A Nondeterministic algorithm for * of a decidable language

Let L be a decidable language accepted by a decider DTM M.

 $w \in L^* \text{ iff}$

 $\exists k \text{ and } \exists \text{ a partition of } w = w_1 \dots w_k \text{ such that}$

 $w_i \in L \ \forall i = 1, 2, \dots k.$

A NTM decider M' accepts L^* as follows:

GUESS the positions $i1, \dots i_k$ where w is chopped.

(Traverse the input from the left end; at each position GUESS whether or not to mark the symbol.)

Simulate M on each piece of w one after the other.

Accept iff all the pieces are accepted by M.

A Nondeterministic algorithm for compositeness

Input: $W = w_1 w_2 \cdots w_n$, an *n*-bit number with $W \geq 2$.

Problem: Accept iff W is composite.

A two-tape NTM decides if W is composite as follows. Tape 1 contains the input W.

- 1. If W = 2 then reject;
- 2. GUESS a number X and write it on tape 2:

Until the end of the input do:

Nondeterministically write 0/1 on tape 2; move right by one position on the input tape and tape 2;

- 3. If $X \leq 1$ reject;
- 4. Write a separator at the right most end of tape 2;
- 5. Go to the left most position of the input tape;
- 6. GUESS a number Y and write on tape 2 after X:

Until the end of the input do:

Nondeterministically write 0/1 on tape 2; move right by one position on the input tape and tape 2;

- 7. If $Y \leq 1$ reject;
- 8. If XY = W accept else reject;

Path finding in a Graph

Given: a directed graph G=(V,E), where $V=\{1,2,\cdots,n\}$

Problem: Decide if there is a directed path from vertex 1 to vertex n.

Assume input is the adjacency matrix A for G:

 $A[i,j] = 1 \text{ if } (i,j) \in E, 0 \text{ otherwise.}$

Compute $NameLength = \lceil \log_2 n \rceil$.

Let $CurrentVertex \leftarrow 1$.

Let $EdgesSeen \leftarrow 0$.

Repeat until EdgesSeen = n:

GUESS a vertex NextVertex:

(guess a 0/1 binary number of length NameLength.)

If A[CurrentVertex, NextVertex] = 0 HALT and REJECT.

If NextVertex = n HALT and ACCEPT.

 $CurrentVertex \leftarrow NextVertex.$

Increment EdgesSeen.

HALT and REJECT.

Finding a K-Clique in a Graph

Given: a directed graph G=(V,E), where $V=\{1,2,\cdots,n\},$ and an integer K with $1\leq K\leq n.$

Problem: Decide if there is a complete graph of size K in G.

Assume graph G is given as an adjacency matrix A:

 $A[i,j] = 1 \text{ if } (i,j) \in E, 0 \text{ otherwise.}$

Compute $NameLength = \lceil \log_2 n \rceil$.

Copy K to Tape 2.

Repeat until Tape 2 is 0:

Write a separator mark # on Tape 3.

GUESS a vertex u and write it on Tape 3.

(guess a 0/1 bit number with length NameLength.)

Decrement number in Tape 2.

Repeat until no more vertices in Tape 3:

Read the first vertex from Tape 3 and store it in CurrentVertex.

Delete the first vertex from Tape 3.

For all vertices u in Tape 3 do:

If A[CurrentVertex, u] = 0 halt and reject.

Halt and accept.

Finding a K-Clique in a Graph

Given: a directed graph G=(V,E), where $V=\{1,2,\cdots,n\},$ and an integer K with $1~\leq~K~\leq~n.$

Problem: Decide if there is a complete graph of size K in G.

Assume graph G is given as an adjacency matrix A:

$$A[i,j] = 1 \text{ if } (i,j) \in E, 0 \text{ otherwise.}$$

GUESS K vertices u_1, \ldots, u_K .

For $1 \leq i \leq K$ do:

For
$$1 \leq j \leq K$$
 with $j \neq i$ do:

If
$$A[u_i, u_j] = 0$$
 halt and reject.

Halt and accept.