BUNDESREPUBLIK DEUTSCHLAND

Deutsche Kl.:

12 o, 25 30 h, 2/36

(1) (1)	Offenlegu	ingsschrift 2259260
@ @		Aktenzeichen: P 22 59 260.5 Anmeldetag: 4. Dezember 1972
43		Offenlegungstag: 6. Juni 1974
	Ausstellungspriorität:	- .
0	TT	
39	Unionspriorität	
1	Datum: Land:	-
33 31	Aktenzeichen:	
3 9	Bezeichnung:	Neue Amine
6 1)	Zusatz zu:	_
®	Ausscheidung aus:	_
Ð	Anmelder:	Merck Patent GmbH, 6100 Darmstadt
	Vertreter gem.§16PatG:	
®	Als Erfinder benannt:	Orth, Dieter, DiplChem. Dr.; Cimbollek, Gerhard, Dr.; Baumgarth, Manfred, Dr.; 6100 Darmstadt; Krämer, Josef, Dr., 6101 Seeheim; Radunz, Hans, Dr., 6101 Traisa; Harting, Jürgen, Dr.,

6100 Darmstadt

Ging Gang's 1 am 20, 2.73

Darmstadt

2259260

Neue Amine

Die Erfindung betrifft neue Verbindungen der allgemeinen Formel I

Ι

worin

- R¹ H, oder gegebenenfalls ein- oder mehrfach durch Cl, Br oder J substituiertes
 Alkyl, Cycloalkyl, Aralkyl oder Aryl
 mit jeweils bis zu 12 C-Atomen,
- R² und R⁶ gleich oder ungleich sind, und H,
 Alkyl mit bis zu 4 C-Atomen, Benzyl
 oder Acyl mit bis zu 7 C-Atomen bedeuten,
- R³ H, OH, Alkoxy mit bis zu 4 C-Atomen, Acyloxy mit bis zu 7 C-Atomen oder gemeinsam mit R⁴ auch =0,
- R⁴ H, Alkyl mit bis zu 5 C-Atomen oder gemeinsam mit R³ auch =0,
- H, CF₃, tert.-Butyl oder gegebenenfalls
 1 3 mal durch Alkyl oder Alkoxy mit jeweils bis zu 4 C-Atomen, F, Cl, CF₃,
 NO₂ oder OH substitutiertes Phenyl,
- X F, Cl oder Br,

m eine ganze Zahl zwischen 0 und 5,

n 0, 1 oder 2, ...

p eine ganze Zahl zwischen 1 oder 5

und

r eine ganze Zahl zwischen 0 und .7 sind.

sowie deren physiologisch unbedenkliche Salze.

Es wurde gefunden, daß die Verbindungen der Formel I bei guter Verträglichkeit neben einer blutdrucksenkenden bzw. blutdrucksteigenden auch prostaglandinartige und antiprostaglandinartige Wirkungen besitzen. Die Verbindungen der Formel I können daher als Arzneimittel und auch als Zwischenprodukte zur Herstellung anderer Arzneimittel verwendet werden.

Gegenstand der Erfindung sind Verbindungen der Formel I, worin X, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , m, n, p und r die oben angegebene Bedeutung haben.

Ferner sind Gegenstand der Erfindung die Verbindungen der nachstehenden bevorzugten Formeln Ia bis Igi, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei Formel I angegebene Bedeutung haben, worin jedoch:

 $R^1 = H$ Ιa $\mathbb{R}^2 = \mathbb{H}$ Ιb $R^3 = H$ Ιc $R^4 = H$ Ιđ $R^{5} = H$ Тe $R^2 = CH_3$ \mathbf{If} $R^3 = OH^2$ Ιg $R^4 = CH_3$ Ih n = 0Ιi IJ r = 5Ιk m = n = 0m = n = 0, p = 1Il


```
R^1 = R^4 = H, R^2 = CH_3
       R^{1}
          = H, R^2 = R^4 = CH_3
 Iba
       R^1 = R^2 = R^5 = H
 Ibb
          = R^5 = H, R^2 = CH_3
 Ibc
          = R^3
                = R^4 = H
 Ibd
          = R^3 = H, R^4 = CH_3
 Ibe
          = R^4 = H, R^3 = OH^3
 Ibf
          = H, R^3 = OH, R^4 = CH_3
 Ibg
          = R^3 = R^5 = H
 Ibh
          = R^5 = H, R^3 = OH
 Ibi
          = R^4 = R^5 = H
 Ibj
          = R^5 = H, R^4 = CH_3
 Ibk
          = R^3 = R^4 = H
 Ibl
          = R^2 = R^3 = R^4 = R^5 = H, m = n = 0
 Ibm
          = R^2 = R^3 = R^4 = R^5 = H, m = n = 0, r = 1
 Ibn
          = R^2 = R^3 = R^4 = R^5 = H, m = n = 0, r = 5
 Ibo
          = R^2
                = R_{-}^{3} = R_{+}^{4} = H, R_{-}^{5} = Phenyl, m = n = 0, r = 1
 Ibp
          = R^2 = R^3 = R^4 = H, R_{-}^5 = Phenyl, m = n = 0, r = 5
 Ibq
          = R^2 = R^3 = R^4 = H, R^5 = CF_3, m = n = 0, r = 1
 Ibr
          = R^2 = R^3 = R^4 = H, R^5 = CF_3, m = n = 0, r = 4
 Ibs
          = R^2 = R^3 = R^4 = H, R^5 = \text{tert.-Butyl}, m = n = 0, r = 1
 Ibt
          = R^2 = R^3 = R^4 = H, R^5 = \text{tert.-Butyl}, m = n = 0, r = 3
 Ibu
          = R^2 = R^3 = R^5 = H, R^4 = CH_3, m = n = 0, r = 1
 Ibv
          = R^2 = R^3 = R^5 = H, R^4 = CH_3, m = n = 0, r = 5
 Ibw
          = R^2 = R^3 = H, R^4 = CH_3, R^5 = Phenyl, m = n = 0, r = 1
 Ibx
          = R^2 = R^3 = H, R^4 = CH_3, R^5 = Phenyl, m = n = 0, r = 5
 Iby
          = R^2 = R^3 = H, R^4 = CH_3, R^5 = CF_3, m = n = 0, r = 1
 Ibz
       R^1 = R^2 = R^3 = H, R^4 = CH_3, R^5 = CF_3, m = n = 0, r = 4
 Ica
          = R^2
                = R^3 = H, R^4 = CH_3, R^5 = \text{tert.-Butyl}, m=n=0, r = 1
 Icb
                = R_{-}^{3} = H_{1} R^{4} = CH_{3}, R^{5} = tert.-Butyl, m=n=0, r = 3
 Icc
       R^1 = R^2 = R^3 = R^5 = H, R^4 = Alkyl mit 2 - 4 C-Atomen,
 Icd
       R^1 = R^2 = R^3 = R^5 = H, R^4 = Alkyl mit 2 - 4 C-Atomen,
 Ice
                                            m = n = 0, r = 5
       R^1 = R^2 = R^4 = R_{-}^5 = H, R_{-}^3 = OH, m = n = 0, r = 1
 Icf
          = R^2 = R^4 = R^5 = H, R^3 = OH, m = n = 0, r = 5.
 Icg
 Ich R^1 = R^2 = R^4 = H, R^3 = OH, R^5 = Phenyl, m = n = 0, r = 1
Ici R^1 = R^2 = R^4 = H, R^3 = OH, R^5 = Phenyl, m = n = 0, r = 5
```

 $R^1 = R^2 = R^4 = H$, $R^3 = OH$, $R^5 = CF_3$, m = n = 0, r = 1


```
R^1 = R^3 = R^4 = H, R^2 = CH_3, R^5 = Phenyl, m = n = 0, r = 5
 R^{1} = R^{3} = R^{4} = H, R^{2} = CH_{3}, R^{5} = CF_{3}, m = n = 0, r = 1

R^{1} = R^{3} = R^{4} = H, R^{2} = CH_{3}, R^{5} = CF_{3}, m = n = 0, r = 4

R^{1} = R^{3} = R^{4} = H, R^{2} = CH_{3}, R^{5} = tert. Buty1,
                                                       m = n = 0, r = 1
 R^1 = R^3 = R^4 = H, R^2 = CH_3, R^5 = tert.-Butyl,
                                                        m = n = 0, r = 3
 R^1 = R^4 = R^5 = H, R^2 = CH_3, R^3 = OH, m = n = 0, r = 1
 R^1 = R^4 = R^5 = H, R^2 = CH_3, R^3 = OH, m = n = 0, r = 5
 R^1 = R^4 = H, R^2 = CH_3, R^3 = OH, R^5 = Phenyl,
                                                         m = n = 0, \quad r = 1
R^1 = R^4 = H, R^2 = CH_3, R^3 = OH, R^5 = Phenyl, m = n = 0, r = 5
R^{1} = R^{4} = H, R^{2} = CH_{3}, R^{3} = OH, R^{5} = CF_{3}, m = n = 0, r = 1

R^{1} = R^{4} = H, R^{2} = CH_{3}, R^{3} = OH, R^{5} = CF_{3}, m = n = 0, r = 4

R^{1} = R^{4} = H, R^{2} = CH_{3}, R^{3} = OH, R^{5} = tert.—Buty1,
                                                         m = n = 0, r = 1
R^1 = R^4 = H, R^2 = CH_3, R^3 = OH, R^5 = tert.-Butyl, m = n = 0, r = 3
 R^1 = R^3 = R^5 = H, R^2 = R^4 = CH_3, m = n = 0, r = 1
 R^1 = R^3 = R^5 = H, R^2 = R^4 = CH_3, m = n = 0, r = 5
 R^{1} = R^{3} = H, R^{2} = R^{4} = CH_{3}, R^{5} = Phenyl, m = n = C, r = 1

R^{1} = R^{3} = H, R^{2} = R^{4} = CH_{3}, R^{5} = Phenyl, m = n = 0, r = 5
 R^{1} = R^{3} = H, R^{2} = R^{4} = CH_{3}, R^{5} = CF_{3}, m = n = 0, r = 1

R^{1} = R^{3} = H, R^{2} = R^{4} = CH_{3}, R^{5} = CF_{3}, m = n = 0, r = 4
 R^1 = R^3 = H, R^2 = R^4 = CH_3, R^5 = \text{tert.-Butyl.}
                                                        m = n = 0, r = 1
R^1 = R^3 = H, R^2 = R^4 = GH_3, R^5 = tert. + Butyl,
                                                         m = n = 0, r = 3
 R^1 = R^5 = H, R^2 = R^4 = CH_3, R^3 = OH, m = n = 0, r = 1
 R^{1} = R^{5} = H, R^{2} = R^{4} = CH_{3}, R^{3} = OH, m = n = 0, r = 5

R^{1} = R^{5} = H, R^{2} = CH_{3}, R^{3} = OH, R^{4} = Alkyl mit 2 - 4 C-
Atomen, m = n = 0, r = 1
                                           Atomen, m = n = 0, r = 1
R^1 = R^5 = H, R^2 = CH_3, R^3 = OH, R^4 = Alkyl mit 2 - 4 C- Atomen, <math>m = n = C, r = 5
 R^1 = R^4 = R^5 = H, R^2 = CH_3, R^3 = OCH_3, m = n = 0, r = 1
      = R^4 = R^5 = H, R^2 = CH_3, R^3 = OCH_3, m = n = 0, r = 5

= R^4 = R^5 = H, R^2 = CH_3, R^3 = Acetoxy, m = n = 0, r = 1
      = R^4 = R^5 = H, R^2 = CH_3, R^3 = Acetoxy, m = n = 0, r = 5
 R^1 = R^5 = H, R^2 = R^4 = CH_3, R^3 = CCH_3, m = n = 0, r = 1

R^1 = R^5 = H, R^2 = R^4 = CH_3, R^3 = CCH_3, m = n = 0, r = 5
```

5:

 $R^1 = R^5 = H$, $R^2 = R^4 = CH_3$, $R^3 = Acetoxy$, m = n = 0, r = 1 $R^1 = R^5 = H$, $R^2 = R^4 = CH_3$, $R^3 = Acetoxy$, m = n = 0, r = 5Ies $= R^4 = R^5 = H$, $R^2 = Acetyl$, m = n = 0, r = 1Iet $= R^4 = R^5 = H$, $R^2 = Acetyl$, m = n = 0, r = 5 $= R^4 = H$, $R^2 = Acetyl$, $R^5 = Phenyl$, m = n = 0, r = 1= R³Iev $= R^3 = R^4 = H$, $R^2 = Acetyl$, $R^5 = Phenyl$, m = n = 0, r = 5Iew $= R^4 = H$, $R^2 = Acety1$, $R^5 = CF_3$, m = n = 0, r = 1Iex $= R^4 = H$, $R^2 = Acetyl$, $R^5 = CF_3$, m = n = 0, r = 4Iey $= R^3 = R^4 = H$, $R^2 = Acetyl$, $R^5 = tert$. Butyl, Iez m = n = 0, r = 1 $R^1 = R^3 = R^4 = H$, $R^2 = Acetyl$, $R^5 = tert.-Butyl$, Ifa m = n = 0, r = 3 $= R^3 = R^5 = H$, $R^2 = Acetyl$, $R^4 = CH_3$, m = n = 0, r = 1Ifb $= R^5 = H$, $R^2 = Acetyl$, $R^4 = CH_3^2$, m = n = 0, r = 5Ifc $= R^4 = R^5 = H$, $R^2 = Alkyl mit <math>2 - 4$ C-Atomen, Ifd m = n = 0, r = 1 $R^1 = R^3 = R^4 = R^5 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, m = n = 0, r = 5 $R^1 = R^3 = R^4 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, $R^5 = Phenyl$, m = n = 0, r = 1Iff $R^1 = R^3 = R^4 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen,$ $R^5 = Pheny1$, m = n = 0, r = 5 $R^1 = R^3 = R^4 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, $R^5 = CF_3$, m = n = 0, r = 1 $R^1 = R^3 = R^4 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, $R^5 = CF_3$, m = n = 0, r = 4Ifi $R^{1} = R^{3} = R^{4} = H$, $R^{2} = Alkyl mit 2 - 4 C-Atomen$, $R^{5} = tert.-Butyl$, m = n = 0, r = 1 $R^1 = R^3 = R^4 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, $R^5 = tert.-Butyl$, m = n = 0, r = 3 $R^1 = R^4 = R^5 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$ $R^3 = OH, m = n = 0, r = 1$ $R^1 = R^4 = R^5 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, $R^3 = OH$, m = n = 0, r = 5 $R^1 = R^4 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen, <math>R^3 = OH$, $R^5 = Phenyl$, m = n = 0, r = 1 $R^1 = R^4 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen, <math>R^3 = OH$, $R^5 = Phenyl$, m = n = 0, r = 5 $R^1 = R^4 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen, <math>R^3 = OH$, $R^{5} = CF_{3}, m = n = 0, r = 1$ $R^1 = R^4 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen, <math>R^3 = OH$, $R^3 = CF_3$, m = n = 0, r = 4Ifr $R^1 = R^4 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, $R^3 = OH$, $R^5 = tert$. Butyl, m = n = 0, r = 1

では、「では、これでは、「できる」とは、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」という。「できる」と、「できる」と、「できる」と、「できる」と、「できる」という。「できる」と、「できる」」と、「できる」と、「できる」と、「できる」」と、「できる」と、「できる」と、「できる」と、「できる」」と、「できる」と、「できる」」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」と、「できる」、「できる。」、「いきる。」、「できる。」、「できる。」、「いきる。」、「できる。」、「できる。」、「できる。」、「できる。」、「できる。」、「できる。」、「できる。」、「いきる。」、「い

1 . 5 Ifs $R^1 = R^4 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen, <math>R^5 = OH$, $R^5 = tert.-Butyl$, m = n = 0, r = 3 $R^1 = R^4 = R^5 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen, <math>R^5 = OCH_3$, m = n = 0, r = 1 $R^1 = R^4 = R^5 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen, <math>R^3 = OCH_3$, m = n = 0, r = 5 $R^1 = R^4 = R^5 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, $R^3 = Acetoxy$, m = n = 0, r = 1 $R^1 = R^4 = R^5 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, $R^3 = Acetoxy$, m = n = 0, r = 5 $R^{1} = R^{5} = H$, $R^{2} = Alkyl mit 2 - 4 C-Atomen$, $R^{3} = OH$, $R^{4} = CH_{3}$, m = n = 0, r = 1 $R^1 = R^5 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, $R^3 = OH$, $R^4 = CH_3$, m = n = O, r = 5 $R^1 = R^5 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen, <math>R^3 = CCH_3$, $R4 = CH_3$, m = n = 0, r = 1 $R^{1} = R^{5} = H$, $R^{2} = Alkyl mit 2 - 4 C-Atomen$, $R^{3} = OCH_{3}$, $R^{4} = CH_{3}$, m = n = 0, r = 5 $R^1 = R^5 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, $R^3 = Acetoxy$, $R^4 = CH_3$, m = n = 0, r = 1 $R^1 = R^5 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, $R^3 = Acetoxy$, $R^4 = CH_3$, m = n = 0, r = 5 $R^1 = R^4 = R^5 = H$, $R^2 = Alkyl mit 2 - 4 C-Atomen$, $R^3 = Alkoxy mit 2 - 4 C-Atomen$, m = n = 0, r = 1 $R^{1}_{3} = R^{4} = R^{5} = H$, $R^{2}_{4} = Alkyl$ mit 2 - 4 C-Atomen, $R^{3}_{5} = Alkoxy$ mit 2 - 4 C-Atomen, $R^{2}_{5} = Alkoxy$ mit 2 - 4 C-Atomen, $R^{2}_{5} = Alkyl$ $R^1 = R^5 = H$, $R^2 = Alkyl$ mit 2 - 4 C-Atomen, $R^3 = Alkoxy$ mit 2 - 4 C-Atomen, $R^4 = CH_3$, m = n = 0, r = 1 $R^1 = R^5 = H$, $R^2 = Alkyl$ mit 2 - 4 C-Atomen, $R^3 = Alkoxy$ mit 2 - 4 C-Atomen, $R^4 = CH_3$, m = n = 0, r = 5 $R^{1}_{3} = R^{5} = H$, $R^{2} = R^{4} = Alkyl$ mit 2 - 4 C-Atomen, $R^{3}_{3} = Alkoxy$ mit 2 - 4 C-Atomen, $R^{2}_{3} = R^{4}_{3} = R^$ $R_{-}^{1} = R^{5} = H$, $R^{2} = R^{4} = Alkyl mit 2 - 4 C-Atomen$, R^3 = Alkoxy mit 2 - 4 C-Atomen, m = n = 0, r = 5.

Die Verbindungen der Formel I und damit auch die Verbindungen der Formeln Ia - Igi enthalten vier asymmetrische C-Atome im Fünfring. In den beiden Seitenketten können weitere Asymmetriezentren auftreten.

Die Verbindungen der Formel I und damit auch die Verbindungen der Formeln Ia - Igi können daher in einer Vielzahl stereoisomerer Formen auftreten und liegen in der Regel als Gemische von Racematen vor.

Gegenstand der Erfindung sind auch optisch aktive Verbindungen der Formel I, vorzugsweise der Formeln Ia bis Igi sowie deren Racemate. Besonders bevorzugt sind die optisch aktiven Stereo-isomeren der Formeln Igj - Igr, ihre optischen Antipoden und ihre Racemate, sowie die physiologisch unbedenklichen Salze dieser Verbindungen:

$$\begin{array}{c} {\rm R}^{6}{\rm O} & {\rm O}{\rm --(CH_{2})_{m}}{\rm --(CX_{2})_{n}}{\rm --(CH_{2})_{p}}{\rm -COOR}^{1} \\ \\ {\rm NR}^{2}{\rm --CH_{2}}{\rm --CR}^{3}{\rm R}^{4}{\rm --C_{r}H_{2r}}{\rm -R}^{5} \end{array}$$

$$R^{6}_{0} = (CH_{2})_{m} - (CX_{2})_{n} - (CH_{2})_{p} - COOR^{1}$$

$$R^{6}_{0} = R^{2} - CH_{2} - CR^{3}R^{4} - C_{r}H_{2r} - R^{5}$$

$$R^{6}_{0} = R^{6}$$
Ign

Insbesondere sind solche Verbindungen bevorzugt, welche die in den Formeln Igj bis Igr dargestellten sterischen Verhältnisse aufweisen und bei denen \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , m, n und r die bei den Formeln Ia bis Igi angegebene Bedeutung haben.

R12 0-(CH₂)_m-(CX₂)_n-(CH₂)_p-COOR1

IV

 $NR^2 - CH_2 - C(=R^{14}) - C_r H_{2r} - R^5$

worin

R¹² und R¹³ gleich oder ungleich sind und =0 oder (H,OR⁶) bedeuten und

R¹⁴ =0 oder (R³, R⁴) bedeutet und wenigstens ein Rest R¹², R¹³ oder R¹⁴=0 ist, und

R¹ bis R⁵ und X, m, n, p und r die oben angegebene Bedeutung haben,

mit einem reduzierenden Mittel umsetzt,

oder eine Verbindung der allgemeinen Formel V,

worin

W und Y gleich oder ungleich sind und OR°,
Hal, Alkylsulfonyloxy mit bis zu
4 C-Atomen oder Arylsulfonyloxy
mit bis zu 10 C-Atomen bedeuten,
und

R³ oder Hal, Alkylsulfonyloxy mit bis zu 4 C-Atomen oder Arylsulfonyloxy mit bis zu 10 C-Atomen bedeutet und mindestens einer der Reste X, Y und Z Hal, Alkylsulfonyloxy mit bis zu 4 C-Atomen oder Arylsulfonyloxy mit bis zu 10 C-Atomen ist, und

Hal Cl, Br oder J bedeutet, und wenigstens ein Rest Y cder W ungleich OR⁶ ist, wenn Z gleich R³ ist, und

 R^1 , R^2 , R^4 , R^5 , X, m, n, p und r die oben angegebene Bedeutung haben,

mit solvolysierenden Mitteln behandelt,

oder eine Verbindung der allgemeinen Formel VI,

$$\begin{array}{c|c}
 & H & OR^{6} \\
 & H & OR^{6} \\
 & R^{6}O & NR^{2} \\
 & R^{5}-C_{r}H_{2r}-CR^{3}R^{4}-CH_{2}
\end{array}$$

$$\begin{array}{c|c}
 & VI \\
 & VI
\end{array}$$

worin

A gegebenenfalls ein- oder mehrfach durch Cl, Br oder J substituiertes Alkylen, Cycloalkylen, Aralkylen oder Arylen mit jeweils bis zu 12 C-Atomen oder einen Valenzstrich,

U Hal, Alkylsulfonyloxy mit bis zu 4 C-Atomen oder Arylsulfonyloxy mit bis zu 10 C-Atomen

a 0 oder 1 und

b 1 oder 0

bedeuten, und

 R^2 bis R^6 , X, m, n, p und r die oben angegobene Bedeutung haben,

mit einer Verbindung der allgemeinen Formel VII,

409823/1086

worin

R¹⁹ und R²⁰ gleich oder ungleich sind, und Alkyl mit bis zu 4 C-Atomen, Benzyl oder Acyl mit bis zu 7 C-Atomen bedeuten

c 0 oder 1 und

d 1 oder 0

bedeuten, und

R² bis R⁵, X, m, n, p und r die oben angegebene Bedeutung haben, und

$$(a + b) = (c + d) = (a + c) = 1 \text{ ist,}$$

umsetzt,

oder eine Verbindung der allgemeinen Formel VIII,

$$H-\begin{bmatrix} R^{1}OOC-(CH_{2})_{\mathbf{p}}-(CX_{2})_{\mathbf{n}}-(CH_{2})_{\mathbf{m}}\\ R^{6}O_{\mathbf{q}} \end{bmatrix} = \begin{bmatrix} -CH_{\mathbf{q}} \\ -CH_{\mathbf{q}} \end{bmatrix} - NHR^{2}$$

$$VIII$$

$$C_{\mathbf{r}}^{3}R^{4}$$

$$C_{\mathbf{r}}^{4}2\mathbf{r}^{-R^{5}}$$

worin

e 0 oder 1 und

f 1 oder 0

bedeuten, und

R¹ bis R⁶, X, m, n, p und r die oben angegebene Bedeutung haben,

mit einer Verbindung der allgemeinen Formel IX,

worin

g 0 oder 1 und

h 1 oder 0

bedeuten, und

R¹, R³ bis R⁵, X, m, n, p und r die oben angegebene Bedeutung haben,

409823/1086

(e + f) = (g + f) = (e + g) = 1 ist,

umsetzt,

bene

ene

und/oder eine erhaltene Verbindung der Formel I durch Behandeln mit veresternden, acylierenden, alkylierenden, hydrogenolysierenden, thermolysierenden oder solvolysierenden Mitteln in eine andere Verbindung der Formel I überführt,

und/oder eine Verbindung, die sonst der Formel I entspricht, in welcher aber noch unerwünschte C-C- oder C-N-Mehrfachverbindungen vorhanden sind, durch Behandeln mit einem reduzierenden Mittel in eine Verbindung der Formel I überführt,

und/oder daß man eine Verbindung der Formel I in ihre Racemate und/oder optischen Antipoden spaltet,

und/oder eine Verbindung der Formel I durch Behandeln mit einer Säure oder Base in ihre physiologisch unbedenklichen Salze überführt oder durch Behandeln mit einer Base oder Säure aus ihren Salzen in Freiheit setzt.

In den vorstehenden Formeln bedeutet R¹ vorzugsweise neben Wasserstoff einen Alkylrest mit bis zu 12 C-Atomen, welcher auch ein- oder mehrfach durch Cl, Br oder J substituiert sein kann. Vor allem handelt es sich um unsubstituiertes Alkyl mit insbesondere bis zu 6 C-Atomen, z.B. um Methyl-, Äthyl-, n-Propyl-, n-Butyl-, n-Pentyl-, n-Hexyl-, Isopropyl-,Isobutyl-, sek.-Butyl-, tert.-Butyl-, Isopentyl-, Pent-2-yl-, Pent-3-yl-, tert.-Pentyl-, Neopentyl-, Hex-2-yl-, Hex-3-yl-, oder Iso-hexylgruppen, aber bedspielsweise auch um n-Heptyl-, n-Octyl-, n-Nonyl-, n-Decyl-, n-Undecyl- oder n-Dodecylreste, sowie um Haloalkylreste wie 2-Chloräthyl-, 2-Bromäthyl-, 2-Jodäthyl-, 2,2-Dibromäthyl-, 2,2-Dijodäthyl-, 2,2,2-Trichloräthyl-, 2,2-Trichloräthyl-, 2,2-Tribromäthyl- oder 2,2,2-Trijodäthylgruppen.

Beispiele für Cycloalkylgruppen mit bis zu 12 C-Atomen einschließlich, zu denen auch alkylsubstituierte Cycloalkylreste gehören, sind Cyclopropyl-, 2-Methylcyclopropyl-, 2,2-Dimethylcyclopropyl-, 2,3-Di äthylcyclopropyl-, 2-Butylcyclopropyl-,

Cyclobutyl-, 2-Methylcyclobutyl-, 3-Propylcyclobutyl-, 2,3,4-Triathylcyclobutyl-, Cyclopentyl-, 2,2-Dimethylcyclopentyl-, 3-Pentylcyclopentyl-, 3-tert.-Butylcyclopentyl-, Cyclohexyl-, 4-tert.-Butylcyclohexyl-, 3-Isopropylcyclohexyl-, 2,2-Dimethyl-cyclohexyl-, Cycloheptyl-, Cycloctyl-, Cyclononyl-, Cyclodecyl-, Cycloundecyl- und Cyclododecylgruppen.

Beispiele für Aralkylgruppen mit bis zu 12 C-Atomen einschließlich sind Benzyl-, Phenäthyl-, 1-Phenyläthyl-, 2-Phenylpropyl-, 4-Phenylbutyl-, 3-Phenylbutyl-, 2-(1-Naphthyläthyl)- und 1-(2-Naphthylmethyl)-Gruppen.

Handelt es sich bei R¹ um Aryl mit bis zu 12 C-Atomen, so sind unsubstituierte Kohlenwasserstoffreste wie Phenyl, 1-Naphthyl oder 2-Naphthyl bevorzugt, es kann aber auch ein vorzugsweise durch Halogen und/oder Alkyl mit bis zu 4 C-Atomen substituierter Arylrest sein, beispielsweise p-Chlorphenyl-, m-Chlorphenyl-, o-Chlorphenyl-, 2,4-Dichlorphenyl-, 2,4,6-Trichlorphenyl-, p-Tolyl-, m-Tolyl-, o-Tolyl-, p-Athylphenyl-, p-tert.-Butylphenyl-, 2,5-Dimethylphenyl-, 4-Chlor-2-methylphenyl- und 2,4-Dichlor-3-methylphenylgruppen.

R² und R⁶ sind gleich oder ungleich und bedeuten neben H
Alkyl mit bis zu 4 C-Atomen, vorzugsweise Methyl, Äthyl,
Propyl, tert.-Butyl; oder Acyl mit bis zu 7 C-Atomen, wobei
sich der Acylrest vorzugsweise von einer gesättigten oder ungesättigten aliphatischen, cycloaliphatischen oder aromatischen, substituierten oder unsubstituierten Carbonsäure
oder Sulfonsäure oder auch einer anorganischen Säure ableitet.
Bevorzugte Carbonsäuren sind gesättigte Fettsäuren mit 1 - 7,
vorzugsweise 1 - 4 C-Atomen, wie Ameisensäure, Essigsäure,
Propionsäure, Buttersäure oder Isobuttersäure; aber auch
Valeriansäure, Isovaleriansäure, Pivalinsäure, Capronsäure,
Isocapronsäure, Önanthsäure, Diäthylessigsäure; ferner ungesättigte Fettsäuren, wie Acrylsäure, Crotonsäure, Acetylencarbonsäure; alicyclische Carbonsäuren, wie Cyclopropancarbonsäure oder Cyclohexancarbonsäure; aromatische Carbonsäuren,

wie Benzoesäure; Dicarbonsäuren, wie Oxal-, Malon-, Bernstein-, Malein-, Glutar-, Dimethylglutar-, Adipin-, Pimelin- oder Acetondicarbonsäure; Hydroxycarbonsäuren, wie Glykolsäure; Halogenfettsäuren, wie Chloressigsäure, Dichloressigsäure, Trichloressigsäure oder Trifluoressigsäure; aber z.B. auch o-, m-oder p-Chlorbenzoesäure; oder heterocyclische Carbonsäuren, wie Nicotinsäure oder Furancarbonsäure. R⁶ ist insbesondere auch ein Benzylrest.

Bevorzugte Sulfonsäuren sind Alkylsulfonsäuren mit 1 - 6 C-Atomen, z.B. Methan-, Aethan-oder 2-Hydroxyäthansulfonsäure; oder Arylsulfonsäuren, z.B. Benzol-, p-Toluol- oder p-Bromphenylsulfonsäure. Bevorzugte anorganische Säuren sind Schwefelsäure und Phosphorsäure.

R³ ist neben H und OH auch Alkoxy mit bis zu 4 C-Atomen, beispielsweise Methoxy, Äthoxy, Propyloxy, Isopropyloxy oder tert.-Butyloxy; oder Acyloxy mit bis zu 7 C-Atomen, wobei sich der Acylrest vorzugsweise von einer der bei R² angegebenen Säuren ableitet.

R⁴ ist neben H auch Alkyl mit bis zu 5 C-Atomen, vorzugsweise unverzweigtes Alkyl wie Methyl, Äthyl, Propyl oder Butyl; aber auch Isopropyl, Isobutyl, sek.-Butyl, tert.-Butyl oder Pentyl.

 \mathbb{R}^3 und \mathbb{R}^4 können gemeinsam auch = 0 sein.

Political Property of the prop

2-Chlor-5-methoxy-, 2-Brom-5-methoxy-, 5-Methoxy-2-methyl-, 3-Methoxy-4-methyl-, 4-Brom-2,5-dimethoxy-, 2-Chlor-5methoxy-4-methyl-, 3,4,5-Trimethoxy-, 2,3,5-Trimethoxy-, 3,5-Diathoxy-, 3,5-Di-n-propoxy-, 3,5-Di-n-butoxy-, 2-Fluor-5-äthoxy-, 2-Chlor-5-äthoxy-, 2-Brom-5-äthoxy-, 5-Methoxy-2äthyl-, 5-Methoxy-2-n-propyl-, 5-Methoxy-2-isopropyl-, 5-Methoxy-2-n-butyl-, 5-Methoxy-2-isobutyl-, 5-Methoxy-2-sek.butyl-, 5-Methoxy-2-tert.-butyl-, 5-Methoxy-2-trifluormethyl-, 3-Fluor-2,5-dimethoxy-, 3-Chlor-2,5-dimethoxy-, 3-Brom-2,5dimethoxy-, 3-Methyl-2,5-dimethoxy-, 3-Äthyl-2,5-dimethoxy-, 3-n-Propyl-2,5-dime thoxy-, 3-Trifluorme thyl-2,5-dime thoxy-, 4-Fluor-2,5-dimethoxy-, 4-Chlor-2,5-dimethoxy-, 4-Methyl-2,5dimethoxy-, 4-Athyl-2,5-dimethoxy-, 4-n-Propyl-2,5-dimethoxy-, 2-Fluor-3,5-dimethoxy-, 2-Chlor-3,5-dimethoxy-, 2-Brom-3,5dimethoxy-, 2-Methyl-3,5-dimethoxy-, 2-Äthyl-3,5-dimethoxy-, 2-n-Propyl-3,5-dimethoxy-, 2-Trifluormethyl-3,5-dimethoxyphenylrest.

Der Buchstabe m bedeutet 0, 1, 2, 3, 4 oder 5; auch p bedeutet 0, 1, 2, 3, 4 oder 5; n bedeutet 0, 1 oder 2.

Die Summe von m + n + p ist vorzugsweise 4, 5, 6 oder 7, insbesondere aber 5 oder 6, wobei n bevorzugt 0 ist. Der Buchstabe r ist 0,1,2,3,4,5,6 oder 7, vorzugsweise aber 4,5,6 oder 7, und insbesondere 5, vor allem wenn $R^5 = H$ ist.

 ${\tt R}^8$ und ${\tt R}^9$ sind gleich oder verschieden und bedeuten eine mit hydrogenolysierenden oder hydrolysierenden Mitteln abspaltbare Gruppe.

Es handelt sich vorzugsweise um Acylreste mit bis zu 20 C-Atomen, die z.B. von einer gesättigten oder ungesättigten aliphatischen, cycloaliphatischen cder aromatischen, substituierten cder unsubstituierten Carbonsäure oder Sulfonsäure oder auch einer anorganischen Säure abstammen. Bevorzugte Carbonsäuren sind Fettsäuren mit 1 - 18, insbesondere 1 - 6 C-Atomen, wie Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure,

k.-

lt

 are

önanthsäure, Caprylsäure, Pelargonsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, ferner Crotonsäure, Ölsäure, Cyclohexancarbonsäure, Cyclohexylessig- und propionsäure, Benzoesäure, Phenylessig- und -propionsäure, Dicarbonsäuren wie Oxal-, Malon-, Bernstein-, Malein-, Glutar-, Dimethylglutar-, Adipin-, Pimelin-, Acetondicarbon-, Phthal-, Tetrahydrophthal-, Hexahydrophthal- oder Diglykolsäure, Hydroxy-carbonsäuren wie Glykolsäure, Halogenfettsäuren wie Chloressigsäure, Dichloressigsäure, Trichloressigsäure oder Trifluoressigsäure.

Bevorzugte Sulfonsäuren sind solche, die von Alkylsulfonsäuren mit 1 - 6 C-Atomen abgeleitet sind, z.B. Methan- oder Äthan-sulfonsäure, und Arylsulfonsäuren mit 6 - 10 C-Atomen, z.B. Benzol-, p-Toluol-, 1- und 2-Naphthalinsulfonsäure. Bevorzugte anorganische Säuren sind Schwefelsäure und Phosphorsäure.

R³ und R⁹ können weiterhin z.B. bedeuten: Aralkyl mit vorzugs-weise 7 - 19 C-Atomen, wie Benzyl, p-Methylbenzyl, 1- und 2-Phenyläthyl, Diphenylmethyl, Triphenylmethyl, oder 1- oder 2-Naphthylmethyl, Alkyl mit vorzugsweise bis zu 6 C-Atomen, ins-besondere tert.-Butyl; Tetrahydropyranyl; oder Trialkylsilyl, vorzugsweise Trimethylsilyl.

R⁷ ist entweder einer der bei R³ angegebenen Reste oder eine funktionell abgewandelte OH-Gruppe, vorzugsweise eine z.B. mit einer gesättigten oder ungesättigten aliphatischen, cycloaliphatischen oder aromatischen. substituierten oder unsubstituierten Carbonsäure oder Sulfonsäure oder auch einer anorganischen Säure veresterten OH-Gruppe. Bevorzugte Säuren sind die bei R⁸ bzw. R⁹ genannten.

Funktionell abgewandeltes OH kann weiterhin eine verätherte OH-Gruppe bedeuten, z.B. Aralkoxy mit vorzugsweise 7 - 19 C-Atomen, wie Benzyloxy, p-Methylbenzyloxy, 1- und 2-Phenyläthoxy, Diphenylmethoxy, Triphenylmethoxy, oder 1- oder 2- Naphthylmethoxy; Alkoxy mit vorzugsweise bis zu 6 C-Atomen, insbesondere tert.-Butoxy; Tetrahydropyranyloxy; oder Trialkylsilyloxy, vorzugsweise Trimethylsilyloxy.

R¹⁰ ist entweder R² oder eine mit hydrogenolysierenden oder hydrolysierenden Mitteln abspaltbare Gruppe, es kann daher vorzugsweise einer der bei R⁸ genannten Reste, insbesondere aber auch die Carbobenzoxy- oder die tert.-Butoxycarbonylgruppe bedauten.

R¹¹ ist ein in eine COOR¹-Gruppe überführbarer, vorzugsweise oxidierbarer, thermolysierbarer, carboxylierbarer oder solvolysierbarer Rest, insbesondere eine CH₂OH- oder CHO-Gruppe; oder sine funktionell abgewandelte Carboxylgruppe, vorzugsweise eine Halogencarbonylgruppe wie -COCl oder -COBr; eine stickstoffhaltige funktionell abgewandelte Carboxylgruppe, insbesondere $-CON_3$, $-CONR^{15}R^{16}$, $-C(=NH)OR^{15}$, $-C(=NR^{15})OR^{16}$, $-C(=NH)NH_2$, -CONHNH,, -CONHOH, -C=N, -C(=NH)Cl, -C(=NH)Br; eine schwefelhaltige funktionell abgewandelte Carboxylgruppe, insbesondere -COSR¹⁵, -CSOR¹⁵, -CSSR¹⁵, -CSNR¹⁵R¹⁶; oder eine nur Sauerstoff enthaltende funktionell abgewandelte Carboxylgruppe, insbesondere $-C(OR^{15})_3$, $-COOCOR^{15}$ oder $-COOR^{15}$. R^{15} und R^{16} sind gleich oder ungleich und bedeuten neben H einen organischen Rest, beispielsweise Alkylgruppen, vorzugsweise unverzweigt mit insbesondere bis zu 4 C-Atomen; durch Cl, Br, J, OH, Alkoxy mit bis zu 4 C-Atomen, Acyloxy mit bis zu 4 C-Atomen, Phenyl oder Naphthyl substituiertes Alkyl mit bis zu 4 C-Atomen; Cycloalkyl mit bis zu 6 C-Atomen; gegebenenfalls ein- oder mehrfach durch Cl, Br, NO2, OH, Alkoxy mit bis zu 4 C-Atomen, Acyloxy mit bis zu 4 C-Atomen, substituiertes Aryl mit bis zu 10 C-Atomen; siliziumorganische Reste, vorzugsweise Trialkylsilyl, beispielsweise Trimethylsilyl; gemeinsam auch Polymethylen mit bis zu 6 C-Atomen, vorzugsweise unsubstituiertes Polymethylen mit his zu 6 C-Atomen wie $-(CH_2)_4$ -, $-(CH_2)_5$ - oder $-(CH_2)_6$ -; aber insbesondere auch durch Methyl substituiertes Polymethylen, wie 1-Methyl-trimethylen; oder gemeinsam auch ein durch O, N oder S-Atome unterbrochenes Polymethylen mit vorzugsweise bis zu 6 C-Atomen, wie

R¹¹ kann aber auch -CH=CHR⁷, -CH=CR¹⁵R¹⁶, -CHOH-CHOH-R¹⁵, -CHOH-CO-R¹⁵, -CHOH-COOR¹⁵, -CHOH-CHNHR¹⁵, -C≡C-R¹⁵, -CO-R¹⁷ oder -CH₂-R¹⁸ sein, R¹⁷ bedeutet hier H oder einen beliebigen organischen Rest, vorzugsweise R¹, CN oder COOH; da derjenige Teil des Moleküls, der den Rest R¹⁷ trägt, oxydativ entfernt wird, ist die Bedeutung des Restes R¹⁷ nicht kritisch. R¹⁸ bedeutet eine Borwasserstoff-, Boralkyl- oder Aluminium-alkylgruppe.

en.

b k--

Außerdem kann R¹¹ auch ein Äquivalent eines Metallatoms vorzugsweise eines Alkalimetall- oder Erdalkalimetallatoms, insbesondere Li oder MgX bedeuten.

W und Y sind gleich oder ungleich und bedeuten neben OR⁶ oder Cl, Br oder J auch noch Alkylsulfonyloxy mit bis zu 4 C-Atomen, vorzugsweise unsubstituiertes Alkylsulfonyloxy, insbesondere Methylsulfonyloxy oder Äthylsulfonyloxy, aber auch Butylsulfonyloxy; substituiertes Alkylsulfonyloxy, wie 2-Hydroxy-äthylsulfonyloxy; oder Arylsulfonyloxy mit bis zu 10 C-Atomen, wie p-Tolylsulfonyloxy, p- Bromphenylsulfonyloxy, α-Naphthylsulfonyloxy oder β-Naphthylsulfonyloxy.

Z kann neben R³, Cl, Br oder J ebenfalls Alkylsulfonyloxy mit bis zu 4 C-Atomen oder Arylsulfonyloxy mit bis zu 10 C-Atomen bedeuten, es handelt sich daher vorzugsweise um einen bei W und Y genannten Rest.

A ist eine gegebenenfalls ein- oder mehrfach durch C1, Br oder J substituierte Alkylen-, Cycloalkylen-, Aralkylen- oder Arylengruppe mit jeweils bis zu 12 C-Atemen, welche sich von dem Rest R¹ durch Entfernung eines weiteren H-Atoms ableitet.

Bevorzugt sind die zweiwertigen Gruppen, die sich von den bei \mathbb{R}^1 genannten einwertigen Gruppen ableiten; A kann aber auch einen Valenzstrich bedeuten.

U bedeutet neben Cl, Br, J auch Alkylsulfonyloxy mit bis zu 4 C-Atomen oder Arylsulfonyloxy mit bis zu 10 C-Atomen; es handelt sich daher vorzugsweise um einen der bei W und Y genannten Rest.

Die Buchstaben a,b,c,d,e,f,g und h bedeuten jeweils 0 oder 1, wobei zu beachten ist, daß Buchstaben, welche in einer Formel vorkommen, nicht gleich sein können, und a stets ungleich c und e stets ungleich g ist.

Bei den Verbindungen der Formel II handelt es sich um substituierte 1,4-Dialkoxy-, 1,4-Diaralkoxy-, 1,4-Diacyloxy-, 1-Alkoxy-4-aralkoxy-, 1-Aralkoxy-4-alkoxy-, 1-Alkoxy-4-acyloxy-, 1-Acyloxy-4-alkoxy-, 1-Aralkoxy-4-acyloxy- oder 1-Acyloxy-4aralkoxy-cyclopentane, vorzugsweise um substituierte 1.4-Dialkoxy-3-N-alkylamino-2-omega-carboxyalkyloxy-, 1,4-Diaralkoxy-3-N-alkylamino-2-omega-carboxyalkyloxy-, 1,4-Diacyloxy-3-Nalkylamino-2-omega-carboxyalkyloxy-, 1,4-Dialkoxy-3-N,N-dialkylamino-2-omega-carboxyalkyloxy-,1,4-Diaralkoxy - 3-N,N-dialkylamino-2-omega-carboxyalkyloxy-,1,4-Diacyloxy-3-N,N-dialkylamino-2-omega-carboxyalkyloxy-, 1,4-Dialkoxy-3-N-(2-hydroxyalkylamino)-2-omega-carboxyalkyloxy-, 1,4-Diaralkoxy-3-N-(2-hydroxyalkylamino)-2-omega-carboxyalkyloxy-, 1,4-Diacyloxy-3-N-(2hydroxyalkylamino)-2-omega-carboxyalkyloxy-, 1,4-Dialkoxy-3-Nalkyl-N-(2-hydroxyalkylamino)-2-omega-carboxyalkyloxy-,1,4-Diaralkoxy-3-N-alkyl-N-(2-hydroxyalkylamino)-2-omega-carboxyalkyloxy-oder 1,4-Diacyloxy-3-N-alkyl-N-(2-hydroxyalkylamino)-2-omega-carboxyalkyloxy-cyclopentane, sowie deren Ester, verzugsweise Alkylester; insbesondere um 1,4-Di-tert.-Butoxy-3-Nalkylamino-2-omega-carboxyalkyloxy-,1,4-Dibenzyloxy-3-N-alkylamino-2-omega-carboxyalkyloxy-,1,4-Di-tert.-butoxy-3-N,Ndialkylamino-2-omega-carboxyalkyloxy-,1,4-Dibenzyloxy-3-N,Ndialkylamino-2-omega-carboxyalkyloxy-,1,4-Di-tert.-Butoxy-3-N-(2-hydroxyalkylamino)-2-omega-carboxyalkyloxy-,1,4-Dibenzyloxy-3-N-(2-hydroxyalkylamino)-2-omega-carboxyalkyloxy-,1,4-Di-tert.-Butoxy-3-N-alkyl-N-(2-hydroxyalkylamino)-2-omegacarboxyalkyloxy- oder 1,4-Dibenzyloxy-3-N-alkyl-N-(2-hydroxy-