AIFA: Fuzzy Inference System

11/03/2024

Koustav Rudra

Fuzzy Inference System

- Rule Base: Contains IF-THEN Rules
- Fuzzification: Convert crisp inputs to Fuzzy set
- Inference engine: determines matching degree of current input
- Defuzzification: Convert fuzzy values to crisp values

Fuzzy Inference System

Fuzzification

- Why do we need Fuzzification?
 - Rules are Fuzzy
- Converting a crisp value such as height = 5 ft 6 inches to a membership value of a fuzzy set, such as medium or tall
- Different ways of fuzzification experimental/subjective
- Fuzzified value serves as input to the fuzzy rules

Defuzzification

- Converting a fuzzy term such as small shift
- To a crisp value such as 5 degrees
- Different methods --- such as COG (Centre of Gravity)

Defuzzification

AIFA: Reasoning Under Uncertainty

11/03/2024

Koustav Rudra

Handling uncertain knowledge

- $\forall_p symptom(p, Toothache) \rightarrow disease(p, Cavity)$
 - Not correct toothache can be caused in many other cases
- $\forall_p symptom(p, Toothache) \rightarrow$
 - disease(p, Cavity) V
 - disease(p, GumDisease) V
 - ...

Reasons for using probability

- Specification becomes too large
 - Difficult to get complete list of antecedents or consequents
- Theoretical ignorance
 - The complete set of antecedents not known
- Practical ignorance
 - The truth of antecedents not known

Reasons for using probability

- Probability that X is fat = 0.2
- If X is fat then X has coronary heart disease = 0.7
- P[X has CHD] = 0.2*0.7 + 0.8*Z

Probability Basics

• Joint Probability

• P(A = a, C = c): joint probability that random variables A and C will take values a and c respectively

Conditional Probability

- $P(A = a \mid C = c)$: conditional probability that A will take the value a, given that C has taken value c
- $P(A|C) = \frac{P(A,C)}{P(C)}$

Bayes Theorem

- Bayes theorem:
 - $P(C|A) = \frac{P(A|C)P(C)}{P(A)}$
 - P(C) known as the **prior probability** for class C
 - P(C | A) known as the **posterior probability**

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis (M) causes stiff neck (S) 50% of the time
 - P(S|M) = 0.50
 - Prior probability of any patient having meningitis is 1/50,000
 - $P(M) = \frac{1}{50000}$
 - Prior probability of any patient having stiff neck is 1/20
 - $\bullet \ P(S) = \frac{1}{20}$
- If a patient has stiff neck, what's the probability he/she has meningitis?
 - P(M|S)

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis (M) causes stiff neck (S) 50% of the time
 - P(S|M) = 0.50
 - Prior probability of any patient having meningitis is 1/50,000
 - $P(M) = \frac{1}{50000}$
 - Prior probability of any patient having stiff neck is 1/20
 - $P(S) = \frac{1}{20}$
- If a patient has stiff neck, what's the probability he/she has meningitis?
 - P(M|S)
 - $P(M|S) = \frac{P(S|M).P(M)}{P(S)} = \frac{0.50 \times \frac{1}{50000}}{\frac{1}{20}} = 0.0002$

Probability Distribution

- Describes joint probability distribution over a set of variables
- A set of random variables $Y_1, Y_2, ..., Y_n$
 - Each Y_i can take on the set of possible values $V(Y_i)$
- Joint space of set of variables:
 - $V(Y_1)\times V(Y_2)\times V(Y_3)$... $\times V(Y_n)$
- Each item in joint space corresponds to one of the possible assignments of values $\langle Y_1 = y_1, Y_2 = y_2, ..., Y_n = y_n \rangle$
- Probability distribution over this joint space is called joint probability distribution

Thank You