Задание 4 "RMQ и деревья по неявному ключу"

Дедлайн 20 мая 2019 г.

Ссылка на контест:

https://contest.yandex.ru/contest/12703/enter/

Ведомость:

https://docs.google.com/spreadsheets/d/1Y0w6mLCwHihoDzg90t7SahquiY 1dx3Y4BkEpynn6z2s/edit#gid=1410407627

Задача 1. Вторая статистика (RMQ) (5 баллов)

Дано число N и последовательность из N целых чисел. Найти вторую порядковую статистику на заданных диапазонах.

Для решения задачи используйте структуру данных **Sparse Table.** Требуемое время обработки каждого диапазона O(1). Время подготовки структуры данных O(n log n).

Формат входных данных.

- В первой строке заданы 2 числа: размер последовательности N и количество диапазонов M.
- Следующие N целых чисел задают последовательность.
- Далее вводятся М пар чисел границ диапазонов.

Гарантируется, что каждый диапазон содержит как минимум 2 элемента.

Формат выходных данных.

Для каждого из М диапазонов напечатать элемент последовательности - 2ю порядковую статистику. По одному числу в строке.

in	out
10 3	2
12345678910	2
1 2	3
1 10	
2 7	

Задача 2. Дерево отрезков (5 баллов)

2_1. Сумма на подотрезке.

Дан массив из целых чисел a_1 , a_2 , ..., a_n (индексация с 1!). Для каждого запроса [left, right] найдите такой подотрезок a_l , a_{l+1} , ..., a_r этого массива (1 <= left <= l <= r <= right <= n), что сумма чисел a_l + a_{l+1} + ... + a_r является максимально возможной.

Требуемое время ответа на запрос - O(log n).

Формат входных данных.

Входные данные содержат один или несколько тестовых примеров. Описание каждого из них начинается с двух чисел n и m - длины массива и числа интересующих подотрезков.

В следующей строке содержится n чисел — элементы массива. Каждое из этих чисел по абсолютной величине не превосходит 10^4 .

Далее следуют описания подотрезков, каждое описание состоит из двух чисел *left* и *right*, обозначающих левый и правый конец подотрезка ($1 \le left \le right \le n$).

Суммарная длина всех массивов, а также суммарное число подотрезков не превосходит 10⁵.

Формат выходных данных.

Для каждого из тестовых примеров выведите m чисел: искомую максимальную сумму для каждого из подотрезков.

in	out
10 3	50
-100 1 2 3 4 -10 50 -100 -1 2	10
1 10	-1
1 5	3
9 9	3
5 2	
-1 2-1 2 -1	
15	
2 4	

2_2. Последовательность единиц. Дан массив из нулей и единиц a_0 , a_1 , ..., a_{n-1} . Для каждого запроса [left, right] найдите такой подотрезок a_i , a_{i+1} , ..., a_r этого массива (0 <= left <= l <= r <= right < n), что числа a_i , a_{i+1} , ..., a_r являются максимально возможной последовательностью единиц.

Требуемое время ответа на запрос - O(log n).

Формат входных данных.

Описание каждого теста начинается с двух чисел n и m - длины массива и числа интересующих подотрезков.

В следующей строке содержится *п* нулей и единиц.

Далее следуют описания подотрезков, каждое описание состоит из двух чисел *left* и *right*, обозначающих левый и правый конец подотрезка ($0 \le left \le right \le n$).

Формат выходных данных.

Для каждого примера выведите *m* чисел: искомую максимальную длину послеовательности единиц для каждого из подотрезков.

in	out
10 4	0
0101111011	3
2 2	4
1 5	1
0 9	

99	

Задача 3. LCA (5 баллов)

Задано дерево с корнем, содержащее n (1 $\leq n \leq$ 100 000) вершин, пронумерованных от 0 до n–1. Требуется ответить на m (1 $\leq m \leq$ 10 000 000) запросов о наименьшем общем предке для пары вершин. Запросы генерируются следующим образом. Заданы числа a_1 , a_2 и числа a_3 , a_2 числа a_3 , a_2 генерируются следующим образом: $a_i = (x \cdot a_{i-2} + y \cdot a_{i-1} + z)$ mod a_1 . Первый запрос имеет вид a_2 . Если ответ на a_2 запрос равен a_2 и запрос имеет вид a_2 весли ответ на a_3 запрос равен a_4 но a_4 запрос имеет вид a_4 но a_4 но

Для решения задачи можно использовать метод двоичного подъёма.

Формат входных данных.

- Первая строка содержит два числа: n и m. Корень дерева имеет номер 0.
- Вторая строка содержит n-1 целых чисел, i-е из этих чисел равно номеру родителя вершины i.
- Третья строка содержит два целых числа в диапазоне от 0 до n-1: a_1 и a_2 .
- Четвертая строка содержит три целых числа: x, y и z, эти числа неотрицательны и не превосходят 10^9 .

Формат выходных данных.

Выведите в выходной файл сумму номеров вершин — ответов на все запросы.

in	out
3 2	2
0 1	
2 1	
1 1 0	

Задача 4. Супер-массив строк (5 баллов)

Реализуйте структуру данных "массив строк" на основе декартового дерева по неявному ключу со следующими методами:

```
// Добавление строки в позицию position.

// Все последующие строки сдвигаются на одну позицию вперед.

void InsertAt( int position, const std::string& value );

// Удаление строки из позиции position.

// Все последующие строки сдвигаются на одну позицию назад.

void DeleteAt( int position );

// Получение строки из позиции position.

std::string GetAt( int position );
```

Все методы должны работать за O(log n) в среднем, где n – текущее количество строк в массиве.

Формат входных данных.

Первая строка содержит количество команд $k \le 10^6$.

Последующие *k* строк содержат описания команд:

- Команда "+ 10 hello" означает добавление строки hello в позицию 10.
- Команда "- 14 16" означает удаление строк от позиции 14 до позиции 16 включительно.
- Команда "? 33" означает запрос на вывод строки из массива в позиции 33.

Формат выходных данных.

Выведите все строки, запрошенные командами "?".

in	out
6	krya
+ 0 myau + 0 krya ? 0 + 2 gav - 1 1	gav
+ 0 krya	
? 0	
+ 2 gav	
-11	
? 1	