中国科学技术大学 2010-2011 学年第二学期期末考试试卷

考试科目:原	子物理学	得分:		
学生所在系:	姓名:	学号:		
(200/) vi	. la pr			
一、 (38%) 选	•	4000 5 000 %	こりよっかロリ	
		4000-7000Å, 相,		
• •	` ,	eV (C) 1.77-3.1eV	. ,	
	·	',辐射本领最大的	为波长为 3500A,	
可得星体的表面				
		(C)10600K		
() 3.绝对	黑体的辐射本领	和物体的绝对温度	T的几次方成正	
比?				
(A) $\frac{1}{T}$	(B) T	$(C)T^2$	(D) T^4	
() 4. 由经典物理学严格推出的黑体辐射公式是				
(A)Planck 公	式	(B) Stefan-Boltzman	n 定律	
(C) Wien 位利	多定律	(D) Rayleigh-Jeans	公式	
() 5. 在光电效应实验中,已知钾的红限 $\lambda_0 = 5.5 \times 10^{-5}$ cm,				
现在用波长为4	400Å 的蓝色光照	贸射钾金属表面, 则	则遏止电压为	
(A)0.56 伏特	(B)5.1 伏特	(C)0.09 伏特	(D)0.81 伏特	
() 6. 在电子的杨氏双缝干涉实验中,				
(A)电子随机选择通过其中一条缝;				
(B)电子一分为二,分别通过两条缝;				
(C)如果入射	电子流很弱,每	次只有一个电子通	过双缝时, 在屏	
幕上将不会看至	刂相干条纹;			
(D) 如果严朴	各跟踪每个电子的	的轨迹,则屏幕上不	会有相干条纹。	
()7.μ子和电子一样,带有一个单位的负电荷,质量为m _μ =				
207me; 正μ子具有相同的质量,但是带有单位正电荷。按 Bohr				
理论,由正负μ子组成的基态"原子",粒子之间的距离为				
(A)0.53Å	$(B)1.06\text{\AA}$	(C)0.0051Å	(D)0.0026Å	

() 8.	氢原子从基态被激	发到n = 4的激发	态,吸收的能量为
	(A)0.85eV	(B)13.6eV	(C) $12.75eV$	(D)14.45eV
() 9.	氢原子从n = 4的激	发发态回到基态,	可以有多种方式。
在	这过程中	发射的光谱线,在	可见光范围内的	有几条?
	(A)1	(B)2	(C)3	(D)4
() 10.	一粒质量为 10µg 的	勺灰尘,以 1cm/s	ec 的速度飘浮在空
中	。按 de Bi	roglie 关系可以求出	(它的物质波长为	•
	$(A)6\text{\AA}$	(B)6fm	$(C)6 \times 10^{-9}$	⁹ fm (D)6µm
() 11.	薛定谔猫态的波函	数是"活"和"	死"两种本征态的
叠	加。按照	量子力学的基本原	理,下面的说法。	那个正确?
	(A)打开装	麦猫的盒子前,猫已	经确定了生死,)	只不过我们不知道。
	(B)打开盒	盒子前, 猫既不是活	5的,也不是死的	5 0
	(C)打开盒	盒子后, 猫的状态是	是生死两种状态的	 1 叠加。
	(D)原则_	上, 可以通过求解的	薛定谔方程,预 飞	言猫的生死。
() 12.	下列的物理量, 啁	『些不能同时精确	〕测量?
	$(A)\mathbf{\hat{p}_x},\mathbf{\hat{p}_y}$	(B) x, $\mathbf{\hat{p}_y}$	$(C) \widehat{L}_x$, \widehat{L}_y	$(\mathrm{D}) \widehat{p}_x$, \widehat{L}_y
() 13.	氢原子中处于n=	2的能级,则1.3	不可能的取值为
		(B) $-\hbar^2$	4	
(不考虑电子的自动	L	
	个不同状		, , ,	,
	•	(B)3	(C)15	(D)4
(氢原子处于基态,		
	$(A)\mu_B$	$(\mathrm{B})2\mu_B$	$(C)\sqrt{3}\mu_B$	(D)0
(Zeeman 效应是由化		, ,
	(A)相对i	仑效应	(B) 自旋轨道	
	(C)轨道磁	兹矩和外磁场的耦台		
() 17.	已知氢原子 $S = \frac{1}{2}$,	j = ⁵ ,朗德因子g:	= 6/7,原子态为
		(B) ${}^{2}P_{5/2}$	_	
(关于两电子波函数		
	(A)两个电	电子的自旋波函数必	公然反对称 。	
	(B)两个电	电子的空间波函数必	公然反对称。	

- (C)两个电子的总波函数反对称。
- (D)两个电子的总波函数对称。
- () 19. 两个同科电子的电子组态是 $2p^2$, 并处于自旋三重态,则轨道量子数 L 为

(A)0 (B)1 (C)2 (D)3

二、(6%)某种类氢离子光谱中,已知属于同一线系的三条谱线波长分别为99.2nm,108.5nm,121.5nm. 给出波长介于99.2~121.5nm之间的其它同线系谱线。

三、 (6%)根据测不准关系,如果电子落入原子核(半径为 10fm)中,电子具有的最小动能为多少?此时是否需要考虑相对论效应?

姓名和学号:_____

本张考卷得分: ____

四、(20%)质量为 m 的粒子处于宽度为a的一维无限深势阱之中,

$$V(x) = \begin{cases} 0, & 0 < x < a; \\ +\infty, & x < 0 \text{ or } x > a. \end{cases}$$

- (1) 写出能级和归一化的定态波函数。
- (2) 现在假设在t=0时, 粒子处于基态。

在x = -a处设立一个无限高势垒,并突然把

x = 0处的隔板撤除,即势函数突然变成

$$V'(x) = \begin{cases} 0, & -a < x < a; \\ +\infty, & x < -a \text{ or } x > a. \end{cases}$$

求粒子处于新的基态的概率。

五、(10%)已知产生算符 \hat{a}^{\dagger} 和湮灭算符 \hat{a} 满足对易关系 $[\hat{a},\hat{a}^{\dagger}]$ = 1。粒子数算符定义为 $\hat{N} \cong \hat{a}^{\dagger}\hat{a}$ 。计算 $[\hat{a},\hat{N}]$ 和 $[\hat{a}^{\dagger},\hat{N}]$ (要求将最终的结果化简成线性形式,不得含有两个算符的乘积)。

六、(10%)写出铁原子(Z=26)的基态电子组态,并根据洪特规则确定基态原子态。(注:此题必须写出理由,只有结论者不得分)

七、(10%)某种原子服从LS 耦合,它的一个五重态相邻能级间隔之比为2:3:4:5,确定这些能级的量子数L、S、J,并把这些态用原子态符号表示。

可能会用到的公式及物理常数

光速 $c = 2.99792458 \times 10^8 \text{m/s}$ Planck 常数 $h = 6.626069 \times 10^{-34} \text{J} \cdot \text{s}$

 $\hbar = h/2\pi = 1.0545716 \times 10^{-34} J \cdot s = 6.58212 \times 10^{-22} MeV \cdot s$

 $\hbar c = 197.3 \text{MeV} \cdot \text{fm}$ $hc = 1.24 \times 10^{-6} \text{m} \cdot \text{eV}$

电荷单位 $e = 1.602 \times 10^{-19}$ C 原子单位 $1u = 931.5 \text{MeV/c}^2$

电子质量 $m_e = 0.511 \text{MeV/c}^2 = 9.11 \times 10^{-31} \text{kg}$

Stefan-Boltzmann 常量 $\sigma = 5.6704 \times 10^{-8} \text{W}/(\text{m}^2 \cdot \text{K}^4)$

Wien 位移定律系数b = 2.898×10^{-3} m·K

精细结构常数 $\alpha=e^2/(4\pi\epsilon_0\hbar c)\approx 1/137.036$

物质波 de Broglie 关系 $E = h\nu$, $\vec{p} = \hbar \vec{k}$, $p = h/\lambda$

Einstein 质能关系 $E = mc^2$, $E^2 = p^2c^2 + m_0^2c^4$

薛定谔方程
$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right)\psi(\vec{r},t) = i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t)$$

定态薛定谔方程
$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right)u(\vec{r}) = Eu(\vec{r})$$

测不准关系 $\Delta x \Delta p_x \geq \hbar/2$

电子的经典半径 $r_e = e^2/(4\pi\epsilon_0 m_e c^2) = 2.818 \times 10^{-15} m_e$

Bohr 半径
$$a_{\infty} = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2} = r_e \alpha^{-2} = 0.529 \times 10^{-10} m$$

Rydberg 能量 $hcR_{\infty}=m_{e}c^{2}\alpha^{2}/2=13.6eV$

Rydberg 常数 $R_{\infty} = 1.0973731534(13) \times 10^7 \text{m}^{-1}$

单电子原子的朗德因子g = $1 + \frac{j(j+1)+s(s+1)-l(l+1)}{2i(j+1)}$

期德间隔定则 $E_{I+1} - E_I = \hbar^2 \zeta(L, S)(J+1)$

基态原子态的洪特规则:

- (1) 对给定的电子组态,原子基态具有泡利不相容原理允许的最大 S 值。
- (2) 对给定S的多重态, L越大能量越低。
- (3) 电子数小于支壳层半满数目时, J 越小能量越低; 反之则 J 越大能量越低。

一、选择题

1.
$$hc = 1.24 \times 10^4 \text{Å} \cdot \text{eV}$$
, $E = hv = hc/\lambda = 1.77 \sim 3.1 \text{eV}$ C

2.
$$T = b/\lambda_m = 2.898 \times 10^7/3500 = 8280 K$$
 A

5.
$$W = \frac{hc}{\lambda_0} = \frac{12400}{5500} = 2.2545 eV$$
, $E = \frac{hc}{\lambda} = \frac{12400}{4400} = 2.8182 eV$, $V_0 = \frac{E-W}{e} = 0.56 volt$

6. D

7.
$$\frac{1}{\mu} / \frac{1}{m_e} a_{\infty} = \frac{2m_e}{m_{\mu}} a_{\infty} = \frac{2}{207} * 0.529 = 0.00511 \text{Å}$$

9. B. P22,
$$4 \rightarrow 2,487$$
nm; $3 \rightarrow 2,653.6$ nm

13.
$$l = 0,1; s = \frac{1}{2}; j = \frac{1}{2}, \frac{3}{2}; \vec{l} \cdot \vec{s} = \frac{j(j+1)-l(l+1)-s(s+1)}{2} = 0, -1, 1/2,$$

17.
$$l = 3$$

二、 习题 1.11,
$$\tilde{v} = 4R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$$
, $n = 7,5,4$. 另一条谱线为 n=6, $\lambda = \frac{1}{\tilde{v}} = 102.6$ nm

三、
$$p_x^2 \approx \Delta p_x^2 \approx \frac{\hbar^2}{4 \mathrm{L}^2}$$
 , $\mathrm{E} = \sqrt{\vec{\mathrm{p}}^2 + \mathrm{m}_\mathrm{e}^2} \approx \sqrt{\frac{3}{4 L^2} + m_e^2} \approx \frac{\sqrt{3}}{2 \mathrm{L}} = \frac{\sqrt{3}}{2 \mathrm{L}} \hbar \mathrm{c} = \frac{\sqrt{3}}{2 \cdot 10} \cdot 197.3 \mathrm{MeV} = 17 \mathrm{MeV} = 2.74 \times 10^{-12} \mathrm{J}$, $\mathrm{E} \gg \mathrm{m}_\mathrm{e}$, $\mathrm{E}_\mathrm{k} \approx \mathrm{E}$, 必须考虑相对论效应.

(2)

$$k'_{n} = n\frac{\pi}{2a}, E'_{n} = \frac{\hbar^{2}}{8m} \frac{\pi^{2}}{a^{2}} n^{2}, u'_{n}(x) = \begin{cases} \sqrt{\frac{1}{a}} \cos k'_{n} x, & n = 1,3,5,\cdots \& |x| < a; \\ \sqrt{\frac{1}{a}} \sin k'_{n} x, & n = 2,4,6,\cdots \& |x| < a; \\ 0, & |x| > a. \end{cases}$$

$$A_{1} \stackrel{\text{def}}{=} (u'_{1}, u_{1}) \equiv \int_{0}^{a} \sqrt{\frac{2}{a}} \sin \frac{\pi}{a} x \sqrt{\frac{1}{a}} \cos \frac{\pi}{2a} x \, dx = \frac{4\sqrt{2}}{3\pi}$$

$$P_{1} = |A_{1}|^{2} = \frac{32}{9\pi^{2}} \approx 0.36$$

分数为 10+10

$$\pm$$
, $[a,N] = a$, $[a^{\dagger},N] = -a^{\dagger}$

$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$$
, 5D_4