

Naloga: Povratna projekcija

Industrijska Fizika

Dimitrije Pešić

VPISNA ŠTEVILKA: 28201072

Predavatelj: izr. prof. dr. Nejc Košnik

1 Uvod

Naloga je od nas zahtevala, da rekonstruiramo slike iz 3 različnih datotek z uporabo metode povratne projekcije . V datotekah so se nahajali podatki za Radonovo transformirane slike.

2 Ozadje

Radonovo transformirane slike so projekcije za kote $\varphi \in [0, \pi]$ in za razdalje s = [-1, 1] po formuli 1

$$p(\varphi, s) = \int \int f(x, y) \delta(x \cos \varphi + y \sin \varphi - s) \, dx \, dy , \qquad (1)$$

kjer f(x,y) predstavlja intenziteto slike v sivih odtenkih, s konvencijo, da so vrednosti f(x,y) med 0 (črna) in 1 (bela).

Na predavanjih smo pokazali, da je eksaktna rekonstrukcija mogoča:

$$f(x,y) = \frac{1}{(2\pi)^2} \int_0^{\pi} d\varphi \int_{-\infty}^{\infty} dk \ \tilde{R}(k) \tilde{f}(k\cos\varphi, k\sin\varphi) e^{ik(x\cos\varphi + y\sin\varphi)}, \qquad (2)$$

kjer je $\tilde{R}(k)$ filter v k-prostoru, in je $\tilde{R}(k) = |k|$. V praksi seveda odrežemo visoke frekvence, ki ležijo nad poljubno ibranim k_0 :

$$\tilde{R}_{k_0}(k) = |k|\vartheta(k_0 - |k|) , \qquad (3)$$

kjer je ϑ Heavisidova funkcija. Ta rekonstrukcija je poznana filtrirana povratna projekcija, kjer filter |k| zagotovi, da so v polarnih koordinatah vse frekvence enakomerno zastopane. V realnem prostoru filtrirno funkcijo dobimo z inverzno Fourierovo transformacijo.

Pokazali smo, da lahko produkt funkcij v k-prostoru predstavimo kot konvolucijo v s-prostoru, in posledično se filtrirana povratna projekcija lahko zapiše tudi kot

$$f(x,y) = \frac{1}{2\pi} \int_0^{\pi} d\varphi \left[p * R \right] (x \cos \varphi + y \sin \varphi) =$$

$$= \frac{1}{2\pi} \int_0^{\pi} d\varphi \int_{s-1}^{s+1} d\tau \left[p(\varphi, s - \tau) R(\tau) \right] \Big|_{x \cos \varphi + y \sin \varphi} =$$

$$= \frac{1}{2\pi} \int_0^{\pi} d\varphi \int_{-1}^1 d\tau \left[p(\varphi, \tau) R(s - \tau) \right] \Big|_{x \cos \varphi + y \sin \varphi}$$
(4)

Navadna (naivna) povratna projekcija ustreza primeru, ko je $R(\tau)$ kar $\delta(\tau)$, torej ko konvolucija ne spremeni funkcije $p(\varphi, s)$.

3 Implementacija

Poskušal sem implementirati diskretizirano verzijo enačbe 4, ki se glasi

$$f(x,y) = \frac{1}{n_s n_{\varphi}} \sum_{i=0}^{n_{\varphi}-1} \sum_{j=0}^{n_s-1} p_{ij} R(s_i + 1 - j\Delta s) , \qquad (5)$$

kjer $s_i = x\cos(i\Delta\varphi) + y\sin(i\Delta\varphi)$. Če definiramo še $R_{ji}(x,y) \equiv R(s_i+1-j\Delta s)$ lahko izrazimo kot sled produkta matrik:

$$f(x,y) = \frac{1}{n_s n_{\varphi}} \sum_{i=0}^{n_{\varphi}-1} \sum_{j=0}^{n_s-1} p_{ij} R_{ji}(x,y) = \frac{1}{n_s n_{\varphi}} \text{Tr} \left[pR(x,y) \right] . \tag{6}$$

V Python skripti sem poskušal implementirati matrični sistem 6 in rešitev le tega s pomočno knjižnice numpy in scipy, ki podpirata vektorske operacije. Žal mi to ni uspelo.

Na probleme sem naletel že pri analitičnem zapisu filtra R v s-prostoru, ki je bil podan v navodilih 7:

$$R_{k_0}(s) = \frac{1}{2\pi} \left[\frac{2k_0}{s} \sin(k_0 s) - \frac{4}{s^2} \sin^2\left(\frac{k_0 s}{2}\right) \right]$$
 (7)

in sicer, poskusil sem preveriti ali je inverzna Fourierova transformacija funckije 3 res enaka analitični rešitvi podani v navodilih 7.

Slika 1: Testiranje filtrov za povratno projekcijo.

Na sliki 1 so prikazani filtri. Levo zgoraj je prikazan filter 3, ki deluje pravilno, desno od njega ta isti filter numerično transformiran s hitro inverzno fourierjevo transformacijo numpy.fft.ifft in numpy.fft.fftshift, spodaj levo pa analitična rešitev podana v navodilih 7. Vidimo da se analitično transformiran in numerično transformiran rezultat za filter ne ujemata. Kar mi je še bolj zanimivo, je da se amplitude v analitični rešitvi podane formule ne skladajo z narisanim grafom v navodilih, saj so amplitude drugačne.

Po poldnevnem iskanju težave sem obupal in našel standardno knjižnico sckit-image [4], bolj specifično skimage.transform.iradon funkcijo.

Ampak to nebi bilo moje poročilo, če me nebi celoten naslednji dan pekla vest, da naloge nisem zares opravil. Zato sem si prebral članek o obdelava slik z SPECT analizo 3, ki je bil priložen v navodilih, in prevedel MATLAB kodo v Python, kar pa je zadostovalo in delovalo. Na grafu 1 sem priložil tudi sliko implementiranega SINC filtra iz SPECT članka.

4 Rezultati

4.1 Shepp-Logan-ov fantom

Za kalibracijo našega algoritma smo uporabili Shepp-Logan-ov fantom. Prikazan je na sliki 2

Slika 2: Shepp-Logan-ov fantom.

Shepp-Loganov fantom je standardna testna slika, ki sta jo ustvarila Larry Shepp in Benjamin F. Logan za svoj članek iz leta 1974 *The Fourier Reconstruction of a Head Section* [2]. Služi kot model človeške glave pri razvoju in testiranju algoritmov za rekonstrukcijo slike.

Na slikah 3, 4 in 5 sem prikazal rezultate za povratno projekcijo brez filtra, z uporabo SINC filtra ter z uporabo funkcije *skimage.transform.iradon*. Vidimo, da je najboljša implementacija kar z implementirano funkcijo iz knjižnice, najslabša pa nefiltrirana povratna projekcija.

Slika 3: Povratna projekcija s FFT za fantom, brez filtra.

Slika 4: Povratna projekcija s FFT za fantom, s SINC filtrom.

Slika 5: Povratna projekcija s $\mathit{scikit\text{-}image}$ za fantom.

4.2 Obraz in Zebra

Nato sem še rekonstruiral neznana sinograma. Izkaže se, da je ena od slika obraza druga pa slika Grevyjeve zebre. Zopet sem izvedel nefiltrirano, filtrirano povratno projekcijo in z uporabo knjižnice 6 - 11

Slika 6: Povratna projekcija s FFT za obraz, brez filtra.

Slika 7: Povratna projekcija s FFT za obraz, s SINC filtrom.

Filtrirana povratna projekcija z uporabo Scikit-Image

Slika 8: Povratna projekcija s $\mathit{scikit\text{-}image}$ za obraz.

Slika 9: Povratna projekcija s FFT za zebro, brez filtra.

Slika 10: Povratna projekcija s FFT za zebro, s SINC filtrom.

Slika 11: Povratna projekcija s scikit-image za zebro.

Zanimalo me je kdo je ta oseba na sliki, tako sem z uporabo spletne strani FaceCheck.ID z njihovo tehnologijo umetne inteligence za prepoznavanje obrazov odkril da gre za portret nikogar drugega kot Jožefa Štefana. Malo sem razočaran nad samim sabo, da ga nisem sam prepoznal.

4.3 Napaka

Za konec sem še na hitro analiziral velikost napake filtrirane povratne projekcije in nefiltrirane povratne projekcije z uporabo FFT v primerjavi z implementirano funkcijo iz knjižnice *scikit-image.transform.iradon*. Kot pričakovano lahko na slikah 12, 13 in 14 opazimo, da je filtrirana povratna projekcija dosti boljša, kar smo pa lahko ocenili že na uč iz prejšnjih poglavij.

Slika 12: Napake slik fantoma.

Slika 13: Napake slik obraza.

Slika 14: Napake slik zebre.

5 Zaključek

Cilj naloge je bil, da se spoznamo z uporabo metode povratne projekcije. Zaradi mojih izkušenj z predmetom Mafijski Praktikum sem pričakoval, da bo naloga 'mala malica'. Žal temu ni bilo tako. Morda pa je le bila slaba ideja se poglabljati v nalogo v času izpitnega obdobja.

Kljub temu mi je bila naloga všeč, "so much so", da spodaj prilagam še nekaj poskusov Radonovih transformacij in povratnih projekcij slik mojega psa - Grizzly, ki me žalostno čaka doma, da zaključim izpite (glede na to, da je husky, je zadnja izjava lahko dvomljiva).

Slika 15: Radonova in povratna projekcija slike Grizzly-ja.

Grizzly pozira

Slika 16: Radonova in povratna projekcija slike Grizzly-ja in Tit-a.

Literatura

- [1] Good Vibrations with Freeball, Approximate Solutions The Galerkin Method
- [2] Shepp, Larry A.; Logan, Benjamin F. (June 1974) "The Fourier Reconstruction of a Head Section"
- [3] Christine Pan December 18th, 1996: Image Processing Using SPECT Analysis by The Five Fearless Thinkers
- [4] Scikit-image Radon transform