# 데이터과학기초 2차과제

컴퓨터학부 2017110762 노태현

# 기본사항

6 종류의 생태학적 범주로 나눌 수 있는 새들의 뼈의 길이와 지름의 크기에 대한 데이터데이터 출처: https://www.kaggle.com/zhangjuefei/birds-bones-and-living-habits

Attributes: 11개

- 생태학적 범주: Swimming Birds(물새, **SW**), Wading Birds(섭금류, **W**), Terrestrial Birds(타조목, **T**), Raptors(맹금류, **R**), Scansorial Birds(딱따구리목, **P**), Singing Birds(참새목, **SO**)
- humerus(상완골) length, diameter, ulna(자뼈) length, diameter, femur(대퇴골) length, diameter, tibiotarsus(경골) length, diameter, tarsometatarsus(부척골) length, diameter

# 1차 과제에서 추정한 내용

- 뼈의 길이를 고려했을 때, 새의 날개에 있는 두 뼈인 humerus, ulna의 길이 사이에는 서로 상관관계가 있을 것으로 추정된다.
- 뼈의 길이를 고려했을 때, 새의 다리에 있는 세 뼈인 femur, tibiotarsus, tarsometatarsus 의 길이 사이에는 서로 상관관계가 있을 것으로 추정된다.
- tarsometatarsus를 제외한 뼈들은 길이가 길어질수록 대부분 지름도 커지는 경향이 보이 므로 뼈의 길이와 지름 간에 상관관계가 있다고 할 수 있다.

# 데이터 분석 1. Linear Regression

### (1) 각 뼈들의 length, width에 대한 수식 계산



length, width 간 변동성: 약 26.1%

약 29.8%



length, width 간 변동성: 약 20.6%

약 24.2%

약 59.3%

- humerus, ulna, femur, tibiotarsus의 경우 20%대의 작은 변동성을 가지므로 추정한 것처 럼 뼈의 길이가 길어질수록 지름이 커지는 경향을 보인다고 할 수 있음. 따라서 뼈의 길 이를 회귀분석을 통해 얻은 수식에 대입했을 때, 20대의 오차율을 가지는 뼈의 지름을 알아낼 수 있다.
- tarsometatarsus의 경우 변동성이 59.3%로 꽤나 크므로, 뼈의 길이가 길어질수록 지름이 커진다고 하기 어려움. 따라서 뼈의 길이를 회귀분석을 통해 얻은 수식에 대입한다고 해 도 오차율이 약 59.3% 정도이므로 예측치와 실제 값 사이의 오류가 클 가능성이 높다.

# (2) 각 뼈들 간의 length, width에 따른 수식 계산

# (2-1) 새의 날개에 있는 두 뼈인 humerus, ulna 사이의 상관관계



humerus, ulna 간 변동성: length: 약 18.4%

width: 약 17.5%

- 대체로 humerus의 길이나 지름이 증가함에 따라 ulna의 길이나 지름 역시 증가하는 경 향을 보임. 또한 변동성이 뼈의 길이의 경우 약 18.4%, 지름의 경우 약 17.5%로 작은 변 동성을 가지므로, 추정한 것처럼 두 뼈 사이에는 상관관계가 있다고 할 수 있다.
- 따라서, 두 뼈 중 한 뼈의 길이나 지름을 알면, 날개에 있는 다른 뼈의 길이나 지름 역시 회귀분석을 통해 얻은 수식에 대입하면서 예측할 수 있음. 이 때 변동성이 약 18.4%, 17.5%으로 작은 편이므로 예측치와 실제 값 사이의 오차는 작을 것이다.

# (2-2) 새의 다리에 있는 세 뼈인 femur, tibiotarsus, tarsometatarsus 사이의 상관관계



■ 대체로 femur의 길이나 지름이 증가함에 따라 tibiotarsus나 tarsometatarsus의 길이나 지름 역시 증가하는 경향을 보임. 또한 변동성이 뼈의 femur와 tibiotarsus 사이에는 길이의 경우 약 29.9%, 지름의 경우 약 18.4%, femur와 tarsometatarsus 사이에는 길이의 경우약 32.8%, 지름의 경우 약 32.3%, 마지막으로 tibiotarsus와 tarsometatarsus 사이에는 길이의 경우 약 22.8%, 지름의 경우에는 38.6%의 변동성을 보이므로 세 뼈 사이에는 상관관계가 있다고 할 수 있다.

- tarsometatarsus의 지름을 다른 뼈들의 지름과 비교했을 때는 30%가 넘는, 각 뼈들의 길이를 비교했을 때에 비해 비교적 큰 변동성을 보이는데, 이는 앞서 tarsometatarsus의 길이, 지름을 비교했을 때 변동성이 약 59.3%로 상관관계가 크다고 하기 어려운 상황에서 기인한 것이라고 추정된다.
- 새의 다리에 있는 세 뼈들도 길이나 지름을 알면 나머지 뼈들의 길이나 지름 역시 회귀 분석을 통해 얻은 수식에 대입하면서 예측할 수 있음. 이 때 변동성에 따라 예측치와 실제 값 사이에 오차가 생기는데, tibiotarsus의 길이를 통해 tarsometatarsus의 길이를 구하는 경우(변동성 약 22.8%)를 제외하면 tarsometatarsus의 길이나 지름을 구하는 데는 변동성이 30%를 넘기 때문에 오차가 길이나 지름을 예측한 값에 비해 커질 것이다.

### 데이터 분석 2. Hierarchical Clustering

계층적 군집화를 시행하기에 앞서, 데이터 상 humerus length, width, ulna length, width, femur length, width, tibiotarsus length, width, tarsometatarsus length, width가 서로 비슷한 값이 많기에 각 데이터들의 표준편차를 구해서 그 데이터들을 바탕으로 계층적 군집화를 시행하였다.

#### (1) 뼈의 길이에 대한 표준편차들의 계층적 군집화



■ 각 연결법을 이용하여 뼈의 길이에 대한 표준편차의 덴드로그램을 그려보았을 때, 클러스터가 2개 정도로 나뉜다고 할 수 있다. 이는 날개의 두 뼈(0: humerus, 1: ulna)와 다리의 세 뼈(2: femur, 3: tibiotarsus, 4: tarsometatarsus)로 뼈의 길이에 대한 표준편차는 다리와 날개로 분리되어 뼈들이 군집화가 된다고 볼 수 있다.

#### (2) 뼈의 지름에 대한 표준편차들의 계층적 군집화



- 각 연결법을 이용하여 뼈의 지름에 대한 표준편차의 덴드로그램을 그려보았을 때, 날개에 있는 뼈인 ulna가 다리에 있는 뼈들과 군집이 같이 묶인다. 이는 이 뼈들의 평균이 대체로 3~4mm, 표준편차가 대체로 2~3mm로 큰 차이가 없기 때문이다.
- 그림에서 보이듯이, humerus는 새의 날개에서 가장 중요한 뼈를 담당하는데, 새가 날기 위해선 humerus의 지름이 큰 영향을 미치며, 이 때문에 뼈의 지름이 다리나 날개의 다른 뼈들에 비해 가장 커질 수밖에 없으므로, 표준편차들을 이용해 뼈의 지름에 대한 군집화를 시행하면 humerus를 제외한 뼈들과 humerus로 군집이 나뉘어진다.



#### (3) 뼈의 지름, 길이에 대한 표준편차들의 계층적 군집화



단일연결법

- 길이, 지름의 표준편차들을 이용해 덴드로그램을 그려보았을 때, 모든 뼈의 지름에 대한 표준편차 값들은 함께 묶여 클러스터를 형성하고, 뼈의 길이에 대한 표준편차 값들도 클러스터를 형성하는데, 여기서 새의 날개에 있는 두 뼈들과 새의 다리에 있는 세 뼈들끼리 클러스터로 분리가 된다.
- 뼈의 지름에 대한 표준편차 값들의 차이는 매우 작지만, 뼈의 길이에 대한 표준편차 값 들의 클러스터와 분리되어 뼈의 지름의 표준편차 값들끼리 함께 묶여 있다.
- 뼈의 길이의 표준편차에 대한 클러스터는 다리와 날개의 뼈들로 분리할 수 있는데, 여기 서 다리의 세 뼈들은 tibiotarsus와 그 외의 뼈들로 다시 분리가 가능하다. 이는 대체로 새들의 tibiotarsus가 다리의 다른 두 뼈들에 비해 훨씬 길기 때문이다.
- 따라서 표준편차를 이용해 군집화를 시행할 경우, 각 뼈들의 지름, 날개의 뼈들의 길이, 그리고 다리의 뼈들의 길이로 세 개의 클러스터로 군집화가 된다고 볼 수 있다.

# 결론

- 회귀를 통해 뼈의 길이와 지름에 대한 비례관계 및 수식을 얻을 수 있고, 날개의 두 뼈 간의 상관관계, 다리의 세 뼈 간의 상관관계 및 수식을 추정한 것처럼 얻을 수 있다. 또한 tarsometatarsus의 경우에는 길이가 길어진다고 지름이 무조건적으로 증가한다고 하기 힘들다고 할 수 있다.
- 군집화를 통해 뼈의 너비와 뼈의 길이에 대한 표준편차는 따로 군집을 형성하며, 뼈의 길이는 날개의 뼈들과 다리의 뼈들로 분리할 수 있는데, 이는 일반적으로 날개의 뼈들과 다리의 뼈들이 각각의 군집을 형성한다고 볼 수 있다.
- 종합해서, 1차 과제에서 추정한 것처럼 tarsometatarsus를 제외한 뼈들은 대체로 길이가 길어질수록 지름이 커진다고 할 수 있고, 날개에 있는 두 뼈들은 서로 상관관계가 있고 뼈의 길이에 대해 그룹화할 수 있으며, 다리에 있는 세 뼈들도 서로 상관관계가 있으며 뼈의 길이에 대해 그룹화할 수 있다.