```
In [3]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_csv('OneDrive\Desktop\Stock_Market.csv')
df.head()
```

Out[3]:

	Unnamed: 0	Year	Month	Interest_Rate	Unemployment_Rate	Stock_Index_Price
0	0	2017	12	2.75	5.3	1464
1	1	2017	11	2.50	5.3	1394
2	2	2017	10	2.50	5.3	1357
3	3	2017	9	2.50	5.3	1293
4	4	2017	8	2.50	5.4	1256

In [6]: #2.Scatter Plot.(20 points) Construct a scatter plot of the Stock Index Price(Y
 #Based on your scatter plot, do you think a linear relationship exists between
 #Stock Index Price and Interest Rate, Unemployment Rate? Why?

```
scatterInt = plt.scatter(x=df['Interest_Rate'], y=df['Stock_Index_Price'])
scatterEmp = plt.scatter(x=df['Unemployment_Rate'], y=df['Stock_Index_Price'])
```

#As the interest rate increases, the stock index price increases.
#This makes sense as interest rates need to compete with inflation and stock mark

#As unemployment decreases, the stock index price increases.
#This also makes sense as a more employed workforce is representative of a strong


```
In [10]: # 3.Liner Regression.(40 points) Performing the multiple linear regression based
from sklearn import linear_model

x = df[['Interest_Rate', 'Unemployment_Rate']]
y = df['Stock_Index_Price']

regr = linear_model.LinearRegression()
regr.fit(x, y)

print(regr.coef_)

#The coefficients back up the conclusion reached in #2. As the interest rates inc
#Similarly, as unemployment increases, stock index price decreases by 250.
```

[345.54008701 -250.14657137]

```
In [23]: #4.Residual Plot.(10 points) Draw a residual plot and interpret your result.
import statsmodels.api as sm
from statsmodels.formula.api import ols

multi_model = ols('Stock_Index_Price ~ Interest_Rate + Unemployment_Rate', data=c

# display model summary
print(multi_model.summary())

# modify figure size
fig = plt.figure(figsize=(14, 8))

# creating regression plots
interestRateFig = sm.graphics.plot_regress_exog(multi_model, 'Interest_Rate', fig
#There is no indication of heteroskedacity
```

OLS Regression Results

======================================									
Least Wed, 06 J	OLS Squares ul 2022 8:50:51 24 21	F-statistic Prob (F-stat	: tistic):	0.898 0.888 92.07 4.04e-11 -134.61 275.2 278.8					
no	-								
110	======================================				====				
coef	std err	t	P> t	[0.025					
1798.4040	899.248	2.000	0.059	-71.685	36				
345.5401	111.367	3.103	0.005	113.940	5				
-250.1466	117.950	-2.121	0.046	-495.437					
=======================================	2.691 0.260 -0.612 3.226	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		0.530 1.551 0.461 394.					
	Least Wed, 06 J 0 no coef 1798.4040 345.5401	Least Squares Wed, 06 Jul 2022 08:50:51 24 21 2 nonrobust coef std err 1798.4040 899.248 345.5401 111.367 -250.1466 117.950	OLS Adj. R-square Least Squares F-statistic Wed, 06 Jul 2022 Prob (F-statistic Wed, 08:50:51 Log-Likeliho 24 AIC: 21 BIC: 2 nonrobust	OLS Adj. R-squared: Least Squares F-statistic: Wed, 06 Jul 2022 Prob (F-statistic): 08:50:51 Log-Likelihood: 24 AIC: 21 BIC: 2 nonrobust coef std err t P> t 1798.4040 899.248 2.000 0.059 345.5401 111.367 3.103 0.005 -250.1466 117.950 -2.121 0.046 2.691 Durbin-Watson: 0.260 Jarque-Bera (JB): -0.612 Prob(JB):	OLS Adj. R-squared: 0 Least Squares F-statistic: 92 Wed, 06 Jul 2022 Prob (F-statistic): 4.044 08:50:51 Log-Likelihood: -134 24 AIC: 27 21 BIC: 27 2 nonrobust coef std err t P> t [0.025 1798.4040 899.248 2.000 0.059 -71.685 345.5401 111.367 3.103 0.005 113.940 -250.1466 117.950 -2.121 0.046 -495.437				

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

eval_env: 1


```
In [22]: import statsmodels.api as sm
    from statsmodels.formula.api import ols

multi_model = ols('Stock_Index_Price ~ Interest_Rate + Unemployment_Rate', data=0

# display model summary
print(multi_model.summary())

# modify figure size
fig = plt.figure(figsize=(14, 8))

unemploymentRateFig = sm.graphics.plot_regress_exog(multi_model, 'Unemployment_RateFig is no indication of heteroskedacity
```

OLS Regression Results ______ Stock_Index_Price Dep. Variable: R-squared: 0.898 Model: OLS Adj. R-squared: 0.888 Method: Least Squares F-statistic: 92.07 Wed, 06 Jul 2022 Prob (F-statistic): 4.04e-11 Date: 08:50:41 Log-Likelihood: Time: -134.61 No. Observations: 24 AIC: 275.2 Df Residuals: 21 BIC: 278.8 Df Model: 2 Covariance Type: nonrobust ______ + D\l+l coof ctd onn LO OSE

	coet	std err	t	P> t	[0.025		
0.975]							
Intercept	1798.4040	899.248	2.000	0.059	-71.685	36	
68.493							
Interest Rate	345.5401	111.367	3.103	0.005	113.940	5	
77.140 -							
Unemployment Rate	-250.1466	117.950	-2.121	0.046	-495,437		
-4.856	23012100	11,1000	_,	0.010	1230137		
Omnibus:		2.691	Durbin-Wats	on:	 0	.530	
Prob(Omnibus):	0.260	Jarque-Bera	(JR):	1	.551		
Skew:		-0.612	Prob(JB):		0	.461	

Notes

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctl
y specified.
eval_env: 1

3.226 Cond. No.

localhost:8888/notebooks/Module5.ipynb#

394.

In [24]: # 5.Prediction.(20 points) Please predict the Stock Index Price when the Interest
predicted = regr.predict([[2.75, 5.3]])
print(predicted)

[1422.86238865]

C:\Users\andre\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X
does not have valid feature names, but LinearRegression was fitted with feature
names

warnings.warn(

In []: