苏州大学	《线性代数》	课程试卷库	(第四卷)	共 4 页	
<i>ML</i> , 17 .2)	+	· III.	라 /走		

学院	专业		成绩						
年级	学号	姓名		日期					
题号 一	二三	四	五.	六	七				
得分	20 公) 見北筋								
一、 (每题 3 分, 共 30 分)是非题:1、若方阵 A 与 B 相似, 且 B 与 C 相似,则 A 与 C 相似。 (
2 、若向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,则 α_3 能由 α_1 和 α_2 线性表示。 ()									
3、可逆方阵 A 的转置短	拒阵 A^T 必可逆。				()			
4、设有矩阵 A 、 B ,且	()							
5、若方程组 $Ax = b(b \neq 0)$ 有无穷多解,则 $Ax = 0$ 也有无穷多解。()									
选择题									
6、设 <i>A</i> , <i>B</i> 均为 <i>n</i> 阶方阵,则必有。									
(a) $ AB = BA $ (b) $AB = BA$									
(c) $ A+B = A + B $ (d) $(A+B)^{-1} = A^{-1} + B^{-1}$									
7、若矩阵 $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 3 \end{pmatrix}$	1 1 1 的秩为 2,	则 λ=		_°					
(a) 0 (b) 2 (c) -1 (d)	1							
8、设有两个向量组 $A:\alpha_1,\alpha_2,\alpha_3$ 和 $B:\alpha_1,\alpha_2,\alpha_3,\alpha_4$,则									
(a)									
9、设非齐次线性方程组 $Ax = b$ 中,系数矩阵 A 为 $m \times n$ 矩阵,且 $r(A) = r$,则下									
列结论正确的是。 (a) $m=n$ 时方程组有唯一解 (b) $r=n$ 时方程组有唯一解 (c) $r=m$ 时方程组有解 (d) $r 时方程组有无穷多解。$									
10、设矩阵 $A = \begin{pmatrix} 1 & -2 \\ -2 & -2 \end{pmatrix}$,则下列矩阵中非奇异矩阵是。									
(a) $-2I + A$ (b) I									

二、 计算题 (每题 10 分, 共 20 分)

1、求行列式的值
$$D = \begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

2、已知
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix}$$
,求 $(A^*)^{-1}$

三、(10 分) 设矩阵
$$A = \begin{pmatrix} 1 & -2 & 2 \\ 4 & 3 & t \\ 3 & 1 & -1 \end{pmatrix}$$
, 三阶矩阵 $B \neq 0$, $AB = 0$, 求: $t \approx r(B)$

四、(10 分) 设矩阵
$$A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 3 \\ 2 & 3 & 3 & 4 \\ 3 & 5 & 4 & 7 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$
, 求: 齐次线性方程组 $Ax = 0$ 的

一个基础解系和全部解。

五、(10 分)设三阶矩阵 A 的特征值为 1、2、3,对应的特征向量分别为 $\alpha_1 = \begin{pmatrix} 1, & 1, & 1 \end{pmatrix}^T, \alpha_2 = \begin{pmatrix} 1, & 0, & 1 \end{pmatrix}^T, \alpha_3 = \begin{pmatrix} 0, & 1, & 1 \end{pmatrix}^T$,试求矩阵 A。

六、(10 分) 设矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
, 求:

(1) A 的特征值和特征向量; (2) 正交矩阵Q, 使 $Q^{-1}AQ$ 为对角矩阵。

七、 $(10\,
m eta)$ 设向量 m eta 能由向量组 $m lpha_1, lpha_2, lpha_3$ 线性表示且表达式唯一,证明:向量组 $m lpha_1, lpha_2, lpha_3$ 线性无关。