

National University

of Computer & Emerging Sciences

Course Outline of BS (Computer Science) Degree Program --Spring 2021

Course Title	Digital Logic Design (DLD) Course Code		EE227
Pre-requisite(s)	Basic Electronics	Credit Hrs.	3 + 1
Instructor	Behraj Khan		
Office	Faculty Room No.16 (Cubicle-A) opposite HOD CS office		
Email	<u>behraj.khan@nu.edu.pk</u>		

Text Book (1)	Title	Digital Fundamentals	
	Author	Thomas L. Floyd	
	Publisher	Pearson Education, 10 th or 11 th Edition	
Text Book (2)	Title	Digital Design	
	Author	M. Morris Mano, Michael Ciletti	
	Publisher	Pearson Education , 4th Edition	
Ref. Book (1)	Title	Digital Principles and Applications	
	Author	Donald P Leach, Albert Paul Malvino, Goutam Saha	
	Publisher	McGraw Hill Companies, 6th Edition	
Ref. Book (2)	Title	Digital Systems Principles and Applications	
	Author	Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss	
	Publisher	Pearson Education, 10 th Edition	

Objective:	The objective of this course is to introduce concept & tools for the design of
	digital electronics circuits using sequential and combinational

Week	Course Contents/Topics		Chapte r	
01	Introduction. Digital Electronics. Digital Principles. Analog Vs. Digital. Basic Logic operations.		1	
02	Number Systems. Binary to Decimal. Decimal to Binary conversion. Hexadecimal Number system. BCD code. The Byte, Nibble and Word.		2	
03	Logic Gates, AND OR & NOT Gates, NOR NAND XOR Gates.		<u>3</u>	
04	Boolean Algebra and logic simplification. DeMorgan's Theorems. Boolean analysis of Logic circuits. Truth Tables. The Karnaugh Map.		<mark>4</mark>	
05	Basic Combinational circuits. Implementing Combinational Logic. Using NAND and NOR Gates.	C.	5 4	:11 41. 0
06	Mid Term 1		tudied	
07 & 08	Basic Adders. Parallel Binary Adders. Ripple v/s Look-Ahead carry adders. Comparators. Decoders. Encoders. Multiplexers. Demultiplexers.	eı	nd of M	IID 2
09 & 10	Latches. Edge-Triggered Flip-Flops. Flip-Flop Operating Characteristics. Flip-Flop applications.		7	
11	Asynchronous Counters. Synchronous Counters. Cascaded Counters. Counter Decoding.		8	

		T	ПС
12	Mid Term 2		
13	Basic Shift Register Operations. Serial In/Serial Out Shift Registers. Serial		
&	In/Parallel Out and Parallel In/Parallel Out Shift Registers. Bidirectional Shift	9	
14	Registers.		
15	Memory Basics, the Random-Access Memory. The Read-only Memory.		
&	Programmable ROM. The Flash Memory. Memory Expansion. Special Types of	10	
16	Memories. Magnetic & Optical Storage.		

Grading Policy:

Midterm	30% 15+15
Assignments/Project/Viv a	20% 15+05
Final Exam	50%
Total	100%

Official Excuses: Only excuses obtained officially are accepted. Personal excuses are not accepted. No make-up tests/quizzes/exams will be provided. If an official excuse exists, the student will be given the average of his grades, or as advised by the academic committee.

Chapte r	Recommended Problems
Announced as course proceeds. Mostly from text and self-designed problems.	

Google class code: cj6dvs2
Google meet code: df26zlbbxa