Multiple regression continued

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Overview

Quick review of multiple regression with categorical offsets

Interaction effects

Log transformations of the response variable y

Multicollinearity

If there is time: Polynomial regression

Quick review

Multiple regression

In multiple regression we try to predict a quantitative response variable y using several predictor variables x_1, x_2, \dots, x_k

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} \cdot x_1 + \hat{\beta_2} \cdot x_2 + \dots + \hat{\beta_k} \cdot x_k$$

Goals:

- To make predictions as accurately as possible
- To understand which predictors (x) are related to the response variable (y)

Categorical predictors

Predictors can be categorical as well as quantitative

• When a qualitative predictor has k levels, we need to use k -1 dummy variables to code it

Suppose we want to predict faculty salary y as a function of endowment x_1 , with separate intercepts for faculty rank

$$x_{i1} = \log(\text{endowment})$$

$$x_{i2} = \begin{cases} 1 & \text{if assistant professor} \\ 0 & \text{otherwise} \end{cases} \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1}$$

$$x_{i3} = \begin{cases} 1 & \text{if associate professor} \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1}$$

$$= \begin{cases} & & \\ \hat{\beta}_0 + \hat{\beta}_1 x_{i1} & \text{if full professor} \end{cases}$$

Categorical predictors

Predictors can be categorical as well as quantitative

 When a qualitative predictor has k levels, we need to use k -1 dummy variables to code it

Suppose we want to predict faculty salary y as a function of endowment x_1 , with separate intercepts for faculty rank

```
> summary(fit_prof_rank_offset)
Call:
lm(formula = salary tot ~ log endowment + rank name, data = IPED 2)
Residuals:
           10 Median
                               Max
-52464 -10844 -2703
Coefficients:
                    Estimate Std. Error t value
(Intercept)
                   -120822.1
                     27569.9
log endowment
rank nameAssociate
                                         -24.31 <0.000000000000000000
                                 1685.5
rank nameAssistant
                    -409/3./
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 () 1
Residual standard error: 18370 on 707 degrees of freedom
Multiple R-squared: 0.7192, Adjusted R-squared: 0.718
F-statistic: 603.7 on 3 and 707 DF, p-value: < 0.000000000000000022
```


$$\hat{y}_i = \begin{cases} \hat{\beta}_0 + \beta_1 z_{i1} + \hat{\beta}_2 & \text{if assistant professor} \\ \hat{\beta}_0 + \hat{\beta}_1 z_{i1} + \hat{\beta}_3 & \text{if associate professor} \\ \hat{\beta}_0 + \hat{\beta}_1 z_{i1} & \text{if full professor} \end{cases}$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \hat{\beta}_3 x_{i3}$$
$$= -120,822 + 27,570x_{i1} - 40,973x_{i2} - 27,855x_{i3}$$

Interaction terms

The models we have looked at the relationship between the response and the predictors has been *additive* and *linear*

$$y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$$

These models assume that each predictor acts independently on the response y and that the relationship is linear

We can relax both of these assumptions

Interaction terms

An *interaction effect* occurs when the response variable y is influenced by the levels of two or more predictors in a non-additive way

For example, a professor's salary might be more effected by the size of a school's endowment depending on the number of students who attend the school

We can model this using an equation with an interaction term

$$y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_3 (x_1 \cdot x_2) + \epsilon$$

Interaction terms: categorical predictors

An interaction between a categorical and a quantitative variable corresponds to different slopes for the quantitative variable depending on the value of the categorical variable

• e.g., professor's salary might be more effected by the size of a school's endowment depending whether she is an Assistant or a Full Professor

If Full Professor: salary $\approx \beta_0 + \beta_1 \cdot \text{endowment}$

If Assistant Professor: salary
$$\approx (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \cdot \text{endowment}$$

Additive term if Assistant Professor

Change in slope if Assistant Professor

Interaction terms

Questions?

Let's try it in R...

Transformations of the response variable (y)

As we've seen, we can take a log transformation of an *explanatory x* variable to make a non-linear relationship more linear

Often, it can be useful to take log transformation of a *response variable y* to make the relationship more linear

This can also be useful to deal with heteroskedasticity

How can we interpret the regression coefficients when we have taken a log transformation of the response variable y?

$$log(\hat{y}) = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

If we exponentiate both sides we get:

$$\hat{y} = e^{\hat{\beta}_0 + \hat{\beta}_1} = e^{\hat{\beta}_0} \cdot e^{\hat{\beta}_1 x}$$

If we increase x by 1, we multiply the previous predicted value of $\hat{\mathbf{y}}$ by e^{eta_1}

Side note: Often the natural (base e) log of y is used because for small values of $\hat{\beta}$

$$e^{\hat{\beta}} \approx 1 + \hat{\beta}$$

This is used as a justification for using the natural log, since this allows one to directly see what $e^{\hat{\beta}}$ approximately is from just looking at $\hat{\beta}$

Although it's not very hard to use the exp() on the regression coefficients in R

Let's try it in R...

Multicollinearity occurs when two or more variables are closely related to each other

• E.g., if they have a high correlation

Multicollinearity can make our estimate of the regression coefficients unstable

• i.e., a large range of coefficient $\beta\text{-hat}$ values give the same SSResidual and $\hat{\sigma}_e$

This increases our estimate of the variance of the coefficients we measure and hence can decrease the power to detect a statistically significant predictor

The **variance inflated factor** is a statistic that can be computed to test for multicollinearity for the jth explanatory variable:

$$VIF_j = \frac{1}{1 - R_j^2}$$

where R_j^2 is the coefficient of determination for a model to predict x_j using the other explanatory variables in the model $(x_1, x_2, ..., x_{j-1}, x_{j+1}, ..., x_p)$

• i.e., the R² value for this model:

$$\hat{x}_j = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_{j-1} x_{j-1} + \hat{\beta}_{j+1} x_{j+1} + \dots + \hat{\beta}_p x_p$$

Rule of thumb: suspect multicollinearity for VIF > 5

car::vif(lm_fit)

Are any of the predictors x_i related to y?

We can set this up as a hypothesis test:

$$H_0: \beta_1 = \beta_2 = ... = \beta_p = 0$$

 H_A : At least one $\beta_i \neq 0$

We can run a parametric hypothesis test based on an F statistic to test this hypothesis

summary(Im_fit)

Left foot

Right foot

Left and right foot

```
lm(formula = height ~ left_shoe + right_shoe, data = height_shoe)
Residuals:
     Min
                   Median
                                        Max
-12.9453 -3.3197
                   0.1906
                            2.3335 14.3130
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
             53.141
                         7.165 7.416 5.78e-11 ***
left_shoe
              -1.573
                         4.591
                                -0.343
                                          0.733
right_shoe
              4.544
                         4.586
                                 0.991
                                          0.324
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.808 on 92 degrees of freedom
Multiple R-squared: 0.7445. Adjusted R-squared: 0.7389
F-statistic: 134 on 2 and 92 DF, p-value: < 2.2e-16
```

Neither coefficient is significant

Overall H_0 : $\beta_1 = \beta_2 = 0$ is highly significant

This can happen when there is multicolinearity

Let's try it in R version 4.3.2...

Polynomial regression

Polynomial regression extends linear regression to non-linear relationships by including nonlinear transformations of predictors

salary =
$$\beta_0$$
 + β_1 · endowment
+ β_2 · (endowment)² +
+ β_3 · (endowment)³ + ϵ

Still a linear equation but non-linear in original predictors

Polynomial regression

Polynomial regression extends linear regression to non-linear relationships by including nonlinear transformations of predictors

We can compare model fits by:

- Assessing if higher order terms are statistically significant
- Looking at the r² values
- Running hypothesis tests comparing nested models
- Etc.

Let's try it in R...