Whitney Lab (224 Barrows) Parts Cabinet

Resistors							Ceramic Capacitors		
1Ω	10Ω	100Ω	$1\mathrm{k}\Omega$	$10\mathrm{k}\Omega$	$100\mathrm{k}\Omega$	$1\mathrm{M}\Omega$	100 pF	$1\mathrm{nF}$	10 nF
1.1Ω	11Ω	110Ω	$1.1\mathrm{k}\Omega$	$11\mathrm{k}\Omega$	$110\mathrm{k}\Omega$	$1.1\mathrm{M}\Omega$	120 pF	$1.2\mathrm{nF}$	$12\mathrm{nF}$
1.2Ω	12Ω	120Ω	$1.2\mathrm{k}\Omega$	$12\mathrm{k}\Omega$	$120\mathrm{k}\Omega$	$1.2\mathrm{M}\Omega$	$150\mathrm{pF}$	$1.5\mathrm{nF}$	15 nF
1.4Ω	14Ω	140Ω	$1.4\mathrm{k}\Omega$	$14\mathrm{k}\Omega$	$140\mathrm{k}\Omega$	$1.4\mathrm{M}\Omega$	180 pF	$1.8\mathrm{nF}$	18 nF
1.5Ω	15Ω	150Ω	$1.5\mathrm{k}\Omega$	$15\mathrm{k}\Omega$	$150\mathrm{k}\Omega$	$1.5\mathrm{M}\Omega$	$220\mathrm{pF}$	$2.2\mathrm{nF}$	$22\mathrm{nF}$
1.6Ω	16Ω	160Ω	$1.6\mathrm{k}\Omega$	$16\mathrm{k}\Omega$	$160\mathrm{k}\Omega$	$1.6\mathrm{M}\Omega$	$270\mathrm{pF}$	$2.7\mathrm{nF}$	$27\mathrm{nF}$
1.8Ω	18Ω	180Ω	$1.8\mathrm{k}\Omega$	$18\mathrm{k}\Omega$	$180\mathrm{k}\Omega$	$1.8\mathrm{M}\Omega$	$330\mathrm{pF}$	$3.3\mathrm{nF}$	33 nF
2Ω	20Ω	200Ω	$2\mathrm{k}\Omega$	$20\mathrm{k}\Omega$	$200\mathrm{k}\Omega$	$2\mathrm{M}\Omega$	$390\mathrm{pF}$	$3.9\mathrm{nF}$	$39\mathrm{nF}$
2.2Ω	22Ω	220Ω	$2.2\mathrm{k}\Omega$	$22\mathrm{k}\Omega$	$220\mathrm{k}\Omega$	$2.2\mathrm{M}\Omega$	$470\mathrm{pF}$	$4.7\mathrm{nF}$	$47\mathrm{nF}$
2.4Ω	24Ω	240Ω	$2.4\mathrm{k}\Omega$	$24\mathrm{k}\Omega$	$240\mathrm{k}\Omega$	$2.4\mathrm{M}\Omega$	$560\mathrm{pF}$	$5.6\mathrm{nF}$	$56\mathrm{nF}$
2.7Ω	27Ω	270Ω	$2.7\mathrm{k}\Omega$	$27\mathrm{k}\Omega$	$270\mathrm{k}\Omega$	$270\mathrm{M}\Omega$	$680\mathrm{pF}$	$6.8\mathrm{nF}$	$68\mathrm{nF}$
3Ω	30Ω	300Ω	$3\mathrm{k}\Omega$	$30\mathrm{k}\Omega$	$300\mathrm{k}\Omega$	$3\mathrm{M}\Omega$	$820\mathrm{pF}$	$8.2\mathrm{nF}$	82 nF
3.3Ω	33Ω	330Ω	$3.3\mathrm{k}\Omega$	$33\mathrm{k}\Omega$	$330\mathrm{k}\Omega$	$3.3\mathrm{M}\Omega$	100 nF	$100\mathrm{nF}$	$1\mu\mathrm{F}$
3.6Ω	36Ω	360Ω	$3.6\mathrm{k}\Omega$	$36\mathrm{k}\Omega$	$360\mathrm{k}\Omega$	$3.6\mathrm{M}\Omega$	$120\mathrm{nF}$	$120\mathrm{nF}$	$\mid 4.7 \mu \mathrm{F} \mid \mid$
3.9Ω	39Ω	390Ω	$3.9\mathrm{k}\Omega$	$39\mathrm{k}\Omega$	$390 \mathrm{k}\Omega$	$3.9\mathrm{M}\Omega$	$150\mathrm{nF}$	$150\mathrm{nF}$	$10\mu\mathrm{F}$
4.3Ω	43Ω	430Ω	$4.3\mathrm{k}\Omega$	$43\mathrm{k}\Omega$	$430\mathrm{k}\Omega$	$4.3\mathrm{M}\Omega$	$180\mathrm{nF}$	$180\mathrm{nF}$	$47\mu\mathrm{F}$
4.7Ω	47Ω	470Ω	$4.7\mathrm{k}\Omega$	$47\mathrm{k}\Omega$	$470\mathrm{k}\Omega$	$4.7\mathrm{M}\Omega$	$220\mathrm{nF}$	$220\mathrm{nF}$	$100\mu\mathrm{F}$
$\int 5.1 \Omega$	51Ω	510Ω	$5.1\mathrm{k}\Omega$	$51\mathrm{k}\Omega$	$510\mathrm{k}\Omega$	$5.1\mathrm{M}\Omega$	$270\mathrm{nF}$	$270\mathrm{nF}$	$\mid 470 \mu \mathrm{F} \mid \mid$
$\int 5.6 \Omega$	56Ω	560Ω	$5.6\mathrm{k}\Omega$	$56\mathrm{k}\Omega$	$560\mathrm{k}\Omega$	$5.6\mathrm{M}\Omega$	$330\mathrm{nF}$	$330\mathrm{nF}$	
6.2Ω	62Ω	620Ω	$6.2\mathrm{k}\Omega$	$62\mathrm{k}\Omega$	$620\mathrm{k}\Omega$	$6.2\mathrm{M}\Omega$	$390\mathrm{nF}$	$470\mathrm{nF}$	
6.8Ω	68Ω	680Ω	$6.8\mathrm{k}\Omega$	$68\mathrm{k}\Omega$	$680\mathrm{k}\Omega$	$6.8\mathrm{M}\Omega$	$470\mathrm{nF}$		
7.5Ω	75Ω	750Ω	$7.5\mathrm{k}\Omega$	$75\mathrm{k}\Omega$	$750\mathrm{k}\Omega$	$7.5\mathrm{M}\Omega$	$560\mathrm{nF}$		
8.2Ω	82Ω	820Ω	$8.2\mathrm{k}\Omega$	$82\mathrm{k}\Omega$	$820\mathrm{k}\Omega$	$8.2\mathrm{M}\Omega$	$680\mathrm{nF}$		
9.1Ω	91Ω	910Ω	$9.1\mathrm{k}\Omega$	$91\mathrm{k}\Omega$	$910\mathrm{k}\Omega$	$9.1\mathrm{M}\Omega$	820 nF		