PROJECT CARD [SKIP IF FAMILIAR]

INTRODUCTION AND KEY LEARNING OUTCOMES

- We will an XG-Boost SageMaker Built-in algorithm using SageMaker JumpStart.
- We will learn how to:
 - Train an XG-boost algorithm in SageMaker to predict university admission using AWS JumpStart
 - Train an XG-boost algorithm in SageMaker to predict life expectancy (capstone project) using AWS JumpStart
 - 3. List XG-Boost hyperparameters
 - 4. Assess trained regression models performance
 - 5. Plot the residuals
 - 6. Deploy an endpoint and perform inference

PROJECT CARD

GOAL:

• Build, train, test and deploy a machine learning model to predict chances of university admission into a particular university given student's profile.

TOOL:

• AWS SageMaker Studio – Jump Start

PRACTICAL REAL-WORLD APPLICATION:

• This project can be effectively used by university admission departments to determine top qualifying students.

DATA:

INPUTS (FEATURES):

- GRE Scores (out of 340)
- TOEFL Scores (out of 120)
- University Rating (out of 5)
- Statement of Purpose (SOP)
- Letter of Recommendation (LOR) Strength (out of 5)
- Undergraduate GPA (out of 10)
- Research Experience (either 0 or 1)

OUTPUTS:

- Chance of admission (ranging from 0 to 1)
 - Data Source: https://www.kaghtpsc//www.kfliarksachna/pa/otras/pasa/6757993885

JUMPSTART DEMO: OVERVIEW

NAVIGATE TO AMAZON SAGEMAKER STUDIO HOMEPAGE AND CLICK ON SAGEMAKER JUMPSTART

YOU SHOULD FIND SEVERAL ML WORKFLOWS THAT CAN BE DEPLOYED WITH ONE CLICK ACCESS. THERE ARE VISION, TEXT, AND TABULAR MODELS..ETC.

JUMPSTART DEMO: DATA PREP PRIOR TO TRAINING

DATA PREP

IN THIS NOTEBOOK, WE WILL SPLIT THE DATA INTO TRAINING, VALIDATION AND TESTING. WE WILL ALSO SET THE FIRST COLUMN IN THE DATA TO BE OUR TARGET (OUTPUT) COLUMN.

JUMPSTART DEMO: DATA UPLOAD

CLICK ON XGBOOST REGRESSION

YOU CAN DEPLOY A PRETRAINED MODEL (MODEL TRAINED ON THE ABALONE DATASET) OR YOU CAN TRAIN THE MODEL WITH YOUR OWN CUSTOM DATASET

YOU CAN READ THE DESCRIPTION BELOW.

- INPUT: A DIRECTORY CONTAINS 2 SUB-DIRECTORY 'TRAIN/' 'VALIDATION/'.
- EACH SUB-DIRECTORY CONTAINS A 'DATA.CSV' FILE. THE 'DATA.CSV' FILES UNDER SUB-DIRECTORY 'TRAIN/' AND 'VALIDATION/' ARE FOR TRAINING/VALIDATION.
- THE FIRST COLUMN OF THE 'DATA.CSV' SHOULD HAVE THE CORRESPONDING TARGET VARIABLE AND THE REST CONTAINS THE FEATURES.
- YOU MUST ENCODE ALL CATEGORICAL FEATURES FIRST.
- OUTPUT: A TRAINED MODEL THAT CAN BE DEPLOYED FOR INFERENCE.

NAVIGATE TO S3, CREATE A DIRECTORY AND LIST THE TRAIN AND TEST DATASET

CREATE A NEW FOLDER IN THE DEFAULT SAGEMAKER BUCKET

CREATE A SUB-DIRECTORY AND NAME IT TRAIN

CREATE A SUB-DIRECTORY AND NAME IT VALIDATION

UPLOAD THE TRAINING DATASET TO TRAIN DIRECTORY. NOTE THAT THE FOLLOWING: (1) NO HEADERS, (2) TARGET VARIABLE IS LISTED FIRST, (3) YOU WILL NEED TO RENAME THE FILE TO DATA.CSV AFTER IT'S UPLOADED TO S3

File	Home Inser	t Draw Pac	ge Layout For	mulas Data	Review Vi	ew Help								
5.						•						FF2		
G.	<u> </u>	Calibri		, , , ,				General	Y	Conditional F	Format as	Cell		
	Paste 🍑	В <i>I</i> <u>U</u>	· III ·	<u> </u>	= = =	→	& Center 💙	\$ ~ % 9	.00 .00 0.★ 00.			Styles *	Insert	
Undo	Clipboard	7	Font	[Z	А	lignment	Ľ	Number	Ľ	S	ityles			
A1	∨ : [×	$\checkmark f_x$ 0.72												
	Α	В	С	D	Е	F	G	Н	- 1	J		K		
1	0.72	306	105	2	2.5	3	8.22	1						
2	0.56	300	102	2	1.5	2	7.87	0						
3	0.44	296	95	2	3	2	7.54	1						
4	0.55	309	105	2	2.5	4	7.68	0						
5	0.67	301	100	3	3.5	3	8.04	0						
6	0.42	299	94	1	1	1	7.34	0						
7	0.75	315	105	3	2	2.5	8.48	0						
8	0.77	312	109	3	3	3	8.69	0						
9	0.67	318	109	3	3	3	8.5	0						
10	0.91	338	117	4	3.5	4.5	9.46	1						
11	0.56	312	100	2	1.5	3.5	7.9	1						
12	0.81	329	111	4	4.5	4	9.01	1						
13	0.81	328	110	4	4	2.5	9.02	1						
14	0.78	322	104	3	3.5	4	8.84	1						
15	0.65	302	110	3	4	4.5	8.5	0						
16	0.95	336	119	4	4.5	4	9.62	1						
17	0.89	339	119	5	4.5	4	9.7	0						
18	0.64	304	100	2	2.5	3.5	8.07	0					sa/675	7991
19	0.45	298	97	2	2	3	7.21	0		1			hazyar	,

CLICK ON RENAME OBJECT

RENAMED IT FROM TRAIN.CSV TO DATA.CSV

DO THE SAME FOR THE VALIDATION DATASET

SELECT THE S3 BUCKET AND DATASET DIRECTORY NAME. GO AHEAD, CLICK TRAIN TO START THE TRAINING PROCESS

JUMPSTART DEMO: MODEL TRAINING

TRAINING PROCESS HAS JUST STARTED!

YOU CAN VIEW THE HYPERPARAMETERS AND INSTANCE SETTINGS

TRAINING IS NOW COMPLETE!

JUMPSTART DEMO: ENDPOINT DEPLOYMENT

MODEL DEPLOYMENT

MODEL IS BEING DEPLOYED...THIS SHOULD TAKE COUPLE IF MINUTES.

NOW THE ENDPOINT IS IN-SERVICE

JUMPSTART DEMO: INVOKE ENDPOINT

TO MAKE INFERENCE ON THE ENDPOINT, CLICK ON OPEN NOTEBOOK TO START MAKING QUERIES

UPLOAD THE TESTING DATASETS TO THE S3 BUCKET

TO MAKE INFERENCE ON THE ENDPOINT, CLICK ON OPEN NOTEBOOK TO START MAKING QUERIES

ASSESS TRAINED MODEL PERFORMANCE

PRINT OUT REGRESSION MODELS EVALUATION METRICS

```
[10]: # Evaluate the model predictions quantitatively.
      eval_r2_score = r2_score(ground_truth_label.values, model_predictions)
      eval mse score = mean squared error(ground truth label.values, model predictions)
      eval mae score = mean absolute error(ground truth label.values, model predictions)
      print (
          f"{bold}Evaluation result on test data{unbold}:{newline}"
          f"{bold}{r2_score. name }{unbold}: {eval_r2_score}{newline}"
          f"{bold}{mean squared error. name }{unbold}: {eval mse score}{newline}"
          f"{bold}{mean absolute error. name }{unbold}: {eval mae score}{newline}"
      Evaluation result on test data:
      r2 score: 0.9557161949003675
      mean squared error: 0.0008903605413045446
      mean absolute error: 0.011734435749053957
[]:
```

MAKE SURE TO DELETE THE DEPLOYED ENDPOINT AND SHUT DOWN ALL RUNNING INSTANCES

FINAL END-OF-DAY CAPSTONE PROJECT

EASY

ADVANCED

PROJECT OVERVIEW: SAGEMAKER JUMPSTART

- In this hands-on project, we will train an XG-Boost Regression model to predict life expectancy using SageMaker Jumpstart.
- This data was initially obtained from World Health Organization (WHO) and United Nations
 Website. Data contains features like year, status, life expectancy, adult mortality, infant deaths,
 percentage of expenditure, alcohol etc.
- Tasks:
- Upload the dataset Life_Expectancy_test_NoHeader.csv and Life_Expectancy_train_NoHeader.csv to S3
- 2. Using AWS SageMaker JumpStart, train an XG-Boost model to predict life expectancy.
- 3. Deploy the model and assess its performance. What's R2?

Source: https://www.kaggle.com/jkumarajarshi/life-expectancy-who

FINAL END-OF-DAY CAPSTONE PROJECT SOLUTION

FINAL PROJECT SOLUTION

FINAL PROJECT SOLUTION

MAKE SURE TO DELETE THE DEPLOYED ENDPOINT AND SHUT DOWN ALL RUNNING INSTANCES

