T	-	•	■.	4
K1)Zd:	719	M	
			LI	

Krótko o grafach

Graf jest podstawowym obiektem, na którym skupia się teoria grafów, dlatego nie sposób zrozumieć twierdzenia Turána nie znając tego elementarnego pojęcia. W rozdziale tym przedstawimy podstawowe definicje i własności, wraz z przykładami, związane właśnie z nimi. Będzie to bardzo krótki rozdział, gdyż nie grafy są celem tej pracy, a ich uogólnienia-hipergrafy, ale myślę, że wspominając o nich łatwiej będzie zrozumieć elementy teorii hipergrafów.

Jeśli V jest n-elementowym zbiorem to przez [V] oznaczać będziemy zbiór $\{1,2,\ldots,n\}$.

Definicja 1.1. *Grafem prostym* lub *nieskierowanym* nazywamy uporządkowaną parę G := (V, E) gdzie:

- V jest niepustym zbiorem, którego elementy nazywamy wierzchołkami;
- $E \subseteq [V]^2$. Elementy z E nazywamy **krawędziami**, a więc każda krawędź jest dwuelementowym podzbiorem zbioru V. Krawędź $\{x,y\}$ często jest oznaczana przez xy. Aby uniknąć niejasności zakłada się, że $E \cap V = \emptyset$.

My dla ułatwienia graf prosty będziemy nazywać po prostu grafem. Jeśli będziemy mieć do czynienia z wieloma grafami, konieczne będzie zaznaczenie do którego z nich odnosi się oznaczenie V czy E.W tym celu mając na myśli graf G jego zbiór wierzchołków oznaczymy przez V(G), a zbiór krawędzi przez E(G).

Liczbę wierzchołków w grafie oznaczamy przez |V(G)| i nazywamy **rzędem** grafu, a liczbę krawędzi przez ||E(G)|| i nazywamy **rozmiarem** grafu.

Definicja 1.2. Mówimy, że wierzchołki v i w są **sąsiednie**, jeżeli w grafie istnieje krawędź łącząca v i w.

Definicja 1.3. *Mówimy, że krawędź e jest incydentna z wierzchołkiem v, jeśli v* \in *e.*

Definicja 1.4. Stopniem $d_G(v)=d(v)$ wierzchołka v nazywamy liczbę krawędzi incydentnych z v. Inaczej: jest to liczba wierzchołków sąsiednich z v. Wierzchołek stopnia 0 nazywamy izolowanym.

Definicja 1.5. Graf prosty oparty na n wierzchołkach, w którym każde dwa są sąsiednie nazywamy grafem **pełnym** i oznaczamy przez K_n . Graf K_3 nazywamy **trójkątem**.

Definicja 1.6. Niech G = (V, E), H = (V', E') będą grafami. Jeśli $V' \subseteq V$ oraz E' zawiera tylko takie krawędzie $xy \in E$, gdzie $x, y \in V'$, wtedy H nazywamy podgrafem **indukowanym** (przez zbiór wierzchołków V') i oznaczamy go przez H := G[V'].

Definicja 1.7. Kliką nazywamy podgraf, w którym każde dwa wierzchołki są połączone krawędzią. Inaczej:to podgraf, który jest grafem pełnym.

Definicja 1.8. Graf którego zbiór wierzchołków można podzielić na l parami rozłącznych podzbiorów (części) takich, że każde dwa wierzchołki należące do tego samego podzbioru nie są połączone krawędzią nazywamy l-dzielnym.

Definicja 1.9. *Grafem Turàna* T(n,l) *nazywamy pełny l-dzielny graf oparty na* $n \ge l$ *wierz-chołkach, przy czym liczność każdych dwóch zbiorów podziału różni się co najwyżej o 1.*

Dzieląc zbiór wierzchołków zgodnie z definicją grafu Turàna otrzymamy: $n \pmod l$ podzbiorów, które zawierają po $\lceil \frac{n}{l} \rceil$ elementów oraz $l-n \pmod l$ podzbiorów, które zawierają po $\lfloor \frac{n}{l} \rfloor$ elementów. Wierzchołki takiego grafu są stopnia $n-\lceil \frac{n}{l} \rceil$ albo $n-\lfloor \frac{n}{l} \rfloor$ a liczba jego krawędzi wynosi $\lfloor (1-\frac{1}{r})\cdot \frac{n^2}{2} \rfloor$.

Przykład 1.1. Rozważmy graf Turàna T(8,3), czyli n=8, l=3, który przedstawiono na rysunku (2.2). Zbiór wierzchołków dzielimy na 3 części:

- $n \pmod{l} \equiv 8 \pmod{3} = 2$ części, które zawierają po $\lceil \frac{8}{3} \rceil = 3$ elementy;
- $l-n \pmod{3} \equiv 3-2 \equiv 1$ część, która zawiera $\lfloor \frac{8}{3} \rfloor = 2$ elementy.

Mamy więc 6 wierzchołków stopnia $n - \lceil \frac{n}{l} \rceil = 8 - \lceil \frac{8}{3} \rceil = 8 - 3 = 5$ oraz 2 wierzchołki stopnia $n - \lfloor \frac{n}{l} \rfloor = 8 - \lfloor \frac{8}{3} \rfloor = 8 - 2 = 6$. Liczba krawędzi w T(8,3) to $\lfloor (1 - \frac{1}{r}) \cdot \frac{n^2}{2} \rfloor = \lfloor (1 - \frac{1}{3}) \cdot \frac{8^2}{2} \rfloor = 21$.

Rysunek 1.1. Graf Turána T(8,3)

Twierdzenie 1.1 (**Turán, 1941**). Dla każdego $n \ge l$, każdy graf oparty na n wierzchołkach, niezawierający kliki K_l i mający maksymalną liczbę krawędzi jest grafem Turàna T(n,l).

Szczególnym przypadkiem powyższego twierdzenia (gdy l=2) jest twierdzenie Mantela:

Twierdzenie 1.2 (Mantel, 1907). *Maksymalna liczba krawędzi w grafie bez trójkątów jest równa co najwyżej* $\lfloor \frac{n^2}{4} \rfloor$.

-			•	ъ.	
K	0Z	47	าเล	N.	"
1	S. C.	uz	41 C	LI	

Twierdzenie Turàna dla hipergrafów

W rozdziale tym podamy definicje niezbędne do zrozumienia uogólnionego twierdzenia Turána. Przedstawimy również jeden z jego kilku dowodów – dłuższy, ale nieskomplikowany. Bardzo złożone hipergrafy ciężko, lub wręcz niemożliwe, jest przedstawić graficznie w sposób jasny i przejrzysty, dlatego tylko najprostsze zostały umieszczone na rysunkach. Mam nadzieję, że jednak nie zniechęci to do wgłębienia się w jedną z ciekawszych działów matematyki- ekstremalną teorię hipergrafów.

2.1. Wprowadzenie do rozdziału

Jeśli V jest dowolnym zbiorem, to przez |V| oznaczać będziemy liczność V, czyli liczbę elementów w |V|, a przez $\mathcal{P}(V)$ zbiór wszystkich jego podzbiorów.

Definicja 2.1. *Hipergraf* jest uogólnieniem pojęcia grafu. To uporządkowana para H := (V, E), gdzie:

- V jest niepustym zbiorem, którego elementy nazywamy wierzchołkami;
- $E \subseteq \mathcal{P}(V)$. Elementy z E nazywamy **hiperkrawędziami**, ale dla ułatwienia nazywać je będziemy po prostu krawędziami.

Pojęcie hipergrafu utożsamiać będziemy ze zbiorem jego krawędzi. Mając na myśli zbiór wierzchołków hipergrafu, wyraźnie to zaznaczymy.

Definicja 2.2. Dwa hipergrafy H = (V, E) oraz H' = (V', E') nazywamy **izomorficznymi**, jeśli istnieje bijekcja $f : V \to V'$ taka, że: $\{x_1, x_2, \dots, x_n\} \in E \iff \{f(x_1), f(x_2), \dots, f(x_n)\} \in E'$

Definicja 2.3. Hipergraf nazywamy **r-jednolitym**, jeśli każda jego krawędź ma liczność r.

Zauważmy, że hipergraf 2-jednolity to po prostu graf. Dla uproszczenia r-jednolity hipergraf będziemy nazywać r-grafem.

Definicja 2.4. *Podhipergrafem* hipergrafu G = (V, E) lub hipergrafem **indukowanym** przez zbiór wierzchołków N nazywamy hipergraf H = (N, E'), gdzie $N \subseteq V(H)$, $E' \subseteq E$ oraz w E' znajdują się tylko takie krawędzie, które zawierają wyłącznie wierzchołki z N. Dla ułatwnienia będziemy nazywać go po prostu podhipergrafem.

Definicja 2.5. Niech \mathcal{F} będzie dowolną rodziną r-grafów, a G dowolnym r-grafem. Mówimy, że G jest \mathcal{F} -wolny, jeśli nie zawiera żadnego elementu z \mathcal{F} jako podhipergrafu.

Przez $ex(n,\mathcal{F})$ oznaczać będziemy maksymalną liczbę krawędzi w n wierzchołkowym r-grafie \mathcal{F} -wolnym.

Definicja 2.6. Niech $l,r \ge 2$. Przez $K_l^{(r)}$ oznaczać będziemy rodzinę r-grafów z co najwyżej $\binom{l}{2}$ krawędziami, która zawiera zbiór wierzchołków S, zwany **rdzeniem**, taki, że:

- |S|=l
- każda para wierzchołków z S jest zawarta w jakiejś krawędzi.

Zauważmy, że gdy r=2 to nasza rodzina $K_l^{(r)}$ redukuje się do grafu pełnego K_l . Dla r>2 $K_l^{(r)}$ zawiera więcej niż jeden r-graf. Dla ustalonego r i l rodzina $K_l^{(r)}$ jest skończona, bo każdy jej element ma co najwyżej $\binom{l}{2}$ krawędzi.

Przykład 2.1. Na rysunku (2.1) przedstawiono hipergraf z rodziny $K_4^{(4)}$. Jego zbiór:

- wierzchołków to $V = \{1, 2, ..., 11\},\$
- krawędzi to $E = \{\{1,3,4,11\}, \{1,2,5,6\}, \{2,4,6,7\}, \{7,8,9,10\}, \{2,3,10,11\}\}$ Krawędzi jest 5, co jest mniejsze od $\binom{l}{2} = \binom{4}{2} = 6$, a każda z nich jest mocy 4. Zbiór $S = \{1,2,3,4\}$ jest rdzeniem, gdyż $\{1,2\} \subset \{1,2,5,6\}; \{1,3\}, \{1,4\}, \{3,4\} \subset \{1,3,4,11\}; \{2,3\} \subset \{2,3,10,11\}; \{2,4\} \subset \{2,4,6,7\}.$

Rysunek 2.1. Hipergraf z rodziny $K_4^{(4)}$ o rdzeniu $S = \{1, 2, 3, 4\}$.

Definicja 2.7. r-graf jest l-dzielny, jeśli zbiór jego wierzchołków można podzielić na l podzbiorów (części) w taki sposób, aby każda krawędź miała najwyżej jeden wierzchołek w każdym podzbiorze. W szczególności, gdy l<r, to r-graf nie ma krawędzi. l-dzielny r-graf nazywamy **pełnym**, gdy wszystkie dozwolone krawędzie są obecne.

Definicja 2.8. Niech $n,l,r \ge 1$. Pełny l-dzielny r-graf oparty na n wierzchołkach nazywamy **hipergrafem Turàna**, jeśli liczność każdych dwóch części podziału różni się co najwyżej o l. Taki hipergraf oznaczamy przez $T_r(n,l)$.

Poszczególne części mają liczności:

$$n_i = \lfloor \frac{n+i-1}{l} \rfloor$$
 dla $i \in [l]$

Liczba krawędzi w $T_r(n, l)$ to:

$$t_r(n,l) = \sum_{S \in \binom{[l]}{r}} \prod_{i \in S} n_i$$

Spośród wszystkich l-dzielnych r-grafów opartych na n wierzchołkach hipergraf Turàna $T_r(n,l)$ ma najwięcej krawędzi. W celu wyjaśnienia tego przeprowadzimy proste rozumowanie. Wiemy, że taki hipergraf H na pewno musi być pełny. Liczba jego krawędzi będzie wyrażać się takim samym wzorem jak w przypadku hipergrafu Turána, czyli

$$|E(H)| = \sum_{S \in \binom{[l]}{r}} \prod_{i \in S} n_i \tag{2.1}$$

gdzie n_i to liczba wierzchołków w części i-tej, czyli $n=n_1+n_2+\cdots+n_l$. Będzie to więc suma iloczynów liczności odpowiednich części. Nasze rozumowanie przeprowadzimy na części i-tej i j-tej ($i,j \in [l]$) z podziału rozważanego hipergrafu, które mają liczności odpowiednio n_i i n_j . Niech części te różnią się o więcej niż jeden wierzchołek, więc bez straty ogólności załóżmy, że $n_i > n_j + 1$. Zobaczmy, co się stanie z iloczynem liczności części i-tej i j-tej, jeśli wierzchołek z liczniejszej, i-tej części przerzucimy do j-tej. Liczba wierzchołków będzie dalej równa n, ponieważ

$$n_1 + n_2 + \dots + (n_i - 1) + \dots + (n_j + 1) + \dots + n_l = n_1 + n_2 + \dots + n_i + \dots + n_j + \dots + n_j = n_1 + n_2 + \dots + n_l + \dots + n_$$

Iloczyn "nowej" liczności części *i*-tej i *j*-tej w porównaniu do "starej" przedstawia się następująco:

$$(n_i - 1)(n_j + 1) = n_i \cdot n_j + n_i - n_j - 1 > n_i \cdot n_j + n_j + 1 - n_j - 1 = n_i \cdot n_j$$
 (2.3)

Oznacza to, że przerzucając wierzchołek z liczniejszej części podziału do mniej licznej, iloczyn się zwiększył, a tym samym wzrosła liczba krawędzi. Możemy więc wnioskować, że liczba krawędzi w takim hipergrafie będzie największa, jeśli wierzchołki będą równomiernie rozłożone na l części, czyli każde dwie części podziału mogą różnić się co najwyżej o 1, a to właśnie oznacza, że jest to hipergraf Turána $T_r(n,l)$.

Przykład 2.2. Na rysunku (2.2) przedstawiono hipergraf Turána $T_4(5,3)$. Jego zbiór pięciu wierzchołków został podzielony na 3 części n_i (i=1,2,3) zaznaczone symbolicznie niebieskimi elipsami: w dwóch częściach n_1,n_2 znajdują się po 2 wierzchołki, a w ostatniej, trzeciej n_3 tylko jeden. Wierzchołki znajdujące się w jednej części, zgodnie z definicją grafu Turána, nie mogą być połączone jakąkolwiek krawędzią.

Definicja 2.9. Niech G będzie dowolnym r-grafem, a $x, y \in V(G)$, $x \neq y$. Wtedy:

Rysunek 2.2. Hipergraf Turána $T_4(5,3)$.

- $L_G(x) = \{S \{x\} : x \in S \in G\}$ nazywamy **połączeniem** wierzchołka x;
- $deg_G(x) = |L_G(x)|$ nazywamy **stopniem** wierzchołka x;
- $codeg_G(x,y)$ nazywamy **stopniem pary** x,y i jest to liczba krawędzi w G, które zawierają jednocześnie x i y;
- $N_G(x) = \{z : codeg_G(x,z) > 0\}$ nazywamy sąsiedztwem lub zbiorem sąsiadów wierzchołka x w G.

Jeśli wiemy którego hipergrafu dotyczą powyższe określenia, wtedy dla przejrzystości zapisu indeks *G* można pominąć.

2.2. Twierdzenie Turána

Twierdzenie, które jest tematem niniejszej pracy, nazywane jest rozszerzeniem twierdzeniem Turána, ponieważ jest sformułowane dla hipergrafów, które, jak wcześniej zostało wspomniane, są uogólnieniami grafów. Twierdzenie podane w 1941 roku przez Pála Turána jest więc szczególnym przypadkiem tego, które przedstawimy. Odpowiada ono na pytanie jaką maksymalną liczbę krawędzi może posiadać $K_l^{(r)}$ -wolny r-graf oparty na n wierzchołkach. Znanych jest kilka dowodów tego twierdzenia, jednak przedstawiony zostanie tylko jeden, oparty na dowodzie Erdösa z 1970 roku, ponieważ jest jasny, przejrzysty i nie wymaga znajomości innych działów matematyki. Nim jednak do niego przejdziemy, przedstawimy lemat, z którego skorzystamy w dowodzie twierdzenia Turána.

Lemat 2.1. *Niech* $n \in \mathbb{N}$ *. Wtedy dla każdego* $k \in [n]$ *zachodzi:*

$$t_r(n-k,l-1) + k \cdot t_{r-1}(n-k,l-1) \le t_r(n,l)$$
(2.4)

Jeśli powyżej zachodzi równość, wtedy $k = \lfloor \frac{n}{l} \rfloor$ *lub* $k = \lceil \frac{n}{l} \rceil$.

Dowód. Niech $n \in \mathbb{N}$. Dla każdego $k \in [n]$ lewą stronę nierówności można interpretować jako liczbę krawędzi w następujacym hipergrafie: $T_r(n-k,l-1)$, do którego dokładamy k wierzchołków, których połączenie jest hipergrafem $T_{r-1}(n-k,l-1)$. Hipergrafy $T_r(n-k,l-1)$ i $T_{r-1}(n-k,l-1)$ oparte są na n-k wierzchołkach, podzielonych na l-1 części takich, że liczność każdych dwóch różni się co najwyżej o 1. To wszystko oznacza,

że podział ich wierzchołków jest taki sam. Dzięki temu na lewą stronę nierówności można patrzeć jak na liczbę krawędzi w pełnym l-dzielnym r-grafie, którego każde dwie części spośród l-1 różnią się licznością o co najwyżej 1, a ostatnia, l-ta część, ma liczność k. Jak już wcześniej zostało wspomniane, $T_r(n,l)$ maksymalizuje rodzinę pełnych l-dzielnych r-grafów, więc lewa strona nierówności jest mniejsza od liczby krawędzi takiego hipergrafu oznaczanej przez $t_r(n,l)$. Jeśli w (2.4) będzie zachodzić równość, będzie to oznaczało, że n wierzchołków zostało podzielonych na l możliwie równych części, więc każde dwie części będą się różniły o co najwyżej jeden wierzchołek, a to oznacza, że ostatnia (l-ta) część musi mieć liczność $\lfloor \frac{n}{l} \rfloor$ lub $\lfloor \frac{n}{l} \rfloor$.

Warto zastanowić się, jak będzie wyglądał powyższy lemat gdy l=r. Ponieważ r>l-1, więc hipergraf $T_r(n-k,l-1)$ nie będzie posiadał żadnej krawędzi, dlatego naszą nierówność można zredukować do:

$$k \cdot t_{r-1}(n-k, l-1) \le t_r(n, l)$$
 (2.5)

Jeżeli powyżej będzie zachodzić równość, wtedy podobnie jak w dowodzie lematu, ostatnia l-ta część podziału zbioru wierzchołków musi mieć liczność $\lfloor \frac{n}{l} \rfloor$ lub $\lceil \frac{n}{l} \rceil$.

Twierdzenie 2.2 (Turána). Niech $n,l,r \ge 2$. Wtedy:

$$ex(n, K_{l+1}^{(r)}) = t_r(n, l)$$

oraz jedynym r-grafem opartym na n wierzchołkach, nie zawierającym elementu z $K_{l+1}^{(r)}$ jako podhipergrafu, dla którego zachodzi powyższa równość to $T_r(n,l)$.

Dowód. Przeprowadzimy dowód indukcyjny ze względu na l-liczbę części, na które został podzielony zbiór n wierzchołków. Na początek rozważymy najprostsze przypadki:

- ullet gdy l < r, wtedy r-graf nie ma żadnej krawędzi, więc na pewno jest $K_{l+1}^{(r)}$ -wolny;
- gdy r=2, wtedy otrzymujemy twierdzenie Turána dla grafów; Załóżmy więc, że $l \ge r > 2$ i przez G oznaczmy n-wierzchołkowy $K_{l+1}^{(r)}$ -wolny r-graf.
- gdy $n \le l$, wtedy mamy kolejne 2 podprzypadki: $1^{\circ} n < r$, wtedy hipergraf nie ma żadnej krawędzi, a tym samym jest $K_{l+1}^{(r)}$ -wolny; $2^{\circ} n \ge r$, wtedy każdy spośród n wierzchołków będzie znajdował się w innej części podziału, ponieważ w ten sposób otrzymamy największą liczbę krawędzi, gdyż wierzchołki znajdujące się w tej samej części nie mogą znaleźć się w jednej krawędzi. Maksymalną liczbę krawędzi jaką możę mieć ten r-graf to $\binom{n}{r}$, czyli $t_r(n,l)$. Jest on na pewno $K_{l+1}^{(r)}$ -wolny, gdyż element z rodziny $K_{l+1}^{(r)}$ ma rdzeń rzędu l+1, a rozważany r-graf jest rzędu co najwyżej l.

Pomijając rozważone wyżej przypadki załóżmy, że $n \ge l+1 \ge r+1 > 3$.

Niech $x \in V(G)$ będzie wierzchołkiem o maksymalnym stopniu Δ , a przez N = N(x) oznaczmy zbiór wszystkich sąsiadów wierzchołka x. Rozważmy G[N], czyli r-graf indukowany przez zbiór wierzchołków N. Będziemy chcieli udowodnić, że jest on $K_l^{(r)}$ -wolny. W tym celu przeprowadzimy dowód niewprost. Załóżmy, że G[N] zawiera jako podhipergraf element z rodziny $K_l^{(r)}$, który oznaczymy przez H. Niech $S \subset V(H)$ będzie rdzeniem H, więc |S| = l. Tworzymy hipergraf H' w następujący sposób: do H dodajemy wierzchołek x oraz takie krawędzie, aby każda para wierzchołków x, v, gdzie $v \in S$ była zawarta w jakiejś z tych krawędzi. Jest to możliwe, ponieważ tak zdefiniowaliśmy zbiór N. Dodaliśmy więc co najwyżej l krawędzi (bo taki rząd ma S), zbiór $S \cup \{x\}$ ma liczność l+1 i każda para z

tego zbioru jest zawarta w jakiejś krawędzi, co oznacza, że jest to rdzeń. Hipergraf |H'| ma co najwyżej $\binom{l+1}{2}$ krawędzi, ponieważ:

$$|H'| \le |H| + l \le {l \choose 2} + l = {l \choose 2} + {l \choose 1} = {l+1 \choose 2}$$
 (2.6)

H' jest więc elementem z rodziny $K_{l+1}^{(r)}$, co oznacza sprzeczność, ponieważ założyliśmy, że G jest $K_{l+1}^{(r)}$ -wolny, a H' jako jego podhipergraf również musi być $K_{l+1}^{(r)}$ -wolny. G[N] jest więc $K_{l}^{(r)}$ -wolny.

Skupmy się teraz na L(x), czyli połączeniu wierzchołka x. Będziemy chcieli udowodnić, że ten (r-1)-graf jest $K_l^{(r-1)}$ - wolny. Podobnie jak powyżej posłużymy się rozumowaniem niewprost. Załóżmy więc, że L(x) zawiera jako podhipegraf element z rodziny $K_l^{(r-1)}$, który oznaczmy przez H. Niech $S \subset V(H)$ będzie rdzeniem H, więc |S| = l. Tworzymy hipergraf H' poprzez dodanie do każdej krawędzi z H wierzchołka X. Zbiór $S \cup \{x\}$ jest więc rdzeniem, |H'| jest r-grafem, który ma co najwyżej $\binom{l+1}{2}$ krawędzi, ponieważ:

$$|H'| = |H| \le \binom{l}{2} < \binom{l+1}{2} \tag{2.7}$$

|H'| jest więc elementem rodziny $K_l^{(r-1)}$, co jest sprzeczne z naszym założeniem, że G[N] jest $K_{l+1}^{(r)}$ -wolny, a H' jako jego podhipergraf również musi być $K_{l+1}^{(r)}$ -wolny. Oznacza to, że L(x) jest $K_l^{(r-1)}$ -wolny.

Ustalmy k = n - |N|. Z założenia indukcyjnego mamy:

- $|G[N]| \le t_r(n-k, l-1)$
- $\Delta = |L(x)| \le t_{r-1}(n-k, l-1)$

Maksymalnym stopniem w G jest Δ , więc każdy wierzchołek w V(G)-N ma stopień co najwyżej Δ . Opierając się na tym fakcie możemy wnioskować:

$$|G| \le |G[N]| + k \cdot \Delta \stackrel{\text{zal.ind.}}{\le} t_r(n-k,l-1) + k \cdot t_{r-1}(n-k,l-1) \stackrel{(2.4)}{\le} t_r(n,l)$$
 (2.8)

Jeśli w powyższej zależności mamy

$$t_r(n-k, l-1) + k \cdot t_{r-1}(n-k, l-1) = t_r(n, l)$$
(2.9)

wtedy żadna krawędź w hipergrafie G nie może zawierać dwóch wierzchołków ze zbioru V(G)-N, gdyż powodowałoby to wielokrotne zliczanie krawędzi w pierwszej nierówności z (2.8). Opierając się na lemacie (2.1) wnioskujemy, że k jest równe $\lfloor \frac{n}{l} \rfloor$ lub $\lceil \frac{n}{l} \rceil$.

Na podstawie indukcji wiemy, że G[N] jest kopią hipergrafu $T_r(n-k,l-1)$, a połączenie każdego wierzchołka z V(G)-N jest kopią $T_{r-1}(n-k,l-1)$. Rozważmy więc dwa przypadki:

$$1^{\circ} l > r$$

Weźmy dowolne $z \notin N$. Połączenie L(z) jest izomorficzne z hipergrafem Turána $T_{r-1}(n-k,l-1)$. Jak wcześniej ustaliliśmy żadna krawędź z G nie ma dwóch wierzchołków w V(G)-N, więc elementami L(z) są wyłączenie podzbiory N. Pojawia się tutaj problem: czy podziały wierzchołków z G[N] i L(z) na 1-1 części są takie same?

Dowiedziemy, że tak własnie jest, stosując rozumowanie niewprost. W tym celu załóżmy, że L(z) i G[N] mają różne podziały, które oznaczymy odpowiednio przez $V_1 \cup V_2 \cup \ldots V_{l-1}$ oraz $W_1 \cup W_2 \cup \ldots W_{l-1}$. Aby podziały te istotnie były różne, przyjmijmy, że $v_i \in V_i$, gdzie $i=1,2,\ldots,l-1$ i jednocześnie $\{v_1,v_2\} \in W_1$. Na rysunku (2.3) schematycznie przedstawiono sytuację, ale aby nie zaciemniać rysunku krawędzie zostały pominięte.

Ponieważ wierzchołki v_1 i v_2 znajdują się w różnych częściach podziału w L(z), to są połączone krawędzią w L(z), a więc również i w G (krawędź w L(z) wraz z wierzchołkiem z), czyli $codeg_G(v_1,v_2)>0$. Chwilowo skupimy się teraz na hipergrafie G[N].

Załóżmy, że $w_j \in W_j$, gdzie $j \in \{2, 3, ..., l-1\}$ i oznaczmy $S = \{w_2, w_3, ..., w_{l-1}, v_1, v_2\}$.

Rysunek 2.3. Hipergrafy G[N] i L(z).

Korzystając z wniosku, że $k = \lfloor \frac{n}{l} \rfloor$ lub $k = \lceil \frac{n}{l} \rceil$ oraz przyjętych założeń, że $n \ge l+1$ i l > r otrzymujemy następujące nierówności:

$$n-k \ge n - \lceil \frac{n}{l} \rceil \ge (l+1) - 2 = l-1 \ge r$$
 (2.10)

Powyższe zależności gwarantują nam to, że G[N] nie jest pusty, tzn. posiada co najmniej jedną krawędź, więc każde dwa wierzchołki znajdujące się w różnych częściach podziału w G[N] są połączone krawędzią w G[N] (a więc i w G), co zapisujemy symbolicznie:dla $j \neq j' \ codeg_{G[N]}(w_j,w_{j'}) > 0$ oraz dla $i=1,2 \ codeg_{G[N]}(w_j,v_i) > 0$. Z wcześniejszego wywodu wiemy,że $codeg_G(v_1,v_2) > 0$. Oznacza to, że otrzymaliśmy element z rodziny $K_l^{(r)}$ o rdzeniu S. Dodając wierzchołek z otrzymamy hipergraf z rodziny $K_{l+1}^{(r)}$ o rdzeniu $S \cup \{z\}$, a to jest sprzeczne z założeniem, że G nie ma podhipergrafu z tej rodziny. L(z) ma więc taki sam podział jak G[N], a rozważany G jest hipergrafem Turána $T_r(n,l)$. $2^{\circ} l = r$

W tym przypadku G[N] nie ma żadnej krawędzi, więc nie można przeprowadzić takiego rozumowania jak w 1°. W tym przypadku będziemy chcieli udowodnić, że dla dowolnych dwóch wierzchołków z,z' ze zbioru V(G)-N, połączenia L(z) oraz L(z') mają takie same (l-1)-podziały. Podobnie jak w 1° przeprowadzimy rozumowanie niewprost. W tym celu załóżmy, że podziały te są różne i oznaczmy je odpowiednio przez $V_1 \cup V_2 \cup \ldots V_{l-1}$ oraz $W_1 \cup W_2 \cup \ldots W_{l-1}$. Załóżmy, że $v_i \in V_i$, gdzie $i=1,2,\ldots,l-1$ i jednocześnie $\{v_1,v_2\} \in W_1$. v_1 i v_2 znajdują się w różnych częściach podziału w L(z'), więc istnieje w L(z'), a tym

samym w G, krawędź która je zawiera. Dodając do tego fakt, że $j \neq j' \ codeg_{G[N]}(w_j, w_{j'}) > 0$ oraz dla $i = 1, 2 \ codeg_{G[N]}(w_j, v_i) > 0$ otrzymujemy element z rodziny $K_l^{(r)}$ o rdzeniu $S = \{w_2, w_3, \ldots, w_{l-1}, v_1, v_2\}$. Dokładając wierzchołek z mamy kopię hipergrafu z $K_{l+1}^{(r)}$ o rdzeniu $S \cup \{z\}$, co jest sprzeczne z przyjętym założeniem, że G takiej nie posiada, dlatego L(z) musi mieć taki podział jak L(z'), a G jest hipergrafem Turána $T_r(n,l)$.

Problem Turána

Przedstawione w poprzednim rozdziale twierdzenie Turána odpowiada na jedno z wielu pytań, którymi zajmuje się ekstremalna teoria hipergrafów. Zagadnienia, które zostaną poruszone w tym rozdziale związane są z gęstością Turána. Nim jednak do nich przejdziemy, niezbędne jest wprowadzenie kilku definicji i oznaczeń.

Przez $K_k(l)$ oznaczać będziemy k-jednolity hipergraf oparty na l wierzchołkach, który posiada wszystkie możliwe krawędzie. Zauważmy, że gdy k=2, $K_k(l)$ redukuje się do grafu pełnego o l wierzchołkach.

Definicja 3.1. *Gęstością Turána* $\pi(H)$ *dla k-jednolitego hipergrafu H nazywamy wyraże-nie:*

$$\pi(H) = \lim_{n \to \infty} \frac{ex(n, H)}{\binom{n}{k}}$$
(3.1)

 $gdzie\ ex(n,H)\ jest\ maksymalnq\ liczbq\ krawędzi\ w\ n\ wierzchołkowym\ H-wolnym\ k-grafie.$

Jest to więc stosunek maksymalnej ilości krawędzi w n wierzchołkowym H-wolnym k-grafie do maksymalnej liczby krawędzi jaką może posiadać k-graf. Wiadomo, że gęstość nie wzrasta ze wzrotem n, a dla każdego k i l $\pi(K_k(l))$ istnieje, jednak nie wiadomo ile ona wynosi dla $l>k\geq 3$. Wielu matematyków podjęło, z różnymi skutkami, wyzwanie wyznaczenia wartości π dla poszczególnych rodzin hipergrafów. Pál Turán pracował m.in. nad odpowiedzią na pytanie jaki maksymalny rozmiar może mieć 3-jednolity hipergraf, aby nie zawierał $K_3(4)$ jako podhipergrafu. Podał on dowód-konstrukcję, która świadczyła o tym, że $\pi(K_3(4))\geq \frac{5}{9}$. Przypuszczał on także, że jest najlepsze ograniczenie, jednak nikt tego przypuszczenia ani nie obalił ani nie potwierdził, więc problem pozostał wciąż otwarty. Przypadkiem tym zajęło się wielu matematyków i owszem, znaleźli inne nieizomorficzne hipergrafy, jednak wszystkie miały dokładnie ten sam rozmiar, co skonstruowane przez Turána. Dopiero Chung i Lu znaleźli lepsze ograniczenie na $\pi(K_3(4))$ i udowodnili, że wartość ta jest większa od $\frac{\sqrt{21}-1}{6}$.

W miarę rozwoju ekstremalnej teorii hipergrafów pojawiały się coraz nowsze problemy do rozwiązania. Jednym z nich było pytanie jaka jest maksymalna liczba krawędzi w *k*-grafie opartym na *n* wierzchołkach takim, że różnica symetryczna każdych dwóch różnych krawędzi nie zawiera się w żadnej innej krawędzi? Zapiszmy to formalnie.

Definicja 3.2. Różnicą symetryczną dwóch zbiorów A i B nazywamy operację:

$$A \triangle B = (A \setminus B) \cup (B \setminus A) \tag{3.2}$$

Przez \mathcal{D}_k oznaczmy rodzinę k-jednolitych hipergrafów, której dowolny zbiór trzech różnych krawędzi $\{A, B, C\}$ spełnia zależność: $A \triangle B \subseteq C$, czyli różnica symetryczna każdych dwóch różnych krawędzi jest zawarta w co najmniej jednej, innej krawędzi. Béla Ballobás, węgierski matematyk postawił następującą hipotezę:

Hipoteza 3.1.
$$ex(n, \mathcal{D}_k) = |\frac{n}{k}| \cdot |\frac{n+1}{k}| \cdot \dots \cdot |\frac{n+k-1}{k}|$$

Próbę udowodnienia bądź obalenia powyższej hipotezy podjęło wielu matematyków. Frankl i Füredi udowodnili ja dla $n \ge 2k$, Ballobás dla k = 3, a Sidorenko dla k = 4. Ponizej znajduje się przykład dla k = 3 i n = 5.

Przykład 3.1. Niech k=3, n=5, więc $5 \ge 2 \cdot 3 = 6$, wtedy $ex(5, \mathcal{D}_3) = \lfloor \frac{5}{3} \rfloor \cdot \lfloor \frac{6}{3} \rfloor \cdot \lfloor \frac{7}{3} \rfloor = 0$ $1 \cdot 2 \cdot 2 = 4$, czyli rozważany 3-graf, według Frankla i Füredi'ego, może mieć maksymalnie 4 krawędzie, aby nie zawierał \mathcal{D}_3 jako podhipergrafu.

Określmy hipergraf następująco: $H = \{\underbrace{\{1,3,5\}}_A,\underbrace{\{1,4,5\}}_B,\underbrace{\{2,3,5\}}_C,\underbrace{\{2,4,5\}}_D\}$. Dla ułatwienia krawędzie oznaczono literami A,B,C,D. H nie zawiera \mathcal{D}_3 , ponieważ:

$$A\triangle B = \{3,4\} \not\subseteq C, D, \qquad A\triangle C = \{1,2\} \not\subseteq B, D,$$

$$A\triangle D = \{1,2,3,4\} \not\subseteq B, C, \qquad B\triangle C = \{1,2,3,4\} \not\subseteq A, D,$$

$$B\triangle D = \{1,2\} \not\subseteq A, C, \qquad C\triangle D = \{3,4\} \not\subseteq A, B.$$

Zauważmy, że dodanie jakiejkolwiek krawędzi o liczności 3 spowoduje pojawienie się \mathfrak{D}_3 .

Dominique de Caen postawił kolejne pytanie związane w ekstremalną teorią hipergrafów: jaka jest maksymalna liczba krawedzi w k-grafie, który nie zawiera żadnej trójki krawędzi $\{A,B,C\}$ takiej, że $|A\cap B|=k-1$ oraz $A\triangle B\subseteq C$. Zapiszmy ten problem formalnie. Niech $A_i = \{\{1, 2, ..., k\}, \{1, 2, ..., k-1, k+1\}, \{i, i+1, ..., i+k-1\}\}$ oraz $S_k = \{A_2, A_3, \dots, A_k\}$. Szukamy więc $ex(n, S_k)$. Wspomniany wyżej Sidorenko rozwiązał ten problem dla k = 3,4:

Twierdzenie 3.1. *Dla*
$$k = 3$$
 i $k = 4$, $ex(n, S_k) = \lfloor \frac{n}{k} \rfloor \cdot \lfloor \frac{n+1}{k} \rfloor \cdot \ldots \cdot \lfloor \frac{n+k-1}{k} \rfloor$.

Rodzina S_k jest szczególnym przypadkiem \mathcal{D}_k , więc hipoteza (3.1) dla k=3,4 wynika z powyższe twierdzenia (3.1):

$$\lfloor \frac{n}{k} \rfloor \cdot \lfloor \frac{n+1}{k} \rfloor \cdot \dots \cdot \lfloor \frac{n+k-1}{k} \rfloor \le ex(n, \mathcal{D}_k) \le ex(n, \mathcal{S}_k)$$
 (3.3)