EECS Laboratory Experiment 4

Rita Abani 19244 Date: 10.02.2022

4.1. HALF WAVE RECTIFIER

4.1.4.1 Half wave rectifier without a filter (without capacitor)

Input waveform

Output waveform

Both input and output waveforms on the same graph

4.1.4.1 Half wave rectifier with a filter (with smoothing capacitor)

Circuit diagram

4.2. FULL WAVE RECTIFIER

4.2.1 FULL WAVE RECTIFIER WITHOUT CAPACITOR

4.2.1 FULL WAVE RECTIFIER WITH CAPACITOR

4.2.5 RIPPLE FACTOR CALCULATIONS

Rectifier without filter:

HWR	V _m	$V_{rms} = V_m / 2$	$V_{dc} = V_m/pi$	r= V _{r,rms} /V _{dc}
	1V	0.5V	0.318V	1.213
FWR	V _m	$V_{\rm rms} = V_{\rm m} / \sqrt{2}$	$V_{dc} = 2V_m/pi$	r=V _{r,rms} /V _{dc}
	1V	0.707	0.636	0.485

Rectifier with filter:

Туре	V _m	V_{rpp}	$V_{r,rms}$	$V_{dc}=V_{m}-V_{rpp}/2$	r=V _{r,rms} /V _{dc}
HWR	0.5V	0.236	0.0681	0.382	0.178
FWR	0.366V	31.05mV	8.96mV	351.045mV	0.025

The values for V_{m} , V_{rpp} have been taken from the output waveforms shown in the above snippets of LTSpice

CALCULATIONS:

1. HWR without filter:

Ripple factor = $\sqrt{\text{(Vrms/Vdc)}}$ 2 -1

2. HWR with filter:

Ripple factor = Vrms/Vdc

3. FWR without filter:

Ripple factor = $\sqrt{(Vrms/Vdc)}2-1$

4. FWR with filter:

Ripple factor = Vrms/Vdc

4.3 CLIPPER CIRCUIT

4.4. CLAMPER CIRCUIT

4.5 Voltage Doubler

4.6 LOGIC GATES

Inverter:

NOT Gate:

NOR GATE:

NAND Gate:

AND gate:

OR GATE:

