Code in the MASS framework

Renato Fabbri (USP), Vilson Vieira da Silva Junior (Cod.ai), Antônio Carlos Silvano Pessotti (Unimep), Débora Cristina Corrêa, Osvaldo N. Oliveira Jr. (USP)

September 20, 2017

Abstract

This document displays the Python code in the MASS framework. The code is accessible as Python scripts in the main repository [1], and this PDF is made available because it might facilitate browsing the implementations. Check the final consideration in this document for further directions.

1 Sections

Here is the code related to each section of the MASS article [2].

Python implementation of equations in Section 2

```
import numpy as n
    from scipy.io import wavfile as w
   # auxiliary functions \_n and \_s.
   # These only normalize the sonic vectors and
   # write them as 16 bit, 44.1kHz WAV files.
    def __n(sonic_array):
        """Normalize sonic_array to have values only between -1 and 1"""
9
        t = sonic_array
10
        if n.all(sonic_array==0):
11
             return sonic_array
12
13
             return ( (t-t.min()) / (t.max() -t.min()) )*2.-1.
14
15
   def __s(sonic_array=n.random.uniform(size=100000), filename="asound.wav", f_s=44100):
    """A minimal approach to writing 16 bit WAVE files.
16
```

```
18
       One can also use, for example:
19
           import sounddevice as S
20
           S.play(array) # the array must have values between -1 and 1"""
21
22
       # to write the file using XX bits per sample
23
       # simply use s = n.intXX(__n(sonic_array)*(2**(XX-1)-1))
       s = n.int16(\_n(sonic\_array)*32767)
25
       w.write(filename, f_s, s)
27
28
   # relation between the number of samples and the sound duration
30
   f_s = 44100 # sample rate
31
   Delta = 3.7 # duration of Delta in seconds
32
33
   Lambda = int(f_s*Delta) # number of samples
   # Eq. 1
35
   T = n.zeros(Lambda) # silence with ~Delta, in seconds
36
37
   # write as a PCM file (WAV)
   __s(T, 'silence.wav')
39
40
   41
   Lambda = 100 # 100 samples
42
   T = n.random.random(Lambda) # 100 random samples
44
   # Eq. 2 Power of wave
45
   pow1 = (T**2.).sum()/Lambda
46
47
   T2 = n.random.normal(size=Lambda)
   pow2 = (T2**2.).sum()/Lambda # power of another wave
49
   # Eq. 3 Volume difference, in decibels, given the powers
51
   V_{-}dB = 10.*n.log10(pow2/pow1)
52
   # Eq. 4 double the amplitude \Rightarrow gains 6 dB
54
55
   pow2 = (T2**2.).sum()/Lambda
   V_dB = 10.*n.log10(pow2/pow1)
57
   is\_6db = abs(V\_dB - 6) < .05 # is\_6db is True
59
   # Eq. 5 double the power \Rightarrow gains 3 dB
60
   pow2 = 2.*pow1
   V_{dB} = 10.*n.log10(pow2/pow1)
62
   is_3dB = abs(V_dB - 3) < .05 # is_3dB is True
   # Eq. 6 double the volume \Rightarrow gains 10 dB \Rightarrow amplitude * 3.16
65
   V_dB = 10.
   A = 10.**(V_dB/20.)
67
   T2 = A*T # A ~ 3.1622776601
68
   # Eq. 7 Decibels to amplification conversion
70
   A = 10.**(V_dB/20.)
71
```

72

```
73
   f_{-0} = 441
7.5
    lambda_0 = f_s//f_0
76
   cycle = n.arcsin(n.random.random(lambda_0)) # random samples
   # Eq. 8 Sound with fundamental frequency f_0
78
    Tf = n.array(list(cycle)*1000) # 1000 cycles
79
80
   # normalizing to interval [-1, 1]
81
   __s(Tf,'f_0.wav')
83
   L = 100000. # sample number of sequences (Lambda)
86
    ii = n.arange(L)
   f = 220.5
   lambda_f = f_s/f
   # Eq. 9 Sinusoid
    Sf = n.sin(2.*n.pi*f*ii/f_s)
   # Eq. 10 Sawtooth
   Df = (2./lambda_f)*(ii % lambda_f)-1
   # Eq. 11 Triangular
94
    Tf = 1.-n.abs(\overline{2}.-(4./lambda_f)*(ii % lambda_f))
   # Eq. 12 Square
96
    Qf = ((ii \% lambda_f) < (lambda_f/2))*2-1
    Rf = w.read("22686__acclivity__oboe-a-440_periodo.wav")[1]
   # Eq. 13 Sampled period
100
    Tf = Rf[n int64(ii) % len(Rf)]
101
102
103
   104
   Lambda = 50
    T = n.random.random(Lambda)*2.-1.
106
    C_k = n.fft.fft(T)
    A_k = n.real(C_k)
108
   B_K = n.imag(C_k)
   w_k = 2.*n.pi*n.arange(Lambda)/Lambda
110
111
   # Eq .14 Spectrum recomposition in time
112
    def t(i):
113
       return (1./Lambda)*n.sum(C_k*n.e**(1j*w_k*i))
114
115
   # Eq. 15 Real recomposition
116
    def tR(i):
117
       return (1./Lambda)*n.sum(n.abs(C_k)*n.cos(w_k*i-n.angle(C_k)))
118
119
   # Eq. 16 Number of paired spectrum coefficients
    tau = int( (Lambda - Lambda % 2)/2 + Lambda % 2-1 )
121
122
   # Eq. 17 Equivalent coefficients
123
   F_k = C_k[1:tau+1]
124
  F2_k = C_k[Lambda-tau:Lambda][::-1]
```

```
126
   # Eq. 18 Equivalent modules of coefficients
127
   ab = n \cdot abs(F_k)
128
    ab2 = n.abs(F2_k)
129
   MIN = n.abs(ab-ab2).sum() # MIN ~ 0.0
130
131
   # Eq, 19 Equivalent phases of coefficients
132
    an = n.angle(F_k)
133
    an2 = n.angle(F2_k)
134
   MIN = n.abs(an+an2).sum() # MIN ~ 0.0
136
   # Eq. 20 Components combination in each sample
137
    w_k = 2*n.pi*n.arange(Lambda)/Lambda
138
139
    def t_{-}(i):
140
        return (1./Lambda)*(A_k[0]+2.*n.sum(n.abs(C_k[1:tau+1]) *
141
                           n.cos(w_k*i-n.angle(C_k)) + A_k[Lambda/2] *
142
                           (1-Lambda % 2)))
143
144
   146
    f = 220.5 \# Herz
147
    Delta = 2.5 # seconds
    Lambda = int(2.5*f_s)
149
   ii = n.arange(Lambda)
151
   # Eq. 21 Basic note (preliminary)
152
   ti_= n.random.random(int(f_s/f)) # arbitrary sequence of samples
    TfD = ti_[ii % len(ti_)]
154
   # Eq. 22 Choose any waveform
156
    Lf = [Sf, Qf, Tf, Df, Rf][1] # We already calculated these sequences
157
158
   # Eq. 23 Basic note
159
    TfD = Lf[ii % len(Lf)]
160
161
162
   163
   zeta = 0.215  # meters
164
   # considering any (x,y) localization
165
   x = 1.5 # meters
   y = 1. # meters
167
   # Eq. 24 Distances from each ear
   d = n.sqrt((x-zeta/2)**2+y**2)
169
   d2 = n.sqrt((x+zeta/2)**2+y**2)
170
   # Eq. 25 Interaural Time Difference
   ITD = (d2-d)/343.2 # segundos
   # Eq. 26 Interaural Intensity Difference
173
   IID = 20*n.log10(d/d2) # dBs
175
   # Eq. 27 DTI and DII application in a sample sequence (T)
176
   Lambda_ITD = int(ITD*f_s)
177
    IID_a = d/d2
178
   T = 1-n.abs(2-(4./lambda_f)*(ii % lambda_f)) # triangular
```

```
T2 = n.hstack((n.zeros(Lambda_ITD), IID_a*T))
    T = n.hstack((T, n.zeros(Lambda_ITD)))
182
    som = n.vstack((T2, T)).T
183
w.write('stereo.wav', f_s, som)
    # mirrored
185
    som = n.vstack((T, T2)).T
    w.write('stereo2.wav', f_s, som)
187
    # Eq. 28 Object angle
189
    theta = n.arctan(y/x)
190
    # Reverberation is implemented in 3.py
192
    # because it makes use of knowledge of the next section
193
195
   Delta = 3. # 3 seconds
    Lambda = int(Delta*f_s)
198
    f1 = 200. \# Hz
   foo = n.linspace(0., Delta*f1*2.*n.pi, Lambda, endpoint=False)
200
   T1 = n.sin(foo) # sinusoid of Delta seconds and freq = f1
    f2 = 245. \# Hz
203
    lambda_f2 = int(f_s/f2)
204
   T2 = (n.arange(Lambda) % lambda_f < (lambda_f2/2))*2-1 # square
205
    f3 = 252. \# Hz
207
    lambda_f3 = f_s/f3
    T3 = n.arange(Lambda) % lambda_f3 # sawtooth
209
   T3 = (T3/T3.max())*2-1
210
212 # Eq. 29 mixing
213 T = T1+T2+T3
214 # writing file
   __s(T, 'mixed.wav')
215
# Eq. 30 concatenation
218  T = n.hstack((T1, T2, T3))
219  # writing file
__s(T, 'concatenated.wav')
```

Python implementation of equations in Section 3

```
import numpy as n
1
   from scipy.io import wavfile as w
   # auxiliary functions __n and __s.
   # These only normalize the sonic vectors and
   # write them as 16 bit, 44.1kHz WAV files.
   def __n(sonic_array):
    """Normalize sonic_array to have values only between -1 and 1"""
        t = sonic_array
10
11
        if n.all(sonic_array==0):
            return sonic_array
12
13
        else:
            return ( (t-t.min()) / (t.max() -t.min()) )*2.-1.
14
15
   def __s(sonic_array=n.random.uniform(size=100000), filename="asound.wav", f_s=44100):
    """A minimal approach to writing 16 bit WAVE files.
16
17
18
        One can also use, for example:
19
            import sounddevice as S
20
            S.play(array) # the array must have values between -1 and 1"""
21
22
        # to write the file using XX bits per sample
23
       # simply use s = n.intXX(__n(sonic_array)*(2**(XX-1)-1))
24
        s = n.int16(\_n(sonic\_array)*32767)
25
       w.write(filename, f_s, s)
26
27
   f_s = 44100 # Hz, sample rate
29
30
# at least 1024 samples in the table
32
   Lambda_tilde = Lt = 1024
33
34
   # Sinusoid
35
   foo = n.linspace(0, 2*n.pi, Lt, endpoint=False)
36
   S = n.sin(foo) # a sinusoidal period with T samples
37
   # Square:
39
   Q = n.hstack((n.ones(Lt/2)*-1, n.ones(Lt/2)))
40
41
   # Triangular:
42
   foo = n.linspace(-1, 1, Lt/2, endpoint=False)
43
Tr = n.hstack((foo, foo*-1))
45
   # Sawtooth:
46
   D = n.linspace(-1, 1, Lt)
47
49 # real sound, import period and
50 # use the number of samples in the period
   Rf = w.read("22686__acclivity__oboe-a-440_periodo.wav")[1]
51
52
   f = 110. \# Hz
53
54 Delta = 3.4 # seconds
55 Lambda = int(Delta*f_s)
```

```
56
   # Samples:
58 ii = n.arange(Lambda)
60 # Eq. 31 LUT
   Gamma = n.array(ii*f*Lt/f_s, dtype=n.int)
   # It is possible to use S, Q, D or any other period of a real sound
    # with a sufficient length
63
   L = Tr
   TfD = L[Gamma % Lt]
65
67
   68
   # == FREQUENCY VARIATIONS ==
   f_0 = 100. # initial freq in Hz

f_f = 300. # final freq in Hz
7.0
   Delta = 2.4 # duration
74 Lambda = int(f_s*Delta)
   ii = n.arange(Lambda)
# Eq. 32 linear variation
  f_i = f_0+(f_f-f_0)*ii/(float(Lambda)-1)
78 # Eq. 33 coefficients for LUT
   D_{gamma} = f_{i*Lt/f_s}
    Gamma = n.cumsum(D_gamma)
    Gamma = n.array(Gamma, dtype=n.int)
   # Eq. 34 resulting sound
   TfOff = L[Gamma % Lt]
83
# Eq. 35 exponential variation
   f_{i} = f_{0}*(f_{f}/f_{0})**(ii/(float(Lambda)-1))
* # Eq. 36 coefficients for the LUT
   D_gamma = f_i*Lt/f_s
    Gamma = n.cumsum(D_gamma)
89
    Gamma = n.array(Gamma, dtype=n.int)
   # Eq. 37 resulting sound
91
    TfOff = L[Gamma % Lt]
93
94
   # == INTENSITY VARIATIONS ==
   # First, make/have an arbitrary sound to
   # apply the variations in amplitude
   f = 220. \# Hz
   Delta = 3.9 # seconds
99
   Lambda = int(Delta*f_s)
101
102
    # Sample indexes:
   ii = n.arange(Lambda)
103
104
105
   # (as in Eq. 31)
   Gamma = n.array(ii*f*Lt/f_s, dtype=n.int)
106
   L = Tr
   T = TfD = L[Gamma % Lt]
108
110 a_0 = 1. # starting fraction of the amplitude
```

```
a_f = 12. # ending fraction of the amplitude
111
    alpha = 1. # index of transition smoothing
113
    # Eq. 38 exponential transition of amplitude
114
    A = a_0*(a_f/a_0)**((ii/float(Lambda))**alpha)
    # Eq. 39 applying envelope A to the sound
116
    T2 = A*T
117
118
    # Eq. 40 linear transition of amplitude
119
    A = a_0 + (a_f - a_0) * (ii/float(Lambda))
120
121
    # Eq. 41 exponential transition of V_dB decibels
122
    V_{-}dB = 31.
123
    T2 = T*((10*(V_dB/20.))**((ii/float(Lambda))**alpha))
124
125
126
   127
    # See src/aux/delays.py for generating Fig. 17
128
    # See src/aux/filters/iir.py for generating Fig. 18
129
130
    # synthetic impulse response (for a "reverb", a better reverb is bellow in: Reverberation)
131
    H = (n.random.random(10)*2-1)*n.e**(-n.arange(10))
132
    # Eq. 42 Convolution (application of a FIR filter)
134
    T2 = n.convolve(T, H) # T from above
135
    # Eq. 43 difference equation
137
    A = n.random.random(2) # arbitrary coefficients
B = n.random.random(3) # arbitrary coefficients
138
139
140
141
    def applyIIR(signal, A, B):
        signal_{-} = []
142
143
        for i, sample in enumerate(signal):
             samples_A = signal[i::-1][:len(A)]
144
             A_coeffs = A[:i+1]
145
            A\_contrib = (samples\_A*A\_coeffs).sum()
146
147
             samples_B = signal_[-1:-1-i:-1][:len(B)-1]
             B_{coeffs} = B[1:i+1]
149
            B_contrib = (samples_B*B_coeffs).sum()
150
             t_i = (A_contrib + B_contrib)/B[0]
151
             signal_.append(t_i)
152
        return signal_
153
154
    # Eq. 44 low-pass IIR filter with a single pole
156
    x = n.e**(-2*n.pi*fc) # fc => cutoff frequency where the resulting signal has -3dB
157
    # coefficients
    a0 = 1-x
159
    b1 = x
    # applying the filter
161
    T2 = [T[0]]
162
    for t_i in T[1:]:
163
        T2.append(t_i*a_0+T2[-1]*b1)
164
165
```

```
# Eq. 45 high-pass filter with a single pole
166
    x = n.e**(-2*n.pi*fc) # fc => cutoff frequency where the resulting signal has -3dB
    # coefficients
168
a_{0} = (1+x)/2
_{170} a1 = -(1+x)/2
    b1 = x
171
172
    # applying the filter
173
   T2 = [a0*T[0]]
    last = T[0]
175
    for t_i in T[1:]:
176
        T2 += [a0*t_i + a1*last + b1*T2[-1]]
177
        last = n.copy(t_i)
178
179
180
    fc = .1 # now fc is the center frequency
181
182
    bw = .05
    # Eq. 46 Auxiliary variables for the notch filters
183
    r = 1-3*bw
    k = (1-2*r*n.cos(2*n.pi*fc)+r**2)/(2-2*n.cos(2*n.pi*fc))
185
186
    # Eq. 47 band-pass filter coefficients
187
    a0 = 1-k
188
    a1 = -2*(k-r)*n.cos(2*n.pi*fc)
_{190} a2 = r**2 - k
    b1 = 2*r*n.cos(2*n.pi*fc)
191
    b2 = -r**2
192
193
   # applying the filter
    T2 = [a0*T[0]]
195
    T2 += [a0*T[1]+a1*T[0]+b1*T2[-1]]
196
    last1 = T[1]
197
    last2 = T[0]
198
    for t_i in T[2:]:
        T2 += [a0*t_i+a1*last1+a2*last2+b1*T2[-1]+b2*T2[-2]]
200
        last2 = n.copy(last1)
201
        last1 = n.copy(t_i)
202
203
# Eq. 48 band-reject filter coefficients
    a0 = k
205
a1 = -2*k*n.cos(2*n.pi*fc)
_{207} a2 = k
    b1 = 2*r*n.cos(2*n.pi*fc)
208
209
    b2 = -r**2
210
211 # applying the filter
   T2 = [a0*T[0]]
212
    T2 += [a0*T[1]+a1*T[0]+b1*T2[-1]]
213
    last1 = T[1]
214
    last2 = T[0]
215
    for t_i in T[2:]:
        T2 += [a0*t_i+a1*last1+a2*last2+b1*T2[-1]+b2*T2[-2]]
217
        last2 = n.copy(last1)
218
        last1 = n.copy(t_i)
219
220
221
```

```
222
    # See src/filters/ruidos.py for rendering Figure 19
    Lambda = 100000 # Use an even Lambda for compliance with the following snippets
    # Separation between frequencies of neighbor spectral coefficients:
    df = f_s/float(Lambda)
226
227
    # Eq. 49 White noise
    # uniform moduli of spectrum and random phase
229
    coefs = n.exp(1j*n.random.uniform(0, 2*n.pi, Lambda))
230
    f0 = 15. # minimum frequency which we want in the sound
232
    i0 = n.floor(f0/df) # first coefficient to be considered
    coefs[:i0] = n.zeros(i0)
234
    # coefficients have real part even and imaginary part odd
236
    coefs[Lambda/2+1:] = n.real(coefs[1:Lambda/2])[::-1] - 1j * 
237
        n.imag(coefs[1:Lambda/2])[::-1]
    coefs[0] = 0. # no bias (no offset)
239
    coefs[Lambda/2] = 1. # max freq is only real (as explained in Sec. 2.5)
241
   # Achievement of the temporal samples of the noise
242
    ruido = n.fft.ifft(coefs)
244
    r = n.real(ruido)
    __s(r, 'white.wav')
246
    # auxiliary variables to all the following noises
    fi = n.arange(coefs.shape[0])*df # frequencies related to the coefficients
248
    f0 = fi[i0] # first frequency to be considered
249
250
   # Eq. 50 Pink noise
251
    # the volume decreases by 3dB at each octave
252
    factor = 10.**(-3/20.)
    alphai = factor**(n.log2(fi[i0:]/f0))
254
    c = n.copy(coefs)
256
    c[i0:] = coefs[i0:]*alphai
    # real is even, imaginary is odd
258
    c[Lambda/2+1:] = n.real(c[1:Lambda/2])[::-1] - 1j * 
259
        n.imag(c[1:Lambda/2])[::-1]
260
261
    ruido = n.fft.ifft(c)
262
    r = n.real(ruido)
263
    __s(r, 'pink.wav')
265
266
    # Eq. 51 Brown(ian) noise
    # the volume decreases by 6dB at each octave
268
    fator = 10.**(-6/20.)
269
    alphai = fator**(n.log2(fi[i0:]/f0))
270
    c = n.copy(coefs)
271
    c[i0:] = c[i0:]*alphai
273
    # real is even, imaginary is odd
274
    c[Lambda/2+1:] = n.real(c[1:Lambda/2])[::-1] - 1j * 
275
        n.imag(c[1:Lambda/2])[::-1]
276
277
```

```
ruido = n.fft.ifft(c)
278
279
    r = n.real(ruido)
    __s(r, 'brown.wav')
280
281
    ruido_marrom = n.copy(r) # it will be used for reverberation
282
283
   # Eq. 52 Blue noise
285
    # the volume increases by 3dB at each octave
286
    fator = 10.**(3/20.)
    alphai = fator**(n.log2(fi[i0:]/f0))
288
   c = n.copy(coefs)
    c[i0:] = c[i0:]*alphai
290
    # real is even, imaginary is odd
292
    c[Lambda/2+1:] = n.real(c[1:Lambda/2])[::-1] - 1j * 
293
        n.imag(c[1:Lambda/2])[::-1]
295
    ruido = n.fft.ifft(c)
    r = n.real(ruido)
297
    __s(r, 'blue.wav')
299
300
    # Eq. 53 Violet noise
    # the volume increses by 6dB at each octave
302
    fator = 10.**(6/20.)
303
    alphai = fator**(n.log2(fi[i0:]/f0))
    c = n copy(coefs)
305
    c[i0:] = c[i0:]*alphai
307
    # real is even, imaginary is odd
308
    c[Lambda/2+1:] = n.real(c[1:Lambda/2])[::-1] - 1j * \
309
        n.imag(c[1:Lambda/2])[::-1]
310
311
    ruido = n.fft.ifft(c)
312
    r = n.real(ruido)
313
    __s(r, 'violet.wav')
314
315
    # Eq.54 Black noise
316
    # the volume decreases more than 6dB at each octave
317
318
    fator = 10.**(-12/20.)
    alphai = fator**(n.log2(fi[i0:]/f0))
319
    c = n.copy(coefs)
320
    c[i0:] = c[i0:]*alphai
322
    # real is even, imaginary is odd
323
    c[Lambda/2+1:] = n.real(c[1:Lambda/2])[::-1] - 1j * 
324
        n.imag(c[1:Lambda/2])[::-1]
325
326
    ruido = n.fft.ifft(c)
327
    r = n.real(ruido)
    __s(r, 'black.wav')
329
330
331
   332
    # See src/aux/vibrato.py and src/aux/tremolo.py for rendering Figures 20 and 21
```

```
f = 220.
334
    Lv = 2048 # size of the table for the vibrato
    fv = 1.5 # vibrato frequency
    nu = 1.6 # maximum semitone deviation (vibrato depth)
    Delta = 5.2 # sound duration
338
    Lambda = int(Delta*f_s)
339
   # Vibrato table
341
   x = n.linspace(0, 2*n.pi, Lv, endpoint=False)
    tabv = n.sin(x) # sinusoidal vibrato
343
344
    ii = n.arange(Lambda) # indices
345
    # Eq. 55 indexes of the LUT for the vibrato
346
    Gammav = n.array(ii*fv*float(Lv)/f_s, n.int)
    # Eq. 56 samples of the oscillatory pattern of the vibrato
    Tv = tabv[Gammav % Lv]
349
    # Eq. 57 frequency at each sample
    F = f*(2.**(Tv*nu/12.))
351
    # Eq. 58 indexes of the LUT for the sound
352
    D_{gamma} = F*(Lt/float(f_s)) # displacement in the table for each sample
    Gamma = n.cumsum(D_gamma) # total displacement at each sample
354
    Gamma = n.array(Gamma, dtype=n.int) # final indexes
355
    # Eq. 59 the samples of the sound
356
    T = Tr[Gamma % Lt] # Lookup
357
358
    __s(T, "vibrato.wav")
359
361
    Tt = n.copy(Tv) # same oscillatory pattern from the vibrato
362
    # Eq. 60 Envelope of the tremolo
363
    V_dB = 12. # decibels variation involved in the tremolo (tremolo depth)
364
    A = 10**((V_dB/20)*Tt) # amplitude multiplicative factors for each sample
    # Eq. 61 Application of the amplitude envelope to the original sample sequence T
    Gamma = n.array(ii*f*Lt/f_s, dtype=n.int)
367
    T = Tr[Gamma % Lt]
    T = T*A
369
    __s(T, "tremolo.wav")
371
372
    # the following equations are not used to synthesize sounds,
373
    # but only to express the spectrum resulting from FM and AM synthesis
    # Eq. 62 - FM spectrum, implemented in Eqs. 65-69
    # Eq. 63 - Bessel function
    # Eq. 64 - AM spectrum, implemented in Eqs. 70,71
377
378
    fv = 60. # typically, fv > 20Hz (otherwise one might want to use the equations above for the vibra
    # Eq. 65 indexes of the LUT for the FM modulator
380
    Gammav = n.array( ii*fv*float(Lv)/f_s, n.int )
    # Eq. 66 oscillatory pattern (sample-by-sample) of the modulator
    Tfm = tabv[Gammav % Lv]
383
   f = 330.
    mu = 40.
385
    # Eq. 67 frequency at each sample
```

```
F = f+Tfm*mu
    # Eq. 68 indexes of the LUT
    D_{gamma} = f_{i*}(Lt/float(f_s)) # displacement in the lookup between each sample
    Gamma = n.cumsum(D_gamma) # total displacement in the lookup at each sample
390
    Gamma = n.array(Gamma, dtype=n.int) # indexes
    # Eq. 69 FM
392
    T = S[Gamma % Lt] # final samples
393
394
    # writing the sound file
    __s(T, "fm.wav")
396
397
398
    # AM
399
    Tam = n.copy(Tfm)
    V_dB = 12. # am depth in decibels
401
    alpha = 10**(V_dB/20.) # AM depth in amplitude
    # 2.71 AM envelope
403
    A = 1 + alpha * Tam
404
    Gamma = n.array(ii*f*Lt/f_s, dtype=n.int)
    # 2.70 AM
406
    T = Tr[Gamma % Lt]*A
407
    __s(T, "am.wav")
408
409
410
    411
    # Eq. 72 Relations between characteristics
412
    # See the musical piece Tremolos, vibratos and the frequency
413
    # in src/pieces3/bonds.py TremolosVibratosEaFrequencia.py
414
415
    # Doppler effect
416
    v_r = 10 # receptor moves in the direction of the source with velocity v_r = 10
    v_s=-80. # source moves in the direction of receptor with velocity v_s m/s
418
    v_som=343.2
419
    f_0=1000 # frequency of the source
420
421
    # Eq. 73 Frequency resulting from the Doppler effect
    f = ((v_som + v_r) / (v_som + v_s)) * f_0
423
    # after crossing of source and receptor:
424
    f_{-}=((v_{som} - v_{r}) / (v_{som} - v_{s})) * f_{0}
425
426
    # initial distances:
    x_0=0 # source at front of x_0
428
    y_0=200 # height of y_0 metros
429
430
    Delta=5. # duration in seconds
431
    Lambda=Delta*f_s # number of samples
    # posições ao longo do tempo, X_i=n.zeros(Lambda)
433
    Y=y_0 - ((v_r-v_s)*Delta) * n.linspace(0,1,Lambda)
434
435
    # At each sample, calculating ITD and IID as explained in the last section
436
    # In this case, ITD e IID are == 0 because the source is centered
    # Eq. 74 Amplitude resulting from the Doppler effect
438
439
    # Assume z_0 meters above receptor:
    7 0=2.
440
    D=( z_0**2+Y**2 )**0.5 # distance at each PCM sample
```

```
# Amplitude of sound related to the distance:
442
    A_=z_0/D
    # Amplitude change factor resulting from the Doppler effect:
444
    A_DP=((v_r-v_s)/343.2+1)**0.5
445
    A_DP_=((-v_r+v_s)/343.2+1)**0.5
446
    A_DP=(Y>0)*A_DP+(Y<0)*A_DP_
447
    A=A_ * A_DP
448
449
    # Upon crossing, the velocities change sign:
450
    # Eq. 75 Frequency progression
    coseno=(Y)/((Y**2+z_0**2)**0.5)
452
453
    F=( ( 343.2+v_r*coseno ) / ( 343.2+v_s*coseno ) )*f_0
    # coefficients of the LUT
454
    D_{gamma} = F*Lt/f_{s}
455
    Gamma = n.cumsum(D_gamma)
    Gamma = n.array(Gamma, dtype=n.int)
457
    L = Tr # Triangular wave
459
    # Resulting sound:
460
    Tdoppler = L[Gamma % Lt]
461
    Tdoppler*=A
462
    # normalizing and writing sound
464
    __s(Tdoppler, 'doppler.wav')
466
467
    ###### Reverberation
    # First reverberation period:
469
    Delta1 = 0.15 # typically E [0.1,0.2]
470
    Lambda1= int(Delta1*f_s)
471
    Delta = 1.9 # total duration of reverberation
472
    Lambda=int(Delta*f_s)
474
    # Sound reincidence probability probability in the first period:
    ii=n.arange(Lambda)
476
    P = (ii[:Lambda1]/float(Lambda1))**2.
477
    # incidences:
    R1_=n.random.random(Lambda1)<P
479
    A=10.**((-50./20)*(ii/Lambda))
    # Eq. 76 First period of reverberation:
481
    R1=R1_*A[:Lambda1]*ruido_marrom[:Lambda1] # first incidences
482
483
    # Brown noise with exponential decay (of amplitude) for the second period:
484
    # Eq. 77 Second period of reverberation:
485
    Rm=ruido_marrom[Lambda1:Lambda]
486
    R2=Rm*A[Lambda1:Lambda]
487
    # Eq. 78 Impulse response of the reverberation
488
    R=n.hstack((R1,R2))
489
    R[0]=1.
490
491
    # Making an arbitrary sound to apply the reverberation:
492
    f_0 = 100. # starting freq (Hz)
493
    f_f = 700. # final freq (Hz)
494
    Delta = 2.4 # duration
495
   Lambda = int(f_s*Delta)
496
```

```
ii = n.arange(Lambda)
497
    # (using Eq. 35 for exponential variation)
499
    F = f_0*(f_f/f_0)**(ii/(float(Lambda)-1))
500
    # (using Eq. 36 for the LUT indexes)
501
    D_{gamma} = F*Lt/f_{s}
502
    Gamma = n.cumsum(D_gamma)
    Gamma = n.array(Gamma, dtype=n.int)
504
    # (using Eq. 2.37 for making the sound)
    TfOff = L[Gamma % Lt]
506
    # Applying the reverberation
508
    T_=Tf0ff
509
   T=n.convolve(T_-,R)
    __s(T, "reverb.wav")
511
512
513
    # Eq. 79 ADSR - linear variation
514
    Delta = 5. # total duration in seconds
    Delta_A = 0.1 # Attack
516
    Delta_D = .3 # Decay
    Delta_R = .2 # Release
518
    a_S = .1 # Sustain level
519
    Lambda = int(f_s*Delta)
521
    Lambda_A = int(f_s*Delta_A)
    Lambda_D = int(f_s*Delta_D)
523
    Lambda_R = int(f_s*Delta_R)
524
525
    # Achievement of the ADRS envelope: A_
526
   ii = n.arange(Lambda_A, dtype=n.float)
    A = ii/(Lambda_A-1)
528
529
    ii = n.arange(Lambda_A, Lambda_D+Lambda_A, dtype=n.float)
530
    D = 1 - (1-a\_S)*((ii-Lambda\_A)/(Lambda\_D-1))
531
    A_{-} = n.hstack((A_{-}, D))
    S = a_S*n.ones(Lambda-Lambda_R-(Lambda_A+Lambda_D), dtype=n.float)
533
    A_{-} = n.hstack((A_{-}, S))
    ii = n.arange(Lambda-Lambda_R, Lambda, dtype=n.float)
535
    R = a_S-a_S*((ii-(Lambda-Lambda_R))/(Lambda_R-1))
536
    A_{-} = n.hstack((A_{-}, R))
538
    # Eq. 80 Achievement of a sound with the ADSR envelope
    ii = n.arange(Lambda, dtype=n.float)
540
    Gamma = n.array(ii*f*Lt/f_s, dtype=n.int)
541
    T = Tr[Gamma % Lt]*(A_)
542
543
    __s(T, "adsr.wav")
544
545
546
    # Eq. 79 ADSR - exponential variation
    xi = 1e-2 # -180dB for starting fade in and ending in the fade out
548
    De = 2*100. # total duration
549
    DA = 2*20. # attack duration
550
DD = 2*20. # decay duration
552 DR = 2*20. # release duration
```

```
SS = .4 # fraction of amplitude in which sustain occurs
553
554
   Lambda = int(f_s*De)
555
   Lambda_A = int(f_s*DA)
556
557 Lambda_D = int(f_s*DD)
   Lambda_R = int(f_s*DR)
558
A = xi*(1./xi)**(n.arange(Lambda_A)/(Lambda_A-1)) # attack samples
A = n.copy(A)
   D = a_S**((n.arange(Lambda_A, Lambda_A+Lambda_D)-Lambda_A)/(Lambda_D-1)) # decay samples
562
    A = n.hstack((A, D))
563
    S = a_S*n.ones(Lambda-Lambda_R-(Lambda_A+Lambda_D)) # sustain samples
    A = n.hstack((A, S))
565
   R = (SS)*(xi/SS)**((n.arange(Lambda-Lambda_R, Lambda)+Lambda_R-Lambda)/(Lambda_R-1))
    # release
    A = n.hstack((A, R))
567
568
# Eq. 80 Achievement of sound with ADSR envelope
   ii = n.arange(Lambda, dtype=n.float)
   Gamma = n.array(ii*f*Lt/f_s, dtype=n.int)
571
T = Tr[Gamma % Lt]*(A)
574 __s(T, "adsr_exp.wav")
```

Python implementation of equations in Section 4

```
import numpy as n
1
   # auxiliary functions __n and __s.
3
   # These only normalize the sonic vectors and
   # write them as 16 bit, 44.1kHz WAV files.
   def __n(sonic_array):
6
        """Normalize sonic_array to have values only between -1 and 1"""
        t = sonic_array
        if n.all(sonic_array==0):
10
11
           return sonic_array
        else:
12
13
            return ( (t-t.min()) / (t.max() -t.min()) )*2.-1.
   def __s(sonic_array=n.random.uniform(size=100000), filename="asound.wav", f_s=44100):
    """A minimal approach to writing 16 bit WAVE files.
15
16
17
        One can also use, for example:
18
            import sounddevice as S
19
            S.play(array) # the array must have values between -1 and 1"""
20
21
       # to write the file using XX bits per sample
22
       # simply use s = n.intXX(__n(sonic_array)*(2**(XX-1)-1))
23
        s = n.int16(\_n(sonic\_array)*32767)
24
       w.write(filename, f_s, s)
25
26
   f_s = 44100. # Hz, sample rate
27
   Lambda_tilde = Lt = 1024.
   foo = n.linspace(0, 2*n.pi, Lt, endpoint=False)
   S_i = n.sin(foo) # a sinusoid period of T samples
30
31
   H = n.hstack
32
33
   # using the content from the previous sections,
34
   # this is a very simple synthesizer of notes
35
   def v(f=200, d=1., tab=S_i, fv=2., nu=2., tabv=S_i):
36
        Lambda = n.floor(f_s*d) ii = n.arange(Lambda)
37
        Lv = float(len(T))
38
39
        Gammav_i = n.floor(ii*fv*Lv/f_s) # indexes for LUT
40
        Gammav_i = n.array(Gammav_i, n.int)
41
        # variation pattern of vibrato for each sample
42
       Tv_i = tabv[Gammav_i % int(Lv)]
43
44
45
        # frequency in Hz for each sample
        F_i = f*(2.**(Tv_i*nu/12.))
46
        # movement inside table for each sample
47
        D_gamma_i = F_i*(Lt/float(f_s))
48
        Gamma_i = n.cumsum(D_gamma_i) # movement in the total table
49
        Gamma_i = n.floor(Gamma_i) # the indexes
50
        Gamma_i = n.array(Gamma_i, dtype=n.int) # the indexes
5.1
52
        return tab[Gamma_i % int(Lt)] # looking for indexes in table
53
54
```

```
just_ratios = [1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/3, 2]
pythagorean_ratios = [1, 9/8, 81/64, 4/3, 3/2, 27/16, 243/128, 2]
    equal_temperament_ratios = [2**(i/12) for i in range(12)]
58
    f = 220 # an arbitrary frequency
    just_scale = [i*f for i in just_intonations]
 61
    pythagorean_scale = [i*f for i in pythagorean_ratios]
    equal_temperament_scale = [i*f for i in equal_temperament_ratios]
 63
    js = H([v(i) for i in just_scale])
65
    __s(js, "just_scale.wav")
ps = H([v(i) for i in pythagorean_scale])
 66
 67
    __s(js, "pythagorean_scale.wav")
 68
    es = H([v(i) for i in equal_temperament_scale])
    __s(js, "equal_temperament_scale.wav")
72 # Microtonality
    # quarter tone
73
    epslon = 2**(1/12.)
    s1 = [0., 1.25, 1.75, 2., 2.25, 4., 5., 5.25]
   factors = [epslon**i for i in s1]
   scale = H([v(f*i) for i in factors])
    __s(scale, "quarter_tones1.wav")
78
 epslon = 2**(1/24.)
 s1 factors = [epslon**i for i in range(24)]
 scale = H([v(f*i) for i in factors])
    __s(scale, "quarter_tones2.wav")
 83
 84
85 # Octave sevenths
   epslon_ = 2**(1/7.)
s7 s2 = [0., 1., 2., 3., 4., 5., 6., 7.]
s8 factors = [epslon_**i for i in s2]
    scale = H([v(f*i) for i in factors])
    __s(scale, "octave_sevenths.wav")
 # Eq. 81 relating note grids
# expressing octave sevenths in the quarter tone grid:
s2_{-} = [i*24/7 \text{ for } i \text{ in } s2]
95
 96 # Table 1: Intervals
97 # using epsilon = 2**(1/12)
    I1j = 0.
98
    I2m = 1.
99
100 	ext{ I2M} = 2.
101 I3m = 3.
    I3M = 4.
102
    I4J = 5.
103
104 ITR = 6.
105 I5J = 7.
106 	ext{ I6m} = 8.
    16M = 9.
107
    17m = 10.
108
_{109} I7M = 11.
_{110} I8J = 12.
I_{111} I_{-i} = n.arange(13.)
```

```
112
     perfect_consonances = [0, 7, 12]
    imperfect_consonances = [3, 4, 8, 9]
114
     weak_dissonances = [2, 10]
    strong_dissonances = [1, 11]
116
     special\_cases = [5, 6]
117
118
    # the interval sums nine for inversion by traditional nomenclature
119
    # fifth is inverted into a fourth (5+4 = 9)
    # but always sums 12
121
    # at inversions of semitones
122
    # fifth (7) is inverted into a fourth (5) (7+5 = 12)
123
124
          """Returns inversed interval of I: 0 < = I < = 12"""
         return 12-I
126
127
128
    # harmonic interval
129
     def intervaloHarmonico(f, I):
          return (v(f)+v(f*2.**(I/12.)))*0.5
131
132
133
    # melodic interval
134
     def intervaloMelodico(f, I):
135
         return n.hstack((v(f), v(f*2.**(I/12.))))
136
137
    # Eq. 82 Symmetric scales
138
     Ec = [0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.]
139
     Ewt = [0., 2., 4., 6., 8., 10.]
140
     Etm = [0., 3., 6., 9.]
141
    EtM = [0., 4., 8.]
    Ett = [0., 6.]
143
144
    # Eq. 83 Diatonic scales
145
     Em = [0., 2., 3., 5., 7., 8., 10.]
146
     Emlo = [1., 3., 5., 6., 8., 10.]
147
     EM = [0., 2., 4., 5., 7., 9., 11.]
148
     Emd = [0., 2., 3., 5., 7., 9., 10.]
149
     \begin{array}{l} \mathsf{Emf} = [0., \ 1., \ 3., \ 5., \ 7., \ 8., \ 10.] \\ \mathsf{Eml} = [0., \ 2., \ 4., \ 6., \ 7., \ 9., \ 11.] \\ \mathsf{Emmi} = [0., \ 2., \ 4., \ 5., \ 7., \ 8., \ 10.] \\ \end{array} 
151
152
153
    # Eq. 84 Diatonic pattern
154
     E_{-} = n.roll(n.array([2.,2.,1.,2.,2.,2.,1.]), n.random.randint(7.))
    E = n.cumsum(E_)-E_[0.]
156
157
158
    # Eq. 85 Harmonic and melodic minor scales
159
    Em = [0., 2., 3., 5., 7., 8., 10.]
Emh = [0., 2., 3., 5., 7., 8., 11.]
161
     Emm = [0.,2.,3.,5.,7.,9.,11.,12.,10.,8.,7.,5.,3.,2.,0.]
162
163
    # Eq. 86 Harmonic series
164
     H = [0, 12, 19+0.02, 24, 28-0.14, 31+0.2, 34-0.31,
165
            36, 38+0.04, 40-0.14, 42-0.49, 43+0.02,
166
            44+0.41, 46-0.31, 47-0.12,
167
```

```
48, 49+0.05, 50+0.04, 51-0.02, 52-0.14 ]
168
169
    # Eq. 86 Triads
170
    AM = [0., 4., 7.]

Am = [0., 3., 7.]
171
172
    Ad = [0., 3., 6.]
173
    Aa = [0., 4., 8.]
174
175
    def withMinorSeventh(A): return A+[10.]
176
    def withMajorSeventh(A): return A+[11.]
177
178
    ############## Sec. 4.2 Atonal and tonal harmonies, harmonic expansion and modulation
180
    # Table 2.23
181
    def relativa(TT):
182
         """Returns the relative chord.
183
         TT is a major or minor triad at a closed and fundamental position."""
185
         T = n.copy(TT)
186
         if T[1]-T[0] == 4: # TT is major
187
             T[2] = 9. # returns minor chord a minor third bellow
188
         elif T[1]-T[0] == 3: # TT is minor
             T[0] = 10. # returns major chord a major third above
190
191
             print("send me only minor or major perfect triads")
192
         return T
193
194
195
    def antiRelativa(TT):
196
         """Returns the anti-relative chord."""
197
         T = n.copy(TT)
198
         if T[1]-T[0] == 4.: # major
   T[0] = 11. # returns up minor
199
200
         if T[1]-T[0] == 3.: # menor
201
             T[2] = 8. # returns down major
202
         return T
203
204
    # Medians
205
    def sup(TT):
         T = n.copy(TT)
207
         if T[1]-T[0] == 4.: # major
208
             T[0] = 11.
209
             T[2] = 8. # returns major
210
         if T[1]-T[0] == 3.: # minor
211
             T[0] = 10.
212
213
             T[2] -= 1. # returns minor
         return T
214
215
    def inf(TT):
216
         T = n.copy(TT)
217
         if T[1]-T[0] == 4.: # major
218
             T[2] = 9
219
220
             T[0] = 1. # returns major
         if T[1]-T[0] == 3.: # minor
221
             T[2] = 8.
222
             T[0] = 11. # returns minor
223
```

```
return T
224
225
    def supD(TT):
226
         T = n.copy(TT)
227
         if T[1]-T[0] == 4.: # major
228
             T[0] = 10.
229
             T[1] = 3. # returns major
230
         if T[1]-T[0] == 3.: # minor
231
             T[0] = 11.
232
             T[1] = 4. # returns minor
233
         return T
234
235
    def infD(TT):
236
         T = n.copy(TT)
237
         if T[1]-T[0] == 4.: # major
238
             T[1] = 3.
239
             T[2] = 8. # returns major
240
         if T[1]-T[0] == 3.: # minor
241
^{242}
             T[1] = 4.
             T[2] = 9. # returns minor
243
244
         return ⊤
245
    # Main tonal functions
246
    tonicM = [0., 4., 7.]
247
    tonicm = [0., 3., 7.]
248
    subM = [0., 5., 9.]
    subm = [0., 5., 8.]

dominant = [2., 7., 11.]

Vm = [2., 7., 10.] # minor chord is not dominant
250
251
252
253
    255
    def contraNotaNotaSup(alturas=[0,2,4,5,5,0,2,0,2,2,2,2,0,7,\)
256
                                             5,4,4,4,0,2,4,5,5,5]):
257
         """Returns a melody given input melody
258
259
         Limited in 1 octave"""
260
         first_note = alturas[0]+(7,12)[n.random.randint(2)]
261
         contra = [first_note]
262
263
         <u>i</u>=0
264
         cont=0 # parallels counter
265
         reg=0 # interval register where the parallel was done
266
         for al in alturas[:-1]:
267
             mov_cf=alturas[i:i+2]
268
             atual_cf,seguinte_cf=mov_cf
269
             if seguinte_cf-atual_cf>0:
270
                 mov="asc"
271
             elif seguinte_cf-atual_cf<0:</pre>
272
                 mov="asc"
273
             else:
274
                 mov="obl"
275
276
             # possibilities by consonances
277
             possiveis=[seguinte_cf+interval for interval in\
278
                                            [0,3,4,5,7,8,9,12]]
279
             movs=[]
280
```

```
for pos in possiveis:
281
                  if pos -contra[i] < 0:</pre>
                      movs.append("desc")
283
                  if pos - contra[i] > 0:
284
                      movs.append("asc")
285
                  else:
286
                      movs.append("obl")
287
288
             movt=[]
             for m in movs:
290
                  if 'obl' in (m,mov):
291
                      movt.append("obl")
292
                  elif m==mov:
293
                      movt.append("direto")
                  else:
295
                      movt.append("contrario")
296
             blacklist=[]
297
             for nota,mt in zip(possiveis,movt):
298
299
                  if mt == "direto": # direct movement
300
                      # does not accept perfect consonances
                      if nota-seguinte_cf in (0,7,8,12):
302
303
                          possiveis.remove(nota)
             0k=0
304
             while not ok:
305
                  nnota=possiveis[n.random.randint(len(possiveis))]
306
                  if nnota-seguinte_cf==contra[i]-atual_cf: # parallel
307
                      intervalo=contra[i]-atual_cf
308
                      novo_intervalo=nnota-seguinte_cf
309
                      if abs(intervalo-novo_intervalo)==1: # same 3 or 6 type
310
                          if cont==2: # if already had 2 parallels
311
                               pass # another interval
312
                          else:
313
                               cont+=1
314
                               ok=1
315
                  else: # oblique or opposite movement
316
                      cont=0 # make parallels equal to zero
317
                      ok=1
             contra.append(nnota)
319
             i+=1
         return contra
321
322
323
    324
    # See Poli Hit Mia musical piece
325
326
327
    ########################### Sec 4.5 Repetition and variation: motifs and larger units
    # Ubiquitous concepts
329
330
    S = [1, 2, 1.5, 3] # a sequence of parameters, e.g. durations
331
    S1 = S[::-1] # reversion
332
    S2 = [i*4 \text{ for } i \text{ in } S] \# \text{ expansion}
    S3 = [i*.5 \text{ for } i \text{ in } S] \# contraction
334
    S4 = S[2:] + S[:2]
335
336
```

2 Musical pieces

The code for the musical pieces are omitted from this PDF because it would make the document lengthy. Please see [3] and [1] to know what are the available scripts for rendering musical pieces and reach them.

3 Auxiliary files

The code for the auxiliary files (e.g. to render the figures in the article [2] are omitted from this PDF because it would make the document lengthy. Please see [3] and [1] to know what are the available auxiliary scripts and reach them.

4 Final considerations

This document exhibits the code that implements the relations in the sections of [2]. All this scripts are available in [1] with other documentations and further scripts e.g. to render musical pieces and the figures in [2]. One should also reach [3] to know about the resources in the MASS framework. This document should be available at [4].

References

- [1] Fabbri (2017). Música no áudio digital: descrição psicofísica e caixa de ferramentas. MSc dissertation. Available at: http://www.teses.usp. br/teses/disponiveis/76/76132/tde-19042013-095445/publico/ RenatoFabbri_ME_corrigida.pdf
- [2] ISO: 226. (2003). Normal Equal-Loudness Level Contours.
- [3] ISO: 226. (2003). Normal Equal-Loudness Level Contours.
- [4] ISO: 226. (2003). Normal Equal-Loudness Level Contours.