

OpenHW Group

Proven Processor IP

Linting CORE-V-VERIF

Mike Thompson

mike@openhwgroup.org

Objectives

- What-and-Why of Linting for DV code.
- Introduce the AMIQ EDA Verissimo Linter.
- Communicate Linting strategy CORE-V-VERIF.
- Get starting cleaning up our code.

What-and-Why of Linting

- A Linter is a static code analysis tool used to identify stylistic errors and suspicious constructs in source code.
- Linters are not widely used in DV code for many reasons:
 - Viewed as "extra work".
 - Limited value in a closed-shop using a single simulator.
 - Low signal-to-noise ratio.
 - Most HDL linters target RTL code, not DV code.
- Why should OpenHW use a linter?
 - Our code base is open-source, so we want to set a good example.
 - Need to work with any 1800-2017 compliant SV simulator.
 - Automate checking of good coding standards.

Verissimo SystemVerilog Testbench Linter

- Commercial product of AMIQ EDA.
- AMIQ is regressing CORE-V-VERIF using Verissimo:
 - Check out
 https://dvteclipse.com/products
 /verissimo-linter and click
 CORE-V-VERIF
- Verissimo automatically runs every six

 (6) hours on the master,
 cv32e40p/release and cv32e40p/dev
 branches, plus a set of recent PRs.

Quick Demo...

- Click CORE-V-VERIF and scroll down to get here.
- Select OPEN RESULTS on the master branch

Branch	Commit	Result	
Walter	Branch tip (current) TREE DIFF 1f430b7 / Mike Thompson / 4 days ago Merge pull request #909 from MikeOpenHWGroup/master	Removed Rules: 19 errors Common: 231 errors, 101 disabled	OPEN RESULTS 231 errors, 101 disabled
	Previous commit (baseline) TREE DIFF 471aede / MikeOpenHWGroup / 5 days ago Disable Check: SVTB.12.1.2		OPEN RESULTS 250 errors, 105 disabled

Quick Demo...

(2 of 3)

Quick Demo...

(3 of 3)

Select a specific "Failure"

Goals for CORE-V-VERIF Linting

- In the short to medium term: a "Clean" SystemVerilog/UVM code base that is:
 - 100% IEEE-1800-2017 (SystemVerilog) and IEEE-1800.2-2017 (UVM) Compliant.
 - Works will all known IEEE-1800 (2017) capable simulators.
 - Free of static bugs.
- In the long term, linting should contribute to the definition CORE-V-VERIF DV coding style guidelines.

CORE-V-VERIF Linting Strategy

- Examine issues as reported by Verissimo
 - Mike will generate GitHub issues for existing issues.
- Possible outcomes of lint issues:
 - Fix the code.
 - Waive the instance.
 - Recommend project wide waiver:
 - Current project-wide waivers are in vendor_lib/verissimo/waivers.xml

Getting Started

- We already are...
- Mike will be issuing GitHub issues to each Contributor that authored an issue flagged by Verissimo.

Thank You

