Лабораторная работа №14

Модели обработки заказов

Хватов М. Г.

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
	3.1 Модель оформления заказов клиентов одним оператором	6
	3.2 Построение гистограммы распределения заявок в очереди	12
	3.3 Модель обслуживания двух типов заказов от клиентов в интернет-	
	магазине	17
	3.4 Модель оформления заказов несколькими операторами	22
4	Выводы	29

Список иллюстраций

3.1	Модель оформления заказов клиентов одним оператором	7
3.2	Отчёт по модели оформления заказов в интернет-магазине	8
3.3	Модель оформления заказов клиентов одним оператором с изме-	
	ненными интервалами заказов и времени оформления клиентов	10
3.4	Отчёт по модели оформления заказов в интернет-магазине с из-	
	мененными интервалами заказов и времени оформления клиентов	11
3.5	Построение гистограммы распределения заявок в очереди	13
3.6	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	14
3.7	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	14
3.8	Гистограмма распределения заявок в очереди	16
3.9	Модель обслуживания двух типов заказов от клиентов в интернет-	
	магазине	17
3.10	Отчёт по модели оформления заказов двух типов	18
3.11	Модель обслуживания двух типов заказов с условием, что число	
	заказов с дополнительным пакетом услуг составляет 30% от обще-	
	го числа заказов	20
3.12	Отчёт по модели оформления заказов двух типов заказов	21
3.13	Модель оформления заказов несколькими операторами	23
3.14	Отчет по модели оформления заказов несколькими операторами	24
3.15	Модель оформления заказов несколькими операторами с учетом	
	отказов клиентов	26
3.16	Отчет по модели оформления заказов несколькими операторами	
	с учетом отказов клиентов	27

1 Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

2 Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернетмагазине;
- модель оформления заказов несколькими операторами.

3 Выполнение лабораторной работы

3.1 Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) – ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегаtor_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром орегаtor — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем (рис. 3.1).

```
; operator
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт (рис. 3.2).

Model 1.2.1 - REPO	RT					
STAR	TIME	END TIN	ME BLOCKS	FACILITIES	STORAGES	
	0.000	480.00	00 9	1	0	
N	AME		VALUE			
OPERA:			10001.000			
OPERA:	ror_Q	1	10000.000			
LABEL	LOC BLO	CK TYPE	ENTRY COU	UNT CURRENT C	OUNT RETRY	
	1 GEN	ERATE	32	0	0	
	2 QUE	UE	32		0	
	3 SEI	ZE	32		0	
	4 DEP	ART	32	0	0	
	5 ADV	ANCE	32	1	. 0	
	6 REL	EASE	31	0	0	
	7 TER	MINATE	31	0	0	
	8 GEN	ERATE	1	0	0	
	9 TER	MINATE	1	0	0	
FACILITY	FNTRIFS UT	TT. AVF	TIME AVAIL	. OWNER PEND	NTER RETRY	DFI.AV
OPERATOR				33 0		
QUEUE	MAX CONT.	ENTRY ENTI	RY(0) AVE.C	CONT. AVE.TIM	E AVE.(-0)	RETRY
OPERATOR_Q	1 0	32	31 0.0	0.02	0.671	. 0
FEC XN PRI	BDT	ASSEM CU	URRENT NEX	T PARAMETER	VALUE	
33 0	489.786	33	5 6			
34 0		34	0 1			
35 0	960.000					

Рис. 3.2: Отчёт по модели оформления заказов в интернет-магазине

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования. Затем идёт информация об одноканальном устройстве FACILITY (оператор,

оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях:

- XN=33 порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;
- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;
- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;
- NEXT=6 номер блока, в который должен войти транзакт.

Упражнение

Изменим интервалы поступления заказов и время оформления клиентов (рис. 3.3).

```
; operator
GENERATE 3.14,1.7
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.3: Модель оформления заказов клиентов одним оператором с измененными интервалами заказов и времени оформления клиентов

После запуска симуляции получаем отчёт (рис. 3.4).

Model 1.3.1 - REPO	ORT						
	T TIME						
	0.000	480	.000	9	1	0	
N	AME		VA	LUE			
	TOR		10001				
OPERA	TOR_Q		10000	.000			
LABEL	T.OC. F	LOCK TYPE	ENT	RY COUN	IT CURRENT	COUNT RETRY	
		ENERATE				0 0	
		UEUE		152		32 0	
		EIZE		70		0 0	
		EPART		70		0 0	
		DVANCE		70		1 0	
		ELEASE		69		0 0	
		ERMINATE		69		0 0	
		ENERATE ERMINATE		1		0 0	
	9 1	ERMINATE		1		0 0	
FACILITY	ENTRIES	UTIL. AV	E. TIME	AVAIL	. OWNER PEN	ND INTER RETR	Y DELAY
OPERATOR	70	0.991	6.79	6 1	71	0 0 0	82
OUEUE	MAX CON	IT. ENTRY E	NTRY(0)	AVE.CO	ONT. AVE.TI	ME AVE.(-0) RETRY
QUEUE OPERATOR_Q	82 8	2 152	1	39.09	96 123.4	161 124.27	9 0
FEC XN PRI	BDT	ASSEM	CURREN	T NEXT	r paramete	R VALUE	
71 0		5 71					
154 0	483.33	0 154	0	1			
155 0		0 155					

Рис. 3.4: Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказ от клиентов (значение поля 0WNER=71), но оператор успел принять в обработку до окончания рабочего времени только 70 (значение поля ENTRIES=70). Полезность работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,796 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=82 в очереди находилось 82 ожидающих заявок от клиента;
- CONT=82 на момент завершения моделирования в очереди было 82 заявки;
- ENTRIES=82 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=39,096 заявок от клиентов в среднем были в очереди;
- AVE. TIME=123.461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=123,279 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

3.2 Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения ги-

стограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A,B,C,D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. 3.5).

```
Waittime QTABLE operator_q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator_q,1,Fin
SAVEVALUE Custnum+,1
ASSIGN Custnum,X$Custnum
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 3.5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы,

не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение CYA оператора Custnum.

Получим отчет симуляции и проанализируем его (рис. 3.6, 3.7).

	IME 000	END TIM 353.89	ME BLOCKS :			AGES
NAME			VALUE			
CUSTNUM		1	.0002.000			
FIN			10.000			
OPERATOR		1	.0003.000			
OPERATOR	Q	1	.0001.000			
WAITTIME		1	.000.000			
LABEL	TOC	BLOCK TYPE	FNTRY COUNT	T CHERENT	COUNT I	PETDY
India	1		102			
		TEST	102		0	0
		SAVEVALUE			0	0
		ASSIGN	55		0	0
	5	QUEUE	55			0
	6	SEIZE	54		1	0
	7	DEPART	53		0	0
	8	ADVANCE	53		0	0
	9	RELEASE	53		0	0
FIN	10	TERMINATE	100		0	0
FACILITY E	NTRIES	UTIL. AVE.	TIME AVAIL.	OWNER PEN	D INTER	R RETRY DELAY
OPERATOR	54	0.987	6.470 1	98	0 0	0 1
QUEUE	MAX C	ONT. ENTRY ENTR	RY(0) AVE.CO	NT. AVE.TI	ME AV	/E.(-0) RETRY
OPERATOR_Q	2	2 55	1 1.65	2 10.6	28	10.824 0

Рис. 3.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

TABLE WAITTIME	MEAN 10.709	STD.DEV. 2.702	RA	NGE	RETRY 0	FREQUENCY	CUM.%
			_	0.000)	1	1.89
		0	.000 -	2.000)	0	1.89
		2	.000 -	4.000)	1	3.77
		4	.000 -	6.000)	0	3.77
		6	.000 -	8.000)	4	11.32
		8	.000 -	10.000)	12	33.96
		10	.000 -	12.000)	17	66.04
		12	.000 -	14.000)	14	92.45
		14	.000 -	16.000)	4	100.00
SAVEVALUE CUSTNUM	RET		VALUE 55.000				
CEC XN PRI 98 0	M1 341.236		CURRENT 6	NEXT PAR	METER	VALUE	
30 0	011120	, ,,,		cusi	NUM	54.000	
FEC XN PRI 103 0	BDT 356.553	ASSEM 103	CURRENT 0	NEXT PARA	METER	VALUE	

Рис. 3.7: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля OWNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;

- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=1,652 заявок от клиентов в среднем были в очереди;
- AVE.TIME=10.628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=10,824 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок(17) обрабатывалось в диапазоне 10-12 минут.

В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму (рис. 3.8).

Рис. 3.8: Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок – 12-14 минут, 12 заявок – 8-10 минут, в остальных диапазонах 0-4 заявок.

3.3 Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй – заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE-DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE-RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие (рис. 3.9, 3.10).

```
Model 3.gps
ADVANCE 10,2
RELEASE operator
TERMINATE 0
 ; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
 ;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.9: Модель обслуживания двух типов заказов от клиентов в интернетмагазине

	суббо	га, июня 08,	2024	18:12:4	0			
STAR	T TIME	END	TIME	BLOCKS	FACILIT	IES S	TORAGES	
	0.000	480	.000	17	1		0	
	AME							
	TOR		1000					
OPERA	TOR_Q		1000	0.000				
LABEL	LOC	BLOCK TYPE	EN	TRY COU	NT CURRE	NT COU	NT RETRY	
		GENERATE		32		0	0	
	2	QUEUE		32		4	0	
	3	SEIZE		28		0	0	
	4	DEPART		28		0	0	
	5	ADVANCE		28		1	0	
	6	RELEASE		27		0	0	
	7	TERMINATE		27		0	0	
	8	GENERATE		15		0	0	
	9	QUEUE		15		3	0	
		SEIZE		12		0	0	
	11	DEPART		12		0	0	
	12	ADVANCE		12		0	0	
		ADVANCE		12		0	0	
	14	RELEASE		12		0	0	
	15	TERMINATE		12		0	0	
	16	GENERATE		1		0	0	
	17	TERMINATE		1		0	0	
ACILITY								
OPERATOR	40	0.947	11.3	65 1	42	0	0 0	7
UEUE OPERATOR_Q	MAX C	ONT. ENTRY E	NTRY (C) AVE.C	ONT. AVE	.TIME	AVE. (-0)	RETRY
OPERATOR Q	8	7 47	2	3.3	55 3	4.261	35.784	0
<u>-</u> -	_		_					
EC XN PRI	BDT	ASSEM	CURRE	NT NEX	T PARAM	ETER	VALUE	

Рис. 3.10: Отчёт по модели оформления заказов двух типов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок первого типа заказов с начала процедуры моделирования ENTRY COUNT = 32, а второго типа(с дополнительными услугами) ENTRY COUNT = 15; обработано 12+27 = 39;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля 0WNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=8 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=7 на момент завершения моделирования в очереди было 7 клиентов;
- ENTRIES=47 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- 'ENTRIES(0)=2 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=3,355 заявок от клиентов в среднем были в очереди;
- AVE. TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Упражнение

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку noextra Release operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты (переход к блоку extra ADVANCE 5,2) и только после этого является обработанным (рис. 3.11).

```
; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
TRANSFER 0.3,noextra,extra
extra ADVANCE 5,2
noextra RELEASE operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.11: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. 3.12).

	START TIME 0.000	END 48	TIME BLOO 0.000 11	CKS FACILI	TIES ST	TORAGES 0	
E P	NAME EXTRA NOEXTRA OPERATOR OPERATOR_Q		VALUE 7.00 8.00 10001.00 10000.00)0 0 0			
LABEL	LOC 1	BLOCK TYPE	ENTRY	COUNT CURR	ENT COUN	NT RETRY	
	2	GENERATE QUEUE		33	0	0	
	3	QUEUE SEIZE	3	13	0	0	
	4	DEPART		33	0	0	
		ADVANCE			0	0	
	_	TRANSFER		-	0		
EXTRA					1	0	
NOEXTRA	8	ADVANCE RELEASE	3	32	0		
	9	TERMINATE	3	32			
		GENERATE			0		
	11	TERMINATE		1	0		
PACTITAN	PMTDIF	יג וודדו א	זר דואר אז	ATT OWNED	וד חואיםם	NTED DETDV	DELYA
OPERATOR	ENTRIES 33	0.766	11.146	1 34	0	0 0	0
QUEUE	MAX C	CONT. ENTRY 1	ENTRY(0) AV	/E.CONT. AV	E.TIME	AVE.(-0)	RETRY
OPERATOR_(MAX C	0 33	25	0.054	0.781	3.220	0
FEC XN P	RI BDI	ASSEM	CURRENT	NEXT PARA	METER	VALUE	
34 (0 482. 0 487. 0 960.	925 34	7	8			
			0				
35 (0 487.	726 35	U	1			

Рис. 3.12: Отчёт по модели оформления заказов двух типов заказов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33, при этом из них второго типа (с дополнительными услугами) ENTRY COUNT = 8; обработано 32 заказа; Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля OWNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=33 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=25 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,054 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

3.4 Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интерва-

ле 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator, 1, сегмент моделирования времени остается без изменений (рис. 3.13).

Рис. 3.13: Модель оформления заказов несколькими операторами

Далее получим и проанализируем отчет (рис. 3.14).

I	IME ENI		FACILITIES ST	
NAME OPERATOR OPERATOR	l	VALUE 10000.000 10001.000		
LABEL	LOC BLOCK TYPE 1 GENERATE 2 QUEUE 3 ENTER 4 DEPART 5 ADVANCE 6 LEAVE 7 TERMINATE 8 GENERATE 9 TERMINATE	93 93 93 93 93 91 91	0 0 0 0 2	0 0 0 0 0
QUEUE OPERATOR_Q	MAX CONT. ENTRY 1 0 93			
STORAGE OPERATOR	CAP. REM. MIN. N			
FEC XN PRI 95 0 93 0	BDT ASSEN 480.457 95 482.805 93	0 1	T PARAMETER	VALUE

Рис. 3.14: Отчет по модели оформления заказов несколькими операторами

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ;

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=93 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=93 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,000 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE.(-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 93 заказа от клиентов, но не указано, сколько операторы успели принять в обработку. Полезность работы операторов составила 0,482. При этом среднее время занятости оператора составило 1,926 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q\$operator_q, 2, которая проверяет больше ли в очереди клиентов, чем два, если нет – клиент поступает на обработку, иначе

уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому увеличим время обработки заказов до 30 ± 2 мин., чтобы проверить результаты изменений модели (рис. 3.15).

```
operator STORAGE 4
GENERATE 5,2
TEST LE Q$operator_q,2
QUEUE operator_q
ENTER operator_1
DEPART operator_q
ADVANCE 30,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.15: Модель оформления заказов несколькими операторами с учетом отказов клиентов

Проанализируем полученный отчет (рис. ~ 3.16).

Model 4.3.1 - REPOR	т					
	TIME					
	0.000	480.000	10	0	1	
NA NA	ME		VALUE			
OPERAT	OR	100	00.000			
OPERAT	OR_Q	100	01.000			
LABEL	LOC BLOCK T	YPE E	NTRY COU	NT CURRENT C	OUNT RETRY	
	1 GENERAT		94	27		
	2 TEST		67	0	0	
	3 QUEUE		67		0	
	4 ENTER		64		0	
	5 DEPART		64	-	0	
	6 ADVANCE		64	-	0	
	7 LEAVE		60	-	0	
	8 TERMINA		60	-	0	
	9 GENERAT		1	0	-	
	10 TERMINA	TE	1	0	0	
QUEUE	MAX CONT. ENT	RY ENTRY(0) AVE.C	ONT. AVE.TIM	E AVE.(-0)	RETRY
OPERATOR_Q	3 3	67 4	2.7	19.34	7 20.576	27
STORAGE	CAP. REM. MIN	. MAX. E	NTRIES A	/L. AVE.C.	UTIL. RETRY D	ELAY
OPERATOR	4 0 0	4	64	1 3.885	0.971 0	3
FEC XN PRI	BDT AS	SEM CURR	ENT NEXT	r parameter	VALUE	
	480.736		1			
62 0	491.784		7			
63 0	491.929					
64 0	495.070	64 6	7			
65 0		65 6	7			
^7 ^	000 000	^7 ^	^			

Рис. 3.16: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры мо-

делирования ENTRY COUNT = 94; обработано 60 заказа; 27 человек отказались оставлять заявки, поскольку очередь была более 2ух заявок.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=3 в очереди находилось не более трех ожидающих заявок от клиента(как и было указано);
- CONT=3 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=67 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=4 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=2,701 заявок от клиентов в среднем были в очереди;
- AVE. TIME=19,347 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=20,576 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 64 заказов от клиентов. Полезность работы операторов составила 0,971. При этом среднее время занятости оператора составило 3,885 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

4 Выводы

В результате была реализована с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернетмагазине;
- модель оформления заказов несколькими операторами.