Multi-Task Learning을 활용한 PVT v2 프레임워크 성능 개선

팀원: 김수영, 송재현

지도교수: 이종률

목차

1. 프로젝트 개요

- 1. 연구배경 및목적
- 2. 팀원 소개 및 역할 분담

2. 사용자 분석

1. 이해관계자 설문 및 분석

3. 핵심 아이디어

- 1. 제안방법
- 2. 기존 해결 방법 및 개선점

4. 데모

- 1. 핵심 유스 케이스
- 2. 시퀀스 다이어그램 / 알고리즘 순서도

5. 테스트 및 실험 결과

- 1. 프로토 타입 설계
- 2. 성능 평가
- 6. 차후 실험 계획 및 기대 효과
- 7. 참고 문헌

◆ 연구배경

〈MTL의 기본 구조〉

◆ MTL의 특징

- 경량화: 다양한 작업을 동시에 처리함으로써 모든 작업을 수행하는데 필요한 모형의 크기 경량화가능
 - ✓ MTL: MTL 모형 하나가 필요
 - ✓ STL: 각 작업에 필요한 만큼의 모형이 필요
- > 일반화: 여러 작업에 존재하는 공통된 표현(Shared Representation) 기반 학습을 통한 모형의 일반화 성능 확보 가능
 - ✓ Shared Representation: 여러 작업을 처리함에 있어 공통적으로 사용되는 지식, 특징 등을 의미

♦ 연구배경

〈자율주행에서 MTL의 동작 예시〉

★MTL 연구 동향

- > Multi-Task Learning에 최적화된 모형 개발
 - ✓ MulT, M3ViT, IPT
- > 기존 Single-Task Learning 모형의 MTL로의 확장
 - ✓ Swin MTL

◆ 연구목적

- > PVTv2 (Pyramid Vision Transformer v2)를 백본 네트워크로 활용한 MTL 모형 개발 PVTv2 프레임워크 확장 및 성능 개선
- > 자율주행 환경에서 요구되는 이미지 분류, 객체 탐지, 의미론적 분할 작업을 하나의 모델로 처리
- > STL 모형을 MTL모형으로 확장한 모형과의 비교를 통한 백본 네트워크 교체의 유효성 확인
- > 경량화, 확장성, 정확도를 파악한 문제 해결 적용 가능성 확인

⇒ 팀원 소개 및 협업 내용

- > 김수영
 - ✓ PVTv2 백본 네트워크 구현
 - ✓ LibMTL 오픈소스를 활용한 MTL 학습 및 실험
 - ✓ 보고서 / 발표자료 제작
- > 송재현
 - ✓ 성능 평가 지표 탐색 및 구현
 - ✓ 시각화 구현
 - ✓ 보고서 / 발표자료 제작
- > GitHub, Zoom, 모바일 메신저, 대면 미팅을 활용한 협업 활동 진행

- ♦ 이해관계자 설문조사
 - > 목적: MTL에 대한 대중 인식 파악 및 연구 목적의 타당성 확인
 - > 설문 대상: 조원 지인, 교내 커뮤니티 등
 - > 설문 방식: Google Form (총 25명)

- ◆ 설문 문항 요약
 - > MTL 상용화 가능성
 - Multi-Task Learning vs Single Task Learning
 - > MTL 유효성 검증 필요성
 - › 향후 AI 성능 발전 기여 가능성

♦ 설문 결과

- ◆ 설문 결과 요약
 - > MTL 상용화 가능성 기대
 - > MTL이 기존 학습법보다 유용할 것이라는 의견 다수
 - > MTL 유효성 검증 필요성 공감대 형성
 - › 향후 AI 성능 발전에서 MTL의 기여 가능성 높을 것이란 의견 다수

핵심 아이디어

❖ 제안 방법

- > 기존 PVT v2 모델을 MTL 구조로 확장
- > Hard/Soft Parameter Sharing 구조 활용
- › 세 가지 Task(분류/탐지/분할)에 대해 통합 학습 및 평가 진행
- › 정량적 지표로 기존 STL/MTL 모형들과 성능 비교
 - ✓ Accuracy/AP/MIoU/#Param/Inference Time

핵심 아이디어

⇒ 기존 해결방법 개선점

항목	기존 STL 구조	제안 방법
구조	각 Task마다 모델 별도 설계 필요	PVT v2에 MTL을 적용, 공유 구조 설계
확장성	새로운 Task 추가시 구조 재설계 필요	공유 백본으로 확장성 우수
성능평가	단일 Task 성능만 평가 가능	Accuracy, AP, mloU, #Param으로 다양한 Task 성능 평가 가능
학습 효율성	Task별 학습으로 시간과 자원 소모 큼	공유 백본 사용, 연산 효율성 확보

핵심 아이디어

♦ 핵심 유스케이스

주요 Actor	자율주행 시스템 개발자, 운전자, MTL 연구자					
	주요기능					
	- 자율주행 태스크 응용					
	- 객체 탐지, 의미론적 분할, 이미지 분류					
주요기능 구성요소	- 멀티태스크 학습 모델 설계 및 학습					
	- 모델평가및 성능 분석					
	구성 요소					
	- PVT v2 프레임워크 및 MTL을 위한 디코더					
OL/출크 데이터	입력데이터(결과):이미지데이터셋(ImageNet,COCO,ADE20K)					
입/출력 데이터	출력 데이터(결과): 이미지 분류 레이블, 객체 탐지 박스, 의미론적 분할마스크					
데이터 Flow	1) 이미지 데이터 전처리 2) MTL 모델 학습 3) 테스트 및 성능 분석					
외부 시스템 연계	모델 비교 대상: Tesla HydraNet 평가 툴: PyTorch, sklearn을 활용 추가적인 모형 활용 시:Hugging Face					

데모

◆ 연구질문및가설

- > RQ1.
 PVT v2 프레임워크에 MTL을 적용한 모형은 단일 작업 학습 모형에 비해 작업(이미지 분류, 객체 탐지, 의미론적 분할)에 대한 유의미한 성능 향상이 이루어 지는가?
 - ✓ H1.
 MTL을 이용해 학습시킨 PVT v2 모형은 단일 작업 모형보다 정확도, AP, mloU, #Param 등의 성능 지표에서 유의미한 개선을 보일 것이다.
- RQ2.MTL을 이용해 학습시킨 모형은 자율주행 분야에서 기존 프레임워크 대비 어떤 장단점을 갖는가?
 - ✓ H2.
 MTL 기반 모델은 자율 주행 분야에서 연구되는 모형인 HydraNet 대비 정확도 측면에서 유의미한 성능 향상을 보여줄 것이다.

데모

◆ 시퀀스 다이어그램 / 실험 알고리즘 순서도

테스트

◆ 프로토타입 설계

> 활용 오픈소스

- ✓ LibMTL: MTL 오픈소스 라이브러리
- ✓ PVT: Pyramid Vision Transformer 오픈소스 라이브러리 (Transformer 코드 활용)
- ✓ Swin Transformer: Swin Transformer 오픈소스 라이브러리 (Transformer 코드 활용)

> 데이터셋

- ✓ NYUv2: 뉴욕 대학교에서 제작한 실내 공간에 대한 데이터셋
- ✓ Multi-Task Learning 평가에 주로 활용되는 벤치마크 데이터셋
- ✓ MTL 학습을 위해서는 각 작업의 평가에 활용하기 위한 Annotation이 필요
- ✓ 기존 ImageNet, COCO2017, ADE20K 2016은 단일 작업에 대한 Annotation만 제공되기에 MTL에는 부적절하다 판단

> 사용 장비 및 활용 프레임 워크

- ✓ 실험 환경: Linux 환경
- ✓ 사용 언어: python 3.10
- ✓ 프레임워크: pytorch 2.3.0, CUDA12.1
- ✓ 주요 라이브러리: mmcv: 2.2.0, mmengine, mmsegmentation, LibMTL
- ✓ 사용 GPU: RTX 3080 10GB

테스트

◆ 실험계획

- Semantic Segmentation, Depth Estimation, Surface Normal Prediction 세 가지의
 작업에 대한 학습 진행 → NYUv2가 지원하는 Annotation
- 독립 변수: 백본 네트워크(Swin Transformer, ResNet-50, PVTv2), 사전 학습 가중치 유무, 학습에 이용할 Task 조합
- > 종속 변수: mloU, pixAcc, abs err, rel err, normal mean, normal median, normal(11.25, normal(22.5, normal(30, #Parameters

PVTv2 / ResNet-50 (No Pretrained Learning Weight)

Model	Best Epoch	Seg mloU (†)	Seg pixAcc (†)	Depth abs_err (↓)	Depth rel_err (↓)	Normal mean (↓)	Normal median (↓)	Normal (11.25 (†)	Normal (22.5 (†)	Normal (30 (†)	Total Params
PVTv2 (No Pretrained)	94	0.2944	0.5558	0.5671	0.2410	30.9347	25.6424	0.2304	0.4478	0.5665	39.02M
ResNet-50 (No Pretrained)	99	0.2984	0.5620	0.5727	0.2403	32.6432	26.7498	0.2204	0.4321	0.5478	71.89M

PVTv2 / ResNet-50 / SwinT(Pretrained Learning Weight)

Model	Best Epoch	Seg mloU (†)	Seg pixAcc (†)	Depth abs_err (↓)	Depth rel_err (↓)	Normal mean (↓)	Normal median (↓)	Normal (11.25 (†)	Normal (22.5 (†)	Normal ⟨30 (†)	Total Params
PVTv2 (Pretrained)	81	0.5463	0.7585	0.3770	0.1544	25.2240	18.7480	0.3195	0.5703	0.6827	39.02M
ResNet-50 (Pretrained)	98	0.5373	0.7570	0.3846	0.1618	23.5492	16.8995	0.3542	0.6115	0.7215	71.89M
SwinT (Pretrained)	49	0.4891	0.7180	0.4157	0.4088	25.2206	18.9197	0.3120	0.5689	0.6838	112.47 M

➡ PVTv2 MTL / PVTv2 STL

Model	Best Epoch	Seg mloU (†)	Seg pixAcc (†)	Depth abs_err (↓)	Depth rel_err (↓)	Normal mean (↓)	Normal median (↓)	Normal (11.25 (†)	Normal (22.5 (†)	Normal (30 (†)	Total Params
PVTv2 – All (Pretrained)	81	0.5463	0.7585	0.3770	0.1544	25.2240	18.7480	0.3195	0.5703	0.6827	39.02M
PVtv2 - Seg (Pretrained)	70	0.5526	0.7605								29.57M
Pvtv2 - Depth (Pretrained)	66			0.3854	0.1562						29.57M
Pvtv2 - Normal (Pretrained)	31					23.5531	16.3254	0.3680	0.6149	0.7147	29.57M

⇒ Task Combination for PVTv2 MTL

Model	Best Epoch	Seg mloU (†)	Seg pixAcc (†)	Depth abs_err (↓)	Depth rel_err (↓)	Normal mean (↓)	Normal median (↓)	Normal (11.25 (†)	Normal (22.5 (†)	Normal ⟨30 (↑)	Total Params
PVTv2- All (Pretrained)	81	0.5463	0.7585	0.3770	0.1544	25.2240	18.7480	0.3195	0.5703	0.6827	39.02M
PVTv2 - Seg, Depth (Pretrained)	84	0.5462	0.7577	0.3752	0.1524						34.30M
PVTv2 - Seg, Norm (Pretrained)	77	0.5471	0.7613			25.5821	19.1614	0.3129	0.5621	0.6755	34.30M
PVTv2 - Depth, Norm (Pretrained)	54			0.3808	0.1534	24.9423	18.3239	0.3272	0.5778	0.6880	34.30M

❖ 시각화

♦ 한계점

- › 데이터 제한성: NYUv2 데이터셋은 실내 환경에 최적화되어 있으며, 야외/도심 환경에 대한 일반화는 확인되지 않음
- › 하이퍼파라미터 설정: 손실 가중치 및 학습률에 대한 최적화는 수동으로 설정되어 있으며 자동 튜닝은 반영되지 않음

◆ 핵심 인사이트

- PVT v2 기반 MTL 모델은 STL 대비 경쟁력 있는 성능을 보여주었으며, 파라미터 수 대비 효율성이 높음
- > Swin Transformer MTL은 비교적 낮은 성능, PVT v2와 ResNet-50 기반 MTL 성능이 서로 비슷하며, 파라미터 수 부분에서는 PVT v2 MTL이 압도적으로 좋음
- > Sementic Segmentation, Depth Estimation 사이에는 Shared Representation이 강하게 존재
- 두 Task는 Surface Normal Prediction에 Negative Transfer를 발생시킴

차후 실험계획 및 기대 효과

❖ 차후 실험 계획

- 독립 변수의 다양화
 - ✓ MTL 구조(Multi-Task Attention Network, Multi-gate Mixture-of-Experts etc.)
 - ✓ Weighting 전략(Dynamic Weight Average, Nash MTL, Gradient Normalization etc.)
 - ✓ 야외/다중 환경 데이터셋에서의 일반화 테스트 수행 가능 (Cityscapes, Office-31 etc.)
- > 최적화된 디코더 구조 개발
 - ✓ Swin MTL에서 제안한 디코더 구조가 아닌 간단한 디코더 구조를 사용하였기에 Swin Transformer 백본 MTL 모형의 성능이 낮게 나왔다 생각
 - ✓ 반대로 같은 학습 환경에서 높은 성능을 달성한 PVT v2 백본 MTL 모형에 추가적인 <mark>디코더 최적화</mark>를 수행할 시 높은 성능 향상 기대
- › bdd100k 데이터셋 활용을 통한 이미지 분류, 객체 탐지, 의미론적 분할에 대한 MTL 기법 구현
 - ✓ NYUv2는 의미론적 분할, 깊이 추정, 법선 추정에 대한 annotation이 제공되었음
 - ✓ bdd100k는 이미지 분류, 객체 탐지, 의미론적 분할에 대한 annotation이 존재
 - ✓ bdd100k를 활용한 MTL 라이브러리가 없기에 기초적인 MTL 구조부터 구현이 필요
 - ✓ 객체 탐지에 대한 decoder 구현이 까다롭기에 PVTv2 백본의 효용성을 알아본 후(현 실험) 자율주행 적용을 위한 MTL 구조 구현

차후 실험계획 및 기대 효과

❖ 기대 효과

- > 단일 모형으로 다양한 태스크 처리가 필요한 임베디드 시스템
- > 실내 환경에서 요구되는 실내 로봇 비전
- › 실내 AR/VR 환경
- > 자율 주행 자동차 (차후 실험을 통해 효용성 확인 예정)

참고 문헌

- ✓ https://github.com/median-research-group/LibMTL
- √ https://github.com/whai362/PVTv2-Seg
- √ https://github.com/whai362/PVT
- √ https://github.com/PardisTaghavi/SwinMTL
- ✓ https://github.com/microsoft/Swin-Transformer
- √ https://arxiv.org/abs/2103.14030
- √ https://arxiv.org/abs/2106.13797
- √ https://arxiv.org/abs/2203.14338
- √ https://arxiv.org/abs/2210.14793
- √ https://link.springer.com/article/10.1023/A:1007379606734
- √ https://arxiv.org/abs/2403.10662
- ✓ https://openaccess.thecvf.com/content/CVPR2022/html/Bhattacharjee_MulT_An_End_to-End_Multitask_Learning_Transformer_CVPR_2022_paper.html
- ✓ https://openaccess.thecvf.com/content/CVPR2022/html/Bhattacharjee_MulT_An_End-to-End_Multitask_Learning_Transformer_CVPR_2022_paper.html

