Information Theory Prof. Mário S. Alvim

SOLUTION OF HOMEWORK

DISCRETE PROBABILITY - PART 1/2 (BASED ON SLIDE-SET)

Necessary reading for this assignment:

- Slide-set of Lecture 01 Discrete Probability:
 - An Introduction to Discrete Probability
 - Probability Theory

Note: The exercises are labeled according to their level of difficulty: [Easy], [Medium] or [Hard]. This labeling, however, is subjective: different people may disagree on the perceived level of difficulty of any given exercise. Don't be discouraged when facing a hard exercise, you may find a solution that is simpler than the one the instructor had in mind!

Review questions.

- 1. (Rosen Review Question 7-1) [Easy]
 - (a) Define the probability of an event when all outcomes are equally likely.

Instructor's solution: Given a sample espace S and an event $E \subseteq S$, the probability of E is given by p(E) = |E|/|S|.

(b) What is the probability that you select the six winning numbers in a lottery if the six different winning numbers are selected from the first 50 positive integers?

Instructor's solution: The sample space S is the set of all possible combinations of six different numbers taken from 50, which means that $|S| = C(50, 6) = 50!/(6!44!) = 15\,890\,700$.

We are interested in the event E that the right combination is selected, which means |E| = 1. Hence, we have $p(E) = |E|/|S| = 1/15\,890\,700$.

- 2. (Rosen Review Question 7-2) [Easy]
 - (a) What conditions should be met by the probabilities assigned to the outcomes from a finite sample space?

Instructor's solution: The probability distribution $p:S\to\mathbb{R}$ on a sample space S must satisfy:

- i) $0 \le p(s) \le 1$, for all $s \in S$, and
- ii) $\sum_{s \in S} p(s) = 1$.
- (b) What probabilities should be assigned to the outcome of heads and the outcome of tails if heads comes up three times as often as tails?

Instructor's solution: The sample space is $S = \{H, T\}$, where H represents heads and T represents tails.

We are told that p(H) = 3p(T). Since it must be the case that p(H) + p(T) = 1, we deduce that 3p(T) + p(T) = 1, and hence p(T) = 1/4. From that we derive that p(H) = 3/4.

- 3. (Rosen Review Question 7-3) [Easy]
 - (a) Define the conditional probability of an event E given an event F.

Instructor's solution: The probability of event E given event F is given by $p(E \mid F) = |E \cap F|/|F|$.

(b) Suppose E is the event that when a die is rolled it comes up an even number, and F is the event that when a die is rolled it comes up 1, 2, or 3. What is the probability of F given E?

Instructor's solution: The sample space S is the set of all outcomes of the roll of a die, i.e., $S = \{1, 2, 3, 4, 5, 6\}$, and hence |S| = 6.

We are interested in $p(F \mid E) = |E \cap F|/|E|$.

The event $E \cap F$ is the event of the die coming up both an even number and a number in $\{1, 2, 3\}$, hence $E \cap F = \{2\}$ and $|E \cap F| = 1$.

The event E is the set $E = \{2, 4, 6\}$, hence |E| = 3.

Then we can calculate that $p(F \mid E) = |E \cap F|/|E| = 1/3$.

- 4. (Rosen Review Question 7-4) [Easy]
 - (a) When are two events E and F independent?

Instructor's solution: Two events E and F in a sample space S are independent when $p(E) = p(E \mid F)$.

Equivalently, we can say they are independet when $p(E \cap F) = p(E)p(F)$.

(b) Suppose E is the event that an even number appears when a fair die is rolled, and F is the event that a 5 or 6 comes up. Are E and F independent?

Instructor's solution: The sample space S is the set of all outcomes of the roll of a die, i.e., $S = \{1, 2, 3, 4, 5, 6\}$, and hence |S| = 6.

The event E is the set $E = \{2, 4, 6\}$, hence p(E) = |E|/|S| = 3/6 = 1/2.

The event F is the set $F = \{5, 6\}$, hence p(F) = |F|/|S| = 2/6 = 1/3.

The event $E \cap F$ is the set $\{6\}$, hence $p(E \cap F) = |E \cap F|/|S| = 1/6 = 1/6$.

We can verify that $p(E)p(F) = 1/2 \cdot 1/3 = 1/6$ is equal to $p(E \cap F) = 1/6$, hence E and F are independent events.

- 5. (Rosen Review Question 7-5) [Easy]
 - (a) What is a random variable?

Instructor's solution: A random variable is a function $X: S \to \mathbb{R}$ from the sample space S of an experiment to the reals.

A random variable maps each possible result of an experiment to a real number.

(b) What are the possible values assigned by the random variable X that assigns to a roll of two dice the larger number that appears on the two dice?

Instructor's solution: The possible values of X are 1, 2, 3, 4, 5, 6.

Exercises.

6. (Rosen 7.1-5) [Easy] What is the probability that the sum of the numbers on two dice is even when they are rolled?

Instructor's solution: The sample space of rolling two dice can be represented by the following table, where the entry (i, j) is the result where the first die (d_1) comes up i and the second die (d_2) comes up j.

d_1/d_2	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	112

Of the 36 possible results, 18 are an even sum, hence the probability of obtaining an even sum in the rolling of two dice is 18/36 = 1/2.

7. (Rosen 7.1-21) [Easy] What is the probability that a fair die never comes up an even number when it is rolled six times?

Instructor's solution: The sample space is the set of all possible 6-tuples of integers between 1 and 6, where the i^{th} element in the tuple $(1 \le i \le 6)$ represents the result of the i^{th} roll of the die.

The size of the sample space is the total of 6-tuples that can be formed, that is, $|S| = 6^6 = 46656$.

Let E be the event that no even number comes up, that means that each of the 6 positions in the tuple is either 1, 3, or 5. That means that $|E| = 3^6 = 729$.

Hence, we can calculate p(E) = |E|/|S| = 729/46656 = 1/64.

8. (Rosen 7.1-37) [Medium] Which is more likely: rolling a total of 9 when two dice are rolled or rolling a total of 9 when three dice are rolled?

Instructor's solution: Let's approach each case separately.

• If two dice are rolled the sample space S_2 consists in all tuples (i, j) where i is the result of the first die and j is the result of the second die. Because $1 \le i, j \le 6$, $|S_2| = 6 \cdot 6 = 36$. We are interested in the event E_2 that the sum of i + j in a tuple (i, j) equals 9. We can see that

 $E_2 = \{(3,6), (4,5), (5,4), (6,3)\}, \text{ hence } p_2(E_2) = |E_2|/|S_2| = 4/36 = 1/9.$

• If three dice are rolled the sample space S_3 consists in all tuples (i, j, k) where i is the result of the first die, j is the result of the second die, and k is the result of the third die. Because $1 \le i, j, k \le 6$, $|S_3| = 6 \cdot 6 \cdot 6 = 216$.

We are interested in the event E_3 that the sum of i + j + k in a tuple (i, j, k) is equal 9.

We can see that $E_3 = \{(1,2,6), (1,3,5), (1,4,4), (1,5,3), (1,6,2), (2,1,6), (2,2,5), (2,3,4), (2,4,3), (2,5,2), (2,6,1), (3,1,5), (3,2,4), (3,3,3), (3,4,2), (3,5,1), (4,1,4), (4,2,3), (4,3,2), (4,4,1), (5,1,3), (5,2,2), (5,3,1), (6,1,2), (6,2,1)\},$ hence $p_3(E_3) = |E_3|/|S_3| = 25/216$.

Since $p_2(E_2) = 1/9 = 216/1944 < 225/1944 = 25/216 = p_3(E_3)$, we conclude that it is more likely to obtain a sum of 9 by rolling 3 dice than by rolling 2.

9. (Rosen 7.2-1) [Easy] What probability should be assigned to the outcome of heads when a biased coin is tossed, if heads is three times as likely to come up as tails? What probability should be assigned to the outcome of tails?

Instructor's solution: The sample space is $S = \{H, T\}$, where H stands for heads and T for tails. We know that p(H) = 3p(T) and that p(H) + p(T) = 1. Hence we have a system of 2 equations and two variables that when solved lead to p(H) = 3/4 and p(T) = 1/4.

10. (Rosen 7.2-11) [Hard] Suppose that E and F are events such that p(E) = 0.7 and p(F) = 0.5. Show that $p(E \cup F) \ge 0.7$ and $p(E \cap F) \ge 0.2$.

Instructor's solution: First, note that since $E \subseteq E \cup F$, we have that $p(E) \le p(E \cup F)$, and hence $p(E \cup F) \ge 0.7$.

Second, note that $p(E \cup F) = p(E) + p(F) - p(E \cap F)$, and we can write

$$\begin{split} p(E \cap F) = & p(E) + p(F) - p(E \cup F) \\ = & 0.7 + 0.5 - p(E \cup F) \\ = & 1.2 - p(E \cup F) \\ \geq & 1.2 - 1 \\ = & 0.2. \end{split} \qquad \text{(since } p(E \cup F) \leq 1)$$

11. (Rosen 7.2-17) [Hard] If E and F are independent events, prove or disprove that \overline{E} and F are necessarily independent events.

Instructor's solution: We will prove that if E and F are independent events, \overline{E} and F are necessarily independent events.

We want to show that $p(\overline{E} \cap F) = p(\overline{E})p(F)$, under the assumption that E and F are independent.

$$p(\overline{E} \cap F) = p(F)p(\overline{E} \mid F)$$
 (by def. of conditional probability)
$$= p(F)(1 - p(E \mid F))$$
 (since $p(E \mid F) + p(\overline{E} \mid F) = 1$)
$$= p(F)(1 - p(E))$$
 (since E and F are independent, $p(E \mid F) = p(E)$)
$$= p(F)p(\overline{E})$$
 ($p(\overline{E}) = 1 - p(E)$)

12. (Rosen 7.2-25) [Medium] What is the conditional probability that a randomly generated bit string of length four contains at least two consecutive 0s, given that the first bit is a 1? (Assume the probabilities of a 0 and a 1 are the same.)

Instructor's solution: The sample space S is the set of all binary strings of size 4, that is, $|S| = 2^4 = 16$.

Let E be the event that the string starts with a 1, and F be the event that the string has two consecutive zeros. We are interested in calculating $p(F \mid E) = |E \cap F|/|E|$.

Let E be the event that the string starts with a 1, hence $|E| = 2^3 = 8$ strings (all possibilities for the last 3 bits, since the first one is fixed).

The event $E \cap F$ is the event that a string starts with a 1 and has two consecutive 0s. It is easy to see that $E \cap F = \{1000, 1001, 1100\}$.

Hence we can calculate $p(F \mid E) = |E \cap F|/|E| = 3/8$.

13. (Rosen 7.2-27(b)) [Medium] Let E and F be the events that a family of 4 children has children of both sexes and has at most one boy, respectively. Are E and F independent?

Instructor's solution: E and F are independent iff $p(E \cap F) = p(E)p(F)$.

The sample space S is the set of all possible ways a family can have 4 kids according to sex, hence $|S| = 2^4 = 16$.

Let B represent a boy and G represent a girl.

Let E be the event that the family has children of both sexes. It means that $E = S - \{BBBB, GGGG\}$, hence |E| = 16 - 2 = 14 and p(E) = 14/16 = 7/8.

Let F be the event that the family has at most one boy. It means that $F = \{GGGG, BGGG, GGGG, GGGG, GGGG, GGGG\}$, hence |F| = 5 and p(F) = 5/16.

The event $E \cap F$ is that in which the family has at most one boy, and children of both sexes, hence $E \cap F = \{BGGG, GBGG, GGGG, GGGGB\}$, leading to $|E \cap F| = 4$ and $p(E \cap F) = 4/16 = 1/4$

Now we can verify that $p(E)p(F) = 7/8 \cdot 5/16 = 70/256$, which is different from $p(E \cap F) = 1/4$, and hence E and F are not independent.