PRÁCTICO 3 - Lógica Combinacional

Minitérminos y maxitérminos para tres variables binarias

			Minitérminos		Maxitérminos		
X	y	Z	Términos	Designación	Términos	Designación	
0	0	0	x'y'z'	m_0	x + y + z	M_0	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	$M_{\scriptscriptstyle A}$	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

Mapas de Karnaugh de 2, 3 y 4 variables:

m_0	m_1	m_3	m_2	
m_4	m_5	m_7	<i>m</i> ₆	
m ₁₂	m ₁₃	m ₁₅	m ₁₄	
m_8	m_9	m ₁₁	m ₁₀	И

\	yz			У
wx	00	01	11	10
00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
11	wxy'z'	wxy'z	wxyz	wxyz'
10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

Programmable Logic Array (PLA):

Leer los siguientes pdf para poder resolver los ejercicios 1 y 2 :

- Practico3_ExpresionesCanonicas.pdf
- Practico3 ImplementacionConNandYNor.pdf
- Practico3_ArregloDeLogicaProgramable.pdf

Estos corresponden a las secciones 2.5, 3.6 y 7.6 (respectivamente) del libro Diseño Digital - Morris Mano - Tercer edición.

Ejercicio 1:

Un detector de paridad impar de 4 entradas y una salida funciona de la siguiente manera: si la cantidad de entradas con valor '1' es impar la salida se pone en '1', en el resto de los casos la salida toma valor '0'.

- a. Construir la tabla de verdad para dicho sistema.
- b. Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos (funciones canónicas).
- c. Implementar el sistema con compuertas NAND de la cantidad de entradas requeridas.
- d. Implementar el sistema con una PLA.

Ejercicio resuelto en el archivo: Practico3_Ej1Resuelto.pdf

Ejercicio 2:

Un sistema digital recibe información en forma de palabras de 5 bits (**ABCDE**) en un código protegido contra errores, de tal forma que cualquier dato que se reciba debe contener 3 y sólo 3 bits en '1'. Diseñar un circuito con las entradas **ABCDE** y una salida **err** que *se activa por bajo* cuando se recibe un dato incorrecto.

- a. Construir la tabla de verdad para dicho sistema.
- b. Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos (funciones canónicas).
- c. Implementar el sistema con una PLA.

Leer el siguiente pdf para poder resolver el ejercicio 3 :

- Practico3_MapaDeKarnaugh.pdf

Estos corresponden a las secciones 3.1 a 3.6 (puede obviarse la sección 3.3) del libro Diseño Digital - Morris Mano - Tercer edición.

Ejercicio 3:

Verificar los resultados obtenidos de cada función lógica en la Guía 2 - Ejercicio 1, mediante la utilización de mapas de Karnaugh, el cual garantiza la obtención de la mínima expresión.

- a. x.y + x.y'
- b. (x + y).(x + y')
- C. x.y.z + x'.y + xyz'
- d. z.x + z.x'.y
- e. (A + B)'.(A' + B')'
- f. y.(w.z' + w.z) + x.y

Ejercicio resuelto en el archivo: Practico3_Ej3Resuelto.pdf

Ejercicio 4:

Dadas la siguientes tablas de verdad para las funciones Fx:

(F1)

х3	x2	x1	x0	F(x3,x2,x1,x0)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

(F2)

х3	x2	x1	x0	F(x3,x2,x1,x0)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

(F3)

x2	x1	x0	F(x2,x1,x0)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- a. Encontrar las expresiones canónicas de cada Fx como suma de minitérminos y como producto de maxitérminos.
- b. Encontrar la expresión minimizada de cada Fx utilizando mapas de Karnaugh.

Ejercicio resuelto (F2) en el archivo: Practico3_Ej4Resuelto.pdf

Ejercicio 5:

Un circuito combinacional comparador toma dos números de 2 bits, $\mathbf{A} = (A_1, A_0)$ y $\mathbf{B} = (B_1, B_0)$ y retorna tres salidas (" $\mathbf{A} > \mathbf{B}$ ", " $\mathbf{A} = \mathbf{B}$ " y " $\mathbf{A} < \mathbf{B}$ ") de 1 bit cada una.

Ej: si A = (00) y B = (10), entonces "A>B" = (0), "A=B" = (0) y "A<B" = (1).

- a. Construir la tabla de verdad para dicho sistema.
- b. Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos.

- c. Encontrar la función minimizada de cada salida como suma de productos usando mapas de Karnaugh.
- d. Implementar el sistema con compuertas lógicas básicas.

Ejercicio resuelto en el archivo: Practico3_Ej5Resuelto.pdf

Leer el siguiente pdf para poder resolver el ejercicio 6:

- Practico3_AnalisisDeCircuitosCombinacionales.pdf

Este corresponden a la sección 4.2 del libro Diseño Digital - Morris Mano - Tercer edición.

Ejercicio 6:

Analizar los circuitos de lógica combinacional de la figura. Para cada uno:

- a. Escribir la función booleana correspondiente.
- b. Encontrar la tabla de verdad para la función obtenida.
- c. Obtener la función minimizada como suma de productos a partir el mapa de Karnaugh.
- d. Dibujar el circuito de lógica combinacional resultante del punto (c).

Leer el siguiente pdf para poder resolver los ejercicios 7 y 8:

- Practico3_Decodificadores.pdf

Este corresponde a la sección 4.8 del libro Diseño Digital - Morris Mano - Tercer edición.

Ejercicio 7:

Un DECODIFICADOR es un circuito combinacional que convierte información binaria de 'N' entradas codificadas (\mathbf{A}), a '2^{N'} salidas <u>únicas</u> (\mathbf{X}). Esto quiere decir que sólo una salida \mathbf{X} está activa y representa el valor de las señales de entrada \mathbf{A} .

Considere un Decodificador activo por bajo (salida activa = '0') con N=2 y 2^N=4 (deco 2 x 4).

- a. Expresar las tablas de verdad de las cuatro salidas X₀, X₁, X₂ y X₃.
- b. Encontrar las expresiones de X₀, X₁, X₂ y X₃ como suma de minitérminos y como producto de maxitérminos.
- c. Encontrar expresiones minimizadas de X_0 , X_1 , X_2 y X_3 utilizando el método de Karnaugh o un método algebraico.
- d. Implementar las expresiones anteriores a través del uso de compuertas lógicas.
- e. Repetir el punto (d) agregando una entrada de HABILITACIÓN (**E**) activa por bajo, de tal forma que cuando **E**='1' ninguna señal de salida permanezca habilitada.

Ejercicio 8:

Implementar un decodificador de $3 \times 8 y$ otro de 4×16 a partir de decodificadores 2×4 activos por bajo, con entrada de habilitación (**E**) activa por bajo y compuertas lógicas.

Ejercicios 7 y 8 resueltos en el archivo: Practico3_Ej7y8Resuelto.pdf

Leer el siguiente pdf para poder resolver el ejercicio 9:

- Practico3_SumadorBinario.pdf

Este corresponde a la sección 4.4 del libro Diseño Digital - Morris Mano - Tercer edición.

Ejercicio 9:

- a. Diseñar un circuito SUMADOR COMPLETO (3 entradas: X, Y, C_{IN}; 2 salidas: S, C_{OUT}) mediante el uso de un Decodificador de salida activa por alto y compuertas OR. Tip: La salida que vale 1 representa el minitérmino equivalente al número binario que está a la entrada.
- b. Diseñar un sumador completo usando dos semisumadores y una compuerta.

Ejercicio 9 resuelto en el archivo: Practico3_Ej9Resuelto.pdf

Leer el siguiente pdf para poder resolver el ejercicio 10:

- Practico3_Multiplexor.pdf

Este corresponde a la sección 4.10 del libro Diseño Digital - Morris Mano - Tercer edición.

Ejercicio 10:

Un MULTIPLEXOR (MUX) es un circuito combinacional que que selecciona información binaria de muchas entradas y la dirige <u>a una única salida (\mathbf{Y})</u>, conforme al estado de las señales de selección. Si un MUX posee ' $2^{N'}$ ' entradas de información (\mathbf{D}) requiere 'N' señales de selección (\mathbf{S}).

- a. Expresar la tabla de verdad de un MUX de 2 entradas (y una salida) y su implementación mediante el uso de compuertas lógicas (AND, OR, NOT, NOR, NAND, etc.)
- b. Mostrar cómo se puede usar un MUX para obtener una compuerta NOT.
- c. ¿Cómo obtener un MUX de 4 entradas (y una salida) en base a multiplexores de 2 entradas?
- d. ¿Cómo obtener un multiplexor de 'N' entradas con multiplexores de 2 entradas?

Ejercicio 10 resuelto en el archivo: Practico3_Ej10Resuelto.pdf