3 Ames St Cambridge, MA 02142 ♠ +1 (623) 326 5102 ⊠ agarret7@mit.edu

Austin J. Garrett

github.com/agarret7, github.mit.edu/agarret7

Education

Cambridge, MA Masters of Engineering, Computer Science

June 2020 Massachusetts Institute of Technology

Cambridge, MA Double Major BS, Computer Science and Physics

June 2019 Massachusetts Institute of Technology

CS Major GPA: 4.8/5.0 Cumulative GPA: 4.6/5.0

Coursework

Probabilistic Programming Languages (Listener), Computational Cognitive Science, Statistical Learning Theory, Seminar in Undergraduate Research, Formal Reasoning about Programs, Thoery of Computation, Introduction to Algorithms, Performance **Engineering of Software Systems**

Research Experience

Cambridge, MA Probabilistic Computing Project

June 2019 - Master's Student. Supervisor: Vikash Mansinghka

Present Goal: Develop cognitively-inspired Bayesian techniques for computer vision. Explore action's essential role in making MCMC-based techniques tractable.

- Work in the Gen probabilistic programming ecosystem to develop modern inference techniques inspired by breakthroughs in cognitive science.
- Explore theoretical links between cognitive science, artificial intelligence, physics, and self-organizing systems.
- Develop synthesized techniques that leverage and theoretically combine probabilistic modeling with modern neural network techniques.

Cambridge, MA Computational Cognitive Science Group

June 2017 - Undergraduate Researcher. Supervisor: Joshua Tenenbaum

June 2019

Goal: Leverage Bayesian program synthesis and program induction techniques for cognitively inspired learning algorithms, especially in intuitive physics.

- Develop and implement neural network architectures for various physical scene intuition problems using TensorFlow and PyTorch.
- Formalize generative models and inference algorithms for shape skeleton infernece.

Cambridge, MA ISEE

Jan 2018 - Research Intern. Supervisor: Wongun Choi

Sep 2018

Goal: Develop and implement multi-object perception architectures for autonomous vehicles using LIDAR data.

- Design novel deep neural network architectures extending state-of-the-art research in computer vision problems, with specific applications to self-driving cars.
- Implement many-object detection and regression models using the PyTorch GPUaccelerated framework.
- Extensive work in manipulating LIDAR point datasets, and handling transformations between camera and 3D coordinate systems.

Projects

Cambridge, MA Existential Doubt: Bayesian inference about the existence and 6D pose of June 2019 - fully occluded objects

Present Collaborators: Marco Cusumano-Towner

- Demonstrate the combination of prior knowledge with observational data to replicate common-sense reasoning about fully-occluded objects.
- Correctly infer the position of unseen objects based on a generative world model that is able to reason which object positions would explain observational data.

Cambridge, MA Program Induction for Physical Scene Inference

Sep 2018 -

Collaborators: Kelsey Allen

May 2019

- Formalize syntactic planning DSL for physical block manipulation.
- Create extensive environment and API for integrating planning DSL with physical simulations of 3D block worlds using PyBullet.
- Extend work from Kevin Ellis et. al. on program induction to learn reusable solutions to subtasks over physical tower construction using graph neural networks.

Cambridge, MA Cross-Modal Learning in Autonomous Vehicles

Sep 2018

June 2018 - Collaborators: Wongun Choi

- Design algorithm for cross-modal learning, combining the strength of various modalities to augment supervised data with automatically generated labels.
- Obtain and clean large raw datasets from real-world robotics platforms using ROS.

Skills

Programming Python, Julia, Gen, Java, C++, Haskell, Coq, Lua, JavaScript, MATLAB

Technologies PyTorch, TensorFlow, Keras, LaTeX, Git, Mathematica, HTML, CSS