July 22, 2020 9:39 AM

20-8-KIN-DIC-38

Advanced

Inspiration: 17-77 Hibbeler

Rotation (RBK)

An engineering student is working on an experimental drive system that utilizes two wheels to shift between drive and neutral. Wheel A rotates with a constant angular velocity of $omega_A = 15$ fad/s and has a mass of $m_A = 1.1$ kg. Wheel B has a mass of $m_B = 1.6$ kg. and is initially at rest when it is put into contact with wheel A. If the coefficient of kinetic friction between the two wheels is $mu_k = 0.3$, determine the time required for wheel B to reach the same angular speed as wheel A. Assume the two wheels can be modelled as disks with radius $r = 0.1 \, m$ and that the mass of bar CD is negligible. The length of bar CD is given as *I* = 0.8 m and the angle is theta = 30 degrees.

$$\Sigma F_{x} = ma_{cx} = 0.3N + F\cos 30 = 0$$
 $\Sigma F_{y} = ma_{cy} = N - F_{c} + F\sin 30 = 0$
 $\Sigma M_{c} = 0.3N(0.1) = T_{c} \alpha = 0.008 \alpha$
 $0.03N = -F\cos 30$
 $0.3N = -F\cos 30$
 $0.03N = 6.008 \alpha$

$$0.3N = -F\cos 30$$

 $N = (1.6)(9.41) - F\sin 30$
 $0.03N = 6.009 \times$

0.3 (1.6)(4.41) - 6.3 F sin 30 = - F cos 30
4.70 8 =
$$\frac{3-10\sqrt{3}}{20}$$
 F = -6.5763.. $N=18.98415$

X=71.1905681 rad/s2

W= Wotat => 15 = 0 + 71.1405681E (t= 0.2107 s