

Rigid Body Simulation

Questions from Previous Lecture?

Strain
$$\Delta \mathbf{x}^T \Delta \mathbf{x} - \Delta \mathbf{X}^T \Delta \mathbf{X}$$

$$\Delta \mathbf{X}^T \mathbf{F}^T \mathbf{F} \Delta \mathbf{X} - \Delta \mathbf{X}^T \Delta \mathbf{X}$$

Right Cauchy Green Deformation

$$\Delta \mathbf{X}^T \left(\mathbf{F}^T \mathbf{F} - \mathbf{I} \right) \Delta \mathbf{X} = \mathbf{0}$$

Green Lagrange Strain

$$\Delta \mathbf{X}^T \left(\mathbf{F}^T \mathbf{F} - \mathbf{I} \right) \Delta \mathbf{X} = \mathbf{0}$$
Implies
$$\mathbf{F}^T \mathbf{F} = \mathbf{I}$$
Orthogonal

$$\Delta \mathbf{X}^T \left(\mathbf{F}^T \mathbf{F} - \mathbf{I} \right) \Delta \mathbf{X} = \mathbf{0}$$

Implies

$$\frac{\mathbf{F}^T \mathbf{F}}{\mathsf{T}} = \mathbf{I}$$
Orthogonal

Rigid Bodies Rotate

$$F \in SO(3)$$

The Rigid Body Mapping

The Rigid Body Mapping

Generalized Coordinates of a Rigid Body

Generalized Coordinates of a Rigid Body

Time Derivatives of Rotation Matrices

$$R(t) \in SO(3)$$

$$R(t + \delta t)$$
 Next Rotation in SO(3) (Yikes!)

$$\exp([\omega]\delta t)R(t)$$

Angular velocity 3-dimensional vector

Time Derivatives of Rotation Matrices

$$R(t) \in SO(3)$$

$$R(t + \delta t)$$
 Next Rotation in SO(3) (Yikes!)

$$\exp([\omega]\delta t)R(t)$$

Square brackets = skew-symmetric matrix

Time Derivatives of Rotation Matrices

$$R(t) \in SO(3)$$

$$R(t + \delta t)$$
 Next Rotation in SO(3) (Yikes!)

$$\exp([\omega]\delta t)R(t)$$

Matrix Exponential

Step 1: d/dt

$$\frac{d}{d\delta t} exp([\omega]\delta t)R(t)$$

Infinite Series for Exponential

$$\frac{d}{d\delta t}(I + [\omega]\delta t + \frac{1}{2}[\omega][\omega]\delta t^2 \dots) R(t)$$

Step 1: d/dt

$$\frac{d}{d\delta t}(I + [\omega]\delta t + \frac{1}{2}[\omega][\omega]\delta t^2 ...) R(t)$$

$$([\omega] + [\omega][\omega]\delta t...) R(t)$$

Yuck, still an infinite series

Step 2: Limit !!!

$$([\omega] + [\omega][\omega]\delta t...) R(t)$$

Yuck, still an infinite series

$$\lim_{\delta t \to 0} ([\omega] + [\omega][\omega] \delta t \dots) R(t)$$

Only constant terms remain

Step 3: Finale

$$R(t) = [\omega]R(t)$$

Cross Product Matrix

Ok Who Wants to do the Second Derivates for Acceleration?

Me Neither, Let's Do Something Else

The Rigid Body Mapping

Why did we use this mapping?

What Makes an Object Rigid?

$$\Delta \mathbf{X}^T \left(\mathbf{F}^T \mathbf{F} - \mathbf{I} \right) \Delta \mathbf{X} = \mathbf{0}$$
Implies
$$\mathbf{F}^T \mathbf{F} = \mathbf{I}$$
Orthogonal

$$\mathbf{x}(\mathbf{X},t) = \mathbf{Q}(t) \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$$
Affine Transform

$$\mathbf{x}(\mathbf{X},t) = \mathbf{Q}(t) \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$$

$$\begin{pmatrix} q_0 & q_1 & q_2 & q_3 \\ q_4 & q_5 & q_6 & q_7 \\ q_8 & q_9 & q_{10} & q_{11} \end{pmatrix}$$

Vectorized Generalized Coordinates

The Kinematic Jacobian

Vectorized Generalized Coordinates

$$\mathbf{x}(\mathbf{X},t) = \mathbf{J}(\mathbf{X})\mathbf{q}(t)$$

Generalized Velocity of an Affine Body

$$v(\mathbf{X},t) = J(\mathbf{X})q(t)$$

Equations of Motion

$$M\ddot{\mathbf{q}} = -rac{\partial V}{\partial \mathbf{q}}$$

Recall J ... What does this tell us about M_0 ?

J

Integrate over Surface Triangles

Aside: Divergence Theorem

Integrate over Volume

Express using divergence

$$\int_{\Omega} X^2 d\Omega = \int_{\Omega} \nabla \cdot \begin{bmatrix} ? \\ ? \\ ? \end{bmatrix} d\Omega$$

Reminder
$$\nabla \cdot \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \frac{\partial a}{\partial x} + \frac{\partial \mathbf{b}}{\partial y} + \frac{\partial \mathbf{c}}{\partial z}$$

Integrate over Volume

Express using divergence

$$\int_{\Omega} X^2 d\Omega = \int_{\Omega} \nabla \cdot \begin{bmatrix} \frac{1}{3} X^3 \\ 0 \\ 0 \end{bmatrix} d\Omega$$

Reminder
$$\nabla \cdot \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \frac{\partial a}{\partial x} + \frac{\partial \mathbf{b}}{\partial y} + \frac{\partial \mathbf{c}}{\partial z}$$

Integrate over Surface

Convert to Surface Integral

$$\int_{\Gamma} \frac{1}{3} X^3 n_x \frac{d\Gamma}{\Gamma}$$
Little surface area

Integrate over Triangles !!!!

Barycentric Integration for Each Triangle

Convert to Surface Integral

$$\int_{\mathbf{T}} \frac{1}{3} X^3 \mathbf{n}_{\chi} d\mathbf{T}$$

Barycentric Integration for Each Triangle

Replace X (resp Y, Z) with:

$$X = \sum_{i=0}^{2} X_{i} \phi_{i}(X)$$
Barycentric Coordinates

Barycentric Integration for Each Triangle

Integrate using Barycentric Coordinates

$$\int_{0}^{1} \int_{0}^{1-\phi_{1}} \frac{1}{3} X(\phi_{1}, \phi_{2}))^{3} n_{x} d\phi_{1} d\phi_{2}$$

Add up to form full Mass Matrix

Potential Energy of Affine Body

What Makes an Object Rigid?

$$\Delta \mathbf{X}^T \left(\mathbf{F}^T \mathbf{F} - \mathbf{I} \right) \Delta \mathbf{X} = \mathbf{0}$$
Implies
$$\mathbf{F}^T \mathbf{F} = \mathbf{I}$$
Orthogonal

Potential Energy of Affine Body

Set this to a big value

$$\psi = \kappa ||F^T F - I||_F^2 d\Omega$$

How do we keep the object rigid?

Potential Energy of Affine Body

$$\mathbf{x}(\mathbf{X},t) = \mathbf{J}(\mathbf{X})\mathbf{q}(t)$$

Potential Energy of Affine Body

Reference (Undeformed) Space

How does this change as a function of X?

Potential Energy of Affine Body

$$vol = \int_{\Omega} 1d\Omega$$

Reference (Undeformed) Space

We computed this when we computed the mass matrix

Equations of Motion

$$M\ddot{\mathbf{q}} = -rac{\partial V}{\partial \mathbf{q}}$$

Solve using Optimization via Newton's Method

$$E(\mathbf{q^{i+1}}) = \frac{1}{2} (\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}})^{\mathrm{T}} M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) + h^2 V(\mathbf{q^{i+1}})$$