Министерство образования Республики Беларусь

Учреждение образования "Белорусский государственный университет информатики и радиоэлектроники"

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

Отчёт по лабораторной работе №2 по курсу «МРЗвИС»

на тему: «Реализация модели решения задачи на ОКМД архитектуре»

Выполнили Казакевич Н. Д. студенты гр. Антонов А. Н. 821702

Проверил Крачковский Д. Я.

Цель:

Реализовать и исследовать модель решения на ОКМД архитектуре задачи вычисления матрицы значений.

Постановка задачи:

<u>Дано:</u> сгенерированные матрицы A, B, E, G, заданных размерностей $p \times m$, $m \times q$, $1 \times m$, $p \times q$, $m \times p$ и $q \times m$ соответственно со значениями в диапазоне [-1;1].

$$c_{ij} = \widetilde{\bigwedge}_{k} f_{ijk} * (3*g_{ij} - 2)*g_{ij} + (\widetilde{\bigvee}_{k} d_{ijk} + (4*(\widetilde{\bigwedge}_{k} f_{ijk} \widetilde{\circ} \widetilde{\bigvee}_{k} d_{ijk}) - 3*\widetilde{\bigvee}_{k} d_{ijk}) * g_{ij}) * (1 - g_{ij})$$

$$f_{ijk} = (a_{ik} \widetilde{\to} b_{kj}) * (2*e_k - 1)*e_k + (b_{kj} \widetilde{\to} a_{ik}) * (1 + (4*(a_{ik} \widetilde{\to} b_{kj}) - 2)*e_k) * (1 - e_k)$$

$$d_{ijk} = a_{ik} \widetilde{\wedge} b_{kj}$$

Вариант индивидуального задания:

17.
$$\tilde{\wedge}_{k} f_{ijk} = \prod_{k} f_{ijk}$$

$$\tilde{\vee}_{k} d_{ijk} = 1 - \prod_{k} (1 - d_{ijk})$$

$$\tilde{\wedge}_{k} f_{ijk} \tilde{\circ} \tilde{\vee}_{k} d_{ijk} = \max \left(\left\{ \tilde{\wedge}_{k} f_{ijk} + \tilde{\vee}_{k} d_{ijk} - 1 \right\} \cup \{0\} \right)$$

$$a_{ik} \tilde{\to} b_{kj} = \min \left(\left\{ 1 - a_{ik} + b_{kj} \right\} \cup \{0\} \right)$$

$$b_{kj} \tilde{\to} a_{ik} = \min \left(\left\{ 1 - b_{kj} + a_{ik} \right\} \cup \{0\} \right)$$

$$a_{ik} \tilde{\wedge} b_{kj} = \max \left(\left\{ a_{ik} + b_{kj} - 1 \right\} \cup \{0\} \right)$$

<u>Получить</u>: C – матрицу значений соответствующей размерности $p \times q$; в случае необходимости доопределить всеобщности(∀) или существования(∃) условие исходной задачи кванторами самостоятельно.

Описание модели:

Была реализована модель решения на ОКМД архитектуре задачи вычисления матрицы значений. Возможность самостоятельно устанавливать все параметры, необходимые для работы модели, позволяет детально исследовать разработанную модель, установить зависимости между вышеуказанными параметрами.

• T_1 — время выполнения программы на одном процессорном элементе. Данный параметр вычисляется следующим образом: подсчитывается количество вызовов той или иной операции, а затем полученное значение умножается на время данной операции. Данное действие повторяется для всех операций, в итоге все значения суммируются.

- T_n время выполнения программы на n-количестве процессорных элементов. Параметр вычисляется схожим путём, что и T_1 : осуществляется поиск операций, которые можно считать на различных процессорах. Для подсчета времени на выполнение такой операции находится количество вызовов данной операции и делится на количество процессорных элементов.
- K_y коэффициент ускорения равен $\frac{T_1}{T_n}$.
- e эффективность равна $\frac{K_y}{n}$.
- D коэффициент расхождения программы, $D = \frac{L_{\Sigma}}{L_{cp}}$. Где, L_{Σ} суммарная длина программы и равна T_n . L_{cp} средняя длина программы. Вычисляется путем подсчета количества вызовов операций на различных ветвях выполнения программы. Имея, количества вызовов операций, выполняющихся на ветвях программы, и их время выполнения, считаем данную величину.

Исходные данные:

- p, m, q размерность матриц;
- n количество процессорных элементов в системе;
- t_i время выполнения i операции над элементами матриц;
- матрицы A, B, E, G, заполненные случайными вещественными числами в диапазоне [-1;1].

Результаты счёта и времена их получения:

Построение графиков:

Обозначения:

 $K_{\nu}(n, r)$ – коэффициент ускорения;

e(n, r) – эффективность;

D(n, r) – коэффициент расхождения программы;

n – количество процессорных элементов в системе (совпадает с количеством этапов конвейера);

r — ранг задачи (количество объектов, которые в процессе решения задачи могли бы обрабатываться параллельно);

Графики строятся на одном наборе сгенерированных данных, постепенно уменьшая размеры матриц, в масштабе, отражающем характерные особенности соответствующих зависимостей.

Зависимость коэффициента ускорения КУ от количества процессорных элементов n

График 1. График зависимости коэффициента ускорения K_y от количества элементов п

Зависимость коэффициента ускорения Ку от ранга задачи г

График 2. График зависимости коэффициента ускорения K_y от ранга задачи r

График зависимости эффективности е от количества процессорных элементов n

График 3. График зависимости эффективности е от количества элементов п

Зависимость эффективности е от ранга задачи г

График 4. График зависимости эффективности е от ранга задачи г

Зависимость коэффициента расхождения D от количества процессорных элементов n

График 5. График зависимости коэффициента расхождения программы D от количества элементов п

Зависимость коэффициента расхождения D от ранга задачи r

График 6. График зависимости коэффициента расхождения программы D от ранга задачи r

Ответы на вопросы:

1. <u>Проверить, что модель создана верно: программа работает правильно;</u>

Проверка правильности работы программы:

Исходные данные					
Время операции		Другие данн	Другие данные		
Сумма	1	m	1		
Разность	1	p	2		
Произведение	1	q	3		
Деление	1	количество процессорн	4		
Сравнение	1	элементов			

$A(p \times m)$	$B(m \times q)$		
-0,1805	-0.2829	0.3291	0.8415
-0.913			
<u>E (1 x m)</u>	$G(p \times q)$		
-0.0485	0.8605	-0.7203	-0.0933
	-0.3441	-0.1441	-0.9415

Полученные данные:				
$C(p \times q)$				
	0	0	-0.00538264	
	0	-0.0976003	-0.673667	

Программа работает верно.

2. Объяснить на графиках точки перегиба и асимптоты:

Для графика зависимости коэффициента ускорения (K_y) от количества элементов (n): Асимптотой графика, исходя из значений графика, является прямая, параллельная оси абсцисс, то есть прямая, заданная при n=r. Точки перегиба появляются тогда, когда ширина векторного параллелизма становится кратной числу процессорных элементов, при достижении этого значения коэффициент ускорения перестает расти.

Для графика зависимости коэффициента ускорения (K_{v}) от ранга задачи (r):

Асимптотой является прямая $K_y=n$, такого значения она достигает в точках , где ширина векторного параллелизма становится кратной числу процессорных элементов. При фиксированном значении процессорных элементов и при устремлении ранга задачи к бесконечности, ОКМД архитектура будет работать быстрее не более, чем в n раз по сравнению с последовательной системой.

Для графика зависимости эффективности (e) от количества элементов (n): Прямая e=0 будет являться асимптотой. Так как задача с фиксированным рангом содержит фиксированное количество операций, которые необходимо выполнить, а эффективность показывает долю работы одного процессорного элемента, то при большом количестве процессорных элементов эффективность стремится к 0

Для графика зависимости эффективности (e) от ранга задачи (r): Прямая e=1 будет являться асимптотой, а точками перегиба — точки, где ширина векторного параллелизма становится кратной числу процессорных элементов.

Для графика зависимости коэффициента расхождения программы (D) от количества элементов (n):

При увеличении количества элементов, значение расхождения программы стремится к 1.

Для графика зависимости коэффициента расхождения программы (D) от ранга задачи (r):

При увеличении ранга задачи, значение расхождения программы увеличивается.

3. Спрогнозировать как изменится вид графиков при изменении параметров модели;

если модель позволяет, то проверить на ней правильность ответа;

Семейства графиков	Изменения вида графика
Зависимость коэффициента ускорения (K_y) от количества элементов (n)	При увеличении количества процессорных элементов коэффициент ускорения будет увеличиваться, приближаясь к асимптоте.
Зависимость коэффициента ускорения (K_y) от ранга задачи (r)	При увеличении ранга задачи коэффициент ускорения будет становиться больше до того значения, как приблизится к асимптоте.

Зависимость эффективности (e) от количества элементов (n)	При увеличении количества процессорных элементов, снижается значение эффективности
Зависимость эффективности (e) от ранга задачи (r)	При увеличении ранга задачи меньшее число значений будет приближаться к асимптоте.
Зависимость коэффициента расхождения программы (D) от количества элементов (n)	При увеличении количества процессорных элементов, возрастает коэффициент расхождения программы
Зависимость коэффициента расхождения программы (D) от ранга задачи (r)	При увеличении ранга задачи, снижается значение коэффициента расхождения программы

Вывод:

В результате выполнения лабораторной работы была реализована и исследована ОКМД модель для решения задач вычисления матрицы значений. Реализованная модель была проверена на работоспособность и правильность получаемых результатов. Данная модель позволяет ускорить процесс вычисления результата для числовых векторов, по сравнению с последовательной системой. Были исследованы характеристики конвейерной архитектуры: коэффициент ускорения, коэффициент расхождения программы и эффективность.