Задача 07.

Докажете, че за $\forall A, B, C$ е в сила, че $(A \cup B) \cap C = A \cup (B \cap C) \Leftrightarrow A \subseteq C$.

Док-во:

 (\Rightarrow) Нека A,B,C са такива, че $(A\cup B)\cap C=A\cup (B\cap C)$. Ще покажем, че $A\subseteq C$.

За целта нека $x\in A$ е произволен елемент. Тогава $x\in A\subseteq A\cup (B\cap C)=(A\cup B)\cap \underline{C}$, следователно $x\in C$. Т.е. за произволно $x\in A$ доказахме, че $x\in C\Rightarrow A\subseteq C$.

- (\Leftarrow) Нека $A\subseteq C$. Ще покажем, че $(A\cup B)\cap C=a\cup (B\cap C)$.
- (\subseteq) Нека $x \in (A \cup B) \cap C$. Тогава $x \in (A \cup B)$ и $x \in C$.
- Ако $x \in A$, то $x \in A \cup (B \cap C)$
- Ако $x \notin A$, то $x \in B(x \in A \cup B)$
- $\Rightarrow x \in B \cap C \Rightarrow x \in A \cup (B \cap C) \Rightarrow (A \cup B) \cap C \subseteq A \cup (B \cap C)$ (тук никъде не използвахме, че $A \subseteq C$)
- (\supseteq) Нека $x \in A \cup (B \cap C)$
- Ако $x \in A$, то $x \in A \cup B$ $(A \subseteq A \cup B)$. Но $(A \subseteq C \text{ по условие } \Rightarrow x \in (A \cup B) \cap C$.

Ако
$$x \notin A$$
, $x \in (B \cap C) \Rightarrow \underbrace{x \in B}_{x \in (A \cup B) \cap C}$ и $x \in C$.

github.com/andy489