TOSHIBA

SERVICE MANUAL

VIDEO CASSETTE RECORDER **V-705W**

SECTION 2 ADJUSTMENT PROCEDURES

1. MECHANICAL ADJUSTMENT

1-1. Mechanical Parts Location

Bottom View

1-2. Servicing Jig List

Note: Conventional alignment tapes ST-C1 (70909227) and ST-C3 (70909264) can be used partially.

1-3. Main Parts Servicing Time

- Part replacement time differs from servicing life time of each part.
- Following table is prepared based on a standard condition (room temperature, room humidity). The replacement time will be varied depending upon operation environment, using methods, operation duty, etc.
- Particularly, life of the upper cylinder depends upon operation conditions.

	De d Nome	Service time (Operating Hours)							Note					
	Part Name		1000	1500	2000	2500	3000	3500	4000	4500	5000	Note		
Tape Transport System	Tension post		Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	When cleaning, use a swab or		
	S/T slant guide post											piece of gauze soaked in		
	Impedance roller *	Δ										alcohol.		
	No. 8 guide post											 After cleaning, cleaned parts are dried comepletely, and then load a video cassette. 		
	Capstan													
	No. 9 guide post													
	No. 3 guide post													
e Tr	S/T guide roller	Δ	Δ	Δ	0	0	0	0	0	0	0	When lubricating, always use the		
Tap	Upper cylinder	Δ	0	0	0	0	0	0	0	0	0	specified oil.		
	Slip ring assembly		0	0	0	0	0	0	0	0	0	• When the lubricating, apply one		
	FE head	Δ	Δ	Δ	0	0	0	0	0	0	0	or two drops of oil after the cleaning with alcohol.		
	ACE head	Δ	0	0	0	0	0	0	0	0	0			
	Pinch roller	Δ	0	0	0	0	0	0	0	0	0			
	Capstan motor	Δ	Δ	Δ	Δ	Δ	0	0	0	0	0			
System	Loading motor				0	0	0	0	0	0	0			
Drive Sys	Loading belt/ Reel belt	Δ	0	0	0	0	0	0	0	0	0			
Tape D	S reel table assembly		0	0	0	0	0	0	0	0	0			
^F	T reel table assembly		0	0	0	0	0	0	0	0	0	Check the back tension.		
	Idle gear assembly	Δ	0	0	0	0	0	0	0	0	0			
Other	Band brake assembly		0		0		0		0		0			

 Δ : Cleaning O: Check and replace if necessary

^{*} There are two types. One type has an impedance roller and another type has no impedance roller.

1-4. V3 Mechanism Check Method

If the abnormal condition is caused by the mechanism itself, analyze the cause according to the following procedures.

1-4-1. External Appearance Check

- (1) Check whether there are foreign matters or not inside the VTR.
- (2) Check whether the cylinder and the guides for tape transport system are contaminated.

1-4-2. Motor Sensor System Check

Check whether some abnormalities are found in the motor or the sensor system (including control circuits) according to the flow chart.

Fig. 4-1-1

1-4-3. Abnormality Analysis by Self-check Function

The unit used V3 mechanism has a self-check function. The self-check function works as a system which stored some abnormal condition. So, use this function to try to analyze the cause(s).

For the data display method and the content of the data, refer to the self-check function (described on page 2-47) in item 2-3.

Note:

- Abnormal data is displayed only when the first abnormal condition occurs, and is not displayed in the second time. Accordingly, the claim from customers and the actual data displayed may be different.
- The data is stored only when the power turns off after occurring the abnormality condition(s). The data is not stored when the unit operation is recovered by the microcomputer.
- After repairing, initialize the data by pressing the [COUNTER RESET] button while displaying the abnormal mode.

The typical examples in abnormal condition are shown below.

Table 4-3-1

Α	В	С	Abnormal Condition	Check Item		
06	01	09	Cylinder is stopped at playback position during playback the tape.	Check the cylinder motor. Check if the cylinder and tape transport guide		
02	01	04	Cylinder is stopped at FF/REW position during rewind the tape.	are clogged.		
05	02	09	T reel sensor is abnormal at playback postion during playback the tape.	Check the capstan motor.		
03	03	רם	S reel sensor is abnormal at playback position during REVIEW the tape.	Refer to the cases 2 and 3 describe on the table "Defective analyzing list".		
01	84	02	Cassette-in and out operation cannot be performed.	Refer to the case 1 described on the table		
03	05	08	Mode shift cannot be performed during shifting to REVIEW.	"Defective analyzing list".		

A: System control mode, B: Abnormality No., C: Mechanical position when an abnormality occurs.

1-4-4. Check by Defective Analyzing List

If the abnormality causes the mechanism abnormal condition, presume, confirm and treat the defective according to the "Defective analyzing list" in table 4-4-1.

(1) Manual mechanism operation (mode shift) method

Push in the lock lever R and L manually and turn the worm wheel counterclockwise as shown in Fig. 4-1-1. The cam gear is turned clockwise and the mode shifts to the direction where the loading operation can be performed. So, check the mechanism condition in the defective mechanism position when the abnormality occurs.

(2) Defective parts replacement

When a defective occurs due to the defective part(s) and the part(s) is replaced, take care the following items.

 Especially as for the mechanical parts requiring the phase alignment, take care of the part replacement
 E.g. Assembling mode, phase alignment mark and etc. As for the part(s) requiring lubricant such as a specified amount of oil or grease, apply grease or oil according to the instructions and do not stick grease or oil to the portions without allowing to stick it (especially in removal and assembly).

(3) Check after treating the defective

After replacing a defective part and/or aligning a part, first check the mechanism operation manually and confirm that no problem occurs, and then mount the mechanical deck, turn the power ON and check the mechanism operation.

Note:

After replacing the defective parts according to the
procedure of the treatment method for the "damage
and phase shift of mechanical part", check the
operation of the mechanism again, since the same (or
similar) defective problem may occur due to other
serious cause (in mechanism or electrical circuit)
when performing the actual total check with turning
the power on.

Table 4-4-1 Defective Analyzing List

Case	Defective Phenomenon (Main Items)	Presumed Cause (Main Cause)	Check Method		
1	Power does not turn on. Loading operation is defective. Mode shift operation is defective.	<general> Mechanical stops due to mechanical phase unmatching.</general>	Check mode shift "Cassette out FF/REW position" can be performed when turning worm wheel.		
	Loading operation is not performed.	Loading motor does not rotate. (Loading motor is defective or circuit is defective.)	Check loading motor whether it turns by the outer power supply (12.5V).		
	Unloading operation is not performed.	S reel does not wind the tape.	Refer to case 3 in this table.		
2	Playback operation is not performed. Playback operation is defective.	<pre><general> Main brake is not released. (ON) T soft brake is not released. (ON) Idoler does not swing. Pinch does not press.</general></pre>	Check mechanical position.		
:		Capstan motor does not rotate. (Capstan motor is defective or circuit is defective.)	Check capstan motor.		
	Playback picture does not appear. Video recording can not be performed.	<in case="" mechanical="" no="" of="" problem=""> Cylinder is defective. (Circuit is defective.)</in>	Check cylinder assembly.		
3	Playback interruption. Detective phenomenon during	Reel rotation detection is defective. (Sensor is defective. Circuit is defective.)	Check sensor output.		
	playback. Recording interruption.	Idler does not swing.	Check mechanical position.		
		Reel belt is removed.	Check the reel belt is removed or not.		
4	FF operation is not performed. FF operation is defective. REW operation is not performed. REW operation is defective.	Main brake is not released. (ON) T soft brake is not released. (ON) Idler does not swing. Pinch is not released.	Check mechanical position.		
	Others: REV/FF is not performed. Others: REV/FF is defective.	Capstan motor does not rotate. (Capstan motor is defective or circuit is defective.)	Check capstan motor.		
5	REVIEW is not performed.	Main brake is not released. (ON) T soft brake is not actuated. Idler does not turn. Pinch does not press.	Check mechanical position.		
		Capstan motor does not rotate. (Capstan motor is defective or circuit is defective.)	Check capstan motor.		
6	Slot-in is not performed. Cassette can not be inserted.	<general> When the F/L is mounted on the mechanical deck, the position is not correct.</general>	Check mechanical position.		
7	Capstan servo does not work.	Capstan motor is defective.	Check capstan motor.		
, '	Capstan servo is uneven. Tape speed is fast. Tape speed is slow. Tape speed is uneven. FG pulse is not output.	ACE head control output is defective. (Circuit is defective.)	Check ACE head. Check CTL output.		
	Audio output does not come out.	ACE head is defective.	Check ACE head. Check CTL output.		
8	Audio output is small. Audio output variation is large. Audio output is uneven.	Tape transport adjustment is not defective.	Perform tape transport adjustment again after confirming tape transport condition.		
	Audio distortion. Audio noise. Others: Audio is defective.	Hi-Fi head (cylinder) is defective. (Circuit is defective.)	Check cylinder. Check whether B+14V is supplied.		

1-5. Mechanical Deck Removal and Mounting

1-5-1. Mechanical Deck Removal

- Remove three screws (2) mounting the top cover (1) and remove two screws (3) mounting the chassis and remove the top cover sliding backward and lifting upward.
- 2. Remove two screws (4) and remove the front panel (5).
- 3. Remove FFC (8) connecting between main unit (6) and KDB unit (7), lead wire (11) connecting between terminal unit (9) and FCB unit (10). Remove lead wire (14) between a mechanical deck (12) and FCB unit (10) by loosening screw (13).

Note:

In this case, remove FFC (8) on KDB unit (7) side, lead wire (11) on FCB unit (10) side and lead wire (14) on mechanical deck (12) side.

4. Remove two screws (15) and power unit (16).

- 5. Remove two screws (17) and a screw (18) securing the mechanical deck (12).
- 6. Remove the claw securing the main unit (6).
- 7. Remove the mechanical deck (12) with the main unit (6) from the chassis lifting the terminal board (20) slightly and pulling the top bracket (19) upward.

Note:

When pulling the top bracket upward, take care not to deform the reinforcement plate located below the F/L assembly.

- 8. Remove the lead wire connecting between the mechanical deck (12) and the main unit (6) or terminal unit (9).
- 9. Turn over the mechanical deck (12).
- 10. Remove the reel belt (21) and one screw (22).
- 11. Remove four claws securing the mechanical deck (12) and the main unit (6), and then remove the main unit (6) pulling upward.

Fig. 5-1-1

1-5-2. Mechanical Deck Mounting

 Turn over the mechanical deck and lower the main unit vertically adjusting the tape end sensor and etc. to the holes.

Note:

- Adjust the rotor of the cylinder motor and the stator of the main unit, and then lower the main unit further more till four claws catch the mechanical deck completely.
- Take care not to damage the rotor and the stator.
- When locking the claw of the front right side to the main unit, turn the REC inhibit lever so as not to damage the switch.
- 2. Mount the mechanical deck on the chassis in reverse order of removal.

Note:

When mounting the front panel, mount it with its door fully open.

1-5-3. Confirmation of Each Operation Mode without Cassette

- 1. Shut out the light to the start/end sensor.
- 2. Release the both sides of the lock lever and make a slot-in condition.
- 3. Turn the reel table manually located on the opposite side of the rotating reel table.
- 4. In this condition, confirmation of each operation mode can be performed.

Note:

When turning the opposite side reel table of the rotating reel table manually in playback, FF/REW mode, and sending no reel pulse, the auto eject or power off function is performed.

1-6. Main Parts Replacement

1-6-1. Top Bracket Replacement

- 1. Remove two securing screws (2) on the top bracket (1).
- 2. Remove the top bracket (1) lifting in the direction shown by the arrow.

Fig. 6-1-1

3. When mounting the top bracket (1), move the tip of the grip lever (3) on the cassette holder assembly to the inclined portion of a trapezoidal cam, and then mount the top bracket (1).

Fig. 6-1-2

Note:

• After remounting the top bracket (1), move the cassette holder forward and backward, and then confirm the claws of the lock lever (5) catch completely the both left and right sides of the stopper section (4) at the top bracket (1).

Fig. 6-1-3

1-6-2. Cassette Holder Assembly Replacement

- 1. Remove the top bracket. (Refer to item "1-6-1. Top Bracket Replacement".)
- 2. The cassette holder assembly (1) is guided along the guide grooves (2) with both left and right bosses of the cassette holder assembly (1). So first remove each side boss (3) on both left and right sides of cassette holder assembly (1) from the guide groove (2).
- 3. When the cassette holder assembly (1) is set at the EJECT position, the boss is located at (a), so move the boss from (a) to (b) and remove the bosses on both left and right sides simultaneously.

Fig. 6-2-1

Note:

The grip lever (4) on the cassette holder assembly (1) may catch the trapezoidal cam on the mechanical deck (2), so perform the work lifting the grip lever in the direction shown by the arrow.

Fig. 6-2-2

- 4. After removing the front side bosses (5) on both left and right sides, remove the cassette holder assembly (1) pulling to the front side.
- 5. When mounting the cassette holder assembly (1), insert the front side bosses (5) to the U shaped groove of the drive arm (6) and the guide groove (2) on the mechanical deck lifting the rear side of the cassette holder assembly (1).

Fig. 6-2-3

6. When mounting the rear side bosses (3), perform the reverse order of removal.

1-6-3. Door Open Lever Replacement

1. Release the lock lever (2) on the cassette holder assembly (1) pressing in the direction shown by the arrow.

Fig. 6-3-1

- 2. Move the cassette holder assembly (1) slightly to the rear side.
- 3. Remove the claws (A) and (B) on the door open lever (3) from the mechanical deck (4).
- Match the boss on a new door open lever (3) and the hole (C) on the mechanical deck, and then insert the claws (B) first and then (A) to the mechanical deck (4).

Fig. 6-3-2

5. Remount the cassette holder assembly to the position as it was.

1-6-4. Drive Lever Gear Replacement

1. Make the cassette holder assembly to the slot-out (EJECT) position.

Note:

- In this condition, both mark holes on the F/L drive slider (1) and the mechanical deck fit with each other, also the hole of the boss on the drive lever gear (2), the center of the gear tooth and the marking line are in line.
- 2. Move the claw of the drive arm (3) to the direction of the arrow (A) and remove the drive lever gear (2) upward.

Fig. 6-4-1

3. When remounting the drive lever gear (2), take care of the phase position (refer to the note described above.) and mount in the reverse order of removal.

1-6-5. Drive Arm Assembly Replacement

- Remove the top bracket assembly. (Refer to item "1-6 Top Bracket Replacement".)
- 2. Remove the cassette holder assembly. (Refer to item "1-6-2. Cassette Holder Assembly Replacement".)
- 3. Remove the door open lever. (Refer to item "1-6-3. Door Open Lever Replacement.")
- 4. Remove the drive lever gear. (Refer to item "1-6-4. Drive Lever Gear Replacement".)
- 5. Pull the REC-inhibiting lever slightly to the front side, turn the drive arm assembly (1) to the front side and push it in the direction shown by the arrow. Remove the left side boss (2) on the drive arm assembly (1) from the cutout of the guide groove on the mechanical deck (3).
- 6. Remount the drive arm assembly (1) in the reverse order of removal.

Fig. 6-5-1

1-6-6. Cam Lever Replacement

- 1. Remove the top bracket. (Refer to item "1-6-1. Top Bracket Replacement".)
- 2. Remove the cassette holder assembly. (Refer to item "1-6-2. Cassette Holder Assembly Replacement".)
- 3. Remove the cam slider. (Refer to item "1-6-41. Cam Slider Replacement".)
- 4. Remove the loading drive assembly. (Refer to item "1-6-29. Loading Drive Assembly Replacement".)
- 5. Remove the drive lever. (Refer to item "1-6-40. Drive Lever Replacement".)
- 6. Remove the pinch roller assembly. (Refer to item "1-6-21. Pinch Roller Assembly Replacement".)
- 7. Remove the cam gear. (Refer to item "1-6-31. Cam Gear Replacement".)
- 8. Move the cam lever (1) until it stops in the direction shown by the arrow (A). Pull out the cam lever (1) lifting up straightly at the position where the cam lever (1) stops.
- 9. Apply grease to the portions of bosses (A) to (C) on a new cam lever.

Note:

- Confirm that the boss (A) on the cam lever (1) is inserted into the hole on the F/L drive slider (2).
- After inserting the cam lever (1), confirm that the cam lever (1) moves smoothly.
- 10. Replace the cam lever in the reverse order of removal.

Fig. 6-6-1

1-6-7. F/L Drive Slider Replacement

- 1. Remove the top bracket. (Refer to item "1-6-1. Top Bracket Replacement".)
- 2. Remove the cassette holder assembly. (Refer to item "1-6-2. Cassette Holder Assembly Replacement".)
- 3. Remove the cam slider. (Refer to item "1-6-41. Cam Slider Replacement".)
- 4. Remove the loading drive assembly. (Refer to item "1-6-29. Loading Drive Assembly Replacement".)
- 5. Remove the drive lever. (Refer to item "1-6-40. Drive Lever Replacement".)
- 6. Remove the pinch roller assembly. (Refer to item "1-6-21. Pinch Roller Assembly Replacement".)
- 7. Remove the cam gear. (Refer to item "1-6-31. Cam Gear Replacement".)
- 8. Remove the cam lever. (Refer to item "1-6-6. Cam Lever Replacement".)
- 9. Remove the drive lever gear. (Refer to item "1-6-4. Drive Lever Gear Replacement".)
- 10. Push the F/L drive slider (1) in the direction shown by the arrow (A) and slide it. Furthermore, pull out it to the front side lifting it in the direction shown by the arrow (B).
- 11. Apply grease to the shaded parts (a) to (d) on a new F/L drive slider (1).

Note:

For the phase alignment of the drive lever gear, refer to item "1-6-4. Drive Lever Gear Replacement".

12. Replace the F/L drive slider (1) in the reverse order of removal.

Note:

After completion of the replacement, confirm that the F/L drive slider (1) moves smoothly.

1-6-8. Arm Brake Lever Assembly and Arm Brake Torsion Spring Replacement

- 1. Make the cassette holder assembly to the slot-out (EJECT) position.
- 2. Turn the arm brake lever assembly (1) in the direction shown by the arrow (A) until it stops. Pull out the arm brake lever assembly (1) to the front at the position it stops.

Note:

Take care that the arm brake torsion spring (2) is removed forcefully.

Fig. 6-8-1

3. Hook the arm brake torsion spring (2) temporarily to a new arm brake lever assembly (1).

Note:

Take care of the direction of the arm brake torsion spring (2) so that the longer end of the arm brake torsion spring

Fig. 6-8-2

- 4. Insert the hook portion on the arm brake lever assembly (1) to the cutout on the mechanical deck.
- 5. Turn the arm brake lever assembly (1) counterclockwise and fix it at the position which the arm brake lever assembly (1) faces to the straight below.
- When pushing the tip of the arm brake torsion spring

 (2) located at (B) position, the tip is removed from the temporary hook and moves to the hook on the mechanical deck.
- 7. The arm brake lever assembly turns to the specified position by force of the arm brake torsion spring.

Fig. 6-8-3

1-6-9. Cylinder Assembly Inspection and Replacement

<Inspection>

- Check if the tape transport surface on the lower cylinder assembly are not damaged.
- 2. Check if the rotation of the upper cylinder assembly is not abnormal.

When any abnormality is found according to the inspection procedures described above 1 and 2, replace the cylinder assembly.

<Replacement>

- 1. Remove the ground brush assembly.
- 2. Remove the head cleaner. (Refer to item "1-6-14. Head Cleaner Replacement.")
- 3. Remove the FPC (1) on the Preamplifier.
- 4. Remove three screws (2) and the cylinder holding plate (3) and (4). (Refer to item "1-6-12. Cylinder Holding Plate Replacement".)
- 5. Remove the cylinder assembly (5).
- 6. Remount the cylinder assembly (5) in the reverse order of removal. Fix the cylinder pressing slightly in the direction shown by the arrow (A) and the cylinder holding plate (3) pressing slightly in the direction shown by the arrow (B). (Tightening torque: 294 392 mN•m (3 4 kg•cm))

Note:

- When replacing, take much care not to touch the video head directly and damage the cylinder.
- 7. Perform the tape transport adjustment.

1-6-10. Upper Cylinder Assembly Inspection and Replacement

<Inspection>

- 1. Check if the video heads are damaged or worn out.
- 2. Check the video heads for clogging. (In case that the clogging is not remedied after cleaning.)

<Replacement>

- 1. Remove the ground brush assembly.
- 2. Remove two securing screws (1) and remove the upper cylinder assembly (2).
- 3. Clean the new upper cylinder assembly (2) and the flange (3) mounting surface with a cleaning kit.
- Align the head (green) and the marker on the rotary transformer PC board (4) and then mount the upper cylinder assembly (Tightening torque: 294 392 mN•m. (3 4kg•cm)

Fig. 6-10-1

Fig. 6-9-1

Fig. 6-10-2

Fig. 6-10-3

Note:

- During the work in steps 3 to 4, take care not to touch the connector assembly and deform the spring.
- 5. Perform the tape transport adjustment according to its procedures.

1-6-11. Lower Cylinder Assembly Inspection and Replacement

<Inspection>

- 1. Check if the tape transport surface on the lower cylinder assembly is not damaged.
- 2. Check if the rotation of the upper cylinder assembly is not abnormal.
- 3. Check if the FPC on the Preamplifier is not damaged. When any abnormality is found under the inspection described in the steps (1) to (3), replace the cylinder

<Replacement>

assembly.

- 1. Remove the cylinder assembly. (Refer to item "1-6-9. Cylinder Assembly Inspection and Replacement".)
- 2. Remove two securing screws (1) and remove the upper cylinder assembly (2).
- 3. Replace the lower cylinder assembly (3).
- 4. Mount the lower cylinder assembly in the reverse order of removal taking care not to touch the video head directly and damage the cylinder.

- Take care not to deform the joint spring on the upper cylinder assembly (2).
- 5. Perform the tape transport adjustment according to its procedures.

Fig. 6-11-1

1-6-12. Cylinder Holding Plate Replacement

- 1. Remove screws (1) and (2) securing the cylinder holding plate (3) and a screw (5) securing the cylinder holding plate (4).
- 2. Remove the cylinder holding plate (3) and (4) sliding in the direction shown by the arrow (B) and (A).
- 3. Eliminate the cylinder lock key (wedge shaped parts).
- 4. After replacing the cylinder holding plates (3) and (4), mount new parts in the reverse order of removal.

Note:

- When remounting, fix the cylinder while pushing in the direction shown by the arrow (A) and the cylinder holding plate (3) in the direction shown by the arrow (B). Then tighten three screws while pushing the cylinder holding plate (4) toward the stopper on the outsert of the mechanical deck.
- Tightening order of the screws is $(1) \rightarrow (2) \rightarrow (5)$.
- Tightening torque of the screws (1), (2), (5) is 294 –
 392 mN·m (3 4 kg·cm).

Fig. 6-12-1

1-6-14. Head Cleaner Replacement

<Roller sub assembly replacement>

- 1. Remove the roller sub cleaner assembly (2) pulling upward from the hook (A) on the cleaner lever (1).
- 2. After replacing the roller sub assembly, mount in the reverse order of removal.

<Cleaner lever replacement>

- 1. Undo the hook (B) of the cleaner lever (1) from the mechanical deck, and pull out the cleaner lever (1) upward.
- 2. Replace the cleaner lever (1) on the roller sub assembly (2), and mount the cleaner lever (1) in the reverse order of removal.

Note:

• Take care the roller sub assembly (2) is not stained with grease or oil.

Fig. 6-14-1

Note:

 When remounting the head cleaner, position the stopper rib (C) in front of the stopper (D).

Fig. 6-14-2

Note:

 Confirm that the joint portion (E) of the elastic spring positions in front of the assist pin (F) on the cleaner assist lever (4).

Fig. 6-14-3

1-6-15. No. 8, No. 3 Guide Sleeves Replacement

- 1. When replacing the No. 8 guide sleeve (1), first remove the guide cap (2) on the loading bracket assembly.
- 2. Pull out the guide sleeve (1) from the guide post (3).

Note:

- Take care not to break the No. 8, No. 3 guide posts on the mechanical deck if twisting the guide sleeve forcefully.
- 3. Insert a new guide sleeve (1) to the guide post.

Note:

- When inserting the guide sleeve (1), take care so that its hole faces the opposite side to the tape transport surface.
- 4. For No. 8 guide sleeve, insert the No. 8 guide cap (2) onto it.

Fig. 6-15-1

1-6-16. ACE Head Assembly Replacement

- 1. Remove the FFC (1) from the connector.
- 2. Remove two screws (2) and remove the ACE main base (3) and ACE head assembly (4).
- 3. Remove three adjusting screws (5), (6), and (7) and then remove the ACE head assembly (4).

Note:

- When replacing ACE head (9) only without replacing its PC board, unsolder the ACE head (9) on the ACE head PC board (8) and then remove the ACE head (9) and the ACE head PC board (8).
- Mount the ACE head assembly (4) in the reverse order of removal.

Note:

• When reassembling the ACE head assembly (4), First set the ACE springs (10) between the ACE head assembly (4) and the ACE main base (3), and secure the adjusting screws (5), (6), and (7).

Fig. 6-16-1

- When securing three adjusting screws, mount the ACE main base (3) and ACE head assembly (4) so that the clearance between them becomes parallel with the specified preset value (4.3 ± 0.1 mm).
- 5. After replacing, perform the tape transport adjustment.

Note:

• When replacing the ACE head assembly (4), always use an ACE head (9) having the same part number. Do not use any other ACE head assembly.

1-6-17. FE Head Replacement

- Open the FE head holding hook (1) on the mechanical deck slightly in both left and right directions and remove the FE head (2) by moving in the direction shown by the arrows.
- 2. Replace the FE head (2) and mount the parts in the reverse order of removal.
- 3. Perform adjustment from the linearity adjustment item in the tape transport system adjustment.

Note:

- When mounting the FE head, Push the head backward completely.
- Though FE head (2) can be removed upward by opening the FE head holding hook (1) to both left and right directions, perform the standard replacement procedure described above since this may cause deformation of the hook.

Pull up after sliding horizontally.

Fig. 6-17-1

1-6-18. S, T Slider Replacement

- 1. Remove the tension lever assembly. (Refer to item "1-6-23. Tension Lever Assembly Replacement".)
- 2. Remove the loading slider. (Refer to item "1-6-25. Loading Slider Replacement".)
- 3. Remove the S loading assembly. (Refer to item "1-6-24. S Loading Assembly Replacement".)
- 4. Remove the T loading assembly. (Refer to item "1-6-24. T Loading Assembly Replacement".)
- 5. Remove the S slider (1) and T slider (2) lifting up to the cutout of the groove on the mechanical deck (3).
- Remove the S and T guide rollers and mount a new slider.
- 7. Mount the parts in the reverse order of removal.

Note:

Perform the phase alignment between the loading slider (4) and S, T loading assemblies (5), (6) referring each replacement procedure.

Fig. 6-18-1

8. After completion of the replacement, perform the adjustment from item 1 in the tape transport system adjustment.

1-6-19. S, T Guide Rollers Replacement

The same replacement procedures will be applied for the S, T guide rollers.

- 1. Turn the guide roller (1) counterclockwise and remove the guide roller (1) from the slider assembly (2).
- 2. Mount a new guide roller on the slider assembly (2) turning clockwise.
- 3. After completion of the replacement, perform the adjustment from the linearity adjustment in the tape transport system adjustment...

Note:

- O ring is not applied to the T guide roller.
- For the T guide roller, marking is located on the upper flange. So take care not to mis-mount with the S guide roller.

Fig. 6-19-1

1-6-20. S, T Impedance Roller Replacement

- 1. Remove two screws (1) and (2), and then remove two brackets (3), (4).
- 2. Replace two impedance rollers (5), (6).
- 3. Mount the parts in the reverse order of removal.
- After completion of the replacement, perform the adjustment from the linearity adjustment in the tape transport system adjustment.

Note:

• S, T impedance rollers (5), (6) is not always applied to all models.

Fig. 6-20-1

1-6-21. Pinch Roller Assembly Replacement

- 1. Remove the loading drive assembly (Refer to item "1-6-29. Loading Drive Assembly Replacement".)
- 2. Remove the pinch assembly (1) lifting vertically from the pinch post (2).
- 3. Remove the pinch spring (5) from the hooks on the pinch drive assembly (3) and the pinch lever assembly (4).
- 4. Turn the projection (A) on the pinch drive assembly (3) counterclockwise till it goes to the cutout on the pinch lever assembly (4).
- 5. After replacing, mount the parts in the reverse order of removal.
- After completion of the replacement, perform the tape transport adjustment.

Fig. 6-21-1

Note:

- For the removal and assembling of the loading drive assembly, refer to item 1-6-29.
- When inserting the pinch assembly (1) into the pinch post (2), insert it so that the pinch drive post (D) enters the groove (E) inside the cam gear.
- Take care not to touch the surface of the pinch roller and the grease is not stained on it.
- Be sure to apply grease to the surface of the bar-ring on the pinch lever assembly (4) and the pinch post (2) on the mechanical deck.

1-6-22. No. 9 Guide Lever Assembly Replacement

- Remove the loading drive assembly. (Refer to item "1-6-29. Loading Drive Assembly Replacement".)
- 2. Remove the drive lever. (Refer to item "1-6-40. Drive Lever Replacement".)

- 3. Remove the pinch assembly. (Refer to item "1-6-21. Pinch Roller Assembly Replacement".)
- 4. Remove the ACE head assembly. (Refer to item "1-6-16. ACE Head Assembly Replacement".)
- 5. Remove the cam gear (2) from the cam gear post (1).
- 6. Remove the T soft brake spring (3).
- 7. Remove the No. 9 guide lever assembly (4) lifting the No. 9 guide lever assembly upward from the No. 9 guide post (5).
- 8. After replacing, mount the parts in the reverse order of removal.
- 9. After completion of the replacement, perform the tape transport adjustment.

- When mounting the No. 9 guide lever assembly (4), confirm that (A) side of the No. 9 guide lever assembly (4) touches the capstan motor housing portion.
- After inserting the No. 9 guide lever assembly (4) into the No. 9 guide post (5), confirm that the lower projection of the No. 9 guide lever assembly (4) touches to the upper surface of the mechanical deck.
- Take care that the grease is not stained on the No. 9 guide post of the No. 9 guide lever assembly (4).
- Be sure to apply grease to the No. 9 guide post (5).

Fig. 6-22-1

1-6-23. Tension Lever Assembly, Band Holder and Band Brake Replacement

1. Remove the tension spring (1).

Note:

- Take care not to extend or deform the tension spring.
- After setting the band brake adjuster to the band holder assembling position, undo the claw of the snapfit type and remove the band holder from the band brake adjuster by lifting it upward.

Fig. 6-23-1 Detail of band holder assembling

- 3. Undo the claw of the outsert on the mechanical deck catching the shaft of the tension lever assembly (3) and remove the tension lever assembly lifting it upward.
- Remove the band brake (5) from the reel table while pulling the S soft brake lever (4) in the direction shown by the arrow.
- 5. Remove the band brake (5) from the hook on the tension lever assembly (3).

Note:

- Take care not to contaminate, bend or damage the felt surface on the band brake (5).
- 6. After replacing the tension lever assembly (3), clean the shaft on the tension lever and apply a few amount of oil.
- 7. Mount the parts in the reverse order of the removal.
- 8. After mounting, check the tension post position and perform the adjustment and back tension check.
- After completion of the replacement, perform the adjustment from the linearity adjustment in the tape transport system adjustment.

- The band holder (2) can be replaced in the procedures described above steps 1 to 3.
- The band brake (5) can be replaced in the procedures described above steps 1 to 5.
- When replacing the band holder (2) and band brake
 (5), the linearity adjustment is not necessary.

Fig. 6-23-2

1-6-24. S,T Loading Assembly Replacement

- Remove the mechanical deck assembly from the main PC board.
- 2. Set the mechanical position to the F/L out position (front side). Turn over the mechanical deck.
- 3. Remove the loading slider assembly. (Refer to item "1-6-25. Loading Slider Assembly Replacement".)

Fig. 6-24-1

- 4. Remove the S, T loading assemblies (1), (2).
- 5. Insert the S, T slider assemblies (3), (4) along the cutout of the S, T loading holes (A) and (B) on the mechanical deck and set the S, T slider assemblies (3), (4) to the loading position (rear side).
- Insert the T loading assembly (2) to the post (C) on the T slider assembly (4) and the post (D) on the mechanical deck. And insert the S loading assembly (1) to the post (E) on the S slider assembly (3) and the post (F) on the mechanical deck.

Fig. 6-24-2

- Align the phases of the ▲ marks on the S, T loading gear (1), (2).
- 7. Set the S, T slider assemblies (3), (4) to the F/L out position.

Fig. 6-24-3

1-6-25. Loading Slider Assembly Replacement

- 1. Remove the mechanical deck from the main PC board.
- 2. Set the mechanical position to the F/L out position.
- 3. Turn over the mechanical deck.
- 4. Remove the stop ring (1).
- 5. Remove the loading slider assembly (2) while lifting its tip upward using the mold portion on the loading slider assembly (2) as a fulcrum.
- 6. Mount the parts in the reverse order of removal.

Note:

- When mounting the loading slider assembly (2), insert
 the tip of the loading slider assembly (2) slightly to the
 mold portion, then mount it so that the claw on the
 outsert is in the position of the cutout portion of the
 loading slider assembly.
- Confirm that the position mark on the loading slider assembly (2) and the mark on the T loading gear match each other in position.

Mechanism deck bottom side

Fig. 6-25-1 View from Mechanical deck bottom side

Fig. 6-25-2

1-6-26. Hook Lever Assembly Replacement

- 1. Remove the top bracket. (Refer to item "1-6-1. Top Bracket Replacement".)
- 2. Remove the cassette holder assembly. (Refer to item "1-6-2. Cassette Holder Replacement".)
- Remove the drive arm assembly. (Refer to item "1-6 Drive Arm Assembly Replacement".)
- 4. Remove the tension spring (1).
- 5. Turn the hook lever assembly (2) counterclockwise slightly, and remove the claw on the hook lever assembly (2) then replace.
- 6. After replacing the hook lever assembly (2), insert the (A) portion of the hook lever under the S reel table assembly. When the portions (B), (C), (D) are in line, push the claw into the mechanical deck.

Fig. 6-26-1

7. Turn the hook lever assembly (2) clockwise till it stops, and mount the tension spring (1). After replacing the hook lever assembly (2), slide the cam slider in the direction shown by the arrow, and then position the boss (E) under the cam slider.

Fig. 6-26-2

1-6-27. Hook Replacement

- 1. Remove the hook lever assembly. (Refer to item "1-6-26. Hook Lever Assembly Replacement".)
- 2. Turn over the hook lever assembly (1) and remove the hook lever assembly (1) opening the portion (A) of the hook (2) slightly and lifting the hook (2) upward.
- 3. When mounting a new hook, push the hook (2) in the portion (B) from above.

Note:

• Take care not to confuse the mounting direction of the hook (2).

Fig. 6-27-1

1-6-28. Tension Drive Lever Replacement

- 1. Remove the cam slider. (Refer to item "1-6-41. Cam Slider Replacement".)
- 2. Turn over the mechanical deck and remove the tension drive lever (1) from the projection (A) moving counterclockwise slightly.
- 3. After replacing the tension drive lever (1), mount in the reverse order of removal.

Note:

• For the cam slider mounting, refer to the notes in item 1-6-41.

Fig. 6-28-1

1-6-29. Loading Drive Assembly Replacement

- Remove the F/L ground plate and the head cleaner assembly. (Refer to item "1-6-14. Head Cleaner Assembly Replacement".)
- 2. Remove two flat cables (1) from the connectors.
- 3. Pull out the portion (A) (No. 8 guide cap) from the motor bracket (2).
- 4. Remove four claws (a), (b), (c), (d) securing the motor bracket in the order of (a) \rightarrow (b) \rightarrow (c) \rightarrow (d).

Fig. 6-29-1

- Remove the claw (a) inserting a driver.
- Remove the claws (b) and (c) pushing inside previously and opening the claws slightly.

Fig. 6-29-2

<Pre><Pre>reparation for Loading drive assembly mounting >

- a) Confirm that the head cleaner assembly is removed.
- b) Confirm that the small hole b) on the cam gear aligns with the hole on the mechanical deck.
- c) Confirm that the clearance between the pinch lever assembly and the cam gear is approx. 0.3 mm.
 (Confirm that the pinch lever assembly is correctly mounted on the groove of the cam gear.)
- d) Confirm that the clearance between the drive lever and the cam gear is approx. 2 mm. (Confirm that the drive lever is correctly mounted on the groove of the cam gear.)
- e) Confirm that the Δ mark on the rotor of the cam switch aligns with the Δ mark on the motor bracket.
- After completion above steps a) to e), mount the loading drive assembly. Push four claws to the motor bracket in the order of (d) → (c) → (b) → (a) and push the portion (A) (No. 8 guide cap) into the motor bracket.
- 6. Confirm that the Δ mark on the rotor of the cam switch aligns with that on the bracket when the hole b) on the cam gear aligns with the hole on the mechanical deck. If the alignment of the Δ marks cannot be confirmed, remove loading drive assembly once again and reinstall after confirming the above steps a) to e).
- 7. Mount two flat cables.
- 8. Mount the F/L ground plate and the head cleaner assembly.

Loading drive assembly bottom side

Fig. 6-29-3

1-6-30. Loading Motor Sub Assembly, Cam Switch and Loading Drive Unit Replacement

- 1. Remove the loading drive assembly. (Refer to item "1-6-29. Loading Drive Assembly Replacement".)
- 2. Remove the cleaner assist lever (1) from the claw (A).
- 3. After removing the cleaner assist lever (1), the worm wheel can be also removed upward.
- 4. Insert a slot-type screwdriver into the portion (C) of the loading drive bracket (3) and push the loading motor 2 3 mm lower. And push the tip of worm gear from the portion (D) of the loading bracket (3), then remove the worm gear (4) from the claw (E).
- 5. Remove the cam switch (5) from the claw (F) on the loading drive bracket (3) and pull out the loading drive unit (7) and the worm gear (4) simultaneously.
- 6. Replace the loading drive unit (7). When mounting the PC boards of the cam switch (5) and the loading drive unit (7), take care that no clearance is allowed.
- 7. Insert the loading drive unit (7) and the worm gear (4) into the loading drive bracket (3).
- Push the tip (G) of the worm gear (4) into the claw (E) on the loading motor bracket.
 In this process, take care not to bend the tip of the worm gear with strong pressure.
- 9. Push the cam switch (5) into the claw (F) on the loading motor bracket.
- 10. Mount the parts in the reverse order of removal.

Loading drive assembly (Top Side)

Loading drive assembly (Bottom side)

Fig. 6-30-1

1-6-31. Cam Gear Replacement

- Remove the loading drive assembly. (Refer to item "1-6-29. Loading Drive Assembly Replacement".)
- 2. Remove the cam slider. (Refer to item "1-6-41. Cam Slider Replacement".)
- 3. Remove the drive lever. (Refer to item "1-6-40. Drive Lever Replacement".)
- 4. Remove the pinch roller assembly. (Refer to item "1-6-21. Pinch Assembly Replacement".)
- 5. Remove the cam gear.
- 6. Apply grease on a new cam gear on the shaded portion as shown in Fig. 6-31-1 and the shaft of the main base.

Fig. 6-31-1

- 7. Make the S, T slider to the slot out condition.
- 8. Push the cam lever (1) and the pin (2) (loading slider) in the direction shown by the arrows (A) and (B).
- Mount the cam gear at the angle which the small hole
 (a) on the cam gear aligns with the hole on the mechanical deck. (Refer to Fig. 6-31-1.)

Fig. 6-31-2

10. Mount the parts in the reverse order of removal.

1-6-32. S Reel Table Assembly and Washer 2 Replacement

- Remove the top bracket and the cassette holder assembly. (Refer to item "1-6-1. Top Bracket Replacement and 1-6-2. Cassette Holder Assembly Replacement".)
- Remove the drive arm assembly. (Refer to item "1-6-5. Drive Arm Assembly Replacement".)
- 3. Remove the cam slider. (Refer to item "1-6-41. Cam Slider Replacement".)
- 4. Remove the S soft brake and S main brake assembly. (Refer to item "1-6-38. S Soft Brake Replacement and 1-6-37. S Main Brake Assembly Replacement".)
- 5. Remove the tension lever assembly. (Refer to item "1-6-23. Tension Lever Assembly Replacement".)
- 6. Remove the S reel table assembly (1) pulling it out upward.
- 7. Remove the washer 2 (2).
- 8. After cleaning the reel shaft (3) with a cleaning kit, insert a new washer 2 (2) to the reel shaft (3) and apply a drop of oil to the shaded portions (two locations) on the reel shaft (3).
- 9. After replacing, mount the parts in the reverse order of removal.
- 10. Confirm the reel torque using a torque cassette.

Note:

• The washer 2 (2) can use repeatedly.

Fig. 6-32-1

1-6-33. T Reel Table Assembly and Washer 2 Replacement

- Remove the top bracket and the cassette holder assembly. (Refer to item "1-6-1. Top Bracket Replacement and 1-6-2. Cassette Holder Assembly Replacement".)
- 2. Remove the drive arm assembly. (Refer to item "1-6-5. Drive Arm Assembly Replacement".)
- Remove the T soft brake and T main brake assembly (Refer to item "1-6-41. Cam Slider Replacement".)
- 4. Remove the T reel table assembly (1) pulling it out upward.
- 5. Remove the washer 2 (2).
- 6. After cleaning the reel shaft (3) with a cleaning kit, insert a new washer 2 (2) to the reel shaft (3) and apply a drop of oil to the shaded portions (two locations) on the reel shaft (3).
- 7. After replacing, mount the parts in the reverse order of removal.
- 8. Confirm the reel torque using a torque cassette.

Fig. 6-33-1

Note:

• Washer 2 (2) can use repeatedly.

1-6-34. Idle Arm Assembly Replacement (Center Gear Pulley, Idle Kick Lever, Idle up/down Lever)

- 1. Remove the mechanical deck from the main PC board.
- 2. Remove the stop ring (1) turning over the mechanical deck.
- 3. Remove the center gear pulley (2) lifting it upward.
- 4. Remove the claw (A) on the idle kick lever (3) moving and pulling it upward.
- 5. Remove the slit washer (4).
- Remove the idle up/down lever (5) and the idle arm
 (6) simultaneously from two claws (B) on the mechanical deck.
- After cleaning the center gear post (7) using a cleaning kit, apply a few drops of oil to the shaded portion on the center gear post.
- 8. Mount the parts in the reverse order of removal.

- Stop ring (1) is impossible to use again.
- When mounting the parts, take care of the notice shown in Fig. 6-34-2.

Fig. 6-34-1

Fig. 6-34-2

1-6-35. Holder Center Post Assembly Replacement

- Turn over the mechanical deck and remove the center gear pulley and the idle arm. (Refer to item "1-6-34.
 Idle Arm Assembly Replacement".)
- 2. Turn over the mechanical deck and remove the top bracket and the cassette holder assembly. (Refer to item "1-6-1. Top Bracket Assembly Replacement and 1-6-2. Cassette Holder Assembly Replacement".)
- Remove the drive arm assembly. (Refer to item "1-6 Drive Arm Assembly Replacement".)
- 4. After removing two screws (1), replace the holder center post assembly (2).
- After replacing, mount the parts in the reverse order of removal.

Fig. 6-35-1

Note:

- When mounting, push the cutout (A) on the holder center post assembly (2) aligning with the projection on the mechanical deck.
- Screw tightening torque is 294 392 mN•m (3 4 kg•cm).
- Before mounting the center gear pulley, apply a few drops of oil. (Refer to Fig. 6-34-1.)

1-6-36. REC Inhibiting Lever Replacement

- 1. Remove the top bracket. (Refer to item "1-6-1. Top Bracket Replacement".)
- 2. Remove the cassette holder assembly. (Refer to item "1-6-2. Cassette Holder Assembly Replacement".)
- 3. Remove the cam slider. (Refer to item "1-6-41. Cam Slider Replacement".)
- 4. Remove the tension spring (2).
- 5. Undo the claw (A) on the S soft brake (1) sliding and lifting it upward.
- 6. Remove the projection (B) on the REC inhibiting lever (3) sliding in the direction shown by the arrow and lifting it upward.
- 7. After replacing the REC inhibiting lever (3), mount the parts in the reverse order of removal.

Fig. 6-36-1

1-6-37. S, T Main Brake Assembly Replacement

- 1. Remove the mechanical deck from the main PC board and turn the mechanical deck upside down.
- 2. When replacing the T main brake assembly (2), first remove the idle kick lever (3). (Refer to item "1-6-34. Idle Arm Assembly Replacement".)
- 3. Remove the tension spring (4).
- 4. Remove the claws on the S, T main brakes (1), (2) from the mechanical deck lifting the S, T main brakes (1), (2) upward.
- 5. After replacing the S, T Main brake assemblies (1),(2), mount the parts in the reverse order of removal.

Note:

• When mounting the S, T main brake assemblies (1), (2) take care that both ends of the S, T main brakes (1), (2), do not touch the gear of the reel table.

Fig. 6-37-1

1-6-38. S Soft Brake Replacement

- 1. Remove the cam slider. (Refer to item "1-6-41. Cam Slider Replacement.")
- Remove the drive arm assembly. (Refer to item "1-6 Drive Arm Assembly Replacement".)
- 3. Remove the S soft brake spring (1).
- 4. Remove the S soft brake (2) after removing the claw (A) on the S soft brake from the mechanical deck.

- When mounting the S soft brake spring (1), take care not to deform the hook (B).
- When mounting the S soft brake (2), take care of the band brake (3).

Fig. 6-38-1

1-6-39. T Soft Brake Replacement

- 1. Remove the T soft brake spring (1).
- 2. Remove the claw (A) on the T soft brake (2) from the mechanical deck and remove the T soft brake (2).
- 3. After replacing the T soft brake (2), mount the parts in the reverse order of removal.

Note:

- When mounting the T soft brake spring (1), take care not to deform the hook (B).
- Take care not to touch the surface (C) on the brake pad.

Fig. 6-39-1

1-6-40. Drive Lever Replacement

- 1. Remove the top bracket. (Refer to item "1-6-1. Top Bracket Replacement".)
- 2. Remove the cassette holder assembly. (Refer to item "1-6-2. Cassette Holder Assembly Replacement".)
- 3. Remove the drive arm assembly. (Refer to item "1-6-5. Drive Arm Assembly Replacement".)
- 4. Remove the cam slider. (Refer to item "1-6-41. Cam Slider Replacement".)
- 5. Remove the Loading Drive Assembly. (Refer to item "1-6-29. Loading Drive Assembly Replacement.")
- 6. Remove the drive lever (1).

7. After replacing the drive lever (1), mount the parts in the reverse order of removal.

- Be sure to align the phase of the cam gear (2). (Refer to item 1-6-41. Cam Slider Replacement".)
- Mount the drive lever (1) so that it is positioned between the mark (A) on the mechanical deck and the outsert (B).
- Apply grease to the surface between the mark (C) on the mechanical deck and the drive lever shaft (D).

Fig. 6-40-1

1-6-41. Cam Slider Replacement

- Remove the top bracket and the cassette holder assembly. (Refer to item "1-6-1. Top Bracket Replacement and 1-6-2. Cassette Holder Assembly Replacement".)
- 2. Remove the tension spring (1).
- 3. Turn the hook lever assembly (2) counterclockwise and turn the S soft brake (3) counterclockwise.
- 4. Move the cam slider (4) to the right and align the projection (A) on the mechanical deck and the cutout portion (B) on the cam slider (4).
- 5. Remove the claw (C) on the cam slider (4) and remove the cam slider (4) lifting the cam slider (4) upward.

Fig. 6-41-1

- 6. Apply grease on the shaded portion of a new slider for the replacement.
- 7. Mount the parts in the reverse order of removal. After inserting the cam slider, slide it to the left direction till it stops. (Fig. 6-26-2 shows this condition.)

Note:

- When mounting the cam slider (4), slide the tension drive lever in the direction shown by the arrow (counterclockwise).
- After completion of the replacement, confirm that the cam slider (4) can slide to left and right directions smoothly.

Fig. 6-41-2

1-6-42. Idle Centering Lever Replacement

- 1. Remove the cam slider. (Refer to item "1-6-41. Cam Slider Replacement".)
- 2. Remove the claw on the idle centering lever (1) and remove the idle centering lever (1) lifting it upward.
- 3. After replacing the idle centering lever (1), mount the part in the reverse order of removal.

Fig. 6-42-1

1-6-43. Capstan Motor Replacement

- 1. Remove the reel belt (1).
- 2. Remove one screw (2) from the bottom of the mechanical deck, and remove the PC board (3).

Note:

• Take care not to misuse the screw with others.

Fig. 6-43-1

3. Remove the capstan motor (4) after removing three screws (5).

Note:

Take care not to drop the capstan motor.

Fig. 6-43-2

4. Take care not to damage and scratch the motor itself, and mount the capstan motor (4) fitting the hole (A) on the mechanical deck and the hole (B) on the capstan motor (4).

Fig. 6-43-3

5. Mount the capstan motor (4) with three screws (5) viewing from the top side of the mechanical deck.

Fig. 6-43-4

Note:

- · Do not use once-removed screws again.
- Take care that no clearance is allowed when securing three screws.
- After replacement, mount the parts in the reverse order of removal.

- In this case, take care not to twist the reel belt and stick the grease or etc. on it.
- 7. After replacing, perform the adjustment according to the tape transport adjustment procedures.

1-6-44. S-VHS Switch Assembly Replacement (S-VHS model only)

- Slide the cassette holder assembly (1) until the screw
 (2) can be seen from the hole on the top bracket (3).
- 2. Insert a screwdriver from the hole provided on the top bracket (3) and secure the screw (2).
- 3. Remove the S-VHS switch assembly (4) upward.
- 4. After completion of the replacement, mount the parts in the reverse order of removal.

Fig. 6-44-1

1-7. Check and Adjustment

1-7-1. Check of Tension Pole Position

- 1. Turn the worm wheel counterclockwise after removing the cassette holder assembly on the front loading mechanism, and set the cam gear at playback position.
- 2. Turn the S reel table assembly (1) clockwise slowly.
- 3. Adjust the adjuster (3) counterclockwise from the position shown in Fig. 6-23-1 so that the clearance between the left end of the tension lever assembly (2) and the left side of the mechanical deck becomes 7.5 ± 1 mm.

Note:

 There is a long mark at the position of 7.5 mm from the round surface of the mechanical deck. Make sure the position of the mark when adjusting.

Fig. 7-1-1

1-7-2. Reel Torque Check

(1) Reel torque

1. REVIEW mode (supply side)

Poor torque may not wind the tape. On the other hand, excessive torque will cause damage to the tape during REVIEW mode.

2. Record/Playback mode (take-up side)

Too little torque does not rewind the tape to the end. If too large torque, the tape may be stretched by excessive tension.

3. Inspection

Rewind the torque cassette to the end, then check the torque values shown below:

Review

 $15.95 \pm 3.65 \text{ mN} \cdot \text{m}$

 $(162.5 \pm 37.5 \text{ g} \cdot \text{cm})$

Record/Playback

 $6.85 \pm 2.45 \text{ mN} \cdot \text{m}$

 $(70 \pm 25 \text{ g} \cdot \text{cm})$

For checking method, refer to the following item (2).

(2) Reel torque and back tension check

- 1. First, record a TV broadcast program on the entire torque cassette tape (KT-300NR) in the SP mode.
- Load the torque cassette tape (KT-300NR) in the VTR and feed it forward until the end of the tape, before proceeding with measurement.
- 3. Set the VTR to the REVIEW mode and feed the tape for about 15s, and then make sure the take-up torque described above is obtained while observing the left torque meter.
- 4. After completion of step 3), feed forward to tape start position and set the VTR to the PLAY mode and feed the tape for about 30s. Read the right torque meter and check the torque described above is obtained.
- 5. If the review torque and playback torque are out of limit, replace the clutch assembly.
- 6. When the S reel table assembly, the T reel table assembly and the idle arm assembly are replaced, perform the reel torque check.

<Pre><Pre>cautions for Use of Torque Cassette (KT-300NR)>

- Before loading a torque cassette in a VTR, always remove tape slack. The tape slack can be removed by rotating the reel to its take-up direction. (The tape tends to slack when there is no reel brake actions.)
- 2. When the torque cassette is loaded, confirm followings:
 - Make sure the tape does not ride up or over the No. 8 cap. If it does, do not eject the tape but return the tape to its correct position, taking care not to damage the tape.
 - Make sure the tape is not slackened. If slackened, operate the VTR in FF or REW mode and then stop the tape. Then make sure the tape is not slackened again.
 - After above confirmation, proceed to the reel torque adjustment and confirmation.
- 3. Caution for removal of torque cassette
 - When removing the torque cassette from the VTR, set the VTR to the STOP mode and wait for several seconds. Then, make sure the tape is not slackened. Push the EJECT button to remove the cassette.
- 4. If the previous precautions 1), 2) and 3) are not performed properly, the tape may be damaged and correct measurements can not be performed.
- 5. Do not use worn out or damaged tape, if used they may damage video heads on the cylinder. In such a case always replace the tape with a new one. The replacement tape is of E-180, 10 m in length.

1-7-3. Tape Transport System

The tape transport system has been precisely adjusted in the factory, so no check and alignment are necessary except the followings:

- · Noises observed on the screen
- · Tape damage
- Parts, shown in the adjustment procedures for the tape transport system were replaced.

Electrical signal output terminal required for adjustment differs depending upon the models. Refer to the test point location in the Electrical Adjustment Section.

(1) Location of tape transport adjustment

<Adjustment reference>

Lower flange height of No. 8 guide is used as the basic reference for the transport adjustment. To keep height of the No. 8 guide, do not apply excessive force onto the main base to prevent the main base from deformation.

Rectangles shown in Figs. 7-3-1, 7-3-2 show the adjusting locations.

Fig. 7-3-1 Tape travel diagram

Fig. 7-3-2 Location of tape transport adjustment

(2) Tape transport system adjustment flow chart

(3) Tape transport system adjustment

<Pre-adjustment>

When the part(s) listed in Table 7-3-1 is replaced, perform required adjustments by referring to procedures for the tape transport system. When the part(s) listed in Table 7-3-1 is replaced, the tape path may be changed and may damage alignment tape. To prevent this, first run a E-240 tape and make sure excessive tape wrinkle does not occur at each tape guide.

- 1. If tape wrinkle is observed at the S, T guide rollers, turn the S, T guide rollers until wrinkle disappears.
- 2. If tape wrinkle is observed at the No. 8 guide, perform the tilt adjustment of the ACE head.

Table 7-3-1

Parts replacement	Adjustment procedure
Cylinder assembly S, T sliders ACE head Pinch lever assembly Capstan motor No. 9 guide lever assembly	From item 1)
Upper cylinder	From item 2)
S, T guide rollers Tension lever assembly FE head	From item 3)
Reel clutch assembly S, T reel tables	From item 4)

<Adjustment procedures>

1) ACE head assembly coarse adjustment

a. Audio head height adjustment

- 1. Play back the tape recorded in the SP mode. Observe the surface of the ACE head.
- 2. Turn the ACE height adjusting screw so that upper tape edge matches to the upper edge of the audio head core.

b. ACE head tilt adjustment

1. Play back the tape recorded in the SP mode and observe running condition of the tape at the lower flange of No.8 guide.

- 2. Turn the ACE tilt adjusting screw until tape wrinkle is caused at the lower flange of No. 8 guide as shown in Fig. 7-3-4 (A).
- 3. Turn the ACE tilt adjusting screw counterclockwise until the tape travels along the lower flange as shown in Fig. 7-3-4 (B).

c. Audio head azimuth adjustment

- 1. Play back the 7 kHz audio signal on the alignment tape in the SP mode.
- 2. Connect a millivoltmeter or oscilloscope to the audio line output terminal.
- 3. Turn the ACE azimuth adjusting screw to obtain maximum audio output.

Fig. 7-3-3

Fig. 7-3-4 No. 8 guide rough adjustment

d. ACE head position adjustment

- 1. Play back the 2 MHz video envelope signal in the alignment tape in the SP mode. Loosen the ACE head position securing screw.
- 2. Insert a slot-type screwdriver into the ACE head position adjusting slit on the ACE main base and adjust the ACE main base so that the video envelope reaches a peak level at the tracking center position when the channel (tracking) up/down buttons of VTR are pressed simultaneously.

2) Playback phase adjustment

1. Perform the adjustment according to the methods stated in the electrical adjustment (servo circuit).

3) Linearity adjustment

1. Play back the LP mode white video signal on the alignment tape.

Note:

- For models SP mode only, use the 2 MHz (A ch) video signal in the SP mode.
 - 2. Trigger the scope with the switching pulse to issue the envelope signal output.
 - 3. Make sure the video envelope waveform (in its maximum output) meets the specification shown in Fig. 7-3-5. Again make sure the same by playing back the SP mode 2 MHz video signal on the alignment tape. If not satisfied, adjust as follows:

Note:

- a = maximum output of the video RF envelope
- b = minimum output of the video RF envelope at the entrance side
- c = minimum output of the video RF envelope at the center point of cylinder
- d = minimum output of the video RF envelop at the exit side of cylinder

Fig. 7-3-5

- 4. If the (A) section in Fig. 7-3-6 does not meet the specifications, adjust the S guide roller in up or down direction.
- 5. If the (B) section in Fig. 7-3-6 does not meet the specifications, adjust T guide roller in up or down direction.

Fig. 7-3-6

- 6. After completion of the adjustment(s), push the channel (tracking) up/down button and make sure video envelope variations are almost flat.
 Next, play back the 2 MHz SP mode video signal on the alignment tape and makes the video RF envelope variations are also flat when channel (tracking) UP/DOWN buttons is pushed.
- 7. If the envelope varies like NG figures as shown in Fig. 7-3-7, perform the adjustment again.Smooth secondary curves are allowable level.

Fig. 7-3-7 Abnormal waveform variation

4) ACE head assembly fine adjustment

a. ACE head height fine adjustment

- 1. Play back the stereophonic alternative recording 300 500 Hz audio signal on the alignment tape.
- 2. Adjust the ACE height adjusting screw so that the signal envelope is obtained almost flat.

Fig. 7-3-8

Note:

 If there is no alignment tape (ST-C6, ST-C7), do not perform this item "a. ACE head height fine adjustment", and perform the process of the note in item "e. Audio head height check" described later.

b. ACE tilt adjustment

- Observe the lower flange of No. 8 guide. If any wrinkle is observed, turn the ACE tilt adjusting screw counterclockwise until the wrinkle disappears.
- If a gap is observed between the lower flange of No. 8 guide and the lower edge of tape, turn the ACE tilt adjusting screw clockwise until the tape travels along the lower flange.

Note:

 This adjustment is performed easily in SP mode playback, double speed playback mode or CUE mode.

c. Audio head height check

Play back the stereophonic alternative recorded 300 – 500 Hz audio signal as described in the step 4)-a, and check if the audio envelope is flat. If not, repeat the adjustment described in step 4)-a again.

d. Audio azimuth adjustment

- 1. Play back the 400 Hz, 7 kHz audio signal on the alignment tape.
- 2. Turn the ACE azimuth adjusting screw until the maximum audio output is obtained.

e. Audio head hight check

1. Play back the alignment tape desribed in step 4)-a and check if the audio envelope is flat. If not, repeat the adjustment described in step 4)-a.

Note:

- If there is no alignment tape (ST-C6, ST-C7), perform the audio height alignment using the current alignment tape at this adjustment step.
 - 1. Playback the 400 Hz audio signal (SP mode) on the alignment tape.
 - 2. Turn each three alignment screw of the ACE head to the same direction in 45 degrees steps evenly so that the audio output level becomes maximum.
 - 3. Perform the confirmation and adjustment for the tilt and the azimuth again.

f. ACE head postion adjustment

- 1. Play back the white envelope (LP mode) on the alignment tape.
- Push the channel (tracking) up/down buttons simultaneously and reset the tracking at its center position.

- 3. Trigger the oscilloscope with the video switching pulse and observe the video envelope waveform.
- Slide the ACE main base until the maximum envelope output is obtained as described in ACE head position coarse adjustment.
- 5. Play back the 2 MHz video signal (SP mode) on the alignment tape.
- 6. Make sure the envelope output is maximum when the tracking control is placed at its center position. If no envelope output is obtained with the tracking control set to the center position, again adjust it for maximum envelope output in SP and LP modes. When envelope output is maximum in the LP mode at the tracking center, difference with the case in the SP mode is within 3 ms.
- 7. Tighten the ACE head position fixing screw and secure the ACE main base.
- **g.** After completion of ACE head fine adjustment, apply screw lock to two screws (tilt, azimuth adjusting screws) in front of the ACE head.

5) No. 9 guide lever adjustment

- Set the VTR to Cue mode with E-240 tape (at beginning portion) loaded. Switch the Cue mode to the review mode when the tape has been rewound into the T-reel table to some extent.
- 2. Check tape wrinkle at the upper and lower flange of No. 8 guide. Check the tape does not come off from the flange while running. If the tape comes off from the flange, replace the pinch lever, capstan motor or No. 9 guide lever since the part(s) is (are) defective.

Note:

 Modify the lid of the cassette for the alignment tape E-240 previsously so that the alignment is performed easily.

6) Check for transitional operation from Review to Play, slot-in to play

- Play back the LP mode white video signal on the alignment tape in Review mode and observe the video envelope with the oscilloscope.
- 2. Switch the Review mode to the Play mode. When switched to the Play mode, make sure the entrance side envelope comes to an approximate steady state within 3s as shown in Fig. 7-3-9.

If it does not rise within 3s, take the following steps starting 4).

3. Switch the cassette slot-in mode to the Play mode. As in item 2), if it does not rise within 3s, adjust as follows.

Fig. 7-3-9 Video envelope rising when operation mode is switched from review to play mode

- 4. Adjust the S guide roller and perform the linearity adjustment again.
- Check above items 2) and 3) to see that the video envelope rises within 3s. If not, S slider assembly or the tension lever is damaged. Replace either (or both) of them.

Note:

 If the rising characteristic is poor in Review mode, screen noise may occur in synchronous editing recording. Perform the adjustment carefully.

7) Envelope check

- 1. Make recordings and play back the tapes (E-180 and E-240) in SP and LP modes and make sure the playback output envelope meets the specifications shown in Fig. 7-3-5.
- 2. In playback the tape (with a E-180), the video envelope should meet the specification as shown in Fig. 7-3-10.

Note:

 Check for both modes, SP and LP. Also check for AFM envelope when using a Hi-Fi model.

Fig. 7-3-10 Envelope output and output difference

3. If the performance does not meet both specifications above 1 and 2 above, replace the upper cylinder assembly.

- Set the VTR to Rec mode (LP) with the E-180 tape loaded (at the beginning part) and check operation of the synchronous editing recording.
- If picture noises are observed at the starting position of the editing, perform "6) Check for transitional operation from Review to Play, slot-in to play".

8) Tape wrinkle check

- 1. Playback the E-240 tape in the normal Play mode, CUE mode, Review mode and the frame advance mode, and check each guide for wrinkle.
- If excessive tape wrinkle is observed at the mode shown below, perform the associated adjustments also shown below. (The parts described in () may need to replace.)

a. Playback mode

Tape wrinkle at the S, T-guide rollers section Item 3) Linearity adjustment (Slider assembly)

Tape wrinkle at No. 8 guide flange

Item 1) ACE head assembly coarse adjustment (Pinch roller)

Tape wrinkle at lower flange of No. 1 guide

Item 6) Check for transitional operations from Review to Play, and Slot-In to Play (Tension lever)

b. Review mode

Tape wrinkle at No. 8 guide

Item 1) ACE head assembly coarse adjustment (Pinch lever, No. 9 guide lever, capstan motor)

Tape wrinkle at the guide rollers

Guide roller adjustment (Slider assembly)

c. Frame advance mode

Tape wrinkle at No. 8 guide

Item 3) Linearity adjustment

(Pinch lever, capstan motor)

9) Maximum AFM envelope output point check (Hi-Fi model)

- 1. Playback the SP mode 3 MHz video signal and the 400 Hz AFM signal on the alignment tape.
- Trigger the oscilloscope with the video switching pulse, adjust the tracking control and check the control pulse phase at the maximum video envelope (A ch) output point.
- Make sure the control pulse phase difference among each maximum point of AFM envelope, Ach and Bch is within ± 3 ms with the above point used as the basic reference.

Note:

• If the phase difference exceeds 3 ms, replace the upper cylinder.

2. ELECTRICAL ADJUSTMENT

<Test equipment required>

Adjustment will be performed with the following test equipment.

- 1. Color TV (Monitor)
- 2. Oscilloscope, 2 CHs, 15 MHz or higher with delay system
- 3. Frequency counter (7 digits or higher)
- 4. Millivoltmeter
- 5. Digital voltmenter
- 6. Tester $(20 \text{ k}\Omega/\text{V})$
- 7. Audio generator
- 8. Audio attenuator
- 9. Alignment tapes Part code: ST-C6: 70909409, ST-C7: 70909410
- 10. Alignment screw driver (jig)
- 11. Color pattern generator
- 12. Video sweep generator

<Color bar signal>

Color bar signals of 75% recorded on the alignment tapes are shown in Fig. 2-1-1.

Fig. 2-1-1

<Specified input and output levels, and impedance>

Video input: Negative sync, standard composite

video siganl 1 V(p-p), 75Ω

Video output: Same as the video input 1 V(p-p),

 75Ω

Audio input: 308 mV(rms), more than 47 k Ω (phono

type), more than $10 \text{ k}\Omega$ (21 pin type)

Audio output: 308 mV(rms), less than $4.7 \text{ k}\Omega$ (phono

type), less than 1.0 k Ω (21 pin type)

<Alignment sequence>

Recorded the alignments in the sequence as shown in Fig. 2-1-2.

Fig. 2-1-2

Alignment tape specifications

[1] ST-C6

Segment	System	Playback Time (min)	Video Signal	Audio Signal	Applications
1	PAL & SECAM	10	Mono Scope	1 kHz	Playback phase check, audio level check
2	PAL & SECAM	5	3 MHz A ch	400 Hz and 7 kHz	ACE head position adjustment, ACE head azimuth adjustment, Linearity adjustment
3	PAL & SECAM	5	3 MHz A ch	1 kHz (stereo)	ACE head position adjustment, ACE head height adjustment, Linearity adjustment
4	PAL	5	Color bar	3 kHz	Video and Sound checks
5	SECAM	5	Color bar	3 kHz	Video and Sound checks
6	MESECAM	5	Color bar	3 kHz	Video and Sound checks
7	NTSC	5	Color bar	1 kHz	Video and Sound checks

[2] ST-C7

		Playback				
Segment	egment System Time Mode Video Signal Audio Signal (min)		Audio Signal	Applications		
1	PAL	5	LP	3 MHz A ch	500 Hz (stereo)	ACE head position adjustment, ACE head height adjustment, Linearity adjustment
2	PAL	3	LP	Color bar	3.2 kHz	LP mode operation check, ACE head azimuth check and adjustment
3	PAL	3	SP	Color bar	AFM 400 Hz	SP mode operation check, AFM check
4	PAL & SECAM	5	SP	3 MHz A ch	AFM 400 Hz	AFM tracking checks
5	SECAM	5	LP	3 MHz A ch	No signal	Linearity adjustment
6	SECAM	3	LP	Color bar	No signal	LP mode operation check
7	SECAM	3	SP	Color bar	AFM 400 Hz	SP mode operation check, AFM check

2-1. Servo Circuit

Main PC Board

Terminal PC Board

2-1-1. Playback Phase (PG) Adjustment

Test point:

Pins 1 and 2 of BW005, Pin 19 of

BX102 (Video out)

Test equipment: Oscilloscope

- During playback press the VTR's channel up and down buttons simultaneously to reset to tracking center.
- Confirm that phase difference between the fall of the DFF pulse (pin 1 of BW005) and the rise of CTL pulse (pin 2 of BW005) is 12 ± 0.5 ms.
- 3. Further, observe the envelope (pin 4 of BW005) waveform, and confirm that the ACE head position adjustment and linearity adjustment have been made, and C-SYNC (pin 70 of IT001) is being input during playback.
- 4. Set the VTR to the STOP mode.

- 5. Press the unit's channel up/down buttons simultaneously for more than 5s.
- Afterwards, within 2s, press the PLAY button on the remote controller.
- 7. The automatic adjustment will be made for about 10s, all the displays will blink. If the automatic adjustment is not carried out, confirm that the alignment tape has a safety tab or not, and redo from the step 3.
 - When adjustment has been completed:
 The display will blink for 10s, stop blinking and return to the normal display in the STILL mode, then it shifts to the playback display in the playback mode.
 - 2) When adjustment fails: It goes into the STOP mode.
- 8. Confirm that the play indicator is displayed, and confirm that the rising and falling edge of the SW pulse is 6.5 ± 0.5 H from the V-sync front edge of the video signal.

2-1-2. When IC504 is Replaced

When IC504 is replaced, the data in the VTR is required to memorize in the new one. So perform the following procedures.

- Press the channel up/down buttons on the VTR simultaneously for more than 5s while the display blinks and the unit is in the power off mode.
- 2. And then within 2s, press the CANCEL button on the remote controller.
- After displaying the address at the channel display area and the data at the minute display area, set the address to 12 using the channel up/down buttons on the remote controller.

Next, set the data to 4b using the FF/REW buttons on the remote controller. The data goes up using FF button and down using REW button.

4. Set each address and data in the table below following the description above.

Address	Data
24	0A
25	03
26	15
27	0A

- 5.. Perform the adjustment described in the item "2-1-1. Playback Phase (PG) Adjustment".
- Pull out the power cord plug from the AC outlet once and insert the power cord plug into the AC outlet again.
- 7. Perform the channel presetting as the IC504 replaced has no channel data.

2-2. Audio Circuit

Main PC Board

2-2-1. Bias Level Adjustment

Test point: Pins 1 and 2 of BS001

Test equipment: Millivoltmeter

Adjusting point: PS034

- 1. Set the VTR to record mode.
- 2. Connect pin 2 to the millivoltmeter and pin 1 to ground.
- 3. Adjust PS034 to obtain 3.6 (300 μ A) \pm 0.1 mV (rms).

2-3. Self Diagnosis Function

2-3-1. Outline

When a tape running stops or the VTR enters the power OFF mode, etc. due to some abnormality, the abnormality is stored in the EEPROM and displayed on the display tube.

2-3-2. Storing abnormal modes

- The abnormality is classed into 5 groups, and the abnormality number, system control mode, and the mechanism position at which the abnormality occurred are stored in the EEPROM.
- The writing timing is just after the abnormality occurred.

2-3-3. Abnormality mode display

- Press the CH UP and CH DOWN buttons on the VTR simultaneously for more than 5s.
- And then within 2s, press the STILL button on the remote control.
- The system control mode at which the abnormality occurred is displayed at the channel display area, "E" is displayed at the hour digit, abnormality generation number is displayed at the minute digit, and the mechanism position is displayed in the second digit position.
- The abnormality mode is displayed regardless of the power on off.

 When the Counter Reset button is pressed in the display period, the abnormality display data is initialized and "-" is displayed.

The data displayed are as follows:

Abnormality generation number

01	Cylinder stop
50	Reel abnormality (take up)
03	Reel abnormality (supply)
84	Abnormal slot in/ slot out
05	Abnormal loading

Abnormal system control modes

22	Standby
81	Stop
92	Rewind
03	Review
04	FF
Ø\$	Cue
88	Playback
07	Still, slow playback
OB.	X2 speed
29	Unloading stop
08	Reverse playback
ОЬ	Still in reverse playback,
	Reverse slow playback
ØΣ	Recording
Оd	Record pause
O£	Power off eject
OF	Eject
10	Short FF
11	Short REW

Abnormal mechanism positions

Ũ i	F/L out
03	F/L down
05	Loading/unloading
07	Reverse rotation with pinch roller ON
89	Playback with pinch roller ON
Оь	Stop with main brake ON
04	FF/REW
OF	Position detection impossible
	·

Positions 0, 2, 4 exist as mechanism positions. For example, 8 shows a position between 7 and 9 (between playback position and review position).

2-3-4. Cylinder rotation time display

(1) Outline

All the time for which the cylinder is ON is counted, memorized on EEPROM, and indicated on the display tube.

(2) Display method

- Press the "CH UP" and "CH DOWN" button on the main unit for more 5 sec. at the same time.
- Next, within 2 sec. press the "STOP" button on the remote control.
- The cumulative operation time of the cylinder will be displayed for 30 sec. The time unit is an hour.

(3) Example of display

• In case of 1234 hours.

· In case of 4 hours.

SECTION 3 SERVICING DIAGRAMS

1. INSPECTION PROCEDURE

				Page	
Operation steps		Items to be confirmed	Inspection block	Block Diagram	Circuit Diagram
1. Power SW ON	Time setting Timer/counter, Memory Channel selection, AFC operation, EE picture & tone quality	Clock setting operation Mode display lamp TV receive condition, Channel select operation, AFC operation level, EE picture quality, Tone signal level	KDB Power Logic RF reception Video (EE, REC mode) Audio (EE, REC mode)	3-13 3-11 3-17 3-12 3-24 3-27	3-38 3-31 3-44 3-34 3-50 3-56
2. Cassette-in and Cassette-out	Cassette-in Cassette loading Eject Casette-out	F/L mechanism operation Cassette loading operation Eject operation Indicator lamp Abnormal sound	Logic	3-17	3-44
Key Entry Operation Remote Control	REC, PLAY Cue/Review Still, Frame advance/slow FF/REW	VTR display, OSP Each mode operation (Tape drive operation) Abnormal sound	KDB Logic	3-13 3-17	3-38 3-44
Special Functions Counter Functions Tracking	Linear time counter, Index/skip search, Time search Digital auto tracking	Each mode operation Mode operation	Servo/Logic Servo/Logic	3-17 3-17	3-44
5. Playback Function Picture Sharpness Tone Quality Othres	PLAY (Test tape: ST-C6, ST-C7) Cue/Review Still/Slow	Resolution, S/N Hue, Saturation, Color unevenness, Color dropout, Sound distortion, Level variation, Picture noise, Jitter Picture swing, Skew distortion, Flicker, Beat	Video PLAY system Audio PLAY system Servo system	3-24 3-27 3-17	3-50 3-56 3-44
6. REC/PLAY Functions Picture Sharpness Tone Quality Others	REC/PLAY	Resolution, S/N Hue, Saturation, Color unevenness, Color dropout, Sound distortion, Level variation, Picture noise, Jitter Picture swing, Skew distortion, Flicker, Beat	Video PLAY system Audio PLAY system Servo system	3-24 3-27 3-17	3-50 3-56 3-44

How to use the table

- 1. When inspecting a defective VTR, proceed according to the steps shown in the table.
- 2. Check the items to be confirmed for each operation step.
- 3. If a problem is found on the item, check waveforms (level) referring to the block diagram relating to the items.
- 4. Use PC board pattern diagram and schematic diagram to examine the circuit precisely.

3. ELECTRICAL UNITS LOCATION DIAGRAM

4. STANDING PC BOARDS FOR SERVICING

After removing the mechanical deck with the main PC board, place the mechanical deck to upright. Then perform servicing in the condition that all the units are connected each other.

Note:

Applying an excessive force to the connector connecting KDB and FCB PC board will damage the connector.

So, take much care when removing them.

5. PART CONFIGURATION AND THEIR SYMBOLS

1.ICs

SHAPE	NAME	SHAPE
75 51	TB6515AP	
76 50		16 nnnnn 9
TOP) TOP VIEW
100=0		
1 25		1 8
	U4614B	14 8
65		14 8
TOP VIEW		TOP VIEW
80 25		
1 24		
64 41	BA3129F	14 0
6540		14 8
TOP VIEW		TOP
80 = 25		OVIEW !
		1 7
64 33	LA7356M	10 6
ليرسسسس فمسسمي		
TOP VIEW //		TOP VIEW
1 32		1 5
36 25	TA7291S	
37		
TOP VIEW		FRONT
48=0 = 13		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1 12		1 10
	ST24C04	0 5
28 15 		8 5
) TOP VIEW) TOP VIEW
1 14		1 4
		1 4
24 13	TA75557P	8 5
		1 1
TOP VIEW		TOP
		1 4
1 12		1 4
16 9	BA7755	
		FRONT
TOP VIEW		ال المناقلا
<u>ввяння</u>		1 5
1 0	DOTTOONET	-
16 9	PS17032MT	
		TOP
IOP VIEW		○ VIEW
	75 76 TOP VIEW 100 100 100 100 100 100 100 100 100 10	TOP VIEW TOP VI

NAME	SHAPE	NAME	SHAPE
		ZP5.1	
		1N4001	
		BAV20	
		ZPD8.2	D-1- **
		ZPD2.7	Polarity
TRANSISTORs			
T493F	\wedge	BAV20	
			Polarity
			- Hours
	E,		
SA1020-Y		1N5822	
SC2236-Y(C)	\bigcap	BA157	_ BLACK
			GREY
	E C B		
	~ В		
3C337		1SS181	<u>^</u>
	(MA)		
	C B E		
BC848,RN1404		LL4448	
3C858,RN1405		LL4148	
3C858,RN2403	c		
3C847B,BC848B			
RN2402,2SA1162-Y	E		
RN1402	₩ B		
		ZMM5.6	
		ZMM5.1	
•			
			□■ Ⅱ₩
.DIODEs			
IN4148		GL451V	\wedge
N4448			IJQ)
N4148			THE
PD10V	Polarity		
N4007			
			Cathode Anode
ZPD5.6	Orange band	ZPD12	
	Orange band		Indication Silver band
	Polarity		Polarity
			
1155.405			-
UF5405	_Silver band		
IA157			
MUR115	\ I		
A158 IUR115			
פווחט	F1		

5-1. Replacing Subminiature "CHIP" Parts

5-1-1. Required Tools:

- 1. Fine tipped, well insulated soldering "pencil", about 30 Watts.
- 2. Tweezers.
- 3. Blower type hair dryer.

5-1-2. Soldering Cautions:

- 1. Do not apply heat for more than 3s.
- 2. Avoid using a rubbing stroke when soldering.
- 3. Discard removed chips; do no reuse them.
- 4. Supplementary cementing is not required.
- 5. Use care not to scratch or otherwise damage the chips.

5-1-3. Removal (Resistors, Capacitors, etc.):

1. Melt the solder at one side.

Fig. 1

2. Grasp the part with tweezers and melt the solder at the other side.

Fig. 2

3. Remove the part with a twisting motion.

Fig. 3

5-1-4. Removal (Transistors, Diodes, etc.):

1. Melt the solder of one lead.

Fig. 4

2. Lift the side of that lead upward.

Fig. 5

3. Simultaneously heat solder the two remaining leads and lift part to remove.

Fig. 6

5-1-5. Preheating (Except for semiconductors):

Immediately before installing new resistors or capacitors, use a blower type hair dryer and preheat the part for about two min. at approximately 150°C.

5-1-6. Replacement:

1. Presolder the contact points of the circuit pattern.

Fig. 7

2. Press the part downward with tweezers and apply the soldering pencil as indicated in the figure.

Fig. 8

5-2. Precautions for Part Replacement

- In the schematic diagram, parts marked ∆ (ex. ∆
 F801) are critical part to meet the safety regulations, so always use the parts bearing specified part codes (SN) when replacing them.
- Using the parts other than those specified shall violate the regulations, and may cause troubles such as operation failures, fire etc.

5-3. Solid Resistor Indication

Unit	NoneΩ
	kkΩ
	ΜΜΩ
Tolerance	None±5%
	B±0.1%
	C±0.25%
	D±0.5%
	E±1%
	G±2%
	K±10%
	M±20%
Rated Wattage	(1) Chip Parts
g_	None 1/16W
	(2) Other Parts
	None 1/6W
	Other than above, described in the Circuit Diagram.
Туре	None Carbon film
13 60	SSolid
	R Oxide metal film
	W Metal film
	WCement
	FRFusible

5-4. Capacitance Indication

	The state of the s
Symbol	→ ±
	—Ceranne, piastic
	⊣ <u>⊬</u> Film
	Trimmer
Unit	NoneF_
	μμF
	ppF
Rated voltage	None50V
ű	For other than 50V and electrolytic capacitors,
	described in the Circuit Diagram.
Tolerance	(1) Ceramic, plastic, and film capacitors of which
	capacitance are more than 10 pF.
	None ±5% or more
	B±0.1%
	C±0.25%
	B±0.1% C±0.25% D±0.5%
	F±1%
	G±2%
	(2) Ceramic, plastic, and film capacitors of which
	capacitance are 10 pF or less.
	None more than ±5% pF
	B±0.1 pF
	B±0.1 pF C±0.25 pF
	(3) Electrolytic, Trimmer
	Tolerance is not described.
Temperature characteristic	NoneSL
(Ceramic capacitor)	For others, temperature characteristics are
(SSI ZIIII SAPATION)	described. (For capacitors of 0.01 µF and
	no indications are described as F.)

5-5. Inductor Indication

Unit	μ	 H μH mH
Tolerance	B C D F G	±5% ±0.1% ±0.25% ±1.5% ±1% ±2% ±10% ±20%
Туре	PL For other,	Peaking model name is described.

5-6. Waveform and Voltage Measurement

- Measurement of waveform and voltage at each section in the color circuits was conducted with sufficient service color bar signal being received and reproduced in normal conditions.
- Waveforms and voltage values for the remaining circuit were measured with a broadcasting signal normally received, so they may vary slightly according to the programs being received. Use them as a measure for servicing.
- All voltage values except the waveforms are expressed in DC and measured by a digital voltmeter.

5-7. Chip Part Replacement

(Use spare part with wire leads connected.)

1. Hold a Chip part to be removed with tweezers and apply heat to the solder at one end of the part with a soldering iron. (Fig. 9)

Fig. 9

2. Apply heat to the solder at the other end of the part and remove it.

The heating time should be as short as possible so the excessive heat is not applied to foil patterns and the PC Board.

 If it is difficult to remove the part, temporarily stop the desoldering job and wait until temperature of the part lowers.

Then, repeat steps 1 and 2.

4. Form leads of the replacement part (general part equivalent to the chip part) as shown in the figures and solder place. (Fig. 10)

Fig. 10

5. Mount the replacement part so that it does not touch any other parts. (Fig. 11)

Fig. 11

6. PRINTED WIRING BOADS AND SCHEMATIC DIAGRAM

7. BLOCK DIAGRAM

7-1. POWER BLOCK DIAGRAM

7-2. PIF BLOCK DIAGRAM

7-3. KDB BLOCK DIAGRAM

7-3-1. KDB MICROCOMPUTER TERMINAL FUNCTION

7-3-2. KEY DISPLAY GK01 6-MT-255GNK

7-3-3. DISPLAY PATTTERN

	6G	5G	4G	3G	2G	1G
P1	(C)	1 d	VPS	1 d	1 d	1 d
P2	•	1 e	MIX	1e	1 e	1 e
Р3	ال	1 c	AGE	1 c	1 c	1 c
Р4		1 g	PDC	1 g	1 g	1 g
P5	Р	1 f	L	1 f	1 f	1 f
P6	L	1 b		1 b	1 b	1 b
P7 ·	S	1α	R	1α	1a	1a
Р8	00	VIDEO	TR	Н	М	S
Р9	B5	2d		2d	2d	2d
P10	В4	2e		2e	2e	2e
P11	вз	2c		2c	2c	2c
P12	B2	2g		2g	2g	2g
P13	В1	2f		2f	2f	2f
P14	C+	2b		2b	2b	2b
P15	SAT	2a		2α	2a	2a
P16	DT	P.		col	MONI	

7-4. SERVO/LOGIC BLOCK DIAGRAM

7-4-1. ITOO1 MAIN MICROCOMPUTER TERMINAL FUNCTION

7-4-2. IT001 Main Microcomputer Output Polarity

Pin No.	MODE Pin Name	ACTIVE	SLOT IN	SLOT OUT	Loading	Unloading	STOP	STAND -BY	FF	REW	PLAY SP SLP	Double Speed PLAY	CUE	
16	A.MUTEI	Н	L	L	L	L	L	L	L	L	L	L	Н	
25	LOAD+	L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	
26	LOAD-	L	Н	L	Н	L	Н	Н	Н	Н	Н	Н	Н	
30	POWER ON	L	L	L	L	L	L	L	L	L	L	L	L	
33	R/P CTL	U	-	-	-	-	-	-	-	-	-	•	-	
46	CTL OUT	Л	L	L	L	L	L	L	U	4	←	+	←	
53	CAP F/R	-	L	Н	L	Н	Н	Н	L	Н	L	L	L	
54	KDB STB	Л	Л	←	4-	←	←	-	+	+	4	←	←	
67	SP DATA			←	←	←	←	+		•	←	←	←	
76	PV/PH/BLK	4ST	4ST	←	←	←	←	+	+	←	4ST	+	←	
83	I2C DATA1			←	←	←	4	-	+	←	-	+	←	
84	I2C CLOCK1			←	←	←	4	←		+	←	+	4	
85	TRICK	Н	L	L	L	L	L	L	L	L	L	Н	Н	
86	I2C DATA2	THIT		←	←	←	←	←	+	←	←	-	· •	
87	I2C CLOCK2			4	4	←	4	-	+	4	←	←	←	
88	SP CLK		TIM	4	←	←	←	←	↓	←	←	-	←	
89	DFF	\mathcal{M}	M	←	←	←	←	←	.	←	←	←	←	
92	CR	\mathcal{M}	M	←	←	←-	4	←	4	←	←	←	4	
93	HASW	П	L	L	L	L	L	L	-	-	LH	Л	+	
95	KDB CLK			-	←	←	←	←	←	+	-	4	-	
96	DATA M→KDB			+	←	←	←	←	←	←	-	←	←	
98	CAP LIMITER	PWM	L	L	PWM	+ -	L	PWM	+	←	-	4	←	
99	CPWN	PWM	PWM	PWM	PWM	←	L	L	PWM	4	-	←	+	_
100	DPWN	PWM	L	L	PWM	←	L	PWM	+	←	←	+	—	

STILL	SLOW	REC SP SLP	REC PAUSE SP SLP	POWER OFF	INITIAL
Н	Н	L	L	Н	Н
Н	Н	Н	Н	Н	Н
Н	Н	н н		Н	Н
L	L	L L		Н	Н
-	-	N	-	-	OPEN
L	J	П	L	L	L
L	J	L	L	Н	L
 ←	←	4	←	←	L
←	←	←	←	←	L
←	←	←	+	L	4ST
←	←	-	←	←	Н
←	←	←	←	←	Н
 Н	Н	L	L	L	L
4 —	←	←	←	←	Н
←	←	4	←	←	Н
←	←	←		←	L
4	←	4	←	OPEN	OPEN
4	←	←	-	L	L
←	←	L H	L M	L	L
4	←	←	←	←	L
←	←	←	←	←	L
L	PWM	-	-	L	500mA
L	PWM	4	L	L	L
←	←	-	←	L	L

7-4-3. Logic Mode Shift Table

MODE KEY	POWER	STOP	PLAY	FF	
STOP	OFF		0	0	
FF	OFF	0	0	CUE	
REW	OFF	0	0	0	R
PLAY	OFF	0	Double Speed Play	CUE	R
SLOW	OFF	0	0	CUE	R
STILL	OFF	0	Frame adv	CUE	R
CUE	OFF	0	0	* 1	R
REVIEW	OFF	0	0	CUE	
ACC. CUE	OFF	0	0	* 2	R
ACC. REV	OFF	0	0	CUE	
REC	OFF	0	×	×	
REC PAUSE	OFF	0	×	×	
VISS MARK	OFF	0	×	×	
POWER OFF	ON	×	×	×	
Timer-Standby	ON	×	×	×	L
Timer-REC	ON	×	×	×	

X: No Shift (Current mode)

* 1: If pressed within 1s, FF. If not, all CUE

* 2: If pressed by Remote Control Unit, FF.

* 3: If pressed within 1s, REW. If not, all REVIEW

* 4 : If pressed by Remote Control Unit, REW.

* 5: For index rewrite only.

ole

STOP	PLAY	FF	REW	SLOW	PAUSE	REC	EJECT	Remain Count/ Time	INDEX	Counter RESET	T. Start	T. End
_	0	0	0	×	×	0	EJECT	0	SEARCH	RESET	S. FF	S. REW
0	0	CUE	0	×	×	×	EJECT	0	×	RESET	_	STOP
0	0	0	REVIEW	×	×	×	EJECT	0	×	RESET	STOP	
0	Double Speed Play	CUE	REVIEW	0	STILL	×	EJECT	0	SEARCH	RESET	_	REWIND
0	0	CUE	REVIEW	0	STILL	×	EJECT	0	×	RESET	_	REWIND
0	Frame adv	CUE	REVIEW	Frame adv	PLAY	REC Pause	EJECT	0	* 5	RESET		REWIND
0	0	* 1	REVIEW	×	×	\times	EJECT	0	×	RESET	_	REWIND
0	0	CUE	* 3	×	×	×	EJECT	0	×	RESET	STOP	_
0	0	* 2	REVIEW	×	×	×	EJECT	0	×	RESET		REWIND
0	0	CUE	* 4	×	×	×	EJECT	0	×	RESET	STOP	
0	×	×	×	×	REC Pause	_	×	0	V. Mark	RESET		REWIND
0	×	×	×	×	REC	×	×	0	×	RESET		_
0	×	×	×	×	×	×	×	×		RESET		REWIND
×	×	×	×	×	×	×	EJECT	×	×	×	<u> </u>	_
×	×	×	×	×	×	×	×	×	×	×		
X	×	×	×	X	×	X	X	0	V. Mark	RESET	_	Timer Standby

ode)

ls, FF. If not, all CUE

note Control Unit, FF.

ls, REW. If not, all REVIEW

note Control Unit, REW.

only.

7-5. VIDEO BLOCK DIAGRAM

7-6. AUDIO BLOCK DIAGRAM

7-6-1. Hi-Fi Audio Level Chart

7-6-2. Conventional Audio Level Chart

POWER

8-2. PIF Circuit Diagram

8-3. KDB Circuit Diagram

A

B

D

E

G

IU

1 | 2 | 3 | 4 | 5

8-5. SERVO/LOGIC CIRCUIT DIAGRAM

① IT001, Pin 🕸	E-10	⑤ IT001, Pin ⑩	F-8	(9) IT001, Pin (8)	F-7	(3) IT001, Pin (6)
V:2V/div H:10µs/div		CFGA,AMP SP PLAY V:500mV/div H:500µs/div		C.AMP0 PLAY (SP) V:1V/div H:10ms/div		
② IT001,Pin 🚳	E-10	⑥ IT001, Pin ®	C-9	① IT001 (a) Pin ⑧ SP PLAY (b) Pin ⑧ SP PLAY	C-9 C-9	① IT001 (a) Pin ⑥ SP (b) Pin ⑦
V:2V/div H:0.02µs/div		PV/PH/BLK STILL V:1V/div H:10ms/div		(a) (b) V:2V/div H:100ms/div	,	
③ IT001, Pin ④	F-9	⑦ IT001, Pin ③	F-7	① IT001 (a) Pin 🕲 (b) Pin 🛞	C-8 C-8	(∱) IT001, Pin (§)
CPGB.AMP SP PLAY V:500mV/div H:500µs/div		R/P CTL REC V:1V/div H:10ms/div		(a) (b) V:2V/div H:200µV/div		
(a) Pin (b) (KDB CLOCK) (b) Pin (c) (S) K DATA)	C-7 C-7	⑧ IT001, Pin ፡֍	F-7	② IT001, Pin ⑩	D-10	(6) IT003 Pin ⑦, ⑧ Pin ⑨
(a) (b) V:2V/div H:5ms/div		C.AMP1 FF (SP) V:1V/div H:500μs/div		C SYNC V:2V/div H:20µs/div		

9. PC BOARDS

9-1. Main (PIF, Servo/Logic, Video) PC Board

CVMPOL NO	LOCATION	OVMPOL NO	LOCATION
SYMBOL NO. DG030	D-8	SYMBOL NO. TT010	C-2
	_ •		
DG034	E-7	TT011	C-2
DT010	D.0	TT012	C-2
DT013	D-2	TT013	F-4
DV029	B-8	TV002	C-6
DV039	B-7	TV011	C-7
DV048	B-6	TV028	B-7
DV123	F-6	TV036	A- 7
DV126	D-8	TV047	B-7
DV186	C-6	TV055	A-7
DV202	B-6	TV126	D-8
		TV127	F-6
DZ001	A -9	TV130	F-6
		TV135	F-6
GT001	D-5	TV140	F-7
GT002	E-5	TV141	F-7
GT003	F-6	TV143	F-7
GT004	F-4	TV145	F-6
GT005	E-8	TV147	E-7
GT006	D-2	TV149	E-7
		TV154	F-7
IT001	E-3	TV170	C-5
IT002	C-4	TV171	B-5
IT003	C-5	TV188	B-6
IT004	E-6	TV200	A-6
IT005	D-2	TV201	A-6
		TV223	B-5
IV001	B-7	TV225	B-5
IV060	C-7	TV227	B-5
IV120	F-6	TV243	B-6
IV160	C-7	TV248	B-6
IV170	E-8	TV250	A -7
IV171	D-7	TV251	B-7
T0000	- -	T14/004	0.0
TG030	E-7	TW001	C-2
TG031	D-5	TW002	B-1
TNC40	4.0	TW003	A-2
TN640	A-2	TW005	B-2
TN641	A-2	TW006	B-2
TCOOO	D 4	TW008	A-3
TS030	B-4	TW009	B-2
TS039	A-4	T7000	D 0
TT001	D 4	TZ020	D-9
TT001	B-4	TZ032	A-9
TT002	C-4	TZ050	E-9
TT003	E-5	TZ051	E-9
TT005	C-2	TZ057	A-9
TT006	C-3		

2 | 3 | 4 | 5 | 6 | 7

0210M KDB PC Board

minal (MPX/Audio, Terminal) PC Board

2 | 3 | 4 | 5 | 6 | 7

8 | 9

SYMBOL NO. LOCATION

DK01 B-3

ICK01

B-3

IR01

B-8

9-5. FCB PC Board

A

В

1 | 2

SYMBOL NO.	LOCATION
IN005	B-4
IN007	B-5
DN001	B-7
DN002	B-7
DN003	B-7
DN300	A-5
TN001	B-2
TN002	B-8
TN003	C-6
TN004	A-8
TN300	A-5
TN302	B-4

0212M FCB PC Board

SECTION 4 PARTS LIST

SAFETY PRECAUTION

The parts identified by ⚠ mark are critical for safety. Replace only with part number specified.

The mounting position of replacement is to be identical with originals.

The substitute replacement parts which do not have the same safety characteristics as specified in the parts list may create shock, fire or other hazards.

NOTICE

The part number must be used when ordering parts in order to assist in processing, be sure to include the model number and description.

Parts marked # are of chip type and mounted on original PC boards.

However, when they are placed for servicing works, use discrete parts listed on the parts list.

ABBREVIATIONS

- 1. Integrated circuit (IC)
- 2. Capacitor (Cap)
 - Capacitance Tolerance (for Nominal Capacitance more than 10pF)

Sym	bol	В	С	D	F	G	J	K	M	N
Tolera	nce %	± 0.1	± 0.25	± 0.5	± 1	± 2	± 5	± 10	± 20	± 30

Symbol	P	Q	T	U	V	W	X	Y	Z
Tolerance %	+ 100	+ 30 -10	+ 50 -10	+ 75 -10	+ 20 -10	+ 100 -10	+ 40 -20	+ 150 -10	+ 80 -20

Ex. $10\mu F J = 10\mu F \pm 5\%$

• Capacitance Tolerance (for Nominal Capacitance 10pF or less)

Symbol	В	С	D	F	G
Tolerance pF	± 0.1	± 0.25	± 0.5	± 1	± 2

Ex. $10pFG = 10pF \pm 2pF$

3. Resistor (Res)

• Resistance tolerance

Symbol	В	С	D	F	G	J	K	M
Tolerance %	± 0.1	± 0.25	± 0.5	± 1	± 2	± 5	± 10	± 20

Ex. 470 Ω J = 470 Ω ± 5%

4. EXPLODED VIEWS

4-2. Remote Control Unit

4-1. Packing Assembly

4-3. Cabinet Assembly

4-4. Chassis Assembly

4-5. Mechanism Assembly (1)

5. PARTS LIST

LOCATION NUMBER	PART NUMBER	DESCRIPTION	LOCATION NUMBER	PART NUMBER	DESCRIPTION
		- MECHANICAL PARTS -	K370 K380	70031423 70031424	Spring T Soft Brake Assy
			K390	70031426	
		Owners Manual English/F			Drive Lever
		Owners Manual Spanish/I		70031427	
00060	70060040		K420	70031428	
		Remote Control Unit	K430		Idle Up Down Lever
0013C 0014C	70011442	Mains Cord	K440 K450		Idle Kick Lever Idle Centering Lever
0030F		Cassette Door	K430 K470		Cam Lever
0090F	70051331		K480		FL Drive Slider
0250		Front Panel	K490		Cassette Holder Assy
0350		Bottom Plate	K530		Drive Arm Assy
0400	70051620	Top Cover	K550	70051150	Drive Lever Gear
∆0450	70975164	Label	K562	70031482	Arm Brake Lever
0600		Packing (Rear)	K564	70031440	
0650		Packing (Front)	K570	70031441	Top Bracket
0700	70917888		K590	70031483	Door Open Lever
AT03 B410		Case (Battery)	U501A	70070070	Screw
B424		Loading Drive Assy Loading Motor Sub Assy			
B432		Cam Switch			
B435		Loading Drive Unit			
B440		Cam Gear			
B450		S Loading Assy			
B470	70031408	T Loading Assy			
B490		Loading Slider Assy			
B560		Capstan Motor Assy			
B570		Screw, 2. 6x6mm			
B580		Reel Belt			
G001S G010		Cylinder Assy Plate(Cylinder)			
G010 G020	70031444				
G021	70031644				
G030		Plate (Cylinder)			
G040	70031644				
G060	70031449	Screw			
G101	70031695	Upper Cylinder Assy			
G101A	70031521				
G102		Lower Cylinder Assy			
G103		Ground Cap Assy			
G410 G420		Guide Sleeve S Slider Assy			
G448	70031545	-			
G450		T Slider Assy			
		ACE Head Assy			
		ACE Sub Base Assy			
G504	70031508				
G520	70031370	No. 9 Guide Lever Assy			
G530	70031443				
G560		Pinch Lever Assy			
G580		Pinch Drive Assy			
G590 G680	70031392	Cleaner Lever Assy			
G690-		Ground Brush			
		S Reel Assy			
	70031324				
		T Reel Assy			
	70031334				
K180	70031339	Idle Arm Assy			
		Center Gear Pully			
	70031503				
	70031527				
		Tension Lever Sub Assy			
		Band Brake Sub Assy			
		Band Holder			
	70031660	Spring Hook Lever			
		Hook Lever			
		Tension Drive Lever			
		Rec Inhibit Lever			
		S Main Brake Assy			
		T Main Brake Assy			
K350	70031422	Spring			

LOCATION NUMBER	PART Number	DESCRIPTION				LOCATION NUMBER	PART NUMBER	DESCRIPTION			
						RP008	70040363	Res, Chip	47kΩ	J	1/16W
		- ELECTRICAL PARTS	-			RP009	70041173	Res, Chip	100kΩ		1/10W
0150M	70000033	P C Board Assy	Power			RP010	70040566 70040566	Res, Chip Res, Chip	15kΩ 15kΩ		1/8W 1/8W
U130m	10030333	- INTEGRATED CIRCU					70040566	Res, Chip	15kΩ		1/8W
IP001	70011972		U4614B				70040371		2. 2kΩ		1/16W
IP002	70011699		LM393N				70041939	Res, Chip	3. 9Ω	K	4 44 000
TP091	70011386	- TRANSISTORS - Transistor	2SA1020-Y				70040344 70040688	Res, Chip Res, Chip	33Ω 10Ω		1/16W 1/8W
		Transistor	BC337-40				70040088		1.5Ω		0. 3W
		- DIODES -					70041167	Res, Chip	1. 8kΩ		1/8W
DP001	70012286	Diode	1N4007			RP020	70040691		27Ω		1/8W
DP002 DP003	70012286 70012286	Diode Diode	1N4007 1N4007			ÆRP021 RP022	70041673 70041173	Res, Fusible Res, Chip	2. 2kΩ 100kΩ		0.3W 1/10W
	70012286	Diode	1N4007			RP023	70041173		330kΩ		1/8
DP005	70012416	Diode	BA158			RP024	70041272	•	330kΩ	J	1/8
DP007	70012469	Diode	BA157			RP025	70041272	^	330kΩ		1/8
DP008 DP009	70010817 70010817	Diode Diode	1N4148 1N4148			RP026 RP027	70041940 70040566	Res, Chip Res, Chip	5. 6kΩ 15kΩ	F	1/8W
	70012468	Diode	BA157			RP028	70040566	Res, Chip	15kΩ		1/8W
DP042	70012468	Diode	BA157			RP029	70040566	Res, Chip	$15k\Omega$	J	1/8W
DP051	70012338	Diode	BAV20			RP031	70041172	Res, Chip	39kΩ		1/10W
	70012338 70012433	Diode Diode	BAV20 MUR115				70041694 70041116	Res, Chip Res, Fusible	7. 5kΩ 39Ω		1/16W 0.3W
	70012434	Diode	BAV20				70041113	Res, Chip	18kΩ		1/8W
DP081	70012339	Diode	1N5822			RP053	70040682	Res, Chip	$82k\Omega$		1/8W
	70010959	Diode, Zener	ZPD10				70040134	Res, Chip	220kΩ		1/8W
	70012480 70012480	Diode Diode	FUF5404 FUF5404			RP055 RP057	70041354 70041799	Res, Chip Res, Chip	3. 9kΩ 820kΩ		1/8\ 1/10\
	70012466	Diode	1N4148				70041733	Res, Chip	1. 2kΩ		1/8W
DP094	70011286	Diode, Zener	ZPD5. 6			RP062	70041384	Res, Chip	1. 2kΩ	J	1/8W
DP095	70012499	Diode	MUR115				70041384	Res, Chip	1. 2kΩ		1/8W
LP001	70011950	- COILS - Line Filter					70041073 70040566	Res, Fusible Res, Chip	22Ω $15k\Omega$		0.3W 1/8W
		Line Filter					70040500	Res, Chip	56Ω	J	1/0#
∆LP020	70012427	Power Transformer	TF-SMT13			 ★RP091	70042136	Res, Fuse	0.47Ω	K	
LP051	70010922	Coil, Peaking	TDF 4000 40				70040125	Res, Carbon	47Ω		0. 3W
		Coil, Peaking Coil, Peaking	TRF4330AC				70040358 70040895	Res, Chip Res, Carbon	10kΩ 820Ω		1/16W 1/4W
		Coil, Peaking					70040033	Res, Chip	02032 1kΩ		1/10W
		- CAPACITORS -				RP097	70041941	Res, Chip	1. $5k\Omega$	F	1/10W
		Cap, Plastic	100nF	M	rt;		70040358	Res, Chip	10kΩ		1/16W
		Cap, Electrolytic Cap	47μF 2. 2nF	M 38		RP099	70040358	Res, Chip - MISCELLANEOUS -	10kΩ	J	1/16W
		Cap, Ceramic	100pF	K 1k		 ∆BP001	70011176	Inlet			
CP005	70040237	Cap, Ceramic, Chip	10pF	D 50				Fuse, 1A, 250V			
		Cap, Ceramic Cap, Electrolytic	4. 7nF	M 50'		FP01A	70010597	Fuse Holder			
	70040725	Cap, Electrolytic	10μF 100μF	M 25		■0210M	70090887	P C Board Assy	KDB		
	70042162	Cap, Chip	390pF	J 50'		02101	7000000	- INTEGRATED CIRCU			
	70040248	Cap, Ceramic, Chip	470pF	J 50'		ICK01	70012511	IC	TMP87CK70AF-	631	1
	70041063 70042149	Cap, Chip Cap, Chip	330pF 6. 8nF	J 50' M 50'		DK01	70011969	- DIODES - Diode, Zener	ZMM5. 6V		
	70042143	Cap, Electrolytic	220μF	M 10		זטווע	70011303	- CAPACITORS -	ZMMIJ. UY		
	24636010	Cap, Electrolytic	1μ F	M 50'	٧	CK01	24814223	Cap, Chip	2200pF	2	50V
	24797100	Cap, Electrolytic	10μF	M 50		CKO2	70041376	Cap, Chip	10nF		50V
	70040096 70041633	Cap, Ceramic Cap, Plastic	470pF 10nF	M 400		CK03 CK04		Cap, Chip Cap, Chip	33pF 33pF		50V 50V
	70041033	Cap, Chip	220pF	J 50'				Cap, Chip	10nF		50V
CP061	70042167	Cap, Electrolytic	220μF	M 35				Cap, Electrolytic	100μF	M	6. 3V
	70040772	Cap, Electrolytic	47μF	M 50		CK09	70041376	Cap, Chip	10nF	Ζ !	50V
	70040096 70041637	Cap, Ceramic Cap, Electrolytic	470pF 1000μF	M 400		RK01	70041168	- RESISTORS - Res, Chip	15Ω	Ţ	1/10W
		Cap, Electrolytic	1000μF	X 16			70041168	Res, Chip	15Ω		1/10W
CP092	70042152	Cap, Electrolytic	0. 001F	M 25	V	RK03	70040358	Res, Chip	$10k\Omega$	J	1/16W
	70040772	Cap, Electrolytic	47μF	M 50			70040373	Res, Chip	4. 7kΩ		1/16W
	24092293 70040244	Cap, Chip Cap, Ceramic, Chip	0. 1μF 100pF	Z 25' J 50'		RK05 RK06	70041709 70040358	Res, Chip Res, Chip	2. 2kΩ 10kΩ		1/10W 1/16W
01 030	TTAULUU	- RESISTORS -	100pt	0 00	•		70040330	Res, Chip	220Ω		1/16W
	70040358	Res, Chip	$10k\Omega$	J 1/		RK08	70040358	Res, Chip	10 k Ω	J	1/16W
	70040363	Res, Chip	47kΩ	J 1/2			70040358	Res, Chip	10kΩ		1/16W
	70040357 70040357	Res, Chip Res, Chip	$22k\Omega$ $22k\Omega$	J 1/3 J 1/3			70040350 70011425	Res, Chip Res, Chip	220Ω 3kΩ	J	1/16W
	70040358	Res, Chip	10kΩ	J 1/		RK12	70011425	Res, Chip	3kΩ		
RP007	70040362	Res, Chip	$33k\Omega$	J 1/				Res, Chip	$3k\Omega$		

LOCATION NUMBER	PART NUMBER	DESCRIPTION				OCATION	PART NUMBER	DESCRIPTION	
DV4.4	70044405	b di;	21-0			 TV036	A6004020	Transistor, Chip	RN1402
RK14	70011425 70011425	Res, Chip Res, Chip	3kΩ 3kΩ			TV030	70010947	Transistor	BC858
RK15 RK16	70011423	Res, Chip	1kΩ	J 1	/16W	TV055	70010150	Transistor	BC848B
RK17	70040374	Res, Chip	8. 2kΩ		/16W	TV103	A6004020	Transistor, Chip	RN1402
RK18	70040354	Res, Chip	1kΩ		/16W	TV126	70011788	Transistor, Chip	RN2402
RK19	70040354	Res, Chip	$1k\Omega$	J 1	/16W	TV127	70010947		BC858
RK20	70011426	Res, Chip	2kΩ			TV130	70010150		BC848B
RK21	70041389	Res, Chip	6. 2kΩ		/10W	TV135	70010150		BC848B BC848B
RK22	70040354	Res, Chip	1kΩ		/16W	TV140 TV141	70010150	Transistor Transistor	BC848B
RK23	70040374	Res, Chip	8. 2kΩ 5. 6kΩ		/16W /10W	TV141	70010130	Transistor	BC858
RK24 RK26	70041138 70040350	Res, Chip Res, Chip	220Ω		/16W	TV145	70010150	Transistor	BC848B
NN20	70040330	- MISCELLANEOUS -	22032	0 1	/ 1011	TV147	70010150	Transistor	BC848B
GK01	70012437	FIP	6-MT-255GNK			TV149	70010947	Transistor	BC858
QK01	70010937	Resonator	8MHz			TV154	70010150	Transistor	BC848B
SK03	23344094	Push Switch				TV170	A6004020	Transistor, Chip	RN1402
SK04	23344094	Push Switch				TV186	A6004020	Transistor, Chip Transistor	RN1402 BC848B
SK06	23344094	Push Switch				TV187 TV188		Transistor	BC848
SK08	23344094	Push Switch Push Switch				TV200	70010342	Transistor	BC848B
SK10 SK13	23344094 23344094	Push Switch				TV201	70010150	Transistor	BC848B
SK14	23344094	Push Switch				TV223	70010150	Transistor	BC848B
ZRO1	70012350	F. U.	TFMT5380			TV225		Transistor, Chip	RN1402
						TV227		Transistor	BC848B
0212M	70090893	P C Board Assy	FCB			TV243		Transistor	BC858
		- CAPACITORS -			.011	TV248		Transistor	BC848B BC848B
CK14	70041707		1nF	ZS		TV250 TV251		Transistor Transistor	BC848B
CK15	70041707	Cap, Chip	1nF	Z S	υV	TW001		Transistor	BC848
RK29	70041441	- RESISTORS - Res, Chip	75Ω	.I. 1	1/10W	TW002		Transistor, Chip	RN2403
RK30	70041441	Res, Chip	1kΩ		1/16W	TW003		Transistor	2SC2236-Y
RK31	70040354	Res, Chip	1kΩ		/16W	TW005		Transistor	2SC2236-Y
		- MISCELLANEOUS -				TW006		Transistor	BC858
B201	70011825	Phono Jack				TW008		Transistor	2SC2236-Y
B701		Phono Jack				TW009		Transistor, Chip	RN1405 RN1402
B702		Phono Jack				TZ020 TZ032		Transistor, Chip Transistor	BC858
BK01B	23164505 23344094	Plug, 3P Push Switch				TZ052		Transistor	BC848B
SK07 SK16	23344094	Push Switch				TZ051	70010100	Transistor	BC858
31110	23344034	rusii swreen				TZ057		Transistor	BC858
0005M	70090913	P C Board Assy	Main			GT005	70010181	Transistor, Photo	PT493F
_		- INTEGRATED CIRCU				GT006	70010181	Transistor, Photo	PT493F
[T001	70012512		TMP90CR74DF-	-7504	1	b.co.oo	70040040	- DIODES -	11.41.40
IT002	70011888	IC	TA7291S			DG030 DG034		Diode, Chip Diode, Chip	LL4148 LL4148
	70011887		TB6515AP				70010342		1N4148
	70011892 70011808		ST24C04 PST7032MT			DT001	70012342	Diode	1N4001
IV001		IC	LA7447M			DT002	70012342		1N4001
IV060	70012440	IC	LC89970M			DT003	70012342	Diode	1N4001
IV100	70012463	IC	LA7356M			DT005	70010153	Diode	1N4148
IV120	70012442	IC	74HC4053			DT006	70010153	Diode	1N4148
IV160	70010969	IC	BA7046			DT008	70012342 70011286	Diode Diode, Zener	1N4001 ZPD5. 6
IV170	70010981	IC IC	MC14094BD MC14094BD			DT009 DT010	70011230		1N4001
IV171	70010981	- TRANSISTORS -	MC14034DD			DT010	70012342	Diode	1N4001
TG030	A6004020	Transistor, Chip	RN1402			DT012	70012342		1N4001
	70010947	Transistor	BC858			DT013	70010342	Diode, Chip	LL4148
	70012432	Transistor, Chip	2SC2859Y			DT014	70012342		1N4001
TN439	70010150	Transistor	BC848B			DTO15	70012342		1N4001
TN640	70010150	Transistor	BC848B			DT018	70012342 70010965		1N4001 LL4448
TN641	70010150		BC848B			DV029 DV039	70010965	Diode Diode	LL4448
TS030 TS039	70012432 70010150	Transistor, Chip Transistor	2SC2859Y BC848B			DV033	70010303	Diode	1N4448
TT001	A6004040	Transistor, Chip	RN1404			DV048	70010965	Diode	LL4448
TT002	A6004040		RN1404			DV082	70010965	Diode	LL4448
TT003	70010150	Transistor	BC848B			DV109	70010334		1N4448
TT005	70011386	Transistor	2SA1020-Y			DV110	70010334	Diode	1N4448
TT006	70010150	Transistor	BC848B			DV123	70010340	Diode	1SS181
TT010		Transistor	BC337-40			DV126	70010965 70010965	Diode Diode	LL4448 LL4448
TT011		Transistor	BC848 BC848			DV182 DV186	70010965	Diode	LL4448
		Transistor Transistor	BC848 BC858			DV100	70010903		LL4448
		Transistor, Chip	RN1402			DW001	70011967	Diode, Zener	ZPD12
		Transistor	BC858			DW002	70010334		1N4448
		Transistor	BC848B			D₩005	70011440	Diode	ZP5. 1

LOCATION NUMBER	PART Number	DESCRIPTION			LOCATION NUMBER	PART NUMBER	DESCRIPTION		
DWOOC	70010005	Diada	LL4448		CT016	70041328	Cap, Chip	100nF	Z 25V
DW006	70010965	Diode Diode	1N4001		CT018	70041328	Cap, Chip	100nF	Z 25V
DW007 DW008	70012342 70012342	Diode	1N4001 1N4001		CT020	70040998	Cap, Chip	100nF	Z 25V
DW010	70012342	Diode, Zener	ZPD8. 2		CT021	70041648	Cap, Chip	1000pF	J 50 V
DW011	70010160	Diode, Zener	ZPD2V7		CT022	70041630	Cap, Chip	1nF	J 50V
DW012	70010334	Diode	1N4448		CT023	70042112	Cap, Electrolytic	47μF	M 16V
DW013	70012342	Diode	1N4001		CT024	70041012	Cap, Chip	150pF	J 50V Z 16V
DW014	70012342	Diode	1N4001		CTO25	70041130 70041130	Cap, Chip Cap, Chip	470nF 470nF	Z 16V Z 16V
DZ001	70011968	Diode, Zener	ZMM5. 1		CT026 CT027	24774101	Cap, Chip	100pF	J 50V
GT002	70010180	Diode, LED - COILS -	GL451V		CT028	24774101	Cap, Chip	100pF	J 50V
LN640	70012430	Coil, Peaking			CT029	70042122	Cap, Electrolytic	1μF	M 50V
LN641	23238921	Coil, Peaking	TRF4120AC		CT030		Cap, Electrolytic	1μF	M 50V
LS030	70011369	Transformer			CT031	70041037	Cap, Electrolytic	47μF	M 16V
LT001		Coil, Peaking			CT032	70041328	Cap, Chip	100nF	Z 25V
LT002	70010803	Coil, Peaking			CT034 CT035	70041118 70041118	Cap, Chip Cap, Chip	220pF 220pF	J 50V J 50V
LT004	70011953 70010920	Coil, Peaking Coil, Peaking			CT035	70041118	Cap, Chip	InF	M 50V
LV033 LV052		Coil, Peaking			CT037	24774100	Cap, Chip	10pF	D 50V
LV063		Coil, Peaking			CT038	70041125	Cap, Chip	22nF	M 25V
LV082		Coil, Peaking	TRF4101AF		CT039	70042129	Cap, Chip	200pF	J 50V
LV107	23238708	Coil, Peaking	TRF4330AJ		CT040	24774101	Cap, Chip	100pF	J 50V
LV151	70011996	Coil, Peaking			CT041	24774470	Cap, Chip	47pF	J 50V J 50V
LV153	70011849	Coil, Peaking	TDF 4000 40		CT042 CT044	24774470 24793471	Cap, Chip Cap, Electrolytic	47pF 470μF	M 10V
LV162	23237981	Coil, Peaking	TRF4330AC		CT044	70041328	Cap, Chip	100nF	Z 25V
LV200 LV214	70010803 23289181	Coil, Peaking Coil, Peaking	TRF4181AF		CT040	70041328	Cap, Chip	100nF	Z 25V
LV214	70011577	Coil, Peaking	114 4101/1		CT048	70040998	Cap, Chip	100nF	Z 25V
LV226	23289181	Coil, Peaking	TRF4181AF		CT049	70041596	Cap, Chip	10nF	K 50V
LV243	23289121	Coil, Peaking	TRF4121AF		CT050	70041328	Cap, Chip	100nF	Z 25V
LV245	23289270	Coil, Peaking	TRF4270AF		CT051	70041328	Cap, Chip	100nF	Z 25V
LV246	23289220	Coil, Peaking	TRF4220AF		CT052	70041328	Cap, Chip Cap	100nF 0. 1F	Z 25V Z
LV247	70011577	Coil, Peaking			CT053 CT054	70041066 70041051	Cap, Electrolytic	0. 11 47μF	M 16V
LV248 LV251	70012096 70011996	Coil, Peaking Coil, Peaking			CT055		Cap, Electrolytic	220μF	M 10V
LZ001	70011530	Coil, Peaking			CT056		Cap, Electrolytic	100μF	M 6.3V
LZ002	70011954	Coil, Peaking			CT060	70040530	Cap, Electrolytic	100μF	M 16V
LZ050	70010924	Coil, Peaking			CT070	70041596	Cap, Chip	10nF	K 50V
LZ051	70010924	Coil, Peaking			CV001	70040994	Cap, Chip	390pF	J 50V
00100	70040000	- CAPACITORS -	10- Γ	V EOV	CV002 CV004	24872102 70041657	Res, Chip Cap, Chip	1kΩ 22nF	J 1/16W K 25V
CG103 CG104	70040989 70041298	Cap, Chip Cap, Electrolytic	10nF 1μF	K 50V M 50V	CV004	24203100	Cap, Electrolytic	10μF	M 16V
CG104	24636010	Cap, Electrolytic	1μF	M 50V	CV006	70041657	Cap, Chip	22nF	K 25V
CN430	24815272	Cap, Chip	2700pF	K 50V	CV007	24203100	Cap, Electrolytic	10μ F	M 16V
CN431	70041596	Cap, Chip	10nF	K 50V	CV008	70041318	Cap, Electrolytic	100μF	M 6.3V
CN433		Cap, Plastic	82nF	J 50V	CV009	70041328	Cap, Chip	100nF	Z 25V
CN436		Cap, Chip	10nF	K 50V		70042121	Cap, Electrolytic Cap, Chip	10μF 8pF	M 6.3V D 50V
CN438 CN637	70011572 70041596	Cap, Electrolytic Cap, Chip	33μF 10nF	M 25V K 50V	CV011 CV013	24774680	Cap, Chip	68pF	J 50V
CN640	70041596	Cap, Chip	10nF	K 50V	CV016	24636010	Cap, Electrolytic	1μF	M 50V
CN643	70041596	Cap, Chip	10nF	K 50V	CV022	70041657	Cap, Chip	22nF	K 25V
CN644	24774470	Cap, Chip	47pF	J 50V	CV025	70041657	Cap, Chip	22nF	K 25V
CN645	24783330	Cap, Chip	33pF	J 50V	CV029	70042101	Cap, Electrolytic	1μF	M 50V K 10V
CN646	70041328	Cap, Chip	100nF 10nF	Z 25V K 50V	CV030 CV032	70041704 70041624	Cap, Chip Cap, Chip	47nF 470nF	Z
CS030 CS031	70041596 24815272	Cap, Chip Cap, Chip	2700pF	K 50V	CV032	70041704	Cap, Chip	47nF	K 10V
CS033	70040053	Cap, Plastic	56nF	J 63V	CV035	70042101	Cap, Electrolytic	1μF	M 50V
CS034	24214221	Cap, Ceramic	220pF	K 500V	CV036	70041657	Cap, Chip	22nF	K 25V
CS036	70041298	Cap, Electrolytic	1μ F	M 50V	CV037	70042101	Cap, Electrolytic	1μF	M 50V
CS038	70040530	Cap, Electrolytic	100µF	M 16V	CV038	70042127	Cap, Ceramic	22nF	Z 25V K 25V
CT001	70041328	Cap, Chip	100nF	Z 25V	CV039	70042116	Cap, Chip Cap, Chip	47nF 47nF	K 10V
CT002	70041596 70041648	Cap, Chip Cap, Chip	10nF 1000pF	K 50V J 50V	CV041 CV042	70041704 70041654	Cap, Chip	10nF	K 25V
CT003 CT004	70041648	Cap, Chip	1nF	J 50V	CV044	70041640	Cap, Electrolytic	10μF	M 50V
CT005	70041596	Cap, Chip	10nF	K 50V	CV045	70041328	Cap, Chip	100nF	Z 25V
CT006	70041596	Cap, Chip	10nF	K 50V	CV046	70041328	Cap, Chip	100nF	Z 25V
CT007	70041596	Cap, Chip	10nF	K 50V	CV047	24774680	Cap, Chip	68pF	J 50V J 50V
CT008	70041713		100 μF	M 16V	CV048	70041871	Cap, Chip	200pF	J 50V K 16V
CT009	70042112		47μF 2200pF	M 16V K 50V	CV049 CV053	70042161 70041864	Cap, Chip Cap, Chip	56nF 24pF	J 50V
CT010 CT011	24815222 70041328		2200pr 100nF	X 25V	CV055	24872330	Res, Chip	33Ω	J 1/16W
	24774100		10pF	D 50V	CV062	70041631		22nF	K 50V
CT013	24774100		10pF	D 50V	CV063		Cap, Electrolytic	100μ F	M 10V
CT014	70041654	Cap, Chip	10nF	K 25V	CV064		Cap, Chip	100nF	Z 25V
CT015	70041654	Cap, Chip	10nF	K 25V	CV065	70041657	Cap, Chip	22nF	K 25V

LOCATION NUMBER	PART NUMBER	DESCRIPTION			LOCATION NUMBER	PART NUMBER	DESCRIPTION		
CV067	70042122	Cap, Electrolytic	1μ F	M 50V	CZ013	70041125	Cap, Chip	22nF	M 25V
CV069	70042122	Cap, Electrolytic	1μF	M 50V	CZ014	70041241	Cap, Electrolytic	47μF	M 16V
CV071	70041654	Cap, Chip	10nF	K 25V	CZ015	70041500	Cap, Electrolytic	47μF	M 50V
CV072	70042126	Cap, Ceramic	10nF	M 16V	CZ021	70041657	Cap, Chip	22nF	K 25V
CV074	70041328	Cap, Chip	100nF	Z 25V	CZ030	24794101	Cap, Electrolytic	100μF	M 16V
CV076	70041328	Cap, Chip	100nF	Z 25V	CZ033	24794101	Cap, Electrolytic	100μF	M 16V
CV077	70041514	Cap, Electrolytic	100μF	M 16V	PT001	24093962	Cap, Variable	20pF	
	70041328	Cap, Chip	100nF	Z 25V			- RESISTORS -		
	70042122	Cap, Electrolytic	1μ F	M 50V	RG030	24872102	Res, Chip	1 k Ω	J 1/16W
	24783390	Cap, Chip	39pF	J 50V		24872103	Res, Chip	10 k Ω	J 1/16W
	70041657	Cap, Chip	22nF	K 25V	RG032	24872821	Res, Chip	820Ω	J 1/16W
			10nF	K 25V	RG034	24872682	Res, Chip	6. 8kΩ	J 1/16W
	24793101	Cap, Electrolytic	100μF	M 10V	RG035	24871472	Res, Chip	4. 7kΩ	J 1/8W
	70041328	Cap, Chip	100nF	Z 25V		24871562	Res, Chip	5. 6kΩ	J 1/8W
CV108 CV121	70042126 70042121	Cap, Ceramic Cap, Electrolytic	10nF	M 16V	RG037 RG105	24871822 70041096	Res, Chip Chip Jumper	8. 2kΩ	J 1/8W
CV121	70042121	Cap, Chip	10μF 100nF	M 6.3V Z 25V	RG105	70041096	Chip Jumper		
	70041328	Cap, Electrolytic	100m 100μF	M 6. 3V	RG112	70041036	Chip Jumper		
	70041641	Cap, Electrolytic	10μF	M 50V	RN431	24872101	Res, Chip	100Ω	J 1/16W
	70041328	Cap, Chip	100nF	Z 25V	RN436	70040920	Res, Carbon	1. 5kΩ	J 1/4W
	70041522	Cap, Electrolytic	47μF	M 10V	RN437	24872152	Res, Chip	1. 5kΩ	J 1/16W
	70041522	Cap, Electrolytic	47μF	M 10V	RN439	70041919	Res, Chip	4. 7Ω	J 1/10W
	70041328	Cap, Chip	100nF	Z 25V	RN440	24872563	Res, Chip	$56k\Omega$	J 1/16W
	70042160	Cap, Electrolytic	$100 \mu F$	M 6.3V	RN441	70041671	Res, Fusible	18Ω	J 0.3W
CV140	70041328	Cap, Chip	100nF	Z 25V	RN640	24872392	Res, Chip	3. $9k\Omega$	J 1/16W
CV151	24783180	Cap, Chip	180pF	J 50V	RN641	24871101	Res, Chip	100Ω	J 1/8W
	70041323	Cap, Chip	8pF	C 50V		24871471	Res, Chip	470Ω	J 1∕8₩
	70041923	Cap, Chip	75pF	J 50V		24872561	Res, Chip	560Ω	J 1/16W
	24774180	Cap, Chip	18pF	J 50V		24872222	Res, Chip	2. 2kΩ	J 1/16W
	70041096	Chip Jumper				24872103	Res, Chip	10 k Ω	J 1/16W
CV161	24774101	Cap, Chip	100pF	J 50V		24872392	Res, Chip	3. 9kΩ	J 1/16W
	70042128	Cap, Chip	2. 2nF	J 50V	RS030	70041919	Res, Chip	4. 7Ω	J 1/10W
	24774101	Cap, Chip	100pF	J 50V		24872472	Res, Chip	4. 7 k Ω	J 1/16W
	70042122 70041328	Cap, Electrolytic Cap, Chip	1μF 100nF	M 50V Z 25V	RS035 RS036	70041096 24872103	Chip Jumper Res, Chip	10 k Ω	J 1/16W
	70041328	Cap, Electrolytic	100mr 100μF	M 6. 3V		24872103	Res, Chip	10ks2 4. 7kΩ	J 1/16W
	70042133	Cap, Electrolytic	100μ1 1μF	M 50V		24872472	Res, Chip	4. 7kΩ	J 1/16W
	70041699	Cap, Chip	100nF	K		70041096	Chip Jumper	1. /K22	0 1/1011
	70041328	Cap, Chip	100nF	Z 25V	RS043	70041096	Chip Jumper		
	70041631	Cap, Chip	22nF	K 50V		70041671	Res, Fusible	18Ω	J 0.3W
	24774680	Cap, Chip	68pF	J 50V		24872100	Res, Chip	10Ω	J 1/16W
CV189	70041631	Cap, Chip	22nF	K 50V	RT001	24872221	Res, Chip	220Ω	J 1/16W
CV200	70041328	Cap, Chip	100nF	Z 25V	RT002	70040106	Res, Carbon	$10k\Omega$	J 1/4W
	70041713	Cap, Electrolytic	100μF	M 16V	RT003	70042163	Res, Chip	$11k\Omega$	G 1/8W
	70041654	Cap, Chip	10nF	K 25V	RT004	70040702	Res, Carbon	12kΩ	J 1/4W
	70041654	Cap, Chip	10nF	K 25V		24871473	Res, Chip	47kΩ	J 1/8W
	24774180		18pF	J 50V		24871473	Res, Chip	47kΩ	J 1/8W
	70042117	Cap, Chip	130pF	J 50V		24872103	Res, Chip	10kΩ	J 1/16W
	70041325	Cap, Ceramic	91pF	J 50V		24871229	Res, Chip	2. 2Ω	J 1/8W
	70041328 24285103	Cap, Chip Cap, Chip	100nF 0. 01μF	Z 25V K 50V		24871229 24872472	Res, Chip	2. 2Ω 4. 7 k Ω	J 1/8W J 1/16W
	70041654	Cap, Chip	10nF	K 25V		24872821	Res, Chip Res, Chip	4. 7KS2 820Ω	J 1/16W
	70041034	Cap, Chip	51pF	J 50V		24871103	Res, Chip	10kΩ	J 1/8W
	70041514	Cap, Electrolytic	100μF	M 16V		24872472	Res, Chip	4. 7kΩ	J 1/16W
	70041328	Cap, Chip	100nF	Z 25V		70042025	Res, Carbon	110kΩ	J 1/4W
	70042125	Cap, Ceramic	120pF	J 50V		24872114	Res, Chip	$110 k\Omega$	J 1/16W
CV243	70041534	Cap, Chip	560pF	J 50V	RT017	24871201	Res, Chip	200Ω	J 1/8W
	70040982	Cap, Chip	820pF	J 50V	RT018	24871201	Res, Chip	200Ω	J 1/8W
	70042118	Cap, Chip	15pF	J 50V		24871103	Res, Chip	10 k Ω	J 1/8W
	24783121	Cap, Chip	120pF	J 50V		24871103	Res, Chip	10 k Ω	J 1/8W
	24774150	Cap, Chip	15pF	J 50V		24871102	Res, Chip	1kΩ	J 1/8W
	24783220	Cap, Chip	22pF	J 50V		24872182	Res, Chip	1. 8kΩ	J 1/16W
	70041657	Cap, Chip	22nF	K 25V		24872472	Res, Chip	4. 7kΩ	J 1/16W
	70041326	Cap, Chip	56pF	J 50V		24872472	Res, Chip	4. 7kΩ	J 1/16W
	70041328	Cap, Chip	100nF	Z 25V		24872472	Res Chip	4. 7kΩ	J 1/16W J 1/16W
	24794101 24797100	Cap, Electrolytic Cap, Electrolytic	100μF 10μF	M 16V M 50V	RTO26 RTO27	24872102 70040891	Res, Chip Res, Carbon	$1k\Omega$ 470Ω	J 0.2W
	70042116	Cap, Chip	47nF	K 25V		24871472	Res, Chip	$4.7k\Omega$	J 1/8W
	70042110	Cap, Electrolytic	4.7μF	25V		24872821	Res, Chip	820Ω	J 1/16W
		Cap, Chip	150pF	J 50V		24871562	Res, Chip	5. 6kΩ	J 1/8W
		Cap, Ceramic	33nF	K 50V		24872562	Res, Chip	5. 6kΩ	J 1/16W
	24092178	Cap, Chip	0. 1μF	K 25V		24871273	Res, Chip	27kΩ	J 1/8₩
		Cap, Chip	10nF	K 25V		24871223	Res, Chip	$22k\Omega$	J 1/8W
	70041318	Cap, Electrolytic	$100 \mu F$	M 6.3V		24871561	Res, Chip	560Ω	J 1/8W
CZ005	70042147	Cap, Chip	100pF	K	RT037	24871561	Res, Chip	560Ω	J 1/8W

LOCATION NUMBER	PART NUMBER	DESCRIPTION				LOCATION NUMBER	PART NUMBER	DESCRIPTION			
RT038	24871331	Res, Chip	330Ω	.I	1/8W	RV120	24872104	Res, Chip	$100 \mathrm{k}\Omega$	J	1/16W
RT039	24871331	Res, Chip	330Ω		1/8W		24872104	Res, Chip	$100 { m k} \Omega$	J	1/16W
RT040	70040852	Res, Carbon	10 k Ω	J	1/4W		24871332	Res, Chip	3. $3k\Omega$		1/8W
	24872471	Res, Chip	470Ω		1/16W		24872392	Res, Chip	3. 9kΩ		1/16W
	24871684	Res, Chip	680kΩ		1/8W		24872681	Res, Chip	680Ω		1/16W
RT043	24872224	Res, Chip	220kΩ		1/16W		24872102	Res, Chip	1kΩ		1/16W
	24871105	Res, Chip	1MΩ		1/8W		24872272 70041096	Res, Chip	2. $7k\Omega$	J	1/16W
RT045	24872105	Res, Chip	1MΩ 56kΩ		1/16W 1/16W		24872682	Chip Jumper Res,Chip	6.8k Ω	Ĭ.	1/16W
RT046 RT047	24872563 24872182	Res, Chip Res, Chip	$56k\Omega$ 1. $8k\Omega$		1/16W		24872183	Res, Chip	18kΩ		1/16W
	24872182	Res, Chip	1. 8kΩ		1/16W		24872222	Res, Chip	2. 2kΩ		1/16W
	24872563	Res, Chip	56kΩ		1/16W		24872102	Res, Chip	1 k Ω	J	1/16W
	24872222	Res, Chip	2. 2kΩ		1/16W		70040891	Res, Carbon	470Ω		0. 2W
	24872222	Res, Chip	2. $2k\Omega$	J	1/16W	RV137	24871332	Res, Chip	3. $3k\Omega$		1/8W
	24871102	Res, Chip	1 k Ω	J	1/8W		24872821	Res, Chip	820Ω		1/16W
RT053	70040118	Res, Carbon	4. $7k\Omega$		1/4W		24872821	Res, Chip	820Ω		1/16W
RT055	70040101	Res, Carbon	Ω 086	J			24872560	Res, Chip	56Ω	J	1/16\ 1/16\
RT063	24872221	Res, Chip	220Ω		1/16W		24872182	Res. Chip	1. 8kΩ 1kΩ		1/16W
	24872221	Res, Chip	220Ω		1/16W		24872102 24872103	Res.Chip Res.Chip	1852 10kΩ		1/16W
	24872472 24872472	Res, Chip Res, Chip	4. 7kΩ 4. 7kΩ		1/16W 1/16W		70040839	Res, Carbon	100Ω		1/4W
	24871471	Res, Chip	470Ω		1/8W		24872182	Res, Chip	1. 8kΩ		1/16W
	24872101	Res, Chip	100Ω		1/16W		24872102	Res, Chip	1kΩ		1/16W
	24872222	Res, Chip	2. $2k\Omega$		1/16W	RV147	24872682	Res, Chip	6.8k Ω		1/16W
	24872103	Res, Chip	10 k Ω	J	1/16W		24872182	Res, Chip	$1.8k\Omega$		1/16W
	24872473	Res, Chip	$47k\Omega$		1/16W		24872102	Res, Chip	1kΩ		1/16W
	24872303	Res, Chip	30kΩ		1/16W		24871102	Res, Chip	1kΩ		1/8\\ 1/16\\
RT075	24872102	Res, Chip	1kΩ		1/16W		24872102	Res, Chip	1kΩ		1/16W 1/16W
	24871101	Res, Chip	100Ω		1/8W		24872472 70042138	Res, Chip Res, Chip	4. 7kΩ 130kΩ	F	1/10#
RT082	24871222 24872222	Res, Chip Res, Chip	2. $2k\Omega$ 2. $2k\Omega$		1/8W 1/16W		24872474	Res, Chip	470kΩ		1/16W
RT084	24872182	Res, Chip	2. 2ks2 1. 8kΩ		1/16W		24872474	Res, Chip	470kΩ		1/16W
	24872182	Res, Chip	1. $8k\Omega$		1/16W		24871272	Res, Chip	2. 7kΩ		1/8W
RT086	24871222	Res, Chip	2. 2kΩ		1/8W		24871682	Res, Chip	6. $8k\Omega$		1/8W
	24871561	Res, Chip	560Ω		1/8W	RV170	24872472	Res, Chip	4. $7k\Omega$		1/16W
∆RT089	70040122	Res, Carbon	1Ω	J	0.3W		24872223	Res, Chip	$22k\Omega$		1/16W
RT090	70040099	Res, Carbon	$6.8 \mathrm{k}\Omega$		1/4W	RV181	24872222	Res, Chip	2. 2kΩ		1/16W
RT091	24872102	Res, Chip	1kΩ		1/16W		70041919	Res, Chip	4. 7Ω		1/10W
	24872681	Res, Chip	Ω 080	J	1/16W		24871472	Res, Chip	4. 7kΩ		1/8₩ 1/16₩
RV002	24774479	Cap, Chip	4. 7pF	1	1 /1 CW		24872123 24872223	Res, Chip Res, Chip	$12 k\Omega$ $22 k\Omega$		1/16W 1/16W
	24872362 24872222	Res, Chip	3. $6k\Omega$ 2. $2k\Omega$		1/16W 1/16W		24872473	Res, Chip	47kΩ		1/16W
RV007	24872222	Res, Chip Res, Chip	2. 2ks2 1kΩ		1/8W			Res, Chip	120kΩ		1/16W
RV010	24872101	Res, Chip	100Ω		1/16W		24872102		1kΩ		1/16W
	24871102		1kΩ		1/8W		24872124		$120 k\Omega$		1/16W
		Chip Jumper				RV190	24872104	Res, Chip	$100 \mathrm{k}\Omega$		1/16W
	24872472		4. $7k\Omega$		1/16₩		24872683	Res, Chip	$68k\Omega$		1/16W
RV023	24872472		4. $7k\Omega$		1/16W		24872103	Res, Chip	10kΩ		1/16W
RV026	70040118	Res, Carbon	4. 7kΩ		1/4W	RV194	24872564	Res, Chip	560kΩ		1/16W
RV027	24871102	Res, Chip	1kΩ		1/8W		24872102	Res, Chip	1kΩ		1/16W 1/16W
RV028	24872182	Res, Chip	1. 8kΩ		1/16₩		24872102 24872102	Res, Chip Res, Chip	1kΩ 1kΩ		1/16W
RV029	24871822 24872102	Res, Chip Res, Chip	8. 2kΩ 1kΩ		1/8W 1/16W		24872102	Res, Chip	18kΩ		1/8W
RV036 RV041	24871102	Res, Chip	10kΩ		1/8W		24872103	Res, Chip	10kΩ		1/16W
RV044	24872202	Res, Chip	2kΩ		1/16W		24872752	Res, Chip	7. $5k\Omega$		1/16W
RV045	24872132	Res, Chip	1. $3k\Omega$		1/16W	RV213	24872562	Res, Chip	5. $6k\Omega$		1/16W
RV046	24872512	Res, Chip	5. 1 k Ω	J	1/16W		24872182	Res, Chip	1. $8k\Omega$		1/16W
RV047	24872102	Res, Chip	1 k Ω	J	1/16W		24872271	Res, Chip	270Ω		1/16W
RV048	70041096	Chip Jumper					24872183	Res, Chip	18kΩ		1/16W
RV049	24871272	Res, Chip	2. $7k\Omega$	J	1/8W		24872103	Res, Chip	10kΩ		1/16W
RV050	70041096	Chip Jumper	470.0	,	4 /4 (11)		24872122	Res, Chip	$1.2k\Omega$ 820Ω		1/16W 1/16W
RV051	24872471	Res, Chip	470Ω		1/16W	RV224 RV225	24872821 24871152	Res, Chip Res, Chip	02052 1. 5kΩ		1/8W
RV053 RV054	24872101 70041096	Res,Chip Chip Jumper	100Ω	J	1/16W		24872392	Res, Chip	3. 9kΩ		1/16W
RV055	24872102	Res, Chip	1 k Ω	.I	1/16W	RV241	24871392	Res, Chip	3. 9kΩ		1/8W
RV033	70041096	Chip Jumper	11144	J	2/ 2011		24872101	Res, Chip	100Ω		1/16W
RV073	70041096	Chip Jumper				RV243	24872562	Res, Chip	5. 6 k Ω	J	1/16W
RV074	70041093	Chip Jumper				RV244	24872561	Res, Chip	560Ω		1/16W
RV075	24872472	Res, Chip	4. $7k\Omega$		1/16W		24872102	Res, Chip	1kΩ		1/16W
RV076	24872823	Res, Chip	$82k\Omega$		1/16W		24872561	Res, Chip	560Ω		1/16W
RV077	24872102	Res, Chip	1 k Ω	J	1/16W		24872332		3. 3kΩ		1/16W
RV104	70041096	Chip Jumper	4 71 0		1 /1 CW			Res, Chip	470Ω 430Ω		1/16W 1/16W
	24872472	Res, Chip	4. 7kΩ		1/16W	RV250	24872431 24871132	Res, Chip Res, Chip	430Ω 1. 3kΩ		1/16W 1/8W
RV110	24872472 24872473	Res Chip	4. 7kΩ 47kΩ		1/16W 1/16W		24872102		1. 3ks2 1kΩ		1/16W
nviii	44014413	nes, villy	111126	U	1/ 1011	111202	2 1012102	,		•	

LOCATION NUMBER	PART NUMBER	DESCRIPTION				LOCATION NUMBER	PART NUMBER	DESCRIPTION		
RV253	24872471	Res, Chip	470Ω	J	1/16W	JT082	70041093	Chip Jumper		
RV254	24872471	Res, Chip	470Ω		1/16W		70041093	Chip Jumper		
	24872561	Res, Chip	560Ω		1/16W		70041093	Chip Jumper		
	24871561	Res, Chip	560Ω		1/8W		70041093 70041093	Chip Jumper Chip Jumper		
RV257 RW001	24872102 24871472	Res, Chip Res, Chip	1 k Ω 4. 7 k Ω		1/16W 1/8W		70041093	Chip Jumper		
RW001	24871122	Res, Chip	1. 2kΩ		1/8W		70041093	Chip Jumper		
RW005	24871223	Res, Chip	$22k\Omega$	J	1/8W		70041093	Chip Jumper		
RW006	70042015	Res, Carbon	8. 2kΩ		1/4W		70041093	Chip Jumper		
RW008	70040896	Res, Carbon	3. 3kΩ		1/4W		70041093	Chip Jumper		
RW009 RW012	70040896	Res, Carbon Res, Fusible	3. 3kΩ 27Ω		1/4₩ 0.3₩		70041093 70041093	Chip Jumper Chip Jumper		
RW012	70041074 24871472	Res, Chip	4. 7kΩ		1/8W		24872681	Res, Chip	680Ω	J 1/16W
	24871751	Res, Chip	750Ω		1/8W		70041093	Chip Jumper		
	24871751	Res, Chip	750Ω	J	1/8W	JT128	70041093	Chip Jumper		
∆RW021	70041672	Res, Fusible	5. 6Ω		0. 3W		70041093	Chip Jumper		
	24871273	Res, Chip	27kΩ		1/8₩ 1/9₩		70041093	Chip Jumper		
RW025 RW029	24871392 70042148	Res, Chip Res, Oxide Metal	$3.9k\Omega$ 0.51Ω	J	1/8W		70041093 70041093	Chip Jumper Chip Jumper		
∆R₩030	70042146	Res, Fusible	39Ω	J	0. 3W		70041093	Chip Jumper		
RW031	70042135	Res, Carbon	560pF		430mW		70041093	Chip Jumper		
	24871103	Res, Chip	10 k Ω		1/8W		70041093	Chip Jumper		
	24871332	Res, Chip	3. $3k\Omega$		1/8W		70041096	Chip Jumper		
	24872222	Res, Chip	2. 2kΩ		1/16W		70041096	Chip Jumper		
	24872105 70041799	Res, Chip Res, Chip	1MΩ 820kΩ		1/16W 1/10W		70041096 70041096	Chip Jumper Chip Jumper		
	70041783	Res, Chip	$5.1k\Omega$		1/10W		70041096	Chip Jumper		
	24871104	Res, Chip	100kΩ		1/8W		70041096	Chip Jumper		
	70040348	Res, Chip	100Ω		1/16W		70041093	Chip Jumper		
RY010	24872125	Res, Chip	1. $2M\Omega$		1/16W		70041093	Chip Jumper		
RY011	70041799	Res, Chip	820kΩ		1/10W		70041093	Chip Jumper		
	24872221	Res, Chip	220Ω 220Ω		1/16W 1/16W		70041093 70041093	Chip Jumper Chip Jumper		
	24872221 70040961	Res, Chip Res, Carbon	22032 1kΩ		1/4W		70041033	Chip Jumper		
	24871222	Res, Chip	2. 2kΩ		1/8W		70041096	Chip Jumper		
	24872911	Res, Chip	910Ω		1/16W		70041096	Chip Jumper		
RZ031	24872102	Res, Chip	1kΩ	J	1/16W		70041093	Chip Jumper		
	70041096	Chip Jumper	4.51.0		4 /OTI		70041093	Chip Jumper		
	24871152	Res, Chip Res, Chip	$1.5k\Omega$ 680Ω		1/8W 1/16W		70041093 70041096	Chip Jumper Chip Jumper		
	24872681 70041094	Res, Chip	130Ω	J	1/10#		70041030	Chip Jumper		
	24871471	Res, Chip	470Ω		1/8W		70041093	Chip Jumper		
RZ053	24872331	Res, Chip	330Ω	J	1/16W	JV023	70041093	Chip Jumper		
	24871102	Res, Chip	1kΩ		1/8W		70041093	Chip Jumper		
	24871102	Res, Chip	1 k Ω	J	1/8W		70041093	Chip Jumper		
	70041096 24871472	Chip Jumper Res,Chip	4. 7kΩ	ī	1/8W		70041093 70041096	Chip Jumper Chip Jumper		
	24872270	Res, Chip	27Ω		1/16W		70041030	Chip Jumper		
	70041660	Res, Carbon	100Ω		D. 43W		70041093	Chip Jumper		
	70041658	Res, Carbon	82Ω	J	1/4W		70041093	Chip Jumper		
	70041096	Chip Jumper					70041093	Chip Jumper		
	70041096	Chip Jumper					70041093	Chip Jumper Chip Jumper		
	70041093 70041093	Chip Jumper Chip Jumper					70041093 70041093	Chip Jumper		
	70041093	Chip Jumper					70041093	Chip Jumper		
	70041093	Chip Jumper				JV071	70041093	Chip Jumper		
	70041093	Chip Jumper					70041093	Chip Jumper		
	70041093	Chip Jumper					70041093	Chip Jumper		
	70041093 70041093	Chip Jumper Chip Jumper					70041093 70041093	Chip Jumper Chip Jumper		
	70041093	Chip Jumper					70041093	Chip Jumper		
	70041093	Chip Jumper					70041093	Chip Jumper		
	70041093	Chip Jumper				JV090	70041093	Chip Jumper		
	70041093	Chip Jumper					70041093	Chip Jumper		
	70041093	Chip Jumper					70041093	Chip Jumper		
	70041093	Chip Jumper					70041093 70041096	Chip Jumper Chip Jumper		
	70041093 70040103	Chip Jumper Res,Carbon	1kΩ	Л	1/ 4 ₩		70041090	Chip Jumper		
	70040103	Chip Jumper	******	v	-, *"		70041036	Chip Jumper		
	70041096	Chip Jumper				JV129	70041096	Chip Jumper		
JT051	70041093	Chip Jumper					70041096	Chip Jumper		
	70041096	Chip Jumper					70041096	Chip Jumper		
	70041093	Chip Jumper					70041093 70041093	Chip Jumper Chip Jumper		
	70041093 70041096	Chip Jumper Chip Jumper					70041093	Chip Jumper		
0 1000	10041030	outh admiter				01100		outh ombot		

LOCATION NUMBER	PART Number	DESCRIPTION				LOCAT NUMBE		PART NUMBER	DESCRIPTION			
JV156	70041093	Chip Jumper							- COILS -			
JV158	70041035	Chip Jumper				LNC	001	70011771	Coil, Peaking			
JV159	70041093	Chip Jumper				LNC	003	70012095	Coil, Peaking			
JV162	70041093	Chip Jumper							Coil, Peaking			
J\009	70041093	Chip Jumper							Coil, Peaking	TRF4121AF		
J\015	70041093	Chip Jumper							Coil, Peaking	TRF4822AP		
JW019	70041093	Chip Jumper						70011848	Coil, Peaking			
JW026	70041093	Chip Jumper						70011848	Coil, Peaking			
JW027	70041093	Chip Jumper				LX1 LX1		70011772 70012431	Coil, Peaking Coil, Chip			
JW041 JY006	70041093 70041093	Chip Jumper Chip Jumper				LAI	103	70012431	- CAPACITORS -			
JY007	70041093	Chip Jumper				CNO	090	24092293	Cap, Chip	0.1μ F	Z 25V	
JY008	70041093	Chip Jumper				CNC		70041530	Cap, Chip	330nF	Z 16V	
JY009	70041093	Chip Jumper						70041530	Cap, Chip	330nF	Z 16V	
JY010	70041093	Chip Jumper				CNO	98	70041530	Cap, Chip	330nF	Z 16V	
JY011	70041093	Chip Jumper						70041530	Cap, Chip	330nF	Z 16V	
JZ007	70041093	Chip Jumper						70041131		390pF	J 50V	
JZ008	70041093	Chip Jumper						70041131		390pF 2. 2nF	J 50V K 50V	
JZ009	70041093	Chip Jumper						70041271 70041271		2. 2nF	K 50V	
JZ015	70041093	Chip Jumper						70041271	Cap, Chip	2. 2nF	K 50V	
JZ017 JZ020	70041093 70041093	Chip Jumper Chip Jumper						70041271	Cap, Chip	2. 2nF	K 50V	
JZ020 JZ022	70041095	Chip Jumper				CN1		70041649	Cap, Chip	0. 68μF	Z 50V	
JZ022	70041030	Chip Jumper						70041649	Cap, Chip	0. 68μF	Z 50V	
JZ040	70041093	Chip Jumper						70041530	Cap, Chip	330nF	Z 16V	
JZ041	70041093	Chip Jumper				CNI		70041530	Cap, Chip	330nF	Z 16V	
	70041093	Chip Jumper						70041530	Cap, Chip	330nF	Z 16V	
JZ045	70041093	Chip Jumper						70041530	Cap, Chip	330nF	Z 16V	
JZ048	70041659	Res, Carbon	220Ω		./4W			70041042	Cap, Electrolytic	10μF 10nF	X K 50V	
JZ049	70041659	Res, Carbon	220Ω	JI	/4W			70040493 24633220	Cap, Chip Cap, Electrolytic	10π 22μF	M 16V	
JZ053	70041093	Chip Jumper						70041889	Cap, Electrolytic	220μF	M 16V	
JZ062 PS034	70041096 70042164	Chip Jumper Res,Variable	$33k\Omega$	1	/10 W			70041303	Cap, Chip	10nF	K 50V	
r3034	70042104	- MISCELLANEOUS -	3342%	1	./ 10#			24093962	Cap, Variable	20pF		
0010M	70011844	Tuner					123	70041274	Cap, Chip	27pF		
0020M	70011845	IF Module					126	70040493	Cap, Chip	10nF	K 50V	
	23164506	Plug 2P					127	70040493	Cap, Chip	10nF	K 50V	
BT001	70011830	Connector					128	70040493	Cap, Chip	10nF	K 50V	
FZ050	70012166	Filter	5. 74MHz				129	70040493	Cap, Chip	10nF	K 50V	
FZ051	70011260	Filter	I TUO CO CO				130	24633220	Cap, Electrolytic	22μF 470nF	M 16V Z 16V	
GT001	70011828	Hall Sensor	HW300B				131 132	70041130 70041042	Cap, Chip Cap, Electrolytic	470Hr 10μF	X	
GT003	70011793 70011793	Photo Interrupter Photo Interrupter					134	70041042	Cap, Chip	0.1μ F	Z	
GT004 GT02A	70011793	LED Holder	dr 15502				135	70041530	Cap, Chip	330nF	Z 16V	
	70031130						136	70041530	Cap, Chip	330nF	Z 16V	
	70011961		17. 734MHz					70041530		330nF	Z 16V	
QT002	70010116	Crystal, 32kHz				CN:	138	70041530	Cap, Chip	330nF	Z 16V	
			16MHz					70041706		470pF	J 50V	
-			4. 433619MHz			CN:	140	70041706	Cap, Chip	470pF	J 50V	
ST001	70011826	Switch, Push				CN:	141	70041294	Cap, Electrolytic	33μF	M 16V	
	T0000045	D 0 D 1 A	TIME					70042010	Cap, Chip Cap, Electrolytic	0. 1μF 10μF	Z X	
0030M	70090915	P C Board Assy	TMB					70041042		10nF	K 50V	
IN001	70012438	- INTEGRATED CIRCU	MSP3410					24633220		22μF	M 16V	
		IC	TA75557P				146		Cap, Electrolytic	10μF	X	
1N002	70012439		TA75557P					70041530		330nF	Z 16V	
		IC	TA75557P			CN	148	70041530	Cap, Chip	330nF	Z 16V	
IN005	70011896	IC	BA3129F							150pF		
		IC	BA7755						Cap, Electrolytic	10μF	M 16V	
IN007	70011898		TA8863AF						Cap, Electrolytic	10μF	M 16V	
IX101	70011881		STV6400					70041264	Cap, Chip	150pF	M 16V	
		- TRANSISTORS -	DN4 40 4				154		Cap, Electrolytic	47μF 0. 1μF	M 16V Z	
		Transistor, Chip	RN1404				155		Cap, Chip Cap, Electrolytic	0. 1μ1 47μF	M 16V	
		Transistor Transistor	BC847B BC847B					70041031		1. 2nF	K 50V	
TN004		Transistor	BC847B					70041649		0. 68µF	Z 50V	
TN300		Transistor, Chip	2SA1162-Y					24794470		47μF	M 16V	
		Transistor, Chip	2SA1162-Y				165		Cap, Chip	1. 2nF	K 50V	
1		- DIODES -				CN	170	70041530	Cap, Chip	330nF	Z 16V	
DN001	70010342	Diode, Chip	LL4148			CN	172	70041933	Cap, Chip	1. 2nF	K 50V	
DN002	70010965		LL4448			CN	173	24794101	Cap, Electrolytic	100μF	M 16V	
DN003	70010965	Diode	LL4448			CN	174	70040493	Cap, Chip	10nF	K 50V K 50V	
DN150	70010342	Diode, Chip	LL4148			CN	1/b	70042133	Cap, Chip Cap, Electrolytic	3. 9nF 47μF	M 16V	
DN151		Diode, Chip	LL4148 1SS181						Cap, Chip	47 μ Γ 1. 2n F	M 10V K 50V	
DASMA	70010340	PIOUE	100101			ON.	101	10011100	Anh outh			

LOCATION NUMBER	PART NUMBER	DESCRIPTION			LOCATION NUMBER	PART NUMBER	DESCRIPTION		
CN182	24794470	Cap, Electrolytic	47μF	M 16V	CX105	70042010	Cap, Chip	0.1μF	Z
CN184	70041933	Cap, Chip	1. 2nF	K 50V	CX106	70041051	Cap, Electrolytic	47μF	M 16V
CN185	70041376	Cap, Chip	10nF	Z 50V	CX108	70042010	Cap, Chip	0. 1μF	Z
	24794101	Cap, Electrolytic	100μF	M 16V	CX109	70042010	Cap, Chip	$0.1\mu F$	Z
CN190	24203100	Cap, Electrolytic	10μF	M 16V	CX110	70042010	Cap, Chip	$0.1\mu F$	Z
CN191	24203100	Cap, Electrolytic	10μF	M 16V	CX111	70042010	Cap, Chip	0.1μF	Z
CN300	70040721	Cap, Electrolytic	22 µ F	M 16V	CX112	70041051	Cap, Electrolytic	47μF	M 16V
CN303	24206478	Cap, Electrolytic	$0.47 \mu F$	M 50V	CX113	70042010	Cap, Chip	0.1μ F	Z
CN304	24206478	Cap, Electrolytic	$0.47 \mu F$	M 50V	CX114	70041468	Cap, Chip	100nF	Z 25V
CN305	70041934	Cap, Chip	3. 3nF	K 50V	CX115	70040241	Cap, Ceramic, Chip	47pF	J 50V
CN306	70041934	Cap, Chip	3. 3nF	K 50V	CX116	70040609	Cap, Chip	100pF	J 50V
CN307	24630852	Cap, Electrolytic	22μF	M 16V			- RESISTORS -		7 4 4 0W
CN308	70042120	Cap, Electrolytic	330μF	M 6. 3V	RN090	70041783	Res, Chip	5. 1kΩ	J 1/10W
	24203100	Cap, Electrolytic	10μF	M 16V	RN098	70040571	Res, Chip	12kΩ	J 1/16W
	24203100	Cap, Electrolytic	10μF	M 16V	RN099	70040571	Res, Chip	$12k\Omega$ 5. $6k\Omega$	J 1/16₩ J 1/10₩
	24591103 24203100	Cap, Plastic	0. 01μF	J 50V M 16V	RN100 RN101	70041138 70041879	Res, Chip Res, Chip	30kΩ	J 1/10W
	24591103	Cap, Electrolytic Cap, Plastic	10μF 0. 01μF	J 50V	RN101	70041879	Res, Chip	30 k Ω	J 1/10W
	24591103	Cap, Plastic	$0.01\mu f$	J 50V	RN102	70041073	Res, Chip	100kΩ	J 1/10W
CN315	70040721	Cap, Electrolytic	22μF	M 16V	RN104	70041176	Res, Chip	180kΩ	J 1/10W
CN316	70040721	Cap, Electrolytic	22μF	M 16V	RN105	70041386	Res, Chip	180kΩ	J 1/10W
CN319	70040493	Cap, Chip	10nF	K 50V	RN106	70040391	Chip Jumper		,
CN320	70042120	Cap, Electrolytic	330µF	M 6. 3V	RN107	70040391	Chip Jumper		
CN321	70040493	Cap, Chip	10nF	K 50V	RN108	70040336	Res, Chip	$68 k\Omega$	J 1/16W
	70041578	Cap, Electrolytic	220nF	M 50V	RN109	70040391	Chip Jumper		
CN323	70040242	Cap, Ceramic, Chip	68pF	J 50V	RN110	70040391	Chip Jumper		
	70041932	Cap, Chip	150nF	K	RN111	70040358	Res, Chip	10 k Ω	J 1/16W
CN325	70041298	Cap, Electrolytic	1μF	M 50V	RN112	70040350	Res, Chip	220Ω	J 1/16W
	70040246	Cap, Ceramic, Chip	270pF	J 50V	RN113	70040339	Res, Chip	330Ω	J 1/16W
	24203100	Cap, Electrolytic	10μ F	M 16V	RN114	70040348	Res, Chip	100Ω	J 1/16W
	24591103	Cap, Plastic	$0.01\mu F$	J 50V	RN115	70040391	Chip Jumper	451.0	T 4 /4 090
	70041042	Cap, Electrolytic	10μF	X	RN116	70040363	Res, Chip	47kΩ	J 1/16W
	24203100	Cap, Electrolytic	10μF	M 16V	RN117	70040358	Res, Chip	10 k Ω	J 1/16W
	70040493	Cap, Chip	10nF	K 50V	RN118	70040391	Chip Jumper	1500	T 1/10W
	24203100 70040262	Cap, Electrolytic Cap, Ceramic, Chip	10μF 100pF	M 16V J 50V	RN119 RN120	70041464 70040570	Res, Chip Res, Chip	150Ω 470Ω	J 1/10W J 1/16W
	70040202	Cap, Chip	560pF	K K	RN121	70040570	Res, Chip	470Ω	J 1/16W
CN335	70042132	Cap, Electrolytic	470nF	M 50V	RN122	70040370	Chip Jumper	47032	0 1/10#
	70041934	Cap, Chip	3. 3nF	K 50V	RN123	70040571	Res, Chip	$12k\Omega$	J 1/16W
	24815153	Cap, Chip	0. 015μF	K 50V	RN124	70040571	Res, Chip	12kΩ	J 1/16W
	70041953	Cap, Chip	18nF	K 50V	RN125	70040571	Res, Chip	12kΩ	J 1/16W
	70040738	Cap, Electrolytic	4. 7μF	25V	RN126	70040571	Res, Chip	$12k\Omega$	J 1/16W
CN341	24092293	Cap, Chip	$0.1\mu F$	Z 25V	RN127	70040391	Chip Jumper		
CN342	70040262	Cap, Ceramic, Chip	100pF	J 50V	RN129	70040391	Chip Jumper		
CN343	70040262	Cap, Ceramic, Chip	100pF	J 50V	RN130	70040391	Chip Jumper		
	70042005		200pF	J 50V					
		Cap, Electrolytic	330μF	M 10V		70040571	Res, Chip	12kΩ	J 1/16W
	24633220	Cap, Electrolytic	22μF	M 16V	RN136	70040571	Res, Chip	12kΩ	J 1/16W
	70040268	Cap, Ceramic, Chip	22nF	K 25V	RN138	70040358	Res, Chip	10kΩ	J 1/16W
	70041530	Cap, Chip	330nF	Z 16V		70040358	Res, Chip	10kΩ	J 1/16W
CN349 CN350	70041649 70041649	Cap, Chip	0. 68µF 0. 68µF	Z 50V Z 50V	RN140	70040361 70040360	Res, Chip Res, Chip	$27 k\Omega$ $18 k\Omega$	J 1/16₩ J 1/16₩
	24203100	Cap, Chip		M 16V		70040380	Res, Chip	220kΩ	J 1/10W
	70041649	Cap, Electrolytic Cap, Chip	10μF 0. 68μF	Z 50V		70041387	Res, Chip	220kΩ	J 1/10W
	70041649	Cap, Chip	0. 68μF	Z 50V		70041387	Res, Chip	220kΩ	J 1/10W
	70041649	Cap, Chip	0. 68μF	Z 50V	RN146	70041387	Res, Chip	220kΩ	J 1/10W
	70041649	Cap, Chip	0. 68μF	Z 50V	RN147	70040360	Res, Chip	18kΩ	J 1/16W
	70041649	Cap, Chip	0.68µF	Z 50V	RN148	70040361	Res, Chip	$27k\Omega$	J 1/16W
CN371	70041649	Cap, Chip	0.68µF	Z 50V	RN149	70040135	Res, Chip	$12k\Omega$	J 1/8W
CN375	70041376	Cap, Chip	10nF	Z 50V	RN150	70040358	Res, Chip	10 k Ω	J 1/16W
CN376	70041376	Cap, Chip	10nF	Z 50V	RN155	70040358	Res, Chip	$10 k\Omega$	J 1/16W
	70042132	Cap, Chip	560pF	K		70040335	Res, Chip	2. $7k\Omega$	J 1/16W
	70042132	Cap, Chip	560pF	K	RN157	70040367	Res, Chip	120k Ω	J 1/16W
	70041472	Cap, Chip	1nF	K 50V		70040354	Res, Chip	1kΩ	J 1/16W
	70041472	Cap, Chip	1nF	K 50V	RN159	70040373	Res, Chip	4. 7kΩ	J 1/16W
	70042132	Cap, Chip	560pF	K	RN160	70040372	Res, Chip	3. 3kΩ	J 1/16W
CX006	70042132	Cap, Chip	560pF	K	RN161	70040335	Res, Chip	2. 7kΩ	J 1/16W
	70041472	Cap, Chip	1nF	K 50V	RN162	70040373	Res, Chip	4. 7kΩ	J 1/16W J 1/8W
	70041472	Cap, Chip	InF	K 50V	RN163	70040133	Res, Chip	1kΩ	
	70042132	Cap, Chip	560pF	K	RN164	70040367	Res, Chip	$120 k\Omega$ 2. $7 k\Omega$	J 1/16W J 1/16W
	70042132 70040262	Cap, Chip	560pF 100pF	К Ј 50V	RN165 RN166	70040335 70040358	Res, Chip Res, Chip	2. 7ks2 10kΩ	J 1/16W
	70040262	Cap, Ceramic, Chip Cap, Ceramic, Chip	100pr 100pF	J 50V		70040354	Res, Chip	10 k 52 1kΩ	J 1/16W
CX021	70040202	Cap, Ceramic, Chip	100pr 100pF	J 50V	RN171	70040354	Res, Chip	1kΩ	J 1/16W
	70040262		100pF	J 50V		70040373	Res, Chip	4. 7kΩ	J 1/16W
011020	. 55 10 10 10 11	- Ar, colomito, only	r·						

LOCATION NUMBER	PART NUMBER	DESCRIPTION					LOCATION NUMBER	PART NUMBER	DESCRIPTION				
RN173	70040367	Res, Chip	120kΩ	J	1/16W		RX013	70040570	Res, Chip	470Ω		1/16W	
RN174	70040358	Res, Chip	10 k Ω		1/16W		RX014	70040570	Res, Chip	470Ω	J	1/16W	
	70040367	Res, Chip	120kΩ		1/16W		RX017	70040391	Chip Jumper				
	70040358	Res, Chip	10 k Ω 1 k Ω		1/16W 1/16W		RX019 RX104	70040391 70040348	Chip Jumper Res,Chip	100Ω	.I	1/16W	
	70040354 70040391	Res, Chip Chip Jumper	1K72	J	1/10#		RX104	70040348	Res, Chip	68Ω		1/10W	
	70040351	Res, Chip	$10k\Omega$	J	1/16W	r	RX106	70041441	Res, Chip	75Ω		1/10W	
	70042145	Res, Chip	3. $6k\Omega$		1/16W		RX112	70041169	Res, Chip	68Ω		1/10W	
	70040367	Res, Chip	120kΩ		1/16W		RX113	70041441	Res, Chip	75Ω		1/10W	
	70040354	Res, Chip	1kΩ		1/16W		RX114	70040348	Res, Chip	100Ω	J	1/16W	
	70040373 70040367	Res, Chip Res, Chip	4. 7kΩ 120kΩ		1/16W 1/16W		JX103 JX104	70040391 70040391	Chip Jumper Chip Jumper				
RN186	70040307	Res, Chip	3. $6k\Omega$		1/16W		JX104 JX105	70040331	Chip Jumper				
	70040358	Res, Chip	10kΩ		1/16W		JX107	70040391	Chip Jumper				
RN188	70040373	Res, Chip	4. $7k\Omega$	J	1/16W	1	JX109	70040391	Chip Jumper				
RN189	70040354	Res, Chip	1kΩ		1/16W		ZN002	70040391	Chip Jumper				
RN190	70040350	Res, Chip	220Ω		1/16W		ZN003	70040391	Chip Jumper				
RN191 RN195	70040350 70040350	Res, Chip Res, Chip	220Ω 220Ω		1/16W 1/16W		ZN005 ZN006	70040391 70040391	Chip Jumper Chip Jumper				
RN195	70040350	Res, Chip	220Ω		1/16W		ZN007	70040391	Chip Jumper				
RN300	70040351	Res, Chip	390Ω		1/16W		ZN008	70040391	Chip Jumper				
RN301	70040351	Res, Chip	390Ω		1/16W		ZN009	70040391	Chip Jumper				
RN302	70040391	Chip Jumper					ZN010	70040391	Chip Jumper				
RN303	70040391	Chip Jumper	1140	ī	1/8W		ZN011 ZN012	70040391 70040391	Chip Jumper Chip Jumper				
RN304 RN305	70041166 70040335	Res, Chip Res, Chip	$1M\Omega$ 2. $7k\Omega$		1/16W	1	ZN012 ZN013	70040391	Chip Jumper				
RN306	70040356	Res, Chip	1. 8kΩ	J	1/16W	i	ZN014	70040391	Chip Jumper				
RN307	70041464	Res, Chip	150Ω	J	1/10W	i	ZN015	70040391	Chip Jumper				
RN308	70040337	Res, Chip	270Ω		1/16W		ZN017	70040391	Chip Jumper				
RN309	70040357	Res, Chip	22kΩ	Ĵ	1/16W	1	ZN018	70040391	Chip Jumper				
RN310	70041801	Res, Chip	11kΩ		1/10W		ZN020 ZN021	70040391 70040391	Chip Jumper Chip Jumper				
RN311 RN312	70041138 70041478	Res, Chip Res, Chip	5. 6 k Ω 330k Ω	J	1/10W 1/10W	1	ZN021	70040331	- MISCELLANEOUS -				
RN313	70041170	Res, Chip	180Ω	J	1/10W	1	BN002	23164506	Plug 2P				
RN314	70040335	Res, Chip	2. $7k\Omega$	J	1/16W	!	BN391	70060759	Phono Jack				
RN315	70040362	Res, Chip	$33k\Omega$	J	1/16W	!	BN393	70012358	Pin Jack	T 1454 00D			
RN316	70041801	Res, Chip	11kΩ		1/10W		FN001	70011863	Filter	ZJK5103D ZJK5103D			
RN317 RN318	70041170 70040391	Res, Chip Chip Jumper	180Ω	J	1/10W		FN002 FN003	70011863 70011863	Filter Filter	ZJK5103D ZJK5103D			
RN319	70040331	Res, Chip	5. $6k\Omega$.I	1/10W	1	FN004	70011863	Filter	ZJK5103D			
RN320	24872243	Res, Chip	24kΩ		1/16W		QN001	70011858	Crystal	18. 432MHz			
RN321	70040361	Res, Chip	$27k\Omega$	J	1/16W	1	ZN001	70011998	Filter	6. 5MHz			
RN323	70041173	Res, Chip	100kΩ		1/10W								
RN324 RN325	70041173 70041950	Res, Chip	$100 \mathrm{k}\Omega$ $51 \mathrm{k}\Omega$		1/10W 1/10W								
RN326	70041930	Res, Chip Res, Chip	1MΩ		1/10W								
RN327	70040358	Res, Chip	10kΩ		1/16W								
RN329	70040372	Res, Chip	3. $3k\Omega$		1/16W								
RN330	70040335	Res, Chip	2. 7kΩ		1/16W								
RN331	70040372	Res, Chip	3. 3kΩ		1/16W								
RN332 RN340	70040335 70040391	Res, Chip Chip Jumper	2. 7kΩ	J	1/16W	1							
RN341	70040331	Res, Chip	$27k\Omega$	J	1/16W	I							
RN342	70040681	Res, Chip	$33k\Omega$	J	1/8W								
RN343	70040361	Res, Chip	27kΩ		1/16W								
RN344	70040362	Res, Chip	33kΩ		1/16W								
RN345 RN346	70040361 70040362	Res, Chip Res, Chip	$27k\Omega$ $33k\Omega$		1/16W 1/16W								
RN347	70040362	Res, Chip	27kΩ		1/16W								
RN348	70040362	Res, Chip	33kΩ		1/16W								
RN357	70040335	Res, Chip	2. $7k\Omega$	J	1/16W	1							
RN365	70040391	Chip Jumper	470.0		4 /4 000	ı							
RN366	70040570	Res, Chip	470Ω 120Ω		1/16W 1/16W								
RN370 RN371	70040349 70040349	Res, Chip Res, Chip	120Ω 120Ω		1/16W								
RX001	70040348	Res, Chip	100Ω		1/16W								
RX002	70040348	Res, Chip	100Ω	J	1/16W	i							
RX003	70040348	Res, Chip	100Ω	J	1/16W	ľ							
RX004	70040348	Res, Chip	100Ω		1/16W								
RX007	70040348	Res, Chip	100Ω		1/16W								
RX008 RX009	70040348 70040348	Res, Chip Res, Chip	100Ω 100Ω		1/16W 1/16W								
RX010	70040348	Res, Chip	100Ω		1/16W								
RX011	70040348	Res, Chip	100Ω	J	1/16W	Ÿ							
RX012	70040348	Res, Chip	100Ω	J	1/16W	P							

SPECIFICATIONS

Format : VHS standard : Rotary, 2-head helical scan system Recording system : 4 heads Video heads : CCIR; 625 lines, 50 fields, PAL/SECAM colour signal Video signal system NTSC colour, 525 lines SP: 33.35 mm/s (NTSC) : SP: 23.39 mm/s (PAL/MESECAM) Tape speed LP: 11.70 mm/s (PAL/MESECAM) SLP: 11.12 mm/s (NTSC) : SP: 240 minutes with E240 cassettes (PAL/MESECAM) Recording time LP: 480 minutes with E240 cassettes (PAL/MESECAM) : Approx. 110 seconds with E180 cassettes Winding time : 370 (W) × 89 (H) × 307 (D) mm Dimensions : 4.2 kg Mass : +5 to +40°C Operating temperature : Less than 80% RH Operating humidity : 230 V AC, 50 Hz Mains power : 24 W (in operation) Power consumption CONNECTORS : 75 Ω coaxial Aerial input : 75 Ω coaxial Aerial output : IN 1/OUT SCART socket, 1.0 V(p-p), 75 Ω Video input LINE IN 2 VIDEO Phono type jack, 1.0 V(p-p), 75 Ω : IN 1/OUT SCART socket, 308 mV(rms), more than 10 k Ω Audio input LINE IN 2 AUDIO Phono type jack, 308 mV(rms), more than 47 k Ω : IN 1/OUT SCART socket, 1.0 V(p-p), 75 Ω Video output : IN 1/OUT SCART socket, 308 mV(rms), less than 1.0 k Ω Audio output AUDIO OUT Phono type jacks, 308 mV(rms), less than 4.7 k Ω **VIDEO** : More than 43 dB (SP tape speed/PAL) Signal-to-noise ratio **AUDIO** : More than 42 dB (SP tape speed/PAL/normal mono) Signal-to-noise ratio : 20 Hz to 20,000 Hz Frequency range : More than 90 dB (Hi-Fi mode) Dynamic range : 1 track (Normal-mono), 2 channels (Hi-Fi sound) Audio track **TIMER** : 24-hour digital indication Clock : 4 events 1 month No. of events TUNER : Frequency synthesizer System : PAL SECAM B/G VHF: E2 - E12, A - H, H1, H2, R1 - R12 Channel coverage UHF: E21 - E69 CATV: X - Z, S1 - S41 VHF: R1 - R12, A - H, H1, H2, E2 - E12 SECAM D/K UHF: E21 - E69 CATV: X - Z, S1 - S41 : UHF channel 60 (53 - 67, adjustable) RF converter Accessories Remote control unit1 Batteries (R03)2 Power cable 1

Designs and specifications are subject to change without notice.

TOSHIBA CORPORATION

1-1, SHIBAURA 1- CHOME, MINATO - KU, TOKYO 105-01, JAPAN