

ATIVIDADE 03

Acadêmico: André Luis de Souza Lima	R.A. : 21150930-5					
Curso: Engenharia de Software						
Disciplina: ATIVIDADE 3 - ESOFT - LÓGICA PARA COMPUTAÇÃO - 51/2023						
Valor da atividade: 0,50	Prazo: 03/04/2023 08:00 a 28/04/2023 23:59					

QUESTÃO 01

Os maiores bancos do Brasil estão investindo em soluções tecnológicas para minimizar os assaltos. São mais de 3.500 agências monitoradas em todo o país. No total, essas instituições financeiras gastam cerca de nove bilhões de reais por ano em segurança. Sensores de movimento, câmeras, softwares de gerenciamento, alertas por áudio e uma fumaça de segurança são alguns dos recursos utilizados para identificar e inibir os assaltantes. Após às 22 horas, caso haja algo suspeito, um alerta é disparado na central de monitoramento.

Fonte: adaptado de: https://revistasegurancaeletronica.com.br/bancos-investem-em-tecnologia-para-aumentar-a-seguranca-nas-agencias. Acesso em: 10 fev. 2023.

Pensando na segurança de uma agência, o gerente decidiu procurar uma empresa de tecnologia na intenção de automatizar o acesso de uma das portas do cofre de tal maneira que tivessem três chaves de acesso, A, B e C. Contudo, para abrir a porta, uma específica combinação deveria ser feita a fim de dificultar as possibilidades de acesso.

O circuito escolhido está descrito na figura a seguir:

Fonte: O Autor.

Considerando a situação relatada, responda:

- a) Quantas combinações de chaves haverá para essa porta?
- Uma vez que existem três chaves de acesso (A, B e C) e considerando que cada chave de acesso é um dado de entrada que pode assumir 02 (dois) valores lógicos, 0 e 1 (ligada ou desligada | com energia e sem energia | *on* e *off*), perfazendo a combinação entre elas, existe a possibilidade de 8 combinações de chave para a porta (2^n, em que **n** é o número de entradas existente, ou seja, 2³ = 8). A tabela a seguir mostra essas combinações possíveis:

Linha	Α	В	С
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

Tabela 1. Fonte (Elaborado pelo Autor).

- b) Qual é a expressão lógica que melhor traduz o circuito dado?
- Analisando o circuito lógico, a expressão lógica é a seguinte:

$$S = (A \land \neg C) \lor (A \land B) \lor (B \land C \land \neg C).$$

Realizando as operações lógicas, as propriedades e equivalências lógicas,
como também utilizando o método do *Mapa de Karnaugh*, a expressão lógica simplificada é mostrada a seguir:

$$S = (A \land \sim C) \lor (A \land B) \lor (B \land C \land \sim C)$$

$$S = (A \land \sim C) \lor (A \land B)$$

$$S = A \wedge (B \vee \sim C)$$
.

Linha	A	В	С	Α	٨	(B	V	~C)
0	0	0	0	0	0	0	1	1
1	0	0	1	0	0	0	0	0
2	0	1	0	0	0	1	1	1
3	0	1	1	0	0	1	1	0
4	1	0	0	1	1	0	1	1
5	1	0	1	1	0	0	0	0
6	1	1	0	1	1	1	1	1
7	1	1	1	1	1	1	1	0
Prioridade	-	-	-	1	4	1	3	2

Tabela 2. Fonte (Elaborado pelo Autor).

 $S = A.(B + \overline{C})$

Mapa de Karnaugh para três variáveis de entrada.

- **c)** Quais são as combinações que abrem a porta? Chame de conjunto COM, sobre as combinações.
- Analisando o resultado da Tabela 2 e do *Mapa de Karnaugh*, observa-se que as combinações que abrem a porta estão nas linhas 4, 6 e 7 prioridade 4, em que o circuito lógico apresenta saída verdadeira para as combinações de entrada.

$$COM = \{(1,0,0), (1,1,0), (1,1,1)\}.$$

REFERÊNCIAS:

IODETA, Ivan V.; CAPUANO, Francisco Gabriel. **Elementos de Eletrônica Digital**. 40 ed. São Paulo: Érica, 2007.