Zad 1.

Rozważmy sytuację z Example 1. Proszę sprawdzić czy KB \mid = α 2 gdzie α 2 reprezentuje [2, 2] jest bezpieczne.

W kontekście Example 1 i atrybutu a2 = [2, 2], musimy sprawdzić, czy a2 jest bezpieczne w systemie decyzyjnym. a2 musi być wystarczające do odzwierciedlenia wszystkich reguł decyzyjnych w systemie.

Analizując reguły decyzyjne, otrzymujemy:

 $\alpha 1 = [1, 2] => dec = tak$

 $\alpha 1 = [2, 2] => dec = nie$

 $\alpha 1 = [3, 1] = dec = nie$

Reguła $\alpha 1 = [2, 2]$, która ma decyzję "nie", jest pokryta przez $\alpha 2 = [2, 2]$. Jednak reguły $\alpha 1 = [1, 2]$ i $\alpha 1 = [3, 1]$ nie są objęte przez $\alpha 2$, ponieważ mają różne wartości a1, czyli $\alpha 2 = [2, 2]$ nie jest adekwatne, ponieważ nie obejmuje wszystkich reguł decyzyjnych w systemie.

Zad 2.

р	q	¬p∧q	p∨(¬p∧q)	¬(p∨(¬p∧q))	
1	- 1	0	1	0	
1	0	0	1	0	
0	0 1		1 (
0	0	0	0	1	
		р	q	¬p∧¬q.	
		1	1	0	
		1	0	0	
(0	1	0	
		0	0	1	

Wartość Logiczna obu wartości jest taka sama więc oznacza to że podane zdania są logicznie równoważne.

Zad 3.

(i) Aby sprawdzić, czy zdanie (p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q) jest spełnialne, musimy znaleźć wartości p, q, dla których zdanie jest prawdziwe.

Załóżmy, że p = prawda i q = prawda. Podstawiając te wartości do zdania, otrzymujemy:

 $(prawda \Rightarrow prawda) \Rightarrow (falsz \Rightarrow falsz)$

Zdanie jest spełnialne, ponieważ możemy przyjąć p = prawda, q = prawda, wtedy zdanie jest możliwe do spełnienia.

(ii)
$$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$$
:

Zdanie jest zawsze prawdziwe ponieważ implikacja ($p \Rightarrow q$) jest prawdziwa, gdy p jest fałszywe lub q jest prawdziwe.

Zad 4

р	q	r	$p \Rightarrow q$	$p \wedge r$	$((p \wedge r) \Rightarrow q)$	$(p\Rightarrow q) \mid = ((p \wedge r) \Rightarrow q)$
1	1	1	1	1	1	1
1	1	0	1	0	1	1
1	0	1	0	1	0	1
1	0	0	0	0	1	0
0	1	1	1	0	1	1
0	1	0	1	0	1	1
0	0	1	1	0	1	1
0	0	0	1	0	1	1

z tabeli wynika że w jednym miejscu nie ma zgodności między lewą a prawą stroną więc nie jest spełniona dla wszystkich warunków.

Zad 5

Używając tabeli prawdziwości znajdź CNF i DNF dla zdań w zadaniu 3.

CNF (Forma normalna koniunkcyjna)

DNF (Forma normalna dysjunkcyjna)

(i)
$$(p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q)$$
:

$$CNF = (p \lor \neg q) \land (q \lor \neg p)$$

DNF =
$$(\neg p \lor q) \land (p \lor \neg q)$$

(ii)
$$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$$
:

$$CNF = (\neg p \lor q \lor r)$$

DNF =
$$(p \land \neg q) \lor (\neg p \lor q) \lor (\neg p \lor r)$$