1	13. A method for encoding a
2	sequence of video image frames comprising
3	the steps of:
4	dividing a source sequence
5	into a group of pictures, each group of
6	pictures comprising an I-frame followed by
7	a plurality of P-frames and B-frames,
8	dividing each I-frame, P-frame
9	and B-frame into a plurality of spatially non-
10	overlapping blocks of pixel data;
11	encoding a block in the I-
12	frame independently from any other frames
13	in the group of pictures;
14	predictively encoding a block
15	in a P-frame, based on the I-frame
16	positioned before the P-frame or a previous
17	P-frame positioned before the P-frame;
18	bi-directionally predictively
19	encoding a block in a B-frame, based on the
20	I-frame positioned before the B-frame or the
21	previous P-frame and the P-frame positioned
22	after the B-frame;
23	deriving a scaled forward
24	motion vector and a scaled backward motion
25	vector for the block in the B-frame by
26	scaling a motion vector of the block AP_\\FS_MAIN\CLIDATA\CLIENT\MTS\880US\\\\REISSUECLAIMS.DOC

27	predictively encoded in the P-frame
28	positioned after the B-frame;
29	obtaining a final forward
30	motion vector for the block in the B-frame
31	by adding a delta motion vector to the scaled
32	forward motion vector; and
33	obtaining a final backward
34	motion vector for the block in the B-frame
35	by adding the delta motion vector to the
36	scaled backward motion vector.
1	14. A method for encoding a
2	sequence of video image frames according
3	to claim 13, wherein the deriving step
4	includes
5	scaling of the forward and
6	backward motion vectors is based on a
7	temporal reference of the P-frame and B-
8	frame.
1	15. A method for encoding a
2	sequence of video image frames according
3	to claim 13, further comprising the step of
4	forming an encoded output, wherein the
5	encoded output is a bitstream comprising:
6	temporal reference
7	information for the B-frame and the P-
8	frame;

9	motion vector information for
10	the block in the P-frame;
11	quantized residual error
12	information for the block in the P-frame;
13	delta motion vector
14	information for the block in the B-frame,
15	<u>and</u>
16	quantized residual error
17	information for the block in the B-frame.
1	16. A method for encoding a
2	sequence of video image frames according
3	to claim 15, wherein
4	the output bitstream contains
5	additional information indicating a presence
6	of at least one of the delta motion vector
7	information for the block in the B-frame;
8	and the quantized residual error information
9	for the block in the B-frame.