Федеральное агентство связи

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Отчет

по лабораторной работе №4 по дисциплине «Основы систем мобильной связи» Тема: «Изучение корреляционных свойств последовательностей, используемых для синхронизации в сетях мобильной

связи»

Вариант 14

Выполнил:

студент гр. ИА-232

Сиднов Даниил Александрович

GitHub: : https://github.com/She1byyyy/OSMS

Содержание

ЦЕЛЬ	3
ЗАДАЧИ	
ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ	
ИСХОДНЫЕ ДАННЫЕ	
ЭТАПЫ ВЫПОЛНЕНИЯ РАБОТЫ	
КОНТРОЛЬНЫЕ ВОПРОСЫ	
ВЫВОД	13

Цель работы

Получить представление о том, какие существуют псевдослучайные двоичные последовательности, какими корреляционными свойствами они обладают и как используются для синхронизации приемников и передатчиков в сетях мобильной связи.

Теоретические сведения

Псевдослучайные двоичные последовательности (PN-sequences – Pseudo-Noise) – это частный случай псевдослучайных последовательностей, элементами которой являются только 2 возможных значения (1 и 0 или -1 и +1). Такие последовательности очень часто используются в сетях мобильной связи. Возможные области применения: - оценка вероятности битовой ошибки (BER – Bit Error Rate). В этом случае передатчик передает приемнику заранее известную Р\последовательность бит, а приемник анализируя значения бит на конкретных позициях, вычисляет количество искаженных бит и вероятность битовой ошибки в текущих радиоусловиях, что затем может быть использовано для работы алгоритмов, обеспечивающих помехозащищенность системы; - временная синхронизация между приемником и передатчиком. Включаясь абонентский терминал начинает записывать сигнал, дискретизируя его с требуемой частотой, в результате чего формируется массив временных отсчетов и требуется понять, начиная с какого элемента в этом массиве собственно содержатся какие-либо данные, как именно структурирована ось времени, где начинаются временные слоты. Используя заранее известную синхронизирующую РМпоследовательность (синхросигнал), приемник сравнивает полученный сигнал с этой последовательностью на предмет «сходства» - корреляции. И если фиксируется корреляционный пик, то на стороне приема можно корректно разметить буфер с отсчетами на символы, слоты, кадры и пр. - расширение спектра. Используется для повышения эффективности передачи информации с помощью модулированных сигналов через канал с сильными линейными искажениями (замираниями), делая систему устойчивой к узкополосным помехам (например, в 3G WCDMA). Псевдослучайная битовая последовательность должна обладать следующими свойствами, чтобы казаться почти случайной: 1) Сбалансированность (balance), то есть число единиц и число нулей на любом интервале последовательности должно отличаться не более чем на одну. 2) Цикличность. Циклом в данном случае является последовательность бит с одинаковыми значениями. В каждом фрагменте псевдослучайной 2 битовой последовательности примерно половину составляли циклы длиной 1, одну четверть – длиной 2, одну восьмую – длиной 3 и т.д. 3) Корреляция. Корреляция оригинальной битовой последовательности с ее сдвинутой копией должна быть минимальной. Автокорреляция этих последовательностей – это практически дельта-функция во временной области, как для аддитивного белого гауссовский шума AWGN (Additive white Gaussian noise), а в частотной области – это константа.

Как можно сгенерировать последовательность, обладающую вышеперечисленными свойствами? Для этого можно использовать, например, линейный четырехразрядный регистр сдвига с обратной связью, сумматора по модулю 2 и контуром обратной связи со входом регистра [3]. Работа регистра тактируется синхроимпульсами и с каждым новым тактом осуществляется сдвиг битовой последовательности вправо, а содержимое регистров 3 и 4 суммируется по модулю два, при этом результат суммирования подается на вход регистра 1, как показано на рисунке 4.1.

Четырехразрядный регистр сдвига

Рис. 4.1. Пример способа формирования псевдослучайной битовой последовательности.

Рассмотрим пример формирования псевдослучайной битовой последовательности с помощью схемы, показанной на рисунке 4.1, при условии, что регистр проинициализирован последовательностью 1 0 0 0. На каждом такте эта последовательность будет сдвигаться на одну позицию вправо, при этом на выходе будут появляться биты псевдослучайной последовательности. В таблице 4.1 показаны состояния разрядов регистра на каждом такте и выходные биты.

Табл. 4.1. Формирование псевдослучайной битовой последовательности.

1	2	3	4	Выход
1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
1	0	0	1	1

На выход всегда идут биты из 4-го разряда регистра. Очевидно, что длина полученной последовательности равна 2 m -1=15 – максимальное число различных состояний нашего регистра, где т=4 – число разрядов в сдвиговом регистре, используемом для формирования последовательности, а затем, начиная с 16-го бита, значения на выходе начинают повторяться. Такие последовательности шиклически еше называются последовательностями (от англ.слова maximum - последовательности максимальной длины). Важно заметить, что инициализирующая битовая последовательность (или полином) не может быть нулевой, так как из всех нулей невозможно создать последовательность, содержащую единицы, данным способом. Проанализируем последовательность, полученную в таблице 4.1 с точки зрения наличия свойств псевдослучайных битовых последовательностей: 1) Сбалансированность: 8 единиц и 7 нулей. 2) Цикличность: нет циклов длиннее 4х (1 цикл из 4-х единиц, 1 цикл из 3-х нулей, 2 цикла из нулей и единиц, и 4 цикла длиной, равной одному). 3) Корреляция: автокорреляционная функция периодического сигнала x(t) с периодом T0 в нормированной форме (4.1) - (4.2)

$$R_{x}(\tau) = \frac{1}{K} \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) x(t+\tau) dt, \tag{4.1}$$

где
$$K = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x^2(t) dt$$
 (4.2)

Для примера, определим значение автокорреляции последовательности из таблицы 4.1 со сдвигом на 1 элемент

 $0\ 0\ 0\ 1\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 1\ 1\ 1$

100010011010111

0 C C O O C O C O O O O C C C

о - отличаются;

с – совпалают.

Число совпадений: 7; Число несовпадений: 8. Следовательно,

$$R_x(\tau=1) = \frac{1}{15}(7-8) = -\frac{1}{15}$$

Автокорреляция для любого сдвига будет равна -1/15, и лишь в момент полного совпадения всех элементов будет наблюдаться пик корреляционной функции Rx ($\tau=0$) = +1. На рисунке 4.2 показана автокорреляционная функция псевдослучайной бинарной последовательности.

Рис. 4.2. Автокорреляционная функция псевдослучайной бинарной последовательности в зависимости от величины задержки

Чем длиннее последовательность, тем выше пик ее автокорреляционной функции, и тем больше напоминает дельта-функцию. Такого типа автокорреляцией характеризуется и белый гауссовский шум, поэтому в англоязычной литературе такие последовательности называют pseudo noise sequences. Чем острее автокорреляционный пик (то есть чем длиннее последовательность), тем удобней использовать данные последовательности для решения проблем синхронизации в сетях мобильной связи. Действительно, абонентский терминал при начальном включении должен засинхронизировать начало своих временных слотов на временной оси приемника и передатчика. Поэтому обычно базовые станции периодически отправляют специальные синхронизирующие последовательности, в качестве которых часто используются именно m-последовательности, и терминал вычисляет автокорреляцию этой заранее известной последовательности с полученным записанным сигналом, и в тот момент, когда фиксируется автокорреляционный пик, абонент отмечает начало слота на своей оси времени (а точнее номер отсчета в буфере, начиная с которого идет передаваемый базовой станцией слот с данными).

Стоит отметить, что даже в случае наличия ошибок в принятой синхропоследовательности, возникших вследствие помех, присутствующих в канале связи, приемник все равно достаточно легко обнаружит явный корреляционный пик. На рисунке 4.3 представлены варианты реализации схемы синхронизации с помощью последовательного и параллельного поиска. Разновидности псевдо-шумовых битовых последовательностей М-последовательности — не единственные PN-последовательности, используемые в системах мобильной связи. Существуют также коды Баркера, коды Голда, коды Касами, коды Уолша-Адамара. Коды Голда формируются путем суммирования по модулю 2 двух Мпоследовательностей одинаковой длины. Коды Касами также формируются из М-последовательностей путем взятия периодических выборок из этих последовательностей и суммированием их по модулю два. Данные коды обладают очень хорошими взаимокорреляционными свойствами.

Процесс параллельного поиска сигнала синхронизации

Рис. 4.3. Синхронизация с помощью последовательного и параллельного поиска

Этапы выполнения работы

1) Выведите получившуюся последовательность на экран

```
Gold's original sequence:
101101000001111101011110000011
```

2) Сделайте поэлементный циклический сдвиг последовательности и посчитайте автокорреляцию исходной последовательности и сдвинутой. Сформируйте таблицу с битовыми значениями последовательностей, в последнем столбце которой будет вычисленное значение автокорреляции, как показано в примере ниже.

```
Autocorrelation table:
Shift | Sequence | Autocorrelation
    10110100000011111010111110000011
                                        1.00000000
   01101000000111110101111100000111
                                         0.2258065
   111010000001111101011111000001110
                                         0.2258065
    1010000001111101011110000011101
                                         -0.0322581
   0100000011111010111100000111011
                                         -0.2903226
    1000000111110101111100000111
                                         -0.2903226
   -0.2903226
  7
    0000011111010111100000111011010
                                         -0.0322581
  8
    00001111101011110000011110110100
                                         -0.0322581
    0001111101011110000011101101000
                                         -0.0322581
    10
                                         -0.0322581
    11
                                         -0.0322581
 12
    11111010111110000011101101000000
                                         -0.2903226
    111101011111000001111011010000001
 13
                                         0.2258065
   | 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 1
                                         -0.0322581
 14
     101011110000011101101000000111
 15
                                         0.2258065
    1010111100000111011010000001111
                                         0.2258065
 16
 17
    0101111000001110110100000011111
                                         -0.0322581
    1011110000011101101000000111110
 18
                                         0.2258065
 19
    -0.2903226
     111000001110110100000011111010
 20
                                         -0.0322581
   | 1 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1
 21
                                         -0.0322581
 22
    110000011101101000000111110101011
                                         -0.0322581
    10000011101101000000111110101
 23
                                         -0.0322581
    -0.0322581
 24
 25
        1110110100000011111010
                                         -0.2903226
    0001110110100000011111010111100
                                         -0.2903226
 26
                                         -0.2903226
 27
    001110110100000011111101011111000
    01110110100000011111010111110000
 28
                                         -0.0322581
 29
   0.2258065
   1110110100000011111101011111000001
                                         0.2258065
 30
```

3) Сформируйте еще одну последовательность Голда, используя свою схему (рис.4.4 или 4.5), такую что x=x+1, а y=y-5.

New Gold Sequence:
1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1

4) Вычислите значение взаимной корреляции исходной и новой последовательностей и выведите в терминал.

Cross-correlation between original and new sequences: 0.2258065

5) Проделайте шаги 1-5 в Matlab. Используйте функции хсогг() и autocorr() для вычисления соответствующих корреляций. Сравните результаты, полученные в Matlab и C/C++.

```
Gold s original sequence: 0 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1
Autocorrelation table:
Shift | Sequence
                   | Autocorrelation
 0 | [0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1.0000000
 6 \hspace{0.1cm} \mid \hspace{0.1cm} [ \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} ] \hspace{0.1cm} \mid \hspace{0.1cm} 0.3750000 \\
  8 | [0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0] | 0.5000000
 9 | [0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0] | 0.5000000
 10 | [0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 .5000000
 15 | [1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0] | 0.6250000
 16 | [0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1] | 0.6250000
 18 | [0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 .6250000
 22 | [1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 1] | 0.5000000
 27 | [0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 0] | 0.3750000
 Cross-correlation between original and new sequences:
  0.6708
```

6) Выведите на график в Matlab функцию автокорреляции в зависимости от величины задержки (lag).

Контрольные вопросы

1) Для чего в мобильных сетях могут использоваться псевдослучайные последовательности?

В мобильных сетях псевдослучайные последовательности (PN sequences) применяются для кодирования и модуляции, позволяя выделить индивидуальные сигналы в условиях многопользовательской среды. Например, PN-последовательности широко используются в CDMA (Code Division Multiple Access), чтобы различать пользователей на одной и той же частоте. Они также применяются для спектрального расширения сигнала (spread spectrum), подавления помех и улучшения помехоустойчивости, поскольку позволяют снижать уровень взаимной интерференции между абонентами и базовыми станциями. Это достигается за счёт orthogonality, когда разные сигналы используют уникальные PN-последовательности с минимальной взаимной корреляцией.

2) Что значит положительная корреляция сигналов?

Положительная корреляция (positive correlation) означает, что две сигнальные последовательности имеют схожий характер или структуру, и при наложении их корреляционная функция даст положительный пик. Это важное свойство в мобильной связи, так как помогает определить, совпадают ли две последовательности. В контексте CDMA-сетей положительная корреляция позволяет приёмнику различать «свой» сигнал от шума и других сигналов, предоставляя возможность «узнавания» сигнала и его декодирования.

3) Что такое корреляционный приём сигналов?

Корреляционный приём сигналов (correlation receiver) — это метод приёма, который использует свойство корреляции для **выделения полезного сигнала из шума**. Он измеряет уровень совпадения между принятым сигналом и опорной последовательностью. В мобильных сетях этот метод особенно полезен для устранения помех и многолучевых искажений. **Matched filter** (согласованный фильтр) и **RAKE receiver** (приёмник RAKE) —

это два распространённых примера корреляционных приёмников, которые активно применяются для декодирования CDMA-сигналов.

4) Как вычисление корреляционных функций помогает синхронизироваться приемникам и передатчику в сетях мобильной связи?

Корреляционные функции используются для **поиска максимума совпадений** между принятым и опорным сигналом, что помогает выявить задержку в сигнале и устранить её. Это позволяет приёмнику синхронизироваться с передатчиком, компенсируя **time delay** и улучшая точность передачи данных. В CDMA и LTE сетях вычисление корреляционной функции помогает синхронизировать устройства по **chip timing**, обеспечивая точное временное выравнивание сигналов и, как следствие, повышенную устойчивость к интерференции и уменьшение вероятности ошибок.

5) Какими свойствами обладают псевдослучайные последовательности?

Псевдослучайные последовательности обладают рядом свойств, полезных для мобильной связи:

- Детерминированность: несмотря на кажущуюся случайность, такие последовательности можно воспроизвести в любом приёмнике при известном начальном значении, что упрощает синхронизацию.
- Длинный период: PN-последовательности имеют большой период перед повторением, что улучшает устойчивость к помехам и делает их более «случайными» для наблюдателя.
- Низкая автокорреляция: на любом участке последовательности значение автокорреляции близко к нулю, что минимизирует самоинтерференцию.
- **Минимальная кросс-корреляция**: различные PN-последовательности имеют минимальную корреляцию между собой, что позволяет выделить сигналы пользователей в CDMA-системах.

6) Какие разновидности РN-последовательностей вам известны?

Существует несколько основных типов PN-последовательностей, применяемых в мобильных сетях:

- **M-последовательности (Maximum-length sequences)**: это линейные последовательности с максимальным возможным периодом для заданного порядка. Применяются в CDMA и GPS.
- Gold sequences: комбинация двух М-последовательностей, обладающая улучшенными корреляционными свойствами. Их используют в UMTS (Universal Mobile Telecommunications System) для различия пользователей.
- **Kasami sequences**: имеют более низкую корреляцию, чем М-последовательности, и используются в многоканальных системах связи для повышения устойчивости.
- Чебышёвские последовательности и последовательности Баркера: используются для радарных систем и обеспечивают хорошую корреляционную способность, хотя в мобильных сетях применяются редко.