Lung mechanics

Lung mechanics

Fisiologia

Lung mechanics

STMT

Instrumentation, control, parameter identification, and also lumped parameter models based on electrical analogy

M. Khoo «Physiological Control Systems» Sec. 2.3 and 2.9

pressione (P) -> potenziale flusso d'aria (Q) -> corrente volume d'aria (V=int Q) -> carica

resistenza meccanica = $\Delta P / Q$ compliance = $\Delta V / \Delta P$

 $PaO \leftrightarrow Q$

Simple linear model of **respiratory system** (inertia is neglected)

Simulink Model

Simulink Model

Figure 2.12 Sample simulation results from SIMULINK implementation of lung mechanics model. (a) Predicted dynamics of airflow, Q, and volume, Vol, in response to sinusoidal forcing of P_{ao} (amplitude = 2.5 cm H_2O) at 15 breaths min⁻¹. (b) Predicted dynamics of Q and Vol in response to sinusoidal forcing of P_{ao} (amplitude = 2.5 cm H_2O) at 60 breaths min⁻¹.

From: *Al Naggar JBSE 2015,* 10.4236/jbise.2015.810068

Figure 2. Typical waveform of pressure signal for PCV.

Or take inspiration from STMT - Ventilation