NUMBER THEORY: QUICK REFERENCE

VISHVAS VASUKI

Contents

Part 1. Notation	1
Part 2. Themes	1
Part 3. Rigorous patterns of ideas and solution strategies	1
1. Properties of Numbers	1
2. GCD	1
2.1. Euclid's algorithm	1
2.2. Extended Euclid's alg	1
2.3. Diophontine equation	1
3. Conjectures	1
4. Primes	1
4.1. Special primes	1
4.2. Prime number theorem	1
4.3. Primality testing of n	1
4.4. Randomized primality test	2
4.5. Picking some prime below N	2
5. Special numbers	2
5.1. Square free integers	2
5.2. Carmichael composite number	2
6. Modulo arithmatic	2
6.1. Cancellation law	2
6.2. Chinese remainder theorem	2
6.2.1. Uniqueness	2 2
6.2.2. Solving for x	2
6.2.3. Equivalent statements and implications	2
6.2.4. Utility	2
7. Additive group: Z_p^+	2
8. Multiplicative group Z_N^*	2
8.1. Order	3
8.2. Primitive roots	3
8.3. Primitive root test	3
9. Quadratic residues	3
9.1. QR_p for odd prime p	3
9.1.1. Jacobi symbol	3
9.2. QR_n for p, q odd primes; $n = pq$ (Blum integer)	3

Part 1. Notation

[n]: Set of first n natural numbers.

Part 2. Themes

About Z.

Part 3. Rigorous patterns of ideas and solution strategies

1. Properties of Numbers

Evenness and odness. Primes and composites. Unique factorization of n as product of primes: $n=p_1^{e_1}...$

2. GCD

gcd(x,y). gcd(x,y)|x-y.

- 2.1. **Euclid's algorithm.** To find gcd(x, y): if y|x return y else return gcd(x, y-x). From Euclid's alg, GCD(x,y)=ax+by. If 1=ax+by, $a\equiv multiplicative$ inverse of $x \mod y$.
- 2.2. Extended Euclid's alg. Find a,b using Euclid's alg.
- 2.3. **Diophontine equation.** Indeterminate polynomial eqn with integer solutions: eg: gcd(x, y) = ax + by in Euclid's alg.

3. Conjectures

Goldbach conjecture: $\forall x \in N, x > 4, x = \text{sum of 2 primes.}$

4. Primes

- 4.1. **Special primes.** Marsenne prime: writ as $2^n 1$.
- 4.2. **Prime number theorem.** Num of primes under $k = \Pi(k) = (1 + o(1)) \frac{k}{\ln k}$. [Find proof]

(Green, Tao) Number of arithmetic progressions of primes of length $\geq k$ is ≥ 1 .

- 4.3. **Primality testing of n.** Don't try to factor: assumed hard.
- 4.4. Randomized primality test. (Miller Rabin) Pick rand x in $Z_n^+ \{0\}$. If x|n reject. See if (Fermat's little th, Lucas-Lehmer) $\forall x \in Z_n^* : x^{n-1} = 1 \mod n$ holds: do it in polylog time with repeated squaring. Repeat test with many x's. In failure, reject. Else, check if it is a Carmichael composite number: see if 1 has a non-trivial square root: Write $n-1=2^sd$; pick $x \neq \pm 1$; repeatedly square and check if $x \mod n = 1$: if so reject, else if $x \mod n = -1$: try starting with another x.
- 4.5. Picking some prime below N. Pick a random number below n, check if it is a prime: if not prime fail. By Prime number th, this alg has $\approx (\ln n)^{-1}$ success rate, which can then be amplified.

5. Special numbers

- 5.1. Square free integers. Aka quadratfrei. Divisible by no perfect square except 1.
- 5.2. Carmichael composite number. Let prime factorization: $n=p_1^{e_1}...$ Aka Fermat pseudoprimes: They're Fermat liers: $\forall a: a^{n-1} \equiv 1 \mod n$. n is Carmichael iff it is square free; for all p_i $p_i - 1|n - 1$. [Find proof]Eg: 561 = 3*11*17; $\forall a : a^{560} = 1 \mod 3, \mod 17, \mod 11 \text{ as } 2, 10, 16|560.$

6. Modulo arithmatic

The remainder fn. $-3 \equiv 2 \mod 5$. $ab \mod n \equiv (a \mod n)(b \mod n) \mod n$. So, congruence relation over \mathbb{Z} wrt +, *. If $a \equiv b \mod n \implies n|a-b|$.

- 6.1. Cancellation law. $ka \equiv kb \mod n \implies k(a-b) \equiv 0 \mod p \implies a \equiv b$
- 6.2. Chinese remainder theorem. Let n_i 's coprime, $N = \prod_i n_i$. System of simultaneous congruences $x = a_i \mod n_i$ for $i = 1 \dots k$ has a unique solution for $x \text{ in } \mathbb{Z}_N.$
- 6.2.1. Uniqueness. If $\forall i, x \equiv x_i \mod n_i$, and $y \equiv x_i \mod n_i$, $x y \equiv 0 \mod N$.
- 6.2.2. Solving for x. Use Extended Euclid's alg on $1 = r_i n_i + s_i \frac{N}{n_i}$ to find r_i and s_i , let $e_i = s_i \frac{N}{n_i}$; then $e_i \equiv 1 \mod n_i$ but $0 \mod n_j$; thence find $x = \sum_{i=1}^k a_i e_i$.
- 6.2.3. Equivalent statements and implications. $|Z_N| \to |\times_i Z_{n_i}|$. Map $x \to (x)$ mod $n_1,...$) from $Z_N \to \times_i Z_{n_i}$ is both one to one and onto. Also, Isomorphism by Chinese remainder fn: $\mathbb{Z}_n \cong \times_i \mathbb{Z}_{n_i}$ preserves +, *.
- 6.2.4. Utility. Useful for manipulating composite numbers. An airthmatic question mod N reduced to arithmatic questions modulo n_i , if we know $\{n_i\}$.

7. Additive group: Z_n^+

A prime order group. Does not have any subgroups.

8. Multiplicative group Z_N^*

- Z_N^* : N's coprimes in $\{1,\ldots,N-1\}$, * mod N. Proof: GCD with N is 1, so use extended Euclid's alg to find inverses. If p prime; -1 := p-1; $\sqrt{1} \equiv \pm 1 \mod p$.
- 8.1. **Order.** N=pq; p, q primes: order = totient function: $|Z_N^*| = \varphi(N) = (p-1)(q-1)$: we discard multiples of p, q. Also, if $N = \prod p_i^{e_i}$, $\varphi(N) = \prod (p_i-1)p_i^{e_i-1}$. (Euler's theorem). $a^{\varphi(N)} \equiv 1 \mod N$: Take $a, a^2 \dots a^k = e$; this is a subgroup of Z_N^e ; by Lagrange (see group theory in algebra ref), $k|\varphi(N)$. $N = \prod p_i^{e_i} \cdot \frac{|Z_N^e|}{|Z_N^e|} = \frac{\varphi(N)}{N} = \prod_{i=1}^t \frac{p_i-1}{p_i} \ge \prod_{i=1}^t \frac{i}{i+1} = \frac{1}{1+t} \ge \frac{1}{1+\log_2 N}.$

$$N = \prod p_i^{e_i} \cdot \frac{|Z_N^*|}{|Z_N^+|} = \frac{\varphi(N)}{N} = \prod_{i=1}^t \frac{p_i - 1}{p_i} \ge \prod_{i=1}^t \frac{i}{i+1} = \frac{1}{1+t} \ge \frac{1}{1+\log_2 N}$$

So, Fermat's little theorem: p prime: $a^p \equiv a \mod p$

8.2. **Primitive roots.** Aka generator. If $S = Z_n^*$, g is primitive root of n. Z_p^* for prime p always has primitive root [**Find proof**]. 7 has primitive roots 3, 5. $1, 2, 4, p^k, 2p^k$ have primitive roots for p odd prime and $k \ge 1$. [**Find proof**][**Incomplete**]

The number of primitive roots, if there are any, is $\phi(\phi(n))$. (See group theory in algebra ref)

8.3. **Primitive root test.** g is primitive root of n iff its multiplicative order is $\phi(n)$: else it generates a subgroup. Efficiently see if g is a generator: find prime factors of $\phi(n) = \prod_i p_i$, keep seeing if $g^{\frac{\phi(n)}{p_i}} = 1$.

9. Quadratic residues

 QR_n : set of squares mod n. Quadratic non residues. If $a \in QR_n, aRn$, else a N n.

Finding \sqrt{x} same as solving $y^2 = x \mod n$, or factoring $(y^2 - x) \mod n$.

9.1. QR_p for odd prime **p.** As structure of Z_p^* cyclic; writable as $\{g^i\}$ for primitive root g; only even powers $\{g^{2i}\}$ are squares. So, $|QR_p| = |Z_p^*|/2$.

1 has exactly 2 roots: ± 1 , and no more: $x^2 - 1 \mod p = (x - 1) \mod p(x + 1)$ mod p = 0 so $x - 1 = 0 \mod p$ or $x + 1 = 0 \mod p$. $g^{\frac{p-1}{2}} = -1$. $\sqrt{g^{2i}} = \pm g^i$ by Euler thm.

- 9.1.1. *Jacobi symbol.* $(\frac{a}{p}) = 0$ if p|a; +1 if a R p, $p \nmid a; -1$ if a N p. Legendre: generalization to n=pq; $(\frac{a}{n}) = -1$ if a N n; if a R n, $(\frac{a}{n}) = 1$, but can't tell if a R n given $(\frac{a}{n}) = 1$.
- 9.2. QR_n for **p**, **q** odd primes; **n** = **pq** (Blum integer). $\exists 4 \sqrt{1}$: take $x^2 = 1 \mod n$; ± 1 are obvious roots; Chinese remainder thm solutions s for $x = 1 \mod p$; $x = -1 \mod q$ and t for $x = -1 \mod p$; $x = +1 \mod q$ are the other two. As square roots appear in pairs, s = -t. To find the non trivial square roots, must know p, q.

Similarly, for any odd $m = m_1 m_2$, 1 has ≥ 4 roots. So, any $a^2 \in QR_n$ has ≥ 4 roots: $a\sqrt{1}$. So, $4^{-1}|Z_n^*| \leq |QR_n|$.