Genetic Neural Optimizer

Release 1.0

Raúl Reguillo Carmona

1 Indices and tables	7
Python Module Index	9
Index	11

```
class genetic optimizer. Genetic Neural Optimizer (model,
                                                                                 mutation\_prob=0.5,
                                                               mutation rate=None,
                                                               elite=2,
                                                                                 genetic train=True,
                                                               stop_condition=None,
                                                                                         epochs=-1,
                                                              fitness_function=<function</pre>
                                                                                           Genetic-
                                                               NeuralOptimizer.<lambda>>,
                                                                                              muta-
                                                               bles=1, original mutation prob=0.5,
                                                               pop_dist='uniform',
                                                               mutation_dist=<built-in
                                                                                            method
                                                               uniform
                                                                                mtrand.RandomState
                                                                          of
                                                               object>,
                                                                          min\_delta=1.0,
                                                                                           regular-
                                                               ization_metric='val_acc',
                                                                                              itera-
                                                               tions=None)
```

GeneticNeuralOptimizer class.

Train a Neural Network using a Genetic Algorithm.

GA (population, iterations, x, y, x_test, y_test)

Parameters

- population initial population. List of numpy vectors
- iterations integer. Number of generations
- **x** train dataset (numpy array)
- **y** labels for train dataset (numpy vector)
- **x_test** test dataset (numpy array)
- **y_test** labels for test dataset (numpy vector)

Returns tuple (best individual found as numpy vector, max value found, history of bests)

 $best_of_generation (fitness, population, x, y)$

Parameters

- fitness fitness function
- **eq** equation to maximize
- population list of individuals (numpy array)

Returns tuple of numpy vector best individual and best value

fit (population, x_train, y_train, x_test, y_test)

Parameters

- population initial population. List of numpy vectors
- **x_train** train dataset (numpy array)
- **y_train** labels for train dataset (numpy vector)
- \mathbf{x} _test test dataset (numpy array)
- **y_test** labels for test dataset (numpy vector)

Returns best chromosome found (numpy vector), best value found for that chromsome (float), training history

(list of fitness values)

fitness(individual, x, y)

Parameters

- individual list of individuals
- **x_train** train dataset (numpy array)
- **y_train** labels for train dataset (numpy vector)

Returns best chromosome found (numpy vector), best value found for that chromsome (float), training history

(list of fitness values), keras.history for the backpropagation training

transform_weights(individual)

Parameters individual – chromosome (numpy vector)

Returns reshaped chromosome into Neural Network weight arrangement (list of numpy vectors)

iect>,

iterations=None)

pop_dist='uniform',

weights_to_vector()

Returns list of numpy vectors

weights_to_vector2()

Returns list of numpy vectors

GeneticNeuralWeightOptimizer class

Initialize Neural Network weights using genetic algorithm.

GA (population, iterations, x, y, x_test, y_test)

Parameters

- population initial population. List of numpy vectors
- iterations integer. Number of generations
- **x** train dataset (numpy array)
- **y** labels for train dataset (numpy vector)
- **x_test** test dataset (numpy array)
- **y_test** labels for test dataset (numpy vector)

Returns tuple (best individual found as numpy vector, max value found, history of bests)

best_of_generation (fitness, population, x, y)

Parameters

- fitness fitness function
- population list of individuals (numpy array)

```
• x -
```

• y -

Returns tuple of numpy vector best individual and best value

fit (population, x_train, y_train, x_test, y_test)

Parameters

- population list of individuals
- x_train train dataset (numpy array)
- y_train labels for train dataset (numpy vector)
- **x_test** test dataset (numpy array)
- **y_test** labels for test dataset (numpy vector)

Returns best chromosome found (numpy vector), best value found for that chromsome (float), training history

(list of fitness values), keras.history for the backpropagation training

fitness (individual, x, y)

Parameters

- individual individual chromosome to mute (numpy vector)
- **x** dataset to evaluate on the model
- y labels for each point of the dataset x

Returns fitness value (float)

transform_weights(individual)

Parameters individual – chromosome (numpy vector)

Returns reshaped chromosome into Neural Network weight arrangement (list of numpy vectors)

```
weights_to_vector()
```

Transform neural network weights to a chromosome :return: list of numpy vectors

```
weights_to_vector2()
```

Returns list of numpy vectors

```
class genetic_optimizer.GeneticOptimizer
```

GeneticOptimizer Abstract class, define the basic functions of the rest of Genetic Optimizer classes

- fit function: train using Genetic Algorithm
- GA function

Operations needed durante Genetic Algorithms

- fitness function: evaluating a chromosome
- generate_population
- · random_selection
- reproduce
- mutate

generate_population (individuals, distribution='uniform')

Returns numpy array with

mutate (x, dist=<built-in method uniform of mtrand.RandomState object>)

Parameters

- **x** individual chromosome to mute (numpy vector)
- **dist** probability distribution used (default is Uniform)

Returns mutated x (numpy vector)

```
original_weights_shape()
```

Returns shape of each layer in the neural network (list of numpy vectors)

random_selection (population, distribution=None)

Parameters

- population list of numpy array
- **distribution** probability distribution used during selection

Returns tuple of two more promising individuals (numpy vectors)

static reproduce(x, y)

Parameters

- **x** numpy vector of genes
- y numpy vector of genes

Returns random crossover of x with y as numpy vector

object>, callbacks=[], iterations=None)

GeneticRegularizator class

Using during a backpropagation training, will regularize the whole training if

- If callback is provided and then, the training process is interrupted, or
- When the training process with backpropagation is finished

GA (population, iterations, x, y, x_test, y_test)

Parameters

- population initial population. List of numpy vectors
- iterations integer. Number of generations
- **x** train dataset (numpy array)
- y labels for train dataset (numpy vector)
- **x_test** test dataset (numpy array)
- **y_test** labels for test dataset (numpy vector)

Returns tuple (best individual found as numpy vector, max value found, history of bests)

best_of_generation (fitness, population, x, y)

Parameters

- fitness fitness function
- **eq** equation to maximize
- population list of individuals (numpy array)

Returns tuple of numpy vector best individual and best value

fit (population, x_train, y_train, x_test, y_test)

Parameters

- population initial population. List of numpy vectors
- x_train train dataset (numpy array)
- **y_train** labels for train dataset (numpy vector)
- **x_test** test dataset (numpy array)
- **y_test** labels for test dataset (numpy vector)

Returns best chromosome found (numpy vector), best value found for that chromsome (float), training history

(list of fitness values)

fitness(individual, x, y)

Parameters

- individual individual chromosome to mute (numpy vector)
- \mathbf{x} dataset to evaluate on the model
- y labels for each point of the dataset x

Returns fitness value (float)

transform_weights (individual)

Parameters individual – chromosome (numpy vector)

Returns reshaped chromosome into Neural Network weight arrangement (list of numpy vectors)

weights_to_vector()

Returns list of numpy vectors

weights_to_vector2()

Returns list of numpy vectors

CHAPTER

ONE

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

g

genetic_optimizer,??

10 Python Module Index

INDEX

В	GeneticRegularizator (class in ge-
<pre>best_of_generation()</pre>	netic_optimizer), 4
<pre>best_of_generation() (ge-</pre>	mutate() (genetic_optimizer.GeneticOptimizer method), 4
<pre>best_of_generation() (ge-</pre>	original_weights_shape() (ge- netic_optimizer.GeneticOptimizer method), 4
F	R
<pre>fit() (genetic_optimizer.GeneticNeuralOptimizer</pre>	<pre>random_selection()</pre>
method), 3 fit() (genetic_optimizer.GeneticRegularizator method), 5	reproduce() (genetic_optimizer.GeneticOptimizer static method), 4
${\tt fitness()} \ (\textit{genetic_optimizer.GeneticNeuralOptimizer}$	T
<pre>method), 1 fitness() (genetic_optimizer.GeneticNeuralWeightOptimethod), 3</pre>	transform_weights() (ge- mizer netic_optimizer.GeneticNeuralOptimizer method), 2
<pre>fitness() (genetic_optimizer.GeneticRegularizator</pre>	<pre>transform_weights() (ge- netic_optimizer.GeneticNeuralWeightOptimizer method), 3</pre>
G	transform_weights() (ge-
GA() (genetic_optimizer.GeneticNeuralOptimizer method), 1	netic_optimizer.GeneticRegularizator method), 5
GA() (genetic_optimizer.GeneticNeuralWeightOptimizer method), 2	W
GA() (genetic_optimizer.GeneticRegularizator method), 4	$weights_to_vector() \\ netic_optimizer.GeneticNeuralOptimizer \\ \end{tabular}$
<pre>generate_population() (ge- netic_optimizer.GeneticOptimizer method), 3</pre>	<pre>method), 2 weights_to_vector()</pre>
<pre>genetic_optimizer (module), 1 GeneticNeuralOptimizer (class in ge-</pre>	<pre>method), 3 weights_to_vector()</pre>
<pre>netic_optimizer), 1 GeneticNeuralWeightOptimizer (class in ge-</pre>	netic_optimizer.GeneticRegularizator method), 5
<pre>netic_optimizer), 2 GeneticOptimizer (class in genetic_optimizer), 3</pre>	<pre>weights_to_vector2()</pre>

12 Index