

අධෳයන පොදු සහතික පතු (උසස් පෙළ)

සංලක්ත ගණිතය

ස්විතිකය -]]]

අනිජේන කියුවීම පොන

(2017 නව විෂය නිර්දේශයට අනුව සකස් කරන ලදී)

ගණිත දෙපාර්තමේන්තුව විදහ හා තාක්ෂණ පීඨය ජාතික අධහාපන ආයතනය ශී ලංකාව www.nie.lk

අධෳයන පොදු සහතික පතු (උසස් පෙළ)

සංයුක්ත ගණිතය

ස්ථිතිකය - II

අතිරේක කියවීම් පොත

(2017 නව විෂය නිර්දේශයට අනුව සකස් කරන ලදී)

ගණිත දෙපාර්තමේන්තුව විදහා හා තාක්ෂණ පීඨය ජාතික අධහාපන ආයතනය ශීූ ලංකාව www.nie.lk සංයුක්ත ගණිතය ස්ථිතිකය -II

© ජාතික අධපාපන ආයතනය පුථම මුදුණය 2019

ISBN 978-955-654-721-4

ගණිත දෙපාර්තමේන්තුව විදාහා හා තාක්ෂණ පීඨය ජාතික අධාහාපන ආයතනය

මුදුණය : මුදුණාලය ජාතික අධ්‍යාපන ආයතනය මහරගම

අධෘක්ෂ ජනරාල්තුමියගේ පණිවිඩය

ගණිත අධාාපනය සංවර්ධනය කිරීම සඳහා ජාතික අධාාපන ආයතනයේ ගණිත දෙපාර්තමේන්තුව විසින් කාලෝචිත ව විවිධ කිුයා මාර්ග අනුගමනය කරමින් සිටී. ''සංයුක්ත ගණිතය, ස්ථිතිකය - II'' නමින් රචිත පොත එහි එක් පුතිඵලයකි.

දොළහ සහ දහතුන්වන ශේුණිවලවල විෂය නිර්දේශ හැදැරීමෙන් පසු පැවැත්වෙන අධ්‍යයන පොදු සහතික පතු (උසස් පෙළ) විභාගය සඳහා සිසුන් සූදානම් කිරීම පාසලේ ගුරුවරයාට පැවරෙන පුධාන කාර්යයකි. මේ සඳහා යෝග්‍ය ඇගයීම් උපකරණ බෙහෙවින් විරල වේ. වෙළෙඳපොලේ පවත්නා බොහොමයක් උපකරණ වලංගු බවින් හා ගුණාත්මක බවින් ඌන පුශ්නවලින් සමන්විත ප්‍රශ්න පතුවලින් යුක්ත බව නොරහසකි. මෙම තත්ත්වය වළක්වා සිසුන්ට විභාගයට මනා ලෙස සූදානම් වීම සඳහා ජාතික අධ්‍යාපන ආයතනයේ ගණිත දෙපාර්තමේන්තුව මෙම සංයුක්ත ගණිතය ''ස්ථිතිකය - II'' සකස් කර ඇත. මෙය විෂය නිර්දේශයට අනුව සකසා, පූර්ව පරීක්ෂණයන්ට ලක් කර කරන ලද වටිනා ප්‍රශ්න ඇතුළත් ගුන්ථයකි. ප්‍රශ්න සමඟ ඒවායේ උත්තර ඇතුළත් කර තිබීම ගුරුවරුන්ට මෙන් ම සිසුන්ට ද බෙහෙවින් ප්‍රයෝජනවත් වන බව නිසැක ය.

මෙම පොත පරීශීලනයෙන් ගණිත විෂයයේ ඇගයීම් කිුයාවලිය සාර්ථක කර ගන්නා මෙන් ගුරුවරුන්ගෙන් ද, සිසුන්ගෙන් ද ඉල්ලා සිටිමි.

''සංයුක්ත ගණිතය, ස්ථිතිකය - II'' ඔබ අතට පත් කිරීම සඳහා අනුගුහය දක් වූ AusAid ව්‍යාපෘතියටත්, මෙම කාර්යය සාර්ථක කර ගැනීමට ශාස්තීය දායකත්වය සැපයූ ගණිත දෙපාර්තමේන්තුවේ කාර්ය මණ්ඩලයට හා බාහිර විද්වතුන් සියලු දෙනාටත් මගේ පුණාමය හිමි වේ.

> ආචාර්ය ටී. ඒ. ආර්. ජේ. ගුණසේකර අධානක්ෂ ජනරාල් ජාතික අධාාපන ආයතනය

අධෘක්ෂතුමාගේ පණිවිඩය

අධායන පොදු සහතික පතු (උසස් පෙළ) විෂයධාරාවන් අතර ගණිතය විෂයධාරාව සඳහා සුවිශේෂි ස්ථානයක් හිමිව ඇත. අධායන පොදු සහතික පතු (සාමානා පෙළ) විභාගයෙන් උසස් ලෙස සමත්වන සිසුන් විශේෂයෙන් ගණිත විෂය ධාරාවට පිය කරයි. රටකට සහ ලෝකයට ඔබින නවෝත්පාදක රාශියක් බිහි කිරීමට දායක වූ විශේෂඥයින් බිහි කර ඇත්තේ උසස් පෙළ ගණිත විෂයධාරාව හැදුරූ සිසුන් බව අතීතය මැනවින් සාක්ෂි දරයි.

අධායන පොදු සහතික පතු (උසස් පෙළ) ගණිත විෂයයන් සඳහා විෂයමාලාව සකස් කර ඇත්තේ විදහාත්මක ලෝකයට, තාක්ෂණ ලෝකයට සහ වැඩලෝකයට අතාාවශා විද්වතුන් බිහි කර දීමේ පරම ඓතනාව ඇතිවයි.

වර්ෂ 2017 සිට උසස් පෙළ සංයුක්ත ගණිත විෂය සහ උසස් පෙළ ගණිත විෂය සඳහා සංශෝධිත නව විෂයමාලාවක් කියාත්මක වේ. මෙම විෂයමාලාව ඉගෙන ගන්නා ශිෂා ශිෂායාවන්ගේ ඉගෙනුම පහසුව සඳහා පුහුණු පුශ්න සහ උත්තර ඇතුළත් පොතක් ජාතික අධාාපන ආයතනයේ ගණිත දෙපාර්තමේන්තුව විසින් සකස් කර ඇත. මෙම පොතේ ඇතුළත් පුශ්න සිසුන්ගේ සංකල්ප සාධන මට්ටම මැන බැලීමටත් ඉදිරියේ දී පවත්වන අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය සඳහා පෙර සූදානමටත් සුදුසු වන පරිදි සකස් කර ඇත. පුශ්නයට අදාළ උත්තර සපයා දීමෙන් බලාපොරොත්තු වන්නේ ශිෂා ශිෂායාවන් පුශ්නයක් සඳහා උත්තරය ලබාදීමේ දී අනුගමනය කළ යුතු පියවර සහ කුමවේද පිළිබඳ ව අත්දකීමක් ලබාදීම යි. එමඟින් උත්තරය පෙළගැස්විය යුතු ආකාරය පිළිබඳ ව සිසුන්ට තම හැකියා, කුසලතා සහ දැනුම වැඩි දියුණු කර ගැනීමට හැකිවේ. මෙම පුශ්න සහ උත්තර සකස් කිරීමට විශේෂඥයාවයක් ඇති විශ්වවිදහල කථිකාචාර්යවරුන් ගුරුවරුන් සහ විෂයමාලා විශේෂඥයින්ගේ සම්පත් දායකත්වය ලබා දී ඇත. තවද මෙම පුශ්න සකස් කිරීමේ දී එක් එක් විෂය අන්තර්ගතයන් සඳහා විවිධ මාන ඔස්සේ ශිෂා ශිෂායාවන්ගේ අවධානය යොමු කිරීමටත්, සිසුන්ගේ දනුම පුළුල් කර ගැනීමටත් අවස්ථාව ලබා දීමට හා මග පෙන්වීමට අවධානය යොමු කර ඇත. ගුරුවරුන්ගේ උපදෙස් සහ මග පෙන්වීම යටතේ මෙන් ම ස්වයංව ඉගෙනුම සඳහාත් උචිත ලෙස මෙම පොත සකස් කර ඇත.

මෙවැනි වටිනා පොතක් නිර්මාණය කිරීමට අවශා උපදෙස් සහ මග පෙන්වීම ලබාදුන් ජාතික අධාාපන ආයතනයේ අධාාක්ෂ ජනරාල්තුමියට සහ සම්පත් දායකත්වය දක් වූ සැමටත් ස්තුතියි. මෙම පොත භාවිත කර එමඟින් ලබන අත්දකීම් තුළින් නැවත මුදුණයක දී භාවිතයට සුදුසු ධනාත්මක අදහස් අප වෙත ලබා දෙන ලෙස ගෞවරයෙන් ඉල්ලා සිටිමි.

> කේ. රංජිත් පත්මසිරි අධාක්ෂ ගණිත දෙපාර්තමේන්තුව ජාතික අධාාපන ආයතනය

විෂයමාලා කමිටුව

අනුමැතිය : ශාස්තීුය කටයුතු මණ්ඩලය, ජාතික අධාාපන ආයතනය.

උපදේශකත්වය : ආචාර්ය ටී. ඒ. ආර්. ජේ. ගුණසේකර මිය

අධාක්ෂ ජනරාල්

ජාතික අධාාපන ආයතනය

අධීක්ෂණය : කේ. රංජිත් පත්මසිරි මයා,

අධාක්ෂ, ගණිත දෙපාර්තමේන්තුව,

ජාතික අධාාපන ආයතනය.

විෂය සම්බන්ධීකරණය : එස්. රාජේන්දුම් මයා

ජොෂ්ඨ කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව

ජාතික අධාාපන ආයතනය.

කේ. කේ. වජිමා එස්. කංකානම්ගේ මෙය සහකාර කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව

ජාතික අධාාපන ආයතනය.

සම්පත් දායකත්වය:

ජී. පී. එච්. ජගත් කුමාර මයා ජොෂ්ඨ කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව,

ජාතික අධාාපන ආයතනය.

එම්. නිල්මිණි පී. පීරිස් මිය ජොෂ්ඨ කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව

ජාතික අධාාපන ආයතනය

එස්. රාජේන්දුම් මයා ජෙනෂ්ඨ කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව

ජාතික අධාාපන ආයතනය.

සී. සුදේශන් මයා සහකාර කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව,

ජාතික අධාාපන ආයතනය.

පී. විජායිකුමාර් මයා සහකාර කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව,

ජාතික අධාාපන ආයතනය.

කේ.කේ.වජීමා එස්. කංකානම්ගේ මෙය සහකාර කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව,

ජාතික අධාාපන ආයතනය.

කතෘ මණ්ඩලය

කේ. ගනේෂලිංගම් මයා විශුාමික පුධාන වාාාපෘති නිලධාරි

ජාතික අධාාපන ආයතනය

වී. රාජරත්නම් මයා විශාමික ගණිත ආචාර්ය

ටී. සිදම්බරතාදන් මයා විශුාමික ගණිත ආචාර්ය

එන්. ආර්. සහබන්දු මයා විශාමික ගණිත ආචාර්ය

එච්. ඩී. සී. එස්. පුතාන්දු මයා ගුරු සේවය, විවේකානන්ද විදහලය, කොළඹ 13

එස්. ජී. දොලුවීර මයා ගුරු සේවය, වෙෂ්ලි විදුහල

කොළඹ 09

භාෂා සංස්කරණය : එස්. එන්. ගනේවත්ත

සිංහල භාෂා උපදේශක

මුදුණය හා අධීකුෂණය : ඩබ්. එම්. යූ. විජේසූරිය

වැ.බ අධාක්ෂ (මුදුණ හා පුකාශන)

ජාතික අධාාපන ආයතනය

පරිගණක වදන් සැකසීම : මොනිකා විජේකෝන්,

විවෘත පාසල

ජාතික අධාාපන ආයතනය

ඉරේෂා රංගතා දිසාතායක මෙණවිය

මුදුණාලය

ජාතික අධාාපන ආයතනය

පිටකවරය : ඉරේෂා රංගතා දිසාතායක මෙණවිය

මුදුණාල**ය**

ජාතික අධාාපන ආයතනය

විවිධ සහාය : එස්. හෙට්ටිආරච්චි මයා

ගණිත දෙපාර්තමේන්තුව

කේ. එන්. සේනානි මිය ගණිත දෙපාර්තමේන්තුව

ආර්. එම්. රූපසිංහ මයා ගණිත දෙපාර්තමේන්තුව

පෙරවදන

අධාාපන පොදු සහතික පතු (උසස් පෙළ) ශේණීවල සංයුක්ත ගණිතය ඉගෙනුම ලබන සිසුන් පුහුණු වීම සඳහා මෙම පොත සකස් කර ඇත. සිසුන්ට පුමාණවත් අභාාස ලබා දීම සඳහාත්, විෂය ධාරාව හැදැරූ පසු විභාගයට සුදානම් කිරීම පිණිස අභාාස කරවීමේ අරමුණෙන් මෙම පොත සකස් කර ඇත. මෙය ආදර්ශ පුශ්න පතු කට්ටලයක් නොවන බවත් අභාාස පුශ්නවල එකතුවක් බවත් සිසුන් ගුරුවරුන් වටහා ගත යුතුයි.

මෙම අභාාස පුශ්න කට්ටලයේ අභාාස කළ පසු දී ඇති පිළිතුරු සමග තමන්ගේ පිළිතුරු සසඳා බැලිය හැකි ය. මෙහි දී ඇති ආකාරයේ ම සියලුම පියවර සිසුන්ගේ පිළිතුරුවල තිබීම අතාවශා නොවේ. ඔබේ පිළිතුරුවල නිවැරදිතාවය බැලීමටත් පියවර නිවැරදිව අනුගමනය කිරීමට මග පෙන්වීමක් ලෙස මෙහි පිළිතුරු දී ඇති බව වටහා ගන්න.

මෙම අභාහස පුශ්ත කට්ටලය වර්ෂ 2017 සිට කිුිිියාත්මක වන සංශෝධිත විෂය මාලාවට අනුව 2019 අවුරුද්දේ පුථම වරට අ.පො.ස (උ.පෙළ) විභාගයට පෙනී සිටින සිසුන් ඉලක්ක කරගෙන සකස් කර ඇත. නමුත් සංයුක්ත ගණිතය, උසස් ගණිතය, ගණිතය වැනි විෂයන් හදාරන තමන්ගේ විෂයධාරාවට අනුව පුශ්න කට්ටලය භාවිත කළ හැකි ය.

ජාතික අධාාපන ආයතනයේ ගණිත දෙපාර්තමේන්තුව විසින් එළි දක්වන අ.පො.ස (උ.පෙළ) සඳහා වු පුථම අභාාස පුශ්න කට්ටලයට අමතරව ස්ථිතිකය - I ස්ථිතිකය - II, සංයුක්ත ගණිතය I, සංයුක්ත ගණිතය II සඳහා ඒකක අනුව සකස් කළ අභාාස පුශ්න කට්ටල ඉක්මනින් එළි දැක්වීමට තියමිතය.

මෙම පොතෙහි ඇති අඩුපාඩු සම්බන්ධව අදහස් අප වෙත යොමු කරන්නේ නම් නැවත මුදුණයේ දී සකස් කිරීමට හැකි වේ. ඔබේ අදහස් අප මහත් අගය කොට සලකන බවත් මෙයින් දන්වා සිටිමි.

> එස්. රාජේන්දුම් වහාපෘති නායක 12 - 13 ශේණී ගණිතය

පටුන

	පිටුව
nanda madada a daga a	iii
අධාක්ෂ ජනරාල්තුමියගේ පණිවිඩය	iv iv
අධාක තුමාගේ පණිවිඩය	
විෂයමාලා කමිටුව	v - vi
<u>මෙපරවදන</u>	Vİİ
5.0 සන්ධි කළ දඬු	118
5.1 සරල සන්ධි වර්ග	01
5.2 දෘඪ සන්ධි	01
5.3 විසඳූ නිදසුන්	03
5.4 අභාගාසය	15
6.0 රාමු සැකිලි	19 - 36
6.1 දෘඪ රාමුව	19
6.2 සමතුලිතතාවයේ ඇති සැහැල්ලු රාමු සැකිල්ලක	19
බාහිර බල නිරූපණය	
6.3 විසඳූ නිදසුන්	20
6.4 අභාගාසය	31
7.0 ඝර්ෂණය	37 - 58
7.1 හැඳින්වීම	37
7.2 ඝර්ෂණ නියම	37
7.3 විසඳු නිදසුන්	45
7.4 අභාගාසය	55
8.0 ගුරුත්ව කේන්දුය	59 - 80
8.1 අංශු පද්ධතියක ගුරුත්ව කේන්දුය	59
8.2 ඒකාකාර දණ්ඩක ගුරුත්ව කේන්දුය	60
8.3 විසඳු නිදසුන්	61
8.4 අභාගාසය	78

5.0 සන්ධිකළ දඬු

පෙර 4.1 හා 4.2 පරිච්ඡේදවලදී තති දෘඪ වස්තු මත ඒකතල බල පද්ධති කියා කරන ආකාරය අධාායනය කරන ලදී. මෙම පරිච්ඡේදයේ දී දෘඪ වස්තු දෙකක් හෝ කීපයක් මත ඒක තල බල පද්ධති කිුිිිිිිිිිි කරන ආකාරය අධාායනය කරනු ලැබේ.

මෙහිදී එම දඬුවල බර යටතේ එම දඬු සමතුලිතව පවතින ආකාරය හා බාහිර බලයක් යෙදූ විට අසව්වලදී ඇතිවන පුතිකියා ද සොයා බලනු ලැබේ.

5.1 සරල සන්ධි වර්ග

(i) දෘඪ සන්ධිය

දඬු දෙකක් සන්ධි කර ඇති විට එම දඬු දෙක වෙන් කිරීමට හෝ එම සන්ධි හරහා එකකට සාපේක්ෂව අනෙක් දණ්ඩ චලනය කිරීමට නොහැකි නම්, එම දඬු දෙක දෘඪ ලෙස සම්බන්ධ කර ඇතැයි කියනු ලැබේ.

(ii) කුර සන්ධිය

දඬු දෙකක් සැහැල්ලු සුමට ඇණයක් මගින් සම්බන්ධ කර ඇතිවිට දඬුවලට සන්ධිය වටා කැරකිය හැකි නම් එම සන්ධිය සුචල සන්ධියක් ලෙසත් කැරකීමට නොහැකි නම් රඑ සන්ධියක් ලෙසත් හඳුන්වයි. මෙම පාඩමේ දී සුමට සුචල සන්ධි පිළිබඳ හදාරනු ලැබේ.

5.2 දෘඪ සන්ධි

දඬු රැසක් හෝ කීපයක් සම්බන්ධ කර ඇති වස්තුවක හැඩය බාහිර බල මගින් වෙනස් කළ නොහැකි නම් එම සම්බන්ධ කර ඇති සන්ධි දෘඪ සන්ධි වේ.

සන්ධියේ දී කියා කරන පුතිකියා හඳුනා ගැනීම සඳහා අඬු ඇත් කර දක්වා ඇත. මෙම සන්ධියේ කියා කරන පුතිකියා විශාලත්වයෙන් සමාන, දිශාවෙන් විරුද්ධ විය යුතුය.

R බලය සෙවීම සඳහා R බලයේ සංරචක වලට වෙන් කරන ආකාරය පහත දක්වේ.

මෙහි X හා Y යනු R බලයේ පිළිවෙලින් තිරස් හා සිරස් සංරචක වේ. එමෙන්ම R යනු X හා Y වල

සම්පුයුක්තය වන අතර එය සන්ධිය හරහා ගමන් කරයි.

මෙහිදී කුඩා බර නැති සුමට ඇණයක් දඬු හරහා විදීමෙන් එම දඬු දෙක සන්ධි කරනු ලැබේ. එම කුඩා ඇණය සුමට වන විට දඬුදෙක සම්බන්ධවන සන්ධියේ පුතිකියාව එම ඇණයට ලම්බ වේ. එම බල දෙක යටතේ එම ඇණය සමතුලිතව ඇත්නම්, එම බල විශාලත්වයෙන් සමානව දිශාවෙන් පුතිවිරුද්ධව එකම කියා රේඛාවේ කියා කරයි. එනම් එක් එක් දණ්ඩ මත කියා කරන පුතිකියා විශාලත්වයෙන් සමාන දිශාවෙන් පුතිවිරුද්ධව එකම කියා රේඛවේ ගමන් කරන පරිදි එම සන්ධියේ කියා කරයි. පහසුව සඳහා අවශාතාවය පරිදි සන්ධියේ පුතිකියාව එකිනෙක ලම්බ සංරචක දෙකකට විභේදනය කරයි.

සටහන ඃ

බර දණ්ඩක්, එහි දෙකෙලවර වෙනත් දඬු මගින් සන්ධි කර ඇති විට එම සන්ධිවලදී කිුයා කරන පුතිකිුයා දණ්ඩ ඔස්සේ කිුයා නොකරයි. මෙහිදී එම දණ්ඩ අසමාන්තර බල තුනක් යටතේ සමතුලිතව පවතී.

සමතුලිත තාවය සඳහා එම බල O ලක්ෂයේ දී හමුවිය යුතුය.

නමුත් දණ්ඩ සැහැල්ලු දණ්ඩක් නම් එම දණ්ඩ මත පුතිකිුිිිිිිිිිි දෙකක් කිුිිිිිිිිිි කරන අතර ඒවා එකිනෙක තුලනය කිරීම සඳහා දණ්ඩ ඔස්සේ කිුිිිිිිිිි කරයි.

මෙහි සලකන රාමුව අක්ෂයක් වටා සමමිතික නම් එම අක්ෂයෙන් දෙපැත්තේ එකම බල කිුිිිියාකරයි.

ගැටළු විසඳීම සඳහා උපදෙස්

- (i) ජාහාමිතික දත්ත අනුව නිවැරදි රූප සටහන් අඳින්න.
- (ii) බල නිවැරදි ව ලකුණු කරන්න.
- (iii) නොදන්නා බල සෙවීම සඳහා අවශා සමීකරණ ලබා ගන්න.
- (iii) එක් එක් සන්ධියේ දී කිුිිියා කරන බල සෙවීම සඳහා එම සන්ධියේ කිුිිිියා කරන පුතිකිිිිිිිිිිිිි එකිනෙකට ලම්බ සංරචක දෙකකට වෙන්කර ලකුණු කරන්න.

සටහන ඃ

රාමුව දෘඪ එකක් වීමට සන්ධි n වලින් යුත් දෘඪ රාමුවක් සෑදීම සඳහා දඬු (2n-3) ගණනක් අවශා වේ.

එම රාමුවට දඬු (2n-3) වැඩිවූ විට එය වඩා ශක්තිමත් වේ.

5.3 විසඳු නිදසුන්

උදාහරණ 1

දිග 2a සහ W බර වන ඒකාකාර දඬු තුනක් නිදහස් ලෙස සුමටව අග නිදහස් කෙළවර වලින් එකිනෙක සම්බන්ධ කර ABC රාමුවක් සාදා A ලක්ෂයෙන් එල්වා ඇත. AB දණ්ඩේ B කෙළවරේ දී පුතිකිුිිිිිිිිිිිිිිිිි විශාලත්වය සොයන්න.

 ${
m BC}$ දණ්ඩේ සමතුලිත තාවය සලකමු. ${
m BC}$ දණ්ඩ සඳහා ${
m C}$ වටා සූර්ණ ගැනීමෙන්,

CM
$$W \cdot a + Y \cdot 2a = 0$$

 $2Y + W = 0$; $Y = -\frac{W}{2}$

 ${
m AB}$ දණ්ඩේ සමතුලිත තාවය සලකමු.

AB දණ්ඩ සඳහා A වටා සූර්ණ ගැනීමෙන්,

AO
$$Y(2a \sin 30^{\circ}) + X(2a \cos 30^{\circ}) - W(a \sin 30^{\circ}) = 0$$

 $2Y + 2X \cot 30^{\circ} = W$
 $2Y + 2\sqrt{3}X = W$
 $-W + 2\sqrt{3}X = W$; $X = \frac{W}{\sqrt{3}}$
 $R = \sqrt{X^2 + Y^2} = \sqrt{\frac{W^2}{3} + \frac{W^2}{4}} = \sqrt{\frac{7}{12}}W$
 $\tan \theta = \frac{Y}{X} = \frac{\sqrt{3}}{2}$; $\therefore \theta = \tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$

B වලදී පුතිකිුයාවේ විශාලත්වය $\sqrt{rac{7}{12}}~W~;~R$ පුතිකිුයාව CB සමග සාදන කෝණය heta නම්,

$$\theta = \tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

දිග 2a සහ W බර වන ඒකාකාර AB, AC දඬු දෙකක් A ලක්ෂායේ දී සුමට ලෙස සන්ධිකර දඬු දෙක සිරස් තලයක සමතුලිත තාවයේ තබා ඇත්තේ B හා C දෙකෙළවර සුමට තිරස් තලයක් මත ගැටෙන පරිදි ය. AB දණ්ඩේ මධා ලක්ෂායේ හා C කෙළවර සැහැල්ලු අවිතනය තන්තුවක් මගින් සම්බන්ධ කර ඇත. $B\hat{A}C = 60^\circ$. තන්තුවේ ආතතිය ද A ලක්ෂායේ පුතිකිුයාව ද සොයන්න.

AB = AC; $BAC = 60^{\circ}$

එනම් ABC මගින් සමපාද තුිකෝණයක් සාදයි.

AB හා AC දඬු වල සමතුලිත තාවය සඳහා බල

සිරස්ව විභේදනයෙන් ,

$$\uparrow$$
 $R_1 + R_2 - 2W = 0$; $R_1 + R_2 = 2W$

C වටා සූර්ණ ගැනීමෙන් ,

Cm
$$-R_1 \cdot 4a \cos 60^\circ + W \cdot a \cos 60^\circ + W \cdot 3a \cos 60^\circ = 0 \dots$$

$$R_1 = W$$
 and $R_2 = W$

AC දණ්ඩේ සමතුලිත තාවය සඳහා A වටා සුර්ණ ගැනීමෙන්

A M
$$-W.a \cos 60^{\circ} - T.a + R_2.2a \cos 60^{\circ} = 0...$$

$$-\frac{W}{2} - T + W = 0; \quad T = \frac{W}{2}$$

AC දණ්ඩේ සමතුලිත තාවය සඳහා බල

තිරස්ව විභේදනයෙන් ,

$$\rightarrow X - T \cos 30^\circ = 0$$
; $X = T \cos 30^\circ = \frac{\sqrt{3}W}{4}$

සිරස්ව විභේදනයෙන් ,

$$\uparrow R_2 - Y - W + T \sin 30^\circ = 0$$

$$Y = R_2 - W + \frac{T}{2} = \frac{W}{4}$$

A හිදී පුතිකියාව
$$\sqrt{X^2 + Y^2} = \sqrt{\frac{3W^2}{16} + \frac{W^2}{16}} = \frac{W}{2}$$

බර Wවන ඒකාකාර AB,AC දඬු දෙකක් A හි දී සුමටව සන්ධි කර B හා C දෙකෙළවර සුමට තලයක් මත සමතුලිතව ඇත්තේ ABC තලය සිරස් වන පරිදිය. රාමුව සමතුලිතව තබා ඇත්තේ AB හා AC වල මධාලක්ෂා යා කරන සැහැල්ලු අවිතනා තන්තුවක් මගිනි. $B\^AC = 2\theta$ නම් තන්තුවේ ආතතිය ද AB දණ්ඩ මත A ලක්ෂායේ දී පුතිකිුයාවේ විශාලත්වය ද සොයන්න.

R

AB = AC = 2a නම්,

AB හා AC වල, සමතුලිත තාවය සදහා බල සිරස්ව විභේදනයෙන්,

$$\uparrow 2R - 2W = 0$$

$$R = W$$
①

AB දණ්ඩේ සමතුලිත තාවය සඳහා බල සිරස්ව විභේදනයෙන්,

$$\uparrow R + Y - W = 0$$

$$W + Y - W = 0$$
; $Y = 0$

සිරස්ව විභේදනයෙන්,

AB දක්ඩේ සමතුලිත තාවය සදහා A වටා සූර්ණ ගැනීමෙන්.

Am T.
$$a \cos \theta + W$$
. $a \sin \theta - R$. $2a \sin \theta = 0$

$$T = \frac{(2W - W)\sin\theta}{\cos\theta} = W \tan\theta \qquad (4)$$

 ${f A}$ හිදී පුතිකියාව W an heta

සටහන

ඉහත උදාහරණයේ පද්ධතිය A හරහා යන සිරස් අක්ෂයක් වටා සමමිතික වේ.

A හිදී පුතිකියා ලකුණු කර ඇති ආකාරය

පද්ධතිය A හරහා යන සිරස් අක්ෂයක් වටා සමමිතික නම් බල පහත පරිදි ලකුණු විය යුතුය.

එම නිසා Y = 0

දිග 2a සහ W බර වන ඒකාකාර AB, BC දඬු දෙකක් B ලක්ෂයේ සුමට ලෙස සන්ධිකර රාමුව A හා C දෙකෙළවරින් එකම තිරස් රේඛාවේ පිහිටි ලක්ෂා දෙකකට සම්බන්ධ කර සිරස් තලයේ සමතුලිතව ඇති විට එක් එක් දණ්ඩ තිරස සමඟ 30° කෝණයක් සාදයි නම් B සන්ධියේ පුතිකිුයාව සොයන්න.

මෙම පද්ධතිය B හරහා යන සිරස් අක්ෂයක් වට සමමිතික වේ.

එනම් B ලක්ෂයේ දී කිුයා කරන සිරස් සංරචකය වන Y හි අගය බිංදුව වේ.

AB දණ්ඩේ සමතුලිත තාවය සඳහා A වටා සූර්ණ ගැනීමෙන්,

Am $-X.2a \sin 30^{\circ} + Y.2a \cos 30^{\circ} - Wa \cos 30^{\circ}$

$$-X \cdot 2a \sin 30^{\circ} = W \cdot a \cos 30^{\circ}$$
$$X = -\frac{\sqrt{3}W}{2}$$

උදාහරණ 4

දිග 2a වන AB, BC දඬු දෙකක බර පිළිවෙළින් W හා 2W වේ. එම දඬු B හිදී සුමට ලෙස සන්ධි කර ABC රාමුව සිරස් තලයක A හා C තිරස් රේඛාවක පිහිටන පරිදි එල්වා ඇත. එක් එක් දණ්ඩ තිරස සමග 60° ක කෝණයක් සාදයි. AB දණ්ඩ මත B ලක්ෂයේ දී පුතිකියාව ද දිශාව ද සොයන්න.

පද්ධතියේ සමතුලිතතාවය සඳහා බල

තිරස්ව විභේදනයෙන්,

$$\rightarrow X_1 - X_2 = 0$$
; $X_1 = X_2$

සිරස්ව විභේදනයෙන්,

$$\uparrow R_1 + R_2 - 3W = 0$$
 ; $R_1 + R_2 = 3W$

AB හා BC දඩු සඳහා A වටා සුර්ණ ගැනීමෙන්

Am
$$R_2.2a - W.\frac{a}{2} - 2W.\frac{3a}{2} = 0$$

$$2R_2 = \frac{7W}{2}$$
 ; $R_2 = \frac{7W}{4}$ so $R_1 = \frac{5W}{4}$ ç

BC දණ්ඩේ සමතුලිතතාවය සඳහා බල

BC දණ්ඩේ සමතුලිතතාවය සඳහා C වටා සූර්ණ ගැනීමෙන්

Cm
$$X \cdot 2a \sin 60^{\circ} + Y \cdot 2a \cos 60^{\circ} + 2W \cdot a \cos 60^{\circ} = 0$$

X.
$$2a \sin 60^{\circ} - \frac{W}{4}$$
. $2a \cos 60^{\circ} + 2W$. $a \cos 60^{\circ} = 0$

$$X = -\frac{\sqrt{3}W}{4}$$

$$R = \sqrt{\frac{3W^2}{16} + \frac{W^2}{16}}$$

$$R = \frac{W}{2}$$

$$\tan \theta = \frac{\frac{W}{4}}{\frac{\sqrt{3}W}{4}} = \frac{1}{\sqrt{3}}$$

$$\theta = \tan^{-1} \left(\frac{1}{\sqrt{3}} \right)$$

$$=\frac{\pi}{6}$$

උදාහරණය 6

බර W හා දිග 2a වන ඒකාකාර AB, BC, CA දඩු තුනකි. ඒවායේ අග කෙළවර දී එකිනෙකට සුමටව සන්ධි කර එම සමපාද තිකෝණාකාර රාමුවක් සාදා ඇත. මෙම රමුව A හි දී සුමටව අසම කර ඇති අතර AB තිරස්ව හා AB ට පහළින් C පිහිටන පරිදි සිරස්තලයක සමතුලිතව තැබීම සඳහා B හි දී BC ලම්බකව P බලයක් යොදා ඇත. P හි අගය සොයන්න. තවද C හි දී BC දණ්ඩ මත පුතිකියාවේ විශාලත්වය සොයන්න. පද්ධතිය සඳහා A වටා සූර්ණ ගැනීමෙන්

Am
$$-W \cdot a \cos 60^{\circ} - W \cdot a - W \cdot (2a - a \cos 60^{\circ}) + P \cdot 2a \cos 60^{\circ} = 0$$

P = 3W

 ${
m AC}$ දණ්ඩේ සමතුලිතභාවය සඳහා ${
m A}$ වටා සුර්ණ ගැනීමෙන්

Am X. $2a \sin 60^{\circ} + \text{Y}$. $2a \cos 60^{\circ} + W$. $a \cos 60^{\circ} = 0$

 BC දණ්ඩේ සමතුලිතතාවය සඳහා B වටා සුර්ණ ගැනීමෙන්

Bm $X \cdot 2a \sin 60^{\circ} - Y \cdot 2a \cos 60^{\circ} + W \cdot a \cos 60^{\circ} = 0$

$$\Rightarrow X - \frac{Y}{\sqrt{3}} = -\frac{W}{2\sqrt{3}} \dots 2$$

① හා ②න්

$$Y = 0$$

$$X = -\frac{W}{2\sqrt{3}}$$

$$\mathrm{C}$$
 හිදී පුතිකුියාව $\frac{\mathrm{W}}{2\sqrt{3}}$

දිග 2a වන AB සහ BC වන ඒකාකාර දඩු දෙකක බර පිළිවෙළින් 2W හා W වේ. ඒවා Bහිදී සුමට සන්ධිකර දඬු වල මධා ලසු සැහැල්ලු අපුතාස්ථ තන්තුවක් මගින් සම්බන්ධ කර ඇත. පද්ධතිය සිරස් තලයක A හා C දෙකෙළවර තිරස් සුමට තලයක ගැටෙමින් සමතුලිතව ඇත්තේ $A\hat{B}C=2\theta$ වන පරිදිය. තන්තුවේ ආතතිය $\frac{3W}{2}\tan\theta$ බව පෙන්වන්න. Bහිදී පුතිකිුයාවෙහි විශාලත්වය හා දිශාව සොයන්න.

පද්ධතියේ සමතුලිතතාවය සඳහා

C වටා සූර්ණ ගැනීමෙන්

Cm W. $a \sin \theta + 2W$. $3a \sin \theta - R$. $4a \sin \theta = 0$

$$R = \frac{7W}{4}$$

AB දණ්ඩේ සමතුලිතතාවය සඳහා B වටා සූර්ණ ගැනීමෙන්

Bm T.
$$a \cos \theta + 2W$$
. $a \sin \theta - R$. $2a \sin \theta = 0$

$$T = -2W \tan \theta + 2R \cdot \tan \theta$$

$$T = -2W \tan \theta + \frac{7W}{2} \tan \theta$$

$$T = \frac{3W}{2} \tan \theta$$

$$\rightarrow$$
 T - X = 0; X = T = $\frac{3W}{2}$ tan θ

සිරස්ව විභේදනයෙන්

$$\uparrow Y + R - 2W = 0$$

දිග 2a වන ඒකාකාර AB,BC,CD හා DE දඩු හතරක් පිළිවෙළින් B,C හා D හිදී සුමටව සන්ධිකර ඇත. AB,DE හි බර 2Wද BC,CD බර Wද වේ. පද්ධතිය එකම තිරස් රේඛාවේ පිහිටි A හා E මගින් එල්වා ඇත. AB හා BC සිරස සමග α,β කෝණ සාදයි. C සන්ධියේ පුතිකියාව තිරස් බව පෙන්වා එහි විශාලත්වය

 $\frac{W}{2}$ tan β . බව පෙන්වන්න. තවද tan β = 4 tan α බව පෙන්වන්න.

පද්ධතිය C හරහා යන සිරස් අක්ෂයක් වටා සමමිතික වේ.

t neúk aC හි පුතිකිුයාවේ සිරස් සංරචකය බිංදුව වේ. $Y_{_1} = 0$

BC හි සමතුලිතතාවය සඳහා

බල තිරස්ව විභේදනයෙන්

$$\rightarrow X_1 - X_2 = 0$$

$$X_1 = X_2$$

බල සිරස්ව විභේදනයෙන්

$$\uparrow Y_1 + Y_2 - W = 0$$

$$Y_2 = W$$

B වටා සුර්ණ ගැනීමෙන්

BM $-X_1 \cdot 2a \cos \beta - W \cdot a \sin \beta = 0$

$$X_1 = -\frac{W}{2} \tan \beta$$

 AB දණ්ඩේ සමතුලිතතාවය සඳහා A වටා ඝූර්ණ ගැනීමෙන්

Am
$$-X_2 \cdot 2a \cos \alpha + 2W \cdot a \sin \alpha + Y_2 \cdot 2a \sin \alpha = 0$$

$$X_2 = -2W \tan \alpha$$

$$X_1 = X_2$$

$$\frac{W}{2} \tan \beta = 2W \tan \alpha$$

$$\tan \beta = 4 \tan \alpha$$

බර Wවන ඒකකාර දඬු දෙකක් වන AB හා AC, Aහිදී සුමට ලෙස සන්ධිකර B හා C සැහැල්ලු අවිතනා තත්තුවක් මගින් එකිනෙක සම්බන්ධකර ඇත. B හා C දෙකෙළවර තිරසට α කෝණයක් ආනතව වන සුමට ආනත තල දෙකක් මතය. BC තිරස් වන අතර A සන්ධිය BCට ඉහළින් පිහිටයි. B කෙළවර මත ආනත තලය මඟින් ඇති කරන පුතිකියාව සොයන්න. $\tan\theta > 2\tan\alpha$, නම් හා $BAC = 2\theta$ තන්තුවේ ආතතිය $\frac{1}{2}W(\tan\theta - 2\tan\alpha)$ බව පෙන්වන්න. තවද A සන්ධියේ පුතිකියාව සොයන්න.

දණ්ඩක දිග 2a නම්

පද්ධතිය A හරහා යන සිරස් අක්ෂයක් වටා සමමිතික වේ.

එම නිසා A හිදි පුතිකියාවේ සිරස් සංරචකය ශූනා වේ.

පද්ධතිය සමතුලිතතාවය සඳහා බල

සිරස්ව විභේදනයෙන්

$$\uparrow$$
 2R cos α – 2W = 0 ; R = W cos α

AB දණ්ඩේ සමතුලිකභාවය සඳහා A වටා ඝූර්ණ ගැනීමෙන්

Am T. $2a \cos \theta + R \sin \alpha$. $2a \cos \theta + W$. $a \sin \theta - R \cos \alpha$. $2a \sin \theta = 0$

$$T = \frac{W}{2} (\tan \theta - 2 \tan \alpha)$$

 AB දණ්ඩේ සමතුලිතතාවය සඳහා B වටා සූර්ණ ගැනීමෙන්

BM $X \cdot 2a \cos \theta - W \cdot a \sin \theta = 0$

$$X = \frac{W}{2} \tan \theta$$

AB,BC,CD හා AD යනු ඒකාකාර දඬු හතරක් වන අතර $AB=AD=\sqrt{3}\ell$ සහ $BC=DC=\ell$ වේ. එම දඬු A,B,C හා D හි දී සුමට ලෙස සන්ධිකර ABCD රාමුව සකසා ඇත. එක් එක් දණ්ඩේ ඒකක දිගක බර w වේ. A හා C දෙකෙළවර දිග 2ℓ වන සැහැල්ලු අවිතනා තන්තුවක් මගින් සම්බන්ධකර ඇත. රාමුව

 ${
m A.}$ ලකුළයෙන් සිරස් තලයක එල්වා ඇත. තන්තුවේ ආතතිය $rac{W\ell}{4}ig(\sqrt{3}+5ig)$ බව පෙන්වන්න.

කුමය 1

$$AB^2 + BC^2 = 3\ell^2 + \ell^2 = 4\ell^2 = AC^2$$

එම නිසා, $A\hat{B}C = 90^\circ$, $B\hat{A}C = 30^\circ$, $B\hat{C}A = 60^\circ$

පද්ධතිය AC වටා සමමිතික වේ. එම නිසා B හා D වලදී පුතිකියා සමාන වේ.

AB, දණ්ඩේ සමතුලිතතාවය සඳහා A වටා සුර්ණ ගැනීමෙන්

Am X.
$$\sqrt{3}\ell \cos 30^\circ + \text{Y.} \sqrt{3}\ell \sin 30^\circ - \sqrt{3}\ell W. \frac{\sqrt{3}}{2}\ell \sin 30^\circ = 0$$

 BC දණ්ඩේ සමතුලිතතාවය සඳහා C වටා සුර්ණ ගැනීමෙන්

Cm
$$Y \cdot \ell \sin 60^\circ + W\ell \cdot \frac{\ell}{2} \sin 60^\circ - X \cdot \ell \cos 60^\circ = 0$$

$$Y + \frac{W\ell}{2} = \frac{X}{\sqrt{3}}$$

$$X = \sqrt{3}Y + \frac{\sqrt{3}W\ell}{2} \dots 2$$

① හා ②න්

$$Y + \sqrt{3}X = \frac{\sqrt{3}W\ell}{2}$$

$$Y + \sqrt{3} \left(\sqrt{3}Y + \frac{\sqrt{3}W\ell}{2} \right) = \frac{\sqrt{3}W\ell}{2}$$
$$4Y + \frac{3W\ell}{2} = \frac{\sqrt{3}W\ell}{2}$$
$$Y = \frac{W\ell}{8} \left(\sqrt{3} - 3 \right)$$

BC හා CD දඩුවල සමතුලිතතාවය සඳහා

$$\uparrow T - 2Y - 2W\ell = 0$$

$$T = 2$$

$$T = 2Y + 2W\ell$$

$$T = 2\frac{W\ell}{8}(\sqrt{3} - 3) + 2W\ell$$

$$T = \frac{W\ell}{4}(\sqrt{3} + 5)$$

හෝ BC හා CD සඳහා D වටා සූර්ණ ගැනීමෙන්

කුමය 2

$$AB^{2} + BC^{2} = 3\ell^{2} + \ell^{2} = 4\ell^{2} = AC^{2}$$

 $ABC = 90^{0}$, $BAC = 30^{0}$, $BCA = 60^{0}$

සමමිතිය අනුව $oldsymbol{B}$ හා $oldsymbol{D}$ වලදී පුතිකියා සමාන වේ.

 ${f B}$ සන්ධියේ පුතිකිුයාවේ සංරචක ${f BA}$ හා ${f BC}$ ඔස්සේ ගැනීමෙන් ${f ABC}=90^{0}$

AB දණ්ඩේ සමතුලිතතාවය සඳහා A වටා ඝූර්ණ ගැනීමෙන්

Am
$$\sqrt{3}W\ell$$
. $\frac{\sqrt{3}\ell}{2}\sin 30^{\circ} - Y.\sqrt{3}\ell = 0$
$$Y = \frac{\sqrt{3}W\ell}{4}$$

 BC දණ්ඩේ සමතුලිතතාවය සඳහා C වටා සූර්ණ ගැනීමෙන්

Cm W
$$\ell$$
. $\frac{\ell}{2}\sin 60 - X.\ell = 0$
$$X = \frac{\sqrt{3}W\ell}{4}$$

BC හා CD සමතුලිතතාවය සඳහා බල සිරස්ව විභේදනයෙන්

T -
$$2W\ell + 2X \cos 30^{\circ} - 2Y \cos 60^{\circ} = 0$$

T = $2W\ell + 2Y \cos 60^{\circ} - 2X \cos 30^{\circ}$
= $2W\ell + \frac{\sqrt{3}W\ell}{4} - \sqrt{3} \cdot \frac{\sqrt{3}W\ell}{4}$
= $\frac{W\ell}{4} (\sqrt{3} + 5)$

බර W හා දිග 2a වන ඒකාකාර AB, BC, CD හා DA දඩු හතරක් කෙළවරින් සුමටව සන්ධිකර ඉහළ ඇති AB, AD දඩු එකිනෙකට 2c දුරකින් පිහිටි සුමට නා දති දෙකක් මත ගැටෙමින් සිරස් තලයක සමතුලිතතාවයේ පවතී. දඩු සිරස සමග සාධන කෝණය θ නම් B සන්ධියේ පුතිකිුයාවේ තිරස් හා සිරස් සංරචක සොයන්න. තවද $c=2a\sin^3\theta$ බව පෙන්වන්න.

පද්ධතිය ACවටා සමමිතික වේ. එනම් A හාC සන්ධිවලදී පුතිකියාවේ සිරස සංරචක ශුනා වේ. පද්ධතිය සමතුලිතතාවය සඳහා බල

සිරස්ව විභේදනයෙන්

$$\uparrow 2R \sin \theta - 4W = 0$$

 BC දණ්ඩේ සමතුලිතතාවය සඳහා B වටා සූර්ණ ගැනීමෙන්

Bm X_2 . $2a \cos \theta - W.a \sin \theta = 0$

$$X_2 = \frac{W \tan \theta}{2} \dots 2$$

බල තිරස්ව විභේදනයෙන්

$$\rightarrow X_2 - X_3 = 0; X_3 = X_2 = \frac{W \tan \theta}{2} \dots 3$$

බල සිරස්ව විභේදනයෙන්

 AB දණ්ඩේ සමතුලිතතාවය සඳහා A වටා සූර්ණ ගැනීමෙන්

Am
$$-R.\frac{c}{\sin\theta} + Wa.\sin\theta + Y_3.2a\sin\theta + X_3.2a\cos\theta = 0$$

 $-\frac{2W.c}{\sin^2\theta} + W.a\sin\theta + W.2a\sin\theta + \frac{W}{2}.2a\sin\theta = 0$; $c = 2a\sin^3\theta$

බර W හා 2a වන ඒකාකාර AB,AC දඩු දෙකක් A හිදී සුමටව සන්ධිකර ඇත. BD යන දිග a වන බර රහිත පොල්ලක් B හි දී සුමට ලෙස සම්බන්ධ කර D හිදී AC තුළින් ගමන් කරන සුමට සැහැල්ලු මුදුවකට සම්බන්ධ කර ඇත. පද්ධතිය සිරස් තලයක සමතුලිතතාවය ඇත්තේ $\, {f B} \,$ හා $\, {f C} \,$ සුමට තිරස් තලයක් මත

නැවෙමින් ය. Aහිදී පුතිකිුයාවේ විශාලත්වය $\frac{W}{12} \Big(3\sqrt{2} - \sqrt{6} \Big)$ බව පෙන්වන්න. තවද Aහිදී පුතිකිුයාවේ

විශාලත්වය ${
m BD}$ පොල්ලේ තෙරපුමට සමාන බව පෙන්වා ති්රසට $15^{
m o}$ කෝණයක් සාදන බව පෙන්වන්න. කිුයා රේඛාව BC හමුවන ලඎය ද සොයන්න.

සමතුලිතතාවය සඳහා $R_{_{\parallel}}$ = T සහ $R_{_{\parallel}}$ ACට ලම්භක වේ. එම නිසා T ද AC ට ලම්භක වේ.

පද්ධතිය සඳහා

බල සිරස්ව විභේදනයෙන්

$$\uparrow$$
 R+S = 2W

C වටා සූර්ණ ගැනීමෙන්

Cm
$$W.a \cos 75^{\circ} + W. 3a \cos 75^{\circ} = R. 4a \cos 75^{\circ} = 0$$

$$\Rightarrow$$
 R = W

$$R = S=W$$

AC දණ්ඩේ සමතුලිතතාවය සඳහා

A වටා සූර්ණ ගැනීමෙන්

Am T.
$$a\sqrt{3} + W.a \sin 15^{\circ} - W.2a \sin 15^{\circ} = 0$$

$$T = \frac{W \sin 15^{\circ}}{\sqrt{3}} = \frac{W}{12} (3\sqrt{2} - \sqrt{6})$$

 $X = T \cos 15^{\circ}$; \uparrow $Y = T \sin 15^{\circ}$;

AB දණ්ඩ සඳහා බල තිරස්ව හා සිරස්ව විභේදනය කිරීමෙන් $A=\sqrt{X^2+Y^2}=T$;

$$A = \sqrt{X^2 + Y^2} = T ; \quad \tan \alpha = \frac{Y}{X}$$
$$= \tan 15^{\circ}$$

ΔABP තිකෝණය සඳහා සයින් නියමය යෙදීමෙන්

$$\frac{BP}{\sin 60^{\circ}} = \frac{AB}{\sin 45^{\circ}} \implies BP = \frac{2a \cdot \sin 60^{\circ}}{\sin 15^{\circ}}$$

 $\alpha = 15^{\circ}$

BP =
$$\frac{2a \cdot \frac{\sqrt{3}}{2}}{\frac{\sqrt{3}-1}{2\sqrt{5}}} = \frac{2\sqrt{6}}{\sqrt{3}-1}$$
 \Rightarrow BP = $(3\sqrt{2} + \sqrt{6})a$

$$\Rightarrow BP = \left(3\sqrt{2} + \sqrt{6}\right)$$

5.4 අභාගාසය

- 1. සමාන දිග ඇති AB හා AC දඬු 2ක් Aහි දී සුමටව අසව් කර ඇත. AB හා AC දඬුවල බර පිළිවෙළින් W_I හා W_2 වේ. එකම තිරස් මට්ටමේ පිහිටි B හා C ලක්ෂා දෙකෙන් පද්ධතිය එල්ලා ඇත්තේ BC = 2a හා A සන්ධිය BC ට a දුරක් සිරස්ව පහළින් තිබෙන පරිදිය. A සන්ධියේ පුතිකිුයාවේ තිරස් හා සිරස් සංරචක සොයන්න.
- 2. බර W වන ඒකාකාර AB, BC දඩු දෙකක් B හිදී සුමට ලෙස සන්ධිකර ඒවායේ මධා ලස්ෂාය නොඇදෙන සැහැල්ලු තන්තුවක් මගින් සම්බන්ධ කර ඇත. තන්තුවේ දිග එය තද වී පවතින විට ABC 90° වන සේ වේ. තන්තුව තදව පිහිටන සේ පද්ධතිය A ලස්ෂායෙන් නිදහසේ එල්ලා ඇත. සමතුලිත අවස්ථාවේ දී AB සිරස සමග සාදන කෝණය $tan^{-1}\left(\frac{1}{3}\right)$ බව ද තන්තුවේ ආතතිය $\frac{3W}{\sqrt{5}}$ බව ද පෙන්වන්න. තවද BC මත පුතිකිුයාව සොයා එය BC ඔස්සේ කිුයාකරන බව ද පෙන්වන්න.
- 3. ඒකාකාර AB, AC දඩු දෙකක දිග 2a ද බර W ද වේ. එය A හිදී සුමටව සන්ධි කර ඇත. අක්ෂය තිරස් ව අවලව සවිකර ඇති ඍජු වෘත්තාකාර සිලින්ඩරයක් වකු පෘෂ්ඨය මත සන්ධි කළ ඉහත දඩු දෙක තබා ඇත්තේ ඒ එක් එක් දණ්ඩ තිරස්ව θ කෝණයක් සාධන සේය. සිලින්ඩරයේ අරය r නම $r=a \, {\rm cosec} \, \theta \, {\rm cos}^3 \, \theta$ බව පෙන්වා A හිදී දඩු මත කිුයාකරන පුතිකිුයාවද සොයන්න.
- 4. AB, BC හා AC දිගින් සමාන ඒකාකාර දඬු තුන A, B, C අන්තවලදී සුමට ලෙස සන්ධි කර ඇත. AB හා AC හි බර W වන අතර BC හි බර 2W වේ. රාමුව C හිදී සුවලව අසව් කර ඇත. BC තිරස සමග $tan^{-1}\bigg(\frac{4}{\sqrt{3}}\bigg)$ කෝණයක් සඳහා බව පෙන්වා A හා B හිදී පුතිකිුයා සොයන්න.
- 5. සමාන ඒකාකාර AOB හා COD දඩු 2හි බර W වන අතර ඒවා O හිදී සුවල ලෙස සන්ධි කර ඇත. AO = CO = a හා BO = OD = 3a වේ. B හා D තිරස් තලයක් මත සමතුලිතතාවයේ තබා ඇත්තේ දිග 3a වන අවිනතා තත්තුවක් මගින් සම්බන්ධ කිරීමෙනි. පද්ධතිය සිරස් තලයක සමතුලිතතව පවතී. තත්තුවේ ආතතිය $\frac{2\sqrt{3}\,W}{9}$ බව පෙන්වා O හි පුතිකිුයාව සොයන්න.
- 6. බර පිළිවෙළින් 2W හා W වන AB හා AC දිගින් සමාන ඒකාකාර දඬු දෙකක් A හිදී සුමටව සන්ධිකර ඇත. B හා C තිරස් තලයක් මත අවලව සවිකර ඇත. A හිදී පුතිකිුයාවේ තිරස් හා සිරස් සංරචක සොයන්න. B හා C හි පුතිකිුයා එකිනෙකට ලම්භක වේ නම් හා $A\hat{B}C = \alpha$ නම් $3\cot \alpha = \sqrt{35}$ බව පෙන්වන්න.
- 7. OA, AB හා BC සමාන ඒකාකාර දඬු තුනක දිග 2a හා බර W වේ. A හා Bහිදී සුමට ලෙස සන්ධි කර ඇත. O කෙළවර අවල ලස්ෂායකට අසව් කර තිරස් P බලයක් BC දණ්ඩ මත C හිදී යොදා ඇත. BC තිරස සමග 45° ක කෝණයක් සාදයි. P හි අගය W පදවලින් සොයන්න. O හි පුතිකියාව $\frac{\sqrt{37}\,W}{2}$ බව පෙන්වන්න. O හරහා යන සිරස් රේඛාවේ සිට $2a\bigg[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{26}}\bigg]$ දුරකින් C පිහිටන බව පෙන්වන්න.

- 8. සමාන ඒකාකාර AB, BC දඩු දෙකක එකිනෙකෙහි දිග a හා බර W වේ. ඒවා B හිදී සුමටව සන්ධිකර ඇත. AB දණ්ඩ A හිදී අසව් කර ඇති අතර A වටා නිදහසේ කරකැවිය හැක. කුඩා සැහැල්ලු සුමට මුදුවක් C ට සම්බන්ධ කර ඇති A හරහා යන වෙනත් අවල දණ්ඩක් දිගේ මුදුවට නිදහසේ ලිස්සා යා හැක. අවල දණ්ඩ යටි අතට තිරස සමග a කෝණයක් සාදයි. පද්ධතිය සමතුලිතතාවයේ ඇත්නම්
 - (i) $\tan BAC = \frac{1}{2} \cot \alpha$
 - (ii) B හි පුතිකිුයාවේ තිරස් සංරචකය $\dfrac{3W}{8} \sin 2lpha$ බවත් පෙන්වන්න.
- 9. එක එකෙහි බර W වන සමාන ඒකාකාර AB, BC, CD හා AD දඬු හතරක් ඒවායේ කෙළවරවලදී සුමටව සන්ධි කිරීමෙන් ABCD රොම්බසය සාදා ඇත. එය A වලින් එල්ලා ඇත. පද්ධතිය සමවතුරසුයක හැඩය පවත්වා ගන්නේ BC හා CD හි මධා ලක්ෂා සැහැල්ලු දණ්ඩකට සම්බන්ධ කිරීමෙනි. C හි පුතිකියාවක් සැහැල්ලු දණ්ඩේ තෙරපුමක් සොයන්න.
- 10. එක එකෙහි බර W වන සමාන ඒකාකාර AB, BC, CD, DE හා EA දඬු පහක් ඒවායේ අන්ත වන A, B, C, D හා E හිදී සුවල ලෙස සන්ධි කිරීමෙන් පංචාසුයක් සාදා ඇත. AB හා AE දඩු සිරස සමග α ට සමාන කෝණයක් සාදන අතර BC හා ED දඩු සිරස්ව β ට සමාන කෝණයක් සාදයි. පද්ධතිය A වලින් එල්ලා ඇත. පංචාසුයේ මෙම හැඩය පවත්වා ගන්නේ B හා E සැහැල්ලු දණ්ඩක් මගින් සම්බන්ධ කිරීමෙනි.
 - (i) C හි පුතිකුියාවේ ති්රස් හා සිරස් සංරචක සොයන්න.
 - (ii) BE හි පුතාහ බලය $W(\tan \alpha + \tan \beta)$ බව පෙන්වන්න.
 - (iii) පංචාසුය සමාකාර පංචාසුයක් වන්නේ නම් මෙම පුතා බලයේ අගය සොයන්න.
- 11. AB, BC, CD හා DA සමාන ඒකාකාර දඬු හතරක එක එකෙහි දිග 2a හා බර W වේ. ඒවා A, B, C හා D හිදී සුමට ලෙස සන්ධි කර ඇත. BC හා CD දඬුවල මධා ලක්ෂා දිග $2a\sin\theta$ වන සැහැල්ලු දණ්ඩක් මගින් සම්බන්ධ කර රාමුව A වලින් එල්ලා ඇත.
 - (i) සැහැල්ලු දණ්ඩේ තෙරපුම 4W an heta බව පෙන්වන්න.
 - (ii) B හා C හි පුතිකිුයාව සොයන්න.
- 12. AB, BC, CD හා AD සමාන ඒකාකාර දඩු හතරක එක එකෙහි බර Wවන අතර ඒවායේ දෙකෙළවරදී සුමට ලෙස සන්ධි කර ABCD සමචතුරසුයක් සාදා ඇත. රාමුව Aවලින් එල්ලා ඇත. රාමුවේ මෙම හැඩය පවත්වා ගන්නේ AB හා BCහි මධා ලක්ෂා අවිතනා තන්තුවක් මගින් සම්බන්ධ කිරීමෙනි.
 - (i) D හි පුතිකිුයාව තිරස් බවත් විශාලත්වය $rac{W}{2}$ බවත් පෙන්වන්න.
 - (ii) තන්තුවේ ආතතිය $4W\,$ බව පෙන්වන්න.
 - (iii) C හි පුතිකිුයාව $\frac{W\sqrt{5}}{2}$ බවත් එය සිරස් සමග $an^{-1}igg(rac{1}{2}igg)$ කෝණයක් සාදන බවත් පෙන්වන්න.
 - (iv) B හි පුතිකිුයාව $\frac{W\sqrt{17}}{2}$ බවත් එය $an^{-1}igg(rac{1}{4}igg)$ කෝණයක් සාදන බවක් පෙන්වන්න.

- 13. AB, BC, CD හා DA සමාන ඒකාකාර දඬු හතරක් එක එකෙහි බර Wවන අතර සුමට ලෙස ඒවායේ කෙළවර සන්ධි කර ABCD සමචතුරසුය සාදා ඇත. රාමුව A වලින් එල්ලා ඇති අතර C ලඎයට 3W භාරයක් සම්බන්ධ කර ඇත. AB හා AD දඬුවල මධා ලෲන සැහැල්ලු දණ්ඩක් මගින් සම්බන්ධ කිරීමෙන් සමචතුරසුාකාර හැඩය පවත්වා ගනී. සැහැල්ලු දණ්ඩේ පුතාා බලය 10W බව පෙන්වන්න.
- 14. සමාන W බර ℓ දිග ඒකාකාර දඩු හතරක් සුවල ලෙස සන්ධි කිරීමෙන් ABCD රාමු සැකිල්ල ගොඩනගා ඇත. ස්වභාවික දිග a වන සැහැල්ලු අවිතනා තන්තුවකින් A හා C සන්ධි සම්බන්ධ කර ඇත. රාමු සැකිල්ල A වලින් නිදහසේ එල්ලා සම්වතුරසුයක හැඩය පවත්වා ගෙන ඇත. තන්තුවේ ආතතිය සොයන්න. B හා D සන්ධිවල පුතිකිුයා ද සොයන්න.
- 15. එක එකෙහි බර Wවන සමාන ඒකාකාර දඬු හයක් ඒවායේ කෙළවරවලදී සුමට ලෙස සන්ධි කිරීමෙන් ABCDEF ෂඩාසුය සාදා ඇත. පද්ධතිය A වලින් එල්ලා BF හා CE සැහැල්ලු දඬු දෙකක් මගින් සමාකාර හැඩය පවත්වා ගනී. BF හි පුතා බලය CE හි පුතාා බලය මෙන් පස් ගුණයක් වන බව පෙන්වන්න.
- 16. දිග පිළිවෙළින් ℓ , 2ℓ , ℓ වන AB, BC හා CD කොටස් තුනකට ඒකාකාර දණ්ඩ කපා ඇත. ඒවා B හා C හිදී සුමට ලෙස සන්ධි කර කේන්දුය C හා අරය 2ℓ වන සුමට අචල ගෝලයක් මත BC හි මධා ලක්ෂාය හා A හා D කෙළවර ගෝලයේ ගැටෙන සේ තබා ඇත. BC හි මධා ලක්ෂායේ දී එය මත කි්යාකරන පුතිකි්යාව $\frac{91W}{100}$ බව පෙන්වන්න. මෙහි W යනු දණ්ඩේ බර වේ. C සන්ධියේ දී CD දණ්ඩ මත පුතිකිුයාවේ විශාලත්වය හා දිශාව සොයා එහි කිුියා රේඛාව OD හමුවන ලක්ෂා සොයන්න.
- 17. සමාන ඒකාකාර a දිගින් හා W බරින් යුත් AB, BC හා AC දඬු තුනක් ඒවායේ කෙළවරේ දී සුවල ලෙස එකට සම්බන්ධ කිරීමෙන් ABC ති්කෝණය සාදා ඇත. රාමු සැකිල්ල A හා C හි වූ සුමට ආධාරක දෙකක් මත සිරස් තලයක නිසලව තබා ඇත්තේ AC ති්රස්ව හා B, AC ට ඉහළින් වන පරිදි $AD = \frac{a}{3}$ වන සේ AB මත වූ D ලක්ෂායට බරැති ස්කන්ධයක් සම්බන්ධ කර ඇත. B සන්ධියේ පුතිකියාව සොයන්න.
- 18. එක එකෙහි බර W හා දිග 2a වන සමාන ඒකාකාර AB හා AC දඬු දෙකක් A හිදී සවල ලෙස සන්ධ කර B හා C අන්ත සුමට තිරස් මේසයක් මත සිරස් තලක තබා ඇත. එක් එක් දණ්ඩ තිරස්ව $\alpha\left(<\frac{\pi}{2}\right)$ කෝණයක් සෑදෙන සේ C හා AB හි මධා ලක්ෂාය සැහැල්ලු අවිතතා තන්තුවකින් සම්බන්ධ කර සමතුලිතතාව පවත්වා ගනී. තන්තුවේ T ආතතිය $T = \frac{W}{4}\sqrt{1+9\cot^2\alpha}$ වන බව පෙන්වන්න. A හි පුතිකියාවේ විශාලත්වයත් දිශාවත් සොයන්න.
- 19. එක එකෙහි බර Wවන සමාන ඒකාකාර දඬු පහක් ඒවායේ කෙළවරදී සුමට ලෙස සන්ධි කිරීමෙන් සමාකාර පංචාසුයක් ගොඩ නගා ඇත. රාමුව සිරස් තලයක පවතින සේ CD දණ්ඩ තිරස් තලයක් මත තබා ඇත. සැහැල්ලු දණ්ඩක් BC හා DE හි මධා ලක්ෂාවලට සම්බන්ධ කිරීමෙන් සමාකාර හැඩය පවත්වා ගනී. B හි පුතිකිුයාව සොයා සැහැල්ලු දණ්ඩේ ආතතිය $\left[\cot\frac{\pi}{5} + 3\cot\frac{2\pi}{5}\right]W$. බව පෙන්වන්න.

20. සමාන ඒකාකාර AB, BC, CD දඩු තුනක් එක එකෙහි දිග 2a හා බර W වේ. දඩු B හා C හිදී සුමට ලෙස සන්ධි කර ඇති අතර AB හා CD එකම මට්ටමේ සුමටතා දති දෙකක් මත ගැටෙන සේ නිසලතාවයේ තබා ඇත. සමතුලිත අවස්ථාවේ AB හා CD සිරස සමග α කෝණයක් සාධන අතර BC තිරස් වේ. සුමටතා දති අතර දුර $2a\left(1+\frac{2}{3}\sin^3\alpha\right)$ බව සාධනය කරන්න. B හිදී පුතිකියාව සිරස සමග සාධන කෝණය β නම් $\tan \alpha$. $\tan \beta = 3$ බව පෙන්වන්න.

6.0 රාමු සැකිලි

මෙම පරිච්ඡේදයේ දී සැහැල්ලු දඬු ඒවායේ කෙළවරවලදී වෙනත් දඬු සමග සුමට ලෙස සන්ධි කිරීමෙන් සාදාගත් දඬුවලින් සැකසු රාමු සැකිල්ල සලකමු.

6.1 දෘඪ රාමුව

බාහිර බල මගින් රාමුවේ හැඩය වෙසස් කළ නොහැකි නම් එම රාමුවට දෘඪ රාමුවක් යයි කියමු.

රාමුව සැහැල්ලු දඬුවලින් සාදා ඇති නිසා සන්ධිවල පුතිකියා දඬු දිගේ කියා කරයි. මෙම දඬු දිගේ කියා කරන පුතිකියා පුතාා බල ලෙස හඳුන්වයි.

රාමුවේ AB සැහැල්ලු දණ්ඩ සැලකු විට A හා Bහිදී කුරු මගින් ඇති කරන පුතිකියා $R_{_A}$ හා $R_{_B}$ වේ. දණ්ඩ මෙම $R_{_A}$ හා $R_{_B}$. දෙකෙන් සමතුලිතතාව සැලකු විට $R_{_A}$ හා $R_{_B}$ දණ්ඩ දිගේ සමාන හා පුතිවිරුද්ධ දිශාවලට කියා කරයි.

$$R_A = R_B = T$$

- (i) T තෙරපුමකි
- (ii) T ආතතියකි

රාමු සැකිලි ගැටලු විසඳීමේ දී උපකල්පන

- රාමු සැකිල්ලේ ඇති සියලු ම දඬු සැහැල්ලු ඒවාය
- සියලු ම දඬු සුචලව (සුමටව) ඒවායේ කෙළවරවලදී සන්ධිකර ඇත. සන්ධිවලදී යුග්මයක් නොපවතී
- සන්ධිවලදී පුතිකියා (බාහිර බල හැර) දඩු දිගේ කියාකරයි. මේවා ආතති හෝ තෙරපුම් විය හැක.
- රාමුවේ සියලු ම දඬු එකම සිරස් තලයේ වේ (බාහිර බල ඇතුලු) සියලු බල ඒක තල බල වේ
- බාහිර බල යෙදිය හැක්කේ සන්ධිවලදී පමණි

6.2 සමතුලිතතාවයේ ඇති සැහැල්ලු රාමු සැකිල්ලක බාහිර බල නිරූපණය

උදාහරණ 1

 ABC තුිකෝණාකාර රාමුව A හා C ආධාරක මත තබා B හිදී W භාරයක් දරයි. සමමිතිකත්වය අනුව A හා C හි පුතිකිුයා සමාන වේ.

උදාහරණ 2

ABCDE රාමුව සමාන සැහැල්ලු

දඬු හතකින් සාදා ඇති අතර A හා C හි වූ කුඤ්ඤ දෙකක් මත තබා ඇත. B හා E හිදී W බර 2ක් ද D හිදී W භාරයක්ද දරා සිටී. P හා Q බාහිර බල සිරස් විය යුතුය.

බෝ අංකනය

- මෙම අංකනය හඳුන්වා දුන් ගණිතඥයා බෝ නමින් හැඳින්වේ.
- සියලු ම බාහිර බල රාමුවේ පිටතින් නිරූපණය කරයි.
- බල අතර පුදේශය (විවෘත හෝ සංවෘත) ඉංගීසි හෝඩියේ කුඩා අකුරුවලින් හෝ ඉලක්කම්වලින් නිරූපණය කරයි.
- සෑම බලයක්ම එම බලය මගින් ගොඩ නැගෙන පුදේශ දෙකට අයත් අකුරු දෙකෙන් නිරූපණය කරයි.

බෝ අංකනය භාවිත කරමින් ගැටලු විසඳීම

- (i) සියලු බාහිර බල හා රාමුවේ එක් එක් සන්ධිය සඳහා බල බහුඅසුය ඇඳිය යුතුය. (මෙම බල බහුඅසුය සංවෘත රූපයකි. බහු අසුයේ ශීර්ෂ පුදේශ දුක්වෙන නමෙහි අකුරින් නිරූපණය වේ.)
- (ii) බල සටහනෙන් ලබා ගන්නා තිකෝණ හා බහුඅසු සඳහා තිකෝණමිතික අනුපාත හා වීජිය සමීකරණ භාවිත කරමින් දඬු තුළ පුතා බලවල අගය ගණනය කළ හැක.
- (iii) පාදයේ නම කියවීමෙන් පුතාබල සටහනෙහි ඊතල ලකුණක් භාවිතයෙන් පුතා බලයේ දිශාව ලකුණු කළ යුතුය.
- (iv) බල බහුඅසුය ගොඩ නැගීමේ දී සියලු ම සන්ධි සඳහා දිශාව එකම විය යුතුය. (එක්කෝ දක්ෂිණා වර්ත නැත්නම් වාමා වර්ත)
- (v) බල බහුඅසුයක් ඇඳීම සඳහා සන්ධියක නොදන්නා බල උපරිම වශයෙන් දෙකක් වන සේ සන්ධිය තෝරා ගත යුතුය.

6.3 විසඳු නිදසුන්

උදාහරණ 1

දෙන ලද රූපයේ ABC තිකෝණාකාර රාමු කට්ටුව සුමට ලෙස B සන්ධි කළ සැහැල්ලු AB, BC, CA, දඬු තුන මගින් සමන් විත වේ. මෙහි AB = AC හා $BAC = 120^\circ$. AB තිරස් වන සේ රාමුව සිරස් තලයක වේ. එය A හිදී සුමට නා දක්තක් මත රදවා B හි $100\ N$ භාරයක් ද C හි W N භාරයක් දරා සිටී බෝ අංකනය යොදා ගනිමින් පුතාබල සටහනක් අදින්න. එමගින් දඬුවල පුතාාබල ගණනය කරන්න. ඒවා ආතතිද තෙරපුම් ද යන්න හඳුනා ගන්න. W හි අගය

 ${
m B}$ සන්ධියෙන් ආරම්භ කරමු

සන්ධිය	පිළිවෙළ	බහුඅසුයේ නම
В	$a \rightarrow b \rightarrow c \rightarrow a$	Δabc
C	$a \to c \to d \to a$	Δbcd

AB(bc) = ආතතිය = $100\sqrt{3} N$

BC(ca) = ඉතරපුම $= 200\sqrt{3} N$

CA(cd) = ආතතිය = $200\sqrt{3} N$

W(ad) = 200 N

මෙම ගැටලුවේ දී සියලු ම සන්ධි වාමාවර්ත දිශාවට ගෙන ඇත.

В

ABC රාමුව AB, BC හා AC සමාන සැහැල්ලු දඩු තුන සන්ධි කිරීමෙන් ලබා ගෙන ඇත. B හා C එකම තිරස් මට්ටමේ වූ සුමට නා දති 2 ක් මත තබා ඇත. A හිදී 100N භාරයක් දරයි. B හා C හිදී පුතිකියා සොයන්න. බෝ අංකනය යොදා ගැනීමෙන් පුතාබල සටහනක් අඳින්න. එමගින් එක් එක් දණ්ඩේ පුතාබල සොයා ඒවා ආතති ද තෙරපුම් ද යන වග හඳුනා ගන්න.

සමතුලිතතාව සඳහා බල සිරසට විභේදනයෙන්

$$\uparrow$$
 $P+Q=100$
$$P=Q=50 \quad \text{(සමමිතියෙන්)}$$

 $A,\,B$ හා C සන්ධි සඳහා බල බහුඅසු ඇඳිය යුතුවේ. බල අතර පුදේශ a,b,c හා d ලෙස නම් කර ඇත. පුතා බල සටහන

මෙම පුතාෳ බල සටහන ඇඳීමේදී එක් එක් සන්ධිය වටා පුදේශය ගැනීම වාමාවර්ත දිශාවට ගෙන ඇත. C වලින් ආරම්භ කර

C සන්ධිය	\rightarrow	A සන්ධිය	\rightarrow	B සන්ධිය
සන්ධ්ය		පිළිවෙළ	é	බහඅසයේ නැ

සන්ධිය	පිළිවෙළ	බහුඅසුයේ නම
С	$b \to c \to d \to a$	Δbcd
A	$d \to c \to a \to d$	Δacd

ආතති හා තෙරපුම් පුදේශවල නමින් දක්වා ඇත.

$$T_1 = bd = 50 \tan 30^\circ = \frac{50}{\sqrt{3}} N$$

$$T_3 = dc = 50 \text{ sec } 30^\circ = \frac{100}{\sqrt{3}} \text{ N}$$

$$T_2 = ad = 50 \text{ sec } 30^\circ = \frac{100}{\sqrt{3}} \text{ N}$$

දණ්ඩ	පුතාබලය	ා තෙරපුම්	ආතති
AB	$\frac{100}{\sqrt{3}} \text{ N}$	√	-
ВС	$\frac{50}{\sqrt{3}}$ N	-	✓
AC	$\frac{100}{\sqrt{3}} \text{ N}$	√	-

උදාහරණ 3

දී ඇති රූපයේ සැකිල්ල සමාන සැහැල්ලු දඬු පහකින් සාදා ඇත. මෙම රාමුව B හිදී නා දත්තක් මත රඳවා A හිදී සිරස් බලයක් යොදා ඇති අතර C හිදී $100\ N$ භාරයක් දරයි. පුතා බල සටහනක් ඇඳ එක් එක් දණ්ඩේ පුතා බලය සොයන්න.

සමතුලිතතාව සඳහා

බාහිර බල සිරසට විභේදනනේ

$$\uparrow$$
 100 + P = Q ①

A වටා ඝූර්ණ ගැනීමෙන්

Am
$$Q.2\ell = 100 (2\ell + 2\ell \cos 60^{\circ}) \dots 2^{\circ} P$$

① and ②
$$\Rightarrow$$
 P = 50 N, Q = 150 N

ඉහත රූපසටහනේ C වලින් පටන්ගෙන පුදේශ නම් කර ඇත. පුතාෲබල සටහන 100 පහත අයුරු ඇඳ ඇත.

සන්ධිය	පිළිවෙළ	බහුඅසුයේ නම
С	$a \rightarrow b \rightarrow c \rightarrow a$	Δabc
D	$b \to d \to c \to b$	Δbcd
A	$d \rightarrow b \rightarrow e \rightarrow d$	Δdbe
В	$c \to d \to e \to a \to c$	□acde

බල බහුඅසු ඇඳීම C සන්ධියෙන් පටන්ගෙන පුදේශ වාමාවර්ත අතට ගෙන ඇත.

$T_1 = cb = 100 \tan 30^\circ = \frac{100\sqrt{3}}{3} \text{ N}$
$T_2 = ac = 100 \text{ sec } 30^\circ = \frac{200\sqrt{3}}{3} \text{ N}$
$T_3 = db = 50 \text{ cosec } 60^\circ = \frac{100\sqrt{3}}{3} \text{ N}$
$T_4 = cd = db = \frac{100\sqrt{3}}{3} N$
$T_5 = \text{ed} = 50 \tan 30^\circ = \frac{50\sqrt{3}}{3} \text{ N}$

දණ්ඩ	පුතා බලය	
DC	$\frac{100\sqrt{3}}{3} \text{ N}$	ආතති
ВС	$\frac{200\sqrt{3}}{3} \text{ N}$	<u>තෙරපු</u> ම්
AD	$\frac{100\sqrt{3}}{3} N$	ආතති
BD	$\frac{100\sqrt{3}}{3} N$	තෙරපුම්
AB	$\frac{50\sqrt{3}}{3} N$	තෙරපුම්

උදාහරණ 3

රාමු සැකිල්ල AB, BC, CD හා BD සැහැල්ලු දඬු හතරින් දෙන ලද රූපයේ දක්වෙන අයුරු ගොඩ නගා ඇත. A හා D සුවල ලෙස සිරස් බිත්තියට සම්බන්ධ කර ඇත. C සන්ධිය 500~N භාරයක් දරයි. BC තිරස්ව පවතී. බෝ අංකනය භාවිත කර පුතාබල සටනක් අඳින්න. එක් එක් දණ්ඩේ පුතා බලය සොයා ඒවා ආතති ද තෙරපුම් දයි වෙන් කර හඳුනා ගන්න.

 ${
m C}$ ලක්ෂායේ එක් බලයක් දන්නා අතර ඉතිරි බල දෙක නොදනී බල සටහන ඇදීම ${
m C}$ සන්ධියෙන් අරඹමු.

සන්ධිය	පිළිවෙළ	බහුඅසුයේ නම
С	$a \to b \to c \to a$	Δabc
В	$a \rightarrow c \rightarrow d \rightarrow a$	Δacd

cb = 500 sec
$$60^{\circ}$$
 = 1 000 N
ac = 500 tan 60° = $500\sqrt{3}$ N
cd = $(500\sqrt{3} \text{ N}) \sin 30^{\circ}$ = $250\sqrt{3}$ N
ad = $500\sqrt{3}$ N cos 30° = 750 N

දණ්ඩ	පුතෳබලය	තෙරපුම්	ආතති
DC	1 000 N	-	✓
ВС	500√3 N	√	-
BD	250√3 N	✓	-
AB	750 N	✓	-

උදාහරණ 5

දෙන ලද රූපය සැහැල්ලු දඬු හයක් සුමට ලෙස සන්ධි කිරීමෙන් ගොඩනගන ලද රාමු සැකිල්ලක් දක්වයි. දඬු C,D හා E හි දී සුමට ලෙස සන්ධි කර ඇත. A හා Bහිදී සිරස් බිත්තියකට සුමට ලෙස සන්ධි කර ඇත. D හිදී 150N භාරයක් දරයි. බෝ අංකනය භාවිත කරමින් පුතා බල සටහනක් අදින්න. එක් එක් දණ්ඩේ පුතා බල සොයා ඒවා තෙරපුම් ද ආතතිද යන්න හඳුනා ගන්න.

මෙහි එක බලයක් දන්නා නොදන්නා බල 2ක් ඇති ලක්ෂා D වේ. එබැවින් D සන්ධියෙන් ඇදීම අරඹමු.

සන්ධිය	පිළිවෙළ	බහුඅසුයේ නම
D	$p \rightarrow q \rightarrow r \rightarrow p$	Δpqr
Е	$p \rightarrow r \rightarrow s \rightarrow p$	Δprs
С	$r \to q \to t \to s \to r$	□rqts

$$AC = tq = 75\sqrt{3} + 25\sqrt{3} = 100\sqrt{3} \text{ N}$$

$$CD = rq = 75 \text{ sec } 30^{\circ} = 50\sqrt{3} \text{ N}$$

$$DE = rp = qr = 50\sqrt{3} N$$

$$CE = sr = 100\sqrt{3} \text{ N}$$

$$BC = st = 50\sqrt{3} \text{ N}$$

$$BE = ps = 150\sqrt{3} \text{ N}$$

දණ්ඩ	පුතා බලය	තෙරපුම්	ආතති
AC	100√3 N	-	✓
CD	50√3 N	✓	-
DE	50√3 N	✓	-
CE	100√3 N	-	✓
ВС	50√3 N	-	✓
BE	150√3 N	-	✓

AB,BC,CD,DA හා AC දඩු පහ ඒවායේ අන්තවලදී සුමට ලෙස සන්ධි කිරීමෙන් රූපයේ දක්වෙන අයුරු රාමු සැකිල්ල ගොඩනගා ඇත. $A\hat{B}C=A\hat{D}C=D\hat{A}C=30^\circ$ හා රාමු සැකිල්ල D හි දීම සුමටව අසව් කොට $10\sqrt{3}$ N භාරයක් B හිදී දරා සිටි. A හිදී තිරස් P බලයක් මගින් AB තිරස් වන සේ සිරස් තලයක රාමු සැකිල්ල තබා ඇත.

- (i) P හි අගය සොයන්න.
- (ii) $\, {
 m D} \,$ හි පුතිකිුයාවේ විශාලත්වය හා දිශාව සොයන්න.
- (iii) බෝ අංකනය යොදා ගනිමින් රාමු සැකිල්ල සඳහා පුතු වල සටහන අදින්න. සියලු දඬුවල පුතු බල සොයා ඒවා ආතතිද තෙරපුම් ද යන වග හඳුනා ගන්න.
- (i) සමතුලිතතාව සඳහා D වටා සුර්ණ ගැනීමෙන් $Dm = P. \ AD 10\sqrt{3} \ AB = 0$

$$AD = \frac{\sqrt{3}}{2}AB$$

$$\therefore P.\frac{\sqrt{3}}{2}AB = 10\sqrt{3}AB$$

$$\therefore P = 20 N$$

 ${
m D}$ හි පුතිකිුයාව ${
m R}$ යයි ද ${
m R}$ තිරස සමග සාදන කෝණය heta යයි ද සිතමු.

බාහිර බල සිරසට විභේදනයෙන්

$$\uparrow R \sin \theta = 10\sqrt{3}$$

බාහිර බල තිරසට විභේදනයෙන්

$$\rightarrow$$
 R cos θ = P = 20 N

$$R = \sqrt{\left(10\sqrt{3}\right)^2 + 20^2} = 10\sqrt{7}$$

$$\tan \theta = \frac{10\sqrt{3}}{20} = \frac{\sqrt{3}}{2}$$
; $\theta = \tan^{-1} \frac{\sqrt{3}}{2}$

පද්ධතිය බල තුනක් යටතේ සමතුලිත වන නිසා $\,R\,$ පුතිකිුයාව $\,B$ හරහා යා යුතුය.

බල සටහන $\mathbf B$ සන්ධියෙන් වාමාවර්ත අතට ඇඳීම අරඹමු.

සන්ධිය	පිළිවෙළ	බහුඅසුයේ නම
В	$a \rightarrow b \rightarrow e \rightarrow a$	Δabd
C	$a \rightarrow e \rightarrow d \rightarrow a$	Δaed

දණ්ඩ) පුතාබලය	විශාලත්වය
AB	ආතති	30 N
BC	තෙරපුම්	$20\sqrt{3}$ N
AC	තෙ රපුම්	20 N
DC	තරපු ම්	40 N
AD	ආතති	$10\sqrt{3} \text{ N}$

$$eb = 10\sqrt{3} \tan 60$$
$$= 30$$
$$ea = 10\sqrt{3} \sec 60$$
$$= 20\sqrt{3}$$

$$ad = 20\sqrt{3}\sec 30$$
$$= 40$$

$$de = ea \tan 30 \quad cd = de \sin 60$$
$$= 20 \qquad = 10\sqrt{3}$$

උදාහරණ 7

 $AB,\,BC,\,CD$ හා BD දඬු හතර සුචල ලෙස සන්ධි කිරීමෙන් දෙන ලද රූපයේ පෙන්වන දොඹකරය සාදා ඇත. BC දණ්ඩ තිරස් වන අතර BD දණ්ඩ සිරස්වේ. දොඹකරය තිරස් පොළොවට A හා D හිදී අචලව සවිකර ඇත. C හිදී $1\,000\,N$ භාරයක් එල්ලා ඇත. බෝ අංකනය භාවිත කරමින් දඬුවල පුතා බල සොයා ඒවා ආතතිද තෙරපුම්ද යන වග දක්වන්න.

C සන්ධියෙන් වාමාවර්ත අතට ඇදීම අරඹමු

සන්ධිය	පිළිවෙළ	බහුඅසුයේ නම
C	$1 \rightarrow 2 \rightarrow 3 \rightarrow 1$	Δ123
В	$3 \rightarrow 2 \rightarrow 4 \rightarrow 3$	Δ324

$$AB = \oplus @= 1000\sqrt{6} \text{ N}$$

BC =
$$32 = 1000 \cot 30^{\circ} = 1000\sqrt{3} \text{ N}$$

$$CD = 3 \bigcirc = 1000 \csc 30^{\circ} = 2000 \text{ N}$$

BD =
$$\textcircled{3}$$
 = $\textcircled{3}$ = $\textcircled{2}$ = P. ℓ cos 30° -1000 $\sqrt{3}$ N
 \Rightarrow P = 40 N
 \Rightarrow P = R cos θ = 40 N
 \uparrow R sin θ = 10 $\sqrt{3}$ N
R = $\sqrt{40^2 + \left(10\sqrt{3}\right)^2}$ N
R = 10 $\sqrt{19}$ N

දණ්ඩ	පුතාබලය	තෙරපුම්	ආතති
AB	1000√6 N	-	✓
ВС	$1000\sqrt{3} \text{ N}$	-	✓
CD	2 000 N	✓	-
BD	1000√3 N	✓	-

උදාහරණ 8

AB, BC, CD, DE, EA, EB හා BD දඩු හත සුමට ලෙස ඒවායේ දෙකෙළවරදී සන්ධි කිරීමෙන් දෙන ලද රූපයේ දුක්වෙන රාමු සැකිල්ල සාදා ඇත. මෙම රාමුව $\mathbb C$ හිදී සුමට ලෙස සන්ධි කර ඇති අතර $10\sqrt{3}$ N භාරයක් Aහිදී දරයි. තිරස් Pබලයක් E හිදී යෙදීමෙන් ED තිරස්ව හා රාමුව සිරස් තලයක වන සේ සමතුලිතව පවත්වාගෙන ඇත.

- (i) E හි P බලයේ අගය සොයන්න.
- (ii) C හි පුතිකියාවේ විශාලත්වය හා දිශාව සොයන්න.
- (iii) බෝ අංකනය භාවිත කර පුතා බල සටහනක් අදින්න. එවායින් දඬුවල පුතා බල සොයා ඒවා ආතති ද නැතිනම් තෙරපුම ද බව හඳුනා ගන්න.
- (iv) බල සටහන ඇසුරින් C හි පුතා බලය ගණනය කරන්න. බාහිර බල සමතුලිතතාව සඳහා C වටා සූර්ණ ගැනීමෙන්

$$m n~P.\ell\cos 30^0-10\sqrt{3}.2\ell=0$$
 මෙහි ℓ යනු දණ්ඩේ දිග වේ.

$$2\ell\!=\!0$$
 මෙහි ℓ යනු දණ්ඩේ දිග වේ. \Rightarrow $P=40N$

තිරස් දිශාවට බල විභේදනනේ

$$\rightarrow P = R\cos\theta = 40N$$

සිරසට විභේදනයෙන්

$$\uparrow R \sin\theta = 10\sqrt{3}N$$

$$R = \sqrt{40^2 + \left(10\sqrt{3}\right)^2}$$

$$R = 10\sqrt{19}N$$

$$\tan \theta = \frac{10\sqrt{3}}{40} \implies \theta = \tan^{-1} \left(\frac{\sqrt{3}}{4}\right)$$

බල සටහන

A සන්ධියෙන් දක්ෂිණාවර්ත අතට බල සටහන ඇඳීම අරඹමු.

සන්ධිය	පිළිවෙළ	බහුඅසුයේ නම
A	$c \to a \to d \to c$	Δcad
Е	$c \to d \to e \to b \to c$	□cdeb
D	$b \to e \to f \to b$	Δbef

af, bf යාකරමු

$$AB = ad = 10\sqrt{3} \tan 30^{\circ} = 10 \text{ N}$$

$$AE = cd = 10\sqrt{3} \sec 30^{\circ} = 20 \text{ N}$$

$$cd = de = 20 N$$

$$AE = BE = 20 \text{ N}$$

$$bf = de = ef = df = 20 \text{ N}$$

$$CD = DE = BD = 20 N$$

 C හිදී පුතිකිුයාව $a\ b$ මගින් දෙනු ලැබේ

$$ab^{2} = (10\sqrt{3})^{2} + 40^{2}$$

 $ab = 10\sqrt{19}$

උදාහරණ 9

දණ්ඩ	පුතාබලය	
AB	10 N	තෙරපුම්
BC	30 N	තෙරපුම්
CD	20 N	තෙරපුම්
DE	20 N	තෙරපුම්
EA	20 N	ආතති
EB	20 N	තරපුම <u>්</u>
DB	20 N	ආතති

ABCDE යන රාමු සැලකිල්ල සැහැල්ලු දඬු හතක් සුචල ලෙස සන්ධි කිරීමෙන් රාමු සකස් කර ඇත. එහි සමාකාර පංචාසුයක හැඩය ගොඩ නගා ඇත්තේ AC හා BD විකර්ණවල ඇති සැහැල්ලු දඬු දෙක මගිනි. රාමු සැකිල්ල සිරස් තලයක CD දණ්ඩ තිරස්ව පහළින්ම වන සේ තබා ඇත්තේ C හා D හිදී සිරස්ව උඩු අතට විශාලත්වය P හා Q වන බල දෙකක් යෙදීමෙනි. 2 N, 4 N, 2 N භාර පිළිවෙළින් B, A හා E වලදී එල්ලා ඇත. බෝ අංකනය භාවිත කරමින් මෙම රාමු කට්ටුව සඳහා පුතා බල සටහනක් අඳින්න. එනයින් දඬු හත සඳහා පුතාාබල නිර්ණය කරන්න. ඒවා ආතතිද

තෙරපුම් ද යන වග දක්වන්න. ඔබේ පිළිතුර $\cos\frac{n\pi}{10}$ පදවලින් දෙන්න.

මෙහි n පූර්ණ සංඛ්යාවකි.

පද්ධතියේ සමතුලිතතාව සඳහා

බල සිරස්ව විභේදනයෙන්

Aහරහා යන සිරස් රේඛාවට වටා පද්ධතිය සමමිතික වේ.

 ${f B}$ සන්ධියෙන් ඇඳීම ආරම්භ කර දක්ෂිණාවර්ත අතට ගමන් කරමු.

පළමුව සිරස් රේඛාව ඇඳ සිරස් බල ලකුණු කරමු. දක්ෂිණාවර්ත අතට

ba, ae, ed, dc, cd ලෙස ගනිමු.

$$heta=rac{\pi}{10}=18^0$$

සත්ධිය පිළිවෙළ බහුඅසුයේ තම
B $b o a o h o b$ Δ bah
E $e o d o f o e$ Ω edf
A $h o a o e o f o g o h$ haefg
C $b o h o g o c o b$ \square $bhgc$

 Δabh තිකෝණය සඳහා සයින් නීතියෙන්

$$\frac{ah}{\sin \theta} = \frac{2}{\sin 4\theta} = \frac{bh}{\sin 3\theta}$$

$$ah = 2\frac{\sin \theta}{\sin 4\theta} = \frac{2\cos 4\theta}{\cos \theta},$$

$$bh = 2\frac{\sin 3\theta}{\sin 4\theta} = \frac{2\cos 2\theta}{\cos \theta}$$

abh හා def තුකෝණ අංග සම වේ.

$$\therefore ef = ha = \frac{2\cos 4\theta}{\cos \theta}$$

$$\therefore df = hb = \frac{2\cos 2\theta}{\cos \theta}$$

$$eg = x \otimes_{\mathbb{C}} \otimes_{\mathbb{C}} \otimes_{\mathbb{S}} \otimes_{\mathbb{S}}$$

$$\theta \otimes_{\mathbb{C}} = x \tan 4\theta$$

$$\theta \otimes_{\mathbb{C}} = \frac{4-x \tan 4\theta}{\sin 2\theta} = \frac{hb}{\sin \theta}$$

$$x = \frac{4-x \tan 4\theta}{\sin 2\theta} = \frac{2\cos 2\theta}{\cos \theta \cdot \sin \theta}$$

$$gh = gu + uh = \frac{x}{\cos 4\theta} + \frac{2\cos 2\theta}{\cos \theta} = \frac{2\sin \theta + 2\cos 2\theta}{\cos \theta \cos 2\theta}$$

$$\theta \otimes_{\mathbb{C}} = gh$$

$$4-x \tan 4\theta = \frac{2\cos 2\theta \cdot 2\sin \theta \cos \theta}{\cos \theta \sin \theta}$$

$$4-x \tan 4\theta = 4\cos 2\theta$$

$$x \tan 4\theta = 4(1-\cos 2\theta)$$

$$x = \frac{4(1-\cos 2\theta)}{\tan 4\theta}$$

x = cg

දණ්ඩ	පුතා බලය	තෙරපුම්	ආතති
AB	ha	-	✓
ВС	hb	✓	-
AE	ef	-	✓
ED	df	✓	-
AC	gh	✓	-
AD	fg	✓	-
DC	cg	-	✓

දෙන ලද රාමුව සැහැල්ලු AB, AD, BC, BD හා CD දඬු පහෙන් සමන්විත වන අතර ඒවායේ අන්තවලදී සුමට ලෙස සන්ධි කර ඇත. පිළිවෙළින් B හා A හිදී 120 N හා 60 N බර දරයි. PN හා QN සිරස් බල දෙකක් C හා D හිදී යෙදීමෙන් AB හා CD තිරස් ව පවත්වා ගනී. බෝ අංකනය භාවිත කරමින් පුතා බල සටහනක් අදින්න. ආතති හා තෙරපුම් වෙන් කර දක්වමින් දඬු පහේ පුතා බල සොයන්න.

බල සිරසට විභේදනයෙන්

$$\uparrow P + Q - 120 - 60 = 0$$

$$P + Q = 180N$$

D වටා සුර්ණ ගැනීමෙන්

P.
$$2\ell - 60 \cdot \ell \cos 60 - 120 \cdot (\ell + \ell \cos 60) = 0$$

$$2P = 30 + 180$$

$$\Rightarrow$$
 P = 105N

$$\Rightarrow$$
 Q= 180 - 105 = 75N

බල සටහන

C සන්ධියෙන් වාමාවර්ත අතට ඇඳීම අරඹමු

$$C \rightarrow B \rightarrow A$$

Step I: Cm Step II: Bm Step III: Am

$$AB = fa = 60 \tan 30^{\circ} = 20\sqrt{3} \text{ N}$$

BC = ed =
$$105 \text{ sec } 30^{\circ} = 70\sqrt{3} \text{ N}$$

$$CD = ec = 105 \tan 30^\circ = 35\sqrt{3} \text{ N}$$

$$AD = bf = 60 \sec 30^{\circ} = 40\sqrt{3} \text{ N}$$

BD = fe = 15 sec
$$30^{\circ} = 10\sqrt{3} \text{ N}$$

දණ්ඩ	පුතා බලය	
AB	20√3 N	ආතති
ВС	70√3 N	ආතති
CD	35√3 N	තෙරපුම්
AD	$40\sqrt{3}$ N	ආතති
BD	10√3 N	ආතති

6.4 අභාගසය

1.

වහලක් රූපයේ දක්වෙන රාමු සැකිල්ලෙන් ඉදිරිපත් වේ. එහි බර රූපයේ දක්වෙන අයුරු බෙදී ගොස් ඇතැයි සැලකිය හැක.

- i. A හා B හි පුතිකියා සොයන්න.
- ii. බෝ අංකනය භාවිතයෙන් පුතා බල සටහනක් ඇද එක් එක් දණ්ඩේ පුතා බල සොයා ආතති හා තෙරපුම් යන වග දක්වන්න.

2.

රූපයේ දක්වෙන රාමු සැකිල්ල සැහැල්ලු දඬු හතකින් සාදා ඇත. රාමුව A හිදී අවල ලක්ෂායකට අසවි කර ඇත. B හි දී යොදන තිරස් P බලයක් මගින් රාමුව BD තිරස් වන සේ තබා ඇත. බෝ අංකනය භාවිත යොදා පුතා බල සටහනක් ඇඳ එක් දණ්ඩේ පුතා බලය සොයා ඒවා ආතති ද තෙරපුම් ලෙස හඳුනා ගනිමින් සොයන්න.

3.

සැහැල්ලු දඩු නවයක් සුමට ලෙස සන්ධි කිරීමෙන් මෙම රාමු සැකිල්ල සාදා ඇත. එය Aහිදී අචල ලක්ෂායකට සුමට ලෙස අසවි කර ඇත. B හිදී කිුිිියා කරන තිරස් P බලයක් මගින් රාමුව සමතුලිතව තබා ඇත. C හා D හිදී $20\ N$ බැගින් භාර යොදා ඇත.

- i. P හා A හි පුතිකියා සොයන්න.
- ii. බෝ අංකනය භාවිතයෙන් පුතා බල සටහනක් අදින්න. එක් එක් දණ්ඩේ පුතා බලය සොයා ඒවා ආතති ද සම්පිඩන ද යන්න වෙන් කර දක්වන්න.

4. රාමුව සැහැල්ලු AB, BC, CD, DB දඬු හතරකින් සමන් විත වන අතර B, C හා D හිදී සුවලව සන්ධි කිරීමෙන් සාදා ඇත. A හා D හිදී සිරස් බිත්තියකට සවිකර ඇත. Cහිදී WN භාරයක් දරා සිටී. බෝ අංකනය භාවිත කර පුතා බල සටහනක් අදින්න. එක් එක් දණ්ඩේ පුතා බල සොයා ඒවා ආතති ද තෙරපුම් ද යන වග දක්වන්න.

5.

ABCDE රාමු සැකිල්ල AB,BC,CD,DE,AE,BE හා CE දඩු සුවල ලෙස සහ්ධිකර ඇත්තේ $E\hat{B}C=E\hat{C}B=A\hat{B}E=D\hat{C}E=A\hat{E}B=D\hat{E}C=rac{\pi}{6}$ වනමස්ය.

රාමුව B හා C හි ආධාරකයක් මත තබා ඇත. BC තිරස් වන සේ $60\ N$, $40\ N$ බර A හා D හිදී පිළිවෙළින් යොදා ඇත. බෝ අංකනය භාවිත කර පුතා බල සටහනක් අඳින්න. එක් එක් දණ්ඩේ පුතා බල සොයා ආතති තෙරපුම් යන වගද දක්වන්න.

6. රූපයේ දක්වෙන රාමු සැකිල්ල සැහැල්ලු දඬු රූපයේ පරිදි සම්බන්ධ කිරීමෙන් ගොඩනඟා ඇත. සියලු ම තිකෝණ සමද්විපාද ඍජුකෝණී ඒවා වේ. පද්ධතිය A හා B හිදී වූ ආධාරක මත ACB තිරස් වන සේ තබා අැත. රාමුව පිළිවෙළින් C, D හා Eහිදී 40 N, 400 N, 240 N හාර දරා සිටී. බෝ අංකනය භාවිත කර පුතා බල සටහනක් ඇඳ දඬුවල පුතා බල සොයා ඒවා ආතති ද තෙරපුම් ද යන වග දක්වන්න.

7.

AD,BD,BC හා CDසැහැල්ලු දඬු හතරින් සමන්විත රූපයේ දක්වෙන රාමු සැකිල්ලේ දඬු සුමට ලෙස සන්ධි කර ඇත. එය A හා Bහිදී සිරස් බිත්තියකට අසවි කර C හිදී 2Wභාරයක් දරයි. පුතා බල සටහනක් ඇසුරින් A හා Bහි පුතිකියා සොයන්න. එනයින් දඬුවල පුතා බල සොයා ආතති තෙරපුම් වෙන් කර දක්වන්න.

8. රූපයේ දක්වෙන රාමු සැකිල්ල සැහැල්ලු දඬු නවයක් A, B, C, D, E හා Fහිදී සුවල ලෙස සන්ධි කිරීමෙන් සාදා ඇත. 6W හා 9W බර B හා C හිදි දරා සිටියි. A හා D හිදී R හා S සිරස් බල දෙකක් මගින් එය දරා සිටි පුතා බල සටහනක් ඇද දඬුවල පුතා බල සොයා ඒවා ආතති ද තෙරපුම් ද යන්න සඳහන් කරන්න.

9. රූපයේ පෙන්වන රාමු සැකිල්ල සැහැල්ලු දඬු පහකින් සමන්විත වන අතර ඒවා සුමට ලෙස සන්ධි කර ඇත. B හිදී 900Nභාරයක් දරා සිටි. AD සිරස් වන සේ රාමු සැකිල්ල සමතුලිකතාව තබා ඇත්තේ A හා D හිදී P හා (P, Q) බල මගිනි. (P තිරස් හා Q සිරස් වේ.). P හා Q බලවල විශාලත්ව සොයන්න. බෝ අංකනය යොදා ගනිමින් පුතා බල සටහනක් ඇඳ එක් එක් දණ්ඩේ පුතා බල සොයා ඒවා ආතති ද තෙරපුම් ද යන්න වෙන් කර දක්වන්න.

10. P 30° 30° 100N

මෙම රුපයේ සැහැල්ලු දඬු පහක් සුවල සන්ධි කර රාමු සැකිල්ල ගොඩනගා ඇත. A සන්ධිය අවල ලක්ෂාකට සුවල ලෙස අසව් කිරීමෙන් රාමු සැකිල්ල සිරස් තලයක සමතුලිතව තබා ඇත. AB සිරස් වේ BC තිරස් වේ. $A\hat{D}B = 90^\circ$ හා $D\hat{B}C = D\hat{C}B = 30^\circ$. $100\ N$ භාරයක් C හිදී එල්ලා ඇති අතර P බලයක් B හිදී තිරස් CB දිශාවට කියාකරයි.

P සොයා A අසව්වේ පුතිකිුයාවේ තිරස් හා සිරස් සංරචක ලබා ගන්න. බෝ අංකනය යොදා ගනිමින් රාමු සැකිල්ල සඳහා පුතා බල සටහනක් අඳින්න. එනයින් බල පහේ පුතාබල නිර්ණය කර ආතති තෙරපුම් වෙන් කර දක්වන්න.

- 11. දෙන ලද රාමු සැකිල්ල සුචල ලෙස සන්ධි කළ සැහැල්ලු දඬු අටකින් සමන්විත වන අතර ඒවා A, B, C, D හා Eහිදී සන්ධි කර ඇත. A හා B සන්ධි එක එකක් සිරස් P ආධාරක දෙකක් මත තබා ඇත. රාමුව C හා Dලඤාවලදී සමාන $100\,\mathrm{kg}$ භාර දෙකක් දරා සිටී. AB තිරස් වන අතර AE=BE=AD=BC වේ. Pහි අගය සොයන්න. CD හි x kg පුතා බලයක් ඇතැයි උපකල්පනය කරමින් රාමු සැකිල්ල සඳහා පුතා බල සටහනක් අදින්න. ABහි ආතතිය y kg නම් බල සටහනේ ජාාමිතිය භාවිතයෙන් $y=100-(\sqrt{3}-1)x$ බව ඔප්පු කරන්න. x හා y හි සපිරි අගයන් එකවිට ගණනය කළ නොහැක්කේ ඇයි දයි පැහැදිලි කරන්න. x=y නම් සෑම දණ්ඩකම පුතා බලය සොයන්න.
- 12. රූපයේ දක්වෙන රාමු සැකිල්ල සැහැල්ලු දඬු හතකින් ගොඩනගා ඇත. A, B, C, D, E අන්ත සුවලව සන්ධිකර ඇත. මෙම රාමුව W හා 2W භාරය C හා D සන්ධිවලදී පිළිවෙළින් දරයි. B හා E තිරස් වන සේ B හා E ආධාරක මත තබා ඇත. බෝ අංකනය යොදා ගනිමින් පතා බල සටහනක් ඇද සෑම දණ්ඩකම පතා බල සොයන්න. ආතති හා තෙරපුම් වෙන්කර දක්වන්න.

13. සැහැල්ලු දඬු හතක් සුවල ලෙස සන්ධි කිරීමෙන් රාමු සැකිල්ල සාදා ඇත. එය A හා C හිදී ආධාරක දෙකක් මත තබා ඇති අතර 4W හා W භාර D හා E හිදී පිළිවෙළින් දරා සිටී. A හා C හි ප්‍රතිකියා සොයන්න. සෑම දණ්ඩකම ප්‍රතාබල සෙවීමට ප්‍රතාබල සටහනක් භාවිත කරන්න. ඒවා ආතතිද තෙරපුම්ද යන වග දක්වන්න.

14.

සැහැල්ලු දඬු පහක් සුවල ලෙස සන්ධි කර රොම්බසයක හැඩයට දෙන ලද රාමු සැකිල්ල සකස් කර ඇත. OB, OD, සමාන තන්තු දෙකක් මගින් රාමුව O වලින් එල්ලා ඇත. OA සිරස් දණ්ඩ සුවල ලෙස A හිදී සම්බන්ධ කර ඇත. AC විකර්ණය සිරස් වේ. $ABC = BOD = 60^\circ$. C ලක්ෂා W භාරයක් දරන විට දී එක් එක් දණ්ඩේ පුතාබලය සොයන්න. පුතාබල සටහන භාවිතයෙන් තන්තුවල ආතති සොයන්න. ආතතිවලට ලක්ව ඇති දඬු නම් කරන්න.

15. සැහැල්ලු දඬු සුචල ලෙස සන්ධි කිරීමෙන් රූපයේ දක්වෙන රාමු සැකිල්ල ගොඩනගා ඇත. DA සිරස් වේ. C හා E හිදී වු ආධාරක මත රාමුව සමතුලිතතාවයේ පවතී. 3W, 2W හා 2W භාර A, B හා Fසන්ධිවලින් දරා සිටී C හා Eහි පුතිකියා සොයන්න. බෝ අංකනය භාවිත කරමින් පුතා බල සටනක් ඇද එක් එක් දණ්ඩේ පුතාබලය සොයන්න. ආතති හා තෙරපුම් හඳුන්වන්න.

16. F 40kg 60kg D D C C

දෙන ලද රූපයේ දක්වෙන රාමු සැකිල්ල සැහැල්ලු දඬුවලින් සෑදී ඇති අතර B,F,D හි භාර රූපයේ දක්වේ. AC හා CE දඩු එක එකක් 10 m වන අතර ඒවා තිරස් වේ. CF=8 m. එසේම AB=BC=CD=DE දඩු දිගින් සමානවේ. BF=FD රාමුව A හා Eහි සුමට නා දති දෙකක් මත තබා ඇත. A හා E හි පුතිකියා ඒවා සිරස් වේ යයි උපකල්පනය කරමින් සොයන්න. පුතා බල සටහනක් ඇද දඬුවල පුතාබල සොයා ඒවා ආතතිද තෙරපුම් ද යන වග දක්වන්න.

17. දෙන ලද රාමු සැකිල්ල සමාන සැහැල්ලු දඬු නමයකින් ගොඩ නගා ඇත. රූපයේ දක්වෙන ආකාරයට භාර දරා සිටී. රාමුව B හා C ආධාරක මත පද්ධතිය සිරස් තලයක නිසලව තිබේ. B හා Cහි පුතිකියා සොයන්න. බෝ අංකනය යොදා ගනිමින් පුතා බල සටහනක් අදින්න. එනයින් එක් එක් දණ්ඩේ පුතාබලය සොයා ඒවා ආතති ද තෙරපුම්ද යන වග දක්වන්න.

18. ABCDE පාලම් රාමු සැකිල්ල සමාන සැහැල්ලු දඬු හතක් ඇසුරින් රූපයේ පරිදි සාදා ඇත. A හා C සන්ධි ආධාරක මතවේ. ඒවා එකම තිරස්ව මට්ටමේ පිහිටයි. B හිදී W භාරයක් දරමින් රාමුව සිරස් තලයක වේ. බෝ අංකනය භාවිත කරමින් පතා බල සටහනක් අදින්න. එනයින් එක් එක් දණ්ඩේ පතා බලය සොයා ආතති හා තෙරපුම් වෙන් කර දක්වන්න.

19.

AB, BC, CA, CD හා DA සැහැල්ලු දඬු ඒවායේ කෙළවරදී සුචල ලෙස සන්ධි කර රාමු සැකිල්ල සාදා ඇත. එය AB තිරස් වන සේත් AC සිරස් වනසේත් සිරස් තලයක තබා

ඇත. AB =
$$a$$
, BĈD = BÂD = $\frac{2\pi}{3}$ හා

 $\hat{ABC} = \frac{\pi}{3}$ වේ. W භාරයක් \hat{D} හිදී දරා සිටි. \hat{A} හා \hat{B} හි පිළිවෙළින් \hat{P} හා \hat{Q} සිරස් බල දෙකක් මගින් රාමුවේ සමතුලිතතාව පවත්වා ගනී

- (i) P හා Q වල අගයෙන් W පදවලින් සොයන්න.
- (ii) මෙම රාමු සැකිල්ල සඳහා ප්‍රත්‍යබල සටහනක් බෝ අංකනය ඇසුරන් අඳින්න. එනයින් දඬු පහේ ප්‍රත්‍යබල සොයා ආකති හා තෙරපුම් හඳුන්වා දෙන්න.

20. A B C 45° 45° 45° 100kg

ඉහත රාමු සැකිල්ල AB, BC, AD, BD, BE, CE හා DE සැහැල්ලු දඬු හතෙන් සාදා ඇත. $AD=BD=BE=CE=\ell$ වේ. රාමුව E හිදී අසව් කර Aහිදී Pබලයක් හා පිළිවෙළින් C හා Dහිදී 100 kg හා 10 kg හාර යොදා රාමුව සමතුලිතව තබා ඇත.

(i) Eහි පුතිකියාවේ සිරස් හා තිරස් සංරචක සොයන්න.

10kg

- (ii) P හි අගය සොයන්න.
- (iii) බෝ අංකනය යොදා ගනිමින් පුතා බල සටහනක් අදින්න. එනයින් එක් එක් දණ්ඩේ පුතා බල සොයා ආතති හා තෙරපුම් වෙන්කර දක්වන්න.

7.0 සර්ෂණය

7.1 හැඳින්වීම

වස්තු දෙකක් එකිනෙකට ගැටී පවතින විට එම ගැටී ඇති ලඤාගේ දී පෘෂ්ඨය ඔස්සේ වස්තු දෙක ලිස්සායාම වළක්වන ලෙස කිුියාකරනු ලබන බලය ඝර්ෂණ බලය ලෙස හැඳින්වේ. එම වස්තු දෙක මත කිුිිිියාකරන ඝර්ෂණ බලය විශාලත්වයෙන් සමාන වන අතර දිශාවෙන් පුතිවිරුද්ධ වෙයි.

වස්තුවක් මත තිරස් P බලයක් යෙදු විට එම අවස්ථාවේදී එම වස්තුව චලිත නොවන්නේ නම් එයින් හැඟවෙන්නේ එම අවස්ථාවේදී එම බලය මැඩලීමට තරම් විශාලත්වයෙන් සමාන දිශාවෙන් පුතිවිරුද්ධ වූ බලයක් කිුිියාත්මක වීමයි. එම පුතිවිරුද්ධ බලය ඝර්ෂණ බලය ලෙස හැඳින්වෙන අතර එම බලය Fමගින් දක් වූ විට F=P වේ.

වස්තුව මත යොදන බාහිර බලය කුමයන් වර්ධනය කරන විට යම් අවස්ථාවකදී වස්තුව චලිත වීමට පටන් ගනී. මෙයින් හැඟවෙන්නේ ඝර්ෂණ බලයට යම් කිසි සීමාකාරී බලයකට වඩා වැඩිවිය නොහැකි බවයි. එම අවස්ථාවේදී වස්තුව මත කිුයාකරන ඝර්ෂණ බලය සීමාකාරී ඝර්ෂණ බලය ලෙස හැඳින්වේ.

සීමාකාරි සමතුලිත අවස්ථාවේදී,

සර්ෂණ සංගුණකය
$$=$$
 $\frac{$ සීමාකාරී ඝර්ෂණ බලය $}{$ අභිලම්භ පුතිකියාව $}=\mu$, මෙහි μ සීමාකාරී ඝර්ෂණ සංගුණකය ලෙස

හැඳින්වේ. සීමාකාරී අවස්ථාවේ නැති විට $rac{ ext{F}}{ ext{R}}$ < μ

සීමාකාරී සමතුලිත අවස්ථාවේදී
$$\frac{F_{\rm L}}{R}$$
 = μ . (මෙහි $F_{\rm L}$ - සීමාකාරී ඝර්ෂණ බලය)

7.2 ඝර්ෂණ නියම

- වස්තු දෙකක් ගැටී ඇති විට එම වස්තු මත කියාකරන ඝර්ෂණ බලයේ ගැටී ඇති ලක්ෂායේදී එම වස්තු ලිස්සායාමට තැත් කරන දිශාවට පුතිවිරුද්ධ දිශාවට කියාකරයි.
- යම් කිසි වස්තු දෙකක් එකිනෙක ස්පර්ශව සමතුලිතතාවයේ ඇති විට එම වස්තුමත කියාකරන ඝර්ෂණ බලයේ විශාලත්වය එම වස්තු ලිස්සායාම වැළැක්වීමට පුමාණවත් වේ.
- සීමාකාරී ඝර්ෂණ බලය අභිලම්භ පුතිකියාවට දක්වන අනුපාතය ඝර්ෂණ සංගුණකය ලෙස හැඳින්වේ.
 මෙය වස්තුන් සාදා ඇති දුවායේ ස්වභාවය මත රදා පවතී.
- 4. වස්තුව මත කියාකරන අභිලම්භ පුතිකියාව නොවෙනස් වන්නේ නම් සීමාකාරි ඝර්ෂණ බලය පෘෂ්ඨයේ වර්ගඵලය හා හැඩය මත රඳා නොපවතී.
- 5. වස්තුව චලිත වන විට වස්තුව මත කියාකරන ඝර්ෂණ බලයේ දිශාව වස්තුව චලිත වන දිශාවට ප්තිවිරුද්ධ වේ. චලිත වන අවස්ථාවේදී වස්තු මත කියාකරන ඝර්ෂණ බලය සීමාකාරි ඝර්ෂණ බලය වඩා ස්වල්ප පුමාණයකින් අඩුය.
- 6. චලිත වන වස්තුව මත කිුිිියාකරන ඝර්ෂණ බලය වස්තුවේ පුවේගය මත රඳා නොපවතී.

සර්ෂණ කෝණය

වස්තු දෙකක් එකිනෙක ස්පර්ශව සීමාකාරී සමතුලිතතාවේ පවතින විට ස්පර්ශ ලක්ෂායේ දී ඇති වන සම්පුයුක්ත පුතිකිුයාව (එනම් අභිලම්භ පුතිකිුයාවේ හා ඝර්ෂණ බලයේ සම්පුයුක්තය) හා අභිලම්භ පුතිකිුයාව අතර කෝණය λ ඝර්ෂණ කෝණය ලෙස හැඳින්වේ.

$$tan\lambda = \frac{F_L}{R}$$
$$\frac{F_L}{R} = \mu$$
$$tan\lambda = \mu$$

සර්ෂණ කේතුව

වස්තුවක් රලු පෘෂ්ඨයක් හා ස්පර්ශව පවත්තා සීමාකාරී සමතුලිතතාවේ විට ස්පර් ලක්ෂායේදී පොදු අභිලම්භය කේතු වේ. අක්ෂාය වන අඩ සිරස් කෝණය λ වන

සෘජු වෘත්ත කේතුව සලකමු. මෙම කේතුව ඝර්ෂණ කේතුව ලෙස අර්ථ දක්වනු ලැබේ. වස්තුව කුමන දිශාවකට චලනය වීමට යන්ත දැරුවද සම්පුයුක්ත පුතිකිුයාව කේතුවේ පෘෂ්ඨය මත හෝ තුළ හෝ පිහිටිය යුතුයි.

• රළු තිරස් තලයක් මත ඇති අංශුවක් මත බාහිර බලයක් කිුියාකරන විට අංශුවේ සමතුලිතතාවය

$$\frac{F}{R} = \tan \theta$$

$$\frac{F}{R} \le \mu$$

$$\tan \theta \le \mu$$

$$\tan \theta \le \tan \lambda$$

$$\theta \le \lambda$$

• රළු ආනත තලයක් මත ඇති අංශුවක සමතුලිතතාවය

තලයට සමාන්තරව බල විභේදනයෙන්

$$\nearrow$$
 F - $W \sin \alpha = 0$; F = $W \sin \alpha$

තලයට ලම්භකව බල විභේදනයෙන්

$$R - W \cos \alpha = 0$$
; $R = W \cos \alpha$

සමතුලිතතාව සඳහා
$$\frac{F}{R} \ \leq \ \mu$$

$$\frac{W \sin \alpha}{W \cos \alpha} \ \leq \ \tan \lambda$$

$$\tan \alpha \ \leq \ \tan \lambda$$

$$\alpha \ \leq \ \lambda$$

 $9\ N$ ක් බරති වස්තුවක් රලු ආනත තලයක් මත තබා තිරසට 30° ක කෝණයකින් ආනත තන්තුවක් මගින් අදිනු ලැබේ. තන්තුවේ ආනතිය $6\ N$ වන විට එය චලනය වීමට පටන් ගනී නම් වස්තුව හා තලය අතර සර්ෂණ සංගුණකය සොයන්න.

තිරසට විභේදනයෙන්

$$\rightarrow 6\cos 30 - F = 0 ; F = 3\sqrt{3}N$$

සිරසට විභේදනයෙන්

$$\uparrow R + 6 \sin 30^{\circ} - 9 = 0$$
$$R = 6N$$

සීමාකාරී සමතුලිතතාවය සඳහා

$$\mu = \frac{F}{R}$$
$$= \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2}$$

උදාහරණය 2

තිරසට 45° කින් ආනත තලයක් මත වස්තුවක් තබා ඇත. තලය සහ වස්තුව අතර සර්ෂණ $\frac{1}{3}$ කි. වස්තුව තලය පහළට ලිස්සා යාම වැළැක්වීමට $6\ N$ තිරස් බලයක් අවශා වේ.

- (a) වස්තුවේ බර සොයන්න.
- (b) තිරස් බලයේ විශාලත්වය කුමකුමයෙන් වැඩි කරන විට වස්තුව තලය ඉහළට චලනය විමට ආරම්භ කරයි නම් එම අවස්ථාවේදී එම බලයේ අගය සොයන්න.

(a)
$$\mu = \frac{1}{3}$$

තලයට සමාන්තරව බල විභේදනයෙන්

$$\nearrow$$
 F + 6 cos 45° - W sin 45° = 0 ; F = $\frac{W - 6}{\sqrt{2}}$

තලයට ලම්භකව බල විභේදනයෙන්

$$R - 6 \sin 45^{\circ} - W \cos 45^{\circ} = 0$$
 ; $R = \frac{W + 6}{\sqrt{2}}$

සීමාකාරී සමතුලිතතාවය සඳහා

$$\frac{F}{R} = \mu$$
 ; $\frac{\frac{W-6}{\sqrt{2}}}{\frac{W+6}{\sqrt{2}}} = \frac{1}{3}$

$$\frac{W-6}{W+6} = \frac{1}{3}$$
 ; $W = 12 \text{ N}$

(b)

තලයට සමාන්තරව බල විභේදනයෙන්

$$\checkmark$$
 F - P cos 45° + 12 sin 45° = 0 ; F = $\frac{P - 12}{\sqrt{2}}$

තලයට ලම්භකව බල විභේදනයෙන්

$$R - P \sin 45^{\circ} - 12 \cos 45^{\circ} = 0$$
 ; $R = \frac{P + 12}{\sqrt{2}}$

සීමාකාරී සමතුලිත අවස්ථාවේදී

$$\frac{F}{R} = \mu$$

$$\frac{\frac{P-12}{\sqrt{2}}}{\frac{P+12}{\sqrt{2}}} = \frac{1}{3}$$

$$\frac{P-12}{P+12} = \frac{1}{3} \quad ; \quad P = 24 \text{ N}$$

රලු තලයක් මත අංශුවක් චලනය කිරීමට

අංශුවේ බර W ලෙස ද ඝර්ෂන කෝණය λ ලෙස ද ගනිමු.

අංශුව මත කියාකරන බල

- (a) බර W
- (b) සර්ෂණ බලය F
- (c) අභිලම්භ පුතිකුියාව R
- (d) තිරස සමග heta කෝණයකින් කිුයාකරන අවශා P බලය

අංශුවේ සමතුලිතතාවය සඳහා

තිරසට බල විභේදනයෙන්

$$\rightarrow$$
 P cos θ - F = 0 ; F = P cos θ

සිරසට බල විභේදනයෙන්

$$\uparrow \qquad R + P \sin \theta - W = 0 \quad ; \quad R = W - P \sin \theta$$

සීමාකාරී සමතුලතතාවය සඳහා

$$\begin{split} \frac{F}{R} &= \mu = \tan \lambda \\ \frac{P \cos \theta}{W - P \sin \theta} &= \frac{\sin \lambda}{\cos \lambda} \\ P &(\cos \theta \cos \lambda + \sin \theta \sin \lambda) = W \sin \lambda \\ P &\cos (\theta - \lambda) = W \sin \lambda \\ P &= \frac{W \sin \lambda}{\cos (\theta - \lambda)} \\ P &= \frac{W \sin \lambda}{\cos (\theta - \lambda)} \\ P &= \lambda \otimes P_{\text{Pole}} = W \sin \lambda \end{split}$$

• තලයේ ආනතිය ඝර්ෂණ කෝණයට වඩා අඩුවිට, තලය පහළට අංශුව චලනය කිරීමට අවශා අඩුම බලය

තලයේ තිරසට ආනතිය lpha ලෙස ගනිමු. $lpha<\lambda$, නිසා අංශුව සමතුලිතතාවයේ පවතී. ආනත තලය සමග heta කෝණයක් ආනතව P බලයක් යොදමු.

අංශුවේ සමතුලිතතාවය සඳහා

$$\angle$$
 P cos $\theta + W$ sin $\alpha - F = 0$

$$\mathbb{R} - W \cos \alpha + P \sin \theta = 0$$

සීමාකාරී සමතුලිතතාවයේ දී

$$\frac{P\cos\theta + W\sin\alpha}{W\cos\alpha - P\sin\theta} = \frac{\sin\lambda}{\cos\lambda}$$

 $P(\cos\theta\cos\lambda + \sin\theta\sin\lambda) = W(\sin\lambda\cos\alpha - \cos\lambda\sin\alpha)$

P cos (θ-λ) =
$$W$$
 sin (λ- α)

$$P = \frac{W \sin(\lambda - \alpha)}{\cos(\theta - \lambda)}$$

P අවම වීමට
$$\cos(\theta - \lambda) = 1$$
;

එනම්
$$\theta = \lambda$$
 හා P හි අවම අගය $= W \sin{(\lambda - \alpha)}$

තලයේ ආතතිය ඝර්ෂණ කෝණයට වඩා අඩුවීට තලය ඉහළට අංශුව චලනය කිරීමට අවශා අඩුම බලය තලයේ ආනතිය lpha. ලෙස ගනිමු. $lpha < \lambda$ නිසාම අශුව සමතුලිතතාවයේ පවතී. තලය සමග heta කෝණයකින් ආතතව අංශුව මත යොදන බලය m P යයි ගනිමු. සමතුලිතතාවය සඳහා

$$\nearrow P \cos \theta - F - W \sin \alpha = 0$$

තලයට ලම්භකව බල විභේදනයෙන්

$$R + P \sin \theta - W \cos \alpha = 0$$

සීමාකාරී සමතුලිතතාවයේදී

$$\frac{F}{R} = \mu = \tan \lambda$$

$$\frac{P\cos\theta - W\sin\alpha}{W\cos\alpha - P\sin\theta} = \frac{\sin\lambda}{\cos\lambda}$$

P (cos θ cos
$$\lambda$$
 + sin θ sin λ) = W (sin α cos λ + cos α sin λ)

P cos (θ -
$$\lambda$$
) = W sin (α + λ)

$$P = \frac{W \sin (\alpha + \lambda)}{\cos (\theta - \lambda)}$$

$$P$$
 අවම වීමට $\cos(\theta - \lambda) = 1$;

i.e.
$$\theta = \lambda P$$
 හි අවම අගය = $W \sin (\alpha + \lambda)$

තලයේ ආනතිය ඝර්ෂණ කෝණයට වඩා වැඩිවන විට අංශුව තලය දිගේ ඉහළට චලනය කිරීමට අවශා අවම බලය

 $lpha > \lambda$ බැවින් අංශුව තලය දිගේ පහළට රූටයි සමතුලිතතාවය සඳහා

$$\nearrow P \cos \theta - F - W \sin \alpha = 0$$

තලයට ලම්භකව විභේදනයෙන්

$$\mathbb{R} + P \sin \theta - W \cos \alpha = 0$$

සීමාකාරී සමතුලිතතාවයේදී

$$\frac{F}{R} = \mu = \tan \lambda$$

$$\frac{P\cos\theta - W\sin\alpha}{W\cos\alpha - P\sin\theta} = \frac{\sin\lambda}{\cos\lambda}$$

$$P\cos(\theta - \lambda) = W\sin(\alpha + \lambda)$$
$$W\sin(\alpha + \lambda)$$

$$P = \frac{W \sin (\alpha + \lambda)}{\cos (\theta - \lambda)}$$

P අවම වීමට $\cos(\theta - \lambda) = 1$;

එනම්
$$\theta = \lambda$$
 හා P හි අවම අගය $= W \sin{(\alpha + \lambda)}$

තලයේ ආනතිය ඝර්ෂණ කෝණයට වඩා වැඩිවන විට අංශු රඳවා ගැනීමට අවශා අවම බලය

තලයේ ති්රසට ආනතිය lpha ලෙස ගනිමු. $lpha > \lambda$ බැවින් අංශුව තලය දිගේ පහළට රුටයි. අවම ආධාරය eසවිය යුතුය. අංශුව තලය දිගේ පහළට චලනය වේ. එම නිසා ඝර්ෂණ බලය තලයේ ඉහළට කිුිිිියාකරයි.

අංශුවේ සමතුලිතතාවය සඳහා

තලය දිගේ විභේදනයෙන්

$$\nearrow$$
 F + P cos θ - W sin $\alpha = 0$

ලම්භකව තලයට ලම්භකව විභේදනයෙන්

$$R + P \sin \theta - W \cos \alpha = 0$$

සීමාකාරී සමතුලිතතාවයේදී

$$\frac{F}{R} = \mu = \tan \lambda$$

$$\frac{W \sin \alpha - P \cos \theta}{P \cos \alpha - W \sin \theta} = \frac{\sin \lambda}{\cos \lambda}$$

$$P\cos(\theta + \lambda) = W\sin(\alpha - \lambda)$$

$$P = \frac{W \sin (\alpha - \lambda)}{\cos (\theta + \lambda)}$$

P අවම වීමට $\cos(\theta + \lambda) = 1$;

එනම්
$$\theta = -\lambda$$
 හා P හි අවම අගය = $W \sin(\alpha - \lambda)$

 θ = - λ යන්නෙන් අදහස් වන්නේ

Pහි අවම අගය $W\sin(\alpha - \lambda)$ වේ.

රළු තලයක් මත දෘඪ වස්තුවක සමතුලිතතාවය

උදාහරණය 3

දිග 2a වන බර Wවන ඒකාකාර දණ්ඩක් එක කෙළවරක් සුමට බිත්තියකට හේත්තු කර අනෙක් කෙළවර සර්ෂණ සංගුණකය μ වන රළු ති්රස් පොළොව මත ද වන සේ තබා ඇත. දණ්ඩ ලිස්සන මොහොතේ

ඇත්නම් ති්රසට දණ්ඩේ ආනතිය $an^{-1}\left(rac{1}{2}\cot\lambda
ight)$ බව පෙන්වා බිත්තය මඟින් දණ්ඩ මත හා පොළව මඟින්

දණ්ඩ තිරසට ආනතිය heta ලෙස ගනිමු.

AB දණ්ඩේ සමතුලිතතාවය සඳහා

තිරසට බල විභේදනයෙන්

$$\rightarrow$$
 F - S = 0

$$\rightarrow$$
 F - S = 0 ; F = S ----- ①

සිරසට බල විභේදනයෙන්

$$\uparrow R - W = 0$$

$$\uparrow R - W = 0$$
 ; $R = W$ ----- ②

B වටා සුර්ණ ගැනීමෙන්

Bm = 0,
$$S.2a \sin \theta - Wa \cos \theta = 0$$

$$S = \frac{W}{2} \cot \theta \quad ---- 3$$

$$\text{① (3)}, F = S = \frac{W}{2} \cot \theta$$

සීමාකාරී සමතුලිතතාවයේදී

$$\frac{F}{R} = \mu \qquad \qquad \begin{tabular}{ll} \widetilde{R} &=& μ & & & & & & & \\ \widetilde{R} &=& μ & & & & & & & \\ \mathscr{W} & $\cot\theta$ &=& $\times\frac{1}{W}$ &=& $\tan\lambda$ & & & & & & \\ $\cot\theta$ &=& $2\tan\lambda$ & & & & & & & \\ $\cot\theta$ &=& $2\tan\lambda$ & & & & & & \\ $\cot\theta$ &=& $2\tan\lambda$ & & & & & & \\ $\tan\theta$ &=& $\frac{1}{2}\cot\lambda$ & & & & & & \\ θ &=& $\tan^{-1}\left(\frac{1}{2}\cot\lambda\right)$ & & & & & \\ S &=& W & $\tan\lambda$ \\ S &=& W & $\tan\lambda$ \\ F &=& W & $\tan\lambda$ \\ \end{tabular}$$

කුමය II

 $\mathbf A$ හි පුතිකිුයාව $\mathbf S$ සහ දණ්ඩේ බර $\mathbf W$, $\mathbf O$ හිදී හමුවේ.

 AB දණ්ඩේ සමතුලිතතාවය සඳහා F හා R හි සම්පුයුක්ත පුතිකිුිිිියාව R' O හරහා යයි.

දණ්ඩ සීමාකාරී සමතුලිතතාවයේ පවතින බැවින් R සහ R' අතර කෝණය λ වේ. (ඝර්ෂණ කෝණය)

AOB තිකෝණයට cot පුමේය යෙදීමෙන්

$$(BG+GA) \cot (90^{\circ}-\theta)=BG \cot \lambda-GA \cot 90^{\circ}$$
 $(a+a) \tan \theta=a \cot \lambda$
 $2 \tan \theta=\cot \lambda$
 $\tan \theta=\frac{1}{2}\cot \lambda$
 $\theta=\tan^{-1}\left(\frac{1}{2}\cot \lambda\right)$
බිත්තියේ ඇති වන පුතිකියාව $S=F=\frac{W}{2}\cot \theta$ (③හි)
 $=W \tan \lambda$
 $=\sqrt{F^2+R^2}$
 $=\sqrt{(W \tan \lambda)^2+W^2}$
 $=\sqrt{W^2\left(1+\tan^2\lambda\right)}$
 $=W \sec \lambda$

7.3 විසඳු නිදසුන්

උදාහරණය 4

ඒකාකාර දණ්ඩක් රළු තිරස් තලයක හා රළු සිරස් බිත්තියක ගැටීමෙන් සීමාකාරි සමතුලිතතාවයේ ඇත. දණ්ඩ හා සිරස් බිත්තිය අතර ද දණ්ඩ හා තරස් තලය අතර ද ඝර්ෂණ සංගුණක පිළිවෙළින් $\mu_{
m l}$ හා $\mu_{
m l}$ වේ.

දණ්ඩ හරහා යන සිරස් තලය බිත්තියට ලම්භක නම් දණ්ඩ තිරස සමග සාදන කෝණය $an^{-1} \left(rac{1-\mu_1\mu_2}{2\mu_2}
ight)$ බව පෙන්වන්න.

- (i) F_1 හා R_1 ගේ සම්පුයුක්ත බලය S_1 වේ.
- (ii) F, හා R, ගේ සම්පුයුක්ත බලය S, වේ.
- (iii) දණ්ඩේ බර W වේ.

දණ්ඩේ සමතුලිතතාවය සඳහා \mathbf{S}_1 \mathbf{S}_2 සහ Wබල \mathbf{O} ලඎයේ එකිනෙක හමවේ.

 $\mu_1 = an \lambda_1$ හා $\mu_2 = an \lambda_2$ ලෙස ගනිමු

 $\lambda_{\!\scriptscriptstyle 1}$ යනු $S_{\!\scriptscriptstyle 1}$ හා $R_{\!\scriptscriptstyle 1}$ අතර කෝණයද

 λ_2 යනු S_2 හා R_2 අතර කෝණයද වේ

AOB තිකෝණයට කොට් පුමේයෙන්

$$(AG + GB) \cot (90^{\circ} - \alpha) = AG \cot \lambda_{2} - GB \cot (90^{\circ} - \lambda_{1})$$

$$(1+1) \tan \alpha = \frac{1}{\tan \lambda_{2}} - \tan \lambda_{1}$$

$$2 \tan \alpha = \frac{1 - \tan \lambda_{1} \tan \lambda_{2}}{\tan \lambda_{2}}$$

$$\tan \alpha = \frac{1 - \tan \lambda_{1} \tan \lambda_{2}}{2 \tan \lambda_{2}}$$

$$\tan \alpha = \left(\frac{1 - \mu_{1}\mu_{2}}{2\mu_{2}}\right)$$

$$\alpha = \tan^{-1} \left(\frac{1 - \mu_{1}\mu_{2}}{2\mu_{2}}\right)$$

උදාහරණ 5

දිග 2a බර W වන ඒකාකාර AB දණ්ඩක් සමතුලිතතාවයේ තබා ඇත්තේ දණ්ඩ A කෙළවර රළු සිරස් බිත්තයක ගැටෙමින්ද දණ්ඩේ අනෙක් B කෙළවර අපුතාස්ථ දිග 2a වන තත්තුවක එක් කෙළවරකට ගැට ගසා එම තන්තුවේ අනෙක් කෙළවර Aට සිරස් ලෙස ඉහළින් පිහිටි C ලක්ෂායට සම්බන්ධ කිරීමෙනි. දණ්ඩ හරහා යන සිරස් තලය බිත්තියට ලම්භක වේ. දණ්ඩ උඩු සිරස සමග සාදන කෝණය heta නම් තන්තුවේ

ආතතිය ද $\theta \ge \cot^{-1} \left(\frac{\mu}{3} \right)$ බවද පෙන්වන්න. මෙහි μ යනු බිත්තිය හා දණ්ඩ අතර ඝර්ෂණ සංගුණකය වේ.

B හිදී තන්තුවේ ආතතිය ද T ද දණ්ඩ බර Wද Oහිදී එකිනෙක හමුවේ. දණ්ඩේ සමතුලිතාවය සඳහා A හි කිුයාකරන R හා F හි සම්පුයුක්ත බලය $R^1\,O$ හරහා ගමන් කළ යුතුය

$$\hat{CAB} = \theta$$
, since $BA = BC$, $B\hat{A}C = B\hat{C}A = \theta$
 $\therefore \hat{ABC} = 180 - 2\theta$

ABදණ්ඩේ සමතුලිතාවයට

$$Am = 0$$

T. AB
$$\sin (180^{\circ} - 2\theta) - W$$
.AG $\sin \theta = 0$

$$T.2a \sin 2\theta = W.a \sin \theta$$

$$T = \frac{W}{4 \cos \theta}$$

$$= \frac{W \sec \theta}{4}$$

AB දණ්ඩේ සමතුලිතතාවය සඳහා

බල තිරස්ව විභේදනය කිරීමෙන්

$$\rightarrow R - T \cos (90^{\circ} - \theta) = 0$$

$$R = T \sin \theta = \frac{W \tan \theta}{4}$$

බල සිරස්ව විභේදනය කිරීමෙන්

$$\uparrow \quad T\cos\theta + F - W = 0$$
$$F = W - T\cos\theta$$
$$= W - \frac{W}{4} = \frac{3W}{4}$$

දණ්ඩේ සමතුලිතතාවය සඳහා

$$\frac{F}{R} \leq \mu$$

$$\frac{3W}{4} \times \frac{4}{W \tan \theta} \leq \mu$$

$$3 \cot \theta \leq \mu$$

$$\cot \theta \leq \frac{\mu}{3}$$

$$\theta \geq \cot^{-1} \left(\frac{\mu}{3}\right)$$

උදාහරණය 6

ඉනිමගක එක් කෙළවරක් රළු තිරස් තලයක් මත ගැටෙමින් ද ඉනිමග මත පිහිටි ලස්ෂාක් රළු අක්ෂ තිරස් වන සේ පොළොවට අචලව සවිකර ඇති අරය r වන රළු සිලින්ඩරාකාර පයිපයක ගැටෙමින් ද සමතුලිතව ඇත්තේ ඉනිමගේ අනෙක් කෙළවර සිලින්ඩරයෙන් ඉවතට පවතින පරිදිය. ඉනිමගේ පහළ අඩියේ සිට එහි ගුරුත්ව කේන්දුය දක්වා දුර b වේ. ඉනිමග හරහා යන සිරස් තලය සිලින්ඩරයේ අස්‍යට ලම්භක වේ. λ යනු ඉනිමග ගැටි ඇති ලස්ෂාවල සර්ෂණ කෝණද 2α ($b < \cot \alpha$ වන සේ) යනු ඉනිමග තිරස සමග සාදන කෝණයද ඉනිමගේ පහළ අඩියේ සිට x දුරකින් ඉනිමගේ බරට සමාන භාරයක් එල්ලා ඇත්නම් ද ඉනිමග ගැටී ඇති සියලු ම ලස්ෂා සීමාකාරී සමතුලිතතාවයේ ඇත්නම් $(b+x)\sin^2\alpha\cos 2\alpha = r\sin\lambda\cos\lambda$ බව පෙන්වන්න.

C හිදී F_1 හා R_1 සම්පුයුක්ත බලය S_1 ද

A හිදී F_2 හා R_2 හි සම්පුයුක්ත බලය S_2 ද දණ්ඩේ බර හා බාරයක ්මත බරවල සම්පුයුක්ත බර වන 2~W ද O ලක්ෂායේ දී එකිනෙක හමුවේ. ඉනිමග සීමාකාරී සමතුලිතතාවයේ ඇත්නම්

- (i) $R_{_1}$ හා $S_{_1}$ අතර කෝණය λ වේ
- (ii) R, හා S, අතර කෝණය λ ද වේ

$$AM = b$$
, $AC = r \cot \alpha$
 $AL = x AM = b$,

එම නිසා AG = AL + LG =
$$x + \frac{b-x}{2} = \frac{b+x}{2}$$

දැන්
$$AG = \frac{b+x}{2}$$
 හා $GC = r \cot \alpha - \left(\frac{b+x}{2}\right)$

ACO තුිකෝණයට කොට් පුමේය යෙදීමෙන්

$$(AG + GC) \cot (90^{\circ} - 2\alpha) = GC \cot \left[90^{\circ} - (\lambda + 2\alpha)\right] - AG \cot (90^{\circ} + \lambda)$$

AC tan
$$2\alpha = GC \tan (\lambda + 2\alpha) + AG \tan \lambda$$

$$r \cot \alpha \cdot \tan 2\alpha = \left[r \cot \alpha - \left(\frac{b+x}{2} \right) \right] \tan (\lambda + 2\alpha) + \left(\frac{b+x}{2} \right) \tan \lambda$$

$$r \cot \alpha \left[\tan 2\alpha - \tan (\lambda + 2\alpha) \right] = \left(\frac{b+x}{2} \right) \left[\tan \lambda - \tan (\lambda + 2\alpha) \right]$$

$$r \cot \alpha \left[\frac{\sin 2\alpha}{\cos 2\alpha} - \frac{\sin (\lambda + 2\alpha)}{\cos (\lambda + 2\alpha)} \right] = \left(\frac{b + x}{2} \right) \left[\frac{\sin \lambda}{\cos \lambda} - \frac{\sin (\lambda + 2\alpha)}{\cos (\lambda + 2\alpha)} \right]$$

$$r\frac{\cos\alpha}{\sin\alpha}\left[\frac{\sin\left[2\alpha-(\lambda+2\alpha)\right]}{\cos2\alpha.\cos\left(\lambda+2\alpha\right)}\right] = \left(\frac{b+x}{2}\right)\left[\frac{\sin\left[\lambda-(\lambda+2\alpha)\right]}{\cos\lambda.\cos\left(\lambda+2\alpha\right)}\right]$$

$$r \frac{\cos \alpha}{\sin \alpha} \times \frac{\sin (-\lambda)}{\cos 2\alpha} = \left(\frac{b+x}{2}\right) \frac{\sin (-2\alpha)}{\cos \lambda}$$

$$\frac{r\cos\alpha \cdot \sin\lambda}{\sin\alpha \cdot \cos 2\alpha} = \left(\frac{b+x}{2}\right) \frac{2\sin\alpha \cos\alpha}{\cos\lambda}$$

$$r \sin \lambda \cos \lambda = (b+x) \sin^2 \alpha \cdot \cos 2\alpha$$

බර W වන A අංශුවක් රළු තිරස් බිම මත නිසලව තබා ඇත. සැහැල්ලු අවිතනා තන්තුවක් අතර w a හා බර W වන සෘජු වෘත්තාකාර සිලින්ඩරයක් වටා දවටා ඇති අතර එක කෙළවරක් A අංශුවට සම්බන්ධ කර ඇත. තන්තුව සිලින්ඩරයේ වකු පෘෂ්ඨය Bහිදී ස්වර්ශ කරයි. තන්තුවේ අනෙක් කෙළවර සිලින්ඩරයේ වකු පෘෂ්ඨයට සම්බන්ධ කර ඇත. තන්තුව හරහා යන සිරස් තලය සිලින්ඩරයේ අක්ෂයට ලම්භකව සිලින්ඩරයේ ගුරුත්ව කේන්දුය හරහා ගමන් කරමින් බිම ABහිදී රූපයේ පරිදි ඡේදනය කරයි.

තන්තුව තදව AB සමගlpha කෝණයක් සාදයි. සිලින්ඩරය Bහිදී චලනය වීම වැලැක්වීමට පුමාණවත් තරම් පොළොව රළු වේ. සිලින්ඩරය මත සුර්ණය G වූ යුග්මයක් අංශු සීමාකාරී සමතුලිතතාවයෙන් පවතින සේ

යොදා ඇත. අංශුව හා පොළොව සර්ෂණ සංගුකය μ නම් තන්තුවේ ආනතිය $\frac{\mu W}{(\cos lpha + \mu \sin lpha)}$ වන බව පෙන්වන්න. B වටා සූර්ණ ගැනීමෙන් Gහි අගය සොයන්න.

පද්ධතියේ සමතුලිතතාව සඳහා

තිරසට විභේදනයෙන්

$$\rightarrow F_2 - F_1 = 0$$
$$F_2 = F_1$$

සිරසට විභේදනයෙන්

$$\uparrow R_1 + R_2 - W - w = 0$$

$$R_1 + R_2 = W + w$$

අංශුවේ සමතුලිතතාව සඳහා තිරසට විභේදනයෙන්

$$\rightarrow$$
 T cos α - $F_1 = 0$; $F_1 = T$ cos

සීමාකාරි සමතුලිතතාවයේදී

$$\frac{F_1}{R_1} = \mu$$

$$\frac{T \cos \alpha}{w - T \sin \alpha} = \mu \quad ; \quad T (\cos \alpha + \mu \sin \alpha) = \mu w$$

$$T = \frac{\mu w}{\cos \alpha + \mu \sin \alpha}$$

සිලින්ඩරයේ සමතුලිතතාව සඳහා

Bm
$$T(a + a \cos \alpha) - G = 0$$

 $G = T. a (1 + \cos \alpha)$
 $= \frac{\mu wa (1 + \cos \alpha)}{\cos \alpha + \mu \sin \alpha}$

අරය a වන රළු අර්ධ ගෝලාකාර අචල පතුයක ඇතුළත සිරස් තලයක බර Wහා දිග a වන ඒකාකාර දණ්ඩක් නිසලව පවතී. දණ්ඩ තිරසට heta කෝණයක් ආනතව සීමාකාරි සමතුලිතතාවේ පවතී. ඝර්ණස සංගුණකය

 $\mu \Big(<\sqrt{3} \Big)$ දණ්ඩේ පහණ කෙළවරේ දී පුතිකිුයාව $\dfrac{W\cos heta}{\sqrt{3}-\mu}$ බව පෙන්වා ඉහත කෙළවරේ පුතිකිුයාව සොයන්න.

$$\tan \theta = \frac{4\mu}{3-\mu^2}$$
බව ලෙන්වන්න.

දණ්ඩ සීමාකාරී සමතුලිතතාවයේ ඇති නිසා

$$F_1 = \mu R$$
 and $F_2 = \mu S$

ABහි සමතුලිකතාව සඳහා B වටා සූර්ණ ගැනීමෙන්

BM -R.
$$a \sin 60^{\circ} + \mu R$$
. $a \sin 30^{\circ} + w \cdot \frac{a}{2} \cos \theta = 0$

$$-R \frac{\sqrt{3}}{2} + \mu R \cdot \frac{1}{2} + w \cdot \frac{1}{2} \cos \theta = 0$$

$$R(\sqrt{3} - \mu) = w \cos \theta \quad ; \quad R = \frac{w \cos \theta}{\sqrt{3} - \mu} - \dots (1)$$

A වටා සූර්ණ ගැනීමෙන්

Am S.
$$a\sin 60^\circ + \mu S. a\sin 30^\circ - w. \frac{a}{2}\cos\theta = 0$$

$$\frac{\sqrt{3}S}{2} + \frac{\mu S}{2} = \frac{w\cos\theta}{2}$$

$$S = \frac{w\cos\theta}{\left(\sqrt{3} + \mu\right)} \qquad -----(2)$$
 O වටා සූජ්ණ ගැනීමෙන් om $F_1.a + F_2.a - w\left(\frac{a}{2}\cos\theta - a\cos(60 + \theta)\right) = 0$

$$\mu(R+S) = w \left(\frac{1}{2} \cos \theta - \frac{1}{2} \cos \theta + \frac{\sqrt{3}}{2} \sin \theta \right)$$

$$\mu \left[\frac{w \cos \theta}{\sqrt{3} - \mu} + \frac{w \cos \theta}{\sqrt{3} + \mu} \right] = \frac{\sqrt{3}}{2} w \sin \theta$$

$$\frac{\mu \cos \theta \times 2\sqrt{3}}{3 - \mu^2} = \frac{\sqrt{3}}{2} w \sin \theta$$

$$\tan \theta = \frac{4\mu}{3 - \mu^2}$$

බර Wවන ඒකාකාර ඝණ අර්ධ ගෝලයක් වකු පෘෂ්ඨය තිරසට lpha කෝණයකින් ආනත රළු තලයක් මත තබා ඇත. එහි තල පෘෂ්ඨයේ පරිධියේ ලක්ෂායකට කුඩා w භාරයක් සම්බන්ධ කර ඇති විට තල මුහුණත තිරස්

වේ.
$$\mu$$
 යනු ඝර්ෂණ සංගුණකය නම් එවිට $\mu=\dfrac{w}{\sqrt{W(W+2w)}}=\tanlpha$ බව පෙන්වන්න.

අර්ධ ගෝලයේ ගුරුත්ව කේන්දුය G හිදී වන අතර $OG = \frac{3}{8}a$.

F හා R බල අර්ධ ගෝලය මත C හිදී කිුයා කරයි. W හා w හි සම්පුයුක්තය ද C හරහා යායුතුය.

N වටා සුර්ණ ගැනීමෙන්

$$W.ON - w. BN = 0$$

$$W.ON = w (a - ON)$$

$$(W - w).ON = w.a$$

$$ON = \frac{w.a}{W + w}$$

පද්ධතියේ සමතුලිතතාව සඳහා F හා R හි සම්පුයුක්තය (W+w) ට විශාලත්වයෙන් සමාන හා දිශාවෙන් පුතිවිරුද්ධ විය යුතුය. සමතුලිතතාව සීමාකාරී නිසා $O\hat{C}N=\lambda$

$$\tan \lambda = \frac{ON}{CN} = \frac{ON}{\sqrt{a^2 - ON^2}}$$

$$= \frac{\frac{w.a}{W + w}}{\sqrt{a^2 - \frac{w^2 a^2}{(W + w)^2}}}$$

$$= \frac{w}{\sqrt{W^2 + 2Ww}}$$

$$\mu = \frac{w}{\sqrt{W(W + 2w)}}$$

$$= \tan \alpha \text{ (since } \lambda = \alpha \text{)}$$

සමාන දිග AB හා BC ඒකාකාර දඬු දෙකක බර W හා w වේ. (W>w) ඒවා Bහිදී සුමට ලෙස සන්ධි කර ඇත. දඬු සිරස් තරලයේ $A\hat{B}C=\frac{\pi}{2}$ වන සේ A හා C දෙකෙළවර එළු තිරස් පොළොව ගැටෙමින් සමතුලිතතාවයෙන් පවතී. දඬු හා පොළොව අතර ඝර්ෂණ සංගුණකය μ වේ. සමතුලිතතාව රැක ගැනීමට μ සඳහා ගත හැකි අවම අගය $\frac{W+w}{W+3w}$ බව පෙන්වන්න. $\mu=\frac{W+w}{W+3w}$, නම් C හිදී ලිස්සීමට ආසන්න වන නමුත් A හිදී එසේ නොවන බව පෙන්වන්න.

පද්ධතියේ සමතුලිතතාව සඳහා

$$F_{1}.2a \sin 45^{\circ} + Wa \cos 45^{\circ} - R.2a \cos 45^{\circ} = 0$$

$$2F_{1} + W - 2R = 0$$

$$F_{1} = R - \frac{W}{2}$$

$$= \frac{3W + W}{4} - \frac{W}{2}$$

$$= \frac{W + W}{4}$$

$$F_{1} = F_{2} = F = \frac{W + W}{4}$$

පද්ධතියේ සමතුලිතතාව සඳහා

$$\begin{split} \frac{F_{1}}{R} & \leq \ \mu \quad , \quad \frac{F_{2}}{S} \ \leq \ \mu \\ \\ \frac{F_{1}}{R} & = \frac{\frac{W+w}{4}}{\frac{3W+w}{4}} = \frac{W+w}{3W+w} \ \leq \quad \mu \\ \\ \frac{F_{2}}{S} & = \frac{\frac{W+w}{4}}{\frac{W+3w}{4}} = \frac{W+w}{W+3w} \ \leq \quad \mu \end{split}$$

දන්,
$$R - S = \frac{3W + w}{4} - \frac{W + 3w}{4} = \frac{W - w}{2} > 0$$

එනම් R>S

$$R > S (> 0) \implies \frac{1}{R} < \frac{1}{S}$$
$$\implies \frac{F}{R} < \frac{F}{S}$$
$$\implies \frac{F_1}{R} < \frac{F_2}{S}$$

$$\ \, , \ \, \frac{F_{_{1}}}{R} \ \, \leq \ \, \mu \, , \quad \, \frac{F_{_{2}}}{S} \ \, \leq \ \, \mu \,$$

විය හැකි අවම අගය $\frac{\mathrm{F}_2}{\mathrm{S}} = \frac{W+w}{W+3w}$ වේ.

$$\mu = \frac{W+w}{W+3w},$$
 නම්, C හිදී පළමු ලිසසීම සිදු වේ.

උදාහරණ 11

බර Wහා දිග $4\,\ell$ වන AB ඒකාකාර බාල්කයක A කෙළවර රළු තිරස් පොළොව මත හා A සිට $3\,\ell$ දුරින් වූ ලක්ෂායක් අරය ℓ වූ රළු සිලින්ඩරයක් හා ගැටෙමින් සමතුලිතතාව පවතී. සිලින්ඩරය ඒකාකාර වන අතර බර W වේ. එහි අක්ෂය බාල්කය හරහා යන සිරස් තලයට ලම්භක තබා ඇත. එක් එක් ස්පර්ශ ලක්ෂායේ සර්ෂණ බලය සොයා සමතුලිතතාව පැවතීමට $\mu \ge \frac{8}{21}$, විය යුතු බව පෙන්වන්න. මෙහි μ සර්ෂණ සංගුණකයයි.

තිරසට විභේදනයෙන්

$$\rightarrow F_1 - F_2 = 0 \quad ; \quad F_1 = F_2$$

සිරසට විභේදනයෙන්

$$\uparrow R_1 + R_2 - 2W = 0$$

$$R_1 + R_2 = 2W \dots$$

Om
$$F_2.a - F_3.a = 0$$
; $F_2 = F_3$
 $F_1 = F_2 = F_3$

AB දණ්ඩේ සමතුලිතතාව සඳහා

Am
$$R_3.3\ell - W.2\ell \cos 2\alpha = 0$$

$$R_3 = \frac{2W\cos 2\alpha}{3} = \frac{8W}{15} \dots$$

පද්ධතියේ සමතුලිතතාව සඳහා

Am
$$R_2.3\ell - W.3\ell - W.2\ell \cos 2\alpha = 0$$

$$3R_2 = 3W + 2W \times \frac{4}{5}$$

AB හි සමතුලිතතාව සඳහා

AB දිගේ විභේදනයෙන්

$$\nearrow F_3 + F_1 \cos 2\alpha + R_1 \sin 2\alpha - W \sin 2\alpha = 0$$

$$F_{3} + F_{1} \cos 2\alpha = \left(W - \frac{7W}{15}\right) \sin 2\alpha$$

$$F_{1} \left(1 + \cos 2\alpha\right) = \frac{8W}{15} \times \frac{3}{5} = \frac{24W}{75} \quad (: F_{1} = F_{3})$$

$$F_{1} \left(1 + \frac{4}{5}\right) = \frac{24W}{75}; \quad F_{1} = \frac{8W}{45}$$

සමතුලිත වීමට

$$\begin{split} &\frac{F_1}{R_1} \leq \mu \; ; \quad \frac{F_2}{R_2} \leq \mu, \frac{F_3}{R_3} \leq \mu \\ &\frac{8W}{45} \times \frac{15}{7W} \leq \mu \; ; \; \frac{8W}{45} \times \frac{15}{23W} \leq \mu; \; \frac{8W}{45} \times \frac{15}{8W} \leq \mu \\ \\ &\text{එනම්} \quad \mu \geq \frac{8}{21}, \; \mu \geq \frac{8}{69} \; ; \quad \mu \geq \frac{1}{3} \\ \\ &\text{එනයින් සමතුලිකව පැවතීමට } \mu \geq \frac{8}{21} \end{split}$$

උදාහරණ 12

ABC සමපාද තිකෝණය BC පාදය රළු තිරස් තලයක් මත තිබෙන පරිදි සිරස් තලයක පවතී. තිකෝණ තලයේ ද ඉහළ ම A ශීර්ෂයේදී කුමයෙන් වැඩි වන තිරස් බලයක් යොදනු ලැබේ. ඝර්ෂණ සංගුණකය $\frac{\sqrt{3}}{3}$ ට වඩා අඩුනම් එය පෙරළීමට පෙර ලිස්සායන බව ඔප්පු කරන්න.

කුමය I

ABC තිකෝණය මත බල

- (i) G හිදී බර W
- (ii) A හිදී තිරස් P බලය
- (iii) A හිදී සර්ණය බලය F හා අභිලම්භ පුතිකිුයාව

තිුකෝණය පෙරළෙන්නේ නම් එය සිදුවන්නේ C වටාය __ පෙරළෙන අවස්ථාවේදී අභිලම්භ පුතිකියාව C හිදී කියා කරයි A 88 P හිරුස් බලයක් C 8 W බරක් A 88 තමුවේ

 ${f A}$ හිදී ${f P}$ තිරස් බලයක් ${f G}$ හි ${f W}$ බරක් ${f A}$ හිදී හමුවේ

එම නිසා F හා R හි සම්පුයුක්තය S A හරහා C A දිගේ කිුයා කරයි heta යනු R හා S අතර කෝණය යයසි සිතමු

- (i) $\lambda < heta$, නම් පෙරළීමට පෙර ලිස්සයි
- (ii) $\lambda > heta$, නම් ලිස්සීමට පෙර පෙරළෙයි

 $\lambda < heta$, නම් එවිට $an \lambda < an heta$

 $\tan \lambda < \tan 30^{\circ}$

 $an \ \lambda < rac{1}{\sqrt{3}} = rac{\sqrt{3}}{3}; \ \mu < rac{\sqrt{3}}{3}$ එනයින් $\mu < rac{\sqrt{3}}{3}$ නම් තිකෝණය පෙරළීමට පෙර ලිස්සයි.

කුමය II

ABC තිකෝණයේ සමතුලිතතාව සඳහා

බල තිරසට විභේදනයෙන්

$$\rightarrow P - F = 0$$
 ; $F = P$ ①

බල සිරසට විභේදනයෙන්

$$\uparrow$$
 R-W = 0 ; R = W ②

සීමාකාරී සමතුලිතතාවයේදී

$$\frac{F}{R} = \mu$$
; $\frac{P}{W} = \mu$; $P = \mu W$

ABC තුිකෝණයේ සමතුලිතතාව සඳහා

$$\rightarrow P - F = 0$$
 ; $F = P$

$$\uparrow$$
 R-W = 0 : R = W

පෙරළෙන අවස්ථාවේ දී R , C හිදී කිුයා කරයි

B වටා සුර්ණ ගැනීමෙන්

$$Bm \quad R \times 2a - P\sqrt{3}a - W.a = 0$$

$$P = \frac{W}{\sqrt{3}}$$

 $P=\mu W$ විට, ආස්තරය ලිස්සීම අරඹයි.

$$P = rac{W}{\sqrt{3}}$$
 විට ආස්තරය C වටා පෙරළේ.

 $\mu \mathrm{W} {<} \frac{\mathrm{W}}{\sqrt{3}}$ නම් ආස්තරය පෙරළීමට පෙර ලිස්සයි.

එනම් $\mu < \frac{1}{\sqrt{3}}$ නම් ආස්තරය පෙරළීමට පෙර ලිස්සයි.

7.4 අභාගාසය

- 1. සර්ෂණ සංගුකය $\frac{3}{4}$ ක් වන තිරසට 30° ක් ආනත රළු තලයක් මත $80~\mathrm{kg}$ ක ස්කන්ධයක් ඉහළට චලනය කිරීමට අවශා අවම බලය සොයන්න.
- 2. ති්රසට lpha ආනත වූ තලයක් මත බරක් ඉහළට චලනය කිරීමට අවශා අවම බලය එම බර තලය දිගේ පහළට ලිස්සා යාම වැළැක්වීමට යොදන අවම බලය මෙන් දෙගුණයක් නම් බර සහ තලය අතර සර්ෂණ සංගුණකය $rac{1}{3} an lpha$ බව පෙන්වන්න.
- 3. ආනත තලයක් දිගේ බරක් ඉහළට චලනය කිරීම අවශා අවම බලය P වේ. තලයට සමාන්තරව අවශා අවම බලය $P\sqrt{1+\mu^2}$ බව පෙන්වන්න. මෙහි μ ඝර්ෂණ සංගුණකය වේ.
- 4. රළු ආනත තලයක් දිගේ යෙදෙන P බලය තලය මත වස්තුවක් රඳවා ගැනීමට යන්නම් පුමාණවත් වේ. සර්ෂණ කෝණය λ තලයේ කෝණය α ට වඩා අඩුවේ. වස්තුව තලය දිගේ ඉහළට ඇදගෙන යාමට අවශා අවම පුමාණවත් තලය දිගේ කි්යාකරන බලය $P \frac{\sin\left(\alpha+\lambda\right)}{\sin\left(\alpha-\lambda\right)}$ බව ඔප්පු කරන්න.
- 5. ඒකාකාර ඉණිමගක් සිරසට 30° ක් ආනතව සිරස් බිත්තියක් මත ගැටෙමින් නිශ්චලව පවතී. එය ලිස්සා යාමට ආසන්න තම අවස්ථාවේ පවතී නම් ඝර්ෂණ සංගුණකය බිත්තිය සමගත් පොළොව සමගත් එකම වේ යයි උපකල්පනය කර සොයන්න.
- 6. ඒකාකාර බර W වන ඉණිමගක් රළු තිරස් පොළොව මත සුමට සිරස් බිත්තියකට හේත්තු වෙමින් තිරසට lpha කෝණයක් ආනතව සමතුලිතව පවතී. $\dfrac{w}{W}>\dfrac{2(1-\mu\tan\alpha)}{2\mu\tan\alpha-1}$ නම් බර W වන මිනිසෙකුට ඉණිමග ලිස්සීමෙන් තොරව ඉහළටම නැගීමට හැකි බව ඔප්පු කරන්න.
- 7. දිග 2ℓ වන ඒකාකාර සෘජු බාල්කයක්, උස h වූ රළු බිත්තියක් සමග ගැටෙමින් සීමාකාරි සමතුලිතතාවයේ පවති. බාල්කයේ එක් කෙළවරක් තිරස් තලය මතද අනෙක් කෙළවර බිත්තියෙන් ඉවත ගමන් කරන සේ පවතී. බිත්තියක් පොළොවත් සම සේ රළු නම් ඝර්ෂණ කෝණය λ , $h.\sin 2\lambda = \ell \sin \alpha \cos 2\alpha$ මගින් දෙනු ලබන බව සාධනය කරන්න. මෙහි α යනු බාල්කයේ තිරසට ආනතිය වේ.
- 8. ඒකාකාර ඉණිමගක් දෙකෙළවර රළු සිරස් බිත්තියක් හා ඒ හා සමාන රළු තිරස් බිමක් මත ගැටෙමින් නිශ්චලතාවයේ පවතී. ස්පර්ශ ලස්ෂා දෙකෙහිම ඝර්ෂණ සංගුණක $\frac{1}{3}$ බැගින් වේ. ඉණිමග සිරස සමග ආනතිය $\tan^{-1}\frac{1}{2}$ නම් සමතුලිතතාවය නොබිදෙන පරිදි ඉණිමගේ බරට සමාන බරක් ඉණිමගෙහි පාදයේ සිට $\frac{9}{10}$ ක දුරකට වඩා වැඩි දුරකින් පිහිටි ලස්ෂායකට සම්බන්ධ කළ නොහැකි බව ඔප්පු කරන්න.

- 9. දිග 2a වන බර ඒකාකාර දණ්ඩක් රළු නා දත්තක් මත එක් කෙළවරක් පවතින සේත් රළු සිරස් බිත්තියකට හේත්තු කර සමතුලිතව තබා ඇත. බිත්තියේ සිට නා දත්තට දුර ℓ නම් දණ්ඩ බිත්තිය සමග ගැටෙන ලක්ෂාය නා දත්තට ඉහළින් වේ. දණ්ඩ පහළට ලිස්සා යාමට ආසන්න අවස්ථාවේ පවතී නම් $\sin^3\theta = \frac{c}{a}\cos^2\lambda \text{ බව පෙන්වන්න. මෙහි } \lambda \text{ ගැටෙන ලක්ෂාය 2හිම සර්ෂණ කෝණය වේ } \theta දණ්ඩ යටි සිරස සමග සාදන කෝණයයි.}$
- 10. දිග ℓ වන ඒකාකාර ඉණිමගක් එහි ඉහළ කෙළවර a උසකින් පිහිටි සුමට තිරස් පීල්ලක යන්තම් ඉවතට නෙරන සේ රළු තිරස් පොළොවක් මත නිශ්චලතාවයේ පවතී. ඉණිමග ලිස්සීමට ආසන්න ව ඇත්නම් සහ පොළොව මත ඝර්ෂණ කෝණය λ නම් $\tan\lambda = \frac{a\sqrt{\ell^2-a^2}}{\ell^2+a^2}$ බව ඔප්පු කරන්න.
- 11. ඒකාකාර දණ්ඩක් සීමාකාරී සමතුලිතතාවයේ පවතී එහි එක් කෙළවරක් රළු තිරස් තලය මත ද අනෙක් කෙළවර තිරසට lpha කෝණයකින් ආනත සමාන රළු බවක් ඇති තලයක මත ද වේ දණ්ඩ සිරස් තලයේ පවතී නම් ද ඝර්ෂණ කෝණය λ නම් ද දණ්ඩේ තිරසට ආනතිය $an^{-1}\left[\frac{\sin(lpha-2\lambda)}{2\sin\lambda\sin(lpha-\lambda)}\right]$ බව පෙන්වන්න.
- 12. ඒකාකාර දණ්ඩක් රළු සිරස් පුඩුවක් තුළ රඳවා ඇත. දණ්ඩ පුඩුවේ කේන්දුයේ 60° ක කෝණයක් ආපාතනය කරයි නම් එහි ඝර්ෂණ සංගුණකය $\frac{1}{\sqrt{3}}$ නම් සීමාකාරී සමතුලිතතාවයේදී දණ්ඩ තිරසට ආනතිය $\sin^{-1}\sqrt{\frac{3}{7}}$ බව පෙන්වන්න.
- 13. ඒකාකාර සමාන AC, CB දඩු දෙකක් C හිදී සුමටව සන්ධි කර A,B කෙළවරවල් රළු තිරස් තලයක් හා ස්පර්ශව සිරස් තලයක නිශ්චලතාවක් පවතී. ඝර්ෂණ සංගුණකය μ . නම් සීමාකාරී සමතුලිතතාවයේදී $\sin A\hat{C}B = \frac{4\mu}{1+\mu^2} \, \text{බව පෙන්වන්න}.$
- 14. සමපාද තිුකෝණාකාර ඒකාකාර ආස්තරයක් එක් ශිර්ෂයක් තිරස් තලයක් මත ද අනෙක් ශිර්ෂය සුමට සිරස් බිත්තියකට එරෙහිව ද නිශ්චලතාවයේ පවතී. ආස්තරය සහිත සිරස් තලය බිත්තියට ලම්භක වේ. එම ශිර්ෂ හරහා යන දාරය තිරස් තලය සමග සාදන අඩුතම කෝණය θ , $\cot\theta=2\mu+\frac{1}{\sqrt{3}}$ මගින් ලබා දෙන බව පෙන්වන්න. μ සර්ෂණ සංගුණකය වේ.
- 15. දිග 2a සහ බර Wවන AB ඒකාකාර ඉණිමගක් A කෙළවර රළු තිරස් බිමක ද අනෙක් B කෙළවර රළු සිරස් බිත්තියකට එරෙහිව ද නිශ්චලතාවයේ පවතී. ඉණිමගේ කෙළවරවල් දෙකෙහිම ඝර්ෂණ සංගුණකය μ වේ. ඉනිමග පොළොවට $\frac{\pi}{4}$ ක කෝණයක් ආනත වන අතර බර nW වන කඩා බළලෙක් A කෙළවරේ සිට සීරුවෙන් ඉණිමග දිගේ ඉහළට නගියි. ඉණිමගේ සීමාකාරී සමතුලිතතාවයේදී බළලා

ඉණිමග දිගේ
$$\frac{a}{n\left(1+\mu^2\right)}\Big[\mu^2(1+2n)+2\mu(1+n)-1\Big]$$
 දුරක් නැග ඇති බව පෙන්වන්න.
$$\text{තවදුරටත් }\mu=\frac{1}{2}\text{ බව දී ඇති විට }n<\frac{1}{4}$$
 නම් ඉණිමග ලිස්සීමට පෙර බළලා ඉනිමගේ මුදුනට ළඟා වන බව පෙන්වන්න. $n=\frac{1}{4}$ නම් කුමක් සිදුවේ ද?

- 16. දිග ℓ වන බර W ඒකාකාර AB ඉනිගමක් A කෙළවර රළු තිරස් පොළොව මත ද අනෙක් B කෙළවර සුමට සිරස් බිත්තියකට හේත්තු වන සේ ද සමතුලිතව පවතී. ඉණිමග බිත්තියට ලම්භක සිරස් තලයේ තිරසට α කෝණයකින් ආනත වේ. ඉණිමග හා පොළොව අතර සර්ෂණ සංගුණකය μ වේ. තිරස් P බලයක් $AC = a(<\ell)$ වන සේ ඉණිමග මත වූ C ලක්ෂායක් මත බිත්තිය දෙසට යොදනු ලැබේ. ඉණිමග බිත්තිය දෙසට ලිස්සා යාමට ආසන්නව සීමාකාරී සමතුලිතතාවයේ පවතී නම් $P = \frac{\ell w}{2(\ell-a)} \big(2\mu + \tan\alpha \big)$ බව පෙන්වන්න.
- 17. බරින් සමාන එහෙත් දිගින් අසමාන AB, BC ඒකාකාර දඬු දෙකක් Bහිදී සුමට ලෙස සන්ධි කර එකම තිරස් රේඛාවක වූ සමසේ රළු අචල නා දති දෙකක් මත සිරස් තලයක තබා ඇත. දඬුවල තිරසට ආනතිය α හා β වේ. දඬු දෙකම සීමාකාරි සමතුලිතතාවයේ වේ. අසව්වේ පුතිකිුිිිිිිිිිි තිරසට ආනතිය $2 \tan \theta = \cot(\beta + \lambda) \cot(\alpha \lambda)$ මගින් දෙනු ලබන බව පෙන්වන්න. මෙහි λ යනු දඬු හා නා දති අතර සර්ෂණ කෝණයයි.
- 18. දිග ℓ බැගින් වන ඒකාකාර එක සමාන ඉණිමන් දෙකක් ඒවායේ මුදුන්වලින් අසව් කර පොළොව සමග සිරස් කෝණ 2θ වන පරිදි සමද්විපාද තිකෝණයක් සාදමින් රලු පොළොවක් මත නිශ්චලතාවයේ පවතී. ඉණිමගක බර මෙන් n ගුණයක් බර මිනිසෙක් ඉණිමගක් දිගේ ඉහළට සෙමෙන් ගමන් කරයි ඉණිමගේ ඉහළ සිට ඔහුගේ දුර x වන විට පොළෙවේ දී ඇතිවන පුතිකිුිිිිිියාව ගණනය කර $\frac{nx}{\ell} = \frac{2\mu \tan \theta}{\mu \tan \theta} + n$ වන විට ලිස්සීම ආරම්භ වන බව පෙන්වන්න.
- 19. අරය a වන සුමට සිලින්ඩරයක් රළු තිරස් මේසයක් මත එහි අක්ෂය මේසයට සමාන්තර වන සේ සවිකර ඇත. දිග 6a හා M ස්කන්ධය වන ඒකාකාර ACB දණ්ඩක් A කෙළවර මේසය මත ද ලක්ෂාය සිලින්ඩරය ස්පර්ෂ කරමින් ද සිලින්ඩරයේ අක්ෂායට ලම්භක සිරස් තලයේ මේසය සමග 2θ කෝණයක් සාදමින් සමතුලිතතාවයේ තබා ඇත.
 - a) සිලින්ඩරය මගින් දණ්ඩ මත ඇති කරන බලයේ විශාලත්වය $3{
 m Mg}\cos 2 heta$.au බව පෙන්වන්න.
 - b) සමතුලිතතාව සීමාකාරී නම් දණ්ඩ හා මේසය අතර ඝර්ෂණ සංගුණකය μ , $\mu(\cot\theta-3\cos^22\theta)=3\sin2\theta\cos2\theta$, මගින් දෙනු ලබන බවත් පෙන්වන්න.

20. බර W හා පැත්තක දිග වන ඒකාකාර සණයක කේන්දය හරහා යන සිරස් හරස් කඩ ABCD නිරූපණය කරයි. මෙම සණය තිරසට α කෝණයක් ආනත රළු තලයක් මත තබා ඇත. රූපයේ පෙන්වන පරිදි කුමයෙන් වැඩිවන තිරස් P බලයක් Dහිදි යොදනු ලැබේ. තලය හා සණය අතර සර්ෂණ සංගුණකය μ නම් සණය තලය දිගේ ඉහළට චලනය වීමෙන් සමතුලිතතාව බිඳ වැටීමට μ ට තිබිය හැකි අගය පරාසය සොයන්න. $\tan \alpha = \frac{1}{2}$ බව දී ඇත.

8.0 ගුරුත්ව කේන්දුය

8.1 අංශු පද්ධතියක ගුරුත්ව කේන්දුය

වස්තුවක හෝ දෘඪ ලෙස එකිනෙකට සම්බන්ධ කළ අංශු පද්ධතියක වස්තුව කුමන පිහිටීමක තැබුවත් එහි බරෙහි කිුිිියා රේඛාව සැම විටම ලඤායයක් හරහා ගමන් කරයි. එම ලඤාය ගුරුත්ව කේන්දුය වේ.

අංශු පද්ධතියක ගුරුත්ව කේන්දුය

 w_1, w_2, \ldots, w_n භාරයන් වන අංශු පද්ධතියක් සලකන්න. ඒවා තලයක A_1, A_2, \ldots, A_n ලක්ෂාවල තබා ඇත. සෘජු කෝණාසු OX, OY අක්ෂවලට අනුබද්ධව මෙම ලක්ෂාවල ඛණ්ඩාංක පිළීවෙලින් $(x_i, y_i), (x_i, y_i), \ldots, (x_i, y_i)$ යයි සිතමු.

 OXY ට අනුබද්ධව ගුරුත්ව කේන්දුයේ ඛණ්ඩාංක $\left(\overline{x},\overline{y}
ight)$ ලෙස ගනිමු.

එවිට අංශු භාරයන් සමාන්තර බල පද්ධතියක් ගොඩනගයි. ඒවායේ සම්පුයුක්තය $(w_1+w_2+.....+w_n)$ වන අතර $(\overline{x},\overline{y})$ හිදී කියාකරයි. තලය තිරස් යයි සිතමු. බල හා සම්පුයුක්තය සඳහා OX හා OY වටා සුර්ණ $\overline{x}(w_1+w_2+....+w_n)=w_1x_1+w_2x_2+....+w_nx_n$

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

$$\overline{y}(w_1 + w_2 + \dots + w_n) = w_1 y_1 + w_2 y_2 + \dots + w_n y_n$$

$$\overline{y} = \frac{\sum_{i=1}^n w_i y_i}{\sum_{i=1}^n w_i}$$

සටහන :

ඒකාකාර වස්තු සඳහා ස්කන්ධ කේන්දුයක් ගුරුත්ව කේන්දුයත්, කේන්දුකයත් සාමානායෙන් එකම වේ.

8.2 ඒකාකාර දණ්ඩක ගුරුත්ව කේන්දුය

 ${
m AB}$ ඒකාකාර දණ්ඩක් නම් ${
m AB}$ හි මධා ලක්ෂාය ${
m G}$ නම් එවිට ${
m AB}$ දණ්ඩේ ගුරුත්ව කේන්දුය ${
m G}$ වේ.

ඒකාකාර තිුකෝණාකාර තහඩුවක ගුරුත්ව කේන්දය

ABC තිකෝණාකාර තහඩුවක් යයි සිතමු. එය BC ට සමාන්තරව PQ වැනි තුනී පටි අතිවිශාල ගණණකට බෙදන්නේ යයි සිතමු. එක් එක් පටියේ ගුරුත්ව කේන්දුය ඒවායේ මධා ලක්ෂායේ වේ. ඒ නිසා මුලු තිකෝණයේ ගුරුත්ව කේන්දුය මෙම පටිවල මධා ලක්ෂා හරහා යන රේඛාව මත පිහිටයි. මෙසේ තිකෝණයේ ගුරුත්ව කේන්දුය AD මධාස්ථය මත වේ. එලෙසම ගුරුත්ව කේන්දුය B හා C හරහා යන මධාස්ථ මතද වේ. එබැවින් තිකෝණාකාර ආස්තරයක ගුරුත්ව

කේන්දුය මධාස්ථවල ඡේදන ලක්ෂාය වේ මෙහි $\frac{AG}{GD} = \frac{2}{1}$ ගුරුත්ව කේන්දුය තුිකෝණයේ මධාස්ථය මත ශීර්ෂයේ සිට මධාස්ථයේ දිග

$$\frac{2}{3}$$
ක් දුරින් පිහිටයි.

තිකෝණයේ ශිර්ෂවල තබන ලද සමාන අංශු තුනක ගුරුත්ව කේන්දුය

B හා C හි වූ w භාර දෙක D හි 2w භාරයකට තුලා වේ. මෙහි D යනු BCහි මධා ලක්ෂායයි.

දන් පද්ධතිය A හි w භාරයකට D හි 2w භාරයකට තුලා වේ.

 ${\bf A}$ හි ${\it w}$ භාරයක් ${\bf D}$ හි $2{\it w}$ භාරයක් ${\bf G}$ හි $3{\it w}$ භාරයකට තුලා වේ.

එනයින් පද්ධතියේ ගුරුත්ව කේන්දුය මධාාස්ථවල ඡේදන ලඤායයි.

ඒකාකාර සමාන්තරාසුයක හැඩය ඇති ආස්තරයක ගුරුත්ව කේන්දුය

සමාන්තරාසුාකාර ආස්තරයක ගුරුත්ව කේන්දුය එහි විකර්ණවල ඡේදන ලක්ෂාය වේ.

ඒකාකාර වෘත්තාකාර වලල්ලක ගුරුත්ව කේන්දුය

වෘත්තාකාර වලල්ල ඕනෑම විශ්කම්භයක් වටා සමමිතික වේ. එබැවින් වෘත්තාකාර වලල්ලක ගුරුත්ව කේන්දය විශ්කම්භ හමුවන ලකුෂා එනම් වෘත්තාකාර වලල්ලේ කේන්දුය වේ.

8.3 විසඳු නිදසුන්

උදාහරණ 1

සෘජුකෝණාසුයක පැත්තක දිග අනෙක් පැත්තේ දිග මෙන් දෙගුණයක් වේ. දිග පැත්ත මත සමපාද තිුකෝණයක් නිර්මාණය කර ඇත. සෘජුකෝණාසුයෙන් හා තිුකෝණයෙන් සැදුන ආස්තරයේ ගුරුත්ව කේන්දුය සොයන්න.

 $\mathrm{AB}=a$ ලෙස ගන්න. එවිට $\mathrm{AE}=2a$ වේ.

සමමිතියෙන් ආස්තරයේ ගුරුත්ව කේන්දුය MCමත පිහිටමි.

M යනු AE හි මධා ලක්ෂායයි.

$$ABDE$$
 හි වර්ගඵලය = $2a^2$

BCD හි වර්ගඵලය =
$$\sqrt{3}a^2$$

ඒකක වර්ගඵලයක බර w ලෙස ගනිමු.

ආස්තරය	බර	ගුරුත්ව කේන්දුයට M සිට MC දිගේ ඇති දුර
ABDE	$2a^2w$	$\frac{a}{2}$
BDC	$\sqrt{3}a^2$ w	$a+\frac{1}{3}\sqrt{3}a$
ABCDE	$\left(2+\sqrt{3}\right)a^2$ w	\overline{x}

AEවටා සුර්ණය ගැනීමෙන්

$$(2+\sqrt{3})a^2 \le \overline{x} = 2a^2 \le \frac{a}{2} + \sqrt{3}a^2 \le \left(a + \frac{\sqrt{3}a}{3}\right)$$
$$(2+\sqrt{3}) \overline{x} = a + \sqrt{3}a + a$$
$$= (2+\sqrt{3})a$$
$$\overline{x} = a$$

එබැවින් ගුරුත්ව කේන්දුය N , BD හි මධා ලක්ෂා වේ.

උදාහරණ 2

ABCDE එහි ABDE සෘජුකෝණාසුයක් BCD සෘජුකෝණි තිකෝණයක් වේ. ඒකාකාර ආස්තරයක් රූපයෙන් පෙන්වයි. ආස්තරයේ ගුරුත්ව කේන්දුය සොයන්න. ආස්තරය Cහි නිදහසේ එල්ලා ඇති විට සිරස සමග CE සාදන කෝණය සොයන්න.

ABDE හි වර්ගඵලය =
$$15 \times 12 = 180 \text{ cm}^2$$

BCD හි වර්ගඵලය =
$$\frac{1}{2} \times 12 \times 6 = 36 \text{ cm}^2$$

ඒකක වර්ගඵලයක බර w ලෙස ගනිමු

ආස්තරය	බර	ගුරුත්ව කේන්දුයට බර	
		AE සිට	AB සිට
ABDE	180w	$\frac{15}{2}$ cm	6 cm
BCD ABCE	36w 216w	$15 + \frac{1}{3} \times 6 = 17 \text{ cm}$ \overline{x}	$\frac{2}{3} \times 12 = 8 \text{ cm}$ \overline{y}

AE වටා සූර්ණය ගැනීමෙන්

$$216w \,\overline{x} = 180w \times \frac{15}{2} + 36w \times 17$$

$$12 \,\overline{x} = 75 + 34$$

$$= 109$$

$$\overline{x} = \frac{109}{12} \,\text{cm}$$

AB වටා සූර්ණය ගැනීමෙන්

$$216w \overline{y} = 180w \times 6 + 36w \times 8$$

$$12 \overline{y} = 60 + 16$$

$$= 76$$

$$\overline{y} = \frac{19}{3} \text{ cm}$$

ගුරුත්ව කේන්දුය AE සිට $\frac{19}{3}\,\mathrm{cm}\,,~~AB$ සිට $\frac{109}{12}\,\mathrm{cm}$ ක දුරකින් වේ.

ආස්තරය C වටා නිදහසේ එල්ලන විට CG සිරස් වේ.

$$\tan \theta = \frac{MG}{CM}$$

$$= \frac{12 - \overline{y}}{21 - \overline{x}}$$

$$= \frac{12 - \frac{19}{3}}{21 - \frac{109}{12}}$$

$$= \frac{68}{143}$$

$$\theta = \tan^{-1}\left(\frac{68}{143}\right)$$

උදාහරණ 3

බර නිව්ටන් 5, 7, 6, 8, 4 සහ 9 බැගින් වූ අංශු ඒකාකාර සේසුයක කෝණික ලක්ෂාවල පිළිවෙළින් තබා ඇත. ගුරුත්ව කේන්දය සේසුයේ කේන්දය සමග සම්පාත වන බව පෙන්වන්න.

ෂඩසුයේ පාදයක දිග 2a සහ ෂඩසුයේ කේන්දුය O ලෙස ගන්න. තවදුරටත් OC රේඛාව X අක්ෂය ලෙස ද සහ OM රේඛාව y අක්ෂය ලෙස ද ගන්න.

AB =
$$2a \Rightarrow$$
 OC= $2a$ =OD
 \Rightarrow OM = $\sqrt{4a^2 - a^2} = \sqrt{3}a$

ගුරුත්ව කේන්දුයේ ඛණ්ඩාංකය $\left(\overline{x},\overline{y}
ight)$ ලෙස ගන්න.

OC වටා සුර්ණය ගැනීමෙන්

$$6.2a + 8.a + 7.a + 4.(-a) + 5.(-a) + 9.(-2a) = (6 + 8 + 7 + 4 + 5 + 9)\overline{x}$$

$$\overline{x} = \frac{27a - 27a}{39}$$

$$= 0$$

OM වටා සූර්ණය ගැනීමෙන්

$$8.a\sqrt{3} + 4.a\sqrt{3} + 6.0 + 9.0 + 5.(-a\sqrt{3}) + 7.(-a\sqrt{3}) = (6 + 8 + 7 + 4 + 5 + 9)\overline{y}$$
$$\overline{y} = \frac{12a\sqrt{3} - 12a\sqrt{3}}{39}$$
$$= 0$$

ෂඩසුයේ කේන්දුය වන O ලක්ෂාය සමග ගුරුත්ව කේන්දුය සම්පාත වේ.

උදාහරණ 4

අරය r වන වෘත්තාකාර තැටියකින් එකි අරය විෂ්කම්භය වන පරිදි අරය $\frac{r}{2}$ වූ ඒකාකාර වෘත්තාකාර තැටියක් කපා ඉවත් කරනු ලැබේ. ශේෂයේ ගුරුත්ව කේන්දුය සොයන්න.

වෘත්තාකාර තැටියේ විෂ්කම්භය AB ලෙස ගනිමු O යනු එහි කේන්දයයි.

 ${
m AO}$ විෂ්කම්භය වන පරිදි වූ තැටියේ කේන්දුය ${
m O}'$ ලෙස ද ඒකක වර්ගඵලයක බර w ලෙස ද ගනිමු.

විශාල වෘත්තාකාර තැටියේ බර $=\pi r^2 w$

කුඩා වෘත්තාකාර තැටියේ බර
$$=\pi \left(\frac{r}{2}\right)^2 w = \frac{1}{4}\pi r^2 w$$

ශේෂයේ ගුරුත්ව කේන්දුය $\, {
m G} \,$ ලෙස ගනිමු

සමමිතිකත්වයෙන් ශේෂයේ ගුරුත්ව කේන්දුය AB මත වේ.

$$\left(\pi r^2 w - \frac{\pi}{4} r^2 w\right) AG = \pi r^2 w \times AO - \frac{\pi}{4} r^2 w \times AO$$

$$= \frac{\pi r^2 w. \ r - \frac{\pi}{4} r^2 w. \frac{r}{2}}{\frac{3}{4} \pi r^2 w}$$

$$=\frac{\frac{7}{8}r}{\frac{3}{4}}$$

$$=\frac{7}{6}r$$

$$OG = \frac{7}{6}r - r = \frac{r}{6}$$

එම නිසා ශේෂයේ ගුරුත්ව කේන්දුයට දුර මුල් තැටියේ කේන්දුයේ සිට විෂ්කම්භය දිගේ දුර $\frac{1}{6}r$ වේ.

 ABCD යනු පැත්තක දිග 2a වූ සමචතුරසාකාර ආස්තරයකි E යනු BC පාදරයේ මධා ලක්ෂායයි. A සිට AECD කොටසේ ගුරුත්ව කේන්දුයට දුර සොයන්න.

AB සහ AD පිළිවෙළින් x,y අකුදෙ ඒකක වර්ගඵලයක බර w ලෙස ද ගනිමු.

ABCD ආස්තරයේ බර $4a^2w$ වේ.

$$\operatorname{ABE}$$
 කොටසේ බර $\frac{1}{2} \cdot 2a^2w = a^2w$ වේ.

 ABCD සහ ABE හි ගුරුත්ව කේන්දුයන් පිළිවෙළින් $\operatorname{G}_1,\operatorname{G}_2$ ලෙස ගනිමු. ABCD කොටසේ ගුරුත්ව කේන්දුය G ලෙස ද ගනිමු.

$$G = (\overline{x}, \overline{y})$$
 ලෙස ගනිමු

AD වටා සුර්ණ ගැනීමෙන්

$$(4a^2w - a^2w)\overline{x} = 4a^2w \times a - a^2w \times \frac{2}{3} \times 2a$$

$$3a^2w\ \overline{x} = \frac{8}{3}a^3w$$

$$\overline{x} = \frac{8}{9}a$$

$$AG^{2} = \overline{x}^{2} + \overline{y}^{2}$$

$$= \left(\frac{8a}{9}\right)^{2} + \left(\frac{11a}{9}\right)^{2}$$

$$= \frac{\sqrt{185}}{9}a$$

AB වටා සූර්ණ ගැනීමෙන්

$$(4a^2w - a^2w)\overline{y} = 4a^2w \times a - a^2w \times \frac{1}{3} \times a$$

$$3a^2w\,\overline{y} = \frac{11}{3}a^3w$$

$$\overline{y} = \frac{11}{9}a$$

උදාහරණ 6

 $A \ BC$ ඒකාකාර තිුකෝණාකාර ආස්තරයක් AC පාදය තිරස් මේසයක් සමග සම්බන්ධව C හි මහා කෝණයක් වන පරිදි සිරස් තලයක පිහිටුවා ඇත.

ආස්තරය නොපෙරළෙන පරිදි \mathbf{B} ලක්ෂා මත තැබිය හැකි උපරිම බර $\frac{1}{3}Wigg(rac{a^2+3b^2-c^2}{c^2-a^2-b^2}igg)$ බව පෙන්වන්න.

මෙහි ${f w}$ යනු තිකෝණයේ බර වන අතර ${f a},{f b},{f c}$ සඳහා සුපුරුදු තේරුම ඇත.

ආස්තරයේ ගුරුත්ව කේන්දුය, තිුකෝණයේ ශිර්ෂ මත තබන සමාන බරවල ගුරුත්ව කේන්දුයම වේ.

එබැවින් ${
m A, B, C}$ ලඎවල බර ${1\over 3} W$ බැගින් වේ.

Bහි තැබිය හැකි විශාලතම බර w ලෙස ගනිමු. මෙම අවස්ථාවේදී ආස්තරය මත මේසය මගින් ඇති කරනු ලබන පුතිකියාව C ලක්ෂා හරහා කියාකරයි.

В

ආස්තරයේ බර Wයන්න A , B සහ C ලක්ෂා මත තබන ලද බර $\dfrac{W}{3}$ බැගින් වන අංශු තුනක් ලෙස සැලකිය හැකිය. w බර වැඩිවන විට ආස්තරය $\mathrm C$ ලකුෂා වටා පෙරලීමට යොමුවේ. $\mathrm w$ වැඩිතම විට $\mathrm R$ පුතිකිුයාව $\mathrm C$ හි කියාකරයි.

ආස්තරයේ සමතුලිතතාවය සඳහා f C වටා සූර්ණය ගැනීමෙන්,

$$\left(w + \frac{W}{3}\right)a\cos(\pi - c) - \frac{W}{3} \cdot b = 0$$

$$\left(\frac{w + \frac{W}{3}}{\frac{W}{3}}\right) = \frac{b}{-a\cos c} = \frac{b}{-a\left(\frac{a^2 + b^2 - c^2}{2ab}\right)} = \frac{2b^2}{c^2 - a^2 - b^2}$$

$$\frac{w}{\frac{W}{3}} = \frac{2b^2 - (c^2 - a^2 - b^2)}{c^2 - a^2 - b^2}$$

$$w = \frac{W}{3}\left(\frac{3b^2 + a^2 - c^2}{c^2 - a^2 - b^2}\right)$$

ඒකාකාර වෘත්ත චාපයක ගුරුත්ව කේන්දය

 AB යනු වෘත්ත චාපයක් ලෙස ද O යනු අරය a වන වෘත්තයක කේන්දුයද ලෙස ගනිමු. AB, O කේන්දුයෙහි ආපාතනය කරන කෝණය 2lpha වේ.

P, Q යනු $P\hat{O}Q = \delta heta$ එහි $M\hat{O}P = heta$ වන පරිදි වූ යාබද ලක්ෂා දෙකකි.

 ${f M}$ යනු වෘත්ත චාපයේ මධා ලසා ලෙස ද, දිගක බර w ලෙස ද ගනිමු.

$$PQ$$
 කොටසේ බර $= a \delta \theta w$

$$AB$$
 බණ්ඩලය් බර $=\int\limits_{-\alpha}^{+\alpha}a\;d\theta$ w

 PQ කොටසේ ගුරුත්ව කේන්දුය O සිට $a\cos heta$ දූරින් වේ.

සමමිතියෙන් AB චාපයේ ගුරුත්ව කේන්දුය OM මත පිහිටයි. AB චාපයේ ගුරුත්ව කේන්දුය G ලෙස ගනිමු. O වටා සුර්ණ ගැනීමෙන්

$$\begin{bmatrix} \int_{-\alpha}^{+\alpha} a \ d\theta \ w \end{bmatrix} OG = \int_{-\alpha}^{+\alpha} a \ d\theta \ w \cdot a \cos \theta$$

$$aw \int_{-\alpha}^{+\alpha} d\theta \cdot OG = a^2 w \int_{-\alpha}^{+\alpha} \cos \theta d\theta$$

$$aw [\theta]_{-\alpha}^{+\alpha} \cdot OG = a^2 w [\sin \theta]_{-\alpha}^{+\alpha}$$

$$aw \cdot 2\alpha \cdot OG = a^2 w \cdot 2 \sin \alpha$$

$$OG = \frac{a \sin \alpha}{\alpha}$$

ආපෝහනය :

$$lpha=rac{\pi}{2}$$
 වන විට අර්ධ වෘත්ත චාපයක ගුරුත්ව කේන්දුය, ${
m OG}=rac{a\sinrac{\pi}{2}}{rac{\pi}{2}}=rac{2a}{\pi}$

$$OG = \frac{a \sin \frac{\pi}{2}}{\frac{\pi}{2}} = \frac{2a}{\pi}$$
 $\odot \mathfrak{D}$.

ඒකාකාර වෘත්තාකාර කේන්දික ඛණ්ඩයක ගුරුත්ව කේන්දුය

 ${
m AOB}$ යනු අරය a සහ කේන්දුය ${
m O}$ වන වෘත්තයක කේන්දික ඛණ්ඩයකි.

AB චාපය O හිදී 2lpha කෝණයක් ආපතනය කරයි. ABහි මධා ලක්ෂා M වේ.

P,~Q යනු $\hat{MOP} = \theta$ සහ $\hat{POQ} = \delta\theta$ වන පරිදි AB වාපය මත යාබද ලක්ෂා දෙකකි. ඒකක වර්ගඵලයක බර m වේ.

$$POQ \Delta$$
 බර $= \frac{1}{2}a^2 \delta\theta m$

$$AOB$$
 කේන්ලික ඛණ්ඩගේ $=\int\limits_{-a}^{+a}rac{1}{2}a^2d\theta\ m$

 ${
m OPQ}$ හි කේන්දුයට ${
m O}$ සිට ඇති දුර ${2\over 3}a\cos heta$ වේ.

සමමිතියෙන් කේන්දික ඛණ්ඩයේ ගුරුත්ව කේන්දය $G\,,\;OM$ මත පිහිටයි.

O වටා සුර්ණ ගැනීමෙන්

$$\begin{bmatrix} \int_{-\alpha}^{+\alpha} \frac{1}{2} a^2 d\theta . m \end{bmatrix} OG = \int_{-\alpha}^{+\alpha} \frac{1}{2} a^2 d\theta . m . \frac{2}{3} a \cos \theta$$
$$\frac{ma^2}{2} [\theta]_{-\alpha}^{+\alpha} . OG = \frac{ma^3}{3} [\sin \theta]_{-\alpha}^{+\alpha}$$
$$\frac{ma^2}{2} [2\alpha] . OG = \frac{ma^3}{3} . 2 \sin \alpha$$
$$OG = \frac{2}{3} . a \frac{\sin \alpha}{\alpha}$$

අර්ධ වෘත්තාකාර තැටියක ගුරුත්ව කේන්දුය

$$\alpha = \frac{\pi}{2}$$
, OG = $\frac{2}{3} \frac{a \sin \frac{\pi}{2}}{\frac{\pi}{2}} = \frac{4a}{3\pi}$

ඒකාකාර වෘත්ත ඛණ්ඩයක ගුරුත්ව කේන්දුය

AMB යනු කේන්දුය O සහ අරය a වන වෘත්ත ඛණ්ඩයකි. සමමිතියෙන් වෘත්ත ඛණ්ඩයේ ගුරුත්ව කේන්දුය G , OM මත පිහිටයි.

W - 8 m m 20 00 00 00 00 00 00 00 00 00 00 00 00			
රූපය	බර	0 සිට ගුරුත්ව කේන්දුය	
OAMB කේන්දික ඛණ්ඩය	$\frac{1}{2}a^2.2\alpha.w$	$\frac{2}{3}a\frac{\sin\alpha}{\alpha}$	
OAB තිුකෝණ	$\frac{1}{2} \cdot 2a \sin \alpha \cdot a \cos \alpha \cdot w$	$\frac{2}{3}a\cos\alpha$	
AMB වෘත්ත ඛණ්ඩය	$a^2(\alpha - \sin \alpha \cos \alpha)w$	OG	

в

M

N

O වටා සුර්ණය ගැනීමෙන්,

$$a^{2}(\alpha - \sin \alpha \cos \alpha)w \cdot OG = \frac{1}{2}a^{2} \cdot 2\alpha \cdot w \cdot \frac{2}{3}a \frac{\sin \alpha}{\alpha} - \frac{1}{2} \cdot 2a \sin \alpha \cdot a \cos \alpha \cdot w \cdot \frac{2}{3}a \cos \alpha$$

$$(\alpha - \sin \alpha \cos \alpha) \cdot OG = \frac{2}{3}a \sin \alpha - \frac{2}{3}a \sin \alpha \cos^{2} \alpha$$

$$= \frac{2}{3}a \sin \alpha (1 - \cos^{2} \alpha)$$

$$= \frac{2}{3}a \sin^{3} \alpha$$

$$OG = \frac{2a \sin^{3} \alpha}{3(\alpha - \sin \alpha \cos \alpha)}$$

අපෝහනය :

$$lpha=rac{\pi}{2}$$
 වන විට, වෘත්ත ඛණ්ඩය අර්ධ වෘත්තාකාර ආස්තරයකට පත්වේ. ${
m OG}=rac{4a}{3\pi}$

ඒකාකාර ඝන අර්ධ ගෝලයක ගුරුත්ව කේන්දුය

 OM සමමිතික අසාය ලෙස ද ගෝලයේ කේන්දුය O සහ අරය a ලෙස ගනිමු.

 PQ යන්න ඝනකම δx වූ O සිට x දුරකින් පිහිටි වෘත්තාකාර තැටියකි.

ගෝලයේ ඝනත්වය w ලෙස ගනිමු.

PQ හි ස්කන්ධය $PQ = \pi r^2 \delta x$.w

 ${
m PQ}$ හි ස්කන්ධය = $\pi(a^2-x^2)\delta x$ w හි ගුරුත්ව කේන්දුය ${
m O}$ සිට x දුරකින් වේ.

$$\therefore$$
 අර්ධ ගෝලයේ ස්කන්ධය $=\int\limits_0^a\piig(a^2-x^2ig)dx$ w

සමමිතිකත්වයෙන් අර්ධ ගෝලයේ ගුරුත්ව කේන්දුය $G\,,\, OM$ මතO වටා සුර්ණ ගැනීමෙන්

ඒකාකාර කුහර අර්ධ ගෝලයක ගුරුත්ව කේන්දුය

 OM යනු සමමිතික අක්ෂය ද ගෝලයේ කේන්දුය O සහ අරය a ලෙස ද ගනිමු.

 ${
m PQ}$ යනු උස $a\,\delta heta$ වන ${
m O}$ සිට $a\cos heta$ දුරකින් පිහිටි වෘත්තාකාර මුදුවකි.

ඒකක වර්ගඵලයක බරw ලෙස ද ගනිමු.

$$PQ$$
 මුදුවේ බර = $(2\pi a\delta\theta)(a\delta\theta).w$

 PQ හි ගුරුත්ව කේන්දුය O සිට $a\cos heta$ දූරින් වේ.

$$\therefore$$
 කුහර අර්ධ ගෝලයේ බර $=\int\limits_0^{\pi\over2}2\pi a\sin heta\;a\;d heta\;w$

සමමිතියෙන් අර්ධ ගෝලයේ ගුරුත්ව කේන්දුය G , OM මත පිහිටයි.

O වටා සූර්ණ ගැනීමෙන්,

$$\left[\int_{0}^{\frac{\pi}{2}} 2\pi a \sin \theta \ a \ d\theta \ w\right] OG = \int_{0}^{\frac{\pi}{2}} 2\pi a \sin \theta \ a \ d\theta \ wa \cos \theta$$

$$2\pi a^2 w \int_{0}^{\frac{\pi}{2}} \sin\theta \ d\theta. \text{ OG} = \pi a^3 w \int_{0}^{\frac{\pi}{2}} \sin 2\theta \ d\theta$$

$$2\pi a^2 w \left[-\cos\theta \right]_0^{\frac{\pi}{2}} .OG = \pi a^3 w \left[-\cos 2\theta \right]_0^{\frac{\pi}{2}}$$

$$2\pi a^2 w [0-(-1)]$$
.OG = $\pi a^3 w$

$$OG = \frac{a}{2}$$

ඒකාකාර ඝන කේතුවක ගුරුත්ව කේන්දුය

කේතුවේ උස h ලෙස ද අර්ධ සිරස් කෝණය lpha ලෙස ගනිමු.

ඝනකම δx වන O ශිර්ෂයේ සිට x දුරකින් පිහිටි PQ වෘත්තාකාර තැටියක් සලකන්න.

කේතුවේ ඝණත්වය w ලෙස ගන්න.

$$PQ$$
 හි බර = $\pi r^2 \delta x$ w g = $\pi (x \tan \alpha)^2 \delta x$.w g

ෙක්තුවේ බර
$$= \int_{0}^{h} \pi x^{2} \tan^{2} \alpha . dx \text{ w.g}$$

 PQ හි ගුරුත්ව කේන්දුය O සිට x දුරකින් වේ. සමමිතියෙන් කේතුවේ ගුරුත්ව කේන්දුය G , OM මත පිහිටයි.

O වටා සූර්ණ ගැනීමෙන්

OG.
$$\left[\int_{0}^{h} \pi x^{2} \tan^{2} \alpha \, dx \, w \, g\right] = \int_{0}^{h} \pi x^{2} \tan^{2} \alpha \, dx \, w.x \, g$$
OG.
$$\left[\pi \tan^{2} \alpha \, w \int_{0}^{h} x^{2} dx\right] = \pi \tan^{2} \alpha \, w \int_{0}^{h} x^{3} dx$$
OG.
$$\pi \tan^{2} \alpha \, w \left|\frac{x^{3}}{3}\right|_{0}^{h} = \pi \tan^{2} \alpha \, w \left|\frac{x^{4}}{4}\right|_{0}^{h}$$
OG.
$$\frac{\pi}{3} h^{3} \tan^{2} \alpha \, w = \frac{\pi}{4} h^{4} \tan^{2} \alpha \, w$$

$$\therefore \text{ OG} = \frac{3}{4} h$$

ඒකාකාර කුහර කේතුවක ගුරුත්ව කේන්දුය

කේතුවේ උස h ලෙස ද අර්ධ සිරස් කෝණය lpha ලෙස ද ගනිමු. උස δx වන $x\coslpha$ දුරකින් පිහිටි වෘත්තාකාර මුදුවක් සලකන්න. ඒකක වර්ගඵලයක බර w ලෙස ගනිමු

$$PQ$$
 හි බර = $2\pi(x\sin\alpha)\delta x$. w

කේතුවේ බර
$$=\int\limits_0^\ell 2\pi ig(x\sinlphaig)dx$$
. w

සමමිතියෙන් කේතුවේ ගුරුත්ව කේන්දුය $G,\ OM$ මත පිහිටයි. O වටා සුර්ණ ගැනීමෙන්

$$OG.\left[\int_{0}^{\ell} 2\pi(x\sin\alpha) \, dx.w\right] = \int_{0}^{\ell} 2\pi x\sin\alpha \, dx. x\cos\alpha.w$$

$$OG.2\pi \sin \alpha.w \int_{0}^{\ell} x \, dx = 2\pi \sin \alpha \cos \alpha \int_{0}^{\ell} x^{2} dx.w$$

OG.2
$$\pi$$
sin α . $w \left| \frac{x^2}{2} \right|_0^\ell = 2\pi$ sin α cos α . $w \left| \frac{x^3}{3} \right|_0^\ell$

$$OG. \left[2\pi \sin \alpha \ w \ \frac{\ell^2}{2} \right] = 2\pi \sin \alpha \cos \alpha . w \frac{\ell^3}{3}$$

$$OG = \frac{2}{3}\ell\cos\alpha$$

$$OG = \frac{2}{3}h$$

අරය r සහ උස h වන වන ඒකාකාර සහ සෘජු වෘත්තාකාර සිලින්ඩරයක් සිදුරු කර හැරීමෙන් අරය r සහ උස $\frac{h}{2}$ වන සෘජු වෘත්තාකාර කේතුවක් ඉවත් කරනු ලබන්නේ කේතුවේ ආධාරකය සිලින්ඩරයේ එක් කෙලවරක් සමඟ සමපාත වන පරිදිය. ඉතිරිවන කොටසේ ගුරුත්වකේන්දුයට කේතුවේ ආධාරකයේ සිට අසෂය මත $\frac{23h}{40}$ ක දුරකින් පිහිටන බව පෙන්වන්න.

සමමිතියෙන් ශේෂයේ ගුරුත්ව කේන්දුය O හරහා යන අඤය මත පිහිටයි.

රූපය	බර	0 සිට ගුරුත්ව කේන්දුක ඇති දුර
සිලින්ඩරය	$\pi r^2 h ho g$	$\frac{h}{2}$
කේතුව	$\frac{1}{3}\pi r^2 \frac{h}{2} pg$	$\frac{1}{4} \left(\frac{h}{2} \right) = \frac{h}{8}$
<u></u> ඉශ්ෂය	$\frac{5}{6}\pi r^2 h ho g$	OG

O වටා සූර්ණ ගැනීමෙන්

$$\frac{5}{6}\pi r^2 h \rho g.OG = \pi r^2 h \rho g \left(\frac{h}{2}\right) - \frac{1}{3}\pi r^2 \left(\frac{h}{2}\right) \rho g. \left(\frac{h}{8}\right)$$
$$\frac{5}{6}.OG = \frac{h}{2} - \frac{h}{48} = \frac{23h}{48}$$
$$OG = \frac{23h}{40}$$

උදාහරණ 8

අර්ධ ගෝලයයත් අඩ සිරස් කෝණය α වන සෘජු වෘත්තාකාර අරයයන් a බැගින් වන අතර ඒවායේ පතුල සම්පාත වන පරිදි එකිනෙකට පාස්සා ඒකකාර ඝන දෘඪ වස්තුවක් සාදා ඇත. දෘඪ වස්තුව අර්ධ ගෝලයේ වකු පෘෂ්ඨයේ ඕනෑම ලක්ෂයක් තිරස් මේසයක් මත ස්පර්ශ වීමෙන් සමතුලිතතාවයේ පවතී නම් α හි අගය සොයන්න.

දෘඪ වස්තුව අර්ධ ගෝලයේ වකු පෘෂ්ඨයේ ඕනෑම ලක්ෂයක් තිරස් මේසය ස්පර්ශව ඇති විට සමතුලිතතාවන් පවතී. එවිට ස්පර්ශ ලක්ෂය හරහා පුතිකිුයාව සහ මුළු වස්තුවේ බර (w_l+w_2) සමානව හා පුතිවිරුද්ධව එකම රේඛාවේ කිුියා කරයි. එබැවින් සංයුක්ත වස්තුවේ ගුරුත්වකේන්දුය G හා අර්ධගෝලයේ ආධාරක තලයේ කේන්දුය වන O යන ලක්ෂ දෙක සමපාත වේ.

$$w_1. OG_1 - w_2. OG_2 = 0$$

$$\frac{2}{3}\pi a^3 \rho. \frac{3}{8}a - \frac{1}{3}\pi a^2 h \rho. \frac{1}{4}h = 0$$

$$3a^2 = h^2$$

$$\frac{a}{h} = \frac{1}{\sqrt{3}}$$

$$\tan \alpha = \frac{1}{\sqrt{3}}$$

$$\alpha = \frac{\pi}{6}$$

සණත්වය ρ ද පතුලේ අරය a ද, උස 4a ද වන ඒකාකාර සන සෘජුවෘත්ත කේතුවක් සහ සනත්වය $\lambda \rho$ ද පතුලේ අරය a ද වන ඒකාකාර සන අර්ධ ගෝලයක් ඒවායේ ආධාරක සම්පාත වන පරිදි එකට සම්බන්ධ කිරීමෙන් සෑදෙන සංයුක්ත වස්තුවෙන් සෙල්ලම් බඩුවක් සාදා ඇත. පොදු පතුලේ සිට සෙල්ලම් බඩුවේ ගුරුත්ව කේන්දුට ඇති දුර සොයන්න. සෙල්ලම් බඩුවට කේතුවේ වකු පෘෂ්ඨය සුමට තිරස් තලයක් හා ස්පර්ශව ස්ථායී සමතුලිතතාවයේ පැවතීමට නොහැකි නම් $\lambda > 20$ බව පෙන්වන්න.

සමමිතියෙන් සෙල්ලම් බඩුවේ ගුරුත්ව කේන්දුය G, OM මත පිහිටයි.

රූපය	බර	N සිට ගුරුත්ව කේන්දුයට ඇති දුර
කේතුව	$\frac{1}{3}\pi a^2.4a.\rho g$	$NG_1 = -\frac{1}{4}.4a = -a$
අර්ධ ගෝලය	$\frac{2}{3}\pi a^3.\lambda ho \mathrm{g}$	$NG_2 = \frac{3a}{8}$
සෙල්ලම් බඩුව	$\frac{2}{3}\pi a^3 \rho (2+\lambda) g$	NG

O වටා සුර්ණ ගැනීමෙන්,

$$\frac{2}{3}\pi a^{3}\rho(2+\lambda)g \cdot NG = \frac{4}{3}\pi a^{3}\rho g(-a) + \frac{2}{3}\pi a^{3}\lambda\rho g \cdot \frac{3a}{8}$$
$$(2+\lambda).NG = -2a + \frac{3a}{8}\lambda$$
$$NG = \frac{(3\lambda - 16)}{8(2+\lambda)}a$$

සමතුලිතතාව ස්ථායී නොවීම සඳහා $NC \le NG$

$$a \tan \alpha < \frac{(3\lambda - 16)}{8(2 + \lambda)}a$$

$$\frac{1}{4} < \frac{(3\lambda - 16)}{8(2 + \lambda)}$$

$$2(2 + \lambda) < 3\lambda - 16$$

$$20 < \lambda$$

අර්ධ සිරස් කෝණය 15° වන ඒකාකාර ඝණ කේතුවක් එහි පතුල රළු තිරස් පොළොවක් මත නිශ්චලව පවතී. කේතුවේ ශීර්ෂයට ගැට ගසන ලද සැහැල්ලු අවිතනා තන්තුවක් මගින් කේතුවේ අඤය හරහා යන සිරස් තලයේ තිරස සමග 45° ක කෝණයකින් යටි අතට ඇඳීමෙන් ඇල කරනු ලැබේ. කේතුවේ ශීර්ෂය, කේතුව පොළොව සමග ස්පර්ශ වන ලඤාගයට සිරස්ව ඉහළින් පිහිටන විට කේතුවේ කෙළවර පොළොව මත ලිස්සා යාමට ආසන්න වේ. තන්තුවේ ආනතිය T අභිලම්භ පුතිකිුයාව හා ඝර්ෂණ බලය නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා දක්වන්න. එමගින්

i.
$$T = \frac{3\sqrt{2}}{16}$$
 W

 $\ddot{\mathrm{II}}$. සර්ෂණ සංගුණකයේ අගය $\frac{3}{19}$ බව පෙත්වත්ත.

කේතුවේ සමතුලිතතාවය සඳහා

A වටා සූර්ණය ගැනීමෙන්

Ao
$$T.\ell \sin 45^{\circ} - W.\frac{3}{4}h \sin 15^{\circ} = 0$$

$$T.h \sec 15^{\circ}.\sin 45^{\circ} - W.\frac{3}{4}h \sin 15^{\circ} = 0$$

$$\frac{T}{\sqrt{2}\cos 15^{\circ}} = \frac{3}{4}W\sin 15^{\circ}$$

$$T = \frac{3\sqrt{2}}{8}W\sin 30^{\circ}$$

$$=\frac{3\sqrt{2}}{16}W$$

$$\uparrow$$
 R. Tcos 45° - W = 0

$$R = \frac{19}{16}W$$

බල තිරස්ව විභේදනයෙන්

$$\leftarrow$$
 F - Tsin 45° = 0

$$F = \frac{3}{16}W$$

සීමාකාරී සමතුලිතතාවය සඳහා

$$\frac{F}{R} = \mu$$

$$\mu = \frac{\frac{3}{16}W}{\frac{19}{16}W}$$

$$= \frac{3}{19}$$

අරය a වූ ඒකාකාර ඝන අර්ධ ගෝලයකින් පතුලේ අරය a සහ උස a වන ඍජු වෘත්තාකාර කේතුවක් ඉවත් කරමින් ඝන වස්තුවක් සාදා ඇත. අර්ධ ගෝලයේ සහ කේතුවේ තල ආධාරක සමපාත වන අතර දෙකෙහිම

පොදු උස h වූ සෘජුවෘත්තාකාර කේතුවක ස්තරය ස්කන්ධ කෝණය ශීර්ෂයේ සිට $\frac{3}{4}h$ දුරකින් ඇතැයි උපකල්පනය කර කේන්දය O වේ. O සිට ඝන වස්තුවේ ස්කන්ධ කේන්දය G ට ඇති දුර සොයන්න.

සත වස්තුව එහි වකු පෘෂ්ඨයේ ලස්ෂායක්, තිරස සමග heta කෝණයක් සාදමින් ආතතව පවතින රළු තලයක් හා ස්පර්ශව සමතුලිතතාවයේ පවතී. සත වස්තුවේ හරස්කඩක් රූපයෙන් පෙන්වයි. O සහ G තලයේ වැඩිතම බැවුම් රේඛාව ඔස්සේ එකම සිරස් තලයක පිහිටයි. OG තිරස් බව දී ඇත. $heta=30^{0}$ බව පෙන්වන්න. අර්ධ ගෝලයේ බර W බව දී ඇත.

ස්පර්ශ ලකුුයේ දී ඝර්ෂණ බලයේ හා දී අභිලම්භ පුතිකිුයාවේ අගයන් ${
m W}$ ඇසුරින් ලබා ගන්න.

තලය සහ ඝන වස්තුව අතර ඝර්ෂණ සංගුණකයේ කුඩාතම අගය සොයන්න. සමමිතියෙන් ශේෂයේ ගුරුත්ව කේන්දුය කේතුවේ අාසා මත පිහිටයි. ඒකක පරිමාවක ස්කන්ධය P ලෙස ගනිමු.

රූපය	ස්කන්ධය	🔾 සිට ගුරුත්ව කේන්දුයට ඇති දුර
අර්ධ ගෝලය	$\frac{2}{3}\pi a^3 p$	$\frac{3}{8}a$
කේතුව	$\frac{1}{3}\pi a^2.ap$	$\frac{1}{4}a$
ඉ ශ්ෂය	$\frac{1}{3}\pi a^3 p$	OG

O වටා සුර්ණය ගැනීමෙන්,

$$\frac{1}{3}\pi a^{3} pg.OG = \frac{2}{3}\pi a^{3} pg.\frac{3}{8}a - \frac{1}{3}\pi a^{3} pg.\frac{1}{4}a$$

$$OG = \frac{6}{8}a - \frac{1}{4}a$$

අර්ධ ගෝලයේ බර $W=\frac{2}{3}\pi a^3 p$

ඝන වස්තුවේ බර $=\frac{W}{2}$

ඝනයෙහි සමතුලිතතාවය සඳහා

$$F,\,R,\,rac{W}{2}$$
 බල තුනෙහි කිුයාරේඛා A හරහා යා යුතුය.
$$\therefore\sin\theta=rac{OG}{OA}$$

$$\therefore \sin \theta = \frac{OG}{OA}$$

$$= \frac{\frac{a}{2}}{a}$$

$$= \frac{1}{2}$$

$$\theta = 30^{\circ}$$

තලයට සමාන්තරව බල විභේදනයෙන්,

තලයට ලම්භකව බල විභේදනයෙන්

$$F - \frac{W}{2}\sin\theta = 0$$

$$F = \frac{W}{2}\sin\theta$$

$$= \frac{W}{2}\sin 30^{\circ}$$

$$= \frac{W}{4}$$

$$R - \frac{W}{2}\cos\theta = 0$$

$$R = \frac{W}{2}\cos\theta$$

$$= \frac{W}{2}\cos 30^{\circ}$$

$$= \frac{W\sqrt{3}}{4}$$

සමතුලිතතාවය සඳහා

$$rac{ ext{F}}{ ext{R}} \leq \mu$$
 විය යුතුයි $rac{ ext{W}}{ ext{4}} \leq \mu$ $rac{1}{\sqrt{3}} \leq \mu$ $\mu_{\min} = rac{1}{\sqrt{3}}$

උදාහරණ 12

උස H සහ පතුලේ අරය R වන ABCD ඒකාකාර ඝන සෘජු වෘත්තාකාර සිලින්ඩරයකින් උස h සහ පතුලේ අරය R වන EAB ඝන සෘජු වෘත්තාකාර කේතුවක් හාරා ඉවත් කිරීමෙන් පසුව ඉතිරි කොටස රූපයෙන් පෙන්වයි. එසේ හැරීමෙන් ලැබෙන S වස්තුවේ ගුරුත්ව කේන්දුයට AB සිට ඇති දුර සොයන්න. එමගින් S හි ගුරුත්ව කේන්දුය E හි ඇත්නම් $h = \left(2 - \sqrt{2}\right)H$ බව පෙන්වන්න.

 DC පතුල තිරස සමග $lpha \left(< \frac{\pi}{2} \right)$ කෝණයකින් ආනත රළු තලයක් මත පවතින පරිදි S වස්තුව තබා ඇත. S නොලිස්සීමට තලයේ රළු බව පුමාණවත්ය. S හි ගුරුත්ව කේන්දුය E හි ඇති බව උපකල්පනය කර $R\cos lpha > \left(\sqrt{2} - 1 \right) H$ නම් S ඇද නොවැටෙන බව පෙන්වන්න. වස්තුව සෑදි ඇති දුවායේ ඝනත්වය W වේ.

සමමිතියෙන් $\, {f S} \,$ හි ගුරුත්ව කේන්දුය සිලින්ඩරයේ අඤය මත පිහිටයි.

රූපය	බර	AB සිට ගුරුත්ව කේන්දුයට ඇති දුර
සිලින්ඩරය	$\pi R^2 HW$	$\frac{\mathrm{H}}{2}$
කේතුව	$\frac{1}{3}\pi R^2 hW$	$\frac{h}{4}$
S වස්තුව	$\pi R^2 \left(H - \frac{h}{3} \right) W$	\overline{y}

AB වටා සූර්ණය ගැනීමෙන්

$$\pi R^{2} \left(H - \frac{h}{3} \right) W \quad \overline{y} = \pi R^{2} H \ W. \ \frac{H}{2} - \frac{1}{3} \pi R^{2} h W. \frac{1}{4} h$$

$$\left(H - \frac{h}{3} \right) \quad \overline{y} = \frac{H^{2}}{2} - \frac{h^{2}}{12}$$

$$\overline{y} = \frac{6H^{2} - h^{2}}{4(3H - h)}$$

ශේෂ වස්තුවේ ගුරුත්ව කේන්දුය ${
m E}$ මත නම් $\overline{y}=h$ වේ.

$$h = \frac{6H^2 - h^2}{4(3H-h)}$$

$$\Rightarrow 3h^2 - 12Hh + 6H^2 = 0$$

$$h^2 - 4Hh + 2H^2 = 0$$

$$(h - 2H)^2 - 2H^2 = 0$$

$$(h - 2H + \sqrt{2}H)(h - 2H - \sqrt{2}H) = 0$$

$$h = 2H - \sqrt{2}H, \quad 2H + \sqrt{2}H$$

$$\Rightarrow h < H \Rightarrow h = 2H - \sqrt{2}H$$

$$= (2 - \sqrt{2})H$$

KM < DM නම්, වස්තුව නොඇදවැටේ.

$$(H-h)\tan \alpha < R$$

 $(H-h) < R \cot \alpha$
 $(\sqrt{2}-1)H < R \cot \alpha$

උදාහරණ 13

පහත රූපයෙන් දුක්වෙන ABCD ඒකාකාර ඝන වස්තුවෙන් නිරූපණය වන්නේ උස h වූ ඍජු වෘත්තාකාර කේතුවකින් සාදන ලද ඝනත්වය ho වූ ජින්නකයකි. එහි වෘත්තාකාර තල මුහුණත්වල විෂ්කම්භයන් ${
m AB}$ = $2a\lambda$, සහ $\mathrm{CD}=2a$ වේ. මෙහි λ පරාමිතිකයක් සහ $0<\lambda<1$ වේ.

අනුකලනය භාවිතයෙන් එහි ස්කන්ධය $\frac{1}{3}\pi a^2 h
ho (1+\lambda+\lambda^2)$ බව සහ එහි ස්කන්ධ කේන්දුය, G @ කුඩා

මුහුණතේ කේන්දුයේ සිට ඇති දුර
$$\frac{h}{4} \bigg(rac{3+2\lambda+\lambda^2}{1+\lambda+\lambda^2} \bigg)$$
 බව පෙන්වන්න.

ආධාරකය අරය a සහ උස h වන ඒකාකාර සෘජූ වෘත්තාකාර ඝන කේතුවක ස්කන්ධය සහ ස්කන්ධ කේන්දුයේ පිහිටීම අපෝහනය කරන්න.

 ABCD ජින්තකයෙන් පාදයේ අරය λa සහ උස $\frac{h}{2}$ වන VAB සෘජු වෘත්තාකාර ඝන කේතුවක් හාරා ඉවත් කිරීමෙන් $oldsymbol{J}$ ඝන වස්තුව ලබාගෙන ඇත.

 ${
m J}$ වස්තුවෙහි ස්කන්ධ කේන්දුය ${
m G_{_1}}$ හි පිහිටීම සොයා ${
m G_{_1}}$, එය ${
m v}$ සමග සම්පාත නොවන බව සතාාපනය කරන්න.

J වස්තුව එහි විශාල මුහුණතේ පරිධියේ ලඤාසයකින් නිදහසේ එල්ලා ඇත. සමතුලිතතාවයේ දී J හි සමමිතික අඤය සිරස සමග $aneta=rac{8a}{h}igg(rac{2+2\lambda+\lambda^2}{4+8\lambda+5\lambda^2}igg)$ මගින් දෙනු ලබන eta සුළු කෝණයක් සාදන බව පෙන්වන්න.

උස δx වන AB සිට x දුරකින් පිහිටි PQ වෘත්තාකාර තැටිය සලකන්න.

$$PQ$$
 හි පරිමාව $=\pi r^2 \delta x$

 $ext{PQ}$ හි ස්කන්ධය $=\pi r^2 \delta x
ho$ ජින්නකමය් ස්කන්ධය $=\int\limits_0^h \pi r^2 dx
ho$

$$\therefore \qquad = \int_0^h \pi \cdot \left[\frac{a(1-\lambda)x}{h} + \lambda a \right]^2 dx \rho = \pi \rho \left[\frac{a(1-\lambda)x}{h} + \lambda a \right]^3 \Big|_0^h$$

$$= \frac{\pi \rho}{3} \frac{h}{a(1-\lambda)} \left\{ \left[a(1-\lambda) + \lambda a \right]^3 - (\lambda a)^3 \right\}$$

$$= \frac{\pi \rho}{3} \frac{ha^3 (1-\lambda^3)}{a(1-\lambda)} = \frac{\pi}{3} a^2 h \rho \frac{(1-\lambda^3)}{(1-\lambda)}$$

$$M = \frac{\pi}{3} a^2 h (1+\lambda+\lambda^2) \rho \dots (1)$$

සමමිතියෙන් ස්කන්ධ කේන්දය G යන්න LM මත පිහිටයි.

M.g LG =
$$\int \pi r^2 \delta x \rho x$$

$$LG = \frac{\int_{0}^{h} \pi \rho \left[\frac{a(1-\lambda)}{h} x + \lambda a \right]^{2} x dx}{M}$$

$$= \frac{\pi \rho}{M} \int_{0}^{h} \left[\frac{a^{2}(1-\lambda)^{2}}{h^{2}} x^{3} + \frac{2\lambda a^{2}}{h} (1-\lambda) x^{2} + \lambda^{2} a^{2} x \right] dx$$

$$= \frac{\pi \rho}{M} \left[\frac{a^{2}(1-\lambda)^{2}}{h^{2}} \frac{x^{4}}{4} + 2\lambda \frac{a^{2}}{h} (1-\lambda) \left(\frac{x^{3}}{3} \right) + \lambda^{2} a^{2} \frac{x^{2}}{2} \right]_{0}^{h}$$

$$= \frac{\pi \rho}{M} \left[\frac{a^{2}(1-\lambda)^{2}}{h^{2}} \frac{x^{4}}{4} + 2\lambda \frac{a^{2}}{h} (1-\lambda) \left(\frac{x^{3}}{3} \right) + \lambda^{2} a^{2} \frac{x^{2}}{2} \right]$$

$$= \frac{\pi \rho}{M} h^{2} a^{2} \left[\frac{(1-\lambda)^{2}}{4} + \frac{2}{3} \lambda (1-\lambda) + \frac{\lambda^{2}}{2} \right]$$

$$= \frac{\pi a^{2} h^{2} \rho}{M} \left[\frac{3(1-2\lambda+\lambda^{2}) + 8\lambda + 8\lambda^{2} + 6\lambda^{2}}{4 \times 3} \right]$$

$$= \frac{\pi a^2 h^2 \rho}{12M} \left(\lambda^2 + 2\lambda + 3\right)$$

$$= \frac{\pi a^2 h^2 \rho}{12} \frac{\left(\lambda^2 + 2\lambda + 3\right)}{\frac{\pi}{3} a^2 h \left(1 + \lambda + \lambda^2\right) \rho}$$

$$= \frac{h}{4} \left(\frac{\lambda^2 + 2\lambda + 3}{\lambda^2 + \lambda + 1}\right) \qquad (2)$$

 $\lambda=0$ වන විට ජින්තකය උස h සහ පාදයේ අරය a වන කේතුවක් බවට පත්වේ.

 \therefore (1) න් $\lambda=0$ විට කේතුවේ ස්කන්ධය $=\frac{1}{3}\pi a^2 h \rho$ ශිර්ෂයේ සිට කේතුවේ ස්කන්ධ කේන්දය $\frac{\hbar}{4}.\frac{3}{1}=\frac{3h}{4}$ ක දුරින් පිහිටයි. (2) න්

 ${
m J}$ හි ගුරුත්ව කේන්දුය සෙවීම

රූපය	බර	AB සිට ගුරුත්ව කේන්දුයට ඇති දුර
ABCD ජින්නකය	$\frac{1}{3}\pi a^2 \rho g(1+\lambda+\lambda^2)h$	$\frac{h}{4} \left(\frac{\lambda^2 + 2\lambda + 3}{\lambda^2 + \lambda + 1} \right)$
VAB කේතුව	$\frac{1}{3}\pi(\lambda a)^2 \rho g \frac{h}{2}$	$\frac{1}{4} \cdot \frac{h}{2} = \frac{h}{8}$
ං ශ්ෂය	$\frac{1}{3}\pi a^2 h \rho g \left(1 + \lambda + \frac{\lambda^2}{2}\right)$	\overline{y}

L වටා සුර්ණය ගැනීමෙන්

$$\frac{1}{3}\pi a^{2}h\rho g\left(1+\lambda+\frac{\lambda^{2}}{2}\right)\overline{y}=\frac{1}{3}\pi a^{2}\rho g\left(1+\lambda+\lambda^{2}\right)\cdot\frac{h}{4}\left(\frac{(\lambda^{2}+2\lambda+3)}{\lambda^{2}+\lambda+1}\right)-\frac{1}{3}\pi a^{2}\lambda^{2}\rho\frac{h}{2}g\cdot\frac{h}{8}$$

$$\left(1+\lambda+\frac{\lambda^{2}}{2}\right)\overline{y}=\frac{h}{4}(\lambda^{2}+2\lambda+3)-\frac{h\lambda^{2}}{16}$$

$$\overline{y}=\frac{h}{8}\left(\frac{3\lambda^{2}+8\lambda+12}{\lambda^{2}+2\lambda+2}\right)$$

$$\overline{y}-\frac{h}{2}=\frac{h}{8}\left(\frac{3\lambda^{2}+8\lambda+12}{\lambda^{2}+2\lambda+2}\right)-\frac{h}{2}$$

$$=\frac{h}{8}\left(\frac{3\lambda^{2}+8\lambda+12-4(\lambda^{2}+2\lambda+2)}{\lambda^{2}+2\lambda+2}\right)$$

$$=\frac{h}{8}\left(\frac{4-\lambda^{2}}{\lambda^{2}+2\lambda+2}\right)>0 \qquad (\because 0<\lambda<1)$$

 \therefore V ලක්ෂා G_1 සමග සම්පාත විය නොහැක.

$$\tan \beta = \frac{a}{h - \overline{y}}$$

$$h - \overline{y} = h - \frac{h}{8} \left(\frac{3\lambda^2 + 8\lambda + 12}{2 + 2\lambda + \lambda^2} \right)$$

$$= \frac{h}{8} \left(\frac{5\lambda^2 + 8\lambda + 4}{2 + 2\lambda + \lambda^2} \right)$$

$$\therefore \tan \beta = \frac{8a}{h} \left(\frac{2 + 2\lambda + \lambda^2}{4 + 8\lambda + 5\lambda^2} \right)$$

8.4 අභාගාසය

- 1. ABC ඒකාකාර තිකෝණයෙන් ADE කොටසක් ඉවත් කිරීමෙන් සැදෙන ADE තිකෝණයේ වර්ගඵලය ABC තිකෝණයේ වර්ගඵලයෙන් අඩකට සමාන වේ. මෙහි DE, BC ට සමාන්තර වේ. BCED කොටසේ ගුරුත්ව කේන්දුයට BC සිට දූර සොයන්න.
- 2. ABC තුිකෝණයෙන් DE, BCට සමාන්තර වන සේ ADE කොටස ඉවත් කරනු ලැබේ. a හා b යනු A සිට BCහා DEට පිළිවෙළින් ඇති ලම්භක දුර නම් ශේෂයේ ගුරුත්ව කේන්දුයට BC සිට ඇති දුර $\frac{a^2+ab-2b^2}{3(a+b)}$ බව පෙන්වන්න.
- 3. දිග a,b,c වන දඩු තුනක් තිකෝණයක් සෑදෙන පරිදි ඒවායේ කෙළවරවල්වලින් සන්ධි කර ඇත. තිකෝණයේ ගුරුත්ව කේන්දය සොයන්න.
- 4. ඒකාකාර තිකෝණාකාර ABC තහඩුවකින් අන්තර් වෘත්තාකාර වර්ගඵලය සහිත කොටස ඉවත් කර ඇත. ශේෂයේ ගුරුත්ව කේන්දුයට BC සිට ඇති දුර $\frac{S}{3as}\bigg[\frac{2s^3-3\pi aS}{s^2-\pi S}\bigg]$ බව පෙන්වන්න. මෙහි S යනු තහඩුවේ වර්ගඵලය වන අතර s යනු තහඩුවේ අර්ධ පරිමිතිය සහ BC=a වේ.
- 5. ACB යනු AOB විෂ්කම්භය සහ AB ට ලම්භක OC අරය සහිත ඒකාකර අර්ධ වෘත්තාකාර ආස්තරයකි. OB මත P සහ OP දිග $\frac{1}{2}a$ වන පරිදි OPQR සමචතුරසාකාර කොටසක් ආස්තරයෙන් කපා ඉවත් කර ඇත. ඉතිරි කොටසේ ගුරුත්ව කේන්දුයට OA සහ OC සිට ඇති දුර සොයන්න. ඉතිරි කොටස A හිදී නිදහසේ එල්ලා සමතුලිතතාවයේ පවතී නම් AB සිරස සමග සාදන කෝණයේ ටැංජනය හරියටම $\frac{1}{2}$ ට වඩා අඩු බව පෙන්වන්න.
- 6. ABCDEF යනු සිහින් කාඩ්බෝඩ් කැබැල්ලකින් සාදන ලද ඒකාකාර ෂඩසුයකි. ABC තිකෝණය කපා ඉවත් කර DEF තිකෝණය මත තැබීමෙන් මුළු පද්ධතියේම ගුරුත්ව කේන්දුය $\frac{2a}{9}$ දුරක් ගමන් කරන බව ඔප්පු කරන්න. මෙහි a යනු ෂඩසුයේ පාදයක දිග වේ.
- 7. අරය a වන ඒකාකාර අර්ධ වෘත්තාකාර ආස්තරයක ගුරුත්ව කේන්දුයට එහි කේන්දුයේ සිට ඇති දුර $\frac{4a}{3\pi}$ බව ඔප්පු කරන්න. AOB අරය 2a වන ඒකාකාර අර්ධ වෘත්තාකාර ආස්තරයක පාදම වේ. O එහි කේන්දුය වේ. පාදම AO සහ අරය a වන අර්ධ වෘත්තාකාර ආස්තරයක් කපා ඉවත් කර ශේෂය A වලින් නිදහසේ එල්ලා ඇත. සමතුලිතතාවයේ දී අර්ධ AOB හි සිරසට ආනතිය සොයන්න.
- 8. එකම පුමාණයේ පතුලවල් සහිත ඝන සිලින්ඩරයක් සහ ඍජු වෘත්තාකාර ඝන කේතුවක් ඒවායේ පතුලවල්වලින් එකට සම්බන්ධ කර ඇත. සංයුක්ත ඝනයේ ගුරුත්ව කේන්දය පොදු පාදයේ පිහිටන පරිදි කේතුවේ උස සිලින්ඩරයේ උසට දරන අනුපාතය සොයන්න.
- 9. සෘජු වෘත්තාකාර කේතුවක පතුල හාරා ඉවත් කර ඝන වස්තුවක් සාදා ඇත. එමඟින් එකම පතුල සහිත සෘජු වෘත්තාකාර කුහර කේතුවක් සෑදී ඇත. ශේෂයේ ගුරුත්ව කේන්දුය කුහර කේතුවේ ශිර්ෂය සමඟ සමපාත වීමට කොපමණ පුමාණයක් සාදා ඉවත් කළ යුතුද?

- 10. සිරස් කෝණය 60° වන ඒකාකාර ඍජු වෘත්තාකාර ඝන කේතුවකින් උපරිම විශාලත්වයක් ඇති ගෝලය ශේෂයේ ගුරුත්ව කේන්දුයයක් කපා ඉවත් කරනු ලැබේ. මගින් අඤා 11:49 අනුපාතයට බෙදෙන බව පෙන්වන්න.
- 11. උස h වූ සෘජු වෘත්තාකාර ඝන කේතුවක් එහි $\frac{1}{2}h$ උසකදී අක්ෂයට ලම්භක තලයකින් කපා ඇත. කේතුවේ පාදය සහ කැපුම අතර කොටස් ගුරුත්ව කේන්දුය සොයන්න.
- 12. කුහර වස්තුවක් සාදා ඇත්තේ පෘෂ්ඨ ඝනත්වය ho වන කුහර කේතුවක් සහ පාදම පෘෂ්ඨ ඝනත්වය σ වන කුහර අර්ධ ගෝලයක සමපාත වන පරිදිය. සංයුක්ත කේතුවේ වකු පෘෂ්ඨයේ වකු දාරය ඕනෑම ලක්ෂායක් තල පෘෂ්ඨයක ස්පර්ශ කරමින් සමතුලිත ඡේදන පිහිටයි නම් කේතුව අර්ඝ ශිර්ෂ කේතුවන වන $a
 ho \left(\cot^2 \alpha + 3\right) = 3\sigma \left(\cos \alpha 2\sin \alpha\right)$ මඟින් දෙන බව පෙන්වන්න.
- 13. වෘත්තාකාර පාදම ඉවත් කරන ලද කුහර කේතුවක ශිර්ෂය O ද අඩ සිරස් කෝණය α ද උස h වන අතර කේතුව සාදා ඇති දවා වර්ග ඒකකයක ඝනත්වය σ ද වේ නම් කේතුවේ ස්කන්ධය $\pi\sigma h^2 \sec \alpha \tan \alpha$ බව පෙන්වා ස්කන්ධය කේන්දයේ පිහිටීම සොයන්න. එම දවායේන්ම සාදා ඇති අරය $h \tan \alpha$ වන වෘත්තාකාර තැටියක කේන්දය වේ. මෙම වෘත්තාකාර තැටිය ඉහත කුහර කේතුවේ වෘත්තාකාර පාදමට

අලවා සංයුක්ත වස්තුවක් සාදා ඇත. O සිට සංයුක්ත වස්තුවේ ස්කන්ධ කේන්දුයට දුර $\dfrac{higg(rac{2}{3}\seclpha+\tanlphaigg)}{\seclpha+\tanlpha}$ බව පෙන්වන්න.

සංයුක්ත වස්තුව පාදමේ ඇති ගැට්ටේ A ලක්ෂායකින් එලු විටට AO සහ AB යටි සිරස සමඟ සමාන කෝණ සාදයි නම් $\sin \alpha = \frac{1}{3}$ බව පෙන්වන්න.

14. කේන්දුය O සහ අරය a වන අර්ධ වෘත්තයකින් ද කේන්දුය C හි $\frac{2\pi}{3}$ ක කෝණයක් ආපාතනය කරන වෘත්ත වාපයකින් වට වී ඇති ළසඳ හැඩැති ඒකාකාර ආස්තරයක් රූපයේ පෙන්වා ඇත. මෙම ආස්තරයයේ ස්කන්ධ කේන්දුය C සිට ka දුරකින් ඇති බව පෙන්වන්න. මෙහි $k=\frac{3\sqrt{3}\pi}{\pi+6\sqrt{3}}$

ආස්තරයේ ස්කන්ධය M ලෙස ගන්න. දික් කරන ලද BA රේඛාව දිගේ ළසඳේ A කෙළවරෙහි දී දිග 2a සහ ස්කන්ධය m වන ඒකාකර සෘජු සිහින් AD දණ්ඩක් දෘඪව සවි කිරීමෙන් රූපයේ දක්වෙන පරිදි දකැත්තක් සාදා ඇත. දන් දකැත්ත තිරස් පොළොව මත තලය සිරස් වන සේ තබා ඇත. දණ්ඩේ නිදහස් D කෙළවරත් අර්ධ වෘත්තයත් පොළොව සමග ස්පර්ශ වන සේ සමතුලිතතාව පැවතීමට $M(\sqrt{3}k-1) < 4\sqrt{6}\ m$ විය යුතු බව පෙන්වන්න.

15. අරය a කේන්දුය O සහ මතුපිට ඝනත්වය σ වන ඒකාකාර ගෝලීය කබොලකින් O සිට $a\cos\alpha, a\cos\beta$ දුරවලින් (O ට දෙපසින්) සමාන්තර තල දෙකක් කැපීමෙන් ලද කලාපයක් රූපයේ දක්වා ඇත. මෙහි $0<\alpha<\beta<\frac{\pi}{2}$ වේ.

අනුකලනය භාවිතයෙන්,

- (i) කලාපයේ ස්කන්ධය $2\pi a^2 \sigma (\cos \alpha + \cos \beta)$
- (ii) කලාපයේ ස්කන්ධ කේන්දුය සමමිතික අසෘය මත එහි A, B දෙකෙළවර අතර හරි මැද පිහිටන බව පෙන්වන්න. මින් A කලාපයේ O සිට $a\cos\alpha$ දුරකින් වෙයි.

සනත්වය σ වන අරය $a\sin\beta$ වන ඒකාකාර වෘත්තාකාර තැටියක් ඉහත කුහර වස්තුවේ විශාල වෘත්තාකාර දාරයට අලවා සංයුක්ත වස්තුවක් සාදා ඇත. එම වෘත්තාකාර තැටියේ ස්කන්ධ කේන්දුය Bමත පිහිටයි නම් සංයුක්තයේ ස්කන්ධ කේන්දුය සොයා සංයුක්තයේ වකු පෘෂ්ඨය තිරස් බිමක් මත තැබු විට ඕනෑම පිහිටිමකදී සමතුලිත වෙයි නම් $\sin\alpha = \sqrt{1-\cos\beta}$ බව පෙන්වන්න.

16. අරය a සහ පෘෂ්ඨික ඝනත්වය σ වන ඒකාකර කුහර අර්ධ ගෝලීය කේන්දුයේ සිට $a\cos\alpha$ දුරකින් වකු පෘෂ්ඨයට සමාන්තරව තලයක් කැපීමෙන් කුහර වස්තුවක් සාදා ඇත. එම කාපා ඉවත් කරන ලද මුහුණතෙහි කේතය නම් එම කුහර වස්තුවේ ගුරුත්ව කේතය OC හි මධා ලක්සා පිහිටින බව පෙන්වන්න.

ඉහත කුහර වස්තුවට අරය $a\sin a$ සහ ඝනත්වය s වන වෘත්තාකාර තැටියක් ඇලවීමෙන් පතුදයක් සාදා ඇත. එම සංයුක්ත වස්තුවේ ගුරුත්ව කේන්දුය OC මත සිට $\left[\frac{1+\cos \alpha - \cos^2 \alpha}{1+2\cos \alpha - \cos^2 \alpha}\right] a\cos \alpha$ දුරකින් පිහිටවන බව පෙන්වන්න.

 $lpha=rac{\pi}{3}$ ද එම කුහර වස්තුවේ බර w ද නම් ද එම වස්තුවට බර W ද දිග b වන AB දණ්ඩක් දෘඪ ලෙස

ඉහත වස්තුවේ ගැට්නේ දාරයට සවි කිරීමෙන් සාදා ඇත. දිග b හා බර $\frac{w}{4}\mathrm{O,A}$ සහ B විකර්ණය වේ. සංයුක්තයේ ගුරුත්ව කේන්දුය සොයන්න.

එම ${f B}$ ලක්ෂායෙන් එල්ලු විට දණ්ඩ යටි සිරස සමග $an^{-1}igg(rac{1}{7}igg)$ කෝණයක් සාදමින් සමතුලිතතාවයේ එල්ලෙයි. 3b=4a බව පෙන්වන්න.