

ÁLGEBRA LINEAR – DSM 3 ATIVIDADE DA AULA 8 TRANSFORMAÇÃO LINEAR E MATRIZ DE ROTAÇÃO

1- Considere uma transformação de $R^2 \rightarrow R^2$ no sentido anti-horário.

a)
$$\theta = \frac{\pi}{3}$$
 $P = (-5,3)$

b)
$$\theta = 45^{\circ}$$
 $P = (2, -4)$

c)
$$\theta = \frac{\pi}{6}$$
 $P = (-2, -2)$

2- Considere uma transformação de $R^2 \rightarrow R^2$ no sentido horário.

a)
$$\theta = 60^{\circ}$$
 $P = (2,7)$

b)
$$\theta = \frac{\pi}{4}$$
 $P = (-2, -1)$

c)
$$\theta = 60^{\circ} P = (-3, -5)$$

3- O estudo das matrizes tem muitas aplicações na computação gráfica. É através de operações com matrizes que um programa gráfico altera a posição dos pontos que compõem uma imagem, fazendo-a girar, mudar de posição ou de escala. Na computação grafia, essas operações recebem o nome de transformações geométricas. Por exemplo, uma rotação de 0 graus de um ponto P = (x ,y), em torno da origem no sentido anti-horário é feita a partir do

produto da matriz $P = \begin{bmatrix} \cos(\theta) & -sen(\theta) \\ sen(\theta) & \cos(\theta) \end{bmatrix}$ de rotação com a matriz $P = \begin{bmatrix} x \\ y \end{bmatrix},$ que resulta em

uma matriz P = 1, a qual indica a nova posição do ponto após a rotação: P¹ = R . P

A nova posição do ponto P = (1,2) após uma rotação de 90 graus no sentido anti-horário, tomo da origem, é:

A)
$$P = (-2, 1)$$

C)
$$P = (2, -1)$$

D)
$$P = (2,1)$$

E) P = (1,2)

4- A figura abaixo representa uma rotação de 180° do ponto P(x, y) em torno da origem resultando no ponto P'(-x, -y). Mostre por meio de matriz de rotação que o ponto P (3, 3) resulta no ponto P'(-3, -3).

arco	0°	30°	45°	60°	90°	180°	270°	360°
rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{2\pi}{3}$	2π
seno	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	- 1	0
cosseno	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	- 1	0	1