Homework 2

ISyE 6420

Fall 2020

1. 2-D Density Tasks. If

$$f(x,y) = \begin{cases} \lambda^2 e^{-\lambda y}, & 0 \le x \le y, \ \lambda > 0 \\ 0, & \text{else} \end{cases}$$

Show that:

- (a) marginal distribution $f_X(x)$ is exponential $\mathcal{E}(\lambda)$.
- (b) marginal distribution $f_Y(y)$ is Gamma $\mathcal{G}a(2,\lambda)$.
- (c) conditional distribution f(y|x) is shifted exponential, $f(y|x) = \lambda e^{-\lambda(y-x)}, y \geq x$.
- (d) conditional distribution f(x|y) is uniform $\mathcal{U}(0,y)$.

2. Weibull Lifetimes. A lifetime X (in years) of a particular device is modeled by a Weibull distribution

$$f(x|\nu,\theta) = \nu\theta x^{\nu-1} \exp\{-\theta x^{\nu}\}, \ x \ge 0,$$

with shape parameter $\nu = 3$ and unknown rate parameter θ . The lifetimes of $X_1 = 2, X_2 = 3$, and $X_3 = 2$ are observed. Assume that an expert familiar with this type of devices suggested an exponential prior on θ with rate parameter 2.

- (a) For the prior suggested by the expert, find the posterior distribution of θ .
- (b) What are the posterior mean and variance? No need to integrate if you recognize to which family of distributions the posterior belongs.
- 3. Silver-Coated Nylon Fiber. Silver-coated nylon fiber is used in hospitals for its anti-static electricity properties, as well as for antibacterial and antimycotic effects. In the production of silver-coated nylon fibers, the extrusion process is interrupted from time to time by blockages occurring in the extrusion dyes. The time in hours between blockages, T, has an exponential $\mathcal{E}(\lambda)$ distribution, where λ is the rate parameter.
 - (a) Suppose $\lambda = 1/5$, find the probabilities that
 - (i) a run continues for at least 5 hours.
 - (ii) a run lasts less than 10 hours.
 - (iii) a run continues for at least 10 hours, given that it has lasted 5 hours.

- (b) Now suppose that the rate parameter λ is unknown, but there are three measurements of interblockage times, $T_1 = 2, T_2 = 4$, and $T_3 = 8$.
 - (i) How would classical statistician estimate λ ?
 - (ii) What is the Bayes estimator of λ if the prior is $\pi(\lambda) = \frac{1}{\sqrt{\lambda}}, \lambda > 0$.

Hint. In (ii) of (b), the prior is not a proper distribution, but the posterior is. Identify the posterior from the product of the likelihood from (i) and the prior, no need to integrate.