Reinforcement Learning Algorithms

CMPT 729 G100

Jason Peng

Overview

- Anatomy of an RL algorithm
- Algorithm Characteristics
- Applications

Reinforcement Learning

Black Box Optimization

$$\theta^* = \arg\max_{\theta} J(\pi_{\theta})$$

black box

 $J(\pi_{\theta})$

MDP

Anatomy of an RL Algorithm

Evolutionary Methods

Taxonomy of RL Algorithms

- Policy-Based
- Value-Based
- Actor-Critic
- Model-Based

Anatomy of an RL Algorithm

Taxonomy of RL Algorithms

- Policy-Based
- Value-Based
- Actor-Critic
- Model-Based

$$\pi(\mathbf{a}|\mathbf{s})$$

$$\mathbf{s} \Rightarrow \boxed{\pi} \Rightarrow \mathbf{a}$$

Taxonomy of RL Algorithms

- Policy-Based
- Value-Based
- Actor-Critic
- Model-Based

Taxonomy of RL Algorithms

- Policy-Based
- Value-Based
- Actor-Critic
- Model-Based

Actor-Critic Methods

Actor-Critic Methods

Taxonomy of RL Algorithms

- Policy-Based
- Value-Based
- Actor-Critic
- Model-Based

Model-Based Method

Learning a Simulator

Simulation Real World

Model-Based Method

Model-Based Method

Model-Based Planning

Model-Based Planning

Anatomy of an RL Algorithm

Characteristics

- Sample efficiency
- Wall-clock time
- Performance and stability
- Stochastic/deterministic dynamics
- Continuous/discrete actions
- Modeling challenges

Sample Efficiency

 Sample efficiency = how much data needed to get a good policy

- On-policy vs off-policy
 - Can the algorithm use data from other policies or demonstrations?
 - Can algorithm reuse data from previous iterations?

Sample Efficiency

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills [Peng et al. 2018]

Sample Efficiency

DayDreamer: World Models for Physical Robot Learning [Wu et al. 2022]

Characteristics

- Sample efficiency
- Wall-clock time
- Performance and stability
- Stochastic/deterministic dynamics
- Continuous/discrete actions
- Modeling challenges

Wall-Clock Time

- How much compute?
- How parallelizable?
- sample efficiency ≠ wall-clock time

Evolution Strategies as a Scalable Alternative to Reinforcement Learning [Salimans et al. 2017]

Wall-Clock Time

Human-Level Control Through Deep Reinforcement Learning [Mnih et al. 2015]

- Sample efficiency
- Wall-clock time
- Performance and stability
- Stochastic/deterministic dynamics
- Continuous/discrete actions
- Modeling challenges

- Does it converge?
- What does it converge to?
- Does it converge every time?

Figure 4: Performance of several policy gradient algorithms across benchmark MuJoCo environment suites

Deep Reinforcement Learning that Matters [Henderson et al. 2018]

- Does it converge?
- What does it converge to?
- Does it converge every time?

Figure 5: TRPO on HalfCheetah-v1 using the same hyperparameter configurations averaged over two sets of 5 different random seeds each. The average 2-sample t-test across entire training distribution resulted in t = -9.0916, p = 0.0016.

- Does it converge?
- What does it converge to?
- Does it converge every time?

Figure 6: TRPO codebase comparison using our default set of hyperparameters (as used in other experiments).

- Supervised learning: almost *always* gradient descent
- Reinforcement learning: often not gradient descent
 - Q-learning: fixed point iteration
 - Mode-based RL: model not optimized for expected reward
 - Policy gradient: is gradient descent, but often very inefficient

- Sample efficiency
- Wall-clock time
- Performance and stability
- Stochastic/deterministic dynamics
- Continuous/discrete actions
- Modeling challenges

- Sample efficiency
- Wall-clock time
- Performance and stability
- Stochastic/deterministic dynamics
- Continuous/discrete actions
- Modeling challenges

- Sample efficiency
- Wall-clock time
- Performance and stability
- Stochastic/deterministic dynamics
- Continuous/discrete actions
- Modeling challenges

Applications

Policy Gradients

- Directly optimize policy via gradient ascent
 - E.g. TRPO, PPO, A2C, DDPG, SAC, TD3, MBPO

ASE: Large-Scale Reusable Adversarial Skill Embeddings for Physically Simulated Characters [Peng et al. 2022]

Q-Learning

- Learn Q-function that implicitly encodes policy
 - E.g. DQN, double-DQN, Dueling DQN, Rainbow

Human-Level Control Through Deep Reinforcement Learning [Mnih et al. 2015]

Model-Based RL

- Learn a model of the dynamics for planning or simulation
 - E.g. Dyna, GPS, MBPO, PETS, Dreamer, MOReL, AlphaGo

A1 Quadruped Walking

UR5 Multi-Object Visual Pick Place

XArm Visual Pick and Place

Sphero Ollie Visual Navigation

DayDreamer: World Models for Physical Robot Learning [Wu et al. 2022]

Summary

- Anatomy of an RL algorithm
- Algorithm Characteristics
- Applications