回顾

- 电路系统中的信号
 - 各种常用信号: 复指数信号、阶跃信号、冲激信号、符号函数、门函数采样函数
 - 信号的时域计算: 加法、乘法、微分和积分、时间变换
- 重难点:
 - 熟悉各类信号的波形及时域数学表达式
 - 能够对信号进行时间变换

第一章电路系统元件、信号和定律

- 1.1电路及电路模型
- 1.2电学中的基本物理量
- 1.3电路系统中的信号
- 1.4电路系统中的元件
- 1.5基尔霍夫定律
- 1.6电路网络及其等效规律

1. 4电路元件与电路定律

电阻元件

电容元件

电感元件

电源元件

受控电源

线性定常电阻(resistor)元件

1. 符号

2. 欧姆定律 (Ohm's Law)

(1) 电压与电流取关联参考方向

电阻R单位名称: 欧(姆)

符号: Ω k Ω

令 G = 1/R G称为电导

单位名称: 西(门子) 符号: S (Siemens)

线性电阻元件的伏安特性为 一条过原点的直线

 $R \propto \text{tg } \alpha$

◆ 线性电阻R是一个与电压和电流无关的常数。

(2) 电阻的电压和电流取非关联参考方向

则欧姆定律写为

$$u = -Ri$$
 $i = -Gu$

3. 功率和能量

功率:

电阻是耗能元件

能量:可用功表示。从 t_0 到t电阻消耗的能量

$$W_R = \int_{t_0}^t p \, \mathrm{d} \, \tau = \int_{t_0}^t u \, i \, \mathrm{d} \, \tau$$

4. 开路与短路

当 R = 0 ($G = \infty$), 视其为短路。

u=0 , i由外电路决定

当 $R = \infty$ (G = 0),视其为开路。 i = 0 ,u由外电路决定

实际电阻器

- □贴片电阻:小,轻,性能可靠
- □碳膜电阻:便宜,电阻值范围大,精度差一些
- □金属膜电阻:可靠,精度高
- □ 功率电阻: 高功率

电阻器的标称值 电阻器的额定功率

标准贴片电阻 ±5% 全系列 阻值表

1R	5. 6R	33R	160R	820R	3.9K	20K	100K	510K	2.7M
1.1R	6. 2R	36R	180R	910R	4. 3K	22K	110K	560K	3M
1.2R	6. SR	39R	200R	1K	4.7K	24K	120K	620K	3.3M
1.3R	7. 5R	43R	220R	1.1K	5. 1K	27K	130K	680K	3.6M
1.5R	8.2R	47R	240R	1.2K	5. 6K	30K	150K	750K	3.9M
1.6R	9. 1R	51R	270R	1.3K	6. 2K	33K	160K	820K	4.3M
1.8R	10R	56R	300R	1.5K	6.8K	36K	180K	910K	4.7M
2R	11R	62R	330R	1.6K	7.5K	39K	200K	1M	5. 1M
2. 2R	12R	68R	360R	1.8K	8.2K	43K	220K	1. 1M	5.6M
2.4R	13R	75R	390R	2K	9.1K	47K	240K	1.2M	6.2M
2.7R	15R	82R	430R	2. 2K	10K	51K	270K	1.3M	6.8M
3R	16R	91R	470R	2.4K	11K	56K	300K	1.5M	7.5M
3. 3R	18R	100R	510R	2.7K	12K	62K	330K	1.6M	8.2M
3. 6R	20R	110R	560R	3K	13K	68K	360K	1.8M	9. 1M
3.9R	22R	120R	620R	3.2K	15K	75K	390K	2M	1 OM
4. 3R	24R	130R	680R	3. 3K	16K	82K	430K	2.2M	15M
4. 7R	27R	150R	750R	3.6K	18K	91K	470K	2.4M	22M
5. 1R	30R								

电容(capacitor)元件

一、元件特性

描述电容的两个基本变量: *u*, *q* 对于线性电容, 有:

$$q = Cu$$

$$C = \frac{q}{u}$$

电容 C 的单位: F(法) (Farad, 法拉) 常用μF, pF等表示。

库伏 (q~u) 特性

二、线性电容的电压、电流关系(VAR)

$$i = \frac{\mathrm{d}q}{\mathrm{d}t} = C \frac{\mathrm{d}u}{\mathrm{d}t}$$

(1) *i*的大小与 *u* 的变化率成正比,与 *u* 的大小无关;

当 u 为常数时, $du/dt=0 \rightarrow i=0$ 。

电容在直流电路中相当于开路, 电容有隔直作用;

(2) 电容元件是一种记忆元件;

$$i = \frac{\mathrm{d}q}{\mathrm{d}t} = C \frac{\mathrm{d}u}{\mathrm{d}t}$$

弹幕开启

$$u(t) = \frac{1}{C} \int_{-\infty}^{t} i d\tau = \frac{1}{C} \int_{-\infty}^{t_0} i d\tau + \frac{1}{C} \int_{t_0}^{t} i d\tau$$
$$= u(t_0) \varepsilon(t - t_0) + \frac{1}{C} \int_{t_0}^{t} i d\tau$$

$$q(t) = q(t_0) + \int_{t_0}^t i d\tau$$

(3)电容元件是一种惯性元件: 当电流 *i* 为有限值时,电容电压不能跃变。

三、电容的储能

$$p = ui = u \cdot C \frac{\mathrm{d}u}{\mathrm{d}t}$$

当 p > 0时,表明此时电容实际吸收功率,存储电场能量,该过程称为电容充电;

当p < 0时,表示电容实际产生功率,即电容把储存的能量返还给外电路,该过程称为电容放电。

三、电容的储能

$$p_{C} = ui = u \cdot C \frac{du}{dt}$$

$$W_{C} = \int_{-\infty}^{t} Cu \frac{du}{d\tau} d\tau = \frac{1}{2} Cu^{2} \Big|_{u(-\infty)}^{u(t)} = \frac{1}{2} Cu^{2}(t) - \frac{1}{2} Cu^{2}(-\infty)$$

$$\stackrel{\text{#}}{=} \frac{1}{2} Cu^{2}(t) = \frac{1}{2C} q^{2}(t) \ge 0$$

从
$$t_0$$
到 t_1 电容储能的变化量: $\Delta W_C = \frac{1}{2}Cu^2(t_1) - \frac{1}{2}Cu^2(t_0)$

电容的储能:
$$W_{\rm C}(t) = \frac{1}{2}Cu^2(t)$$

- t时刻电容的储能只与该时刻电容的电压值有关,与其它 时刻的电压值和电流值均无关
- 由于C为正实常数,故 $W_{c}(t)$ 不为负
- 电容是一个无源元件 (passive component)

无源器件有两个基本特点:

- ✓ 自身耗能,或进行能量的存储或者转换
- ✓ 只需输入待处理信号,不需要外加电源就能正常工作

例 如图 (a)所示电路,已知C=0.2F, $V_c(t)$ 的波形如图 (b)所示。求: (1) 电容电流i(t)并画出波形; (2) 电容吸收功率p(t)及储存的能量 W(t)。

解 如图 (b)所示, 电压波形的时域表达式为

$$v_{C}(t) = \begin{cases} 0 & -\infty < t \le 0 \\ t & 0 < t \le 1s \\ 2 - t & 1s < t \le 3s \\ t - 4 & 3s < t \le 4s \\ 0 & t > 4s \end{cases}$$

分段计算电容电流、电压和功率:

(1)
$$t \le 0$$
 $i = -C \frac{dv_C}{dt} = 0$, $p(t) = -v_C i = 0$, $W(t) = \frac{1}{2}Cv_C^2 = 0$.

(2)
$$0 < t \le 1$$
s $i = -C \frac{dv_C}{dt} = -0.2$ A

$$p(t) = -v_{\mathcal{C}}i = 0.2t(\mathcal{W})$$

$$W(t) = \frac{1}{2} \times 0.2 \times t^2 = 0.1t^2(J)$$

(3)
$$1s < t \le 3s$$
 $i = -C \frac{d(2-t)}{dt} = 0.2A$

$$p(t) = -v_{\rm C}i = -0.2(2-t) = (0.2t - 0.4)(W)$$

$$W(t) = \frac{1}{2} \times 0.2 \times (2 - t)^2 = 0.1(2 - t)^2(J)$$

(4)
$$3s < t \le 4s$$
 $i = -0.2 \frac{d(t-4)}{dt} = -0.2A$

$$p(t) = -(t-4) \times (-0.2) = 0.2t - 0.8(W)$$

$$W(t) = \frac{1}{2} \times 0.2 \times (t-4)^2 = 0.1(t-4)^2(J)$$
(5) $t > 4s$ $i = -C \frac{dv_C}{dt} = 0$

$$p(t) = -v_C i = 0$$

$$W(t) = \frac{1}{2} C v_C^2 = 0$$

(c) 电流波形

例:图中,C=0.5F ,u(0)=0,电流波形 如图所示,求u(t), 画出波形

解: 电流源电流为:

$$i_{S}(t) = \begin{cases} 0, & -\infty < t < 0 \\ 1, & 0 < t < 1 \\ -1, & 1 < t < 2 \\ 0, & t > 2 \end{cases}$$

分段计算电压u(t):

$$0 \le t < 1s, \qquad u(t) = u(0) + \frac{1}{C} \int_{0}^{t} i(t)dt = \frac{1}{0.5} \int_{0}^{t} dt = 2tV$$

$$1 \le t < 2s, \qquad u(t) = u(1) + \frac{1}{C} \int_{1}^{t} i(t)dt = (4 - 2t)V$$

$$t \ge 2s, \qquad u(t) = u(2) + \frac{1}{C} \int_{2}^{t} i(t)dt = 0$$

超级电容

• 2010年上海世博会园区提供的部分园内交通车采用超级电容供电

 https://www.bilibili.com/video/av67362867/?spm_id_from=333.78 8.videocard.0

电感 (inductor)元件

对偶

一、线性定常电感元件

$$L = \frac{\psi}{i}$$
 $\psi = N \phi$ 为电感线圈的磁链 L 称为自感系数

L 的单位名称: 亨 (利) 符号: H (Henry)

亨(**H**) =
$$\frac{\$(\mathbf{W}_b)}{\$(\mathbf{A})} = \frac{[\mathcal{K}][\mathcal{V}]}{[\$]} = [\$][\%]$$

$$L = \frac{\psi}{i}$$

韦安 (
$$\psi \sim i$$
) 特性

二、线性电感电压、电流关系(VAR):

 i, ϕ 右螺旋

e, ϕ 右螺旋

u, *e* 一致

u,i 关联

由电磁感应定律与楞次定律

$$e = -L \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$u = -e = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

(1) 当 u, i 为美联方向时, $u=L \operatorname{d} i / \operatorname{d} t$ u, i 为非关联方向时, $u=-L \operatorname{d} i / \operatorname{d} t$

u的大小与i的变化率成正比,与i的大小无关;

当 i 为常数时, $di/dt=0 \rightarrow u=0$ 。 电感在直流电路中相当于短路;

(2) 电感元件是一种记忆元件;

$$\mathbf{i} = \frac{1}{L} \int_{-\infty}^{t} u \, d\tau = \frac{1}{L} \int_{-\infty}^{t_0} u \, d\tau + \frac{1}{L} \int_{t_0}^{t} u \, d\tau = \mathbf{i}(t_0) \varepsilon(t - t_0) + \frac{1}{L} \int_{t_0}^{t} u \, d\tau$$

$$\therefore \psi = \psi(t_0) + \int_{t_0}^t u \mathrm{d}\tau$$

(3) 电感元件是一种惯性元件;

当电压 u 为有限值时, 电感中电流不能跃变。

因为电流跃变需要一个无穷大的电压。

三、电感的储能

$$p = ui = i L \frac{\mathrm{d}i}{\mathrm{d}t}$$

当 p > 0时,表明此时电感实际吸收功率,存储磁场能量,该过程称为电感充电;

当p < 0时,表示电感实际产生功率,即电感把储存的能量返还给外电路,该过程称为电感放电。

三、电感的储能

$$p = ui = i L \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$W_{L} = \int_{-\infty}^{t} Li \frac{\mathrm{d}i}{\mathrm{d}\tau} \,\mathrm{d}\tau = \frac{1}{2} Li^{2} \bigg|_{i(-\infty)}^{i(t)} = \frac{1}{2} Li^{2}(t) - \frac{1}{2} Li^{2}(-\infty)$$

$$=\frac{1}{2}Li^{2}(t)=\frac{1}{2L}\psi^{2}(t)\geq 0$$

电感的储能
$$W_{\rm L}(t) = \frac{1}{2}Li^2(t)$$

- t时刻电感的储能只与该时刻电感的电流值有关,与其它时 刻的电流值和电压值均无关。
- 由于L为正实常数,故 $W_{r}(t)$ 不为负
- 电感是一个无源元件
- 电路的对偶性(对照电容和电感的分析)
 - 包含拓扑对偶和元件对偶两种

$$C:q$$
 i_C u_C

$$L:\Psi$$
 u_L i_L

电源 (source)元件

一、理想电压源

电路符号

电压 *U*

由a点到b点的电压降低

$$U=\varphi_{a}-\varphi_{b}$$

电动势E

由b点到a点经电源内部的电压升高

$$E = \varphi_a - \varphi_b$$

电压: +极到-极的降低

电动势: - 极到 + 极的升高

1. 特点:

- (a) 端电压确定不变。由电源本身决定,与外电路无关;
- (b) 通过它的电流是任意的, 由外电路决定。

2. 伏安特性(VAR)

- (2) 若us为变化的电源,则某一时刻的伏安关系也是平行于电流轴的直线。
- (3)若 U_S = 0,则与什么情况下的VAR特性是一样的? (开启弹幕)

3. 理想电压源的开路与短路

(1) 开路 i=0

(2) 短路 理想电压源不允许短路(此时理想电 压源模型不存在)。

4. 功率

i, u_s非关联

$$p_{\xi} = u_{S} i$$

$$p_{\text{W}} = -u_{\text{S}} I$$

*i,u*s关联

$$p_{\text{W}} = u_{\text{S}}i$$
 $p_{\text{g}} = -u_{\text{S}}i$

5. 实际电压源

$$\begin{array}{c|c}
u_S \\
u \\
\hline
0 \\
i\end{array}$$

$$iR_S \\
i$$

$$u = u_S - iR_s$$

二、理想电流源对偶

电路符号

1. 特点:

(a) 电源电流确定不变由电源本身决定的,与外电路无关;

(b) 电流源两端电压是由外电路决定。

$$\begin{array}{c|c}
+ & + \\
U & + \\
U & + \\
R &$$

2. 伏安特性(VAR)

- (1) 若 i_{S} = I_{S} ,即直流电源。则其伏安特性曲线为平行于电压轴的直线,反映电流与 端电压无关。
- (2) 若*i*_S为变化的电源,则某一时刻的伏安关系也是平行于电压轴的直线。
- (3) 若 $i_S=0$,则VAR关系与什么情况相同? (开启弹幕)

3. 理想电流源的短路与开路

(1) 短路: $i=i_S$, u=0

(2) 开路: 理想电流源不允许开路。

4. 功率

5. 实际电流源

受控电源 (非独立源) (controlled source or dependent source)

一、定义

电压源电压或电流源电流不是给定函数,而是受电路某个支路的电压(或电流)的控制。

例:晶体三极管

(1) 电流控制的电流源CCCS

(Current Controlled Current Source)

$$i_c = \beta i_b$$

例: 理想运算放大器

$$A = |u_o / u_i|$$

(2) 电压控制的电压源VCVS (Voltage Controlled Voltage Source)

理想化条件:

(1) 开环电阻
$$r_1 \rightarrow \infty$$
 ,则 $i_1 \rightarrow 0$ $i_2 \rightarrow 0$

(2)输出电阻 $r_0 \rightarrow 0$,运放的输出直接施加于负载之上

(3) 开环放大倍数
$$A \rightarrow \infty$$
, $u_i = u_1 - u_2 = -u_o / A \rightarrow 0$

虚短

反相:

$$u_o = -Au_1$$

同相

$$u_o = Au_2$$

例:由理想运算放大器构成的比例放大电路

同相端的输入电流 i^+ 等于输入信号电流i, 即 $i^+=i$ 根据虚断原理有: $i^+ \to 0$,故 $i = i^+ \to 0$ 根据虚断原理有: $i^- \to 0$,则 $u^- = \frac{R_1}{R_1 + R_2} u_o$

根据虚短原理,有:
$$u_i = u^+ = u^- = \frac{R_1}{R_1 + R_2} u_o$$
,即 $u_o = \left(1 + \frac{R_2}{R_1}\right) u_i$

(3) CCVS

$$\begin{cases} u_1=0 \\ u_2=r i_1 \end{cases}$$

r:转移电阻

(4) VCCS

$$\begin{cases} i_1=0 \\ i_2=gu_1 \end{cases}$$

转移电导

三、受控源的有源性和无源性

$$p_{\text{W}} = u_1 i_1 + u_2 i_2$$

= $u_2 i_2$
= $u_2 (-u_2/R) < 0$
受控源是有源元件

四. 受控源与独立源的比较

- (1) 独立源电压(或电流)由电源本身决定,与电路中其它电压、电流无关,而受控源电压(或电流)直接由控制量决定。
- (2) 独立源作为电路中"激励",在电路中产生电压、电流,而受控源在电路中不能作为"激励"。

电路元件与电路定律

基尔霍夫定律

简单电阻电路

电阻 Y-∆变换

基尔霍夫定律(Kirchhoff's Laws)

基尔霍夫电流定律 (Kirchhoff's current law—KCL)

基尔霍夫电压定律(Kirchhoff's voltage law—KVL)

基尔霍夫定律与元件特性是电路分析的基础。

一、几个名词

- 1. 支路 (branch): 电路中流过同一电流的每个分支。 (b)
- 2. 节点 (node): 支路的连接点称为节点。(n)
- 3. 路径(path): 两节点间的一条通路。路径由支路构成。
- 4. 回路(loop): 由支路组成的闭合路径。(/)
- 5. 网孔(mesh):对平面电路,每个网眼即为网孔。 网孔是回路,但回路不一定是网孔。

b=3

n=2

/=3

二、基尔霍夫电流定律(KCL)

在集总参数电路中,任一时刻流出(流入)任一节点的各支路电流的代数和为零。即

$$\sum i(t) = 0$$

例

$$-i_1 + i_2 - i_3 + i_4 = 0$$

$$i_1 + i_3 = i_2 + i_4$$

即
$$\sum i_{\lambda} = \sum i_{\text{出}}$$

物理基础: 电荷守恒, 电流连续性。

例

$$i_1 = 4 - 7 = -3A$$

$$i_2$$
=10+(-12)- i_1
=10-12+3=1A

KCL的推广:

$$i_1 + i_2 + i_3 = 0$$

两条支路电流大小相等, 一个流入, 一个流出。

只有一条支路相连,则 i=0。

1.

$$u_A = u_B$$

$$u_A = u_B$$

$$u_A = u_B$$

三、基尔霍夫电压定律(KVL)

集总参数电路中,任一时刻沿任一闭合路径(按固定绕向),各支路电压代数和为零。即

$$\sum u = 0$$

例

顺时针方向绕行: $\sum U = 0$

$$-U_{1}-U_{S1}+U_{2}+U_{3}+U_{4}+U_{S4}=0$$

$$-R_{1}I_{1}-U_{S1}+R_{2}I_{2}-R_{3}I_{3}+R_{4}I_{4}+U_{S4}=0$$

$$-R_{1}I_{1}+R_{2}I_{2}-R_{3}I_{3}+R_{4}I_{4}=U_{S1}-U_{S4}$$
即
$$\sum U_{R}=\sum U_{S}$$

电阻压降

电源压升

推论: 电路中任意两点间的电压等于两点间任一条路 径经过的各元件电压的代数和。

 U_{AB} (沿½)

 电位的单值性

图示电路: 求 少和 /。

解:

$$U_1 = 3/ = -6V$$

$$U+U_1+3-2=0$$
, $U=5V$

或

$$U = 2 - 3 - U_1 = 5V$$