

MEK 4430 Multiphase Flow

Lecture 1 22.08.2014

Introduction to multiphase flow

- Multiphase flow models were originally developed for the nuclear industry for fluid flows in pipes of steam and condensed steam (water)
- A phase was originally used in the context of a single component water in different phases gas (steam) and liquid (water) hence multiphase flow
- From a modelling perspective, different components such as argon and oil can be treated in precisely the same way as steam and water.
- Multiphase flow is the simultaneous flow of different phases/components where each fluid contributes mass, momentum and energy to the overall flow.

Introduction to multiphase flow

•

- The physical properties of the phases are given by
 - Density $[kg/m^3]$
 - Dynamic viscosity [kg/ms]
 - Surface tension [N/m]

 One must know the physical properties and flowrates of the phases together with the geometry of the boundaries of the flow to calculate phase fractions and pressure losses

Classification of multiphase flows

- Multiphase flows are classified in a number of ways
 - 1. Firstly, flows are characterized by the number of phases present.
 - Two-phase flow, Three-phase flow etc.
 - 2. Secondly flows are characterized by the types of phases present.
 - Gas-liquid, liquid-liquid, liquid-solid, gas-liquid-liquid etc.
 - 3. Flows are characterized by flow patterns or *flow regimes*. Examples are:
 - a) Stratified
 - b) Intermittent (slug, churn, elongated bubble)
 - c) Dispersed flows including (droplets, bubbles, emulsions)
 - d) Annular flow
 - 4. Finally flows can be oriented such as upward inclined, horizontal etc.

Flow Regimes illustration

Terminology and definitions

- In multiphase flow we specify the rate of flow using the superficial velocity
 - $Usl = Q_l/A$ for liquid and $Usg = Q_g/A$ for gas etc.
 - Where A is the cross sectional area of the geometry (for example a pipe) and Q is the volumetric flowrate
- The fraction of the cross section occupied by a phase is referred to as holdup for example liquid-holdup, gas-holdup etc.
- Liquid holdup is given by $\alpha_l = A_l/A$ where A_l is the cross sectional area occupied by the liquid phase
- The in-situ phase velocity is defined by $U_l = Usl/\alpha_l$
- The *slip ratio* is given by the ratio $U_s = U_g/U_l$

Cross section of a pipe (Geometrical variables)

Flow regime maps

Examples of 2-phase gas-liquid stratified flow

Institute for Energy Technology, Kjeller

Example 3-phase stratified flow

Institute for Energy Technology, Kjeller

Annular pipe flow axial view

Imperial College London

Two-phase slug flow in an inclined pipe

Institute for Energy Technology, Kjeller

Measurement instrumentation

- Several common types of measurements are made in multiphase flows
 - 1. Phase fraction measurements
 - 2. Pressure measurements

3. Turbulence me surements

Benchscale measurements are often used to determine the physical rheology of

the fluids

Phase fraction measurements

- Phase fraction measurement instrumentation must discern between the phases
- Common approaches includes
 - Conductivity
 - Capacitance
 - Gamma ray attenuation
 - Optical analysis
 - Fast closing valves

Figure 6: $U_{sl} = 0.50$ [m/s], $U_{sg} = 1.00$ [m/s]

Pressure and Turbulence measurements

- Types of pressure measurements includes
 - Absolute pressure measurements
 - Differential pressure measurements
- Turbulence measurement instrumentation includes
 - PIV (Pariticle Image Velicometry)
 - PTV (Particle Tracking Velicometry)
 - LDA (Laser Doppler Anemometry)

Thank you

Presentation title

Presenters name

Presenters title

E-mail address, tel: +00 00 00 00

www.statoil.com

