Humber College

Quiz 3 (5%)

Quiz Period: 50 min. March 20, 2024

Student Name:

Student Number:

1. Fit a quadratic polynomial to the following data:

x	3	4	5	7	8	9	11	12
y	1.6	3.6	4.4	3.4	2.2	2.8	3.8	4.6

Along with the coefficients, determine r^2 and $S_{\underline{y}}$.

$$\hat{y} = \alpha x^2 + bx + c$$

) - 0	へんてりハー	t C				2	2
V		ni	3 Ni	74 Ni	y1x;	પુ _ર ંગઃ	y;
Xi	Yi_	9	27	81	4.8	14,4	2,56
3	1.6	* 1			14.4	57-6	12.96
4	3.6	16	64	256	22	110	19-36
5	4.4	25	125	625		166:6	11.56
		49	343	2401	23.8	140.8	4.84
7	3.4	64	512	4096	17.6	226.8	7.84
8	2.8	81	729	6561	25.2	459.8	14.44
9	3, 8	121	1331	14641 20736	65.2	662.4	
11		144	1728	2013		1838.	4 94.72
12	4.6			49397	204.8		
	-/ U	569	4859				
- 59	26.4	-					1

$$(80 + 609) + a(509) = 26.4$$

$$\begin{cases} 8C + b(99) + a(509) = 26.4 \\ 26.4C + 509b + 4859a = 204.8 \\ 509C + 4859b + 49397a = 1838.4 \end{cases}$$

$$\begin{cases} a = -0.0437 \\ b = 0.8168 \\ C = 0.0586 \end{cases}$$

$$\hat{y} = -0.0437 \times 2 + 0.8168 \times + 0.0586$$

$$r = \frac{(8)(264.8) - (59)(26.4)}{\sqrt{(8)(509) - (59)^{2}}[(8)(94.72) - (26.4)^{2}]} = 0.182$$

 $\hat{y} = -0.0437 \chi^2 + 0.8168 \chi + 0.0586$

(1
_	2
92	75

\\\'\\\'	90	ŷ;	$(y_i - \hat{y}_i)^2$
3	1.6 3.6	2.6266	0.2559
5 7	4.4 3.4	3.0501 3.6349	1,8222
8 9	2-2	3.7962 3.8701	2.5479 1.1451 0.00 2 0
N 12	3.8 4.6	3.7557 3.5674	1.0663
59	26.4	26,4167	7.8521 = SSE

$$S_{\frac{1}{2}} = \frac{1.1440}{100}$$

2. For the function, the divided differences are given by:

$$x_0 = 0.0$$
 $f[x_0]$
 $x_1 = 0.4$ $f[x_1]$ $f[x_0, x_1]$
 $x_2 = 0.7$ $f[x_2] = 6$ $f[x_0, x_1, x_2] = \frac{50}{7}$

Determine the missing entries in the table. (Show your work for full mark!)

$$f\left[\chi_{0},\chi_{1},\chi_{2}\right] = \frac{f\left[\chi_{1},\chi_{2}\right] - f\left[\chi_{0},\chi_{1}\right]}{\chi_{2} - \chi_{0}} \Rightarrow \frac{50}{7} = \frac{10 - f\left[\chi_{0},\chi_{1}\right]}{0.7}$$

$$= \frac{10 - f\left[\chi_{0},\chi_{1}\right]}{7} = \frac{10 - f\left[\chi_{0},\chi_{1}\right]}{0.7}$$

$$f[x_{1},x_{1}] = \frac{f[x_{1}] - f[x_{1}]}{x_{1} - x_{1}} \Rightarrow 10 = \frac{6 - f[x_{1}]}{0.3} \Rightarrow f[x_{1}] = 3$$

$$f[x_{0},x_{1}] = \frac{f[x_{1}] - f[x_{0}]}{x_{1} - x_{0}} \Rightarrow 5 = \frac{3 - f[x_{0}]}{0.4} \Rightarrow f[x_{0}] = 1$$

Quiz 3 (5%)

Humber College

Quiz Period: 50 min. March 20, 2024

3. Consider the following data values.

x 0.1 0.2 0.4 0.6 0.9 1.3 y 0.75 1.25 1.45 1.25 0.85 0.55

A function of the form

 $y = axe^{bx}$

can be a good fit for the data set. Divide both sides by x and take the natural logarithm to transform the model to a linear model. Use this model to estimate coefficients a and b.

$$y = axe^{bx} - b = ae^{bx} - b \ln(\frac{y}{x}) = \ln(ae^{bx})$$

$$- \ln(\frac{y}{x}) = \ln a + bx \Rightarrow \ln(\frac{y}{x}) = A + Bx$$
Where $\begin{cases} A = \ln a \\ B = b \end{cases}$

To find A and B, we use the linear regression formula for the variables of and Y= ln(1/x)

X	Y= ln(4/2)	x. Y	20
0.1	2.0149	0.2015	0.01
0.2	1.8326	0.3665	0.04
	1.2879	0.5151	0.46
0.4	0.7340	0,4404	0.36
0.6	-0.0572	-0.0514	0.81
0.9		-1.1183	1.69
1.3	- 0.8602		
3.5	4. 9519	0.3538	3.07
0,0			

Slope = B =
$$\frac{(6)(0.3538) - (3.5)(4.9519)}{(6)(3.07) - (3.5)^2} \sim -2.465$$

Y-intercept = $A = \overline{Y} - B\overline{X} = \frac{4.9519}{6} - (-2.465) \frac{3.5}{6} = 2.2632$

$$\begin{cases} b = B = -2.465 \\ \ln a = A = 2.2632 \\ \ln a = A = 2.2632 \\ \ln a = C = 9.614 \end{cases} \Rightarrow \hat{y} = 9.614 \\ \chi = 0.614 \\ \chi = 0.61$$