

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL/NASIONALE
SENIOR
CERTIFICATE/SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

FEBRUARY/MARCH/FEBRUARIE/MAART 2017

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 21 pages. *Hierdie memorandum bestaan uit 21 bladsye*.

NOTE:

- If a candidate answered a question TWICE, mark only the FIRST attempt.
- If a candidate has crossed out an attempt to answer a question and did not redo it, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord het, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n poging om 'n vraag te beantwoord, doodgetrek en nie oorgedoen het nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid is op ALLE aspekte van die memorandum van toepassing. Staak nasien by die tweede berekeningsfout.
- Om antwoorde/waardes om 'n probleem op te los, te veronderstel, word NIE toegelaat NIE.

Amount of money/ Bedrag geld (in R)	$10 \le x < 20$	$20 \le x < 30$	$30 \le x < 40$	$40 \le x < 50$	$50 \le x < 60$
Frequency Frekwensie	а	13	20	b	4

1.1	65 learners/leerders	✓ answer
		(1)
1.2	Modal class/ <i>Modale klas</i> : $30 \le x < 40$	✓ answer
		(1)
1.3	a = 12	✓ answer
	b = 61 - 45	
	= 16	✓ answer
		(2)
1.4	No. of learners/Aantal leerders = $65 - 54$ OR/OF $65 - 55$	✓ 54 or 55
	= 11 = 10	✓ 11 or 10
	Answer only: full marks	(2)
	Aliswei Olly, Iuli Illaiks	[6]

2.1.1	IQR of Class B/IKV van Klas $B = Q_3 - Q_1$	
	= 72 - 51	\checkmark 72 and 51
	= 21 marks/punte	✓ 21 only
	- 21 mars/pante	(2)
2.1.2	Although the boxes contain the same number of data points, the	✓ ✓ Class A is
	marks for Class A are more widely spread./Alhoewel die monde	more widely
	dieselfde aantal datapunte bevat, is die punte van Klas A meer	spread
	verspreid.	(2)
	OR/OF	` ,
	Although the boxes contain the same number of data points, the	✓ ✓ Class B is
	marks for Class B are more clustered./Alhoewel die monde dieselfde	more clustered
	aantal datapunte bevat, is die punte van Klas B nader aan mekaar.	(2)
2.1.3	Medians are the same/Mediane is dieselfde	✓ ✓ any TWO
	Ranges are the same OR Maximum and minimum values are the	of the 3
	same/Variasiewydtes is dieselfde OF die maksimum en minimum	reasons
	waarde is dieselfde	mentioned
	75% of both classes obtained 51 and above/75% van albei klasse	
	behaal 51 en meer.	(2)

2.2

COUPLE/PAAR	1	2	3	4	5	6	7	8
JUDGE 1/ BEOORDELAAR 1	18	4	6	8	5	12	10	14
JUDGE 2/ BEOORDELAAR 2	15	6	3	5	5	14	8	15

2.2.1	$a = -0.03$ $b = 0.93$ $\hat{y} = -0.03 + 0.93x$	✓ value a ✓ value b ✓ equation	
	y = 0,03 + 0,93	cquation	(3)
2.2.2	$\hat{y} = -0.03 + 0.93(15)$	✓ substitution	
	= 13,92 OR/OF 13,85 ≈ 14	✓ answer	
			(2)
2.2.3	Yes OR they are consistent, because $r = 0.9$. $(r = 0.89567)/Ja OF$	✓ statement	
	hulle is konsekwent, want $r = 0.9$. $(r = 0.89567)$	$\checkmark r = 0.9$	(0)
			(2)
			[13]

3.1	$m_{\text{TQ}} = \frac{4 - 0}{0 - 3} \\ = -\frac{4}{3}$	✓ answer (1)
3.2	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $RQ = \sqrt{(10 - 3)^2 + (7 - 0)^2}$ $RQ = \sqrt{98} = 7\sqrt{2}$	✓ substitution/substitusie ✓ answer in surd form (2)
3.3	$m_{\text{FQ}} = m_{\text{TQ}}$ $m_{\text{FT}} = m_{\text{QT}}$ $\frac{-8}{k-3} = -\frac{4}{3}$ OR/OF $\frac{-8-4}{k-0} = -\frac{4}{3}$ $-36 = -4k$ $k = 9$ OR/OF Equation of TQ: $y = -\frac{4}{3}x + 4$ $-8 = -\frac{4}{3}k + 4$ $k = 9$	✓ equating gradients/stel gradient gelyk ✓ $m_{\text{FQ}} = \frac{-8}{k-3}$ ✓ simplification/vereenvoudig ✓ answer (4) ✓ gradient ✓ equation of TQ/vgl van TQ ✓ substitution of $(k; -8)$ / substitusie van $(k; -8)$ ✓ answer

3.4			
	Using transformation/Gebruik transformasie:	✓ ✓ x–value/waarde ✓ ✓ y–value/waarde	
	∴S(7; 11)	y-value/waarae	(4)
	OR/OF		` '
	Midpoint of TR = midpoint of SQ [diag $\frac{ m/hkle }{m}$]		
	Midpoint of TR = $(5; \frac{11}{2})$	\sqrt{x} -value/waarde of/van T	
	$\frac{x_S + 3}{2} = 5$ and $\frac{y_S + 0}{2} = \frac{11}{2}$	✓ y-value/waarde of/van T	
	$\therefore x_{s} = 7 \qquad \text{and} y_{s} = 11$ $\therefore S(7; 11)$	\sqrt{x} -value/waarde of/van S	
	$\therefore S(7;11)$	\sqrt{y} -value/waarde of/van S	
	OR/OF	y value, waen de 01 vent 2	(4)
	OR/O7		
	Equation of TS: $y = \left(\frac{7-2}{10-5}\right)x + 4 = x + 4$	\(\text{oppositions} \) of TS and DS/\(\text{page} \)	,
	Equation of 15: $y = \left(\frac{10-5}{10-5}\right)^{x+4} = x+4$	✓ equations of TS and RS/vgls van TS en RS	
	Equation of RS: $y-7 = -\frac{4}{3}(x-10)$	7 600 120 600 120	
	Equation of R3. $y = 7 = -\frac{1}{3}(x - 10)$		
	$y = -\frac{4}{3}x + \frac{61}{3}$		
	3 3		
	$x+4=-\frac{4}{3}x+\frac{61}{3}$	✓ equating / gelykstel	
	7x = 49		
	$x = 7$ $\therefore y = 11$	\sqrt{x} -value/waarde	
	$\therefore S(7; 11)$	\sqrt{y} -value/waarde	
		·	(4)
3.5	$\hat{TSR} = \hat{TQR}$ [opp $\angle s$ of m/teenoorst $\angle e$ /m]		
	$\hat{TQR} = \alpha - \beta$	$\checkmark \hat{TQR} = \alpha - \beta$	
	$\tan \alpha = m_{\text{TQ}} = -\frac{4}{3}$		
		$\sqrt{\tan \alpha} = m_{\text{TQ}}$	
	$\alpha = 180^{\circ} - 53,13^{\circ} = 126,87^{\circ}$	√ α	
	$tan \beta = m_{RQ} = \frac{7}{7} = 1$	$\sqrt{\tan \beta} = m_{\rm RO}$	
	$\therefore \beta = 45^{\circ}$	$\langle \beta \rangle$	
	$\hat{TQR} = 126,87^{\circ} - 45^{\circ}$,	
	$= 81,87^{\circ}$		
	TŜR = 81,87°	(2000000	
		√ answer	(6)
			(0)
	OR /OF		
	OR/OF		

		1 .
	TQ = SR = 5	✓ length of TQ OR SR
	$TR = \sqrt{100 + 9} = \sqrt{109}$	✓ length of TR
	$RQ = TS = \sqrt{49 + 49} = \sqrt{98}$	✓ length of RQ OR TS
	$\cos R\hat{Q}T = \cos T\hat{S}R = \frac{TQ^2 + RQ^2 - TR^2}{2.TQ.RQ}$	
	$=\frac{25+98-109}{2(5)(\sqrt{98})}$	✓ correct subst into cosine rule
	= 0,141	✓ simplification
	$\hat{RQT} = \hat{TSR} = 81,87^{\circ}$	✓ answer
2.6.1		(6)
3.6.1	$MQ = \sqrt{(5-3)^2 + (2-0)^2}$	✓ substitution/substitusie
	$MQ = \sqrt{8}$	$\checkmark MQ = \sqrt{8} = 2\sqrt{2}$
	$\frac{MQ}{RQ} = \frac{\sqrt{8}}{\sqrt{98}}$ Answer only: full marks	
	$=\frac{2}{7}$ or 0,29	✓ answer
3.6.2	1	(3)
3.0.2	$\frac{\text{area of } \Delta TQM}{\text{area of } \Delta TQR} = \frac{\frac{1}{2}.QM. \perp h}{\frac{1}{2}.QR. \perp h} [\perp h \text{ same/dieselfde}]$	
	$= \frac{QM}{QR} = \frac{2}{7}$	$\sqrt{\frac{\text{area of } \Delta TQM}{\text{area of } \Delta TQR}} = \frac{2}{7}$
	$\frac{\text{area of } \Delta TQM}{\text{area of parm RQTS}} = \frac{\text{area of } \Delta TQM}{2 \times \text{area of } \Delta TQR}$	orga norm POTS – 2arga ATOP
		area parm RQTS = 2area Δ TQR
	$=\frac{1}{2}\left(\frac{2}{7}\right)=\frac{1}{7}$	✓ answer (3)
	OR/OF	
	$\frac{\text{area of } \Delta TQM}{\text{area of } \Delta TQR} = \frac{QM}{QR}$	
	$=\frac{2}{7}$	$\sqrt{\frac{\text{area of } \Delta TQM}{\text{area of } \Delta TQR}} = \frac{2}{7}$
	_ area of ΔTQM _ area of ΔTQM	
	area of parm RQTS 2area of ΔTQR	area parm RQTS = 2area Δ TQR
	$=\frac{1}{2}\left(\frac{2}{7}\right)=\frac{1}{7}$	
	- 2(7) - 7	✓ answer (3)
	OR/OF	

 $\frac{\text{area of } \Delta \text{TQM}}{\text{area of parm RQTS}} = \frac{\frac{1}{2} \text{QM.} \perp h}{\text{RQ.} \perp h}$ $= \frac{1}{2} \left(\frac{2}{7}\right)$ $= \frac{1}{7}$

$$\checkmark \frac{\frac{1}{2}QM. \perp h}{RQ. \perp h}$$

 $\checkmark \frac{1}{2} \left(\frac{2}{7} \right)$

✓ answer

answer (3)

OR/OF

 $\frac{\text{area of } \Delta TQM}{\text{area of parm RQTS}} = \frac{\frac{1}{2} QT.QM.\sin(\alpha - \beta)}{2\text{area of } \Delta QTR}$ $= \frac{\frac{1}{2} QT.QM.\sin(\alpha - \beta)}{2[\frac{1}{2}.QT.QR.\sin(\alpha - \beta)]}$ $= \frac{1}{2} \left(\frac{2}{7}\right)$ $= \frac{1}{7}$

 \checkmark area parm RQTS = 2area ΔTQR

$$\sqrt{\frac{\frac{1}{2}QT.QM.\sin(\alpha - \beta)}{2[\frac{1}{2}.QT.QR.\sin(\alpha - \beta)]}}$$

✓ answer

(3) **[23]**

4.1	line from centre to midpt of chord /	✓ answer
	lyn vanaf midpt na midpt van koord	(1)
4.2	$m_{ST} = \frac{8-5}{-3-0}$ $= -1$ $m_{ST} \times m_{NP} = -1$ $\therefore m_{NP} = 1$ $\therefore y = x + c$ $8 = -3 + c$ $c = 11$ $\therefore y = x + 11$ $(TS \perp NP)$ $y - y_1 = 1(x - x_1)$ $y - 8 = 1(x + 3)$ $y = x + 11$	✓ subst $(-3; 8)$ and $(0; 5)$ into gradient formula $\checkmark m_{ST}$ $✓ m_{NP}$ ✓ subst $(-3; 8)$ into equation of a line \checkmark equation (5)
4.3	P(0; 11) [y-intercept of chord NP] \therefore radius is 6 units R(0; -1) Equations of the tangents to the circle parallel to the x-axis/ Vgls van die raaklyne aan die sirkel aan die x-as: $y = 11$ and $y = -1$	✓ coordinates of P/ koördinate v P ✓ coordinates of R koördinate van R ✓ answers (4)
4.4	M(-11; 0) [x-intercept of/x-afsnit van NP] MT = $\sqrt{(0-11)^2 + (5-0)^2}$ MT = $\sqrt{146}$ = 12,08	✓✓ coordinates of M ✓ substitution ✓ answer (4)

4.5	MT = diameter/middellyn [conv \angle in $\frac{1}{2}$ circle/omgek \angle in $\frac{1}{2}$ sirkel]	
	radius = $\frac{\sqrt{146}}{2}$ units	✓ radius of circle
	Centre of circle/Middelpunt v sirkel	
	= Midpoint MT / Middelpunt MT	$\checkmark x$ value of M
	$=\left(\frac{-11}{2};\frac{5}{2}\right)$	✓ y value of M
	Equation of circle through S, T and M: $\left(x + \frac{11}{2}\right)^2 + \left(y - \frac{5}{2}\right)^2 = \frac{146}{4}$	✓ LHS of equation ✓ RHS of equation
	OR/OF $\left(x+5\frac{1}{2}\right)^2 + \left(y-2\frac{1}{2}\right)^2 = \frac{73}{2} = 6,04$	(5)
		(5) [19]

5.1	a = -1	✓ answer
	b=2	✓ answer
		(2)
5.2	$f(3x) = -\sin 3x$	
	Period of $f(3x) = \frac{360^{\circ}}{3}$	$\checkmark \frac{360^{\circ}}{3}$
	Period of $J(3x) = \frac{1}{3}$	$\frac{\sqrt{3}}{3}$
	= 120° Answer only: Full marks	✓ answer
		(2)
5.3	$x \in [90^{\circ}; 135^{\circ}) \cup \{180^{\circ}\}$	✓ 90° and 135°
		in interval form
		✓ 180° as single
		value
		✓ correct brackets
	OR/OF	(3)
		(
	$90^{\circ} \le x < 135^{\circ} \text{ or } x = 180^{\circ}$	✓ 90° and 135°
		in interval form
		✓ 180° as single
		value
		✓ correct
		inequalities
		(3)
		[7]

6.1.1	$\sin (360^{\circ} - 36^{\circ}) = -\sin 36^{\circ}$	√ answer
0.1.1		(1)
6.1.2	$\cos 72^\circ = \cos(2 \times 36^\circ)$	✓ double angle/dubbelhoek
	$=1-2\sin^2 36^\circ$ Answer only: Full marks	√answer
		(2)
6.2	$R.T.P.: 1 - \frac{\tan^2 \theta}{1 + \tan^2 \theta} = \cos^2 \theta$	
	$1 + \tan^2 \theta - \cos^2 \theta$	
	$1 + \tan^2 \theta - \tan^2 \theta$	
	$LHS = \frac{1 + \tan^2 \theta - \tan^2 \theta}{1 + \tan^2 \theta}$	✓ writing as a single fraction/skryf
		as enkelbreuk
	$=\frac{1}{1+\frac{\sin^2\theta}{\cos^2\theta}}$	✓ quotient identity/
	$\frac{1+\cos^2\theta}{\cos^2\theta}$	kwosiëntidentiteit
	1	
	$=\frac{1}{\cos^2\theta + \sin^2\theta}$	✓ denominator as a single fraction /
	$\cos^2 \theta$	Noemer as enkelbreuk
	= 1	
		✓ square identity/vierkantidentiteit
	$\cos^2 \theta$	(4)
	$=\cos^2\theta$	
	= RHS	
	OR/OF	
	LHS = $\frac{1 + \tan^2 \theta - \tan^2 \theta}{1 + \tan^2 \theta}$	
	$LHS = \frac{1 + \tan^2 \theta}{1 + \tan^2 \theta}$	✓ writing as a single fraction/skryf
	1	as enkelbreuk ✓ quotient identity /
	$=\frac{1}{1+\frac{\sin^2\theta}{2}}$	kwosiëntidentiteit
	$1 + \frac{\sin^2 \theta}{\cos^2 \theta}$	RWostelliaellileii
	$\frac{1}{1} \cos^2 \theta$	$\cos^2 \theta$
	$= \frac{1}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}} \times \frac{\cos^2 \theta}{\cos^2 \theta}$	$\checkmark \times \frac{\cos^2 \theta}{\cos^2 \theta}$
	$1 + \frac{\sin^2 \theta}{\cos^2 \theta}$	
	$\cos^2 \theta$	
	$=\frac{\cos^2\theta+\sin^2\theta}{\cos^2\theta+\sin^2\theta}$	
	$=\frac{\cos^2\theta}{\cos^2\theta}$	
	$=\frac{\cos \theta}{1}$	✓ square identity/vierkantidentiteit
	$=\cos^2\theta$	
	= RHS	
		(4)
	OD/OF	
	OR/OF	✓ quotient identity/

	LHS = $1 - \left(\frac{\sin^2 \theta}{\cos^2 \theta} \div \left(1 + \frac{\sin^2 \theta}{\cos^2 \theta} \right) \right)$	kwosiëntidentiteit
	$=1 - \left(\frac{\sin^2 \theta}{\cos^2 \theta} \times \frac{\cos^2 \theta}{\cos^2 \theta + \sin^2 \theta}\right)$	✓ writing as a single fraction/ skryf as enkelbreuk
	$=1-\left(\frac{\sin^2\theta}{\cos^2\theta}\times\frac{\cos^2\theta}{1}\right)$	✓ square identity/vierkantidentiteit
	$\begin{pmatrix} \cos^2 \theta & 1 \end{pmatrix}$ $= 1 - \sin^2 \theta$	✓ simplification/vereenvoudiging
		(4)
	$=\cos^2\theta$	(4)
6.3	= RHS	1 1
0.5	$\cos^2\frac{1}{2}x = \frac{1}{4}$	$\checkmark \checkmark \cos^2 \frac{1}{2} x = \frac{1}{4}$
	$\cos\frac{1}{2}x = \frac{1}{2} or -\frac{1}{2}$	
	$\frac{1}{2}x = 60^{\circ} + k.360^{\circ}$ or $\frac{1}{2}x = 300^{\circ} + k.360^{\circ}$ or	✓ 60° and 300°
	$\frac{1}{2}x = 120^{\circ} + k.360^{\circ}$ or $\frac{1}{2}x = 240^{\circ} + k.360^{\circ}$	$\sqrt{120^{\circ}}$ and 240°
	<i>2</i>	✓ write at least one general
	$x = 120^{\circ} + k.720^{\circ}$ or $x = 600^{\circ} + k.720^{\circ}$ or $x = 240^{\circ} + k.720^{\circ}$ or $x = 480^{\circ} + k.720^{\circ}$; $k \in \mathbb{Z}$	solution as $\frac{1}{2}x = \angle + k.360^{\circ}$
		✓ write at least one general solution as $x = \angle + k.720^{\circ}$; $k \in \mathbb{Z}$
	OR/OF	, (6)
	$\cos^2 \frac{1}{2} x = \frac{1}{4}$ $\cos \frac{1}{2} x = \frac{1}{2} \text{ or } -\frac{1}{2}$	$\checkmark \checkmark \cos^2 \frac{1}{2} x = \frac{1}{4}$
	$\frac{1}{2}x = \pm 60^{\circ} + k.360^{\circ}$ or $\frac{1}{2}x = \pm 120^{\circ} + k.360^{\circ}$	$\checkmark \pm 60^{\circ} \checkmark \pm 120^{\circ}$ ✓ write at least one general
	$x = \pm 120^{\circ} + k.720^{\circ}$ or $x = \pm 240^{\circ} + k.720^{\circ}$; $k \in \mathbb{Z}$	solution as $\frac{1}{2}x = \angle + k.360^{\circ}$
		2 ✓ write at least one general
		solution as $x = \angle + k.720^{\circ} k \in \mathbb{Z}$
		(6)

6.4.1	$\sin(A-B) = \cos[90^{\circ} - (A-B)]$	✓ co–ratio/ko-verhouding
	$=\cos[(90^{\circ} - A) - (-B)]$	✓ writing as a difference of A & B/
		skryf as verskil van A & B
	$= \cos(90^{\circ} - A)\cos(-B) + \sin(90^{\circ} - A)\sin(-B)$	✓ expansion/uitbreiding
	$= \sin A \cos B + \cos A(-\sin B)$	✓ all reductions/alle reduksies
	= sin AcosB $-$ cos AsinB	(4)
	OR/OF	
	$sin(A - B) = cos[90^{\circ} - (A - B)]$ $= cos[(90^{\circ} + B) - A]$ $= cos(90^{\circ} + B)cosA + sin(90^{\circ} + B)sinA$ $= -sin BcosA + cos BsinA$ $= sin AcosB - cos AsinB$	 ✓ co-ratio/ko-verhouding ✓ writing as a difference of A & B/skryf as verskil van A & B ✓ expansion/uitbreiding ✓ all reductions/alle reduksies (4)
6.4.2	$\sin(x+64^{\circ})\cos(x+379^{\circ}) + \sin(x+19^{\circ})\cos(x+244^{\circ})$ $= \sin(x+64^{\circ})\cos(x+19^{\circ}) + \sin(x+19^{\circ})[-\cos(x+64^{\circ})]$ $= \sin(x+64^{\circ})\cos(x+19^{\circ}) - \cos(x+64^{\circ})\sin(x+19^{\circ})$ $= \sin[x+64^{\circ}-(x+19^{\circ})]$ $= \sin 45^{\circ}$ $= \frac{1}{\sqrt{2}}$	$ \checkmark \cos(x + 379^\circ) = \cos(x + 19^\circ) $ $ \checkmark \checkmark \cos(x + 244^\circ) = -\cos(x + 64^\circ) $ $ \checkmark \checkmark \text{compound formula identity/} $ $ saamgestelde identiteit $ $ \checkmark \sin 45^\circ $
	$\sqrt{2}$	(6) [23]

7.1	$\sin 27^\circ = \frac{\text{CD}}{8,6}$ $\text{CD} = 8,6 \sin 27^\circ$	✓ substitution in correct trig ratio / substitusie in korrekte trig verh ✓ answer
	CD = 3,90 m	(2)
7.2	$\cos 40^{\circ} = \frac{10}{AE}$ $AE = \frac{10}{\cos 40^{\circ}}$ $AE = 13,05 \text{ m}$	✓ substitution in correct trig ratio / substitusie in korrekte trig verh ✓ answer
7.3	$AC^{2} = CE^{2} + AE^{2} - 2 CE.AE(\cos AEC)$ $= (8,6)^{2} + (13,05)^{2} - 2(8,6)(13,05)(\cos 70^{\circ})$ $= 167,49$ $AC = 12,94 \text{ m}$	(2) ✓ correct use of cosine rule in ΔACE/ korrekte gebruik van reel in ΔACE ✓ correct subst into cosine rule ✓ AC² ✓ answer (4) [8]

8.1	$\hat{Q} = 72^{\circ}$ [opp \angle s of cyclic quad/teenoorst \angle e koordevh]	✓ S ✓ R	(2)
8.2	$\hat{R}_2 = \hat{P}_1$ [\(\angle s\) opp equal sides/\(\angle e\) teenoor gelyke sye]	✓ S/R	
	$\hat{R} = \frac{180^{\circ} - 72^{\circ}}{1}$		
	[sum of \angle s in \triangle som $v \angle e$ in \triangle] = 54°	✓ answer	
	- 34		(2)
8.3	$\hat{P}_2 = 42^{\circ}$ [tan chord theorem/raakl-koordst]	✓ S ✓ R	(0)
			(2)
8.4	$\hat{\mathbf{R}}_3 = \hat{\mathbf{P}}_1 + \hat{\mathbf{P}}_2$ [ext \angle of cyclic quad/buite \angle van koordevh]	✓ R	
	$=54^{\circ}+42^{\circ}$	✓ S	
	= 96°	. 5	(2)
	OR/OF		` '
	$\hat{R}_1 = 180^\circ - 108^\circ - 42^\circ = 30^\circ \text{ [sum of/som } van \angle s/e \text{ in } \Delta \text{]}$	$\checkmark \hat{R}_1 = 30^{\circ}$	
	$\hat{R}_3 = 180^{\circ} - \hat{R}_1 - \hat{R}_2$ [\(\angle \text{s on str line}/\angle e \text{ op reguitlyn}\)		
	= $180^{\circ} - 30^{\circ} - 54^{\circ}$ [sum of/som van\angles/e in \Delta]		
	= 96°	✓ S	
			(2)
			[8]

9.1.1	$\frac{ST}{TQ} = \frac{SW}{WP}$ [prop theorem/eweredighst; TW QP]	✓ S
	$=\frac{2}{3}$	✓ S (2)
9.1.2	$\frac{SV}{VR} = \frac{SW}{WP}$ [prop theorem/eweredighst; VW RP]	
	$=\frac{2}{3}$	✓ answer (1)
9.2	$\frac{ST}{TQ} = \frac{SV}{VR}$ [both equal/beide gelyk $\frac{WS}{PW}$]	✓ S
	:. TV QR [line divides 2 sides of Δ in prop/lyn verdeel 2 sye $van \Delta$ in dies $verh$]	✓ S ✓ R
	$\therefore \hat{T}_1 = \hat{Q}_1 \qquad [corresp/ooreenkomst \ \angle s/e; \ TV \parallel QR]$	✓ R (4)
9.3	$\Delta VWS \parallel \Delta RPS$	\checkmark \triangle RPS (any order) (1)
9.4	$\frac{WV}{PR} = \frac{SW}{SP} \qquad [\Delta VWS \parallel \Delta RPS] \qquad \frac{WV}{PR} = \frac{SV}{SR} \qquad [\Delta VWS \parallel \Delta RPS]$	✓ ratio
	$=\frac{2}{5} \qquad \qquad \mathbf{OR/OF} \qquad =\frac{2}{5}$	✓ answer (2) [10]

10.1

Constr/Konst:		
Draw line PO and extend /Tro	ek lyn PO en verleng	✓ construction
Proof/Bewys:		
OP = OA	[radii]	
$\therefore \hat{\mathbf{P}}_1 = \hat{\mathbf{A}}$	$[\angle s \text{ opp/}teenoor = \text{sides/}sye]$	✓ S/R
but $\hat{O}_1 = \hat{P}_1 + \hat{A}$	[ext \angle of Δ]	✓ S/R
$\therefore \hat{\mathbf{O}}_1 = 2\hat{\mathbf{P}}_1$		✓ S
Similarly/Netso, $\hat{O}_2 = 2 \hat{P}_2$		
$\therefore \hat{\mathbf{O}}_1 + \hat{\mathbf{O}}_2 = 2(\hat{\mathbf{P}}_1 + \hat{\mathbf{P}}_2)$		√ S
i.e. $\hat{AOB} = 2\hat{APB}$		
		(5)

10.2

10.2.1	\angle s in the same segment/ \angle e in a	lieselfde sirkelsegment	✓ R	
	S	, c		(1)
10.2.2	$\hat{P}_2 = \hat{S}_1 = y$ [\(\angle \text{s op}\)	p equal sides/ $\angle e$ teenoor = sye]	✓ S ✓ R ✓ S ✓ R	
	$\hat{P}_2 = \hat{S}_1 = y$ [$\angle s \text{ op}$] $\hat{S}_1 = \hat{P}_3 = y$ [tan che	ord theorem/raakl-koordst]	\checkmark S \checkmark R	
	$\therefore \hat{\mathbf{P}}_2 = \hat{\mathbf{P}}_3$			
	∴ PQ bisects TPS			(4)
10.2.3	$\hat{POQ} = 2\hat{S}_1 = 2y [\angle \text{at centre } = 2x]$	×∠at circ/midpts∠= 2×omtreks∠]	✓ S ✓ R	
				(2)
10.2.4	$T\hat{P}A = \hat{P}_2 + \hat{P}_3 = 2y$	[proved/bewys in 11.2.2]	^ ^	
	$\therefore \hat{TPA} = \hat{POQ}$	[proved/bewys in 11.2.3]	\checkmark TPA = PÔQ	
	\therefore PT = tangent [converse tan ch	ord theorem/omgek raakl-koordst]	✓ R	
				(2)

10.2.5	000 000 1000 0	F C/ / ' A]	✓ S	
10.2.3	$\widehat{OPQ} + \widehat{OQP} = 180^{\circ} - 2y$	[sum of/sum $v \angle s/e$ in Δ]	\checkmark S \checkmark R	
	$\therefore \hat{OQP} = 90^{\circ} - y \text{ [} \angle \text{s opp equal sides} / \angle e \text{ to = sye; OP = OQ]}$		YSYK	
	In $\triangle PAQ$: $\hat{OQP} + \hat{P}_2 + \hat{QAP} = 180^\circ$			
			/ C	
	$90^{\circ} - y + y + QAP = 180^{\circ}$	[sum of/sum $v \angle s/e$ in Δ]	✓ S ✓ S	
	$\hat{QAP} = 90^{\circ}$		S	
	$\therefore \hat{OAP} = 90^{\circ}$	$[\angle s/e \text{ on straight line}/op \ reguitlyn]$		(5)
	OR/OF			
	OP̂T = 90°	[radius \perp tangent/raaklyn]	✓ S ✓ R ✓ S	
	$\therefore \hat{P}_1 = 90^\circ - 2y$		v 2	
	$\hat{P}_1 + \hat{O} + \hat{OAP} = 180^{\circ}$	[sum of/sum $v \angle s/e$ in Δ]		
	$(90^{\circ} - 2y) + 2y + \hat{OAP} = 180^{\circ}$		✓ S ✓ S	
	$\therefore \hat{OAP} = 90^{\circ}$		v 2	(5)
	OR/OF			
	POSQ is a kite/n vlieër		√√√ S	
	$\therefore OQ \perp PS$	[diag of a kite/hoeklyne v vlieër]	✓✓ R	
	$\therefore \hat{OAP} = 90^{\circ}$			(5)
	OR/OF			(3)
	OR/O1			
	In $\triangle OAP$ and $\triangle OAS$			
	OP = OS (radii) OA is common		✓ S	
	$\hat{POA} = 2y$		√ S	
	$=2\hat{P}_{2}$			
			./ 6	
	$= Q\hat{O}S$		✓ S ✓ R	
	$\Delta OAP \equiv \Delta OAS (SAS)$ $\hat{OAP} = \hat{OAS} (\Xi \Delta S)$			
	$\hat{OAP} = \hat{OAS} = 0$ $\hat{OAP} = \hat{OAS} = 90^{\circ} (\angle$'s on str line)	/ 9	
	O(H - O(D - M))	.s on sa mc)	✓ S	(5)
				(3) [19]

11.1	$\hat{N}_2 = 90^{\circ}$ [\angle in semi-circle/halfsirkel]	$\checkmark S \checkmark R$	
	∴ TPLN is a cyclic quad/ 'n koordevh [opp ∠s of quad is suppl/	✓ R	
	teenoor∠e v vh is suppl]		(3)
	OR		
	$\hat{N}_2 = 90^{\circ}$ [\angle in semi-circle/halfsirkel]	✓ S ✓ R	
	\therefore TPLN is a cyclic quad [ext \angle = int opp \angle /buite \angle = to binne \angle]	✓ R	
			(3)
11.2	$\hat{T}_2 = P\hat{L}N = x$ [ext \angle of cyclic quad/buite \angle van koordevh]	✓ R	
	$\hat{\mathbf{K}} = 90^{\circ} - x$ [sum of/som $v \angle$ s/e in Δ]		
	$\hat{N}_1 = \hat{K} = 90^{\circ} - x$ [tan chord theorem/raakl-koordst]	✓ S✓ R	
	OR/OF		(3)
	$\hat{\mathbf{K}} = 90^{\circ} - x \qquad [\text{sum of/som } v \angle \text{s/e in } \Delta]$	✓ R	
	$\hat{N}_1 = \hat{K} = 90^{\circ} - x$ [tan chord theorem/raakl-koordst]	✓ S✓ R	
		V SV K	(3)
	OR/OF		
	$\hat{N}_3 = x$ [tan chord theorem/raakl-koordst]	✓ R	
	$\hat{N}_2 = 90^{\circ}$ [\(\angle \text{in semi circle} \) halfsirkel]	✓ S	
	$\hat{N}_1 = 90^{\circ} - x$ [straight line/reguitlyn]	✓ S	
			(3)

11.3.1	In Δ KTP and Δ KLN:		
	$\hat{PKT} = \hat{LKN}$	[common/gemeen]	✓ S
	$\hat{KPT} = \hat{KNL} = 90^{\circ}$		✓ S
	$\therefore \Delta \text{ KTP} \mid \mid \mid \Delta \text{ KLN}$		√ R
	OR/OF		(3)
	In Δ KTP and Δ KLN:		
	$P\hat{K}T = L\hat{K}N$	[common/gemeen]	✓ S
	$\hat{KPT} = \hat{KNL} = 90^{\circ}$		✓ S
		[proved in 11.2 OR sum of \angle s in Δ]	√ S
	$\therefore \Delta \text{ KTP} \Delta \text{ KLN}$		(3)
11.3.2	$\frac{KT}{KL} = \frac{KP}{KN}$	[\(\Delta s \)]	✓ S/R
	$\therefore KT \cdot KN = KP \cdot K$	L	√ S
	But KL = 2KP	[radii: PK = LP]	✓ S
	\therefore KT . KN = KP . 2K = 2KP ²	TP	/ 0
		- TP ²) [Theorem of Pythagoras]	✓ S ✓ S
	$= 2KT^2 -$, -	(5)
			[14]

TOTAL/TOTAAL: 150