Theory of Probability: Class 20221004

Theory of Probability: Class 20221004

```
Review: Random Variable
```

The Cummulative Distribution Function (CDF)

Notation

Examples

Expectation

Definition

Example

Law Of The Unconscious Statistician (LOTUS)

Linear Operator

The **Expectation** is **LINEAR**

Proof

Remark

Review: Random Variable

- A function that assigns a real number to each element in the sample space
- Generates a PDF (Probability Distribution Function)
- DRV / Discrete Random Variable and Continuous Random Variable
 - o <u>Discrete</u>: The values that the RV can take are either finite or countably infinite
 - Gaps between values
- DRV has a PMF(Probability Mass Function)
 - ullet Notation: p:X o [0,1]

 - $egin{array}{ll} \circ & 0 \leq p(x) \leq 1 \ orall x \in X \ \circ & \displaystyle \sum_{x \in X} p(x) = 1 \ \circ & p(a) = P(X = a) \end{array}$

The Cummulative Distribution Function (CDF)

Notation

$$egin{aligned} ullet & F(x): \mathbb{R}
ightarrow [0,1] \ ullet & F(a) = P(X \leq a) = \sum_{x \leq a} p(x) \end{aligned}$$

Examples

- 1. Consider our Alpha Experiment (Flip 3 coins)
 - $\circ \quad X$ is RV that counts number of heads
 - ullet $X:S
 ightarrow \{0,1,2,3\}$

0	X	P(x) (pmf)
	0	p(0) = P(X=0) = 1/8
	1	p(1) = P(X = 1) = 3/8
	2	p(2)=P(X=2)=3/8
	3	p(3) = P(X=3) = 1/8
		Total = 1

$$F(x) = egin{cases} 0, & x < 0 \ 1/8, & 0 \leq x < 1 \ 4/8, & 1 \leq x < 2 \ 7/8, & 2 \leq x < 3 \ 1, & x \geq 3 \end{cases}$$

• Graph: a "Stepp" function

"

• Sketch the pmf DRV (Histogram)

• Note that the domain of the functions are all different:

$$\mathsf{Experiment} \to S$$

$$X:S o \mathbb{R}$$

$$p(x):\ X o [0,1]$$

$$F(X): \mathbb{R} o [0,1]$$

2. T is a **DRV** which represents whole years

$$T = \{1, 3, 5, 7\}$$

• Define CDF:

$$F(t) = egin{cases} 0, & t < 1 \ 1/4, & 1 \leq t < 3 \ 1/2, & 3 \leq t < 5 \ 3/4, & 5 \leq t < 7 \ 1, & t \geq 7 \end{cases}$$

1. Sketch the cdf

2. Define the pmf

Т	P(t)
1	1/4
3	1/4
5	1/4
7	1/4

3.
$$P(T=5)$$

$$= 1/4$$

4.
$$P(T > 3)$$

$$= 1/2$$

5.
$$P(T \le 5 | T \ge 2)$$

$$\blacksquare = \frac{P(2 < T \le 5)}{P(T < 2)} = \frac{P(3 \ or \ 5)}{P(3 \ or \ 5 \ or \ 7)} = \frac{1/2}{3/4} = \frac{2}{3}$$

6.
$$P(T = 5.5)$$

- Does not make sense.
- Not in the domain of the function
- 7. F(5.5)

$$= 3/4$$

- 3. A shipment of 7 tvs that contains 2 defectives arrive. You purchase 3 of the tvs randomly.
 - \circ Define X to be the RV that counts the # of defects in the purchase.

$$X = \{0, 1, 2\} \operatorname{<-----} \mathsf{DRV}!$$

1. Find the pmf

$$P(X=i) = rac{inom{2}{i}inom{5}{3-i}}{inom{7}{3}}$$

Hypergeometric Distribution!

Х	P(x)
0	2/7
1	4/7
2	1/7

2. Define the cdf

$$P(x) = egin{cases} 0, & x < 0 \ 2/7, & 0 \leq x < 1 \ 6/7, & 1 \leq x < 2 \ 1, & x \geq 2 \end{cases}$$

3. Sketch both

PMF:

Expectation

Definition

The Expectation of DRV, X:

$$\mu = E(X) = \sum_{x \in X} x \cdot p(x)$$

$$\mu = E(X) = \sum_{x \in X} x \cdot p(x) \quad \text{weighted average}$$
The mean

Example

1. Alpha Experiment

X	P(x)	$x \cdot p(x)$
0	1/8	0
1	3/8	3/8
2	3/8	6/8
3	1/8	3/8

$$E(X) = 3/8 + 6/8 + 3/8 = 12/8 = 1.5$$

1.5 heads <u>doesn't make sense</u>

What it's actually saying is that the expected value is between 1 and 2, and it's as likely to be 1 as it's likely to be 2.

2. We go to Atlantic City to play some cards

Player pays p dollars to play game

- Game: one card is flipped over
- \circ Player wins \$3 if the card is J or Q
- \circ Player wins \$5 if the card is A or K
- Player wins 0 if otherwise

Question: How much should the player pay to play for the game to be fair?

In other words, E(X) = 0?

Answer:

Let X represent the profit earned in a given game [Won-Paid]

$$X = \{3-p, \ 5-p, \ 0-p\}$$

$$P(x) = \{2/13, 2/13, 9/13\}$$

$$E(X) = \frac{2}{13}(3-p) + \frac{2}{13}(5-p) + \frac{9}{13}(-p) = \frac{16}{13} - p = 0$$

$$\Rightarrow p = 16/13 \approx 1.23$$

Law Of The Unconscious Statistician (LOTUS)

Note that we have the formula of expectation of x,

$$E(X) = \sum_x x \cdot p(x)$$

LOTUS gives us the expectation of a function of x,

$$egin{aligned} E(g(X)) &= \sum_x g(x) \cdot p(x) \ &
eq \sum_x g(x) \cdot p(g(x)) \end{aligned}$$

x	g(x)	p(x)
x_1	$g(x_1)$	$p(x_1) \neq p(g(x_1))$
x_2	$g(x_2)$	$p(x_2)$

- Alpha Experiment as Example:
- $E(X) = \sum_x xp(x) = \frac{1}{8}(0) + \frac{3}{8}(1) + \frac{3}{8}(2) + \frac{1}{8}(3) = 1.5$ $E(X^2) = \sum_x x^2p(x) = \frac{1}{8}(0)^2 + \frac{3}{8}(1)^2 + \frac{3}{8}(2)^2 + \frac{1}{8}(3)^2 = 3$

Linear Operator

- · Linear Operator:
 - f(ax + b) = f(ax) + f(b) = af(x) + f(b)
- Non-Linear Operator:
 - $\circ \sin(2x) = 2 \cdot \sin(x) \cdot \cos(x) \neq 2 \cdot \sin(x)$
 - $\circ \sin(x+y) \neq \sin(x) + \sin(y)$

The <u>Expectation</u> is LINEAR

- E(aX) = aE(X)
- E(X + b) = E(X) + b
- E(aX + b) = aE(X) + b

- Proof

- $$\begin{split} \bullet & E(aX) = \sum_{x \in X} (ax) \cdot p(x) = a \sum_{x \in X} x \cdot p(x) = aE(X) \\ \bullet & E(X+b) = \sum_{x \in X} (x+b)p(x) = \sum_{x \in X} xp(x) + b \sum_{x \in X} p(x) = E(X) + b \\ \bullet & E(ax+b) = \sum_{x \in X} (ax+b)p(x) = \sum_{x \in X} axp(x) + b \sum_{x \in X} p(x) = aE(X) + b \end{split}$$
- (Note that $\sum p(x) = 1$)

Remark

- Given DRVs $X_1, X_2, X_3, \ldots, X_n$
- Let DRV $Y = \sum_{i=1}^n X_i$
- Then $E(Y)=E(\sum_{i=1}^n X_i)=E(X_1)+E(X_2)+\ldots+E(X_n)$