Name: Sangeeth Kumar V Register No: 16BIS0072

Artificial Intelligence with Python

Lab Task – 03 (L39 & L40) Prof Hemprasad Yashwant Patil

Question:

Download the dataset from the following link:

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/overview

The Ames Housing dataset was compiled by Dean De Cock for use in data science education. It's an incredible alternative for data scientists looking for a modernized and expanded version of the often cited Boston Housing dataset.

Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement ceiling or the proximity to an east-west railroad. But this playground competition's dataset proves that much more influences price negotiations than the number of bedrooms or a white-picket fence.

With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, lowa, you have to predict the final price of each home.

Goal

Predict the sales price for each house. For each Id in the test set, you have to predict the value of the SalePrice variable.

Metric

Submissions are evaluated on Root-Mean-Squared-Error (RMSE) between the logarithm of the predicted value and the logarithm of the observed sales price. (Taking logs means that errors in predicting expensive houses and cheap houses will affect the result equally.)

Submit the thoroughly commented code along with snapshots of RMSE taken in Spyder environment.

Participation to kaggle website competition is optional.

Code:

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
```

Created on Sun Sep 1 04:26:39 2019

@author: astro
"""
%%
import pandas as pd

```
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean absolute error
from sklearn.metrics import mean_squared_log_error
# %%
# Read csv file
train_file = '~/Documents/AIWP/Lab/LabTask_3\
/house-prices-advanced-regression-techniques\
/train.csv'
data = pd.read_csv(train_file)
summary = data.describe()
# %%
# Select features
y = data.SalePrice
data features = [x \text{ for } x \text{ in data.columns if } str(data[x][0]).isdigit()][:-1]
X = data[data features]
describe = X.describe()
head = X.head()
# %%
# Define and Fit model
data_model = DecisionTreeRegressor(random_state=1)
data_model.fit(X, y)
# %%
# Predict
test file = '~/Documents/AIWP/Lab/LabTask 3\
/house-prices-advanced-regression-techniques\
/test.csv'
test_data = pd.read_csv(test_file)
X test = test data[data features]
X_{test} = pd.DataFrame(X_{test}).fillna(X_{test}.mean())
print(X_test)
result = data_model.predict(X_test)
print(result)
# %%
# Evaluate model
submission_file = '~/Documents/AIWP/Lab/LabTask_3\
/house-prices-advanced-regression-techniques\
/sample submission.csv'
submission_data = pd.read_csv(submission_file)
# RMSE && RMSLE
print('RMSE: ', (mean absolute error(
submission data['SalePrice'], result)
) ** 0.5)
```

print('RMSLE: ', (mean_squared_log_error(
submission_data['SalePrice'], result)
) ** 0.5)

Results:

Data:

Feature Vector summary

Index	Id	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	BsmtFinSF2	BsmtUnfSF
count	1460	1460	1201	1460	1460	1460	1460	1460	1452	1460	1460	1460
mean	730.5	56.8973	70.05	10516.8	6.09932	5.57534	1971.27	1984.87	103.685	443.64	46.5493	567.24
std	421.61	42.3006	24.2848	9981.26	1.383	1.1128	30.2029	20.6454	181.066	456.098	161.319	441.867
min	1	20	21	1300	1	1	1872	1950	Θ	Θ	0	Θ
25%	365.75	20	59	7553.5	5	5	1954	1967	Θ	Θ	Θ	223
50%	730.5	50	69	9478.5	6	5	1973	1994	Θ	383.5	0	477.5
75%	1095.25	70	80	11601.5	7	6	2000	2004	166	712.25	0	808
max	1460	190	313	215245	10	9	2010	2010	1600	5644	1474	2336

Features present in train dataset

1.	Id	13. Neighborhood	25. Exterior2nd	37. BsmtFinSF2
2.	MSSubClass	14. Condition1	26. MasVnrType	38. BsmtUnfSF
3.	MSZoning	15. Condition2	27. MasVnrArea	39. TotalBsmtSF
4.	LotFrontage	16. BldgType	28. ExterQual	40. Heating
5.	LotArea	17. HouseStyle	29. ExterCond	41. HeatingQC
6.	Street	18. OverallQual	30. Foundation	42. CentralAir
7.	Alley	19. OverallCond	31. BsmtQual	43. Electrical
8.	LotShape	20. YearBuilt	32. BsmtCond	44. 1stFlrSF
9.	LandContour	21. YearRemodAdd	33. BsmtExposure	45. 2ndFlrSF
10.	Utilities	22. RoofStyle	34. BsmtFinType1	46. LowQualFinSF
11.	LotConfig	23. RoofMatl	35. BsmtFinSF1	47. GrLivArea
12.	LandSlope	24. Exterior1st	36. BsmtFinType2	48. BsmtFullBath

49. BsmtHalfBath	58. FireplaceQu	67. WoodDeckSF	76. MiscVal
50. FullBath	59. GarageType	68. OpenPorchSF	77. MoSold
51. HalfBath	60. GarageYrBlt	69. EnclosedPorch	78. YrSold
52. BedroomAbvGr	61. GarageFinish	70. 3SsnPorch	79. SaleType
53. KitchenAbvGr	62. GarageCars	71. ScreenPorch	80. SaleCondition
54. KitchenQual	63. GarageArea	72. PoolArea	81. SalePrice
55. TotRmsAbvGrd	64. GarageQual	73. PoolQC	
56. Functional	65. GarageCond	74. Fence	
57. Fireplaces	66. PavedDrive	75. MiscFeature	

Out of them, numerical features are taken into consideration *Using DecisionTreeClassifier for model.fit*

Predicted Values

	0
	127500
1	155000
2	223500
_	170000
3	178000
1	213500
•	213300
5	172400
6	176432
_	477500
7	177500
8	185000
0	103000

They indicate the predicted vs actual values from sample_submission.csv

Evaluating model:

```
Console 1/A X
                                                   00:09:41
   .... submitssion_uata - pu.reau_csv(submitssion_rite)
   ...: # RMSE && RMSLE
   ...: print('RMSE: ', (mean_absolute_error(
               submission_data['SalePrice'], result)
   ...: ) ** 0.5)
   ...: print('RMSLE: ', (mean_squared_log_error(
               submission_data['SalePrice'], result)
   ...: ) ** 0.5)
       242.24966850966211
RMSE:
RMSLE: 0.4131776419375089
In [9]:
                History log
IPython console
```

Root Mean Square Error RMSE: 242.24966850966211 Root Mean Square Log Error

RMSLE: 0.4131776419375089

Conclusion:

Thus we predicted the final price of each home in the given test.csv file by training train.csv, and eventually evaluated the model with the sample_submission.csv file.