Lists going wild

Professor K. A. Ribet

September 15, 2025

Office Hours

885 Evans Hall

Mondays, 1:30–3 PM Thursdays, 10:30–noon

Office full \Longrightarrow possible move to a nearby classroom See you this afternoon in Evans?

Lunch

I plan to come to the DCs at least once per week. There will be official Residential Life "lunches with Professor Ribet" at noon at Foothill DC on September 18, September 26, October 3 and October 9. There will also be additional lunch gatherings at DCs and the Faculty Club.

Gatherings are optional and not part of Math 110, but I'll continue to list them on slides for those who are interested. Also, you can send me email to subscribe to email announcements.

- Faculty Club lunch today, September 15 at noon
- Crossroads lunch Wednesday, September 17 at 12:30 PM
- First official Lunch with Prof. Ribet on Thursday,
 September 18 after office hour ends.

Maybe see you at one of these events?

What we did on Friday

Lemma (2.19)

Let v_1, \ldots, v_ℓ be a linearly dependent list of vectors of V. Then there is some index k such that v_k lies in the span of v_1, \ldots, v_{k-1} . For this k, the span of the list with v_k deleted is the same as the span of the list v_1, \ldots, v_ℓ .

Theorem (2.22, p. 35)

In a finite-dimensional vector space, the length of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.

What we did on Friday

Theorem (2.25)

Every subspace of a finite-dimensional vector space is finite-dimensional.

Proposition

If a vector space has two bases, they are of the same length.

Waning moments of Friday's class

Theorem (2.30)

Every spanning list in a vector space can be reduced to a basis of the vector space.

This means that if v_1, \ldots, v_m spans, we can get a basis of V by ejecting some of the v_i from the list.

We can view the proof as an induction on the length of the spanning list v_1,\ldots,v_m . If $m=0,\ V=\{0\}$ and the spanning list (which is empty) is also a basis. If m=1, the list is a single vector, say v. Because it spans, $V=\mathbf{F}\cdot v$. If v is nonzero, the list v is linearly independent and represents a basis. If v=0, remove it to get the empty list, which is a basis of $V=\{0\}$.

Refining a spanning list to get a basis

In the induction step, take a spanning list v_1, \ldots, v_m of length > 1. If it's linearly independent, it's a basis and we're done.

If it's linearly dependent, some vector in the list is a linear combination of the previous vectors. We can chuck it without disturbing the span of the list — which is all of V. The pruned list is still a spanning list, but now it has length m-1. Assuming the desired result for lists of that length, we deduce that the pruned list can be pruned further, if necessary, to yield a basis of V.

Finite-dimensional spaces have bases

Corollary (2.31)

If *V* is finite-dimensional, it has a basis.

To prove it, take a spanning list and prune it if necessary to get a basis.

Extending linearly independent lists

Proposition (2.32)

Every linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis of the vector space.

Start with a linearly independent list v_1, \ldots, v_n in a finite-dimensional vector space V. The idea is to extend the list incrementally until it spans (and thus is a basis).

Ask first whether v_1, \ldots, v_n is already a basis. If not, there is $v_{n+1} \not\in \operatorname{span}(v_1, \ldots, v_n)$. The key is that $v_1, \ldots, v_n, v_{n+1}$ is then again linearly independent (to be explained in class). Does it span? If not, it can be grown a second time to a longer linearly independent list $v_1, \ldots, v_n, v_{n+1}, v_{n+2}$.

list doesn't span? \implies it can grow.

However, a linearly independent list can't be longer than dim V. Growth has to stop. When it does, we have a linearly independent spanning list (= a basis).

Existence of complements

Theorem (2.33)

Every subspace of a finite-dimensional vector space has a complement in the larger space.

In symbols: If V is finite-dimensional and $X \subseteq V$ is a subspace of V, then there is a subspace Y of V such that $V = X \oplus Y$.

To prove this, note first that X is finite-dimensional by 2.25. Let x_1, \ldots, x_t be a basis of X. Extend extend this linearly independent list of vectors of V to a basis $x_1, \ldots, x_t; y_1, \ldots, y_d$ of V. Let $Y = \text{span}(y_1, \ldots, y_d)$.

We will show that V = X + Y and that $X + Y = X \oplus$.

A very important theorem

We first show that V = X + Y. Take a vector $v \in V$; the aim is to write it as a sum of a vector in X and a vector in Y.

Write v is a linear combination of the t + d basis vectors of V:

$$\mathbf{v} = (\lambda_1 \mathbf{x}_1 + \cdots + \lambda_t \mathbf{x}_t) + (\mu_1 \mathbf{y}_1 + \cdots + \mu_d \mathbf{y}_d).$$

Observe that the first summand is in X, while the second is in Y. Hence v belongs to X + Y, as desired.

To show that X + Y is a direct sum, it suffices to show that $X \cap Y \stackrel{?}{=} \{0\}$. If v is in the intersection, then there are coefficients λ_i and μ_k so that

$$\mathbf{v} = \lambda_1 \mathbf{x}_1 + \dots + \lambda_t \mathbf{x}_t = \mu_1 \mathbf{y}_1 + \dots + \mu_d \mathbf{y}_d.$$

Then

$$0 = (\lambda_1 \mathbf{x}_1 + \dots + \lambda_t \mathbf{x}_t) - (\mu_1 \mathbf{y}_1 + \dots + \mu_d \mathbf{y}_d).$$

By the linear independence of the basis of V, all the λ_j and μ_k are 0. Hence v=0, as required.

Dimensions

The dimension of a finite-dimensional vector space V is the length of a basis of V. This makes sense because all bases have the same number of elements (proved on Friday). One writes dim V for the dimension.

Dimensions

Proposition

Let V be a finite-dimensional vector space, and let X be a subspace of Y. If Y is a subspace of V such that $V = X \oplus Y$, then

$$\dim V = \dim X + \dim Y$$
.

To prove the proposition, take bases x_1, \ldots, x_t and y_1, \ldots, y_d of X and Y. The equality of the proposition would follow from the statement that the concatenated list $x_1, \ldots, x_t; y_1, \ldots, y_d$ is a basis of V. This means that the big lists spans V and is linearly independent.

Let's prove the first statement, leaving the second as an exercise. If v is an element of V, we may write it x+y with $x \in X$, $y \in Y$. The two summands are linear combinations of the lists x_1, \ldots, x_t and y_1, \ldots, y_d , respectively. Hence x+y is a linear combination of the big list $x_1, \ldots, x_t; y_1, \ldots, y_d$.

Dimensions of subspaces

Proposition (2.37)

If X is a subspace of a finite-dimensional vector space V, then $\dim X < \dim V$.

To prove this, we can for example choose a complement Y to X. Then

 $\dim V = \dim X + \dim Y \ge \dim X$.

Subspace of big dimension

Proposition (2.39)

If $X \subseteq V$ is a subspace of the finite-dimensional vector space V, and if dim $X = \dim V$, then X = V.

Form Y so that $V = X \oplus Y$. By the previous proposition and the hypothesis that dim $X = \dim V$, Y has dimension 0. Hence it is the vector space $\{0\}$. Then $V = X \oplus \{0\} = X$.

Long linearly independent lists

Proposition (2.38)

If V is a finite-dimensional vector space and v_1, \ldots, v_ℓ is a linearly independent list of length $\ell = \dim V$, then v_1, \ldots, v_ℓ is a basis of V.

Let $U = \operatorname{span}(v_1, \dots, v_\ell)$. Then the list is a basis of U (linearly independent and spanning). Hence $\dim U = \ell = \dim V$. Hence U = V by the previous proposition. Thus v_1, \dots, v_ℓ spans V and is a basis of V.

Short spanning lists

Proposition

Assume that v_1, \ldots, v_ℓ is a spanning list for V and again that $\ell = \dim V$. Then v_1, \ldots, v_ℓ is a basis of V.

We can prune this spanning list if necessary to get a basis of V (Theorem 2.30). The resulting basis has length dim V, which happens also to be the length of the unpruned list. Hence no pruning happens.

Dimension of a sum

Let X and Y be subspaces of V, with V of finite dimension. What is the dimension of X + Y? If the sum X + Y is direct, then

$$\dim(X+Y)=\dim(X\oplus Y)=\dim X+\dim Y$$

by the proposition a few slides ago. If the sum X + Y is not assumed to be direct, then $X \cap Y$ may be different from $\{0\}$. In that case, we get a modified version of the formula above.

Theorem (2.43)

The dimension of X + Y is $\dim X + \dim Y - \dim(X \cap Y)$.

The proof in LADR (p. 47) is unappetizing. I will explain soon how the formula follows from the Fundamental Theorem for Linear Maps.

Dimension of a cartesian product

Proposition

Suppose that V and W are finite-dimensional vector spaces. Then dim $V \times W = \dim V + \dim W$.

The space $V \times W$ is the direct sum of its subspaces $V \times \{0\}$ and $\{0\} \times W$. It suffices to show that the first space has dimension dim V and that the second has dimension dim W.

The point is that $V \times \{0\} = \{(v,0) | v \in V\}$ is the "same thing" as V—it's just that we tack on 0 as a second entry when we write vectors of V. In particular, if v_1, \ldots, v_t is a basis of V, then $(v_1,0),\ldots,(v_t,0)$ is basis of $V \times \{0\}$. Hence $\dim(V \times \{0\}) = \dim V$. Similarly $\dim(\{0\} \times W) = \dim W$.

Lists and linear maps

A linear map (Chapter 3) between **F**-vector spaces V and W is a function $T:V\to W$ that takes sums to sums and scalar products to scalar products. (We've seen the formal definition several times.)

- The space V is the domain or source of T.
- The null space of T, null T, is the set of $v \in V$ such that Tv = 0. The null space is a subspace of V.
- If null T is finite-dimensional (for example because V is finite-dimensional), the dimension of null T is called the nullity of T.
- The range or image of T is the set of all Tv. The range is a subspace of W.
- If range T is finite-dimensional (for example because W is finite-dimensional), the dimension of range T is called the rank of T.

Fundamental theorem

Theorem (3.21)

If $T:V\to W$ is a linear map and V is finite-dimensional, then range T and null T are also finite-dimensional, and

dim V = dim null T + dim range T.

The nullity and rank of a linear map add up to the dimension of the source (or domain) of the linear map.

We can prove this very soon, but first I'll explain how the formula 2.43 of LADR is a special case.

The summation map

Let X and Y be subspaces of a finite-dimensional vector space V. Consider the summation map

$$S: X \times Y \rightarrow V$$
, $(x, y) \mapsto x + y$.

The dimension of the domain of this map is $\dim X + \dim Y$, as we have seen. The range of the map is X + Y. By the Fundamental Theorem,

$$\dim X + \dim Y = \dim(X + Y) + \text{nullity } S.$$

The null space of S is the set of pairs (v, -v) with $v \in X \cap Y$. Hence it is *the same thing* as $X \cap Y$ and has dimension equal to $\dim(X \cap Y)$. Thus

$$\dim X + \dim Y = \dim(X + Y) + \dim(X \cap Y),$$

so that 2.43 is a consequence of the Fundamental Theorem.

Linear maps and lists

Suppose that $T: V \to W$ is a linear map and that v_1, \ldots, v_ℓ is a list in V. Then Tv_1, \ldots, Tv_ℓ is a list in W.

Proposition

If v_1, \ldots, v_ℓ spans V, then Tv_1, \ldots, Tv_ℓ spans range T.

Proof: Since the list spans V, for each $v \in V$, there are $\lambda_1, \ldots, \lambda_\ell \in \mathbf{F}$ such that $v = \lambda_1 v_1 + \cdots + \lambda_\ell v_\ell$. Apply T and use linearity to get $Tv = \lambda_1 Tv_1 + \cdots + \lambda_\ell Tv_\ell$.

Now range T is the set of all Tv with $v \in V$. Because each Tv is a linear combination of Tv_1, \ldots, Tv_ℓ , this list spans range T.

Corollary

If T is surjective, then the image under T of a spanning list for V is a spanning list for W.

To say that T is surjective is to say that range T is all of W, so that the Corollary follows from the Proposition above it.

Linear maps and lists

Suppose that $T: V \to W$ is a linear map and that v_1, \ldots, v_ℓ is a list in V.

Proposition

If T is injective and v_1, \ldots, v_ℓ is linearly independent, then Tv_1, \ldots, Tv_ℓ is a linearly independent list in W.

Proof: Assume that $\lambda_1 T v_1 + \cdots + \lambda_\ell T v_\ell = 0$, where the λ_j are scalars in **F**. To prove linear independence of the list in W is to show that the scalars λ_j are all 0. By linearity, we may write this equation as

$$0 = T(\lambda_1 v_1 + \cdots + \lambda_\ell v_\ell).$$

Thus $\lambda_1 v_1 + \cdots + \lambda_\ell v_\ell$ lies in the null space of T. The hypothesis that T is 1-1 ensures that this null space is $\{0\}$. Hence

$$\lambda_1 v_1 + \cdots + \lambda_\ell v_\ell = 0.$$

By the linear independence of v_1, \ldots, v_ℓ , the scalars λ_j are all 0. This is the conclusion that we sought.

Summary

Suppose that $T: V \to W$ is a linear map and that v_1, \ldots, v_ℓ is a list in V.

- If T is 1-1 and v_1, \ldots, v_ℓ is linearly independent, then Tv_1, \ldots, Tv_ℓ is linearly independent.
- If T is onto and v_1, \ldots, v_ℓ spans V, then Tv_1, \ldots, Tv_ℓ spans W.
- If T is 1-1 and onto, and if v_1, \ldots, v_ℓ is a basis of V, then Tv_1, \ldots, Tv_ℓ is basis of W.

The third item is new, but it follows from the first two items.

Corollary

If $T: V \to W$ is a linear map that is 1-1 and onto, and if V is finite-dimensional, then so is W. Moreover, in this case the dimensions of V and W are equal.