Epilepsie – 3er Tandemvorlesung

Bach – Sellhaus – Lampert Neurologie – Neuropathologie - Physiologie

Sommersemester 2015

Epilepsie

- 1. Patientenvorstellung Epilepsie (Bach)
- 2. Elektroenzephalogramm (Lampert)
 - 1. Entstehung
 - 2. Pathologien
- 3. Neuropathologie der Epilepsie (Sellhaus)
- 4. Epilepsie in der Klinik (Bach)
- 5. Weitere Anwendungsbereiche des EEGs in der Klinik (Lampert)

Patientenvorstellung

Epilepsie

- 1. Patientenvorstellung Epilepsie (Bach) ✓
- 2. Elektroenzephalogramm (Lampert)
 - 1. Entstehung
 - 2. Pathologien
- 3. Neuropathologie der Epilepsie (Sellhaus)
- 4. Epilepsie in der Klinik (Bach)
- 5. Weitere Anwendungsbereiche des EEGs in der Klinik (Lampert)

Epilepsie?

Diagnostik: EEG

Physiologie der EEG-Entstehung

Klinik für Psychiatrie und Psychotherapie Jena

Klinik für Psychiatrie und Psychotherapie Jena

ElektroEnzephaloGraphie, Enzephalogramm (EEG)

Ableitung von der Schädeloberfläche an definierten Punkten

bipolar misst Potentialunterschiede zwischen 2 Elektroden

unipolar zwischen Elektrode und Referenz

EEG in der Klinik

Epilepsie Diagnostik

- Anästhesietiefe
- •Koma-Überwachung
- Hirntod-Diagnose

Schlaf-Überwachung und –Analyse (Somnografie)

6 Schichten-Aufbau des Cortex

Input in Schicht IV: aus dem Thalamus vorallem VLc

Entstehung des EEG im zerebralen Kortex

Synaptische Potentiale dauern deutlich länger als Aktionspotentiale (bis zu 100 ms)

Entstehung des EEG im zerebralen Kortex

Zelle wird zum Dipol.
Parallele Anordnung der Zellen.
Je mehr Zellen gleichzeitig eine ähnliche Aktivität aufweisen, desto größer wird das EEG Signal.

aktive erregende dendritische Synapse: Na+ - Einstrom: Stromsenke

K+-Ausgleichsströme am Soma: Stromquelle

Entstehung des EEG im zerebralen Kortex

Je nach Erregungsort am Dendritenbaum entsteht positiver oder negativer Ausschlag im EEG.

Je synchronisierter die neuronale Aktivität desto größer das Signal im EEG.

Typische Wellen im EEG

Blockade des alpha Ryhthmus durch Öffnen der Augen

Absence-Epilepsie EEG

starrer Blick, leerer Gesichtsausdruck

Übergang vom α -Rhythmus in typisches 3 Hz *Spike-and- Wave* Muster

Epilepsie

- 1. Patientenvorstellung Epilepsie (Bach) ✓
- 2. Elektroenzephalogramm (Lampert) ✓
 - 1. Entstehung
 - 2. Pathologien
- 3. Neuropathologie der Epilepsie (Sellhaus)
- 4. Epilepsie in der Klinik (Bach)
- 5. Weitere Anwendungsbereiche des EEGs in der Klinik (Lampert)

Neuropathologie Epilepsie

Abgrenzung:

- symptomatische Epilepsie

- chronische, teils pharmakoresistente Epilepsie

Meningeom als Beispiel für eine (mögliche) symptomatische Form der Epilepsie

Meningeom wird im Praktikum vorgestellt und vertieft

Neuropathologie chronischer (teils pharmakoresistenter) Epilepsie

Neuropathologische Befunde bei 531 konsekutiven Resektionspräparaten von Patienten mit chronischer pharmakoresistenter Epilepsie

Auswertung operativer Resektate

(nach Wolf und Wiestler, DÄB 93, Heft 40, 1996)

Neuropathologie chronischer (teils pharmakoresistente) Epilepsie

Häufigste Diagnosen	Anzahl	Prozent
Tumor (diverse)	161	30,3
Ammonshornsklerose	117	22,0
Glioneuronale Fehlbildung	89	16,8
Kavernom	25	4,7
Alte Infarkte/Nekrosen	18	3,4
•••		

Neuropathologie chronischer (teils pharmakoresistente) Epilepsie

Häufigste Diagnosen	Anzahl	Prozent
Tumor (diverse)	161	30,3
Ammonshornsklerose	117	22,0
Glioneuronale Fehlbildung	89	16,8
Kavernom	25	4,7
Alte Infarkte/Nekrosen	18	3,4

Häufigste Tumoren

Diagr	nose	Anzahl	Prozent
Gang	liogliom (WHO°I oder °II)	71	44,1
Pilozytisches Astrozytom (WHO°I)		27	16,8
DNT	(Dysembryoplastischer neuroektodermaler Tumor (WHO°I)	18	11,2

Neuropathologie: Keine TNM-Klassifikation!

WHO-Grade Neuropathologischer Tumoren:

WHO-°I: Gutartiger Hirntumor

WHO-°II: Bedingt Gutartiger Hirntumor

WHO-°III: Bedingt bösartiger Hirntumor

WHO-°IV: Bösartiger Hirntumor

Neuropathologie chronischer (teils pharmakoresistente) Epilepsie

Häufigste Diagnosen	Anzahl	Prozent
Tumor (diverse)	161	30,3
Ammonshornsklerose	117	22,0
Glioneuronale Fehlbildung	89	16,8
Kavernom	25	4,7
Alte Infarkte/Nekrosen	18	3,4

Ausgeprägte elektive Parenchymnekrose

(Elektiver) Verlust vulnerabler Ganglienzellpopulationen im Hippocampus

Begleitende reaktive Gliose (funktionsunfähige Narbe)

Reorganisation neuronaler Verschaltungen

Kontroverse Diskussion: AH-Sklerose primär pathogenetisch bedeutsam oder sekundäre Schädigung nach wiederkehrenden Anfällen?

Epilepsie

- 1. Patientenvorstellung Epilepsie (Bach) ✓
- 2. Elektroenzephalogramm (Lampert) ✓
 - 1. Entstehung
 - 2. Pathologien
- 3. Neuropathologie der Epilepsie (Sellhaus)
- 4. Epilepsie in der Klinik (Bach)
- 5. Weitere Anwendungsbereiche des EEGs in der Klinik (Lampert)

Epidemiologie

• Prävalenz: ca. 1%

Inzidenz: ca 50/100000

• Alter zweigipflig, Kindesalter und nach dem 60 Lebensjahr

Epidemiologie

Hauser et al., 1993

Anamnese

- Lokalisierende Zeichen
- Postiktale Zeichen
- Schon mal ähnliche Ereignisse erlitten
- Risikofaktoren für eine Epilepsie
- Schlafentzug, Flackerlicht, Drogen/ Alkoholmissbrauch
- Familienanamnese, Medikation, Vorerkrankungen

Klinische Untersuchung

- Zungenbiss, Enuresis, Enkopresis, Orientierung
- Neurologische Untersuchung
- Frage nach lokalisierenden Zeichen (Parese, Taubheit, Sprachstörung)

Labor

- CK erhöht, Laktat erhöht
- Infekt
- Intoxikation (Alkohol, Drogen, Medikation)

Liquorpunktion

Nur bei Verdacht auf Meningitis/Enzephalitis

Zusatzuntersuchungen

- EEG
- Schlafentzugs-EEG
- Bildgebung

Differentialdiagnose

- Epileptischer Anfall
- Konvulsive Synkope
- Psychogene Anfälle
- Drop Attack

Leitlinie DGN 2015

Diagnose

Epilepsie

- Erster Anfall und pathologisches EEG/MRT
- Zwei nicht provozierte Anfälle

Einteilung

- Fokal vs generalisiert
- Idiopathisch vs symptomatisch
- Situationsbezogen (Gelegenheitsanfälle)
 - Fieberkrämpfe
 - Alkoholentzug, Medikation, Elektrolytentgleisung

Therapie

- Verhaltensmaßnahmen
- Medikamentös
- Sozialmedizinische Beratung
- Epilepsiechirurgie

Epilepsie

- Patientenvorstellung Epilepsie (Bach) ✓
- 2. Elektroenzephalogramm (Lampert) ✓
 - 1. Entstehung
 - 2. Pathologien
- 3. Neuropathologie der Epilepsie (Sellhaus)
- 4. Epilepsie in der Klinik (Bach)
- 5. Weitere Anwendungsbereiche des EEGs in der Klinik (Lampert)

EEG Prothesen – Steuerung von Hilfsmitteln durch Hirnströme

"Neural interface systems". Nutzt Plastiziät des Mororischen Cortex M1. http://www.nature.com/nature/journal/v485/n7398/full/nature11076.html

