Dual Optimization for Newsvendor-like Problem

Chuwen

February 21, 2021

Primal problem

$$\min f(\delta, \epsilon) \tag{1}$$

s.t.
$$y + \delta - \epsilon = b$$
 (2)

$$y \in \Omega_y \subseteq \mathbb{R}^n, \delta \in \mathbb{R}^n_+, \epsilon \in \mathbb{R}^n_+$$
 (3)

- Assume $f = p^T \delta + h^T \epsilon$, $p \ge 0$, $h \ge 0$, (2) expresses the newsvendor objective.
- Ω_y is a mixed integer set, and can be decomposed into small problems that are easier to solve.

Lagrangian relaxation

Relax the newsvendor equation: $y + \delta - \epsilon = b$

$$\phi(\lambda) = \min_{\delta, \epsilon} (p + \lambda)^{\mathsf{T}} \delta + (h - \lambda)^{\mathsf{T}} \epsilon + \min_{y} \lambda^{\mathsf{T}} y - \lambda^{\mathsf{T}} b$$

$$= \min_{y} \lambda^{\mathsf{T}} y - \lambda^{\mathsf{T}} b$$

$$\mathbf{s.t.}$$

$$y \in \Omega_{y}$$

$$\delta \in \mathbb{R}^{n}_{+}, \epsilon \in \mathbb{R}^{n}_{+}$$

$$(4)$$

(Since $\lambda \in [-p, h]$ and $\delta^* = \epsilon^* = 0$ else unbounded)

Subgradient method

We want to solve $\max_{\lambda} \phi(\lambda)$ by subgradient method:

$$g = y - b \in \partial \phi$$

$$g_k = y_k - b$$

$$\lambda_{k+1} = \mathbf{P}(\lambda_k + s_k g_k)$$

$$s_k = \gamma_k \frac{\phi^* - \phi(\lambda_k)}{\|g_k\|^2}$$
(5)

P is the projection onto [-p, h]. Keep the averaged solution:

$$\bar{y}_k = \frac{1}{k} \sum_{i}^{k} y_i \tag{6}$$

Primal recovery

 $(y_k, \epsilon_k = 0, \delta_k = 0)$ may not be feasible, use recovery:

$$\epsilon_{k} = \max\{y_{k} - b, 0\}
\delta_{k} = \max\{b - y_{k}, 0\}
\bar{\epsilon}_{k} = \max\{\bar{y}_{k} - b, 0\}
\bar{\delta}_{k} = \max\{b - \bar{y}_{k}, 0\}$$
(7)

let corresponding primal value be $z(y_k) = f(\delta_k, \epsilon_k)$, $\bar{z}_k = z(\bar{y}_k)$

Motivation: fleet engine maintenance problem (FMP)

- ▶ engines: $i \in I$, time periods: t = 1, 2, ..., n, demand: $b = (b_1, ..., b_n)$.
- ▶ at each time we decide if engine i is working $u_{it} = 1$ or sent to maintenance $x_{it} = 1$ (and will be finished after τ periods)
- ▶ the lifespan of engine i decreases by α_i if working; increases by β_i if the maintenance is finished; the lifespan has a lower bound L.
- our goal is to satisfy demand b by minimizing the surplus ϵ and shortage δ : $f = p^T \delta + h^T \epsilon$
- let Ω_i be the mixed-integer set regarding the maintenance requirements individually, so we have Ω_i for each i

FMP

$$f = \min_{x_{it}, u_{it}, \delta_t, \epsilon_t} \sum_{t} (b \cdot \delta_t + h \cdot \epsilon_t)$$
(8)

s.t.

$$\sum_{i} u_{it} + \delta_t - \epsilon_t = d_t, \quad \forall t \in T$$
 (9)

$$s_{i,t+1} = s_{it} - \alpha_i u_{it} + \beta_i x_{i,t-\tau}, \quad \forall i \in I, t \in T$$
 (10)

$$x_{it} + u_{i,t} \le 1, \quad \forall i \in I, t \in T \tag{11}$$

$$x_{it} + x_{i\rho} + u_{i,\rho} \le 1, \quad \forall i \in I, t \in T, \rho = t + 1, ..., t + \tau$$
 (12)

$$s_{it} \ge L, \quad \forall i \in I, t \in T$$
 (13)

(10) - (13) can be expressed as Ω_i , $\forall i \in I$

FMP: continued

- ▶ (9) is the demand satisfaction constraint.
- ▶ (10) tracks the engine lifespan.
- ▶ (11) means an engine cannot work if sent to maintenance.
- ▶ (12) means the maintenance must be finished before an engine does anything else.
- ▶ (13) denotes the lower bound of lifespan.
- ▶ if relax (9) then we can solve for each *i* individually.

Lagrangian relaxation: FMP

For the FMP, dual function:

$$\phi(\lambda) = -\sum_{t} \lambda_{t} d_{t} + \sum_{i} \min_{\Omega_{i}} \sum_{t} \lambda_{t} u_{it}$$

It reduces to a set of low dimensional minimization problems for each $i \in I, \forall \lambda$

(Recall $\lambda_t \in [-b,h]$ and $\delta_t^\star = \epsilon_t^\star = 0$ else unbounded)

$$\min_{\Omega_i} \sum_t \lambda_t \cdot u_{i,t} \tag{14}$$

(14) is the subproblem to be solved by dynamic programming. (states: lifespan, action: work or start maintenance)

Results

Computational findings (from FMP)

- > zero duality gap: $\phi^* = f^*$, ϕ^* is the best bound by ϕ and f^* is the best primal value.
- optimality of the heuristic for averaged solution: $\bar{z}_k = z(\bar{y}_k)$ converges to ϕ^* :

$$\bar{\mathbf{z}}_{\mathbf{k}} \to \phi^{\star}$$

Primal solution

(a) Normal subgradient method using $g_k(b)$ Convex subgradient method using d_k