

Computer Science Tripos - Part II Project

Language Modelling for Text Prediction

March 10, 2017

supervised by Dr Marek Rei & Dr Ekaterina Shutova

Proforma

Name: **Devan Kuleindiren**College: **Robinson College**

Project Title: Language Modelling for Text Prediction

Examination: Computer Science Tripos – Part II, June 2017

Word Count: ?

Project Originator: Devan Kuleindiren & Dr Marek Rei Supervisors: Dr Marek Rei & Dr Ekaterina Shutova

Original Aims of the Project

Work Completed

Special Difficulties

Declaration

I, Devan Kuleindiren of Robinson College, being a candidate for Part II of the Computer Science Tripos, hereby declare that this dissertation and the work described in it are my own work, unaided except as may be specified below, and that the dissertation does not contain material that has already been used to any substantial extent for a comparable purpose.

Signed:
Date:

Contents

1	\mathbf{Intr}	oducti	ion 7						
	1.1	Motiva	ation						
	1.2	Relate	ed Work						
2	Pre	Preparation							
	2.1	N-Gra	m Models						
		2.1.1	An Overview of N-Gram Models						
		2.1.2	Smoothing Techniques						
	2.2	Recur	rent Neural Network Models						
		2.2.1	An Overview of Neural Networks						
		2.2.2	Recurrent Neural Networks						
		2.2.3	Word Embeddings						
		2.2.4	Backpropagation Through Time						
	2.3	Softwa	are Engineering						
		2.3.1	Starting Point						
		2.3.2	Requirements						
		2.3.3	Tools and Technologies Used						
3	Imp	olemen	tation 10						
	3.1		opment Strategy						
		3.1.1	Version Control and Build Tools						
		3.1.2	Testing Strategy						
	3.2	System	n Overview						
		3.2.1	Interface to Language Models						
	3.3	N-Gra	m Models						
		3.3.1	Counting N-Grams Efficiently						
		3.3.2	Precomputing Smoothing Coefficients						
	3.4	Recur	rent Neural Network Models						
		3.4.1	The Forward Pass						
		3.4.2	Gradient Updates						
		3.4.3	Network Architectures						
		3.4.4	Parameter Tuning						
		3.4.5	The Balance Between Underfitting and Overfitting 10						
	3.5	Exten	ding Models to Tackle Error-Prone Text						
		3.5.1	Preprocessing the CLC Dataset						
		3.5.2	Error Correction on Word Context						
	3.6	Bench	marking Framework						
		361	Metrics for Accuracy						

		3.6.2	Metrics for Resource Consumption		11			
	3.7	Mobile	e Keyboard		11			
		3.7.1	Updating Language Model Predictions On the Fly		11			
4	Eva	luatior	1		12			
	4.1	Evalua	ation Methodology		12			
	4.2	Result	······································		12			
		4.2.1	Existing Models		12			
		4.2.2	On a Mobile Device		12			
		4.2.3	On Error-Prone Text		13			
5	Con	clusio	n		14			
Bibliography								
A Project Proposal								

List of Figures

Acknowledgements

Introduction

- 1.1 Motivation
- 1.2 Related Work

Preparation

2.1 N-Gram Models

2.1.1 An Overview of N-Gram Models

Describe how they work, and the motivation for smoothing and backoff.

2.1.2 Smoothing Techniques

Add-One Smoothing

Katz Smoothing

Absolute Discounting

Kneser-Ney

Modified Kneser-Ney

2.2 Recurrent Neural Network Models

2.2.1 An Overview of Neural Networks

Give a brief introduction to neural networks. Explain backpropagation. Motivate why we need RNNs for language modelling.

2.2.2 Recurrent Neural Networks

Explain RNNs.

Vanilla Recurrent Neural Networks

Gated Recurrent Unit

Long Short-Term Memory

- 2.2.3 Word Embeddings
- 2.2.4 Backpropagation Through Time
- 2.3 Software Engineering
- 2.3.1 Starting Point
- 2.3.2 Requirements
- 2.3.3 Tools and Technologies Used

Implementation

3.1	Develo	pment	Strategy
			, o o = o o o o o o o o o o o o o o o o

- 3.1.1 Version Control and Build Tools
- 3.1.2 Testing Strategy
- 3.2 System Overview
- 3.2.1 Interface to Language Models
- 3.3 N-Gram Models
- 3.3.1 Counting N-Grams Efficiently
- 3.3.2 Precomputing Smoothing Coefficients
- 3.4 Recurrent Neural Network Models
- 3.4.1 The Forward Pass
- 3.4.2 Gradient Updates
- 3.4.3 Network Architectures
- 3.4.4 Parameter Tuning
- 3.4.5 The Balance Between Underfitting and Overfitting

Dropout, embedding, learning rate decay, momentum?, gradient clipping

- 3.5 Extending Models to Tackle Error-Prone Text
- 3.5.1 Preprocessing the CLC Dataset
- 3.5.2 Error Correction on Word Context
- 3.6 Benchmarking Framework
- 3.6.1 Metrics for Accuracy
- 3.6.2 Metrics for Resource Consumption
- 3.7 Mobile Keyboard
- 3.7.1 Updating Language Model Predictions On the Fly

Evaluation

'Accuracy' could be any one of perplexity, average-keys-saved or guessing entropy.

4.1 Evaluation Methodology

4.2 Results

4.2.1 Existing Models

Things I aim to evaluate here are:

N-Gram Models:

- Accuracy as a function of the amount of training data used (one line per LM), for various smoothing techniques (on subset of 1BN word dataset).
- The effect of increasing N.

Neural Models

- Accuracy as a function of the amount of training data used (one line per LM), for various RNN architectures (on subset of 1BN word dataset).
- The effect of changing the number of hidden neurons.

All Models

• A comparison of the performance of all models (on the PTB dataset).

Combinations of Models

• How combinations of models compare with respect to standalone ones (on the PTB dataset).

4.2.2 On a Mobile Device

Here, I want to focus on the tradeoff between accuracy and resource consumption. Specifically, I could look at the following:

- The effect of increasing the minimum frequency for a word to be considered in the vocabulary. (I.e. the effect of changing the vocabulary size).
- The effect of changing the number of hidden layer neurons.
- The effect of using RNN vs GRU vs LSTM.
- (Perhaps also the effect of pruning on n-gram models).

4.2.3 On Error-Prone Text

Things I aim to evaluate here are:

- The hypothetical upper and lower bounds on accuracy (i.e. the LM results on correct input and on incorrect input respectively).
- The effect of using the vocabulary vs different sized dictionaries for determining if a word should be replaced or not.
- The effect of edit distance on performance.
- An intuitive explanation behind the gap remaining between the current performance and the upper bound. Perhaps some suggestions for future work.

Conclusion

Appendix A
 Project Proposal