# IAF604 Assignment - 01

- · Importing Pandas library for reading the file, data manipulation and handling data.
- · Importing Matplot library for visualization of the datasets presented.
- · Random library to get random list or values to get randomised.

```
import pandas as pd
import matplotlib.pyplot as plt
import random
```

1. Download carpet.csv and hardwood.csv data sets from the following website at the end of chapter three and describe them <a href="http://www.uncg.edu/cmp/downloads/">http://www.uncg.edu/cmp/downloads/</a>.

Downloaded file from http://www.uncg.edu/cmp/downloads/.

Reading File carpet.csv and hardwood.csv which is said to be used for this assignment.

Used relative path to retrive the file.

```
In [2]: carpet = pd.read_csv("..\CH3\Files\carpet.csv",header=None)
```

Displaying header of carpet.csv data set.

```
In [3]:
           carpet.head()
                         1
                                 2
                                         3
                                                                                                                         57
                                                                                                                                 58
                                                                                                                                         59
                                                                                                                                                60
          0 170.39 167.28 143.44 124.67 139.01 125.83 144.33 151.26 175.51
                                                                                  171.31
                                                                                              172.96
                                                                                                     169.67
                                                                                                                            133.23 124.41
                                                                                                             157.51 161.06
                                                                                                                                            138.44 142
             169.75 190.96
                            175.53
                                    138.27
                                            137.47
                                                   139.23
                                                           133.23
                                                                   130.25
                                                                          147.73
                                                                                   163.93
                                                                                              139.58
                                                                                                      141.58
                                                                                                             153.39
                                                                                                                     141.00
                                                                                                                             148.43
                                                                                                                                    168.12
                                                                                                                                            169.90
                                                                                                                                                    165
            153.69
                    153.68
                            144.02
                                    158.73
                                            178.87
                                                   157.04
                                                           152.92
                                                                   147.52
                                                                          142.87
                                                                                   165.26
                                                                                              155.19
                                                                                                      170.51
                                                                                                             155.37
                                                                                                                     167.11
                                                                                                                             146.89
                                                                                                                                    141.01
                                                                                                                                            159.43
                                                                                                                                                    169
             131.69 151.56 151.05 134.00
                                           151.18 175.53 171.34
                                                                   159.77
                                                                          151.95
                                                                                   146.10
                                                                                              164.25
                                                                                                     155.82
                                                                                                             157.83
                                                                                                                    152.43
                                                                                                                             150.82
                                                                                                                                    146.58
                                                                                                                                            128.85
                                                                                                                                                    140
             162.85 158.88
                           132.27
                                    138.41
                                            143.98
                                                   159.30 177.26
                                                                   180.58
                                                                          159.34
                                                                                   164.66
                                                                                              132.80
                                                                                                     130.96
                                                                                                             135.74
                                                                                                                     167.31
                                                                                                                             188.21
                                                                                                                                     179.52
                                                                                                                                            146.20
                                                                                                                                                    153
         5 rows × 64 columns
```

Here we can understand about the null values present in each column and datatype (float64) of that column and there are 64 columns.

```
In [4]: carpet.info()
```

RangeIndex: 1024 entries, 0 to 1023 Data columns (total 64 columns): # Column Non-Null Count Dtype float64 0 1024 non-null 1024 non-null float64 1 1 2 2 1024 non-null float64 3 float64 1024 non-null 4 1024 non-null float64 float64 5 5 1024 non-null 6 6 1024 non-null float64 float64 1024 non-null 8 8 1024 non-null float64 9 9 1024 non-null float64 10 10 float64 1024 non-null 1024 non-null float64 11 11 float64 12 12 1024 non-null 13 13 1024 non-null float64 14 14 1024 non-null float64 15 15 1024 non-null float64 16 16 1024 non-null float64 1024 non-null float64 17 17 18 18 1024 non-null float64 19 1024 non-null float64 19 20 20 1024 non-null float64 21 21 1024 non-null float64 1024 non-null 22 22 float64 23 23 1024 non-null float64 24 24 1024 non-null float64 25 25 1024 non-null float64 26 1024 non-null float64 26 27 27 1024 non-null float64

<class 'pandas.core.frame.DataFrame'>

```
28
     28
              1024 non-null
                                float64
 29
     29
              1024 non-null
                                float64
 30
     30
              1024 non-null
                                float64
 31
     31
              1024 non-null
                                float64
 32
     32
              1024 non-null
                                float64
 33
     33
              1024 non-null
                                float64
 34
     34
              1024 non-null
                                float64
 35
     35
                                float64
              1024 non-null
 36
     36
              1024 non-null
                                float64
 37
     37
              1024 non-null
                                float64
 38
     38
              1024 non-null
                                float64
 39
     39
              1024 non-null
                                float64
 40
     40
              1024 non-null
                                float64
 41
     41
                                float64
              1024 non-null
 42
     42
              1024 non-null
                                float64
 43
     43
              1024 non-null
                                float64
 44
     44
              1024 non-null
                                float64
 45
     45
              1024 non-null
                                float64
 46
     46
                                float64
              1024 non-null
 47
     47
              1024 non-null
                                float64
              1024 non-null
 48
     48
                                float64
 49
     49
              1024 non-null
                                float64
 50
     50
              1024 non-null
                                float64
 51
     51
              1024 non-null
                                float64
 52
     52
              1024 non-null
                                float64
              1024 non-null
 53
     53
                                float64
 54
     54
              1024 non-null
                                float64
 55
     55
              1024 non-null
                                float64
 56
     56
              1024 non-null
                                float64
 57
     57
              1024 non-null
                                float64
 58
     58
              1024 non-null
                                float64
 59
     59
              1024 non-null
                                float64
 60
     60
              1024 non-null
                                float64
 61
     61
              1024 non-null
                                float64
              1024 non-null
                                float64
 62
     62
              1024 non-null
 63
     63
                                float64
dtypes: float64(64)
```

memory usage: 512.1 KB

```
In [5]:
          hardwood = pd.read_csv("..\CH3\Files\hardwood.csv", header=None)
In [6]:
          hardwood.head()
Out[6]:
                              2
                                      3
                                                                  7
                                                                                                                             59
                                                                                                                                    60
         0 93.593 89.581
                          86.892 89.289 87.814 87.369
                                                      85.607 85.630 83.339
                                                                           84.683 ...
                                                                                      82.271 77.157
                                                                                                    57.394
                                                                                                           65.553
                                                                                                                  68.725
                                                                                                                         69.740
                                                                                                                                70.054
         1 62.800 68.942 70.733 72.270 74.104 70.765 70.433 73.389
                                                                    83.640 83.944 ...
                                                                                      80.844 85.389
                                                                                                    90.223 91.711 93.813 92.941
                                                                                                                                 92.318 91.
         2 91.456 95.562 95.546 97.105 95.005 95.161
                                                      93.941 93.656 93.530 95.806
                                                                                  ... 93.733 96.668
                                                                                                    88.511 88.927
                                                                                                                  87,496
                                                                                                                         87.760
                                                                                                                                 92.894
         3 88.069 85.126 87.511 88.397 91.063 91.295 87.670 91.243 94.734 89.150
                                                                                  ... 91.443 93.115 90.032 91.643 91.100 88.701
                                                                                                                                 86.289
                                                                                                                                        85.
         4 91.156 89.904 88.336 87.195 86.341 90.781 92.560 93.496 94.155 95.442 ... 88.820 93.671 92.162 91.778 95.059 92.023 90.437 94.
        5 rows × 64 columns
```

#### In [7]: hardwood.info()

```
RangeIndex: 1024 entries, 0 to 1023
Data columns (total 64 columns):
#
     Column Non-Null Count
0
              1024 non-null
     0
                               float64
 1
     1
              1024 non-null
                                float64
 2
     2
              1024 non-null
                                float64
 3
     3
              1024 non-null
                                float64
 4
     4
              1024 non-null
                                float64
 5
     5
              1024 non-null
                                float64
     6
 6
              1024 non-null
                                float64
              1024 non-null
 7
     7
                                float64
 8
     8
              1024 non-null
                                float64
 9
     9
              1024 non-null
                                float64
     10
              1024 non-null
                                float64
 10
              1024 non-null
                                float64
 11
     11
 12
     12
              1024 non-null
                                float64
              1024 non-null
     13
 13
                                float64
 14
     14
              1024 non-null
                                float64
 15
     15
              1024 non-null
                                float64
 16
     16
              1024 non-null
                                float64
     17
              1024 non-null
                               float64
```

<class 'pandas.core.frame.DataFrame'>

| 18   | 18  | 1024       | non-null | float64 |
|------|-----|------------|----------|---------|
| 19   | 19  | 1024       | non-null | float64 |
| 20   | 20  | 1024       | non-null | float64 |
| 21   | 21  | 1024       | non-null | float64 |
| 22   | 22  | 1024       | non-null | float64 |
| 23   | 23  | 1024       | non-null | float64 |
| 24   | 24  | 1024       | non-null | float64 |
| 25   | 25  | 1024       | non-null | float64 |
| 26   | 26  | 1024       | non-null | float64 |
| 27   | 27  | 1024       | non-null | float64 |
| 28   | 28  | 1024       | non-null | float64 |
| 29   | 29  | 1024       | non-null | float64 |
| 30   | 30  | 1024       | non-null | float64 |
| 31   | 31  | 1024       | non-null | float64 |
| 32   | 32  | 1024       | non-null | float64 |
| 33   | 33  | 1024       | non-null | float64 |
| 34   | 34  | 1024       | non-null | float64 |
| 35   | 35  | 1024       | non-null | float64 |
| 36   | 36  | 1024       | non-null | float64 |
| 37   | 37  | 1024       | non-null | float64 |
| 38   | 38  | 1024       | non-null | float64 |
| 39   | 39  | 1024       | non-null | float64 |
| 40   | 40  | 1024       | non-null | float64 |
| 41   | 41  | 1024       | non-null | float64 |
| 42   | 42  | 1024       | non-null | float64 |
| 43   | 43  | 1024       | non-null | float64 |
| 44   | 44  | 1024       | non-null | float64 |
| 45   | 45  | 1024       | non-null | float64 |
| 46   | 46  | 1024       | non-null | float64 |
| 47   | 47  | 1024       | non-null | float64 |
| 48   | 48  | 1024       | non-null | float64 |
| 49   | 49  | 1024       | non-null | float64 |
| 50   | 50  | 1024       | non-null | float64 |
| 51   | 51  | 1024       | non-null | float64 |
| 52   | 52  | 1024       | non-null | float64 |
| 53   | 53  | 1024       | non-null | float64 |
| 54   | 54  | 1024       | non-null | float64 |
| 55   | 55  | 1024       | non-null | float64 |
| 56   | 56  | 1024       | non-null | float64 |
| 57   | 57  | 1024       | non-null | float64 |
| 58   | 58  | 1024       | non-null | float64 |
| 59   | 59  | 1024       | non-null | float64 |
| 60   | 60  | 1024       | non-null | float64 |
| 61   | 61  | 1024       | non-null | float64 |
| 62   | 62  | 1024       | non-null | float64 |
| 63   | 63  | 1024       | non-null | float64 |
| dtyp | es: | float64(64 | 1)       |         |

dtypes: float64(64)
memory usage: 512.1 KB

2. Extract statistical information (e.g. number of observations, dimension of the data, mean of each feature, etc.) from these datasets. Also present visual representations (e.g. histogram, scatter plot, etc.) of the data. Is the dataset imbalanced, inaccurate or incomplete? Is it a trivial data or possibly a big data? Does it have scalability problem? Are they high dimensional? You need to write programs to read the data and do this.

## Carpet data statistic analysis and plotting Histogram and scatterplots.

Here is some of the statistical information about the data set carpet.csv, we can see the total count of rows, mean of individual column, standard deviation, Maximun and minimum values .., under each column.

| In [8]: | <pre>carpet.describe()</pre> |             |             |             |             |             |             |             |             |             |             |  |
|---------|------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|
| Out[8]: |                              | 0           | 1           | 2           | 3           | 4           | 5           | 6           | 7           | 8           | 9           |  |
|         | count                        | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 |  |
|         | mean                         | 151.850416  | 151.281300  | 151.283510  | 151.919732  | 152.599011  | 152.829199  | 152.293690  | 151.960526  | 152.123718  | 152.248084  |  |
|         | std                          | 22.671128   | 22.043466   | 21.642348   | 21.715601   | 22.467180   | 22.336789   | 22.028949   | 22.660049   | 22.858322   | 22.513211   |  |
|         | min                          | 85.590000   | 81.564000   | 83.886000   | 81.334000   | 83.447000   | 80.529000   | 75.796000   | 66.143000   | 75.157000   | 78.858000   |  |
|         | 25%                          | 135.980000  | 135.897500  | 136.445000  | 137.265000  | 137.447500  | 136.402500  | 136.672500  | 136.095000  | 137.337500  | 136.700000  |  |
|         | 50%                          | 153.085000  | 151.255000  | 152.520000  | 152.365000  | 152.685000  | 153.180000  | 153.235000  | 152.100000  | 152.970000  | 152.215000  |  |
|         | 75%                          | 167.650000  | 165.772500  | 166.545000  | 166.892500  | 168.750000  | 168.285000  | 168.680000  | 168.567500  | 168.370000  | 167.330000  |  |
|         | max                          | 210.650000  | 210.200000  | 212.930000  | 211.000000  | 213.100000  | 215.900000  | 218.090000  | 215.430000  | 223.880000  | 224.050000  |  |
|         |                              |             |             |             |             |             |             |             |             |             |             |  |

In [9]:













```
In [10]:
    plt.hist(carpet)
    plt.show()
```



In [11]: plt.scatter(carpet[0],carpet[1])

Out[11]: <matplotlib.collections.PathCollection at 0x26080349e80>



# Hardwood data statistic analysis and plotting Histogram and scatterplots.

| [12]: | hardwood.describe() |             |             |             |             |             |             |             |             |             |             |  |
|-------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|
| [12]: |                     | 0           | 1           | 2           | 3           | 4           | 5           | 6           | 7           | 8           | 9           |  |
|       | count               | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 | 1024.000000 |  |
|       | mean                | 99.288047   | 99.432313   | 99.560572   | 99.518933   | 99.411100   | 99.339731   | 99.476555   | 99.607140   | 99.285813   | 99.468638   |  |
|       | std                 | 17.921041   | 18.007256   | 18.023408   | 18.131449   | 18.124113   | 18.074399   | 18.077122   | 17.951452   | 18.229546   | 18.208710   |  |
|       | min                 | 47.124000   | 47.262000   | 48.485000   | 49.323000   | 47.077000   | 47.365000   | 47.063000   | 47.546000   | 49.302000   | 48.393000   |  |
|       | 25%                 | 87.321750   | 86.846000   | 87.349250   | 86.916250   | 87.390000   | 87.200250   | 87.633500   | 87.332000   | 86.926000   | 87.410000   |  |
|       | 50%                 | 100.120000  | 99.810000   | 100.410000  | 100.125000  | 99.511000   | 99.235000   | 99.462000   | 100.355000  | 99.479000   | 99.837500   |  |
|       | 75%                 | 110.722500  | 111.195000  | 111.452500  | 111.812500  | 111.435000  | 111.795000  | 112.065000  | 111.777500  | 110.952500  | 111.267500  |  |
|       | max                 | 139.610000  | 139.600000  | 139.900000  | 141.780000  | 142.470000  | 143.340000  | 137.640000  | 138.830000  | 138.020000  | 141.270000  |  |
|       |                     |             |             |             |             |             |             |             |             |             |             |  |

8 rows × 64 columns

In [13]:
 for i in random.sample(range(len(hardwood.columns)), 5):
 hardwood.hist(column=i)





In [15]:

plt.scatter(hardwood[0],hardwood[1])

Out[15]: <matplotlib.collections.PathCollection at 0x26084b3e8d0>



### Observations made:

### carpet dataset:

- It is a big data.
- It is imbalanced data, as features has distributed or varied values.
- Not High dimensional, as dataset in which the number of features p is less than the number of observations N.
- It is not incomplete data as there are no null values.
- If observations are Incorrect it is inaccurate, the dataset is accurate, also standard deviations of each column are comparatively similar.
- No, scalability problem as there are no new additions to the features. when there is unstable growth in the features which can only
  possible in the high dimensional data then exists scalability problem. Since it is a low dimensional data, there is no scalability problem
  and also no features to add.

### hardwood dataset:

- It is a big data.
- It is imbalanced data, as features has distributed or varied values.
- Not High dimensional, as dataset in which the number of features p is less than the number of observations N.
- It is not incomplete data as there are no null values.
- If observations are Incorrect it is inaccurate, the dataset is accurate, also standard deviations of each column are comparatively similar.
- No, scalability problem as there are no new additions to the features. when there is unstable growth in the features which can only possible in the high dimensional data then exists scalability problem. Since it is a low dimensional data, there is no scalability problem and also no features to add.

If both files are merged still no issue because, same features for both datasets.

3. Merge carpet.csv and hardwood.csv and create a new csv file called carwood.csv in which you insert a new column with label 0 for carpet observations and label 1 for hardwood observations. Now shuffle the observations randomly and create a new file called randcarwood.csv. Then divide this file into 80:20 and name the files with Trainrandcarwood80.csv and Testrandcarwood20.csv respectively. You must write a program to do these processes using a programming language of your choice. You can use Python. Include first and last three observations of each file (instead of all data, too long) in the text so that we know what the data samples look like in the files. Include

code/commands and results of showing how many records in each file.

Here created/added label-0 for carpet and label-1 for hardwood. Later combined the datasets and shuffled.

- writing mixed data to Trainrandcarwood.csv file and saving to ch3/files folder.
- displaying Trainrandcarwood80.csv head and tail as train dataframe.
- displaying Trainrandcarwood20.csv head and tail as test dataframe.

```
In [16]:
           carpet['label']=0
In [17]:
           hardwood['label']=1
In [18]:
           carwood=carpet.append(hardwood,ignore index=True)
In [19]:
           r_carwood = carwood.sample(frac=1)
In [20]:
           Trainrandcarwood80 = r_carwood.iloc[:round(len(r_carwood)*0.8),:]
           Trainrandcarwood80.to_csv('...\CH3\Files\Trainrandcarwood80.csv')
In [21]:
           Trainrandcarwood20 = r_carwood.iloc[round(len(r_carwood)*0.8):,:]
           Trainrandcarwood20.to csv('..\CH3\Files\Trainrandcarwood20.csv')
         Displaying First three records of combined data of train dataframe.
In [22]:
           train = pd.read csv('..\CH3\Files\Trainrandcarwood80.csv')
           train.head(3)
Out[22]:
             Unnamed:
                             0
                                            2
                                                    3
                                                                   5
                                                                           6
                                                                                          8
                                                                                                             56
                                                                                                                     57
                                                                                                                             58
                                                                                                                                     59
          0
                  1305
                        93.825
                                92.443
                                        92.16
                                               91.013
                                                       90.99
                                                              89.481
                                                                      90.018
                                                                              89.747
                                                                                      90.046
                                                                                                 98.719
                                                                                                         96.944
                                                                                                                 95.915
                                                                                                                         94.254
                                                                                                                                 97.385
                  1102
                       121.340
                              120.540
                                      123.55 122.800 123.23
                                                             124.050
                                                                     124,440
                                                                            125.540 114.030
                                                                                                119.620
                                                                                                        122.370
                                                                                                                 121.290
                                                                                                                         122.750
                                                                                                                                 123.800
          2
                  1833
                       120.330 118.930 117.89 119.650 113.59 117.410 118.830 118.720
                                                                                    113.320
                                                                                                104.150
                                                                                                         98 760
                                                                                                                 97.295
                                                                                                                        101.080
                                                                                                                                103.750 10
         3 rows × 66 columns
```

Displaying last three records of combined data of test dataframe.

```
In [23]:
             train.tail(3)
Out[23]:
                  Unnamed:
                                    0
                                                      2
                                                              3
                                                                       4
                                                                                5
                                                                                         6
                                                                                                  7
                                                                                                           8
                                                                                                                      55
                                                                                                                               56
                                                                                                                                        57
                                                                                                                                                 58
                                                                                                                                                          59
            1635
                        1081
                               91.732
                                        90.746
                                                 89.813
                                                          90.90
                                                                  92.078
                                                                           95.617
                                                                                    93.595
                                                                                             93.518
                                                                                                      92.506
                                                                                                                   89.24
                                                                                                                           93.512
                                                                                                                                    94.025
                                                                                                                                             94.807
                                                                                                                                                      91.998
            1636
                              113.200 112.330 114.070 113.72 114.220
                                                                                   115.570
                                                                                            116.910
                                                                                                     105.010
                                                                                                                  114.21
                                                                                                                          109.250
                                                                                                                                   111.010
                        1130
                                                                          115.150
                                                                                                                                            108.930
                                                                                                                                                     111.280
            1637
                        765
                             156.880
                                       136.070 135.400
                                                        143.73 121.400
                                                                          119.100
                                                                                   139.650
                                                                                            156.790
                                                                                                     185 990
                                                                                                                  126 82
                                                                                                                          106 230
                                                                                                                                   114.040
                                                                                                                                                     146 850
           3 rows × 66 columns
```

Displaying last frist records of combined data of train dataframe.

```
In [24]:
             test = pd.read csv('...\CH3\Files\Trainrandcarwood20.csv')
             test.head(3)
Out[24]:
               Unnamed:
                               0
                                               2
                                                                               6
                                                                                                                 56
                                                                                                                         57
                                                                                                                                 58
                                                                                                                                         59
                                                                                                                                                 60
                                                                                                                                                         61
                                                                                               8
                                                                                                         55
                                  199.64
                                          179.10
                                                  145.30
                                                          119.63
                                                                  144.67
                                                                          166.04
                                                                                  181.52
                                                                                          188.57
                                                                                                      123.07
                                                                                                             131.25
                                                                                                                     110.01
                                                                                                                             133.37
                                                                                                                                             145.35
                                                                                                                                                     156.31
                     670
                          195.76
                                                                                                                                     147.53
                     873
                          162.60
                                  136.45
                                          155.03
                                                  178.39
                                                          180.37
                                                                  164.63
                                                                          134.05
                                                                                 156.66
                                                                                          170.75
                                                                                                     202.48
                                                                                                             115.29
                                                                                                                     122.51
                                                                                                                             149.90
                                                                                                                                     182.74
                                                                                                                                             160.67
                                                                                                                                                     134.62
            2
                     878
                          156.54
                                  154.10
                                          156.31
                                                  156.30
                                                          148.55
                                                                  159.10
                                                                                  195.88
                                                                                          170.19
                                                                                                      189.96
                                                                                                             168.31
                                                                                                                     156.17
                                                                                                                             160.45
                                                                                                                                             120.53
                                                                                                                                                     135.04
                                                                          175.17
                                                                                                                                     146.09
           3 rows × 66 columns
```

Displaying last three records of combined data of train dataframe.



Plotting first and last feature with respect to 'label' column to show carpet and hardwood data distributions.

```
In [26]:
   plt.scatter(r_carwood[0], r_carwood[63], c = r_carwood['label'], cmap = 'magma')
```

Out[26]: <matplotlib.collections.PathCollection at 0x26085064198>



| r_c  | r_carwood.describe() |             |             |             |             |             |             |             |             |             |  |  |
|------|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|
| :    | 0                    | 1           | 2           | 3           | 4           | 5           | 6           | 7           | 8           | 9           |  |  |
| coun | t 2048.000000        | 2048.000000 | 2048.000000 | 2048.000000 | 2048.000000 | 2048.000000 | 2048.000000 | 2048.000000 | 2048.000000 | 2048.000000 |  |  |
| mea  | 125.569231           | 125.356807  | 125.422041  | 125.719333  | 126.005055  | 126.084465  | 125.885123  | 125.783833  | 125.704766  | 125.858361  |  |  |
| ste  | 33.292731            | 32.822212   | 32.643005   | 32.966031   | 33.526247   | 33.589233   | 33.220224   | 33.214697   | 33.548514   | 33.402901   |  |  |
| mii  | 47.124000            | 47.262000   | 48.485000   | 49.323000   | 47.077000   | 47.365000   | 47.063000   | 47.546000   | 49.302000   | 48.393000   |  |  |
| 25%  | 99.490000            | 99.095500   | 100.217500  | 99.784750   | 99.094250   | 98.990500   | 99.144750   | 99.745750   | 98.876750   | 99.449500   |  |  |
| 50%  | 123.430000           | 124.160000  | 123.970000  | 124.460000  | 123.735000  | 124.275000  | 124.465000  | 124.390000  | 123.425000  | 124.595000  |  |  |
| 75%  | 153.017500           | 151.252500  | 152.505000  | 152.347500  | 152.677500  | 153.165000  | 153.202500  | 152.085000  | 152.965000  | 152.192500  |  |  |
| ma   | 210.650000           | 210.200000  | 212.930000  | 211.000000  | 213.100000  | 215.900000  | 218.090000  | 215.430000  | 223.880000  | 224.050000  |  |  |

8 rows × 65 columns

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js