

more: bigdev.de/teaching

Der Avnesische Restsatz

## Chinesisches Restsatz - Intro

Wir wollen jetst wicht unt eine einzelne flongruenz løsen wie × = 2 mod 4, sondern mehrere gleich zeitig; 2.B. folgendes Problem:

Tute mit x Grunnibarchen: Wenn ich die GB an 4 Personen verteile, bleiben 2 übrig. Wenn ich sie an 7 Personen verteile, bleiben 3 übrig. Was ist x? d.h. × = 2 mod 4 Kongruendsystem

× = 3 mod 7

Wie löse ich das 2

 $7 \cdot x_1 = 1 \mod 4 \quad x_1 = 3$   $1 \cdot x_2 = 1 \mod 7 \quad x_2 = 2$   $1 \cdot x_1 = 2 \mod 7 \quad x_2 = 2$   $1 \cdot x_2 = 2 \cdot 3 \cdot 3 \cdot 4 \cdot 2 = 424 = 66$ 

Allewin.  $\times \equiv a_1 \mod m_1 \times \equiv a_2 \mod m_2$ 

$$\times \equiv a_1 \mod m_1$$
  
 $\times \equiv a_2 \mod m_2$  (\*

Wann gelt das?

- 1. Beredue  $\times_{\Lambda_1} \times_2$  with  $m_2 \cdot \times_{\Lambda} \equiv 1 \mod m_{\Lambda}$   $m_1 \times_2 \equiv 1 \mod m_2$
- 2 x := a<sub>1</sub>-m<sub>2</sub>-x<sub>1</sub> + a<sub>2</sub> m<sub>1</sub>·x<sub>2</sub> ist eine Losung von (\*).
- 3) Weitere Lösungen: x + 3. m, mz mit ze Z.

Benoùs.  $x = a_1 m_2 x_1 + a_2 m_1 x_2 = a_1 \cdot m_2 \cdot x_1 = a_1 \cdot l = a_1 \mod m_1$ 

 $\times = \alpha_1 \underline{\mathsf{m}}_2 \times_1 + \alpha_2 \underline{\mathsf{m}}_1 \times_2 \equiv \alpha_2 \cdot \underline{\mathsf{m}}_1 \cdot \underline{\mathsf{x}}_2 \equiv \alpha_2 \quad \text{mod } \underline{\mathsf{m}}_2.$ 

## Chinesischer Restsatz - Satz

Wir notieren jetzt den allgemeinen Chinesischen. Restsatz für v. Kongruenzgleichungen.

Chresischer Restsotz. Seien  $m_1, m_n \in \mathbb{N}$  paerweise teilerfreud (d. h.  $ggT(w_i, w_j) = 1 \quad \forall \quad 1 \leq i, j \leq n, \quad i \neq j$ ). Dann besitzt das Kongruenzsystem

 $\times \equiv a_n \mod m_n$   $\vdots$   $\times \equiv a_n \mod m_n$ 

eine Lösung. × mod m, wobei m:= m, mn. Yede weitere Lösung y ist von der Form y = × + 2·m für ZEZ.

Beweis/Algorithmus. (O.) Wir bilden  $k_i := \frac{m_1 \cdot w_1 \cdot w_n}{m_i} = \frac{m_1 \cdot w_1 \cdot w_n}{m_i}$ 

Dann gilt ggT(ki, mi) = 1.

1) Beredue Inverse x; von k; mod m; : [k; x; = 1 mod m;

2) Berechne Lösung  $x: x = \sum_{j=1}^{n} k_j x_j a_j$ 

Baveis "Lösug:  $x = k_1 \times_1 a_1 + ... + k_1 \times_2 a_1 + ... + k_n \times_n a_n \mod m_i$ 

und m: ki ±0 mod m; fir i ≠ j

 $x = k_i^* \cdot x_i^* \cdot a_i^* \equiv 1 \cdot a_i^* \equiv a_i^* \mod m_i^*$ 



(0.) Beredmen Sie 
$$k_1 = 7.3.5 = 15$$
  
 $k_2 = 7.3.5 = 10$   
 $k_3 = 2.3.8 = 6$ 

(1) Bereclinen Sie die Inversen 
$$x_i$$
 von  $k_i$  mod  $m_i$ :

$$(5x_1 = k_1 \times_1 \equiv 1 \mod 2 \implies x_1 = 1)$$

$$(0x_2 = k_2 \times_2 \equiv 1 \mod 3 \implies x_2 = 1)$$

$$6x_3 = k_3 \times_3 \equiv 1 \mod 5 \implies x_3 \equiv 1$$