Docket No. 242334US0

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

. IN RE APPL	LICATION OF: Narutoshi	FUKUZAWA		GAU:						
SERIAL NO: New Application				EXAMINER:						
FILED:	Herewith									
FOR:	OR: OPTICAL RECORDING MEDIUM AND OPTICAL RECORDING/REPRODUCING METHOD									
REQUEST FOR PRIORITY										
	ONER FOR PATENTS RIA, VIRGINIA 22313									
SIR:		•								
	nefit of the filing date of U.Sons of 35 U.S.C. §120.	S. Application	Serial Number	, filed	, is claimed pursuant to the					
☐ Full ben §119(e)		U.S. Provisional Application(s) is claimed pu <u>Application No.</u> <u>Date Fi</u>								
	nts claim any right to prior visions of 35 U.S.C. §119,			ations to which	they may be entitled pursuant to					
In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:										
COUNTRY Japan	<u>COUNTRY</u> Japan				ONTH/DAY/YEAR ptember 11, 2002					
Certified co	pies of the corresponding (Convention App	olication(s)							
are s	are submitted herewith									
□ will	☐ will be submitted prior to payment of the Final Fee									
□ were	☐ were filed in prior application Serial No. filed									
Rece	e submitted to the Internation eipt of the certified copies be nowledged as evidenced by	by the Internati	onal Bureau in a		under PCT Rule 17.1(a) has been					
☐ (A) Application Serial No.(s) were filed in prior application Serial No. filed ; and										
□ (B)	Application Serial No.(s)									
are submitted herewith										
☐ will be submitted prior to payment of the Final Fee										
				Respectfully Submitted,						
					VAK, McCLELLAND, EUSTADT, P.C.					
	n/ Crllan									
	.			Norman F. Ol						
Customer				Registration N						
22850				O. in/in McOlelland Registration Number 21,124						
Tel. (703) 413 Fax. (703) 413 (OSMMN 05/	3-2220			ಕ್ರ-ಕಟಡೆಟ0 <u>್</u>	i Number 21,124					

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 9月11日

出 願 番

特願2002-264972

Application Number: [ST. 10/C]:

[J P 2 0 0 2 - 2 6 4 9 7 2]

出 願 人

Applicant(s):

TDK株式会社

2003年 7月 9日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

04380

【提出日】

平成14年 9月11日

【あて先】

特許庁長官殿

【国際特許分類】

G11B 7/24

【発明者】

【住所又は居所】 東京都中央区日本橋一丁目13番1号 ティーディーケ

イ株式会社内

【氏名】

福澤 成敏

【特許出願人】

【識別番号】

000003067

【氏名又は名称】 ティーディーケイ株式会社

【代表者】

澤部 肇

【代理人】

【識別番号】 100100561

【弁理士】

【氏名又は名称】 岡田 正広

【手数料の表示】

【予納台帳番号】 064002

【納付金額】

21,000円

【提出物件の目録】

、【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 光記録媒体及び光記録再生方法

【特許請求の範囲】

【請求項1】 支持基体上に、少なくとも有機化合物を主成分とする記録層と、390~420nmの波長の記録再生のためのレーザー光を透過する光透過層とをこの順で有する光記録媒体であって、

前記記録層の有機化合物は、370~425n mの範囲に屈折率n(複素屈折率の実部)の極小値 n_{min} を有し、記録再生レーザー光の波長における屈折率nは1. 2以下であるモノメチンシアニン系色素を含み、レーザー光を吸収して溶融又は分解し屈折率変化を生じることにより情報の記録を行うことを特徴とする光記録媒体。

【請求項2】 再生レーザー光の波長において、前記有機化合物の屈折率 n は、前記溶融又は分解によって高くなる、請求項1に記載の光記録媒体。

【請求項3】 前記有機化合物の消衰係数k (複素屈折率の虚部) は、記録 レーザー光の波長及び再生レーザー光の波長いずれにおいても、0.15以上で ある、請求項1又は2に記載の光記録媒体。

【請求項4】 前記モノメチンシアニン系色素のモノメチン基両側の2つの含窒素複素環のうちの一方が、インドレニン及びベンゾチアゾールから選ばれ、他方が、インドレニン、キノリン、ベンゾチアゾール、ベンゾイミダゾール及びベンゾセレナゾールから選ばれる、請求項1~3のうちのいずれか1項に記載の光記録媒体。

【請求項5】 前記モノメチンシアニン系色素のモノメチン基両側の2つの含窒素複素環は、互いに同一である、請求項1~4のうちのいずれか1項に記載の光記録媒体。

【請求項6】 前記記録層には、前記有機化合物の他に、クエンチャーが含まれている、請求項1~5のうちのいずれか1項に記載の光記録媒体。

【請求項7】 支持基体上に、少なくとも有機化合物を主成分とする記録層と、390~420 nmの波長の記録再生のためのレーザー光を透過する光透過

層とをこの順で有し、前記記録層の有機化合物は、370~425 n mの範囲に屈折率 n (複素屈折率の実部)の極小値 n min を有し、記録再生レーザー光の波長における屈折率 n は1.2以下であるモノメチンシアニン系色素を含み、レーザー光を吸収して溶融又は分解し屈折率変化を生じる光記録媒体に、光透過層側から390~420 n m の波長の記録レーザー光を照射することにより情報を記録し、前記記録レーザー光の照射部においては、390~420 n m の波長の再生レーザー光の波長における前記有機化合物の屈折率 n を高くし、記録後、光透過層側から390~420 n m の波長の再生レーザー光を照射して情報を再生する、光記録再生方法。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、記録層が有機化合物から主としてなる光記録媒体、及びこれを使用 する光記録再生方法に関する。

[0002]

【従来の技術】

CD-R (Compact Disc-Recordable) やDVD-R (Digital Versatile Disc-Recordable) に代表されるような記録層に有機色素を用いた追記型光情報記録媒体が広く用いられるようになっている。近赤外波長のレーザー光により記録再生可能なCD-Rは、その価格や、記録された情報を改ざんできない特性の点において市場に受け入れられた。また、映像が長時間記録できるような高記録密度化が求められ、赤外波長のレーザー光により記録再生可能なDVD-Rが、現在普及しつつある。すなわち、DVDにおいては、記録再生レーザー光の波長をCDの780nmから650nmに、光学系の開口数(以下、NAと称する。)をCDの0.45から0.6にすることにより、CDの6~8倍の記録容量(4.7GB/面)を達成し、通常のテレビジョン信号であれば2時間程度の記録が可能となっている。

[0003]

昨今、更なる高記録密度化のために、さらに記録再生レーザー光の短波長化と

、光学系の高開口数化が進み、記録再生レーザー光として青紫半導体レーザー光 (波長390~420 n m)を用い、NA0.76以上のレンズ系を用いるシステムにおける次世代の光記録媒体が提案されている。短波長レーザー光の使用によって光記録媒体の飛躍的な高記録密度化が期待される。

[0004]

ところで、CD-RやDVD-Rの記録層に用いられる有機色素材料としては、種々提案されているが、実用に至っている材料は、その吸収スペクトルの長波長側が記録再生レーザー光波長領域に合わせられ、長波長側において高い屈折率(n>2.0)と適切な消衰係数(0.01<k<0.10)とが両立されているものである。記録層に記録レーザー光が照射されると、前記有機色素材料はレーザー光を吸収し、溶融又は分解し、高屈折率から低屈折率への大きな屈折率変化を伴い、記録ピットが形成され、情報が記録される。記録された情報を再生するには、記録層に再生レーザー光を照射し、記録ピットとその周囲の未記録部との間のレーザー光に対する反射率の差を利用して、情報を読み取る。

[0005]

CD-RやDVD-Rにおいては、高い反射率を有するCD-ROM(Read On ly Memory)やDVD-ROMとの互換性のために高い反射率が必要とされるが、2<n<3の屈折率と、0.01<k<0.10の消衰係数を有する有機色素材料のみでは、高い反射率が得られない。そのため、レーザー光照射側から見て記録層の向う側に反射率の高い金属反射層が設けられている。このように、CD-RやDVD-Rにおいては、ROMとの互換性を保つべく高反射率及び高変調のために、記録再生レーザー光波長領域において、溶融又は分解によって高屈折率から低屈折率へ変化する有機色素材料が実用されている。

[0006]

【特許文献1】

特開2001-273672号公報

[0007]

【発明が解決しようとする課題】

記録再生レーザー光として青紫半導体レーザー光(波長390~420nm)

を用いる次世代の光記録媒体においては、記録層に相変化材料を用いた書換え可能型媒体RW(Rewritable)の反射率を原理的にROMと同程度にまで高くできないという事情から、低反射率が基本的な規格として盛り込まれるようになっている。CD-RやDVD-Rのように高い反射率が必要とされないのであれば、追記型光記録媒体の記録層において、レーザー光照射による溶融又は分解によって低屈折率から高屈折率へと変化する有機色素材料を採用することも可能となる。特開2001-273672号公報には、その可能性が示唆されている。

[0008]

しかしながら、390~420nmの記録再生レーザー光波長領域において、レーザー光照射による溶融又は分解によって低屈折率から高屈折率へと変化する有機色素材料は具体的に知られていない。CD-RやDVD-Rにおける場合のように、390~420nmという領域に吸収スペクトルの長波長側を合わせるという手法も一般的に困難であると考えられる。UV吸収剤では、390~420nmという領域に吸収スペクトルの長波長側を有するものもあるが、UV吸収剤は共役系が短くすなわち分子全体が小さく、有機溶剤への溶解性が一般的に劣る。そのため、スピンートに適さないこと、薄膜時に結晶化しやすいこと等の弊害が考えられる。

[0009]

そこで、本発明の目的は、記録再生レーザー光として青紫半導体レーザー光(波長390~420 nm)を用いる、記録層が有機化合物から主としてなる光記 録媒体を提供することにある。また、本発明の目的は、前記光記録媒体を使用す る光記録再生方法を提供することにある。

[0010]

【課題を解決するための手段】

本発明は、支持基体上に、少なくとも有機化合物を主成分とする記録層と、3 90~420nmの波長の記録再生のためのレーザー光を透過する光透過層とを この順で有する光記録媒体であって、

前記記録層の有機化合物は、370~425 n mの範囲に屈折率 n (複素屈折率の実部)の極小値 n min を有し、記録再生レーザー光の波長における屈折率 n

は1. 2以下であるモノメチンシアニン系色素を含み、レーザー光を吸収して溶融又は分解し屈折率変化を生じることにより情報の記録を行うことを特徴とする光記録媒体である。

[0011]

本発明は、再生レーザー光の波長において、前記有機化合物の屈折率nは、前記溶融又は分解によって高くなる、前記の光記録媒体である。

[0012]

本発明は、前記有機化合物の消衰係数k (複素屈折率の虚部) は、記録レーザー光の波長及び再生レーザー光の波長いずれにおいても、0.15以上である、前記の光記録媒体である。

[0013]

本発明は、前記モノメチンシアニン系色素のモノメチン基両側の2つの含窒素 複素環のうちの一方が、インドレニン及びベンゾチアゾールから選ばれ、他方が 、インドレニン、キノリン、ベンゾチアゾール、ベンゾイミダゾール及びベンゾ セレナゾールから選ばれる、前記の光記録媒体である。

$[0\ 0\ 1\ 4]$

本発明は、前記モノメチンシアニン系色素のモノメチン基両側の2つの含窒素 複素環は、互いに同一である、前記の光記録媒体である。

$[0\ 0\ 1\ 5]$

本発明は、前記記録層には、前記有機化合物の他に、クエンチャーが含まれている、前記の光記録媒体である。

[0016]

本発明は、前記支持基体上にはランド及びグルーブが形成され、前記グルーブ の深さは $60\sim150$ nmである、前記の光記録媒体である。また、本発明は、 ランド部のみを記録エリアとする、前記の光記録媒体である。

[0017]

本発明は、前記記録層上に誘電体層を有し、前記誘電体層上に前記光透過層を 有する、前記の光記録媒体である。また、本発明は、前記誘電体層の記録再生レ ーザー光の波長における屈折率 n4 (複素屈折率の実部) が 2 以上であり、消衰 係数 k 4 (複素屈折率の虚部) は 0.2以下である、前記の光記録媒体である。

[0018]

本発明は、前記光透過層の厚さは、信号記録再生領域において、 $1 \mu m \sim 15$ $0 \mu m$ である、前記の光記録媒体である。

[0019]

また、本発明は、支持基体上に、少なくとも有機化合物を主成分とする記録層と、390~420nmの波長の記録再生のためのレーザー光を透過する光透過層とをこの順で有し、前記記録層の有機化合物は、370~425nmの範囲に屈折率n(複素屈折率の実部)の極小値nminを有し、記録再生レーザー光の波長における屈折率nは1.2以下であるモノメチンシアニン系色素を含み、レーザー光を吸収して溶融又は分解し屈折率変化を生じる光記録媒体に、光透過層側から390~420nmの波長の記録レーザー光を照射することにより情報を記録し、前記記録レーザー光の照射部においては、390~420nmの波長の再生レーザー光の波長における前記有機化合物の屈折率nを高くし、記録後、光透過層側から390~420nmの波長の再生レーザー光を照射して情報を再生する、光記録再生方法である。

[0020]

【発明の実施の形態】

図面を参照して、本発明の光記録媒体(以下、光ディスクと略記する)について説明する。

[0021]

図1は、本発明の光ディスクの一構成例を示す要部概略断面図である。図1において、光ディスク(1) は、支持基体(2) の情報ピットやプリグルーブ等の微細凹凸が形成されている側の面上に、記録層(3)、好ましくは誘電体層(4)、及び光透過層(5)をこの順で有する。光ディスク(1)は、光透過層(5)を通して記録又は再生のためのレーザー光が入射するように使用される。

[0022]

支持基体(2) は、厚さ0.3~1.6 mm、好ましくは厚さ0.5~1.3 m mであり、記録層(3) が形成される側の面に、情報ピットや、プリグルーブ、ラ

ンド等の微細な凹凸が形成されている。本発明において、グルーブ及びランドについては、グルーブ(G) はレーザー光照射側(光透過層(5)側)から見て近い方の案内溝を指し、ランド(L) はグルーブ(G) 同士の間に形成される。グルーブ(G) は通常、スパイラル状に形成される。

[0023]

前記グルーブ(G) の深さ(Gd)は、ランド(L) の最も高い所とグルーブ(G) の最も低い所の差で定義され、好ましくは $40\sim150$ nmであり、より好ましくは $60\sim120$ nmである。グルーブ(G) の深さ(Gd)をこのような範囲とすることによって、十分なトラッキング制御が可能となり、クロストークを抑制できる。グルーブ(G) の深さ(Gd)が40 nm未満であると、トラック追従のために必要なトラッキングエラー信号が小さくなり、またクロストークが大きくなり、さらにウオブル信号のようなプリフォーマット信号か小さくなる傾向がある。一方、深さ(Gd)が150 nmを超えると、ランド(L) 及びグルーブ(G) の正確な形成が難しくなり、反射信号の低下や感度の低下も考えられる。

[0024]

グルーブ幅 (Gw)は、グルーブ深さ (Gd)の 1/2 の深さ位置におけるグルーブの幅であり、好ましくは 1 1 0 \sim 2 1 0 n mであり、より好ましくは 1 3 0 \sim 1 9 0 n mである。グルーブピッチ (Gp)は、隣り合うグルーブ同士の間隔であり、例えば、隣り合うグルーブの幅 (Gw) 方向中心同士の間隔である。グルーブピッチ (Gp) (Gp)

[0025]

本発明の光記録媒体にランド&グループ記録又はグループ記録を行ってもよいが、ランド部のみを記録エリアとするランド記録を行うことが好ましい。支持基体(2)が上述のように構成され、支持基体(2)上に有機化合物を主成分とする記録層(3)をスピンコート法により形成した場合には、記録層(3)はランド部の膜厚がグループ部の膜厚よりも厚くなるように形成され、ランド部において有機化合物の量が多くなる。そのため、ランド部のみを記録エリアとすることが好ましい。

[0026]

支持基体(2) としては、光学的には透明である必要はなく、ポリカーボネート 樹脂、ポリメチルメタクリレート(PMMA)等のアクリル系樹脂、ポリオレフィン樹脂等の各種プラスチック材料等が使用できる。このように撓み易い材料を 用いた場合に、本発明は反りの発生を抑えることができるので特に有効である。 但し、ガラス、セラミックス、金属等を用いても良い。凹凸パターンは、プラスチック材料を用いる場合には、射出成形することにより作成されることが多く、 プラスチック材料以外の場合には、フォトポリマー法(2 P法)によって成形される。

[0027]

支持基体(2) 上に、有機化合物を主成分とする記録層(3) が形成される。前記有機化合物は、370~425 n mの範囲に屈折率 n (複素屈折率の実部) の極小値 n min を有し、記録再生レーザー光の波長における屈折率 n は1.2以下でり、且つ390~420 n mの波長の記録レーザー光を吸収して溶融又は分解し屈折率変化を生じるモノメチンシアニン系色素を含むものである。また、ここにいう主成分とは、不可避成分は除いて、記録層が前記有機化合物で構成されていることをいうが、前記特性を有する有機化合物以外の有機化合物(例えば、クエンチャー)を記録層中に含んでいてもよく、層の諸特性向上の目的で、記録層中に無機化合物を10重量%以下で含有することも可能である。

[0028]

用いられる記録レーザー光の波長領域390~420nmの屈折率n(複素屈折率の実部)を1.2以下とすることにより、記録時において、前記有機化合物は390~420nmの波長の記録レーザー光を吸収して溶融又は分解し、390~420nmの波長領域において低屈折率から高屈折率(例えば、1.45~1.65)への屈折率変化を生じる。このようにして、記録ピットが形成され、情報が記録される。再生時においては、記録ピットとその周囲の未記録部との間の390~420nmの波長の再生レーザー光に対する反射率の差を利用して、情報を読み取る。この原理に基づいて、390~420nmの記録レーザー光による記録、390~420nmの再生レーザー光による再生が行われる。より大

きな屈折率変化を生じさせるために、370 - 425 nmの範囲の屈折率 nの極小値 n_{min} は、1.1以下が好ましく、1.0以下がより好ましい。極小値 n_{mi} の下限値は、特に定められないが、通常は0.7程度である。

[0029]

また、前記有機化合物の消衰係数k (複素屈折率の虚部) は、記録レーザー光の波長及び再生レーザー光の波長いずれにおいても、0.15以上であることが好ましく、0.3以上であることがより好ましい。記録レーザー光の波長における消衰係数kが0.15以上であることにより、記録ピット形成部において記録レーザー光を適度に吸収でき、局所的に温度上昇し溶融又は分解による屈折率変化を生じやすい。記録レーザー光の波長における消衰係数kが0.15 共満であると、記録レーザー光の吸収率が低下し、通常の記録パワーでの記録が困難となる。また、再生レーザー光の波長における消衰係数kが0.15以上であることにより、未記録部において所望の反射率が得られ、記録ピットと未記録部との間の反射率差を読み取りやすい。しかしながら、再生レーザー光の波長における消衰係数kが大きくなりすぎると、反射率が低下してしまうので、再生レーザー光の波長における消衰係数kは0.95以下であることが好ましい。このような観点から、前記有機化合物の消衰係数k(複素屈折率の虚部)は、記録レーザー光の波長及び再生レーザー光の波長いずれにおいても、0.3以上0.95以下が好ましく、0.4以上0.8以下がより好ましい。

[0030]

本発明において、前記有機化合物の屈折率 n (複素屈折率の実部)及び消衰係数 k (複素屈折率の虚部)は、薄膜状態の有機化合物の吸収スペクトルについて測定されるものである。薄膜の吸収スペクトルは、一般的には、以下のようにして得られる。吸収スペクトルを測定すべき有機化合物を適切な有機溶媒に溶解させ、得られた溶解液をスピンコート法にて、グルーブやピット等のないポリカーボネート平板上に、有機化合物が特定の配向性を持たぬように40~100 nm程度の膜厚となるように塗布する。スピンコート時の溶媒揮発の際に有機化合物が著しい結晶化、あるいは会合するような場合は別の溶媒を選択する。こうして作成した有機化合物薄膜付きポリカーボネート基板の透過吸収スペクトルを、分

光光度計にて測定する。

[0031]

本発明において、前記有機化合物として、前記の特性を満たすようなモノメチンシアニン系色素を用いる。モノメチンシアニン系色素は、前記の特性を満たすことを条件に、次の一般式(I)で表されるものから選ばれる。

[0032]

【化1】

$$\begin{array}{c|c}
Q \\
\downarrow \\
N \\
\downarrow \\
R_1
\end{array}$$

$$\begin{array}{c}
Q' \\
N \\
\downarrow \\
R_1'
\end{array}$$

$$\begin{array}{c}
(I) \\
X^{-}) \\
m
\end{array}$$

[0033]

一般式(I)において、Q及びQ'はそれぞれ、同一又は異なっていてもよく、含窒素複素環を形成する原子群を表し、前記含窒素複素環は縮合環であってもよく、置換基を有していてもよい。 R_1 及び R_1 'はそれぞれ、同一又は異なっていてもよく、置換基を有していてもよいアルキル基を表す。このアルキル基としては、炭素原子数 $1\sim 6$ のアルキル基が挙げられ、炭素原子数 $1\sim 4$ のアルキル基(メチル、エチル、プロピル、ブチル基)が好ましい。 X^- は陰イオンを表し、mは0又は1である。 X^- としては、 $C1^-$ 、 Br^- 、 I^- 等のハロゲンイオン、 $C1O_4^-$ 、 BF_4^- 、 PF_6^- 、 SbF_6^- 、 SCN^- 等が挙げられる。

[0034]

前記一般式(I)において、モノメチン基両側の含窒素複素環としては、各々次の一般式で表されるインドレニン(A)、キノリン(B)、ベンゾチアゾール(C)、ベンゾイミダゾール(D)、ベンゾセレナゾール(E)が挙げられる。なお、これらの含窒素複素環の構造式においては、便宜的にNが電荷を帯びた状態で示されている。

[0035]

【化2】

(A)
$$R_{2}$$
 R_{7} R_{8} R_{4} R_{5} R_{1}

(C)
$$R_3$$
 R_4 R_5 R_1

(D)
$$R_3 \longrightarrow R_6$$

$$R_4 \longrightarrow R_5$$

$$R_1$$

(E)
$$R_3$$
 R_4 R_5 R_1

[0036]

インドレニンを表す式(A)において、 R_1 は置換基(例えばアルコキシ基)を有していてもよいアルキル基を表し、炭素原子数 $1\sim 4$ のアルキル基(メチル、エチル、プロピル、ブチル基)が好ましい。 R_7 及び R_8 はそれぞれ、同一又は異なっていてもよく、メチル又はエチル基を表す。 R_2 、 R_3 、 R_4 及び R_5 はそれぞれ、同一又は異なっていてもよく、水素原子、アルキル基、アルコキシ基、又はC 1 等のハロゲン原子を表す。

[0037]

キノリンを表す式 (B) において、R₁ は置換基 (例えばアルコキシ基) を有

していてもよいアルキル基を表し、炭素原子数 $1 \sim 4$ のアルキル基(メチル、エチル、プロピル、ブチル基)が挙げられ、プロピル、ブチル基が好ましい。 R_2 、 R_3 、 R_4 及び R_5 はそれぞれ、同一又は異なっていてもよく、水素原子、アルキル基、又は C 1 等のハロゲン原子を表す。

[0038]

ベンゾチアゾールを表す式(C)において、 R_1 は置換基(例えばアルコキシ基)を有していてもよいアルキル基を表し、炭素原子数 $1\sim 4$ のアルキル基(メチル、エチル、プロピル、ブチル基)が挙げられ、プロピル、ブチル基が好ましい。 R_2 、 R_3 、 R_4 及び R_5 はそれぞれ、同一又は異なっていてもよく、水素原子、アルキル基、又はC 1 等のハロゲン原子を表す。

[0039]

ベンゾイミダゾールを表す式(D)において、 R_1 は置換基(例えばアルコキシ基)を有していてもよいアルキル基を表し、炭素原子数 $1\sim 4$ のアルキル基(メチル、エチル、プロピル、ブチル基)が挙げられ、プロピル、ブチル基が好ましい。 R_6 はメチル又はエチル基を表す。 R_2 、 R_3 、 R_4 及び R_5 はそれぞれ、同一又は異なっていてもよく、水素原子、アルキル基、又はC 1 等のハロゲン原子を表す。

[0040]

ベンゾセレナゾールを表す式(E)において、 R_1 は置換基(例えばアルコキシ基)を有していてもよいアルキル基を表し、炭素原子数 $1\sim 4$ のアルキル基(メチル、エチル、プロピル、ブチル基)が挙げられ、プロピル、ブチル基が好ましい。 R_2 、 R_3 、 R_4 及び R_5 はそれぞれ、同一又は異なっていてもよく、水素原子、アルキル基、又はC 1 等のハロゲン原子を表す。

[0041]

前記一般式 (I) において、モノメチン基両側の2つの含窒素複素環のうちの一方が、インドレニン (A) 及びベンゾチアゾール (C) から選ばれ、他方が、インドレニン (A) 、キノリン (B) 、ベンゾチアゾール (C) 、ベンゾイミダゾール (D) 及びベンゾセレナゾール (E) から選ばれる。これらのうちでも、前記メチン基両側の2つの含窒素複素環が互いに同一である、いわゆる対称構造

のモノメチンシアニン系色素がより好ましい。すなわち、2つの含窒素複素環が共に、インドレニン(A)又はベンゾチアゾール(C)である対称構造モノメチンシアニン系色素がより好ましい。対称構造のものは、非対称構造のものに比べ、370~425 n mの範囲において色素の屈折率 n (複素屈折率の実部)が小さくなる傾向があり、記録の前後で大きな変調が得られやすく好ましい。また、屈折率 n や消衰係数 k を調整したり、溶解性を向上させたりするために、2種以上のモノメチンシアニン系色素を併用してもよい。

[0042]

より具体的には、以下のモノメチンシアニン系色素が例示される。

[0043]

【化3】

CC-1

$$S$$
 CH
 C_4H_9
 CIO_4
 CIO_4

[0044]

これらのモノメチンシアニン系色素の中の1種を単独で又は2種以上を併用して、あるいはさらに次に説明する一重項酸素クエンチャーとの併用により、390~420nmの範囲における色素の屈折率n(複素屈折率の実部)、消衰係数k(複素屈折率の虚部)が所望の値となるようにする。

[0045]

本発明において、記録層(3) には、前記モノメチンシアニン系色素の他に、一 重項酸素クエンチャーが含まれていることも好ましい。さらに、色素カチオンと 一重項酸素クエンチャーアニオンとのイオン結合体として用いることも好ましい

[0046]

クエンチャーとしては、アセチルアセトナート系、ビスジチオーαージケトン系やビスフェニルジチオール系などのビスジチオール系、チオカテコール系、サリチルアルデヒドオキシム系、チオビスフェノレート系等の金属錯体が好ましい。また、窒素のラジカルカチオンを有するアミン系化合物やヒンダードアミン等のアミン系のクエンチャーも好適である。

[0047]

結合体を構成する色素としては、インドレニン環を有するシアニン色素が、またクエンチャーとしてはビスフェニルジチオール金属錯体等の金属錯体色素が好ましい。

[0048]

なお、クエンチャーは、前記シアニン系色素と別個に添加しても、結合体の形として用いてもよいが、前記シアニン系色素の総計の1モルに対し1モル以下、特に0.05~0.8モル程度添加することが好ましい。これにより、耐光性が向上する。

[0049]

記録層(3) の形成は好ましくはスピンコート法により行うことができる。すなわち、前記シアニン系色素、必要に応じて一重項酸素クエンチャーなどを、適当な溶剤に溶解して塗布液を調製し、この塗布液をスピンコートにより支持基体(2)

)上に塗布し、必要に応じて塗膜を乾燥させる。また、スクリーン印刷法、ディップ法等の塗布法を用いてもよい。

[0050]

記録層形成のための上記塗布液に用いる有機溶剤としては、アルコール系、ケトン系、エステル系、エーテル系、芳香族系、フッ素系アルコール、ハロゲン化アルキル系等から、用いる色素に応じて適宜選択すればよい。2,2,3,3ーテトラフルオロプロパノール等が適切なものとして挙げられる。

[0051]

記録層(3) の厚さは、ランド部で $30\sim120$ n mの範囲にあり、好ましくは、 $40\sim80$ n mの範囲である。この層厚は、所望の反射率や変調度、隣接トラック、記録マークの熱干渉を考慮して設計するとよい。これらに影響を与えるパラメータとして、基板形状、色素の熱分解挙動や光学特性、隣接する層の光学特性や熱伝導性等がある。

[0052]

記録層(3) 上には、好ましくは誘電体層(4) が形成される。誘電体層(4) は、記録層(3) の機械的、化学的保護の機能と共に、光学特性を調整する干渉層としての機能を有する。誘電体層(4) は単層からなっていてもよく、複数層からなっていてもよい。

[0053]

誘電体層(4) は記録層(3) 上に位置するので、 $390 \sim 420$ n mの波長の記録再生レーザー光を透過させることが必要である。前記誘電体層の記録再生レーザー光の波長における屈折率 n_4 (複素屈折率の実部)が 2 以上であることが好ましい。屈折率 n_4 が 2 以上であると、光記録媒体の反射率を目的とする範囲(例えば $15 \sim 20$ %)に容易に調整できるので好ましい。 n_4 の上限は特に限定されないが、 $390 \sim 420$ n mの波長の光を透過させる現実に知られている材料としては、 3 程度である。また、前記誘電体層の記録再生レーザー光の波長における消衰係数 k_4 (複素屈折率の虚部)が 0.2 以下であることが好ましい。消衰係数 k_4 が 0.2 以下であると、誘電体層でのエネルギー吸収分が減り、媒体の反射率調整のマージンが広がり、又は感度が良好になるので好ましい。消衰

係数kaの下限は特に限定されないが、0程度である。

[0054]

誘電体層(4) は、Si、Zn、Al、Ta、Ti、Co、Zr、Pb、Ag、Zn、Sn、Ca、Ce、V、Cu、Fe 、Mgから選ばれる金属のうちの少なくとも1種を含む酸化物、窒化物、硫化物、フッ化物、あるいはこれらの複合物から形成されるが、上記好ましい屈折率 n_4 及び消衰係数 k_4 の観点から、具体的な材料としては、 $ZnS-SiO_2$ 、A.lN、 Ta_2O_3 等が好ましい。 $ZnS-SiO_2$ については、 SiO_2 の含有率を10mol%以上<math>40mol%以下とすることが好ましい。誘電体層を形成する方法としては、110mol%以下とすることが好ましい。誘電体層を形成する方法としては、110mol%以下とすることが好ましい。誘電体層を形成する方法としては、110mol%以下とすることが好ましい。

[0055]

誘電体層(4) の厚さは、特に限定されることなく、例えば $20\sim150$ n m程度であり、 $30\sim70$ n mが好ましい。誘電体層(4) の厚さが20 n m未満となると、光透過層(5) の成分が誘電体層(4) に浸透し記録層(3) を侵す可能性があり、一方、150 n mを超えると、熱伝導性が良くなり過ぎ、感度が低下する恐れがある。

[0056]

誘電体層(4) 上に、又は誘電体層(4) のない場合には記録層(3) 上に、光透過層(5) を形成する。

光透過層(5) の材料としては、光学的に透明で、使用されるレーザー光波長領域(390~420 nm)での光学吸収や反射が少なく、複屈折が小さいことを条件として、紫外線硬化型樹脂、電子線硬化型樹脂、熱硬化型樹脂などから選択するとよく、紫外線硬化型樹脂、電子線硬化型樹脂などの活性エネルギー線硬化型樹脂が好ましい。また、無溶剤型の材料であることが好ましい。

[0057]

具体的には、紫外線(電子線)硬化性化合物やその重合用組成物から構成されることが好ましい。このようなものとしては、アクリル酸やメタクリル酸のエス

テル化合物、エポキシアクリレート、ウレタンアクリレートのようなアクリル系 二重結合、ジアリルフタレートのようなアリル系二重結合、マレイン酸誘導体等 の不飽和二重結合等の紫外線照射によって架橋あるいは重合する基を分子中に含 有または導入したモノマー、オリゴマーおよびポリマー等を挙げることができる 。これらは多官能、特に3官能以上であることが好ましく、1種のみ用いても2 種以上併用してもよい。単官能のものを含んでいてもよい。

[0058]

紫外線硬化性モノマーとしては、分子量2000未満の化合物が、オリゴマーとしては分子量2000~1000のものが好適である。これらはスチレン、エチルアクリレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、1,6-ヘキサングリコールジアクリレート、1,6-ヘキサングリコールジメタクリレート等も挙げられるが、特に好ましいものとしては、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、フェノールエチレンオキシド付加物の(メタ)アクリレート等が挙げられる。この他、紫外線硬化性オリゴマーとしては、オリゴエステルアクリレートやウレタンエラストマーのアクリル変性体等が挙げられる。

[0059]

また、紫外線硬化性材料としては、エポキシ樹脂および光カチオン重合触媒を含有する組成物も好適に使用される。エポキシ樹脂としては、脂環式エポキシ樹脂が好ましく、特に、分子内に2個以上のエポキシ基を有するものが好ましい。脂環式エポキシ樹脂としては、3,4-エポキシシクロヘキシルメチルー3,4-エポキシシクロヘキサンカルボキシレート、ビスー(3,4-エポキシシクロヘキシル)アジペート、ビスー(3,4-エポキシシクロヘキシル)アジペート、2-(3,4-エポキシシクロヘキシルー5,5-スピロー3,4-エポキシ)シクロヘキサンーメタージオキサン、ビス(2,3-エポキシシクロペンチル)エーテル、ビニルシクロヘキセンジオキシド等の1種以上が好ましい。

脂環式エポキシ樹脂のエポキシ当量に特に制限はないが、良好な硬化性が得られることから、60~300、特に100~200であることが好ましい。

[0060]

光カチオン重合触媒は、公知のいずれのものを用いてもよく、特に制限はない。例えば、1種以上の金属フルオロホウ酸塩および三フッ化ホウ素の錯体、ビス(ペルフルオロアルキルスルホニル)メタン金属塩、アリールジアゾニウム化合物、6 A族元素の芳香族オニウム塩、5 A族元素の芳香族オニウム塩、3 A族~5 A族元素のジカルボニルキレート、チオピリリウム塩、MF6 アニオン(ただしMは、P、AsまたはSb)を有する6 A族元素、トリアリールスルホニウム錯塩、芳香族イオドニウム錯塩、芳香族スルホニウム錯塩等を用いることができ、特に、ポリアリールスルホニウム錯塩、ハロゲン含有錯イオンの芳香族スルホニウム塩またはイオドニウム塩、3 A族元素、5 A族元素および6 A族元素の芳香族オニウム塩の1種以上を用いることが好ましい。

$[0\ 0\ 6\ 1]$

光透過層(5) に用いる活性エネルギー線硬化型樹脂としては、1, 000~10, 0000cpの粘度(25 $^{\circ}$ 0) を有するものが好ましい。

[0062]

誘電体層(4) 上に活性エネルギー線硬化型樹脂をスピンコーティング法により 塗布し、その後、紫外線等の活性エネルギー線を照射して硬化させ、光透過層(5) とするとよい。

[0063]

また、光透過層(5) として、光学的に透明で、使用されるレーザー光波長領域 (390~420 nm) での光学吸収や反射が少なく、複屈折が小さいことを条件として、所望厚さのシート状の樹脂を、このシート状樹脂と同様の条件を満足する接着剤を使用して貼付して用いることも可能である。

$[0\ 0\ 6\ 4]$

シートに用いられる樹脂としては、例えば、ポリカーボネート、アモルファスポリオレフィン、ポリエステル等が挙げられる。シート状の樹脂は、貼付前に、 樹脂の熱変形温度に対し-20~+80℃の範囲でシートの製層時の残留応力を 取り除く目的でアニール処理(熱緩和処理)が行われていてもよい。アニール処理を行わなかった場合には、光ディスクの保存時にシートの残留応力の影響で光ディスクが変形する恐れがある。なお、アニール処理は、種々公知の加熱手段(ヒーター、ホットプレート、ホットローラ、ベーク炉、電磁誘導加熱等)から工程条件などを元に適宜選択して用いればよい。

[0065]

シートの貼付に使用される接着剤は、感圧性粘着剤や紫外線硬化型樹脂等から 選択すればよい。例えば、光透過層(5)の材料として説明した活性エネルギー線 硬化型樹脂は、シート貼付用の接着剤として好適である。

[0066]

この場合には、誘電体層(4)上に接着剤として活性エネルギー線硬化型樹脂をスピンコーティング法により塗布し、未硬化の樹脂層上に、前記シートを載置し、その後、紫外線等の活性エネルギー線を照射して樹脂層を硬化することにより、シートを接着し光透過層(5)とする。より具体的には、真空中(0.1気圧以下)において、前記シートを未硬化の樹脂層上に載置し、次いで、大気圧雰囲気に戻し、紫外線を照射して樹脂層を硬化させる。

[0067]

光透過層 (5) の層厚 t は、一般に、ディスクスキューマージン θ (以下、スキューマージンと略記する)と記録再生レーザー光の波長 λ 、対物レンズの開口数 NAとの間で相関関係があり、特開平 3-2 2 5 6 5 0 号公報に、これらのパラメータとスキューマージンとの関係 $\theta \propto \lambda / \{t \times (NA)^3\}$ が示されている

[0068]

ここで、光ディスクを実際に量産する場合、スキューを歩留まりとコストから、 0.4° として、レーザー光の短波長化、対物レンズの開口数の高NA化を考慮して、光透過層の厚さ t は、 $\lambda=380$ n mの場合、NA ≥0.76 の条件であれば、 170μ m以下であれば、DVDと同等のスキューマージンが確保できる。

[0069]

一方、光透過層(5) の厚みの下限は、誘電体層(4) や記録層(3) を保護する保護機能の確保という観点から、 1μ m以上であることが好ましい。光透過層(5) にシート状の樹脂を使用した場合には、樹脂の性質から、シート厚を均一に薄くすることが困難となるため、その下限厚みを接着剤の層厚を含めて 50μ m以上とすることが好ましい。従って、より好ましい光透過層(5) の厚み t は、塗布法による場合には $1 \sim 150 \mu$ m、貼付法による場合には $50 \sim 150 \mu$ mとする。

[0070]

【実施例】

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれら実 施例に限定されるものではない。

[0071]

[実施例1]

支持基体(2) として、グルーブが設けられた直径 $120\,\mathrm{mm}$ 、厚さ $1.1\,\mathrm{mm}$ のポリカーボネート基体を用いた。図 1 を参照して、グルーブ深さ(Gd): $85\,\mathrm{nm}$ 、グルーブ幅(Gw): $160\,\mathrm{nm}$ 、グルーブピッチ(Gp): $320\,\mathrm{nm}$ (=トラックピッチ) であった。

[0072]

支持基体(2) の表面に、AA-1として示されたシアニン色素 0. 08 g を 2 , 2, 3, 3-テトラフルオロプロパノール 9. 9 2 g に溶解した溶液をスピンコート法により塗布し、ランド部の膜厚約 6 0 n m の記録層(3) を形成した。

[0073]

AA-1として示されたシアニン色素は、その薄膜の吸収スペクトルにおいて、393 n mに屈折率 n (複素屈折率の実部)の極小値 $n_{min}=1$. 11を有し、405 n mでの屈折率 n=1. 18、消衰係数 k (複素屈折率の虚部)=0. 43であった。

[0074]

記録層(3) 上にRFスパッタリング法により ZnS (80mol%) - SiO (20mol%) からなる層を約50nmの厚さで形成し、誘電体層(4) とし

た。屈折率 n_4 (複素屈折率の実部) は 2.3、消衰係数 k_4 (複素屈折率の虚部) は 0 であった。

[0075]

誘電体層(4) 上に紫外線硬化型樹脂(25 ℃における粘度 5000 c p)をスピンコート法により塗布し、紫外線を照射することにより厚さ約 100 μ mの光透過層(5) を形成した。このようにして、図 1 に示す層構成の光ディスクサンプルを作製した。

[0076]

[実施例2]

AA-1として示されたシアニン色素の代わりに、CC-1として示されたシアニン色素を用いた以外は、実施例1と同様にして光ディスクサンプルを作製した。

[0077]

[比較例1、2]

AA-1として示されたシアニン色素の代わりに、次に示されたシアニン色素 a (比較例1)、又はシアニン色素 b (比較例2)を用いた以外は、実施例1と 同様にして光ディスクサンプルを作製した。

[0078]

【化4】

a
$$C_2H_5$$
 C_2H_5

b Se
$$CH = CH$$
 C_2H_5

[0079]

【表 1】

		405nmでの		極小値nmin における特性		
	シアニン	屈折率 n	消衰係数 k	極小値nmin の波長 lmin (nm)	λmin で の屈折率 n	λmin での 消衰係数 k
実施例1	A A - 1	1. 18	0.43	3 9 3	1. 11	0.36
実施例 2	C C - 1	1.20	0.81	3 8 1	1. 18	0.40
比較例1	a	2.16	0.24	3 5 6	1.07	0.81
比較例 2	Ь	1.63	0.19	4 0 9	1.63	0.21

[0080]

実施例1、2及び比較例1、2で用いたシアニン色素の特性を表1に示す。

[0081]

[記録再生試験]

実施例1で作製された光ディスクサンプルについて次のように記録再生試験を 行った。

実施例1の光ディスクサンプルを光ディスク評価装置(商品名:DDU1000、パルステック社製)にセットし、記録に用いるレーザービームの波長を青色波長域(405nm)、対物レンズのNA(開口数)を0.85とし、このレーザービームを記録へッド内の集光レンズで光透過層側から光ディスクのランド部に集光して記録再生を行った。記録信号としては1, 7RLL σ 調方式による信号(8T)を用い、1トラックのみ記録を行った。記録にはマルチパルス列を用い、パルス列の先頭パルス長を1Tとしたとき、最終パルスが1T、それらの間のマルチパルスが0.4Tの長さとなるように設定し(Tはクロック周期である)、記録パワー10mWで、最短ピット長0.16 μ m、記録線密度が、チャンネルビット長0.12 μ m/bitとなるように情報の記録を行った。記録した情報の再生に当たっては、0.4mWの再生パワーを用いて再生を行ったところ、良好な信号特性を得ることができた。

[0082]

実施例2及び比較例1、2の光ディスクサンプルについても、同様に記録再生 試験を行った。実施例2の光ディスクサンプルでは、良好な信号特性を得ること ができた。一方、比較例1、2の光ディスクサンプルでは、記録後の変調度が小 さく、充分なC/N比が得られなかった。

[0083]

【発明の効果】

本発明によれば、記録再生レーザー光として青紫半導体レーザー光(波長390~420nm)を用いて、高感度及び高変調度での記録再生が行われる有機化合物記録層を有する光記録媒体が提供される。

【図面の簡単な説明】

【図1】 本発明の光ディスクの一構成例を示す要部概略断面図である。

【符号の説明】

(1) : 光ディスク

- (2) : 支持基体
- (3) : 記録層
- (4) : 誘電体層
- (5) :光透過層

【書類名】

図面

[図1]

【書類名】 要約書

【要約】

【課題】 記録再生レーザー光として青紫半導体レーザー光(波長390~420 nm)を用いる、記録層が有機化合物から主としてなる光記録媒体を提供する。前記光記録媒体を使用する光記録再生方法を提供する。

【解決手段】 支持基体 2 上に、少なくとも有機化合物を主成分とする記録層 2 と、390~420 n mの波長の記録再生のためのレーザー光を透過する光透過層 4 とをこの順で有する光記録媒体であって、記録層 2 の有機化合物は、370~425 n mの範囲に屈折率 n (複素屈折率の実部)の極小値 n_{min}を有し、記録再生レーザー光の波長における屈折率 n は1.2以下であるモノメチンシアニン系色素を含み、レーザー光を吸収して溶融又は分解し屈折率変化を生じることにより情報の記録を行うことを特徴とする光記録媒体 1。

【選択図】 図1

特願2002-264972

出願人履歴情報

識別番号

[000003067]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都中央区日本橋1丁目13番1号

氏 名

ティーディーケイ株式会社

2. 変更年月日 [変更理由]

2003年 5月 1日

名称変更

住所変更

住 所 名

東京都中央区日本橋1丁目13番1号

ティーディーケイ株式会社

3. 変更年月日*

2003年 6月27日

[変更理由] 名称変更

住 所

東京都中央区日本橋1丁目13番1号

氏 名

TDK株式会社