生产管理间歇一般资格。

北京邮电大学理学院

§ 1 汽车厂的生产计划

汽车厂生产三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润及工厂每月的现有量。

	小型	中型	大型	现有量
钢材 (吨)	1.5	3	5	600
劳动时间(小时)	280	250	400	60000
利润 (万元)	2	3	4	

- •制订月生产计划,使工厂的利润最大。
- · 如果生产某一类型汽车,则至少要生产80辆,那么最优的生产计划应作何改变?

模型建立

	小型	中型	大型	现有量
钢材	1.5	3	5	600
时间	280	250	400	60000
利润	2	3	4	100

决策变量

设每月生产小、中、大型汽车的数量分别为 x_1, x_2, x_3

目标函数(利润)

$$Max z = 2x_1 + 3x_2 + 4x_3$$

约束条件

原材料

$$1.5x_1 + 3x_2 + 5x_3 \le 600$$

 $280x_1 + 250x_2 + 400x_3 \le 60000$

非负约束

$$x_1, x_2, x_3 \ge 0$$

线性规 划模型 (LP)

$$Max$$
 $z = 2x_1 + 3x_2 + 4x_3$
 $s.t.$ $1.5x_1 + 3x_2 + 5x_3 \le 600$
 $280x_1 + 250x_2 + 400x_3 \le 60000$
 $x_1, x_2, x_3 \ge 0$

模型求解

结果为小数,怎么办?

ORIFCI	TVE FUNCTIO	N VALUE
1)	632.2581	
VARIAB	LE VALUE	REDUCED COST
X1	64.516129	0.000000
X2	167.741928	0.000000
X3	0 000000	0 946237

ROW SLACK OR SURPLUS DUAL PRICES

- 2) 0.000000
- 0.00000

0.731183 0.003226

- 1)舍去小数:取 x_1 =64, x_2 =167,算出目标函数值z=629,与LP最优值632.2581相差不大。
- 2) 试探: 如取 x_1 =65, x_2 =167; x_1 =64, x_2 =168等,计算函数值z,通过比较可能得到更优的解。
- 但必须检验它们是否满足约束条件。为什么?
- 3) 模型中增加条件: x₁,x₂,x₃ 均为整数,重新求解。

模型求解

Matlab:BINTPROG Binary integer programming

$$Max$$
 $z = 2x_1 + 3x_2 + 4x_3$
 $s.t.$ $1.5x_1 + 3x_2 + 5x_3 \le 600$
 $280x_1 + 250x_2 + 400x_3 \le 60000$
 x_1, x_2, x_3 为非负整数

IP可用LINDO直接求解

max 2x1+3x2+4x3 st 1.5x1+3x2+5x3<600 280x1+250x2+400x3<60000 end gin 3

IP 结果输出

OBJECTIVE FUNCTION VALUE

1) 632.0000

VARIABLE VALUE REDUCED COST

X1 64.000000 -2.000000 X2 168.000000 -3.000000

X3 0.000000 -4.000000

"gin 3"表示"前3个变量 为整数",等价于: gin x1 gin x2 gin x3

IP 的最优解 x_1 =64, x_2 =168, x_3 =0, 最优值z=632

问题推广

若生产某类汽车,则至少生产80辆,求生产计划。

模型建立

决策变量、目标函数、以及原材料约束不变

方法1

*x*1,*x*2,, *x*3=0 或 ≥80

分解为8个LP子模型

$$x_1 = 0, x_2 = 0, x_3 \ge 80$$

$$x_1 = 0, x_2 \ge 80, x_3 \ge 80$$

$$x_1 \ge 80, x_2 \ge 80, x_3 = 0$$

$$x_1 \ge 80, x_2 \ge 80, x_3 \ge 80$$

$$x_1 = 0, x_2 \ge 80, x_3 = 0$$

$$x_1 \ge 80, x_2 = 0, x_3 = 0$$

$$x_1 \ge 80, x_2 = 0, x_3 \ge 80$$

$$x_1, x_2, x_3 = 0$$

$$x_1, x_2, x_3 = 0$$

$$x_1 = 0, x_2 \ge 80, x_3 \ge 80$$

$$x_1 \ge 80, x_2 \ge 80, x_3 \ge 80$$

显然不合条件,舍去

不合约束条件

$$1.5x_1 + 3x_2 + 5x_3 \le 600$$
 舍去

去掉其中3个子模型,然后逐一求解其余5个模型, 比较目标函数值,再加上整数约束,得最优解:

 $x_1=80$, $x_2=150$, $x_3=0$, 最优值 z=610

方法2

引入0-1变量,化为整数规划

Y3

M为大的正 数,可取 1000

LINDO中对0-1变量的限定:

int y1

int y2

int y3

OBJECTIVE FUNCTION VALUE

1) 610.0000

0.000000

VARIABLE VALUE REDUCED COST 80.000000 -2.000000 X1**X2** 150,000000 -3.000000 0.000000 **X3** -4.000000 0.000000 **Y**1 1.000000 **Y2** 1.000000 0.000000

0.000000

最优解同前

方法3

化为非线性规划

$$x_1 = 0$$
 或 ≥ 80 $x_1(x_1 - 80) \geq 0$ $x_2 = 0$ 或 ≥ 80 $x_2(x_2 - 80) \geq 0$ $x_3 = 0$ 或 ≥ 80 $x_3(x_3 - 80) \geq 0$

非线性规划(Non- Linear Programming,简记NLP)

NLP虽然可用现成的数学软件求解(如LINGO, MATLAB),但是其结果常依赖于初值的选择。

实践表明,本例仅当初值非常接近上面方法算出的最优解时,才能得到正确的结果。

§ 2 原油的采购与加工

问题背景

石油化学工业简称石油化工,是化学工业的重要组成部分,在国民 经济的发展中有重要作用,是我国的支柱产业部门之一。石油化工 指以石油和天然气为原料,生产石油产品和石油化工产品的加工工 业。石油产品又称油品,主要包括各种燃料油(汽油、煤油、柴油 等)和润滑油以及液化石油气、石油焦碳、石蜡、沥青等。生产这 些产品的加工过程常被称为石油炼制,简称炼油。石油化工产品以 炼油过程提供的原料油进一步化学加工获得。生产石油化工产品的 第一步是对原料油和气(如丙烷、汽油、柴油等)进行裂解,生成 以乙烯、丙烯、丁二烯、苯、甲苯、二甲苯为代表的基本化工原料。 第二步是以基本化工原料生产多种有机化工原料(约200种)及合 成材料(塑料、合成纤维、合成橡胶)。这两步产品的生产属于石 油化工的范围。有机化工原料继续加工可制得更多品种的化工产品, 习惯上不属于石油化工的范围。在有些资料中,以天然气、轻汽油、 重油为原料合成氨、尿素,甚至制取硝酸也列入石油化工。

现为一汽油生产企业决定原油的采购和汽油的加工方案。

用原油A和原油B混和加工成两种汽油

市场上可买到不超过1500吨的原油A:

- 购买量不超过500吨时的单价为10000元/吨;
- · 购买量超过500吨但不超过1000吨时,超过500吨的部分8000元/吨;
- 购买量超过1000吨时,超过1000吨的部分6000元/吨。

应如何安排原油的采购和加工?

问题分析

- 利润:销售汽油的收入 购买原油A的支出
- · 难点: 原油A的购价与购买量的关系较复杂

决策变量

原油A的购买量,原油A,B生产汽油甲,乙的数量

目标函数

利润(千元) $c(x) \sim 购买原油A的支出$

$$Max z = 4.8(x_{11} + x_{21}) + 5.6(x_{12} + x_{22}) - c(x)$$

c(x)如何表述?

- · *x*≤500吨单价为10千元/吨;
- · 500吨≤ x≤ 1000吨,超过500吨的8千元/吨;
- •1000吨≤x≤1500吨,超过1000吨的6千元/吨。

$$c(x) = \begin{cases} 10x & (0 \le x \le 500) \\ 8x + 1000 & (500 \le x \le 1000) \\ 6x + 3000 & (1000 \le x \le 1500) \end{cases}$$

约束条件

$$x_{11} + x_{12} \le 500 + x$$

$$x_{21} + x_{22} \le 1000$$

$$x \le 1500$$

汽油含原油A的比例限制

$$\frac{x_{11}}{x_{11} + x_{21}} \ge 0.5 \iff x_{11} \ge x_{21}$$

$$\frac{x_{12}}{x_{12} + x_{22}} \ge 0.6 \iff 2x_{12} \ge 3x_{22}$$

建立模型

$$Max \quad z = 4.8(x_{11} + x_{21}) + 5.6(x_{12} + x_{22}) - c(x)$$

$$where \quad c(x) = \begin{cases} 10x & (0 \le x \le 500) \\ 8x + 1000 & (500 \le x \le 1000) \\ 6x + 3000 & (1000 \le x \le 1500) \end{cases}$$

$$x_{11} + x_{12} \le 500 + x$$

$$x_{21} + x_{22} \le 1000$$

$$x \le 1500$$

$$x_{11} \ge x_{21}$$

$$2x_{12} \ge 3x_{22}$$

模型求解

- ❖ 目标函数中c(x)不是线性函数,是非线性规划;
- ❖ 对于用分段函数定义的c(x),一般的非线性规划软件 也难以输入和求解;
- ❖ 想办法将模型化简,用现成的软件求解。

方法1

 x_1, x_2, x_3 ~以价格10, 8, 6(千元/吨) 采购A的吨数

$$x = x_1 + x_2 + x_3$$
, $c(x) = 10x_1 + 8x_2 + 6x_3$

目标函数

$$Max$$
 $z = 4.8(x_{11} + x_{21}) + 5.6(x_{12} + x_{22}) - (10x_1 + 8x_2 + 6x_3)$

- · 500吨≤x≤1000吨,超过500吨的8千元/吨
 - ·1000吨≤x≤1500吨,超过1000吨的6千元/吨

只有当以10千元/吨的价格购买 $x_1=500$ (吨)时,才能以8千元/吨的价格购买x,

$$x_1 = 500, x_2 > 0$$

$$x_1 < 500, x_2 = 0$$

只有当以8千元/吨的价格购买 $x_2=500$ (吨)时,才能以6千 元/吨的价格购买 x_{3}

$$x_2 = 500, x_3 > 0$$

$$x_2 < 500, x_3 = 0$$

增加约束 🖵

$$(x_1 - 500)x_2 = 0$$

$$(x_2 - 500)x_3 = 0$$

$$0 \le x_1, x_2, x_3 \le 500$$

非线性规划模型,可以用LINGO求解

end

```
Model:
Max = 4.8 \times x11 + 4.8 \times x21 + 5.6 \times x12
+5.6*x22 - 10*x1 - 8*x2 - 6*x3;
x11+x12 < x + 500;
x21+x22 < 1000;
x11 - x21 > 0;
2*x12 - 3*x22 > 0;
x=x1+x2+x3;
(x1 - 500) * x2 = 0;
(x2 - 500) * x3=0;
x1 < 500;
x2 < 500;
x3 < 500;
x > 0;
x11 > 0;
x12 > 0;
x21 > 0;
x22 > 0;
x1 > 0;
x^2 > 0;
x3 > 0;
```

方法1: LINGO求解

Objective value: 4800.000 Variable Value **Reduced Cost X11** 500.0000 0.0000000E+000.0000000E+00 **X21** 500,0000 0.000000E+00 X12 0.0000000E+00X22 0.0000000E+00 0.000000E+00 X1 0.1021405E-13 10.00000 X2 0.000000E+00 8.000000 X3 0.0000000E+00 6.000000 X = 0.0000000E + 000.0000000E+00

用库存的500吨原油A、500吨原油B 生产汽油甲,不购买新的原油A, 利润为4,800千元。

LINGO得到的是局部最优解,还能得到更好的解吗?

方法2

y₁, y₂, y₃=1~以价格10, 8, 6(千元/吨)采购A

 x_1, x_2, x_3 ~以价格10, 8, 6(千元/吨) 采购A的吨数

$$500 y_2 \le x_1 \le 500 y_1$$

增加约束

$$500 y_3 \le x_2 \le 500 y_2$$

$$x_3 \le 500 \, y_3$$

$$y_1, y_2, y_3 = 0$$
 或1

$$y=0 \rightarrow x=0$$

$$x>0 \rightarrow y=1$$

0-1线性规划 模型,可用 LINDO求解

OBJECTI	VE FUNCTION	VALUE
1)	5000.000	
VARIAB	LE VALUE	REDUCED
COST		
Y1	1.000000	0.000000
Y2	1.000000	2200.000000
Y3	1.000000	1200.000000
X11	0.000000	0.800000
X21	0.000000	0.800000
X12	1500.000000	0.000000
X22	1000.000000	0.000000
X1	500.000000	0.000000
X2	500.000000	0.000000
X3	0.000000	0.400000
\mathbf{X}	1000.000000	0.000000

购买1000吨原油A,与库存的500吨原油A和1000吨原油B一起,生产汽油乙,利润为5,000千元。

优于方法1的结果

方法3

直接处理分段线性函数c(x)

$$c(x) = \begin{cases} 10x & (0 \le x \le 500) & 12000 \\ 8x + 1000 & (500 \le x \le 1000) \\ 6x + 3000 & (1000 \le x \le 1500) & 5000 \end{cases}$$

记x轴上的分点为 b_1 =0, b_2 =500, b_3 =1000, b_4 =1500,因为c(x)在[b_1 , b_2]是线性的,可以写出其表达式.

$$b_1 \le x \le b_2$$
, $x = z_1 b_1 + z_2 b_2$, $z_1 + z_2 = 1$, $z_1, z_2 \ge 0$, $c(x) = z_1 c(b_1) + z_2 c(b_2)$.

c(x)在[b_2,b_3]是线性的,可以写出其表达式

$$b_2 \le x \le b_3$$
, $x = z_2b_2 + z_3b_3$, $z_2 + z_3 = 1$, $z_2, z_3 \ge 0$, $c(x) = z_2c(b_2) + z_3c(b_3)$.

c(x)在[b_3,b_4]是线性的,可以写出其表达式

$$b_3 \le x \le b_4$$
, $x = z_3 b_3 + z_4 b_4$, $z_3 + z_4 = 1$, $z_3, z_4 \ge 0$, $c(x) = z_3 c(b_3) + z_4 c(b_4)$.

$$b_k \le x \le b_{k+1}, x = z_k b_k + z_{k+1} b_{k+1}$$

 $z_k + z_{k+1} = 1, z_k, z_{k+1} \ge 0,$
 $c(x) = z_k c(b_k) + z_{k+1} c(b_{k+1}).$

$$b_k \le x \le b_{k+1} \longrightarrow y_k = 1$$
, 否则, $y_k = 0$

$$z_1 \le y_1, z_2 \le y_1 + y_2, z_3 \le y_2 + y_3, z_4 \le y_3$$

 $z_1 + z_2 + z_3 + z_4 = 1, \quad z_k \ge 0 \ (k = 1, 2, 3, 4)$
 $y_1 + y_2 + y_3 = 1, \quad y_1, y_2, y_3 = 0$ 或 1
 $x = z_1b_1 + z_2b_2 + z_3b_3 + z_4b_4$

IP模型,LINDO求解, 得到的结果与方法2相同.

 $c(x) = z_1 c(b_1) + z_2 c(b_2) + z_3 c(b_3) + z_4 c(b_4)$

处理分段线性函数,方法3更具一般性

§ 3 用Matlab求解无约束规划和非线性规划问题

无约束极小化问题的标准型为 $\min F(x)$

一元函数无约束极小化问题

 $\min f(x) \qquad a \le x \le b$

X = fminbnd(fun,a,b)

X = fminbnd(fun,a,b,options)

[X, fval] = fminbnd(fun,a,b)

[X, fval] = fminbnd(fun,a,b,options)

fminbnd函数的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并且只能给出局部最优解。

例1 求函数f=2exp(-x)sinx 在0<x<8中的最大值和最小值。

建立M文件 wys1.m

```
f = '2*exp(-x).*sin(x)';
fplot(f,[0,8]) %作图语句
[xmin,ymin]=fminbnd(f,0,8)
f1 = '-2*exp(-x).*sin(x)';
[x1min,y1min]=fminbnd(f1,0,8);
xmax = x1min
ymax = -y1min
```


xmin = 3.9270 ymin = -0.0279 xmax = 0.7854 ymax = 0.6448

例2 对边长3m的正方形铁板,在四个角剪去相等的小正方形以制成方形的无盖水槽,问如何剪法使水槽的容积最大?

设剪去的正方形的边长为xm,则水槽的容积为 $(3-2x)^2x$


```
建立M文件 wys2.m
f= '-(3-2*x).^2*x';
[x, fval]=fminbnd(f,0,1.5);
xmax=x
fmax=-fval
```

xmax = 0.5000

fmax = 2.0000

剪去正方形的边长为0.5m时水槽的容积最大,最大容积为2m³.

多元函数无约束优化问题

min F(X)

X为n维变量。

X = fminunc(fun,x0)

X = fminsearch(fun,x0)

X = fminunc(fun, x0, options)

X = fminsearch(fun, x0, options)

[X, fval]=fminunc(fun,x0)

[X, fval] = fminsearch(fun,x0)

例3 求Rosenbrock函数f(x1,x2)=100(x2-x1²) ²+(1-x1) ² 的极小值点。

为了获得直观认识,先绘制Rosenbrock函数的三维图像和等高线图。

```
[x,y]=meshgrid(-2:0.01:2, -1:0.01:3);
z=100*(y-x.^2).^2+(1-x).^2;
subplot(1,2,1);
mesh(x,y,z); title('Rosenbrock Function');
subplot(1,2,2);
contour(x,y,z,20); drawnow
title('Contour of Rosenbrock');
hold on
plot(-1.2,2,'o'); text(-1.2,2,'start point')
plot(1,1,'o'); text(1,1,'solution')
```


求解极值的程序

```
f='100*(x(2)-x(1)^2)^2+(1-x(1))^2';
[x, fval, exitflag, output]=fminsearch(f,[-1.2,2])
```

```
x = 1.0000 1.0000

fval = 1.9151e-010

exitflag = 1

output =
```

iterations: 108

funcCount: 202

algorithm: 'Nelder-Mead simplex direct search'

EMP7

• 例4(产品销量的最佳安排问题) 某厂 生产一种产品有甲、乙两个牌号,讨论 在产销平衡的情况下如何确定各自的产 量,使总利润最大。所谓产销平衡指的 是工厂的产量等于市场的销量。

设 z(x₁,x₂)表示总利润

设 p₁,q₁,x₁分别表示甲的价格、成本、销量。

设 p₂,q₂,x₂分别表示乙的价格、成本、销量。

问题分析

利润既取决于销量和价格,也依赖于产量和成本。按照市场规律,甲的价格p1会随其销量的增长而降低,同时乙的销量的增长也会使甲的价格有稍微的下降,可以简单的假设价格与销量成线性关系;对乙同理,即:

甲的成本随其产量的增长而降低,且有一个渐进值,可以假设成本于产量成负指数关系,即:

$$q_{1} = r_{1}e^{-\lambda_{1}x_{1}} + c_{1}, r_{1}, \lambda_{1}, c_{1} > 0$$

$$q_{2} = r_{2}e^{-\lambda_{2}x_{2}} + c_{2}, r_{2}, \lambda_{2}, c_{2} > 0$$

总利润 $\mathbf{z}(\mathbf{x}_1,\mathbf{x}_2) = (\mathbf{p}_1 - \mathbf{q}_1)\mathbf{x}_1 + (\mathbf{p}_2 - \mathbf{q}_2)\mathbf{x}_2$

根据大量统计数据,可以确定待定系数为:

建立模型

求甲、乙两个牌号的产量 x_1,x_2 :,使总利润最大,即:

$$\begin{array}{c} \text{max} \ \ z = (p_1 \text{-} q_1) x_1 + (p_2 \text{-} q_2) x_2 \\ p_1 = 100 - x_1 \text{-} 0.1 x_2 \\ p_2 = 280 - 0.2 x_1 \text{-} 2 x_2 \\ q_1 = 30 \text{*} \exp(-0.015 x_1) + 20 \\ q_2 = 100 \text{*} \exp(-0.02 x_2) + 30 \end{array}$$

模型求解

为了求解该模型先忽略成本,并令 $a_{12}=0$, $a_{21}=0$, 问题转化为求:

$$\mathbf{z}_1 = (\mathbf{b}_1 - \mathbf{a}_{11} \mathbf{x}_1) \mathbf{x}_1 + (\mathbf{b}_2 - \mathbf{a}_{22} \mathbf{x}_2) \mathbf{x}_2$$
的极大值。

函数 $z_1=(b_1-a_{11}x_1)x_1+(b_2-a_{22}x_2)x_2$ 的极值点为

$$x_1 = b_1/2a_{11} = 50$$

$$x_2 = b_1/2a_{11} = 70$$

将(50,70)作为 原问题的初始值求 解原问题

等 软件求解

建立M文件 fun.m function f=fun(x)
 y1=((100-x(1)-0.1*x(2))-(30*exp(-0.015*x(1)) +20))*x(1);
 y2=((280-0.2*x(1)-2*x(2))-(100*exp(-0.02*x(2)) +30))*x(2);
 f=-y1-y2;

• 主程序如下:

x0=[50,70];

x=fminunc('fun',x0)

z=-fun(x)

⁸ 模型结果

- * x = 23.9025 62.4977
- z =6.4135e+003

即甲的产量为 23.9025, 乙的产量为62.4977 最大利润为 6413.5

EMP7

二次规划的软件求解

二次规划的标准型为:
min Z = 1/2 x^THx+C^Tx
s.t. Ax ≤b
A1·x = b1
LB ≤x ≤UB

用Matlab求解二次规划的标准型,其输入格式为:

X = quadprog(H,C,A,b)

X = quadprog(H,C,A,b,A1,b1)

X = quadprog(H,C,A,b,A1,b1,LB,UB)

X = quadprog(H,C,A,b,A1,b1,LB,UB,X0)

该二次规划的标准型为:

$$\min \quad z = \frac{1}{2} (x_1, x_2) \begin{vmatrix} 2 & -2 \\ -2 & 4 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} + \begin{bmatrix} -2 \\ -6 \end{bmatrix}^T \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} \\
s.t. \quad \begin{vmatrix} 1 & 1 \\ -1 & 2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} \le \begin{vmatrix} 2 \\ 2 \end{vmatrix} \\
\begin{vmatrix} 0 \\ 0 \end{vmatrix} \le \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$$

程序

- H=[2 -2;-2 4];
- C=[-2;-6];
- ◆ A=[1 1; -1 2];
- b=[2;2];
- A1=[];b1=[];
- LB=[0;0];UB=[];
- [x,z]=quadprog(H,C,A,b,A1,b1,LB,UB)

结果

$$x = 0.8 1.2$$
 $z = -7.2$

非线性规划的软件求解

非线性规划的标准型为:
min F(X)
s.t. AX ≤b
A1·X = b1
G(X) ≤0
G1(X)=0
LB ≤X ≤UB

将问题化为 Matlab要 求的标准型

—— 将目标函数建 _ 立成为M文件 将约束条件中 →非线性约束建 立成为M文件

建立主程序。(fmincon)

例5 min
$$f(x_1,x_2)=-x_1-2x_2+0.5x_1^2+0.5x_2^2$$

s.t. $2x_1+3x_2 \le 6$
 $x_1+4x_2 \le 5$
 $x_1 \ge 0$, $x_2 \ge 0$

上非线性规划的标准型为

min
$$f = -x_1 - 2x_2 + \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

$$s.t \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 6 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \le \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

新件求解

◆ 建立M文件fun1.m

```
function f=fun1(x)
```

$$f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2;$$

• 建立主程序

```
x0=[1;1];A=[23;14];b=[6;5];
```

[x,fval]=fmincon(fun1,x0,A,b,A1,b1,LB,UB)

• 运算结果为:

$$x = 0.7647 1.0588$$

$$fval = -2.0294$$

例6 (选址与供应问题)

某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系a,b表示,距离单位:公里)以及水泥的日用量d吨如下表所示:

	1	2	3	4	5	6
а	1.25	8.75	0.5	5.75	3	7.25
b	1.25	0.75	4.75	5	6.5	7.25
d	3	5	4	7	6	11

目前有2个临时的料场位于A(5,1)和B(2,7)处,日储量各有20吨。 假设从料场到工地之间均有直线道路相连。

- (1) 确定每天的供应计划,使总的运输千米数最小。
- (2)为了进一步减少吨千米数,打算舍弃这两个临时料场, 改建两个新的,日储量各有20吨。确定新料场的位置,使节 省的运输千米数最大。

建立模型

- ◆ 记工地的位置为(a_i,b_i),
- ◆ 水泥的日用量为d_i, i=1,2,...,6;
- ◆ 料场的位置为 (x_j, y_j),
- ◆ 日储量为e_i=20, j=1,2;
- 从料场j到工地i的运送量为 X_{ij} 。

目标函数: min
$$f = \sum_{j=1}^{2} \sum_{i=1}^{6} X_{ij} \sqrt{(x_j - a_i)^2 + (y_j - b_i)^2}$$
 约束条件:
$$\sum_{j=1}^{2} X_{ij} = d_i \qquad i = 1, 2, \dots, 6$$

$$\sum_{i=1}^{6} X_{ij} \le e_j \qquad j = 1, 2$$

当用临时料场时,决策变量为 X_{ij} ; 当不使用临时料场时决策变量为 X_{ij} , x_j , y_j 。

模型求解

◆ 使用临时料场的情形

min
$$f = \sum_{j=1}^{2} \sum_{i=1}^{6} X_{ij} \sqrt{(x_j - a_i)^2 + (y_j - b_i)^2}$$

s.t. $\sum_{j=1}^{2} X_{ij} = d_i$ $i = 1, 2, ..., 6$
 $\sum_{i=1}^{6} X_{ij} \le e_j$ $j = 1, 2$

使用临时料场A(5,1),B(2,7)时,求从料场j向工地i的运送量为X_{ij},在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千数最小,这是线性规划问题。

程序service.m

- A=[111111000000;00000011111];
- B=e';
- b1=d';
- LB=zeros(1,12);UB=[];x0=[1 2 3 0 1 0 0 1 0 1 0 1];
- [x,fval]=linprog(CC,A,B,A1,b1,LB,UB,x0);

结果

- 计算结果为
- \star x = [3.0000 5.0000 0.0000 7.0000 0.0000 1.0000
- 0.0000 0.0000 4.0000 0.0000 6.0000 10.0000]
- fval = 136.2275

料场向6个工地运料方案为

	1	2	3	4	5	6
料场A	3.0000	5.0000	0.0000	7.0000	0.0000	1.0000
料场B	0.0000	0.0000	4.0000	0.0000	6.0000	10.0000

总的吨千米数为136.2275

改建两个新料场的情形

min
$$f = \sum_{j=1}^{2} \sum_{i=1}^{6} X_{ij} \sqrt{(x_j - a_i)^2 + (y_j - b_i)^2}$$

s.t. $\sum_{j=1}^{2} X_{ij} = d_i$ $i = 1, 2, ..., 6$
 $\sum_{i=1}^{6} X_{ij} \le e_j$ $j = 1, 2$

改建两个料场时,同时要求确定料场的位置(x_j,y_j)和从料场j向工地i的运送量为X_{ij},在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千数最小,这是非线性规划问题。

符号约定

同时要求确定料场的位置(x_j, y_j)和从料场j向工地i的运送量为X_{ii}。设

$$X_{11}=X_1$$
 $X_{21}=X_2$ $X_{31}=X_3$ $X_{41}=X_4$ $X_{51}=X_5$ $X_{61}=X_6$ $X_{12}=X_7$ $X_{22}=X_8$ $X_{32}=X_9$ $X_{42}=X_{10}$ $X_{52}=X_{11}$ $X_{62}=X_{12}$ $X_{1}=X_{13}$ $Y_{1}=X_{14}$ $X_{2}=X_{15}$ $Y_{2}=X_{16}$

程序

```
先编写M文件material.m定义目标函数
function f=material(x)
a=[1.25 8.75 0.5 5.75 3 7.25];b=[1.25 0.75 4.75 5 6.5 7.75];
f1=0;
for i=1:6
  s(i)=sqrt((x(13)-a(i))^2+(x(14)-b(i))^2);
  f1=s(i)*x(i)+f1;
end
f2=0;
for i=7:12
  s(i)=sqrt((x(15)-a(i-6))^2+(x(16)-b(i-6))^2);
  f2=s(i)*x(i)+f2;
end
f=f1+f2;
```


取初值为线性规划的计算结果以及临时料场的坐标

x = [35070100406105127]

编写主程序service2.m

```
clear
x0 = [35070100406105127]';
0 1;
B=[20;20];
0;0010000010000000;000100000100000
0;000010000100000;0000010000100001;
b1=[3 5 4 7 6 11]';
LB=[zeros(12,1);-inf;-inf;-inf];
UB=[];
[x,fval,exitflag]=fmincon('material',x0,A,B,A1,b1,LB,UB)
```

结果

 计
 x = [3.0000 4.9994 4.0000 7.0000 1.0006 -0.0000

 算
 0 0.0006 0 0 4.9994 11.0000

 结
 fval = 89.8851

 果
 exitflag = 1

两个新料场的坐标为(5.6774 ,4.9055)和(7.2499 ,7.7500) 料场向6个工地运料方案为

	1	2	3	4	5	6
料场A	3.0000	4.9994	4.0000	7.0000	1.0006	0.0000
料场B	0.0000	0.0006	0.0000	0.0000	4.9994	11.000 0

总的吨千米数为89.8851

§ 4 投资的收益和风险

问题的提出

市场上有n种资产 S_i (i=1,2,...,n)可以选择作为 投资项目,现用数额为M的相当大的资金作一个时 期的投资。这n种资产在这一时期内购买 S_i 的平均收 益率为 r_i ,风险损失率为 q_i 。投资越分散,总的风 险越小,总体风险可用投资的 S_i 中最大的一个风险 来度量。

购买 S_i 要付交易费(费率 p_i),当购买额不超过给定值 u_i 时,交易费按购买 u_i 计算。另外,假定同期银行存款利率是 r_0 (r_0 = 5%),既无交易费又无风险费。

已知n=4时相关数据如下:

Si	收益r _i (%)	风险q _i (%)	费率p _i (%)	u _i (元)
S ₁	28	2.5	1	103
S ₂	21	1.5	2	198
S ₃	23	5.5	4.5	52
S ₄	25	2.6	6.5	40

请给该公司设计一种投资组合方案,即用给定的资金M,有选择地购买若干种资产或存银行生息,使净收益尽可能大,且总体风险尽可能小。

建模假设

- ◆ 投资数额M相当大,为了便于计算,假设M=1。
- ◆ 投资越分散,总的风险越小。
- ◆ 总体风险用投资风险中S_i最大的一个风险来度量。
- ◆ N种资产S_i之间是相互独立的。
- ◆ 在投资的这一时期内, r_i, q_i, p_i, r₀为定值,不受意 外因素的影响。
- ◆ 净收益和总体风险只受r_i,q_i,p_i影响,不受其他因素 干扰。

模型符号

- → S_i 第i种投资项目,如股票,债券等
- ◆ r_i 第i种投资项目的平均收益率
- ◆ q 第i种投资项目的风险损失率
- ◆ pi 第i种投资项目的交易费率
- ◆ X 第i种投资项目的投资金额
- ◆ r_n 同期银行利率
- ◆ a 投资风险度
- ◆ Q 总体收益
- ▲Q 总体收益的增量

问题分析

决策变量

确定每个投资项目的资金: x_i

风险最小

总体风险用投资风险中S_i最大的一个风险来度量。

目标函数

 $\min\{\max\{ q_i x_i | i = 0,1,2,...,n \} \}$

净收益为投资收益减去购买所付的交易费。

约束条件

资金限制

非负约束

$$\sum_{i=0}^{n} (1+p_i)x_i = M$$

$$\mathbf{x}_i \ge 0 \quad \mathbf{i} = \mathbf{0}, \mathbf{1}, \mathbf{2}, \dots, \mathbf{n}$$

问题分析

购买所付的交易费Si是一个分段函数,即

交易费=
$$\begin{cases} p_{i}x_{i} & x_{i} > u_{i} \\ p_{i}u_{i} & x_{i} \leq u_{i} \end{cases}$$

题目所定的定值 u_i 是相对于总投资M很小的数, p_iu_i 更小,可以忽略不计 (u_i <<M)。这样购买 S_i 的净收益为

$$(r_i - p_i)x_i$$

模型建立

要使净收益尽可能大,总体风险尽可能小,这是一个多目标的规划模型:

$$\max \sum_{i=0}^{n} (r_i - p_i) x_i$$

$$\min \max \{q_i x_i | i = 0, 1, 2, ..., n\}$$

$$s.t. \sum_{i=0}^{n} (1 + p_i) x_i = M$$

$$x_i \ge 0 \quad i = 0, 1, 2, ..., n$$

模型简化

在实际投资中,投资者承受风险的程度不一样,若给风险定一个界限a,使得最大的一个风险 $q_ix_i/M \le a$,可找到相应的投资方案。这样就把多目标变成一个目标的线性规划。

模型一固定风险水平,优化收益

$$\max \qquad Q = \sum_{i=0}^{n} (r_i - p_i) x_i$$

$$s.t. \quad (q_i x_i) / M \le a$$

$$\sum_{i=0}^{n} (1 + p_i) x_i = M$$

$$x_i \ge 0 \quad i = 0,1,2,...,n$$

投资者希望总盈利至少达到水平k以上,在风险最小的情况下可找到相应的投资方案。这样就把多目标变成一个目标的线性规划。

模型二

固定盈利水平,优化风险

$$\begin{aligned} & \min & & R = \max\{q_i x_i\} \\ & s.t. & & \sum_{i=0}^n (r_i - p_i) x_i \geq k \\ & & & \sum_{i=0}^n (1 + p_i) x_i = M \\ & & & & x_i \geq 0 \quad i = 0, 1, 2, ..., n \end{aligned}$$

投资者在权衡资产风险和预期收益两方面时,希望选择一个令自己满意的投资组合。因此对风险、收益赋予权重S(0 < S ≤1)。S称为投资偏好系数。这样就把多目标变成一个目标的线性规划。

模型三

权衡收益和风险(加权模型)

$$\begin{aligned} & \min \quad S\{\max\{q_i x_i\}\} - (1 - S) \sum_{i=0}^{n} (r_i - p_i) x_i \\ & s.t. \quad \sum_{i=0}^{n} (1 + p_i) x_i = M \\ & x_i \geq 0 \quad i = 0, 1, 2, ..., n \end{aligned}$$

模型求解

模型一的求解

Si	r _i (%)	q _i (%)	p _i (%)	u _i (元)
S ₁	28	2.5	1	103
S ₂	21	1.5	2	198
S ₃	23	5.5	4.5	52
S ₄	25	2.6	6.5	40

$$\max \ Q = \sum_{i=0}^{n} (r_i - p_i) x_i$$
s.t. $(q_i x_i) / M \le a$

$$\sum_{i=0}^{n} (1 + p_i) x_i = M$$

$$x_i \ge 0 \quad i = 0, 1, 2, ..., n$$

$$\min \quad f = -0.05 x_0 - 0.27 x_1 - 0.19 x_2 - 0.185 x_3 - 0.185 x_4$$

$$\begin{cases} x_0 + 1.01 x_1 + 1.02 x_2 + 1.045 x_3 + 1.065 x_4 = 1 \\ 0.025 x_1 & \leq a \\ 0.015 x_2 & \leq a \\ 0.055 x_3 & \leq a \\ x_i \geq 0 \quad i = 0,1,2,...,4 \end{cases}$$

 $\begin{aligned} & \text{min} \quad f = -0.05 \, x_0 - 0.27 \, x_1 - 0.19 \, x_2 - 0.185 \, x_3 - 0.185 \, x_4 \\ & x_0 + 1.01 \, x_1 + 1.02 \, x_2 + 1.045 \, x_3 + 1.065 \, x_4 = 1 \\ & 0.025 \, x_1 & \leq a \\ & 0.015 \, x_2 & \leq a \\ & 0.055 \, x_3 & \leq a \\ & x_i \geq 0 \quad i = 0, 1, 2, ..., 4 \end{aligned}$

由于a是任意给定的风险度,到底怎样给定没有一个准则,不同的投资者有不同的风险度。

对不同的风险度的处理:从a=0开始,以步长 Δa=0.001进行循环搜索,编制程序进行计算。

xxghexm1.m

```
a=0;
while(1.1-a)>1
  c = [-0.05 - 0.27 - 0.19 - 0.185 - 0.185];
  Aeq=[1 1.01 1.02 1.045 1.065]; Beq=[1];
 A=[0\ 0.025\ 0\ 0\ 0;0\ 0\ 0.015\ 0\ 0;0\ 0\ 0\ 0.055\ 0;0\ 0\ 0\ 0\ 0.026];
 B=[a; a; a; a]; Lb=[ 0; 0; 0; 0; 0]; Ub=[];
 [x,val]=linprog(c,A,B,Aeq,Beq,Lb,Ub);
 a
 x=x'
 Q=-val
 plot(a,Q,'r.')
 axis([0 0.1 0 0.5])
 hold on
 a=a+0.001;
end
xlabel('a');ylabel('Q');
```

部分结果

	_		in the second	11.7	10.58	585	
	风险度a	收益Q	x0	x1	x2	х3	х4
	0	0.0500	0.99999 9987624	0.000000 0029948	0.00000 0005476	0.00000 0001615	0.00000 0002427
	0.0020	0.1011	0.66	0.08	0.13	0.036	0.077
	0.0060	0.2019	0	0.24	0.4	0.11	0.22
	0.0100	0.2190	0	0.40	0.58	0	0
2000	0.0160	0.2387	0	0.64	0.35	0	0
	0.0200	0.2518	0	0.18	0.80	0	0
	0.0250	0.2673	0	0.99	0	0	0
	0.099	0.2673	0	0.99	0	0	0
	0.033	0.2073		0.33			

结果分析

- 风险大, 收益也大;
- 当投资越分散时,投资者承担的风险越小,这与题意一致。即:冒险的投资者会出现集中投资的情况,而保守的投资者则尽量分散投资。

上图曲线上的任一点都表示该风险水平最大可能收益和 该收益要求的最小风险。对于不同风险的承受能力,选 择该风险水平下的最优投资组合。 • 在a=0.006附近有一个转 折点,在这一点左边时, 风险增加很少时,利润 增长的很快;在这一点 右边时,风险增加很大 时,利润增长的很快慢。

所以对于风险和收益没有特殊偏好的投资者来说,应该选择曲线的拐点作为最优投资组合,大约时a=0.006, Q=0.2, 所对应的投资方案为:

风险度	收益	x0	x1	x2	x3	x4
0.0060	0.2019	0	0.24	0.4	0.1091	0.2212

Homework revisit

- 类似模型一,求解风险投资的模型二,并根据结果分析参数k的选取。
- K的取值: [0,0.27], 每隔0.001求解一个相应的线性规划问题,记录相应的最优值和最优解。
- 画出k与最优解R对应的散点图
- 指出k取何值时,模型最为合适, R的值最小。
- 注意: 所得的线性规划问题可能无解。
- 5月6日交作业