Bioinformatics databases

杨建益

Email: yangjy@nankai.edu.cn

Webpage: http://yanglab.nankai.edu.cn/

Course: http://yanglab.nankai.edu.cn/teaching/bioinformatics/

Office: 数学科学学院, 419室

Note: the best way to learn for this chapter is to browse the listed websites on you laptop, rather than reading the slides carefully. The data listed on my slides are also outdated.

Content

- 1. Introduction
- 2. Nucleotide sequence databases
- 3. Amino acid sequence databases
- 4. Protein structure databases

Nucleic Acid Research publishes one database issue every year

VOLUME 43 DATABASE ISSUE JANUARY 28, www.nar.oxfordjournals.org

Nucleic Acids Research

Nucleic Acids Research

VOLUME 45 DATABASE ISSUE JANUARY 4 2017 https://academic.oup.com/nar

Central Dogma Of Molecular Biology

Central Dogma Of Molecular Biology

Content

- 1. Introduction
- 2. Nucleotide sequence databases
- 3. Amino acid sequence databases
- 4. Protein structure databases

INSDC: International Nucleotide Sequence Database Collaboration

http://www.insdc.org/

ABOUT INSDC

ADVISORS

International Nucleotide Sequence Database Collabora

POLICY

 The International Nucleotide Sequence Database Collaborat operates between <u>DDBJ</u>, <u>EMBL-EBI</u> and <u>NCBI</u>. INSDC cove assemblies to functional annotation, enriched with contextur configurations.

Data type	DDBJ		
Next generation reads	Sequence Read Archive		
Capillary reads	Trace Archive		
Annotated sequences	DDBJ		
Samples	BioSample		
Studies	BioProject		

- The INSDC advisory board, the <u>International Advisory Commadvisory</u> bodies. The International Advisory Committee publi INSDC.
- · Individuals submitting data to the international sequence dat

NCBI: https://www.ncbi.nlm.nih.gov/

EMBL: https://www.embl.org/

Locations

DDBJ: https://www.ddbj.nig.ac.jp/index-e.html

28 February 2018 | Announcement | DDBJ

Updated tools related to Mass Submission System (MSS)

EMBL-EBI, ENA: https://www.ebi.ac.uk/ena

Gene ID search result

Gene ID search result

Sequence search

Number of sequences in ENA

ENA release 134

5 Jan 2018 - 16:33

Release 134 of assembled/annotated sequences from ENA is now available on the EBI public ftp server at ftp://ftp.ebi.ac.uk/pub/databases/ena/sequence/release/. It contains 1,157,925,701 sequence entries comprising 2,700,988,919,811 nucleotides. You can see the full release notes at. http://bit.ly/LKFtrE.

ENA captures, preserves and presents the world's nucleotide sequence data. New content is included in ENA on a continuous basis and are distributed daily from our browser and RESTful service. The ENA assembled/annotated sequence release provides a quarterly snapshot of content in this important subset of ENA content.

Read more news from this service >

The search takes 1-2 minutes!

Sequence search output

Results for job ncbiblast-R20180228-083801-0760-51200808-p1m

- 1. How was the search conducted?
- 2. What does E-Value mean?

Summary of nucleotide sequence databases

http://www.ddbj.nig.ac.jp/breakdown_stats/dbgrowth-old-e.html

Summary of nucleotide sequence databases

Release	Date	Entries	Nucleotides	Comments		
107	2016/12	790,211,658	2,144,818,812,438	bulk sequence data inclusion started		
108	2017/03	828,693,902	2,277,580,885,713	TLS data type inclusion started		
109	2017/06	874,923,909	2,461,362,329,556			
110	2017/09	908,459,458	2,640,554,737,369			
111	2017/12	948,165,315	2,802,943,314,196			

Note: CON and TPA divisions are not included in the release statistics.

https://www.ddbj.nig.ac.jp/stats/dbgrowth-e.html

Content

- 1. Introduction
- 2. Nucleotide sequence databases
- 3. Amino acid sequence databases
- 4. Protein structure databases

From DNA sequences to protein sequences

How exactly do 4-base sequence form 20-amino-acid sequences?

SECOND POSITION										
		T	C	\mathbf{A}	\mathbf{G}					
	T	TTT (F)	TCT (S)	TAT (Y)	TGT (C)	T				
		TTC (F)	TCC (S)	TAC (Y)	TGC (C)	C				
		TTA (L)	TCA (S)	TAA STOP	TGA STOP	\mathbf{A}				
		TTG (L)	TCG(S)	TAG STOP	TGG (W)	G				
Z	C	CTT (L)	CCT (P)	CAT (H)	CGT (R)	T	Ξ			
2		CTC (L)	CCC (P)	CAC (H)	CGC (R)	C				
OSITION		CTA (L)	CCA (P)	CAA (Q)	CGA (R)	\mathbf{A}	RD			
OS		CTG (L)	CCG (P)	CAG (Q)	CGG (R)	G	P			
_ L	A	ATT (I)	ACT (T)	AAT (N)	AGT (S)	T	S			
FIRST		ATC (I)	ACC (T)	AAC (N)	AGC (S)	C	T			
l K		ATA (I)	ACA (T)	AAA (K)	AGA (R)	\mathbf{A}	TION			
<u> </u>		ATG (M)	ACG (T)	AAG (K)	AGG (R)	G	Z			
	G	GTT (V)	GCT (A)	GAT (D)	GGT (G)	T				
		GTC (V)	GCC (A)	GAC (D)	GGC (G)	C				
		GTA (V)	GCA (A)	GAA (E)	GGA (G)	\mathbf{A}				
		GTG (V)	GCG (A)	GAG (E)	GGG (G)	G				

Protein cannot be simply translated from DNA sequence

Introns are not translated into mRNA

 One has to know exon location to translate DNA to protein sequence

Alternative RNA Splicing

 Even if one knows exon locations, proteins can not be translated uniquely due to splicing

Protein sequence databases

(http://www.expasy.ch/sprot): A curated protein sequence database organized by Swiss Institute of Bioinformatics and EBI.

- Swiss-Prot is a protein sequence database to provide a high level of manual annotations (such as function, domain structure etc), started by Amos Bairoch at 1986.
- TrEMBL is a computer-annotated supplement of Swiss-Prot that contains all the translations of EMBL nucleotide sequence entries.

(http://pir.georgetown.edu): A curated protein sequence database organized by National Biomedical Research Foundation (NBRF) in the US. Started by Marget Dayhoff in 1965.

Two protein sequence databases are merged in 2002

It was generally believed that PIR does not reach the level of completeness in the entry annotation as does SWISS-PROT. Although SWISS-PROT and PIR overlap extensively, there are still many sequences which can be found in only one of them. A new database of UniProt emerges in 2002 which combines SwissProt, TrEMBL, and PIR.

UniProt Homepage: http://www.uniprot.org/

Find sequences that exactly match a query peptide sequence

Programmatic access

Query UniProt data using APIs providing REST, SPARQL and Java services

Where do the UniProtKB protein sequences come from?

More than 95% of the protein sequences provided by UniProtKB come from the translations of coding sequences (CDS) submitted to the EMBL-Bank/GenBank/DDBJ nucleotide sequence resources (International Nucleotide Sequence Database Collaboration (INSDC)). These CDS are either generated by gene prediction programs or are experimentally proven. A protein identifier ("protein_id") is assigned to the translated CDS and can be found in the original EMBL-Bank/GenBank/DDBJ record and in the relevant UniProtKB entry.

The translated CDS sequences are automatically transferred to the TrEMBL section of UniProtKB. The TrEMBL records can be selected for further manual annotation and then integrated into the UniProtKB/Swiss-Prot section. The "protein_id" are listed in the cross-reference part of the 'Sequence' section, of the UniProtKB entries (see for example P13744 'Translation').

In addition to translated CDS, UniProtKB protein sequences may come from:

- the PDB database.
- sequences experimentally obtained by direct protein sequencing, by Edman degradation or MS/MS experiments and submitted to UniProtKB/Swiss-Prot. Only about 5% of the UniProtKB/Swiss-Prot entries contain sequence data obtained by direct protein sequencing (list of entries with the keyword 'Direct protein sequencing').
- sequences scanned from the literature (i.g. PRF or other journal scan project).
- sequences derived from gene prediction, not submitted to EMBL-Bank/GenBank/DDBJ (Ensembl, Ensembl Genomes, WormBase ParaSite or VectorBase) (1), RefSeq, CCDS, etc).
- sequences derived from in-house gene prediction, in very specific cases.

More than 95% of the protein sequences provided by UniProtKB come from the translations of CDS submitted to the EMBL-Bank/GenBank/DDBJ nucleotide sequence resources. These CDS are either generated by gene prediction programs or are experimentally proven.

Search database by UniProt ID

Type your ID here (e.g., Q754G5)

Search result

Search result

Search database by sequence

Type your protein sequence here

Search result

Alignments

Statistics in UniProtKB/TrEMBL

https://www.ebi.ac.uk/uniprot/TrEMBLstats

107,627,435 sequences, 36,161,263,380 amino acids.

Statistics in UniProtKB/Swiss-Prot

https://web.expasy.org/docs/relnotes/relstat.html

Release 2018_01 of 31-Jan-18 of UniProtKB/Swiss-Prot contains 556568 sequence entries, comprising 199530821 amino acids abstracted from 257937 references

Several numbers to remember

- > 950M Nucleotide sequences in GeneBank (known DNA sequences)
- > 100M protein sequences in TrEMBL (translated proteins)
- > 550k protein sequences in Swiss-Prot (proteins with know function)
- > ?? Proteins with known structure

Content

- 1. Introduction
- 2. Nucleotide sequence databases
- 3. Amino acid sequence databases
- 4. Protein structure databases

The first atomic-level protein structure

Haemoglobin (血红蛋白)

the Nobel Prize in Chemistry in 1962 to Perutz and Kendrew

Protein Data Bank

Type your keywords or PDB ID here, eg, 1gzx

- Deposit
- Q Search
- Visualize
- **III** Analyze
- Download
- Learn

A Structural View of Biology

This resource is powered by the Protein Data Bank archive-information about the 3D shapes of proteins, nucleic acids, and complex assemblies that helps students and researchers understand all aspects of biomedicine and agriculture, from protein synthesis to health and disease.

The RCSB PDB builds upon the data by creating tools and resources for research and education in molecular biology, structural biology, computational biology, and beyond.

New Video: What is a Protein?

Search result

View .pdb file

1GZX

oxy T state haemoglobin: oxygen bound at all four haems

DOI: 10.2210/pdb1GZX/pdb

Classification: OXYGEN TRANSPORT

Organism(s): Homo sapiens

Deposited: 2002-06-07 Released: 2002-07-08

Deposition Author(s): Paoli, M., Liddington, R., Tame, J., Wilkinson, A., Dodson, G.

Experimental Data Snapshot

Method: X-RAY DIFFRACTION

Resolution: 2.1 Å R-Value Free: 0.221 R-Value Work: 0.199

Percentile relative to X-ray structures of similar resolution

■ Display Files ▼

⊕ Download Files ▼

This is version 1.2 of the entry. See complete history.

Literature

Download Primary Citation ▼

Crystal Structure of T State Haemoglobin with Oxygen Bound at All Four Haems.

Paoli, M., Liddington, R., Tame, J., Wilkinson, A., Dodson, G.

(1996) J.Mol.Biol. **256**: 775

PDB file format http://www.wwpdb.org/documentation/file-format-content/format33/sect9.html#ATOM

MOTA	51	N	THR		8	20.765	4.947	-6.642		18.59	N
ATOM	52	CA	THR	Α	8	20.630	5.778	-7.845		20.94	С
ATOM	53	C	THR		8	19.438	6.731	-7.855		20.07	C
ATOM	54	0	THR	Α	8	19.504	7.900	-8.272		19.45	0
ATOM	55	CB	THR	Α	8	20.618	4.897	-9.154		22.44	С
ATOM	56	OG1			8	21.849	4.150	-9.312	1.00	28.00	0
ATOM	57	CG2	THR	Α	8	20.529	5.834	-10.338		25.81	С
MOTA	58	N	ASN	Α	9	18.307	6.163	-7.389	1.00	22.23	N
ATOM	59	CA	ASN	Α	9	16.976	6.854	-7.314	1.00	20.96	С
ATOM	60	C	ASN	A	9	16.992	8.013	-6.334	1.00	18.95	C
ATOM	61	0	ASN	Α	9	16.385	9.031	-6.629	1.00	18.11	0
ATOM	62	CB	ASN	Α	9	15.843	5.891	-6.952		19.87	С
ATOM	63	CG	ASN	Α	9	15.529	4.873	-7.997		21.16	С
MOTA	64	OD1	ASN	Α	9	15.700	5.218	-9.167		24.31	0
MOTA	65	ND2	ASN	Α	9	15.059	3.674	-7.718	1.00	20.09	N
MOTA	66	N	VAL	Α	10	17.659	7.753	-5.230	1.00	20.53	N
MOTA	67	CA	VAL	Α	10	17.776	8.750	-4.158	1.00	20.63	C
ATOM	68	C	VAL	Α	10	18.701	9.851	-4.547	1.00	22.18	С
ATOM	69	0	VAL	Α	10	18.380	10.964	-4.201		22.12	0
ATOM	70	CB	VAL	Α	10	18.222	8.039	-2.861		21.95	С
ATOM	71		VAL		10	18.610	9.066	-1.812	1.00	20.26	C
MOTA	72	CG2	VAL	Α	10	17.194	6.969	-2.505	1.00	21.76	С
ATOM	73	N	LYS	Α	11	19.819	9.560	-5.212		26.40	N
ATOM	74	CA	LYS	Α	11	20.741	10.649	-5.639	1.00	26.50	С
ATOM	75	C	LYS	Α	11	20.061	11.571	-6.660	1.00	27.10	C
ATOM	76	0	LYS	Α	11	20.201	12.835	-6.654	1.00	27.46	0
MOTA	77	CB	LYS	Α	11	21.948	10.059	-6.323	1.00	26.87	С
ATOM	78	CG	LYS	Α	11	22.830	9.106	-5.534	1.00	30.08	С
ATOM	79	CD	LYS	Α	11	23.507	9.803	-4.361		32.89	С
ATOM	80	CE	LYS	Α	11	24.973	9.361	-4.310	1.00	33.95	С
ATOM	81	NZ	LYS	Α	11	25.883	10.328	-3.614	1.00	32.73	N
ATOM	82	N	ALA	Α	12	19.338	10.858	-7.536		26.72	N
MOTA	83	CA	ALA	Α	12	18.594	11.540	-8.623		28.18	С
MOTA	84	C	ALA	Α	12	17.457	12.435	-8.129		27.39	C
MOTA	85	0	ALA	Α	12	17.417	13.612	-8.664		28.67	0
MOTA	86	CB	ALA	Α	12	18.195	10.522	-9.693		30.03	С
MOTA	87	N	ALA	Α	13	16.649	11.979	-7.177		26.03	N
MOTA	88	CA	ALA	Α	13	15.529	12.803	-6.630	1.00	23.44	С

Software for visualizing PDB file

RasMol and OpenRasMol

Molecular Graphics Visualisation Tool

ndows Installer urce Tarball nual RasMol Mol

RasMol

http://www.openrasmol.org/

PyMOL

https://pymol.org/2/

Statistics in PDB

https://www.rcsb.org/stats/growth/overall

SCOP database

http://scop.mrc-lmb.cam.ac.uk/scop/

SCOP fold

Statistics in SCOP

SCOPe 2.06-stable statistics:

77439 PDB entries (released/updated prior to 2016-01-13). 244326 Domains. 1 Literature reference.

Class	Number of folds	Number of superfamilies	Number of families
a: All alpha proteins	289	513	1049
b: All beta proteins	177	365	952
c: Alpha and beta proteins (a/b)	148	246	984
d: Alpha and beta proteins (a+b)	385	562	1319
e: Multi-domain proteins (alpha and beta)	69	69	111
f: Membrane and cell surface proteins and peptides	59	118	169
g: Small proteins	94	135	267
Totals	1221 (13 new)	2008 (24 new)	4851 (47 new)

CATH database

CATH
PROTEIN STRUCTURE CLASSIFICATION

(C)lass, (A)rchitecture, (T)opology or fold, (H)omologous family

Statistics in CATH

Class	Architecture	Topology	Homologous Superfamily	S35 Family	S60 Family	S95 Family	S100 Family	Domains
Class 1	5	405	2174	7771	9948	12797	24176	90302
Class 2	21	244	1395	7011	9627	15169	26904	110260
Class 3	14	634	2428	16196	23313	29670	60020	229776
Class 4	1	108	122	311	399	542	876	4519
TOTAL	41	1391	6119	31289	43287	58178	111976	434857

Total number of folds is limited

Although the number of protein entries increases exponentially, the increasing speed of the number of new folds keeps decreasing. This indicates that the number of protein folds in nature should be limited (~2,000, by estimation). The fact that many different sequences adopt a similar fold is the base of template-based protein structure prediction algorithms.

Summary of proteomics

- > 950M Nucleotide sequences in GeneBank (known DNA sequences)
- > 100M protein sequences in TrEMBL (translated proteins)
- > 550k protein sequences in Swiss-Prot (proteins with know function)
- > 140k protein structure in PDB (proteins with known structure)
- > ~2k different folds in nature
- > 0.55% of known protein sequences have known function
- > 0.14% of known protein sequences have known structure

Sequence-structure gap

How to bridge the gap?

Many other popular and useful databases...

Pfam: protein sequence family built based on hidden Markov models

Gene Ontology: a database for protein function description

STRING: a database for protein-protein interaction

BioGrid: a curated biological database of protein-protein interactions

InterPro: a database of protein families, domains and functional sites

Drugbank: a database for druggable small molecules

Read through the NAR's annual database issue to find more...

Summary

- Introduction (Central dogma?)
- Nucleotide sequence databases

Names of three databases? How many nucleotide sequences?

Amino acid sequence databases

Names of the databases and relationship?

Protein structure databases

Names of the databases and relationship?

Project 1

基于本次课所介绍的数据库,搜索新冠状病毒的信息。需要报告的内容有:

- 1. 核酸序列
- 2. 蛋白质序列
- 3. 蛋白质结构

注:以上信息可能会来自不同的病人,因此若发现有多个样本(病人),请注意区分开,若可能的话,可以考察一下不同样本之间的异同。

- 1. 本课程分小组学习,请自行组合2-3人一组。
- 2. 本次作业两周后提交给助教,之后我会公布助教联系方式。

Papers needed to read for the next class

All can be download at:

http://yanglab.nankai.edu.cn/teaching/bioinformatics/papers/

BLOSUM: (Most often-used score matrix for protein sequence alignment): Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9

PAM matrix (construct a score matrix for guide protein sequence alignment): DAYHOFF, M., R. SCHWARTZ, AND B. ORCUTT. 1978. A model of evolutionary change in proteins. Pages 345--352 in Atlas of protein sequence and structure, Volume 5 (M. Dayhoff, ed.). National Biomedical Research Foundation, Washington, D.C.

Needleman-Wunsch: (A dynamic programming algorithm for sequence alignments) 5. B. Needleman and C. D. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins, J. Mol. Biol., vol.48, pp.443-453 (1970).

Smith-Waterman: (An extension of Needleman-Wunsch)

TF Smith & M S Waterman, Identification of common molecular subsequences. J Mol Biol (1981) 147, 195-197.

BLAST (The most often-used heuristic alignment)

Altschul et al Basic Local Alignment Search Tool. J Mol Biol (1990) 215, 403.