FIB. Interfícies dels computadors. Tercer Control 4-6-2012

Cognoms i Nom:	Una	possible Solució	Full 1/2
----------------	-----	------------------	-----------------

Important: Cal justificar totes les respostes. Respostes sense un text explicatiu no es tindran en consideració.

1. (1 Punt) Sense considerar els cicles d'inicialització i guardat del resultat, quants cicles trigaria un conversor A/D Flash de 8 bits a fer una conversió?

Els conversos Flash utilitzen molts comparadors en paral·lel, fent la conversió en **un** únic cicle.

2. (2 Punts)A quina temperatura equivaldria la lectura de valor 123 en decimal obtinguda amb un AD de 10 bit amb tensions de referència 3 i 5 volts, que realitza la lectura d'un sensor de temperatura que proporciona 2 volts a zero graus i 5 volts a 100 graus centígrads?

La lectura de 123 unitats del conversor A/D equival a 3v + (5v-3v) * 123/1024 = 3,24 volts i 3,24 volts equivalent a $(3,24v-2v) / 3v * 100^\circ = 41,3^\circ$

3. (1 Punt) Per quin motiu el bus 1Wire utilitza l'u (5 Volts) com a estat de repòs de la línia?

Els dispositius *1Wire* s'alimenten de la mateixa línia que s'utilitza per comunicació, fet que provoca que la línia no pugui estar en estat baix durant molt de temps doncs deixaríem al dispositiu sense alimentació.

4. (1 Punt) Quants segons es trigaria com a mínim per transmetre 1KByte utilitzant una Tx sèrie configurada a 9600 bps amb 8 bits de dades, 1 bit de paritat parell i 2 bits de Stop?

Per cada byte es transmeten 1 start + 8 bits de dades + 1 bit de paritat + 2 bits d'stop = 12 bits. Llavors per transmetre 1 KB = 2^{10} bytes es triga $12*2^{10}/9600 = 1,28$ segons.

FIB. Interfícies dels computadors. Tercer Control 4-6-2012

Cognoms i Nom:	Full 2/2

5. (2 Punts) En el bus USB les dades es codifiquen amb el bit stuffing i la codificació NRZi. Si el bus està en el seu estat per defecte i s'envia un paquet d'ACK (aquests paquets no tenen CRC), indica els valors de D+ i D- fins a acabar la transmissió del paquet.

Guieu-vos amb les figures per omplir les dades a la següent taula (D+, D+ codificat i D-codificat):

	Idl	е	SOP					PID						EOP		Idle							
D+	1	1	0	0	0	0	0	0	0	1	0	1	0	0	1	0	1	1	0	0	1	1	1
D+c	1	1	0	1	0	1	0	1	0	0	1	1	0	1	1	0	0	0	0	0	1	1	1
D-c	0	0	1	0	1	0	1	0	1	1	0	0	1	0	0	1	1	1	0	0	0	0	0

	0000000				
IDLE	1 SOP	PID	DATA	CRC	EOP
IDLE	8b	8b	0 a 1023Bytes	5 o 16b	2b

PID Type	PID Name	PID[3:0]*	Description
Token	OUT	0001B	Address + endpoint number in host-to-function transaction
	IN	1001B	Address + endpoint number in function-to-host transaction
	SOF	0101B	Start-of-Frame marker and frame number
	SETUP	1101B	Address + endpoint number in host-to-function transaction for SETUP to a control pipe
Data	DATA0	0011B	Data packet PID even
	DATA1	1011B	Data packet PID odd
Handshake	ACK	0010B	Receiver accepts error-free data packet
	NAK	1010B	Rx device cannot accept data or Tx device cannot send data
	STALL	1110B	Endpoint is halted or a control pipe request is not supported.
Special	PRE	1100B	Host-issued preamble. Enables downstream bus traffic to low-speed devices.

^{*}Note: PID bits are shown in MSb order. When sent on the USB, the rightmost bit (bit 0) will be sent first.

PID

6. Indica el nombre de connexions i per a què serveixen, en una connexió SPI entre un PIC (que farà de màster) i dos dispositius esclaus. Fes un petit esquema de les connexions (1 punt).

Hi haurà, les dades de sortida, les dades d'entrada i el CLK, que aniran (en bus) del PIC als pins corresponents dels dos dispositius esclaus. A més hi haurà una connexió punt a punt de selecció de dispositiu entre el PIC i el dispositiu 0 i entre el pic el dispositiu 1. El dibuix seria per K connexions.

Note: RX is an unused I/O port MOSI stands for master out, slave in MISO stands for master in, slave out

Figure 10.5 Single-master and multiple-slave device connection (method 1)

7. (0,5 punts) Si volem capturar amb el conversor AD un senyal que conté components freqüèncials de fins a 300 Hz, quina hauria de ser la freqüència mínima de mostreig?

La freqüència mínima haurà de ser com a mínim el doble de la continguda a la senyal, per tant, superior a 600Hz.

(0,75 punts) Si decidim mostrejar-ho a unes 10 vegades els 300 Hz, és a dir, a 3 KHz, amb l'AD configurat a 10 bits, indica quanta memòria ens caldrà per emmagatzemar les dades durant 1 minut, si compactem les dades a memòria.

3000 mostres per segon x 10 bits per mostra = 30000 bits per segon.

30000 bits per segon x 60 segons = 1800000 bits

(0,75 punts) Si aquesta informació no ens cap en els 2KB de RAM que té el PIC, podem optar per enviar-la a través d'una línia sèrie cap a un PC. Quina velocitat de transmissió mínima hauria de tenir la línia sèrie per garantir que totes les dades s'envien?

Rebem 30000 bits per segon, l'overhead mínim de línia sèrie (1 start + 1 stop) implica que per cada 8 bits s'ocupa el temps de 10. Per tant, velocitat mínima= 30000x10/8 bps = 37500 bps.