

01 | 3주차 실습코드 복사하기

- ▲ (권장) 아래와 같은 경로에 실행 소스가 존재하면 환경 구축 완료
 - ◆ 3주차 실습코드 다운로드 → 압축해제 → chO3 폴더를 ML 하위 폴더로 복사

02 | Jupyter Notebook 실행하기

- ◆ ①시작 메뉴 클릭 > ②모든 앱 버튼 클릭 > ③Anaconda3(64-bit)
 - > "Jupyter Notebook (anaconda)" 메뉴 클릭하기

→ ML 폴더를 클릭하기

04 | ch03 폴더

→ chO3 폴더 클릭하기

05 | ch03_01_결측치처리.ipynb

→ chO3_O1_결측치처리.ipynb 파일 클릭하기

06 | 결측값이란?

📤 결측값(Missing Value) 처리

- ◆ 결측값(또는 결측치)은 데이터에 값이 없는 것을 뜻함
 - > 결측치를 줄여서 NA(Not Available)로 <u>표현</u>하기도 함
 - > 다른 언어에서는 Null 이란 표현을 많이 사용함
 - > 수의 연산이 불가능 경우는 NaN(Not a Number)으로 처리됨

07 | 결측치 발생 원인

- ◆ 결측치 발생 원인
 - > 데이터를 입력하는 도중 실수로 값을 입력하지 못하였을 때
 - > 해당 항목에 적절한 값이 없어서 입력되지 못하였을 때
 - > 전산 상의 오류가 발생하여 입력되지 못하였을 때
 - > 설문조사에서 참가자 중 일부가 답변하기 어렵거나 곤란한 질문에 응답하지 않았을 때
 - > 특정 대상을 장기간에 걸쳐서 조사하는 <mark>종단연구에서 사망, 연락두절</mark> 등의 상태가 발생했을 때 등

08 | 결측치의 문제

- ◆ 결측치는 데이터를 분석하는 데에 있어서 매우 방해가 됨
 - > 결측치는 **다음과 같은 문제를** 야기함
 - 결측치를 다 제거할 경우, 막대한 데이터 손실을 불러일으킬 수 있음
 - 결측치를 잘못 대체할 경우, 데이터에서 편향(bias)이 생길 수 있음
 - 결측치를 처리하는 데에 있어 분석가의 견해가 가장 많이 반영됨
 - ❖ 이 때문에 잘못된 경우, 분석결과가 매우 틀어질 수도 있음
 - 결측치를 자세히 처리하기 위해서는 시간이 많이 투자되어야 함
 - ❖ 데이터에 기반한 결측치 처리가 진행되어야 분석을 정확하게 진행할 수 있음

09 | 결측값 처리 방법

◆ 결측값 처리 방법에는 여러 가지가 있으며, 각 방법은 상황에 따라 다르게 적용될 수 있음

1 제거 방법(Deletion Method)

② 대체 방법(Imputation Method)

③ 모델 기반 방법(Model-Based Method)

10 | 제거 방법: 완전 제거

- 11 제거 방법(Deletion Method)
 - > 완전 제거(Listwise Deletion)
 - 결측값이 포함된 행 전체를 삭제하는 방법
 - 데이터 손실이 크지만 분석이 간단해짐
 - 데이터 표본의 숫자가 적은 경우 표본의 축소로 인한 검정력 감소

	ld	OI름	LHOI	몸무게
	1	홍길동	27	67
	2	김홍익	34	NA
Listwise	3	NA	76	87
deletion	4	이실장	53	65
	5	차도남	NA	71
	6	NA	46	92
	7	최슬기	37	45

완전 제거 방법의 예시

10 시제거 방법: 부분 제거

- 11 제거 방법(Deletion Method)
 - > 부분 제거(Pairwise Deletion)
 - ➡ 분석에 필요한 변수들에서만 결측값이 있는 행을 제외하고, 나머지는 사용함
 - 데이터 손실을 줄일 수 있음

	ld	이름	LHOI	몸무게
	1	홍길동	27	67
	2	김홍익	34	NA
Pairwise	3	NA	76	87
deletion	4	이실장	53	65
	5	차도남	NA	71
	6	NA	46	92
	7	최슬기	37	45

부분 제거 방법의 예시

11 I 대체 방법

- ② 대체 방법(Imputation Method)
 - > 평균/중앙값/최빈값대체
 - 결측값을 해당 변수의 평균, 중앙값 또는 최빈값으로 대체하는 방법임
 - 간단하지만 분산이 감소할 수 있음

- > K-최근접 이웃 대체(K-Nearest Neighbors Imputation)
 - 비슷한 값을 가진 다른 관측값을 기반으로 결측값을 대체하는 방법임
 - 데이터의 구조를 잘 반영할 수 있음

11 | 대체 방법

- 2 대체 방법(Imputation Method)
 - > 회귀 대체(Regression Imputation)
 - 결측값을 예측하기 위해 회귀 모델을 사용함
 - 상관관계를 잘 반영할 수 있지만, 모델링 과정이 필요함

- > 다중 대체(Multiple Imputation)
 - 여러 번의 대체를 통해 다양한 가능한 값들로 결측값을 대체하고, 이를 종합하여 분석함
 - 가장 정교한 방법 중 하나임

12 | 모델 기반 방법

- ③ 모델 기반 방법(Model-Based Method)
 - > 기대값 최대화 알고리즘(Expectation-Maximization algorithm, EM algorithm)
 - 반복적인 방법으로, 결측값을 추정하고 모델을 적합시키는 과정을 반복하여 결측값을 처리함

- > 마코프 연쇄 몬테 칼로(Markov Chain Monte Carlo, MCMC) 방법
 - 결측값을 다루기 위해 베이시안 접근법을 사용하는 방법
 - 통계학 분야에서 전체 데이터 크기에 비해 결측치의 상대적 빈도가 적은 소규모 데이터의 결측치 처리에 사용됨

- ▲ 샘플 데이터 집합으로 결측치 처리하기
 - ◆ 대학생 샘플 데이터 집합 읽어옴
 - > 아래의 표는 대학생 샘플 데이터의 설명임

NO	속성명	속성설명		
1	성명	학생 이름		
2	학년	학년(1=1학년, 2=2학년, 3=3학년, 4=4학년)		
3	키(cm)	키(cm)		
4	몸무게(kg)	몸무게(kg)		
5	취미	취미		

> 대학생 샘플 데이터 집합은 위의 표와 같이 5개의 속성과 500개의 관측치로 구성됨

- ◆ 다음은 대학생 샘플 데이터 집합을 읽어오는 코드이다.
 - > 대학생 샘플 데이터 집합의 **형상** (500, 5)인 것을 알 수 있음

```
# 데이터 읽어오기
sample_data = pd.read_excel(os.getcwd()+'/std_sample_data.xlsx')
# 데이터의 형상 # - shape 속성 : 데이터의 (행, 열) 크기를 확인
print(sample_data.shape) # (500, 5)
```


- ◆ 다음은 대학생 샘플 데이터 집합의 전반적인 정보를 확인하는 코드이다.
 - > 아래와 같이 데이터 집합의 전반적인 정보를 확인할 수 있음

- ◆ 다음은 대학생 샘플 데이터 집합의 결측치 탐색을 수행하는 코드이다.
 - > 아래 결과와 같이 2개 속성(키, 몸무게)에서 결측치가 존재하는 것을 알 수 있음

- ◆ 다음은 대학생 샘플 데이터를 출력하는 코드이다.
 - > 아래와 같이 숫자가 아닌 속성(성명, 학년, 취미)이 있는 것을 알 수 있음
 - 숫자 속성은 키(cm), 몸무게(kg)인 것을 알 수 있음

sample_data					
	성명	학년	키(cm)	몸무게(kg)	취미
0	이서연	3	150.8	62.00000	탁구
1 장지민		3	181.1	84.30000	탁구
2	윤하윤	1	161.3	70.60000	골프
3	임수현	1	158.6	79.80000	달리기
4	정수현	3	182.9	80.40000	골프
	•••	•••	•••		
495	장민수	1	184.5	59.20000	등산
496	최하윤	4	179.5	57.00000	축구
497	윤현우	2	188.7	63.80000	테니스
498	임지민	4	158.9	115.36752	탁구
499	김예은	3	179.9	84.60000	달리기
500 rows x 5 columns					

- ◆ 다음은 대학생 샘플 데이터 집합에서 결측치가 포함된 행만 필터링하는 코드이다.
 - > 아래 결과와 같이 7개 행에서 결측치가 존재하는 것을 알 수 있음

```
# 결측치가 포함된 행만 필터링
missing_data_rows = sample_data[sample_data.isnull().any(axis=1)]
# 결측치가 포함된 행 출력
print(missing_data_rows)
    성명 학년 키(cm) 몸무게(kg) 취미
#107 조지우 3 NaN
                 63.4
#141 김지우 3 185.6 NaN
                       달리기
#192 이준호 3 178.6 NaN
                       달리기
                        등산
#365 최지우 2 NaN 57.7
#395 정하윤 4 NaN 68.0
                         골프
                         수영
#450 김예은 3 NaN 56.3
#454 장수현 3 181.0 NaN
                         등산
```


▲ 샘플 데이터 집합으로 결측치 처리하기

- ◆ 다음은 대학생 샘플 데이터 집합에서 결측치를 중앙값으로 대체하는 코드이다.
 - > 아래 결과와 같이 결측치가 중앙값으로 대체된 것을 알 수 있음

Empty DataFrame Columns: [성명, 학년, 키(cm), 몸무게(kg), 취미] Index: []

▲ 샘플 데이터 집합으로 결측치 처리하기

- ◆ 다음은 대학생 샘플 데이터 집합에서 **결측치를 중앙값**으로 대체한 데이터를 새로운 엑셀 파일로 저장하는 코드이다.
 - > 아래 결과와 같이 새로운 엑셀 파일로 저장된 것을 알 수 있음

중앙값으로 대체한 데이터를 새로운 엑셀 파일로 저장 filled_file_path = os.getcwd()+'/std_sample_data_filled.xlsx' sample_data_filled.to_excel(filled_file_path, index=False)

print(f"Filled data saved to {filled_file_path}")

Filled data saved to D:\Pywork\CKU202401SA\ch06/std_sample_data_filled.xlsx

- ◆ 다음은 대학생 샘플 데이터 집합에서 키 속성으로 히스토그램을 그리는 코드이다.
 - > 아래 결과와 키가 아주 작은 사람과 아주 큰 사람이 존재하는 것을 알 수 있음

- ◆ 다음은 대학생 샘플 데이터 집합에서 몸무게 속성으로 히스토그램을 그리는 코드이다.
 - > 아래 결과와 몸무게가 아주 작은 사람과 아주 큰 사람이 존재하는 것을 알 수 있음

- ◆ 다음은 대학생 샘플 데이터 집합에서 학년별 평균 키와 몸무게를 계산하는 코드이다.
 - > 아래 결과와 같이 학년별 평균 키와 몸무게가 큰 차이 없는 것을 알 수 있음

```
# 학년별 평균 키(cm)와 몸무게(kg) 계산 grade_means = sample_data_filled.groupby('학년')[['키(cm)', '몸무게(kg)']].mean()
# 결과 출력 print("Grade-wise Mean Height (cm) and Weight (kg):") print(grade_means)
```

```
Grade-wise Mean Height (cm) and Weight (kg):
키(cm) 몸무게(kg)
학년
1 169.715654 64.896831
2 170.005210 63.009466
3 169.876298 65.329955
4 173.799325 65.195040
```


- ◆ 다음은 대학생 샘플 데이터 집합에서 취미 분포를 알 수 있도록 파이차트를 그리는 코드이다.
 - > 아래 결과와 같이 학생들의 취미가 골고루 분포된 것을 알 수 있음

14 회귀 대체로 결측치 처리하기

- 📤 회귀 대체(Regression Imputation)로 결측치 처리하기
 - ◆ 이래의 데이터를 이용해 결측치를 예측하여 대치해 보자.
 - > 결측치를 대치할 회귀식도 구해보자.

Y_1	Y_2	Y_3	Y₃(변경후)	
10	15	20	20	
12	20	30	30	
14	25	40	40	
25	35	05	50	
30	45	55	55	
34	45	60	60	
37	49	70	70	
40	55	?	?	
44	60	?	?	
49	68	?	?	

14 회 회귀 대체로 결측치 처리하기

- 📤 회귀 대체(Regression Imputation)로 결측치 처리하기
 - ◆ 아래와 같이 회귀식 구할 수 있음
 - > 회귀식을 이용해 결측치를 아래와 같이 예측됨

$$Y_{3i} = \beta_0 + \beta_1 Y_{1i} + \beta_2 Y_{2i} + \epsilon_i$$
, $i = 1, ..., 7$
 $Y_3 = 5.11 + 0.21 Y_{1i} + 1.09 Y_{2i}$
 $\beta_0 = 5.11$, $\beta_1 = 0.21$, $\beta_2 = 1.09$
 $P_1 = 5.11 + 0.21 \times 40 + 1.09 \times 55 = 73.49$
 $P_2 = 5.11 + 0.21 \times 44 + 1.09 \times 60 = 79.78$
 $P_3 = 5.11 + 0.21 \times 44 + 1.09 \times 60 = 79.78$
 $P_4 = 5.11 + 0.21 \times 44 + 1.09 \times 60 = 79.78$

14 회귀 대체로 결측치 처리하기

📤 회귀 대체(Regression Imputation)로 결측치 처리하기

- ◆ 다음은 회귀식을 이용해 결측치를 예측하는 코드이다.
 - > 데이터 생성하기

> 독립변수, 종속변수 생성하기

```
# Perform regression imputation for Y3 using Y1 and Y2
# Drop rows where Y3 is not NaN to train the model
train_data = df.dropna()

# Features and target
X_train = train_data[["Y1", "Y2"]]
y_train = train_data["Y3"]
```

14 회귀 대체로 결측치 처리하기

📤 회귀 대체(Regression Imputation)로 결측치 처리하기

> 회귀 모델 생성 및 학습 하기

Train the linear regression model
model = LinearRegression()
model.fit(X_train, y_train)

$$Y_{3i} = \beta_0 + \beta_1 Y_{1i} + \beta_2 Y_{2i} + \epsilon_i$$
, $i = 1, ..., 7$

$$Y_3 = 5.11 + 0.21Y_{1i} + 1.09Y_{2i}$$

$$\beta_0 = 5.11, \beta_1 = 0.21, \beta_2 = 1.09$$

<i>Y</i> ₁	<i>Y</i> ₂	<i>Y</i> ₃	Y₃(변경후)
10	15	20	20
12	20	30	30
14	25	40	40
25	35	05	50
30	45	55	55
34	45	60	60
37	49	70	70
40	55	?	?
44	60	?	?
49	68	?	?

14 | 회귀 대체로 결측치 처리하기

📤 회귀 대체(Regression Imputation)로 결측치 처리하기

> 예측값으로 결측값 대체하기

Y2

Y1

Y3

```
# Predict the missing values in Y3
missing_data = df[df["Y3"].isna()]
X_missing = missing_data[["Y1", "Y2"]]
df.loc[df["Y3"].isna(), "Y3"] = model.predict(X_missing)

# Print the imputed dataframe
print(df)
```

0	10	15	20.000000	
1	12	20	30.000000	
2	14	25	40.000000	
3	25	35	50.000000	
4	30	45	55.000000	회귀식으로 결측값을 예측함
5	34	45	60.000000	
6	37	49	70.000000	$?_1 = 5.11 + 0.21 \times 40 + 1.09 \times 55 = 73.49$
7	40	55	73.488741	$?_2 = 5.11 + 0.21 \times 44 + 1.09 \times 60 = 79.78$
8	44	60	79.779978	12 - 3.11 + 0.21 × 44 + 1.07 × 00 - 73.70
9	49	68	89.558868	$?_2 = 5.11 + 0.21 \times 44 + 1.09 \times 68 = 89.56$

14 회귀 대체로 결측치 처리하기

- 📤 회귀 대체(Regression Imputation)로 결측치 처리하기
 - > 회귀 계수(절편과 계수) 출력하기

```
# Extract the coefficients and intercept from the trained model coefficients = model.coef_ intercept = model.intercept_

# Print the regression equation regression_equation = f"Y3 = {intercept:.2f} + ({coefficients[0]:.2f} * Y1) + ({coefficients[1]:.2f} * Y2)" print("Regression Equation:", regression_equation)

Regression Equation: Y3 = 5.11 + (0.21 * Y1) + (1.09 * Y2)
```