

USR-K3 超级网口 (USR-K3)

文件版本: V1.0.12

本设备采用最新硬件方案,资源丰富,升级空间充足,功能还在不断增加中,可以为客户定制网络控制产品,详情请联系我们。

济南有人物联网技术有限公司专业专注于串口设备联网,有线 RJ45 网络,WIFI 无线,GPRS,掌控宝系列产品,欢迎新老客户咨询购买。

USR-K3 超级网口使用手册

目录

U	SR-K3	超级网口]
1.	产品介	个绍	4
	1.1.	产品简介	4
	1.2.	功能特点	∠
	1.3.	产品特性	4
	1.4.	订货型号	5
	1.5.	电气参数	5
2.	快速)	入门使用	<i>6</i>
	2.1.	硬件连接	<i>6</i>
	2.2.	PC 机的设置	<i>(</i>
		登陆模块网页	
		默认工作模式测试	
3.		殳置	
	3.1.	通过网页设置	11
4.		莫式	
	4.1.	系统框图	14
	4.2.	UDP Client 模式	14
	4.3.	TCP Client 模式	16
	4.4.	UDP Server 模式	. 17
	4.5.	TCP Server 模式	20
	4.6.	HTTPD Client 模式	21
5.	USR-F	K3 硬件说明	24
	5.1.	硬件特点	24
	5.2.	引脚定义与尺寸	24
	5.3.	硬件连接示意图	28
	5.4.	指示灯	28
	5.5.	TTL 串口	28
	5.6.	RJ45 接口	28
6.	扩展工	为能	. 29
		Modbus RTU 转 ModbusTCP	
		硬件流控 RTSCTS	
		MAC 地址	
	6.4.	串口打包时间与打包长度	31
		网页转串口	
		网络同步波特率	
		网页端口	
		设备 ID 与 ID 类型	
		设备名称	
). 模块的 IP 地址获取	
		I. 域名解析	
		2. 串口参数	
		3. 用户名与密码	
		1 . 固件版本	
		5. RS485 收发控制	
	6.16	6 . 固件升级	37

USR-K3 超级网口使用手册

7.	常见问题解析	37
	7.1. 防火墙的问题	37
	7.2. 跨网段问题	39
	7.3. 设备能 ping 通但网页打不开	39
	7.4. 升级固件后,网页打不开等	39
	7.5. 连接建立后,服务器收到不明字符	39
	7.6. 每隔一段时间,发生掉线重连	39
	7.7. 设置软件报错,提示端口占用	40
	7.8. 设置软件无法使用、无法打开或者是使用不正常的现象	40
	7.9. 串口服务器作 Client,无法连接到服务器	40
	7.10 . 通信不正常,网络链接不上,或者搜索不到	40
	7.11. 硬件问题查找	40
	7.12. 查看虚拟串口或者应用软件,TCP 连接是否已经建立	41
	7.13. 关于 Modbus TCP 与 Modbus RTU	41
8.	联系方式	42
9.	更新历史	43

1.产品介绍

1.1. 产品简介

超级网口 USR-K3,是一款全新的,小体积的串口转以太网模块,是用来将 TCP/UDP 数据包与 UART 接口实现数据透明传输的设备。搭载 ARM 公司的 Cortex-M4 处理器,功耗低,速度快,稳定性高。

本产品,在体积上,宽度等同于普通的 RJ45 座,长度更是不到普通网口座的两倍;全速工作仅消耗 120mA 电流。

本产品在 TCP232-M4 系列的硬件及软件基础上开发而成。内部集成了 TCP/IP 协议栈, 用户利用它可以轻松完成嵌入式设备的网络功能, 节省人力物力和开发时间, 使产品更快的投入市场, 增强竞争力。

1.2. 功能特点

- 全新 ARM 公司的 Cortex-M4 内核,工业级工作温度范围,精心优化的 TCP/IP 协议栈,稳定可靠
- 10/100Mbps 网口,支持 Auto-MDI/MDIX,交叉直连网线均可使用
- 支持 TCP Server,TCP Client,UDP,UDP Server,HTTPD Client 多种工作模式
- 支持虚拟串口工作方式,提供相应软件(USR-VCOM)
- 串口波特率支持 600bps~1024Kbps; 支持 None, Odd, Even, Mark, Space 五种校验方式
- 支持静态 IP 地址或者 DHCP 自动获取 IP 地址,并可以通过 UDP 广播协议查询网络内的设备
- 提供串口及网络设置协议、关键代码说明,可以将参数设置功能集成到用户的应用软件中
- 提供上位机 TCP/IP socket 编程例子,VB、C++、Delphi、Android、IOS 等
- 内置网页,可通过网页进行参数设置,也可为用户定制网页
- RJ45 带 Link/Data 指示灯,网口内置隔离变压器, 2KV 电磁隔离
- 从IEEE 购买的全球唯一 MAC 地址(D8-B0-4C 开头),也允许用户自定义 MAC 地址
- 支持通过网络升级固件,固件更新更方便
- 支持服务器域名地址解析
- 支持网页端口(默认80)更改
- 支持 keepalive 机制,可快速探查死连接等异常并快速重连
- 支持账户跟密码,可用于网页登录以及网络设置,更安全
- 支持 Websocket 功能,实现网页与串口的数据双向传输
- 支持 ModbusRTU 或者 ModbusASCII 透传;支持 ModbusRTU 转 ModbusTCP
- 支持 UDP 广播功能,向网络内的所有 ip 收发数据

1.3. 产品特性

- MCU: 32 位 ARM 公司 Cortex-M4 内核
- LAN 以太网: 10/100Mbps 支持 Auto MDIX; 内建 2KV 电磁隔离
- 串口: TXD、RXD、GND、RTS、CTS
- 串口速率: 从 600bps 到 1024Kbps 可设置
- 网络协议: ARP、IP、UDP、TCP, HTTP, ICMP, DHCP, DNS
- 工具软件:搜索配置软件、USR-TCP232-Test串口网络调试助手、USR-VCOM 虚拟串口软件

■ 配置方式: 串口/网络/网页, 提供配套软件

■ 电源: DC3.3V 单电源供电

■ 信号接口: 3.3V TTL 电平

■ 机械参数: 33.02 x 19.01 x 19.15 (mm) (包含弹片)

■ 工作温度: -40~85°C(工业级)

■ 保存环境: -40~85°C, 5~95%RH

■ 串口缓存: 2K Byte(单路的收与发)

■ 网络缓存: 16K Byte (收与发都是)

1.4. 订货型号

名称	型号	产品描述
超级网口	USR-K3	1路 UART,带 RJ45

图表 1-1 订货型号

1.5. 电气参数

功耗在 0.40W~0.65W 之间, 电流为 120mA。

	输入电压	3.3V 平均电流消耗
USR-K3	DC 3.3V	120mA(115-125)

图表 1-2 电流消耗

注:

所有的数据均是在室温 25℃,有数据通信的情况下测试得到的(10ms 间隔,20 字节循环发送测试)。

2. 快速入门使用

下面的章节为模块的上手说明,适合您初次使用测试。

另外,有实际应用案例文档,可供参考,下载连接 http://www.usr.cn/Download/180.html

客户支持中心(也就是在线技术支持),向我们提交您的疑难问题

http://h.usr.cn/index.php?c=frontTicket&m=sign

2.1. 硬件连接

USR-TCP232-EVB 为 TCP 系列的通用调试底板,带有 USR-K3 的硬件接口。

这款调试底板,带有 RS232 转 TTL 转换电路,方便用户把计算机(计算机自带的串口为 232 电平)与 K3 (K3 的串口为 TTL 电平)相连进行通讯。

评估板的232口,经过公对母延长线连到电脑。

然后,给模块供电,调试底板只可以接受 DC5V 的电源(USR-K3 接受 DC3.3V 电源,调试底板会把 DC5V 转为 DC3.3V 供 K3 使用),电压纹波小于 30 mV,电流至少保证 200 MA。

图表 2-1 USR-K3 连接示意图

2.2. PC 机的设置

为了防止很多客户在应用中出现的搜索不到,ping 不通,还有打不开网页等问题,在这里增加一个 PC 机设置的一个章节。在硬件连接好之后,使用之前,先对电脑检查如下设置。

- 关闭电脑的防火墙(一般在控制面板里面可以找到)
- 关闭掉与本次测试无关的网卡,只保留一个本地连接
- 对于模块直连 PC 机的情况,必须要给你的电脑设置一个静态的,同一个网段的 IP 地址

图表 2-2 PC 的网卡配置

2.3. 登陆模块网页

模块的默认参数为:

IP地址: 192.168.0.7 子网掩码: 255.255.255.0 默认网关: 192.168.0.1

要进行简单测试,可以将模块和计算机通过网线相连,也可以将模块和电脑同时接到交换机或者路由器上,不用区分交叉和直连网线,模块有自动识别交叉直连的功能。

将计算机的 IP 改为 192.168.0.xxx, 比如我们测试 PC 的自身 IP 地址改为 192.168.0.201, 子网掩码 255.255.255.0 (原因是在一个自网内, PC 跟模块必须在一个网段内才可以通信)。

打开浏览器,在地址栏输入模块的 IP 地址 http://192.168.0.7,回车后会出现一个登录验证框。用户名和密码均为 admin,进入系统后可以修改。

图表 2-3 登录验证框

进入系统页面,

图表 2-4 当前状态

登录后网页界面如下,

- 当前状态:包含模块名字,当前使用的 IP 地址等信息
- 本机 IP 设置:模块的 IP 获取方式,静态 IP 地址等参数再此设置
- TTL1: 串口转以太网透传设置
- 网页转串口:网页与串口之间的数据转发
- 高级设置:用户名密码等参数在此设置
- 模块管理: 在此可以重启模块

2.4. 默认工作模式测试

使用 USR-TCP232-Test(http://www.usr.cn/Download/27.html)进行收发测试,软件左侧为串口助手,使用软件默认设置,选择 COM3(注意,选择 COM3 的原因是电脑硬件串口就是 COM3,这个号可以在硬件管理器中看到);右侧为网络助手,设置为 TCP 客户端(TCP Client),服务器 IP 地址填写模块的 IP 即 192.168.0.7,服务器端口号填 23。

(默认情况下,模块工作在 TCP Server 模式,端口号为 23)。

下图为 10ms 双向同时自动发送的截图,为了测试大数据量收发,这里将接收显示暂停,只统计数据,下图是测试几个小时,发送上千万字节的效果,稳定可靠,不丢一个字节。

图表 2-5 透传测试

特别说明:

本测试名为自发自收测试,您可以在收到产品后,做这个功能测试;当您在使用中遇到问题时,也可以用这种方法来检测串口服务器是否有硬件问题。

有实际应用案例可供客户参考,官网下载连接 http://www.usr.cn/Download/180.html

3. 参数设置

设备的参数可以通过网页,或者软件等方式来设置。网页设置需要登录模块的内置网页,全部完成 后,需要重启生效;软件设置需要从官网下载设置软件。

3.1. 通过网页设置

在浏览器中输入模块 IP, 默认为: 192.168.0.7 回车可打开模块网页,

右上角有中英文切换标志,点击可以切换中英文。

输入用户名密码,默认为 admin

修改参数后,点击保存设置,参数将会被保存,重启后生效。

图表 3-1 网页参数设置页面

注:

在网页设置参数之后,参数会被立即保存,然后请重启模块以使配置生效。

USR-K3 超级网口使用手册

图表 3-2 IP 地址设置

重启方法有多种,可以下图的网页按钮重启,另外有搜索设置软件,手动断电等方法均可。

图表 3-3 重启按钮

网页可以中英文切换,点击右上角的语言即可。

USR-K3 超级网口使用手册

图表 3-4 中英文切换

4. 工作模式

4.1. 系统框图

USR-K3 的工作模式,以下是连接示意图。

图表 4-1 USR-K3 的连接示意图

模块通过 TTL 电平接口,与客户的单片机的串口链接,同时模块通过网口,接入到以太网的网络内,并与PC 端的应用软件建立数据链接,然后双向进行全双工的数据通信。

4.2. UDP Client 模式

在 UDP Client 模式下,模块绑定本地端口,并设定好远程目标地址跟端口。当模块从这个端口收到数据时,转发到串口;当串口收到数据时,模块将通过网络发送到置的 IP 和端口。

图表 4-2 UDP 通信方式

本工作模式特性

- 本工作模式从属于 UDP 协议
- 模块将只会与设定好的,特定的 IP 的特定端口通信,如果数据不是来自这个通道,则数据不会被模块接受
- 在本模式下,目标地址设置为 255.255.255, 则可以达到 UDP 全网段广播的效果;同时也可以接受广播数据;网段内的广播,比如 192.168.0.255 的广播方式,目前仅支持向外发送,无法接收
- UDP Client 模式跟 UDP server 模式下,根据以太网特性,上位机允许向模块发送的最大数据长度为 1460。 (以太网数据帧的长度为 46-1500 字节之间,最大长度 1500 字节,减去 IP 首部 20 字节,UDP 首部 8 字节,也就是数据区最大长度 1472 字节),这样的话,上位机向模块发送数据时,单次最大长度应当控制在 1472 字节或以下,如果大于这个长度,请分包发送。
- 模块的本地端口与目标端口可以不同

4.3. TCP Client 模式

打开模块网页, 照如下配置参数, 目标 IP 192.168.0.131, 默认端口 23

保存设置不保存设置

图表 4-3 TCP Client 模式 网页配置

打开调试助手,建立 TCP Server,端口 23;打开模块的串口,参数与网页对应

图表 4-4 模块作 TCP Client 演示

模块很快连接上助手建立的 Server,可以双向通信了。

本工作模式特性

- 有连接的通信模式,不同于 UDP,连接会有断开与保持之分
- 本模式具备主动识别连接断开的功能,当连接建立后,会有以大约 15s 的间隔发送的 keepalive 保活探查包,如果连接有异常中断等情况,则会被立即检测到,并促使模块断开原先的连接并重连。
- 模块尝试连接远程服务器时,每次都会以一个相同的源端口发起连接
- 本模式支持有人自主的同步波特率功能,运行过程中动态更改模块的串口速率等参数。此功能需配合虚拟 串口软件使用
- 支持 Modbus 透明传输;支持 ModbusRTU 转 ModbusTCP

4.4. UDP Server 模式

UDP server 是指在普通 UDP 的基础上不验证来源 IP 地址,收到 UDP 数据包后将目标 IP 改为数据来源 IP,类似 TCP server 的功能。

在此模式下,模块默认记录一个目标 IP,当串口有数据时,向记录的 IP 发送数据,同时,模块处于服务器地位,接受网络中发给模块的数据包,并随时调整目标 IP 为数据来源的 IP,适合于多 IP 对应模块的工作模式。使用上,计算机端的程序和 UDP Client 模式完全一样,不需要更改。

	参数
波特率: 数据位: 校验位: 停止位: 流控与RS485:	115200 bps 8 bit None 1 bit R\$485
本地端口: 远程端口: 工作方式:	8888 23 UDP Server ✔ None ✔
远程服务器地址: 超时时间: 串口打包时间:	192.168.0.131 [N/A] 0 seconds (< 256, 0 for no timeout) 10 ms (< 256)
串口打包长度: 同步波特率(2217):	512 chars (<= 1460, 0 for no use)

保存设置 不保存设置

图表 4-5 UDP Server 网页配置

然后打开调试助手,监听本地 UDP 端口 23(本地 UDP 端口可为任意值),打开后,目标主机 IP 填模块 IP: 192.168.0.66(模块的 IP 地址现在是 0.66),目标端口要填网页中设置时的 8888 端口(即模块的本地端口,Local Port Number),然后就可以双向通信了。

图表 4-6 模块作 UDP Server 演示

图表 4-7 第二个助手(第二个 Client)

这里模块作 Server, 我们可以打开另一个助手, 也向模块的 8888 端口发送数据, 同样可以双向通信。 本工作模式特性

- 本工作模式从属于 UDP 协议
- 模块发送数据时,将发送到最近与它通信的 IP 跟端口
- UDP Client 模式跟 UDP server 模式下,根据以太网特性,上位机允许向模块发送的最大数据长度为 1460。 (以太网数据帧的长度为 46-1500 字节之间,最大长度 1500 字节,减去 IP 首部 20 字节,UDP 首部 8 字节,也就是数据区最大长度 1472 字节),这样的话,上位机向模块发送数据时,单次最大长度应当控制在 1472 字节或以下,如果大于这个长度,请分包发送

4.5. TCP Server 模式

客户端的最大连接数量为8个,也就是说,TCP Server 可以同时允许最多8个客户端同时在线,如果此时仍然有连接进入,那么模块将会自动踢掉最老的连接,同时接受这个新连接。

保存设置 不保存设置

图表 4-8 网页设置

图表 4-9 测试结果,可建立多个 TCP Client 去连接模块

本工作模式特性

- 有连接的通信模式,不同于 UDP,连接会有断开与保持之分
- 最多支持 8 个 Client 同时连接, 当向网络上发送数据的时候, 将会全部发送到每个连接
- 本模式具备主动识别连接断开的功能,当连接建立后,会有以大约 15s 的间隔发送的 keepalive 保活探查包,如果连接有异常中断等情况,则会被立即检测到,并促使模块断开原先的连接并重连。
- 本模式支持有人自主的同步波特率功能,运行过程中动态更改模块的串口速率等参数。此功能需配合虚拟 串口软件使用
- 支持 Modbus 透明传输;支持 ModbusRTU 转 ModbusTCP

4.6. HTTPD Client 模式

本功能可方便网页开发人员使用。我们建立一个网页开发中,加入这样一句[<?php echo \$ GET['data']; ?>],表示从 HTTP Client 请求获得 data 的内容。

打开浏览器,输入: http://test.usr.cn/1.php?data=12345 然后回车,打开网页如下,网页得到了请求命令中的数据 12345。

图表 4-10 向 test.usr.cn/1.php?上传数据

接下来换一种方式,设置模块为HTTPD Client模式,目标地址 test.usr.cn,目标端口80,

图表 4-11 HTTPD Client 网页设置

打开 Test 助手,在串口部分填入你想要发往服务器的数据,比如 12345,服务器会把接收到的数据返回来,返回内容中,包头跟包尾将会一块回来。

图表 4-12 模块做 HTTPD Client 请求网页数据

注:

- ①HTTD Client 目前只支持 GET 方式请求 HTTD 服务器, POST 方式需要等待后续开放
- ②GET/为固定包头
- (3)1.php?data= 访问/提交的页面
- (4)\$ 代表串口发送的数据(串口不需要发"\$")
- ⑤HTTP/1.1 请求的协议
- ⑥Host 请求的域名或者 IP 地址
- 7两个回车换行符
- ⑧Httpd client header 是可以自定义的,关于这个头的使用方法,可以参考应用文档 http://www.usr.cn/Download/180.html 。

5. USR-K3 硬件说明

关于各个系列的硬件尺寸,可以详见 PCB 库文件,在如下连接下载 http://www.usr.cn/Download/52.html

5.1. 硬件特点

图表 5-1 USR-K3

- 1) 机械参数: 33.02 x 19.01 x 19.15 (mm) (包含弹片)
- 2) 3.3V 电源输入口
- 3) 支持 RTS/CTS 硬件流控
- 4) 网口 RJ45 封装,小体积,便于嵌入应用
- 5) PCB 封装库文件,以及更详细的尺寸图,请在官网下载

5.2. 引脚定义与尺寸

如下,供电仅能使用 DC 3.3V。

图表 5-2 正面实物视图

序号	名称	描述	
1	NC	暂不开放,请悬空	
2	NC	暂不开放,请悬空	
3	CTS	默认不启用。可配置为硬件流控 CTS(clear to	
		send)	
4	RST	模块复位(施加 200ms 或者以上的低电平脉冲,	
		将使模块重启)	
5	RTS	默认为 485 收发控制。可配置为硬件流控 RTS 脚	
		(request to send)	
6	Reload	恢复出厂时设置引脚	
7	LED2	网口指示灯 2(为单片机的 LED_DATA 脚)	
8	RXD	串口接收 (3.3V, TTL 电平)	
9	TXD	串口发送 (3.3V, TTL 电平)	
10	GND	地(包括电源地与信号地)	
11	3V3	电源(外部需给引脚供直流 3.3V 电源)	
12	LED1	网口指示灯 1(为单片机的 LED_LINK 脚)	

USR-K3 超级网口使用手册

13	LED2	网口指示灯 2(LED2 的负极)
14	LED_3V3	网口指示灯电源输入脚
15	LED_3V3	网口指示灯电源输入脚
16	LED1	网口指示灯 1(LED1 的负极)
其他		未标注的引脚请悬空

图表 5-3 引脚定义

备注

- 关于 LED1 与 LED2 的使用,由于在模块内部已经有串入的 1K 电阻,所以客户在做硬件设计时,无需为增加额外的限流电阻
- 7脚以及12脚,均为单片机的信号脚引出
- 13 脚与 16 脚,为相应 LED 的负极,硬件设计请参照 5)5.4 硬件连接示意图
- 恢复出厂设置操作流程: 拉低 RELOAD→上电(或复位), RELOAD 仍然保持状态→保持 5s→拉高

Recommended PCB Layout Component Side View

图表 5-4 尺寸与引脚示意图

详细的 PCB 库文件请从官网下载,下载链接 http://www.usr.cn/Download/52.html

5.3. 硬件连接示意图

图表 5-5 硬件连接示意图

从示意图上可以看到,客户来做硬件设计时,需要做如下处理

- 给模块供一个稳定的 3.3V 电源
- 把两个 LED 3V3 引脚连接起来
- 把两个 LED DATA 连接起来
- 把两个 LED LINK 连接起来
- 剩下的就是把模块的 RXD, TXD 与客户的单片机连接起来
- 使用不到的引脚,请悬空!

5.4. 指示灯

网口的 Link 与 Data

ID	名称	描述
2	Link(绿)	在 RJ45 口上,网络连接建立后亮
3	Data(黄)	在 RJ45 口上,网络上有数据时闪烁

图表 5-6 指示灯定义

5.5. TTL 串口

串口(3.3V、TTL 电平),支持硬件流控,RTS 引脚默认配置为485的收发控制脚。

5.6. RJ45 接口

网口的连接,模块的网口是 10M/100M 自适应,支持 AUTO – MDIX,可任意交叉网线或直连网线连接,也就是说你可以使用直连网线与计算机直接连接,也可以进行测试。

6. 扩展功能

6.1. Modbus RTU 转 ModbusTCP

本系列产品,支持 ModbusRTU 转 ModbusTCP 协议,具体使用介绍如下。

图表 6-1 ModbusTCP 选项设置

备注

- 模块在串口端使用 ModbusRTU 协议,网络端使用 ModbusTCP 协议
- 目前支持模块做 ModbusRTU 主机, Modbus 从机两种模式, 自动识别, 无需选择
- 可以选择 TCP Server 或者 TCP Client

6.2. 硬件流控 RTSCTS

支持硬件流控(RTS/CTS),需要手动开启。

模块的引脚名称	全称	含义	引脚 IO 类型	操作方
RTS	Request to Send	请求发送	output	模块
CTS	Clear to Send	清除发送	input	外部(PC)

图表 6-2 硬件流控脚含义

当 RTS 为逻辑 0 时, 使能对方的数据发送, 此时, TTL 电平为 0, RS232 电平为+3V~+15V。

当 CTS 为逻辑 0 时,表示对方允许模块的数据发送,模块可以发送数据了,此时 TTL 电平为 0,RS232 电平为+3V~+15V。

当逻辑反相时,表示禁止对方的数据发送或者被禁止发送数据。

当用 PC 进行测试时,可以使用母对母交叉串口线,模块与 PC 的流控脚要交叉相接,RTS 接 CTS,CTS 接 RTS。

图表 6-3 选择 RTSCTS 流控

6.3. MAC 地址

在当前状态里面可查看当前正在使用的 MAC 地址,出厂 MAC 地址为全球唯一。

图表 6-4 当前正在使用的 MAC 地址

6.4. 串口打包时间与打包长度

如果设置为打包时间 10ms, 打包长度 512 字节, 代表如下含义。

打包时间指串口持续没收到数据超过 10ms,那么现有的数据组成网络包被发送;打包长度 512 字节,指的是连接接收数据达到 512 字节,将会把 512 字节数据打包发送。

当从串口接收到数据开始,直到满足两个条件中的任意一个,将会打包成网络数据发送出去。

如果您将打包时间跟打包长度均设置为 0,那么模块将会启用一个自动的打包机制,打包时间为 4 个字节时间,打包长度为 1460 字节(本功能仅在固件版本>=3006 才可以生效)。

关于打包机制的说明,可以详见官网知识问答 http://www.usr.cn/Faq/6.html

6.5. 网页转串口

网页转串口功能,可以实现网页与模块串口之间的数据双向收发。

打开网页转串口的调试页面,然后点击"connect"按钮,当出现连接成功的提示后,就可以在串口跟网页之间相互收发数据了。

图表 6-5 网页转串口的调试方法

本功能特性

网页端数据接收显示仅使用 16 进制,不管发过来的是什么样子的数据格式

网页端数据发送,可选择 ascii 码发送或者是 16 进制发送,注意 16 进制时,需要保证输入的内容符合 16 进制格式要求(0-9, A-F)。

6.6. 网络同步波特率

模块配合虚拟串口软件使用时,模块可以自动跟随客户应用软件的串口速率,并动态更改。这是有人自定义的类 RFC2217 协议的串口参数同步功能。

此功能默认开启,虚拟串口软件与模块上都是默认开启的,如果想取消,可在如下位置配置。

波特率:	115200	bps	
数据位:	8 🗸 bit		
校验位:	None >		
停止位:	1 V bit		
流控与RS485:	Hardware	~	
本地端口:	502		
远程端口:	23		
工作方式:	TCP Serv	er V ModbusTCP V]
TCP Server样式:	default	∨ type	
远程服务器地址:	192.168.0).201	[N/A]
超时时间:	0	seconds (< 256, 0	for no timeout
串口打包时间:	10	ms (< 256)	
串口打包长度:	512	chars (<= 1460, 0	for no use)
同步波特率(2217):	✓		

图表 6-6 模块的修改位置

图表 6-7 虚拟串口软件的修改位置

6.7. 网页端口

模块带内置的网页服务器,与常规的网页服务器相同,使用了80的网页端口,但是本模块提供了这个端口的修改功能,修改之后,可以通过其他的端口来访问内置网页。

6.8. 设备 ID 与 ID 类型

设备 ID 默认为 1; ID 类型默认为 0。二者配置起作用

ID 类型有着如下意义

	> +== 1 + H > · · · · · · · · · · · ·	
	ID 类型的数值	功能
Ī	0 (默认)	不起任何作用
	1	模块做 client 时,连接到服务器后,立即发送自身的 ID(二字节正码+二字节反码)
	2	模块做 client 时,每次向服务器发送数据的前面,都带着自身的 ID
	3	1 与 2 的效果同时存在

6.9. 设备名称

模块名称默认为 USR-K3, 出厂即是这个名字。支持修改模块名字, 名字必须为可见的字符串格式, 长度必须小于 16 字节。

6.10. 是否缓存数据

#	數
模块名称:	USR-K3
保留:	6432
网页端口:	80
模块ID(用来识别模块,可用于D2D转发):	1 (1~65535)
ID类型(可用于D2D转发):	0 (0/1/2/3)
MAC地址(可修改):	d8-b0-4c-c0-03-1f
用户名:	admin
密码:	admin
是否缓存数据:	
无数据复位时间:	0 second

保存设置 不保存设置 图表 6-9 是否缓存数据

默认不勾选,也就是在 TCP 连接建立瞬间,串口在此之前收到的数据都会被清空掉。如果勾选,那么模块在 TCP 连接建立之前,串口收到的数据会被缓存起来,然后发送到服务器。

6.11. 复位超时时间

保存设置不保存设置

图表 6-10 复位超时时间

默认为 0,单位为秒。当本值在 0~60 之间时,复位超时功能不启用;

当本值 >= 60 时,如果在这个时间范围内,模块一直没有收到来自网络端的数据,那么模块将会重启。

6.12. 模块的 IP 地址获取

有 DHCP 与静态 IP 两种 IP 地址获取类型,默认配置为静态 IP 地址 192.168.0.7.

当选择 DHCP 之后, 重启生效, 模块会向网络内的 DHCP 主机请求 IP 地址, 整个获取过程需大约要 5-15s 的时间, 获取到之后, 可以使用搜索软件搜索到模块的 IP 地址信息。

图表 6-8 IP 地址的配置

6.13. 域名解析

模块工作在客户端模式下,可以支持访问域名或者动态域名。域名长度必须小于30字节。当连接不上目标服务器之后,模块将会持续的去解析这个域名。

6.14. 串口参数

串口波特率范围为 600bps~1024Kbps,可以任意设置。注意只有模块类的产品可以实现超过 115200bps 的速率,如果您最终使用了 232 口或者是在模块上引出了 232 口等,由于常规 232 芯片的限制,他将达不到高于115200bps 的速率。

数据位支持 5, 6, 7, 8 校验位支持 5 种, none, odd, even, mark, space 停止位支持 1, 2

6.15. 用户名与密码

用户名与密码默认均为"admin",长度必须均小于6。修改之后重启才会生效

6.16. 固件版本

USR-K3 的固件版本从 V3000 开始递增。版本可以在网页的左上方看到,或者是在搜索软件上看到。

图表 6-9 固件版本的查看位置

6.17. RS485 收发控制

模块的 RTS 引脚,默认被配置为 485 的收发切换控制,也就是说,如果您想扩展一路 485 口,可以使 RTS 脚连接到 485 芯片的收发控制上。

6.18. 固件升级

每次只能升级一个设备,不能跨网段升级,请使用厂家发给的固件升级包,内有详细的升级步骤说明。

7. 常见问题解析

7.1. 防火墙的问题

这两个问题出现的情况非常多,请在通信测试之前,关闭掉 PC 的 windows 防火墙以及不用的网卡。如果开启会造成搜索不到设备,TCP 链接不上或者其他现象。

关于多网卡:

网卡指的是电脑上借以上网的外设,比如台式机都有一个有线的网卡(插网线的口),笔记本除了有有线网卡之外,还有一个 WIFI 无线网卡;另外,我们可能还会用 3G 上网卡,或者是虚拟机(也会造成网卡的效果)请通信测试的时候,禁用掉多余的网卡,只保留一个,如下图(win7 为例),我们只保留了一个本地连接,无线网络连接已经被禁用掉了。

关于 windows 防火墙

请在通信测试之前,关闭掉 windows 自带的防火墙,原因是他会拦截掉大部分的 TCP 通信,请在如下位置关闭(以 win7 为例)

7.2. 跨网段问题

如果设备的 IP 与通信的 PC 不在一个网段内,并且是处于网线直连,或者同在一个子路由器下面,那么两者是根本无法通信的。

举例,

设备 IP: 192.168.1.66 子网掩码: 255.255.255.0

PC 的 IP: 192.168.0.161 子网掩码: 255.255.255.0

由于设备的 IP 为 1.66, 那么导致在 PC 上无法登陆设备网页, 也无法 ping 通它。

如果您想两者能够通信,就需要把设备跟 PC 的子网掩码、还有路由器上的子网掩码都设置成 255.255.0.0,这样就能登陆模块网页了。

7.3. 设备能 ping 通但网页打不开

可能有几个原因造成:

- 1) 设备设置了静态 IP 与网络中的现有设备 IP 冲突
- 2) HTTP server port 被修改 (默认应该为 80)
- 3) 其他原因

解决办法: 重新给串口服务器设置一个未被使用的 IP; 恢复出厂设置或者打开浏览器时输入正确的端口。

7.4. 升级固件后,网页打不开等

升级固件后,网页打不开、搜不到模块或者出现奇怪的 IP。

解决办法:恢复出厂设置(按住 reload 键,或者是把 reload 短接到 gnd,然后给串口服务器重新上电,等待2s之后,松开 reload)

7.5. 连接建立后,服务器收到不明字符

连接建立后,服务器收到了不明字符,或者是多余的不明字符 原因:

● ID 类型设置了非 0

解决办法: ID type 设为 0。

7.6. 每隔一段时间,发生掉线重连

每隔一段时间,会发生掉线重连现象 原因:

● 串口服务器跟其他设备有 IP 地址冲突的问题

- 对于模块类产品,比如 TCP232-ED, TCP232-S, TCP232-D,实际应用时,需要选用对应的 RJ45(是否带网络变压器),不然会出现网络信号不正常,这个问题详见每种型号的硬件说明
- 防火墙的问题,没有关闭掉防火墙
- 开启了多个网卡的问题,请在网络适配器的位置,查看您有几个正在启用的网卡,把其余的网卡禁用
- 电源供电不足,或者是电源纹波太大。可以换一个好一点的电源试试

7.7. 设置软件报错,提示端口占用

请检查是否开了两个设置软件,如果没有,请检查任务管理器里面是否还有设置软件名字的进程。任务管理器在 windows 下调出快捷键为 Ctrl + Alt + Delete。

7.8. 设置软件无法使用、无法打开或者是使用不正常的现象

有可能是文件损坏,请重新下载一份

请使用虚拟串口软件自带的配置功能, T24 老版的配置软件可能在 Win7 64 位跟 Win8 系统下, 有兼容性问题

7.9. 串口服务器作 Client, 无法连接到服务器

原因:

请检查上面的几个问题,多个网卡或者防火墙开启,都会造成这个问题 访问外网服务器的时候,串口服务器的网关地址没有设置对,一般网关地址就是路由器的地址 客户的花生壳域名没有生效,可以去尝试连接一下这个域名,看看 IP 地址可否正确解析 如果还不行,请用调试助手做 TCP server 做测试,看看可否连接上。

7.10. 通信不正常,网络链接不上,或者搜索不到

当前所用电脑的防火墙需要关闭(在 windows 防火墙设置里)

三个本地端口,不能冲突,也就是必须设置为不同值,默认23、26、29

有着非法的 MAC 地址,比如全 FF 的 MAC 地址,可能会出现无法连接目标 IP 地址的情况,或者 MAC 地址重复

非法的 IP 地址, 比如网段与路由器不在一个网段, 可能无法访问外网

检查硬件连接,485 的 A 跟 B 不要接反,400 等旧的硬件,最多只能带 8 台 485 设备,新的 401,410 等硬件,最多能带 32 台;232 通信的话,可能会有(2 和 3 脚)收发颠倒的问题,这种情况下,换一种串口线即可

7.11. 硬件问题查找

电源适配器供电不好,或者插头接触不良

电源灯不亮, 网口灯也不亮, 那就是没供电或者硬件坏了

网线或者网口硬件问题, 查看网口灯的状态

网口硬件问题,可查看网口等状态,绿灯应该是长亮,黄灯应该有闪烁,而不是长亮或者长灭,否则是硬件 问题

密码错误,如果忘记密码,可以恢复出场配置(Reload 拉低,设备上电)

7.12. 查看虚拟串口或者应用软件, TCP 连接是否已经建立

7.13. 关于 Modbus TCP 转 Modbus RTU

注意

设备支持的是 Modbus TCP 转 Modbus RTU(不支持 Modbus TCP 转 Modbus ASCII,前者应用范围更广)。

8. 联系方式

公 司:济南有人物联网技术有限公司

地 址: 山东省济南市高新区新泺大街 1166 号奥盛大厦 1 号楼 11 层

网址: http://www.usr.cn

客户支持中心: http://h.usr.cn/index.php?c=frontTicket&m=sign

邮 箱: sales@usr.cn tec@usr.cn

企业QQ: 8000 25565 (谐音: 爱我物联网)

电 话: 4000 255 652(免长途费) 或者 0531-88826739

有人愿景: 国内联网通讯第一品牌

公司文化: 有人在认真做事!

产品理念: 简单 可靠 价格合理

有人信条: 天道酬勤 厚德载物 共同成长

9. 更新历史

文件版本更新说明:

大口灰个又奶奶.	
文档版本	修改备注
V1.0.1	文档建立
V1.0.3	修改一些配图错误
V1.0.4	修改配图错误,语病等
V1.0.5	增加支持中心连接
V1.0.6	更换 K3 的引脚示意图
V1.0.7	增加复位超时与是否缓存数据
V1.0.8	修改公司地址
V1.0.12	修改 HTTPD Client