CMPT-318 Term-Project Presentation

A Presentation by Group 2

Sanchit Jain: sja164@sfu.ca

Priyansh Sarvaiya: pgs3@sfu.ca

Daiwik Marrott: drm11@sfu.ca

Luvveer Singh Lamba: lsl11@sfu.ca

Table Of Contents

01

Problem Addressed

03

Challanges

05

Conclusion

02

Characteristics & Rationale

04

Lesson Learned

06

References

01

Problem Addressed

- Critical Infrastructures rely on automated control systems used for exploiting operational anomalies.
- Detecting anomalies is complex due to several external factors.
- In this study, we would be addressing about the challenges of designing and evaluating an unsupervised anomaly detection framework using Hidden Markov Model(HMM).

Data Processing & Cleaning

- Missing values were computed using linear interpolation.
- Approx 7% of the data, were found outliers using Z-scores.
- All numeric features were standardized ensuring mean is 0 and standard deviation is 1.

- Missing data is handled in a way that maintains temporal integrity.
- Common scale of data can improve the accuracy and model performance.
- Standardization is performed due to gaussian distribution of data and it helps comparing the features effectively.

Feature Engineering

- Response Variables were selected using Principal Component Analysis(PCA).
- Based on PCA loadings, Global active power, Sub metering 3, and Global reactive power are the most significant features.

PCA Metric	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Standard deviation	1.6047	1.1187	0.9867	0.8761	0.8438	0.72858	0.4356
Proportion of Variance	0.3679	0.1788	0.1391	0.1096	0.1017	0.07583	0.0271
Cumulative Proportion	0.3679	0.5466	0.6857	0.7954	0.8971	0.97290	1.0000

Correlation of Responses

Statistical Metric	Global_act ive_power	Global_r eactive_ power	Sub_mete ring_3	
Minimum	-1.197	-1.15	-0.709	
Maximum	3.838	3.462	3.075	
Mean	0.01576	0.008	0.004	
PCA	-0.497	-0.687	-0.49	
Range High		Low	Medium	

Global_active_power

Power consumption in the grid

Global_reactive_powe

Necessary for maintaining the voltage levels

Sub_metering_3

Power use from a particular area

Time Window

Graph describing average variable distribution across chosen time window

Graph describing average chosen variable distribution across selected weekday

Splitting Of Dataset

Fridays 6:00 AM to 9:00 AM Testing Data
~ 44 Weeks
Jan. 25, 2009
onwards

Training Data ~ 110 Weeks Dec. 16, 2006 - Jan. 24, 2009

Splitting Of Dataset...

- The larger training data allows the HMM model to learn diverse patterns across all temporal variations.
- Sufficient data fed to the HMM model reduces the risk of overfitting to short-term patterns.
- The test data time has to follow the training data time to test the model's performance under conditions of temporal drift.

Model Design

→ BIC → Log-Likelihood

- The state counts (4, 6, 8, 10, 12) were explored using the log-likelihood and Bayesian Information Criterion (BIC).
- The 6th-state HMM was chosen for it's balance of performance and complexity, as it produced a log-likelihood of -17384.45 and BIC of 35468.91.
- The Gaussian Distribution was chosen.
- To ensure consistency we transferred the parameters form the trained model to the test model.

- The distribution has the ability to wellapproximate data that shows natural variability, energy consumption.
- The number of states in an HMM essentially controls the granularity of the model's representation of underlying patterns in the data.
- The 6th-state model was chosen because of the best balance between complexity and fit.
- To ensure consistency between training and testing, the parameters (state transition probabilities and emission distributions) were transferred from the trained to the test model using the setpars () function.

Anomaly Detection

- Deviation was identified by comparing log-likelihood of test and training data.
- Normalized log-likelihood threshold defined on maximum deviation observed in test subsets.
- Test Data divided into 10 equal-size subsets to capture temporal patterns.
- A threshold of -17452.07 log-likelihood and -1.005208 for normalized log-likelihood was established.
- Synthetic anomalies were introduced to the test data which included point & temporal anomalies.

- Low log-likelihood values indicate that model has not learned to represent the observation, detecting potential anomalies.
- Threshold was derived by calculating maximum deviation between loglikelihood of training and test data.
- Subset Analysis of Data reflects the need for adaptive anomaly detection
- By injecting synthetic anomalies, we tested for the frameworks ability to detect known deviations.

This Photo by Unknown Author is licensed under CC BY-ND

Challenges

<u>01</u>

Identifying most relevant features due to complexity of energy consumption patterns.

<u>02</u>

State Configuration Selection based on log-likelihood and BIC values.

<u>03</u>

Dynamic threshold for Anomaly detection to balance false positives and false negatives.

<u>04</u>

Realistic Anomaly Stimulation needed to be diverse enough.

Lesson Learnt

Future Scaling Matters

Dimensionality reduction techniques like PCA not only simplify the model but also enhance interpretability.

Model Configuration is Curtail

Choosing the optimal number of HMM states are a balance between complexity and performance.

<u>04</u>

Anomaly Injection Validates Robustness

Injecting synthetic anomalies provides an effective way to test and refine the model.

Thresholds should be Data-Driven

Empirical methods for determining thresholds, such as calculating maximum log-likelihood deviation, are more effective than static thresholds.

Iterative Refinement Yields Better Results

Each phase of the project—
preprocessing, model training,
threshold determination, and anomaly
detection—benefited from iterative
refinement.

<u>01</u>	Effective data preprocessing and dimensionality reduction using PCA
<u>02</u>	Optimal 6-state HMM configuration balancing performance and complexity
<u>03</u>	Robust anomaly detection framework with data-driven thresholds
<u>04</u>	Successful identification of both natural deviations and injected synthetic anomalies

Conclusion

Thank You

[1] L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech

recognition," Proc. IEEE, vol. 77, no. 2, pp. 257-286, Feb. 1989, doi: 10.1109/5.18626.

[2] A. Nassar, "Answer to 'Hidden Markov models and anomaly detection," Cross Validated.

Accessed: Nov. 24, 2024. [Online]. Available: https://stats.stackexchange.com/a/135946

[3] I. Visser and M. Speekenbrink, "depmixS4: An R Package for Hidden Markov Models," J. Stat.

Soft., vol. 36, no. 7, 2010, doi: 10.18637/jss.v036.i07.

[4] N. Goernitz, M. Braun, and M. Kloft, "Hidden Markov Anomaly Detection," in Proceedings of the 32nd International Conference on Machine

Learning, PMLR, Jun. 2015, pp. 1833–1842. Accessed: Nov. 24, 2024. [Online]. Available:

https://proceedings.mlr.press/v37/goernitz15.html

[5] "Principal Component Analysis (PCA) in R Tutorial." Accessed: Nov. 24, 2024. [Online].

Available: https://www.datacamp.com/tutorial/pca-analysis-r