CS 314 Principles of Programming Languages

Guang Wang

Department of Computer Science Rutgers University

- 1. What do you expect to be covered in recitations?
- 2. I will answer your questions ASAP, normally, in 24 hours.
- 3. Two parts:
 - a. go over(understand the conceptions better)
- b. problem sets/non-graded quizzes(prepare for the midterms and the final)

Why this course?

- Why Learn More than One Programming Language?

 Each language encourages thinking about a problem in a particular way.
- Each language provides (slightly) different expressiveness & efficiency.
- \Rightarrow The language should match the problem

"No free lunch!"

Imperative Paradigm

A program is: A sequence of state-changing actions

Manipulate an abstract machine with:

- – Variables that name memory locations
- - Arithmetic and logical operations
- – Evaluate and assign operations
- - Explicit control flow statements

Key operations: Assignment, Call

- - also Go To, Go To if θ
- - or If, While

Functional Paradigm

A program is: Composition of functions on data

- Characteristics
 - Name values, not memory locations
 - Value binding through parameter passing
 - Recursion rather than iteration
- Key operations: Function Application, Function Abstraction
 - Based on the Lambda Calculus

Eg: Scheme

Logic Paradigm

A program is: Formal logic specification of the problem

- Characteristics
 - Programs say what properties the solution must have, not how to find it
 - Solutions are obtained through a specialized form of theorem-proving
- Key operations: Unification, NonDeterministic Search
 - Based on First Order Predicate Logic

Eg: Prolog rules

Complier

Scanner

- Maps characters → tokens
 - Tokens: basic unit of syntax
 - E.g., x = x + y becomes a list of tokens:<id, x> <operator, assign> <id, x> <operator, +> <id, y>
 - Typical *token* types:

number, id, operator (e.g., +), keyword (e.g., do, else)

Parser

- Parse: determine the grammatical structure of a sequence of tokens
- Grammar: set of rule like
 assignment → variable '=' expression ';'
- Analogy with grammars of human languages.
 - e.g., English: Sentence \rightarrow Subject Verb Object

Defining a language

- 1. Syntax
 - tokens defined by a Regular Expression or Finite State Automaton
 - Larger scale structure defined by a *Context Free Grammar*
- 2. Semantics
 - several formal approaches but in practice we just use English to explain the meaning

Formal languages

- Alphabet: a set of symbols
 - {a, b} or {if, while, for}
- String: a sequence of symbols from the alphabet
 - abbab
- Language: a set of strings
 - {ab, abab, ababab, ...}
 - Each string: finite length
 - Set: possibly infinite number of strings

Grammar

- A set of Terminal Symbols a,b
- A set of Non-terminal Symbols MultiAB,AB
- A set of Rules of the form

Non-terminal => sequence of Symbols

MultiAB => MultiAB AB

MultiAB => AB

AB => a b

Grammar Rule(Production)

A rule is of the form

Left-side => Right-side
Left-side is a single Nonterminal,
Right-side is a sequence of
Terminals and/or Non-terminals

The Language of a Grammar

Any string you can produce by the following process: Initialize a list of symbols to be just the Start Symbol

Repeatedly:

- Find the first Non-terminal in the list
- Find a rule whose Left-hand side is this non-Terminal
- Replace the Non-terminal with the Right-hand side of that rule

Until the list contains only Terminals

The Language of a Grammar

Grammar GAB:

MultiAB => MultiAB AB

MultiAB => AB

 $AB \Rightarrow ab$

Start symbol

Example:

Proof that a b a b a b a b is in L(GAB):

MultiAB

MultiAB AB

MultiAB AB AB

AB AB AB

a b AB AB

a b a b AB

ababab

Derivation in a Grammar

• Example: Write a leftmost derivation of aabb in G2?

G2:

Answer:

Q: How about derivation of aaab in G2? abbb?? baa??

Answer: <Stmt> => <A> => a<A> => aa <A> => aa <A> => aa a bb => aa a bb => aa a bb => aa abbbb => aaab

Answer: Can not derivate baa or any strings start with b.

Parse Trees

• Each internal node is a Non-terminal; its children make up the right-hand side of one of the productions for that Non-terminal.

Parse Tree

• Example: Draw a parse tree for aabb and aaab in G2?

G2:

Grammars are not Unique

```
Consider a grammar G:

<stmt> ::= <ident> := <digit>

<ident> ::= <letter>

<ident> ::= <ident> <digit> ::= <ident> <char>

<ident> ::= <ident> <digit> ::= <letter>

<ident> ::= <ident> <digit> ::= <letter> | <digit> | <char> ::= <| <digit> | <digit> ::= a | b | c | ... | x | y | z | <digit> ::= a | b | c | ... | x | y | z | <digit> ::= 0 | 1 | ... | 8 | 9
```

Grammars are not Unique

Arithmetic Expressions

Here is a grammar for arithmetic expressions:

- <expr> ::= <expr> + <expr> | <expr> <expr> |
- <expr> * <expr> | <expr> / <expr> | <var> | <num>
- <var> ::= a | b | c | ... | x | y | z
- <num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Example: Using this grammar, how would we parse: x + 5 * y + z?

Two different parse trees here

Precedence

```
Modify the grammar to add precedence:

<expr> ::= <expr> + <expr> | <expr> - <expr> | <term>
<term> ::= <term> * <term> | <term> / <term> | <factor>
<factor> ::= <var> | <num> | ( <expr> )
<var> ::= a | b | c | ... | x | y | z
<num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

E.g.: 3+4*5 means 3+(4*5) rather than (3+4)*5

Associativity

```
Modify the grammar to add associativity:

<expr> ::= <expr> + <term> | <expr> - <term> |<term> |<term> |<term> |<factor> |<factor> |<factor> |<factor> |<factor> ::= <var> | <num> | ( <expr> )
 <var> ::= a | b | c | ... | x | y | z
 <num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

E.g.: 10-4-3 means (10-4)-3 rather than 10-(4-3)

Types of Grammars

Context Free Grammars:

Every rule has a single nonterminal on the left-hand side:

- Disallowed: $\langle X \rangle \langle A \rangle = \rangle \langle X \rangle$ a

Regular Grammars:

- Rules all take the forms:

$$\langle A \rangle = \rangle c \text{ or } \langle A \rangle = \rangle \langle B \rangle c \text{ (left-linear)}$$

Or rules all take the forms:

$$\langle A \rangle = c \text{ or } \langle A \rangle = c \langle B \rangle (right\text{-}linear)$$

- Disallowed: $S \Rightarrow a S b$
- Cannot generate the language $\{a^nb^n \mid n = 1,2,3,...\}$

Types of Grammars

- Context Free Grammars (CFGs) are used to specify the overall structure of a programming language:
 - if/then/else, …
 - brackets: (), { }, begin/end, ...
- Regular Grammars (RGs) are used to specify the structure of tokens:
 - identifiers, numbers, keywords, ...
- RGs are a subset of CFGs

Ambiguous

• An ambiguous string is one that can be parsed into more than one different parse tree.

• Removing ambiguity:

1: Precedence

2: Associativity

	RE Notation	Language
	an empty RE	{}
symbol a	a	{a}
null symbol	ε (means empty string)	{"" }
R, S regular exprs	$\mathbf{R} \mid \mathbf{S}$	$\mathbf{L}_{\mathtt{R}} \cup \mathbf{L}_{\mathtt{S}}$
	a b (alternation)	$\{a,b\}$
R, S regular exprs	RS	$\mathbf{L}_{\mathbf{R}}\mathbf{L}_{\mathbf{S}}$
	ab (concatenation) (alb)(cld) (concatenation o	{ab} of alternations)
		{ac, ad, bc, bd}

RE Notation	<u>Language</u>	
a	{a}	
b	{b }	
ab	{ab}	
alb	{a, b}	
ab ac	{ab, ac}	
$(\mathbf{a} \mid \mathbf{b})(\mathbf{a} \mid \mathbf{c})$	{aa, ac, ba, bc}	
(abc ε) d	{abcd, d}	

RE Notation

```
R regular expr
                                                     \{\varepsilon\} \cup L_R \cup L_R L_R \cup L_R L_R L_R \cup \dots
                                                        \{\boldsymbol{\varepsilon}, a, aa, aaa, \ldots\}
R regular expr
                                                    L_R \cup L_R L_R \cup L_R L_R L_R \cup ...
                                                          \{a, aa, aaa, \ldots\}
            a^{+}
Note: \varepsilon a = a \varepsilon = a
Precedence is +*, concatenation,
                high
                              to
                                            low
                     (all are left associative operators)
```

<u>Language</u>

```
      RE Notation
      Language

      a^*
      \{\epsilon, a, aa, aaa, ...\}

      ab^* = a(b^*)
      \{a, ab, abb, abbb, ...\}

      (ab)^*
      \{\epsilon, a, b, aa, ab, ba, bb, ...\}

      a+
      \{a, aa, aaa, ...\}

      ab+=a(b+)
      \{ab, abb, abb, ...\}
```

• Find regex representing the language

Language	Regex
{0}	
{0,1}	
{0,01}	
$\{0, \epsilon\}\{001\}$	
{1}*{10}	
{10,11,1100}*	

Language	Regex
{0}	0
{0,1}	0 1
{0,01}	0 01
$\{0, \epsilon\}\{001\}$	$(0 \epsilon)001$
{1}*{10}	1*10
{10,11,1100}*	(10 11 1100)*

RE's for PLs

- Let *letter* stand for a|b|c|...|a|A|... |Z and *digit* stand for 0|1|2|3|4|5|6|7|8|9
- letter (letter / digit)* is an identifier
- -digit + is an integer constant
- digit * . digit + is real number. So .5 is, but 5. is not.

Q1: Construct a regular expression for binary numbers of length two

Q2: Construct a regular expression for binary numbers with even length

Q3: Construct a regular expression for floating point numbers that don't use scientific notation (e.g., 3.5, 0.15, -47.3).

- Answer1: (1/0)(1/0)
- Answer2: ((1/0)(1/0))*
- Answer3: $(-|\epsilon)(0-9)^+$. $(0-9)^+$

Key Points

1. Given a grammar, knowing how to prove a string in a L(G) or not.

method 1: derivation

method 2: parse tree

2. Regular expression