PLONK Polynomial Interpolation Example

Problem Statement

We have an arithmetic circuit with 3 gates (constraints) and the following witness assignments:

Gate	Left (L)	Right (R)	Output (O)	Constraint
1	\boldsymbol{a}	b	c	$a \cdot b = c$
2	c	d	e	$c\cdot d=e$
3	e	f	g	$e \cdot f = g$

Witness Assignments

•
$$a=2,b=3 \implies c=6$$

$$lack d=2 \implies e=6 imes 2=12$$

•
$$f=2 \implies g=12 \times 2=24$$

Witness vector: $\left[a,b,c,d,e,f,g
ight]=\left[2,3,6,2,12,2,24
ight]$

Step 1: Define Gate Positions

We assign each gate to a unique root of unity (for simplicity, x=1,2,3):

\boldsymbol{x}	L(x)	R(x)	O(x)
1	a=2	b = 3	c=6
2	c=6	d=2	e=12
3	e=12	f = 2	g=24

Step 2: Interpolate L(x), R(x), O(x)

We use Lagrange interpolation to find polynomials that fit these points.

1. Compute L(x)

Given points: (1,2), (2,6), (3,12)

Lagrange basis polynomials:

$$egin{aligned} \ell_1(x) &= rac{(x-2)(x-3)}{(1-2)(1-3)} = rac{(x-2)(x-3)}{2} \ \ \ell_2(x) &= rac{(x-1)(x-3)}{(2-1)(2-3)} = rac{(x-1)(x-3)}{-1} \ \ \ell_3(x) &= rac{(x-1)(x-2)}{(3-1)(3-2)} = rac{(x-1)(x-2)}{2} \end{aligned}$$

Now, construct L(x):

Now, construct L(x):

$$egin{aligned} L(x) &= 2 \cdot \ell_1(x) + 6 \cdot \ell_2(x) + 12 \cdot \ell_3(x) \ &= 2 \cdot rac{(x-2)(x-3)}{2} + 6 \cdot rac{(x-1)(x-3)}{-1} + 12 \cdot rac{(x-1)(x-2)}{2} \ &= (x-2)(x-3) - 6(x-1)(x-3) + 6(x-1)(x-2) \ &= x^2 - 5x + 6 - 6x^2 + 24x - 18 + 6x^2 - 18x + 12 \ &= (x^2 - 6x^2 + 6x^2) + (-5x + 24x - 18x) + (6 - 18 + 12) \ &= x^2 + x + 0 \end{aligned}$$

Final L(x):

$$L(x)=x^2+x$$

2. Compute R(x)

Given points: (1,3),(2,2),(3,2)

Following the same method:

$$egin{aligned} R(x) &= 3 \cdot rac{(x-2)(x-3)}{2} + 2 \cdot rac{(x-1)(x-3)}{-1} + 2 \cdot rac{(x-1)(x-2)}{2} \ &= rac{3}{2}(x^2 - 5x + 6) - 2(x^2 - 4x + 3) + (x^2 - 3x + 2) \ &= rac{3}{2}x^2 - rac{15}{2}x + 9 - 2x^2 + 8x - 6 + x^2 - 3x + 2 \ &= \left(rac{3}{2}x^2 - 2x^2 + x^2
ight) + \left(-rac{15}{2}x + 8x - 3x
ight) + (9 - 6 + 2) \ &= rac{1}{2}x^2 - rac{5}{2}x + 5 \end{aligned}$$

Final R(x):

$$R(x) = rac{1}{2}x^2 - rac{5}{2}x + 5$$

3. Compute O(x)

Given points: (1,6), (2,12), (3,24)

$$egin{aligned} O(x) &= 6 \cdot rac{(x-2)(x-3)}{2} + 12 \cdot rac{(x-1)(x-3)}{-1} + 24 \cdot rac{(x-1)(x-2)}{2} \ &= 3(x^2 - 5x + 6) - 12(x^2 - 4x + 3) + 12(x^2 - 3x + 2) \ &= 3x^2 - 15x + 18 - 12x^2 + 48x - 36 + 12x^2 - 36x + 24 \ &= (3x^2 - 12x^2 + 12x^2) + (-15x + 48x - 36x) + (18 - 36 + 24) \ &= 3x^2 - 3x + 6 \end{aligned}$$

Final O(x):

$$O(x) = 3x^2 - 3x + 6$$

Step 3: Construct
$$W(x) = L(x) \cdot R(x) - O(x)$$

Now, compute W(x):

$$egin{align} W(x) &= (x^2+x)\left(rac{1}{2}x^2 - rac{5}{2}x + 5
ight) - (3x^2 - 3x + 6) \ &= rac{1}{2}x^4 - rac{5}{2}x^3 + 5x^2 + rac{1}{2}x^3 - rac{5}{2}x^2 + 5x - 3x^2 + 3x - 6 \ &= rac{1}{2}x^4 - 2x^3 + \left(5x^2 - rac{5}{2}x^2 - 3x^2
ight) + (5x + 3x) - 6 \ &= rac{1}{2}x^4 - 2x^3 - rac{1}{2}x^2 + 8x - 6 \ \end{aligned}$$

Step 4: Verify Divisibility by Z(x)=(x-1)(x-2)(x-3)

Check if W(x) vanishes at x = 1, 2, 3:

1.
$$W(1)=rac{1}{2}(1)^4-2(1)^3-rac{1}{2}(1)^2+8(1)-6=rac{1}{2}-2-rac{1}{2}+8-6=0$$

2.
$$W(2) = \frac{1}{2}(16) - 2(8) - \frac{1}{2}(4) + 16 - 6 = 8 - 16 - 2 + 16 - 6 = 0$$

з.
$$W(3)=rac{1}{2}(81)-2(27)-rac{1}{2}(9)+24-6=40.5-54-4.5+24-6=0$$

Since W(x)=0 at all roots, Z(x) divides W(x).

Conclusion

The prover constructs:

•
$$L(x) = x^2 + x$$

•
$$R(x) = \frac{1}{2}x^2 - \frac{5}{2}x + 5$$

•
$$O(x) = 3x^2 - 3x + 6$$

$$W(x) = rac{1}{2}x^4 - 2x^3 - rac{1}{2}x^2 + 8x - 6$$

Since W(x) is divisible by Z(x), the proof is valid. The verifier confirms correctness without learning the witness values.