

Déterminer la fréquence d'échantillonnage du signal cidessus.

Proposer un nombre de quantification N pour le signal numérisé ci-dessus.

ch2.Q2

RÉPONSE:

On lit une période d'échantillonnage $T_e=0.5~\mathrm{ms}.$

On a donc
$$f_e = \frac{1}{T_e} = 2 \text{ kHz}$$
.

ch2.R1

RÉPONSE:

On compte $16=2^4$ paliers paliers horizontaux. Numériser un échantillon requiert donc au minimum N=4 bits

Attention: Toute réponse avec $N \in \mathbb{N}$ où $N \geq 4$ est donc correcte. Il est en effet tout à fait envisageable que N = 5, où les 32 paliers sont régulièrement répartis sur l'intervalle [-2 V; 2V]. Simplement, si N = 5 le signal ici représenté n'atteindrait pas tous les paliers de valeurs prévus.

ch2.R2

Une acquisition à l'oscilloscope dure au total 10 ms et contient 10^6 points.

En déduire l'intervalle de fréquences affiché sur la transformée de Fourier de ce signal.

RÉPONSE:

D'après le critère de Shannon, on sait que la transformée de Fourier s'étendra sur l'intervalle $[0\,;\,\frac{f_e}{2}].$

Or
$$NT_e = \tau$$
 (ici $N-1 \simeq N$), d'où $f_e = \frac{N}{\tau} = 10^8$ Hz.

L'intervalle de fréquences affiché sur la TF du signal est donc $f \in [0; 50 \, \text{MHz}]$

ch2.R3

On échantillonne un signal sinusoïdal de fréquence $f=10\,$ kHz à une fréquence d'échantillonnage $f_e=14$ kHz.

Tracer l'allure du spectre de ce signal échantillonné.

RÉPONSE:

Le spectre s'étend sur [0;7 kHz], et les f' confondables avec f après échantillonnage sont les $f'=\pm f+kf_e$. Seule $f'=-f+f_e=4$ kHz figurera dans l'intervalle et donc :

ch2.Q

Déterminer le pas fréquentiel Δf du spectre associé à l'acquisition ci-dessus.

On a $\Delta f = \frac{1}{\tau}$.

Or on mesure une durée d'acquisition $\tau = 9$ ms.

RÉPONSE:

On a donc
$$\Delta f = \frac{1}{9} \text{ kHz} = 111 \text{ Hz}$$

ch2.R5

On lit sur la caractéristique des oscilloscopes de TP (DSOX $1204\mathrm{G}$) :

- Maximum sampling rate : 2 GSa/s
- $\circ \ \textit{Maximum memory depth}: \textit{2 Mpts}$

En déduire le pas fréquentiel Δf , la fréquence d'échantillonnage f_e , et le nombre de points recueillis N pour une acquisition d'une durée totale de 2 ms.

RÉPONSE :

- Supposons que N sature à 2×10^6 pts, on a donc $f_e \approx \frac{N}{N \gg 1}$ $\frac{N}{\tau} = 10^9$ Hz $< f_{e,max} \Rightarrow$ hypothèse VRAIE.

On a toujours $\Delta f = \frac{1}{\tau} = 500 \,\mathrm{Hz}$

On a de plus trouvé $\overline{\left[f_e = 10^9 \, \mathrm{Hz}\right]}$ et $\overline{\left[N = 2 \times 10^6 \, \mathrm{Hz}\right]}$

ch2.Q6

ch2.R6

On écrit le signal modulé en amplitude sous la forme $s_{mod}(t) = A_0 \left(1 + k s_0 \cos(2\pi f t + \phi)\right) \cos(2\pi f_p + \varphi)$. Lire les valeurs numériques de A_0 , $k s_0$, f et f_p .

On a donc $A_0=1$ V; $ks_0=0,8\,;\,f=1$ MHz et $f_p=20$ MHz.

Ö

On souhaite transmettre un signal $s(t)=s_0\cos(2\pi ft)$ par modulation en fréquence, en utilisant un signal de fréquence porteuse f_p .

Un élève propose de réaliser :

$$s_{mod}(t) = A_0 \cos(2\pi \left[f_p + f_\Delta s_0 \cos(2\pi f t) \right] t + \varphi)$$

Avec $A_0, f_p, f_\Delta s_0 f$ et φ indépendants du temps.

Est-ce une réponse acceptable, sinon pourquoi?

RÉPONSE:

Calculons la fréquence instantanée du signal modulé proposé : $f_i = \frac{1}{2\pi} \frac{\mathrm{d}\phi_{mod}}{\mathrm{dt}}$ où $\phi_{mod} = 2\pi \left[f_p + f_\Delta s_0 \cos(2\pi f t) \right] t + \varphi$

$$f_i = f_p + f_{\varDelta} s_0 \cos(2\pi f t) - 2\pi f t f_{\varDelta} s_0 \sin(2\pi f t)$$

On remarque que $f_i(t)$ a une composante affine oscillante, divergeant à durée infinie. De plus, $f_i(t)$ n'est pas de la forme $\alpha+\beta s(t)$ et donc sera particulièrement difficile à démoduler. On privilégie donc :

$$s_{mod}(t) = A_0 \cos \left(2\pi f_p t + \varphi + 2\pi f_\Delta \int_0^t s_0 \cos(2\pi f t') \mathrm{dt'} \right)$$

ch2.R8

Tracer le spectre du signal ci-dessus.

ch2.Q9

On note s(t) le signal à transmettre. Identifier le type de modulation effectué ci-dessus et proposer une expression littérale pour $s_{mod}(t)$ à partir de s(t) permettant de moduler s(t) de cette façon.

ch2.Q10

RÉPONSE:

On a un signal modulé en amplitude de la forme $s_{mod}(t)=A_0\left(1+ks_0\cos(2\pi ft+\phi)\right)\cos(2\pi f_p+\varphi)$ où on mesure $A_0=1$ V ; $ks_0=0,8$; f=500 kHz et $f_p=5$ MHz.

En utilisant cos(p+q) + cos(p-q) = 2cos(p)cos(q) on a :

RÉPONSE:

On reconnaît une modulation en fréquence, la période du signal modulé dépendant clairement du signal s(t) à transmettre.

Pour réaliser une modulation en fréquence on cherche à réaliser :

$$s_{mod}(t) = A_0 \cos \left(2\pi f_p t + \varphi + 2\pi f_{\varDelta} \int_0^t s_0 \cos(2\pi f t') \mathrm{dt'} \right)$$

Où f_p est la fréquence de la porteuse, et f_Δ caractérise la sensibilité de la variation de fréquence en fonction de l'amplitude de s(comme k en modulation d'amplitude).

ch2.R10

Donner des odg pour :

- La fréquence porteuse d'une radio AM
- $\circ\,$ La fréquence porteuse d'une radio FM
- $\circ\,$ La fréquence porteuse du Wi-Fi
- $\circ\,$ La fréquence d'échantillonnage d'un signal audio

RÉPONSE:

- · La fréquence d'échantillonnage d'un signal audio : $f_e \sim 40$ kHz (2 fois la fréquence maximale audible pour respecter le critère de Shannon)

ch2.Q11

ch2.R11

On a transmis un signal s(t) en produisant un signal modulé :

$$s_{mod}(t) = A_0 \left(1 + ks(t) \right) \cos(2\pi f_p + \varphi)$$

On note $s_p=A_0\cos(2\pi f_p+\varphi)$ le signal associé à la porteuse. Proposer un montage permettant de démoduler le signal $s_{mod}(t)$ afin de retrouver s(t).

RÉPONSE:

Rappelons que $2\cos(a)\cos(b)=\cos(a+b)+\cos(a-b)$, et que le signal modulé en amplitude a donc 3 pics aux fréquences f_p et $f_p \pm f$ avec f la/les fréquences de s(t).

$$s_p(t)$$
 \times $s_{\times}(t)$ passe – bande centré sur f

 $s_{\times}(t)$ contient donc des termes aux fréquences $2f_p,\,2f_p\pm f,\,0$ et f.

En utilisant un passe-bande centré sur f, suffisamment sélectif pour efficacement couper la composante continue, on obtient bien un signal de sortie proportionnel à s(t)

ch2.R12

ch2.Q12

Un radar routier émet à une fréquence porteuse $f_p = 10$

Pour une onde se propageant à la célérité c et une voiture s'approchant à v du récepteur, l'effet Doppler prévoit une

fréquence réfléchie captée $f'=\frac{c}{c-v}f_p$ En déduire la durée minimale d'acquisition et le nombre minimal de points à acquérir afin que le radar soit précis à 1 km/h.

RÉPONSE:

 $\begin{array}{l} v\ll c \text{ donc } f'\simeq f_p\left(1+\frac{v}{c}\right). \\ \text{Notons } \delta v = 1 \text{ km/h, on veut distinguer un pic à } f' = f_p\left(1+\frac{v}{c}\right)$ d'un pic à $f"=f_p\left(1+\frac{v+\delta v}{c}\right). \end{array}$

Il faut donc un pas fréquentiel inférieur à $\varDelta f = f" - f' =$ $f_p \times \frac{\delta v}{c} = 9,3$ Hz. Donc au minimum $\tau = \frac{1}{\Delta f} \simeq 0,1$ s.

Pour échantillonner correctement un signal de fréquence $\simeq 10$ GHz, sans astuce de repliement de spectre, il faut $f_e>2f'\simeq$ $2f_p=20$ GHz donc $N=1+f_e\tau=1+2\times 10^9\simeq 2\times 10^9$ pts.

C'est énorme! Les oscilloscopes en TP à 2k€ pièce stockent 1000 fois moins de points!

ch2.Q13

RÉPONSE:

ch2.R14

RÉPONSE:

ch2.R1

Une démodulation à détection de crête est-elle toujours adaptée pour démoduler un signal modulé en amplitude? Pourquoi?

RÉPONSE:

La démodulation à détection de crête échoue dès que $ks_0 > 1$ contrairement à la détection synchrone.

ch2.Q16