LOGIC AND THEORETICAL FOUNDATION OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

SUBSTITUTIONS IN PROPOSITIONAL

Logic

 \bigcirc we know $\varphi_2 \lor \varphi_1 \equiv \varphi_1 \lor \varphi_2$

- \bigcirc we know $\varphi_2 \lor \varphi_1 \equiv \varphi_1 \lor \varphi_2$
- \bigcirc \leadsto if we talk about semantics, we can use LHS or RHS whatever suits us best

- \bigcirc we know $\varphi_2 \lor \varphi_1 \equiv \varphi_1 \lor \varphi_2$
- \bigcirc \leadsto if we talk about semantics, we can use LHS or RHS whatever suits us best
- more obvious with $\varphi_1 \rightarrow \varphi_2 \equiv \neg \varphi_1 \lor \varphi$ (see additional material)

- \bigcirc we know $\varphi_2 \lor \varphi_1 \equiv \varphi_1 \lor \varphi_2$
- → if we talk about semantics, we can use LHS or RHS whatever suits us best
- more obvious with $\varphi_1 \rightarrow \varphi_2 \equiv \neg \varphi_1 \lor \varphi$ (see additional material)
- formally we are applying a substitution

Definition

 \bigcirc A partial function $\sigma: \Phi \to \Phi$ which is the identity on all undefined formulae, is called a substitution.

Definition

- \bigcirc A partial function $\sigma: \Phi \to \Phi$ which is the identity on all undefined formulae, is called a substitution.
- The parallel application of σ to a formula $\varphi \in \Phi$ is called substituting φ w.r.t. to σ .

Definition

- \bigcirc A partial function $\sigma: \Phi \to \Phi$ which is the identity on all undefined formulae, is called a substitution.
- The parallel application of σ to a formula $\varphi \in \Phi$ is called substituting φ w.r.t. to σ .

other notation: instead of $\sigma(\psi) = \chi$ applied to φ we write $\varphi[\chi \leftarrow \psi]$

Definition

- \bigcirc A partial function $\sigma : \Phi \rightarrow \Phi$ which is the identity on all undefined formulae, is called a substitution.
- The parallel application of σ to a formula $\varphi \in \Phi$ is called substituting φ w.r.t. to σ .

other notation: instead of $\sigma(\psi)=\chi$ applied to φ we write $\varphi[\chi\leftarrow\psi]$ Example:

$$(p \to q) \land (r \lor s)[\neg p \lor q \leftarrow p \to q] = (\neg p \lor q) \land (r \lor s)$$

Theorem

For φ , ψ_1 , $\psi_2 \in \Phi$ with $\psi_1 \in \text{Sub}(\varphi)$ and $\psi_1 \equiv \psi_2$ we have $\varphi \equiv \varphi[\psi_2 \leftarrow \psi_1]$

Theorem

For
$$\varphi, \psi_1, \psi_2 \in \Phi$$
 with $\psi_1 \in Sub(\varphi)$ and $\psi_1 \equiv \psi_2$ we have $\varphi \equiv \varphi[\psi_2 \leftarrow \psi_1]$

Proof.

 \bigcirc we have to prove $\hat{\beta}(\varphi) = \hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1])$ for an arbitrary interpretation β

Theorem

For $\varphi, \psi_1, \psi_2 \in \Phi$ with $\psi_1 \in Sub(\varphi)$ and $\psi_1 \equiv \psi_2$ we have $\varphi \equiv \varphi[\psi_2 \leftarrow \psi_1]$

Proof.

- \bigcirc we have to prove $\hat{\beta}(\varphi) = \hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1])$ for an arbitrary interpretation β
- \bigcirc by $\psi_1 \equiv \psi_2$ we know $\hat{\beta}(\psi_2) = \hat{\beta}(\psi_1)$

Theorem

For $\varphi, \psi_1, \psi_2 \in \Phi$ with $\psi_1 \in Sub(\varphi)$ and $\psi_1 \equiv \psi_2$ we have $\varphi \equiv \varphi[\psi_2 \leftarrow \psi_1]$

Proof.

- \bigcirc we have to prove $\hat{\beta}(\varphi) = \hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1])$ for an arbitrary interpretation β
- \bigcirc by $\psi_1 \equiv \psi_2$ we know $\hat{\beta}(\psi_2) = \hat{\beta}(\psi_1)$
- \bigcirc we use the tree representation of φ and induce on the depth of ψ_1 is occurring in φ

Theorem

For $\varphi, \psi_1, \psi_2 \in \Phi$ with $\psi_1 \in Sub(\varphi)$ and $\psi_1 \equiv \psi_2$ we have $\varphi \equiv \varphi[\psi_2 \leftarrow \psi_1]$

Proof.

- \bigcirc we have to prove $\hat{\beta}(\varphi) = \hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1])$ for an arbitrary interpretation β
- \bigcirc by $\psi_1 \equiv \psi_2$ we know $\hat{\beta}(\psi_2) = \hat{\beta}(\psi_1)$
- \bigcirc we use the tree representation of φ and induce on the depth of ψ_1 is occurring in φ
- \bigcirc IB: if ψ_1 occurs at depth 0, ψ_1 has to be φ

Theorem

For $\varphi, \psi_1, \psi_2 \in \Phi$ with $\psi_1 \in Sub(\varphi)$ and $\psi_1 \equiv \psi_2$ we have $\varphi \equiv \varphi[\psi_2 \leftarrow \psi_1]$

Proof.

- \bigcirc we have to prove $\hat{\beta}(\varphi) = \hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1])$ for an arbitrary interpretation β
- \bigcirc by $\psi_1 \equiv \psi_2$ we know $\hat{\beta}(\psi_2) = \hat{\beta}(\psi_1)$
- \bigcirc we use the tree representation of φ and induce on the depth of ψ_1 is occurring in φ
- \bigcirc IB: if ψ_1 occurs at depth 0, ψ_1 has to be φ
 - thus $\hat{\beta}(\varphi)[\psi_2 \leftarrow \psi_1] = \hat{\beta}(\psi_1)[\psi_2 \leftarrow \psi_1] = \hat{\beta}(\psi_2) = \hat{\beta}(\psi_1) = \hat{\beta}(\psi_1) = \hat{\beta}(\psi_2) = \hat$

LaTFoC5

○ IH: Assume that $\hat{\beta}(\varphi) = \hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1])$ if ψ_1 occurs at depth d > 0 for an arbitrary but fixed $d \in \mathbb{N}$

- IH: Assume that $\hat{\beta}(\varphi) = \hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1])$ if ψ_1 occurs at depth d > 0 for an arbitrary but fixed $d \in \mathbb{N}$
- IS: since d > 0, $\varphi = \neg \chi$ or $\varphi = \chi_1 \circ \chi_2$ where \circ is one of the binary operators

- IH: Assume that $\hat{\beta}(\varphi) = \hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1])$ if ψ_1 occurs at depth d > 0 for an arbitrary but fixed $d \in \mathbb{N}$
- IS: since d > 0, $\varphi = \neg \chi$ or $\varphi = \chi_1 \circ \chi_2$ where \circ is one of the binary operators
- \bigcirc thus ψ_1 is a subformula of χ , χ_1 or χ_2 and it occurs therein at depth d-1.

- IH: Assume that $\hat{\beta}(\varphi) = \hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1])$ if ψ_1 occurs at depth d > 0 for an arbitrary but fixed $d \in \mathbb{N}$
- IS: since d > 0, $\varphi = \neg \chi$ or $\varphi = \chi_1 \circ \chi_2$ where \circ is one of the binary operators
- \bigcirc thus ψ_1 is a subformula of χ , χ_1 or χ_2 and it occurs therein at depth d-1.
- By IH: $\hat{\beta}(\chi_1) = \hat{\beta}(\chi_1[\psi_2 \leftarrow \psi_1])$ and analogously for χ_2 and χ

- IH: Assume that $\hat{\beta}(\varphi) = \hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1])$ if ψ_1 occurs at depth d > 0 for an arbitrary but fixed $d \in \mathbb{N}$
- IS: since d > 0, $\varphi = \neg \chi$ or $\varphi = \chi_1 \circ \chi_2$ where \circ is one of the binary operators
- thus ψ_1 is a subformula of χ , χ_1 or χ_2 and it occurs therein at depth d-1.
- By IH: $\hat{\beta}(\chi_1) = \hat{\beta}(\chi_1[\psi_2 \leftarrow \psi_1])$ and analogously for χ_2 and χ
- \bigcirc this implies $\hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1]) = \hat{\beta}((\neg \chi_1)[\psi_2 \leftarrow \psi_1])$ which is true iff $\hat{\beta}(\chi_1[\psi_2 \leftarrow \psi_1]) = \text{false}$.

- IH: Assume that $\hat{\beta}(\varphi) = \hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1])$ if ψ_1 occurs at depth d > 0 for an arbitrary but fixed $d \in \mathbb{N}$
- IS: since d > 0, $\varphi = \neg \chi$ or $\varphi = \chi_1 \circ \chi_2$ where \circ is one of the binary operators
- \bigcirc thus ψ_1 is a subformula of χ , χ_1 or χ_2 and it occurs therein at depth d-1.
- By IH: $\hat{\beta}(\chi_1) = \hat{\beta}(\chi_1[\psi_2 \leftarrow \psi_1])$ and analogously for χ_2 and χ
- \bigcirc this implies $\hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1]) = \hat{\beta}((\neg \chi_1)[\psi_2 \leftarrow \psi_1])$ which is true iff $\hat{\beta}(\chi_1[\psi_2 \leftarrow \psi_1]) = \text{false}$.
- \bigcirc the latter holds iff $\hat{\beta}(\chi_1)$ = false and this is equivalent to $\hat{\beta}(\varphi)$ = true

- IH: Assume that $\hat{\beta}(\varphi) = \hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1])$ if ψ_1 occurs at depth d > 0 for an arbitrary but fixed $d \in \mathbb{N}$
- IS: since d > 0, $\varphi = \neg \chi$ or $\varphi = \chi_1 \circ \chi_2$ where \circ is one of the binary operators
- thus ψ_1 is a subformula of χ , χ_1 or χ_2 and it occurs therein at depth d-1.
- By IH: $\hat{\beta}(\chi_1) = \hat{\beta}(\chi_1[\psi_2 \leftarrow \psi_1])$ and analogously for χ_2 and χ
- \bigcirc this implies $\hat{\beta}(\varphi[\psi_2 \leftarrow \psi_1]) = \hat{\beta}((\neg \chi_1)[\psi_2 \leftarrow \psi_1])$ which is true iff $\hat{\beta}(\chi_1[\psi_2 \leftarrow \psi_1]) = \text{false}$.
- \bigcirc the latter holds iff $\hat{\beta}(\chi_1)$ = false and this is equivalent to $\hat{\beta}(\varphi)$ = true
- the other cases are analogous

 \bigcirc true is the neutral element of \land and \leftrightarrow , false is the neutral element of \lor and $\dot{\lor}$

- \bigcirc true is the neutral element of \land and \leftrightarrow , false is the neutral element of \lor and $\dot{\lor}$
- $\bigcirc \ \varphi \lor \mathsf{true} \equiv \mathsf{true}, \varphi \land \mathsf{false} \equiv \mathsf{false}$

- \bigcirc true is the neutral element of \land and \leftrightarrow , false is the neutral element of \lor and $\dot{\lor}$
- \bigcirc $\varphi \lor \mathsf{true} \equiv \mathsf{true}, \varphi \land \mathsf{false} \equiv \mathsf{false}$
- $\bigcirc \ \varphi \to \mathsf{true} \equiv \mathsf{true}, \varphi \to \mathsf{false} \equiv \neg \varphi$

- true is the neutral element of \land and \leftrightarrow , false is the neutral element of \lor and $\dot{\lor}$
- $\bigcirc \varphi \lor \mathsf{true} \equiv \mathsf{true}, \varphi \land \mathsf{false} \equiv \mathsf{false}$
- $\bigcirc \varphi \rightarrow \mathsf{true} \equiv \mathsf{true}, \varphi \rightarrow \mathsf{false} \equiv \neg \varphi$
- \bigcirc true $\rightarrow \varphi \equiv \varphi$, false $\rightarrow \varphi \equiv$ true (ex falso quodlibet)

- true is the neutral element of \land and \leftrightarrow , false is the neutral element of \lor and $\dot{\lor}$
- $\bigcirc \varphi \lor \mathsf{true} \equiv \mathsf{true}, \varphi \land \mathsf{false} \equiv \mathsf{false}$
- $\bigcirc \varphi \rightarrow \mathsf{true} \equiv \mathsf{true}, \varphi \rightarrow \mathsf{false} \equiv \neg \varphi$
- \bigcirc true $\rightarrow \varphi \equiv \varphi$, false $\rightarrow \varphi \equiv$ true (ex falso quodlibet)
- $\bigcirc \varphi \leftrightarrow \mathsf{false} \equiv \neg \varphi$

- true is the neutral element of \land and \leftrightarrow , false is the neutral element of \lor and $\dot{\lor}$
- $\bigcirc \varphi \lor \mathsf{true} \equiv \mathsf{true}, \varphi \land \mathsf{false} \equiv \mathsf{false}$
- $\bigcirc \varphi \rightarrow \mathsf{true} \equiv \mathsf{true}, \varphi \rightarrow \mathsf{false} \equiv \neg \varphi$
- \bigcirc true $\rightarrow \varphi \equiv \varphi$, false $\rightarrow \varphi \equiv$ true (ex falso quodlibet)
- $\bigcirc \varphi \leftrightarrow \mathsf{false} \equiv \neg \varphi$
- $\bigcirc \varphi \dot{\forall} true \equiv \neg \varphi$

 $\bigcirc \ \, \forall \ \, \text{and} \ \, \land \ \, \text{are idempotent}$

- \bigcirc \lor and \land are idempotent
- $\bigcirc \varphi \equiv \neg \neg \varphi$

- \bigcirc \lor and \land are idempotent
- $\bigcirc \varphi \equiv \neg \neg \varphi$
- $\bigcirc \varphi \lor \neg \varphi, \varphi \rightarrow \varphi, \varphi \leftrightarrow \varphi$ are tautologies

- \bigcirc \lor and \land are idempotent
- $\bigcirc \varphi \equiv \neg \neg \varphi$
- $\bigcirc \ \varphi \lor \neg \varphi, \varphi \rightarrow \varphi, \varphi \leftrightarrow \varphi$ are tautologies
- $\bigcirc \varphi \land \neg \varphi, \varphi \lor \varphi$ are contradictions

 $\, \bigcirc \,$ all binary operators but the implication are commutative

- all binary operators but the implication are commutative
- disjunction, conjunction, equivalence, and xor are associative

- all binary operators but the implication are commutative
- disjunction, conjunction, equivalence, and xor are associative
- disjunction and conjunction are distributive

Rules for Logical Equivalence (proofs left to the reader)

- all binary operators but the implication are commutative
- disjunction, conjunction, equivalence, and xor are associative
- disjunction and conjunction are distributive
- \bigcirc contraposition: $\varphi \rightarrow \psi \equiv \neg \psi \rightarrow \neg \varphi$

Much ado about nothing . . .

- what do we have to do, if we prove claims for propositional logic formula?
 - we take one arbitrary and use structural induction
- can we always generalise the binary operators to o in a proof?
 - o no! they have different properties
- it would be great if some of them are expressible by the others

Much ado about nothing . . .

- what do we have to do, if we prove claims for propositional logic formula?
 - we take one arbitrary and use structural induction
 - thus we have a case for each operator at depth 0
- can we always generalise the binary operators to o in a proof?
 - o no! they have different properties
- it would be great if some of them are expressible by the others

Expressive Power of Fragments of Propositional Logic

$$S = \{\land, \lor, \neg, \dot{\lor}, \rightarrow, \leftrightarrow, \uparrow, \downarrow\}$$

Definition

○ The expressive power of Φ is the set of all formula φ such there does not exist a $\psi \in \Phi$ with $\psi \equiv \varphi$.

Expressive Power of Fragments of Propositional Logic

$$S = \{ \land, \lor, \neg, \dot{\lor}, \rightarrow, \leftrightarrow, \uparrow, \downarrow \}$$

Definition

- The expressive power of Φ is the set of all formula φ such there does not exist a ψ ∈ Φ with ψ ≡ φ.
- For $T \subseteq S$, let Φ_T be the set of all formula only containing operators from T. The expressive power of Φ_T is defined as above.

Expressive Power of Fragments of Propositional Logic

$$S = \{\land, \lor, \neg, \dot{\lor}, \rightarrow, \leftrightarrow, \uparrow, \downarrow\}$$

Definition

- The expressive power of Φ is the set of all formula φ such there does not exist a $\psi \in \Phi$ with $\psi \equiv \varphi$.
- For $T \subseteq S$, let Φ_T be the set of all formula only containing operators from T. The expressive power of Φ_T is defined as above.
- Two sets Φ_T and Φ_R for $T, R \subseteq S$ have the same expressive power if they define the same formula up to logical equivalence.

LaTFoCS

We saw $\varphi \to \psi \equiv \neg \varphi \lor \psi!$

We saw
$$\varphi \to \psi \equiv \neg \varphi \lor \psi!$$

$$\bigcirc$$
 set $T := \{\land, \lor, \neg, \dot{\lor}, \leftrightarrow, \uparrow, \downarrow\}$

We saw
$$\varphi \to \psi \equiv \neg \varphi \lor \psi!$$

- \bigcirc set $T := \{\land, \lor, \neg, \dot{\lor}, \leftrightarrow, \uparrow, \downarrow\}$
- \bigcirc Φ_T and Φ have the same expressive power

We saw
$$\varphi \to \psi \equiv \neg \varphi \lor \psi!$$

- \bigcirc set $T := \{\land, \lor, \neg, \dot{\lor}, \leftrightarrow, \uparrow, \downarrow\}$
- \bigcirc Φ_T and Φ have the same expressive power
- \bigcirc sketch of proof: $\Phi_T \subseteq \Phi$

We saw
$$\varphi \to \psi \equiv \neg \varphi \lor \psi!$$

- \bigcirc set $T := \{\land, \lor, \neg, \dot{\lor}, \leftrightarrow, \uparrow, \downarrow\}$
- \bigcirc Φ_T and Φ have the same expressive power
- \bigcirc sketch of proof: $\Phi_T \subseteq \Phi$
- for each $\varphi \in \Phi$ that contains → we apply the substitution $\sigma(p \to q) = \neg p \lor q$ for each $p \to q$ in φ

We saw
$$\varphi \to \psi \equiv \neg \varphi \lor \psi!$$

- \bigcirc set $T := \{\land, \lor, \neg, \dot{\lor}, \leftrightarrow, \uparrow, \downarrow\}$
- \bigcirc Φ_T and Φ have the same expressive power
- \bigcirc sketch of proof: $\Phi_T \subseteq \Phi$
- for each φ ∈ Φ that contains → we apply the substitution $\sigma(p \to q) = \neg p \lor q$ for each $p \to q$ in φ
- \bigcirc after the application $\varphi[\sigma]$ is in Φ_T

Logical Equivalence for Removing Operators

$$\varphi \leftrightarrow \psi \equiv (\varphi \to \psi) \land (\psi \to \varphi), \qquad \varphi \to \psi \equiv \neg \varphi \lor \psi$$

$$\varphi \lor \psi \equiv \neg (\neg \varphi \land \neg \psi), \qquad \varphi \land \psi \equiv \neg (\neg \varphi \lor \neg \psi),$$

$$\varphi \dot{\lor} \psi \equiv \neg (\varphi \to \psi) \lor \neg (\psi \to \varphi),$$

$$\varphi \uparrow \psi \equiv \neg (\varphi \land \psi), \qquad \varphi \downarrow \psi \equiv \neg (\varphi \lor \psi).$$

LaTFoCS

Choosing a Set of Operators

Definition

Let S be a set of operators. The binary operator \circ is defined from S if for all $\varphi_1, \varphi_2 \in \Phi_S$ there exists $\psi \in \Phi_S$ with $\varphi_1 \circ \varphi_2 \equiv \psi$. The unary operator \star is defined from S if for all $\varphi \in \Phi_S$ there exists $\psi \in \Phi_S$ with $\star \varphi \equiv \psi$.

Choosing a Set of Operators

Definition

Let S be a set of operators. The binary operator \circ is defined from S if for all $\varphi_1, \varphi_2 \in \Phi_S$ there exists $\psi \in \Phi_S$ with $\varphi_1 \circ \varphi_2 \equiv \psi$. The unary operator \star is defined from S if for all $\varphi \in \Phi_S$ there exists $\psi \in \Phi_S$ with $\star \varphi \equiv \psi$.

Roughly spoken: an operator is defined from a set, if we can express it by operators from *S*.

Set of Operators used mostly in Logic

Theorem

Set $O = \{\neg, \circ\}$ for $\circ \in \{\land, \lor, \rightarrow\}$. Then all other operators introduced here can be defined from O.

Set of Operators used mostly in Logic

Theorem

Set $O = \{\neg, \circ\}$ for $\circ \in \{\land, \lor, \rightarrow\}$. Then all other operators introduced here can be defined from O.

Proof.

follows directly by the equivalence rules

Set of Operators used mostly in Logic

Theorem

Set $O = \{\neg, \circ\}$ for $\circ \in \{\land, \lor, \rightarrow\}$. Then all other operators introduced here can be defined from O.

Theorem

The set O is minimal.

The proof is left to the reader.

Why do we have nand or nor gates?

Theorem

If \circ is a binary operator that can define negation and all other binary operators introduced here, by itself, then \circ is either \uparrow or \downarrow .

but

○ we don't think in nand or nor: *I don't do not buying milk and bread and not buying milk and bread* \sim ($M \uparrow B$) \uparrow ($M \uparrow B$)

Why do we have nand or nor gates?

Theorem

If \circ is a binary operator that can define negation and all other binary operators introduced here, by itself, then \circ is either \uparrow or \downarrow .

assuming that the theorem is true (the proof is omitted here),

- nand and nor are very powerful
- for a computer only one device has to be constructed
- it is cheap

but

○ we don't think in nand or nor: *I don't do not buying milk and bread and not buying milk and bread* $\sim (M \uparrow B) \uparrow (M \uparrow B)$