

MODELO PREDICTIVO PROYECCIÓN DE VENTAS

Modelos Predictivos

Prof. Juan Marcos Castillo, PhD

Est. Miguel Valzania

Mi motivación personal

La pasión por descubrir patrones ocultos en datos relacionados con ventas para transformar o entregar los mismos a las unidades negocio y gerenciales para facilitar decisiones estratégicas de valor.

Búsqueda constante de respuestas en los datos

Impacto real

Aplicar machine learning a

problemas cotidianos

Crecimiento profesional

Desarrollar habilidades avanzadas de análisis

La búsqueda de los datos perfectos

El desafío

Encontrar dataset completo del ciclo de venta

La exploración

Revisión de múltiples fuentes hasta encontrar en Kaggle

El hallazgo

5.000 transacciones con 24 variables

La conexión

Datos similares a mi trabajo diario

Lecciones del análisis descriptivo

78%

Artículos de oficina

Del total de ventas

\$1M+

Copiadoras

Solo dos productos

2

Meses pico

Junio y julio cada año

Mi proceso analítico paso a paso

Análisis descriptivo

- Exploración inicial
- Visualización por categoría
- Análisis de correlaciones
- Patrones estacionales

```
# Creamos columnas temporales
df['periodo'] = df['Order Date'].dt.year
df['mes'] = df['Order Date'].dt.month
df['periodo_mes'] = df['Order Date'].dt.strftime('%Y-%m')

# Análisis de ventas por categoría
categoria_ventas = df.groupby('Product Category')['Total'].sum().reset_index()
categoria_ventas = categoria_ventas.sort_values('Total', ascending=False)
print("\nCategorías de productos más vendidos:")
print(categoria_ventas)

# Visualización
plt.figure(figsize=(10, 6))
ax = sns.barplot(x='Total', y='Product Category', data=categoria_ventas)
plt.title("Categorías de Productos Más Vendidos')
```

```
df = pd.get_dummies(df, columns=['Ship day', 'Order day', 'Customer Type',
                                 'Account Manager', 'Order Priority',
                                 'Product Category', 'Product Container', 'Ship Mode'])
scaler = StandardScaler()
variables numericas = ['Cost Price', 'Retail Price', 'Profit Margin', 'Order Quantity',
                       'Sub Total', 'Discount', 'Total Discount', 'Order Total',
                        'Shipping Cost', 'Total']
df[variables numericas] = scaler.fit transform(df[variables numericas])
X = df.drop('Total', axis=1)
y = df['Total']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestRegressor(n estimators=100, random state=42)
model.fit(X train, v train)
y_pred = model.predict(X_test)
r2 = r2 score(y test, y pred)
mape = mpe porc(y test, y pred)
print(f'R-cuadrado: {r2:.4f}')
print(f'Error Porcentual Absoluto Medio (MAPE): {mape:.2f}%')
```

Análisis predictivo

- Limpieza de datos
- Selección de características
- Random Forest Regressor
- Evaluación con métricas
- Series temporales

Descubrimientos de la Investigación

Si pudiera empezar de nuevo...

Variables externas

Indicadores económicos y tendencias

Segmentación fina

Análisis por categoría de producto

Modelos

Especializades

Más historia

Datos para ciclos más largos

Lo que descubrí de mí mismo

Mi curiosidad es mi brújula

Preguntas con respuestas por descubrir

Conexión datos-decisiones

Busco impacto, no solo números

Paciencia analítica

Proceso metódico revela insights profundos

Traductor de complejidad

Algoritmos a recomendaciones prácticas

