

- Šabloni rukovanja podacima
- Drugi šabloni

Šabloni serijskog rukovanja podacima

- Šabloni serijskog rukovanja podacima su:
 - Slučajno čitanje i pisanje
 - Dodela steka
 - Dodela memorije (npr. C++ new/delete)
 - Funkcijski objekti
 - Objekti

Slučajno čitanje i pisanje

- Apstrakcija memorije kao niza lokacija
 - Pristup preko adresa, tj. pokazivača
- ALIASI: pokazivači koji pokazuju na isti objekat
- PROBLEM ALIASA, npr. args f-ije engine2
 - Otežava vektorizaciju i paralelizaciju programa
 - Dodatne kopije podataka ponekad je preskupo
 - Aliasi se zabranjuju odgovornost na programeru
- Indeksi nizova: malo sigurniji pristup
 - Mogući aliasi, ali oblast memorije je bolje ograničena
 - Drugo: niz se može lakše prebaciti u drugi procesor

Dodela steka

- Stek: prostor za dinamičko smeštanje podataka
 - LIFO organizacija
- Prednosti ove dodele:
 - Efikasna (u konstantnom vremenu)
 - Očuvava lokalnost podataka
- Paralelizacija ovog šablona:
 - Svakoj programskoj niti njen sopstveni stek
 - Cilk Plus generalizuje dodelu steka, u kontekstu funkcijskih poziva, radi očuvanja lokalnosti podataka
 - Tako generalizovan stek se naziva KAKTUS STEK

Funkcijski objekti (FO)

- Funkcijski objekti: rukovanje kao sa podacima
- LAMBDA FUNKCIJE su vrsta funkcijskih objekata
 - Definišu se tamo gde, i onda kada, su potrebni
 - Puno se koriste od strane TBB-a
- Često se koriste za skladištenje stanja referenciranih promenljivih
- FO mogu biti generisani:
 - Statički (jedan nivo indirekcije radi pristupa) ili
 - Dinamički (u ArBB stanje referenciranih prom. u tački konstruisanja – radi optimizacije koda)

Objekti

- Objekti pridružuju podatke funkcijama
 - METODE, ili FUNKCIJE ČLANICE objekta
 - PODKLASE (subclasses), NADKLASE (superclasses)
- ◆ C++ podklasa može redefinisati f-ije iz nadklase
 - Ovo redefinisanje zahteva upotrebu pokazivača
 - Pokazivači nisu uvek raspoloživi (stari GPU ih nema)
- Java "synchronized" metode:
 - Implicitno se dodaje brava
 - Brava može negativno uticati na performansu

Šabloni paralelnog rukovanja podacima (1/2)

- Problemi, npr. trka do podataka
- Izbegava se menjanje deljenih podataka
 - Izuzetak je šablon Razbacivanje, ali bez problema
- Očuvanje lokalnosti podataka (LP):
 - LP je cilj nekih šablona, npr. šablon Particionisanje
 - Podaci se u nezavisnim zonama mogu bez opasnosti paralelno menjati

Šabloni paralelnog rukovanja podacima (2/2)

- Šabloni paralelnog rukovanja podacima su:
 - Pakovanje
 - Protočna obrada
 - Geometrijska dekompozicija
 - Skupljanje
 - Razbacivanje

Pakovanje

- Pakovanje se može napraviti kombinacijom
 - šablona Skeniranje i Razbacivanje

- Eliminisanje nekorišćenog prostora u zbirci podataka
 - Preskače elemente označene vrednošću 0
 - Preostali elementi idu u kontinualan prostor
- Posebno koristan u kombinaciji sa drugim:
 - Npr. sa šab. Preslikavanje
 - Izbegava nepotreban izlaz
 - Sužava mem. Throughput
 - Emulira kontrolu toka na SIMD
 - Inverzna operacija je Raspakivanje
 - Obe su deterministične

Protočna obrada

- Zadaci u relaciji proizvođač-potrošač
 - Svi stepeni istovremeno aktivni, i imaju stanje
 - Osnovni šablon je Linearna protočna obrada
 - U opštijem slučaju skup stepeni može biti povezan u USMERENI ACIKLIČNI GRAF (DAG)
- Korisne za serijski zavisne zadatke
 - Npr. kodovanje i dekodovanje videa i audia
- Prave se funkcionalnom dekompozicijom zadataka u aplikaciji
- Mana: relativno mala skalabilnost
 - Ipak, korisne kada se komponuju sa drugim šablonima

Geometrijska dekompozicija (1/2)

- Razbija zbirku podataka na skup zbirki
- **♦** Šablon PARTICIONISANJE:
 - Slučaj podele na zone bez preklapanja
 - Paralelni zadaci mogu da rade nezavisno
 - Algoritmi podeli-i-zavladaj i Obrada suseda
- Obrada suseda: preklapanje traka na ulazu, bez preklapanja na izlazu
- Problemi: granični uslovi, pločice iste veličine
- Umesto pomeranja podataka, alternativni pogled na organizaciju podataka

Geometrijska dekompozicija (2/2)

- Podela u regularne podnizove
 - Ili podzbirke različitih veličina, podzbirke koje su učešljane
 - Podela grafa: povezani čvorovi ili na druge načine
 - Distribucija: komunikacija samo preklopljenih domena
- Primene: JPEG i druge makroblok kompresije
 - množenje matrica tipa podeli-i-zavladaj, itd.

Skupljanje

- Izlazna zbirka podataka na osnovu
 - ulazne zbirke podataka sa indeksima
 - Kombinacija operacija Preslikavanja i Slučajno čitanje
- Optimizacije: niz indeksa fiksan, ili neki šablon
 - Npr. pomeranje podataka ulevo ili udesno putem vektorskih operacija, optimizacija Obrade suseda, itd.
- Primene: retke matrice, rač. grafika, bliskost/kolizija

Razbacivanje

- Inverzan od šablona Skupljanje
 - Problem: Šta ako dva upisa idu u istu lokaciju?
 - Dakle, moguća je trka do podataka KOLIZIJA
- ◆ Potpune def. Razbacivanja neko rešenje kolizije:
 - Korišćenje asocijativnih operatora za kombinovanje elemenata
 - Nedeterminističko biranje jednog od više elemenata
 - Pridruživanje prioriteta pojedinim elementima

Drugi paralelni šabloni

- Drugi paralelni šabloni:
 - Superskalarna sekvenca
 - Buduće vrednosti
 - Spekulativni izbor
 - Gomilanje posla
 - Pretraga
 - Segmentacija
 - Proširivanje
 - Redukcija kategorija
 - Prepisivanje delova grafa

Superskalarna sekvenca (Ss) (1/2)

- Za razliku od serijske sekvence
 - Redosled zadataka određen zavisnostima podataka
 - Ako nema ivičnih efekata: zadaci teku paralelno
 - ili u redosledu koji je različit od onoga u izvornom kodu programa
 - Zavisnosti podataka moraju biti vidljive raspoređivaču
- Ovaj šablon ima veze sa šab. Buduće vrednosti:
 - Ss nema eksplicitnog rukovanja ili čekanja zadat.
 - Ss samo mora biti serijski konzistentna
- Sledi primer

Buduće vrednosti

- Ovaj šablon je kao Grananje-Pridruživanje (G-P)
 - ali zadaci ne moraju biti hijerarhijski ugnježdeni
 - Mrešćenje vraća objekt BUDUĆA VREDNOST (BV)
 - Operacija nad BV: čekanje na završetak zadatka
- Za implementaciju opštijih grafova zadataka
 - G-P i BV kao stek i heap u memoriji
- Operacija otkazivanja = uništavanje zadatka:
 - Može se iskoristiti za implementaciju drugih šablona
 - Nedetrministički šab. Grananje i ograničavanje ili šab.
 Spekulativni izbor

Spekulativni izbor (1/2)

- Generalizuje sekvencijalni izbor, tako da
 - obe alternative mogu da se izračunavaju paralelno
 - Nakon određivanja uslova, suvišna grana se otkazuje
 - Vraćanje bilo kakvih ivičnih efekata
- Ovaj šablon je inherentno rasipnički
 - Uvek povećava ukupnu količinu posla
- Otkazivanje može biti skupo
 - Pogotovo ako je potrebno zakasniti ivične efekte
- Model prog. mora podržavati otkazivanje zadatka, npr. TBB model podržava

Spekulativni izbor (2/2)

- Šablon paralelizma najfinije skale, u dva slučaja:
 - I: Radi skrivanja kašnjenja na nivou instrukcija
 - II: Radi simuliranja više niti na SIMD jedinicama
- Sl. I: spekulativni izbor ili van redosleda
 - Spekulativni izbor ne mora biti rasipnički
 - Realizuje kompajler ili procesor
- ♦ Sl. II: niti se emuliraju korišćenjem maskiranja
 - Upis u mem.samo na SIMD trakama gde je dozvoljen
 - Sličan pristup za emuliranje iteracije na SIMD jedinicama - završetak petlje: maska sve 1-ce/0-le

Gomilanje posla

- Generalizacija šab. Preslikavanje
 - Svaka instanca elementne f-je može generisati više stavki, i dodati ih na gomilu posla
 - Npr. u rekurzivnoj pretrazi stabla, po jedna instanca za obradu svakog potomka
- Za razliku od šablona Preslikavanje
 - Ukupan broj instanci osnovne f-ije nije poznat
 - Niti je regularna struktura posla (nije po mustri)
 - Teže se vektorizuje od šablona Preslikavanje

Pretraga

- Pronalazi podatak unutar zadate zbirke podataka
 - koji zadovoljava neki kriterijum
 - Npr. poklapanje sa zadatim ključem
 - Ili skup logičkih i aritmetičkih ograničenja
- Pretraga je obično povezana sa sortiranjem
- SQL se može posmatrati kao model PP
 - LINQ firme Microsoft koristi generalizovane pretrage kao osnovu za svoj model programiranja

Segmentacija

- Generalizovane operacije na zbirkama
 - SEGENTIRANE ZBIRKE su 1D nizovi podeljeni u nepreklapajuće i neuniformne particije
 - Skeniranje i Redukcija nad svakim segmentom
 - Preslikavanje nad segmentom ili elementom
- Segmentirane radnje nad zbirkama su skuplje
 - ali se lako vektorizuju i uravnotežuje opterećenje
- Primene:
 - Qicksort: PRVO-U-ŠIRINU se može vektorizovati
 - Analize vremenskih serija podataka (finansije, itd.)

Proširivanje

- Spoj šab. Preslikavanje i šab. Pakovanje
 - Svaki element preslikavanja može proizvesti nula ili više elemenata na izlazu
 - Pakovanje po poziciji preslikavanja i redosledu proizvođenja
- Primene:
 - Testiranje parova radi detekcije kolizije
 - kompresije audia/videa sa promenljivom brzinom

Redukcija kategorija (1/2)

- Za zadatu zbirku pod. sa pridruženim labelama
 - Pronalazi sve elemente sa istom labelom i
 - redukuje ih na jedan el. korišćenjem asocijativnog (i možda komutativnog) operatora
 - Kombinacija šab. Pretraga i segmentirana Redukcija
- Problem: paralelizacija pretrage i poklapanja
- Google rešenje: Hadoop MapReduce:
 - Preslikavanje generiše izlazne podatke i skup labela
 - Redukcija kategorija kombinuje i organizuje izlaz iz preslikavanja (Google to zove kratko redukcija)

Redukcija kategorija (2/2)

- 1 2 3 1
- $\left(\begin{array}{c}1\end{array}\right) \left(\begin{array}{c}2\end{array}\right) \left(\begin{array}{c}4\end{array}\right)$
- $\begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\$
- 1 2 3 4

Red.

1 2 3 4

- Redukcija kategorija:
 - Pronađu se svi el. sa istom labelom
 - Redukuju se zadatim operatorm
- Primene:
 - Matrični proračuni na delovima slike
 - Hiljade aplikacija koje su implemenirane u modelu MapReduce

Prepisivanje delova grafa

- Pronalazi sve instance podgrafa TERM
 - i zamenjuje ih instancama novog podgrafa
 - Zamene se ponavljaju iterativno
 - sve dok više nema mogućnosti zamene
- Šab. ekvivalentan Lambda računu
 - za definisanje semantike funkcionalnih jezika
- Paralelno u različitim delovima grafa:
 - Ako je operacija konfluentna (ne zavisi od redosleda)
- Primene:
 - funkcionalni jezik Concurrent Clean, sinteza FPGA, itd.

Nedetirministički šabloni

- Nedeterminizam otežava testiranje programa
 - Ali može biti koristan
- Nedetirministički šabloni:
 - Grananje i ograničavanje
 - Transakcije
- Apstrakcija može biti deterministička
 - a njena implementacija interno nedeterministička
 - Treba razumeti kada nedeterminizam može biti sadržan unutar neke apstrakcije

Grananje i ograničavanje

- Često se koristi u implementaciji pretrage
- Paralelna pretraga:
 - Skup stavki se podeli i podskupovi pretraže paralelno
 - Čim se pronađe stavka, ostale pretrage se otkazuju
- Super-linearna ubrzanja
 - Otkazivanje zadataka mora biti efikasno
- Primene: Matematička optimizacija:
 - Algoritam nedetirministički, rezultat deterministički
 - Slične tehnike za pretraživanje prostora-stanja u veštačkoj inteligenciji (npr. Alfa-beta potkresivanje)

Transakcije (1/2)

- Kada centralnu bazu treba višestruko ažurirati
 - Pri čemu redosled nije važan
 - ali se baza mora održavati u konzistentnom stanju
- Primer Banka:
 - Koristi asocijativne operacije (+ i -), pa je rezultat faktički determinističan
- Primer 2: tabele sa dir. pristupom (hash table)
 - Skup kontejnera (bucket), npr. skup lista
 - Pomoću transakcija više zadataka može paralelno i konzistentno da umeće nove elemente

Transakcije (2/2)

- Redosled ne mora biti isti u svakom izvršenju
- Ali, program može biti determ. ako unutrašnji nedeterminizam nije izložen izvan implementacije
- Tada će pretrage tabele uvek vraćati iste rezultate
- Problem: dodati dva elementa sa istim ključima
 - Ako se zadržava zadnji: nedeterministčka tabela
 - Ako se uzima npr. veći: deterministčka tabela
- Implementacija transakcija:
 - Može pomoću brava, ali nije skalabilno, bolje pomoću
 - Protokola ZAVRŠI I PONOVI (commit and rollback)
 - HW/SW Transakcione Memorije (TM), npr. Intel Haswell