Лекция 10

Введение в ML

План занятия

- Обзор ML
- 2. Данные
 - а. Как выглядят данные
 - ь. Признаковое описание
 - с. Многомерные пространства и тензоры больших рангов
- з. Модель
 - а. Обучение с учителем
 - ь. Классификация и регрессия
 - с. Пример KNN
- 4. Измерение качества
 - а. Примеры метрик
 - ь. Разделение на тестовую и тренировочную выборки
 - с. Кросс-валидация

Полезные ссылки

- Введение в ML простыми словами https://vas3k.ru/blog/machine_learning/
- Метрики в задаче классификации
 https://medium.com/swlh/recall-precision-f1-roc-auc-and-everything-542aedf322b9
- Метрики в задаче регрессии

 https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4

Обзор ML

Как машинное обучение меняет мир

- "Nations with the strongest presence in AI R&D will establish leading positions in the automatization of the future."
 - отчет Белого дома США, октябрь 2016
- цифровая и распределенная экономика
- автоматизация и сокращение издержек
- автономный транспорт и роботизация
- автоматизация банковских услуг
- персональная медицина
- и многое другое

Google признал, что прослушивает голосовые команды пользователей

Google признался, что прослушивает команды, которые люди отдают голосовым помощникам Google Home и Google Assistant. Полученные данные собираются и обрабатываются экспертами-лингвистами, а потом используются для улучшения технологии распознавания. Доля анализируемых экспертами аудиоданных не превышает 0,2% от всех записей.

Дерево Решений

С этим товаром часто покупают

Портрет зрителей спортивных трансляций на Яндексе

iPavlov: Conversational Intelligence Project

Mikhail Burtsev, PhD Moscow Institute of Physics and Technology (MIPT)

Definition of iPavlov project
def iPavlov(talent, ideas):
 research = ideas * talent
AI = development(research)
 return AI

"You need to hear me correctly Siri"

Thanks for that, Adam.

"I'm saying you're not doing a good job"

It's nice to have one's work appreciated.

Пример: оцените стоимость ноутбука

		Кол-во ядер	RAM (Гб)	Объем жесткого диска (ГБ)	Диагональ/ разрешение	Работа от аккумулятора	Цена (руб.)
1	/SU5	2	4	500 (HDD)	15"/1920х1080 пикс.	до 5 часов	31 490
2		4	8	256 (SSD)	14"/1920х1080 пикс.	до 12 часов	60 990
3	No.1 in Caming	4	16	1000 (HDD)	17"/1920х1080 пикс.	до 3 часов	65 990
4		8	16	1000 (HDD) + 256 (SSD)	17"/1920х1080 пикс.	до 11 часов	109 990
5		4	16	1000 (HDD)+ 128 (SSD)	17"/1920x1080 пикс.	до 6 часов	?

Пример: оцените стоимость ноутбука

		Кол-во ядер	RAM (Гб)	Объем жесткого диска (ГБ)	Диагональ/ разрешение	Работа от аккумулятора	Цена (руб.)
1	/SU5	2	4	500 (HDD)	15"/1920х1080 пикс.	до 5 часов	31 490
2		4	8	256 (SSD)	14"/1920х1080 пикс.	до 12 часов	60 990
3	No.1 in Caming	4	16	1000 (HDD)	17"/1920х1080 пикс.	до 3 часов	65 990
4		8	16	1000 (HDD) + 256 (SSD)	17"/1920х1080 пикс.	до 11 часов	109 990
5		4	16	1000 (HDD)+ 128 (SSD)	17"/1920x1080 пикс.	до 6 часов	86990

Постановка задачи машинного обучения

X — множество объектов

Y — множество ответов (например, два класса или произвольные числа)

 $y: X \to Y$ — неизвестная закономерность

Дано: обучающая выборка, $\{x_1, x_2, ..., x_n\}$ — подмножество множества X

Цель: подобрать *алгоритм,* приближающий функцию *у(x)*.

Как задаются объекты. Признаковое описание

Объект *х* задаётся *признаковым описанием*

 $f_1, f_2, ..., f_k$ — признаки (features) объекта x

— матрица "объекты-признаки" объект, пригодный для применения алгоритмов машинного обучения

Данные

Изображения

MNIST Dataset

- Изображения цифр, написанных от руки
- ~50к изображений
- Можно научить модель распознавать цифру

Табличные данные

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/02. 31012
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803
5	0	3	Allen, Mr. William Henry	male	35	0	0	373450
6	0	3	Moran, Mr. James	male		0	0	330877
7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	17463
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	349909

- Таблица как в Excel
- Как часто бывает: десятки столбцов, тысячи строк
- Один из столбцов целевая переменная
- С данными такого вида мы будем работать на протяжение всего курса

Признаковое описание

Для того, чтобы работать с данными, нужно представить их в виде, пригодном для моделей ML

- Строка в таблице называется объектом
- Столбец в таблице называется признаком
- Признаки могут быть 3-х типов:
 - 。 Числовые
 - Категориальные
 - Бинарные
- Столбец, который нужно предсказать, называется **целевой переменной**

X y* features

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/02. 310128
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803
5	0	3	Allen, Mr. William Henry	male	35	0	0	373450
6	0	3	Moran, Mr. James	male		0	0	330877
7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	17463
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	349909

Признаковое описание

Все признаки представляются в виде чисел:

- Числовые признаки это уже числа
- Бинарные признаки как 0 и 1
- Категориальные признаки:
 - ∘ Как число от 0 до N, где N число категорий
 - _о Как N-мерный вектор {0, 0, 1, 0, 0, 0}. Т.н. **one-hot vector**

Для каждого объекта набор его признаков собирается в один вектор

Вектор

- Вектор это упорядоченный набор чисел
- Вектор это координаты точки в пространстве

Для двух точек можно рассчитать расстояние между ними

Матрица

- Матрица это упорядоченный набор векторов одного размера
- Набор векторов это набор точек в пространстве

Датасет с подготовленными признаками - это матрица

Визуализация данных

Датасет - это матрица

target	petal width	petal length
Iris-setosa	0.2	1.4
Iris-setosa	0.2	1.4
Iris-setosa	0.2	1.3
Iris-setosa	0.2	1.5
Iris-setosa	0.2	1.4

Большие размерности

- Двумерный набор точек можно нарисовать на плоскости
- Трехмерный набор можно спроецировать на плоскость
- Размерности векторов могут быть порядков 100~100 000
- Их всё равно можно спроецировать!

Визуализация реальных датасетов

Матрица корреляции

- Если признаков много, то все парные графики не рассмотришь
- Визуально проанализировать признаки помогает матрица корреляции


```
plt.figure(figsize=(9,5))
sns.heatmap(df.corr())
```

<matplotlib.axes._subplots.AxesSubplot at 0x1fa0e4d4a20>

Тензор

- Упорядоченный набор точек это вектор
- Упорядоченный набор векторов одного размера - это матрица
- Упорядоченный набор матриц одного размера это **тензор**

2D TENSOR /

3D TENSOR/

CUBE

Tensor shape

This is how you represent a tensor in code

[[[1,2], [3,4], [5,6]], [[7,8], [9,10], [11,12]]]

У тензора k-го ранга есть k индексов

Форма тензора k-го ранга - это набор k чисел, каждое из которых означает: какое кол-во значений может пробегать данный индекс. Т.е. протяженность тензора в разных направлениях.

Форма тензора справа равна [2, 3, 2]

Форма цветного FullHD изображения: [1920, 1080, 3]

*Слово "форма" по-русски не применяется для тензоров. Это дословный перевод термина "shape"

And this is how we like to visualize tensors

MNIST

Вопрос: каким тензором является датасет?

Вопрос: что является объектом, признаком, и целевой переменной в задаче MNIST? Какого они типа?

Модель

Задача обучения с учителем

- Между объектом и целевой переменной существует реальная зависимость
- У нас есть только N сэмплов этой зависимости обучающая выборка
- Задача научиться **предсказывать** целевую переменную для новых точек
- Для этого строится модель

Модель - это функция, которой можно аппроксимировать реальную зависимость, имея конечное число примеров.

Классификация и регрессия

Целевая переменная, как и признаки, может быть трех типов:

- Числовая
- Бинарная
- Категориальная

Предсказание числового значения называется регрессия

Предсказание одного из нескольких классов называется классификация

Классификация и регрессия

Кластеризация

KNN

K Nearest Neighbors

Метод К ближайших соседей

- На вход подается вектор признаковое описание какого-то объекта
- Находится К ближайших к нему векторов, для которых ответ известен
- Ответ для новой точки выбирается с помощью
 - Усреднения в случае регрессии
 - Голосования в случае классификации
- Возможно также усреднение/голосование с весами

KNN классификация

К - внешний параметр. Он подбирается так, чтобы модель работала как можно лучше.

Результат предсказания для некоторых точек может зависеть от K

Метрики

Измерение качества модели

Чтобы понять, насколько адекватно ведет себя модель, нужно каким-то образом численно оценить ее качество.

Метрика - это функция вида:

```
metric(\mathbf{y}, \mathbf{\hat{y}})
```

где y- это правильное значение целевой переменной (label),

а $\hat{\mathbf{y}}$ - значение, предсказанное моделью (**prediction**).

Примеры метрик

Классификации:

- **accuracy** процент правильных предсказаний среди всех примеров
- precision ТОЧНОСТЬ
- recall полнота
- **f1** объединяет полноту и точность
- **ROC-AUC** вероятность правильного ранжирования двух случайных примеров

Регрессии:

- **MSE** средний квадрат отклонения
- **RMSE** стандартное отклонение
- МАЕ средний модуль отклонения
- **R2** коэффициент детерминации

Более подробно метрики будут рассмотрены после практического занятия

Несмещенная оценка

Вопрос: какое предсказание лучше по метрикам, а какое на самом деле?

Если тестировать модель на той же выборке, на которой она обучалась, то оценка получится смещенной. В таком случае "самая лучшая" модель - это та, которая просто запомнила все данные.

Хорошая модель должна делать хорошие предсказания на новых для себя данных

Отложенная выборка

Можно "отложить", скажем, 20% обучающей выборки для валидации модели. Использовать 80% выборки для обучения и 20% для тестирования.

- Оценка на тестовой выборке будет несмещенной
- Тестовая выборка маленькая оценка будет иметь погрешності

Переобучение

- Как обнаружить? Train/Test split
 - Разделить выборку на обучающую и контрольную
 - Следить за качеством на контрольной выборке
- Минусы?
 - Уменьшение размера обучающей выборки может негативно сказаться на качестве
 - Малый размер тестовой выборки может давать сильное смещение оценки.
 - Можно переобучиться под **тестовую выборку**

Кросс-валидация

- Разбиваем выборку на к частей
- k-1 частей используются для обучения и одна
 для тестирования
- Процесс повторяется k раз. Каждый раз для тестирования выбирается разная часть
- Результаты тестирования усредняются

Плюсы:

• Погрешность оценки уменьшается, т.к. используется весь набор

Минусы:

• Обучение производится k раз. Для некоторых моделей это может быть очень долго

Кросс-Валидация

- Плюсы
 - Качество измеряется на всем наборе данных
 - Качество не зависит от выбора конкретного тестового набора
 - Сложнее переобучиться под тест
- Минусы
 - Скорость!
- Что выбрать
 - Мало обучающих данных => Кросс-Валидация
 - Много обучающих данных => Train/Validate split
- Не забыть
 - Отложить Test для замера итогового качества
 - Обучить итоговую модель на всех данных

Кросс-Валидация По Времени

- Используется для анализа временных рядов
 - Тестовый набор выбирается из самых свежих данных. Обучение на более старых.
- Полезно в реальных задачах
 - Если в качестве признаков используется множество сигналов, которые могут меняться от времени.
 - Есть возможность определить дату наблюдения.

□ Время □

Кросс-Валидация, пример

10-fold Cross-Validation

Flexibilty (spline's degrees of freedom [log scaled])

Тезисы вводной лекции

- Данные нужно превращать в числа признаковое описание
- В данных должна присутствовать <u>целевая переменная</u>
- Можно обучить модель предсказывать целевую переменную это называется <u>обучение с учителем</u>
- Если предсказывается число это регрессия, если класс классификация
- Качество модели оценивается с помощью метрик

Colab