Introduction to Machine Learning Applications

Spring 2023

Decision trees

Minor Gordon

gordom6@rpi.edu

"A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test and each leaf node represents a class label (decision taken after computing all attributes)." –Wikipedia

Example of a Decision Tree

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree - Golf

Start from the root of tree.

Test Data

			Defaulted Borrower
No	Married	80K	?

Decision Tree Classification Task

Test Set

Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for specifying test condition
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition
- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

Methods for Expressing Test Conditions

- Depends on attribute types
 - Binary
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Test Condition for Nominal Attributes

Multi-way split:

Use as many partitions as distinct values.

Binary split:

Divides values into two subsets

Test Condition for Ordinal Attributes

Multi-way split:

Use as many partitions as distinct values.

Binary split:

- Divides values into two subsets
- Preserve order property among attribute values

Test Condition for Continuous Attributes

(i) Binary split

(ii) Multi-way split

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute

Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

- Static discretize once at the beginning
- Dynamic repeat at each node
- Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

How to determine the best split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the best split

- Greedy approach:
 - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

C0: 9

C1: 1

High degree of impurity

Low degree of impurity

Measures of Node Impurity

Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

Misclassification error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

Finding the best split

- 1. Compute impurity measure (P) before splitting
- 2. Compute impurity measure (M) after splitting
 - 1. Compute impurity measure of each child node
 - 2. M is the weighted impurity of children
- 3. Choose the attribute test condition that produces the highest gain

$$Gain = P - M$$

or equivalently, lowest impurity measure after splitting (M)

Revisiting Entropy

Information and Probability

- Information relates to possible outcomes of an event
 - transmission of a message, flip of a coin, or measurement of a piece of data
- The more certain an outcome, the less information that it contains and vice-versa
 - For example, if a coin has two heads, then an outcome of heads provides no information
 - More quantitatively, the information is related the probability of an outcome
 - The smaller the probability of an outcome, the more information it provides and viceversa
 - Blog post: "Entropy is a measure of uncertainty"

Entropy

- For
 - a variable (event), *X*,
 - with *n* possible values (outcomes), $x_1, x_2, ..., x_n$
 - each outcome having probability, $p_1, p_2 ..., p_n$
 - the entropy of X, H(X), is given by

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

- Entropy is between 0 and log_2n and is measured in bits
 - ullet Thus, entropy is a measure of how many bits it takes to represent an observation of X on average

Entropy Examples

• For a coin with probability p of heads and probability q=1-p of tails

$$H = -p \log_2 p - q \log_2 q$$

- For p=0.5, q=0.5 (fair coin) H=1
- For p = 1 or q = 1, H = 0

• What is the entropy of a fair four-sided die?

Entropy for Sample Data: Example

Hair Color	Count	p	$-p\log_2 p$
Black	75	0.75	0.3113
Brown	15	0.15	0.4105
Blond	5	0.05	0.2161
Red	0	0.00	0
Other	5	0.05	0.2161
Total	100	1.0	1.1540

Measure of Impurity: Entropy

• Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

- (NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).
- \bullet Maximum (log n_c) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are quite similar to Gini index computations

Provost, Foster; Fawcett, Tom. Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking

Computing Entropy of a Single Node

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

C1	0	
C2	6	

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

$$P(c1)=0.5$$
; $p(c2)=0.5$

Entropy =
$$-(1/2)\log(1/2)$$
- $(1/2)\log(1/2)$

Computing Information Gain after Splitting

Information Gain

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

Parent Node p is split into k partitions; n is the total number of records being split; n_i is number of records in partition i

- Choose the split that achieves most (entropy) reduction (maximizes GAIN) on the target variable (C1/C2)
 - i.e., how much entropy we removed with this split

Figure 3-4. Splitting the "write-off" sample into two segments, based on splitting the Balance attribute (account balance) at 50K.

Gini Impurity/Index

$$Gini = 1 - \sum_{i=1}^{C} (p_i)^2$$

- Probability of classifying a randomlychosen data point incorrectly, classifying according to the class distribution
- [0, 1]
- Less is better
- 0 = everything is same class
- 0.5 = items uniformly distributed over classes
- 1 = items randomly distributed over classes