

**ZIENTZIA** ETA TEKNOLOGIA **FAKULTATEA FACULTAD** DF CIFNCIA Y TECNOLOGÍA

4. Direct methods for the resolution of linear systems

Jon Asier Bárcena-Petisco (University of the Basque Country UPV/EHU) - Numerical Methods I (2023/24)

## Contents on this chapter

Triangular matrices

- Resolution of linear systems in a systematic way approachable by a computer (Cramer formula is too slow for big systems)
- Resolution of triangular systems
- LUP decomposition
- Cholesky decomposition

Further properties of triangular matrices

4.1. Properties of triangular matrices.

000000

# Properties already proved

- $\blacksquare$  The identity matrix I is a diagonal matrix.
- $D \in \mathbb{R}^{n \times n}$  is a diagonal matrix if and only if it is upper triangular and lower triangular.
- If  $L \in \mathbb{R}^{n \times n}$  is a lower triangular matrix, L' is an upper triangular matrix.
- If  $U \in \mathbb{R}^{n \times n}$  is an upper triangular matrix, U' is a lower triangular matrix.
- If  $L_1, L_2 \in \mathbb{R}^{n \times n}$  are lower triangular matrices, so are  $L_1 + L_2$  and  $L_1L_2$ .
- If  $U_1, U_2 \in \mathbb{R}^{n \times n}$  are upper triangular matrices, so are  $U_1 + U_2$  and  $U_1 U_2$ .

## Characterization of non-singular lower triangular matrix

### Exercise

Triangular matrices

000000

Let  $L \in \mathbb{R}^{n \times n}$  be a lower triangular matrix.

- 1 Show that  $det(L) = L(1,1) \cdots L(n,n)$ .
- 2 Show that L is non-singular if and only if  $L(i, i) \neq 0$  for all  $i \neq 0$ .

### Remark

Consequently, the linear system Lx = b for  $b \in \mathbb{R}^n$  is well-posed (have a unique solution) if and only if  $L(i, i) \neq 0$  for all  $i=1,\ldots,n$ .

## Additional properties of lower triangular matrices

### Exercise

Triangular matrices

000000

Let  $L_1, L_2 \in \mathbb{R}^{n \times n}$  be lower triangular matrices. Show that  $(L_1 L_2)(i, i) = L_1(i, i) L_2(i, i)$  for all  $i = 1, \ldots, n$ .

### Exercise

Let  $L \in \mathbb{R}^{n \times n}$  be a lower non-singular triangular matrices. Then  $L^{-1}$  is also a lower triangular matrix, and  $(L^{-1})(i,i) = \frac{1}{L(i,i)}$ .

Further properties of triangular matrices

## Characterization of non-singular upper triangular matrices

### Exercise

Triangular matrices

000000

Let  $U \in \mathbb{R}^{n \times n}$  be an upper triangular matrices

- I Show that  $det(U) = U(1,1) \cdots U(n,n)$ .
- 2 Show that U is non-singular if and only if  $U(i, i) \neq 0$  for all  $i \neq 0$ .

### Remark

Consequently, the linear system Ux = b for  $b \in \mathbb{R}^n$  is well-posed (have a unique solution) if and only if  $U(i, i) \neq 0$  for all  $i=1,\ldots,n$ .

Further properties of triangular matrices

# Additional properties of upper triangular matrices

### Exercise

Triangular matrices

000000

Let  $U_1, U_2 \in \mathbb{R}^{n \times n}$  be upper triangular matrices. Show that  $(U_1U_2)(i,i) = U_1(i,i)U_2(i,i)$  for all i = 1, ..., n.

### Exercise

Let  $U \in \mathbb{R}^{n \times n}$  be an upper non-singular triangular matrix. Then  $U^{-1}$  is also an upper triangular matrix, and  $(U^{-1})(i,i) = \frac{1}{U(i,i)}$ .

Resolution of triangular systems

Triangular matrices

4.2. Resolution of linear triangular systems.

Resolution of triangular systems

## Lower triangular system

Let us explain how to solve systems of the form Lx = b, for  $L \in \mathbb{R}^{n \times n}$  a lower triangular matrix and  $b \in \mathbb{R}^n$ . That is, let us explain how to solve:

$$\begin{cases} L(1,1)x(1) & = b(1), \\ L(2,1)x(1) + L(2,2)x(2) & = b(2), \\ & \vdots & \vdots \\ L(i,1)x(1) + \dots + L(i,i)x(i) & = b(i), \\ & \vdots & \vdots \\ L(n,1)x(1) + L(n,2)x(2) + \dots + L(n,n)x(n) & = b(n). \end{cases}$$

## Example of resolution of a linear triangular system

Let us consider:

$$\begin{cases} 2x(1) &= 2, \\ -2x(1) + 3x(2) &= 4, \\ 5x(1) + x(2) + 4x(3) &= 8. \end{cases}$$

Then, the solution is given by:

$$x(1) = \frac{2}{2} = 1,$$

$$x(2) = \frac{4 + 2x(1)}{3} = \frac{4 + 2}{3} = 2,$$

$$x(3) = \frac{8 - 5x(1) - x(2)}{4} = \frac{8 - 5 - 2}{4} = \frac{1}{4}.$$

## Resolution of linear triangular systems

Let us consider a lower triangular system. If  $L(i,i) \neq 0$  for all i = 1, ..., n (that is, if L is non-singular), the resolution of the previous system is given by:

$$x(1) = \frac{b(1)}{L(1, 1)},$$

$$x(2) = \frac{b(2) - L(2, 1)x(1)}{L(2, 2)},$$

$$\vdots$$

$$x(i) = \frac{b(i) - L(i, 1)x(1) - \dots - L(i, i - 1)x(i - 1)}{L(i, i)},$$

$$\vdots$$

$$x(n) = \frac{b(n) - L(n, 1)x(1) - \dots - L(n, n - 1)x(n - 1)}{L(n, n)}.$$

It is clear that any computer can process such formulas, with the help of a for loop.

Jon Asier Bárcena-Petisco (University of the Basque Country UPV/EHU) - Numerical Methods I (2023/24)

## Upper triangular systems

Let us explain how to solve systems of the form Ux = b, for  $U \in \mathbb{R}^{n \times n}$  an upper triangular matrix and  $b \in \mathbb{R}^n$ . That is, let us explain how to solve:

$$\begin{cases} U(1,1)x(1) + U(1,2)x(2) + \dots + U(1,n-1)x(n-1) + U(1,n)x(n) &= b(1), \\ U(2,2)x(2) + \dots + U(2,n-1)x(n-1) + U(2,n)x(n) &= b(2), \\ & \vdots & & \vdots \\ U(i,i)x(i) + \dots + U(i,n)x(n) &= b(i) \\ & \vdots & & \vdots \\ U(n,n)x(n) &= b(n). \end{cases}$$

## Example of resolution of a linear triangular system

Let us consider:

$$\begin{cases} 4x(1) + x(2) + 5x(3) &= 8, \\ 3x(2) - 2x(3) &= 4, \\ 2x(3) &= 2. \end{cases}$$

Then, the solution is given by:

$$x(3) = \frac{2}{2} = 1,$$

$$x(2) = \frac{4 + 2x(3)}{3} = \frac{4 + 2}{3} = 2,$$

$$x(1) = \frac{8 - 5x(3) - x(2)}{4} = \frac{8 - 5 - 2}{4} = \frac{1}{4}.$$

## Resolution of linear triangular systems

Let us consider a lower triangular system. If  $U(i,i) \neq 0$  for all i = 1, ..., n (that is, if U is non-singular), the resolution of the previous system is given by:

$$x(n) = \frac{b(n)}{U(n,n)},$$

$$x(n-1) = \frac{b(n-1) - U(n-1,n)x(n)}{U(n-1,n-1)},$$

$$\vdots$$

$$x(i) = \frac{b(i) - U(i,n)x(n) - \dots - U(i,i+1)x(i+1)}{U(i,i)},$$

$$\vdots$$

$$x(1) = \frac{b(1) - U(n,n)x(n) - \dots - U(n,2)x(2)}{U(1,1)}.$$

It is clear that any computer can process such formulas, with the help of a for loop.

LU

LU decomposition

4.3. LU decomposition.

# Resolution of the linear system LU = b

Let  $L \in \mathbb{R}^{n \times n}$  a lower triangular non-singular matrix and  $U \in \mathbb{R}^{n \times n}$ an upper triangular non-singular matrix. Let  $A = LU \in \mathbb{R}^{n \times n}$ .

Then, the system Ax = b can be solved as follows:

- First, solve Ly = b.
- Then, solve Ux = y

The computation of both steps was explained in the previous section. The method works because, if x is obtained following those two steps:

$$Ax = LUx = Ly = b.$$

### Remark

The objective of this section will be to decompose any non-singular matrix A as LU and identify any potential problem that may arise.

## Non-uniqueness of the LU decomposition

It is easy to see that we do not have uniqueness in the LU decomposition. Indeed, if D is any non-singular diagonal matrix:

$$LU = LDD^{-1}U = (LD)(D^{-1}U).$$

As L is lower triangular and D diagonal, LD is lower triangular. Similarly, as  $D^{-1}$  is diagonal and U upper triangular,  $D^{-1}U$  is upper triangular.

As we are going to see, this will be fixed by requiring that the diagonal elements of L are all 1.

# An additional restriction to the LU decomposition (ii)

#### Proposition

Let  $L_1 \in \mathbb{R}^{n \times n}$  be a non-singular lower triangular matrix and  $U_1 \in \mathbb{R}^{n \times n}$  be a non-singular upper triangular matrix. Then, there is  $L_2 \in \mathbb{R}^{n \times n}$  a non-singular lower triangular matrix such that  $L_2(i,i) = 1$  for all  $i = 1, \ldots, n$  and  $U_2$  a non-singular lower triangular matrix such that:

$$L_1U_1=L_2U_2.$$

#### Proof.

Let D the diagonal matrix given by  $D(i,i) = \frac{1}{L_1(i,i)}$  for all  $i=1,\ldots,n$ . As  $L_1$  is non-singular,  $L_1(i,i) \neq 0$  for all  $i=1,\ldots,n$ , so D is well-defined. Moreover:

- $L_2 U_2 = L_1 D D^{-1} U_1 = L_1 U_1.$
- $L_2(i,i) = L_1(i,i)D(i,i) = 1$ , for all i = 1,...,n.

Jon Asier Bárcena-Petisco (University of the Basque Country UPV/EHU) - Numerical Methods I (2023/24)

# An additional restriction to the LU decomposition (iii)

00000000

### Proposition

Let  $L_1, L_2 \in \mathbb{R}^{n \times n}$  be lower triangular matrices such that  $L_1(i,i) = L_2(i,i) = 1$  for all i = 1, ..., n and  $U_1, U_2 \in \mathbb{R}^{n \times n}$  be upper triangular non-singular matrices. Then, if  $L_1U_1=L_2U_2$  we have that  $L_1 = L_2$  and  $U_1 = U_2$ .

**Proof** 1st step: getting an equation of diagonal matrices. Since all the matrices are non-singular:

$$L_2^{-1}L_1 = U_2U_1^{-1}. (\dagger)$$

Since the left hand-side of (†) is lower triangular, and the right hand-side of (†) is upper triangular, both sides must be diagonal.

# An additional restriction to the LU decomposition (iv)

2nd step: obtention of the identity. Since

$$(L_2)^{-1}(i,i) = \frac{1}{L_2(i,i)} = \frac{1}{1} = 1 \quad \forall i = 1, \dots, n$$

and the diagonal of the product of lower matrices is given by the products of the diagonal, then the diagonal of  $L_2^{-1}L_1$  contains just 1. Moreover, since  $L_2^{-1}L_1$  is diagonal:

$$L_2^{-1}L_1 = I. (\ddagger)$$

*3rd step: conclusion.* By multiplying  $(\ddagger)$  by  $L_2$ , we obtain that:

$$L_1 = L_2$$
.

Finally, combining (†) and (‡), we obtain that:

$$U_2U_1^{-1}=I,$$

which implies multiplying by  $U_1$  that:

$$U_2 = U_1.\square$$

## Non-existence of the *LU* decomposition

As we are going to see, not every non-singular matrix can be decomposed with a LU decomposition. Let us consider:

00000000

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

It is an invertible matrix. However, if

$$\begin{pmatrix} 1 & 0 \\ L(2,1) & 1 \end{pmatrix} \begin{pmatrix} U(1,1) & U(1,2) \\ 0 & U(2,2) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},$$

we have the equations:

$$\begin{cases} U(1,1) = 0, \\ U(1,2) = 0, \\ L(2,1)U(1,1) = 1, \\ L(2,1)U(1,2) + U(2,2) = 1, \end{cases}$$

which does not have any solution.

## Matrix for whom a LU decomposition exist

### Exercise

Let  $A \in \mathbb{R}^{n \times n}$  be a non-singular matrix. Then, there is an LU decomposition if and only if  $\det(A(1:k,1:k)) \neq 0$  for all  $k = 1, \ldots, n$ .

### Exercise

Let  $A \in \mathbb{R}^{n \times n}$  for  $n \geq 2$  be a matrix such that  $|A(i,i)| > \sum_{j \neq i} |A(i,j)|$  for all  $i=1,\ldots,n$  (a matrix with a strictly dominant diagonal). Show that A admits an LU decomposition in which L(i,i)=1 for all  $i=1,\ldots,n$ .

LUP decomposition of a matrix

Triangular matrices

4.4. LUP decomposition.

000000000000000000

Triangular matrices

## Revisit of permutation matrices

### Definition

A permutation matrix is any matrix  $P \in \mathbb{R}^{n \times n}$  such that there is a bijection  $\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$  such that:

$$P(i,j) = \begin{cases} 1 & j = \sigma(i) \\ 0 & j \neq \sigma(i) \end{cases}$$

In that case we say that P is induced by  $\sigma$ .

### Remark

Recall that if P is a permutation matrix, P is non-singular and  $P^{-1} = P'$ . Also recall that the product of permutation matrices is a permutation matrix.

LUP decomposition of a matrix

Triangular matrices

## Permutation of columns (i)

Let us see that multiplying by a permutation matrix in the left permutes rows:

#### Proposition

Let  $\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$  be a bijection and P be its induced matrix. Then, for all  $A \in \mathbb{R}^{n \times n}$ :

$$(PA)(i,j) = A(\sigma(i),j).$$

#### Proof.

We have that:

$$(PA)(i,j) = \sum_{k=1}^{n} P(i,k)A(k,j) = A(\sigma(i),j),$$

as  $P(i, \sigma(i)) = 1$  and P(i, k) = 0 if  $k \neq \sigma(i)$ .

Jon Asier Bárcena-Petisco (University of the Basque Country UPV/EHU) - Numerical Methods I (2023/24)

LUP decomposition of a matrix

Triangular matrices

## Resolution of linear systems with permutation matrices

Let  $L \in \mathbb{R}^{n \times n}$  be a lower triangular non-singular matrix,  $U \in \mathbb{R}^{n \times n}$ be an upper triangular non-singular matrix, and P be a permutation matrix. Let A = P'LU; that is,  $A \in \mathbb{R}^{n \times n}$  satisfying PA = LU. Then, the system Ax = b can be solved as follows:

- First, solve Ly = Pb.
- Then, solve Ux = y

The computation of both steps was explained in Section 4.2. The method woks because, if x is obtained following the two steps, as  $P' = P^{-1}$ .

$$Ax = P^{-1}LUx = P^{-1}Ly = P^{-1}Pb = b.$$

## Main result of the section

### Theorem (LUP Decomposition Theorem)

Let  $A \in \mathbb{R}^{n \times n}$  be a non-singular matrix. Then, there are  $L \in \mathbb{R}^{n \times n}$  a lower triangular matrix whose diagonal terms are all 1,  $U \in \mathbb{R}^{n \times n}$  an upper triangular non-singular matrix, and  $P \in \mathbb{R}^{n \times n}$  a permutation matrix such that LU = PA.

We are going to give a constructive proof, with an algorithm that can be implemented in a computer.

#### Remark

The LUP decomposition is also known in the literature as LU decomposition with pivoting.

LUP decomposition of a matrix

Triangular matrices

## Rephrasing the main result in an inductive way

### **Proposition**

Let  $A \in \mathbb{R}^{n \times n}$  be a non-singular matrix. Then, for all k = 1, ..., n there are:

- $L_k \in \mathbb{R}^{n \times n}$  a lower triangular matrix such that  $L_k(i, i) = 1$  for all  $i=1,\ldots,k$
- $U_k \in \mathbb{R}^{n \times n}$  an upper triangular matrix such that  $U_k(i,i) \neq 0$ ,
- $P_k \in \mathbb{R}^{n \times n}$  a permutation matrix,

such that:

$$(L_k U_k)(:, 1:k) = (P_k A)(:, 1:k).$$

Once this proposition is proved, the LUP Decomposition Theorem follows with k = n. Indeed, if  $L_n U_n = PA$  and A is non-singular, necessarily  $0 \neq \det(L_n U_n) = \det(L_n) \det(U_n)$ , so  $L_n$  and  $U_n$  are also non-singular.

## Step 1: the base case: definition of $P_1$

Let us show that the previous proposition holds for k = 1. Let us fix  $i_1 \in \{1, ..., n\}$  such that:

$$|A(i_1,1)| = \max_{i=1,\ldots,n} \{|A(i,1)|\}.$$

(if there are more than one possibility, we choose the smallest index). Then, we fix  $P_1$  the permutation matrix induced by:

$$\sigma_1(i) = egin{cases} i_1 & i = 1, \ 1 & i = i_1, \ i & ext{otherwise}. \end{cases}$$

## Step 2: the base case: definition of $U_1$

We fix  $U_1$  as follows:

$$U_1(i,j) = \begin{cases} (P_1A)(1,1) & (i,j) = (1,1), \\ 0 & \text{otherwise.} \end{cases}$$

Since

$$U_1(1,1)=(P_1A)(1,1)=A_1(\sigma_1(1),1)=A_1(i_1,1),$$

 $U_1(1,1)=0$  if and only if A(:,1)=0, which is absurd because A is non-singular. Thus,  $U_1(1,1) \neq 0$ .

## Step 3: the base case: definition of $L_1$

Next, we define  $L_1$  as follows:

$$L_1(i,j) = egin{cases} rac{(P_1A)(i,1)}{U_1(1,1)} & i=1,\ldots,n; & j=1 \ 0 & ext{otherwise}. \end{cases}$$

Fist, because of the definition of U(1,1) we have that:

$$L_1(1,1) = \frac{(P_1A)(1,1)}{U(1,1)} = \frac{(P_1A)(1,1)}{(P_1A)(1,1)} = 1.$$

Moreover, if i = 1, ..., n, using that  $U_1(k, 1) = 0$  for all  $k \ge 2$ :

$$(L_1U_1)(i,1) = \sum_{k=1}^n L_1(i,k)U_1(k,1) = L_1(i,1)U_1(1,1) = (P_1A)(i,1),$$

Thus, the base case is proved.

## Step 4: the inductive case: definition of $U_{k+1}$

Let us suppose the result is true for k and prove it for k+1 (here  $k \in \{1, ..., n-1\}$ ). The inductive hypothesis gives us the matrices  $(L_k, U_k, P_k)$ . We fix:

$$\tilde{U}_{k+1}(i,j) = \begin{cases} U_k(i,j) & j = 1, \dots, k \\ (P_kA)(1, k+1) & (i,j) = (1, k+1) \\ (P_kA)(2, k+1) - L_k(2, 1)\tilde{U}_{k+1}(1, k+1) & (i,j) = (2, k+1) \text{ and } k \leq 2 \\ (P_kA)(3, k+1) - L_k(3, 1:2) \cdot \tilde{U}_{k+1}(1:2, k+1) & (i,j) = (3, k+1) \text{ and } k \leq 3 \\ & \vdots & & \vdots \\ (P_kA)(k, k+1) - L_k(k, 1:k-1) \cdot \tilde{U}_{k+1}(1:k-1, k+1) & (i,j) = (k, k+1) \\ 0 & \text{otherwise} \end{cases}$$

Note that with this definition, we have that:

$$(L_k \tilde{U}_{k+1})(1:k,k+1) = (P_k A)(1:k,k+1).$$

## Step 5: the inductive case: definition of $P_{k+1}$

Let us fix  $i_{k+1} \in \{k+1,\ldots,n\}$  such that:

$$|(P_kA)(i_{k+1}, k+1) - L_k(i_{k+1}, 1:k) \cdot \tilde{U}_{k+1}(1:k, k+1)|$$

$$= \max_{i=k+1,\dots,n} \{|(P_kA)(i, k+1) - L_k(i, 1:k) \cdot \tilde{U}_{k+1}(1:k, k+1)|\}.$$

Then, we fix  $\tilde{P}_{k+1}$  the permutation matrix induced by:

$$\sigma_{k+1}(i) = \begin{cases} i_{k+1} & i = k+1, \\ k+1 & i = i_{k+1}, \\ i & \text{otherwise.} \end{cases}$$

With this we define  $P_{k+1} = \tilde{P}_{k+1}P_k$ .

LUP decomposition of a matrix

Triangular matrices

# Step 6: the inductive case: defining $U_{k+1}$ (i)

We fix  $U_{k+1}$  as follows:

$$U_{k+1}\big(i,j\big) = \begin{cases} (P_{k+1}A)(k+1,k+1) - L_k(i_{k+1},1:k) \cdot \tilde{U}_{k+1}(1:k,k+1) & (i,j) = (k+1,k+1), \\ \tilde{U}_{k+1}(i,j) & \text{otherwise}. \end{cases}$$

First, we remark that:

$$U_{k+1}(i,i) = \tilde{U}_{k+1}(i,i) = U_k(i,i) \neq 0 \quad \forall i = 1,\ldots,k$$

by the inductive hypothesis. Moreover,  $U_{k+1}(k+1,k+1) \neq 0$ . Let us suppose for the sake of contradiction that  $U_{k+1}(k+1, k+1) = 0$ . In that case, we have that:

$$L_k \left[ \tilde{U}_{k+1}(:,k+1) \right] = (P_k A)(:,k+1),$$

which implies together with the inductive hypothesis  $(L_k U_k)(:, 1:k) = (P_k A_k)(:, 1:k)$  the equation:

$$L_k\left[\tilde{U}_{k+1}(:,1:k+1)\right] = (P_kA)(:,1:k+1)$$

LUP decomposition of a matrix

Triangular matrices

## Step 6: the inductive case: defining $U_{k+1}$ (ii)

Since A is non-singular, so is  $\tilde{A}_k = P_k A$  (all permutation matrices are non-singular), so the rank of  $\tilde{A}_k(:,1:k+1)$  is k+1, as all the columns of  $\tilde{A}_k$  are linearly independent. However, the rank of  $\tilde{U}_{k+1}(:,1:k+1)$  is k, because  $U_{k+1}(k+1:n,1:k+1)=0$ . Consequently, we get an absurd (when we multiply matrices the rank cannot increase), and thus  $U_{k+1}(k+1,k+1)\neq 0$ .

LUP decomposition of a matrix

Triangular matrices

### Step 7: the inductive case: definition of $L_{k+1}$

Next, we define  $L_{k+1}$  as follows:

$$L_{k+1}(i,j) = \begin{cases} (\tilde{P}_{k+1}L_k)(i,j) & j = 1, \dots, k \\ \frac{(P_{k+1}A)(i,j) - L_{k+1}(i,1:k) \cdot U_{k+1}(1:k,k+1)}{U_{k+1}(k+1,k+1)} & i = k+1, \dots, n; \quad j = k+1 \\ 0 & \text{otherwise.} \end{cases}$$

Let us check that the term of the diagonal are 1. Since  $\tilde{P}_{k+1}$  permutes the rows with an index larger than k + 1:

$$L_{k+1}(i,i) = L_k(i,i) = 1, \quad i = 1,\ldots,k.$$

Moreover, considering the definition of  $U_{k+1}(k+1, k+1)$ :

$$L_{k+1}(k+1,k+1) = \frac{(P_{k+1}A)(k+1,k+1) - L_{k+1}(k+1,1:k) \cdot U_{k+1}(1:k,k+1)}{U_{k+1}(k+1,k+1)} = 1.$$

Indeed,  $L_{k+1}(k+1,1:k) = L_k(i_{k+1},1:k)$  by the definition of  $\tilde{P}_{k+1}$ .

### Step 8: the inductive case: check the decomposition

To conclude the proof, we must show that:

$$(L_{k+1}U_{k+1})(:,1:k+1)=(P_{k+1}A)(:,1:k+1).$$

Let us start with the first k column. First, considering that  $U_{k+1}$  is upper triangular:

$$(L_{k+1}U_{k+1})(:,1:k) = L_{k+1}(:,1:k)U_{k+1}(1:k,1:k)$$

$$= \tilde{P}_{k+1}L_k(:,1:k)U_k(1:k,1:k)$$

$$= \tilde{P}_{k+1}L_kU_k(:,1:k)$$

$$= \tilde{P}_{k+1}(P_kA)(:,1:k) = (P_{k+1}A)(:,1:k).$$

Finally, the last column is an easy consequence of applying matrix multiplication as in the base case.

LUP decomposition of a matrix

Triangular matrices

## Simplifications in the final iteration

In the final iteration, we just have one row. Thus,  $i_n = n$  and there is no need to compute. This implies that  $\tilde{P}_n = I$ , so  $P_n = P_{n-1}$ . Also, we clearly have:

$$L_n(i,j) = \begin{cases} L_{n-1}(i,j) & j \leq n-1, \\ 0 & i \leq n-1, \ j=n, \\ 1 & (i,j) = (n,n). \end{cases}$$

Thus, in the final step we can spare some computations and directly compute  $U_n$  (with the formulas for  $\tilde{U}_n$  and  $U_n$ ).

All this simplifications can be done when computing the LUP decomposition by hand.

# Main steps of the LUP decomposition

The main steps are the following:

- 1 Obtain  $P_1$ ,  $P_1A$ ,  $U_1$  and  $L_1$ .
- Obtain recursively the following matrices  $\tilde{U}_{k+1}$ ,  $P_{k+1}$ ,  $P_{k+1}$
- 3 Obtain  $P_nA$ ,  $L_n$  and  $U_n$  considering the simplifications on the previous slide.

For that, we have to use the formulas obtained in the proof. I recommend to take a look at the solved example written in a separate document.

Triangular matrices

4.5. Cholesky decomposition.

### Importance of symmetric matrices

Symmetric positive-definite matrices arises in the following scenarios:

- Least Square Problem.
- Non-linear optimizations.
- Monte Carlo simulations.
- Kalman filters.
- Matrix inversions.

Cholesky ask himself whether LUP could be improved in these cases.

### Important properties of symmetric matrices

#### Definition

Triangular matrices

A matrix  $A \in \mathbb{R}^{n \times n}$  is positive definite if v'Av > 0 for all  $v \in \mathbb{R}^n \setminus \{0\}$ .

#### Definition

A matrix  $P \in \mathbb{R}^{n \times n}$  is orthogonal if P is non-singular and  $P^{-1} = P'$ .

#### Theorem

Let  $A \in \mathbb{R}^{n \times n}$  a symmetric matrix. Then, all the eigenvalues of A are real, and A can be diagonalized with an orthonormal basis with respect to the canonical scalar product. In particular, there is an orthogonal matrix  $P \in \mathbb{R}^{n \times n}$  such that PAP' is diagonal.

### Theorem (Sylvester criterion)

Let  $A \in \mathbb{R}^{n \times n}$  a symmetric matrix. Then, A is positively definite if and only if det(A(1:k, 1:k)) > 0 for all k = 1, ..., n.

The proofs will be omitted.

Triangular matrices

# LL' decomposition (i)

Cholesky studied decompositions of the type LL', where L is a lower triangular matrix (with a diagonal that is not necessarily formed of ones). Note that the LL' decomposition is a special case of LU decomposition, in which U = L'. This implies that, once we have obtained this decomposition, we can solve linear systems in the same way as with the LU decomposition.

### **Proposition**

Let  $L \in \mathbb{R}^{n \times n}$  be a lower triangular matrix and A = LL'. Then, A is a symmetric matrix.

#### Proof.

$$A' = (L')'L' = LL' = A.$$

Jon Asier Bárcena-Petisco (University of the Basque Country UPV/EHU) - Numerical Methods I (2023/24)

Triangular matrices

# LL' decomposition (ii)

### **Proposition**

Let  $L \in \mathbb{R}^{n \times n}$  a non-singular lower triangular matrix. Let A = LL'. Then, A is positive definite.

#### Proof.

To show this result, by Sylvester criterion: as A is symmetric, it suffices to show that det(A(1:k,1:k)) > 0 for all k = 1, ..., n. Since the determinant of a triangular matrix is the product of the terms in the diagonal:

$$\begin{aligned} \det(A(1:k,1:k)) &= \det((LL')(1:k,1:k)) \\ &= \det(L(1:k,1:k)) \det(L'(1:k,1:k)) \\ &= [L(1,1) \cdots L(k,k)][L(1,1) \cdots L(k,k)] \\ &= [L(1,1)]^2 \cdots [L(k,k)]^2 > 0. \end{aligned}$$

We have used that  $L(i, i) \neq 0$  for all i = 1, ..., k as L is non-singular.

Jon Asier Bárcena-Petisco (University of the Basque Country UPV/EHU) - Numerical Methods I (2023/24)

Triangular matrices

# Cholesky decomposition

### Theorem (Cholesky Decomposition Theorem)

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric positive definite matrix. Then, there exists a unique lower triangular matrix L with strictly positive diagonal entries such that:

$$A = LL'$$
.

The entries of L can be computed iteratively as follows:  $L(1,1) = \sqrt{a_{1,1}}$ , and, for  $i=2,\ldots,n$ :

$$L(i,j) = \frac{A(i,j) - \sum_{k=1}^{j-1} L(i,k)L(j,k)}{L(j,j)}, \quad j = 1, \dots, i-1$$

and

$$L(i,i) = \sqrt{A(i,i) - \sum_{k=1}^{i-1} (L(i,k))^2}.$$

## Step 1: the entries of L (i)

Let  $L \in \mathbb{R}^{n \times n}$  be a lower triangular matrix. If LL' = A, then, using that L(i, k) = 0 if k > i:

$$A(1,1) = \sum_{k=1}^{n} L(1,k)L'(k,1) = L(1,1)L'(1,1) = (L(1,1))^{2},$$

and for  $i = 2, \ldots, n$ :

$$A(i,j) = \sum_{k=1}^{n} L(i,k)L'(k,j) = \sum_{k=1}^{j-1} L(i,k)L(j,k) + L(i,j)L(j,j) \quad j = 1, \ldots, i-1$$

and:

$$A(i,i) = \sum_{k=1}^{n} L(i,k)L'(k,i) = \sum_{k=1}^{i} L(i,k)L(i,k) = \sum_{k=1}^{i} (L(i,k))^{2}.$$

# Step 1: the entries of L (ii)

lf

Triangular matrices

$$A(i,i) - \sum_{k=1}^{i-1} (L(i,k))^2 > 0$$
 for all  $i = 1, ..., n$ , (†)

we see from the previous equations that there is a unique L with positive entries in the diagonal such that LL'(i,j) = A(i,j) if i > i. This, by the symmetry of A and of LL' implies that there is a unique lower triangular L with positive entries in the diagonal such that LL' = A. Thus, to conclude, we need to prove  $(\dagger)$ .

# Step 2: positivity of L(i, i)

 $(\dagger)$  is proved by induction on i. The base case, L(1,1) is a direct consequence of Sylvester criterion, which implies A(1,1) > 0. Let us now suppose that the result holds for i and prove it for i+1 ( $i=1,\ldots,n-1$ ). If it holds for i; then with the previous formulas there is  $L\in\mathbb{C}^{(i+1)\times(i+1)}$  such that  $L(1:i,1:i)\in\mathbb{R}^{i\times i}$  and LL' = A(1:i+1,1:i+1). Thus, by Sylvester criterion:

$$0 < \det(A(1:i+1,1:i+1)) = (\det(L))^{2}$$

$$= (L(1,1))^{2} \cdots (L(i,i))^{2} \left[ A(i+1,i+1) - \sum_{k=1}^{i} (L(i+1,k))^{2} \right],$$

which implies that:

$$A(i,i) - \sum_{k=1}^{i-1} (L(i,k))^2 > 0.$$

Thus:

$$\sqrt{A(i,i) - \sum_{k=1}^{i-1} (L(i,k))^2} > 0.\Box$$

## Cholesky VS LUP: final conclusions

- Cholesky has around half the operations than the LUP decomposition. Moreover, in Cholesky decomposition we do not have to deal with permutation matrices and it is easy to program.
- LUP does not require to compute square roots.
- Both rely on solving triangular systems after the composition is made.
- In both decompositions, the number of operations is around  $O(n^3)$ , so it is not the fastest way of solving linear systems (see Levinson recursion). However, they are both clearly faster than Cramer method, which, if not programmed properly, have O(n!) operations.