

Licenciatura em Engenharia Informática e Multimédia (LEIM)

Relatório Trabalho Prático 1

(semana 25/10 e 01/11)

Instituto Superior de Engenharia de Lisboa Licenciatura em Eng^a informática e Multimédia Sensores e Atuadores 2021/2022

Trabalho realizado por:

Rafael Santos (A49722) Pedro Silva (A48965) Daniela Santos (A50032)

Turma: 13D-Grupo B7

Índice de matérias

1.	Introdução/Objetivos2
2.	Valores obtidos no circuito (25/10)
	2.1 Valores teóricos
	2.2 Valores obtidos em laboratório2
	2.3 Valores obtidos na simulação3
3.	Valores obtidos no 1º circuito (01/11)
	3.1 Valores teóricos
	3.2 Valores obtidos em laboratório7
	3.3 Valores obtidos na simulação
4.	Valores obtidos no 2º circuito (01/11)
	4.1 Valores teóricos7
	4.2 Valores obtidos em laboratório7
	4.3 Valores obtidos na simulação
5.	Valores obtidos no 3º circuito (01/11)
	5.1 Valores teóricos
	5.2 Valores obtidos em laboratório7
	5.3 Valores obtidos na simulação
6.	Valores obtidos no 4º circuito (01/11)
	6.1 Valores teóricos
	6.2 Valores obtidos em laboratório7
	6.3 Valores obtidos na simulação7
7.	Conclusão

1. Introdução/Objetivos:

Para este trabalho prático teve-se como objetivo a montagem de cinco circuitos do onde foi necessário medir valores de tensão e corrente em cada caso, comparando-os com os valores teóricos/da simulação obtidos. Para a montagem destes circuitos utilizámos uma breadboard, resistências, potenciómetros, interruptores, LEDs, cabos, a fonte do da bancada e multímetro da bancada.

2. Valores obtidos no circuito (25/10):

2.1 Valores teóricos:

2.2 Valores obtidos em laboratório:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,00	5,95	-29,75
R1	1	5,00	5	25
R2	2,2	2,09	0,95	1,99
R3	3,3	1,09	0,33	0,36
R4	4,7	2,91	0,63	1,80
R5	5,6	1,85	0,33	0,61

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,02	5,96	-29,9
R1	0,99	4,49	5,03	22,5
R2	2,16	1,76	1,09	1,92
R3	3,28	1,21	0,30	0,36
R4	4,68	3,04	0,76	2,31
R5	5,52	1,75	0,32	0,56

2.1 Valores obtidos na simulação:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,00	5,95	-29,75
R1	1	5,00	5	25
R2	2,2	2,09	0,95	1,99
R3	3,3	1,09	0,33	0,36
R4	4,7	2,91	0,63	1,80
R5	5,6	1,85	0,33	0,61

3. Valores obtidos no 1º circuito (01/11):

3.1 Valores teóricos: 3.2 Valores obtidos em laboratório:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,03	100	-5,73
R1	5,6	4,00	4,50	18
R2	2,2	1,00	4,50	4,5
RV	10	5,00	5,50	27,5

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	5	5,03	11,4	-5,73
R1	3,89	3,53	3,46	12,21
R2	1,11	1,54	3,33	5,13
RV	5,03	4,97	6,19	30,76

3.3 Valores obtidos na simulação:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,0	100,0	-5,5
R1	5,6	4,0	4,0	2,4
R2	2,2	1,0	45,0	0,6
RV	10	5,0	55,0	2,5

4. Valores obtidos no 2º circuito (01/11):

Luz a 100%

4.1 Valores teóricos:

4.2 Valores obtidos em laboratório:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,00	100	-500
R3	0,50	0,50	58,1	28,42
R4	10,0	4,50	57,9	261,58
R5	10,0	5,00	42,0	210

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,17	121,1	-626,09
R3	1,0	0,90	68,3	61,47
R4	10,0	4,27	67,7	289,08
R5	10,0	5,15	52,0	267,8

4.3 Valores obtidos na simulação:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,00	100	-500
R3	0,50	0,50	58,3	33,47
R4	10,0	4,50	57,7	289,08
R5	10,0	5,00	52	267,8

Luz a 50%

Valores teóricos:

Valores obtidos em laboratório:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,00	100	-500
R3	3,0	2,65	48,0	127,2
R4	10,0	2,35	48,0	112,8
R5	10,0	5,00	52,0	260

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	4,8	121,1	-1,82
R3	1,50	0,83	57,3	0,32
R4	10,0	4,12	57,3	1,57
R5	10,0	5,00	61,4	0

Valores obtidos na simulação:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,00	100	-500
R3	3,0	2,65	48,0	127,2
R4	10,0	2,35	48,0	112,8
R5	10,0	5,00	52,0	260

Luz a 0%

Valores teóricos:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,00	100	-500
R3	10	2,55	37,5	95,63
R4	10	2,45	37,5	91,88
R5	10	5,00	62,5	312,5

Valores obtidos em laboratório:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,07	121,1	-613,97
R3	10	2,49	49,24	122,60
R4	10	2,30	49,24	113,25
R5	10	5,07	70,18	355,81

Valores obtidos na simulação:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,00	100	-500
R3	10	2,50	35,2	88
R4	10	2,31	35,2	81,31
R5	10	4,56	57,4	261,74

5. Valores obtidos no 3º circuito (01/11):

5.1 Valores teóricos:

Para Vdc = 2,5V:

Para Vdc = 5V:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	2,50	10,0	-250
R6	100	0,58	10,0	58
RV	100	0,12	10,0	12
D1	50	2,50	10,0	250

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,00	10,0	-500
R6	100	3,80	10,0	380
RV	100	0,20	10,0	20
D1	35	5,00	10,0	500

5.2 Valores obtidos em laboratório:

Para Vdc = 2,5V:

Para Vdc = 5V:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	2,50	12,1	-302,8
R6	100	0,45	12,1	54,49
RV	100	0,05	12,1	6,05
D1	48	2,00	12,1	242,2

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,0	12,1	-605,5
R6	100	2,8	12,1	339,08
RV	100	0,1	12,1	12,11
D1	34	2,1	12,1	254,31

O valor de tensão para o qual o LED acende é 1,8V

5.3 Valores obtido na simulação:

Para Vdc = 2,5V:

Para Vdc = 5V:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	2,50	10,0	-250
R6	100	0,55	10,0	55
RV	100	0,10	10,0	10
D1	47	2,20	10,0	220

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,00	10,0	-500
R6	100	3,76	10,0	376
RV	100	0,18	10,0	18
D1	34	4,20	10,0	420

6. Valores obtidos no 4º circuito (01/11):

6.1 Valores teóricos:

Posição 1:

Posição 3

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,0	11,12	-55,6
R7	2,2	2,90	11,12	32,25
D2	50	2,00	11,12	22,32

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	0	\	\
R7	2,2	0	\	\
D2	50	0	\	\

6.2 Valores obtidos em laboratório:

Posição 1:

Posição 3:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	5,10	11,14	-56,81
R7	2,4	2,86	11,14	31,86
D2	46	1,92	11,14	21,39

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	0	\	\
R7	2,4	0	\	\
D2	46,0	0	\	\

6.3 Valores obtidos na simulação:

Posição 1:

P(mW) R(kΩ) I(mA) V(v) 11,15 Vdc 5,00 -57,5 2,2 2,97 11,15 33,12 **R7** 2,00 **50** 11,15 22,3 **D2**

Posição 3:

	R(kΩ)	V(v)	I(mA)	P(mW)
Vdc	\	0	\	\
R7	2,2	0	\	\
D2	50,0	0	\	\

7. Conclusão:

A elaboração do presente trabalho prático decorreu sem muitas dificuldades, sendo que alguns valores medidos em laboratório diferiram um pouco dos valores obtidos de forma teórica e em simulação, isto ocorreu devido a erros experimentais já que existe uma certa sensibilidade nos aparelhos utilizados.

Ao longo do trabalho podemos então tirar diversas conclusões e realizar comparações para cada circuito. Os valores obtidos no circuito da semana de 25 de outubro foram bastante semelhantes aos obtidos em simulação, isto verificou-se também para os restantes circuitos da semana de 1 de novembro.

Numa avaliação global do que foi conseguido, consideramos que os objetivos principais foram atingidos com sucesso, sendo o trabalho bem realizado com uma divisão de tarefas igualitária entre os membros do grupo e usufruindo das aulas com o docente de laboratório que contribuíram bastante para aplicar os nossos conhecimentos num meio mais prático.