

Magyarország, 2024. december 10.

findperm-pp • HU

Találd ki a permutációt! (findperm-pp)

Ez egy interaktív feladat, amiben a programodnak az értékelő rendszerrel kell kommunikálnia. Felváltva írj ki üzeneteket a standard kimenetre és olvasd be a következő bemenetet a standard bemenetről!

Adott az 1, 2, ..., N számoknak egy ismeretlen, $P = [P_1, P_2, ..., P_N]$ permutációja ¹.

1. ábra. A permutáció a falba bújt el előled.

Kérdéseket tehetsz fel (i, j) alakban, ahol $1 \le i, j \le N$. Az i és j számoknak nem kell különbözőnek lenniük. Az értékelő program a kérdésedre a $(P_i \text{ AND } P_j)^2$ érték **legmagasabb helyi értékű bit** indexével válaszol.

A legmagasabb helyi értékű bit indexén az x kettes számrendszerbeli alakjának legmagasabb hatványkitevőjét értjük. Például, $5 = 101_{(2)}$ esetén ez az érték 2, hiszen az 5 kettes számrendszerbeli alakjában a $4 = 2^2$ a legnagyobb tag. Ha P_i AND P_j értéke 0, az értékelő program -1-gyel válaszol.

Feladatod a legfeljebb 1000 számból álló P permutációt kitalálni maximum 30 000 kérdés használatával.

Az értékelő rendszerből letölthető csatolmányok közt találhatsz findperm.* nevű fájlokat, melyek a bemeneti adatok beolvasását valósítják meg az egyes programnyelveken. A megoldásodat ezekből a hiányos minta implementációkból kiindulva is elkészítheted.

Bemenet

A bemenet első sora az N számot tartalmazza, a permutáció hosszát. Miután ezt beolvastad, a kérdéseket a standard kimenetre az alábbi formátumban írhatod ki:

? i j

ahol i és j a (i, j) kérdést írják le.

findperm-pp 1/3. oldal

 $[\]overline{\ ^{1}}$ Az $1, 2, \ldots, N$ számok permutációja egy olyan N hosszúságú sorozat, melyben az $1, 2, \ldots, N$ értékek mindegyike pontosan egyszer szerepel.

 $^{^2}$ Az xés yszámokból a bitenkénti ÉS (AND) művelet egy olyan számot képez, amiben a két szám közös bitjei szerepelnek. Például, ha $x=11=1011_{(2)}$ és $y=13=1101_{(2)},$ akkor $x\,$ AND $\,y=1001_{(2)}.$

Amennyiben i és j érvényes indexek $(1 \le i, j \le N)$ és a feltett kérdések száma a most feltett kérdéssel nem haladja meg a 30 000-et, az értékelő program a standard bemenetre kiírja a választ. Egyéb esetben a válasz -100, és az értékelő program Helytelen válasz eredményt ad.

Ha kitaláltad a permutációt, írd ki az alábbi formátumban:

!
$$P_1 P_2 \dots P_N$$

A megoldás kiírása nem számít kérdésfeltevésnek.

Miután kiírtad a helyesnek gondolt permutációt, vagy -100-at kaptál válaszul egy kérdésre, a programod azonnal álljon le; ellenkező esetben Időtúllépés értékelést kaphatsz.

Korlátok

• $1 \le N \le 1000$.

Pontozás

A megoldásodat sok különböző tesztesetre lefuttatjuk. A teszteseteket **különállóan** pontozzuk, a végső pontszámot a különböző tesztekre elért pontszámok összege adja. A kitalálandó permutáció minden tesztesetben **előre rögzített**, a programod válaszainak hatására az értékelő program ezt nem változtatja meg.

Jelölje Q a programod által az adott tesztesetre feltett kérdések számát. A pontszámod az alábbiak szerint kerül kiszámításra:

- Ha $Q > 30\,000$, a tesztre 0 pontot kapsz;
- Ha $25\,000 < Q \le 30\,000$, az adott tesztre kapható maximális pontszám 20%-át kapod meg;
- Ha $20\,000 < Q \le 25\,000$, az adott tesztre kapható maximális pontszám 40%-át kapod meg;
- Ha $15\,000 < Q \le 20\,000$, az adott tesztre kapható maximális pontszám 60%-át kapod meg;
- Ha $Q \le 15\,000$, a tesztre kapható pontszám egészét megkapod.

Példák

input	output
5	
	? 1 5
2	? 2 3
1	? 4 3
-1	: 4 0
0	? 4 4
	! 4 3 2 1 5

Magyarázat

Tegyük fel, hogy a P = [4, 3, 2, 1, 5] permutációt kell kitalálnod.

Az első kérdés a $P_1=4$ és $P_5=5$ legnagyobb indexű helyi értékére kérdez rá, ami 2.

A második kérdés a 3 és 2 értékekre kérdez rá, amire a válasz 1.

findperm-pp 2 / 3. oldal

2 AND 1 = 0, ezért a harmadik kérdésre a válasz -1.

Végül a negyedik kérdésre a válasz 0, hiszen 1 AND 1 = 1.

Ez az interakció példaként szolgál, hogy bemutassa a kérdések feltevésének, az értékelő válaszának és a megoldás kiírásának működését. **Nem feltétlenül** jelent egy helyes módszert a permutáció kitalálására.

 ${\tt findperm-pp} \\ {\tt 3/3.} \ {\sf oldal}$