DEPARTAMENTO DE MATEMÁTICAS FUNDAMENTOS DE MATEMÁTICAS

Quiz Conjuntos y Familias de Conjuntos

Alexander Mendoza June 12, 2023

Quiz

1. Sean A y B subconjuntos de un conjunto X, considere la siguiente expresión

$$A \cup B - (A - (A \cap B))$$

- (a) Simplifique la expresión enunciando las propiedades utilizadas. La expresión simplificada sería $A \cup B (A-B)$ esto usando ley de De Morgan.
- (b) Realice el diagrama de Venn de la expresión encontrada en el punto anterior.

- (c) Con base en el diagrama del item anterior, conjeture a qué es igual la expresión simplificada y demuéstrelo.
 - Del diagrama anterior podemos observar que el conjunto resultante es B. Demostraci'on. Sabemos que una simplificaci\'on de la expresión es $A \cup B (A B)$ esto por ley de De Morgan. Luego sea $a \in A$ así $a \in A B$ por definición de diferencia de conjuntos. Luego sea $b \in B$ así $b \notin A B$ por definición de diferencia de conjuntos. Por lo tanto $A \cup B (A B) = B$.
- 2. Sean \mathcal{A} y \mathcal{B} dos familias de conjuntos no vacías tales que $\mathcal{A} \subseteq \mathcal{B}$. Pruebe que $\bigcap_{B \in \mathcal{B}} B \subseteq \bigcap_{A \in \mathcal{A}} A$.

Demostración. Sean \mathcal{A}, \mathcal{B} familias de conjuntos tal que $\mathcal{A} \subseteq \mathcal{B}$ y sea $c \in B$ para todo $B \in \mathcal{B}$, luego $c \in A$ para todo $A \in \mathcal{A}$ esto por definición de subconjunto. Luego $c \in \bigcap_{B \in \mathcal{B}}$ por definición de intersección de familia de conjuntos. Por lo tanto $c \in \bigcap_{A \in \mathcal{A}} A$, así $\bigcap_{B \in \mathcal{B}} B \subseteq \bigcap_{A \in \mathcal{A}} A$ por definición de subconjunto.