STAT 3690 Lecture Note

Week Six (Feb 13, 15, & 17, 2023)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2023/Feb/16 23:46:35

Inference on μ under the normality assumption (con'd)

Testing μ (J&W Sec. 5.2 & 5.3, con'd)

```
• Sample X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{MVN}_p(\mu, \Sigma), n > p
          - \mathcal{X} = \{\boldsymbol{X}_1, \dots, \boldsymbol{X}_n\}
```

- $H_0: \mu = \mu_0 \text{ v.s. } H_1: \mu \neq \mu_0$
- Multivariate case (with unknown Σ)
 - Name of approach: LRT
 - Test statistic: $T(\mathcal{X}) = n(\bar{X} \mu_0)^{\top} \mathbf{S}^{-1} (\bar{X} \mu_0) \ (\sim T^2(p, n-1) = \frac{(n-1)p}{n-p} F(p, n-p) \text{ under } H_0)$
 - Level α rejection region (with respect to $T(\mathcal{X})$): $R_{\alpha} = \{T(\mathcal{X}) : \frac{n-p}{p(n-1)}T(\mathcal{X}) \geq F_{1-\alpha,p,n-p}\}$, i.e., reject H_0 if $T(\mathcal{X}) \geq \frac{p(n-1)}{n-p} F_{1-\alpha,p,n-p}$ * $F_{1-\alpha,p,n-p}$: the $(1-\alpha)$ -quantile of F(p,n-p)- p-value: $p(\mathcal{X}) = 1 - F_{F(p,n-p)} \{ \frac{n-p}{p(n-1)} T(\mathcal{X}) \}$
 - - * $F_{F(p,n-p)}$: the cdf of F(p,n-p)

```
options(digits = 4)
install.packages(c("dslabs"))
library(dslabs)
data("gapminder")
dataset = as.matrix(gapminder[
  !is.na(gapminder$infant_mortality),
  c("infant_mortality", "life_expectancy", "fertility")])
(mu_hat <- colMeans(dataset))</pre>
\# Test mu = mu_0
mu_0 \leftarrow c(25, 50, 3)
n = nrow(dataset)
p = ncol(dataset)
(test.stat <- drop(</pre>
 n * t(mu_hat - mu_0) %*% solve(cov(dataset)) %*% (mu_hat - mu_0)
(cri.point = (n-1)*p/(n-p)*qf(.95, p, n-p))
```

```
test.stat >= cri.point
(p.val = 1-pf((n-p)/(n-1)/p*test.stat, p, n-p))
```

• Report: Testing hypotheses $H_0: \boldsymbol{\mu} = [25, 50, 3]^{\top}$ v.s. $H_1: \boldsymbol{\mu} \neq [25, 50, 3]^{\top}$, we carried on the LRT and obtained 249718 as the value of test statistic with $[7.819,\infty)$ as the corresponding level .05 rejection region. In addition, the p-value was almost 0. So, at the .05 level, there was a strong statistical evidence implying the rejection of H_0 , i.e., we believed that the population mean vector was not $[25, 50, 3]^{\top}$.

$(1-\alpha) \times 100\%$ confidence region (CR) for μ (J&W Sec. 5.4)

- $\Pr\{(1-\alpha) \times 100\% \text{ CR covers } \boldsymbol{\mu}\} \ge 1-\alpha$
 - CR is a set made of observations and is hence random
 - $-\mu$ is fixed
 - $-(1-\alpha)\times 100\%$ CR covers μ with probability at least $(1-\alpha)\times 100\%$
- Inverted from the level α rejection region for $H_0: \mu = \mu_0$ v.s. $H_1: \mu \neq \mu_0$. Specifically,
 - 1. Take the rejection region as a function of μ_0 ;
 - 2. Replace μ_0 with μ ;
 - 3. Take the complement.
- Eventually, $(1 \alpha) \times 100\%$ CR

 - $$\begin{split} & = \{ \boldsymbol{\mu} : n(\bar{\boldsymbol{x}} \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\boldsymbol{x}} \boldsymbol{\mu}) < \chi^2_{1-\alpha,p} \} \text{ if } \boldsymbol{\Sigma} \text{ is known} \\ & = \{ \boldsymbol{\mu} : \frac{n(n-p)}{p(n-1)} (\bar{\boldsymbol{x}} \boldsymbol{\mu})^{\top} \mathbf{S}^{-1} (\bar{\boldsymbol{x}} \boldsymbol{\mu}) < F_{1-\alpha,p,n-p} \} \text{ if } \boldsymbol{\Sigma} \text{ is not known} \end{split}$$

Testing $A\mu$ (J&W pp. 279)

- **A** is of $q \times p$ and $\operatorname{rk}(\mathbf{A}) = q$, i.e., $\mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top} > 0$
- Known: iid $\mathbf{A} \mathbf{X}_i \sim \text{MVN}_q(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^\top)$.
- LRT for $H_0: \mathbf{A}\boldsymbol{\mu} = \boldsymbol{\nu}_0$ v.s. $H_1: \mathbf{A}\boldsymbol{\mu} \neq \boldsymbol{\nu}_0$
 - Test statistic: $T(\mathcal{X}) = n(\mathbf{A}\bar{\mathbf{X}} \boldsymbol{\nu}_0)^{\top}(\mathbf{A}\mathbf{S}\mathbf{A}^{\top})^{-1}(\mathbf{A}\bar{\mathbf{X}} \boldsymbol{\nu}_0) \ (\sim T^2(q, n-1) = \frac{(n-1)q}{n-q}F(q, n-q))$
 - Level α rejection region (with respect to $T(\mathcal{X})$): $R_{\alpha} = \{T(\mathcal{X}) : \frac{n-q}{q(n-1)}T(\mathcal{X}) \geq F_{1-\alpha,q,n-q}\}$
 - p-value: $p(\mathcal{X}) = 1 F_{F(q,n-q)}\left\{\frac{n-q}{q(n-1)}T(\mathcal{X})\right\}$
- Multiple comparison
 - Interested in $H_0: \mu_1 = \cdots = \mu_p$ v.s. $H_1:$ Not all entries of μ are equal. * μ_k : the kth entry of μ
 - Take

$$u_0 = \mathbf{0}_{(p-1)\times 1}, \quad \mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 1 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & -1 \end{bmatrix}_{(p-1)\times p}.$$

-p=2 (i.e., $\mathbf{A}=[1,-1]$): the case of A/B testing

```
options(digits = 4)
install.packages(c("dslabs",'tidyverse'))
library(dslabs)
library(tidyverse)
data("gapminder")
dataset = gapminder[
  !is.na(gapminder$infant mortality) &
    gapminder$region == 'South America' &
```

```
gapminder$year %in% 2000:2008,
  c('country', 'year', "life_expectancy")] %>%
  spread(year, life_expectancy)
(dataset = as.matrix(dataset[, -1]))
n = nrow(dataset); p = ncol(dataset)
(mu_hat <- colMeans(dataset))</pre>
# Test HO:A %*% mu = nu O
(nu 0 \leftarrow as.matrix(rep(0, p-1)))
(A = cbind(rep(1, p-1), -diag(p-1)))
(test.stat <- drop(</pre>
  n * t(A %*% mu_hat - nu_0) %*%
    solve(A %*% cov(dataset) %*% t(A)) %*%
    (A %*% mu_hat - nu_0)
))
(cri.point = (n-1)*(p-1)/(n-p+1)*qf(.95, p-1, n-p+1))
test.stat >= cri.point
(p.val = 1-pf((n-p+1)/(n-1)/(p-1)*test.stat, p-1, n-p+1))
```

• Report: Testing hypotheses H_0 : the average life expectancy over south american countries doesn't vary with time v.s. H_1 : otherwise, we carried on the LRT and obtained 628.5 as the value of test statistic and $[132.9, \infty)$ as the corresponding level .05 rejection region. In addition, the p-value was .002858. So, at the .05 level, there was a strong statistical evidence against H_0 , i.e., we believed that the average life expectancy over south american countries does vary with time.

```
(1-\alpha) \times 100\% CR for \nu = A\mu
```

- $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{MVN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with unknown $\boldsymbol{\Sigma}$ and n > p
- **A** is of $q \times p$ and $\operatorname{rk}(\mathbf{A}) = q$, i.e., $\mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top} > 0$
- Then iid $\mathbf{A} \mathbf{X}_i \sim \text{MVN}_q(\boldsymbol{\nu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^\top)$
- $(1-\alpha) \times 100\%$ CR for ν is $\{\nu : \frac{n(n-q)}{q(n-1)} (\mathbf{A}\bar{x} \nu)^{\top} (\mathbf{A}\mathbf{S}\mathbf{A}^{\top})^{-1} (\mathbf{A}\bar{x} \nu) < F_{1-\alpha,q,n-q} \}$
- Special case: $\mathbf{A} = \boldsymbol{a}^{\top} \in \mathbb{R}^{1 \times p}$, i.e., \mathbf{A} is a row vector. Then
 - $-(1-\alpha) \times 100\%$ confidence interval (CI) for scalar $\nu = \boldsymbol{a}^{\top} \boldsymbol{\mu}$ is $\{\nu : n(\boldsymbol{a}^{\top} \bar{\boldsymbol{x}} \nu)^2/(\boldsymbol{a}^{\top} \mathbf{S} \boldsymbol{a}) < F_{1-\alpha,1,n-1}\}$, i.e.,

$$\left(\boldsymbol{a}^{\top}\bar{\boldsymbol{x}} - t_{1-\alpha/2,n-1}\sqrt{\boldsymbol{a}^{\top}\mathbf{S}\boldsymbol{a}/n}, \quad \boldsymbol{a}^{\top}\bar{\boldsymbol{x}} + t_{1-\alpha/2,n-1}\sqrt{\boldsymbol{a}^{\top}\mathbf{S}\boldsymbol{a}/n}\right)$$

- * E.g., when $\mathbf{A} = [1, 0, \dots, 0]$, it is the CI for the first entry of $\boldsymbol{\mu}$, say μ_1
- Checking the coverage probability of the previous CI for each μ_k

```
options(digits = 4)
install.packages(c("MASS"))
set.seed(1)
B = 5e3L
n = 5e2L
Mu = (1:10)^2; (p = length(Mu))
(Sigma = diag(p)+.5)
alpha <- .05
(A = diag(p))</pre>
```

```
cover = matrix(0, ncol = p, nrow = B)
for (b in 1:B){
  sample = MASS::mvrnorm(n, Mu, Sigma)
  mu_hat = colMeans(sample)
  sample_cov = cov(sample)
  LB = A %*% mu_hat - qt(1-alpha/2, n-1)* sqrt(diag(A %*% sample_cov %*% t(A))/n)
  RB = A %*% mu_hat + qt(1-alpha/2, n-1)* sqrt(diag(A %*% sample_cov %*% t(A))/n)
  cover[b,] = (LB < Mu) * (Mu < RB)
}
(cover_prob_indiv = colMeans(cover))
(cover_prob_simul = mean(apply(cover, 1, prod)))</pre>
```

Simultaneous confidence intervals

- Interested in $(1 \alpha_k) \times 100\%$ CIs for scalars $\boldsymbol{a}_k^{\top} \boldsymbol{\mu}$, say CR_k , $k = 1, \dots, m$, simultaneously
- Make sure $\Pr(\bigcap_{k} \{ \boldsymbol{a}_{k}^{\top} \boldsymbol{\mu} \in \operatorname{CR}_{k} \}) \geq 1 \alpha$
- Bonferroni correction
 - Bonferroni inequality (optional):

$$\Pr(\bigcap_{k=1}^{m} \{\boldsymbol{a}_{k}^{\top} \boldsymbol{\mu} \in \operatorname{CR}_{k}\}) = 1 - \Pr(\bigcup_{k=1}^{m} \{\boldsymbol{a}_{k}^{\top} \boldsymbol{\mu} \notin \operatorname{CR}_{k}\}) \ge 1 - \sum_{k=1}^{m} \Pr(\boldsymbol{a}_{k}^{\top} \boldsymbol{\mu} \notin \operatorname{CR}_{k}) = 1 - \sum_{k=1}^{m} \alpha_{k}$$

– Taking α_k such that $\alpha = \sum_{k=1}^m \alpha_k$, e.g., $\alpha_k = \alpha/m$, i.e.,

$$(\boldsymbol{a}_k^{\top}\bar{\boldsymbol{x}} - t_{1-\alpha/(2m),n-1}\sqrt{\boldsymbol{a}_k^{\top}\mathbf{S}\boldsymbol{a}_k/n}, \quad \boldsymbol{a}_k^{\top}\bar{\boldsymbol{x}} + t_{1-\alpha/(2m),n-1}\sqrt{\boldsymbol{a}_k^{\top}\mathbf{S}\boldsymbol{a}_k/n})$$

- Appropriate for small m
- Scheffé's method
 - Let $CI_{\boldsymbol{a}} = (\boldsymbol{a}^{\top}\bar{\boldsymbol{x}} c\sqrt{\boldsymbol{a}^{\top}\mathbf{S}\boldsymbol{a}/n}, \boldsymbol{a}^{\top}\bar{\boldsymbol{x}} + c\sqrt{\boldsymbol{a}^{\top}\mathbf{S}\boldsymbol{a}/n})$ for all $\boldsymbol{a} \in \mathbb{R}^p$. Then we may find that $c = \sqrt{p(n-1)(n-p)^{-1}F_{1-\alpha,p,n-p}}$.
 - Derivation by Cauchy-Schwarz inequality (optional): $\{\boldsymbol{a}^{\top}(\bar{\boldsymbol{x}}-\boldsymbol{\mu})\}^2 = [(\mathbf{S}^{1/2}\boldsymbol{a})^{\top}\{\mathbf{S}^{-1/2}(\bar{\boldsymbol{x}}-\boldsymbol{\mu})\}]^2 \leq \{(\boldsymbol{a}^{\top}\mathbf{S}\boldsymbol{a})^{\top}/n\}\{n(\bar{\boldsymbol{x}}-\boldsymbol{\mu})^{\top}\mathbf{S}^{-1}(\bar{\boldsymbol{x}}-\boldsymbol{\mu})\} \Rightarrow$

$$\Pr(\bigcap_{k=1}^{m} \{\boldsymbol{a}_{k}^{\top} \boldsymbol{\mu} \in \operatorname{CI}_{k}\}) \ge \Pr(\bigcap_{\boldsymbol{a} \in \mathbb{R}^{p}} \{\boldsymbol{a}^{\top} \boldsymbol{\mu} \in \operatorname{CI}_{\boldsymbol{a}}\}) = 1 - \Pr(\bigcup_{\boldsymbol{a} \in \mathbb{R}^{p}} \{\boldsymbol{a}^{\top} \boldsymbol{\mu} \notin \operatorname{CI}_{\boldsymbol{a}}\})$$

$$= 1 - \Pr(\bigcup_{\boldsymbol{a} \in \mathbb{R}^{p}} [\{\boldsymbol{a}^{\top} (\bar{\boldsymbol{X}} - \boldsymbol{\mu})\}^{2} / \{(\boldsymbol{a}^{\top} \mathbf{S} \boldsymbol{a})^{\top} / n\} > c^{2}])$$

$$\ge 1 - \Pr(\{n(\bar{\boldsymbol{X}} - \boldsymbol{\mu})^{\top} \mathbf{S}^{-1} (\bar{\boldsymbol{X}} - \boldsymbol{\mu}) > c^{2}\})$$

Assume $\Pr(\{n(\bar{X} - \mu)^{\top} \mathbf{S}^{-1}(\bar{X} - \mu) > c^2\}) = \alpha$ and obtain $c = \sqrt{p(n-1)(n-p)^{-1}F_{1-\alpha,p,n-p}}$. Appropriate for large even infinite m

```
c('infant_mortality', "life_expectancy")]
dataset = as.matrix(dataset)
n = nrow(dataset); p = ncol(dataset)
alpha < - .05
a1 = c(1,0); a2 = c(0,1)
A = rbind(a1, a2)
(mu hat <- colMeans(dataset))</pre>
(sample cov <- cov(dataset))</pre>
# Simultaneous CIs without correction
c = qt(1-alpha/2, n-1)
(NOcorrection <- cbind(
    A \%*\% mu_hat - c * sqrt(diag(A \%*\% sample_cov \%*\% t(A))/n),
    A %*% mu_hat + c * sqrt(diag(A %*% sample_cov %*% t(A))/n)
))
# Simultaneous CIs with Bonferroni correction
m = nrow(A)
c = qt(1-alpha/2/m, n-1)
(Bonferroni <- cbind(
    A %*\% mu_hat - c * sqrt(diag(A %*\% sample_cov %*\% t(A))/n),
    A %*% mu_hat + c * sqrt(diag(A %*% sample_cov %*% t(A))/n)
))
# Simultaneous CIs with Scheffe correction
c = sqrt(p*(n-1)/(n-p) * qf(1-alpha, p, n-p))
(Scheffe <- cbind(
    A %*% mu_hat - c * sqrt(diag(A %*% sample_cov %*% t(A))/n),
    A \%*\% mu_hat + c * sqrt(diag(A \%*\% sample_cov \%*\% t(A))/n)
))
```

• Report: After the Bonferroni correction, the resulting CIs (21.82, 29.82) and (69.92, 72.70) cover the mean infant mortality and mean life expectancy, simultaneously, with probability at least 95%.

The confidence region for $\boldsymbol{\mu} = [\mu_1, \dots, \mu_p]^{\top}$ vs. simultaneous confidence intervals for μ_1, \ldots, μ_p

```
• X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{MVN}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}) with known \boldsymbol{\Sigma} and n > p
```

- $(1-\alpha) \times 100\%$ CR for μ : $\{ \boldsymbol{\mu} : n(\bar{\boldsymbol{x}} \boldsymbol{\mu})^{\top} \mathbf{S}^{-1} (\bar{\boldsymbol{x}} \boldsymbol{\mu}) < \frac{p(n-1)}{n-n} F_{1-\alpha,p,n-p} \}$
 - CR covering μ with a probability at least $1-\alpha$
 - With a coverage probability closer to $(1 \alpha) \times 100\%$
- $(1-\alpha) \times 100\%$ simultaneous CI_k for μ_k : $(\bar{x}_k c\sqrt{S_{kk}/n}, \bar{x}_k + c\sqrt{S_{kk}/n})$ with \bar{x}_k the kth entry of $\bar{\boldsymbol{x}}$ and S_{kk} the (k,k)-th entry of \mathbf{S}

$$-c = \sqrt{\frac{p(n-1)}{n-p}} F_{1-\alpha,p,n-p}$$
 (Scheffé) and $t_{1-\alpha/(2p),n-1}$ (Bonferroni) $-\operatorname{CI}_1 \times \cdots \times \operatorname{CI}_p$ covering μ with a probability at least $1-\alpha$

- Clearly indicating the range for each μ_k

Comparing two population mean vectors (J&W Sec. 6.3)

- Two independent samples following two distributions with equal covariance
 - $-X_{11},\ldots,X_{1n_1}\stackrel{\mathrm{iid}}{\sim}\mathrm{MVN}_p(\mu_1,\Sigma)$ $egin{aligned} &- oldsymbol{X}_{21}, \ldots, oldsymbol{X}_{2n_2} & \overset{ ext{iid}}{\sim} \operatorname{MVN}_p(oldsymbol{\mu}_2, oldsymbol{\Sigma}) \end{aligned}$
- Let \bar{X}_i and S_i be the sample mean and sample covariance for the *i*th sample, i = 1, 2.
- Hypotheses $H_0: \mu_1 = \mu_2$ v.s. $H_1: \mu_1 \neq \mu_2$
- Test statistic following LRT

$$T(\mathcal{X}) = (\bar{\boldsymbol{X}}_1 - \bar{\boldsymbol{X}}_2)^{\top} \{ (n_1^{-1} + n_2^{-1}) \mathbf{S}_{\text{pool}} \}^{-1} (\bar{\boldsymbol{X}}_1 - \bar{\boldsymbol{X}}_2) \sim \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - p - 1} F(p, n_1 + n_2 - p - 1)$$

-
$$\mathbf{S}_{\text{pool}} = \frac{(n_1 - 1)\mathbf{S}_1 + (n_2 - 1)\mathbf{S}_2}{n_1 + n_2 - 2}$$

• Level α rejection region

$$\left\{ T(\mathcal{X}) : T(\mathcal{X}) \ge \frac{p(n_1 + n_2 - 2)}{n_1 + n_2 - p - 1} F_{1-\alpha, p, n_1 + n_2 - p - 1} \right\}$$

• p-value

$$1 - F_{F_{1-\alpha,p,n_1+n_2-p-1}} \left[\frac{n_1 + n_2 - p - 1}{p(n_1 + n_2 - 2)} T(\mathcal{X}) \right]$$

• Report: Testing hypotheses H_0 : in 2012 Asia and Africa shared the identical mean value in both infant mortality and life expectancy v.s. H_1 : otherwise, we carried on the LRT and obtained 87.65 as the value of test statistic and $[6.255,\infty)$ as the corresponding rejection region. In addition, the p-value was 4.952e-14. So, at the .05 level, there was a strong statistical evidence against H_0 , i.e., we rejected H_0 and believed that in 2012 Asia and Africa didn't share the identical mean value in either infant mortality or life expectancy.

Testing for equality of population means (one-way multivariate analysis of variance (1-way MANOVA), J&W Sec. 6.4)

- Generalization of two-sample problem
 - Model: m independent samples, where

$$* \ oldsymbol{X}_{11}, \ldots, oldsymbol{X}_{1n_1} \overset{ ext{iid}}{\sim} ext{MVN}_p(oldsymbol{\mu}_1, oldsymbol{\Sigma})$$

*
$$\boldsymbol{X}_{m1}, \dots, \boldsymbol{X}_{mn_m} \overset{\text{iid}}{\sim} \text{MVN}_p(\boldsymbol{\mu}_m, \boldsymbol{\Sigma})$$
- Hypotheses $H_0: \boldsymbol{\mu}_1 = \dots = \boldsymbol{\mu}_m$ v.s. $H_1:$ otherwise

- Alternatively
 - Model: m independent samples, where

$$* \ oldsymbol{X}_{11}, \dots, oldsymbol{X}_{1n_1} \overset{ ext{iid}}{\sim} ext{MVN}_p(oldsymbol{\mu} + oldsymbol{ au}_1, oldsymbol{\Sigma})$$

$$oldsymbol{X}_{m1},\ldots,oldsymbol{X}_{mn_m}\overset{ ext{iid}}{\sim} ext{MVN}_p(oldsymbol{\mu}+oldsymbol{ au}_m,oldsymbol{\Sigma})$$

- * $X_{m1}, \ldots, X_{mn_m} \stackrel{\text{iid}}{\sim} \text{MVN}_p(\boldsymbol{\mu} + \boldsymbol{\tau}_m, \boldsymbol{\Sigma})$ · Identifiability: $\sum_i \boldsymbol{\tau}_i = 0$ otherwise there are infinitely many models that lead to the same data-generating mechanism.
- Hypotheses $H_0: \boldsymbol{\tau}_1 = \cdots = \boldsymbol{\tau}_m = 0$ v.s. $H_1:$ otherwise

- Model:
$$X_{ij} = \mu + \tau_i + \mathbf{E}_{ij}$$
 with $\mathbf{E}_{ij} \stackrel{\text{iid}}{\sim} \text{MVN}_p(\mathbf{0}, \mathbf{\Sigma})$
* Identifiability: $\sum_i \tau_i = 0$

- Hypotheses $H_0: \tau_1 = \cdots = \tau_m = 0$ v.s. $H_1:$ otherwise
- Sample means and sample covariances
 - Sample mean for the *i*th sample $\bar{X}_i = n_i^{-1} \sum_i X_{ij}$
 - Sample covariance for the *i*th sample $\mathbf{S}_i = (n_i 1)^{-1} \sum_i (\mathbf{X}_{ij} \bar{\mathbf{X}}_i) (\mathbf{X}_{ij} \bar{\mathbf{X}}_i)^{\top}$
 - Grand mean $\bar{\boldsymbol{X}} = \sum_{i} n_{i} \bar{\boldsymbol{X}}_{i} / \sum_{i} n_{i} = \sum_{ij} \boldsymbol{X}_{ij} / \sum_{i} n_{i}$ Sum of squares and cross products matrix (SSP)
 - - * Within-group SSP

$$\mathbf{SSP}_{\mathbf{w}} = \sum_{i} (n_i - 1)\mathbf{S}_i = \sum_{ij} (\boldsymbol{X}_{ij} - \bar{\boldsymbol{X}}_i)(\boldsymbol{X}_{ij} - \bar{\boldsymbol{X}}_i)^{\top}$$

* Between-group SSP

$$\mathbf{SSP}_{\mathrm{b}} = \sum_{i} n_{i} (\bar{\boldsymbol{X}}_{i} - \bar{\boldsymbol{X}}) (\bar{\boldsymbol{X}}_{i} - \bar{\boldsymbol{X}})^{\top}$$

* Total (corrected) SSP

$$\mathbf{SSP}_{\mathrm{cor}} = \sum_{ij} (\boldsymbol{X}_{ij} - \bar{\boldsymbol{X}}) (\boldsymbol{X}_{ij} - \bar{\boldsymbol{X}})^{\top} = \mathbf{SSP}_{\mathrm{w}} + \mathbf{SSP}_{\mathrm{b}}$$

- Exercise: verify the decomposition $SSP_{cor} = SSP_w + SSP_b$.
- ML estimator of $(\mu_1, \ldots, \mu_m, \Sigma)$
 - Unconstrained

$$* \hat{m{\mu}}_i = ar{m{X}}_i = n_i^{-1} \sum_j m{X}_{ij}$$

*
$$\widehat{\mathbf{\Sigma}} = (\sum_i n_i)^{-1} \mathbf{SSP}_{\mathbf{w}}$$

- Under
$$H_0$$

*
$$\hat{\boldsymbol{\mu}}_i = \boldsymbol{X}$$
 for each i

*
$$\hat{\boldsymbol{\mu}}_i = \bar{\boldsymbol{X}}$$
 for each i
* $\hat{\boldsymbol{\Sigma}} = (\sum_i n_i)^{-1} \mathbf{SSP}_{cor}$

Likelihood ratio

$$\lambda = \left\{ \frac{\det(\mathbf{SSP_w})}{\det(\mathbf{SSP_{cor}})} \right\}^{\sum_i n_i/2}$$

monotonic with respect to the Wilk's lambda test statistic

$$\Lambda = \frac{\det(\mathbf{SSP}_{w})}{\det(\mathbf{SSP}_{cor})}$$

- Under H_0 , $\Lambda \sim \text{Wilk's lambda distribution } \Lambda(\Sigma, \sum_i n_i m, m 1)$

 - * Since $\mathbf{SSP_w} \sim W_p(\mathbf{\Sigma}, \sum_i n_i m)$ and $\mathbf{SSP_b} \sim W_p(\mathbf{\Sigma}, m 1)$ * When $\sum_i n_i m$ is large (i.e., $(p+m)/2 \sum_i n_i + 1 \ll 0$), Bartlett's approximation

$$\{(p+m)/2 - \sum_{i} n_i + 1\} \ln \Lambda \approx \chi^2(p(m-1))$$

• Level α rejection region (with respect to Λ)

$$\left\{\Lambda : \{(p+m)/2 - \sum_{i} n_i + 1\} \ln \Lambda \ge \chi^2_{1-\alpha, p(m-1)}\right\}$$
$$= \left\{\Lambda : \Lambda \le \exp\left\{\frac{\chi^2_{1-\alpha, p(m-1)}}{(p+m)/2 - \sum_{i} n_i + 1}\right\}\right\}$$

• *p*-value

$$1 - F_{\chi^2(p(m-1))} \left[\{ (p+m)/2 - \sum_i n_i + 1 \} \ln \Lambda \right]$$

- Exercise: factors in producing plastic film (see W. J. Krzanowski (1988) *Principles of Multivariate Analysis*. A User's Perspective. Oxford UP, pp. 381.)
 - Three response variables (tear, gloss and opacity) describing measured characteristics of the resultant film
 - A total of 20 runs
 - One factor RATE (rate of extrusion, 2-level, low or high) in the production test
- Report: Testing hypotheses H_0 : no RATE effect on film characteristics v.s. H_1 : otherwise, we carried on the Wilk's lambda test and obtained 0.4136 as the value of test statistic and $(-\infty, 0.6227]$ as the level .05 rejection region. In addition, the p-value was 0.002227. So, at the .05 level, there was statistical evidence against H_0 , i.e., we rejected H_0 and believed that there was an effect from RATE on film characteristics.