MDX

Unidad 3 – Explotación de almacenes de datos. Lenguajes de consulta y visualización. U3.1 - MDX

UNIVERSIDAD DE MURCIA

Unidad 3. Explotación de almacenes de datos Estructura

- Tuplas, conjuntos y celdas
- Términos MDX
- Sintaxis de consultas MDX

Inteligencia de negocio Nuestros contenidos

UNIVERSIDAD DE MURCIA

Negocio

Comprender negocio Metodología (proceso, objetivos..) Diseño de indicadores

Almacenes de datos

Diseño lógico Procesos ETL Diseño físico

Explotación de Datos

Lenguajes de consulta (OLAP y MDX)

Diseño de marcadores y cuadros de mando Generación de informes Visualización de datos en IN

Unidad 3. Explotación de almacenes de datos MDX

CUBOS

LENGUAJE

MultiDimensional eXpression.

Microsoft en 1997

Unidad 3. Explotación de almacenes de datos MDX

- ¿Recuerdas estudiar Programación Orientada a Objetos?
- Desde la filosofía de POO (agnóstica del lenguaje específico) hasta el código (dependiente del lenguaje de programación)
 - Nos enfocaremos en los conceptos, NO en la programación

Unidad 3. Explotación de almacenes de datos - MDX

TUPLAS, CONJUNTOS Y CELDAS

UNIVERSIDAD DE MURCIA

Unidad 3. Explotación de almacenes de datos ¿Qué es MDX?

- MultiDimensional eXpression (MDX) proporciona un lenguaje para manipular cubos MDX. Microsoft (1997)
- Los cubos están definidos por Dimensiones y Medidas, conteniendo una Medida (o más), y donde cada Dimensión puede contener múltiples Miembros
- El valor de la celda se define como la intersección entre Miembros

UnitsSold

	Product			
Time	Sardines	Anchovies	Herrings	Pilchards
April	16	23	12	4
May	14	12	23	6
June	34	19	19	8
July	17	22	14	4

Medidas | Dimensiones>Miembros

Ejemplo: cubo de dos dimensiones

1 medida: pacientes dados de alta.

Dimensión Tiempo con 4 miembros: Enero a Abril.

Dimensión Hospital con 4 miembros: H1,H2,H3,H4.

Discharged	H1	H2	Н3	H4
January	20	44	81	44
February	15	32	78	32
March	23	65	88	65
April	19	67	67	67

UNIVERSIDAD DE MURCIA

Unidad 3. Explotación de almacenes de datos Tuplas, conjuntos y celdas

- Podemos generalizar de la siguiente forma:
 - Un cubo puede tener más de una medida por intersección
 - Un cubo puede tener más de dos dimensiones, generando un hipercubo (n-cubo)
 - Cubo en servicios de análisis: 1024 medidas, 128 dimensiones (con miles o millones de miembros)

UnitsSold/Profit

- 1-1-0-0 0-1-0-1-0								
	Produc	:t						
Time	Sardir	ies	Anch	ovies	Herr	ings	Pilo	chards
April	16	\$40.00	23	\$78.20	12	\$23.88	4	\$8.20
May	14	\$35.00	12	\$40.80	23	\$45.77	6	\$12.30
June	34	\$85.00	19	\$64.60	19	\$37.81	8	\$16.40
July	17	\$42.50	22	\$74.80	14	\$27.86	4	\$8.20

Medidas | Dimensiones>Miembros

Ejemplo: cubo de 2 dimensiones

2 medidas: nº pacientes dados de alta, coste total (M€).

Dimensión Tiempo con 4 miembros: Enero a Abril.

Dimensión Hospital con 4 miembros: H1,H2,H3,H4.

Discharged	H1	H2	Н3	H4
January	20 1.5M€	44 4.1M€	81 10.5M€	44 4.1M€
February	15 1.1M€	32 3.9M€	78 10.4M€	32 3.9M€
March	23 1.6M€	65 5.4M€	88 10.7M€	65 5.4M€
April	19 1.5M€	67 5.6M€	67 9.5M€	67 5.6M€

UNIVERSIDAD DE MURCIA

- Una Dimensión puede tener jerarquías
 - No es obligatorio que todas las dimensiones las tengan
 - La mayoría de cubos tienen una dimensión Tiempo (Time) siempre jerárquica.
- Una jerarquía tiene **niveles**: All, Year, Quarter, Month
 - Cada miembro puede dividirse en respectivos sub-miembros
 - Estructura de Árbol : desde el nodo superior ("All"), bajando hasta los nodos hoja.

UNIVERSIDAD DE MURCIA

- Los valores de las celdas agregan los datos originales basándose en los niveles de jerarquía
- La agregación puede no estar presente en los datos originales
 - Podemos aplicar funciones como percentage() o mean()
 - El motor subyacente buscará optimizar el sistema
 - ¿Se parece a Excel?

			ده در خار در	A
			Sardines	Anchovies
2000	Q3	July	17	22
		Aug	16	18
		Sept	12	19
	Q3 total		45	59
2000	Q4	0ct	27	19
		Nov	24	19
		Dec	21	12
	Q4 total		72	50
2000 total			242	199

Convenciones de nomenclatura

- Enfoque detallado pero más confiable: [Time].[All].[2000].[Q4].[Oct]
- Enfoque más corto, pero dependiente de la nomenclatura: [Time].[October]
 - Puedes imponer convenciones de nombres: [Time].[October-2000]
- En grandes conjuntos de datos reales aún podrían surgir problemas, por ejemplo, con ciudades.
 - Member keys Claves de miembros (unique)

• Convenciones de nomenclatura: Tupla

Tupla en pseudo-MDX: (x,y,z)=(y,z,x) (el orden no es importante)

([Time].[Feb],[Dx].[Circ],[Hosp].[H1])

 Def1: "Una *Tupla* es la intersección eligiendo un miembro de cada dimensión"

 Def2: "Una tupla es la Intersección de un (y solo un) miembro tomado de una o varias APR dimensiones en el cubo"

• Convenciones de nomenclatura: Tupla

Tupla en pseudo-MDX: (x,y,z)=(y,z,x)

([Time].[Feb],[Dx].[Circ],[Hosp].[H1])

Def1: "Una *Tupla* es la intersección eligiendo un miembro de cada dimensión"

Def2: "Una tupla es la intersección de un (<u>y solo un</u>) miembro tomado de **una o** de **varias dimensiones** en el cubo"

Tupla= ¿Es una sola celda en el cubo?

- ¿Cómo definirías esta celda usando una Tupla?
- ¿Sería esta tupla 44?
- Importante distinguir entre la tupla vs el contenido de la celda
- Cada miembro debe provenir de una dimensión diferente para señalar a una única celda

	Α	В	С
1	12	32	45
2	37	23	12
3	65	45	32
4	78	56	44
5	98	23	34
6	290	179	167

Convenciones de nomenclatura: Conjunto
 Conjunto en pseudo-MDX: {(x1,y1,z1),...,(xn,yn,zn)} {([Time].[Feb],[Dx].[Circ],[Hosp].[H1]), ([Time].[Mar],[Dx].[Circ],[Hosp].[H1])}

F00-F90

100-199

"Un *Conjunto* es una colección

De tuplas con la misma dimen- JAN
sionalidad"

(conjunto de celdas en el cubo)
(podría tener O(conjunto vacío) o 1 tupla)

"Handel Conjunto C

Las funciones pueden usar conjuntos:

AVG(SET)→FLOAT

J00-J99

K00-K93

Pregunta: ¿Tupla o Conjunto?

[DX].[Circulatory],[Hosp].[H1]

Pregunta: ¿Tupla o Conjunto?

[DX].[Circulatory],[Hosp].[H1]

Sin restricciones en la dimensión faltante

¡Es una TUPLA! (pero MUCHAS CELDAS)

J00-J99

K00-K93

E00-E90

100-199

Pregunta. Diferencia entre:

```
([Dx].[Circ],[Hosp].[H1])
a)
```

```
b)
```

```
{([Dx].[Circ],[Hosp].[H1],[Time].[Jan]),
([Dx].[Circ],[Hosp].[H1],[Time].[Feb]),
([Dx].[Circ],[Hosp].[H1],[Time].[Mar]),
([Dx].[Circ],[Hosp].[H1],[Time].[Apr])
```


Pregunta. Diferencia entre... ¿Mismo conjunto de celdas?

a) ([Dx].[Circ],[Hosp].[H1]) **ES UNA TUPLA** (VER DEFINICIÓN 1)

Motivo clave:

La tupla solo usa un miembro por dimensión

Pregunta: ¿Tupla o Conjunto?

[Hosp].[H1], [Hosp].[H3]

Pregunta: ¿Tupla o Conjunto?

[Hosp].[H1], [Hosp].[H3]

es un **Conjunto** (ver Def2)

[DX].[Circulatory]

[DX].[Circulatory],[Hosp].[H1]

TODO ESTO SON TUPLAS
YA QUE TIENEN LA
"CAPACIDAD PARA SEÑALAR
A UNA ÚNICA CELDA"

UNIVERSIDAD DE MURCIA

- Def2: "Una tupla es la intersección de un (y solo un) miembro tomado de una o de varias dimensiones en el cubo. Una tupla identifica (o tiene el potencial de identificar) una única celda en la matriz multidimensional"
- Clave: un único miembro de cada dimensión
- No es necesario definir cada dimensión Las dimensiones tienen un miembro predeterminado en MDX para asegurar que apunten a una única celda

Pregunta: ¿Apuntan estas tuplas a una única celda?

Pregunta: ¿Apuntan estas tuplas a una única celda?

[DX].[Circulatory],[Hosp].[H1], [Time].[Mar]
[DX].[Circulatory],[Hosp].[H1]

[DX].[Circulatory],[Time].[Mar]

[Hosp].[H1]

FEB

SI
Si consideramos que todas las dimensiones tienen un 'miembro predeterminado'
En MDX si no especificas un miembro de una dimensión, se toma el miembro por defecto

Unidad 3. Explotación de almacenes de datos Tuplas y jerarquías

Pregunta: ¿Apunta esta tupla a una única celda?

[DX].[Circulatory],[Hosp].[H1], [Time].[2000]

Unidad 3. Explotación de almacenes de datos Tuplas y jerarquías

Pregunta: ¿Apunta esta tupla a una única celda?

[DX].[Circulatory],[Hosp].[H1], [Time].[2000]

SI Tendremos una intersección de agregación para cada miembro de la jerarquía en algún lugar del CUBO

Toda la agregación puede no estar pre-calculada, pero aun así es una tupla (estén almacenadas o se calculen sobre la marcha)

Medidas y Jerarquías

Medidas y Jerarquías

Medidas como dimensiones

Supón un cubo **con 2 medidas**: Nº pacientes y coste.

[Hos].[H1],[TIME].[Mar],
[Dx].[Car],[Medidas].[NumPac]

Medida se comporta como miembro de una dimensión

Si no se especifica, usa el predeterminado endocrine circulatory respiratory digestive e00-e90 100-199 100-199 100-199 100-199

Unidad 3. Explotación de almacenes de datos Resumen final de definiciones

- Tupla: Intersección de un único miembro de cada dimensión
 - Miembros no añadidos de forma explícita: (actual) miembro implícito, o predeterminado o por defecto
 - Identifica o tiene el potencial para identificar una única celda (por agregación)
- Conjunto: Colección de tuplas con la misma dimensionalidad (puede ser 0 o 1 o varias)
- Medidas: Pueden tratarse como dimensiones. ¿Diferencias?
 - Normalmente numéricas y continuas
 - Propiedades especiales como Data Type o Format String
 - No son jerárquicas
 - Las dimensiones normalmente son discontinuas
- Los miembros pueden tener propiedades para añadir información
 - En nuestro ejemplo: el tamaño de un hospital concreto

Unidad 3. Explotación de almacenes de datos - MDX

TÉRMINOS MDX

SELECT ON_COLUMNS ON_CELLS FROM

Unidad 3. Explotación de almacenes de datos Términos MDX

- MDX puede parecer similar a SQL, pero tiene diferencias clave
 - Ambos son TLAs (Three Letter Acronyms)
 - Lenguajes diseñados específicamente para consultar estructuras de datos
 - Ambos usan cláusulas como SELECT, FROM, y WHERE
 - SQL no es solo un lenguaje de consulta, también para estructuras de datos
 - MDX puede hacer cosas que SQL no, por ejemplo, jerarquías relacionadas, estructura de cubo, ubicación de filas(e.g., día/mes anterior)
- ¡Es divertido aprender estas diferencias!
- Consultas MDX: declaraciones independientes para recuperar datos, muchas personas lo hacen sin conocimiento claro (e.g., tablas dinámicas en Excel)
- Expresiones MDX: Declaraciones parciales utilizadas para diversos fines, por ejemplo, crear un miembro calculado

	ALL (TIME)	
COSTE	45,300,000 €	

SELECT

{[TIME].[ALL]} ON COLUMNS

(COL dimension)

{[Measure].[Cost]} **ON** *ROWS*

(ROW dimension)

FROM [MyCube]

(muestra el coste de[HOSP].[H1], miembro por defecto de HOSP)

(también para [Dx].[Circulatory])

	COL 1	COL 2	COL 3
ROW A			
ROW B			
ROW C			

SELECT

{column headers} ON COLUMNS → CONJUNTO
{row headers} ON ROWS → CONJUNTO
FROM [cubo] → nombre

1. Un componente para especificar el column header (conjunto)

- 2. Un componente para especificar el row header (conjunto)
- Un puntero al cubo que estamos usando (nombre)

SELECT
{[Medida].[Paciente]} ON COLUMNS
{[Hospital].[Hosp1],
[Hospital]. [Hosp2],
[Hospital]. [Hosp3],
[Hospital]. [Hosp4]} ON ROWS
FROM [MiCubo]
(muestra el miembro por defecto de TIM

	PACIENTE
HOSP 1	23
HOSP 2	65 STVD
HOSP 3	88
HOSP 4	65

E)

SELE	CT
]}	Medida].[Paciente]} ON COLUMNS
]}	Hospital].[All Hosp]} ON ROWS
FF	ROM [MiCubo]
SELE	CT
]}	Medida].[Paciente]} ON COLUMNS
]}	Hospital]. <u>Children</u> } ON ROWS
FF	ROM [MiCubo]

	PACIENTE
HOSP 1	23
HOSP 2	65 C STVDIOR
HOSP 3	88
HOSP 4	65

PREGUNTA:

Coste en H1,H2

durante el año 2000 (por cada trimestre,

Y2000	HOSP1	HOSP2
Q1	2M€	0.3M€
Q2	3.2M€	0.7M€
Q3	1.5M€	0.6M€
Q4	0.4M€	0.5M€

Q), de enfermedades circulatorias

Pista:

coste/circulatorias son miembros por defecto

PREGUNTA:

Coste en H1,H2

durante el año 2000 (por cada trimestre,

Q), de enfermedades circulatorias:

SELECT

{[Hospital].[Hosp1],

[Hospital].[Hosp2]} ON COLUMNS

{[Time].[All].[2000].Children} ON ROW

FROM [MiCubo]

Y2000	HOSP1	HOSP2
Q1	2M€	0.3M€
Q2	3.2M€	0.7M€
Q3	1.5M€	0.6M€
Q4	0.4M€	0.5M€

PREGUNTA:

Nº de pacientes en H1,H2 durante el año 2000 (por trimestre), para enfermedades circulatorias

Y2000	HOSP1	HOSP2
Q1	121 pac	78 pac
Q2	165 pac	61 pac
Q3	115 pac	41 pac
Q4	120 pac	76 pac

Pista:

El número de pacientes NO es un miembro por defecto

UNIVERSIDAD DE MURCIA

Unidad 3. Explotación de almacenes de datos Términos MDX

PREGUNTA:

Nº de pacientes en H1,H2 durante el año 2000 (por trimestre), para enfermedades circulatorias.

Y2000	HOSP1	HOSP2
Q1	121 pac	78 pac
Q2	165 pac	61 pac
Q3	115 pac	41 pac
Q4	120 pac	76 pac

SELECT

{[Hospital].[Hosp1],

[Hospital].[Hosp2]} ON COLUMNS

{[Time].[All].[2000].Children} ON ROWS

FROM [MiCubo]

WHERE ([Medidas].[NumPac])

Cláusula WHERE

No está restringida a medidas.

No está restringida a 1 dimensión.

Es un SLICER/DICER (cortador/seccionador)

Cláusula WHERE

No está restringida a medidas.

SELECT

{[Hospital].[Hosp1],

[Hospital].[Hosp2]} ON COLUMNS

{[Time].[All].[2000].Children} ON ROWS

FROM [MiCubo]

WHERE ([Dx].[Respiratory])

Y2000	HOSP1	HOSP2
Q1	1M€	0.4M€
Q2	1.2M€	0.1M€
Q3	0.5M€	0.5M€
Q4	0.4M€	0.3M€

Cláusula WHERE

No está restringida a 1 dimensión

SELECT

{[Hospital].[Hosp1],

[Hospital].[Hosp2]} ON COLUMNS

{[Time].[All].[2000].Children} ON ROWS

FROM [MiCubo]

WHERE ([Dx].[Respiratory],[Medidas].[NumPac])

Y2000	HOSP1	HOSP2
Q1	61 pac	28 pac
Q2	75 pac	41 pac
Q3	105 pac	11 pac
Q4	112 pac	56 pac

Cláusula WHERE

Es un SLICER/DICER (cortador/seccionador)

SINTAXIS MDX

()[]{}


```
Corchetes []
```

Dimensiones: [Time] y Miembros: [2000]

Solo es sintácticamente obligatorio de usar si hay números, espacios...(aunque es mejor usarlos siempre para evitar confusiones)

Puntos.

Separadores: [Time].[2000].[Q3]

Paréntesis ()

Tuplas: ([DX].[Circulatory],[Hosp].[H1])

Intersección de uno o más miembros, con una coma para separar a los distintos miembros


```
Llaves {}
   Conjuntos: {[Hosp].[H1], [Hosp].[H3]}
           {[Dx].Children}
           { ([Dx].[Circ],[Hosp].[H1],[Time].[Jan]),
            ([Dx].[Circ],[Hosp].[H1],[Time].[Feb]),
            ([Dx].[Circ],[Hosp].[H1],[Time].[Mar]),
            ([Dx].[Circ],[Hosp].[H1],[Time].[Apr]) }
```

Una colección de tuplas con la misma dimensionalidad (pueden ser 0 o 1 o varias)

Hint: Si una consulta no funciona con una tupla, prueba añadiendo { }

SELECT

{ CONJUNTO } ON COLUMNS

{ CONJUNTO } ON ROWS

FROM [cubo]

WHERE (TUPLA)

Pregunta: ¿Es correcto? ¿Por qué?

SELECT

([Medidas].[NumPacientes]) ON COLUMNS,

{[Time].[2000].Children} ON ROWS

FROM [MiCubo]

Pregunta: ¿Es correcto? ¿Por qué?

SELECT

{[Dx].Children} ON COLUMNS,

{[Time].[2000].[Q1].[Mayo].Children} ON ROWS

FROM [MiCubo]

WHERE {[Medidas].[coste],[Hosp].[H2]}

Nombre de una CELDA

En un cubo, cada celda tiene un nombre – una tupla.

El nombre de esta celda es:

([Time].[2000].[Q2],

[Dx].[Circulatory],

[Hospital].[H1])

Nombre de una CELDA

El nombre de esta celda es:

([Time].[2000].[Q2].[Jun],

[Dx].[Circulatory],

[Hospital].[H1])

La celda actual y vecinas:

CurrentMember

Referencia de celda relativa:

CurrentMember, PrevMember, NextMember.

El nombre de esta celda es:

([Time].[2000].**[Q3].PrevMember**,

[Dx].[Circulatory],

[Hospital].[H1])

Referencia de celda relativa:

Las funciones Lag() y Lead() permiten generalizar el movimiento hacia atrás y hacia delante (¡sí, también se pueden usar negativos!)

El nombre de esta celda es:

([Time].[2000].[Q3].Lag(2),

[Dx].[Circulatory].**Lead(2)**,

[Hospital].[H1])

J00-J99

K00-K93

E00-E90

100-199

Referencia de celda relativa:

Las funciones Lag() y Lead() permiten generalizar el movimiento hacia delante y hacia atrás (¡sí, también se pueden usar negativos!)

El nombre de esta celda es:

([Time].[2000].[Q3].Lag(2),

[Dx].[Circulatory].**Lead(2)**,

[Hospital].[H1])

¿Interesante desde la perspectiva

de negocio?

RESPIRATORY

K00-K93

J00-J99

E00-E90

100-199

Miembros calculados: +-*/ %

Calculados en base a una operación, no existían antes, ejemplo:

"Mejora de la atención a pacientes de enfermedades circulatorias en el primer trimestre de los años 1999 y 2000".

Cálculo:

([Hosp].[H1],[Dx].[Circ],[Time].[2000].[Q1],[Medidas].[NumPacientes])

([Hosp].[H1],[Dx].[Circ],[Time].[1999].[Q1],[Medidas].[NumPacientes])

¿Se puede generalizar para que funcione con cualquier miembro de la dimensión Tiempo (Time)?

Miembros calculados: +-*/%

"Crecimiento del coste <u>a lo largo del</u> año 2000 en H1 para pacientes de enfermedades circulatorias".

Crecimiento del coste: coste(t)- coste(t-1) (incremento/derivada)

Obviar: H1 para pacientes de enfermedades circulatorias

Unidad 3. Explotación de Sintaxis MDX

"Crecimiento del coste

a lo largo del año 2000".

Year

2000

Quarter

Q1

Q2

Q3

Q4

Month

January

February

Mach

April

Jun

July

April

Jun

July

April

Jun

July

Nο

Pacientes

280

90

20

30

40

60

15

15

30

50

10

10

30

80

15

15

50

Coste

M€

57

15

5

5

5

10

5

3

2

12

5

5

2

20

5

5

10

Unidad 3. Explotación de Sintaxis MDX

"Crecimiento del coste a lo largo del año 2000".

Unidad 3. Explotación de Sintaxis MDX

"Crecimiento del coste a lo largo del año 2000".

Month

Quarter

Nο

	Q4		20	80
		April	5	15
		Jun	5	15
		July	10	50

Miembros calculados: +-*/ %

"Crecimiento del coste <u>a lo largo del</u> año 2000 en H1 para pacientes de enfermedades circulatorias".

([Time].[CurrentMember],[Medidas].[Coste]

- [Time].[PrevMember],[Medidas].[Coste])

¿Y SI NOS CENTRAMOS EN EL CRECIMIENTO POR SEMESTRES?????

Unidad 3. Explotación de Sintaxis MDX

Miembros calculados: +-*/%

"Crecimiento del coste <u>a lo largo del</u> año 2000 en H1 para pacientes de enfermedades circulatorias".

([Time].[CurrentMember],[Medidas].[Coste]

- [Time].[PrevMember],[Medidas].[Coste])

¿Y SI NOS CENTRAMOS EN EL CRECIMIENTO ANUAL?!

... <u>MISMA EXPRESIÓN</u>. ESO ES LO INTERESANTE. DEPENDE DE LA DIMENSIÓN TIEMPO, QUE DEFINE LA PROPIEDAD <u>CURRENT</u> <u>MEMBER</u>

Otras funciones:

Sum (X)→Número: Suma todos los miembros de X

X.Lag(N): N posiciones hacia atrás desde X

X.Lead(M): M posiciones hacia adelante desde X.

YTD(X)→ Conjunto: YearToDate: Miembros del año hasta el miembro X. (por ejemplo, para calcular ganancias hasta la fecha actual)

e.g. YTD(March) → {Jan, Feb, March}

- Current member permite análisis basados en la posición
- La navegación jerárquica permite el análisis basado en referencias jerárquicas relativas
- Member.Children, Member.Parent, Member.FirstChild / LastChild,
 - Descendants(X,n), Ancestors(X,n) (no Member.Grandchild...)
 - Siblings / Cousins: Hermanos/Primos (se esperan niveles simétricos)

Bibliografía y recursos:

- Mark Whitehorn et al. Fast Track to MDX (2nd Ed). Springer. 2004.
- Microsoft, "Key Concepts in MDX (Analysis Services)",
 https://docs.microsoft.com/en-us/analysis-services/mdx/key-concepts-in-mdx-analysis-services?view=asallproducts-allversions
- InterSystems, "Introduction to MDX Queries", <u>https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=D2GMDX_CH_MDX_INTRO</u>