

اجتناب از موانع فازی برای روبات های سیار همه جهته

دانیال خشابی و محمد نخبه زعیم

آنچه خواهیم دید:

• محیط شبیه سازی • مدل های فازی • مدل ترکیبی فازی – *A • نتایج

(1) ejlu din bizo

- MATLAB محیط شبیه سازی شده دو بعدی در
 - شامل موانع تصادفی
 - 15m × 25m و طول عرض و طول

(T) ejlu dui buzo

- روبات همه جهته
- $R_{mbot}=1$ دارای شعاع $^{\circ}$
- - $R_{sensor}=3m$ دارای شعاع اندازه گیری $^{\circ}$
- است. $v_{max} = 0.05 \frac{m}{s}$ فرض شده است روبات دارای سرعت حداکثر

ميل فازي(١)

- ◄ تقسيم بندى فواصل اجسام از روبات:
- $R_{
 m {\it far}}=2m$ همولا فرض شده است: =1m معمولا فرض شده است: \circ

• تقسیم بندی نواحی حرکت روبات

سال فازی (۲)

◄ مدل حريصانه:

- هدف: با تمام قوا رو به جلو!
- اگر جسمی خیلی به ما نزدیک شد از آن دور شویم:

IF $d(object, sensor_i) < R_{near}$ TEHN move in oposite i direction

- · در صورتی که جسمی(هایی) در چند سنسور خیلی نزدیم باشند از برایند جهت آنها دور می شویم!
 - در غیر اینصورت با تمام سرعت به صورت مستقیم به سمت هدف حرکت میکنیم:

IF $\forall i \ d(object, sensor_i) > R_{near} \ THEN$ move toward the goal

- مزیت: حرکت سریع و نسبتا نرم به سمت انتها
 - اشكال: گير كردن در مسير هاى بن بست.
 - ایده ی بعدی: یاد دادن چرخش به روبات

هال فازی (۱۲)

- ▶ مدلی برای چرخش اجسام(چرخش به راست):
- هدف: در صورتی که به مانعی برخورد کردیم سعی می کنیم به سمت راست آن حرکت کنیم!
 - · (مشابه قبل) اگر جسمی خیلی به ما نزدیک شد از آن دور شویم:

IF $d(object, sensor_i) < R_{near}$ TEHN move in oposite i direction

- · در صورتی که جسمی(هایی) در چند سنسور خیلی نزدیک باشند از برایند جهت آنها دور می شویم!
 - در صورتی جسمی در فاصله ی نسبتا دور باشد، سعی می کنیم به سمت راست آن بچرخیم:

 $IF \ d(object, sensor_i) > R_{far} \ and \ d(object, sensor_{i-1}) < R_{far} \ TEHN$ move in (i+1) direction

· در غیر اینصورت با تمام سرعت به صورت مستقیم به سمت هدف حرکت میکنیم:

IF $\forall i \ d(object, sensor_i) > R_{near} \ THEN$ move toward the goal

- مزیت: حرکت نسبتا نرم به سمت انتها، دور زدن شکل های نرم
- اشکال: گیر کردن در مسیر های بن بست عمیق یا در میان اشیای تیز.
- · ایده ی بعدی: به یاد سپردن مسیر طی شده و استفاده از یک الگوریتم مسیریابی در گراف به نام *A.

(())A*-ejů čzzy

- ♦ الگوريتم *A:
- ۰ یک الگوریتم جستجو در نظریه ی گراف

- → مزیت:
- این الگوریتم می تواند مسیر بهینه را در صورتی که موانع کاملا مشخص باشد تشخیص دهد.
 - ١ اشكال:
- قادر به راه بری نرم و روان روبات از بین موانع نیست. (کاری که مدل فازی خوب انجام می دهد.)
 - ♦ هدف:
 - استفاده ی ترکیبی از *A و حرکت فازی

(T)A*-ejů čzy

﴿ گام اول: روبات باید بتواند با حرکت در مسیر، موانع و مسیرهای باز را به خاطر بسپارد:

(M)A*-ejli eyy Jus

﴿ گام دوم:

- · * A با فرض خالی بودن نقاط سیاه(نقاط دیده نشده) مسیری بهینه پیدا می کند.
- الگوریتم فازی به جای اینکه به سمت GLOBAL-GOAL حرکت کند به سمت کند.
 - $^{\circ}$ LOCAL-GOAL در مرز ناحیه ی مشاهده شده روی مسیر بهینه ی A^{*} تعیین می شود.

مدل ترکیبی فازی-*A(؟)

با تشكر از توجه شما!