強化学習: Q 学習

2017/03/23 1426071 スプラトマン ジョシュア

学習とは?

- 人工知能の一部
- 人間の学習能力を機械(コンピュータ)で真似する
- あるデータに対して学習し、そこからパターンを見つけ出す
- https://youtu.be/qv6UVOQ

Types of Machine Learning

Machine Learning

Supervised

Task driven (Regression / Classification)

Unsupervised

Data driven (Clustering)

Analytics Vidhya
Learn Everything About Analytics

教師なし学習

Reinforcement

Algorithm learns to react to an environment

強化学習

教師あり学習

強化学習 (RL) とは?

- 状態に対してどんな行動をする学習タイプ
- ・最大の報酬を探す
- 赤ちゃんが歩きたい時考えよう!

強化学習 vs

教師あり学習 (SL)

- 教師データを比較しながら学習
- チェスを考える
 - SL: あやゆる戦略を事前 対策する
 - RL: 状態に対して行動を 決める

- 教師なし学習 (UL)
- データのパターンを探す
- 好きな雑誌を進める AI を 考える
 - UL: 過去読んだ似たような 雑誌をお進め
 - RL: たまたま新しい雑誌と か出し、フィードバックを 受けながら好みを探す

- 搾取 vs 探検どっち? 適当はダメ
- markov モデル:
 - 状態:S
 - 行動:A
 - 報酬:R
 - ポリシー:π(状態+行動)
 - 値:V

状態:? 報酬:? 值:

行動:? ポリシ:?

状態: A,C,D 報酬: 20,15 值: 20+1,etc

行動: A->C ポリシ: A-E-F, C-B, C-D-F

スタート: A ゴール: F 最短経路?

- スタート: A ゴール: F 最短経路: A-D-F
- A->(B,C,D,E) A-D が一番コスト低い → -20
- D->(B,C,F) D-F が一番コスト低い → 値:-120

おめでとう!

- さっき強化学習アルゴリズムをやりました!
- epsilon greedy 法
 - 搾取 vs 探検どっち?

他のやりかた?

- Value Based 最適の値を重心として進む
- Policy Based 最適のポリシを重心として進む

• ちなみに epsilon greedy 法は?

Q学習とは?

- 強化学習のアルゴリズムの一つ
- Policy Based
- https://youtu.be/JS1flmajAEE
- https://youtu.be/OisMuSW2F2w
- AlphaGo! Neural Network で Q 学習!

Q学習のながれ(訓練)

Q学習のながれ

- 今回はシンプルな物を作ります
- Neural Network ではなく QTable (nxn) 行列を 使います
- QTable を学習することが目的
- 学習した QTable を使って実装する

markov モデル

- 状態 S:?
- 行動 A:?
- 報酬 R:?
- ポリシπ:?
- 値 V:?

markov モデル

- 状態 S: A,B,C,D,E,F
- 行動 A: A-E, B-D, B-F, C-D, D-E, E-F, F-F
- 報酬 R: 0,100 <- 行列で表す
- ポリシ π: QTable <- これを学習する
- 値 V: QTable からの値

QTable と R 行列

	state\action	A	В	\mathcal{C}	D	B	F		\boldsymbol{A}	B	C	D	E	F
	A	[_	_	_	_	0	_ ¬	A	Γο	0	0	0	0	0]
	В	_	_	_	0	_	100	В	0	0	0	0	0	0
R=	C	_	_	_	0	_	_	$\mathbf{Q} = C'$	0	0	0	0	0	0
	D	_	0	0	_	0	_	D	0	0	0	0	0	0
	E						100	E	0	0	0	0	0	0
	– F	_	0		_		100	F	[0	0	0	0	0	0]

Update 式

 $\mathbf{Q}(state, action) = \mathbf{R}(state, action) + \gamma \cdot Max[\mathbf{Q}(next state, all actions)]$

- yは学習パラメータ (0~1)
- 報酬がすぐか遅れるか

やってみよう!

- Bにいる場合
- ランダムにFに移動
- セッション終了

 $\mathbf{Q}(state, action) = \mathbf{R}(state, action) + \gamma \cdot Max[\mathbf{Q}(next state, all actions)]$

やってみよう!

- Dにいる場合
- ランダムにBに移動
- ゴールまで続く

 $\mathbf{Q}(state, action) = \mathbf{R}(state, action) + \gamma \cdot Max[\mathbf{Q}(next \ state, \ all \ actions)]$

$$\mathbf{Q}(D,B) = \mathbf{R}(D,B) + 0.8 \cdot Max\{\mathbf{Q}(B,D), \mathbf{Q}(B,F)\} = 0 + 0.8 \cdot Max\{0,100\} = 80$$

続けると。。。

	$state \setminus action$	A	В	C	D	E	F
	A	<u> </u>	_	_	_	400	-]
	B	_	_	_	320	_	500
Q=	: C	_	_	_	320	_	-
	D	_	400	256	_	400	_
	${\it E}$	320	_	_	320	_	500
	F	_	400	_	_	400	500

quiz1

 $\mathbf{Q}(state, action) = \mathbf{R}(state, action) + \gamma \cdot Max[\mathbf{Q}(next state, all actions)]$

- quiz1.py
- この手順を書いてみる
- 難しいなら quiz11.py
 - 式を書いてみる

QTable を実装する

F

100

100

100

	state\action	A	В	C	D	${\it E}$	F							
Q=	A	Γ –	_	_	_	400	_ 7	state	\action	Α	В	C	D	Ε
	В				320	_	500		A	_	_	_	_	80
			_	_		_	JUU		В	_	_	_	64	_
	C	_	_	_	320	-	-	Ô =	c	_	_	_	64	_
	D	_	400	256	_	400	_	•	D	_	80	51	_	80
	E	320	_	_	320	_	500		_		OV	<i>J</i> 1		00
		750			260				E	64	_	_	64	_
	F	_	400	_	-	400	500]		F	_	80	_	_	80

QTable を実装する

quiz2

- quiz2.py
- QTable を使う実装プログラムを作ってみる。

quiz3

- quiz3.py
- 報酬 R を書いてみよう。

