

Actividad 1

Bases de Programación en Procesamiento de Imágenes

Introducción a la representación de imágenes como matrices de píxeles

¿Qué es una imagen digital?

Una imagen digital es una representación visual de datos en forma de píxeles (elementos de imagen mínimos), donde cada píxel tiene un valor que indica su color y brillo. Las imágenes digitales son utilizadas en una amplia variedad de aplicaciones, desde fotografía hasta visión por computadora.

Composición de una imagen digital:

- Las imágenes digitales se componen de una cuadrícula de píxeles dispuestos en filas y columnas.
- Cada píxel contiene información sobre su color y brillo, representada por valores numéricos.
- La resolución de la imagen determina la cantidad de píxeles en la cuadrícula y afecta la calidad de la imagen.
- La profundidad de bits determina la cantidad de información que se puede almacenar para cada píxel y afecta la precisión del color.

Representación de una imagen como matriz de píxeles:

Para procesar una imagen digital en una computadora, se la representa como una matriz bidimensional (o tridimensional en el caso de imágenes en color).

En una imagen en escala de grises:

Cada elemento de la matriz representa la intensidad de brillo de un píxel, donde valores más altos indican píxeles más brillantes y valores más bajos indican píxeles más oscuros.

90	67	68	75	78	98	185	180	153	139	132	106	70	80	81	69	69	67	35	34
92	87	73	78	82	132	180	152	134	120	102	106	95	75	72	63	75	42	19	29
63	102	89	76	98	163	166	164	175	159	120	103	132	96	68	42	49	46	17	22
45	83	109	80	130	158	166	174	158	134	105	71	82	121	80	51	12	50	31	17
39	69	92	115	154	122	144	173	155	105	98	86	82	106	83	76	17	29	41	19
34	80	73	132	144	110	142	181	173	122	100	88	141	142	111	87	33	18	46	36
37	93	88	136	171	164	137	171	190	149	110	137	168	161	132	96	56	23	48	49
66	117	106	147	188	202	198	187	187	159	124	151	167	158	138	105	80	55	59	54
127	136	107	144	188	197	188	184	192	172	124	151	138	108	116	114	84	46	67	54
143	134	99	143	188	172	129	127	179	167	106	118	111	54	70	95	90	46	69	52
141	137	96	146	167	123	91	90	151	156	121	93	78	82	97	91	87	45	66	39
139	137	80	131	162	145	131	129	154	161	158	149	134	122	115	99	84	35	52	30
137	133	56	104	165	167	174	181	175	169	165	162	158	142	124	103	67	19	31	23
135	132	65	86	173	186	200	198	181	171	162	153	145	135	121	104	53	14	15	33
132	132	88	50	149	182	189	191	186	178	166	157	148	131	106	78	28	10	15	44

En una imagen en color, se utilizan tres matrices (una para cada canal de color: rojo, verde y azul) para representar la información de color de cada píxel.

90	67	68	75	78	98	185	180	153	139	132	106	70	80	81	69	69	67	35	34			
92	87	73	78	82	132	180	152	134	120	102	106	95	75	72	63	75	42	19	29	_	_	
63	102	89	76	98	163	166	164	175	159	120	103	132	96	68	42	49	46	17	22	34	-11	
45	83	109	80	130	158	166	174	158	134	105	71	82	121		51	12	50	31	17	29	-	2.4
39	69	92	115	154	122	144	173	155	105	98	86	82	106	83	76	17	29	41	19	22	- 0	20
34	80	73	132	144	110	142	181	173	122	100		141	142	111	87		18	46	36	17	7	22
37	93	88	136	171	164	137	171	190	149	110	137	168	161	132	96	56	23	48	49	19	- 4	17
66	117	106	147	188	202	198	187	187	159	124	151	167	158	138	105	80	55	59	54	36	-	10
127	136	107	144	188	197	188	184	192	172	124	151	138	108	116	114	84	46	67	54	49	6	36
143	134	99	143	188	172	129	127	179	167	106	118	111	54	70	95	90	46	69	52	54	8	49
141	137	96	146	167	123	91	90	151	156	121	93	78	82	97	91	87	45	66	39	54	9	54
139	137	80	131	162	145	131	129	154	161	158	149	134	122	115	99	84	35	52	30	52	7	54
137	133	56	104	165	167	174	181	175	169	165	162	158	142	124	103	67	19	31	23	39	- 0	52
135	132	65	86	173	186	200	198	181	171	162	153	145	135	121	104	53	14	15	33	30	6	39
132	132	88	50	149	182	189	191	186	178	166	157	148	131	106	78	28	10	15	44	23	2	30
	132	132	88	50	149	_	_	-	_	-	_	_	_	-	_	7/	_	28 1	10 1	5 44	- 4	23
	132	132	00	50	148	00	103	190	100	100	101	15	190	100	106	100	161	101	10 13	3 44	5	33
		1	32 1	32	88	50	149	182	189	191	186	178	166	157	148 1	131	106	78	28	10	15	44

Supongamos que tenemos una imagen en escala de grises de tamaño 28x28 píxeles. Podemos representar esta imagen como una matriz de 28 filas y 28 columnas, donde cada elemento de la matriz contiene un valor numérico que representa la intensidad de brillo del píxel correspondiente.

Por ejemplo, si el valor de una entrada de la matriz es 0, significa que el píxel es completamente negro, mientras que un valor de 255 indica un píxel completamente blanco. Los valores intermedios representan diferentes tonos de gris. X

La representación de imágenes como matrices de píxeles es fundamental para comprender el procesamiento de imágenes y la visión por computadora. Al manipular estas matrices, podemos realizar una variedad de operaciones, como filtrado, segmentación, clasificación y detección de objetos.

Comprender cómo se almacenan y procesan las imágenes digitalmente nos permite desarrollar algoritmos y aplicaciones avanzadas en campos como reconocimiento facial, diagnóstico médico por imagen y conducción autónoma.

TALENTO AZI PROYECTOS EDUCATIVOS

