Задание 2

Нейронный Оператор Фурье

Задача:

1. Обучение отображения $G_{\theta} \colon \mathcal{A} \to \mathcal{U}, \; \theta \in \Theta$, аппроксимирующего заданную PDE-зависимость, с помощью архитектуры FNO.

2010.08895.pdf (arxiv.org)

- Получение навыков работы с библиотекой NeuralOperator.
 GitHub neuraloperator/neuraloperator: Learning in infinite dimension with neural operators.
- 3. Практический опыт применения прямого и обратного преобразований Фурье для восстановления изображений.

Этап 1: Quick-start

- Обучение FNO из библиотеки NeuralOperator.
- Настройка гипер-параметров (число гармоник в преобразовании R, lr и др.).
- Демонстрация кривых обучения и валидации:

```
tensorboard --logdir "..." --host localhost \rightarrow PrintScreen \rightarrow ![title](NAME.png)
```

• Выводы.

Этап 2: FNO Research

- Написание собственного FNO: реализация класса SpectralConv.
- Обучение и демонстрация кривых обучения и валидации.
- Проведение исследования согласно варианту (см. ниже).
- Выводы.

Этап 3: FNO vs Pixel-to-Pixel

- Обучение Pixel-to-Pixel свёрточной архитектуры на выбор:
 - UNet,
 - o DRCN (1511.04491.pdf (arxiv.org)),
 - o RCAN (1807.02758.pdf (arxiv.org)),
 - о или Ваша собственная произвольная свёрточная архитектура
- Сравнение результатов с FNO.
- Выводы.

Требования:

- Python 3.9
- PyTorch 2.0.0 [default] / TensorFlow 2.10.1
- Jupyter notebook
 - o Restart kernel & Run all
 - Эксперименты + TensorBoard logs
 - о Выводы
- OS independent realization (Windows [default] / Linux)

Формат сдачи:

- *.zip архив [default] / git-репозиторий
 - o Jupyter notebook with conducted experiments
 - o Python scripts with codes

Варианты:

ФИО	PDE	Research FNO prediction ability depending on
Дроздов Никита Александрович	Burgers (x)	harmonics number in R transform.
Загайнов Сергей Дмитриевич	Burgers (x, t)	$t \in [0T_i]$ range: $T_1 = 41, T_2 = 71, T_3 = 101.$
Кнорре Дмитрий Дмитриевич	Darcy	harmonics number in <i>R</i> transform.
Кондратьева Александра Федоровна	Darcy	Include augmentations into FNO training procedure.
Максименко Елизавета Андреевна	Burgers (x)	$x \in [0X_i]$ range: $X_1 = 64, X_2 = 128, X_3 = 256.$
Мерзлякова Марина Андреевна	Burgers (x, t)	$x \in [0X_i]$ range : $X_1 = 64, X_2 = 128, X_3 = 256.$
Сенотова Юлия Дмитриевна	Darcy	Apply FNO on $a(x)$, augmented by Laplace noise.
		Is FNO robust?
Худякова Екатерина Сергеевна	Burgers (x)	Include augmentations into FNO training procedure.
Яковлев Никита Алексеевич	Burgers (x, t)	Apply FNO on $u_0(x, t = 0)$, augmented by Gaussian noise.
		Is FNO robust?

Сроки сдачи:

Мягкий дедлайн: <u>23 ноября 2023</u> <u>16:00</u>
Жёсткий дедлайн: <u>1 декабря 2023</u> <u>15:00</u>