GIẢI TÍCH I

TS. Lê Văn Tứ

Hanoi University of Science and Technology

Tháng 9 Năm 2022

Nội dung

- Nguyên hàm
- Tích phân xác định
- 3 Tích phân suy rộng
- 4 Các ứng dụng của tích phân xác định

Table of Contents

- Nguyên hàm
- Tích phân xác định
- Tích phân suy rộng
- Các ứng dụng của tích phân xác định

Khái niệm nguyên

Định nghĩa

Cho hàm số $f:(a,b)\to\mathbb{R}$. Hàm $F:(a,b)\to\mathbb{R}$ được gọi là một nguyên hàm của f nếu F khả vi trên (a,b) và F'=f.

Khái niệm nguyên

Định nghĩa

Cho hàm số $f:(a,b)\to\mathbb{R}$. Hàm $F:(a,b)\to\mathbb{R}$ được gọi là một nguyên hàm của f nếu F khả vi trên (a,b) và F'=f.

Đinh lí

Gọi F là một nguyên hàm của f. Khi đó, nếu G là một nguyên hàm của f thì tồn tại hằng số $C \in \mathbb{R}$ sao cho G = F + C.

Ta kí hiệu họ các nguyên hàm của f bởi kí hiệu

$$\int f(x)dx = F(x) + C, C \in \mathbb{R}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Tính chất cơ bản của nguyên hàm

Mệnh đề

- Nếu f liên tục trên (a, b) thì f có nguyên hàm trên (a, b).
- Nếu $f,g:(a,b) o \mathbb{R}$ có nguyên hàm trên Với mọi $lpha,eta \in \mathbb{R}$, ta có

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx.$$

•
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1.$$

$$\bullet \int \frac{dx}{x} = \ln|x| + C.$$

•
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1.$$

- $\int \cos x dx = \sin x + C$.

•
$$\int \cos x dx = \sin x + C$$
.

•
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1.$$

•
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1.$$

•
$$\int \cos x dx = \sin x + C$$
.

•
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1.$$

•
$$\int a^x dx = \frac{a^x}{\ln a} + C, 0 < a \neq 1.$$

•
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1.$$

•
$$\int a^x dx = \frac{a^x}{\ln a} + C, 0 < a \neq 1.$$

Đổi biến $t=\psi(x)$

Cho hàm $f(x)=g(\psi(x))\psi'(x)$ thì đặt $t=\psi(x), dt=\psi'(x)dx$ và

$$\int f(x)dx = \int g(\psi(x))\psi'(x)dx = \int g(t)dt.$$

Đổi biến $t = \psi(x)$

Cho hàm $f(x)=g(\psi(x))\psi'(x)$ thì đặt $t=\psi(x), dt=\psi'(x)dx$ và

$$\int f(x)dx = \int g(\psi(x))\psi'(x)dx = \int g(t)dt.$$

Đổi biến $x = \varphi(t)$

Đặt x=arphi(t), dx=arphi'(t)dt, ta có

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

Đổi biến $t = \psi(x)$

Cho hàm $f(x) = g(\psi(x))\psi'(x)$ thì đặt $t = \psi(x), dt = \psi'(x)dx$ và

$$\int f(x)dx = \int g(\psi(x))\psi'(x)dx = \int g(t)dt.$$

Đổi biến $x = \varphi(t)$

Đặt x=arphi(t), dx=arphi'(t)dt, ta có

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

Chú ý: Sau khi tìm được nguyên hàm theo biến t, cần đổi biến lại về biến x.

Đổi biến $t = \psi(x)$

Cho hàm $f(x)=g(\psi(x))\psi'(x)$ thì đặt $t=\psi(x), dt=\psi'(x)dx$ và

$$\int f(x)dx = \int g(\psi(x))\psi'(x)dx = \int g(t)dt.$$

Đổi biến $x = \varphi(t)$

Đặt x=arphi(t), dx=arphi'(t)dt, ta có

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

Chú ý: Sau khi tìm được nguyên hàm theo biến t, cần đổi biến lại về biến x.

VD. Tính

$$\int x(1+x^2)^4 dx$$
.

Đổi biến $t = \psi(x)$

Cho hàm $f(x)=g(\psi(x))\psi'(x)$ thì đặt $t=\psi(x), dt=\psi'(x)dx$ và

$$\int f(x)dx = \int g(\psi(x))\psi'(x)dx = \int g(t)dt.$$

Đổi biến $x = \varphi(t)$

Đặt x=arphi(t), dx=arphi'(t)dt, ta có

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

Chú ý: Sau khi tìm được nguyên hàm theo biến t, cần đổi biến lại về biến x.

VD. Tính

$$\int x(1+x^2)^4 dx$$
. Đặt $x^2=u$ $\int \sqrt{1-x^2} dx$.

Đổi biến $t = \psi(x)$

Cho hàm $f(x) = g(\psi(x))\psi'(x)$ thì đặt $t = \psi(x), dt = \psi'(x)dx$ và

$$\int f(x)dx = \int g(\psi(x))\psi'(x)dx = \int g(t)dt.$$

Đổi biến $x = \varphi(t)$

Đặt x=arphi(t), dx=arphi'(t)dt, ta có

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

Chú ý: Sau khi tìm được nguyên hàm theo biến t, cần đổi biến lại về biến x.

VD. Tính

$$\int x(1+x^2)^4 dx. \text{ Dặt } x^2 = u$$

$$\int \sqrt{1-x^2} dx. \text{ Dặt } x = \sin u, u \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Tích phân từng phần

Ta dựa vào phép lấy vi phân của tích d(uv) = udv - vdu để có công thức tích phân từng phần.

Công thức

$$\int u dv = uv - \int v du.$$

Mục đích của tích phân từng phần là làm giảm độ phức tạp của biểu thức lấy nguyên hàm bằng cách đặt các hàm phức tạp làm u.

Tích phân từng phần

Ta dựa vào phép lấy vi phân của tích d(uv) = udv - vdu để có công thức tích phân từng phần.

Công thức

$$\int u dv = uv - \int v du.$$

Mục đích của tích phân từng phần là làm giảm độ phức tạp của biểu thức lấy nguyên hàm bằng cách đặt các hàm phức tạp làm u.

Gọi ý các trường hợp áp dụng tích phân từng phần

- $\int P_n(x)e^{kx}dx$, $\int P_n(x)\sin(kx)dx$, $\int P_n(x)\cos(kx)dx$ với P_n là đa thức bậc nthì đặt $u = P_n$.
- $\int P_n(x)(\ln x)^k dx$ thì đặt $u = (\ln x)^k$.
- $\int P_n(x) \arctan(kx) dx$ thì đặt $u = \arctan(kx)$.
- $\int P_n(x) \arcsin(kx) dx$ thì đặt $u = \arcsin(kx)$.

Xét tích phân $\int \frac{P(x)}{Q(x)} dx$ với P(x), Q(x) là các phân thức không có nghiệm chung.

Xét tích phân $\int \frac{P(x)}{Q(x)} dx$ với P(x), Q(x) là các phân thức không có nghiệm chung.

ullet Nếu deg P> deg Q, ta xét phép chia đa thức P(x)=H(x)Q(x)+R(x) với deg R< deg Q và

$$\frac{P(x)}{Q(x)} = H(x) + \frac{R(x)}{Q(x)}.$$

Xét tích phân $\int \frac{P(x)}{Q(x)} dx$ với P(x), Q(x) là các phân thức không có nghiệm chung.

• Nếu deg P> deg Q, ta xét phép chia đa thức P(x)=H(x)Q(x)+R(x) với deg R< deg Q và

$$\frac{P(x)}{Q(x)} = H(x) + \frac{R(x)}{Q(x)}.$$

• Phân tích $\frac{R(x)}{Q(x)}$ thành các phân thức bất khả qui.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Xét tích phân $\int \frac{P(x)}{Q(x)} dx$ với P(x), Q(x) là các phân thức không có nghiệm chung.

• Nếu deg P> deg Q, ta xét phép chia đa thức P(x)=H(x)Q(x)+R(x) với deg R< deg Q và

$$\frac{P(x)}{Q(x)} = H(x) + \frac{R(x)}{Q(x)}.$$

- Phân tích $\frac{R(x)}{Q(x)}$ thành các phân thức bất khả qui.
 - 1. Phân tích Q(x) thành tích các đa thức bất khả qui trên \mathbb{R} , tức là

$$Q(x)=(x-lpha_1)^{a_1}\dots(x-lpha_k)^{a_k}(x^2+p_1x+q_1)^{b_1}\dots(x^2+p_sx+q_s)^{b_s}.$$
với $p_i^2-4q_i<0, 1\leq i\leq s.$

Xét tích phân $\int \frac{P(x)}{Q(x)} dx$ với P(x), Q(x) là các phân thức không có nghiệm chung.

ullet Nếu deg P> deg Q, ta xét phép chia đa thức P(x)=H(x)Q(x)+R(x) với deg R< deg Q và

$$\frac{P(x)}{Q(x)} = H(x) + \frac{R(x)}{Q(x)}.$$

- Phân tích $\frac{R(x)}{Q(x)}$ thành các phân thức bất khả qui.
 - 1. Phân tích Q(x) thành tích các đa thức bất khả qui trên \mathbb{R} , tức là

$$Q(x) = (x - \alpha_1)^{a_1} \dots (x - \alpha_k)^{a_k} (x^2 + p_1 x + q_1)^{b_1} \dots (x^2 + p_s x + q_s)^{b_s}.$$

với $p_i^2 - 4q_i < 0, 1 \le i \le s$. Các giá trị α_j là các nghiệm thực bội a_j . Các tam thức bậc hai $x^2 + p_i x + q_i$ tương ứng với các cặp nghiệm phức đối ngẫu của Q(x).

- (ロ) (団) (注) (注) (注) (注) (2) (2)

2. Nếu Q(x) có nghiệm thực α bội a thì phân tích $\frac{R(x)}{Q(x)}$ chứa a số hạng có dạng $\frac{A_1}{(x-\alpha)}, \frac{A_2}{(x-\alpha)^2}, \dots, \frac{A_s}{(x-\alpha)^s}$.

- 2. Nếu Q(x) có nghiệm thực α bội a thì phân tích $\frac{R(x)}{Q(x)}$ chứa a số hạng có dạng $\frac{A_1}{(x-\alpha)}, \frac{A_2}{(x-\alpha)^2}, \dots, \frac{A_s}{(x-\alpha)^s}$.
- 3. Nếu Q(x) có nhân tử $(x^2 + px + q)^b$ thì phân tích $\frac{R(x)}{Q(x)}$ chứa b số hạng có dạng $\frac{B_i x + C_i}{(x^2 + px + q)^i}$, $1 \le i \le b$.

10 / 61

Lê Văn Tử (BKHN) GT I - Hàm một biến 09/2022

- 2. Nếu Q(x) có nghiệm thực α bội a thì phân tích $\frac{R(x)}{Q(x)}$ chứa a số hạng có dạng $\frac{A_1}{(x-\alpha)}, \frac{A_2}{(x-\alpha)^2}, \dots, \frac{A_s}{(x-\alpha)^s}$.
- 3. Nếu Q(x) có nhân tử $(x^2 + px + q)^b$ thì phân tích $\frac{R(x)}{Q(x)}$ chứa b số hạng có dạng $\frac{B_i x + C_i}{(x^2 + px + q)^i}$, $1 \le i \le b$.

Các phân thức $\frac{A}{(x-\alpha)^i}, \frac{Bx+C}{(x^2+px+q)^j}$ được gọi là các phân thức bất khả qui.

- 2. Nếu Q(x) có nghiệm thực α bội a thì phân tích $\frac{R(x)}{Q(x)}$ chứa a số hạng có dạng $\frac{A_1}{(x-\alpha)}, \frac{A_2}{(x-\alpha)^2}, \dots, \frac{A_s}{(x-\alpha)^s}$.
- 3. Nếu Q(x) có nhân tử $(x^2+px+q)^b$ thì phân tích $\frac{R(x)}{Q(x)}$ chứa b số hạng có dạng $\frac{B_ix+C_i}{(x^2+px+q)^i}, 1 \leq i \leq b$.

Các phân thức $\frac{A}{(x-\alpha)^i}, \frac{Bx+C}{(x^2+px+q)^j}$ được gọi là các phân thức bất khả qui.

VD. Xác định dạng tổng quát của phân tích bất khả qui

1.
$$\frac{1}{x^3-1} = \frac{1}{(x-1)(x^2+x+1)}$$

- 2. Nếu Q(x) có nghiệm thực α bội a thì phân tích $\frac{R(x)}{Q(x)}$ chứa a số hạng có dạng $\frac{A_1}{(x-\alpha)}, \frac{A_2}{(x-\alpha)^2}, \dots, \frac{A_s}{(x-\alpha)^s}$.
- 3. Nếu Q(x) có nhân tử $(x^2+px+q)^b$ thì phân tích $\frac{R(x)}{Q(x)}$ chứa b số hạng có dạng $\frac{B_ix+C_i}{(x^2+px+q)^i}, 1 \leq i \leq b$.

Các phân thức $\frac{A}{(x-\alpha)^i}, \frac{Bx+C}{(x^2+px+q)^j}$ được gọi là các phân thức bất khả qui.

VD. Xác định dạng tổng quát của phân tích bất khả qui

1.
$$\frac{1}{x^3-1} = \frac{1}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$$
.

- 2. Nếu Q(x) có nghiệm thực α bội a thì phân tích $\frac{R(x)}{Q(x)}$ chứa a số hạng có dạng $\frac{A_1}{(x-\alpha)}, \frac{A_2}{(x-\alpha)^2}, \dots, \frac{A_s}{(x-\alpha)^s}$.
- 3. Nếu Q(x) có nhân tử $(x^2 + px + q)^b$ thì phân tích $\frac{R(x)}{Q(x)}$ chứa b số hạng có dạng $\frac{B_i x + C_i}{(x^2 + px + q)^i}$, $1 \le i \le b$.

Các phân thức $\frac{A}{(x-\alpha)^i}, \frac{Bx+C}{(x^2+px+q)^j}$ được gọi là các phân thức bất khả qui.

VD. Xác định dạng tổng quát của phân tích bất khả qui

1.
$$\frac{1}{x^3-1} = \frac{1}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$$
.

2.
$$\frac{1}{(x^2-1)^2} = \frac{1}{(x-1)^2(x+1)^2}$$

- 2. Nếu Q(x) có nghiệm thực α bội a thì phân tích $\frac{R(x)}{Q(x)}$ chứa a số hạng có dạng $\frac{A_1}{(x-\alpha)}, \frac{A_2}{(x-\alpha)^2}, \dots, \frac{A_s}{(x-\alpha)^s}$.
- 3. Nếu Q(x) có nhân tử $(x^2 + px + q)^b$ thì phân tích $\frac{R(x)}{Q(x)}$ chứa b số hạng có dạng $\frac{B_i x + C_i}{(x^2 + px + q)^i}$, $1 \le i \le b$.

Các phân thức $\frac{A}{(x-\alpha)^i}, \frac{Bx+C}{(x^2+px+q)^j}$ được gọi là các phân thức bất khả qui.

VD. Xác định dạng tổng quát của phân tích bất khả qui

1.
$$\frac{1}{x^3-1} = \frac{1}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$$
.

2.
$$\frac{1}{(x^2-1)^2} = \frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}.$$

- 2. Nếu Q(x) có nghiệm thực α bội a thì phân tích $\frac{R(x)}{Q(x)}$ chứa a số hạng có dạng $\frac{A_1}{(x-\alpha)}, \frac{A_2}{(x-\alpha)^2}, \dots, \frac{A_s}{(x-\alpha)^s}$.
- 3. Nếu Q(x) có nhân tử $(x^2 + px + q)^b$ thì phân tích $\frac{R(x)}{Q(x)}$ chứa b số hạng có dạng $\frac{B_i x + C_i}{(x^2 + px + q)^i}$, $1 \le i \le b$.

Các phân thức $\frac{A}{(x-\alpha)^i}, \frac{Bx+C}{(x^2+px+q)^j}$ được gọi là các phân thức bất khả qui.

VD. Xác định dạng tổng quát của phân tích bất khả qui

1.
$$\frac{1}{x^3-1} = \frac{1}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$$
.

2.
$$\frac{1}{(x^2-1)^2} = \frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}$$
.

3.
$$\frac{2x+3}{(x-1)(x^2+x+3)^2}$$

←□ → ←□ → ← □ → ← □ → へへ

- 2. Nếu Q(x) có nghiệm thực α bội a thì phân tích $\frac{R(x)}{Q(x)}$ chứa a số hạng có dạng $\frac{A_1}{(x-\alpha)}, \frac{A_2}{(x-\alpha)^2}, \dots, \frac{A_s}{(x-\alpha)^s}$.
- 3. Nếu Q(x) có nhân tử $(x^2 + px + q)^b$ thì phân tích $\frac{R(x)}{Q(x)}$ chứa b số hạng có dạng $\frac{B_i x + C_i}{(x^2 + px + q)^i}$, $1 \le i \le b$.

Các phân thức $\frac{A}{(x-\alpha)^i}, \frac{Bx+C}{(x^2+px+q)^j}$ được gọi là các phân thức bất khả qui.

VD. Xác định dạng tổng quát của phân tích bất khả qui

1.
$$\frac{1}{x^3-1} = \frac{1}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$$
.

2.
$$\frac{1}{(x^2-1)^2} = \frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}$$
.

3.
$$\frac{2x+3}{(x-1)(x^2+x+3)^2} = \frac{A}{x-1} + \frac{B_1x+C_1}{x^2+x+3} + \frac{B_2x+C_2}{(x^2+x+3)^2}.$$

◆□▶◆御▶◆団▶◆団▶ ■ めの@

Tính toán hệ số của một phân tích

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

Tính toán hệ số của một phân tích

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

1. Xác định dạng tổng quát

4□▶ 4□▶ 4 ≥ ▶ 4 ≥ ▶ 9 < ○</p>

Tính toán hệ số của một phân tích

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

1. Xác định dạng tổng quát

(*)
$$\frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}.$$

11/61

Tính toán hệ số của một phân tích

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

1. Xác định dạng tổng quát

(*)
$$\frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}.$$

2. Nhân hai vế của (*) với $(x-1)^2$, ta có

11 / 61

Tính toán hệ số của một phân tích

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

1. Xác định dạng tổng quát

(*)
$$\frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}.$$

2. Nhân hai vế của (*) với $(x-1)^2$, ta có

$$\frac{1}{(x+1)^2} = A_1(x-1) + \frac{A_2}{1} + \frac{B_1(x-1)^2}{x+1} + \frac{B_2(x-1)^2}{(x+1)^2}$$

và thay x = 1,

4 D > 4 D > 4 E > 4 E > E 990

11 / 61

Tính toán hệ số của một phân tích

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

1. Xác định dạng tổng quát

(*)
$$\frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}.$$

2. Nhân hai vế của (*) với $(x-1)^2$, ta có

$$\frac{1}{(x+1)^2} = A_1(x-1) + \frac{A_2}{1} + \frac{B_1(x-1)^2}{x+1} + \frac{B_2(x-1)^2}{(x+1)^2}$$

và thay x=1, ta thu được $\frac{1}{4}=A_2$.

11 / 61

Tính toán hệ số của một phân tích

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

1. Xác định dạng tổng quát

(*)
$$\frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}.$$

2. Nhân hai vế của (*) với $(x-1)^2$, ta có

$$\frac{1}{(x+1)^2} = A_1(x-1) + \frac{A_2}{1} + \frac{B_1(x-1)^2}{x+1} + \frac{B_2(x-1)^2}{(x+1)^2}$$

và thay x = 1, ta thu được $\frac{1}{4} = A_2$.

3. Nhân hai vế của (*) với $(x+1)^2$ và thay x=-1,

- 4 ロ ト 4 回 ト 4 重 ト 4 重 ト 9 Q G

Tính toán hệ số của một phân tích

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

1. Xác định dạng tống quát

(*)
$$\frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}.$$

2. Nhân hai vế của (*) với $(x-1)^2$, ta có

$$\frac{1}{(x+1)^2} = A_1(x-1) + \frac{A_2}{1} + \frac{B_1(x-1)^2}{x+1} + \frac{B_2(x-1)^2}{(x+1)^2}$$

và thay x=1, ta thu được $\frac{1}{4}=A_2$.

3. Nhân hai vế của (*) với $(x+1)^2$ và thay x=-1, ta thu được $\frac{1}{4}=B_2$.

◆□→ ◆同→ ◆□→ ◆□→ □ ◆○○

11 / 61

Lê Văn Tứ (BKHN) GT I - Hàm

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

(*)
$$\frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}.$$

4. Thay x = 0,

4日 → 4周 → 4 至 → 4 至 → 9 Q (*)

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

(*)
$$\frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}.$$

4. Thay x=0,ta có $1=-A_1+A_2+B_1+B_2 \Rightarrow -A_1+B_1=\frac{1}{2}$.

12 / 61

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

(*)
$$\frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}.$$

- 4. Thay x = 0, ta có $1 = -A_1 + A_2 + B_1 + B_2 \Rightarrow -A_1 + B_1 = \frac{1}{2}$.
- 5. Nhân hai vế của (*) với x, và cho $x \to \infty$,

12 / 61

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

(*)
$$\frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}$$
.

- 4. Thay x=0,ta có $1=-A_1+A_2+B_1+B_2 \Rightarrow -A_1+B_1=\frac{1}{2}$.
- 5. Nhân hai vế của (*) với x, và cho $x \to \infty$, ta thu được $0 = A_1 + B_1$. Do đó, ta tính được $A_1 = -\frac{1}{4}$, $B_1 = \frac{1}{4}$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

12 / 61

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{1}{(x^2-1)^2}$

(*)
$$\frac{1}{(x-1)^2(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}.$$

- 4. Thay x = 0,ta có $1 = -A_1 + A_2 + B_1 + B_2 \Rightarrow -A_1 + B_1 = \frac{1}{2}$.
- 5. Nhân hai vế của (*) với x, và cho $x\to\infty$, ta thu được $0=A_1+B_1$. Do đó, ta tính được $A_1=-\frac{1}{4},B_1=\frac{1}{4}$.

Tóm lại, ta thu được phân tích

$$\frac{1}{(x-1)^2(x+1)^2} = -\frac{1}{4}\frac{1}{x-1} + \frac{1}{4}\frac{1}{(x-1)^2} + \frac{1}{4}\frac{1}{x+1} + \frac{1}{4}\frac{1}{(x+1)^2}.$$

12 / 61

Các kĩ thuật cơ bản

1. Với nghiệm α bội a, nhân 2 vế với $(x - \alpha)^a$ rồi thay $x = \alpha$.

Các kĩ thuật cơ bản

- 1. Với nghiệm α bội a, nhân 2 vế với $(x \alpha)^a$ rồi thay $x = \alpha$.
- 2. Nhân với x^k rồi cho $x \to \infty$.

Các kĩ thuật cơ bản

- 1. Với nghiệm α bội a, nhân 2 vế với $(x \alpha)^a$ rồi thay $x = \alpha$.
- 2. Nhân với x^k rồi cho $x \to \infty$.
- 3. Thay các giá trị cụ thể (như 0, 1, ...).

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)}$

14 / 61

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)}$

Dạng tổng quát

$$\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+2x+3}.$$

14 / 61

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)}$

Dạng tổng quát

$$\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+2x+3}.$$

1. Nhân hai vế với x + 2, thay x = -2,

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)}$

Dạng tổng quát

$$\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+2x+3}.$$

1. Nhân hai vế với x + 2, thay x = -2, ta thu được A = 1.

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)}$

Dạng tổng quát

$$\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+2x+3}.$$

- 1. Nhân hai vế với x + 2, thay x = -2, ta thu được A = 1.
- 2. Nhân với x, rồi cho $x \to \infty$,

4□ > 4問 > 4 = > 4 = > = 900

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)}$

Dạng tổng quát

$$\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+2x+3}.$$

- 1. Nhân hai vế với x + 2, thay x = -2, ta thu được A = 1.
- 2. Nhân với x, rồi cho $x \to \infty$, ta thu được $3 = A + B \Rightarrow B = 2$.

◆ロト ◆団ト ◆草ト ◆草ト ■ りゅぐ

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)}$

Dạng tổng quát

$$\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+2x+3}.$$

- 1. Nhân hai vế với x + 2, thay x = -2, ta thu được A = 1.
- 2. Nhân với x, rồi cho $x \to \infty$, ta thu được $3 = A + B \Rightarrow B = 2$.
- 3. Thay x = 0,

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)}$

Dạng tổng quát

$$\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+2x+3}.$$

- 1. Nhân hai vế với x + 2, thay x = -2, ta thu được A = 1.
- 2. Nhân với x, rồi cho $x \to \infty$, ta thu được $3 = A + B \Rightarrow B = 2$.
- 3. Thay x=0, ta thu được $\frac{5}{6}=\frac{A}{2}+\frac{C}{3}\Rightarrow C=1$.

VD. Tìm phân tích thành phân thức bất khả qui của $\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)}$

Dạng tổng quát

$$\frac{3x^2+7x+5}{(x+2)(x^2+2x+3)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+2x+3}.$$

- 1. Nhân hai vế với x + 2, thay x = -2, ta thu được A = 1.
- 2. Nhân với x, rồi cho $x \to \infty$, ta thu được $3 = A + B \Rightarrow B = 2$.
- 3. Thay x=0, ta thu được $\frac{5}{6}=\frac{A}{2}+\frac{C}{3}\Rightarrow C=1$.

Vậy

$$\frac{3x^2 + 7x + 5}{(x+2)(x^2 + 2x + 3)} = \frac{1}{x+2} + \frac{2x+1}{x^2 + 2x + 3}.$$

◆ロト 4周ト 4 重ト 4 重ト 重 めなべ

Ta đưa về việc tìm nguyên hàm các hàm phân thức bất khả qui 1. $\int \frac{dx}{x-\alpha} = \ln|x-\alpha| + C$.

Ta đưa về việc tìm nguyên hàm các hàm phân thức bất khả qui

1.
$$\int \frac{dx}{x-\alpha} = \ln|x-\alpha| + C.$$

2.
$$\int \frac{dx}{(x-\alpha)^a} = \frac{1}{-a+1}(x-\alpha)^{-a+1} + C.$$

Ta đưa về việc tìm nguyên hàm các hàm phân thức bất khả qui

1.
$$\int \frac{dx}{x-\alpha} = \ln|x-\alpha| + C.$$

2.
$$\int \frac{dx}{(x-\alpha)^a} = \frac{1}{-a+1}(x-\alpha)^{-a+1} + C$$
.

$$3. \int \frac{Bx+C}{(x^2+px+q)^b} dx.$$

Ta đưa về việc tìm nguyên hàm các hàm phân thức bất khả qui

1.
$$\int \frac{dx}{x-\alpha} = \ln|x-\alpha| + C.$$

2.
$$\int \frac{dx}{(x-\alpha)^a} = \frac{1}{-a+1}(x-\alpha)^{-a+1} + C$$
.

3.
$$\int \frac{Bx+C}{(x^2+px+q)^b} dx$$
. Nếu $B \neq 0$ thì tách $Bx+C = \frac{B}{2}(2x+q)+D$ và ta chỉ cần xét
$$\int \frac{dx}{(x^2+px+q)^b}$$
.

Ta đưa về việc tìm nguyên hàm các hàm phân thức bất khả qui

1.
$$\int \frac{dx}{x-\alpha} = \ln|x-\alpha| + C.$$

2.
$$\int \frac{dx}{(x-\alpha)^a} = \frac{1}{-a+1}(x-\alpha)^{-a+1} + C$$
.

3. $\int \frac{Bx+C}{(x^2+px+q)^b} dx$. Nếu $B \neq 0$ thì tách $Bx+C = \frac{B}{2}(2x+q)+D$ và ta chỉ cần xét $\int \frac{dx}{(x^2+px+q)^b}$. Đổi biến $u=x+\frac{p}{2}$ để đưa về dạng

$$\int \frac{du}{(u^2+s^2)^b}$$

Ta đưa về việc tìm nguyên hàm các hàm phân thức bất khả qui

1.
$$\int \frac{dx}{x-\alpha} = \ln|x-\alpha| + C.$$

2.
$$\int \frac{dx}{(x-\alpha)^a} = \frac{1}{-a+1}(x-\alpha)^{-a+1} + C$$
.

3. $\int \frac{Bx+C}{(x^2+px+q)^b} dx$. Nếu $B \neq 0$ thì tách $Bx+C = \frac{B}{2}(2x+q)+D$ và ta chỉ cần xét $\int \frac{dx}{(x^2+px+q)^b}$. Đổi biến $u=x+\frac{p}{2}$ để đưa về dạng

$$\int \frac{du}{(u^2+s^2)^b}$$

Đặt $t = \frac{1}{s} \arctan\left(\frac{u}{s}\right)$

Ta đưa về việc tìm nguyên hàm các hàm phân thức bất khả qui

1.
$$\int \frac{dx}{x-\alpha} = \ln|x-\alpha| + C.$$

2.
$$\int \frac{dx}{(x-\alpha)^a} = \frac{1}{-a+1}(x-\alpha)^{-a+1} + C$$
.

3. $\int \frac{Bx+C}{(x^2+px+q)^b} dx$. Nếu $B \neq 0$ thì tách $Bx+C = \frac{B}{2}(2x+q)+D$ và ta chỉ cần xét $\int \frac{dx}{(x^2+px+q)^b}$. Đổi biến $u=x+\frac{p}{2}$ để đưa về dạng

$$\int \frac{du}{(u^2+s^2)^b}$$

Đặt $t=rac{1}{s}\arctan\left(rac{u}{s}
ight)$ thì $dt=rac{du}{u^2+s^2}$ và $u^2+s^2=rac{s^2}{\cos^2(st)}$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● めなべ

VD. Tính
$$I = \int \frac{dx}{(x^2+2)^2}$$

Đặt
$$t = \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right)$$
.

16 / 61

VD. Tính
$$I = \int \frac{dx}{(x^2+2)^2}$$

Đặt
$$t=\frac{1}{\sqrt{2}}\arctan\left(\frac{x}{\sqrt{2}}\right)$$
. Khi đó $dt=\frac{dx}{x^2+2}, x=\sqrt{2}\tan(\sqrt{2}t), 2+x^2=\frac{2}{\cos^2(\sqrt{2}t)}$.

16 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

VD. Tính
$$I = \int \frac{dx}{(x^2+2)^2}$$

Đặt
$$t = \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right)$$
. Khi đó $dt = \frac{dx}{x^2+2}, x = \sqrt{2} \tan(\sqrt{2}t), 2 + x^2 = \frac{2}{\cos^2(\sqrt{2}t)}$.

$$I = \int \frac{\cos^2(\sqrt{2}t)dt}{2} = \frac{1}{4} \int (\cos(2\sqrt{2}t) + 1)dt$$

4 D > 4 P > 4 E > 4 E > E 9 Q P

16 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

VD. Tính
$$I = \int \frac{dx}{(x^2+2)^2}$$

Đặt
$$t = \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right)$$
. Khi đó $dt = \frac{dx}{x^2+2}, x = \sqrt{2} \tan(\sqrt{2}t), 2 + x^2 = \frac{2}{\cos^2(\sqrt{2}t)}$.

$$I = \int \frac{\cos^2(\sqrt{2}t)dt}{2} = \frac{1}{4} \int (\cos(2\sqrt{2}t) + 1)dt$$

= $\frac{1}{8\sqrt{2}} \sin(2\sqrt{2}t) + \frac{1}{4}t + C$

16 / 61

Lê Văn Tử (BKHN) GT I - Hàm một biến 09/2022

VD. Tính
$$I = \int \frac{dx}{(x^2+2)^2}$$

Đặt
$$t = \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right)$$
. Khi đó $dt = \frac{dx}{x^2+2}, x = \sqrt{2} \tan(\sqrt{2}t), 2 + x^2 = \frac{2}{\cos^2(\sqrt{2}t)}$.

$$I = \int \frac{\cos^{2}(\sqrt{2}t)dt}{2} = \frac{1}{4} \int (\cos(2\sqrt{2}t) + 1)dt$$

= $\frac{1}{8\sqrt{2}} \sin(2\sqrt{2}t) + \frac{1}{4}t + C$
= $\frac{1}{8\sqrt{2}} \frac{2\tan(\sqrt{2}t)}{1+\tan^{2}(\sqrt{2}t)} + \frac{1}{4}t + C$

4 D > 4 P > 4 E > 4 E > E 9 Q P

16 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

VD. Tính $I = \int \frac{dx}{(x^2+2)^2}$

Đặt
$$t = \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right)$$
. Khi đó $dt = \frac{dx}{x^2+2}, x = \sqrt{2} \tan(\sqrt{2}t), 2 + x^2 = \frac{2}{\cos^2(\sqrt{2}t)}$.

$$I = \int \frac{\cos^{2}(\sqrt{2}t)dt}{2} = \frac{1}{4} \int (\cos(2\sqrt{2}t) + 1)dt$$

$$= \frac{1}{8\sqrt{2}} \sin(2\sqrt{2}t) + \frac{1}{4}t + C$$

$$= \frac{1}{8\sqrt{2}} \frac{2\tan(\sqrt{2}t)}{1+\tan^{2}(\sqrt{2}t)} + \frac{1}{4}t + C$$

$$= \frac{1}{8} \frac{x}{1+\frac{x^{2}}{2}} + \frac{1}{4\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right) + C$$

4 D > 4 P > 4 E > 4 E > E 990

VD. Tính $I = \int \frac{dx}{(x^2+2)^2}$

Đặt
$$t = \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right)$$
. Khi đó $dt = \frac{dx}{x^2+2}, x = \sqrt{2} \tan(\sqrt{2}t), 2 + x^2 = \frac{2}{\cos^2(\sqrt{2}t)}$.

$$I = \int \frac{\cos^{2}(\sqrt{2}t)dt}{2} = \frac{1}{4} \int (\cos(2\sqrt{2}t) + 1)dt$$

$$= \frac{1}{8\sqrt{2}} \sin(2\sqrt{2}t) + \frac{1}{4}t + C$$

$$= \frac{1}{8\sqrt{2}} \frac{2\tan(\sqrt{2}t)}{1+\tan^{2}(\sqrt{2}t)} + \frac{1}{4}t + C$$

$$= \frac{1}{8} \frac{x}{1+\frac{x^{2}}{2}} + \frac{1}{4\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right) + C$$

$$\Rightarrow \int \frac{dx}{(x^2+2)^2} = \frac{x}{8+4x^2} + \frac{1}{4\sqrt{2}}\arctan\left(\frac{x}{\sqrt{2}}\right) + C.$$

 $m \mathring{O}$ đây ta đã sử dụng công thức nhân đôi $\sin(2u)=rac{2\tan u}{1+ an^2u}.$

40149147177

Lê Văn Tứ (BKHN) GT I - Hàm một biến

Phương pháp chung

Với các tích phân dạng $\int R(\sin x,\cos x)dx$ với R(x,y) là thương của hai đa thức thì ta có thể dùng phép đổi biến $t=\tan\frac{x}{2}$ để đưa về nguyên hàm của hàm phân thức với ẩn t bằng các phép thế

$$\sin x = \frac{2t}{1+t^2}, \cos x = \frac{1-t^2}{1+t^2}, \tan x = \frac{2t}{1-t^2}, dx = \frac{2dt}{1+t^2}.$$

4□ > 4□ > 4 = > 4 = > = 90

Lê Văn Tứ (BKHN) GT I - Hàm một biến

Trong một số dạng đặc biệt, ta có thể đổi biến linh hoạt hơn

Một số dạng đặc biệt

• Nếu $R(-\sin x, \cos x) = -R(\sin x, \cos x)$ thì đặt $t = \cos x$.

Trong một số dạng đặc biệt, ta có thể đổi biến linh hoạt hơn

Một số dạng đặc biệt

- Nếu $R(-\sin x, \cos x) = -R(\sin x, \cos x)$ thì đặt $t = \cos x$.
- Nếu $R(\sin x, -\cos x) = -R(\sin x, \cos x)$ thì đặt $t = \sin x$.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

Trong một số dạng đặc biệt, ta có thể đổi biến linh hoạt hơn

Một số dạng đặc biệt

- Nếu $R(-\sin x, \cos x) = -R(\sin x, \cos x)$ thì đặt $t = \cos x$.
- Nếu $R(\sin x, -\cos x) = -R(\sin x, \cos x)$ thì đặt $t = \sin x$.
- Nếu $R(-\sin x, -\cos x) = R(\sin x, \cos x)$ thì đặt $t = \tan x$.

Nguyên hàm vô tỷ cơ bản

Nguyên hàm vô tỷ cơ bản

1.
$$\int \frac{1}{\sqrt{x^2 + a}} dx = \ln|x + \sqrt{x^2 + a}| + C, a \in \mathbb{R}.$$

Nguyễn hàm vô tỷ cơ bản

1.
$$\int \frac{1}{\sqrt{x^2 + a}} dx = \ln|x + \sqrt{x^2 + a}| + C, a \in \mathbb{R}.$$

2.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, a > 0.$$

Nguyên hàm vô tỷ cơ bản

1.
$$\int \frac{1}{\sqrt{x^2+a}} dx = \ln|x + \sqrt{x^2+a}| + C, a \in \mathbb{R}.$$

2.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, a > 0.$$

Với các nguyên hàm có dạng $\int R(x, \sqrt{x^2 \pm a}) dx$, $\int R(x, \sqrt{a^2 - x^2}) dx$, ta có các kĩ thuật sau để đưa về hai nguyên hàm vô tỷ cơ bản trên.

Nguyên hàm vô tỷ cơ bản

1.
$$\int \frac{1}{\sqrt{x^2+a}} dx = \ln|x + \sqrt{x^2+a}| + C, a \in \mathbb{R}.$$

2.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, a > 0.$$

Với các nguyên hàm có dạng $\int R(x, \sqrt{x^2 \pm a}) dx$, $\int R(x, \sqrt{a^2 - x^2}) dx$, ta có các kĩ thuật sau để đưa về hai nguyên hàm vô tỷ cơ bản trên.

- Đặt $u = \sqrt{x^2 \pm a}$ hoặc $u = \sqrt{a^2 x^2}$ rồi từng phần.
- Đặt $x = a \tan t \text{ với } \int R(x, \sqrt{x^2 + a^2}) dx.$
- Đặt $x = a \sin t$ với $\int R(x, \sqrt{a^2 x^2}) dx$.
- Đặt $t = x + \ln(x^2 + a)$.

VD. Tính

$$1. \int \sqrt{a^2 - x^2} dx$$

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022 19/61

Nguyên hàm vô tỷ cơ bản

1.
$$\int \frac{1}{\sqrt{x^2+a}} dx = \ln|x + \sqrt{x^2+a}| + C, a \in \mathbb{R}.$$

2.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, a > 0.$$

Với các nguyên hàm có dạng $\int R(x, \sqrt{x^2 \pm a}) dx$, $\int R(x, \sqrt{a^2 - x^2}) dx$, ta có các kĩ thuật sau để đưa về hai nguyên hàm vô tỷ cơ bản trên.

- Đặt $u = \sqrt{x^2 \pm a}$ hoặc $u = \sqrt{a^2 x^2}$ rồi từng phần.
- Đặt $x = a \tan t \text{ với } \int R(x, \sqrt{x^2 + a^2}) dx.$
- Đặt $x = a \sin t$ với $\int R(x, \sqrt{a^2 x^2}) dx$.
- Đặt $t = x + \ln(x^2 + a)$.

VD. Tính

$$1. \int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C.$$

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022 19/61

Nguyên hàm vô tỷ cơ bản

1.
$$\int \frac{1}{\sqrt{x^2+a}} dx = \ln|x + \sqrt{x^2+a}| + C, a \in \mathbb{R}.$$

2.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, a > 0.$$

Với các nguyên hàm có dạng $\int R(x, \sqrt{x^2 \pm a}) dx$, $\int R(x, \sqrt{a^2 - x^2}) dx$, ta có các kĩ thuật sau để đưa về hai nguyên hàm vô tỷ cơ bản trên.

- Đặt $u = \sqrt{x^2 \pm a}$ hoặc $u = \sqrt{a^2 x^2}$ rồi từng phần.
- Đặt $x = a \tan t \text{ với } \int R(x, \sqrt{x^2 + a^2}) dx.$
- Đặt $x = a \sin t \text{ với } \int R(x, \sqrt{a^2 x^2}) dx.$
- Đặt $t = x + \ln(x^2 + a)$.

VD. Tính

1.
$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$
.

2.
$$\int \sqrt{x^2 + a} dx$$

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022 19/61

Nguyên hàm vô tỷ cơ bản

- 1. $\int \frac{1}{\sqrt{x^2+a}} dx = \ln|x + \sqrt{x^2+a}| + C, a \in \mathbb{R}.$
- 2. $\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a} + C, a > 0.$

Với các nguyên hàm có dạng $\int R(x, \sqrt{x^2 \pm a}) dx$, $\int R(x, \sqrt{a^2 - x^2}) dx$, ta có các kĩ thuật sau để đưa về hai nguyên hàm vô tỷ cơ bản trên.

- Đặt $u = \sqrt{x^2 \pm a}$ hoặc $u = \sqrt{a^2 x^2}$ rồi từng phần.
- Đặt $x = a \tan t \text{ với } \int R(x, \sqrt{x^2 + a^2}) dx$.
- Đặt $x = a \sin t \text{ với } \int R(x, \sqrt{a^2 x^2}) dx$.
- Đặt $t = x + \ln(x^2 + a)$.

VD. Tính

1.
$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$
.

$$2. \int \sqrt{x^2 + a} dx = \frac{1}{2} x \sqrt{x^2 + a} + \frac{a}{2} \ln|x + \sqrt{x^2 + a}| + C.$$

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022 19 / 61

VD. Tính
$$I = \int x\sqrt{-x^2 + 3x - 2}dx$$

Do
$$-x^2 + 3x - 2 = \frac{1}{4} - (x - \frac{3}{2})^2$$
, đặt $u = x - \frac{3}{2}, x = u + \frac{3}{2}, dx = du$

VD. Tính $I = \int x\sqrt{-x^2 + 3x - 2}dx$

Do
$$-x^2 + 3x - 2 = \frac{1}{4} - (x - \frac{3}{2})^2$$
, đặt $u = x - \frac{3}{2}, x = u + \frac{3}{2}, dx = du$ và

$$I = \int (u + \frac{3}{2})\sqrt{\frac{1}{4} - u^2} du$$

VD. Tính $I = \int x\sqrt{-x^2 + 3x - 2}dx$

Do
$$-x^2 + 3x - 2 = \frac{1}{4} - (x - \frac{3}{2})^2$$
, đặt $u = x - \frac{3}{2}, x = u + \frac{3}{2}, dx = du$ và

$$I = \int (u + \frac{3}{2}) \sqrt{\frac{1}{4}} - u^2 du$$

=
$$\int u \sqrt{\frac{1}{4} - u^2} du + \frac{3}{2} \int \sqrt{\frac{1}{4} - u^2} du$$

VD. Tính $I = \int x\sqrt{-x^2 + 3x - 2}dx$

Do
$$-x^2 + 3x - 2 = \frac{1}{4} - (x - \frac{3}{2})^2$$
, đặt $u = x - \frac{3}{2}, x = u + \frac{3}{2}, dx = du$ và

$$I = \int (u + \frac{3}{2}) \sqrt{\frac{1}{4}} - u^2 du$$

$$= \int u \sqrt{\frac{1}{4} - u^2} du + \frac{3}{2} \int \sqrt{\frac{1}{4} - u^2} du$$

$$= \frac{1}{2} \int \sqrt{\frac{1}{4} - u^2} d(u^2) + \frac{3}{2} \int \sqrt{\left(\frac{1}{2}\right)^2 - u^2} du$$

VD. Tính $I = \int x\sqrt{-x^2 + 3x - 2}dx$

Do
$$-x^2 + 3x - 2 = \frac{1}{4} - (x - \frac{3}{2})^2$$
, đặt $u = x - \frac{3}{2}, x = u + \frac{3}{2}, dx = du$ và

$$I = \int (u + \frac{3}{2})\sqrt{\frac{1}{4}} - u^{2}du$$

$$= \int u\sqrt{\frac{1}{4} - u^{2}}du + \frac{3}{2}\int \sqrt{\frac{1}{4} - u^{2}}du$$

$$= \frac{1}{2}\int \sqrt{\frac{1}{4} - u^{2}}d(u^{2}) + \frac{3}{2}\int \sqrt{\left(\frac{1}{2}\right)^{2} - u^{2}}du$$

$$= -\frac{1}{3}(\frac{1}{4} - u^{2})^{\frac{3}{2}} + \frac{3}{2}\left(\frac{1}{2}u\sqrt{\frac{1}{4} - u^{2}} + \frac{1}{8}\arcsin(2u)\right) + C$$

20 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

VD. Tính $I = \int x\sqrt{-x^2 + 3x - 2}dx$

Do
$$-x^2 + 3x - 2 = \frac{1}{4} - (x - \frac{3}{2})^2$$
, đặt $u = x - \frac{3}{2}, x = u + \frac{3}{2}, dx = du$ và

$$I = \int (u + \frac{3}{2}) \sqrt{\frac{1}{4} - u^2} du$$

$$= \int u \sqrt{\frac{1}{4} - u^2} du + \frac{3}{2} \int \sqrt{\frac{1}{4} - u^2} du$$

$$= \frac{1}{2} \int \sqrt{\frac{1}{4} - u^2} d(u^2) + \frac{3}{2} \int \sqrt{\left(\frac{1}{2}\right)^2 - u^2} du$$

$$= -\frac{1}{3} (\frac{1}{4} - u^2)^{\frac{3}{2}} + \frac{3}{2} \left(\frac{1}{2} u \sqrt{\frac{1}{4} - u^2} + \frac{1}{8} \arcsin(2u)\right) + C$$

$$= -\frac{1}{3} (-x^2 + 3x - 2)^{\frac{3}{2}} + \frac{3}{4} (x - \frac{3}{2}) \sqrt{-x^2 + 3x - 2} + \frac{3}{16} \arcsin(2x - 3) + C$$

4 D > 4 D > 4 E > 4 E > E 990

Lê Văn Tứ (BKHN)

GT I - Hàm một biến

VD. Tính $I = \int x\sqrt{-x^2 + 3x - 2}dx$

Do
$$-x^2 + 3x - 2 = \frac{1}{4} - (x - \frac{3}{2})^2$$
, đặt $u = x - \frac{3}{2}, x = u + \frac{3}{2}, dx = du$ và

$$I = \int (u + \frac{3}{2})\sqrt{\frac{1}{4} - u^{2}}du$$

$$= \int u\sqrt{\frac{1}{4} - u^{2}}du + \frac{3}{2}\int \sqrt{\frac{1}{4} - u^{2}}du$$

$$= \frac{1}{2}\int \sqrt{\frac{1}{4} - u^{2}}d(u^{2}) + \frac{3}{2}\int \sqrt{\left(\frac{1}{2}\right)^{2} - u^{2}}du$$

$$= -\frac{1}{3}(\frac{1}{4} - u^{2})^{\frac{3}{2}} + \frac{3}{2}\left(\frac{1}{2}u\sqrt{\frac{1}{4} - u^{2}} + \frac{1}{8}\arcsin(2u)\right) + C$$

$$= -\frac{1}{3}(-x^{2} + 3x - 2)^{\frac{3}{2}} + \frac{3}{4}(x - \frac{3}{2})\sqrt{-x^{2} + 3x - 2} + \frac{3}{16}\arcsin(2x - 3) + C$$

$$\Rightarrow \int x\sqrt{-x^2+3x-2}dx = \frac{1}{24}(8x^2-6x-11)\sqrt{-x^2+3x-2} + \frac{3}{16}\arcsin(2x-3) + C$$

4 D > 4 B > 4 B > 4 B > B 990

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022 20/61

Table of Contents

- Nguyên hàm
- Tích phân xác định
- Tích phân suy rộng
- 4) Các ứng dụng của tích phân xác định

Tính diện tích hình thang cong được xác định bởi $x = 0, x = 1, y = 0, y = x^2$

Ý tưởng: Ta sẽ xấp xỉ hình thang cong bởi các hình chữ nhật.

Tính diện tích hình thang cong được xác định bởi $x = 0, x = 1, y = 0, y = x^2$

Ý tưởng: Ta sẽ xấp xỉ hình thang cong bởi các hình chữ nhật.

- Chia đoạn [0,1] thành n đoạn $0 = x_0 \le x_1 = \frac{1}{n} \le x_2 = \frac{2}{n} \le \ldots \le x_n = 1$.
- Với $0 \le i \le n-1$, trên mỗi đoạn $[x_i, x_{i+1}]$, xét hình chữ nhật chiều cao ξ_i^2 với $\xi_i \in [x_i, x_{i+1}]$.

Tính diện tích hình thang cong được xác định bởi $x = 0, x = 1, y = 0, y = x^2$

Ý tưởng: Ta sẽ xấp xỉ hình thang cong bởi các hình chữ nhật.

- Chia đoạn [0,1] thành n đoạn $0=x_0\leq x_1=\frac{1}{n}\leq x_2=\frac{2}{n}\leq\ldots\leq x_n=1.$
- Với $0 \le i \le n-1$, trên mỗi đoạn $[x_i, x_{i+1}]$, xét hình chữ nhật chiều cao ξ_i^2 với $\xi_i \in [x_i, x_{i+1}]$.
- Tổng diện tích n hình chữ nhật $S_n = \sum_{i=0}^{n-1} \frac{\xi_i^2}{n}$.

Tính diện tích hình thang cong được xác định bởi $x = 0, x = 1, y = 0, y = x^2$

Ý tưởng: Ta sẽ xấp xỉ hình thang cong bởi các hình chữ nhật.

- Chia đoạn [0,1] thành n đoạn $0=x_0\leq x_1=\frac{1}{n}\leq x_2=\frac{2}{n}\leq\ldots\leq x_n=1.$
- Với $0 \le i \le n-1$, trên mỗi đoạn $[x_i, x_{i+1}]$, xét hình chữ nhật chiều cao ξ_i^2 với $\xi_i \in [x_i, x_{i+1}]$.
- ullet Tổng diện tích n hình chữ nhật $S_n = \sum\limits_{i=0}^{n-1} rac{\xi_i^2}{n}.$ Minh hoạ bằng Geogebra

←□▶←□▶←□▶←□▶ □ ∽Q♡

Lê Văn Tứ (BKHN)

GT I - Hàm một biến

Tính diện tích hình thang cong được xác định bởi $x = 0, x = 1, y = 0, y = x^2$

Ý tưởng: Ta sẽ xấp xỉ hình thang cong bởi các hình chữ nhật.

- Chia đoạn [0,1] thành n đoạn $0=x_0\leq x_1=\frac{1}{n}\leq x_2=\frac{2}{n}\leq\ldots\leq x_n=1.$
- Với $0 \le i \le n-1$, trên mỗi đoạn $[x_i, x_{i+1}]$, xét hình chữ nhật chiều cao ξ_i^2 với $\xi_i \in [x_i, x_{i+1}]$.
- ullet Tổng diện tích n hình chữ nhật $S_n = \sum\limits_{i=0}^{n-1} rac{\xi_i^2}{n}.$ Minh hoạ bằng Geogebra

←□▶←□▶←□▶←□▶ □ ∽Q♡

Lê Văn Tứ (BKHN)

GT I - Hàm một biến

Tính diện tích hình thang cong được xác định bởi $x = 0, x = 1, y = 0, y = x^2$

• Khi $n \to \infty$, mỗi hình chữ nhật sẽ trở thành rất nhỏ. Tuy nhiên, tổng diên tích S_n sẽ tiến đến $\frac{1}{3}$.

Gọi ý: Sử dụng nguyên lí kẹp và đẳng thức $\sum\limits_{i=1}^{n}i^2=rac{n(n+1)(2n+1)}{6}.$

Tính diện tích hình thang cong được xác định bởi $x = 0, x = 1, y = 0, y = x^2$

• Khi $n \to \infty$, mỗi hình chữ nhật sẽ trở thành rất nhỏ. Tuy nhiên, tổng diện tích S_n sẽ tiến đến $\frac{1}{3}$.

Gợi ý: Sử dụng nguyên lí kẹp và đẳng thức $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Bài toán tổng quát

1. Sử dụng cách chia khác, liệu với $y = x^2$, ta có thể thu được tổng diên tích S_n hôi tụ về một giá trị ?

Tính diện tích hình thang cong được xác định bởi $x = 0, x = 1, y = 0, y = x^2$

• Khi $n \to \infty$, mỗi hình chữ nhật sẽ trở thành rất nhỏ. Tuy nhiên, tổng diện tích S_n sẽ tiến đến $\frac{1}{2}$.

Gợi ý: Sử dụng nguyên lí kẹp và đẳng thức $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Bài toán tổng quát

- 1. Sử dụng cách chia khác, liệu với $y = x^2$, ta có thể thu được tổng diên tích S_n hội tụ về một giá trị?
- 2. Với cách chia thế nào để S_n hội tụ và giá trị giới hạn xấp xỉ chuẩn xác diện tích hình thang cong?

23 / 61

Tính diện tích hình thang cong được xác định bởi $x = 0, x = 1, y = 0, y = x^2$

• Khi $n \to \infty$, mỗi hình chữ nhật sẽ trở thành rất nhỏ. Tuy nhiên, tổng diện tích S_n sẽ tiến đến $\frac{1}{3}$.

Gợi ý: Sử dụng nguyên lí kẹp và đẳng thức $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Bài toán tống quát

- 1. Sử dụng cách chia khác, liệu với $y = x^2$, ta có thể thu được tổng diên tích S_n hội tụ về một giá trị?
- 2. Với cách chia thế nào để S_n hội tụ và giá trị giới hạn xấp xỉ chuẩn xác diện tích hình thang cong?
- 3. Thay $y = x^2$ bởi một hàm y = f(x), điều kiện nào của f(x) thì tổng S_n hội tu?

<ロト <部ト < 注 ト < 注 ト

23 / 61

GT I - Hàm một biến Lê Văn Tứ (BKHN)

Khả tích Riemann

Các khái niệm cơ bản

Cho hàm f và đoạn [a, b].

• Một phân hoạch P của [a, b] là cách chia [a, b] thành n đoạn bởi n + 1 điểm $a = x_0 < x_1 < \ldots < x_n = b$.

Các khái niêm cơ bản

Cho hàm f và đoạn [a, b].

- Một phân hoạch P của [a,b] là cách chia [a,b] thành n đoạn bởi n+1 điểm $a=x_0< x_1< \ldots < x_n=b.$
- Cỡ của phân hoạch P là $|P| = \max_{0 \le i \le n-1} |x_{i+1} x_i|$.

Các khái niêm cơ bản

Cho hàm f và đoạn [a, b].

- Một phân hoạch P của [a,b] là cách chia [a,b] thành n đoạn bởi n+1 điểm $a=x_0< x_1< \ldots < x_n=b.$
- Cỡ của phân hoạch P là $|P| = \max_{0 \le i \le n-1} |x_{i+1} x_i|$.
- Một bộ điểm thuộc phân hoạch P là bộ n điểm $\xi = \{\xi_i\}_{i=0}^{n-1}$ với $\xi_i \in [x_i, x_{i+1}]$.

24 / 61

Lê Văn Tử (BKHN) GT I - Hàm một biến 09/2022

Các khái niêm cơ bản

Cho hàm f và đoạn [a, b].

- Một phân hoạch P của [a,b] là cách chia [a,b] thành n đoạn bởi n+1 điểm $a=x_0< x_1< \ldots < x_n=b$.
- Cỡ của phân hoạch P là $|P| = \max_{0 \le i \le n-1} |x_{i+1} x_i|$.
- Một bộ điểm thuộc phân hoạch P là bộ n điểm $\xi = \{\xi_i\}_{i=0}^{n-1}$ với $\xi_i \in [x_i, x_{i+1}]$.
- ullet Tống tích phân f theo phân hoạch P và bộ điểm ξ thuộc P là

$$S_{f,P,\xi} = \sum_{i=0}^{n-1} f(\xi_i)(x_{i+1} - x_i).$$

24 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Khái niêm khả tích

Cho hàm f và đoạn [a,b]. Hàm f được gọi là $kh \hat{a}$ tích trên [a,b] nếu có một giá trị I thoả mãn: với mọi $\epsilon>0$, tồn tại $\delta>0$ sao cho với mọi phân hoạch P thoả mãn $|P|<\delta$, với mọi bộ điểm ξ thuộc P, ta có

$$|S_{f,P,\xi}-I|<\epsilon.$$

Kí hiệu
$$I = \int_a^b f(x) dx = \lim_{|P| \to 0} S_{f,P,\xi}$$
.

25 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Điều kiện khả tích

Dinh lí

Hàm f liên tục trên [a, b] thì f khả tích

Ý tưởng chứng minh: Sử dụng tổng Darboux. Tham khảo Giáo trình Giải tích I

Điều kiện khả tích

Dinh lí

Hàm f liên tục trên [a, b] thì f khả tích

Ý tưởng chứng minh: Sử dụng tổng Darboux. Tham khảo Giáo trình Giải tích I

Dinh lí

Hàm f có hữu hạn gián đoạn bỏ được hoặc loại 1 trên [a, b] thì f khả tích

Mệnh đề

Cho f, g là hai hàm khả tích trên [a, b].

•
$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Mệnh đề

Cho f, g là hai hàm khả tích trên [a, b].

•
$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

$$\bullet \int_{a}^{a} f(x) dx = 0.$$

Mệnh đề

Cho f, g là hai hàm khả tích trên [a, b].

- $\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$.
- $\int_{a}^{a} f(x) dx = 0.$

Lê Văn Tứ (BKHN)

GT I - Hàm một biến

Mênh đề

Cho f, g là hai hàm khả tích trên [a, b].

- $\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$
- $\bullet \int_{a}^{a} f(x) dx = 0.$
- $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.

Mênh đề

Cho f, g là hai hàm khả tích trên [a, b].

- $\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$
- $\bullet \int_{a}^{a} f(x) dx = 0.$
- $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.

Mệnh đề

Cho f, g là hai hàm khả tích trên [a, b].

• Nếu $\forall x \in [a, b], f(x) \ge 0$ thì $\int_{a}^{b} f(x) dx \ge 0$.

Mệnh đề

Cho f, g là hai hàm khả tích trên [a, b].

- Nếu $\forall x \in [a, b], f(x) \ge 0$ thì $\int_a^b f(x) dx \ge 0$.
- Nếu $\forall x \in [a, b], f(x) \ge g(x)$ thì $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

Mệnh đề

Cho f, g là hai hàm khả tích trên [a, b].

- Nếu $\forall x \in [a, b], f(x) \ge 0$ thì $\int_a^b f(x) dx \ge 0$.
- Nếu $\forall x \in [a, b], f(x) \ge g(x)$ thì $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

Mệnh đề

Cho f, g là hai hàm khả tích trên [a, b].

- Nếu $\forall x \in [a, b], f(x) \ge 0$ thì $\int_a^b f(x) dx \ge 0$.
- Nếu $\forall x \in [a, b], f(x) \ge g(x)$ thì $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.
- $|\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx.$
- Nếu $\forall x \in [a, b], m \le f(x) \le M$ thì $m(b a) \le \int_a^b f(x) dx \le M(b a)$.

4 D > 4 P > 4 E > 4 E > E 9 Q P

Các định lí giá trị trung bình

Định lí

Cho $f\colon [a,b] o \mathbb{R}$ liên tục thì tồn tại $c \in [a,b]$ thoả mãn

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Các định lí giá trị trung bình

Dinh lí

Cho $f:[a,b] \to \mathbb{R}$ liên tục thì tồn tại $c \in [a,b]$ thoả mãn

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Dinh lí

Cho $f:[a,b]\to\mathbb{R}$ và $g:[a,b]\to\mathbb{R}$ khả tích. Hàm g không đổi dấu trên [a,b]. Khi đó, tồn tại $c\in[a,b]$ thoả mãn

$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx.$$

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ 豊 めなで

29 / 61

Lê Văn Tử (BKHN) GT I - Hàm một biến 09/2022

Cho f khả tích trên [a, b]. Đặt

$$F(x) = \int_{a}^{x} f(t)dt.$$

Cho f khả tích trên [a, b]. Đặt

$$F(x) = \int_{a}^{\infty} f(t)dt.$$

Dinh lí

Hàm f liên tục trên [a, b]. Nếu f liên tục trên [a, b] thì F khả vi trên (a, b) và

$$F'(x) = f(x)$$
.

Cho f khả tích trên [a, b]. Đặt

$$F(x) = \int_{a}^{x} f(t)dt.$$

Dinh lí

Hàm f liên tục trên [a, b]. Nếu f liên tục trên [a, b] thì F khả vi trên (a, b) và

$$F'(x) = f(x)$$
.

Công thức Newton - Leibnitz

Cho hàm $f:[a,b] \to \mathbb{R}$ liên tục và F là một nguyên hàm của f thì

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Tính liên tục của f trên [a, b] để áp dụng Công thức Newton - Leibnitz là không thể bỏ được.

Ví du

Xét $\int_{-x^2}^3 \frac{1}{x^2} dx$. Do $\int \frac{1}{x^2} dx = -\frac{1}{x}$ nên

$$\int_{-1}^{3} \frac{1}{x^2} = \left(-\frac{1}{x}\right)\Big|_{-1}^{3} = -\frac{2}{3}.$$

Tuy nhiên, do $\frac{1}{x^2} \ge 0$ nên $\int_{1}^{3} \frac{1}{x^2} \ge 0$. Vậy $-\frac{2}{3} \ge 0$.

09/2022

31 / 61

GT I - Hàm một biến Lê Văn Tứ (BKHN)

Tính liên tục của f trên [a, b] để áp dụng Công thức Newton - Leibnitz là không thể bỏ được.

Ví dụ

Xét $\int_{-1}^{3} \frac{1}{x^2} dx$. Do $\int \frac{1}{x^2} dx = -\frac{1}{x}$ nên

$$\int_{-1}^{3} \frac{1}{x^2} = \left(-\frac{1}{x}\right)\Big|_{-1}^{3} = -\frac{2}{3}.$$

Tuy nhiên, do $\frac{1}{x^2} \ge 0$ nên $\int\limits_{-1}^3 \frac{1}{x^2} \ge 0$. Vậy $-\frac{2}{3} \ge 0$. Sai lầm ở đâu ?

40.40.41.41.1.2.000

31 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến

Tính liên tục của f trên [a, b] để áp dụng Công thức Newton - Leibnitz là không thể bỏ được.

Ví dụ

Xét $\int_{-1}^{3} \frac{1}{x^2} dx$. Do $\int \frac{1}{x^2} dx = -\frac{1}{x}$ nên

$$\int_{-1}^{3} \frac{1}{x^2} = \left(-\frac{1}{x}\right)\Big|_{-1}^{3} = -\frac{2}{3}.$$

Tuy nhiên, do $\frac{1}{x^2} \ge 0$ nên $\int\limits_{-1}^3 \frac{1}{x^2} \ge 0$. Vậy $-\frac{2}{3} \ge 0$. Sai lầm ở đâu ?

Nguyên nhân mâu thuẫn: Hàm $\frac{1}{x^2}$ không liên tục trên [-1,3] nên không thể áp dụng công thức Newton-Leibnitz.

31 / 61

Lê Văn Tứ (BKHN) GT I -

Tích phân từng phân

Công thức

Cho u, v là hai hàm khả tích trên [a, b]. Khi đó,

$$\int_{a}^{b} u dv = uv|_{a}^{b} - \int_{a}^{b} v du.$$

Ví dụ: Tính
$$\int_{1}^{x} x \ln x$$

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

32 / 61

Tích phân từng phân

Công thức

Cho u, v là hai hàm khả tích trên [a, b]. Khi đó,

$$\int_{a}^{b} u dv = uv|_{a}^{b} - \int_{a}^{b} v du.$$

Ví dụ: Tính $\int_{1}^{2} x \ln x$

$$\begin{cases} \ln x = u \\ xdx = dv \end{cases} \Rightarrow \begin{cases} \frac{dx}{x} = du \\ \frac{x^2}{2} = v \end{cases}.$$

$$I = \frac{1}{2}x^{2}\ln x\Big|_{1}^{2} - \int_{1}^{2} \frac{x}{2} = 2\ln 2 - \frac{x^{2}}{4}\Big|_{1}^{2} = 2\ln 2 - \frac{3}{4}.$$

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

32 / 61

Đổi biến dạng $x = \varphi(t)$

Định lí

Cho f khả tích trên [a,b]. Cho hàm $\varphi\colon [\alpha,\beta]\to [a,b]$ thoả mãn

- φ liên tục trên $[\alpha, \beta]$, khả vi trên (α, β) .
- $\varphi(\alpha) = a, \varphi(\beta) = b.$

Khi đó,

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Đổi biến dạng $x = \varphi(t)$

Dinh lí

Cho f khả tích trên [a,b]. Cho hàm $\varphi\colon [\alpha,\beta]\to [a,b]$ thoả mãn

- φ liên tục trên $[\alpha, \beta]$, khả vi trên (α, β) .
- $\varphi(\alpha) = a, \varphi(\beta) = b.$

Khi đó,

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Ví du

Tính
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{1-x^2} dx.$$

Đổi biến dạng $t = \psi(x)$

Dinh lí

Cho hàm f khả tích trên [a,b]. Cho hàm $\psi\colon [a,b]\to [\alpha,\beta]$ và hàm $g(t)\colon [\alpha,\beta]\to \mathbb{R}$ thoả mãn

- ψ khả vi và đơn điệu ngặt trên [a,b] và $\psi(a)=\alpha, \psi(b)=\beta.$
- $f(x) = g(\psi(x))\psi'(x)$.

Khi đó,

$$\int_{a}^{b} f(x)dx = \int_{\psi(a)}^{\psi(b)} g(t)dt.$$

Đổi biến dạng $t = \psi(x)$

Dinh lí

Cho hàm f khả tích trên [a, b]. Cho hàm $\psi: [a, b] \to [\alpha, \beta]$ và hàm $g(t): [\alpha, \beta] \to \mathbb{R}$ thoả mãn

- ψ khả vi và đơn điệu ngặt trên [a, b] và $\psi(a) = \alpha, \psi(b) = \beta$.
- $f(x) = g(\psi(x))\psi'(x)$.

Khi đó,

$$\int_{a}^{b} f(x)dx = \int_{\psi(a)}^{\psi(b)} g(t)dt.$$

Ví du

Tính $\int_{0}^{\frac{\pi}{2}} \sin x \cos^2 x dx$.

Một số đẳng thức tích phân

Do tích phân xác định trả về một giá trị, việc biểu thức lấy tích phân được tính theo biến x hay biến y không quan trọng. Tức là

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(y)dy.$$

Ta có thể vận dụng để có được một số đẳng thức tích phân giúp đơn giản việc tính các tích phân phức tạp.

35 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Một số đẳng thức tích phân

Do tích phân xác định trả về một giá trị, việc biểu thức lấy tích phân được tính theo biến x hay biến y không quan trọng. Tức là

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(y)dy.$$

Ta có thể vận dụng để có được một số đẳng thức tích phân giúp đơn giản việc tính các tích phân phức tạp.

Đẳng thức 1

$$\int_{-a}^{a} f(x)dx = \begin{cases} 0 \text{ n\'eu } f \text{ là hàm l\'e} \\ 2 \int_{0}^{a} f(x)dx \text{ n\'eu } f \text{ là hàm chẵn} \end{cases}$$

35 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Một số đẳng thức tích phân

Đẳng thức 2

Nếu f liên tục trên [0,1] thì

$$\int_{0}^{\frac{\pi}{2}} f(\sin x) dx = \int_{0}^{\frac{\pi}{2}} f(\cos x) dx, \int_{0}^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx$$

Áp dụng tính

$$\int_{0}^{\frac{\pi}{2}} \frac{\sqrt[3]{\sin x}}{\sqrt[3]{\sin x} + \sqrt[3]{\cos x}} dx, \int_{0}^{\pi} x \sin^{5} x dx$$

4 D > 4 P > 4 E > 4 E > E 9 Q P

Table of Contents

- Nguyên hàm
- Tích phân xác định
- Tích phân suy rộng
- 4) Các ứng dụng của tích phân xác định

Bài toán mở đầu

Bài toán

Tính phần diện tích hạn chế bởi $x=1,y=0,y=\frac{1}{\mathbf{x}^2}.$

Bài toán mở đầu

Bài toán

Tính phần diện tích hạn chế bởi $x = 1, y = 0, y = \frac{1}{x^2}$.

• Cố định x = a > 1. Khi đó

$$S_a = \int_{1}^{a} \frac{1}{x^2} dx$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Bài toán mở đầu

Bài toán

Tính phần diện tích hạn chế bởi $x = 1, y = 0, y = \frac{1}{x^2}$.

• Cố định x = a > 1. Khi đó

$$S_a = \int_{1}^{a} \frac{1}{x^2} dx = \left(-\frac{1}{x}\right)\Big|_{1}^{a} = 1 - \frac{1}{a}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Lê Văn Tứ (BKHN)

GT I - Hàm một biến

Bài toán mở đầu

Bài toán

Tính phần diện tích hạn chế bởi $x = 1, y = 0, y = \frac{1}{x^2}$.

• Cố định x = a > 1. Khi đó

$$S_a = \int_{1}^{a} \frac{1}{x^2} dx = \left(-\frac{1}{x}\right)\Big|_{1}^{a} = 1 - \frac{1}{a}$$

 $\bullet \lim_{a\to\infty} S_a = 1.$

イロトイプトイミトイミト ミーグへで

Tích phân suy rộng loại I – Tích phân với kì dị tại vô cùng

Định nghĩa

Xét $a \in \mathbb{R}$ và hàm f khả tích trên mọi đoạn [a,b] với mọi giá trị b>a. Đặt

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$

39 / 61

Lê Văn Tử (BKHN) GT I - Hàm một biến 09/2022

Tích phân suy rộng loại I – Tích phân với kì dị tại vô cùng

Định nghĩa

Xét $a \in \mathbb{R}$ và hàm f khả tích trên mọi đoạn [a,b] với mọi giá trị b>a. Đặt

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$

• Nếu $\lim_{b\to +\infty}\int\limits_a^b f(x)dx=I$ tồn tại và hữu hạn, ta nói $\int\limits_a^{+\infty} f(x)dx$ hội tụ và có giá trị I.

4 D > 4 P > 4 E > 4 E > E 9 Q C

39 / 61

Lê Văn Tử (BKHN) GT I - Hàm một biến 09/2022

Tích phân suy rộng loại I – Tích phân với kì dị tại vô cùng

Định nghĩa

Xét $a \in \mathbb{R}$ và hàm f khả tích trên mọi đoạn [a, b] với mọi giá trị b > a. Đặt

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$

- Nếu $\lim_{b\to +\infty} \int\limits_a^b f(x) dx = I$ tồn tại và hữu hạn, ta nói $\int\limits_a^{+\infty} f(x) dx$ hội tụ và có giá trị 1.
- Nếu $\lim_{b\to +\infty} \int_{a}^{b} f(x) dx$ không tồn tại hoặc bằng vô cùng, ta nói $\int_{a}^{+\infty} f(x) dx$ phân kì.

GT I - Hàm một biến Lê Văn Tứ (BKHN)

Định nghĩa

Xét hàm f khả tích trên mọi đoạn [a,b] với mọi $a,b\in\mathbb{R}$. Nếu tồn tại $a\in\mathbb{R}$ sao cho $\int\limits_{-\infty}^a f(x)dx$ và $\int\limits_a^{+\infty} f(x)dx$ cùng hội tụ, đặt

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx$$

và ta nói $\int_{-\infty}^{+\infty} f(x) dx$ hội tụ.

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q ○

Ví dụ

Tính
$$\int_{1}^{\infty} xe^{-x} dx$$

Tính
$$\int_{1}^{\infty} xe^{-x} dx$$

•
$$\int xe^{-x} dx = \int xd(-e^{-x}) = -xe^{-x} + \int e^{-x} dx$$
.
 $\Rightarrow \int xe^{-x} dx = -xe^{-x} - e^{-x} + C$.

- $\int xe^{-x}dx = \int xd(-e^{-x}) = -xe^{-x} + \int e^{-x}dx$. $\Rightarrow \int xe^{-x}dx = -xe^{-x} - e^{-x} + C.$
- Với a > 1, $\int_{1}^{a} xe^{-x} dx = -ae^{-a} e^{-a} + e^{-1} + e^{-1}$.

- $\int xe^{-x}dx = \int xd(-e^{-x}) = -xe^{-x} + \int e^{-x}dx$. $\Rightarrow \int xe^{-x}dx = -xe^{-x} - e^{-x} + C.$
- Với a > 1, $\int_{a}^{a} xe^{-x} dx = -ae^{-a} e^{-a} + e^{-1} + e^{-1}$.
- $\Rightarrow \int_{1}^{\infty} xe^{-x} dx = \lim_{a \to +\infty} -ae^{-a} e^{-a} + e^{-1} + e^{-1} = 2e^{-1}.$

41 / 61

GT I - Hàm một biến 09/2022 Lê Văn Tứ (BKHN)

Ví dụ

Biện luận sự hội tụ của
$$I=\int\limits_a^{+\infty} \frac{1}{x^p} dx$$
 theo giá trị $p\in \mathbb{R}$

42 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Biện luận sự hội tụ của $I=\int\limits_{-\infty}^{+\infty} \frac{1}{x^p} dx$ theo giá trị $p\in\mathbb{R}$

• Khi
$$p=1,\int\limits_{a}^{+\infty} \frac{1}{x^{p}} dx = \lim\limits_{b \to +\infty} (\ln b - \ln a)$$

42 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến

Biện luận sự hội tụ của $I=\int\limits_{-\infty}^{+\infty} \frac{1}{x^p} dx$ theo giá trị $p\in\mathbb{R}$

• Khi
$$p=1,\int\limits_{a}^{+\infty} \frac{1}{x^{p}} dx = \lim_{b \to +\infty} (\ln b - \ln a) \Rightarrow I$$
 phân kì.

<ロト <部ト < 注 ト < 注 ト

Biện luận sự hội tụ của $I=\int\limits_{-\infty}^{+\infty} \frac{1}{x^p} dx$ theo giá trị $p\in\mathbb{R}$

- Khi $p=1,\int\limits_{a}^{+\infty}\frac{1}{x^{p}}dx=\lim_{b\to+\infty}(\ln b-\ln a)\Rightarrow I$ phân kì.
- Khi $p \neq 1$, $\int\limits_{2}^{+\infty} \frac{1}{x^{p}} dx = \lim_{b \to +\infty} \frac{1}{-p+1} \left(b^{-p+1} a^{-p+1} \right)$.

Lê Văn Tứ (BKHN)

GT I - Hàm một biến

Biện luận sự hội tụ của $I=\int\limits_{-\infty}^{+\infty}\frac{1}{x^p}dx$ theo giá trị $p\in\mathbb{R}$

- Khi $p=1,\int\limits_{\frac{1}{\sqrt{p}}}^{+\infty} \frac{1}{x^p} dx = \lim_{b \to +\infty} (\ln b \ln a) \Rightarrow I$ phân kì.
- Khi $p \neq 1$, $\int\limits_{-\infty}^{+\infty} \frac{1}{x^p} dx = \lim_{b \to +\infty} \frac{1}{-p+1} \left(b^{-p+1} a^{-p+1} \right)$.

$$\lim_{b\to +\infty} \frac{1}{b^{p-1}} = \begin{cases} 0 \text{ n\'eu } p-1>0 \Leftrightarrow p>1 \\ +\infty \text{ n\'eu } p-1<0 \Leftrightarrow p<1 \end{cases}$$

<ロト <部ト < 注 ト < 注 ト

Lê Văn Tứ (BKHN)

GT I - Hàm một biến

Biện luận sự hội tụ của $I=\int\limits_{-\infty}^{+\infty}\frac{1}{x^p}dx$ theo giá trị $p\in\mathbb{R}$

• Khi
$$p = 1$$
, $\int_{a}^{+\infty} \frac{1}{x^{p}} dx = \lim_{b \to +\infty} (\ln b - \ln a) \Rightarrow I$ phân kì.

$$\text{ Khi } p \neq 1, \ \int\limits_{a}^{+\infty} \frac{1}{x^{p}} dx = \lim_{b \to +\infty} \frac{1}{-p+1} \left(b^{-p+1} - a^{-p+1} \right).$$

$$\lim_{b \to +\infty} \frac{1}{b^{p-1}} = \begin{cases} 0 \text{ n\'eu } p - 1 > 0 \Leftrightarrow p > 1 \\ +\infty \text{ n\'eu } p - 1 < 0 \Leftrightarrow p < 1 \end{cases}$$

Vây

$$\int\limits_{a}^{+\infty} \frac{1}{x^{p}} dx \text{ hội tụ } \Leftrightarrow p > 1$$

<ロト <部ト < 注 ト < 注 ト

42 / 61

GT I - Hàm một biến Lê Văn Tứ (BKHN) 09/2022

Mệnh đề

Cho hàm $f\colon [a,+\infty) \to \mathbb{R}$ liên tục.

Mệnh đề

Cho hàm $f:[a,+\infty) \to \mathbb{R}$ liên tục.

• Nếu $\int\limits_{a}^{+\infty}f(x)dx$ hội tụ khi và chỉ khi $\forall c>0, \int\limits_{a+c}^{+\infty}f(x)dx$ hội tụ.

Mênh đề

Cho hàm $f:[a,+\infty)\to\mathbb{R}$ liên tục.

- Nếu $\int\limits_a^{+\infty} f(x) dx$ hội tụ khi và chỉ khi $\forall c>0, \int\limits_{a+c}^{+\infty} f(x) dx$ hội tụ.
- Nếu $\lim_{x \to +\infty} f(x) \neq 0$ thì $\int_{a}^{+\infty} f(x) dx$ phân kì.

Mênh đề

Cho hàm $f:[a,+\infty) \to \mathbb{R}$ liên tục.

- Nếu $\int\limits_{a}^{+\infty}f(x)dx$ hội tụ khi và chỉ khi $\forall c>0, \int\limits_{a+c}^{+\infty}f(x)dx$ hội tụ.
- Nếu $\lim_{x \to +\infty} f(x) \neq 0$ thì $\int_{a}^{+\infty} f(x) dx$ phân kì.

Mênh đề

Cho hàm $f: (-\infty, b] \to \mathbb{R}$ liên tục.

Mênh đề

Cho hàm $f:[a,+\infty) \to \mathbb{R}$ liên tục.

- Nếu $\int\limits_a^{+\infty} f(x) dx$ hội tụ khi và chỉ khi $\forall c>0, \int\limits_{a+c}^{+\infty} f(x) dx$ hội tụ.
- Nếu $\lim_{x \to +\infty} f(x) \neq 0$ thì $\int_{a}^{+\infty} f(x) dx$ phân kì.

Mênh đề

Cho hàm $f:(-\infty,b]\to\mathbb{R}$ liên tục.

• Nếu $\int_{-\infty}^{b} f(x)dx$ hội tụ khi và chỉ khi $\forall c > 0, \int_{-\infty}^{b-c} f(x)dx$ hội tụ.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Mênh đề

Cho hàm $f:[a,+\infty)\to\mathbb{R}$ liên tục.

- Nếu $\int\limits_{-\infty}^{+\infty} f(x) dx$ hội tụ khi và chỉ khi $\forall c > 0, \int\limits_{-\infty}^{+\infty} f(x) dx$ hội tụ.
- Nếu $\lim_{x \to +\infty} f(x) \neq 0$ thì $\int_{-\infty}^{+\infty} f(x) dx$ phân kì.

Mênh đề

Cho hàm $f:(-\infty,b]\to\mathbb{R}$ liên tục.

- Nếu $\int\limits_{-}^{b}f(x)dx$ hội tụ khi và chỉ khi $\forall c>0, \int\limits_{-}^{b-c}f(x)dx$ hội tụ.
- Nếu $\lim_{x \to -\infty} f(x) \neq 0$ thì $\int_{0}^{b} f(x) dx$ phân kì.

09/2022

43 / 61

GT I - Hàm một biến Lê Văn Tứ (BKHN)

Tích phân suy rộng loại II – Tích phân với kì dị tại điểm hữu hạn

Khái niệm

Cho hàm f thoả mãn:

- xác định trên (a, b].
- ullet Khả tích trên mọi đoạn [c,b] với mọi a < c < b.
- $\bullet \lim_{c \to a^+} f(x) dx = \infty.$

Lê Văn Tử (BKHN) GT I - Hàm một biến 09/2022 44 / 61

Tích phân suy rộng loại II – Tích phân với kì dị tại điểm hữu han

Khái niệm

Cho hàm f thoả mãn:

- xác định trên (a, b].
- Khả tích trên mọi đoạn [c, b] với mọi a < c < b.
- $\bullet \lim_{c \to a^+} f(x) dx = \infty.$

Ta định nghĩa

$$\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x)dx.$$

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Tích phân suy rộng loại II – Tích phân với kì dị tại điểm hữu han

Khái niêm

Cho hàm f thoả mãn:

- xác định trên (a, b].
- Khả tích trên mọi đoạn [c, b] với mọi a < c < b.
- $\bullet \lim_{c \to a^+} f(x) dx = \infty.$

Ta định nghĩa

$$\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x)dx.$$

Ta nói $\int f(x)dx$ hội tụ nếu giới hạn bên phải tồn tại và hữu hạn. Ngược lại, ta nói $\int f(x)dx$ phân kì. Điểm a còn được gọi là kì di của $\int f(x)dx$.

GT I - Hàm một biến 09/2022 44 / 61 Lê Văn Tứ (BKHN)

Khái niệm

Cho hàm f thoả mãn:

- xác định trên [a, b).
- ullet Khả tích trên mọi đoạn [a,d] với mọi a < d < b.
- $\bullet \lim_{d\to b^-} f(x)dx = \infty.$

Ta định nghĩa

$$\int_{a}^{b} f(x)dx = \lim_{d \to b^{-}} \int_{a}^{d} f(x)dx.$$

45 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Khái niêm

Cho hàm f thoả mãn:

- xác định trên [a, b).
- Khả tích trên mọi đoạn [a, d] với mọi a < d < b.
- $\bullet \lim_{d\to b^-} f(x)dx = \infty.$

Ta định nghĩa

$$\int_{a}^{b} f(x)dx = \lim_{d \to b^{-}} \int_{a}^{d} f(x)dx.$$

Ta nói $\int\limits_a^b f(x)dx$ hội tụ nếu giới hạn bên phải tồn tại và hữu hạn. Ngược lại, ta nói $\int\limits_a^b f(x)dx$ phân kì.

4 □ ト 4 同 ト 4 三 ト 4 三 ・ 9 Q ○

Khái niệm

Cho hàm f thoả mãn:

- xác định trên (a, b).
- ullet Khả tích trên mọi đoạn [c,d] với mọi a < c < d < b.
- $\bullet \lim_{c \to a^+} f(x) = \lim_{d \to b^-} f(x) = \infty.$

Với $t \in (a,b)$, ta định nghĩa

$$\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{c}^{t} f(x)dx + \lim_{d \to b^{-}} \int_{t}^{d} f(x)dx.$$

Lê Văn Tử (BKHN) GT I - Hàm một biến 09/2022

Khái niêm

Cho hàm f thoả mãn:

- xác định trên (a,b).
- Khả tích trên mọi đoạn [c, d] với mọi a < c < d < b.
- $\bullet \lim_{c \to a^+} f(x) = \lim_{d \to b^-} f(x) = \infty.$

Với $t \in (a,b)$, ta định nghĩa

$$\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{c}^{t} f(x)dx + \lim_{d \to b^{-}} \int_{c}^{d} f(x)dx.$$

Ta nói $\int_a^b f(x)dx$ hội tụ nếu đồng thời $\int_a^t f(x)dx$ và $\int_t^b f(x)dx$ hội tụ. Khi $\int_a^b f(x)dx$ hội tụ thì giá trị của tích phân suy rộng của f trên [a,b] không phụ thuộc vào việc chọn giá trị $t \in (a,b)$.

Lê Văn Tử (BKHN) GT I - Hàm một biến 09/2022 46 / 61

Ví dụ

Tính
$$\int_{0}^{1} \frac{1}{\sqrt{x(1-x)}} dx$$

Ví dụ

Tính
$$\int_{0}^{1} \frac{1}{\sqrt{x(1-x)}} dx$$

• Đặt
$$\sqrt{x} = u$$
.

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Tính
$$\int_{0}^{1} \frac{1}{\sqrt{x(1-x)}} dx$$

• Đặt $\sqrt{x} = u$. Khi đó

$$\int \frac{1}{\sqrt{x(1-x)}} dx = \int \frac{2du}{\sqrt{1-u^2}} = 2\arcsin(u) + C = 2\arcsin(\sqrt{x}) + C.$$

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Ví dụ

$$T \ln \int_{0}^{1} \frac{1}{\sqrt{x(1-x)}} dx$$

• Đặt $\sqrt{x} = u$. Khi đó

$$\int \frac{1}{\sqrt{x(1-x)}} dx = \int \frac{2du}{\sqrt{1-u^2}} = 2\arcsin(u) + C = 2\arcsin(\sqrt{x}) + C.$$

• Với 0 < c < d < 1,

$$\int_{c}^{d} \frac{1}{\sqrt{x(1-x)}} dx = 2\arcsin(\sqrt{d}) - 2\arcsin(\sqrt{c})$$

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Tính $\int_{0}^{1} \frac{1}{\sqrt{x(1-x)}} dx$

• Đặt $\sqrt{x} = u$. Khi đó

$$\int \frac{1}{\sqrt{x(1-x)}} dx = \int \frac{2du}{\sqrt{1-u^2}} = 2\arcsin(u) + C = 2\arcsin(\sqrt{x}) + C.$$

• $V \acute{o} i \ 0 < c < d < 1$

$$\int_{-\infty}^{d} \frac{1}{\sqrt{x(1-x)}} dx = 2\arcsin(\sqrt{d}) - 2\arcsin(\sqrt{c})$$

$$\Rightarrow \int_{-\infty}^{1} \frac{1}{\sqrt{x(1-x)}} dx = \lim_{d \to 1^{-}} 2\arcsin(\sqrt{d}) - \lim_{c \to 0^{+}} 2\arcsin(\sqrt{c}) = \pi.$$

47 / 61

GT I - Hàm một biến 09/2022 Lê Văn Tứ (BKHN)

Ví dụ

Biện luận sự hội tụ của $I=\int\limits_0^\pi \frac{1}{x^p} dx, a>0$ theo giá trị $p\in\mathbb{R}$

48 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Biện luận sự hội tụ của $I=\int\limits_0^{\infty} \frac{1}{x^p} dx, a>0$ theo giá trị $p\in\mathbb{R}$

• Khi $p=1,\int\limits_{0}^{a}\frac{1}{x^{p}}dx=\lim\limits_{c\rightarrow0^{+}}(\ln a-\ln c)\Rightarrow I$ phân kì.

48 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến

Biện luận sự hội tụ của $I=\int\limits_0^{\infty}rac{1}{x^p}dx, a>0$ theo giá trị $p\in\mathbb{R}$

- Khi $p = 1, \int_{0}^{a} \frac{1}{x^{p}} dx = \lim_{c \to 0^{+}} (\ln a \ln c) \Rightarrow I$ phân kì.
- Khi $p \neq 1, \int\limits_{0}^{a} \frac{1}{x^{p}} dx = \lim_{c \to 0^{+}} \frac{1}{-p+1} \left(a^{-p+1} c^{-p+1} \right).$

$$\lim_{c \to 0^+} \frac{1}{c^{p-1}} = \begin{cases} 0 \text{ n\'eu } p-1 < 0 \Leftrightarrow p < 1 \\ +\infty \text{ n\'eu } p-1 > 0 \Leftrightarrow p > 1 \end{cases}$$

<ロト <部ト < 注 ト < 注 ト

Lê Văn Tứ (BKHN)

GT I - Hàm một biến

Ví du

Biện luận sự hội tụ của $I=\int\limits_{a}^{\infty}\frac{1}{x^{p}}dx,a>0$ theo giá trị $p\in\mathbb{R}$

- Khi $p = 1, \int_{0}^{a} \frac{1}{x^{p}} dx = \lim_{c \to 0^{+}} (\ln a \ln c) \Rightarrow I$ phân kì.
- Khi $p \neq 1, \int\limits_0^a \frac{1}{x^p} dx = \lim_{c \to 0^+} \frac{1}{-p+1} \left(a^{-p+1} c^{-p+1} \right).$

$$\lim_{c \to 0^+} \frac{1}{c^{p-1}} = \begin{cases} 0 \text{ n\'eu } p-1 < 0 \Leftrightarrow p < 1 \\ +\infty \text{ n\'eu } p-1 > 0 \Leftrightarrow p > 1 \end{cases}$$

Vây

$$\forall a > 0, \int_{0}^{a} \frac{1}{x^{p}} dx$$
 hội tụ $\Leftrightarrow p < 1$

<ロト <部ト < 注 ト < 注 ト

48 / 61

GT I - Hàm một biến Lê Văn Tứ (BKHN) 09/2022

Ví dụ

Tương tự, với tích phân suy rộng có kì dị tại $x_0 \in \mathbb{R}$,

$$\forall a < 0, \int\limits_{a}^{0} \frac{1}{(-x)^{p}} dx \text{ hội tụ } \Leftrightarrow p < 1$$

←□ → ←□ → ← □ → ← □ → へ ○ ○

49 / 61

Lê Văn Tử (BKHN) GT I - Hàm một biến 09/2022

Ví dụ

Tương tự, với tích phân suy rộng có kì dị tại $x_0 \in \mathbb{R}$,

$$\forall a < 0, \int\limits_{a}^{0} \frac{1}{(-x)^{p}} dx$$
 hội tụ $\Leftrightarrow p < 1$

$$\forall a>x_0, \quad \int\limits_{x_0}^a rac{1}{(x-x_0)^p} dx \ ext{hôi tụ } \Leftrightarrow p<1 \ .$$

4□ > 4団 > 4 団 > 4 団 > ■ 990

Ví du

Tương tự, với tích phân suy rộng có kì dị tại $x_0 \in \mathbb{R}$,

$$\forall a < 0, \int\limits_{a}^{0} \frac{1}{(-x)^{p}} dx$$
 hội tụ $\Leftrightarrow p < 1$

$$\forall a>x_0,\quad \int\limits_{x_0}^a rac{1}{(x-x_0)^p}dx$$
 hội tụ $\Leftrightarrow p<1$.

$$\forall a < x_0, \quad \int\limits_a^{x_0} rac{1}{(x_0 - x)^p} dx \ ext{hôi tụ} \ \Leftrightarrow p < 1 \ .$$

49 / 61

Tính chất cơ bản của TPSR loại II

Mênh đề

Cho hàm $f: [a,b) \to \mathbb{R}$ liên tục và $\lim_{x \to b^-} f(x) = \infty$. Nếu $\int\limits_a^b f(x) dx$ hội tụ khi và chỉ khi $\forall a < t < b, \int\limits_t^b f(x) dx$ hội tụ.

Tính chất cơ bản của TPSR loại II

Mênh đề

Cho hàm $f: [a,b) \to \mathbb{R}$ liên tục và $\lim_{x \to b^-} f(x) = \infty$. Nếu $\int_a^b f(x) dx$ hội tụ khi và chỉ khi $\forall a < t < b, \int_a^b f(x) dx$ hội tụ.

Mênh đề

Cho hàm $f:(a,b] \to \mathbb{R}$ liên tục và $\lim_{x \to a^+} f(x) = \infty$. Nếu $\int\limits_a^b f(x) dx$ hội tụ khi và chỉ khi $\forall a < t < b, \int f(x) dx$ hội tụ.

◆ロト 4回ト 4 至 ト 4 至 ト 至 めの(*)

Tính chất cơ bản của TPSR loại II

Ghi chú

Nếu f(x) liên tục trên (a,b], không xác định tại x=a và $\lim_{x\to a^+} f(x)$ tồn tại và hữu hạn, thì $\int\limits_a^b f(x)dx$ xác định và hữu hạn. Nói cách khác, nếu $\lim_{x\to a^+} f(x)$ tồn tại và hữu hạn thì $\int\limits_a^b f(x)dx$ **không** là tích phân suy rộng.

Các mệnh đề sau phát biểu với hàm f luôn dương. Nếu f luôn âm trên đoạn lấy tích phân, xét tích phân của -f.

Các mệnh đề sau phát biểu với hàm f luôn dương. Nếu f luôn âm trên đoạn lấy tích phân, xét tích phân của -f.

Dinh lí

Cho f,g là hai hàm khả tích trên mọi đoạn [a,b],b>a thoả mãn

$$\forall x \in [a, +\infty), 0 \le f(x) \le g(x).$$

Các mệnh đề sau phát biểu với hàm f luôn dương. Nếu f luôn âm trên đoạn lấy tích phân, xét tích phân của -f.

Dinh lí

Cho f,g là hai hàm khả tích trên mọi đoạn [a,b],b>a thoả mãn

$$\forall x \in [a, +\infty), 0 \le f(x) \le g(x).$$

• Nếu $\int_{a}^{+\infty} g(x)dx$ hội tụ thì $\int_{a}^{+\infty} f(x)dx$ hội tụ.

4 D > 4 D > 4 E > 4 E > E 9 Q C

Các mệnh đề sau phát biểu với hàm f luôn dương. Nếu f luôn âm trên đoạn lấy tích phân, xét tích phân của -f.

Dinh lí

Cho f,g là hai hàm khả tích trên mọi đoạn [a,b],b>a thoả mãn

$$\forall x \in [a, +\infty), 0 \le f(x) \le g(x).$$

- Nếu $\int_{a}^{+\infty} g(x)dx$ hội tụ thì $\int_{a}^{+\infty} f(x)dx$ hội tụ.
- Nếu $\int_{a}^{+\infty} f(x)dx$ phân kì thì $\int_{a}^{+\infty} g(x)dx$ phân kì.

Nguyên lí so sánh với TPSR loại I

Định lí

Cho f,g là hai hàm luôn dương và khả tích trên mọi đoạn [a,b],b>a. Giả sử

$$\lim_{x\to+\infty}\frac{f(x)}{g(x)}=k\in[0,+\infty].$$

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Định lí

Cho f,g là hai hàm luôn dương và khả tích trên mọi đoạn [a,b],b>a. Giả sử

$$\lim_{x\to+\infty}\frac{f(x)}{g(x)}=k\in[0,+\infty].$$

• Nếu k = 0 và $\int_{a}^{+\infty} g(x)dx$ hội tụ thì $\int_{a}^{+\infty} f(x)dx$ hội tụ.

Định lí

Cho f,g là hai hàm luôn dương và khả tích trên mọi đoạn [a,b],b>a. Giả sử

$$\lim_{x\to+\infty}\frac{f(x)}{g(x)}=k\in[0,+\infty].$$

- Nếu k = 0 và $\int_{a}^{+\infty} g(x)dx$ hội tụ thì $\int_{a}^{+\infty} f(x)dx$ hội tụ.
- Nếu $0 < k < +\infty$ thì $\int\limits_a^{+\infty} g(x) dx$ và $\int\limits_a^{+\infty} f(x) dx$ sẽ cùng hội tụ hoặc cùng phân kì.

Định lí

Cho f,g là hai hàm luôn dương và khả tích trên mọi đoạn [a,b],b>a. Giả sử

$$\lim_{x\to+\infty}\frac{f(x)}{g(x)}=k\in[0,+\infty].$$

- Nếu k = 0 và $\int_{a}^{+\infty} g(x)dx$ hội tụ thì $\int_{a}^{+\infty} f(x)dx$ hội tụ.
- Nếu $0 < k < +\infty$ thì $\int\limits_a^{+\infty} g(x) dx$ và $\int\limits_a^{+\infty} f(x) dx$ sẽ cùng hội tụ hoặc cùng phân kì.
- Cụ thể hơn, nếu f,g cùng là VCB hoặc VCL khi $x \to +\infty$ và $f \sim_{x \to +\infty} g$ thì $\int\limits_{a}^{+\infty} g(x) dx$ và $\int\limits_{a}^{+\infty} f(x) dx$ cùng hội tụ hoặc cùng phân kì.

Định lí

Cho f,g là hai hàm luôn dương và khả tích trên mọi đoạn [a,b],b>a. Giả sử

$$\lim_{x\to+\infty}\frac{f(x)}{g(x)}=k\in[0,+\infty].$$

- Nếu k = 0 và $\int_{a}^{+\infty} g(x)dx$ hội tụ thì $\int_{a}^{+\infty} f(x)dx$ hội tụ.
- Nếu $0 < k < +\infty$ thì $\int\limits_a^{+\infty} g(x) dx$ và $\int\limits_a^{+\infty} f(x) dx$ sẽ cùng hội tụ hoặc cùng phân kì.
- Cụ thể hơn, nếu f,g cùng là VCB hoặc VCL khi $x \to +\infty$ và $f \sim_{x \to +\infty} g$ thì $\int\limits_{a}^{+\infty} g(x) dx$ và $\int\limits_{a}^{+\infty} f(x) dx$ cùng hội tụ hoặc cùng phân kì.
- Nếu $k = +\infty$ và $\int_{a}^{+\infty} g(x)dx$ phân kì thì $\int_{a}^{+\infty} f(x)dx$ phân kì.

Tốc độ phân kì của các vô cùng lớn

Với mọi $\alpha, \beta > 0$, ta có

$$\lim_{x\to +\infty} \frac{(\ln x)^\beta}{x^\alpha} = 0, \lim_{x\to +\infty} \frac{x^\alpha}{e^{\beta x}} = 0.$$

Tốc độ phân kì của các vô cùng lớn

Với mọi $\alpha, \beta > 0$, ta có

$$\lim_{x\to +\infty} \frac{(\ln x)^\beta}{x^\alpha} = 0, \lim_{x\to +\infty} \frac{x^\alpha}{e^{\beta x}} = 0.$$

VD: Xét sự hội tụ của
$$\int_{1}^{+\infty} \frac{\ln(1+3x)}{x\sqrt{x}} dx$$

Tốc độ phân kì của các vô cùng lớn

Với mọi $\alpha, \beta > 0$, ta có

$$\lim_{x \to +\infty} \frac{(\ln x)^{\beta}}{x^{\alpha}} = 0, \lim_{x \to +\infty} \frac{x^{\alpha}}{e^{\beta x}} = 0.$$

VD: Xét sự hội tụ của $\int_{1}^{+\infty} \frac{\ln(1+3x)}{x\sqrt{x}} dx$

Ý tưởng: So sánh $f=rac{\ln(1+3x)}{x\sqrt{x}}$ với $g=rac{1}{x^{lpha}}$. Biện luận giới hạn $rac{f}{g}$ theo giá trị lpha.

←□ ト ←□ ト ← 亘 ト ← 亘 ・ 夕 へ ○

54 / 61

Tốc độ phân kì của các vô cùng lớn

Với mọi $\alpha, \beta > 0$, ta có

$$\lim_{x \to +\infty} \frac{(\ln x)^{\beta}}{x^{\alpha}} = 0, \lim_{x \to +\infty} \frac{x^{\alpha}}{e^{\beta x}} = 0.$$

VD: Xét sự hội tụ của $\int_{1}^{+\infty} \frac{\ln(1+3x)}{x\sqrt{x}} dx$

Ý tưởng: So sánh $f=rac{\ln(1+3x)}{x\sqrt{x}}$ với $g=rac{1}{x^{lpha}}$. Biện luận giới hạn $rac{f}{g}$ theo giá trị lpha.

$$\text{X\'et } \lim_{x \to +\infty} \frac{\ln(1+3x)}{x\sqrt{x}} \frac{1}{\frac{1}{\sqrt{\frac{5}{4}}}} = \lim_{x \to +\infty} \frac{\ln(1+3x)}{x^{\frac{1}{4}}} = 0.$$

Do $\int\limits_{1}^{+\infty} \frac{1}{x^{\frac{5}{4}}} dx$ hội tụ, ta suy ra $\int\limits_{1}^{+\infty} \frac{\ln(1+3x)}{x\sqrt{x}} dx$ hội tụ.

◆ロト ◆卸 ト ◆ 重 ト ◆ 重 ・ 夕 Q G

Lê Văn Tứ (BKHN)

GT I - Hàm một biến

Dinh lí

Cho f,g là hai hàm khả tích trên mọi đoạn $[a,t]\subset [a,b)$ thoả mãn

$$\forall x \in [a,b), 0 \le f(x) \le g(x)$$

và b là kì dị của $\int_{a}^{b} f(x)dx$, $\int_{a}^{b} g(x)dx$.

4 D > 4 B > 4 B > 4 B > 3 P 9 Q P

Dinh lí

Cho f,g là hai hàm khả tích trên mọi đoạn $[a,t]\subset [a,b)$ thoả mãn

$$\forall x \in [a,b), 0 \le f(x) \le g(x)$$

và b là kì dị của $\int_{a}^{b} f(x)dx$, $\int_{a}^{b} g(x)dx$.

• Nếu $\int_{a}^{b} g(x)dx$ hội tụ thì $\int_{a}^{b} f(x)dx$ hội tụ.

55 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Dinh lí

Cho f,g là hai hàm khả tích trên mọi đoạn $[a,t]\subset [a,b)$ thoả mãn

$$\forall x \in [a,b), 0 \le f(x) \le g(x)$$

và b là kì dị của $\int_{a}^{b} f(x)dx$, $\int_{a}^{b} g(x)dx$.

- Nếu $\int_{a}^{b} g(x)dx$ hội tụ thì $\int_{a}^{b} f(x)dx$ hội tụ.
- Nếu $\int_{a}^{b} g(x)dx$ phân kì thì $\int_{a}^{b} f(x)dx$ phân kì.

Lê Văn Tứ (BKHN) GT I - Hàm một biến

Nguyên lí so sánh với TPSR loại II

Định lí

Cho f,g là hai hàm luôn dương và khả tích trên mọi đoạn $[a,b)\subset [a,b]$. Giả sử

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = k.$$

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Định lí

Cho f,g là hai hàm luôn dương và khả tích trên mọi đoạn $[a,b)\subset [a,b]$. Giả sử

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = k.$$

• Nếu k = 0 và $\int_{a}^{b} g(x)dx$ hội tụ thì $\int_{a}^{b} f(x)dx$ hội tụ.

Định lí

Cho f,g là hai hàm luôn dương và khả tích trên mọi đoạn $[a,b)\subset [a,b]$. Giả sử

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = k.$$

- Nếu k = 0 và $\int_{a}^{b} g(x)dx$ hội tụ thì $\int_{a}^{b} f(x)dx$ hội tụ.
- Nếu $0 < k < +\infty$ thì $\int\limits_a^b g(x) dx$ và $\int\limits_a^b f(x) dx$ sẽ cùng hội tụ hoặc cùng phân kì.

Định lí

Cho f,g là hai hàm luôn dương và khả tích trên mọi đoạn $[a,b)\subset [a,b]$. Giả sử

$$\lim_{x\to b^-}\frac{f(x)}{g(x)}=k.$$

- Nếu k = 0 và $\int_a^b g(x)dx$ hội tụ thì $\int_a^b f(x)dx$ hội tụ.
- Nếu $0 < k < +\infty$ thì $\int\limits_a^b g(x) dx$ và $\int\limits_a^b f(x) dx$ sẽ cùng hội tụ hoặc cùng phân kì.
- Cụ thể hơn, nếu f,g cùng là VCB hoặc VCL khi $x \to b^-$ và $f \sim_{x \to b^-} g$ thì $\int\limits_a^b g(x) dx$ và $\int\limits_a^b f(x) dx$ cùng hội tụ hoặc cùng phân kì.

Định lí

Cho f,g là hai hàm luôn dương và khả tích trên mọi đoạn $[a,b)\subset [a,b]$. Giả sử

$$\lim_{x \to b^-} \frac{f(x)}{g(x)} = k.$$

- Nếu k = 0 và $\int_a^b g(x)dx$ hội tụ thì $\int_a^b f(x)dx$ hội tụ.
- Nếu $0 < k < +\infty$ thì $\int\limits_a^b g(x) dx$ và $\int\limits_a^b f(x) dx$ sẽ cùng hội tụ hoặc cùng phân kì.
- Cụ thể hơn, nếu f,g cùng là VCB hoặc VCL khi $x \to b^-$ và $f \sim_{x \to b^-} g$ thì $\int\limits_a^b g(x) dx$ và $\int\limits_a^b f(x) dx$ cùng hội tụ hoặc cùng phân kì.
- Nếu $k = +\infty$ và $\int_{a}^{b} g(x) dx$ phân kì thì $\int_{a}^{b} (x) dx$ phân kì.

VD: Đánh giá
$$\int_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$$

57 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

VD: Đánh giá
$$\int_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$$

Kì dị tại
$$x \to \pi^-$$
.

57 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến

VD: Đánh giá
$$\int_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$$

Kì dị tại
$$x \to \pi^-$$
. Ta có $\sqrt[3]{\sin x} = \sqrt[3]{\sin(\pi - x)} \sim_\pi \sqrt[3]{\pi - x}$.

4 D > 4 A > 4 B > 4 B > B 9 9 9 9

Lê Văn Tứ (BKHN) GT I - Hàm một biến

VD: Đánh giá
$$\int_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$$

Kì dị tại
$$x o \pi^-$$
. Ta có $\sqrt[3]{\sin x} = \sqrt[3]{\sin(\pi - x)} \sim_\pi \sqrt[3]{\pi - x}$

Kì dị tại $x \to \pi^-$. Ta có $\sqrt[3]{\sin x} = \sqrt[3]{\sin(\pi-x)} \sim_\pi \sqrt[3]{\pi-x}$. Hơn nữa. $\int\limits_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\pi-x}}$ hội tụ, ta suy ra $\int\limits_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$ hội tụ.

VD: Đánh giá
$$\int_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$$

Kì dị tại
$$x \to \pi^-$$
. Ta có $\sqrt[3]{\sin x} = \sqrt[3]{\sin(\pi - x)} \sim_\pi \sqrt[3]{\pi - x}$.

Hơn nữa. $\int\limits_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\pi-x}}$ hội tụ, ta suy ra $\int\limits_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$ hội tụ.

VD: Đánh giá
$$\int_{0}^{1} \frac{dx}{\sqrt{x - \ln(1 + x)}}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● めなべ

Nguyên lí so sánh với TPSR loại II

VD: Đánh giá
$$\int_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$$

Kì dị tại
$$x \to \pi^-$$
. Ta có $\sqrt[3]{\sin x} = \sqrt[3]{\sin(\pi - x)} \sim_\pi \sqrt[3]{\pi - x}$.

Hơn nữa. $\int\limits_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\pi-x}}$ hội tụ, ta suy ra $\int\limits_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$ hội tụ.

VD: Đánh giá
$$\int_{0}^{1} \frac{dx}{\sqrt{x - \ln(1 + x)}}$$

Kì dị tại $x \to 0^+$.

 Lê Văn Tử (BKHN)
 GT I - Hàm một biến
 09/2022

Nguyên lí so sánh với TPSR loại II

VD: Đánh giá
$$\int_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$$

Kì dị tại
$$x \to \pi^-$$
. Ta có $\sqrt[3]{\sin x} = \sqrt[3]{\sin(\pi - x)} \sim_\pi \sqrt[3]{\pi - x}$.

Hơn nữa. $\int\limits_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\pi-x}}$ hội tụ, ta suy ra $\int\limits_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$ hội tụ.

VD: Đánh giá
$$\int_{0}^{1} \frac{dx}{\sqrt{x - \ln(1 + x)}}$$

Kì dị tại $x \to 0^+$. Sử dụng khai triển Taylor, ta $x - \ln(1+x) \sim_0 \frac{x^2}{2}$.

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Nguyên lí so sánh với TPSR loại II

VD: Đánh giá
$$\int_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$$

Kì dị tại
$$x \to \pi^-$$
. Ta có $\sqrt[3]{\sin x} = \sqrt[3]{\sin(\pi - x)} \sim_\pi \sqrt[3]{\pi - x}$.

Hơn nữa. $\int\limits_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\pi-x}}$ hội tụ, ta suy ra $\int\limits_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$ hội tụ.

VD: Đánh giá
$$\int_{0}^{1} \frac{dx}{\sqrt{x - \ln(1 + x)}}$$

Kì dị tại $x \to 0^+$. Sử dụng khai triển Taylor, ta $x - \ln(1+x) \sim_0 \frac{x^2}{2}$. Như vậy

$$\frac{dx}{\sqrt{x-\ln(1+x)}} \sim_0 \frac{\sqrt{2}}{x}$$

 Lê Văn Tứ
 (BKHN)
 GT I - Hàm một biến
 09/2022

VD: Đánh giá $\int_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$

Kì dị tại
$$x \to \pi^-$$
. Ta có $\sqrt[3]{\sin x} = \sqrt[3]{\sin(\pi - x)} \sim_\pi \sqrt[3]{\pi - x}$.

Hơn nữa. $\int\limits_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\pi-x}}$ hội tụ, ta suy ra $\int\limits_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sqrt[3]{\sin x}}$ hội tụ.

VD: Đánh giá $\int_{0}^{1} \frac{dx}{\sqrt{x - \ln(1 + x)}}$

Kì dị tại $x \to 0^+$. Sử dụng khai triển Taylor, ta $x - \ln(1+x) \sim_0 \frac{x^2}{2}$. Như vậy

$$\frac{dx}{\sqrt{x-\ln(1+x)}} \sim_0 \frac{\sqrt{2}}{x}$$

Do $\int_{0}^{1} \frac{\sqrt{2}}{x} dx$ phân kì, $\int_{0}^{1} \frac{dx}{\sqrt{x - \ln(1+x)}}$ phân kì.

Định nghĩa

Cho $\int_{0}^{\beta} f(x)dx$ là một tích phân suy rộng (loại I hoặc loại II).

Định nghĩa

Cho $\int_{\alpha}^{\beta} f(x)dx$ là một tích phân suy rộng (loại I hoặc loại II).

• Nếu $\int_{\alpha}^{\beta} |f(x)| dx$ hội tụ, ta nói $\int_{\alpha}^{\beta} f(x) dx$ hội tụ tuyệt đối.

Định nghĩa

Cho $\int_{\alpha}^{\beta} f(x)dx$ là một tích phân suy rộng (loại I hoặc loại II).

- Nếu $\int_{\alpha}^{\beta} |f(x)| dx$ hội tụ, ta nói $\int_{\alpha}^{\beta} f(x) dx$ hội tụ tuyệt đối.
- Nếu $\int_{\alpha}^{\beta} f(x)dx$ hội tụ nhưng $\int_{\alpha}^{\beta} |f(x)dx|$ phân kì thì ta nói $\int_{\alpha}^{\beta} f(x)dx$ bán hội tụ.

Định lí

Nếu tích phân suy rộng $\int_{a}^{b} f(x)dx$ hội tụ tuyệt đối thì $\int_{a}^{b} f(x)dx$ hội tụ.

59 / 61

Lê Văn Tử (BKHN) GT I - Hàm một biến 09/2022

Định lí

Nếu tích phân suy rộng $\int\limits_a^b f(x)dx$ hội tụ tuyệt đối thì $\int\limits_a^b f(x)dx$ hội tụ.

Ta áp dụng tính hội tụ tuyệt đối để đánh giá các TPSR của các hàm đảo dấu trên miền lấy tích phân

VD: Đánh giá
$$\int_{1}^{+\infty} \frac{\sin x}{x\sqrt{x}} dx$$

Định lí

Nếu tích phân suy rộng $\int\limits_a^b f(x)dx$ hội tụ tuyệt đối thì $\int\limits_a^b f(x)dx$ hội tụ.

Ta áp dụng tính hội tụ tuyệt đối để đánh giá các TPSR của các hàm đảo dấu trên miền lấy tích phân

VD: Đánh giá
$$\int_{1}^{+\infty} \frac{\sin x}{x\sqrt{x}} dx$$

Với mọi $x \in [1, +\infty)$, ta có $0 \le |\frac{\sin x}{x\sqrt{x}}| \le \frac{1}{x\sqrt{x}}$.

10110101010

Định lí

Nếu tích phân suy rộng $\int_a^b f(x)dx$ hội tụ tuyệt đối thì $\int_a^b f(x)dx$ hội tụ.

Ta áp dụng tính hội tụ tuyệt đối để đánh giá các TPSR của các hàm đảo dấu trên miền lấy tích phân

VD: Đánh giá $\int_{1}^{+\infty} \frac{\sin x}{x\sqrt{x}} dx$

Với mọi $x \in [1, +\infty)$, ta có $0 \le |\frac{\sin x}{x\sqrt{x}}| \le \frac{1}{x\sqrt{x}}$. Do $\int\limits_{1}^{+\infty} \frac{1}{x\sqrt{x}} dx$ hội tụ, ta suy ra

$$\int\limits_{1}^{+\infty} |\frac{\sin x}{x\sqrt{x}}| dx \text{ hội tụ, tức là } \int\limits_{1}^{+\infty} \frac{\sin x}{x\sqrt{x}} dx \text{ hội tụ tuyệt đối.}$$

10.40.45.45.5 000

59 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Định lí

Nếu tích phân suy rộng $\int_a^b f(x)dx$ hội tụ tuyệt đối thì $\int_a^b f(x)dx$ hội tụ.

Ta áp dụng tính hội tụ tuyệt đối để đánh giá các TPSR của các hàm đảo dấu trên miền lấy tích phân

VD: Đánh giá $\int_{1}^{+\infty} \frac{\sin x}{x\sqrt{x}} dx$

Với mọi $x \in [1,+\infty)$, ta có $0 \le |\frac{\sin x}{x\sqrt{x}}| \le \frac{1}{x\sqrt{x}}$. Do $\int_1^{+\infty} \frac{1}{x\sqrt{x}} dx$ hội tụ, ta suy ra

$$\int\limits_{1}^{+\infty} \left| \frac{\sin x}{x\sqrt{x}} \right| dx \text{ hội tụ, tức là } \int\limits_{1}^{+\infty} \frac{\sin x}{x\sqrt{x}} dx \text{ hội tụ tuyệt đối.}$$

Như vậy, $\int\limits_{1}^{+\infty} \frac{\sin x}{x\sqrt{x}} dx$ hội tụ.

7 D L 2 D L

59 / 61

Lê Văn Tứ (BKHN) GT I - Hàm một biến 09/2022

Table of Contents

- Nguyên hàm
- Tích phân xác định
- Tích phân suy rộng
- 4 Các ứng dụng của tích phân xác định