Amendment After Final Filed October 5, 2009

Page 2 of 11

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

1. (Currently Amended) A radiation-sensitive resin composition comprising an acid-labile group-containing resin which is insoluble or scarcely soluble in alkali, but becomes alkali soluble by the action of an acid, and

a photoacid generator,

wherein the acid-labile group-containing resin comprises a recurring unit of the following formula (1) and at least one recurring unit selected from the group consisting of the recurring units of the following formulas (2)-(7), wherein the resin has a ratio of a weight average molecular weight to a number average molecular weight (weight average molecular weight/number average molecular weight) of less than 1.5, wherein the resin is polymerized with a living radical polymerization initiator such that the resin is a random copolymer of the recurring units which form the resin and wherein the content of the recurring unit (1) is 15-70 mol% of the total amount of the recurring units in the resin,

$$\begin{array}{c|c}
R^1 & R^1 \\
\hline
-C & C \\
R^1 & C = 0
\end{array}$$

$$\begin{array}{c|c}
C - R^2 \\
R^2 & R^2
\end{array}$$

$$(1)$$

wherein R¹ individually represents a hydrogen atom, methyl group, trifluoromethyl group, or hydroxymethyl group and R² individually represents a monovalent alicyclic hydrocarbon group having 4-20 carbon atoms or a derivative thereof, or a linear or branched alkyl group having 1-4 carbon atoms, in which at least one of R² groups is a monovalent alicyclic hydrocarbon group or a derivative thereof, or any two of R² groups

Amendment After Final Filed October 5, 2009

Page 3 of 11

form a divalent alicyclic hydrocarbon group having 4-20 carbon atoms or a derivative thereof in combination with the carbon atom to which the two R^2 groups bond, with the remaining R^2 group being a linear or branched alkyl group having 1-4 carbon atoms or a monovalent alicyclic hydrocarbon group having 4-20 carbon atoms or a derivative thereof,

wherein R ¹ individually represents a hydrogen atom, methyl group, trifluoromethyl group, or hydroxymethyl group, A represents a single bond, a substituted or unsubstituted, linear or branched alkylene group having 1-6 carbon atoms, a mono- or dialkylene glycol group, or an alkylene ester group, B represents a single bond, a substituted or unsubstituted alkylene group having 1-3 carbon atoms, an alkyloxy group, or an oxygen atom, E represents a single bond or a divalent alkyl group having 1-3 carbon atoms, R³ individually represents a hydroxyl group, cyano group, carboxyl group, -COOR⁵, or -Y-R⁶, wherein R⁵ represents a hydrogen atom, a linear or a branched alkyl

Amendment After Final Filed October 5, 2009

Page 4 of 11

group having 1-4 carbon atoms, or an alicyclic alkyl group having 3-20 carbon atoms, Y individually represents a single bond or a divalent alkylene group having 1-3 carbon atoms, R⁶ individually represents a hydrogen atom, hydroxyl group, cyano group, or - COOR⁷, provided that at least one R³ group is not a hydrogen atom, R⁷ represents a hydrogen atom, a linear or branched alkyl group having 1-4 carbon atoms, or an alicyclic alkyl group having 3-20 carbon atoms, G represents a single bond, a linear or branched alkylene group having 1-6 carbon atoms, an alicyclic hydrocarbon group having 4-20 carbon atoms, an alkylene glycol group, or an alkylene ester group, J, L, N, and M individually represent a single bond, a substituted or unsubstituted, linear, branched, or cyclic alkylene group having 1-20 carbon atoms, an alkylene glycol group, or an alkylene ester group, p is 0 or 1, R⁴ represents a hydrogen atom, a linear or branched alkyl group having 1-4 carbon atoms, an alkoxy group, a hydroxyalkyl group, or a divalent alicyclic hydrocarbon group having 3-20 carbon atoms or a derivative thereof, and q is 1 or 2.

- 2. (Cancel).
- 3. (Previously Presented) The radiation-sensitive resin composition of Claim 1, wherein the acid-labile group-containing resin comprises a recurring unit of the formula (2).
 - 4-5. (Cancel).
- 6. (Currently Amended) The radiation-sensitive resin composition according to elaim 1 Claim 21, wherein the living radical polymerization initiator is a mixture of a transition metal complex, an organic halide, and a Lewis acid or an amine.
- 7. (Currently Amended) The radiation-sensitive resin composition according to claim 1 Claim 21, wherein the living radical polymerization initiator is a compound of the following formula (8),

wherein R' represents an alkyl group or an aryl group having 1-15 carbon atoms which

Amendment After Final Filed October 5, 2009

Page 5 of 11

may contain an ester group, ether group, amino group, or amide group; Y represents a single bond, oxygen atom, nitrogen atom, or sulfur atom; and R" represents an alkyl group or an aryl group having 1-15 carbon atoms which may contain an ester group, ether group, or amino group.

- 8. (Previously Presented) The radiation-sensitive resin composition according to Claim 6, wherein terminal processing of the living radical polymerization initiator is conducted using a heat radical generator.
- 9. (Original) The radiation-sensitive resin composition according to claim 1, wherein the photoacid generator comprises at least one compound selected from the group consisting of a triphenylsulfonium salt compound, a 4-cyclohexylphenyldiphenylsulfonium salt compound, a 4-t-butylphenyldiphenylsulfonium salt compound, and a tri(4-t-butylphenyl)sulfonium salt compound.
- 10. (Original) The radiation-sensitive resin composition according to claim 1, further comprising a nitrogen-containing organic compound as an acid diffusion controller.
 - 11. (Cancel).
- 12. (Previously Presented) The radiation-sensitive resin composition according to Claim 7, wherein terminal processing of the living radical polymerization initiator is conducted using a heat radical generator.
- 13. (Previously Presented) The radiation-sensitive resin composition according to Claim 1, wherein the acid-labile group-containing resin has a ratio of a weight average molecular weight to a number average molecular weight (weight average molecular weight/number average molecular weight) of 1.0 to 1.3.
- 14. (Currently Amended) The radiation-sensitive resin composition according to Claim 1 Claim 21, wherein the living radical polymerization initiator is a compound of the following formula (9) or (10):

Amendment After Final Filed October 5, 2009

Page 6 of 11

$$H_{3}C$$
 $H_{3}C$
 H

15. (Withdrawn) A method comprising:

depositing a composition as set forth in Claim 1 onto a substrate to form a resist film;

selectively exposing the resist film to radiation to form an exposed resist film; and developing the exposed resist film to form a resist pattern.

- 16. (Withdrawn) The method of Claim 15, wherein the radiation is ArF excimer laser radiation.
- 17. (Withdrawn) The method of Claim 15, further comprising heating the exposed resist film prior to developing.
- 18. (Withdrawn) The method of Claim 17, wherein the exposed resist film is heated to a temperature of 30 to 200° C prior to developing.
- 19. (Withdrawn) The method of Claim 18, wherein the exposed resist film is heated to a temperature of 50 to 170° C prior to developing.
- 20. (Withdrawn) The method of Claim 15, further comprising heating the resist film prior to selectively exposing.
- 21. (New) The method of Claim 1, wherein the resin is polymerized with a living radical polymerization initiator.