Unit 4- Review

- 1. State the intervals where the graph of $y = \sec(x)$, $-2\pi \le x \le 2\pi$ is increasing.
- 2. Sketch the graphs of $y = \tan(x)$ and $y = \cot(x)$, $-\frac{\pi}{2} \le x \le \pi$. Using the letters A,B and C, label the three intersections points of the two functions .Determine the area and perimeter of $\triangle ABC$.
- 3. Identify the amplitude, period, phase shift, and vertical displacement for each of the following:

a)
$$y = 6\cos[12(x-30^{\circ})] + 3$$

b)
$$y = -2 + 3\sin\left(x + \frac{\pi}{4}\right)$$

c)
$$y = -4\cos\left(2x - \frac{\pi}{3}\right) - 2$$

- 4. Sketch $y = 5\sin\left[\frac{3}{2}(x-30^{\circ})\right]$, $-120^{\circ} \le x \le 120^{\circ}$.
- 5. Sketch one period of the function $f(x) = -\cos \left[\frac{1}{3} \left(x + \frac{5\pi}{6} \right) \right] 2$.
- 6. Sketch one period of the function $f(x) = 3\cos(2x-60^{\circ})+1$.
- 7. Sketch the graph of $y = -2\sin\left(\frac{x}{2} + \frac{\pi}{4}\right) + 3$.
- 8. a) Determine a sine function that is defined for all $x \ge 0$ and has its first minimum at $(\pi/3,3)$ and its first maximum at $(4\pi/3,9)$.
 - b) State an equivalent cosine function for part a).
- 9. a) Determine a sinusoidal function f(x) that
 - has a maximum of 100;
 - has a minimum of 20;
 - a period of 30;
 - has the point (15,60) on its curve; and
 - for $x \ge 0$, reaches its first maximum before its first minimum.
 - b) Use your function from part a) to determine the first value of $x,x\ge 0$ such that f(x)=80.

10. Determine a sinusoidal function that could represent the graph drawn below.

- 11. For the function $y = -3\cos\left(2x + \frac{\pi}{2}\right) + 6$:
 - a) Graph four periods of the function for $x \ge 0$.
 - b) On your graph, sketch the line $y = \frac{15}{2}$.
 - c) Determine all solutions to $-3\cos\left(2x + \frac{\pi}{2}\right) + 6 = \frac{15}{2}$, in the interval $0 \le x \le 4\pi$.
 - d) Using the graph, verify that all of the solutions in the interval $0 \le x \le 4\pi$ have been determined in part c).

- 12. Ashley is riding a Ferris wheel that has a diameter of 40 metres. The wheel revolves at a rate of 1.5 revolutions per minute. If Ashley's height above the ground is shown by h after t minutes
 - a) Find the equation of h(t).
 - b) What is Ashley's maximum height above the ground while she is riding the Ferris wheel?
 - c) If Ashley gets on the ride at its lowest point, how high above the ground will she be to start the ride?
 - d) How many times does Ashley go around the Ferris wheel in four minutes?
 - e) Draw a sketch of the rider's height above the ground at any time during the first four minutes.
 - f) How long after she starts riding will her height be 31 metres above the ground?
 - g) In the four minutes that she spends riding the Ferris wheel, what is the total amount of time that Ashley's height is above 31 metres?
- 13. The minimum depth, d (in metres), of water in a harbour, t hours after midnight, can be approximated by the function $d(t)=5\cos(0.5t)+12$, where $0 \le t \le 24$.
 - a) Determine the maximum and minimum depths of water in the harbour.
 - b) Determine the period of the depth function.
 - c) What is the depth of water, to the nearest tenth of a metre, at 2:00 AM?
 - d) A ship, which requires a minimum depth of 8.5 metres, is docked at midnight. By what time, to the nearest minute, must it leave in order to prevent being grounded?
 - e) What is the next time, to the nearest minute, that the ship can return to the harbour?
- 14. Determine the period and equation of vertical asymptotes of $y = -2\tan(50x)$.
- 15. The height of a rung on a hamster wheel can be modeled by

$$h(t) = -25\cos\left[2\pi\left(\frac{t-4}{12}\right)\right] + 27$$
, where $h(t)$ represents the height of the rung above the

bottom of the cage in centimeters and t is the time in seconds after the wheel starts moving. Show all your work for these questions.

- a) Determine the height of the rung at the start of the ride.
- b) Determine the maximum height of the rung during one rotation.
- c) How long will it take for the wheel to complete one full rotation?
- d) How long will it take for the wheel to reach its maximum height?
- e) Determine the average rate of change in the height of the rung between 2 and 3 seconds.

16. Graph one complete cycle of $y = 4\csc \left[\frac{\pi(t-1)}{2}\right]$.

- 17. Solve for x, $4\cos(x) 3\sin(x) = 2$ $(0 \le x \le 2\pi)$
- (2 DECIMAL PLACES)
- 18. Solve for θ , $-10\cos^2(x) 3\sin(x) + 9 = 0$, $(0 \le x \le 2\pi)$
- (2 DECIMAL PLACES)
- 19. Find an **equation** of a function in the form y = asink(x-d)+c whose graph has a maximum at the point $A\left(\frac{\pi}{4},1\right)$ and a minimum at $B\left(\frac{5\pi}{4},-1\right)$.
- 20.Graph $y = -2\sin\left(\frac{1}{2}\theta \frac{\pi}{4}\right) + 3$, $-\pi \le \theta \le \pi$

