STT-2300 ANALYSE DE LA VARIANCE Examen #2

Exercice 1 (22 points)

Un agronome désire comparer 4 types d'engrais de mais. Il dispose pour cela d'une certaine surface de terre. Malheusement, cette terre est composée de trois types différents de sol, couvrant chacun la même surface. Il divise chacune de ces trois parties en 4 parcelles de surfaces égales et applique un type d'engrais à chaque parcelle. À la fin de la saison, il mesure la quantité totale produite par chaque parcelle de terre. Les résultats sont rapportés dans le tableau suivant:

	I	II	III	IV
Α	25.49	26.70	22.65	23.95
В	25.45	28.42	22.88	22.25
С	27.38	30.77	25.90	26.33

(1) Un statisticien conseille à l'agronome d'utiliser un modèle mixte à deux facteurs sans interaction:

$$Y_{ij} = \mu + \alpha_i + \beta_j + e_{ij}$$
 pour $i = 1, 2, 3, 4$ et $j = 1, 2, 3$.

- (a) Êtes vous d'accord avec le conseil donné? justifier votre réponse.
- (b) Donner les hypothèses du modèle suggéré.
- (c) Dresser la table d'ANOVA sachant que $\bar{Y}_{..} = 25.68, \sum_{ij} (Y_{ij} \bar{Y}_{..})^2 = 69.68, \sum_{i} (\bar{Y}_{i.} \bar{Y}_{..})^2 = 14.64$ et $\sum_{j} (\bar{Y}_{.j} \bar{Y}_{..})^2 = 5.50$.
- (2) On s'intéresse faire de l'inférence sur les α_i .
 - (a) Exprimer \bar{Y}_i et \bar{Y}_i en fonction de μ , α , β et e.
 - (b) En déduire un estimateur pour α_i .
 - (c) Donner la loi de cet estimateur.
 - (d) En déduire un intervalle de confiance pour α_i au niveau 95%. Le faire numériquement pour i=2.
- (3) Au fait, le premier engrais est un controle. On désire comparer son effet à la moyenne des trois autres. Pour cela, considérons le contraste $\gamma = -\alpha_1 + (\alpha_2 + \alpha_3 + \alpha_4)/3$.
 - (a) Proposer un estimateur pour γ .
 - (b) En déduire sa loi.
 - (c) Effectuer le test: $H_0: \gamma = 0$ versus $H_1: \gamma > 0$ de 5%.

Exercice 2 (16 points)

On considère la table suivante d'un modèle d'ANOVA équilibré à deux facteurs aléaoites:

$$Y_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$

Source	Sommes	degrés	Moyennes	Statistiques	Seuils
	de carrés	de liberté	de carrés	observées	observés
Facteur A	378.70	3			
Facteur B	435.71				
Interaction	13.98	12			
Erreur				***	***
Total	983.23	199	***	***	***

- (a) Complèter le tableau et effectuer le test d'hypothèses: $H_0^{AB}:\sigma_\gamma^2=0$ versus $H_1^{AB}:\sigma_\gamma^2>0$.
- (b) Donner une expression de la fonction de puissance du test effectué au (a).
- (c) Donner des estimateurs de σ^2 , σ_{α}^2 , σ_{β}^2 et σ_{γ}^2 .
- (d) Donner une expression pour l'intervalle de confiance de $\sigma_{\beta}^2/(\sigma^2 + n\sigma_{\gamma}^2)$
- (e) En déduire une expression pour l'intervalle de confiance approximatif de σ_{β}^2 .
- (f) En considérant maintenant le modèle additif avec les mêmes données, effectuer les tests d'hypothèses: $H_0^A:\sigma_\alpha^2=0$ versus $H_1^A:\sigma_\alpha^2>0$ et $H_0^B:\sigma_\beta^2=0$ versus $H_1^B:\sigma_\beta^2>0$.
- (g) En déduire le meilleur modèle pour ces données.

Exercice 3 (7 points)

Une expérience faisant intervenir trois facteurs A, B et C ayant trois modalités chacun a été réalisée selon un plan en carré latin standard. Les données sont

	b_1	b_2	b_3
a_1	$c_1 1$	c_2 5	$c_3 4$
a_2	$c_2 4$	c_3 5	$c_1 0$
a_3	$c_{3} 6$	$c_1 \ 2$	$c_2 \ 6$

Dresser la table d'ANOVA, calculer les sommes de carrés et faire les tests au seuil 5%. Y a-t-il un facteur qui explique les variations de la variable dépendante?