অনুশীলনী - ৮.৩

অনুশীলনীর সমাধান

$oldsymbol{\Delta}ABC$ এ $oldsymbol{\angle}B$ ও $oldsymbol{\angle}C$ এর সমদ্বিখণ্ডকদ্বয় P বিন্দুতে এবং বহির্দ্বিখণ্ডকদ্বয় Q বিন্দুতে মিলিত হলে, প্রমাণ কর যে, B,P,C,Q বিন্দু চারটি সমবৃত্ত।

সমাধানঃ

বিশেষ নির্বচনঃ $\triangle ABC$ এ $\angle B$ ও $\angle C$ এর সমদ্বিখণ্ডকদ্বয় P বিন্দুতে মিলিত হয়েছে। AB কে E পর্যন্ত এবং AC কে F পর্যন্ত বর্ধিত করায় যথাক্রমে বহিঃস্থ $\angle CBE$ এবং বহিঃস্থ $\angle BCF$ উৎপন্ন হয়। $\angle B$ ও $\angle C$ এর বহির্দ্বিখণ্ডকদ্বয় Q বিন্দুতে মিলিত হয়েছে। প্রমাণ করতে হবে যে, B, P, C, Q বিন্দু চারটি সমবৃত্ত। প্রমাণঃ

ধাপ ১. $\therefore \angle PBC = \frac{1}{2} \angle ABC \ [\because PB, \angle ABC \ এর সমদ্বিখণ্ডক]$ $\therefore \angle QBC = \frac{1}{2} \angle CBE \ [\because QB, \angle CBE \ এর সমদ্বিখণ্ডক]$

ধাপ ২. এখন $\angle PBC + \angle QBC = \frac{1}{2}\left(\angle ABC + \angle CBE\right)$ বা, $\angle PBQ = \frac{1}{2}\left(1$ সরল কোণ) $\left[\because \angle ABC \lor \angle CBE\right]$ একই সরলরেখায় অবস্থিত সন্নিহিত কোণ]

> বা, $\angle PBQ = \frac{1}{2} (2$ সমকোণ) $\therefore \angle PBQ = 1$ সমকোণ

ধাপ ৩. অনুরূপে, $\angle PCB + \angle BCQ = \angle PCQ =$ এক সমকোণ $\therefore BPCQ$ চতুর্ভুজের $\angle PBQ + \angle PCQ =$ দুই সমকোণ [ধাপ-২ ও ধাপ-৩ থেকে]

এবং $\angle PBO$ ও $\angle PCO$ একই চতুর্ভুজের দুই বিপরীত কোণ

∴ BPCQ বৃত্তস্থ চতুর্ভুজ।

[: বৃত্তস্থ চতুর্ভুজের বিপরীত কোণদ্বয়ের সমষ্টি দুই সমকোণ]

∴ B, P, C, Q বিন্দু চারটি সমবৃত্ত। **(প্রমাণিত)**

সমাধান (দ্বিতীয় পদ্ধতি)

বিশেষ নির্বচনঃ মনে করি, $\triangle ABC$ এর $\angle B$ ও $\angle C$ এর সমদ্বিখণ্ডকদ্বয় P বিন্দুতে এবং বহির্দ্বিখণ্ডকদ্বয় Q বিন্দুতে মিলিত হয়েছে। প্রমাণ করতে হবে যে, B,P,C,Q বিন্দু চারটি সমবৃত্ত। প্রমাণঃ

ধাপ ১. BPCQ চতুর্ভুজে

$$\angle PBQ + \angle PCQ$$

$$= \angle PBC + \angle CBQ + \angle PCB + \angle BCQ$$

$$= \frac{1}{2} \angle B + \frac{1}{2} \angle CBE + \frac{1}{2} \angle C + \frac{1}{2} \angle BCF$$

$$= \frac{1}{2} \angle B + \frac{1}{2} (\angle A + \angle C) + \frac{1}{2} \angle C + \frac{1}{2} (\angle A + \angle B)$$

$$[\because \text{ অভুজের বহিঃছ কোণ, অভঃছ বিপরীত কোণদ্বরের সমষ্টির সমান}]$$

$$= \frac{1}{2} \angle B + \frac{1}{2} \angle A + \frac{1}{2} \angle C + \frac{1}{2} \angle C + \frac{1}{2} \angle A + \frac{1}{2} \angle B$$

$$= \angle A + \angle B + \angle C$$

ধাপ ২. কিন্তু $\triangle ABC$ এ $\angle A+\angle B+\angle C=$ দুই সমকোণ $[\because \text{ Glosions for onthis half } \ rac{PBQ}+\angle PCQ=$ দুই সমকোণ $\angle PBQ$ ও $\angle PCQ$ কোণদ্বয় একই চতুর্ভুজের দুইটি বিপরীত কোণ

∠PBQ ও ∠PCQ কোণধা একহ চতুওুজের পুহাত বিপরাত কোণ
আমরা জানি, বৃত্তস্থ চতুওুজের বিপরীত কোণধায়ের সমষ্টি দুই সমকোণ।
 ∴ B, P, C, Q বিন্দু চারটি সমবৃত্ত। (প্রমাণিত)

 $igtheref{ABCD}$ একটি বৃত্ত। $\angle CAB$ এবং $\angle CBA$ এর সমদ্বিখণ্ডক দুইটি P বিন্দুতে এবং $\angle DBA$ ও $\angle DAB$ কোণদ্বয়ের সমদ্বিখণ্ডক দুইটি Q বিন্দুতে মিলিত হলে, প্রমাণ কর যে, A,Q,P,B বিন্দু চারটি সমবৃত্ত।

সমাধানঃ

বিশেষ নির্বচনঃ দেওয়া আছে, ABCD একটি বৃত্ত। $\angle CAB$ এবং $\angle CBA$ এর সমদ্বিখণ্ডক দুইটি P বিন্দুতে এবং $\angle DBA$ ও $\angle DAB$ কোণদ্বয়ের সমদ্বিখণ্ডক দুইটি Q বিন্দুতে মিলিত হলে, প্রমাণ করতে হবে যে, A, Q, P, B বিন্দু চারটি সমবৃত্ত।

প্রমাণঃ

ধাপ ১. $\triangle ABC$ -এ $\angle BAC + \angle ABC + \angle ACB = 180^\circ$ [\because এভুজের তিনকোণের সমষ্টি 180°]

ধাপ ২. $\triangle PAB$ -এ $\angle APB + \angle PAB + \angle PBA = 180^\circ$ বা, $\angle P + \frac{1}{2} \angle A + \frac{1}{2} \angle B = 180^\circ$ $[\because \angle PAB = \frac{1}{2} \angle A \text{ এবং } \angle PBA = \frac{1}{2} \angle B]$ বা, $\angle P + \frac{1}{2} \angle A + \frac{1}{2} \angle B + \frac{1}{2} \angle C = 180^\circ + \frac{1}{2} \angle C$ [উভয়পক্ষে $\frac{1}{2} \angle C$ যোগ করে] বা, $\angle P + \frac{1}{2} (\angle A + \angle B + \angle C) = 180^\circ + \frac{1}{2} \angle C$ বা, $\angle P + \frac{1}{2} \times 180^\circ = 180^\circ + \frac{1}{2} \angle C$ [ধাপ-১ হতে] বা, $\angle P + 90^\circ = 180^\circ + \frac{1}{2} \angle C$ বা, $\angle P = 180^\circ - 90^\circ + \frac{1}{2} \angle C = 90^\circ + \frac{1}{2} \angle C$... (i)

ধাপ ৩. এর্পে ΔABD নিয়ে প্রমাণ করা যায় যে, $\angle Q = 90^\circ + \frac{1}{2} \angle ADB$

বা,
$$\angle Q = 90^{\circ} + \frac{1}{2} \angle C \dots \dots (ii)$$

 $[\because \text{ একই him} AB \text{ এর উপর অবস্থিত বলে বহিঃস্থ } \angle C = বহিঃস্থ \angle D]$

 $\angle P = \angle Q$ $[\therefore$ সুতরাং (i) ও (ii) হতে] এখন, AB রেখাংশের প্রান্তবিন্দু A ও B কে দণ্ডায়মান এবং একই পার্মে অবস্থিত P ও O বিন্দুতে উৎপন্ন $\angle APB = \angle AOB$

্রিকই চাপের উপর দপ্তরমান কোণগুলো পরস্পর সমান ইলে তারা বৃত্তস্থ্য অর্থাৎ $\angle P = \angle Q$ হওয়ায় $A,\,Q,\,P,\,B$ বিন্দু চারটি সমবৃত্ত।

(প্রমাণিত)

কা বি.দ্র: (i) আমরা জানি, বৃত্তের একই চাপের উপর দণ্ডায়মান বৃত্তস্থ কোণগুলো পরস্পর সমান। এখানে বৃত্তের AB চাপের ওপর দণ্ডায়মান বৃত্তস্থ $\angle AQB =$ বৃত্তস্থ $\angle APB$

(ii) A, Q, P, B বিন্দু চারটি সমবৃত্ত হলে মূল চিত্রটির নতুন রূপটি হবে।

৩ ০ কেন্দ্র বিশিষ্ট বৃত্তের AB ও CD জ্যা দুইটি বৃত্তের অভ্যন্তরে অবস্থিত কোনো বিন্দুতে সমকোণে মিলিত হয়েছে। প্রমাণ কর যে, $\angle AOD + \angle BOC =$ দুই সমকোণ।

সমাধানঃ

বিশেষ নির্বচন: মনে করি, O কেন্দ্র বিশিষ্ট বৃত্তের AB ও CD জ্যা দুইটি বৃত্তের অভ্যন্তরে অবস্থিত E বিন্দুতে সমকোণে মিলিত হয়েছে। A, O এবং D, O যোগ করায় $\angle AOD$ উৎপন্ন হয়। আবার, O, C এবং O, B যোগ করায় $\angle BOC$ উৎপন্ন হয়।

প্রমাণ করতে হবে যে, $\angle AOD + \angle BOC =$ দুই সমকোণ।

অঙ্কন: B, D যোগ করি।

প্রমাণঃ

ধাপ ১. একই চাপ AD-এর উপর দণ্ডায়মান কেন্দ্রস্থ $\angle AOD$ এবং বৃত্তস্থ $\angle ABD$ $\angle AOD=2$ $\angle ABD$ \ldots \ldots (i) $[\because$ বৃত্তের একই চাপের উপর

দণ্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দ্বিগুণ]

আবার, BC চাপের ক্ষেত্র $\angle BOC = 2 \angle BDC \dots$ (ii)

ধাপ ২. (i) নং + (ii) নং যোগ করে পাই,

$$\angle AOD + \angle BOC = 2 \angle ABD + 2 \angle BDC$$

বা,
$$\angle AOD + \angle BOC = 2 (\angle ABD + \angle BDC)$$

$$[\because \angle ABD = \angle EBD$$
 এবং $\angle BDC = \angle EDB]$

ধাপ ৩. এখন, ΔEBD -এর

$$\angle BED = 1$$
 সমকোণ $[\because AB \perp CD]$

$$\therefore \angle EBD + \angle EDB = 1$$
 সমকোণ (iv)

ধাপ 8. $\angle AOD + \angle BOC = 2 \times 1$ সমকোণ

[(iv) নং এর মান (iii) নং-এ বসিয়ে]

সমাধান (দ্বিতীয় পদ্ধতি)

বিশেষ নির্বচন: মনে করি, O কেন্দ্র বিশিষ্ট বৃত্তের AB ও CD জ্যা দুইটি বৃত্তের অভ্যন্তরে অবস্থিত E বিন্দুতে সমকোণে মিলিত হয়েছে। A, O এবং D, O যোগ করায় $\angle AOD$ উৎপন্ন হয়। আবার, O, C এবং O, B যোগ করায় $\angle BOC$ উৎপন্ন হয়। প্রমাণ করতে হবে যে, $\angle AOD + \angle BOC =$ দুই সমকোণ।

প্রমাণঃ

ধাপ ১.
$$\triangle EBC$$
-এ $\angle BEC = 90^{\circ} \ [\because CD \perp AB]$

$$\therefore \angle ECB + \angle EBC = 90^{\circ}$$

[: সমকোণী ত্রিভুজে সৃক্ষকোণদ্বয় পূরক]

ধাপ ২. AC চাপের ওপর দণ্ডায়মান কেন্দ্রস্থ $\angle AOC$ এবং বৃত্তস্থ $\angle ABC$

$$\therefore \angle AOC = 2\angle ABC$$

$$= 2\angle EBC \dots \dots \dots (i)$$

অনুরূপভাবে, BD চাপের ওপর দপ্তায়মান কেন্দ্রস্থ $\angle BOD$ এবং বৃত্তস্থ $\angle DCB$

$$\therefore \angle BOD = 2\angle DCB$$

$$=2\angle ECB$$
 (ii)

ধাপ ৩. (i) ও (ii) নং যোগ করে পাই,

$$\angle AOC + \angle BOD = 2(\angle EBC + \angle ECB)$$

$$\therefore \angle AOC + \angle BOD = 180^{\circ} \dots \dots (iii)$$

ধাপ ৪. ০ বিন্দুতে উৎপন্ন কোণ

$$\angle AOC + \angle AOD + \angle BOD + \angle BOC = 360^{\circ}$$

বা,
$$\angle AOD + \angle BOC + (\angle AOC + \angle BOD) = 360^\circ$$

বা,
$$\angle AOD + \angle BOC + 180^{\circ} = 360^{\circ}$$

[(iii) নং হতে মান বসিয়ে]

বা,
$$\angle AOD + \angle BOC = 360^{\circ} - 180^{\circ}$$

$$\therefore \angle AOD + \angle BOC = 180^{\circ}$$
 (প্রমাণিত)

$\fbox{8}$ ABCD চতুর্ভুজের বিপরীত কোণদ্বয় পরস্পর সম্পূরক। AC রেখা যদি $\angle BAD$ এর সমদ্বিখন্ডক হয়, তবে প্রমাণ কর যে, BC=CD.

সমাধান:

দেওয়া আছে, ABCD চতুর্ভুজের বিপরীত কোণদ্বয় পরস্পর সম্পূরক। ACরেখা, $\angle BAD$ -এর সমদ্বিখণ্ডক। প্রমাণ করতে হবে যে, BC = CD। **অঙ্কন:** B, D যোগ করি।

প্রমাণঃ

ধাপ ১. ABCD চতুর্ভুজের বিপরীত কোণদ্বয় পরস্পর সম্পূরক।

∴ A, B, C, D বিন্দু চারটি সমবৃত্ত [∵ চতুর্ভুজের দুই বিপরীত কোণ সম্পূরক হলে ইহার শীর্ষবিন্দু চারটি সমবৃত্ত]

AC, ∠BAD এর সমদ্বিখণ্ডক [দেওয়া আছে] $\therefore \angle BAC = \angle DAC \dots \dots \dots (i)$

ধাপ ২. এখন, একই চাপ CD-এর উপর বৃত্তস্থ $\angle DAC$ এবং বৃত্তস্থ $\angle DBC$

∴ ∠DAC = ∠DBC ... (ii) [∵ বৃত্তের একই চাপের উপর দণ্ডায়মান বৃত্তস্থ কোণগুলো পরস্পর সমান]

ধাপ ৩. আবার, একই চাপ BC-এর উপর বৃত্তস্থ $\angle BAC$ এবং বৃত্তস্থ $\angle BDC$

 $\therefore \angle BAC = \angle BDC$

বা, $\angle DAC = \angle BDC$ [(i) নং থেকে]

বা, $\angle DBC = \angle BDC$ [(ii) নং থেকে]

অর্থাৎ $\triangle BCD$ -এর, $\angle BDC = \angle DBC$

∴ BC = CD (প্রমাণিত)

সমাধান (দ্বিতীয় পদ্ধতি)

বিশেষ নির্বচন: দেওয়া আছে, ABCD চতুর্ভুজের বিপরীত কোণদ্বয় পরস্পর সম্পূরক। AC রেখা, $\angle BAD$ -এর সমদ্বিখণ্ডক। প্রমাণ করতে হবে যে, BC=CD. **অঙ্কন:** B, D যোগ করি।

প্রমাণঃ

ধাপ ১. ABCD চতুর্ভুজের বিপরীত কোণদ্বয় পরস্পর সম্পূরক।

∴ A, B, C, D বিন্দু চারটি সমবৃত্ত [∵ বৃত্তস্থ চতুর্ভুজের দুই বিপরীত কোণ সম্পূরক হলে ইহার শীর্ষবিন্দু চারটি সমবৃত্ত]

ধাপ ২. AC, $\angle BAD$ এর সমদ্বিখণ্ডক [দেওয়া আছে]

 $\therefore \angle BAC = \angle DAC$

অর্থাৎ BC চাপের উপর দণ্ডয়মান বৃত্তস্থ কোণ =CD চাপের উপর দণ্ডয়মান বৃত্তস্থ কোণ

[∵ সমান সমান বৃত্তস্থ কোণ বৃত্তের সমান চাপ উৎপুন্ন করে]

 \therefore চাপ BC = চাপ CD

 $\therefore BC$ জ্যা = CD জ্যা

[∵ বৃত্তের সমান সমান চাপ সমান সমান জ্যা উৎপন্ন করে]

 $\therefore ABCD$ চতুর্ভুজের BC বাহু = CD বাহু

অৰ্থাৎ BC = CD (প্ৰমাণিত)

📣 লক্ষণীয়ঃ কোনো জ্যা বা দুইটি বিন্দু দ্বারা বৃত্তের খণ্ডিত চাপের ছোট অংশকে উপচাপ এবং বড় অংশকে অধিচাপ বলা হয়।

$\bigcirc O$ কেন্দ্র বিশিষ্ট বৃত্তের ব্যাসার্ধ 2.5 সে.মি., AB = 3 সে.মি. এবং BD, ∠ADC এর সমদ্বিখণ্ডক।

- ক. AD দৈর্ঘ্য নির্ণয় কর।
- খ. প্রমাণ কর যে, ∠ADC + ∠ABC = 180°।
- গ. প্রমাণ কর যে, AB = BC।

সমাধান:

এখানে, O কেন্দ্রবিশিষ্ট বৃত্তের ব্যাসার্ধ 2.5 সে.মি.

> AB = 3 সে.মি. এবং BD, ∠ADC এর সমদ্বিখণ্ডক চিত্রানুসারে,

বৃত্তের ব্যাস, $BD = 2 \times$ ব্যাসার্ধ $= (2 \times 2.5)$ সে.মি. = 5 সে.মি.

BD ব্যাস হওয়ায় $\angle BAD$ অর্ধবৃত্তস্থ কোণ

∴ $\angle BAD = 90^{\circ}$ অর্থাৎ $\triangle BAD$ সমকোণী । এখন, $\triangle BAD$ হতে পাই, $BD^2 = AB^2 + AD^2$

বা,
$$5^2 = 3^2 + AD^2$$

বা,
$$AD^2 = 25 - 9$$

বা,
$$AD = \sqrt{16} = 4$$

∴ AD এর দৈর্ঘ্য = 4 সে.মি.

থ

প্রমাণ করতে হবে যে, $\angle ADC + \angle ABC = 180^\circ$

অঙ্কন: O, C যোগ করি।

প্রমাণ:

ধাপ ১. ABC চাপের ওপর দণ্ডায়মান কেন্দ্রস্থ $\angle AOC$ এবং বৃত্তস্থ $\angle ADC$

 \therefore ∠AOC = 2∠ADC [\because বৃত্তের একই চাপের উপর

দণ্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিণ্ডণ]

ধাপ ২. ADC চাপের ওপর দণ্ডায়মান কেন্দ্রস্থ প্রবৃদ্ধ $\angle AOC$ এবং বৃত্তস্থ $\angle ABC$

∴ প্রবৃদ্ধ ∠AOC = 2∠ABC [একই কারণ]

ধাপ ৩.
$$\angle AOC$$
 + প্রবৃদ্ধ $\angle AOC$ = $2\angle ADC$ + $2\angle ABC$ [ধাপ-১ ও ধাপ-২ হতে] বা, 360° = $2(\angle ADC$ + $\angle ABC$)

$$[\because \angle AOC +$$
প্রবৃদ্ধ $\angle AOC = 360^{\circ}]$

বা,
$$\angle ADC + \angle ABC = \frac{360^{\circ}}{2}$$

 $\therefore \angle ADC + \angle ABC = 180^{\circ}$ (প্রমাণিত)

প্রমাণ করতে হবে যে, AB = BC

প্রমাণঃ

ধাপ ১. AB চাপের ওপর দণ্ডায়মান কেন্দ্রস্থ $\angle AOB$ এবং বৃত্তস্থ $\angle ADO$

∴ ∠AOB = 2∠ADO [∵ বৃত্তের একই চাপের উপর দগ্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিগুণ]

BC চাপের ওপর দণ্ডায়মান কেন্দ্রস্থ $\angle BOC$ এবং বৃত্তস্থ $\angle CDO$

 $\therefore \angle BOC = 2\angle CDO$

ধাপ ২. এখন, $\angle ADO = \angle CDO$ [$\because BD$, $\angle ADC$ এর সমদ্বিখণ্ডক] বা, $2\angle ADO = 2\angle CDO$

বা, $\angle AOB = \angle BOC$

ধাপ ৩. ΔOAB ও ΔOAC এর মধ্যে

OA = OC [:: একই বৃত্তের ব্যাসার্ধ]

OB = OB [সাধারণ বাহু]

অন্তর্ভুক্ত $\angle AOB$ = অন্তর্ভুক্ত $\angle BOC$ [$\because BD, \angle ADC$]

 $\therefore \Delta OAB \cong \Delta OAC$ [বাহু-কোণ-বাহু উপপাদ্য]

 $\therefore AB = BC$ (প্রমাণিত)

🕒 সমান সমান ভূমির ওপর অবস্থিত যেকোনো দুইটি ত্রিভুজের শিরঃকোণছয় সম্পূরক হলে, প্রমাণ কর যে, এদের পরিবৃত্ত্বয় সমান হবে।

মনে করি, $\triangle ABC$ ও $\triangle DEF$ ত্রিভূজদ্বয় BC=EF সমান সমান ভূমির উপর অবস্থিত এবং শিরকোণদ্বয়ে সমষ্টি 180° অর্থাৎ $\angle A+\angle D=180^\circ$ । প্রমাণ করতে হবে যে, ত্রিভূজদ্বয়ের পরিবৃত্তদ্বয় সমান।

অঙ্কন: P ও Q কেন্দ্রবিশিষ্ট ত্রিভুজদ্বয়ের পরিবৃত্ত যথাক্রমে ABMC ও DENF অঙ্কন করি।

প্রমাণঃ

ধাপ ১. BMC চাপের উপর অবস্থিত প্রবৃদ্ধ $\angle BPC$ এবং বৃত্তস্থ $\angle BAC$ \therefore প্রবৃদ্ধ $\angle BPC=2\angle BAC[\because$ বৃত্তের একই চাপের দণ্ডায়মান

্ কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিণ্ডণ]

ধাপ ২. ENF চাপের উপর অবস্থিত কেন্দ্রস্থ $\angle BQF$ এবং বৃত্তস্থ $\angle EDF$ $\therefore \angle EQF = 2\angle EDF$

ধাপ ৩. প্রবৃদ্ধ $\angle BPC+\angle EQF=2(\angle BAC+\angle EDF)$ $=2(\angle A+\angle D)=2\times 180^\circ$

∴ প্রবৃদ্ধ ∠BPC + ∠EQF = 360° (i)

আবার, প্রবৃদ্ধ ∠BPC + ∠BPC = 360° (ii)

[∵ P বিন্দুতে উৎপন্ন কোণ 360°]

(i) নং ও (ii) নং হতে পাই, $\angle BPC = \angle EQF$

BAC চাপের কেন্দ্রস্থ কোণ = ENF চাপের কেন্দ্রস্থ কোণ

∴ চাপ BAC = চাপ ENF (iii)

আবার, প্রবৃদ্ধ ∠*EQF* + ∠*EQF* = 360° (iv)

[∵ Q বিন্দুতে উৎপন্ন কোণ 360°]

(i) নং (iv) হতে পাই, প্রবৃদ্ধ $\angle BPC + \angle EQF =$ প্রবৃদ্ধ $\angle EQF + \angle EQF$

 \therefore প্রবৃদ্ধ $\angle BPC$ = প্রবৃদ্ধ $\angle EQF$

অর্থাৎ BMC চাপের কেন্দ্রস্থ কোণ = EDF চাপের কেন্দ্রস্থ কোণ

∴ black BMC = black EDF ... (v)

(iii) নং ও (v) নং যোগ করে পাই,

 \therefore চাপ BAC + চাপ BMC = চাপ ENF + চাপ EDF

∴ $\triangle ABC$ এর পরিবৃত্ত = $\triangle DEF$ এর পরিবৃত্ত (প্রমাণিত)

সমাধান (দ্বিতীয় পদ্ধতি)

সাধারণ নির্বচনঃ সমান সমান ভূমির ওপর অবস্থিত যেকোনো দুইটি গ্রিভুজের শিরঃকোণদ্বয় সম্পূরক হলে, প্রমাণ করতে হবে যে, এদের পরিবৃত্তদ্বয় সমান হবে।

ৰিশেষ নিৰ্বচনঃ AB=CD সমান ভূমিদ্বয়ের ওপর অবস্থিত ΔAXB ও ΔCYD ত্রিভুজ দুইটির শিরকোণদ্বয় যথাক্রমে $\angle X$ ও $\angle Y$ এবং $\angle X+\angle Y=180^\circ$ । প্রমাণ করতে হবে যে, এদের পরিবৃত্তদ্বয় সমান।

<u>অঙ্কন</u>: ΔAXB এর পরিবৃত্ত AXBZ অঙ্কন করি।

প্রমাণ: ΔCDY -কে AB বাহুর উপর এমনভাবে স্থাপন করি যেন C বিন্দু A বিন্দুতে D, বিন্দু B বিন্দুতে এবং AB রেখার যে পাশে X বিন্দু আছে তার বিপরীতে Y বিন্দু পড়ে।

ধাপ ১. AXBY চতুর্ভুজে $\angle X$ ও $\angle Y$ পরস্পর বিপরীত কোণ এবং $\angle X + \angle Y = 180^\circ$

: বৃত্তস্থ চতুর্ভুজের যেকোনো দুইটি বিপরীত কোণের সমষ্টি 180°

∴ A, X, B ও Y সমবৃত্ত

ধাপ ২. তাহলে Y বিন্দুটি ΔAXB এর পরিবৃত্ত দিয়ে যায়।

সেক্ষেত্রে $\Delta {
m ABX}$ এবং $\Delta {
m CBY}$ একই বৃত্তের উপর অবস্থান করবে।

সুতরাং ΔAXB ও ΔCBY ত্রিভুজদ্বয়ের পরিবৃত্তদ্বয় সমান।

9 প্রমাণ কর যে, বৃত্তস্থ চতুর্ভুজের যেকোনো কোণের সমদ্বিখণ্ডক ও তার বিপরীত কোণের বহির্দ্বিণ্ডক বৃত্তের ওপর ছেদ করে।

সমাধানঃ

সাধারণ নির্বচনঃ প্রমাণ করতে হবে যে, বৃত্তস্থ চতুর্ভুজের যেকোনো কোণের সমদ্বিখণ্ডক ও তার বিপরীত কোণের বহির্দ্বিণ্ডক বত্তের ওপর ছেদ করে।

বিশেষ নির্বচনঃ মনে করি, ABCD বৃত্তস্থ চতুর্ভুজে $\angle B$ এর সমদ্বিখণ্ডক BS এবং $\angle B$ এর বিপরীত $\angle D$ এর বহির্দ্বিখণ্ডক DT পরস্পর E বিন্দুতে ছেদ করেছে। প্রমাণ করতে হবে যে, E বিন্দুটি বৃত্তের ওপর অবস্থিত। প্রমাণঃ

ধাপ ১.
$$\angle ABE = \frac{1}{2} \angle ABC \ [\because BS, \angle B$$
 এর এর সমদ্বিখণ্ডক]

ধাপ ২.
$$\angle ABC + \angle ADC = 180^{\circ}$$

[: বৃত্তস্থ চতুর্ভুজের বিপরীত কোণদ্বয় পরস্পর সম্পূরক]

ধাপ ৩.
$$\angle ADC + \angle ADF = 180^{\circ} \, [\because D বিন্দুতে উৎপন্ন সরলকোণ]$$

ধাপ ৪.
$$\angle ABC + \angle ADC = \angle ADC + \angle ADF$$
 [ধাপ-২ ও ধাপ-৩ হতে]
$$\therefore \ \angle ABC = \angle ADF$$

ধাপ ৫. আবার
$$\angle ADE = \frac{1}{2} \angle ADF \ [\because DE, \angle ADF \ এর সমদ্বিখণ্ডক]$$

$$= \frac{1}{2} \angle ABC$$

ধাপ ৬. এখন $\angle ADE = \angle ABE$

যেহেতু $\angle ABE = \angle ADE$ উভয়ই একই চাপের উপর অবস্থিত বৃত্তস্থ কোণ এবং এরা পরস্পর সমান

E বিন্দু অবশ্যই বৃত্তের উপর অবস্থান করবে।

ABCD বৃত্তন্থ চতুর্ভুজ। $ED, \angle D$ এর সমদ্বিখন্ডক, $BE, \angle B$ এর বর্হিদ্বিখন্ডক। মনে করি, ED ও BE, E বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, E বিন্দু ABCD বৃত্তের উপর অবস্থিত। প্রমাণ:

ধাপ ১.
$$\angle CDE = \frac{1}{2} \angle D$$
 [অঙ্কনানুসারে]

 $\angle B$ এর বহিঃস্থ কোণ $\angle ABF = \angle D$ [\because বৃত্তে অন্তলিখিত চতুর্ভুজের একটি বাহু বর্ধিত করলে সে বহিঃস্থ কোণ উৎপন্ন হয় তা বিপরীত অন্তঃস্থ কোণের সমান]

$$\therefore \angle ABE = \frac{1}{2} \angle ABF = \frac{1}{2} \angle D$$

$$\therefore \angle EBC = \angle ABE + \angle B = \frac{1}{2} \angle D + \angle B$$

ধাপ ২.
$$\angle CDE + \angle EBC = \frac{1}{2} \angle D + \frac{1}{2} \angle D + \angle B$$

$$= \angle D + \angle B$$

$$= \boxed{72}$$
সমকোণ

[:: ABCD বৃত্তস্থ চতুর্ভুজ]

এখানে, $\angle CDE$ ও $\angle EBC$ হলো EBCD চতুর্ভুজের দুইটি বিপরীত কোণ এবং এরা সম্পূরক

- ∴ EBCD বৃত্তস্থ চতুর্ভুজ [∵ বৃত্তস্থ চতুর্ভুজের বিপরীত কোণদ্বয় সম্পূরক]
- ∴ ∠DEB + ∠BCD = দুই সমকোণ

বা,
$$\angle DEB + \angle C =$$
 দুই সমকোণ

কিন্তু, ABCD বৃত্তস্থ চতুর্ভুজে $\angle C + \angle A =$ দুই সমকোণ

$$\therefore \angle DEB = \angle A$$

কিন্তু তারা একই চাপ BCD এর উপর অবস্থিত।

- $\therefore E$ এবং A বিন্দু একই বৃত্তের উপর অবস্থিত।
- ∴ E বিন্দু ABCD বৃত্তের উপর অবস্থিত।

পাঠ্যবইয়ের কাজের সমাধান

4

কাজ

>পাঠ্যবই পৃষ্ঠা-১৬১

বিভিন্ন আকারের কয়েকটি বৃত্তীয় চতুর্ভুজ আঁক। কয়েকটি বিভিন্ন ব্যাসার্ধের বৃত্ত অঙ্কন করে প্রতিটির উপর চারটি করে বিন্দু নিয়ে চতুর্ভুজগুলো সহজে আঁকা যায়। চতুর্ভুজের কোণগুলো মেপে নিচের সারণিটি পূরণ কর।

-1 -1		~						
ক্রমিক নং	$\angle A$	$\angle B$	$\angle C$	$\angle D$	$\angle A + \angle C$	$\angle B + \angle D$		
2								
২								
৩								
8								
Č								

সারণি থেকে কী বোঝা যায়?

সমাধানঃ বিভিন্ন আকারের কয়েকটি বৃত্তীয় চতুর্ভুজ আঁকা হলোঃ

চতুর্ভুজের কোণগুলো মেপে নিচে সারণিটি পূরণ করি:

ক্রমিক নং	$\angle A$	∠B	$\angle C$	$\angle D$	$\angle A + \angle C$	$\angle B + \angle D$
١.	95°	90°	85°	90°	180°	180°
২.	97°	85°	83°	95°	180°	180°
೨.	83°	100°	97°	80°	180°	180°
8.	88°	94°	92°	86°	180°	180°
Œ.	85°	95°	95°	85°	180°	180°

সারণি থেকে বোঝা যায় যে, বৃত্তস্থ চতুর্ভুজের বিপরীত কোণগুলোর সমষ্টি দুই সমকোণের সমান অর্থাৎ 180°।

পাঠ্যবইয়ের অনুসিদ্ধান্ত ও সমাধান

অনুসিদ্ধান্ত-৬ : বৃত্তে অন্তর্লিখিত চতুর্ভুজের একটি বাহু বর্ধিত করলে যে বহিঃস্থ কোণ উৎপন্ন হয় তা বিপরীত অন্তঃস্থ কোণের সমান।

[পাঠ্যবই পৃষ্ঠা- ১৬২]

<u>সমাধান</u>: সাধারণ নির্বচন: প্রমাণ করতে হবে, বৃত্তে অন্তর্লিখিত চতুর্ভুজের একটি বাহু বর্ধিত করলে যে বহিঃস্থ কোণ উৎপন্ন হয় তা বিপরীত অন্তঃস্থ কোণের সমান।

বিশেষ নির্বচনঃ মনে করি, ABCD চতুর্ভুজটি O কেন্দ্রবিশিষ্ট বৃত্তে অন্তর্লিখিত। BC বাহুকে E পর্যন্ত বর্ধিত করায় বহিঃস্থ $\angle DCE$ উৎপন্ন হয়েছে। বহিঃস্থ $\angle DCE$ -এর বিপরীত অন্তঃস্থ $\angle BAD$ । প্রমাণ করতে হবে যে, $\angle DCE = \angle BAD$ । প্রমাণঃ

- ধাপ ১. ∠BAD + ∠BCD = দুই সমকোণ (i) [∵বৃত্তে অন্তর্লিখিত চতুর্ভুক্তের দুই বিপরীত কোণের সমষ্টি দুই সমকোণ]
- ধাপ ৩. $\angle BAD + \angle BCD = \angle BCD + \angle DCE$ [(i) নং এবং (ii) নং তুলনা করে পাই] বা, $\angle BAD = \angle DCE$
 - $\therefore \angle DCE = \angle BAD$ (প্রমাণিত)

অনুসিদ্ধান্ত - ৭ : বৃত্তে অন্তর্লিখিত সামান্তরিক একটি আয়তক্ষেত্র।

[পাঠ্যবই পৃষ্ঠা - ১৬২]

সমাধান: সাধারণ নির্বচন: প্রমাণ করতে হবে যে, বৃত্তে অন্তর্লিখিত সামান্তরিক একটি আয়ত।

বিশেষ নির্বচনঃ মনে করি, O কেন্দ্র বিশিষ্ট বৃত্তে অন্তর্লিখিত সামান্তরিক হলো ABCD। প্রমাণ করতে হবে যে, ABCD একটি আয়ত। প্রমাণঃ

ধাপ ১. $\angle A = \angle C$ এবং $\angle B = \angle D$ [\therefore সামান্তরিকের বিপরীত কোণদ্বয় সমান]

ধাপ ২. আবার, ABCD সামান্তরিকটি বৃত্তে অন্তর্লিখিত।

∴ ∠A + ∠C = 2 সমকোণ। [∵ বৃত্তে অন্তর্লিখিত চতুর্ভুজের দুই বিপরীত কোণের সমষ্টি 2 সমকোণ]

বা, $\angle C + \angle C = 2$ সমকোণ $[\because \angle A = \angle C]$

বা, $2\angle C = 2$ সমকোণ

বা, $\angle C = 1$ সমকোণ [উভয়পক্ষকে 2 দ্বারা ভাগ করে]

 $\therefore \angle A = \angle C = 1$ সমকোণ

ধাপ ৩. অনুরূপে প্রমাণ করা যায়, $\angle B = \angle D = 1$ সমকোণ $[\therefore ABCD$ সামান্তরিকটির প্রতিটি কোণ এক সমকোণ]

∴ ABCD সামান্তরিকটি একটি আয়তক্ষেত্র। **(প্রমাণিত)**

