MATH10111 Cheat Sheet

Available at JTANG.DEV/RESOURCES

NUMBER THEORY I & II

Prime number: $\forall a \in \mathbb{N}, a | p \Rightarrow a \in \{1, p\}$

Fermat's Little Theorem

Let $p \in \mathbb{N}$ be prime and let $a \in \mathbb{N}$. If $p \not\mid a$, then $a^{p-1} \equiv 1 \mod p$.

An equivalent formulation is: $a^p \equiv a \mod p$.

MATHEMATICAL INDUCTION

Simple Mathematical Induction

Let p(n) be a statement about the $n \in \mathbb{N}$

- show p(1) is true (base case),
- show for $k \in \mathbb{N}$, if p(k) is true, then p(k+1) is true (inductive step),
- then p(n) is true for all $n \in \mathbb{N}$

For strong induction, the inductive step is $k \in \mathbb{N}$, if p(r) is true for all $r \leq k$, then p(k+1) is true.

SET THEORY

Let A and B be sets.

 $A \subseteq B : x \in A \Rightarrow x \in B$

Empty Set: $\{\}$ or \emptyset

 $A = \{x : x \text{ has property } P\}$

 $A \cap B = \{x : x \in A \text{ and } x \in B\}$

 $A \cup B = \{x : x \in A \text{ or } x \in B\}$

 $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$

 $A\subseteq U\Rightarrow A^c=U\,\setminus\, A$

Power Set: $\mathcal{P}(A)$ is a set whose elements are all of the subsets of A.

 $A\times B=\{(a,b):a\in A,b\in B\}$

 $A^n = A \times \cdots \times A \ (n \text{ times})$

CARDINALITY OF SETS

Counting Subsets

Let A be a set and $k \in \mathbb{N} \cup \{0\}$. A k-subset of A is a subset $X \subseteq A$ with |X| = k.

Write $\mathcal{P}_k(A) = \{X \subseteq A : |X| = k\}$

If |A| = n, then

$$\mathcal{P}(A) = \bigcup_{k=0}^{n} \mathcal{P}_k(A)$$

We define $\binom{n}{k}$ to be the cardinality of $\mathcal{P}_k(\mathbb{N}_n)$

CARDINALITY OF SETS

Let $n \in \mathbb{N}$, then $n! = n(n-1) \cdots 2.1$. Define 0! = 1.

 $\mathbb{N}_n = \{1, 2, 3, \dots n\} = \{k \in \mathbb{N} : 1 \le k \le n\}, n \in \mathbb{N}$ Let A be a set, A has cardinality n if there exists a bijection $f : \mathbb{N}_n \to A$, in this case, we write |A| = n.

Define $|\emptyset| = 0$. If |A| = n for some $n \in \mathbb{N} \cup \{0\}$, then we say that A is finite, else infinite.

For X_1, \dots, X_n as pairwise disjoint finite sets:

$$|\bigcup_{i=1}^{n} X_i| = \sum_{i=1}^{n} |X_i|$$

FUNCTIONS

 $f:A\to B$ f has domain A and codomain B

Let $f: A \to B$, $g: C \to D$ be functions. $f = g \Leftarrow A = C, B = D$ and $\forall x \in A, f(x) = g(x)$

Constant function: $\exists b_0 \in B, \forall a \in A, f(a) = b_0$ Identity function: $\forall a \in A, h(a) = a$, denoted by i_A or 1_A for $h: A \to A$

Restriction of f to X: $X\subseteq A$ and $g:X\to B$ by $g(x)=f(x), \forall x\in X,$ denoted by $f|_X$ or $f|_X$

Injective: $\forall x, y \in A, f(x) = f(y) \Rightarrow x = y$ Surjective: $\forall y \in B, \exists x \in A \text{ such that } y = f(x)$ Bijective: Both injective and surjective.

Let $f: A \to B$ and $g: B \to C$ be functions.

$$g \circ f(x) = g(f(x))$$
 for all $x \in A$

Note that $g \circ f : A \to C$ and the codomain of f must be a subset of domain g.

Inverse: $f^{-1}: B \to A$ by $f^{-1}(y) = x$, where x is the unique $x \in A$ with f(x) = y

A permutation of A is a bijection from A to A.

Cycle Notation for Permutations

$$(\alpha_1 \alpha_2 \cdots \alpha_r) \text{ denotes}$$

$$\alpha_1 \mapsto \alpha_2, \ \alpha_2 \mapsto \alpha_3 \cdots \alpha_{r-1} \mapsto \alpha_r, \ \alpha_r \mapsto \alpha_1$$

$$\alpha \mapsto \alpha \text{ for all } a \in \mathbb{N}_n \setminus \{\alpha_1 \cdots \alpha_r\}$$

If
$$c = (\alpha_1 \cdots \alpha_r)$$
, then $c^{-1} = (\alpha_1 \alpha_r \alpha_{r-1} \cdots \alpha_2)$
 $(c_1 \circ c_2 \circ \cdots \circ c_t)^{-1} = (c_1)^{-1} \circ (c_2)^{-1} \circ \cdots \circ (c_t)^{-1}$

 $(\alpha_1\alpha_2\cdots\alpha_r)$ is called a cycle with length r.

THE EUCLIDEAN ALGORITHM

Minimum and Maximum

Let A be a non-empty finite set of real numbers.

$$\exists a, b \in A, \forall x \in A, a \leq x \leq b$$

The Division Theorem

Let $a, b \in \mathbb{Z}, b > 0, then$

$$\exists ! q, r \in \mathbb{Z}, a = bq + r, 0 \le r \le b.$$

The Greatest Common Divisor

If $d = \gcd(a, b)$, then d|a and d|b, and if $c \in \mathbb{Z}$ such that c|a and c|b then $c \leq d$.

Reverse of the Euclidean Algorithm

Let $a, b \in \mathbb{Z}$, with a, b > 0.

Then $\exists s, t \in \mathbb{Z}, \gcd(a, b) = sa + tb$.

RELATIONS

Let A be a set with $A \neq \emptyset$. A relation R on A is a subset of $A \times A$. For $x, y \in A$, xRy if $(x, y) \in R$.

Reflexive: $\forall x \in A, xRx$.

Symmetric: $\forall x, y \in A, xRy \Rightarrow yRx$.

Transitive: $\forall x, y, z \in A, xRy \text{ and } yRz \Rightarrow xRz.$

An equivalence relation on a non-empty set A is a relation which is reflexive, symmetric and transitive.

Equivalence Classes

Let R be an equivalence relation on a non-empty set A. Let $a \in A$, then R_a is defined as:

$$R_a = \{x \in A : aRx\}$$

Note that $a \in R_a$ (since R is reflexive) and $R_a \subseteq A$ Also, $R_a = \{x \in A : aRx\} = \{x \in A : xRa\}.$

Partitions

Let X be a non-empty set, $\{X_i : i \ inI\}$ to be a collection of non-empty subsets of X, where I is the index set, such that:

- $\bigcup_{i \in I} X_i = X$ and
- $\forall i, j \in I, X_i = X_j \text{ or } X_i \cap X_j = \emptyset$

Then $\{X_i : i \in I\}$ is a partition of X.

Definition of $\mathbb Q$

Let $A = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$

Define R on A by $(a,b)R(c,d) \Leftrightarrow ad = bc$ $\mathbb{Q} = \{R_{(a,b)} : (a,b) \in A\}$

Integers modulo n

Let $a, b \in \mathbb{Z}_n$, define \oplus and \odot on \mathbb{Z}_n as follows: Addition \oplus : $a \oplus b = r, r \in \mathbb{Z}_n, a + b \equiv r \mod n$. Mutiplication \odot : $a \odot b = t, t \in \mathbb{Z}_n, ab \equiv t \mod n$. Note that r and t are unique.

CONGRUENCE OF INTEGERS

Let $n \in \mathbb{N}$. For $a, b \in \mathbb{Z}$, we say that a and b are congruent modulo n if and only if n | (a - b). We write $a \equiv b \mod n$.

Note that $a \equiv 0 \mod n \Leftrightarrow n|a$.

Linear Congruences

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Suppose we want to find $x, y \in \mathbb{Z}$, such that ax + ny = b. This problem is the equivalent to finding $x \in \mathbb{Z}$ such that:

 $ax \equiv b \mod n$.

BINARY OPERATIONS

A binary operation * on a set S is a function:

$$*: S \times S \rightarrow S, \ a*b = *(a,b).$$

Multiplication tables are read [row] * [column].

Commutative: $\forall a, b \in S, a * b = b * a$ Associative: $\forall a, b, c \in S, a * (b * c) = (a * b) * c$

Identity element (e): $\forall a \in S, e * a = a * e = a$.

Groups

Let G be a non-empty set and * be a binary operation on G. Then we call (G,*) a group if:

- * is associative,
- G has as identity element e with respect to *,
- $\forall q \in G, \exists h \in G, q * h = h * q = e.$

Commutative group: $\forall g, h \in G, g * h = h * g$

Symmetric Group

 (S_n,\circ) is the symmetric group, where S_n is the set of permutations $f:N_n\to N_n$ and \circ be the composition of permutations. The identity map $i_{N_n}:N_n\to N_n$ is given by $i_{N_n}(a)=a$ for all a is the identity element, and write $e=_{N_n}$.

Cyclic Group

Let (G, *) be a group with identity element e. Note that $\forall g \in G$ we have $g^0 = e$, we say that G is cyclic if:

$$\exists a \in G, G = \{a^k : k \in \mathbb{Z}\}.$$

Fields

Let F be a non-empty set and let +, * be binary operations on F. We say (F, +, *) is a field if:

- (F, +) is a commutative group, let 0 = e.
- $(F \setminus \{0\}, *)$ is a commutative group, let 1 = e.
- $\forall a, b, c \in F, a * (b + c) = (a * b) + (a * c).$

-a is the inverse of $a \in F$ with respect to +. a^{-1} is the inverse of $a \in F \setminus \{0\}$ with respect to *.