FACE RECOGNITION

Min Fang

CONTENT

Introduction

0bjective

13 Method Selection

04 Experiment

15 Conclusion

16 Reference

Face Recognition

significant attention because of its numerous applications

Access control

Surveillance

Security

Law enforcement

Internet communication

Computer entertainment

Illumination

Pose

How precisely classify face under Pose variation?

Neural network

CNN

Filter

Pooling

Batch

Learning rate

192 x 168 pixels

contains 2414 images 38 different people under 1 pose 64 illuminations

Cropped version of the Yale Face Database B

UCSD. Vision
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

After deleting unrelated images

Load image data from each subject folder

totally 2410 * 32256 matrix (as Row Matrix)

Split train and test data by ratio: 9 vs 1

Train: 2169

Test: 241

label	train_size			label	test_size		
01	57	21	61	01	7	21	3
02	59	22	57	02	4	22	7
03	58	23	57	03	5	23	7
04	59	24	59	04	5	24	5
05	51	25	57	05	12	25	7
06	58	26	58	06	6	26	6
07	51	27	57	07	13	27	6
80	54	28	57	08	10	28	7
09	58	29	58	09	6	29	6
10	58	30	55	10	6	30	9
11	54	31	56			31	8
12	53	32	53	11	6	32	11
13	54	33	61	12	6	33	3
15	56	34	60	13	6	34	4
16	53	35	57	15	7	35	7
17	60	36	55	16	9	36	9
18	63	37	59	17	3	37	5
19	57	38	60	19	7	38	4
20	59	39	60	20	5	39	4

Experiment

140 is enough to classify for **human** eye

But More difficult to classify for **computer**

Grid Search (optimal PCA)

Eigenvectors #100

Eigenvectors #180

Eigenvectors #40

Eigenvectors #120

Eigenvectors #200

Eigenvectors #60

Eigenvectors #140

Eigenvectors #220

Eigenvectors #300

Eigenvectors #80

Eigenvectors #160

Eigenvectors #240

Eigenvectors #320

Subject 19_Eigenface

PCA

Number of components = 200

X_train: 2169 * 200

X_test: 241 * 200

Grid Search_SVM(gaussian)

N_FEATURES_OPTIONS = range(150,250,50)

C_OPTIONS = [1e3, 5e3, 1e4, 5e4, 1e5]

GAMMA_OPTIONS = [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1]

N_FEATURES_OPTIONS = 200

Predicting people's names on the test set done in 0.228s

pı	recision	recall	f1-score	support	
01	1.00	1.00	1.00	7	
02	1.00	1.00	1.00	4	
03	1.00	1.00	1.00	5	Ł
04	1.00	1.00	1.00	5	
05	1.00	1.00	1.00	12	7
06	1.00	1.00	1.00	6	1
07	0.93	1.00	0.96	13	5
08	1.00	1.00	1.00	10	5
09	1.00	1.00	1.00	6	2
10	1.00	1.00	1.00	6	5
11	0.86	1.00	0.92	6	3
12	1.00	1.00	1.00	6)
13	1.00	1.00	1.00	6	5
15	1.00	1.00	1.00	7	5
16	0.89	0.89	0.89	9	5
17	1.00	1.00	1.00	3	5
18	0.00	0.00	0.00	0	5
19	1.00	1.00	1.00	7	7
20	0.83	1.00	0.91	5	9
21	1.00	1.00	1.00	3	3
22	1.00	1.00	1.00	7)
23	1.00	0.86	0.92	7	7
24	1.00	1.00	1.00	5	5
25	1.00	0.86	0.92	7	3
26	1.00	1.00	1.00	6	7
27	1.00	1.00	1.00	6	7
28	1.00	1.00	1.00	7	5
29	1.00	0.83	0.91	6	7
30	1.00	1.00	1.00	9	5
31	1.00	1.00	1.00	8	5
32	1.00	0.82	0.90	11	7
33	1.00	1.00	1.00	3	5
34	1.00	1.00	1.00	4	9
35	0.88	1.00	0.93	7	3
36	0.90	1.00	0.95	9	1
37	1.00	1.00	1.00	5	3
38	1.00	0.75	0.86	4 4	1 7
39	1.00	1.00	1.00	4)
avg / total	0.98	0.97	0.97	241	5
avy / cocar	0.90	0.57	0.37	241	1
39	1.00	1.0	00 1.0	00	4
avg / total	0.98	0.9	0.9	97 :	241

C Gamma

decision_function_shape

Optimal_sigmma

$$\sigma = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - k \text{NN}(\mathbf{x}_i)\|_2$$

- Sampling 800 points by label proportion with K=7
- compute the optimal σ = 113.0556, γ = 3.9119e-05

$$C = 1e5$$

Decision_function_shape = "OVR"

Time: 0.228s Accuracy: 0.98 Predicting people's names on the test set done in 0.392s

done in 0.00	precision	recall	f1-score	support
01	1.00	1.00	1.00	7
02	1.00	1.00	1.00	4
03	1.00	1.00	1.00	5
04	1.00	1.00	1.00	5
05	1.00	1.00	1.00	12
06	1.00	1.00	1.00	6
07	1.00	0.92	0.96	13
08	1.00	1.00	1.00	10
09	0.86	1.00	0.92	6
10	0.86	1.00	0.92	6
11	1.00	1.00	1.00	6
12	1.00	1.00	1.00	6
13	1.00	1.00	1.00	6
15	1.00	1.00	1.00	7
16	0.90	1.00	0.95	9
17	1.00	1.00	1.00	3
19	1.00	1.00	1.00	7
20	1.00	1.00	1.00	5
21	1.00	1.00	1.00	3
22	1.00	0.86	0.92	7
23	0.88	1.00	0.93	7
24	1.00	1.00	1.00	5
25	1.00	1.00	1.00	7
26	1.00	1.00	1.00	6
27	1.00	1.00	1.00	6
28	0.88	1.00	0.93	7
29	1.00	0.83	0.91	6
30	1.00	0.89	0.94	9
31	1.00	1.00	1.00	8
32	1.00	0.82	0.90	11
33	1.00	1.00	1.00	3
34	1.00	1.00	1.00	4
35	0.88	1.00	0.93	7
36	1.00	1.00	1.00	9
37	1.00	1.00	1.00	5
38	1.00	1.00	1.00	4
39	1.00	1.00	1.00	4
avg / total	0.98	0.98	0.97	241

Degree decision_function_shape

Time: 0.392s Accuracy: 0.98 Predicting people's names on the test set done in 0.108s

		precision	recall	f1-score	support
	0.1	1 00	1 00	1 00	_
	01	1.00	1.00	1.00	7
	02	1.00	1.00	1.00	4
	03	1.00	1.00	1.00	5
	04	1.00	1.00	1.00	5
	05	1.00	1.00	1.00	12
	06	1.00	1.00	1.00	6
	07	1.00	1.00	1.00	13
	08	1.00	1.00	1.00	10
	09	1.00	1.00	1.00	6
	10	1.00	1.00	1.00	6
	11	1.00	1.00	1.00	6
	12	1.00	1.00	1.00	6
	13	1.00	1.00	1.00	6
	15	1.00	1.00	1.00	7
	16	0.90	1.00	0.95	9
	17	0.75	1.00	0.86	3
	19	1.00	1.00	1.00	7
	20	1.00	1.00	1.00	5
	21	1.00	1.00	1.00	3
	22	1.00	1.00	1.00	7
	23	1.00	1.00	1.00	7
	24	1.00	1.00	1.00	5
	25	1.00	1.00	1.00	7
	26	1.00	1.00	1.00	6
	27	1.00	1.00	1.00	6
	28	1.00	1.00	1.00	7
	29	1.00	0.83	0.91	6
	30	1.00	0.89	0.94	9
	31	1.00	1.00	1.00	8
	32	1.00	0.91	0.95	11
	33	1.00	1.00	1.00	3
	34	1.00	1.00	1.00	4
	35	0.88	1.00	0.93	7
	36	1.00	1.00	1.00	9
	37	1.00	1.00	1.00	5
	38	1.00	1.00	1.00	4
	39	1.00	1.00	1.00	4
g .	/ total	0.99	0.99	0.99	241

C

decision_function_shape

Time: 0.1s Accuracy: 0.99

epoch = ? batch size = 40 learning rate = ? decay = 1e-6 Momentum = 0.9 Experiment

Convolution-neural network

```
Train on 2169 samples, validate on 241 samples
Epoch 1/20
 - 28s - loss: 2.8309 - acc: 0.2955 - val_loss: 2.3157 - val_acc: 0.3983
Epoch 2/20
 - 25s - loss: 0.8050 - acc: 0.7847 - val loss: 1.0823 - val acc: 0.6805
Epoch 3/20
 - 26s - loss: 0.2591 - acc: 0.9331 - val loss: 0.3446 - val acc: 0.8963
Epoch 4/20
 - 25s - loss: 0.1123 - acc: 0.9756 - val loss: 0.9439 - val acc: 0.7759
Epoch 5/20
 - 29s - loss: 0.1222 - acc: 0.9742 - val loss: 0.2534 - val acc: 0.9212
Epoch 6/20
 - 26s - loss: 0.0139 - acc: 0.9986 - val loss: 0.1411 - val acc: 0.9627
Epoch 7/20
 - 26s - loss: 0.0022 - acc: 1.0000 - val loss: 0.1206 - val acc: 0.9710
Epoch 8/20
 - 24s - loss: 0.0012 - acc: 1.0000 - val_loss: 0.1187 - val_acc: 0.9668
Epoch 9/20
 - 24s - loss: 9.5081e-04 - acc: 1.0000 - val loss: 0.1201 - val acc: 0.9668
Epoch 10/20
 - 24s - loss: 8.0084e-04 - acc: 1.0000 - val loss: 0.1198 - val acc: 0.9668
 - 23s - loss: 6.9909e-04 - acc: 1.0000 - val loss: 0.1196 - val acc: 0.9668
Epoch 12/20
 - 23s - loss: 6.1535e-04 - acc: 1.0000 - val loss: 0.1199 - val acc: 0.9668
Epoch 13/20
 - 23s - loss: 5.5325e-04 - acc: 1.0000 - val loss: 0.1186 - val acc: 0.9710
Epoch 14/20
 - 23s - loss: 5.0282e-04 - acc: 1.0000 - val loss: 0.1191 - val acc: 0.9710
Epoch 15/20
 - 24s - loss: 4.6045e-04 - acc: 1.0000 - val_loss: 0.1196 - val_acc: 0.9710
Epoch 16/20
 - 23s - loss: 4.2575e-04 - acc: 1.0000 - val loss: 0.1203 - val acc: 0.9710
Epoch 17/20
 - 23s - loss: 3.9592e-04 - acc: 1.0000 - val_loss: 0.1199 - val_acc: 0.9710
Epoch 18/20
 - 23s - loss: 3.6939e-04 - acc: 1.0000 - val loss: 0.1198 - val acc: 0.9710
Epoch 19/20
 - 23s - loss: 3.4539e-04 - acc: 1.0000 - val_loss: 0.1200 - val_acc: 0.9710
 - 23s - loss: 3.2489e-04 - acc: 1.0000 - val loss: 0.1200 - val acc: 0.9710
```



```
Train on 2169 samples, validate on 241 samples
Epoch 1/20
 - 25s - loss: 3.5532 - acc: 0.1245 - val loss: 3.2501 - val acc: 0.3112
Epoch 2/20
- 24s - loss: 2.1410 - acc: 0.4938 - val loss: 1.8681 - val acc: 0.4730
Epoch 3/20
 - 23s - loss: 0.8033 - acc: 0.7953 - val loss: 2.1818 - val acc: 0.5892
Epoch 4/20
- 24s - loss: 0.4346 - acc: 0.9036 - val loss: 0.3477 - val acc: 0.9253
Epoch 5/20
- 26s - loss: 0.1243 - acc: 0.9733 - val loss: 0.7114 - val acc: 0.8174
 - 27s - loss: 0.0776 - acc: 0.9802 - val loss: 0.1716 - val acc: 0.9751
Epoch 7/20
 - 25s - loss: 0.0176 - acc: 0.9991 - val loss: 0.0709 - val acc: 0.9959
Epoch 8/20
- 25s - loss: 0.0065 - acc: 0.9995 - val_loss: 0.0707 - val_acc: 0.9917
 - 28s - loss: 0.0033 - acc: 1.0000 - val loss: 0.0637 - val acc: 0.9876
Epoch 10/20
 - 25s - loss: 0.0025 - acc: 1.0000 - val loss: 0.0574 - val acc: 0.9917
Epoch 11/20
 - 26s - loss: 0.0022 - acc: 1.0000 - val loss: 0.0547 - val acc: 0.9917
Epoch 12/20
 - 25s - loss: 0.0019 - acc: 1.0000 - val_loss: 0.0550 - val_acc: 0.9917
Epoch 13/20
 - 26s - loss: 0.0017 - acc: 1.0000 - val_loss: 0.0515 - val_acc: 0.9917
Epoch 14/20
 - 25s - loss: 0.0015 - acc: 1.0000 - val loss: 0.0527 - val acc: 0.9917
Epoch 15/20
 - 26s - loss: 0.0014 - acc: 1.0000 - val loss: 0.0495 - val acc: 0.9917
Epoch 16/20
 - 26s - loss: 0.0013 - acc: 1.0000 - val loss: 0.0505 - val acc: 0.9917
Epoch 17/20
- 26s - loss: 0.0012 - acc: 1.0000 - val_loss: 0.0491 - val_acc: 0.9917
Epoch 18/20
 - 25s - loss: 0.0011 - acc: 1.0000 - val_loss: 0.0488 - val_acc: 0.9917
Epoch 19/20
 - 26s - loss: 0.0010 - acc: 1.0000 - val loss: 0.0470 - val acc: 0.9917
Epoch 20/20
- 25s - loss: 9.7845e-04 - acc: 1.0000 - val loss: 0.0459 - val acc: 0.9917
506.5965440273285 s
```


Method	Time (s)	Accuracy
KNN(K=9)	0.09	0.85
SVM (Gaussian)	0.23	0.98
SVM (poly=2)	0.39	0.98
SVM (linear)	0.10	0.987
CNN (lr=0.001)	502	0.999

Same pose under Illumination variation

Convolution Neural Network performs **best** with the highest test accuracy **0.999**

KNN performs worst with the lowest test accuracy **0.85**

There's **no significant difference** among the choices of kernel function choices for **SVM**

How about Pose & Illumination Variation ?

Extended Yale Face Database B

UCSD. Vision

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

contains 16128 images of 28 human subjects under 9 poses and 64 illumination conditions

640 x 480 pixels

Based on these experiments and data:

Cropped data VS Extended data

 more pictures as training >>> easier to classify a subject, even adding pose variation

7 subject VS 12 subjects (extended data)

• less subjects >>> easier to classify

7 subjects : 11/12/13/15/16/17/18

Method	Time	Accuracy
KNN(K=2)	0.09	1
SVM (Gaussian)	0.19	1
SVM (poly=2)	0.754	1
SVM (linear)	0.94	1
CNN	821	1

12 subjects : 11/12/13/15/16/17/18/19/23/25/29/36

Method	Time	Accuracy
KNN(K=1)	0.17	0.93
SVM (Gaussian)	0.19	0.98
SVM (poly=3)	4.77	0.99
SVM (linear)	0.75	0.98
CNN		0.99

6 Reference

Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J., "From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose," IEEE Trans. Pattern Anal. Mach. Intelligence, 2001, Vol.23, pp.643-660

M.Hassaballah, Saleh Aly, "Face recognition: challenges, achievements and future directions," IET Computer Vision, 2015, Vol. 9, Iss. 4, pp. 614–626

B. K. Gunturk, A. U. Batur, "Eigenface-domain super-resolution for face recognition," IEEE Signal Processing Society, 2003, Vol. 12, Iss.5, pp. 597-606

V. Tata, "Simple Image Classification using Convolutional Neural Network," https://becominghuman.ai/building-an-image-classifier-using-deep-learning-in-python-totally-from-a-beginners-perspective-be8dbaf22dd8

THANKS