

(19) 日本国特前庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-319252

(43)公開日 平成8年(1996)12月3日

(51) Int.Cl.6	識別記号	庁内整理番号	F 1		技術表示箇所
C07C 57/30		9450 - 4H	C O 7 C 57/30		
CO7B 57/00	3 4 6	7419-4H	C07B 57/00	3 4 6	
CO7C 51/487		9450 - 411	C 0 7 C 51/487		
// CO7M 7:00					

審査請求 未請求 請求項の数1 FD (全 5 頁)

(71)出願人 000001085 特題平7-149669 (21)出願番号 株式会社クラレ 岡山県倉敷市西津1621番地 (22) 出願日 平成7年(1995)5月24日 (72)発明者 野平 博之 埼玉県浦和市人久保領家51-5 (72) 発明者 旗谷 典昭 茨城県鹿島郡神栖町東和田36番地 株式会 社クラレ内 (72)発明者 大西 孝志 茨城県鹿島郡神栖町東和田36番地 株式会 社クラレ内

(54) [発明の名称] (±) -2-フェニルプロピオン酸の光学分割方法

(57)【要約】

【構成】 ()-2-フェニルプロピオン酸と光学分 割剤として光学活性な3-メチルー2-フェニルプチル アミンとを反応させてジアステレオマー塩を形成する。 【効果】 (三)-2-フェニルプロビオン酸から簡便 でかつ収率よく光学純度の高い光学活性2 フェニルブ ロビオン酸を取得することができる。

BEST AVAILABLE COPY

【特許請求の範囲】

(±) -2-フェニルプロピオン酸を光 【請求項1】 学活性なその (-) 体と (+) 体とに光学分割する方法 において、(±)-2-フェニルプロピオン酸と光学分 割剤として光学活性な3-メチル-2-フェニルブチル アミンとを反応させてジアステレオマー塩を形成するこ とを特徴とする(±)-2-フェニルプロピオン酸の光 学分割方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は光学不活性な(±)-2 -フェニルプロビオン酸の光学分割方法に関する。

[0002]

【従来の技術】光学活性2-フェニルプロピオン酸は、 抗炎症作用あるいは解熱鎮痛作用を有する光学活性2-(4-イソブチルフェニル)プロピオン酸などの医薬品 の原料として有用な化合物であり、光学純度よくこれを 製造することが望まれている。

【0003】従来、光学不活性な(±)-2-フェニル プロビオン酸を光学分割することにより光学活性2-フ 20 反応させて、(+)-2-フェニルプロビオン酸と ェニルプロピオン酸を製造する方法としては、

① (±) -2-フェニルプロピオン酸と光学分割剤とし ての光学活性なフェニルグリシノールとから生成した2 種のジアステレオマー塩を、その溶解度の差を利用して 精製する方法(特開昭58-29719号公報参照)、 ②(±)-2-フェニルプロピオン酸と(±)-2-フ ェネチルアミンの混合物から、光学活性フェニルプロピ オン酸・光学活性2-フェネチルアミン塩を優先的に晶 出させる方法(特開昭61-134344号公報参 照)、

③ (±) -2-フェニルプロピオン酸を、例えば1-メ ントールなどの光学活性なアルコールのエステル誘導体 に変換してジアステレオマー混合物とした後、該ジアス テレオマーを精製し、次いで加水分解することにより光 学活性な2-フェニルプロピオン酸を得る方法(特開昭 57-181021号公報参照)、などが知られてい

[0004]

【発明が解決しようとする課題】しかしながら、上記① の方法では、所望の光学純度を得るためには精製工程を 40 重ねる必要があり、光学活性2-フェニルプロピオン酸 の収率は低い。また、上記②の方法では、1回の晶析操 作で光学純度の高い光学活性2-フェニルプロピオン酸 が得られるものの、その収率は低い。さらに、上記3の 方法では、エステル化反応、ジアステレオマーの精製お よび加水分解という操作が必要であり、光学分割に係わ る操作が煩雑であるのみならず、得られる光学活性2-フェニルプロピオン酸の光学純度も十分に高いとはいえ ない。このように、(±)-2-フェニルプロビオン酸 から光学分割によって簡便でかつ収率よく光学純度の高 50 ら、より難溶性の一方のジアステレオマー塩を優先的に

い光学活性2-フェニルプロピオン酸を取得する方法は いまだ確立されていないのが現状である。

2

[0005]

【課題を解決するための手段】上記の現状に鑑み、本発 明者らは(±)-2-フェニルプロピオン酸の光学分割 方法について鋭意検討した結果、光学活性な3-メチル -2-フェニルブチルアミンが(±)-2-フェニルブ ロビオン酸に対する極めて有効な光学分割剤であること を見出し、本発明を完成させるに至った。すなわち、本 10 発明は、(±)-2-フェニルプロピオン酸を光学活性 なその(-)体と(+)体とに光学分割する方法におい て、(±)-2-フェニルプロビオン酸と光学分割剤と して光学活性な3-メチル-2-フェニルブチルアミン とを反応させてジアステレオマー塩を形成することを特 徴とする(±)-2-フェニルプロピオン酸の光学分割 方法である。

【0006】本発明にあっては、まず光学不活性な

(±)-2-フェニルプロビオン酸と光学分割剤として 光学活性な3-メチル-2-フェニルブチルアミンとを

(-) -2-フェニルプロピオン酸とに対応する2種の ジアステレオマー塩を形成する。この反応は、(±)-2-フェニルプロピオン酸と光学分割剤とを溶媒中に加 熱溶解させることにより実施される。

【0007】(±)-2-フェニルプロピオン酸と光学 分割剤とのモル比は特に限定されないが、目的とする光 学活性2-フェニルプロピオン酸を高純度かつ効率よく 得るためには、(±)-2-フェニルプロピオン酸1モ ル当たり、光学分割剤を0.5~2モル使用することが 30 好ましい。

【0008】また、溶媒としては、水、メタノール、エ タノール等の低級脂肪族アルコール、またはそれらの混 合物などが使用される。低級脂肪族アルコールとしては メタノールが好ましい。なお、低級脂肪族アルコールと 水の混合物を溶媒として使用する場合、その混合比率 は、使用する低級脂肪族アルコールの種類、後述する晶 析温度などに応じて適宜調整される。例えば、低級脂肪 族アルコールとしてメタノールを使用し、20℃にて晶 析を行う場合には、通常、水/メタノール=20/80 ~80/20(容量比)の混合物が使用され、中でも水 /メタノール=40/60(容量比)の混合物が好適に 使用される。

【0009】使用する溶媒の重は、溶媒の種類により異 なるが、通常光学分割剤1モル当たり溶媒を100ミリ リットル~10リットル使用する。

【0010】次に、生成した2種のジアステレオマー塩 を常法により分離する。例えば、ジアステレオマー塩の 溶媒に対する溶解度差を利用して分離を行うことができ る。この場合、ジアステレオマー塩を形成した反応液か 3

晶出させるために、反応を所定の晶析温度に冷却して過 飽和状態とすることが好ましい。

【0011】晶析温度は、溶媒の種類やその量により異 なるが、通常100~10℃の範囲に設定される。ジア ステレオマー塩の回収率などの観点から、晶析は30℃ 以下の温度で行うことが好ましく、20℃以下の温度で 行うことがより好ましい。なお、一方のジアステレオマ -塩を晶出させる場合に、そのジアステレオマー塩の少 量を種結晶として反応液に加えることが好ましい。

- メチル-2-フェニルブチルアミンを使用すると、

(-)-2-フェニルプロビオン酸・(+)-3-メチ ルー2-フェニルブチルアミン塩が、また光学分割剤と して (-) -3-メチル-2-フェニルブチルアミンを 使用すると、(+)-2-フェニルプロピオン酸・

(-) -3-メチル-2-フェニルブチルアミン塩がそ れぞれ優先的に晶出する。

【0013】析出したジアステレオマー塩は、ヌッツェ 等によるろ過や遠心分離などの一般的手法により単離す ることができる。

【0014】得られたジアステレオマー塩の光学純度が 不十分である場合には、上記の溶媒を用いて再結晶を行 うことによりジアステレオマー塩を精製し、その光学純 度を高めることができる。かかる再結晶は、所望とする 光学純度が達成されるまで繰り返して実施される。

【0015】最後に、得られたジアステレオマー塩は、 常法により光学活性な2-フェニルプロピオン酸に導く ことができる。例えば、得られたジアステレオマー塩に アルカリ水溶液を添加して、2-フェニルプロピオン酸 のアルカリ金属塩とする一方で、アミン化合物である光 30 学分割剤を遊離させ、これをエーテル等で抽出して除去 し、水層に塩酸、硫酸等の鉱酸を作用させることにより 光学活性な(+)または(-)2-フェニルプロピオン 酸を遊離させることができる。ここで使用されるアルカ リとしては水酸化ナトリウム、水酸化カリウムなどのア ルカリ金属の水酸化物が安価であり好ましい。アルカリ の濃度は特に限定はないが、通常1~5規定の水溶液と して用いられる。

【0016】なお、エーテル等によって回収した光学分米

*割剤は再使用することができる。

【0017】遊離した光学活性2-フェニルプロピオン 酸は、エチルエーテル、イソプロピルエーテル、ブチル エーテルなどの低級脂肪族エーテル類、塩化メチレン、 1、2-ジクロルエタン、クロロホルムなどの低級脂肪 族ハロゲン化炭化水素類などの有機溶媒で抽出すること ができる。ここで得られた有機溶媒抽出液を、所望によ り無水硫酸ナトリウムまたは無水硫酸マグネシウムなど の乾燥剤を用いて乾燥した後、常圧または減圧下に溶媒 【0012】本発明では、光学分割剤として(+)-3 10 を留去することにより、目的とする光学活性2 - 7 = 2ルプロピオン酸を単離することができる。

> 【0018】本発明によって得られた光学活性2-フェ ニルプロピオン酸の光学純度は、例えば、該光学活性2 -フェニルプロピオン酸をエチルエステル誘導体とした 後、光学活性充填剤カラムを用いた高速液体クロマトグ ラフィー (HPLC) にて分析することにより決定する ことができる。

[0019]

【実施例】以下実施例により本発明を説明するが、本発 明はこれらの実施例に限定されるものではない。

【0020】参考例(2-フェニルプロピオン酸の光学 純度の測定)

乾燥した二口ナス型フラスコに、上部に塩化カルシウム 管を備えた冷却管を取り付ける。この中に光学純度を測 定する2-フェニルプロピオン酸50mg(0.3mm o1)および99%エタノール3m1を入れ、続いて濃 硫酸を1滴添加し、室温下で一晩(約15時間)撹拌す る。撹拌終了後、飽和炭酸水素ナトリウム水溶液5m1 を加えて過剰の酸を中和し、直ちにエチルエーテル8m 1で3回抽出する。エチルエーテル抽出液を無水流酸ナ トリウムで乾燥する。エチルエーテルを留去した後、残 溜物をヘキサンー酢酸エチル〔ヘキサン/酢酸エチル= 10/1 (容量比)〕の混合液を展開溶媒とする薄層ク ロマトグラフィーで精製する。Rf値約0.5の成分を かき取り、エチルエーテルにて抽出し、2-フェニルプ ロピオン酸のエチルエステル誘導体を得る。得られた2 フェニルプロピオン酸のエチルエステル誘導体を下記 のHPLC条件下で測定し、2-フェニルプロピオン酸 の光学純度を決定する。

HPLC条件:

:キラルセル〇J〔ダイセル化学工業(株)社製〕 カラム

展開溶媒

: ヘキサン/2-プロパノール=9/1 (容量比)

流速

: 0.5m1/min

検出波長

:254nm

保持時間

: (+)体 約18分、

(-)体. 約20分

【0021】実施例1

水40m1に(=) 2 フェニルプロピオン酸0.6 01g(4.00mmol)および(1) 3 メチル -2-フェニルブチルアミンO. 653g(4.00m m o 1) を加え、90℃で溶解した。次いで、得られた 50 7、6° (e 1.1、メタノール) であった。

溶液を徐々に冷却し、20°Cで結晶化させた。折出した 結晶をヌッツェによりる過し、針状のジアステレオマ 塩を0.534g(1.70mmo1)得た。このもの は、顧点:178~179℃、旋光度が[α]''。:+ 【0022】続いて、水25m1中に上記で得られたジアステレオマー塩0.468g(1.50mmol)を加え、90℃で溶解した。次いで、得られた溶液を徐々に冷却し、20℃で結晶化させた。析出した結晶をヌッツェによりろ過し、針状のジアステレオマー塩を0.297g(0.95mmol)得た。用いた(-)-2-フェニルプロピオン酸に対する収率は54.2%であった。との塩は、融点が176~182℃、旋光度が [α] 23 。: +6.9° (c=1.0、メタノール)であった。

【0023】とのジアステレオマー塩に1規定の水酸化ナトリウム水溶液2m1を加えて(一)-2-フェニルプロピオン酸ナトリウム塩とし、水相をエチルエーテル2m1で3回洗浄した。次いで、水相に1規定の塩酸4m1を加えて酸性とした後、エチルエーテル5m1で3回抽出した。エチルエーテル抽出液を1つにし、無水流酸ナトリウムを用いて乾燥した後、ロータリーエバボレーターでエチルエーテルを留去し、(一)-2-フェニルプロピオン酸0.141g(0.94mmol)を得た

【0025】実施例2

【0026】水とメタノールの混合溶媒〔水/メタノール=40/60(容量比)〕4.5m1に上記で得られ 40 たジアステレオマー塩0.830gを加え、80℃で溶解した。次いで、得られた溶液を徐々に冷却し、20℃で結晶化させた。析出した結晶をヌッツェによりろ過し、針状のジアステレオマー塩を0.611g(1.95mmo1)得た。用いた(-)-2-フェニルプロピオン酸に対する収率は78.3%であった。この塩の融点は178~182℃、旋光度は〔α〕 **。:+7.2 **(c=1.0、メタノール)であった。

【0027】とのジアステレオマー塩に1規定の水酸化 1で3回洗浄した。次いで、水相に1規定の塩酸70m ナトリウム水溶液4mlを加えて() 2 フェニル 50 lを加えて酸性とした後、エチルエーテル90mlで3

プロピオン酸ナトリウム塩とし、水相をエチルエーテル4mlで3回洗浄した次いで、水相に1規定の塩酸8mlを加えて酸性とした後、エチルエーテル10mlで3回抽出した。エチルエーテル抽出液を1つにし、無水硫酸ナトリウムを用いて乾燥した後、ロータリーエバボレーターでエチルエーテルを留去し、(-)-2-フェニルプロピオン酸0.290g(1.93mmol)を得た。

 $\{0028\}$ 得られた(-)-2-フェニルプロピオン 10 酸を参考例に記載の方法に従ってエチルエステル誘導体 とし、光学純度を測定した結果、93.2%e.e. であった。なお、対応するエチルエステルの旋光度は $[\alpha]^{24}$ 。: -76.2° (c=1.0、メタノール) であった。

【0029】実施例3

水とメタノールの混合溶媒〔水/メタノール=40/60(容量比)〕38mlに(±)-2-フェニルプロピオン酸6.95g(46.3mmol)および(-)-3-メチル-2-フェニルブチルアミン7.50g(4206.3mmol)を加え、80℃で溶解した。次いで、得られた溶液を徐々に冷却し、20℃で結晶化させた。析出した結晶をヌッツェによりろ過し、針状のジアステレオマ-塩を7.13g(22.78mmol)得た。この塩の融点は176~178℃、旋光度は [α] **。:-7.4°(c=1.1、メタノール)であった。

【0030】次に水とメタノールの混合溶媒〔水/メタノール=40/60(容量比)〕49mlに上記で得られたジアステレオマー塩7.13gを加え、80℃で溶30 解した。次いで、得られた溶液を徐々に冷却し、20℃で結晶化させた。析出した結晶をヌッツェによりろ過し、針状のジアステレオマー塩を5.86g(18.72mmol)得た。との塩の融点は180~182℃、旋光度は [α]²⁵。:-6.6°(c=1.0、メタノール)であった。

【0032】更に上記の3回の晶析操作で得られたジアステレオマー塩5.20gに1規定の水酸化ナトリウム水溶液35mlを加えて、(+)-2-フェニルプロピオン酸ナトリウム塩とし、水相をエチルエーテル35mlで3回洗浄した。次いで、水相に1規定の塩酸70mlを加えて砂性とした後、エチルエーテル90mlで3

回抽出した。エチルエーテル抽出液を1つにし、無水硫 酸ナトリウムを用いて乾燥した後、ロータリーエバポレ ーターでエチルエーテルを留去し、(+)-2-フェニ ルプロピオン酸2.09g(13.9mmol)を得 た。用いた(+)-2-フェニルプロピオン酸に対する 収率は60.3%であった。

【0033】得られた(一)-2-フェニルプロピオン 酸を参考例に記載の方法によりエチルエステル誘導体と し、光学純度を測定した結果、99.4%c; c.以上 であった。なお、対応するエチルエステルの旋光度は $[\alpha]^{25}$, :+81. 3° (c=1. 2, β であった。

[0034]

【発明の効果】本発明によれば、光学不活性な(±)-2-フェニルプロピオン酸から簡便でかつ収率よく光学 純度の高い光学活性2ーフェニルプロピオン酸を取得す るととができる。

【公報種別】特許法第17条の2の規定による補正の掲載 【部門第2区分

【発行日】平成14年4月2日(2002.4.2)

【公開番号】特開平8-319252

【公開日】平成8年12月3日(1996.12.3)

【年通号数】公開特許公報8-3193

【出願務号】特願半7-149669

【国際特許分類第7版】

C07C 57/30

C07B 57/00 346

C07C 51/487

// C07M 7:00

[FI]

CO7C 57/30

C07B 57/00 346

C07C 51/487

【子続補正書】

[提出口] 平成13年12月20日(2001.12.20)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

【0008】また、溶媒としては、水:メタノール、エタノール等の低級脂肪族アルコール、またはそれらの混合物などが使用される。低級脂肪族アルコールとしてはメタノールが好ましい。なお、低級脂肪族アルコールとしては、使用する低級脂肪族アルコールの種類、後述する晶析温度などに応じて適宜調整される。例えば、低級脂肪族アルコールとしてメタノールを使用し、20℃にて晶析を行う場合には、通常、水/メタノール=20/80~80/20(容量比)の混合物が使用され、中でも水/メタノール=10/60(容量比)の混合物が好適に使用される。

【丁続補正2】

【補正対象書類名】明細書

【補正対象項目名】0021

【補正方法】変更

[補正内容]

[0021]実施例1

水40m1に(±) -2-フェニルプロピオン酸0.6 01g(4.00mmo1) および(+) -3-メチル -2-フェニルブチルアミン0.653g(4.00m mo1)を加え、90℃で溶解した。次いで、得られた 溶液を徐々に冷却し、20℃で結晶化させた。折出した 結晶をヌッツェによりる過し、針状のジアステレオマー 塩0.534 g $(1.70 \, \text{mm o I})$ を得た。このものは、融点: $178 \sim 179$ °C、旋光度が $[\alpha]^{2}$ 。:+7.6 ° $(c=1,1,392-\mu)$ であった。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0022

【補正方法】変更

【補正内容】

【0022】続いて、水25m 1 中に上記で得られたジアステレオマー塩0.468g(1.50mmol)を加え、90 で溶解した。次いで、得られた溶液を徐々に冷却し、20 でで結晶化させた。析出した結晶をヌッツェによりろ過し、針状のジアステレオマー塩0.29 7g (0.95mmol) を得た。用いた(-) -2-フェニルプロピオン酸に対する収率は<math>54.2%であった。この塩は、融点が $176\sim182$ で、旋光度が $[\alpha]^{25}$ $_n:+6.9$ (c=1.0、メタノール)であった。

【子続補正4】

【補正対象書類名】明細書

【補正対象項目名】0025

【補正方法】変更

【補正内容】

【0025】実施例2

水とメタノールの混合溶媒〔水/メタノール=40/60(容量比)〕5m1に(±)-2-フェニルプロビオン酸0.748g(4.98mmol)および(+)-3-メチル-2-フェニルブチルアミン0.814g(4.99mmol)を加え、80℃で溶解した。次いで、得られた溶液を徐々に冷却し、20℃で結晶化させた。析出した結晶をヌッツェによりろ過し、針状のジア

ステレオマー<u>塩0</u>. 830g(2.65mmol)<u>を</u>得た。との塩の融点は $162\sim177$ °C、旋光度は $[\alpha]^2$ 4 $_{\text{B}}$: +8.7° (c=1.0、メタノール)であった。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0026

【補正方法】変更

【補正内容】

[0026] 水とメタノールの混合溶媒 [x/y9/- n=40/60(容量比)] 4.5m1 に上記で得られたジアステレオマー塩0.830gを加え、80 ℃で溶解した。次いで、得られた溶液を徐々に冷却し、20 ℃で結晶化させた。析出した結晶をヌッツェによりろ過し、針状のジアステレオマー塩0.611g (1.95mmo1) を得た。用いた(-) -2-7 ェニルプロピオン酸に対する収率は78.3%であった。この塩の融点は178~182 ℃、旋光度は $[\alpha]^2$ 。: +7.2 (c-1.0, メタノール)であった。

【丁號補正6】

【補正対象書類名】明細書

【補正対象項目名】0029

【補正方法】変更

【補正内容】

[0029] 実施例3

水とメタノールの混合溶媒(水/メタノール=40/60(容量比))38m1に(±)-2-フェニルプロピオン酸6.95g(46.3mmo1)および(+)-3-メチル-2-フェニルブチルアミン7.50g(46.3mmo1)を加え、80℃で溶解した。次いで、得られた溶液を徐々に冷却し、20℃で結晶化させた。折出した結晶をメッツェによりろ過し、針状のジアステ

レオマー塩7. 13g (22. 78mmol) を得た。 との塩の融点は176~178°C、旋光度は $[\alpha]^2$ ° $[\alpha]^2$ ° (α) であった。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0030

【補正方法】変更

【補正内容】

【0030】次に水とメタノールの混合溶媒〔水/メタノール=40/60(容量比)〕49m1に上記で得られたジアステレオマー塩7.13gを加え、80℃で溶解した。次いで、得られた溶液を徐々に冷却し、20℃で結晶化させた。析出した結晶をヌッツェによりろ過し、針状のジアステレオマー塩5.86g(18.72mmo1)を得た。この塩の融点は $180\sim182$ ℃、旋光度は $[\alpha]^{25}$ 。: -6.60 (c=1.0、メタノール)であった。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0031

【補正方法】変更

【補正内容】

[0031] 続いて水とメタノールの混合溶媒(水/メタノール=40/60(容量比)] $42 \,\mathrm{ml}$ にこのジアステレオマー塩5.86gを加え、80℃で溶解した。次いで、得られた溶液を徐々に冷却し、20℃で結晶化させた。析出した結晶をヌッツェによりろ過し、針状のジアステレオマー塩5.20g(16.61 $\,\mathrm{mmol}$)を得た。この塩の融点は181~183℃、旋光度は [α] 2 5 $_\mathrm{n}$: $^-$ 6.0° (c = 1.0、メタノール)であった。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

·
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
—

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.