16164571-Linear Regression

Youtube Views

I first went about this project by researching linear regression and by gaining an understanding of what kind of data it is usually performed on. The data used must be on a continuous measurement scale.

The goal of linear regression is to help predict values of a variable based upon the values of other independent variables.

I choose a dataset based off youtube which is made up of 3 independent input variables. These variables are likes, dislikes and subscribers. This data set also included a dependant variable, views. Using a linear regression model my goal was to predict the views based off these 3 independent variables.

	Likes	Dislikes	Subscribers		Views
0	104460	3365	7300000	0	1988888
1	103203	3570	3300000	1	2617005
2	22485	612	1800000	2	932230
3	23077	1337	465000	3	1165800
4	12315	522	11000000	4	551165
3359	4833	47	465000	3359	193093
3360	118	16	19000	3360	21784
3361	29	2	6100	3361	5427
3362	321	34	3400	3362	150226
3363	143	7	116000	3363	29077

[3364 rows x 3 columns]

[3364 rows x 1 columns]

In the previous slide you can see my model. It is a pretty basic model but is designed in mind with this dataset. My network has no hidden layers and contains just input and output layers.

```
#Defines linear regression model and its structure
model = Sequential()
model.add(Dense(1, input_shape=(3,)))
```

I also added a second model to the project which contained a ReLu activation to see if this would improve the accuracy of my model but it didn't change much

```
model = Sequential()
model.add(Dense(1, input_shape=(3,), activation = 'relu'))
```


From the previous slide we can see how the modules accuracy increased as the loss value decreased when the learning rate of the model was increased over 4 iterations of the model.

There is also a major increase in the R2 score through each iteration. With an increase originally from 0.01 to a score of 0.794 this is showing our model trained to be pretty accurate, just how we wanted it

1:	The	R2	score	on	the	Train set is:	0.011
1:	The	R2	score	on	the	Test set is:	0.023
2:	The	R2	score	on	the	Train set is:	0.323
2:	The	R2	score	on	the	Test set is:	0.339
3:	The	R2	score	on	the	Train set is:	0.77
3:	The	R2	score	on	the	Test set is:	0.795
4:	The	R2	score	on	the	Train set is:	0.805
4:	The	R2	score	on	the	Test set is:	0.794

In our last image we can see the scatter plot of the data with the linear regression model formula showing how it represents the data in an accurate manner

