

S08.s1 - Representaciones Cromosómicas: Binaria, Real y Permutacional

Algoritmos Evolutivos - 1411-2278

Ms. Ing. Johan Max Alexander López Heredia

INICIO

UNS UNIVERSIDAD NACIONAL DEL SANTA

Codificando Soluciones: El ADN de Nuestros Algoritmos

Actividad inicial (5 minutos):

Imagina que quieres describir un objeto complejo a alguien que no puede verlo:

- ¿Cómo describirías una silla? ¿Usarías palabras, números para las medidas, un dibujo?
- ¿Y si tuvieras que describir una ruta en un mapa? ¿O una combinación de un candado?
- ¿Cambiaría tu descripción según el problema?

Hoy veremos cómo 'describir' o 'codificar' soluciones para que nuestros algoritmos puedan entenderlas y manipularlas.

Logro de Aprendizaje de la Sesión

Al finalizar la sesión, el estudiante diferencia los tipos de representaciones cromosómicas (binaria, real, permutacional) y selecciona la más adecuada para modelar soluciones a problemas de optimización específicos.

UTILIDAD

Dudas Frecuentes / Repaso

- ¿Qué es una 'representación cromosómica'?
 ¿Es como el ADN?
- ¿Por qué no podemos usar siempre números normales?
 - ¿Una forma de representar es mejor que otra?
 - ¿Cómo afecta la representación al funcionamiento del algoritmo?
- ¿Es difícil cambiar de una representación a otra?

Importancia de la Representación

Elegir la representación correcta es uno de los pasos más críticos en el diseño de un Algoritmo Genético porque:

- Define el 'espacio de búsqueda' que el algoritmo explorará.
 - Determina qué operadores genéticos (cruce, mutación) son posibles y efectivos.
- Una buena representación puede hacer que un problema difícil sea mucho más fácil de resolver.
- Una mala representación puede impedir que el algoritmo encuentre buenas soluciones.
- Es el puente entre el problema del mundo real y el lenguaje del algoritmo.

Conectando con Ideas Previas

Recordemos conceptos clave (5 minutos):

- 1. ¿Qué es un 'individuo' o 'solución' en el contexto de los algoritmos que hemos visto? (Una posible respuesta al problema).
- 2. ¿Cómo representamos una solución simple en Python? (Usualmente con una lista o un array).
- 3. En el problema de la mochila, ¿qué significaba un 1 y un 0 en nuestra lista de solución? (Llevar o no llevar un objeto).
 - 4. En el problema del viajante, ¿qué representaba la lista? (El orden de las ciudades a visitar).

Hoy formalizaremos estos tipos de 'codificaciones'.

¿Qué es la Representación Cromosómica?

XY

Es la forma en que codificamos una posible solución a nuestro problema en una estructura de datos que el Algoritmo Genético pueda procesar.

- Gen: La unidad básica de información (un elemento en nuestra lista).
- Cromosoma (o Individuo): Una secuencia de genes que representa una solución completa.
- Alelo: El valor que puede tomar un gen (ej. 0 o 1, un número real, una ciudad).

La elección de la representación depende totalmente de la naturaleza del problema que queremos resolver.

Comparativa de Representaciones

REPRESENTACIÓN BINARIA

- Tipo de Problema: Selección (Sí/No), subconjuntos.
- Ejemplo de Cromosoma: [1, 0, 0, 1, 1]

REPRESENTACIÓN REAL

- Tipo de Problema: Optimización de parámetros, variables continuas.
- Ejemplo de Cromosoma: [3.14, -0.5, 42.0]

REPRESENTACIÓN PERMUTACIONAL

- Tipo de Problema: Ordenamiento, ruteo, secuenciación.
- Ejemplo de Cromosoma: ['C', 'A', 'D', 'B']

La elección correcta simplifica el problema y potencia al algoritmo.

¿Cómo Elegir la Representación Correcta?

Preguntas clave a hacerse:

- 1. ¿CUÁL ES LA NATURALEZA DE LAS VARIABLES DE DECISIÓN?
 - -¿Son decisiones de sí/no? → BINARIA
 - ¿Son números continuos o parámetros? → REAL
 - -¿Es un orden o una secuencia? → PERMUTACIONAL

2. ¿LA REPRESENTACIÓN ES 'NATURAL' PARA EL PROBLEMA?

- Una codificación que se parece a la solución del mundo real suele ser mejor.

3. ¿EXISTEN OPERADORES GENÉTICOS ESTÁNDAR?

- Para las tres que vimos, la respuesta es SÍ, pero son diferentes entre sí.

A veces, se pueden usar representaciones híbridas o más complejas (árboles, etc.) para problemas muy específicos.

Tipo 1: Representación Binaria

Cada gen es un bit (0 o 1).
Es la representación más clásica y simple.

¿Cuándo usarla?

- Problemas de selección (Sí/No).
- Problemas donde las variables pueden ser codificadas en binario.

Ejemplo 1: Problema de la Mochila
5 objetos. ¿Llevar (1) o no llevar (0)?
solucion_mochila = [1, 0, 1, 0, 1]

Ejemplo 2: Optimización de un número entero
Buscar el valor óptimo de x (entero de 0 a 7).
Se puede codificar con 3 bits.
x = 5 --> cromosoma = [1, 0, 1]

Ventajas: Simple, muchos operadores genéticos definidos.
Desventajas: Puede ser poco natural para ciertos problemas (ej. números reales).

Tipo 2: Representación Real (Valor Real)

Cada gen es un número real (flotante).
Muy natural para problemas de optimización de parámetros.

- # ¿Cuándo usarla?
- Cuando las variables de decisión son continuas.
- Ajuste de parámetros en modelos de machine learning.
 - Problemas de ingeniería (diseño, control).

Ejemplo: Encontrar el mínimo de la función f(x, y)# El cromosoma representa un punto (x, y) en el espacio. punto_xy = [3.1416, -2.7182]

Ventajas: Directa, precisa, eficiente para problemas numéricos. # Desventajas: Requiere operadores de cruce y mutación específicos.

Tipo 3: Representación Permutacional

El cromosoma es una permutación de elementos (un ordenamiento). # Cada gen representa un elemento, y su posición en la lista importa.

¿Cuándo usarla?

- Problemas de secuenciación, ordenamiento o ruteo.

Ventajas: Ideal para problemas de orden.

Desventajas: Operadores genéticos deben preservar la permutación (no pueden repetir ni omitir elementos).

PRÁCTICA

Práctica: Eligiendo la Representación Correcta

Actividad en Equipos (Conceptual):

Para cada uno de los siguientes problemas, discutan y decidan qué tipo de representación (Binaria, Real o Permutacional) sería la más adecuada y por qué. Luego, den un ejemplo de cómo se vería un cromosoma.

- 1. Problema: Planificar un horario de clases. Tienes 5 cursos y 5 bloques horarios. Debes asignar cada curso a un bloque horario único.
- 2. Problema: Diseñar una aleación de metal. Debes decidir el porcentaje de 3 metales (Cobre, Zinc, Estaño) en la mezcla. La suma de porcentajes debe ser 100%.
- 3. Problema: Seleccionar qué características de un conjunto de 10 posibles usarás para entrenar un modelo de machine learning.
- 4. Problema: Encontrar los valores de 'a', 'b' y 'c' que minimizan el error de la ecuación $y = ax^2 + bx + c$ para un conjunto de datos.
- Papel y lápiz o editor de texto.
- Tiempo estimado: 20-25 minutos.

CIERRE

Resumen: El ADN de las Soluciones

En esta sesión hemos:

- Definido qué es una representación cromosómica en Algoritmos Genéticos.
- Explorado la Representación Binaria, ideal para problemas de selección (sí/no).
- Analizado la Representación Real, perfecta para problemas con variables continuas (parámetros).
- Comprendido la Representación Permutacional, clave para problemas de ordenamiento y secuenciación (rutas, horarios).
- Practicado cómo elegir la representación más adecuada según la naturaleza del problema.

Reflexionemos:

- 1. ¿Por qué crees que no existe una representación universal que sirva para todos los problemas?
- 2. ¿Qué pasaría si usaras una representación permutacional para un problema de selección como el de la mochila? ¿Sería posible? ¿Sería eficiente?
- ¿Cómo se relaciona la elección de la representación con el principio de formular bien un problema que vimos en primera clase?

CIERRE

¿Dudas sobre Representaciones Cromosómicas?

Ahora es el momento de resolver dudas sobre:

- Las diferencias entre representación binaria, real y permutacional.
- Cuándo usar cada tipo de representación.
- Cómo se vería un cromosoma para un problema específico.
- Las ventajas o desventajas de cada una.
- La relación entre la representación y los operadores que veremos después.

¡Asegurémonos de que esta base fundamental esté clara!

CIEFGFacias por aprender a codificar soluciones!

En la próxima sesión, veremos cómo manipular estos cromosomas con los operadores de selección y cruce.

