

Fig 1.2-Curva di Bragg per particelle lpha da 5.3 MeV di energia in aria

1.5

2.0

0.5

cm

1.0

0

2.5

Interazione di particelle cariche con la materia

 $E_{\alpha} = 5.8 \text{ MeV}$ in aria

Area

Energia cinetica (A, β)

Lunghezza

Range (A, Z, β)

• dE/dx

 (z, β)

• Picco di Bragg (z)

Formula di Bethe-Bloch

$$-\frac{dE}{dx} = 4\pi N_{A} r_{e}^{\ 2} m_{e} c^{2} z^{2} \frac{Z}{A} \frac{1}{\beta^{2}} [log(\frac{2m_{e} c^{2} \gamma^{2} \beta^{2}}{I} - \beta^{2} - \frac{\delta}{2}]$$

Z e A del mezzo frenante

$$4\pi N_A r_e^2 m_e c^2 = 0.3071 MeV cm^2 gr^{-1}$$

Range

$$R = \int_{E}^{0} \frac{dE}{-dE/dx}$$

sostituendo $-\frac{dE}{dx}$ preso dalla formula di Bethe-Bloch

$$R(v) \propto \frac{m}{z^2} F(v)$$

Formula empirica di Bragg-Kleman

$$\frac{R_1}{R_2} = \frac{\rho_2 \sqrt{A_1}}{\rho_1 \sqrt{A_2}}$$

Figura 14.12-1 Convertitore A/D a comparatori.

Sorgente composita

²⁴¹ Am	(432.7 y)	5484 keV	85%
		5442 keV	12%
		5387 keV	1.6%
²⁴⁴ Cm(18.11 y)		5806 keV	76%
		5763 KeV	24%

Esperienza di Bragg

- Estrarre da ogni evento:
 - Picco di Bragg
 - Energia dello ione incidente
 - Range dello ione incidente
 - Velocità di drift degli elettroni

$$\frac{1}{2}CV_0^2 = n_0ev^+tE + n_0ev^-tE + \frac{1}{2}CV_{Ch}^2$$

dove $E = \frac{V}{d}$

se consideriamo che
$$V_0 + V_{Ch} \simeq 2V_0$$
 e $\frac{V_{Ch}}{d} \simeq \frac{V_0}{d}$
$$\frac{1}{2}C(2V_0)(V_0 - V_{Ch}) = n_0e\frac{V_{Ch}}{d}(\nu^+ + \nu^-)t$$

da cui otteniamo

$$V_R = \frac{n_0 e}{dC} (\nu^+ + \nu^-) t$$

$$dopo un tempo \quad t^- = \frac{x}{\nu^-} \qquad V_R = \frac{n_0 e(x + \nu^+ t)}{dC}$$

$$e dopo \qquad t^+ = \frac{(d-x)}{\nu^+} \qquad V_R = \frac{n_0 e}{C}$$