

Proseminar work: Investigation of Ontologies in Software-Engineering-Meta-Research

Advisor: Dipl.-Inform. Angelika Kaplan

Dmitrii Seletkov | July 2, 2020

SOFTWARE DESIGN AND QUALITY, INSTITUTE FOR PROGRAM STRUCTURES AND DATA ORGANIZATION, KIT DEPARTMENT OF INFORMATICS

Outline

- Motivation
- **Foundations**
 - Ontologies in Computer Science
 - Meta-Research
- Ontologies in Software-Engineering-Meta-Research
- Ontology based systems in scientific search
- Conclusion

Retrieving and transferring Knowledge: essential part of human being

July 2, 2020

- Retrieving and transferring Knowledge: essential part of human being
- But: the most amount of Knowledge is understandable only for humans

- Retrieving and transferring Knowledge: essential part of human being
- But: the most amount of Knowledge is understandable only for humans
- Ontologies make Knowledge understandable for computers as well, that provides:
 - Supporting humans in Knowledge transferring process
 - Opportunity to analyze and generate new knowledge automatically by machines

- Retrieving and transferring Knowledge: essential part of human being
- But: the most amount of Knowledge is understandable only for humans
- Ontologies make Knowledge understandable for computers as well, that provides:
 - Supporting humans in Knowledge transferring process
 - Opportunity to analyze and generate new knowledge automatically by machines
- Useful for Software Engineering
 - Encapsulate the results of thousands Software Engineering experiments
 - Make possible to analyze them and find out the best Software Engineering practice

Ontology in Computer Science

Requirements for Knowledge

- Knowledge must be:
 - Adequate and representative
 - Machine readable and able to elaborate new Knowledge
- **But:** Information ≠ Knowledge

Ontology in Computer Science

Requirements for Knowledge

- Knowledge must be:
 - Adequate and representative
 - Machine readable and able to elaborate new Knowledge
- But: Information ≠ Knowledge

Def. Ontology in Computer Science

- "an explicit specification of a conceptualization"
- conceptualization: abstract model of some knowledge domain
- explicit specification: classes, concepts, terms

Ontology languages

Requirements for Ontology languages

- clear, computer readable syntax with formal semantics (unique meaning)
- effectively computer analyzable and sufficient descriptive power

July 2, 2020

Ontology languages

Requirements for Ontology languages

- clear, computer readable syntax with formal semantics (unique meaning)
- effectively computer analyzable and sufficient descriptive power

Well-known examples

- ER-Diagrams and UML-Diagrams
- good for understanding and representing of Knowledge, but still made for humans

Ontology languages

Requirements for Ontology languages

- clear, computer readable syntax with formal semantics (unique meaning)
- effectively computer analyzable and sufficient descriptive power

Well-known examples

- ER-Diagrams and UML-Diagrams
- good for understanding and representing of Knowledge, but still made for humans

Resource Description Framework (RDF)

- Natural and logical XML-based syntax
- Standard by W3C [citate]

RDF (1)

Principles of RDF

- Everything is representable through triples <subject, predicate, object>
- subject, predicate and object are resources identified by a unique reference (URI)
- Every RDF-Statement consists of resources

July 2, 2020

RDF (1)

Principles of RDF

- Everything is representable through triples <subject, predicate, object>
- subject, predicate and object are resources identified by a unique reference (URI)
- Every RDF-Statement consists of resources

RDF example: the current proseminar work

- <seminarWork, name, Investigation of Ontologies in Software-Engineering-Meta-Research>
- <seminarWork, isWrittenBy, DS>
- <DS, name, Dmitrii Seletkov>

RDF (2)

RDF example: the current proseminar work

- <seminarWork, name, Investigation of Ontologies in Software-Engineering-Meta-Research>
- <seminarWork, isWrittenBy, DS>
- <DS, name, Dmitrii Seletkov>

July 2, 2020

Dmitrij Seletkov: Investigation of Ontologies in Software-Engineering-Meta-Research

RDF (3)

Restrictions of RDF

- No local restrictions on a knowledge domain e.g. predicate has Child applied on a class Person or a class *Animal* (No semantic difference)
- No transitive, symmetric or reverse predicates e.g. if A touches B, then B touches A
- Many others

RDF (3)

Restrictions of RDF

- No local restrictions on a knowledge domain e.g. predicate hasChild applied on a class Person or a class Animal (No semantic difference)
- No transitive, symmetric or reverse predicates e.g. if A touches B, then B touches A
- Many others

Description Logic (DL)

- Family of knowledge representation languages, motivated by restrictions of RDF
- Has formal semantics and instruments of logical analysis
- Has different dialects and implementations such as OWL
- OWL: Ontology Web Language, current standard for Semantic Web

DL vs. RDF

Clear separation between Terminology (concepts and relations in ontology schema) and Assertions (concrete individuals that pertain to the concepts in the schema).

Figure: Architecture of Description Logic Konev 2010, lecture 8, slide 1

EL DL

- Names of Concepts (also classes) such as Person, Female, ...
- Names of roles (also relations) such as isWrittenBy, hasChild, ...
- Concept Thing ⊤, Everything (every concept) is a Thing
- Conjunction (logical and) □; Existence quantor ∃
- Definition or equivalence ≡; Primitive definition or subset ⊑

EL DL

- Names of Concepts (also classes) such as Person, Female, ...
- Names of roles (also relations) such as isWrittenBy, hasChild, ...
- Concept Thing ⊤, Everything (every concept) is a Thing
- Conjunction (logical and) □; Existence quantor ∃
- Definition or equivalence ≡; Primitive definition or subset ⊑

Examples

EL DL

- Names of Concepts (also classes) such as Person, Female, ...
- Names of roles (also relations) such as isWrittenBy, hasChild, ...
- Concept Thing ⊤, Everything (every concept) is a Thing
- Conjunction (logical and) □; Existence quantor ∃
- Definition or equivalence ≡; Primitive definition or subset ⊑

Examples

- Person □ Female (= woman)
- Person □ ∃hasChild. □

July 2, 2020

EL DL

- Names of Concepts (also classes) such as Person, Female, ...
- Names of roles (also relations) such as isWrittenBy, hasChild, ...
- Concept Thing ⊤, Everything (every concept) is a Thing
- Conjunction (logical and) □; Existence quantor ∃
- Definition or equivalence ≡; Primitive definition or subset ⊑

Examples

- Person □ Female (= woman)
- Person □ ∃hasChild. □ (= parent)
- Person □ ∃hasChild. □ ∃hasChild. □

EL DL

- Names of Concepts (also classes) such as Person, Female, ...
- Names of roles (also relations) such as isWrittenBy, hasChild, ...
- Concept Thing ⊤, Everything (every concept) is a Thing
- Conjunction (logical and) □; Existence quantor ∃
- Definition or equivalence ≡; Primitive definition or subset ⊑

Examples

- Person □ Female (= woman)
- $Person \sqcap \exists hasChild. \top (= parent)$
- $Person \sqcap \exists hasChild. \top \sqcap \exists hasChild. \top (= grandparent)$

Ontology based systems in scientific search

Ontology Web Language (OWL)

- OWL2: the current Ontology language standard
- Based on DL concepts and XML
- Fully compatible for already existing RDF-based ontology

Figure: OWL dialects Konev 2010, lecture 8, slide 40

Meta-research (1)

Motivation

- Research practices suffer from lack of systematization and inefficiency
- Problems with data sharing, replications of experiments and their ownership
- Urgent need of the science for the evaluation of diverse researches to improve the existing research practices and create the new ones

Ontology based systems in scientific search

Meta-research (1)

Motivation

- Research practices suffer from lack of systematization and inefficiency
- Problems with data sharing, replications of experiments and their ownership
- Urgent need of the science for the evaluation of diverse researches to improve the existing research practices and create the new ones

Def. Meta-Research

"The use of scientific methodology to study science itself"

Meta-Research (2)

Areas of Meta-Research (by loannidis et al. n.d.)

- **Methods**: practices for performing research (e.g. study design, methods, statistics).
- **Reporting**: publications of standards and study registrations (e.g. study registration, information to patients, public and policy-makers)
- **Reproducibility:** methods for verifying research (e.g. sharing data and methods, replicability)
- Evaluation: approvements for scientific quality (e.g. pre- and post-publication peer reviews, research funding criteria).
- **Incentives**: rewards and penalties for research (e.g. promotion criteria, penalties in research evaluation).

Ontologies in Software-Engineering-Meta-Research

Classification of empirical studies (by Almeida Biolchini et al. 2007)

- **Primary study**: evaluate the hypothesis formulated by the researcher, to be tested under well-established conditions. Includes Controlled Experiments, survey and case studies
- **Secondary study**: comparisons between individual investigations of primary studies to generalize results. Includes Systematic Reviews

Ontologies in Software-Engineering-Meta-Research

Classification of empirical studies (by Almeida Biolchini et al. 2007)

- Primary study: evaluate the hypothesis formulated by the researcher, to be tested under well-established conditions. Includes Controlled Experiments, survey and case studies
- Secondary study: comparisons between individual investigations of primary studies to generalize results. Includes Systematic Reviews

Evidence-based Software Engineering (EBSE)

- Originates from Evidence-based Medicine
- Purpose: determine what SE practice works, when, where and which tools and standards needed
- The main instrument: Systematic Reviews (SRs)

Problem

Major challenge to strengthen the foundations of SE: produce knowledge that can be based on scientific methodology

Problem

Major challenge to strengthen the foundations of SE: produce knowledge that can be based on scientific methodology

Objectives

- Discussing the significance of experimental studies, particularly SRs and their use in supporting software processes
- Present a template designed to support systematic reviews in SE
- Introduce development of ontologies to describe knowledge regarding such experimental studies

Problem

Major challenge to strengthen the foundations of SE: produce knowledge that can be based on scientific methodology

Ontology based systems in scientific search

Problem

Major challenge to strengthen the foundations of SE: produce knowledge that can be based on scientific methodology

Objectives

- Discussing the significance of experimental studies, particularly SRs and their use in supporting software processes
- Present a template designed to support systematic reviews in SE
- Introduce development of ontologies to describe knowledge regarding such experimental studies

Systematic Review conduction process

- Planning: research objectives and SR protocol
- Execution: identify, select and evaluate primary studies
- Result Analysis: extract and synthesize data from the the articles

July 2, 2020

Dmitrij Seletkov: Investigation of Ontologies in Software-Engineering-Meta-Research

Systematic Review protocol template

- 1. Question Formularization
 - 1.1. Ouestion Focus
 - 1.2. Question Quality and Amplitude
 - Problem
 - Question.
 - Keywords and Synonyms
 - Intervention

 - Control
 - Effect
 - Outcome Measure

 - Population
 - Application
 - Experimental Design
- 2. Sources Selection
 - 2.1. Sources Selection Criteria Definition
 - 2.2. Studies Languages
 - 2.3 Sources Identification
 - Sources Search Methods
 - Search String
 - Sources List
 - 2.4. Sources Selection after Evaluation
 - 2.5. References Checking
- 3. Studies Selection
 - 3.1. Studies Definition
 - Studies Inclusion and Exclusion Criteria Definition
 - Studies Types Definition
 - 3.2 Procedures for Studies Selection

- 3.3 Selection Execution
 - Initial Studies Selection
 - Studies Quality Evaluation
 - Selection Review
- 4. Information Extraction
 - 4.1 Information Inclusion and Exclusion Criteria Definition
 - 4.2. Data Extraction Forms
 - 4.3. Extraction Execution
 - Objective Results Extraction
 - i) Study Identification
 - ii) Study Methodology
 - iii)Study Results iv) Study Problems
 - Subjective Results Extraction
 - i) Information through Authors
 - ii) General Impressions and Abstractions
 - 4.4. Resolution of divergences among reviewers
- 5. Results Summarization
 - 5.1 Results Statistical Calculus
 - 5.2. Results Presentation in Tables 5.3. Sensitivity Analysis
 - 5.4. Plotting
 - 5.5. Final Comments Number of Studies
 - Search, Selection and Extraction Bias
 - Publication Rias
 - Inter-Reviewers Variation.
 - Results Application
 - Recommendations

Scientific Ontology

Suggested Ontology

- **Level 0:** Different knowledge of domains that are involved in the conduction of SRs in SE, represented by *Experimental Method, Primary Research* and *Research Synthesis*
- **Level 1:** The conceptual entity, represented by *Primary Study Element* is the highest level of hypernym of the *Primary Research* and subsumes the concepts in the lower levels of hierarchy.
- Level 2: The main concepts, represented by Structure of Study and Quality of Study
- **Level 3:** The subcategories of one of the main concept Structure of study, represented by *Problem, Hypothesis, Intervention, Control, Measurement, Outcome* and *Unit of Study*
- **Level 4:** The entities of the subcategory *Outcome* that is demonstrating the ontological hybridism, having not only taxonomic relations, represented by *Target Outcome* and *Surrogate Outcome*, but also meronymic relations, represented by *Endpoint, Incidence, Prevalence, Effect Modification* and *Effect Modifier*

July 2, 2020

Dmitrij Seletkov: Investigation of Ontologies in Software-Engineering-Meta-Research

Result

- Observe: the ontology results in directly linked with Systematic review protocol template object.
- Here only the small part. The full ontology conceptualizes on all roles is SR template
- powerful, comprehensive and covers all SR needs

Ontology to support systematic reviews in Software Engineering

Result

- Observe: the ontology results in directly linked with Systematic review protocol template object.
- Here only the small part. The full ontology conceptualizes on all roles is SR template
- powerful, comprehensive and covers all SR needs

Future works

- At the moment of publication only in development
- Merging with Software Engineering Ontology and integrating into eSEE
- Towards a wider Experimental Software Engineering Ontology that will combine all received evidence-based knowledge in SE

July 2, 2020

Dmitrij Seletkov: Investigation of Ontologies in Software-Engineering-Meta-Research

Problem

Badly designed experiment can increase the cost and risk of invalid results.

Ontology based systems in scientific search

Problem

Badly designed experiment can increase the cost and risk of invalid results.

Objectives

- Present an ontology for analyzing empirical studies of SE, in particular the design of software engineering experiment
- Encapsulate the experience experts by means of an ontology for experimental designs using Protege OWL

July 2, 2020

Dmitrij Seletkov: Investigation of Ontologies in Software-Engineering-Meta-Research

Suggested Ontology (main concepts)

- Treatment Software Engineering Technique/Method/Process being studied
- Subject Person, Developer/Student participated on experiment
- Object Entity, Program/Model
- Assignment Relation between all of them; in an assignmentInstance: a subjectInstance is assigned to apply a treatmentInstance in an objectInstance.

Dmitrij Seletkov: Investigation of Ontologies in Software-Engineering-Meta-Research

Suggested Ontology (main concepts)

Figure: Ontology fragment depicting the concepts involved in the design of experiments (Siy and Wu 2012, p. 13)

Suggested Ontology (constraints)

- No Subject can be assigned a Treatment that is less sophisticated than the other ones he was already assigned to. What for: subject assigned to one treatment may use the knowledge and experience gained from that treatment.
- No Treatment was applied by only one Subject. What for: experiment subjects have varying backgrounds and abilities that implies different results. If only one subject is related, then it is not scientifically meaningful.
- Subject is assigned to several Treatments. What for: assess the variability introduced by that subject.
- An Object is treated by several Subjects. What for: provide a way to untangle subject performance from object complexity.

Result

- Evaluated on: experiments on software inspections (by Basili, Shull, and Lanubile 1999)
- Aligning concrete values: Treatment:=reading technique, Subject:=reviewer, Object:=software requirements document.
- The results are "encouraging" (Siy and Wu 2012, p. 15)
- Not found any validation errors after the applying all constraints
- If Ontology fed by invalid assignments, then observed inconsistencies as expected

Result

- Evaluated on: experiments on software inspections (by Basili, Shull, and Lanubile 1999)
- Aligning concrete values: Treatment:=reading technique, Subject:=reviewer, Object:=software requirements document.
- The results are "encouraging" (Siy and Wu 2012, p. 15)
- Not found any validation errors after the applying all constraints
- If Ontology fed by invalid assignments, then observed inconsistencies as expected

Future works

Shown results: only a step towards a comprehensive ontology for other Software Engineering knowledge domains (not only the systematic review process)

Comparative Analysis

Similarities

- Adoption of ontologies: in researcher's opninion, best for accumulate any experience or knowledge (especially, from experiments), formalize them for later representing
- Not a silver bullet: cannot depict precisely the real objects + restricted by the first-order logic.
- But: still enough for fulfilling a lot of objectives

Comparative Analysis

Similarities

- Adoption of ontologies: in researcher's opninion, best for accumulate any experience or knowledge (especially, from experiments), formalize them for later representing
- Not a silver bullet: cannot depict precisely the real objects + restricted by the first-order logic.
- But: still enough for fulfilling a lot of objectives

Differences

- Ontology for supporting systematic reviews (Almeida Biolchini et al. 2007) belongs to the area
 Methods
- Ontology for empirical studies (Siy and Wu 2012) belongs to as Reproducibity as Methods
- Used different ontology languages (or dialects) → barriers for applying them and making as standard

Ontology based systems in scientific search

Why?

- During the investigating of ontologies approaches: Ontologies are used in the contemporary search engines such as Google, Bing or Yandex.
- At the same time: Ontology-based systems actively used in the scientific world

Ontology based systems in scientific search

Why?

- During the investigating of ontologies approaches: Ontologies are used in the contemporary search engines such as Google, Bing or Yandex.
- At the same time: Ontology-based systems actively used in the scientific world

Question

How are Ontology-based systems used in the scientific search engines?

Semantic Web

Problems of the current Web

- The current Web is a Web of documents, made and understandable only by humans \rightarrow Semantic Web should become a Web of meaning and thereby understandable by machines
- The current Web is multi-lingual. E.g. English shopping website would use the word price to refer to an items price, Dutch - prijs, a French - prix. → Make the different words meaning the same and thereby understandable by machines

Semantic Web

Problems of the current Web

- The current Web is a Web of documents, made and understandable only by humans \rightarrow Semantic Web should become a Web of meaning and thereby understandable by machines
- The current Web is multi-lingual. E.g. English shopping website would use the word price to refer to an items price, Dutch - prijs, a French - prix. → Make the different words meaning the same and thereby understandable by machines

W3C states: Semantic Web is about

- Common formats for interchange of data, where original Web only interchange of documents.
- Language for relations of the data to real world objects, where person/machine starting by one database, move to another, connected not only by wires but by being about the same thing,

Problems of the current Web

- Background: crawler indexes the already existing available information in WWW by storing, marking and organizing the fetched data into database, using mainly keywords
- Client gives the query
- According to keywords and many other metrics the ranked pages displayed

Problems of the current Web

- Background: crawler indexes the already existing available information in WWW by storing, marking and organizing the fetched data into database, using mainly keywords
- Client gives the query
- According to keywords and many other metrics the ranked pages displayed

Semantic search engine

- Parse the keyword and forward to the Reasoner
- Reasoner: analyze using ontologies and output the RDF triples
- Calculating the rank based on relations between ontologies and documents

Problems of the current Web

- Background: crawler indexes the already existing available information in WWW by storing, marking and organizing the fetched data into database, using mainly keywords
- Client gives the query
- According to keywords and many other metrics the ranked pages displayed

July 2, 2020

Dmitrii Seletkov: Investigation of Ontologies in Software-Engineering-Meta-Research

Problems of the current Web

- Background: crawler indexes the already existing available information in WWW by storing, marking and organizing the fetched data into database, using mainly keywords
- Client gives the query
- According to keywords and many other metrics the ranked pages displayed

Semantic search engine

- Parse the keyword and forward to the Reasoner
- Reasoner: analyze using **ontologies** and output the RDF triples
- Calculating the rank based on relations between ontologies and documents

Traditional search engine vs. Semantic one

Figure: Precision-recall graph comparison of semantic and keyword searchWei-Dong Fang et al. 2005, p. 1918

Conclusions

- Obviously: Using ontologies bring the advantages
- Problem: selecting suitable ontologies that sophisticate the initial requirements and purposes

Conclusions

- Obviously: Using ontologies bring the advantages
- Problem: selecting suitable ontologies that sophisticate the initial requirements and purposes

Diversity of scientific ontologies

- Review by Ruiz-Iniesta and Corcho 2014.
- Classification in three main classed
- Still non-exhaustive

Diversity of scientific ontologies

- Describing document structure: structure of a scientific publication
 - Examples of concepts: Author, Title, Volume
 - Realization: simple extension for HTML-file allows web page authors to annotate their web documents with machine-readable knowledge
 - Developed in pre-semantic era
 - **Example: Document Ontology**

Diversity of scientific ontologies

- 1 Describing document structure: structure of a scientific publication
 - Examples of concepts: Author, Title, Volume
 - Realization: simple extension for HTML-file allows web page authors to annotate their web documents with machine-readable knowledge
 - Developed in pre-semantic era
 - Example: Document Ontology

Example for Journal Future-Generation-Computer-Systems

author(Paper1-FGCS, Daniel-Garijo) title(Paper1-FGCS, "Motifs in Scientific Work Empirical Analysis") volume(Future-Generation-Computer-Systems, 123)

Ontology based systems in scientific search

Diversity of scientific ontologies

- 2 Describing the rhetorical elements: rhetorical structure of a publication independent on any research field
 - Consist of 3 parts: Header, Body, Tail
 - Header concepts: Creator, Title etc., Body: Introduction, Method etc.; Tail: Acknowledgment, Reference etc.
 - Example: Ontology of Rhetorical Box (uses RDF)

Example for Journal Future-Generation-Computer-Systems

```
@prefixdc :< http://purl.org/dc/elements/1.1/> .
@prefixdcterms :< http://purl.org/dc/terms/> .
@prefixorb :< http://purl.org/orb/>
[dc : creator" Garijo, Daniel";
dc: title" Commonmotifsinscientificworkflows...":
dcterms: abstract" Workflowtechnologycontinuestoplay..."
dcterms : hasPart
[aorb : Header; dc : description" Headercontent"],
[aorb : Introduction; dc : description" Introductioncontent"]
[aorb : References; dc : description" Listofreferences"]
```


July 2, 2020

Dmitrij Seletkov: Investigation of Ontologies in Software-Engineering-Meta-Research

Diversity of scientific ontologies

- 3 Describing bibliographies and cites structure: citating and referencing of a scientific publication
 - Examples of concepts: Author, Citation, Institution
 - Realization: OWL DL
 - Example: FaBiO (publishing on the Semantic Web bibliographic records of scholarly endeavours.) and CiTo (characterization of citations, both factually and rhetorically)

Diversity of scientific ontologies

- 3 Describing bibliographies and cites structure: citating and referencing of a scientific publication
 - Examples of concepts: Author, Citation, Institution
 - Realization: OWL DI
 - Example: FaBiO (publishing on the Semantic Web bibliographic records of scholarly endeavours.) and CiTo (characterization of citations, both factually and rhetorically)

Example

@prefix :< http://www.sparontologies.net/example/> .@prefixcito :< http://purl.org/spar/cito >

: citationacito : Citation:

cito: hasCitingEntity: paper - a;

cito: hasCitationCharacterizationcito: extends;

cito: hasCitedEntity: paper - b.

Other ontologies

- Argumentative ontologies with concepts like claims, constructive and comparative statements about other works, etc.
- Domain-specific ontologies e.g. Mathematics ontology with concepts Stetement, Proof, etc. or Computer Science Ontology

July 2, 2020

Other ontologies

- Argumentative ontologies with concepts like claims, constructive and comparative statements about other works, etc.
- Domain-specific ontologies e.g. Mathematics ontology with concepts Stetement, Proof, etc. or Computer Science Ontology

Computer Science Ontology

- "Automatically generated ontology of research areas, which includes about 14K topics and 162K semantic relationships" (Salatino et al. 2019, p.1),
- Main purpose: taxonomy for the Computer Science e.g. Deep Lerning is a part of Machine Learning

Knowledge Graph

- The main skeleton of scientific search engines: **Knowledge Graphs** (KGs)
- "(1) an ontology describing a conceptual model, and (2) the corresponding instance data following the constraints posed by the ontology" (Brack et al. 2020, p. 1)
- Created by different approaches
 - Automatic construction from text
 - Information extraction from scientific text (NLP)
 - Manual curation

Knowledge Graph

- The main skeleton of scientific search engines: **Knowledge Graphs** (KGs)
- "(1) an ontology describing a conceptual model, and (2) the corresponding instance data following the constraints posed by the ontology" (Brack et al. 2020, p. 1)
- Created by different approaches
 - Automatic construction from text
 - Information extraction from scientific text (NLP)
 - Manual curation

Examples of KGs

Wikipedia, Google Scholar and Microsoft Academic with corresponding and WikiData KG, Microsoft Academic Knowledge Graph and SciGraph

Use cases for KGs

- getting research field overview
- finding related work
- assessing relevance
- extracting relevant information
- getting recommended articles
- obtaining deep understanding
- reproducing results

July 2, 2020

Ontology based systems in scientific search

Non-functional requirements for KGs

- domain-specification (e.g. high in CSO)
- granularity (e.g. how circumstantial)
- coverage (e.g. number of scientific fields)
- quality (e.g. reliability of the instance data)

Non-functional requirements for KGs

- domain-specification (e.g. high in CSO)
- granularity (e.g. how circumstantial)
- coverage (e.g. number of scientific fields)
- quality (e.g. reliability of the instance data)

Conclusion

Combine use cases and non-functional requirements in 4 main groups

Main classes of ontologies

- High domain-specification, granularity, quality and low coverage (e.g. maintaining of the structure, evolution and relevance of contained information)
- High coverage, low domain-specification, granularity, quality (e.g., searching for related work)
- High quality, medium domain-specification and granularity, low coverage (e.g. linking or representing of semantic description such as guidelines or standards)
- Medium domain-specification, coverage, quality and low granularity (e.g. highlighting zones))

Main classes of ontologies

- High domain-specification, granularity, quality and low coverage (e.g. maintaining of the structure, evolution and relevance of contained information)
- High coverage, low domain-specification, granularity, quality (e.g., searching for related work)
- High quality, medium domain-specification and granularity, low coverage (e.g. linking or representing of semantic description such as guidelines or standards)
- Medium domain-specification, coverage, quality and low granularity (e.g. highlighting zones))

Recommendations

- Manual: 1. class, Automatic: 2. class
- Hybrid (automatic, then manual): 3. and 4. classes

Ontologies in Software-Engineering-Meta-Research

Scientific ontologies without KG integrations

Important

- Not only approaches with KGs
- Also independent solutions

0000000000000000

Scientific ontologies without KG integrations

Important

- Not only approaches with KGs
- Also independent solutions

Independent approaches

- Ontology based Semantic Search Engine for Cancer: analysis of cancer, its categories, types, causes, symptoms, etc. (Raj and Sarumathi 2014)
- Retrieving information from scientific abstracts (Milward et al. 2005)
- Ontology Web Search Engine: automatic search and merging of existing ontologies → terminal purpose: Semantic Web Expert System (SWES) - able to give answers like an expert for different types of queries, in particular scientific ones (Verhodubs 2015)

Ontologies

- The best tool for interchanging of pure information independent on languages, definitions and other syntactic barriers
- Effectively reuse and standardize of the obtained knowledge
- Contemporary ontologies based on strictly defined in mathematical logic ontology languages

Ontologies

- The best tool for interchanging of pure information independent on languages, definitions and other syntactic barriers
- Effectively reuse and standardize of the obtained knowledge
- Contemporary ontologies based on strictly defined in mathematical logic ontology languages

Meta-research

- Research on research
- how researches should be conducted, what practices effective and in what fields
- Diversity of meta-research research: Methods, Reporting, Reproducibility, Evaluation, Incentives.

Ontologies in Software-Engineering-Meta-Research

- Huge contribution to Evidence-based Software Engineering
- Support determining the best SE practices using systematic reviews in secondary studies
- Useful for packaging of controlled experiments in primary studies

Ontologies in Software-Engineering-Meta-Research

- Huge contribution to Evidence-based Software Engineering
- Support determining the best SE practices using systematic reviews in secondary studies
- Useful for packaging of controlled experiments in primary studies

Ontologies in scientific semantic search engines

- The skeleton of any semantic search engine
- Transition from the Web of documents to web of meaning
- Accelerates and improves the search process for scientists

- V. R. Basili, F. Shull, and F. Lanubile. "Building knowledge through families of experiments". In: 25 (1999), pp. 456–473. ISSN: 0098-5589. DOI: 10.1109/32.799939.
- Arthur Brack et al. "Requirements Analysis for an Open Research Knowledge Graph". In: (May 20, 2020). arXiv: 2005.10334v1 [cs.DL].
- John P. A. Ioannidis et al. "Meta-research: Evaluation and Improvement of Research Methods and Practices". In: 13 (), e1002264. ISSN: 1545-7885. DOI: 10.1371/journal.pbio.1002264.
- Boris Konev. Lecture notes of course Ontology and knowledge representation. 2010. URL: https://www.lektorium.tv/speaker/2680.
- David Milward et al. "Ontology-Based Interactive Information Extraction From Scientific Abstracts". In: 6 (2005), pp. 67–71. ISSN: 1531-6912. DOI: 10.1002/cfg.456.
- Syam Raj and S Sarumathi. "Ontology based Semantic Search Engine for Cancer". In: International Journal of Computer Applications 95.5 (2014), pp. 39–43. ISSN: 0975-8887. DOI: 10.5120/16594-6308.

45/44 July 2, 2020

- Almudena Ruiz-Iniesta and Oscar Corcho. "A review of ontologies for describing scholant" References II scientific documents". In: Proceedings of the 4th Workshop on Semantic Publishing co-localed with the 11th Extended Semantic Web Conference (ESWC 2014), Anissaras, Greece, May 25th, 2014. Ed. by Alexander Garcia Castro et al. Vol. 1155. CEUR Workshop Proceedings. CEUR-WS.org, 2014. URL: http://ceur-ws.org/Vol-1155/paper-07.pdf.
- Angelo Salatino et al. "The Computer Science Ontology: A Comprehensive Automatically-Generated Taxonomy of Research Areas". In: (2019). URL: http://oro.open.ac.uk/66268/1/DataIntel-CSO.camera.ready.ORO.pdf.
- Harvey Siy and Yan Wu. An Ontology to Support Empirical Studies in Software Engineering. en. 2012. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.216.8899;%20http: //csalpha.ist.unomaha.edu/~hsiy/research/icc09.pdf.
- Olegs Verhodubs. "Towards the Ontology Web Search Engine". In: (May 4, 2015). arXiv: 1505.00755v1 [cs.IR].
- Wei-Dong Fang et al. "Toward a semantic search engine based on ontologies". In: 2005 International Conference on Machine Learning and Cybernetics. Vol. 3. 2005, 1913–1918 Vol. 3.