Lab 3 Practice: LEDs controller

Objective

 Getting familiar with the LEDs, clock designs, and finite-state machines in Verilog.

Action Items

1 **Lab3_practice.v** (100%)

In this lab, you must design a LEDs controller. This game must be controlled by a finite-state machine (FSM) which controls the LEDs based on the switch.

a. I/O list

I/O	Connected to	Definition	
clk	W5	Clock signal with the frequency of 100MHz	
rst	SW15	Asynchronous positive reset signal, resetting the FSM to the INITIAL state	
speed	SW0	Controlling the speed of LEDs	
led[15:0]	LD15~LD0	Lighting up the LEDs in the sequence based on the control of the switches	

b. Finite state machine (FSM)

The FSM may consist of an **INITIAL** state to initialize it, a **SLOW** state in which the LEDs will light up in sequence at a slower speed, and a **FAST** state in which the LEDs will light up in sequence at a faster speed. You can design your own variant instead. Note that in any state, when **rst == 1** (**following the positive edge**), the FSM will reset to the **INITIAL** state. When the **rst** goes back to 0, the FSM will operate normally.

✓ INITIAL state

- When entering this state, the FSM will switch to the **SLOW** state at the next cycle.
- In this state, the **LD15~LD0** are all **on**. The FSM can enter the **SLOW** state by switching the **rst** to 0. The LEDs in the **INITIAL** state:

✓ SLOW state

- In this state, if the **speed** is set to 1, the FSM will go to the **FAST** state. However, if the **speed** is set to 0, the FSM will stay in the **SLOW** state.
- In this state, the LEDs will light up in sequence at the rate of 100MHz/2²⁸

ı	С	v	1	١.
		$^{\sim}$		١.

c. You have to use the following template for your design:

Attention

✓ DO NOT copy-and-paste code segments from the PDF materials. It may also paste invisible non-ASCII characters, leading to hard-to-debug syntax errors.