

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2024

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 25 pages./ Hierdie nasienriglyne bestaan uit 25 bladsye.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the Marking Guidelines. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die Nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

	GEOMETRY • MEETKUNDE			
S	A mark for a correct statement (A statement mark is independent of a reason)			
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)			
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)			
	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)			
S/R	Award a mark if statement AND reason are both correct			
	Ken 'n punt toe as die bewering EN rede beide korrek is			

Weight	34	32	40	27	33	28	27	55	39	44	30	57	28	32	31
(in kg)(x)	34	32	40	21	33	20	21	33	39	44	30	37	20	32	31
Number of push-															
ups per minute	26	21	6	20	16	26	23	7	18	14	17	8	28	25	20
(y)															

1.1	a = 39,456001	$\checkmark a = 39,46$
	b = -0.590018	b = -0.59
	$\hat{y} = 39,46 - 0,59x$ CORRECT ANSWER ONLY: FULL MARKS	✓ equation
		(3)
1.2	r = -0.8	\checkmark (A) -0,8
		(1)
1.3	y = 39,46 - 0,59(29)	✓ substitution
	y = 22,35	✓ answer
		(2)
	OR/OF	
	y = 22,35 (calculator)	✓✓ answer
		(2)
1.4	$\overline{y} = 18,33$	✓(A) 18,33
		(1)
1.5	The increase in the number of push-ups will have no influence .	✓ no influence OR
	The standard deviation stays the same .	standard deviation
		remains the same
		geen verandering /
4		bly dieselfde (1)
1.6	6 is furthest y-value below the least squares regression line.	√ 6
	An increase of 10 push-ups will get the team member to	✓ difference is 10
	(40; 16), the minimum number of push-ups for a player	
	weighing 40kg.	(2)
		[10]

2.1	Median = 65	√ 65
		(1)
2.2	$Q_1 = 44$	√ 44
		(1)
2.3	IQR = 84 - 44	✓ 84
	= 40	✓ IQR
		(2)
2.4		
	•	✓ box
		✓(A) whiskers
	0 5 10 20 30 40 44 50 60 65 70 80 84 90 100 110 120	ending at 5 & 120
		(2)
2.5	Number of employees who qualify = 34	✓ 34
	% of employees who qualify $=\frac{34}{60}\times100$	
	60	
	= 56,67% of the employees	✓ answer
	OR/OF	(2)
	Number of employees who qualify = 35	√ 35
	ov. 6 1 1 1:6 35 100	
	% of employees who qualify $=\frac{35}{60} \times 100$	
	= 58,33% of the employees	✓ answer
	so,ss /v of the employees	(2)
2.6	Number of intervals = 3	✓ 3
2.0		, ,
	Time allowed to work from home = $3(30 \text{ minutes})$	
	= 90 minutes \mathbf{OR}/\mathbf{OF} 1,5 hours	✓ answer
		(2)
		[10]

3.1	$m_{\rm DC} = \frac{-9 - 0}{3 - (-9)}$ OR/OF $m_{\rm DC} = \frac{0 - (-9)}{-9 - 3}$	✓ correct substitution of D(3; -9) & C(-9;0) into gradient formula
	$m_{\rm DC} = -\frac{3}{4} \qquad m_{\rm DC} = -\frac{3}{4}$	✓ answer
		(2)
3.2	Equation of DC:	
	$0 = -\frac{3}{4}(-9) + c \mathbf{OR/OF} y - 0 = -\frac{3}{4}(x - (-9))$	\checkmark correct substitution of $C(-9;0)$ or $D(3;-9)$
	$c = \frac{-27}{4} \text{ or } -6\frac{3}{4}$ $y = -\frac{3}{4}(x+9)$	into equation of line
	$y = -\frac{3}{4}x - \frac{27}{4}$ $y = -\frac{3}{4}x - \frac{27}{4}$	✓ answer (2)
3.3	$k = -\frac{3}{4}(-1) - \frac{27}{4}$ OR/OF $\frac{k - (-9)}{-1 - 3} = \frac{-3}{4}$ OR/OF $\frac{k - 0}{-1 - (-9)} = \frac{-3}{4}$	✓ substitution of B $(-1; k)$
	$k = \frac{3}{4} - \frac{27}{4}$ OR/OF $k + 9 = 3$ OR/OF $k = -\frac{3}{4}(8)$	(1)
	$k = -6 \qquad \qquad k = -6$	
3.4	$DC = \sqrt{(3+9)^2 + (-9-0)^2}$	\checkmark correct substitution of D(3; -9) & C(-9; 0)
		into distance formula
	DC = 15 units	✓ answer
		(2)

3.5	DB = $\sqrt{(3-(-1))^2 + (-9-(-6))^2}$ DB = 5	✓ DB = 5
	$\therefore \frac{DB}{DC} = \frac{5}{15} = \frac{1}{3}$	✓ answer (2)
3.6	$\frac{DM}{DA} = \frac{DB}{DC} = \frac{1}{3}$	$\checkmark \frac{DM}{DA} = \frac{DB}{DC}$
	$\frac{\text{Area }\Delta\text{MBD}}{\text{Area }\Delta\text{ACD}} = \frac{\frac{1}{2}(\text{DM})(\text{DB}) \left(\sin \hat{D}\right)}{\frac{1}{2}(\text{DA})(\text{DC}) \left(\sin \hat{D}\right)}$	✓ correct use of area rule
	$= \frac{1}{3} \times \frac{1}{3}$ $= \frac{1}{9}$	✓ subst. for $\frac{BD}{DC}$ and $\frac{DM}{DA}$ into correct formula ✓ answer
3.7	y = Ax + a	(4)
3.7	y = -4x + c	
	$m_{AD} = -4$ $-9 = -4(3) + c$ $c = 3$ OR/OF $\frac{y+9}{x-3} = -4$ $y+9 = -4x+12$	✓ correct substitution of $m_{AD} = -4$ and D(3; -9)
	y = -4x + 3 $y = -4x + 3$	
	$y = -4x + 3$ $(x-3)^{2} + (y+9)^{2} = 612$ $(x-3)^{2} + (-4x+3+9)^{2} = (\sqrt{612})^{2}$	$(x-3)^2 + (y+9)^2 = 612$
	$(x-3)^{2} + (-4x+3+9)^{2} = (\sqrt{612})^{2}$ $(x-3)^{2} + (-4x+12)^{2} = 612$	✓ substitution of equation AD into distance formula
	$x^2 - 6x + 9 + 16x^2 - 96x + 144 = 612$	
	$17x^{2} - 102x - 459 = 0$ $x^{2} - 6x - 27 = 0$	✓ standard form
	(x-9)(x+3)=0 x = 9 or x = -3 N/A	$\checkmark x$ values with rejection
	y = -4(-3) + 3	
	y = 15	✓ y coordinate
	A(-3;15)	
		(6)

NSC/NSS – Marking Gui	defines/wastenrigtyne
OR/OF	OR/OF
-9 = -4(3) + c $c = 3$ $y = -4x + 3$	✓ correct substitution of $m_{AD} = -4$ and D(3; -9)
$y = -4x + 3$ $N(0; 3)$ $ND = \sqrt{(3-0)^2 + (-9-3)^2}$ $= 3\sqrt{17}$	✓ N(0; 3) ✓ substitution into distance formula to calculate ND
$AD = 6\sqrt{17}$ $ND = \frac{1}{2}AD$	\checkmark ND = $\frac{1}{2}$ AD
N is the midpoint of AD A(-3; 15)	\checkmark x – value \checkmark y – value (6)
	[19]

4.1	L(-1;-3)	$\checkmark x = -1 \checkmark y = -3$
		(2)
4.2	$m_{\rm MP} = \frac{9-3}{3-1}$	
	$m_{\text{MP}} = 3$	$\sqrt{m_{\rm MP}} = 3$
	$m_{\rm ST} = -\frac{1}{3}$	$\checkmark m_{\rm ST} = -\frac{1}{m_{\rm MP}}$
	$9 = -\frac{1}{3}(3) + c y - 9 = -\frac{1}{3}(x - 3)$	✓ substitution of m_{ST} & P(3; 9) into equation of a line
	$c = 10$ OR/OF $y - 9 = -\frac{1}{3}x + 1$	
	$y = -\frac{1}{3}x + 10$ $y = -\frac{1}{3}x + 10$	✓ equation of tangent ST (4)
4.3	$(x-1)^2 + (y-3)^2 = r^2$	
	$(3-1)^2 + (9-3)^2 = r^2$	$(3-1)^2 + (9-3)^2 = r^2$
	$r^2 = 40$	\checkmark value of r^2
	$(x-1)^2 + (y-3)^2 = 40$	✓ LHS of equation of circle
	$x^2 - 2x + 1 + y^2 - 6y + 9 = 40$	✓ expanding LHS
	$x^2 + y^2 - 2x - 6y - 30 = 0$	(4)

 $d^{2} + (1)^{2} - 2d - 6(1) - 30 = 0$ 4.4

 $d^2 - 2d - 35 = 0$

(d-7)(d+5)=0

d = 7 or d = -5

 $\therefore d = 7$

 $\sqrt{d^2+(1)^2-2d-6(1)-30}=0$

✓ standard form

(2)

OR/OF

 $(x-1)^2 + (y-3)^2 = 40$

 $(d-1)^2 + (1-3)^2 = 40$

 $(d-1)^2 = 36$

d - 1 = 6 or d - 1 = -6

d = 7 or d = -5

d = 7

OR/OF

 $\sqrt{(d-1)^2 + (1-3)^2} = 40$

✓ standard form

(2)

OR/OF

 $P\hat{R}L = 90^{\circ}$ (\(\square\) in semi-circle)

 $\frac{9-1}{3-d} \times \frac{1-(-3)}{d-(-1)} = -1$

 $d^2 - 2d - 35 = 0$

(d-7)(d+5)=0

d = 7 or d = -5

 $\therefore d = 7$

OR/OF

 $\checkmark m_{PR} \times m_{RL} = -1$

✓ standard form

(2)

$$4.5 \quad m_{PO} = 3$$

$$\therefore$$
 tan $\hat{POV} = 3$

$$m_{\rm RL} = \frac{1 - \left(-3\right)}{7 - \left(-1\right)}$$

$$=\frac{1}{2}$$

$$\therefore \tan R\hat{V}N = \frac{1}{2}$$

$$\hat{RVN} = 26,565...^{\circ}$$

$$\hat{L} = 71,565...^{\circ} - 26.565...^{\circ}$$
 [ext. \angle of \triangle / buite \angle van \triangle]

$$\hat{L} = 45^{\circ}$$

OR/OF

 $\hat{R} = 90^{\circ}$ [\angle in semi-circle / \angle in 'n halwe sirkel]

$$PR^2 = (3-7)^2 + (9-1)^2$$

$$PR = \sqrt{80} = 4\sqrt{5}$$
 units

$$PL^{2} = (3-(-1))^{2} + (9-(-3))^{2}$$
 OR $RL^{2} = (7+1)^{2} + (1+3)^{2}$

$$PL = \sqrt{160} = 4\sqrt{10}$$

$$RL = \sqrt{80} = 4\sqrt{5}$$

$$\sin \hat{L} = \frac{4\sqrt{5}}{4\sqrt{10}}$$
 OR $\cos \hat{L} = \frac{4\sqrt{5}}{4\sqrt{10}}$ **OR** $\tan \hat{L} = \frac{4\sqrt{5}}{4\sqrt{5}}$

$$\hat{L} = 45^{\circ}$$

$$\checkmark \tan P\hat{O}V = m_{PO}$$

$$\checkmark$$
 m_{RL} using R(7; 1) & L

√ RŶN

✓ answer

OR/OF

$$\checkmark \hat{R} = 90^{\circ}$$

$$\checkmark PR = \sqrt{80} = 4\sqrt{5}$$

$$\checkmark$$
 trig ratio of \hat{L}

(5)

(5)

OR/OF	NSC/NSS – Marking Guidelines/Nasienriglyne	OR/OF
	$(9+3)^2 = \sqrt{160} = 4\sqrt{10}$	✓ length of PL
* ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		
,	$\overline{(1-9)^2} = \sqrt{80} = 4\sqrt{5}$	$\checkmark PR = \sqrt{80} = 4\sqrt{5}$
$LR = \sqrt{\left(7+1\right)^2 + \left(1\right)^2}$	$\overline{(1+3)^2} = \sqrt{80} = 4\sqrt{5}$	✓ length of LR
$\cos L = \frac{80 + 160 - 8}{2\sqrt{80} \times \sqrt{16}}$	$\frac{80}{\overline{60}}$	✓ substitution into the cos rule
$\cos L = \frac{\sqrt{2}}{2}$		
$\hat{L} = 45^{\circ}$		✓ answer
		(5)
$4.6 m_{\rm RM} = \frac{1-3}{7-1}$		
$=-\frac{1}{3}$		$\checkmark m_{\rm RM}$
$m_{\rm RT} = 3$	$(\tan \perp \mathrm{rad})$	✓ m _{RT}
		XI
$m_{\rm PT} = -\frac{1}{3}$		
$m_{\rm RT} \times m_{\rm PT} = -1$		$\checkmark m_{\rm RT} \times m_{\rm PT} = -1 \tag{2}$
PT ⊥ RT		(3)
OR/OF		OR/OF
$m_{\rm MR} = \frac{3-1}{1-7}$		
1-7		
$=-\frac{1}{3}$		
$m_{\mathrm{PT}} = -\frac{1}{3}$	[proved in Q4.2]	
$m_{\mathrm{PT}} = m_{\mathrm{MR}}$		
∴ PT MR		✓ PT MR
_	as \perp tangent / raaklyn \perp radius] t \angle s; PT MR/ooreenkomst. \angle e; PT MR]	✓ MRT = 90° ✓ PTR = 90°
PT \(\triangle \) RT	1 25, 1 1 MIN 001 centonisi. 2e, 1 1 MIN	$\begin{array}{c} V & PTR = 90^{\circ} \\ \end{array} \tag{3}$
OR/OF		OR/OF
$\hat{TPR} = \hat{L} = 45^{\circ}$	[tan-chord theorem/ ∠tussen raaklyn en koord]	\checkmark TPR = \hat{L}
TP = TR	[tans from common pt]	
$\therefore \hat{TPR} = \hat{TRP} = 45$	° [∠s opp equal sides/	√ TPR = TRP
_ ^_	∠e teenoor gelyke sye]	
∴PÎR = 90° PT ⊥ RT	[sum of \angle s in Δ / binne \angle e van Δ]	$\checkmark P\hat{T}R = 90^{\circ}$
FIIKI		(3) [20]

5.1.1	r=5	✓ r = 5
	$\cos A = -\frac{3}{5}$	✓ answer
	5	(2)
5.1.2	$\cos 2A = 2\cos^2 A - 1$	
	$=2\left(-\frac{3}{5}\right)^2-1$	✓ substitution of cos A into double angle formula
	$=-\frac{7}{25}$ OR/OF	✓ answer (2)
	$\cos 2A = \cos^2 A - \sin^2 A$	ζ=/
	$=\left(-\frac{3}{5}\right)^2 - \left(-\frac{4}{5}\right)^2$	✓ substitution of cos A & sin A into double angle formula
	$=-\frac{7}{25}$	✓ answer (2)
	$ \begin{array}{c} \mathbf{OR}/\mathbf{OF} \\ \cos 2\mathbf{A} = 1 - 2\sin^2 \mathbf{A} \end{array} $	(-)
	$=1-2\left(-\frac{4}{5}\right)^2$	✓ substitution of sin A into double angle formula
	$=-\frac{7}{25}$	✓ answer (2)
5.1.3	$(x;4)$ B 0 $x = -3$ $\sin(A-B) = \sin A \cos B - \cos A \sin B$	$\checkmark x = -3$
	$= \left(-\frac{4}{5}\right)\left(-\frac{3}{5}\right) - \left(-\frac{3}{5}\right)\left(\frac{4}{5}\right)$ $= \frac{12}{25} + \frac{12}{25}$ $= \frac{24}{25}$	✓✓ substitution into the compound angle formula
	25	✓ answer (4)

5.2	$\cos\left(\frac{\alpha}{2}-45^{\circ}\right)\sin\left(\frac{\alpha}{2}-45^{\circ}\right)$	
	$= \frac{2\cos\left(\frac{\alpha}{2} - 45^{\circ}\right)\sin\left(\frac{\alpha}{2} - 45^{\circ}\right)}{22}$	\checkmark multiply by $\frac{2}{2}$
	$=\frac{\sin(\alpha-90^\circ)}{4}$	✓ double angle
	$=\frac{-\cos\alpha}{4}$	✓ co function
	$=\frac{-p}{4} \mathbf{OR}/\mathbf{OF} = -\frac{1}{4} p$	✓ answer (4)
	OR/OF	OR/OF
	$\frac{\cos\left(\frac{\alpha}{2} - 45^{\circ}\right)\sin\left(\frac{\alpha}{2} - 45^{\circ}\right)}{2}$	
	$= \frac{\left[\cos\frac{\alpha}{2}\cos 45^{\circ} + \sin\frac{\alpha}{2}\sin 45^{\circ}\right]\left[\sin\frac{\alpha}{2}\cos 45^{\circ} - \cos\frac{\alpha}{2}\sin 45^{\circ}\right]}{2}$	✓ expansion
	$= \frac{\left[\frac{\sqrt{2}}{2}\cos\frac{\alpha}{2} + \frac{\sqrt{2}}{2}\sin\frac{\alpha}{2}\right]\left[\frac{\sqrt{2}}{2}\sin\frac{\alpha}{2} - \frac{\sqrt{2}}{2}\cos\frac{\alpha}{2}\right]}{2}$	✓ special angles
	$=\frac{\frac{1}{2}\sin^2\frac{\alpha}{2} - \frac{1}{2}\cos^2\frac{\alpha}{2}}{2}$	
	$=\frac{-\frac{1}{2}\left(\cos^2\frac{\alpha}{2}-\sin^2\frac{\alpha}{2}\right)}{2}$	
	$= -\frac{\cos 2\left(\frac{\alpha}{2}\right)}{4}$	✓ double angle
	$=-\frac{\cos\alpha}{4}$	
	$=-\frac{1}{4}p$	✓ answer (4)
		[12]

6.1.1	$\cos(x+y) = \cos(x-(-y))$	$\checkmark (x+y) = (x-(-y))$
0.1.1	$= \cos x \cos(-y) + \sin x \sin(-y)$	\checkmark correct expansion
	$=\cos x\cos y - \sin x\sin y$	Control emparisment
		(2)
6.1.2	LHS = $\frac{\cos(90^{\circ} - x)\cos y + \sin(-y)\cos(180^{\circ} + x)}{\cos x \cos(360^{\circ} + y) + \sin(360^{\circ} - x)\sin y}$	
	$\cos x \cos(360^{\circ} + y) + \sin(360^{\circ} - x)\sin y$	
	$\sin x \cos y + (-\sin y)(-\cos x)$	$\checkmark \cos(90^\circ - x) = \sin x$
	$= \frac{(\sin x)\cos y + (-\sin y)(-\cos x)}{\cos x(\cos y) + (-\sin x)\sin y}$	$\checkmark \sin(-y) = -\sin y$
	$-\sin x \cos y + \cos x \sin y$	$\checkmark \cos(180^\circ + x) = -\cos x$
	$= \frac{\sin x \cos y + \cos x \sin y}{\cos x \cos y - \sin x \sin y}$	$\checkmark \cos(360^\circ + y) = \cos y$
		$\int \sin(360^\circ - x) = -\sin x$
	$=\frac{\sin(x+y)}{\cos(x+y)}$,
	$\cos(x+y)$	✓ compound angle formulae
	$=\tan(x+y)$	
	(** (** /)	
	= RHS	(6)
6.2	$\sqrt{6\sin^2 x - 11\cos(90^\circ + x) + 7} = 2$	(0)
0.2	$6\sin^2 x - 11\cos(90^\circ + x) + 7 = 4$	✓ squaring both sides
	, ,	
	$6\sin^2 x - 11(-\sin x) + 7 = 4$	$\checkmark \cos(90^\circ + x) = -\sin x$
	$6\sin^2 x + 11\sin x + 3 = 0$	
	$(3\sin x + 1)(2\sin x + 3) = 0$	✓ factors
	$\sin x = -\frac{1}{3} \qquad \qquad \mathbf{OR/OF} \qquad \qquad \sin x = -\frac{3}{2}$	✓ both equations
	$ref \angle = 19,47^{\circ}$ no solution	
	$x = 199,47^{\circ}$ or $x = 340,53^{\circ}$	√√ answers
		(6)
6.3.1	$g\left(x\right) = \frac{4 - 8\sin^2 x}{3}$	
	$=\frac{4\left(1-2\sin^2x\right)}{3}$	✓ factors
		4 2
	$=\frac{4\cos 2x}{3}$	$\sqrt{\frac{4\cos 2x}{3}}$
	Maximum value of $\cos 2x$ is 1	J
	\therefore maximum value of $g(x) = \frac{4}{3}$	✓ answer
	3	(3)

	OR/OF	OR/OF	
	$4-8\sin^2 x$ is a maximum when $\sin^2 x$ is a minimum		
	Minimum value of $\sin^2 x$ is 0	\checkmark min of $\sin^2 x = 0$	
	$\therefore \text{ max. value of } g(x) = \frac{4 - 8(0)}{3}$	$\checkmark g(x) = \frac{4 - 8(0)}{3}$	
	$g(x) = \frac{4}{3}$	✓ answer	3)
		(3)
	OR/OF	OR/OF	
	$\sin x = \frac{-(0)}{2\left(-\frac{8}{3}\right)}$	$\checkmark \sin x = \frac{-(0)}{2\left(-\frac{8}{3}\right)}$	
	$\sin x = 0$	$\sqrt{\sin x} = 0$	
	$\therefore \text{ max. value of } g(x) = \frac{4 - 8(0)}{3}$		
	$g(x) = \frac{4}{3}$	✓ answer	
	1000		3)
6.3.2	$x = 180^{\circ}$	√ 180°	1\
			1)
		[]	[8]

7.1	$x = 90^{\circ}$	✓ <i>x</i> = 90°
		(1)
7.2	$x = -180^{\circ} \text{ or } x \in (-90^{\circ}; 0^{\circ}]$	√√ answer (2)
	OR/OF	
	$x = -180^{\circ} \text{ or } -90^{\circ} < x \le 0^{\circ}$	✓✓ answer
7.3.1	180°	(2) ✓ answer
	100	(1)
7.3.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ turning points on x -axis: $x = -90^\circ$; 90° ✓ shape ✓ turning point on y -axis at $(0; 2)$
7.4	$2\cos^3 x - \sin x = 0$	
	$2\cos^3 x = \sin x$	
	$2\cos^2 x = \frac{\sin x}{\cos x}$	
	$2\cos^2 x = \tan x$	$\checkmark 2\cos^2 x = \tan x$
	$2\cos^2 x - 1 = \tan x - 1$	$\checkmark 2\cos^2 x - 1 = \tan x - 1$
	$\cos 2x + 1 = \tan x$ $x = 45^{\circ} + k.180^{\circ}; \ k \in \mathbb{Z}$	$\sqrt{\cos 2x + 1} = \tan x$
		✓ answer (4)
	OR/OF	OR/OF
	$2\cos^3 x - \sin x = 0$ $\cos x (2\cos^2 x - \tan x) = 0$	
	$\cos x = 0 \qquad \text{or} \qquad 2\cos^2 x = \tan x$	$\checkmark 2\cos^2 x = \tan x$
	not valid $2\cos^2 x - 1 + 1 = \tan x$	$\checkmark 2\cos^2 x - 1 + 1 = \tan x$
	$\cos 2x + 1 = \tan x$	$\checkmark \cos 2x + 1 = \tan x$
	$x = 45^{\circ} + k.180^{\circ}; \ k \in \mathbb{Z}$	✓ answer (4)
		[11]

8.1	$\tan D\hat{A}C = \frac{DC}{AC}$		
	$AC = \frac{16}{\tan 46,85}$ °		✓ correct subs into trig ratio
	AC=15 m		✓ answer (2)
8.2	$(AB)^{2} = (BC)^{2} + (AC)^{2} - 2(BC)(AC)$	AC) cos BĈA	
	$(19)^{2} = x^{2} + (15)^{2} - 2x(15)\cos 105, 6$ $x^{2} + 8,07x - 136 = 0$	51°	✓ correct subst. into cosine rule✓ quadratic equation in std form
	$x = \frac{-8,07 \pm \sqrt{(8,07)^2 - 4(1)(-136)}}{2(1)}$		✓ correct subst. into quadratic formula
	$x = 8,30 \text{ m or } x \neq -16,38 \text{ m}$		✓ length of BC
	$B\hat{E}C = 58^{\circ} \qquad OR/OF$ $\tan B\hat{E}C = \frac{BC}{EC}$	$E\hat{B}C = 32^{\circ}$ $\tan E\hat{B}C = \frac{EC}{BC}$	✓ size of BÊC OR/OF EBC
	$EC = \frac{8,3}{\tan 58^{\circ}}$	$EC = 8.3 \tan 32^{\circ}$	
	EC = 5,19 m DE = 10,81 m	EC = 5.19 m DE = 10.81 m	✓ length of EC ✓ answer (7)

N	SC/NSS – Marking	Guidelines/Nasienriglyne	
OR/OF			OR/OF
$\hat{CBA} = 49,5^{\circ}$ $\hat{BAC} = 24,89^{\circ}$	5		 ✓ correct subst. into sine rule ✓ BÂC ✓ correct subst. into
$\frac{BC}{\sin 24,89^{\circ}} = \frac{1}{\sin 10}$ $BC = 8,3 \text{ m}$	19 05,61°		sine formula ✓ length of BC
$B\hat{E}C = 58^{\circ}$ $\tan B\hat{E}C = \frac{BC}{EC}$ $EC = \frac{8,3}{\tan 58^{\circ}}$	OR/OF	$E\hat{B}C = 32^{\circ}$ $\tan E\hat{B}C = \frac{FC}{BC}$ $EC = 8,3 \tan 32^{\circ}$	✓ size of BÊC OR / OF EÂC
EC = 5,19 m DE = 10,81 m		EC = 5,19 m DE = 10,81 m	✓ length of EC ✓ answer (7)
•			[9]

9.1 \hat{A}_1	= 40° [ext. \angle of a cyclic quad / buite \angle van kvh]	✓ S ✓ R	(2)
9.2	$= 80^{\circ} \qquad \qquad \left[\hat{A}_1 = \frac{1}{2} \hat{B} \right]$	✓ S	
D =	= 100° [opp ∠s of cyclic quad / teenoorst. ∠e van kvh]	✓ S/R	
∴Ĉ	$C_2 = 40^{\circ}$ [sum of \angle s in \triangle / binne \angle e van \triangle]	✓ S	
∴Ĉ	$\hat{C}_2 = \hat{A}_1 = 40^{\circ}$		
∴ A	$AD = DC$ [sides opp = \angle s / sye teenoor gelyke \angle]	✓ R	
OR	/OF		(4)
	$= 80^{\circ} \qquad \qquad \left[\hat{A}_{1} = \frac{1}{2} \hat{B} \right]$	✓ S	
AĈ	$CE = \hat{A}_2 + \hat{B} [ext \angle \text{ of } \Delta / \text{ buite } \angle \text{ van } \Delta]$	✓ S/R	
	$C_2 = 40^{\circ}$	✓ S	
∴Ĉ	$C_2 = \hat{A}_1 = 40^{\circ}$ $AD = DC$ [sides opp = $\angle s / sye teenoor gelyke \angle]$	✓ R	(4)
OR	/OF		(4)
B =	$= 80^{\circ} \qquad \left[\hat{A}_{1} = \frac{1}{2} \hat{B} \right]$	✓ S	
_	$C_3 = 180^{\circ} - 46^{\circ} - 80^{\circ}$ [sum of \angle s in \triangle / binne \angle e van \triangle] $C_3 = 54^{\circ}$	✓ S/R	
∴Ĉ	$C_2 = 180^{\circ} - 86^{\circ} - 54^{\circ}$ [\(\angle \text{s on a str. line} / \(\angle \text{e op 'n reguitlyn}\)]		
∴Ĉ	$C_2 = 40^{\circ}$	✓ S	
∴Ĉ	$C_2 = \hat{A}_1 = 40^{\circ}$		
∴ A	$AD = DC$ [sides opp = \angle s / sye teenoor gelyke \angle]	✓ R	
			(4)
			[6]

10.1

10.1 | Construction: Join SB and TA and draw h_1 from B \perp AR and

 h_2 from A \perp RB

Konstruksie: Verbind SB en TA en trek h_1 vanaf $B \perp AR$ en h_2

 $vanaf A \perp RB$

Proof/Bewys:

$$\frac{\text{area } \Delta \text{RAB}}{\text{area } \Delta \text{ASB}} = \frac{\frac{1}{2} \text{RA} \times h_1}{\frac{1}{2} \text{AS} \times h_1} = \frac{\text{RA}}{\text{AS}}$$

$$\frac{\text{area } \Delta \text{RAB}}{\text{area } \Delta \text{ABT}} = \frac{\frac{1}{2} \text{RB} \times h_2}{\frac{1}{2} \text{BT} \times h_2} = \frac{\text{RB}}{\text{BT}}$$

area ΔRAB = area ΔRAB But area ΔASB = area ΔABT [common/gemeenskaplik]

[same base & height; AB || ST/ dies. basis & hoogte; AB ||ST]

$$\therefore \frac{\text{area } \Delta RAB}{\text{area } \Delta ASB} = \frac{\text{area } \Delta RAB}{\text{area } \Delta ABT}$$

$$\therefore \frac{RA}{AS} = \frac{RB}{BT}$$

✓ construction

$$\checkmark \frac{\text{area } \Delta \text{RAB}}{\text{area } \Delta \text{ASB}} = \frac{\frac{1}{2} \text{RA} \times h_1}{\frac{1}{2} \text{AS} \times h_1}$$

$$\checkmark \frac{RA}{AS}$$

$$\checkmark \frac{\text{area } \Delta \text{RAB}}{\text{area } \Delta \text{ABT}} = \frac{\text{RB}}{\text{BT}}$$

(6)

$21 \\ NSC/\textit{NSS}-Marking Guidelines/\textit{Nasienriglyne}$

10.2

10.2.1	PR = RS PO = OW	[line from centre \bot to chord/ lyn vanuit midpt. sirkel \bot op koord] [radii / radiusse]	✓ S ✓ R ✓ S	
	$\therefore OR = \frac{1}{2}WS$ $\therefore OR : WS = 1 : 2$	[midpt theorem/midpt. stelling]	✓ S ✓ R	(5)
	OR/OF			
	$P\hat{S}W = 90^{\circ}$ $P\hat{R}O = 90^{\circ}$ ∴ $P\hat{R}O = P\hat{S}W$	[∠ in semi circle/∠ in halwe sirkel] [given]	✓ S	
	∴ RO∥SW	[corresp \angle s = / ooreenk. \angle e =] OR/OF [co-int. \angle s suppl / ko-binne \angle e suppl]	✓ S	
	$\frac{PO}{OW} = \frac{PR}{RS}$ $PO = OW$	[prop theorem; RO \parallel SW/ lyn // een sy van Δ] [radii / radiusse]	✓ S ✓ R	
	$\therefore PR = RS$ $\therefore OR : WS = 1 : 2$	[midpt theorem/ midpt. stelling]	✓ R	(5)

wiameman	NSC/N	VSS – Marking Guidelines/Nasienriglyne	DBE/November 20	
	OR/OF			
	Δ PRO and Δ PSW $\hat{PSW} = 90^{\circ}$ $\hat{PRO} = 90^{\circ}$ ∴ $\hat{PRO} = \hat{PSW}$	[∠ in semi circle/∠ in halwe sirkel] [given]		
	\hat{P} is common \hat{P} OR = \hat{P} WS ∴ ΔPRO ΔPSW ∴ $\frac{\hat{P}}{\hat{P}}$ W = $\frac{\hat{R}}{\hat{S}}$ W	[sum of \angle s in Δ / som van \angle e in Δ] [\angle \angle \angle] [$\parallel \Delta$ s / $\parallel \Delta$ e]	✓ S ✓ R ✓ S	
	but PW = 2 PO $\therefore \frac{RO}{SW} = \frac{PO}{2PO}$ $= \frac{1}{2}$ $\therefore OR : WS = 1 : 2$	[diameter = 2 radius/middellyn = 2 radius]	✓ S ✓ S	
10.2.2	$\frac{OV}{VT} = \frac{RS}{ST} = \frac{1}{3}$	[prop theorem; RO SW/	✓ S/R	(5)
	$\frac{RS}{15} = \frac{1}{3}$ $RS = 5 \text{ units}$	tyn een sy van ∆]	✓ S	
	PR = RS = 5 units	[line from centre \perp to chord / lyn vanuit midpt. sirkel \perp op koord]	✓ S	

10.2

 \therefore PT = 25 units

answer

[15]

23

11.1	$\hat{\mathbf{D}}_1 = \hat{\mathbf{EAG}} = x$	[tan-chord theorem/ ∠tussen raaklyn en koord]	✓ S ✓ R	
	$\hat{\mathbf{C}}_1 = \hat{\mathbf{D}}_1 = x$	[tan-chord theorem/ ∠tussen raaklyn en koord]	✓ S ✓ R	
	$\hat{\mathbf{C}}_4 = \hat{\mathbf{C}}_1 = x$	[vert opp \angle s = / regoorst. \angle e]	✓ S/R	
	$A\hat{F}G = E\hat{A}G = x$	[tan-chord theorem/ ∠tussen raaklyn en koord]	✓ S	(6)
	OR/OF			
	EA = EC	[tans from common pt/ raaklyne vanuit dies. punt]	✓ S/R	
	$\hat{\mathbf{C}}_1 = \hat{\mathbf{E}}\hat{\mathbf{A}}\mathbf{G} = \mathbf{x}$	[∠s opp equal sides/ ∠e teenoor gelyke sye]	✓ S	
	$\hat{\mathbf{C}}_4 = \hat{\mathbf{C}}_1 = x$	[vert opp \angle s = / regoorst. \angle e]	✓ S/R	
	$\hat{\mathbf{D}}_{1} = \hat{\mathbf{EAG}} = x$	[tan-chord theorem/ ∠tussen raaklyn en koord]	✓ S ✓ R	
	$A\hat{F}G = E\hat{A}G = x$	[tan-chord theorem ∠tussen raaklyn en koord]	✓ S	(6)

11.2	$\hat{\mathbf{D}}_1 = \mathbf{A}\hat{\mathbf{F}}\mathbf{G} = x$		✓ S	
	∴ DC FG	[corresp \angle s = / ooreenk \angle e =]	✓ S/R	
	$\frac{AG}{AC} = \frac{AF}{AD}$	[prop theorem; DC \parallel FG $/$	✓ S ✓ R	
	\therefore AG.AD = AC.AF	$lyn // een sy van \Delta]$		
	OR/OF		((4)
	In \triangle ACD and \triangle AGF		(0	
	\hat{A}_3 is common		✓ S	
	$\widehat{AFG} = \widehat{D}_1 = x$	[proved in 11.1 / reeds bewys]	✓ S	
	$\hat{C}_2 = A\hat{G}F = x$	[sum $\angle \Delta s/binne \angle e \Delta$]		
	ΔACD ΔAGF	[∠∠∠]	✓ S/R	
	$\frac{AC}{AG} = \frac{AD}{AF}$	[Δs :: sides in proportion /	✓ S	
	\therefore AG.AD = AC.AF	$ \Delta e :: sye in dieselfde verhouding]$		(4)
11.3	In ΔAGF and ΔABC			
	$\hat{\mathbf{G}} = \hat{\mathbf{B}}_2$	[∠s in the same seg / ∠e in dies. segment]	✓ S ✓ R	
	$\hat{AFG} = \hat{C}_1 = x$	[proved in 11.1 / reeds bewys]	✓ S	
	$ \hat{A}_3 = \hat{A}_2 \Delta AGF \Delta ABC $	[sum of \angle s in \triangle /binne \angle e van \triangle] [$\angle\angle\angle$]	✓ S OR/OF R	(4)

11.4	GF AF		/ C / D
	$\frac{GF}{BC} = \frac{AF}{AC}$	$[\Delta AGF \Delta ABC]$	✓ S/R
	$\therefore GF = \frac{BC.AF}{AC}$		✓ S
	Δ ACD ΔFGC	$[\angle\angle\angle]$	✓ S
	$\therefore \frac{AC}{GF} = \frac{AD}{FC}$		✓ S
	$\therefore AC = \frac{AD.FG}{FC}$		
	$\therefore GF = BC.AF \div \frac{AD.FG}{FC}$		✓ S
	$GF = BC.AF \times \frac{FC}{AD.FG}$		✓ S
	$\therefore GF^2 = \frac{BC.FC.AF}{AD}$		
	AD		(6)
	OR/OF		OR/OF
	$\Delta AGF \Delta ABC$	[∠∠∠]	
	$\frac{GF}{BC} = \frac{AF}{AC}$		✓ S
	$GF = \frac{AF.BC}{AC}$		√ S
	$GF = {AC}$, s
	Δ ACD ΔAGF	[∠∠∠]	
	$\frac{AD}{AF} = \frac{CD}{GF}$		
	$GF = \frac{AF.CD}{AD}$		✓ S
	$GF \times GF = \frac{AF.BC}{AC} \cdot \frac{AF.CD}{AD}$		√ S
	ΔFCD ΔFAC	[∠∠∠]	✓ S
	FA AC	om Δ`s	
	$FC = \frac{CD.AF}{AC}$		✓ S
	$GF^2 = \frac{AF.FC.BC}{AF}$		
	AD		(6) [20]
			[20]

TOTAL/TOTAAL: 150