Betriebssysteme Praktikum WS2015/16

Jan-Lukas Deichmann, Veith Güntel Betreuer: Prof. Dr. Ole Blaurock

January 22, 2016

Contents

1	Prä	ambel	1	
2	Get	ting Started	2	
3	Des	Designreport		
	3.1	Getroffene Annahmen	3	
	3.2	Funktionsumfang	3	
	3.3	Betriebsbedingungen	3	
		Implementierung		
		3.4.1 processQueue		
		3.4.2 mList	4	

1 Präambel

In diesem Document wird die Lösung zur gebenen Projektaufgabe im Kurs Betriebssysteme WS2015/16 dargestellt. Bei dieser Aufgabe ging es darum für eine gegebene Simulierung eines Betriebssystemes, SimOS, eine geeignete Speicherverwaltung zu entwickeln.

2 Getting Started

Die Inbetriebnahme unserer Implementation erfolgt sehr simpel über die entsprechend Funktion von Visual Studio, sollte man sich zum Import in die IDE entscheiden, oder über die beigefügte .exe Datei. Als einziges zu beachten ist das SimOS eine processes.txt Datei entweder im Projektordner für Visual Studio oder im selben Ordner wie die .exe erwartet. Diese Datei dient als Liste von Prozessen die von SimOS einzulesen und auszuführen sind. Die processes.txt baut sich folgendermaßen auf: Man legt pro Zeile die Informationen zu einem Prozess fest wobei die erste Zeile als Komenntar gewertet wird. Die Information müssen sich in der Reihenfolge OwnerID, start, duration, size, type in der Datei befinden. Eine beispielhafte Datei würde etwa so aussehen:

INSERT EXAMPLE FILE

Die entsprechende Datei würde folgende Ausgaben generieren:

INSERT EXAMPLE OUTPUT

3 Designreport

3.1 Getroffene Annahmen

Wir nehmen bei unsere Implementierung an das kein Prozess jemals die PID 0 zugewiesen bekommt. MEHR???

3.2 Funktionsumfang

Wir erweiterten die gegebene Implementierung von SimOS,im wesentlichen, um Funktionen zur Verwaltung des Arbeitsspeichers (realisiert in m_list.c) und zur temporären Speicherung von Prozessen die aktuell zu groß für den Arbeitsspeicher sind (realisiert in process_queue.c). Nähere Informationen zu m_list und process_queue befinden sich im der erklärung zur Implementierung. Weitere änderungen waren die Umlagerung von Variablen um bessere Lokalität zu haben und Änderungen um die Laufzeit zu optimieren. LETZTERES GENAUER

3.3 Betriebsbedingungen

Die einzige Betriebsbedingung ist die in "Getting Started" beschriebene, korrekt formatierte processes.txt Datei.

3.4 Implementierung

3.4.1 processQueue

irgendwie n Diagramm Die Process Queue die wir in process_queue.c realisiert haben ermöglicht es dem Betriebssystem Prozesse die aktuell, mangels ausreichenden Speichers, nicht ausgeführt werden können in einer Warteschlange zu Speichern und später aufzuführen ohne dafür die Ausführung anderer Prozesse blockieren zu müssen. Die Process Queue basiert in ihrer Implementierung auf einer Listenstruktur und stellt die structs processQueue und processQueueNode zur verfügung (siehe m_list.h). Desweiteren stellt die Schnittstelle folgende Funtionen zur Verwendung in SimOS zur verfügung:

processQueue* makeProcessQueue() erzeugt eine neue processQueue, alloziert passenden Speicher und gibt einen Pointer auf die Queue zurück.

processQueueNode* makeProcessQueueNode(PCB_t* pcb) erzeugt eine neue processQueueNode, die als Inhalt den übergebenen Pointer auf eine PCB_t enthält, alloziert passenden Speicher und gibt einen Pointer auf die QueueNode zurück.

void enqueue(processQueue* queue, PCB_t* process) ermöglicht das einreihen eines Processes in die Queue. Es wird intern eine processQueueNode erzeugt und in die gegebene queue eingereiht.

PCB_t* dequeue(processQueue* queue) ermöglicht es den ersten Prozess aus der gegebenen Queue zu entfernen und gibt einen Pointer auf den Prozess zurück.

Boolean is Empty (process Queue* queue) eine Hilfsfunktion die zurückgibt ob gegebene queue leer ist.

3.4.2 mList

auch irgendwie n Diagramm

Die Memory list ermöglicht die tatsächliche Speicherverwaltung. Sie basiert auf einer Listenstruktur und beeinhaltet Blöcke die für die Segmente im Arbeitsspeicher stehen, die jeweils frei oder genutzt sein können. Zur Realisierung dieser Aufgabe stellt die Implementierung die structs mList und MlistNode, sowie einen enum mType für die zustände der Blöcke bereit. Desweiteren stellt die Schnittstelle folgende Funktionen zur Verwendung in SimOS zur verfügung:

mList* makeMList() erzeugt eine neue MemoryList, alloziert passenden Speicher und gibt einen Pointer auf die Liste zurück.

mListNode* makeMListNode(mType type, unsigned pid, int start, int length) erzeugt eine neue mListNode aus gegebenen Parametern, alloziert passenden Speicher und gibt einen Pointer auf die Node zurück.

Boolean addProcess(mList* list, PCB* process) fügt den process der gefragten list hinzu.

void removeProcess(mList* list, PCB_t* process) entfernt den process aus der gefragten Liste.

void compact(mList* list) kompaktiert die gegebene Liste um der ihrer Fragmentierung entgegenzuwirken. WANN WIRD GECALLT??

mListNode* swapper(mListNode* a, mListNode* b) eine Hilfsmethode zum Austausch zweier Node innerhalb einer Liste, gibt einen Pointer zur neuen mListNode b zurück. Wird innerhalb von compact genutzt.

mListNode* merge(mListNode* a, mListNode* b) eine Hilfsmethode zum zusammenfügen zweier Nodes, gibt einen Pointer zur zusammengefügten mListNode zurück. Wird innerhalb von compact verwendet.

mergeAll schmeißen wir raus oder??

mListNode* findNextFit(mList* list, int length) eine Hilfsmethode zum finden der nächsten passenden Lücke innerhalb der Liste. Gibt einen Pointer auf die mListNode* VOR der passenden Lücke zurück.