Expérience Aléatoire, Modèle associé

I Expérience aléatoire à deux épreuves indépendantes.

Remarque n°1.

Nous ne ferons pas de distinction entre « expérience aléatoire » et « épreuve », les deux étant surtout utilisés comme synonymes afin d'éviter les répétitions...

Les épreuves indépendantes

On considère les deux expériences aléatoires suivantes :

• épreuve n°1 : On lance une pièce de monnaie truquée de façon à obtenir Pile deux fois plus souvent que Face et on note le côté obtenu.

On note:

P: « Obtenir Pile » etF: « Obtenir Face »

Son univers est alors : $\Omega_1 = \{P ; F\}$

Loi de 1			
Issue	P	F	Total
Probabilité	<u>2</u> 3	<u>1</u> 3	1

• épreuve n°2 : On tire une boule dans une urne contenant 5 boules Noires, 3 boules Rouges et 2 boules Blanches et on note la couleur obtenue.

On note:

N: « La boule tirée est Noire »; R: « La boule tirée est Rouge » et B: « La boule tirée est Blanche »
Son univers est alors: $\Omega_2 = \{N; R; B\}$

Loi de probabilité de l'épreuve n°2				
Issue	N	R	В	Τ
Probabilité	$\frac{5}{10} = \frac{1}{2}$	3 10	$\frac{2}{10} = \frac{1}{5}$	

Total

1

Définition n°1. épreuves indépendantes (très intuitive...)

Quand deux (ou plus) épreuves n'ont aucune influence l'une sur l'autre. On dit qu'elles sont **indépendantes**.

Remarque n°2.

Nos deux épreuves sont clairement indépendantes...

L'expérience aléatoire à deux épreuves indépendantes

Nous allons à présent en construire une troisième à partir de ces deux là. On enchaîne l'épreuve n°1 et n°2.

Définition n°2.

On obtient ce qu'on appelle une expérience aléatoire à deux épreuves indépendantes.

Son univers est alors:

$$\Omega = \{(P, N) ; (P, R) ; (P, B) ; (F, N) ; (F, R) ; (F, B)\}$$

Pour déterminer sa loi de probabilité, on va utiliser un arbre pondéré.

Loi de probabilité de l'expérience aléatoire à deux épreuves indépendantes							
Issue	(P,N)	(P,R)	(P,B)	(F,N)	(F,R)	(F,B)	Total
Probabilité	$\frac{1}{3}$	<u>1</u> 5	<u>2</u> 15	<u>1</u> 6	1/10	1 15	1
	$\frac{10}{30}$	$\frac{6}{30}$	$\frac{4}{30}$	$\frac{5}{30}$	$\frac{3}{30}$	$\frac{2}{30}$	$\frac{30}{30}$

Définition n°3.

Modéliser une **expérience aléatoire**, c'est **associer** à cette **expérience** une loi de probabilité.

EXERCICE N°1

Adam a rangé les chaussettes de son père dans deux tiroirs. Il a mis 5 chaussettes noires,

- 3 chaussettes grises et 2 chaussettes blanches dans un tiroir, et 7 chaussettes noires et 3 chaussettes grises dans l'autre. Son père choisit au hasard une chaussette dans chaque tiroir.
- 1) Représenter la situation par un arbre pondéré.
- 2) Quelle est la probabilité p_1 que le père ait une chaussette blanche et une chaussette noire?
- 3) Quelle est la probabilité p_2 que le père ait des chaussettes assorties ?
- 4) Quelle est la probabilité p_3 que le père ait au moins une chaussette noire?

EXERCICE N°2

Zoé ouvre au hasard son livre de recettes 4 fois pour savoir ce qu'elle va manger lors de ses 4 prochains repas. Dans ce livre, 30 % des recettes sont à base de poisson, les autres sont à base de viande.

- 1) Représenter cette situation par un arbre pondéré.
- 2) Quelle est la probabilité que Zoé mange autant de viande que de poisson lors de ses 4 prochains repas?
- 3) Quelle est la probabilité que Zoé mange uniquement de la viande lors de ses 4 prochains repas ?
- 4) Quelle est la probabilité que Zoé mange au moins une fois du poisson lors de ses 4 prochains repas?

EXERCICE N°3

Construire un arbre pondéré représentant une expérience aléatoire composée de deux épreuves indépendantes sachant que P(A)=0,15 et P(B)=0,71.

On utilisera uniquement les lettres A et B.

EXERCICE N°4

On lance 3 fois de suite une pièce de monnaie truquée. La probabilité d'obtenir Face est égale à 0,6.

- 1) Les épreuves sont-elles indépendantes?
- 2) Représenter la situation par un arbre pondéré.

EXERCICE N°5

Dans une usine, on fabrique des bonbons: 60 % des paquets sont composés de crocodiles et le reste des paquets est rempli d'oursons. Dans chaque paquet, 30 % des bonbons sont rouges, 20 % sont jaunes et les autres sont verts. On prélève au hasard un paquet de bonbons pour regarder la forme, puis un bonbon de ce paquet pour regarder sa couleur.

- 1) Expliquer pourquoi les épreuves sont indépendantes.
- 2) Compléter l'arbre pondéré ci-contre pour représenter la situation.
- 3) Quelle est la probabilité d'obtenir un crocodile vert?
- 4) Quelle est la probabilité d'obtenir un ourson rouge?

EXERCICE N°6

On lance un dé classique et on regarde si on obtient 6 ou non, puis on tire une carte dans un jeu classique de 32 cartes et on regarde si on obtient un as ou non.

On note S l'événement « On obtient 6 » et A l'événement « On tire un as ».

- 1) Représenter la situation par un arbre pondéré en utilisant uniquement les lettres S et A
- 2) Donner l'univers Ω de cette expérience.
- 3) Donner alors la loi de probabilité de cette expérience.

Épreuve de Bernoulli Définition n°4.

Une épreuve de Bernoulli de paramètre p est une expérience aléatoire n'ayant que deux issues.

p est la probabilité du succès et par conséquent, la probabilité de l'échec (souvent notée q) vaut 1-p.

Exemple n°1.

Dans notre épreuve n°1, si on décide que le succès est d'obtenir Pile alors on obtient une épreuve de Bernoulli de paramètre $p = \frac{2}{3}$

Le modèle associé à notre épreuve est alors une épreuve de Bernoulli.

Schéma de Bernoulli Définition n°5.

Si on enchaîne plusieurs (n) épreuves de Bernoulli indépendantes de paramètre p alors on obtient un schéma de Bernoulli de paramètre (n, p).

Exemple n°2.

On peut répéter notre épreuve n°1, en remarquant que le résultat du 1er lancer n'a aucune influence sur le second. On obtient un schéma de Bernoulli de paramètre

Le modèle associé est alors un schéma de Bernoulli.

Remarque n°3.

On se concentrera sur ce type d'expérience aléatoire aléatoire à deux épreuves indépendantes.

Exemple n°3. Représenter un schéma de Bernoulli

On peut représenter l'expérience aléatoire de l'exemple n°2 avec un arbre pondéré :

Source: Wikipedia

EXERCICE N°1

Une urne contient 2 boules noires et 8 boules blanches. On prélève une boule au hasard dans l'urne. Toutes les boules ont la même probabilité d'être prélevées.

On désigne par

- N l'événement : « la boule prélevée est noire » et par
- B l'événement: « la boule prélevée est blanche».
- 1) Compléter l'arbre de probabilités suivant correspondant à cette épreuve de Bernoulli.

2)

- **2.a)** Trois prélèvements dans l'urne sont successivement réalisés en remettant à chaque fois la boule dans l'urne avant d'effectuer le prélèvement suivant. Représenter cette épreuve par un arbre pondéré.
- **2.b)** Calculer la probabilité de l'événement E : «obtenir trois boules noires».
- **2.c)** On désigne par F l'événement: «obtenir exactement deux boules noires». Démontrer que P(F) = 0.096.

EXERCICE N°2

Des plats cuisinés d'un certain type sont fabriqués en grandes quantités.

- On prélève au hasard un plat d'un lot dans lequel 97 % des plats sont conformes au cahier des charges.
- On remet le plat dans le lot et on effectue un deuxième prélèvement d'un plat.
- On répète une troisième fois l'expérience.

On a réalisé trois prélèvements d'un plat avec remise.

Calculer la probabilité de l'événement $\ C$: «les trois plats prélevés sont conformes au cahier des charges».

EXERCICE N°3

En France, la probabilité de la naissance d'un garçon est p=0.515.

À l'aide d'un arbre de probabilité, calculer la probabilité de chacun des événements suivants :

 E_0 : «une famille de trois enfants, sans jumeaux, comporte 0 garçon»; E_1 : «une famille de trois enfants, sans jumeaux, comporte 1 garçon»; E_2 : « une famille de trois enfants, sans jumeaux, comporte 2 garçons»; E_3 : « une famille de trois enfants, sans jumeaux, comporte 3 garçons».

Arrondir à 10^{-3}