Chap two

ShangXiaojin

2022年12月14日

目录

1	Bise	ection		
	1.1	code		
	1.2	ans		
	1.3	analyse		
2	Fixed-Point iteration 4			
	2.1	code		
	2.2	ans		
	2.3	analyse		
3	Newton's			
	3.1	code		
	3.2	ans		
	3.3	analyse		
4	Sec	ant		
	4.1	code		
	4.2	ans		
	4.3	analyse		
5	Method of False Position			
	5.1	code		
	5.2	ans		
	5.3	analyse		
6	Steffensen's			
	6.1	code		
	6.2	ans		
	6.3	analyse		
7	Horner's 10			
	7.1	code		
	7.2	ans		
	7.3	analyse		

1 Bisection

```
1.1 code
\operatorname{clc}
clear
tic
format long
Bisection(1,2,-1,-2,1/2,1000,100,0.00001,0.00001)
\textbf{function} \hspace{0.2cm} \left[ \hspace{0.1cm} \textbf{ans} \hspace{0.1cm} \right] \hspace{0.1cm} = \hspace{0.1cm} \text{Bisection} \left( \hspace{0.1cm} \operatorname{Qc} \hspace{0.1cm}, \hspace{0.1cm} \operatorname{Mc} \hspace{0.1cm}, \hspace{0.1cm} \operatorname{C}, a \hspace{0.1cm}, b \hspace{0.1cm}, \hspace{0.1cm} \operatorname{N1} \hspace{0.1cm}, \hspace{0.1cm} \operatorname{N2} \hspace{0.1cm}, \hspace{0.1cm} \operatorname{Tol2} \hspace{0.1cm} \right)
g = @(x)(Qc*x^2 + Mc*x + C);
i = 1;
m = a;
n = b;
k = 1;
while g(m)*g(n)>0
        m = rand*(b-a)+a;
        n = rand*(b-a)+a;
         i = i+1;
         if i>N1
                  fprintf('you_can_increase_N1_and_try_it_again')
                 break
         end
end
while k \le N2
         if abs(g((m+n)/2)) \leftarrow Tol1 \mid abs(m-n) \leftarrow Tol2
                 ans = (m+n)/2;
                 break
         else
                    k = k+1;
                  if g((m+n)/2)*g(m)>0
```

$$m = \left(m\!\!+\!\!n\right)\!/2;$$
 else
$$n = \left(m\!\!+\!\!n\right)\!/2;$$
 end end
$$end$$
 k end

1.2 ans

k=18 ans = 0.414216995239258 历时 0.031189 秒

1.3 analyse

二分法需提前知晓 a, b 的值,使得 f(a)*f(b)<0,且若范围内有多个零点概率丢失,做了一点改变使得可以随机找到满足条件的 a、b 两点。

2 Fixed-Point iteration

2.1 code

clear tic format long $g = @(x)(1-x^2)/2;$ a = -2; b = 1/2;i = 1;

Tol = 0.00001;

```
N0 = 100;
p0 = (a+b)/2;
while i \le N0
p = g(p0);
if abs(p - p0) < Tol
vpa(p)
break
else
i = i+1;
p0 = p;
end
end
p0
i
```

2.2 ans

```
ans = 0.41421521705482028385958415128698
i = 14
历时 0.066758 秒。
```

2.3 analyse

不动点法相对于二分法在该定义域和函数下步骤更简略一些,耗时也 有所减少

3 Newton's

```
clear
tic
format long
```

```
syms x
y = x^2 + 2*x -1;
g = x - y/diff(y,x,1);
a = -2;
b = 1/2;
i = 1;
Tol = 0.00001;
N0 = 100;
p0 = (a+b)/2;
while i \le N0
    p = subs(g, x, p0);
    if abs(p - p0) < Tol
         vpa(p)
         break
    else
        i = i+1;
         p0 = p;
    end
end
i
\mathbf{toc}
3.2 ans
ans = 0.41421356237309504884050067291276
i = 7
历时 0.313838 秒。
```

牛顿迭代仅用了七步,为得出结果所需步骤最少的不动点方法,但在 MATLAB 中显然求导运算会耗费大量时间,时间上比其他方法有明显加长

 $i\\ \mathbf{toc}$

4 Secant

4.1 code clear ticformat long $y = @(x)x^2 + 2*x -1;$ a = -2;b = 1/2;i = 2 ;p0 = a;N0 = 100;p1 = b;Tol = 0.00001;q0 = y(p0);q1 = y(p1); $while i \le N0$ p = p1 - q1*(p1-p0)/(q1-q0);if abs(p-p1)<Tol р break elsei = i+1;p0 = p1;q0 = q1;p1 = p;q1 = y(p);endend

4.2 ans

```
p=0.414213562373142 i=7 历时 0.062322 秒。
```

4.3 analyse

显然割线法与牛顿法都具有简介步骤的特点,但是相比较牛顿法的求导数,更新点的割线避开求导显然在耗时上有很大优势。

5 Method of False Position

```
clear
tic
format long
y = @(x)x^2 + 2*x -1;
a = -2;
b = 1/2;
i = 2 ;
p0 = a;
p1 = 2;
q0 = y(p0);
q1 = y(p1);
Tol = 0.00001;
N0 = 100;
while i \le N0
    p = p1 - q1*(p1-p0)/(q1-q0);
    if abs(p-p1) < Tol
        р
        break
    else
        i = i+1;
```

```
q = y(p);
if q*q1<0
    p0 = p1;
q0 = q1;
end
p1 = p;
q1 = q;
end
i
toc

5.2 ans
p = 0.414210030816267
i = 16
历时 0.058421 秒。
```

与二分法有一定程度的类似,也是从闭合区间内接近根,不同的是通过 两端点割线寻找根而不是二分区间。

6 Steffensen's

```
clear tic format long g = @(x)(x - (x^2+2*x-1)/(2*x+2)); p0 = 1/2;
```

```
p1 = -2;
i = 1;
N0 = 100;
Tol = 0.000001;
\mathbf{while} \hspace{0.2cm} \mathbf{i} \hspace{0.2cm} < \hspace{-0.2cm} = \hspace{-0.2cm} \mathbf{N0}
      p1 = g(p0);
      p2 = g(p1);
      p = p0 - (p1-p0)^2/(p2 - 2*p1 +p0);
       if abs(p - p0) < Tol
             p
             break
       else
             i = i+1;
             p0 = p;
      \quad \text{end} \quad
\quad \text{end} \quad
i
\mathbf{toc}
6.2 ans
p = 0.414213562373095
i = 3
历时 0.035795 秒。
```

避开了计算导数但收敛极快。

7 Horner's

```
%Horner's f = x^4 - x^3 + x^2 - 1
clear
tic
x0 = 1;
format long
A = [1 \ -1 \ 1 \ 0 \ 1];
y = A(1);
z = A(1);
for i = 2:4
   y = x0*y + A(i);
   z = x0*z+y;0
\mathbf{end}
   y = y*x0+A(5);
[y, z]
\mathbf{toc}
7.2 ans
```

ans =
$$1 \times 2$$

2 3
历时 0.035833 秒。

Horner's 方法是减少乘法计算多项式值的方法,将其应用到先前的不 动点等的运算中可以省时。