Using the commutator of H_0^* with s^+ to bring H_0^* to the left, and using $s^+s^-=s^z+\frac{1}{2}=1$, we get

$$\frac{J^2}{4\left(E_g + \frac{J}{4}\right)} \left[\frac{H_0^*}{E_g + \frac{J}{4}} + \left(\frac{H_0^*}{E_g + \frac{J}{4}}\right)^2 - \sum_{kk'qq'} \left\{ \frac{\epsilon_k - \epsilon_{k'}}{E_g + \frac{J}{4}} + \left(\frac{\epsilon_k - \epsilon_{k'}}{E_g + \frac{J}{4}}\right)^2 \right\} c_{k\uparrow}^{\dagger} c_{k'\downarrow} c_{q\downarrow}^{\dagger} c_{q'\uparrow} \right]$$
(9.135)

The full effective Hamiltonian, for K = 0, up to quartic interactions, is

$$H_{0}^{*} + \frac{J}{4} \left(\frac{J}{E_{g} + \frac{J}{4}} - 1 \right) - \frac{2V^{2}}{E_{g}} - \frac{2V^{2}}{E_{g}} \left[\frac{H_{0}^{*}}{E_{g}} + \left(\frac{H_{0}^{*}}{E_{g}} \right)^{2} \right] + \frac{J^{2}}{4 \left(E_{g} + \frac{J}{4} \right)} \left[\frac{H_{0}^{*}}{E_{g} + \frac{J}{4}} + \left(\frac{H_{0}^{*}}{E_{g} + \frac{J}{4}} \right)^{2} \right] + \sum_{kk'qq'} F_{kk'qq'} c_{k\uparrow}^{\dagger} c_{k'\downarrow} c_{q\downarrow}^{\dagger} c_{q'\uparrow}$$

$$(9.136)$$

The coefficient $F_{kk'qq'}$ is

$$F_{kk'qq'} = \frac{V^2}{E_g N^* (E_g + \frac{J}{4})} \left[\frac{V^2}{E_g N^*} \left(\xi_{k'} + 2 - \xi_k \right) \left(\xi_q + \xi_{q'} \right) + \frac{J}{2} \left(\xi_{k'} + 2 - \xi_k + \xi_q + \xi_{q'} \right) \right] - \frac{J^2}{4 \left(E_g + \frac{J}{4} \right)} \left[\frac{\epsilon_k - \epsilon_{k'}}{E_g + \frac{J}{4}} + \left(\frac{\epsilon_k - \epsilon_{k'}}{E_g + \frac{J}{4}} \right)^2 \right]$$
(9.137)

Figure 27: Left: Mutual information between two conduction electrons inside the cloud. Right: Mutual information between a conduction electron inside the cloud and an impurity electron.

Figure 28: Diagonal correlation functions between cloud electrons

Figure 29: off-diagonal correlation function