DETS: Étude de problère multi-facteur I. Fonction de phrien variables Den la vile, les fonction de plunten variables sont plus connectes que celle d'une variable. Examples. Examples: - la terpirature en fonct.ler la conte: 0 (lat, lon) Le la pent le m E (let, len pott). - + en fet de l'altitude - l'évergle civélique d'u compr: Ec=1m² Ec=Ec(m, v), Tates ces exemples de fonction prunt en entré phinter variables et remaile un valer vielle. Il re peut aissi qu'elles venvoilent phinter valers. Exemples: - len vitesse et le direction du vert en fanction I'm position me terne: v(e, e, z) = (ve)va de 183 -> 183. Plus generalent, kkun foretiler peut aller de le . Si p=1 on paule de churp sealeine (on scolaire = m nombre vécl)

Si p/1: on publi de chip vectorie F. S) Chaps scalantes On n'attach à l'étude des chups scalendes, Cad des fondren de 1ph_s/k. De farche rome enclidence. la fanction rome enclideen at un chup scalahe m 12. On la note 11. 1/2 et vn Exez note n = (n1, n2), on a # Uall= U(n1,n2) M2 = Vn2,n2. B) la nome 1 nn Eller, n=(n1, ---, nn), Marly = M(2/1, --, 20) M2 = [[2] N=2=> UNU1= |21+121. c) le nome do n E 182, M n M do = rip 12:). Lis II ya phishin façon de nomme les distances des 18ⁿ! Monts les roums retait Equivalentes entre elles, cà d'que U2U25C2 U2U25C2U2U65C3U2U1. doncé elles se comportent tantes vients

II.3) limiter et continuité huite: Soit f: R" - 1R, no EIR", lex, Che $f(n) = \ell \iff 4370, \exists n > 0, \forall n \in \mathbb{R}^n \neq n \rightarrow \infty$ $||n - n \circ n| < y \implies |f(n) - \ell| < 3$ €> 43>0,39>0, Hn € By. n (2019), \f(n)-l\<\. Cartinité en arpoint. fait continue en no on lin $f(n) = f(n_0)$. Exercise (45min).

1) f2 (n,y) = { 0 in ~ < 0} a) Desshur 12.
b) f2 ed-elle contine en
c) Donne l'ensemble des
Le f2 discontinuités

 $(3)_2) f_2(n,y) = \frac{nn(n+y)}{n+y}$ a) Donne l'essentale de définition de f_2 , Der b) On perse $f_2(x,y) = \int f_2(x,y) \sin(x,y) \in D_{f_2}$ fret-elle contine m 1km? Aid: in 2-00, nh(2)->2-23 3) afternember $f_3(n,y) = n + mn n$ fy(n,y) = n + mh y

J. 4) Dérivées pout leulles $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, $n_0 \in \mathbb{R}^n$, $k \in \{1, \dots, n\}$, On appelle dérivee publielle de fin ne par repport à la k-ien variable la qualité holte Clovseque elle lexiste $\frac{\partial f(x_0)}{\partial x_0} = \lim_{h \to 0} \frac{f(x_0 + te_k) - f(x_0)}{t} \in \mathbb{R}^{d}.$ $\hat{O}_{k} = (\hat{O}_{1}, \dots, \hat{O}_{1}, \hat{O}_{1}, \dots, \hat{O})$ ex: den 1/2 2=(2,5), $\frac{\partial f}{\partial n} \left(n_{01} y_{0} \right) = \lim_{n \to \infty} \frac{f(n_{1} y_{0}) - f(n_{01} y_{0})}{n - n_{0}}$ perte- 2 (20).

pente -= 27 (20,40) pente -= 27 (20,40) Exo. (18min) (alender los dérivées

A) $f_1(x,y) = n \text{ sub}(y)$ $(2)f_2(n,y) = x^2 - 3y$ 3) $f_3(n,y)=2n+1/2y-1$ Whome In

Seit f. 1k"— Ik 61 (tales sus Jérivées put, elles ex. West et rout définies ou 1k" . II.5) Evadeut. le gradiert de f définite per Df = (on) Of(xe) of m veeter de 1800 indiquent la direction de plus forte pente pour f. That is Cadque Of: neik" - Of(n) Eik"! Of n'eil pas in chap sealache, c'est in charp rectoriel (on charp de recteurs). Vecteurs).

(5) exemples: aller Jos la direction mil faut aller (1,1) per auguster of 2 he plu vite passible Un gradient gin semble en 20 part rigi frer. -> Un extrem local (minimon on mailin) -, he paid de selle.

LEEG, D 11-t) f(2) = t f(y) -= ((1-F)=x+fy)) (1-t) 2-ty : le graple de fre vitar au deodus de sep plant tanguets

Beit foconvexe on 10, no ERM, of E 62. Si Pf(20)=0, alm, no est le minu gloss de f m R". I.6.3) Alger. The de descente de grahent l'algarithme univert permet de troume ble à ER pour le quel une fonction fait minimele. - un point de dignet no EIR - une fonetion of Arietems convexe et - une tolerance me la guari-milité du gradient 9 - lue taité de pers &. Tal que MOf(2k) 1) } ?: relourner 2/2. 2 Of(2) et la diretion de fur forte montre au pont n,