

Les limites et les asymptotes

I.Limite d'une fonction en l'infini

Dans toute cette partie, C_f désigne la courbe représentative de la fonction f dans un repère quelconque du plan.

1. Limite finie en l'infini

Définition:

Soit f une fonction définie au moins sur un intervalle de $\mathbb R$ du type $]a\,;\,+\infty[$. La fonction f a pour limite ℓ en $+\infty$ si tout intervalle ouvert contenant ℓ contient toutes les valeurs de f (x) pour x assez grand. On note alors : $\lim_{xarrow+\infty} f(x) = \ell$.

EXEMPLE:

Soit f la fonction définie sur $]0\,;\,+\infty[\operatorname{par} f\,(x)=\frac{1}{x}+\,1.$ On a $\lim_{xarrow\,+\infty}(\,\frac{1}{x}+\,1\,\,)=\,1.$ En effet, l'inverse de x se rapproche de 0 à mesure que x augmente. Soit un intervalle ouvert I tel que $1\in I.$ Alors, f (x) sera toujours dans I pour x assez grand. Graphiquement, aussi étroite que soit une bande parallèle à la droite d'équation y = 1 et qui la contient, il existe toujours une valeur de x au delà de laquelle C_f ne sort plus de cette bande.

Asymptote horizontale.

La droite d'équation y = ℓ est asymptote horizontale à C_f en $+\infty$ si $\lim_{xarrow+\infty}f\left(x\right) = \ell$.

REMARQUE:

On définit de façon analogue $\lim_{xarrow-\infty}f\left(x\right)=l$ qui caractérise une asymptote horizontale à C_f en $-\infty$ d'équation y = ℓ .

EXEMPLE:

On a vu précédemment que $\lim_{xarrow+\infty}(\frac{1}{x}+1)=1$. On a aussi $\lim_{xarrow-\infty}(\frac{1}{x}+1)=1$. Donc, la droite d'équation y = 1 est asymptote horizontale à la courbe C_f en $+\infty$ et en $-\infty$.

Propriété (admise) : limites finies des fonctions usuelles en $\pm \infty$.

Soit n un entier naturel non nul.

$$\lim_{xarrow + \infty} \frac{1}{\sqrt{x}} = \lim_{xarrow + \infty} \frac{1}{x^n} = 0 \text{ et } \lim_{xarrow - \infty} \frac{1}{x^n} = 0.$$

II. Limite infinie en l'infini

Définition:

La fonction f a pour limite $+\infty$ en $+\infty$ si tout intervalle de $\mathbb R$ du type $]a\,;\,+\infty[$ contient toutes les valeurs de f (x) pour x assez grand. On note alors : $\lim_{xarrow+\infty}f(x)=+\infty$.

EXEMPLE:

Soit f la fonction racine carrée. On a $\lim_{xarrow+\infty} \sqrt{x} = +\infty$. En effet, \sqrt{x} devient aussi grand que l'on veut à mesure que x augmente. Soit un intervalle ouvert $I=]a\,;\,+\infty[$. Alors, f (x) sera toujours dans I pour x assez grand. Graphiquement, si on considère le demi-plan supérieur de frontière une droite d'équation

y = a, il existe toujours une valeur de a au-delà de laquelle C_f ne sort plus de ce demi-plan.

Propriété (admise) : limites infinies des fonctions usuelles en $\pm \infty$.

Soit n un entier naturel non nul.

$$\lim_{\substack{xarrow + \infty \\ lim \\ xarrow - \infty}} \sqrt{x} = \lim_{\substack{xarrow + \infty \\ lim \\ xarrow - \infty}} x^n = +\infty \text{ et}$$

2. Limite infinie en un réel

Définition :

Soit f une fonction définie sur un intervalle ouvert de \mathbb{R} du type $]x_0 - \varepsilon$; $x_0[$ ou $]x_0; x_0 + \varepsilon[$. La fonction f a pour limite $+\infty$ en x_0 si tout intervalle de $\mathbb R$ du type $]A\,;\,+\infty[$ contient toutes les valeurs de f (x) pour x assez proche de x_0 . On note alors : $\lim_{x \to x} f(x) = +\infty$.

Définition : asymptote verticale.

La droite d'équation $x=x_0$ est asymptote verticale à C_f si $\lim_{xarrow} f\left(x\right) = +\infty$ ou $\lim_{x = row \, x_0} f(x) = -\infty$

Propriété (admise) : limites finies des fonctions usuelles en 0.

Soit n un entier naturel non nul.

$$\lim_{xarrow\ 0^+}\frac{1}{\sqrt{x}}=\lim_{xarrow\ 0^+}\frac{1}{x^n}=+\infty\ \text{et}\ \lim_{xarrow\ 0^+}\frac{1}{x^n}=0\ (+\infty\ si\ n\ pair\ ;\ -\infty\ si\ n\ impair\).$$

III. Opérations sur les limites.

Propriété : limite d'une somme, d'un produit et d'un quotient de deux fonctions.

Limite d'une somme :

f	8	f+g
ℓ	ℓ'	$\ell + \ell'$
ℓ	∞	∞
+∞	+∞	+∞
$-\infty$	$-\infty$	$-\infty$
+∞	$-\infty$???

Limite d'un produit :

f	g	fg
ℓ	ℓ'	$\ell\ell'$
ℓ≠0	∞	∞
∞	∞	∞
0	∞	???

■ Limite d'un quotient :

f	8	f/g
ℓ	$\ell'\neq 0$	ℓ/ℓ'
ℓ≠0	0	∞
ℓ	∞	0
0	0	???
∞	∞	???

te d'une fonction composée

1. Fonction composée

Définition :

Soit f une fonction définie sur E et à valeurs dans F, et soit g une fonction définie sur F. La composée de f suivie de g est la fonction notée $g \circ f$ définie sur E par $g \circ f(x) = g(f(x))$.

REMARQUE:

Il ne faut pas confondre $g \circ f$ et $f \circ g$ qui sont, en général, différentes.

2. Théorème de composition des limites

Théorème:

Soit h la composée de la fonction f suivie de g et a, b et c trois réels ou $\pm \infty$. Si $\lim_{xarrow\,a}f\left(x\right)\,=\,b\,\operatorname{et}\,\lim_{xarrow\,b}g\left(x\right)\,=\,c$, alors $\lim_{xarrow\,a}h\left(x\right)\,=\,c$.

V. Limites et comparaison

1. Théorème de comparaison

Théorème:

Soit f et g deux fonctions telles que $f(x) \leq g(x)$ sur un intervalle α ; $+\infty$ de \mathbb{R} .

$$\lim_{x \to +\infty} f(x) = +\infty \Rightarrow \lim_{x \to +\infty} g(x) = +\infty.$$

$$\lim_{x \to +\infty} f(x) = +\infty \Rightarrow \lim_{x \to +\infty} g(x) = +\infty.$$

$$\lim_{x \to +\infty} g(x) = -\infty \Rightarrow \lim_{x \to +\infty} f(x) = -\infty.$$

Soit f et g deux fonctions telles que $f(x) \leq g(x)$ sur un intervalle $]-\infty$; $\beta[$ de \mathbb{R} .

$$\lim_{x \to -\infty} f(x) = +\infty \Rightarrow \lim_{x \to -\infty} g(x) = +\infty.$$

$$\lim_{x \to -\infty} f(x) = +\infty \Rightarrow \lim_{x \to -\infty} g(x) = +\infty. \qquad \lim_{x \to -\infty} g(x) = -\infty \Rightarrow \lim_{x \to -\infty} f(x) = -\infty.$$

Soit f et g deux fonctions telles que $f(x) \leq g(x)$ sur un intervalle $]\alpha$; $\beta[$ de \mathbb{R} et $x_0 \in]\alpha$; $\beta[$.

$$\lim_{x \to x_0} f(x) = +\infty \Rightarrow \lim_{x \to x_0} g(x) = +\infty.$$

$$\lim_{x \to x_0} g(x) = -\infty \Rightarrow \lim_{x \to x_0} f(x) = -\infty.$$

$$\lim_{x \to x_0} g(x) = -\infty \Rightarrow \lim_{x \to x_0} f(x) = -\infty.$$

2. Théorème d'encadrement dit « des gendarmes » ou « sandwich ».

Théorème :

Soit deux réels a et ℓ et trois fonctions f, g et h telles que, pour x > a, on a $f(x) \leq g(x) \leq h(x)$

$$\operatorname{Si} \lim_{xarrow+\infty} f\left(x\right) = \lim_{xarrow+\infty} h\left(x\right) = l \text{, alors } \lim_{xarrow+\infty} g\left(x\right) = l \text{.}$$

REMARQUE:

On a, comme pour le théorème de comparaison précédent, deux théorèmes analogues lorsque x tend vers $-\infty$ et lorsque x tend vers un réel x_0 .

EXEMPLE:

Déterminons la limite en $-\infty$ de $f(x) = \frac{x \cos x}{x^2 + 1}$.

La limite de cos x en $-\infty$ est indéterminée. Donc celle de f (x) aussi.

Cependant pour tout x réel strictement négatif, $-1 \le \cos x \le 1$ donc $x \le x \cos x \le -x$.

Et en divisant membre à membre par $x^2+1>0$ on a : $\frac{x}{x^2+1}\leq \frac{x\cos x}{x^2+1}\leq \frac{-x}{x^2+1}.$

$$\frac{x}{x^2 + 1} \le \frac{x \cos x}{x^2 + 1} \le \frac{-x}{x^2 + 1}.$$

$$\operatorname{Pour} x \, \in \, R \, {}^* , \frac{x}{x^2 \, + \, 1} = \frac{1}{x + \frac{1}{x}}.$$

$$\text{Or, } \lim_{xarrow-\infty}x+\frac{1}{x}=-\infty \text{ donc } \lim_{xarrow-\infty}\frac{x}{x^2+1}=\lim_{xarrow-\infty}\frac{-x}{x^2+1}=0$$

Donc, d'après le théorème des gendarmes, $\lim_{x \to x} \frac{x \cos x}{x^2 + 1} = 0$.