Octal High Voltage, High Current Darlington Transistor Arrays ULN2803APG/AFWG

DESCRIPTIONS:

The eight NPN Darlington connected transistors in this family of arrays are ideally suited for interfacing between low logic level digital circuitry (such as TTL, CMOS or PMOS/NMOS) and the higher current/voltage requirements of lamps, relays, printer hammers or other similar loads for a broad range of computer, industrial, and consumer applications. All devices feature open—collector outputs and free wheeling clamp diodes for transient suppression

The ULN2803 is designed to be compatible with standard TTL families while the ULN2804 is optimized for 6 to 15 volt high level CMOS or PMOS.

PIN CONNECTION

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ and rating apply to any one device in the package, unless otherwise noted.)

Characteristic	Symbol	Value	Unit
Output voltage	V _O	50	V
Input voltage	VI	30	V
Collector current- continuous	I _C	500	mA
Base current- continuous	ΙB	25	mA
Operating temperature	Topr	$0\sim70$	°C
Storage temperature	Tstg	$-55 \sim +150$	°C
Junction temperature	Тл	125	°C

^{*} $R_{\theta JA} = 55 ^{\circ} C/W$

Do not exceed maximum current limit per driver.

ELECTRICAL CHARACTERISTICS

(unless otherwise specified: T_A=25°C)

Characteristics	Symbol	Test conditions	Min	Тур	Max	Unit	
Output leakage current (Fig.1)	I _{CEX}	$V_0 = 50 V, T_A = 70 ° C$	V, T _A =70°C 100		100	^	
		$V_0 = 50 V, T_A = 25 ° C$			50	μΑ	
Collector-Emitter saturation voltage (Fig.2)	V _{CE(sat)}	$Ic=350 \text{ mA}, I_B=500 \mu A$		1.1	1.6	V	
		$Ic=200 \text{ mA}, I_B=350 \mu \text{ A}$		0.95	1.3		
		$Ic=100 \text{ mA}, I_B=250 \mu \text{ A}$		0.85	1.1		
Input current - on condition (Fig.4)	I _{I(on)}	$V_I = 3.85 V$		1.1	1.35	mA	
Input voltage - on condition (Fig.5)	V _{I(on)}	$V_{CE} = 2.0V, I_{C} = 200mA$		1.70	2.4	V	
		$V_{CE} = 2.0 V, I_{C} = 250 mA$		1.75	2.7		
		$V_{CE} = 2.0V, I_{C} = 300 \text{ mA}$		1.80	3.0		
Input current - off condition (Fig.3)	I _{I(off)}	$I_C = 500 \mu A, T_A = 70 ^{\circ} C$	50	100		μΑ	
Input capacitance	CI			15	25	pF	
Turn-on delay time (50% E _I to 50% E _O)	ton			0.25	1.0	μs	
Turn-off delay time (50% E _I to 50% E _O)	toff			0.25	1.0	μs	
Clamp diode leakage current (V _R =50V) (Fig.6)	I _R	$T_A=25$ °C 5		50	^		
		T _A =70°C			100	μΑ	
Clamp diode forward Voltage (Fig.7)	V _F	$I_F = 350 \mathrm{mA}$		1.5	2.0	V	

TEST CIRCUIT

Figure 1.

Figure 3.

Figure 5.

Figure 2.

Figure 4.

Figure 6.

Figure 7.

TYPICAL CURVE

Input Characteristics

Representative Schematic Diagrams

OUTLINE DRAWING

