Function fields and number fields

Soham

August 2016

A number field is a finite extension L/\mathbb{Q} . A function field (over a finite field) is a finite extension of \mathbb{F}_q .

Chapter 1

Adeles

1.1 Preliminaries from Galois theory

We will let K be a number field. Denote by Fld_k the category of field extensions of k.

Theorem 1 (Fundamental theorem of Galois theory). There is a functor

$$\operatorname{Gal}(-/k) \colon \mathsf{Fld}_k^{\mathsf{op}} \to \mathsf{Grp},$$

the Galois group functor.

In particular, this means that given a k-automorphism $K \to L$, we get a morphism of Galois groups

$$Gal(L/k) \to Gal(K/k)$$

since any automorphism of L fixes K.

Recall that the field of *cyclotomic numbers*, $\mathbb{Q}(\zeta_n)$, has Galois group

$$\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$$

where $[n] \in \mathbb{Z}/n\mathbb{Z}$ acts as the *n*-th power map.

1.2 Class field theory

Theorem 2 (Kronecker-Weber). The maximal abelian extension \mathbb{Q}^{ab} of \mathbb{Q} satisfies

$$\mathbb{Q}^{\mathrm{ab}} = \bigcup_{n} \mathbb{Q}(\zeta_n)$$

where, for m|n, we identify $\mathbb{Q}(\zeta_m)$ with the canonically given subfield of $\mathbb{Q}(\zeta_n)$.

In particular, we may now apply $Gal(-/\mathbb{Q})$ to get the following:

$$\Gamma^{\mathrm{ab}} := \mathrm{Gal}(\mathbb{Q}^{\mathrm{ab}}/\mathbb{Q}) \cong \varprojlim_n \left(\mathbb{Z}/n\mathbb{Z}\right)^{\times}$$

Here the limit is taken with respect to the system of surjections

$$\pi_n^m \colon (\mathbb{Z}/n\mathbb{Z})^{\times} \to (\mathbb{Z}/m\mathbb{Z})^{\times}$$

that sends, for instance, $[5] \in \mathbb{Z}/6\mathbb{Z}$ to $[1] \in \mathbb{Z}/3\mathbb{Z}$.

What does an element of Γ^{ab} look like? By the definition of the inverse limit of a filtered set (TODO check this), an element of Γ^{ab} is a collection of elements

$$\alpha_n \in \mathbb{Z}/n\mathbb{Z}$$

compatible with the π_m^n , where by *compatibility* we mean that

$$m|n \implies \pi_n^m(\alpha_m) = \alpha_n.$$

1.2.1 Describing Γ^{ab} with p-adics

(fill in defns of \mathbb{Z}_p and \mathbb{Q}_p later)

We have the following classical result:

Theorem 3 (Chinese remainder theorem). There exists an isomorphism

$$\mathbb{Z}/n\mathbb{Z} \cong \prod_{p} \mathbb{Z}/p^{\nu_p(n)}\mathbb{Z}.$$

Definition 1. We denote by

$$\hat{\mathbb{Z}}=\varprojlim_n\mathbb{Z}/n\mathbb{Z}$$

the *profinite completion* of \mathbb{Z} , where the limit is taken with respect to the natural system of surjections considered in the previous section.

Now note that

$$\begin{split} \hat{\mathbb{Z}} &= \varprojlim_n \mathbb{Z}/n\mathbb{Z} \\ &\cong \varprojlim_n \prod_p \mathbb{Z}/p^{\nu_p(n)}\mathbb{Z} \\ &\cong \prod_p \varprojlim_r \mathbb{Z}/p^r\mathbb{Z} \end{split}$$

which finally gives us

$$\hat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p.$$