Notation Used in Instruction Set Summary

CPU Register Notation Operators (continued) Index Register Y — Y or v Accumulator A — A or a → Transfer Accumulator B — B or b Stack Pointer — SP. sp. or s Example: (A) \Rightarrow M means the content of accumulator A is transferred to memory location M. Accumulator D — D or d Program Counter — PC, pc, or p Condition Code Register — CCR or c Index Register X — X or x Exchange Example: $D \Leftrightarrow X$ means exchange the contents of D with those of X. Explanation of Italic Expressions in Source Form Column abc — A or B or CCR abcdxys — A or B or CCR or D or X or Y or SP. Some assemblers also allow T2 or T3. abd — A or B or D Address Mode Notation abdxvs — A or B or D or X or Y or SP INH — Inherent; no operands in object code dxvs — D or X or Y or SP IMM — Immediate; operand in object code msk8 — 8-bit mask, some assemblers require # symbol before value DIR — Direct; operand is the lower byte of an address from \$0000 to \$00FF opr8i — 8-bit immediate value EXT — Operand is a 16-bit address opr16i — 16-bit immediate value REL — Two's complement relative offset; for branch instructions opr8a — 8-bit address used with direct address mode IDX — Indexed (no extension bytes): includes: opr16a — 16-bit address value 5-bit constant offset from X, Y, SP, or PC oprx0_xvsp — Indexed addressing postbyte code: Pre/post increment/decrement by 1 . . . 8 oprx3.-xvs Predecrement X or Y or SP by 1 . . . 8 Accumulator A, B, or D offset oprx3.+xvs Preincrement X or Y or SP by 1 . . . 8 IDX1 — 9-bit signed offset from X, Y, SP, or PC; 1 extension byte oprx3.xvs- Postdecrement X or Y or SP by 1 . . . 8 IDX2 — 16-bit signed offset from X, Y, SP, or PC; 2 extension bytes oprx3,xys+ Postincrement X or Y or SP by 1 . . . 8 oprx5,xysp 5-bit constant offset from X or Y or SP or PC [IDX2] — Indexed-indirect; 16-bit offset from X, Y, SP, or PC abd.xvsp Accumulator A or B or D offset from X or Y or SP or PC [D, IDX] — Indexed-indirect; accumulator D offset from X, Y, SP, or PC oprx3 — Any positive integer 1 . . . 8 for pre/post increment/decrement oprx5 — Any integer in the range –16 . . . +15 oprx9 — Any integer in the range -256 . . . +255 oprx16 — Any integer in the range -32,768 . . . 65,535 Machine Coding page — 8-bit value for PPAGE, some assemblers require # symbol before this value dd — 8-bit direct address \$0000 to \$00FF. (High byte assumed to be \$00). rel8 — Label of branch destination within -256 to +255 locations ee — High-order byte of a 16-bit constant offset for indexed addressing. rel9 — Label of branch destination within -512 to +511 locations eb — Exchange/Transfer post-byte. rel16 — Any label within 64K memory space ff — Low-order eight bits of a 9-bit signed constant offset for indexed addressing, trapnum — Any 8-bit integer in the range \$30-\$39 or \$40-\$FF or low-order byte of a 16-bit constant offset for indexed addressing. xys — X or Y or SP hh — High-order byte of a 16-bit extended address. xvsp — X or Y or SP or PC ii — 8-bit immediate data value. Operators jj — High-order byte of a 16-bit immediate data value. + - Addition kk — Low-order byte of a 16-bit immediate data value. Subtraction 1b — Loop primitive (DBNE) post-byte. Logical AND 11 — Low-order byte of a 16-bit extended address. Logical OR (inclusive) mm — 8-bit immediate mask value for bit manipulation instructions. Set bits indicate bits to be affected. Logical exclusive OR pg — Program page (bank) number used in CALL instruction. Multiplication qq — High-order byte of a 16-bit relative offset for long branches. Division Trap number \$30-\$39 or \$40-\$FF. Negation. One's complement (invert each bit of M) rr — Signed relative offset \$80 (-128) to \$7F (+127). Offset relative to the byte following the relative offset byte, or Concatenate low-order byte of a 16-bit relative offset for long branches. Example: A: B means the 16-bit value formed by concatenating 8-bit accumulator A with 8-bit accumulator B. A is in the high-order position. xb — Indexed addressing post-byte.

Access Detail

Each code letter except (,), and comma equals one CPU cycle. Uppercase = 16-bit operation and lowercase = 8-bit operation.

- f Free cycle, CPU doesn't use bus
- q Read PPAGE internally
- Read indirect pointer (indexed indirect)
- i Read indirect PPAGE value (CALL indirect only)
- n Write PPAGE internally
- Optional program word fetch (P) if instruction is misaligned and has an odd number of bytes of object code — otherwise, appears as a free cycle (f); Page 2 prebyte treated as a separate 1-byte instruction
- P Program word fetch (always an aligned-word read)
- r 8-bit data read
- R 16-bit data read
- s 8-bit stack write
- 40.11
- s 16-bit stack write
- w 8-bit data write
- w 16-bit data write
- u 8-bit stack read
- ∪ 16-bit stack read
- ∨ 16-bit vector fetch (always an aligned-word read)
- t 8-bit conditional read (or free cycle)
- T 16-bit conditional read (or free cycle)
- x 8-bit conditional write (or free cycle)
- () Indicate a microcode loop
- , Indicates where an interrupt could be honored

Special Cases

PPP/P — Short branch, PPP if branch taken, P if not OPPP/OPO — Long branch. OPPP if branch taken, OPO if not

Condition Codes Columns

- Status bit not affected by operation.
- Status bit cleared by operation.
- Status bit set by operation.
- Status bit affected by operation.
- 2 Clared by anocted by operation.
- Status bit may be cleared or remain set, but is not set by operation.
- Status bit may be set or remain cleared, but is not cleared by operation.
- Status bit may be changed by operation but the final state is not defined.
- ! Status bit used for a special purpose.

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12	ѕхні	NZV	/ C	Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12	SXHI	NZVC
ABA	$(A) + (B) \Rightarrow A$ Add Accumulators A and B	INH	18 06	00	Δ-	ΔΔΔ		ASL opr16a ASL oprx0_xysp	4	EXT IDX	78 hh 11 68 xb	rPwO rPw		ΔΔΔΔ
ABX	(B) + (X) \Rightarrow X Translates to LEAX B,X	IDX	1A E5	Pf			11	ASL oprx9,xysp ASL oprx16,xysp ASL [D,xysp]	C b7 b0 Arithmetic Shift Left	IDX1 IDX2 [D,IDX]	68 xb ff 68 xb ee ff 68 xb	rPwO frPwP fIfrPw		
ABY	(B) + (Y) \Rightarrow Y Translates to LEAY B,Y	IDX	19 ED	Pf				ASL [oprx16,xysp] ASLA	Arithmetic Shift Left Accumulator A	[IDX2] INH	68 xb ee ff 48	fIPrPw O		
ADCA #opr8i ADCA opr8a ADCA opr16a ADCA oprx0_xysp ADCA oprx9xysp ADCA oprx16,xysp	(A) + (M) + C \Rightarrow A Add with Carry to A	IMM DIR EXT IDX IDX1 IDX2	89 ii 99 dd B9 hh ll A9 xb A9 xb ff A9 xb ee ff	P rPf rPO rPf rPO frPP	Δ-	ΔΔΔ		ASLB ASLD ASR opr16a	Arithmetic Shift Left Accumulator B C b7 A b0 b7 B b0 Arithmetic Shift Left Double	INH INH EXT	58 59 77 hh 11	0 0 rPw0		ΔΔΔΔ
ADCA [D,xysp] ADCA [oprx16,xysp] ADCB #opr8i	$(B) + (M) + C \Rightarrow B$	[D,IDX] [IDX2] IMM	A9 xb A9 xb ee ff C9 ii	fIfrPf fIPrPf	Δ-	A A A		ASR oprioa ASR oprio_xysp ASR oprio_xysp ASR oprio_6xysp	b7 b0 C	IDX IDX1 IDX2	67 xb 67 xb ff 67 xb ee ff	rPWO rPw rPwO frPwP		ΔΔΔΔ
ADCB opr8a ADCB opr16a ADCB oprx0_xysp ADCB oprx9,xysp	Add with Carry to B	DIR EXT IDX IDX1	D9 dd F9 hh 11 E9 xb E9 xb ff	rPf rPO rPf rPO	Δ-	ΔΔΖ		ASR (D,xysp) ASR [D,xysp] ASR [oprx16,xysp] ASRA ASRB	Arithmetic Shift Right Arithmetic Shift Right Accumulator A Arithmetic Shift Right Accumulator B	[D,IDX] [IDX2] INH INH	67 xb ee ff 67 xb ee ff 47 57	fIfrPw fIFrPw O		
ADCB oprx16,xysp ADCB [D,xysp]		IDX2 [D,IDX]	E9 xb ee ff E9 xb	frPP fIfrPf			I L	BCC rel8	Branch if Carry Clear (if C = 0)	REL	24 rr	PPP/P ¹		
ADCB [oprx16,xysp] ADDA #opr8i ADDA opr8a ADDA opr16a ADDA oprx0 xysp	(A) + (M) ⇒ A Add without Carry to A	IMM DIR EXT IDX	E9 xb ee ff 8B ii 9B dd BB hh ll AB xb	fIPrPf P rPf rPO rPf	Δ-	ΔΔΔ	ΔΔ	BCLR opr8a, msk8 BCLR opr16a, msk8 BCLR oprx0_xysp, msk8 BCLR oprx9,xysp, msk8 BCLR oprx16,xysp, msk8	(M) • (mm) ⇒ M Clear Bit(s) in Memory	DIR EXT IDX IDX1 IDX2	4D dd mm 1D hh 11 mm 0D xb mm 0D xb ff mm 0D xb ee ff mm	rPwO rPwP rPwO rPwP frPwPO		ΔΔ0-
ADDA oprx9,xysp ADDA oprx16,xysp		IDX1 IDX2	AB xb ff AB xb ee ff	rPO frPP			I L		Branch if Carry Set (if C = 1)	REL	25 rr	PPP/P ¹		
ADDA [D,xysp] ADDA [oprx16,xysp]		[D,IDX] [IDX2]	AB xb ee ff AB xb ee ff	fIfrPf fIPrPf			11	BEQ rel8 BGE rel8	Branch if Equal (if Z = 1) Branch if Greater Than or Equal (if N ⊕ V = 0) (signed)	REL REL	27 rr 2C rr	PPP/P ¹ PPP/P ¹		
ADDB #opr8i ADDB opr8a ADDB opr16a	(B) + (M) \Rightarrow B Add without Carry to B	IMM DIR EXT	CB ii DB dd FB hh ll	P rPf rPO	Δ-	ΔΔΔ	Δ	BGND	Place CPU in Background Mode see CPU12 Reference Manual	INH	00	VfPPP		
ADDB oprx0_xysp ADDB oprx9,xysp ADDB oprx16,xysp		IDX IDX1 IDX2	EB xb EB xb ff EB xb ee ff	rPf rPO frPP				BGT rel8	Branch if Greater Than (If $Z + (N \oplus V) = 0$) (signed)	REL	2E rr	PPP/P ¹		
ADDB [D,xysp] ADDB [oprx16,xysp]		[D,IDX] [IDX2]	EB xb EB xb ee ff	fIfrPf fIPrPf				BHI rel8	Branch if Higher (if C + Z = 0) (unsigned)	REL	22 rr	PPP/P ¹		
ADDD #opr16i ADDD opr8a ADDD opr16a	$(A:B) + (M:M+1) \Rightarrow A:B$ Add 16-Bit to D (A:B)	IMM DIR EXT	C3 jj kk D3 dd F3 hh 11	PO RPf RPO		ΔΔΔ		BHS rel8	Branch if Higher or Same (if C = 0) (unsigned) same function as BCC	REL	24 rr	PPP/P ¹		
ADDD oprx0_xysp ADDD oprx9,xysp ADDD oprx16,xysp ADDD [D,xysp] ADDD [oprx16,xysp]		IDX IDX1 IDX2 [D,IDX] [IDX2]	E3 xb E3 xb ff E3 xb ee ff E3 xb E3 xb ee ff	RPf RPO fRPP fIfRPf fIPRPf				BITA #opr8i BITA opr8a BITA opr16a BITA oprx0_xysp BITA oprx9,xysp	(A) ● (M) Logical AND A with Memory Does not change Accumulator or Memory	IMM DIR EXT IDX IDX1	85 ii 95 dd B5 hh ll A5 xb A5 xb ff	P rPf rPO rPf rPO		ΔΔ0-
ANDA #opr8i ANDA opr8a ANDA opr16a	(A) \bullet (M) \Rightarrow A Logical AND A with Memory	IMM DIR EXT	84 ii 94 dd B4 hh ll	P rPf rPO		ΔΔ	· 11	BITA oprx16,xysp BITA [D,xysp] BITA [oprx16,xysp]		IDX2 [D,IDX] [IDX2]	A5 xb ee ff A5 xb A5 xb ee ff	frPP fIfrPf fIPrPf		
ANDA oprx0_xysp ANDA oprx9,xysp ANDA oprx16,xysp ANDA [D,xysp] ANDA [oprx16,xysp]		IDX IDX1 IDX2 [D,IDX] [IDX2]	A4 xb A4 xb ff A4 xb ee ff A4 xb A4 xb ee ff	rPf rPO frPP fIfrPf fIPrPf				BITB #opr8i BITB opr8a BITB opr16a BITB oprx0_xysp BITB oprx9,xysp	(B) ● (M) Logical AND B with Memory Does not change Accumulator or Memory	IMM DIR EXT IDX IDX1	C5 ii D5 dd F5 hh ll E5 xb E5 xb ff	P rPf rPO rPf rPO		ΔΔ0-
ANDB #opr8i ANDB opr8a ANDB opr16a	(B) • (M) \Rightarrow B Logical AND B with Memory	IMM DIR EXT	C4 ii D4 dd F4 hh 11	P rPf rPO		ΔΔ		BITB oprx16,xysp BITB [D,xysp] BITB [oprx16,xysp]		IDX2 [D,IDX] [IDX2]	E5 xb ee ff E5 xb E5 xb ee ff	frPP fIfrPf fIPrPf		
ANDB oprx0_xysp ANDB oprx9,xysp ANDB oprx16,xysp		IDX IDX1 IDX2	E4 xb E4 xb ff E4 xb ee ff	rPf rPO frPP				BLE rel8	Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	2F rr	PPP/P ¹		
ANDB [D,xysp] ANDB [oprx16,xysp]		[D,IDX] [IDX2]	E4 xb E4 xb ee ff	fIfrPf fIPrPf				BLO rel8	Branch if Lower (if C = 1) (unsigned) same function as BCS	REL	25 rr	PPP/P ¹		
ANDCC #opr8i	(CCR) • (M) ⇒ CCR Logical AND CCR with Memory	IMM	10 ii	P	₩₩₩	 ₩#1	1 M F	Note 1. PPP/P indicates this instr	L uction takes three cycles to refill the instruction queue if the bra	anch is take	n and one program fetch cy	ycle if the branch is not taken	n.	
Note 1. Due to internal CPU requ	rements, the program word fetch is performed twice to the sam	e address	during this instruction.	1	I		_							

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	SXHI	NZVC
BLS rel8	Branch if Lower or Same	REL	23 rr	HCS12		
DLS 1610	(if C + Z = 1) (unsigned)	KLL	23 11	PPP/P		
BLT rel8	Branch if Less Than (if $N \oplus V = 1$) (signed)	REL	2D rr	PPP/P ¹		
BMI rel8	Branch if Minus (if N = 1)	REL	2B rr	PPP/P ¹		
BNE rel8	Branch if Not Equal (if Z = 0)	REL	26 rr	PPP/P ¹		
BPL rel8	Branch if Plus (if N = 0)	REL	2A rr	PPP/P ¹		
BRA rel8	Branch Always (if 1 = 1)	REL	20 rr	PPP		
BRCLR opr8a, msk8, rel8 BRCLR opr16a, msk8, rel8 BRCLR oprx0_xysp, msk8, rel8 BRCLR oprx9,xysp, msk8, rel8 BRCLR oprx16,xysp, msk8, rel8	Branch if (M) • (mm) = 0 (if All Selected Bit(s) Clear)	DIR EXT IDX IDX1 IDX2	4F dd mm rr 1F hh 11 mm rr 0F xb mm rr 0F xb ff mm rr 0F xb ee ff mm rr	rPPP rfPPP rPPP rfPPP PrfPPP		
BRN rel8	Branch Never (if 1 = 0)	REL	21 rr	P		
BRSET opr8, msk8, rel8 BRSET opr16a, msk8, rel8 BRSET oprx0_xysp, msk8, rel8 BRSET oprx9,xysp, msk8, rel8 BRSET oprx16,xysp, msk8, rel8	Branch if (M) • (mm) = 0 (if All Selected Bit(s) Set)	DIR EXT IDX IDX1 IDX2	4E dd mm rr 1E hh ll mm rr 0E xb mm rr 0E xb ff mm rr 0E xb ee ff mm rr	rPPP rfPPP rPPP rfPPP PrfPPP		
BSET opr8, msk8 BSET opr16a, msk8 BSET oprx0_xysp, msk8 BSET oprx9,xysp, msk8 BSET oprx16,xysp, msk8	$(M) + (mm) \Rightarrow M$ Set Bit(s) in Memory	DIR EXT IDX IDX1 IDX2	4C dd mm 1C hh 11 mm 0C xb mm 0C xb ff mm 0C xb ee ff mm	rPwO rPwP rPwO rPwP frPwPO		ΔΔ0-
BSR rel8	$ \begin{array}{l} (SP)-2\Rightarrow SP; RTN_H:RTN_L\Rightarrow M_{(SP)}:M_{(SP+1)} \\ Subroutine \ address\Rightarrow PC \\ Branch \ to \ Subroutine \end{array} $	REL	07 rr	SPPP		
BVC rel8	Branch if Overflow Bit Clear (if V = 0)	REL	28 rr	PPP/P ¹		
BVS rel8	Branch if Overflow Bit Set (if V = 1)	REL	29 rr	PPP/P ¹		
CALL opr16a, page CALL oprx0_xysp, page CALL oprx9,xysp, page CALL oprx16,xysp, page CALL [D,xysp] CALL [oprx16, xysp]	$\begin{split} &(SP) - 2 \Rightarrow SP; RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)} \\ &(SP) - 1 \Rightarrow SP; (PPG) \Rightarrow M_{(SP)}; \\ &pg \Rightarrow PPAGE \ register; Program \ address \Rightarrow PC \\ &Call \ subroutine \ in \ extended \ memory \\ &(Program \ may \ be \ located \ on \ another \\ &expansion \ memory \ page.) \\ &Indirect \ modes \ get \ program \ address \\ ∧ \ new \ pg \ value \ based \ on \ pointer. \end{split}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	4A hh 11 pg 4B xb pg 4B xb ff pg 4B xb ee ff pg 4B xb ee ff	gnSsPPP gnSsPPP gnSsPPP fgmSsPPP flignSsPPP flignSsPPP		
СВА	(A) – (B) Compare 8-Bit Accumulators	INH	18 17	00		ΔΔΔΔ
CLC	0 ⇒ C Translates to ANDCC #\$FE	IMM	10 FE	P		0
CLI	0 ⇒ I **Translates to ANDCC #\$EF* (enables I-bit interrupts)	IMM	10 EF	P	0	
CLR opr16a CLR oprx0_xysp CLR oprx9.xysp CLR oprx16.xysp CLR [D,xysp] CLR [oprx16.xysp] CLRA CLRB	$0 \Rightarrow M$ Clear Memory Location $0 \Rightarrow A$ Clear Accumulator A $0 \Rightarrow B$ Clear Accumulator B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	79 hh 11 69 xb 69 xb ff 69 xb ee ff 69 xb ee ff 69 xb ee ff 87 C7	PwO Pw PwO PwP PIfw PIfw O O		0100
CLV	0 ⇒ V Translates to ANDCC #\$FD	IMM	10 FD	Р		0-
Note 1. PPP/P indicates this instr	uction takes three cycles to refill the instruction queue if the bra	nch is takei	n and one program fetch cy	cle if the branch is not take	en.	

c	Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12	ѕхні	NZVC
_	CMPA #opr8i	(A) – (M)	IMM	81 ii	P		ΔΔΔΔ
	CMPA opr8a	Compare Accumulator A with Memory	DIR	91 dd	rPf		
۱۱	CMPA opr16a		EXT	B1 hh ll	rPO		
Ш	CMPA oprx0_xysp		IDX	Al xb	rPf		
41	CMPA oprx9,xysp		IDX1	Al xb ff	rPO		
╝	CMPA oprx16,xysp		IDX2	Al xb ee ff	frPP		
	CMPA [D,xysp]		[D,IDX]	A1 xb	fIfrPf		
.	CMPA [oprx16,xysp]		[IDX2]	Al xb ee ff	fIPrPf		
-11	CMPB #opr8i	(B) – (M)	IMM	C1 ii	P		ΔΔΔΔ
41	CMPB opr8a	Compare Accumulator B with Memory	DIR	D1 dd	rPf		
Ш	CMPB opr16a		EXT	F1 hh ll	rPO		
П	CMPB oprx0_xysp		IDX IDX1	E1 xb E1 xb ff	rPf		
П	CMPB oprx9,xysp CMPB oprx16,xysp		IDX1	El xb ii El xb ee ff	rPO frPP		
Ш	CMPB [D,xysp]		[D,IDX]	E1 xb ee II	fIfrPf		
_	CMPB [oprx16,xysp]		[D,IDX]	El xb ee ff	fIPrPf		
- 11							
. 1!	COM opr16a	$(\overline{M}) \Rightarrow M$ equivalent to \$FF – $(M) \Rightarrow M$	EXT	71 hh 11	rPwO		ΔΔ01
Ш	COM oprx0_xysp	1's Complement Memory Location	IDX	61 xb	rPw		
Ш	COM oprx9,xysp		IDX1 IDX2	61 xb ff 61 xb ee ff	rPwO frPwP		
Ш	COM oprx16,xysp			61 xb ee II	fIfrPw		
Ш	COM [D,xysp] COM [oprx16,xysp]		[D,IDX] [IDX2]	61 xb ee ff	fIPrPw		
-11	COMA COMA	$(\overline{A}) \Rightarrow A$ Complement Accumulator A	INH	41	O		
-	COMB	$(\overline{B}) \Rightarrow B$ Complement Accumulator B	INH	51	0		
		(4.5)					
	CPD #opr16i	(A:B) – (M:M+1)	IMM	8C jj kk	PO PD F		ΔΔΔΔ
	CPD opr8a	Compare D to Memory (16-Bit)	DIR	9C dd BC hh 11	RPf		
-	CPD opr16a CPD oprx0 xysp		EXT IDX	AC xb	RPO RPf		
-	CPD oprx9,xysp		IDX IDX1	AC xb ff	RPO		
	CPD oprx16,xysp		IDX1	AC xb ee ff	fRPP		
4	CPD [D,xysp]		[D,IDX]	AC xb	fIfRPf		
-	CPD [oprx16,xysp]		[D,IDX]	AC xb ee ff	fIPRPf		
- 1	CPS #opr16i	(SP) – (M:M+1)	IMM	8F jj kk	PO		ΔΔΔΔ
-11	CPS #0pr16i CPS opr8a	Compare SP to Memory (16-Bit)	DIR	9F dd	RPf		
-	CPS opr16a	Compare SP to Memory (10-bit)	EXT	BF hh 11	RPO		
Ш	CPS oprx0_xysp		IDX	AF xb	RPf		
Ш	CPS oprx9,xysp		IDX1	AF xb ff	RPO		
Ш	CPS oprx16,xysp		IDX2	AF xb ee ff	fRPP		
	CPS [D,xysp]		[D,IDX]	AF xb	fIfRPf		
Ш	CPS [oprx16,xysp]		[IDX2]	AF xb ee ff	fIPRPf		
	CPX #opr16i	(X) – (M:M+1)	IMM	8E jj kk	PO		ΔΔΔΔ
	CPX opr8a	Compare X to Memory (16-Bit)	DIR	9E dd	RPf		
	CPX opr16a	Compare A to monicify (10 Bily	EXT	BE hh ll	RPO		
Δ	CPX oprx0_xysp		IDX	AE xb	RPf		
Ш	CPX oprx9,xysp		IDX1	AE xb ff	RPO		
0	CPX oprx16,xysp		IDX2	AE xb ee ff	fRPP		
'	CPX [D,xysp]		[D,IDX]	AE xb	fIfRPf		
4	CPX [oprx16,xysp]		[IDX2]	AE xb ee ff	fIPRPf		
- 11	CPY #opr16i	(Y) – (M:M+1)	IMM	8D jj kk	PO		ΔΔΔΔ
	CPY opr8a	Compare Y to Memory (16-Bit)	DIR	9D dd	RPf		3
\sqcup	CPY opr16a		EXT	BD hh 11	RPO		
)	CPY oprx0_xysp		IDX	AD xb	RPf		
	CPY oprx9,xysp		IDX1	AD xb ff	RPO		
Ш	CPY oprx16,xysp		IDX2	AD xb ee ff	fRPP		
	CPY [D,xysp]		[D,IDX]	AD xb	fIfRPf		
	CPY [oprx16,xysp]		[IDX2]	AD xb ee ff	fIPRPf		
	DAA	Adjust Sum to BCD Decimal Adjust Accumulator A	INH	18 07	ofo		ΔΔ?Δ
-1	DREO abdyra ralo	,	DEI	04 lb ====	DDD (branch)		
	DBEQ abdxys, rel9	(cntr) – 1⇒ cntr if (cntr) = 0, then Branch	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)		
ᅬ		else Continue to next instruction					
		Decrement Counter and Branch if = 0					
l		(cntr = A, B, D, X, Y, or SP)		l	I	1	I

1	-	I	
DEY	(Y) – \$0001 ⇒ Y Decrement Index Register Y	INH	03
EDIV	$(Y:D) \div (X) \Rightarrow Y \text{ Remainder} \Rightarrow D$ 32 by 16 Bit \Rightarrow 16 Bit Divide (unsigned)	INH	11
EDIVS	$(Y:D) \div (X) \Rightarrow Y$ Remainder $\Rightarrow D$ 32 by 16 Bit \Rightarrow 16 Bit Divide (signed)	INH	18 14
EMACS opr16a ²	$(M_{(X)}:M_{(X+1)}) \times (M_{(Y)}:M_{(Y+1)}) + (M-M+3) \Rightarrow M-M+3$	Special	18 12 hh 11
	16 by 16 Bit ⇒ 32 Bit Multiply and Accumulate (signed)		
EMAXD oprx0_xysp	$MAX((D), (M:M+1)) \Rightarrow D$	IDX	18 1A xb
EMAXD oprx9,xysp	MAX of 2 Unsigned 16-Bit Values	IDX1	18 1A xb ff
EMAXD oprx16,xysp		IDX2	18 1A xb ee ff
EMAXD [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 1A xb
EMAXD [oprx16,xysp]	internal compare ((D) – (M:M+1))	[IDX2]	18 1A xb ee ff
EMAXM oprx0_xysp	$MAX((D), (M:M+1)) \Rightarrow M:M+1$	IDX	18 1E xb
EMAXM oprx9,xysp	MAX of 2 Unsigned 16-Bit Values	IDX1	18 1E xb ff
EMAXM oprx16,xysp		IDX2	18 1E xb ee ff
EMAXM [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 1E xb
EMAXM [oprx16,xysp]	internal compare ((D) – (M:M+1))	[IDX2]	18 1E xb ee ff
EMIND oprx0_xysp	$MIN((D), (M:M+1)) \Rightarrow D$	IDX	18 1B xb
EMIND oprx9,xysp	MIN of 2 Unsigned 16-Bit Values	IDX1	18 1B xb ff
EMIND oprx16,xysp		IDX2	18 1B xb ee ff
EMIND [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 1B xb
EMIND [oprx16,xysp]	internal compare ((D) – (M:M+1))	[IDX2]	18 1B xb ee ff
EMINM oprx0_xysp	$MIN((D), (M:M+1)) \Rightarrow M:M+1$	IDX	18 1F xb
EMINM oprx9,xysp	MIN of 2 Unsigned 16-Bit Values	IDX1	18 1F xb ff
EMINM oprx16,xysp		IDX2	18 1F xb ee ff
EMINM [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 1F xb
EMINM [oprx16,xysp]	internal compare ((D) – (M:M+1))	[IDX2]	18 1F xb ee ff
EMUL	$(D) \times (Y) \Rightarrow Y:D$ 16 by 16 Bit Multiply (unsigned)	INH	13
EMULS	$(D) \times (Y) \Rightarrow Y:D$	INH	18 13
	16 by 16 Bit Multiply (signed)		
EORA #opr8i	$(A) \oplus (M) \Rightarrow A$	IMM	88 ii
EORA opr8a	Exclusive-OR A with Memory	DIR	98 dd
EORA opr16a		EXT	B8 hh 11
EORA oprx0_xysp		IDX	A8 xb
EORA oprx9,xysp		IDX1	A8 xb ff
EORA oprx16,xysp		IDX2	A8 xb ee ff
EORA [D,xysp]		[D,IDX] [IDX2]	A8 xb A8 xb ee ff
EORA [oprx16,xysp]		[IDX2]	wo xn ee ii
Notes:			l Maria da da cada cada
	juirements, the program word fetch is performed twice to the sa	ime address d	uring this instruction.
z. opr roa is an extended a	address specification. Both X and Y point to source operands.		

Operation

Decrement A

Decrement B

(cntr) – 1 ⇒ cntr

(M) – \$01 ⇒ M

 $(A) - \$01 \Rightarrow A$

 $(B) - \$01 \Rightarrow B$

(SP) – \$0001 ⇒ SP

 $(X) - \$0001 \Rightarrow X$

Translates to LEAS -1.SP

Decrement Index Register X

If (cntr) not = 0, then Branch;

(cntr = A, B, D, X, Y, or SP)

Decrement Memory Location

else Continue to next instruction

Decrement Counter and Branch if $\neq 0$

Source Form

DBNE abdxvs. rel9

DEC opr16a

DEC [D,xysp]

DECA

DECB

DES

DEX

DEC oprx0 xvsp

DEC oprx9,xysp

DEC oprx16.xysp

DEC [oprx16,xysp]

rPO

rPf

rPO

frPP fIfrPf

fIPrPf

OfffffffffO
ORROfffRRfWWP
ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf
ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW
ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf
ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW
ffO
OfO

Access Detail

HCS12

rPwO

rPwO

frPwP

fIfrPw

fIPrPw

fffffffffo

Ρf

rPw

PPP (branch)

PPO (no branch)

SXHI

NZVC

ΔΔΔ

_ _ _ _

Addr.

Mode

REL

(9-bit)

EXT

IDX

IDX1

IDX2

[IDX2]

INH

INH 53

IDX

INH 09

[D.IDX] 63 xb

43

1B 9F

Machine

Coding (hex)

04 lb rr

73 hh 11

63 xb ff

63 xb ee ff

63 xb ee ff

63 xb

	-Δ	E
	-Δ	
	ΔΔΔΔ	F
	ΔΔΔΔ	IE
	ΔΔΔΔ	
	ΔΔΔΔ	IE
	ΔΔΔΔ	10
	ΔΔΔΔ	I
	ΔΔΔΔ	11 11 11 11
	ΔΔ-Δ	IN
	ΔΔ-Δ	L
		II
4		

JMP opr16a

JMP [D,xysp]

JMP oprx0 xysp

JMP oprx9,xysp

JMP oprx16,xysp

JMP [oprx16,xysp]

ΔΔ0-

EORB opr8a EORB opr16a EORB opr0_xysp EORB oprx9,xysp EORB oprx16,xysp EORB [D,xysp] EORB [oprx16,xysp]	Exclusive-OR B with Memory
ETBL oprx0_xysp	(M:M+1)+ [(B)×((M+2:M+3) – (M:N-16-Bit Table Lookup and Interpola
	Initialize B, and index before ETBI <ea> points at first table entry (M: and B is fractional part of lookup v</ea>
	(no indirect addr. modes or extens
EXG abcdxys,abcdxys	(r1) \Leftrightarrow (r2) (if r1 and r2 same size \$00:(r1) \Rightarrow r2 (if r1=8-bit; r2=16-b (r1 _{low}) \Leftrightarrow (r2) (if r1=16-bit; r2=8-b
	r1 and r2 may be A, B, CCR, D, X, Y, or SP
FDIV	(D) + (X) \Rightarrow X; Remainder \Rightarrow D 16 by 16 Bit Fractional Divide
IBEQ abdxys, rel9	(cntr) + 1⇒ cntr If (cntr) = 0, then Branch else Continue to next instruction
	Increment Counter and Branch if = (cntr = A, B, D, X, Y, or SP)
IBNE abdxys, rel9	(cntr) + 1⇒ cntr if (cntr) not = 0, then Branch; else Continue to next instruction
	Increment Counter and Branch if a (cntr = A, B, D, X, Y, or SP)
IDIV	(D) + (X) \Rightarrow X; Remainder \Rightarrow D 16 by 16 Bit Integer Divide (unsig
IDIVS	(D) ÷ (X) \Rightarrow X; Remainder \Rightarrow D 16 by 16 Bit Integer Divide (signe
INC opr16a INC oprx0_xysp INC oprx9,xysp INC oprx16,xysp INC [D,xysp]	(M) + \$01 ⇒ M Increment Memory Byte
INC [oprx16,xysp]	(A) + \$01 ⇒ A Incre
INCB	(B) + \$01 ⇒ B Increi
INS	(SP) + \$0001 ⇒ SP Translates to LEAS 1,SP
INX	(X) + \$0001 \Rightarrow X Increment Index Register X
INY	(Y) + \$0001 ⇒ Y Increment Index Register Y

Source Form

EORB #opr8i

EORB opr8a

Access Detail

HCS12

rPf

rPO

rPf

rPO

frPP

fIfrPf

fIPrPf

ORREFEE

Offfffffffo

PPP (branch) PPO (no branch)

PPP (branch)

PPO (no branch)

Offfffffffo

Offfffffffo

rPw0

rPw

rPwO

frPwP

fIfrPw

fIPrPw

Ρf

PPP

PPP

PPP

fPPP

fIfPPP

fIfPPP

SXHI NZVC

---- ΔΔ-Δ

C Bit is undefined

 $-\Delta\Delta\Delta$

 $-\Delta 0 \Delta$

ΔΔΔΔ

ΔΔΔ-

- Δ - -

- Δ - -

_ _ _ _

_ _ _ _

in HC12

ΔΔ0-

Machine

Coding (hex)

C8 ii

D8 dd

E8 xb

F8 hh 11

E8 xb ff

E8 xb ee ff

E8 xb ee ff

18 3F xb

B7 eb

18 11

04 lb rr

04 lb rr

18 10

18 15

62 xb

72 hh 11

62 xb ff

62 xb ee ff

62 xb ee ff

Addr.

Mode

IMM

DIR

EXT

IDX

IDX1

IDX2

[IDX2]

IDX

INH

INH

REL

(9-bit)

REL

(9-bit)

INH

INH

EXT

IDX

IDX1

IDX2

[IDX2]

INH

INH

IDX

INH 08

INH 02

EXT

IDX

IDX1

IDX2

[D,IDX] 05 xb

[D,IDX] 62 xb

42

52

1B 81

06 hh 11

05 xb ff

05 xb ee ff

05 xb

[IDX2] 05 xb ee ff

[D.IDX] E8 xb

Operation

 $(B) \oplus (M) \Rightarrow B$

Exclusive-OR B with Memory

 $(M:M+1)+[(B)\times((M+2:M+3)-(M:M+1))] \Rightarrow D$

(no indirect addr. modes or extensions allowed)

16-Bit Table Lookup and Interpolate

<ea> points at first table entry (M:M+1)

and B is fractional part of lookup value

 $(r1) \Leftrightarrow (r2)$ (if r1 and r2 same size) or

 $00:(r1) \Rightarrow r2$ (if r1=8-bit; r2=16-bit) or

 $(r1_{low}) \Leftrightarrow (r2)$ (if r1=16-bit; r2=8-bit)

else Continue to next instruction Increment Counter and Branch if = 0 (cntr = A, B, D, X, Y, or SP)

Jump

Routine address ⇒ PC

else Continue to next instruction Increment Counter and Branch if ≠ 0

16 by 16 Bit Integer Divide (unsigned) (D) \div (X) \Rightarrow X; Remainder \Rightarrow D

16 by 16 Bit Integer Divide (signed)

Increment Acc. A

Increment Acc. B

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

⁽if followed by page 2 instruction) offo rPf

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12	SXHI	NZVC	Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12	SXHI	NZVC
JSR opr8a	(SP) – 2 ⇒ SP;	DIR	17 dd	SPPP			LDS #opr16i	(M:M+1) ⇒ SP	IMM	CF jj kk	PO		ΔΔ0-
JSR opr16a	$RTN_H:RTN_I \Rightarrow M_{(SP)}:M_{(SP+1)}$	EXT	16 hh 11	SPPP			LDS opr8a	Load Stack Pointer	DIR	DF dd	RPf		
JSR oprx0_xysp	Subroutine address ⇒ PC	IDX	15 xb 15 xb ff	PPPS			LDS opr16a		EXT IDX	FF hh ll	RPO RPf		
JSR oprx9,xysp JSR oprx16,xysp	Jump to Subroutine	IDX1 IDX2	15 xb ii 15 xb ee ff	PPPS fPPPS			LDS oprx0_xysp LDS oprx9,xysp		IDX IDX1	EF xb EF xb ff	RPO		
JSR [D,xysp]		[D,IDX]	15 xb	fIfPPPS			LDS oprx16,xysp		IDX2	EF xb ee ff	fRPP		
JSR [oprx16,xysp]		[IDX2]	15 xb ee ff	fIfPPPS			LDS [D,xysp] LDS [oprx16,xysp]		[D,IDX] [IDX2]	EF xb EF xb ee ff	fIfRPf fIPRPf		
LBCC rel16	Long Branch if Carry Clear (if C = 0)	REL	18 24 qq rr	OPPP/OPO ¹			LDX #opr16i	(M:M+1) ⇒ X	IMM	CE jj kk	PO		ΔΔ0-
LBCS rel16	Long Branch if Carry Set (if C = 1)	REL	18 25 qq rr	OPPP/OPO ¹			LDX ppr8a	Load Index Register X	DIR	DE dd	RPf		ΔΔ0-
LBEQ rel16	Long Branch if Equal (if Z = 1)	REL	18 27 qq rr	OPPP/OPO ¹			LDX opr16a		EXT	FE hh ll	RPO		
LBGE rel16	Long Branch Greater Than or Equal (if $N \oplus V = 0$) (signed)	REL	18 2C qq rr	OPPP/OPO ¹			LDX oprx0_xysp LDX oprx9,xysp LDX oprx16,xysp		IDX IDX1 IDX2	EE xb ff EE xb ee ff	RPf RPO fRPP		
LBGT rel16	Long Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	18 2E qq rr	OPPP/OPO ¹			LDX (D,xysp) LDX [D,xysp] LDX [oprx16,xysp]		[D,IDX] [IDX2]	EE xb EE xb ee ff	fIfRPf fIPRPf		
LBHI rel16	Long Branch if Higher (if C + Z = 0) (unsigned)	REL	18 22 qq rr	OPPP/OPO ¹			LDY #opr16i LDY opr8a	(M:M+1) ⇒ Y Load Index Register Y	IMM DIR	CD jj kk DD dd	PO RPf		ΔΔ0-
LBHS rel16	Long Branch if Higher or Same	REL	18 24 qq rr	OPPP/OPO ¹			LDY opr16a		EXT	FD hh ll	RPO		
	(if C = 0) (unsigned)						LDY oprx0_xysp LDY oprx9,xysp		IDX IDX1	ED xb ED xb ff	RPf RPO		
1015 110	same function as LBCC	551		1			LDY oprx16,xysp		IDX1	ED xb ee ff	fRPP		
LBLE rel16	Long Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	18 2F qq rr	OPPP/OPO ¹			LDY [D,xysp] LDY [oprx16,xysp]		[D,IDX] [IDX2]	ED xb ED xb ee ff	fIfRPf fIPRPf		
LBLO rel16	Long Branch if Lower (if C = 1) (unsigned)	REL	18 25 qq rr	OPPP/OPO ¹			LEAS oprx0_xysp	Effective Address ⇒ SP	IDX	1B xb	Pf		
	same function as LBCS						LEAS oprx9,xysp LEAS oprx16,xysp	Load Effective Address into SP	IDX1 IDX2	1B xb ff 1B xb ee ff	PO PP		
LBLS rel16	Long Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	18 23 qq rr	OPPP/OPO ¹			LEAX oprx0_xysp	Effective Address ⇒ X	IDX	1A xb	Pf		
LBLT rel16	Long Branch if Less Than	REL	18 2D qq rr	OPPP/OPO ¹			LEAX oprx9,xysp LEAX oprx16,xysp	Load Effective Address into X	IDX1 IDX2	1A xb ff 1A xb ee ff	PO PP		
LDLU //o	(if N ⊕ V = 1) (signed)	551		1			LEAY oprx0_xysp	Effective Address ⇒ Y	IDX	19 xb	Pf		
LBMI rel16	Long Branch if Minus (if N = 1)	REL	18 2B qq rr	OPPP/OPO ¹			LEAY oprx9,xysp LEAY oprx16,xysp	Load Effective Address into Y	IDX1 IDX2	19 xb ff 19 xb ee ff	PO PP		
LBNE rel16	Long Branch if Not Equal (if Z = 0)	REL	18 26 qq rr	OPPP/OPO ¹			LSL opr16a	—	EXT	78 hh 11	rPwO		ΔΔΔΔ
LBPL rel16	Long Branch if Plus (if N = 0)	REL	18 2A qq rr	OPPP/OPO ¹			LSL oprx0_xysp	□■ □□□□□■□	IDX	68 xb	rPw		
LBRA rel16	Long Branch Always (if 1=1)	REL	18 20 qq rr	OPPP			LSL oprx9,xysp LSL oprx16,xysp	C b7 b0 Logical Shift Left	IDX1 IDX2	68 xb ff 68 xb ee ff	rPwO frPPw		
LBRN rel16	Long Branch Never (if 1 = 0)	REL	18 21 qq rr	OPO 1			LSL [D,xysp]	same function as ASL	[D,IDX]	68 xb	fIfrPw		
LBVC rel16	Long Branch if Overflow Bit Clear (if V=0)	REL	18 28 qq rr	OPPP/OPO ¹			LSL [oprx16,xysp] LSLA	Logical Chift Accumulator A to Left	[IDX2] INH	68 xb ee ff	fIPrPw		
LBVS rel16	Long Branch if Overflow Bit Set (if V = 1)	REL	18 29 qq rr	OPPP/OPO ¹			LSLB	Logical Shift Accumulator A to Left Logical Shift Accumulator B to Left	INH	58	0		
LDAA #opr8i LDAA opr8a	(M) ⇒ A Load Accumulator A	IMM DIR	86 ii 96 dd	P rPf		ΔΔ0-	LSLD	← ←	INH	59	0		ΔΔΔΔ
LDAA opr16a	Load Accumulator A	EXT	B6 hh 11	rPO				□◆ □□□□ ◆ □					
LDAA oprx0_xysp		IDX	A6 xb	rPf				C b7 A b0 b7 B b0					
LDAA oprx9,xysp LDAA oprx16,xysp		IDX1 IDX2	A6 xb ff A6 xb ee ff	rPO frPP				Logical Shift Left D Accumulator same function as ASLD					
LDAA [D,xysp]		[D,IDX]	A6 xb	fIfrPf			LSR opr16a		EXT	74 hh 11	rPwO		0 Δ Δ Δ
LDAA [oprx16,xysp]		[IDX2]	A6 xb ee ff	fIPrPf			LSR oprx0_xysp	0 -	IDX	64 xb	rPw		
	$(M) \Rightarrow B$	IMM	C6 ii	P		ΔΔ0-	LSR oprx9,xysp	b7 b0 C	IDX1	64 xb ff	rPwO		
LDAB opr8a LDAB opr16a	Load Accumulator B	DIR EXT	D6 dd F6 hh 11	rPf rPO			LSR oprx16,xysp LSR [D,xysp]	Logical Shift Right	IDX2 [D,IDX]	64 xb ee ff 64 xb	frPwP fIfrPw		
LDAB oprx0_xysp			E6 xb	rPf			LSR [oprx16,xysp]		[IDX2]	64 xb ee ff	fIPrPw		
LDAB oprx9,xysp			E6 xb ff	rPO			LSRA LSRB	Logical Shift Accumulator A to Right Logical Shift Accumulator B to Right	INH INH	44 54	0		
LDAB oprx16,xysp LDAB [D,xysp]		IDX2 [D,IDX]	E6 xb ee ff E6 xb	frPP fIfrPf				Logical Stillt Accultulator B to Right					0 4 4 4
LDAB [oprx16,xysp]			E6 xb ee ff	fIPrPf			LSRD	0	INH	49	0		0 Δ Δ Δ
LDD #opr16i	(M:M+1) ⇒ A:B	IMM	CC jj kk	PO		ΔΔ0-		b7 A b0 b7 B b0 C					
LDD <i>opr8a</i>	Load Double Accumulator D (A:B)	DIR	DC dd	RPf				Logical Shift Right D Accumulator					
LDD opr16a LDD oprx0_xysp		EXT IDX	FC hh 11 EC xb	RPO RPf			MAXA oprx0_xysp	$MAX((A), (M)) \Rightarrow A$	IDX	18 18 xb 18 18 xb ff	OrPf		ΔΔΔΔ
LDD oprx9,xysp			EC xb ff	RPO			MAXA oprx9,xysp MAXA oprx16,xysp	MAX of 2 Unsigned 8-Bit Values	IDX1 IDX2	18 18 xb ff 18 18 xb ee ff	OrPO OfrPP		
LDD oprx16,xysp		IDX2	EC xb ee ff	fRPP			MAXA [D,xysp]	N, Z, V and C status bits reflect result of		18 18 xb	OfIfrPf		
LDD [D,xysp] LDD [oprx16,xysp]			EC xb EC xb ee ff	fIfRPf fIPRPf			MAXA [oprx16,xysp]	internal compare ((A) – (M)).	[IDX2]	18 18 xb ee ff	OfIPrPf		
	 sinstruction takes four cycles to refill the instruction queue if the	. ,					Note 1. Due to internal CPU requ	uirements, the program word fetch is performed twice to the sam	ne address	during this instruction.		_	
I NOTO 1. OF FEMALES HIS	i manachori takea iour cyclea to refill the manachori queue il the	viaiivii i3 la	akon ana unce cycles II III	C DIGITION IS NOT LANCII.									

Mode Standing Mode Mode Standing Mode	Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12	SXHI	NZVC	Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12	SXHI	NZVC
Section Control Cont	MAXM oprx9,xysp MAXM oprx16,xysp MAXM [D,xysp]	MAX of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of	IDX1 IDX2 [D,IDX]	18 1C xb ff 18 1C xb ee ff 18 1C xb	OrPwO OfrPwP OfIfrPw		ΔΔΔΔ	ORAB opr8a ORAB opr16a ORAB oprx0_xysp ORAB oprx9,xysp		DIR EXT IDX	DA dd FA hh 11 EA xb	rPO rPf		ΔΔ0-
2	MEM		Special	01	RRfOw	?-	????	ORAB [D,xysp]		[D,IDX]	EA xb	fIfrPf		
A		$\mu = MIN[((A) - P1) \times S1, (P2 - (A)) \times S2, FF]$						ORCC #opr8i		IMM	14 ii	P	1 – 11 11	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$
Mink According from Standard squared according and squared s		A = current crisp input value;							Push Accumulator A onto Stack		36			
MAN Agroup Agree MAN Agroup A		Y points at fuzzy input (RAM location).							Push Accumulator B onto Stack					
Mink Agents (agg) Mink		$MIN((A), (M)) \Rightarrow A$					ΔΔΔΔ		Push CCR onto Stack		39	Os		
Manual Companies (A) - (A) Manual Compani	MINA oprx16,xysp		IDX2	18 19 xb ee ff	OfrPP				Push D Accumulator onto Stack					
Mink Gords App Mink 2 bisisped & Bit Values DIV. 1 to 1	MINA [oprx16,xysp]	internal compare ((A) – (M)).	. ,		OfIPrPf		A A A A	41		INH	34	os		
Mink Mink Seption Company	MINM oprx9,xysp MINM oprx16,xysp	MIN of 2 Unsigned 8-Bit Values	IDX1 IDX2	18 1D xb ff 18 1D xb ee ff	OrPwO OfrPwP			PSHY		INH	35	os		
MOVE sports, appeal, sport Move (in Hill) Move (in								PULA	$(M_{(SP)}) \Rightarrow A$; $(SP) + 1 \Rightarrow SP$ Pull Accumulator A from Stack	INH	32	uf0		
MOVE grant yang parties MOVE grant yang	MOVB #opr8i, oprx0_xysp1		IMM-IDX	18 08 xb ii	OPwO			PULB	Pull Accumulator B from Stack	INH	33	uf0		
MAM-EXT agent fail MAM-EXT Separate profile MAM-EXT Separate pro	MOVB opr16a, oprx0_xysp ¹ MOVB oprx0_xysp, opr16a ¹		EXT-IDX	18 09 xb hh 11	OPrPw				Pull CCR from Stack	INH	38	uf0	ΔΨΔΔ	ΔΔΔΔ
Moderation Mod		(M·M+1₁) ⇒ M·M+1₂						PULD	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow A:B; (SP) + 2 \Rightarrow SP$ Pull D from Stack	INH	3A	UfO		
MOVW opnd_ysp, opnd_ysp	MOVW #opr16i, oprx0_xysp ¹ MOVW opr16a, opr16a ¹		IMM-IDX EXT-EXT	18 00 xb jj kk 18 04 hh 11 hh 13	OPPW L ORPWPO			PULX		INH	30	UfO		
MUL S A A B B A B B B B B	MOVW oprx0_xysp, opr16a1		IDX-EXT	18 05 xb hh 11	ORPWP				Pull Index Register Y from Stack	INH	31	UfO		
NEG oprofile NEG oprofile NEG oprofile Negate				12	0		Δ	REV	Find smallest rule input (MIN).	Special	18 3A	(exit + re-entry replaces		??∆?
NEG [D_{NYSP}] O_{NEG}	NEG oprx0_xysp		IDX	60 xb	rPw		ΔΔΔΔ	-	(MAX).					
NEGB Negate Accumulator B No Operation NH A7 O O O O O O O O O	NEG [D,xysp] NEG [oprx16,xysp]	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	[D,IDX] [IDX2]	60 xb 60 xb ee ff	fIfrPw fIPrPw				Each rule output is an 8-bit offset from the base address in Y. \$FE separates rule inputs from rule outputs. \$FF terminates					
NOP No Operation INH A7 O A	NEGB	$0 - (B) \Rightarrow B$ equivalent to $(\overline{B}) + 1 \Rightarrow B$	INH	50	0									
ORAA #opr8i (A) + (M) ⇒ A (IMM BA ii P ΔΔ0 − ORAA opr8a ORAA opr8a ORAA opr8a ORAA opr8a ORAA opr8a ORAA opr8a ORAA oprx0.xysp ORAA oprx0.xysp ORAA oprx0.xysp ORAA oprx0.xysp ORAA oprx16.xysp ORAA oprx16.xysp ORAA oprx16.xysp ORAA (D.xysp) ORAA (D.xysp) ORAA (D.xysp) ORAA (D.xysp) (IDX1 AA xb ff rpp AA xb ee ff frpp ORAA (D.xysp) (IDX2 AA xb ee ff frpp IDX2 AA xb ee ff frpp IDX3 AA xb ee ff frpp IDX4 AA xb ee ff frpp IDX5 AA xb	NOP		INH	A7	0			REVW		Special	18 3B	ORf(t,Tx)O	?-	??∆!
ORAA oprx0_xysp ORAA oprx0_xysp ORAA oprx0_xysp ORAA oprx16,xysp ORAA (D,xysp) ORAA (D,xysp) ORAA [D,xysp] ORAA [Oprx16,xysp] O	ORAA opr8a	$(A) + (M) \Rightarrow A$	DIR	9A dd			ΔΔ0-	-	Store to rule outputs unless fuzzy output is already larger			1, ,	nabled)	
Note 1. The first operand in the source code statement specifies the source for the move.	ORAA oprx0_xysp ORAA oprx9,xysp ORAA oprx16,xysp ORAA [D,xysp]		IDX IDX1 IDX2 [D,IDX]	AA xb AA xb ff AA xb ee ff AA xb	rPf rPO frPP fIfrPf				Each rule input is the 16-bit address of a fuzzy input. Each rule output is the 16-bit address of a fuzzy output. The value			above if interrupted)	comma	
I I KE VW may de inietrupied.	Note 1. The first operand in the so	ource code statement specifies the source for the move.							nates the rule list. REVW may be interrupted.					

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12	ѕхні	NZVC	Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12	SXHI	NZVC
	C b7 b0 Rotate Memory Left through Carry Rotate A Left through Carry Rotate B Left through Carry	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	75 hh 11 65 xb 65 xb ff 65 xb ee ff 65 xb 65 xb ee ff 45 55	rPwO rPw rPwO frPwP fIfrPw fIfrPw O		ΔΔΔΔ	STAA opr16a STAA oprx0_xysp STAA oprx16,xysp STAA oprx16,xysp STAA [D,xysp] STAA [oprx16,xysp]	(A) ⇒ M Store Accumulator A to Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5A dd 7A hh ll 6A xb 6A xb ff 6A xb ee ff 6A xb ee ff	Pw PwO Pw PwO PwP Pifw Pifw		ΔΔ0-
ROR opr16a ROR oprx0_xysp ROR oprx9,xysp ROR oprx16,xysp ROR [D.xysp] ROR [oprx16,xysp]	b7 b0 C Rotate Memory Right through Carry	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH	76 hh 11 66 xb 66 xb ff 66 xb ee ff 66 xb ee ff 46	rPwO rPw rPwO frPwP fIfrPw fIfrPw		ΔΔΔΔ	STAB oprx0_xysp STAB oprx9,xysp STAB oprx16,xysp STAB [D,xysp] STAB [oprx16,xysp]	(B) ⇒ M Store Accumulator B to Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5B dd 7B hh ll 6B xb 6B xb ff 6B xb ee ff 6B xb ee ff	Pw PwO Pw PwO PwP PIfw PIPw		
RORB RTC	Rotate B Right through Carry $(M_{(SP)}) \Rightarrow PPAGE; (SP) + 1 \Rightarrow SP;$ $(M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H:PC_L;$ $(SP) + 2 \Rightarrow SP$	INH	56 0A	0 0 uUnfPPP			STD opr8a STD opr16a STD oprx0_xysp STD oprx9,xysp STD oprx16,xysp	$(A) \Rightarrow M, (B) \Rightarrow M+1$ Store Double Accumulator	DIR EXT IDX IDX1 IDX2	5C dd 7C hh 11 6C xb 6C xb ff 6C xb ee ff	PW PWO PW PWO PWP		ΔΔ0-
RTI	$ \begin{array}{l} \text{Return from Call} \\ \hline (M_{(SP)}) \Rightarrow \text{CCR: (SP)} + 1 \Rightarrow \text{SP} \\ (M_{(SP):}M_{(SP+1)}) \Rightarrow \text{B:A: (SP)} + 2 \Rightarrow \text{SP} \\ (M_{(SP):}M_{(SP+1)}) \Rightarrow X_{H}:X_{L}: (SP) + 4 \Rightarrow \text{SP} \\ (M_{(SP):}M_{(SP+1)}) \Rightarrow \text{PC}_{H}:\text{PC}_{L}: (SP) - 2 \Rightarrow \text{SP} \\ (M_{(SP):}M_{(SP+1)}) \Rightarrow Y_{H}:Y_{L}: (SP) + 4 \Rightarrow \text{SP} \\ \hline \end{array} $	INH	0B	uUUUUPPP (with interrupt pending) uUUUUV£PPP	ΔΨΔΔ	ΔΔΔΔ	STD [D,xysp] STD [oprx16,xysp] STOP	$\begin{split} &(SP)-2\Rightarrow SP;\\ &RTN_H:RTN_L\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP:(Y_H:Y_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP:(X_H:X_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP:(X_H:X_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ \end{split}$	[D,IDX] [IDX2] INH	6C xb 6C xb ee ff 18 3E	PIFW PIPW (entering STOP) OOSSSSsf (exiting STOP)		
RTS	Return from Interrupt $(M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H:PC_L:$ $(SP) + 2 \Rightarrow SP$ Return from Subroutine	INH	3D	UfPPP			-	$(SP) - 2 \Rightarrow SP$; $(B:A) \Rightarrow M(SP)$; $(SP) - 1 \Rightarrow SP$; $(CCR) \Rightarrow M(SP)$; $(SP) - 1 \Rightarrow SP$; $(CCR) \Rightarrow M(SP)$; $(SP) = M(SP)$; $(SP) =$			fvfppp (continue) ff		
SBA	(A) – (B) ⇒ A Subtract B from A	INH	18 16	00		ΔΔΔΔ	,	Registers stacked to allow quicker recovery by interrupt. If S control bit = 1, the STOP instruction is disabled and acts			(if STOP disabled)		
SBCA #opr8i SBCA opr8a SBCA opr16a SBCA oprx0_xysp SBCA oprx9,xysp SBCA oprx16,xysp SBCA [D,xysp] SBCA [oprx16,xysp]	(A) – (M) – C \Rightarrow A Subtract with Borrow from A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	82 ii 92 dd B2 hh 11 A2 xb A2 xb ff A2 xb ee ff A2 xb ee ff A2 xb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf		ΔΔΔΔ	STS opr8a STS opr16a STS oprx0_xysp STS oprx9,xysp STS oprx16,xysp STS [D,xysp] STS [0,prx16,xysp]	like a two-cycle NOP. (SP _H :SP _L) ⇒ M:M+1 Store Stack Pointer	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5F dd 7F hh ll 6F xb 6F xb ff 6F xb ee ff 6F xb ee ff	PW PWO PW PWO PWP PIfW PIPW		ΔΔ0-
SBCB #opr8i SBCB opr8a SBCB opr16a SBCB oprx0_xysp SBCB oprx9,xysp SBCB oprx16,xysp SBCB [D,xysp] SBCB [oprx16,xysp]	(B) – (M) – C \Rightarrow B Subtract with Borrow from B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C2 ii D2 dd F2 hh 11 E2 xb E2 xb ff E2 xb ee ff E2 xb E2 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf		ΔΔΔΔ	STX opr8a STX opr16a STX oprx0_xysp STX oprx9,xysp STX oprx16,xysp STX [D,xysp] STX [D,rx16,xysp] STY [D,rx16,xysp]	$(X_H:X_L) \Rightarrow M:M+1$ Store Index Register X $(Y_H:Y_1) \Rightarrow M:M+1$	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5E dd 7E hh 11 6E xb 6E xb ff 6E xb ee ff 6E xb ee ff 6E xb ee ff	PW PWO PW PWO PWP PIfW PIPW		ΔΔ0-
SEC	1 ⇒ C Translates to ORCC #\$01	IMM	14 01	P		1	STY opr16a STY oprx0_xysp	Store Index Register Y	EXT IDX	7D hh 11 6D xb	PWO PW		
SEI	1 ⇒ I; (inhibit I interrupts) Translates to ORCC #\$10	IMM	14 10	P	1		STY oprx9,xysp STY oprx16,xysp STY [D,xysp]		IDX1 IDX2	6D xb ff 6D xb ee ff 6D xb	PWO PWP PIfW		
SEV	1 ⇒ V Translates to ORCC #\$02	IMM	14 02	P		1-	STY [oprx16,xysp] SUBA #opr8i	$(A) - (M) \Rightarrow A$	[IDX2]	6D xb ee ff 80 ii	PIPW		ΔΔΔΔ
	\$00:(r1) ⇒ r2 if r1, bit 7 is 0 or \$FF:(r1) ⇒ r2 if r1, bit 7 is 1 Sign Extend 8-bit r1 to 16-bit r2 r1 may be A, B, or CCR r2 may be D, X, Y, or SP Alternate mnemonic for TFR r1, r2	INH	B7 eb	P			SUBA opråa SUBA opråa SUBA oprx0_xysp SUBA oprx0_xysp SUBA oprx16,xysp SUBA [D,xysp] SUBA [oprx16,xysp]	Subtract Memory from Accumulator A	DIR EXT IDX IDX1 IDX2 [D,IDX]	90 dd B0 hh 11 A0 xb A0 xb ff A0 xb ee ff A0 xb ee ff	rPf rP0 rPf rP0 frP0 frPp fIfrPf fIPrPf		

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12	SXHI	NZVC
SUBB #opr8i SUBB opr8a SUBB opr16a SUBB oprx0_xysp SUBB oprx9,xysp SUBB oprx16,xysp SUBB [D,xysp] SUBB [oprx16,xysp]	$\begin{array}{l} \text{(B)} - \text{(M)} \Rightarrow \text{B} \\ \text{Subtract Memory from Accumulator B} \end{array}$	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C0 ii D0 dd F0 hh ll E0 xb E0 xb ff E0 xb ee ff E0 xb E0 xb ee ff	P rPf rPO rPf rPO frpp firpp fifrpf fiPrpf		ΔΔΔΔ
SUBD #opr16i SUBD opr8a SUBD opr16a SUBD oprx0_xysp SUBD oprx16,xysp SUBD oprx16,xysp SUBD [D,xysp] SUBD [oprx16,xysp]	(D) – (M:M+1) ⇒ D Subtract Memory from D (A:B)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	83 jj kk 93 dd B3 hh ll A3 xb A3 xb ff A3 xb ee ff A3 xb A3 xb ee ff	PO RPf RPO RPf RPO fRPP fIfRPf fIPRPf		ΔΔΔΔ
SWI	$ \begin{array}{l} (SP) - 2 \Rightarrow SP; \\ RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}; \\ 1 \Rightarrow I; (SWI Vector) \Rightarrow PC \\ Software Interrupt \\ \end{array} $	INH	3F	VSPSSPSsP* (for Reset) VfPPP	11-1	
*The CPU also uses the SWI mici	rocode sequence for hardware interrupts and unimplemented of $(A) \Rightarrow B$	pcode traps	s. Reset uses the VfPPP	variation of this sequence.		4.4.0
IAB	(A) ⇒ B Transfer A to B	IIVH	18 OE	00		ΔΔ0-
TAP	$(A) \Rightarrow CCR$ Translates to TFR A , CCR	INH	B7 02	Р	ΔΨΔΔ	ΔΔΔΔ
ТВА	$ (B) \Rightarrow A $ Transfer B to A	INH	18 OF	00		ΔΔ0-
TBEQ abdxys,rel9	If (cntr) = 0, then Branch; else Continue to next instruction Test Counter and Branch if Zero (cntr = A, B, D, X,Y, or SP)	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)		
TBL oprx0_xysp	(M) + [(B) × ((M+1) − (M))] ⇒ A 8-Bit Table Lookup and Interpolate Initialize B, and index before TBL. <ea> points at first 8-bit table entry (M) and B is fractional part of lookup value. (no indirect addressing modes or extensions allowed)</ea>	IDX	18 3D xb	ORfffp	C Bit is u	
TBNE abdxys,rel9	If (cntr) not = 0, then Branch; else Continue to next instruction Test Counter and Branch if Not Zero (cntr = A, B, D, X,Y, or SP)	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)		
TFR abcdxys,abcdxys	$(r1) \Rightarrow r2 \text{ or}$ $\$00:(r1) \Rightarrow r2 \text{ or}$ $(r1[7:0]) \Rightarrow r2$ Transfer Register to Register r1 and r2 may be A, B, CCR, D, X, Y, or SP	INH	B7 eb	P	 0 Δ \ Δ Δ	
TPA	$(CCR) \Rightarrow A$ Translates to TFR CCR ,A	INH	B7 20	Р		

zvc	Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12	ѕхні	NZVC
ΔΔΔ	TRAP trapnum	$ \begin{array}{l} (SP) - 2 \Rightarrow SP; \\ RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}: \\ 1 \Rightarrow I; (TRAP \ Vector) \Rightarrow PC \end{array} $	INH	18 tn tn = \$30-\$39 or \$40-\$FF	OVSPSSPSsP	1	
$\Delta \Delta \Delta$		Unimplemented opcode trap					
	TST opr16a TST oprx0_xysp TST oprx0_xysp TST oprx16,xysp TST [D,xysp] TST [D,xysp] TST [Oprx16,xysp] TSTA TSTB	(M) – 0 Test Memory for Zero or Minus (A) – 0 Test A for Zero or Minus (B) – 0 Test B for Zero or Minus	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	F7 hh 11 E7 xb E7 xb ff E7 xb ee ff E7 xb ee ff E7 xb ee ff 97 D7	rPO rPf rPo frPP fIfrPf fIPrPf 0		ΔΔ00
	TSX	(SP) ⇒ X Translates to TFR SP,X	INH	B7 75	P		
	TSY	(SP) ⇒ Y Translates to TFR SP,Y	INH	B7 76	P		
	TXS	$(X) \Rightarrow SP$ Translates to TFR X,SP	INH	B7 57	Р		
	TYS	(Y) ⇒ SP Translates to TFR Y,SP	INH	В7 67	P		
Δ0-	WAI	(SP) – 2 ⇒ SP;	INH	3E	OSSSSsf		
Δ Δ Δ Δ 0 -		$\begin{split} RT\dot{N}_H: RTN_L & \to M_{(SP)}: M_{(SP+1)}: \\ (SP) - 2 & \to SP; (Y_H:Y_I) \Rightarrow M_{(SP)}: M_{(SP+1)}: \\ (SP) - 2 & \to SP; (X_H:X_I) \Rightarrow M_{(SP)}: M_{(SP+1)}: \\ (SP) - 2 & \to SP; (B:A) \Rightarrow M_{(SP)}: M_{(SP+1)}: \\ (SP) - 2 & \to SP; (B:A) \Rightarrow M_{(SP)}: M_{(SP+1)}: \\ (SP) - 1 & \to SP; (CCR) \Rightarrow M_{(SP)}: \\ WAIT for interrupt \end{split}$			(after interrupt) fVfPPP	1	or or
$\Delta - \Delta$? ? sfined ? $$	WAV	$\sum_{i=1}^{B} S_i F_i \Rightarrow \textit{Y:D} \qquad \text{and} \qquad \sum_{i=1}^{B} F_i \Rightarrow \textbf{X}$ Calculate Sum of Products and Sum of Weights for Weighted Average Calculation Initialize B, X, and Y before WAV. B specifies number of elements. X points at first element in S_i list. Y points at first element in F_i list. All S_i and F_i elements are 8-bits. If interrupted, six extra bytes of stack used for intermediate values	Special		Of(frr,ffff)O (add if interrupt) SSS + UUUrr,	?-	?^??
	wavr nseudo-	see WAV Resume executing an interrupted WAV instruction (recover in-	Special	3C	UUUrr,ffff (frr,ffff)0	?-	?∆??
	pseudo- instruction	resume executing an interrupted wav instruction (ecover in- termediate results from stack rather than initializing them to zero)			(exit + re-entry replaces above if interrupted) SSS + UUUrr,	comma	
	XGDX	(D) ⇔ (X) Translates to EXG D, X	INH	B7 C5	P		
<u></u>	XGDY	(D) ⇔ (Y) Translates to EXG D, Y	INH	B7 C6	P		