

 Fair Prices · Smarter Decisions · Stronger Trust.

Professor: Dr. Willie Rivers

BY PHANIDHAR KASUBA

INTRODUCTION

Objective:

- Analyze used smartphone data to understand what drives resale value.
- Build predictive models to set fair, competitive resale prices.

Dataset Overview:

- 3,454 records from multiple smartphone brands & models.
- 15 attributes including:
 - Device Specs: RAM, Storage, Screen Size, Battery, Cameras, Weight
 - Usage Factors: Days Used, Release Year
 - Connectivity: 4G, 5G, OS, Brand
 - Prices: Normalized New Price, Normalized Used Price

Undervaluation = Lost Revenue

BUSINESS PROBLEMS

BUSINESS & ANALYTICAL GOALS

BUSINESS GOALS

Optimize resale pricing to reduce inventory backlog

Maximize margin on high-value devices

Improve trade-in offers to increase turnover volume

Build customer trust & retention with transparent pricing

PROFIT & LOYALTY

A transparent, data-driven method for fair pricing drives sales, safgurads margins, and builds customer confidence.

ANALYTICAL GOALS

Low Error & High Accuracy

Price predictor & tiering clasfifier.

Stable & Robust

Across brands, OS, time and data issues

Clear Explanations

Understand pricing reaning.

Practical Diagnostics

Levers: memory, camera, age, network, etc

Well Calibrated

Predicted probabilities match observed levels

Measure Uncertainty

Prediction intervals for for guardrails

ANALYTICAL APPROACH

DATA PREPARATION

- Cleaned missing values, handled zeros, treated outliers
- Defined predictors (brand, OS, specs, usage usage)

KEY VISUALIZATIONS

REGRESSION MODEL – PREDICT THE USED DEVICE PRICE

- Random Forest Regression delivered the best fit ($R^2 = 0.860$, RMSE = 0.226) \rightarrow most reliable for predicting fair resale prices.
- ➤ New Price is the strongest driver → higher original cost directly translates to higher resale value, reducing undervaluation risk.
- ➤ RAM, Battery, and Release Year are key value adders → newer devices with higher RAM and stronger batteries retain more market value.
- ➤ Days Used strongly impacts depreciation → longer usage sharply lowers resale price, guiding trade-in offers.
- ➤ Interpretability vs Accuracy trade-off → Linear/regularized models explain drivers clearly, while ensemble models like Random forest provide maximum pricing accuracy.

Model	R ² (High RMSE(Low= =Better) Better)	
Linear Regression	0.849	0.235
Stepwise Regression	0.846	0.238
Random Forest (Reg)	0.860	0.226

CLASSIFICATION MODEL – CLASSIFY THE DEVICES INTO HIGH OR LOW TIER

- Logistic Regression achieved 87.9% accuracy with balanced sensitivity (0.896) and specificity (0.858) – Highly interpretable, showing how predictors like RAM, release year, and connectivity features influence device value. Best when transparency is needed for stakeholders.
- ➤ Decision Tree reached 85.6% accuracy with clear rule-based splits (e.g., new price, battery, camera resolution) Intuitive to explain, useful for business adoption, though slightly less accurate and prone to overfitting on complex data.
- ➤ Random Forest delivered 87.6% accuracy with the highest sensitivity (0.913) Most robust and dependable, capturing complex feature interactions and minimizing variation. Best when predictive power and reliability are prioritized, though less interpretable than simpler models.

Model	Accura cy	F1 Score	Sensitiv ity TP rate	Specifici ty TN rate
Logistic Regression	0.879	0.890	0.8961	0.8576
Decision Tree	0.856	0.871	0.8933	0.8102
Random Forest	0.876	0.889	0.9129	0.8305

CONCLUSION & RECOMENDATIONS

- > Pricing is multi-factor & dynamic manual methods can't keep pace with today's market.
- ➤ Key value drivers confirmed Screen size, RAM, battery, release year, connectivity; days used drives depreciation.
- > Best price predictor: Random Forest (Reg.) & accurate classifiers are Logistic Reg. & Random Forest
- > Our hybrid approach balances accuracy with transparency, giving you a scalable, defensible pricing system that improves margins and customer retention.

Recommendation

Deploy Random Forest for production pricing & auto-tiering and **use Logistic/Linear/Tree** to **explain** prices to stakeholders and customers

BUSINESS IMPACT

FUTURE WORK

Thank you