§1 Localization of modules (Ahyah-Mardonald §3)

A ring,  $S \in A$  multi-subset, M an A-module.

Def  $S^{-1}M = \{ m/S \mid m \in M, s \in S \} / n \text{ where} \}$   $m_1/S_1 \sim m_2/S_2 = 0$   $def = \{ S_2 \in S \} / n \text{ where} \}$ Addition  $m_1/S_1 + m_2/S_2 := (S_2 m_1 + S_1 m_2) / S_1 S_2$  A-module structure  $a \cdot m/S := (am)/S$ .

It can be checked that @ and @ are well-defined and make  $S^{-1}M$  into an A-module. Moreover, any f: M - N induces a map  $S^{-1}f: S^{-1}M - S^{-1}N$  by  $M/S \longmapsto f(m)/s$ .

Prop 1 Si is an exact operation of 1f M I N I P

is exact, then SiM Sif SiN Sig SiP

is exact as well.

Proof  $g \circ f = 0$  = 0  $S^{-1}g \circ S^{-1}f = 0$ , so  $Im(S^{-1}f) \subseteq ker(S^{-1}g)$ .

It is left to show 2.

So assume (S'g)(n/s) = g(n)/s = 0. Thus means there is a  $t \in S$  sh.  $t \cdot g(n) = g(fn) = 0$ . Hence  $t \cdot n \in \ker(g) = \operatorname{Im}(f)$  by assumption.

Say  $t \cdot n = f(m)$ . Then we have (S'f)(m/sf) = f(m)/sf = f(m)/sf = f(m)/sf = f(m)/sf and the proof is complete.

S'A & M ~ S'M (\*)

(a15) & m & (am)/s.

Poof One first checks that S'A × M ~ S'M

(a15, m) & (am)/s

is nell-defined and A-bilinear. Hence the map (\*) exists.

Since 1/s & m & m/s, it is sujective. We need to see hijecthidy: Assume \$\int\_{ai/si} \omega\_{ii} \omega\_{ii}

Prop 2 There is an isomorphism

 $\text{mith } S = \prod_{i=1}^{n} S_i \text{ and } m = \sum_{i} a_i \prod_{j \neq i} S_j \cdot m_i$ 

By assumption, m(s = 0), i.e.  $t \cdot m = 0$  for some  $t \in S$ . Then  $\frac{1}{S} \otimes m = \frac{t}{St} \otimes m = \frac{1}{St} \otimes (t \cdot m) = 0$ and we win.

In particular, STM is an STA-module wa a/s. m/t := am/st.

Example / Cor 3 1)  $f: M \rightarrow N$  an A-linear map. Then  $kes(S^{-1}f) \cong S^{-1}ker(f)$ , Cokes  $(S^{-1}f) = S^{-1}coker(f)$ and  $lm(S^{-1}f) \cong S^{-1}lm(f)$ 

2)  $M_1$ ,  $M_2 \subseteq N$  two submodules. Then  $S^{-1}M_1 \cap S^{-1}M_2 = S^{-1}(M_1 \cap M_2) \quad \text{and} \quad S^{-1}M_1 + S^{-1}M_2 = S^{-1}(M_1 + M_2).$ 

Some further properties (Check there!):  $S^{-1}(S^{-1}M) \cong S^{-1}M$ .  $S^{-1}(S^{-1}M) \approx S^{-1}M \otimes_{X} S^{-1}M$ 

miguely characterized by  $m \otimes n \mapsto m \otimes n$  for  $n \in N$ .

3) Universal property:

Leb N be an S'A-wodule (

A-wodule s.K. any seS ach bijectively.) Then any A-linear f: M—N

Jachon miguly through S'M:

A - S'M

J 3!

Ruk This holds much more generally: Leb A — B be an A-algebra, M an A-module, N a B-module.
Then

Homy (M, N) = Hom B (Box M, N)

\$\delta \cong [bom \cong b.\text{P(m)}].

Example: Couside 0-2- 2- 2/n-0, Apply Qg-: Q022h 0 — Q — 0 — 0 is again exact. Example: If M= ADI as free, then S-M=(S-1A)DI because SIA@A- and () BI commute. €.g. {p220} [T] ≈ 2[p-1][T] (consider on Z-module) But 5' does not in general commute u/ infinite products:

 $2(T)[p^{-1}] \leftarrow (2[p^{-1}])[T].$ 

because e.g. 1+ T/p+ T2/p2+ T3/p3+... & LHS.

## § 2 Passing to Ioral map

Notation of E Spec A. Then My:= (A-p) M called localization of M in p. 14 is an Ap-module.

Prop 4 Let M be on A-module. Equivalent:

$$(\Lambda)$$
  $M = 0$ 

Proof (1) = (2) = (3) Do Dear. Assume (3), let  $x \in M$ , We want to see x = 0. Garaide the annihilator rideal of x:  $Ann(x) := \{a \in A \mid a \cdot x = 0\}$ .

Now  $M_{m} = 0$   $\Rightarrow$   $\times / 1 = 0$  in  $M_{m}$ Def of  $S^{-1}M$   $\Rightarrow$   $A_{m}(x) \neq m$ .

We have this for all m, so Am(x) = A, h ptic  $x = 1 \cdot x = 0$ .

| Prop 5 (Couverse to Prop 1) Let M & N 9 P                                                          |
|----------------------------------------------------------------------------------------------------|
| be sill. gof = 0. Assure for all m E Max Spec (A)                                                  |
| Mm - Nm - Pm is exact.                                                                             |
| Then M & N & P is exact.                                                                           |
| Proof By Prop 1, localisation à au exact operation, so                                             |
| $\frac{\log(g_m)}{\ln(f_m)} = \left(\frac{\log(g)}{\ln(f)}\right)_m$ . @.                          |
| By assumption, @ = 0 Hm. Thus Prop 4 implies                                                       |
| $per(g)/m(f) = 0$ , i.e. that $M \rightarrow N \rightarrow P$ is exact. I                          |
| Cor 6 Let $f: A^{\otimes J} \longrightarrow A^{\prime\prime}$ be a map s. Le.                      |
| $I_n(f) := \left( \det (f_Q) \mid Q \subset J,  J  = n \right)$ quadratic vivnor $w$ columns $J$ . |
|                                                                                                    |
| equals the mit ideal. Then I is surjective.                                                        |
| (Ruk This answers an open quertion from Lechure 7.)                                                |



Nokayama's Lemma is on equivalent way of stating this by applying it to coke (f):

(or 7 (Nakayama's Lemma) Leb A be a loral my with max ideal m and M a fin. gen. A-module.
Then M/mM = 0 -> M = 0.

| Poof Choose a presentation (3 need not be finite)                             |
|-------------------------------------------------------------------------------|
| ABJ F ABN M O.                                                                |
| Recall that M/mM = X(m) & M and that                                          |
| X(m) & − D right exact. So                                                    |
| X(m) = 0                                                                      |
| is again exact, meaning (I mod M) is sujective.                               |
| Thus there is $Q \subseteq J$ , $ Q  = n$ , s.th. $det(f_Q) \notin M$         |
| Since A local, this means det(fa) ∈ A × and we                                |
| conclude from Cor 7 that I is surjective. This                                |
| means $M = cokes(f) = 0$ as $cl \cdot d$ .                                    |
| Cor 8 (Variant) A any mg, N a fu gen A-module,<br>M & N an A-linear map s. H. |
| f mod m: M/mM - N/mN                                                          |
| sujective for all wax ideals m = A. Then of sujective. I                      |

Example Consider M=2 con N=Q which is not surjective. But for all pines p ∈ Z, 2/p2 - 0/pQ = 0 is surjective. This shows that the assumption for N being fin. gen. in Cor. 7 and 8 is necessary. § 3 Flatnen Defr A-module M » flat = Vexact N-P-Q, MOXN - MOXP - MOXQ is again exact. Examples 1) A is flat as A-module.

2) If  $(M_i)_{i \in I}$  are all flat, then  $\bigoplus_{i \in I} M_{i'}$  is flat.

In particular, any free module  $M \cong A^{\oplus I}$  is flat. 3) By Prop. 1 and 2,  $S^{-1}A$  is flat. More generally, if M is flat, then  $S^{-1}M$  is flat (see the properties of  $\varnothing$  and  $S^{-1}$  on page 4.) Example Let f e A be regular (i.e. A if A miective). Then A/(f) is not flat as A-wodule:  $A(g) \otimes_A (A \xrightarrow{\cdot g} A) = A(g) \xrightarrow{\cdot o} A(g)$ is not rejective anymore. ( of course, A/(g) is flat as A/(g) - module.) Prop 9 Let M le an A-module. Equivalent : (1) M is flat on A-wodule (2) Mg 2 gat as Ag-wodule Yg E Spec A (3) Mu is flat as Apr-module & m & Maxfree A. Proof (1) = (2): Let  $N \xrightarrow{f} P \xrightarrow{g} Q$ , be an exact sequence of Ap-modules. It holds that Men - My en N (see page 4)

and similarly for P, Q. So (12) follows from (1).

(2) = (3) is lear.

(3) = (1): Let N = P = Q be ex seq of

A-modules. By assumption,

Mu Example Non - Mm On Pm - Mm Exam

is exact. It holds that

Mu Qu Nm = (MON)m (see page 4)

and similarly for P, Q, so we can apply Prop 5

to conclude that

MOXN - MOXP - MOXQ
is exact.