3 Kongruenzen und Restklassenringe

In diesem Kapitel betrachten wir entweder $R = \mathbb{Z}$ oder R = K[X], wobei K ein Körper ist.

Grundbegriffe

In den betrachteten Ringen gibt es eine eindeutige Restwahl: In $R = \mathbb{Z}$ ist die Division mit Rest a = qm + r mit $0 \le r < |m|$. Andere Restwahl wäre etwa a = qm + r' mit $-\frac{|m|}{2} < r' \le \frac{|m|}{2}$. Es besteht folgender Zusammenhang:

$$r' = \begin{cases} r, & 0 \le r \le \frac{|m|}{2} \\ r - |m|, & \frac{|m|}{2} < r \le |m| \end{cases}$$

In R = K[X] haben wir a = qm + r mit grad r < grad m.

Diese Reste sind eindeutig: Haben wir $a=qm+r=\tilde{q}m+\tilde{r}$ mit $0\leq r,\tilde{r},|m|$. Dann ist $(q-\tilde{q})m=\tilde{r}-r\implies |m||\tilde{r}-r$. Annahme: $q-\tilde{q}\neq 0\implies |\tilde{r}-r|\geq m$, Wid. Also ist $q=\tilde{q}$ und $r=\tilde{r}$. Der Beweis für R=K[X] funktioniert ähnlich.

Definition (Gauß für $R = \mathbb{Z}$) $m, a, b, \in R$

(1)

 $a \equiv b \mod m$ (lies a kongruent b modulo m

$$\iff a \mod m = b \mod m$$

Gauß schreibt "Zwei Zahlen heißen kongruent mod m, wenn sie bei Division durch m den selben Rest lassen."

- (2) $\overline{a} := \{b \in R | b \equiv a \mod m\}$ heißt Restklasse modulo m.
- (3) $\overline{R} := R/mR := {\overline{a} | a \in R}$ heißt Restklassenring modulo m.

Warum ist Letzeres ein "Ring"? Der Dozent führt einen schönen Beweis durch Aufwickeln einer Schnur auf einer Tesa-Rolle durch.

Beispiel

 $\mathbb{Z}/2\mathbb{Z} = \{\overline{0}, \overline{1}\}$ mit $\overline{0} = \{0, \pm 2, \pm 4, \ldots\}$ (die geraden Zahlen) und $\overline{1} = \{\pm 1, \pm 3, \ldots\}$ (die ungeraden Zahlen). Aus der Schule sind folgende Regeln bekannt:

- (1) $\overline{0} + \overline{0} = \overline{0}$, "gerade + gerade = gerade"
- (2) $\overline{0} + \overline{1} = \overline{1}$, "gerade + ungerade"

(3) $\overline{1} + \overline{1} = \overline{0}$, "ungerade + ungerade = gerade"

Bemerkung:

(i)
$$a \equiv b \mod m \iff$$
 (ii) $\overline{a} = \overline{b} \iff$ (iii) $m|a - b$

Merke: Kongruenz ist Gleichheit der Restklassen.

 $\overline{qm} = \overline{0}$. Die Idee: In \overline{R} wird alles durch m teilbare als "unwesentlich" angesehen und durch 0 ersetzt.

Beweis

 $(i) \iff (ii)$: Kongruenz mod m ist Offensichtlich eine Äquivalenzrelation auf R. \overline{a} ist die Äquivalenzklasse von a. Lineare Algebra: Zwei Elemente sind genau dann äquivalent, wenn die zugehörigen Äquivalenzklassen überstimmen.

(i)
$$\implies$$
 (iii): $r = a \mod m = b \mod m \implies a = qm + r, b = q'm + r$ (Division mit Rest) $\implies a - b = (q - q')m \implies m|a - b|$

Um mit Restklassen zu rechnen, brauchen wir folgende Definitionen:

Definition

Jedes $b \in \overline{a}$ heißt Vertreter der Klasse $\overline{a} \in \overline{R}$. Die Idee ist, die Operationen + und – vertreterweise zu definieren. Wir haben also:

$$(\overline{R}, +, \cdot)$$
 mit $\overline{a} + \overline{b} := \overline{a + b}, \ \overline{a} \cdot \overline{b} = \overline{a \cdot b}$

Zu zeigen: Die Definition ist vertreterunabhängig, also : $\overline{a} = \overline{a'} \implies \overline{a+b} = \overline{a'+b}$ und $\overline{a \cdot b} = \overline{a' \cdot b}$. Das ist klar:

$$\overline{a} = \overline{a}' \iff m|a - a' = a + b - (a' + b) \implies \overline{a + b} = \overline{a' + b}$$

$$m|a - a' \implies m|(a - a')b = ab - a'b \implies \overline{ab} = \overline{a'b}$$

Bemerkung: $e \in R^{\times}, m \in R \implies R/mR = R/emR$ (da $m|x \iff em|x$). Ohne Beschränkung der Allgemeinheit kann man m also normiert annehmen.

m=0, dann $a \mod m=b \mod m \iff a=b$, also $\overline{a}=\{a\},=$ "a. Also: R/oR=R und $R/eR=R/R=\{\overline{0}\}$ ("Nullring")

Diese uninteressanten Fälle werden meist beiseite gelassen.

Satz 3.1 (Restklassenring-Satz)

Sei R ein euklidischer Ring, $m \in R$.

(1)
$$(\overline{R} = R/mR, +, \cdot)$$
 ist ein Ring

(2)
$$\overline{R}^{\times} = {\overline{a} \in \overline{R} | \operatorname{ggT}(a, m) = 1}$$

Zusatz: Zu $\overline{a} \in \overline{R}^{\times}$. Kann \overline{a}^{-1} effektiv mit Euklids Algorithmus berechnet werden.

Definition

 $\overline{a} \in \overline{R}^{\times}$ heißt eine prime Restklasse modulo m, \overline{R}^{\times} heißt prime Restklassengruppe modulo m. (Sprachlich besser wäre eigentlich: Gruppe der zu m relativ primen Restklassen)

Beweis

(1) Alle Ringaxiome vererben sich von den Vertretern auf die Klassen. $\overline{a} + \overline{b} = \overline{a+b} = \overline{b+a} = \overline{b} + \overline{a} \implies (\overline{R}, +)$ ist kommutativ. 0 := 0 $\overline{R} = \overline{0}$, da $\overline{a} + \overline{0} = \overline{(a+0)} = \overline{a}$. 1 $\overline{R} = \overline{1}$ ebenso.

Assoziativität der Addition: $(\overline{a}+\overline{b})+\overline{c}=\overline{a+b}+\overline{c}=\overline{(a+b)+c}=\overline{a+(b+c)}=\overline{a}+\overline{b+c}=\overline{a}+(\overline{b}+\overline{c})$, Assoziativität der Multiplikation und Distributivgesetzt analog.

(2) $\overline{a} \in \overline{R}^{\times} \iff \exists x \in R : \overline{xa} = 1_{\overline{R}} = \overline{1} \iff 1 \equiv ax \mod m \iff \exists q \in R : 1 = ax + qm \implies \operatorname{ggT}(a, m) = 1, \text{ (da normal)}.$

Der LinKom-Satz 1.10 liefert: $d=\operatorname{ggT}(a,m) \Longrightarrow \exists x,y \in R: d=ax+by$. Diesen Satz dürfen wir anwenden, da R euklidisch ist. Wir wenden ihn mit d=1,q=y an und erhalten 1=ax+qm, wobei x durch Euklids Algorithmus geliefert wird. $\Longrightarrow \overline{1}=\overline{ax}+\overline{qm}=\overline{ax}$. Resultat: $\overline{a}^{-1}=\overline{x}$ mit dem so berechnetem x.

Folgerung 3.2

Ist $m \in \mathbb{N}_+$, dann gilt für Eulers Funktion φ :

$$\varphi(m) = \#\{R/mR\}^{\times}$$

Der Grund ist dass $R/mR = {\overline{0}, \dots, \overline{m-1}}$ und $(R/mR)^{\times} = {\overline{r}|0 \le r < m, ggT(r, m) = 1}$, derer es $\varphi(m)$ gibt.

Im Allgemeinen ist \overline{R} nicht integer. Beispielsweise in $\mathbb{Z}/4\mathbb{Z}=\overline{R}$ gilt: $\overline{2}\cdot\overline{2}=\overline{4}=0_{\overline{R}}=0$, aber $\overline{2}\neq0$

Folgerung 3.3

Falls m unzerlegbar (also m Primzahl oder -polynom). Dann gilt: R/mR ist ein Körper.

Speziell:

- (1) $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}, p \in \mathbb{P}$ ist Körper mit p Elementen.
- (2) Ist $f \in K[X]$, f irreduzibel, so ist $K[X]/f \cdot K[X] = \overline{R}$ ein Körper.

Grund: m sei unzerlegbar. Dann $\overline{a} \in \overline{R}$, $\overline{a} \neq 0 = \overline{0} \iff m \not| a \implies \operatorname{ggT}(m,a) = 1 \ (1, m \text{ sind die einzigen normierten Teiler von } m!) <math>\implies a \in \overline{R}^{\times}$. Es gilt also $\overline{R}^{\times} = \overline{R} \setminus \{0\} \implies \overline{R}$ ist Körper.

 $\overline{R} = R/mR \ni \overline{a} = a + Rm := \{a + qm | q \in R\}$ Restklasse von a.

Rechne in \overline{R} : Idee: Kodiere die Restklasse \overline{a} durch den Vertreter $a \mod m$.

Beliebige Vertretersysteme (ohne Einschränkung $m \in \mathbb{N}_+, m > 1$)

 $R = \mathbb{Z}$:

 $\text{Versys}_m = \left\{0,1,...,m-1\right\}, \\ System \ Betrag \ kleinster \ positiven \ Reste'' \ \text{oder Versys}_m = \left\{v \in \mathbb{Z} \left| -\frac{m}{2} < r \leq \frac{m}{2}\right.\right\}, \\ Symmetrisches \ Restsystem''$

$$\frac{\mathbf{R} = K[X]:}{\mathrm{Versys}_m = \{f \in K[X] \big| \mathrm{Grad}\ f < \ \mathrm{Grad}\ m \}\ (\mathrm{Grad}\ m > 0)}$$

Klar:

$$\begin{array}{ccc} \operatorname{Versys}_m & \longrightarrow & R/mR \text{ (Ist bijektiv)} \\ r & \longmapsto & \overline{r} \\ a & \longmapsto & \overline{a} \mod m \text{ (Umkehrung)} \end{array}$$

Transportiere die Struktur (Versys_m, \oplus , \odot), wobei gilt:

$$r \oplus s := r + s \mod m$$
 $r \odot s := rs \mod m$

Klar, $r \mapsto \overline{r}$ ist ein Ringisomorphismus.

Vorzug bei $R = \mathbb{Z}$:

 $r + s \mod m$ mit 1-Addition: Zahlen < 2m

 $r \cdot s$: Zahlen $< m^2$

 $(m \mod \frac{m^2}{4} \text{ bei symmetrischen Resten})$

Vorzug bei R = K[X]:

Ist $n = \operatorname{Grad} \, f,$ so ist Versys_m ein $K\text{-Vektor
raum der Dimension} \, n$ (Basis z.B.: $1, X, X^2, ..., X^{n-1}$)

$$\operatorname{Grad} \, f < m, \, \operatorname{Grad} \, g < m \implies \operatorname{Grad} \, (f+g) < m \implies f \oplus g = f+g \implies \oplus = +$$

 $Versys_m$ enthält K als Teilkörper (konstante Polynome), da:

$$\alpha, \beta \in K \subset K[X] \implies \alpha \odot \beta = \alpha \beta \mod m = \alpha \beta$$

Folgerung 3.4

 $\overline{R} = K[X]/mK[X]$ ist ein K-Vektorraum der dim $n = \operatorname{Grad} m$ mit Basis $1, \overline{X}, \overline{X}^2, ..., \overline{X}^{n-1}$. Identifiziert man $\alpha \in K$ mit der Restklasse $\overline{\alpha}$, so enthält \overline{R} den Körper R.

Folgerung 3.5

Ist $m \in \mathbb{F}_p[X] = R$ irreduzibel, so ist $R/mR = \overline{R}$ ein Körper mit $q = p^n$ (n = Grad m) Elementen!

Grund: \mathbb{F}_p -Basis ist $1, \overline{X}, \overline{X}^2, ..., \overline{X}^{n-1}$.

$$\overline{R} = \{\alpha_0 \cdot 1 + \alpha_1 \overline{X} + \dots + \alpha_{n-1} \overline{X}^{n-1} | \alpha_0, \dots, \alpha_{n-1} \in \mathbb{F}_p\} \text{ mit } \# \overline{R} = p^n$$

Zum Rechnen in \overline{R} wird empfohlen $\overline{\alpha} \in \mathbb{F}_p$ durch $r = a \mod p$ zu ersetzen, mit $r \in \text{Versys}_p$. $f \in \text{Versys}_p[X]$ hat die Form $f = \sum_{i=0}^n c_i X^i$, $c_i \in \text{Versys}_p$.

Bei der Bestimmung von f+g, $f \cdot g$ ist bei allen Rechnungen mit Koeffizienten $c_1, ..., c_n$, + durch \oplus und \cdot durch \odot zu ersetzen. Man kann auch f+g, $f \cdot g$ in $\mathbb{Z}[X]$ berechnen und dann zu allen Koeffizienten die Reste mod p nehmen.

Beispiel

$$\begin{split} \mathbb{F}_{3}[X], \, \mathbb{F}_{3} &= \{\overline{0}, \overline{1}, \overline{2}\}, \, \, \mathrm{Versys_{3}} = \{0, 1, 2\} \\ \underbrace{(X^{2} + 2X + 1) \cdot (2X + 1)}_{(= \, \overline{1} \cdot X^{2} + \overline{2} \cdot X + \overline{1} \, \mathrm{in} \, \, \overline{R}[X])} &= 2X^{3} + \underbrace{2 \odot 2}_{= 1} X^{2} + 2X + X^{2} + 2X + 1 \\ &= 1 \, \mathrm{in} \, \, \mathbb{Z}[X] \\ &= 2X^{3} + 4X^{2} + 2X + X^{2} + 2X + 1 \\ &= 2X^{3} + \underbrace{5}_{= 1} X^{2} + \underbrace{4}_{= 1} X + 1 \\ &= 2X^{3} + (1 \oplus 1)X^{2} + (2 \oplus 2)X + 1 \\ &= 2X^{3} + 2X^{2} + X + 1 \end{split}$$

Beispiel

$$\mathbb{F}_4 = \{\underbrace{0, 1}_{\mathbb{F}_2}, \overline{x} + 1\}, \text{ wenn } m \text{ irreduzibel in } \mathbb{F}_2[X], \text{ Grad } f = 2$$

$$X^{2} + 1 = (X + 1)^{2} (= X^{2} + \underbrace{\overline{2}}_{=0} X + 1 = X^{2} + 1 \text{ in } \mathbb{F}_{2}[X])$$

 $X^2 + X + 1$ ist irreduzibel. (Alle Polynome vom Grad 1 sind $X, X + 1, X^2, X(X + 1), (X + 1)^2 = X^2 + 1$ sind von m verschieden \implies irreduzibel)

$$\mathbb{F}_4 = \{0, 1, \varrho, \varrho + 1\}, \ \varrho^2 = ?$$

$$(\overline{X})^2 = \underbrace{\overline{X^2 \mod m}}_{\in \text{Versys}_m} = \overline{X} + 1 = \overline{X} + 1 = \varrho + 1$$

$$X^{2} - 1 \cdot (X^{2} + X + 1) = -X - 1 = X + 1$$
 in $\mathbb{F}_{2}[X]$

Rechenregel: $\varrho^2 = \varrho + 1 \implies$ Multiplikationstafel

Bemerkung:

- $R \to \overline{R} = R/mR$, $\kappa: a \mapsto \overline{a} = \kappa(a)$, so ist κ surjektiver Ringhomomorphismus. $\kappa(a+b) = \overline{a} + \overline{b} = \overline{a+b} = \kappa(a+b)$
- Ist R ein Ring und $z \in \mathbb{Z}$, so definiert man:

$$z \cdot \varrho := sgn(z) \underbrace{\left(\varrho + \varrho + \ldots + \varrho\right)}_{|z| - \text{Stück}}$$

Beispiel

$$\overline{R} = \mathbb{Z}/m\mathbb{Z}, z \in \mathbb{Z}$$

 $z\overline{a}=\overline{za}$ (leicht selbst nachzuweisen) $m\cdot 1_{\overline{R}}=m\cdot \overline{1}=\overline{m}=0_{\overline{R}}$

Rechenregeln: $z, z_1, z_2 \in \mathbb{Z}, \varrho, \varrho_1, \varrho_2 \in R$

$$(z_1 + z_2)\varrho = z_1\varrho + z_2\varrho$$

$$z(\varrho_1 + \varrho_2) = z\varrho_1 + z\varrho_2$$

$$(z_1z_2)\varrho=z_1(z_2\varrho)$$

$$z(\varrho_1\varrho_2)=(z\varrho_1)\varrho_2=\varrho_1(z\varrho_2)$$
 (Beweis leicht)

Für $f \in \mathbb{Z}[X], \overline{a} \in \mathbb{Z}/\mathbb{Z}m$ ist definiert $(f = \sum_{i=0}^{n} z_i X^i)$:

$$f(\overline{a}) = \sum_{i=0}^{n} z_i \overline{a}^i \in \overline{R} \ (= \sum_{i=0}^{n} \overline{z_i a^i} = \overline{f(a)}$$

Ergebnis: $f(\overline{a}) = \overline{f(a)}$

3.1 Zyklische Gruppen

Aufgabe: Berechne $3^{10^{500}} \mod \underbrace{167}_{=:p}$ (Rechne in Versys₁₆₇!)

Mathematische Hilfsmittel: Ordnung eines Gruppenelements.

Definition

Sei G eine (ohne Einschränkung multiplikative) endliche Gruppe, $x \in G$. (Das neutrale Element werde mit $1 = 1_G$ bezeichnet)

- (i) $\operatorname{ord}(x) = \min\{n \in \mathbb{N}_+ | x^n = 1\}$ heißt "Ordnung von x"
- (ii) #G heißt "Ordnung von G"

Bemerkung: ord(x) existiert, da $n > m, n, m \in \mathbb{N}_+$ vorhanden sind mit $x^n = x^m$, da G endlich. $\implies x^{n-m} = 1$. In allgemeinen Gruppen kann sein $\{n \in \mathbb{N}_+ | x^n = 1\} = \emptyset$, dann schreibt man ord(x) = ∞

Satz 3.6 (Elementordnungssatz)

Sei G eine endliche Gruppe, $x \in G$, $m, n \in \mathbb{Z}$. Dann gelten:

- (i) $x^m = x^n \iff m \equiv n \mod \operatorname{ord}(x)$ Insbesondere $x^m = x^{m \mod \operatorname{ord}(x)}$ und $\mod x^m = 1 \iff \operatorname{ord}(x)|m$
- (ii) $x^{\#G} = 1$ (d.h. nach (i) ord(x)|#G)
- (iii) $\operatorname{ord}(x^m) = \frac{\operatorname{ord}(x)}{\operatorname{ggT}(m,\operatorname{ord}(x))}$

Anwendung:

Satz von Euler: Sei $m, x \in \mathbb{Z}, m > 0, ggT(x, m) = 1, \varphi$ sei die Eulersche Funktion. Dann gilt: $x^{\varphi(m)} \equiv 1 \mod m$

(Kleine) Satz von Fermat: Sei $p \in \mathbb{P}, x \in \mathbb{Z}$. Dann gilt: $x^p \equiv x \mod p$

Zum Satz von Euler:

$$G = (R/Rm)^{\times}, \#G = \varphi(m). \ \overline{x} \in G \iff \operatorname{ggT}(x,m) = 1.$$
 Elementordnungssatz (ii) $\implies \overline{1} = 1_{g} = \overline{x}^{\#G} = \overline{x}^{\varphi(m)} = x^{\varphi(m)} \iff 1 \equiv x^{\varphi(m)} \mod m$

Zum Satz von Fermat:

$$\varphi(p) = p - 1$$
. Aussage klar, wenn $p | x(x \equiv 0 \equiv xp)$. $p \nmid x \implies ggT(p, x) = 1 \implies \overline{x}^{p-1} = \overline{x}^{\#G} = \overline{1} \implies \overline{x}^p = \overline{x} \implies x^p \equiv x \mod p$

Beweis (Elementordnungssatz)

Sei $x \in G$, ord(X) =: l.

(1) $x^m = x^n \iff x^{m-n} = 1 = 1_G \iff 1 = x^{ql+r} = (w^l)^q \cdot x^r = 1^q \cdot x^r = 1x^r = x^r$ (Falls $r \neq 0$, so haben wir einen Widerspruch zur Minimalwahl von l) $\iff r = 0 \iff l \mid m-n \iff m \equiv n \mod l$.

Insbesondere: $x^m = 1 \iff l \mid m, x^n = x^{n \mod l}$

(2) $x^{\#G} = 1$. Dies wird in dieser Vorlesung nur für kommutative G benötigt und bewiesen. Betrachte die Abbildung $G \to G$, $x \mapsto y \cdot x$. Sie ist bijektiv (die Umkehrabbildung ist $y \mapsto yx^{-1}$), also $\{y \mid y \in G\} = G = \{yx \mid y \in G\}$.

$$\prod_{y \in G} y = \prod_{y,x \in G} (yx) = \prod_{y \in G} y \cdot x^{\#G} \implies x^{\#G} = 1$$

Also laut (1): $\operatorname{ord}(x) \mid \#G$

(3) $\operatorname{ord}(x^m) = k \implies 1 = (x^m)^k = x^{mk} \stackrel{\text{(1)}}{\Longrightarrow} l \mid mk$. Sei $d = \operatorname{ggT}(m, l) \implies \frac{l}{d} \mid \frac{md}{l} k \implies \frac{l}{d} \mid k$. Warum sind $\frac{l}{d}$ und $\frac{m}{d}$ relativ prim? $d = \operatorname{ggT}(m, l) = d \cdot \operatorname{ggT}(\frac{m}{d}, \frac{l}{d}) \implies \operatorname{ggT}(\frac{m}{d}, \frac{l}{d}) = 1$. Aber $k \mid \frac{l}{d}$ wegen $(x^m)^{\frac{l}{d}} = x^{l \cdot \frac{m}{d}} = 1$, $k = \operatorname{ord}(x^m)$ nach (1).

Ergebnis: $k = \frac{l}{d} = \frac{\operatorname{ord}(x)}{\operatorname{ggT}(\operatorname{ord}(x), m)}$

Hilfestellungen zur Berechnung von ord(x)

Bemerkungen:

- (i) $\operatorname{ord}(a) \mid \#G \text{ (wirklich } a?)$
- (ii) Sei $x^d = 1$. Dann gilt: $d = \operatorname{ord}(x) \iff \forall p \in \mathbb{P} \text{ mit } p \mid d: x^{\frac{d}{p}} \neq 1$.

Beweis (Der Bemerkung (ii))

" \Longrightarrow ": Klar

$$\ll$$
 ": Sei $x^d = 1$, $x \neq \operatorname{ord}(x)$. Nach (1): $\operatorname{ord}(x) \mid d \implies \exists p \in \mathbb{P} : \operatorname{ord}(x) \mid \frac{d}{p} \implies x^{\frac{d}{p}} = 1$

Zur Berechnung von x^n : Naive rekursive Berechnung: $x^{j+1} = x^j \cdot x$. Hier hätten wir n Produkte zu berechnen! Westentlich bessere Methode: Stelle n binär da: $n = \sum_{i=0}^t c_i \cdot 2^i$, $c_t \neq 0$, $c_i \in \{0, 1\}$. Bezeichnung $n = (c_t, c_{t-1}, \ldots, c_0)_2$ mit den Binärziffern c_j .

$$x^{n} = x^{\sum_{i=0}^{t} c_{i} \cdot 2^{i}} = \prod_{i=0}^{t} \left(x^{2^{i}}\right)^{c_{i}} = \prod_{i=0, c_{i} \neq 0}^{t} x^{(2^{i})}$$

Rekursiv: $x^{2^0}=x^1=x$ und $x^{2^{i+1}}=(x^{2^i})^2$. t ist etwa $\log_2 n$, man hat ungefähr $2\cdot\log_2 n$ Produkte zu berechnen.

Beispiel

 $G = \mathbb{F}_9^{\times}, \ \#G = 9 - 1 = 8$. Mögliche ord (α) für ein $\alpha \in G$: 1,2,4, oder 8.

$$\operatorname{ord}(\alpha) = 1 \iff \alpha = 1$$

$$\operatorname{ord}(\alpha) = 2 \iff \alpha \neq 1, \alpha^2 = 1 \iff \alpha = -1_G = -1$$

$$\operatorname{ord}(\alpha) = 4 \iff \alpha^4 = 1, \alpha^2 \neq 1 \text{ (d.h. } \alpha \neq \pm 1)$$

$$\operatorname{ord}(\alpha) = 8 \iff \alpha^4 \neq 1$$

 $\mathbb{F}_9 = \mathbb{F}_3[X]/m \cdot \mathbb{F}_3[X]$, ord(m) = 2, m irreduzibel. Beispielsweise ist $X^2 + 1$ in $R = \mathbb{F}_3[X]$ irreduzibel.

$$\mathbb{F}_9$$
 hat \mathbb{F}_3 -Basis $1; \overline{x}$. $\mathbb{F}_9 = \{\underbrace{0, 1, -1}_{\mathbb{F}_3 = \text{Versys}_3}\} = \{a + b\overline{x} \mid a, b \in \mathbb{F}_3\}$

$$m = X^2 + 1 \equiv 0 \mod m \implies X^2 \equiv -1 \mod m \implies \overline{X}^2 = -1 = -1_{\mathbb{F}_9} = -1_{\mathbb{F}_3} \implies \overline{X}^4 = (-1)^2 = 1 \implies \operatorname{ord}(\overline{X}) = 4.$$

$$(\overline{X}+1)^2 = \overline{X}^2 + 2\overline{X} + 1 = -1 + 1 + 2X = -X \neq 1, (\overline{X}+1)^4 = (-\overline{X})^2 = \overline{X}^2 = -1 \implies \operatorname{ord}(\overline{X}+1) = 8$$

Zurück zum Problem $3^{(10^{500})} \mod 167$, $167 \in \mathbb{P}$. $G = \mathbb{F}_{167}$, $\#G = \varphi(167) = 166 = 2 \cdot 83$, also gilt $\operatorname{ord}(n) \in \{1, 2, 83, 166\}$.

Laut Ordnungsatz: $3^{10^{500}} \equiv 3^{10^{500} \mod \operatorname{ord}(\overline{3})}$.

Wir brauchen ord(3): $\overline{3}^2 = \overline{9} \neq 1_G \implies \text{ord}(\overline{3}) \neq 1, 2, \text{ ord}(\overline{3}) = 83 \iff \overline{3}^{83} = 1_G = \overline{1}.$ $83 = (1010011)_2 = 64 + 16 + 2 + 1.$ Tabelle: 3^{2^0} in \mathbb{F}_{167} ist $3, 3^{2^1}$ in \mathbb{F}_{167} ist $3^2 = 9, 3^{2^2}$ in \mathbb{F}_{167} ist $9^2 = 81, 3^{2^3}$ in \mathbb{F}_{167} ist $81^2 = 6651 = 30 \cdot 167 + 48 \equiv 48, 3^{2^4}$ in \mathbb{F}_{167} ist $48^2 \equiv 133, 3^{2^5}$ in \mathbb{F}_{167} ist $133^2 = 17629 \equiv 154, 3^{2^6}$ in \mathbb{F}_{167} ist $154^2 = \Xi$ 2. Also: $\overline{3}^{83} = \overline{3} \cdot \overline{9} \cdot \overline{133} \cdot \overline{2} \cdot \overline{7182} \cdot \overline{1} = 1_G.$ Ergebnis: $\text{ord}(\overline{3}) = 83.$

 $3^{10^{500}}=3^{10^{500} \mod 83}$. Noch zu berechnen: $10^{500} \mod 83$. Man kann $\overline{10}$ in \mathbb{F}_{83} berechnen. Reicht auch $\overline{10}^{500}=10^{500 \mod \varphi(83)}$. $\varphi(83)=82,\ 500\equiv 8\mod 82 \implies 10^{500}\equiv 10^8\equiv 23\mod 83$

Also: $\overline{3}^{10^{500}} = \overline{3}^{23} = \overline{124} = \overline{-33}$ und somit $3^{100^{500}} = 124 \mod 167$

Satz 3.7 (Mersenne-Teiler-Satz)

Es seien $p, q \in \mathbb{P}$ mit $q \mid M_p = 2^p - 1$. Dann gilt: $q \equiv 1 \mod p$

Beweis

 $q \mid M_p \iff M_p = 2^p - 1 \equiv 0 \mod q \iff \overline{2}^p = 1 \text{ in } \mathbb{F}_q^{\times} = G \implies \operatorname{ord}(\overline{2}) = p, \text{ da } 1$ nicht geht und $\operatorname{ord}(\overline{2}) \mid p$ nach dem Ordnungsatz. $\operatorname{ord}(\overline{2}) \mid \#G = \varphi(q) = q - 1 \implies q - 1 \equiv 0$ $\operatorname{mod} p \implies q \equiv 1 \mod p$

Bezeichnungen:

- (1) $\langle x \rangle = \{1, x, x^2, \dots, x^{l-1}\}, (l = \operatorname{ord}(x)),$ heißt die von x erzeugte zyklische Untergruppe von G.
- (2) G heißt zyklisch $\iff \exists x \in G : G = \langle x \rangle \iff \exists x \in G : \operatorname{ord}(x) = \#G$

Bemerkung: Die Abbildung $(\mathbb{Z}/\mathbb{Z}l,+) \to (\langle x \rangle,\cdot)$ mit $\overline{m} \mapsto x^m$ ist ein Isomorphismus von Gruppen.

3.2 Primitivwurzeln

Vorbereitungen über R = K[X], K ein Körper.

Bemerkung: Sei $\alpha \in K$, $f \in R$, ord(f) > 0. Dann gilt:

$$0 = f(\alpha) \iff X - \alpha \mid f \iff v_{X-\alpha}(f) > 0 \quad (X - \alpha \in \mathbb{P}_R)$$

 $v_{X-\alpha}$ heißt Vielfachheit der Nullstelle α von f.

Beweis

Division mit Rest: $f = q \cdot (X - \alpha) + r$. grad $r < \text{grad}(X - \alpha) = 1 \implies r \in K$ (konstantes Polynom), insbesondere $r(\alpha) = r$. $f(\alpha) = q(\alpha)(\alpha - \alpha) + r(\alpha) = r$. Also: $r(\alpha) = 0 \iff r = 0 \iff X - \alpha \mid f$

Satz 3.8 (Nullstellenanzahls-Satz)

 $f \in K[X], f \neq 0, n = \text{grad } f$, so gilt: f hat höchstens n verschiedene Nullstellen in K.

Beweis

 $\alpha_1, \ldots, \alpha_l$ seien l Nullstellen. $v_{X-\alpha_j}(f) > 0 \implies \prod_{j=1}^l (X-\alpha_j) \mid f$, wegen $v_{X-\alpha_i}(\prod_{j=1}^l (X-\alpha_j)) = 1$ und $v_m(\prod_{j=1}^l (X-\alpha_j)) = 0$ für alle anderen $m \in \mathbb{P}$ sowie $v_{X-\alpha_j}(f) \geq 1$. Daraus folgt: $l \leq \operatorname{grad} f$

Der Spezialfall $K = \mathbb{F}_p$ ergibt den

Satz 3.9 (Satz von Lagrange)

Sei $p \in \mathbb{P}$, $f = \sum_{i=0}^{n} c_i X^n \in \mathbb{Z}[X]$. Es gibt ein $j \in \{0, \dots, n\}$ mit $c_j \not\equiv 0 \mod p$. Dann fallen die "Lösungen" $x \in \mathbb{Z}$ der Kongruenz

$$f(x) \equiv 0 \mod p$$

in höchstens n verschiedene Restklassen modulo p.

Beweis

Der Satz ist eine Übersetzung des Nullstellenanzahls-Satzes auf Kongruenzen. Betrachte die $\overline{c_j} = \alpha_j \in \mathbb{F}_p \implies \exists j: \overline{c_j} \neq 0 \implies f = \sum_{i=0}^n \overline{c_j} X^j \neq 0$ in $\mathbb{F}_p[X]$, ord $(f) \leq n$. $f(x) = 0 \mod p \iff \overline{f(x)} = f(\overline{x}) = 0_{\mathbb{F}_p}$. Es gibt höchstens n Nullstellen \overline{x} , das heißt lösende Kongruenzklassen.

 $p \in \mathbb{P}$ wird gebraucht, Aussage modulo $m, m \notin \mathbb{P}$, im Allgemeinen falsch. Beispiele: m = 6, $f = X^2 + X$ hat in $\mathbb{Z}/6\mathbb{Z}$ die Nullstellen $\overline{0}, \overline{2}, \overline{3}, \overline{5}$. $m = 9, f = X^2$ hat in $\mathbb{Z}/9\mathbb{Z}$ die Nullstellen $\overline{0}, \overline{3}, \overline{-3}$.

Satz 3.10 (Primitivwurzelsatz)

Sei K Körper, G eine endliche Untergruppe von K^{\times} . Dann ist G zyklisch. Genauer gilt: $\#\{\alpha \in K | \operatorname{ord}(\alpha) = \#G\} = \varphi(\#G) \ (\varphi \text{ die Eulersche Funktion})$

Bemerkung: Ist $\operatorname{ord}(\alpha) = \#G$, so heißt α primitive #G-te Einheitswurzel, da $\alpha^{\#G} = 1$, sozusagen $\alpha = {}^{\#G}\sqrt{1}$. primitiv, da $\alpha^m = 1$, wobei $\#G \mid m$.

Spezialfälle

- (1) $K = \mathbb{F}_q$, also ein Körper mit $q < \infty$ Elementen. $G = \mathbb{F}_q^{\times} = \mathbb{F}_q \setminus \{0\}$, #G = q 1. Nach dem Satz ist F_q^{\times} zyklisch α mit $\langle \alpha \rangle = \mathbb{F}_q^{\times}$ heißt primitives Element.
- (2) Noch spezieller: $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ mit $p \in \mathbb{P}$ besitzt $\varphi(p-1)$ primitive Elemente $\alpha = \overline{w}$, $(0 \le w < p-1)$. Solve w heißen Primitivwurzel modulo p.

Beweis

Sei l = #G, G wie im Satz.

Für die $d \mid l, d \in \mathbb{N}_+$, sei $\lambda(d) = \#\{\alpha \in G \mid \operatorname{ord}(\alpha) = d\}$. Laut Elementordnungssatz gilt: $l = \sum_{d \mid l} \lambda(d) = \sum_{d \mid l} \varphi(d)$ (Lemma von Gauß). Man will zeigen: $\lambda(d) \leq \varphi(d)$ (*), denn dann muss gelten: $\forall d \mid l : \lambda(d) = \varphi(d)$, denn sonst würde gelten: $\sum_{d \mid l} \lambda(d) < \sum_{d \mid l} \varphi(d)$.

(*) ist klar, wenn $\lambda(d) = 0$. Sei also $\lambda(d) \neq 0 \implies \exists \alpha \in G : \operatorname{ord}(\alpha) = d$. Sei $A = \langle \alpha \rangle = \{1, \alpha, \alpha^2, \dots, \alpha d - 1\}$. Klar: $(\alpha^d)^d = 1 \implies \alpha^j$ ist eine Nullstelle von $X^d - 1$. Wegen #A = d sind das d Nullstellen von $X^d - 1$, also alle solche. $B = \{\beta \in G \mid \operatorname{ord}(\beta) = d\}$, dann $\beta^d = 1 \implies \beta$ Nullstelle von $X^d - 1 \implies \beta \in A$. $B \subseteq A$.

 $\alpha^j \in B \iff \operatorname{ord}(\alpha^j) = d \implies d = \operatorname{ord}(\alpha^j) = \frac{\operatorname{ord}(\alpha)}{\operatorname{ggT}(d,j)} \text{ (Elementordnungssatz)} \implies \operatorname{ggT}(d,j) = 1 \implies B \subseteq \{\alpha^j \mid \operatorname{ggT}(d,j) = 1, 0 \leq j \leq d\}. \ \#B = \lambda(d) \leq \#\{\alpha^j \mid \operatorname{ggT}(d,j) = 1, 0 \leq j \leq d\} = \varphi(d)$

Der folgende Satz ist eine Anwendung des Primitivwurzelsatzes:

Satz 3.11 (Eulers Quadratkriterium)

Sei $\alpha \in \mathbb{F}_q^{\times}$ (\mathbb{F}_q ein Körper mit q Elementen, $2 \mid q$). Dann gilt:

$$\alpha$$
 ist ein Quadrat in $\mathbb{F}_q^{\times} \iff \alpha^{\frac{q-1}{2}} = 1$

Anderenfalls gilt: $\alpha^{\frac{q-1}{2}} = -1$

Euler formuliert den Satz so: Sei $p \in \mathbb{P}$, p > 2, $n \in \mathbb{Z}$, $p \mid m$. Dann existiert ein $x \in \mathbb{Z}$ mit $x^2 \equiv m \mod p \iff m^{\frac{p-1}{2}} \equiv 1 \mod p$. Solche $m \mod p$ heißen quadratische Reste.

Wenn Kongruenz als Gleichung in $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ gelesen wird, so gilt:

 $\alpha = \overline{x}$ Quadrat in $\mathbb{F}_p^\times \iff x$ quadratischer Rest modulo p

Beweis

Sei ζ eine Primitivwurzel (Existenz folgt aus dem Primitivwurzelsatz).

 \Longrightarrow ": α Quadrat $\iff \exists \beta \in \mathbb{F}_q : \alpha = \beta^2 \implies \exists k \in \mathbb{Z} : \beta = \zeta^k. \ \alpha = \zeta^{2k} \implies \alpha^{\frac{q-1}{2}} = \zeta^{(q-1)k} = 1$, da $\operatorname{ord}(\zeta) = q - 1$

 $\alpha^{\frac{q-1}{2}}$ ist Nullstelle von X^2-1 . Alle Nullstellen sind $\{1,-1\}$. 1 entfällt, also ist $\alpha^{\frac{q-1}{2}}=-1$

Eulers Formulierung "m nicht quadratischer Rest", auch "quadratischer Nichtrest". ggT $(m,p)=1\implies m^{\frac{p-1}{2}}\equiv -1\mod p$

3.3 Zifferndarstellung nach Cantor

In diesem Abschnitt seien $R = \mathbb{Z}$ oder R = K[X], K ein Körper.

Ausgangspunkt ist die Folge $\gamma=(m_0,m_1,m_2,\ldots),\ m_j\in R$ mit m>1 bei $R=\mathbb{Z}$ oder $\operatorname{grad}(m_j)>0$ bei R=K[X].

Definiere $M_0 = 1$, $M_k = m_0 \cdot \ldots \cdot m_{k-1}$.

Satz 3.12 (Ziffernsatz)

Jedes $n \in \mathbb{N}_+$ bzw. $n \in K[X]$, $n \neq 0$ hat eine eindeutige Darstellung

$$n = z_r M_r + z_{r-1} M_{r-1} + \dots + z_1 M_1 + z_0 \quad (*)$$

wobei $r \in \mathbb{N}$ und $0 \le z_j < m_j$ bzw. $\operatorname{grad}(z_j) < \operatorname{grad}(m_j)$

Bezeichnungen: Die z_j heißen γ -adische Ziffern und (*) Zifferndarstellung (vorlesungs-spezifisch). Kurzbezeichnung: $n=(z_r,z_{r-1},\ldots,z_0)_{\gamma}$. Die Kommata dürfen bei Eindeutigkeit weggelassen werden.

Spezialfall: $m_0 = m_1 = m_2 = \cdots =: m$ gibt Zifferndarstellung $n = z_r m^r + z_{r-1} m^{r-1} + \cdots + z_0 = (z_r, \ldots, z_0)_m$ heißt m-adische Darstellung von n.

Speziallbenennungen:

- I			
m	Zifferndarstellung	Ziffern	
10	Dezimaldarstellung	0,1,,9	bei Menschen beliebt
			(10 Finger)
2	Binär oder dyadisch	0,1	bei Comptern beliebt
			(0,1 gut realisierbar)
8	Oktaldarstellung	$0, \dots, 7$	
16	Hexadezimal	$0, \dots, 9, A, B, C, D, E, F$	Speicherverwaltung
			im Rechner

Beispiel

$$(A8C)_{16} = 10 \cdot 16^{2} + 8 \cdot 16 + 12 \cdot 1$$
$$= 2700 := (2700)_{10}$$
$$= (10101001100)_{2}$$
$$= (5214)_{8}$$

$$\gamma=(m_0,m_1,\ldots), m_j\in\mathbb{Z}$$
 (bzw. $K[X]),\,m_j>1$ bzw. Grad $m_j>0$ $M_0=1,M_k=m_0\cdot\ldots\cdot m_{k-1}$

 γ -adische Entwicklung von $n \in \mathbb{N}_+$ bzw. $n \in K[X], n \neq 0$:

$$n = z_r M_r + z_{r-1} M_{r-1} + \dots + z_1 M_1 + z_0 \cdot 1 \tag{3.1}$$

 γ -adische Darstellung, wenn $0 \le z_i < m_i$ (bzw. Grad $z_i < \text{Grad } m_i$)

Beweis (Ziffernsatz)

Fall (3.1) vorliegt: Wegen $M_k | M_{k+1} | M_{k+2} | \dots$: $n \equiv z_{k-1} M_{k-1} + z_{k-2} M_{k-2} + \dots + z_0 \mod M_k$

Speziell: $n \equiv z_0 \mod M_1 = m_0 \implies n - z_0 = n'm_0, n' \in \mathbb{Z}$ bzw. K[X]

Beweisidee: Induktion nach n bzw. Grad n (hier nur $\mathbb{Z}, K[X]$ fast genau so)

Behauptung: Sei $n \in \mathbb{Z}_+$. Dann existiert für alle γ 's dieser Art die γ -dische Darstellung (3.1). Induktion nach n:

Falls $n < m_0$, dann $z_0 = n, n = z_0 M_0$ ist (\star)

Falls $n \ge m_0, z_0 = (n \mod m_0), n'$ aus $n - z_0 = n' m_0 (n' = \frac{n - z_0}{m_0})$. Klar $0 \le z_0 < m_0 \le n \implies 0 < n' < n$.

Induktions hypothese anwendbar auf n' mit $\gamma' = (m'_1, m'_2, ...), m'_i = m_{j+1} (j \ge 0)$.

 $\exists \gamma'$ -adische Darstellung von n':

$$n' = z'_{r'}M'_{r'} + z_{r'-1}M'_{r'-1} + \dots + z'_1M'_1 + z'_0(r' \in \mathbb{N}, z'_{r'} \neq 0)$$

$$n < z'_{r'} < m'_{r'} = m_{r+1} \implies n = n'm_0 + z_0 = z'_{r'}M_{r'+1} + \dots + z'_{r'}M_1 +$$

 $n \le z_j' < m_j' = m_{j+1} \implies n = n'm_0 + z_0 = z_{r'}'M_{r'+1} + \dots + z_1'M_1 + z_0$ Das ist die gesuchte γ '-adische Darstellung von n mit $r := r' + 1, z_j' = z_j + 1(j = 0, \dots, r')$ also $0 \le z_{j+1} = z_j < m_j' = m_{j+1}$

Dies ist ein Algorithmus, wenn die Abbildung $j \mapsto m_j$ berechenbar ist.

Eindeutigkeit: Ebenfalls Induktion. z_0 muss $n \mod m_0$ sein. Induktionshypothese n' eindeutig dargestellt \Longrightarrow Darstellung von n eindeutig (Details: selbst!)

Bemerkung: Zur Berechnung von $(n_1 + / \cdot n_2)_{\gamma}$ aus $(n_1)_{\gamma}$ und $(n_2)_{\gamma}$ ähnliche Algorithmen wie für $()_{10}$.

3.4 Simultane Kongruenzen

3.4.1 Prinzip des Parallelen Rechnens

 $R_j(j=1,...,l)$ seien algebraische Strukturen gleicher Art mit gleichbezeichneten Verknüpfungen *, zum Beispiel:

Gruppen $* \in \{\cdot\}$

Abelsche Gruppen $* \in \{+\}$

Ringe $* \in \{+, \cdot\}$

Vektorräume $* \in \{+, \text{Skalarmultiplikation}\}$

Dann ist auch $S = \prod_{i=1}^{l} R_j = R_1 \times ... \times R_l$ eine algebraische Struktur mit Verknüpfungen (komponentenweise):

$$S \ni (a_1, ..., a_l), (b_1, ..., b_l), a_j, b_j \in R_j$$

$$(a_1,...,a_l)*(b_1,...,b_l):=(a_1*b_1,...,a_l*b_l)$$

 $\alpha(a_1,...,a_l) := (\alpha a_1,...,\alpha a_l)$ bei K-Vektorräumen.

Sind i Ringe/Gruppen/Abelsche Gruppen/Vektorräume, so auch S.

Grund: Alles vererbt sich von den Komponenten!

Zum Beispiel Ringe:
$$0_S = (0_{R_1}, ..., 0_{R_l}), 1_S = (1_{R_1}, ..., 1_{R_l}), \text{ kurz: } 0 = (0, ..., 0), 1 = (1, ..., 1), -(a_1, ..., a_l) = (-a_1, ..., -a_l)$$

Zum Beispiel Assoziativität:

$$((a_1,...,a_l)*(b_1,...,b_l))*(c_1,...,c_l) = ((a_1*b_1)*c_1,...,(a_l*b_l)*c_l) = (a_1,...,a_l)*((b_1,...,b_l)*(c_1,...,c_l))$$

Warnung! Sind die R_j Körper, so ist für l > 1, S <u>kein</u> Körper.

Zum Beispiel:
$$\underbrace{(1,0)}_{\neq 0} \cdot \underbrace{(0,1)}_{\neq 0} = (1 \cdot 0, 0 \cdot 1) = (0,0) = 0$$

Lemma 3.13

Sind dir
$$R_j$$
 Ringe, so $S^{\times} = \prod_{j=1}^l R_j^{\times}$

Grund: Muss sein
$$(a_1,...,a_l)^{-1}=(a_1^{-1},...,a_l^{-1})$$

Falls ein Isomorphismus $\psi: R \to S = \prod_{j=1}^l R_j$ vorliegt, so wird das Rechnen in R zurückgeführt auf das gleichzeitig ("parallele") Rechnen in dem R_j wie folgt:

$$\psi(a) = (a_1, ..., a_l), \psi(b) = (b_1, ..., b_l)$$

$$a * b = \psi^{-1}(\psi(a * b)) = \psi^{-1}(\psi(a) * \psi(b)) = \psi^{-1}((a_1 * b_1, ..., a_l * b_l))$$

<u>Praxis:</u> Berechne die $a_j * b_j$ gleichzeitig auf verschiedenen Prozessoren. Wende ψ , ψ^{-1} wie oben an. Nützt nur, wenn ψ , ψ^{-1} gut und schnell berechenbar sind.

3.4.2 Der Chinesische Restsatz

<u>Frage:</u> Morgen ist Freitag, der 2. Juni. Nach wievielen (x = ?) Tagen fällt frühestens der Dienstag auf einen 17. des Monats?

Vorraussetzung: Chinesische Kalender vor ca. 2000 Jahren: Alle Monate haben 20 Tage.

Wochentag	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So
Wochentagsnr.	0	1	2	3	4	5	6	0	1	2
Monatstagnr.	2	3	4	5	6	7	8	9	10	11

(Wochentagsnummer modulo 7, Monatstagnummer modulo 30)

Gesucht ist also die kleinste positive Lösung x der Kongruenzen:

$$x \equiv 4 \mod 7$$
$$x \equiv 17 - 2 \mod 30$$

R sei euklidischer Ring, $a_1, \ldots, a_l, m_1, \ldots, m_l \in R$

$$x \equiv a_i \mod m_i, \ (j = 1, \dots, l) \tag{3.2}$$

heißt System simultaner Kongruenzen (mit gesuchter Lösung $x \in R$).

Bemerkung: Im Allgemeinen gibt es keine Lösung.

 $x \equiv a \mod m \implies x \equiv a \mod m$, falls $d \mid m$

System: $x \equiv 1 \mod 4, x \equiv 0 \mod 6 \implies x \equiv 1 \mod 2, x \equiv 0 \mod 2 \implies 1 \equiv 0 \mod 2 \implies \text{Widerspruch!}$

Satz 3.14 (Chinesischer Restsatz, rechnerische Form)

Sei R ein euklidischer Ring, $m_1,...,m_l \in R, a_1,...,a_l \in R$ derartig, dass $\forall i,j \in \mathbb{Z}$ mit $1 \le i < j \le l$ gilt:

$$ggT(m_i, m_j) = 1$$
 ("paarweise relativ prime m_j ")

Dann hat das System simultaner Kongruenzen (3.2) eine Lösung. Sämtliche Lösungen bilden eine Restklasse modulo m mit $m=m_1\cdot\ldots\cdot m_l$

Beweis

l=1: $x=a_1$ oder $x=(a_1 \mod m_1) \iff (x\equiv a_1) \mod m_1$ und $0\leq x\leq m_1$

l=2: $x\equiv a_1\mod m_1$. x muss in der Form $x=a_1+um_1, u\in R$ angesetzt werden.

Idee: Bestimme u so, dass $x \equiv a_2 \mod m_2$. Also in $\overline{R} = R/m_2R$ soll werden:

 $\overline{a}_1 + \overline{u}\overline{m}_1 = \overline{a_1 + u}\overline{m}_1 = \overline{a}_2$, daher tut es: $\overline{u} = (\overline{a}_2 - \overline{a}_1)\overline{m}_1^{-1}$

Geht, da \overline{m}_1^{-1} existiert und da $\overline{m}_1 \in (R/m_2R)^{\times}$. Nach dem Restklassensatz: $\overline{m}_1 \in (R/m_2R)^{\times} \iff \operatorname{ggT}(m_1, m_2) = 1$

Algorithmisch $\overline{u} = \overline{m}_1^{-1}$, u kann mit LinKom-Satz, also euklidischem Algorithmus, bestimmt werden. $Erinnerung: ggT(m_1, m_2) = um_1 + vm_2$, u, v berechnet der Algorithmus. $1 = \overline{um}_1, \overline{m}_2 = 0, \overline{u} = \overline{m}_1^{-1}$

Für dieses $u \in R$ ist $x = a_1 + um_1$ (eventuell mod m, m_2) die gesuchte Lösung.

l > 2: Induktionshypothese löst $x' \equiv a_i \mod m_i (j = 1, ..., l - 1)$.

Löse dann $x \equiv x' \mod m_1 \cdot ... \cdot m_{l-1}$ ($\implies x \equiv x' \equiv a_j \mod m_j, j = 1, ..., l-1$) $\implies x \equiv a_l \mod m_l \implies x$ ist die gesuchte Lösung.

Beispiel

Gegeben sind die Kongruenzen:

$$x \equiv 4 \mod 7$$
$$x \equiv 19 \mod 30$$

Ansatz: $x = 4 + u \cdot 7 \equiv 19 \mod 30$. Im $\mathbb{Z}/30\mathbb{Z}$: $\overline{4} + \overline{u} \cdot \overline{7} = \overline{19} \implies \overline{u} = (\overline{19} - \overline{4})^{-1} \cdot \overline{7}^{-1}$. Es ist $\overline{7}^{-1} = \overline{13}$, also $u \equiv 13 \cdot 15$, etwa $x = 4 + 13 \cdot 15 \cdot 7 \equiv 109 \mod 210$.

Wir fügen eine Bedingung hinzu: $x \equiv 1 \mod 77$. So ist nun zu lösen:

$$x \equiv 109 \mod 30$$

 $x \equiv 1 \mod 11$

Es ist $\overline{210}^{-1} = \overline{1}$ im \mathbb{F}_{11} , also $x = 109 + 2 \cdot 210 \equiv 529 \mod 11 \cdot 3 \cdot 7$

Bemerkung (zur Praxis): Das Sytem $x \equiv x_i \mod m_i$, (i = 0, ..., l). Der Beweis liefert eine γ -adische Darstellung von x und m = y $\gamma = (m_0, ..., m_l)$ wie folgt: $y = z_{l-1}M_{l-1} + \cdots + z_0$.

Die z_i sind rekursiv aus $z_0 = x_0 \mod m_0$, $y' \equiv x_i' \mod m_j$, (i = 1, ..., l). Also $y' = \frac{x-z_0}{m_0}$, $x_i' = (x_i - z_0)u_{i0} \mod m_j$. $\overline{u_{i0}} = \overline{m_0^{-1}}$ in $\mathbb{Z}/m_i\mathbb{Z}$. x_i' in γ' -adischer Darstellung nach Induktions-Voraussetzung $(\gamma' = (m_1, ..., m_l))$.

Empfehlung zur Praxis, vor allem wenn viele Kongruenzen zu den selben m_i zu lösen sind:

- (1) Berechne die u_{ij} nur einmal.
- (2) Belasse die Ergebnisse m in der Form $x = (z_{l-1}, \ldots, z_0)_{\gamma}$

Zum paralellen Rechnen: Seien R, m_1, \ldots, m_l wie im chinesischen Restsatz. Betrachte die Abbildung

$$R/mR \to \prod_{j=1}^{l} (R/m_j R)$$
$$\psi : x + mR \mapsto (\dots, x + m_j R, \dots)$$

 ψ ist wohldefiniert: $x + mR = x' + mR \iff x \equiv x' \mod m \iff x \equiv x' \mod m_j$ und ein Ringhomomorphismus (leicht zu sehen).

Wir beobachten: Ist $\psi: A \to B$ eine Abbildung, so gilt, dass ψ injektiv genau dann ist wenn die Gleichung $\psi(x) = b$ höchstens eine Lösung x hat. Surjektivität heißt analog, dass jede Gleichung $\psi(x) = b$ mindestens eine Lösung x hat. ψ bijektiv ist dann gleichbedeutend damit, dass $\psi(x) = b$ genau eine Lösung hat.

Für obiges ψ gilt: $b = (\ldots, a_j + m_j R, \ldots)$. $\psi(x + m_j R) = b$: $(\ldots, x + m_j R, \ldots) = (\ldots, a_j + m_j R, \ldots)$ = b. x + mR Urbild von $b \iff \forall j : x + m_j R_j = a_j + m_j R \iff \forall j : x \equiv a_j \mod m_j$. Also:

- ψ surjektiv $\iff \forall b \exists \text{L\"{o}sung } x \equiv a_i \mod m_i$
- ψ injektiv \iff Lösung x ist eindeutig modulo m

Ergebnis: Der chinesische Restsatz wie oben ist gleichbedeutend mit:

Satz 3.15 (Theorem B, Chinesischer Restsatz, theoretische Form)

R ein euklidischer Ring, $m_1, \ldots, m_l \in R$, $ggT(m_i, m_j) = 1$ für $i \neq j$. Dann hat man den Ringisomorphismus:

$$R/mR \to \prod_{j=1}^{l} (R/m_j R)$$

$$\psi : x + mR \mapsto (\dots, x + m_j R, \dots)$$

Bemerkung (Zur Praxis): ψ^{-1} wird gegeben durch lösen simultaner Kongruenzen. "Komponentenweises Rechnen: Rechnen im R/mR ersetzt durch paralleles Rechnen in den R/m_iR^{ii}

Bemerkung (Theoretische Anwendung): Voraussetzungen wie im Satz. Die Einheitengruppe $(R/mR)^{\times}$ ist isomorph durch ψ zu $\prod_{j=1}^{l} (R/m_j R)^{\times}$. Ist $R = \mathbb{Z}$, so gilt $\varphi(m) = \prod_{j=1}^{l} \varphi(m_j)$, also ein neuer Beweis für die Multiplikativität von φ .

3.5 Ausgewählte Anwendungen von Kongruenzen

3.5.1 Diophantische Gleichungen

Sei $0 \neq f \in \mathbb{Z}[X_1, \dots, X_n]$ (Polynom mit *n* Unbekannten und Koeffizienten aus \mathbb{Z}), $x = (x_1, \dots, x_n) \in \mathbb{Z}^n$.

Eine diophantische Gleichung ist eine Gleichung der Form f(x) = 0, f wie oben, mit eine "Lösung x".

Der Wunsch hier ist: Man finde möglichst viel Informationen über die Menge $\mathcal{V}_f(\mathbb{Z}) := \{x \in \mathbb{N}^n \mid f(x) = 0\}$ aller ganzzahligen Lösungen.

Das Problem ist oft extrem schwierig. Zum Beispiel die diophantischen Gleichungen $x^n + y^n + z^n = 0$, x = (x, y, z), auch bekannt als das Fermatproblem.

Information für Logik-Freunde: Das 10. Hilbertsche Problem (Paris 1900):

Man finde einen Algorithmus, der zu gegebenem $f \in \mathbb{Z}[X1, \dots, X_n]$ entscheidet, ob $\mathcal{V}_f(\mathbb{Z}) = \emptyset$ oder $\mathcal{V}_f(\mathbb{Z}) \neq \emptyset$ ist.

Satz von Julia Robison (1910-85), J. Matjasevič: Es gibt keinen solchen Algorithmus!

Triviale, aber wichtige Methode: f(x) = 0 hat Lösung $x \in \mathbb{Z}^n \implies f(x) = 0$ hat Lösung $x \in \mathbb{R}^n$ (Analysis) und $\forall m \in \mathbb{Z} : f(x) \equiv 0 \mod m$ lösbar $\iff \forall t \in \mathbb{N}_+ \forall p \in \mathbb{P} : f(x) \equiv 0 \mod p^t$ lösbar. Die Folgerung ist, dass falls für ein $m \in \mathbb{N}_+$ gilt, dass für alle $(x_1, \ldots, x_n) \in \mathbb{Z}^n$, $0 \le x_i < m_i$ gilt: $f(x) \not\equiv 0 \mod m$, so gilt $\mathcal{V}_i(\mathbb{Z}) = \emptyset$, es gibt also keine Lösung.

Beispiel

 $f = X_1^2 + X_2^2 - k$, $k \in \mathbb{Z}$, diophanischsche Gleichung $x_1^2 + x_2^2 = k$. Unlösbar für k < 0 (da keine Lösung in \mathbb{R}^2). Nur interessant: k > 0.

Betrachtung modulo 4:

$$0^2 = 0, (\pm 1)^2 = 1, (\pm 2)^2 = 0 \implies (x_1^2 + x_2^2) \mod 4 = \begin{cases} 0 + 0 \\ 0 + 1 \\ 1 + 1 \end{cases} \in \{0, 1, 2\}.$$

Für $k \equiv 3 \mod 4$ hat $x_1^2 + x_2^2 = k$ also keine ganzzahlige Lösung!

Es kann eine Primzahl $p \neq 2$ nur dann Summe zweier Quadrate sein, wenn $p \equiv 1 \mod 4$ ist. Hier gilt auch die Umkehrung, Beweis folgt eventuell später.

Beispiel

 $f = X_1^2 + X_2^2 + X_3^2 - k$, also $x^2 + y^2 + z^2 = k$. Modulo 4 führt hier zu keiner Aussage. Wie betrachten modulo 8: $0^2 = 0$, $(\pm 1)^2 = 1$, $(\pm 2)^2 = 4$, $(\pm 3)^2 = 1$, $(\pm 4)^2 = 0$. Also gilt:

$$(x_1^2 + x_2^2 + x_3^2) \bmod 8 = \begin{cases} 0 + 0 + 0 \\ 0 + 1 + 0 \\ 1 + 1 + 1 \\ 1 + 1 + 1 \\ 0 + 4 + 0 \\ \vdots \end{cases} \in \{0, 1, 2, 3, 4, 5, 6\}.$$

Ergebnis: Für k < 0 oder $k \equiv 7 \mod 8$ hat die Diophantische Gleichung $x_1^2 + x_2^2 + x_3^2 = k$ keine Lösung.

Zur Information, nach Gauß: Die Umkehrung gilt auch für ungerade k.

Satz von Lagrange: $x_1^2 + x_2^2 + x_3^2 + x_4^2 = k \ (k \in \mathbb{N})$ hat immer Lösungen.

Gelegentlich erlangt man Ergebnisse auch über andere Gleichungen:

Beispiel

Gesucht sind Lösungen von $9^x + x^3 = k$ mit $x \in \mathbb{N}_+$.

Betrachtung modulo 9: $9^x \equiv 0 \mod 9$. $0^3 = 0$, $(\pm 1)^3 = \pm 1$, $(\pm 2)^3 = \mp 1$, $(\pm 3)^3 = 0$, $(\pm 4)^3 = \pm 1 \implies x^x + x^3 \equiv 0, \pm 1 \mod 9$. Ergebnis: Für $k \equiv 2, 3, 4, 5, 6, 7 \mod 9$ hat die Gleichung keine Lösung in $x \in \mathbb{Z}$.

3.5.2 Interpolation

Hier sei $R = K[X] \ni f, \alpha, \beta \in K$:

$$f(\alpha) = \beta \iff (f - \beta)(\alpha) = 0$$
$$\iff (X - \alpha) \mid f - \beta$$
$$\iff f \equiv \beta \mod (X - \alpha)$$

Das Sytem $f \equiv \beta_j \mod (X - \alpha_j)$ $(j = 0, ..., n) \iff \forall j = 0, ..., n : f(\alpha_j) = \beta_j$ (Vorraussetzung $\alpha_i \neq \alpha_j$ für $i \neq j$, d.h ggT $(X - \alpha_i, X - \alpha_j) \neq 0$).

Der Chinesische Restsatz ergib nun: Zu gegebenen n+1 Punkten $\alpha_0, \ldots, \alpha_n \in K$ ($\alpha_i \neq \alpha_j$) und Punkten $\beta_0, \ldots, \beta_n \in K$ gibt es genau ein $f \mod (X - \alpha_0) \cdots (X - \alpha_n)$, also $\operatorname{ord}(f) \leq n$ mit $f(\alpha_j) = \beta_j$. Damit ist das Interpolationsproblem gelöst.

Frage: Kann man bei Interpolation die Tangentensteigung (allgemein $f^{(j)}(\alpha_k)$) auch vorschreiben (Hermitesche Interpolationsaufgabe)? Ja für $K = \mathbb{Q}, \mathbb{R}, \mathbb{C}$ (Übung).

 $f \in K[X]$, $(X - \alpha)$ -adische Darstellung. Ziffern $z_j \in K[X]$ haben Grad $z : j < \text{grad}(X - \alpha) = 1$, das heißt $z_j \in K$. $f = \sum_{j=0}^n z_j (X - \alpha)^j$, das ist die Taylor-Entwicklung in α . z_j gegeben durch $\frac{f^{(j)}(\alpha)}{j!}$.

$$f \equiv g_{\alpha,d} \mod (X - \alpha)^{\alpha+1}, \qquad g_{\alpha,d} := \sum_{j=0}^{d} z_j (X - \alpha^j)$$
 (3.3)

 $g_{\alpha,d}$ ist gegeben durch $f(\alpha), f'(\alpha), \dots, f^{(d)}(\alpha)$. System (3.3) entspricht der Vorgabe der $f^{(j)}(\alpha)$, Interpolation mit $m_{j,k} = (X - \alpha_k)^{d_j}$ ist lösbar mit dem Restsatz.

3.5.3 Rechnen im Computer mit großen ganzen Zahlen

Prinzip: Gleicheit in Z entspricht Kongruenz und einer passender Abschätzung.

Bemerkung: $m \in \mathbb{N}$, m > 1, etwa $2 \nmid m$. Ist $u \equiv v \mod m$ und $|u|, |v| \leq \frac{m}{2}$, so ist u = v, weil u, v sind im symmetrischen Versys_m.

Wende dies an auf die Berechnung von $f(x), f \in \mathbb{Z}[X_1, \dots, X_n], x = (x_1, x_2, \dots, x_n) \in \mathbb{Z}^n$. Kennt man eine Schranke $|f(x)| < \frac{m}{2}$, so genügt es, $f(x) \mod m$ auszurechnen. $f(x) \mod m$ kann für $m = m_1 \cdot \dots \cdot m_l$ durch Berechnen von $y_j = f(x) \mod m_j$ $(j = 1, \dots, l)$ ersetzt werden, das ergibt simultane Kongruenz $y = y_j \mod m_j$, die mit dem chinesischen Restsatz gelöst werden kann.

3.6 Struktur der Primrestklassengruppe mod m

R euklidisch, $m = \prod_{i=1}^l p_i^{t_i}$ Primzerlegung, $t_j \in \mathbb{N}_+$. Aus dem Chinesischen Restsatz: $(R/mR)^{\times} \cong \prod_{j=1}^l (R/p_j^{t_j}R)$ (beachte: $\operatorname{ggT}(p_i^{t_i}, p_j^{t_j}) = 1$ für $i \neq j$). Es genügt also $G := R/p^tR$ mit $p \in P, \ t \in \mathbb{N}_+$ zu betrachten. Hier nur der Fall $R = \mathbb{Z}$ ($R = \mathbb{F}_p[X]$ geht ähnlich).

Erinnerung: $t = 1, \ \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p, \ \mathbb{F}_p^{\times}$ ist zyklich, es existiert eine Primitivwurzel $w \mod p$.

Frage: Wie ist der Fall für t > 1?

Für p > 2 existiert eine Primitivwurzel!

Gesucht ist also eine Primitivwurzel u, das heißt ord $\overline{u} = \varphi\left(p^{t}\right) = (p-1)p^{t-1}$ in G. Es genügt $u_{1}, u_{2} \in \mathbb{Z}$ mit $p-1 \mid \operatorname{ord} \overline{u}_{1}$ und $p^{t-1} \mid \operatorname{ord} \overline{u}_{2}$ zu finden. Wegen ord $\overline{u}_{j} \mid \#G = (p-1)p^{t-1}$ gilt $s \mid p-1$. Daraus folgt, für $v_{1} := u_{1}^{p^{t-1}}, v_{1} := u_{2}^{p-1}$ ist

$$\operatorname{ord} \overline{v}_1 = \operatorname{ord} \overline{u}_1^{p^{t-1}} = \frac{\operatorname{ord} \overline{u}_1}{\operatorname{ggT} \left(\operatorname{ord} \overline{u}_1, p^{t-1}\right)} = \frac{(p-1)p^r}{p^r} = p-1.$$

Ebenso: ord $\overline{v}_2 = p^{t-1}$ (Nachrechnen). Aus Übungsaufgabe 3 (a) Blatt 7 folgt mit $u := v_1 v_2$ mod p^t , ord $\overline{u} = (p-1)p^{t-1}$. Bevor wir fortfahren, benötigen wir noch ein Lemma, das wir zum Beweis eines Hilfssatzes benötigen.

Lemma 3.16 ((1 + p)-Lemma) $p \in \mathbb{P}, \ p > 2, \ r \in \mathbb{N}_+, \ u \in \mathbb{Z}$. Dann gilt: $(1 + up)^{p^{r-1}} \equiv 1 + up^r \mod p^{r+1}$.

Beweis

Beweis via Induktion nach r.

$$r = 1$$
: $(1 + up)^{p^{1-1}} = 1 + up \equiv 1 + up^1 \mod p^2 \quad \checkmark$.

r > 1: Induktionshypothese (für r - 1):

$$(1+up)^{p^{r-2}} \equiv 1 + up^{r-1} \mod p^r.$$

$$\implies (1+up)^{p^{r-2}} = 1 + up^{r-1} + zp^r \mod z \in \mathbb{Z} \implies (1+up)^{p^{r-1}} = \left((1+up)^{p^{r-2}}\right)p = \left(1 + \left(up^{r-1} + zp^r\right)\right)^p = 1 + \sum_{i=1}^p \underbrace{\binom{p}{i}}_{\in \mathbb{Z}} \underbrace{\binom{up^{r-1} + zp^r}_{i=1}}_{=(p^{r-1}(u+zp))^i = :c_i}.$$

$$r \ge 2, \ i > 2: v_p(c_i) = \underbrace{v_p\left(\binom{p}{i}\right)}_{\ge 0} + v_p\left(p^{(r-1)i}\right) + \underbrace{v_p(u+zp)^i}_{\ge 0} \ge (r-1)i \ge (r-1)r > r+1 \implies p^{r+1} \mid c_1 \implies c_i \equiv 0 \mod p^{r+1}.$$

$$i = 2: v_p(c_2) = \underbrace{v_p\left(\frac{p(p-1)}{2}\right)}_{\geq 1} + \underbrace{v_p\left(p^{2(r-1)}\right)}_{=2(r-1)} + \underbrace{v_p(u+zp)^2}_{\geq 0} \geq 2r - 2 + 1 = 2r - 1 \geq r + 1 \implies c_2 \equiv 0 \mod p^{r+1}.$$

$$i = 1$$
: $c_1 = p \cdot p^{r-1}(u + zp) = up^r + zp^{r+1} \equiv up^r \mod p^{r+1}$.

Hilfssatz

Sei $p \in \mathbb{P}$, p > 2, $t \in \mathbb{N}_+$.

- (1) Ist w eine Primitivwurzel $\mod p$, so gilt in $G = (\mathbb{Z}/p^t\mathbb{Z})^{\times} : p-1 \mid \operatorname{ord} \overline{w}, \ \overline{w} = w + p^t\mathbb{Z}.$ $(u_1 = w \ w\ddot{a}hlbar).$
- (2) $\operatorname{ord}(\overline{1+p}) = p^{t-1} \ (v_2 = 1 + p \ w\ddot{a}hlbar).$

Beweis

- (1) Sei $l = \operatorname{ord} \overline{w}$, also $\overline{w}^l = 1$, das heißt $w^l \equiv 1 \mod p^t$. $t \geq 1 \implies w^l \equiv 1 \mod p^1 \implies \operatorname{in} \mathbb{F}_p$ ist $\overline{w}^l = 1$, ord $\overline{w} = p 1 \implies p \cdot a \mid l$ (Elementar-Ordnungssatz).
- (2) Folgt aus Lemma 3.16

$$(1+p)^{p^{t-1}} \equiv 1+1 \cdot p^t \mod p^{t-1} \Longrightarrow (1+p)^{p^{t-1}} \equiv 1 \mod p^t \Longrightarrow \overline{1+p}^{p^{t-1}} \Longrightarrow \operatorname{ord} \overline{1+p} \mid p^{t-1}. \text{ Für } t \geq 2 \text{ ist noch zu zeigen: } (1+p)^{p^{t-2}} \neq 1. \ (1+p)^{p^{t-2}} \equiv 1+p^{t-1} \mod p^t \text{ (nach Lemma 3.16)}.$$

$$\overline{1+p}^{p^{t-2}} = \overline{1} + \underbrace{\overline{p^{t-1}}}_{\neq 0} \neq \overline{1} = 1.$$

Gezeigt (für p > 2):

Satz 3.17 (Struktursatz für $(\mathbb{Z}/p^t\mathbb{Z})^{\times}$, eigentlich ein Theorem) Sei $p \in \mathbb{P}$, $t \in \mathbb{N}_+$. Dann gilt:

- (1) Falls p > 2, so ist $(\mathbb{Z}/p^t\mathbb{Z})^{\times}$ zyklisch (das heißt, es gibt eine Primitivwurzel $u \mod p^t$, also $(\mathbb{Z}/p^t\mathbb{Z})^{\times} = \{1, \overline{u}, \dots, \overline{u}^{p^{t-1}(p-1)-1}\}$
- (2) Falls p=2: $(\mathbb{Z}/2\mathbb{Z})^{\times}$, $(\mathbb{Z}/4\mathbb{Z})^{\times}$ zyklisch. Für t>2 ist $(\mathbb{Z}/2^t\mathbb{Z})^{\times}$ <u>nicht</u> zyklisch, doch es gilt: Jedes $\overline{a} \in (\mathbb{Z}/2^t\mathbb{Z})^{\times}$ lässt sich eindeutig in der Form $\overline{a}=\overline{(-1)}^{\varepsilon} \cdot \overline{5}^s$ schreiben, mit $\varepsilon \in \{0,1\}$, $s \mod 2^{t-2}$ (eindeutig). $(\mathbb{Z}/2^t\mathbb{Z})^{\times}$ ist sozusagen bis auf das Vorzeichen $(-1)^{\varepsilon}$ zyklisch.

Info:

Man kann sagen: Ist $u \in \mathbb{Z}$ Primitivwurzel mod p^2 , so auch mod $p^t \ \forall t \in \mathbb{N}_+$

Es gibt viele Arbeiten über Primitivwurzeln, z. B. analytische Zahlentheorie (sehr schwierig) gibt Schranken s(p) so, dass in $\{2, \ldots, s(p)\}$ PW mod p zu finden.

Artins Vermutung: 2 (oder jedes $n \in \mathbb{N}_+, n \neq 1$) ist Primitivwurzel für ∞ -viele $p \in \mathbb{P}$.

Rechnen in $(\mathbb{Z}/m\mathbb{Z})^x$ auf dem Computer, falls viele Produkte zu berechnen sind.

Primzerlegung $m = p_1^{t_1} \cdot \ldots \cdot p_l^{t_l} \ t_j \in \mathbb{N}_+$

Kodiere $a + m\mathbb{Z} = \overline{a}$ wie folgt:

Berechne vorab PW $u_j \mod p_j^{t_j}$

$$(\mathbb{Z}/m\mathbb{Z})^x \to \prod_{j=1}^l (\mathbb{Z}/p^j\mathbb{Z})^x$$

 $\alpha = a + m\mathbb{Z} \mapsto (\dots, a + p_j, \dots)$

Bijektiv:
$$\alpha \leftrightarrow (\dots, r(\alpha, j), \dots)$$

 $\alpha \cdot \beta \leftrightarrow (\dots, r(\alpha, j) + r(\beta, j) \mod p_j^{t_{j-1}}(p_j - 1), \dots)$

 α^{-1} ähnlich

Zum Rechnen mit großen ganzen Zahlen (Skizze)

Prinzip: Gleichheit in $\mathbb{Z} = \text{Kongruenz} + \text{passende Abschätzung}$

Bemerkung: $m \in \mathbb{N}, m > 1$, etwa $2 \nmid m$. Ist $u \equiv v \mod m$ und $|u| \leq \frac{m}{2}$, $|v| \leq \frac{m}{2}$, so ist u = v.

<u>Grund:</u> $u, v \text{ sind in Versys}_m \text{ (symm. Vertretersystem der Reste mod } m), also <math>u = v$.

Wende dies an auf die Berechnung von $f(x), f \in \mathbb{Z}[X_1, \dots, X_n], x = (x_1, \dots, x_n) \in \mathbb{Z}$. Kennt man Schranke $|f(x)| < \frac{m}{2}$ so genügt es f(x) mod m auszurechnen.

 $f(x) \mod m$ kann für $m = m_1 \cdot \ldots \cdot m_l$ durch Berechnen von $f(x) \mod m_j =: y_j \ (j = 1, \ldots, l)$ ersetzt werden + 1x chinesischer Restsatz: $y \equiv y_j \mod m_j$.

Aufgabe:

Berechne mit dem Computer det A (exakt), $A \in \mathbb{Z}^{n \times n}$

Soll sein n mäßig groß, $A = (a_{ij})$, die a_{ij} mäßig groß.

Naives Verfahren: Gauß-Algorithmus in \mathbb{Q} :

Ärger: Sehr große Integer-Zahlen als Zähler und Nenner entstehen während der Rechnung unkontrolliert. Mögliche bessere Vorgehensweise, etwa $|a_{ij}| \leq s$ (Schranke)

Leibnitzformel: det $A = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n a_{i,\pi(i)}$ liefert Abschätzung |det $A | \leq s^n \cdot n!$ ($n! = \#S_n$) Schranke $S = 2 \cdot |\det A| = 2 \cdot s^n \cdot n!$ kann sehr groß sein. Wähle Primzahlen ($\neq 2$) p_1, \ldots, p_t (t verschieden) mit $S \leq p_1 \cdot \ldots \cdot p_t$. Dann |det $A | \leq \frac{p_1 \cdot \ldots \cdot p_t}{2} = \frac{m}{2}, m = p_1 \cdot \ldots \cdot p_t$

Kann oft sein: t mäßig groß, alle p_j mäßig groß. (z. B.: $s = 100, n = 100 \Rightarrow S = 100^{100} \cdot 2 \cdot 100! \le 2 \cdot 100^{120}$ Es reichen also 130 p_j 's mit $p_j > 100$, diese können < 1000 gewählt werden \Rightarrow in \mathbb{F}_{p_j} kann sehr gut und schnell gerechnet werden!

 \Rightarrow Berechnung von det \overline{A} , $\overline{A} = (\overline{a_{ij}})$ in $\mathbb{F}_{p_j}^{n \times n}$ kann durch Herstellen von Dreiecksform von \overline{A} für mäßig große n schnell berechnet werden. (Durch Arbeiten in Versys $_p$ entstehen niemals große Zahlen!) Das ergibt $y_j \in \text{Versys}_p$ mit det $A \mod p_j = y_j$. Es ist dann $y \equiv y_j \mod p_j$ zu lösen (simultane Kongruenz $m = p_1 \cdot \ldots \cdot p_t$). Daher für $y \in \text{Versys}_m$ (symm.) ist det A = m. y kann sehr groß sein, aber die Kongruenz ergibt sehr große Zahlen nur kontrolliert! (Mäßig große Zahlen, falls man mit γ -adischer Darstellung von $y = \det A$, $\gamma = (p_1, \ldots, p_t, \ldots)$ zufrieden ist.