Characteristic and Minimal Polynomials

Lecture 25

Dept. of Math., SUSTech

2022.05

Characteristic and Minimal Polynomials

- The Cayley-Hamilton Theorem
- 2 The Minimal Polynomial
- 3 Homework Assignment 25

$$Te \mathcal{L}(C^5) \quad T(e_1, e_2, e_3, e_4, e_5) = (e_1 e_2 e_3 e_4 e_5) \begin{pmatrix} 0 & 0 & 0 & -3 \\ 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$|A - \lambda I| = 0 \implies -\lambda^5 + 6\lambda^{-3} = 0$$

The Cayley-Hamilton Theorem

The next definition associates a polynomial with each operator on V if $\mathbb{F} = \mathbb{C}$. For $\mathbb{F} = \mathbb{R}$, the definition will be given in the next Chapter.

Definition characteristic polynomial

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ denote the <u>distinct eigenvalues of T</u>, with multiplicities d_1, \ldots, d_m . The $d_1 + \cdots + d_m = n = d_{1m} \vee d_{1m} + d_{1m} = d_{1m} \vee d_{1m} + d_{1m} = d_{1m} \vee d_{1m}$ polynomial

 $(z-\lambda_1)^{d_1}\cdots(z-\lambda_m)^{d_m}$

is called the *characteristic polynomial* of *T*.

$$T(3_1, 3_2, 3_3) = (3_2, 3_3, 0) \Rightarrow \beta(3) = 3^3$$

 $\dim G(0, T) = 3 \cdot \dim G(0, T) =$

Example

Suppose $T \in \mathcal{L}(\mathbb{C}^3)$ is defined as in Example 8.25. Because the eigenvalues of T are 6, with multiplicity 2, and 7, with multiplicity 1, we see that characteristic polynomial of T is $(z-6)^2(z-7)$.

Degree and zeros of characteristic polynomial

8.36 Degree and zeros of characteristic polynomial

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Then

- (a) the characteristic polynomial of T has degree dim V;
- (b) the zeros of the characteristic polynomial of T are the eigenvalues of T.

Proof.

Clearly part (a) follows from 8.26 and part (b) follows from the definition of the characteristic polynomial.

Cayley-Hamilton Theorem
$$V=G(\lambda_0,T)\oplus\cdots\oplus G(\lambda_m,T)$$

8.37 Cayley-Hamilton Theorem $V=G(\lambda_0,T)\oplus\cdots (3-\lambda_m)^{d_m}$

Suppose V is a complex vector space and $T\in \mathcal{L}(V)$. Let Q denote the characteristic polynomial of T . Then $Q(T)=0$.

$$(T-\lambda_j\mathbf{I})|_{G(\lambda_j,T)} \bigoplus_{G(\lambda_j,T)} \bigoplus_{G($$

Proof.

Let $\lambda_1, \lambda_2, \dots, \lambda_m$ be the distinct eigenvalues of the operator T, and let d_1, d_2, \cdots, d_m be the dimensions of the corresponding generalized eigenspaces $G(\lambda_1, T), \dots, G(\lambda_m, T)$. For each $j \in \{1, \dots, m\}$, we know that $(T-\lambda_j I)|_{G(\lambda_i,T)}$ is nilpotent. Thus we have $(T-\lambda_j I)^{d_j}|_{G(\lambda_i,T)}=0$ (by 8.18). We can show that $q(T)|_{G(\lambda_i,T)}=0$, and together with 8.21, we conclude that q(T) = 0.

The Minimal Polynomial

In this subsection we introduce another important polynomial associated with each operator. We begin with the following definition.

8.38 **Definition** monic polynomial

A *monic polynomial* is a polynomial whose <u>highest-degree coefficient</u> equals 1.

Example

The polynomial $2+9z^2+z^7$ is a monic polynomial of degree 7.

$$P_1 = P_2 \implies deg(P_1 - P_2) < m \times TeX(V)$$
, monic polynomial $P(T) = 0$

8.40 Minimal polynomial $P(3)$ existence + uniqueness

Suppose $T \in \mathcal{L}(V)$. Then there is a unique monic polynomial p of smallest degree such that p(T) = 0. $M \subseteq M$ and $M \subseteq M$ with $M \subseteq M$ and $M \subseteq M$ and M and M

Minimal Polynomial

The last result justifies the following definition.

8.43 **Definition** minimal polynomial

Suppose $T \in \mathcal{L}(V)$. Then the *minimal polynomial* of T is the unique monic polynomial p of smallest degree such that p(T) = 0.

$$\frac{29}{4} \cdot \frac{1}{100} = \frac{1}{100} = \frac{1}{100} \cdot \frac{1}{100} = \frac{1}{$$

The next result completely characterizes the polynomials that when applied to an operator give the 0 operator.

8.46 q(T) = 0 implies q is a multiple of the minimal polynomial

Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbf{F})$. Then q(T) = 0 if and only if q is a polynomial multiple of the minimal polynomial of T_{3}

Characteristic Polynomial and Minimal Polynomial

The next result is stated only for complex vector spaces, because we have not yet defined the characteristic polynomial when $\mathbb{F}=\mathbb{R}$. However, the result also holds for real vector spaces, as we will see in the next chapter.

8.48 Characteristic polynomial is a multiple of minimal polynomial

Suppose $\mathbf{F} = \mathbf{C}$ and $T \in \mathcal{L}(V)$. Then the characteristic polynomial of T is a polynomial multiple of the minimal polynomial of T.

Zeros

We know that the zeros of the characteristic polynomial of T are the eigenvalues of T. Now we show that the minimal polynomial has the same zeros.

8.49 Eigenvalues are the zeros of the minimal polynomial

Let $T \in \mathcal{L}(V)$. Then the zeros of the minimal polynomial of T are precisely the eigenvalues of T.

Examples

Example

Find the minimal polynomial of the operator $T \in \mathcal{L}(\mathbb{C}^3)$ in Example 8.30.

Example

Find the minimal polynomial of the operator $T \in \mathcal{L}(\mathbb{C}^3)$ defined by $T(z_1, z_2, z_3) = (6z_1, 6z_2, 7z_3)$.

Example

What are the eigenvalues of the operator in Example 8.45?

Homework Assignment 25

8.C: 8, 4, 8, 10, 12, 14, 15, 18, 20.