Problem 2 – Knight Game

Chess is the oldest game, but it is still popular these days. For this task we will use only one chess piece – the **Knight**.

The knight moves to the **nearest square but not on the same** row, column, **or** diagonal. (This can be thought of as moving two squares horizontally, then one square vertically, or moving one square horizontally then two squares vertically— i.e. in an **"L" pattern**.)

The knight game is played on a board with dimensions $\mathbf{N} \times \mathbf{N}$ and a lot of chess knights $\mathbf{0} \leftarrow \mathbf{K} \leftarrow \mathbf{N}^2$.

You will receive a board with **K** for knights and '**0**' for empty cells. Your task is to remove a minimum of the knights, so there will be no knights left that can attack another knight.

Input

On the first line, you will receive the **N** size of the board On the next **N** lines you will receive strings with **Ks** and **Os**.

Output

Print a single integer with the minimum amount of knights that needs to be removed

Constraints

- Size of the board will be 0 < N < 30
- Time limit: 0.3 sec. Memory limit: 16 MB.

Examples

Input	Output
5	1
ококо	
кооок	
00K00	
K000K	
ОКОКО	
2	0
KK	
KK	
8	12
ОКОКККОО	
OKOOKKKK	
00K0000K	
KKKKKKOK	
K0K0000K	
ккооооок	
00К0К000	
000K00KK	

