The Modern History of Modal Logic

PROBLEM SET 04: DUE MARCH 17RD

Updated: May 13, 2025

1 Regimentation

Negation: Provide a definition of negation using the other operators in \mathcal{L}^T .

Regimentation: Regiment the following in \mathcal{L}^T and \mathcal{L}_{\square}^T disambiguating as needed.

1. If it is raining, it will stop.

Solution Ben

Letting R symbolize 'It is raining', we may regiment the claim by $R \to \oplus \neg R$ in \mathcal{L}^{T} . This asserts that if it is raining, there is a time in the actual future in which it stops raining.

Alternatively, we may take 'will' to convey that if it is raining, then for every future there is a time in which the rain stops. We may capture this reading in $\mathcal{L}_{\square}^{T}$ with the regimentation $R \to \boxdot \lozenge \neg R$.

- 2. If it wasn't that cold before, it might still be that cold at some point.
- 3. Either it has rained or it will snow.
- 4. If it will rain, then it has always been so.
- 5. If it will always rain, then it must have rained before.
- 6. It has always been true that it either will rain or it won't.
- 7. If it has always rained, then it will always have been that it rained before.
- 8. If it has always rained, then it has always been that it has rained.
- 9. If it will always rain, then it cannot have always not rained.
- 10. If has rained and snowed, then it could tomorrow.
- 11. If rain has always implied clouds, it will always be cloudy if it always rains.
- 12. If rain lead to snow before, then snow might lead to rain.

2 Temporal Frame Constraints

Relations: Evaluate the following, providing a proof or counterexample:

- 1. Every asymmetric frame is irreflexive.
- 2. Every irreflexive transitive frame is asymmetric.
- 3. Every frame that is not irreflexive has neither beginning nor end.
- 4. Every left and right linear frame is total.
- 5. Every total frame is left and right linear.

Solution Ben

Let $\mathcal{F} = \langle T, < \rangle$ be a total frame where both y < x and z < x for arbitrary $x, y, z \in T$. By TOT, either y < z, y = z, or y > z. Since $x, y, z \in T$ were arbitrary, we may conclude that \mathcal{F} is left linear.

Assuming instead that y > x and z > x for arbitrary $x, y, z \in T$, either y < z, y = z, or y > z follows by TOT. Generalizing on $x, y, z \in T$, \mathcal{F} is also right linear. Since \mathcal{F} was an arbitrary total frame, we may conclude that every total frame is left and right linear.

- 6. Every frame that is left and right linear is transitive.
- 7. Every frame that is not right linear is right discrete.
- 8. Every frame that is dense is both left and right linear.
- 9. Every frame that is asymmetric and left linear is transitive.
- 10. There is a dense frame with both a beginning and end.

Solution Ben

Consider the frame $\mathcal{F} = \langle [0,1], < \rangle$ where $[0,1] \subseteq \mathbb{Q}$ and < is the standard ordering of rational numbers. Thus for all $i \in (0,1)$, we have:

$$0 \longrightarrow \cdots \quad (i) \cdots \longrightarrow 1$$

Since 0 < i < 1 for all $i \in (0,1)$, it follows that \mathcal{F} has both a beginning and end (it is bounded below and above) and so neither INF or INP hold.

Given any $x, z \in [0, 1]$ where x < z, we may let $y = x + \frac{z - x}{2}$ where this is the rational number between x and z, and so x < y < z. Since $x, z \in [0, 1]$ were arbitrary, \mathcal{F} satisfies DEN as desired.

- 11. The relational image of a frame with a beginning and end is finite.
- 12. The relational image of an asymmetric frame is not a partition.

3 Characterization

Countermodels: Evaluate the following, providing a proof or \mathcal{L}^T countermodel. If there is a countermodel, strengthen \models by imposing the weakest set of constraints C which make that claim valid. (You do not need to prove that it is the weakest set of constraints.)

- 1. $\models \mathbb{P}(\varphi \to \psi) \to (\mathbb{P}\varphi \to \mathbb{P}\psi).$
- $2. \models \Diamond \top.$
- $3. \models \varphi \rightarrow \mathbb{F} \Diamond \varphi.$
- $4. \models \mathbb{PP} \varphi \rightarrow \mathbb{P} \varphi.$
- 5. $\models \mathbb{P} \bot \lor \mathbb{P} \bot$.
- 6. $\models \mathbb{P} \mathbb{F} \varphi \to \triangle \varphi$.

- 7. $\models \mathbb{P}\varphi \to \mathbb{P}\mathbb{P}\varphi$.
- 8. $\models (\lozenge \top \land \varphi \land \not \vdash \varphi) \rightarrow \lozenge \vdash \varphi$.
- 9. $\models \mathbb{F}(\varphi \to \psi) \to (\mathbb{F}\varphi \to \mathbb{F}\psi).$
- 11. $\models \varphi \rightarrow \mathbb{P} \diamondsuit \varphi$.
- 12. $\models \mathbb{F} \varphi \to \mathbb{F} \varphi$.

Solution Ben

Consider an \mathcal{L}^T model $\mathcal{M} = \langle T, <, \mathcal{I} \rangle$ where $T = \{w, u\}$, only w < u, and $\mathcal{I}(p_1) = \emptyset$ (the interpretation of all other sentence letters is arbitrary):

$$\begin{array}{cccc}
w & & u \\
\hline
 & & p_1, & p_1 \\
\hline
 & & p_1, & p_1
\end{array}$$

Vacuously, every $v \in T$ where u < v is such that $v \in \mathcal{I}(p_1)$, and so $\mathcal{M}, v \models p_1$. Thus $\mathcal{M}, u \models \mathbb{F}p_1$ by the semantics for \mathbb{F} , and so $\mathcal{M}, w \models \mathbb{F}p_1$ since u is the only element of T where w < u. At the same time, $u \notin \mathcal{I}(p_1)$, and so $\mathcal{M}, u \not\models p_1$. Since w < u, it follows that $\mathcal{M}, w \not\models \mathbb{F}p_1$ by the semantics for \mathbb{F} . Thus $\mathcal{M}, w \not\models \mathbb{F}p_1 \to \mathbb{F}p_1$ by the semantics for \to .

Nevertheless, we may show that $\not\models_{\mathsf{DEN}} \ \models_{\mathsf{F}} \varphi \to \models_{\varphi}$ by assuming for contradiction that there is an \mathcal{L}^{T} model $\mathcal{M} = \langle T, <, \mathcal{I} \rangle$ that satisfies DEN where $\mathcal{M}, w \not\models_{\mathsf{DEN}} \ \models_{\mathsf{F}} \varphi \to \models_{\varphi}$ for some $w \in T$. It follows by the semantics for \to that both: (1) $\mathcal{M}, w \models_{\mathsf{DEN}} \ \models_{\mathsf{F}} \varphi$; and (2) $\mathcal{M}, w \not\models_{\mathsf{DEN}} \ \models_{\varphi}$. It follows from the latter that $\mathcal{M}, u \not\models_{\mathsf{DEN}} \varphi$ for some $u \in T$ where w < u. Since \mathcal{M} satisfies DEN, there is some $v \in T$ where w < v < u, and so we have:

Since w < v, it follows from (1) that $\mathcal{M}, v \models_{\mathsf{DEN}} \mathbb{F} \varphi$, and so $\mathcal{M}, u \models_{\mathsf{DEN}} \varphi$, contradicting the above. Thus $\models_{\mathsf{DEN}} \mathbb{F} \mathbb{F} \varphi \to \mathbb{F} \varphi$ as desired.

- 13. $\models \mathbb{F} \bot \lor \diamondsuit \mathbb{F} \bot$.
- 14. $\models \mathbb{FP}\varphi \to \triangle \varphi$.
- 15. $\models \mathbb{F}\varphi \to \mathbb{F}\varphi$.

4 Indeterminacy

Evaluate: Without imposing any restriction on the models of $\mathcal{L}_{\square}^{\mathsf{T}}$, evaluate the following where $p_i \in \mathbb{L}$, providing a proof or countermodel:

1.
$$\models p_i \rightarrow \Diamond p_i$$
.

- 2. $\models \varphi \rightarrow \Diamond \varphi$.
- $3. \models \Diamond \varphi \lor \Diamond \neg \varphi.$
- $4. \models \varphi \rightarrow \mathbb{F} \Diamond \varphi.$
- 5. $\models \mathbb{P} \mathbb{F} \varphi \to \triangle \varphi$.
- 6. $\models \varphi \rightarrow \boxdot \varphi$.
- 7. $\models \Diamond \varphi \lor \Diamond \neg \varphi$.

Solution Ben

Consider a minimal model $\mathcal{M} = \langle T, <, \mathcal{I} \rangle$ for $\mathcal{L}_{\square}^{\mathbb{T}}$ where T = x has just one time, $x \not\in x$, and \mathcal{I} is arbitrary. Letting $\mathcal{T}_i = \langle T, < \rangle$, we may observe that $\mathcal{M}, \mathcal{T}_i, x \not\models \emptyset \varphi$ since there is no $y \in T_i$ where x < y and $\mathcal{M}, \mathcal{T}_i, y \not\models \varphi$, and so $\mathcal{M}, \mathcal{T}_i, y \models \neg \varphi$ by the semantics for negation. Moreover, $\mathcal{M}, \mathcal{T}_i, x \not\models \emptyset \neg \varphi$ since neither is there a $y \in T_i$ where x < y and $\mathcal{M}, \mathcal{T}_i, y \not\models \neg \varphi$. It follows that $\mathcal{M}, \mathcal{T}_i, x \not\models \neg \lozenge \varphi \rightarrow \lozenge \neg \varphi$ by the semantics for \rightarrow , and so $\not\models \neg \lozenge \varphi \rightarrow \lozenge \neg \varphi$ by the definition of logical consequence. Thus $\not\models \lozenge \varphi \lor \lozenge \neg \varphi$ by abbreviation. \diamondsuit

- $8. \models \varphi \rightarrow \mathbb{P} \diamondsuit \varphi.$
- 9. $\models \mathbb{FP}\varphi \to \triangle \varphi$.