

OpenFlow技術を用いた 消費電力削減のための フロー最適化手法の一提案

津田 徹* , 市川 昊平* , 猪俣 敦夫** , 藤川 和利**

- * 奈良先端科学技術大学院大学 情報科学研究科
- ** 奈良先端科学技術大学院大学 総合情報基盤センター

発表者紹介

- □経歴
 - □ 2007-2011 立命館大学 情報理工学部
 - 2011- 現在 奈良先端科学技術大学院大学 情報科学研究科
- □研究Topic
 - NIDSに適したCAMのFPGAシミュレーション
 - ■スマートフォンのBluetooth通信を用いた 救助要請伝搬アプリケーション(設計・初期実装)
 - □データセンタネットワークの省電力化(現在)

目次

- □データセンタ全体の消費電力量
- □データセンタネットワークの消費電力量
- □省電力化の動き
- □ 我々の提案するネットワーク省電力手法
- □まとめ

データセンタ

- □高密度に設置された情報機器
- □高機能化された情報機器

データセンタの消費電力量の増加

- □経済産業省グリーンIT推進協議会報告(2008)
 - 5,000億kWh(2006年) → 47,000億kWh(2025年)
 - □世界総発電量の約15%
- □データセンタ消費電力内訳[asami 2008]

[asami2008]Energy consumption targets for network systems

ネットワーク機器の消費電力量

Configuration	Edge Switch(W)	Aggregation Switch (W)
Chassis	146	54
Line card	included in Chasis	39
10Mbps/port	0.12	0.42
100Mbps/port	0.18	0.48
1Gbps/port	0.87	0.90

スイッチ単体の消費電力量 [Mahadevan 2009]

[Mahadevan 2009] Energy aware network operations

データセンタネットワーク

- ロトポロジ
 - □高密度に配置されたノード
 - Ex. Fat Tree, Clos, Flattened-butterfly

Multi Rooted Fat tree topology (4-pod)

トラフィック要求量

- □ 帯域の要求量 [T.Benson 2010]
 - 時間帯ごとに偏りがある
 - weekday weekendにも差が大きい

ネットワークの省電力化

- □未使用時はネットワーク機器の機能を制限・ 停止させることで省電力化が実現可能 [Gupta 2003]
- □トラフィックを圧密させることで、省電力化
 - ■中央集権サーバ
 - ■OSPFのリンクステート広告
 - ➤ SDN/OpenFlowを用いて実現できないか

ネットワークの省電力化方法

- □ 構築時に求められる要件
 - 負荷状況に応じたリソースの停止・機能制限
 - トラフィック変化情報のコンバージェンス速度
 - 新規フローに対する通信性能を確保した配置計算の応答性

省電力サブネットの削減効果

既存手法: Elastic Tree[Heller 2010]

- □ 省電カサブネットの構築方法として3種類を比較提案
 - formal, Greedy Bin Packing, Topology aware Heuristic
- Topology aware Heuristic
 - スイッチが自身の上流下流のアクティブな スイッチ数を元にルーティング
 - スイッチの死活情報はOpenFlowを用いて管理

□問題点

- 時間ごとに区切って静的に再配置を行うため バーストトラフィックなどへの対応に遅れる
- スイッチ数×スイッチ数の行列を用いるため処理コストが高い

既存手法2: CARPO [Wang 2012]

- □データセンタ内のサーバ間の相関関係
 - □ テナントのラック、アプリケーションのラック
- Correlation- Aware-Routing
 - OpenFlowを用いた中央集権制御
 - サンプリングしたフロー情報を基に相関係数を計算
 - □ 貪欲法+相関係数を用いてフロー集約を計算

□問題点

- 時間ごとに区切って静的に再配置□ バーストトラフィックなどへの対応に遅れる
- □ 相関係数分の計算コストが増加

既存手法の問題点

□ 静的なフロー再配置(Elastic Tree, CARPO)

提案手法 概要

- ロイベント駆動型トポロジ変化手法
 - □ネットワーク状況の変化をイベントとして検知
 - □イベントをトリガにトポロジ状態を変化させる
- □新規フロー疎通性の確保
 - □ 全ホストが最低限のネットワーク構成で接続
 - □イベントを検知し、フロー割り当て計算
- □フロー全体の最適化
 - □ 一定周期ごとに、通信量に見合ったフロー割り当て

トラフィックが少ない状態で約27%削減トラフィックが多い状態で約15%削減

イベント駆動型トポロジ変化手法システム概要

Event Detction

- □ トポロジ情報取得
 - 物理スイッチ・リンクの参加・離脱
 - フロータイムアウト
 - フローカウンタecho/reply
- □ 新規フロー到着

Contention Calculation

□ Infiniband のコンテンション計算を Best Fitアルゴリズムと組み合わせて フロー集約の近似最適解を計算

Power Management

□新規リンク Open/Close

□ Open: ビンがアイテムでいっぱい

□ Close:アイテムが他リンクへの集約によって不要

□新規スイッチ Open / Close

■ Open:スイッチへの入力が存在する

□ Close:スイッチへの入力が存在しない

消費電力の削減率

まとめ

- □ OpenFlowを利用したTraffic Engineeringによるフロー集約によって、ネットワークの省電力化研究が出始めている
- 我々が提案するイベント駆動で新規フローに対する可用性を高める手法を紹介

■ 閑散期:約27%省電力効果

■ 繁忙期:約15%省電力効果

□ ーユースケースとして持って帰っていただけたら幸い です

