CLAIMS:

l	1. A clock selection device adapted to select one of a pair of clock sources
2	onto an output clock line, comprising:
3	a first input clock line coupled to a first clock source;
4	a second input clock line coupled to a second clock source, the second
5	clock source asynchronous to the first clock source; and
6	a clock selection logic adapted to select from the first input clock line and
7	the second input clock line, producing an internal clock line coupled to the output
8	clock line.
1	2. The clock selection device of claim 1, the first clock source having a first
2	frequency and the second clock source having a second frequency, the second frequency
3	independent of the first frequency.
1	The clock selection device of claim 1, further comprising:
2	a clock synchronization logic coupled to the first input clock line, the
3	second input clock line, and the clock selection logic, adapted to synchronize the
4	first input clock line, the second input clock line, and the clock selection logic,
5	such that the internal clock line is glitch free.
1	4. The clock selection device of claim 3, the clock synchronization logic
2	comprising:
3	a first clock synchronization block, coupled to the first clock source,
4	adapted to synchronize the first clock source and the clock selection logic; and
5	a second clock synchronization block, coupled to the second clock source,
6	adapted to synchronize the second clock source and the clock selection logic.
1	5. The clock selection device of claim 4, the clock synchronization logic
2	further comprising:
3	a first clock reset signal, synchronized to the first clock signal, adapted to
4	reset the first clock synchronization block; and
5	a second clock reset signal, synchronized to the second clock signal,
6	adapted to reset the second clock synchronization block,

12

7	wherein the first clock reset signal and the second clock reset signal can b		
8	asserted to prevent meta-stability of the clock synchronization logic.		
1	6. The clock selection device of claim 3, wherein the clock synchronization		
2	logic is scalable to produce a predetermined delay time between the assertion of the clock		
3	select signal and the selection onto the output line by the clock selection logic.		
1	7. The clock selection device of claim 1, wherein the clock selection logic		
2	comprises a multiplexer with two clock input lines.		
1	8. The clock selection device of claim 7, wherein the multiplexer switches		
2	only when both clock input lines of the multiplexer are at the same assertion level.		
1	9. The clock selection device of claim 1, further comprising:		
2	a clock selection signal, asynchronous to the first clock source and the		
3	second clock source, adapted to cause the clock selection logic to select one of the		
4	first input clock source and the second input clock source onto the internal clock		
5	line, selecting the first input clock source when the clock selection signal is		
6	asserted and the second input clock source when the clock selection signal is		
7	deasserted.		
1	10. The clock selection device of claim 3, the clock synchronization logic		
2	comprising:		
3	an OR gate coupled to a clock select line and an internal feedback line of		
4	the clock synchronization logic;		
5	a first plurality of flip-flops coupled to the output of the OR gate and the		
6	second input clock line, producing a clock switch line adapted to cause the clock		
7	selection logic to switch between the first clock source and the second clock		
8	source;		
9	an AND gate coupled to the clock select line and the clock switch line; and		
10	a second plurality of flip-flops coupled to the output of the AND gate and		

the first input clock line, the output of the second plurality of flip-flops coupled to

the internal feedback line.

1	11.	The clock selection device of claim 10, the clock selection logic
2	comprising:	
3		an AND gate coupled to the internal feedback line and the first input clock
4	line.	
1	12.	The clock selection device of claim 10, the clock synchronization logic
2	further compri	sing:
3		an inverter coupled to the first input clock line producing an inverted first
4	input c	lock line coupled to the first plurality of flip-flops; and
5		an inverter coupled to the second input clock line producing an inverted
6	second	input clock line coupled to the second plurality of flip-flops; and
7	the clock selec	tion logic comprising:
8		a NAND gate coupled to the internal feedback line and the inverted first
9	input c	lock line.
1	13.	The clock selection device of claim 1, further comprising:
2		a buffer coupled to the internal clock line, producing a buffered output
3	clock s	ignal.
1	14.	A processor-based device comprising:
2		a processor;
3		a plurality of communication controllers coupled to the processor, each of
4	the plus	rality of communication controllers comprising:
5		a first clock source;
6		a second clock source asynchronous to the first clock source; and
7		a clock selection device coupled to the first clock source and the
8		second clock source comprising:
9		a first input clock line coupled to the first clock source;
10		a second input clock line coupled to the second clock
11		source; and
12		a clock selection logic adapted to select from the first input
13		clock line and the second input clock line, producing an internal
14		clock line.

4

1

2

i	15. The clock selection device of claim 14, the first clock source having a first
2	frequency and the second clock source having a second frequency, the second frequency
3	independent of the first frequency.
1	16. The processor-based device of claim 14, the clock selection device further
2	comprising:
3	a clock synchronization logic coupled to the first input clock line, the
4	second input clock line, and the clock selection logic, adapted to synchronize the
5	first input clock line, the second input clock line, and the clock selection logic
6	such that the internal clock line is glitch free.
1	17. The processor-based device of claim 16, the clock synchronization logic
2	comprising:
3	a first clock synchronization block, coupled to the first clock source
4	adapted to synchronize the first clock source and the clock selection logic;
5	a second clock synchronization block, coupled to the second clock source,
6	adapted to synchronize the second clock source and the clock selection logic.
1	18. The processor-based device of claim 17, the clock synchronization logic
2	further comprising:
3	a first clock reset signal, synchronized to the first clock signal, adapted to
4	reset the first clock synchronization block; and
5	a second clock reset signal, synchronized to the second clock signal,
6	adapted to reset the second clock synchronization block,
7	wherein the first clock reset signal and the second clock reset signal can be
8	asserted to prevent meta-stability of the clock synchronization logic.
•	
1	19. The processor-based device of claim 16, wherein the clock
2	synchronization logic is scalable to produce a predetermined delay time between the

assertion of the clock select signal and the selection onto the output line by the clock

selection logic.

1

21.

2	only when both input lines of the multiplexer are at the same assertion level.	
1	The processor-based device of claim 14, the clock selection device furthe	
2	comprising:	
3	a clock selection signal, asynchronous to the first clock source and the	
4	second clock source, adapted to cause the clock selection logic to select one of the	
5	first input clock source and the second input clock source onto the internal clock	
6	line, selecting the first input clock source when the clock selection signal is	
7	asserted and the second input clock source when the clock selection signal is	
8	unasserted.	
1	23. The processor-based device of claim 22, the clock selection device further	
2	comprising:	
3	a clock synchronization logic coupled to the first input clock line, the	
4	second input clock line, and the clock selection logic, adapted to synchronize the	
5	first input clock line, the second input clock line, and the clock selection logic	
6	such that the internal clock line is glitch free.	
1	24. The processor-based device of claim 23, the clock synchronization logic	
2	comprising:	
3	an OR gate coupled to a clock select line and an internal feedback line of	
4	the clock synchronization logic;	
5	a first plurality of flip-flops coupled to the output of the OR gate and the	
6	second input clock line, producing a clock switch line adapted to cause the clock	
7	selection logic to switch between the first clock source and the second clock	
8	source;	
9	an AND gate coupled to the clock select line and the clock switch line; and	
10	a second plurality of flip-flops coupled to the output of the AND gate and	
11	the first input clock line, the output of the second plurality of flip-flops coupled to	

The processor-based device of claim 20, wherein the multiplexer switches

the internal feedback line.

1	25.	The processor-based device of claim 24, the clock selection logic
2	comprising:	
3		an AND gate coupled to the internal feedback line and the first input clock
4	line.	
1	26.	The processor-based device of claim 24, the clock synchronization logic
2	further compa	rising:
3		an inverter coupled to the first input clock line producing an inverted first
4	input	clock line coupled to the first plurality of flip-flops; and
5		an inverter coupled to the second input clock line producing an inverted
6	secon	d input clock line coupled to the second plurality of flip-flops; and
7	the clock sele	ection logic comprising:
8		a NAND gate coupled to the internal feedback line and the inverted first
9	input	clock line.
1	27.	The processor-based device of claim 14, the clock selection device further
2	comprising:	
3		a buffer coupled to the internal clock line, producing a buffered output
4	clock	signal on the output clock line.
1	28.	A method of selecting one of a pair of clock sources onto a single output
2		mprising the steps of:
3	,	(a) receiving a first input clock signal from a first clock source;
4		(b) receiving a second input clock signal from a second clock source,
5	the sec	cond input clock signal asynchronous to the first input clock signal; and
6		(c) connecting one of first clock signal or the second clock signal to an
7	intern	al clock line coupled to the output clock line.
•		ar order and oddpaed to the oddpae order mid.
1	29.	The method of claim 28, the first clock source having a first frequency and
2	the second clo	ock source having a second frequency, the second frequency independent of
3	the first frequ	ency.
1	30.	The method of claim 28, furthering comprising the step of:

buffering the internal clock line to generate the output clock line.

1	The method of claim 28, further comprising the steps of:
2	synchronizing the first input clock signal, the second input clock signal,
3	and step (c), such that the output clock line is glitch free.
1	32. The method of claim 31, the step of synchronizing comprising the step of:
2	delaying step (c) for a predetermined amount of time.
1	33. The method of claim 31, the step of synchronizing comprising the steps of:
2	resetting a synchronization logic with a first reset signal synchronous to
3	the first clock signal; and
4	resetting the synchronization logic with a second reset signal synchronous
5	to the second clock signal.
1	The method of claim 28, step (c) comprising the steps of:
2	(c1) receiving a clock select signal asynchronous to the first clock
3	signal and the second clock signal; and
4	(c2) connecting the first clock signal to the output clock line when the
5	clock select signal is asserted;
6	(c3) connecting the second clock signal to the output clock line when
7	the clock select signal is deasserted;
8	(c4) synchronizing the first input clock signal, the second input clock
9	signal, and steps (c2) and (c3), such that the output clock line is glitch free.
1	35. A clock switching mechanism with guaranteed stability, comprising:
2	a clock switching means for switching a clock source of a first clock
3	source and a second clock source to an output clock line, the second clock source
4	asynchronous to the first clock source; and
5	a clock synchronization means coupled to the first and the second clock
6	sources and the clock switching means, the clock synchronization means
7	guaranteeing the output clock line is glitch free.

The clock switching mechanism of claim 35, the clock synchronization

36.

means comprising:

1

2

3	a first reset means synchronized to the first clock source for resetting the
4	clock synchronization means; and
5	a second reset means synchronized to the second clock source for resetting
6	the clock synchronization means,
7	wherein the first reset means and the second reset means can prevent meta-
8	stability of the clock synchronization means.
1	37. The clock switching mechanism of claim 35, the first clock source having
2	a first frequency and the second clock source having a second frequency, the second
3	frequency independent of the first frequency.
1	38. The clock switching mechanism of claim 35, the clock synchronization
2	means comprising:
3	a first synchronization means coupled to the first clock source for
4	synchronizing the first clock source to the clock switching means;
5	a second synchronization means coupled to the second clock source for
6	synchronizing the second clock source to the clock switching means;
7	a clock selection means coupled to the first synchronization means and the
8	second synchronization means for causing the clock switching means to switch
9	between the first clock source and the second clock source;
10	a first feedback means coupled to the clock selection means and the first
11	synchronization means for synchronizing the second synchronization means and
12	the clock selection means; and
13	a second feedback means coupled to the clock selection means and the
14	second synchronization means for synchronizing the first synchronization means
15	and the clock selection means.