Exercise A: The Kronecker product

$\mathbf{A1}$

The Kronecker product of two matrices $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{p \times q}$ is the matrix of size $mp \times nq$ whose elements are all possible products between the elements of A and B arranged in the following way:

$$A \otimes B := \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}$$

With
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$
, $B = \begin{bmatrix} b_{11} & \cdots & b_{1q} \\ \vdots & \ddots & \vdots \\ b_{p1} & \cdots & b_{pq} \end{bmatrix}$

$\mathbf{A2}$

The Kronecker product is associative. Let $C \in \mathbb{F}^{s \times t}$ be a third matrix. We show that $(A \otimes B) \otimes C = A \otimes (B \otimes C)$.

With
$$C = \begin{bmatrix} c_{11} & \cdots & c_{1t} \\ \vdots & \ddots & \vdots \\ c_{s1} & \cdots & c_{st} \end{bmatrix}$$

Proof.

$$(A \otimes B) \otimes C = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix} \otimes C$$

$$= \begin{bmatrix} a_{11}b_{11}C & \cdots & a_{11}b_{1q}C & \cdots & a_{1n}b_{11}C & \cdots & a_{1n}b_{1q}C \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{11}b_{p1}C & \cdots & a_{11}b_{pq}C & \cdots & a_{1n}b_{p1}C & \cdots & a_{1n}b_{pq}C \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1}b_{11}C & \cdots & a_{m1}b_{1q}C & \cdots & a_{mn}b_{11}C & \cdots & a_{mn}b_{1q}C \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1}b_{p1}C & \cdots & a_{m1}b_{pq}C & \cdots & a_{mn}b_{p1}C & \cdots & a_{mn}b_{pq}C \end{bmatrix}$$

$$= A \otimes (B \otimes C).$$

The Kronecker product is non-commutative; we show that $A \otimes B \neq B \otimes A$

Proof. We show a counterexample to the claim of commutativity. Let

$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & -1 \\ -1 & 1 \end{bmatrix}.$$

In that case, we have

$$A \otimes B = \begin{bmatrix} 0 & -2 & 0 & -3 \\ -2 & 2 & -3 & 3 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}, \quad B \otimes A = \begin{bmatrix} 0 & 0 & -2 & -3 \\ 0 & 0 & 0 & -1 \\ -2 & -3 & 2 & 3 \\ 0 & -1 & 0 & 1 \end{bmatrix}.$$

We see that $A \otimes B \neq B \otimes A$.

Finally, the set $\mathbb{F}^{n\times n}$ equipped with the Kronecker product is not a group as it does not satisfy the closure property. Indeed, one can easily see that the Kronecker product of two matrices in $\mathbb{F}^{n\times n}$ is an element of $\mathbb{F}^{n^2\times n^2}$.

A3

Let $A \in \mathbb{F}^{m \times n}$, $B \in \mathbb{F}^{p \times q}$, $C \in \mathbb{F}^{n \times r}$, and $D \in \mathbb{F}^{q \times s}$,

$$(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$$

Proof. We simply verify that

$$(A \otimes B)(C \otimes D) = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix} \begin{bmatrix} c_{11}D & \cdots & c_{1r}D \\ \vdots & \ddots & \vdots \\ c_{n1}D & \cdots & c_{nr}D \end{bmatrix}$$
$$= \begin{bmatrix} \sum_{k=1}^{n} a_{1k}c_{k1}BD & \cdots & \sum_{k=1}^{n} a_{1k}c_{kr}BD \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} a_{mk}c_{k1}BD & \cdots & \sum_{k=1}^{n} a_{mk}c_{kr}BD \end{bmatrix}$$
$$= AC \otimes BD.$$

This allows us to say that (if $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$ are nonsingular)

$$(A \otimes B)(A^{-1} \otimes B^{-1}) = AA^{-1} \otimes BB^{-1} = I_n \otimes I_m = I_{nm},$$

and hence that

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}.$$

$\mathbf{A4}$

We first show the first property, P1:

$$A^{\otimes k}B^{\otimes k} = (AB)^{\otimes k}.$$

Proof. By induction. The base case is trivial:

$$A^{\otimes 1}B^{\otimes 1} = AB = (AB)^{\otimes 1}.$$

Next, we assume the property holds for k, and we prove it for k+1:

$$A^{\otimes k+1}B^{\otimes k+1} = (A^{\otimes k} \otimes A)(B^{\otimes k} \otimes B)$$

$$\stackrel{A3}{=} (A^{\otimes k}B^{\otimes k}) \otimes AB$$

$$= (AB)^{\otimes k} \otimes AB$$

$$= (AB)^{\otimes k+1}.$$

Next, we show the second property, P2:

$$(A^{\otimes k})^T = (A^T)^{\otimes k}$$

Proof. We start by proving an auxiliary lemma, L1.

$$(A \otimes B)^{\top} = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}^{\top} = \begin{bmatrix} a_{11}B^{\top} & \cdots & a_{m1}B^{\top} \\ \vdots & \ddots & \vdots \\ a_{1n}B^{\top} & \cdots & a_{mn}B^{\top} \end{bmatrix} = A^{\top} \otimes B^{\top}.$$

We then proceed by induction. The base case is trivial as before:

$$(A^{\otimes 1})^{\top} = A^{\top} = (A^{\top})^{\otimes 1}.$$

Next, we assume the property holds for k, and we prove it for k+1:

$$(A^{\otimes k+1})^{\top} = (A^{\otimes k} \otimes A)^{\top}$$

$$\stackrel{\text{L1}}{=} (A^{\otimes k})^{\top} \otimes A^{\top}$$

$$= (A^{\top})^{\otimes k} \otimes A^{\top}$$

$$= (A^{\top})^{\otimes k+1}.$$

Finally, we show the following: for any vector $v \in \mathbb{R}^n$,

$$||v^{\otimes k}|| = ||v||^k,$$

where $||v|| = \sqrt{v^{\top}v}$.

Proof.

$$||v^{\otimes k}|| = \sqrt{(v^{\otimes k})^{\top} v^{\otimes k}}$$

$$\stackrel{\text{P2}}{=} \sqrt{(v^{\top})^{\otimes k} v^{\otimes k}}$$

$$\stackrel{\text{P1}}{=} \sqrt{(v^{\top}v)^{\otimes k}}$$

$$= \sqrt{(v^{\top}v)^{k}}$$

$$= \left(\sqrt{v^{\top}v}\right)^{k}$$

$$= ||v||^{k},$$

where the fourth equality follows from a simplification of the Kronecker product for scalars, and the fifth equality is a property of the square root.

A5

The determinant of a square matrix $A \in \mathbb{F}^{n \times n}$ is given by

$$\det(A) = \sum_{j} (-1)^{t(j)} a_{1j_1} \cdot a_{2j_2} \cdots a_{nj_n},$$

where the index vector \boldsymbol{j} constitutes a permutation of $\{1, 2, \dots, n\}$, and $t(\boldsymbol{j})$ denotes the parity of each quasi-diagonal.

Next, we show that $\det(A \otimes I_m) = \det(A)^m$.

Proof. Laplace's theorem states that for a matrix $B \in \mathbb{F}^{n \times n}$ and a p-tuple of rows i_p , we have:

$$\det(B) = \sum_{i_p} B \begin{pmatrix} i_p \\ j_p \end{pmatrix} B^c \begin{pmatrix} i_p \\ j_p \end{pmatrix}.$$

We apply this theorem to the matrix $B = A \otimes I_m$ with the *n*-tuple $i_n = (1, m+1, 2m+1, ..., (n-1)m+1)$ (if n = 1 then the tuple is just (1)). For every *n*-tuple j_n that contains another index than those present in i_n , the minor $B\binom{i_n}{j_n}$ is zero. Indeed, if we consider a new matrix B' only containing the rows whose indices are in i_n , we have:

Thus if j_n contains any index not present in i_n , a column of zeros is included leading to a zero minor. We are left with

$$\det(A \otimes I_m) = \det(B) = B \begin{pmatrix} \mathbf{i}_n \\ \mathbf{i}_n \end{pmatrix} B^c \begin{pmatrix} \mathbf{i}_n \\ \mathbf{i}_n \end{pmatrix}$$
(1)

$$= \det(A) \det(A \otimes I_{m-1}). \tag{2}$$

The first term of (2) can be easily found by inspecting B' and taking only columns whose indices are in i_n . The second term is derived by removing the rows and columns of $A \otimes I_m$ whose indices are in i_n , which gives the following matrix:

$$\begin{vmatrix} a_{11}I_{m-1} & \cdots & a_{1n}I_{m-1} \\ \vdots & \ddots & \vdots \\ a_{n1}I_{m-1} & \cdots & a_{nn}I_{m-1} \end{vmatrix}.$$

From (2), we then conclude that $\det(A \otimes I_m) = \det(A)^m$

From this, we can deduce that for $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$, $\det(A \otimes B) = \det(A)^m \det(B)^n$.

Proof. We can write

$$A \otimes B = (AI_n) \otimes (I_m B)$$

$$\stackrel{A3}{=} (A \otimes I_m)(I_n \otimes B).$$

Taking the determinant on both sides, and using the fact that det(AB) = det(A) det(B) (Exercise 1.18 in the lecture notes), we then get

$$\det(A \otimes B) = \det(A \otimes I_m) \det(B \otimes I_n)$$
$$= \det(A)^m \det(B)^n.$$

A6

The rank of a matrix $A \in \mathbb{F}^{m \times n}$ is equal to the largest size of its nonzero minors. From this, we prove the following property: $\operatorname{rank}(A \otimes B) = \operatorname{rank}(A) \operatorname{rank}(B) = \operatorname{rank}(B \otimes A)$.

Proof. Let $A \in \mathbb{F}^{m \times n}$, $B \in \mathbb{F}^{p \times q}$.

First, we note that $B \otimes A$ can be obtained by permuting rows and columns of $A \otimes B$. As elementary operations do not affect the rank of a matrix, we deduce that $\operatorname{rank}(A \otimes B) = \operatorname{rank}(B \otimes A)$.

Let R_1 and Q_1 be products of elementary transformations such that

$$R_1 B Q_1 = \begin{bmatrix} I_r & 0_{r \times (q-r)} \\ 0_{(p-r) \times r} & 0_{(p-r) \times (q-r)} \end{bmatrix}.$$

By Theorem 1.8 of the lecture notes, we know such matrices exist. The scalar r is the rank of B. Next, we multiply on both sides the matrix $A \otimes B$ by matrices with R_1 and Q_1 on the diagonal:

$$\begin{bmatrix} R_1 & & \\ & \ddots & \\ & R_1 \end{bmatrix} \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix} \begin{bmatrix} Q_1 & & \\ & \ddots & \\ & & Q_1 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}R_1BQ_1 & \cdots & a_{1n}R_1BQ_1 \\ \vdots & & & \vdots \\ a_{m1}R_1BQ_1 & \cdots & a_{mn}R_1BQ_1 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}I_r & 0_{r\times(q-r)} & \cdots & a_{1n}I_r & 0_{r\times(q-r)} \\ 0_{(p-r)\times r} & 0_{(p-r)\times(q-r)} & \cdots & 0_{(p-r)\times r} & 0_{(p-r)\times(q-r)} \\ \vdots & & \vdots & & \vdots \\ a_{m1}I_r & 0_{r\times(q-r)} & \cdots & a_{mn}I_r & 0_{r\times(q-r)} \\ 0_{(p-r)\times r} & 0_{(p-r)\times(q-r)} & \cdots & 0_{(p-r)\times r} & 0_{(p-r)\times(q-r)} \end{bmatrix}.$$

By manipulating the last matrix with permutation matrices, the following matrix is obtained:

where the matrix A appears r times on the diagonal and the rest of the matrix is only zeros. Its rank is still equal to the rank of $A \otimes B$ as only elementary operations have been applied.

Let R_2 and Q_2 be products of elementary transformations such that:

$$R_2 A Q_2 = \begin{bmatrix} I_s & 0_{s \times (n-s)} \\ 0_{(m-s) \times s} & 0_{(m-s) \times (n-s)} \end{bmatrix}.$$

We multiply on both sides the matrix obtained previously by matrices with R_2 and Q_2 on the diagonal:

As the identity matrix I_s appears r times on the diagonal, we deduce that

$$rank(A \otimes B) = sr = rank(A) rank(B).$$

A7

We show that : $\operatorname{vec}(AXB) = (B^{\top} \otimes A) \operatorname{vec}(X)$.

Proof. Let $A \in \mathbb{F}^{m \times n}$, $B \in \mathbb{F}^{p \times q}$, and $X \in \mathbb{F}^{n \times p}$.

We develop the right-hand side of the equality we want to prove:

$$(B^{\top} \otimes A) \operatorname{vec}(X) = \begin{bmatrix} b_{11}A & b_{21}A & \cdots & b_{p1}A \\ b_{12}A & b_{22}A & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ b_{1q}A & \cdots & \cdots & b_{pq}A \end{bmatrix} \begin{bmatrix} X_{:,1} \\ X_{:,2} \\ \vdots \\ X_{:,p} \end{bmatrix}$$

$$= \begin{bmatrix} b_{11}AX_{:,1} + b_{21}AX_{:,2} + \cdots + b_{p1}AX_{:,p} \\ b_{12}AX_{:,1} + \cdots + b_{p2}AX_{:,p} \\ \vdots \\ b_{1q}AX_{:,1} + \cdots + b_{pq}AX_{:,p} \end{bmatrix}.$$

We recognize the elements of a product D of three matrices in vectorized form:

$$d_{i} = \sum_{r=1}^{p} b_{ri} \sum_{k=1}^{n} a_{rk} x_{kr},$$

which shows D is simply AXB, and hence proves $\text{vec}(AXB) = (B^{\top} \otimes A) \text{vec}(X)$.

The proven equality can be used to solve the Sylvester equation: $AX + XA^{\top} = B$ where X is the unknown. Indeed, we can vectorize both sides of the equation:

$$\operatorname{vec}(AX) + \operatorname{vec}(XA^{\top}) = \operatorname{vec}(B).$$

Then, we use some identity matrices to be able to apply the proven relation:

$$\operatorname{vec}(B) = \operatorname{vec}(AX) + \operatorname{vec}(XA^{\top}) = \operatorname{vec}(AXI) + \operatorname{vec}(IXA^{\top})$$
$$= (I \otimes A) \operatorname{vec}(X) + (A \otimes I) \operatorname{vec}(X)$$
$$= (I \otimes A + A \otimes I) \operatorname{vec}(X).$$

The term vec(X) can then be isolated:

$$\operatorname{vec}(X) = (I \otimes A + A \otimes I)^{-1} \operatorname{vec}(B).$$

Finally, the matrix X can be simply reconstructed from vec(X).

1 Exercise B: The matrix exponential

B1

If $\lambda \in \mathbb{C}$ is an eigenvalue of A then e^{λ} is an eigenvalue of e^{A} .

Proof. We know λ is an eigenvalue of A. Hence $Av = \lambda v$ for some eigenvector v.

$$e^{A}v = \left(I + \sum_{k=1}^{\infty} \frac{1}{k!} A^{k}\right) v$$

$$= v + \sum_{k=1}^{\infty} \frac{1}{k!} A^{k} v$$

$$= v + \sum_{k=1}^{\infty} \frac{1}{k!} \lambda^{k} v$$

$$= \left(\sum_{k=0}^{\infty} \frac{1}{k!} \lambda^{k}\right) v$$

$$= e^{\lambda}v.$$

The third line is derived using the equality $A^k v = \lambda^k v$ and the last line using the Taylor series of the exponential function.

This proves that e^{λ} is an eigenvalue of e^{A} , with eigenvector v.

B2

For any matrix $A \in \mathbb{C}^{n \times n}$, rank $(e^A) = n$.

Proof. The matrix e^A is invertible and its inverse is e^{-A} . In fact,

$$e^A e^{-A} = e^{-A} e^A = e^{A-A} = I.$$

The second equality is valid since A and -A commute. Since e^A is non-singular, its determinant is nonzero. Theorem 1.9 of the course notes states the rank of e^A is equal to the largest size of its nonzero minors which in this case is the whole matrix. We deduce $\operatorname{rank}(e^A) = n$.

B3

If $A \in \mathbb{C}^{n \times n}$ is skew-Hermitian, i.e. $A = -A^*$, then e^A is unitary, i.e. $e^A(e^A)^* = I$.

Proof. We have:

$$(e^{A})^{*} = \left(I + \sum_{k=1}^{\infty} \frac{1}{k!} A^{k}\right)^{*}$$

$$= \left(I^{*} + \sum_{k=1}^{\infty} \frac{1}{k!} (A^{k})^{*}\right)$$

$$= \left(I + \sum_{k=1}^{\infty} \frac{1}{k!} (A^{*})^{k}\right)$$

$$= e^{A^{*}}$$

$$= e^{-A},$$

where the second and third lines are derived using the following properties:

- $(A+B)^* = A^* + B^*$;
- $(A^k)^* = (A^*)^k$.

The fourth line comes from the definition of the exponential matrix and the last line from the fact that A is skew-Hermitian.

Finally can write:

$$e^{A}(e^{A})^* = e^{A}(e^{-A})$$
$$= e^{A-A}$$
$$= I$$

The second line is valid since A and -A commute.

B4

We start by showing that $(J_n(0))^n = 0$.

Proof. One trivially notes that $A := J_n(0) \in \mathbb{C}^{n \times n}$ is strictly upper triangular, for any $n \ge 1$. We want to prove by induction on $k \ge 1$ that $a_{ij}^k = 0$ whenever $i \le j + k - 1$.

- When k=1, this is trivially true, as this precisely states that A is strictly upper triangular.
- For the induction step, we fix $k \ge 1$ and we suppose that $a_{ij}^k = 0$ when $i \le j + k 1$. Fix i, j and suppose that $i \le j + (k + 1) - 1 = j + k$. In that case,

$$a_{ij}^{k+1} = \sum_{\ell=0}^{n} a_{i\ell}^{k} a_{\ell j}.$$

However, regarding the base case, we know that $a_{\ell j} = 0$ whenever $\ell \leqslant j$, so that

$$a_{ij}^{k+1} = \sum_{\ell=i+1}^{n} a_{i\ell}^{k} a_{\ell j}.$$

Moreover, keeping in mind $i \leq j + k$, we observe that if $j + 1 \leq \ell \leq n$, then

$$i \le j + k = (j+1) + k - 1 \le \ell + k - 1$$

so that $a_{i\ell}^k = 0$ by the induction hypothesis. This allows us to conclude that $a_{ij}^{k+1} = 0$ when $i \leq j + (k+1) - 1$, as desired.

Finally, the result is obtained by taking the case k=n, which tells us that $a_{ij}^n=0$ whenever $i\leqslant j+n-1$, but this is always true as $i\leqslant n$ and $j+n-1\geqslant n$ for all $1\leqslant i,j\leqslant n$. This shows that $A=\left(J_n(0)\right)^n=0$. \square

Next, we show that

$$e^{J_n(\lambda)} = e^{\lambda} \left(I + \sum_{k=1}^{n-1} \frac{1}{k!} (J_n(0))^k \right).$$

Proof. We note that $J_n(\lambda) = J_n(0) + \lambda I$. Furthermore, $J_n(0)$ and λI commute as the identity matrix multiplied by a scalar commutes with every matrix. Thus, we can write:

$$e^{J_n(\lambda)} = e^{\lambda I + J_n(0)}$$
$$= e^{\lambda I} e^{J_n(0)}.$$

If we develop the last right-hand side and use the Taylor series expansion of the exponential, we obtain

$$e^{J_n(0)}e^{\lambda I} = \sum_{j=0}^{\infty} \frac{1}{j!} (\lambda I)^j \left(\sum_{k=0}^{\infty} \frac{1}{k!} (J_n(0))^k \right)$$

$$= I \sum_{j=0}^{\infty} \frac{1}{j!} \lambda^j \sum_{k=0}^{\infty} \frac{1}{k!} (J_n(0))^k$$

$$= e^{\lambda} \left(\sum_{k=0}^{\infty} \frac{1}{k!} (J_n(0))^k \right)$$

$$= e^{\lambda} \left(I + \sum_{k=1}^{\infty} \frac{1}{k!} (J_n(0))^k \right).$$

Putting the left-hand side in its original form, this is precisely what we were trying to prove.

B5

We want to show that for any matrices $A, B \in \mathbb{C}^{n \times n}$,

$$e^{A \otimes I + I \otimes B} = e^A \otimes e^B$$
.

Proof. We first note that $A \otimes I$ and $I \otimes B$ commute. Indeed, by using the mixed product property, we observe that

$$(A \otimes I)(I \otimes B) = (AI) \otimes (IB) = (I \otimes B)(A \otimes I).$$

Hence we can write

$$e^{A \otimes I + I \otimes B} = e^{A \otimes I} e^{I \otimes B}.$$

Next, we develop the last equality using the definition of the matrix exponential:

$$e^{A\otimes I}e^{I\otimes B} = \sum_{k=0}^{\infty} \frac{1}{k!} (A\otimes I)^k \sum_{j=0}^{\infty} \frac{1}{j!} (I\otimes B)^j$$

$$= \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{1}{k!} \frac{1}{j!} (A\otimes I)^k (I\otimes B)^j$$

$$= \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(k+j)!}{(k+j)!} \frac{1}{k!} \frac{1}{j!} (A\otimes I)^k (I\otimes B)^j$$

$$= \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{1}{(k+j)!} \binom{k+j}{j} (A\otimes I)^k (I\otimes B)^j.$$

Let m = k + j; we can then write this as

$$= \sum_{m=0}^{\infty} \sum_{j=0}^{m} \frac{1}{m!} {m \choose j} (A \otimes I)^{m-j} (I \otimes B)^{j}$$
$$= \sum_{m=0}^{\infty} \frac{1}{m!} (A \otimes I + I \otimes B)^{m}$$
$$= e^{A \otimes I + I \otimes B},$$

where the second equality comes from the binomial formula, which we can use because of the commutativity we observed earlier. Note that the bounds on the sum indexed by j have changed; this is because of the change of variables and is consistent with the definition of $m \ge j$.