UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MAT1110 — Kalkulus og lineær algebra

Eksamensdag: Lørdag 17. mars 2018 (prøveeksamen)

Tid for eksamen: 10.00 - 14.00

Oppgavesettet er på 7 sider.

Vedlegg: Svarark, formelsamling.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Dette settet har 25 oppgaver, mens midtveis eksamen torsdag 22. mars 2018 har 15 oppgaver. Om du svarer galt eller lar være å svare på en oppgave, får du 0 poeng. Du blir altså ikke "straffet" for å gjette. Krysser du av mer enn ett alternativ på en oppgave, får du 0 poeng.

Oppgave 1. Hvilken matrise er på trappeform?

A)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
B)
$$\begin{pmatrix} 1 & 5 & 2 \\ 2 & 1 & 0 \end{pmatrix}$$
C)
$$\begin{pmatrix} 1 & 5 & 4 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
D)
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
E)
$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\mathbf{E}) \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right)$$

Oppgave 2. La C være sirkelen $x^2 + (y+1)^2 = 4$ i xy-planet. Hvilken funksjon \mathbf{r} er en parametrisering av C i retning mot klokken?

A)
$$\mathbf{r}(t) = (2\sin t)\mathbf{i} + (2\cos t - 1)\mathbf{j}$$
 for $t \in [0, 2\pi)$

B)
$$\mathbf{r}(t) = (2\cos^2 t)\mathbf{i} + 2\sin^2(t-1)\mathbf{j}$$
 for $t \in [0, 2\pi)$

C)
$$\mathbf{r}(t) = t^2 \mathbf{i} + (t+1)^2 \mathbf{j}$$
 for $t \in [0, 2\pi)$

D)
$$\mathbf{r}(t) = -t^2 \mathbf{i} + (t+1)^2 \mathbf{j}$$
 for $t \in [0, 2\pi)$

E)
$$\mathbf{r}(t) = (2\cos t)\mathbf{i} + (2\sin t - 1)\mathbf{j}$$
 for $t \in [0, 2\pi)$

Oppgave 3. La $\mathbf{F}, \mathbf{G} : \mathbf{R}^2 \to \mathbf{R}^2$ være gitt ved

$$\mathbf{F}(x,y) = \begin{pmatrix} 2x + 4y \\ 3x + 5y \end{pmatrix} \quad \text{og} \quad \mathbf{G}(x,y) = \begin{pmatrix} x + y^2 \\ x^2 + y \end{pmatrix},$$

(Fortsettes på side 2.)

og la $\mathbf{H}(x,y) = \mathbf{F}(\mathbf{G}(x,y))$ for alle $(x,y) \in \mathbf{R}^2$. Da er:

A)
$$\mathbf{H}'(1,1) = \begin{pmatrix} 1 & -1 \\ 4 & 5 \end{pmatrix}$$

B)
$$\mathbf{H}'(1,1) = \begin{pmatrix} 5 & 3 \\ 7 & 10 \end{pmatrix}$$

C)
$$\mathbf{H}'(1,1) = \begin{pmatrix} 10 & 8\\ 13 & 11 \end{pmatrix}$$

D)
$$\mathbf{H}'(1,1) = \begin{pmatrix} 2 & 4 \\ 5 & 3 \end{pmatrix}$$

E) $\mathbf{H}'(1,1) = \begin{pmatrix} 3 & 5 \\ 2 & 4 \end{pmatrix}$

E)
$$\mathbf{H}'(1,1) = \begin{pmatrix} 3 & 5 \\ 2 & 4 \end{pmatrix}$$

Oppgave 4. La $\mathbf{T}: \mathbf{R}^2 \to \mathbf{R}^2$ være en lineæravbildning slik at

$$\mathbf{T} \left(\begin{array}{c} 0 \\ 1 \end{array} \right) = \left(\begin{array}{c} 3 \\ 7 \end{array} \right) \quad \text{ og } \quad \mathbf{T} \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = \left(\begin{array}{c} -1 \\ 1 \end{array} \right).$$

Hva er matrisen til T?

A)
$$\begin{pmatrix} -1 & 3 \\ 1 & 7 \end{pmatrix}$$
B) $\begin{pmatrix} 3 & -1 \\ 7 & 3 \end{pmatrix}$
C) $\begin{pmatrix} 3 & 7 \\ -1 & 1 \end{pmatrix}$
D) $\begin{pmatrix} 10 & 1 \\ 4 & 2 \end{pmatrix}$

B)
$$\begin{pmatrix} 3 & -1 \\ 7 & 3 \end{pmatrix}$$

C)
$$\begin{pmatrix} 3 & 7 \\ -1 & 1 \end{pmatrix}$$

$$D) \begin{pmatrix} 10 & 1 \\ 4 & 2 \end{pmatrix}$$

E)
$$\begin{pmatrix} 2 & 5 \\ 6 & 4 \end{pmatrix}$$

Oppgave 5. La $A = \begin{pmatrix} 0 & 1 & 1 \\ 2 & -1 & 8 \\ 1 & 1 & 0 \end{pmatrix}$. Hvilken påstand er sann?

- A) Den reduserte trappeformen til A har nøyaktig 2 pivotsøyler.
- B) Likningssystemet $A\mathbf{x} = \mathbf{0}$ har uendelig mange løsninger.
- C) Den reduserte trappeformen til A har determinant 0.
- D) Den reduserte trappeformen til A er lik A.
- E) A er radekvivalent med identitetsmatrisen av størrelse 3×3 .

Oppgave 6. La k > 1 være et reelt tall. Hvilken av disse matrisene har komplekse egenverdier?

A)
$$\begin{pmatrix} 1 & k \\ 0 & k \end{pmatrix}$$

B)
$$\begin{pmatrix} 1 & k \\ k & 1 \end{pmatrix}$$

$$C) \left(\begin{array}{cc} 0 & k \\ k & 0 \end{array} \right)$$

B)
$$\begin{pmatrix} 0 & k \\ 1 & k \\ k & 1 \end{pmatrix}$$
C) $\begin{pmatrix} 0 & k \\ k & 0 \end{pmatrix}$
D) $\begin{pmatrix} 0 & -k \\ k & 1 \end{pmatrix}$

$$E) \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$$

(Fortsettes på side 3.)

Oppgave 7. Hvilken av disse skalarfunksjonene er en potensialfunksjon for vektorfeltet $\mathbf{F}(x,y) = e^{x+2y}\mathbf{i} + 2e^{x+2y}\mathbf{j}$:

- A) $g(x,y) = e^{x+2y} + 2e^{x+2y}$
- B) $g(x,y) = xe^x + 2ye^{2y}$
- C) $g(x,y) = \ln(x+2y)$
- D) $g(x,y) = e^{x+2y}$
- E) $g(x,y) = |\ln(e^{x+2y})|$

Oppgave 8. La C være en enkel, lukket kurve i \mathbb{R}^2 med en stykkevis glatt parametrisering \vec{r} i retning mot klokken, la R være området avgrenset av C, og la $\mathbf{F} = (P, Q)$ være et vektorfelt slik at de partielle deriverte av komponentfunksjonene P og Q til \mathbf{F} er kontinuerlige i et åpent område som inneholder R og C. Hvilket utsagn er sant?

- A) Arealet til R er $\int \int_R \frac{\partial Q}{\partial x} dx dy$. B) Arealet til R er $-\int_0^\infty \int_R \frac{\partial Q}{\partial x} dx dy$.
- C) Arealet til R er $-\int_C P dx$.
- D) Arealet til R er $\int_C x \, dy$.
- E) Arealet til R er $-\int_C y \, dy$.

Oppgave 9. En kurve er parametrisert ved $\mathbf{r}(t) = (1 + \sin t)\mathbf{i} + (1 + \cos t)\mathbf{j}$. Akselerasjonvektoren $\mathbf{a}(t)$ er da

- A) $(-\sin t)\mathbf{i} (\cos t)\mathbf{j}$
- B) $(\sin t)\mathbf{i} (\cos t)\mathbf{j}$
- C) $(-\sin t)\mathbf{i} + \cos t\mathbf{j}$
- D) $(\cos t)\mathbf{i} (\sin t)\mathbf{j}$
- E) $(1 + \cos t)\mathbf{i} + (1 \sin t)\mathbf{j}$

Oppgave 10. La C være kurven i \mathbb{R}^2 parametrisert ved $\mathbf{r}(t) = (\sin 2t, \cos 2t)$ for $t \in [0, \pi]$, og la **F** være vektorfeltet gitt ved

$$\mathbf{F}(x,y) = (x+y)\mathbf{i} + (x-y)\mathbf{j}.$$

Da er linjeintegralet $\int_C \mathbf{F} \cdot d\mathbf{r}$ lik:

- A) 0
- B) 2
- C) π
- D) -pi
- E) $\pi/2$

Oppgave 11. La R være området i \mathbb{R}^2 bestående av alle punkter (x,y)slik at de tre kravene $1 \le x^2 + y^2 \le 4$, $x \ge 0$ og $y \ge 0$ alle er oppfylt. Dobbeltintegralet

$$\int \int_{R} \frac{x}{(x^2 + y^2)^{3/2}} dx dy$$

blir da lik:

A)
$$\int_{0}^{\pi/2} (\int_{1}^{2} \frac{\cos \theta}{r^{2}} dr) d\theta$$

B) $\int_{0}^{\pi/2} (\int_{1}^{2} \frac{\cos \theta}{r} dr) d\theta$
C) $\int_{0}^{\pi} (\int_{1}^{2} r dr) d\theta$
D) $\int_{0}^{\pi} (\int_{0}^{2} \frac{\cos \theta}{r} dr) d\theta$
E) $\int_{0}^{2\pi} (\int_{1}^{2} \frac{\sin \theta}{r^{3}} dr) d\theta$

B)
$$\int_0^{\pi/2} \left(\int_1^2 \frac{\cos \theta}{r} dr \right) d\theta$$

C)
$$\int_0^{\pi} (\int_1^2 r dr) d\theta$$

D)
$$\int_0^{\pi} (\int_0^2 \frac{\cos \theta}{r} dr) d\theta$$

E)
$$\int_0^{2\pi} (\int_1^2 \frac{\sin \theta}{r^3} dr) d\theta$$

Oppgave 12. Hvilket kjeglesnitt beskriver likningen

$$16x^2 - 4y^2 + 32x - 4y - 1 = 0$$
?

- A) En hyperbel med sentrum i (-1, 1/2)
- B) En hyperbel med sentrum i (-1, -1/2)
- C) En ellipse med halvakser 4 og 2
- D) En ellipse med halvakser 16 og 4
- E) En parabel

Oppgave 13. Hvilken av disse vektorene er ikke en lineærkombinasjon av

vektorene
$$\begin{pmatrix} 0\\1\\2\\2 \end{pmatrix}$$
 og $\begin{pmatrix} 0\\2\\-1\\0 \end{pmatrix}$?

$$A) \begin{pmatrix} 0 \\ 3 \\ 1 \\ 2 \end{pmatrix}$$

$$B) \begin{pmatrix} 0 \\ 2 \\ 4 \\ 4 \end{pmatrix}$$

$$C) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$D) \begin{pmatrix} 0 \\ 4 \\ 3 \\ 4 \end{pmatrix}$$

$$E) \begin{pmatrix} 0 \\ 5 \\ 0 \\ 2 \end{pmatrix}$$

Oppgave 14. La \mathbf{F} være vektorfeltet i \mathbf{R}^2 gitt ved

$$\mathbf{F}(x,y) = (2x+y)\mathbf{i} + (2y+x)\mathbf{j},$$

og la ${\bf r}$ være en glatt parametrisering av sirkelen Cmed likning $x^2+y^2=1$ orientert mot klokken. Hvilket utsagn er sant:

- A) \mathbf{F} har ingen potensialfunksjon definert på hele \mathbf{R}^2
- B) \mathbf{F} er konservativt på hele \mathbf{R}^2

- C) Vi har $\int_C \mathbf{F} \cdot d\mathbf{r} = \pi$ D) Vi har $\int_C \mathbf{F} \cdot d\mathbf{r} = 2\pi$ E) Vi har $\int_C \mathbf{F} \cdot d\mathbf{r} = -2\pi$

Oppgave 15. La $M = \begin{pmatrix} 1 & 7 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. Hvilket utsagn er sant?

- er en egenvektor for ${\cal M}$
- $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ er en egenvektor for M
- $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ er en egenvektor for M
- $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ er en egenvektor for M
- er en egenvektor for M

Oppgave 16. En nivåkurve for funksjonen $f: \mathbb{R}^2 \to \mathbb{R}$ gitt ved

$$f(x,y) = 1 + 2x + x^2 + 4y^2$$

er:

- A) En sirkel
- B) Enten en hyperbel eller et punkt
- C) En parabel
- D) En rett linje
- E) Enten en ellipse eller et punkt

Oppgave 17. La R være området bestående av alle punkter $(x, y) \in \mathbf{R}^2$ slik at $1 \le x^2 + y^2 \le 4$. Da er dobbeltintegralet $\iint_R x^3 dx dy$:

- A) $\pi/3$
- B) π
- C) $\pi/2$
- D) 0
- $E) -\pi$

Oppgave 18. Hvilket utsagn er sant?

- A) Mengden av alle punkter $(x,y) \in \mathbf{R}^2$ som ligger like langt fra (0,0) som fra $(0, 2\pi)$ er en ellipse
- B) Mengden av alle punkter $(x,y) \in \mathbf{R}^2$ som ligger like langt fra (0,0) som

(Fortsettes på side 6.)

fra linjen y = 5 - x er en ellipse

- C) Mengden av alle punkter $(x,y) \in \mathbf{R}^2$ som ligger like langt fra (0,0) som fra linjen y=5-x er en parabel
- D) Mengden av alle punkter $(x,y) \in \mathbf{R}^2$ som ligger like langt fra (0,0) som fra $(0,2\pi)$ er en parabel
- E) Mengden av alle punkter $(x, y) \in \mathbf{R}^2$ som ligger i avstand $\sqrt{2}$ fra kurven $x^2 y^2 = 1$ er en hyperbel

Oppgave 19. La $\mathbf{F}: \mathbf{R}^3 \to \mathbf{R}^2$ være definert ved

$$\mathbf{F} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (x-3)^5 + 1 \\ y^5 z^5 \end{pmatrix}$$

Da er lineariseringen **L** til **F** i punktet (3,0,0):

A)
$$\mathbf{L} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

B) $\mathbf{L} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 & 0 & 0 \\ -1 & 2 & 2 \end{pmatrix} \begin{pmatrix} x - 3 \\ y \\ z \end{pmatrix}$

C) $\mathbf{L} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

D) $\mathbf{L} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 5 & 3 & 1 \\ 0 & 5 & 5 \end{pmatrix} \begin{pmatrix} x - 3 \\ y \\ z \end{pmatrix}$

E) $\mathbf{L} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 5 & 3 & 1 \\ 0 & 5 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Oppgave 20. Gitt det uegentlige integralet

$$\int \int_{\mathbf{R}^2} x^2 e^{(y^2)} dx dy.$$

Hvilket utsagn om dette integralet er sant:

- A) Integralet divergerer
- B) Integralet er lik 0
- C) Integralet er lik -1
- D) Integralet er lik 1
- E) Integralet er lik 2π

Oppgave 21. Hvilket utsagn er sant for alle kvadratiske matriser A?

- A) $det(A^n) = n \cdot det(A)$ for alle naturlige tall n
- B) $det(A^n) = (det A)^n$ for alle naturlige tall n
- C) $det(kA) = k \cdot det(A)$ for alle reelle tall k
- D) det(-A) = -det(A)
- $E) \det(A^{-1}) = -\det(A)$

(Fortsettes på side 7.)

Oppgave 22. Egenverdiene til matrisen $\begin{pmatrix} 1 & 7 & 0 \\ 0 & 8 & 4 \\ 0 & 0 & 1 \end{pmatrix}$ er:

B)
$$-1$$
, 0 og 2

D)
$$1, -4 \text{ og } 4$$

Oppgave 23. La R være området bestående av alle punkter $(x,y,z) \in \mathbf{R}^3$ slik at $4 \le x^2 + y^2 + z^2 \le 9$. Da er trippelintegralet $\iint_R 1 \ dx dy dz$:

A)
$$35\pi/2$$

B)
$$76\pi/3$$

C)
$$35/2$$

$$\vec{D}$$
) π^3

E)
$$2\pi^2$$

Oppgave 24. Tangentplanet til grafen til funksjonen $f: \mathbb{R}^2 \to \mathbb{R}$ gitt ved $f(x,y) = (x+1)^2 + y^2$ i punktet (0,1,2) har likning:

A)
$$z = 2x + 2y$$

B)
$$z = 1 + 2x + 2y$$

C)
$$z = 1 + 2x + 2(y - 1)$$

D)
$$z = 2x + 2(y - 1)$$

E)
$$z = 2(x+1) + 2y$$

Oppgave 25. La $f: \mathbf{R}^2 \to \mathbf{R}$ og $\mathbf{G}: \mathbf{R} \to \mathbf{R}^2$, og la $h: \mathbf{R} \to \mathbf{R}$ være gitt ved

$$h(t) = f(\mathbf{G}(t)).$$

Vi skriver punktene i \mathbf{R}^2 som (x,y) og lar $\mathbf{G}(t)=(G_x(t),G_y(t))$. Da er

A)
$$h'(t) = f(G'_x(t) + G'_y(t))$$

A)
$$h'(t) = f(G'_x(t) + G'_y(t))$$

B) $h'(t) = \frac{\partial f}{\partial x}(\mathbf{G}'(t)) \cdot \frac{dG_x}{dt} + \frac{\partial f}{\partial y}(\mathbf{G}'(t)) \cdot \frac{dG_y}{dt}$
C) $h'(t) = G'_x(t) + G'_y(t)$

C)
$$h'(t) = G'_x(t) + G'_y(t)$$

D)
$$h'(t) = G_x(t) + G_y(t)$$

E) $h'(t) = \frac{\partial f}{\partial x}(\mathbf{G}(t)) \cdot G_x'(t) + \frac{\partial f}{\partial y}(\mathbf{G}(t)) \cdot G_y'(t)$
E) $h'(t) = f(\mathbf{G}'(t)) \cdot f'(\mathbf{G}(t))$

E)
$$h'(t) = f(\mathbf{G}'(t)) \cdot f'(\mathbf{G}(t))$$

SLUTT