Analiza eficienței algoritmilor

SD 2017/2018

Conținut

Analiza eficienței algoritmilor

Analiza funcțiilor recursive Funcții recursive Metoda substituției

> Metoda iterației Arborele de recursi

Teorema Master

Clase de eficiență

Clasa	Notație	Exemplu
logaritmic	$O(\log n)$	căutare binară
liniar	O(n)	căutare secvențială
pătratic	$O(n^2)$	sortare prin inserție
cubic	$O(n^3)$	înmulțirea a două matrici $n imes n$
exponențial	$O(2^n)$	prelucrarea submulțimilor unei mulțimi cu n elemente
factorial	O(n!)	prelucrarea permutărilor de ordin <i>n</i>

Analiza empirică a eficienței algoritmilor

▶ Utilizată atunci când analiza teoretică a eficienței este dificilă.

- ► Scop:
 - formularea unei ipoteze inițiale privind eficiența algoritmului;
 - verificarea unei afirmații (ipoteze) privind eficiența;
 - compararea algoritmilor;
 - analiza eficientei unei implementări.

4 / 40

Analiza empirică a eficienței algoritmilor

- Se stabilește scopul analizei.
- Se alege o masură a eficienței Exemplu: numărul de execuții ale unor operații, timpul, etc.
- Se stabilesc caracteristicile setului de date de intrare.
- Se implementează algoritmul.
- Se generează datele de intrare.
- Se execută programul pentru toate datele de intrare; se înregistrează rezultatele.
- Se analizează rezultatele.

Conținut

Analiza eficienței algoritmilor

Analiza funcțiilor recursive Funcții recursive Metoda substituției Metoda iterației Arborele de recursie Teorema Master

6 / 40

Conținut

Analiza eficienței algoritmilor

Analiza funcțiilor recursive Funcții recursive

Metoda substituției Metoda iterației Arborele de recursie

Funcții recursive

- ► Funcția f() apelează direct funcția g() dacă în definiția lui f() există un apel la g().
- ► Funcția f() apelează indirect funcția g() dacă f() apelează direct o funcție h(), iar h() apelează direct sau indirect funcția g().
- ► Funcția f() este definită **recursiv** dacă ea se auto-apelează direct sau indirect.

Funcții recursive

Definiția unei funcții recursive cuprinde:

- ► Testarea cazului de bază condiția de oprire a apelului recursiv.
- Apelul recursiv (cazul general): o variabilă (întreagă) este transmisă ca parametru funcției însăși, în așa fel ca după un număr de pași să se atingă cazul de bază.

Observație: Există și funcții recursive fără parametri.

Funcții recursive

Exemplul 1. Definiția funcției factorial:

- ▶ Cazul de bază: 0! = 1;
- ▶ Cazul general: $n! = n \times ((n-1)!), n > 0$.

```
Function factorial(n)
begin
if n <= 1 then
return 1
else
return (n * factorial(n-1))
end
```

factorial(4) - apel recursiv

FII, UAIC Curs 3

11 / 40

factorial(4) - apel recursiv

- algoritmii recursivi: ușor de implementat;
- costuri suplimentare: la fiecare apel recursiv se plasează o serie de informatii într-o zonă de memorie specifică (stiva programului).

factorial(n) - varianta iterativă

```
Function factorial(n)

begin

produs \leftarrow 1

while n > 1 do

produs \leftarrow produs * n

n \leftarrow n - 1

return produs

end
```

Observație: Valoarea returnată de factorial(n) este corectă doar pentru valorile lui n pentru care n! este mai mic sau egal decât cea mai mare constantă întreagă pe care o putem reprezenta !

Recursie vs. iterație. Fibonacci recursiv

Exemplul 2. Şirul lui Fibonacci:

- f(0) = 0, f(1) = 1,
- f(n) = f(n-1) + f(n-2), n > 1.

```
Function fib(n)
begin
if n <= 1 then
return n
else
return fib(n-1) + fib(n-2)
```

Fibonacci recursiv: arbore apeluri

 $O(\phi^n)$

◆ロト ◆回ト ◆注ト ◆注ト 注 りくで

Număr de apeluri

n	fib(n)	apeluri
2	1	3
24	46'368	150'049
42	267'914'296	866'988'873
43	433'494'437	1'402'817'465

Recursie vs. iterație: Fibonacci iterativ

```
Function ifib(n)
begin
    f0 \leftarrow 0
    f1 \leftarrow 1
    if n <= 1 then
         return n
    else
         for k \leftarrow 2 to n do
              temp \leftarrow f1
              f1 \leftarrow f1 + f0
              f0 \leftarrow temp
         return f1
end
```

Comparație Fibonacci recursiv/iterativ

Eficiența algoritmilor recursivi

- ▶ Pentru estimarea timpului de execuție:
 - se stabilește relația de recurență care exprimă legatura dintre timpul de execuție corespunzător problemei inițiale și timpul de execuție corespunzător problemei reduse;
 - se rezolvă relatia de recurentă.
- Exemplu: pentru calculul factorialului, relația de recurență pentru timpul de execuție este:

$$T(n) = \begin{cases} 0, & n = 0 \\ T(n-1) + 1, & n \ge 1 \end{cases}$$

Rezolvarea recurențelor

- 1. **Metoda substituției.** Se ghicește o limită și apoi se utilizează inducția matematică pentru a demonstra corectitudinea.
- Metoda iterației. Se iterează recurența și se exprimă ca o sumă de termeni care depind doar de dimensiunea problemei și de condițiile initiale.
- 3. **Arborele de recursie.** Convertește recurența într-un arbore (nodurile reprezintă costuri).
- 4. Metoda master. Furnizează limite pentru recurențe de forma

$$T(n) = aT(n/b) + f(n)$$

Conținut

Analiza eficienței algoritmilor

Analiza funcțiilor recursive

Funcții recursive

Metoda substituției

Metoda iteratiei

Arborele de recursion

Teorema Master

FII, UAIC

1. Metoda substituției

► Se ghicește soluția.

Se utilizează inducția matematică pentru a determina constantele și pentru a demonstra că soluția este corectă.

21 / 40

FII, UAIC Curs 3 SD 2017/2018

Determinarea unei limite superioare pentru relația $T(n) = 2T(\lfloor n/2 \rfloor) + n$

Determinarea unei limite superioare pentru relația $T(n) = 2T(\lfloor n/2 \rfloor) + n$

- Ghicim soluția: $T(n) = O(n \log n)$.
- ▶ Demonstrăm prin inducție că $T(n) \le cn \log n$, pentru c > 0.

Determinarea unei limite superioare pentru relația $T(n) = 2T(\lfloor n/2 \rfloor) + n$

- Ghicim soluția: $T(n) = O(n \log n)$.
- ▶ Demonstrăm prin inducție că $T(n) \le cn \log n$, pentru c > 0. Presupunem că limita are loc pentru toate valorile pozitive m < n, în particular pentru $m = \lfloor n/2 \rfloor$: $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor)$.

$$T(n) \le 2(c \lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor)) + n$$

$$\le cn \log(\lfloor n/2 \rfloor) + n$$

$$= cn \log n - cn \log 2 + n$$

$$= cn \log n - cn + n$$

$$\le cn \log n, \text{ pentru } c > 1$$

Determinarea unei limite superioare pentru relația $T(n) = 2T(\lfloor n/2 \rfloor) + n$

- ▶ Ghicim soluția: $T(n) = O(n \log n)$.
- ▶ Demonstrăm prin inducție că $T(n) \le cn \log n$, pentru c > 0. Presupunem că limita are loc pentru toate valorile pozitive m < n, în particular pentru $m = \lfloor n/2 \rfloor$: $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor)$.

$$T(n) \le 2(c \lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor)) + n$$

$$\le cn \log(\lfloor n/2 \rfloor) + n$$

$$= cn \log n - cn \log 2 + n$$

$$= cn \log n - cn + n$$

$$\le cn \log n, \text{ pentru } c > 1$$

Trebuie să arătăm că soluția este validă și pentru condițiile limită.

$$T(1) = 1 \le c1 \log 1 = 0$$

Cazuri de bază: T(2) și T(3) ($n_0 = 2$)

$$T(2) = 4 \text{ si } T(3) = 5$$
, $T(2) \le c2 \log 2 \text{ si } T(3) \le c3 \log 3 \Rightarrow c \ge 2$.

Metoda substituției - subtilități

 Scăderea unui termen de ordin inferior (pentru a consolida ipoteza inductivă).

Exemplu:
$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

- Ghicim soluția: T(n) = O(n).
- ▶ Demonstrăm prin inducție că $T(n) \le cn$, pentru c > 0.

$$T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

= $cn + 1$

▶ Demonstrăm prin inducție că $T(n) \le cn - d$, d >= 0 const.

$$T(n) \le (c \lfloor n/2 \rfloor - d) + (c \lceil n/2 \rceil - d) + 1$$

= $cn - 2d + 1$
 $\le cn - d$, pentru $d \ge 1$

Trebuie să alegem constanta c suficient de mare pentru a satisface conditiile limită.

Metoda substituției - subtilități

► Evitarea capcanelor

Exemplu:
$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

Demonstrăm "fals" ca T(n) = O(n) ghicind $T(n) \le cn$ și argumentând:

$$T(n) \le 2(c \lfloor n/2 \rfloor) + n$$

$$\le cn + n$$

$$= O(n), \iff \text{fals!!}$$

Eroarea: nu am demonstrat forma exactă a ipotezei inductive.

Metoda substituției - subtilități

Schimbare de variabilă.

Exemplu:
$$T(n) = 2T(\lfloor sqrt(n) \rfloor) + \log n$$

Simplificăm recurența printr-o schimbare de variabilă $m = \log n$.

$$T(2^m) = 2T(2^{m/2}) + m$$

Redenumim $S(m) = T(2^m)$, și avem S(m) = 2S(m/2) + m.

$$S(m) = O(m \log m),$$

$$T(n) = T(2^m) = S(m) = O(m \log m) = O(\log n \log \log n).$$

◆ロト ◆個ト ◆差ト ◆差ト を めるぐ

Conținut

Analiza eficienței algoritmilor

Analiza funcțiilor recursive

Funcții recursive Metoda substitutiei

Metoda iterației

Arborele de recursie

Iterarea unei recurențe

Metoda substituției: implică ghicirea soluției (!)

Iterarea relației de recurență:

directă

- se pornește de la cazul particular și se construiesc termeni succesivi folosind relatia de recurentă;
- se identifică forma termenului general T(n);
- se verifică prin calcul direct sau inducție matematică.

inversă

- se pornește de la cazul T(n) și se inlocuiește T(h(n)) cu valoarea corespunzătoare, apoi se inlocuiește T(h(h(n))) și așa mai departe, până se ajunge la cazul particular;
- se efectuează calculele și se obține T(n).

Iterarea unei recurențe - exemplu n!

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1) + 1, & n > 1 \end{cases}$$

Iterarea unei recurențe - exemplu n!

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1) + 1, & n > 1 \end{cases}$$

Iterare directă

$$T(1) = 0$$

 $T(2) = 1$

$$T(3) = 2$$

. . .

$$T(n) = n - 1$$

28 / 40

FII, UAIC Curs 3 SD 2017/2018

Iterarea unei recurențe - exemplu *n*!

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1)+1, & n > 1 \end{cases}$$

Iterare directă

$$T(1) = 0$$

 $T(2) = 1$
 $T(3) = 2$

$$T(n) = n - 1$$

Iterare inversă

$$T(n) = T(n-1) + 1$$

 $T(n-1) = T(n-2) + 1$
...

$$T(2) = T(1) + 1$$

 $T(1) = 0$

$$T(n) = n - 1$$

FII, UAIC

28 / 40

Iterarea unei recurențe - exemplu

$$T(n) = 3T(\lfloor \frac{n}{4} \rfloor) + n$$

$$T(n) = n + 3(\lfloor \frac{n}{4} \rfloor + 3T(\lfloor \frac{n}{16} \rfloor))$$

$$= n + 3\lfloor \frac{n}{4} \rfloor + 9(\lfloor \frac{n}{16} \rfloor + 3T(\lfloor \frac{n}{64} \rfloor))$$

$$= n + 3\lfloor \frac{n}{4} \rfloor + 9\lfloor \frac{n}{16} \rfloor + 27T(\lfloor \frac{n}{64} \rfloor)$$
...

$$\leq n \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i + \Theta(n^{\log_4 3} x T(1))$$

$$= 4n + \Theta(n^{\log_4 3} x T(1))$$

$$= O(n)$$

Observație: utilizarea seriilor geometrice:

$$\cfrac{1+x+x^2}{1+x+x^2}+...+x^n=\cfrac{1-x^{n+1}}{1-x}, \ {\rm pentru} \ x \neq 1$$
 $1+x+x^2+...=\cfrac{1}{1-x}, \ {\rm pentru} \ |x|<1$

4□ > 4♠ > 4 € > 4 € > 900

SD 2017/2018

29 / 40

Conținut

Analiza eficienței algoritmilor

Analiza funcțiilor recursive

Funcții recursive Metoda substitutiei

Metoda iterației

Arborele de recursie

Teorema Master

FII, UAIC

2. Arborele de recursie

Arborele de recursie:

- permite vizualizarea ieterării unei recurențe;
- fiecare nod reprezintă costul unei subprobleme;
- se calculează suma costurilor pe nivele şi apoi se însumează aceste costuri pentru a determina costul total al recursiei.
- ► Arborele de recursie poate fi utilizat pentru a genera o valoare pentru metoda substituției.

31 / 40

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$

▶ Creăm arborele de recursie pentru $T(n) = 3T(n/4) + cn^2$, c > 0

T(n)

FII, UAIC Curs 3 32 / 40

- ▶ Dimensiunea unei subprobleme corespunzătoare unui nod de adâncime i: $n/4^i \Rightarrow$ dimensiunea subproblemei ajunge la n=1 cand $n/4^i = 1 \Leftrightarrow i = log_4 n \Rightarrow$ arborele are $log_4 n + 1$ nivele.
- Numărul de noduri de la nivelul i: 3ⁱ.
- Fiecare nod de pe nivelul *i* are costul: $c(n/4^i)^2$.
- Costul total al nodurilor de la nivelul i: $3^i c (n/4^i)^2 = (3/16)^i c n^2$ (Ultimul nivel $log_4 n$: $n^{log_4 3} T(1)$.)

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + (\frac{3}{16})^{2}cn^{2} + \dots + (\frac{3}{16})^{log_{4}n - 1}cn^{2} + \Theta(n^{log_{4}3})$$

$$= \sum_{i=0}^{log_{4}n - 1} (\frac{3}{16})^{i}cn^{2} + \Theta(n^{log_{4}3})$$

$$< \sum_{i=0}^{\infty} (\frac{3}{16})^{i}cn^{2} + \Theta(n^{log_{4}3})$$

$$= \frac{1}{1 - (3/16)}cn^{2} + \Theta(n^{log_{4}3})$$

$$= \frac{16}{13}cn^{2} + \Theta(n^{log_{4}3})$$

$$= O(n^{2})$$

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ 壹 釣魚の

- ▶ Utilizăm metoda substituției pentru a verifica că $T(n) = O(n^2)$ este o limită superioară pentru relația $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$.
- Arătăm ca $T(n) \leq dn^2$, pentru d > 0

$$T(n) \le 3T(\lfloor n/4 \rfloor) + cn^2$$

 $\le 3d\lfloor n/4 \rfloor^2 + cn^2$
 $\le 3d(n/4)^2 + c(n^2)$
 $= \frac{3}{16}dn^2 + cn^2$
 $\le dn^2$, pentru $d \ge (16/13)c$

Conținut

Analiza eficienței algoritmilor

Analiza funcțiilor recursive

Metoda substituției

Metoda iterației

Arborele de recursie

Teorema Master

3. Teorema Master

Furnizează o metodă de rezolvare a recurențelor de forma T(n) = aT(n/b) + f(n) unde $a \ge 1$ și b > 1 sunt constante, iar f(n) este o funcție asimptotic pozitivă.

▶ Teorema Master:

Fie $a \ge 1$ și b > 1 constante, f(n) o funcție și T(n) definită pe numere întregi nenegative prin relația de recurență: T(n) = aT(n/b) + f(n). Avem:

- 1. Dacă $f(n) = O(n^{\log_b a \epsilon})$ pentru $\epsilon > 0$ constant, atunci $T(n) = \Theta(n^{\log_b a})$.
- 2. Dacă $f(n) = \Theta(n^{log_b a})$, atunci $T(n) = \Theta(n^{log_b a} \log n)$.
- 3. Dacă $f(n) = \Omega(n^{\log_b a + \epsilon})$ pentru $\epsilon > 0$ constant, și dacă $af(n/b) \le cf(n)$ pentru c < 1 și n suficient de mare, atunci $T(n) = \Theta(f(n))$.

Teorema Master - exemple

►
$$T(n) = 9T(n/3) + n$$

 $a = 9, b = 3, f(n) = n$ și $n^{log_b a} = n^{log_3 9} = \Theta(n^2)$.
Cum $f(n) = O(n^{log_3 9 - \epsilon})$, cu $\epsilon = 1$, putem aplica cazul 1 al teoremei master $\Rightarrow T(n) = \Theta(n^2)$.

►
$$T(n) = T(2n/3) + 1$$

 $a = 1, b = 3/2, f(n) = 1$ și $n^{log_b a} = n^{log_{3/2} 1} = n^0 = 1$.
Cum $f(n) = \Theta(n^{log_b a}) = \Theta(1)$, putem aplica cazul 2 al teoremei master $\Rightarrow T(n) = \Theta(\log n)$.

4D > 4A > 4B > 4B > B 990

Teorema Master - exemple

 $T(n) = 3T(n/4) + n \log n$

$$a=3, b=4, f(n)=n\log n$$
 și $n^{log_ba}=n^{log_43}=O(n^{0.793})$ Cum $f(n)=\Omega(n^{log_43+\epsilon})$, cu $\epsilon\approx 0.2$, putem aplica cazul 3 al teoremei master dacă are loc condiția: $af(n/b)=3(n/4)\log(n/4)\leq (3/4)n\log n=cf(n)$ pentru $c=3/4$ și n suficient de mare. Rezultă $T(n)=\Theta(n\log n)$.

▶ Metoda master nu se poate aplica pentru $T(n) = 2T(n/2) + n \log n$

$$a=2, b=2, f(n)=n\log n$$
 și $n^{log_ba}=n$
Cum $f(n)=n\log n$ este asimptotic mai mare decât $n^{log_ba}=n$, putem aplica cazul 3 (fals!!).

f(n) nu este polinomial mai mare.

 $f(n)/n^{\log_b a} = (n \log n)/n = \log n$ este asimptotic mai mic decât n^{ϵ} , pentru orice constantă pozitivă ϵ .