Applied Signal Processing Lecture 2

Tomas McKelvey

Department of Electrical Engineering Chalmers University of Technology

Agenda

- Finalize continuous time signals and systems
- Discrete time signals and systems
- Sampling

Admin stuff...

- On Thursday 11:30-12:30 Pick up DPS-kit
 - Bring signed agreement
- Sign up for project groups (4 students per group)
- Sign up for tutorial group

Complex exponential input

Assume $x(t) = e^{j\omega_0 t}$, the system output is

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau) d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau)e^{j\omega_0(t-\tau)} d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau)e^{-j\omega_0\tau} d\tau e^{j\omega_0t} = H(\omega_0)e^{j\omega_0t}$$

We can define

Amplitude function:
$$A(\omega) \triangleq |H(\omega)|$$

Phase function: $\phi(\omega) \triangleq \angle H(\omega)$

which gives

$$y(t) = A(\omega_0)e^{j(\omega_0t + \phi(\omega_0))}$$

Complex exponential input, alternative way

Assume $x(t)=e^{j\omega_0t}$, then $X(\omega)={\sf FT}[x(t)]=2\pi\delta(\omega-\omega_0)$ and the system output is

$$Y(\omega) = H(\omega)X(\omega) = H(\omega)2\pi\delta(\omega - \omega_0) \Rightarrow$$

$$y(t) = \mathsf{FT}^{-1}[Y(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega)2\pi\delta(\omega - \omega_0)e^{j\omega t} d\omega =$$

$$= H(\omega_0)e^{j\omega_0 t}$$

which gives

$$y(t) = A(\omega_0)e^{j(\omega_0 t + \phi(\omega_0))}$$

Discrete time signals and systems

A discrete time (DT) signal is an collection of values x(n) where $n = 0, \pm 1, \pm 2, \ldots$ is the sample index.

Often (bot not necessary) x(n) is the result of sampling a continuous time (CT) signal $x_c(t)$

$$x(n) \triangleq x_c(n\Delta t), \quad n = 0, \pm 1, \pm 2, \dots$$

where Δt is the sampling period.

Dimensionless normalized frequencies f/f_s (or ω/ω_s).

Discrete Time Fourier Transform (DTFT)

The DTFT is

$$X(\omega) = \mathsf{DTFT}[x(n)] \triangleq \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n\Delta t}$$

 ω has unit radians per second.

For integer k we note that $X(\omega + k\omega_s) = X(\omega)$ since $e^{jkn\omega_s\Delta t} = e^{jkn2\pi} = 1$, hence DTFT is a periodic function.

The Inverse DTFT is

$$X(n) = \mathsf{DTFT}^{-1}[X(\omega)] = \frac{1}{\omega_s} \int_0^{\omega_s} X(\omega) e^{j\omega n\Delta t} d\omega$$

Discrete time convolution

For DT signals convolution (filtering) is defined as

$$y(n) \triangleq \sum_{k=-\infty}^{\infty} h(k)x(n-k) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

The DTFT of y(n) is simply

$$Y(\omega) = H(\omega)X(\omega)$$

Proof: Since $H(\omega) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k\Delta t}$ we have

$$y(n) = \frac{1}{\omega_s} \int_0^{\omega_s} \sum_{k=-\infty}^{\infty} h(k) e^{-j\omega k \Delta t} X(\omega) e^{j\omega n \Delta t} d\omega =$$

$$= \sum_{k=-\infty}^{\infty} h(k) \frac{1}{\omega_s} \int_0^{\omega_s} X(\omega) e^{j\omega(n-k)\Delta t} d\omega =$$

$$= \sum_{k=-\infty}^{\infty} h(k) x(n-k)$$

DTFT transform pairs

	Time dom.	Fourier dom.
Delay	x(n-k)	$e^{-j\Delta t\omega k}X(\omega)$
Modulation	$e^{j\omega_0\Delta tn}x(n)$	$X(\omega-\omega_0)$
Constant	1	$\omega_s \tilde{\delta}(\omega)$
Kronecker delta	δ_n	1
Conv.	$\int_{k=-\infty}^{\infty} h(k) x(n-k)$	$H(\omega)X(\omega)$
Freq. conv.	x(n)w(n)	$\frac{1}{\omega_s} \int_0^{\omega_s} X(\lambda) W(\omega - \lambda) d\lambda$

where
$$\tilde{\delta}(\omega) \triangleq \sum_{k=-\infty}^{\infty} \delta(\omega + k\omega_s)$$

The Kronecker delta function (DT delta function) is

$$\delta_n \triangleq \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

DT Linear Systems

DT Convolution is linear filtering

$$x(n) \longrightarrow h(n) \qquad y(n) \longrightarrow y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

$$x(n) - \text{ input,} \qquad \Leftrightarrow \\ h(n) - \text{ impulse response} \qquad Y(\omega) = H(\omega)X(\omega)$$

Causal system if
$$h(n) = 0$$
 for $n < 0$
Anti-causal if $h(n) = 0$ for $n > 0$
Non-causal otherwise

Linear and Time Invariant (LTI):

If inputs $x_1(n)$ and $x_2(n)$ yields outputs $y_1(n)$ and $y_2(n)$, input $\alpha x_1(n-n_1) + \beta x_2(n-n_2)$ yields output $\alpha y_1(n-n_1) + \beta y_2(n-n_2)$

Parseval and unit delay operator

For DT signals with finite energy, Parseval's relation is

$$\sum_{n=-\infty}^{\infty} |x(n)|^2 = \frac{1}{\omega_s} \int_0^{\omega_s} |X(\omega)|^2 d\omega$$

Convenient to use the delay operator z^{-1} :

$$z^{-1}x(n) \triangleq x(n-1).$$

Complex exponential input

Assume $x(n) = e^{j\omega_0 \Delta t n}$, the system output is

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

$$= \sum_{k=-\infty}^{\infty} h(k)e^{j\omega_0\Delta t(n-k)}$$

$$\left(\sum_{k=-\infty}^{\infty} h(k)e^{-j\omega_0\Delta tk}\right)e^{j\omega_0\Delta tn}$$

$$= H(\omega_0)e^{j\omega_0\Delta tn}$$

As before

Amplitude function:
$$A(\omega) \triangleq |H(\omega)|$$

Phase function: $\phi(\omega) \triangleq \angle H(\omega)$

which gives

$$y(t) = A(\omega_0)e^{j(\omega_0 t + \phi(\omega_0))}$$

A general difference equation

We can define the output as the following difference equation

$$y(n) \triangleq -\sum_{k=1}^{n_a} a_k y(n-k) + \sum_{k=0}^{n_b} b_k x(n-k)$$

Assuming stability (the recursion could make it unstable) take the DTFT of both sides

$$Y(\omega) = -\sum_{k=1}^{n_a} a_k e^{-j\omega\Delta t k} Y(\omega) + \sum_{k=0}^{n_b} b_k e^{-j\omega\Delta t k} X(\omega)$$

which imply

$$Y(\omega) = \frac{\sum_{k=0}^{n_b} b_k e^{-j\omega\Delta tk}}{1 + \sum_{k=1}^{n_a} a_k e^{-j\omega\Delta tk}} X(\omega) = H(\omega)X(\omega)$$

Sampling and Reconstruction

We aim to describe the following operations using the CT Fourier Transform:

- Sampling
- DT filtering
- Reconstruction

Need a CT signal model which can represent DT signals x_d and y_d .

A CT model for DT signals

The sampled DT signal is

$$x_d(n) = x(n\Delta t)$$

Consider the CT signal model of $x_d(n)$:

$$x_c(t) \triangleq \sum_{n=-\infty}^{\infty} \delta(t - n\Delta t) x(t) = \sum_{n=-\infty}^{\infty} \delta(t - n\Delta t) x_d(n)$$

The FT of this CT model signal is

$$X_{c}(\omega) = \int_{-\infty}^{\infty} x_{c}(t)e^{-j\omega t} dt = \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(t - n\Delta t)x_{d}(n)e^{-j\omega t} dt$$
$$= \dots = \sum_{n=-\infty}^{\infty} x_{d}(n)e^{-j\omega n\Delta t}$$

which we recognize as the DTFT of $x_d(n)$. In summary we have the identity

FT and DTFT relation

$$\mathsf{FT}[x_c(t)] = \mathsf{DTFT}[x_d(n)]$$

 $X_c(\omega) = X_d(\omega)$

To complete the picture we need to express $X_c(\omega)$ (and thus also $X_d(\omega)$) in terms of $X(\omega)$.

FT and DTFT after Sampling

Start by expressing x(t) exactly at the sampling time instances using the inverse FT:

$$x_{d}(n) = x(n\Delta t) = \int_{-\infty}^{\infty} X(\omega) e^{j\omega n\Delta t} \frac{d\omega}{2\pi}$$

$$= \sum_{k=-\infty}^{\infty} \int_{k\omega_{s}}^{(k+1)\omega_{s}} X(\omega) e^{j\omega n\Delta t} \frac{d\omega}{2\pi}$$

$$= [\text{Variable change: } \omega = \omega' + k\omega_{s}]$$

$$= \sum_{k=-\infty}^{\infty} \int_{0}^{\omega_{s}} X(\omega' + k\omega_{s}) e^{j(\omega' + k\omega_{s})n\Delta t} \frac{d\omega'}{2\pi}$$

$$= \frac{1}{\omega_{s}} \int_{0}^{\omega_{s}} \underbrace{\frac{1}{\Delta t} \sum_{k=-\infty}^{\infty} X(\omega' + k\omega_{s})}_{X_{s}(\omega')} e^{j\omega' n\Delta t} d\omega'$$

last expression is the inverse DTFT of the signal $x_d(n)$.

FT and DTFT after Sampling

We have shown

FT and DTFT after sampling

$$X_d(\omega) = X_c(\omega) = \frac{1}{\Delta t} \sum_{k=-\infty}^{\infty} X(\omega + k\omega_s)$$