cap \overline{B}$. (1,5 pt.)

2. On pose
$$F = A \cap B$$
 et $G = \overline{A \cup B}$. Montrer que F et G sont disjoints. (1 pt.)

Exercice 3. On considère la fonction f définie de \mathbb{R} vers [-1;1] par $f(x)=cos(\pi x)$

1. Montrer que
$$f$$
 est surjective. L'application f est-elle bijective? (1,5 pt.)

2. Déterminer les images directes
$$f(\mathbb{N})$$
 et $f(2\mathbb{N})$. (1 pt.)

3. Déterminer l'image réciproque
$$f^{-1}(\{0\})$$
. (1 pt.)

Exercice 4. Soit \mathbb{R}^2 muni d'une relation binaire \mathcal{R} définie pour tous $(x,y) \in \mathbb{R}^2$ et $(a,b) \in \mathbb{R}^2$ par :

$$(x,y) \mathcal{R}(a,b) \Leftrightarrow x(a^2 + b^2 + 3) = a(x^2 + y^2 + 3)$$

1. Montrer que la relation
$$\mathcal{R}$$
 est une relation d'équivalence sur \mathbb{R}^2 . (2 pt.)

2. Soient
$$x, z \in \mathbb{R}^*$$
 tels que $x \neq z$, montrer que $\overline{(x,0)} = \overline{(z,0)} \Leftrightarrow xz = 3$. (1 pt.)

3. Soit
$$b \in \mathbb{R}$$
, donner la classe d'équivalence de $(0, b)$. (1 pt.)

4. Soit
$$b \in \mathbb{R}$$
 tel que $b \neq 0$, donner la nature géométrique de la classe $\overline{(1,b)}$. (1 pt.)

Exercice 5. Dans $G = \mathbb{R} \setminus \{-2\}$, on définit une loi de composition interne notée \star par :

$$\forall (x,y) \in G : x \star y = xy + 2(x+y) + 2$$

1. Montrer que
$$(G, \star)$$
 est un groupe abélien. (2,5pt.)

2. Soit
$$H = \{x \in \mathbb{R} \mid x > -2\}$$
. Montrer que (H, \star) est sous-groupe de G . (1,5 pt.)

3. Montrer que
$$f:(G,\star)\to (\mathbb{R},\star)$$
 définie par $f(x)=x+2$ est un isomorphisme. (1 pt.)

4. On pose
$$x^{(\star n)} = x \star x \star \dots x \star x$$
 (n fois). Montrer que $x^{(\star n)} = (x+2)^n - 2$. (1 pt.)

Sujet proposé par Dr. FALL

1

DÉPARTEMENT DE MATHÉMATIQUES

L1- MPI : CONTRÔLE D'ALGÈBRE I

DURÉE: 2H

Exercice 1. On considère deux propositions A et B

Démontrer l'équivalence suivante :

(2pts)

$$(A \Longrightarrow B) \Longleftrightarrow (\exists B \Longrightarrow \exists A)$$

2. Écrire la contraposée et démontrer la proposition suivante :

(2pts)

$$(x \neq y) \Longrightarrow [(x+1)(y-1) \neq (x-1)(y+1)]$$

Démontrer par récurrence la propriété P (n) suivante :

(3pts)

$$\forall n \in \mathbb{N}^{\star}: \sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$$

Exercise 2. Pour tout entier naturel n, on pose $A_n = [-n-1, n+1]$.

1. Démontrer que $\forall n \in \mathbb{N}, A_n \subset A_{n+1}$. Expliciter les ensembles suivants : (2pts)

$$\bigcup_{n\in\mathbb{N}}A_n \quad ; \quad \bigcap_{n\in\mathbb{N}}A_n$$

2. Déterminer le complémentaire de A_0 dans A_2 et celui de A_n dans A_{n+2} . (2pts)

Exercice 3. On consider l'application $\varphi: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}$ telle que $\varphi(k,n) = \frac{k}{n+1}$

1. Déterminer l'image réciproque $\varphi^{-1}(\{1\})$ du singleton $\{1\}$ par ${\mathfrak P}$

L'application φ est-elle injective? surjective?

(2pts) (2pts)

Exercice 4. On définit sur R la relation R par

$$xRy \iff x^4 - y^4 = 4(x^2 - y^2)$$

1. Montrer que R est une relation d'équivalence.

(Spin)

Déterminer la classe d'équivalence de tout réal a modulo R.

(tista)

ANNÉE : 2019-20

L1-MPI

EXAMEN D'ALGÈBRE I

DUREE: 3H

Exercice 1. Soit \mathbb{N} l'ensemble des entiers naturels. On pose $A_m = \{3k + m \mid k \in \mathbb{N}\}.$

- 1. Montrer A_0 , A_1 et A_2 forment une partition de \mathbb{N} . (1.5pt)
- 2. On définit la relation \mathcal{R} par $\forall x, y \in \mathbb{N}, \ x\mathcal{R}y \Longleftrightarrow \exists k \in \mathbb{N}, \ 2x + y = 3k$.
 - (a) Démontrer que \mathcal{R} est une relation d'équivalence. (1,5pts)
 - (b) Démontrer que $cl(0) = A_{\mathbb{Q}} \ cl(1) = A_1 \ \text{et} \ cl(2) = A_2$. En déduire \mathbb{N}/\mathcal{R} . (1,5pts)
- 3. On définie la relation \mathcal{S} par $\forall x, y \in \mathbb{N}$. x $\exists p, q \in \mathbb{N}^*$. $y = px^q$.
 - (a) Montrer que S est une relation d'ordre (1,5pts)
 - (b) L'ordre est-il partiel ou total? Justifier. (1pt)

Exercice 2. Dans l'ensemble E =]-1;1[, on définit une loi de composition notée \star par :

$$\forall (a,b) \in E^2 : a \star b = \frac{a+b}{1+ab}$$

- 1. Montrer que (E, \star) est un groupe commutatif. (2,5pts)
- 2. Soit x un réel strictement positif fixé, on pose : $H_x = \left\{ \frac{x^n 1}{x^n + 1} \mid n \in \mathbb{Z} \right\}$. Montrer l'ensemble H_x est un sous-groupe de E. (2pt)
- 3. On considère f définie de $(\mathbb{R}, +) \to (E, \star)$ par $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$.

 Montrer que l'application f est un isomorphisme de groupes. (1,5pt)

Exercice 3. On considère l'anneau produit $A = \mathbb{Z} \times \mathbb{Z}$ muni des lois additif et multiplicatif définies par (a,b) + (x,y) = (a+x,b+y) et (a,b).(x,y) = (ax,by).

On note 0_A l'élément neutre de l'addition et 1_A l'élément neutre de la multiplication.

- 1. Déterminer 0_A et l'ensemble D(A) des diviseurs de 0. (1.5pts)
- 2. L'anneau A est-il intègre? Est-il un corps? (1pt)
- 3. Déterminer 1_A et l'ensemble U(A) des unités de A. (1.5pts)
- 4. Montrer que $B = \{(x, y) \in A \mid x y = 0\}$ est un sous-anneau de A. (1.5pt)
- 5. Montrer que $I = \{(x,0) \mid x \in \mathbb{Z}\}$ est un idéal de A.

ANNÉE : 2018-19 L1-MPI ALGÈBRE I

EXAMEN D'ALGÈBRE

DUREE: 3H

Exercice 1. Soient E un ensemble et f une application de E vers \mathbb{R} telle que : si A et B sont deux parties disjointes de E, alors $f(A \cup B) = f(A) + f(B)$.

- 1. Montrer que pour toutes parties quelconques A et B de E, $A \cap \overline{B} = A (A \cap B)$. En déduire $f(A \cap \overline{B})$ en fonction de f(A) et de $f(A \cap B)$. Que vaut $f(\emptyset)$?
- 2. Montrer que $A \cap \overline{B}$, $\overline{A} \cap B$ et $A \cap B$ forment une partition de l'ensemble $A \cup B$.
- 3. Montrer pour toutes parties A et B de E, $f(A \cup B) = f(A) + f(B) f(A \cap B)$. En déduire $f(A \triangle B)$ en fonction de f(A) et de f(B).

Exercice 2. Soit la relation binaire \mathcal{R} définie pour tous $(x,y) \in \mathbb{R}^2$ et $(a,b) \in \mathbb{R}^2$ par

$$(x,y) \mathcal{R}(a,b) \Leftrightarrow x(a^2+b^2+3) = a(x^2+y^2+3)$$

- 1. Montrer que la relation $\mathcal R$ est une relation d'équivalence sur $\mathbb R^2$.
- 2. Soient $x, z \in \mathbb{R}^*$ tels que $x \neq z$, montrer que $\overline{(x, 0)} = \overline{(z, 0)} \Leftrightarrow xz = 3$.
- 3. Soit $(0,b) \in \mathbb{R}^2$, donner la classe d'équivalence $\overline{(0,b)}$ de (0,b).
- 4. Soit $(a,b) \in \mathbb{R}^2$ tel que $a \neq 0$, donner la nature géométrique de $\overline{(a,b)}$.

Exercice 3. On définit une loi \star sur $\mathbb{R} - \{1\}$ par : $x \star y = x + y - xy$.

- 1. Démontrer que pour tous réels x et y, $(x \neq 1 \text{ et } y \neq 1) \Longrightarrow x + y xy \neq 1$. En déduire que * est une loi de composition interne dans $\mathbb{R} \{1\}$.
- 2. Monter que $\mathbb{R} \{1\}$ muni de la loi \star est un groupe abélien.
- 3. Montrer que \star est distributive par rapport à la loi \oplus définie par $x \oplus y = x + y 1$.
- 4. Montrer que l'application φ définie de (\mathbb{R}^*, \times) vers $(\mathbb{R} \{1\}, \star)$ par $\varphi(x) = 1 \frac{1}{x}$ est un isomorphisme de groupes et déterminer φ^{-1} .
- 5. On note $x^{(\star n)} = x \star x \star \cdots \star x$ (n fois). Montrer par récurrence que $x^{(\star n)} = 1 (1 x)^n$.

Exercice 4. Soit A un anneau commutatif non nul. On dit qu'un élément a de A est idempotent si $a^2 = a$. On dit que deux éléments a et b de A sont orthogonaux si ab = 0.

- 1. Montrer que si a et b sont idempotents alors ab et $a \star b = a + b ab$ sont des éléments idempotents de A.
- **2.** Montrer que si a et b sont idempotents et orthogonaux alors a + b est un idempotent.
 - 3. Montrer que si a et b sont idempotents alors a(1-b) et b(1-a) sont des éléments idempotents orthogonaux.
 - 4. Déterminer les éléments idempotents orthogonaux de l'anneau usuel ℝ.

Bonne chance!

Mouhamed Morestapha Fall

UNIVERSITÉ ASSANE SECK

ANNÉE 2916/17

DÉPARTEMENT DE MATHÉMATIQUEŞ

L1- MPI : EXÁMEN D'ALGÈBRE I

DURÉE: 3H

Exercice 1. Soit $\mathbb R$ muni de la loi de composition interne \star définie par :

$$\forall x, y \in \mathbb{R}, x \star y = x + y - 1$$

1. Montrer que (\mathbb{R}, \star) est un groupe commutatif.

(3pts)

- 2. Soit l'application φ définie de $(\mathbb{R}, \star) \longrightarrow (\mathbb{R}, +)$ par $\varphi(x) = x 1$. Montrer que φ est un isomorphisme de groupes. (2pts)
- 3. Montrer que (\mathbb{Z}, \star) est un sous-groupe de (\mathbb{R}, \star) .

(1pt)

Exercice 2. Soient E et F deux sous-ensembles de $\mathbb R$ et une application $f:E\longrightarrow F$.

1. On considère $\mathcal R$ la relation définie sur l'ensemble E par :

(2pts)

$$\forall x, y \in E, \ x \mathcal{R} y \iff f(x) = f(y)$$

Montrer que \mathcal{R} est une relation d'équivalence sur E et déterminer la classe d'équivalence \overline{a} de tout réel $a \in E$.

- 2. Montrer que l'application Φ définie de E/\mathcal{R} vers f(E) par $\Phi(\overline{x}) = f(x)$ est une bijection. (2pts)
- 3. On suppose que f est injective et on considère la relation \leq définie sur E par

$$\forall x, y \in E, \ x \leq y \iff f(x) \leq f(y)$$

Montrer que ≤ est une relation d'ordre. L'ordre est-il total ou partiel? (2pts)

Exercice 3. Soit $x \in \mathbb{R}$ tel que $x + \frac{1}{x} \in \mathbb{Z}$.

- 1. Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $x^n + \frac{1}{x^n} \in \mathbb{Z}$. (2pts)
- 2. Déterminer x tel que $x + \frac{1}{x} = 4$. Calculer $x^n + \frac{1}{x^n}$ en fonction de n. (2pts)

Exercice 4. Soit σ une permutation de S_9 donnée par :

- 1. Déterminer les orbites de σ et décomposer σ en produit de cycles à supports disjoints. En déduire la signature de σ . (2pts)
- 2. Déterminer l'ordre de σ et calculer σ^{2017} et σ^{-2017} .

(2pts)

3. On pose $\theta = (1, 5, 9) \in S_0$, calculer $\theta \circ \sigma \circ \theta^{-1}$.

(1pt)

gal= y

ANNÉE: 2019-20 L1-MPI

CONTRÔLE D'ALGÈBRE I

DUREE: 2H

Exercice 1. Soient P et Q deux propositions

1. Établir la table de vérité du connecteur $P\oplus Q$ définie par :

(2pt)

$$P \oplus Q = (P \lor Q) \land \neg (P \land Q)$$

2. Montrer l'égalité $P \oplus Q = (P \land \neg Q) \lor (\neg P \land Q)$.

(2pt)

Exercice 2. Soit n et p deS entiers naturels

1. Démontrer par récurrence que $\forall n > 0$:

(2pts)

$$\sum_{k=1}^{n} (2k-1) = 1 + 3 + 5 + \ldots + 2n - 1 = n^{2}$$

2. Démontrer en utilisant la disjonction des cas que :

(2pt)

 $\forall n, p \in \mathbb{N}, [(npest pair) ou (n^2 - p^2 est un multiple de 8)]$

Exercice 3. On définit sur \mathbb{R} la relation \mathcal{R} par :

 $x\mathcal{R}y \Leftrightarrow x(1+y^2) = y(1+x^2)$ $y(1+y^2) = y(1+x^2)$ e relations d'équivalence.

1. Montrer que ${\cal R}$ est une relations d'équivalence.

2. Déterminer la classe d'équivalence de tout réel a modulo 7

Exercice 4. Soit $g: \mathbb{N} \longrightarrow \mathbb{N}$ l'application définie par

$$g(n) = n(n+1)$$

1. Montrer que l'application g est injective.

(2pts)

2. Montrer pour tout $n \in \mathbb{N}$, n(n+1) est un entier pair. g est-elle surjective?

(2pts)

Exercice 5. Soient E un ensemble et f une application de E vers \mathbb{R} telle que :

$$A\cap B=\emptyset\Longrightarrow f(A\cup B)=f(A)+f(B)$$

1. Montrer que pour toutes parties quelconques A et B de E,

(2pts)

$$A \cap \overline{B} = A \setminus (A \cap B)$$
 et $f(A \cap \overline{B}) = f(A) - f(A \cap B)$

2. Montrer pour toutes parties A et B de E,

(2pts)

$$f(A \cup B) = f(A) + f(B) - f(A \cap B)$$

MICH

ANNÉE : 2018-19 L1-MPI ALGÈBRE I

DEVOIR D'ALGÈBRE

DUREE : 2H

Exercice 1. Soient P et Q deux assertions, On définit le connecteur logique noté \oplus par :

$$P \oplus Q = (P \vee Q) \wedge \neg (P \wedge Q)$$

- 1. Établir la table de vérité de $P \oplus Q$.
- 2. Montrer par une méthode de votre choix l'égalité $P \oplus Q = (P \land \neg Q) \lor (\neg P \land Q)$.

Exercice 2. Le but de l'exercice est de montrer pour tout entier naturel n la proposition suivante : "Si $(n^2 - 1)$ n'est pas divisible par 8, alors n est pair".

- 1. Écrire la proposition sous forme d'implication à l'aide des quantificateurs.
- 2. Montrer que la contraposée de la proposition précédente est :

 $(\forall k \in \mathbb{N}, n \neq 2k) \Longrightarrow (\exists m \in \mathbb{N}, n^2 - 1 = 8m)$

3. Prouver la contraposée par la disjonction des cas. Que peut-on en déduire?

Exercice 3. Soient E un ensemble, A et B des parties de E. On définit les parties suivantes :

$$A \top B = \overline{A} \cup \overline{B}$$
 et $A \triangle B = (A - B) \cup (B - A)$

- 1. Montrer que $A \top B = \overline{A \cap B}$ et en déduire la fonction caractéristique de $A \top B$.
- 2. Montrer que $A \triangle B = \overline{A} \triangle \overline{B}$ et $A \triangle \overline{B} = \overline{A} \triangle B$.
- 3. Démontrer que $A \cap B = (A \top B) \top (A \top B)$ et $A \cup B = (A \top A) \top (B \top B)$.

Exercice 4. On note \overline{z} le complexe conjugué de z et On considère la fonction f définie par

$$f: \mathbb{C} \longrightarrow \mathbb{R}$$
$$z \longmapsto z + \overline{z}$$

- 1. Déterminer l'image Im(f). L'application f est-elle surjective? Est-elle injective?
- 2. On pose $A = \{z \in \mathbb{C} | z^3 = 1\}$ et $B = \{0\}$. Déterminer f(A) et $f^{-1}(B)$.

ANNÉE : 2019-20

EXAMEN D'ALGÈBRE I

DUREE: 3H

Exercice 1. Soit \mathbb{N} l'ensemble des entiers naturels. On pose $A_m = \{3k + m \mid k \in \mathbb{N}\}.$

- 1. Montrer A_0 , A_1 et A_2 forment une partition de \mathbb{N} .
- \mathbb{R} 2. On définit la relation $\widehat{\mathcal{R}}$ par $\forall x, y \in \mathbb{N}, \ x\mathcal{R}y \iff \exists k \in \mathbb{N}, \ 2x + y = 3k$.
 - (a) Démontrer que \mathcal{R} est une relation d'équivalence.
 - (b) Démontrer que $cl(0) = A_0$, $cl(1) = A_1$ et $cl(2) = A_2$. En déduire \mathbb{N}/\mathbb{R} . (1,5pts)
- \forall 3. On définie la relation \mathcal{S} par $\forall x, y \in \mathbb{N}, x \not S y \iff \exists p, q \in \mathbb{N}^*, y = px^q$.
 - (1,5pts) (a) Montrer que S est une relation d'ordre
 - (a) Monder que (1pt)

 (b) L'ordre est-il partiel ou total? Justifier.

Exercice 2. Dans l'ensemble E =]-1;1[, on définit une loi de composition notée \star par :

$$\forall (a,b) \in E^2 : a \star b = \frac{a+b}{1+ab}$$

- 1. Montrer que (E, \star) est un groupe commutatif. (2,5pts)
- 2. Soit x un réel strictement positif fixé, on pose : $H_x = \left\{ \frac{x^n 1}{x^n + 1} \mid n \in \mathbb{Z} \right\}$.

 Montrer l'ensemble H_x est un sous-groupe de E. (2pt)
- 3. On considère f définie de $(\mathbb{R}, +) \to (E, \star)$ par $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$.

 Montrer que l'application f est un isomorphisme de groupes. (1,5pt)

Exercice 3. On considère l'anneau produit $A = \mathbb{Z} \times \mathbb{Z}$ muni des lois additif et multiplicatif définies par (a,b) + (x,y) = (a+x,b+y) et $(a,b) \cdot (x,y) = (ax,by)$.

On note 0_A l'élément neutre de l'addition et 1_A l'élément neutre de la multiplication.

- 1. Déterminer 0_A et l'ensemble D(A) des diviseurs de 0. (1.5pts)
- 2. L'anneau A est-il intègre? Est-il un corps?
- 3. Déterminer 1_A et l'ensemble U(A) des unités de A. (1.5pts)
- 4. Montrer que $B = \{(x, y) \in A \mid x y = 0\}$ est un sous-anneau de A. (1.5pt)
- 5. Montrer que $I = \{(x,0) \mid x \in \mathbb{Z}\}$ est un idéal de A.