

# Probabilidad y estadística 1

# Guía de asignatura

Última actualización: julio de 2020

## 1. Información general

| Nombre de la asignatura      | Probabilidad y estadística 1            |
|------------------------------|-----------------------------------------|
| Código                       | 11310031                                |
| Tipo de asignatura           | Obligatoria                             |
| Número de créditos           | 3                                       |
| Tipo de crédito              | A                                       |
| Horas de trabajo semanal con | 48                                      |
| acompañamiento directo del   |                                         |
| profesor                     |                                         |
| Horas semanales de trabajo   | 96                                      |
| independiente del estudiante |                                         |
| Prerrequisitos               | Ninguno                                 |
| Prerrequisito especial       | Cálculo 2                               |
| Horario                      |                                         |
| Líder de área                | Juan Fernando Pérez                     |
|                              | Correo: juanferna.perez@urosario.edu.co |
| Salón                        |                                         |

## 2. Información del profesor y monitor

| Nombre del profesor | Martín Andrade Restrepo                                      |
|---------------------|--------------------------------------------------------------|
| Perfil profesional  | Martín Andrade Restrepo es Profesor Principal de MACC de     |
|                     | la Universidad del Rosario. Es Matemático de la Universidad  |
|                     | de los Andes, M. Sc. en Complex Systems Science de           |
|                     | la Universidad de Gotemburgo (Suecia) y del École            |
|                     | Polytechnique (Francia), y Ph.D. en Biomatemáticas de        |
|                     | la Universidad de París (Université Paris Diderot). Además,  |
|                     | tiene experiencia en el sector privado en dos firmas de      |
|                     | consultoría. Entre sus intereses académicos están el estudio |
|                     | del impacto de interacciones ecológicas en los patrones      |
|                     | espaciales de poblaciones biológicas y el estudio de las     |



| dinámicas propagativas y replicativas de proteínas tóxicas |
|------------------------------------------------------------|
| asociadas a diferentes enfermedades y al envejecimiento.   |
| Martin.andrade@urosario.edu.co                             |
|                                                            |
| Viernes 9:00-12:00                                         |
| Virtual                                                    |
|                                                            |
|                                                            |
|                                                            |
| Isabella Martinez (grupo 1) y Daniel Rambaut (grupo 2)     |
|                                                            |
|                                                            |
|                                                            |
| <u>isabella.martinezm@urosario.edu.co</u> ,                |
| daniel.rambaut@urosario.edu.co                             |
|                                                            |
|                                                            |
|                                                            |
|                                                            |

## 3. Resumen y propósitos del curso

La asignatura de probabilidad y estadística es indispensable como herramienta para el planteamiento y solución de problemas, y como complemento de otras áreas del saber. Ofrece al estudiante la formación básica necesaria conceptual y práctica para la recolección, organización manejo de los datos e información, su análisis e interpretación, su modelamiento y su aplicación, contribuyendo en la toma de decisiones en los campos de acción propios del egresado Rosarista.

## 4. Conceptos fundamentales

- Tema 1. Presentación tabular y gráfica de los datos.
- Tema 2. Medidas de tendencia central, posición, dispersión y asociación lineal Análisis exploratorio de datos
- Tema 3: Probabilidad condicional, Teorema de Bayes.
- Tema 4: Variables aleatorias y distribuciones de probabilidad discretas
- Tema 5: Variables aleatorias y distribuciones de probabilidad continuas- Teorema Central del límite
- Tema 6: Introducción al muestreo y concepto de distribución muestral para la media, la proporción y varianza. Propiedades de los estimadores. Estimación puntual y por intervalo Considerar: Distribuciones de los estimadores



Tema 7: Pruebas de hipótesis para la media, varianza y proporción una y dos muestras - Análisis de varianza

Tema 8: Prueba de independencia y bondad de ajuste

Tema 9: Regresión lineal simple, múltiple (introductorio) y correlación

## 5. Resultados de aprendizaje esperados (RAE)

- 1. Entender la importancia de la probabilidad y estadística a partir de sus aplicaciones.
- 2. Resumir información a fin de describir un conjunto de datos y hacer su análisis exploratorio de datos.
- 3. Conocer e interpretar adecuadamente las medidas de tendencia central, dispersión, forma y asociación lineal.
- 4. Conocer las reglas de probabilidad y los conceptos de condicionalidad e independencia y teoremas más importantes.
- 5. Identificar e interpretar los principales modelos de probabilidad para variables discretas y continuas.
- 6. Manejar el concepto de distribución muestral de estadísticos como la media y la proporción
- 7. Comprender los conceptos de estimador, parámetro, margen de error, nivel de significancia
- 8. Extraer información necesaria de una o varias muestras significativas a fin de inferir características de la población
- 9. Comprender, construye e interpreta intervalos de confianza.
- 10. Plantear hipótesis y tomar decisiones respecto a éstas.
- 11. Plantear un modelo de regresión simple y analiza la significancia de este.
- 12. Manejar un software estadístico (R, SPSS, Statgraphics, STATA) o utiliza el Excel para obtener y analizar resultados provenientes del análisis de datos.
- 13. Desarrollar la capacidad analítica para la interpretación de resultados y la aplicación a casos concreto.

#### 6. Modalidad del curso

Remota: Todos sus estudiantes estarán conectados remotamente desde sus casas o ubicaciones externas a la Universidad.

## 7. Estrategias de aprendizaje



- 1. Talleres
- 2. Tareas
- 3. Monitorías
- 4. Clases magistrales

## 8. Actividades de evaluación

| Tema                 | Actividad de evaluación               | Porcentaje |
|----------------------|---------------------------------------|------------|
| 1                    | Parcial 1                             | 20         |
| 2                    | Parcial 2                             | 20         |
| 3                    | Parcial 3                             | 20         |
| Tareas               | Tareas realizadas durante el semestre | 15         |
| Resumen del semestre | Examen final                          | 25         |

# 9. Programación de actividades

| Sesión      | Tema                    | Descripción de la actividad                                      | Trabajo<br>independiente    | Recursos que<br>apoyan la<br>actividad |
|-------------|-------------------------|------------------------------------------------------------------|-----------------------------|----------------------------------------|
| Sesión<br>1 |                         | Conjuntos, modelos<br>probabilísticos, axiomas                   |                             | [1, caps. 1.1,<br>1.2]                 |
| Sesión<br>2 |                         | Probabilidad Condicional, Prob.<br>Total, Bayes                  | Taller D                    | [1, caps. 1.3,<br>1.4]                 |
| Sesión<br>3 | 1: Eventos y conteo     | Probabilidad Condicional, Prob.<br>Total, Bayes                  | Taller R.<br>Talleres 1, 2. | [1, caps. 1.3,<br>1.4]                 |
| Sesión<br>4 |                         | Independencia                                                    |                             | [1, caps. 1.5]                         |
| Sesión<br>5 |                         | Conteo                                                           |                             | [1, caps. 1.6]                         |
| Sesión<br>6 | 2: Variables aleatorias | Introducción, función de masa de<br>probabilidad                 | Taller 3.                   | [1, caps. 2.1,<br>2.2]                 |
| Sesión<br>7 | discretas               | Funciones de variables aleatorias,<br>esperanza, media, varianza |                             | [1, caps. 2.3,<br>2.4]                 |
| Sesión<br>8 | 3: Variables aleatorias | Función de densidad de<br>probabilidad                           | Taller 4,                   | [1, caps. 3.1]                         |
| Sesión<br>9 | continuas               | Función acumulada de<br>probabilidad                             | Tarea 1.                    | [1, caps. 3.2]                         |



| Sesión<br>10                 | Parcial 1                                                                     |                                                                                              |                         |                                          |
|------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------|------------------------------------------|
| Sesión<br>11<br>Sesión<br>12 | 4: Teoremas de límites                                                        | Variables aleatorias normales  Teorema del límite central, Ley fuerte de los grandes números | Taller 5                | [1, caps. 3.3]<br>[1, caps. 5.4,<br>5.5] |
| Sesión<br>13                 |                                                                               | Introducción, estadística<br>descriptiva, métodos gráficos                                   |                         | [2, cap. 1]                              |
| Sesión<br>14                 | 5: Estadística descriptiva,<br>estimación y propiedades de<br>los estimadores | Estimación, sesgo, error<br>cuadrático medio                                                 |                         | [2, caps. 8.1,<br>8.2]                   |
| Sesión<br>15                 |                                                                               | Estimadores insesgados                                                                       | Talleres 6,7.           | [2, caps. 8.3,<br>8.4]                   |
| Sesión<br>16                 |                                                                               | Intervalos de confianza                                                                      |                         | [2, caps. 8.5,<br>8.6]                   |
| Sesión<br>17                 |                                                                               | Selección del tamaño muestral                                                                |                         | [2, cap. 8.7]                            |
| Sesión<br>18                 | 6: Métodos de estimación y<br>pruebas de hipótesis                            | Pruebas de hipótesis: elementos,<br>muestras grandes                                         | Taller 8,               | [2, caps. 10.1,<br>10.2]                 |
| Sesión<br>19                 | praebas de impotesis                                                          | Pruebas de hipótesis: error tipo<br>2, tamaño de muestra                                     | Talea 2                 | [2, caps. 10.3,<br>10.4]                 |
| Sesión<br>20                 |                                                                               |                                                                                              |                         |                                          |
| Sesión<br>21                 | 7: Métodos de estimación y                                                    | Pruebas de hipótesis: relación<br>con intervalos de confianza,<br>valores p                  |                         | [2, caps. 10.5,<br>10.6]                 |
| Sesión<br>22                 | pruebas de hipótesis                                                          | Pruebas de hipótesis: muestras pequeñas                                                      | Talleres 9, 10          | [2, caps. 10.7,<br>10.8]                 |
| Sesión<br>23                 |                                                                               | Pruebas de hipótesis: varianzas                                                              |                         | [2, cap. 10.9]                           |
| Sesión<br>24                 |                                                                               | Modelos lineales                                                                             |                         | [2, caps. 11.1,<br>11.2]                 |
| Sesión<br>25                 | 8: Modelos lineales y bondad                                                  | Método de mínimos cuadrados                                                                  | Talleres 11, 12,<br>13. | [2, cap. 11.3]                           |
| Sesión<br>26                 |                                                                               | Propiedades de los estimadores de mínimos cuadrados                                          | Tarea 3                 | [2, cap. 11.4]                           |
| Sesión<br>27                 |                                                                               | inferencias respecto a los<br>parámetros                                                     |                         | [2, cap. 11.5]                           |



| Sesión<br>28 | Predicción, Coeficiente de determinación | [2, caps. 11.6,<br>11.7] |
|--------------|------------------------------------------|--------------------------|
| Sesión<br>29 | Ejemplos de regresión                    | [2, cap. 11.8]           |
| Sesión<br>30 | Prueba chi cuadrada                      | [2, caps. 14.1,<br>14.2] |
| Sesión<br>31 | Bondad de ajuste, Chi cuadrada           | [2, cap. 14.3]           |
| Sesión<br>32 | Parcial 3                                |                          |

## 10. Factores de éxito para este curso

A continuación se sugieren una serie de acciones que pueden contribuir, de manera significativa, con el logro de metas y consecuentemente propiciar una experiencia exitosa en este curso:

- 1. Planificar y organizar el tiempo de trabajo individual que le dedicará al curso
- 2. Organizar el sitio y los materiales de estudios
- 3. Tener un grupo de estudio, procurar el apoyo de compañeros
- 4. Cultivar la disciplina y la constancia, trabajar semanalmente, no permitir que se acumulen temas ni trabajos
- 5. Realizar constantemente una autoevaluación, determinar si las acciones realizadas son productivas o si por el contrario se debe cambiar de estrategias
- 6. Asistir a las horas de consulta del profesor, participar en clase, no quedarse nunca con la duda
- 7. Utilizar los espacios destinados para consultas y resolución de dudas, tales como Sala Gauss y Sala Knuth
- 8. Propiciar espacios para el descanso y la higiene mental, procurar tener buenos hábitos de sueño
- 9. Tener presente en todo momento valores como la honestidad y la sinceridad, al final no se trata solo de aprobar un examen, se trata de aprender y adquirir conocimientos. El fraude es un autoengaño.

## 11. Bibliografía y recursos



- [1] Bertsekas, Tsitsiklis. Introduction to Probability. Segunda Edición, 2008.
- [2] Wackerly, Mendenhall, Scheaffer. Mathematical Statistics with Applications, 7th Ed. Versión en español: Estadística matemática con aplicaciones.

## 12. Bibliografía y recursos complementarios

- [3] Grimmett, Geoffrey. Probability and random processes
- [4] Mendenhall, William. Introducción a la probabilidad y estadística

## 13. Acuerdos para el desarrollo del curso

No está permitido comer o usar dispositivos móviles dentro de clase. No se realizará aproximación de notas al final del semestre. Las notas solo serán cambiadas con base en reclamos OPORTUNOS dentro de los límites de tiempo determinados por el Reglamento Académico. Si por motivos de fuerza mayor el estudiante falta a algún parcial o quiz, deberá seguir el procedimiento regular determinado por el Reglamento Académico para presentar supletorios. No habrá acuerdos informales al respecto. No se eximirá a ningún estudiante de ningún examen.

Si el estudiante se presenta 20 minutos luego de dar inicio a alguna evaluación parcial o final, no podrá presentarla y deberá solicitar supletorio siguiendo la reglamentación institucional.

#### PROCESOS DISCIPLINARIOS - FRAUDE EN EVALUACIONES

Teniendo en cuenta el reglamento formativo-preventivo y disciplinario de la Universidad del Rosario, y la certeza de que las acciones fraudulentas van en contra de los procesos de enseñanza y aprendizaje, cualquier acto corrupto vinculado a esta asignatura será notificado a la secretaría académica correspondiente de manera que se inicie el debido proceso disciplinario. Se recomienda a los estudiantes leer dicho reglamento para conocer las razones, procedimientos y consecuencias que este tipo de acciones pueden ocasionar, así como sus derechos y deberes asociados a este tipo de procedimientos.

La asignatura no tiene ningún tipo de Bono.

#### Debe consultar:

http://www.urosario.edu.co/La-Universidad/Documentos-Institucionales/ur/Reglamentos/Reglamento-Academico-de-Pregrado/

## 14. Respeto y no discriminación

Si tiene alguna discapacidad, sea este visible o no, y requiere algún tipo de apoyo para estar en igualdad de condiciones con los(as) demás estudiantes, por favor informar a su profesor(a) para que



puedan realizarse ajustes razonables al curso a la mayor brevedad posible. De igual forma, si no cuenta con los recursos tecnológicos requeridos para el desarrollo del curso, por favor informe de manera oportuna a la Secretaría Académica de su programa o a la Dirección de Estudiantes, de manera que se pueda atender a tiempo su requerimiento.

Recuerde que es deber de todas las personas respetar los derechos de quienes hacen parte de la comunidad Rosarista. Cualquier situación de acoso, acoso sexual, discriminación o matoneo, sea presencial o virtual, es inaceptable. Quien se sienta en alguna de estas situaciones puede denunciar su ocurrencia contactando al equipo de la Coordinación de Psicología y Calidad de Vida de la Decanatura del Medio Universitario (Teléfono o WhatsApp 322 2485756).