

Clustering (Unsupervised Learning)

Given: Examples: $\langle x_1, x_2, ..., x_n \rangle$

Find: A natural clustering (grouping) of the data

Example Applications:

Identify similar energy use customer profiles

<x> = time series of energy usage

Identify anomalies in user behavior for computer security

<**x**> = sequences of user commands

Why cluster?

- Labeling is expensive
- Gain insight into the structure of the data
- Find prototypes in the data

Goal of Clustering

 Given a set of data points, each described by a set of attributes, find clusters such that:

- Inter-cluster similarity is maximized
- Intra-cluster similarity is minimized

Requires the definition of a similarity measure

measures F2

What is a natural grouping of these objects?

Clustering is subjective

Simpson's Family School Employees

Females

Males

What is Similarity?

Similarity is hard to define, but... "We know it when we see it"

What properties should a distance measure have?

- D(A,B) = D(B,A)
 - Constancy of Self-Similarity
- D(A,A)=0

Positivity (Separation)

- D(A,B) = 0 iif A = B
- $D(A,B) \le D(A,C) + D(B,C)$ Triangular Inequality

Symmetry

Two Types of Clustering

- Partitional algorithms: Construct various partitions and then evaluate them by some criterion
- Hierarchical algorithms: Create a hierarchical decomposition of the set of objects using some criterion

Hierarchical

Partitional

Dendogram: A Useful Tool for Summarizing Similarity Measurements

The similarity between two objects in a dendrogram is represented as the height of the lowest internal node they share.

Types of hierarchical clustering

- Agglomerative (bottom up) clustering: It builds the dendrogram (tree) from the bottom level, and
 - merges the most similar (or nearest) pair of clusters
 - stops when all the data points are merged into a single cluster (i.e., the root cluster).
 - Divisive (top down) clustering: It starts with all data points in one cluster, the root.
 - Splits the root into a set of child clusters. Each child cluster is recursively divided further
 - stops when only singleton clusters of individual data points remain, i.e., each cluster with only a single point

Hierarchal clustering

- Hierarchal clustering can sometimes show patterns that are meaningless or spurious
 - The tight grouping of Australia, Anguilla, St. Helena etc is meaningful; all these countries are former UK colonies

 However the tight grouping of Niger and India is completely spurious; there is no connection between the two.

Hierarchal clustering

We can look at the dendrogram to determine the "correct" number of clusters.

One potential use of a dendrogram: detecting outliers

An example: working of the algorithm

Hierarchal Clustering Methods Summary

- No need to specify the number of clusters in advance
 - Hierarchal nature maps nicely onto human intuition for some domains
- (K)
- They do not scale well
- Like any heuristic search algorithms, <u>local optima</u> are a problem
- Interpretation of results is (very) subjective

Partitional Clustering

- Lalapoint
- Nonhierarchical, each instance is placed in exactly one of K nonoverlapping clusters.
- Since only one set of clusters is output, the user normally has to input the desired number of clusters K.

K-Means Clustering

The K-Means Clustering Method: for numerical attributes

Given k, the k-means algorithm is implemented in five steps:

- 1. Decide on a value for k.
- 2. Initialize the k cluster centers (randomly, if necessary).
- 3. Decide the class memberships of the N objects by assigning them to the nearest cluster center.
- 4. Re-estimate the k cluster centers, by assuming the memberships found above are correct.
- 5. If none of the N objects changed membership in the last iteration, exit. Otherwise go to 3.

Algorithm: k-means,

Distance Metric: Euclidean Distance

Inhalised k=3

Algorithm: k-means,

Algorithm: k-means,

Algorithm: k-means,

Algorithm: k-means,

The mean point can be influenced by an outlier

X	Y
1	2
2	4
3	3
4	2
2.5	2.75

The mean point can be a virtual point

The K-Means Clustering Method

K-means Clustering

Importance of Choosing Initial Centroids

K-Means: Inertia

- It is calculated by measuring the distance between each data point and its centroid, squaring this distance, and summing these squares across one cluster.
- A good model is one with low inertia AND a low number of clusters (K).
- However, this is a tradeoff because as K increases, inertia decreases.

Comments on k-Means

Strengths

Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.

Often terminates at a local optimum.

Weakness

- -> Applicable only when mean is defined, then what about categorical data?
 - \rightarrow Need to specify k, the number of clusters, in advance
 - Inable to handle noisy data and outliers

Not suitable to discover clusters with non-convex shapes

Categorical Values

- Handling categorical data: k-modes (Huang'98)
 - Replacing means of clusters with modes
 - Mode of an attribute: most frequent value
 - Mode of instances: for an attribute A, mode(A)= most frequent value
 - K-mode is equivalent to K-means
 - Using a frequency-based method to update modes of clusters
 - A mixture of categorical and numerical data: k-prototype method

Python Packages needed

- pandas
 - Data Analytics
- numpy
 - Numerical Computing
- matplotlib.pyplot
 - Plotting graphs
- Sklearn, Scipy
 - Clustering Classes

Implementation Using sklearn

Let's go to Jupyter Notebook!