Setting the derivative of (3.20) with respect to μ_k to zero, we obtain

$$\mu_k = -m_k/\lambda. \tag{3.21}$$

We can solve for the Lagrange multiplier λ by substituting (3.21) into the constraint $\sum_k \mu_k = 1$ to give $\lambda = -N$. Thus, we obtain the maximum likelihood solution for μ_k in the form

$$\mu_k^{\rm ML} = \frac{m_k}{N},\tag{3.22}$$

which is the fraction of the N observations for which $x_k = 1$.

We can also consider the joint distribution of the quantities m_1, \ldots, m_K , conditioned on the parameter vector μ and on the total number N of observations. From (3.17), this takes the form

$$Mult(m_1, m_2, \dots, m_K | \boldsymbol{\mu}, N) = \binom{N}{m_1 m_2 \dots m_K} \prod_{k=1}^K \mu_k^{m_k},$$
 (3.23)

which is known as the *multinomial* distribution. The normalization coefficient is the number of ways of partitioning N objects into K groups of size m_1, \ldots, m_K and is given by

$$\binom{N}{m_1 m_2 \dots m_K} = \frac{N!}{m_1! m_2! \dots m_K!}.$$
 (3.24)

Note that two-state quantities can be represented either as binary variables and modelled using the binomial distribution (3.9) or as 1-of-2 variables and modelled using the distribution (3.14) with K=2.

3.2. The Multivariate Gaussian

The Gaussian, also known as the normal distribution, is a widely used model for the distribution of continuous variables. We have already seen that for of a single variable x, the Gaussian distribution can be written in the form

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$
 (3.25)

where μ is the mean and σ^2 is the variance. For a D-dimensional vector \mathbf{x} , the multivariate Gaussian distribution takes the form

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$
(3.26)

where μ is the D-dimensional mean vector, Σ is the $D \times D$ covariance matrix, and $\det \Sigma$ denotes the determinant of Σ .

The Gaussian distribution arises in many different contexts and can be motivated from a variety of different perspectives. For example, we have already seen that for

Section 2.3

Section 2.5