Ce TP vise à se familiariser avec les différentes pièces de verrerie utilisées en chimie et de comparer leur précision grâce à une méthode statistique.

Protocole:

Bécher, Fiole jaugée, Éprouvette	pipette jaugée, pipette graduée
 On pose une des pièce de verrerie vide sur la balance et on tare. On prélève un volume d'eau de 50 mL le plus précisément possible avec la verrerie. On pose la verrerie remplie d'eau sur la balance et on note la masse. On vide la pièce de verrerie et on la repose soigneusement dans le casier. 	 On pose un bécher vide sur la balance et on tare. On prélève un volume d'eau de 10 mL le plus précisément possible avec la pipette. On verse les 10 mL dans le bécher sur la balance et on note la masse. On repose soigneusement la pipette dans le casier.

• Les masses d'eau sont ensuite « converties » en volume et notées dans le tableau

Les pièces de verrerie que l'on va tester sont de deux types :

- EX (destinées à délivrer un volume donné) : pipette jaugée à deux traits de 10 mL, pipette graduée de 10 mL.
- IN (destinées à contenir un volume donné) : éprouvette graduée de 50 mL, bécher de 50 mL et fiole jaugée de 50 mL.
- 1. Chaque élève réalise en tout 2 ou 3 mesures sur chacune des pièces de verrerie et reporte ses résultats, en mL, dans le tableau suivant.

	Éprouvette	Pipette graduée	Pipette jaugée	Fiole jaugée	Bécher
mesure 1					
mesure 2					
mesure 3					

Un fichier **Python** (accessible ici) est ouvert sur l'ordinateur prof. 5 listes (une par verrerie) y sont construites. Chaque élève devra ajouter ses 2 ou 3 mesures à chacune des listes.

Attention : le séparateur décimal en Python n'est pas comme en France la virgule, mais le point « . ». Par contre, pour séparer chaque valeur dans une liste, là, on utilise la virgule « , ». On aura par exemple : Leprouvette = [50.01 , 49.62 , 49.75 , 50.07].

Un résumé statistique comportant la **moyenne** et l'**écart-type** de chacune des listes est ensuite affiché et les **histogrammes** de répartition pour chaque pièce de verrerie sont tracés.

- 2. Quelle est la pièce de verrerie la plus précise entre la pipette jaugée et la pipette graduée ?
- 3. Quelle est la pièce de verrerie la plus précise entre l'éprouvette, la fiole jaugée et le bécher ?