

Agenda

- 1. Motivation & Business Understanding
- 2. Data Preparation & Feature Selection
- 3. Modeling
- 4. Result/Evaluation
- 5. Future Works

Motivation & Business Understanding

Motivation

Why Crypto?

- High volatility more signals, thus more trading opportunities
- Traded over multiple exchanges provides more features
- Emerging asset class more originality for our project

Business Understanding

- By **Efficient Market Hypothesis**, all publicly available information will be reflected on the price of an asset.
- Short-term trading is more of a **game between market agents**. The price of an asset in short term is more depending on the **market sentiments**, instead of fundamental or macro information. Thus, the signal offered by the market, could in return influence the market, which **blurs the boundary of leading and lagging indicators**.
- Cryptocurrency, as an assets which value is determined by consensus, short term fluctuation may be lead by the momentum that could be uncovered by mining market indicators. Meanwhile, the **high volatility** of cryptocurrency provide more signals and trading opportunity. The **exchange liquidity differences** also provide more features.
- Therefore, we choose some indicators that traditionally or logically correlated with price movement, and trying to predict the price directional movement of cryptocurrency in the short term (~5Min).

Data Preparation

Features

- Open Interest
- Top Trader Long/Short Ratio (Account)
- Top Trader Long/Short Ratio (Positions)
- Global Long/Short Ratio (Account)
- Taker Buy/Sell Volume
- Past Price Change

Price data is obtained from Yahoo Finance API, other data is obtained from Binance API

Feature Engineering

- Convert raw price / open interest data to their change in percentage space over time.
- Take log transformation to all ratio data to make our model more robust to outliers.
- Convert unix timestamp to datetime
- Normalize each feature to facilitate further operations. (subtract feature by mean and divide by standard deviation)

Make every feature zero-centered so that we could regress without intercept.

Exploratory Data Analysis

- 0.080%

0.060%

- 0.040%

0.020%

- 0.000%

-0.020%

- -0.040%

Sentiment

Modeling

Linear Regression

- Simple yet powerful model
- Reduce the risk of overfitting
- The contribution of each feature is interpretable
- Compatible with some efficient feature selection algorithm.

	ession Results						
Dep. Variable:	futurePxChange	R-square	d (uncenter	ed):	0.0	55	
Model:	OLS	Adj. R-square	d (uncenter	ed):	0.0	54	
Method:	Least Squares		F-stati	stic:	41.	77	
Date:	Tue, 16 Aug 2022	Pr	ob (F-statis	tic):	9.03e-	50	
Time:	19:02:29		Log-Likelih	ood:	2326	5.	
No. Observations:	4320			AIC: -	4.652e+0)4	
Df Residuals:	4314			BIC: -	4.648e+0)4	
Df Model:	6						
Covariance Type:	nonrobust						
		coef	std err	t	P> t	[0.025	0.975]
sumO	penInterestChange	0.0065	0.010	0.672	0.502	-0.012	0.025
	logBuySellRatio	0.0003	5.09e-05	6.013	0.000	0.000	0.000
logTopTraderAccountsLongShortRatio		0.0002	0.000	0.578	0.563	-0.001	0.001
logTopTraderPositionsLongShortRatio		-0.0003	0.000	-1.106	0.269	-0.001	0.000
logGlobalAccountsLongShortRatio		-2.033e-05	0.000	-0.057	0.955	-0.001	0.001
	pastPxChange	0.1593	0.017	9.283	0.000	0.126	0.193

Feature Selection — Lasso

- For linear regression, Lasso could be used to conduct feature selection. It will squeeze the coefficients of unhelpful/highly correlated features to zero.
- After applying regularization in Lasso regression, we select features with non-zero coefficients and use them to refit the model.
- For each coin, grid search the best regularization strength.

Evaluation

Pipeline

				insample	outOfSample	PnL
coin	regularization stren	gth	date			
BTC	0.0	000	2022-08-03	0.041329	0.034273	587.212310
			2022-08-04	0.042241	0.073870	907.415144
			2022-08-05	0.043744	0.073724	1113.635126
			2022-08-06	0.046352	0.025732	142.719724
			2022-08-07	0.045462	-0.065738	342.969880
						•••
DOT	0.	.001	2022-08-12	0.000000	0.000000	0.000000
			2022-08-13	0.000000	0.000000	0.000000
			2022-08-14	0.000000	0.000000	0.000000
			2022-08-15	0.000000	0.000000	0.000000
			2022-08-16	0.000000	0.000000	0.000000
1232 r	ows × 3 columns					


```
if __name__ == '__main__':
    coins = ["BTC", "ETH", "ADA", "SOL", "LTC", "DOGE", "XRP", "DOT"]
    with Pool() as pool:
        results = pool.imap_unordered(get_data_for_coin, coins)
        result_df = pd.concat(results, keys=coins)
        result_df.to_csv("result_by_coin.csv")
```

- We wrote a python script that makes use of the power of multiprocessing to search the out-of-sample r2 performance for every coin-hyperparameter combination.
 - Use rolling validation to get r2 data by date: for each **d**, use data from day **d-15** to **d-1** to fit the model and use that model to make prediction on day **d**
 - Concatenate the results into one large dataframe and conduct the result analysis.

Results

- Find the regularization strength that achieves highest out-of-sample r2
- Convert predictions to actual trading nerformance

			Ρ	errormance.
		•	С	ompute sharpe value (PnL mean / PnL std)
coin ADA	(ADA.	0.0001)		

		ADA	(ADA, 0.0001)	
coin		BTC	(BTC, 0.0001)	
ADA	0.082766	DOGE	(DOGE, 0.0001)	
			(,	

ETH

LTC

S₀L

XRP

22766	BTC	(BTC,	0.0001)	
82766	DOGE	(DOGE	0.0001)	
18720	D00L	(DOGE)	010001)	

coin	regularization	strenath	

OTII		BTC	(BTC.	0.0001)
ADA	0.082766	DOGE		0.0001)
зтс	0.048720			
,, ,	01010720	DOT	(DOT.	0.0001)

coin	regularization	strength	
ADA	0.00010		
BTC	0.00010		

Ε	0.00010	2.469474
	0.00010	2.836343
	0.00010	1.961242
	0.00002	1.897977

1.876568 1.947536

LTC	0.068635
S0L	0.053608
XRP	0.053043

0.057387

0.095938

0.086001

DOGE

DOT

ETH

(LTC, 2e-05)(SOL, 5e-05)(XRP, 0.0001) Name: outOfSample, dtype: object

LTC S₀L 0.00005 0.00010 XRP

DOT

ETH

2.114934 1.189168 Name: sharpe, dtype: float64

Name: outOfSample, dtype: float64

(ETH, 0.0001)

Results

Future Work

Limitations

"Bad" Data Source:

- Unlike news headlines, tweets or reddit posts' sentiment can be ambiguous or objectively neutral, leading to poor accuracy.
- Difficulties in extracting valuable opinions and information from other kind of texts.
- On smaller time scales, whether reddit and twitter posts are sufficiently correlated with price movements remains to be further verified

Possible Solution:

- Instead of collecting all tweets, try ranking tweets based on viewer's rating (like/dislike) and authority (number of followers)
- Explore more time sensitive social media data source (e.g. Telegram)

Potential Future Work

- There is no Holy Grail. More alternative data sources could be used.
- Fine-tune the power adjustment to some of the features
- Adding more models to our pipeline.
- Take commission fee into consideration during evaluation stage.
- Current model is applied toward all data and time without selection. For deployment, besides directional prediction, we need better model for timing selection to reduce noise and increase accuracy. SL/TP strategy is also required. A potential solution is to apply decision tree to select entering time and position.

END

