Homework 1

Problem 1

Find the least integer k such that f(n) is $O(n^k)$ for each of the following functions. Include values for c and n_0 as described in section 3.1, page 47 of the textbook.

- $f(n) = 2n^2 + n^3 \log n$
- $f(n) = 3n^5 + (\log n)^4$
- $f(n) = (n^4 + n^2 + 1)/(n^4 + 1)$
- $f(n) = (n^3 + 5\log n)/(n^4 + 1)$

Problem 2

You have n quarters and a balance. You know that n-1 quarters have the same weight, and one weighs less than the others. Give an algorithm (in pseudocode) to identify the light quarter which uses the balance only $\log_3 n$ times in the worst case.

Problem 3

Use the Master Theorem to find the asymptotic solutions for the following recurrences

- $T(n) = 7T(\frac{n}{2}) + n^2$
- $T(n) = T(\frac{n}{2}) + 1$
- $T(n) = 4T(\frac{n}{2}) + n^3$

Problem 4

A[1...n] is a **sorted** array of **distinct** integers. We want to decide whether there is an index i where A[i] = i.

- Describe a divide-and-conquer algorithm that solves this problem.
- Use the Master Theorem to estimate the running time of the algorithm. Your algorithm should run in $O(\log n)$ time

Problem 5

Suppose you are tossing m balls into n bins. Each ball is equally likely to land in each bin, and the ball tosses are independent. What is the expected number of bins that contain exactly k balls? Use indicator random variables to find the solution.

Problem 6

Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n) = T(\frac{n}{2}) + n^2$. Use the substitution method to verify your answer.

Problem 7

Using Figure 1 as a model (also can be find in the textbook page 161), illustrate the operation of HEAPSORT on the array A = [5, 13, 12, 25, 71, 37, 27, 9, 22].

Problem 8

Using QUICKSORT to sort the array A = [5, 13, 12, 25, 71, 37]. You just need to show the result after each round. Here is a example for A = [2, 8, 7, 1, 3, 5, 6, 4], suppose you pick the last element in a region as its pivot:

```
round 1: region=A, result=[2, 1, 3, 4, 7, 5, 6, 8]
round 2: region<sub>1</sub>=[2, 1, 3], region<sub>2</sub>=[7, 5, 6, 8], result=[2, 1, 3, 4, 7, 5, 6, 8].
round 3: region<sub>1</sub>=[2, 1], region<sub>2</sub>=[7, 5, 6], result=[1, 2, 3, 4, 5, 6, 7, 8].
The fig 2 shows the the detail operations during the round 1.
```

Problem 9

The input is two sets S1 and S2 containing n real numbers in total, and a real number x.

- (a) Find a $O(n \log n)$ time algorithm that determines whether there exists an element from S1 and an element from S2 whose sum is exactly x.
- (b) Suppose now that the two sets are given in sorted order. Find a $\mathrm{O}(n)$ -time algorithm solving this problem.

You can either show pseudo code or describe it in English.

Problem 10

Show that 2n-1 comparisons are necessary in the worst case to merge two sorted lists containing n elements each.

Problem 11 \star

Show an example that COUNTING SORT can be slower than any comparison sorts you have learned. (This problem is for practice, but will not be counted towards the grade)