Parsing Techniques for Contex-Free Path Querying

Semyon Grigorev

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg University

April 05, 2019

Formal language constrained path querying

- Finite directed edge-laballed graph $\mathcal{G} = (V, E, L)$
- The path is a world over L:

$$\omega(p) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \dots \xrightarrow{l_{n-1}} v_n) = l_0 \cdot l_1 \cdot \dots \cdot l_{n-1}$$

• The language \mathcal{L} (over L)

Formal language constrained path querying

- Finite directed edge-laballed graph G = (V, E, L)
- The path is a world over L:

$$\omega(p) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \dots \xrightarrow{l_{n-1}} v_n) = l_0 \cdot l_1 \cdot \dots \cdot l_{n-1}$$

- The language \mathcal{L} (over L)
- Reachability problem: $Q = \{(v_i, v_j) \mid \exists p = v_i \dots v_j, \omega(p) \in \mathcal{L}\}$
- Path querying problem: $Q = \{p \mid \omega(p) \in \mathcal{L}\}$
 - ▶ Single path, all paths, shortest path . . .

Context-Free path querying

- ullet is a context-free language
- $G_{\mathcal{L}} = (N, \Sigma, R, S)$
- Reachability problem: $Q = \{(v_i, v_j) \mid \exists p = v_i \dots v_j, S \xrightarrow[G_i]{*} \omega(p)\}$
- Path querying problem: $Q = \{p \mid \omega(p) \in \mathcal{L}\}$

Example of CFPQ

Input graph

 $0: S \rightarrow a S b$ $1: S \rightarrow Middle$

 $2: Middle \rightarrow ab$

Query: language $\{a^nb^n \mid n > 0\}$

```
Paths:

2 \xrightarrow{a} 0 \xrightarrow{b} 3
1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0
p_1 = 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3
p_2 = 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3 \xrightarrow{b} 0
```

Applications

- Graph data bases querying Yann
- Static code analysis
 Reps CFL reachability
- CFL editing distance/Error recovery Aho

Graph data bases querying

Find your cousins once removed

$$S \to H \downarrow$$
$$H \to \varepsilon \mid \uparrow H \downarrow$$

Same generation query, similarity query.

Static code analysis

```
int id(int u)
 v = u;
  return v;
int main()
 //taint
  int x;
  int z, y;
 //untaint
  int t;
  z = id(x);
  t = id(y);
```


Error recovery

• !!!!

Input graph

 $0:\ S\to a\ S\ b$

 $1: \ S \rightarrow \textit{Middle}$

2: $Middle \rightarrow a b$

Grammar

Input graph

 $0: S \rightarrow a S b$ $1: S \rightarrow Middle$

2: Middle \rightarrow a b

Grammar

Query result (SPPF)

 $0: S \rightarrow a S b$ $1: S \rightarrow Middle$

2 : $Middle \rightarrow a b$ Grammar

Input graph

Query result (SPPF)

Tree for p_1

 $0: S \rightarrow a S b$ 1 : $S \rightarrow Middle$

2: Middle \rightarrow a b Grammar

Input graph

Query result (SPPF)

Tree for p_1

Tree for p_2

Paths extraction

Path: $0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3$

Bar-Hillel theorem

Context-free languages are closed under intersection with regular languages

Regular language

 $0:\ S\to a\ S\ b$

 $1: \ S \rightarrow \textit{Middle}$

 $2: Middle \rightarrow a b$

Context-free language

Bar-Hillel theorem

Context-free languages are closed under intersection with regular languages

 $0: S \rightarrow a S b$ $1: S \rightarrow Middle$

 $2: Middle \rightarrow ab$

Regular language

Context-free language

Bar-Hillel theorem

Context-free languages are closed under intersection with regular languages

 $0: S \rightarrow a S b$

 $1: S \rightarrow \textit{Middle}$

 $2: Middle \rightarrow ab$

Regular language

Context-free language

$$(0, S, 3) \rightarrow (0, a, 1) (1, S, 0) (0, b, 3)$$

$$(1, S, 0) \rightarrow (1, a, 2) (2, S, 3) (3, b, 0)$$

$$(2, S, 3) \rightarrow (2, a, 0) (0, S, 0) (0, b, 3)$$

$$(2, S, 3) \rightarrow (2, Middle, 3)$$

$$(0, S, 0) \rightarrow (0, a, 1) (1, S, 3) (3, b, 0)$$

$$(1, S, 3) \rightarrow (1, a, 2) (2, S, 0) (0, b, 3)$$

$$(2, S, 0) \rightarrow (2, a, 0) (0, S, 3) (3, b, 0)$$

$$(0, Middle, 3) \rightarrow (2, a, 0) (0, b, 3)$$

Directions for research

- Parallel and distributed parsing
- O(BMM) complexity
- Incremental parsing

Contact Information

- Semyon Grigorev:
 - s.v.grigoriev@spbu.ru
 - ► Semen.Grigorev@jetbrains.com