2021年10月1日 M1 莫 止競

進捗報告

1 今週やったこと

- class weight の調整
- シャンテン数差の実装

2 classweight の調整

学習データの中三種類のデータの数はかなり差があるため、classweight を使ってテンパイと 1 シャンテンのデータの重みを増やして実験した.

表 1 に結果を示す,テンパイと 1 シャンテンの F1 値は確かに上がったけど,2 シャンテン以上の F1 値は下がった.2 シャンテン以上のデータの数は多いため,全体的の精度が下がった.しかし,一番精度が高い重みはあると考えられる.

X 1. Classweight (12 5 7 5 7 5 8 1 18)							
	precision	recall	f1	元値	support		
0(テンパイ)	0.6403	0.5546	0.5944	0.5663	6735		
1(1 シャンテン)	0.5021	0.5833	0.5396	0.5013	19631		
2(以外)	0.8337	0.7898	0.8111	0.8282	43204		
acc			0.7088	0.7186	69570		

表 1: classweight 付きシャンテン数予測

3 シャンテン数差の実装

まず予測値とデータのシャンテン数の差の平均二乗誤差を使って評価関数 (mean xiangting error) を作った. そして loss にも使うために,新しい二次元ラベルを考えた.テンパイ(0, 1),1 シャンテン(1, 1),2 シャンテン以上(1, 0). loss は各次元の binarycrossentropy の和を使った.しかし(0, 0)というラベルは使ってなかったというのは問題である.実際に実験の時,予測値が(0, 0)になるのはほぼなかった.

表 2 に結果を示す,

表 2: 新ラベルシャンテン数予測

	acc	mxe	シャンテン数差が 2 の確率
新ラベル	0.7195	0.3138	0.011
旧ラベル	0.7186	0.3233	

4 今後の方針

• 三人同時予測モデルの構築

まずは四人の行動を全部モデルに入れて、一人だけのテンパイ予測をした.精度上がらない場合は、三人同時予測モデルをやめる.三つのモデルを使って各プレイヤを別々で予測する..