

Curso de Verano 2007/2008

Diseño de sistemas portátiles para la monitorización del movimiento

ACELERACIÓN INTRODUCCIÓN

• ¿Qué es la aceleración?

• ¿En qué unidades se expresa?

o ¿Qué es un "g"?

ACELERACIÓN INTRODUCCIÓN

- Aceleración de la gravedad 1 g
- o Pasajero de un coche en curva 1 g
- Pasajero de coche en bache 2 g
- o Coche de Fórmula 1 en curva 3 g
- Bobsled en curva5 g
- o Pérdida de conciencia 7 g
- Transbordador espacial
 10 g

ACELERACIÓN INTRODUCCIÓN

$$Espacio = x$$

$$Aceleración = \frac{d^2x}{dt^2}$$

ACELERÓMETROS PRINCIPIO DE FUNCIONAMIENTO

ACELERÓMETROS RESPUESTA EN FRECUENCIA

XL105 Sensitivity vs. Frequency

----XL105 on PC Board ——XL105 on PC board, Glued down

ACELERÓMETROS TIPOS

- Según el sensor de desplazamiento
 - Capacitivos
 - Piezoeléctricos
 - Piezorresistivos
 - Otros: transferencia de calor, efecto Hall, LVDT, ...

ACELERÓMETROS CAPACITIVOS

Simple

$$C = \frac{\varepsilon_0 \varepsilon_r S}{x}$$

Diferencial

ACELERÓMETROS CAPACITIVOS

ACELERÓMETROS CAPACITIVOS ACONDICIONAMIENTO

ACELERÓMETROS CAPACITIVOS

ACELERÓMETROS PIEZOELÉCTRICOS PRINCIPIO DE FUNCIONAMIENTO

Cuarzo	Cerámicos
 Elevada sensibilidad en tensión Muy buena estabilizad a largo plazo No es piroeléctrico 	 Elevada sensibilidad en carga Gran variedad de formas y tamaños Pueden llegar a temperaturas de hasta 540°C
 Coeficiente de temperatura bajo 	 Son piroeléctricos Variaciones acusadas con la temperatura

ACELERÓMETROS PIEZOELÉCTRICOS TIPOS

ACELERÓMETROS PIEZOELÉCTRICOS RESPUESTA EN FRECUENCIA

ACELERÓMETROS PIEZOELÉCTRICOS CARACTERÍSTICAS

- Sólo son posibles medidas dinámicas
- La carga generada es del orden de pC
- Tiempos de subida muy reducidos (del orden de microsegundos)
- Se pueden llegar a medir frecuencias de decenas kHz
- Coeficientes de temperatura 0,01 a 0,05%/°C (típ.)
- Suelen presentar derivas del cero
- Sensibilidad elevada
- Robustez

ACELERÓMETROS PIEZOELÉCTRICOS ACONDICIONAMIENTO

Ejemplo: Sensor de presión Kistler 6001. q=1pC/psi C=10pF

Amplificación de tensión

Resistencia entrada y capacidad de entrada

La medida estaría muy condicionada por los parásitos

ACELERÓMETROS PIEZOELÉCTRICOS ACONDICIONAMIENTO

Amplificación de carga (convertidor carga-tensión)

C_T: Capacidad sensor+cable+amplificador

R_T: Resistencia sensor+cable+amplificador

$$i = \frac{dq}{dt}$$
 $\left(U_s = -\frac{1}{C_f} \int i \cdot dt = -\frac{1}{C_f} q \right)$

iii Independiente de C_T y de R_T !!!

ACELERÓMETROS PIEZORRESISTIVOS

ACELERÓMETROS PIEZORRESISTIVOS

ACELERÓMETROS PIEZORRESISTIVOS

APLICACIONES

Shock and Vibration

ACELERÓMETROS EJEMPLO — MEDIDA DE INCLINACIÓN

$$\alpha = asen(A)$$

ACELERÓMETROS EJEMPLO – MEDIDA DE LA INCLINACIÓN

Aceleración-ángulo

ACELERÓMETROS EJERCICIOS

- Obtener los parámetros más importantes de un acelerómetro a partir de las hojas de características
- Indicar cómo se modifica el ancho de banda del acelerómetro
- o Indicar cuánto varía la tensión que proporciona si si utiliza como inclinómetro y se pasa de una inclinación de 0° a 1°, ¿y si pasa de 89° a 90°?

ACELERÓMETROS NAVEGADORES INERCIALES

o Integrado la aceleración obtenemos la velocidad

$$v = \int_{0}^{t} a dt$$

 Integrando la velocidad obtenemos el espacio recorrido

$$x = \int_{0}^{t} v \cdot dt = \int_{0}^{t} \int_{0}^{t} a \cdot dt$$

ACELERÓMETROS CALIBRACIÓN

GIRÓSCOPOS INTRODUCCIÓN

• ¿Qué miden?

• ¿En qué unidades se expresa el resultado?

GIRÓSCOPOS REFERENCIAS

Fuerza de Coriolis

