1. (a) Let $\epsilon > 0$ be given, there exist a $L \in \mathbb{R}$ where for $n \ge L$ that $|s_n - s| < \frac{\epsilon}{2}$. Thus for any $n \ge L$, we denote $\epsilon_n = s_n - s$ and $|\epsilon_k| < \frac{\epsilon}{2}$. We then also note that for b_n that:

$$b_n = \frac{s_1 + s_2 + s_3 + \dots + s_n}{n} = \frac{s_1 + \dots + s_L}{n} + \frac{s_{L+1} + \dots + s_n}{n}$$

Since $s_1 + s_2 + \cdots + s_L$ is a constant for any n since $n \ge L$, let M denote the sum. We then apply our notion of ϵ_n combined with there exist n - L terms from L + 1 to n to get that:

$$|b_n - s| = \left| \frac{M}{n} + \frac{s_{L+1} + \dots + s_n}{n} - \frac{n}{n} s \right|$$

$$= \left| \frac{M}{n} + \frac{(n-L)s}{n} + \frac{\epsilon_{L+1} + \dots + \epsilon_n}{n} - \frac{n}{n} s \right|$$

$$= \left| \frac{M - Ls}{n} + \frac{\epsilon_{L+1} + \dots + \epsilon_n}{n} \right|$$

We then apply the triangle inequality and recalling that $|\epsilon_k| < \frac{\epsilon}{2}$ to get that:

$$|b_n - s| \le \left| \frac{M - Ls}{n} \right| + \left| \frac{\epsilon_{L+1} + \dots + \epsilon_n}{n} \right|$$

$$\le \frac{|M - Ls|}{n} + \frac{|\epsilon_{L+1}| + \dots + |\epsilon_n|}{n}$$

$$\le \frac{|M - Ls|}{n} + \frac{|n - L|}{n} \cdot \frac{\epsilon}{2}$$

Since $\frac{|M-Ls|}{n}$ is the constant $\frac{|M-Ls|}{n}$ multiplied by $\frac{1}{n}$ which converges to 0, by the Limit Laws, we can find an N>L where for any $n\geq N$, we get that $\frac{|M-Ls|}{n}<\frac{\epsilon}{2}$. Since $\frac{|n-L|}{n}<1$, it follows that that $|b_n-s|\leq \frac{|M-Ls|}{n}+\frac{|n-L|}{n}\cdot\frac{\epsilon}{2}<\epsilon$. Thus, we get $|b_n-s|<\epsilon$ for all $n\geq N$ as desired.

(b) We construct a_n by the rational r_n where $x-\frac{1}{n} < r_n < x$. By the density of \mathbb{Q} , r_n is guaranteed, so we assign $a_n = r_n$. Thus since $a_n < x < x + \frac{1}{n}$, we get that $x-\frac{1}{n} < a_n < x + \frac{1}{n}$, so $|a_n-x| < \frac{1}{n}$. Since $\frac{1}{n} \to 0$, let $\epsilon > 0$ be given, there exist a $N \in \mathbb{R}$ where for all $n \ge N$, $|a_n-x| < \frac{1}{n} < \epsilon$ thus we get $|a_n-x| < \epsilon$ as desired.

2. (a) Since 1 > L, let $\epsilon = \frac{1-L}{2}$, there exist a natural number M where for all $n \ge M$, $\left|\frac{s_{n+1}}{s_n} - L\right| < \epsilon$. This implies that $L - \epsilon < \frac{s_{n+1}}{s_n} < L + \epsilon$, so observe that $\left|\frac{s_{n+1}}{s_n}\right| < L + \frac{1-L}{2} < 1$. We then denote that $a = L + \frac{1-L}{2}$ thus 0 < a < 1.

We then note that for n > M:

$$\prod_{i=M}^{n-1} \left| \frac{s_{i+1}}{s_i} \right| = \left| \frac{s_{M+1}}{s_M} \right| \cdot \left| \frac{s_{M+2}}{s_{M+1}} \right| \cdot \cdot \cdot \left| \frac{s_{n-1}}{s_{n-2}} \right| \cdot \left| \frac{s_n}{s_{n-1}} \right| = \left| \frac{s_n}{s_M} \right|$$

Since there exist n-M terms between $M \leq i \leq n-1$ and all of them are < a, we get that:

$$\left|\frac{s_n}{s_M}\right| < a^{n-M}$$
$$|s_n| < a^{n-M}|s_M|$$

We now prove the convergence. Let $\epsilon > 0$ be given, select $N = \log_a(\frac{\epsilon a^M}{|s_M|}) + M$. Thus, for all $n \geq N$, we get that $n > \log_a(\frac{\epsilon a^M}{|s_M|})$. Since 0 < a < 1, the function \log_a is decreasing, so we reverse the inequalities to get that:

$$n > \log_a(\frac{\epsilon a^M}{|s_M|})$$

$$a^n < \frac{\epsilon a^M}{|s_M|}$$

$$a^{n-M}|s_M| < \epsilon$$

Since n > M, we can apply the inequality for $|s_n|$ for all $n \geq N$ to get that:

$$|s_n| < a^{n-M}|s_M| < \epsilon$$
$$|s_n - 0| < \epsilon$$

Thus, $s_n \to 0$.

Proposition (proven in class) Let $(a_n) \subseteq (0, \infty)$, then $\frac{1}{a_n} \to 0 \iff a_n \to \infty$

2

(b) We denote the series $t_n = \frac{1}{|s_n|}$. Since $\left|\frac{s_{n+1}}{s_n}\right| \to L$, $\left|\frac{t_{n+1}}{t_n}\right| = \left|\frac{\frac{1}{s_{n+1}}}{\frac{1}{s_n}}\right| = \frac{1}{\left|\frac{s_{n+1}}{s_n}\right|} \to \frac{1}{L}$ by the limit laws. Since L > 1, it follows that $\frac{1}{L} < 1$, so part a) applies to get $t_n \to 0$. Thus, by the Proposition, it implies that $\frac{1}{t_n} = |s_n| \to \infty$ as desired.