Using transfer learning & backscattering analysis to build *stable*, *generalizable*, *data-driven* subgrid-scale (SGS) models: A 2D turbulence test case

Pedram Hassanzadeh

Work with: Yifei Guan, Ashesh Chattopadhyay & Adam Subel Rice University

Climate System:

spatio-temporal, multi-scale, multi-physics, high-dimensional & chaotic ...

X: large/slow-scale variables
The main variables of interest

Y: small/fast-scale variables
Influence the spatio-temporal variability of X

Traditional approach:

Coarse-resolution numerical solver + physics-based subgrid-scale (SGS) model

Large-scale processes

$$\dot{X} = F(X)$$

solved numerically at O(100)km resolutions

Closure for SGS processes

$$Y = P(X)$$

ML-based approach:

Coarse-resolution numerical solver + data-driven subgrid-scale (SGS) model

Large-scale processes

$$\dot{X} = F(X)$$

solved numerically at O(100)km resolutions

Data-driven closure for SGS processes

$$Y = NN(X)$$

Using ML for weather/climate modeling: Questions, challenges & opportunities

- Best ways to use ML?
- How to choose the ML method?
- Dealing with poor (high-quality) data regimes
- Incorporating physics/PDEs' properties
- Interpretability
- Generalization (i.e., extrapolation)
- Instability: blow-up in coupled (ML+numerical solver) models

Test case: 2D Turbulence

$$\frac{\partial \omega}{\partial t} + J(\omega, \psi) = \frac{1}{\text{Re}} \nabla^2 \omega$$

$$\nabla^2 \psi = -\omega$$

Direct numerical simulation (DNS) Re=32000; grid=2048 x 2048

Large-Eddy Simulation (LES)

$$\frac{\partial \omega}{\partial t} + J(\omega, \psi) = \frac{1}{\text{Re}} \nabla^2 \omega$$

$$\frac{\partial \overline{\omega}}{\partial t} + J(\overline{\omega}, \overline{\psi}) = \frac{1}{\text{Re}} \nabla^2 \overline{\omega} + \underbrace{\left[J(\overline{\omega}, \overline{\psi}) - \overline{J(\omega, \psi)} \right]}_{\Pi: \text{ SGS term}}$$

Re=32000

DNS grid = 2048 x 2048, time step = Δt

LES grid = 256 x 256, time step = $10\Delta t$

Chattopadhyay, Subel Guan, Hassanzadeh, Stable a posteriori LES of 2D turbulence with convolutional neural networks: backscattering analysis and generalization to higher Re via transfer *learning*, under review <u>arXiv</u>: 2102.11400

physics-based parameterization: Smagorinsky's model (1963) $\Pi = v_{\rho} \nabla^2 \overline{\omega}$

data-driven parameterization (DD-P): $\Pi = NN(\overline{\omega}, \psi)$

Major shortcoming of many physics-based models: Only diffusive, not accounting for *backscattering*

$$T = \Pi \nabla^2 \overline{\omega}$$

T: subgrid-scale transfer

$$T^{\mathrm{DSMAG}}=\upsilon_{e}\;\nabla^{2}\overline{\omega}\;\nabla^{2}\overline{\omega}\geq0$$
 (Dynamic Smagorinsky, Germano et al. 1991)

Non-local DD-P using CNNs

10 layers (64 filters, 5 x 5) + ReLU + no pooling/upsampling

Training dataset:

From 7 DNS runs started from random initial conditions

Validation dataset:

From 3 DNS runs started from random initial conditions

Testing dataset:

From 5 DNS runs started from random initial conditions

A priori (offline) test of DD-P

"online ≠ offline"
Stephan Rasp

	SMAG	DSMAG	ANN	CNN
Correlation coefficient c	0.55	0.55	0.86	0.93

Stability of a posteriori (coupled) LES model?

A priori accuracy of the CNN-based DD-P & the fate of coupled LES run as a function of the numer of training samples, N

N	500	1000	10000	30000	50000
С	0.78	0.83	0.90	0.92	0.93
Fate	Unstable	Unstable	Unstable	Stable	Stable

- Backscattering is harder to learn data drivenly when the training set is small
- Speculation: Disproportionally low accuracy for backscattering is the reason for instabilities

Accuracy of a posteriori (online) LES with DD-P

Accuracy of a posteriori (online) LES with DD-P

DD-P does not generalize to higher Re

LES resolution: 256 x 256

Generalization to higher Re via transfer learning

Chattopadhyay, Subel & Hassanzadeh, Data-driven super-parameterization using deep learning: Experimentation with multiscale Lorenz 96 systems and transfer learning. J. Advances in Modeling Earth Systems (2020)

Layers 1–8: Fixed (trained with *N* samples from Re)

Re-train with 0.01N samples from higher Re

Generalization to higher Re via transfer learning

LES resolution: 256 x 256

Generalization to higher Re & different grid resolution via transfer learning + auto-encoder

	Re	N	grid resolution
Base CNN	8000	50,000	256 x 256
Transfer learned CNN	128000	500	512 x 512

1D Stochastically forced Burgers turbulence

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial uu}{\partial x} = \frac{1}{\text{Re}} \frac{\partial^2 u}{\partial x^2} + f(x, t)$$

$$\frac{\partial \overline{u}}{\partial t} + \frac{1}{2} \frac{\partial \overline{u}\overline{u}}{\partial y} = \frac{1}{\text{Re}} \frac{\partial^2 \overline{u}}{\partial y^2} + \overline{f} + \Pi(y)$$

- Stable a posteriori LES after data augmentation
- Generalization to 10x Re using transfer learning

Subel, Chattopadhyay, Guan & Hassanzadeh, *Data-driven* subgrid-scale modeling of forced Burgers turbulence using deep learning with generalization to higher Reynolds numbers via transfer learning, Physics of Fluids (2021)

Stable, accurate & generalizable SGS modeling for LES

Takeaway:

- Stability: might require large training sets
- Transfer learning: large training sets required only from a base system
- Reduce the required size of the training set
 - Data augmentation
 - Include physics constraints
- Better understanding of the relationship between a priori accuracy & a posteriori stability
- Online training?
- Add memory to the SGS model
- Further explore the power of transfer learning (e.g., between setups)
- More complex test cases

PHILOSOPHICAL TRANSACTIONS A

royalsocietypublishing.org/journal/rsta

Review

Cite this article: Kashinath K et al. 2021 Physics-informed machine learning: case studies for weather and climate modelling. Phil. Trans. R. Soc. A 379: 20200093. https://doi.org/10.1098/rsta.2020.0093

Accepted: 24 November 2020

Physics-informed machine learning: case studies for weather and climate modelling

K. Kashinath¹, M. Mustafa¹, A. Albert^{1,2}, J-L. Wu^{1,3}, C. Jiang^{1,4}, S. Esmaeilzadeh⁵, K. Azizzadenesheli⁶, R. Wang^{1,7}, A. Chattopadhyay^{1,8}, A. Singh^{1,2}, A. Manepalli^{1,2}, D. Chirila⁹, R. Yu⁷, R. Walters¹⁰, B. White², H. Xiao¹¹, H. A. Tchelepi⁵, P. Marcus⁴, A. Anandkumar^{3,12}, P. Hassanzadeh⁸ and Prabhat¹

Papers on data-driven forecasting

http://pedram.rice.edu/publications/

Chattopadhyay A., Nabizadeh E. & Hassanzadeh P., Analog forecasting of extreme-causing weather patterns using deep learning, *Journal of Advances in Modeling Earth Systems*, 2020

Chattopadhyay A., Mustafa M., Hassanzadeh P., Bach E. & Kashinath K., Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers, *under review at Geoscientific Model Development*

Chattopadhyay A., Hassanzadeh P. & Subramanian D., Data-driven prediction of a multi-scale Lorenz 96 chaotic system using machine learning methods: Reservoir computing, artificial neural network, and long short-term memory network, *Nonlinear Processes in Geophysics*, 2020