

Exercise 8: Numerical Integration

MAD

bacdavid@student.ethz.ch

Outline

- 1. Information
- 2. Goals
- 3. Theory / Recap (55')
- 4. Exercises (5')

Information

General

- Slides by LAB are on the website (look at them before proceeding!)
- These slides: https://polybox.ethz.ch/index.php/s/9NFCvtriBbRBDnS

No exercises next week (1. Mai), but lecture!

Goals

Goals of Today

- Understand why we use numerical integration
- Understand the basic approach for numerical integration
- Know how to integrate numerically with Rectangle, Trapezoidal, & Simpson's rule
- Understand derivation of Newton-Cotes formula & how to use it

Theory / Recap

Integral

Exact Integral:

$$I = \int_{a}^{b} f(x) dx$$

...can be solved analytically or not

Used for differential equations:

$$\dot{x} = f(x)$$

https://de.wikipedia.org/wiki/Integralrechnung#/media/File:Integral_as_region_under_curve.svg

Exercise 1

Solve the ODE:

$$\dot{x} = t \cdot e^t$$

Tipp:

$$\int_{a}^{b} uv'dx = [uv]_{a}^{b} - \int_{a}^{b} u'vdx$$

Numerical Integration

Approximate:

$$I = \int_{a}^{b} f(x)dx = \sum_{i=0}^{N-1} I_{i}$$

- Approximate I_i : (table)
 - Rectangular Rule
 - Trapezoidal Rule
 - Simpson's Rule

Approximations for I_i

Rectangular Rule	$I_{Ri} = f(x_{i+1/2}) \cdot \Delta_i$
Trapezoidal Rule	$I_{Ti} = \frac{f(x_i) + f(x_{i+1})}{2} \cdot \Delta_i$
Simpson's Rule	$I_{Si} = \frac{f(x_i) + 4f(x_{i+1/2}) + f(x_{i+1})}{6} \cdot \Delta_i$

Rectangular Rule

http://tutorial.math.lamar.edu/Classes/Calcl/AreaProblem.aspx

Trapezoidal Rule

http://tutorial.math.lamar.edu/Classes/Calcl/AreaProblem.aspx

Simpson's Rule

https://de.wikipedia.org/wiki/Datei:Simpsons_method_illustration.svg

Exercise 2

Solve the integral

- 1. Exact
- 2. Rectangle Rule
- Trapezoidal Rule
- 4. Simpson's Rule

$$\int_{-1}^{1} x^2 dx$$

Approximations for I_i

Rectangular Rule	$I_{Ri} = f(x_{i+1/2}) \cdot \Delta_i$
Trapezoidal Rule	$I_{Ti} = \frac{f(x_i) + f(x_{i+1})}{2} \cdot \Delta_i$
Simpson's Rule	$I_{Si} = \frac{f(x_i) + 4f(x_{i+1/2}) + f(x_{i+1})}{6} \cdot \Delta_i$

Newton-Cotes Formula

Approximate:

$$I \approx (b-a) \cdot \sum_{k=0}^{n} C_k^n f(x_k)$$
, with $C_k^n = \frac{1}{b-a} \int_a^b l_k^n(x) dx$ "weights"

- Properties of C_k^n :
 - $\bullet \quad \sum_{k=0}^n C_k^n = 1$
 - $C_k^n = C_{n-k}^n$
- Note:
 - Can be used for entire integral I or for smaller intervals I_i
 - The "weights" C_k^n are used supporting points f_k

Exercise 3

use n=2 and equally spaced x_0 , x_1 , x_2 to approximate I

$$I \approx (b-a) \cdot \sum_{k=0}^{n} C_k^n f(x_k),$$

$$with C_k^n = \frac{1}{b-a} \int_a^b l_k^n(x) dx \quad \text{"weights"}$$

• Tipp: $C_1^2 = \frac{2}{3}$

Exercises

Exercises

- 1. Use Newton-Cotes to derive Simpson's Rule (no short-cuts)
- 2. Implement Simpson's & Trapezoidal Integration (coding)

Questions?

