DIVISIBILITÉ, DIVISION EUCLIDIENNE ET CONGRUENCE

I) Divisibilité dans $\mathbb Z$

Généralités

Définitions : L'arithmétique est l'étude des entiers naturels ou relatifs et de leur rapport.

 \mathbb{N} est l'ensemble des entiers naturels : $\mathbb{N} = \{0, 1, 2, 3, \dots\}$

 \mathbb{Z} est l'ensemble des entiers relatifs : $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

Quelques axiomes dans $\mathbb N$:

- Principe du bon ordre : toute partie de N non vide admet un plus petit élément.
- Principe de la descente infinie : toute suite dans N strictement décroissante est finie.
- Principe des tiroirs : si l'on range n + 1 éléments dans n tiroirs, alors un des tiroirs contiendra au moins deux éléments.

Divisibilité dans \mathbb{Z}

Définitions : Soient a et b deux entiers relatifs.

a divise b s'il existe un entier relatif k tel que b = ka. On note $a \mid b$.

On dit également : a est un diviseur de b; b est divisible par a; b est un multiple de a.

Remarques:

- Tout diviseur de $n \in \mathbb{N}$ est compris entre -|n| et |n|.
- Tout entier relatif non nul n a donc un nombre fini de diviseurs.

Exemples:

- 56 est un multiple de -8 car 56 = $-7 \times (-8)$
- L'ensemble des multiples de 5 est $\{\ldots; -15; -10; -5; 0; 5; 10; \ldots\}$. On note cet ensemble $5\mathbb{Z}$.
- 0 est multiple de tout entier a car $0 = 0 \times a$.
- 1 divise tout entier a car $a = 1 \times a$.

Quelques propriétés

Propriété : Transitivité : Soient a,b et c trois entiers relatifs.

Si a divise b et b divise c alors a divise c. C'est-à-dire $\begin{cases} a|b \\ b|c \end{cases} \Rightarrow a|c$

Démonstration : Si a divise b et b divise c alors il existe deux entiers relatifs k et k' tels que b = ka et c = k'b. D'où c = kk'a. Posons $k'' = kk' \in \mathbb{Z}$. il existe donc un entier relatif k'' tel que c = k''a. Ainsi a divise c.

Propriété : Combinaison linéaire : Soient a, b et c trois entiers relatifs.

Si c divise a et b, alors c divise toute combinaison linéaire de a et b.

C'est-à-dire : Si c divise a et b, alors c divise ua + vb où u et v sont deux entiers relatifs.

En particulier si c divise a et b, alors c divise a + b et a - b.

Démonstration : Si c divise a et c divise b alors il existe deux entiers relatifs k et k' tels que a = kc et b = k'c. Ainsi ua + bv = ukc + vk'c = (ku + k'v)c = k''c avec $k'' = ku + k'v \in \mathbb{Z}$. CQFD.

Exemples:

- a. Soit $n \in \mathbb{N}$. Déterminer un entier relatif N qui divise les entiers relatifs n et n + 1.
- b. Soit $k \in \mathbb{N}$. On pose a = 9k + 2 et b = 12k + 1. Déterminer une condition sur les diviseurs positifs communs à a et b.

Piste correction : a. N divise n+1-n=1 d'où N=1 ou -1.

b. On cherche une combinaison linéaire de a et b qui élimine les k. 4a - 3b = 5. Donc les diviseurs positifs communs à a et b ne peuvent être que 1 ou 5.

II) Division euclidienne

Propriété : Soit a un entier naturel et b un entier naturel non nul.

On appelle division euclidienne de a par b l'opération qui, au couple (a;b), associe l'unique couple d'entiers naturels (q;r) tel que : a = bq + r avec $0 \le r < b \blacksquare$.

Définitions : Dans la division euclidienne de a par b :

- a est le dividende
- b est le diviseur
- q est le quotient
- r est le reste

Démonstration:

• Existence: Soit E l'ensemble des entiers e tels que be > a. $E = \{e \in \mathbb{N}, be > a\}$.

E est non vide car $(a+1) \in E$. Preuve $b \ge 1 \Rightarrow b(a+1) \ge a+1 > a$.

E est une partie de $\mathbb N$ non vide donc admet un plus petit élément. Notons m ce plus petit élément.

Ainsi
$$\begin{cases} m \in E \\ (m-1) \notin E \end{cases} \iff \begin{cases} mb > a \\ (m-1)b \le a \end{cases} \text{ d'où } (m-1)b \le a < mb.$$

Posons q = m - 1. On a $bq \le a < b(q + 1) \Rightarrow 0 \le a - bq < b$.

Posons r = a - bq. On a finalement a = bq + r et $0 \le r < b$.

Il existe donc un couple d'entiers naturels (q; r) tel que : a = bq + r avec $0 \le r < b$.

• Unicité: Supposons qu'il existe deux couples (q; r) et (q; r') distincts tels que : $\begin{cases} a = bq + r \text{ avec } 0 \le r < b \\ a = bq' + r' \text{ avec } 0 \le r' < b \end{cases}$

On obtient $0 = b(q - q') + r - r' \iff b(q - q') = r' - r$. De plus -b < r' - r < b.

Ainsi b divise r' - r et -b < r' - r < b. D'où r - r' = 0 puis r = r' et ensuite q = q'. Ce qui contredit notre hypothèse. Finalement (q; r) est unique.

Interprétation graphique

On encadre a entre deux multiples consécutifs de b :

Remarques:

a. La condition $0 \le r < b$ assure l'unicité du couple (q; r).

b. Par exemple: Les restes possibles dans la division par 7 sont alors: 0, 1, 2, 3, 4, 5, 6.

Exemple: Division euclidienne de 412 par 15 : $412 = 15 \times 27 + 7$. Avec potence : 7

Propriété : On peut étendre la propriété précédente au cas où a est un entier relatif.

Démonstration : : Admise.

Exemple: Déterminer le quotient et le reste de la division de -5000 par 17.

On obtient pour 5000 et $17 : 5000 = 17 \times 294 + 2$.

D'où $-5000 = -17 \times 294 - 2$. Or $-2 \notin [0 : 17]$ (Point notation)

On en déduit $-5000 = -17 \times 295 + 15$ (on ajoute et enlève 17)

Doù q = -295; r = 15

Propriété : Soit b un entier naturel tel que $b \ge 2$.

Tout entier a s'écrit sous une, et une seule, des formes bq, bq + 1, bq + 2, ..., bq + (b-1), où q est un entier.

Démonstration : Soit a un entier.

En effectuant la division euclidienne de a par b non nul, il existe deux entiers naturels q et r tels que a = bq + r avec $0 \le r < b$. Par unicité du quotient et du reste a = bq ou a = bq + 1 ou a = bq + 2 ... ou a = bq + (b - 1).

Remarque : Ainsi, dans la division par 2, le reste est 0 ou 1. Tout entier s'écrit sous la forme 2k ou 2k + 1. On retrouve donc qu'un entier est pair ou impair.

Exemple : Soit n un entier naturel. Posons A = n(n-2)(n+2). Démontrer que A est un multiple de 3.

 $M\acute{e}thode$: D'après le résultat du cours sur la division euclidienne, on sait que tout entier n s'écrit sous une des trois formes suivantes: n=3k; n=3k+1 ou n=3k+2 avec $k\in\mathbb{N}$.

On raisonne par disjonction de cas en distinguant les trois cas possibles et en démontrant le résultat dans chacun des cas.

III) Congruence dans $\mathbb Z$

Définition : Soit n un entier naturel non nul.

Deux entiers a et b sont congrus modulo n lorsque a-b est divisible par n.

On note $a \equiv b \lceil n \rceil$

Exemple: Deux nombres de la liste: 1;6;11;16;21;26;31;36 sont congrus modulo 5.

Par exemple pour 21 et 6 : 21-6=15 qui est divisible par 5. On a 21 \equiv 6 [5]

Propriété : Soit n un entier naturel non nul.

Deux entiers a et b sont congrus modulo n, si et seulement si, la division euclidienne de a par n a le même reste que la division euclidienne de b par n.

Démonstration:

- Sens direct : Soient a et b sont congrus modulo n.
- Par divisions euclidiennes par n on a il existe $(q;r) \in \mathbb{Z}^2$ et $(q',r') \in \mathbb{Z}^2$ tels que a = nq + r et b = nq' + r' avec $0 \le r < n$ et

On sait qu'il existe $k \in \mathbb{Z}$ tel que a-b=kn. ainsi $n(q-q')+r-r'=kn \iff r-r'=n(q-q'-k)$.

Or -n < r - r' < n et r - r' divise n donc $r - r' = 0 \iff r = r'$

ullet Sens indirect : Notons r le même reste que la division euclidienne de a par nn et b par n.

Par divisions euclidiennes par n on a il existe q et q' tels que a = nq + r et b = nq' + r avec $0 \le r < n$.

D'où a-b=n(q-q')=nk en posant k=q-q' avec $k\in\mathbb{Z}$. CQFD

Exemple : On a vu $21 \equiv 6$ [5] et $21 = 4 \times 5 + 1$; $6 = 1 \times 5 + 1$.

Remarques:

- $n \text{ pair} \iff n \equiv 0 \ [2]; n \text{ impair} \iff n \equiv 1 \ [2]$
- n est un diviseur de $a \iff a \equiv 0 \ [n]$

Propriétés : La congruence est une **relation d'équivalence** c'est-à-dire on a pour tous entiers a, b, c et n:

- (Réflexivité) $a \equiv a [n]$
- (Symétrie) $a \equiv b [n] \Rightarrow b \equiv a [n]$
- (Transitivité) $a \equiv b [n]$ et $b \equiv c [n] \Rightarrow a \equiv c [n]$

Démonstration : Découle directement de ce qui précède.

Théorème: Soit n un entier naturel $(n \ge 2)$, a et b deux entiers relatifs: $a \equiv b [n] \iff a - b \equiv 0 [n]$.

Démonstration:

• Sens direct : $a \equiv b \ [n]$ d'où il existe q, q' et r entiers tels que a = nq + r et b = nq' + r avec $0 \le r < n$.

D'où $a - b = n(q - q') \iff a - b \equiv 0 [n].$

• Sens indirect : $a - b \equiv 0$ [n] $\iff a - b = kn$ avec k entier.

La division euclidienne de a par nn donne a = nq + r avec $0 \le r < n$.

D'où par substitution $nq + r - b = kn \iff b = (q - n) + r$. Ainsi a et b ont même reste dans la division euclidienne par n.

Propriétés: Compatibilité avec certaines opérations:

Soient n un entier naturel non nul et a, b, a', b' des nombres relatifs tels que $a \equiv b \ [n]$ et $a' \equiv b' \ [n]$ alors on a :

• Addition : $a + a' \equiv b + b' \lceil n \rceil$

• Produit : $a \times a' \equiv b \times b' \lceil n \rceil$

• Soustraction : $a - a' \equiv b - b' [n]$

• Puissance : $a^p \equiv b^p [n]$

• Addition : $\begin{cases} a \equiv b \ [n] \\ a' \equiv b' \ [n] \end{cases} \iff \begin{cases} a-b \equiv 0 \ [n] \\ a'-b' \equiv 0 \ [n] \end{cases} \iff \begin{cases} a-b=kn \\ a'-b'=k'n \end{cases} \text{ avec } k, k' \text{ entiers.}$

 $(a-b) + (a'-b') = kn + k'n \iff (a+a') - (b-b') = (k+k')n \iff a+a' \equiv b+b' [n].$ • Multiplication : $\begin{cases} a \equiv b \ [n] \\ a' \equiv b' \ [n] \end{cases} \iff \begin{cases} a = b + kn \\ a' = b' + k'n \end{cases}$

aa' = bb' + nK avec $K = bk' + b'k + kk'n \in \mathbb{Z}$ i.e. $aa' \equiv bb' \lceil n \rceil$

• Puissance : Par récurrence.

Initialisation: trivial pour p = 0 ou p = 1.

Hérédité: Supposons qu'il existe un entier k tel que la propriété $P(k): a^p \equiv b^p \lceil n \rceil$ soit vraie.

Alors
$$a^{k+1} \equiv a^k \times a \equiv b^k \times b \equiv b^{k+1} [n].$$

Conclusion : La propriété est vraie pour p = 0 et héréditaire à partir de ce rang. D'après le principe de récurrence, elle est vraie pour tout entier naturel p.

Exemples:

a. On a
$$7 \equiv 4$$
 [3] et $11 \equiv 20$ [3] d'où

$$7 + 11 \equiv 4 + 20 [3] \iff 18 \equiv 24 [3]$$

$$7 \times 11 \equiv 4 \times 20 [3] \iff 77 \equiv 80 [3] \iff 77 \equiv 2 [3]$$

b.
$$22 \equiv 1 \ [7] \text{ d'où } 22^{50} \equiv 1 \ [7]$$

$$59 \equiv 3 \ [7] \text{ d'où } 59^3 \equiv 2^3 \ [7] \iff 59^3 \equiv 1 \ [7].$$

Exemple : Déterminer le reste de la division de 2^{437} par 7.

Méthode :

On cherche une puissance de 2 congrue à 1 modulo 7. on trouve $2^3 \equiv 1$ [7].

On décompose 497 avec la division euclidienne par 3 : 497 = 3 \times 145 + 2.

Ainsi
$$2^{437} \equiv 2^{3\times145+2} \equiv (2^3)^{145} \times 2^2 \equiv 1^{145} \times 4 \equiv 4[7]$$

Exemple: Résoudre une équation avec des congruences

- a. Déterminer les entiers x tels que $6 + x \equiv 5$ [3]
- b. Déterminer les entiers x tels que $3x \equiv 5$ [4]

a.
$$6 + x \equiv 5$$
 [3] $\iff x \equiv -1$ [3] $\iff x \equiv 2$ [3].

Les entiers x solutions sont les entiers de la forme 2+3k avec $k \in \mathbb{Z}$.

b.
$$3x \equiv 5 \, [4] \iff 3x \equiv 1 \, [4].$$

x est nécessairement congru soit à 0,1,2 ou 3 modulo 4.

Seul $x \equiv 3$ [4] convient ainsi les entiers x solutions sont les entiers de la forme 3 + 4k avec $k \in \mathbb{Z}$.