Programación Funcional Avanzada

Programación Dinámica Funcional

Ernesto Hernández-Novich <emhn@usb.ve>

Universidad "Simón Bolívar"

Copyright ©2010-2015

Programación Dinámica

Calcular una vez, compartir varias

- Convertir un problema de programación en una recurrencia calcularla almacenando valores intermedios en una colección.
- En lenguajes imperativos la colección es un arreglo intercambiar espacio por tiempo eliminando redundancia.
- Calcular una vez y compartirlo varias veces exactamente lo que hace la evaluación perezosa.

Se venden en combos...

- Se pueden comprar tequeños en combos de 6, 9 y 20.
- Se pueden comprar cero o más combos.

¿Se pueden comprar exactamente N tequeños?

Como un problema de decisión

```
comprar0 n = r!n
    where r = listArray(0,n)
                           (True : map f [1..n])
          f i = i >= 6 \&\& r!(i-6) ||
                 i >= 9 \&\& r!(i-9) ||
                 i \ge 20 \&\& r!(i-20)
```

- n-ésima posición del arreglo r indica si se puede o no.
- Si puedo comprar i 6 o i 9 o i 20 tequeños, entonces puedo comprar i.
- La posición inicial es True.
- Arreglo inmutable se genera con una iteración cerrada.

Como un problema de decisión

```
comprar0 n = r!n
    where r = listArray(0,n)
                           (True : map f [1..n])
          f i = i >= 6 \&\& r!(i-6) ||
                i >= 9 \&\& r!(i-9) ||
                i >= 20 \&\& r!(i-20)
```

- n-ésima posición del arreglo r indica si se puede o no.
- Si puedo comprar i 6 o i 9 o i 20 tequeños, entonces puedo comprar i.
- La posición inicial es True.
- Arreglo inmutable se genera con una iteración cerrada.

Si pero, *¡ cuántos* combos necesito?

Como un problema de combinación

```
comprar1 n = r!n
  where r = listArray(0,n)
                        (Just (0,0,0) : map f [1..n])
        f i = case attempt (i-6) of
           Just (x,y,z) \rightarrow Just (x+1,y,z)
                          -> case attempt (i-9) of
              Just (x,y,z) \rightarrow Just (x,y+1,z)
                             -> case attempt (i-20) of
                  Just (x,y,z) \rightarrow Just (x,y,z+1)
                                -> Nothing
         attempt x = if x >= 0 then r!x
                               else Nothing
```

Arreglo indica Maybe (Int,Int,Int) – cuántos combos de 6, 9 y 20.

Como un problema de combinación

```
comprar1 n = r!n
  where r = listArray(0,n)
                        (Just (0,0,0) : map f [1..n])
        f i = case attempt (i-6) of
           Just (x,y,z) \rightarrow Just (x+1,y,z)
                          -> case attempt (i-9) of
              Just (x,y,z) \rightarrow Just (x,y+1,z)
                             -> case attempt (i-20) of
                  Just (x,y,z) \rightarrow Just (x,y,z+1)
                                -> Nothing
         attempt x = if x >= 0 then r!x
                               else Nothing
```

- Arreglo indica Maybe (Int, Int, Int) cuántos combos de 6, 9 y 20.
- Esa cascada de case apesta a Monad Maybe.

Una solución más regular e idiomática

```
comprarM n = r!n
  where r = listArray (0,n)
                         (Just (0,0,0) : map f [1..n])
         f i = do (x,y,z) \leftarrow attempt (i-6)
                   return (x+1,y,z)
                'mplus'
                do (x,y,z) \leftarrow attempt (i-9)
                   return (x,y+1,z)
                'mplus'
                do (x,y,z) \leftarrow attempt (i-20)
                   return (x,y,z+1)
         attempt x = guard (x>=0) >> r!x
```

- Maybe es Monad attempt usa guard para "corto-circuito".
- Maybe es MonadPlus mplus produce el primer resultado o Nothing

No estamos siendo muy funcionales...

- Estamos manteniendo todo el arreglo en memoria ¿qué va a pasar cuando n sea grande?
- Sería más eficiente si pudiéramos reciclar las posiciones bajas del arreglo una vez que no hacen falta.
- Eso lo hace el recolector de basura si realizamos los cómputos de manera que los valores previos no hagan falta.

Un viejo truco que siempre está vigente

Una lista que se consume a si misma

```
comprar2 n = go n (True : replicate 19 False)
  where go 0 \text{ cs} = \text{cs} !! 0
         go n cs = go (n-1)
                             ((cs !! 5 ||
                               cs !! 8 ||
                               cs !! 19) : take 19 cs)
```

- Nunca necesitamos más de 20 elementos.
- El primero siempre es True y "sembramos" el resto con False.

Y ahora bajamos de nivel...

- $80120_{16} = 10000000000100100000_2$ bits 20, 9 y 6.
- El arreglo está empaquetado en un mapa de bits Data.Bits

¿Cuál es más rápido?

Usemos Criterion

Función	Promedio			
comprar0	$167.7562~\mu$ s			
comprar1	$192.1358~\mu$ s			
comprarM	$190.4110~\mu$ s			
comprar2	$663.5192~\mu$ s			
comprar3	008.2330 μ s			

¿Cuál es más rápido?

Usemos Criterion

Función	Promedio		
comprar0	167.7562 μ s		
comprar1	$192.1358~\mu \mathrm{s}$		
comprarM	$190.4110~\mu \mathrm{s}$		
comprar2	663.5192 μ s		
comprar3	008.2330 μ s		

¿Cuánto cuesta hacerlo así de rápido en C?

Distancia de Levenshtein

Usado en procesamiento de lenguaje natural

- Medida de la diferencia entre dos secuencias usualmente cadenas.
- Número mínimo de ediciones (agregar, eliminar o sustituir) para convertir una cadena en la otra.
- La distancia entre maduro y balurdo es tres
 - Maduro pasa a Baduro sustitución.
 - baDuro pasa a baLuro sustitucion.
 - baluro pasa a balurDo inserción.
 - No hay manera de hacerlo en menos de tres ediciones.

¿Cómo se calcula?

Distancia de Levenshtein

Una recurrencia

$$\mathit{lev}_{a,b}(i,j) = \left\{ egin{array}{ll} \mathit{max}(i,j) & \mathsf{cuando} \; \mathit{min}(i,j) = 0 \\ \mathit{min} & \left\{ egin{array}{ll} \mathit{lev}_{a,b}(i-1,j) + 1 \\ \mathit{lev}_{a,b}(i,j-1) + 1 \\ \mathit{lev}_{a,b}(i-1,j-1) + [a_i
eq b_j] \end{array}
ight.$$

- a y b son las cadenas a comparar distancia es $lev_{a,b}(|a|,|b|)$
- La implantación recursiva es obvia e ineficiente.
- La implantación dinámica típica usa una matriz para conservar las distancias entre todos los prefijos.

La matriz de "maduro" a "balurdo"

Guardando las distancias...

$$\mathit{lev}_{\mathsf{a},b}(i,j) = \left\{ egin{array}{ll} \mathit{max}(i,j) & \mathsf{cuando} \; \mathit{min}(i,j) = 0 \\ \mathit{min} & \left\{ egin{array}{ll} \mathit{lev}_{\mathsf{a},b}(i-1,j) + 1 \\ \mathit{lev}_{\mathsf{a},b}(i,j-1) + 1 \\ \mathit{lev}_{\mathsf{a},b}(i-1,j-1) + [\mathit{a}_i
eq \mathit{b}_j] \end{array}
ight.$$

		m	a	d	u	r	0
	0	1	2	3	4	5	6
b	1	1	2	3	4	5	6
а	2	2	1	2	3	4	5
ı	3	3	2	2	3	4	5
u	4	4	3	3	2	3	4
r	5	5	4	4	3	2	3
d	6	6	5	4	4	3	3
0	7	7	6	5	5	4	3

Expresado recursivamente

Se presta para listas por comprensión

```
lev0 s t = d !! (length s) !! (length t)
  where
    d = \Gamma
          [ delta m n | n \leftarrow [0 .. length t] ]
          | m <- [0 .. length s]
    delta i 0 = i
    delta 0 j = j
    delta i j = minimum [
        d !! (i-1) !! j + 1,
        d !! i !! (j-1) + 1,
        d !! (i-1) !! (j-1) +
                       (if s!!(i-1)==t!!(j-1) then 0
                                                else 1) ]
```

Con arreglos ha de ser más rápido...

Con arreglos ha de ser más rápido

- Imitar la solución imperativa requiere arreglos mutables.
 - Todos los cómputos son puros operar en el Monad ST.
 - Datos unboxed para máximo desempeño.

Parece un trabajo para STUArray

Arreglos mutables en Monad ST

La inicialización...

```
lev1 s t = d ! (ls . lt)
  where s' = array(0,ls)
                    [(i,x) | (i,x) \leftarrow zip [0..] s]
                    :: UArray Int Char
        t' = array(0,1t)
                    [(i,x) | (i,x) \leftarrow zip [0..] t]
                    :: UArray Int Char
        ls = length s
        lt = length t
        (1,h) = ((0,0),(length s,length t))
```

- s' y t' acceso rápido al i-ésimo caracter de cada palabra.
- 1 y h coordenadas mínima y máxima del arreglo mutable.

Arreglos mutables en Monad ST

La transformación...

```
d = runSTUArray $ do
    m \leftarrow newArray(1,h)0
         :: ST s (STUArray s (Int, Int) Int)
    forM [0..ls] $ \i -> writeArray m (i,0) i
    forM [0..lt] $\j -> writeArray m (0,j) j
    forM [1..lt] $ \i -> do
      forM [1..ls] $ \i -> do
        let c = if s'!(i-1) == t'!(j-1) then 0 else 1
        x \leftarrow readArray m (i-1,j)
        y <- readArray m (i,j-1)
        z \leftarrow readArray m (i-1,j-1)
        writeArray m (i,j) $ minimum [x+1, y+1, z+c]
    return m
```

- Arreglo unboxed de dos dimensiones no nos importa el estado.
- Se inicializan los "márgenes".

Iteración monádica anidada – traducción del método iterativo.

¿Y es más rápido?

Otra vez Criterion

```
benchmarking lev0
[\ldots]
mean: 6.826855 us,
      1b 6.803381 us, ub 6.857277 us, ci 0.950
benchmarking lev1
[\ldots]
mean: 2.909211 us,
      lb 2.901831 us, ub 2.917778 us, ci 0.950
```

Poco más del doble de rápido

Construyendo recursivamente

Reconsideremos el método...

- El arreglo se construye en una pasada.
- Cada celda se construye en base a vecinas previas su valor no cambiará más adelante.
- En realidad, el arreglo es inmutable una vez construido.
- Sirve un vulgar (y puro) Data.Array siempre y cuando se construya recursivamente.
- Cada celda es una función de sus vecinas –
 y la vecindad es una función de la coordenada actual.

Construyendo recursivamente

Lazy functional epicness

```
lev2 sa sb = table ! (length sa, length sb)
  where
    arrA = listArray (0, length sa - 1) sa
    arrB = listArray (0, length sb - 1) sb
    table = mkArray f ((0,0), (length sa, length sb))
    f(ia, 0) = ia
    f(0,ib) = ib
    f (ia.ib)
      | a == b = table ! (ia-1, ib-1)
      | otherwise = 1 + minimum [ table ! x |
                                   x < - [ (ia-1, ib-1),
                                          (ia-1, ib),
                                          (ia, ib-1)] ]
      where
        a = arrA ! (ia - 1)
        b = arrB ! (ib - 1)
```

¿Y es más rápido?

Otra vez Criterion

```
benchmarking lev0
[\ldots]
mean: 6.826855 us,
      lb 6.803381 us, ub 6.857277 us, ci 0.950
benchmarking lev1
[\ldots]
mean: 2.909211 us,
      lb 2.901831 us, ub 2.917778 us, ci 0.950
benchmarking lev2
[...]
mean: 2.222751 us.
      1b 2.216678 us, ub 2.230146 us, ci 0.950
```

Aún más rápido.

Quiero saber más...

- Documentación sobre Data. MemoTrie Lazy Memoization using Tries
- Página sobre la Distancia de Levenshtein en WikiPedia

