Planar Convex Hulls (II)

Compute the Convex Hull

Given a set P of points in 2D, describe an algorithm to compute their convex hull

Input: array P of points (in 2D)

Output: array/list of points on the CH (in boundary order)

Algorithms for computing the convex hull

- Last time
 - Brute force
 - Gift wrapping
- Today
 - Graham scan
 - · Quickhull
- Next time
 - Andrew's monotone chain
 - Incremental hull
 - Divide-and -conquer hull
 - lower bound

Convex hull properties

- CH consists of extreme points and edges
 - point is extreme <==> it is on the CH
 - (p_i, p_j) form an edge on the CH <==> edge (p_i, p_j) is extreme
 - point p is interior <==> p not on the CH
- Walking counter-clockwise on the boundary of the CH makes only left turns
- Consider a point p inside the CH. Then the points on the boundary of the CH are encountered in sorted radial order around p

Convexity

A polygon P is **convex** if for any p, q in P, the segment pq lies entirely in P.

Walk ccw along the boundary of a convex polygon

The radial angle of p with-respect-to q

For any point p inside, the points on the boundary are in radial order around p

Extreme points

• A point p is called **extreme** if there exists a line I through p, such that all the other points of P are on the same side of I (and not on I)

A point is on the CH <==> it is extreme

All extreme points are on the CH

• An edge (p_i, p_j) is **extreme** if all the other points of P are on one side of it (or on)

• An edge (p_i, p_j) is **extreme** if all the other points of P are on one side of it (or on)

• An edge (p_i, p_j) is **extreme** if all the other points of P are on one side of it (or on)

An edge (p_i, p_j) is extreme if all the other points of P are on one side of it (or on)

An edge is on the CH <==> it is extreme

All edges on the CH are extreme

All extreme edges are on the CH

Interior points

p interior <==> p not on the CH

End review

Algorithms

- Brute force: O(n³)
- Gift wrapping: O(kn)
 - output-size sensitive: O(n) best case, O(n²) worst case
 - ◆ by Chand and Kapur [1970]. Extends to 3D and to arbitrary dimensions; for many years was the primary algorithm for higher dimensions
- Next
 - Graham scan
 - Quickhull

Algorithm: Graham scan

- In late 60s an application at Bell Labs required the hull of 10,000 points, for which a quadratic algorithm was too slow
- Graham developed an algorithm which runs in $O(n \lg n)$
 - It runs in one sort plus a linear pass!!
 - Simple, intuitive, elegant and practical

Ideas

Only left turns!

Walk ccw along the boundary of a convex polygon

For any point p inside or on the CH, the points on the boundary are in radial order around p

```
//return true if c is (strictly) left of ab, false otherwise
bool left(point2d a, b, c) {
   return two_signed_area(a, b, c) > 0;
}
```

• Idea: start from a point p on the hull (e.g. lowest point)

Idea: start from a point p on the hull (e.g. lowest point)
 order all points by their ccw angle wrt p

• Idea: traverse the points in this order a, b, c, d, e, f, g, ...

• Idea: traverse the points in this order a, b, c, d, e, f, g, ..., making it convex

Next point b: what do we do with it?

is b left of pa?

Next point b: what do we do with it?

Is b + (a, p) convex? YES!

is c left of ab?

is d left of bc?

Is d + S convex?

NO!

Next point d:

is d left of bc?

In general

b = top(S), a = second(S)

Next point q: • if q is left of a, b: push(q, S)

In general

b = top(S), a = second(S)

Next point q:

- while q is right of a, b:
 - pop (S)
 - b = top(S), a = second(S)
- push(q, S)

In general

A vertex can trigger more than one pop

Graham scan

- Find lowest point p_0
- Sort all other points ccw around p₀

•

call them p_1 , p_2 , p_3 , ... p_{n-1} in this order

- Initialize stack $S = (p_2, p_1)$
- for i = 3 to n 1 do
 - if p_i is left of (second(S),first(S)):
 - push p_i on S
 - · else
 - while p_i is right of (second(S), first(S))
 - pop S
 - push p_i on S

note that we are ignoring some details, such as collinear points

Graham scan

- Find lowest point p_0
- Sort all other points ccw around p₀

◆

call them p_1 , p_2 , p_3 , ... p_{n-1} in this order

- Initialize stack $S = (p_2, p_1)$
- for i = 3 to n 1 do
 - if p_i is left of (second(S),first(S)):
 - · push p_i on S
 - · else
 - while p_i is right of (second(S), first(S))
 - pop S
 - push p_i on S

ANALYSIS

Graham-scan runs in $O(n \lg n) + O(n)$

One point can trigger many pops. But we can only pop points that were previously pushed. Every point is pushed once and popped at most once.

Project 2

- You'll implement this!
- Along the way you'll get to figure out what situations can cause problems and how to handle them

- point a comes before point b in radial order around p if a is right of pb
- rightOf() is to radial sort what < is to sort

And final note...

Algorithm: Quickhull

(late 1970s)

Convex polygons: Properties

Quickhull (late 1970s)

- Similar to Quicksort
- Idea: start with 2 extreme points

• $CH = CH \text{ of } P_1 \text{ (upper hull)} + CH \text{ of } P_2 \text{ (lower hull)}$

• $CH = CH \text{ of } P_1 \text{ (upper hull)} + CH \text{ of } P_2 \text{ (lower hull)}$

• $CH = CH \text{ of } P_1 \text{ (upper hull)} + CH \text{ of } P_2 \text{ (lower hull)}$

• We'll find the $CH(P_1)$ and $CH(P_2)$ separately

• First let's focus on P1

• For all points p in P1: compute dist(p, ab)

assume no collinear points (for now)

- For all points p in P1: compute dist(p, ab)
- Find the point c with largest distance (i.e. furthest away from ab)

Claim: Point c must be an extreme point and thus on the CH of P1. (Why?)

Discard all points inside triangle abc

• Recurse on the points left of ac and right of bc

• Compute CH of P₂ similarly

· Quickhull (P)

- find a, b
- partition P into P1, P2
- return a + Quickhull(a,b, P1) + b + Quickhull(b,a,P2)

Quickhull(a, b, P)

//P is a set of points all on the left of ab. return the upper hull of P

- if P empty => return {}
- for each point p in P: compute its distance to ab
- let c = point with max distance
- let P1 = points to the left of ac
- let P2 = points to the left of cb
- return Quickhull(a, c, P1) + c + Quickhull(c, b, P2)

Classwork

- Simulate Quickhull on an arbitrary small set of points (assume no collinearities)
- Analysis:
 - Write a recurrence relation for its running time
 - What/when is the worst case running time?
 - What/when is the best case running time?

• Challenge: Argue that Quickhull's average complexity is O(n) on points that are uniformly distributed

Summary

- Brute force: O(n³)
- Gift wrapping: O(kn)
 - output-size sensitive: O(n) best case, O(n²) worst case
 - ♦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary dimensions; for many years was the primary algorithm for higher dimensions
- Graham scan: O (n lg n), but
 - not output-sensitive
 - does not transfer to 3d
- Quickhull: O(n²)
- Next time
 - incremental, divide-and-conquer
 - $\Omega(n \lg n)$ lower bound

Algorithms

- Brute force: O(n³)
- Gift wrapping: O(kn)
 - output-size sensitive: O(n) best case, O(n²) worst case
 - ♦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary dimensions; for many years was the primary algorithm for higher dimensions
- Graham scan: $O(n \lg n)$, but
 - not output-sensitive
 - does not transfer to 3d
- Quickhull: $O(n^2)$
- Next time
 - · incremental, divide-and-conquer
 - $\Omega(n \lg n)$ lower bound