Schema Description

* Primary keys are underlined, Foreign keys are bold

Transaction DealWith Pay (Transaction#, dateTime, Payment Method, email, e id, total)

- Represents: a combined set merged with Transaction entity set, DealWith relationship set and Pay relationship set
- Primary key: Transaction#
- Foreign key: email, e_id
- Domain:
 - Transaction#: must be in the form of digits
 - o dateTime: a string in the form of yyyy/mm/dd
 - Payment Method: one of {"Credit Card", "Debit Card", "Cash" }
 - Total: must be an float not equal to 0. Positive value denotes purchase; negative value denotes refund
- Constraints: Each transaction must connect to one customer, one employee, and at least one product for a valid transaction.

Include(Transaction#, p_id)

- Represents: relationship set *Include*
- Primary key: Transaction#, p_id
- Foreign key: Transaction#, p id
- Constraints: every Transaction# must be related to at least one p id

Customer (email, c_name, address,password)

- Represents: entity set Customer
- Primary key: email
- Domain:
 - o email: a string with characters and numbers
 - o c_name: a string which is customer's name
 - Address: a string which is customer's address
 - o Password: a string that corresponds to customer's email

Member (email, points, reward rate)

- Represents: entity set Member
- Primary key: email
- Foreign key: email
- Domain:
 - Points: must be an integer >= 0
 - Reward Rate: an integer between 1 to 50
 (Every \$RewardRate spent, one point is earned.)

Product (p. id., category, sale Price, Inventory, Unit, p. name)

- Represents: entity set Product
- Primary key: p_id
- Domain:
 - p_id: has to be in the form of digits and size of char[10]
 - Category: a string
 - o sale Price: must be a float > 0
 - o Inventory: must be an integer > 0
 - Unit: a quantity unit in the form of string
 - P_name: has to be a size of char[10]
- Constraints: must have a corresponding manufacturer

Manufacturer(m id, m name, overallRating)

- Represents: entity set manufacturer
- Primary key: m id
- Domain:
 - o overallRating: an integer from 1 to 10
 - M_id: has to be in the form of digits and size of char[8]
 - M name: has to be a size of char[10]

Produce(**p_id**,**m_id**,purchase Price)

- Represents: relationship set Produce
- Primary key: p id,m id
- Foreign key:p_id,m_id
- Domain:
 - purchase Price: must be an integer > 0
- Constraint: every p_id must be related to exactly one m_id

Employee(e id, e name, salary, startDate,type,password)

- Represents: a Employee entity set
- Primary key: e_id
- Domain:
 - o e id: has to be in the form of digits and size of char[8]
 - o e_name : has to be a size of char[10]
 - salary: an integer > 0
 - startDate: a string in the form of yyyy/mm/dd
 - Type: one of {"Cashier", "Manager"}
 - Password: a string that corresponds to employee's e_id

SQL DDL

CREATE TABLE Transaction DealWith Pay {

Transaction# char[10],
dateTime char[10],
Payment Method char[10],
email char[20] NOT NULL,
e_id char[8] NOT NULL ,
Total float,
PRIMARY KEY(Transaction#),
FOREIGN KEY(email) REFERENCES Customer
ON DELETE NO ACTION
ON UPDATE NO ACTION
FOREIGN KEY(e_id) REFERENCES Employee
ON DELETE NO ACTION
ON UPDATE NO ACTION
ON UPDATE NO ACTION

INSERT

}

INTO Transaction_DealWith_Pay(Transaction#, dateTime, Payment Method, email, e_id, total) VALUES ('0000000001', '2018/02/11', Credit Card, 'adam@gmail.com', '00000001',100.00)

INSERT

INTO Transaction_DealWith_Pay(Transaction#, dateTime, Payment Method, email, e_id, total) VALUES ('000000002', '2018/02/11', 'Cash', 'xxx@gmail.com', '00000001',100)

INSERT

INTO Transaction_DealWith_Pay(Transaction#, dateTime, Payment Method, email, e_id, total) VALUES ('0000000003', '2018/02/12', 'Debit Card', 'aaa@foxmail.com', '00000001',100.00)

INSERT

INTO Transaction_DealWith_Pay(Transaction#, dateTime, Payment Method, email, e_id, total) VALUES('000000004', '2018/02/13', 'Cash', 'bbb@gmail.com', '00000003',-100.00)

INSERT

INTO Transaction_DealWith_Pay(Transaction#, dateTime, Payment Method, email, e_id, total) VALUES ('000000005', '2018/02/13', 'Cash', 'ccc@gmail.com', '00000003',-50.00)

Transaction#	dateTime	PaymentMeth od	email	e_id	total
000000001	2018/02/11	Credit Card	aaa111@gm ail.com	00000001	100.00
000000002	2018/02/11	Cash	bbb222@gm ail.com	0000001	100.00
000000003	2018/02/12	Debit Card	ccc333@fox mail.com	00000001	100.00

000000004	2018/02/13	Cash	ddd444@gm ail.com	00000003	-100.00
000000005	2018/02/13	Cash	eee555@gm ail.com	00000003	-50.00

```
CREATE TABLE Include{
      Transaction# char[10]
      P_id Char[10]
      PRIMARY KEY (Transaction#, P_id)
      FOREIGN KEY (Transaction#) REFERENCES Transaction_DealWith_Pay
      FOREIGN KEY (P_id) REFERENCES Product
}
INSERT
INTO Include(Transaction#, p_id)
VALUES ('000000001', '2947563856')
INSERT
INTO Include(Transaction#, p_id)
VALUES ('000000001', '2873648592')
INSERT
INTO Include(Transaction#, p_id)
VALUES ('000000001', '2748364834')
INSERT
INTO Include(Transaction#, p_id)
VALUES ('000000002', '1234778374')
INSERT
INTO Include(Transaction#, p_id)
VALUES ('000000003', '1237283848')
```

Transaction#	P_id
000000001	2947563856
000000001	2873648592
000000001	2748364834
000000002	1234778374

```
000000003 1237283848
```

```
CREATE TABLE Customer {
      Email Char[20],
      Name Char[20],
      Address Char[20],
      Password Char[20],
      PRIMARY KEY(Email)
      }
INSERT INTO Customer (Email, Name, Address, Password) VALUES ('aaa111@gmail.com',
'Sarah King', '1 W16 St','111111')
INSERT INTO Customer (Email, Name, Address, Password) VALUES ('bbb222@gmail.com',
'Mike Queen', '2 W16 St','222222')
INSERT INTO Customer (Email, Name, Address, Password) VALUES ('ccc333@gmail.com',
'Jane Knight', '3 W16 St','333333')
INSERT INTO Customer (Email, Name, Address, Password) VALUES ('ddd444@gmail.com',
'Zed Castle', '4 W16 St','444444')
INSERT INTO Customer (Email, Name, Address, Password) VALUES ('eee555@gmail.com',
'Andy Liu', '5 W16 St','555555')
```

Email	Name	Address	Password
aaa111@gmail.com	Sarah King	1 W16 St	111111
bbb222@gmail.com	Mike Queen	2 W16 St	222222
ccc333@gmail.com	Jane Knight	3 W16 St	333333
ddd444@gmail.com	Zed Castle	4 W16 St	444444
eee555@gmail.com	Andy Liu	5 W16 St	555555

INSERT INTO Member (Email, Points, rewardRate) VALUES (bbb222@gmail.com, 500, 10) INSERT INTO Member (Email, Points, rewardRate) VALUES (ccc333@gmail.com, 24, 2) INSERT INTO Member (Email, Points, rewardRate) VALUES (ddd444@hotmail.com, 35, 5) INSERT INTO Member (Email, Points, rewardRate) VALUES (eee555@gmail.com, 890, 10)

Email	Points	rewardRate
aaa111@gmail.com	100	20
bbb222@gmail.com	500	10
ccc333@gmail.com	24	2
ddd444@gmail.com	35	5
eee555@gmail.com	890	10

```
CREATE TABLE Product {
       P id Char[10]
       Category Char[10]
       salePrice Float,
       Inventory Float,
       Unit Char[4]
       P_name Char[10]
       PRIMARY KEY(P id)
INSERT
INTO
Product (P_id,Category,salePrice,Inventory, Unit,P_name) VALUES ('3456782910', 'Fruit',
19.98,10000.00, 'kg', 'Europe's Best Caribbean Treasuse 600g')
INSERT
INTO
Product (P_id,Category,salePrice,Inventory, Unit,P_name) VALUES ('2345625142', 'Vegetable',
25.50,4000.00, 'kg','President's Choice Green Beans')
INSERT
INTO
Product (P_id,Category,salePrice,Inventory, Unit,P_name) VALUES ('3482716482', 'Drinks',
20.99,2000.00, 'bottle', 'Coca-Cola')
```

INSERT INTO Product (P_id,Category,salePrice,Inventory, Unit,P_name) VALUES ('9028364715', 'Cosmetics', 2.99,100.00, 'bottle','1 Million Eau de Toilette Spray')

INSERT

INTO

Product (P_id,Category,salePrice,Inventory, Unit,P_name) VALUES ('2736451801', 'Fruit', 5.90,3000.00, 'kg', 'PC Organics Canadian Wild Blueberries')

P_id	Category	salePrice	Inventory	Unit	P_name
3456782910	Fruit	19.98	10000.00	kg	Europe's Best Caribbean Treasuse 600g
2345625142	Vegetable	25.50	4000.00	kg	President's Choice Green Beans
3482716482	Drinks	20.99	2000.00	bottle	Coca-Cola
9028364715	Cosmetics	2.99	100.00	bottle	1 Million Eau de Toilette Spray
2736451801	Fruit	5.90	3000.00	kg	PC Organics Canadian Wild Blueberries

M_id	Name	overallRating
0000001	Nestle	8
00000002	Johnson & Johnson	7

00000003	Tyson Foods	3
0000004	Coca Cola	9
0000005	Pepsi	1

```
CREATE TABLE Produce{
    P_id Char[10]
    M_id Char[8]
    purchasePrice Float
    PRIMARY KEY(P_id,M_id)
    FOREIGN KEY(P_id) REFERENCES Product
        ON DELETE NO ACTION
        ON UPDATE NO ACTION
    FOREIGN KEY (M_id) REFERENCES Manufacturer
        ON DELETE NO ACTION
        ON UPDATE NO ACTION
        ON UPDATE NO ACTION
```

INSERT INTO Produce (P_id,M_id,purchasePrice) VALUES ('000000001', '00000001', 1.20) INSERT INTO Produce (P_id,M_id,purchasePrice) VALUES ('0000000002', '00000002', 0.80) INSERT INTO Produce (P_id,M_id,purchasePrice) VALUES ('0000000003', '00000001', 0.99) INSERT INTO Produce (P_id,M_id,purchasePrice) VALUES ('0000000004', '00000003', 12.00) INSERT INTO Produce (P_id,M_id,purchasePrice) VALUES ('0000000005', '00000003', 11.99)

P_id	M_id	purchasePrice
000000001	0000001	1.20
000000002	00000002	0.80
000000003	0000001	0.99
000000004	00000003	12.00
000000005	00000003	11.99

```
CREATE TABLE Employee {
    e_id Char[8],
    e_name Char[10],
    Salary float,
```

```
startDate Char[20],
Type Char[7],
Password Char[20],
PRIMARY KEY (e_id)
}
```

INSERT INTO Employee (e_id, e_name, Salary, startDate, type, Password) VALUES ('00000001', 'Amy Acker', 2000.00, '2016/12/01', 'manager', '111111') INSERT INTO Employee (e_id, e_name, Salary, startDate, type, Password) VALUES ('00000002', 'Bob Zhang', 2000.00, '2016/12/01', 'cashier', '222222') INSERT INTO Employee (e_id, e_name, Salary, startDate, type, Password) VALUES ('00000003', 'Carrie Walter', 1800.00, '2017/01/22', 'cashier', '333333') INSERT INTO Employee (e_id, e_name, Salary, startDate, type, Password) VALUES ('00000004', 'David Zhang', 1700.00, '2017/03/13', 'cashier', '444444') INSERT INTO Employee (e_id, e_name, Salary, startDate, type, Password) VALUES ('00000005', 'Eva Zhang', 1600.00, '2017/12/01', 'cashier', '555555')

e_id	e_name	Salary	startDate	Туре	Password
00000001	Amy Acker	4000.00	2016/12/01	manager	111111
00000002	Bob Zhang	2000.00	2016/12/01	cashier	222222
00000003	Carrie Walter	1800.00	2017/01/22	cashier	333333
00000004	David Zhang	1700.00	2017/03/13	cashier	444444
00000005	Eva Zhang	1600.00	2017/12/01	cashier	555555

Functional Dependency

Transaction_DealWith_Pay (<u>Transaction#</u>, dateTime, Payment Method, **email**, **e_id**, total) Transaction# -> dateTime, payment Method, total, e_id, email, p_id

// A transaction# can identify a transaction, and implies other attributes of a transaction // such as transaction dateTime, the payment method.

// Lastly, this transaction will associate with a certain employee, a customer identified by // his/her email, and the products purchased in this transaction.

Include(<u>Transaction#</u>, <u>p_id</u>)
Null

Vull

Customer (<u>email</u>, c_name, address,password)

Email -> address, c name,password

// An email can identify a customer, and implies other attributes of a customer including

// customer name and address. password that corresponds to the employee's e id

```
Member (email, points, rewardRate)
Email -> points, rewardRate
       // An email can identify a member, and implies other attributes of a member including
       // customer points and rewardRate.
Product (p id, category, sale Price, Inventory, Unit, p name)
P_id -> category, sale Price, Inventory, Unit, p_name
       // A p id can identify a product, and implies other attributes of a product including
       // its category, inventory, salePrice, unit, and its name.
Manufacturer(m id, m name, overallRating)
M_id -> m_name, overallRating
       // A m id can identify a manufacturer, and implies other attributes of a manufacturer
       // including manufacturer's name and it overall rating.
Produce(p_id,m_id,purchase Price)
P id,m id -> purchase Price
       // the p id and m id can identify the unique contract with a product and a manufacturer,
       // and imply the purchase price on the contract.
Employee(e_id, e_name, salary, startDate,type,password)
e id -> salary, startDate, type, e name,password
       // the e id is the employee id, which can identify an employee, and it can imply
       // the name, his/her salary, the startDate of this employee, and the job type, password
       // corresponds to the employee's e id
```

Note for BCNF:

For each entity, there is one and only one primary key set, and no other candidate keys exist in the diagram. The functional dependency is wrote in such a way that each primary key can determine the rest of attributes in the table, with no exceptions. Therefore, we have confirmed that everything is fully normalized to be in BCNF.