Малая РНК *Mycobacterium tuberculosis* MTS1338 как фактор модуляции иммунного ответа при туберкулезе

Потанина Дарья Михайловна

Научный руководитель: д.б.н. Т.Л. Ажикина Куратор: к.б.н. Т.В. Неретина

Влияние *M. tuberculosis* на инфицированные макрофаги

doi: 10.1134/s1068162014020058

Какова же роль MTS1338 в иммуномодуляции?

Схема эксперимента*

^{*} проведенного в рамках курсовой работы 4 курса

Дифференциально экспрессированные микроРНК

		wt-mpht		d1338-mph		d1338-wt	
No	МикроРНК	FC	padj	FC	padj	FC	padj
1	mmu-miR-486a-5p	-6.1105435	1.41E-165	-2.30772	0.000281	3.71585078	1.35618E-0
1	mmu-miR-486a-3p	-4.343991	8.41E-12			2.29653426	0.02886081
2	mmu-miR-455-5p	-2.6183244	0.0000162			2.46300746	0.00233957
3	mmu-miR-451a	-6.2018565	1.71E-117			5.66498914	7.41034E-1
4	mmu-miR-144-5p	-6.6105942	2.67E-10			6.56727787	1.97085E-0
5	mmu-miR-144-3p	-7.1737477	1.09E-20			6.5857582	1.64889E-0
1	mmu-miR-466i-3p			-2.99525	0.00000355	-2.8633062	0.00197397
2	mmu-miR-379-5p			-2.14211	0.000000225	-2.5226461	6.61441E-0
3	mmu-miR-434-5p			-2.38055	0.002568	-2.6466169	0.00908715
4	mmu-miR-409-3p			-2.52373	0.000537	-2.3070946	0.02690770
5	mmu-miR-300-3p			-2.52763	0.000126	-2.282867	0.02584522
6	mmu-let-7c-1-3p			2.560615	0.000934	4.44277703	0.00623629
1	mmu-miR-134-5p					-2.0504746	0.06351108
2	mmu-miR-99a-5p					2.0874122	4.51168E-7
3	mmu-miR-147-3p					-2.017543	1.47989E-5
4	mmu-miR-147-5p					-2.1130288	6.20485E-2
5	mmu-miR-370-3p					-2.2349066	0.0602338
6	mmu-miR-541-5p					-2.2714726	1.5705E-0
7	mmu-miR-96-5p					-2.0856806	1.09027E-0
8	mmu-miR-182-5p					-2.5573759	2.04821E-5
9	mmu-miR-183-5p					-2.4717292	3.93063E-4

Подтверждение данных секвенирования микроРНК

Матрицы: Mph, WT, D1338

Праймеры на микроРНК miR-21a-5p и универсальный адаптер miScript.

5'-TAGCTTATCAGACTGATGTTGA-3'

GAGCCGTACGCATTGACCACGAGCTAAG-5'

Подтверждение данных секвенирования микроРНК

Усредненное нормированное количество ридов в библиотеках.

miRNA	Mph	WT	d1338
mmu-miR-21a-5p	239890	263287	225898
mmu-miR-155-5p	5323	10833	3994
mmu-miR-147-3p	1547	1240	360
mmu-miR-451a	678	7	387

ДЭ белок-кодирующие гены

Было отобрано 1494 генов, экспрессия которых менялась в d1338 по сравнению с wt.

Сеть взаимодействий микроРНК-мишень

Сеть взаимодействий микроРНК-мишень

Сеть взаимодействий микроРНК-мишень

Эффект присутствия MTS1338

МикроРНК	Ген	МТВ (литература)	MTB WT	Нокаут MTS1338
miR-183-5p ↓	ldh2	↓	↓	↑
miR-147-5p ↓	Ppbp	↓	-	↑
miR-486a-3p ↑	II2rb	↑	1	↓
miR-486a-3p ↑	Fegr4	↑	-	↓
let-7c-1-3p ↑	Hivep2	↑	↑	↓

ldh2

Фермент цикла Кребса, осуществляет окислительное декарбоксилирование изоцитрата. В инфицированных макрофагах снижается общий уровень окислительного метаболизма в митохондриях, падает экспрессия ферментов цикла Кребса, в том числе Idh2.

Недостаток Idh2 вызывет:

- разрыв цикла на этапе превращения изоцитрата в α-кетоглутарат, в результате чего накапливается промежуточный цитрат, что может индуцировать воспаление;
- понижение концентрации NADPH и повышение mtROS, что может сопровождаться некрозом макрофагов, что формирует благоприятную для патогенов воспалительную среду во время хронической фазы инфекции.

Ppbp

Ppbp 582-589 3' UTR	5'	AUCCCUAGAAUGUCUUGUUUCCA	3'
		ШШШ	
mmu-miR-147-5p	3'	GAUCAAACACGUCUUUACAAAGGU	5 '

Белок тромбоцитов, являющийся хемоаттрактантом и активатором нейтрофилов. При различных инфекциях экспрессируется макрофагами.

- Показано, что экспрессия Ppbp падает при инфекции *M.tb*.
- У младенцев при инфекции *M.tb* повышается экспрессия хемокинов, которые привлекают нейтрофилы, в частности Ppbp. Накопление нейтрофилов пагубно сказывается на протекании инфекции, так как они способствуют некрозу макрофагов и высвобождению бактерий.

II2rb

Рецептор интерлейкина 2 (бета-субъединица).

• Экспрессия II2rb растет на ранних стадиях инфекции M.tb, параллельно с индукцией интерлейкинов 1β, IL-12b, IL-15, IL-16 и IL-21.

Fcgr4, Hivep2

Fcgr4 - Fc-подобный рецептор IgG с низкой аффинностью, Hivep2 - транскрипционный фактор.

• Уровень белков Fcgr4 и Hivep2 растет в макрофагах, инфицированных *M.tb.*

Выводы

- Присутствие в системе MTS1338 влияет на профили экспрессии микроРНК и белоккодирующих генов;
- Уровни экспрессии белков Idh2, Il2rb, Ppbp, Hivep и Fegr4 меняются в противоположную сторону при отсутствии в системе MTS1338 по сравнению с тем, как меняется их экспрессия при инфекции *M.tb* по литературным данным.

Благодарности

Федеральное государственное бюджетное учреждение науки Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук

Лаборатория регуляторной транскриптомики

Татьяна Леодоровна Ажикина

Юлия Скворцова

Артем Григоров

Московский государственный университет имени М.В.Ломоносова

Факультет биоинженерии и биоинформатики

Анастасия Александровна Жарикова

Андрей Александрович Миронов

Спасибо за внимание!