

Almesbar Introductory Session

Dr. Sergio Martinez

> Number of nodes

- Cores and memory
- Network and storage
- > Performance

Number of nodes		
88 CPU nodes	2x Intel Xeon Gold 6230R 26-Core 2.1GHz (Cascade lake) (Q1'20)	
3 GPU nodes	2x Intel Xeon Gold 6230R 26-Core 2.1GHz(Cascade lake) (Q1'20)	
	4x NVidia V100	

- > Number of nodes
- > Cores and memory
- Network and storage
- > Performance

Cores per node			
52			
Memory per node			
CPU nodes 384 GB			
GPU nodes	640 GB + 128 GB (GPU)		

Total CPU cores		
4,732		
Total GPU cores		
61,440		
Total memory		
35.25 TB		

- > Number of nodes
- Cores and memory
- > Network and storage
- > Performance

Network interconnection			
Infiniband EDR (100Gb/s) and Infiniband HDR (200Gb/s)			
Storage			
300 TB home	NFSv4 (10Gb/s)		
947 TB scratch	Parallel file system (Lustre) (200Gb/s)		

- Number of nodes
- Cores and memory
- Network and storage
- > Performance

Theoretical peak of performance (CPU)

307.5 TFOPS

Achieved peak of performance (CPU)

205.0 TFOPS

>User name and access

- > HPC Projects
- > Jobs
- Queues
- Storage
- License applications

You will be using your KU Employee ID as your user name for accessing the HPC cluster.

You will be using SSH keys to identify yourself and access the HPC cluster.

SSH keys allow secure, password-less access to remote systems. They are very easy to set up and provide a greater level of security than using a password, while being convenient too.

We will discuss how to create and use your keys in the coming sections.

- User name and access
- > HPC Projects
- > Jobs
- Queues
- Storage
- License applications

Resource allocation and file sharing on Almesbar HPC cluster is based on HPC projects.

Every single user account will be associated with at least one HPC project.

An HPC project will also be a shared space where project members can share files and submit their jobs.

Ultimately, every job has to be accounted against an HPC project.

Fairshare is applied to the HPC projects at first level.

- User name and access
- > HPC Projects
- >Jobs
- > Queues
- Storage
- License applications

Jobs number:

- > Limit of 1000 jobs per user on **prod** and **gpu** queues
- > Limit of 1 job per user on devel queue

Jobs size:

- > Wall time limitations on each queue.
- > There is no limit on the number of cores used by a job.

- User name and access
- > HPC Projects
- > Jobs
- > Queues
- Storage
- License applications

Access is restricted for train queue.

Research computing department uses train queue for compiling, installing, maintaining applications as well as for troubleshooting with the HPC users.

- User name and access
- > HPC Projects
- > Jobs
- Queues
- > Storage
- License applications

There will be quotas applied to the different storage places.

By default:

- > Home directory (/home/kunet.ae/username): 50 GB
- Project directory (/1/proj/projectname): 2 TB

Almesbar - Accounts, resource allocation and file sharing

- User name and access
- > HPC Projects
- > Jobs
- Queues
- Storage
- > License applications

> Access configuration

- Queues (partitions)
- Modular environment
- Scheduler syntax

SSH keygen command

ssh-keygen -t rsa -b 4096 -f ~/.ssh/almesbarAdd passphrase for security

Private key

- Keep it in your machine.
- · Do not share it.
- Use it on your ssh command.

Public key

- Send it to research computing.
- It will be place on Almesbar.
- After confirmation, you will be able to access via ssh.

ssh -i private_key username@login.almesbar.ku.ac.ae

- Access configuration
- > Queues (partitions)
- > Modular environment
- Scheduler syntax

Production		
Name	prod	
Purpose	Production jobs using CPU cores.	
Number of nodes	80	
Limits	Default wall time: 2h Maximum wall time: 48h Max number of jobs per user: 1000	
Access	Open	

- Access configuration
- > Queues (partitions)
- > Modular environment
- Scheduler syntax

Development		
Name	devel	
Purpose	For interactive and testing purposes, i.e, compiling, configuring and testing applications. Running GUI applications.	
Number of nodes	4	
Limits	Default wall time: 1h Maximum wall time: 8h Max number of jobs per user: 1	
Access	Open	

- Access configuration
- > Queues (partitions)
- > Modular environment
- Scheduler syntax

GPU		
Name	gpu	
Purpose	Production jobs using GPU cores.	
Number of nodes	3	
Number of GPUs per node	4	
Limits	Default wall time: 2h Maximum wall time: 48h Max number of jobs per user: 1000	
Access	Open	

- Access configuration
- > Queues (partitions)
- > Modular environment
- Scheduler syntax

Training		
Name	train	
Purpose	Used by Research Computing department for compiling, installing, maintaining applications as well as for troubleshooting with the HPC users.	
Number of nodes	4	
Limits	No	
Access	Restricted	

- Access configuration
- Queues (partitions)
- > Modular environment
- Scheduler syntax

On a complex computer system, on which it is necessary to make available a wide choice of software packages in multiple versions, it can be quite difficult to set up the user environment so as to always find the required executables and libraries.

This is particularly true where different implementations or versions use the same names for files.

Environment modules provide a way to selectively activate and deactivate modifications to the user environment which allow particular packages and versions to be found.

Our modular environment is hierarchical and it has three levels:

Core, Compiler and MPI

- Access configuration
- Queues (partitions)
- > Modular environment
- Scheduler syntax

Useful commands:

Command	Example	Description
module avail	module avail	Lists available modules in the system. (D) means default. (L) means it is already loaded. Press Q to exit the list at any moment.
module list	module list	List your currently loaded modules.
module load module_name	module load matlab/R2021a	Loads the module for Matlab version R2019b
module show module_name	module show matlab/R2021a	Displays information about one or more module files.
module spider string	module spider wrf	List all module that contain the "string" with details on how to load them.
module swap old_module new_module	module swap python/2.7.3 python/3.6.0	Switches similar/conflicting modules

- Access configuration
- Queues (partitions)
- > Modular environment
- Scheduler syntax

Core level:

- Modules that are not dependent on Compiler or MPI implementation.
- > Most of the installed applications that don't require to be compiled seats in this level. Also the compilers can be found in this level.
- > This is the only level that is visible for module avail command after logging in the system.
- > Only if user loads a module that is a compiler, for example gcc/9.3, the next level in the hierarchy (Compiler) will be available and became visible with module avail.

Almesbar configuration

- > Access configuration
- Queues (partitions)
- > Modular environment
- Scheduler syntax

Core level:

[username@login-3 ~]\$ module avail

----- /apps/ku/modulefiles/Core ----cuda/11.3 gcc/9.3

abaqus/2019 abaqus/2021 (D) ansys/2021R1 ansysem/2021R1

matlab/R2020b comsol/56

matlab/R2021a (D)

lumerical/2021R1

miniconda/3 molpro/2021.1.0 starccm/16.02.009

- Access configuration
- Queues (partitions)
- > Modular environment
- Scheduler syntax

Compiler level:

Research Computing Department

- > This level becomes available only if the user loads a compiler module, like gcc/9.3 from the Core level.
- > Then, all the applications compiled with that compiler (gcc/9.3) that don't require MPI to be compiled, will be listed here. This include MPI implementations like openmpi or myapich for example.
- Only if user loads a module that is an MPI implementation, for example openmpi/4.0, the next level in the hierarchy (MPI) will be available and became visible with module avail command.

Almesbar configuration

- > Access configuration
- > Queues (partitions)
- > Modular environment
- Scheduler syntax

Compiler level:

```
[username@login-3 ~]$ module load gcc/9.3
[username@login-3 ~]$ module avail
-------/apps/ku/modulefiles/Compiler/gcc/9.3 --------------
                 libpng/1.2.12
  hdf5/1.10.6
                                ucx/1.8.0
  jasper/1.701.0
                  openblas/0.3.7
                                wannier90/3.1.0
  libfabric/1.10.1 openmpi/4.0
                                zlib/1.2.11
   abagus/2019
                   cuda/11.3
                                       miniconda/3
                   gcc/9.3
  abaqus/2021
                                       molpro/2021.1.0
                   lumerical/2021R1
  ansys/2021R1
                                       starccm/16.02.009
  ansysem/2021R1
                   matlab/R2020b
  comsol/56
                   matlab/R2021a
                                 (D)
```

- Access configuration
- Queues (partitions)
- > Modular environment
- Scheduler syntax

MPI level:

- > This level becomes available only if the user loads an MPI implementation module, like openmpi/4.0 from the Compiler level.
- > Then, all the applications and libraries compiled with that compiler/MPI pair (gcc/9.3 and openmpi/4.0 will be listed here.

Almesbar configuration

- Access configuration
- > Queues (partitions)
- > Modular environment
- Scheduler syntax

MPI level:

```
[username@login-3 ~]$ module load openmpi/4.0
[username@login-3 ~]$ module avail
-----/apps/ku/modulefiles/MPI/gcc/9.3/openmpi/4.0 ------
                     netcdf/4.7.3
                                     vasp/6.2.0-wannier90-3.1.0
  elpa/2021.05.001
  fftw/3.3.8
                      phdf5/1.10.6
                                     wps/4.0
  lammps/290ct2020
                     pnetcdf/1.12.1
                                     wrf/4.0
  netcdf-cxx/4.3.1
                     qe/6.7.0
  netcdf-fortran/4.5.2
                     scalapack/2.1.0
-----/apps/ku/modulefiles/Compiler/gcc/9.3 -------
  hdf5/1.10.6
                  libpng/1.2.12
                                 ucx/1.8.0
                  openblas/0.3.7
                                 wannier90/3.1.0
  jasper/1.701.0
  libfabric/1.10.1 openmpi/4.0 (L) zlib/1.2.11
cuda/11.3
                                        miniconda/3
  abaqus/2019
  abaqus/2021
                    gcc/9.3
                                  (L)
                                        molpro/2021.1.0
  ansys/2021R1
                    lumerical/2021R1
                                        starccm/16.02.009
  ansysem/2021R1
                    matlab/R2020b
  comsol/56
                    matlab/R2021a
                                  (D)
```

Almesbar configuration

- Access configuration
- Queues (partitions)
- > Modular environment
- > Scheduler syntax

Job submission control

Command	Example	Description
salloc	salloc -n 1	Obtain a job allocation.
sbatch	sbatch my_script.sh	Submit a batch script for later execution.
srun	srun -n 1 executable	If run from command line directly, srun will first create a resource allocation in which to run the parallel job. srun can be run from within sbatch script or salloc shell
sinfo	sinfo -p prod	Display partition information
	sinfo -N	Display nodes information
squeue	squeue -p prod	Display information about jobs
scontrol	scontrol show job 3420	Show active job details
sacct	sacct -j 3420	Show accounting information about active and completed jobs
scancel	scancel 3420	Send a signal to kill the job

Configuring a job

- Access configuration
- Queues (partitions)
- > Modular environment
- > Scheduler syntax

Option	Example	Description
#SBATCH		Scheduler directive to be used on job configuration scripts
nodes	nodes=2	Will request tasks be run across 2 nodes
ntasks	ntasks=2	Will start 2 MPI tasks
ntasks-per-node	ntasks-per-node=1	Will start 1 task per requested node
cpus-per-task	cpus-per-task=10	Will request 10 cores per task
account	account=project_name	The project your core hours will be 'charged' to.
partition	partition=prod	Submits job the specified partition. On Almesbar HPC cluster, the default queue is "prod"
output	output=file_name	Writes job output to "file_name", %j can be used to include the JOBID, e.g. result.%j.out
error	output=file_name	Writes job errors to "file_name", %j can be used to include the JOBID, e.g. result.%j.err
job-name	job-name=job_name	Assigns the specified name "job_name" to the job
time	time=DD-HH:MM:SS	Requests wall time limit
mem	mem=512MB	Requests a specific amount of memory for your job
x11	salloc -n 1x11 srun -n 1x11 xterm	Enables X11 graphical forwarding in interactive jobs
pty	srun -n 1pty /bin/bash	Submits an interactive job that will create a terminal when the job starts
exclusive	exclusive	Puts the host/s running your job into exclusive execution mode.

Thank You