Collections HWI

1 - 3

1. Find the domain $f(x) = \frac{1}{x-2} - \frac{1}{x+3}$ $\frac{(x+3)}{(x+3)} \frac{1}{(x-2)} - \frac{1}{(x+3) \cdot (x-2)}$ 3 2 - 3 2 3-26 3-2 = 1

(x+3)-(x-2)(x+3)(x-2)X+3-X+5

f(x) = 5 (x+3)(x-2)

Domain: $(x+3)(x-2) \neq 0$ $SO(x+3,2) \cup (-3,2) \cup (2,\infty)$ $Domain: (-2,-3) \cup (-3,2) \cup (2,\infty)$

$$2 \cdot f(x) = \frac{3x+2}{x^2-16}$$

$$f(x) = \frac{5x - 4}{x^2 - 16}$$

(i)
$$f + g(x) = f(x) + g(x) = \frac{3x+2}{x^2-16} + \frac{3x-4}{x^2-16} = \frac{3x+2+5x-4}{x^2-16}$$

$$= \frac{6x-2}{x^2-16} \quad \text{Domain: } x \neq 4, -4$$

$$(-\infty, -4) \cup (-4, 4) \cup (4, \infty)$$

$$3x+2 - \frac{5x-4}{3} = \frac{3x+2-(5x-4)}{3}$$

(1)
$$f - g(x) = f(x) - g(x) = \overline{x} - 16$$

$$= \frac{3x + 2 - 5x + 4}{x^2 - 16} = \frac{-2x + 6}{x^2 - 16}$$

Domain: $x \neq 4, -4$

$$= \frac{3x + 7}{x^2 - 16} = \frac{5x^2 - 7x + 10x + 8}{x^2 - 16}$$

$$= \frac{3x + 7}{x^2 - 16} = \frac{5x^2 - 7x + 10x + 8}{x^2 - 16}$$

$$= \frac{5x^2 - 2x - 8}{x^2 - 16}$$

Domain: $x \neq 4, -4$

$$= \frac{3x + 2}{x^2 - 16} = \frac{5x^2 - 2x - 8}{x^2 - 16}$$

$$= \frac{5x - 2x - 8}{x^2 - 16}$$

$$= \frac{3x + 2}{x^2 - 16} = \frac{6}{5} = \frac{6}{5} = \frac{3}{5} = \frac{3$$

MATH1730-013 Page 2

Domain:
$$x \neq +, -+, \neq 5$$
 $5x \cdot 4 = 6$
 $(2, -+) \cup (-4, \neq 1) \cup (4, +) \cup (4,$

MATH1730-013 Page 3

When
$$(f \circ g)(x) = (g \circ f)(x)$$

then g is the inverse function of g
and f is the inverse function of g
thow do we find inverse function of g
thow do we find inverse function g
if f is a function we denote the inverse of g
inverse of g with g inverse of g
find the inverse of g
if g is a number g in g

 $\frac{\text{Exercise}}{f(x) = 2x + 3} \cdot f^{-1}(x) = \frac{x - 3}{2}$

$$f(x) = 2x + 3, f'(x) = \frac{x-3}{2}$$
Show that
$$(i) (f \circ f^{-1})(x) = x$$

$$(f \circ f^{-1})(x) = f(f(x))$$

$$= f(x-3)$$

$$= 2(x-3) + 3 = x + 3 + 3 = x$$

$$(i) (f' \circ f)(x) = f'(f(x))$$

$$= f'(2x+3)$$

$$= 2x + 3 + 3 = 2x + 3$$
Step! replace $f(x)$ with $f(x) = 2x + 3$
Step? Interchange $f(x)$ with $f(x) = 2x + 3$
Step? Solve for $f(x) = 2x + 3$

$$x = 2y + 3$$

$$x = 4$$

$$(y+1)x = \frac{x}{2}y-3$$

$$yx+x=2y-3$$

$$-2y$$

$$yx-2y+x=-3$$

$$y(x-2)=-3-x$$

$$y=\frac{-3-x}{x-2}$$
Stept: replace y with $f^{-1}(x)$

$$f'(x)=\frac{-3-x}{x-2}$$
How to find inverse using graph
$$(|x-2|)=\frac{-3-x}{x-2}$$
then point (x,b) is on the graph of f
then point (b,a) is on the graph of f
(laim?
The graph of f and f' are symmetric f shout the diagonal f