Sound Propagation Model

Jiwon Baik

Elements considered in the model

- 1. Geometric Divergence
- 2. Atmospheric Attenuation
- 3. Ground Attenuation
- 4. Distance to the closest Obstacle
- 5. Vertical Diffraction

ISO 9613 (with Joule's Report edition)

- Point source based outdoor propagation
- International standard
- Joule's Report(J H Bass, A J Bullmore, E Sloth, 1998) suggests a simplified model, and increases accuracy based on the 500m to 1000m scale
- 1-3 applied in Barbara(2014)

Horizontal Diffraction

NMPB 2008

- Recent model
- Applied into orbisGIS NoiseModel (Bocher et al., 2019)

The equivalent continuous A-weighted downwind sound pressure level

$$L_{AT}(DW)=10~log\left\{\sum_{i=1}^{n}\left[\sum_{j=1}^{B}10^{0.1[L_{fr}(ij)+A_{y}(j)]}
ight]
ight\}$$
 (1)

the number of contributions i (sources and paths) == the number of sirens
 an index indicating the eight standard octave-band midband frequencies from 63 Hz to 8 k Hz
 the standard A-weighting (IEC 651)

		Total N]_		
125	250	500	1k	2k	4k	8k
46	28	14	44	20	11	12
46	46	27	49	51	23	14
46	31	23	29	29	14	13

The equivalent continuous downwind octave-band sound pressure level at a receiver location for each point source

$$L_{fr}(DW)=L_{W}-A$$
 (2) $rac{rac{125-250-500-1k}{46-28-14-44}}{rac{46-46-27-49}{46-31-23-29}}$

 L_W The octave band sound power level, in decibels, produced by the point sound source relative to a reference sound power of one picowatt (1 pW)

A Octave-band attenuation in decibels, that occurs during propagation from the point sound source to the receiver.

$$A = A_{div} + A_{atm} + A_{ter} + A_{obs} + A_{ver} + A_{hor}$$
 (3)

Octave band 63 Hz to 8 k Hz considered in ISO 9613-2 but this model considered 125 Hz to 8 k Hz due to the measured data.
 (8 categories to 7 categories)

Model Summary

$$L_{AT}(DW) = 10 \log \left\{ \sum_{i=1}^{n} \left[\sum_{j=1}^{B} 10^{0.1[L_{fr}(ij) + A_{y}(j)]}
ight]
ight\}$$
 (1)

A-weighted sound pressure at one receiver point is synchronization of the sound pressures from all the sound sources with the standard A-weighting. (IEC 651)

$$L_{fr}(DW) = L_W - A$$
 (2)

The 1 to 1 interaction between a sound source and a receiver point could be calculated by the source sound pressure subtracted by attenuations.

$$A = A_{div} + A_{atm} + A_{ter} + A_{obs} + A_{ver} + A_{hor}$$
 (3)

Attenuation factors considered are geometric divergence, atmospheric attenuation, terrain attenuation, obstacle shadow, vertical and horizontal diffraction by buildings.

 $A_{div} = [20 \ log(d) + 11]$ (4)

Geometric divergence is a function of distance between sound source and receiver point.

 $A_{atm} = ad/1000$ (5)

Atmospheric attenuation is determined by temperature, humidity, and distance between source and receiver.

$$A_{ter}=-3dB(A)$$
 if $h_m\geq 1.5 imes \left[rac{abs(h_s-h_r)}{2}
ight]$ (6) Terrain attenuation is determined by average elevation of direct sound propagation path, and the elevations of receiver and source.

 $A_{obs} = 25 \ if |d_{obs}| \le 17$

There's obstacle shadow produced by a building obstacle. So distance from the closest building should be considered.

$$A_{ver}=10 \ log \left[3+(C_2/\lambda)C_3 z K_{met}
ight] dB$$
 (8)

$$A_{hor} = egin{cases} 10 \ log_{10} (3 + rac{40}{\lambda} C'' oldsymbol{\delta}) & ext{if } rac{40}{\lambda} C'' \delta \geq -2 \ 0 & ext{otherwise} \end{cases}$$
 (9)

Vertical diffraction is determined by lengths of diffraction path components.

Horizontal diffraction is mainly determined by the difference of lengths from diffracted path and direct propagation path.

•
$$0 \le A_{hor} \le 25$$

Flow chart

$$\begin{split} L_{AT}(DW) &= 10 \log \left\{ \sum_{i=1}^{n} \left[\sum_{j=1}^{B} 10^{0.1[L_{fr}(ij) + A_{y}(j)]} \right] \right\} \text{ (1)} \\ L_{fr}(DW) &= L_{W} - A \text{ (2)} \\ A &= A_{div} + A_{atm} + A_{ter} + A_{obs} + A_{ver} + A_{hor} \text{ (3)} \\ A_{div} &= \left[20 \, \log(d) + 11 \right] \text{ (4)} \\ A_{atm} &= ad/1000 \text{ (5)} \\ A_{ter} &= -3dB(A) \quad if \quad h_{m} \geq 1.5 \times \left[\frac{abs(h_{s} - h_{r})}{2} \right] \text{ (6)} \\ A_{obs} &= 25 \quad if \ d_{obs} \leq 17 \quad \text{ (7)} \\ A_{ver} &= 10 \log \left[3 + (C_{2}/\lambda)C_{3}zK_{met} \right] dB \quad \text{(8)} \\ A_{hor} &= \begin{cases} 10 \log_{10}(3 + \frac{40}{\lambda}C''\delta) & \text{if } \frac{40}{\lambda}C''\delta \geq -2 \\ 0 & \text{otherwise} \end{cases} \text{ (9)} \end{split}$$

1. Geometric Divergence

$$A_{div} = \left[20 \; log(d) + 11
ight]$$
 (4)

d the distance from the source to receiver, in metres

2. Atmospheric Attenuation

$$A_{atm}=ad/1000$$
 (5)

a the atmospheric attenuation coefficient, in decibels per kilometre for each octave band at the midband frequency

Temperature 20 celsius degree and Humidity 70% regarded

3. Ground Attenuation

Case 1.
$$A_{ter} = -3dB(A)$$
 if $h_m \geq 1.5 imes \left\lceil rac{abs(h_s - h_r)}{2}
ight
ceil$ (6

h_m the mean height above the ground of the direct line of sight from the receiver to the source

h_s and **h**_r are the heights above local ground level of the source and receiver respectively.

Case 2.
$$A_{ter}=2dB(A)$$
 if $d_{obs}>5$

The direct line of sight between the receiver and the source is **interrupted**, but the obstacle does not lie within 5m of the receiver.

Case 3.
$$A_{ter} = 10 dB(A) \; if \; d_{obs} \leq 5$$

The direct line of sight between the receiver and the source is **interrupted** by a barrier that lies within around 5m of the receiver.

4. Distance to the closest Building

There's a minimum distance between the observer and the building for echo to be heard.

Distance between the observer and the obstacle = d

Speed of sound = v

Time after which echo is heard = t

$$t = 2d/v, d = vt/2$$

Speed of sound in air at 20 celsius degree = 340 ms⁻¹

So, for an echo to be heard distinctly,

$$t >= 0.1s$$

Then,
$$d \ge (340 \text{ ms}^{-1} * 0.1 \text{ s}) / 2 = 17 \text{ m}$$

Thus, the minimum distance between the observer and the obstacle for the echo to be heard clearly should be 17 m. If the distance between the receiver point and building is less than 17, 20 dB would be reduced for each octave band. The other amount of decibels will be offset from the other image sources.

$$A_{obs}=25$$
 if $d_{obs}\leq 17$ (7)

5. Vertical Diffraction

$$A_{ver} = 10 \ log \left[3 + (C_2/\lambda) C_3 z K_{met}
ight] dB$$
 (8)
• 0 \leq A_{ver} \leq 25

A_{ver} the vertical attenuation against horizontal barriers for each octave band.

equal to 20 and includes the effect of ground reflections.

 $oldsymbol{C_3}$ for double diffraction could be calculated as $\ C_3 = \left[1 + (5\lambda/e)^2
ight]/\left[(1/3) + (5\lambda/e)^2
ight]$

the wavelength of sound at the nominal midband frequency of the octave band in metres.

z difference between the pathlengths of diffracted and direct sound, could be calculated as $z = [(d_{ss} + d_{sr})^2 + a^2]^{1/2} - d$

 $\mathbf{K}_{\mathsf{met}}$ the correction factor could be calculated as $K_{met} = exp\left[-(1/2000)\sqrt{d_{ss}d_{sr}d/(2z)}\right]$

e the distance between the two diffraction edges in the case of double diffraction.

a the component distance parallel to the barrier edge between source and receiver, in metres.

s R

6. Horizontal Diffraction

Figure 6.2: Overview of three trajectories detected in the source-receiver plane

$$A_{hor} = egin{cases} 10 \ log_{10}(3 + rac{40}{\lambda}C''\delta) & ext{if } rac{40}{\lambda}C''\delta \geq -2 \ 0 & ext{otherwise} \end{cases}$$

- λ is the wavelength at the nominal median frequency of the third-octave band in question;
- δ is the path difference between the diffracted and direct trajectories (Cf. Section 7.4.3);
- **C"** is a coefficient used to consider multiple diffractions: C"=1 for a single diffraction;
 - $0 \le A_{\text{hor}} \le 25$
 - Only the farthest building vertice from each direct sound propagation path was selected to build horizontal diffraction path.

Previous Models

B. Webster (2014) * no ambient noise (solved) * python source code provided * no need to consider octave bands NoiseMap (2019) SPreAD-GIS

Goto and Murray (2020)

Spatial decay

Atmospheric absorption

Atmospheric absorption

Ambient noise(optional)

Terrain effect

Coherence

Coherence (synthesizing effect of multiple sources) Spatial decay Atmospheric absorption Terrain effect (simplified) Building effect (simplified) Wind attenuation *Octave band Spatial decay Atmospheric absorption Horizontal & Vertical diffraction Terrain effect Ambient noise Coherence Upperground objects not considered *Octave band Spatial decay

Result: The residual randomly distributed

Result: estimations and measurements

Pearson's r: (0.93, 9.620780939909188e-13) rmse: 4.19 dB(A)

Mean of the differences: 0.64 Standard deviation: 4.17

CI (95%): (8.84, -7.542001910449568)

For each octave bands (125 hz, 250 hz, 500 hz, 1000 hz, 2000 hz, 4000 hz, 8000 hz)

Result

dbSPL - Sound pressure or Acoustical pressure, the local pressure deviation from the ambient (average or equilibrium) atmospheric pressure, caused by a sound wave.

OBJECTID	ID	Measured	dbSPL	Model
1	1	66.72	44.20866281	47.00423317
2	2	75.528	54.02045868	54.41906224
3	3	64.908	34.96249222	50.46263439
4	4	73.103	55.25252248	51.06140069
5	5	84.888	68.35540743	65.85512756
6	6	80.101	60.92630627	52.35244294
7	7	64.329	34.32243537	51.5302188
8	8	79.48	60.11875375	65.60375862
9	9	75.085	53.62192466	53.9016882
10	120	62.523	36.32183824	42.44696453
11	122	62.138	33.34000015	49.7480083
12	121	66.076	44.18999863	47.95781329
13	138	58.045	31.53000069	37.63549567
14	137	50.311	30.5	33.02435536

45	400	00,000	22 00000020	E2 0515270C
15	132	62.029	32.88999939	53.95153706
16	133	66.395	37.59000015	50.88257778
17	127	67.629	41.20999908	49.98596857
18	128	77.431	56.86000061	56.24655959
19	129	74.92	52.97999954	52.93983065
20	130	74.327	52.72000122	54.27748419
21	124	67.222	40.65999985	55.32871816
22	131	74.504	52.93000031	56.45295271
23	135	82.091	63.59999847	53.41034525
24	136	78.108	58.15000153	55.9792139
25	134	83.021	65.61000061	67.30834623
26	125	71.085	47.18000031	53.4030122
27	126	66.02	37.52999878	52.74329615
28	123	76.512	55.91999817	55.53104968
Mean		70.87603571	47.76788569	52.55157485
SD		8.254872265	11.51174103	7.244136548

dbSPL(wihout ambient noise) and Model

RMSE 9.153152789 Pearsonr (0.7305724244910341, 1.0142423049665363e-05)

Summary of Result

Pearson r: 0.90 (6.76e-11)

RMSE: 5.39

Sum of difference: -57.99 Mean of difference: 4.57

Difference Map

- Size: absolute value of difference
- Yellow: underestimated
- Blue: overestimated

Because one **building** was taken into account for diffraction, and the **reflection from image sources** was not taken into account.

Strong Point

Receiver point's sound estimation is from all the other siren points.

And each siren's effect will be calculated.

Each pair of siren-receiver interaction could be saved and directly used for optimization models.