EE 810. Home work #8

Name. Onkar Viveh Apte 1

D80 ID

6.1 (5)(a)(c)(d)

- **5.** (a) For which numbers b is the matrix $A = \begin{bmatrix} 1 & b \\ b & 9 \end{bmatrix}$ positive definite?
 - (c) Find the minimum value of $\frac{1}{2}(x^2 + 2bxy + 9y^2) y$ for b in this range.
 - (d) What is the minimum if b = 3?

$$A = \begin{bmatrix} 1 & b \\ b & 9 \end{bmatrix}$$
. For being possitive definite, (1)(9)-(b)(b) > 0

$$(b-3)(b+3) > 0$$

if $b^2-9 < 0$

$$F_{XX} = 1 > 0$$
 $a + c > 2b$ $a < 5^2$

$$(F_{MN}) (F_{7y}) = (F_{Ny})^{2} > 0,$$

$$9 > b^{2}$$

$$\therefore b^{2} - 9 < 0$$

$$\therefore -3 < b < 3$$

$$\therefore F_{MN} > 0$$

$$A = F_{NN} \cdot F_{Yy} = (F_{Ny})^{2} = 0$$

$$\text{Now, to Find minimum Value of } F,$$

$$F_{N} = 0 = X + by = 0$$

$$F_{y} = 0 = b_{N} + 3y - 1 = 0$$

$$\therefore x = -by$$

$$4 = b_{N} + 3y - 1 = 0$$

$$\therefore (9 - b^{2}) y = 1$$

$$\therefore (9 - b^{2}) y = 1$$

$$\therefore y = \frac{1}{9 - b^{2}}$$

$$\therefore \text{Minimum Value of } F = \text{will be }$$

$$= \frac{1}{2} \left(\frac{b^{2}}{(9 - b^{2})^{2}} + 2b \left(\frac{-b}{9 - b^{2}} \right) \left(\frac{1}{9 - b^{2}} \right) + 9 \left(\frac{1}{9 - b^{2}} \right)^{2} \right) - \frac{1}{9 - b^{2}}$$

$$= \frac{1}{2} \left(\frac{b^{2} + 9}{(9 - b^{2})^{2}} \right) - \frac{1}{9 - b^{2}}$$

 $= \frac{-1}{2(9-b^2)}$

: Minimum value of the function is
$$\frac{-1}{2(9-b^2)}$$
 for b in its range.

"minimum value of F will be at
$$\left(\frac{-b}{9-b^2}\right)$$
" $\left(\frac{-b}{9-b^2}\right)$ "

$$\frac{\text{min of } F = \frac{-1}{2(9-b^2)}$$

For given
$$b=3$$
, min value $=\frac{-1}{0}=-\infty$

21 + by = 6

Minimum value of the function found to be
$$-\infty$$
, then no minimum exists when $y \to \infty$, $x = -3y$, so $x - y \to -\infty$.

8. If
$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
 is positive definite, test $A^{-1} = \begin{bmatrix} p & q \\ q & r \end{bmatrix}$ for positive definiteness.

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} , A^{-1} = \frac{1}{ac - b^2} \begin{bmatrix} c - b \\ -b & a \end{bmatrix}$$

$$\frac{q = -b}{ac - b^2}$$

$$r = \frac{a}{ac - b^2}$$

Now, for positive definiteness:

$$\frac{1}{ac-b^2}$$

if a > 0

$$\frac{ac-b^2}{\therefore c>0} \qquad \frac{ca}{(ac-b^2)^2} > \frac{b^2}{(ac-b^2)^2}$$

$$\frac{1}{(ac-b^2)^2} > 0$$

$$\therefore \qquad ac > b^2$$

$$C > 0$$

$$A^{-1} \text{ is positive definite.}$$

20. For
$$F_1(x,y) = \frac{1}{4}x^4 + x^2y + y^2$$
 and $F_2(x,y) = x^3 + xy - x$, find the second derivative

matrices
$$A_1$$
 and A_2 :

$$A = \begin{bmatrix} \partial^2 F / \partial x^2 & \partial^2 F / \partial x \partial y \\ \partial^2 F / \partial y \partial x & \partial^2 F / \partial y^2 \end{bmatrix}.$$

$$F_1(x,y) = \frac{1}{4} x^4 + x^2 y + y^7$$

taking partial derivative,

$\frac{\partial F_{1}(x,y)}{\partial x} = x^{3} + 2xy$	$\frac{\partial F_{1}(x_{1}y)}{\partial y} = x^{2} + 2y$
$\frac{\partial^2 f_1(x_1,y)}{\partial x^2} = 3x^2 + 2y$	$\frac{\partial^2 F_1(x_1y)}{\partial y^2} = 2$
2 F, (η, y) = 2x θx dy	² F ₁ (η,η) = 2χ ∂η λχ

$$\therefore \text{ Second derivative of } A_1 = \begin{bmatrix} \frac{\partial^2 F_1(x,y)}{\partial x^2} & \frac{\partial^2 F_1(x,y)}{\partial x \partial y} \\ & \frac{\partial^2 F_1(x,y)}{\partial y \partial x} & \frac{\partial^2 F_1(x,y)}{\partial y^2} \end{bmatrix}$$

$$= \begin{bmatrix} 3x^2 + 2y & 2x \\ 2x & 2 \end{bmatrix}$$

Now, for $F_2(x,y) = x^3 + xy - x$

$$\frac{\partial F_2(x,y)}{\partial x} = 3x^2 + y - 1 \qquad \frac{\partial F_2(x,y)}{\partial y} = x$$

$$\frac{\partial^2 F_2(x,y)}{\partial x^2} = 6x \qquad \frac{\partial^2 F_2(x,y)}{\partial y^2} = 0$$

$$\frac{\partial^2 F_2(x,y)}{\partial x^2} = 1 \qquad \frac{\partial^2 F_2(x,y)}{\partial y^2} = 1$$

$$\frac{\partial^2 F_2(x,y)}{\partial y^2} = 1$$

$$\frac{\partial^2 F_2(x,y)}{\partial y^2} = 0$$

$$\therefore 2^{\text{nd}} \text{ derivative matrix } A_2 = \frac{\partial^2 F_2(n,y)}{\partial n^2} \frac{\partial^2 F_2(n,y)}{\partial n \partial y}$$

$$\frac{\partial^2 F_2(n,y)}{\partial y \partial n} \frac{\partial^2 F_2(n,y)}{\partial y^2}$$

 A_1 is positive definite, so F_1 is concave up (= convex). Find the minimum point of F_1 and the saddle point of F_2 (look where first derivatives are zero).

For minimum point of F,
$$\frac{\partial F_1(x,y)}{\partial x} = 6$$

$$\frac{\partial F_1(x,y)}{\partial y} = 6$$

$$\frac{\partial F_1(x,y)}{\partial y} = 6$$

$$\frac{\partial F_1(x,y)}{\partial y} = 6$$

$$\frac{\partial F_1(x,y)}{\partial x} =$$

$$\frac{\partial f}{\partial n} = 0$$
 , $\frac{\partial f}{\partial y} = 0$, $\left(\frac{\partial^2 f}{\partial n^2} \cdot \frac{\partial^2 f}{\partial y^2}\right) - \left(\frac{\partial^2 f}{\partial n \partial y}\right)^2 < 0$

$$\frac{\partial F_2(x_1y)}{\partial x} = 3x^2 + y - 1 = 0$$

$$\frac{\partial f_2(y,y)}{\partial y} = x = 0$$

and
$$\left(\frac{\partial^2 F_2(u,y)}{\partial u^2} \cdot \frac{\partial^2 F_2(u,y)}{\partial y^2}\right) - \left(\frac{\partial^2 F_2(y,y)}{\partial u \partial y}\right)^2 < 0$$

Point.

$$\therefore A_{1} = \begin{bmatrix} 3n^{2} + 2y & 2x \\ 2n & 2 \end{bmatrix} A_{2} = \begin{bmatrix} 6n \\ 1 & 0 \end{bmatrix}$$

minimum point for
$$F_1$$
: $X=0$ Saddle pt for F_2 : $X=0$ $Y=1$

6-2(1)

4	E 1	1 17	.1	1 D	'.' 1 C '.
	For what range of	numbers a and h	are the matrices A	and K	nosifive definite
	I of what runge of	mumbers a una c	uic the munices in	unu D	positive delilite

$$A = \begin{bmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 4 \\ 2 & b & 8 \\ 4 & 8 & 7 \end{bmatrix}.$$

a 2	1 ~ ~	\longrightarrow $a^2-4>0 \longrightarrow$	∴ a> 2
a 2 2 a		(a+2)(q-2)>0	& a < -2

but here take the range a>2
: |a|>0 for matrix to be

positive definite.

$$a(a^2-4)-2(2a-4)+2(4-2a)>0$$

$$a^3 - 12a + 16 > 0$$

$$(a-2)(a+4) > 0 \rightarrow a > 2 \text{ or}$$

But here take the range: a>2

a <-4

to be positive definiteness

11) > 0 — me already	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32) + 4 (16 -4b -9b + 36 > 9b < 3
	b < 4
nmon range. nnot be positive definite. a>2 as you showed above)
>0, matrix A Can be posit B can never be positive d	lve definite

alven	:	F A,	B : Pos) Hve de	fini}e -	>	A+B:	Posi H definii	ve . e .
e have	e to	show,	x ^T (A +	в)х >0					
B	i Posil	tive de	finite,	カ	TAn Bn :	> o > o	(n	(‡ o) # o)	
for	any	и ‡ o ,	я [⊤] (A+ B)n	= > (n + 21	$\mathcal{L}^{T}\mathcal{B}_{\mathcal{I}}$	
.:	Hence	Proved	that	х ^Т (А	+B)x	> 0	— (fa	or any	n ≠ i

6.2(7)

7. If $A = Q\Lambda Q^{T}$ is symmetric positive definite, then $R = Q\sqrt{\Lambda}Q^{T}$ is its *symmetric positive definite square root*. Why does R have positive eigenvalues? Compute R and verify $R^{2} = A$ for

$$A = \begin{bmatrix} 10 & 6 \\ 6 & 10 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 10 & -6 \\ -6 & 10 \end{bmatrix}.$$

For $A = \begin{bmatrix} 10 & 6 \\ 6 & 10 \end{bmatrix}$, $R = Q \int A Q^T$ is positive definite, then for all $x \neq 0$, $x^T R x > 0$

Now, consider:
$$Rn = \lambda x$$

$$x^{T}Rn = \lambda |x|^{2}$$

$$\left(\begin{array}{ccc} & \mathcal{H}^{\mathsf{T}} \mathcal{R} \mathcal{H} & > 0 \\ & & \lambda & > 0 \end{array}\right)$$

Now, to Find R,

Compulsing Q,
$$A = \begin{bmatrix} 10 & 6 & 0 \\ 6 & 10 & 0 \end{bmatrix} \xrightarrow{K_2 - \frac{1}{10}} \xrightarrow{K_1} \xrightarrow{K_2 - \frac{1}{10}} \xrightarrow{K_1} \xrightarrow{K_2 - \frac{1}{10}} \xrightarrow{K_1} \xrightarrow{K_2 - \frac{1}{10}} \xrightarrow{K_2 - \frac{1}{10}} \xrightarrow{K_1} \xrightarrow{K_2 - \frac{1}{10}} \xrightarrow{K_2 -$$

Similarly,
$$L = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$$

.. LDU:
$$\begin{bmatrix} 1 & 0 \\ \frac{1}{6} & 1 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{bmatrix} \begin{bmatrix} 10 & 6 \\ 0 & \frac{25}{5} \end{bmatrix} \begin{bmatrix} R_1 \rightarrow \ell_1/10 \\ R_2 \rightarrow \ell_2/(53_{\ell_2}) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ \frac{1}{12} & 1 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{16} \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ \frac{1}{12} & 1 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ \frac{1}{12} & 1 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{16} & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ \frac{1}{16} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{32}{5} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{16} & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ \frac{1}{16} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{32}{5} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{16} & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ \frac{1}{16} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{32}{5} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{6}{16} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 &$$

$$R^{2} = \begin{bmatrix} 10 & 6 \\ 6 & 10 \end{bmatrix} = A.$$

$$R^{2} = A$$

Now, for
$$A = \begin{bmatrix} 10 & -6 \\ -6 & 10 \end{bmatrix}$$

$$\downarrow R_2 \rightarrow R_2 - \frac{6}{10} R_1$$

$$= \begin{bmatrix} 10 & -6 \end{bmatrix} \frac{R_1/10}{10}, \quad \begin{bmatrix} 1 & -\frac{6}{10} \\ -\frac{6}{10} \end{bmatrix} = 0$$

$$A = \begin{bmatrix} 10 & 0 \\ 0 & 32/5 \end{bmatrix} = D$$

$$\mathbb{Q}^{T} : \begin{bmatrix} 1 & \frac{7}{6} \\ 0 & 1 \end{bmatrix} = L^{T}$$

$$Rou, \quad \therefore \quad \sqrt{\Lambda} : \begin{bmatrix} \sqrt{10} & 0 \\ 0 & \sqrt{32/5} \end{bmatrix}$$

$$R = \sqrt{\Lambda} \mathbb{Q}^{T}$$

$$\begin{cases} \sqrt{10} & D \\ 0 & \sqrt{34/5} \end{bmatrix} = D$$

$$R = \begin{bmatrix} \sqrt{10} & -\frac{2}{5} \sqrt{10} \\ 0 & \frac{4}{5} \sqrt{10} \end{bmatrix}$$

$$\therefore \quad R^{2} : A$$

$$\therefore \quad R^{2} : A$$

6.2(15)

- **15.** Suppose A is symmetric positive definite and Q is an orthogonal matrix. True or false:
 - (a) Q^TAQ is a diagonal matrix.
 (b) Q^TAQ is symmetric positive definite.
 - (c) $Q^{T}AQ$ has the same eigenvalues as A.
 - (d) e^{-A} is symmetric positive definite.

- Q: Orthogonal Mx.
- (a) Q^TAQ : : Q is orthogonal matrix, Q must contain
 - eigenvectors of A.
 - \mathcal{L} $\mathbb{Q}^T A \mathbb{Q}$ cannot be a diagonal matrix. \mathcal{L} \mathbb{Q} \mathbb{Q} \mathbb{Q} \mathbb{Q} \mathbb{Q} \mathbb{Q} \mathbb{Q} \mathbb{Q}
- (b) \cdots \otimes is orthogonal, $\mathcal{Q}^{\top} = \mathbb{Q}^{-1}$.

eig en values.

- · Q AQ is similar matrix to A, they have some
- : QTAQ & A have Same eigenvalues.
- $: A: Symmatrix Positive definite imples <math>\longrightarrow \mathbb{Q}^T A \mathbb{Q}$ is also
 - Symmatix positive definite. (b) = TRUE
- (c) as argued in (b), CC) = TRUE
- (d) . A is symmetric, -A is also symmetric, e-A is also symmetric
 - eigenvalues of e^{-A} are in form e^{-A}, i.e a positive numb
 - \therefore (d) = TRVE

22. A diagonal entry a_{jj} of a symmetric matrix cannot be smaller than all λ 's. If it were, then $A - a_{jj}I$ would have eigenvalues and would be positive definite. But $A - a_{jj}I$ has a on the main diagonal.
 A diagonal entry ajj of Symmetric mx Cannot be Smaller than all eigenvalues. If it were, then A - ajj I would have positive eigenvalues. Value, thus being a positive definite.
" As of A-ajjI = A-ajj>0 - where A is some eigenvalue of A. But A-ajjI has a zero on the main diagonal.

6-2 (23)

	_J	23.	Give	a qui	ick reas	on why	y each	of these	state	ments	is true:					
L	Hi		(a) l	Every	positiv	e defin	ite ma	trix is ir	vertib	le.						
لمر	175	7	(b)	The or	nly posi	tive de	efinite	projecti	on ma	trix is	P = I.					
	ر ا	- 0	(c) A	A diag	gonal m	atrix w	vith po	sitive di	agona	l entri	es is po	sitive d	lefinite	·.		
			(d) A	A sym	metric	matrix	with a	a positiv	e dete	rmina	nt migh	t not b	e posit	ive defi	inite!	
	(a)	Έv	ery	ρο	osiHue	ma	hix	has	d	eher <i>n</i>	ni nant	gr	eater	Yhat	D.	
		.:	Eve	<i>y</i> .	such	ma	Μx	zi	'nν	erHbl (٤,					
(Ь	Eve	7	ρνός	2 chon	ma	Mx	exc e	ρŧ	I	have	d	eterm	inant	ze	Po.
(c)_	Dia	gon a	l ei	n txi es	٥f	a	dia	gonal	M	ahix	an	2141	eig	enu	alues.
	_	∴.	the	9)	ven	mah	ب برآ	الأدر	hove	P	s)H~e	eig	en ucl	ues.		
				J						•		,				
	a)	Ве	८व५४	e ,	th e	رو ا	could	Ье	S.	ym m	etri ×	m ah	11	wit	de+	> 0
											in d					
				posifi		,,,,	1 < 3 · ·			4	,,,	C1 C1 711	,,,,	Φ,	,	α. (
		, (-	- (POSIT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											

6.2(32)

32. Apply any three tests to each of the matrices

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix},$$

to decide whether they are positive definite, positive semidefinite, or indefinite.

for A, let
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= (y_1 + y_2 + y_3) y_1 + (y_1 + y_2 + y_3) y_2 + (y_1 + y_2) y_3$$

$$= \chi_1^2 + 2\chi_1 y_2 + 2\chi_1 \chi_3 + \chi_2^2 + 2\chi_2 \chi_3 + \chi_1 \chi_3$$

$$\therefore$$
 if \mathcal{H}_1 , \mathcal{H}_2 , \mathcal{H}_3 < 0 , $\mathcal{H}^{\dagger}A\mathcal{H}$ < 0 .

$$-13-21^2-21=0$$

Now, upper submaths of A,
$$A_{1} = [1]$$
 $\therefore |A_{1}| = 1$

Similiarly, $A_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$, $|A_{2}| = 0$

Now, consider matrix β .

$$x^{T} \beta x = \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 & x_{1} \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_{1} & x_{2} \\ x_{3} & x_{4} & x_{2} \end{bmatrix} = 0$$

$$= (2x_{1} + x_{2} + 2x_{3}) x_{1} + (x_{1} + x_{2} + x_{3}) x_{2} + (2x_{1} + x_{2} + 2x_{3}) x_{3} = 2x_{1}^{2} + 2x_{1} x_{1} + 2x_{1} x_{2} + 4x_{1} x_{3} + x_{2}^{2} + 2x_{2} x_{3} + 2x_{3}^{2}$$

Now, for β , $|\beta - \lambda x| = 0$

$$\begin{vmatrix} 2-\lambda & 1 & 2 & 1 & 2 \\ 1 & 1-\lambda & 1 & 1 \\ 2 & 1 & 2-\lambda \end{vmatrix} = 0$$

$$\therefore (2-\lambda) \left[(1-\lambda)(2\lambda)^{-1} \right] - 1 \left[(2-\lambda)(1-\lambda)^{-1} \right] + 2 \left[1 - 2(1-\lambda) \right] = 0$$

$$\therefore \lambda^{3} - S\lambda^{2} + 2x_{1} = 0$$

$$\therefore \lambda (\lambda - S\lambda + 2) = 0$$

$$\therefore \lambda_{1} = 0$$

$$\lambda_{2} = \frac{5+\sqrt{3}}{2}$$

$$\lambda_{3} = \frac{5-\sqrt{3}}{2}$$

5. Compute $A^{T}A$ and AA^{T} , and their eigenvalues and unit eigenvec
--

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

Multiply the three matrices $U\Sigma V^{\mathrm{T}}$ to recover A.

$$A^{T}A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$A A^{+} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$1^2 - 4A + 3 = 0$$

- A, = 1

For
$$\lambda = 1$$
, $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$ $R_2 \rightarrow R_1 \sim R_2$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$\therefore \ \ \mathcal{X}_1 + \mathcal{X}_2 = C$$

$$\therefore x = \begin{bmatrix} u_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} -\lambda_2 \\ u_1 \end{bmatrix} = -\lambda_2$$

For
$$A = 3$$
,
$$\begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$

$$R_{2} \rightarrow -R_{1} + R_{2} \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\therefore \quad A = \begin{bmatrix} N_{1} \\ N_{2} \end{bmatrix} = \begin{bmatrix} N_{1} \\ N_{1} \end{bmatrix} = \begin{bmatrix} N_{1} \\ N_{2} \end{bmatrix} = \begin{bmatrix} N_{1} \\ N_{2} \end{bmatrix} = \begin{bmatrix} N_{2} \\ N_{2} \end{bmatrix}$$

$$\therefore \quad A = \begin{bmatrix} N_{1} \\ N_{2} \end{bmatrix} = \begin{bmatrix} N_{2} \\ N_{$$

for
$$A = 3$$
,
$$\begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & -2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\therefore X_1 - M_3 = 0$$

$$X_1 = X_3$$

$$\therefore M_2 - 2M_3 = 0$$

$$M_L = 2M_3$$

$$\vdots \qquad M_3 = X_3$$

$$\vdots \qquad M_3 = X_3$$

$$\vdots \qquad M_4 = 2M_3$$

$$\vdots \qquad M_4 = 2M_4$$

$$\vdots \qquad M_4 =$$

$$AA^{T} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad A^{T}A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

and we verified that $U \ge V^T = A$

- 12. (a) If A changes to 4A, what is the change in the SVD?
- (b) What is the SVD for A^{T} and for A^{-1} ?
- a) : eigenvectors of AA^{\dagger} are in U & eigenvectors of $A^{\dagger}A$ are in V,

The r Singlur-values on the diagonal of E are square roots of nonzero elgenvalues of both

ATA & AAT.

Now, multiplying with constant C : CAATH = CAR

: multiplying with C, eigenvectors: remains same.
eigenvalues: 1 -> c1

= TF we change A - 4A, VaV will stay same.

: HOW, For AA: (4A) (4A) = 16 AAT

.. diagonal maths & -> 48 for A >> 4A.

and $U \rightarrow U \rightarrow V \rightarrow V$.

.. SND for 4A= U(4E) NT = 4 (UENT)

ch ange				ΑЭ	4A	Is	
υεν [†]	\rightarrow	4	UEVT				

(b) .. SUD of A =
$$U \leq V^{T}$$
,
$$A^{T} = \left(U \leq U^{T}\right)^{T}$$

$$A^{T} = V \leq^{T} U^{T}$$

(: U, U : orthogon

" A = UEV",

SVD for
$$A^{T} = V \mathcal{E}^{T} U^{T}$$

$$A^{-1} = V \mathcal{E}^{-1} U^{T}$$

6.3(13)

13.	Why	doesn't the	SVD for	A+I	iust use	$\Sigma + I$?
-----	-----	-------------	---------	-----	----------	----------------

The r- singular value, on diagonal of & are sq. roof of non-zero 1 s of ATA.

Singular values of A+I are not
$$G+I$$
, where G_r are singular values of A) but they are eigenvalues of $(A+I)^T(A+I)$.

15. Find the SVD and the pseudoinverse $V\Sigma^+U^{\rm T}$ of

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad C = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$$

$$A^{+} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & (-1) & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A_{2}=1 \qquad A_{2}=\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$B^{\dagger} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\beta^{+} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} = Pseudoinverse of B$$

Nou,
$$CC^T = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$
 $A_2 = 0$

$$\therefore \quad \cup_{i} \quad = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad , \quad \cup_{2} \quad = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Now,
$$C^T C = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & D \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 :: $A_1 = 2$

$$\therefore \text{ SND of } C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{52} & \sqrt{52} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{52} & \sqrt{52} \\ \sqrt{52} & -\sqrt{52} \end{bmatrix}$$

$$C^{+} = \begin{bmatrix} 1/s_2 & 1/s_2 \\ 1/s_2 & -1/s_2 \end{bmatrix} \begin{bmatrix} \overline{s_2} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$C^{+} = \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix} = \underbrace{Pseudoinverse of}_{C}$$

- **21.** Removing zero rows of U leaves $A = \underline{L}\underline{U}$, where the r columns or \underline{L} span the column space of A and the r rows of \underline{U} span the row space. Then A^+ has the explicit formula $\underline{U}^{\mathrm{T}}(\underline{U}\ \underline{U}^{\mathrm{T}})^{-1}(\underline{L}^{\mathrm{T}}\underline{L})^{-1}\underline{L}^{\mathrm{T}}$.
 - D Why is A^+b in the row space with \underline{U}^T at the front? Why does $A^TAA^+b = A^Tb$, so that $x^+ = A^+b$ satisfies the normal equation as it should?
- ()
 A+b = U^T, (UUT) (LTL) 'LTb,

 - = 4,4, + ... + 4,24,
 - Atb is a linear combination of the coloumns of UT which spans the row space of the matrix A
 - Thus A+b is in the rowspace of A.
- 2 Now, using the formula for A, A & associative law, we get:
 - $A^{T} A A^{+} b = A^{T} (LU) U^{T} (UU^{T})^{-1} (L^{T}L)^{-1} L^{T} b$ $= A^{T} L (UU^{T}) (UU^{T})^{-1} L^{T} L^{T} b$ $= A^{T} L (L^{T}L)^{-1} L^{T} L^$

= A⁺b

\mathcal{U}^{τ}	which	span	the roo	nation of w space	of the	matrix I
А ^т А	A + b	ط۳ ۽	is Show	n.		
	,. D		3,700	.,.		