Quiz 5

Problems

riobiems	
#1.	The eigenvalues of A are the roots of
3)	$dot(tT-A) = \begin{pmatrix} t+1 & 2 & -2 \\ 1 & 1-3 & A \end{pmatrix}$
3	$det(tI-A) = \begin{vmatrix} t+1 & 2 & -2 \\ -4 & t-3 & 4 \\ 0 & 2 & t-1 \end{vmatrix}$
3	= (t+1)((t-3)(t-1)-8)+4(2(t-1)+4)
	= (t+1)(t-3)(t-1) = 0.
	Thus, A has three distinct eigenvalues, ±1 and 3. Solving
	the linear equation $Ax = \lambda x$ for $\lambda = \pm 1, 3$, we have
	1 CII = Francisco of A:
	\star eigenvectors corresponding to $\lambda = 3$: $\chi = C \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
	* 1 - 1 - 1
	\star — $\lambda = -1$: $\times = c.(2)$
	Therefore, $A = PDP$ where
	$P = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}, D = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, P = \begin{pmatrix} -1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}.$
	$P = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}, P = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}.$
	~~~~
=	
	Since A and AAT has the same rank and the dimension
	of AAT is m x m, by the dimension theorem (aka rank
	M. L. therappy
	nullity theorem),
	nully $(AA^T) = m - mull rank (AA^T) = m - k$
	V
3	
3	

## Summary

	PAGE .
Apr 14.	* equiv, red n. RSXXX s.t.
	-reflexive: $\forall x \in X$ , $\times Rx$ .
	-gmmetric: ∀x,yex, xRy ⇒ yRx
	- transitione: ∀x.y.zeX, xRyRz ⇒ xRz.
	* Similarity: A~B
	Lo same with the row-equivalence for the square matrices.
	- Two square matrices are similar if there are bases
	which the matrices represent the same operator writ.
	* Smrilmity invariants: det, tr, charpoly: dim'n of eigenspace
	* Multiplicity of an eigenvalue:
	- alaphaic multi- multiplicity of 2 in Dalt as a see
	- algebraic multi: multiplicity of $\lambda$ in $\rho_A(t)$ , as a rest - geometric multi: etimensian of the eigenspace.
	* Draw alivation A D=P-AP D. diagonal & A
	* Diagnalization: A D=P-AP, D: diagnal & P: invertible  * TFAE:
	a A is diagnalizable
	2 A has n linearly indep exampletors.
	3) The expansectors of A form a basis of R.
	(4) geom. mult = alge. mult; for all eigenvalues.
	=> If A has n distinct eigenvalues, it is diagnalyable
	Authornal drawn to district Application P=P
	* Orthogonal diagonalizability: A D=PAP where P=P
	- orthogonal diagonalizability = real symmetricity. orthogonal (she to the spectral decomposition)
	P = [W1 Wn], Wi: eigenvector corr. to $\lambda_i$
	1 - LWE WAJ, WILL DOJUMENT
	$\Rightarrow A = P \operatorname{diag}(\lambda_1 \cdots \lambda_n) P^{T} = \sum_{i=1}^n \lambda_i \ \forall_i \ \forall_i \ ,$
	$\langle \lambda_1 V_1, V_2 \rangle = \langle A_1 V_4, V_2 \rangle = \frac{1}{\text{real symm}} \langle V_4, A_2 \rangle = \lambda_2 \langle V_4, V_2 \rangle$ A is self-adjoint $\Rightarrow \langle V_4, V_2 \rangle = 0$ .
	* Caylor Hamilton: PA(A) = O.

DATE	634
Tilliam 1000 Tilloure, southers	
by the C-H Thm, MA I PA.	
- Every medicible factor of pA is also a stirides MA.	
Every traducible factor of $p_A$ is also a divides $M_A$ . $\times$ For diagonalzable $A$ , $A = PDP^{-1}$ , $D = \operatorname{diag}(\lambda_1 \cdots \lambda_m)$	
$e^{A} = e^{PDP^{-1}} = \sum_{k} PD^{k}P^{-1} = Pe^{D^{-1}}$	
	=
= P. diag (e ²¹ e ²ⁿ ) p.	-
* How to find a the spectral orthogonalizat of a real symmetric matrix A?	
- The principle of the first account of	
A X the largest modulus	
The power method: to find the targest eigenvalue of  *\( n = A \times_{n-1} \)  \[ \begin{array}{c} A & A & A & A & A & A & A & A & A & A &	
converges to a unit dominant exercector and	
A (Xn · Xn -> ): dominant eigenvalue.	
$\star$ rank $A = \operatorname{ctim row} A$ $null(A) =$	
nullity A = dm null A.	
* herrems:	
-W = W = W = W	
$-5 \neq \emptyset$ , $S \subseteq \mathbb{R}^n \Rightarrow S^+ = span(S)^+$ .	
	-
- $A \sim B \Rightarrow row(A) = row(B) \land null(A) = null(B)$	
If A & B where B is a row echelon form,	1
then nower nows of B form a basis of row(4) $\times$ Dimension than: A: $\mathbb{R}^m \to \mathbb{R}^m$ , $W \subseteq \mathbb{R}^n$ , $(=nw(8))$	100
$rank(A) + multip(A) = n . d Im w + d Im w^{\perp} = n .$	10
+ Rank thm: dim row(A) = dim col(A) = rank A.	an
	and a
* A & A A & AA! have the same rank.	011
	1