단답형 문제 정답

1	2	3	4	5
b, h, a	4	$qd,qdE\!sin heta$	$\Big(rac{1}{4\piarepsilon_0}rac{Q}{R^3}\Big)r$	$\frac{1}{2}$ भी
6	7	8	9	10
12R	$i = nqv_dA,$ $j = nqv_d$	8A, 9Ω	2,4	$0,rac{\mu_0I}{2\pi r}$
4判	$rac{\mu_0 Q \omega}{4\pi R}$	※ 1번, 3번, 7번, 8번, 9번, 10번 - 모두 써야 정답. 순서가 맞으면 정답, 순서 틀리면 오답. 8번 - 단위포함.		

※ 채점노트

없음

주관식 1.

(II)
$$\sigma$$

(가) 평면의 면적이 충분히 넓고, 평판 사이의 거리가 짧으므로 가장자리효과를 무시하고 무한평면 과 같이 풀이할 수 있다. 따라서, 가우스 법칙을 각 평면에 적용하면,

면전하밀도
$$\sigma$$
 인 윗면에 가우스 법칙을 적용하면 $extit{\it E}(2A) = rac{\sigma A}{arepsilon_0}$ 로

전기장
$$E_+=rac{\sigma}{2arepsilon_0}$$
 이고, (면에서 나가는 방향)

마찬가지로 면전하밀도 $-\sigma$ 인 윗면에 가우스 법칙을 적용하면 $extbf{\emph{E}}(2A) = rac{-\sigma A}{arepsilon_0}$ 로

전기장
$$E_-=-rac{\sigma}{2arepsilon_0}$$
 이다. (면으로 들어오는 방향)

각 영역에 따라 전기장의 방향을 고려하여 더하면, 영역 I의 전기장은 서로 반대 방향이므로 E=0

영역
$$\mathrm{II}$$
의 전기장은 서로 같은 방향이므로 $E=E_++E_-=rac{\sigma}{arepsilon_0}$

영역 ${
m III}$ 의 전기장은 서로 반대 방향이므로 E=0

(나) 축전기에 저장된 에너지 $U=\frac{1}{2}CV^2$, 축전용량 $C=arepsilon_0rac{A}{d}$, 전위차 $V=Ed=rac{\sigma}{arepsilon_0}d$ 이므로, 대입하여 정리하면, $U=rac{1}{2}rac{\sigma^2}{arepsilon_0}(Ad)$ 이고

에너지 밀도는
$$u=U\!/(부피)=rac{1}{2}rac{\sigma^2}{arepsilon_0}$$
이다.

(다) 두 평행판 잡아당기는 힘의 크기는
$$F=\left|-rac{dU}{d(거리)}
ight|$$
 이므로, $F=-rac{dU}{d(d)}=-rac{1}{2}rac{\sigma^2}{arepsilon_0}(A)$

(또는) 윗판이 만드는 전기장 $E_+=rac{\sigma}{2arepsilon_0}$, 아래판 $-\mathit{Q}{=}{-}\sigma\!\mathit{A}$ 를 잡아 당기는 힘 $\mathit{F}{=}(-\mathit{Q})E_+$ 이

므로
$$F{=}-rac{1}{2}rac{\sigma^2}{arepsilon_0}(A)$$
 부호는 잡아 당기는 방향

주관식 2.

(가) 자기모멘트의 크기는 $\mu=iA$ (도선의 면적과 전류의 곱) 이므로 $\pi imes(0.200\ \mathrm{m}\,)^2 imes 2.00\ \mathrm{A}=0.251\ \mathrm{Am}^2$ (또는 $0.0800\pi\,Am^2$) 방향은 전류의 방향을 오른손의 네 손가락의 방향으로 놓을 때 엄지손가락이 가리키는 방향이므로 z 방향

(나) 자기 위치에너지 $U=-\stackrel{
ightharpoonup}{\mu} \cdot \stackrel{
ightharpoonup}{B}$ 이므로 $-0.251\,(\hat{k}){\rm Am}^2 \cdot 0.100(\hat{j}){\rm T}=0$ 돌림힘 $\stackrel{
ightharpoonup}{\tau}=\stackrel{
ightharpoonup}{\mu} \times \stackrel{
ightharpoonup}{B}$ 이므로 $+0.251\,(\hat{k}){\rm\,Am}^2 \times 0.100(\hat{j}){\rm\,T}=0.0251\,(-\,\hat{i}){\rm\,Nm}\,,$ 크기: $0.0251\,{\rm\,Nm},$ 방향: -x축

(다) 자기 위치에너지 $U=-\vec{\mu}\cdot\vec{B}$ 이므로 $-0.251(\hat{k})\mathrm{Am}^2\cdot0.100(\hat{k})\mathrm{T}=-0.0251\,\mathrm{J} \quad (또는 \ 0.00800\pi J\,)$ 돌림힘 $\vec{\tau}=\vec{\mu}\times\vec{B}$ 이므로 0