# Proposta de solução do Problema de Dominação de Rainhas Utilizando ILS

# Proposed solution to the Minimum Dominating Set of Queens Problem using ILS

Maria Edoarda Vallim Fonseca

Thales Athayde Santos

2018, v-1.0.0

#### Resumo

Neste artigo, propomos uma solução para o Problema de Dominação de Rainhas usando Busca Iterativa Local e comparamos nossos resultados com uma solução prévia utilizando Algoritmo Genético.

**Palavras-chave**: Problema de Dominação de Rainhas. Busca Iterativa Local. Metaheurística.

#### **Abstract**

In this paper, we propose a solution to the Dominating Set of Queens Problem using Iterative Local Search and compare our results with a previous solution using Genetic Algorithm.

Keywords: Dominating Queen Problem. ILS. Metaheuristic.

Data de submissão e aprovação: elemento obrigatório. Indicar dia, mês e ano Identificação e disponibilidade: elemento opcional. Pode ser indicado o endereço eletrônico, DOI, suportes e outras informações relativas ao acesso.

# 1 Introdução

O problema de dominação de rainhas é muito bem conhecido dentre os problemas de xadrez. Nele, dado um tabuleiro  $n \times n$ , temos n quadrados dispostos nas linhas e n quadrados nas colunas. Quando uma rainha Q é disposta no tabuleiro, ela domina a linha, a coluna, e as diagonais que passam pela sua posição. ?? O objetivo do problema é descobrir a disposição da menor quantidade de rainhas possível de forma à dominar todo o tabuleiro.



Figura 1 – Exemplo da linha de dominação de uma rainha em um tabuleiro de xadrez  $8\times 8$ 

Algoritmos evolucionários provaram ter sucesso para resolver e otimizar uma grande variedade de problemas complexos, incluindo problemas combinatórios, como o estudado aqui, em um tempo computacional razoavelmente aceitável. (??)

Local Search, ou Busca Local, é um método heurístico para resolver problemas computacionalmente difíceis. Busca local pode ser usada em problemas que possam ser formulados como achar a solução maximizando um critério entre várias soluções possíveis. Algoritmos de busca local movem de solução à solução no espaço de soluções possíveis aplicando mudanças locais, até uma solução dita ótima ser encontrada. (??)

Um dos problemas da Busca Local é que ela pode ficar presa em um mínimo local, sem conseguir melhorar seu resultado. Para contornar esse problema, utiliza-se Iterative Local Search, ou Busca Local Iterativa. Essa modificação consiste em iterar sobre chamadas da busca local, cada vez começando de um ponto diferente do conjunto de solução perturbando o mínimo local atual de modo que faça a solução chegar em outro ótimo local. Esta perturbação não pode ser muito forte nem muito fraca, pois corre o risco dela acabar encontrando o mesmo mínimo local ou servir como uma inicialização aleatória. (??)

Neste artigo, propomos uma solução baseada em *Iterative Local Search* para o Problema de Dominação de Rainhas. Nossos resultados serão comparados diretamente com o método descrito em (??), que utiliza Algoritmo Genético e é o mais comumente encontrado para solucionar este problema. Depois disso, iremos debater os resultados alcançados.



Figura 2 — Exemplo de um tabuleiro de tamanho  $8 \times 8$  sendo completamente dominado por quatro rainhas

# 2 Motivação

Decidimos escolher o *Dominating Set of Queens Problem* por ter sido um dos temas abordados por um dos membros do grupo durante as apresentações de trabalho da disciplina, o que nos deu um certo grau de familiaridade com o assunto. Pesquisando mais à fundo, vimos que as soluções mais comuns para a solução do Problema de Dominação de Rainhas eram com *Backtracking* e Algoritmo Genético. Além disso, de acordo com (??), existem muitos artigos procurando os limites superior e inferior do problema, mas não existe muito esforço de pesquisa na busca de soluções práticas para o problema.

Visto essa situação, decidimos propor uma solução baseada em *Iterative Local Search* para o problema e comparar os resultados com uma solução em Algoritmo Guloso.

### 3 Trabalhos Relacionados

Um problema semelhante, proposto em 1850, conhecido como problema das nrainhas teve muitos esforços focados nele para sua solução. O problema das nrainhas é descrito como: dado um tabuleiro  $n \times n$ , qual seria a disposição das rainhas de modo que nenhuma rainha consiga atacar a outra. Houve muita pesquisa em torno deste problema, e suas soluções utilizam desde teoria matemática até teoria dos grafos. O estudo desse tipo de problema pode beneficiar várias áreas como controle de tráfego, prevenção de deadlocks e armazenamento de memória paralela. (??)

Muitas soluções para o problema das n rainhas foram propostas, dentre elas backtracking, redes neurais e algoritmos evolucionários.

Em contrapartida, o problema de dominação de rainhas não recebeu tanta atenção

dentre os pesquisadores das ciências da computação. Na realidade, várias pesquisas se preocuparam em pesquisar o problema porém só adotaram modelos matemáticos. (??) Burger e Mynhart apontaram que o problema de dominação das rainhas é um dos mais difíceis problemas de xadrez. (??) Esse problema é comumente definido como achar o menor número possível de rainhas em um tabuleiro  $n \times n$  que consigam a dominação total do tabuleiro. Esse número é conhecido como número de dominação e sua notação é  $\gamma(\mathbf{Qn})$ . Muitos pesquisadores focaram em descobrir os limites superior e inferior do problema desde a década de 70, e o número mínimo possível de rainhas para solucionar o problema  $(\gamma(\mathbf{Qn}))$  foi calculado para diversos tamanhos de tabuleiro (vide tabela ??) (?????????).

Tabela 1 – Número mínimo de rainhas para dominação total  $\gamma(\mathbf{Qn})$  de um tabuleiro de tamanho n.

# 4 Formulação do Problema

Para este problema ser usado num computador tivemos que fazer as seguintes coisas.

Cada casa do tabuleiro é representada por uma tupla (x, y) onde obviamente x é o eixo x e y é o eixo y. Com isso cada rainha é representada por um (x, y) que é sua posição no tabuleiro.

Para representar um individuo a gente usa um conjunto  $\mathbf{Q} = (\mathbf{x}_1, y_1), (x_2, y_2), ..., (x_n, y_n)$  onde atupla  $(\mathbf{x}_1, y_1), (x_2, y_2), ..., (x_n, y_n)$  onde atupla  $(\mathbf{x}_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ 

A nossa metodologia foi utilisar um *ILS* basico. Ele gera um início randômico, passa ele para o *Local Search*, salva o individuo se o fitness dele for o melhor. Em seguida ele pega esse ultimo individuo gerado pelo *Local Search* e o modifica usando nossa função de *Perturbação* para em seguida enviar esse novo individuo para o *Local Search* fazendo um loop. Este exemplo pode ser visto no Pseudocódigo ??.

#### 5.1 Fitness

Nosso fitness é baseado no fitness do paper de algoritimo genérico (??).

Dado o conjunto D

O ILS começa gerando um inicio randômico, onde ele bota x rainhas no tabuleiro onde x é uma variável do programa. A única restrição deste inicio aléatorio é que duas rainhas não podem ocupar o mesmo quadrado.

Após isso, o inicio randômico é mandado para o *Local Search* que foi implementado vendo a movimentação de cada rainha para cada direção com 1 de distância (direita, esquerda, cima, baixo e diagonais) ??. Motivo desta implementação é o fato de cada possível movimentação virar uma matriz, e não um vetor, contendo todas as posições a um de distancia de cada rainha no tabuleiro. Embora usar um *Local Search* com distâncias maiores gere resultados melhores, isso teria a consequência negativa de aumentar exponencialmente o tempo computacional da execução do algoritmo.



Figura 3 – Exemplo de possiveis movimentações de três rainhas no local search e na perturbação

### Pseudocódigo do ILS

### 6 Resultados

Nossos testes foram rodados em uma máquina Intel Core i5-7200U com 8GB de RAM, usando o sistema operacional Manjaro Linux com o pacote gráfico KDE Plasma. A linguagem de programação utilizada foi Python 3.7.1.

```
Data: population, best
Result: best - Melhor fitness na população
population \leftarrow randomStart();
populationFitness \leftarrow fitness(population);
repeat

| population \leftarrow algoritmoGenetico(population);
| populationFitness \leftarrow fitness(population);
until maxIterações OU \exists populationFitness = 1;
best \leftarrow bestIn(population, populationFitness);
Algorithm 2: Pseudocódigo do Algoritmo Genético utilizado
```

# 7 Conclusão

Text...