COS 210 Worksheet 4	Dylan Kapnias (ul8108467)
Question 1	
A' = A' U A' U A' U VA', Y	ke Z, k > 0 , A = AA
Bosis Step: K-0; A°- E	A3 = AAA An = A A n times
E is regular.	n times
Induction Appothesis: Let	ne Z exist such that A is regular, n>0, n=k
A) - A U A' U A' U U FA U 'A U "A - C
Induction Step: Show not is	V
	A' U A ² U U A ⁿ U A ^{n+ '} A (*)
This is red regular lar	gular as A' is regular (x), A is regular (given) and analyguages are closed under concatenation and union.
	ematical induction Ak is regular for ky,0
Question 2	
	. K
Create Object A = A UA U	
	A [†] - U A ^k
Proof: 0 A is regular (giver 2 Regular languages an	
0 0	
A" - A, m=1, A" - AUA, m=2,	regular
A ^m - A U A U UA , r	
Tending to as: $k \rightarrow \infty$ $\therefore M = \bigcup_{k=1}^{\infty} A^k = A^+$	
Question 3	
(q*baaq*) U (qa*baq*) U (qqa*	ba^)
Questian 4	
(aubuc) acb (aubuc) acb (aubu	c)*acb(aUbUc)*
Question 5	
(CcUd)((aUb)(cUd))*) U	(((cud)(aub))*)