Contrôle continu 3

Durée 1h10. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. Soit la fonction définie par $f(x,y) = \sin x + y^2 - 2y + 1$.

1. Déterminer le domaine de définition de f et calculer la différentielle de f en tout point (x,y) de son domaine de définition.

La fonction f est définie sur \mathbb{R}^2 . Sa différentielle en (x,y) est l'application linéaire de \mathbb{R}^2 dans \mathbb{R} définie par $d_{(x,y)}f(h_1,h_2)=h_1\cos x+h_2(2y-2)$.

2. Calculer les points critiques de f.

Les points critiques sont $(x,y) \in \mathbb{R}^2$ tels que $\begin{cases} \cos x = 0 \\ 2y - 2 = 0 \end{cases}$. Ils sont donc de la forme $((k + 1/2)\pi, 1)$ et sont donc situés sur la droite verticale y = 1.

3. Déterminer la nature des points critiques (minimum, maximum ou point selle).

La Hessienne de f est $\operatorname{Hess}(x,y) = \begin{pmatrix} -\sin x & 0 \\ 0 & 2 \end{pmatrix}$ et $\operatorname{Hess}((k+1/2)\pi,1) = \begin{pmatrix} (-1)^{k+1} & 0 \\ 0 & 2 \end{pmatrix}$. Par conséquent, si k est impair, le point $((k+1/2)\pi,1)$ présente un minimum local et, si k est pair, le point $((k+1/2)\pi,1)$ présente un point selle.

Exercice 2. Soit
$$U =]0, \pi/2[\times]0, \pi/2[$$
 et
$$\begin{cases} \Phi : U \to \mathbb{R}^2 \\ (x,y) \mapsto (\cos(x+y), \sin(x-y)) \end{cases}$$

1. Montrer que U est un ouvert de \mathbb{R}^2

L'ensemble U est un ouvert car tous ses points sont contenus dans une boule ouverte incluse dans U. En effet, soit $a=(a_1,a_2)\in U$ et $r=\min\{a_1,a_2,|a_1-\frac{\pi}{2}|,|a_2-\frac{\pi}{2}|\}$. On a bien $B_{\|\cdot\|_2}(a,r/2)\subset U$.

- 2. Soit $(c, s) \in \mathbb{R}^2$ et $(x, y) \in U$. Montrer que $(c, s) = \Phi(x, y)$ si et seulement si $x = (\arccos(c) + \arcsin(s))/2$ et $y = (\arccos(c) \arcsin(s))/2$.
- 3. Montrer que $V = \Phi(U)$ est un ouvert.

C'est l'image réciproque d'un ouvert par l'application continue Φ^{-1} .

4. Calculer la jacobienne de Φ et montrer qu'elle est inversible.

On a

$$\operatorname{Jac}_{\Phi}(x,y) = \begin{pmatrix} -\sin(x+y) & -\sin(x+y) \\ \cos(x-y) & -\cos(x-y) \end{pmatrix}$$

Ce qui donne $\det(\operatorname{Jac}_{\Phi}(x,y)) = 2\sin(x+y)\cos(x-y)$ qui s'annule si et seulement si $x+y=k\pi$ ou $x-y=\frac{\pi}{2}+k\pi$ pour un $k\in\mathbb{Z}$. Or ces deux dernières équations n'ont pas de solution sur U car $0< x+y<\pi$ et $-\frac{\pi}{2}< x-y<\frac{\pi}{2}$.

5. Φ realise-t-il un \mathcal{C}^1 -diffeomorphisme de U sur V? Justifier.

Théorème d'inversion globale.

6. Calculer la matrice jacobienne de Φ^{-1} en (c,s)=(0,0).

On a
$$\Phi(\pi/4, \pi/4) = (0, 0)$$
 et $\operatorname{Jac}_{\Phi}(\pi/4, \pi/4) = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$. Ainsi $\operatorname{Jac}_{\Phi}(\pi/4, \pi/4) \circ \operatorname{Jac}^{-1}_{\Phi}(0, 0) = Id_2$. Ce qui donne $\operatorname{Jac}^{-1}_{\Phi}(0, 0) = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}$.

Exercice 3. Soit $B = \{a \in \mathbb{R}^2, \|a\|_2 \le 1\}$. Calculer alors

$$I = \iint_B \frac{1}{(1+x^2+y^2)} dx dy.$$

Exercice 4. Calculer $\iint_D y dx dy$ où D est le domaine de \mathbb{R}^2 dessiné ci-contre

On a $D = \{(x,y) \in \mathbb{R}^2 | -3 \le x \le -2, -2x \le 4 \le y \le 2\} \cup \{(x,y) \in \mathbb{R}^2 - 2 \le x \le 1, 0 \le y \le 2\} \cup \{(x,y) \in \mathbb{R}^2 | 1 \le x \le 4, \frac{2}{3}x - \frac{2}{3} \le y \le 2\}$ ou encore, ce qui est plus simple, $D = \{(x,y) \in \mathbb{R}^2 | 1 \le x \le \frac{3}{2}y + 1\}$. Cela donne,

$$\iint_D y dx dy = \int_0^2 \left(\int_{-\frac{y}{2} - 2}^{\frac{3}{2}y + 1} y dy \right) dx = \frac{34}{3}.$$