Predicting Final Exam Scores

Eduardo Martinez

Type: Homework Problem <u>Course</u>: Applied Statistics/Regression (MATH-564)

Date Completed: 9/12/2021 <u>Institution</u>: Illinois Institute of Technology

```
# Packages Used:
library(knitr)
library(kableExtra, warn.conflicts = F)
library(tidyverse, warn.conflicts = F)
```

The Data

```
table3.10 <- read_tsv("Table3.10.txt", show_col_types = F)[c(2,3,1)]
Table3.10 <- cbind(Index = 1:22, table3.10)
colnames(Table3.10) <- c("Index", "$P_1$", "$P_2$", "$F$")

kbl(cbind(Table3.10[1:11,], Table3.10[12:22,]), booktabs = T, escape = F,
    align = "c", linesep = "", valign = "c",
    caption = "$\\textbf{Table 3.10} - \\text{Examination Data}$") %>%
    kable_classic() %>%
    kable_styling(latex_options = c("condensed", "striped", "HOLD_position"), font_size = 11) %>%
    column_spec(c(2:4, 6:7), width = "1.25cm") %>%
    column_spec(c(1,5), width = "1.5cm", border_left = T, border_right = F) %>%
    column_spec(8, width = "1.25cm", border_right = T)
```

Table 3.10 – Examination Data

Index	P_1	P_2	F	Index	P_1	P_2	F
1	78	73	68	12	79	75	75
2	74	76	75	13	89	84	81
3	82	79	85	14	93	97	91
4	90	96	94	15	87	77	80
5	87	90	86	16	91	96	94
6	90	92	90	17	86	94	94
7	83	95	86	18	91	92	97
8	72	69	68	19	81	82	79
9	68	67	55	20	80	83	84
10	69	70	69	21	70	66	65
11	91	89	91	22	79	81	83

Exercise 3.3

Table 3.10 shows the scores in the final examination F and the scores in two preliminary examinations P_1 and P_2 for 22 students in a statistics course

(a) Fit each of the following models to the data:

Model 1:
$$F = \beta_0 + \beta_1 P_1 + \varepsilon$$

Model 2: $F = \beta_0 + \beta_2 P_2 + \varepsilon$
Model 3: $F = \beta_0 + \beta_1 P_1 + \beta_2 P_2 + \varepsilon$

```
fit_P1 <- lm(`F` ~ P1, data = table3.10)
coefP1 <- round(coefficients(fit_P1), 3)

fit_P2 <- lm(`F` ~ P2, data = table3.10)
coefP2 <- round(coefficients(fit_P2), 3)

fit_P1P2 <- lm(`F` ~., data = table3.10)
coefP1P2 <- round(coefficients(fit_P1P2), 3)</pre>
```

Fitted Model 1: $\hat{F} = -22.342 + 1.261 P_1$ Fitted Model 2: $\hat{F} = -1.854 + 1.004 P_2$ Fitted Model 3: $\hat{F} = -14.501 + 0.488 P_1 + 0.672 P_2$

(b) Test whether $\beta_0 = 0$ in each of the three models.

I will use t-test hypothesis test for each model where $H_0: \hat{\beta}_0 = 0$ and $H_A: \hat{\beta}_0 \neq 0$.

There are n = 22 rows in the dataset. Under the null, the critical t-value has n - p degrees of freedom (d.f.), where p equals the number of coefficients in the alternative regression model. Equivalently, p equals the number of predictors in a regression model since the intercept term is removed under the null.

Thus, Model 1 and Model 2 both have 20 d.f. and Model 3 has 19 d.f.

Using a significance level, $\alpha = 0.05$, then the critical t-values for a two-tailed test are the following:

$$t_{(\alpha/2, d.f.=20)} = \pm 2.086$$
 and $t_{(\alpha/2, d.f.=19)} = \pm 2.093$

Next, the following equation is used to calculate the test statistic for H_A : $t^* = \frac{\hat{\beta}_0 - 0}{s.e.(\hat{\beta}_0)}$.

We reject H_0 in favor of H_A if $|t^*| > |t_{(\alpha/2, d.f.)}|$.

```
# Saving Model Summaries
sumP1 <- summary(fit_P1)
sumP2 <- summary(fit_P2)
sumP1P2 <- summary(fit_P1P2)
# Obtaining Standard Errors
seP1B0 <- sumP1$coefficients[1,2]
seP2B0 <- sumP2$coefficients[1,2]
seP1P2B0 <- sumP1P2$coefficients[1,2]</pre>
```

$$\begin{aligned} &\text{Model 1:} & |t^*| = \left| \frac{-22.342}{11.564} \right| = 1.932 \ < 2.086 = |t_{(0.025,\ 20)}| \\ &\text{Model 2:} & |t^*| = \left| \frac{-1.854}{7.562} \right| \ = 0.245 \ < 2.086 = |t_{(0.025,\ 20)}| \\ &\text{Model 3:} & |t^*| = \left| \frac{-14.501}{9.236} \right| = 1.570 \ < 2.093 = |t_{(0.025,\ 19)}| \end{aligned}$$

Conclusion

In all three models $|t^*| < |t_{(\alpha/2, d.f.)}$. As a result, we fail to reject the null hypothesis for all models. There is insufficient evidence in favor of the alternative hypothesis.

(c) Which Predictor is Better? P_1 or P_2 ? (Quick Model Selection)

The regression summaries for Model 1 and Model 2 are provided in the tables below:

		Model 1		
	\widehat{eta}_j	s.e.	t^*	p- $value$
(Intercept)	-22.34	11.56	-1.93	0.068
P_1	1.26	0.14	9.01	1.8e-08

		Model 2		
	\widehat{eta}_j	s.e.	t^*	p-value
(Intercept)	-1.85	7.56	-0.25	0.81
P_2	1.00	0.09	11.09	5.4e-10

Both predictors are statistically significant as their *p-values* are less than the desired level of significance, $\alpha = 0.05$.

A quick way too access which predictor is better is comparing the R^2 and Mean Squared Error (MSE) statistics of each model. R^2 measures a model's goodness-of-fit; MSE is statistic used to evaluate the prediction accuracy of a model.

$$R^2 = 1 - \frac{\text{SSE}}{\text{SST}}$$
 and $\text{MSE} = \frac{\text{SSE}}{n} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$,

where $SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$ is the sum of squares in total, n is the number of rows in the data (n = 22), and b is the number of regression coefficients in a model.

For both Models 1 and 2, there is an intercept and one predictor so b = 2; Model 3 has one addition coefficient so b = 3

- $0 \le R^2 \le 1$ such that R^2 is optimized when it is maximized.
- MSE ≥ 0 such that MSE is optimized when it is minimized.

The values for both statistic are provided in the table below:

	R^2	MSE
Model 1	0.8023	23.47
Model 2	0.8600	16.61

Conclusion:

This quick model selection method indicates that R^2 is maximized and MSE is minimized by Model 2. Therefore, I would prefer to use the second preliminary exam, P_2 , to predict final exam scores, F.

(d) Which of the three models with intercepts would you use to predict the final examination scores for a student who scored 78 and 85 on the first and second preliminary examinations, respectively? (Quick Model Selection) What is your prediction in this case?

 \mathbb{R}^2 becomes larger as more predictors are used to fit a model. This means \mathbb{R}^2 does not account the bias of larger models.

In contrast, adjusted \mathbb{R}^2 denoted \mathbb{R}^2_{adj} accounts for bias by punishing models as they add predictors:

$$R_{adj}^2 = 1 - \frac{\text{SSE}/(n-b)}{\text{SST}/(n-1)} = 1 - \frac{\text{SSE} \cdot (n-1)}{\text{SST} \cdot (n-b)}.$$

The following properties of R^2 still hold: $0 \le R^2_{adj} \le 1$ such that R^2_{adj} is optimized when it is maximized. However, R^2_{adj} decreases as predictors are added when all other values are fixed.

Because Model 3 has an additional coefficient, R_{adj}^2 should be used to compare it to the smaller models instead of the unadjusted R^2 .

The values of R_{adj}^2 and MSE for each model are displayed in the table below:

	R_{adj}^2	MSE
Model 1	0.7924	23.47
Model 2	0.8530	16.61
Model 3	0.8744	13.49

Conclusion:

 R_{adj}^2 and MSE were optimized by Model~3. Recall, the estimated coefficients for Model~3 derived in Part (a):

•
$$\hat{F} = -14.501 + 0.488 P_1 + 0.672 P_2$$

Accordingly, if a student had preliminary examination scores $P_1 = 78$ and $P_2 = 85$, Model 3 predicts this student will have a final examination score of $\hat{F} = 80.713$.