

文档状态	保密级别	秘密
[√]草稿	文档编号	
[]修订	管理部门	研发部
[]发布	修订年月	
	版本号	V0.1

通信协议

Inverjet 逆流器

Modbus-RS485 通信协议

目录

1 Mc	odbus-RTU 通信协议概述	. 2
	1.1 概述	. 2
	1.2 线拓扑	. 2
	1.3 线序	
	odbus-RTU 传输格式	
	2.1 字节格式	
	2.2 数据帧格式	
	2.3 功能码 03H 帧格式	
	2.4 功能码 06H 帧格式	
	2.5 功能码 10H 帧格式	. 5
	2.6 错误帧格式	. 6
	rerjet 寄存器读写	
	. 3.1 内容说明	
	3.2 保持寄存器	
	3.2.1 节点地址	
	3.2.2 波特率:	. 9
	3.2.3 控制	. 9
		11
		12

1 Modbus-RTU 通信协议概述

Swimjet 产品使用Modbus-RTU通信协议,实现从机功能。目前支持功能码为03H、06H、10H功能码,Modbus 协议在 Modbus 应用协议规范中有完整定义,

具体可以参考 Modbus 官网(https://modbus.org/specs.php)。

本文档主要说明 iWash 系列智能沙缸头的通信协议,如果想了安捷制造其他产品通信协议,请查阅相关产品的 Modbus 通信手册。

1.1 概述

Modbus-RTU 通讯协议是比较常用的一种通讯协议,主从应答式连接(半双工),三线制(差分信号 A、B以及公共端 G)。Modbus 协议是一个主/从架构的协议,总线上有一个设备是主机(如 PC 机等),其的设备为从机,每一个从机都有一个唯一的地址。每次通信都由主机发起对某个从机的请求帧,总线上被寻址的从机接收到该请求帧处理后发出应答帧给主机。

1.2 线拓扑

RS-485 总线采用线拓扑见下图。在设备连接处允许使用短截线,但应尽可能短,而且长度不超过 1 米。线路两端的总线终端需要进行特征阻抗匹配。匹配电阻的阻值应与电缆的特性阻抗值相同,通常情况下为 120欧姆。

1.3 线序

每个支持 Modbus-RTU 通信功能的 iWash 设备均配备了 RS-485 接口,如下图所示。RS-485 接口是一个7芯航空接头。A 和 B 对于设备正常通信是必要的,GND 可以接到公共地。RS485 使用差分信号通信,信号逻辑由 A与 B 两端压差决定,而不是通过 A 或者 B 与地之间压差决定。RS-485 允许的共模电压范围为-7V 至 12V,第三根线有利于满足收发之间的共模要求。

引脚 Pin	颜色 color	功能 Function
1	红 red	未定义 undefined
2	黑 black	未定义 undefined
3	白 white	未定义 undefined
4	灰 grey	未定义 undefined
5	黄 yellow	信号地 GND.signal ground
6	绿 green	A Data A (inverting)
7	棕 brown	B Data B (non inverting)

1.4 推荐线缆

线缆推荐使用截面积为 0.35-1.52mm² 屏蔽双绞线或者非屏蔽双绞线。推荐使用有两对双绞线的 线缆,这种类型的连接中推荐的电缆有2对双绞线。一对双绞线连接"A"和"B",第二对导线中的一根导 线将用作公共导线,另一根导线将不使用。参考图如下

建议:

- 推荐使用有屏蔽层的双绞线线缆。
- 推荐双绞线的屏蔽层单端接地。
- 不建议将通信线和速度线使用绞在一起的同一股线。
- 走线的时候注意避开强电磁干扰源,如高速度设备。
- 在长走线情况下, 推荐使用铁氧体磁环从而遏制共模电压。

2 Modbus-RTU 传输格式

2.1 字节格式

字节格式包括数据位、奇偶校验位和停止位。

同一总线上的主机和从机必须使用相同的字节格式,才能保证通信正常传输。

2.2 数据帧格式

Modbus-RTU 的数据帧格:

地址码	功能码	数据域	校验
1 字节	1 字节	N 字节	2 字节

地址码:

地址码是每次通讯信息帧的第一字节,占用一个字节,范围 0~254(地址 0 是广播地址)。 每个从机都必须有唯一的地址码,并且只有符合地址码的从机才能响应并回送信息。当从机 回送信息时,回送数据均以各自的地址码开始。发送的地址码表明将发送到的从机地址,而从机 返回的地址码表明回送的从机地址。相应的地址码可以表明该信息来自于哪台从机。

通信可以分为单播模式和广播模式。

单播模式是主机寻址单个从机,从机接收并且处理完请求后,向主机返回一个应答。每个从 机必须有唯一地址,这样才能区分于其他站从而被独立寻址。

广播模式是主机可以向所有从机发送请求,00H 为广播地址,所有子站均响应广播命令,但无返回信息。

功能码:

功能码告知被寻址的从设备执行何种操作,占用一个字节。 iWash 用到的功能码如下表所示(H 代表 16 进制):

功能码值	用途	解释
03H	读寄存器数据	该功能码可以读取设备属性,控制以及其他信息,一次可以读取 单个或者多个寄存器
06H	写单个寄存器	该功能码用于写单个寄存器,一次可以修改单个寄存器
04H	读输入寄存器	读取输入寄存器的值,一次可以读取单个或者多个寄存器
10H	写多个寄存器	该功能码用于写多个寄存器,一次可以修改单个或者多个寄存器

数据域:

数据域是主机和从机以读写寄存器的方式来进行数据交换的,数据长度不定。数据域的数据按照**大端 字节序传输**,即高字节先传输低字节后传输。比如一个寄存器的整型数据为 0x1234,则先发送 0x12 再发送0x34。

校验:

数据在传输过程中有可能会受到干扰或者攻击而发生变化,通过校验能够检测出数据是否在传输过程中发生了变化,保证主机或从机不受错误数据影响。Modbus 采用 CRC16 校验方式,并且采用**小端字节序传输**,即低字节先传输高字节后传输。

下文中所有通信示例如无特殊说明,都是按照 Modbus-RTU 协议说明。

2.3 功能码 03H 帧格式

如果需要读寄存器数据,则需要 03H 功能码。请求帧格式如下:

地址码	功能码	数据域		校验
1~247	0x03	寄存器地址	读取数据个数	CRC16
1 字节	1 字节	2 字节	2 字节	2 字节

应答帧格式如下:

地址码	功能码	类	校验	
1~247	0x03	数据字节个数	寄存器数据	CRC16
1字节	1 字节	1 字节	"数据字节个数"个字节	2 字节

具体示例可以参考第3章的示例。

2.4 功能码 06H 帧格式

如果需要把单个数据写入寄存器,则需要 06H 功能码。请求帧格式如下:

地址码	功能码	数据域		校验
1~247	0x06	寄存器地址	寄存器数据	CRC16
1 字节	1 字节	2 字节	2 字节	2 字节

应答帧格式如下:

地址码	功能码	数据域		校验
1~247	0x06	寄存器地址	寄存器数据	CRC16
1 字节	1 字节	2 字节	2 字节	2 字节

具体示例可以参考第3章的示例。

2.5 功能码 10H 帧格式

如果需要把多个数据写入寄存器,则需要 10H 功能码。请求帧格式如下:

地址码	功能码	数据域				
1~247	0x10	寄存器地址	寄存器个数	寄存器数据个数	寄存器数据	CRC16
1 字节	1 字节	2 字节	2 字节	1 字节	"寄存器数据 个数"个字节	2 字节

应答帧格式如下:

地址码	功能码	数据域		校验
1~247	0x10	寄存器地址	寄存器个数	CRC16
1 字节	1 字节	2 字节	2 字节	2 字节

2.6 错误帧格式

如果请求帧有错误,从机会应答一个包含异常代码的异常响应帧。异常响应帧格式如下:

地址码	功能码	异常码	校验
1 字节	1 字节	1 字节	CRC16

在异常响应帧中,功能码设置为请求帧功能码加 0x80。比如当请求帧的功能码为 0x03 时,则其异常响应帧的功能码为 0x83。

异常码定义如下表格所示:

异常码	解释
01H	功能码错误,不支持该功能号
02H	寄存器地址错误,不支持该寄存器地址
03H	数据错误,收到了非法数据值
04H	设备错误,设备内部出现错误

3 Inverjet 寄存器读写

3.1 内容说明

本章节通过分类简述读写各个功能模块的寄存器的基本情况。

单位	数据的单位(如果有)。
读写	R代表只读,W代表只写,RW代表可读可写。
Δ(1/Η /Σ Τ(1)	数据类型。Unsigned 表示无符号16bit整型,Signed 为有符号16bit整型。ASCII 表示字符类型。
参数范围	寄存器中数据的合法范围,请勿写入超出范围的数值。
寄存器地址(Hex)	十六进制的起始寄存器地址。
设备地址	文档中为iUpstream的默认地址 <mark>15H</mark> ,实际应用中可以根据要求修改
xxxxH 、0xABCD	"H"字母结尾的数据和"0x"开头的数据均是表示该数据为16进制数据

3.2 保持寄存器

支持功能码: 03H,06H,10H 寄存器存储内容如下表所示:

寄存器地址 (Hex)	名称	单位	数据类型	读写	参数范围 (d)	备注
0x0000	从站地址	/	Unsigned	RW	1~254	Modbus-RS485 通讯节点地址,默认 <mark>21</mark>
						0: 1200
0x0001	波特率	/	Unsigned	RW	0~4	1: 2400
						2: 4800

						3: 9600
						5. 5000 第1位bit: 蓝牙 控制
						第2位bit: Modbus-RS485 控制
0x0002	屏 蔽控制方式	1	Unsigned	RW	0~7	第3位bit: wifi 控制
0.0002	が上げてしていっして	,	Orisigned	I V V	0 7	A DEDIC WIII JEHJ
						0: 不屏蔽,可控; 1: 屏蔽该方式控制
0.0000	\#\\ =======	,		DIA		1: wifi配网 (wifi模块)
0x0003	进入配网模式	/	Unsigned	RW	2	2: 遥控器配对(蓝牙模块)
0x0004	电机极数		Unsigned	RW	1	0-10 默认5 (目前不可更改)
						0: 自由模式&定时模式,
					0.4	1: 训练模式 P1
0x0021	 工作模式	/	Unsigned	RW	0~4 (后续可扩	2: 训练模式 P2
OXOOZI	- IF IX-X		onsigned	1000	展)	3: 训练模式 P3
						4: 训练模式 P4
						 0
						//自由模式
						1 初始状态
						2 启动中
						3 运行中
						4 暂停
						5 结束
						//定时模式
						6 初始状态
					0. 17	7 启动中
0x0022	 工作状态机	,	Unsigned	RW	0~17 (后续可扩	8 运行中
000022	工作状态机	,	orisigned	IX V V	(石鉄円1) 展)	9 暂停
					,,,	A 结束
						//训练模式
						B 初始状态
						C 启动中
						D 运行中
						E 暂停
						F 结束 // 异常状态
						10 操作菜单
						11 故障界面
0x0023	当前电机速度	%	Unsigned	RW	0~100	· (201干 2) PM
0x0024	当前运行时间	S秒	Unsigned	RW	0~ 5999 s	
0.0000						
0x0006 —	预留					
0x006F						
			+			
0x0072 —	新奴					
0x007F	预留					
0x0080	自由模式速度	%	Unsigned	RW	0~100	
0x0081	自由模式时间	S 秒	Unsigned	RW	0~ 5999 s	
0x0082	定时模式速度	% a. T.	Unsigned	RW	0~100	
0x0083	定时模式时间	S 秒	Unsigned	RW	0~ 5999 s	
0x0084 —	_ 预留					
0x00FF	│ 训练模式P1计划第1					
0x0100	段速度	%	Unsigned	RW	0~100	默认20
0x0101	训练模式P1计划第1	S 秒	Unsigned	RW	0~ 5999 s	默认60(下一段将从60秒继续计时,故下一
	段结束时间	- '	J. 19.10G			段结束时间必须大于60s,否则视为结束)

						共50段速
	□ 训练模式P1计划第					
0x0162	50段速度	%	Unsigned	RW	0~100	
0x0163	训练模式P1计划第 50段结束时间	S 秒	Unsigned	RW	0~ 5999 s	结束时间必须大于上一段结束时间,否则 视为训练计划到此结束
0x0164— 0x017F	预留					
0x0180	训练模式P2计划第1 段速度	%	Unsigned	RW	0~100	默认20
0x0181	训练模式P2计划第1 段结束时间	S 秒	Unsigned	RW	0~ 5999 s	默认60(下一段将从60秒继续计时,故下一段结束时间必须大于60s,否则视为结束)
						共50段速
0x01E2	训练模式P2计划第 50段速度	%	Unsigned	RW	0~100	
0x01E3	训练模式P2计划第 50段结束时间	S 秒	Unsigned	RW	0~ 5999 s	结束时间必须大于上一段结束时间,否则 视为训练计划到此结束
0x01E4— 0x01FF	预留					
0x0200	训练模式P3计划第1 段速度	%	Unsigned	RW	0~100	默认20
0x0201	训练模式P3计划第1 段结束时间	S秒	Unsigned	RW	0~ 5999 s	默认60(下一段将从60秒继续计时,故下一段结束时间必须大于60s,否则视为结束)
						共50段速
0x0262	训练模式P3计划第 50段速度	%	Unsigned	RW	0~100	
0x0263	训练模式P3计划第 50段结束时间	S 秒	Unsigned	RW	0~ 5999 s	结束时间必须大于上一段结束时间,否则 视为训练计划到此结束
0x0264— 0x027F	预留					
0x0280	训练模式P4计划第1 段速度	%	Unsigned	RW	0~100	默认20
0x0281	训练模式P4计划第1 段结束时间	S 秒	Unsigned	RW	0~ 5999 s	默认60(下一段将从60秒继续计时,故下一段结束时间必须大于60s,否则视为结束)
						共50段速
0x02E2	训练模式P4计划第 50段速度	%	Unsigned	RW	0~100	
0x02E3	训练模式P4计划第 50段结束时间	S 秒	Unsigned	RW	0~ 5999 s	结束时间必须大于上一段结束时间,否则 视为训练计划到此结束
0x02E4— 0x02FF	预留					

3.2.1 节点地址

读节点地址: 15 03 00 00 00 01 87 1E;

默认节点地址为 0x0B; RS485 必须保证节点地址唯一,如有冲突则需要修改地址;

写节点地址: 15 06 00 00 00 0C 8A DB; 将节点地址改为 0C,

注意:修改后逆流器将按新地址运行,往后的命令节点地址需填入新地址

3.2.2 波特率:

代码	0	1	2	3	
波特率	1200	2400	4800	9600	

读波特率: 15 03 00 01 00 01 D6 DE;

默认波特率为 9600; 对应代号为 03:

写波特率: 15 06 00 01 00 03 9B 1F; 将波特率设置为 9600,

注意:修改后逆流器将按新波特率运行,往后的通讯将使用新波特率;

3.2.3 控制

0x0021	工作模式	/	Unsigned	RW	0~4 (后续可扩 展)	0: 自由模式&定时模式, 1: 训练模式 P1 2: 训练模式 P2 3: 训练模式 P3 4: 训练模式 P4
0x0022	工作状态机	/	Unsigned	RW	0~17 (后续可扩 展)	0
0x0023	当前电机转速	%	Unsigned	RW	0~100	
0x0024	当前运行时间	S 秒	Unsigned	RW	0~ 5999 s	

3.2.3.1 读当前工作状态:

可用 03 命令读取当前状态: 15 03 00 21 00 04 17 17

3.2.3.2 写、设置工作状态: (主要靠状态机控制)

① 自由模式——初始状态: 15 06 00 22 00 01 EB 14 "初始状态" 等待 3 秒后自动运行

② 自由模式——运行中: 15 06 00 22 00 03 6A D5

02 启动中 和 03 运行中 状态基本相同,都是立即执行,建议使用 03 状态;

③ 定时模式——初始状态: 15 06 00 22 00 01 EB 14

④ 训练模式包含 Pn 计划,必须连 0021 地址的工作模式一起设置,如下发 3.2.3.3 所示

3.2.3.3 启动时同时下发 《工作模式》和《状态机》, 如:

- ① 自由模式——初始状态: 15 10 00 21 00 02 00 00 00 01 25 40 (等待 3 秒后运行)
- ② 定时模式——初始状态: 15 10 00 21 00 02 00 00 00 06 64 82 (等待 3 秒后运行)
- ③ 训练模式 P1——初始状态: 15 10 00 21 00 02 00 01 00 0C B5 45 (等待 3 秒后运行)
- ④ 训练模式 P2——运行中: 15 10 00 21 00 02 00 02 00 0D 84 85 (立即开始运行)

3.2.3.4 也可同时下发《工作模式》《状态机》和《转速和时间》;

注意: 当模式为 "0" 同时状态机为 "初始状态" 时,速度和时间会被保存至 flash,替换相应模式下(自由或定时)的记忆配置(下表),其它状态则不保存本次速度和时间;

	1	l	i .	l		
0x0080€	自由模式速度↩	%←□	Unsigned←	RW←	0~100←	←.
0x0081←	自由模式时间↩	S 秒←	Unsigned←	RW←□	0~ 5999 s←	←
0x0082← ¹	定时模式速度↩	%←□	Unsigned←	RW←	0~100←	←
0x0083← ¹	定时模式时间↩	S 秒←	Unsigned←	RW←	0~ 5999 s←	←.

① 定时模式 —— 初始状态 ——【80% -- 30:00】:

15 10 00 21 00 04 00 00 00 06 00 50 07 08 97 5F

② 自由模式 —— 初始状态 —— 【100% -- 00:00】: 15 10 00 21 00 04 00 00 00 01 00 64 00 00 60 A7

③ 定时模式 —— 运行中 —— 【80% -- 12:00】: 15 10 00 21 00 04 00 00 00 08 00 50 02 D0 FD 94

④ 训练模式 P1 & 初始状态 & 【50% -- 00:00】: (P 计划数据不保存) 15 10 00 21 00 04 00 01 00 08 00 32 00 00 4C 76

⑤ 训练模式 P1 & 运行中 & 【50% -- 12:00】: (从 12 分钟开始执行 P1) 15 10 00 21 00 04 00 01 00 08 00 32 02 D0 4C 8A

3.3 输入寄存器 (只读)

支持功能码: 04H

寄存器存储内容如下表所示:

产品的驱动及显示的固件及硬件版本,十六进制格式。

产品版本信息寄存器如下表所示:

寄存器地址 (Hex)	名称	数据类型	寄存器个数	备注
0x0000	显示板软件版本	Unsigned	2	32位数据,高16位:主版本号 低16位:次版本号
0x0002	显示板硬件版本	Unsigned	2	32位数据,高16位:主版本号 低16位:次版本号
0x0004	驱动板软件版本	Unsigned	2	32位数据,高16位:主版本号 低16位:次版本号
0x0006	驱动板硬件版本	Unsigned	2	32位数据,高16位:主版本号 低16位:次版本号
0x0008	整机故障	Unsigned	1	Bit0: 电压异常 Bit1: 输出电流过流 Bit2: 电流传感器偏置故障 Bit3: Mos温度过高 Bit4: 机箱温度过高 Bit5: 温度传感器故障 Bit6: 温度传感器故障 Bit6: 温度传感器故障 Bit7: 电机驱动故障 Bit8: 驱动板通信故障 Bit9 -15: 预留
0x0009	驱动板故障	Unsigned	1	暂不使用

0x000A	mosfet温度	Unsigned	1	单位 0.1°C
0x000B	电机温度	Unsigned	1	单位 0.1°C
0x000C	电机电流	Unsigned	2	单位 0.01 A
0x000E	电机转速	Unsigned	2	单位 1rpm(乘以电机极数后值)
0x0010	母线电压	Unsigned	1	单位 0.1 V

产品版本为十进制数值,高地址主版本号与低地址此版本号组合成为完成的版本号

如: 0x00010002 表示版本: V1.2

版本变更记录

日期	变更后版本	变更内容	责任人
2024/7/11	V0.1	第一版发行	吴庆光

广州安捷制造有限责任公司

广州市番禺区大龙街金龙路193号之十五101、十六401、501 (邮编: 511400)