Lexical Analyzer

The Reason Why Lexical Analysis is a Separate Phase

- Simplifies the design of the compiler
 - LL(1) or LR(1) parsing with 1 token lookahead would not be possible (multiple characters/tokens to match)
- Provides efficient implementation
 - Systematic techniques to implement lexical analyzers by hand or automatically from specifications
 - Stream buffering methods to scan input
- Improves portability
 - Non-standard symbols and alternate character encodings can be normalized (e.g. trigraphs)

Interaction of the Lexical Analyzer with the Parser

Attributes of Tokens

Tokens, Patterns, and Lexemes

- A token is a classification of lexical units
 - For example: id and num
- Lexemes are the specific character strings that make up a token
 - For example: **abc** and **123**
- *Patterns* are rules describing the set of lexemes belonging to a token
 - For example: "letter followed by letters and digits" and "non-empty sequence of digits"

Specification of Patterns for Tokens: *Definitions*

- An alphabet Σ is a finite set of symbols (characters)
- A *string s* is a finite sequence of symbols from Σ
 - |s| denotes the length of string s
 - $-\varepsilon$ denotes the empty string, thus $|\varepsilon| = 0$
- A *language* is a specific set of strings over some fixed alphabet Σ

Specification of Patterns for Tokens: *String Operations*

- The *concatenation* of two strings *x* and *y* is denoted by *xy*
- The *exponentation* of a string *s* is defined by

$$s^0 = \varepsilon$$

 $s^i = s^{i-1}s$ for $i > 0$

note that $s\varepsilon = \varepsilon s = s$

Specification of Patterns for Tokens: *Language Operations*

- Union $L \cup M = \{s \mid s \in L \text{ or } s \in M\}$
- Concatenation $LM = \{xy \mid x \in L \text{ and } y \in M\}$
- Exponentiation $L^0 = \{\epsilon\}; L^i = L^{i-1}L$
- Kleene closure $L^* = \bigcup_{i=0,...,\infty} L^i$
- Positive closure $L^{+} = \bigcup_{i=1,\dots,\infty} L^{i}$

Specification of Patterns for Tokens: *Regular Expressions*

- Basis symbols:
 - ε is a regular expression denoting language $\{\varepsilon\}$
 - $-a \in \Sigma$ is a regular expression denoting $\{a\}$
- If r and s are regular expressions denoting languages L(r) and M(s) respectively, then
 - $-r \mid s$ is a regular expression denoting $L(r) \cup M(s)$
 - rs is a regular expression denoting L(r)M(s)
 - $-r^*$ is a regular expression denoting $L(r)^*$
 - (r) is a regular expression denoting L(r)
- A language defined by a regular expression is called a *regular set*

Specification of Patterns for Tokens: Regular Definitions

• Regular definitions introduce a naming convention:

$$\begin{aligned} d_1 &\to r_1 \\ d_2 &\to r_2 \\ &\cdots \\ d_n &\to r_n \\ \text{where each } r_i \text{ is a regular expression over} \\ \Sigma &\cup \{d_1, d_2, ..., d_{i\text{-}1}\} \end{aligned}$$

• Any d_j in r_i can be textually substituted in r_i to obtain an equivalent set of definitions

Specification of Patterns for Tokens: Regular Definitions

• Example:

letter
$$\rightarrow$$
 A | B | ... | Z | a | b | ... | z | digit \rightarrow 0 | 1 | ... | 9 | id \rightarrow letter (letter | digit)*

• Regular definitions are not recursive:

Specification of Patterns for Tokens: *Notational Shorthand*

• The following shorthands are often used:

$$r^+ = rr^*$$
 $r? = r \mid \varepsilon$
 $[\mathbf{a} - \mathbf{z}] = \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots \mid \mathbf{z}$

• Examples:

$$\begin{aligned} & \textbf{digit} \rightarrow [0-9] \\ & \textbf{num} \rightarrow \textbf{digit}^+ \ (\textbf{.} \ \textbf{digit}^+)? \ (\textbf{E} \ (+ \ | \ \textbf{-})? \ \textbf{digit}^+ \)? \end{aligned}$$

Regular Definitions and Grammars

```
Grammar
stmt \rightarrow if \ expr \ then \ stmt
          if expr then stmt else stmt
expr \rightarrow term \ \mathbf{relop} \ term
                                              Regular definitions
term \rightarrow id
                                              	ext{if} 	o 	ext{if}
                                         then \rightarrow then
                                          else \rightarrow else
                                       \mathbf{relop} \rightarrow < \mid <= \mid <> \mid >\mid = \mid =
                                             id \rightarrow letter ( letter | digit )^*
                                        num \rightarrow digit<sup>+</sup> (. digit<sup>+</sup>)? ( E (+ | -)? digit<sup>+</sup> )?
```

Coding Regular Definitions in Transition Diagrams

Coding Regular Definitions in Transition Diagrams: Code

```
token nexttoken()
{ <u>while</u> (1) {
    switch (state) {
    case 0: c = nextchar();
                                                            Decides the
       if (c==blank || c==tab || c==newline) {
         state = 0;
                                                           next start state
         lexeme beginning++;
                                                              to check
       else if (c==`<') state = 1;
       else if (c=='=') state = 5;
       else if (c=='>') state = 6;
       else state = fail();
                                                    int fail()
       break;
                                                    { forward = token beginning;
     case 1:
                                                     swith (start) {
                                                      case 0: start = 9; break;
     case 9: c = nextchar();
                                                      case 9: start = 12; break;
       if (isletter(c)) state = 10;
                                                     case 12: start = 20; break;
       else state = fail();
                                                     case 20: start = 25; break;
       break;
                                                      case 25: recover(); break;
     case 10: c = nextchar();
                                                     default: /* error */
       if (isletter(c)) state = 10;
       else if (isdigit(c)) state = 10;
                                                     return start;
       else state = 11;
       break;
```

Limits of Regular Languages

Not all languages are regular

$$RL's \subset CFL's \subset CSL's$$

You cannot construct DFA's to recognize these languages

- $L = \{ p^k q^k \}$ (parenthesis languages)
- $L = \{ wcw^r \mid w \in \Sigma^* \}$

Neither of these is a regular language

(nor an RE)

But, this is a little subtle. You can construct DFA's for

- Strings with alternating 0's and 1's $(\epsilon \mid 1)(01)^*(\epsilon \mid 0)$
- Strings with and even number of 0's and 1's
 See Homework 1!

RE's can count bounded sets and bounded differences

The Lex and Flex Scanner Generators

- Lex and its newer cousin flex are scanner generators
- Systematically translate regular definitions into C source code for efficient scanning
- Generated code is easy to integrate in C applications

Creating a Lexical Analyzer with Lex and Flex

Lex Specification

```
• A lex specification consists of three parts:

regular definitions, C declarations in %{ %}

**

translation rules

%*

user-defined auxiliary procedures
```

• The *translation rules* are of the form:

```
p_1 { action_1 } p_2 { action_2 } ... p_n { action_n }
```

Regular Expressions in Lex

```
match the character x
\mathbf{x}
         match the character.
"string" match contents of string of characters
         match any character except newline
         match beginning of a line
         match the end of a line
[xyz] match one character x, y, or z (use \ to escape -)
[^xyz]match any character except x, y, and z
[a-z] match one of a to z
r*
         closure (match zero or more occurrences)
         positive closure (match one or more occurrences)
r+
        optional (match zero or one occurrence)
r?
        match r_1 then r_2 (concatenation)
r_1r_2
r_1 \mid r_2 match r_1 or r_2 (union)
(r) grouping
r_1 \setminus r_2 match r_1 when followed by r_2
         match the regular expression defined by d
```

```
lex spec.l
gcc lex.yy.c -ll
./a.out < spec.l</pre>
```

```
%{
               #include <stdio.h>
                                                        Regular
               int ch = 0, wd = 0, nl = 0;
                                                        definition
Translation
               %}
               delim
                          [\t]+
  rules
                %%
                           { ch++; wd++; nl++; }
                \n
                ^{delim} { ch+=yyleng; }
                {delim}
                          { ch+=yyleng; wd++; }
                          { ch++; }
               %%
               main()
                { yylex();
                 printf("%8d%8d%8d\n", nl, wd, ch);
```

```
%{
                                                        Regular
                #include <stdio.h>
                %}
                                                       definitions
Translation
                          [0-9]
               digit
                          [A-Za-z]
                letter
   rules
                          {letter}({letter}|{digit})*
                id
                {digit}+
                            printf("number: %s\n", yytext); }
                {id}
                            printf("ident: %s\n", yytext); }
                            printf("other: %s\n", yytext); }
                %%
               main()
                 yylex();
```

```
%{ /* definitions of manifest constants */
#define LT (256)
%}
delim
          [ \t\n]
          {delim}+
ws
                                                            Return
letter
          [A-Za-z]
digit
          [0-91
                                                            token to
          {letter}({letter}|{digit})*
id
          {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?
number
                                                             parser
%%
{ws}
                                                  Token
if
          {return IF;}
          {return THEN;}
then
                                                 attribute
          {return ELSE:
else
          {yylval = install_id(); return ID;}
{id}
          {yylval = install_num() return NUMBER;}
{number}
">"
          {yylval = LT; return RELOR;}
"=>"
          {yylval = LE; return RELOP;
"="
          {yylval = EQ; return RELOP;}
"<>"
          {yylval = NE; return RELOP;}
">"
          {yylval = GT; return RELOP;}
">="
          {yylval = GE; return RELOP;}
                                               Install yytext as
%%
                                          identifier in symbol table
int install id()
```

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

Lexical Analyzer Generator – Design

Nondeterministic Finite Automata

• An NFA is a 5-tuple $(S, \Sigma, \delta, s_0, F)$ where

S is a finite set of *states* Σ is a finite set of symbols, the *alphabet* δ is a *mapping* from $S \times \Sigma$ to a set of states $s_0 \in S$ is the *start state* $F \subseteq S$ is the set of *accepting* (or *final*) *states*

Transition Graph

• An NFA can be diagrammatically represented by a labeled directed graph called a *transition graph*

Transition Table

• The mapping δ of an NFA can be represented in a *transition table*

$\delta(0,\mathbf{a}) = \{0,1\}$	
$\delta(0, \mathbf{b}) = \{0\}$	→
$\delta(1, \mathbf{b}) = \{2\}$	
$\delta(2, \mathbf{b}) = \{3\}$	

State	Input a	Input b
0	{0, 1}	{0}
1		{2}
2		{3}

The Language Defined by an NFA

- An NFA *accepts* an input string *x* if and only if there is some path with edges labeled with symbols from *x* in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a *move*
- The *language defined by* an NFA is the set of input strings it accepts, such as (**a** | **b**)***abb** for the example NFA

Design of a Lexical Analyzer Generator: RE to NFA to DFA

Lex specification with regular expressions

 p_1 { $action_1$ } p_2 { $action_2$ } ... p_n { $action_n$ }

NFA

Subset construction

DFA

From Regular Expression to NFA (Thompson's Construction)

Combining the NFAs of a Set of Regular Expressions

Simulating the Combined NFA Example 1

Simulating the Combined NFA Example 2

When two or more accepting states are reached, the first action given in the Lex specification is executed

Deterministic Finite Automata

- A deterministic finite automaton is a special case of an NFA
 - No state has an ε-transition
 - For each state s and input symbol a there is at most one edge labeled a leaving s
- Each entry in the transition table is a single state
 - At most one path exists to accept a string
 - Simulation algorithm is simple

Example DFA

A DFA that accepts (a | b)*abb

Conversion of an NFA into a DFA

• The *subset construction algorithm* converts an NFA into a DFA using:

$$\varepsilon\text{-}closure(s) = \{s\} \cup \{t \mid s \to_{\varepsilon} \dots \to_{\varepsilon} t\}$$

$$\varepsilon\text{-}closure(T) = \bigcup_{s \in T} \varepsilon\text{-}closure(s)$$

$$move(T,a) = \{t \mid s \to_{a} t \text{ and } s \in T\}$$

• The algorithm produces:

Dstates is the set of states of the new DFA consisting of sets of states of the NFA *Dtran* is the transition table of the new DFA *Dtran*.

ε-closure and move Examples

 ϵ -closure($\{0\}$) = $\{0,1,3,7\}$ $move(\{0,1,3,7\},\mathbf{a}) = \{2,4,7\}$ ϵ -closure($\{2,4,7\}$) = $\{2,4,7\}$ $move(\{2,4,7\},\mathbf{a}) = \{7\}$ ϵ -closure($\{7\}$) = $\{7\}$ $move(\{7\},\mathbf{b}) = \{8\}$ ϵ -closure($\{8\}$) = $\{8\}$ $move(\{8\},\mathbf{a}) = \emptyset$

Simulating an NFA using ε-closure and move

```
S := \varepsilon - closure(\{s_0\})
S_{prev} := \emptyset
a := nextchar()
while S \neq \emptyset do
          S_{prev} := S
          S := \varepsilon - closure(move(S, a))
          a := nextchar()
end do
if S_{prev} \cap F \neq \emptyset then
          execute action in S_{prev}
          return "yes"
          return "no"
else
```

The Subset Construction Algorithm

```
Initially, \varepsilon-closure(s_0) is the only state in Dstates and it is unmarked
while there is an unmarked state T in Dstates do
        mark T
        for each input symbol a \in \Sigma do
                U := \varepsilon - closure(move(T,a))
                if U is not in Dstates then
                         add U as an unmarked state to Dstates
                end if
                Dtran[T,a] := U
        end do
end do
```

Subset Construction Example 1

Dstates

$$A = \{0,1,2,4,7\}$$

$$B = \{1,2,3,4,6,7,8\}$$

$$C = \{1,2,4,5,6,7\}$$

$$D = \{1, 2, 4, 5, 6, 7, 9\}$$

$$E = \{1,2,4,5,6,7,10\}$$

Subset Construction Example 2

Minimizing the Number of States of a DFA (Hopcroft's algorithm)

From Regular Expression to DFA Directly

- The "important states" of an NFA are those without an ε -transition, that is if $move(\{s\},a) \neq \emptyset$ for some a then s is an important state
- The subset construction algorithm uses only the important states when it determines ε -closure(move(T,a))

From Regular Expression to DFA Directly (Algorithm)

- Augment the regular expression *r* with a special end symbol # to make accepting states important: the new expression is *r*#
- Construct a syntax tree for r#
- Traverse the tree to construct functions nullable, firstpos, lastpos, and followpos

From Regular Expression to DFA Directly: Syntax Tree of (a|b)*abb#

From Regular Expression to DFA Directly: Annotating the Tree

- *nullable*(*n*): the subtree at node *n* generates languages including the empty string
- *firstpos*(*n*): set of positions that can match the first symbol of a string generated by the subtree at node *n*
- *lastpos*(*n*): the set of positions that can match the last symbol of a string generated be the subtree at node *n*
- *followpos*(*i*): the set of positions that can follow position *i* in the tree

From Regular Expression to DFA Directly: Annotating the Tree

Node n	nullable(n)	firstpos(n)	lastpos(n)
Leaf ε	true	Ø	Ø
Leaf i	false	$\{i\}$	$\{i\}$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$nullable(c_1)$ or $nullable(c_2)$	$firstpos(c_1)$ \cup $firstpos(c_2)$	$\begin{array}{c} lastpos(c_1) \\ \cup \\ lastpos(c_2) \end{array}$
• / \ c ₁ c ₂	$\begin{array}{c} \textit{nullable}(c_1)\\ \text{and}\\ \textit{nullable}(c_2) \end{array}$	if $nullable(c_1)$ then $firstpos(c_1) \cup$ $firstpos(c_2)$ else $firstpos(c_1)$	if $nullable(c_2)$ then $lastpos(c_1) \cup lastpos(c_2)$ else $lastpos(c_2)$
* c ₁	true	$firstpos(c_1)$	$lastpos(c_1)$

From Regular Expression to DFA Directly: Syntax Tree of (a|b)*abb#

From Regular Expression to DFA Directly: *followpos*

```
for each node n in the tree do
        if n is a cat-node with left child c_1 and right child c_2 then
                for each i in lastpos(c_1) do
                        followpos(i) := followpos(i) \cup firstpos(c_2)
                end do
        else if n is a star-node
                for each i in lastpos(n) do
                        followpos(i) := followpos(i) \cup firstpos(n)
                end do
        end if
end do
```

From Regular Expression to DFA Directly: Algorithm

```
s_0 := firstpos(root) where root is the root of the syntax tree
Dstates := \{s_0\} and is unmarked
while there is an unmarked state T in Dstates do
       mark T
       for each input symbol a \in \Sigma do
               let U be the set of positions that are in followpos(p)
                       for some position p in T,
                       such that the symbol at position p is a
               if U is not empty and not in Dstates then
                       add U as an unmarked state to Dstates
               end if
               Dtran[T,a] := U
       end do
```

end do

From Regular Expression to DFA Directly: Example

Node	followpos	
1	{1, 2, 3}	
2	{1, 2, 3}	$\begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} $
3	{4}	
4	{5}	
5	{6}	
6	-	
	b	b
		a
start	→(1,2,3) - •	a = 1,2, b = 1,2, b = 1,2,
	1,2,3	3,4 3,5
		a
		a

Time-Space Tradeoffs

Automaton	Space (worst case)	Time (worst case)
NFA	O(r)	$O(r \times x)$
DFA	$O(2^{ r })$	O(x)

DFA Minimization

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states (DFA)
- α-transitions to distinct sets ⇒ states must be in distinct sets

A partition P of S

- Each $s \in S$ is in exactly one set $p_i \in P$
- The algorithm iteratively partitions the DFA's states

John Hopcroft

Initial partition, P_0 , has two sets: $\{F\}$ & $\{Q-F\}$ $(D = (Q, \Sigma, \delta, q_0, F))$

Splitting a set ("partitioning a set by \underline{a} ")

- Assume q_a , & $q_b \in s$, and $\delta(q_a,\underline{a}) = q_x$, & $\delta(q_b,\underline{a}) = q_y$
- If $q_x \& q_y$ are not in the same set, then s must be split
- One state in the final DFA cannot have two transitions on a

DFA minimization: The idea

- Equivalent states: Two states q and q in a DFA $M = (Q, \Sigma, \delta, q0, F)$ are said to be equivalent if for all strings u in Σ^* , the states on which u ends on when read from q and q are both accept, or both non-accept.
- Remove unreachable states from start state.
- **Remove** *dead states*: states that are not final and have transitions to themselves

The algorithm

- Input: DFA, S is the set of states, F is the set of final states.
- Output: minimized equivalent DFA.
- Steps:

```
Π= (F) (S-F);
While (Π is changed) {
    for each group G of Π do {
        partition G if there are distinguishable states in G;
        replace G by the subgroups found;
    }
}
Choose representative state for each group;
Remove dead states;
Remove states not reachable from the start state;
```

A Detailed Example

Applying the minimization algorithm to the DFA

	Current Partition	Worklist	S	Split on <u>a</u>	Split on <u>b</u>
Po	{s ₄ } {s ₀ ,s ₁ ,s ₂ ,s ₃ }	{s ₄ } {s ₀ ,s ₁ ,s ₂ ,s ₃ }	{s ₄	none	$\{s_0, s_1, s_2\}$ $\{s_3\}$
<i>P</i> ₁	{s ₄ } {s ₃ } {s ₀ ,s ₁ ,s ₂ }	{s ₀ ,s ₁ ,s ₂ } {s ₃ }	{s₃ }	none	${s_0, s_2}{s_1}$
P ₂	(s ₄) {s ₃ } {s ₁ } {s ₀ ,s ₂ }	{s ₀ ,s ₂ }{s ₁ }	{s ₁ }	none	none

final state

Example

What about $\underline{a}(\underline{b}|\underline{c})^*$?

To produce the minimal DFA

Example on DFA Minimization

- ❖ Consider the DFA for (a | b) *abb obtained using subset construction algorithm
- ❖ Initial partition Π consists of 2 groups = {{A, B, C, D}, {E}}
- A, B, C-succ under $b \in \{A, B, C, D\}$, while D-succ under b is E
- Therefore, $\Pi_{\text{new}} = \{ \{A, B, C\}, \{D\}, \{E\} \} \}$
- A, C-succ under b is C while B-succ under b is D
- Therefore, $\Pi_{\text{new}} = \{ \{A, C\}, \{B\}, \{D\}, \{E\} \} \}$
- A, C-succ under a is B, and A, C-succ under b is C
- A, C does not require further partitioning; states A and C can be merged
- Therefore, final $\Pi = \{ \{A, C\}, \{B\}, \{D\}, \{E\} \} \}$

Minimized DFA for (a|b) *abb

Building Faster Scanners from the DFA

Table-driven recognizers waste effort

- Read (& classify) the next character
- Find the next state
- Assign to the state variable
- Trip through case logic in action()
- Branch back to the top

We can do better

- Encode state & actions in the code
- Do transition tests locally
- Generate ugly, spaghetti-like code
- Takes (many) fewer operations per input character

```
char \leftarrow next\ character;
state \leftarrow s_{0};
call\ action(state, char);
while\ (char \neq \underline{eof})
state \leftarrow \delta(state, char);
call\ action(state, char);
char \leftarrow next\ character;

if\ T(state) = \underline{final}\ then
report\ acceptance;
else
report\ failure;
```

Building Faster Scanners from the DFA

A direct-coded recognizer for <u>r</u> Digit Digit*

```
goto s<sub>o</sub>;
s_0: word \leftarrow \emptyset;
                                               s2: word \leftarrow word + char:
     char \leftarrow next character:
                                                     char \leftarrow next character:
                                                     if ('0' ≤ char ≤ '9')
     if (char = 'r')
       then goto s_1;
                                                       then goto s_2;
       else goto s<sub>e</sub>;
                                                       else if (char = eof)
s_1: word \leftarrow word + char;
                                                           then report success;
     char \leftarrow next character:
                                                           else goto s;
     if ('0' ≤ char ≤ '9')
                                               s<sub>e</sub>: print error message;
       then goto s_2;
                                                     return failure:
       else goto se;
```

- Many fewer operations per character
- Almost no memory operations
- Even faster with careful use of fall-through cases

Minimizing the Number of States in a DFA

Smaller is better!

Minimal DFA

- Given any DFA, there is an equivalent DFA containing the minimum number of states
- The minimal DFA is unique
- It is possible to directly obtain the minimal DFA from any DFA
- The algorithm presented here is adapted from Aho, Sethi, and Ullman.

- The algorithm starts by partitioning the states in the DFA into sets of states that will ultimately be combined into single states.
- The first partitioning creates 2 sets:
 - One set contains all the accepting states
 - The other set contains all the nonaccepting states
- The process now goes through one or more iterations where it considers the transitions

- Iterate until no further partitioning is possible:
 - For each set G of states in partition Π, consider the transitions for each input symbol **a** from any state in G.
 - Two states **s** and **t** belong in the same subgroup iff for all input symbols **a**, states **s** and **t** have transitions into states in the same subgroup of Π.
 - Replace G in Π by the set of subgroups formed.

- Choose one state in each group of the partition Π as the representative for that group. The representatives will be the states of the reduced DFA M.
- The start state of **M**' will be the group that contains the start state of the original DFA.
- Any group that contains an accepting state from the original DFA will be an accepting state of the minimal DFA M'.

- Remove any dead state d from M'.
 - a dead state is one that has transitions to itself on all input symbols.
 - Any transitions to d from other states become undefined.
- Remove any states unreachable from the start state from **M**'.

Example 1: Minimize the DFA

- We start with two groups
 - Accepting states: { D }
 - Nonaccepting states: { A, B, C }
- Since the singleton set { D } cannot be partitioned any further, we concentrate on { A, B, C }

Example 1, continued

- For input a and states in group { A, B, C }
 - T(A, a) = B
 - T(B, a) = D (maps into a different subgroup)
 - T(C, a) = B
- We must split the group { A, B, C } into two subgroups, { A, C } and { B }

Example 1, continued

- At this point, $\Pi = \{ A, C \}, \{ B \}, \{ D \}$
- Consider transitions from { A, C } on a and b
 - T(A, a) = B

T(C, a) = B(same group)

- T(A, b) = C

T(C, b) = C (same group)

• No further partitioning is possible.

Example 1, continued

- $\Pi = \{A,C\}, \{B\}, \{D\}$
- Choose A as representative from {A,C}:
 - Remove row C from table
 - Replace all occurrences of C with A
- Resulting minimal DFA is shown on next slide

	а	b	
Α	В	С	start
В	D	С	
С	В	С	
D	D	С	accept

Example 1, conclusion

• Minimal DFA

	а	b	
Α	В	Α	start
В	D	Α	
D	D	Α	accept

Checkpoint: Minimize the DFA

	а	b	
Α	G	F	start
В	C	G	
С	В	D	
D	G	Ш	
Е	В	Н	accept
F	Α	D	
G	В	D	
Н	А	Е	accept

start

accept

accept

	а	b
Α	G	F
В	С	G
С	В	D
D	G	Ш
Ε	В	I
F	Α	D
G	В	D
Н	Α	Ш

- $\Pi = \{A,B,C,D,F,G\}, \{E,H\}$
- $T({A,B,C,D,F,G}, a)$:
 - T(A, a) = G
 - T(B, a) = C
 - T(C, a) = B
 - T(D, a) = G
 - T(F, a) = A
 - T(G, a) = B
 - all map to same group—no repartitioning (yet)

	а	b	
Α	G	L	start
B C	С	G	
С	В	D	
D	Ŋ	Ш	
E	В	Н	accept
F	Α	D	
G	В	D	
Н	Α	Е	accept
			•

- $\Pi = \{A,B,C,D,F,G\}, \{E,H\}$
- $T({A,B,C,D,F,G},b)$:

$$- T(A, b) = F$$

$$- T(B, b) = G$$

$$- T(C, b) = D$$

$$- T(D, b) = E (different group)$$

$$- T(F, b) = D$$

$$- T(G, b) = D$$

start

accept

accept

	а	b
Α	G	F
В	С	G
С	В	D
D	G	Ш
Е	В	Ι
F	Α	D
G	В	D
Н	Α	Е

• $\Pi = \{A,B,C,F,G\},\{D\},\{E,H\}$

• $T({E,H}, a)$:

$$- T(E, a) = B$$

$$- T(H, a) = A$$

map into same group

• $T({E,H}, b)$:

$$- T(E, b) = H$$

$$- T(H, b) = E$$

- map into same group
- No repartitioning necessary (at least not yet)

	а	b	
Α	G	L	start
B C	С	G	
С	В	D	
D	G	Е	
E	В	Н	accept
F	Α	D	
G	В	D	
Н	Α	Е	accept
			-

- $\Pi = \{A,B,C,F,G\},\{D\},\{E,H\}$
- $T({A,B,C,F,G}, a)$:
 - T(A, a) = G
 - T(B, a) = C
 - T(C, a) = B
 - T(F, a) = A
 - T(G, a) = B
 - all map to same group, so no repartitioning results from this

accept

accept

	а	b
Α	G	F
В	O	G
C	В	D
D	G	Ш
Ε	В	Ι
F	A	D
G	В	D
Η	A	Ш

- $\Pi = \{A,B,C,F,G\},\{D\},\{E,H\}$
- start $T({A,B,C,F,G}, b)$:
 - T(A, b) = F
 - T(B, b) = G
 - T(C, b) = D
 - T(F, b) = D
 - T(G, b) = D
 - {A,B} and {C,F,G} map to different groups, so we repartition {A,B,C,F,G} into the groups {A,B} and {C,F,G}

	а	b	
Α	Ŋ	F	start
В	С	G	
С	В	D	
D	O	Е	
Е	В	Ι	accept
F	Α	D	
G	В	D	
Н	Α	Ш	accept

•
$$\Pi = \{A,B\}, \{C,F,G\}, \{D\}, \{E,H\}$$

- $T({A,B}, a) \rightarrow {C,F,G}$
- $T({A,B}, b) \rightarrow {C,F,G}$
- $T(\{C,F,G\}, a) \rightarrow \{A,B\}$
- $T(\{C,F,G\},b) \rightarrow \{D\}$
- $T({D}, a) \rightarrow {C,F,G}$
- $T({D}, b) \rightarrow {E, H}$
- $T({E,H}, a) \rightarrow {A, B}$
- $T({E,H}, b) \rightarrow {E, H}$
- No further partitioning is possible

- $\Pi = \{A,B\}, \{C,F,G\}, \{D\}, \{E,H\}$
- Representatives:

• The minimal DFA is shown on the next slide.

