Instructions: Questions 1-14 are multiple choice. For each problem, circle the letter of the best answer. You **must show** all **work** for credit. Partial credit may be awarded as appropriate. Each question is valued at 3 points.

- 1. If $y = 6 \ln(3x)$ then what is y'?
 - (a) $\frac{2}{x}$
 - (b) $\frac{6}{x}$
 - (c) $\frac{1}{3x}$
 - (d) $\frac{18}{x}$
- 2. What is the value of

$$\lim_{\Delta x \to 0} \frac{2(x + \Delta x)^2 - 2x^2}{\Delta x}$$

- (a) 4x
- (b) 2x
- (c) 4
- (d) 2
- 3. If $w(t) = \sqrt{t^2 1}$ what is the value of w'(4)?
 - (a) $\frac{2}{\sqrt{15}}$
 - (b) $\frac{1}{\sqrt{15}}$
 - (c) $\frac{1}{2\sqrt{15}}$
 - (d) $\frac{4}{\sqrt{15}}$
- 4. At which x value does the graph of $y = 3x^2 10x + 15$ have a horizontal tangent line?
 - (a) $\frac{-3}{5}$
 - (b) $\frac{3}{5}$
 - (c) $\frac{-5}{3}$
 - (d) $\frac{5}{3}$

5. If $h(x) = f(x^2 + 1)$ then which of the following is true?

(a)
$$h'(x) = f'(2x)$$

(b)
$$h'(x) = 2xf'(2x)$$

(c)
$$h'(x) = 2xf'(x^2 + 1)$$

(d)
$$h'(x) = f'(x^2 + 1)$$

6. If $f(x) = \sin(2x + 1)$ and g(x) = f'(x), find g'(x)

(a)
$$g'(x) = 2\sin(2x+1)$$

(b)
$$g'(x) = -4\sin(2x+1)$$

(c)
$$g'(x) = 4\sin(2x+1)\cos(2x+1)$$

(d)
$$g'(x) = -4x\cos(2x+1)$$

7. The graph of a continuous differentiable function f is shown below.

Using the above graph, select the one true statement below.

(a)
$$f'(C) < f'(D) < f'(Y)$$

(b)
$$f'(A) < f'(B) < f'(C)$$

(c)
$$f'(X) < f'(Y) < f'(C)$$

(d)
$$f'(X) < f'(B) < f'(E)$$

8. Let $f(x) = x^3 - 6x^2 + 10$. At which point(s) on the graph of f is the tangent line parallel to the line 15x - y = 11?

- (a) (2, -6) and (-2, 22)
- (b) (5,-15) and (-1,3)
- (c) (2,-6) and (-2,-22)
- (d) (5,-15) and (2,-6)

9. If $y(x) = \frac{\sin(2x)}{x^2}$ find y'(x)

(a)
$$\frac{2x\cos(2x) - 2\sin(2x)}{x^3}$$

- (b) $\frac{2\cos(2x)}{x}$
- (c) $\frac{x^2\cos(2x) \sin(2x)}{x^3}$
- (d) $\frac{x^2 \sin(2x) + 2\cos(2x)}{x^4}$

10. Calculate $\frac{d}{dt} \left(\ln(e^{2t}) - 2t \right)$

- (a) 0
- (b) $\frac{1}{2t} 2$
- (c) $\frac{2}{e^{2t}} 2$
- (d) $\frac{1}{2e^{2t}} 2$

11. Let $f(x) = \sqrt{x}$. What is the equation of the tangent line to f at the point (4,2)?

- (a) $y = -\frac{1}{2}x + 3$
- (b) $y = \frac{1}{4}x + 1$
- (c) $y = \frac{1}{2}x$
- (d) y = 2x 6

- 12. What is the derivative of $s(t) = \cos(t^2 + 1)$?
 - (a) $-(t^2+1)\sin(t^2+1)$
 - (b) $\cos(2t)$
 - (c) $-2t\sin(t^2+1)$
 - (d) $-\sin(2t)$
- 13. If f and h are nonzero differentiable functions, then the derivative of $\frac{f}{h}$ is
 - (a) $\frac{f'h fh'}{h^2}$
 - (b) $\frac{f'h + fh'}{h^2}$
 - (c) $\frac{fh' f'h}{h^2}$
 - (d) $\frac{f'}{h'}$
- 14. The line tangent to the curve $y = \sqrt{16-x}$ at the point (0,4) has slope
 - (a) 4
 - (b) $\frac{1}{8}$
 - (c) -4
 - (d) $\frac{-1}{8}$

Free Response Section: Selected values of $f,g,f^{\prime},g^{\prime}$ are given in the table below.

x	0	1	2	3	4
f(x)	$\frac{1}{2}$	$\frac{1}{3}$	1	-1	3
g(x)	-2	1	$-\frac{1}{2}$	2	$-\frac{1}{3}$
f'(x)	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{1}{4}$	0	$-\frac{4}{5}$
g'(x)	-1	$\frac{2}{3}$	-4	-3	$-\frac{1}{3}$

Using the values in the table, evaluate the following derivatives. You must show the symbolic derivative as the first part of your answer for credit!

15.
$$\frac{d}{dx}(f(x) + g(x)) \text{ at } x = 4$$

16.
$$\frac{d}{dx}(f(x)g(x)) \text{ at } x = 1$$

17.
$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right)$$
 at $x = 0$

18.
$$\frac{d}{dx}(f(g(x))) \text{ at } x = 3$$

19.
$$\frac{d}{dx} (g(x + f(x))) \text{ at } x = 3$$