TOSHIBA MOS MEMORY PRODUCTS

2,048 WORD × 8 BIT STATIC RAM TMM2016BP-90, TMM2016BP-12 SILICON MONOLITHIC N-CHANNEL SILICON GATE MOS PROCESS TMM2016BP-10, TMM2016BP-15

DESCRIPTION

The TMM2016BP is a 16,384 bits high speed and low power static random access memory organized as 2,048 words by 8 bits and operates from a single 5V supply. Toshiba's high performance device technology provides both high speed and low power features with a maximum access time of 90ns/100ns/120ns/150ns and maximum operating current of 50mA. When \overline{CS} is logical high, the device is

placed in a low power standby mode in which maximum standby current is 5mA. Thus the TMM2016BP is most suitable for use in microcomputer peripheral memory where the low power applications are required. The TMM2016BP is fabricated with ion implanted N channel silicon gate MOS technology for high performance and high reliability.

FEATURES

Access Time and Current

Parameter	Access	Operating	Standby
Part	Time	Current	Current
Number	(Max.)	(Max.)	(Max.)
TMM2016BP-90	90ns	50mA	5mA
TMM2016BP-10	100ns	50mA	5mA
TMM2016BP-12	120ns	50mA	5mA
TMM2016BP-15	150ns	50mA	5mA

Single 5V Power Supply

Fully Static Operation

Power Down Feature: CS
 Output Buffer Control: OE

Three State Outputs

• All Inputs and Outputs: Directly TTL Compatible

• Inputs Protected: All inputs have protection

against static charge.

PIN CONNECTION

A7 1 A6 2 A5 3 A4 4	<u> </u>	24 V _{CC} 23 A8 22 A9 21 WE
AS 08 A2 06 A1 07 A0 08 L70; 09 L70; 010 L70; 011	(TOP VIEW)	20 0E 19 A10 16 0 CS 17 1/08 16 0 1/07 15 1/06 14 1/06 13 1/04

PIN NAMES

Ao~A3	Column Address Inputs			
A ₄ ~A ₁₀	Row Address Inputs			
CS	Chip Select Input			
WE	Write Enable Input			
I/O ₁ ~I/O ₈ .	Data Input/Output			
ŌĒ	Output Enable Input			
Vcc	Power (5V)			
GND	Ground			

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	, ITEM	RATING	UNIT
Vcc	Power Supply Voltage	-0.5~7.0	
Vin, Vout	Input/Output Voltage	-0.5*~7.0	V
Topr	Operating Temperature	0~70	°C
T_{stg}	Storage Temperature	-55~150	°C
Tsolder	Soldering Temperature • Time	260 · 10	°C·sec
PD	Power Dissipation(Ta = 70°C)	1.0	W

^{*-3.0}V at Pulse width 50ns

D.C. RECOMMENDED OPERATING CONDITIONS (Ta=0~70°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Vovtage	2.0		Vcc+1.0	V
VIL	Input Low Voltage	-0.5**		0.8	V
Vcc	Supply Voltage	4.5	5.0	5.5	V

^{* * -3.0}V at Pulse width 50ns

D. C. CHARACTERISTICS ($\Gamma a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
l _{IL}	Input Leakage Current	V _{IN} =0V~5.5V	-10		10	μA
Vон	Output High Voltage	lout=-1.0mA	2.4			V
Vol	Output Low Voltage	Iout=4.0mA		_	0.4	V
lio	Output Leakage Current	\overline{CS} =V _{IH} or \overline{OE} =V _{IH} , V_{OUT} = $OV \sim 5.5V$	-10		10	μА
ISBP	Peak Power-on Current	CS=Vcc, louт=OmA		_	10	mA
Isa	Standby Current	CS=V _{IH} , I _{OUT} =OmA			5	mA
Icc	Operating Current	CS=VIL, IOUT=OmA			50	mA

CAPACITANCE*** (Ta = 25°C, f = 1.0MHz)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
Cin	Input Capacitance	V _{IN} = OV	5	pF
Соит	Output Capacitance	V _{IN} = 0V	10	pF

^{***} Note: This parameter is periodically sampled and is not 100% tested.

A. C. CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$)

Read Cycle

SYMBOL	PARAMETER	TMM20	16BP-90	TMM20	16BP-10	TMM20	16BP-12	TMM2016BP-15		LINIT
STWIDGE	PANAIVIETEN	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
tric	Read Cycle Time	90		100	_	120		150		
tacc	Address Access Time		90	_	100	_	120	_	150	
tco	Chip Select Access Time	-	90	_	100	_	120		150	
tos	Output Enable Time		35	_	35	_	50		55	
toн	Output Data Hold Time from Address Change	10		10		10	_	10	_	
tcLZ	CS to Output in Low-Z	15		15	_	15		15	_	ns
tcHZ	CS to Output in High-Z		40	_	40		40		55	
tolz	OE to Output in Low-Z	5		5	_	5	_	5		
tonz	OE to Output in High-Z	-	35		35	_	35		50	
t PU	Chip Selection to power Up Time	0		0	_	0		0	_	
t _{PD}	Chip Deselection to Power Down Time	-	50	_	50	_	60	-	60	

Write Cycle

.SYMBOL	PARAMETER	TMM20	TMM2016BP-90		TMM2016BP-10		TMM2016BP-12		TMM2016BP-15	
STIVIBUL	PARAIVIETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
two	Write Cycle Time	90		100	_	120		150	_	
tow	Chip Selection to End of Write	60		70	_	85	_	100		
tas	Address Set Up Time	20		20	_	20		20	_	
twp	Write Pulse Width	55		65	_	80		100	_	ns
twr	Write Recovery Time	0		0	_	0	_	0	_	
tos	Data Set Up Time	30		35	_	45	_	50	_	
тон	Data Hold Time	0		0	_	0		0		
twLz	WE to Output in Low-Z	5	_	5	_	5		5	_	
twnz	WE to Output in High-Z		25	_	30		35	_	50	

A. C. TEST CONDITIONS

Input Pulse Levels	0~3.5V
Input Rise and Fall Time	10ns
Input and Output Reference Levels	1.5V
Output Load	1 TTL Gate & C _L =100pF

TIMING WAVEFORMS

• (A) READ CYCLE (1) (1)

• (B) READ CYCLE (2) (1), (2)

• (C) WRITE CYCLE (1) (3)

• (D) WRITE CYCLE (2) (3)

NOTES:

- (1) The WE is high for read cycle.
 - Device is continuously selected, $\overline{CS} = V_{IL}$ in read cycle (1).
- (2) All addresses are valid prior to or simultaneously with $\overline{\text{CS}}$ transitions.
- (3) A write occurs during the overlap of low $\overline{\text{CS}}$ and low $\overline{\text{WE}}$.
 - The t_{ow} is specified as the time from the chip selection to end of write in write cycle, and the t_{WP} is specified overlap time of low \overline{CS} and low \overline{WE} .
 - OE is allowed to be low or high level in write cycle.
 - If the OE is high, the output buffers remain in a high impedance state in this period.
- (4) If the $\overline{\text{CS}}$ low transition occurs simultaneously with or latter to the $\overline{\text{WE}}$ low transition, the output buffers remain in a high impedance state in this period.
- (5) If the \overline{CS} high transition occurs simultaneously with \overline{WE} high transition, the output buffers remain in a high impedance state in this period.

Thease parameters are specified as follows and measured by using the load shown in Fig. 1.

- (A) tclz, tolz, twlz Output Enable Time
- (B) tchz, tohz, twhz Output Disable Time

Fig. 1 Output load condition for enable disable time measurement.

OUTLINE DRAWINGS

• 24 Pin Plastic DIP with 0.6 inch width. (TMM2016BP)

NOTES: Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect to No.1 and No.24 leads.

Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

©Aug., 1985 Toshiba Corporation