

合金生產品質預測

使用資料集

資料集來源:

Kaggle: Metal-Furnace

描述:

此資料集紀錄了金屬熔爐中冶金製程的28 個匿名因素 (編號為f0至f27)與其產品的合金品質。

專題目標與流程

找出冶金製程中與產品品質高度相關的關鍵因子

選擇不同的機器學習模型訓練並評估結果

使用精準度較高的模型對新資料集進行預測

資料清洗

f9的欄位0值太多,選擇drop不放入模型訓練

```
1 data = data.drop(['f9'],axis=1)
```

- 0.75

-0.25

-0.50

-0.75

Correlation

Matrix

Feature Importance

0.25 0.20 0.15 0.10 0.05 0.00 0 5 10 15 20 25

RandomForestClassifier

XGBClassifier,

KNeighborsClassifier

與產品品質高度相關的因子

Correlation Matrix	f9
Feature Importance	f12 f13 f16

切割資料集與載入模型

```
1 from sklearn.model_selection import train_test_split
2 from sklearn.tree import DecisionTreeClassifier
3 from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
4 X = data.iloc[:,:-1]
5 y = data.iloc[:,-1]
6 train_X, test_X, train_y, test_y=train_test_split(X, y, test_size=0.2, random_state=17, shuffle=True, stratify=y)
```

模型選擇

RandomForestClassifier

Gradient Boosting Classifier

XGBoostClassifier

預測新資料集

輸出預測結果

```
使用預測準確率最高的模型(RandomForestClassifier)進行預測
   1 TestPredictions = rfcgrid.predict(pre_data)
    2 PredictResult = {'grade':TestPredictions}
    3 Result = pd. DataFrame (PredictResult)
    4 Result
∃
       grade
    261
    262
    263
    264
    265
   266 rows × 1 columns
    1 Result. to_csv("/content/gdrive/My Drive/predict_result.csv")
```

1		grade
	0	2
	1	3
	2	2
	3	3
	4	2
	5	2
	6	2
	7	2
10	8	2
11	9	2
12	10	1
	11	2
1 <	12	2
15	13	2
16	14	3
17	15	2
	16	1
	17	2
20	18	2
21	19	2
22	20	2
23	21	2
24	22	2
	23	2
26	24	2
27	25	2
28	26	2
29	27	2
30	28	2
21		

Thank You For Watching!