AMENDMENTS TO THE CLAIMS

This listing of the claims will replace all prior versions and listings of the claims in this application.

Listing of the Claims:

Aprd. No.: 10/605,990

1. (Currently amended) A method for performing an electromigration check for conductors with alternating current flow adjacent to conductors with direct current flow in an integrated circuit comprising:

determining resistances R_{WIRE} and a capacitance matrix \mathbf{C} for the integrated circuit; converting the capacitance matrix \mathbf{C} into a thermal conductance matrix \mathbf{G} ;

determining temperature differences ΔT_{ni} between conductors from thermal conductances G_{thi} of the thermal conductance matrix G;

approximating power flow P_n into conductors with direct current flow due to adjacent conductors with alternating current flow in the integrated circuit from the temperature differences ΔT_{ni} between conductors and the thermal conductances G_{thi} ;

determining a power limit as a function of the maximum temperature difference ΔT_{MAX} that ensures reliability of the integrated circuit; and

performing the electromigration check by limiting power generated in the conductors with alternating current flow to less than the power limit;

wherein n and i are conductor numbers; and

wherein n, ni and thi are numerical subscripts that identify parameters as associated with conductor n, conductor n and conductor i, and a thermal characteristic of conductor i, respectively.

- 2. (Original) The method of claim 1, wherein the thermal conductance matrix G is determined from the product of the capacitance matrix C and a scalar factor F and the scalar factor is given by a ratio of thermal conductivity κ to permittivity ε .
- 3. (Original) The method of claim 1, wherein the power limit is given by the product of scalar factor F, the total capacitance C_{ntot} and the maximum temperature difference Δ - T_{MAX} .
- 4. (Original) The method of claim 1, wherein the I_{RMS} value is determined by the expression:

C_{load}*V_{dd}*frequency*Switching factor.

Apr.l. No.: 10/605,990

- 5. (Original) The method of claim 1, wherein the thermal conductances G_{thi} are inputs for a circuit simulator that determines temperature differences between conductors ΔT_{ni} as outputs of the circuit simulator.
- 6. (Currently amended) The method of claim 1, wherein the capacitance matrix C and resistances R_{WIRE} are determined by using simulation and analysis tools that at least include capacitance/resistance extraction capabilities.
- 7. (Currently amended) A method for performing an electromigration check for conductors with alternating current flow adjacent to conductors with direct current flow comprising:

determining resistances R_{WIRE} and capacitances C_{ni} for conductors with alternating current flow and conductors with direct current flow;

converting the capacitances C_{ni} into thermal conductances G_{thi} ;

determining temperature differences ΔT_{ni} between conductors from the thermal conductances G_{thi} ;

approximating power flow P_n into conductors with direct current flow due to adjacent conductors with alternating current flow from the temperature differences ΔT_{ni} between conductors and thermal conductances G_{thi} ;

determining a power limit as a function of a maximum temperature difference ΔT_{MAX} for the conductors that ensures reliability of the eonductors conductors; and

performing the electromigration check by limiting power generated in the conductors with alternating current flow to less than the power limit;

wherein n and i are conductor numbers; and

wherein n, ni and thi are numerical subscripts that identify parameters as associated with conductor n, conductor n and conductor i, and a thermal characteristic of conductor i, respectively.

- 8. (Currently amended) The method of claim 7, wherein the thermal conductances G_{thi} are determined from the product of the capacitances C_{ni} and a factor F and scalar factor F is given by a ratio of thermal conductivity κ to permittivity ϵ .
- 9. (Original) The method of claim 7, wherein the power limit is given by the product of scalar factor F, the total capacitance C_{ntot} and the maximum temperature difference Δ - T_{MAX} .
- 10. (Original) The method of claim 7, wherein the I_{RMS} value is determined by the expression:

C_{load}*V_{dd}*frequency*Switching factor.

11. (Original) The method of claim 7, wherein the thermal conductances G_{thi} are inputs for a circuit simulator that determines temperature differences between conductors ΔT_{ni} as outputs of the circuit simulator.

Appl. No.: 10/605,990

- 12. (Original) The method of claim 7, wherein the capacitances C_{ni} and resistances R_{WIRE} are determined by using simulation and analysis tools that at least include capacitance/resistance extraction capabilities.
- 13. (Currently amended) A method for performing a check of local heating in a device comprising:

determining resistances R_{WIRE} and at least one of capacitances C_{ni} and a capacitance matrix C for the device;

determining thermal conductances G_{thi} from the at least one of capacitances C_{ni} and a capacitance matrix C;

setting a maximum temperature difference ΔT_{MAX} in accordance with electromigration requirements; determining a power limit F *C_{ntot}* ΔT_{MAX} as a function of the maximum temperature difference ΔT_{MAX} ;

checking each interconnect conductor conductors with an alternating current flow to determine if power generated $I_{RMS}*R_{WIRE}^2$ is less than the power limit $F*C_{ntot}*\Delta T_{MAX}$;

indicating no local heating problem with an interconnect conductor when power generated $I_{RMS}*R_{WIRE}^2$ is less than the power limit F *C_{ntot}* ΔT_{MAX} ;

indicating a local heating problem exist with eurrent <u>said</u> interconnect conductor when the power generated $I_{RMS}*R_{WIRE}^2$ is equal to or greater than power limit $F*C_{ntot}*\Delta T_{MAX}$ and taking corrective action to reduce the power generated $I_{RMS}*R_{WIRE}^2$; and

continuing to check each interconnect conductors with alternating current flow until all interconnect conductors have a value for power generated $I_{RMS}*R_{WIRE}^2$ less than the power limit $F*C_{ntot}*\Delta T_{MAX.5}$:

wherein n and i are conductor numbers, F is a scalar factor and C_{ntot} is a total capacitance; and

wherein n, ni and thi are numerical subscripts that identify parameters as associated with conductor n, conductor n and conductor i, and a thermal characteristic of conductor i, respectively, F is a scalar factor, and ntot is a numerical subscript identifying a total value of an associated parameter.

- 14. (Currently amended) The method of claim 13, wherein the thermal conductances G_{thi} are determined from the product of the capacitances C_{ni} and a factor F and scalar factor F is given by a ratio of thermal conductivity κ to permittivity ϵ .
- 15. (Currently amended) The method of claim 13, wherein the power limit is given by the \underline{a} product of scalar factor F, the total capacitance C_{ntot} and the maximum temperature difference ΔT_{MAX} .
- 16. (Original) The method of claim 13, wherein the I_{RMS} value is determined by the expression:

C_{load}*V_{dd}*frequency*Switching factor.

. Appl. No.: 10/605,990

- 17. (Currently amended) The method of claim 13, wherein <u>said</u> thermal conductances G_{thi} are inputs for a circuit simulator that determines temperature differences ΔT_{ni} as outputs of the circuit simulator.
- 18. (Currently amended) The method of claim 13, wherein the capacitances C_{ni} and resistances R_{WIRE} are determined by using simulation and analysis tools that at least include capacitance/resistance extraction capabilities.

19. (Currently amended) A computer-readable medium having a plurality of computer executable instructions for causing a computer to perform an electromigration check for conductors with alternating current flow adjacent to conductors with direct current flow in an integrated circuit, the computer executable instructions comprising:

instructions for determining resistances R_{WIRE} and a capacitance matrix C for the integrated circuit;

instructions for converting the capacitance matrix ${\bf C}$ into a thermal conductance matrix - ${\bf G}$;

instructions for determining temperature differences ΔT_{ni} between conductors from thermal conductances G_{thi} of the thermal conductance matrix G;

instructions for approximating power flow P_n into conductors with direct current flow due to adjacent conductors with alternating current flow in the integrated circuit from the temperature differences ΔT_{ni} between conductors and the thermal conductances G_{thi} ;

instructions for determining a power limit as a function of the maximum temperature difference ΔT_{MAX} that ensures reliability of the integrated circuit; and perform

<u>instructions for performing</u> the electromigration check by limiting power generated in the conductors with alternating current flow to less than the power limit,

wherein n and i are conductor numbers; and

· Appl. No.: 10/605,990

wherein n, ni and thi are numerical subscripts that identify parameters as associated with conductor n, conductor n and conductor i, and a thermal characteristic of conductor i, respectively, F is a scalar factor, and ntot is a numerical subscript identifying a total value of an associated parameter.

20. (Currently amended) The method computer readable medium of claim 19, wherein the thermal conductance matrix G is determined from the product of the capacitance matrix C and a scalar factor F and the scalar factor is given by a ratio of thermal conductivity κ to permittivity ϵ .

- 21. (Currently amended) The method computer readable medium of claim 1 19, wherein the power limit is given by the product of scalar factor F, the total capacitance C_{ntot} and the maximum temperature difference ΔT_{MAX} .
- 22. (Currently amended) The method computer readable medium of claim \pm 19, wherein the I_{RMS} value is determined by the expression: $C_{load} * V_{dd} *$ frequency * Switching factor.
- 23. (Currently amended) The $\frac{19}{19}$, wherein the thermal conductances G_{thi} are inputs for a circuit simulator that determines temperature differences between conductors ΔT_{ni} as outputs of the circuit simulator.