COMP 301 Analysis of Algorithms

Instructor: Zafer Aydın

HW 1

Submit your codes and answers to Canvas for the problems given below.

- 1. What is the smallest value of n such that an algorithm whose running time is $100n^2$ runs faster than an algorithm whose running time is 2^n on the same machine? Write a simple Java code that tries different values for n and solves this problem.
- 2. For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds. Write simple Java codes for $n \log n$ and n!, which try different values for n and solves this problem. Assume that the base of the logarithms is 2. Fill the table below.

	60×106	36 x 10 9	864 × 108	2592 x109
	1 minute	1 hour	1 day	1 month
$\log n$	260×106	2 36×103	364× 109 2	2572×109 2
n	60x 10°	36 ×10 3	364 × 103	2592 x109
$n\log n$	2801417	133379058	2755 1475/3	71870856404
n^2	160 × 103	6 × 104	1864 × 104	25920 ×104
2^n	/9/2 (60 ×106)	192 (36×108)	/eg (364×108)	100 (2592 ×107)
n!	11	12	13	15