Heuristis for Combinatorial Optimization

Luigi De Giovanni

Dipartimento di Matematica, Università di Padova

Exact and heuristic methods

- Exact methods: devised to provide a provably optimal solution
- **Heuristic methods**: provides "good" solution with *no optimality* guarantee
- Try to devise an exact approach, first!
 - search for an efficient algorithm (e.g. shortest path-like problem)
 - MILP model + MILP solver
 - exploit some special property
 - suitable (re)formulation of the problem
 - search for (scientific) literature
 - **.**..
- ... otherwise, heuristics! (euriskein = to find)
 - example: optimal transportation-network configuration ("hard" congestion models)
 - ▶ limited available time

When do we use heuristics?

- Sometime cannot be used, since an optimal solution is mandatory!
- NP-hard problem
 ⇒ heuristics! (e.g., MILP solver are now able to solve some of them!)
- Use of heuristic to provide a "good" solution in a "reasonable" amount of time. Some appropriate cases:
 - limited amount of time to provide a solution (running time)
 - limited amount of time to develop a solution algorithm
 - just estimates of the problem parameters are available
 - quick scenario evaluation in interactive Decision Support Systems
 - real time system

One (among many) possible classification

Specific heuristics

- exploits special features of the problem at hand
- may encode the current "manual" solution, good practice
- may be "the first reasonable algorithm come to our mind"

General heuristic approaches

- constructive heuristics
- meta-heuristics (algorithmic schemes)
- approximation algorithms
- iper-heuristics
- ...

C. Blum and A. Roli, "Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison", ACM Computer Surveys 35:3, 2003 (p. 268-308)

K. S orensen, "Metaheuristics – the metaphor exposed", International Transactions in Operational Research (22), 2015 (p. 3-18)

Constructive heuristics

- Build a solution incrementally selecting a subset of alternatives
- Expansion criterion (no backtracking)

Greedy algorithms (strictly local optimality in the expansion criterion)

Initialize solution *S*;

While (there are choice to make)

add to *S* the most convenient element ¹

- Widespread use: simulate practice; simple implementation; small running times (\sim linear); embedded as sub-procedure.
- Sorting elements by **Dispatching rules**: static or dynamic scores
- Randomization (randomized scores, random among the best n etc.)
- Primal / dual heuristics

¹Taking feasibility constraints into account, e.g., by excluding elements that make the solution unfeasible

Example: greedy algorithm KP/0-1

Item j with w_j and p_j ; capacity W; select items maximizing profit!

- Sort object according to ascending $\frac{p_j}{w_j}$.
- ② Initialize: $S := \emptyset$, $\bar{W} := W$, z := 0
- **3** for j = 1, ..., n do
- if $(w_i \leq \bar{W})$ then
- $S := S \cup \{j\}, \ \bar{W} := \bar{W} w_j, \ z := z + p_j.$
- o endif
- endfor
 - Static dispatching rule

Example: Greedy algorithm for the Set Covering Problem

SCP: given set M and $\mathcal{M} \subset 2^M$, c_j , $j \in \mathcal{M}$; select a min cost combination of subsets in \mathcal{M} whose union is M

- Initialize: $S := \emptyset$, $\bar{M} := \emptyset$, z := 0
- ② if $\overline{M} = M$ (\Leftrightarrow all elements are covered), STOP;
- 3 compute the set $j \notin S$ minimizing the ratio $\frac{c_j}{\sum_{i \in M \setminus \bar{M}} a_{ij}}$;
- **1** set $S := S \cup \{j\}$, $\bar{M} := \bar{M} \cup \{i : a_{ij} = 1\}$, $z := z + c_j$ and go to 2.
 - Dynamic dispatching rule

Algorithms embedding exact solution methods

- Expansion criterion based on solving a sub-problem to optimality (once or at each expansion)
- Example: best (optimal!) element to add by MILP
- normally longer running times but better final solution
- "Less greedy": solving the sub-problem involves all (remaining) decisions variables (global optimality)

Algorithm for SCP

$$\begin{aligned} \min \sum_{j \in \mathcal{M}} c_j x_j \\ s.t. \sum_{j \in \mathcal{M}} a_{ij} x_j & \geq 1 & \forall \ i \in M \\ x_j & \in \{0,1\} & \forall \ j \in \mathcal{M} \end{aligned}$$

- Initialize: $S := \emptyset$, $\bar{M} := \emptyset$, z := 0
- **2** se M = M (\Leftrightarrow tall elements are covered), STOP;
- **3** solve *linear programming relaxation* of SCP (with $x_j = 1$ $(j \in S)$, and let x^* be the corresponding optimal solution;

Simplifying exact procedures: some examples

- Run Cplex on a MILP model for a limited amount of time
- simplify an enumeration scheme (select only a limited subset of alternatives)

Beam search

- partial breath-first visit of the enumeration tree compute a score for each node (likelihood it leads to an optimal leave) at each level select the k best-score nodes and branch them
- let: n levels, b branches per node, k beam size
 n · k nodes in the final tree
 n · b · k score evaluations
 calibrate k so that specific time limits are met
- variant (with some backtrack): recovery beam search

Beam search for KP-0/1

n=6 items; binary branchining (b=2); k=2; greedy evaluation of nodes

Neighbourhood Search and Local Search

Neghbourhood of a solution $s \in \mathbb{Z}_s$ $N : s \to N(s), N(s) \subseteq X$

Basic LS scheme:

- Determine an initial solution x;
- **2** while $(\exists x' \in N(x) : f(x') < f(x))$ do {
- x := x'
- **4** }
- return(x) (x is a local optimum)

LS components

- a method to find an initial solution;
- a solution representation, which is the base for the following elements;
- the application that, starting from a solution, generates the neighbourhood (moves);
- the function that evaluates solutions;
- a neighbourhood exploration strategy

Initial solution

- random
- from current practice
- (fast) heuristics
- randomized heuristics
- ...
- no theoretical preference: better initial solutions may lead to worst local optima
- random or randomized + multistart

Initial solution

- random
- from current practice

- (fast) heuristics
- randomized heuristics

- ..
- no theoretical preference: better initial solutions may lead to worst local optima
- random or randomized + multistart

Solution representation

- **Encodes** the features of the solutions
- Very important: impact on the following design steps (related to how we imagine the solutions and the solution space to be explored!)
- Example: KP-0/1
 list of loaded items
 characteristic (binary) vector
 ordered item sequence
- Decoding may be needed
- Example: KP-0/1
 - list and vector representation: immediate decoding ordered sequence: a solution is derived by loading items in the given order up to saturating the knapsack

- Neighbourhood size: number of neighbour solutions
- Evaluation complexity: should be quick! possibly incremental evaluation
- Neighbourhood complexity: time to explore (evaluate) all the neighbour solutions of a the current one (efficiency!)
- Neighbourhood strength: ability to produce good local optima (notice: local optima depend also on the neighbourhood definition)
 little perturbations, small size, fast evaluation, less strong .vs. large perturbation, large size, slow evaluation, larger improving power
- Connection feature is desirable

- Neighbourhood size: number of neighbour solutions
- Evaluation complexity: should be quick! possibly incremental evaluation
- Neighbourhood complexity: time to explore (evaluate) all the neighbour solutions of a the current one (efficiency!)
- Neighbourhood strength: ability to produce good local optima (notice: local optima depend also on the neighbourhood definition)
 little perturbations, small size, fast evaluation, less strong .vs. large perturbation, large size, slow evaluation, larger improving power
- Connection feature is desirable

- Neighbourhood size: number of neighbour solutions
- **Evaluation complexity**: should be quick! possibly <u>incremental</u> evaluation
- Neighbourhood complexity: time to explore (evaluate) all the neighbour solutions of a the current one (efficiency!)
- Neighbourhood strength: ability to produce good local optima (notice: local optima depend also on the neighbourhood definition)
 little perturbations, small size, fast evaluation, less strong .vs. large perturbation, large size, slow evaluation, larger improving power
- Connection feature is desirable

- Neighbourhood size: number of neighbour solutions
- Evaluation complexity: should be quick! possibly incremental evaluation
- Neighbourhood complexity: time to explore (evaluate) all the neighbour solutions of a the current one (efficiency!)
- Neighbourhood strength: ability to produce good local optima (notice: local optima depend also on the neighbourhood definition)
 little perturbations, small size, fast evaluation, less strong .vs. large perturbation, large size, slow evaluation, larger improving power
- Connection feature is desirable

- Neighbourhood size: number of neighbour solutions
- Evaluation complexity: should be quick! possibly incremental evaluation
- Neighbourhood complexity: time to explore (evaluate) all the neighbour solutions of a the current one (efficiency!)
- Neighbourhood strength: ability to produce good local optima (notice: local optima depend also on the neighbourhood definition)
 little perturbations, small size, fast evaluation, less strong .vs. large perturbation, large size, slow evaluation, larger improving power
- Connection feature is desirable

- Neighbourhood size: number of neighbour solutions
- **Evaluation complexity**: should be quick! possibly <u>incremental</u> evaluation

- Neighbourhood complexity: time to explore (evaluate) all the neighbour solutions of a the current one (efficiency!)
- Neighbourhood strength: ability to produce good local optima (notice: local optima depend also on the neighbourhood definition)
 little perturbations, small size, fast evaluation, less strong .vs. large perturbation, large size, slow evaluation, larger improving power
- Connection feature is desirable

Neighbourhood: KP/0-1 example

- Insertion neighbourhood has O(n) size; Swap neigh. has $O(n^2)$ size
- ullet A stronger neigh. by allowing also double-swap moves, size $O(n^4)$
- ullet An insertion or a swap move can be incrementally evaluated in O(1)
- Overall neigh. complexity: insertion O(n), swap $O(n^2)$
- Insertion neigh. or Swap neigh. are not connected.
 Insertion+removing neigh. is connected

Neighbourhood definition: solution representation is important!

- Insertion, swapping, removing moves are based on list or vector representation!
- Difficult to implement (and imagine) them on the ordered-sequence representation
- For the ordered-sequence representation, moves that perturb the order are more natural. e.g.swapping position:
 - ▶ from 1-2-3-4-5-6-7 to 1-6-3-4-5-2-7 (swap 2 and 6) or 5-2-3-4-1-6-7 (swap 1 and 5)
 - ▶ size is $O(n^2)$, connected (with respect to maximal solutions)
 - ▶ neigh. evaluation in O(n) (no fully-incremental evaluation)
 - overall complexity $O(n^3)$

Solution evaluation function

- Evaluation is used to compare neighbours to each other and select the best one
- Normally, the objective function
- May include some extra-feature (e.g. weighted sum)
- May include penalty terms (e.g. infeasibility level)
 - ▶ In KP/0-1, let X be the subset of loaded items
 - $\tilde{f}(X) = \alpha \sum_{i \in X} p_i \beta \max \left\{ 0, \sum_{i \in X} w_i W \right\}$ $(\alpha, \beta > 0)$
 - activate "removing" move in a connect insertion+removing" neighbourhood

Exploration strategies

Which improving neighbour solution to select?

- **Stepest descent** strategy: the best neighbour (all evaluated!)
- **First improvement** strategy: the first improving neighbour. Sorting matters! (heuristic, random)

Possible variants:

- random choice among the best k neighbours
- store interesting second-best neighbours and use them as recovery starting points for LS

Sample application to TSP

- First question: is LS justified? Exact approaches exists, not suitable for large instances and small running times. Notice that TSP is NP-Hard
- Notation and assumptions:

$$G = (V, A)$$
 (undirected)
 G is complete
 $|V| = n$
 $cost c_{ii}$ (may be $= c_{ii}$ in the symmetric case)

Define all the elements of LS

LS for TSP: initial solution by Nearest Neighbour heuristic

- select node $i_0 \in V$; cost = 0, $Cycle = \{i_0\}$, $i = i_0$.
- **3** set *Cycle* = *Cycle* ∪ {j}; $cost = cost + c_{ij}$
- \bullet set i = j
- of if still nodes to be visited, go to 2
- Cycle = Cycle \cup { i_0 }; $cost = cost + c_{ii_0}$
- $O(n^2)$ (or better): simple but not effective (too greedy, last choices are critical)
- repeat with different i_0
- randomize Step 2

LS for TSP: Nearest/Farthest Insertion

- Choose the nearest/farthest nodes i and j: C = i j i, $cost = c_{ij} + c_{ji}$
- ② select the node $r = \arg\min_{i \in V \setminus C} / \max_{i \in V \setminus C} \{c_{ij} : j \in C\}$
- **9** modify *C* by inserting *r* between nodes *i* and *j* minimizing $c_{ir} + c_{rj} c_{ij}$
- if still nodes to be visited, go to 2.
 - $O(n^3)$: rather effective (farthest version better, more balanced cycles)
- may randomize initial pair and/or r selection

LS for TSP: Best Insertion

- **1** Choose the nearest nodes i and j: C = i j i, $cost = c_{ij} + c_{ji}$
- ② select the node $r = \arg\min_{i \in V \setminus C} \{c_{ir} + c_{rj} c_{ij} : i, j \text{ consecutive in } C\}$
- **9** modify C by inserting r between nodes i and j minimizing $c_{ir} + c_{rj} c_{ij}$
- if still nodes to be visited, go to 2.
- $O(n^3)$: rather effective (lest than farthest/nearest insertion)
- may randomize initial pair and/or r selection

LS for TSP: Solution Representation

- arc representation: arcs in the solution, e.g. as a binary adjacency matrix
- adjacency representation: a vector of n elements between 1 and n (representing nodes), v[i] reports the node to be visited after node i
- path representation: ordered sequence of the *n* nodes (a solution is a node permutation!)

LS for TSP: k-opt neighbourhoods

Concept: replace k arcs in with k arcs out [Lin and Kernighan, 1973]

LS for TSP: k-opt neighbourhoods

- In terms of path representation, 2-opt is a substring reversal
- Example: $<1,2,3,4,5,6,7,8,1> \longrightarrow <1,2,6,5,4,3,7,8,1>$
- 2-opt size: $\frac{(n-1)(n-2)}{2} = O(n^2)$
- k-opt size: $O(n^k)$
- Neighbour evaluation: incremental for the symmetric case, O(1)
- 2-opt move evaluation: reversing sequence between i and j in the sequence $< 1 \dots h, i, \dots, j, l, \dots, 1 >$

$$C_{new} = C_{old} - c_{hi} - c_{jl} + c_{hj} + c_{il}$$

• which k? k = 2 good, k = 3 fair improvement, k = 4 little improvement

LS for TSP: evaluation function and exploration strategy

No specific reason to adopt special choices:

- Neighbours evaluated by the objective function (cost of the related cycle)
- Steepest descent (or first improvement)

Neighbourhood search and Trajectory methods

- LS trades-off simplicity/efficiency and effectiveness, but it gets stuck in local optima
- Need to escape from local optima (only convexity implies global optimality)
- Random multistart (random initial solutions)
- Variable neighbourhood (change neighbourhood if local optimum)
- Randomized exploration strategy (e.g. random among best k neigh)
- Backtrack (memory and recovery of unexplored promising neighbours)
- ...
- Neighbourhood search or Trajectory methods: a walk trough the solution space, recording the best visited solution

Neighbourhood search and Trajectory methods

- LS trades-off simplicity/efficiency and effectiveness, but it gets stuck in local optima
- Need to escape from local optima (only convexity implies global optimality)
- Random multistart (random initial solutions)
- Variable neighbourhood (change neighbourhood if local optimum)
- Randomized exploration strategy (e.g. random among best k neigh)
- Backtrack (memory and recovery of unexplored promising neighbours)
- ...
- Neighbourhood search or Trajectory methods: a walk trough the solution space, recording the best visited solution

Avoiding loops

- A walk escaping local optima may worsen the current solution and fall into loops
- In order to avoid loops:
- (only improving solutions are accepted = LS)
- randomized exploration
 - alternative random ways
 - does not exploit information on the problem (structure)
 - e.g. Simulated Annealing
- memory of visited solutions
 - store visited solution and do not accept them
 - structure can be exploited
 - e.g. Tabu Search
- Notice. Visiting a same solution is allowed: we just need to avoid choosing the same neighbour

Avoiding loops

- A walk escaping local optima may worsen the current solution and fall into loops
- In order to avoid loops:
- (only improving solutions are accepted = LS)
- randomized exploration
 - alternative random ways
 - does not exploit information on the problem (structure)
 - e.g. Simulated Annealing
- memory of visited solutions
 - store visited solution and do not accept them
 - structure can be exploited
 - e.g. Tabu Search
- Notice. Visiting a same solution is allowed: we just need to avoid choosing the same neighbour

Simulated Annealing [Kirkpatrick, 1983]

- Metaphore: annealing process of glass, metal. Alternate warming/cooling to obtain "optimal" molecular structure
- (One possible) search scheme (min problem):

Determine an initial solution x; $x^* \leftarrow x \ k = 0$

repeat

$$k \leftarrow k+1$$
 generate a (random) neighbour y if y is better than x^* , then $x^* \leftarrow y$ compute $p = \min\left\{1, exp\left(-\frac{f(y) - f(x)}{T(k)}\right)\right\}$ accept y with probability p if accepted, $x \leftarrow y$ until (no further neighbours of x , or max trials) return x^*

SA: cooling schedule

- Parameter T(k): temperature, cooling schedule
- T(first) > T(last)
- Example of cooling schedule:
- initial T (maximum)
- number of iterations at constant T
- T decrement
- minimum T
- + (one of) the first NS metaphors
- provably converges to the global optimum (under strong assumptions)
- + simple to implement
- there are better (on-the-field) NS metaheuristics!

Tabu Search [Fred Glover, 1989]

- Memory is used to avoid cycling: store information on visited solutions (allows exploiting structure of the problem)
- Basic idea: store visited solutions and exclude them (= make tabu) from neighbourhoods
- Implementation by storing Tabu List of the last t solutions

$$T(k) := \{x^{k-1}, x^{k-2}, \dots, x^{k-t}\}$$

at iteration k, avoid cycles of length $\leq t$

- t is a parameter to be calibrated
- From N(x) to N(x, k)

Storing "information" instead of solutions

- Tabu List (may) store information on the last t solutions
- E.g., often moves are stored instead of solutions because of
- efficiency (checking equality between full solutions may take long time and slow down the search)
- storage capacity (storing full solution information may take large memory)
- Example: TSP, 2-opt. TL stores the last t pairs of arcs added (to avoid arcs or involved nodes)
- Notice. Visiting a same solution is allowed: we just need to avoid choosing the same neighbour (recall $N(x, k) \neq N(x, l)$)
- t (tabu tenior) has to be calibrated:
- too small: TS may cycle
- too large: too many tabu neighbours

Storing "information" instead of solutions

- Tabu List (may) store information on the last t solutions
- E.g., often moves are stored instead of solutions because of
- efficiency (checking equality between full solutions may take long time and slow down the search)
- storage capacity (storing full solution information may take large memory)
- Example: TSP, 2-opt. TL stores the last t pairs of arcs added (to avoid arcs or involved nodes)
- Notice. Visiting a same solution is allowed: we just need to avoid choosing the same neighbour (recall $N(x, k) \neq N(x, l)$)
- t (tabu tenior) has to be calibrated:
- too small: TS may cycle
- too large: too many tabu neighbours

Storing "information" instead of solutions

- Tabu List (may) store information on the last t solutions
- E.g., often moves are stored instead of solutions because of
- efficiency (checking equality between full solutions may take long time and slow down the search)
- storage capacity (storing full solution information may take large memory)
- Example: TSP, 2-opt. TL stores the last t pairs of arcs added (to avoid arcs or involved nodes)
- Notice. Visiting a same solution is allowed: we just need to avoid choosing the same neighbour (recall $N(x, k) \neq N(x, l)$)
- t (tabu tenior) has to be calibrated:
- too small: TS may cycle
- too large: too many tabu neighbours

Aspiration criteria

- By storing "information", unvisited solutions may be declared as tabu
- If a tabu neighbour solution satisfies one or more **aspiration criteria**, tabu list is *overruled*
- Aspiration criterion: a solution is "interesting", e.g. the solution is the best found so far (not visited before!)

Stopping criteria

- (A solution is found satisfying an optimality certificate, if available...)
- Maximum number of iterations, or time limit
- Maximum number of NOT IMPROVING iterations
- Empty neighbourhood and no overruling
 - perhaps t is too long
 - perhaps visit non-feasible solutions (e.g. COP with many constraints): modifying the evaluation function, alternate dual and primal search

TS basic scheme

```
Determine an initial solution x; k := 0, T(k) = \emptyset, x^* = x;
repeat
     let y = \operatorname{arg} \operatorname{best}(\{\tilde{f}(y), y \in N(x, k)\} \cup
        \{y \in N(x) \setminus N(x,k) \mid y \text{ satisfies aspiration}\}\
     compute T(k+1) from T(k) by inserting y (or move x \mapsto y,
        or information) and, if |T(k)| \ge t, removing the elder solution
        (or move or information)
     if f(y) improves f(x^*), let x^* := y;
     x = v. k++
until (stopping criteria)
return (x^*).
```

Same basic elements as LS (+ tabu list, aspiration, stop

TS basic scheme

```
Determine an initial solution x; k := 0, T(k) = \emptyset, x^* = x;
repeat
     let y = \operatorname{arg} \operatorname{best}(\{\tilde{f}(y), y \in N(x, k)\} \cup
        \{y \in N(x) \setminus N(x,k) \mid y \text{ satisfies aspiration}\}\
     compute T(k+1) from T(k) by inserting y (or move x \mapsto y,
        or information) and, if |T(k)| \ge t, removing the elder solution
        (or move or information)
     if f(y) improves f(x^*), let x^* := y;
     x = v. k++
until (stopping criteria)
return (x^*).
```

Same basic elements as LS (+ tabu list, aspiration, stop)

Intesification and diversification phases

- Intensification explores more solutions in a small portion of the solution space: solutions with similar features
- **Diversification** moves the search towards unexplored regions of the search space: solutions with different features
- the basic TS scheme may be improved by alternating intensification and diversification, to find and exploit new promising regions and, hence, new (and possibly better) local optima
- memory may play a role (store information on visited solutions, e.g. to allow avoiding the same features during diversification)

Intesification and diversification can be applied to **any** metaheuristics (not only to TS)

Intesification and diversification phases

- Intensification explores more solutions in a small portion of the solution space: solutions with similar features
- **Diversification** moves the search towards unexplored regions of the search space: solutions with different features
- the basic TS scheme may be improved by alternating intensification and diversification, to find and exploit new promising regions and, hence, new (and possibly better) local optima
- memory may play a role (store information on visited solutions, e.g. to allow avoiding the same features during diversification)

Intesification and diversification can be applied to **any** metaheuristics (not only to TS)

Intensification

- enumerate (implicitly) all the solutions in a (small) region where good solutions have been found (e.g. fix some variables in a MILP model and run a solver)
- use a more detailed neighbourhood (e.g. allowing many possible moves)
- relax aspiration criteria
- modify evaluation function to penalize far away solutions

Diversification

- ullet use "larger" neighbourhoods (e.g. $k ext{-opt} o (k+1) ext{-opt}$ in TSP, until a better solution is found)
 - ▶ if more neighbourhoods are used, they rely on independent tabu lists
- modify the evaluation function to promote far away solutions
- use the last local minimum to build a far-away ("complementary")
 solution to start a new intensification
- use a long term memory to store the "more visited" features and penalize them in the evaluation function
 - ▶ as a quick-and-dirty approximation, use a dynamic tabu list length t: t is short during intensification and long during diversification (we may start with small $t = t_0$ and increment it as long as we do not find improving solutions, until a maximum t is reached or an improvement resets $t = t_0$ for a new intensification)

Example: Tabu Search for Graph Coloring

- move: change the color of one node at a time (no new color). 12 neighbours: <u>V</u>VGRVG, <u>G</u>VGRVG, R<u>R</u>GRVG, R<u>G</u>GRVG, RV<u>R</u>RVG etc. **none feasible!**
- objective function to evaluate: little variations (plateau!)

 $ilde{f}$ that penalizes non-feasibilities, includes (weighted sum) other features, **but** ...

Too many constraints: change perspective!

Given a k-coloring, search for a k-1-coloring

- Initial solution: delete one color by changing it in one of the others
- Evaluation \tilde{f} : number of monochromatic edges (minimize non-feasibilities)
- Move: as before, change the color of one vertex
- Granular TS: consider only nodes belonging to monochromatic edges
- Tabu list: last t pairs (v, r) (vertx v kept color r)
- if $\tilde{f} = 0$, new feasible solution with k-1 colors: set k = k-1 and start again!

Too many constraints: change perspective!

Given a k-coloring, search for a k-1-coloring

- Initial solution: delete one color by changing it in one of the others
- Evaluation \tilde{f} : number of monochromatic edges (minimize non-feasibilities)
- Move: as before, change the color of one vertex
- Granular TS: consider only nodes belonging to monochromatic edges
- Tabu list: last t pairs (v, r) (vertx v kept color r)
- if $\tilde{f}=0$, new feasible solution with k-1 colors: set k=k-1 and start again!

Population based heuristics

At each iteration

- a set² of solutions (**population**) is maintained
- some solutions are recombined³ to obtain new solutions (among which a better one, hopefully)

Several paradigms (often just the metaphor changes!)

- Evolutionary Computation (Genetic algorithms)
- Scatter Search and path relinking
- Ant Colony Optmization
- Swarm Optmization
- etc.

General purpose (soft computing) and easy to implement (more than effective!)

²In trajectory/based metaheuristics, a single

Population based heuristics

At each iteration

- a set² of solutions (**population**) is maintained
- some solutions are recombined³ to obtain new solutions (among which a better one, hopefully)

Several paradigms (often just the metaphor changes!)

- Evolutionary Computation (Genetic algorithms)
- Scatter Search and path relinking
- Ant Colony Optmization
- Swarm Optmization
- etc.

General purpose (soft computing) and easy to implement (more than effective!)

²In trajectory/based metaheuristics, a single

³In trajectory/based metaheuristics, perturbation, move □ → ⟨♂ → ⟨ ≥

Population based heuristics

At each iteration

- a set² of solutions (**population**) is maintained
- some solutions are recombined³ to obtain new solutions (among which a better one, hopefully)

Several paradigms (often just the metaphor changes!)

- Evolutionary Computation (Genetic algorithms)
- Scatter Search and path relinking
- Ant Colony Optmization
- Swarm Optmization
- etc.

General purpose (soft computing) and easy to implement (more than effective!)

²In trajectory/based metaheuristics, a single

³In trajectory/based metaheuristics, perturbation, move □ → ← ② → ← ② → ← ② → → ② → ○

Genetic Algorithms [Hollande, 1975]

Encode solutions of the specific problem.

Create an initial set of solutions (initial population*).

Repeat

*Select** pairs (or groups) of solutions (parent).

Recombine* parents to generate new solutions (offspring).

Evaluate the *fitness** of the new solutions

*Replace** the population, using the new solutions.

Until (stopping criterion)

Return the best generated solution.

^{*} Genetic Operators

Encoding: chromosome, sequence of genes

• KP 0/1: binary vector, n genes = 0/1

• TSP: path representation: *n* genes = cities

3	2	6	1	8	0	4	7	1	5
---	---	---	---	---	---	---	---	---	---

- Normally, each gene is related to one of the decision variables of the Combinatorial Optimization Problem (COP)
- Encoding is important and affect following design steps (like solution representation in neighbourhood search)
- **Decoding** to transform a chromosome (or individual) into a solution of the COP (in the cases above it is straightforward)

45 / 59

Encoding: chromosome, sequence of genes

• KP 0/1: binary vector, n genes = 0/1

• TSP: path representation: *n* genes = cities

3	2	6	1	8	0	4	7	1	5
---	---	---	---	---	---	---	---	---	---

- Normally, each gene is related to one of the decision variables of the Combinatorial Optimization Problem (COP)
- Encoding is important and affect following design steps (like solution representation in neighbourhood search)
- **Decoding** to transform a chromosome (or individual) into a solution of the COP (in the cases above it is straightforward)

Encoding: chromosome, sequence of genes

• Job shop scheduling: n * m genes = jobs (decoding!!!)

Job	machine , t_{ij}										
1	A , 5	B , 4	C , 4								
2	B,2	A , 6	C , 5								
3	C , 4	B,2	A,2								
4	C , 4	A , 5	B , 4								

Encoding:

4	2	1	1	3	4	2	3	1	2	3	4

Decoding:

Genetic operators

- Initial population: random + some heuristic/local search
 - ▶ random → diversification (very important!!!)
 - ▶ heuristic (randomized) → faster convergence (not too many heuristic solutions, otherwise fast convergence to local optimum)
- **Fitness**: (variants of the) objective function (see Neighbourhood Search)

Genetic operators: Selection

- **Selection**: larger fitness → larger *probability* to be selected
- Notice: even worse individual should be selected with small probability to (avoid premature convergence!): they may contain good features (genes), even if their overall fitness is poor
- Mode 1: select one t-uple of individuals to be combined at a time
- Mode 2: select a subset of individuals to form a *mating pool*, and combine all the individual in the mating pool.

Genetic operators: Selection schemes

p_i: probability of selecting individual i; f_i: fitness of i
 In general, compute p_i such that the higher f_i, the higher p_i

• **Montecarlo**: p_i is proportional to f_i

$$p_i = f_i / \sum_{k=1}^{N} f_k$$
 f_i : fitness of i

Super-individuals may be selected too often

- **Linear ranking**: sort individual by increasing fitness and σ_i is the position of i, set $p_i = \frac{2\sigma_i}{N(N+1)}$
- *n*-**tournament**: select a small subset of individuals uniformly in the population, then select the best individual in the subset

Genetic operators: recombination [crossover]

- From $n \ge 1$ parents, obtain m offspring different but similar
- offspring inherits genes (features) from one of the parents at random
- Uniform (probability normally depends on the parent fitness)

1	0	0	1	1	0	0	0	1	0	parent 1 (fitness 8)
0	0	1	0	1	0	1	1	0	1	parent 2 (fitness 5)
1	0	0	0	1	0	0	1	0	0	offspring

k-cut-point: "adjacent genes represents correlated features"

Mutation

After or during crossover, some genes are randomly changed

- Against genetic drift: one gene takes the same value in all the individuals of the population (loss of genetic diversity)
- Effects and side effects (sometimes we want them!):
 - (re)introduce genetic diversity
 - slow population convergence (normally we change very few genes with very small probability)
 - can be used to obtain diversification (more genes with more probability: simple way to diversify, not the best one)

Integrating Local Search

Local search may be used to improve offspring (simulate children education)

- Replace an individual with the related local minimum
- May lead to premature convergence
- Efficiency may degrade!
 - simple, fast LS
 - apply to a selected subset of individuals
 - more sophisticated NS only at the end, as post-optimization

Crossover, mutation and non-fesible offspring

Crossover/mutation operators may generate unfeasible offspring. We can:

- Reject unfeasible offspring
- Penalize (modified fitness)
- Repair (during the decoding)
- Design specific operators guaranteeing feasibility. E.g. for TSP:
 - Order crossover (similar, since reciprocal order is maintained)

	1	4	9	2	6	8	3	0	5	7	parent 1
ĺ	0	2	1	5	3	9	4	7	6	8	parent 2
ĺ	1	4	9	2	3	6	8	0	5	7	offspring 1
	0	2	1	4	9	3	5	7	6	8	offspring 2

▶ Mutation by substring reversal (= 2-opt)

1	4	9	2	6	8	3	0	5	7
_	\rightarrow			\longrightarrow					
1	4	8	6	2	9	3	0	5	7

Generational Replacement

Generational replacement: old individuals are replaced by offspring

- Steady state: a few individuals (likely the worst ones) are replaced
- Elitism: a few individuals (likely the best ones) are kept
- Best individuals: generate R new individuals from N old ones; keep the best N among the N+R

Population management: keep the population diversified, whilst obtaining (at least one) better and better solution

- Acceptance criteria for new individuals (e.g. fitness)
- Diversity threshold (e.g. Hamming distance)
- Variable threshold to alternate intensification and diversification

Stopping criteria

- Time limit
- Number of (not improving) iterations (=generations)
- Population convergence: all individuals are similar to each other (pathology: not well designed or calibrated)

Observations

- Advantages: general, robust, adaptability (just an encoding and a fitness function!)
- Disadvantages: many parameters! (you may save time in developing the code but spend it in calibration)
- Overstatement: complexity comes back to the user, that should find the optimal combination of the parameters.
 Normally, the designer should provide the user with a method able to directly find the optimal combination of decision variables. In fact, the algorithm designer should also provide the user with the parameter calibration!
- Genetic algorithms are in the class of *weak methods* or *soft* computing (exploit little or no knowledge of the specific problem)

Validating optimization algorithms

Some criteria:

- (Design and implementation time / cost)
- Efficiency (running times)
- Effectiveness (quality of the provided solutions)
- Reliability, if stochastic (every run provide a good solution)

Evaluation/validation techniques:

- Computational experiments. Steps
 - desing and implementation of the optimization algorithm
 - benchmark selection (real, literature, ad-hoc): "many" instances
 - parameter calibration (before -not during- test)
 - ▶ test (notice: multiple [e.g. 10] running if stochastic)
 - statistics (including reliability) and comparison with alternative
- Probabilistic analysis (more theoretical, e.g. probability of optimum)
- Worst case analysis (performance guarantee, often too pessimistic)

Parameter calibration (or estimation)

- Pre-deployment activity (designer should do, not the user!)
- Estimation valid for every instance (for evaluation purposes)
- Standard technique:
 - select an instance subset (= training set)
 - extensive test on the training set
 - take interaction among parameters into account
 - stochastic components make the calibration harder
- Advanced techniques:
 - Black box optimization
 - Automatic estimation (e.g. *i-race* package)
 - Adaptivity

Hybrid metaheuristics: very brief introduction!

Integration between different techniques, at different levels (components, concepts, etc.). Examples:

- population based + trajectory methods (find good regions + intensification)
- tabu search + simulated annealing
- Matheuristics (hot research topic, thesis avaialble!)
 - mathematical programming driven constructive heuristics
 - exact methods to find the best move in large neighbourhoods
 - heuristics to help exact methods (e.g. primal and dual bounds)
 - Rounding heuristics
 - Local branching
 - **.**..

Warning: an algorithm is good if it provides good results (validation), and not if it is described by a suggestive metaphor. See Sörensen, 2015