Curso: Cálculo Integral – Jeanneth Galeano Peñaloza

TALLER 4.1 - MÉTODOS DE INTEGRACIÓN NUMÉRICA

a)
$$\int_1^3 e^x dx$$

$$\Delta x = \frac{2}{20} = 0.1$$

Regla de trapecio

tk	yk	m_yk
1	2.718281828459045	2.718281828459045
1.1	3.0041660239464334	6.008332047892867
1.2	3.3201169227365472	6.6402338454730945
1.3	3.6692966676192444	7.338593335238489
1.4	4.0551999668446745	8.110399933689349
1.5	4,4816890703380645	8.963378140676129
1.6	4.953032424395115	9,90606484879023
1.700000000000000	5.473947391727201	10.947894783454402
1.8	6.0496474644129465	12.099294928825893
1.9	6.6858944422792685	13,371788884558537
2	7.38905609893065	14.7781121978613
2.1	8.166169912567652	16.332339825135303
2.2	9.025013499434122	18.050026998868244
2,3	9.974182454814718	19.948364909629436
2,400000000000004	11.023176380641605	22.04635276128321
2,5	12.182493960703473	24.364987921406946
2.6	13.463738035001692	26.927476070003383
2.7	14.879731724872837	29.759463449745674
2.8	16.444646771097048	32.889293542194096
2.90000000000004	18.174145369443067	36.348290738886135
3	20.085536923187668	20.085536923187668

m_yk es la multiplicación de yk por un múltiplo 1, 2 ó 4, según qué regla se use

$$\int_{1}^{3} e^{x} dx = 17.38172539576297$$

tk	yk	m_yk
1	2.718281828459045	2.718281828459045
1.1	3.0041660239464334	12.016664095785734
1.2	3.3201169227365472	6.6402338454730945
1.3	3.6692966676192444	14.677186670476978
1.4	4.0551999668446745	8.110399933689349
1.5	4.4816890703380645	17.926756281352258
1.6	4.953032424395115	9.90606484879023
1.700000000000002	5.473947391727201	21.895789566908803
1.8	6.0496474644129465	12.099294928825893
1.9	6.6858944422792685	26.743577769117074
2	7.38905609893065	14.7781121978613
2.1	8.166169912567652	32.66467965027061
2.2	9.025013499434122	18.050026998868244
2.3	9.974182454814718	39.89672981925887
2.40000000000004	11.023176380641605	22.04635276128321
2.5	12.182493960703473	48.72997584281389

Curso: Cálculo Integral – Jeanneth Galeano Peñaloza

2.6	13.463738035001692	26.927476070003383
2.7	14.879731724872837	59.51892689949135
2.8	16.444646771097048	32.889293542194096
2.90000000000004	18.174145369443067	72.69658147777227
3	20.085536923187668	20.085536923187668

$$\int_{1}^{3} e^{x} dx = 17.367264731729446$$

HERRAMIENTA	APROXIMACIÓN	CIFRAS DE PRECISIÓN
Regla del trapecio con n = 20	17. <mark>3</mark> 8172539576297	1
Regla de Simpson con $n = 20$	17. <mark>3672</mark> 64731729446	4
WolframAlpha (valor real)	17. <mark>3672</mark> 550947286	

$$b) \int_0^2 \frac{dx}{\sqrt{1+x}}$$

$$\Delta x = \frac{2}{20} = 0.1$$

Regla de trapecio

tk	yk	m_yk
0	1	1
0.1	0.9534625892455922	1.9069251784911845
0.2	0.9128709291752769	1.8257418583505538
0.3000000000000004	0.8770580193070292	1.7541160386140584
0.4	0.8451542547285166	1.6903085094570331
0.5	0.8164965809277261	1.6329931618554523
0.60000000000001	0.7905694150420948	1.5811388300841895
0.70000000000001	0.7669649888473704	1.5339299776947408
0.8	0.7453559924999299	1.4907119849998598
0.9	0.7254762501100117	1.4509525002200234
1	0.7071067811865475	1.414213562373095
1.1	0.6900655593423541	1.3801311186847083
1.20000000000002	0.674199862463242	1.348399724926484
1.3	0.6593804733957871	1.3187609467915742
1.40000000000001	0.6454972243679028	1.2909944487358056
1.5	0.6324555320336759	1.2649110640673518
1.6	0.6201736729460422	1.2403473458920844
1.700000000000002	0.6085806194501845	1.217161238900369
1.8	0.5976143046671968	1.1952286093343936
1.90000000000001	0.5872202195147035	1.174440439029407
2	0.5773502691896258	0.5773502691896258

Curso: Cálculo Integral – Jeanneth Galeano Peñaloza

$$\int_0^2 \frac{dx}{\sqrt{1+x}} = 1.4644378403845997$$

tk	yk	m_yk
0	1	1
0.1	0.9534625892455922	3.813850356982369
0.2	0.9128709291752769	1.8257418583505538
0.300000000000004	0.8770580193070292	3.508232077228117
0.4	0.8451542547285166	1.6903085094570331
0.5	0.8164965809277261	3.2659863237109046
0.60000000000001	0.7905694150420948	1.5811388300841895
0.70000000000001	0.7669649888473704	3.0678599553894816
0.8	0.7453559924999299	1.4907119849998598
0.9	0.7254762501100117	2.901905000440047
1	0.7071067811865475	1.414213562373095
1.1	0.6900655593423541	2.7602622373694166
1.200000000000002	0.674199862463242	1.348399724926484
1.3	0.6593804733957871	2.6375218935831484
1.40000000000001	0.6454972243679028	1.2909944487358056
1.5	0.6324555320336759	2.5298221281347035
1.6	0.6201736729460422	1.2403473458920844
1.700000000000002	0.6085806194501845	2.434322477800738
1.8	0.5976143046671968	1.1952286093343936
1.90000000000001	0.5872202195147035	2.348880878058814
2	0.5773502691896258	0.5773502691896258

$$\int_0^2 \frac{dx}{\sqrt{1+x}} = 1.4641026157346955$$

HERRAMIENTA	APROXIMACIÓN	CIFRAS DE PRECISIÓN
Regla del trapecio con n = 20	1.4644378403845997	2
Regla de Simpson con n = 20	1. <mark>46410</mark> 26157346955	5
WolframAlpha (valor real)	1. <mark>46410</mark> 161513775	

c)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan x \ dx$$

$$\Delta x = \frac{\frac{\pi}{4} - \frac{\pi}{3}}{20} = 0.013089969389957467$$

Curso: Cálculo Integral – Jeanneth Galeano Peñaloza

Regla de trapecio

tk	yk	m_yk
0.7853981633974483	0.9999999999999	0.999999999999999
0.7984881327874057	1.0265287140600547	2.0530574281201095
0.8115781021773633	1.0537801252809622	2.1075602505619244
0.8246680715673207	1.081793905307444	2.163587810614888
0.8377580409572781	1.1106125148291928	2.2212250296583855
0.8508480103472356	1.1402814581675482	2.2805629163350964
0.8639379797371931	1.170849566112539	2.341699132225078
0.8770279491271505	1.2023693107427997	2.4047386214855995
0.890117918517108	1.234897156535051	2.469794313070102
0.9032078879070655	1.2684939527453245	2.536987905490649
0.916297857297023	1.3032253728412055	2.606450745682411
0.9293878266869804	1.3391624077078819	2.6783248154157637
0.9424777960769379	1.3763819204711734	2.7527638409423467
0.9555677654668954	1.4149672721156947	2.8299345442313895
0.9686577348568528	1.4550090286724444	2.910018057344889
0.9817477042468103	1.496605762665489	2.993211525330978
0.9948376736367678	1.5398649638145827	3.0797299276291654
1.0079276430267252	1.5849040767806262	3.1698081535612523
1.0210176124166828	1.6318516871287894	3.2637033742575787
1.03410758180664	1.6808488808157664	3.361697761631533
1.0471975511965976	1.7320508075688767	1.7320508075688767

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan x \ dx = 0.34660214555419205$$

tk	yk	m_yk
0.7853981633974483	0.9999999999999	0.9999999999999
0.7984881327874057	1.0265287140600547	4.106114856240219
0.8115781021773633	1.0537801252809622	2.1075602505619244
0.8246680715673207	1.081793905307444	4.327175621229776
0.8377580409572781	1.1106125148291928	2.2212250296583855
0.8508480103472356	1.1402814581675482	4.561125832670193
0.8639379797371931	1.170849566112539	2.341699132225078
0.8770279491271505	1.2023693107427997	4.809477242971199
0.890117918517108	1.234897156535051	2.469794313070102
0.9032078879070655	1.2684939527453245	5.073975810981298
0.916297857297023	1.3032253728412055	2.606450745682411
0.9293878266869804	1.3391624077078819	5.3566496308315275
0.9424777960769379	1.3763819204711734	2.7527638409423467
0.9555677654668954	1.4149672721156947	5.659869088462779
0.9686577348568528	1.4550090286724444	2.910018057344889
0.9817477042468103	1.496605762665489	5.986423050661956
0.9948376736367678	1.5398649638145827	3.0797299276291654
1.0079276430267252	1.5849040767806262	6.339616307122505
1.0210176124166828	1.6318516871287894	3.2637033742575787
1.03410758180664	1.6808488808157664	6.723395523263066
1.0471975511965976	1.7320508075688767	1.7320508075688767

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan x \ dx = 0.3465736007014238$$

Curso: Cálculo Integral – Jeanneth Galeano Peñaloza

HERRAMIENTA	APROXIMACIÓN	CIFRAS DE PRECISIÓN
Regla del trapecio con n = 20	0.34660214555419205	3
Regla de Simpson con n = 20	0.3465736007014238	6
WolframAlpha (valor real)	0.356573590279973	

$$d) \int_0^1 e^{x^2} dx$$

$$\Delta x = \frac{1}{20} = 0.05$$

Regla de trapecio

tk	yk	m_yk
0	1	1
0.05	1.0025031276057952	2.0050062552115904
0.1	1.010050167084168	2.020100334168336
0.1500000000000002	1.022755034164446	2.045510068328892
0.2	1.0408107741923882	2.0816215483847764
0.25	1.0644944589178593	2.1289889178357186
0.3000000000000004	1.0941742837052104	2.188348567410421
0.3500000000000003	1.130319120074011	2.260638240148022
0.4	1.1735108709918103	2.3470217419836206
0.45	1.2244600851219147	2.4489201702438295
0.5	1.2840254166877414	2.568050833375483
0.55	1.3532376764211722	2.7064753528423444
0.60000000000001	1.4333294145603404	2.8666588291206807
0.65	1.5257712196034616	3.0515424392069233
0.70000000000001	1.6323162199553791	3.2646324399107582
0.75	1.7550546569602985	3.510109313920597
0.8	1.8964808793049517	3.7929617586099034
0.85000000000001	2.059575719127713	4.119151438255426
0.9	2.2479079866764717	4.4958159733529435
0.95000000000001	2.465759811603786	4.931519623207572
1	2.718281828459045	2.718281828459045

$$\int_0^1 e^{x^2} dx = 1.4637838918494221$$

tk	yk	m_yk
0	1	1
0.05	1.0025031276057952	4.010012510423181
0.1	1.010050167084168	2.020100334168336
0.1500000000000002	1.022755034164446	4.091020136657784
0.2	1.0408107741923882	2.0816215483847764
0.25	1.0644944589178593	4.257977835671437
0.300000000000004	1.0941742837052104	2.188348567410421
0.350000000000003	1.130319120074011	4.521276480296044
0.4	1.1735108709918103	2.3470217419836206
0.45	1.2244600851219147	4.897840340487659
0.5	1.2840254166877414	2.568050833375483
0.55	1.3532376764211722	5.412950705684689
0.60000000000001	1.4333294145603404	2.8666588291206807
0.65	1.5257712196034616	6.1030848784138465
0.70000000000001	1.6323162199553791	3.2646324399107582
0.75	1 75505/6560602085	7.0202186278/1110/

Curso: Cálculo Integral – Jeanneth Galeano Peñaloza

0.8	1.8964808793049517	3.7929617586099034
0.85000000000001	2.059575719127713	8.238302876510852
0.9	2.2479079866764717	4.4958159733529435
0.95000000000001	2.465759811603786	9.863039246415145
1	2.718281828459045	2.718281828459045

$$\int_0^1 e^{x^2} dx = 1.4626536248862967$$

HERRAMIENTA	APROXIMACIÓN	CIFRAS DE PRECISIÓN
Regla del trapecio con n = 20	1.4637838918494221	2
Regla de Simpson con n = 20	1. <mark>46265</mark> 36248862967	5
WolframAlpha (valor real)	1. <mark>46265</mark> 17459071816088	

e)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{1+x^2}$$

$$\Delta x = \frac{\frac{\pi}{4} - \frac{\pi}{2}}{20} = 0.039269908169872414$$

Regla de trapecio

tk	yk	m_yk
0.7853981633974483	0.6184864581588363	0.6184864581588363
0.8246680715673207	0.5952106630193471	1.1904213260386942
0.8639379797371931	0.5726101663042296	1.1452203326084591
0.9032078879070655	0.5507261495956711	1.1014522991913422
0.9424777960769379	0.5295868534440545	1.059173706888109
0.9817477042468103	0.5092094203228229	1.0184188406456458
1.0210176124166828	0.489601604915072	0.979203209830144
1.0602875205865552	0.470763331270827	0.941526662541654
1.0995574287564276	0.45268808784537223	0.9053761756907445
1.1388273369263	0.43536415993849314	0.8707283198769863
1.1780972450961724	0.4187757050638915	0.837551410127783
1.2173671532660448	0.40290368075905053	0.8058073615181011
1.2566370614359172	0.3877266367391514	0.7754532734783028
1.2959069696057897	0.3732213844920346	0.7464427689840692
1.335176877775662	0.3593635577308205	0.718727115461641
1.3744467859455345	0.3461280768311409	0.6922561536622818
1.413716694115407	0.3334895296886684	0.6669790593773368
1.4529866022852793	0.32142248049799643	0.6428449609959929
1.4922565104551517	0.30990171689288754	0.6198034337857751
1.5315264186250241	0.2989024447841088	0.5978048895682176
1.5707963267948966	0.288400439142001	0.288400439142001

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{1+x^2} = 0.3381547146565094$$

Curso: Cálculo Integral – Jeanneth Galeano Peñaloza

Regla de Simpson

tk	yk	m_yk
0.7853981633974483	0.6184864581588363	0.6184864581588363
0.8246680715673207	0.5952106630193471	2.3808426520773884
0.8639379797371931	0.5726101663042296	1.1452203326084591
0.9032078879070655	0.5507261495956711	2.2029045983826845
0.9424777960769379	0.5295868534440545	1.059173706888109
0.9817477042468103	0.5092094203228229	2.0368376812912916
1.0210176124166828	0.489601604915072	0.979203209830144
1.0602875205865552	0.470763331270827	1.883053325083308
1.0995574287564276	0.45268808784537223	0.9053761756907445
1.1388273369263	0.43536415993849314	1.7414566397539726
1.1780972450961724	0.4187757050638915	0.837551410127783
1.2173671532660448	0.40290368075905053	1.6116147230362021
1.2566370614359172	0.3877266367391514	0.7754532734783028
1.2959069696057897	0.3732213844920346	1.4928855379681385
1.335176877775662	0.3593635577308205	0.718727115461641
1.3744467859455345	0.3461280768311409	1.3845123073245635
1.413716694115407	0.3334895296886684	0.6669790593773368
1.4529866022852793	0.32142248049799643	1.2856899219919857
1.4922565104551517	0.30990171689288754	0.6198034337857751
1.5315264186250241	0.2989024447841088	1.1956097791364353
1.5707963267948966	0.288400439142001	0.288400439142001

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{1+x^2} = 0.33811105285727105$$

HERRAMIENTA	APROXIMACIÓN	CIFRAS DE PRECISIÓN
Regla del trapecio con n = 20	0.3381547146565094	4
Regla de Simpson con $n = 20$	0.33811105285727105	7
WolframAlpha (valor real)	0.338111071825533	

CONCLUSIÓN

Con n = 20, se logra una precisión de entre 4 y 7 cifras decimales, usando la Regla de Simpson. Vemos que este método de integración nos brinda una aproximación más cercana al valor real (WolframAlpha) que si utilizamos la Regla del Trapecio.

CÓDIGO

Se escribió el siguiente programa en Python 3 para calcular los valores y agregarlos a las tablas:

```
port plotly.graph objects as go # plotly es una librería que permite hacer tablas
```

```
Programa: Ing. Sistemas y Computación
                                                      Curso: Cálculo Integral – Jeanneth Galeano Peñaloza
def exponencial(x): # Función del ejercicio 1
   return m.exp(x)
def funcion 2(x): # Función del ejercicio 2
   return 1/(m.sqrt(1+x))
def tangente(x): # Función del ejercicio 3
   return m.tan(x)
def cuadratica(x): # Función usada para componer las funciones de los ejercicios 3
   return pow(x, 2)
lef funcion 4(x): # Función del ejercicio 4
   return exponencial(cuadratica(x))
def derivada arctan(x): # Función del ejercicio 5
   return 1 / (1 + cuadratica(x))
lef long inter(a, b):
   return b-a
def subintervalo(long inter, n):
   sub = long inter/n
   print('\triangle x = \{\}'.format(sub))
   return sub
def t_k(a, k, sub):
   tk = a + (k*sub)
def integral trapecio(f, a, b, n):
   tks = [] # listas de tks y yks que irán en las tablas
   m yks = [] # lista de yks multiplicados por el múltiplo adecuado
   suma = 0 # suma de yks
   inter = long inter(a, b) # se obtiene la longitud del intérvalo
   sub = subintervalo(inter, n) \# se obtiene \triangle x
   for k in range(n+1): # caminamos por la recta n veces k
       tk = t k(a, k, sub) # obtenemos cada tk
       tks.append(tk) # agregamos los tk a una lista
       yk = f(tk) # calculamos cada tk dependiendo de la función
       yks.append(yk) # agregamos los yk a una lista
```

if k == 0 or k == n: # si k es 0 o n, no lo multiplicamos por 2

m yks.append(yk)

```
Curso: Cálculo Integral – Jeanneth Galeano Peñaloza
```

```
suma += yk # sumamos
        m yks.append(2*yk) # agregamos los yk a una lista
        suma += 2*yk # acumulamos la suma de yks multiplicados
    print('INTEGRAL = {}'.format((sub*suma)/2)) # imprimimos el resultado de la
    generar tabla(tks, yks, m yks)
def integral simpson(f, a, b, n):
   tks = []
    yks = []
   m yks = []
   suma = 0
   inter = long inter(a, b)
   sub = subintervalo(inter, n)
    for k in range(n+1):
        tk = t k(a, k, sub)
        tks.append(tk)
       yk = f(tk)
       yks.append(yk)
        if k == 0 or k == n: # si k es 0 o n, yk se mantiene
            m_yks.append(yk)
            suma += yk
        if k % 2 == 1: # si k es impar, yk es multiplicado por 4
           yk = 4*yk
            yk = 2*yk
        m yks.append(yk)
        suma += yk
    print('INTEGRAL = {}'.format((sub*suma)/3)) # se imprime el resultado de la
   generar tabla(tks, yks, m yks)
lef generar tabla(tks, yks, m yks):
    tabla = go.Figure(data=[go.Table(header=dict(values=['tk', 'yk', 'm yk']),
cells=dict(values=[tks, yks, m yks]))])
    tabla.show()
lef imprimir datos(f, a, b, n):
   integral trapecio(f, a, b, n)
    integral simpson(f, a, b, n)
```

Nombre: Diego Esteban Quintero Rey CC: 1070018762

Programa: Ing. Sistemas y Computación Curso: Cálculo Integral – Jeanneth Galeano Peñaloza

Puede ejecutarse en https://colab.research.google.com/notebooks/intro.ipynb#recent=true (Google Colab) copiando y pegando el código en un notebook nuevo.

Recuerde que es posible aumentar el parámetro n para buscar un valor que se acerque cada vez más al valor real.