Accepted Manuscript

Title: Emergence of methicillin-resistant *staphylococcus aureus* ST398 in pigs in china

Author: Wei Li, Jian-Hua Liu, Xiu-Feng Zhang, Jing Wang, Zhen-Bao Ma, Lin Chen, Zhen-Ling Zeng

PII: S0924-8579(17)30386-2

DOI: https://doi.org/10.1016/j.ijantimicag.2017.10.013

Reference: ANTAGE 5286

To appear in: International Journal of Antimicrobial Agents

Received date: 29-6-2017 Accepted date: 28-10-2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Emergence of methicillin-resistant Staphylococcus aureus
2	ST398 in pigs in China
3	Wei Li ¹ , Jian-Hua Liu ¹ , Xiu-Feng Zhang, Jing Wang, Zhen-Bao Ma, Lin Chen, and
4	Zhen-Ling Zeng
5	Author affiliations:
6	Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and
7	Safety Evaluation, College of Veterinary Medicine, South China Agricultural
8	University, Guangzhou, China
10	Address for correspondence: Zhen-Ling Zeng, College of Veterinary Medicine, South
11	China Agricultural University, Guangzhou, Guangdong, China; email:
12	zlzeng@scau.edu.cn.
13	¹ These authors contributed equally to this article.
14	
15	
16	
17	
18	
19	
20	
21	
22	

23	Sir,
24	Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA), is an
25	important pathogen that causes community and nosocomial infection. The emergence
26	of livestock-associated MRSA (LA-MRSA) is a significant concern for the agriculture
27	industry and public health. The molecular characterization of LA-MRSA showed that
28	isolates differ in diverse geolocations around the world. MRSA sequence type 398
29	(ST398) isolates have been frequently reported in European and North American
30	countries, whereas most isolates found in Asia belong to the ST9 type [1,2]. We
31	investigated the prevalence and molecular characteristics of pig-associated MRSA in
32	China.
33	A total of 141 S. aureus strains were recovered from the 2997 nasal swab
34	samples collected from pig farms ($n = 1815$) and hog markets ($n = 1182$) located in
35	Guangdong, Shanghai, and Shandong. Among them, 104 MRSA (104/141, 73.8%)
36	and 37 methicillin-susceptible S. aureus (MSSA) isolates (37/141, 26.2%) were
37	identified by PCR, using the nuc gene to detect S. aureus and the nuc and mecA (or
38	mecC) for MRSA isolates (Table S1).
39	All isolates were genotyped by spa sequence typing
40	(<u>http://www.ridom.de/spaserver/</u>). MRSA isolates were further analyzed by multilocus
41	sequence typing (MLST) (http://saureus.mlst.net/), and the staphylococcal cassette
42	chromosome mec (SCCmec) types were determined as described previously (Table
43	S1). Seventeen antibiotics (Table S3) were tested using the agar dilution method
44	according the Clinical and Laboratory Standards Institute (CLSI, 2015) and S. aureus

45	ATCC29213 as a quality control strain. Isolates with a minimum inhibitory
46	concentration (MIC) of ≥ 16 mg/L and ≥ 2 mg/L were considered to be florfenicol and
47	valuemulin resistant, respectively. Resistance genes $[tet(K), tet(L), tet(M), fexA, fexB,$
48	cfr, and optrA] were tested by PCR according to previously described primers and
49	procedures (Table S1).
50	ST9 was the dominant MRSA sequence type in our study (100/104, 96.2%),
51	which was consistent with other reports from Asian countries, including China [2].
52	Surprisingly, the other four MRSA isolates belonged to ST398. Two of the four
53	ST398-MRSAs were recovered from one pig farm located in Guangdong province,
54	while the other two ST398 were from a pig farm located in Shanghai (Table 1).
55	ST398-MRSA is dominant in Europe and North American, but scarce in China. Only
56	a few studies have reported the presence of ST398 in hospitals, and this is the first
57	report of MRSA ST398 in swine herds in China [3]. We further investigated the
58	environment of the two pig farms, and found that these two farms were located close
59	to a main trunk traffic road. In addition, superior swine breeds and retail meat
60	introduced from Europe or America might be the source of the MRSA ST398 isolates
61	found in this study. For the SCCmec types, the four MRSA ST398 isolates were
62	classified as type V, which is the same as those isolates identified in a Shanghai
63	hospital [3]. However, the SCCmec types of all MRSA ST9 isolates were
64	non-typeable, which was similar to a report from Taiwan [4].
65	The 104 MRSA isolates exhibited nine spa types, the most prevalent type being
66	t899 (n = 91, 87.5%). Two <i>spa</i> types were identified among the four MRSA ST398

67	isolates, one was t034 (n = 2), a common and dominant type in Europe and North
68	America [1]; the other was t571 (n = 2), which was previously detected in hospitals in
69	China [3]. Among the 37 MSSA isolates, nine spa types were detected. The most
70	common types were t899 (n = 16) and 1775 (n = 9). Two MSSA-t571 isolates
71	recovered from the same farm with MRSA-ST398-t571 in Shanghai were further
72	analyzed by MLST, and were classified as ST398 (Table S2).
73	The antimicrobial resistance of the MRSA isolates was more serious than that of
74	the MSSA isolates for the majority of the tested antibiotics. Nearly all the S. aureus
75	isolates were susceptible to linezolid and rifampicin, and all were susceptible to
76	vancomycin (Table S3). Resistance to tetracycline was mainly mediated by $tet(K)$ (n =
77	29), $tet(L)$ (n = 101), and $tet(M)$ (n = 12). Florfenicol resistance was mostly encoded
78	by $fexA$ (n = 89). Two cfr -positive isolates were detected, including one
79	MRSA-ST9-t899 isolate and one MSSA-t4358 isolate collected from a hog market
80	and a pig farm in Guangdong, respectively.
81	The emergence of MRSA-ST398 isolates in pig farms in China indicated that the
82	epidemiology of MRSA might be changing progressively in swine herds.
83	Pig-associated MRSA are usually multidrug resistant, which might be induced by
84	higher antibiotic usage, both for animal disease treatment and growth promotion [5].
85	Furthermore, LA-MRSA may be transmitted to humans via the food chain or close
86	contact. As a potential risk to food safety and human health, it is necessary to
87	strengthen our monitoring of MRSA isolates from animals.

Declarations

89

90	Funding: This work was supported by grants from the National Key Basic Research
91	Program of China (No. 2013CB127200) and the Guangdong Natural Science
92	Foundation (No. S2012030006590).
93	Competing Interests: None declared.
94	Ethical Approval: Not required.
95	
96	References
97	[1] Pantosti A. Methicillin-Resistant Staphylococcus aureus Associated with Animals
98	and Its Relevance to Human Health. Front Microbiol. 2012;3:127.
99	[2] Chuang YY, Huang YC. Livestock-associated methicillin-resistant
100	Staphylococcus aureus in Asia: an emerging issue? Int J Antimicrob Agents.
101	2015;45:334–40.
102	[3] Song Z, Gu FF, Guo XK, Ni YX, He P, Han LZ. Antimicrobial Resistance and
103	Molecular Characterization of Staphylococcus aureus Causing Childhood Pneumonia
104	in Shanghai. Front Microbiol. 2017;8:455.
105	[4] Lo YP, Wan MT, Chen MM, Su HY, Lauderdale TL, Chou CC. Molecular
106	characterization and clonal genetic diversity of methicillin-resistant Staphylococcus
107	aureus of pig origin in Taiwan. Comp Immunol Microbiol Infect Dis.
108	2012;35:513–21.
109	[5] Zhu Y, Johnson TA, Su J, Qiao M, Guo G, Stedtfeld RD, et al. Diverse and
110	abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci.

111 2013 2013-02-26;110(9):3435-40.

Received Manuscille

Table 1 Characterization of the pig-associated ST398 MRSA isolates

Isolates	Region	Time	Origin	spa	SCCmec	Antimicrobial resistance	Resistance gene
GDC6P096P	Guangdong	2016 May	farm 1	034	V	AMP-OXA-PEN-FOX-TET-FFC-ERY-CLI-TIA-VAL	mecA-tetK-tetM-fexA
GDC6P098P	Guangdong	2016 May	farm 1	034	V	AMP-OXA-PEN-FOX-TET-ERY-CLI-TIA-VAL-SXT	mecA-tetK-tetM
SHP6P021P	Shanghai	2016 Apr	farm 2	571	V	AMP-OXA-PEN-FOX-TET-FFC-ERY-CLI-TIA-VAL-CIP	mecA-tetM-fexA
SHP6P022P	Shanghai	2016 Apr	farm 2	571	V	AMP-OXA-PEN-FOX-TET-FFC-ERY-CLI-TIA-VAL-CIP-SXT	mecA-tetL-tetM

AMP, ampicillin; OXA, oxacillin; PEN, penicillin; FOX, cefoxitin; TET, tetracycline; FFC, florfenicol; ERY, erythromycin; CLI, clindamycin; TIA, tiamulin; VAL, valnemulin; CIP,

ciprofloxacin; SXT, trimethoprim/sulfamethoxazole.

115

114

112

116