Patrón Log Aggregation

Índice

- **01** Qué es Log Aggregation
- 02 Stack ELk
- 03 Implementación en Spring Boot
- 04 Index Lifecycle Management

Qué es Log Aggregation

Qué es Log Aggregation

- Patrón de diseño que permite centralizar los logs en una misma base de datos, que se podrá consultar cuando sea necesario.
- Viene a resolver el problema de la trazabilidad de ejecución de un servicio en sistemas distribuidos.

Componentes

Agregación

Cada microservicio genera logs y son absorbidos por el componente de agregación, que analiza los logs, los transforma y los envía al componente de persistencia.

Persistencia centralizada

Este componente tomará el input recibido y lo almacenará en un repositorio de información (base de datos) centralizado.

Visualizador de logs

Se pueden analizar los logs para determinar un patrón de negocio, como las APIs más invocadas de nuestra solución, o bien, determinar la causa de un error.

Diagrama Log Aggregation

02 Stack ELK

Qué es

Es un stack de tecnologías (Elasticsearch, Logstash y Kibana) para ser utilizado en la gestión de agregación de logs implementando una solución para cada uno de los componentes del patrón Log Aggregation.

Logstash

Es un pipeline que toma la información de un input —los logs de nuestra aplicación—, los transforma de acuerdo al criterio de filtro y envía esa información a Elasticsearch.

Elasticsearch

Motor de búsqueda y análisis distribuido basado en Apache Lucene. Se utiliza para análisis de registros, búsqueda de texto completo, análisis empresarial, entre otros usos.

Kibana

Este componente tomará el input recibido y lo almacenará en un repositorio de información (base de datos) centralizado.

O3 Implementación en Spring Boot

Preparativos

Primero, vamos a descargar cada una de las herramientas. En esta guía utilizaremos la versión 8.9.2 del stack ELK.

Seleccionamos el link de descarga según nuestro sistema operativo.

- Logstash
- Kibana
- Elasticsearch

Luego, editaremos algunas configuraciones de estos archivos.

Configuraciones - Elasticsearch

En el archivo **elasticsearch.yml** dentro del directorio /**elasticsearch-8.9.2/config** agregamos la siguiente configuración:

• Desactivamos la seguridad (para evitar problemas con SSL en localhost) y el enrolamiento de nodos.

```
xpack.security.enabled: false
xpack.security.enrollment.enabled: false
```

 Nombre de host al que Elasticsearch vinculará su servidor HTTP. Si se deja en blanco o con 0.0.0.0 solo escuchará las peticiones de localhost.

```
http.host: 0.0.0.0
```

Para ejecutarlo, abrimos una terminal en /elasticsearch-8.9.2 y ejecutamos ./bin/elasticsearch

Link al archivo de configuración

Configuraciones - Kibana

En el archivo **kibana.yml** dentro del directorio /**kibana-8.9.2/config** agregamos la siguiente configuración:

 Todo el archivo estará comentado, salvo esta línea, que especifica la dirección del clúster de Elasticsearch al que Kibana se conectará:

```
elasticsearch.hosts: ["http://localhost:9200"]
```

Para ejecutarlo, abrimos una terminal en /kibana-8.9.2 y ejecutamos ./bin/kibana

Configuraciones - Logstash

En el archivo **logstash.conf** dentro del directorio /**logstash-8.9.2/config** agregamos la siguiente configuración:

```
input {
    file {
        path => "/ruta/directorio/de/logs/*.log"
        start position => "beginning"
        sincedb path => "/dev/null"
output {
    stdout {
        codec => rubydebug
    elasticsearch {
        hosts => ["http://localhost:9200"]
        index => "nombre-indice"
```

- path tendrá la ruta de la carpeta donde se almacenarán los logs.
- start_position indica desde dónde debe comenzar la lectura de los archivos de registro.
- hosts especifica los nodos a los que Logstash debe enviar los datos procesados.
- index será para indicar a qué índice se envían los logs. Pueden ser dinámicos.

Para ejecutarlo, abrimos una terminal en /logstash-8.9.2 y ejecutamos ./bin/logstash -f ruta/a/logstash.conf

Link al archivo de configuración

Dentro de nuestros microservicios no tendremos que agregar ninguna dependencia adicional. Únicamente utilizar un logger como puede ser log4j.

Y en el application.properties especificar dónde se guardarán esos logs. Será la misma ruta que indicamos en Logstash.

```
logging.file.name=../logs_microservicios/payment-service.log
```

¡Listo! Cuando tengamos nuestras herramientas en ejecución, vamos a acceder al link de Kibana (http://localhost:5601), y en la barra de búsqueda escribiremos data view.

En Data View, la interfaz puede variar, según tengamos o no datos en Elasticsearch, pero lo importante es buscar la opción que diga "**create data view**" o similar. Al clickearlo se abrirá un modal para crear una vista.

Antes de crear nuestro data view en Kibana, debemos crear un index en Elasticsearch. Podemos hacerlo a través de su API y un curl:

curl -X PUT "localhost:9200/nombre-de-mi-indice-000001?pretty"

- El parámetro "?pretty" es opcional y sirve para formatear el output de la petición.
- La secuencia de números no es requerida pero es una convención en la nomenclatura de índices para llevar una secuencia.
- Debe ser el mismo nombre que indicamos en la configuración de Logstash.

Si recargamos la web de Kibana, ya podremos visualizar el índice y crear nuestro data view 🥳

Ya podemos empezar a generar logs en nuestros servicios, y los vamos a visualizar clickeando en le menú hamburguesa de la esquina superior izquierda > dentro del desplegable de Analytics > Discover.

O4 Index Lifecycle Management

Data stream, índices e ILM

- Data stream es una forma que tiene Elasticsearch de gestionar conjuntos de datos generados continuamente, por ejemplo registros de eventos, métricas, etc.
- Un índice es un segmento temporal dentro de este registro continuo y es la forma en que se fragmentan los logs almacenados por un data stream.
- Los data stream e índices forma parte del index lifecycle management (ILM o ciclo de vida del índice) que permite gestionar bajo qué condiciones mutan los índices. Ejemplo: activar un nuevo índice cuando un índice alcanza un cierto tamaño, crear un nuevo índice cada cierto tiempo.
- Los data stream por lo general se manejan automáticamente con su propia nomenclatura y comportamiento.

Conclusiones

La utilización del patrón de agregación de logs junto con el stack ELK (Elasticsearch, Logstash, y Kibana) ofrece una solución poderosa y efectiva para la gestión y análisis de logs en entornos de sistemas distribuidos.

El stack ELK facilita la búsqueda, correlación y resolución de problemas, permitiendo a los equipos de operaciones y desarrollo tomar decisiones informadas y mejorar la eficiencia operativa. Con Elasticsearch como motor de búsqueda, Logstash para la ingestión y transformación de datos, y Kibana para la visualización intuitiva, el stack ELK se destaca como una herramienta valiosa para la monitorización y troubleshooting en entornos modernos de tecnología.

¡Muchas gracias!