

| STUDENT ID NO |  |  |  |  |  |  |  |  |  |
|---------------|--|--|--|--|--|--|--|--|--|
|               |  |  |  |  |  |  |  |  |  |

# **MULTIMEDIA UNIVERSITY**

# FINAL EXAMINATION

**TRIMESTER 3, 2017/2018** 

### **EEE1046 – ELECTRONICS III**

(All sections / Groups)

30- MAY 2018 09:00 AM – 11:00 AM (2 Hours)

#### INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 5 pages (including the cover page) with 4 Questions only.
- 2. Attempt ALL questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.

#### **Question 1**

- (a) Operational amplifier (Op-amp) circuits with external negative feedback are widely used for a variety of applications, such as the summing amplifiers.
  - (i) Explain the term *negative feedback*. Next, give <u>TWO</u> advantages of the negative feedback configuration in an op-amp circuit. [2+2 marks]
  - (ii) Sketch the schematic diagram of an ideal inverting summing amplifier circuit that has <u>THREE</u> inputs. Label the series input resistors  $(R_1, R_2, R_3)$ , feedback resistor  $(R_F)$ , input voltages  $(V_{\text{IN1}}, V_{\text{IN2}}, V_{\text{IN3}})$ , and output voltage  $(V_{\text{OUT}})$  accordingly. [4 marks]
  - (iii) With the aid of the sketch in Part (a)(ii), derive the mathematical expression for the output voltage  $V_{\text{OUT}}$  of the ideal inverting summing amplifier.

[4 marks]

(iv) The ideal inverting summing amplifier circuit in Part (a)(ii) has unity gain. The waveforms of input signals  $V_{\text{IN1}}$ ,  $V_{\text{IN2}}$  and  $V_{\text{IN3}}$  are shown in Figure Q1(a). Draw the graph of the output waveform. [3 marks]



Continued .....

- (b) Figure Q1(b) shows the schematic diagram of an ideal op-amp integrator circuit, which simulates mathematical integration by determining the total area under the curve of a function. A square wave as shown in Figure Q1(c) is applied to the input of the differentiator.
  - (i) The integrator has  $C_F = 1$  nF and  $R_1 = 10 \text{ k}\Omega$ . Determine the output voltage  $V_o$  at time t = 0 s,  $t = 2 \mu$ s,  $t = 5 \mu$ s,  $t = 10 \mu$ s.

[5 marks]

- (ii) At low frequencies, the ideal integrator circuit may become unstable and drive the output signal into saturation. Explain why? [3 marks]
- (iii) Suggest a modification to the ideal integrator circuit to eliminate the instability. [2 marks]



Figure Q1 (b)



Figure Q1 (c)

### Question 2

- (a) List and describe the <u>THREE</u> main stages which form the internal structure of an integrated circuit (IC) op-amp. [6 marks]
- (b) The output voltage  $V_0$  of an operational amplifier is 2.002 V when  $V_+ = 1005 \ \mu V$  and  $V_- = 995 \ \mu V$ . When  $V_+ = 1010 \ \mu V$  and  $V_- = 1000 \ \mu V$ ,  $V_0$  is 2.00201 V. Calculate the open loop gain  $A_{OL}$  and common-mode rejection ratio (in decibels) of the amplifier. [6 marks]
- (c) The slew rate of the amplifier in Figure Q2(c) is  $0.5 \text{ V/}\mu\text{s}$ .
  - (i) Is this an inverting or a non-inverting amplifier?

[1 mark]

(ii) Calculate the maximum frequency supported by the circuit for the case when  $R_L = 6 \text{ k}\Omega$ . Find out the maximum peak input voltage allowable.

[4 marks]

(iii) What are the new maximum frequency and maximum peak input voltage supported by the circuit if  $R_L$  is changed to 16 k $\Omega$ ? [4 marks]

Continued ......

(iv) With the aid of a diagram, explain what will happen to the output of the circuit if the input exceeds the slew rate of 0.5 V/µs. [4 marks]



#### Question 3

- (a) A simple shunt regulator is shown in Figure Q3 (a).
  - (i) Derive the appropriate equation for  $V_Z$ ,  $I_S$ ,  $I_L$  and  $I_Z$  for this circuit and explain the weakness of this circuit. [3 marks] Sketch the **improved version** of this shunt regulator circuit. Derive appropriate equation for  $V_Z$ ,  $I_S$ ,  $I_L$  and other related equations for this improved circuit. And explain the advantage of the improved circuit over the circuit shown in Figure Q3(a). [5 marks]



Figure Q3 (a)

- (b) Given the value of the series regulator circuit shown in Figure Q3(b) are  $V_i = 15$ V,  $V_Z = 8.3$ V,  $R_1 = 100 \Omega$ ,  $R_2 = 50 \text{ k}\Omega$  and  $R_3 = 150 \text{ k}\Omega$ . Assume the op-amp used in Figure Q3(b) is ideal.
  - (i) Determine the value of regulated voltage,  $V_o$  and the circuit currents,  $I_Z$  and  $I_{R2}$ . [8 marks]
  - (ii) Determine the power dissipation of the pass transistor if Vo is connecting to an external load circuit which draws 100mA. [3 marks]

Continued .....



(iii) Sketch a Hartley oscillator circuit that operates at frequency 1.5MHz with its  $|\beta| = 0.4$ . Determine its inductors value if you are given a capacitor value C = 0.5 pF. Assume the op-amp in your circuit is ideal and the resistance of the resistor that connected to the inductor is much higher than the inductance value at the operating frequency. [6 marks]

#### Question 4

- (a) A first order Low-Pass Filter (1<sup>st</sup> Order LP) and is followed by a first order High-Pass Filter (1<sup>st</sup> Order HP) is the constructed filter. Assume  $K_{HP} = K_{LP}$ . Design a wide band pass filter with approximately constant pass-band gain for  $f_c = 3$  kHz, BW = 1 kHz and  $K_{PB} = 4$ . [17 marks]
- (b) Figure Q4 (b) is a bounded comparator. Determine the output voltage,  $V_o$  values for the input voltage,  $V_i$ . Then, draw the output voltage,  $V_o$  timing waveform with respect to the input voltage,  $V_i$  timing waveform as shown in the figure Q4 (b).

[8 marks]



Figure Q4(b)

End of paper