2008 University/College IC Design Contest

Cell-Based IC Design Category

Digital Photo Album

1.問題描述

請完成一數位相框電路設計。如圖一,本數位相框具有時鐘功能,每固定時間會自動切 換照片,並可顯示當時時間,其詳細規格將描述於後。

本控制電路各輸入輸出信號的功能說明,請參考表一。每個參賽隊伍必須根據下一節所 給的設計規格及附錄 C 中的測試樣本完成設計驗證。

本次 IC 設計競賽比賽時間為上午 08:30 到下午 20:30。當 IC 設計競賽結束後, CIC 會根據第三節中的評分標準進行評分。為了評分作業的方便,各參賽隊伍應參考附錄 E 中所列的要求,附上評分所需要的檔案。

本題目之測試樣本置於 /usr/cad/icc2008/cb/icc2008cb.tar ,請執行以下指令取得測試樣本:

tar xvf /usr/cad/icc2008/cb/icc2008cb.tar

軟體環境及設計資料庫說明請參考附錄F與附錄G。

圖一、相框畫面示意圖

2.設計規格

2.1 系統方塊圖

圖二、系統方塊圖

2.2 輸入/輸出介面

表 1-輸入/輸出訊號

Signal Name	I/O	Width	Simple Description		
clk	I	1	本系統為同步於時脈正緣之同步設計。		
reset	I	1	高位準非同步(active high asynchronous)之系統重置信號。		
IM_A	О	20	Image Memory 的位址匯流排。		
IM_Q	I	24	Image Memory 的資料輸出匯流排。		
IM_D	О	24	Image Memory 的資料輸入匯流排。		
IM_WEN	О	1	Image Memory 的 Write Enable 控制訊號,當 LOW 可以寫資料進入 Image Memory。		
CR_A	О	9	character ROM 的位址匯流排。		
CR_Q	I	13	character ROM 的資料輸出匯流排。		

2.3 系統描述

2.3.1 系統功能描述

本數位相框從 Image Memory 中讀取照片資訊,將照片及時鐘內容顯示於螢幕(寫入 Frame Buffer),並每隔 2 秒鐘自動切換下一張照片,若所有的照片都顯示完,則從頭循環顯示。Frame Buffer 位於 Image Memory 位址後段, Image Memory 位址分佈詳述於 2.3.2。

時鐘固定顯示於螢幕最右下方(如圖一所示),每秒鐘變換一次,其顯示格式為:

小時:分鐘:秒,其中小時、分鐘、秒各使用2個數值,如6點32分2秒的顯示為:

06:32:02, 時鐘顯示為 24 小時制, 也就是說, <mark>小時</mark>的範圍從 00 到 23。數字及冒號的圖形 記錄於 character ROM 中, character ROM 的格式詳述於 2.3.3。

本數位相框可接受的照片大小共有 3 種,分別是 512x512、256x256、128x128,但顯示 螢幕(Frame Buffer)僅有一種大小(256x256),對於不同大小的照片顯示時的縮放方式詳述於 2.3.4

照片切換顯示當中須帶有轉場效果,轉場的方法詳述於 2.3.5

在系統一開始,所有的照片資料及 Image Memory 的 header 設定都已事先儲存在 Image Memory 中,從系統重設(reset)後,數位相框開始在每個整秒(1 秒、2 秒、3 秒...)更新顯示畫面,每次更新必須在 0.4 秒內完成,轉場畫面必須在 0.2 秒時完成且穩定不變,testbench 會在每個整秒前 0.000001 秒及整秒後 0.400001 秒以及照片切換後 0.2 秒檢查 Frame Buffer 內容正確性,而第一個檢查畫面會在 0.400001 秒時檢查,如圖三。

系統時脈(clk)固定為 1M, <u>參賽者不可修改時脈速度</u>,也就是說,參賽者必須在有限的 cycle 內(200000 cycle for 轉場畫面,400000 cycle for 完整畫面)完成畫面更新。

本題評分方向為面積和 toggle count, toggle count 計算方式請見第3章、模擬及除錯

2.3.2 Image Memory 位址分佈

本數位相框所使用之記憶體 Image Memory, 其 data width 為 24bit, address 定址最大為 20bits, Image Memory 共分為 3 區段, 見圖四。

圖四、Image Memory 位址配置圖

▶ Image Memory Header 區段

Image Memory Header 位於 Image Memory 最前段,其內容依續詳列如下:

■ 系統初始時間(init_time)

Image Memory 第一筆資料(位址 0)為系統初始時間,其格式如下圖表示,第 23~16 bits 表示小時,第 15~8 bits 表示分鐘,第 7~0 bits 表示秒。

16	8	0
hour	minute	second

- Frame Buffer 初始位址 (FB_addr)
 - Image Memory 第二筆資料(位址 1)用於指向 Frame Buffer 初始位址。
- 照片張數 (photo_num)

Image Memory 第三筆資料(位址 2)記錄照片張數,照片最少為1張,最多為4張。

■ 照片初始位址(px_addr)及大小(px_size)

從位址 3 開始依續分別成對記錄各照片之初始位址(px_addr)及大小(px_size),照片之初始位址表示該照片在 Image Memory 的起始位址,照片之大小共有 3 種,分別是 512x512、256x256、128x128,每一張照片的大小資訊記錄在 Image Memory的 Header 中,其記錄的方式如下:

照片大小	px_size
128x128	128
256x256	256
512x512	512

▶ Photo Storage 區段

此區段儲存所有照片內容,每一張照片的初始位址記錄於 Header 中,其所佔用的記憶體大小依照片大小而不同。每一筆資料代表一個 pixel 的 RGB 值,如下圖第 $23\sim16$ bits 為 R值,第 $15\sim8$ bits 為 G值,第 $7\sim0$ bits 為 B值。

記憶體中依續儲存的內容代表照片由左至右,由上至下的 pixel,如圖五為 size=128x128 的照片儲存順序。

圖五、 照片資料儲存順序

➤ Frame Buffer 區段

Frame Buffer 是 Image Memory 中唯一可以寫入的區段,功能是做為數位相框顯示區,將資料寫入 Frame Buffer 即代表顯示於螢幕。

Frame Buffer 的初始位址記錄於 Header 中,佔用的記憶體固定為 $256 \times 256 = 65535$ 筆資料,和 Photo Storage 的資料格式一樣,Frame Buffer 每一筆資料代表一個 pixel 的 RGB 值,RGB 由左至右(bit23~bit0)分別各佔 8bits,Frame Buffer 內依續儲存的內容代表螢幕由左至右,由上至下的 pixel,如圖六。

圖六、 Frame buffer 及螢幕對應順序

2.3.3 character ROM 格式

0至9及冒號(:)等11個字元的圖形,依序儲存在 character ROM 當中,每個字元皆為 13x24 pixel,每個 pixel 以 bit map 形式儲存,1 代表白色(RGB=FFFFFF),0 代表黑色(RGB=000000)。

如圖七, character ROM 為一 13x264 bits 的記憶體, 264 個位址, 每筆 data 13bits, 故每個字元占用 24 筆 data, 字元圖形由左至右 13pixel 分別對應到一筆 data 的第 12bit 至第 0bit。

圖七、 character ROM 格式

2.3.4 顯示縮放(Scaling)

本數位相框可接受的照片大小共有 3 種,分別是 512x512、256x256、128x128,但顯示螢幕(Frame Buffer)僅有一種大小(256x256),對於和螢幕大小不同的照片必須先經過縮放方能顯示,縮放的規則如下:

■ 128x128 照片補插點

128x128 照片以補插點方式放大到 256x256,插點計算方式為相鄰的點的平均值(小數無條件捨去),以下圖 2x2 放大到 4x4 為例,分以 4 種狀況說明:

- ◆ 水平插點 (b,j 兩點)水平插點為左右兩點的平均值,b=(a+c)/2,j=(i+k)/2
- ◆ 垂直插點 (e,g 兩點) 垂直插點為上下兩點的平均值, e=(a+i)/2, g=(c+k)/2
- ◆ 中心插點(f點)中心插點為周邊 4 點的平均值, f=(a+c+i+k)/4
- ◆ 邊緣插點(m,n,o,p,d,h,l)
 邊緣插點直接延續邊緣點,m=i,n=j,o=k,p=k,l=k,h=g,d=c

■ 512x512 照片取樣

512x512 以四點平均的方式縮小到 256x256,以下圖 4x4 縮小到 2x2 為例 A=(a+b+e+f)/4,B=(c+d+g+h)/4,C=(i+j+m+n)/4,D=(k+l+o+p)/4

2.3.5 轉場效果(transition)

轉場效果出現於當顯示螢幕(即 Frame Buffer 內容)由一張照片轉換到另一張照片當中的過渡期,本數位相框採一階段轉場,即轉場畫面只有一張,轉場方式如圖八所示。

圖八以 6x6 的顯示螢幕為範例,當螢幕顯示由照片 A 轉換照片 B 時,必須先完成轉場畫面後才可完全轉換到照片 B,且此轉場畫面必須在一小段時間內穩定不變。轉場的原則為

- 1. 對於偶數行,將奇數的點置換為新照片
- 2. 對於奇數行,將偶數的點置換為新照片

須特別注意的是,時鐘的區域不作轉場效果,且轉場畫面的時間屬於後一張畫面的時間。

圖八、轉場效果

2.4 時序規格

2.4.1 Image Memory 時序圖

Image Memory Read:

Image Memory Write:

圖九、Image Memory 時序圖

2.4.2 character ROM 時序圖

character ROM Read

圖十、Image Memory 時序圖

3.模擬及除錯

- 1. 本試題以 toggle count 作為評分依據, toggle count 指的是 netlist 中所有 net 的開關次數 總和。本數據須藉由額外 PLI 功能取得,使用 PLI 模擬之參數請見底下。
- 2. 因模擬時間很長,請以 ncverilog 取代 verilog 以加快模擬速度
 - ncverilog 指令範例如下:

ncverilog testfixture.v dpa.v +define+tb1 +loadpli1=tglib:tg +access+r

- 上述指令中 +define+tb1 指的是使用第一組測試樣本模擬,若須使用其它測試樣本請自行修改此參數。以第二組測試樣本為例: +define+tb2。
- 上述 neverilog 指令中+loadpli1=tglib:tg 意義為使用 toggle count PLI。
- toggle count PLI 僅能計算 gate-level netlist 的結果, 在 RTL-level 時得到 toggle counte 為 0 屬於正常結果。
- 關於模擬時使用的一些記憶體 model (charROM.v、IMAGE_ROM.v、FB.v),因已經以 include 方式加在 testfixture.v 裏,所以不需加在模擬指令裏。
- 3. 因波形檔很大,請以 fsdb dump 取代 vcd dump, dump fsdb 須使用指令如下:
 - 使用 ncverilog 者使用指令(fsdb 相關參數以紅色標示)

ncverilog testfixture.v dpa.v +define+tb1+FSDB +loadpli1=tglib:tg +access+r

■ dump 波形檔會嚴重降低模擬速度,請盡可能以文字 display 方式除錯

- 4. 模擬過程中檢查畫面時會將 Frame Buffer 的每個 pixel 內容儲存下來,儲存檔名為 tbm_imageOm.out,轉場畫面內容儲存為 tbm_imageOm_t.out(n代表第幾個測試樣本, m代表第幾秒),可以和 golden 目錄內的對應的.golden 檔案比較來幫助除錯。
- 5. 模擬過程中會在每秒及轉場時將 Frame Buffer 的畫面儲存成圖形檔,檔案格式為 xpm 檔,請以下面指令觀看此檔案(以 tbl image01. xpm 為例):

xv tb1_image01.xpm& gimp tb1_image01.xpm&

6. testfixture 內有些變數,有助於設計中除錯,這些變數的說明如下:

tick	進行秒數,reset後tick為①,之後每秒增加1
count_time	週期數, reset 後的週期數, 每週期為 lus
CHECKIMAGE	檢查 Frame Buffer 的驅動訊號,每整秒前及 0.4 秒後
	會驅動一次,當 high 時會檢查畫面是否正確。
CHECKTRANS	檢查轉場畫面的驅動訊號,每兩秒後 0.2 秒會驅動一
	次,當 high 時會檢查畫面是否正確。
hour \ min \ sec	模擬時間的小時、分、秒

7. romfile 目錄內 tba_IMAGE.rcf 為第 A 個測試樣本的使用的 Image Memory 內容檔,此 檔內對照片的每個 pixel 做了數值、座標、位址等註解,應該有助於程式除錯。

4.評分標準

評分人員將驗證參賽者繳交之設計,通過驗證者以"完成設計"所列之公式評分。但若通過完成設計的組數太少, CIC 亦將根據繳交資料依據 "完成部分設計"所列分析各組之完成度:

1. 完成設計

完成設計者意指:

- a、 RTL 通過所有測試樣本模擬
- b、 完成 Synthesis 及 APR,
- c、 APR 結果依照附錄 C 所列之驗證完成實體驗證
- d、 APR 後的 netlist 通過第二、三、七組測試樣本模擬

通過以上條件者以下列所列之公式評分。

Cost = Area*Toggle

Area:P&R之後,layout實際面積大小(單位:um²)

Toggle: final netlist 模擬第七組測試樣本所得的 toggle count 值

Cost 值越低,所得分數越高。

雖然評分以 Area 及 Toggle 為計算依據,參賽者仍應以完成系統功能為優先考量

2. 完成部分設計

對於未完成 APR 設計者,共分為三個等級,等級由高至低排列為 Physical Level、Gate Level、RTL Level,等級高者優先錄取

■ Physical Level

進入這個等級意指

- a、 RTL 通過所有測試樣本模擬
- b、 已完成 APR,但 layout 尚有少量 DRC 或 connectivity error
- c、 APR 後的 netlist 通過第二、三、七組測試樣本模擬 此等級的排名列於"完成設計者"之後,評分方式和"完成設計"相同

Cost = Area*Toggle

■ Gate Level

進入這個等級意指

- a、 RTL 通過所有測試樣本模擬
- b、 完成 synthesis
- c、 synthesis 後的 netlist 通過第二、三、七組測試樣本模擬 評分方式

Cost = Area*Toggle

Area: synthesis report ≥ cell area

■ RTL Level

評分方式

七個測試樣本模擬中,測試樣本通過數量,通過越多者,分數越高

附錄

附錄 A 為主辦單位所提供各參賽者的設計檔說明; 附錄 B 為主辦單位提供的測試樣本說明; 附錄 C 為設計驗證說明; 附錄 D 為評分用檔案,亦即參賽者必須繳交的檔案資料; 附錄 E 則為設計檔案壓縮整理步驟說明; 附錄 F 中說明本次競賽之軟體環境; 附錄 G 中說明本次競賽使用之設計資料庫。

附錄 A 設計檔(For verilog or VHDL)

1. 下表為主辦單位所提供各參賽者的設計檔

表 2、設計檔案說明

衣 4、
說明
測試樣本檔。此測試樣本檔定義了時脈週期與測試
樣本之輸入信號
參賽者所使用的設計檔,已包含系統輸/出入埠之宣
告
Frame Buffer #7 verilog model
Image Memory 前段資料區的 verilog model
character ROM 的 verilog model
第 n 組測試樣本的第 m 個正確的模擬結果
第 n 組測試樣本的第 m 個正確的模擬結果的圖形檔
測試樣本中所使用的原始圖形檔
測試樣本中所使用的原始圖形的每個 pixel 的資料
(以 16 進位記錄)
character rom 的 rom fie (binary)
第 n 組測試樣本使用的 Image Memory 的 rom file
(binary)
測試樣本使用的 verilog task
Design Compiler 設定檔
合成時使用之 sdc 檔
APR 時使用之 sdc 檔
toggle count PLI 檔案

2. 請使用 *DPA.v*,進行遊戲引擎控制器之設計。其模組名稱、輸出/入埠宣告如下所示: module DPA (clk, reset, IM_A, IM_Q, IM_D, IM_WEN, CR_A, CR_Q);

input clk;

input reset;

output [19:0] IM_A;

input [23:0] IM_Q;

output [23:0] IM_D;

output IM_WEN;

output [8:0] CR_A;

input [12:0] CR_Q;

endmodule

3. 比賽共提供七組測試樣本,以 define 參數方式選擇測試樣本, define 參數設定方法請見第 3章、模擬與除錯之第2項

附錄 B 測試樣本

比賽提供七組測試樣本,為方便設計者除錯之用,故提供 Image Memory 的 header 以供 參考,(原始照片之圖形檔及資料檔儲存在 golden 目錄裏,見附錄 A 表 2)

測試樣本 1-6 目的是方便除錯, 進入 Gate Level 及 Physical Level 後,評分人員僅以測試樣本二、三、七組做驗證。

1. 測試樣本 1:

模擬完成時間:2秒

photo1 使用照片: tintgreen256.xpm

描述	IM 位址	數值(dec)	數值(hex)
初始時間	0	12:06:30	0c:06:1e
FB 位址	1	917504	0e0000
照片數	2	1	000001
photo1 位址	3	8	000008
photo1 大小	4	256	000100

2. 測試樣本 2:

模擬完成時間: 2

photo1 使用照片:tintblue512.xpm

描述	IM 位址	數值(dec)	數值(hex)
初始時間	0	12:12:59	0c:0c:3b
FB 位址	1	839680	0cd000
照片數	2	1	000001
photo1 位址	3	12	00000c
photo1 大小	4	512	000200

3. 測試樣本 3:

模擬完成時間:2秒

photo1 使用照片: tintred128.xpm

描述	IM 位址	數值(dec)	數值(hex)
初始時間	0	3:59:59	03:3b:3b
FB 位址	1	33036	00810c
照片數	2	1	000001
photo1 位址	3	16396	00400c
photo1 大小	4	128	000080

4. 測試樣本 4:

模擬完成時間:3秒

photo1 使用照片:tintred128.xpm photo2 使用照片:tintgreen256.xpm

描述	IM 位址	數值(dec)	數值(hex)
初始時間	0	22:12:02	16:0c:02
FB 位址	1	851968	0d0000
照片數	2	2	000002
photol 位址	3	12	00000c
photo1 大小	4	128	000080
photo2 位址	5	16400	004010
photo2 大小	6	256	000100

5. 測試樣本 5:

模擬完成時間:5秒

photo1 使用照片:tintred256.xpm photo2 使用照片:tintgreen512.xpm

描述	IM 位址	數值(dec)	數值(hex)
初始時間	0	23:59:59	17:3b:3b
FB 位址	1	917504	0e0000
照片數	2	2	000002
photol 位址	3	4096	001000
photo1 大小	4	256	000100
photo2 位址	5	135166	020ffe
photo2 大小	6	512	000200

6. 測試樣本 6:

模擬完成時間:3秒

photo1 使用照片: tintgreen256.xpm photo2 使用照片: tintred128.xpm

描述	IM 位址	數值(dec)	數值(hex)
初始時間	0	00:07:04	00:07:04
FB 位址	1	786432	0c0000
照片數	2	2	000002
photo1 位址	3	7	000007
photo1 大小	4	256	000100
photo2 位址	5	65543	010007
photo2 大小	6	128	000080

7. 測試樣本 7:

模擬完成時間:8秒

photo1 使用照片: v1_128.xpm photo2 使用照片: v2_512.xpm photo3 使用照片: v3_256.xpm photo4 使用照片: v4_512.xpm

描述	IM 位址	數值(dec)	數值(hex)
初始時間	0	23:59:57	17:3b:39
FB 位址	1	983040	0f0000
照片數	2	4	000004
photo1 位址	3	16	000010
photo1 大小	4	128	000080
photo2 位址	5	16400	004010
photo2 大小	6	512	000200
photo3 位址	7	278544	044010
photo3 大小	8	256	000100
photo4 位址	9	344080	054010
photo4 大小	10	512	000200

附錄 C 設計驗證說明

參賽者繳交資料前應完成 RTL, Gate-Level 與 Physical 三種階段驗證,以確保設計正確性。

- ▶ RTL與 Gate-Level 階段:參賽者必須進行 RTL simulation 及 Gate-Level simulation,模 擬結果必須於題目所定義的系統時脈下,輸出結果正確且無 setup/hold time 的問題。
- ▶ Physical 階段,包含三項驗證重點:
- 1. 完成最後 layout,
 - i. Marco layout,不含 IO Pad。
 - ii. VDD 與 VSS power ring 寬度請各設定為 2um。
- 2. 完成 post-layout simulation: 參賽者必須使用 P&R 軟體**寫出之 netlist 檔與 sdf 檔完成** post-layout gate-level simulation,以下分為 Astro 及 SOC Encounter 兩軟體說明 netlist 與 sdf 寫出步驟。
 - i. 使用 Synopsys Astro 者,執行步驟如下: 在 Astro 視窗底下點選

"Timing > SDF Out"

Specify Version	Version 2.1	
Operation Mode	Normal SDF	
File Name	DPA_pr.sdf	

按OK。

"Cell > Hierarchical Verilog Out"

Flattened Cell Name (.EXP .CEL)	DPA.CEL
Enter File Name	DPA_pr.v
No power/ground ports	Enable
No power/ground nets	Disable
Output bus as individual bits	Disable
No empty Cell Module Definitions	Enable
No Corner Pad Instances	Enable
No Pad Filler Cell Instances	Enable
No Core Filler Cell Instances	Enable
No Unconnected Cell Instances	Enable
No Unconnected Ports	Enable
Strip BackSlash Before Hierarchy Separator	Enable
No Diode Ports	Enable
Output Wire Declaration	Enable
Output 1'b1 for Power(VDD, vdd,) and 1'b0 for Ground(VSS, gnd,)	Enable
Generate macro definitions	Disable
14 0-21	

按 OK。

ii. 使用 Cadence SOC Encounter 者,執行步驟如下:

在 SOC Encounter 視窗下點選:

"Design → Save → Netlist..."

Netlist File	DPA_pr.v	
All other options	Default value	

按OK。

"Timing → Calculate Delay..."

存成 DPA_pr.sdf, 按 OK。

註:如果發現 Calculate Delay 功能是灰色的(無法點選),請先將目前結果存檔 後離開 Encounter,再重新進入 Encounter 並 Restore 回原本 Design 即可。

- 3. 完成 DRC 與 LVS 驗證: 參賽者必須以其所使用之 P&R 軟體內含之 DRC 與 LVS 驗證功能完成 DRC 與 LVS 驗證,以下分為 Astro 及 SOC Encounter 說明執行步驟。
 - i. 使用 Synopsys Astro 者,驗證 DRC 與 LVS 步驟如下: 在 Astro 視窗底下點選

"V--:C-- DDC!

"Verify > DRC"

List Error Summary Immediately	Enable	
All other options	Default value	

按 OK。

將跳出來的 DRC report 存成 DRC.report 檔。

"Verify > LVS" Default 值,按 OK。

	·
List Error Summary Immediately	Enable
All other options	Default value

將跳出來的 LVS report 存成 LVS.report 檔。

ii. 使用 Cadence SOC Encounter 者,驗證 DRC 與 LVS 步驟如下:

在 SOC Encounter 視窗下點選

"Verify → Verify Connectivity..." Default 值,按 OK。

"Verify → Verify Geometry..." Default 值,按 OK。

"Verify → Violation Browser..."

將 Verify 的結果存成 DPA.viols.rpt

附錄 D 評分用檔案

評分所須檔案可以下幾個部份:(1)RTL design,即各參賽隊伍對該次競賽設計的 RTL code,若設計採模組化而有多個設計檔,請務必將合成所要用到的各 module 檔放進來,以免評審進行評分時,無法進行模擬;(2)Gate-Level design,即由合成軟體所產生的 gate-level netlist,以及對應的 SDF 檔;(3)Physical design,使用 Synopsys Astro 者,請記得將 Astro 整個相關的 design library,壓縮成一個檔案。使用 Cadence SOC Encounter 者,請將 SOC Encounter 相關的 design library(包含一個.enc 檔及一個.dat 目錄),壓縮成一個檔案。壓縮的檔案格式如下:假設參賽者的 design library 目錄名稱為"your_lib",請執行底下的 UNIX 指令,最後可以得到"your_name.tar"的檔案。

> tar cvf your_name.tar your_lib

在執行以上的指令之前,請確定將你使用的 P&R Tool 儲存後關閉,再執行以上的指令,否則在壓縮的過程會出現錯誤。

表 3

**3			
RTL category			
Design Stage	File	Description	
N/A	N/A	Design Report Form	
RTL Simulation	*.v or *.vhd	Verilog (or VHDL) synthesizable RTL code	
Gate-Level category			
Design Stage	File	Description	
Pre-layout	*_syn.v	Verilog gate-level netlist generated by Synopsys	
Gate-level	_5y11.V	Design Compiler	
Simulation	*_syn.sdf	Pre-layout gate-level sdf	
Physical category			
Design Stage	File	Description	
	*.tar	archive of the design library directory	
P&R	*.gds	GDSII layout	
	DRC/LVS	For Astro: DRC.report; LVS.report	
	report	For SOC Encounter: DPA.viols.rpt	
Post-layout	* nr 11	Verilog gate-level netlist generated by Cadence	
Gate-level *_pr.v		SOC Encounter or Synopsys Astro	
Simulation	*_pr.sdf	Post-layout gate-level sdf	

附錄 E 檔案整理步驟

當所有的文件準備齊全如表 3 所列,請按照以下的步驟指令,提交相關設計檔案,將所有檔案複製至同一個資料夾下,步驟如下:

- 1. 在自己的 home directory 建立一個新目錄,名稱叫做"result"例如:
 - > mkdir ~/result
- 2. 將附錄 D 要求的檔案複製到 result 這個目錄。例如:
 - > cp DPA.v ~/result/
 - > cp DPA_syn.v ~/result/

.

3. 在 Design Report Form 中,填入所需的相關資訊。

附錄 F 軟體環境

- 1. 軟體環境設定檔: /usr/cad/cshrc/env.cshrc
- 2. 設定軟體環境,請在登入後,開啟 terminal 視窗並依以下步驟執行:

cp /usr/cad/cshrc/env.cshrc .cshrc source .cshrc

3. 此 cshrc 所設定好的軟體環境包括:

NC-Verilog

NC-VHDL

SOC Encounter

Verdi

Laker

ModelSim

Design Vision

Astro

joe

textedit

nedit

vim

gvim

XV

EDA 軟體所須使用的 license 皆已設定完成,不須額外設定,且每組限定每個軟體只能使用一套 license。

附錄 G 設計資料庫

tsmc13.vhd

設計資料庫位置: /usr/cad/icc2008/CBDK_IC_Contest_v2.0

目錄架	構		
Astro/	tsmc13gfsg_fram/ tsmc13_CIC.tf macro.map		Astro core library Astro technology layer mapping file
SOCE/		•	. 11 0
	lef/		
		tsmc13fsg_8lm_cic.lef	LEF for core cell
	1.1. /	antenna_8.lef	LEF for antenna
	lib/	fast.lib	best case for core cell
		slow.lib	worst case for core cell
		typical.lib	typical case for core cell
streamOut.map		· ·	Layout map for GDSII out
Synopsy		•	, ,
	db/		
		fast.db	Synthesis model (fast)
		slow.db	Synthesis model (slow)
	1.1. /	typical.db	Synthesis model (typical)
	lib/	fast.lib	timing and narrow model
		slow.lib	timing and power model timing and power model
		typical.lib	timing and power model
Verilog/		typical.no	timing and power moder
	tsmc13_	neg.v	Verilog simulation model
VHDL/	_		

VHDL simulation model

Design Report Form

隊號(Team number):				
RTL category				
Design Stage	Description		File Name	
RTL	使用之 HDL 名稱	Ħ.		
Simulation	(請塡入 Verilog 或	VHDL)		
RTL	RTL 檔案名稱			
Simulation	(RTL Netlist file	name)		
	Gate-Level	l category		
Design Stage	Description		File Name	
Pre-layout	Gate-Level 檔案	名稱		
Gate-level	(Gate-Level Netlist f	file name)		
Simulation	Pre-layout sdf 檔案名稱			
Physical category				
Design Stage	Descritpion		File Name or Value	
	使用之 P&R Tool			
	(請塡入 Astro 或 SOC Encounter)			
	設計資料庫檔案名稱(Library name)			
	佈局檔檔案名稱(GDSII file name)			
	佈局面積(layout area)	() um X () um	
P&R	佈局座標點	左下角座標點	L(Lower-Left Coordinate):	
		XLB =	YLB =	
		右上角座標點	告(Upper-Right Coordinate):	
		XRT =	YRT =	
	DRC report file			
LVS report file				
Post-layout	Post-layout Gate-Level 檔案名稱			
Gate-level	Post-layout sdf 檔案名稱			
Simulation	toggle count			
其他說明事項(Any other information you want to specify:(如設計特點)				
如寫不下可寫於背面				