

第 3 章 数据链路层

课程名称: 计算机网络

主讲教师: 姚烨

课程代码: **U10M11016.01** 第 13-14 讲

E-MAIL: yaoye@nwpu. edu. cn

2021 - 2022 学年第一学期

本节课程位置

1. 概述

2. 物理层

3. 数据链路层

4. 局域网

5. 网络层

6. 传输层

7. 应用层

8. 广域网

9. 网络新技术

第 1 章 概述

- 学习目的
 - 如何设计一个数据链路层通信协议,即支持可靠通信(差错控制+流量控制),也支持不可靠通信。
- 阅读材料
 - 教材 (HDLC规程, P37-41) +参考教材
- 引导要点
 - 网络协议三要素: 语法、语义和同步
 - 设计一个协议,即支持可靠通信,也支持不可靠通信
 - ■协议功能扩展
- 编程任务
 - 通信协议设计,见Project2

本节内容

- 1. HDLC 协议概述
- 2. HDLC协议设计
 - 2.1 HDLC 语法: 帧结构
 - 2.2 HDLC 语义: 帧类型
 - 2.3 HDLC 同步: 事件发生次序
- 3. 数据帧封装/拆封
- 4. 工程应用

问题1:数据链路层协议 在设计时需要实现哪些 功能?

1.1 数据链路层协议需求

- 数据链路层协议需求:
 - 发送方和接收方标识;
 - 支持可靠性通信,兼容不可靠通信;
 - 支持点到点和点到多点链路(支持广播);
 - 支持半双工和全双工操作;
 - 支持主次站结构和复合站结构;

1.2 HDLC产生背景

- 面向字符数据链路层协议(BSC)缺点:
 - 发送节点和接收节点采用相同编码,不具有通用性。
 - 报文格式不一样:数据帧与控制帧格式不相同;
 - 停止-等待发送方式, 传输效率低。
- 面向比特型协议的设计目标
 - 传输透明性好:数据可采用任何比特组合;具有通用性:数据块为比特流,不用考虑字符编码问题;
 - 数据帧与控制帧格式相同;
 - 可连续发送多个数据帧,传输效率高。

1.3 HDLC协议产生

- 1974年, IBM公司率先推出了面向比特的数据链路层访问控制规程SDLC (Synchronous Data Link Control): 同步数据链路控制规程。
- 后来, ISO在SDLC基础上修订,产生一个新版本,称为 HDLC (High-level Data Link Control),译为高级数据 链路访问控制规程,已作为国际标准ISO-3309。
- CCITT则将 HDLC 修订后称为链路接入规程 LAP (Link Access Procedure);不久,把 LAP 修订为 LAPB, "B"表示平衡型(Balanced),所以 LAPB 叫平衡型链路接入规程。-X.25网络一部分
- IEEE 802.2 LLC协议也源于HDLC。这些通信规程尽管在一些细节上存在着差异,但总的来说是大同小异的。

HDLC协议特点

- HDLC规程被广泛采用
 - 高效率、高可靠性及能传输任意比特组合数据等特点。
 - 如X. 25, 以及IEEE 802局域网等采用部分技术。
- HDLC协议特征
 - 三种类型的站
 - 两种链路结构
 - 三种数据传送操作方式

(1) 三种类型站

- 主站:负责对数据链路实行全面管理,包括链路建立, 链路维护,数据发送,差错控制,链路故障后恢复等。
- 次站: 受控于主站,接收主站命令执行相应操作。
- 复合站:具有主站和次站双重功能的站,两个复合站之间可以完全对等地进行通信。

链路结构

(a)非平衡式链路结构

(b)平衡式链路结构

1.5 数据链路类型

- 非平衡式链路结构
 - 由一个主站和多个(一个)次站通过链路连接而成。
 - 实现点到点或点到多点通信。
 - 通信操作方式: 半双工或全双工。
 - 主站对链路实施控制,发送命令帧,将次站置于某种状态或适当操作方式。
 - 次站响应主站的命令,或执行相应的操作,或向主站回送应答。
 - 主站和次站之间通过交换数据和控制信息,实现差错控制和故障恢复功能。

(a)非平衡式链路结构

(b) 平衡式链路结构

1.5 数据链路类型

- 平衡式链路结构
 - 由两个复合站以点对点方式连接而成。
 - 通信方式: 半双工或全双工。
 - 两个复合站点都具有数据传送和链路控制能力。

1.6 三种数据传送操作方式

- 正常响应方式NRM(Normal Response Mode);
 - 适用于非平衡式链路结构。
 - 次站只有在接收到来自主站的允许(传输数据帧命令)之后,才可传送一帧或多帧数据。
 - 次站在发出最后的数据帧后,将停止发送。

三种数据传送操作方式

- 异步响应方式(ARM: Asynchronous Response Mode)
 - 适用于非平衡式链路结构;
 - 次站不一定在接收到主站允许即可进行数据传输;
 - 次站可以一次发送一帧或多帧连续发送;
 - 次站可将自己状态信息发送给主站。

三种数据传送操作方式

- 异步平衡方式ABM(Asynchronous Balance Mode)
 - 适用于平衡式链路结构:
 - 复合站自主决定数据传输,不必得到另一个复合站允许;
 - 一次可以传输一帧或多帧;
 - 既可发送数据帧, 也可发送自己状态信息或命令帧。

目前互联网采用平衡链路结构? 非平衡链路结构就一点用处都没有吗?

本节内容

- 1. HDLC 协议概述
- 2. HDLC协议设计
 - 2.1 HDLC 语法: 帧结构
 - 2.2 HDLC 语义: 帧类型
 - 2.3 HDLC 同步: 事件发生次序
- 3. 数据帧封装/拆封
- 4. 工程应用

-HDLC协议设计

■语法:数据及命令格式

■语义:数据帧类型

■同步: 事件顺序

■ HDLC不论传送数据,或控制信息,以帧(Frame)为基本单位。

■ HDLC不论传送数据,或控制信息,以帧(Frame)为基本单位。

- 标志字段 F (Flag): 为 6 个连续 1 加上两边各一个 0 共 8 bit (01111110)。在接收方只要找到标志字段就可确定一个帧的位置。
- 采用面向比特的同步传输方法。

- 地址字段(Address)
 - 对于控制帧,该字段为接收方地址;对于响应帧,该字段为发送方地址。
- 地址字段扩展
 - 如果地址字节的第1位为0,表示后面字节仍为地址字节,依次类推,直到出现一个第1位为1的字节为止,表明该字节就是地址字段的最后一个字节。
 - 不扩展情况下, 第1位必为1, 地址字段为8比特位。
- 特殊地址
 - 组地址(点到多点):一个地址可分配给多个站点;
 - 广播地址(点到多点):全"1",链路上所有站点均可以收到。
 - 地址字段全"0":不分配给任何站点,仅作为测试用。

HDLC 帧格式

- 控制字段(Control):是HDLC协议关键字段,设计各种控制帧或响应帧,以 便对数据链路监测(差错)和控制(流量)。
- HDLC利用前两个比特位定义了三种类型帧。
 - I帧(信息帧):可靠通信时数据帧;
 - S帧(监控帧):实现流量控制和差错控制;
 - U帧(无编号U帧):设置链路操作方式,不可靠通信数据帧,无编号 应答帧;

- 信息字段(Information): 网络层协议数据单元,为任意组合 比特流。
- 信息字段长度是可变
 - 理论上不限长度,但实际中要受到FCS校验能力、站点缓冲区大小等具体因素的限制,国际上较常用信息字段最大长度: 1000~2000 byte。
 - 最小长度为0,即无数据,如S帧(监控帧)中无数据。

- 帧校验字段(FCS): 采用16位的CRC冗余校验码, 用于差错检测。
 - CRC-CCITT: $G(x)=x^{16}+x^{12}+x^{5}+1$
 - 标志字段不在校验范围类.

语义: 帧类型 控制字段(C)

HDLC 帧格式

- 信息帧(I帧)
 - 用于面向连接(提供可靠性)的数据传输。
 - 发送站用N(S)表示所发送帧序号。
 - N(R)表示捎带确认,即发送数据时确认;表示已正确接收到N(R)-1个帧,下一个要准备接收的帧序号为N(R)。
- 探询/终止(P/F)位在传输时被置 "1"或置 "0"。
- 两个站点相互传送信息帧,其帧序号相互独立。
- 控制字段不扩展情况下,发送方在没有收到接收方应答确认的情况下,可连续发送I帧的数量最多少?(7,4)。

语义: 帧类型 控制字段(C)

8位 8位 8位 n位 16位 标志 地址 信息 帧校验 控制 I帧: N(S) P/F N(R)P/F N(R)0 S 帧: 1 M P/F M U帧:

8位

标志

- 监控帧(S帧): 用于在可靠性数据传输中链路监控功能(流量控制和差错控制), 如确认、请求暂停、重发等。
- S字段定义S帧的类型, 共有4种S帧; S帧没有数据, 不设发送序号。

3-4比特	帧 名	功能	N(R)含义
00	RR 接收准备好	ACK确认,准备接受下一帧, N(R)以前的各帧以接收	期望下一I帧序号
10	RNR 接收未准备好	确认,暂停接收下一帧, N(R)含义同上	N(R)以前帧已接收
01	REJ 后退N帧	N(R)以前的帧已接收,以后 所有帧重发	重发帧开始序号
11	SREJ 选择重发	重发序号为N(R)帧	重发帧序号

1 2 3 4 5 6 7 8

0 N(S) P/F N(R)

1 0 S P/F N(R)

1 1 M P/F M

8位

控制

n位

信息

16位

帧校验

8位

标志

HDLC 帧格式

- 无编号帧(U帧):由于无序号N(S), N(R)而得名。
 - 可靠数据传输中,提供链路管理与维护功能,如设置方式 (建立链路)、链路维护(如链路复位、拆除链路等,而差错 控制和流量控制由S帧来完成);

S 帧:

U帧:

8位

标志

8位

地址

- 不可靠通信中数据帧(无编号UI帧)(00 000)
- M字段用于定义U帧的类型,可最多有32种, HDLC协议只用到19种U帧。

语义: 帧类型

 8位
 8位
 8位
 n位
 16位
 8位

 标志
 地址
 控制
 信息
 帧校验
 标志

无编号帧

I 帧:

S 帧: U 帧:

4	2	3 4	1 5	6 7
0		N(S)	P/F	N (R)
1	0	S	P/F	N(R)
1	1	M	P/F	M

HDLC 帧格式

记忆符	名 称	$B_3B_4B_6B_7B_8$
SNRM	置正常响应模式	00001
SARM/DM	置异步响应模式/断开方式	11000
SABM	置异步平衡模式	11100
SNRME	置扩充正常响应模式	11011
SARME	置扩充异步响应模式	11010
SABME	置扩充异步平衡模式	11110
DISC/RD	断链/请求断链	00010
SIM/RIM	置初始化/请求初始化方式	10000
UP	无编号探询	00100
UI	无编号信息	00000
XID	交换识别	11101
RESET	复位	11001
FRMR	帧拒绝	10001
UA	无编号确认	00110

语义: HDLC帧类型

帧类型	命令	应答			3	控制	宇段名	子位	₽	
I	信息		0	0.00	N(2	3)	P/F	350	N(R) +1
S	RR——接收准备好 RNR——接收未准备好	RR RNR	1	0	0	0	P/F P/F		N(R N(R	
	REJ——请求重发	REJ	1	0	1	0	P/F). + ¹
	SREJ——选择请求重发	SREJ	1	Ō	1	1	P/F		N(R) +
	SNRM——置 MRM 方式	7944444 (14474) - 574	1	1	0	0	P	0	0	1 ↔
	SARM——置 ARM 方式	DM—— 断开方式	1	1	1	1	P/F		8	0↔
	SABM——置 ABM 方式		1	1	1	1	P	1	0	0↔
	SNRME——置扩展 NRM 方式		1	Î	Ä	1	P	0	1	1+1
	SARME——置扩展 ARM 方式		1	1		1	P	0	1	0+1
	SABME——置扩展 ABM 方式			1	1	1	P	1	1	0↔
" U	SIM——置初始化方式	RIM一一请求初始化方式	1	1	1	0	P/F	0	0	0+1
	DISC——断开连接	RD——请求断开	1	1	0	0	P/F	0	1	0↔
	UI——无编号信息帧	UI——无编号信息帧	1	1	0	0	P/F	0	0	0 +
	UP——无编号探询		1	1	0	0	P	1	0	0+4
	RSET—一复位		1	1	1	1	P	0	0	1
	XID——交换标识	XID——交换标识	1.	1	4	1	P/F	1	0	1+1
		UA一一无编号确认	1	.1	0	0	F	1	1	0+1
		CMDR——命令帧拒收	1.	1	1	0	F	0	0	1+

语义: 帧类型

控制字段(C)

1 2 3 4 5 6 7 8 0 N(S) P/F N(R) 1 0 S P/F N(R) 1 1 M P/F M

8位

控制

n位

信息

16位

帧校验

8位

标志

8位

标志

I帧:

S 帧:

U帧:

8位

地址

HDLC 帧格式

■ 探询/终止(P/F)位

■ 探询位P:主站用来请求次站应答或发送数据。

■ 终止位F:次站用来响应主站探询。

语义: 帧类型

控制字段(C)

I帧: S帧: U帧: 8位

标志

8位

地址

8位

控制

n位

信息

16 位

帧校验

8位

标志

■ 控制字段扩展

由原来一个字节可扩展为两个字节;

HDLC 帧格式

- 扩展后的控制字段主要增加了N(S)和N(R)的长度,即由原来的3位增加到7位;
- 发送站在没有收到接收站应答确认的情况下,可连续发送I帧的数量最多少(127,64);如何扩展?
- 控制字段扩展是通过相应无编号U帧来设置。
- 无效帧:是指没有用两个标志(F)字段作边界的帧,或者两个标志字段之间的位数小于32bit的超短帧。
- 问题:发送一个数据帧,该帧有两个F字段,如果连续发送多个帧, 会有几个F字段呢?
 - 中间F字段可省略一个。

HDLC协议语义

三种控制帧类型总结

在HDLC协议中,控制字段定义了3类帧类型(大类型):信息I 帧、监控S帧和无编号U帧。

n	N(S)	P/F	N(R)
U	(3位序列号)	1 / 1	(准备接收序列号)

I 帧用于面向连接数据帧, 并具有捎带确认功能

1 0	TYPE (2位)	P/F (准备接收序列号)
-----	--------------	---------------

S帧用于监控链路,包括差错控制和流量控制.

1 1 TYPE	P/F	ТҮРЕ
----------	-----	------

U帧用于数据链路建立,维护(故障恢复),拆除链路不可靠通信数据帧UI

2. 3 HDLC协议-同步 事件发生顺序

(1) 链路建立和拆除

(2) 有确认可靠 通信服务

帧类型	命令	应 答			-	控制	字段往	各位	4.1	
I	信息		0	4	N(S	5)	P/F	1	N(R) +1
	RR——接收准备好	RR.	1	0	0	0	P/F	1	N(R) +
S	RNR——接收未准备好	RNR	1	0	0	1	P/F	1	N(R)+·
17,554.5	REJ——请求重发	REJ	1	0	1	0	P/F		N(F	4 (
	SREJ——选择请求重发	SREJ	1	0	1	1	PJF		N(F	4 (
	SNRM——置 NRM 方式		1	1	0	0	P	0	0	1 +
	SARM——置 ARM 方式	DM 断开方式	1	1	1	1	PIF	0	0	0+
	SABM——置 ABM 方式		1	1	1	1	P	1	0	0↔
1 1	SNRME——置扩展 NRM 方式		1	1	1	1	P	0	1	1+
	SARME——置扩展 ARM 方式		1	1	1	1	P	0	1	0+
	SABME——置扩展 ABM 方式		1	1	1	1	P	1	1	0+3
U	SIM置初始化方式	RIM——请求初始化方式	1	1	1	0	PIF	0	0	0↔
	DISC——断开连接	RD——请求断开	1	1	0	0	PIF	0	1	0+1
	UI——无编号信息帧	UI——无编号信息帧	1	1	0	0	PIF	0	0	0 +
1 1	UP——无编号探询		1	1	0	0	P	1	0	0↔
1 1	RSET—一复位		1	1	1	1	P	0	0	1
	XID——交换标识	XID——交换标识	1	_1	1	1	PIF	1	0	1+
		UA——无编号确认	3.555	1	0	0	F	1	1	0↔
1		CMDR——命令帧拒收	1	. 1	1	0	F	0	0	1+1

A发送无编号U帧请求建立链路

B发送无编号U帧确认建立链路

A发送序号为0的数据I帧

A发送序号为1的数据I帧

B发送序号为0的数据1帧, 捎带确认确认

A发送无编号U帧请求断开链路

B发送无编号U帧确认断开链路

(3) 选择重发

帧类型	命令	应 答			-	控制	宇段名	各位	4.1	
I	信息		0		N(S	5)	P/F	1	N(R) +
	RR——接收准备好	RR	1	0	0	0	P/F	1	N(R) +
S	RNR——接收未准备好	RNR	1	0	0	1	P/F	1	N(R)+1
	REJ——请求重发	REJ	1	0	1	0	PJF	1	N(R	4 (
	SREJ——选择请求重发	SREJ	1	0	1	1	P/F	1	N(R	4 (
	SNRM——置 NRM 方式	2222	1	1	0	0	P	0	0	1 -
	SARM——置 ARM 方式	DM 断开方式	1.	_1	1	1	PIF	0	0	0+
	SABM——置 ABM 方式		1	1	1	1	P	1	0	0+
7	SNRME——置扩展 NRM 方式		1	1	1	1	P	0	1	1+
	SARME——置扩展 ARM 方式		1	1	1	1	P	0	1	0+
Ļ	SABME——置扩展 ABM 方式		1	1	1	1	P	1	1	0+
U	SIM——置初始化方式	RIM——请求初始化方式	1	1	1	0	PIF	0	0	0+
	DISC——断开连接	RD——请求断开	1	1	0	0	PIF	0	1	0+
	UI——无编号信息帧	UI——无编号信息帧	1.	1	0	0	PIF	0	0	0
	UP——无编号探询		1	1	0	0	P	1	0	0+
	RSET——复位		1	1	1	1	P	0	0	1
	XID——交换标识	XID——交换标识	1	1	1	1	PIF	1	0	1+
		UA——无编号确认	1	1	0	0	F	1	1	0↔
		CMDR——命令帧拒收	1	1	1	0	F	0	0	1+

A发送编号为1的数据1帧, B发送编号为0的数据1帧, 并对A的第1帧进行确认 A发送编号为2的数据1帧,并 对B的第0帧进行捎带确认 A发送编号为3的数据1帧 B发送监控S帧(SREJ)报告第 2帧出错,并要求选择重发

A重发编号为2的数据I帧
A继续发送编号为4的数据I帧
A发送无编号U帧请求断开连接

B发送无编号U帧确认断开连接

(4) 复合站工作流程

A 站发送 SABM 帧, 设置 ABM 操作方式, P=1↔

B 站发送 UA 帧, 给予响应, F=1₽

A 站发送第0号I帧, N(S)=0, N(R)=0₽

A 站发送第1号 I 帧, N(S)=1, N(R)=0₽

A 站发送第 2 号 I 帧, N(S)=2, N(R)=0, 并要求给予确认→

B 站发送第 0 号 I 帧,同时给出应答, N(S)=0, N(R)=3↩

B 站发送第 1 号 I 帧, N(S)=1, N(R)=3, 并要求给予确认↓

A 站发送第 3 号 I 帧,同时给出应答,N(S)=3, N(R)=2↔

A 站发送第 4号 I 帧, N(S)=4, N(R)=2, 并要求给予确认↓

B 站发送 RR 帧, 给出应答, N(R)=5, F=1↩

A 站发送 DISC 帧, 要断开连接, P=1↔

B 站发送 UA 帧, 给予响应, F=1↩

图 2.7 ABM 方式下的数据传输过程₽

3. 数据帧封装/拆封

4. 实际工程中应用举例

配置HDLC协议:

[Quidway]interface serial 0 [Quidway-serial0]undo shutdown(激活) [Quidway-serial0]link-protocol HDLC

6. 实际工程中应用举例

■ [Quidway]display interface serial 0 (检查serial 0运行状态)

```
SerialO is UP, line protocol is UP
physical layer is synchronous, baudrate is 64000 bps,
Maximum Transmission Unit is 1500
Internet address is 10.0.1.2 255.255.255.0
Link-protocol is HDLC
5 minutes input rate 0.00 bytes/sec, 0.00 packets/sec
5 minutes output rate 0.00 bytes/sec, 0.00 packets/sec
Input queue :(size/max/drops)
0/75/0
FIFO queueing: FIFO
Output Queue :(size/max/drops)
0/75/0
4294967288 packets input, 0 bytes, 0 no buffers
0 packets output, 0 bytes, 0 no buffers
0 input errors, 0 CRC, 0 frame errors
0 overrunners, 0 aborted sequences, 0 input no buffers
DCD=DOWN DTR=DOWN DSR=UP RTS=DOWN CTS=UP
```


HDLC协议特点总结

- 适用于点-点(采用)或点对多点(已放弃)通信。
- 可用于半双工或全双工通信。
- 采用面向比特同步方式和滑窗技术传输,传输效率高。
- 幀都有幀校验序列,且按顺序编号,可靠性较高。
- 采用比特位填充标识法成帧, 实现数据透明传输。
- 面向位流: 可传输任意长度和组合的二进制比特位。
- 采用统一的帧格式来传输数据、命令和响应,非常利于程序的实现。

因此HDLC和相类似的协议获得了广泛的应用。

本节小结

- 1. HDLC 协议概述
- 2. HDLC协议设计
 - 2.1 HDLC 语法: 帧结构
 - 2.2 HDLC 语义:字段含义
 - 2.3 HDLC 同步: 时间发生次序
- 3. 数据帧封装/拆封
- 4. 工程应用

复习&预习&作业

- ■本节内容
 - 教材:PP36-PP41
- ■下一节预习内容
 - 教材: PP111-119
- 作业
 - 教材:PP63:11,12,14,20.