JLX256160G-922-PN 使用说明书

見 录

序号	内 容 标 题	页码
1	概述	2
2	特点	2
3	外形及接口引脚功能	3-5
4	电路框图	5
5	背光参数	6
6	时序特性	6-10
7	指令表及硬件接口、编程案例	11-末页

1. 概述

晶联讯电子专注于液晶屏及液晶模块的研发、制造。所生产 JLX256160G-922-PN 型液晶模块由于使用方便、显示清晰,广泛应用于各种人机交流面板。

JLX256160G-922-PN 可以显示 256 列*160 行点阵单色或 4 灰度级的图片,或显示 8 个/行*5 行 32*32 点阵或显示 10 个/行*6 行 24*24 点阵的汉字,或显示 16 个/行*10 行 16*16 点阵的汉字。

2. JLX256160G-922-PN 图像型点阵液晶模块的特性

- 2.1结构牢,带铁框。
- 2.2 IC 采用矽创公司 ST75256, 功能强大, 稳定性好
- 2.3 功耗低。
- 2.4接口简单方便:可采用4线SPI串行接口、并行接口,I²C接口。
- 2.5 工作温度宽:-20℃ 70℃;
- 2.6 储存温度宽:-30℃ 80℃;
- 2.7 显示内容:
 - ●256*160 点阵单色或 4 灰度级图片:
 - ●或显示 8 个×5 行 32*32 点阵的汉字;

JLX256160G-922-PN

3. 外形尺寸及接口引脚功能:

图 1. 液晶模块外形尺寸

3.1 模块的并行接口引脚功能

引线号	符号	名 称	功 能
1	NC		空脚
2	NC		空脚
3	NC		空脚
4	NC		空脚
5	LEDA	背光电源	背光电源正极,同 VDD 电压 (5V 或 3.3V)
6	VSS	供电电源负极	供电电源负极
7	VDD	供电电源正极	供电电源正极 (注意: 购买时须选择 3.3V 或者是 5V 供电)
8	A0 (RS)	寄存器选择信号	H:数据寄存器 0:指令寄存器 (IC 资料上所写为"AO")
9	RES	复位	低电平复位,复位完成后,回到高电平,液晶模块开始工作
10	CS	片选	低电平片选
11-18	D7-D0	I/0	数据总线
19	E (RD)	使能信号	使能信号
20	WR (R/W)	读/写	H:读数据 0:写数据

表 1: 模块的并行接口引脚功能

3. 2	模块的串行	接口引脚	功能	
	引线号	符号	名 称	功能
	1	NC		空脚
	2	NC		空脚
	3	NC		空脚
	4	NC		空脚
	5	LEDA	背光电源	背光电源正极,同 VDD 电压 (5V 或 3.3V)
	6	VSS	供电电源负极	供电电源负极
L	7	VDD	供电电源正极	供电电源正极(注意: 购买时须选择 3.3V 或者是 5V 供电)
	8	AO (RS)	寄存器选择信号	H: 数据寄存器 0:指令寄存器 (IC 资料上所写为"A0")
	9	RES	复位	低电平复位,复位完成后,回到高电平,液晶模块开始工作
	10	CS	片选	低电平片选
	11-14	D7-D4	I/0	串行时: D7-D4 引脚接 VDD
	15-17	D3-D1	I/0	串行时: 串行数据(SDA) (D1、D2、D3 短接一起作为 SDA)
	18	D0	I/0	串行时钟(SCK)
	19	E (RD)	使能信号	串行时: 悬空或接 VDD
	20	WR (R/W)	读/写	串行时: 悬空或接 VDD

表 2: 模块的串行接口引脚功能

3.3 模块的 IIC 接口引脚功能

引线号	符号	名 称	功 能			
1	NC		空脚			
2	NC		空脚			
3	NC		空脚			
4	NC		空脚			
5	LEDA	背光电源	背光电源正极,同 VDD 电压 (5V 或 3.3V)			
6	VSS	供电电源负极	供电电源负极			
7	VDD	供电电源正极	供电电源正极 (注意: 购买时须选择 3.3V 或者是 5V 供电)			
8	AO (RS)	寄存器选择信号	IIC 接口,悬空或接 VDD			
9	RST	复位	低电平复位,复位完成后,回到高电平,液晶模块开始工作			
10	CS	片选	IIC 接口,此引脚接 VSS			
11	D7	I/0	IIC 接口,此引脚是从属地址接 VSS			
12	D6	I/0	IIC 接口,此引脚是从属地址接 VSS			
13	D5	I/0	IIC 接口,悬空或接 VDD			
14	D4	I/0	IIC 接口,悬空或接 VDD			
15-17	D3-D1 (SDA)	I/0	串行数据(D1、D2、D3 短接一起作为 SDA)			
18	DO (SCK)	I/0	串行时钟			
19	RD (E)	使能信号	IIC 接口,悬空或接 VDD			
20	WR	读/写	IIC 接口,悬空或接 VDD			

表 3: 模块的 IIC 接口引脚功能

4. 电路框图

图 2: JLX256160G-922-PN 图像点阵型液晶模块的电路框图

4.1 背光参数

该型号液晶模块带 LED 背光源。它的性能参数如下:

工作温度:-20℃∽+70℃;

背光颜色:白色。

正常工作电流为: (8~20)×10=80~200mA (LED 灯数共 10 颗);

工作电压: 3.0V;

5. 技术参数

5.1 最大极限参数(超过极限参数则会损坏液晶模块)

THE THE PARTY OF T								
名称	符号		标准值					
		最小	典型	最大				
电路电源	VDD - VSS	-0.3	_	3. 5/5. 2	V			
LCD 驱动电压	VO - XVO	-0.3	_	16	V			
静电电压			_	100	V			
工作温度		-20	_	+70	$^{\circ}\mathbb{C}$			
储存温度		-30		+80	$^{\circ}\mathbb{C}$			

表 4: 最大极限参数

5.2 直流 (DC) 参数

五 加(2) 夕						
名 称	符号	测试条件		标准值		单位
			MIN	TYPE	MAX	
工作电压	VDD	_	2.6	3. 3	3. 5	V
(3.3V)						
工作电压	VDD	_	4. 7	5.0	5. 2	V
(5.0V)						
背光工作电压	VLED		2.9	3. 0	3. 1	V
输入高电平	VIH		0.8VDD		VDD	V
输入低电平	VIO	_	0	_	0. 2VDD	V
输出高电平	VOH	IOH = 0.2 mA	0.8VDD		VDD	V
输出低电平	V00	100 = 1.2 mA	0	_	0. 2VDD	V
模块工作电流	IDD	VDD = 3.0V		0.3	1.0	mA
背光工作电流	ILED	VLED=3. 0V	80	150	200	mA

表 5: 直流 (DC) 参数

6. 读写时序特性(AC参数)

6.1 4线 SPI 串行接口写时序特性(AC 参数)

图 3. 从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

表る	写数据到	ST75256	的时序要求
1X U.	—) XX 1/11 X1	31/3230	

项 目	测试条件	极限值			单位	
			MIN	TYPE	MAX	
4线 SPI串口时钟周期	tSCYC		80			ns
(4-line SPI Clock Period)			80			
保持SCK高电平脉宽	tSHW		30			ns
(SCL "H" pulse width)		引脚: SCL	30			
保持SCLK低电平脉宽	tSLW		30			ns
(SCL "L" pulse width)						
地址建立时间	tSAS		20			ns
(Address setup time)		│ │ 引脚: AO				
地址保持时间	tSAH	7) Jap: AU	20			ns
(Address hold time)						
数据建立时间	tSDS		20			ns
(Data setup time)		 引脚: SID				
数据保持时间	tSDH] 力())が : SID	20			ns
(Data hold time)						
片选信号建立时间	tCSS		20		=1/	ns
(CS-SCL time)		 引脚: CSB				
片选信号保持时间	tCSH	71 //4h: CDD	20			ns
(CS-SCL time)						

VDD =1.8 $^{\circ}$ 3.3V \pm 5%, Ta = -30 $^{\circ}$ 85 $^{\circ}$ C

1.

输入信号的上升和下降时间(TR, TF)在15纳秒或更少的规定。

所有的时间,用 20%和 80%作为标准规定的测定。

6.2 6800 时序并行接口的时序特性(AC参数)

从 CPU 写到 ST75256(Writing Data from CPU to ST75256)

图 4. 写数据到 ST75256 的时序要求(6800 系列 MPU)

夜 /									
项 目	符号	名称		极限值					
			MIN	TYPE	MAX				
地址保持时间	A0	tAH6	20			ns			
地址建立时间		tAW6	0			ns			
系统循环时间	Е	tCYC6	160			ns			
使能"低"脉冲宽度		tEWLW	70			ns			
使能"高"脉冲宽度		tEWHW	70			ns			
写数据建立时间	DB[7: 0]	tDS6	15			ns			
写数据保持时间		tDH6	15			ns			

表 7 读它数据的时序更求

VDD = $1.8^{\circ}3.3V \pm 5\%$, Ta = $-30^{\circ}85^{\circ}C$

输入信号的上升时间和下降时间(TR, TF)是在15纳秒或更少的规定。当系统循环时间非 常快,

(TR + TF) ≤ (tcyc6 - tewlw - tewhw) 指定。

所有的时间,用 20%和 80%作为参考指定的测定。

tewlw 指定为重叠的 CSB "H"和"L"。

R/W信号总是"H"

6.3 8080 时序并行接口的时序特性(AC参数) A₀ t_{AW8} CSB /WR t_{CCLW} t_{CCHW} /RD t_{CCLR} $t_{\it CCHR}$ ← t_{DS8} D[7:0](Write) \leftrightarrow t_{OH8} t_{ACC8} D[7:0] (Read)

从 CPU 写到 ST75256(Writing Data from CPU to ST75256)

图 5. 写数据到 ST75256 的时序要求(8080 系列 MPU)

表 8. 读写数据的时序要求

项 目	符号	名称	极限值	单位

			MIN	TYPE	MAX	
地址保持时间	A0	tAH8	20			ns
地址建立时间		tAW8	0			ns
系统循环时间	/WR	tCYC8	160			ns
使能"低"脉冲宽度		tCCLW	70			ns
使能"高"脉冲宽度		tCCHW	70			ns
写数据建立时间	DB	tDS8	15			ns
写数据保持时间		tDH8	15			ns

VDD = 1.8 $^{\circ}$ 3.3V ± 5%, Ta = -30 $^{\circ}$ 85 $^{\circ}$ C

输入信号的上升时间和下降时间(TR, TF)是在15纳秒或更少的规定。当系统循环时间非 常快,

(TR + TF) ≤ (tcyc8 - tcclw - tcchw) 指定。

所有的时间,用 20%和 80%作为参考指定的测定。

tcclw被指定为"L"之间的重叠 CSB 和/ WR 处于"L"级

从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

图 6. 写数据到 ST75256 的时序要求(I²C 系列 MPU)

表 9. 读写数据的时序要求

项 目	符号	名称	极限值		单位	
			MIN	TYPE	MAX	
SCL时钟频率	CSL	FSCLK			400	kUZ
SCL时钟的低周期	CSL	TLOW	1. 3			us
SCL时钟周期	CSL	THIGH	0.6			us
数据保持时间	SDA	TSU;Data	0.1			ns

■ 晶联讯电子 液晶模块 JLX256160G-922-PN 更新日期: 2019-11-28

数据建立时间	SDA	THD;Data	0	0. 9	us
SCL, SDA 的上升时间	SCL	TR	20+0. 1Cb	300	ns
SCL, SDA 下降时间	SCL	TF	20+0. 1Cb	300	ns
每个总线为代表的电容 性负载		Cb		400	pF
一个重复起始条件设置 时间	SDA	TSU; SUA	0.6		us
启动条件的保持时间	SDA	THD; STA	0.6		us
为停止条件建立时间		TSU;STO	0.6		us
容许峰值宽度总线		TSW		50	ns
开始和停止条件之间的 总线空闲时间	SCL	TBUF	0.1		us

所有的时间,用 20%和 80%作为标准规定的测定。

这是推荐的操作 I C接口与 VDD1 高于 2.6V。

图 7: 电源启动后复位的时序

表 10: 电源启动后复位的时序要求

			M 3 . 3 . 3 . ~ .	, •		
项 目	符号	测试条件			单位	
			MIN	TYPE	MAX	
复位时间	T _{RW}		1			ms
复位保持低电平的时间	T _R	引脚: RESET, WR			1	ms

7. 指令功能:

7.1 指令表 表 11

7.1 34 4 4					114	۸	•				投 []
指令名称				1		~ 在	i	1		1	
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
(1)扩展指令1	0	0	0	0	1	1	EXT1	0	0	EXT0	扩展指令1、2、3、4
							<u> </u>				0X30:扩展指令1
Ext[1:0]=0, 0 (Extension	Comma	ind1/扩	展指令	- 1) 0	X30 #	广屏指	令 1 -	一定要	调用(OX30 ス	上能用扩展指令1
(2)显示开/关	0	0	1	0	1	0	1	1	1	0	显示开/关:
(display on/off)										1	OXAE: 关, OXAF: 开
(3)正显/反显	0	0	1	0	1	0	0	1	1	0	显示正显/反显
(Inverse Display)										1	OXA6:正显,正常
											OXA7: 反显
(4)所有点阵开/关	0	0	0	0	1	0	0	0	1	0	0X22: 所有点阵关
(All Pixel ON/OFF)										1	0X23: 所有点阵开
(5) 控制液晶屏显示	0	0	1	1	0	0	1	0	1	0	OXCA:显示控制
(Display Control)	1	0	0	0	0	0	0	CLD	0	0	0X00:设置 CL 驱动频率: CLD=0
	1	0	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	0X7F:点空比: Duty=128
	1	0	0	0	LF4	F1	LF3	LF2	LF1	LF0	0X20:帧周期
(6)省电模式	0	0	1	0	0	1	0	1	0	SLP	0X94: SLP=0, 退出睡眠模式
(Power save)											0X95 : SLP=1,进入睡眠模式
(7)页地址设置	0	0	0	1	1	1	0	1	0	1	0X75: 页地址设置
(Set Page Address)	1	0	YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0	0X00: 起始页地址
	1	0	YE7	YE6	YE5	YE4	YE3	YE2	YE2	YEO	0X1F: 结束页地址,每4行为1页
(8)列地址设置	0	0	0	0	0	1	0	1	0	1	0X15: 列地址设置
(Set Column Address)	1	0	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	0X00: 起始列地址
	1	0	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XEO	OXFF: 结束列地址 XE=256
(9)行列扫描 方向	0	0	1	0	1	1	1	1	0	0	OXBC: 行列扫描方向
(Data Scan Direction)	1	0	0	0	0	0	0	MV	MX	MY	0X00: MX、MY=Normal
(10)写数据到晶液屏	0	0	0	1	0	1	1	1	0	0	OX5C: 写数据
(Write Data)	1	0	D7	D6	D5	D4	D3	D2	D1	DO	8位显示数据
(11)读液晶屏显示数据	0	0	0	1	0	1	1	1	0	1	OX5D: 读数据
(Read Data)	1	1	D7	D6	D5	D4	D3	D2	D1	DO	8 位显示 数据
(12)指定区域显示数据	0	0	1	0	1	0	1	0	0	0	OXA8: 指定显示区域
(Partial In)	1	0	PTS7	PTS6	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0	起始区域地址: 00h≤PTS≥A1h
	1	0	PTE7	PTE6	PTE5	PTE4	PTE3	PTE2	PTE1	PTE0	结束区域地址: 00h≤PTE≥A1h
(13) 退出指定区域显示	0	0	1	0	1	0	1	0	0	1	OXA9: 退出指定区域显示
(Partial Out)											
(14)读/改/写	0	0	1	1	1	0	0	0	0	0	OXEO: 进入读/改/写
(15)退出读/改/写	0	0	1	1	1	0	1	1	1	0	OXEE: 退出读/改/写
(16)指定显示滚动区域	0	0	1	0	1	0	1	0	1	0	OXAA: 滚动区域设置
(Scroll Area)	1	0	TL7	TL6	TL5	TL4	TL3	TL2	TL1	TL0	TL[7:0]:起始区域地址
	1	0	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BLO	BL[7:0]:结束区域地址
	1	0	NSL7	NLS6	NSL5	NSL4	NSL3	NSL2	NSL1	NSL0	NSL[7:0]:指定行数
	1	0	0	0	0	0	0	0	SCM1	SCMO	SCM[1:0]:显示模式
(17)显示初始行设置	0	0	1	0	1	0	1	0	1	1	OXAB: 滚动开始初始行设置
· /- · M/BIA VE	<u> </u>] '		l	1			1	<u> </u>	1	· · · · · · · · · · · · · · · · · · ·

更新日期: 2019-11-28

11 11 11 11 11 11 11 11 11 11 11 11 11	视的快块 JLX2				,5010)UG-5	722-F	11	史		
(Set Start Line)	1	0	SL7	SL6	SL5	SL4	SL3	SL2	SL1	SL0	00h≤SL≥A1h
(18)开振荡电路	0	0	1	1	0	1	0	0	0	1	OXD1: 开内部振荡电路
(19)关振荡电路	0	0	1	1	0	1	0	0	1	0	0XD2: 关内部振荡电路
(20)电源控制	0	0	0	0	1	0	0	0	0	0	0X20: 电源控制
(Power Control)	1	0	0	0	0	0	VB	0	VF	VR	OXOB: VB, VF, VR=1
(21)液晶内部电压设置	0	0	1	0	0	0	0	0	0	1	0X81:设置对比度
(Set Vop)	1	0	0	0	Vop5	Vop4	Vop3	Vop2	Vop1	Vop0	0X26: 微调对比度,范围 0X00-0XFF
	1	0	0	0	0	0	0	Vop7	Vop6	Vop5	0X04:粗调对比度,范围 0X00-0X07
											先微调再粗调,顺序不能变
(22)液晶内部电压控制	0	0	1	1	0	1	0	1	1	VOL	OXD6: VOP 每格增加 0.04V
(Vop Control)											OXD7: VOP 每格减少 0.04V
(23)读寄存器模式	0	0	0	1	1	1	1	1	0	REG	OX7C: 读寄存器值 Vop[5:0]
											OX7D: 读寄存器值 Vop[8:6]
(24)空操作	0	0	0	0	1	0	0	1	0	1	0X25: 空操作
(25)读状态 (并行、IIC)	0	1	D7	D6	D5	D4	D3	D2	D1	D0	读状态字节
(26)读状态(串行接口)	0	0	1	1	1	1	1	1	1	0	读状态字节
	0	1	D7	D6	D5	D4	D3	D2	D1	D0	
(27)数据格式选择	0	0	0	0	0	0	1	D0	0	0	0X08: 数据 D7→D0
(Data Format Select)											OXOC: 数据 DO→D7
(28)显示模式	0	0	1	1	1	1	0	0	0	0	OXFO: 显示模式设置
(Display Mode)	1	0	0	0	0	1	0	0	0	DM	0X10 : 黑白模式
											0X11: 4 灰级度模式
(29)ICON设置	0	0	0	1	1	1	0	1	1	ICON	OX77: 使能 ICON RAM
() H FFF > (11 1#4 5											OX76: 禁用 ICON RAM
(30)设置主/从模式	0	0	0	1	1	0	1	1	1	MS	0X6E: 主模式(使用主模式)
D . [1 0] 0 1/D .			1.0	017	ملاسل و ٥			ار سد بر	т П от	701 -	0X6F: 从模式
Ext[1:0]=0, 1 (Extens											能用扩展指令 2
(31)灰度设置											
Set Gray Level	1	0	0	0	0	0	0	0	0	0	GL[4:0]: 浅灰度级设置
	1	0	0	0	0	0	0	0	0	0	GD[4:0]: 深灰度级设置
	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	GL4	GL3	GL2	GL1	GL0	
	1	0		0	0	GL4	GL3	GL2	GL1	GL0	
	1	0	0	0	0	GL4	GL3	GL2	GL1	GL0	
	1	0	0	0	0	0	0	0	0	0	
	1				0	0		-	0 CD1		
	1	0	0	0	0	GD4	GD3	GD2	GD1	GD0	
	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0 CD1	0	
	1	0	0	0	0	GD4	GD3	GD2	GD1	GDO	
	1	0			0	GD4	GD3	GD2	GD1	GD0	
	1	0	0	0	0	GD4	GD3	GD2	GD1	GD0	
1		1 (1	■ ()	U	0	0	0	0	0	0	
	1	-				0	0	0	0	Λ	
	1	0	0	0	0	0	0	0	0	0	AVOO 护工以兆里
(32)LCD偏压比设置		-				0 1 0	0 0 0	0 0 0	0 1 0	0 0 0	0X32: 偏压比设置

JLX256160G-922-PN

更新日期: 2019-11-28

	11 (1)		.,,,,,,,,	1 1000							<u> </u>
	1	0	0	0	0	0	0	0	BE1	BE0	0X01: 升压电容频率
	1	0	0	0	0	0	0	BS2	BS1	BS0	0X02: 偏压比,BIAS=1/12
(33)升压倍数	0	0	0	1	0	1	0	0	0	1	0X51:内建升压倍数设置
(Booster Level)	1	0	0	1	1	1	1	0	1	BST	0X7B:10 倍
(34)电压驱动选择	0	0	0	1	0	0	0	0	0	DS	0X41: LCD 内部升压
(35)自动读取控制	0	0	1	1	0	1	0	1	1	1	XARD=0: 使能自动读
(00)日初庆代江南	1	0	1	0	0	XARD	1	1	1	1	XARD=0: 不使能自动读
	0	0	1	1	1	0	0	0	0	0	0xe0: OTP 读写
(36)控制OTP读写	1	0	0	0	ER/	0	0	0	0	0	WR/RD=0; 0x00, 使能 OTP 读
					RD						ER/RD=1; 0x20, 使能 OTP 写
(37)控制OTP出	0	0	1	1	1	0	0	0	0	1	控制 OTP 出
(38)写OTP	0	0	1	1	1	0	0	0	1	0	写 OTP
(39)读OTP	0	0	1	1	1	0	0	0	1	1	读 OTP
	0	0	1	1	1	0	0	1	0	0	0xe4: OTP 选择控制
(40)OTP选择控制	1	0	1	Ctrl	0	0	1	0	0	1	Ctrl=1: 0xc9,不使能 OTP
											Ctrl=0: 0x89,使能 OTP
(41)OTP程序设置	0	0	1	1	1	0	0	1	0	1	OTP 程序设置
(11) - 11 11 1 1	1	0	0	0	0	0	1	1	1	1	
	0	0	1	1	1	1	0	0	0	0	0xf0: 帧速率设置在不同的温度范
	1	0	0	0	0	FRA4	FRA3	FRA2	FRA1	FRA0	围
(42) 帧速率	1	0	0	0	0	FRB4	FRB3	FRB2	FRB1	FRB0	
	1	0	0	0	0	FRC4	FRC3	FRC2	FRC1	FRC0	
	1	0	0	0	0	FRD4	FRD3	FRD2	FRD1	FRD0	
	0	0	1	1	1	1	0	0	1	0	0xf2: 温度范围设置
(43)温度范围	1	0	0	TA6	TA5	TA4	TA3	TA2	TA1	TA0	
	1	0	0	TB6	TB5	TB4	TB3	TB2	TB1	TB0	
	1	0	0	TC6	TC5	TC4	TC3	TC2	TC1	TC0	
	0	0	1	1	1	1	0	1	0	0	0xf4: 温度补偿系数设置
	1	0	MT13	MT12	MT11	MT10	MT03	MT02	MT01	MT00	
	1	0	MT33	MT32	MT31	MT30	MT23	MT22	MT21	MT20	
	1	0	MT53	MT52	MT51	MT50	MT43	MT42	MT41	MT40	
(44)温度梯度补偿	1	0	MT73	MT72	MT71	MT70	MT63	MT62	MT61	MT60	
	1	0	MT93	MT92	MT91	MT90	MT83	MT82	MT81	MT80	
	1	0	MTB3	MTB2	MTB1	MTB0	MTA3	MTA2	MTA1	MTAO	
	1	0	MTD3	MTD2	MTD1	MTD0	MTC3	MTC2	MTC1	MTC0	
	1	0	MTF3	MTF2	MTF1	MTF0	MTE3	MTE2	MTE1	MTE0	t Ne A
Ext[1:0]=1,0(Extens:	-	1	ı	r					I		
(45) ID 设置	0	0	1	1	0	1	0	1	0	1	0xd5: ID 设置
	1	0	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	
(46)读 ID	0	0	0	1	1	1	1	1	1	RID	RID=1: 0x7f,使能
Ext[1:0]=1,1(Extens		1									
	0	0	1	1	0	1	0	1	1	0	0xd6: 使能 OTP
(47) 使能 OTP											EOTP=1;不使能 EOTP,一般不
											使能 EOTP
											EOTP=0;使能 EOTP

请详细参考 IC 资料"ST75256.PDF"。

7.2 点阵与 DD RAM 地址的对应关系

请留意页的定义: PAGE, 与平时所讲的"页"并不是一个意思, 在此表示 8 个行就是一个"页", 一个 256*160 点阵的屏分为 20 个"页", 从第 0 "页"到第 19 "页"。

DB7--DB0 的排列方向:数据是从下向上排列的。最低位 D0 是在最上面,最高位 D7 是在最下面。每一位(bit)数据对应一个点阵,通常"1"代表点亮该点阵,"0"代表关掉该点阵.如下图所示:

Figure 21 DDRAM Mapping (4-Level Gray Scale Mode)

下图摘自 ST75256 IC 资料,可通过"ST75256. PDF"之第 37 页获取最佳效果。

7.3 初始化方法

用户所编的显示程序, 开始必须进行初始化, 否则模块无法正常显示, 过程请参考程序

点亮液晶模块的步骤

7.4接口方式及程序:

7.4.1 液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:

图 8:并行接口图

```
/* 液晶模块型号: JLX256160G-922
   并行接口:6800 时序
   驱动 IC 是:ST75256
   版权所有: 晶联讯电子: 网址 http://www.jlxlcd.cn;
*/
#include <STC15F2K60S2.H>
#include <intrins.h>
#include <chinese code.h>
sbit cs1=P3<sup>4</sup>:
                    /*对应 LCD 引脚 CS*/
                    /*对应 LCD 引脚 RST*/
sbit reset=P3<sup>5</sup>;
sbit rs=P3<sup>3</sup>:
                    /*对应 LCD 引脚 RS*/
sbit rd=P3^0:
                    /*对应 LCD 引脚 RD*/
sbit wr=P2^1;
                    /*对应 LCD 引脚 WR, 另外 P1.0~1.7 对应 DB0~DB7*/
                    /*按键接口, P2.0 口与 GND 之间接一个按键*/
sbit key=P2^0;
#define uchar unsigned char
#define uint unsigned int
/*延时: 1 毫秒的 i 倍*/
void delay(int i)
   int j, k;
   for (j=0; j < i; j++)
       for (k=0; k<110; k++);
/*延时: lus 的 i 倍*/
void delay us(int i)
   int j, k;
   for (j=0; j < i; j++)
       for (k=0; k<1; k++);
}
/*等待一个按键, 我的主板是用 P2.0 与 GND 之间接一个按键*/
void waitkey()
{
repeat:
   if (key==1) goto repeat;
   else delay (2000);
}
//=====transfer command to LCM========
void transfer command lcd(int datal)
```

```
cs1=0;
   rs=0;
   rd=0:
   wr=0;
   P1=data1;
   rd=1:
   delay_us(1);
   rd=0:
   cs1=1;
}
//----transfer data to LCM-
void transfer data lcd(int datal)
{
   cs1=0:
   rs=1;
   rd=0:
   wr=0;
   P1=data1;
   rd=1;
   delay_us(1);
   rd=0:
   cs1=1;
void initial_lcd()
   RST=0:
   delay(100);
   RST=1:
   delay(100);
   transfer\_command\_1cd(0x30);
                                   //EXT=0
   transfer_command_1cd(0x94);
                                   //Sleep out
   transfer command 1cd(0x31);
                                   //EXT=1
   transfer_command_1cd(0xD7);
                                   //Autoread disable
   transfer_data_lcd(0X9F);
                                   //Analog SET
   transfer\_command\_1cd(0x32);
   transfer data lcd(0x00);
                                   //OSC Frequency adjustment
   transfer_data_lcd(0x01);
                                   //Frequency on booster capacitors->6KHz
   transfer_data_lcd(0x01);
                                    //Bias=1/13
   transfer\_command\_1cd(0x20);
                                   // Gray Level
   transfer_data_1cd(0x01);
   transfer_data_1cd(0x03);
   transfer_data_lcd(0x05);
   transfer data lcd(0x07);
```

```
transfer_data_lcd(0x09);
transfer_data_lcd(0x0b);
transfer_data_lcd(0x0d);
transfer data lcd(0x10);
transfer data lcd(0x11);
transfer_data_1cd(0x13);
transfer_data_1cd(0x15);
transfer_data_1cd(0x17);
transfer data lcd(0x19);
transfer data lcd(0x1b);
transfer_data_lcd(0x1d);
transfer_data_lcd(0x1f);
                              //EXT=1
transfer command 1cd(0x31);
                              //此指令比较重要, 不加此指令升压会慢 0.5s
transfer\_command\_1cd(0xf0);
transfer_data_1cd(0x0f);
transfer_data_lcd(0x0f);
transfer_data_lcd(0x0f);
transfer data lcd(0x0f);
transfer\_command\_1cd(0x30);
                              //EXT=0
                              //Page Address setting
transfer\_command\_1cd(0x75);
transfer data 1cd(0X00);
                              // XS=0
transfer data 1cd(0X28);
                              // XE=159 0x28
transfer command 1cd(0x15);
                              //Clumn Address setting
transfer data 1cd(0X00);
                              // XS=0
transfer_data_lcd(0Xff);
                              // XE=256
transfer command 1cd(0xBC);
                              //Data scan direction
transfer_data_lcd(0x00);
                              //MX.MY=Normal
transfer data 1cd(0xA6);
transfer command 1cd(0xCA);
                               //Display Control
transfer data 1cd(0X00);
                               //
                               //Duty=160
transfer_data_1cd(0X9F);
                               //Nline=off
transfer_data_1cd(0X20);
transfer command 1cd(0xF0);
                               //Display Mode
transfer_data_lcd(0X10);
                               //10=Monochrome Mode, 11=4Gray
transfer command 1cd(0x81);
                               //EV control
                               //微调对比度的值,可设置范围 0x00~0x3f
transfer_data_1cd(0x20);
                               //粗调对比度,可设置范围 0x00~0x07
transfer data 1cd(0x05);
transfer command 1cd(0x20);
                               //Power control
transfer data 1cd(0x0B);
                               //D0=regulator; D1=follower; D3=booste,
                                                                         on:1 off:0
delay(20);
transfer_command_1cd(0xAF);
                               //Display on
```

/*写 LCD 行列地址: X 为起始的列地址, Y 为起始的行地址, x total, y total 分别为列地址及行

```
地址的起点到终点的差值 */
void lcd_address(int x, int y, x_total, y_total)
   x=x-1:
   y=y-1;
   transfer_command_lcd(0x15); //Set Column Address
   transfer_data_lcd(x);
   transfer_data_lcd(x+x_total-1);
   transfer_command_lcd(0x75); //Set Page Address
   transfer_data_lcd(y);
   transfer_data_lcd(y+y_total-1);
   transfer command 1cd(0x30);
   transfer_command_1cd(0x5c);
/*清屏*/
void clear screen()
   int i, j;
   1cd_address(0, 0, 256, 21);
   for (i=0; i<21; i++)
       for (j=0; j<256; j++)
          transfer_data_1cd(0x00);
//写入一组 16x16 点阵的汉字字符串(字符串表格中需含有此字)
//括号里的参数:(页,列,汉字字符串)
void display_string_16x16(uchar column, uchar page, uchar *text)
   uchar i, j, k;
   uint address;
   j=0;
   while (text[j]!= '\0')
       i=0;
      address=1;
      while(Chinese_text_16x16[i]> 0x7e)
          if(Chinese\_text\_16x16[i] == text[j])
```

```
晶联讯电子
```

```
if(Chinese\_text\_16x16[i+1] == text[j+1])
               {
                  address=i*16;
                  break;
           i +=2:
       if(column>255)
           column=0;
           page += 2;
       if (address !=1)
           lcd_address(column, page, 16, 2);
           for (k=0; k<2; k++)
               for (i=0; i<16; i++)
                   transfer_data_lcd(Chinese_code_16x16[address]);
                  address++;
             +=2;
       else
           lcd_address(column, page, 16, 2);
           for (k=0; k<2; k++)
               for (i=0; i<16; i++)
                  transfer_data_lcd(0x00);
           j++;
       column += 16;
}
/*显示 32*32 点阵的汉字或等同于 32*32 点阵的图像*/
void disp_32x32(int x, int y, uchar *dp)
   int i, j;
```

```
1cd_address(x, y, 32, 4);
   for (i=0; i<4; i++)
       for (j=0; j<32; j++)
           transfer_data_lcd(*dp);
           dp++;
/*显示 256*160 点阵的图像*/
void disp_256x160(int x, int y, char *dp)
   int i, j;
   1cd_address(x, y, 256, 20);
   for (i=0; i<20; i++)
       for (j=0; j<256; j++)
           transfer_data_lcd(*dp);
           dp++;
/*显示 32*215 点阵的汉字或等同于 32*32 点阵的图像*/
void disp_32x215(int x, int y, uchar *dp)
   int i, j;
   lcd_address(x, y, 215, 4);
   for (i=0; i<4; i++)
       for (j=0; j<215; j++)
           transfer_data_lcd(*dp);
           dp++;
   }
void main()
 P1M1=0x00;
   P1M0=0x00;
                 //P1 配置为准双向
```

```
P2M1=0x00;
            //P2 配置为准双向
P2M0=0x00:
P3M1=0x00:
P3M0=0x00:
            //P3 配置为准双向
                               //对液晶模块进行初始化设置
initial lcd();
while (1)
   clear_screen();
                               //清屏
   disp 256x160(1, 1, bmp8);
                               //显示一幅 240*160 点阵的黑白图。
   waitkey();
   disp 256x160(1, 1, bmp1);
                               //显示一幅 240*160 点阵的黑白图。
   waitkey();
   disp_256x160(1, 1, bmp2);
                              //显示一幅 240*160 点阵的黑白图。
   waitkey();
   clear_screen();
   display string 16x16(33, 4, "深圳市晶联讯电子有限公司");
   disp_32x32(48, 8, jing2);
   disp 32x32((32*1+48), 8, 1ian2);
   disp 32x32((32*2+48), 8, xun2);
   disp_32x32((32*3+48), 8, dian2);
   disp 32x32((32*4+48), 8, zi2);
disp_32x215(20, 12, bmp9);
   waitkev():
                               //进入睡眠模式
   transfer_command_1cd(0x95);
   waitkey():
   transfer command 1cd(0x94);
                               //退出睡眠模式
   waitkey();
```

7.5 程序举例:

7.5.1 串行接口

液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:

图 9. 串行接口

```
并行程序与串行只是接口定义、写数据和命令不一样,其它都一样
串行接口程序
sbit 1cd_cs1 = P3^4; //CS
sbit lcd_reset= P3^5;//RST
sbit lcd_sclk = P1^0;//串行时钟 SCK
sbit 1cd_rs = P3^3;//RS
sbit lcd_sid = P1^1;//串行数据 SDA
            = P2^0://按键
sbit key
//写指令到 LCD 模块
void transfer command lcd(int datal)
   char i;
   1cd_cs1=0;
   1cd rs=0;
   for (i=0; i<8; i++)
       1cd sc1k=0;
       if (data1&0x80) lcd sid=1;
       else lcd_sid=0;
       lcd sclk=1;
       data1<<=1;
   1cd_cs1=1;
//写数据到 LCD 模块
void transfer data lcd(int datal)
   char i;
   1cd cs1=0;
   1cd rs=1;
   for (i=0; i<8; i++)
       1cd sc1k=0;
       if(data1&0x80) lcd sid=1;
```

25

```
else lcd sid=0;
    lcd sclk=1;
    data1<<=1;
1cd_cs1=1;
```

7.6、IIC 接口

图 10. IIC

7.6.1、以下为 I2C 接口方式范例程序

/* 液晶模块型号: JLX256160G-922

驱动 IC 是:ST75256

IIC 接口

与串行方式相比较,只需改变接口顺序以及传送数据、传送命令这两个函数即可:

```
版权所有: 晶联讯电子: 网址 http://www.jlxlcd.cn;
#include <reg52.H>
#include <intrins.h>
#include <chinese code.h>
sbit reset=P1^1;
sbit scl=P1^3;
sbit sda=P1^2;
sbit key=P2^0;
void transfer(int data1)
    int i;
    for (i=0; i<8; i++)
        sc1=0;
        if(data1&0x80) sda=1;
        else sda=0;
        sc1=1;
        sc1=0;
        data1=data1<<1;</pre>
        sda=0;
        sc1=1;
        sc1=0;
```

```
void start_flag()
   sc1=1;
               /*START FLAG*/
   sda=1:
               /*START FLAG*/
   sda=0;
               /*START FLAG*/
void stop_flag()
   scl=1;
               /*STOP FLAG*/
   sda=0;
               /*STOP FLAG*/
               /*STOP FLAG*/
   sda=1;
//写命令到液晶显示模块
void transfer_command(uchar com)
   start_flag();
   transfer (0x78);
   transfer(0x80);
   transfer(com);
   stop_flag();
//写数据到液晶显示模块
void transfer_data(uchar dat)
   start_flag();
   transfer(0x78);
   transfer(0xC0);
   transfer (dat);
   stop_flag();
```

-END-