SZINTAKTIKUS ELEMZÉS

FORMÁLIS NYELVEK ÉS FORDÍTÓPROGRAMOK ALAPJAI

Dévai Gergely ELTE

A FORDÍTÓPROGRAMOK LOGIKAI FELÉPÍTÉSE

SZINTAKTIKUS ELEMZŐ

- Feladat:
 A forrásszöveg szerkezetének
 felderítése, formai ellenőrzése
- Bemenet: Lexikális elemek (tokenek) sorozata
- Kimenet:
 Szintaxisfa + szintaktikus hibák
- Eszközök:
 Környezetfüggetlen nyelvtanok,
 veremautomaták

SZINTAKTIKUS ELEMZŐ - PÉLDA

Utasítás → Kifejezés <u>Utasításvég</u>

Kifejezés → Változó | Literál | Kifejezés Operátor Kifejezés

A lexikális elemek (tokenek) a szintaktikus elemzés nyelvtanának terminális szimbólumai. Változó ('x'), Operátor ('='), Változó ('x'), Operátor ('+'), Literál (1), Utasításvég

SZINTAKTIKUS ELEMZŐ LÉTREHOZÁSA

MIT VÁRUNK EL A NYELVTANTÓL?

- Redukáltság: Nincsenek "felesleges" nemterminálisok
 - Mindegyik nemterminálishoz adható olyan levezetés, amiben szerepel, és nem üres terminális sorozatot vezetünk le belőle.
- **Ciklusmentesség**: Nincs $A \rightarrow^+ A$ levezetés
 - Példa ciklusos (tehát nem jó) nyelvtanra:

$$S \rightarrow A$$

$$A \rightarrow a \mid B$$

$$B \rightarrow A$$

- **Egyértelműség**: Minden szóhoz pontosan egy <u>szintaxisfa</u> tartozik.
 - Több levezetés lehet, de csak egy szintaxisfa!

$$S \Rightarrow AB \Rightarrow aB \Rightarrow ab$$

 $S \Rightarrow AB \Rightarrow Ab \Rightarrow ab$

PÉLDA NEM EGYÉRTELMŰ NYELVTANRA

 $S \rightarrow \underline{utasitás} \mid SS$

Nem egyértelmű

Ez a nemegyértelműség feloldható a nyelvtan átalakításával:

S → <u>utasítás</u> S | <u>utasítás</u>

 $S \rightarrow S \underline{utasítás} \mid \underline{utasítás}$

Egyértelmű

Egyértelmű

MÁSIK PÉLDA NEM EGYÉRTELMŰ NYELVTANRA

 $E \rightarrow \underline{szám} \mid E + E \mid E + E \mid$

Nem egyértelmű

Nem egyértelmű

Ez a nemegyértelműség feloldható:

- Az operátorok precedenciájának és asszociativitásának megadásával
- A nyelvtan átalakításával

- A * magasabb precedenciájú, mint a +.
- Mindkettő balasszociatív.

A SZINTAKTIKUS ELEMZÉS STRATÉGIÁI: FELÜLRŐL LEFELÉ ELEMZÉS

Nyelvtan: $S \rightarrow AB$ $A \rightarrow a$ $B \rightarrow bc$ Input: abc

- A startszimbólumból indulva a terminálisok felé építjük a fát
- Az input feldolgozása balról jobbra történik
- Legbaloldalibb levezetést állít elő
 - A legbaloldalibb levezetés több terminális esetén a legbaloldalibbat helyettesíti: $S \Rightarrow AB \Rightarrow aB \Rightarrow abc$

A SZINTAKTIKUS ELEMZÉS STRATÉGIÁI: **ALULRÓL FELFELÉ ELEMZÉS**

- A terminálisoktól indulva a startszimbólum felé építjük a fát
- Az input feldolgozása balról jobbra történik itt is
- Legjobboldalibb levezetés inverzét állítja elő
 - A legiobboldalibb levezetés több terminális esetén a legiobboldalibbat helyettesíti: $S \Rightarrow AB \Rightarrow Abc \Rightarrow abc$

FELÜLRŐL LEFELÉ ELEMZÉS

LL ELEMZÉSEK

PÉLDA NYELVTAN:VESSZŐVEL ELVÁLASZTOTT LISTA

$$S \rightarrow \epsilon \mid eF$$

 $F \rightarrow \epsilon \mid veF$

$$\begin{array}{l} S \rightarrow \epsilon \mid eF \\ F \rightarrow \epsilon \mid veF \end{array}$$

Előreolvasás:

$$\begin{array}{c} \mathsf{S} \to \epsilon \mid \mathsf{eF} \\ \mathsf{F} \to \epsilon \mid \mathsf{veF} \end{array}$$

Előreolvasás:

$$\begin{array}{l} S \rightarrow \epsilon \mid eF \\ F \rightarrow \epsilon \mid veF \end{array}$$

Előreolvasás:

$$S \rightarrow \epsilon \mid eF$$
$$F \rightarrow \epsilon \mid veF$$

Előreolvasás:

Előreolvasás:

 $S \rightarrow \epsilon \mid eF$ $F \rightarrow \epsilon \mid veF$

 $S \rightarrow \epsilon \mid eF$ $F \rightarrow \epsilon \mid veF$

 $S \rightarrow \epsilon \mid eF$ $F \rightarrow \epsilon \mid veF$

Előreolvasás:

HÁNY TOKENT KELL ELŐREOLVASNI?

$$\begin{array}{c} S \rightarrow \epsilon \mid eF \\ F \rightarrow \epsilon \mid veF \end{array}$$

Előreolvasás:

Nézzük meg a következő néhány tokent, és válasszunk szabályt azok alapján!

Hány tokent kell előreolvasni?

- Ez a nyelvtan tulajdonságaitól függ.
- Ennél a nyelvtannál elég egyet.

LL(K) NYELVTANOK

Definíció: LL(k) nyelvtan

Egy környezetfüggetlen nyelvtan LL(k) tulajdonságú valamely $k \in \mathbb{N}$ számra, ha felülről lefelé elemzés esetén a legbaloldalibb feldolgozatlan nemterminálishoz egyértelműen meghatározható a rá alkalmazandó nyelvtani szabály legfeljebb k token előreolvasásával.

- LL jelentése: Left to right, using Leftmost derivation (Balról jobbra legbaloldalibb levezetéssel)
- Az LL(I) elemzéssel foglalkozunk...

• Van olyan nyelvtan, ami semmilyen $k \in \mathbb{N}$ -re sem LL(k), pl.:

$$S \rightarrow A \mid B$$

 $A \rightarrow a \mid aA$
 $B \rightarrow ab \mid aBb$

REKURZÍV LESZÁLLÁS

- A rekurzív leszállás az LL(I) elemzés egy implementációja.
- A nyelvtani szabályokat közvetlenül átírjuk függvényekké egy tetszőleges programozási nyelvben.
- Valójában ez az elemző is veremautomata: a függvényhívásokat kezelő futási idejű verem az automata verme.
- Ha a nyelvtan rekurzív, akkor rekurzív vagy kölcsönösen rekurzív függvényeket kapunk, innen a módszer neve.

 $S \rightarrow \epsilon \mid eF$ $F \rightarrow \epsilon \mid veF$

Minden nemterminálishoz egy-egy függvény.

void S() {
}

void F() {
}

```
S \rightarrow \epsilon \mid eF
```

$$F \rightarrow \epsilon \mid veF$$

- Minden nemterminálishoz egy-egy függvény.
- Minden szabályalternatívához egy-egy elágazás-ág.
 Hibakezelés a különben ágban.

```
S \rightarrow \epsilon \mid eF
```

```
F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```

- Minden nemterminálishoz egy-egy függvény.
- Minden szabályalternatívához egy-egy elágazás-ág.
 Hibakezelés a különben ágban.
- Az ágak belsejében a szabály jobboldalának minden szimbólumához egy-egy utasítás:
 - Terminálisokhoz: accept eljáráshívás
 - Nemterminálisokhoz: a hozzájuk tartozó eljárás hívása

```
S \rightarrow \epsilon \mid eF
```

```
F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

- Minden nemterminálishoz egy-egy függvény.
- Minden szabályalternatívához egy-egy elágazás-ág.
 Hibakezelés a különben ágban.
- Az ágak belsejében a szabály jobboldalának minden szimbólumához egy-egy utasítás:
 - Terminálisokhoz: accept eljáráshívás
 - Nemterminálisokhoz: a hozzájuk tartozó eljárás hívása

```
void accept(token t) {
    if(next == t) {
        next = lexer.next();
    } else {
        error();
    }
}
```

Accept eljárás:

- Ha a várt token következik, akkor új token kérése a lexikális elemzőtől
- Egyébként hiba

REKURZÍV LESZÁLLÁS IMPLEMENTÁCIÓJA: HOGYAN HATÁROZZUK MEG AZ ELÁGAZÁSOK FELTÉTELEIT?

```
S \rightarrow \epsilon \mid eF
```

```
F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```

- Minden nemterminálishoz egy-egy függvény.
- Minden szabályalternatívához egy-egy elágazás-ág.
 Hibakezelés a különben ágban.
- Az ágak belsejében a szabály jobboldalának minden szimbólumához egy-egy utasítás:
 - Terminálisokhoz: accept eljáráshívás
 - Nemterminálisokhoz: a hozzájuk tartozó eljárás hívása

```
void accept(token t) {
    if(next == t) {
        next = lexer.next();
    } else {
        error();
    }
}
```

Accept eljárás:

- Ha a várt token következik, akkor új token kérése a lexikális elemzőtől
- Egyébként hiba

AZ ELÁGAZÁSOK FELTÉTELEINEK MEGHATÁROZÁSA: FIRST HALMAZ

Definíció: FIRST | halmaz

Adott nyelvtan esetén egy α szimbólumsorozatra a $FIRST_1(\alpha)$ halmaz azokat a **terminálisokat** tartalmazza, amelyek az α -ból levezethető szimbólumsorozatok elején állnak. Ha α -ból levezethető az üres szó (ϵ), akkor ϵ is eleme a halmaznak.

$$S \rightarrow \epsilon \mid eF$$

 $F \rightarrow \epsilon \mid veF$

```
\begin{aligned} & \mathsf{FIRST}_{\mathsf{I}}(\epsilon) = \{\epsilon\} \\ & \mathsf{FIRST}_{\mathsf{I}}(\mathsf{eF}) = \{\mathsf{e}\} \\ & \mathsf{FIRST}_{\mathsf{I}}(\mathsf{veF}) = \{\mathsf{v}\} \\ & \mathsf{FIRST}_{\mathsf{I}}(\mathsf{F}) = \{\mathsf{v}, \epsilon\} \end{aligned} \qquad \begin{aligned} & \mathsf{E} \\ & \mathsf{F} \end{aligned}
```

A FIRST halmaz általánosan n hosszú eredménysorozatokra is definiálható: FIRST_n(α)

AZ ELÁGAZÁSOK FELTÉTELEINEK MEGHATÁROZÁSA: FOLLOW HALMAZ

Definíció: FOLLOW | halmaz

Adott nyelvtan esetén egy α szimbólumsorozatra a $FOLLOW_1(\alpha)$ halmaz azokat a **terminálisokat** tartalmazza, amelyek az α után állhatnak a kezdőszimbólumból induló levezetésekben. Ha α után nem áll semmi, akkor # (szöveg vége jel) eleme a halmaznak.

$$S \rightarrow \epsilon \mid eF$$

 $F \rightarrow \epsilon \mid veF$

```
\begin{split} \mathsf{FOLLOW}_1(\mathsf{S}) &= \{\#\} \\ \mathsf{FOLLOW}_1(\mathsf{F}) &= \{\#\} \\ \mathsf{FOLLOW}_1(\mathsf{e}) &= \{\#, \mathsf{v}\} \\ \mathsf{S} \Rightarrow \mathsf{eF} \Rightarrow \underline{\mathsf{e}} ) \Rightarrow \mathsf{veF} ) \Rightarrow \dots \\ \mathsf{S} \Rightarrow \mathsf{eF} \Rightarrow \underline{\mathsf{e}} ) \\ \mathsf{S} \Rightarrow \mathsf{eF} \Rightarrow \underline{\mathsf{e}} ) \\ \mathsf{S} \Rightarrow \mathsf{eF} \Rightarrow \underline{\mathsf{e}} ) \end{split}
```

A FOLLOW halmaz általánosan n hosszú eredménysorozatokra is definiálható: FIRST_n(α)

AZ ELÁGAZÁSOK FELTÉTELEINEK MEGHATÁROZÁSA

- Az $A \rightarrow \alpha$ szabályhoz meghatározzuk a $FIRST_1(\alpha)$ halmazt.
- Ha ebben van ε, akkor kivesszük ε-t, és helyette hozzávesszük a halmazhoz $FOLLOW_1(A)$ elemeit.
- Az így kapott halmaz elemeiből (pl. $x_1, x_2, ..., x_n$) képezzük az elágazás feltételét: next == x_1 || next == x_2 || ... || next == x_n

```
S \rightarrow \varepsilon

FIRST_{I}(\varepsilon) = \varepsilon

FOLLOW_{I}(S) = \{\#\}

Eredmény: \{\#\}
```

```
S \rightarrow eF

FIRST_{I} (eF) = e

Eredmény: \{e\}
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
F \rightarrow \epsilon
FIRST_{I}(\epsilon) = \epsilon
FOLLOW_{I}(F) = \{\#\}
Eredmény: \{\#\}
```

```
F \rightarrow veF
FIRST_{||}(veF) = v
Eredmény: \{v\}
```

LL(I) TULAJDONSÁG ELLENŐRZÉSE

- Az $A \rightarrow \alpha$ szabályhoz meghatározzuk a $FIRST_1(\alpha)$ halmazt.
- Ha ebben van ε, akkor kivesszük ε-t, és helyette hozzávesszük a halmazhoz $FOLLOW_1(A)$ elemeit.
- Az így kapott halmaz elemeiből (pl. $x_1, x_2, ..., x_n$) képezzük az elágazás feltételét: next == x_1 || next == x_2 || ... || next == x_n

Tétel: LL(I) tulajdonság ellenőrzése

Egy környezetfüggetlen nyelvtan pontosan akkor LL(I) tulajdonságú, ha bármely két $A \to \alpha$, $A \to \beta$ (azonos baloldalú!) szabályokhoz a fenti módon megtározott halmazok diszjunktak.

```
S \rightarrow \epsilon {#} N \rightarrow e {e} Nem S \rightarrow N {e} N \rightarrow Nve {e} N
```

REKURZÍV LESZÁLLÁS MŰKÖDÉSE


```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```

REKURZÍV LESZÁLLÁS MŰKÖDÉSE


```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```

REKURZÍV LESZÁLLÁS MŰKÖDÉSE


```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF \qquad \qquad F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF \qquad \qquad F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF \qquad \qquad F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF \qquad \qquad F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF \qquad \qquad F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF \qquad \qquad F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```



```
S \rightarrow \epsilon \mid eF F \rightarrow \epsilon \mid veF
```

```
void S() {
    if(next == end) {
        // empty
    } else if(next == e) {
        accept(e);
        F();
    } else {
        error();
    }
}
```

```
void F() {
    if(next == end) {
        // empty
    } else if(next == v) {
        accept(v);
        accept(e);
        F();
    } else {
        error();
    }
}
```

ALULRÓL FELFELÉ ELEMZÉS

LR ELEMZÉSEK

EMLÉKEZTETŐ: ALULRÓL FELFELÉ ELEMZÉS

- A terminálisoktól indulva a startszimbólum felé építjük a fát
- Az input feldolgozása balról jobbra történik itt is
- Legjobboldalibb levezetés inverzét állítja elő
 - A legiobboldalibb levezetés több terminális esetén a legiobboldalibbat helyettesíti: $S \Rightarrow AB \Rightarrow Abc \Rightarrow abc$

PÉLDA NYELVTAN: VESSZŐVEL ELVÁLASZTOTT LISTA (MÁSIK NYELVTANNAL!)

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$

Az elemző verme:

Az elemző verme:

A szimbólumokat ebben gyűjtjük egészen addig, amíg a megfelelő szabályjobboldal megjelenik benne.

Léptetés:

A következő token elhelyezése a verem tetején.

Redukció:

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$

Az elemző verme:

e

Az elemző verme:

A szimbólumokat ebben gyűjtjük egészen addig, amíg a megfelelő szabályjobboldal megjelenik benne.

Léptetés:

A következő token elhelyezése a verem tetején.

Redukció:

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$

Az elemző verme:

Az elemző verme:

A szimbólumokat ebben gyűjtjük egészen addig, amíg a megfelelő szabályjobboldal megjelenik benne.

Léptetés:

A következő token elhelyezése a verem tetején.

Redukció:

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$

Az elemző verme:

Az elemző verme:

A szimbólumokat ebben gyűjtjük egészen addig, amíg a megfelelő szabályjobboldal megjelenik benne.

Léptetés:

A következő token elhelyezése a verem tetején.

Redukció:

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$

Az elemző verme:

Nve

Az elemző verme:

A szimbólumokat ebben gyűjtjük egészen addig, amíg a megfelelő szabályjobboldal megjelenik benne.

Léptetés:

A következő token elhelyezése a verem tetején.

Redukció:

Az elemző verme:

Az elemző verme:

A szimbólumokat ebben gyűjtjük egészen addig, amíg a megfelelő szabályjobboldal megjelenik benne.

Léptetés:

A következő token elhelyezése a verem tetején.

Redukció:

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$

Az elemző verme:

Az elemző verme:

A szimbólumokat ebben gyűjtjük egészen addig, amíg a megfelelő szabályjobboldal megjelenik benne.

Léptetés:

A következő token elhelyezése a verem tetején.

Redukció:

 $\begin{array}{l} S \rightarrow \epsilon \mid N \\ N \rightarrow e \mid Nve \end{array}$

Az elemző verme:

Nve

Az elemző verme:

A szimbólumokat ebben gyűjtjük egészen addig, amíg a megfelelő szabályjobboldal megjelenik benne.

Léptetés:

A következő token elhelyezése a verem tetején.

Redukció:

Az elemző verme:

Az elemző verme:

A szimbólumokat ebben gyűjtjük egészen addig, amíg a megfelelő szabályjobboldal megjelenik benne.

Léptetés:

A következő token elhelyezése a verem tetején.

Redukció:

Az elemző verme:

S

Az elemző verme:

A szimbólumokat ebben gyűjtjük egészen addig, amíg a megfelelő szabályjobboldal megjelenik benne.

Léptetés:

A következő token elhelyezése a verem tetején.

Redukció:

LÉPTETÉS VAGY REDUKCIÓ?

- Az elemzés következő lépésének meghatározásához figyelembe vesszük:
 - A következő valahány tokent: előreolvasás;
 - Az elemző állapotát, ami a verembe bekerülő szimbólumoktól függően változik.

LR(K) NYELVTANOK

Definíció: LR(k) nyelvtan

Egy környezetfüggetlen nyelvtan LR(k) tulajdonságú valamely $k \in \mathbb{N}_0$ számra, ha az elemzés pillanatnyi állapotából és legfeljebb k token előreolvasásával egyértelműen meghatározható, hogy léptetés vagy redukció következik, és redukció esetén az alkalmazandó nyelvtani szabály is kiderül.

- LR jelentése: Left to right, using Rightmost derivation (Balról jobbra legjobboldalibb levezetéssel)
- Az LR(I) elemzéssel foglalkozunk...

LÉPTETÉS VAGY REDUKCIÓ?

- Az LR(I) elemzés következő lépésének meghatározásához figyelembe vesszük:
 - A következő tokent: előreolvasás;
 - Az elemző állapotát, ami a verembe bekerülő szimbólumoktól függően változik.
- Ezek függvényében a következő lépést az **elemző táblázat** határozza meg:

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás	1
1	Hiba	Léptetés: 3	Elfogadás	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	1
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	I
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0 **2** e

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	I
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	I
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0 I

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	1
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

	е	V	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	ı
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0	ı	3	4	
	Ν	٧	е	

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	1
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

	е	V	7	Input vége	N
0	Léptetés: 2	Hiba		Elfogadás: S→ε	I
1	Hiba	Léptetés: 3		Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	l	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba		Hiba	Hiba
4	Hiba	Redukció: N→Nve	R	edukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	ı
I	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0 I

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	ı
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

	е	V	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	I
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

Az elemző verme az állapotot is tárolja:

0	I	3	4
	N		e_
			No.

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	I
-1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	I
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	I
1	Hiba	Léptetés: 3	Elfogadás; S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	1
I	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

Az elemző verme az állapotot is tárolja:

	•	•
0	T_	
	N	

	е	v	Input vége	N
0	Léptetés: 2	Hiba	EKogadás: S→ε	ı
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Reduktió: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0 I N

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	I
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0 I N

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	I
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	I
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

 $S \rightarrow \epsilon \mid N$ $N \rightarrow e \mid Nve$ Az elemző verme az állapotot is tárolja:

0 Input elfogadva

	е	v	Input vége	N
0	Léptetés: 2	Hiba	Elfogadás: S→ε	I
1	Hiba	Léptetés: 3	Elfogadás: S→N	Hiba
2	Hiba	Redukció: N→e	Redukció: N→e	Hiba
3	Léptetés: 4	Hiba	Hiba	Hiba
4	Hiba	Redukció: N→Nve	Redukció: N→Nve	Hiba

AZ ELEMZŐ TÁBLÁZAT LÉTREHOZÁSA

- A nyelvtanból algoritmikusan létrehozható
 - Bonyolult algoritmus, nem tananyag...

Tétel: LR(I) tulajdonság ellenőrzése

Egy környezetfüggetlen nyelvtan pontosan akkor LR(I) tulajdonságú, ha az elemző táblázatot kitöltő algoritmus konfliktusmentesen kitölti a táblázatot.

SZINTAKTIKUS ELEMZÉS A GYAKORLATBAN

- Felülről lefelé elemzéshez példaszoftver:
 ANTLR (Another Tool for Language Recognition)
 https://www.antlr.org/
 Az itt bemutatott LL elemzőhöz hasonlót (de okosabbat) generál.
- Alulról felfelé elemzéshez példaszoftver
 GNU Bison
 https://www.gnu.org/software/bison/
 Az itt bemutatott LR elemzőhöz hasonlót (de okosabbat) generál.
 A gyakorlatokon ezt az elemzőgenerátort használjuk.