Berechnung der Gleichgewichtskonstanten

Folgende Reaktion wird im Gleichgewicht betrachtet

$$H_2 + I_2 \leftrightarrows 2 HI$$

Es wurden bei gleicher Temperatur in drei unterschiedlichen Reaktionsansätzen im Gleichgewichtszustand folgende Konzentrationen der beteiligten Reaktionspartner gemessen:

	C (H ₂) in mol/l	C (I ₂) in mol/l	C (HI) in mol/l	K
Ansatz 1	1,8313 · 10 ⁻³	3,1291 · 10 ⁻³	17,671 · 10 ⁻³	
Ansatz 2	3,5600 · 10 ⁻³	1,2500 · 10 ⁻³	15,588 · 10 ⁻³	
Ansatz 3	4,5674 · 10 ⁻³	0,7378 · 10 ⁻³	13,544 · 10 ⁻³	

Aufgaben:

- Formuliere für die obige Reaktion das Massenwirkungsgesetz und berechne die drei Gleichgewichtskonstanten.
- Erkläre mit dem MWG, wie sich Konzentrationen der Reaktionspartner auf das Gleichgewicht auswirken.