LDSP- Linear Detection of Selection in Pooled sequence data

Hussein Al-Asadi, Matthew Stephens

1 Introduction

Phase I - better estimate frequency using haplotypic information: The Intuition is that data at each SNP are binomial counts, which help estimate the frequency of a SNP in a pool. But by combining information across multiple corrected SNPs, you can improve the estimated frequency of the test SNP.

We demonstrate the feasibility of such an endeavor by a simple probability calculation:

Say the objective is to estimate the frequency of SNP 1 in a pool. Denote SNP 1 as S_1 which can take values from $\{0,1\}$.

Consider another SNP 2 (S_2) . For simplicity, we suppose perfect correlation between the two SNPs (e.g. $P(S_1 = 1|S_2 = 1) = 1 \& P(S_1 = 0|S_2 = 0) = 1)$

one estimate:
$$P(S_1=1)\approx \frac{n_1^1}{n_1}$$
 second estimate: $P(S_1=1)=P(S_1=1|S_2=0)P(S_2=0)+P(S_1=1|S_2=1)P(S_2=1)=P(S_1=1|S_2=1)P(S_2=1)=P(S_2=1)\approx \frac{n_2^1}{n_2}$

where n_j^1 is the number of "1" allele reads at SNP j and n_j^0 is the number of "0" allele reads at SNP j and $n_j = n_j^1 + n_j^0$.

We now have two estimates of $P(S_1 = 1)$ using two different pieces of data. Therefore, effectively we have doubled our coverage for SNP 1. If instead of only one perfectly correlated SNP, we have a 1000 then sequencing only at 1x coverage will be like sequencing at 1000x coverage!

Phase II - detect selection using improved frequency estimate: To detect selection, we find sites that have had significant changes in their frequency compared to the founding population. We can do this by using a linear model which also allows us to model genetic drift with a normal error term.

2 Phase I

2.1 Prior from Li & Stephens

Consider one lineage for now.

Let $y = (y_1, y_2, ..., y_p)'$ denote the vector of allele frequencies in the study sample. Let $E[y_i] = \mu_i$ and the frequency of the test SNP be y_t and M denote the 2mxp panel (i.e. 2m haplotypes and p SNPs). As in (Wen & Stephens, 2010), we assume

$$\vec{y}|M \sim N_p(\mu, \Sigma)$$
 (1)

(Wen & Stephens, 2010) derived the estimates for μ and Σ from the haplotype copying model presented in (Li & Stephens, 2003).

$$\hat{\mu} = (1 - \theta)f^{panel} + \frac{\theta}{2}1\tag{2}$$

$$\hat{\Sigma} = (1 - \theta)^2 S + \frac{\theta}{2} (1 - \frac{\theta}{2}) I \tag{3}$$

and S is obtained from Σ^{panel} , specifically,

$$S_{i,j} = \begin{cases} \sum_{i,j}^{panel} & i = j \\ e^{-\frac{\rho_{i,j}}{2m}} \sum_{i,j}^{panel} & i \neq j \end{cases}$$

$$(4)$$

 $\rho_{i,j} = -4Nc_{i,j}d_{i,j}$ where $d_{i,j}$ is the physical distance between markers i and j, N is the effective diploid population size, $c_{i,j}$ is the average rate of crossover per unit physical distance, per meiosis, between sites i and j (so that $c_{i,j}d_{i,j}$ is the genetic distance between sites i and j). and.

$$\theta = \frac{\left(\sum_{i=1}^{2m-1} \frac{1}{i}\right)^{-1}}{2m + \left(\sum_{i=1}^{2m-1} \frac{1}{i}\right)^{-1}} \tag{5}$$

Data at SNP i 2.2

Let (n_i^0, n_i^1) denote the counts of "0" and "1" alleles at SNP i and $n_i = n_i^0 + n_i^1$. Then

$$n_i^1|y_i \sim Bin(n_i, y_i) \stackrel{.}{\sim} N(n_i y_i, n_i y_i (1 - y_i))$$

where y_i is the true population frequency of the SNP i "1" allele.

$$\implies \frac{n_i^1}{n_i} | y_i \stackrel{.}{\sim} N(y_i, \frac{y_i(1 - y_i)}{n_i}) \tag{6}$$

let $\hat{y_i} = \frac{n_i^i}{n_i}$ Next we replace y_i by $\hat{y_i}$ in the variance for tractibility issues. Therefore,

$$\hat{y_i}|y_i \sim N(y_i, \frac{\hat{y_i}(1-\hat{y_i})}{n_i}) \tag{7}$$

We can expand equation 7 to p-dimensions (we can since the $\hat{y}_i|y_i$ are independent)

$$\hat{\vec{y}}|\vec{y} \sim N_p(\vec{y}, diag(\epsilon_1, ..., \epsilon_p))$$
 (8)

where $\epsilon_i = \frac{\hat{y}_i(1-\hat{y}_i)}{n_i}$

We re-name the variables such that $y_i^{obs} = \hat{y_i}, y_i^{true} = y_i$ and make the approximation exact.

$$y^{\vec{obs}}|y^{t\vec{rue}} \sim N_p(y^{t\vec{rue}}, \ diag(\epsilon_1, ..., \epsilon_p))$$
 (9)

We assume that, given y^{true} , the observations y^{obs} are conditionally independent of the panel data (M).

If the coverage is low, then the estimate of the frequency of a SNP can be 0 (i.e. $\frac{n_i^1}{n_i} = 0$) which will introduce complications when we must invert matrices. Therefore we make the following modification,

$$y_i^{obs} = \frac{n_i^1 + \frac{1}{2}}{n_i + 1} \tag{10}$$

2.3 Incorporating Dispersion

In the distribution of \vec{y} , we assumed that the panel and study individuals are from the sample population, and the parameters θ and ρ are estimated without error. Deviations from these assumptions will cause over-dispersion: the true allele frequencies will lie further from their expected values than the model predicts. To allow this, we modify equation 1 by introducing an over-dispersion parameter σ^2 .

$$y^{t\vec{r}ue}|M \sim N_p(\hat{\mu}, \sigma^2 \hat{\Sigma})$$
 (11)

We estimate σ^2 by maximizing the multivariate normal likelihood:

$$y^{\vec{obs}}|M \sim N_p(\hat{\mu}, \sigma^2 \hat{\Sigma} + diag(\epsilon_1, ..., \epsilon_p))$$
 (12)

To obtain the distribution for the true frequencies conditional on the observed data, we use Bayes theorem

$$P(y^{\vec{true}}|y^{\vec{obs}},M) \propto P(y^{\vec{obs}}|y^{\vec{true}})P(y^{\vec{true}}|M)$$

Let,

$$\bar{\Sigma} = \left(\frac{\hat{\Sigma}^{-1}}{\sigma^2} + diag(\frac{1}{\epsilon_1}, ..., \frac{1}{\epsilon_p})\right)^{-1}$$
(13)

and,

$$\bar{\theta} = \bar{\Sigma} \left(\frac{\hat{\Sigma}^{-1}}{\sigma^2} \hat{\mu} + diag(\frac{1}{\epsilon_1}, ..., \frac{1}{\epsilon_p}) \ y^{\vec{obs}} \right)$$
 (14)

Then since the normal is in the conjugate family,

$$y^{true}|y^{obs}, M \sim N_p(\bar{\theta}, \bar{\Sigma})$$
 (15)

Therefore a natural point estimate for $y^{t\vec{r}ue}$ is $\bar{\theta}$.

2.4 Calculating the inverse of the covariance matrix

When $\hat{\Sigma}$ is singular, we decompose using SVD and calculate the pseudo-inverse,

$$\hat{\Sigma} = U \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix} V^T \tag{16}$$

where the pseudo-inverse is,

$$\hat{\Sigma}^{+} = V \begin{bmatrix} S^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^{T} \tag{17}$$

We modify 13 which is now probably non-singular??

$$\bar{\Sigma} = \left(\frac{\hat{\Sigma}^+}{\sigma^2} + diag(\frac{1}{\epsilon_1}, ..., \frac{1}{\epsilon_p})\right)^{-1}$$
(18)

3 Phase II - estimating β

Let $f_{i,k,j}$ denote the frequency of the jth SNP in population i and replicate k. Then,

$$log(\frac{1 - f_{i,k,j}}{f_{i,k,j}}) = \mu_j + \beta_j g_i + \epsilon \tag{19}$$

where $\epsilon \sim N_(0,\sigma_d^2)$, σ_d^2 is the variance due to drift, μ_j is the frequency of the jth SNP in the founding population and

$$g_i = \begin{cases} -1 & i = 0 \\ 0 & i = 1 \\ 1 & i = 2 \end{cases}$$

The intuition here is that sites with large β coefficients are under selection.