Ricardo Ribeiro Assink ricardo.assink@unisul.br ricardo@equipedigital.com

http://www.ricardoassink.com.br/

Vetores e Matrizes

Matrizes

Uma variável indexada Bidimensional também conhecida como "Matriz", como o próprio nome já indica, possui duas dimensões (linha e coluna), sendo possível definir variáveis com quaisquer tipo de dados.

Vetores e Matrizes

Matrizes

Exemplo de Matriz

Abaixo temos um exemplo de uma matriz chamada A de 3 linhas por 4 colunas ou simplesmente A 3 x 4.

	1	2	3	4
1	A[1,1]	A[1,2]	A[1,3]	A[1,4]
2	A[2,1]	A[2,2]	A[2,3]	A[2,4]
3	A[3,1]	A[3,2]	A[3,3]	A[3,4]

Dentro dos algoritmos:

	0	1	2	3
0	A[0][0]	A[0][1]	A[0][2]	A[0][3]
1	A[1][0]	A[1][1]	A[1][2]	A[1][3]
2	A[2][0]	A[2][1]	A[2][2]	A[2][3]

Vetores e Matrizes

Matrizes - Utilização

Cidade	Florianópolis	Tubarão	Itajaí	Joinvile
Florianópolis	0	137	115	156
Tubarão	137	0	252	294
Itajaí	115	252	0	41
Joinvile	156	294	41	0

Despesa/Mês	Janeiro	Fevereiro	Março	Abril	Maio	Junho
Faculdade	7					
Passagem					20	-13
Alimentação						
Aluguel		1				

Vetores e Matrizes

Matrizes

Declaração

```
public class Define
{
   public static void main(String args[])
   {
      <tipo de dado> <nome>[][] = new <tipo de dado>[i1][i2];
      <comandos>
   }
}
```

Obs.:

- a) O valor "i1" corresponde ao número de linhas da matriz.
- b) O valor "i2" corresponde ao número de colunas da matriz.
- c) Uma variável indexada pode ser apenas de um tipo de dado

Vetores e Matrizes

Matrizes

Exemplo: Definir uma variável indexada bidimensional como sendo do tipo Real, sendo que a matriz deverá ter 3 linhas e 4 colunas. Esta matriz deverá corresponder a 12 posições de memória.

```
public class Exemplo_Declaracao {
    public static void main(String args[]) {
        double A[][] = new double[3][4];
        <comandos>
    }
}
```

Vetores e Matrizes

Após a definição da variável A, a memória estará como mostrada no esquema abaixo:

	0	1	2	3
0				
A= 1		3		
2				

Os Valores numéricos apresentados acima(coluna) e a esquerda(linha) correspondem aos índices da variável indexada bidimensional. Não esqueça que o índice que identifica a primeira linha e a primeira coluna no JAVA têm sempre valor 0. Portanto se tivermos uma matriz com 10 linhas, a primeira linha terá como índice o valor 0 e a última linha terá como índice o valor 9.

Vetores e Matrizes

Atribuição

Exemplo:

```
public class Atribui {
    public static void main(String args[]) {
        double A[][] = new double[3][4];
        A[0][0] = 10;
        A[1][1] = 20;
        A[2][1] = 30;
        A[2][3] = A[0][0] + A[2][1];
    }
}
```

Vetores e Matrizes

Atribuição

	0	1	2	3
0	10			
A = 1		20		
2		30		40

Exemplo:

```
public class Atribui {
    public static void main(String args[]) {
        double A[][] = new double[3][4];
        A[0][0] = 10;
        A[1][1] = 20;
        A[2][1] = 30;
        A[2][3] = A[0][0] + A[2][1];
    }
}
```

Leitura

```
import javax.swing.*;
public class Exemplo6 {
   public static void main(String args[]){
        double A[][] = new double[3][4];
        int i, j;
        for(i=0; i<3; i++){
            for (j=0; j<4; j++){
A[i][j] = Double.parseDouble(JOptionPane.showInputDialog("Digite
o valor da linha "+i+" e coluna "+j+": "));
```

Leitura

Men	nória	Tela
1	j	
	0	Digite o valor na linha O e coluna O: 13
0	1	Digite o valor na linha O e coluna 1: 15
0	2	Digite o valor na linha O e coluna 2: 12
0	3	Digite o valor na linha O e coluna 3: 11
1	0	Digite o valor na linha 1 e coluna 0: 27
1	1	Digite o valor na linha 1 e coluna 1: 20
1	2	Digite o valor na linha 1 e coluna 2: 29
1	3	Digite o valor na linha 1 e coluna 3: 21
2	0	Digite o valor na linha 2 e coluna 0:34
2	1	Digite o valor na linha 2 e coluna 1: 27
2	2	Digite o valor na linha 2 e coluna 2: 32
2	3	Digite o valor na linha 2 e coluna 3: 33

Leitura

Vetores e Matrizes

A memória ficará assim após a execução do programa de leitura:

	0	1	2	3
0	13	15	12	11
A = 1	27	20	29	21
2	34	27	32	33

Escrita

```
import javax.swing.*;
public class Exemplo7 {
   public static void main(String args[]) {
       double A[][] = new double[3][4];
       int i, i:
    // leitura dos valores
    for(i=0; i<3; i++) {
      for (j=0; j<4; j++){
A[i][j] = Double.parseDouble(JOptionPane.showInputDialog("Digite o valor da linha "+i+" e coluna "+j+": "));
    // escrita dos valores
    for(i=0; i<3; i++){
      for (j=0; j<4; j++){
JOptionPane.showMessageDialog(null, "O valor contido na linha " +i+" e coluna "+j+ " eh " + A[i][j]);
```

EXEMPLO 8

	Florianópolis	Blumenau	Lages
Florianópolis	0	200	300
Blumenau	200	0	500
Lages	300	500	0

```
// distâncias partindo de florianópolis
import javax.swing.*;
                                                      A[0][0] = 0; // floripa -> floripa
public class Exemplo8{
                                                      A[0][1] = 200; // floripa -> Blumenau
   public static void main(String
                                                      A[0][2] = 300; // floripa -> Lages
args[]){
       double A[][] = new double[3][3];
                                                      // distâncias partindo de blumenau
                                                      A[1][0] = 200; // blumenau -> floripa
       int i, j;
                                                      A[1][1] = 0; // blumenau -> Blumenau
                                                      A[1][2] = 500; // blumenau -> Lages
       // cria as legendas da matriz
    String linhas_A[] = new String [3];
                                                      // distâncias partindo de lages
       linhas_A[0] = "Florianópolis";
                                                      A[2][0] = 300; // lages -> floripa
                                                      A[2][1] = 500; // lages -> Blumenau
       linhas_A[1] = "Blumenau";
                                                      A[2][2] = 0; // lages -> Lages
       linhas_A[2] = "Lages";
                                                    // mostra a distância entre todas as cidades
   String cols_A[] = new String [3];
                                                    for(i=0; i<3; i++){}
                                                      for (j=0; j<3; j++)
       cols_A[0] = "Florianópolis";
                                                        JOptionPane.showMessageDialog(null, "A
       cols_A[1] = "Blumenau";
                                                 distância entre: " + linhas_A[i] + " e "+ cols_A[j] + "
       cols_A[2] = "Lages";
                                                 é: " + A[i][j]);
                                                      }}}
```

Exercícios

Vetores e Matrizes

Faça um algoritmo que leia uma matriz de ordem 3x3 de números inteiros. Após a leitura faça:

- a)Calcule e mostre a soma dos elementos da primeira coluna;
- b)Calcule e mostre a soma dos elementos de cada coluna;
- c)Calcule e mostre o produto dos elementos da primeira linha;
- d)Calcule e mostre a soma de todos os elementos da matriz;
- e)Calcule e mostre a média dos elementos da matriz;
- f)Calcule e mostre os elementos que são maiores que a média;
- g)Calcule e mostre o maior elemento da matriz e sua posição;
- h)Calcule e mostre o menor elemento da matriz e sua posição;
- i)Mostre os elementos da diagonal principal;
- j)Mostre os elementos do triângulo superior principal;
- k) Mostre os elementos do triângulo inferior principal;
- I)Calcule e mostre a soma do diagonal principal;
- m)Mostre os elementos da diagonal secundária;
- n)Mostre os elementos do triângulo superior secundário;
- o)Mostre os elementos do triângulo inferior secundário;
- p)Calcule e mostre a Soma da diagonal secundária;

FIM

Material Original: Osmar de Oliveira Braz Junior