Lecture 14: Disjoint Sets

9/28/2020

Intro to Disjoint Sets

Meta-goals of the Coming Lectures: Data Structure Refinement

- Today: Deriving the "Disjoint Sets" data structure for solving the "Dynamic Connectivity" problem. We will see:
 - How a data structure design can evolve from basic to sophisticated
 - How our choice of underlying abstraction can affect asymptotic runtime and code complexity

The Disjoint Sets Data Structure

- The Disjoint Sets data structure has two operations:
 - connect(x, y): Connects x and y
 - isConnected(x, y): Returns true if x and y are connected. Connections can be transitive, i.e. they don't need to be direct
- · Useful for many purposes
 - Percolation theory:
 - Computational chemistry
 - Implementation of other algorithms
 - Kruskal's algorithm

Disjoint Sets on Integers

- To keep things simple, we're going to:
 - Force all items to be integers instead of arbitrary data
 - Declare the number of items in advance, everything is disconnected at start

The Disjoint Sets Interface

```
public interface DisjointSets {
    /** Connects two items P and Q */
    void connect(int p, int q);

    /** Checks to see if two items are connected */
    boolean isConnected(int p, int q);
}
```

- Goal: Design an efficient DisjointSets implementation
 - Number of elements N can be huge
 - Number of method calls M can be huge
 - Calls to methods may be interspersed (e.g. can't assume it's only connect operations followed by only isConnected operations)

The Naive Approach

- Naive approach:
 - Connect two things: Record every single connecting line in some data structure
 - Checking connectedness: Do some sort of iteration over the lines to see if one thing can be reached from the other

A Better Approach: Connected Components

- Rather than manually writing out every single connecting line, only record the sets that each item belongs to
- For each item, its **connected component** is the set of all items that are connected to that item
- Better approach: Model connectedness in terms of sets
 - How things are connected isn't something we need to know
 - o Only need to keep track of which connected component each item belongs to

Quick Find

Performance Summary

- ListOfSetsDS
 - Constructor: Theta(N)
 - Connect: Theta(N)
 - o isConnected: O(N)
- ListofSetsDS is complicated and slow
 - o Operations are linear when number of connections are small
 - Have to iterate over all sets
 - Important point: By deciding to use List of Sets, we have doomed ourselves to complexity and bad performance

My Approach: Just use a list of integers

- Idea #2: List of integers where ith entry gives set number (aka "id") of item i
 - connect(p, q): Change entries that equal id[p] and id[q]
- QuickFindDS

Constructor: Theta(N)Connect: Theta(N)isConnected: Theta(1)

Quick Union

Improving the Connect Operation

- Next approach (Quick Union): We will still represent everything as connected components, and we will still represent connected components as a list of integers. However, values will be chosen so that connect is fast
- How could we change our set representation so that combining two sets into their union requires changing one value?
 - Idea: Assign each item a parents (instead of an id). Results in a tree-like shape

- o An innocuous sounding, seemingly arbitrary solution
- Ex: connect(5, 2)
 - Find root (5)
 - Find root (2)
 - Set root (5) 's value equal to root (2)

Set Union Using Rooted-Tree Representation

- What are some potential performance issues with this approach
 - Tree can get too tall! root (x) becomes expensive
 - o For N items, this means a worst case runtime of Theta(N)
- QuickUnionDS
 - Constructor: Theta(N)
 - Connect: O(N)
 - o isConnected: O(N)
- QuickUnion defect: Trees can get tall. Results in potentially even worse performance than QuickFind if tree is imbalanced
 - o Observation: Things would be fine if we just kept our tree balanced

Weighted Quick Union

Weighted Quick Union

- Modify quick-union to avoid tall trees
 - Track tree size (number of elements)
 - New rule: Always link root of smaller tree to larger tree
 - Note: this rule is based on weight, not height

Implementing WeightedQuickUnion

- Minimal changes needed
 - Use parent[] array as before
 - isConnected(int p, int q) requires no changes
 - connect(int p, int q) needs to somehow keep track of sizes
 - Two common approaches:
 - Use values other than -1 in parent array for root nodes to track size
 - Create a separate size array

Weighted Quick Union Performance

- Consider the worst case where the tree height grows as fast as possible
 - The height increases logarithmically with respect to the number of elements

Worst case tree height is Theta(log N)

Performance Summary

• WeightedQuickUnionDS

Constructor: Theta(N)

Connect: O(log N)

isConnected(log N)

- QuickUnion's runtimes are O(H), and WeightedQuickUnionDS height is given by H = O(log N). Therefore
 connect and isConnected are both O(log N)
- By tweaking QuickUnionDS we've achieved logarithmic time performance

Why Weights Instead of Heights?

- We used the number of items in a tree to decide upon the root
 - Why not use the height of the tree?
 - Worst case performance for HeightedQuickUnionDS is asymptotically the same! Both are Theta(log N)
 - Resulting code is complicated with no performance gain

Path Compression (CS 170 Spoiler) (Can we do better?)

What We've Achieved

- Performing M operations on a DisjointSet object with N elements:
 - For our naive implementation, runtime is O(MN)
 - For our best implementation, runtime is O(N + M log N)
 - Key point: Good data structure unlocks solutions to problems that could otherwise not be solved!
 - Good enough for all practical uses, but could we theoretically do better?

CS 170 Spoiler: Path Compression: A Clever Idea

- Below is the topology of the worst case if we use WeightedQuickUnion
 - Clever Idea: When we do isConnected(15, 10), tie all nodes seen to the root
 - Additional cost is insignificant (same order of growth)

- Path compression results in a union/connected operations that are very very close to amortized constant time
 - M operations on N nodes is O(N + M lg* N) you will see this in CS 170
 - Ig* is less than 5 for any realistic input
 - A tighter bound: O(N + M \alpha(N)), where \alpha is the inverse Ackermann function
 - The inverse Ackermann function is less than 5 for all practical inputs!

A Summary of Our Iterative Design Process

- And we're done! The end result of our iterative design process is the standard way disjoint sets are implemented today quick union and path compression
- The ideas that made our implementation efficient:
 - Represent sets as connected components (don't track individual connections)
 - ListofSetsDS: Store connected components as a List of Sets (slow, complicated)

- QuickFindDS: Store connected components as set ids
- QuickUnionDS: Store connected components as parent ids
 - WeightedQuickUnionDS: Also track the size of each set, and use size to decide on a new tree root
 - WeightedQuickUnionWithPathCompressionDS: On calls to connect and isConnected, set parent id to the root for all items seen

Summary From Discussion

- QuickFind uses an array of integers to track which set each element belongs to
- **QuickUnion** stores the parent of each node rather than the set to which it belongs sto and merges sets by setting the parent of one root to the other
- **WeightedQuickUnion** does the same as QuickUnion except it decides which set is merged into which by size, reducing the likelihood of large trees
- WeightedQuickUnion with Path Compression sets the parent of each node to the set's root whenever find() is called on it