Mathématiques 1

Chapitre 4 : Développements limités et applications (Partie 1)

Mohamed Essaied Hamrita

IHEC, Université de Sousse

Novembre 2021

Table des matières

- 🚺 Formules de Taylor
 - Formule de Taylor avec reste intégral
 - Formule de Taylor avec reste $f^{(n+1)}(c)$
 - Formule de Taylor-Young
 - Exemple
- Développements limités au voisinage d'un point
 - Définition et existence
 - DL des fonctions usuelles à l'origine
 - DL des fonctions en un point quelconque
- Opérations sur les développements limités
 - Somme et produit
 - Division

Formules de Taylor

Dans ce chapitre, pour n'importe quelle fonction, on va trouver le polynôme de degré n qui approche le mieux la fonction. Les résultats ne sont valables que pour x autour d'une valeur fixée (ce sera souvent autour de 0). Ce polynôme sera calculé à partir des dérivées successives au point considéré.

$$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + \dots + f^{(n)}(0)\frac{x^n}{n!} + x^n \epsilon(x).$$

La partie polynomiale $f(0)+f'(0)x+\cdots+f^{(n)}(0)\frac{x^n}{n!}$ est le polynôme de degré n qui approche le mieux f(x) autour de x=0. La partie $x^n\epsilon(x)$ est le **reste** dans lequel $\epsilon(x)$ est une fonction qui tend vers 0 (quand x tend vers 0) et qui est négligeable devant la partie polynomiale.

Formule de Taylor

On va voir trois formules de Taylor, elles auront toutes la même partie polynomiale mais donnent plus ou moins d'informations sur le reste.

- La formule de Taylor avec reste intégral,
- La formule de Taylor avec reste $f^{(n+1)}(c)$,
- La formule de Taylor-Young.

Formule de Taylor avec reste intégral

Théorème 1 (Formule de Taylor avec reste intégral)

Soit $f:I\to\mathbb{R}$ une fonction de classe \mathcal{C}^{n+1} $(n\in\mathbb{N})$ et soit $a,x\in I$. Alors

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$

$$\cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \int_a^x \frac{f^{(n+1)}(t)}{n!}(x-t)^n dt.$$

On note $T_n(x)$ la partie polynomiale de la formule de Taylor (elle dépend de n mais aussi de f et a) :

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Formule de Taylor avec reste intégral

Exemple 1

La fonction $f(x) = \exp x$ est de classe C^{n+1} sur $I = \mathbb{R}$ pour tout n. Fixons $a \in \mathbb{R}$. Comme $f'(x) = \exp x$, $f''(x) = \exp x$, ... alors pour tout $x \in \mathbb{R}$:

$$\exp x = \exp a + \exp a \cdot (x - a) + \dots + \frac{\exp a}{n!} (x - a)^n + \int_a^x \frac{\exp t}{n!} (x - t)^n dt.$$

Bien sûr si l'on se place en a=0 alors on trouve :

$$\exp x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Formule de Taylor avec reste $f^{(n+1)}(c)$

Théorème 2 (Formule de Taylor avec reste $f^{(n+1)}(c)$)

Soit $f: I \to \mathbb{R}$ une fonction de classe C^{n+1} $(n \in \mathbb{N})$ et soit $a, x \in I$. Il existe un réel c entre a et x tel que :

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$

$$\cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}.$$

Remarque:

Pour n=0 c'est exactement l'énoncé du théorème des accroissements finis (T.A.F) : il existe $c\in]a,b[$ tel que f(b)=f(a)+f'(c)(b-a).

Formule de Taylor-Young

Théorème 3 (Formule de Taylor-Young)

Soit $f:I\to\mathbb{R}$ une fonction de classe \mathcal{C}^n et soit $a\in I$. Alors pour tout $x\in I$ on a :

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$

 $\cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \epsilon(x),$ où ϵ est une fonction définie sur I telle que $\epsilon(x) \xrightarrow{n} 0$.

Exemple

Exemple 2

Soit $f:]-1, +\infty[\to \mathbb{R}, \ x \mapsto \ln(1+x) \ ; \ f \ est infiniment dérivable.$ Nous allons calculer les formules de Taylor en 0 pour les premiers ordres. Tous d'abord f(0)=0. Ensuite $f'(x)=\frac{1}{1+x}$ donc f'(0)=1. Ensuite $f''(x)=-\frac{1}{(1+x)^2}$ donc f''(0)=-1. Puis $f^{(3)}(x)=+2\frac{1}{(1+x)^3}$ donc $f^{(3)}(0)=+2$. Par récurrence on montre que $f^{(n)}(x)=(-1)^{n-1}(n-1)!\frac{1}{(1+x)^n}$ et donc $f^{(n)}(0)=(-1)^{n-1}(n-1)!$.

Ainsi pour n>0 : $\frac{f^{(n)}(0)}{n!}x^n=(-1)^{(n-1)}\frac{(n-1)!}{n!}x^n=(-1)^{(n-1)}\frac{x^n}{n}.$ Voici donc les premiers polynômes de Taylor :

$$T_0(x) = 0$$
 $T_1(x) = x$ $T_2(x) = x - \frac{x^2}{2}$ $T_3(x) = x - \frac{x^2}{2} + \frac{x^3}{3}$

Définition et existence

Soit I un intervalle ouvert et $f:I\to\mathbb{R}$ une fonction quelconque.

Définition 1

Pour $a \in I$ et $n \in \mathbb{N}$, on dit que f admet un **développement limité** au point a et à l'ordre n, noté $DL_n(a)$, s'il existe des réels c_0, c_1, \ldots, c_n et une fonction $\epsilon: I \to \mathbb{R}$ telle que $\lim_{x \to a} \epsilon(x) = 0$ de sorte que pour tout $x \in I$:

$$f(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n + (x-a)^n \epsilon(x).$$

- L'égalité précédente s'appelle un DL de f au voisinage de a à l'ordre n .
- Le terme $c_0 + c_1(x-a) + \cdots + c_n(x-a)^n$ est appelé la partie polynomiale du DL.
- Le terme $(x-a)^n \epsilon(x)$ est appelé le **reste** du DL.

Définition et existence

La formule de Taylor-Young permet d'obtenir immédiatement des développements limités en posant $c_k=\frac{f^{(k)}(a)}{k!}$:

Proposition 1

Si f est de classe \mathcal{C}^n au voisinage d'un point a alors f admet un $DL_n(a)$ qui provient de la formule de Taylor-Young :

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \epsilon(x)$$

 $o\grave{u} \lim_{x\to a} \epsilon(x) = 0.$

Définition et existence

La formule de Taylor-Young permet d'obtenir immédiatement des développements limités en posant $c_k = \frac{f^{(k)}(a)}{k!}$:

Proposition 1

Si f est de classe C^n au voisinage d'un point a alors f admet un $DL_n(a)$ qui provient de la formule de Taylor-Young :

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \epsilon(x)$$

 $o\dot{u} \lim_{x\to a} \epsilon(x) = 0.$

Proposition 2

- Si f admet un DL alors ce DL est unique.
- Si f est paire (resp. impaire) alors la partie polynomiale de son DL en 0 ne contient que des monômes de degrés pairs (resp. impairs).

DL des fonctions usuelles à l'origine

A partir de la formule de Taylor-Young, on déduit les DL suivants en 0.

$$\exp x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \epsilon(x)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + x^n \epsilon(x)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^n + x^n \epsilon(x)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + x^n \epsilon(x)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{1}{8} x^2 + \dots + (-1)^{n-1} \frac{1 \cdot 1 \cdot 3 \cdot 5 \dots (2n-3)}{2^n n!} x^n + x^n \epsilon(x)$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \epsilon(x)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + x^{2n+1} \epsilon(x)$$

$$\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + x^{2n+2} \epsilon(x)$$

DL des fonctions en un point quelconque

La fonction f admet un DL au voisinage d'un point a si et seulement si la fonction $x\mapsto f(x+a)$ admet un DL au voisinage de 0. Souvent on ramène donc le problème en 0 en faisant le changement de variables h=x-a.

Exemple 3

 $DL_n(1)$ de $f(x) = \exp x$.

On pose h=x-1. Si x est proche de 1 alors h est proche de 0. Nous allons nous ramener à un DL de $\exp h$ en h=0. On note $e=\exp 1$.

$$\exp x = \exp(1 + (x - 1)) = \exp(1) \exp(x - 1) = e \exp h$$

$$= e \left(1 + h + \frac{h^2}{2!} + \dots + \frac{h^n}{n!} + h^n \epsilon(h) \right)$$

$$= e \left(1 + (x - 1) + \frac{(x - 1)^2}{2!} + \dots + \frac{(x - 1)^n}{n!} + (x - 1)^n \epsilon(x - 1) \right)$$

 $o\grave{u} \lim_{x \to 1} \epsilon(x-1) = 0.$

Somme et produit

On suppose que f et g sont deux fonctions qui admettent des $DL_n(\mathbf{0})$:

$$f(x) = c_0 + c_1 x + \dots + c_n x^n + x^n \epsilon_1(x)$$
 $g(x) = d_0 + d_1 x + \dots + d_n x^n + x^n \epsilon_2(x)$

Proposition 3

- f+g admet un $DL_n(0)$ qui est : $(f+g)(x)=f(x)+g(x)=P_n(x)+Q_n(x)=(c_0+d_0)+(c_1+d_1)x+\cdots+(c_n+d_n)x^n+x^n\epsilon(x).$
- $f \times g$ admet un $DL_n(0)$ qui est : $(f \times g)(x) = f(x) \times g(x) = T_n(x) + x^n \epsilon(x)$ où $T_n(x)$ est le polynôme $(c_0 + c_1 x + \dots + c_n x^n) \times (d_0 + d_1 x + \dots + d_n x^n)$ tronqué à l'ordre n.
- composition : si g(0) = 0, alors $f \circ g$ admet un $DL_n(0)$, dont le polynôme de Taylor est le polynôme composé $P_n \circ Q_n$ tronqué à l'ordre n.

Tronquer un polynôme à l'ordre n signifie que l'on conserve seulement les monômes de degré $\leq n$.

Somme et produit

Exemple 4

Calculer le $DL_2(0)$ de $\cos x \times \sqrt{1+x}$. On sait que $\cos x = 1 - \frac{1}{2}x^2 + x^2\epsilon_1(x)$ et $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2\epsilon_2(x)$.

D'où,

$$\cos x \times \sqrt{1+x} = \left(1 - \frac{1}{2}x^2 + x^2\epsilon_1(x)\right) \times \left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2\epsilon_2(x)\right)$$

$$= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2\epsilon_2(x)$$

$$- \frac{1}{2}x^2\left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2\epsilon_2(x)\right)$$

$$+ x^2\epsilon_1(x)\left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2\epsilon_2(x)\right)$$

$$= 1 + \frac{1}{2}x - \frac{5}{8}x^2 + o(x^2)$$

Exercice

Exercice 1

Calculer le DL(0) de f(x) à l'ordre n.

$$f(x) = \frac{\exp x}{\sqrt{1+x}}, \quad n = 3; \qquad f(x) = \ln(\cos(x)), \ ; n = 5.$$

La première fonction est un produit de deux fonctions :

$$\exp x \times \frac{1}{\sqrt{1+x}} = \exp x \times (1+x)^{-\frac{1}{2}}$$

La deuxième fonction est la composée de deux fonctions.

$$(\ln \circ \cos)(x)$$

Division

Soient f(x) et g(x) deux fonctions admettant un $DL_n(0)$.

$$f(x) = c_0 + c_1 x + \dots + c_n x^n + x^n \epsilon_1(x) = P_n(x) + x^n \epsilon_1(x)$$

$$g(x) = d_0 + d_1 x + \dots + d_n x^n + x^n \epsilon_2(x) = Q_n(x) + x^n \epsilon_2(x)$$

La détermination du $DL_n(0)$ de $rac{f}{g}$ se fait de deux manières :

- $\frac{f}{g} = f imes \frac{1}{g}$ en écrivant $\frac{1}{g}$ sous la forme $\frac{1}{1+u}$.
- En effectuant la division euclidienne suivant les puissances croissantes de $P_n(x)$ par $Q_n(x)$ à l'ordre n

Prenons l'exemple suivant :

Exemple 5

Déterminer le $DL_4(0)$ de

$$f(x) = \frac{\exp x}{\cos x}$$

