NASA Kepler Exoplanet Search

Data Mining

Aleix Boné Eduard Bosch David Gili Albert Mercadé December 23, 2020

UPC

Data source

Our Dataset

NASA's Exoplanet Search Results ¹

Original Dataset

9.564 data records 8.48% of missing data 50 variables

Target column

koi_disposition

- CONFIRMED
- FALSE POSITIVE
- (CANDIDATE)
- (NOT DISPOSED)

¹Dataset URL: https://www.kaggle.com/nasa/kepler-exoplanet-search-results

Goal

The focus of the project is to correctly classify potential exoplanets based on the raw measurements taken by NASA's Kepler Space Observatory.

Pre-processing

Pre-processing steps

- Feature removal
- Example removal
- · Value transformation
- · Error and missing data treatment
- Feature selection

Feature selection

Figure 1: Cross validation score for different k values

Evaluation criteria

Validation Dataset

- 30(test): 70(training) split
- Target category proportions maintained

Parameter Optimization

5-fold cross validation

Metrics

F-measure

Execution of Machine Learning

methods

Naïve Bayes - Normalization

	No normalization	Standardization	Power Transform
Confusion matrix	[208 200] 3 189]	[287 121] 2 190]	[357 51] 19 173]
Accuracy:	0.661	0.795	0.883
F1 score:	0.65	0.755	0.831

Naïve Bayes - Parameter tuning

Figure 2: Naïve Bayes smoothing

Figure 3: weighted and unweighted knn with PCA, LDA and NCA

K-NN

Confusion matrix on tost sot	367	41	
Confusion matrix on test set:	22	170	

Accuracy on test set: 0.895 F1 score on test set: 0.844

Decision Trees - Parameter tuning

Figure 4: Decision trees F1 Score depending on the maximum depth of the decision tree.

Decision Trees

Figure 5: Our best-performing decision tree.

Support Vector Machines - Lineal kernel

Figure 6: linear SVM C parameter search

Support Vector Machines - Lineal kernel

Best results ($C = 10^5$)		
Confusion matrix on test set:	[383 25] 26 166]	
Accuracy on test set:	0.915	
F1 on test set:	0.8668	
Number of supports:	288 (269 of them have slacks)	
Proportion of supports:	0.2057	

Support Vector Machines - Polynomial and RBF kernels

Table 1: Comparison of different SVM kernels

Kernel	Accuracy	F1	Supports	Proportion	С	γ
Linear	0.9150	0.8668	288(269)	0.2057	10 ⁵	
Polynomial 2	0.9067	0.8542	332(283)	0.2371	10 ⁴	
Polynomial 3	0.9050	0.8503	356(317)	0.2543	10 ³	
RBF	0.9083	0.8564	330(302)	0.2357	10 ⁶	0.001

Performance majority voting i

Table 2: Majority voting results

Method	Accuracy
Naïve Bayes K-NN	0.884 0.857
Decision Tree	0.877
Majority voting Majority voting (weighted)	0.914 0.914

Performance majority voting ii

With hard voting:

Confusion matrix on test set:	375 33
Comusion matrix on test set.	375 33 20 172
Accuracy on test set:	0.9117
F1 score on test set:	0.8622

With weighted voting (2 1 2):

Confusion matrix on test set:	[373 19	35 173
Accuracy on test set:	0.92	L00
F1 score on test set:	0.84	+92

Bagging

Figure 7: Bagging parameter search

Bagging

Best results: $n_{est} = 200$, $max_features = 0.9$

Confusion matrix on tost sati	388	20
Confusion matrix on test set:	24	168

Accuracy on test set: 0.9267 F1 score on test set: 0.8825

Random Forest

Table 3: RandomForest best parameters

Parameter	Value
bootstrap	True
max_depth	150
max_features	10
min_samples_leaf	5
<pre>min_samples_split</pre>	5
n_estimators	500

Random Forest

Confusion matrix on test set:	384 21	24 171
Accuracy on test set:	0.9	25
F1 score on test set:	0.8	83

AdaBoost

Figure 8: AdaBoost parameter search

AdaBoost

When executing Adaboost with the best parameters found we obtain the following results:

Confusion matrix on test set:	383 21	25 171
Accuracy on test set:	0.9	23
F1 score on test set:	0.8	81

Comparison

Comparison - Accuracy and F1

Table 4: Comparison of metrics

	Accuracy	F1
nb	0.883333	0.831731
knn	0.878333	0.814249
dt	0.910000	0.858639
svm	0.911667	0.865140
voting	0.910000	0.860825
bag	0.920000	0.874346
rf	0.923333	0.878947
ada	0.923333	0.881443

Comparison - mcNemar

Thank you for your attention, any

questions?

Thank you for your attention, any

questions? I guess not :/