DEMOGRAPHIC-SPECIFIC SOFT LABELS FOR TOXIC SPEECH DETECTION

By Shane Kaszefski-Yaschuk

Introduction

- Label variation among annotators is commonly seen in many NLP tasks
- This variation is even more pronounced for subjective tasks such as hate speech detection and irony detection
- In the past, any disagreement among annotators was thought of as undesirable 'noise'
 - Researchers would instead take the majority vote among all annotators for a given text

Introduction

- Recently, the practice of aggregating labels into a singular majority vote label has come into question for several reasons:
 - Different sociodemographic groups sometimes annotate differently
 - · Any minority voices which do not agree with the majority are silenced
 - Many tasks lack a single objective 'truth', so removing disagreement removes potentially useful information
- Recent research has instead been shifting towards the creation of more 'perspectivist' models (i.e., models which leverage any inherent differences in annotator perspectives)

Research Questions

- This project seeks to answer two main questions:
 - How well do toxic speech detection models trained on only one demographic attribute (e.g., only annotations from people aged 35-44, etc.) perform? Is there any noticeable difference in performance?
 - Can soft labels be leveraged to model disagreement among annotators of the same demographic group meaningfully? Which metrics work the best for this?

LEVERAGING DISAGREEMENTS AND DEMOGRAPHICS

Modelling Inter-Group Disagreement

- Akhtar et al. (2020) trained a hate speech detection model on two separate groups of annotators
- These groups were selected in a way which maximizes intra-group agreement and minimizes inter-group agreement
- Both group-specific models outperformed the simpler majority-vote baseline model
- An ensemble of both models further improved classification performance

Modelling Intra-Group Disagreement

- Davani et al. (2022) introduced a multi-task model with annotatorspecific classification heads
 - For a given comment, each annotator's label is learned by the model
 - These labels are then aggregated into a singular label during the final prediction stage

Leveraging Annotator Demographics

- Orlikowski et al. (2023) sought to determine the impact of explicitly accounting for the sociodemographic attributes of annotators when training a toxic speech detection model
- Building off the multi-task architecture proposed by Davani et al. (2022), this work included demographic group-specific classification heads before the annotator-specific ones
 - Contrary to previous research, they found that explicitly accounting for sociodemographics in this way did NOT improve performance

SOFT LABELLING & EVALUATION

Soft Labels

- Galstyan and Cohen (2007) define *hard* and *soft* labels as such:
 - Hard labels are *binary*: either the data point is a member of a class or it isn't
 - Soft labels are *probabilistic*: given a data point and a class, a soft label gives the probability of said data point belonging to that class
- For this project, they can also be defined as such:
 - Hard labels are the majority vote among all annotators; some text either belongs to class 0 or class 1 in the binary case (but *never* both)
 - Soft labels are defined by each annotator; if three annotators give the label '0' to some text, and two give the label '1', then the soft label would take the form [0.6, 0.4]

Why Soft Labels?

- The most common evaluation metrics for classification require any reference labels to binarized
- Unfortunately, converting labels to a binary format also removes any potentially useful information regarding inter-annotator disagreement
- Soft labels, on the other hand, keep any intra-group disagreements intact
- However, Rizzi et al. (2024) note that common evaluation metrics (e.g., macro F1, accuracy, etc.) are not sufficient when examining the performance of soft labels

Evaluation Metrics

- Rizzi et al. (2024) tested the performance of several "soft evaluation" metrics for both binary and multi-class classification:
 - Cross-Entropy
 - Manhattan Distance
 - Euclidean Distance
 - Jensen-Shannon Divergence
- They identified 6 different desirable properties for these metrics to have
- They found that in the binary classification case, using Manhattan distance and Euclidean distance as evaluation metrics satisfies all 6 of these properties, while Cross-Entropy and Jensen-Shannon Divergence did not

"Fuzzy" Metrics

- Rather than adopting new evaluation metrics, Harju and Mesaros (2023) instead sought out ways to calculate precision, recall, and F1-scores without the need to binarize labels beforehand
- They proposed 'fuzzy' equivalents of these three metrics:

Precision =
$$\frac{\sum_{i} \min(\hat{y}_{i}, y_{i})}{\sum_{i} \hat{y}_{i}},$$
Recall =
$$\frac{\sum_{i} \min(\hat{y}_{i}, y_{i})}{\sum_{i} y_{i}},$$

$$F_{1} - \text{score} = 2\frac{\sum_{i} \min(\hat{y}_{i}, y_{i})}{\sum_{i} (\hat{y}_{i} + y_{i})}.$$

EXPERIMENTAL SETUP

Project

- This project leverages both soft labels to capture intra-group disagreement as well as demographic-specific groupings to (potentially) capture inter-group disagreement
- With soft labels, disagreement among annotators can be leveraged as a source of information
 - Even without explicitly modelling each annotator individually
 - Grouping together annotators based on their sociodemographic attributes increases the representation of each individual voice

Dataset

- This project uses the Kumar et al. (2021) dataset for toxic speech detection
- Contains 107,620 comments annotated by 17,280 annotators for a total of 549,058 annotations
- Each comment was rated from 0 4 based on how toxic they are
 - 0 being 'not at all toxic' and 4 being 'extremely toxic'
- Extensive information about each annotator was also collected:
 - Demographic groups (age, education level, gender, etc.)
 - Behaviours (how often they use social media, which platforms they prefer, etc.)
 - Attitudes (e.g., whether they think toxic speech online is an issue or not, political leanings, etc.)

Dataset Preprocessing

- The dataset was preprocessed before training
- The toxicity scores were first binarized:
 - Scores from 0-1 were turned into a 0 ('non-toxic')
 - Scores from 2-4 were turned into a 1 ('toxic')
 - Final class ratio: ~70% non-toxic, ~30% toxic
- Four sociodemographic attributes were selected:
 - Age
 - Gender
 - Education Level
 - Political Leaning

Train and Test Splits

- With the pre-processed dataset, specific train and test splits were generated
- 90% of the data was used for the train (and validation) split
- The remaining 10% was used for the test split
 - Any comments found in the train split were removed from the test split to ensure only unseen data is used at test time

Experimental Setup – Training Configurations

- Four different configurations were used when fine-tuning BERT:
 - Demographic-specific models with soft labels
 - Demographic-specific models with hard labels (i.e., the majority vote for that group)
 - Baseline model (no demographic splits) with soft labels
 - Baseline model (no demographic splits) with hard labels (i.e., the majority vote among *all* annotators for each comment)
- Initially, the labels were calculated from all annotators (i.e., no demographic splits)
- However, the test labels always match the label configuration under examination

Experimental Setup – Metrics and Loss

- Three evaluation metrics were selected:
 - Regular Macro-F1 (hereafter referred to as the 'hard' F1 score)
 - 'Fuzzy' Macro-F1
 - Manhattan Distance
- L1 Loss (i.e., the Manhattan distance) was selected as the loss function rather than Cross-Entropy for two main reasons:
 - Initial trial runs showed better performance for all splits
 - The Manhattan distance is also used as an evaluation metric, so the L1 loss directly optimizes for this metric

Preliminary Results v1.0

• Initial results (and the last group meeting) revealed a few issues

Baseline	Hard Macro F1	Fuzzy Macro F1	Manhattan Dist	# of Train Instances
Baseline (Soft)	0.67	0.82	22.80	24,000
Baseline (Hard)	0.43	0.76	16.71	24,000

Gender	Hard Macro F1	Fuzzy Macro F1	Manhattan	# of Train Instances
Female (Soft)	0.63	0.75	90.78	24,000
Female (Hard)	0.42	0.71	57.09	24,000
Male (Soft)	0.65	0.75	44.47	24,000
Male (Hard)	0.42	0.72	123.1	24,000
Non-Binary (Soft)	0.53	0.73	35.01	2,065
Non-Binary (Hard)	0.42	0.72	160.43	2,065
Prefer not to say (Soft)	0.54	0.73	49.44	2,244
Prefer not to say (Hard)	0.43	0.72	109.93	2,244

Current Directions

- Pairwise comparisons between different demographic groups (train split for one demographic, test split for another)
 - Baseline: entire dataset w/o splits for both train and test (soft labels only)
 - 2nd Baseline: train the entire dataset w/o splits and test on demographic-specific test sets
- Implemented the 'normalized' Manhattan distance metric
 - 1 (Sum of all Manhattan distances divided by the number of labels)

Preliminary Results v2.0

Baseline	Hard F1	Fuzzy F1	Normalized Manhattan
Baseline	0.67	0.82	0.64
Bachelor's	0.62	0.72	0.45
High School	0.62	0.70	0.39
Master's	0.59	0.65	0.30
Some College	0.65	0.72	0.44
Associate's	0.64	0.71	0.41
Less than HS	0.59	0.68	0.36
Doctorate	0.64	0.71	0.41
Professional (JD/MD)	0.58	0.67	0.33
Other	0.58	0.65	0.31
Prefer Not To Say	0.61	0.66	0.31

Future Directions

- Further examination of evaluation metrics and loss functions for soft labels
- Ensemble models
- Intersectionality