Afternoon

E-NFA and Minimization of DFA

- Definition
- ♦ Minimize DFA
- ◆ Exercises

Formal Definition

```
\varepsilon - NFA is a five-tuple,
such as M = (Q, \Sigma, \delta, q_0, F)
Where Q is a finite set of states,
         \Sigma is a finite set of input symbols,
        q_0 is a start state,
         F is a set of final state.
        \delta is transition function, which is a mapping
  from Q \times (\Sigma \cup \{\epsilon\}) to 2^{Q}.
```

Example 1

Describe the language accepted by this NFA:

Example 1

Describe the language accepted by this NFA:

23.01 / 69.0 / .0 / 10.

Example 2 ε -NFA for

The set of strings of 0's and 1's such that at least one of the last ten positions is a 1.

Example 2 NFA for

The set of strings of 0's and 1's such that at least one of the last ten positions is a 1.

Example 2 NFA for

The set of strings of 0's and 1's such that at least one of the last five positions is a 1.

Example 2 ε -NFA for

The set of strings of 0's and 1's such that at least one of the last ten positions is a 1.

BASIS: State q is in ECLOSE(q)

INDUCTION: If state p is in ECLOSE(q), and there is a transition from state p to state r labeled ϵ , then r is in ECLOSE(q).

$$E(r) = \{r\}, E(p) = \{p,r\}, E(q) = \{p,q,r\}$$

ε - closure

$$E(7) = \{ 7 \}, E(6) = \{ 6 \}, E(5) = \{ 5, 7 \}$$

$$E(4) = \{4\}, E(3) = \{3, 6\},$$

$$E(2) = \{ 2, 3, 6 \}, E(1) = \{ 1, 2, 4, 3, 6 \}$$

ϵ - transition

$$\delta(r, a) = ?$$

$$\delta(q,b) = ?$$

To which from state r with input symbol a ?

To which from state q with input symbol b?

Extending δ to string

BASIS:
$$\hat{\delta}(q, \varepsilon) = Eclose(q)$$
.

INDUCTION:

Surpose
$$w = xa$$
, $\hat{\delta}(q, x) = \{p_1, p_2, \Lambda, p_k\}$

Let
$$Y \delta(p_i, a) = \{r_1, r_2, \Lambda, r_m\}$$

Then
$$\hat{\delta}(q, w) = \mathbf{Y}_{i=1}^{m} Eclose(r_i)$$

NFA

E-NFA

Extending δ to string

Eclose(s) = {s} $\Rightarrow \hat{\delta}(r, w) = \hat{\delta}(r, ab) = {s}$

Example 3

Eclose(q₀) = {q₀, q₁},
$$\hat{\delta}(q_0, 5) = \hat{\delta}(Eclose(q_0), 5)$$

Language of ε -NFA

Definition The language of an ε -NFA A is denoted L(A), and defined by

$$L(A) = \{ w \mid \hat{\mathcal{S}}(q_0, w) \cap F \neq \emptyset \}$$

There is at least a path, labeled with w, from start state to final state.

Equivalence of states

equivalent states

$$\forall w \in \Sigma^*, \hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$$

notice

We never mentioned
$$\hat{\delta}(p, w) = \hat{\delta}(q, w)$$

distinguishable states

$$\exists w \in \Sigma^*, \hat{\delta}(p, w) \in F \Leftrightarrow \neg \hat{\delta}(q, w) \in F$$

Equivalence of states

Table-filling algorithm

- Basis If p is accepting and q is not accepting, then p and q are distinguishable.
- Induction Let $r = \delta(p, a)$, $s = \delta(q, a)$, r and s are distinguishable. Then p and q are distinguishable.
- Example

Minimization of DFA's

- ♦ What is minimization of DFA
- Algorithm for minimization
 - > partition remaining states into equivalent blocks
 - > take blocks as states
- Minimum-state DFA for a regular language is unique

Example 4 Minimize DFA

Exercises

Construct DFA for following languages:

- a) $\{0\}^*$
- b) $\{w \mid w \in \{0,1\}^* \text{ and begin with } 0\}$
- c) $\{w \mid w \text{ consists of any number of 0's followed}$ by any number of 1's $\}$
- d) {ε}
- e) ϕ

Good good stilly day day up