

RZ/A1LU Group

Touch Panel Utility

R01AN4314EJ0201 Rev.2.01 Oct 31, 2018

Introduction

This application note describes the operation of a FreeRTOS based, embedded firmware project which provides a development platform for a Touch Panel Utility using the RIIC driver.

Target Device

This application note is covering the usage of the touch panel utility application, which is in of itself, not device or OS specific. However, the sample project containing this application is running FreeRTOS10 and contains RZ/A1LU drivers.

Contents

Table of Contents

1.	Spec	ifications	4
2.	Oper	ation Check Conditions	4
3.	Appli	cation Functionality	4
4.	Softw	vare Description	4
4.1	І Ор	eration Outline	4
4.2	2 Ins	erting the application into a project	5
4.3	3 Mo	difying the application	6
4.4	4 File	9s	7
5.	Data	Structure Index	8
5.1		a Structures	
6.	File li	ndex	9
6.1		List	
0.		, LIST	•
7.	Data	Structure Documentation1	0
7.1	I LCI	DEVT_ENTRY Struct Reference1	0
7	7.1.1	Data Fields1	0
7	7.1.2	Detailed Description1	0
7	7.1.3	Field Documentation1	0
7.2	2 TP	_TouchEvent_st Struct Reference1	1
7	7.2.1	Data Fields1	1
7	7.2.2	Detailed Description1	1
7	7.2.3	Field Documentation1	1
7.3	3 TP	_TouchFinger_st Struct Reference1	2
7	7.3.1	Data Fields1	2
7	7.3.2	Detailed Description1	2
7	7.3.3	Field Documentation1	2

7.4 TP	EVT_COORDINATES Struct Reference	13
7.4.1	Data Fields	13
7.4.2	Detailed Description	13
7.4.3	Field Documentation	13
7.5 TF	PEVT_ENTRY Struct Reference	14
7.5.1	Data Fields	14
7.5.2	Detailed Description	14
7.5.3	Field Documentation	14
8. File	Documentation	15
8.1.1	Macros	
8.1.2	Typedefs	
8.1.3	Enumerations	
8.1.4	Functions	
8.1.5	Detailed Description	_
8.1.6	Macro Definition Documentation	
8.1.7	Typedef Documentation	
8.1.8	Enumeration Type Documentation	
8.1.9	Function Documentation	
	ft5x06.h File Reference	
8.2.1	Data Structures	
8.2.2	Macros	
8.2.3	Enumerations	
8.2.4	Functions	
8.2.5	Variables	
8.2.6	Detailed Description	
8.2.7	Macro Definition Documentation	
8.2.8	Enumeration Type Documentation	
8.2.9	Function Documentation	
8.2.10	Variable Documentation	25
8.3 lcc	d_ft5x06_int.h File Reference	26
8.3.1	Macros	26
8.3.2	Functions	26
8.3.3	Detailed Description	26
8.3.4	Macro Definition Documentation	26
8.3.5	Function Documentation	26
8.4 tp.	h File Reference	28
8.4.1	Data Structures	28
8.4.2	Macros	28
8.4.3	Enumerations	28

8.4.4	Functions	28
8.4.5	Variables	30
8.4.6	Detailed Description	30
8.4.7	Macro Definition Documentation	30
8.4.8	Enumeration Type Documentation	31
8.4.9	Function Documentation	32
8.4.10	Variable Documentation	37
8.5 tp	_if.h File Reference	37
8.5.1	Data Structures	37
8.5.2	Macros	37
8.5.3	Typedefs	
8.5.4	Enumerations	
8.5.5	Functions	
8.5.6	Detailed Description	
8.5.7	Macro Definition Documentation	
8.5.8	Typedef Documentation	38
8.5.9	Enumeration Type Documentation	39
8.5.10	Function Documentation	39
laheita	and Support	12

1. Specifications

Touch Panel utility controls a touch panel via RIIC device controller(ch1), which is implemented on RZ/A1LU.

2. Operation Check Conditions

To ensure the touch screen application is enabled in software, please check that:

```
/* Enable control for <u>src</u>/application/app_touchscreen sample application */
#define R_SELF_INSERT_APP_TOUCH_SCREEN (R_OPTION_ENABLE)
```

is present inside of "application cfg.h".

3. Application Functionality

The functionality of the touch panel sample application is to detect a touch event and draw a small green rectangle at the coordinates of the event, see figure 2. Additionally, the sample application will update the console to display the coordinates of the event and a categorisation of the event type.

The sample application will place the event into one of three categories:

UP	Finger is no longer placed on the touch panel
DOWN	Finger is currently placed on touch panel, but is stationary.
MOVE	Finger is currently placed on touch panel, but has moved.

Fig. 3 Table of specifications

The image displayed in figure 4 shows the expected console output upon detection of an event. This is displayed in the format:

```
Touch: x = \$\$, y = ££ [category]
```

Where \$\$ represents the X coordinate value, ££ represents the Y coordinate value and [category] holds the event categorisation.

```
RZ/A1LU Web Engine Demo Ver.3.02.0322
Copyright (C) Renesas Electronics Europe.

REE> tsdemo
Touch panel sample program start
I2c driver loaded initialising demo
Touch the LCD to display the contact point on this console

Press any key to terminate demo

Touch Demo: supporting 1 touch points
Touch: x = 246 , y = 132 [ UP ]
```

Fig. 4 Expected console output of sample application.

4. Software Description

This section of the application note will describe and explain the usage of the touch screen sample application.

4.1 Operation Outline

Figure 5 outlines the overall structure of the software modules used in this sample application and their interaction with the target hardware.

Fig. 5 Figure Touch Panel Utility System Block Diagram

As can be seen in the figure 5 the expectation is for the user to create a task which calls the " $R_TOUCH_ApplicationMain()$ " function.

The "R_TOUCH_ApplicationMain()" function is responsible for opening drivers and creating a "Touch Panel Task", this task holds all subsequent responsibility for interaction with the touch panel.

4.2 Inserting the application into a project

It is assumed the specifications outlined in section 1 of this document have been met.

The touch panel sample application can be started by calling the "R_TOUCH_ApplicationMain()" function (found in the "r_touch_capacitive.c" file), it is expected that this will be called from inside of a user created task.

Shown below is a control flowchart of the "R_TOUCH_ApplicationMain()" function.

Fig. 6 Simplified Control Flow Scheme of Touch Panel utility

4.3 Modifying the application

As a user, there are two primary sections of code suggested for modification:

The first section of code is the "touch_demo()" function seen in figure 6. The currently implemented "touch_demo()" function is responsible for initialising the touch screen and then blocking the "User Task" seen in figure 5 until receipt of a character through the serial console.

```
static void touch_demo (void *parameters)
{
    fprintf(s_dsp_console->p_out,"Touch Demo: supporting %2-d touch points\r\n", 1);

    /* initialize screen */
    R_TOUCH_init_screen();

    /* START - User Places Concurrent Code Here */
    while (control(R_DEVLINK_FilePtrDescriptor(s_dsp_console->p_in), CTL_GET_RX_BUFFER_COUNT,
NULL) == 0)
    {
        R_OS_TaskSleep(5);
    }
    /* END */

    /* un-initialize screen */
    R_TOUCH_uninit_screen();
    fgetc(s_dsp_console->p_in);
}
```

The expectation is for the user to place any operations desired to run concurrently with the "Touch Panel Task" inside of the "touch_demo()" function, between the "R_TOUCH_init_screen()" and "R_TOUCH_uninit_screen()" function calls.

The second section of code for user modification is the "Touch Panel Task", which is found inside of "tp_task.c". This task is where the user should insert any code related to the processing of information to and from the touch screen.

4.4 Files

5. Data Structure Index

5.1 Data Structures

Here are the data structures with brief descriptions:

LCDEVT_ENTRY	10
TP_TouchEvent_st	11
TP_TouchFinger_st	
TPEVT COORDINATES	
TPEVT ENTRY	

6. File Index

6.1 File List

Here is a list of all files with brief descriptions:

lcd_controller_if.h (LCD Driver API header)	15
lcd_ft5x06.h (LCD Driver internal header)	20
lcd ft5x06 int.h (LCD Driver internal header)	
tp.h (TouchPanel Driver internal header)	28
tn if.h (TouchPanel Driver API header)	

7. Data Structure Documentation

7.1 LCDEVT ENTRY Struct Reference

#include <lcd_ft5x06.h>

7.1.1 Data Fields

- LcdEvt_EntryType mode
- LcdCBFunc function
- LcdEvt_LockState evtlock

7.1.2 Detailed Description

Event entry struct

Definition at line 113 of file lcd_ft5x06.h.

7.1.3 Field Documentation

 $(1) \quad \textbf{LcdEvt_LockState evtlock}$

Event lock state

Definition at line 116 of file lcd_ft5x06.h.

(2) LcdCBFunc function

Definition at line 115 of file lcd_ft5x06.h.

(3) LcdEvt_EntryType mode

The type of touch panel event entry Definition at line 114 of file lcd_ft5x06.h.

- (4) The documentation for this struct was generated from the following file:
 - lcd_ft5x06.h

7.2 TP_TouchEvent_st Struct Reference

#include <tp_if.h>

Collaboration diagram for TP_TouchEvent_st:

7.2.1 Data Fields

• TP_TouchFinger_st sFinger [TP_TOUCHNUM_MAX]

7.2.2 Detailed Description

Definition at line 71 of file tp_if.h.

7.2.3 Field Documentation

(1) TP_TouchFinger_st sFinger[TP_TOUCHNUM_MAX]

Definition at line 72 of file tp_if.h.

- (2) The documentation for this struct was generated from the following file:
 - tp_if.h

7.3 TP_TouchFinger_st Struct Reference

#include <tp_if.h>

7.3.1 Data Fields

- TpEvt_EntryType eState
- uint16_t unPosX
- uint16_t unPosY

7.3.2 Detailed Description

Definition at line 65 of file tp_if.h.

7.3.3 Field Documentation

(1) **TpEvt_EntryType eState**

Definition at line 66 of file tp_if.h.

(2) uint16_t unPosX

Definition at line 67 of file tp_if.h.

(3) uint16_t unPosY

Definition at line 68 of file tp_if.h.

- (4) The documentation for this struct was generated from the following file:
 - tp_if.h

7.4 TPEVT_COORDINATES Struct Reference

#include <tp.h>

7.4.1 Data Fields

- int32_t **x**
- int32_t **y**

7.4.2 Detailed Description

Coordinate structure

Definition at line 115 of file tp.h.

7.4.3 Field Documentation

(1) int32_t x

x-coordinate [pixel] Definition at line 116 of file tp.h.

(2) int32_t y

y-coordinate [pixel] Definition at line 117 of file tp.h.

- (3) The documentation for this struct was generated from the following file:
 - tp.h

7.5 TPEVT_ENTRY Struct Reference

#include <tp.h>

Collaboration diagram for TPEVT_ENTRY:

7.5.1 Data Fields

- TpEvt_EntryType mode
- TPEVT_COORDINATES st
- TPEVT_COORDINATES ed
- void(* function)(int_t, TP_TouchEvent_st *)
- TpEvt_LockState evtlock

7.5.2 Detailed Description

Event entry struct

Definition at line 121 of file tp.h.

7.5.3 Field Documentation

(1) TPEVT_COORDINATES ed

The lower-right coordinates of the rectangular area in which touch event can be received. [pixel] Definition at line 124 of file tp.h.

(2) TpEvt_LockState evtlock

Event lock state

Definition at line 126 of file tp.h.

(3) void(* function) (int_t, TP_TouchEvent_st *)

Event notification callback function pointer Definition at line 125 of file tp.h.

(4) **TpEvt_EntryType mode**

The type of touch panel event entry Definition at line 122 of file tp.h.

(5) TPEVT_COORDINATES st

The upper-left coordinates of the rectangular area in which touch event can be received. [pixel] Definition at line 123 of file tp.h.

- (6) The documentation for this struct was generated from the following file:
 - tp.h

8. File Documentation

8.1 Icd_controller_if.h File Reference

LCD Driver API header.

#include "mcu_board_select.h"
Include dependency graph for lcd_controller_if.h:

8.1.1 Macros

• #define LCD_SLAVE_ADDRESS (0x38 << 1)

8.1.2 Typedefs

• typedef void(* LcdCBFunc) (void *)

8.1.3 Enumerations

• enum LcdEvt_EntryType { LCDEVT_ENTRY_NONE = 0x0000, LCDEVT_ENTRY_TP = 0x0001, LCDEVT_ENTRY_ALL = 0x0001 }

8.1.4 Functions

• void **R_LCD_Init** (void)

Sets the LCD board initialization counter (nLcdInitCnt) to 0.

• int_t **R_LCD_Open** (const uint32_t unIrqLv, const int16_t nTskPri, const uint32_t unTskStk)

Opens a communication environment with the LCD board.

This function enables the user to perform multiple open operations.

• int t R LCD Close (void)

Closes a communication environment with the LCD board.

When LCD_Open is used to perform multiple open operations, this function must be called the same number of times.

- uint8_t R_LCD_WriteCmd (const uint16_t unDevAddr, const uint8_t uCmd, const uint8_t uData, const uint32_t unSize)
- uint8_t R_LCD_ReadCmd (const uint16_t unDevAddr, const uint8_t uCmd, uint8_t *puData, const uint32_t unSize)

Receives data from the LCD board via the RIIC.

• int_t **R_LCD_EventEntry** (const **LcdEvt_EntryType** eType, const **LcdCBFunc** function) *Registers an LCD board event.*

• int_t **R_LCD_EventErase** (const int_t nId)

Removes an LCD board event.

• int_t **R_LCD_StartInt** (const **LcdEvt_EntryType** eType)

Removes masking of specified interrupt type.

• int_t **R_LCD_Restart** (void)

Reset LCD board.

- void R_LCD_ReadVersion (uint8_t *puData)
- void **R_LCD_SetBacklight** (const uint8_t uLevel)

Set bright level of backlight.

void R_LCD_SetBuzzer (const uint8_t uScale)

Set scale of buzzer.

8.1.5 Detailed Description

LCD Driver API header.

Rev: 30 Date:: 2016-12-21 12:02:44 +0900#

8.1.6 Macro Definition Documentation

(1) #define LCD_SLAVE_ADDRESS (0x38 << 1)

LCD slave address

Definition at line 48 of file lcd_controller_if.h.

8.1.7 Typedef Documentation

(1) typedef void(* LcdCBFunc) (void *)

Definition at line 41 of file lcd_controller_if.h.

8.1.8 Enumeration Type Documentation

(1) enum LcdEvt_EntryType

The type of touch panel event entry

(a) **Enumerator:**

LCDEVT_ENTRY_NONE	None
LCDEVT_ENTRY_TP	None
LCDEVT_ENTRY_ALL	All

Definition at line 57 of file lcd_controller_if.h.

8.1.9 Function Documentation

(1) int_t R_LCD_Close (void)

Closes a communication environment with the LCD board.

When LCD_Open is used to perform multiple open operations, this function must be called the same number of times.

(a) Return values:

NONE	

(2) int_t R_LCD_EventEntry (const LcdEvt_EntryType eType, const LcdCBFunc function)

Registers an LCD board event.

(a) Parameters:

in	еТуре	Specified Interrupt type
in	function	Call-back function

(b) **Return values:**

0-(LCDEVT_ENTRY_MAX-1)	registration value
-1	event registration failure

(3) int_t R_LCD_EventErase (const int_t nId)

Removes an LCD board event.

(a) **Parameters:**

in	nId	Event ID

(b) Return values:

NONE	

(4) void R_LCD_Init (void)

Sets the LCD board initialization counter (nLcdInitCnt) to 0.

R_LCD_Init

(a) Return values:

1	NONE	

Opens a communication environment with the LCD board.

This function enables the user to perform multiple open operations.

(a) Parameters:

in	unIrqLv	IRQ interrupt priority (0 to 255)
		Sets the GIC interrupt priority
in	nTskPri	Task Priority
		Sets the value of osPriority type.
in	unTskStk	Not Used.

(b) **Return values:**

0	Normal end	

-1	Open error
----	------------

(6) uint8_t R_LCD_ReadCmd (const uint16_t unDevAddr, const uint8_t uCmd, uint8_t *
 puData, const uint32_t unSize)

Receives data from the LCD board via the RIIC.

(a) Parameters:

in	unDevAddr	LCD Device Address
in	иСтd	Not Used
in	*puData	Receive data buffer pointer
out	unSize	Receive Data Length

(b) **Return values:**

0	normal end
-1	data send processing error

- (7) void R_LCD_ReadVersion (uint8_t * puData)
 - (a) Parameters:

out	*puData	: pointer to receive buffer
-----	---------	-----------------------------

(b) Return values:

1 //	
1 0	

(8) int_t R_LCD_Restart (void)

Reset LCD board.

(a) Return values:

_		
	_	
	()	
	U	

(9) void R_LCD_SetBacklight (const uint8_t uLevel)

Set bright level of backlight.

(a) **Parameters:**

in	uLevel	bright level
----	--------	--------------

(b) **Return values:**

None.	

(10) void R_LCD_SetBuzzer (const uint8_t uScale)

Set scale of buzzer.

(a) Parameters	(a)	Parameters
----------------	-----	-------------------

•	C 1	1.
ın	иЅсаіе	scale

(b) Return values:

	None.	
- 1		

(11) int_t R_LCD_StartInt (const LcdEvt_EntryType eType)

Removes masking of specified interrupt type.

(a) Parameters:

in eType Not Used	
-------------------	--

(b) **Return values:**

0	event successfully removed
-1	event removal failure

8.2 lcd ft5x06.h File Reference

LCD Driver internal header.

```
#include "mcu_board_select.h"
#include "r_os_abstraction_api.h"
#include "lcd_if.h"
Include dependency graph for lcd_ft5x06.h:
```

lcd_ft5x06.h

r os abstraction api.h

lod if.h

8.2.1 Data Structures

struct LCDEVT ENTRY

8.2.2 Macros

#define DBG_LEVEL_OT (-1) /* onetime debug */
 #define DBG_LEVEL_DEF (0) /* default */
 #define DBG_LEVEL_ERR (1) /* error */
 #define DBG_LEVEL_MSG (2) /* message */
 #define DBG_LEVEL_LOG (3) /* log */
 #define DBG LEVEL DBG (4) /* debug */

mcu board select.h

- #define DBG LEVEL (DBG LEVEL ERR)
- #define **DBG** printf **OT** printf
- #define **DBG_printf_DEF** printf
- #define **DBG_printf_ERR** printf
- #define **DBG_printf_MSG** 1 ? (int32_t) 0 : printf
- #define **DBG_printf_LOG** 1 ? (int32_t) 0 : printf
- #define **DBG_printf_DBG** 1 ? (int32_t) 0 : printf
- #define **SCOPE_STATIC** static
- #define LCDEVT ENTRY MAX (1)

8.2.3 Enumerations

• enum LcdEvt_LockState { LCD_EVT_UNLOCK = 0, LCD_EVT_LOCK }

8.2.4 Functions

- int_t **LCD_Ft5x06_Open** (const uint32_t unIrqLv, int16_t nTskPri, uint32_t unTskStk) *Opens the communication environment with the FT5x06.*
- int_t LCD_Ft5x06_Close (void)

 Closes the communication environment with the FT5x06.
- uint8_t LCD_Ft5x06_WriteCmd (const uint16_t unDevAddr, const uint8_t uData, const uint32_t unSize) Sends data to the FT5x06 via the RIIC DeviceController ch1.
- uint8_t LCD_Ft5x06_ReadCmd (const uint16_t unDevAddr, uint8_t *puData, const uint32_t unSize)

 Reads data from the FT5x06 via the RIIC DeviceController ch1.
- int_t LCD_Ft5x06_EventEntry (const LcdEvt_EntryType eType, const LcdCBFunc function)

 Registers in the event management structure a call-back function linked to an interrupt from the FT5x06.

 After registration finishes, the LCD interrupt is enabled and the event ID is sent as a return value.
- int_t LCD_Ft5x06_EventErase (const int_t nId)

 Removes the registration information for the specified event ID from the event management structure.

/* debug */

- int_t LCD_Ft5x06_StartInt (const LcdEvt_EntryType eType)

 Removes masking of specified interrupt type.
- LCDEVT_ENTRY * LCD_Ft5x06_GetEventTable (const int_t nId) Get assigned callback event.
- int32_t **LCD_Ft5x06_SendEvtMsg** (const uint32_t unEvtFlg) *Send event message to synchronism.*
- int32_t LCD_Ft5x06_WaitEvtMsg (void) Wait event message to synchronism.
- void **LCD_Ft5x06_ClearEvtMsg** (const uint32_t unEvtFlg) *Clear assigned event flag.*

8.2.5 Variables

• int32_t sLcdSemIdAcc

8.2.6 Detailed Description

LCD Driver internal header.

Rev: 30 Date:: 2016-12-21 12:02:44 +0900#

8.2.7 Macro Definition Documentation

(1) #define DBG_LEVEL (DBG_LEVEL_ERR)

Definition at line 56 of file lcd_ft5x06.h.

(2) #define DBG_LEVEL_DBG (4)

Definition at line 54 of file lcd_ft5x06.h.

(3) #define DBG_LEVEL_DEF (0) /* default */

Definition at line 50 of file lcd_ft5x06.h.

(4) #define DBG_LEVEL_ERR (1) /* error */

Definition at line 51 of file lcd_ft5x06.h.

(5) #define DBG_LEVEL_LOG (3) /* log */

Definition at line 53 of file lcd_ft5x06.h.

(6) #define DBG LEVEL MSG (2) /* message */

Definition at line 52 of file lcd_ft5x06.h.

(7) #define DBG_LEVEL_OT (-1) /* onetime debug */

RENESAS

Definition at line 49 of file lcd_ft5x06.h.

(8) #define DBG_printf_DBG 1 ? (int32_t) 0 : printf

Definition at line 85 of file lcd_ft5x06.h.

(9) #define DBG_printf_DEF printf

Definition at line 63 of file lcd_ft5x06.h.

(10) #define DBG_printf_ERR printf

Definition at line 68 of file lcd_ft5x06.h.

(11) #define DBG_printf_LOG 1 ? (int32_t) 0 : printf

Definition at line 80 of file lcd_ft5x06.h.

(12) #define DBG_printf_MSG 1 ? (int32_t) 0 : printf

Definition at line 75 of file lcd_ft5x06.h.

(13) #define DBG_printf_OT printf

Definition at line 58 of file lcd_ft5x06.h.

(14) #define LCDEVT_ENTRY_MAX (1)

The max number of event entry

Definition at line 96 of file lcd_ft5x06.h.

(15) #define SCOPE_STATIC static

Definition at line 92 of file lcd_ft5x06.h.

8.2.8 Enumeration Type Documentation

(1) enum LcdEvt_LockState

Touch panel event lock state

(a) **Enumerator:**

LCD_EVT_UNLO CK	Unlocked
LCD_EVT_LOCK	Locked

Definition at line 103 of file lcd_ft5x06.h.

8.2.9 Function Documentation

(1) void LCD_Ft5x06_ClearEvtMsg (const uint32_t unEvtFlg)

Clear assigned event flag.

(a) Parameters:

in	unEvtFlg	: event flag	
----	----------	--------------	--

(Ъ	Return	values
١,	·U	, 110,001,11	values:

None	
None.	

(2) int_t LCD_Ft5x06_Close (void)

Closes the communication environment with the FT5x06.

(a) Return values:

NONE		

(3) int_t LCD_Ft5x06_EventEntry (const LcdEvt_EntryType eType, const LcdCBFunc function)

Registers in the event management structure a call-back function linked to an interrupt from the FT5x06. After registration finishes, the LCD interrupt is enabled and the event ID is sent as a return value.

(a) Parameters:

in	еТуре	Specified Interrupt type
in	function	Call-back function

(b) **Return values:**

0	to (LCDEVT_ENTRY_MAX - 1)
-1	event registration failure

(4) int_t LCD_Ft5x06_EventErase (const int_t nId)

Removes the registration information for the specified event ID from the event management structure.

(a) Parameters:

in	nId	Event ID
		return value of LCD_EventEntry function.

(b) Return values:

NONE	

(5) LCDEVT_ENTRY* LCD_Ft5x06_GetEventTable (const int_t nId)

Get assigned callback event.

(a) Parameters:

in	nId	event ID

(b) **Return values:**

LCDEVT_ENTRY	pointer to event.

(6) int_t LCD_Ft5x06_Open (const uint32_t unIrqLv, int16_t nTskPri, uint32_t unTskStk)

Opens the communication environment with the FT5x06.

(a) Parameters:

in	unIrqLv	IRQ interrupt priority (0 to 255)
		Sets the GIC interrupt priority
in	nTskPri	Task Priority
		Sets the value of osPriority type.
in	unTskStk	Not Used.

(b) Return values:

0	Normal end
-1	failure to open

Reads data from the FT5x06 via the RIIC DeviceController ch1.

(a) Parameters:

in	unDevAddr	LCD Device Address
in	*puData	Receive data buffer pointer
out	unSize	Receive Data Length

(b) Return values:

0	normal end
-1	data receive error

(8) int32_t LCD_Ft5x06_SendEvtMsg (const uint32_t unEvtFlg)

Send event message to synchronism.

(a) Parameters:

in	unEvtFlg	event flag
----	----------	------------

(b) Return values:

0	Operation successful.
-1	Error occurred.

(9) int_t LCD_Ft5x06_StartInt (const LcdEvt_EntryType eType)

Removes masking of specified interrupt type.

(a) Parameters:

in	eType	Specified interrupt type

(b) Return values:

0 Always, normal end	
----------------------	--

(10) int32_t LCD_Ft5x06_WaitEvtMsg (void)

Wait event message to synchronism.

(a) Return values:

0	Event flag list.
-1	: Error occurred.

Sends data to the FT5x06 via the RIIC DeviceController ch1.

(a) Parameters:

in	unDevAddr LCD Device Address	
in	uData	Send Data
in	unSize	Send Data Length

(b) **Return values:**

0	normal end
-1	data send processing error

8.2.10 Variable Documentation

(1) int32_t sLcdSemIdAcc

(2)

8.3 lcd_ft5x06_int.h File Reference

LCD Driver internal header for interrupt.

#include "mcu_board_select.h"
#include "Renesas_RZ_A1.h"
Include dependency graph for lcd_ft5x06_int.h:

8.3.1 Macros

• #define LCD_FT5x06_INT_NUM (IRQ3_IRQn)

8.3.2 Functions

- int_t **LCD_Ft5x06_Int_Open** (const uint32_t unIrqLv) *Open LCD interrupt.*
- int_t LCD_Ft5x06_Int_Close (void) Close LCD interrupt.
- int_t LCD_Ft5x06_Int_Start (void) Enable interrupt of assigned type.

8.3.3 Detailed Description

LCD Driver internal header for interrupt.

Rev: 30 Date:: 2016-12-21 12:02:44 +0900#

8.3.4 Macro Definition Documentation

(1) #define LCD_FT5x06_INT_NUM (IRQ3_IRQn)

Definition at line 48 of file lcd_ft5x06_int.h.

8.3.5 Function Documentation

(1) int_t LCD_Ft5x06_Int_Close (void)

Close LCD interrupt.

(a) Return values:

0	Operation Successful
-1	Error occurred

(2) int_t LCD_Ft5x06_Int_Open (const uint32_t unIrqLv)

Open LCD interrupt.

(a) **Parameters:**

unIrqLv	IRQ interrupt level	
---------	---------------------	--

(b) **Return values:**

0	Operation Successful
-1	Error occurred

(3) int_t LCD_Ft5x06_Int_Start (void)

Enable interrupt of assigned type.

(a) Return values:

	0	Operation Successful
- 1		

8.4 tp.h File Reference

TouchPanel Driver internal header.

```
#include "r_os_abstraction_api.h"
#include "tp_if.h"
Include dependency graph for tp.h:
```


8.4.1 Data Structures

- struct TPEVT_COORDINATES
- struct **TPEVT_ENTRY**

8.4.2 Macros

- #define DBG_LEVEL_OT (-1) /* onetime debug */
 #define DBG_LEVEL_DEF (0) /* default */
 #define DBG_LEVEL_ERR (1) /* error */
 #define DBG_LEVEL_MSG (2) /* message */
 #define DBG_LEVEL_LOG (3) /* log */
- #define **DBG_LEVEL_DBG** (4) /* debug */
- #define **DBG_LEVEL** (**DBG_LEVEL_ERR**)
- #define **DBG_printf_OT** printf
- #define **DBG_printf_DEF** printf
- #define **DBG_printf_ERR** printf
- #define **DBG_printf_MSG** 1 ? (int32_t) 0 : printf
- #define **DBG_printf_LOG** 1 ? (int32_t) 0 : printf
- #define **DBG_printf_DBG** 1 ? (int32_t) 0 : printf
- #define SCOPE_STATIC static
- #define **TPEVT_ENTRY_MAX** (16)
- #define **TP_EVTFLG_NONE** (0x00000000)
- #define **TP_EVTFLG_PENIRQ** (0x00000001) /*! Touch Panel event flag, pen interrupt */
- #define **TP EVTFLG EXIT** (0x00000080) /*! Touch Panel event flag, exit and delete task */
- #define TP_EVTFLG_ALL (TP_EVTFLG_PENIRQ | TP_EVTFLG_EXIT)

8.4.3 Enumerations

• enum **TpEvt_LockState** { **TP_EVT_UNLOCK** = 0, **TP_EVT_LOCK** }

8.4.4 Functions

• void **TP Init** (void)

Initializes internal variables of the touch panel driver.

- Securing of touch panel event entry area
- Setting of internal variable nEvtEntryId to -1
- $\bullet \ Setting \ of \ internal \ variable \ TpEvtLockInf \ to \ TP_EVT_UNLOCK$
- int_t **TP_Open** (const int_t nWidth, const int_t nHeight, const uint32_t unIrqLv, const int16_t nTskPri, const uint32_t unTskStk)

Opens the touch panel driver.

- Setting the LCD size in the driver's variables ScreenWidth and ScreenHeight
- Generation of touch panel task synchronization semaphore
- · Generation of touch panel task
- Setting of task priority of touch panel task
- Opening of communication environment with LCD board
- Registration of call-back event when touch panel interrupt occurs in LCD event.
- int_t TP_Close (void)

Closes the touch panel driver.

- Removal of call-back event when touch panel interrupt occurs in LCD event
- Removal of all touch panel event registrations by the user
- Removal of touch panel task
- Removal of semaphore for synchronization with the touch panel task.
- int_t **TP_EventEntry** (const **TpEvt_EntryType** eMode, const int32_t nPosX, const int32_t nPosY, const int32_t nWidth, const int32_t nHeight, const **TpCBFunc** function)

Registers in the event table a call-back function linked to a touch panel interrupt.

After registration finishes, the event ID is sent as a return value.

int_t **TP_EventErase** (const int_t nId)

Removes an event from the call-back event table of the touch panel driver.

- Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)
- Disabling of event associated with event ID (TPEVT_ENTRY_NON)
- int_t **TP_ChangeEventEntry** (const int_t nId, const int32_t nPosX, const int32_t nPosY, const int32_t nWidth, const int32_t nHeight)

The rectangular area to which the event ID specified by the 1st argument (nId)

is registered is changed to the rectangular area specified by the 2nd to 5th arguments.

- Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)
- Event ID checking (unregistered ID or removed ID)
- Registration of event in area of specified ID in touch panel event table.
- int_t TP_EventLockAll (void)

Locks all registered touch panel call-back events.

Calls the function described in TP_EventLock, to set all events to the locked state (TP_EVT_LOCK).

• int_t **TP_EventUnlockAll** (void)

Unlocks all registered touch panel call-back events.

Calls the function described in TP_EventUnlock, to set all events to the unlocked state (TP_EVT_UNLOCK).

• int t **TP EventLock** (const int t nId)

Locks the touch panel call-back event specified by the 1st argument (nId).

- Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)
- Setting the event specified by the event ID to the locked state (TP_EVT_LOCK) in the touch panel event table.
- int_t **TP_EventUnlock** (const int_t nId)

Unlocks the touch panel call-back event specified by the 1st argument (nId).

- Event ID checking (within range of 0 to TPEVT ENTRY MAX)
- Setting the event specified by the event ID to the unlocked state (TP_EVT_UNLOCK) in the touch panel event table.
- **TPEVT ENTRY** * **TP GetEventTable** (const int t nId)

Acquires from the touch panel driver call-back event table the pointer address at which the event ID event information is registered.

• TpEvt_LockState TP_GetEventLockInf (void)

Acquires the lock state of the touch panel call-back event.

• void **TP_GetScreenSize** (int_t *pnWidth, int_t *pnHeight) *Acquires the screen size of the LCD panel.*

- int32_t **TP_SendEvtMsg** (const uint32_t unEvtFlg) Sends a synchronization event message.
- int32_t **TP_WaitEvtMsg** (void)

 Waits to receive a synchronization event message.
- void **TP_ClearEvtMsg** (const uint32_t unEvtFlg) *Clears the specified event flag.*

8.4.5 Variables

os_task_t * p_os_task

8.4.6 Detailed Description

TouchPanel Driver internal header.

Rev: 30 Date:: 2016-12-21 12:02:44 +0900#

8.4.7 Macro Definition Documentation

(1) #define DBG_LEVEL (DBG_LEVEL_ERR)

Definition at line 53 of file tp.h.

(2) #define DBG_LEVEL_DBG (4) /* debug */

Definition at line 51 of file tp.h.

(3) #define DBG_LEVEL_DEF (0) /* default */

Definition at line 47 of file tp.h.

(4) #define DBG_LEVEL_ERR (1) /* error */

Definition at line 48 of file tp.h.

(5) #define DBG_LEVEL_LOG (3) /* log */

Definition at line 50 of file tp.h.

(6) #define DBG_LEVEL_MSG (2) /* message */

Definition at line 49 of file tp.h.

(7) #define DBG_LEVEL_OT (-1) /* onetime debug */

Definition at line 46 of file tp.h.

(8) #define DBG_printf_DBG 1 ? (int32_t) 0 : printf

Definition at line 82 of file tp.h.

(9) #define DBG_printf_DEF printf

Definition at line 60 of file tp.h.

(10) #define DBG_printf_ERR printf

Definition at line 65 of file tp.h.

(11) #define DBG_printf_LOG 1 ? (int32_t) 0 : printf

Definition at line 77 of file tp.h.

(12) #define DBG_printf_MSG 1 ? (int32_t) 0 : printf

Definition at line 72 of file tp.h.

(13) #define DBG_printf_OT printf

Definition at line 55 of file tp.h.

(14) #define SCOPE_STATIC static

Definition at line 89 of file tp.h.

(15) #define TP_EVTFLG_ALL (TP_EVTFLG_PENIRQ | TP_EVTFLG_EXIT)

Definition at line 98 of file tp.h.

(16) #define TP_EVTFLG_EXIT (0x00000080) /*! Touch Panel event flag, exit and
 delete task */

Definition at line 97 of file tp.h.

(17) #define TP_EVTFLG_NONE (0x00000000)

Definition at line 95 of file tp.h.

(18) #define TP_EVTFLG_PENIRQ (0x00000001) /*! Touch Panel event flag, pen interrupt */

Definition at line 96 of file tp.h.

(19) #define TPEVT_ENTRY_MAX (16)

The max number of event entry Definition at line 93 of file tp.h.

8.4.8 Enumeration Type Documentation

(1) enum TpEvt_LockState

Touch panel event lock state

(a) **Enumerator:**

TP_EVT_UNLOCK	Unlocked
TP_EVT_LOCK	Locked

Definition at line 105 of file tp.h.

8.4.9 Function Documentation

(1) int_t TP_ChangeEventEntry (const int_t nId, const int32_t nPosX, const int32_t nPosY, const int32_t nWidth, const int32_t nHeight)

The rectangular area to which the event ID specified by the 1st argument (nId) is registered is changed to the rectangular area specified by the 2nd to 5th arguments.

- Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)
- Event ID checking (unregistered ID or removed ID)
- Registration of event in area of specified ID in touch panel event table.

(a) Parameters:

in	nId	event ID
in	nPosX	X-coordinate of LCD area
in	nPosY	Y-coordinate of LCD area
in	nWidth	width of LCD area
in	nHeight	height of LCD area

(b) Return values:

0	Operation successful.
-1	Error occurred.

(2) void TP_ClearEvtMsg (const uint32_t unEvtFlg)

Clears the specified event flag.

(a) Parameters:

in	unEvtFlg	event flag

(b) **Return values:**

None			
------	--	--	--

(3) int_t TP_Close (void)

Closes the touch panel driver.

- Removal of call-back event when touch panel interrupt occurs in LCD event
- Removal of all touch panel event registrations by the user
- Removal of touch panel task
- Removal of semaphore for synchronization with the touch panel task.

(a) Return values:

0	Operation successful.
-1	Error occurred.

(4) int_t TP_EventEntry (const TpEvt_EntryType eMode, const int32_t nPosX, const int32_t nPosY, const int32_t nWidth, const int32_t nHeight, const TpCBFunc function)

Registers in the event table a call-back function linked to a touch panel interrupt.

After registration finishes, the event ID is sent as a return value.

• Searching for a free area in the touch panel event table (Up to 16 touch panel events can be registered, and error processing occurs if no free area is available.)

• Making "specified touch action," "X coordinate of specified area," "Y coordinate of specified area," width of specified area,"

"height of specified area," "specified call-back function" settings for the touch panel event table free area. Note: When "X coordinate of specified area," "Y coordinate of specified area," "width of specified area,"

and "height of specified area" are registered in the touch panel event table, the following processing is performed to register the result as a rectangular area:

st.x (X coordinate of area start position) <- "X coordinate of specified area"

st.y (Y coordinate of area start position) <- "Y coordinate of specified area"

ed.x (X coordinate of area end position) <- ("X coordinate of specified area" - "width of specified area")

ed.y (Y coordinate of area end position) <- ("Y coordinate of specified area" - "height of specified area")

(a) **Parameters:**

in	eMode	event type
in	nPosX	X-coordinate of LCD area
in	nPosY	Y-coordinate of LCD area
in	nWidth	width of LCD area
in	nHeight	height of LCD area
in	function	callback function

(b) **Return values:**

0	to (TPEVT_ENTRY_MAX-1)
-1	Error occurred.

(5) int_t TP_EventErase (const int_t nId)

Removes an event from the call-back event table of the touch panel driver.

- Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)
- Disabling of event associated with event ID (TPEVT_ENTRY_NON)

(a) Parameters:

in	nId	event ID	
			I

(b) **Return values:**

0	Operation successful.	
-1	Error occurred.	

(6) int_t TP_EventLock (const int_t nId)

Locks the touch panel call-back event specified by the 1st argument (nId).

- Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)
- Setting the event specified by the event ID to the locked state (TP_EVT_LOCK) in the touch panel event table.

(a) Parameters:

in	nId	event ID

(b) Return values:

0	Operation successful.
-1	Error occurred.

(7) int_t TP_EventLockAll (void)

Locks all registered touch panel call-back events.

Calls the function described in TP_EventLock, to set all events to the locked state (TP_EVT_LOCK).

(a) Return values:

0	Operation successful.	
-1	Error occurred.	

(8) int_t TP_EventUnlock (const int_t nId)

Unlocks the touch panel call-back event specified by the 1st argument (nId).

- Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)
- Setting the event specified by the event ID to the unlocked state (TP_EVT_UNLOCK) in the touch panel event table.

(a) Parameters:

in	nId	event ID	
----	-----	----------	--

(b) Return values:

0	Operation successful.
-1	Error occurred.

(9) int_t TP_EventUnlockAll (void)

Unlocks all registered touch panel call-back events.

Calls the function described in TP_EventUnlock, to set all events to the unlocked state (TP_EVT_UNLOCK).

(a) Return values:

0	Operation successful.
-1	Error occurred.

(10) TpEvt_LockState TP_GetEventLockInf (void)

Acquires the lock state of the touch panel call-back event.

(a) Return values:

TP_EVT_LOCK	In locked state
TP_EVT_UNLOCK	In unlocked state.

(11) TPEVT_ENTRY* TP_GetEventTable (const int_t nId)

Acquires from the touch panel driver call-back event table the pointer address at which the event ID event information is registered.

(a) Parameters:

in	nId	event ID

(b) **Return values:**

TPEVT_ENTRY	pointer to event
-------------	------------------

(12) void TP_GetScreenSize (int_t * pnWidth, int_t * pnHeight)

Acquires the screen size of the LCD panel.

(a) **Parameters:**

out	*pnWidth	pointer to width value
out	*pnHeight	pointer to height value

(b) Return values:

None	

(13) void TP_Init (void)

Initializes internal variables of the touch panel driver.

- Securing of touch panel event entry area
- Setting of internal variable nEvtEntryId to -1
- Setting of internal variable TpEvtLockInf to TP_EVT_UNLOCK

(a) Return values:

None.	

Opens the touch panel driver.

- Setting the LCD size in the driver's variables ScreenWidth and ScreenHeight
- Generation of touch panel task synchronization semaphore
- Generation of touch panel task
- Setting of task priority of touch panel task
- Opening of communication environment with LCD board
- Registration of call-back event when touch panel interrupt occurs in LCD event.

(a) Parameters:

in	nWidth	screen width
in	nHeight	screen height
in	unIrqLv	IRQ interrupt level
in	nTskPri	task priority
in	unTskStk	task stack size

(b) **Return values:**

0	Operation successful.
-1	Error occurred.

(15) int32_t TP_SendEvtMsg (const uint32_t unEvtFlg)

Sends a synchronization event message.

(a) **Parameters:**

	in	unEvtFlg	event flag
- 1			

(b) Return values:

0	Operation successful.
-1	Error occurred.

(16) int32_t TP_WaitEvtMsg (void)

Waits to receive a synchronization event message.

(a) Return values:

TP_EVTFLG_NONE	No event flags
TP_EVTFLG_PENIRQ	Interrupt pending
TP_EVTFLG_EXIT	End task
TP_EVTFLG_ALL	Both Interrupt pending and exit flag.
-1	Error occurred.

8.4.10 Variable Documentation

(1) os_task_t* p_os_task

8.5 tp_if.h File Reference

TouchPanel Driver API header.

This graph shows which files directly or indirectly include this file:

8.5.1 Data Structures

- struct TP_TouchFinger_st
- struct **TP_TouchEvent_st**

8.5.2 Macros

• #define **TP_TOUCHNUM_MAX** (2)

8.5.3 Typedefs

• typedef void(* TpCBFunc) (int_t, TP_TouchEvent_st *)

8.5.4 Enumerations

enum TpEvt_EntryType { TPEVT_ENTRY_NONE = 0x0000, TPEVT_ENTRY_UP = 0x0001, TPEVT_ENTRY_DOWN = 0x0002, TPEVT_ENTRY_MOVE = 0x0004, TPEVT_ENTRY_ALL = 0x0007, TPEVT_ENTRY_UNKNOWN = 0x8000 }

8.5.5 Functions

- void **TouchPanel_Init** (void)
 - Initializes the touch panel driver by calling the TP_Init.
- int_t **TouchPanel_Open** (const int_t nWidth, const int_t nHeight, const uint32_t unIrqLv, const int16_t nTskPri, const uint32_t unTskStk)

Generates and initializes a touch panel task by calling the TP_Open.

Do not call this function during touch panel utility has been opened.

• int_t TouchPanel_Close (void)

Touch Panel utility close function.

• int_t **TouchPanel_EventEntry** (const **TpEvt_EntryType** eMode, const int32_t nPosX, const int32_t nPosY, const int32_t nWidth, const int32_t nHeight, const **TpCBFunc** function)

Registers a call-back function linked to the LCD area where a touch panel event occurs in the touch panel event management structure.

Calls the function described in TP_EventEntry, to perform the following processing:

- Searching for a free area in the touch panel event table (Up to 16 touch panel events can be registered, and error processing occurs if no free area is available.)
- Making "specified touch action," "X coordinate of specified area," "Y coordinate of specified area," "width of specified area," "height of specified area," "specified call-back function" settings for the touch panel event table free area.

Note: If events occur simultaneously in multiple registered areas that overlap, the associated call-back functions are executed in order, starting with the one with the lowest event ID.

• int_t TouchPanel_EventErase (const int_t nId)

Removes registration information for the specified event ID from the touch panel event management structure.

Calls the function described in TP_EventErase, to perform the following processing:

• Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)

Disabling of event associated with event ID.

• int_t **TouchPanel_ChangeEventEntry** (const int_t nId, const int32_t nPosX, const int32_t nPosY, const int32_t nWidth, const int32_t nHeight)

Changes the LCD area of the specified event ID.

Calls the function described in TP_ChangeEventEntry, to perform the following processing:

- Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)
- Event ID checking (unregistered ID or removed ID)

Registration of event in area of specified ID in touch panel event table.

• int_t TouchPanel_EventLockAll (void)

Locks processing of all touch panel events.

Calls the function described in TP_EventLockAll, to perform the following processing:

Setting all events in the touch panel event table to the locked state

• int_t TouchPanel_EventUnlockAll (void)

Unlocks processing of all touch panel events.

Calls the function described in TP_EventUnlockAll, to perform the following processing:

Setting all events in the touch panel event table to the unlocked state.

• int_t TouchPanel_EventLock (const int_t nId)

Locks processing of the touch panel event specified by the event ID.

Calls the function described in TP_EventLock, to perform the following processing:

• Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)

Setting the event specified by the event ID to the locked state in the touch panel event table.

• int_t TouchPanel_EventUnlock (const int_t nId)

Unlocks processing of the touch panel event specified by the event ID.

Calls the function described in TP_EventUnlock, to perform the following processing:

• Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)

Setting the event specified by the event ID to the unlocked state in the touch panel event table.

8.5.6 Detailed Description

TouchPanel Driver API header.

Rev: 30 Date:: 2016-12-21 12:02:44 +0900

8.5.7 Macro Definition Documentation

(1) #define TP_TOUCHNUM_MAX (2)

Definition at line 44 of file tp_if.h.

8.5.8 Typedef Documentation

(1) typedef void(* TpCBFunc) (int_t, TP_TouchEvent_st *)

Definition at line 75 of file tp_if.h.

8.5.9 Enumeration Type Documentation

(1) enum TpEvt_EntryType

The type of touch panel event entry

(a) **Enumerator:**

TPEVT_ENTRY_NONE	None
TPEVT_ENTRY_UP	Up
TPEVT_ENTRY_DOWN	Down
TPEVT_ENTRY_MOVE	Move
TPEVT_ENTRY_ALL	All
TPEVT_ENTRY_UNKNOWN	internal event state

Definition at line 50 of file tp_if.h.

```
50
      TPEVT_ENTRY_NONE = 0 \times 0000,
51
                          = 0x0001,
52
     TPEVT_ENTRY_UP
53
       TPEVT_ENTRY_DOWN
                           = 0x0002,
      TPEVT_ENTRY_MOVE = 0 \times 0004,
54
56
     TPEVT_ENTRY_ALL
                           = 0 \times 0007
       TPEVT_ENTRY_UNKNOWN = 0 \times 8000
59 } TpEvt_EntryType ;
```

8.5.10 Function Documentation

(1) int_t TouchPanel_ChangeEventEntry (const int_t nId, const int32_t nPosX, const int32_t nPosY, const int32_t nWidth, const int32_t nHeight)

Changes the LCD area of the specified event ID.

Calls the function described in TP_ChangeEventEntry, to perform the following processing:

- Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)
- Event ID checking (unregistered ID or removed ID)

Registration of event in area of specified ID in touch panel event table.

(a) Parameters:

i	n	nId	Event ID
i	n	nPosX	X coordinate of area after change

in	nPosY	Y coordinate of area after change
in	nWidth	Width of area after change
in	nHeight	Height of area after change

(b) **Return values:**

0	normal end
-1	LCD area change failure

(2) int_t TouchPanel_Close (void)

Touch Panel utility close function.

(a) Return values:

NONE	

(3) int_t TouchPanel_EventEntry (const TpEvt_EntryType eMode, const int32_t nPosX, const int32_t nPosY, const int32_t nWidth, const int32_t nHeight, const TpCBFunc function)

Registers a call-back function linked to the LCD area where a touch panel event occurs in the touch panel event management structure.

Calls the function described in TP_EventEntry, to perform the following processing:

- Searching for a free area in the touch panel event table (Up to 16 touch panel events can be registered, and error processing occurs if no free area is available.)
- Making "specified touch action," "X coordinate of specified area," "Y coordinate of specified area," "width of specified area," "specified call-back function" settings for the touch panel event table free area.

Note: If events occur simultaneously in multiple registered areas that overlap, the associated call-back functions are executed in order, starting with the one with the lowest event ID.

(a) Parameters:

in	eMode	Specified touch action
in	nPosX	X coordinate of specified area
in	nPosY	Y coordinate of specified area
in	nWidth	width of specified area
in	nHeight	height of specified area
in	function	Specified call-back function

(b) **Return values:**

Success	event ID of 0 to (TPEVT_ENTRY_MAX -1) if successful
Fail	returns -1

(4) int_t TouchPanel_EventErase (const int_t nId)

Removes registration information for the specified event ID from the touch panel event management structure.

Calls the function described in TP_EventErase, to perform the following processing:

• Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)

Disabling of event associated with event ID.

(a) Parameters:

in	nId	Event ID	
	11111		

(b) **Return values:**

0	normal end
-1	event removal failure

(5) int_t TouchPanel_EventLock (const int_t nId)

Locks processing of the touch panel event specified by the event ID.

Calls the function described in TP_EventLock, to perform the following processing:

• Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)

Setting the event specified by the event ID to the locked state in the touch panel event table.

(a) Parameters:

in	nId	Event ID

(b) Return values:

0	normal end	
-1	event removal failure	

(6) int_t TouchPanel_EventLockAll (void)

Locks processing of all touch panel events.

Calls the function described in TP_EventLockAll, to perform the following processing:

Setting all events in the touch panel event table to the locked state

(a) Return values:

0	normal end
-1	touch panel event locking failure

(7) int_t TouchPanel_EventUnlock (const int_t nId)

Unlocks processing of the touch panel event specified by the event ID.

Calls the function described in TP_EventUnlock, to perform the following processing:

• Event ID checking (within range of 0 to TPEVT_ENTRY_MAX)

Setting the event specified by the event ID to the unlocked state in the touch panel event table.

(a) Parameters:

in	nId	Event ID

(b) Return values:

0	normal end
-1	event removal failure

(8) int_t TouchPanel_EventUnlockAll (void)

Unlocks processing of all touch panel events.

Calls the function described in TP_EventUnlockAll, to perform the following processing: Setting all events in the touch panel event table to the unlocked state.

(a) Return values:

0	normal end
-1	touch panel event unlocking failure

(9) void TouchPanel_Init (void)

Initializes the touch panel driver by calling the TP_Init.

(a) Return values:

NONE	

Generates and initializes a touch panel task by calling the TP_Open.

Do not call this function during touch panel utility has been opened.

(a) **Parameters:**

in	nWidth	LCD width	
in	nHeight	LCD height	
in	unIrqLv	IRQ interrupt priority (0 to 255), sets the GIC interrupt priority	
in	nTskPri	Task priority, sets the values of the osPriority type	
in	unTskStk	unTskStk, not used.	

(b) Return values:

NONE	

Website and Support

Renesas Electronics Website https://www.renesas.com/

Inquiries

 $\underline{https://www.renesas.com/contact/}$

All trademarks and registered trademarks are the property of their respective owners.

Revision History

Rev.	Date	Page	Description	Remark
2.01	Oct 31, 2018	All	Correction of page flow	-
		5.1, 6.1	Improvement of links to content	-
2.00	Jun 29, 2018	1	Introduction	-
			Corrected the wording.	
		4	1. Specifications	-
			Corrected the wording.	
1.00	Jun 29, 2018	-	First Edition issued	-

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 - In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- criptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully resp the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment: industrial robots: etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable aws and regulations
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third earty in advance of the contents and conditions set forth in this document
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langae Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16IF., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Ind Tel: +91-80-67208700, Fax: +91-80-67208777 Indiranagar, Bangalore 560 038, India

Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338