HW 6

肖桐 PB18000037

2020年11月1日

解 1. 为 S,L 引入一个继承属性 inh 和一个综合属性 syn.

继承属性 *inh* 表示由当前文法符号推出的字符串的第一个字符, 所在当前句子中的位置. 综合属性 *syn* 表示由当前文法符号推出的字符串的最后一位字符, 所在当前句子中的位置. 可以得到增广文法的语法制导定义为:

表 1: 语法制导定义

14141111111111111111111111111111111111
语义规则
S.inh = A.syn
A.syn = 0
B.inh = S.inh + 1
L.inh = B.syn
S.syn = L.syn + 1
B.syn = B.inh
S.syn = a.syn
printf(S.inh)
$L_1.inh = L.inh$
$C.inh = L_1.syn + 2$
S.inh = C.syn
L.syn = S.syn
C.syn = C.inh
S.inh = L.inh
L.syn = S.syn

转化为栈操作代码为:

表 2: 栈操作代码

	衣 Z: 伐採作八吗
产生式	栈操作代码
$S' \to AS$	val[top - 1] = val[top]
$A \to \varepsilon$	val[top+1] = 0
$S \to (BL)$	val[top - 3] = val[top - 1] + 1
$B \to \varepsilon$	val[top + 1] = val[top - 2] + 1
$S \rightarrow a$	printf(val[top])
$L \to L_1, CS$	val[top - 3] = val[top]
$C \to \varepsilon$	val[top + 1] = val[top - 2] + 2
$L \to S$	

解 2. (1). 为非终结符 P,D 引入一个综合属性 num, 用于记录 id 的个数.则可以写出语法制导定义如下:

表 3: 语法制导定义

	<u> </u>
产生式	语义规则
P o D	P.num = D.num
	print f(P.num)
$D \to D_1 \; ; \; D_2$	$D.num = D_1.num + D_2.num$
$D \rightarrow id : T$	D.num = 1
$D \to proc \ id \ ; \ D_1 \ ; \ S$	$D.num = D_1.num + 1$

(2). 为了打印每一个 id 的嵌套深度, 需要为非终结符 D 增加一个继承属性 depth, 用于记录嵌套深度. 可以得到语法制导定义如下:

表 4: 语法制导定义

产生式	语义规则
P o D	D.depth = 1
$D o D_1 \; ; \; D_2$	$D_1.depth = D.depth + 1$
	$D_2.depth = D.depth + 1$
$D \rightarrow id : T$	printf(D.depth)
$D \to proc \ id \ ; \ D_1 \ ; \ S$	$D_1.depth = D.depth + 1$
	printf(D.depth)

对应的翻译方案为:

表 5: 翻译方案

$P \to \{D.depth = 1;\}\ D$		
$D \rightarrow \{D_1.depth = D.depth + 1;\} D_1; \{D_2.depth = D.depth + 1;\} D_2$		
$D \rightarrow id \{printf(D.depth);\} : T$		
$D \rightarrow proc \ id \ \{printf(D.depth); \} ; \ \{D_1.depth = D.depth + 1; \} \ D_1 ; \ S$		