STAT151A Homework 2.

Your name here

This homework is due on Gradescope on Friday September 27th at 9pm.

1 Ordinary least squares in matrix form

Consider simple least squares regression $y_n = \beta_1 + \beta_2 x_n + \varepsilon_n$, where x_n is a scalar. Assume that we have N datapoints. We showed directly that the least–squares solution is given by

$$\hat{\beta}_1 = \overline{y} - \hat{\beta}_2 \overline{x}$$
 and $\hat{\beta}_2 = \frac{\overline{xy} - \overline{x} \overline{y}}{\overline{xx} - \overline{x}^2}$.

Let us re-derive this using matrix notation.

(a)

Write simple linear regression in the form $Y = X\beta + \varepsilon$. Be precise about what goes into each entry of Y, X, β , and ε . What are the dimensions of each?

(b)

We proved that the optimal $\hat{\boldsymbol{\beta}}$ satisfies $\boldsymbol{X}^{\intercal}\boldsymbol{X}\hat{\boldsymbol{\beta}} = \boldsymbol{X}^{\intercal}\boldsymbol{Y}$. Define the "barred quantities"

$$\overline{y} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

$$\overline{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\overline{xy} = \frac{1}{N} \sum_{n=1}^{N} x_n y_n$$

$$\overline{xx} = \frac{1}{N} \sum_{n=1}^{N} x_n^2,$$

In terms of the barred quantities and the number of datpoints N, write expressions for $X^{\dagger}X$ and $X^{\dagger}Y$.

(c)

When is $X^{\dagger}X$ invertible? Write a formal expression in terms of the barred quantities. Interpret this condition intuitively in terms of the distribution of the regressors x_n .

(d)

Using the formula for the inverse of a 2×2 matrix, find an expression for $\hat{\beta}$, and confirm that we get the same answer that we got by solving directly.

(e)

In the case where $X^{\mathsf{T}}X$ is not invertible, find three distinct values of β that all achieve the same sum of squared residuals $\varepsilon^{\mathsf{T}}\varepsilon$.

2 Probability and matrices

For this problem, assume that $y_n = \beta_0 + x_n \beta_1 + \varepsilon_n$ for scalar x_n and some fixed β_0 and β_1 . Assume that

- The residuals ε_n are IID with $\mathbb{E}[\varepsilon_n] = 0$ and $\operatorname{Var}(\varepsilon_n) = \sigma^2$.
- The regressors x_n are IID with $\mathbb{E}[x_n] = \mu$ and $\operatorname{Var}(x_n) = \nu^2$.
- The residuals are independent of the regressors.

(a)

Evaluate the following expressions. (You may need to remind yourself of the definition of conditional expectation and variance.)

- $\mathbb{E}[y_n]$
- $Var(y_n)$
- $\mathbb{E}[y_n|x_n]$
- $\operatorname{Var}\left(y_n|x_n\right)$

(b)

Compute the following limits using the LLN, or say that the limit does not exist or is infinite.

- $\begin{array}{ll} \bullet & \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \varepsilon_n \\ \bullet & \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \varepsilon_n^2 \\ \bullet & \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} x_n \\ \bullet & \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} x_n^2 \\ \bullet & \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} x_n \varepsilon_n \\ \bullet & \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} x_n y_n \end{array}$

(c)

Compute the following limits using the CLT, or say that the limit does not exist or is infinite.

- $\lim_{N\to\infty} \frac{1}{\sqrt{N}} \sum_{n=1}^{N} \varepsilon_n$ $\lim_{N\to\infty} \frac{1}{\sqrt{N}} \sum_{n=1}^{N} y_n$ $\lim_{N\to\infty} \frac{1}{\sqrt{N}} \sum_{n=1}^{N} (y_n (\beta_0 + x_n \beta_1))$

(d)

Noting that this is simple linear regression, let X, Y, and ε be as in the solution to question one above. Evaluate the following limits, or say that the limit does not exist or is infinite.

Here, $(A)_{ij}$ denotes the i, j-th entry of the matrix A. Let the regressor x_n be in the second column of X.

- $\begin{array}{ll} \bullet & \lim_{N \to \infty} \frac{1}{N} \mathbf{1}^\intercal \boldsymbol{\varepsilon} \\ \bullet & \lim_{N \to \infty} \frac{1}{\sqrt{N}} \mathbf{1}^\intercal \boldsymbol{\varepsilon} \end{array}$
- $\lim_{N\to\infty} \frac{\sqrt[7]{N}}{\sqrt[7]{N}} (X^{\intercal}X)_{11}$ $\lim_{N\to\infty} \frac{1}{\sqrt[7]{N}} (X^{\intercal}X)_{12}$ $\lim_{N\to\infty} \frac{1}{\sqrt[7]{N}} (X^{\intercal}X)_{22}$

- $\lim_{N\to\infty} (X^{\mathsf{T}}X)_{11}$
- $\lim_{N\to\infty} \frac{1}{N} (Y X\beta)^{\mathsf{T}} (Y X\beta)$ $\lim_{N\to\infty} \frac{1}{\sqrt{N}} (Y X\beta)^{\mathsf{T}} (Y X\beta)$

Hint: Write the matrix expressions as sums over n = 1 to N.

3 One-hot encoding

Consider a one-hot encoding of a variable z_n that takes three distinct values, "a", "b", and "c". That is, let

$$m{x}_n = egin{cases} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} & ext{when } z_n = a \\ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} & ext{when } z_n = b \\ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} & ext{when } z_n = c \end{cases}$$

Let X be the regressor matrix with x_n^{\intercal} in row n.

(a)

Let N_a be the number of observations with $z_n = a$, and let $\sum_{n:z_n=a}$ denote a sum over rows with $z_n = a$, with analogous definitions for b and c. In terms of these quantities, write expressions for $X^{\mathsf{T}}X$ and $X^{\mathsf{T}}Y$.

(b)

When is $X^{\mathsf{T}}X$ invertible? Explain intuitively why the regression problem cannot be solved when $X^{\mathsf{T}}X$ is not invertible. Write an explicit expression for $(X^{\mathsf{T}}X)^{-1}$ when it is invertible.

(c)

Using your previous answer, show that the least squares vector $\hat{\boldsymbol{\beta}}$ is the mean of y_n within distinct values of z_n .

(e)

Suppose now you include a constant in the regression, so that

$$y_n = \alpha + \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{x}_n + \varepsilon_n,$$

and let X' denote the regressor matrix for this regression with coefficient vector $(\alpha, \beta^{\intercal})^{\intercal}$. Write an expression for $X'^{\intercal}X'$ and show that it is not invertible.

(f)

Find three distinct values of $(\alpha, \beta^{\dagger})$ that all give the exact same fit $\alpha + \beta^{\dagger} x_n$.

4 Correlated regressors

Suppose that $y_n = \boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{\beta} + \varepsilon_n$ for some $\boldsymbol{\beta}$. Suppose that $\mathbb{E}\left[\varepsilon_n\right] = 0$ and $\operatorname{Var}\left(\varepsilon_n\right) = \sigma^2$, and ε_n are independent of each other and the \boldsymbol{x}_n .

Let $\boldsymbol{x}_n \in \mathbb{R}^2$, where

- x_n is independent of x_m for $n \neq m$,
- $\mathbb{E}[x_{n1}] = \mathbb{E}[x_{n2}] = 0$,
- $Var(x_{n1}) = Var(x_{n2}) = 1$, and
- $\mathbb{E}\left[\boldsymbol{x}_{n1}\boldsymbol{x}_{n2}\right] = \rho$.

(a)

If $|\rho| < 1$, is $X^{T}X$ always, sometimes, or never invertible?

(b)

If $|\rho| = 1$, is $X^{T}X$ always, sometimes, or never invertible?

(c)

What is $\lim_{N\to\infty} \frac{1}{N} X^{\mathsf{T}} X$? When is the limit invertible?

(d)

State intuitively why there is no unique $\hat{\boldsymbol{\beta}}$ when $\rho = 1$. When $\rho = 1$, give two distinct values of $\boldsymbol{\beta}$ that result in the same fit $\boldsymbol{\beta}^{\mathsf{T}}\boldsymbol{x}_n$.

5 Matrix square roots

In the last homework, we proved that if A is a square symmetric matrix with eigenvalues u_p and eigenvectors λ_p , then we can write $A = U \Lambda U^{\dagger}$, where $U = (u_1 \dots u_p)$ has u_p in its p-th column, and Λ is diagonal with λ_p in the p-th diagonal entry. We also have that the eigenvectors can be taken to be orthonormal without loss of generality.

We will additionally assume that $A = X^{T}X$ for some (possibly non-square) matrix X.

Define $\Lambda^{1/2}$ to be the diagonal matrix with $\sqrt{\lambda_p}$ on the p-th diagonal.

- Prove that, since $\mathbf{A} = \mathbf{X}^{\intercal}\mathbf{X}$, $\lambda_p \geq 0$, and so $\Lambda^{1/2}$ is always real-valued. When the eignevalues are non-negative, we say that \mathbf{A} is "positive semi-definite." (Hint: using the fact that $\lambda_p = \mathbf{u}_p^{\intercal}\mathbf{A}\mathbf{u}_p$, show that λ_p is the square of something.)
- Show that if we take $Q = U\Lambda^{1/2}U^{\dagger}$ then $A = QQ^{\dagger}$. We say that Q is a "matrix square root" of A.
- Show that we also have A = QQ (without the second transpose).
- Show that, if V is any orthonormal matrix (a matrix with orthonormal columns), then $Q' = QV \neq Q$ also satisfies $A = Q'Q'^{\mathsf{T}}$. This shows that the matrix square root is not unique. (This fact can be thought of as the matrix analogue of the fact that $4 = 2 \cdot 2$ but also $4 = (-2) \cdot (-2)$).
- Show that if $\lambda_p > 0$ then Q is invertible.
- Show that, if Q is invertible, then the columns of XQ^{-1} are orthonormal. (Hint: show that $(XQ^{-1})^{\intercal}(XQ^{-1})$ is the identity matrix.)