中国科学技术大学期末考试题

考试科目: <u>随机过程(B)</u>		得分:
学生所在系:	姓名:	学号:
	(2018年1月9日,半天	干卷)
一、(20分)判断是非与境	[空:	
(1)(每空2分)设X={	X_n , ≥ 0 } 为一不可约、有限 (N	个)状态的马氏链,且其转移概率矩阵 P
为双随机的(行和与列和均为:	1),则:	
a. X 的平稳分布不一定	E存在 (); b. X 的	的平稳分布存在但不必唯一();
$c.~X$ 的平稳分布为 $(\frac{1}{N}$	$(1,\frac{1}{N},,\frac{1}{N})$ (); $d.X$ for	极限分布为: $\left(\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N}\right)$ () 。
钟)的泊松过程。则: a .第一辆车到达的平均 c .在第一辆红车到达之	某观察站红、黄、蓝三种颜色的汽时间为(); b . 红车首前恰好到达 k 辆非红车的概率为(的销售状况共有 24 个季度的连续数)。
	1, 0, 1, 0, 0, 1, 1, 1, 0, 1	
,	1, 0, 0, 1, 1, 0, 1, 0, 1, 1,	
若该商品销售状况满足齐次马员	长链,则据以上数据可估计出该马 B	K链的转移概率矩阵 $m{P}$ 为()。
二、(15 分)设到达某计数	数器的脉冲数 $\{N(t), t \geq 0\}$ 是一边	$oldsymbol{\mathfrak{l}}$ 客为 $oldsymbol{\lambda}$ 的泊松过程,每个脉冲被记录的
概率均为 p ,且各脉冲是否被	记录是相互独立的。现以 $N_{ m l}(t)$ 表	表示被记录的脉冲数,试求 $N_{ m l}(t)$ 的矩母
函数 $g_{N_1(t)}(v)$ 以及 $EN_1(t)$, V	$Var[N_1(t)]$ 和 $Cov(N_1(s),N_1(s))$	(f))
三、(20分)设马氏链{X	$_{n}, n \geq 0$ } 的转移概率矩阵为:	
	$P = 2 \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0\\ \frac{1}{3} & 0 & \frac{2}{3}\\ 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$	
(1) 设 $X_0 = 3$, 试求:	$\pi_i(1) = P\{X_1 = i\}, \ \pi_i(2) = P$	$P\{X_2 = i\}, (i = 1, 2, 3),$ 并求:

 $E(X_1)$ 和 $E(X_2)$;

- (2) 试求该马氏链的极限分布: $\pi_j = \lim_{n \to \infty} p_{i,j}^{(n)}$, (i, j = 1, 2, 3);
- (3)当初始分布 $\pi_i(0)$ (i=1,2,3) 为什么分布时,该马氏链为严格平稳过程?并求此时的 $E(X_n)$ 。

四、(15 分) 把一些球逐个随机地放到 a 个格子中去,若 n 个球放进了 k 个格子,则称系统在时刻 n 的状态为 k 。试用一马氏链 $\{X_n, n \geq 0\}$ 描述此系统,并且

- (1) 写出该马氏链的转移概率矩阵P,并讨论其状态分类;
- (2) 证明过程由状态 k ($0 \le k \le a-1$) 出发,必然进入状态 a;
- (3) 试求放满 a 个格子的平均时间(假定 $X_0 = 0$)。

五、(15 分) 设有随机过程 $X(t)=A\cos(\omega_0\,t+\Theta)$,其中 Θ 服从均匀分布 $U(0,2\pi)$,A 服从瑞利分布:

$$A \sim f(x) = \frac{x}{\sigma^2} \exp(-\frac{x^2}{2\sigma^2}), (x > 0)$$

且A与 Θ 独立,

- (1) 证明 $\{X(t), t \in R\}$ 为宽平稳过程;
- (2) 试求 $\{X(t), t \in R\}$ 的功率谱密度函数 $S(\omega)$ 。

六、(15分) 在下列四个关于 ω 的函数中:

$$S_1(\omega) = \frac{\omega^2 + 9}{(\omega^2 + 4)(\omega + 1)^2}, \quad S_2(\omega) = \frac{\omega^2 + 64}{\omega^4 + 29\omega^2 + 100},$$

$$S_3(\omega) = \frac{\omega^2 - 4}{\omega^4 + 4\omega^2 + 3}, \quad S_4(\omega) = \frac{\omega^2 \cos \omega}{\omega^4 + 1}$$

- (1)哪一个可以作为一个平稳过程 $\{X(t),\ t\in R\}$ (均值为 0)的功率谱密度函数?并求其所对应的协方差函数 $R(\tau)$:
 - (2) 该平稳过程的均值是否具有遍历性? 为什么?

(完)