R.LTWB - SECTION 05

Balance hidrológico de largo plazo - LTWB Lectura y análisis de caudales y áreas de aportación en nodos característicos

https://github.com/jlgingcivil/R.LTWB.CS2120

JORGE LUIS GONZÁLEZ CASTRO CC: 1032395475 CS2021

TABLA DE CONTENIDO

1.	Introducción	3
2.	Objetivo General	3
3.	Actividad 1: Procesamiento en software	3
4.	ACTIVIDAD 2: MATRIZ DE DISPERSIÓN	. 13
5.	ACTIVIDAD 3: ECUACIONES HASTA 25 KM2	. 13
6.	ACTIVIDAD 4: OTROS MÉTODOS DE ETR	. 15
7.		
8.		
٥.	Referencias Bibliograficas	. 10
	ÍNDICE DE ILUSTRACIONES	3
llust	tración 3-1. Capas a utilizar	3
llust	tración 3-1. Capa AlosNodeGDB	4
llust	tración 3-1. Extracción valores caudal medio	5
llust	tración 3-1. Hidrograma Budyko Composite	6
	tración 3-1. Matriz Dispersión Budyko Compuesto	
	tración 3-1. Matriz Dispersión Budyko Niña	
	tración 3-1. Matriz Dispersión Budyko Niño	
	tración 3-1. Matriz Dispersión Budyko Neutral	
	tración 3-1. Matriz Dispersión Dekop Compuesto	
	tración 3-1. Matriz Dispersión Dekop Niña	
	tración 3-1. Matriz Dispersión Dekop Niño	
	tración 3-1. Matriz Dispersión Dekop Neutral	
	· · · · · · · · · · · · · · · · · · ·	
	tración 3-1. Matriz Dispersión Turc Niña	
	tración 3-1. Matriz Dispersión Turc Niño	
	·	
	tración 3-1. Valores característicos caudal medio compuesto vs área aportac	
	·	
llust	tración 3-1. Valores característicos caudal medio Niña vs área aportación	
	tración 3-1. Valores característicos caudal medio Niño vs área aportación	
	tración 3-1. Valores característicos caudal medio Neutral vs área aportación	
	tración 4-2. Comparación resultados	
	tración 4-2. Matriz dispersión Budyko hasta 25 km2	
llust	tración 4-2. Matriz dispersión Dekop hasta 25 km2	. 14
	tración 4-2. Matriz dispersión Turc hasta 25 km2	
	tración 4-2. Matriz dispersión Turc hasta 25 km2	
	tración 4-2. RUNOFF ETR REGIONAL	
		16

SECTION 05 BALANCE HIDROLÓGICO A LARGO PLAZO JORGE LUIS GONZÁLEZ CASTRO CC: 1032395475

CS2021

CS2021

1. INTRODUCCIÓN

Se continua con curso Balance hidrológico de largo plazo para estimación de caudales medios usando SIG - LWTB con el desarrollo de la sección 5 Balance Hidrológico a largo plazo LTWB. A continuación, se presenta en cada numeral las actividades realizadas de acuerdo con cada capítulo de la sección de estudio, incluyendo el resumen de actividades, logros alcanzados y capturas de pantalla ejercicios realizados. de los Se ha creado el repositorio https://github.com/ilgingcivil/R.LTWB.CS2021 para la inclusión de los archivos y documentos de las actividades desarrolladas.

2. OBJETIVO GENERAL

El objetivo general en esta sección es definir las ecuaciones y valores de caudal medio según las grillas para los nodos característicos en la red de la cuenca del caso de estudio para cada fenómeno climatológico.

3. ACTIVIDAD 1: PROCESAMIENTO EN SOFTWARE

En primera medida se realiza el cargue de las capas requeridas ALOSSTR.shp y ASLOStrNode.shp en el mapa creado en la actividad anterior.

Fuente: Elaboración Propia, 2023.

Posteriormente, se realiza la exportación de la capa de nodos.

CS2021

Fuente: Elaboración Propia, 2023.

Luego se realiza la extracción de los valores para cada nodo en las 12 grillas de caudales medios generadas en la actividad anterior.

CS2021

Ilustración 3-3. Extracción valores caudal medio Not signed in 🚨 📮 ? ArcGISProSection05 P Command Search (Alt+Q) Project Map Insert Analysis View Edit Imagery Share Arc Hydro GRAIP Lite Raster Laver Add Graphics Layer % Cut **♦ ◎ ◎ □** -**•**-A Pause A Lock 1_C Explore Bookmarks Go To XY Select Select By Select By

Attributes Location Zoom To 🖺 Сору Basemap Add V Data Copy Path Clipboard ∨ ‡ × Map × Contents Geoprocessing Θ Extract Multi Values to Points \oplus <u>t</u> □ 🖸 / 🖽 , ... ? Parameters Environments Input point features Drawing Order ALOSStrNodeGDB ▶ ☐ LTWBTurcNino.tif ✓ ☐ LTWBTurcNino LTWBTurcNino.tif ▶ ☐ LTWBTurcNina.tif LTWBTurcNina.tif ✓
☐ LTWBTurcNina LTWBTurcNeutral.tif LTWBTurcNeutral ▶ ✓ LTWBTurcComposite.tif LTWBTurcComposite.tif LTWBTurcComposite LTWBDekopNino.tif LTWBDekopNino.tif LTWBDekopNina.tif → LTWBDekopNina LTWBDekopNeutral.tif LTWBDekopNeutral.tif → LTWBDekopNeutral LTWBDekopComposite.ti LTWBDekopComposite.tif LTWBBudvkoNino.tif LTWBBudykoNino.tif → LTWBBudykoNino LTWBBudykoNina tif LTWBBudykoNina.tif ✓
☐ LTWBBudykoNina LTWBBudykoNeutral.tif LTWBBudykoNeutral.tif → LTWBBudykoNeutral ▶ LTWBBudykoComposite.tif → LTWBBudykoCompos LTWBBudykoComposite.tif ▶ RunoffPTurcNeutral.tif ▶ RunoffPTurcNino.tif ▶ RunoffPTurcNina.tif ▶ Run 🕶 ▶ ☐ RunoffPTurcComposite.tif 1:25.524 Selected Features: 0 | | | | Catalog Geoprocessing Symbology Chart Prop • 4 • 8 0 へ 🥌 🔚 🦟 🗘 ESP ٧ م Extract Multi Values... ₺ 🗎 🗎 / 🖽 , ... Parameters Environments Drawing Order ALOSStrNode(v 📔 🦯 v ₄ 💹 Map Input rasters Output fie ▲ ALOSStrNodeGDB LTWBT - ETWBTur LTWBT - ETWBTui ▲ ✓ ALOSStrNode LTWBT - ETWBTur LTWBT - | ITWBTur ₄ ✓ alosrstr 4,849,675.82E 2,102,028.17N m 🕶 Selected Features: 0 | | | 2 LTWBD ~ 🗀 LTWBDel LTWBD ~ G LTWBDel LTWBD ~ | LTWBDel Field: Add E Calculate Selection: Select By Attributes Zoom To Switch Clear Delete Copy \equiv LTWBD ~ G LTWBDel ▶ ☐ LTWBTurcNeutral:tif LTWBB ~ G LTWBBuc LTWBB ~ | LTWBBuc 2 0.00544 $~~ \Vdash \ \ \, \bigsqcup \ \, \mathsf{LTWBDekopNino.tif}$ LTWBB v 🔓 LTWBBuc ▶ ☐ LTWBDekopNina.tif 3 53.06262 25.8789 40.45499 34.15883 33.80253 34.14081 51.57738 44.14132 ▶ Run → 4 0.005825 0.006692 0.008656 0.007911 0.007822 0.009186 0.011643 0.010722 □ LTWBDekopNeutral.tif ▶ ☐ LTWBDekopComposite.tif 5 0.16656 0.19433 0.247148 0.227056 0.224747 0.26621 0.332112 0.30732 D ☐ LTWBBudykoNino tif 6 0.259965 0.253475 0.322341 0.325625 0.349633 0.436395 0.441159 ▶ ☐ LTWBBudvkoNina.tif

Fuente: Elaboración Propia, 2023.

Tal 0 - -

+ 100% - 2

En la siguiente imagen se muestra el histograma del fenómeno climatológico compuesto para el método ETR de Budyko, donde se tiene que 11253 nodos tienen caudales menores a 9.49 m3/s, la media es de 1.26 m3/s y desviación estándar de 5.5 m3/s.

🚺 🚫 🥓 🗷 😚 📆 🚾 🔞

■ | o of 11,666 selected

CS2021

Fuente: Elaboración Propia, 2023.

A continuación, se muestra las matrices de dispersión de cada fenómeno climatológico y luego la tabla resumen con la ecuación características y el coeficiente de correlación.

Fuente: Elaboración Propia, 2023.

CS2021

Fuente: Elaboración Propia, 2023.

Fuente: Elaboración Propia, 2023.

CS2021

Fuente: Elaboración Propia, 2023.

Fuente: Elaboración Propia, 2023.

CS2021

Fuente: Elaboración Propia, 2023.

Fuente: Elaboración Propia, 2023.

CS2021

Fuente: Elaboración Propia, 2023.

Los rangos obtenidos para el cálculo usando la ETR de Budyko son:

Tabla 3-1. Resultados Escorrentía - ETR Budyko

Table of the Resolution Section Child Control of the Section Child										
Fenómeno	Ecuación	R ²								
Budyko Composite	y = 0.28 + 0.0093 x	0.83								
Budyko Niña	y = 0.284 + 0.0108 x	0.85								
Budyko Niño	y = 0.26 + 0.0074 x	0.79								
Budyko Neutral	y = 0.283 + 0.0094 x	0.83								
Dekop Composite	y = 0.25 + 0.0073 x	0.78								
Dekop Niña	y = 0.26 + 0.0086 x	0.81								
Dekop Niño	y = 0.23 + 0.0058 x	0.74								
Dekop Neutral	y = 0.26 + 0.0074 x	0.78								
Turc Composite	y = 0.237 + 0.0105 x	0.87								
Turc Niña	y = 0.235 + 0.0121 x	0.88								
Turc Niño	y = 0.227 + 0.0085 x	0.83								
Turc Neutral	y = 0.243 + 0.0107 x	0.86								

Fuente: Elaboración Propia, 2023.

Ilustración 3-17. Valores característicos caudal medio compuesto vs área aportación

CS2021

Fuente: Elaboración Propia, 2023.

CS2021

Fuente: Elaboración Propia, 2023.

A continuación, se presenta la comparación de los resultados obtenidos de las grillas de caudal medio compuesto respecto a los datos del IDEAM, para las estaciones filtradas en actividades anteriores.

Tabla 3-2. Resultados Rangos Caudales Medios

Estación	Latitud (°)	Longitud (°)	A (km2)	Qm IDEAM (m3/s)	Qm Budyko (m3/s)	Qm Dekop (m3/s)	Qm Turc (m3/s)
BONANZA LA HACIENDA - AUT [21197080]	4.400028	-74.36358	1.732656	1.7556336	0.025747	0.020718	0.026258
SILVANIA [21197110]	4.403056	-74.38531	0.300781	3.136296	0.004166	0.003299	0.003915
CUARTOS LOS [21197210]	4.366667	-74.45	0.150156	0.1211551	0.001784	0.001408	0.001998
PUENTE PORTILLO [21207960]	4.454861	-74.60853	5406.7813	41.873431	43.8184	33.8469	53.0959
LA CAMPINA - AUT [21209200]	4.304889	-74.79378	5918.3594	50.948209	48.5796	37.3758	55.8004
SANTA ROSITA - AUT [21209920]	5.19225	-73.77906	5.753125	4.8355864	0.023455	0.016919	0.033155
ARRANCAPLUMAS - AUT [21237020]	5.202417	-74.72761	2144.6875	1223.8199	24.0137	18.3315	15.9935
CORRALITOS [21237040]	4.646389	-74.65944	247.69844	3.0835605	2.71924	2.0841	2.27103
BOCATOMA [23017020]	5.210278	-74.80276	0.916562	1.376971	0.013261	0.010257	0.008075
PUENTE LOPEZ [23017030]	5.203889	-74.74111	48.410781	46.742748	0.707579	0.547857	0.430105
PUENTE VARIANTE [23017090]	5.202917	-74.74917	47.2125	39.006763	0.688654	0.533104	0.418872
GUADUERO [23067050]	5.192111	-74.57292	2226.9219	66.366735	51.8374	44.3135	50.2125
VILLETA - AUT [23067070]	5.008583	-74.46711	0.170469	8.6446466	0.00482	0.004115	0.003945
CHARCO LARGO - AUT [23067080]	5.257139	-74.34569	0.099531	21.915911	0.00358	0.003182	0.003293
PARAISO EL [23067090]	5.233333	-74.28333	434.32813	9.6466328	9.30629	8.00945	9.98964
ORO PODRIDO [35027020]	4.35	-73.88333	1085.0219	19.546061	15.4498	12.7997	18.8979
CARAZA - AUT [35027100]	4.428639	-74.01019	34.014375	5.2961605	0.390341	0.313015	0.500261
GUACAPATE [35027190]	4.314306	-73.87494	0.037344	27.82711	0.001009	0.000883	0.001076
LLANO LARGO	4.484889	-74.03028	3.3375	0.1169825	0.051527	0.043275	0.068091
QUEBRADA RINCON - AUT [35027500]	4.664944	-73.85739	2.119687	0.0717924	0.038491	0.032826	0.048609
CALOSTROS BAJO - AUT [35027510]	4.6645	-73.86308	12.527031	0.9419846	0.259245	0.227035	0.331131
UBALA [35067020]	4.75	-73.53333	0.059531	70.140315	0.002078	0.001887	0.002284
CHUSNEQUE [35067040]	4.783333	-73.58333	0.232656	34.390332	0.006156	0.005371	0.006553
SANTA BARBARA [35067120]	4.666667	-73.51667	0.121563	8.9767185	0.005554	0.005143	0.005762
BARBOSA TERMALES [35077140]	5.049722	-73.52697	0.397188	10.118838	0.004707	0.003678	0.004729

CS2021

4. ACTIVIDAD 2: MATRIZ DE DISPERSIÓN

Se realizó el ejercicio de comparar gráficamente los resultados de la actividad anterior para las estaciones del área de influencia.

Fuente: Elaboración Propia, 2023.

Se observa que no se tiene una buena correlación entre los puntos y que, a pesar de tener una tendencia similar, la diferencia frente a las estaciones en la magnitud del caudal es bastante variable, especialmente para los caudales altos.

5. ACTIVIDAD 3: ECUACIONES HASTA 25 KM2

Tomando de la sección anterior la capa de nodos con datos de caudal medio extraído, se realiza la generación de ecuaciones para cuencas menores a 25 km2 a partir de las matrices de dispersión de la capa filtrada en el campo de área con este valor.

CS2021

Fuente: Elaboración Propia, 2023.

Fuente: Elaboración Propia, 2023.

Fuente: Elaboración Propia, 2023.

CS2021

Fuente: Elaboración Propia, 2023.

6. ACTIVIDAD 4: OTROS MÉTODOS DE ETR

Tomando de la sección anterior otro método de ETR como lo es el de factor Regional, se realiza el ejercicio del fenómeno compuesto para comparar con los otros métodos. La ecuación para caudales es y = 0.31 + 0.0087 x y su coeficiente de correlación es 0.75, la cual es la mas baja respecto a los otros métodos.

Fuente: Elaboración Propia, 2023.

En la siguiente imagen se observa que la proyección de caudales medios por el método de ETR Regional da valores muy similares en magnitud a los del método de Budyko, considerándose con mayor cercanía para áreas menores a 2500 km2.

CS2021

Fuente: Elaboración Propia, 2023.

7. CONCLUSIONES

- Se realizó el ejercicio de implementación de grillas de caudales medios para cada fenómeno climatológico y por cada método de ETR según las actividades anteriores.
- Se realizó el ejercicio de generación de grillas con los DEM ASTER y SRTM para el fenómeno compuesto, donde se resultaron valores muy distintos a los del ejercicio de la actividad.
- Se realizó el ejercicio con el método de ETR de Factor Regional, los resultados fueron similares a los de los métodos de la actividad.

8. REFERENCIAS BIBLIOGRÁFICAS

 RCFDTOOLS, 2023. Balance hidrológico de largo plazo para estimación de caudales medios usando SIG. Contenido del curso: https://github.com/rcfdtools/R.LTWB/tree/main/Section05/LTWB.