Relatividad y Gravitación

Teoría, algoritmos y problemas

Jorge I. Zuluaga Profesor titular de Astronomía y Física

Instituto de Física, Facultad de Ciencias Exactas y Naturales Universidad de Antioquia

14 de mayo de 2020

1.	Prefacio					
	1.1.	¿Otro lib	ro de mecánica celeste?	10		
	1.2.	Mecánica	a celeste en la era de la información	10		
	1.3.	Mecánica celeste en Python				
2.	Agra	decimiento	os estados esta	15		
3.	Introducción					
	3.1.		e organiza este libro?	17		
	3.2.	Mecánica	a celeste en <i>libretas</i>	19		
		3.2.1.	Instalación de las libretas	19		
	3.3.	Elemente	os no textuales	20		
		3.3.1.	Cajas de texto	20		
		3.3.2.	Algoritmos	22		
	3.4.	Figuras i	nteractivas y animaciones	26		
4.	Rela	Relatividad Especial				
	4.1.	Motivaci	ión	27		
	4.2.	Concepto	os básicos	27		
	4.3.	Principio	de homogeneidad e isotropía del espacio-tiempo	29		
	4.4.	La relatividad Newtoniana				
	4.5.	El problema del electromagnetismo				
	4.6.	Las transformaciones de Lorentz-Einstein				
	4.7.	Propieda	ndes de las TLE	36		
		4.7.1.	Unidades luz	37		
		4.7.2.	La TLE como una rotación hiperbólica	37		
		4.7.3.	Las TLE y la notación de Einstein	39		
		4.7.4.	Las TLE generales	40		
		4.7.5.	El valor del factor de Lorentz-Einstein	41		
		4.7.6.	Mapas de la TLE	42		
	4.8.	Consecu	encias de las TLE	44		
		4.8.1.	Transformación de los intervalos y el gradiente	45		
		4.8.2.	Dilatación temporal	47		
		4.8.3.	El postulado de los relojes	54		
		4.8.4.	Contracción de longitudes	55		
		4.8.5.	Adición de velocidades	57		

	4.8.6.	Transformación de aceleraciones	59
4.9.	El espaci	io-tiempo de Minkowski	59
	4.9.1.	La norma de Minkowski	59
	4.9.2.	Las variedades de Lorentz y la métrica de Minkowski	62
	4.9.3.	Métrica y tipos de intervalos	
	4.9.4.	Métrica y tiempo propio	65
	4.9.5.	Métrica, dilatación del tiempo y contracción de lon-	
		gitudes	66
	4.9.6.	Vectores y cálculo en el espacio de Minkowski	67
	4.9.7.	Minkowski y el postulado de los relojes	68
	4.9.8.	Transformación general de cuadrivectores	69
4.10.	Óptica re	elativista	69
	4.10.1.	Efecto Doppler relativista	70
	4.10.2.	Aberración de la luz	71
	4.10.3.	Enfoque relativista	72
4.11.	Cinemát	ica relativistica	73
	4.11.1.	Cuadrivelocidad	73
	4.11.2.	Cuadriaceleración	74
	4.11.3.	Movimiento con cuadriaceleración constante	76
	4.11.4.	La velocidad límite	80
	4.11.5.	Ejemplo: una nave interestelar	82
4.12.	Dinámic	a relativista	84
	4.12.1.	Masa invariante	84
	4.12.2.	Momentum relativista	84
	4.12.3.	Energía cinética relativistica	87
	4.12.4.	Energía total relativista	89
	4.12.5.	Cuadrimomentum	90
	4.12.6.	Magnitud del cuadrimomentum y la simetría gauge	90
	4.12.7.	Cuadrimomentum en el espacio-tiempo	91
4.13.	Colision	es relativistas	92
	4.13.1.	Energía en el centro de masa	93
	4.13.2.	Choques con la luz	95
	4.13.3.	Una aplicación: El límite GZK	96
	4.13.4.	Colisiones relativistas interactivas	
4.14.	Cuadrifu	ıerza	98
	4.14.1.	Reglas de transformación de la fuerza	
	4.14.2.	La fuerza de Lorentz	
	4.14.3.	Movimiento circular bajo la fuerza de Lorentz	104
	4.14.4.	Ecuación de movimiento relativista	105
	4.14.5.	Un ejemplo numérico	106
4.15.	Síntesis o	de Mecánica Relativista	
	4.15.1.	Síntesis de cinemática relativista	
	4.15.2.	Síntesis de dinámica relativista	
4.16.	Electrodi	inamica manifiestamente covariante	
	4.16.1.	Ecuaciones de la electrodinámica	115
	4.16.2.	La cuadricorriente	
	4.16.3.	Ecuaciones de Maxwell inhomogéneas	
	4.16.4.	Los campos en términos tensoriales	120

		4.16.5.	El tensor de Faraday	. 121	
		4.16.6.	Ecuaciones de Maxwell y el tensor de Faraday		
		4.16.7.	Transformación de los campos		
		4.16.8.	La fuerza de Lorentz		
		4.16.9.	Intrepretación geométrica del campo de Faraday .	. 126	
		4.16.10.	Síntesis		
		4.16.11.	Ejemplos {ejemplos_electrodinamica}		
	4.17.	Problemas	Seleccionados		
5.	Relatividad General				
	5.1.	Motivaciór	1	. 135	
	5.2.	Principios	y postulados básicos	. 136	
		5.2.1.	Principio de Equivalencia	. 136	
		5.2.2.	Principio de Equivalencia	. 141	
		5.2.3.	Principio de covarianza general	. 141	
		5.2.4.	Tensores generales	. 142	
	5.3.	Transporte	paralelo y derivada covariante	. 143	
		5.3.1.	El gradiente no es un tensor general	. 143	
		5.3.2.	Transporte paralelo	. 144	
		5.3.3.	Derivada direccional general	. 145	
		5.3.4.	Los símbolos de Christoffel	. 147	
		5.3.5.	Cálculo de los símbolos de Christoffel		
	5.4.	Derivada to	otal general y geodésicas	. 157	
		5.4.1.	Derivada total general		
		5.4.2.	Derivada total y transporte paralelo		
		5.4.3.	Transporte paralelo y bases vectoriales		
		5.4.4.	Bases y componentes vectoriales en espacio curvo		
		5.4.5.	Ejemplos numéricos de transporte paralelo		
		5.4.6.	Ecuación geodésica		
		5.4.7.	Ejemplos numéricos de geodésicas		
	5.5.		ca y un principio variacional		
	5.6.		s y movimiento inercial		
	5.7.	Geodésicas	s en campo débil		
		5.7.1.	Un ejemplo numérico		
	5.8.		cantidades conservadas		
		5.8.1.	La métrica como constante		
		5.8.2.	Coordenadas cíclicas y vectores de Killing		
		5.8.3.	Ejemplo: geodésicas en coordenadas cilíndricas		
		5.8.4.	Ejemplo: geodésicas sobre una esfera	. 184	
Bibl	iografía			189	

Índice de figuras

1.1.	Imagen procesada de Arrokoth, el objeto transneptuniano sobre- volado por la sonda New Horizons el 1 de enero 2019 (crédito: NASA/Johns Hopkins University Applied Physics Laboratory/-
	Southwest Research Institute/Roman Tkachenko.)
1.2.	Figura correspondiente al código 1.1
3.1.	Figura correspondiente al código 3.3
3.2.	Gráfico de las funciones trigonométricas básicas, en el intervalo
	de interés (gráfico generado)
4.1.	Figura correspondiente al código 4.1
4.2.	Figura correspondiente al código 4.3
4.3.	Figura correspondiente al código 4.4
4.4.	Figura correspondiente al código 4.5
4.5.	Contracción de longitudes
4.6.	Figura correspondiente al código 4.6 60
4.7.	Figura
4.8.	Figura correspondiente al código 4.7
4.9.	Figura correspondiente al código 4.8
4.10.	Figura correspondiente al código 4.9 80
4.11.	Cambios en la cuadrivelocidad y la cuadriaceleración 81
4.12.	Nave interestelar
4.13.	Figura correspondiente al código 4.10
4.14.	Figura correspondiente al código 4.11
4.15.	Figura correspondiente al código 4.12
4.16.	Figura correspondiente al código 4.13
4.17.	Figura correspondiente al código 4.14
4.18.	Tensor de esfuerzos
4.19.	Figura correspondiente al código 4.15
5.1.	Transporte paralelo
5.2.	Derivada direccional
5.3.	Vector transportado de forma paralela en coordenadas cilíndricas. 165
5.4.	Vector transportado de forma paralela sobre la superficie de una esfera. Se usa proyección azimuthal para representar las coordenadas (malla punteada)

8 Índice de figuras

5.5.	Definición de geodésica en el espacio-tiempo plano y sobre la su-
	perficie de una esfera
5.6.	Figura correspondiente al código 5.1
5.7.	Figura correspondiente al código 5.2 172
5.8.	Figura correspondiente al código 5.3
5.9.	Figura correspondiente al código 5.4

Capítulo 1

Prefacio

En 2019 celebramos el centenario de la histórica observación de un eclipse total de Sol, liderada por *Sir Arthur Eddington* y que permitió la primera confirmación experimental de las predicciones de la teoría general de la relatividad. El primer día de ese mismo año, una nave espacial, la sonda **New Horizons**, sobrevoló el cuerpo astronómico más remoto fotografiado por nuestra especie, el objeto transneptuniano **(486958) Arrokoth**; la misma sonda, cinco años antes, había pasado "rozando" la superficie de Plutón, enviándonos imágenes inesperadas de un mundo sorprendente. Muy lejos de allí, y también en 2019, dos naves espaciales, una japonesa, la sonda **Hayabusa 2** y la otra estaudinense, **OSIRIS-REx**, transmitieron imágenes impactantes desde la superficie de dos pequeños asteroides cercanos a la Tierra, cuerpos que visitaron con el objeto de traer muestras a la Tierra. Lo que aprendamos de esas muestras podría ayudarnos a evitar un impacto catastrófico futuro.

Todas estas hazañas de exploración y conocimiento fueron posibles, entre otras, gracias a la **Mecánica Celeste**. Esta disciplina científica, combinación asombrosa de astronomía, física y matemáticas, comenzó con el trabajo teórico pionero de *Johanes Kepler* a principios de los 1600^1 ; se estableció con la obra cumbre de *Sir Isaac Newton*, los *Principios Matemáticos de la Filosofía Natural* [1], publicada a finales de los 1600; y alcanzó su apogeo entre los 1700 y los 1800 con los trabajos de matemáticos y astrónomos como *Edmund Halley*, *Leonhard Euler*, *Pierre-Simon Laplace*, *Joseph-Louis Lagrange*, *William Rowan Hamilton* y *Henri Poincaré* (entre muchos otros que mencionaremos en este libro).

Este libro presenta una visión panorámica de la **mecánica celeste** y en general de la **mecánica analítica** o **mecánica clásica**, que se desarrollo de forma paralela a la primera, inspirada, en muchos casos, por sus problemas. El texto esta dirigido especialmente a quiénes, por su formación o trabajo, están interesados en la aplicación de la mecánica celeste en astronomía o en ingeniería aeroespacial. Su extensión, énfasis y nivel de profundidad lo hace especialmente adecuado para **estudiantes de pregrado** (licenciatura o bachillerato, dependiendo del país) de

¹En la Capítulo 3 haremos claridad sobre la nomenlatura usada en el libro para referirnos a los siglos y decenios.

10 Capítulo 1. Prefacio

Figura 1.1: Imagen procesada de Arrokoth, el objeto transneptuniano sobrevolado por la sonda New Horizons el 1 de enero 2019 (crédito: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Roman Tkachenko.)

cualquier programa científico o técnico, especialmente astronomía, física o ingeniería aeroespacial. Su enfoque computacional, lo podría hacer, además, útil como material de referencia para profesionales de estas disciplinas.

1.1. ¿Otro libro de mecánica celeste?

Al escribir este libro, no pretendo hacer un compendio exhaustivo de los problemas de la Mecánica Celeste, que, durante más de 400 años de historia se ha convertido en una disciplina científica basta y en constante desarrollo.

Muchos textos en la materia han sido escritos desde los tiempos de Newton, la mayoría en las últimas décadas. Algunos presentan detallados y rigurosos desarrollos matemáticos. Otros están orientados específicamente al Sistema Solar o al movimiento de satélites y vehículos espaciales. Muchos más son buenos libros de texto, la mayoría dirigidos a estudiantes de posgrado (la mecánica celeste es considerada una línea de profundización, tanto en física como en astronomía.) También se han escrito algunos libros divulgativos y al alcance de aficionados.

La bibliografía de este libro recoge apenas una muestra de referencias en la materia, que serán citados a lo largo de sus capítulos, y que, de antemano, invito a los lectores a explorar con curiosidad para no quedarse con la punta de el inmenso *iceberg* que apenas alcanzará a asomarse en estas páginas.

1.2. Mecánica celeste en la era de la información

Un ingrediente adicional hace a este libro diferente. Me refiero al enfásis especial que daremos a los algoritmos de la mecánica celeste a través de todo el libro.

Es un hecho reconocido que la complejidad de muchos problemas de mecánica celeste, en particular aquellos con un interés práctico tales como el diseño de trayectorias de vehículos espaciales, la predicción de la posición precisa de asteroides y cometas que pueden amenazar nuestro planeta o la predicción a largo plazo de la posición de los cuerpos del sistema solar y otros sistema planetarios, ha exigido, casi desde los tiempos de Kepler, el desarrollo y aplicación de métodos numéricos y, más recientemente, su implementación en calculadores y computadores.

En este sentido, la relación de la mecánica celeste con *algoritmos* de toda clase, no es comparable con la relación, principalmente utilitaria, que tienen la mayoría de las área de la física con la computación. Podría decirse, que hoy, es casi impensable saber de mecánica celeste, sin estar familiarizado también con sus algoritmos.

Pensando en esto, todo el contenido del libro ha sido elaborado usando *libretas* o *notebooks* del Proyecto Jupyter². Estas libretas pueden ser obtenidas y usadas por el lector para interactuar con y modificar los algoritmos (el material electrónico esta disponible en el sitio en línea³ del libro). Estos medios tecnológicos permiten además aprovechar gráficos interactivos y animaciones para entender mejor conceptos que pueden ser difíciles.

En la versión impresa, los algoritmos se presentarán en cajas especiales de texto como esta:

E = 0.6886561865220447

¿Puede el lector adivinar qué hace este algoritmo?. Si no lo hace, espero que sepa en qué lenguaje de programación está escrito.

1.3. Mecánica celeste en Python

Es casi imposible escribir un libro con algoritmos sin comprometerse con un lenguaje de programación específico (especialmente si queremos que los algoritmos funcionen.) En el caso de esta edición del libro, el lenguaje elegido es Python.

Esta siempre será una apuesta arriesgada. Aunque la mecánica celeste y sus algoritmos no pasarán de "moda", los lenguajes de programación "van y vienen". Es un hecho (poco reconocido) que cientos de libros científicos acumulan polvo por haber comprometido su contenido con lenguajes de programación que hoy no son tan populares (BASIC o Pascal por ejemplo).

No sabemos si Python y este libro sufrirán a la larga la misma suerte. Pero hay tres hechos que *sugieren* que la popularidad de este lenguaje podría durar más de lo esperado (o al menos esa es mi esperanza).

El primero es que su sintaxis es muy similar a la del "lenguaje natural". Considere, por ejemplo, el algoritmo presentado antes (que ya lo sabe, esta escrito en

²https://jupyter.org

³http://github.com/seap-udea/Relatividad-Zuluaga

12 Capítulo 1. Prefacio

Python) o el siguiente algoritmo, aún más simple:

```
from math import pi
for n in range(1,5):
    print("pi a la",n,"es",pi**n)

pi a la 1 es 3.141592653589793
pi a la 2 es 9.869604401089358
pi a la 3 es 31.006276680299816
pi a la 4 es 97.40909103400242
```

Es difícil que estos algoritmos se escriban de manera tan natural en casi cualquier otro lenguaje de programación popular en ciencia (C, FORTRAN o Java) como se pueden escribir en Python. Este hecho, no solo facilita el aprendizaje del lenguaje, sino también la legibilidad de los algoritmos.

El segundo hecho que demuestra el promisorio futuro de Python como lenguaje de la computación científica, es la creciente cantidad paquetes, en todas las disciplinas de la ciencia y la técnica, que se escriben permanentemente en este lenguaje y que están disponibles en repositorios públicos⁴. Además, herramientas informáticas muy conocidas (bibliotecas de rutinas, bases de datos, sistemas de información, etc.) escritas originalmente en otros lenguajes, han sido ahora traducidas a Python (pythonizadas si quieren) con el único propósito de que puedan ser usadas por la creciente comunidad de desarrolladores en este lenguaje.

Python se esta convirtiendo, y esta es una conjetura mía, en depositario de décadas de experiencia en ciencia computacional. ¿Cambiará esta tendencia pronto? Lo dudo (o al menos así lo espero, por el bien de este libro).

Una última razón, pero no por ello, menos importante, para elegir Python como el idioma oficial de los algoritmos en este libro es la existencia de una biblioteca gráfica, robusta y bien documentada, escrita para este lenguaje. Me refiero por supuesto a matplotlib⁵.

Con la excepción de paquetes científicos que incluyen avanzadas facilidades de graficación, tales como Mathematica, Matlab, o IDL (todos ellos sujetos a algún tipo de pago), la mayoría de los lenguajes de programación dependen, a veces, de complejas bibliotecas gráficas o programas de terceros para hacer, hasta los más sencillos gráficos.

En Python, hacer un gráfico elemental, es tan simple como escribir:

```
(Algoritmo 1.1)

from matplotlib.pyplot import plot
plot([1,2,3,4],[1,4,9,16]);

ver Figura 1.2
```

Jorge I. Zuluaga *Mes X de* 20YY

⁴https://pypi.org/project/IPy
5https://matplotlib.org/

Figura 1.2: Figura correspondiente al código 1.1.

14 Capítulo 1. Prefacio

Capítulo 2

Agradecimientos

Así como no hay *vacas esféricas en el vacío*, tampoco existen los *autores cilíndricos que escriben aislados*. La elaboración de este libro ha sido determinada y afectada por una multitud de factores y personas a los que no puedo dejar de mencionar.

En primer lugar, quiero agradecer a todos los estudiantes del pregrado de astronomía que tomaron el curso de Mecánica Celeste durante los años en los que elaboré las notas que sirvieron de base para este libro. Agradezco su paciencia y sus preguntas en clase que me ayudaron a enriquecer el texto, concentrarme en puntos difíciles y escoger mejor los temas más interesantes. También fue de gran valor los errores que me ayudaron a detectar en las primeras versiones de las *libretas* de Jupyter que son la base del texto. Entre ellos, quiero resaltar a **Andrés Gómez**, quien fue mas lejos aún al revisar críticamente el contenido de algunas *libretas* como lo haría un colega o un editor. Adicionalmente, sus impecables soluciones de los problemas inspiraron una parte del material que he incluido en esta edición del libro.

Una buena parte de la primera versión de las notas del curso fue transcrita a LaTeX por el hoy Astrónomo Bayron Portilla (en ese entonces mi tallerista del curso). En un momento dado, nos propusimos, incluso, escribir juntos el libro. Sin embargo, nuestras ocupaciones fueron dilatando el proyecto hasta que decidí emprender este proyecto en solitario y partiendo de las *libreta* de Jupyter que elabore posteriormente. Aún así, reconozco y agradezco el esfuerzo que hizo Bayron en esas primeras notas, en las que además exploramos las mejores maneras de organizar los temas del curso. Tal vez en el futuro retome con él algunas de esas notas iniciales con miras a un texto avanzado en la materia donde podamos, por ejemplo, abordar los tópicos que se quedaron por fuera de este libro. En el mismo sentido debo también agradecer al Doctor **Andrés Pérez**, ahora un exitoso astrónomo, quién en sus años como estudiante se ofreció también a transcribir en limpio muchas de mis notas de tablero. El documento resultante que nunca logramos editar apropiadamente todavía lo uso como material de consulta en mis clases. Gracias Andrés por tu dedicación durante esos meses a poner en limpio el sucio de mis tableros.

Estoy también en deuda con Miguel Vásquez, el mejor de los talleristas que he

tenido en mi carrera como profesor (ahora es un Astrónomo). Miguel realizó una juiciosa tarea de búsqueda de problemas, transcripción de los mismos al formato de Jupyter y, más importante, preparación en el mismo formato de su solución. Todo, mientras mantenía una estrecha relación con los estudiantes (mucho mejor que la mía como profesor, debo admitir) que le permitió entender sus necesidades, evaluar y ajustar el grado de dificultad de los problemas y recoger correcciones y sugerencias a las notas. **Muchos problemas** incluídos en este libro se basan en el trabajo original de Miguel al que debo hacer un sentido reconocimiento aquí.

Agradezco también a los maestros que me motivaron a estudiar física teórica durante el pregrado y el posgrado, muy a pesar de mi monocromática pasión por la astronomía. Esto me permitió entender, apreciar y abordar mejor los aspectos teóricos de la mecánica celeste. En particular, mis agradecimientos van para los profesores Lorenzo de la Torre, Alonso Sepúlveda, Jorge Mahecha, William Ponce y Boris Rodríguez. A través de sus propios manuscritos, conocí (y espero haber aprendido con el ejemplo) el "arte" de escribir libros de texto. El estilo, profundidad y cuidado de sus notas de clase, libros publicados e inéditos, han sido imitados sistemáticamente en este libro.

Agradezco a la **Universidad de Antioquia** y en particular a las autoridades del **Instituto de Física** y la **Facultad de Ciencias Exactas y Naturales**, por otorgarme el beneficio de un año sabático, durante el cuál pude, entre otras cosas maravillosas, escribir la primera versión completa de este libro. Mi reconocimiento y agradecimiento además para los **profesores del pregrado de Astronomía**, en especial a mi *parcero* Pablo Cuartas, que recibió mi carga académica y de investigación durante ese año en el que estuve escribiendo.

Finalmente, pero no menos importante, quiero agradecer a mi familia, **Olga y Sofía**. A ellas les toco la peor parte; es decir, soportarme un año entero en la casa, escribiendo en piyamas (o mejor hablando solo, por yo no escribo sino que hablo con el computador) y prestándoles, a veces, menos atención de la que les presto incluso en situaciones normales. Este libro esta dedicado a ellas.

Capítulo 3

Introducción

3.1. ¿Cómo se organiza este libro?

Como mencionamos en la ??, una de las cosas hace a este libro diferente de otros textos de mecánica celeste, es la manera y el orden particular en el que se desarrollan los temas. El libro esta dividido en tres grandes partes:

- Los fundamentos matemáticos y físicos.
- Mecánica celeste usando vectores y geometría (formalismo vectorial de la mecánica).
- Mecánica analítica (formalismo lagrangiano y hamiltoniano) y su aplicación en mecánica celeste.

En los siguiente párrafos encontrarán una síntesis *narrada* del libro; algo así como una *tabla de contenido comentada* que le permitirá al lector, no solo orientarse en el texto, sino también entender la manera como se encadenan cada una de sus partes.

Y es que todo libro debería contar una *historia*. En los textos académicos, lamentablemente, esa "vocación" narrativa parece perderse en medio de figuras, teoremas y algoritmos. Esta sección puede ser entonces entendida, como un esfuerzo para esbozar la *historia* que se hila a través de sus capítulos.

- Parte 1: Fundamentos matemáticos y físicos. Antes de comenzar, respasaremos algunos temas de matemáticas y de física necesarios para estudiar mecánica celeste. Si bien el lector debería estar familiarizado con la mayoría de estos temas, he decidido incluir este capítulo no solo para hacer al texto autocontenido, sino también con el propósito de compilar resultados útiles, definiciones y algorítmos, en el formato y notación del texto, que se usarán en capítulos posteriores.
 - ??. Algunos consideran a la mecánica celeste un área de las matemáticas aplicadas. En ella confluyen técnicas matemáticas de todos los orígenes. Por esta misma razón para comprender incluso los aspectos más básicos de la teoría es necesario contar con una sólida fundamentación

matemática. Por razones de espacio no podemos cubrir todos los temás relevantes en esta sección, pero nos hemos concentrado en dos de particular importancia en todo el texto:

- ??: El cálculo infinitesimal fue *descubierto* por Isaac Newton a finales de los 1600 (y más tarde descubierto independientemente también por Gottfried Leibniz), inspirado, en parte en problemas mecánicos. Estos métodos matemáticos permitieron a Newton, sus contemporáneos y suscesores resolver los complicados problemas de la mecánica celeste que inauguraron la disciplina. Por la misma razón es indispensable que el lector repase las cantidades y resultados centrales de este método analítico, que es justamente el tema de esta sección. Al hacerlo aprovecharemos además para recoger algunas definiciones y resultados importantes de la geometría y el cálculo de vectores, los elementos básicos de la teoría de ecuaciones diferenciales y del más exótico cálculo de variaciones. Ninguno de los apartes de este capítulo cumple funciones decorativas o es completamente prescindible. A pesar de parecer una sección ajeno al libro, un material que debería dejarse solo a los autores expertos en el tema, en realidad todos los resultados expuestos aquí serán usados en el resto de capítulos.
- ??: En esta sección nos concentraremos en repasar (o presentar) las propiedades de las figuras cónicas, su definición y descripción geométrica más general, así como su descripción algebraica. Las cónicas juegan un papel central en la mecánica celeste y estar familiarizado con ellas, permitirá resolver más fácilmente problemas físicos relativamente complejos. Estudiaremos esta familia particular de curvas, tanto en el plano, como en el espacio de tres dimensiones. Con este propósito, introduciremos aquí el tema de las rotaciones en dos y tres dimensiones (ángulos de Euler) que son usados con frecuencia en la mecánica celeste pero también en la mecánica analítica.
- ??. Es casi imposible presentar la mecánica celeste y menos aún la mecánica analítica, sin repasar primero las definiciones, postulados y proposiciones de la mecánica básica, o mecánica newtoniana, como se la llama comunmente. Este capítulo esta justamente dedicado a presentar el que llamaremos formalismo vectorial o geométrico de la mecánica, desarrollado a partir de las ideas mismas de Newton pero enriquecidas significativamente por sus sucesores en los siguientes dos siglos. Si bien, de nuevo, este podría parecer un tema elemental para tratar en otro libro, la manera en la que se presenta aquí es particularmente única. He tratado de formular las ideas de siempre en un orden más moderno y en algunos casos poco ortodoxo. No pretendo con ello producir ninguna revolución, pero al hacerlo, la presentación de los tema centrales del libro se hace más natural. El capítulo se concentra en la mecánica de partículas y sistemas de partículas, sin ocuparse de otros temas interesantes de la mecánica, la dinámica de cuerpos rígidos o de fluídos, que no serán aplicados en el resto del texto.

3.2. Mecánica celeste en libretas

El libro ha sido concebido, escrito y compilado enteramente usando *libretas* de Jupyter. Las libretas, que están disponibles en la versión electrónica del texto, son archivos en un formato especial (no son programa de Python, ni páginas web) que pueden ser visualizadas y ejecutadas usando un navegador de Internet.

El uso de las libretas no es indispensable para entender el contenido del libro, pero puede ofrecer una experiencia interactiva muy enriquecedora y a veces acelerar el proceso de aprendizaje. El uso de las libretas en clase puede, además, hacer más dinámica y amena la interacción entre el profesor y los estudiantes.

Para hacer uso de las libretas se debe contar con un **computador de escritorio** que use cualquier sistema operativo (Windows, Linux o MacOS). Por la misma razón, en caso de usarla, recomiendo que el curso se desarrolle en una sala de computo. Para ejecutar las libretas es necesario instalar primero el interprete y la biblioteca base del lenguaje Python, un conjunto específico de paquetes y el sistema Jupyter, además de varias de sus extensiones (los detalles se presentan en la siguiente sección.)

La versión en línea⁶ de este libro (páginas web), puede ser también una alternativa a las libretas de Jupyter. Este formato tiene la ventaja que solo requiere un dispositivo con conexión a Internet (de escritorio o móvil) y puede manipularse en cualquier contexto. Aunque la versión web carece de casi todas las características interactivas de las libretas de Jupyter, en ella encontraran, además de todos los algoritmos y gráficos, animaciones y otros elementos de *hipertexto*.

3.2.1. Instalación de las libretas

Para aquellos que deseen aprovechar las libretas de Jupyter como medio didáctico, se ofrece a continuación una guía básica de cómo preparar un computador para ejecutarlas. Instrucciones adicionales pueden encontrarse en la versión en línea del libro.

- 1. **Instalación del lenguaje** Python **y las bibliotecas básicas del lenguaje.** El primer requisito para utilizar las libretas es instalar el interprete y las bibliotecas del sistema del lenguaje Python. Existen diversas maneras para hacerlo en cada sistema operativo y abundantes instrucciones en Internet. Mi recomendación es utilizar el sistema Anaconda⁷ que ofrece, en una plataforma integrada, los archivos del lenguaje Python, una amplia diversidad de paquetes científicos, el sistema Jupyter y todas las herramientas necesarias para la instalación de otros paquetes.
- 2. **Descargar las libretas.** Una vez haya instalado Python y Jupyter, puede descargar las libretas del libro los archivos adicionales requeridos por ellas del sitio web del libro. Para ello siga las instrucciones provistas allí.
- Ejecución de pruebas. Para verificar si las libretas funcionan correctamente, una vez descargadas, busque y abra la libreta Pruebas.ipynb. Una vez abierta ejecute todas sus celdas (Cell / Run all). Si la ejecución se realiza

⁶http://github.com/seap-udea/Relatividad-Zuluaga

⁷https://www.anaconda.com

completa, en la última celda aparecera un reporte completo con los resultados de la prueba. Si alguna de las prueba individuales falla, es posible que sea necesario instalar paquetes, datos adicionales y otras dependencias.

4. **Instalación de dependencias.** Para instalar todas las dependencias del libro abra la libreta Instalacion.ipynb y siga las instrucciones descritas allí.

3.3. Elementos no textuales

Para facilitar la lectura del libro y hacer de la experiencia de leerlo algo más agradable e incluso excitante, el texto contiene una serie de elementos gráficos con los que debemos familiarizarnos.

3.3.1. Cajas de texto

Mucha información importante texto se presenta en *cajas* independientes al texto principal y cuyas características gráficas resaltan del resto del documento. En particular existen 5 tipos de cajas:

- Resumen del capítulo. Esta caja aparece normalmente al principio de cada capítulo y contiene una breve síntesis del mismo. No deje de leer este resumen para identificar los temas centrales de cada parte del libro. El profesor podría usar la información contenida allí para definir los objetivos específicos de la evaluación.
- **Notas**. A veces es necesario desviarse un momento del hilo del texto para aclarar o ampliar asuntos relacionados con la notación, los paquetes y algorítmos utilizados, o simplemente llamar la atención sobre un asunto importante. A continuación se muestra un ejemplo de una *caja de nota*.

Nota

El lenguaje *Markdown*. La mayor parte del contenido textual de este libro, ha sido escrito en las celdas de libretas de Jupyter en un lenguaje de descripción de documentos conocido como *Markdown*. Puede explorar la sintaxis del lenguaje, o bien desplegando el contenido de las *celdas* de las libretas, o bien consultando la abundante documentación en línea^a.

ahttps://markdown.es/

■ **Definiciones**. Muchas cantidades físicas y algunos conceptos claves requieren una definición rigurosa. Este es el rol justamente que juegan las *cajas de definición*. A diferencia de las cajas de Resumen y Notas, las cajas de *Definición* están numeradas (como las figuras o las ecuaciones), de modo que sea más fácil referirse a ellas.

Definición 3.1

Mecánica celeste. Llamamos *Mecánica Celeste* a la disciplina científica que aplica las leyes de la mecánica para estudiar el movimiento de cuerpos bajo la acción dominante de la gravedad. Dado que solo en lugares lejanos a la superficie terrestre (normalmente fuera de su atmósfera), la gravedad es la fuerza dominante, la mecánica celeste normalmente describe el movimiento de cuerpos astronómicos (desde partículas pequeñas, hielo o polvo interestelar, hasta planetas y estrellas) y de vehículos espaciales. En este último caso se habla normalmente de *Mecánica orbital*.

■ Teoremas, postulados y leyes. Como las definiciones, en muchas ocasiones será indispensable separarnos un momento de una explicación para formular más rigurosamente un resultado, normalmente obtenido por razonamiento deductivo en el marco de una teoría (teoremas, lemas, colorarios) o por razonamiento inductivo a partir de la experiencia (leyes y postulados). Para hacerlo usaremos cajas de texto con una numeración independiente de aquella usada para las definiciones. Sin embargo, es importante aclarar que en el caso de los denominados teoremas me he abstenido de usar sistemáticamente esta palabra en el encabezado de los respectivos recuadros. En su lugar he decidido imitar a algunos autores clásicos (en particular a Euclides) que usaban sistemáticamente la palabra proposición en lugar de teorema para referirse a afirmaciones demostrables. Es decir, en este libro, una proposición será un resultado importante que puede estar o no demostrado en el texto. Al hacerlo quiero evitar posar aquí de matemático, una profesión a la que respeto profundamente⁸. Aún así, cuando una proposición dada corresponda a un teorema bien conocido, usaré la palabra teorema en el título interno de la caja. Las dos proposiciones mostradas en las cajas a continuación ilustran estos conceptos.

Proposición 3.1

Sistemas de referencia inerciales. Si un sistema de referencia O' se mueve con velocidad constante con respecto a un sistema de referencia inercial O, entonces O' es también un sistema de referencia inercial.

Proposición 3.2

Teorema de Danelin. Dada una esfera tangente a un cono y un plano que corta el cono en un determinado ángulo, el punto de tangencia de la esfera con el plano es uno de los focos de la cónica correspondiente.

Un poco de historia. Finalmente, pero no menos importante, están las anécdotas e historias que contaremos a lo largo de todo el libro. Como se men-

⁸Decía el matemático húngaro Paul Eördos ("pol érdos") que un *matemático es una máquina para convertir café en teoremas*, una frase que aunque parece simplificar la naturaleza de los matemáticos, en realidad demuestra la importancia que tienen los teoremas para esta milenaria profesión.

Un poco de historia

¿Kepler o Newton?. En el Prefacio daba a entender que la mecánica celeste posiblemente había comenzado con los trabajos pioneros de Johannes Kepler (ver ??). Otros autores van más lejos y apuntan a los astrónomos de la antigüedad y la edad media, especialmente indios, chinos, arabes y griegos, que desarrollaron modelos complejos para la descripción del movimiento de los cuerpos celestes. Los más conservadores apuntan a Sir Isaac Newton, quien después de la publicación de su obra cumbre, los *Principia*, sentó las bases físicas, no solo para la mecánica celeste, sino también, en general, para toda la mecánica.

La razón en este libro para escoger a Kepler, como el *padre* de la disciplina (y en general de la astronomía física) fueron sus contribuciones decisivas y bastante bien conocidas para esclarecer definitivamente la *cinemática* del movimiento planetario. En particular, el descubrimiento (o el enunciado matemático) de sus conocidas *leyes del movimiento planetario* representaron un cambio cualitativo en el desarrollo de la teoría del movimiento planetario e inspiraron en últimas el trabajo de Newton y sus contemporáneos.

Adicionalmente, y esto es aún más importante, Kepler fue uno de los primeros astrónomos modernos (renacentistas europeos) en hacer consideraciones teóricas sobre la causa del movimiento planetario, más allá de ocuparse de su descripción, como lo hicieron la mayoría de los astrónomos de la antigüedad y la edad media. Esto pone a Kepler, entre esos astrónomos, como el primer *astrofísico* de la historia.

ciono en el prefacio, la mecánica celeste tiene ya más de 400 años (aproximadamente 100 años más que la mecánica analítica) y cientos de libros y miles de artículos se han escrito en el tema. Es casi imposible hablar de mecánica celeste y analítica, sin mencionar de vez en cuando las historias que rodearon la invención de una técnica, la biografía de alguno de los grandes hombres y mujeres que concibieron las ideas contenidas en el libro o simplemente una anécdota curiosa relacionada con algún tema de interes.

3.3.2. Algoritmos

Como he insistido hasta aquí, una de las novedades más importantes de este libro es el énfasis que he querido dar a los *algoritmos*. Por algoritmo entenderemos aquí pequeños (o no tan pequeños) fragmentos de código (*code snippet* en inglés) que realizan tareas numéricas específicas o son parte de un algoritmo mayor.

He evitado hablar de *programas* o *códigos* para resaltar el hecho de que lo importante en ellos es la lógica de las operaciones y no el lenguaje específico en el que están escritos. A pesar de este esfuerzo por mantener el tema lo más general posible, es virtualmente imposible escribir algoritmos que se puedan ejecutar realmente en las libretas, sin recurrir a ciertas particularidades del lenguaje en el que están descritos, Python.

Existen en general tres tipos de *algoritmos* que encontraremos a lo largo del texto. En primer lugar están los algoritmos más sencillos, aquellos que ejecutan tareas básicas de preparación de datos para algoritmos más complejos. Este es un caso de ellos:

```
a=1
b=-1
c=2
disc=b**2-4*a*c
```

Discriminante = -7.0

Muchos de estos algoritmos simples vienen seguidos del resultado más importante de las operaciones que codifican. En el caso anterior se muestra por ejemplo el valor del discriminante (el valor de la variable disc). El algoritmo (o código) para producir ese resultado:

```
print(f"Discriminante = {disc:.1f}")
```

Pero este algoritmo (y la celda correspondiente) no se muestra en el libro impreso para evitar la proliferación de código irrelevante.

Los algoritmos más complejos pueden, como las ecuaciones, estar numerados:

(Algoritmo 3.1)

```
def calcula_discriminante(a,b,c):
    disc=b**2-4*a*c
    return disc
```

En este caso, el algoritmo contiene una rutina o función, que podría ser usada más adelante, incluso en un capítulo posterior. Todas las rutinas como estas, hacen parte de un paquete incluído con las libretas llamado package. Para usar la rutina en el Alg. (3.1) en otra parte del libro se usa:

```
from package.export import calcula_discriminante
d=calcula_discriminante(1,2,3)
```

Cualquier lenguaje de programación moderno depende de numerosas bibliotecas en las que están codificados procedimientos de uso regular o muy especializados. En todos los algoritmos presentados en el libro, siempre que se use una rutina de una biblioteca externa, se presentará el código que hace referencia a la biblioteca de forma explícita. Consider por ejemplo este algoritmo:

(Algoritmo 3.2)

```
#Coeficientes de un polinomio de segundo grado
a=1
b=3
c=-2

#Calcula discriminante
from package.export import calcula_discriminante
d=calcula_discriminante(a,b,c)

#Calcula raices
if d>=0:
    from numpy import sqrt
    x1=(-b+sqrt(d))/(2*a)
```

```
x2=(-b-sqrt(d))/(2*a)
else:
   print("El polinomio no tiene raices reales")
```

En él hemos usado la rutina sqrt (raíz cuadrada) de la biblioteca NumPy para calcular, en este caso, las raices de un polinomio de segundo grado. Para ello, antes de la línea que usa la raíz cuadrada hemos incluido la instrucción:

from numpy import sqrt

Aunque en los programas regurales, estas instrucciones se ponen al principio, he decidido colocarlas lo más cerca posible al lugar donde se usan de modo que los fragmentos de código funcionen fuera del contexto del libro. El lector poco familiarizado con el lenguaje Python puede hacer caso omiso a estas instrucciones, que nada le agregan a la lógica de los algoritmos.

Nota

las instrucciones import y la velocidad de los programas. Es importante advertir que en algunos algoritmos, usar muchas instrucciones del timpo import entre las líneas de código puede disminuir la velocidad del código. La recomendación general es la de poner este tipo de instrucciones al principio del programa. Así el Alg. (3.2) debería escribirse así:

```
from package.export import calcula_discriminante
from numpy import sqrt

#Coeficientes de un polinomio de segundo grado
a=1
b=3
c=-2

#Calcula discriminante
d=calcula_discriminante(a,b,c)

#Calcula raices
if d>=0:
    x1=(-b+sqrt(d))/(2*a)
    x2=(-b-sqrt(d))/(2*a)
else:
    print("El polinomio no tiene raices reales")
```

Otro tipo de algoritmos frecuentes son aquellos que dan como resultado figuras o gráficos. Estos están entre los más interesantes y útiles, aunque pueden ser complicados y causar algo de estupor para los menos familiarizados con el lenguaje de programación. Les recomiendo a todos poner especial atención en estos

algoritmos, tratar de entenderlos e imitarlos. Una buena parte de la ciencia que hacemos hoy día depende de producir bonitos productos gráficos que ilustren de forma compacta conceptos o resultados difíciles de describir de otra manera.

Todos los códigos que producen figuras están numerados. Así mismo los gráficos que producen aparecen en el texto, incluso en el impreso, como figuras independientes y numeradas. Por razones de eficiencia en el uso del espacio, algunas de esos gráficos pueden estar en lugares lejanos de la posición del código. Es por esto que en todos los algoritmos que producen gráficos encontraran (en la parte inferior) una referencia a la figura correspondiente.

```
(Algoritmo 3.3)
from numpy import linspace,sin,pi
t=linspace(0,2*pi)
x=sin(t)

import matplotlib.pyplot as plt
plt.figure()
plt.plot(t,x,'k-');

plt.xlabel("t");
plt.ylabel("x(t)");

ver Figura 3.1
```


Figura 3.1: *Figura correspondiente al código* **3.3**.

La mayoría de las figuras del libro han sido elaboradas usando software de diseño independientes. Sin embargo, algunas figuras, especialmente gráficos de datos o resultados de simulaciones, son generadas por las libretas con las que fue escrito el libro. Si bien los algoritmos con los que son creados esas figuras (que llamaremos gráficos generados) no aparecen en la versión impresa o en la versión

web porque pueden ser muy elaborados e irrelevantes para los fines del texto, si pueden aparecer en las libretas de clase.

Figura 3.2: Gráfico de las funciones trigonométricas básicas, en el intervalo de interés (gráfico generado).

3.4. Figuras interactivas y animaciones

Uno de las cosas que hace poderosas a las libretas de Jupyter como medios para compartir información o estudiar un tema, es la posibilidad de interactuar directamente con esa información. Esto se consigue modificando el contenido de las celdas de las libretas (código) y ejecutándolas independientemente.

Pero hay otra posibilidad. En muchos apartes del libro se han creado gráficos interactivos y animaciones que permitiran al lector o al estudiante, modificar de forma gráfica (sin ir directamente al código) los parámetros de un algoritmo (gráficos interactivos) o ver en movimiento figuras que normalmente están estáticas en los libros.

Busque las figuras interactivas en la versión en línea⁹ del libro.

 $^{^9 {\}tt http://github.com/seap-udea/Relatividad-Zuluaga}$

Capítulo 4

Relatividad Especial

Resumen. Este capítulo esta dedicado a la Relatividad especial.

4.1. Motivación

¿Qué son las leyes de la física?. Son regularidades observadas (¿o reales?) en los fenómenos que vemos en el mundo. Estas regularidades se expresan normalmente como relaciones matemáticas entre cantidades observadas.

Tomen por ejemplo esta regularidad:

$$\vec{a} = \frac{\vec{F}}{m}$$

Siempre que un cuerpo de masa m (una propiedad intrínseca suya), es sometido a una "perturbación" (una fuerza \vec{F}), el cuerpo, sin importar el estado de movimiento en el que estaba, cambia su estado en una magnitud \vec{a} (aceleración).

Esta regularidad ha sido observada en los laboratorios en la Tierra (edificios). ¿Pero es válida en el resto del Universo y para todos los observadores?. Esta es la pregunta del millón de la física y el corazón de la relatividad.

Conjetura 4.1

Las leyes de la física son universales. Cualquiera sea la regularidad que llamemos *ley física* debe ser realmente universal, debe cumplirse en todas partes, a todas horas y con independencia de quién la registre. En caso contrario lo que tendríamos sería solo una regularidad contingente.

4.2. Conceptos básicos

Para abordar la pregunta básica de la sección anterior debemos primero introducir una serie de conceptos:

Cantidad física. Las leyes físicas son patrones matemáticos entre números (y otras entidades matemáticas) que asociamos a los fenómenos. Piense por ejemplo en la velocidad. Es un número que asociamos al desplazamiento de un cuerpo en el tiempo. Para definir cualquier cantidad física se necesitan: patrones (comparación), una calibración (definir los ceros o puntos de referencia) e instrumentos (dispositivos que realicen la comparación).

Por ejempl para medir la posición (lugar) uso como partrón una varilla de longitud fija, mi calibración es el lugar que escojo como punto de partida y el instrumento de medida es la misma varilla. Para medir el tiempo (fecha) uso como patrón un fenómeno repetitivo, como calibración escojo el instante a partir del cuál contar las oscilaciones y el instrumento es un reloj.

Para obtener el *valor* de una cantidad física se pueden usar medios directos o indirectos. Preferimos los medios directos que implican la comparación de lo medido con el instrumento (el patrón y la calibración) **localmente**: es decir debemos poner el instrumento donde ocurre el fenómeno.

■ Espacio-tiempo. Es el escenario en el que ocurre el universo. Matemáticamente es un espacio geométrico en el que a todo lugar e instante se le asocian unas coordenadas:

$$[x^{\mu}]_{\mu=0,1,2,3}$$

esta será una notación que usaremos en lo sucesivo y que adoptará sentido más adelante.

- Evento. Es uno de los puntos del espacio-tiempo. Un evento físico es equivalente
- Observador. También llamado (de forma intercambiable) sistema de referencia. Un observador es una entidad que registra cualquier cantidad física que ocurre en el espacio-tiempo usando un conjunto (infinito) de instrumentos físicos, que usan el mismo patrón y calibración, distribuídos (idealmente) por todos los eventos del espacio-tiempo. El observador lleva un registro de todos los fenómenos sin importar que tan lejos estén del lugar espacial en el que se encuentre.

Existen un conjunto de leyes que fueron formuladas originalmente con la idea de universalidad que mencionamos antes. Son las leyes del movimiento de Newton:

- Ley de Inercia. En la ausencia de fuerzas (interacciones) el *estado de movimiento* se conserva.
- Ley de fuerza. La acción de una fuerza cambia el *estado de movimiento*.
- Ley de acción y reacción. El cambio en el estado de movimiento de un sistema A que interactúa con otro B, es igual en magnitud pero de sentido contrario, que el cambio de movimiento que experimenta B.

Sabemos que estas leyes de pueden resumir en una sola relación matemática. Si definimos la *cantidad de movimiento* o momento lineal $\vec{p} \equiv m\vec{v}$, entonces:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}$$

Este conjunto de leyes se mantienen las mismas si se usan **observadores inerciales**.

Definición 4.1

observador inercial. Es un observador para el cuál sus registros muestran que la la ley de inercia es válida.

Registrar la validez de la ley de inercia no es experimentalmente fácil.

Proposición: Observadores con velocidad relativa constante. Si un observador O es por definición o demostración inercial, cualquier observador O' cuyo origen de coordenadas se mueva respecto al origen de coordenadas de O con velocidad \vec{u} constante, será también un observador inercial.

4.3. Principio de homogeneidad e isotropía del espacio-tiempo

Postulado 4.1

Principio de homogeneidad e isotropía del espacio-tiempo. Cualquier experimento que se realice en un sistema de referencia inercial tendrá exactamente el mismo resultado sin importar dónde se realice (homogeneidad) o en que tiempo se realice. Alrededor de todos los eventos del espacio-tiempo, los experimentos producen las mismas regularidades.

De acuerdo al principio de homogeneidad, todos los observadores inerciales que solo difieran por su origen en el espacio o por su origen en el tiempo registraran las mismas leyes de la física. Se puede probar que el principio de homogeneidad e isotropía es *equivalente* lógicamente al principio fundacional de la teoría de la relatividad.

Postulado 4.2

Principio de relatividad especial. Todas las leyes de la física deben ser iguales para todos los observadores inerciales.

4.4. La relatividad Newtoniana

Una cosa es decir que las leyes son las mismas y otra muy distinta es demostrar que lo son.

Las leyes son relaciones matemáticas entre cantidades físicas de modo que para demostrar su validez hay que probar que las relaciones son las mismas.

Definición 4.2

Covarianza de las leyes físicas. Llamamos *covarianza* de una ley física al hecho de que su forma matemática no se modifique independientemente de las transformaciones geométricas (cambios de sistemas de referencia o coordenadas) que se operen.

La pregunta es: dos observadores inerciales S y S' que miden cantidades físicas distintas m, \vec{v} , \vec{r} y \vec{F} (y las respectivas cantidades primadas), al describir las mismas regularidades llegaran a:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}$$

$$\frac{\mathrm{d}\vec{p}'}{\mathrm{d}t'} = \vec{F}'$$

Para ello debemos *postular* (¿o deducir?) la relación entre las cantidades implicadas.

Definición: Transformaciones de Galileo-Newton. La siguiente es la relación entre las cantidades cinemáticas y dinámicas básicas entre dos observadores inerciales:

$$\begin{array}{cccc}
t' & = & t \\
m' & = & m \\
\vec{F}' & = & \vec{F} \\
\vec{r}' & = & \vec{r} - \vec{u}t
\end{array}$$

> donde \vec{u} es la velocidad relativa en el espacio entre los dos observadores.

Puede probarse que si las leyes de Newton son válidas en O también lo serán en O'.

4.5. El problema del electromagnetismo

Pero las leyes de la física no se restringen a la mecánica. También están las leyes de la termodinámica, la óptica, el electromagnetismo, la física nuclear, etc. ¿Son también estas leyes covariantes bajo las transformaciones de Galileo-Newton.

Tomemos el caso por ejemplo de dos leyes básicas del electromagnetismo:

La ley de Faraday (ley de inducción en el vacío):

$$\frac{1}{c}\frac{\partial}{\partial t}\int \vec{B} \cdot d\vec{S} = -\oint \vec{E} \cdot d\vec{l}$$
$$\frac{1}{c}\frac{\partial \vec{B}}{\partial t} = -\vec{\nabla} \times \vec{E}$$

La ley de Ampere-Maxwell (en el vacío y sin corrientes):

$$\frac{1}{c}\frac{\partial}{\partial t}\int \vec{E}\cdot d\vec{S} = -\oint \vec{B}\cdot d\vec{l}$$

$$\frac{1}{c}\frac{\partial \vec{E}}{\partial t} = -\vec{\nabla} \times \vec{B}$$

Verifiquemos si son las mismas bajo las transformaciones de Galileo-Newton:

4.6. Las transformaciones de Lorentz-Einstein

Como vemos las leyes del electromagnetismo no son covariantes bajor las TGN. ¿Qué está mal? ¿las transformaciones o las leyes del EM?. Supongamos que son las transformaciones.

Postulado 4.2

Covarianza manifiesta de las ecuaciones de Maxwell. Las ecuaciones de Maxwell son *manifiestamente* covariantes, es decir, la forma en la que fueron escritas originalmente por Maxwell es covariante para observadores inerciales.

Este postulado es fuerte en el sentido en el que da mucha confianza a un conjunto de ecuaciones que esencialmente se obtienen a partir de experimentos. Esta es una prueba de la confianza que tenían los Einstein en el electromagnetismo incluso sobre

Como ya vimos que las ecuaciones no son covariantes bajo las transformaciones de Galileo-Newton, debemos encontrar un conjunto nuevo de transformaciones con las cuales las ecuaciones de Maxwell si son covariantes. Para ello asumamos que existe una familia de transformaciones lineal más generales que relacionan las coordenadas.

$$t' = a_{tt}t + a_{tx}x \tag{4.1}$$

$$x' = a_{xt}t + a_{xx}x \tag{4.2}$$

(4.3)

donde los coeficientes a_{tt} , a_{tx} , a_{xx} , a_{xx} son cantidades que no dependen de la posición, ni del tiempo y a lo sumo pueden depender de la velocidad relativa u entre los sistemas coordenados:

$$a_{uv} = a_{uv}(u)$$

donde μ : t, x.

Nota

Las transformaciones entre sistemas inerciales son lineales. En principio las transformaciones entre las variables de dos sistemas de referencia podrían tener una forma funcional arbitraria:

$$\begin{array}{rcl}
t' & = & t'(t, x) \\
x' & = & x'(t, x)
\end{array}$$

sin embargo la definición misma de observador inercial, sumado al principio de homogeneidad e isotropía, restringen el número posible de funciones.

Por la definición de sistema de referencia inercial, debe cumplirse que si el observador O observa una partícula que se mueve con velocidad constante $v=\mathrm{d}x/\mathrm{d}t$ constante (no actúa ninguna fuerza sobre ella), también el observador O' debe medir $v'=\mathrm{d}x'/\mathrm{d}t'$ constante. Para calcular esta última cantidad primero podemos determinar los diferenciales:

$$dx' = dt \left(\frac{\partial x'}{\partial x} v + \frac{\partial x'}{\partial t} \right)$$
 (4.4)

$$dt' = dt \left(\frac{\partial t'}{\partial x} v + \frac{\partial t'}{\partial t} \right) \tag{4.5}$$

(4.6)

de donde se sigue que:

$$v' = \frac{\mathrm{d}x'}{\mathrm{d}t'} = \frac{v\partial x'/\partial x + \partial x'/\partial t}{v\partial t'/\partial t + \partial t'/\partial t}$$

de esta última expresión se ve que solo si las derivadas parciales respecto al espacio y el tiempo de las reglas de transformación son constantes, es decir, solo si las transformaciones son líneales, entonces v constante implicará v' constante y viceversa.

Sin necesidad de conocer la forma funcional de los coeficientes de las transformaciones generales, es posible encontrar algunas propiedades básicas que nos permiten simplificar mucho la búsqueda de sus valores. Así por ejemplo:

1. Por la definición misma de observador inercial sabemos que el origen del sistema O' esta localizado en x'=0 según su propio sistema de referencia, mientras que en el sistema O se encuentra ubicado en x=ut. Reemplazando estas dos condiciones en la Ec. (4.2) obtenemos:

$$0 = a_{xt}t + a_{xx}ut$$

Para t > 0 esta condición implica que $a_{xt} = -ua_{xx}$ con lo que la Ec. (4.2) se escribe:

$$x' = a_{xx}(-ut + x) \tag{4.7}$$

(4.8)

2. Un razonamiento similar pero aplicado al origen del sistema O para el cual x = 0 y x' = -ut' conduce a las condiciones:

$$t' = a_{tt}t$$

$$-ut' = -ua_{xx}t$$

Para t > 0, t' > 0 lo que implica: 1) $a_{tt} > 0$ y 2) dividiendo término a término las ecuaciones anteriores obtenemos:

$$a_{tt} = a_{xx} \equiv \gamma(u) > 0$$

donde hemos introducido la función $\gamma(u)$.

3. Si introducimos un tercer observador *O*" que se mueve con velocidad *-u* (en dirección del eje *x* respecto de *O*, el tiempo de eventos en el origen de coordenadas de *O* registrados por *O*" será:

$$t'' = \gamma(-u)t$$

Ahora bien, por la postulado de isotropía, un obervador que se dirige hacia +x y uno que se dirije hacia -x deben producir las mismas medidas de un evento en el lugar común x=0, es decir para este evento t''=t' y por lo tanto:

$$\gamma(-u) = \gamma(u)$$

Con estas propiedades, la transformación general de coordenadas entre observadores inerciales que satisfacen el postulado de homogeneidad e isotropía se pueden escribir como:

$$t' = \gamma(u)(t + bx) \tag{4.9}$$

$$x' = \gamma(u)(-ut + x) \tag{4.10}$$

(4.11)

donde hemos definido $b \equiv a_{tx}/\gamma$.

No es difícil mostrar que las derivadas parciales respecto a las variables espacio-temporales serán entonces:

$$\partial_t = \gamma (\partial_{t'} - u \partial_{x'}) \tag{4.12}$$

$$\partial_x = \gamma (b\partial_{t'} + \partial_{x'}) \tag{4.13}$$

$$\partial_{\nu} = \partial_{\nu'} \tag{4.14}$$

$$\partial_z = \partial_{z'} \tag{4.15}$$

El reto consiste en encontrar las cantidades γ y b de la transformación tal que las ecuaciones de Maxwell sean covariantes.

La componente z de la ley de Faraday:

$$\frac{1}{c}\partial_t \vec{B} = -\vec{\nabla} \times \vec{E}$$

es:

$$\frac{1}{c}\partial_t B_z = \partial_z E_x - \partial_x E_y \tag{4.16}$$

Escrita después de aplicar las transformaciones de las derivadas será:

$$\frac{1}{c}\gamma(\partial_{t'}-u\partial_{x'})B_z=\partial_z E_x-\gamma(b\partial_{t'}+\partial_{x'})E_y$$

reuniendo términos semejantes:

$$\frac{1}{c'}\partial_{t'}\left[\gamma\left(\frac{c'}{c}B_z + bcE_y\right)\right] = \partial_z E_x - \partial_{x'}\left[\gamma\left(E_y - \frac{u}{c}B_z\right)\right]$$

Para que la ley de Faraday sea covariante y la ecuación anterior tenga la misma forma que la Ec. (4.16) se debe cumplir que:

$$B_z' = \gamma \left(\frac{c'}{c}B_z + bcE_y\right) \tag{4.17}$$

$$E_y' = \gamma \left(E_y - \frac{u}{c} B_z \right) \tag{4.18}$$

Por otro lado, la componente y de la ley de Ampere-Maxwell:

$$\frac{1}{c}\partial_t \vec{E} = \vec{\nabla} \times \vec{B}$$

es:

$$\frac{1}{c}\partial_t E_y = \partial_y B_x - \partial_x B_z \tag{4.19}$$

Aplicando un procedimiento análogo obtenemos que para que esta ecuación sea covariante bajo la transformación lineal general definida antes, la regla de transformación de las componentes *z y y* de los campos debería ser:

$$B_z' = \gamma \left(B_z - \frac{u}{c} E_y \right) \tag{4.20}$$

$$E_y' = \gamma \left(\frac{c'}{c} E_y + bc B_z\right) \tag{4.21}$$

Es claro que para que las Ecs. (4.17),(4.18) y (4.20),(4.21) correspondan al mismo conjunto de ecuaciones, sin importar cuál es el valor de los campos se debe cumplir que:

$$c' = c$$

$$b = -\frac{u}{c^2}$$

De donde obtenemos nuestro primer resultado significativo:

Proposición 4.3

Invarianza de la velocidad de la luz. La velocidad de la luz medida por dos observadores inerciales diferentes es siempre la misma:

$$c = c'$$

Esta conclusión es muy interesante y contraintuitiva. La velocidad de propagación de la luz juega un papel central en la relatividad y en la física en general. Lograr que su valor sea una cantidad constante independiente del observador inercial es significativo. No era para menos puesto que sabemos que la cantidad en la teoría electromagnética deènde de dos constantes de la naturaleza:

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

En la versión original de la teoría presentada por los Einstein, la constancia de la velocidad de la luz aparece como una hipótesis sin ninguna justificación. La aproximación utilizada aquí, por lo menos, obtiene este resultado como consecuencia de la covarianza de las ecuaciones de Maxwell, es decir es un teorema que se deriva de un postulado muy razonable, a saber que las ecuaciones de Maxwell del electromagnetismo son *manifiestamente covariantes*.

Adicionalmente encontramos la manera como se relacionan las componentes y y z de los campos eléctrico y magnético:

$$B_z' = \gamma \left(B_z - \frac{u}{c} E_y \right) \tag{4.22}$$

$$E_y' = \gamma \left(E_y - \frac{u}{c} B_z \right) \tag{4.23}$$

Solo nos queda una cuestión por resolver: ¿cuánto vale γ ?.

La inversa de las transformaciones en las Ecs. (4.22) y (4.23) se puede obtener cambiando u por -u:

$$B_z = \gamma \left(B_z' + \frac{u}{c} E_y' \right) \tag{4.24}$$

$$E_y = \gamma \left(E_y' + \frac{u}{c} B_z' \right) \tag{4.25}$$

donde hemos usado el hecho que $\gamma(-u) = \gamma(u)$.

Las 4 ecuaciones anteriores son completamente independientes. Conociendo el valor de γ y u, podrían usarse para encontrar el valor de cualquier componente del campo en función de las demás. Pero una característica curiosa que tienen es que pueden usarse también para encontrar el valor de gamma.

Si reemplazamos el B_z de la Ec. (4.24) y el E_y de la Ec. (4.25) en la ecuación para B_z' (Ec. 4.22) obtenemos:

$$B_{z}' = \gamma \left[\gamma \left(B_{z}' + \frac{u}{c} E_{y}' \right) - \frac{u}{c} \gamma \left(E_{y}' + \frac{u}{c} B_{z}' \right) \right]$$

y reuniendo los términos comunes obtenemos:

$$\left[1 - \gamma^2 \left(1 - \frac{u^2}{c^2}\right)\right] B_z' = 0$$

Puesto que suponemos que esta relación es válida para cualquier campo magnético, entonces:

$$\gamma = \frac{1}{\sqrt{1 - u^2/c^2}}$$

Proposición 4.4

Transformaciones de Lorentz-Einstein (TLE). Las transformaciones de coordenadas que dejan covariantes las ecuaciones de Maxwell ante cambios de observador inercial con velocidad relativa $u_x = u$ son:

$$t' = \gamma (t - ux/c^2)$$

$$x' = \gamma (-ut + x)$$

$$y' = y$$

$$z' = z$$

$$(4.26)$$

donde:

$$\gamma \equiv \frac{1}{\sqrt{1 - u^2/c^2}}\tag{4.27}$$

se conocerá en lo sucesivo como el factor de Lorentz o factor de Einstein.

Una interesante consecuencia matemática de todo el razonamiento anterior es:

Proposición 4.5

La velocidad de la luz es la máxima velocidad relativa. Dado que $\gamma > 0$ y es real, es fácil mostrar que siempre:

$$0 \le u < c$$

4.7. Propiedades de las TLE

Las transformaciones de Lorentz-Einstein juegan un papel central en el estudio de todas las propiedades del espacio-tiempo que se derivan de los postulados de la relatividad.

Postulado 4.6

Postulado de relatividad espacial. Todas las leyes de la física son covariantes bajo las transformaciones de Lorentz-Einstein.

4.7.1. Unidades luz

La característica más notable de las TLE es que combinan espacio y tiempo en un mismo conjunto de ecuaciones de transformación. Este hecho de entrada rompe con el tiempo absoluto de la física newtoniana.

Al hacerlo sin embargo crea el problema de que en una misma ecuación (y en otros contextos en la teoría) tengamos cantidades muy diferentes desde el punto de vista físico y dimensional como lo son el tiempo y el espacio.

Una manera de subsanar este inconveniente es midiendo una de estas cantidades con unidades análogas a la otra. En Astronomía estamos por ejemplo acostumbrado a medir las distancias con unidades de tiempo cuando decimos que la estrella más cercana esta a 4.2 años-luz (al) de distancia. Dada una cantidad x, medida en unidades de longitud, la cantidad equivalente medida en unidades de tiempo será:

$$x_L = \frac{x}{c}$$

donde $[x_L]$ =sl (segundos luz).

Menos frecuente es usar unidades de distancia para referirse al tiempo. De manera análoga a como medimos 1 segundo-luz (sl), podemos definir 1 metro-luz como el tiempo que le toma a la luz recorrer un metro. El tiempo t_L en metros luz se calcula como:

$$t_I = ct$$

En unidades luz, la velocidad (la rapidez o cualquier componente) es:

$$v_L = \frac{\mathrm{d}x_L}{\mathrm{d}t} = \frac{1}{c}\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{v}{c}$$

4.7.2. La TLE como una rotación hiperbólica

Las transformaciones de Lorentz en términos de cantidades escritas en unidades luz serán:

$$t' = \gamma (t - u_L x_L)$$

$$x'_L = \gamma (-u_L t + x_L)$$

o bien:

$$t'_{L} = \gamma (t_{L} - u_{L}x)$$

$$x' = \gamma (-u_{L}t_{L} + x)$$

En ambos casos podemos si definimos $u_L \equiv u/c$, que no es otra cosa que la rapidez medida en unidades luz, las TLE se pueden escribir de forma:

$$\left(\begin{array}{c}t'\\x'_L\end{array}\right) = \Lambda(u_L)\left(\begin{array}{c}t\\x_L\end{array}\right)$$

donde

$$\Lambda(u_L) \equiv \left(egin{array}{cc} \gamma & -\gamma u_L \ -\gamma u_L & \gamma \end{array}
ight)$$

$$y \gamma = (1 - u_L^2)^{-1/2}$$
.

Esta matriz tiene dos propiedades interesantes:

1.
$$\det \Lambda = 1$$

1.
$$\det \Lambda = 1$$

2. $\Lambda(u_L)^{-1} = \Lambda(-u_L)$

Que son las mismas propiedades de las matrices de rotación:

$$R(\theta) \equiv \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

lo que sugiere que podemos considerarla como tal. Pero hay un inconveniente. Los signos de la diagonal de la matriz TLE no son contrarios. Pero hay una solución para ello y es usar una matriz de rotación hiperbólica:

$$R_h(\phi) \equiv \begin{pmatrix} \cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi \end{pmatrix}$$

donde ϕ más que un ángulo, es un parámetro de rotación.

Si hacemos la identificación:

$$\cos \phi \equiv \gamma$$

es fácil probar que

$$\sin \phi = \gamma u_L$$

por lo que concluímos que la transformación que relaciona las coordenadas espacio-tiempo de dos observadores inerciales con velocidad relativa u_L es una rotación hiperbólica con parámetro $\cos \phi = \gamma(u_L)$.

Definición 4.3

Vector posición en el espacio-tiempo. Al vector:

$$x^{\mu} = \begin{pmatrix} t \\ x_L \\ y_L \\ z_L \end{pmatrix}$$

lo llamaremos el vector posición en el espacio-tiempo.

4.7.3. Las TLE y la notación de Einstein

Otra manera de escribir la TLE aprovechando que puede expresarse matricialmente es:

$$x'_{\mu} = \sum_{\nu} \Lambda_{\mu\nu} x_{\nu}$$

donde $\mu, \nu: 0(t), 1(x), 2(y), 3(z)$ y $\Lambda_{\mu\nu}$ son las componentes de la matriz de rotación.

Con lo común que será manipular expresiones como estas, estar escribiendo sumatorias por todas partes se hace muy incómodo. Para evitarlo Einstein invento una notación que se vale de una importante propiedad matemática.

Definición 4.4

componentes covariantes y contravariantes de un vector. Dado un espacio coordenado de 4 dimensiones, y un conjunto de 4 vectores \vec{e}_0 , \vec{e}_1 , \vec{e}_2 , \vec{e}_3 no paralelos entre sí (que llamaremos base). Cualquier vector \vec{v} en el espacio tiene asociados 4 números que llamamos sus componentes, definidos de la siguiente maneral:

1. Componentes contravariantes, $\vec{v}:(v^0,v^1,v^2,v^3)$, que son tales que:

$$\vec{v} = v^0 \vec{e}_0 + v^1 \vec{e}_1 + v^2 \vec{e}_2 + v^3 \vec{e}_3$$

Los llamamos *contravariantes* porque si un cambio de escala modifica las longitudes de \vec{e}_{μ} por un factor k, las componentes v^{μ} se modificaran por un factor 1/k (*contrario* a los vectores de base).

2. **Componentes covariantes**, \vec{v} : (v_0 , v_1 , v_2 , v_3), que son tales que:

$$v_0 = \vec{v} \cdot \vec{e}_0$$
, $v_1 = \vec{v} \cdot \vec{e}_1$, $v_2 = \vec{v} \cdot \vec{e}_2$, $v_3 = \vec{v} \cdot \vec{e}_3$

Los llamamos *covariantes* porque si un cambio de escala modifica las longitudes de \vec{e}_{μ} por un factor k, las componentes v^{μ} se modificaran por un factor k (*contrario* a los vectores de base).

Las componentes contravariantes y covariantes de un vector coinciden si: 1) El producto punto es el definido en el espacio euclidiano y 2) si los vectores de la base son ortogonales^a.

Nótese que en términos compactos cualquier vector se puede escribir en términos de sus componentes contravariantes como:

$$\vec{v} = \sum_{\mu} v^{\mu} \vec{e}_{\mu}$$

Para abreviar la expresión anterior usaremos en lo sucesivo la convención de

^aUn video con una explicación de la diferencia entre componentes contravariantes y covariantes puede encontrarse aquí: https://www.youtube.com/watch?v=CliW7kSxxWU

que cuándo en una suma, los índices se repiten (normalmente en posiciones covariantes y contravariantes) entonces, la sumatoria correspondiente al índice se puede eliminar. Al índice lo llamamos también un *índice mudo* y su nombre puede cambiarse a voluntad. Así:

$$\vec{v} = \sum_{\mu} v^{\mu} \vec{e}_{\mu} = v^{\mu} \vec{e}_{\mu} = v^{\nu} \vec{e}_{\nu}$$

En lo sucesivo y en un espíritu similar, usaremos la expresion v^{μ} para referirnos al vector \vec{v} mismo.

En términos de la notación de Einstein y de las componentes contravariantes del vector posición en el espacio tiempo x^{μ} las TLE se pueden escribir como:

$$x^{\mu'} = \Lambda^{\mu'}_{\nu} x^{\nu}$$

aquí ν es un índice mudo y μ' es el índice de la ecuación.

Las componentes explícitas de la matriz $\Lambda_{\nu}^{\mu'}$ son, cuando la velocidad va en la dirección del eje x:

$$\begin{array}{l} \Lambda_0^{0'} = \Lambda_1^{1'} = \gamma \\ \Lambda_2^{2'} = \Lambda_3^{3'} = 1 \\ \Lambda_1^{0'} = \Lambda_0^{1'} = -u_L \gamma \end{array}$$

4.7.4. Las TLE generales

Las transformaciones deducidas hasta aquí asumían que la velocidad relativa entre los sistemas de referencia inerciales iba en la dirección del eje x. Aunque siempre es posible hacer esa elección, puede ser también común que otras direcciones sean más importantes para definir nuestro sistema de coordenadas. Por tal razón tiene mucho interés escribir las TLE cuando \vec{u} es arbitraria.

Proposición 4.7

Transformaciones de Lorentz-Einstein vectoriales. Si dos sistemas de referencia O y O' tienen velocidad relativa \vec{u} , sus medidas de espacio y tiempo se relacionan a través de:

$$t' = \gamma \left(t - \vec{u}_L \cdot \vec{r}_L \right) \tag{4.28}$$

$$\vec{r}_L' = \vec{r}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{r}_L - \gamma t\right) \vec{u}_L \tag{4.29}$$

Esta transformación general puede entenderse si se escribe $\vec{r}=r_{\parallel}\hat{u}+r_{\perp}\hat{v}$, donde $\hat{v}\cdot\hat{u}=0$. Remplazando, la transformación queda:

$$t' = \gamma \left(t - u_L r_{\parallel} \right)$$

$$r'_{\parallel} = r_{\parallel} + \left(\frac{\gamma - 1}{u_L^2} u_L r_{\parallel} - \gamma t \right) u_L$$

$$= \gamma \left(-u_L t + r_{\parallel} \right)$$

$$r'_{\perp} = r_{\perp}$$

$$(4.30)$$

que es exactamente la TLE original.

Es posible probar que las componentes de la matriz de rotación del TLE en el caso general son:

$$\Lambda_0^{0'} = \gamma \Lambda_i^{0'} = \Lambda_0^{i'} = -\gamma u_L^i \Lambda_j^{i'} = \delta_{ij} + (\gamma - 1) u_L^i u_L^j / u_L^2$$

4.7.5. El valor del factor de Lorentz-Einstein

Las TLE dependen del valor de u_L y del factor de Lorentz γ . Es importante familiarizarse con el valor de estas cantidades.

La primera propiedad importante es que $u_L < 1$ y por lo tanto $\gamma > 1$. Ahora bien para velocidades comunes (la velocidad de un vehículo, un avión, un planeta, incluso una estrella o una galaxia), $u_L \ll 1$. Por la misma razón entonces el factor se puede expandir usando el teorema del binomio:

$$\gamma = \frac{1}{\sqrt{1 - u_L^2}} = 1 + \frac{u_L^2}{2} + \mathcal{O}(u_L^3)$$

o lo que es lo mismo:

$$\gamma - 1 = \frac{u_L^2}{2} + \mathcal{O}(u_L^3)$$

A menudo es más fácil calcular $\gamma-1$ que γ mismo.

Un gráfico del factor de Lorentz como función de la fracción u_L se muestra en la figura abajo.

(Algoritmo 4.1)

```
from numpy import log10,sqrt,logspace
us=logspace(log10(1e-5),log10(0.9999),1000)
gammas=1/sqrt(1-us**2)-1
gamma_approx=us**2/2

import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.gca()

ax.plot(us,gammas,label='Exacto')
ax.plot(us,gamma_approx,label='Aprox. binomial')
```

```
ax.set_xscale("log")
ax.set_yscale("log")
ax.set_xlim((1e-5,1e0))
ax.set_ylim((1e-11,1e1))

ax.set_label(r"$\( \frac{1}{3} \)
ax.set_ylabel(r"\( \frac{1}{3} \)
ax.set_ylabel(r"\( \frac{1}{3} \)
ax.grid()

ver Figura 4.1
```


Figura 4.1: Figura correspondiente al código 4.1.

Nótese que la aproximación $\gamma=u_L^2/2$ es suficientemente buena (error relativo menor a 1 %) hasta $u_L\approx$ 0,2

4.7.6. Mapas de la TLE

¿Cómo se ven gráficamente las TLE?. Para mostrar cómo se ven la TLE podemos definir esta rutina general que permite el cálculo de $x^{\mu'}$ dados los valores de x^{μ} :

```
def Lambda_TLE(u):
    from numpy import zeros
    Lambda=zeros((4,4))

#Factor de Lorentz
    umag=(u[0]**2+u[1]**2+u[2]**2)**0.5
    gamma=(1-umag**2)**(-0.5)
```

```
Lambda[0,0]=gamma
Lambda[0,1:]=-u*gamma
Lambda[1:,0]=-u*gamma
for i in range(1,4):
    for j in range(1,4):
        dij=0
        if i==j:dij=1
        Lambda[i,j]=dij+(gamma-1)*u[i-1]*u[j-1]/umag**2
return Lambda
```

Construyamos por ejemplo una transformación sencilla escogiendo la velocidad en la dirección de x:

```
from numpy import array
  u=array([0.2,0.0,0.0])
  Lambda=Lambda_TLE(-u)
Lambda (u = [0.2 \ 0. \ 0.]) =
[[1.02062073 0.20412415 0.
                                               ]
                                     0.
                                               1
 [0.20412415 1.02062073 0.
                                     0.
 [0.
             0.
                        1.
                                     0.
 ГО.
             0.
                         0.
                                     1.
                                               11
```

Una manera de visualizar las transformaciones de Lorentz-Einstein es ver qué valor de t', x' toman eventos con valor de t o x constantes:

(Algoritmo 4.3)

```
#Escoge valores de x:
from numpy import linspace
xs=linspace(0,rmax,rmax+1,endpoint=True)
ts=linspace(0,rmax,rmax+1,endpoint=True)
#Calcula valores de t' y x' usando la matriz:
from numpy import zeros_like
tps=zeros_like(xs)
xps=zeros_like(xs)
from numpy import matmul
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()
for t in xs:
    for i,x in enumerate(xs):
        tps[i],xps[i],yp,zp=matmul(Lambda,[t,x,0,0])
    ax.plot(tps,xps,'r-')
for x in xs:
    for i,t in enumerate(ts):
        tps[i],xps[i],yp,zp=matmul(Lambda,[t,x,0,0])
```

```
ax.plot(tps,xps,'r-')

#Decoración
ax.set_xticks(xs)
ax.set_yticks(xs)
ax.set_xlabel("$t$")
ax.set_ylabel("$x$")
ax.set_xlim((0,rmax))
ax.set_ylim((0,rmax))
ax.grid()
fig.tight_layout()
ver Figura 4.2
```


Figura 4.2: Figura correspondiente al código 4.3.

4.8. Consecuencias de las TLE

Las TLE que introdujimos en las secciones anteriores no serían más que reglas matemáticas de transformación requeridas para juzgar si una ley física lo es realmente, sin mayores consecuencias en nuestro entendimiento del Universo. A excepción del resultado un poco sorprendente de que la velocidad de la luz es la

misma independiente del sistema de referencia en el que se la mida, las transformaciones no parecerían contener ninguna consecuencia física muy relevante. Sin embargo, cuando se examinan con cuidado, y esto fue justamente lo que hicieron Albert Einstein y Mileva Maric, se descubre que las transformaciones esconden algunos "secretos" bien guardados de la naturaleza del espacio-tiempo. Esencialmente, nos obligan a repensar la manera como pensamos en algunos de los conceptos más fundamentales de la física: el espacio, el tiempo, la simultaneidad, la causalidad, entre otros.

Hemos dicho que una de las ideas más importantes de fondo en la relatividad es que el Universo esta "sumergido" en un continuo espacio-temporal en el que coexisten aquí y allá, hoy, ayer, mañana. Todos los eventos del universo están reunidos en una sola entidad geométrica. Moverse dentro del espacio-tiempo tan solo implica una rotación de los ejes coordenados.

El gran reto de esta sección será mostrar como las propiedades del espaciotiempo se ven reflejadas en las cantidades que efectivamente medimos en los laboratorios.

4.8.1. Transformación de los intervalos y el gradiente

Si tomamos dos eventos en el espacio tiempo E_1 y E_2 con coordenadas x_1^{μ} : $(t_1, x_{1L}, y_{1L}, z_{1L})^{\mathrm{T}}$ y x_2^{μ} : $(t_2, x_{2L}, y_{2L}, z_{2L})^{\mathrm{T}}$, la *diferencia* entre sus coordenadas espacio-temporales, medida para dos observadores inerciales es de forma general igual a:

$$\Delta x^{\mu'} = \Lambda^{\mu'}_{\nu} \Delta x^{\nu}$$

donde hemos usado la convención de suma de Einstein (en el lado derecho de la ecuación hay una suma sobre el índice mudo ν que hemos obviado).

En la expresión anterior sabemos que $\Lambda^{\mu'}_{\nu}$ es la misma en todos los puntos del espacio-tiempo y por eso al calcular la diferencia entre las coordenadas de los eventos, no hemos cambiado esta cantidad.

Por otro lado las derivadas parciales respecto a cada coordenada se puede escribir como (ver Problemas al final del Capítulo):

$$\frac{\partial}{\partial x^{\mu'}} = \Lambda^{\nu}_{\mu'} \frac{\partial}{\partial x^{\nu}}$$

La forma matemática de la ecuación anterior (idéntica a la que define la TLE original) tiene una implicación más profunda de la que hemos mencionado. Una implicación que solo puede verse cuando se piensa el problema desde la perspectiva de las matemáticas. Notese que podemos escribir las componentes de la transformación de Lorentz-Einstein como:

$$\Lambda_{\nu}^{\mu'} \equiv \frac{\partial x^{\mu'}}{\partial x^{\nu}}$$

donde aquí $x^{\mu'}$ representa la función de transformación y no el valor de la coordenada. La inversa por su lado es:

$$\Lambda^{\nu}_{\mu'} \equiv \frac{\partial x^{\nu}}{\partial x^{\mu'}}$$

Usando estas expresiones las leyes de transformación para el vector posición, el intervalo y el gradiente se pueden escribir como:

$$x^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} x^{\nu}$$
$$\Delta x^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} \Delta x^{\nu}$$
$$\partial_{\mu'} = \frac{\partial x^{\nu}}{\partial x^{\mu'}} \partial_{\nu}$$

donde hemos usado la notación abreviada para la derivada parcial $\partial_{\mu} \equiv \partial/\partial x^{\mu}$.

Definición 4.5

Tensor covariante y contravariante. Una cantidad física A^{μ} , se conoce como un **tensor contravariante.** de rango 1, si al realizar un cambio de coordenadas $x^{\mu'} = x^{\mu'}(x^{\nu})$, la cantidad transforma obedeciendo la regla:

$$A^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} A^{\nu}$$

En contraposición, un **tensor covariante** de rango 1 A_{μ} , es aquel que transforma de acuerdo con:

$$A_{\mu'} = \frac{\partial x^{\nu}}{\partial x^{\mu'}} A_{\nu}$$

Esta definición es general, sin importar el tipo de transformación de coordenadas que realicemos en el espacio-tiempo, sean estas las TLE o cualquier otra transformación.

De acuerdo con la definición anterior el vector posición x^{μ} , el intervalo Δx^{μ} son tensores contravariantes de rango 1 bajo las TLE, mientras que el gradiente ∂_{μ} es un tensor covariante de rango 1 bajo las mismas transformaciones.

En términos explícitos, podemos escribir los intervalos en la TLE simple como:

$$\Delta t' = \gamma \left(\Delta t - u_L \Delta x_L \right)$$

$$\Delta x'_L = \gamma \left(-u_L \Delta t + \Delta x_L \right)$$

$$\Delta y'_L = \Delta y_L$$

$$\Delta z'_L = \Delta z_L$$

o de forma más general:

$$\Delta t' = \gamma \left(\Delta t - \vec{u}_L \cdot \Delta \vec{r}_L \right) \tag{4.31}$$

$$\Delta \vec{r}_L' = \Delta \vec{r}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \Delta \vec{r}_L - \gamma \Delta t\right) \vec{u}_L \tag{4.32}$$

Y el gradiente:

$$\begin{aligned} & \partial_t' = \gamma \left(\partial_t + u_L \partial_{x_L} \right) \\ & \partial_{x_L'} = \gamma \left(u_L \partial_t + \partial_{x_L} \right) \\ & \partial_{y_L'} = \partial_{y_L} \\ & \partial_{z_I'} = \partial_{z_L} \end{aligned}$$

4.8.2. Dilatación temporal

Definición 4.6

Duración. La duración T de un fenómeno que comienza en un evento E_1 y termina en un evento E_2 es la diferencia entre las coordenadas temporales de los dos eventos:

$$T \equiv t_2 - t_1 = \Delta t$$

La *duración* es solo una parte de la diferencia que existe entre dos eventos. Durante la historia de la física esta cantidad ha tenido un papel central en la descripción de los fenómenos. En los *Principia* por ejemplo, Newton señala que este número solo difiere de un observador a otro por las unidades que utilizan para medir el tiempo, pero que en el fondo todos los observadores miden la misma cantidad y si usaran las mismas unidades, obtendrían el mismo resultado. Esta idea está intímamente ligada con el concepto *tiempo absoluto*, que era la *creencia* (que hoy sabemos es infundada) de que existe algo así como un tiempo registrado por los *relojes de dios* (una entidad sobrenatural hipotética que todo lo conoce) que es común a todos. El tiempo absoluto fue central en la filosofía y la física pre relativistica.

Por las transformaciones de Lorentz sabemos que la duración registrada por dos observadores inerciales es definitivamente distinta, incluso si usan las mismas unidades. Así por ejemplo, si la velocidad relativa entre los observadores es arbitraria \vec{u} :

$$T = \gamma \left(T' + \vec{u}_L \cdot \Delta \vec{r'}_L \right)$$

que es lo mismo que

$$T = \gamma \left(T' + u_L \Delta x' \right)$$

donde x' es la coordenada espacial en dirección de \vec{u} .

Sistemas de referencia del Viajero y del Laboratorio. La elección de cuál es el observador primado y cuál es el no primado en relatividad es completamente arbitraria y simétrica. Esta idea esta en el corazón

Nota (Cont.)

mismo de los postulados de la teoría. Sin embargo, conceptualmente, la elección apropiada de uno u otro, puede llegar a ser muy importante para ilustrar las consecuencias de las TLE.

En lo sucesivo llamaremos al sistema primado **sistema de referencia del viajero**, **observador viajero** o simplemente el **Viajero** (con mayúscula inicial). Aunque la palabra viajero da a entender que tiene un estado de movimiento absoluto, esta elección simplemente refleja la importancia que daremos a las medidas del *Observador* que se define a continuación.

El observador no primado y al que llamaremos aquí el **sistema de referencia del observador** o simplemente **el Observador** (con mayúscula inicial), será cualquier sistema en el Universo donde se quiere saber el valor de aquellas cantidades físicas medidas por el Viajero, pero en términos de las coordenadas locales. A veces al Observador también se lo conoce como el Laboratorio.

Normalmente quién estudia un fenómeno en relatividad se considera así mismo el Observador, de modo que las etiquetas de Viajero y Observador pueden intercambiarse.

En lo sucesivo daremos las observaciones del Viajero (sistema primado), como fuente de muchos de los datos físicos primarios (en este sentido este observador se comporta como el experimentador que se pone en una situación incómoda para estudiar el mundo), hará que sea mucho más común usar las TLE inversas:

$$\Lambda^{\nu}_{u'}(u) = \Lambda^{\mu'}_{\nu}(-\vec{u})$$

en lugar de las transformaciones originales, es decir de aquellas que nos dan las observaciones del Observador en función de las del Viajero.

Entender esta última expresión no es fácil. En ella se combinan tiempos con intervalos espaciales $\Delta x'$ de una manera que no es común para nosotros en la física clásica. ¿Qué significa que la duración de un fenómeno para el Observador dependa no solo de su duración para el Viajero, sino de la ubación espacial de los eventos que lo limitan?. Es extraño, pero debemos tratar de entenderlo.

Podemos entender este resultado de dos maneras diferentes.

La primera es apelar a los *mapas de las transformaciones* que construimos en las secciones anteriores. Consideremos dos sistemas de coordenadas que tienen velocidad relativa $u_L = 0.3$:

```
from numpy import array
u=array([0.3,0,0])
```

Ahora tomemos dos fenómenos limitados por tres eventos E_0 y E_1 y E_2 con coordenadas para el viajero iguales a:

```
#Las coordenadas son: t', x', y', z'
EOp=array([0,0,0,0])
E1p=array([5,0,0,0])
E2p=array([5,2,0,0])
```

Los dos fenómenos que podemos llamar E_0E_1 y E_0E_2 empiezan en el mismo evento, E_0 . Los eventos 1 y 2 ocurren en el mismo instante en el futuro, pero en lugares diferentes en el laboratorio. E_2 ocurre además en el mismo lugar que el evento inicial E_0 .

Las coordenadas de los evento para el observador, se pueden calcular usando la matriz de la transformación de Lorentz, que podemos calcular con la rutina Lambda_TLE que introdujimos en una sección anterior:

```
from export import Lambda_TLE

#Calculamos la inversa porque queremos pasar de 0' a 0
Lambda=Lambda_TLE(-u)

#Aplicamos las transformaciones
from numpy import matmul
E0=matmul(Lambda,E0p)
E1=matmul(Lambda,E1p)
E2=matmul(Lambda,E2p)

E1 = [0. 0. 0. 0.]
E2 = [5.24142418 1.57242726 0. 0. ]
E3 = [5.87039509 3.66899693 0. 0. ]
```

Como era de esperarse las coordenadas para los dos observadores difieren de forma no trivial.

En el siguiente algoritmo usamos la rutina mapa_TLE para mostrar la malla de valores constantes de t y x para los dos observadores inerciales. Allí representamos además la posición de los eventos

```
(Algoritmo 4.4)
from export import mapa_TLE
fig=mapa_TLE(*u)
ax=fig.gca()
ax.annotate("E0",xy=(E0[0],E0[1]),arrowprops={'fc':'k'});
ax.annotate("E1",xy=(E1[0],E1[1]),arrowprops={'fc':'k'});
ax.annotate("E2",xy=(E2[0],E2[1]),arrowprops={'fc':'k'});
ver Figura 4.3
```

Como vemos en el gráfico, la duración del fenómeno E_0E_1 que para el Viajero es 5, es mayor para el Observador (5.24). Por otro lado el fenómeno E_0E_1 que también dura 5 para el Viajer, pero que ocurre en lugares muy separados del espacio, tiene para el Observador una duración mucho mayor (5.87).

Tres cosas son claras sin embargo:

Figura 4.3: Figura correspondiente al código 4.4.

- 1. Las duraciones de los eventos no son las mismas registradas por distintos observadores y esto contradice abiertamente nuestras intuiciones clásicas del tiempo.
- las duraciones son mayores para el Observador que para el Viajero. Este resultado se conoce de forma general en relatividad como dilatación del tiempo.
- 3. La duración relativa de los fenómenos depende del lugar del espacio en el que ocurran los eventos que los limitan.
- 4. La diferencia entre la duración para el Viajero y el Observador tiene un valor mínima si el fenómeno ocurre en reposo en el laboratorio (los eventos que lo limitan ocurren en el mismo lugar).

Este último resultado conduce a una importante definición en relatividad:

Definición: Duración propia. Llamamos duración propia (o tiempo propio) y la denotamos como T_0 a la duración que tiene un fenómeno en un sistema de referencia inercial en el cual sus eventos límite ocurren en el mismo del espacio.

En el ejemplo anterior la duración propia del fenómeno E_0E_1 es $T_0=5$ y es la que es medida por el Viajero, que es donde los dos eventos ocurren en el mismo lugar del espacio $\Delta x'=0$.

Sin embargo, la duración propia del fenómeno E_0E_2 no es 5 (la que mide el Viajero) ni 5.8 (la que mide el Observador). Para encontrar la duración propia de este fenómeno tendríamos que construir un sistema de referencia en el que E_0 y E_2 ocurrieran en el mismo lugar del espacio. Para ello, es claro de la figura anterior que el nuevo sistema de referencia debería tener una velocidad v mayor que la velocidad v del viajero.

En el gráfico abajo vemos que si nos montamos en un sistema de referencia con una velocidad $v_L = 3,7/5,9$, los dos eventos E_0 y E_2 ocurren en el mismo lugar del espacio:

(Algoritmo 4.5)

```
from export import mapa_TLE
v=array([3.7/5.9,0,0])
fig=mapa_TLE(*v)
ax=fig.gca()
ax.annotate("E0",xy=(E0[0],E0[1]),arrowprops={'fc':'k'});
ax.annotate("E1",xy=(E1[0],E1[1]),arrowprops={'fc':'k'});
ax.annotate("E2",xy=(E2[0],E2[1]),arrowprops={'fc':'k'});
ver Figura 4.4
```

La duración registrada por este nuevo sistema de referencia ahora si será la duración propia del fenómeno E_0E_2 , que como vemos es aún menor que 5. ¿Pero que es este esta velocidad $v_L=3.7/5.9$? Estas no es otra cosa que la velocidad obtenida dividiendo el desplazamiento en x, Δx_L y la duración T para el Observador:

$$v_L \equiv \frac{\Delta x_L}{T}$$

a la que llamaremos la velocidad asociada con el fenómeno.

Ahora la relación entre las duraciones estará dada por:

$$T = \gamma(v_L) (T' + v_L \Delta x')$$

= $\gamma(v_L) T_0$

puesto que en este sistema de referencia $\Delta x' = 0$.

Proposición 4.8

La duración propia es la mínima duración. La duración T de un fenómeno con una velocidad asociada v_L es:

$$T = \gamma(v_L)T_0$$

donde T_0 es su duración propia del fenómeno, $v_L = \Delta x_L/T$ es la velocidad asociada al fenómeno y $\gamma(v_L) = (1-v_L^2)^{-1/2}$. T es siempre mayor que la duración propia o en otras palabras *la duración propia es la mínima duración*

Figura 4.4: *Figura correspondiente al código* **4.5**.

Proposición 4.8 (Cont.)

que podemos asociar a un fenómeno.

Vemos en esta definición que el factor de Lorentz-Einstein, γ juega un papel muy importante porque nos da la razón entre la duración de un fenómeno y su duración propia:

$$\gamma = \frac{T}{T_0}$$

Nota

Gamas distintos. Es importante también entender que el γ que asociamos a un fenómeno, no es conceptualmente el mismo que el que usamos en las transformaciones de Lorentz. La razón más obvia es que el γ de un fenómeno, depende de una velocidad, la *velocidad asociada al fenómeno* que puede o no ser una velocidad real. En cambio el γ de las transformaciones de Lorentz esta asociado con la velocidad relati-

va entre dos sistemas de referencia muy reales. Las fórmulas son las mismas, el origen del factor es el mismo pero *conceptualmente* las dos cantidades son distintas.

Con todos estos elementos a la mano podemos finalmente formular este resultado:

Proposición 4.9

Dilatación del tiempo. La duración de un fenómeno es siempre mayor si se percibe el fenómeno en movimiento a si se lo hace en reposo.

Un ejemplo clásico de esto es la desintegración radioactiva de una partícula elemental. Si la partícula está en reposo respecto al Observador, su tiempo de decaimiento será el tiempo propio. En cambio si la partícula se mueve con velocidad constante v_L con respecto a él, su tiempo de decaimiento será mayor. Las partículas duran más en movimiento que en reposo.

En el apartado anterior definimos cantidades asociadas a los eventos extremos de un fenómeno (cuándo y dónde empieza y cuándo y dónde termina). Geométricamente siempre es posible trazar una línea recta entre dos fenómenos del espacio tiempo. Esta línea recta tiene un nombre muy específico en relatividad:

Definición 4.7

intervalo espacio-temporal. Dados dos eventos E_1 y E_2 , el intervalo espacio-temporal S entre ellos es el segmento de línea que los une.

¿Qué es físicamente el intervalo espacio-temporal? Como cada punto del segmento es en sí mismo un evento, el intervalo es un fenómeno también (una colección de eventos). ¿Qué relación guardan esos eventos?. He ahí el problema.

Comencemos por el caso más simple. Dos eventos que ocurren en el mismo lugar del espacio. En ese caso los puntos del intervalo corresponden a los eventos que le ocurren a un observador local que esta justamente en reposo en el lugar donde ocurren los eventos.

Consideremos ahora dos eventos que ocurren en lugares distintos del espacio pero tal que $\Delta x_L < t$. En este caso, siempre es posible encontrar un observador inercial tal que los dos eventos ocurran en el mismo lugar del espacio. Este intervalo y el anterior serán entonces conceptualmente equivalentes.

En los dos casos anteriores y por las definiciones anteriores, siempre es posible definir el tiempo propio entre los eventos. Es decir siempre podemos asociar al intervalo un tiempo. Es por eso que a estos intervalos los llamamos **intervalos temporaloides** (en inglés *time-like*).

Pero ¿qué pasa en el caso en el que $\Delta x_L > t$? En este caso, por las propiedades de las rotaciones definidas por las TLE, no habrá ningún observador para el

cuál los eventos ocurran en el mismo lugar del espacio. Sin embargo si es posible encontrar un observador para el cuál los dos eventos ocurren el mismo momento del tiempo (son simultáneos). Están en lugares distintos del espacio pero son simultáneos para este observador. Por esta razón llamamos a estos **intervalos espacialoides** (en inglés *space-like*).

¿Y que pasa si $\Delta x_L = t$? Por definición este intervalo estará limitado por eventos en los que solo puede estar un rayo de luz (o cualquier otra onda que viaje a esa velocidad). Por esa razón a estos intervalos los llamamos **intevalos luminoides**.

Definición 4.8

línea de universo. La línea de universo de una partícula es la colección de todos los eventos en los que está la partícula al pasar el tiempo. Geométricamente, la línea de universo es la suma de intervalos microscópicos temporaloides entre puntos adyacentes de su trayectoria.

4.8.3. El postulado de los relojes

En las sección anterior existe una imprecisión. Definimos la duración propia entre dos eventos (separados por un intervalo temporaloide) como la duración medida por un observador en el que los eventos se registran en el mismo lugar del espacio. Sin embargo nunca específicamos el lugar de los eventos intermedios del fenómeno.

Así por ejemplo, si el fenómeno es el movimiento de una partícula en un sincrotrón, para el Observador el fenómeno "la partícula da una vuelta completa" esta limitado por eventos que ocurren en el mismo lugar del espacio. Podría uno decir que la duración propia del fenómeno es la que mide por tanto el observador. Pero podemos también preguntarnos ¿qué miden los relojes de la partícula?

Esta pregunta no tiene ninguna respuesta en el marco de la teoría tal y como ha sido formulada hasta ahora. La razón es sencilla. No existe ningún sistema de referencia inercial que podamos asociar a la partícula. Todos los resultados obtenidos hasta ahora solo aplican para este tipo de sistemas de referencia.

¿Qué hacer entonces?. Una construcción posible sería la de suponer que lo que observa la partícula (al menos en términos de la medida de duraciones) es la acumulación de los efectos observados por una infinidad de sistemas de referencia inerciales que instantáneamente se mueven con la velocidad (variable) v(t) de la partícula.

Podemos dividir la línea de universo de la partícula en intervalos temporaloides infinitesimales. La duración propia de cada subintervalo será:

$$d\tau = \frac{1}{\gamma}dt$$

donde por razones que veremos en un momento, hemos llamado d τ y dt y no d T_0 y dt, a las duraciones propia y medida del intervalo infinitesimal.

La construcción anterior se puede expresar matemáticamente diciendo que el tiempo propio asociado a la trayectoria de la partícula será:

$$T_0 = \int_0^t \mathrm{d}\tau$$

Pero esto, ¡no es más que una suposición!. Pero es una suposición tan importante que ha sido elevada a la altura de un postulado:

Postulado: Postulado de los relojes o hipótesis de los relojes. El tiempo propio medido por un observador que se mueve en una trayectoria espacial con velocidad variable $\vec{v}(t)$ (tiempo medido por relojes ideales transportador por el observador) entre dos eventos limitados por $t=t_1$ (inicio de la línea de universo) y $t=t_2$ es igual a:

$$\Delta \tau[v](t) = \int_0^t \sqrt{1 - v(t)^2/c^2} dt$$

Varias anotaciones:

- Representamos el tiempo propio como τ por que de la misma manera que t puede usarse como un parámetro para distinguir cada punto de la línea de universo, τ puede jugar también el mismo papel.
- La notación $\Delta \tau[v]$ indica que τ es un funcional de v(t). En términos físicos, por cada v(t) hay un τ diferente.
- La duración propia T_0 que habíamos definido antes entre dos eventos, es igual al tiempo propio $\tau(T)$ medido a lo largo del intervalo entre ellos:

$$\Delta au = \frac{1}{\gamma} \Delta t$$

que es la forma más común en la que se presenta este resultado.

4.8.4. Contracción de longitudes

De la misma manera que podemos definir la duración de un fenómeno (una colección de intervalos temporaloides), se puede definir la longitud de un objeto (una colección de intervalos espacialoides).

Pensemos por ejemplo en una regla de 30 cm sobre una mesa. En un momento dado (un valor específico del tiempo) los eventos que definen el estado de los extremos de la regla, están naturalmente separados por intervalos espacialoides. Imaginemos que la regla rotará 180 grados. ¿Cómo se define la longitud de la regla? Ciertamente pensar en la longitud simplemente como la diferencia entre las posiciones espaciales de dos eventos cualquiera en los extremos no es adecuado. Uno podría definir como evento 1 "centímetro cero de la regla al principio" y el evento 2 "centrimetro 30 de la regla al final". Si se hiciera así la regla mediría 0 centímetros (porque después de la rotación en 180 grados el centímetro 30 quedaría en la misma posición que el centímetro 0).

Para definir la longitud de un objeto se debe tomar la posición espacial de sus extremos (de cualquier sección transversal) en el mismo tiempo.

Definición 4.9

Longitud de un objeto. Dado un *objeto* que esta limitado en un instante dado, por eventos espacialoides, definimos la longitud instantánea del objeto en una cierta dirección, como la diferencia entre las coordenadas espaciales en esa dirección de eventos que en el sistema de referencia ocurren simultáneamente.

¿Es la longitud de una regla transportada por el Viajero igual para el Viajero y el observador?. Los eventos E_1 y E_2 de nuestro ejemplo anterior satisfacen la condición de ser eventos espacialoides para ambos observadores.

Para el viajero la longitud de un objeto limitado por ellos será:

Lp=E2p[1]-E1p[1]

L (Viajero) = 2

El problema es que la longitud medida por el Observador no puede obtenerse de estos dos eventos puesto que en sus sistema de referencia ellos no son simultáneos. Para encontrar la longitud en este sistema, hay que encontrar un evento E_2 que sea para el observador simultáneo a E_1 . Veamos esto gráficamente:

Figura 4.5: Contracción de longitudes.

Por inspección en la figura se ve que al identificar ese evento, la diferencia de coordenadas será menor en el sistema de referencia del observador:

¿Cuál es esa diferencia?. Podemos usar las transformaciones de Lorentz para encontrarla. Para ello usemos:

$$\Delta x' = \gamma (-u_L \Delta t + \Delta x)$$

La separación espacial entre dos eventos que estén en los extremos de la regla, **siempre** será L_0 para el Viajero. Para el Observador la separación entre esos eventos solo será la longitud L si los eventos son tales que $\Delta t = 0$. De la anterior relación obtenemos entonces que:

$$L_0 = \gamma(-u_L 0 + L)$$

o bien

$$L_0 = \gamma L$$

Proposición 4.10

Contracción de Longitudes. La longitud de un objeto que se mueve, medida en la dirección de movimiento es siempre menor que su longitud medida en reposo:

$$L = \frac{1}{\gamma}L_0$$

4.8.5. Adición de velocidades

Una de las consecuencias más sonadas de las TLE es la manera como transforman las velocidades. De acuerdo con las Transformaciones de Galileo-Newton, si una partícula tiene una velocidad \vec{v}' para un Viajero que se mueve con velocidad relativa \vec{u} respecto a un Observador, su velocidad \vec{v} para el Observador será simplemente:

$$\vec{v} = \vec{u} + \vec{v}'$$

¿Qué pasa en el caso de la relatividad?. Para calcular la manera como se relacionan escojamos un sistema de ejes coincidentes (eje x en dirección de \vec{u}) y notemos que transcurrido un intervalo de tiempo infinitesimal dt' en el sistema de referencia del Viajero, el tiempo y las posiciones en los tres ejes medidas por el Viajero y el observador cambiarán de acuerdo con:

$$dt = \gamma (dt' + u_L dx'_L)$$

$$dx_L = \gamma (u_L dt + dx_L)$$

$$dy_L = dy'_L$$

$$dz_I = dz'_I$$

La velocidad instantánea se define como $d\vec{v}_L/dt$, de modo que dividiendo término a término los intervalos infinitesimales de espacio obtenemos:

$$v_{x} = \frac{u_{L} + v'_{xL}}{1 + u_{L}v'_{xL}}$$

$$v_{y} = \frac{1}{\gamma} \frac{v'_{yL}}{1 + u_{L}v'_{xL}}$$

$$v_{z} = \frac{1}{\gamma} \frac{v_{zL}}{1 + u_{L}v'_{xL}}$$

o si definimos:

$$D \equiv \frac{1}{1 + u_L v_{\gamma L}'}$$

entonces:

$$egin{aligned} v_x &= D(u_L + v_{xL}') \ v_y &= rac{D}{\gamma} v_{yL}' \ v_z &= rac{D}{\gamma} v_{zL}' \end{aligned}$$

Nótese que si \vec{v}' : (1,0,0) (un rayo de luz) entonces:

$$D = \frac{1}{1 + u_L}$$

y la velocidad medida por el observador será:

$$v_{xL} = \frac{1}{1 + u_I}(u_L + 1) = 1$$

Es decir, la teoría desarrollada es autoconsistente, en tanto la velocidad de un rayo de luz será la misma sin importar el observador.

Usando las transformaciones generales de Lorentz-Einstein es posible generalizar la ley de adición de velocidades relativistas como:

$$v_{\parallel L} = D(u_L + v'_{\parallel L})$$

$$v_{\perp L} = \frac{D}{\gamma} v'_{\perp L}$$
(4.33)

donde

$$D \equiv \frac{1}{1 + \vec{u}_L \cdot \vec{v}_L'}$$

4.8.6. Transformación de aceleraciones

Un procedimiento similar pero mucho más laborioso algebraicamente conduce al resultado:

$$a_{\parallel L} = \frac{D^3}{\gamma^3} a'_{\parallel L}$$

$$a_{\perp L} = \frac{D^3}{\gamma^2} \left[a'_{\perp L} + (\vec{v}'_L \cdot \vec{u}_L a'_{\perp L} - \vec{a}'_L \cdot \vec{u}_L v'_{\perp L}) \right]$$
(4.34)

En este último caso, nótese que si $\vec{v}' = 0$ (la partícula se encuentra en reposo respecto al Viajero), la tramsformación para la componente perpendicular de la aceleración se reduce a:

$$a_{\perp L}^0 = \frac{D^3}{\gamma^2} a_{\perp L}^{\prime 0}$$

donde el superíndice 0 indica que es la aceleración calculada para la partícula en reposo en el sistema del viajero.

4.9. El espacio-tiempo de Minkowski

Una forma poderosa de sintetizar todos los resultados anteriores fue presentada en un artículo en 1908 por Herman Minkowski quién había sido profesor de Albert Einstein en la Universidad. Al principio Einstein considero esta formulación de la teoría especial de la relatividad una curiosidad matemática. Esto fue hasta que en 1912 y después de 5 largos años de esfuerzos en la búsqueda de una *generalización* de la teoría, Einstein descubrió que la mejor manera de describir matemáticamente la relatividad era usando la aproximación geométrica de Minkowski.

4.9.1. La norma de Minkowski

Hasta ahora hemos usado los diagramas de espacio-tiempo como una *mera* herramienta gráfica para representar las TLE y sus consecuencias. Sin embargo es posible concebir los puntos en estos *diagramas* como formando un espacio geométrico con propiedades más generales.

Considere por ejemplo la situación representada con el siguiente algoritmo:

(Algoritmo 4.6)

```
from export import mapa_TLE
fig=mapa_TLE(ux=0.3,ngrid=20,nticks=20)
```

```
ax=fig.gca()
ax.plot([3,9],[3,7],'k-',lw=5)
ax=fig.gca()

ver Figura 4.6
```


Figura 4.6: Figura correspondiente al código 4.6.

Vemos allí un intervalo espacio temporal (línea negra). Podemos usar las TLE o el mismo gráfico para encontrar las coordenadas espacio-temporales de los eventos que limitan el intervalo:

```
from numpy import array
#0bservador
E1=array([3,3,0,0])
E2=array([9,7,0,0])
#Viajero
Ep1=array([2.25,2.25,0,0])
Ep2=array([7.25,4.5,0,0])
```

Como vemos las cooredanadas espacio-temporales son muy diferentes al aplicar una transformación hiperbólica en el espacio-tiempo, lo que era de esperarse por las TLE. Si pensamos ahora el problema desde un punto de vista geométrico y

miramos el gráfico nos damos cuenta que hay una propiedad del intervalo que no puede ser distinta a pesar de la rotación hiperbólica. Esa propiedad es la *longitud* del intervalo. Pero, ¿cuánto vale esa longitud?.

Si usamos la *fórmula clásica* de la longitud (también llamada *norma euclidiana*), la distancia en el espacio-tiemp Δs entre los eventos sería:

$$\Delta s_{\mathrm{L,Euclidiana}}^2 = \Delta t^2 + \Delta x_L^2 + \Delta y_L^2 + \Delta z_L^2$$

obtenemos:

```
#0bservador
Ds2=(E2[0]-E1[0])**2+\
    (E2[1]-E1[1])**2+\
    (E2[2]-E1[2])**2+\
    (E2[3]-E1[3])**2

#Viajero
Dsp2=(Ep2[0]-Ep1[0])**2+\
    (Ep2[1]-Ep1[1])**2+\
    (Ep2[2]-Ep1[2])**2+\
    (Ep2[3]-Ep1[3])**2
```

Ds^2 euclidiana (Observador) = 52 Ds^2 euclidian (Viajero) = 30.0625

Como vemos las distancias calculadas entre los dos eventos no son las mismas. Este hecho es ciertamente preocupante puesto que una propiedad que debería ser obviamente la misma resulta relativa.

Nota

Unidades de ds. Como vemos las unidades de la amétrica ds son las mismas unidades que escojamos usar para t o para x. En la elección que hemos hecho en este libro, es decir, en unidades luz en el que el tiempo se mide en segundos y las distancias en segundos-luz, la métrica se escribe $\mathrm{d}s_L$ tiene unidades de tiempo.

Herman Minkowski encontró la solución a este problema, mostrando que la norma en el espacio-tiempo debía ser distinta:

$$\Delta s_{\text{L,Minkowski}}^2 = \Delta t^2 - (\Delta x_L^2 + \Delta y_L^2 + \Delta z_L^2)$$

¿Por qué el signo menos?. Comprobémoslo numéricamente:

```
#Ubservador
Ds2=(E2[0]-E1[0])**2-\
    ((E2[1]-E1[1])**2+\
    (E2[2]-E1[2])**2+\
    (E2[3]-E1[3])**2)
#Viajero
Dsp2=(Ep2[0]-Ep1[0])**2-\
```

```
((Ep2[1]-Ep1[1])**2+\
(Ep2[2]-Ep1[2])**2+\
(Ep2[3]-Ep1[3])**2)
```

Ds euclidiana (Observador) = 20 Ds euclidian (Viajero) = 19.9375

El signo menos garantiza que efectivamente la distancia entre los eventos sea la misma (aproximadamente) en nuestro ejemplo sencillo.

Proposición 4.11

Norma de Minkowski. La distancia entre dos eventos infinitesimalmente cercanos en el espacio-tiempo en un sistema de referencia inercial es:

$$\mathrm{d}s_I^2 = \mathrm{d}t^2 - \mathrm{d}l_I^2$$

donde $\mathrm{d}l_L$ es la norma euclidiana que en coordenadas cartesianas $\mathrm{d}l_L=\sqrt{\mathrm{d}x_L^2+\mathrm{d}y_L^2+\mathrm{d}z_L^2}.$

Es fácil mostrar que la norma de Minkowski es invariante bajo transformaciones de Lorentz-Einstein, que es el objetivo que perseguíamos (ver Problemas al final del capítulo).

4.9.2. Las variedades de Lorentz y la métrica de Minkowski

Hay una sutil diferencia entre lo que llamamos una *norma*, que es la manera como definimos la magnitud de los vectores en un espacio vectorial (en este caso, el vector desplazamiento en el espacio-tiempo $\mathrm{d} x^\mu$) y un concepto geométrico más general, el concepto de *métrica*.

Para introducir este concepto es necesario primero introducir una serie de definiciones matemáticas generales que usaremos a lo largo del texto:

Definición 4.10

Espacio métrico o espacio normado. Un espacio métrico es un conjunto X sobre el que podemos definir una *función bilineal g* entre los elementos del espacio:

$$g: X \times X \to \mathbb{R}^3$$

que cumple:

- 1. Es positiva: $g(p,q) \ge 0$.
- 2. Es simétrica: g(p,q) = g(q,p).
- 3. No es degenerada: g(p,q) = 0 si p = q.

Donde p y q son elementos del conjunto X. A la función g se la llama función distancia o **métrica**.

Definición 4.10 (Cont.)

La binealidad de la métrica se expresa mediante las propiedades:

1.
$$g(\lambda p_1 + p_2, q) = \lambda g(p_1, q) + g(p_2, q)$$

2.
$$g(p, \lambda q_1 + q_2) = \lambda g(p, q_1) + g(p, q_2)$$

El espacio métrico mejor conocido es el espacio euclidiano \mathbb{R}^3 , cuyos elements podemos denotar como $p:(x_p,y_p,z_p)$ y que tiene métrica:

$$g(p,q) = (x_p - x_q)^2 + (y_p - y_q)^2 + (z_p - z_q)^2$$

Los conceptos de espacio métrico y métrica se pueden generalizar para construir un conjunto de definiciones que se presentan a continuación de manera *intuitiva* (definiciones más rigurosas pueden encontrarse en textos de geometría diferencial):

Definición 4.11

Conceptos de Variedad. Una variedad. es una estructura matemática (un conjunto y unas reglas para definir la distancia entre los puntos, es decir, una métrica), que en terminos intuitivos generaliza a n-dimensiones los conceptos de curva (1-variedad) y superficie (2-variedad). El espacio euclidiano \mathbb{R}^3 es una 3-variedad (trivariedad). El espacio-tiempo es una 4-variedad (cuadrivariedad).

Una variedad diferenciable es aquella sobre la que podemos definir funciones (campos escalares, campos vectoriales y campos tensoriales) y la operación de derivación. Es decir, sobre una variedad diferenciable se pueden definir y realizar las operaciones propias del cálculo. Así mismo, y usando el mismo cálculo, sobre una variedad diferenciable se puede definir el concepto de longitud de arco.

Alrededor de cada punto de una variedad diferenciable se puede definir un **espacio tangente** que es una variedad euclidiana que comparte con la variedad original un solo punto. Así por ejemplo: sobre la superficie de una esfera (2-variedad) podemos definir un plano tangente.

Una **variedad de Riemann** es una variedad diferenciable que localmente es *similar* (homeomórfica) al espacio euclidiano. Un ejemplo de una variedad de Riemann es la superficie de una esfera (2-variedad) que tiene una métrica muy específica. Localmente esta superficie es *similar* a un plano (2-variedad).

Una **pseudo variedad de Riemann** es una variedad diferenciable en la que la función métrica no necesariamente satisface la condición de ser positiva. Localmente una pseudo variedad de Riemann no es *similar* al espacio ecuclidiano, sino al que se conoce como el espacio pseudo euclidiano, que es aquel en el que la función métrica se escribe de forma general como:

Definición 4.11 (Cont.)

$$g(p,q) = (p_1 - q_1)^2 + \dots + (p_k - q_k)^2 + \dots - (p_{k+1} - q_{k+1})^2 + \dots - (p_N - q_N)^2$$

Nótese que esta métrica es prácticamente idéntica a la métrica euclidiana, excepto por el signo menos de los últimos términos. Se dice que esta métrica tiene signatura (signature): (k, N-k)

Una **variedad de Lorentz** es una pseudo variedad de Riemann con una métrica (forma bilineal cuadrática) son *signatura* (1,N-1).

De acuerdo con estas definiciones podemos decir que lo que encuentra Minkowski al demostrar que la norma es la que definimos antes es que el espaciotiempo es una variedad diferenciable pseudo euclidiana con signatura (1,3) y métrica (en el sistema de coordenadas cartesianas):

$$g(x^{\mu}, x^{\mu} + dx^{\mu}) = dt^2 - dx_L^2 - dy_L^2 - dz_L^2$$

En el sistema de coordenadas cilíndricas, la **métrica de Minkowski** será:

$$g(x^{\mu}, x^{\mu} + dx^{\mu}) = dt^2 - dr_L^2 - r^2 d\theta_L^2 - dz_L^2$$

Si usaramos un sistema de coordenadas generalizado y no necesariamente ortogonal, la métrica podría escribirse de forma general como:

$$g(x^{\mu}, x^{\mu} + \mathrm{d}x^{\mu}) = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

donde $g_{\mu\nu}(x^{\alpha})$ son cantidades que en general dependen de la posición en el espacio (como lo vemos en la métrica de Minkowski escrita en coordenadas polares y que se conocen como coeficientes métricos.

Por comodidad usaremos la notación:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

En el caso del espacio-tiempo de un observador inercial los coeficientes métricos *en coordenadas cartesianas* son:

$$g_{\mu\nu} = \eta_{\mu\nu} \equiv \left(egin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array}
ight)$$

Proposición 4.12

La métrica es un tensor. La métrica $g_{\mu\nu}$ es un campo tensorial covariante de segundo orden, es decir, al hacer un cambio de coordenadas $x^{\mu'}(x^{\nu})$ la métrica transforma como:

$$g_{\mu'\nu'} = \frac{\partial x^{\alpha}}{\partial x^{\mu'}} \frac{\partial x^{\beta}}{\partial x^{\nu'}} g_{\alpha\beta}$$

El espacio-tiempo entonces es una variedad diferenciable pseudo-euclidiana con una métrica de signatura (1,3), que llamamos de forma más específica en el contexto de la física, la métrica de Minkowski. Pero más allá de lo rimbombante que estas afirmaciones pueda sonar ¿qué implicaciones tiene todo esto para la relatividad en particular y para la física en general?.

4.9.3. Métrica y tipos de intervalos

Usando la métrica de Minskowski podemos definir los tipos de intervalos así:

■ Intervalo temporaloide. Este tipo de intervalos se definieron como aquellos en los que se puede encontrar un sistema de referencia en el que los eventos límite ocurran en el mismo lugar del espacio. En otros términos, son intervalos para los cuales se puede encontrar una partícula física que viaje entre ellos. Como sabemos que las partículas viajan con velocidad $u_L < 1$ entonces $\mathrm{d} l_L^2 < \mathrm{d} t^2$ y por lo tanto:

$$ds^2 > 0$$

■ Intervalo espacialoide. Este tipo de intervalos se definieron como aquellos en los que no se puede encontrar un sistema de referencia en el que los eventos límite ocurran en el mismo lugar del espacio. En otros términos, son intervalos para los cuales no existe una partícula física que viaje entre ellos. Como sabemos que las partículas viajan con velocidad $u_L < 1$ entonces $\mathrm{d}l_L^2 > \mathrm{d}t^2$ y por lo tanto:

$$ds^2 < 0$$

■ **Intervalo luminoide**. Este tipo de intervalos se definieron como aquellos en los que *no* se puede encontrar un sistema de referencia en el que los eventos límite ocurran en el mismo lugar del espacio, y tampoco en el mismo lugar del tiempo (eventos simultáneos). Solo es posible encontrar rayos de luz que viajen entre ellos, es decir: $\mathrm{d}l_L^2 = \mathrm{d}t^2$ y por lo tanto:

$$ds^2 = 0$$

4.9.4. Métrica y tiempo propio

En un sistema de referencia en el que dos eventos (con un intervalo temporaloide) separados en el sistema de referencia del Observador por una distancia $d\vec{r}_L$, ocurren en el mismo lugar del espacio, la distancia espacio-temporal es simplemente:

$$\mathrm{d}s_L^2 = \mathrm{d}\tau^2 - 0^2$$

o bien

$$ds_L = d\tau$$

donde hemos usado de una vez τ para representar el hecho de que en este sistema de referencia y como se explico en sesiones anteriores, este tiempo es el tiempo propio entre los eventos.

Dada la invarianza de la métrica para todos los observadores podemos concluir que **en el caso de intervalos temporaloides y en unidades luz** la métrica (la distancia espacio-temporal entre eventos) no es otra cosa que el tiempo propio entre esos eventos.

Si por el contrario tenemos eventos espacialoides, podemos siempre encontrar un sistema de referencia en el que los eventos límite ocurren en el mismo momento del tiempo, es decir su separación esta relacionada es con la distancia propia entre esos eventos:

$$ds_L^2 = 0^2 - d\lambda_L^2$$

que se podría escribir como:

$$\sqrt{-\mathrm{d}s_L^2} = \lambda_L$$

Dada la invarianza de la métrica para todos los observadores podemos concluir que **en el caso de intervalos espacialoides y en unidades luz** la métrica (la distancia espacio-temporal entre eventos) esta relacionada con la distancia propia entre esos eventos.

4.9.5. Métrica, dilatación del tiempo y contracción de longitudes

Con las definiciones del aparte anterior se puede entender de forma inmediata la dilatación del tiempo y la contracción de longitudes.

Consideremos por ejemplo un fenómeno limitado por dos eventos y un intervalo temporaloide. La distancia entre los eventos será:

$$d\tau^2 = dt^2 - dl_L^2$$

donde de una vez hemos usado el hecho que $ds_L^2 = d\tau^2$.

Si reconocemos que $\mathrm{d}l_L/\mathrm{d}t=v_L$ es simplemente la velocidad del Viajero, llegamos a la relación conocida:

$$d\tau = \frac{1}{\gamma}dt$$

es decir, la dilatación del tiempo es la manifestación directa de la métrica de Minkowski.

El caso de la contracción de longitudes es un poco más truculento. Para definir la longitud de un objeto que esta en reposo para el Viajero, es necesario tomar dos eventos asociados al objeto que ocurren simultáneamente en el sistema del Observador. Para estos dos eventos la distancia medida en los dos sistemas de referencia serán:

$$-\mathrm{d}x_L^2 = \mathrm{d}t'^2 - \mathrm{d}\lambda^2$$

Aquí hay que tener en cuentra que en el sistema del viajero los dos eventos no ocurren simultáneamente sino que ocurren separados por un tiempo $dt' = u_L d\lambda$, de allí que:

$$\mathrm{d}x_L = \frac{1}{\gamma} \mathrm{d}\lambda$$

que ya habíamos obtenido.

4.9.6. Vectores y cálculo en el espacio de Minkowski

Posiblemente la más importante de las consecuencias de la *geometrización* de la relatividad, es la idea de que las leyes de la física pueden escribirse en términos de vectores y tensores en el espacio-tiempo y al hacerlo tener la covariancia que esperamos de ellas de acuerdo con el **postulado de relatividad**. Veamos porque.

En el espacio métrico de Minkowski, el vector prototipo es el vector intervalo. Este vector transforma de acuerdo con las TLE como:

$$\mathrm{d}x^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} \mathrm{d}x^{\nu}$$

Habíamos explicado antes que esta transformación es el equivalente a una rotación hiperbólica en el espacio-tiempo. Savemos que este vector que transforma de esta manera tiene una propiedad geométria, su norma, que es invariante bajo TLE:

$$ds^{2} = |dx^{\mu}|^{2} = dt^{2} - dx_{L}^{2} - dy_{L}^{2} - dz_{L}^{2}$$

Podríamos generalizar este resultado para decir que cualquier otro vector que transforme de la manera en la que lo hace el vector intervalo tiene la misma propiedad. Así si una cantidad A^{μ} : (A^0, A^1, A^2, A^3) es tal que:

$$A^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} A^{\nu}$$

entonces

$$|A^{\mu}|^2 = (A^0)^2 - (A^1)^2 - (A^2)^2 - (A^3)^2$$

Una manera más interesante de generalizar lo que sabemos de vectores en el espacio euclidiano a vectores en el espacio de Minkowski es introducir el producto punto o producto interior, que para el vector prototipo (el vector desplazamiento es:

$$ds^2 = dx^{\mu} \cdot dx^{\nu} \equiv g_{\mu\nu} dx^{\mu} dx^{\nu}$$

y que se puede generalizar para cualquier par de vectores como:

$$A^{\mu} \cdot B^{\nu} \equiv g_{\mu\nu} A^{\mu} B^{\nu}$$

o en términos explícitos:

$$A^{\mu} \cdot B^{\nu} = A^{0}B^{0} - (A_{L}^{1}B_{L}^{1} + A_{L}^{2}B_{L}^{2} + A_{L}^{2}B_{L}^{2})$$

La suma de vectores y la multiplicación por un escalar están igualmente definidas en el espacio de Minkowski.

Como sucede en el espacio euclidiano cualquier expresión matemática que escribamos en términos vectoriales, así por ejemplo

$$\vec{A} + \lambda \vec{B}$$

definirá en sí misma un vector, que transforma como el vector desplazamiento y por lo tando es covariante bajo las TLE.

El **postulado de relatividad** o postulado de covariancia de las leyes de la naturaleza se puede formular ahora como una proposición:

Proposición 4.13

Leyes físicas y tensores. Todas las leyes físicas que se expresan en términos de cuadrivectores o tensores de rango superior son covariantes.

Podemos definir una función escalar de variable real f(s) como es usual (usaremos s como letra para la variable independiente en lugar de x), una función tensorial de variable real $F^{\mu}(s)$ o $g_{\mu\nu}(s)$, una función escalar o tensorial de variable cuadrivectorial (normalmente de la cuadriposición) $f(x^{\mu})$ o $F^{\mu}(x^{\mu})$ o $g_{\mu\nu}(x^{\mu})$.

Los conceptos regulares del cálculo también están definidos, tales como la derivación:

$$\frac{\mathrm{d}}{\mathrm{d}s}x^{\mu}(s):\left(\frac{\mathrm{d}}{\mathrm{d}s}t(s),\frac{\mathrm{d}}{\mathrm{d}s}\vec{r}_{L}(s),\right)$$

donde $x^{\mu}(s)$ describe por ejemplo una línea de universo en el espacio-tiempo y s puede entenderse como un parámetro que distingue cada punto en el espacio.

La integración:

$$F(s) = \int_0^s f(s') ds'$$

o bien

$$W = \int_0^s F^{\mu}(s') \cdot \mathrm{d}x^{\mu}(s')$$

4.9.7. Minkowski y el postulado de los relojes

De la misma manera que definimos cualquier integral podemos definir la integral de línea fundamental:

$$\tau = \int_0^{s'} \mathrm{d}s$$

donde los ds son temporaloides. Esta es s la longitud de una curva arbitraria en el espacio tiempo.

Por el postulado de los relojes esta integral es también el tiempo propio de esa línea de universo.

4.9.8. Transformación general de cuadrivectores

Hemos visto que cualquier cantidad que transforme como

$$A^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} A^{\nu}$$

es un cuadrivector.

En secciones anteriores habíamos visto una forma general de las transformaciones de Lorentz-Einstein para el cuadrivector posición x^{μ} : (t, \vec{r}_L) :

$$t' = \gamma \left(t - \vec{u}_L \cdot \vec{r}_L \right) \tag{4.35}$$

$$\vec{r}_L' = \vec{r}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{r}_L - \gamma t\right) \vec{u}_L \tag{4.36}$$

Estas relaciones pueden extenderse a cualquier cuadrivector $A^{\mu}:(A^{0},\vec{A})$:

$$A^{0'} = \gamma \left(A^0 - \vec{u}_L \cdot \vec{A}_L \right) \tag{4.37}$$

$$\vec{A}_L' = \vec{A}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{A}_L - \gamma A^0\right) \vec{u}_L \tag{4.38}$$

4.10. Óptica relativista

Para entender la manera en la que las propiedades de la luz transforman de un observador inercial a otro en relatividad especial (óptica relativista). Consideremos el hecho de que cualquier onda monocromática se puede describir en el espaciotiempo usando el cuadrivector de propagación:

$$k_L^{\mu}: \frac{2\pi}{\lambda}(1,\hat{k})$$

donde \hat{k} es la dirección de propagación de la onda y λ es la longitud de onda. La relación de dispersión de la onda en el vacío será:

$$\lambda \nu = c$$

donde ν es la frecuencia.

Esta cantidad debe transformar como lo hace cualquier cuadrivector:

$$k^{0} = \gamma \left(k^{0'} + \vec{u}_{L} \cdot \vec{k'}_{L} \right) \tag{4.39}$$

$$\vec{k}_L = \vec{k'}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{k'}_L + \gamma k^{0'}\right) \vec{u}_L \tag{4.40}$$

4.10.1. Efecto Doppler relativista

Supongamos que emitimos una onda monocromática en dirección de x (la misma dirección de la velocidad relativa entre los sistemas). En este caso:

$$k^{\mu}:\frac{2\pi}{\lambda}(1,1,0,0)$$

La ecuación de transformación de la componente temporal del cuadrivector de propagación será:

$$\frac{2\pi}{\lambda} = \gamma \left(\frac{2\pi}{\lambda'} + u_L \frac{2\pi}{\lambda'} \right)$$

De donde obtenemos:

$$\frac{1}{\lambda} = \frac{1}{\lambda'} \frac{1 + u_L}{\sqrt{1 - u_L^2}}$$

Si identificamos $\lambda_{\rm em}=\lambda'$ y $\lambda_{\rm obs}=\lambda$, entonces:

$$\lambda_{\rm obs} = \lambda_{\rm em} \sqrt{\frac{1 - u_L}{1 + u_L}}$$

Nótese que si $u_L \ll 1$ y usamos el teorema del binomio para expandir el factor en el radical en el lado derecho:

$$\lambda_{\rm obs} = \lambda_{\rm em} (1 - \frac{1}{2}u_L + \ldots)(1 - \frac{1}{2}u_L + \ldots)$$

conservando solo los términos lineales en u_L obtenemos:

$$\lambda_{\rm obs} \approx \lambda_{\rm em} (1 - u_L)$$

que se puede escribir como:

$$\frac{\lambda_{\rm em} - \lambda_{\rm obs}}{\lambda_{\rm em}} \approx u_L$$

De aquí identificamos el corrimiento al rojo clásico:

$$z = u_L$$

4.10.2. Aberración de la luz

Figura 4.7: Figura

Veámos ahora que pasa con un rayo de luz emitido en una dirección diferente de \vec{u}_L . En este caso la transformación de las componentes espaciales del vector de propagación será:

$$k^{0} = \gamma \left(k^{0'} + \vec{u}_{L} \cdot \vec{k'}_{L} \right) \tag{4.41}$$

$$\vec{k}_L = \vec{k'}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{k'}_L + \gamma k^{0'}\right) \vec{u}_L$$
 (4.42)

Identificando $k^0=2\pi/\lambda$ y $\vec{k}_L=2\pi/\lambda\hat{k}$ y dividiendo la segunda ecuación por la primera, obtenemos:

$$\hat{k} = \frac{\hat{k}' + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \hat{k}' + \gamma\right) \vec{u}_L}{\gamma (1 + \vec{u}_L \cdot \hat{k}')}$$

Consideremos ahora el caso particular en el que \hat{k} se encuentra sobre el plano x-y y se puede parametrizar como:

$$\hat{k} = \cos \theta \hat{e}_x + \sin \theta \hat{e}_y
\hat{k}' = \cos \theta' \hat{e}_x + \sin \theta' \hat{e}_y$$

La componente temporal queda:

$$\frac{1}{\lambda_{\rm obs}} = \frac{1}{\lambda_{\rm obs}} \gamma (1 + u_L \cos \theta')$$

De aquí se obtiene que si $\theta' = 0$ se reproduce la fórmula del efecto Doppler. Pero hay un resultado más interesante que se obtiene si $\theta' = \pi/2$. En este caso:

$$\lambda_{obs}^{\perp} = \frac{1}{\gamma} \lambda_{em}$$

que se conoce como el efecto Doppler transversal.

Al reemplazar \hat{k} y \hat{k}' en la ley de transformación obtenemos:

$$\cos \theta = \frac{\cos \theta' + u_L}{1 + u_L \cos \theta'} \tag{4.43}$$

$$\cos \theta = \frac{\cos \theta' + u_L}{1 + u_L \cos \theta'}$$

$$\sin \theta = \frac{\sin \theta'}{\gamma (1 + u_L \cos \theta')}$$
(4.43)

que puede probarse cumplen $\sin^2 \theta + \cos^2 \theta = 1$

¿Qué pasa cuando $\cos \theta' = 0$?. En este caso en el sistema del Observador se ve:

$$\cos \theta = u_L$$

Es decir, la luz que debería llegar al observador de la vertical aparece en un ángulo muy pequeño desviada respecto a esa vertical. A este fenómeno se lo llama aberración de la luz.

4.10.3. Enfoque relativista

Imagine que desde una fuente astrofísica que se mueve con velocidad \vec{u}_L repecto al observador, emite radiación en todas las direcciones. ¿En qué direcciones se verá venir la radiación? ¿cómo se distribuye la potencia de la radiación de la fuente?

Si la emisión es isotrópica una cuarta parte de la radiación se emitirá entre $\theta'=0$ y $\theta'=\pi/2$. Sin embargo, en el sistema de referencia del observador esa misma energía se emitirá entre $\theta = 0$ y $\theta = \theta_b < \pi/2$ donde θ_b se conoce como el ángulo de enfoque y es igual a:

$$\cos \theta_h = u_L$$

o bien:

$$\theta_b = \cos^{-1} u_L$$

Es posible mostrar que para $\gamma \gg 1$ el ángulo de enfoque es:

$$\theta_b pprox rac{1}{\gamma}$$

Para visualizar el efecto de enfoque relativista vea la figura interactiva en la versión electrónica del libro¹⁰.

4.11. Cinemática relativistica

Usando lo que vimos en la sección anterior, podemos reconstruir una cinemática en el espacio-tiempo.

4.11.1. Cuadrivelocidad

Definimos la cuadrivelocidad media de una partícula que se mueve entre dos eventos separados por un intervalo temporaloide como:

$$\bar{U_L}^{\mu} = \frac{\Delta x_L^{\mu}}{\Delta \tau}$$

donde $\Delta \tau$ es el tiempo propio entre los eventos.

Usando el mismo método de la mecánica convencional podemos extender este concepto al de cuadrivelocidad instantánea:

$$U^{\mu} = \lim_{\Delta \tau \to 0} \frac{\Delta x_L^{\mu}}{\Delta \tau} = \frac{\mathrm{d} x_L^{\mu}}{\mathrm{d} \tau}$$

En términos de componentes explícitas:

$$U_L^{\mu}:\left(\frac{\mathrm{d}t}{\mathrm{d} au},\frac{\mathrm{d}\vec{r}_L}{\mathrm{d} au}\right)$$

Usando el hecho que d $au=\mathrm{d}t/\gamma$, donde $\gamma=(1-v_L^2)^{1/2}$ con:

$$\vec{v}_L = \frac{\mathrm{d}x_L^{\mu}}{\mathrm{d}t}$$

la cuadrivelocidad queda:

$$U_L^{\mu}: \gamma(1, \vec{v}_L)$$

Proposición 4.14

Cuadrirapidez. Todas las partículas del universo ($v_L < 1$) tienen siempre cuadrirapidez unitaria:

$$|U_L^{\mu}|=1$$

Naturalmente esto es en unidades luz. En unidades convencionales la cuadrirapidez sería igual a c.

 $^{^{10} \}verb|http://github.com/seap-udea/Relatividad-Zuluaga|$

Un gráfico de todas las cuadrivelocidades de todas las partículas en el universo son:

```
%matplotlib inline
```

(Algoritmo 4.7)

```
from numpy import linspace
vl=linspace(0,0.95)
gamma=1/(1-v1**2)**0.5
U0=gamma
Ux=gamma*vl
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()
ax.plot(U0,Ux)
ax.set_xlim((0,3))
ax.set_ylim((0,3))
ax.plot([0,3],[0,3],'k--')
ax.set_xlabel("$U_L^0$")
ax.set_ylabel("$U_{L}^{x}$")
fig.tight_layout()
                                                                ver Figura 4.8
```

Nótese que en realidad si incluímos las 3 dimensiones espaciales todas las cuadrivelocidades del universo estarían en un hiper-hiperboloide de revolución:

$$1 = (U_L^0)^2 - (U_L^1)^2 - (U_L^2)^2 - (U_L^3)^2$$

Si fijas el valor de $U_L^0 = \gamma$, los puntos satisfacen:

$$v_{Lx}^2 + v_{Ly}^2 + v_{Lz}^2 = \text{cte}$$

que son puntos sobre una esfera.

4.11.2. Cuadriaceleración

De la misma manera que definimos la cuadrivelocidad promedio, podemos definir la cuadriaceleración promedio:

$$\bar{A_L}^{\mu} = \frac{\Delta U_L^{\mu}}{\Delta \tau}$$

La aceleración instantánea sería:

$$A_L^{\mu} = \lim_{\Delta au o 0} rac{\Delta U_L^{\mu}}{\Delta au} = rac{\mathrm{d} U_L^{\mu}}{\mathrm{d} au}$$

Figura 4.8: Figura correspondiente al código 4.7.

Usando d $au=\mathrm{d}t/\gamma$, donde $\gamma=(1-v_L^2)^{1/2}$ obtenemos (ver Problemas al final del capítulo):

$$A_L^{\mu}: \gamma^4(\vec{a}_L \cdot \vec{v}_L, \vec{a}_L)$$

naturalmente aquí $\vec{a}_L \cdot \vec{v}_L$ es el producto punto euclidiano convencional y $\vec{a}_L =$ $d\vec{v}_L/dt$ es la aceleración espacial clásica.

Nota

De unidades luz a unidades convencionales. Si en un problema dado obtenemos el desplazamiento, la velocidad (cuadrivelocidad) o la acelaración (cuadriaceleración) en unidades luz, podemos volver a obtener las unidades originales como:

$$\begin{array}{rcl} \Delta \vec{r} & = & c \Delta \vec{r}_L \\ \vec{v} & = & c \vec{v}_L \\ \vec{a} & = & c \vec{a}_L \end{array}$$

Con estas transformaciones, la cuadriaceleración se puede escribir co-

mo:

$$A^{\mu}: c\gamma^4\left(\frac{\vec{a}\cdot\vec{v}}{c^2}, \frac{\vec{a}}{c}\right)$$

Nótese que si $\vec{v}_L = \vec{o}$ entonces:

$$A_L^{\mu}:(0,\vec{\alpha}_L)$$

de donde vemos que el módulo cuadrado de la cuadriaceleración es espacialoide:

$$|A_L^{\mu}|^2 = -\alpha_L^2$$

Dado que esta cantidad es invariante (la misma para el Observador y el viajero) llamamos a α_L la aceleración propia de la partícula.

Proposición 4.15

La relación entre la cuadriaceleración y la cuadrivelocidad. La cuadrivelocidad y la cuadriaceleración son perpendiculares:

$$A^{\mu} \cdot U^{\nu} = 0$$

4.11.3. Movimiento con cuadriaceleración constante

En un movimiento en el cuál tanto la velocidad como la aceleración dependen del tiempo $\vec{v}(t)$ y $\vec{a}(t)$, siempre es posible encontrar un sistema de referencia inercial que se mueve instantáneamente con velocidad $\vec{v}(t)$ tal que la aceleración del cuerpo es la aceleración propia.

Podemos modelar lo que pasa a una partícula que se mueve de una manera tal que su aceleración propia α_L es constante. En este caso se cumple que:

$$(A_L^0)^2 - (A_L^x)^2 = \alpha_L^2$$

Para saber cuánto valen las componentes de la cuadriaceleración en un momento dado pormos escribir su relación con las componentes de cuadrivelocidad:

$$A_L^0 U_L^0 - A_L^x U_L^x = 0$$

Por otro lado las componentes de la cuadrivelocidad satisfacen:

$$(U_I^0)^2 - (U_I^x)^2 = 1$$

Eliminando obtenemos las ecuaciones:

$$A_L^0 = \alpha_L U_L^x$$

$$A_L^x = \alpha_L U_L^0$$
(4.45)

Si derivamos la segunda ecuación respecto del tiempo propio, obtenemos:

$$\frac{\mathrm{d}A_L^x}{\mathrm{d}\tau} = \alpha_L A_L^0 = \alpha_L^2 U_L^x$$

donde hemos usado primero el hecho que $\mathrm{d}U_L^0/\mathrm{d}\tau=A_L^0$ y luego la primera ecuación. Esta ecuación se puede escribir como:

$$\frac{\mathrm{d}^2 U_L^x}{\mathrm{d}\tau^2} = \alpha_L^2 U_L^x$$

Que tiene como solución general:

$$U_L^x = A \exp(\alpha_L \tau) + B \exp(-\alpha_L \tau)$$

Asumiendo que $U_L^x(0) = 0$ y $dU_L^x(0)/d\tau = \alpha_L$ obtenemos la solución para la componente x de la cuadrivelocidad:

$$U_L^x = \sinh(\alpha_L \tau)$$

Si reconocemos que $U_L^x = \gamma v_{Lx}$ y despejamos la velocidad obtenemos:

$$v_{Lx} = \tanh(\alpha_L \tau)$$

Si integramos ahora U_L^x obtenemos para x_L :

$$x_L(\tau) = \frac{1}{\alpha_L} \cosh(\alpha_L \tau) + k$$

donde k es una constante. Adumiendo que $x_L(0) = 0$ la solución para la posición es:

$$x_L(\tau) = \frac{1}{\alpha_L} [\cosh(\alpha_L \tau) - 1]$$

Queda un problema por resolver. Estamos describiendo el movimiento de la partícula en el sistema de referencia del observador donde el tiempo es t. ¿Cómo se relacionan t con τ ?. Nos olvidamos que hay una ecuación diferencial para τ que viene dada por $U_L^0 = \mathrm{d}t/\mathrm{d}\tau$. Si usamos la ecuación:

$$A_L^x = \alpha_L U_L^0$$

y tenemos en cuenta que $A_L^x = \mathrm{d} U_L^x/\mathrm{d} \tau = \alpha_L \cosh(\alpha_L \tau)$, la ecuación para t queda:

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = \cosh(\alpha_L \tau)$$

que se resuelve trivialmente con condición inicial t(0) = 0 como:

$$t = \frac{1}{\alpha_L} \sinh(\alpha_L \tau)$$

trayectoria de una partícula con aceleración propia constante. Si una partícula tiene aceleración propia constante α_L , en la configuración estándar su posición y velocidad son iguales a:

$$t(\tau) = \frac{1}{\alpha_L} \sinh(\alpha_L \tau) \tag{4.46}$$

$$x_L(\tau) = \frac{1}{\alpha_L} [\cosh(\alpha_L \tau) - 1] \tag{4.47}$$

$$v_{Lx}(\tau) = \tanh(\alpha_L \tau) \tag{4.48}$$

Usando esta solución podemos graficar en el espacio tiempo la trayectoria de la partícula:

(Algoritmo 4.8)

```
#Cuadriaceleración propia constante
alphaL=0.02
#Tiempos propios
from numpy import linspace
taus=linspace(0,100,1000)
#Solución
from numpy import sinh, cosh, tanh
ts=(1/alphaL)*sinh(alphaL*taus)
xLs=(1/alphaL)*(cosh(alphaL*taus)-1)
vLs=tanh(alphaL*taus)
#Gráfico
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()
ax.plot(ts,xLs)
#Decoración
rang=xLs.max()
ax.set_xlim(0,rang)
ax.set_ylim(0,rang)
ax.plot([0,rang],[0,rang],'k--')
ax.set_xlabel("$t$");
ax.set_ylabel("$x_L$");
ax.grid();
                                                                ver Figura 4.9
```

Una prueba muy importante de todo resultado en relatividad es verificar que coincida con el resultado Newtoniano en el límite de velocidades muy pequeñas.

Figura 4.9: Figura correspondiente al código 4.8.

Si usamos la expansión en series de potencias para las funciones sinh, cosh y tanh:

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots {(4.49)}$$

$$sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots
cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$$
(4.49)

$$\tanh x = x - \frac{x^3}{3} + \frac{2x^5}{15} + \dots$$
 (4.51)

(4.52)

y descartamos términos de orden superior en $\alpha_L \tau$ obtenemos:

$$t \approx \tau$$
 (4.53)

$$v_{Lx} \approx \alpha_L \tau \tag{4.54}$$

$$v_{Lx} \approx \alpha_L \tau$$
 (4.54)
 $x_L \approx \alpha_L \frac{\tau^2}{2}$ (4.55)

que coincide con las ecuaciones clásicas.

4.11.4. La velocidad límite

Hay una interesante consecuencia del resultado obtenido en esta sección. Habíamos visto que si se mantiene constante la aceleración la velocidad de la partícula es:

```
v_{Lx} = \tanh(\alpha_L \tau)
```

Este resultado no parece más que una curiosidad matemática pero en realidad contiene una consecuencia importante. Para entenderla hagamos un gráfico de v_{Lx} :

```
from numpy import linspace,tanh

import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.gca()

for alfaL in linspace(1e-2,1e-1,5):
    taus=linspace(0,100,100)
    vLxs=tanh(alfaL*taus)
    ax.plot(taus,vLxs,label=fr"$\alpha_L$={alfaL:.2f}")

ax.legend()
ax.set_xlabel(fr"$\tau$");
ax.set_ylabel(fr"$v_{{Lx}}$");
fig.tight_layout()
```


Figura 4.10: Figura correspondiente al código 4.9.

Lo que notamos es que independientemente del valor de la aceleración propia,

Figura 4.11: Cambios en la cuadrivelocidad y la cuadriaceleración

la velocidad de la partícula nunca logra ser mayor que 1 (en unidades convencionales, la velocidad de la luz). Esto es consistente con los resultados obtenidos hasta ahora.

Habra una explicación física de por qué es así, ¿por qué, a pesar de la aceleración sostenida por la partícula, esta nunca logra llevarla a una velocidad mayor que la de la luz?

Una manera posible de explicarlo es apelando a la propiedad nueva de ortogonalidad entre la cuadrivelocidad y la cuadriaceleración. Lo que pasa cuando la velocidad aumenta es que la componente temporal de la cuadriaceleración va aumentando también:

$$A_I^{\mu}: \gamma^4(\vec{a}_L \cdot \vec{v}_L, \vec{a}_L)$$

Como resultado no solo la componente espacial de la cuadrivelocidad de la partícula se hace mayor, sino que también lo hace su componente temporal:

$$U_L^{\mu}:(\gamma,\gamma\vec{v}_L)$$

Cuando la velocidad es próxima a la velocidad de la luz $v_L \to 1$, la cuadriace-leración tiene casi idénticas componentes temporal y espacial $A_L^\mu \to (\gamma^4 a_L, \gamma^4 a_L)$, esto implica que toda ganancia en la componente temporal de la cuadrivelocidad

es igual a la ganancia en la componente espacial de la misma. De este modo, la cuadrivelocidad se mantiene cerca pero nunca igual a la correspondiente a la luz.

Otra manera de entenderlo es ver lo que pasa con la aceleración espacial a_L cuando la velocidad va aumentando. En la configuración estándar y por la invarianza del módulo de la cuadriaceleración:

$$\gamma^8 (a_L^2 v_L^2 - a_L^2) = -\alpha_L^2$$

de donde despejando a_L queda:

$$a_L = \frac{1}{\gamma^3} \alpha_L$$

es decir a medida que la velocidad va aumentando (γ va creciendo) la aceleración medida por el observador se hace cada vez menor. Cuando el cuerpo se aproxima a la velocidad de la luz la aceleración espacial es casi nula y el cuerpo no gana ni un ápice más de velocidad.

4.11.5. Ejemplo: una nave interestelar

Figura 4.12: Nave interestelar

Uno de los más grandes sueños de exploración de la humanidad ha sido viajar a otras estrellas. Para hacerlo un diseño posible es el de construir una nave capaz de sostener una aceleración constante igual a la aceleración de la gravedad en la Tierra (para simular justamente los efectos de la gravedad), en unidades luz $\alpha_L = g/c$. ¿Cuánto le tomaría a una nave así, ir hasta Alpha Centauri situada en $x_L = 4$ años-luz?

Para encontrar la solución a este problema basta que despejemos τ de la ecuación de la posición:

$$\tau = \frac{1}{\alpha_L} \cosh^{-1}(\alpha_L x_L + 1)$$

El manejo de las unidades aquí debe ser cuidadoso. Nótese que $[\alpha_L] = 1/T_L$ y $[x_L] = T_L$, de modo que una vez se escogen las unidades de α_L quedan fijas las unidades de x_L .

$$\alpha_L = \frac{g}{c} = \frac{9.8 \text{ m/s}^2}{3 \times 10^8 \text{ m/s}} = 3.27 \times 10^{-8} \text{ s}^{-1}$$

En este caso las unidades de x_L deben ser segundos(-luz).

```
#Velocidad de la luz
c = 3e8 \# m/s
#Aceleración
alphaL=9.8/3e8 \#1/segundos-luz=1/s-l
#Distancia a recorrer
year=365.25*86400 # segundos
xL=4*year \#s-l
#Tiempo propio
from numpy import arccosh
tau=arccosh(alphaL*xL+1)/alphaL #s
#Tiempo coordenado
from numpy import sinh
t=(1/alphaL)*sinh(alphaL*tau) #s
#Velocidad al llegar
from numpy import sinh
vL=tanh(alphaL*tau) # u.l.
```

```
print(f"alpha_L = {alphaL} 1/s-l")
print(f"x_L = {xL} s-l")
print(f"alpha_L x_L = {alphaL*xL}")
print(f"tau = {tau} s = {tau/year} años")
print(f"t = {t} s = {t/year} años")
print(f"v_L = {vL} = {vL*c} m/s")
```

Para ver las figuras interactivas busque la versión electrónica del libro¹¹.

¹¹http://github.com/seap-udea/Relatividad-Zuluaga

4.12. Dinámica relativista

Hemos visto:

- Las transformaciones de Galileo-Newton no mantienen las ecuaciones de Maxwell covariantes.
- Para mantener las ecuaciones de Maxwell covariantes deben usarse las transformaciones de Lorentz-Einstein (TLE).
- Las TLE y sus conscuencias demuestran que la física debe hacerse en el espacio-tiempo de cuatro dimensiones y las cantidades físicas deben representarse como tensores (que transforman como las TLE) y las leyes como ecuaciones tensoriales.

¿Cómo se escriben las leyes de la mecánica en términos tensoriales? (en términos de invariantes). Llamaremos a la mecánica así construída **mecánica relativista**.

4.12.1. Masa invariante

El primer concepto central a la meánica relativista es el de **masa invariante**. Llamaremos así a la masa que asignamos a una partícula en un sistema de referencia que en un instante dado se mueve con la misma velocidad instantánea que ella. La masa invariante también se podría llamar **masa propia** siguiendo la convención semántica que habíamos usado hasta ahora.

Consideramos que esta es una cantidad verdaderamente escalar en el contexto del espacio-tiempo y por lo tanto que es una cantidad invariante, es decir, todos los observadores inerciales coincidiran en el valor de esta cantidad.

4.12.2. Momentum relativista

Si queremos formular una teoría mecánica relativista (covariante) debemos expresar todas las cantidades en términos de cantidades invariantes, cuadrivectores y tensores.

El momentum newtoniano:

$$\vec{p} = m\vec{v} = m\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$$

claramente no es ni un cuadrivector, ni parte de él. La razón básica es que esta cantidad no transforma como dx^{μ} que es nuestro cuadrivector prototipo.

Si definimos el momentum como:

$$\vec{p} \equiv m \frac{\mathrm{d}\vec{r}}{\mathrm{d}\tau}$$

dado que m y d τ son invariantes, las componentes de este vector serán parte de un verdadero cuadrivector.

Definición 4.12

Momentum relativista. Una partícula que se mueve con velocidad \vec{v} tiene un momento relativista:

Definición 4.12 (Cont.)

$$\vec{p} \equiv \gamma(v) m \vec{v}$$

Nótese que el momentum relativista coincide con el momentum clásico para $v \ll c$.

De aquí podemos postular:

Postulado 4.3

Conservación del momentum relativista. El momentum relativista total de un sistema aislado se mantiene constante. Es decir, en ausencia de fuerzas externas:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left(\sum \vec{p}_i \right) = \frac{\mathrm{d}}{\mathrm{d}\tau} \left(\sum \gamma(v_i) m_i \vec{v}_i \right) = 0$$

Este postulado ha sido probado experimentalmente en incontables experimentos realizados en aceleradores de partículas.

Nota

unidades luz de la masa y el momentum. Como hemos venido trabajando en unidades luz todas las cantidades cinemáticas, es interesante preguntarse por cuáles son las unidades del momentm. Tal y como es definido el momentum en unidades convencionales y el momentum en unidades luz se relacionaran como:

$$\vec{p} = c\vec{p}_L$$

A velocidades intermedias y conservando los términos de orden v_L^3 la magnitud del momentum relativista es:

$$p_L \approx mv_L + \frac{1}{2}mv_L^3$$

Este segundo término no se conocía en el mundo clásico.

En el algoritmo abajo mostramos el momentum relativista de una partícula como función de su velocidad.

%matplotlib inline

(Algoritmo 4.10)

85

from numpy import linspace vLs=linspace(0,0.5,100) gammas=1/(1-vLs**2)**0.5

```
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.gca()

pls_new=m*vls
pls_rel=gammas*m*vls
pls_apr=m*vLs+0.5*m*vLs**3

ax.plot(vLs,pLs_new,label="Momentum Newtoniano")
ax.plot(vLs,pLs_apr,label="Momentum post Newtoniano")
ax.plot(vLs,pls_rel,label="Momentum Relativista")

ax.set_xlabel("$v_{L}$")
ax.set_ylabel("$p_{L}$")
ax.legend()
ax.grid();

ver Figura 4.13
```


Figura 4.13: *Figura correspondiente al código* **4.10**.

masa relativística. Una interpretación *clásica* del momentum relativístico es decir que lo que sucede cuando una partícula se mueve su masa aumenta siguiendo la prescripción:

Nota (Cont.)

$$m_r = \frac{m}{\sqrt{1 - v_L^2}}$$

donde m_r se conoce como la **masa relativística**. La mayoría de los autores consideran hoy esta interpretación como conceptualmente imprecisa sino incorrecta. Hay varias razones para ello, siendo la más importante el hecho que siendo m un escalar no asociado a ninguna cantidad geométrica, no existe una justificación de porque debería transformar como se indica arriba.

Adicionalmente si vemos la expresión para el momentum post Newtoniano:

$$p_L \approx mv_L + \frac{1}{2}mv_L^3$$

notamos que en realidad el aumento de p_L con la velocidad, por encima del valor newtoniano mv_L es producto de los términos que no habían sido descubiertos y no del aumento en la masa.

Energía cinética relativistica 4.12.3.

El momentum relativista nos sirve para definir otras cantidades útiles. En mecánica clásica el teorema del trabajo y la energía establece que:

$$K = \int_0^{\vec{r}} \vec{F} \cdot d\vec{r}$$

En esta expresión d \vec{r} es parte de un cuadrivector, pero la fuerza clásica \vec{F} no lo es.

Una forma más conveniente de escribir esta expresión clásicamente es identificando:

$$\vec{F} \cdot d\vec{r} = \vec{v} \cdot d\vec{p}$$

Escribiendo la energía cinética de este modo:

$$K = \int \vec{v} \cdot d\vec{p}$$

Postulado 4.4

Postulado de la energía cinética. La energía cinética relativista (covariante) se relaciona con el momentum relativista como:

$$k \equiv \int_0^{\vec{v}} \vec{v} \cdot \mathrm{d}\vec{p}$$

o en unidades luz:

Postulado 4.4 (Cont.)

$$k_L \equiv \int_0^{\vec{v}_L} \vec{v}_L \cdot \mathrm{d}\vec{p}_L$$

Por la definición de la energía cinética relativista, la relación entre esta cantidad expresada en unidades luz y la misma cantidad expresada en unidades convencionales es:

$$k = c^2 k_L$$

¿Cómo se expresa la energía cinética explícitamente como función de la velocidad?. En la mecánica Newtoniana sabemos que:

$$K = \frac{1}{2}mv^2$$

cambio de mayúsculas por minúsculas en mecánica relativista. Es corriente cambiar las letras que usamos para las cantidades mecánica de acuerdo a si son las clásicas (newtonianas) o las relativísticas. Normalmente, si una cantidad se representa con una letra minúscula en la mecánica newtoniana, se representará con una letra mayúscula en la mecánica relativista y viceversa. Existen, naturalmente, algunas excepciones notables. A continuación se enumeran estas *transformaciones* de notación:

Mecnica Newtoniana \rightarrow Mecnica Relativista $\vec{v} \rightarrow U^{\mu}$ (cuadrivelocidad) $\vec{a} \rightarrow A^{\mu}$ (cuadriaceleracin) $m \rightarrow m$ (masa invariante) $\vec{p} \rightarrow \vec{p}$ (trimomentum) $\vec{p} \rightarrow P^{\mu}$ (cuadrimomentum) $K \rightarrow K$ (energa cintica relativista) $E \rightarrow E$ (energa total relativista) $\vec{F} \rightarrow f^{\mu}$ (cuadrifuerza)

Reemplazando la definición del momentum relativista en la definición de energía cinética:

$$k_L = \int_0^{ec{v}_L} ec{v}_L \cdot m \; \mathrm{d} \left(rac{ec{v}_L}{\sqrt{1-v_L^2}}
ight)$$

Integrando por partes obtenemos:

$$k_L = (\gamma - 1)m$$

o en unidades convencionales

$$k = (\gamma - 1)mc^2$$

Expandiendo $\gamma - 1$:

$$k_L \approx \frac{1}{2} m v_L^2$$

que coincide con lo que sabemos en mecánica Newtoniana.

4.12.4. Energía total relativista

Una manera de escribir la energía cinética es:

$$k_L = \gamma m - m$$

o en unidades convencionales:

$$k = \gamma(v)mc^2 - \gamma(0)mc^2$$

donde hemos usado el hecho de que $\gamma(0) = 1$.

Estas dos expresiones dan la idea de que cuando sobre una partícula se realiza un trabajo (igual a k) una cantidad asociada con la partícula cambia de valor. No importa la naturaleza del trabajo realizado, siempre esa cantidad cambia de valor. La cantidad es:

$$E = \gamma mc^2$$

o en unidades luz:

$$E_L = \gamma m$$

¿Qué tiene de especial esta cantidad?. Puede mostrarse (ver Problemas al final del capítulo) que esta cantidad se conserva.

4.16

Proposición. Conservación de la energía total relativista. Dado un sistema aislado formado por partículas de masas invariantes $\{m_i\}$ que se mueven con velocidades instantáneas $\{\vec{v}_i\}$ que pueden cambiar en el tiempo como resultado de su mutua interacción, entonces la cantidad:

$$E \equiv \sum_{i} (k_i + m_i c^2) = \sum_{i} \gamma(v_i) m_i c^2$$

es constante. Llamaermos a E la **energía total** del sistema.

En unidades luz:

$$E_L \equiv \sum_i \gamma(v_{Li}) m_i$$

4.12.5. Cuadrimomentum

Hasta ahora todas las cantidades mecánicas definidas son cantidades vectoriales (trivectores) o escalares. Sin embargo para formular leyes físicas covariantes, estas deben escribirse rigurosamente en términos de tensores.

Existe una poderosa simetría en relatividad que emerge de las relaciones anteriores.

Nótese que hemos postulado y demostrado la conservación de dos cantidades claves:

- Momentum relativista: $\vec{p}_L = \gamma m \vec{v}_L$
- Energía relativista: $E_L = \gamma m$

¿Podrían estas dos cantidades usarse para definir una única cantidad conservada en 4 dimensiones?. Es fácil ver que si definimos la cantidad:

$$P_L^\mu:(E_L,\vec{p}_L)$$

las componentes de esta cantidad serán conservadas y por lo tanto la cantidad cuadrivectorial será conservada también.

En términos de la masa invariante y la velocidad la cantidad se escribe:

$$P_L^{\mu}: m\gamma(1, \vec{v}_L)$$

pero identificamos aquí a la cuadrivelocidad $U_L^\mu:\gamma(1,\vec{v}_L)$ y por lo tanto podemos escribir:

$$P_L^{\mu} = mU_L^{\mu}$$

Proposición: Conservación del cuadrimomentum. Si en un sistema aislado definimos el cuadrimomentum como:

$$P_L^{\mu} \equiv \sum_i m_i U_{iL}^{\mu}$$

entonces esta cantidad se mantiene constante. El cuadrimomentum de cada partícula tiene componentes:

$$P_{iL}^{\mu}:(E_{iL},\vec{p}_{iL})$$

o en unidades convencionales:

$$P_i^{\mu}:(E/c,\vec{p}_i)$$

4.12.6. Magnitud del cuadrimomentum y la simetría gauge

¿Cuál era la simetría de la que hablabamos antes?. La magnitud del cuadrimomentum es por definición:

$$|P_L^{\mu}|^2 = |mU_L^{\mu}|^2 = m^2$$

y por componentes:

$$|P_L^{\mu}|^2 = E_L^2 - p_L^2$$

De aquí se sigue la relación fundamental:

$$m^2 = E_L^2 - p_L^2$$

o en unidades convencionales:

$$m^2 = E^2/c^4 - p^2/c^2$$

que se escribe tradicionalmente como:

$$(mc^2)^2 = E^2 - (pc)^2$$

La masa como una cantidad geométrica. Vemos que el cuadrimomentum ofrece una interesante interpretación para la masa. La masa como la magnitud del cuadrimomentum. Esto explica su invarianza (los módulos son invariantes geométricos). Sin embargo debe entenderse que la masa como módulo del cuadrimomentum es *resultado* de asumir que es una cantidad invariante y no al revés.

Esta relación es increíble porque abre la posibilidad para que las partículas tengan masa nula. Si

$$E_L = p_L$$

o lo que es lo mismo, en unidades convencionales:

$$E/c^2 = p/c$$

o bien

$$E = pc$$

entonces la partícula tendrá masa nula.

Esta última relación es conocida en el electromagnetismo y es la relación entre la energía y el momentum transportado por una onda electromagnética. Es decir, podemos asociar a las ondas electromagnéticas masa nula. En la moderna teoría cuántica de campos a esta condición se la llama **simetría gauge**.

4.12.7. Cuadrimomentum en el espacio-tiempo

La relación entre la masa, la energía y el momentum, muestra una propiedad muy interesante en el espacio-tiempo. Si construimos un espacio con coordenadas E_L y p_{Lx} (espacio energía-momentum) entonces la ecuación de la masa indica que

no importa el estado de movimiento en el que se encuentre una partícula siempre estará sobre una hipérbola en este espacio.

Si usamos el hecho:

$$E_L^2 = m^2 + p_{Lx}^2$$

podemos hacer una gráfica del lugar geométrico del cuadrimomentum en el espacio energía-momentum para distintas velocidades.

```
%matplotlib inline
                                                               (Algoritmo 4.11)
#Masa de la partícula
m=1 # kg
#Momenta y energías
from numpy import linspace, sqrt
pLs=linspace(0,3)
ELs=sqrt(m**2+pLs**2)
#Gráfico
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.gca()
ax.plot(ELs,pLs)
#Decoración
rang=ELs.max()
ax.set_xlim((0,rang))
ax.set_ylim((0,rang))
ax.plot([0,rang],[0,rang],'k--')
ax.set_xlabel("$E_L$");
ax.set_ylabel("$p_{Lx}$");
ax.grid();
fig.tight_layout();
                                                                ver Figura 4.14
```

4.13. Colisiones relativistas

Una de las más interesantes aplicaciones que tiene la dinámica relativista, es el estudio de colisiones entre partículas de alta energía. Estas colisiones pueden ocurrir en el Universo en el interior de estrellas agonizantes, en el Universo primitivo, en los rayos cósmicos cuando colisionan con el medio interestelar o la atmósfera de la Tierra e incluso con la radiación de fondo. Naturalmente, en la Tierra, las colisiones de alta energía se han usado por décadas para estudiar la estructura íntima de la materia y el funcionamiento de las fuerzas fundamentales.

Figura 4.14: *Figura correspondiente al código* **4.11**.

4.13.1. Energía en el centro de masa

Considere dos partículas idénticas que chocan. Una de ellas esta animada de una velocidad muy grande (vista en el sistema de referencia del observador (que llamaremos aquí sistema de referencia del laboratorio) y la otra esta en reposo allí. ¿Cómo son sus cuadrimomentos individuales? ¿cuál es su cuadrimomento total?

Consideremos en general dos partículas de masas diferentes, m_1 (impactor) y m_2 (objetivo o target). Inicialmente el impactor tiene una velocidad en el sistema de referencia del laboratorio $v_1^{\rm lab}$ que lo anima de un momento lineal allí $p_{L1} = \gamma_1 m_1 v_1^{\rm lab}$. El cuadrimomento total en el laboratorio será:

$$P_L^{\text{lab}}: (E_{L1}^{\text{lab}}, p_{L1}^{\text{lab}}) + (E_{L2}^{\text{lab}}, 0)$$

El módulo de este cuadrimomento será:

$$\begin{array}{lcl} M^2 & = & (E_{L1}^{\mathrm{lab}} + E_{L2}^{\mathrm{lab}})^2 - (p_{L1}^{\mathrm{lab}})^2 \\ & = & (E_{L1}^{\mathrm{lab}})^2 - (p_{L1}^{\mathrm{lab}})^2 + (E_{L2}^{\mathrm{lab}})^2 + 2E_{L1}^{\mathrm{lab}}E_{L2}^{\mathrm{lab}} \\ & = & m_1^2 + m_2^2 + 2m_2E_{L1}^{\mathrm{lab}} \end{array}$$

donde hemos introducido el parámetro M como el módulo del cuadrimomento total.

Si nos pasamos ahora al **sistema de referencia del centro de masa**, es decir, aquel en el que el momento lineal total del sistema es cero:

$$P_L^{\text{CM}}: (E_{L1}^{\text{CM}}, p_L^{\text{CM}}) + (E_{L2}^{\text{CM}}, -p_L^{\text{CM}})$$

En este sistema de referencia el módulo del cuadrimomento será el mismo, pero su dependencia de las masas de las partículas individuales será diferente:

$$M^2 = (E_{L1}^{\text{CM}} + E_{L2}^{\text{CM}})^2 = (E_L^{\text{CM,fix}})^2$$

La diferencia será que esta energía esta completamente disponible para la producción de partículas. Igualando nos queda:

$$E_L^{\text{CM,fix}} = \sqrt{m_1^2 + m_2^2 + 2m_2 E_{L1}^{\text{lab}}}$$

Si asumimos que la energía de la partícula impactora es mucho mayor que su masa y la del blanco $E_{L1}^{\text{lab}} \gg m_1, m_2$, entonces la energía del impacto en el centro de masa será:

$$E_L^{\text{CM,fix}} \approx \sqrt{2m_2 E_{L1}^{\text{lab}}}$$

¿Qué pasa ahora si lo que tengo ahora son dos partículas que se mueven una hacia la otra con una cierta velocidad?. EN ese caso el momento total será:

$$P_L^{\text{lab}}: (E_{L1}^{\text{lab}}, p_{L1}^{\text{lab}}) + (E_{L2}^{\text{lab}}, -p_{L2}^{\text{lab}})$$

cuyo módulo será:

$$\begin{array}{lll} (E_L^{\rm CM,col})^2 & = & (E_{L1}^{\rm lab} + E_{L2}^{\rm lab})^2 - (p_{L1}^{\rm lab} - p_{L2}^{\rm lab})^2 \\ & = & (E_{L1}^{\rm lab})^2 - (p_{L1}^{\rm lab})^2 + (E_{L2}^{\rm lab})^2 - (p_{L1}^{\rm lab})^2 + 2(E_{L1}^{\rm lab}E_{L2}^{\rm lab} + p_{L1}^{\rm lab}p_{L2}^{\rm lab}) \\ & = & m_1^2 + m_2^2 + 2(E_{L1}^{\rm lab}E_{L2}^{\rm lab} + p_{L1}^{\rm lab}p_{L2}^{\rm lab}) \end{array}$$

¿Cuál es la diferencia entre esta situación y la anterior?. Si suponemos que $E_{L1}^{\mathrm{lab}}, E_{L2}^{\mathrm{lab}} \gg m_1, m_2$ y por tanto $p_{L1}^{\mathrm{lab}} \approx E_{L1}^{\mathrm{lab}}$ y $p_{L2}^{\mathrm{lab}} \approx E_{L2}^{\mathrm{lab}}$, entonces la enegría en el centro de masa de estas colisiones será:

$$E_L^{\text{CM,col}} \approx \sqrt{4E_{L1}^{\text{lab}}E_{L2}^{\text{lab}}}$$

Comparando las energía disponibles en el centro de masa en el caso de una colisión con un objetivo fijo y la colisión de dos haces, vemos que la energía disponible en este segundo caso es mucho mayor.

Pongámosle número a estos procesos. Imaginemos que tenemos un acelerador que puede llevar protones hasta 7 TeV de energía (energía típica en el LHC). ¿Cuánta energía en el centro de masa podemos conseguir si disparamos estos protones hacia protones que están en reposo?. En unidades convencionales:

$$\frac{E^{\text{CM,fix}}}{c^2} \approx \sqrt{2m_2 \frac{E_1^{\text{lab}}}{c^2}}$$

o lo que es lo mismo:

$$E^{\text{CM,fix}} \approx \sqrt{2(m_2c^2)E_1^{\text{lab}}}$$

La energía en reposo de un protón $mc^2 = 938 \text{ MeV} = 0.938 \text{ TeV}.$

#Masa del protón mc2=0.938 #TeV E1_lab=7 #TeV

```
#Energía en el centro de masa para choque fijo
ECM_fix=(2*mc2*E1_lab)**0.5
```

 $ECM_fix = 3.6238101495525394 TeV$

En contraposición la energía en el centro de masa obtenida si hacemos chocar dos haces de protones con 7 TeV es:

```
#Energía en el centro de masa para colision
ECM_col=(4*E1_lab*E1_lab)**0.5
```

```
ECM_col = 14.0 TeV
ECM_col / ECM_fix = 3.86
```

Es decir, con una colisión frontal es posible extraer casi 4 veces más energía de una colisión que con la colisión en reposo.

Cuánta energía necesitaría un haz de protones que choca contra un blanco fijo de protones para igualar esta energía e 14 TeV. Igualando $E^{\text{CM,fix}}$ con $E^{\text{CM,lab}}$ obtenemos:

$$\sqrt{2mE_L^{\text{lab,fix}-\text{eq}}} = \sqrt{4(E_L^{\text{lab,col}})^2}$$

y despejando $E_L^{\text{lab,fix}-\text{eq}}$ obtenemos:

$$E_L^{\text{lab,fix}-\text{eq}} = \frac{2(E_L^{\text{lab,col}})^2}{m}$$

De modo que para igualar la energía en el centro de masa obtenida por una colisión de haces de protones ($mc^2=0.938\,\text{TeV}$) con energía $E^{\text{lab,col}}=1\,\text{TeV}$, será:

$$E_L^{\text{lab,fix}-\text{eq}} \approx 418 \text{ TeV}$$

4.13.2. Choques con la luz

Los choques con fotones son una de las situaciones más comunes en astrofísica de altas energías. Lo que debemos tener en cuenta cuando describimos la colisión con un fotón es que su masa invariante es cero, de modo que:

$$E_L^{\text{fotn}} = p_L^{\text{fotn}}$$

Existen tres posibles resultados de la colisión con un fotón:

- 1. **Efecto Compton**. La dispersión de un fotón de alta energía contra una partícula, de modo que la partícula recibe energía del fotón.
- Efecto Compton inverso. La dispersión de una partícula de alta energía contra un fotón, de modo que el fotón recibe energía.
- Absorción. La absorción de un fotón de alta energía por una partícula y la producción de nuevas partículas a partir de este proceso.

Consideremos el último proceso. Un caso partícular de una reacción de este tipo se produce en la radiación cósmica de fondo (RCF). En este caso protones de alta energía pueden chocar con los fotones de la RCF produciendo la reacción:

$$\gamma + p \rightarrow p + \pi^+$$

donde $m_pc^2=938~{\rm MeV}$ y $m_\pi c^2=140~{\rm MeV}$. ¿Cuál es la energía mínima que deber tener el protón para producir esta reacción con un fotón con una energía dada?

Podemos calcular esta energía asumiendo que al crearse, el neutrón y el pión resultante de la reacción anterior se crean en reposo en el sistema de referencia de su centro de masa (esta sería la mínima energía). Ahora bien, como el módulo del cuadrimomentum es el mismo en cualquier sistema de referencia de modo que:

$$|P_{L\gamma}^{\text{lab}} + P_{Lp}^{\text{lab}}|^2 = |P_{Lp}^{\text{res}} + P_{L\pi}^{\text{res}}|^2 |(E_{L\gamma}^{\text{lab}} + E_{Lp}^{\text{lab}}, E_{L\gamma}^{\text{lab}} - p_{Lp}^{\text{lab}})|^2 = (m_p + n_\pi)^2 2E_{L\gamma}^{\text{lab}} E_{Lp}^{\text{lab}} + m_p^2 + 2p_{Lp}^{\text{lab}} E_{L\gamma}^{\text{lab}} = (m_p + n_\pi)^2$$

Si dejamos solo las propiedades del protón en un solo lado:

$$E_{Lp}^{\text{lab}} + p_{Lp}^{\text{lab}} = \frac{(m_p + m_\pi)^2 - m_p^2}{2E_{L\gamma}^{\text{lab}}}$$

Usando la relación $(p_{Lp}^{\rm lab})^2=(E_{Lp}^{\rm lab})^2-m_p^2$, la energía del protón estaría determinada por:

$$E_{Lp}^{\text{lab}} + \sqrt{(E_{Lp}^{\text{lab}})^2 - m_p^2} = \frac{m_\pi^2 + 2m_\pi m_p}{2E_{L\gamma}^{\text{lab}}}$$

4.13.3. Una aplicación: El límite GZK

Ahora bien ¿en qué situaciones un protón de alta energía puede toparse con un fotón? Para que esto pase la abundancia de fotones debe ser enorme. Los fotones más energéticos en el Universo son los fotones de la radiación cósmica de fondo que tienen además una muy pequeña energía $E_{\gamma}=2,5\times 10^{-10}$ MeV. Esto implica que para producir la reacción anterior el protón debe tener una energía enorme, $E_{Lp}^{\rm lab}\gg m_p$. Con esto podemos finalmente aproximar la expresión anterior como:

$$E_{Lp}^{\mathrm{lab}} pprox rac{m_{\pi}^2 + 2m_{\pi}m_p}{4E_{L\gamma}^{\mathrm{lab}}}$$

que en unidades convencionales quedaría:

$$E_p^{\text{lab}} \approx \frac{(m_\pi c^2)^2 + 2(m_\pi c^2)(m_p c^2)}{4E_{\gamma}^{\text{lab}}}$$

Usando la energía de los fotones de rayos gama obtenemos:

mpc2=938 #MeV mpic2=140 #MeV

```
ERCF=2.5e-10 #MeV

Ep=((mpic2)**2+2*mpic2*mpc2)/(4*ERCF)
```

Energía límite de protones = 2.822400e+20 eV

Llamamos a este el *umbral de Greisen–Zatsepin–Kuzmin* y corresponde a la energía máxima en la que un protón de rayos cósmicos puede viajar sin sufrir interacciones relavantes con los fotones de la radiación de fondo.

4.13.4. Colisiones relativistas interactivas

Una excelente manera de entender las colisiones relativistas y algunos de los resultados que hemos mostrado antes es graficando el resultado de estas interacciones en diagramas espacio-tiempo.

En el código interactivo abajo podemos ver el resultado de la colisión de dos partículas cuya naturaleza se puede modificar a voluntad y cambiar el sistema de referencia desde el que se ve la colisión.

```
def colision_relativista(m1=940,E1=7000,
                         m2=940, E2=940,
                         uL=0.0,
                         rang=5000,
                         ):
   m1=float(m1)
   m2=float(m2)
   E1=float(E1)
   E2=float(E2)
    #Factor gama de las partículas
    if m1>0:
        gama1=E1/m1
        pc1=(E1**2-m1**2)**0.5
    else:
       pc1=E1
    if m2>0:
        gama2=E2/m2
        pc2=(E2**2-m2**2)**0.5
    else:
        pc2=E2
    #Componentes de los cuadrimomentos
    from numpy import array
    P1=array([E1,pc1])
    P2=array([E2,-pc2])
    #Rotar los ejes de acuerdo a uL
    gamma=1/(1-uL)**0.5
   Pp1=array([0,0])
    Pp1[0]=gamma*(P1[0]-uL*P1[1])
    Pp1[1]=gamma*(-uL*P1[0]+P1[1])
```

```
Pp2=array([0,0])
    Pp2[0] = gamma*(P2[0] - uL*P2[1])
    Pp2[1]=gamma*(-uL*P2[0]+P2[1])
    #Cuadrimomento total
    PpT=Pp1+Pp2
    #Masa asociada
   M=(PpT[0]**2-PpT[1]**2)**0.5
    #Gráfica
    import matplotlib.pyplot as plt
    plt.close("all")
    fig=plt.figure(figsize=(5,5))
    ax=fig.gca()
    ax.arrow(0,0,Pp1[0],Pp1[1],color='r',lw=2,zorder=100)
    ax.arrow(0,0,Pp2[0],Pp2[1],color='r',lw=2,zorder=100)
    ax.arrow(0,0,PpT[0],PpT[1],color='b',zorder=100)
    ax.arrow(0,0,M,0,color='k',lw=2,alpha=0.3,zorder=100)
    #Decoración
    ax.grid(zorder=-100);
    ax.set_xlim((-0.1,rang));
    ax.set_ylim((-rang,rang));
    ax.set_title(f"$u_L={uL:0.2f}$ c, $m_1 c^2={m1}$ MeV, $m_2 c^2={m2}$ MeV",fontsize=10
    ax.set_xlabel(f"$E$ [MeV]");
    ax.set_ylabel(f"$pc$ [MeV]");
    fig.tight_layout();
                                                             (Algoritmo 4.12)
from ipywidgets import interact, fixed, widgets
opciones=dict(continuous_update=False)
interact(colision_relativista,
```

4.14. Cuadrifuerza

Uno de los conceptos más complicados de la mecánica Newtoniana es el concepto de fuerza. Podría decirse que, incluso en el siglo xxi las discusiones alrededor de este concepto han sido difícilmente resueltas. No es la excepción para el mismo

4.14. Cuadrifuerza 99

Figura 4.15: *Figura correspondiente al código* **4.12**.

concepto pero en el contexto de la dinámica relativista.

En la mecánica newtoniana la *fuerza resultante* se define como:

$$\vec{\mathcal{F}} \equiv \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \frac{\mathrm{d}(m\vec{v})}{\mathrm{d}t}$$

es decir, entendemos por fuerza la manifestación de cualquier cambio en el momento lineal de una partícula. Una cosa muy diferente es cuál es el origen de ese cambio.

Independientemente se postula la existencia de fenómenos que se manifiestan a través de lo que podemos llamar *fuerzas aplicadas* \vec{F} . Así por ejemplo la fricción de dos superficies en el movimiento de cuerpos macroscópicos se describe con una fuerza aplicada efectiva que llamamos *fuerza de fricción* y que se modela de formas muy diversas. La atracción evidente entre cuerpos con masa se modela también con una fuerza aplicada conocida, la fuerza gravitacional, y el caso de una partícula cargada que se mueve en un campo eléctrico y magnético, también puede modelarse usando una fuerza aplicada (la fuerza de Lorentz).

El postulado de fuerza Newtoniano se puede formular diciendo que la fuerza aplicada (cualquiera de las anteriores) es igual a la fuerza resultante:

$$\vec{\mathcal{F}} = \vec{F}$$

o en otros términos:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}$$

que es la que llamamos también la segunda ley de Newton.

La pregunta de la relatividad sería ¿cuál es la versión covariante de esta ley? ¿se reduce la versión covariante del postulado de fuerzas a la versión relativista a bajas velocidades?

Previamente habíamos definido el trimomentum como:

$$\vec{p} \equiv \gamma(v) m \vec{v}$$

Mostramos que esta cantidad se conserva en las colisiones.

De aquí podemos definir la trifuerza aplicada como:

$$\vec{\mathcal{F}} \equiv \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \frac{\mathrm{d}(\gamma m\vec{v})}{\mathrm{d}t}$$

esta cantidad es la que esta implicada en los procesos de interacción reales (covariantes), aquella que se relaciona con la conservación del trimomentum. Nótese la diferencia entre esta definición y la definición clásica, en tanto en esta definición esta presente el factor de Lorentz-Einstein.

Curiosamente, el desarrollo del lado derecho de la ecuación anterior no conduce a ninguna expresión relevante o simple (aunque naturalmente puede hacerse). Solo la introducción de una cantidad más general puede darnos luz sobre la verdadera interpretación de esta cantidad.

De la misma manera como definimos el cuadrimomentum podemos definir ahora la cuadrifuerza en analogía:

$$f^{\mu} \equiv \frac{\mathrm{d}P^{\mu}}{\mathrm{d}\tau}$$

Esta ecuación puede escribirse de dos maneras diferentes:

1. Como una forma generalizada de la segunda ley de Newton en el espaciotiempo:

$$f^{\mu} = mA^{\mu}$$

de donde podemos obtener las componentes de la cuadrifuerza usando aquellas que dedujimos para la cuadriaceletación:

$$f_L^{\mu}: \gamma^4(m\vec{a}_L \cdot \vec{v}_L, m\vec{a}_L)$$

2. Derivando explícitamente las componentes del cuadrimomentum obtenemos:

$$f_L^{\mu}:\left(\gamma \frac{\mathrm{d}E_L}{\mathrm{d}t}, \gamma \vec{\mathcal{F}}_L\right)$$

4.14. Cuadrifuerza 101

La componente temporal de este cuadrivector es, como la trifuerza truculenta de calcular. Sin embargo si usamos la propiedad de ortogonalidad $A^{\mu} \cdot U^{\nu} = 0$ y sabemos que $f^{\mu} \propto A^{\mu}$, podemos decir que:

$$f_L^0 U_L^0 = \vec{f}_L \cdot \vec{U}_L$$

de donde obtenemos:

$$f_L^0 = \vec{f}_L \cdot \vec{v}_L$$

Finalmente las componentes de la cuadrifuerza se pueden escribir como:

$$f_L^\mu:\gamma(\vec{\mathcal{F}}_L\cdot\vec{v}_L,\vec{\mathcal{F}}_L)$$

De esta última expresión derivamos la importante relación:

$$\frac{\mathrm{d}E_L}{\mathrm{d}t} = \vec{\mathcal{F}}_L \cdot \vec{v}_L$$

que es idéntica a su análoga newtoniana pero con la energía cinética.

Como sabemos que $E_L = \gamma m$ esta relación puede también escribirse como:

$$\frac{\mathrm{d}(\gamma m)}{\mathrm{d}t} = \vec{\mathcal{F}}_L \cdot \vec{v}_L$$

Nota: Unidades luz de la trifuerza. Por la definición misma de la trifuerza, $\vec{\mathcal{F}} = d\vec{p}/dt$ la relación entre la fuerza en unidades luz y la fuerza en unidades convencionales sería:

$$\vec{F} = c\vec{F}_I$$

Volviendo a la definición de trifuerza:

$$ec{\mathcal{F}}_L = rac{ ext{d}(\gamma m ec{v}_L)}{ ext{d}t} = rac{ ext{d}(\gamma m)}{ ext{d}t} ec{v}_L + \gamma m ec{a}_L$$

y usando la relación recien obtenida obtenemos:

$$\vec{\mathcal{F}}_L = \gamma m \vec{a}_L + (\vec{\mathcal{F}}_L \cdot \vec{v}_L) \vec{v}_L$$

Proposición 4.17

Ley de fuerza relativista. Si sobre una partícula (masa invariante constante m) actua una fuerza aplicada \vec{F}_L , entonces la aceleración espacial experimentada por la partícula esta dada por:

$$\vec{a}_L = \frac{1}{\gamma m} [\vec{F}_L - (\vec{F}_L \cdot \vec{v}_L) \vec{v}_L]$$

Es interesante notar que a diferencia de la aceleración newtoniana, la aceleración relativista \vec{a}_L no es necesariamente paralela a la fuerza aplicada. La ley de fuerza relativista muestra que los tres vectores residen sobre el mismo plano, pero no necesariamente son paralelos unos a tros.

Una manera alternativa de escribir la ley de fuerza relativista sería descomponer la aceleración y la fuerza en componentes paralelas y perpendiculares a la velocidad:

$$\gamma m(\vec{a}_{L\parallel} + \vec{a}_{L\perp}) = \vec{F}_{L\parallel} + \vec{F}_{L\parallel} - \vec{F}_{L\parallel} v_L^2$$

igualando componente a componente, podemos reescribir la ley como:

$$a_{L\parallel} = \frac{1}{\gamma^3 m} F_{L\parallel}$$
 $a_{L\perp} = \frac{1}{\gamma m} F_{L\perp}$

En unidades convencionales:

$$a_{\parallel} = \frac{1}{\gamma^3 m} F_{\parallel}$$

 $a_{\perp} = \frac{1}{\gamma m} F_{\perp}$

Definición 4.13

Inercia direccional. Definimos la **inercia**. de una partícula en una dirección \hat{v} , \mathcal{I}_v , como el cociente entre la componente de la fuerza aplicada en esa dirección y la componente de la aceleración experimentada en la misma dirección:

$$\mathcal{I}_{\sqsubseteq} \equiv rac{ec{\mathcal{F}} \cdot \dot{\sqsubseteq}}{ec{\dashv} \cdot \dot{\sqsubseteq}}$$

De forma interesante la ley de fuerza relativista muestra que una partícula tiene una inercia diferente en distintas direcciones relativas a su velocidad. Así, en dirección perpendicular a la velocidad la inercia de una partícula es $\mathcal{I}_{\perp} = \bigcirc \updownarrow$ mientras que en dirección paralela es $\mathcal{I}_{\parallel} = \bigcirc \updownarrow$.

4.14.1. Reglas de transformación de la fuerza

Una interesante consecuencia de los desarrollos anteriores alrededor de los conceptos de fuerza en la dinámica relativista es entender que a diferencia de lo que pasa en la física newtoniana, en la relatividad la fuerza no es la misma cuando es medida por distintos observadores inerciales.

La cuadrifuerza transforma de acuerdo a las TLE:

$$f^{\mu} = \Lambda^{\mu}_{\nu'} f^{\nu'}$$

4.14. Cuadrifuerza 103

De allí se deduce que la trifuerza resultante $\vec{\mathcal{F}}$ debe transformar como lo hace la componente espacial de cualquier cuadrivector:

$$\gamma_v ec F_L = \gamma_{v'} ec F_L' + \left(rac{\gamma_u - 1}{u_L^2} ec u_L \cdot \gamma_{v'} ec F_L' + \gamma_u \gamma_{v'} ec \mathcal{F}_L' \cdot ec v_L'
ight) ec u_L$$

o su inversa:

$$\gamma_{v'}ec{F}_L' = \gamma_vec{F}_L + \left(rac{\gamma_u - 1}{u_L^2}ec{u}_L\cdot\gamma_vec{F}_L - \gamma_u\gamma_vec{\mathcal{F}}_L\cdotec{v}_L
ight)ec{u}_L$$

Aquí es importante aclarar que en la expresión aparecen dos velocidades: la velocidad relativa entre los sistemas de referencia \vec{u} y la velocidad de la partícula sobre la que actúa la fuerza \vec{v} . Por la misma razón aparecen también dos γ diferentes, uno para cada velocidad.

Una primera consecuencia de esta relación es que si en un sistema de referencia una partícula esta en equilibrio $\vec{F} = \vec{o}$, también lo estará en el otro sistema de referencia. Es decir, el equilibrio es invariante.

Si descomponemos la fuerza en una componente paralela a la velocidad y una perpendicular a ella

$$\vec{F} = \vec{F}_{||} + \vec{F}_{||}$$

y asumimos que la partícula se mueve instantáneamente en la misma dirección relativa de los sistemas de referencia, es decir $\vec{v} \parallel \vec{u}$, entonces las dos componentes transformaran de acuerdo con las ecuaciones (ver Problemas al final del capítulo):

$$F_{\parallel} = \frac{F'_{L\parallel} + \vec{u}_L \cdot \vec{F}'_L}{1 + \vec{v}'_L \cdot \vec{u}_L}$$

$$F_{\perp} = \frac{\gamma_u^{-1} F'_{L\perp}}{1 + \vec{v}'_L \cdot \vec{u}_L}$$
(4.56)

$$F_{\perp} = \frac{\gamma_u^{-1} F_{L\perp}'}{1 + \vec{v}_I' \cdot \vec{u}_I} \tag{4.57}$$

(4.58)

Un hecho interesante que se deriva de estas relaciones es que la trifuerza relativista no puede tener cualquier forma, sino solo aquella que transforme de acuerdo con las anteriores condiciones. En particular vemos que la trifuerza relativista depende de la velocidad de una forma no trivial.

Una fuerza que no cumple esa condición es la fuerza de atracción gravitacional de Newton que puede probarse fácilmente, no transforma de acuerdo a las reglas anteriores. Es decir la fuerza gravitacional no es una fuerza compatible con la dinámica relativista. Si queremos modelar la gravedad será necesario que desarrollemos una teoría nueva sobre esta fuerza. Ese es justamente el propósito de la teoría general de la relatividad.

La fuerza de Lorentz 4.14.2.

La única fuerza modelada clásicamente que transforma de acuerdo a la prescripción anterior es la fuerza de Lorentz:

$$\vec{F} = q\vec{E} + q\frac{\vec{v}}{c} \times \vec{B}$$

Si tomamos el caso elemental en el que \vec{B} solo tiene componente z y hay un campo eléctrico en dirección de de y la fuerza sería:

$$F_{\nu} = qE_{\nu} - qv_L B_z$$

donde $v_L = v_x/c$ es la velocidad instantánea de la partícula en dirección x y en unidades luz.

Vamos a ver si esta fuerza transforma de acuerdo a lo que habíamos dicho. Para ello tomemos un observador inercial que se mueve con velociadad u_L en dirección de x. las leyes de transformación para los campos que habíamos derivado antes son:

$$B_z = \gamma_u \left(B'_z + u_L E'_y \right)$$

$$E_y = \gamma_u \left(E'_y + u_L B'_z \right)$$

Reemplazando queda:

$$F_{y} = \gamma_{u}[qE'_{y}(1 - u_{L}v_{L}) - q(u_{L} - v_{L})B'_{z}]$$

Reuniendo términos obtenemos:

$$F_y = \gamma_u (1 - u_L v_L) \left(q E_y' - q \frac{u_L - v_L}{1 - u_L v_L} B_z' \right)$$

Reconciendo que por la ley de adición de velocidades relativista:

$$v_L' = \frac{u_L - v_L}{1 - u_L v_L}$$

la anterior ecuación se puede escribir como:

$$F_y' = \frac{\gamma_u^{-1}}{1 - u_L v_L} F_y$$

que es justamente la regla de transformación para la componente perpendicular. Con esto queda probado que la fuerza de Lorentz es una trifuerza en sentido estricto.

4.14.3. Movimiento circular bajo la fuerza de Lorentz

No hay muchos problemas que se puedan resolver fácilmente usando el concepto de cuadrifuerza por sus rigurosas condiciones de transformación. Sin embargo hay una situación particular y muy útil en la cuál se puede aplicar la teoría vista hasta ahora.

Imaginemos que tenemos un electrón que entra en un campo magnético uniforme \vec{B} con una velocidad inicial \vec{v} constante y perpendicular al campo. ¿Cuál es la trayectoria que describe el electrón en el espacio?

4.14. Cuadrifuerza 105

De acuerdo con la fuerza de Lorenz la fuerza que experimenta el electrón es constante e igual a:

$$F = |q| \frac{v}{c} B$$

Dado que la fuerza es siempre perpendicular a la velocidad la partícula, concluímos que la partícula describirá una trayectoria circular y su velocidad se mantendrá constante. Esto no cambia así tengamos dinámica relativista.

Usando la ley de fuerza relativista y dado que la fuerza siempre es perpendicular, la aceleración centripeta estará dada por:

$$a = \frac{F}{\gamma m}$$

Dado que geometricamente sabemos que sobre un círculo $a=v^2/R$:

$$\frac{v^2}{R} = \frac{F}{\gamma m}$$

y reemplazando la fuerza de Lorentz obtenemos:

$$\frac{v^2}{R} = \frac{|q|vB}{\gamma mc}$$

Despejando el radio obtenemos:

$$R = \frac{\gamma mcv}{qB}$$

Este resultado contrasta con el resultado clásico:

$$R_N = \frac{mcv}{qB}$$

por el factor γ .

4.14.4. Ecuación de movimiento relativista

De la misma manera que en la teoría newtoniana el movimiento de una partícula se predice una vez se han especificado las fuerzas que actúan sobre ella a través de la denominada ecuación de movimiento, podemos hacer los mismo en el marco de la teoría de la relatividad.

Para ello partimos de la definición:

$$A_L^{\mu}: \left(\frac{\mathrm{d}^2 t}{\mathrm{d}\tau^2}, \frac{\mathrm{d}^2 \vec{r}_L}{\mathrm{d}\tau^2}\right)$$

y de la ley de fuerza covariante:

$$f^{\mu} = mA^{\mu}$$

Usando las componentes de la cuadrifuerza podemos escribir las ecuaciones de movimiento en función de la fuerza aplicada como:

$$m\frac{\mathrm{d}^2 t}{\mathrm{d}\tau^2} = \gamma \vec{F}_L \cdot \vec{v}_L \tag{4.59}$$

$$m\frac{\mathrm{d}^2\vec{r}_L}{\mathrm{d}\tau^2} = \gamma \vec{F}_L \tag{4.60}$$

con
$$\gamma = (1 - v_L^2)^{-1/2}$$
.

Estas ecuaciones corresponden a un conjunto de 4 ecuaciones diferenciales escalares de segundo orden en las que debe especificarse explícitamente la forma de la fuerza que en general depende de la posición, la velocidad y el tiempo propio:

$$\vec{F}_L = \vec{F}_L(\vec{r}_L, \vec{v}_L, \tau)$$

Debe recordarse, sin embargo, que \vec{F}_L debe satisfacer las reglas de transformación definidas antes, tal y como lo hacen por ejemplo las fuerzas de Lorentz.

4.14.5. Un ejemplo numérico

Para poner en práctica todo lo visto en esta sección podemos estudiar el movimiento de un electrón en un campo magnético en condiciones mucho más generales de las consideradas en el ejemplo analítico de la sección anterior. Es natural que en una situación real el electrón radiara parte de su energía y el resultado que obtendremos no será el mismo pero supongamos que esas perdidas son pequeñas.

Para ello primero debemos escribir el sistema de ecuaciones de primer orden correspondiente a las ecuaciones de movimiento:

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = U_t$$

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = U_{Lx}$$

$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = U_{Ly}$$

$$\frac{\mathrm{d}z}{\mathrm{d}\tau} = U_{Lz}$$

$$\frac{\mathrm{d}U_t}{\mathrm{d}\tau} = \frac{\gamma}{m}\vec{F}_L \cdot \vec{v}_L$$

$$\frac{\mathrm{d}U_{Lx}}{\mathrm{d}\tau} = \frac{\gamma}{m}\vec{F}_{Lx}$$

$$\frac{\mathrm{d}U_{Ly}}{\mathrm{d}\tau} = \frac{\gamma}{m}\vec{F}_{Ly}$$

$$\frac{\mathrm{d}U_{Lz}}{\mathrm{d}\tau} = \frac{\gamma}{m}\vec{F}_{Lz}$$

Podemos además usar el hecho que $U_t=\gamma$. Si hacemos la asignación Y_i : (t,x,y,z) y Y_{4+i} : $(U_t,U_{Lx},U_{Ly},U_{Lz})$ para i=0,1,2,3, las anteriores ecuaciones se pueden implementar con la siguiente rutina:

4.14. Cuadrifuerza 107

```
def edm_lorentz(Y,tau,m,q,EL,BL):
   Ecuaciones de movimiento de la dinámica relativista
    #tiempo, posicion y velocidad
   t=Y[0]
   rL=Y[1:4]
   Ut=Y[4]
   UL=Y[5:]
    #Factor gamma
   from numpy import sqrt
    gama=Ut
   vL=UL/gama
    #Trifuerza
   from numpy import cross
   FL=q*EL(rL,t)+q*cross(vL,BL(rL,t))
    #Ecuaciones de movimiento
   from numpy import dot
   dtdtau=Ut
   drdtau=UL
   dUtdtau=gama*dot(FL,vL)/m
   dULdtau=gama*FL/m
   return [dtdtau]+list(drdtau)+[dUtdtau]+list(dULdtau)
```

Las propiedades de las partículas serán:

```
c=3e8 #m/s
me=9.11e-31 #kg
e=-1.6e-19 #C

#Velocidad inicial
v=0.5*c
gama=1/(1-(v/c)**2)**0.5

#Campo magnético y eléctrico
Bo=10.0 #Teslas
Eo=0.0 #V/m

#Radio de giro
Rg=gama*me*c*v/(abs(e)*Bo)

#Tiempo en el laboratorio de giro
from numpy import pi
Tg=2*pi*Rg/v
```

```
print(f"Radio de giro predicho = {Rg/1e3} km")
print(f"Tiempo de giro predicho = {Tg} s")
```

Radio de giro predicho = 29.58559285678589 km Tiempo de giro predicho = 0.0012392784156130296 s

Definamos ahora nuestro campo eléctrico y magnético:

```
from numpy import array
c=3e8 #m/s
def ELfunc(rL,t):
    #[rL]: unidades luz, [t]: s
    E=array([Eo,0,0]) #V/m
    return E/c

def BLfunc(rL,t):
    #[rL]: unidades luz, [t]: s
    B=array([0,0,Bo]) #Teslas
    return B/c
```

Y las condiciones iniciales:

```
c=3e8 #m/s

#Condiciones iniciales
tau0=0
rL0=array([0,-Rg,0])/c
vL0=array([v,0,0])/c

from numpy.linalg import norm
gama0=1/(1-norm(vL0)**2)**0.5

#Componentes de la cuadrivelocidad
Ut0=gama0
UL0=gama0*vL0

#Vector de condiciones iniciales resultante
Y0s=array([tau0]+list(rL0)+[Ut0]+list(UL0))
```

Probemos llamando a la ecuación de movimiento:

```
dYdtau=edm_lorentz(Y0s,0,me,e,ELfunc,BLfunc)

dY/dtau_0 =
[1.1547005383792517, 0.5773502691896258, 0.0, 0.0, 0.0, -0.0, 3380.023529833155, -0.0]
```

Y ahora podemos proceder a resolver las ecuaciones de movimiento:

4.14. Cuadrifuerza 109

```
from numpy import linspace
taus=linspace(0,10*Tg,1000)

from scipy.integrate import odeint
solucion=odeint(edm_lorentz,YOs,taus,args=(me,e,ELfunc,BLfunc))
```

Un gráfico de la trayectoria será:

```
%matplotlib inline
```

```
#Extraemos las posiciones
r=solucion[:,1:4]*c

import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()

#Coordenadas x-y
ax.plot(r[:,0]/1e3,r[:,1]/1e3,'ko-')

#Decoración
ax.grid();
ax.set_title(f"v = {v/c}c, B = {Bo} T")
ax.set_xlabel("$x$ [km]");
ax.set_ylabel("$y$ [km]");
fig.tight_layout();

ver Figura 4.16
```

Podemos tambien graficar otras cantidades, por ejemplo el tiempo y el tiempo propio:

```
(Algoritmo 4.14)

ts=solucion[:,0]

fig=plt.figure()
ax=fig.gca()

ax.plot(taus,ts)

ax.set_xlabel(f"$\\tau$ [s]");
ax.set_ylabel(f"$t$ [s]");

ver Figura 4.17
```

Como la velocidad es constante la relación entre el tiempo de laboratorio y el tiempo propio es $t=\gamma \tau$.

Figura 4.16: Figura correspondiente al código 4.13.

Figura 4.17: Figura correspondiente al código 4.14.

4.15. Síntesis de Mecánica Relativista

Después de introducir las cantidades y postulados claves en las secciones anteriores, estamos listos para hacer una síntesis completa de la nueva mecánica, de la **mecánica covariante** o la **mecánica relativista**.

4.15.1. Síntesis de cinemática relativista

Las propiedades cinemáticas de una partícula se describen con las siguientes propiedades básicas:

- Cuadriposición: x^{μ}
 - Indica la posición de un evento en el espacio tiempo.
 - Las componentes generales: $x^{\mu}:(ct,\vec{r})$
 - Componente temporal: *t*, tiempo coordenado.
 - \circ Componentes espaciales: \vec{r} , vector posición.
 - En unidades luz:
 - Vector posición: $\vec{r}_L = \vec{r}/c$
 - Cuadrivector: $x_L^{\mu}:(t,\vec{r}_L)$
 - Módulo:
 - o Temporaloide: Tiempo propio $\tau^2 = t^2 r_L^2$
 - Espacialoide: Longitud propia $-\lambda_L^2 = t^2 r_L^2$
 - Transformación de sistemas coorenadas:
 - \circ General: $x^{\mu} = \Lambda^{\mu}_{\nu'} x^{\nu'}$
 - Vectorial:

$$t' = \gamma \left(t - \vec{u}_L \cdot \vec{r}_L \right)$$
$$\vec{r}'_L = \vec{r}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{r}_L - \gamma t \right) \vec{u}_L$$

- **•** Cuadridesplazamiento: dx^{μ}
 - Intervalo infinitesimal entre dos eventos vecinos.
 - Las componentes generales: $dx^{\mu}:(ct,d\vec{r})$
 - En unidades luz:
 - Vector posición: $d\vec{r}_L = d\vec{r}/c$
 - Cuadrivector: dx_L^{μ} : $(dt, d\vec{r}_L)$
 - Módulo:
 - General: Intervalo $ds^2 = dt^2 dr_L^2$
 - $\circ~$ Temporaloide: Diferencial de tiempo propio $\mathrm{d}\tau^2 = \mathrm{d}t^2 \mathrm{d}r_L^2$
 - Factor de Lorentz: $dt = \gamma_v d\tau$, $\gamma_v = 1/\sqrt{1-v^2/c^2}$.
 - Transformación de sistemas coorenadas:
 - \circ General: $dx^{\mu} = \Lambda^{\mu}_{\nu'} dx^{\nu'}$

■ Trivelocidad: \vec{v}

- Definición: $\vec{v} \equiv d\vec{r}/dt$.
- Velocidad medida en el laboratorio.
- En unidades luz: $\vec{v}_L = \vec{v}/c$
- Factor de Lorentz: $\gamma_v = 1/\sqrt{1-v_L^2}$.
- Transformación de sistemas coorenadas:
 - Vectorial:

$$v_{L\parallel} = D(u_L + v'_{L\parallel})$$

$$\vec{v}_{L\perp} = \frac{D}{\gamma_u} \vec{v}'_{L\perp}$$
(4.61)

donde

$$D \equiv \frac{1}{1 + \vec{u}_L \cdot \vec{v}_L'}$$

■ Cuadrivelocidad: U^µ

- Definición: $U^{\mu} = dx^{\mu}/d\tau$.
- Solo se define en líneas de universo (elemento de línea temporaloide).
- Las componentes generales:

$$U^{\mu}:\left(\frac{\mathrm{d}(ct)}{\mathrm{d}\tau},\frac{\mathrm{d}\vec{r}}{\mathrm{d}\tau}\right)$$

• En unidades convencionales:

$$U^{\mu}:\gamma\left(c,\vec{v}\right)$$

- En unidades luz:
 - Vector posición: $U_L^{\mu} = U^{\mu}/c$
 - Componente temporal: $U_L^0 = \mathrm{d}t/\mathrm{d}\tau = \gamma$, velocidad en el tiempo.
 - o Componentes espaciales: $\vec{U}_L = \mathrm{d}\vec{r}_L/\mathrm{d}\tau = \gamma \vec{v}_L$, velocidad escalada.
- Componentes explícitas:
 - o Unidades luz:

$$U_L^\mu:\gamma\left(1,\vec{v}_L\right)$$

- Módulo:
 - Unidades convencionales: $|U^{\mu}| = c$.
 - Unidades luz: $|U_L^{\mu}| = 1$.
- Transformación de sistemas coorenadas:
 - \circ General: $U^{\mu} = \Lambda^{\mu}_{\nu'} U^{\nu'}$

■ Triaceleración: *a*

- Definición: $\vec{a} \equiv d\vec{v}/dt = d^2\vec{r}/dt^2$.
- Aceleración medida en el laboratorio.
- En unidades luz: $\vec{a}_L = \vec{a}/c$
- Cuadriaceleracion: A^{μ}
 - Definición: $A^{\mu} = dU^{\mu}/d\tau = d^2x^{\mu}/d\tau^2$.
 - Las componentes generales:

$$A^{\mu}:\left(\frac{\mathrm{d}(\gamma c)}{\mathrm{d} au},\frac{\mathrm{d}(\gamma ec{v})}{\mathrm{d} au}\right)$$

• Componentes explícitas en unidades convencionales

$$A^{\mu}: \gamma^4 \left(\vec{a} \cdot \frac{\vec{v}}{c}, \vec{a} \right)$$

• Componentes explícitas en unidades luz:

$$A_L^{\mu}: \gamma^4 \left(\vec{a}_L \cdot \vec{v}_L, \vec{a}_L \right)$$

- Módulo:
 - Aceleración propia: $|A_L^{\mu}|^2 = -\alpha_L^2$.
 - Relación componentes: $\alpha_L^2 = |\vec{A}_L|^2 (A_L^0)^2$.
- Ortogonalidad: la aceleración siempre es ortogonal a la cuadrivelocidad,

$$A^{\mu}U_{\mu} = A_{L}^{0}U_{L}^{0} - \vec{A}_{L} \cdot \vec{U}_{L} = 0$$

4.15.2. Síntesis de dinámica relativista

- Masa invariante: m
 - Masa de una partícula (valor constante).
 - Es una cantidad escalar y no depende del observador.
- **■** Trimomentum: \vec{p}
 - Definición: $\vec{p} \equiv \gamma_v m \vec{v}$.
 - Momento lineal medido en el laboratorio.
 - Se conserva en todas las colisiones.
 - En unidades luz: $\vec{p}_L^{\mu} = \vec{p}/c$
- Energía cinética relativista: k
 - Definición: $k \equiv \int_0^{\vec{v}} \vec{v} \cdot d\vec{p}$.
 - En unidades luz: $k_L = k/c^2$
 - Explícitamente como función de la velocidad:
 - ∘ En unidades luz: $k_L = (\gamma 1)m$
 - En unidades convencionales: $k = mc^2$
- Energía total relativista: *E*

- Definición: $E \equiv mc^2 + k$.
- La energía total de una partícula se conserva.
- Unidades luz: $E_L = E/c^2 = m + k_L$
- Expresión única:
 - En unidades convencionales: $E = \gamma mc^2$.
 - En unidades luz: $E_L = \gamma m$.

■ Cuadrimomentum: P^µ

- Definición: $P^{\mu} \equiv mU^{\mu}$.
- El cuadrimomento de un sistema aislado de partículas se conserva.
- Las componentes generales:

$$P^{\mu}:\left(m\frac{\mathrm{d}(ct)}{\mathrm{d}\tau},m\frac{\mathrm{d}\vec{r}}{\mathrm{d}\tau}\right)$$

- En unidades convencionales: $P^{\mu}: (\gamma mc, \gamma m\vec{v})$
- En términos de la energía y el trimomentum: $P^{\mu}:(E/c,\vec{p})$
- En unidades luz: $P_L^{\mu} = P^{\mu}/c$.
- En términos de la energía y el trimomentum: $P_L^\mu:(E_L,\vec{p}_L)$
- Módulo:
 - En unidades convencionales: $(mc^2)^2 = (E)^2 (pc)^2$
 - En unidades luz: $m^2 = E_L^2 p_L^2$

• Trifuerza: $\vec{\mathcal{F}}$

- Definición: $\vec{\mathcal{F}} \equiv \mathrm{d}\vec{p}/\mathrm{d}t = \mathrm{d}(\gamma m \vec{v})/\mathrm{d}t$
- Fuerza medida en el laboratorio.
- En unidades convencionales: $\vec{F}_L = \vec{F}/c$.
- Relación con la aceleración:
 - $\circ \; ext{General:} \; \gamma m ec{a}_L = ec{\mathcal{F}}_L (ec{\mathcal{F}}_L \cdot ec{v}_L) ec{v}_L$
 - o Componentes:

$$a_{\parallel} = rac{1}{\gamma^3 m} F_{\parallel}$$
 $\vec{a}_{\perp} = rac{1}{\gamma m} \vec{F}_{\perp}$

- Transformación:
 - Componentes:

$$F_{\parallel} = \frac{F'_{L\parallel} + \vec{u}_L \cdot \vec{F}'_L}{1 + \vec{v}'_L \cdot \vec{u}_L} \tag{4.62}$$

$$F_{\perp} = \frac{\gamma_u^{-1} F_{L\perp}'}{1 + \vec{v}_I' \cdot \vec{u}_L} \tag{4.63}$$

(4.64)

■ Cuadrifuerza: f^µ

- Definición: $f^{\mu} \equiv dP^{\mu}/d\tau$.
- Ley de fuerza generalizada: $f^{\mu} = mA^{\mu}$.
- Componentes explícitas:
 - \circ En unidades luz: $f_L^\mu: \gamma^4(m\vec{a}_L\cdot\vec{v}_L, m\vec{a}_L)$
 - En unidades convencionales: $f^{\mu}: \gamma^4(m\vec{a} \cdot \vec{v}/c, m\vec{a})$

4.16. Electrodinamica manifiestamente covariante

En la deducción de las transformaciones de Lorentz-Einstein habíamos encontrado que por ser covariantes los campos eléctrico y magnético deben transformar como:

$$B'_{z} = \gamma \left(B_{z} - \frac{u}{c} E_{y} \right)$$

$$E'_{y} = \gamma \left(E_{y} - \frac{u}{c} B_{z} \right)$$

Esta relación es una interesante novedad en el electromagnetismo clásico en tanto propone una conexión entre los campos eléctrico y magnético (incluso estáticos) que no estaba en la teoría original de Maxwell. Nos lleva a pensar en la idea de que existe una manera alternativa y más general de escribir la teoría electromagnética consistente con los postulados de la relatividad.

Como hemos visto antes, una manera de garantizar que las nuevas ecuaciones sean covariantes sería escribirlas en términos de escalares y tensores, o en otros términos necesitamos escribir las **ecuaciones de la electrodinámica manifiestamente covariantes**.

4.16.1. Ecuaciones de la electrodinámica

Las ecuaciones que necesitamos escribir de forma manifiestamente covariantes son:

Ecuaciones de Maxwell:

$$\vec{\nabla} \cdot \vec{E} = 4\pi\rho \tag{4.65}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \tag{4.66}$$

$$\vec{\nabla} \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0 \tag{4.67}$$

$$\vec{\nabla} \times \vec{B} - \frac{1}{c} \frac{\partial \vec{E}}{\partial t} = \frac{4\pi}{c} \vec{J} \tag{4.68}$$

(4.69)

Conservación de la carga eléctrica:

$$\frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{J}$$

■ Ley de Lorentz:

Sobre una carga individual:

$$\vec{F} = q(\vec{E} + \frac{1}{c}q\vec{v} \times \vec{B})$$

Sobre una corriente de carga:

$$\vec{f} = \rho \vec{E} + \frac{1}{c} \vec{J} \times \vec{B}$$

Donde las cantidades implicadas son:

- Campo eléctrico \vec{E} . Es una cantidad fundamental. En la teoría clásica es producido por cargas individuales (a través de la primera ecuación) o en simultánea con campos magnéticos variables (tercera ecuación). Las unidades del campo eléctrico son: [E] = V/m (1 V = 1 J/C).
- **Densidad de flujo magnético** \vec{B} . Esta relacionada con el campo magnético \vec{H} . En el vacío $\vec{H} = \mu_0 \vec{B}$, donde $\mu_0 = 4\pi \times 10^{-7}$ N m A⁻¹ (1 A = 1 C/s). Las unidades de la densidad de flujo magnético son: [B] = T (Tesla, 1 T = N m⁻¹ A⁻¹).
- **Densidad de carga eléctrica** ρ . La carga eléctrica es una propiedad fundamental de algunas partículas elementales en la naturaleza. La carga de una partícula se *asume* un invariante en la relatividad. Las unidades de densidad de carga son $[\rho]$ =C m⁻³.
- **Densidad de flujo de corriente** \vec{J} . Cuando en el espacio hay cargas en movimiento se puede definir el clujo de carga somo la tasa a la que pasa carga eléctrica por unidad de área. Las unidades de la densidad de flujo de corriente es $[\vec{J}]$ =A m⁻².
- **Veclocidad de la luz** c. Es una constante de la naturaleza $c=2,999792458 \times 10^8 \, \mathrm{m \, s^{-1}}$. Se relaciona con otra constante que no aparece explícitamente en la versión de las ecuaciones escritas arriba, la permeabilidad eléctrica del vacío, $\epsilon_0=8,854\times 10^{-12} \, \mathrm{C^2 \, m^{-2} \, N^{-1}}$. Usando ϵ_0 , la velocidad se escribe:

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

• Potencial escalar eléctrico ϕ y vectorial magnético \vec{A} . Las ecuaciones de Maxwell pueden escribirse también en términos de funciones potenciales, que permiten escribir los campos de forma alternativa como:

$$ec{B} = \vec{\nabla} \times \vec{A}$$

$$ec{E} = -\vec{\nabla}\phi - \frac{1}{c}\frac{\partial \vec{A}}{\partial t}$$

Los potenciales eléctrico y magnético son cantidades auxiliares y no físicas. Aún así con muy útiles y es bueno tenerlas en el radar.

Libertad Gauge. Los potenciales pueden escogerse de una diversidad muy amplia de familias. En particular:

$$\vec{A}' = \vec{A} + \vec{\nabla}\chi$$

$$\phi' = \phi - \frac{1}{c} \frac{\partial \chi}{\partial t}$$

también son potenciales validos. ¿Qué funciones de potencial elegir?.

Gauge de Coulomb. Si se reemplaza la definición del campo eléctrico en la primera ecuación de Maxwell se obtiene:

$$\frac{1}{c}\frac{\partial}{\partial t}(\vec{\nabla}\cdot\vec{A}) + \vec{\nabla}^2\phi = -4\pi\rho$$

Esta ecuación adopta la forma de la ley de Coulomb si se escoge arbitrariamente que el potencial vectorial magnético cumpla la condición:

$$\vec{\nabla} \cdot \vec{A} = 0$$

que se conoce como **gauge de Coulomb**. Esta condición sin embargo no es covariante (no involucra tensores, ni invariantes) y por lo tanto no es apropiada para la relatividad.

• Gauge de Lorentz. Un gauge que resulta covariante puede escribirse como:

$$\frac{1}{c}\frac{\partial\phi}{\partial t} + \vec{\nabla}\cdot\vec{A} = 0$$

Cuando los potenciales se escriben con esta condición se dice que se usa el gauge de Lorenz.

Nótese que si se usa el gauge de Lorentz la primera ecuación inhomogénea de Maxwell es equivalente a la ecuación:

$$rac{1}{c^2} rac{\partial^2 \phi}{\partial t^2} - \vec{
abla}^2 \phi = 4\pi
ho$$

Puede probarse, de la misma manera, que la ecuación inhomogénea del campo magnético se puede escribir de forma análoga como:

$$\frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} - \vec{\nabla}^2 \vec{A} = \frac{4\pi}{c} \vec{J}$$

Estas dos ecuaciones son ecuaciones de onda con fuentes ρ y \vec{J} . El gauge de Lorenz entonces, físicamente, representa la acción de los campos mediada por ondas electromagnéticas, mientras que el gauge de Coulomb representa la acción del campo a distancia, instantáneamente.

 Cálculo de los potenciales. En el Gauge de Lorenz los potenciales vectorial y escalar pueden calcularse usando las ecuaciones:

$$\vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi} \int_{\Omega} \frac{\vec{J}(\vec{r}',t') d^3 \vec{r}'}{|\vec{r} - \vec{r}'|}$$

y

$$\phi(\vec{r},t) = \frac{1}{4\pi\epsilon_0} \int_{\Omega} \frac{\rho(\vec{r}',t') d^3 \vec{r}'}{|\vec{r}-\vec{r}'|}$$

donde el tiempo t' usado en las expresiones anteriores se conoce como el tiempo retardado:

$$t' = t - \frac{|\vec{r} - \vec{r}'|}{c}$$

4.16.2. La cuadricorriente

La primera cantidad que podemos escribir como un tensor es la densidad de corriente eléctrica.

En el sistema de referencia propio de una nube de cargas, la densidad de carga eléctrica es:

$$\rho_0 = \frac{\sum q_i}{V_0}$$

En un sistema de referencia inercial arbitrario sabemos que la carga es invariante pero el volumen transforma como $V = V_0/\gamma$ de modo que la densidad en el sistema del observador:

$$\rho = \gamma \rho_0$$

Por otro lado la densidad de carga eléctrica de una nube que se mueve con velocidad \vec{v} respecto al observador es:

$$\vec{J} = \rho \vec{v} = \gamma \rho_0 \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$$

Al comparar las cantidades anteriores con el cuadrivector velocidad podemos ver que tanto ρ como \vec{J} se pueden considerar las componentes temporal y espacial del cuadrivector:

$$J_L^{\mu} = \rho_0 U_L^{\mu} : \gamma \rho_0(1, \vec{v}_L) : (\rho, \vec{J}_L)$$

o en unidades convencionales:

$$J^{\mu}:(c\rho,\vec{J})$$

En términos de la cuadricorriente la ecuación de continuidad o de conservación de la carga se puede escribir como:

$$\begin{split} \frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} &= 0 \\ \frac{\partial \rho}{\partial t} + \sum_{i} \frac{\partial J_{Li}}{\partial x_{Li}} &= 0 \\ \frac{\partial J_{L}^{0}}{\partial x^{0}} + \sum_{i} \frac{\partial J_{Li}}{\partial x_{I}^{i}} &= 0 \end{split}$$

y usando la notación de Einstein:

$$\partial_{\mu}J^{\mu}=0$$

Definición 4.14

Derivada covariante o derivada coma. Definimos la derivada covariante o derivada coma. de un campo tensorial $A^{\alpha\beta\gamma\dots}$ como la derivada del campo respecto a una componente:

$$A^{\alpha\beta\gamma\dots}_{,\mu} \equiv \partial_{\mu}A^{\alpha\beta\gamma\dots}$$

Usando la notación de la derivada coma, la ecuación de continuidad se escribe finalmente como:

$$J^{\mu}_{,\mu}=0$$

Esta es la forma manifiestamente covariante de la ecuación de continudad.

4.16.3. Ecuaciones de Maxwell inhomogéneas

Habíamos escrito las ecuaciones inhomogéneas en la forma:

$$\begin{split} &\frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2} - \vec{\nabla}^2\phi = 4\pi\rho \\ &\frac{1}{c^2}\frac{\partial^2\vec{A}}{\partial t^2} - \vec{\nabla}^2\vec{A} = \frac{4\pi}{c}\vec{J} \end{split}$$

En estas ecuaciones se pueden reconocer algunas propiedades importantes para nuestro propósito:

 El operador diferencial en las dos ecuaciones se puede escribir en términos de la derivada covariante como:

$$\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \vec{\nabla}^2 = \partial_{\mu} \partial^{\mu}$$

 El lado derecho de las dos ecuaciones son las componentes de la cuadricorriente. De este modo las ecuaciones se pueden escribir como:

$$\partial_{\mu}\partial^{\mu}\phi = \frac{4\pi}{c}J^{0}$$

$$\partial_{\mu}\partial^{\mu}\vec{A} = \frac{4\pi}{c}\vec{J}$$
(4.70)

Es decir si definimos la cantidad:

$$A^{\mu}:(\phi,\vec{A})$$

las ecuaciones inhomogéneas de Maxwell se pueden escribir de forma manifiestamente covariantes como:

$$\partial_{\mu}\partial^{\mu}A^{\nu}=rac{4\pi}{c}J^{\nu}$$

y de la naturaleza tensorial de las cantidades involucrados podemos deducir que A^{ν} es también un tensor que podríamos llamar el **cuadripotencial** electromagnético.

Nótese que el cuadripotencial se puede obtener mediante la integral:

$$A^{\mu}(x^{\nu}) = \frac{1}{c} \int_{\Omega} \frac{J^{\mu}(x^{\prime \nu}) \mathrm{d}^3 \vec{r}^{\prime}}{|\vec{r} - \vec{r}^{\prime}|}$$

donde imponemos adicionalmente la condición que el intervalo entre los evento $x^{\prime\nu}$ con respecto al evento x^{ν} debe ser luminoide:

$$x^{\nu}x'_{\nu}=0$$

que es el equivalente a la condición de retraso en la formulación clásica.

4.16.4. Los campos en términos tensoriales

La introducción del cuadripotencial nos permite escribir los campos eléctrico y magnético en términos tensoriales, lo que será muy útil para derivar la forma de las ecuaciones de Maxwell manifiestamente covariantes.

Por definición de los potenciales:

$$\vec{B} = \vec{\nabla} \times \vec{A}$$

$$\vec{E} = -\vec{\nabla}\phi - \frac{1}{c}\frac{\partial \vec{A}}{\partial t}$$

Si lo escribimos en términos de las componentes explícitas del cuadripotencial obtenemos:

$$B^{i} = \sum_{j,k} \epsilon_{ijk} \partial_{j} A^{k}$$

$$E^{i} = -\partial_{i} A^{0} - \partial_{0} A^{i}$$

donde ϵ_{ijk} es el símbolo de Levi-Civita.

Una interesante simetría se produce si escribimos las componentes explícitas:

$$B^{1} = \partial_{2}A^{3} - \partial_{3}A^{2}$$

$$E^{1} = -\partial_{1}A^{0} - \partial_{0}A^{1}$$

4.16.5. El tensor de Faraday

Si usamos las componentes contravariantes de la derivada (que implican simplemente un cambio en el signo de las componentes espaciales de las derivadas) podemos escribir:

$$B^{1} = -\partial^{2}A^{3} + \partial^{2}A^{2}$$

$$E^{1} = \partial^{1}A^{0} - \partial^{0}A^{1}$$

que se puede escribir como:

$$B^1 = -(\partial^2 A^3 - \partial^2 A^2)$$

$$E^1 = -(\partial^0 A^1 - \partial^1 A^0)$$

De aquí, si definimos el tensor contravariante de segundo rango:

$$F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$$

Vemos que el campo eléctrico y el campo magnético se pueden escribir en términos de este tensor como:

$$B^{i} = -\epsilon_{ijk}F^{jk}$$

$$E^{i} = -F^{0i}$$

donde es importante anotar que en la primera expresión no se usa la convención de suma de Einstein.

Otra manera de verlo podría ser escribir explícitamente las componentes del tensor en coordenadas cartesianas:

$$F^{\mu\nu}: \left(egin{array}{cccc} 0 & -E_x & -E_y & -E_z \ E_x & 0 & -B_z & +B_y \ E_y & +B_z & 0 & -B_x \ E_z & -B_y & +B_x & 0 \end{array}
ight)$$

Llamamos a $F^{\mu\nu}$ el **tensor electromagnético** o **tensor de Faraday**.

Propiedades del tensor de Faraday. El tensor de Faraday tiene las siguientes propiedades:

- Antisimetría: $F^{\mu\nu} = -F^{\nu\mu}$
- Traza nula: $\sum_{\mu} F^{\mu\mu} = 0$
- Propiedad cíclica de la derivada contravariante:

$$\partial^{[\alpha}F^{\mu\nu]} \equiv \partial^{\alpha}F^{\mu\nu} + \partial^{\mu}F^{\nu\alpha} + \partial^{\nu}F^{\alpha\mu} = 0$$

- **Determinante invariante**: det $F^{\mu\nu} = (\vec{E} \cdot \vec{B})^2$
- **Escalar**: $F^{\mu\nu}F_{\mu\nu} = 2(E^2 B^2)$.

4.16.6. Ecuaciones de Maxwell y el tensor de Faraday

Las ecuaciones de Maxwell inhomogenéas las habíamos escrito como:

$$\partial_{\nu}\partial^{\mu}A^{\nu} = \frac{4\pi}{c}J^{\nu}$$

Podemos sumar y restar $\partial_{\mu}\partial^{\nu}A^{\mu}$ para obtener:

$$\partial_{\mu}(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})+\partial_{\mu}\partial^{\nu}A^{\mu}=rac{4\pi}{c}J^{
u}$$

Ahora bien, por el gauge de Lorenz:

$$\frac{1}{c}\frac{\partial \phi}{\partial t} + \vec{\nabla} \cdot \vec{A} = \partial_{\mu}A^{\mu}$$

y por lo tanto el segundo término en el lado izquierdo es cero.

Con esto las ecuaciones de Maxwell inhomogeneas se pueden escribir en términos del tensor de Faraday como:

$$F^{\mu\nu}_{,\mu} = \frac{4\pi}{c}J^{\nu}$$

Qué es la forma manifiestamente covariante de las ecuaciones inhomogéneas de Maxwell.

¿Y las ecuaciones de Maxwell homogéneas?. Estas ecuaciones son:

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0$$
(4.71)

Vemos que se trata de 4 ecuaciones que se pueden escribir también en la forma:

$$\begin{array}{lll} \partial_1 B_x + \partial_2 B_y + \partial_3 B_z & = & 0 \\ \partial_0 B_x + \partial_2 E_z - \partial_3 E_y & = & 0 \\ \partial_0 B_y + \partial_3 E_x - \partial_1 E_z & = & 0 \\ \partial_0 B_z + \partial_1 E_y - \partial_2 E_x & = & 0 \end{array}$$

Reemplazando los valores del campo por las respectivas entradas del vector de Faraday estas ecuaciones se pueden escribir como:

$$\begin{array}{lll} \partial_1 F^{32} + \partial_2 F^{13} + \partial_3 F^{21} & = & 0 \\ \partial_0 F^{32} + \partial_2 F^{30} - \partial_3 F^{20} & = & 0 \\ \partial_0 F^{13} + \partial_3 F^{10} - \partial_1 F^{30} & = & 0 \\ \partial_0 F^{21} + \partial_1 F^{20} - \partial_2 F^{10} & = & 0 \end{array}$$

Si se cambian las derivadas covariantes por derivadas contravariantes y se reorganizan los índices, se obtienen expresiones que recuerdan una propiedad introducida antes:

$$\begin{array}{lll} \partial^{1}F^{23} + \partial^{2}F^{31} + \partial^{3}F^{12} & = & 0 \\ \partial^{0}F^{32} + \partial^{3}F^{20} + \partial^{2}F^{03} & = & 0 \\ \partial^{0}F^{13} + \partial^{1}F^{30} + \partial^{3}F^{10} & = & 0 \\ \partial^{0}F^{21} + \partial^{2}F^{10} + \partial^{1}F^{02} & = & 0 \end{array}$$

que no son otra cosa que la propiedad cíclica de la derivada contravariante del tensor de Faraday:

$$\partial^{[\alpha}F^{\mu\nu]}=0$$

4.16.7. Transformación de los campos

Llegados a este punto podemos encontrar las leyes de transformación de los campos eléctricos y magnético.

Siendo el tensor de Faraday, un tensor, al pasar de un sistema de referencia inercial a otro a través de las transformaciones de Lorentz-Einstein $\Lambda^{\mu'}_{\nu}$ el tensor transforma como:

$$F^{\mu'\nu'} = \Lambda^{\mu'}_{\alpha} \Lambda^{\nu'}_{\beta} F^{\alpha\beta}$$

¿Cómo puede calcularse esta operación matricialmente? El producto de dos matrices A y B se puede escribir como:

$$(AB)_{ij} = \sum_{n} A_{in} B_{nj}$$

Si definimos la matriz \bar{F} como:

$$ar{F}^{\mu'eta} = \sum_{lpha} \Lambda_{lpha}^{\mu'} F^{lphaeta}$$

o bien:

$$\bar{F} = \Lambda F$$

Entonces:

$$F^{\mu'\nu'} = \bar{F}^{\mu'\beta} \Lambda_{\beta}^{\nu'}$$

Por la simetría de la transformación de Lorentz-Einstein:

$$F^{\mu'\nu'} = \bar{F}^{\mu'\beta} (\Lambda^{\mathrm{T}})^{\beta}_{\nu'}$$

que en términos matriciales se puede escribir como:

$$F' = \Lambda F \Lambda^{T}$$

Así es como transforman las componentes de un tensor de segundo rango. Si usamos la configuración estándar:

$$\Lambda = \gamma \left(\begin{array}{cccc} 1 & -u_L & 0 & 0 \\ -u_L & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

puede probarse (ver Problemas al final del capítulo) que las reglas de transformación de los campos eléctricos se pueden escribir como:

$$E'_{x} = E_{x}$$

$$E'_{y} = \gamma(E_{y} - u_{L}B_{z})$$

$$E'_{z} = \gamma(E_{z} - u_{L}B_{y})$$

Y las del campo magnético:

$$B'_{x} = B_{x}$$

$$B'_{y} = \gamma(B_{y} + u_{L}E_{z})$$

$$B'_{z} = \gamma(B_{z} - u_{L}E_{y})$$

Las componentes E_y y B_z de esta transformación coinciden con las que habíamos obtenido en la deducción de las transformaciones de Lorentz-Einstein, con lo que la teoría es completamente consistente.

Es posible mostrar que para una configuración general, la transformación de los campos sería:

$$\vec{E} = \vec{E}' + (\gamma - 1)\vec{E}_{\perp} - \gamma \vec{u}_{L} \times \vec{B}$$

$$\vec{B} = \vec{B}' + (\gamma - 1)\vec{B}_{\perp} + \gamma \vec{u}_{L} \times \vec{E}$$

donde \vec{E}_{\perp} y \vec{B}_{\perp} son los vectores de campo eléctrico y magnético perpendiculares a la velocidad relativa del sistema de referencia.

4.16.8. La fuerza de Lorentz

Si bien en la teoría electromagnética clásica, la fuerza de Lorentz se postula, en realidad esta resultad de las transformaciones del tensor de Faraday que vimos en la sección anterior.

Para ello considere por ejemplo el caso de una carga que se mueve en un campo magnético estático \vec{B} . En el sistema de referencia de la carga ($\vec{u}_L = \vec{v}_L$):

$$\vec{E}' = \gamma_v \vec{v}_L \times \vec{B}$$

y si postulamos que la fuerza es simplemente $\vec{F}' = q \vec{E}'$ la fuerza será:

$$\vec{F}' = \gamma_v q \vec{v}_L \times \vec{B}$$

Ahora bien, sabemos de las reglas de transformación de la fuerza que la componente perpendicular transforma como:

$$\vec{F}_{\perp} = \frac{\gamma_u^{-1}}{1 + \vec{u}_l \cdot \vec{v}_L'} F_{\perp}'$$

Dado que en el sistema de referencia de la carga $\vec{v}_L' = \vec{o}$ y que $\vec{u}_L = \vec{v}_L$ la fuerza sobre la carga en el sistema de referencia del observador será:

$$\vec{F} = q\vec{v}_L \times \vec{B}$$

Si además hay un campo eléctrico en el sistema del observador (donde la partícula se mueve) la fuerza será entonces:

$$\vec{F} = q\vec{E} + \frac{1}{c}q\vec{v} \times \vec{B}$$

Nota 4.15

La fuerza de Lorentz y la rotación del campo de Faraday. Una manera e interpretar el resultado anterior y el origen en general de la fuerza de Lorentz podría ser la de pensar de la siguiente manera. El campo de Faraday cuando solo hay campo magnético tiene solo componentes espaciales. Cuando una carga eléctrica está en movimiento es como si el campo de Faraday se rotará. Al rotarse aparecen componentes temporales del campo de Faraday que la carga percibe como campo eléctrico y de allí que experimente una fuerza.

Escribiendo explícitamente la componente *x* queda:

$$\frac{\mathrm{d}p_x}{\mathrm{d}t} = \frac{q}{c}(cE_x + v_y B_z - v_z B_y)$$

Multiplicando por γ a ambos lados podemos escribir:

$$\frac{\mathrm{d}P^1}{\mathrm{d}\tau} = \frac{q}{c}(U^0 F^{10} - U^2 F^{12} - U^3 F^{13})$$

De donde podemos proponer la generalización para calcular la cuadrifuerza:

$$f^{\mu} = \frac{q}{c} F^{\mu\nu} U_{\nu}$$

que llevada a un conjunto de cargas se puede escribir como:

$$K^{\mu} = F^{\mu\nu} J_{\nu}$$

donde en esta última expresión K^{μ} representa una densidad de fuerza (fuerza por unidad de volumen).

Nota

La componente temporal de la fuerza de Lorentz. La generalización presentada en el párrafo anterior apareció simplemente como un ejercicio de inducción, pero no lo es estrictamente. Si bien las componentes espaciales de la cuadrifuerza siquen la misma regla:

$$f^i = \frac{q}{c} F^{i\nu} U_{\nu}$$

la componente temporal no tiene porque seguirla. ¿De dónde viene

Nota (Cont.)

la idea de que podemos generalizarla a esta componente. Hagamos el ejercicio uinverso e intentemos determinar en términos de cantidaes convencionales que significa esta componente:

$$f^{0} = \frac{q}{c}F^{0\nu}U_{\nu} = \frac{q}{c}(F^{01}U_{1} + F^{02}U_{2} + F^{03}U_{3})$$

Si recordamos que $E^i = -F^{i0}$ y $U_i = -U^i$ entonces:

$$f^0 = \gamma \frac{q}{c} \vec{E} \cdot \vec{v}$$

en unidades luz y reconociendo que la trifuerza experimentada por una carga en presencia de un campo eléctrico es $\vec{F} = q\vec{E}$ obtenemos:

$$f_L^0 = \gamma \vec{F} \cdot \vec{v}_L$$

que es justamente lo que sabíamos sobre la componente temporal de la fuerza. Es decir la componente temporal de la fuerza de Lorentz no es otra cosa que la componente temporal de la cuadrifuerza de un campo eléctrico.

Ahora bien, sabemos también que $f_L^0 = dE/dt$, siendo E en este contexto, la energía total de la partícula. De allí que la componente cero de la fuerza de Lorentz es simplemente la potencia de la fuerza de Lorentz, la tasa a la cual se transfiere o remueve energía de la partícula.

4.16.9. Intrepretación geométrica del campo de Faraday

Uno de los aspectos más oscuros de la teoría electromagnética es la interpretación intuitiva de cada una de las cantidades relevantes de la teoría. Si bien la interpretación de los campos es relativamente directa, están asociados con las fuerzas que experimentan partículas y corrientes eléctricas en presencia de ellos, la interpretación de los potenciales es un poco más complicada.

Si eso pasa con la electrodinámica vectorial en tres dimensiones, la electrodinámica covariante en cuatro dimensiones no es menos sencilla.

La fuerza de Lorentz sin embargo nos ofrece un raro vistazo a la geometría del tensor de Faraday en 4 dimensiones. Para entenderlo mejor podemos apelar a una cantidad clásica: **el tensor de esfuerzos** σ_{ij} .

Detiniciór

Tensor de esfuerzos. El tensor de esfuerzos es una cantidad clásica usada en la mecánica del continuo para calcular la *tracción* producida en cualquier punto dentro de un sólido por el material vecino. La trac-

Figura 4.18: Tensor de esfuerzos.

Definición (Cont.)

ción $\vec{T}^{(\hat{n})}$ se define como la fuerza por unidad de área que experimenta el elemento de sólido en dirección de una superficie imaginaria definida por el vector \hat{n} . La tracción viene dada en términos del tensor de esfuerzos σ_{ij} por el producto punto:

$$\vec{T}^{(\hat{n})}: \left(\sum_{i} n_{i}\sigma_{i1}, \sum_{i} n_{i}\sigma_{i2}, \sum_{i} n_{i}\sigma_{i3}\right) \equiv \hat{n} \cdot \sigma$$

La característica más interesante y relevante para nuestra discusión es que el producto punto de un vector (dirección) y un tensor de segundo rango (tensor de esfuerzos) produce un vector (tracción).

Particularmente interesantes son las componentes de la tracción en dirección de los vectores coordenados:

 $\begin{array}{lcl} \vec{T}^{(e_1)} & : & (\sigma_{11},\sigma_{12},\sigma_{13}) \\ \vec{T}^{(e_2)} & : & (\sigma_{21},\sigma_{22},\sigma_{23}) \\ \vec{T}^{(e_2)} & : & (\sigma_{31},\sigma_{32},\sigma_{33}) \end{array}$

Escrito de esta manera, nos damos cuenta que las componentes del tensor de esfuerzo en la base \hat{e}_1 , \hat{e}_2 , \hat{e}_3 no son otra cosa que las componentes de las tracciones sobre la superficie en cada una de las direcciones. Esto le da una interpretación geométrica concreta a la tracción.

Con el tensor de Faraday sucede una situación similar. La cuadrifuerza de Lo-

rentz f^{μ} juega aquí el papel de la tracción y el tensor de Faraday es como el tensor de esfuerzos:

$$f_L^{\mu} = q F^{\mu\nu} U_{L\nu}$$

De modo que uno puede ver las componentes del tensor de Faraday como los factores por los que hace falta multiplicar la velocidad para obtener las componentes de la cuadrifuerza sobre la partícula. En otros términos, del tensor de Faraday:

$$F^{\mu\nu}: \left(egin{array}{cccc} 0 & -E_x & -E_y & -E_z \ E_x & 0 & -B_z & +B_y \ E_y & +B_z & 0 & -B_x \ E_z & -B_y & +B_x & 0 \end{array}
ight)$$

podemos pasar al cuadrivector de fuerza escrito de la forma:

$$\begin{pmatrix} dE/dt \\ F_{Lx} \\ F_{Ly} \\ F_{Lz} \end{pmatrix} = q \begin{pmatrix} 0 & (-v_{Lx})(-E_x) & (-v_{Ly})(-E_y) & (-v_{Lz})(-E_z) \\ E_x & 0 & (-v_{Ly})(-B_z) & +(-v_{Lz})B_y \\ E_y & +(-v_{Lx})B_z & 0 & (-v_{Lz})(-B_x) \\ E_z & (-v_{Lx})(-B_{Ly}) & +(-v_{Ly})B_x & 0 \end{pmatrix}$$

donde asumimos que sumamos sobre las filas de la matriz anterior (abusando de la notación).

Es decir, las filas del tensor de Faraday nos dan una idea de cuánto vale la fuerza electromagnética en una determinada dirección.

Ahora bien. Si hacemos por ejemplo \vec{v} : $(v_x, 0, 0)$, la fuerza de Lorentz queda:

$$\begin{pmatrix} dE/dt \\ F_{Lx} \\ F_{Ly} \\ F_{Lz} \end{pmatrix} = q \begin{pmatrix} 0 + v_x E_x \\ E_x + 0 \\ E_y - v_x B_z \\ E_z + v_x B_y \end{pmatrix}$$

Es decir, si se proyecta el vector de Faraday sobre una dirección de la velocidad específica el negativo de la columna de correspondiente a la velocidad nos dará las componentes de la fuerza espacial magnética experimentada por la partícula. Es como si la proyección espacial del tensor de Faraday produjera las fuerzas magnéticas.

Por otro lado si la partícula esta quieta $U_L^{\mu}:(1,0,0,0)$ entonces:

$$\begin{pmatrix} dE/dt \\ F_{Lx} \\ F_{Ly} \\ F_{Lz} \end{pmatrix} = q \begin{pmatrix} 0 \\ E_x \\ E_y \\ E_z \end{pmatrix}$$

de modo que podríamos interpretar la proyección temporal del vector de Faraday como relacionada con la fuerza eléctrica experimentada por la partícula.

4.16.10. Síntesis

En síntesis la dinámica de cargas y campos electromagnéticos clásicos se describen con:

$$F^{[\mu\nu,\alpha]} = 0 \tag{4.72}$$

$$F^{\mu\nu}_{\ ,\mu} = \frac{4\pi}{c} J^{\mu} \tag{4.73}$$

$$J^{\mu}_{,\nu} = 0 \tag{4.74}$$

$$f^{\mu} = F^{\mu\nu} I_{\nu} \tag{4.75}$$

$$f^{\mu} = F^{\mu\nu} J_{\nu} \tag{4.75}$$

donde $F^{\mu\nu}\equiv\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}$ y el cuadripotencial cumple $A^{\mu}_{\ ,\mu}=0$ (gauge de Lorenz).

Ejemplos {ejemplos electrodinamica} 4.16.11.

No puede subestimarse el poder que tiene la formulación covariante de la electrodinámica que hemos desarrollado en esta sección. En los ejemplos a continuación ilustramos la manera en la que se aplica lo que hemos visto para resolver algunas situaciones particulares que son de interés físico aunque no necesariamente son las más generales.

Campo producido por una carga en movimiento

Uno de los más interesantes ejemplos de aplicación de la electrodinámica manifiestamente covariante es el cálculo del campo electromagnético producido por una carga en movimiento rectilíneo y uniforme.

El cálculo de este campo usando la electrodinámica clásica es realmente laborioso. Sin embargo si usamos los resultados vistos en esta sección el cálculo resulta bastante directo.

El truco consiste siempre en describir el problema en un sistema de referencia en el que el cálculo del campo sea realmente sencillo. En este caso el sistema de referencia es aquel que se mueve con la misma velocidad de la partícula. En este sistema de referencia esta probado no hay campo magnético producido por la carga y solo hay un campo eléctrico que viene dado por:

$$\vec{E}' = \frac{q}{r'^3} \vec{r}'$$

donde $\vec{r}' = \Delta x' \hat{e}_x + \Delta y' \hat{e}_y + \Delta z' \hat{e}_z$.

Según las reglas de transformación el campo en el sistema de referencia del observador quedaría:

$$\vec{E} = \vec{E}' + (\gamma - 1)\vec{E}'_{\perp}$$

$$\vec{B} = \gamma \vec{u}_L \times \vec{E}'$$

Teniendo en cuenta que $\vec E' - \vec E'_\perp = \vec E'_\parallel$ y que $\vec u_L imes \vec E' = \vec u_L imes \vec E'_\perp$, el resultado se puede escribir como:

$$\begin{array}{rcl} \vec{E} & = & \vec{E}'_{\parallel} + \gamma \vec{E}'_{\perp} \\ \vec{B} & = & \vec{u}_L \times \vec{E} \end{array}$$

Aquí notamos un interesante efecto: el campo eléctrico en dirección del movimiento no se modifica, pero si lo hace en dirección perpendicular donde es incrementado por un factor γ .

Ahora bien, el valor del campo dado por la ley de Coulomb tiene una modificación debido a la contracción de longitudes en dirección de propagación. Si fijamos el eje x en la dirección de la velocidad, entonces:

$$\vec{r}' = \gamma \Delta x \hat{e}_x + \Delta y \hat{e}_y + \Delta z \hat{e}_z$$

de donde:

$$r'^2 = \gamma \Delta x^2 + \Delta y^2 + \Delta z^2$$

que se puede escribir como:

$$r'^2 = \gamma^2 r^2 (1 - v_L^2 \sin^2 \theta)$$

donde $\sin \theta = \sqrt{\Delta y^2 + \Delta z^2}/\Delta x$ es el ángulo entre la dirección al punto en la que se esta calculando el campo y la dirección e propagación. Este resultado es general independientemente de si se usa o no la configuración estándar.

Con este resultado el campo eléctrico en el sistema de referencia del observaor se puede escribir como:

$$\vec{E} = \frac{1}{\gamma^2 (1 - v_L^2 \sin^2 \theta)^{3/2}} \frac{q}{r^3} \vec{r}$$

El campo magnético por otro lado esta dado por:

$$ec{B} = rac{1}{\gamma^2 (1 - v_L^2 \sin^2 heta)^{3/2}} rac{q}{r^3} ec{v}_L imes ec{r}$$

Como vemos en cada momento ambos campos siguen disminuyendo como $1/r^2$, pero su magnitud depende de la dirección en la que mida el campo respecto a su dirección de propragación.

Cuando $\theta=0,\pi$ (en la dirección de movimiento o en dirección contraria) la magnitud del campo eléctrico es:

$$E(\theta=0,\pi)=\frac{q}{(\gamma r)^2}$$

Es decir, en dirección del campo la contracción de longitudes hace que en el sistema de referencia del observador el campo a una distancia r dada tenga una intensidad equivalente a la que vería la carga a una distancia γr .

En dirección perpendicular al campo $\theta = \pm \pi/2$ el campo por otro lado es:

$$E(\theta = \pm \pi/2) = \frac{(\gamma q)}{r^2}$$

En dirección perpendicular el efecto es curioso. En este caso es como si el campo fuera producido por una carga más intensa (carga relativista) $q_r = \gamma q$. En realidad el efecto es debido a los efectos en el espacio-tiempo en los que el campo magnético que ahora esta presente juega también un papel importante.

En síntesis a la misma distancia hacia adelante el campo es γ^3 más débil que en dirección perpendicular.

Podemos visualizar este campo de dos maneras diferentes, por un lado mostrando el vector de campo a una distancia determinada.

Fijemos las propiedades de la partícula.

```
q=1
vL=0.7
gamma=1/(1-vL**2)**0.5
```

Calculamos las componentes del campo eléctrico (tanto en reposo como en movimiento) a una distancia constante:

```
#Angulos en los que evaluaremos el campo
from numpy import linspace, concatenate, pi, zeros_like
tetas=concatenate((linspace(-pi,0,10),
                   linspace(0,pi,10)))
#Vector de posición
xs=zeros_like(tetas)
ys=zeros_like(tetas)
#Vector de campo eléctrico
from numpy import zeros_like
Exs=zeros_like(tetas)
Eys=zeros_like(tetas)
Erxs=zeros_like(tetas)
Erys=zeros_like(tetas)
#Distancia constante
from numpy import cos,sin
for i,teta in enumerate(tetas):
   xs[i]=r*cos(teta)
   ys[i]=r*sin(teta)
    # Campo eléctrico en reposo
   Erxs[i] = q/r**3*xs[i]
   Erys[i]=q/r**3*ys[i]
    # Campo eléctrico en movimiento
   Exs[i]=q/(r**3*gamma**2*(1-vL**2*sin(teta)**2)**1.5)*xs[i]
    Eys[i]=q/(r**3*gamma**2*(1-vL**2*sin(teta)**2)**1.5)*ys[i]
```

Ahora podemos graficar el campo:

```
%matplotlib inline
```

(Algoritmo 4.15)

```
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()
#Gráfico de los puntos
ax.plot(xs,ys,'b--')
#Gráfico de los vectores de campo
ax.quiver(xs,ys,Erxs,Erys,
          color='g',alpha=0.5,scale=70,
          label="Carga en reposo")
ax.quiver(xs,ys,Exs,Eys,
          scale=70,
          label="Carga en movimiento")
#Posición de la carga
ax.plot([0],[0],'ro')
#Decoración
ax.legend();
ax.set_xlim((-1,1));
ax.set_ylim((-1,1));
ax.set_xlabel("$x$");
ax.set_ylabel("$y$");
                                                               ver Figura 4.19
```

Campo producido por un alambre recto

4.17. Problemas Seleccionados

1. **Demostración de las derivadas**. Demostrar que las derivadas parciales respecto a las coordenadas del espacio-tiempo transforman como:

$$\frac{\partial}{\partial x^{\mu'}} = \Lambda^{\nu}_{\mu'} \frac{\partial}{\partial x^{\nu}}$$

2. **Invariancia de la norma de Minkowski**. Demostrar que la norma de Minkowski:

$$ds^2 = dt^2 - dx_L^2 - dy_L^2 - dz_L^2$$

es invariante bajo transformaciones de Lorentz-Einstein.

3. Invariancia de la norma de Minkowski. Demostrar que la métrica $g_{\mu\nu}$ definida como:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

dond ds^2 es un invariante, es un tensor covariante de rango 2.

Figura 4.19: *Figura correspondiente al código* **4.15**.

4. **Componentes de la cuadriaceleración**. Partiendo de la definición de cuadrivelocidad demostrar que las componentes de la cuadriaceleración son:

$$A_L^\mu:\gamma^4(\vec a_L\cdot \vec v_L,\vec a_L)$$

5. **Transformación de la fuerza**. Dado que la componente espacial de la fuerza transforma como:

$$\gamma_{v}\vec{F}_{L} = \gamma_{v'}\vec{F}_{L}' + \left(\frac{\gamma_{u} - 1}{u_{L}^{2}}\vec{u}_{L} \cdot \gamma_{v'}\vec{F}_{L}' + \gamma_{u}\gamma_{v'}\vec{\mathcal{F}}_{L}' \cdot \vec{v}_{L}'\right)\vec{u}_{L}$$

mostrar que si la velcidad de la partícula es paralela a la velocidad relativa de los sistemas de referencia, las componentes paralela y perpendicular de la fuerza transforman como:

\begin{eqnarray}

\nonumber

F_\parallel & = & \frac{F'_{L\parallel}+\vec u_L\cdot\vec{F}_L}{1+\vec{v}'_L\cdot \nonumber

 $F_\operatorname{\& = \& frac{\sum_u^{-1}F'_{L\leq v}}_{1+|\operatorname{vec}\{v\}'_L \cdot \left\{u\right\}_L} \\ \operatorname{eqnarray}$

 Transformación de la fuerza. Demostrar que la ley de atracción gravitacional de Newton:

$$\vec{F} = \frac{GMm}{R^3} \vec{R}$$

no tranforma de acuerdo a las reglas de transformación de Lorentz-Einstein para la trifuerza y por lo tanto no puede usarse en dinámica relativista.

Capítulo 5

Relatividad General

Resumen: Este capítulo esta dedicado a la Relatividad general.

5.1. Motivación

Históricamente la relatividad general surgió como un esfuerzo del propio Albert Einstein (ahora en solitario) para construir una teoría mucho más general de la relatividad en la que pudiera extender su principio de covariancia para incluir otros observadores diferentes a los observadores inerciales. En el proceso formuló y desarrollo las consecuencias de lo que se conoce hoy como el **principio de covarianza general**.

Conseguir esto no sería sin embargo fácil para Einstein. De un lado las matemáticas necesarias para abordar el problema más general de la relatividad no serían tan sencillas como las que usa la relatividad especial (álbebra y cálculo diferencial e integral esencialmente). Del otro lado, Einstein nunca previó que en su búsqueda se toparía con una nueva teoría del fenómeno gravitacional, que fue finalmente por lo que termino conociéndose la teoría resultante.

En términos generales, entonces, la **teoría general de la relatividad** es:

- Una teoría sobre las transformaciones generales de coordenadas necesarias para relacionar las cantidades registradas por observadores inerciales y no inerciales. En este aspecto la teoría es realmente una generalización de la primera parte de la teoría, que por la misma razón tiene sentido llamar teoría especial de la relatividad. En este aspecto la teoría no es mucho más que simplemente matemáticas en tanto las transformaciones generales de coordenadas son un problema más de matemáticas que un problema físico.
- Una teoría fundamental sobre el fenómeno gravitatorio algo que los filósofos y físicos de toda la historia habían buscado incansablemente desde el tiempo de Aristóteles. . Como hemos visto en secciones precedentes la fuerza gravitacional que esta en la base de la teoría gravitatoria de Newton no satisface los criterios de transformación de la teoría especial de la relatividad.

Es decir la fuerza gravitacional vista por un observador inercial no transforma con las reglas de Lorentz-Einstein y por lo tanto no puede ser un modelo fundamental del fenómeno. La teoría general de la relatividad explica el origen de esos fenómenos, la tendencia de toda la materia a acercarse como si se atrayera, el movimiento particular de las partículas cerca a grandes cuerpos astronómicos - caída libre, movimiento orbital, etc. e incluso los efectos que la materia tienen sobre la propagación de la luz. Según esta teoría la gravedad surge porque existe una relación íntima entre el contenido de energía del universo (masa, energía y momentum) y las propiedades geométricas del espacio-tiempo (curvatura). La dinámica de la materia en ese espacio-tiempo distorsionado es lo que vemos como gravedad.

En este capítulo, que podríamos considerar apenas introductorio (las ramificaciones posibles de la teoría general de la relatividad son bastas), introduciremos los postulados y principios básicos que uso Einstein en su momento y que hoy todavía se usan para formular y construir la teoría general de la relatividad. Partiendo de esos principios y de resultados matemáticos conocidos en el análisis tensorial y la geometría diferencial (de los que hemos ya tenido una inrtoducción en el capítulo anterior) deduciremos las principales ecuaciones que describen el fenómeno gravitatorio, desde la ecuación fundamental conocida como la ecuación de campo métrico de Einstein-Hilbert, hasta la ecuación de la geodésica.

Dejaremos para capítulos posteriores la aplicación concreta de estas ecuaciones que forman en sí mismo un cuerpo teórico importante dentro de la física teórica y la astrofísica contemporánea.

5.2. Principios y postulados básicos

Hoy se acepta que la teoría general de la relatividad se construye, físicamente, sobre la báse de tres principios o postulados básicos:

- El **principio de equivalencia** que tenía ya una historia de más de 350 años desde los experimentos de Galileo con planos inclinados.
- El principio de covarianza general, una inteligente generalización del postulado de realtividad especial.
- El principio de consistencia, una inteligente idea que, en términos prácticos, permite reconstruir las ecuaciones de teorías nuevas y más fundamentales a partir de las ecuaciones *efectivas* de teorías anteriores.

5.2.1. Principio de Equivalencia

El principio de equivalencia fue llamado por Einstein *la idea más feliz de mi vida*. Existen distintas versiones del principio de equivalencia y por razones históricas y de la motivación física de la teoría general bien vale revisar cada una de ellas.

Principio de Galileo

Es bien conocida la historia apócrifa de Galileo lanzando desde lo alto de la Torre de Pisa bolas metálicas de distinta masa para demostrar, contra la creencia de los filósofos escolásticos que estudiaban la obra de Aristóteles, que sin importar la masa las bolas caían al mismo tiempo.

Este importante resultado no tiene una justificación teórica en el contexto de las ideas galileanas, fue solo una intuición, posiblemente en reacción a las ideas no contrastadas de Aristóteles que formuló Galileo. Por la misma razón se lo puede considerar un principio.

Postulado 5.1

Principio de Galileo. La trayectoria que sigue un objeto en caída libre y en ausencia del aire (o despreciando su efecto), es independientemente de la constitución y tamaño del objeto.

Principio de igualdad de las masas

Aunque este principio hunde sus raíces en la teoría Newtoniana, nunca fue formulado explícitamente por Newton.

Existen dos cantidades que llamamos masa en la física Newtoniana: la **masa inercial** que esta relacionada con la *resistencia* o *inercia* que opone la partícula a cambiar su estado de movimiento y la **masa gravitacional** que es una medidad de su capacidad para producir una atracción sobre otras partículas y para sentirla.

La masa inercial es la que aparece en la definición del momentum de la partícula $\vec{p} = m^{(i)}\vec{v}$ y por lo tanto (suponiendo que no cambia en un instante dado) es la misma que aparece en el postulado de fuerzas:

$$\vec{a} = \frac{\vec{F}}{m^{(i)}}$$

Por otro lado la masa gravitacional es la que aparece en la definición misma de la fuerza de atracción gravitacional:

$$\vec{F}_g = G \frac{m^{(g)} M^{(g)}}{r^3} \vec{r}$$

Si usamos esta fuerza para calcular la aceleración de caída libre obtenemos:

$$\vec{g} = G \frac{m^{(g)}}{m^{(i)}} \frac{M^{(g)}}{r^3} \vec{r}$$

En principio siempre será posible ajustar el valor de la constante de gravitación universal *G* para hacer que el valor numérico de la masa gravitacional de un cuerpo sea idéntico el valor numérico de su masa inercial. Sin embargo, y esta es la motivación del principio, experimentalemnte se ha mostrado (ver experimento de Eötvos) que una vez ajustado para un cuerpo, la identidad numérica se mantiene para todos independientemente de su composición.

Postulado: Principio de igualdad de las masas gravitacional e inercial. Una vez fijado el valor de la constante gravitacional $G=6.67\times 10^{-11}~{\rm m}^3~{\rm kg}^{-1}~{\rm s}^{-2}$ La masa gravitacional e inercial de un cuerpo, en la teoría newtoniana, tienen el mismo valor numérico, independientemente del lugar y de la composición del cuerpo:

$$m^{(i)} = m^{(g)}$$

Este principio es equivalente a decir que la aceleración gravitacional que experimenta un objeto en presencia de otro es *explícitamente*¹² independiente de su masa:

$$\vec{g} = \frac{GM}{r^3}\vec{r}$$

Por este último hecho a este también se lo llama el **principio de universalidad de la caída libre**.

El principio de equivalencia de la masa gravitacional e inercial no implican que sean la misma cantidad, sino simplemente que tienen el mismo valor, pero parecen sugerir de fondo la existencia de un hecho más fundamental, que es precisamente lo que descubrió Einstein.

Principio de equivalencia de Einstein

Si la aceleración gravitacional de los cuerpos es explícitamente independiente de su masa, entonces cuerpos que caen libremente en presencia de un cuerpo mayor y que comienzan con condiciones iniciales idénticas, caerán conservando una relación espacial relativa simple.

En un campo gravitacional uniforme \vec{g}_0 los cuerpos se mantendrán a una distancia relativa constante con el tiempo mientras caen. En un campo gravitacional más realista, como el producido por la Tierra, debido a que los cuerpos se mueven hacia el centro del planeta, los cuerpos tenderán a acercarse en dirección perpendicular a la dirección hacia el centro y a alejarse en esa misma dirección. A este efecto se lo llama aceleración de marea.

Sin embargo, si estamos cerca al cuerpo atractor y el sistema en caída libre es suficientemente pequeño, un observador en el interior del sistema podría no percibir que se encuentra en caída libre. Esta fue *la idea más feliz* de la vida de Einstein.

Postulado 5.2

Principio de Equivalencia de Einstein. Un observador en caída libre (acelerado) en un campo gravitacional arbitrario, es *localmente* indistinguible de un observador inercial.

¹²La independencia explícita no implica que en realidad haya una dependencia implícita en tanto un cuerpo modifica la posición y movimiento de los cuerpos que lo atraen gravitacionalmente, cambiando a su vez su propia aceleración. Este efecto será mayor en tanto mayor sea su masa. Es decir, la aceleración gravitacional de un cuerpo es implícitamente depeniente de su masa.

Postulado 5.2 (Cont.)

Otra manera de expresar este principio es decir que *localmente* los efectos cinemáticos de un campo gravitacional son *indistinguibles* de aquellos que se producen en un sistema de referencia acelerado.

Hay dos palabras claves en el principio de equivalencia de Einstein: *local* e *indistinguible*.

Por **local** entendemos que los fenómenos deben estudiarse en la vecindad infinitesimal de un punto, es decir no podemos afirmar que el observador en caída libre sea inercial en todos los puntos de su sistema de referencia. En términos de la fenomenología newtoniana esto es debido a los efectos de marea producidos por la variación del campo gravitacional.

Por **indistingible** entendemos que no habría ningún experimento cinemático que le permitiera al observador demostrar que esta en un sistema en caída libre o en un sistema inercial, o bien que esta en un campo gravitacional o en un sistema de referencia acelerado.

Otra manera de decirlo sería que la gravedad, al menos sus efectos cinemáticos, son relativos. Este fue justamente el *pensamiento más feliz* de la vida de Einstein.

Principio de equivalencia fuerte

Puede decirse que lo postulado por Einstein en su principio de equivalencia no es más que una consecuencia del postulado de la universalidad de la caída libre, algo que podría perfectamente haber descubierto Newton. En este sentido más que un postulado sería un corolario.

Es por eso que muchos autores llaman al principio de equivalencia de Einstein el **principio de equivalencia débil**. Pero la teoría general de la relatividad va más lejos. De la misma manera que la teoría especial donde el principio de relatividad primero se reconoce en los fenómenos electromagnéticos y después se extiende a todos los fenómenos físicos, incluyendo los mecánicos, en relatividad general el principio de equivalencia se extiende también.

Postulado 5.3

Principio de Equivalencia de Fuerte. Localmente todos los efectos físicos de un campo gravitacional son *indistinguibles* de aquellos que se producen en un sistema de referencia acelerado.

Es decir, no es posible distinguir un campo gravitacional de un sistema de referencia inercial mediante ningún experimento, bien sea este cinemático, dinámico, electromagnético, óptico, nuclear, etc.

Principio de equivalencia geométrico

En su versión moderna el principio de equivalencia adopta una formulación mucho más general y poderosa que irá teniendo sentido a lo largo de este capítulo.

Postulado 5.4

Principio de equivalencia. En cualquier evento x^{ν} de un espacio-tiempo arbitrario, donde la métrica sea $g_{\mu\nu}(x^{\nu})$ es posible encontrar un sistema de coordenadas $x^{\mu'}(x^{\nu})$ (transformación general no lineal) tal que se cumplan simultáneamente:

$$g_{u'v'}|_{x^{\nu}} = \eta_{u'v'}$$

y

$$\partial_{\alpha'}g_{\mu'\nu'}|_{x^{\nu}}=0$$

En este sistema de coordenadas las ecuaciones manifiestamente covariantes que describen toas las leyes de la física en el espacio-tiempo plano son válidas. Llamamos al sistema de coordenadas donde se cumple esto un **sistema de referencia inercial local** o un **sistema de coordenadas geodésico**.

Las implicaciones de este principio son fantásticas. De un lado implica que todo lo que hemos aprendido en la teoría especial de la relatividad seguirá siendo válido en el contexto de la relatividad general y por lo tanto no hay que construir nuevas leyes para el espacio-tiempo curvo, solo hay que aprender a hacer transformaciones generales (no lineales) de coordenadas en el espacio-tiempo.

Nota

Gravedad no es lo mismo que aceleración. El principio de equivalencia moderno formulado anteriormente tiene una importante y sutil diferencia con el principio de equivalencia de Einstein de 1907. Según ese principio un campo gravitacional es equivalente a un sistema de referencia acelerado. Si bien en su momento este principio fue de utilidad para Einstein para realizar sus primeras predicciones asombrosas sobre las implicaciones de la teoría de la relatividad, en realidad, como lo probó el mismo Einstein en su versión final de la teoría.

Lo explicaremos más adelante pero bastará con decir por ahora que el principio de equivalencia solo supone la anulación de las primeras derivadas de la métrica en el sistema geodésico, pero en un campo gravitacional las segundas derivadas de la métrica son realmente las más importantes y son diferentes de cero. Esto no se puede conseguir solo con aceleración.

Puesto en otros términos, con sistemas acelerados es imposible *imitar* los efectos de las mareas gravitacionales (que dependen de las segundas derivadas de la métrica).

Una manifestación concreta del hecho de que un sistema de referencia acelerado no es equivalente a un campo gravitacional tiene que ver con el fenómeno de dilatación temporal. Habíamos visto en el postu-

lado de los relojes que la aceleración **no produce atraso presente**, solo se produce atraso a lo largo del tiempo. En cambio, como veremos, la gravedad **produce atraso presente**.

5.2.2. Principio de consistencia

5.2.3. Principio de covarianza general

Uno de los fundamentos de la relatividad es la idea que las leyes son las mismas para todos los observadores. Esto fue formulado en su **principio de relatividad especial** y es la base para la construcción de la teoría especial de la relatividad y sus construcciones geométricas incluyendo cuadrivectores y tensores.

La teoría general de la relatividad no se podría levantar sobre un principio menos general y es por eso que ella parte del siguiente postulado:

Postulado 5.5

Principio de covarianza general. Las leyes de la física son covariantes bajo transformaciones de coordenadas generales $x^{\mu'}$, es decir cualquier regularidad física que pueda expresarse como relaciones entre *cantidades tensoriales generales* puede elevarse a la categoría de una ley física.

En el principio de covarianza general el adjetivo *general* para referirse a las transformaciones de coordenadas y a los tensores tiene una connotación matemática muy específica.

Considere por ejemplo el caso de un sistema de referencia que esta acelerado en dirección del eje x respecto a un sistema de referencia inercial. En el caso de la relatividad newtoniana caso las reglas de transformación entre los dos sistemas será:

$$t' = t$$

$$x' = x - ut - gt^{2}/2$$

$$y' = y$$

$$z' = z$$

Estas transformaciones no son lineales, como lo eran las transformaciones de Galileo-Newton:

$$\frac{\partial x'}{\partial t} = -u - gt$$

Es justamente en ese sentido que hablamos de **transformaciones generales**.

Bajo transformaciones generales de coordenadas no es posible tampoco definir sistemas de referencia globales, que cubran todo el espacio tiempo. Esto es porque bajo estas transformaciones generales el cuadrivector posición ya no transforma de la manera que lo hacía en el caso de las transformaciones lineales de Lorentz-Einstein.

$$x^{\mu'} \neq \frac{\partial x^{\mu'}}{\partial x^{\mu}} x^{\mu}$$

Solo es posible construir sistemas de referencia locales, o en términos matemáticos, solo el intervalo sigue siendo estrictamente un tensor:

$$\mathrm{d}x^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\mu}} \mathrm{d}x^{\mu}$$

que podemos escribir también como:

$$\mathrm{d}x^{\mu'} = \mathcal{G}_u^{\mu'} \mathrm{d}x^{\mu}$$

donde la matriz $\mathcal{G}_{\mu}^{\mu'}$ (que también podemos identificar como el Jacobiano de la transformación) jugará ahora el papel que en la relatividad especial jugo $\Lambda_{\mu}^{\mu'}$, con la diferencia que esta matriz es ahora distinta en cada punto del espacio.

Justamente en términos de la nueva matriz de transformación definimos lo que llamaremos un **tensor general**, que será cualquier cantidad que transforme como lo hace el intervalo:

$$A^{\mu'} = \mathcal{G}^{\mu'}_{\mu} A^{\mu}$$

Bajo transformaciones generales de coordenadas tenemos que admitir también que la métrica no será simplemente la métrica de Minkowski. En general, el espacio-tiempo en estas condiciones tendrá una métrica general definida por:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

La cantidad $g_{\mu\nu}$ es en sí misma un tensor general y transforma entonces de la forma:

$$g_{\mu'\nu'} = \mathcal{G}^{\mu}_{\mu'}\mathcal{G}^{\nu}_{\nu'}g_{\mu\nu}$$

de modo que ds² sigue siendo una cantidad invariante bajo estas transformaciones. Por definición el tensor métrico es simétrico:

$$g_{\mu\nu}=g_{\nu\mu}$$

La inversa del tensor métrico se escribe como $g^{\mu\nu}$ y se define como:

$$g^{\mu\alpha}g_{\alpha\nu}=\delta^{\mu}_{\nu}$$

5.2.4. Tensores generales

Casi todo lo que dijimos en la relativiad especial sobre las cantidades tensoriales puede generalizarse cuando trabajamos con transformaciones generales de coordenadas. A continuación se sintetizan las propiedades de los tensores generales: ■ Reglas de transformación:

$$A_{\mu'\nu'\dots}^{\alpha'\beta'\dots} = \left(\mathcal{G}_{\mu}^{\mu'}\mathcal{G}_{\nu}^{\nu'}\dots\right)\left(\mathcal{G}_{\alpha'}^{\alpha}\mathcal{G}_{\beta'}^{\beta}\dots\right)A_{\mu\nu\dots}^{\alpha\beta\dots}$$

Operaciones tensoriales: la multiplicación (interna y externa por escalares)
 y la suma de tensores produce también cantidades tensoriales con rango y
 posición de índices correspondientes. Ejemplo:

$$A^{\alpha}_{\mu\nu} = kB^{\alpha}C_{\mu}D_{\nu} + E^{\alpha}_{\mu\nu}$$

 Subida y bajada de índices: Las operaciones de un tensor con la métrica son de suma importancia. Las componentes covariantes del tensor se definen por:

$$A_{\nu} = g_{\mu\nu}A^{\mu}$$

A esta operación se la llama también "bajar un índice" y aplica para cualquier tensor:

$$A^{\mu}{}_{\nu} = g_{\alpha\nu}A^{\mu\alpha}$$

Usando esta propiedad podemos mostrar que:

$$g^{\mu\alpha}g_{\alpha\nu}=g^{\mu}_{\nu}=\delta^{\mu}_{\nu}$$

 Contracción de índices: Cuando en un tensor se utilizan los mismos indices se realiza lo que se conoce como una contracción, que equivale a una multiplicación por el tensor métrico

$$A_{\nu}=B^{\mu}{}_{\mu\nu}=g^{\mu\alpha}B_{\alpha\mu\nu}$$

5.3. Transporte paralelo y derivada covariante

5.3.1. El gradiente no es un tensor general

Al introducir las transfromaciones generales de coordenadas hay una cantidad que bajo transformaciones de Lorentz-Einstein (lineales) transformaba como un tensor, pero que bajo transformaciones generales ya no lo hace: la derivada o el gradiente.

Considerese la definición:

$$A^{\alpha}_{,\mu} = \partial_{\mu}A^{\alpha} = \frac{\partial}{\partial x^{\mu}}A^{\alpha}$$

Bajo transformaciones generales, la derivada covariante $\partial_{\mu'}A^{\alpha'}$ en el nuevo sistema será:

Figura 5.1: Transporte paralelo.

$$\partial_{\mu'}A^{lpha'} = \left(rac{\partial x^{\mu}}{\partial x^{\mu'}}\partial_{\mu}
ight) \left(rac{\partial x^{lpha'}}{\partial x^{lpha}}A^{lpha}
ight) = \mathcal{G}^{\mu}{}_{\mu'}\partial_{\mu}\left(\mathcal{G}^{lpha'}{}_{lpha}A^{lpha}
ight)$$

donde para la expresión en el primer paréntesis hemos usado la regla de la cadena.

La diferencia respecto al caso que habíamos estudiado en el capítulo anterior es que ahora las componentes de la matriz de transformación general $\mathcal{G}^{\alpha'}$ no son constantes y por lo tanto no es posible escribir esta expresión de la forma simple:

$$\partial_{\mu'}A^{\alpha'} \neq \mathcal{G}^{\mu}{}_{\mu'}\mathcal{G}^{\alpha'}{}_{\alpha} \partial_{\mu}A^{\alpha}$$

Siendo esta cantidad tan importante para los propósitos de formular teorías físicas manifiestamente covariantes es importante que estudiemos lo que debemos hacer en este caso.

5.3.2. Transporte paralelo

Derivar un tensor significa esencialmente calcular la tasa a la que cambian sus componentes al movernos de un evento a otro en el espacio-tiempo.

El problema es que en un sistema de coordenadas general las componentes pueden cambiar por dos razones:

- 1. Porque el tensor cambie (el campo tensorial) cambie. Este es el cambio que nos interesa.
- 2. Porque la base sobre la que se define el tensor cambie.

Un caso elemental es el de un vector en el espacio euclidiano de dos dimensiones. Si se utilizan coordenadas cartesianas y tenemos un campo vectorial constante, las componentes del campo vectorial serán las mismas no importa si te desplazas en el plano (ver panel izquierdo en la Figura 5.1). En este caso, si al contrario, el vector cambia intrínsecamente lo notarás comparando las componentes. Pero que pasa su usamos coordenadas cilíndricas. En este caso incluso si el campo vectorial es constante, las componentes del campo cambiaran punto a punto debido solamente a la manera en la que se define el sistema de coordenadas (ver panel derecho en la Figura 5.1).

La manera para determinar si el campo vectorial efectivamente cambia a lo largo de una trayectoria es la de *transportar* el vector del punto en el que se esta midiendo al punto original y mirar si hay una discrepancia entre ambos.

Figura 5.2: Derivada direccional.

El **transporte paralelo** es la operación de transformación de un vector de un punto del espacio a otro de modo que su *dirección intrínseca* no se modifique durante el transporte.

Si el vector lo llamamos $A^{\mu}(x^{\nu})$ en un evento x^{ν} , el mismo vector transportado de forma paralela a un evento distinto y^{ν} se llamara $A^{\mu}_{\parallel}(y^{\nu})$

5.3.3. Derivada direccional general

Definimos la **derivada direccional general** de un campo tensorial A^{μ} a lo largo de una dirección arbitraria t^{α} , y la denotamos como $(D_t A)^{\mu}$ mediante la expresión:

$$(\mathrm{D}_t A)^\mu = \lim_{\epsilon o 0} rac{A^\mu_\parallel(x^lpha + \mathrm{d} x^lpha) - A^\mu(x^lpha)}{\epsilon}$$

donde $\mathrm{d} x^\alpha = \epsilon t^\alpha$ y $A_\parallel^\mu(x^\alpha + \mathrm{d} x^\alpha)$ son las componentes del campo A^μ evaluado en el punto $x^\alpha + \mathrm{d} x^\alpha$ pero transportado de forma paralela a lo largo de t^α hasta el punto inicial x^α (ver Figura 5.2).

¿Es la derivada direccional general una cantidad tensorial?. Nótese que esta definición es una definición geométrica rigurosa y en principio esperaría uno que al definirse de esta manera la cantidad resultante tuviera las propiedades de una cantidad geométrica, i.e. tensorial.

Las componentes del cuadrivector transportado de forma paralela *se pueden* escribir, en general, como:

$$A^{\mu}_{\parallel}(x^{\alpha}+dx^{\alpha})=A^{\mu}(x^{\alpha}+dx^{\alpha})+C^{\mu}_{\gamma\delta}A^{\gamma}(x^{\alpha}+dx^{\alpha})dx^{\delta}$$

donde $C^{\mu}_{\gamma\delta}$ son en general coeficientes que permiten expresar el cambio en las componentes del cuadrivector transportado en función de las componentes de ambos, el cuadrivector original y el cuadrivector de la dirección de transporte. Llamamos a estos coeficientes **los coeficientes de conexión**. En el caso más general habrán 64 coeficientes (4³) de conexión distintos de cero.

Reemplazando en la fórmula para la derivada covariante obtenemos:

$$(D_t A)^{\mu} = (\partial_t A)^{\mu} + C^{\mu}_{\gamma \delta} A^{\gamma} t^{\delta}$$

donde hemos usado la definición de la derivada direccional convencional:

$$(\partial_t A)^{\mu} = \lim_{\epsilon \to 0} \frac{A^{\mu}(x^{\alpha} + \mathrm{d}x^{\alpha}) - A^{\mu}(x^{\alpha})}{\epsilon}$$

En términos de sus componentes la derivada direccional queda:

$$D_{\alpha}A^{\mu}t^{\alpha} = \partial_{\alpha}A^{\mu}t^{\alpha} + C^{\mu}_{\gamma\alpha}A^{\gamma}t^{\alpha}$$

en la que hemos usado la idea bien conocida del cálculo vectorial de que la derivada direcciónal se puede escribir como $\partial_t A = \vec{\nabla} A \cdot \vec{t} = \partial_\alpha A^\mu t^\alpha$

Finalmente, suponiendo que las componentes del cuadrivector que define la dirección son indepenientes, llegamos a una definición general de la derivada bajo una transformación general:

$$D_{\alpha}A^{\mu} = \partial_{\alpha}A^{\mu} + C^{\mu}_{\gamma\alpha}A^{\gamma}$$

A esta la llamaremos **derivada covariante general** o simplemente **derivada covariante** y para representarla en lo sucesivo usaremos el símbolo ";" en analogía a como usamos el símbolo "," para representar la derivada covariante $\partial_{\alpha}A^{\mu}$ que introdujimos en las transformaciones lineales, Así:

$$A^{\mu}_{;\alpha} = A^{\mu}_{,\alpha} + C^{\mu}_{\gamma\alpha}A^{\gamma}$$

Proposición 5.1

Propiedades de la derivada covariante. Las siguientes son propiedades de la derivada covariante:

- 1. Derivada covariante de una suma: $(A^{\mu} + B^{\mu})_{:\nu} = A^{\mu}_{:\nu} + B^{\mu}_{:\nu}$
- 2. Derivada covariante de un producto o regla de Leibniz: $(A^{\mu}B^{\nu})_{;\alpha} = A^{\mu}{}_{;\alpha}B^{\nu} + A^{\mu}B^{\nu}{}_{;\alpha}$
- 3. Derivada covariante de un campo escalar: $\phi_{;\mu}=\phi_{,\mu}$
- 4. Derivada covariante de un tensor contraido: $(A^{\mu}B_{\mu})_{;\alpha}=(A^{\mu}B_{\mu})_{,\alpha}$
- 5. Derivada covariante de un tensor covariante: $B_{\mu;\nu} = B_{\mu,\nu} C_{\mu\nu}^{\gamma} B_{\gamma}$
- 6. Derivada covariante de un tensor contravariante de segundo rango:

$$A^{\mu\nu}_{;\alpha} = A^{\mu\nu}_{,\alpha} + C^{\mu}_{\gamma\alpha}A^{\gamma\nu} + C^{\nu}_{\alpha\gamma}A^{\mu\gamma}$$

Proposición 5.1 (Cont.)

7. Derivada covariante de un tensor covariante de segundo rango:

$$A_{\mu\nu;\alpha} = A_{\mu\nu,\alpha} - C^{\gamma}_{\mu\alpha} A_{\gamma\nu} - C^{\gamma}_{\alpha\nu} A_{\mu\gamma}$$

¿Es la cantidad D_{α} un tensor bajo transformaciones generales? Hasta ahora la construcción geométrica que hemos realizado no hace explícita esta propiedad. En realidad la naturaleza tensorial de ella dependerá de la naturaleza misma de los coeficientes de conexión. Por ahora asumiremos que por el hecho de ser esta cantidad construída de forma geométrica rigurosa, entonces es una cantidad tensorial. Más adelante iremos encontrando evidencias matemáticas de que es así.

5.3.4. Los símbolos de Christoffel

¿Qué son y cómo se calculan los coeficientes de conexión?

La primera característica es que no se trata de una cantidad tensorial (ver Problemas al final del capítulo). Si asumimos por ahora que la derivada definida en la sección anterior D_{α} es un tensor, es posible demostrar (ver Problemas al final del capítulo) que la conexión afín transforma en general como:

$$C^{\nu'}_{\mu'\sigma'} = \mathcal{G}^{\nu'}{}_{\nu}\mathcal{G}^{\mu}{}_{\mu'}\mathcal{G}^{\sigma}{}_{\sigma'}C^{\nu}_{\mu\sigma} - \mathcal{G}^{\mu}{}_{\mu'}\mathcal{G}^{\sigma}{}_{\sigma'}\partial^2_{\mu\sigma}x^{\nu'}$$

En general se puede también demostrar que aunque las conexiones no son tensoriales, es posible definir con ellas un tensor que se conoce como el **tensor de torsión**:

$$T^{\alpha}_{\mu\nu} = C^{\alpha}_{\mu\nu} - C^{\alpha}_{\nu\mu}$$

En general se pueden definir muchas conexiones diferentes en variedades diferenciales generales. Sin embargo hay una familia específica de conexiones que son las de interés para la Relatividad General.

Definición 5.1

Conexión de Levi-Civita y símbolos de Christoffel. Una conexión afín $C^{\alpha}_{\mu\nu}$ que además satisface las condiciones (axiomas):

- Es libre de torsión: $T^{\alpha}_{\mu\nu} \equiv C^{\alpha}_{\mu\nu} C^{\alpha}_{\nu\mu} = 0$.
- Es compatible con la métrica: $g_{\mu\nu;\alpha} = 0$.

Se llama una **conexión de Levi-Civita**. A los coeficientes de una conexión de Levi-Civita se los llama (históricamente) **Símbolos de Christoffel** y se los denota $\Gamma^{\alpha}_{\mu\nu}$.

Nótese que la propiedad de que el espacio sea libre de torsión implica que los

símbolos de Christoffel son simétricos frente al intercambio de los índices inferiores:

$$\Gamma^{\alpha}_{uv} = \Gamma^{\alpha}_{vu}$$

esto implica que no existen 64 símbolos independientes, sino tan solo $4_{\alpha} \times [(4^2 - 4)/2 + 4]_{\mu\nu} = 40$ símbolos de Christoffel que deben ser especificados para determinar la derivada covariante general en un espacio de Riemanniano o pseudorimanniano.

La condición de que la métrica no tenga derivada covariante es fundamental y permite derivar expresiones para los símbolos de Christoffel. Para ello podemos comenzar con escribir todas las posibles combinaciones cíclicas de la derivada covariante del tensor métrico así:

$$\begin{array}{lcl} g_{\mu\nu;\rho} & = & g_{\mu\nu,\rho} - \Gamma^{\lambda}_{\mu\rho}g_{\lambda\nu} - \Gamma^{\lambda}_{\rho\nu}g_{\mu\lambda} & = & 0 \\ g_{\nu\rho;\mu} & = & g_{\nu\rho,\mu} - \Gamma^{\lambda}_{\nu\mu}g_{\lambda\rho} - \Gamma^{\lambda}_{\mu\rho}g_{\nu\lambda} & = & 0 \\ g_{\rho\mu;\nu} & = & g_{\rho\mu,\nu} - \Gamma^{\lambda}_{\rho\nu}g_{\lambda\mu} - \Gamma^{\lambda}_{\nu\mu}g_{\rho\lambda} & = & 0 \end{array}$$

Nótese que entre ellas y por la simetría del tensor métrico y de los símbolos de Christoffel hay términos que se repiten. Así por ejemplo en la primera y la segunda ecuación los términos $-\Gamma^{\lambda}_{\rho\mu}g_{\lambda\nu}$ y $-\Gamma^{\lambda}_{\mu\rho}g_{\nu\lambda}$ (respectivamente) son idénticos. Así, restando la primera de la segunda y tercera ecuación obtenemos:

$$g_{\mu\nu,\rho} - g_{\nu\rho,\mu} - g_{\rho\mu,\nu} + 2\Gamma^{\lambda}_{\mu\nu}g_{\lambda\rho} = 0$$

De esta última expresión se puede escribir la forma conocida de los símbolos de Christoffel:

$$\Gamma^{\lambda}_{\mu
u} = rac{1}{2} g^{\lambda
ho} (g_{
ho\mu,
u} - g_{\mu
u,
ho} + g_{
u
ho,\mu})$$

Si introducimos la notación:

$$g_{\{\rho\mu,\nu\}} \equiv g_{\rho\mu,\nu} - g_{\mu\nu,\rho} + g_{\nu\rho,\mu}$$

donde las llaves {} indican que se debe sumar sobre todas las combinaciones cíclicas de los índices y usar como signo un análogo del símbolo de Levi-Civita, tal que por cada movimiento de la "banda transportadora" (permutación) se multiplica un signo "-". Es por eso que el segundo término, que corresponde a una permitación impar, es negativo.

entonces de forma abreviada:

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} g_{\{\rho\mu,\nu\}}$$

Los términos de los símbolos de Christoffel. Aunque la expresión:

Nota (Cont.)

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} g_{\{\rho\mu,\nu\}}$$

es bastante compacta no hay que olviar que encierra dos operaciones: la operación cíclica sobre el término $g_{\{\rho\mu,\nu\}}$ que hace que este se convierta en realidad en una suma de 3 términos, y la suma sobre el índice ρ (4 términos). Eso hace que para calcular cada símbolo de Christoffel, en general, sean necesarios en realidad $4 \times 3 = 12$ términos:

$$\begin{array}{lll} \Gamma^{\lambda}_{\mu\nu} & = & \frac{1}{2}g^{\lambda0}(g_{0\mu,\nu}-g_{\mu\nu,0}+g_{\nu0,\mu}) + \\ & + \frac{1}{2}g^{\lambda1}(g_{1\mu,\nu}-g_{\mu\nu,1}+g_{\nu1,\mu}) + \\ & + \frac{1}{2}g^{\lambda2}(g_{2\mu,\nu}-g_{\mu\nu,2}+g_{\nu2,\mu}) + \\ & + \frac{1}{2}g^{\lambda3}(g_{3\mu,\nu}-g_{\mu\nu,3}+g_{\nu3,\mu}) \end{array}$$

Como vemos, los símbolos de Christoffel son proporcionales a las primeras derivadas del tensor métrico. Este hecho se puede escribir explícitamente si definimos:

$$\Gamma_{\alpha\mu\nu} = g_{\alpha\lambda}\Gamma^{\lambda}_{\mu\nu}$$

En términos de los símbolos de Christoffel las derivadas del tensor métrico se puede probar (ver Problemas al final del capítulo) son:

$$g_{\alpha\beta,\gamma} = \Gamma_{\alpha\beta\gamma} - \Gamma_{\beta\alpha\gamma}$$

$$g^{\alpha\beta}_{,\gamma} = -g^{\mu\beta}\Gamma^{\alpha}_{\mu\gamma} - g^{\alpha\mu}\Gamma^{\beta}_{\mu\gamma}$$

El hecho que las primeras derivadas del tensor métrico sean proporcionales a los símbolos de Christoffel, explica por que hay 40 valores independientes. Dado que el tensor métrico, por su simetría, tiene 10 componentes independientes (6 fuera de la diagonal y 4 en la diagonal) y cada una de ella tiene 4 componentes de la derivada, existiran en general $4 \times 10 = 40$ primeras derivadas independientes.

En términos de los símbolos de Christoffel la derivada covariante en un espçacio Riemanniano o pseudoriemanniano con conexión de Levi-Civita se escribirá:

$$\begin{array}{lcl} A^{\mu}{}_{;\alpha} & = & A^{\mu}{}_{,\alpha} + \Gamma^{\mu}_{\gamma\alpha}A^{\gamma} \\ A_{\mu;\nu} & = & A_{\mu,\nu} - \Gamma^{\nu}_{\mu\nu}A_{\gamma} \\ A^{\mu\nu}{}_{;\alpha} & = & A^{\mu\nu}{}_{,\alpha} + \Gamma^{\mu}_{\gamma\alpha}A^{\gamma\nu} + \Gamma^{\nu}_{\alpha\gamma}A^{\mu\gamma} \\ A_{\mu\nu}{}_{;\alpha} & = & A_{\mu\nu}{}_{,\alpha} - \Gamma^{\gamma}_{\mu\alpha}A_{\gamma\nu} - \Gamma^{\gamma}_{\alpha\nu}A_{\mu\gamma} \end{array}$$

Cálculo de los símbolos de Christoffel 5.3.5.

El cálculo de los símbolos de Christoffel es una de las habilidades más importantes en la relatividad general. En esta sección veremos ejemplos específicos del cálculo de estas cantidades para métricas específicas.

Si bien calcular 40 coeficientes mediante la derivada de los coeficientes del tensor métrico no parece una tarea muy agradable, hay algunas propiedades útiles tanto del tensor métrico como de los coeficientes que simplifican la tarea.

Los símbolos de Christoffel de una métrica diagonal

Como hemos visto en secciones anteriores el tensor métrico es una forma bilineal que nos da la regla para calcular el producto punto entre los cuadrivectores. Si llamamos $\hat{e}_{\mu}(x^{\nu})$ a los vectores de una base del espacio tiempo definidos en el evento x^{ν} , la métrica se define en términos de:

$$\mathrm{d} s^2 = \mathrm{d} x^\mu \cdot \mathrm{d} x^\nu = (\mathrm{d} x^\mu \hat{e}_\mu) \cdot (\mathrm{d} x^\nu \hat{e}_\nu) = (\hat{e}_\mu \cdot \hat{e}_\nu) \mathrm{d} x^\mu \mathrm{d} x^\nu$$

es decir:

$$g_{\mu\nu}=(\hat{e}_{\mu}\cdot\hat{e}_{\nu})$$

Esto implica que siempre que definamos un sistema de ejes ortogonales la métrica será diagonal:

$$g_{\mu\nu}$$
: diag $(g_{00}, g_{11}, g_{22}, g_{33})$

con inversa:

$$g^{\mu\nu}$$
: diag $\left(\frac{1}{g_{00}}, \frac{1}{g_{11}}, \frac{1}{g_{22}}, \frac{1}{g_{33}}\right)$

Si este es el caso los símbolos de Christoffel se simplifican. En lugar de los 4 términos diferentes que describíamos antes cada símbolo realmente es el resultado del cálculo de un solo término:

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\lambda} g_{\{\lambda\mu,\nu\}} = \frac{1}{2} g^{\lambda\lambda} (g_{\lambda\mu,\nu} - g_{\mu\nu,\lambda} + g_{\nu\lambda,\mu})$$

Los dos hechos anteriores implican además una segunda propiedad muy interesante. Dado que solo los términos diagonales de la derivada son distintos de cero, entonces la última expresión tendrá potencialmente términos distintos de cero si y solo si al menos dos índices de entre λ , μ , ν son repetidos. Esto implica que solo los coeficientes de la forma:

$$\Gamma^{\lambda}_{\lambda\nu}$$
, $\Gamma^{\lambda}_{\mu\mu}$

serán distintos de cero e iguales a:

$$\Gamma^{\lambda}_{\lambda\nu} = +\frac{1}{2}g^{\lambda\lambda}g_{\lambda\lambda,\nu}$$

con $\nu \neq \lambda$ que llamaremos los *símbolos mixtos*, y

$$\Gamma^{\lambda}_{\mu\mu} = -\frac{1}{2}g^{\lambda\lambda}g_{\mu\mu,\lambda}$$

que llamaremos los símbolos diagonales.

En un espacio de 4 dimensiones por cada índice λ hay 3 símbolos mixtos y 4 diagonales, es decir 7 en total. Esta simetría reduce el número posible de símbolos

de Christoffel de 40 a $4 \times 7 = 28$ componentes distintas de cero (ver Problemas al final del capítulo).

Una última propiedad interesante implica que si una de las variables x^{λ} tiene coeficiente métrico $g_{\lambda\lambda}$ constante y ningún otro coeficiente métrico depende de x^{λ} , es decir $g_{\mu\mu,\lambda}=0$ entonces todos los símbolos de Christoffel que tengan λ serán cero:

$$\Gamma^{\lambda}_{\lambda\nu} = \Gamma^{\lambda}_{uu} = 0$$

Por cada componente con esta propiedad se reducen en 7 los símbolos de Christoffel diferentes de cero.

Símbolos de Christoffel del espacio-tiempo plano

Calculemos los símbolos de Christoffel para el espacio-tiempo plano. En principio podría pensarse que en esta situación los símbolos son todos cero (en tanto dependen de derivadas de la métrica y en el espacio-tiempo plano la métrica es constante). Pero no es así. Todo depende del sistema de coordenadas que estamos utilizando.

En coordenadas cartesianas el elemento de línea del espacio-tiempo es:

$$ds^2 = dt^2 - dx_L^2 - dy_L^2 - dz_L^2$$

de donde la métrica es:

$$g_{\mu\nu}$$
: diag $(1, -1, -1, -1)$

Y de aquí los símbolos de Christoffel resultantes serán:

$$\Gamma^{\alpha}_{\mu\nu}=0$$

Esto implica que en el espacio-tiempo de Minkowski y en coordenadas cartesianas la derivada ";" es igual a la derivada ",".

Si usamos sin embargo coordenadas cilíndricas, la métrica del mismo espaciotiempo será:

$$ds^{2} = dt^{2} - dr_{L}^{2} - r^{2}d\theta^{2} - dz_{L}^{2}$$

de donde la métrica es:

$$g_{\mu\nu}$$
: diag $(1, -1, -r^2, -1)$

con inversa:

$$g^{\mu\nu}$$
: diag $(1, -1, -1/r^2, -1)$

Ahora hay al menos una componente de la métrica $g_{22}(r) = g_{\theta\theta}(r)$ que depende de las coordenadas. Esto implica entonces que todos aquellos símbolos de Christoffel que incluyan las derivadas del tipo $g_{\theta\theta,r}$ serán distintos de cero.

Nota

Coordenadas en lugar de números. Es corriente que se use por simplicidad el nombre de las coordenadas en lugar de números para indicar la componentes de la métrica o de los símbolos de Christoffel. Es así como hemos reemplazado g_{22} por $g_{\theta\theta}$ o $g_{\theta\theta,r}$ para denotar $g_{22,1}$. Así mismo nos referiremos por ejemplo a $\Gamma^t_{r\theta}$ para representar el símbolo Γ^0_{12} .

Recordando la definición:

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} g_{\{\rho\mu,\nu\}}$$

Lo primero que tenemos que tener en cuenta es que dado que la matriz es diagonal los únicos símbolos de Christoffel que no serán cero son aquellos para los cuales $\lambda = \rho$:

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\rho} g_{\{\rho\mu,\nu\}}$$

Podemos de entrada descartar todos los casos en los que uno de los índices sea 0 o 4 (*t* o *z* en nuestra notación) en tanto:

- 1. $g_{tt} = 1$ y $g_{zz} = 1$, es decir son constantes y no tienen derivadas diferentes de 0.
- 2. $g_{it} = 0$ y $g_{\mu z} = 0$.
- 3. Ninguna de las componentes de la métrica depende del tiempo o de z.

Esto nos permite descartar un número significativo de componentes (34 componentes nulas para ser exactos).

Para el caso en el que $\rho=r$ tendremos los símbolos potencialmente no nulos Γ^r_{rr} , $\Gamma^r_{r\theta}$, $\Gamma^r_{\theta\theta}$. Escribamos explícitamente:

$$\begin{array}{rcl} \Gamma_{rr}^{r} & = & g^{rr}(g_{rr,r} - g_{rr,r} + g_{rr,r}) = 0 \\ 2\Gamma_{r\theta}^{r} & = & g^{rr}(g_{rr,\theta} - g_{r\theta,r} + g_{\theta r,r}) = 0 \\ 2\Gamma_{\theta\theta}^{r} & = & g^{rr}(g_{r\theta,\theta} - g_{\theta\theta,r} + g_{\theta r,\theta}) = -2r \end{array}$$

Para el caso en el que $\rho=\theta$ tendremos los símbolos potencialmente no nulos $\Gamma^{\theta}_{rr}, \Gamma^{\theta}_{r\theta}, \Gamma^{\theta}_{\theta\theta}$. Escribamos explícitamente:

$$\begin{array}{rcl} \Gamma^{\theta}_{r} & = & g^{\theta\theta}(g_{\theta r,r} - g_{rr,\theta} + g_{r\theta,r}) = 0 \\ 2\Gamma^{\theta}_{r\theta} & = & g^{\theta\theta}(g_{\theta r,\theta} - g_{r\theta,\theta} + g_{\theta\theta,r}) = 2r/r^2 \\ 2\Gamma^{\theta}_{\theta\theta} & = & g^{\theta\theta}(g_{\theta\theta,\theta} - g_{\theta\theta,\theta} + g_{\theta\theta,\theta}) = 0 \end{array}$$

Finalmente encontramos que las únicas componentes no nulas de los símbolos de Christoffel son:

$$\begin{array}{rcl} \Gamma^r_{\theta\theta} & = & -r \\ \Gamma^\theta_{r\theta} & = & 1/r \end{array}$$

Pero ¿qué significa todo esto?. Por la definición de derivada covariante:

$$A^{\mu}_{;\alpha} = A^{\mu}_{,\alpha} + \Gamma^{\mu}_{\gamma\alpha}A^{\gamma}$$

y por lo que hemos encontrado:

$$A^{t}_{;\alpha} = A^{t}_{,\alpha}$$

 $A^{z}_{;\alpha} = A^{z}_{,\alpha}$
 $A^{\mu}_{;t} = A^{\mu}_{,t}$
 $A^{\mu}_{;z} = A^{\mu}_{z}$

Es decir, en este espacio tiempo la derivada covariante y la derivada parcial convencional de las componentes temporal y *z* serán exactamente las mismas. Además la derivada covariante respecto a estas componentes será igual a su derivada convencional.

Por otro lado las únicas derivadas covariantes que no serán triviales son:

$$\begin{array}{lcl} A^{r}{}_{;\theta} & = & A^{r}{}_{,\theta} + \Gamma^{r}{}_{\theta\theta}A^{\theta} = A^{r}{}_{,\theta} - rA^{\theta} \\ A^{\theta}{}_{;r} & = & A^{\theta}{}_{,r} + \Gamma^{\theta}{}_{r\theta}A^{\theta} = A^{\theta}{}_{,r} + A^{\theta}/r \\ A^{\theta}{}_{;\theta} & = & A^{\theta}{}_{,\theta} + \Gamma^{\theta}{}_{\theta r}A^{r} = A^{\theta}{}_{,\theta} + A^{r}/r \end{array}$$

Símbolos de Christoffel de una superficie esférica

En el caso de una superficie de dos dimensiones embebida en un espacio de tres dimensiones la métrica es:

$$dl^2 = R^2 d\theta^2 + R^2 \sin^2 \theta \ d\phi^2$$

donde θ es el ángulo polar (medido respecto al polo de la esfera) y ϕ es el ángulo acimutal. La métrica será en este caso simplemente:

$$g_{ij}: \operatorname{diag}(R^2, R^2 \sin^2 \theta)$$

con inversa:

$$g^{ij}$$
: diag $\left(\frac{1}{R^2}, \frac{1}{R^2 \sin^2 \theta}\right)$

En este caso (dos dimensiones), el número de símbolos de Christoffel serán $n^2(n+1)/2 = 2^23/2 = 6$ y de nuevo por ser la métrica diagonal:

$$\Gamma^i_{jk} = \frac{1}{2} g^{ii} g_{\{ij,k\}}$$

Los símbolos de Christoffel correspondientes a la variable θ serán:

$$\begin{array}{lll} 2\Gamma^{\theta}_{\theta\theta} & = & g^{\theta\theta}(g_{\theta\theta,\theta}-g_{\theta\theta,\theta}+g_{\theta\theta,\theta}) = 0 \\ 2\Gamma^{\theta}_{\phi\theta} & = & g^{\theta\theta}(g_{\theta\phi,\theta}-g_{\phi\theta,\theta}+g_{\theta\theta,\phi}) = 0 \\ 2\Gamma^{\theta}_{\phi\phi} & = & g^{\theta\theta}(g_{\theta\phi,\phi}-g_{\phi\phi,\theta}+g_{\phi\theta,\phi}) = 2\sin\theta \end{array}$$

Por otro lado, los correspondientes a la variable ϕ serán:

$$2\Gamma^{\phi}_{\phi\phi} = g^{\phi\phi}(g_{\phi\phi,\phi} - g_{\phi\phi,\phi} + g_{\phi\phi,\phi}) = 0$$

$$2\Gamma^{\phi}_{\phi\theta} = g^{\phi\phi}(g_{\phi\phi,\theta} - g_{\phi\theta,\phi} + g_{\theta\phi,\phi}) = 2/\sin\theta$$

$$2\Gamma^{\phi}_{\theta\theta} = g^{\phi\phi}(g_{\phi\theta,\theta} - g_{\theta\theta,\phi} + g_{\theta\phi,\theta}) = 0$$

Es decir solo dos de los 6 símbolos de Christoffel son diferentes de cero:

$$\Gamma^{\theta}_{\phi\phi} = \sin\theta$$

$$\Gamma^{\phi}_{\phi\theta} = 1/\sin\theta$$

Símbolos de Christoffel de una métrica general

Supongamos una métrica general de la forma:

$$ds^{2} = \exp(2A) dt_{L}^{2} - \exp(2B) dr^{2} - r^{2}d\theta^{2} - r^{2}\sin^{2}\theta d\phi^{2}$$

donde A = A(r) y B = B(r) son funciones solamente de la variable radial. La métrica tiene la forma:

$$g_{\mu\nu}$$
: diag(exp(2A), $-\exp(2B)$, $-r^2$, $-r^2\sin^2\theta$)

con inversa:

$$g^{\mu\nu}$$
: diag $\left(\exp(-2A), -\exp(-2B), -\frac{1}{r^2}, -\frac{1}{r^2\sin^2\theta}\right)$

¿Cuáles son los símbolos de Christoffel en este caso? De nuevo por tratarse de una métrica diagonal todos los símbolos de Christoffel tienen la forma:

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\rho} g_{\{\rho\mu,\nu\}}$$

En esta situación tenemos que las componentes de la métrica dependen de forma complicada de las coordenadas con la excepción del tiempo. Esto implica que en general todos los símbolos de Christoffel potencialmente pueden ser distintos de cero y debemos analizarlos uno a uno:

■ Componentes t, $\Gamma^t_{\mu\nu}$. Como sabemos que solo las derivadas $g_{tt,r}$ son distintas de cero, los únicos símbolos distintos de cero serán aquellos para los que $\mu = 0$ y $\nu = r$:

$$2\Gamma_{tr}^{t} = g^{tt}g_{tt,r} = 2\exp(-2A)\exp(2A)A' = A'$$

donde A' = dA/dr.

■ **Componentes** r, $\Gamma^r_{\mu\nu}$. En este caso de nuevo sabemos que solo las derivadas $g_{tt,r}$, $g_{ii,r}$ son distintas de cero, de modo que los símbolos de Christoffel que pueden ser distintos de cero serán aquellos en los que aparece repetidos los índices correspondientes, es decir: Γ^r_{tt} , Γ^r_{rr} , $\Gamma^r_{\theta\theta}$, $\Gamma^r_{\phi\phi}$. El valor de estos símbolos será:

$$\begin{array}{rcl} 2\Gamma_{00}^{r} & = & -g^{rr}g_{00,r} = 2A'\exp[2(A-B)] \\ 2\Gamma_{rr}^{r} & = & -g^{rr}g_{rr,r} = 2B' \\ 2\Gamma_{\theta\theta}^{r} & = & -g^{rr}g_{\theta\theta,r} = -r\exp(-2B) \\ 2\Gamma_{\phi\phi}^{r} & = & -g^{rr}g_{\phi\phi,r} = -r\sin^{2}\theta\exp(-2B) \end{array}$$

■ Componentes θ , $\Gamma^{\theta}_{\mu\nu}$. En este caso sabemos que solo las derivada $g_{\theta\theta,r}$ y $g_{\phi\phi,\theta}$ serán distinta de cero. De modo que solo aquellos símbolos en los que se repita θ y ϕ lo serán también:

$$\begin{array}{lcl} 2\Gamma^{\theta}_{r\theta} & = & g^{\theta\theta}g_{\theta\theta,r} = 2/r \\ 2\Gamma^{\theta}_{\phi\phi} & = & -g^{\theta\theta}g_{\phi\phi,r} = -2\sin\theta\cos\theta \end{array}$$

■ Componentes ϕ , $\Gamma^{\phi}_{\mu\nu}$. El caso es análogo a la componente anterior y los únicos coeficientes distintos de cero serán:

$$2\Gamma^{\phi}_{r\phi} = g^{\phi\phi}g_{\phi\phi,r} = 2/r$$

$$2\Gamma^{\phi}_{\theta\phi} = g^{\phi\phi}g_{\phi\phi,\theta} = 2\cot\theta$$

En total entonces, de las 40 componentes solo 9 de ellas son distintas de cero.

Cálculo numérico

El cálculo numérico de los símbolos de Christoffel puede ser útil para futuros cálculos.

La rutina para calcular los símbolos de Christoffel será:

```
def Gamma(xmu,gfun,gargs=(),N=4,dxmax=1e-6):
    Calcula todos los símbolos de Christoffel
    gfun: función métrica
    xmu: evento
   from scipy.misc import derivative
    from numpy import where, arange
    from numpy import zeros
    #Indices
    index=arange(N)
    #Gamma
    G=zeros((N,N,N))
    for pi in range(N):
        for nu in range(N):
            #Inversa
            gpipi=1/gfun(xmu,pi,*gargs) #g^pipi
            #Coeficientes diagonales
            xd=xmu[pi] #Punto en el que estoy derivando
            dx=max(dxmax,dxmax*abs(xd))
```

```
gnunu_pi=derivative(lambda x:gfun(where(index==pi,x,xmu),nu,*gargs),xd,dx)
G[pi,nu,nu]=-0.5*gpipi*gnunu_pi
#Coeficientes mixtos
if nu==pi:continue
    xd=xmu[nu] #Punto en el que estoy derivando
    dx=max(dxmax,dxmax*abs(xd))
    gpipi_nu=derivative(lambda x:gfun(where(index==nu,x,xmu),pi,*gargs),xd,dx)
    G[pi,pi,nu]=0.5*gpipi*gpipi_nu
    G[pi,nu,pi]=G[pi,pi,nu]
return G
```

Para poner a prueba nuestra rutina, podemos usar algunas de las métricas que habíamos visto antes.

Por ejemplo la métrica en coordenadas cilíndricas:

```
from numpy import array
def g_cilindricas_4d(xmu,mu):
    11 11 11
    Coeficiente métrico g_mumu calculados en el evento xmu
    para espacio-tiempo plano con coordenadas cilíndricas.
    g_{munu}=diag(1,-1,-r^2,-1)
    from numpy import sin
    t,r,teta,z=xmu
    if mu==0:
        g=1
    elif mu==1:
        g = -1
    elif mu==2:
        g=-r**2
    elif mu==3:
        g = -1
    return g
```

Escogemos ahora un punto en el cuál calcular los símbolos de Christoffel:

```
xmu=array([0,2,0,1])
```

E invocamos nuestra rutina:

0. 0.]

[[0. -0.

[-0. 0. -0. -0.]

```
G=Gamma(xmu,g_cilindricas_4d,N=4)
Símbolos de Christoffel:
                 0. ]
[[[-0.
        0.
             0.
  [ 0.
       -0.
             0.
                  0.]
  [ 0.
        0. -0.
                0.]
  ΓΟ.
       Ο.
             0. -0.]]
```

```
-0. -2.
                 0.]
Γ0.
      -0.
            0.
                 0. 11
       0. -0.
[[ 0.
                 0. 1
[ 0.
       0.
            0.5 0.]
       0.5 0. -0.]
[-0.
[ 0.
       0. -0.
                0. 11
ΓΓ Ο.
            0. -0.]
       0.
            0. -0. 1
Γ0.
       0.
[ 0.
            0.
               -0.]
       0.
[-0.
      -0.
          -0.
                0.]]]
```

Donde vemos que lo que habíamos determinado en nuestro primer ejercicio es correcto. Solo dos símbolos de Christoffel son diferentes de cero:

y su valor coincide con el valor teóricamente esperado de $\Gamma^1_{22}=-r$ y $\Gamma^2_{21}=1/r$.

5.4. Derivada total general y geodésicas

Una *aplicación* interesante de la derivada covariante es la deducción de una de las ecuaciones más importantes de la relatividad general: la ecuación geodésica.

5.4.1. Derivada total general

Hemos introducido ya una forma de la derivada que puede ser usada en las leyes de la física de modo que tengan una forma manifiestamente covariante bajo trasnformaciones generales. Es la derivada covariante:

$$A^{\mu}_{;\alpha} = A^{\mu}_{,\alpha} + \Gamma^{\mu}_{\gamma\alpha}A^{\gamma}$$

Esta derivada permite definir otra cantidad muy útil, a saber **la derivada total general**, es decir, la derivada total de una cantidad tensorial respecto a un escalar (por ejemplo, el tiempo propio). Como hemos visto en el capítulo anterior, las derivadas totales son muy importantes en la definición de las propiedades cinemáticas y dinámicas en física, de modo que es conveniente definirlas.

Si nos movemos a lo largo de una curva en el espacio-tiempo tal que cada evento es función de una cantidad escalar o parámetro u, es decir $x^{\mu}(u)$, entonces definiremos la derivada total de un campo tensorial $A^{\mu}(x^{\mu})$ respecto al parámetro u como:

$$\frac{\mathrm{D}}{\mathrm{D}u}A^{\mu} \equiv A^{\mu}{}_{;\alpha}\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}u}$$

que es un análogo a la regla de la cadena en el cálculo vectorial convencional.

Nótese que esta definición es análoga a la que podemos hacer en el caso en el que tengamos transformaciones lineales de coordenadas (métrica de Minkowski), a saber $dA^{\mu}/du = A^{\mu}{}_{,\alpha}dx^{\beta}/du$ con la diferencia de que en lugar de usar la derivada "," usamos la derivada covariante. De nuevo es sencillo probar que la derivada total general es en sí misma una cantidad tensorial (ver Problemas al final del capítulo).

5.4.2. Derivada total y transporte paralelo

En términos de la derivada total es posible reinterpretar el concepto de transporte paralelo.

Diremos que un vector es transportado de forma paralela a lo largo de una trayectoria si su derivada total general es proporcional es cero:

$$\frac{\mathrm{D}}{\mathrm{D}u}A^{\mu}=0$$
 , transporte paralelo

Usando la definición de derivada total general:

$$\partial_{\alpha}A^{\mu}\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}u} + \Gamma^{\mu}_{\alpha\gamma}A^{\gamma}\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}u} = 0$$

El primer término es la derivada total convencional:

$$\frac{\mathrm{d}A^{\mu}}{\mathrm{d}u} + \Gamma^{\mu}_{\alpha\gamma}A^{\gamma}\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}u} = 0$$

Esta ecuación en definitiva representa la condición matemática para que un vector sea transportado de forma paralela a lo largo de una trayectoria descrita por $x^{\mu}(u)$.

5.4.3. Transporte paralelo y bases vectoriales

Existe una manera alternativa de obtener la fórmula de la derivada covariante y de las conexiones que es interesante. Un cuadrivector puede escribirse en términos de los vectores de una base como:

$$\mathbf{A} = A^{\mu} \hat{e}_{\mu}$$

Si derivamos respecto de un parámetro *u* que define una trayectoria obtenemos:

$$\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}u} = \frac{\mathrm{d}A^{\mu}}{\mathrm{d}u}\hat{e}_{\mu} + A^{\mu}\frac{\mathrm{d}\hat{e}_{\mu}}{\mathrm{d}u}$$

Las derivadas de cada vector de la base respecto a las coordenadas se pueden expresar en términos de los mismos vectores de la base:

$$\partial_{\alpha}\hat{e}_{\mu} \equiv G_{\alpha\mu}^{\gamma}\hat{e}_{\gamma} \tag{5.1}$$

donde los coeficientes $G_{\alpha\mu}^{\gamma}$ conectan las derivadas de cada componente de cada vector unitario con las componentes de los demás vectores unitarios de la base.

Reemplazando queda:

$$\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}u} = \frac{\mathrm{d}A^{\mu}}{\mathrm{d}u}\hat{e}_{\mu} + A^{\mu}G^{\gamma}_{\alpha\mu}\hat{e}_{\gamma}\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}u}$$

que se puede escribir como:

$$\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}u} = \left(\frac{\mathrm{d}A^{\gamma}}{\mathrm{d}u} + G^{\gamma}_{\alpha\mu}A^{\mu}\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}u}\right)\hat{e}_{\gamma}$$

Para que el vector no varíe a lo largo de la trayectoria es necesario que $d\mathbf{A}/du = 0$ lo que implica que:

$$\frac{\mathrm{d}A^{\gamma}}{\mathrm{d}u} + G^{\gamma}_{\alpha\mu}A^{\mu}\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}u} = 0$$

que es justamente la condición que habíamos obtenido antes.

Bastaría ahora con probar que $G_{\alpha\mu}^{\gamma}$ son los símbolos de Christoffel. Para ello debemos primero reconocer que la métrica se define en términos del producto punto entre los vectores de la base:

$$g_{\mu\nu} = \hat{e}_{\mu} \cdot \hat{e}_{\nu} \tag{5.2}$$

Podemos calcular la derivada convencional de los coeficientes métricos:

$$\begin{array}{lll} \partial_{\alpha}g_{\mu\nu} & = & G_{\alpha\mu}^{\gamma}\hat{e}_{\gamma}\cdot\hat{e}_{\nu} + G_{\nu\beta}^{\gamma}\hat{e}_{\mu}\cdot\hat{e}_{\gamma} \\ & = & G_{\alpha\mu}^{\gamma}g_{\gamma\nu} + G_{\nu\beta}^{\gamma}g_{\mu\gamma} \end{array}$$

Si se repite el mismo procedimiento cambiando cíclicamente los índices de $\partial_{\alpha}g_{\mu\nu}$ se obtiene:

$$G^{\lambda}_{\mu
u}=rac{1}{2}g^{\lambda
ho}(g_{
ho\mu,
u}-g_{\mu
u,
ho}+g_{
u
ho,\mu})$$

que es justamente la forma de los símbolos de Christoffel.

5.4.4. Bases y componentes vectoriales en espacio curvo

Las Ecuaciones (5.1) y (5.2) ponen de relieve una importante propiedad que tienen los vectores en el espacio curvo.

Considere por ejemplo el caso en el que tenemos una métrica diagonal. En esta situación la Ec. (5.2) se puede escribir como:

$$|\hat{e}_{\mu}| = \sqrt{g_{\mu\mu}}$$

Es decir, cuando expresamos un vector en un espacio general los vectores de la base *no son necesariamente unitarios*: ¡esta si que es una sorpresa! Pero la sorpresa va más allá: en realidad este resultado no solo es válido en espacio curvo sino también en el espacio plano.

Consideremos por ejemplo el caso de la descripción del espacio plano de 3 dimensiones en coordenadas cilíndricas (r, θ, z) , $g_{\mu\nu} = \text{diag}(1, r^2, 1)$. En este caso la magnitud de los vectores unitarios será:

$$\begin{array}{rcl} |\hat{e}_r| & = & \sqrt{g_{rr}} = 1 \\ |\hat{e}_{\theta}| & = & \sqrt{g_{\theta}} = r \\ |\hat{e}_z| & = & \sqrt{g_z} = 1 \end{array}$$

Todo lo que hemos dicho sobre transporte paralelo y derivada covariante aplica para las componentes de vectores definidos sobre esta base, por ejemplo en el caso del espacio euclidiano de 3 dimensiones y en coordenadas cilíndircas:

$$\vec{A} = A^r \hat{e}_r + A^\theta \hat{e}_\theta + A^z \hat{e}_z$$

En el cálculo (y por lo tanto en la física, incluyendo en la relatividad especial), por otro lado hemos estado usando bases ortonormales que llamaremos en lo sucesivo, para diferenciarlas de estas *bases curvas*, como \hat{u}_{μ} . En estas bases las componentes del mismo vector mencionado anteriormente se escriben como:

$$\vec{A} = A^{\bar{r}}\hat{u}_r + A^{\bar{\theta}}\hat{u}_\theta + A^{\bar{z}}\hat{u}_z$$

donde nótese que para distinguirlas de las componentes en la *base curva* hemos escrito una *barra* sobre los indices respectivos.

¿Cómo se relacionan las componentes de un vector en la *base curva* con las componentes en la *base ortonormal*? En el caso estudiado aquí, en donde ambas bases son ortogonales y los vectores unitarios de cada una solo se diferencian por su longitud, las relaciones serán simplemente:

$$\begin{array}{rcl} \hat{e}_r & = & \sqrt{g_{rr}} \hat{u}_r = \hat{u}_r \\ \hat{e}_\theta & = & \sqrt{g_\theta} \hat{u}_\theta = r \hat{u}_\theta \\ \hat{e}_z & = & \sqrt{g_z} \hat{u}_z = \hat{u}_z \end{array}$$

y las componentes del vector serán:

$$A^{r} = A^{\bar{r}}$$

$$A^{\theta} = rA^{\bar{\theta}}$$

$$A^{z} = A^{\bar{z}}$$

Es interesante anotar que físicamente estas componentes se diferencian de manera importante. Las componentes que medimos en los laboratorios para las cantidades físicas son las componentes en la base ortonormal. Por tanto es siempre importante cuando trabajamos con métricas arbitrarias tener siempre presente el tipo de transformaciones definidas anteriormente para pasar de las componentes calculadas (normalmente las componentes en la base curva) a las componentes observadas (componentes en la base ortonormal).

Para ponerle orden a todo esto y generalizarlo al espacio-tiempo introducimos las siguientes definición:

Definición: base coordenada y base física. En cualquier punto de un espacio-tiempo descrito por una métrica $g_{\mu}\nu$ en un sistema de coordenadas dado siempre es posible construir dos bases vectoriales y respecto a ellas definir las componentes de los cuadrivectores de interés:

• La **base física**, formada por un conjunto de vectores ortonormales \hat{u}_{μ} que cumplen:

$$\hat{u}_u \cdot \hat{u}_v = \eta_{uv}$$

Las componentes de un cuadrivector arbitrario en la base física se denotan como $A^{\bar{\mu}}$ y satisfacen:

$$\vec{A} = A^{\bar{\mu}} \hat{u}_u$$

Nuestros experimentos miden el valor de $A^{\bar{\mu}}$.

■ La **base coordenada** o **base curva**, formada por un conjunto de vectores no necesariamente ortogonales y no necesariamente unitarios \hat{e}_{μ} que cumplen:

$$\hat{e}_u \cdot \hat{e}_v = g_{uv}$$

Las componentes de un cuadrivector arbitrario en la base coordenada se denotan como A^{μ} y satisfacen:

$$\vec{A} = A^{\mu} \hat{e}_{\mu}$$

Nuestros *cálculos* en relatividad general, permiten calcular el valor de A^{μ} .

Cada uno de los vectores de la base coordenada se puede expresar en términos de la base física:

$$\hat{e}_{\mu} = e^{\alpha}_{\mu}\hat{u}_{\alpha}$$

y por lo tanto las componentes físicas de un vector se pueden escribir en términos de sus componentes coordenadas como:

$$A^{\bar{\alpha}} = A^{\mu} e^{\alpha}_{\mu}$$

Algunas situaciones prácticas del uso de la base coordenada y la base física se muestran en los ejemplos a continuación.

5.4.5. Ejemplos numéricos de transporte paralelo

Vimos entonces que las componentes coordenadas de un vector transfortado de forma paralela a lo largo de una trayectoria $x^{\mu}(u)$ esta dado por:

$$\frac{\mathrm{d}A^{\mu}}{\mathrm{d}u} + \Gamma^{\mu}_{\alpha\gamma}A^{\gamma}\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}u} = 0$$

Esta ecuación, en general, corresponde a un conjunto de 4 (o n en un espacio de n dimensiones) ecuaciones diferenciales de primer orden. Cada ecuación contienen en el lado izquierdo un todal de (en general) 1+16=17 términos (o $1 + n^2$ términos):

$$\frac{dA^{\mu}}{du} + \Gamma_{00}^{\mu} A^{0} \frac{dx^{0}}{du} + \Gamma_{01}^{\mu} A^{0} \frac{dx^{1}}{du} + \dots + \Gamma_{10}^{\mu} A^{1} \frac{dx^{0}}{du} + \Gamma_{11}^{\mu} A^{1} \frac{dx^{1}}{du} + \dots = 0$$

Naturalmente las simetrías de la métrica y de los símbolos de Christoffel hacen que estas ecuaciones sean mucho más cortas.

Implementemos estas ecuaciones en una rutina que poamos integrar numéricamente:

```
def A_parallel(A,u,xfun,gfun,fargs=(),gargs=(),N=4):
    Calcula la derivada de las componentes de un vector A
    respecto al parámetro u de una función xfun
    Parametros:
        A: Arreglo con componentes coordenadas del vector
        u: Valor del parámetro
    Opciones:
        xfun: función de la trayectoria (posición y derivada)
        gfun: función da la métrica
        fargs: argumentos de la función de la trayectoria
        gargs: argumentos de la función de la métrica
        N: Número de dimensiones
    from export import Gamma
    from numpy import zeros
    dAdu=zeros(N)
    xmu,dxmudu=xfun(u,*fargs)
    G=Gamma(xmu,gfun,gargs,N)
    for pi in range(N):
        for mu in range(N):
            for nu in range(N):
                dAdu[pi]+=-G[pi,mu,nu]*A[mu]*dxmudu[nu]
    return dAdu
```

Transporte paralelo en coordenadas cilíndrica

Para aplicar la anterior ecuación consideremos por ejemplo el transporte paralelo del siguiente vector en el espacio euclidiano de 2 dimensiones y en coordenadas cilíndricas.

```
N=2
from numpy import array
A0=array([1,0])
```

Podemos transportar el vector a través de una gran familia de trayectorias, pero debemos cuidar para hacerlo que los símbolos de Christoffel no sean singulares. Como vimos en la sección anterior $\Gamma^{\theta}_{r\theta}=1/r$ de modo que debemos evitar las trayectorias que pasan por el origen.

En la siguiente rutina construimos un conjunto de trayectorias que tienen esa propiedad.

```
def x_fun(u,tipo="circunferencia"):
    """
    Esta función define nuestro camino en el espacio
    """
    from numpy import zeros
    x=zeros(2)
```

```
dxdu=zeros(2)

if tipo=="circunferencia":
    x[0]=1;dxdu[0]=0;
    x[1]=u;dxdu[1]=1;

if tipo=="cicloide":
    x[0]=2+cos(u);dxdu[0]=-sin(u);
    x[1]=u;dxdu[1]=1;

if tipo=="espiral":
    x[0]=1+u;dxdu[0]=1;
    x[1]=u;dxdu[1]=1;

if tipo=="elipse":
    x[0]=1/(1+0.5*cos(u));dxdu[0]=0.5*sin(u)/(1+0.5*cos(u))**2;
    x[1]=u;dxdu[1]=1;

return x,dxdu
```

Para realizar el transporte paralelo necesitamos por otro lado la función que define la métrica de este espacio que es simplemente:

$$g_{\mu\nu} = \text{diag}(1, r^2)$$

```
def g_cilindricas_2d(xmu,mu):
    """
    Coeficiente métrico g_mumu calculados en el evento xmu
    para espacio-tiempo plano con coordenadas cilíndricas.

    g_munu=diag(1,r^2)
    """
    r,teta=xmu
    if mu==0:
        g=1
    elif mu==1:
        g=r**2
    return g
```

Ahora podemos resolver la ecuación del transporte paralelo:

```
from numpy import pi,linspace
us=linspace(0,2*pi,20)

from scipy.integrate import odeint
tipo="circunferencia"
#tipo="cicloide"
#tipo="espiral"
#tipo="elipse"
As=odeint(A_parallel,A0,us,args=(x_fun,g_cilindricas_2d,(tipo,),(),N))
```

¿Qué son estos números? Estas son las componentes coordenadas del vector *A* a lo largo de la trayectoria. Recordemos que por componentes coordenadas entendemos las componentes en la base coordenada (que no es de vectores unitarios).

Si queremos representar graficamente el transporte paralelo podemos hacerlo en nuestro familiar sistema de coordenadas cartesianas (en el que funciona justamente el sistema de graficación de Python). Para ello recordemos que la base ortonormal se escribe en términos de los vectores cartesianos como:

$$\hat{u}_r = \cos\theta \, \hat{u}_x + \sin\theta \, \hat{u}_y
\hat{u}_\theta = -\sin\theta \, \hat{u}_x + \cos\theta \, \hat{u}_y$$

Por lo tanto la base coordenada será:

$$\begin{array}{rcl} \hat{e}_r & = & \cos\theta \; \hat{u}_x + \sin\theta \; \hat{u}_y \\ \hat{e}_\theta & = & -r\sin\theta \; \hat{u}_x + r\cos\theta \; \hat{u}_y \end{array}$$

Es justamente respecto a esta última base que se calcularon las componentes del vector transportado de forma paralela.

Un gráfico del vector transportado se muestra en la ??. En la versión electrónica del libro 13 pueden encontrar el código usado para generar esta figura.

Transporte paralelo sobre una esfera

Un caso menos trivial de transporte paralelo es el que se produce en la superficie de una esfera (superficie curva de dos dimensiones), en el que los puntos vienen dados en función de su latitud ϕ y longitud λ . Esta superficie tiene métrica:

$$dl^2 = R^2 d\phi^2 + R^2 \cos^2 \phi \ d\lambda^2$$

con coeficientes métricos:

$$g_{ij}$$
: diag $(R^2, R^2 \cos^2 \phi)$

Podemos implementar esta métrica con la rutina:

```
def g_esfera_2d(xmu,mu,R=1):
    """
    Coeficiente métrico g_mumu calculados sobre la
    superficie de una esfera de radio R.

g_munu=diag(1,r^2)
    """
from numpy import cos
fi,lamb=xmu
```

¹³http://github.com/seap-udea/Relatividad-Zuluaga

Figura 5.3: Vector transportado de forma paralela en coordenadas cilíndricas.

```
if mu==0:
    g=R**2
elif mu==1:
    g=R**2*cos(fi)**2
return g
```

Supongamos que queremos transportar de forma paralela el vector que apunta directamente hacia el *norte*:

```
N=2
from numpy import array
A0=array([0,1])
```

Podemos seguir distintas trayectorias. Por ejemplo ir desde el ecuador hasta el polo siguiendo un meridiano ($\lambda=$ cte). O podríamos ir alrededor de la esfera sobre un paralelo ($\phi=$ cte). Podemos implementar estas trayectorias con esta rutina:

```
def x_fun_esfera(u,lat_0=0,lon_0=0,tipo="meridiano"):
    """
    Esta función define nuestro camino en el espacio
    """
```

```
from numpy import zeros
x=zeros(2)
dxdu=zeros(2)
if tipo=="meridiano":
    x[0]=u;dxdu[0]=1;
    x[1]=lon_0;dxdu[1]=0;
if tipo=="paralelo":
    x[0]=lat_0;dxdu[0]=0;
    x[1]=u;dxdu[1]=1;
return x,dxdu
```

Una integral de la ecuación de transporte paralelo se puede obtener usando:

Para representar este vector realizaremos una proyección ortográfica sobre el plano x-y usando la regla:

$$x = \theta \cos \lambda y = \theta \sin \lambda$$

donde $\theta = \pi/2 - \phi$ es la colatitud.

[0.373 0.666]]

De nuevo el resultado obtenido esta expresado en la base coordenada sobre la esfera. Podemos expresar esta base en coordenadas cartesianas si hacemos primero una proyección ortonormal en el sistema de coorenadas cartesianas así:

$$\begin{array}{rcl} \hat{u}_{\phi} & = & -\cos\lambda \; \hat{u}_{x} - \sin\lambda \; \hat{u}_{y} \\ \hat{u}_{\lambda} & = & -\sin\lambda \; \hat{u}_{x} + \cos\lambda \; \hat{u}_{y} \end{array}$$

De allí los vectores coordenados en coordenadas esféricas serán:

$$\begin{array}{lll} \hat{e}_{\phi} & = & -R\cos\lambda \; \hat{u}_{x} - R\sin\lambda \; \hat{u}_{y} \\ \hat{e}_{\lambda} & = & -R\cos\theta\sin\lambda \; \hat{u}_{x} + R\cos\theta\cos\lambda \; \hat{u}_{y} \end{array}$$

Figura 5.4: Vector transportado de forma paralela sobre la superficie de una esfera. Se usa proyección azimuthal para representar las coordenadas (malla punteada).

5.4.6. Ecuación geodésica

De todos los campos vectoriales que pueden definirse a lo largo de una trayectoria el más importante es aquel que corresponde al vector tangente (o el vector cuadrivelocidad). El transporte paralelo de este vector permite definir un tipo de trayectoria muy especial.

Definición 5.2

Geodésica. Una trayectoria en un espacio general se define como una geodésica si mantiene a todo lo largo la misma dirección, es decir si el vector tangente $t^{\alpha} \equiv dx^{\alpha}/d\sigma$ en cada punto es *paralelo* (en el sentido de *transporte paralelo*) al vector tangente de cualquier otro punto. Matemáticamente:

$$\frac{\mathrm{D}}{\mathrm{D}\sigma}t^{\alpha}=0$$

donde σ se conoce como el **parámetro afin** de la trayectoria.

Si usamos la definición dada en la sección anterior, la geodésica será la trayectoria que satisfaga la ecuación:

Figura 5.5: Definición de geodésica en el espacio-tiempo plano y sobre la superficie de una esfera.

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\sigma^2} + \Gamma^{\mu}_{\alpha\gamma} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\sigma} \frac{\mathrm{d}x^{\gamma}}{\mathrm{d}\sigma} = 0$$

5.4.7. Ejemplos numéricos de geodésicas

Geodésica en coordenadas cilíndricas

Nos proponemos ahora a calcular la geodésica que sigue un cuerpo en el espacio plano dada una condición inicial. La ecuación de la geodésica es:

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\sigma^2} + \Gamma^{\mu}_{\alpha\gamma} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\sigma} \frac{\mathrm{d}x^{\gamma}}{\mathrm{d}\sigma} = 0 \tag{5.3}$$

Para programar la ecuación de la geodésica es necesario linearizarla y expresarla de forma general como:

$$\left\{\frac{\mathrm{d}Y^{\mu}}{\mathrm{d}\sigma} = f^{\mu}(\{Y^{\nu}\}, u)\right\}$$

En este caso podemos hacer esta asignación:

$$\begin{array}{rcl}
Y^{\mu} & \equiv & x^{\mu} \\
Y^{4+\mu} & \equiv & dx^{\mu}/d\sigma
\end{array}$$

Con esa identificación la ecuación de la geodésica se puede escribir como:

```
def ecuacion_geodesica(Y,s,gfun,gargs,N=4):
    """
    Opciones:
        gfun: función que da la métrica
        N: Número de dimensiones
    """
    from export import Gamma
    from numpy import zeros
    dYds=zeros(2*N)
```

Definamos las condiciones iniciales y de integración:

```
N=2
from numpy import array
Y0s=array([1,0,0.1,+1])
from numpy import pi,linspace
ss=linspace(0,10,100)
```

Y podemos integrar:

```
from scipy.integrate import odeint
Ys=odeint(ecuacion_geodesica,YOs,ss,args=(g_cilindricas_2d,(),N))
```

Hagamos un gráfico de la trayectoria en el espacio:

(Algoritmo 5.1)

```
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()
from numpy import sin, cos
for i,Y in enumerate(Ys):
    #Coordenadas
   r=Y[0]
    teta=Y[1]
    #Puntos
    #Vectores unitarios
    er=array([cos(teta),sin(teta)])
    et=array([-sin(teta),cos(teta)])
    #Posición en la trayectoria
   rpos=r*er
    #Grafica puntos
    ax.plot(rpos[0],rpos[1],'k.')
\#ax.set\_xlim((0,1.5))
```

```
\#ax.set\_ylim((0,1.5))
ax.grid()
fig.tight_layout()
                                                                       ver Figura 5.6
```


Figura 5.6: Figura correspondiente al código 5.1.

Que coincide con lo que esperabamos: la trayectoria es una línea recta.

Geodésica sobre la superficie de una esfera

Un problema más interesante es calcular la geodésica sobre una esfera. Para ello necesitamos la métrica:

Y podemos usar los algoritmos introducidos antes para integrar la geodésica:

(Algoritmo 5.2)

```
#Condiciones iniciales: arrancando en Medellín
from numpy import array,pi
Y0s=array([6*pi/180,-75*pi/180,0.6,0.2])
from numpy import pi,linspace
ss=linspace(0,8,100)
```

```
#Integra la ecuación de la geodésica
from scipy.integrate import odeint
Ys=odeint(ecuacion_geodesica, YOs, ss, args=(g_esfera_2d,(),N))
#Extrae las coordenadas y las convierte a geográficas
from numpy import mod
lons=mod(Ys[:,1]*180/pi,360)
lats=Ys[:,0]*180/pi
#Grafica
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()
ax.plot(lons,lats,'r.')
#Decoracion
ax.set_xlim((0,360))
ax.set_ylim((-90,90))
ax.grid()
fig.tight_layout()
                                                                ver Figura 5.7
```

Para verificar que si es una circunferencia máxima usemos el paquete Basemap que permite representar puntos sobre un mapa realista de la Tierra.

```
(Algoritmo 5.3)
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
fig=plt.figure()
ax=fig.gca()
#Crea mapa
#m=Basemap(projection='moll',lon_0=0)
m=Basemap(projection='ortho',lon_0=0,lat_0=30)
#Dibuja continentes, lagos y oceanos
m.drawcoastlines()
m.fillcontinents(color='coral',lake_color='aqua')
m.drawmapboundary(fill_color='aqua')
#Calcula la posición de los puntos
x,y=m(lons,lats)
ax.plot(x,y,'ro',ms=1)
#Ajusta el tamaño de la figura
fig.tight_layout()
                                                                ver Figura 5.8
```


Figura 5.7: Figura correspondiente al código 5.2.

5.5. La geodésica y un principio variacional

Una deducción alternativa de la ecuación geodésica se puede obtener mediante un principio variacional.

Sabemos que la longitud de un intervalo en el espacio-tiempo es:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

La longitud entonces de una curva hecha solo de intervalos temporaloides o luminoides, entre dos eventos *A* y *B* será:

$$S = \int_{A}^{B} ds = \int_{A}^{B} \sqrt{g_{\mu\nu}(x^{\alpha}) dx^{\mu} dx^{\nu}}$$

donde x^{α} son los puntos a lo largo de la trayectoria.

Si suponemos que parametrizamos los eventos en la trayectoria con un parámetro λ , de modo que $x^{\alpha}(\lambda)$ esta espresión se puede escribir como:

$$S = \int_{A}^{B} \sqrt{g_{\mu\nu}(x^{\alpha}) \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\lambda}} \mathrm{d}\lambda$$

La geodésica entre los eventos *A* y *B* será aquella curva tal que la longitud total entre ellos es *extremal*:

Figura 5.8: Figura correspondiente al código 5.3.

$$\delta S = 0$$

El intervalo entre puntos de la geodésica lo llamaremos en lo sucesivo:

$$d\sigma^2 \equiv g_{\mu\nu} dx^{\mu} dx^{\nu}$$

El problema de la determinación de la geodésica es similar al problema de la mecánica clásica de la determinación de la trayectoria real de un sistema en el espacio de configuración que tiene acción *S* y lagrangiano *L*.

Aquí vemos que el papel de la acción *S* de la mecánica clásica lo juega la longitud de arco y el papel del Lagrangiano lo juega la cantidad:

$$L \equiv \sqrt{g_{\mu\nu} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\lambda}}$$

Sobre la curva extremal, en general

$$d\sigma^2 = Dd\lambda^2$$

donde *D* es una constante.

Sabemos por el cálculo variacional que la condición variacional es equivalente a las ecuaciones de Euler:

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\frac{\partial L}{\partial \dot{x}^{\alpha}} \right) - \frac{\partial L}{\partial x^{\alpha}} \bigg|_{\lambda = \sigma} = 0$$

donde por brevedad hemos escrito $\dot{x}^{\alpha} \equiv dx^{\alpha}/d\lambda$

Puede probarse que la ecuación de Euler en este caso resulta igual a:

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\sigma^2} + \Gamma^{\mu}_{\alpha\gamma} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\sigma} \frac{\mathrm{d}x^{\gamma}}{\mathrm{d}\sigma} = 0$$

que es justamente la ecuación de la geodésica.

Nótese que en realidad la ecuación de la geodésica puede escribirse en general como:

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\lambda^2} + \Gamma^{\mu}_{\alpha\gamma} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\gamma}}{\mathrm{d}\lambda} = 0$$

que es independiente de si la geodésica es temporaloide o nula.

Para el caso de partículas con masa:

$$d\sigma^2 = c^2 d\tau^2$$

por lo tanto es posible usar como parámetro afin $\lambda=\tau$ de modo que para este caso:

$$\frac{\mathrm{d}^2 x^\mu}{\mathrm{d}\tau^2} + \Gamma^\mu_{\alpha\gamma} \frac{\mathrm{d}x^\alpha}{\mathrm{d}\tau} \frac{\mathrm{d}x^\gamma}{\mathrm{d}\tau} = 0$$

Nota

La geodésica y el principio de máximo envejecimiento. En el espacio Euclidiano o en otras variedades Riemanianas la geodésica representa la trayectoria de longitud mínima, el camino de menor distancia. En un espacio Lorentziano, sin embargo, y como vimos en el capítulo de Relatividad Espacial, el camino entre dos puntos a lo largo de la geodésica es realmente el camino más largo. A esto se lo conoce como el principio de máximo envejecimiento.

5.6. Geodésicas y movimiento inercial

La introducción en la sección anterior del concepto de geodésica conduce a la formulación de un principio físico nuevo en la relatividad general, a saber un principio de inercia generalizado:

Postulado 5.6

Postulado de las geodésicas. Una partícula de prueba completamente libre de fuerzas, en un espacio tiempo general caracterizado por una métrica $g_{\mu\nu}$ y símbolos de Christoffel (coeficientes conexión) asociado $\Gamma^{\alpha}_{\mu\nu}$, se mueve sobre una geodésica en el espacio-tiempo:

Postulado 5.6 (Cont.)

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\lambda^2} + \Gamma^{\mu}_{\alpha\gamma} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\gamma}}{\mathrm{d}\lambda} = 0$$

Es interesante anotar que el resultado anterior vale tanto si la partícula es masiva como si no lo es, es decir, aplica en el caso de la luz o de otras partículas de prueba. La diferencia es que en el caso de una partícula masiva en la cual los intervalos son temporaloides, el parámetro afín puede identificarse con el tiempo propio y la ecuación geodésica adopta la forma general:

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} + \Gamma^{\mu}_{\alpha\gamma} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\gamma}}{\mathrm{d}\tau} = 0$$

que ahora es una ecuación completamente física (todas las cantidades involucradas son físicas).

Si despejamos $d^2x^{\mu}/d\tau^2$ obtenemos:

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} = -\Gamma^{\mu}_{\alpha\gamma} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\gamma}}{\mathrm{d}\tau}$$

Clásicamente se puede interpretar como que un cuerpo en un espacio-tiempo con métrica general, experimenta una aceleración incluso en la ausencia de fuerzas.

Nota: El principio que realmente es una proposición. El principio de las geodésicas fue propuesto por Einstein como un elemento adicional físico a la relatividad general independiente de las ecuaciones de campo. Sin embargo, en años posteriores, Einstein y otros colegas demostraron que en realidad este resultado es producto de una propiedad intrínseca de la relatividad, a saber, el teorema de continuidad (conservación de la energía) que puede expresarse matemáticamente como:

$$T^{\mu\nu}_{:u}=0$$

donde $T^{\mu\nu}$ es el tensor de esfuerzo-energía que introduciremos en una sección posterior.

5.7. Geodésicas en campo débil

Una de las más interesantes aplicaciones de la ecuación de la geodésica se obtiene al aplicarla a una situación en la que el campo gravitacional es poco intenso.

Hay dos cosas que desde el punto de vista de la relatividad caracterizan a un campo gravitacional débil:

 En movimiento geodésico en el campo, las velocidades espaciales conseguidas por las partículas son pequeñas, i.e.

$$\frac{\mathrm{d}x^i}{\mathrm{d}\tau} \ll \frac{\mathrm{d}x^0}{\mathrm{d}\tau}$$

recordemos que en unidades luz la primera cantidad nos da la velocidad en unidades de la velocidad de la luz. Por otro lado, en las mismas unidades la segunda cantidad nos da la diferencia entre el tiempo coordenado y el tiempo propio que en campo débil será casi idéntica.

 En campo débil la métrica es aproximadamente igual a la métrica de Minkowski. Podemos escribirla de la forma:

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

donde $|h_{\mu\nu}| \ll 1$.

A esta forma de escribir la métrica se la llama *linearización* de la métrica y la usaremos más adelante para describir las ondas gravitacionales.

Nos interesa dedicir la ecuación de movimiento de un cuerpo en caída libre en el campo gravitacional, es decir la ecuación $\mathrm{d}^2\vec{r}/\mathrm{d}t^2 \approx \mathrm{d}^2x^i/\mathrm{d}\tau^2$. En lo sucesivo y para simplificar usaremos la notación de Newton:

$$\ddot{x}^{\mu} \equiv \frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2}$$

entendiendo que el punto hace referencia a la derivada respecto del tiempo propio y no del tiempo coordenado.

En esta notación la ecuación geodésica nos queda:

$$\ddot{x}^{\mu} = -\Gamma^{\mu}_{\alpha\gamma}\dot{x}^{\alpha}\dot{x}^{\gamma}$$

Teniendo en cuenta la primera condición podemos escribir una versión aproximada de la ecuación para la componente espacial como:

$$\ddot{x}^{\mu} = -\Gamma^{\mu}_{00}(\dot{x}^0)^2$$

Si usamos coordenadas ortogonales para la métrica, sabemos que:

$$\Gamma^{\mu}_{00} = -\frac{1}{2}g^{\mu\mu}g_{00,\mu}$$

Suponemos un campo estático, de modo que $\Gamma^0_{00}=0$ de donde se sigue que sobre la geodésica, en las condiciones propuestas

$$\ddot{x}^{0} = 0$$

de donde integrando obtenemos:

$$\frac{\mathrm{d}x^0}{\mathrm{d}\tau} = k$$

donde k es una constante de integración a lo largo de la geodésica. Es fácil ver que dado que:

$$d\sigma^2 \equiv g_{\mu\nu} dx^{\mu} dx^{\nu}$$

entonces, bajo las aproximaciones podemos escribir, en unidades del sistema internacional:

$$c^2 pprox \left(rac{\mathrm{d}x^0}{\mathrm{d} au}
ight)^2$$

que es exactamente el mismo resultado:

$$\dot{x}^0 = c$$

Volviendo a la ecuación de la geodésica, la componente temporal queda:

$$\ddot{x}^i = -c^2 \Gamma^i_{00}$$

Usando la linearización de la métrica tenemos:

$$\Gamma^{i}_{00} = -\frac{1}{2}\eta^{ii}h_{00,i} = \frac{1}{2}h_{00,i}$$

De donde finalmente la ecuación de movimiento en campo gravitacional débil se puede escribir como:

$$\ddot{x}^i = -\frac{c^2}{2} h_{00,i}$$

En la mecánica Newtoniana sabemos que:

$$\ddot{\vec{r}} = -\vec{\nabla}\Phi$$

donde ϕ es el potencial gravitacional local (energía potencial gravitacional por unidad de masa) que para la ley de gravitación universal de Newton esta dado por:

$$\Phi = -\frac{GM}{r}$$

La comparación de estas ecuaciones muestra que podemos hacer la identificación:

$$h_{00} = \frac{2\Phi}{c^2}$$

De allí que el coeficiente métrico temporal en campo débil sea:

$$g_{00}\approx 1+\frac{2\Phi}{c^2}$$

De modo que el comportamiento de las partículas en un campo gravitacional Newtoniano se puede reproducir con una métrica del tipo:

$$\mathrm{d}s^2 = \left(1 + \frac{2\Phi}{c^2}\right) \; \mathrm{d}t_L^2 - \; \mathrm{d}r^2 - r^2 \mathrm{d}\theta^2 - r^2 \sin^2\theta \mathrm{d}\phi^2$$

llamaremos a esta la métrica de Newton.

Una manera de parametrizar la métrica de Newton es haciendo:

$$\mathcal{R} \equiv \frac{2GM_p}{c^2}$$

la métrica se puede escribir de forma simplificada como:

$$\mathrm{d}s^2 = \left(1 - \frac{\mathcal{R}}{r}\right) \; \mathrm{d}t_L^2 - \mathrm{d}r^2 - r^2 \mathrm{d}\theta^2 - r^2 \sin^2\theta \; \mathrm{d}\phi^2$$

Nota

El parámetro \mathcal{R} . El parámetro \mathcal{R} es una cantidad de gran relevancia en la relatvidad general. Más adelante la obtendremos después de estudiar la métrica de Schwarzschild. Por ahora podemos ver que es una cantidad que es proporcional a la masa de un cuerpo con una constante de proporcionalidad $2G/c^2=1,4852\times 10^{-27}m^3kg^{-1}$ muy pequeña. Esta cantidad solo se hace macroscópica para valores de la masa del cuerpo realmente grandes (masas planetarias). Una manera de parametrizar este parámetro es:

$$\mathcal{R}=$$
 2,954 km $\left(\frac{M_p}{M_{\odot}}\right)$

5.7.1. Un ejemplo numérico

Una implementación de la métrica de Newton es:

```
from numpy import array
def g_newtoniana_4d(xmu,mu,R=1):
    Coeficiente métrico g_mumu calculados en el evento xmu
    para espacio-tiempo plano con coordenadas cilíndricas.
    g_{munu}=diag(A,-1,-r^2,-r^2 sin^2 teta)
    11 11 11
    from numpy import sin
    t,r,teta,fi=xmu
    A = (1 - R/r)
    if mu==0:
        g=A
    elif mu==1:
        g = -1
    elif mu==2:
        g=-r**2
    elif mu==3:
        g=-r**2*sin(teta)**2
    return g
```

```
%load_ext autoreload
%autoreload 2
```

```
from export import Gamma
```

```
from numpy import pi
xmu=[0,2,pi/2,0]
R=1
Gamma(xmu,g_newtoniana_4d,(R,),N=4)
```

```
, 0.25 , 0.
Out[30]: array([[[-0.
                                    0.
                                        ],
              [ 0.25 , -0. , 0. ,
                                    0.
                                         ],
              [ 0. , 0. , -0.
                                , 0.
                                         ],
                    , 0. , 0.
                                  , -0.
             [[ 0.125, -0.
                         , 0.
              [-0. , 0.
                                , -0.
                                        ],
                         , -0.
                    , -0.
              [ 0.
                          , -2. , 0.
                                        ],
                         , 0.
              [ 0. , -0.
                                 , -2.
                                         ]],
             [[ 0. , 0.
                         , -0.
                                         ],
                           , 0.5 ,
              [ 0.
                    , 0.
                                         ],
              [-0. , 0.5 , 0.
                                , -0.
                                        ],
              [ 0.
                    , 0.
                         , -0.
                                         ]],
             [[ 0.
                    , 0.
                                  , -0.
                          , 0.
                                         ],
                                  , 0.5
              [ 0.
                           , 0.
                    , 0.
                                        ],
              [ 0.
                                  , -0.
                    , 0.5 , -0.
              [-0.
                                    0.
                                         ]]])
```

Vamos a estudiar el movimiento de un cuerpo que es lanzado horizontalmente con una velocidad v a una altura h ($r = R_p + h$) sobre la superficie del planeta. Las condiciones iniciales del problema son por tanto:

$$x_{0L}^{\mu}:\left(0,\frac{R_{p}+h}{c},\frac{\pi}{2},0\right)$$
 (5.4)

$$\frac{\mathrm{d}x_{0L}^{\mu}}{\mathrm{d}\sigma}:\left(1,0,0,0,-\frac{v}{R_{p}}\right)\tag{5.5}$$

Las propiedades del cuerpo son:

```
#Constantes
c=3e8 # m/s
G=6.67e-11 # m^3 kg^-1 s^-2
#Propiedades del planeta
Mp=5.98e24 # kg
Rp=6.371e6 # m
Phip=-G*Mp/Rp
gp=G*Mp/Rp**2
R=2*G*Mp/c**2
```

```
R = 0.008863688888888891 m
Potencial en la superficie, Phi(Rp) = -62606498.19494586 J/kg
Aceleración gravitacional, g(Rp) = 9.826792998735812 m/s^2
```

Las condiciones iniciales serán por otro lado:

```
#Altura y velocidad
  h=100.0 # m
  v=10000.0 \# m/s
  from numpy import sqrt
  T=sqrt(2*h/gp)
  #Condiciones iniciales
  from numpy import array,pi
  YOs=array([0.0,(Rp+h)/c,pi/2,pi/2,
             1,0,0,-v/Rp])
  #Tiempo de integración
  from numpy import pi,linspace
  ss=linspace(0,T,30)
  print(f"Condiciones iniciales = {YOs}")
                                 0.021 1.571 ...
Condiciones iniciales = [ 0.
                                                    0.
                                                                  -0.002]
  %matplotlib inline
                                                                (Algoritmo 5.4)
  #Integra la ecuación de la geodésica
  from scipy.integrate import odeint
  from export import ecuacion_geodesica
  Ys=odeint(ecuacion_geodesica, YOs, ss, args=(g_newtoniana_4d, (R/c,),N))
  #Convierte solución en coordenadas esféricas
  ts=Ys[:,0]
  rs=Ys[:,1]
  qs=Ys[:,2]
  fs=Ys[:,3]
  #Convierte coordenadas esféricas en coordenadas cartesianas
  from numpy import sin, cos
  xs=rs*sin(qs)*cos(fs)
  ys=rs*sin(qs)*sin(fs)
  zs=rs*cos(qs)
  #Gráfico
  import matplotlib.pyplot as plt
  fig=plt.figure(figsize=(5,5))
  ax=fig.gca()
  ax.plot(c*xs,c*ys-Rp,label="Geodésica")
  #Comparación con el movimiento parabólico
  xs_par=v*ss
```

```
ys_par=h-0.5*gp*ss**2
ax.plot(xs_par,ys_par,'k+',label="Galileo")

#Decoración
ax.legend()
ax.set_xlabel("$x$")
ax.set_ylabel("$y$")
fig.tight_layout()
ver Figura 5.9
```


Figura 5.9: Figura correspondiente al código 5.4.

Que se corresponde con lo esperado: el cuerpo describe una trayectoria parabólica en el espacio.

5.8. Simetrías y cantidades conservadas

Las ecuaciones geodésicas son funamentales en Relatividad general y como tal deben ser revisadas con sumo cuidado. Como sucede en la mecánica clásica con las ecuaciones de movimiento de Newton o las ecuaciones de Lagrange, ellas representan las ecuaciones diferenciales más importantes de la relatividad general.

Existen distintas maneras de escribir las ecuaciones de la geodésica:

1. Versión original:

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} = -\Gamma^{\mu}_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}\tau}$$

que en notación de Newton es:

$$\ddot{x}^{\mu} = -\Gamma^{\mu}_{\alpha\beta}\dot{x}^{\alpha}\dot{x}^{\beta}$$

2. Versión linearizada

$$\dot{x}^{\mu} = U^{\mu}$$

$$\dot{U}^{\mu} = -\Gamma^{\mu}_{\alpha\beta}U^{\alpha}U^{\beta}$$

3. Versión variacional: si se define:

$$L = \sqrt{g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}}$$

entonces la ecuación de la geodésica es:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left(\frac{\partial L}{\partial \dot{x}^{\alpha}} \right) - \frac{\partial L}{\partial x^{\alpha}} = 0$$

Esta última manera de expresar la ecuación permite encontrar constantes de movimiento usando principios similares a los que se usaron en la mecánica clásica.

5.8.1. La métrica como constante

Como hemos visto antes si se escoge de manera apropiada el parámetro afin entonces el valor de *L* resulta constante e igual a D. De aquí resulta nuestra primera constante de movimiento o cuadratura:

$$\sqrt{g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}}=D$$

que se puede escribir como:

$$g_{\mu\nu}U^{\mu}U^{\nu}=D^2$$

En el caso por ejemplo de una geodésica temporaloide, D=c y $\sigma=\tau$ de modo que:

$$g_{\mu\nu}U^{\mu}U^{\nu}=c^2$$

5.8.2. Coordenadas cíclicas y vectores de Killing

Si una métrica no depende de una de las coordenadas x^{κ} , entonces la ecuación de Euler (ecuación de la geodésica) se puede escribir como:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left(\frac{\partial L}{\partial \dot{x}^{\kappa}} \right) = 0$$

De aquí se obtiene que la cuadratura:

$$\frac{\partial L}{\partial \dot{x}^{\kappa}} = \text{cte}$$

Desarrollando esta ecuación obtenemos:

$$-g_{\kappa\nu}\frac{1}{L}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\sigma}=-g_{\kappa\nu}U^{\nu}=\mathrm{cte}$$

Si definimos el vector:

$$\xi^{\mu}:(0_0,...,1_{\kappa},...,0_4)$$

donde la única componente distinta de 0 es la componente κ entonces la constante encontrada se puede escribir como:

$$g_{\mu\nu}\xi^{\mu}U^{\nu}=\text{cte}$$

Que no es otra cosa que el producto punto del cuadrivector ξ^{μ} y la cuadrivelocidad U_{ν} :

$$\xi^{\mu}U_{\mu} = \text{cte}$$

Al cuadrivector ξ^{μ} se lo llama el vector de *Killing* asociado con la simetría correspondiente¹⁴.

5.8.3. Ejemplo: geodésicas en coordenadas cilíndricas

Un ejemplo clásico consiste en calcular las geodésicas en un espacio plano cuya métrica es expresada en coordenadas cilíndricas:

$$\mathrm{d}l^2 = \mathrm{d}r^2 + r^2\mathrm{d}\phi^2 + \mathrm{d}z^2$$

Consideremos geodésicas sobre el plano z=0. Podemos escribir la ecuación de la geodésica o escribir sus constantes:

1. **Constancia de la métrica**: En este caso podemos escoger un parámetro afin tal que D=1:

$$\sqrt{g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}}=1$$

que se escribe explícitamente como:

 $^{^{14}}$ El nombre de vector de Killing viene del matemático alemán Wilhelm Killing (1847-1923) y no de que sea un vector con una acción *asesina*.

$$\left(\frac{\mathrm{d}r}{\mathrm{d}\lambda}\right)^2 + r^2 \left(\frac{\mathrm{d}\phi}{\mathrm{d}\lambda}\right)^2 = 1$$

2. **Variables cíclicas**: En este caso ϕ no aparece en la métrica y por lo tanto el vector de Killing es ξ^{μ} : (0,1,0), de allí que la siguiente cantidad sea constante:

$$\xi^{\mu}\dot{x}_{\mu}=h$$

aquí hemos escogido llamar h a la constante. Explícitamente:

$$g_{\mu\nu}\xi^{\mu}\dot{x}^{\nu}=h$$

o lo que es lo mismo:

$$g_{\phi\phi}\dot{\phi}=r^2\dot{\phi}=h$$

Dividiendo esta última ecuación por la primera obtenemos:

$$\frac{\mathrm{d}\phi}{\mathrm{d}r} = \frac{l}{r^2} \left(1 - \frac{h^2}{r^2} \right)^{-1/2}$$

Que puede integrarse para dar:

$$\phi = \phi_0 + \cos^{-1}\left(\frac{h}{r}\right)$$

Despejando r obtenemos la forma de las geodésicas:

$$r\cos(\phi - \phi_0) = h$$

Desarrollando el coseno y teniendo en cuenta que $r \cos \phi = x$ y $r \sin \phi = y$:

$$x\cos\phi_0 + y\sin\phi_0 = h$$

que es la ecuación general de una línea recta y que es lo que estabamos esperando.

5.8.4. Ejemplo: geodésicas sobre una esfera

Un ejemplo clásico consiste en calcular las geodésicas sobre una esfera:

$$dl^2 = R^2 d\theta^2 + R^2 \sin^2 \theta \ d\phi^2$$

Ya habíamos hecho este cálculo numéricamente. Hagámoslo ahora analíticamente.

1. **Constancia de la métrica**: En este caso podemos escoger un parámetro afin tal que D = 1:

$$\sqrt{g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}}=1$$

que se escribe explícitamente como:

$$R^{2} \left(\frac{\mathrm{d}\theta}{\mathrm{d}\lambda}\right)^{2} + R^{2} \sin^{2}\theta \left(\frac{\mathrm{d}\varphi}{\mathrm{d}\lambda}\right)^{2} = 1$$

2. **Variables cíclicas**: En este caso ϕ no aparece en la métrica y por lo tanto el vector de Killing es ξ^{μ} : (0,1,0), de allí que la siguiente cantidad sea constante:

$$g_{\phi\phi}\dot{\phi} = R^2 \sin^2\theta \dot{\phi} = h$$

Dividiendo término a término la primera por el cuadrado de la segunda y reorganizando se produce:

$$\frac{1}{\sin^2 \theta} \left(\frac{\mathrm{d}\theta}{\mathrm{d}\phi} \right)^2 + 1 = h^2 R^2 \sin^2 \theta$$

Llamando $\kappa = h^2 R^2$, la integral y separando variables obtenemos:

$$\pm \int d\phi = \int \frac{d\theta}{\operatorname{sen} \theta \sqrt{\kappa \operatorname{sen}^2 \theta - 1}}$$

Por tablas de integrales:

$$\tan\left(\phi + \phi_0\right) = \mp \frac{\cos\theta}{\sqrt{\kappa \sec^2\theta - 1}}$$

Que puede escribirse como:

$$\sin\left(\phi + \phi_0\right) = \frac{\cos\theta}{\sqrt{\kappa - 1}\sin\theta}$$

Y que se puede desarrollar como:

$$\sin \phi_0(R\sin\theta\cos\phi) + \cos\phi_0(R\sin\theta\sin\phi) = \frac{1}{\sqrt{\kappa - 1}}(R\cos\theta)$$

Que se puede escribir en coordenadas cartesianas como:

$$x\sin\phi_0 + y\cos\phi_0 - z\frac{1}{\sqrt{\kappa - 1}} = 0$$

que es la ecuación de un plano que pasa por el origen de coordenadas y cuyas coordenadas x, y, z están sobre la superficie de la esfera. Es decir, esta es la ecuación de una circunferencia máxima, que es lo que sabemos para una geodésica sobre una esfera.

- Propiedades de la derivada covariante. Demostrar las propiedades de la derivada covariante:
 - a. Derivada covariante de una suma: $(A^{\mu} + B^{\mu})_{;\nu} = A^{\mu}_{;\nu} + B^{\mu}_{;\nu}$

- b. Derivada covariante de un producto o regla de Leibniz: $(A^{\mu}B^{\nu})_{;\alpha} = A^{\mu}{}_{;\alpha}B^{\nu} + A^{\mu}B^{\nu}{}_{;\alpha}$
- c. Derivada covariante de un campo escalar (1): $\phi_{;\mu}=\phi_{,\mu}$
- d. Derivada covariante de un campo escalar (2): $(A^{\mu}B_{\mu})_{;\alpha} = (A^{\mu}B_{\mu})_{,\alpha}$
- e. Derivada covariante de un tensor covariante: $B_{\mu;\nu}=B_{\mu,\nu}-C_{\mu\nu}^{\gamma}B_{\gamma}$
- f. Derivada covariante de un tensor contravariante de segundo rango:

$$A^{\mu\nu}_{;\alpha} = A^{\mu\nu}_{,\alpha} + C^{\mu}_{\gamma\alpha}A^{\gamma\nu} + C^{\nu}_{\alpha\gamma}A^{\mu\gamma}$$

g. Derivada covariante de un tensor covariante de segundo rango:

$$A_{\mu\nu,\alpha} = A_{\mu\nu,\alpha} - C^{\gamma}_{\mu\alpha} A_{\gamma\nu} - C^{\gamma}_{\alpha\nu} A_{\mu\gamma}$$

2. **Conexión**. Demostrar que si la derivada coariante definida por:

$$D_{\alpha}A^{\mu} = \partial_{\alpha}A^{\mu} + C^{\mu}_{\gamma\alpha}A^{\gamma}$$

es un tensor bajo una transformación general $\mathcal{G}^{\nu'}_{\nu}$, entonces la conexión afin $C^{\mu}_{\gamma\alpha}$ transforma de acuerdo con:

\$\$ C^{\nu'}_{\mu'\sigma'}={{\cal G}^{\nu'}}_{\nu}{{\cal G}^{\mu}}_{\mu'}{{\cal G}^{\si \$\$

3. Primeras derivadas de la métrica. Probar que:

$$\begin{array}{rcl} g_{\alpha\beta,\gamma} & = & \Gamma_{\alpha\beta\gamma} - \Gamma_{\beta\alpha\gamma} \\ g^{\alpha\beta}_{,\gamma} & = & -g^{\alpha\mu}\Gamma^{\beta}_{\mu\gamma} - g^{\mu\beta}\Gamma^{\alpha}_{\mu\gamma} \end{array}$$

 Conexión. En el caso de métricas diagonales, los únicos símbolos de Christoffel distintos de cero son:

$$g_{\alpha\beta,\gamma} = \Gamma_{\alpha\beta\gamma} - \Gamma_{\beta\alpha\gamma}$$

$$g^{\alpha\beta}_{,\gamma} = -g^{\alpha\mu}\Gamma^{\beta}_{\mu\gamma} - g^{\mu\beta}\Gamma^{\alpha}_{\mu\gamma}$$

Probar que en un espacio de N dimensiones el número de términos es N(2N-1)

- 5. **Tensor de torsión**. Partiendo de la forma general en la que tansforman los coeficientes de conexión afin $C^{\sigma}_{\nu\mu}$, demostrar que la torsión $T^{\sigma}_{\mu\nu} \equiv C^{\sigma}_{\mu\nu} C^{\sigma}_{\nu\mu}$ es un tensor.
- 6. Tensor de torsión. Usando la definición de los símbolos de Christoffel, demostrar que la derivada covariante:

$$A^{\mu}_{;\alpha} = A^{\mu}_{,\alpha} + \Gamma^{\mu}_{\gamma\alpha}A^{\gamma}$$

Es un tensor de segundo rango.

7. **Tensor de torsión**. Calcular los símbolos de Christoffel para el espacio tiempo plano en coordenadas esféricas para el cual:

$$g_{\mu\nu}: diag(1, -1, -r^2, -r^2 \sin^2 \theta)$$

Bibliografía

[1] I. NEWTON AND E. HALLEY, *Philosophiae naturalis principia mathematica*, vol. 62, Jussu Societatis Regiae ac typis Josephi Streater, prostant venales apud Sam ..., 1780.