Vertiefungskurs Mathematik

Gleichungen und Ungleichungen

Lösungen für Gleichungen oder Ungleichungen können wir auf unterschiedliche Weisen angeben.

- Aufzählen der Lösungen: $x_1 = 2, x_2 = -3$
- Lösungsmenge in Mengenschreibeweise: $\mathbb{L} = \{2; -3\}$
- Mengenschreibeweise mit einer charakterisierenden Eigenschaft, z.B:

$$\begin{split} \mathbb{L} &= \left\{ k \mid k \in \mathbb{Z} \land -2 \le k < 5 \right\} \\ \mathbb{L} &= \left\{ k \in \mathbb{Z} \mid -2 \le k < 5 \right\} \\ \mathbb{L} &= \left\{ 2k \mid k \in \mathbb{Z} \right\} \end{split}$$

■ Angabe der Lösungsmenge als Intervall: $\mathbb{L} = (-1, 2]$

Polynomgleichungen

Eine reelle Polynomgleichung ist eine Gleichung, die man auf die Form f(x)=0 mit einem Polynom $f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$ mit reellen Koeffzienten $a_i\in\mathbb{R}$ für i=0,...,n und $a_n\neq 0$, bringen kann. Dabei heißt n Grad der Gleichung. Eine reelle Zahl x heißt Lösung der Gleichung, wenn x eine Nullstelle des Polynoms f ist, also f(x)=0 gilt.

Beispiele:

$$\frac{3}{7}x + 5 = \frac{1}{2}$$
, $n = 1$, lineare Gleichung $x^2 - 5x + 2 = 0$, $n = 2$, quadratische Gleichung

Für quadratische Gleichungen $ax^2 + bx + c = 0$ gibt es manchmal schnellere Lösungswege als die Anwendung der Mitternachtsformel.

1. Falls c = 0: Ausklammern und Satz vom Nullprodukt anwenden:

Beispiel: $2x^2-3x=0$. Ausklammern ergibt x(2x-3)=0. Mit dem Satz vom Nullprodukt erhalten wir die Lösungen $x_1=0, x_2=\frac{3}{2}$

2. In der normierten Form (pq-Form) ist a = 0.

Satz von Vieta: Hat die Gleichung $x^2 + px + q = 0$ die Lösungen x_1 und x_2 , so gilt: $x_1 + x_2 = -p$, $x_1 \cdot x_2 = q$

Beispiel: $3x^2 + 3x - 18 = 0$ bringen wir auf die normierte Form $x^2 + x - 6 = 0$. Der Satz von Vieta liefert uns $x_1 = -3, x_2 = 2$.