МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Искусственные нейронные сети» Тема: «Распознавание рукописных символов»

Студентка гр. 8382	 Звегинцева Е.Н
Преподаватель	Жангиров Т.Р

Санкт-Петербург 2021

Цель работы.

Реализовать классификацию черно-белых изображений рукописных цифр (28х28) по 10 категориям (от 0 до 9). Набор данных содержит 60 000 изображений для обучения и 10 000 изображений для тестирования.

Задачи.

- Ознакомиться с представлением графических данных
- Ознакомиться с простейшим способом передачи графических данных нейронной сети
- Создать модель
- Настроить параметры обучения
- Написать функцию, позволяющая загружать изображение пользователи и классифицировать его

Требования.

- Найти архитектуру сети, при которой точность классификации будет не менее 95%
- Исследовать влияние различных оптимизаторов, а также их параметров, на процесс обучения
- Написать функцию, которая позволит загружать пользовательское изображение не из датасета

Ход работы.

В ходе работы была создана и обучена модель искусственной нейронной сети в соответствии с условиями (код представлен в приложении).

Результатом поиска наилучшей архитектуры, при которой точность классификации сети более 95%, оказалась модель с 2мя скрытыми слоями на 512 и 216 нейронов. На самом деле добавление слоев не сильно влияет на результат, но при таком строении потери наименьшие. Эти результаты достигнуты при исходном количестве эпох = 5, однако в процессе тестирования я выяснила, что точнее результаты при количестве эпох = 20.

Результаты обучения модели при использовании различных оптимизаторов, а также их параметров представлены в таблицах ниже. Чтобы определить какой оптимизатор и с какими параметрами подходит нам больше всего, я рассмотрела каждый оптимизатор с различными параметрами. Далее из них выбирала наилучший и фиксировала, что менялось.

Название оптимизатора	Его параметры	Точность
	'learning_rate': 0.001, 'decay':	0.8683
	0.0, 'rho': 0.95, 'epsilon': 1e-	
	07}:	
Adadelta	'learning_rate': 0.001, 'decay':	0.8038
	0.0, 'rho': 0.5, 'epsilon': 1e-07}:	
	9_	0.9411
	'rho': 0.95, 'epsilon': 1e-07}:	

С увеличением 'learning_rate' увеличивается точность, поэтому наилучший вариант это:

{'name': 'Adadelta', 'learning_rate': 0.01, 'decay': 0.0, 'rho': 0.95,
'epsilon': 1e-07}: 0.9411

Название оптимизатора	Его параметры	Точность
	'learning_rate': 0.001, 'decay':	0.9285
	0.0, 'initial_accumulator_value':	
Adagrad	0.1, 'epsilon': 1e-07}	
	'learning_rate': 0.01, 'decay':	0.9736
	0.0, 'initial_accumulator_value':	
	0.1, 'epsilon': 1e-07}	

С увеличением 'learning_rate' увеличивается точность, поэтому наилучший вариант это:

{'name': 'Adagrad', 'learning_rate': 0.01, 'decay': 0.0,
'initial_accumulator_value': 0.1, 'epsilon': 1e-07}: 0.9736

Название оптимизатора	Его параметры	Точность
	'learning_rate': 0.001, 'decay':	0.9838
	0.0, 'beta_1': 0.9, 'beta_2':	
	0.999, 'epsilon': 1e-07, 'amsgrad':	
	False}	
	'learning_rate': 0.01, 'decay':	0.9749
Adam	0.0, 'beta_1': 0.9, 'beta_2':	
	0.999, 'epsilon': 1e-07, 'amsgrad':	
	False}:	
	{'name': 'Adamax', 'learning_rate':	0.9825
	0.001, 'decay': 0.0, 'beta_1': 0.9,	
	'beta_2': 0.999, 'epsilon': 1e-07}:	

С увеличением 'learning_rate' увеличивается потери, поэтому наилучший вариант это:

{'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9,
'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}: 0.9838

Название оптимизатора	Его параметры	Точность
PMSnnon	<pre>'learning_rate': 0.001, 'decay': 0.0, 'rho': 0.9, 'momentum': 0.0, 'epsilon': 1e-07, 'centered': False}</pre>	0.9828
RMSprop	<pre>'learning_rate': 0.01, 'decay': 0.0, 'rho': 0.9, 'momentum': 0.0, 'epsilon': 1e-07, 'centered': False}</pre>	0.9644

'learning_rate': 0.001, 'decay': 0.0, 'rho': 0.5, 'momentum': 0.0, 'epsilon': 1e-07, 'centered': False}	0.9823
<pre>'learning_rate': 0.001, 'decay': 0.0, 'rho': 0.9, 'momentum': 0.9, 'epsilon': 1e-07, 'centered': False}:</pre>	0.9768

С увеличением параметров'learning_rate' и 'momentum' увеличивается потери, при изменении параметра 'rho' ничего не меняется, поэтому наилучший вариант это:

{'name': 'RMSprop', 'learning_rate': 0.001, 'decay': 0.0, 'rho': 0.9,
'momentum': 0.0, 'epsilon': 1e-07, 'centered': False}: 0.9828

Название оптимизатора	Его параметры	Точность
	<pre>'learning_rate': 0.01, 'decay': 0.0, 'momentum': 0.0, 'nesterov': False}</pre>	0.9568
SGD	<pre>'learning_rate': 0.001, 'decay': 0.0, 'momentum': 0.0, 'nesterov': False}</pre>	0.9014
	<pre>'learning_rate': 0.01, 'decay': 0.0, 'momentum': 0.9, 'nesterov': False}:</pre>	0.9799

С увеличением 'learning_rate' и 'momentum' увеличивается точность, поэтому наилучший вариант это:

{'name': 'SGD', 'learning_rate': 0.01, 'decay': 0.0, 'momentum': 0.9,
'nesterov': False}: 0.9799

Теперь из наилучших вариаций оптимизаторов выберем самый подходящий:

Сравнивая полученные цифры и смотря на графики, можно увидеть, что хуже всех себя оптимизатор 'Adadelta', так как у нее самая маленькая точность. Лучше всех справился оптимизатор 'RMSprop'.

Запуск программы с изображением пользователя.

Рисунок 1 — файл q.png

Вывод программы:

test_acc: 0.9818000197410583

8

Выводы.

В ходе выполнения данной работы была изучена задача распознавания рукописных цифр и исследовано влияние различных оптимизаторов на обучение моделей. Также была произведена работа по работе и обработке изображений.