Fiche d'entrainement : variations et fonctions

Exercice 1:

On donne le tableau de variations suivant :

- 1) Résoudre f(x) = 0.
- 2) Résoudre $f(x) \le 0$.
- 3) Résoudre f(x) < 0.
- 4) Comparer f(-2) et f(0).
- 5) Comparer f(3,2) et f(3,6).
- 6) Comparer f(x) et f(1) sur [-3,2]
- 7) Comparer f(x) et f(4) sur [1,7]
- 8) Compléter les phrases suivantes :
 - a) Si $-5 \le x < 1$ alors $f(x) < \dots$

 - c) Si 1 < x < 7 alors f(x) < ...

Exercice 2:

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 5$.

1) Compléter le tableau de valeurs suivant :

x	-3	-2	-1	0	1	2	3
f(x)	>/						

- 2) Tracer \mathscr{C}_f (courbe représentative de f) dans un repère orthonormé.
- 3) Compléter les phrases suivantes :
 - a) Si $x \in [-3; 2]$ alors $f(x) \in$
 - b) Si $x \in [-2; 1]$ alors $f(x) \in$
 - c) Si $x \in [-2; 2]$ alors $f(x) \in$
 - d) Si $f(x) \in [-5; -1]$ alors $x \in ...$
 - e) Si $f(x) \in [-4; 4]$ alors $x \in$
 - f) Si $f(x) \in [-4; -1]$ alors $x \in ...$

Exercice 3:

Soit f la fonction définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = \frac{1}{x} + 1$.

1) Compléter le tableau de valeurs suivant :

x	-4	-2	-1	-0,5	-0,25	0	0,25	0,5	1	2	4
f(x)											

- 2) Tracer \mathcal{C}_f (courbe représentative de f) dans un repère orthonormé.
- 3) Compléter les phrases suivantes :
 - a) Si $x \in [-2; -0,5]$ alors $f(x) \in$
 - b) Si $x \in [0; 2]$ alors $f(x) \in$
 - c) Si $x \in [-4; 0[alors f(x) \in$
 - d) Si $f(x) \in [2; 5]$ alors $x \in ...$
 - e) Si $f(x) \in]-\infty$; 0] alors $x \in ...$
 - f) Si $f(x) \in [2; +\infty[$ alors $x \in$

Solutions

Exercice 1:

- 1) $S = \{-3; 2; 7\}$
- 2) $S = [-5; 2] \cup \{7\}$
- 3) $S = [-5; -3[\cup] -3; 2[=[-5; 2[\setminus \{-3\}$
- 4) -2 < 0 et f est décroissante sur [-3; 1] donc f(-2) > f(0).
- 5) 3,2 < 3,6 et f est croissante sur [1; 4] donc f(3,2) < f(3,6).
- 6) Sur [-3; 2], f(1) est le minimum donc $f(x) \ge f(1)$.
- 7) Sur [1; 7], f(4) est le maximum donc $f(x) \le f(4)$.
- 8) a) Si $-5 \le x < 1$ alors $-3 \le f(x) \le 0$
 - b) Si $-3 < x \le 4$ alors $-2 \le f(x) \le 4$
 - c) Si 1 < x < 7 alors $-2 < f(x) \le 4$

Exercice 2:

1) Compléter le tableau de valeurs suivant :

x	-3	-2	-1	0	1	2	3
f(x)	4	-1	-4	-5	-4	-1	4

2) Tracé de la courbe

3) Compléter les phrases suivantes :

- a) Si $x \in [-3; 2]$ alors $f(x) \in [-5; 4]$
- b) Si $x \in [-2; 1]$ alors $f(x) \in [-5; -1]$
- c) Si $x \in [-2; 2]$ alors $f(x) \in [-5; -1]$
- d) Si $f(x) \in [-5; -1]$ alors $x \in [-2; 2]$
- e) Si $f(x) \in [-4; 4]$ alors $x \in [-3; -1] \cup [1; 3]$
- f) Si $f(x) \in [-4; -1]$ alors $x \in [-2; -1] \cup [1; 2]$

1) Compléter le tableau de valeurs suivant :

x	-4	-2	-1	-0,5	-0,25	0	0,25	0,5	1	2	4
f(x)	0,75	0,5	0	-1	-3		5	3	2	1,5	1,25

2) Tracé de la courbe

3) Compléter les phrases suivantes :

- a) Si $x \in [-2; -0,5]$ alors $f(x) \in [-1; 0,5]$
- b) Si $x \in [0; 2]$ alors $f(x) \in [1, 5; +\infty[$
- c) Si $x \in [-4; 0[alors <math>f(x) \in]-\infty; 0,75]$
- d) Si $f(x) \in [2; 5]$ alors $x \in [0, 25; 1]$
- e) Si $f(x) \in]-\infty$; 0] alors $x \in [-1; 0[$
- f) Si $f(x) \in [2; +\infty[alors x \in]0; 1]$