Práctica 4 - Lógica Proposicional -

Ejercicio 1. Sea $v : \mathbf{Prop} \to \{0,1\}$ una valuación, donde \mathbf{Prop} denota el conjunto de símbolos proposiciones del cálculo proposicional. Si sólo se conocen $v(p_1), v(p_2)$ y $v(p_3)$, siendo $v(p_1) = v(p_2) = v(p_3) = 0$, argumentar si es posible decidir $v \models \alpha$ o $v \not\models \alpha$ en los siguientes casos:

- a. $\alpha = \neg p_1$.
- b. $\alpha = ((p_5 \vee p_3) \to p_1).$
- c. $\alpha = ((p_1 \vee p_2) \to p_3).$
- d. $\alpha = \neg p_4$.
- e. $\alpha = ((p_8 \to p_5) \to (p_8 \land p_0)).$

Ejercicio 2. Dadas las siguientes fórmulas del cálculo proposicional:

- $\checkmark \bullet \quad \alpha_2 = \neg (p_2 \to (p_3 \land p_1)).$
 - $\alpha_3 = ((\neg p_2 \to p_3) \to (p_2 \lor (p_5 \to p_3))).$

Hallar todas las valuaciones v tales que:

- $\sqrt{}$ a. $v \models \alpha_i$.
 - b. $v \models \alpha_i \ y \ v(p_j) = 0 \ \text{si} \ p_j \not\in \mathbf{Var}(\alpha)$.

donde Var denota al conjunto de variables proposicionales y $Var(\alpha)$ al subconjunto de Var cuyos elementos son las variables proposicionales que aparecen en α .

Ejercicio 3. Sean $\alpha, \beta \in$ **Form**. Decimos que α es satisfacible cuando existe una valuación v tal que $v \models \alpha$. Demostrar que:

- a. α es tautología si y solo si $\neg \alpha$ no es satisfacible.
- b. $(\alpha \land \beta)$ es tautología si y sólo si α y β son tautologías.
- c. $(\alpha \vee \beta)$ es contradicción si y sólo si α y β son contradicciones.
- d. $(\alpha \to \beta)$ es contradicción si y sólo si α es tautología y β es contradicción.

Ejercicio 4. Sean $\alpha, \beta \in Form$.

 $\sqrt{\mathrm{d}}$. Análogamente, probar que si α y β son contingencias y no tienen variables proposicionales en común, entonces $\alpha \wedge \beta$ es contingencia.

V

Ejercicio 5. Se dice que un conjunto de conectivos es *adecuado* si con ellos se puede representar cualquier función booleana.

- a. Demostrar que $\{\neg, \land, \lor\}$ es un conjunto adecuado de operadores (sin suponer que otro conjunto es adecuado).
- b. Probar, usando el resultado anterior, que también son adecuados $\{\neg, \land\}, \{\neg, \lor\}$ y $\{\neg, \rightarrow\}$.
- c. Demostrar que $\{\neg\}, \{\lor, \land\}$ y $\{\lor, \rightarrow\}$ no son adecuados.
- Ejercicio 6. Dadas $\alpha, \beta \in$ Form puede escribirse $(\neg \alpha \lor \neg \beta)$ como $\alpha | \beta$ (llamada barra de Sheffer), y $(\neg \alpha \land \neg \beta)$ como $\alpha \downarrow \beta$ (barra de Nicod).
- / a. Construir las tablas de verdad de $\alpha \mid \beta$ y $\alpha \downarrow \beta$.
- $\sqrt{}$ b. Mostrar que $\{|\}$ y $\{\downarrow\}$ son adecuados.
- 7 c. Probar que si * es un conectivo binario adecuado, entonces * es | ó ↓.
- ✓ **Ejercicio 7.** Sean \top y \bot dos conectivos de aridad cero (i.e., constantes booleanas), que cumplen $v \models \top$ y $v \not\models \bot$ para toda valuación v.
 - \checkmark a. Probar que $\{\rightarrow, \bot\}$ es un conjunto adecuado de conectivos.
 - $\sqrt{}$ b. Probar que $\{\rightarrow, \top\}$ no es un conjunto adecuado de conectivos.
 - **Ejercicio 8.** Sea $\mathcal{L}=\{|\}$. Podemos dar una codificación biyectiva $\#:\mathbf{Form}(\mathcal{L})\to\mathbb{N}$ de la siguiente manera

0

$$\#\varphi = \begin{cases} 2 * (i-1) & \text{si } \varphi = p_i \text{ (con } i \ge 1) \\ 2 * \langle \#\alpha, \#\beta \rangle + 1 & \text{si } \varphi = \alpha | \beta \end{cases}$$

- a. Probar que existe un algoritmo primitivo recursivo que resuelve el problema de model checking proposicional. Es decir, dada una fórmula α y una valuación finita v tal que $\mathbf{Var}(\alpha) \subseteq \mathrm{Dom}\,v$ decide si $v \models \alpha$.
 - Sugerencia: Dar una codificación biyectiva para las valuaciones y justificar la elección. Recordar que existen varios esquemas de recursión que resultan ser primitivos recursivos.
- b. Probar que existe un algoritmo primitivo recursivo que resuelve el problema de satisfacción proposicional. Es decir, dada una fórmula α decide si existe una valuación v tal que $v \models \alpha$.
- c. Probar que existe un algoritmo primitivo recursivo que, dada una fórmula α , decide si α es una tautología.
- **Ejercicio 9.** Sea $\mathcal{L} = \{ \land, \lor, \neg \}$ y α una fórmula proposicional del lenguaje \mathcal{L} . Sea α^* la fórmula que resulta de reemplazar en α : $\land \mapsto \lor$, $\lor \mapsto \land$ y para todo i, $p_i \mapsto \neg p_i$. Probar que para toda valuación v, $v \models \alpha^*$ si y sólo si $v \not\models \alpha$.
- **Ejercicio 10.** Dada una valuación v, sean p y q dos proposiciones tales que v(p) = v(q). Demostrar que $v \models \varphi$ sii $v \models \varphi[p \mapsto q]$ para toda fórmula φ , donde $\varphi[p \mapsto q]$ denota la fórmula que resulta de reemplazar uniformemente la proposición p por q en φ .
 - **Ejercicio 11.** Dado un conjunto de fórmulas Γ, llamamos $\mathbf{Con}(\Gamma)$ al conjunto de consecuencias semánticas de Γ definido como $\mathbf{Con}(\Gamma) = \{\varphi : \Gamma \models \varphi\}$. Sean $\Gamma, \Gamma_1, \Gamma_2, \Gamma_3$ conjuntos de fórmulas. Probar que:
 - \sqrt{a} . $\Gamma \subseteq \mathbf{Con}(\Gamma)$.
- \checkmark b. si $\Gamma_1 \subseteq \Gamma_2$, entonces $\mathbf{Con}(\Gamma_1) \subseteq \mathbf{Con}(\Gamma_2)$.
- c. si $\Gamma_1 \subseteq \mathbf{Con}(\Gamma_2)$ y $\Gamma_2 \subseteq \mathbf{Con}(\Gamma_3)$ entonces $\Gamma_1 \subseteq \mathbf{Con}(\Gamma_3)$.

Ejercicio 12. Sean $\alpha, \beta \in Form$.

- a. Probar que $\mathbf{Con}(\{\beta\}) \subseteq \mathbf{Con}(\{\alpha\})$ si y sólo si $\alpha \to \beta$ es tautología.
- b. Analizar la validez de las siguientes afirmaciones:
 - 1) $\mathbf{Con}(\{(\alpha \wedge \beta)\}) = \mathbf{Con}(\{\alpha\}) \cap \mathbf{Con}(\{\beta\}).$
 - 2) $\operatorname{\mathbf{Con}}(\{(\alpha \vee \beta)\}) = \operatorname{\mathbf{Con}}(\{\alpha\}) \cup \operatorname{\mathbf{Con}}(\{\beta\}).$
 - 3) $\mathbf{Con}(\{(\alpha \to \beta)\}) \subseteq \mathbf{Con}(\{\beta\}).$

Ejercicio 13. * Sea $\Gamma \subseteq \mathbf{Form}$.

- a. Probar que si Γ es satisfacible y $\Gamma' \subseteq \Gamma$, entonces Γ' es satisfacible. Mostrar que la recíproca no es cierta.
- b. Probar que Γ es satisfacible si y sólo si $\mathbf{Con}(\Gamma)$ es satisfacible.
- c. ¿Es cierto que para toda fórmula α sucede $\Gamma \models \alpha$ o $\Gamma \models \neg \alpha$?

Ejercicio 14. Demostrar que son equivalentes:

- a. $\neg(\alpha_1 \wedge \ldots \wedge \alpha_n) \in \mathbf{Con}(\emptyset)$.
- b. $\alpha_1, \ldots, \alpha_n$ no son simultáneamente válidas para ninguna valuación.
- c. Existe una fórmula β tal que $\beta \in \mathbf{Con}(\{\alpha_1, \dots, \alpha_n\})$ y $\neg \beta \in \mathbf{Con}(\{\alpha_1, \dots, \alpha_n\})$.
- d. $\beta \in \mathbf{Con}(\{\alpha_1, \dots, \alpha_n\})$ para toda fórmula β .

*Este ejercicio puede ser entregado, de manera opcional, como se resolvería en un examen, a modo de práctica para el parcial.