CSCI-620 Clustering

Clustering

Clustering models

- Connectivity models based on connectivity distance
- Centroid models based on central individuals and distance

- Density models based on connected and dense regions in a space
- Graph-based models based on cliques and their relaxations

K-means clustering

```
Initially choose k points that are likely to be in
    different clusters;
Make these points the centroids of their clusters;
FOR each remaining point p DO
    find the centroid to which p is closest;
    Add p to the cluster of that centroid;
    Adjust the centroid of that cluster to account for p;
END;
```

K-means clustering

Points:

```
(1, 2), (1, 3), (2, 3), (2, 4), (4, 6), (5, 6), (6, 6), (6, 8), (7, 7)
```

Manhattan distance: d((a, b), (x, y)) = |a - x| + |b - y|

$$k = 2$$

Random centroids: 1 = (2, 8), 2 = (8, 1)

Centroid
distances
<u>.</u>
$\mu_1 \mu_2$

	1	2	4	5	6	7
2	<u>7</u> 8					
3	<u>6</u> 9	<u>5</u> 8				
4		<u>4</u> 9				
6			<u>4</u> 11	<u>5</u> 8	<u>6</u> 7	
7						<u>6</u> 7
8					<u>4</u> 9	

Old centroids (2,8) (8,1) New centroids (4,5) (2,2)

	1	2	4	5	6	7
2	10 <u> 1</u>					
3	8 <u> 0</u>	8 <u> 1</u>				
4		8 <u> 2</u>				
6			<u>3</u> 6	<u>2</u> 7	<u>1</u> 8	
7						<u>1</u> 10
8					<u>1</u> 10	

Old centroids (4,5) (2,2) New centroids (6,7) (1,3)

	1	2	4	5	6	7
2	6 <u> 1</u>					
3	5 <u> 2</u>	4 <u> 1</u>				
4		3 <u> 2</u>				
6			<u>1</u> 6	<u>2</u> 5	<u>3</u> 8	
7						<u>5</u> 10
8					<u>5</u> 10	

Old centroids (6,7) (1,3) New centroids (6,7) (1,3)

□ For each training example $\langle x,f(x)\rangle$, add the example to the list of training_examples.

- \square Given a query instance x_q to be classified,
 - Let $x_1, x_2, ..., x_k$ denote the k instances from training_examples that are nearest to x_a .
 - Return the class that represents the maximum of the k instances.

Algorithm for KNN

$$SSE = \sum_{i=1}^{\kappa} \sum_{x_i \in C_i} (x_j - \mu_i)^2$$

Sum of squared errors

Calculate di	stance
to cer	ntroids

$$\mu_1 = (6, 7)$$

$$\mu_2 = (1, 3)$$

	1	2	4	5	6	7
2	1					
3	0	1				
4		2				
6			3	2	1	
7						1
8					1	

SSE =
$$1^2 + 0^2 + 1^2 + 2^2 + 3^2 + 2^2 + 1^2 + 1^2 + 1^2$$

= 22

With any predicting algorithm we need to be careful to avoid overfitting

Overfitting

 Overfitting occurs when our model is too closely tied to our training data

 Usually a simpler model is better to avoid overfitting

Choosing cluster count

Inter/intra-cluster distance

For each x_i , $a(x_i)$ is the average distance between x_i and other points in C_k (the same cluster as x_i)

For each x_i and cluster C_j ($j \neq k$), let $d(x_i, C_j)$ be the average distance to other points in C_i

Let $b(x_i) = \min_{j \neq k} d(x_i, C_j)$ (the minimum average distance to any cluster)

$$S(x_i) = [b(x_i) - a(x_i)] / max(a(x_i), b(x_i))$$

 $S = \sum_{i} S(x_i)/m$ closer to 1 is better!

Silhouette coefficient

$$C_1$$
: (1, 2), (1, 3) C_2 : (3, 4), (4, 5) C_3 : (7, 7), (8, 7)

$$S((1, 2)) = (5 - 1) / 5$$
 $S((1, 3)) = (4 - 1) / 4$
 $S((3, 4)) = (3.5 - 2) / 3.5$ $S((4, 5)) = (5.5 - 2) / 5.5$
 $S((7, 7)) = (6 - 1) / 6$ $S((8, 7)) = (7 - 1) / 7$

$$S = (4/5 + 3/4 + 1.5/3.5 + 3.5/5.5 + 5/6 + 6/7) / 6$$

= $(0.8 + 0.75 + 0.43 + 0.64 + 0.83 + 0.86) / 6$
= 0.72


```
WHILE it is not time to stop DO

pick the best two clusters to merge;

combine those two clusters into one cluster;

END;
```


Dendograms

Order of cluster generation

Agglomerative vs Divisive

Singlelinkage clustering

Agglomerative clustering algorithm

 Distance between clusters is based on the closest point in each cluster

Continue clustering until all points are a single cluster

	BOS	NY	DC	MIA	СНІ	SEA	SF	LA	DEN
BOS	0	206	429	1504	963	2976	3095	2979	1949
NY	206	0	233	1308	802	2815	2934	2786	1771
DC	429	233	0	1075	671	2684	2799	2631	1616
MIA	1504	1308	1075	0	1329	3273	3053	2687	2037
CHI	963	802	671	1329	0	2013	2142	2054	996
SEA	2976	2815	2684	3273	2013	0	808	1131	1307
SF	3095	2934	2799	3053	2142	808	0	379	1235
LA	2979	2786	2631	2687	2054	1131	379	0	1059
DEN	1949	1771	1616	2037	996	1307	1235	1059	0

	BOS/NY	DC	MIA	СНІ	SEA	SF	LA	DEN
BOS/NY	0	223	1308	802	2815	2934	2786	1771
DC	223	0	1075	671	2684	2799	2631	1616
MIA	1308	1075	0	1329	3273	3053	2687	2037
СНІ	802	671	1329	0	2013	2142	2054	996
SEA	2815	2684	3273	2013	0	808	1131	1307
SF	2934	2799	3053	2142	808	0	379	1235
LA	2786	2631	2687	2054	1131	379	0	1059
DEN	1771	1616	2037	996	1307	1235	1059	0

	BOS/NY/DC	MIA	СНІ	SEA	SF	LA	DEN
BOS/NY/DC	0	1075	671	2684	2799	2631	1616
MIA	1075	0	1329	3273	3053	2687	2037
CHI	671	1329	0	2013	2142	2054	996
SEA	2684	3273	2013	0	808	1131	1307
SF	2799	3053	2142	808	0	379	1235
LA	2631	2687	2054	1131	379	0	1059
DEN	1616	2037	996	1307	1235	1059	0

	1
3	

	BOS/	MIA	СНІ	SEA	SF/LA	DEN
	NY/DC					
BOS/NY/DC	0	1075	671	2684	2631	1616
MIA	1075	0	1329	3273	2687	2037
СНІ	671	1329	0	2013	2054	996
SEA	2684	3273	2013	0	808	1307
SF/LA	2631	2687	2054	808	0	1059
DEN	1616	2037	996	1307	1059	0

	BOS/NY/DC/	MIA	SEA	SF/LA	DEN
	СНІ				
BOS/NY/DC/CHI	0	1075	2013	2054	996
MIA	1075	0	3273	2687	2037
SEA	2013	3273	0	808	1307
SF/LA	2054	2687	808	0	1059
DEN	996	2037	1307	1059	0

	BOS/NY/DC/CHI	MIA	SF/LA/SEA	DEN
BOS/NY/DC/CHI	0	1075	2013	996
MIA	1075	0	2687	2037
SF/LA/SEA	2054	2687	0	1059
DEN	996	2037	1059	0

	BOS/NY /DC/CHI/DEN	MIA	SF/LA/SEA
BOS/NY/DC/CHI/DEN	0	1075	1059
MIA	1075	0	2687
SF/LA/SEA	1059	2687	0

6	

	BOS/NY /DC/CHI /DEN/SF /LA/SEA	MIA
BOS/NY/DC/CHI/DEN/SF/LA/SEA	0	1075
MIA	1075	0

Densitybased clustering

Group points with similar density

Clusters should be separated by areas with low density

Allows for easier generation of clusters with different sizes

$$\varepsilon = 1$$
unit, MinPts = 5

DBSCAN


```
For each point p

If p is not classified

If p is a core object

Create a new cluster

Assign density-reachable points to the cluster

Else

Classify p as noise
```


Original Points

Clusters

 ε = 10, MinPts = 4

Graph partitioning

Each connected component is a cluster

Graph clustering

Graph clustering

We need two things for graph clustering:

- 1. An objective function to determine the best way to cut the graph
- 2. An algorithm to find the optimal partitioning of the graph

$$\operatorname{Cut}(V_1, V_2) = \sum_{i \in V_1, w_{ij}} w_{ij}$$

w_{ij} is weight of the edge between nodes i and j

Graph cut

Min cut

Ratio cut
$$(V_1, V_2) = \frac{\text{Cut}(V_1, V_2)}{|V_1|} + \frac{\text{Cut}(V_1, V_2)}{|V_2|}$$

Normalized cut
$$(V_1, V_2) = \frac{\text{Cut}(V_1, V_2)}{\sum_{i \in V_1} d_i} + \frac{\text{Cut}(V_1, V_2)}{\sum_{j \in V_2} d_j}$$

where
$$d_i = \sum_j w_{ij}$$

V₁ and V₂ are the set of nodes in partitions 1 and 2

|V_i| is the number of nodes in partition V_i

Balanced cut

Greedy partitioning

As a simple clustering algorithm, we can just pick the smallest edges and stop when we have *k* clusters

Greedy partitioning