Tema 1. Introducción

© 2021 Javier Esparza Peidro - jesparza@dsic.upv.es

Contenido

- Introducción
- Cloud computing
- Beneficios
- Riesgos
- Tecnologías base
- Modelos de servicio
- Modelos de despliegue
- Arquitectura de referencia

Computación como utilidad

- Cloud computing es un modelo de computación en el que el usuario consume recursos de computación (cpu, memoria, software, ...) como una utilidad (agua, luz, ...)
- Los recursos computacionales no son propiedad del usuario, residen en un centro de datos.
- El usuario solicita los recursos y los recibe de manera instantánea.
- El usuario paga por lo que consume: utility computing

Terminología

 Cloud, recursos físicos/virtuales, proveedor, consumidores, servicios, QoS, SLA

¿Por qué ahora?

• Es un concepto que existe desde los años 60's

"If computers of the kind I have advocated become the computers of the future, then computing may someday be organized as a public utility just as the telephone system is a public utility. ... The computer utility could become the basis of a new and important industry."

- John McCarthy. 1961

"As of now, computer networks are still in their infancy, but as they grow up and become sophisticated, we will probably see the spread of 'computer utilities'"

- Leonard Leinrock. 1969

¿Por qué ahora?

- Los desarrollos tecnológicos necesarios han estado maduros recientemente
- Amazon Elastic Compute Cloud (EC2) 2006
- Google App Engine 2008
- Microsoft Azure 2010

Definiciones cloud computing/cloud

"Cloud computing is a model for enabling ubiquitous, convenient, ondemand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction" - NIST. 2011

"Cloud is a parallel and distributed computing system consisting of a collection of interconnected and virtualised computers that are dynamically provisioned and presented as one or more unified computing resources based on service-level agreements (SLA) established through negotiation between the service provider and consumers"

- Buyya. 2008

Definiciones cloud computing/cloud

"Clouds are a large pool of easily usable and accessible virtualized resources (such as hardware, development platforms and/or services). These resources can be dynamically reconfigured to adjust to a variable load (scale), allowing also for an optimum resource utilization. This pool of resources is typically exploited by a pay-per-use model in which guarantees are offered by the Infrastructure Provider by means of customized Service Level Agreements"

- Vaquero. 2008

Características de un entorno cloud computing

- Uso bajo demanda: solicitud, configuración, pago
- Acceso universal: protocolos estándar
- Servicio medido: pay-as-you-go, niveles de servicio
- Compartición de recursos: multi-tenancy
- Elasticidad: adaptación dinámica, recursos ilimitados
- Resiliencia: zonas de disponibilidad

Beneficios

- Planificación de la capacidad
 - Capacidad: cantidad trabajo máxima / tiempo
 - Demanda/capacidad: ineficiente/saturación
 - Es muy complejo predecirla (<u>slashdot</u>)
 - Cloud: el sistema adecúa la capacidad a la demanda
- Reducción de costes
 - Adquirir y mantener la infraestructura es muy costoso
 - Cloud: se externaliza a compañía especializada, que obtiene mejores costes compartiendo
 - Coste proporcional a demanda

Beneficios

- Agilidad organizacional
 - On-premise: dpto IT es un lastre

- Cloud: rápida reacción ante mercado
- Incremento escalabilidad
 - Escalabilidad: capacidad de atender cargas crecientes sin degradarse significativamente
 - Escalado horizontal vs escalado vertical
- Fiabilidad
 - Minimización recuperación ante fallos (replicación, distribución geográfica, reparto de la carga)
 - Service Level Agreements (SLAs)

Riesgos

Seguridad

- Medidas compartidas proveedor-consumidor
- No hay control sobre medidas del proveedor
- Un fallo de un consumidor afecta a todos los demás

Menor control

- Sobre los recursos
- Pueden generar incertidumbre o comportamientos inesperados
- Ejemplo: SLA incumplido, retardos en comunicaciones

Riesgos

- Falta de portabilidad
 - Entre proveedores
 - No hay estándares
 - Platform lock-in
- Problemas legales
 - Distribución geográfica de datos
 - Leyes sobre privacidad y seguridad de datos
 - Ejemplos: España, Reino Unido

- Cloud es el resultado de la convergencia de varias tecnologías:
 - Sistemas distribuidos
 - Virtualización
 - SOA

- Sistemas distribuidos
 - Mainframes: potentes computadoras funcionando de manera continua
 - Clústers: alternativa bajo coste, colección recursos independientes interconectados, replicación, detección y recuperación fallos, escalado
 - Grids: recursos heterogéneos distribuidos geográficamente
 - Sistemas autónomos: auto-configuración, autooptimización, auto-curación, auto-protección

- Virtualización
 - Existen varios tipos de virtualización
 - La virtualización hardware permite crear versiones virtuales de servidores, discos duros, redes
 - Permite compartir la infraestructura física

SOA

- Arquitecturas basadas en servicios
- Los recursos computacionales del cloud son accedidos a través de servicios
- Las aplicaciones cloud native son composiciones de servicios

 Cloud computing ofrece recursos a través de servicios: XaaS (X-as-a-service)

- Cloud computing ofrece recursos a través de servicios: XaaS (X-as-a-service)
- Infrastructure as a Service (laaS)
- Platform as a Service (PaaS)
- Software as a Service (SaaS)

- Cloud computing ofrece recursos a través de servicios: XaaS (X-as-a-service)
- Infrastructure as a Service (laaS)
 - El consumidor adquiere recursos computacionales de bajo nivel (vms, discos virtuales, redes, ...)
 - Instala y configura el software

- Cloud computing ofrece recursos a través de servicios: XaaS (X-as-a-service)
- Infrastructure as a Service (laaS)
- Platform as a Service (PaaS)
 - El consumidor despliega aplicaciones en cloud
 - Utiliza las herramientas del proveedor

- Cloud computing ofrece recursos a través de servicios: XaaS (X-as-a-service)
- Infrastructure as a Service (laaS)
- Platform as a Service (PaaS)
- Software as a Service (SaaS)
 - El consumidor utiliza las aplicaciones

• Se interrelacionan en una arquitectura en capas

Comparativa con modelo tradicional

Aplicaciones SaaS Librerías Entornos ejecución PaaS Herramientas desarrollo Sistema operativo laaS Hardware Hardware

Responsabilidades

•			
On-premise	laaS	PaaS	SaaS
Aplicaciones	Aplicaciones	Aplicaciones	Aplicaciones
Datos	Datos	Datos	Datos
Runtime	Runtime	Runtime	Runtime
Middleware	Middleware	Middleware	Middleware
Sistema operativo	Sistema operativo	Sistema operativo	Sistema operativo
Virtualización	Virtualización	Virtualización	Virtualización
Servidores	Servidores	Servidores	Servidores
Almacenamiento	Almacenamiento	Almacenamiento	Almacenamiento
Redes	Redes	Redes	Redes
Gestionado por proveedor Gestionado por consumidor			

- Proliferación de otros modelos de servicio
 - Bare-metal as a Service (BmaaS)
 - Network as a Service (NaaS)
 - Desktop as a Service (DEaaS)
 - Data as a Service (DaaS)
 - DataBase as a Service (DBaaS)
 - Storage as a Service (StaaS)
 - Security as a Service (SECaaS)
 - Identity as a Service (IdaaS)
 - Hadoop as a Service (HaaS)
 - etc.

Modelos de despliegue

 Atienden a la ubicación y distribución de los componentes del entorno cloud

¿Qué es?

- Modelo conceptual que ayuda a identificar los elementos fundamentales de un entorno cloud
- Compromiso entre abstracción (no condicionar implementaciones) y detalle (útil para comparar y discutir tecnologías)
- Propuesta de <u>NIST</u> (National Institute of Standards and Technology)

¿Qué es?

Actores

- Proveedor
- Consumidor
- Auditor
- Bróker
- Facilitador (carrier)

Proveedor > Responsabilidades

- Despliegue de servicios
- Orquestación de servicios
- Gestión de servicios cloud
- Seguridad y privacidad

Proveedor > Despliegue de servicios

- Determina cómo son de exclusivos los recursos computacionales accesibles al consumidor
- Público, privado, híbrido, comunidad

- Gestión de los recursos de computación
- Capas:
 - Capa de recursos físicos
 - Capa de abstracción y control de recursos
 - Capa de servicio

- Gestión de los recursos de computación
- Capas:
 - Capa de recursos físicos
 - Computadores, redes, almacenamiento, ...
 - Infraestructura y suministros

- Gestión de los recursos de computación
- Capas:
 - Capa de recursos físicos
 - Capa de abstracción y control de recursos
 - Incrementar nivel abstracción: virtualización
 - Control: reserva, accesos, monitorización, ...

- Gestión de los recursos de computación
- Capas:
 - Capa de recursos físicos
 - Capa de abstracción y control de recursos
 - Capa de servicio
 - Publica la API
 - laaS vs PaaS vs SaaS
 - Es habitual (no obligatorio) que servicios de más alto nivel hagan uso de servicios de más bajo nivel

Proveedor > Gestión de servicios cloud

- Gestión de los servicios ofrecidos a los consumidores
- Negocio, configuración, portabilidad

Proveedor > Seguridad y privacidad

- Aspecto transversal presente en todas los componentes
- Autenticación, autorización, confidencialidad, integridad, etc.

Hoja de ruta

- Tema 2: Fundamentos
- Tema 3: Plataformas IaaS
- Tema 4: Plataformas PaaS
- Tema 5: Aplicaciones cloud native