Constraint Programming in Community-based Gene Regulatory Network Inference

Ferdinando Fioretto Enrico Pontelli

Dept. Computer Science, New Mexico State University

Sept. 24, 2013

Talk Outline

- Background
- Constraint Programing in Community Networks
- Separation Services Service
- 4 Conclusions

A cell contains different entities (including proteins, RNA) which **interact** and perform specific functions.

A cell contains different entities (including proteins, RNA) which **interact** and perform specific functions.

A cell contains different entities (including proteins, RNA) which **interact** and perform specific functions.

mRNA translation

- Some proteins (Transcriptor Factors (TF)) can regulate the production of other proteins.
- Done by enhancing or inhibiting DNA transcription or mRNA translation.
- The unit of encapsulation of these interactions are the coding regions of the DNA: the genes.
- A Gene Regulatory Network is the set of the interactions among genes.

Gene Regulatory Networks Modeling

- A GRN is described by a weighted directed graph G = (V, E).
- *V* is the set of genes of the network.
- $E \subseteq V \times V \times [0,1]$ is the set of the regulatory interactions.
- Each regulatory interaction $s \to t$ is associated with a confidence value $\omega_{s \to t} \in [0, 1]$.

Example

- G1 regulates G2.
- G2 regulates G5.
- G3 is regulated by G4.
- G4 regulates G2 and is regulated by G5.

Gene Regulatory Network Inference

GRN inference from high-throughput data

Motivation:

- Key to understand important genetic diseases, such as cancer.
- Crucial to devise effective medical interventions.

Current Methods and Challenges

- Methods proposed:
 - Correlation-based.
 - Information-theoretic based.
 - Boolean Networks.
- Based on different assumptions.
- Exhibits peculiar limitations.

- Bayesian Networks.
- Regression-based.
- Stochastics.

Current Methods and Challenges

- Methods proposed:
 - Correlation-based.
 - Information-theoretic based.
 - Boolean Networks.
- Based on different assumptions.
- Exhibits peculiar limitations.
- Solutions proposed:
 - Integrating heterogeneous data into the inference model.
 - Meta-approaches using multiple inference models (Community Networks (CN)).

- Bayesian Networks.
- Regression-based.
- Stochastics.

Gene Regulatory Network Inference

Community Networks

D. Marbach et al. "Wisdom of crowds for robust gene network inference". Nature Methods, 9(8):796–804, Aug. 2012.

Gene Regulatory Network Inference Our Approach

- CN approach for an "initial analysis" of the GRN.
 - Community prediction collective agreements.
- Integrate additional biological knowledge (when available).
 - Leverage specific GRN properties.

Gene Regulatory Network Inference Our Approach

- CN approach for an "initial analysis" of the GRN.
 - Community prediction collective agreements.
- Integrate additional biological knowledge (when available).
 - Leverage specific GRN properties.
- Why CP?

- Variables \mathcal{X} : x_i = position of the queen in the i^{th} column.
- Domains \mathcal{D} : $D^{x_i} = \{1, \ldots, n\}$.
- Constraints $C: \forall i, \forall j \text{ with } i < j$:

			ينند				
<u>.11.</u>							
				يند			
							<u>,114</u>
	عند						
						عند	
		يند					
					ينتر		

- $x_i \neq x_i$
- $\bullet \ x_i + i \neq x_j + j$
- $\bullet \ x_i j \neq x_j j$
- **Search** = Labeling + Constraint Propagation

- Variables \mathcal{X} : x_i = position of the queen in the i^{th} column.
- Domains \mathcal{D} : $D^{x_i} = \{1, \ldots, n\}$.
- Constraints $C: \forall i, \forall j \text{ with } i < j$:

- $x_i \neq x_i$
- $x_i + i \neq x_j + j$
- $\bullet \ x_i j \neq x_j j$
- **Search** = Labeling + Constraint Propagation

Constraint Satisfaction Problem (CSP)

- Variables \mathcal{X} : x_i = position of the queen in the i^{th} column.
- Domains \mathcal{D} : $D^{x_i} = \{1, \ldots, n\}$.
- Constraints C: $\forall i, \forall j$ with i < j:

$$\bullet$$
 $x_i \neq x_i$

$$x_i + i \neq x_j + j$$

$$\bullet \ x_i - j \neq x_j - j$$

• **Search** = Labeling + Constraint Propagation

- Variables \mathcal{X} : x_i = position of the queen in the i^{th} column.
- Domains \mathcal{D} : $D^{x_i} = \{1, \ldots, n\}$.
- Constraints $C: \forall i, \forall j \text{ with } i < j$:

- \bullet $x_i \neq x_i$
- $\bullet \ x_i + i \neq x_j + j$
- $\bullet \ x_i j \neq x_j j$
- **Search** = Labeling + Constraint Propagation

- Variables \mathcal{X} : x_i = position of the queen in the i^{th} column.
- Domains \mathcal{D} : $D^{x_i} = \{1, \ldots, n\}$.
- Constraints C: $\forall i, \forall j$ with i < j:

- \bullet $x_i \neq x_i$
- $x_i + i \neq x_j + j$
- $\bullet \ x_i j \neq x_j j$
- **Search** = Labeling + Constraint Propagation

- Variables \mathcal{X} : x_i = position of the queen in the i^{th} column.
- Domains \mathcal{D} : $D^{x_i} = \{1, \ldots, n\}$.
- Constraints $C: \forall i, \forall j \text{ with } i < j$:

- $x_i \neq x_i$
- $\bullet \ x_i + i \neq x_j + j$
- $\bullet \ x_i j \neq x_j j$
- **Search** = Labeling + Constraint Propagation

- Variables \mathcal{X} : x_i = position of the queen in the i^{th} column.
- Domains \mathcal{D} : $D^{x_i} = \{1, \ldots, n\}$.
- Constraints $C: \forall i, \forall j \text{ with } i < j$:

- $x_i \neq x_i$
- $\bullet \ x_i + i \neq x_j + j$
- $\bullet \ x_i j \neq x_j j$
- **Search** = Labeling + Constraint Propagation

- Variables \mathcal{X} : x_i = position of the queen in the i^{th} column.
- Domains \mathcal{D} : $D^{x_i} = \{1, \ldots, n\}$.
- Constraints C: $\forall i, \forall j$ with i < j:

- \bullet $x_i \neq x_i$
- $x_i + i \neq x_j + j$
- $\bullet \ x_i j \neq x_j j$
- **Search** = Labeling + Constraint Propagation

- Variables \mathcal{X} : x_i = position of the queen in the i^{th} column.
- Domains \mathcal{D} : $D^{x_i} = \{1, \ldots, n\}$.
- Constraints $C: \forall i, \forall j \text{ with } i < j$:

- $x_i \neq x_i$
- \bullet $x_i + i \neq x_j + j$
- $x_i j \neq x_j j$
- **Search** = Labeling + Constraint Propagation
- Solution = assignment for \mathcal{X} satisfying all $c \in \mathcal{C}$

Gene Regulatory Network Inference Our Approach

- CN approach for an "initial analysis" of the GRN.
 - Community prediction collective agreements.
- Integrate additional biological knowledge (when available).
 - Leverage specific GRN properties.
- Why CP?
 - Separation between prediction methods and model.
 - Declaratively.
 - Constraint expressions allow incremental model refinement.

Constrained Community Networks CSP Modeling

GRN inference (GRNi) problem:

- Given a set of *n* genes, a GRNi is a CSP $\langle \mathcal{X}, \mathcal{D}, \mathcal{C} \rangle$
- $\mathcal{X} = \langle x_1, \dots, x_{n^2 n} \rangle$ (regulatory relations, exuding self regulations).
- $\mathcal{D} = \langle D_1, \dots, D_{n^2-n} \rangle$, with each $D_k = \{0, \dots, 100\}$ (possible confidence values).
- C is a list of constraints expressing properties of the GRNs.

Notation:

- $x_{s \to t}$: "s regulates t" and $D_{s \to t}$ its domain.
- $d(x_{s \to t})$: the value assigned to $x_{s \to t}$.

Constrained Community Networks CSP Modeling

A solution to the GRNi defines a GRN prediction G = (V, E)

- $V = \{1, \ldots, n\},\$
- $E = \{ \langle s, t, w \rangle \mid d(x_{s \to t}) > 0 \}$, where $w = d(x_{s \to t})/100$.

Constrained Community Networks E.coli2 size 10 (from DREAM3)

Constrained Community Networks

E.coli2 size 10 CN prediction

Analysis and Domains Reduction

The pre resolution phase

- Leverage the collection of GRN predictions \mathcal{G} by:
 - (i.) Reducing the size of the solution search space.
 - (ii.) Integrate the $G_i \in \mathcal{G}$ taking into account their discrepancies.
- Set up domains of each variable $x_{s \to t} \in \mathcal{X}$, such that:

$$D_{s o t} = D_{s o t} \cap B_{s o t}$$
 where:
$$B_{s o t} = \left\{ \underbrace{\omega_{s o t}^{\#}}_{\text{if } \sigma_{t o t} < \theta_{d}} \right\}$$

•
$$\sigma_{s \to t} = \frac{1}{\binom{|\mathcal{G}|}{2}} \sum_{i=1}^{|\mathcal{G}|} \sum_{i=i+1}^{|\mathcal{G}|} \left| \omega_{s \to t}^j - \omega_{s \to t}^i \right|$$

• $\theta_d \in [0, 1]$ is a "disagreement threshold".

Analysis and Domains Reduction

The pre resolution phase

- Leverage the collection of GRN predictions \mathcal{G} by:
 - (i.) Reducing the size of the solution search space.
 - (ii.) Integrate the $G_i \in \mathcal{G}$ taking into account their discrepancies.
- Set up domains of each variable $x_{s \to t} \in \mathcal{X}$, such that:

• Set up domains of each variable
$$x_{s \to t} \in \mathcal{X}$$
, such that:
$$\boxed{D_{s \to t} = D_{s \to t} \cap B_{s \to t}}$$
where:
$$B_{s \to t} = \left\{ \underbrace{\omega_{s \stackrel{\#}{\to} t} - \frac{\sigma_{s \to t}}{2}, \ \omega_{s \stackrel{\#}{\to} t}, \ \omega_{s \stackrel{\#}{\to} t}}_{\text{sf}} + \frac{\sigma_{s \to t}}{2} \right\}$$

$$\stackrel{\text{If } \sigma_{s \to t} \ge \theta_d \quad \land \quad 0.1 < \omega_{s \stackrel{\#}{\to} t} < 0.9}{\text{sf}}$$

$$\bullet \ \sigma_{s \to t} = \frac{1}{\binom{|\mathcal{G}|}{2}} \sum_{i=1}^{|\mathcal{G}|} \sum_{i=i+1}^{|\mathcal{G}|} \left| \omega_{s \stackrel{\#}{\to} t}^{j} - \omega_{s \stackrel{\#}{\to} t}^{i} \right|$$

• $\theta_d \in [0, 1]$ is a "disagreement threshold".

Sparseness

- Elements of a GRN are considered to be controlled by a small number of genes: GRN are sparse.
- Combining predictions in a CN does not guarantee sparseness.
- Enforce a sparseness constraint by:

$$\left| atleast_k_ge(k_l, X, \theta_l) : \left| \left\{ x_i \in X \mid d(x_i) > \theta_l \right\} \right| \ge k_l \right|$$

and

$$\left| atmost_k_ge(k_m, X, \theta_m) : \left| \{x_i \in X \mid d(x_i) > \theta_m\} \right| \le k_m \right|$$

with $k_{l,m} > 0$ and $0 \le \theta_{l,m} \le 100$, and where $d(x_i)$ indicates the value of an assignment for x_i

Sparseness

 $atleast_k_ge(10, \mathcal{X}, 65) \cap atmost_k_ge(25, \mathcal{X}, 65)$

Sparseness

 $atleast_k_ge(10, \mathcal{X}, 65) \cap atmost_k_ge(25, \mathcal{X}, 65)$

Redundant edge

- Several state-of-the art inference methods rely on techniques which cannot discriminate causality (e.g., M.I., Correlation).
- Given a collection of predictions $\mathcal{G} = \{G_1, \dots, G_J\}$ for a GRN G = (V, E) and a non-empty set of non causal based methods $\mathcal{H} \subseteq \mathcal{G}$, an edge $t \to s$ is *redundant* if:

$$\forall G_i \in \mathcal{G} \setminus \mathcal{H}. \quad \omega_{s \to t}^i > \omega_{t \to s}^i + \beta$$

- If an edge $t \to s$ is redundant we call the edge $s \to t$ required.
- Let X_R be the set of all the required and redundant variables,

$$|red_edge(x_{s \to t}, x_{t \to s}, \theta_R, \theta_r): x_{s \to t} > \theta_R \land x_{t \to s} < \theta_r$$

with $\theta_R, \theta_r \in \mathbb{N}$, and $0 \le \theta_R \le 100$.

Redundant edge

 $\forall x_{s \rightarrow t}, x_{t \rightarrow s} \in X_R \quad red_edge(x_{s \rightarrow t}, x_{t \rightarrow s}, 75, 50)$

Redundant edge

Sparseness + Redundant edge

Transcriptor Factor

- Information about DNA-binding motifs often available from public sources (e.g., BDB, Gene Ontology).
- Existing methods do not often allow integration of such information (treated in postprocess).
- A gene $s \in V$ is a transcriptor factor (TF) if it regulates the production of other genes.
- Express this property on the out-degree of *s*:

$$tf(s): atleast_k_ge(k_s, X_s, \theta_s)$$

where:
$$X_s = \{x_{s \to t} \in \mathcal{X} \mid t \in V\}$$

k is the co-expressing degree (the number of genes targeted by the TF).

Transcriptor Factor

 $atleast_k_ge(2, N_i, 85)$ with $N_i = \{x_{i \to s} \mid (\forall G_i \in \mathcal{G}) \ \omega_{i \to s}^j > 0.10\}, (i = 1, 5, 9)$

Transcriptor Factor

$$atleast_k_ge(2, N_i, 85)$$
 with $N_i = \{x_{i \to s} \mid (\forall G_j \in \mathcal{G}) \ \omega_{i \to s}^j > 0.10\}, (i = 1, 5, 9)$

Co-transcriptor Factors

- Multiple TFs cooperate to regulate a specific gene (Co-regulators).
- Let $s', s'' \in V$ be two TFs, which are co-regulators.

$$coregulator(k, X, \theta): \forall x_{s' \to t'}, x_{s'' \to t''} \in X$$
$$|\{(s', s'', t') \mid s' \neq s'' \land t' = t'' \land d(x_{s' \to t'}) > \theta \land d(x_{s'' \to t''}) > \theta\}| \geq k$$

• with $k \in \mathbb{N}$ and $0 < \theta < 1$

Co-transcriptor Factors

coregulator(1, V, 75), with s' = 1, s'' = 5

Co-transcriptor Factors

$$coregulator(1, V, 75)$$
, with $s' = 1, s'' = 5$

GRN Consensus

- We implement two solution strategy prop-labeling (DFS) and a Monte Carlo (MC) based prop-labeling tree exploration.
- No consensus on objective function to drive the solution search.
- We propose 3 metric to generate a GRN consensus Constrained Community Network (CCN).
- Given a set S of m solutions, the consensus value a_k^* associated with the variable x_k is computed by:

Max Frequency:
$$a_k^* = \underset{a \in S|_{x_k}}{\arg\max(freq(a,k))}$$

Average: $a_k^* = \frac{1}{m} \sum_{i=1}^m a_k^i$.

Weighted average: $a_k^* = \frac{1}{\sum_{a \in S|_{x_k}} freq(a,k)^2} \sum_{a \in S|_{x_k}} freq(a,k)^2 a$.

Experiments

Community Networks

The CN was built from 4 top ranking methods of last DREAM competitions:

- TIGRESS (Regression model)
- Genie3 (Random Forest approach)
- Infleator (MCZ + tlCLR + linear ODE)
- CLR (Mutual Information model)

Experiments

Datasets and validation

- Benchmarks: DREAM{3,4} (110 GRNs of various sizes).
- Subnetworks from GRNs of E. coli and S. cerevisiae.
- Datasets:
 - steady state expressions for wild types
 - steady state expressions measured after gene knockouts.
 - time-series data.
- Validation: AUROC score.
- CCNs generated via MC search with 1,000 samplings.

Experiments

Settings

· Sparseness constraint.

Domains Setup.

$$\theta_d = \frac{1}{|E_{CN}|} \sum_{(s,t,w) \in E_{CN}} \sigma_{s \to t}$$

$$at least \& ge(k_l, \mathcal{X}, \theta_l) \cap at most \& ge(k_m, \mathcal{X}, \theta_m)$$

$$Ordered E_{CN}$$

$$\begin{vmatrix} i & \cdots & k & 0.088 \\ 2 & k & \cdots & k & 0.098 \\ 2 & k & \cdots & k & 0.098 \\ 2 & k & \cdots & k & 0.085$$

- $k_l \le |\{x_i|x_i \in \mathcal{X} \land \max(D_{x_i}) > \theta_l\}|$
- $k_m > |\{x_i | x_i \in \mathcal{X} \land \min(D_{x_i}) > \theta_m\}|$

· Redundant edge constraint.

$$\begin{split} & \forall G_{l} \in \mathcal{G} \setminus \mathcal{H}. \quad \omega_{s \to t}^{l} > \omega_{t \to s}^{l} + \beta \\ & \bullet \quad \frac{1}{|\mathcal{G}||E_{RR}|} \sum_{G_{l} \in \mathcal{G} \setminus \mathcal{H}} (\omega_{s \to t}^{l} - \omega_{t \to s}^{l})) \\ & \bullet \quad \frac{1}{|\mathcal{G} \setminus \mathcal{H}||E_{RR}\mathcal{G}|} \sum_{G_{l} \in \mathcal{G} \setminus \mathcal{H}} \omega_{s \to t}^{l} \\ & \bullet \quad \frac{1}{|\mathcal{G} \setminus \mathcal{H}||E_{RR}\mathcal{G}|} \sum_{G_{l} \in \mathcal{G} \setminus \mathcal{H}} \omega_{t \to s}^{l} \\ & \bullet \quad \frac{1}{|\mathcal{G} \setminus \mathcal{H}||E_{RR}\mathcal{G}|} \sum_{G_{l} \in \mathcal{G} \setminus \mathcal{H}} \omega_{t \to s}^{l} \end{split}$$

Results

CCN with sparsity and redundant edge constraints

Average AUC score improvements (in percentage) w.r.t. CN rank

Integrating GRN knowledge: TFs

Sparseness constraint.

Domains Setup.

$$\theta_d = \frac{1}{|E_{CN}|} \sum_{(s,t,w) \in E_{CN}} \sigma_{s \to t}$$

Redundant edge constraint.

$$\begin{split} & \forall G_{i} \in \mathcal{G} \setminus \mathcal{H}. \quad \omega_{i \to t}^{i} > \omega_{i \to s}^{i} + \beta \\ \bullet \quad & \frac{1}{|\mathcal{G}||E_{RR}|} \sum_{G_{i} \in \mathcal{G} \setminus \mathcal{H}} (\omega_{i \to t}^{i} - \omega_{i \to s}^{i})) \\ \hline & red.edge(x_{i \to t}, x_{t \to s}, \theta_{R}, \theta_{t})) \\ \bullet \quad & \frac{1}{|\mathcal{G} \setminus \mathcal{H}||E_{REQ}|} \sum_{G_{i} \in \mathcal{G} \setminus \mathcal{H}} \omega_{i \to s}^{i} \\ \bullet \quad & \frac{1}{|\mathcal{G} \setminus \mathcal{H}||E_{REQ}|} \sum_{G_{i} \in \mathcal{G} \setminus \mathcal{H}} \omega_{i \to s}^{i} \\ \end{split}$$

$$atleast.k_ge(k_1, \mathcal{X}, \theta_1) \cap atmost.k_ge(k_m, \mathcal{X}, \theta_m)$$

$$Ordered E_{CN}$$

$$\begin{vmatrix} 1 & g_1 & \dots & g_2 & 0.998 \\ g_1 & \dots & g_n & 0.998 \\ g_1 & \dots & g_n & 0.981 \\ g_1 & \dots & g_n & 0.855 \\ g_1 & \dots & g_n & 0.855 \\ g_1 & \dots & g_n & 0.853 \\ g_1 & \dots & g_n & 0.853 \\ g_n & \dots & g_n & \dots & g_n \\ g_n & \dots & g_n & \dots &$$

- $\bullet \ k_l \le |\{x_i|x_i \in \mathcal{X} \land \max(D_{x_i}) > \theta_l\}|$
- $\bullet \ k_m \ge |\{x_i|x_i \in \mathcal{X} \land \min(D_{x_i}) > \theta_m\}|$

· Transcription Factor constraint.

Results

CCN with additional GRN knowledge integration

Average AUC score improvements (in percentage) w.r.t. CN rank

Results

CCN with additional GRN knowledge integration

Average AUC score improvements (in percentage) w.r.t. CN rank

Conclusions

- CP-based approach to infer GRNs by integrating several methods in a CN.
- Introduces a set of constraints able to:
 - enforce the satisfaction of GRNs specific properties;
 - take account of the community predictions agreements and methods limitations.
- No assumptions on datasets nor on the type of inference methods.
- Take Home Message:
 - GRN knowledge integration offer improvements in prediction accuracy.
 - Constraints are a powerful tool to model and integrate GRN properties.

Conclusions

- CP-based approach to infer GRNs by integrating several methods in a CN.
- Introduces a set of constraints able to:
 - enforce the satisfaction of GRNs specific properties;
 - take account of the community predictions agreements and methods limitations.
- No assumptions on datasets nor on the type of inference methods.
- Take Home Message:
 - GRN knowledge integration offer improvements in prediction accuracy.
 - Constraints are a powerful tool to model and integrate GRN properties.
- Thank you!

