

New use of trans,trans-1,4-di:acyloxy-1,3-butadiene compounds as bleach activators - especially useful for peroxy bleaches in e.g. textile detergents, cleaning agents, washing up liquids or disinfectants, have high bleach activating effect at low temperatures

Patent Number : DE19616767

International patents classification : C11D-003/39 C11D-003/395 A61K-033/40 C11D-003/60

• **Abstract :**

DE19616767 A Use of trans,trans-1,4-diacyloxy-1,3-butadiene compounds (I) as activators for preferably inorganic peroxy compounds in oxidising-, washing-, or cleaning agents or disinfectant solutions is new.

USE - (I) are useful for bleaching coloured stains during the washing of textiles (preferably in aqueous solutions containing surfactants) or in cleaning solutions for hard surfaces (especially for washing dishes) (claimed). (I) can also be used in hair or textile bleaches.

ADVANTAGE - (I) have a higher bleach activating effect than other 1,4-diacetoxy-1,3-butadiene isomers or isomer mixtures and enable bleaching to be carried out at relatively low temperatures, even below 45 deg. C. (Dwg.0/0)

• **Publication data :**

Patent Family : DE19616767 A1 19971106 DW1997-51 C11D-003/395 8p * AP: 1996DE-1016767 19960426
WO9741200 A1 19971106 DW1997-51 C11D-003/39 Ger 24p
AP: 1997WO-EP01929 19970417 DSNW: JP US DSRW: AT BE
CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

Priority n° : 1996DE-1016767 19960426

Covered countries : 19

Publications count : 2

• **Patentee & Inventor(s) :**

Patent assignee : (HENK) HENKEL KGAA
Inventor(s) : KUESTER H; NITSCH C; PEGELOW U; RIEBE H;
WILDE A

• **Accession codes :**

Accession N° : 1997-551018 [51]
Sec. Acc. n° CPI : C1997-175949

• **Derwent codes :**

Manual code : CPI: D08-B06 D11-B01D
D11-D01A D11-D01B E10-G02G2
Derwent Classes : D15 D21 E19
Compound Numbers : 9751-A0901-N

• **Update codes :**

Basic update code : 1997-51
Equiv. update code : 1997-51

THIS PAGE BLANK (USPTO)

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES

PATENTAMT

Offenl gungsschrift

(10) DE 196 16 767 A 1

(51) Int. Cl. 6:

C 11 D 3/39

C 11 D 3/39

C 11 D 3/60

(21) Akt nzeich n: 196 16 767.1

(22) Anmeldetag: 26. 4. 96

(23) Offenlegungstag: 6. 11. 97

(71) Anmelder:

Henkel KGaA, 40589 Düsseldorf, DE

(72) Erfinder:

Wilde, Andreas, Dr., 40589 Düsseldorf, DE; Küster, Harald, 40625 Düsseldorf, DE; Pegelow, Ulrich, Dr., 40597 Düsseldorf, DE; Riebe, Hans-Jürgen, Dr., 40724 Hilden, DE; Nitsch, Christian, Dr., 40591 Düsseldorf, DE

(54) Bleichaktivatoren für Wasch- und Reinigungsmittel

(57) Die Aktivierung von Persauerstoffverbindungen, insbesondere im Rahmen des Bleichens von Farbenschmutzungen beim Waschen von Textilien sowie Reinigen harter Oberflächen, gelingt besonders wirksam durch die Verwendung von trans,trans-1,4-Diacyloxy-1,3-butadianen.

DE 196 16 767 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 09. 97 702 045/169

10/24

DE 196 16 767 A 1

Beschreibung

Die vorliegende Erfindung betrifft die Verwendung von trans,trans-1,4-Diacyloxy-1,3-butadienen als Bleichaktivatoren zur Aktivierung von Persauerstoffverbindungen, insbesondere zum Bleichen von Farbanschmutzungen beim Waschen von Textilien, sowie Wasch-, Reinigungs- und Desinfektionsmittel, die derartige Bleichaktivatoren enthalten.

Anorganische Persauerstoffverbindungen, insbesondere Wasserstoffperoxid und feste Persauerstoffverbindung, die sich in Wasser unter Freisetzung von Wasserstoffperoxid lösen, wie Natriumperborat und Natriumcarbonat-Polyhydrat, werden seit langem als Oxidationsmittel zu Desinfektions- und Bleichzwecken verwendet. Die Oxidationswirkung dieser Substanzen hängt in verdünnten Lösungen stark von der Temperatur ab; so erzielt man beispielsweise mit H_2O_2 oder Perborat in alkalischen Bleichflotten erst bei Temperaturen oberhalb von etwa 80°C eine ausreichend schnelle Bleiche verschmutzter Textilien. Bei niedrigeren Temperaturen kann die Oxidationswirkung der anorganischen Persauerstoffverbindungen durch Zusatz sogenannter Bleichaktivatoren verbessert werden, die in der Lage sind, unter den angesprochenen Perhydrolysebedingungen Peroxocarbonsäuren zu liefern und für die zahlreiche Vorschläge, vor allem aus den Stoffklassen der N- oder O-Acylderivate, beispielsweise mehrfach acyierte Alkylendiamine, insbesondere Tetraacetylethylenediamin, acyierte Glykourile, insbesondere Tetraacetylglykouril, N-acyierte Hydantoine, Hydrazide, Triazole, Hydrotriazine, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Carbonsäureester, insbesondere Natriumnonanoxybenzolsulfonat, Natrium-isononanoxybenzolsulfonat, O-acyierte Zuckerderivate, wie Pentaacetylglukose, und N-acyierte Lactame, wie N-Benzoylcapro lactam, in der Literatur bekannt geworden sind. Durch Zusatz dieser Substanzen kann die Bleichwirkung wässriger Peroxidflotten so weit gesteigert werden, daß bereits bei Temperaturen um 60°C im wesentlichen die gleichen Wirkungen wie mit der Peroxidflotte allein bei 95°C eintreten.

Im Bemühen um energiesparende Wasch- und Bleichverfahren gewinnen in den letzten Jahren Anwendungstemperaturen deutlich unterhalb 60°C, insbesondere unterhalb 45°C bis herunter zur Kaltwassertemperatur an Bedeutung.

Bei diesen niedrigen Temperaturen läßt die Wirkung der bisher bekannten Aktivatorverbindungen in der Regel erkennbar nach. Es hat deshalb nicht an Bestrebungen gefehlt, für diesen Temperaturbereich wirksamere Aktivatoren zu entwickeln, ohne daß bis heute ein überzeugender Erfolg zu verzeichnen gewesen wäre.

In den europäischen Patentanmeldungen EP 0 092 932 A1 und EP 0 122 763 A2 ist der Einsatz von Enoestern wie 1,4-Diacetoxy-1,3-butadien neben einer Vielzahl von anderen Substanzen als Bleichaktivatoren empfohlen worden. Überraschenderweise wurde nun gefunden, daß die trans,trans-Isomere dieser Substanzklasse eine deutlich höhere bleichaktivierende Wirkung aufweisen als andere Isomere oder Isomerengemische.

Gegenstand der Erfindung ist demgemäß die Verwendung von trans,trans-1,4-Diacyloxy-1,3-butadienen als Aktivatoren für insbesondere anorganische Persauerstoffverbindungen in Oxidations-, Wasch-, Reinigungs- oder Desinfektionslösungen.

Bei den erfindungsgemäß einzusetzenden Substanzen handelt es sich um Verbindungen nach Formel I, die in der Lage sind, bei der Perhydrolyse Peroxocarbonsäuren mit vorzugsweise 1 bis 18, insbesondere 2 bis 12 C-Atomen abzuspalten.

40

In den Verbindungen gemäß Formel I steht R für Wasserstoff, einen Aryl-, Alkyl-, Alkenyl- oder Cycloalkylrest mit 1 bis 17 C-Atomen. Bevorzugt sind die Verbindungen nach Formel (I) mit R = Phenyl, C_1 - bis C_{11} -Alkyl, 9-Decenyl und deren Gemische, wobei die Alkyreste linear oder verzweigtkettig sein können. Unter den Verbindungen der Formel (I) mit linearen Alkyresten R sind solche mit 1 bis 9 C-Atomen im Alkyrest R besonders bevorzugt.

Mischungen von verschiedenen Peroxocarbonsäuren abspaltenden Verbindungen gemäß Formel I, insbesondere solchen, die unter Perhydrolysebedingungen gegebenenfalls substituierte Perbenzoësäure und/oder Peroxocarbonsäuren mit 1 bis 5 C-Atomen, insbesondere 2 bis 4 C-Atomen ergeben, mit solchen, die unter Perhydrolysebedingungen lineare oder verzweigtkettige Peroxocarbonsäuren mit 6 bis 18 C-Atomen, insbesondere 7 bis 12 C-Atomen ergeben, werden in einer bevorzugten Ausführungsform der Erfindung eingesetzt. Zum Einsatz in teilchentröhrigen Wasch-, Reinigungs- und Desinfektionsmitteln sind die erfindungsgemäß zu verwendenden Substanzen gemäß Formel I vorzugsweise bei Raumtemperatur fest.

Die erfindungsgemäß einzusetzenden Verbindungen wie trans,trans-1,4-Diacetoxy-1,3-butadien können gemäß oder analog den aus den Veröffentlichungen von B. M. Trost et al., J. Org. Chem. 43 (1978), S. 4559–4564 oder von R. M. Carlson und R. K. Hill, Org. Synth. 50 (1970), S. 24–27 bekannten Verfahren hergestellt werden.

Die trans,trans-1,4-Diacyloxy-1,3-butadiene werden vorzugsweise zum Bleichen von Farbanschmutzungen beim Waschen von Textilien, insbesondere in wässriger, tensidhaltiger Flotte, verwendet. Die Formulierung "Bleichen von Farbanschmutzungen" ist dabei in ihrer weitesten Bedeutung zu verstehen und umfaßt sowohl das Bleichen von sich auf dem Textil befindenden Schmutz, das Bleichen von in der Waschflotte befindlichem, vom Textil abgelösten Schmutz als auch das oxidative Zerstören von sich in der Waschflotte befindenden Textilfar-

ben, die sich unter den Waschbedingungen von Textilien ablösen, bevor sie auf andersfarbige Textilien aufziehen können.

Eine weitere bevorzugte Anwendungsform gemäß der Erfindung ist die Verwendung von trans,trans-1,4-Diacyloxy-1,3-butadienen in Reinigungslösungen für harte Oberflächen, insbesondere für Geschirr, zum Bleichen von gefärbten Anschmutzungen. Auch dabei wird unter dem Begriff der Bleiche sowohl das Bleichen von sich auf der harten Oberfläche befindendem Schmutz, insbesondere Tee, als auch das Bleichen von in der Geschirrspülflotte befindlichem, von der harten Oberfläche abgelösten Schmutz verstanden.

Weitere Gegenstände der Erfindung sind Wasch-, Reinigungs- und Desinfektionsmittel, die ein trans,trans-1,4-Diacyloxy-1,3-butadien als Bleichaktivator enthalten und ein Verfahren zur Aktivierung von Persauerstoffverbindungen unter Einsatz eines derartigen trans,trans-1,4-Diacyloxy-1,3-butadien-Bleichaktivators.

Bei dem erfindungsgemäßen Verfahren und im Rahmen einer erfindungsgemäßen Verwendung können die trans,trans-1,4-Diacyloxy-1,3-butadiene als Aktivatoren überall dort eingesetzt werden, wo es auf eine besondere Steigerung der Oxidationswirkung anorganischer Persauerstoffverbindungen bei niedrigen Temperaturen ankommt, beispielsweise bei der Bleiche von Textilien, Haaren oder harten Oberflächen, bei der Oxidation organischer oder anorganischer Zwischenprodukte und bei der Desinfektion.

Die erfindungsgemäße Verwendung besteht im wesentlichen darin, Bedingungen zu schaffen, unter denen eine Persauerstoffverbindung und ein trans,trans-1,4-Diacyloxy-1,3-butadien miteinander reagieren können, mit dem Ziel, stärker oxidierend wirkende Folgeprodukte zu erhalten. Solche Bedingungen liegen insbesondere dann vor, wenn die Reaktionspartner in wässriger Lösung aufeinandertreffen. Dies kann durch separate Zugabe der Persauerstoffverbindung und des Bleichaktivators in separater Form zu einer gegebenenfalls wasch- oder reinigungsmittelhaltigen Lösung geschehen. Besonders vorteilhaft wird das erfindungsgemäße Verfahren jedoch unter Verwendung eines erfindungsgemäßen Wasch-, Reinigungs- oder Desinfektionsmittels, das den Bleichaktivator gemäß Formel I und gegebenenfalls ein peroxidisches Oxidationsmittel enthält, durchgeführt. Die Persauerstoffverbindung kann auch separat, in Substanz oder als vorzugsweise wässrige Lösung oder Suspension, zur Wasch-, Reinigungs- beziehungsweise Desinfektionslösung zugegeben werden, wenn ein persauerstofffreies Mittel verwendet wird.

Je nach Verwendungszweck können die Bedingungen weit variiert werden. So kommen neben rein wässrigen Lösungen auch Mischungen aus Wasser und geeigneten organischen Lösungsmitteln als Reaktionsmedium in Frage. Die Einsatzmengen an Persauerstoffverbindungen werden im allgemeinen so gewählt, daß in den Lösungen zwischen 10 ppm und 10% Aktivsauerstoff, vorzugsweise zwischen 50 und 5000 ppm Aktivsauerstoff vorhanden sind.

Auch die verwendete Menge an Bleichaktivator gemäß Formel I hängt vom Anwendungszweck ab. Je nach gewünschtem Aktivierungsgrad wird soviel des erfindungsgemäß zu verwendenden Bleichaktivators gemäß Formel I eingesetzt, daß 0,03 Mol bis 1 Mol, vorzugsweise 0,1 Mol bis 0,5 Mol Bleichaktivator pro Mol persauerstoffverbindung zum Einsatz kommen, doch können in besonderen Fällen diese Grenzen auch über- oder unterschritten werden.

Ein erfindungsgemäßes Wasch-, Reinigungs- oder Desinfektionsmittel enthält vorzugsweise 0,2 Gew.-% bis 30 Gew.-%, insbesondere 1 Gew.-% bis 20 Gew.-% Bleichaktivator gemäß Formel I neben üblichen, mit dem Bleichaktivator verträglichen Inhaltsstoffen. Die erfindungsgemäß zu verwendenden aktivierenden Substanzen können in im Prinzip bekannter Weise an Trägerstoffen adsorbiert und/oder in Hülfsstoffen eingebettet sein.

Die erfindungsgemäßen Wasch-, Reinigungs- und Desinfektionsmittel, die als insbesondere pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, können außer dem erfindungsgemäß zu verwendenden Bleichaktivator gemäß Formel I im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die erfindungsgemäßen Wasch- und Reinigungsmittel können insbesondere Buildersubstanzen, oberflächenaktive Tenside, organische und/oder insbesondere anorganische Persauerstoffverbindungen, wassermischbare organische Lösungsmittel, Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und weitere Hilfsstoffe, wie optische Aufheller, Vergrauungsinhibitoren, Farübertragungsinhibitoren, Schaumregulatoren, zusätzliche Persauerstoff-Aktivatoren, Farb- und Duftstoffe enthalten.

Ein erfindungsgemäßes Desinfektionsmittel kann zur Verstärkung der Desinfektionswirkung gegenüber speziellen Keimen zusätzlich zu den bisher genannten Inhaltsstoffen übliche antimikrobielle Wirkstoffe enthalten. Derartige antimikrobielle Zusatzstoffe sind in den erfindungsgemäß Desinfektionsmitteln vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere von 0,1 Gew.-% bis 5 Gew.-%, enthalten.

Zusätzlich zu den erfindungsgemäß zu verwendenden Bleichaktivatoren, insbesondere gemäß Formel I, können übliche eingangs genannte Substanzen, die unter Perhydrolysebedingungen Peroxocarbonsäuren bilden, und/oder übliche die Bleiche aktivierende Übergangsmetallkomplexe eingesetzt werden.

Als geeignete Persauerstoffverbindungen kommen insbesondere organische Persäuren beziehungsweise persaure Salze organischer Säuren, wie Phthalimidoperacronsäure, Perbenzoësäure oder Salze der Diperodecandisäure, Wasserstoffperoxid und unter den Wasch- beziehungsweise Reinigungsbedingungen Wasserstoffperoxid abgebende anorganische Salze, wie Perborat, Percarbonat und/oder Persilikat, in Betracht. Sofern feste Persauerstoffverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Die Persauerstoffverbindungen können als solche oder in Form dieser enthaltender Mittel, die prinzipiell alle üblichen Wasch-, Reinigungs- oder Desinfektionsmittelbestandteile enthalten können, zu der Wasch- beziehungsweise Reinigungslauge zugegeben werden. Besonders bevorzugt wird Alkalipercarbonat, Alkaliperborat-Monohydrat oder Wasserstoffperoxid in Form wässriger Lösungen, die 3 Gew.-% bis 10 Gew.-% Wasserstoffperoxid enthalten, eingesetzt. Falls ein erfindungsgemäßes Wasch- oder Reinigungsmittel Persauerstoffverbindungen enthält, sind diese in Mengen von vorzugsweise bis zu 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-%, vorhanden, während in den

erfindungsgemäßen Desinfektionsmitteln vorzugsweise von 0,5 Gew.-% bis 40 Gew.-%, insbesondere von 5 Gew.-% bis 20 Gew.-%, an Persauerstoffverbindung enthalten sind.

Die erfindungsgemäßen Mittel können in oder mehrere Tenside enthalten, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemisch in Frage kommen.

5 Geeignete nichtionische Tenside sind insbesondere Alkylglykoside und Ethoxylierungsund/oder Propoxylierungsprodukte von Alkylglykosiden oder linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, vorzugsweise 4 bis 10 Alkylethergruppen. Weiterhin sind entsprechende Ethoxylierungs- und/oder Propoxylierungsprodukte von N-Alkyl-aminen, vicinalen Diolen, Fettsäureestern und Fettsäureamiden, die hinsichtlich des Alkylteils den genannten langkettigen Alkoholderivaten entsprechen, sowie von Alkylphenolen mit 5 bis 12 C-Atomen im Alkyrest brauchbar.

10 Geeignete anionische Tenside sind insbesondere Seifen und solche, die Sulfat- oder Sulfonat-Gruppen mit bevorzugt Alkalionen als Kationen enthalten. Verwendbare Seifen sind bevorzugt die Alkalisalze der gesättigten oder ungesättigten Fettsäuren mit 12 bis 18 C-Atomen. Derartige Fettsäuren können auch in nicht vollständig neutralisierter Form eingesetzt werden. Zu den brauchbaren Tensiden des Sulfat-Typs gehören die Salze der Schwefelsäurehalbester von Fettalkoholen mit 12 bis 18 C-Atomen und die Sulfatierungsprodukte der genannten nichtionischen Tenside mit niedrigem Ethoxylierungsgrad. Zu den verwendbaren Tensiden vom Sulfonat-Typ gehören lineare Alkylbenzolsulfonate mit 9 bis 14 C-Atomen im Alkylteil, Alkansulfonate mit 12 bis 18 C-Atomen, sowie Olefinsulfonate mit 12 bis 18 C-Atomen, die bei der Umsetzung entsprechender Monoolefine mit Schwefeltrioxid entstehen, sowie alpha-Sulfofettsäureester, die bei der Sulfonierung von Fettsäuremethyl- oder -ethylestern entstehen.

15 Derartige Tenside sind in den erfindungsgemäßen Reinigungs- oder Waschmitteln in Mengenanteilen von vorzugsweise 5 Gew.-% bis 50 Gew.-%, insbesondere von 8 Gew.-% bis 30 Gew.-%, enthalten, während die erfindungsgemäßen Desinfektionsmittel wie auch erfindungsgemäße Mittel zur Reinigung von Geschirr vorzugsweise 0,1 Gew.-% bis 20 Gew.-%, insbesondere 0,2 Gew.-% bis 5 Gew.-% Tenside, enthalten.

20 Ein erfindungsgemäßes Mittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören Polycarbonsäuren, insbesondere Citronsäure und Zuckersäuren, monomere und polymere Aminopolycarbonsäuren, insbesondere Methylglycidiessigsäure, Nitritoliessigsäure und Ethyldiamintetraessigsäure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure), Ethylen-diamintetrakis(methylenphosphonsäure) und 1-Hydroxyethan-1,1-diphosphonsäure, polymere Hydroxyverbindungen wie Dextrin sowie polymere (Poly-)carbonsäuren, insbesondere die durch Oxidation von Polysacchariden zugänglichen Polycarboxylate der internationalen Patentanmeldung WO 93/16110, polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekulmasse der Homopolymeren ungesättiger Carbonsäuren liegt im allgemeinen zwischen 5 000 und 200 000, die der Copolymeren zwischen 2 000 und 200 000, vorzugsweise 50 000 bis 120 000, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative Molekulmasse von 50 000 bis 100 000 auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymeren der Acrylsäure oder Methacrylsäure mit Vinyletheren, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder ein Vinylalkohol-Derivat oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C₃–C₆-Carbonsäure und vorzugsweise von einer C₃–C₄-Monocarbonsäure, insbesondere von (Meth)acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C₄–C₆-Dicarbonsäure, vorzugsweise einer C₄–C₆-Dicarbonsäure sein, wobei Maleinsäure besonders bevorzugt ist. Die dritte monomere Einheit wird in diesem Fall von Vinylalkohol und/oder vorzugsweise einem veresterten Vinylalkohol gebildet. Insbesondere sind Vinylalkohol-Derivate bevorzugt, welche einen Ester aus kurzkettigen Carbonsäuren, beispielsweise von C₁–C₄-Carbonsäuren, mit Vinylalkohol darstellen. Bevorzugte Polymere enthalten dabei 60 Gew.-% bis 95 Gew.-%, insbesondere 70 Gew.-% bis 90 Gew.-% (Meth)acrylsäure bzw. (Meth)acrylat, besonders bevorzugt Acrylsäure bzw. Acrylat, und Maleinsäure bzw. Maleat sowie 5 Gew.-% bis 40 Gew.-%, vorzugsweise 10 Gew.-% bis 30 Gew.-% Vinylalkohol und/oder Vinylacetat. Ganz besonders bevorzugt sind dabei Polymere, in denen das Gewichtsverhältnis von (Meth)acrylsäure beziehungsweise (Meth)acrylat zu Maleinsäure beziehungsweise Maleat zwischen 1 : 1 und 4 : 1, vorzugsweise zwischen 2 : 1 und 3 : 1 und insbesondere 2 : 1 und 2,5 : 1 liegt. Dabei sind sowohl die Mengen als auch die Gewichtsverhältnisse auf die Säuren bezogen. Das zweite saure Monomer beziehungsweise dessen Salz kann auch ein Derivat einer Allylsulfonsäure sein, die in 2-Stellung mit einem Alkyrest, vorzugsweise mit einem C₁–C₄-Alkyrest, oder einem aromatischen Rest, der sich vorzugsweise von Benzol oder Benzol-Derivaten ableitet, substituiert ist. Bevorzugte Terpolymere enthalten dabei 40 Gew.-% bis 60 Gew.-%, insbesondere 45 bis 55 Gew.-% (Meth)acrylsäure beziehungsweise (Meth)acrylat, besonders bevorzugt Acrylsäure beziehungsweise Acrylat, 10 Gew.-% bis 30 Gew.-%, vorzugsweise 15 Gew.-% bis 25 Gew.-% Methylsulfonsäure bzw. Methallylsulfonat und als drittes Monomer 15 Gew.-% bis 40 Gew.-%, vorzugsweise 20 Gew.-% bis 40 Gew.-% eines Kohlenhydrats. Dieses Kohlenhydrat kann dabei beispielsweise ein Mono-, Di-, Oligo- oder Polysaccharid sein, wobei Mono-, Di- oder Oligosaccharide bevorzugt sind. Besonders bevorzugt ist Saccharose.

25 Durch den Einsatz des dritten Monomers werden vermutlich Sollbruchstellen in das Polymer eingebaut, die für die gute biologische Abbaubarkeit des Polymers verantwortlich sind. Diese Terpolymere lassen sich insbesondere nach Verfahren herstellen, die in der deutschen Patentschrift DE 42 21 381 und der deutschen Patentanmeldung DE 43 00 772 beschrieben sind, und weisen im allgemeinen eine relative Molekulmasse zwischen 1 000

und 200 000, vorzugsweise zwischen 200 und 50 000 und insbesondere zwischen 3 000 und 10 000 auf Wite
bevorzugte Copolymeren sind solche, die in den deutschen Patentanmeldungen DE 43 03 320 und DE 44 17 734
beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrysäuresalze beziehungswi
se Vinylacetat aufweisen. Die organischen Buildersubstanzen können, insbesondere zur Herstellung flüssiger
Mittel, in Form wässriger Lösungen, vorzugsweise in Form 30- bis 50-gewichtsprozentiger wässriger Lösung n
ingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesond
re ihre Alkalisalze, eingesetzt.

Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere
bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein. Mengen nahe der genannten
Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen, erfindungsge
mäßen Mitteln eingesetzt.

Als wasserlösliche anorganische Buildersubstanzen kommen insbesondere Polyphosphate, vorzugsweise Na
triumtripolyphosphat, in Betracht. Als wasserunlösliche, wasserdispersierbare anorganische Buildersubstanzen
werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugs
weise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt.
Unter diesen sind die kristallinen Natriumalumosilikate in Waschmittelqualität, insbesondere Zeolith A, P und
gegebenenfalls X, bevorzugt Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchen
förmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße
über 30 µm auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 µm.
Ihr Calciumbindevermögen, das nach den Angaben der deutschen Patentschrift DE 24 12 837 bestimmt werden
kann, liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm.

Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisili
cate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können.

Die in den erfindungsgemäßen Mitteln als Gerüststoffe brauchbaren Alkalisilicate weisen vorzugsweise ein
molares Verhältnis von Alkalioxid zu SiO₂ unter 0,95, insbesondere von 1 : 1, 1 bis 1 : 12 auf und können amorph
oder kristallin vorliegen. Bevorzugte Alkalisilicate sind die Natriumsilicate, insbesondere die amorphen Natri
umsilicate, mit einem molaren Verhältnis Na₂O : SiO₂ von 1 : 2 bis 1 : 2,8. Solche mit einem molaren Verhältnis
Na₂O : SiO₂ von 1 : 1,9 bis 1 : 2,8 können nach dem Verfahren der europäischen Patentanmeldung EP 0 425 427
hergestellt werden. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können,
werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na₂Si_xO_{2x+1} · y H₂O eingesetzt, in der x,
das sogenannte Modul, eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3
oder 4 sind. Kristalline Schichtsilikate, die unter diese allgemeine Formel fallen, werden beispielsweise in der
europäischen Patentanmeldung EP 0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate sind solche, bei
denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch
δ-Natriumdisilikate (Na₂Si₂O₅ · y H₂O) bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren
erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. δ-Natriumsili
cate mit einem Modul zwischen 1,9 und 3,2 können gemäß den japanischen Patentanmeldungen JP 04/238 809
oder JP 04/260 610 hergestellt werden. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie
kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1,9 bis 2,1 bedeutet,
herstellbar wie in den europäischen Patentanmeldungen EP 0 548 599, EP 0 502 325 und EP 0 452 428 beschrie
ben, können in erfindungsgemäßen Mitteln eingesetzt werden. In einer weiteren bevorzugten Ausführungsform
erfindungsgemäßer Mittel wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie
es nach dem Verfahren der europäischen Patentanmeldung EP 0 436 835 aus Sand und Soda hergestellt werden
kann. Kristalline Natriumsilicate mit einem Modul im Bereich von 1,9 bis 3,5, wie sie nach den Verfahren der
europäischen Patentschriften EP 0 164 552 und/oder EP 0 293 753 erhältlich sind, werden in einer weiteren
bevorzugten Ausführungsform erfindungsgemäßer Mittel eingesetzt. In einer bevorzugten Ausgestaltung erfin
dungsgemäßer Mittel setzt man ein granulares Compound aus Alkalisilicat und Alkalicarbonat ein, wie es zum
Beispiel in der internationalen Patentanmeldung WO 95/22592 beschrieben ist oder wie es zum Beispiel unter
dem Namen Nabion® 15 im Handel erhältlich ist. Falls als zusätzliche Buildersubstanz auch Alkalialumosilikat,
insbesondere Zeolith, vorhanden ist, beträgt das Gewichtsverhältnis Alumosilikat zu Silikat, jeweils bezogen auf
wasserfreie Aktivsubstanz, vorzugsweise 1 : 10 bis 10 : 1. In Mitteln, die sowohl amorphe als auch kristalline
Alkalisilikate enthalten, beträgt das Gewichtsverhältnis von amorphem Alkalisilicat zu kristallinem Alkalisilicat
vorzugsweise 1 : 2 bis 2 : 1 und insbesondere 1 : 1 bis 2 : 1.

Buildersubstanzen sind in den erfindungsgemäßen Wasch- oder Reinigungsmitteln vorzugsweise in Mengen
bis zu 60 Gew.-%, insbesondere von 5 Gew.-% bis 40 Gew.-%, enthalten, während die erfindungsgemäßen
Desinfektionsmittel vorzugsweise frei von den lediglich die Komponenten der Wasserhärte komplexierenden
Buildersubstanzen sind und bevorzugt nicht über 20 Gew.-%, insbesondere von 0,1 Gew.-% bis 5 Gew.-%, an
schwermetallkomplexierenden Stoffen, vorzugsweise aus der Gruppe umfassend Aminopolycarbonsäuren, Ami
nopolyphosphonsäuren und Hydroxypolyphosphonsäuren und deren wasserlösliche Salze sowie deren Gemi
sche, enthalten.

Als in den Mitteln verwendbare Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Cutinasen,
Amylasen, Pullulanasen, Cellulasen, Hemicellulasen, Xylanasen, Oxidasen und Peroxidasen sowie deren Gemi
sche in Frage. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis,
Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes oder Pseudo
monas cepacia gewonnene enzymatische Wirkstoffe. Die gegebenenfalls verwendeten Enzyme können, wie zum
Beispiel in der europäischen Patentschrift EP 0 564 476 oder in der internationalen Patentanmeldungen
WO 94/23005 beschrieben, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie
gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsgemäßen Wasch-, Reinigungs- und

Desinfektionsmittel in vorzugsweise in Mengen bis zu 5 Gew.-%, insbesondere von 0,2 Gew.-% bis 2 Gew.-%, enthalten.

Zu den in den erfundungsgemäßen Mitteln, insbesondere wenn sie in flüssiger oder pastös Form vorliegen, verwendbaren organischen Lösungsmitteln gehören Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert.-Butanol, Diole mit 2 bis 4 C-Atom, n, insbesondere Ethylenglykol und Propylenglykol sowie deren Gemische und die aus den genannten Verbindungsklassen ableitbaren Ether. Derartige wasserlösliche Lösungsmittel sind in den erfundungsgemäßen Wasch-, Reinigungs- und Desinfektionsmitteln vorzugsweise nicht über 30 Gew.-%, insbesondere von 6 Gew.-% bis 20 Gew.-%, vorhanden.

Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die erfundungsgemäßen Mittel system- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den erfundungsgemäßen Mitteln vorzugsweise nicht über 20 Gew.-%, insbesondere von 1,2 Gew.-% bis 17 Gew.-%, enthalten.

Zu den für den Einsatz in erfundungsgemäßen Mitteln, insbesondere solchen für die Wäsche von Textilen, in Frage kommenden Farübertragungsinhibitoren gehören insbesondere Polyvinylpyrrolidone, Polyvinylimidazole, polymere N-Oxide wie Poly-(vinylpyridin-N-oxid) und Copolymeren von Vinylpyrrolidon mit Vinylimidazol.

Vergrauungsinhibitoren haben die Aufgabe, den von den harten Oberfläche und insbesondere von der Textilfaser abgelösten Schmutz in der Flotte suspendiert zu halten. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Stärke, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfosäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich andere als die obengenannten Stärkederivate verwenden, zum Beispiel Aldehydstärken.

Bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.

Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure beziehungsweise deren Alkalimetallsalze enthalten. Geeignet sind zum Beispiel Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen.

Weiterhin können Aufheller vom Typ der substituierten Diphenylstyrole anwesend sein, zum Beispiel die Alkalosalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten optischen Aufheller können verwendet werden.

Insbesondere beim Einsatz in maschinellen Wasch- und Reinigungsverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C₁₈–C₂₄-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bisfettsäurealkylendiäminen. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, zum Beispiel solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granulare, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylenidiämin bevorzugt.

In erfundungsgemäßen Reinigungsmitteln für Geschirr können außerdem Wirkstoffe zur Vermeidung des Anlaufens von Gegenständen aus Silber, sogenannte Silberkorrosionsinhibitoren, eingesetzt werden. Bevorzugte Silberkorrosionsschutzmittel sind organische Disulfide, zweiwertige Phenole, dreiwertige Phenole, Cobalt-, Mangan-, Titan-, Zirkonium-, Hafnium-, Vanadium- oder Cersalze und/oder -komplexe, in denen die genannten Metalle in einer der Oxidationsstufen II, III, IV, V oder VI vorliegen.

Die Herstellung erfundungsgemäßer fester Mittel bietet keine Schwierigkeiten und kann in im Prinzip bekannter Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei Persauerstoffverbindung und Bleichaktivator gegebenenfalls später zugesetzt werden.

Zur Herstellung erfundungsgemäßer Mittel mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein aus der europäischen Patentschrift EP 486 592 bekanntes, einen Extrusionsschritt aufweisendes Verfahren bevorzugt. Erfundungsgemäße Wasch-, Reinigungs- oder Desinfektionsmittel in Form wässriger oder sonstige übliche Lösungsmittel enthaltender Lösungen werden besonders vorteilhaft durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einem automatischen Mischer gegeben werden können, hergestellt. In einer bevorzugten Ausführung von Mitteln für die insbesondere maschinelle Reinigung von Geschirr sind diese tablettenförmig und können in Anlehnung an die in den europäischen Patentschriften EP 0 579 659 und EP 0 591 282 offenbarten Verfahren hergestellt werden.

Beispiele

65

Beispiel 1

Trans,trans-1,4-Diacetoxy-1,3-butadien (DAB; bezogen von der Firma Fluka), N,N,N',N'-Tetraacetylethylen-

diamin (TAED) und Natrium-n-nonanoylbenzolsulfonat (n-NOBS) wurden bei 30°C und pH 10 auf ihre Bleichwirkung untersucht. Dazu wurden 100 ml einer Waschlauge, enthalten in 5 l (Rest destilliertes Wasser) 2,5 g Natriumalkylbenzolsulfat, 2 g Fettalkylethoxylat, 10 g Natriumtripolyphosphat, 1,5 g Natriumsilikat, 7,5 g Natriumsulfat, 1,75 g CaCl₂-Dihydrat, 0,48 g MgCl₂-Hexahydrat, 12,5 g Natriumdiphosphat-Dekahydrat und 20 ml Isopropanol, mit 2 ml Rotwein, 138 mg Natriumperborat-Monohydrat und mit jeweils 18 mg an zu testendem Aktivator versetzt und 30 Minuten bei der genannten Temperatur gehalten. In der nachfolgenden Tabelle 1 ist die unter diesen Bedingungen bestimmte Entfärbungslösung, ausgedrückt in Relation zum Extinktionswert für die lediglich mit Rotwein versetzte Waschlauge (entsprechend 0% Entfärbung), wobei als Nullwert (entsprechend 100% Entfärbung) der Extinktionswert der reinen Waschlauge gilt, angegeben. Man erkennt, daß der erfundungsgemäß verwendete Bleichaktivator DAB eine Entfärbungsleistung aufweist, die weit über derjenigen bekannter Aktivatoren liegt.

Tabelle 1

Bleicheistung

Aktivator	Entfärbung [%]
TAED	29
n-NOBS	25
DAB	38

Patentansprüche

1. Verwendung von trans,trans-1,4-Diacyloxy-1,3-butadienen als Aktivatoren für insbesondere anorganische Persauerstoffverbindungen in Oxidations-, Wasch-, Reinigungs- oder Desinfektionslösungen.
2. Verwendung von trans,trans-1,4-Diacyloxy-1,3-butadienen zum Bleichen von Farbanschmutzungen beim Waschen von Textilien, insbesondere in wässriger, tensidhaltiger Flotte.
3. Verwendung von trans,trans-1,4-Diacyloxy-1,3-butadienen in Reinigungslösungen für harte Oberflächen, insbesondere für Geschirr, zum Bleichen von gefärbten Anschmutzungen.
4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das trans,trans-1,4-Diacyloxy-1,3-butadien aus den Verbindungen nach Formel (I),

(I)

- in der R für Wasserstoff- einen Aryl-, Alkyl-, Alkenyl- oder Cycloalkylrest mit 1 bis 17 C-Atomen steht, sowie deren Gemischen ausgewählt wird.
5. Verwendung nach Anspruch 4, dadurch gekennzeichnet, daß in der Verbindung nach Formel I der Rest R Phenyl, C₁- bis C₁₁-Alkyl oder 9-Decenyl ist.
 6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die zu aktivierende Persauerstoffverbindung aus der Gruppe umfassend organische Persäuren, Wasserstoffperoxid, Perborat und Percarbonat sowie deren Gemische ausgewählt wird.
 7. Wasch-, Reinigungs- oder Desinfektionsmittel, dadurch gekennzeichnet, daß es ein trans,trans-1,4-Diacyloxy-1,3-butadien, ausgewählt aus den Verbindungen nach Formel (I),

(I)

- in der R für Wasserstoff, einen Aryl-, Alkyl-, Alkenyl- oder Cycloalkylrest mit 1 bis 17 C-Atomen steht, sowie deren Gemischen, enthält.

8. Mitt I nach Anspruch 7, dadurch gekennzeichnet, daß es 0,2 Gew.-% bis 30 Gew.-%, insbesondere 1 Gew.-% bis 20 Gew.-% Bleichaktivator gemäß Formel I enthält.
9. Mittel nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß es 5 bis 50 Gew.-%, insbesondere 8 bis 30 Gew.-% anionisches und/oder nichtionisches Tensid, bis zu 60 Gew.-%, insbesondere 5 bis 40 Gew.-% Buildersubstanz, bis zu 5 Gew.-%, insbesondere 0,2 bis 2 Gew.-%, Enzym, bis zu 30 Gew.-%, insbesondere 6 bis 20 Gew.-%, organisches Lösungsmittel aus der Gruppe umfassend Alkohole mit 1 bis 4 C-Atomen, Diole mit 2 bis 4 C-Atomen sowie deren Gemische und die aus diesen Verbindungsklassen ableitbaren Ether und bis zu 20 Gew.-%, insbesondere 1,2 bis 17 Gew.-% pH-Regulator enthält.
10. Mittel nach Anspruch 7 oder 8 zur insbesondere maschinellen Reinigung von Geschirr, dadurch gekennzeichnet, daß es 0,1 Gew.-% bis 20 Gew.-%, insbesondere 0,2 Gew.-% bis 5 Gew.-% Tensid enthält.
11. Desinfektionsmittel nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß es 0,1 Gew.-% bis 20 Gew.-%, insbesondere 0,2 Gew.-% bis 5 Gew.-% Tensid und/oder antimikrobielle Zusatzstoffe in Mengen bis zu 10 Gew.-%, insbesondere von 0,1 Gew.-% bis 5 Gew.-%, enthält.
12. Desinfektionsmittel nach Anspruch 11, dadurch gekennzeichnet, daß es zusätzlich zu den genannten Bestandteilen 0,5 Gew.-% bis 40 Gew.-%, insbesondere 5 Gew.-% bis 20 Gew.-% Persauerstoffverbindung, ausgewählt aus der Gruppe umfassend Wasserstoffperoxid, Perborat und Percarbonat sowie deren Gemische, enthält.
13. Mittel nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß es zusätzlich zu den genannten Bestandteilen bis zu 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-% Persauerstoffverbindung enthält.
14. Verfahren zur Aktivierung von Persauerstoffverbindungen unter Einsatz eines trans,trans-1,4-Diacyloxy-1,3-butadien-Bleichaktivators.

25

30

35

40

45

50

55

60

65