

DIGITAL EMC CO., LTD.

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATIO OF COMPLIANCE

NOVATRON CO., LTD #601 Polaris 1st Bldg., Jeongja-dong 15-2, bundang-gu, Seongnam-si, Gyeonggi-do,, Korea.

Dates of Tests: August 1 ~ 7, 2006 Test Report S/N: DR50110608F Test Site: DIGITAL EMC CO., LTD.

FCC ID

UDSHD36WNTD

APPLICANT

NOVATRON CO., LTD

FCC Classification : Digital Transmission System (DTS)

Kind of Equipment : MEDIA PLAYER

Manufacturer : NOVATRON CO., LTD

FCC ID : UDSHD36WNTD

Model name : NTD36HD

Band name: IAMM

Test Device Serial number : Identical prototype

Standard(s) : FCC Part 15.247 Subpart C

ANSI C-63.4-2003

Frequency Range : 2412 ~ 2462 MHz

Max. Output power : 802.11b – 14.70dBm Conducted

802.11g - 9.86dBm Conducted

Data of issue : August 7, 2006

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

NVLAP LAB CODE 200559-0

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST RESULT	6
3.1 SUMMARY OF TESTS	6
3.2 TRANSMITTER REQUIREMENTS	7
3.2.1 6 dB BANDWIDTH	7
3.2.2 PEAK OUTPUT POWER	12
3.2.3 OUT OF BAND EMISSIONS / BAND EDGE	19
3.2.4 OUT OF BAND EMISSION - RADIATED	26
3.2.5 TRANSMITTER POWER SPECTRAL DENSITY	39
3.2.6 AC CONDUCTED EMISSIONS	44
3.3 RECEIVER REQUIREMENTS	49
3.3.1 AC CONDUCTED EMISSIONS	49
3.3.2 OUT OF BAND EMISSION - RADIATED	52
ANNEX TEST FOLIPMENT USED FOR TESTS	54

FCC ID: UDSHD36WNTD

1. General information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080

http://www.digitalemc.com E-mail : demc@unitel.co.kr

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

This laboratory is accredited by NVLAP and NVLAP Lab. Code is 200559-0.

Test operator: engineer

August 7, 2006 Won -Jung LEE

Data Name Signature

Report Reviewed By: manager

August 7, 2006 Harvey Sung

Data Name Signature

Ordering party:

Company name : NOVATRON CO., LTD

Address #601 Polaris 1st Bldg., Jeongja-dong 15-2, bundang-gu,

Seongnam-si, Gyeonggi-do,

Country : Korea

Date of order : March 25, 2006

2. Information about test item

UDSHD36WNTD

2.1 Equipment information

Equipment model no.	NTD36HD
Equipment add model no.	LX350HD, CIBOX, RivX HD
Brand name	IAMM
Add Brand name	Eureka, CIBOX, RivX
Kind of equipment	MEDIA PLAYER
Frequency band	2412 ~ 2462 MHz
Type of Modulation	802.11b – CCK, DQPSK, DBPSK
Type of Woddiation	802.11g – OFDM
Type of antenna	Dipole Antenna
Power	Adaptor – Input : AC 120V, 60Hz
rowei	Output : DC 12V

2.2 Tested frequency

Frequency	DSSS
Low frequency	2412MHz
Middle frequency	2437MHz
High frequency	2462MHz

2.3 Tested environment

Temperature	:	15 ~ 35 (°C)
Relative humidity content	:	20 ~ 75 %
Air pressure	:	86 ~ 103 kPa
Details of power supply	:	120 V / 60Hz (powered by power supply)

UDSHD36WNTD

2.4 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing

-> none

2.5 Ancillary Equipment

Equipment	equipment Model No.		Manufacturer	
Color Monitor	SAM-14MV	F509M0962	SAMSUNG	
-	-	-	-	

3. Test Result

3.1 Summary of tests

FCC Section(s)	Parameter	Limit	Test	Status				
rec section(s)	1 at afficter	Limit	Condition	(note 1)				
I. Transmit mode(Tx)								
15.247(a)(2)	6 dB Bandwidth	> 500 kHz		С				
15.247(b)(3)	Transmitter Output Power	< 1Watt		С				
15.247(c)	Out of Band Emissions / Band Edge	20dBc in any 100kHz BW	Conducted	С				
15.247(d)	Transmitter Power Spectral Density	< 8dBm / 3kHz		С				
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	< FCC 15.209 limits	Radiated	С				
15.207	AC Conducted Emissions	EN 55022	Line Conducted	С				
II. Receive mode	e(Rx)							
15.207	AC Conducted Emissions	EN 55022	Line Conducted	С				
15.209	Receiver Spurious Emissions	< FCC 15.209 limits	Radiated	С				
Note 1: C=Comp	oly NC=Not Comply NT=Not Test	ed NA=Not Applicable						

The sample was tested according to the following specification:

- FCC Parts 15.247; ANSI C-63.4-2003

3.2 Transmitter requirements

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 50 MHz (Greater than EBW)

RBW = 100 kHz Sweep = auto

 $VBW = 100 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

Trace = max hold

Measurement Data:

Test Mode	Frequency	Channel	Test Results		
	(MHz) No.		Measured Bandwidth (MHz)	Result	
	2412	1	11.92	Comply	
802.11b	2437	6	11.83	Comply	
	2462	11	12.00	Comply	
802.11g	2412	1	16.67	Comply	
	2437	6	16.67	Comply	
	2462	11	16.67	Comply	

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

The minimum 6 dB bandwidth shall be at least 500 kHz

Low Channel

Middle Channel

6 dB Bandwidth

High Channel

Low Channel

Middle Channel

6 dB Bandwidth

High Channel

3.2.2 Peak Output Power

Test Procedure and Spectrum Analyzer setting:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal at the highest, middle and the lowest available channels.

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 26dB EBW.

The test is performed in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005. The transmitter operates continuously therefore Power Output Option 2, Method #1 is used.

Measurement Data:

Test Mode	Frequency	Ch.	Test Results				
Test Wiode	(MHz)	CII.	dBm	W	Result		
	2412	1	13.74	0.024	Comply		
802.11b	2437	6	14.70	0.030	Comply		
	2462	11	14.17	0.026	Comply		
	2412	1	9.09	0.008	Comply		
802.11g	2437	6	9.86	0.010	Comply		
	2462	11	9.70	0.009	Comply		

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:	< 1W
-------------------	------

26 dB Bandwidth and Peak Output Power

Low Channel

26 dB Bandwidth and Peak Output Power

Middle Channel

High Channel

Low Channel

Middle Channel

High Channel

3.2.3 Out of Band Emissions / Band Edge

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

This device complies with use of power option 2. The attenuation under this paragraph shall be 30dB instead of 20dB.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 100 MHz Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Comply

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 30dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 30 dBc
-------------------	----------

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Out of Band Emissions / Band Edge (at 30 dB blow) 802.11b Mode

Low Channel

Out of Band Emissions / Band Edge (at 30 dB blow) 802.11b Mode

Middle Channel

Out of Band Emissions / Band Edge (at 30 dB blow) 802.11b Mode

High Channel

Out of Band Emissions / Band Edge (at 30 dB blow) 802.11g Mode

Low Channel

Out of Band Emissions / Band Edge (at 30 dB blow) 802.11g Mode

Middle Channel

Out of Band Emissions / Band Edge (at 30 dB blow) 802.11g Mode

High Channel

3.2.4 Out of band Emission - Radiated

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic.}$

 $RBW = 120 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

VBW = 10Hz (Average), $VBW \ge RBW$ (Peak)

Trace = max hold

Sweep = auto

Measurement Data: Comply

- No emissions were detected at a level greater than 10dB below limit.
- Refer to the next page.

Minimum Standard: FCC Part 15.205 (a), 15.205(b), 15.209(a) and (b)

Limit: FCC P15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Restricted Band Edge: Low Channel (Peak, Horizontal)

802.11b Mode

Restricted Band Edge: Low Channel (Average, Horizontal)

Restricted Band Edge: Low Channel (Peak, Vertical)

802.11b Mode

Restricted Band Edge: Low Channel (Average, Vertical)

Restricted Band Edge: High Channel (Peak, Horizontal)

802.11b Mode

Restricted Band Edge: High Channel (Average, Horizontal)

Restricted Band Edge: High Channel (Peak, Vertical)

802.11b Mode

Restricted Band Edge: High Channel (Average, Vertical)

Restricted Band Edge: Low Channel (Peak, Horizontal)

802.11g Mode

Restricted Band Edge: Low Channel (Average, Horizontal)

Restricted Band Edge: Low Channel (Peak, Vertical)

802.11g Mode

Restricted Band Edge: Low Channel (Average, Vertical)

Restricted Band Edge: High Channel (Peak, Horizontal)

802.11g Mode

Restricted Band Edge: High Channel (Average, Horizontal)

Restricted Band Edge: High Channel (Peak, Vertical)

802.11g Mode

Restricted Band Edge: High Channel (Average, Vertical)

Radiated Spurious Emission Data

- Harmonics 802.11b Mode

Low Channel(2412MHz)										
Frequency ANT Pol (MHz) (H/V)			g Value uV)	T.F (dB)	Result (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
(WITIZ)	MHz) (H/V) PK AV	AV		PK	AV	PK	AV	PK	AV	
4824	V	51.84	39.11	10.25	62.09	49.36	74	54	11.91	4.64
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-

Middle Channel(2437MHz)

Frequency (MHz)	ANT Pol. (H/V)	Reading Value (dBuV)		T.F (dB)	Result (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
		PK	AV	(dD)	PK	AV	PK	AV	PK	AV
4874	V	50.42	38.14	10.14	60.56	48.28	74	54	13.44	5.72
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-

High Channel(2462MHz)

Frequency (MHz)	ANT Pol. (H/V)		g Value uV)	T.F (dB)		sult V/m)	Limit (dBuV/m)		Margin (dB)		
(WITIZ)	(11/ V)	PK	AV	(ub)	PK	AV	PK	AV	PK	AV	
4924	V	49.97	37.37	10.86	60.83	48.23	74	54	13.17	5.77	
-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	

Note 1. No other emissions were detected at a level greater than 10dB below limit.

- 2. T.F(Total Factor) = Cable Loss + Ant Factor AMP Gain
- 3. Result = Reading Value + T.F
- 4. Margin = Limit Result

Radiated Spurious Emission Data

- Continued

- Spurious 802.11b Mode

Frequency (MHz)	ANT Pol.	Reading Value (dBuV)			T.F	Result (dBuV/m)			Limit (dBuV/m)			Margin (dB)		
	(H/V)	PK	QP	AV	(dB)	PK	QP	AV	PK	QP	AV	PK	QP	AV
30	V	-	44.0	-	-7.80	-	36.20	-	-	40.0	-	-	3.80	-
71	V	-	55.0	-	-20.04	-	34.96	-	-	40.0	-	-	5.04	-
124	V	-	51.0	-	-12.57	-	38.43	-	-	43.5	-	-	5.07	-
170	Н	-	49.0	-	-8.87	-	40.13	-	-	43.5	-	-	3.37	-
178	V	-	44.5	-	-8.41	-	36.09	-	-	43.5	-	-	7.41	-
338	Н	-	50.5	-	-8.16	-	42.34	-	-	46.0		-	3.66	-
565	V	-	44.0	-	-5.05	-	38.95	-	-	46.0	-	-	7.05	-
1607	V	57.86	-	46.82	3.46	61.32	-	50.28	74	-	54	12.68	-	3.72
Middle C	hannel	(2437N	MHz)											
Frequency	ANT	Reading Value (dBuV)		T.F	Result (dBuV/m)			Limit (dBuV/m)			Margin (dB)			
(MHz)	Pol. (H/V)	PK	QP	AV	(dB)	PK	QP	AV	PK	QP	AV	PK	QP	AV
30	V	-	43.5	-	-7.80	-	35.70	-	-	40.0	-	-	4.30	-
71	V	-	55.5	-	-20.04	-	35.46	-	-	40.0	-	-	4.54	-
124	V	-	51.5	-	-12.57	-	38.93	-	-	43.5	-	-	4.57	-
170	Н	-	48.5	-	-8.87	-	39.63	-	-	43.5	-	-	3.87	-
178	V	-	45.0	-	-8.41	-	36.59	-	-	43.5	-	-	6.91	-
338	Н	-	50.0	-	-8.16	-	41.84	-	-	46.0	-	-	4.16	-
565	V	-	44.0	-	-5.05	-	38.95	-	-	46.0	-	-	7.05	-
1624	V	56.98	-	44.67	3.49	60.47	-	48.16	74	-	54	13.53	-	5.84
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
High Cha	nnel(2	462MI	<u>Iz)</u>											
Frequency (MHz)	ANT Pol.	Reading Value (dBuV)		T.F	Result (dBuV/m)			Limit (dBuV/m)			Margin (dB)			
	(H/V)	PK	QP	AV	(dB)	PK	QP	AV	PK	QP	AV	PK	QP	AV
30	V	-	44.0	-	-7.80	-	36.20	-	-	40.0	-	-	3.80	-
71	V	-	55.5	-	-20.04	-	35.46	-	-	40.0	-	-	4.54	-
124	V	-	51.5	-	-12.57	-	38.93	-	-	43.5	-	-	4.57	-
170	Н	-	49.0	-	-8.87	-	40.13	-	-	43.5	-	-	3.37	-
178	V	-	45.0	-	-8.41	-	36.59	-	-	43.5	-	-	6.91	-
	1	l	-			 			-			 		

Note 1. No other emissions were detected at a level greater than 10dB below limit.

59.32

-8.16

-5.05

3.53

2. T.F(Total Factor) = Cable Loss + Ant Factor – AMP Gain

42.78

3. Result = Reading Value + T.F

50.0

44.5

4. Margin = Limit - Result

55.79

338

565

1641

Н

V

V

Low Channel(2412MHz)

4.16

6.55

7.69

46.0

46.0

54

14.68

41.84

39.45

46.31

74

Radiated Spurious Emission Data

- Harmonics 802.11g Mode

Low Channel(2412MHz)										
Frequency (MHz)	(ubu v)	T.F (dB)	tubu	sult V/m)	Limit (dBuV/m)		Margin (dB)			
(IVIIIZ)		PK	AV	(ub)	PK	AV	PK	AV	PK	AV
4824	V	45.76	34.07	10.25	56.01	44.32	74	54	17.99	9.68
-	-	-	-	-	-	-	-	Ī	-	-
-	-	-	-	-	_	-	-	-	-	-

Middle Channel(2437MHz)

Frequency (MHz)	ANT Pol. (H/V)	Reading Value (dBuV) T.F (dB)		Result (dBuV/m)		Limit (dBuV/m)		Margin (dB)		
		PK	AV	(ub)	PK	AV	PK	AV	PK	AV
4874	V	47.07	35.28	10.14	57.21	45.42	74	54	16.79	8.58
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-

High Channel(2462MHz)

Frequency	ANT Pol. (H/V)		g Value uV)	T.F (dB)		sult V/m)		mit V/m)		rgin B)
(WITIZ)	(MHz) (H/V)	PK	AV	(ub)	PK	AV	PK	AV	PK	AV
4924	V	44.02	31.8	10.86	54.88	42.66	74	54	19.12	11.34
-	-	-	-	-	-	-	ı	-	-	1
-	-	-	-	-	-	-	ı	-	-	-

Note 1. No other emissions were detected at a level greater than 10dB below limit.

- 2. T.F(Total Factor) = Cable Loss + Ant Factor AMP Gain
- 3. Result = Reading Value + T.F
- 4. Margin = Limit Result

Radiated Spurious Emission Data

- Continued

- Spurious 802.11g Mode

zow cha	111101(2		. <u></u>											
Frequency	ANT Pol.	Rea	ading Va (dBuV)	lue	T.F	(Result dBuV/m	1)	(Limit dBuV/m	1)		Margin (dB)	
(MHz)	(H/V)	PK	QP	AV	(dB)	PK	QP	AV	PK	QP	AV	PK	QP	AV
30	V	-	45.0	-	-7.80	-	37.20	-	-	40	-	-	2.80	-
71	V	-	54.0	-	-20.04	-	33.96	-	-	40	-	-	6.04	-
124	V	-	49.5	-	-12.57	-	36.93	-	-	43.5	-	-	6.57	-
170	Н	-	48.0	-	-8.87	-	39.13	-	-	43.5	-	-	4.37	-
178	V	-	43.0	-	-8.41	-	34.59	-	-	43.5	-	-	8.91	-
338	Н	-	49.5	-	-8.16	-	41.34	-	-	46	-	-	4.66	-
565	V	-	42.0	-	-5.05	-	36.95	-	-	46	-	-	9.05	-
1608	V	53.18	-	39.93	3.46	56.64	-	43.39	74	-	54	17.36	-	10.61
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Middle C	hannel	(2437N	MHz)											
	ANT	Rea	ading Va	lue			Result			Limit			Margin	
Frequency	Pol.		(dBuV)		T.F	(dBuV/m	1)	(dBuV/m	1)		(dB)	
(MHz)	(H/V)	PK	QP	AV	(dB)	PK	QP	AV	PK	QP	AV	PK	QP	AV
30	V	-	43.5	-	-7.80	-	35.70	-	-	40.0	-	-	4.30	-
71	V	-	55.5	-	-20.04	-	35.46	-	-	40.0	-	-	4.54	-
124	V	-	51.5	-	-12.57	-	38.93	-	-	43.5	-	-	4.57	-
170	Н	-	48.5	-	-8.87	-	39.63	-	-	43.5	-	-	3.87	-
178	V	-	45.0	-	-8.41	-	36.59	-	-	43.5	-	-	6.91	-
338	Н	-	50.0	-	-8.16	-	41.84	-	-	46.0	-	-	4.16	-
565	V	-	44.0	-	-5.05	-	38.95	-	-	46.0	-	-	7.05	-
1624	V	57.13	-	43.35	3.49	60.62	-	46.84	74	-	54	13.38	-	7.16
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
High Cha	nnel(2	462MI	<u>Iz)</u>											
Frequency	ANT Pol.	Rea	ading Va (dBuV)	lue	T.F	(Result dBuV/m	1)	(Limit dBuV/m	1)		Margin (dB)	
(MHz)	(H/V)	PK	QP	AV	(dB)	PK	QP	AV	PK	QP	AV	PK	QP	AV
30	V	-	44.5	-	-7.80	-	36.70	-	-	40.0	-	-	3.30	-
71	V	-	55.0	-	-20.04	-	34.96	-	-	40.0	-	-	5.04	-
124	V	-	50.5	-	-12.57	-	37.93	-	-	43.5	-	-	5.57	-
170	Н	-	48.5	-	-8.87	-	39.63	-	-	43.5	-	-	3.87	-
178	V	-	43.0	-	-8.41	-	34.59	-	-	43.5	-	-	8.91	-
	1	1	1	1	1	1	1	l	l	1	†	+		+

Note 1. No other emissions were detected at a level greater than 10dB below limit.

60.54

-8.16

-5.05

3.53

2. T.F(Total Factor) = Cable Loss + Ant Factor – AMP Gain

42.92

3. Result = Reading Value + T.F

49.0

42.5

4. Margin = Limit - Result

57.01

5.16

8.55

7.55

V

V

338

565

1641

Low Channel(2412MHz)

40.84

37.45

46.45

74

46.0

46.0

54

13.46

Procedure:

The transmitter output is connected to a spectrum analyzer. Locate and zoom in on emission peak within the passband. The maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3kHz and VBW > 9kHz, sweep time= auto, video averaging is turned off. Trace average 100 traces in power averaging mode. The PPSD is the highest level found across the emission in any 3kHz band. The test is performed in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005. The transmitter output power was measured with power output option #2. Therefore, PSD was measured with PSD option #2.

Measurement Data:

Test Mode	Frequency	Channel No.	Test Results			
Test Mode	(MHz)	Channel 140.	Power Density (dBm)	Result		
	2412	1	-12.22	Comply		
802.11b	2437	6	-11.32	Comply		
	2462	11	-11.84	Comply		
	2412	1	-17.54	Comply		
802.11g	2437	6	-16.83	Comply		
	2462	11	-16.86	Comply		

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

The transmitter power density average over 1-second interval shall not be greater than 8 dBm in any 3kHz BW.

Low Channel

Middle Channel

High Channel

Low Channel

Middle Channel

High Channel

3.2.6 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. Emissions closest to the limit are measured in the quasi-peak mode (QP) and average mode(AV) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Comply

- See next pages for actual measured spectrum plots.

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

^{*} Decreases with the logarithm of the frequency

Figure 2: Measurement setup for AC Conducted Emission

AC Conducted Emissions - Neutral Graph(802.11b Mode)

AC Conducted Emissions - Line Graph(802.11b Mode)

AC Conducted Emissions -DATA(802.11b Mode)

<<CONDUCTED EMISSION>> : FCC Part.15 : MOVATRON Standard Manufacturer Mode1 : NTD36HD : W.J.LEE Operator AC Power Temp, Humidity : 25°C 57% Remarkl : 802.11b Remark2 : Traffic Mode Remark3 Final Result --- N Phase ---No. Frequency Reading Reading c.f Margin Margin Remark QP AV QP AV QP AV QP AV [dB(µV)] [dB(µV)] [dB] $[\operatorname{dB}(\mu V)] \quad [\operatorname{dB}(\mu V)] \quad [\operatorname{dB}(\mu V)] \quad [\operatorname{dB}(\mu V)]$ [dB] [MHs] [dB] 46.2 41.3 38.5 35.0 64.7 45.9 38.2 34.2 54.7 18.5 12.000 40.5 15.0 --- Ll Phase ---Mo. Frequency Reading Reading c.f Result Result Limit Limit Margin Margin Remark OP AV OP AV QP AV QP AV QP AV (MHz] (dB(µV)] (dB(µV)] (dB)
1 0.176 47.8 41.1 0.1
2 12.554 41.0 35.3 0.6 [dB] [dB(μ V)] [dB(μ V)] [dB(μ V)] [dB(μ V)] [dB] [dB] 47.9 41.6 41.2 64.7 35.9 60.0 54.7 50.0 16.8 18.4 14.1

AC Conducted Emissions - Neutral Graph (802.11g Mode)

AC Conducted Emissions - Line Graph (802.11g Mode)

AC Conducted Emissions - DATA (802.11g Mode)

DIGITAL EMC <<CONDUCTED EMISSION>> 11 August,2006 17:20 : FCC Part.15 : NOVATRON Standard Manufacturer Model : NTD36HD : W.J.LEE Operator : 120V AC Power : 25'C Temp, Humidity Remarkl : 802.11g : Traffic Mode Remark2 Remark3 Final Result --- N Phase ---No. Frequency Reading Reading c.f Result Result Limit Limit Margin Margin Remark QP AV QP QP AV QP AV [MHz] [dB(μV)] [dB(μV)] [dB] $[dB(\mu V)] \quad [dB(\mu V)] \quad [dB(\mu V)] \quad [dB(\mu V)]$ [dB] 37.9 0.176 45.4 12.014 40.5 54.7 0.3 45.7 41.3 38.2 35.5 64.7 19.0 16.5 2 12.014 60.0 50.0 14.5 --- L1 Phase --No. Frequency Reading Reading c.f Result Result Limit Limit Margin Margin Remark AV OP AV AV OP OP OP AV [MHz] [dB(µV)] [dB(µV)] [dB] [dB(µV)] [dA(µV)] [13.6 15.0

3.3 Receiver requirements

3.3.1 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its receiving function. Emissions closest to the limit are measured in the quasi-peak mode (QP) and average mode(AV) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Comply

- See next pages for actual measured spectrum plots.

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)	
(MHz)	Quasi-Peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

^{*} Decreases with the logarithm of the frequency

Measurement Setup

Same as the Chapter 3.2.9 (Figure 2)

AC Conducted Emissions - Neutral Graph

AC Conducted Emissions - Line Graph

AC Conducted Emissions -DATA

<<CONDUCTED EMISSION>> 11 August, 2006 15:20 : FCC Part.15 : MOVATRON Standard Manufacturer Model : NTD36HD : W.J.LEE Operator : 120V : 25'C AC Power Temp, Humidity 57% Remarkl : 802.11b Remark2 : Idle Mode Final Result --- N Phase ---No. Frequency Reading Reading c.f Result Result Limit Limit Margin Margin Remark QP QP QP QP $[\mathtt{MHs}] \qquad [\mathtt{dB}\,(\mu \mathtt{V})\,] \quad [\mathtt{dB}\,(\mu \mathtt{V})\,]$ [dB] $\left[dB\left(\mu V\right) \right] \quad \left[dB\left(\mu V\right) \right] \quad \left[dB\left(\mu V\right) \right] \quad \left[dB\left(\mu V\right) \right]$ [dB] [dB] 41.4 64.7 54.7 1 0.176 47.5 12.239 39.3 41.1 35.3 0.3 0.8 47.8 40.1 16.9 13.3 2 12.239 36.1 60.0 50.0 19.9 13.9 --- L1 Phase ---No. Frequency Reading Reading c.f Result Result Limit Limit Margin Margin Remark QP AV QP AV QP AV QP [MHs] [dB(μ V)] [dB(μ V)] [dB] $\left[\operatorname{dB} \left(\mu V \right) \right] \quad \left[\operatorname{dB} \left(\mu V \right) \right] \quad \left[\operatorname{dB} \left(\mu V \right) \right] \quad \left[\operatorname{dB} \left(\mu V \right) \right]$ [dB] [dB] 0.176 46.2 12.277 39.1 37.9 0.1 46.3 38.0 33.8 0.6 39.7 34.4 64.7 54.7 60.0 50.0 18.4 16.7 15.6 20.3

3.3.2 Out of Band Emissions - Radiated

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in a OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic.}$

 $RBW = 120 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$

= 1 MHz (1 GHz \sim 10th harmonic) VBW = 10Hz (Average), VBW \geq RBW (Peak)

Trace = max hold Detector function = peak

Sweep = auto

Measurement Data: Comply

- Refer to the Next page

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data:

Frequency	P	Reading	C.F	Result	Limit	Margin
30	V	44.0	-7.80	36.20	40.0	3.80
71	V	56.5	-20.04	36.46	40.0	3.54
83	Н	54.0	-19.13	34.87	40.0	5.13
83	V	55.0	-19.13	35.87	40.0	4.13
98	Н	47.5	-16.49	31.01	43.5	12.49
98	V	50.5	-16.49	34.01	43.5	9.49
125	Н	44.5	-12.57	31.93	43.5	11.57
125	V	51.0	-12.57	38.43	43.5	5.07
139	Н	46.5	-11.37	35.13	43.5	8.37
139	V	46.0	-11.37	34.63	43.5	8.87
171	Н	49.0	-8.87	40.13	43.5	3.37
178	Н	40.0	-8.41	31.59	43.5	11.91
178	V	44.5	-8.41	36.09	43.5	7.41
337	Н	50.0	-8.16	41.84	46.0	4.16
565	V	43.0	-5.05	37.95	46.0	8.05
805	Н	41.5	-1.23	40.27	46.0	5.73
-	-	-	-	-	-	-

APPENDIX

TEST EQUIPMENT USED FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	S/N
01	Spectrum Analyzer	Agilent	E4404B	21/03/07	US41061134
02	Spectrum Analyzer	Agilent	E4440A	05/10/07	MY45304199
03	Spectrum Analyzer	H.P	8563E	06/10/07	3551A04634
04	Power Meter	H.P	EMP-442A	06/07/07	GB37170413
05	Power Sensor	H.P	8481A	23/03/07	3318A96566
06	Frequency Counter	H.P	5342A	21/10/06	2119A04450
07	Multifunction Synthesizer	H.P	8904A	21/10/06	3633A08404
08	Signal Generator	Rohde Schwarz	SMR20	22/03/07	101251
09	Signal Generator	H.P	ESG-3000A	06/07/07	US37230529
10	Audio Analyzer	H.P	8903B	06/07/07	3011A09448
11	Modulation Analyzer	H.P	8901B	10/07/07	3028A03029
12	Oscilloscope	Tektronix	TDS3052	01/10/06	B016821
13	CDMA Mobile Station Test Set	H.P	8924C	21/10/06	US35360688
14	Universal Radio Communication tester	Rohde Schwarz	CMU200	21/03/07	107631
15	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	13/06/07	GB43461134
16	Bluetooth Tester	TESCOM	TC-3000A	21/10/06	3000A4A0121
17	Multisystem Ue Tester	Japan Radio Co.,Ltd	NJZ-2000	14/11/06	ET00095
18	Power Splitter	WEINSCHEL	1593	21/10/06	332
19	BAND Reject Filter	Microwave Circuits	N0308372	21/10/06	3125-01DC0312
20	BAND Reject Filter	Wainwright	WRCG1750	21/10/06	SN2
21	AC Power supply	DAEKWANG	5KVA	20/03/07	N/A
22	DC Power Supply	H.P	6622A	21/03/07	465487
23	Attenuator (30dB)	H.P	8498A	21/10/06	50101
24	Attenuator (10dB)	WEINSCHEL	23-10-34	21/10/06	BP4387
25	HORN ANT	EMCO	3115	06/03/07	6419
26	HORN ANT	EMCO	3115	25/04/07	21097
27	HORN ANT	A.H.Systems	SAS-574	09/11/06	154
28	HORN ANT	A.H.Systems	SAS-574	09/11/06	155
29	Dipole Antenna	Schwarzbeck	VHA9103	18/10/06	2116
30	Dipole Antenna	Schwarzbeck	VHA9103	18/10/06	2117
31	Dipole Antenna	Schwarzbeck	UHA9105	18/10/06	2261
32	Dipole Antenna	Schwarzbeck	UHA9105	18/10/06	2262

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	S/N
33	RFI/FIELD Intensity Meter	Kyorits	KNM-504D	07/07/07	SN-161-4
34	Frequency Converter	Kyorits	KCV-604C	07/07/07	4-230-3
35	TEMP & HUMIDITY Chamber	JISCO	J-RHC2	13/09/06	021031
36	Log Periodic Antenna	Schwarzbeck	UHALP9108A1	29/09/06	1098
37	Biconical Antenna	Schwarzbeck	VHA9103	04/04/07	2233
38	Digital Multimeter	Н.Р	34401A	20/03/07	3146A13475
39	Attenuator (10dB)	WEINSCHEL	23-10-34	21/10/06	BP4386
40	High-Pass Filter	ANRITSU	MP526D	21/10/06	MP27756
41	Attenuator (3dB)	Agilent	8491B	21/10/06	58177
42	Amplifier (25dB)	Agilent	8447D	12/04/07	2944A10144
43	Amplifier (30dB)	Agilent	8449B	21/10/06	3008A01590
44	Position Controller	TOKIN	5901T	N/A	14173
45	Driver	TOKIN	5902T2	N/A	14174
46	Spectrum Analyzer	Н.Р	8591E	21/03/07	3649A05889
47	RFI/FIELD Intensity Meter	Kyorits	KNW-2402	11/07/07	4N-170-3
48	LISN	Kyorits	KNW-407	11/08/06	8-317-8
49	LISN	Kyorits	KNW-242	27/09/06	8-654-15
50	CVCF	NF Electronic	4400	N/A	344536 4420064
51	Software	ToYo EMI	EP5/RE	N/A	Ver 2.0.800
52	Software	ToYo EMI	EP5/CE	N/A	Ver 2.0.801
53	Software	AUDIX	e3	N/A	Ver 3.0
54	Software	Agilent	Benchlink	N/A	A.01.09 021211