Computational Fluid Dynamics HW1

Almog Dobrescu

ID 214254252

December 22, 2024

CONTENTS LIST OF FIGURES

Contents

1	Inviscid Burgers Equation		
	1.1	Boundary and Initial Conditions	2
	1.2	First Order Roe Method $(u_1 = 0.0)$	2
	1.3	Second Order Roe $(u_1 = 0.5)$	2
		1.3.1 With Limiters	2
		1.3.2 Without Limiters	2
0			
Z	Ger	neralized Burgers Equation	3

List of Figures

1 Inviscid Burgers Equation

The Inviscid Burgers equation, in conservation law form, is given by:

$$\frac{\partial u}{\partial t} + \frac{\partial F}{\partial x} = 0 \quad F = F_{(u)} = \frac{u^2}{2} \tag{1}$$

In non-conservation law form, is given by:

$$\frac{\partial u}{\partial t} + A \frac{\partial u}{\partial x} = 0 \quad A = \frac{\partial F}{\partial u} = u \tag{2}$$

The equation is obtained by neglecting the viscous term from the viscous Burger equation.

1.1 Boundary and Initial Conditions

$$u_{(x=0,t)} = 1.0$$

 $u_{(x=1,t)} = u_1$
 $u_{(x,t=0)} = 1 - (1 - u_1) \cdot x$ (3)

1.2 First Order Roe Method $(u_1 = 0.0)$

Roe scheme is based on the solution of the linear problem:

$$\frac{\partial u}{\partial t} + \bar{A}\frac{\partial u}{\partial x} = 0 \tag{4}$$

Where \bar{A} is a constant matrix that is dependent on local conditions. The matrix is constructed in a way to guarantee unifrom validity across discontinuities:

1. For any u_i , u_{i+1} :

$$F_{i+1} - F_i = \bar{A} \cdot (u_{i+1} - u_i)$$

2. When $u = u_i = u_{i+1}$ then:

$$\bar{A}_{(u_i,u_{i+1})} = \bar{A}_{(u,u)} = \frac{\partial F}{\partial u} = u$$

In case of the Burgers equation, the matrix \bar{A} is a scalar, namely, $\bar{A} = \bar{u}$. The equation becomes:

$$\frac{\partial u}{\partial t} + \bar{u}\frac{\partial u}{\partial x} = 0 \tag{5}$$

The value of \bar{u} for the cell face between i and i+1 is determined from the first conditions:

$$\bar{u} = \bar{u}_{i+\frac{1}{2}} = \frac{F_{i+1} - F_i}{u_{i+1} - u_i} = \frac{\frac{1}{2}u_{i+1}^2 - \frac{1}{2}u_i^2}{u_{i+1} - u_i} =$$
(6)

1.3 Second Order Roe $(u_1 = 0.5)$

1.3.1 With Limiters

1.3.2 Without Limiters

2 Generalized Burgers Equation