CIRCUNFERENCIA II

- TEOREMAS CON LINEAS TANGENTES.
- TEOREMAS CON LINEAS SECANTES.
- TEOREMAS RELACIONADAS CON EL RADIO Y CENTRO.

TEOREMAS EN LA CIRCUNFERENCIA.

1. <u>Teorema con una recta tangente:</u>

RECIPROCO

CIRCUNFERENCIA II

Del gráfico C es un punto de tangencia, si BC=R. calcule AB.

∴X=R $\sqrt{3}$

<u>Teorema con lineas secantes paralelas o</u> <u>una secante y una tangente</u>

$Si \overleftrightarrow{AB} \parallel \overleftrightarrow{DC}$ $\theta = \alpha$ Si T es punto de tangencia $y \overleftrightarrow{DC} \parallel \overleftrightarrow{L_T}$ L_T $m\widehat{DT} = m\widehat{TC} = \omega$ **RECIPROCO** Si $m\widehat{AD} = m\widehat{BC}$ $\overrightarrow{AB} \parallel \overrightarrow{CD}$ D

CIRCUNFERENCIA II

Del gráfico \overline{AD} es bisectriz del $\angle BAE$, si $\overline{CD} \parallel \overline{AE}$ y m \widehat{CD} =80°, calcule m \widehat{AB} .

CIRCUNFERENCIA II

3. <u>Teorema con cuerdas:</u>

Si AB=CD

$$\theta = \alpha$$

Además la distancia del centro a dichas cuerdas:

RECIPROCO

Si $m\widehat{AB} = m\widehat{CD}$

DEMOSTRACIÓN:

DEMOSTRAR QUE:

$$\theta = \alpha$$

$$X = Y$$

Dato:

$$AB=CD=a$$

• Como el radio en constante trazamos \overline{OA} , \overline{OB} , \overline{OC} y \overline{OD} :

Por ∢ central:

$$m \lessdot AOB = \theta$$

 $m \lessdot COD = \alpha$

• $EI \triangle AOB \cong \triangle COD (LLL)$:

$$m \angle AOB = m \angle COD$$

∴
$$\theta = \alpha$$

Además las alturas de triángulos congruentes son de iguales longitudes:

$$\therefore X = Y$$

CIRCUNFERENCIA II

Del gráfico si AB=5 y CD=8. Calcule θ

RESOLUCIÓN:

Nos piden θ

Dato:

AB=5

CD=8

- Si ubicamos P en el arco CD tal que m \widehat{CP} = m \widehat{PD} = θ
- Por teorema:

• El \triangle CPD es isósceles, trazamos la altura \overline{PH} :

 El △PHD es notable de 37° y 53°:

En la circunferencia por

inscrito:

OBSERVACIÓN:

4. <u>Teorema de la perpendicular trazada</u> desde el centro a una cuerda:

RECIPROCO:

Si M es punto medio de \overline{AB} :

$$\theta = 90^{\circ}$$

CIRCUNFERENCIA II

Del gráfico T es punto de tangencia. Calcule α .

RESOLUCIÓN

Nos piden α

• En la \mathcal{C}_1 como T es punto de tangencia, por teorema, trazamos de \mathcal{O}_1 a T:

$$m \triangleleft O_1 TB = 90^{\circ}$$

• El $\triangle O_1TB$ es notable de 30° y 60°:

$$O_1T=R$$
 y
 $TB=2R$

• En la C_2 por el reciproco, como $AO_1=O_1C=R$:

• El $\triangle AO_1B$ es notable de 53°/2:

$$\alpha = \frac{53^{\circ}}{2}$$

CIRCUNFERENCIA II

5. <u>Teorema de líneas tangentes:</u>

Se tiene un cuadrado ABCD y una semi circunferencia de diámetro \overline{AD} ,

si T es punto de tangencia. Calcule X.

RESOLUCIÓN: Nos piden X

- \overline{BD} : diagonal del cuadrado ABCD. $m \triangleleft BDC = 45^{\circ}$
- Si el radio es R:

$$OA=OD=R$$

• Entonces en el cuadrado:

$$CD=2R$$

• Si trazamos \overline{OC} se determina el $\triangle ODC$ notable de 53°/2:

$$m \not< OCD = \frac{53^{\circ}}{2}$$

$$m \lessdot OCT = \frac{53^{\circ}}{2}$$

Finalmente en el ∆QCD por ∢ externo:

$$X = 53^{\circ} + 45^{\circ}$$

 $\therefore X = 98^{\circ}$

TEOREMAS ADICIONALES:

• Si T es punto de tangencia:

Si T es punto de tangencia:

 \overline{AT} y \overline{TB} : bisectrices

CIRCUNFERENCIA II

• Si T es punto de tangencia:

• Se tiene una circunferencia inscrita al triángulos ABC

• Se tiene una circunferencia exinscrita al triángulos ABC

