1. Find if exists the limit of the sequence as $n \to \infty$

1.
$$\frac{1}{n^2}$$
2. $\frac{n^2}{(2-n^3)}$
4. $(1.01) *n$
5. $\sin(\pi n)$

1. $\frac{1}{n^2}$
2. $\frac{n^2}{(0.09) *n}$
3. $\frac{n^2}{(0.09) *n}$
4. $\frac{1}{(1.01) *n}$
5. $\frac{1}{(1.01) *n}$
5. $\frac{1}{(1.01) *n}$

Romantic interpretation of 3 and 4

2. Derivatives

(a) Compute f'

0

- (b) Plot f and f' with R
- (c) Find all possible candidates x^* for maxima and minima. *Hint:* exp is a strictly monotone function.
- (d) Compute f''
- (e) Determine if the candidates are local maxima, minima or neither.
- (f) Find the global maximum and global minimum of f

