

Tehnologija površinske montaže

- engl. surface mounting technology (SMT)
- za SMT je karakteristično da se komponente i njihovi izvodi nalaze s iste strane tiskane pločice
- dvije osnovne skupine elektroničkih komponenti obzirom na izvedbu kućišta:
 - komponente sa žičanim izvodima (through-hole components)
 - komponente za površinsku montažu (surface-mount devices, SMD)

Tehnologija površinske montaže

Primjeri komponenata sa žičanim izvodima

Primjeri SMD komponenata

Tiskana pločica sa SMD komponentama

Računalom podržano projektiranje elektroničkih uređaja

Tiskana pločica sa SMD komponentama

Računalom podržano projektiranje elektroničkih uređaja

Tehnologija površinske montaže

prednosti:

- minijaturizacija (ušteda na prostoru i masi 50-70%)
- potpuno automatizirana proizvodnja
- bolje električke karakteristike (veća brzina rada)
- bolje mehaničke karakteristike (izdržljivost na udarce i vibracije)
- veći broj izvoda od klasičnih komponenata

nedostaci:

- složeniji tehnološki postupci lemljenja
- teže ispitivanje zbog slabije pristupačnosti priključcima komponenti (potrebne test točke na pločici)
- nedostupnost nekih komponenata u SMD (poglavito nekih pasivnih s višim nazivnim vrijednostima)

Proizvodni postupci

- tipovi SMT tiskanih pločica:
 - Tip 1 jednostrane/dvostrane tiskane pločice s isključivo SMD komponentama
 - prednost: jednostavno procesiranje
 - nedostatak: nemogućnost dobave nekih komponenti u SMD izvedbi
 - Tip 2 dvostrane t.p. sa SMD komponentama s jedne strane pločice, a klasičnima s druge strane
 - najčešće se koristi
 - Tip 3 dvostrane t.p. sa SMD komponentama s jedne strane pločice, a klasičnima i SMD s druge strane
 - prednost: fleksibilnost
 - nedostatak: složeno procesiranje

- nanošenje lemne paste:
 - tehnika sitotiska ili primjenom dozatora
 - engl. solder paste (paste mask tehnološki predložak)
- lemljenje pretaljivanjem lemne paste (reflow soldering)
 (ako se lemi na lemnom valu, tada se nanosi ljepilo)

- 1 izolacijska podloga tiskane pločice, 2 vodljivi likovi, 3 lemna pasta,
- 4 SMD komponenta

automatsko postavljanje površinskih komponenata

robotska hvataljka

vakuumska hvataljka

- nanošenje ljepila:
 - primjenom mikrodozatora, sitotiska ili pin transfera
 - potrebno kod postupka lemljenja na valu (termostabilno ljepilo, spriječava ispadanje SMD komponenata)
- klasične komponente s jedne, a SMD s druge strane tiskane pločice
- lemljenje na valu

1 – izolacijska podloga tiskane pločice, 2 – vodljivi likovi, 5 – ljepilo

lemljenje na lemnoj kupki provlačenjem pločice

lemljenje na valu

- 1 tiskana pločica, 2 lemna slitina,
- 3 pumpa

pravilan smještaj SMD komponenata za lemljenje na valu

lemljenje na dvostrukom lemnom valu:

- 1 tiskana pločica, 2 lemna slitina,
- 3 pumpa za predval, 4 pumpa za glavni val

Lemljenje na valu

- nije potrebna paste maska, ali je neophodna lemna maska (zaustavni lak, solder mask) – spriječava premoštavanje vodljivih likova i ograničava potrošnju lemne slitine
- lemljenje na dvostrukom valu je bolje sekundarni val uklanja višak lemne slitine

 lemljenje pretaljivanjem u infracrvenoj peći (IR reflow soldering)

Lemljenje pretaljivanjem u IC peći

- lemljenje pretaljivanjem pod utjecajem povišene temprature tali se lemna pasta
- tunelske peći s nekoliko nezavisnih IC izvora i pokretnom trakom
- obavezna paste maska
- potrebno ostvariti temperaturni profil u skladu sa specifikacijama proizvođača

Primjer temperaturnog profila za lemljenje pretaljivanjem

 lemljenje na lemnim parama (vapor phase soldering)

Lemljenje pretaljivanjem u plinovitoj fazi

- pločica se postavlja u paru inertnog flourougljika
- primarna tekućina visoka cijena (~100\$/kg)
- primarne i sekundarne pare
 - sloj sekundarnih para spriječava gubitak primarnih para u atmosferu
 - sekundarne pare imaju nižu temperaturu vrelišta
 - temperatura primarne rashladne cijevi održava se iznad temperature vrelišta sekundarnih para, ali dovoljno nisko za kondenzaciju primarne pare

Lemljenje pretaljivanjem – usporedba postupaka

IC pretaljivanje	Plinovita faza
Prednosti	
niža cijena postupka	brzina
bolja kontrola parametara procesa	jednolikost zagrijavanja tiskane pločice mogućnost trodimenzijskog lemljenja inertna radna atmosfera
Nedostaci	
ne radi se u inertnoj atmosferi	visoka cijena (skupa oprema i primarna tekućina)

- čišćenje sklopova:
 - lemna pasta sastoji se od fluksa i sitnih lemnih čestica (~ 50 – 150 μm)
 - fluks kemijsko sredstvo koje čisti okside s metalnih površina koje je potrebno međusubno zalemiti
 - zbog kemijske agresivnosti fluks je potrebno ukloniti nakon lemljenja postupkom čišćenja, kako ne bi došlo do degradacije svojstava tiskane pločice:
 - otapala
 - voda
 - ultrazvuk

Materijali (laminati) za SMT tiskane pločice

- SMT povećana gustoća komponenata, ali i termička naprezanja uslijed disipacije
- važno uskladiti termičke koeficijente laminata α_{PCB} i kućišta SMD komponenata α_{SMD} (opasnost od pucanja spojeva)
- najčešće se koriste materijali FR-2 i FR-4
- mogućnost podešavanja termičkog koeficijenta rastezanja α_{PCB} zamjenom npr. staklenih vlakana drugim materijalima i dodavanjem kovinskih slojeva u laminat

SMD komponente

- Pasivne:
 - otpornici
 - kondenzatori (elektrolitski, keramički)
 - zavojnice
 - kristali
 - filtri itd.
- Aktivne:
 - diode
 - svjetleće diode (*light-emitting diode*, LED)
 - tranzistori
- Integrirani sklopovi
 - najčešća kućišta: SOT, SOIC, QFP, QFN, PLCC, BGA

SMD komponente - pasivne

SMD otpornik

SMD keramički kondenzator

• Manje kućište \rightarrow manji U_{\max} i P_{\max}

SMD komponente - pasivne

Oznaka		<i>L</i> , mm	<i>W</i> , mm	<i>H</i> , mm
0201	(0525)	0,6	0,3	0,23
0402	(1005)	1,0	0,5	0,35
0603	(1608)	1,55	0,85	0,45
0805	(2012)	2,0	1,25	0,45
1206	(3216)	3,2	1,6	0,55
1210	(3225)	3,2	2,5	0,55
2010	(5025)	5,0	2,5	0,6
2512	(6332)	6,3	3,15	0,6

Oznaka: xxyy

xx – duljina u stotinkama inča

yy – širina u stotinkama inča

1206:
$$L = 0.12''$$

$$W = 0.06''$$

SMD komponente - pasivne

Elektrolitski kondenzator (tantal)

Tip	<i>L</i> , mm	<i>W</i> , mm	<i>H</i> , mm
Α	3,2	1,6	1,6
В	3,5	2,8	1,9
С	6,0	3,2	2,2
D	7,3	4,3	2,4
Е	7,3	4,3	4,1

oznaka se uvijek odnosi na "+" priključak

SMD komponente – primjeri kućišta

SMD komponente – primjeri kućišta

104

otpornička polja, 1206 i 0805

elektrolitski aluminijski kondenzator

SMD komponente - aktivne

LED, 1206 i 0805

Tranzistor, SOT 23

Dioda, SOD 80C (MLL34, MELF)

SMD komponente – integrirani sklopovi

SMD komponente – integrirani sklopovi

SMD komponente - pakiranja

BGA (ball grid array) kućišta

- prednosti BGA tehnologije:
 - kraće električne veze → manji parazitni induktiviteti, veća brzina rada
 - manja mehanička osjetljivost izvoda u odnosu na ostala SMD kućišta
 - veći razmak među lemnim točkama
 - bolja termička svojstva

BGA (ball grid array) kućišta

- tipovi lemnih točaka:
 - Non-Solder Mask Defined pads (NSMD)
 - Solder Mask Defined pads (SMD)

SOLDER PAD GEOMETRY

- NSMD veličina lemne točke ovisi o procesu jetkanja bakra (manje precizan od fotopostupka nanošenja stop laka)
- prednost: više mjesta za vodove
- nedostatak: brži zamor materijala prilikom temperaturnih promjena (veća mogućnost pucanja lemova)

BGA (ball grid array) kućišta

- projektiranje vodljivih likova:
 - koriste se višeslojne tiskane pločice
 - izolirati prospojnu rupu (via) od SMD lemnog mjesta (inače će lem biti povučen u prospojnu rupu)

Lemljenje BGA kućišta

- BGA kućišta imaju svojstvo samocentriranja
- prilikom postavljanja kuglice BGA kućišta moraju prekrivati barem 50% površine lemnih mjesta
- uslijed površinske napetosti, tijekom vršne vrijednosti temperature, komponenta će biti povučena u središte lemne točke

Lemljenje BGA kućišta

- definiranje temperaturnog profila za svaku tiskanu pločicu, ovisi o:
 - gustoći komponenata na tiskanoj pločici
 - obliku, masi i površini pločice
 - masi, međusobnom položaju i veličini komponenata na pločici

Ispitivanje lemnih spojeva kod BGA kućišta

- optičko ispitivanje
 - uz pomoć optičkih prizmi pomoću kojih je moguće vrlo precizno vidjeti većinu spojeva

Nezalemljena kuglica

Nepotpun spoj

Izduženi spoj

Mikropukotina

Ispitivanje lemnih spojeva kod BGA kućišta

- rendgensko ispitivanje:
 - općeprihvaćena metoda kontrole kvalitete
 - bolja od optičkog ispitivanja

Kratki spojevi (zatamnjena mjesta - kratki spojevi među kuglicama)

Pomak čipa (loše pozicioniranje čipa)

Nedostatak spoja

dobro