Math 3336: Test 1 Review

Instructions

_	This is not on		Maithan		0.00.0000	ana +a	be aubmitted
•	This is not an	assignment.	rvertifier	WOLK HOL	answers	are to	be submitted.

• Also, **DON'T FORGET THAT** $0 \in \mathbb{N}$.

1. Write down

- (a) an example of a true statement.
- (b) an example of a false statement.
- (c) an example of an open sentence.
- (d) an example of a non-statement (that is also *not* an open sentence).

2. suppose we have two finite sets, A and B, that satisfy

$$|A| = 5$$
 and $|B| = 7$

- (a) Is it possible for $|A \cup B| = 5$?
- (b) Is it possible for $|A \cup B| = 12$?
- (c) Is it possible for $|A \cup B| = 4$?
- (d) Compute $|\mathcal{P}(A)|$
- (e) Compute $|A \times B|$
- (f) Compute $|\mathcal{P}(A) \times B|$
- (g) Is it possible for $|A \cap B| = 0$?

3. Suppose P,Q and R are statements. Is it possible that the following is true?

$$(P\Rightarrow Q)\iff R \text{ is true}$$
 $P\vee R \text{ is false}$

4. Fill in the following truth-tables:

P	Q	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \iff Q$	$P \oplus Q$

5. Is $\neg (P \land Q) \lor P = \neg P \lor (\neg Q \lor P)$? Explain your answer using a truth table.

6.	Determine which, if any	of the following	statements is true	when using	the universal set	$U = \{2n : n \in \mathbb{Z}\}.$

- (a) $\exists ! x \in U, x^4 = 16.$
- (b) $\forall t \in U$, 3t is odd.
- (c) $\exists y \in U, y^3 = 27.$
- (d) $\forall s \in U, \cos(\pi s) = 1.$
- (e) None of the other statements are true.

7. Write down a non-empty universal set, U, that makes the following statement true:

$$\forall\,m\in U,\,3|m\,\wedge\,2|m.$$

8. Consider the following claim:

$$\forall (x,y) \in \mathbb{R}^2, \ \exists (u,v) \in \mathbb{R}^2, \ (x,y) + (u,v) = (x,y).$$

If one wanted to prove this using the Contrapositive method, then what could be used as the first line of the proof? What could be used as the last line?

9.	A sequence of real	numbers. $\{a$	·}.	satisfies	the recurrence	equation	and initial	condition
υ.	11 bequeince of rear	numbers, ju	n \mid γ	Bautsiics	one recurrence	cquaiion	and initial	Containion

$$a_n = a_{n-1} + 5$$
 and $a_0 = 3$.

Write the first four terms of this sequence. Do any of the terms in the sequence equal 33? If so, which one(s)?

10. Consider the statement

$$P: \exists q \in \mathbb{Q}, \forall p \in \mathbb{Z}, q \cdot p = 1.$$

Use logical symbols to write $\neg P$. Which statement is true, P or $\neg P$? (You do not need to write a proof.)

11.	Consider the floor f	function $f(x)$	= x	with	domain	and	co-domain	equal	to	\mathbb{R} .

(a) Where does f send the input x = 5/3?

(b) Is there an input $a \in \mathbb{R}$ that satisfies f(a) = 5/3? If so, identify the element(s) a that make this true. If not, explain why.

12. (HW 2 repeat) A new logical operator, ■, is partially defined by the following truth table information:

P	Q	$P \blacksquare Q$	$\neg (P \blacksquare Q) \land P$	$\neg (P \blacksquare Q) \lor Q$
T	T	T		
T	F		F	
F	T	F		
F	F			T

Complete this truth table. Is $P \blacksquare Q$ a contradiction? A tautology? Neither?

13. Write a proof of the following proposition:

Proposition. Let $a, b, c \in \mathbb{Z}$. If a|b and b|c then a|c.