Chapitre 20

Espace Vectoriels

20	Espace Vectoriels	1
	20.2 Propriétés du 0, régularité	2
	20.10Espace vectoriel de référence	2
	20.11Transfert de structure	2
	20.16 Caractérisation des sous-espaces vectoriels	3
	20.22 Propostion 20.22	3
	20.27Intersection de sous-espaces vectoriels	4
	20.34Description de $Vect(X)$	4
	20.36Opérations sur les sous-espaces vectoriels engendrés	4
	20.41Somme de sous-espaces vectoriels engendrés	
	20.43Description d'une somme d'un nombre fini de sous-espaces vectoriels	5
	20.47Unicité de l'écriture de la somme directe	6
	20.51 Famille libre	7
	20.52Exemple	
	20.58 Caractérisation de la liberté pour des familles infinies	8
	$20.60 { m Caract\'erisation}$ de la liberté pour les familles infinies indexées par $\mathbb N$	
	20.61 Ajout d'un élément à une famille libre	Ć
	20.63Généricité d'une famille libre maximale	10
	20.64 Caractérisation des sommes directes par la liberté	10
	20.65Somme directes et caractérisation de familles libres	10
	20.66Familles génératrices	11
	20.68Stabilité des familles génératrices par ajout	11
	20.69Restriction d'une famille génératrice	12
	20.71Liberté d'une famille génératrice minimale	
	20.78Famille échelonnée en deorés	12

20.2 Propriétés du 0, régularité

Propostion 20.2

Soit E un $\mathbb{K} - ev$. Pour tout $x \in E$:

- 1. $0_{\mathbb{K}}.x = 0_E$
- 2. pour tout $\lambda \in \mathbb{K}$, $\lambda . 0_E = 0_E$
- 3. (-1).x = -x
- 4. si $x \neq 0_E$,

$$\lambda . x = 0_E \Rightarrow \lambda = 0_K$$

5. si $x \neq 0_{\mathbb{K}}$,

$$\lambda.x = 0_E \Rightarrow x = 0_E$$

- 1. $0_{\mathbb{K}}.x = (0_{\mathbb{K}} + 0_{\mathbb{K}}).x = 0_{\mathbb{K}}.x + 0_{\mathbb{K}}.x$. Donc $0_E = 0_{\mathbb{K}}.x$.
- 2. RAS.
- 3. $x + (-1).x = (1-1).x = 0_{\mathbb{K}}.x = 0_E$.
- 4. Par l'absurde, si $\lambda \neq 0_K$, de $\lambda x = 0_E$ on tire $\lambda^{-1}\lambda x = \lambda^{-1}x0_E$, soit $x = 0_E$. Absurde.
- 5. Idem.

20.10 Espace vectoriel de référence

Propostion 20.10

- 1. \mathbb{K} est un espace vectoriel sur lui-même.
- 2. Plus généralement, soit E un espace vectoriel sur \mathbb{K} et F un ensemble quelconque. Alors l'ensemble des fonctions E^F est un espace vectoriel sur \mathbb{K} .
- 1. RAF.
- 2. Soit E un $\mathbb{K} ev$ et F un ensemble quelconque. E^F est un groupe abélien (cf. chap 10). Le produit externe est défini par :

$$\mathbb{K} \times E^F \longrightarrow E^F$$
$$(\lambda, f) \longmapsto (\lambda. f, x \mapsto \lambda. f(x))$$

Vérification facile.

20.11 Transfert de structure

Lemme 20.11

Soit E un espace vectoriel sur \mathbb{K} , G un ensemble quelconque et $\varphi: E \to G$ une bijection. Alors en définissant sur G une loi interne et un loi externe par

$$\forall (x, y, \lambda) \in G \times G \times \mathbb{K}, x + y = \varphi(\varphi^{-1}(x) + \varphi^{-1}(y)) \text{ et } \lambda.x = \varphi(\lambda \varphi^{-1}(x)),$$

on munit G d'une structure d'espace vectoriel.

Vérifions les axiomes.

— LCI :

$$(x+y)+=\varphi(\varphi^{-1}(x+y)+\varphi(z))$$

$$=\varphi(\underbrace{\varphi^{-1}(x)+\varphi^{-1}(y)+\varphi^{-1}(z)}_{\text{associativit\'e dans }E})$$

$$=x+(y+z)$$

$$x+\varphi(0)=\varphi(\varphi^{-1}(x)+0)=x\;(\varphi\;\text{neutre})$$

$$x+\varphi(-\varphi^{-1}(x))=\varphi(\varphi^{-1}(x)-\varphi^{-1}(x))=\varphi(0)$$

$$x+y=y+x$$

 $\lambda.(\mu.x) = \varphi(\lambda\varphi^{-1}(\mu x))$ $= \varphi(\lambda\mu\varphi^{-1}(x))$ $= (\lambda\mu).x$ $1.x = \varphi(1.\varphi^{-1}(x))$ $= \varphi \circ \varphi^{-1}(x)$ = x $(\mu + \lambda).x = \varphi((\mu + \lambda).\varphi^{-1}(x))$ $= \varphi(\mu\varphi^{-1}(x) + \lambda\varphi^{-1}(x))$ $= \varphi(\mu\varphi^{-1}(x)) + \varphi(\lambda\varphi^{-1}(x))$ $= \mu.x + \lambda.x$

De même pour la dernière.

20.16 Caractérisation des sous-espaces vectoriels

Théorème 20.16

Soit E un \mathbb{K} -espace vectoriel. Un ensemble F est un sous-espace vectoriel de E si et seulement si

- 1. $F \subset E$;
- 2. $0 \in F$;
- 3.~F est stable par combinaisons linéaire, ce qui équivaut à

$$\forall (x,y) \in F^2, \forall \lambda \in \mathbb{K}, \lambda x + y \in F.$$

 \Rightarrow

- 1. Oui.
- 2. F est un sous-groupe de E donc $0_E \in F$.
- 3. Pour tout $(x,y) \in F^2$, $\lambda \in \mathbb{K}$, $\lambda . x \in F$ et $y \in F$. Donc $\lambda x + y \in F$.

 \Leftarrow

D'après (3) avec :

- $--y = 0 : \times \text{ est LCE}.$
- $\lambda = 1 : + \text{ est LCI}.$

 $0 \in F$ et $\lambda = -1$, F est un sous-groupe, donc un groupe abélien. RAF pour les 4 dernières propriétés.

20.22 Propostion 20.22

Propostion 20.22

Soit E un K-espace vectoriel, D_1 et D_2 deux droites vectorielles. Alors soit $D_1 \cap D_2 = \{0_E\}$, soit $D_1 = D_2$.

Par définition, $0_E \in D_1 \cap D_2$.

Supposons $D_1 \cap D_2 \neq \{0_E\}$ et fixons $x \in D_1 \cap D_2$ avec $x \neq 0_E$.

Soit $v \in D_1$. Par définition, on écrit $D_1 = \mathbb{K}x_1$ et $D_2 = \mathbb{K}x_2$. On a donc $v = \alpha x_1$, $x = \lambda_1 x_1 = \lambda_2 x_2$ avec $\lambda_1 \neq 0, \lambda_2 \neq 0$. Ainsi:

$$v = \alpha \lambda_1^{-1} \lambda_1 x_1 = \alpha \lambda_1^{-1} x = \alpha \lambda_1^{-1} \lambda_2 x_2 \in D_2$$

Donc $D_1 \subset D_2$ et par symétrie, $D_1 = D_2$

20.27Intersection de sous-espaces vectoriels

Soit E une espace vectoriel et $(E_i)_{i\in I}$ une famille de sous-espaces vectoriels de E. Alors $\bigcap_{i\in I} E_i$ est un sous-espace vectoriel de E.

- $$\begin{split} & \bigcap_{i \in I} E_i \subset E. \\ & \forall i \in I, 0 \in E_i \text{ donc } 0 \in \bigcap_{i \in I} E_i. \end{split}$$

— Soit
$$(x,y) \in \left[\bigcap_{i \in I} E_i\right]^2, \lambda \in \mathbb{K}$$
:

$$\forall x \in I, \lambda x + y \in E_i$$

Donc
$$\lambda x + y \in \bigcap_{i \in I} E_i$$
.

Description de Vect(X)20.34

Soit E un \mathbb{K} -ev et X un sous-ensemble de E. Alors Vect(X) est l'ensemble des combinaisons linéaires d'éléments de X.

On note F l'ensemble des combinaisons linéaires de vecteurs de X.

F est un sous-espace vectoriel de E qui contient X.

Par définition, $Vect(X) \subset F$.

Or Vect(X) est un sous-espace vectoriel qui contient X. Il doit donc contenir les combinaisons linéaiers de X soit F

Donc F = Vect(X)

20.36Opérations sur les sous-espaces vectoriels engendrés

Soit A et B deux ensembles. On a

- 1. $A \subset Vect(A)$
- 2. Si $A \subset B$ alors $Vect(A) \subset Vect(B)$.
- 3. A = Vect(A) si et seulement si A est un espace vectoriel.
- 4. Vect(Vect(A)) = Vect(A).
- 5. $Vect(A \cup \{x\}) = Vect(A)$ si et seulement si $x \in Vect(A)$.
- 1. RAF
- 2. RAF (20.24)
- 3. Si A =, alors A est un sous-espace vectoriel.

Si A est un espace vectoriel, par minimalité, A = Vect(A).

- 4. RAF (20.36.3)
- 5. On a toujours $Vect(A \cup \{x\}) \supset Vect(A)(2\ 0.36.2)$ si $Vect(A \cup \{x\}) \subset Vect(A)$. Or $x \in Vect(A \cup \{x\})$.

Donc $x \in Vect(A)$.

Réciproquement, si $x \in Vect(A)$, d'après (20.34) :

$$Vect(A \cup \{x\}) \subset Vect(A)$$

Si $u \in Vect(A \cup \{x\})$, alors:

$$u = \lambda_1 a_1 + \dots + \lambda_n a_n + \lambda_{n+1} x$$

= $\lambda_1 a_1 + \dots + \lambda_n a_n + \lambda_{n+1} (\mu_1 a'_1 + \dots + \mu_p a'_p)$
 $\in Vect(A)$

20.41 Somme de sous-espaces vectoriels engendrés

Propostion 20.41

Soit X et Y deux sous-ensembles de E. Alors

$$Vect(X \cup Y) = Vect(X) + Vect(Y)$$

On a:

$$Vect(X) \subset Vect(X \cup Y)$$

$$Vect(Y) \subset Vect(X \cup Y)$$

$$donc \ Vect(X) + Vect(Y) \subset Vect(X \cup Y)$$

Par minimalité:

$$Vect(X \cup Y) = Vect(X) + Vect(Y)$$

20.43 Description d'une somme d'un nombre fini de sous-espaces vectoriels

Propostion 20.43

Soit E_1, \ldots, E_n et F des sous-espaces vectoriels de E. Sont équivalentes :

- 1. $F = E_1 + \ldots + E_n$;
- 2. $F = (\dots((E_1 + E_2) + E_3) + \dots + E_{n-1}) + E_n;$
- 3. $F = \{x_1 + x_2 + \ldots + x_n | (x_1, \ldots, x_n) \in E_1 \times \ldots \times E_n \}.$
- 2. Associativité fournie par la définition.
- 3. (20.39) + (20.43.2)

Exemple

Dans
$$\mathbb{R}^3$$
, $E = Vect((1,0,0))$ et $F = Vect((0,1,0),(0,0,1))$.
Soit $u \in E \cap F$.
 $u = \alpha(1,0,0) = \beta(0,1,0) + \gamma(0,0,1)$.
Donc $(-\alpha,\beta,\gamma) = (0,0,0)$.
Donc $\alpha = \beta = \gamma = 0$.

Dans
$$\mathbb{R}^4$$
 avec $e_1 = (1, 0, 0, 0)$, $e_2 = (0, 1, 0, 0)$, $e_3 = (0, 0, 1, 0)$ et $e_4 = (0, 0, 0, 1)$. $E = Vect(e_1 + e_2 + e_3, e_1 + e_2 + e_3 + e_4)$

 $F = Vect(e_1 + e_3, 2e_2 + e_1 - e_4)$ Soit $u \in E \cap F$.

$$u = \alpha(e_1 + e_2 + e_3) + \beta(e_1 + e_2 + e_3 + e_4) = (\alpha + \beta, \alpha + \beta, \beta)$$

= $\gamma(e_1 + e_3) + \delta(2e_2 + e_1 - e_4) = (\gamma + \delta, 2\delta, \gamma, -\delta)$

Donc:

$$\begin{cases} \alpha + \beta - \gamma - \delta = 0 \\ \alpha + \beta - 2\delta = 0 \\ \alpha + \beta - \gamma = 0 \\ \beta + \delta = 0 \end{cases}$$

$$donc \begin{cases} \delta = 0 \ (L_1 - L_3) \\ \beta = 0 \ (L_4) \\ \alpha = 0 \ (L_2) \\ \gamma = 0 \ (L_2) \end{cases}$$

Donc:

$$\boxed{E \cap F = \{0\}}$$

20.47 Unicité de l'écriture de la somme directe

Remarque 20.47

En d'autres termes, la somme est directe si et seulement si tout élément x de $E_1 \oplus \ldots \oplus E_n$ s'écrit de façon unique sous la forme $x = x_1 + \ldots + x_n$.

 \Rightarrow

On suppose que la somme est directe.

Soit $x \in E_1 \oplus \ldots \oplus E_n$.

On écrit :

$$x = x_1 + \ldots + x_n$$

$$= x'_1 + \ldots + x'_n$$

$$\text{donc } \underbrace{x'_n - x_n}_{\in E_n} = \underbrace{(x_1 - x'_1)}_{\in E_1} + \ldots + \underbrace{(x_{n-1} - x'_{n-1})}_{\in E_{n-1}} \in E_n \cap (E_1 + \ldots + E_{n-1}) = \{0\}$$

$$\text{donc } x'_n = x_n$$

On poursuit par récurrence.

 \Leftarrow On remarque que $0 = 0 + \dots 0$. Soit $u \in E_n \cap (E_1 + \dots + E_{n-1})$. Donc :

$$u=e_n=e_1+\ldots+e_{n-1}$$
 donc $e_1+\ldots+e_{n-1}=0$

Par unicité:

$$\forall i \in [1, n-1], e_i = 0$$
$$donc \ u = 0$$

On termine le travail par récurrence.

20.51 Famille libre

Propostion 20.51

Une famille $(x_i)_{i\in I}$ de vecteurs de E est **libre** si une des propriétés équivalentes suivantes est vérifiée :

- 1. Pour toute famille $(\lambda_i)_{i\in I}$ de scalaires de \mathbb{K} , à support fini, $\sum_{i\in I}\lambda_ix_i=0 \Rightarrow \forall i\in I, \lambda_i=0$.
- 2. Pour tout $x \in Vect((x_i)_{i \in I})$ il existe une **unique** famille $(\lambda_i)_{i \in I}$ de scalaires de \mathbb{K} , à support fini, telle que $x = \sum_{i \in I} \lambda_i x_i$.

Si de plus, I = [1, n], les points précédents sont équivalents aux points suivants :

- 3. Les x_i sont non nuls et la somme $\mathbb{K}x_1 \oplus \ldots \oplus \mathbb{K}x_n$ est directe.
- 4. La fonction $\varphi : \mathbb{K}^n \to E; (\lambda_1, \dots, \lambda_n) \mapsto \lambda_1 x_1 + \dots + \lambda_n x_n$ est injective.

$$1 \Rightarrow 2$$

On écrit, pour tout $x \in Vect((x_i)_{i \in I})$:

$$x = \sum_{i \in I} \lambda_i x_i = \sum_{i \in I} \mu_i x_i$$
$$\operatorname{donc} \sum_{i \in I} (\lambda_i - \mu_i) x_i = 0$$

Comme (λ_i) et (μ_i) sont des familles de sclaires à support fini, $(\lambda_i - \mu_i)$ aussi et d'après (20.51.1):

$$\forall i \in I, \lambda_i - \mu_i = 0$$

Soit $\sum_{i \in I} = 0$ avec (λ_i) une famille de scalaires à support fini.

Comme:

$$0 = \sum_{i \in I} 0x_i$$

Par unicité :

$$\forall i \in I, \lambda_i = 0$$

$$1,2 \Rightarrow 3$$

Nécessairement, les x_i sont tous non nuls (sinon, on écrit $1 \times x_1 = 0$).

Soit $x \in (\mathbb{K} + \ldots + \mathbb{K}x_{n-1}) \cap \mathbb{K}x_n$.

On écrit :

$$x = \alpha_1 x_1 + \ldots + \alpha_{n-1} x_{n-1} = \alpha_n x_n$$

donc $\alpha_1 x_1 + \ldots + \alpha_{n-1} x_{n-1} - \alpha_n x_n = 0$

Par hypothèse:

$$\forall i \in [1, n], \alpha_i = 0$$

On poursuit le travail par récurrence pour montrer que la somme est directe.

 $3 \Rightarrow 4$

RAF: (20.47) $\boxed{4 \Rightarrow 1, 2}$

RAF: définition de l'injectivité pour 2.

20.52 Exemple

Exemple 20.54

- 1. Montrer que la famille ((1,1),(0,1)) est libre.
- 2. Montrer que la famille ((1,2,1),(1,0,1),(0,1,-1)) est libre.
- 3. Montrer que la famille ((1,2,1),(1,0,1),(1,6,1)) est liée.
- 1. On suppose $\alpha(1,1) + \beta(0,1) = 0$. Donc:

$$\begin{cases} \alpha = 0 \\ \alpha + \beta = 0 \end{cases}$$

$$donc \ \alpha = \beta = 0$$

La famille est libre.

2. Par équivalence. Soit $(a, b, c) \in \mathbb{R}^3$. On a :

$$a(1,2,1) + b(1,0,1) + c(0,1,-1) = (0,0,0)$$

$$\Leftrightarrow \begin{cases} a+b &= 0\\ 2a+c &= 0\\ a+b-c &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} b+a &= 0\\ 2a+c &= 0\\ c &= 0 \end{cases}$$

$$\Leftrightarrow a=b=c=0$$

La famille est libre.

3. Avec les mêmes notations:

$$a(1,2,1) + b(1,0,1) + c(1,6,1) = (0,0,0)$$

$$\Leftrightarrow \begin{cases} a+b+c &= 0\\ 2a+6c &= 0\\ a+b+c &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} a+b+c &= 0\\ a+3c &= 0 \end{cases}$$

Le système admet des solutions non nulles (par exemple (-3,2,1)), donc la famille est liée.

20.58 Caractérisation de la liberté pour des familles infinies

${ m Propostion} \ 20.58$

Une famille $(x_i)_{i\in I}$ est libre si et seulement si toutes ses sous-familles finies sont libres.

$$\begin{array}{c} \boxed{\Rightarrow} \\ \text{RAF} : (20.57) \\ \end{array}$$

Soit $(\lambda_i)_{i \in I}$ une famille à support fini telle que :

$$\sum_{i \in I} \lambda_i x_i = 0 \tag{20.1}$$

On choisit $J \subset I$, fini, tel que :

$$\forall i \in I \backslash J, \lambda_i = 0$$
 donc
$$\sum_{i \in J} \lambda_i x_i = 0$$

Or $(x_i)_{i \in J}$ est libre (finie), donc :

$$\forall i \in J, \lambda_i = 0$$
 donc $\forall i \in I, \lambda_i = 0$

Caractérisation de la liberté pour les familles infinies indexées 20.60 $\operatorname{par} \mathbb{N}$

Une famille $(x_i)_{i\in\mathbb{N}}$ est libre si et seulement si pour tout $n\in\mathbb{N}$, la famille (x_0,\ldots,x_n) est libre.

Si $(x_i)_{i\in\mathbb{N}}$ est libre, alors (20.58) ses sous-familles finies sont libres, en particulier celles sous la forme (x_0,\ldots,x_n) .

Soit $(x_i)_{i\in J}$ avec J un sous-ensemble fini de \mathbb{N} .

Or pose $n = \max J$, donc $J \subset [0, n]$.

Par hypothèse, (x_0, \ldots, x_n) est libre.

Donc (20.57), $(x_i)_{i\in J}$ est libre.

D'après (20.58), $(x_i)_{i\in\mathbb{N}}$ est libre.

20.61Ajout d'un élément à une famille libre

Soit $(x_i)_{i\in I}$ une famille libre de E et $x_j\in E$ avec $j\notin I$. La famille $(x_i)_{i\in I\cup\{j\}}$ est libre si et seulement si $x_j \notin Vect((x_i)_{i \in I})$.

Si $x_j \in Vect(x_i)_{i \in I}$, alors $(x_i)_{i \in I \cup \{j\}}$ est liée. En effet, $x_j = \sum_{i \in J} \lambda_i x_i$ avec J fini.

Donc $\sum_{i \in J \cup \{j\}} \lambda_i x_i = 0$ avec $\lambda_j = -1$.

La famille $(x_i)_{i \in J \cup \{j\}}$.

On suppose que $(x_i)_{i \in J \cup \{j\}}$ est liée.

On choisit une famille de scalaires à support fini $(\lambda_i)_{i\in I\cup\{j\}}$ telle que :

$$\sum_{i \in I \cup \{j\}} \lambda_i x_i = 0 \text{ et } (\lambda_i) \neq (0)$$

Donc:

$$\lambda_j + x_j + \sum_{i \in I} = 0$$

Comme $(x_i)_{i \in I}$ est libre, $\lambda_j \neq 0$ et $x_j = -\sum_{i \in I} \lambda_i \lambda_j^{-1} x_i \in Vect((x_i)_{i \in I})$.

20.63 Généricité d'une famille libre maximale

Propostion 20.63

Une famille libre maximale est génératrice dans le sens de la définition ci après : tout élément de E est combinaison linéaire de vecteurs de la famille.

Soit \mathcal{F} une famille libre maximale. Soit $x \in E$. Alors $\mathcal{F} \cup \{x\}$ est liée. Donc (20.61):

$$x \in Vect(\mathcal{F})$$

20.64 Caractérisation des sommes directes par la liberté

Propostion 20.64

Soit E_1, \ldots, E_n des espaces sous-espaces vectoriels non triviaux de E. Alors la somme $E_1 \oplus \ldots \oplus E_n$ est directe si et seulement si tout n-uplet (x_1, \ldots, x_n) d'éléments tous non nuls de $E_1 \times \ldots \times E_n$ est une famille libre dans E.

 \Rightarrow

On suppose $\bigoplus_{i=1}^n E_i$. Soit $(x_1, \ldots, x_n) \in E_1 \times \ldots \times E_n, x_i \neq 0$. Soit $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ telle que:

$$\sum_{i=1}^{n} \lambda_i x_i = 0$$

En particulier, $\lambda_i x_n = -\sum_{i=1}^{n-1} \lambda_i x_i \in E_n \cap \sum_{i=1}^{n-1} E_i = \{0\}$. Donc $\lambda_n = 0$. On réitère le procédé pour trouver $\lambda_n = \ldots = \lambda_1 = 0$. Donc (x_1, \ldots, x_n) est libre.

 \Leftarrow

Soit $x \in E_n \cap \sum E_i$. On écrit $x = x_n = \sum_{i=1}^{n-1} x_i$. Donc :

$$x_1 + \ldots + x_{n-1} - x_n = 0$$

Par hypotèse, on doit avoir :

$$x_n = x_{n-1} = \ldots = x_1 = 0$$

Donc
$$x = 0$$
 et $E_n \cap \left(\sum_{i=1}^{n-1} E_i\right) = \{0\}.$

On réitère le procédé pour montrer que $\bigoplus_{i=1}^{n} E_i$.

20.65 Somme directes et caractérisation de familles libres

Propostion 20.65

- 1. Soit F et G deux sous-espaces vectoriels de E tel que F+G soit directe. Alors la concaténation d'une famille libre de F et d'une famille libre de E.
- 2. Réciproquement, si (b_1, \ldots, b_n) est une famille libre de E, alors $Vect(b_1, \ldots, b_k) \oplus Vect(b_{k+1}, \ldots, b_n)$ est directe.

1. $(x_1, ..., x_k)$ famille libre de F. $(x_{k+1}, ..., x_n)$ famille libre de G. Soit $(\lambda_i)_{i \in \llbracket 1, n \rrbracket} \in \mathbb{K}^n$ telle que :

$$\sum_{i=1}^{n} \lambda_i x_i = 0$$

$$\operatorname{donc} \sum_{i=1}^{k} \lambda_i x_i = -\sum_{i=k+1}^{n} \lambda_i x_i \in F \cap G = \{0\}$$

$$\operatorname{donc} \sum_{i=1}^{k} \lambda_i x_i = 0 = \sum_{i=k+1}^{n} \lambda_i x_i$$

$$\operatorname{donc} \lambda_i = 0 \text{ pour } i \in [\![1,k]\!] \cup [\![k+1,n]\!]$$

2. RAS

20.66 Familles génératrices

Propostion 20.66

Une famille $(x_i)_{i \in I}$ de vecteurs de E est une famille **génératrice de** E si l'une des propriétés équivalentes est satisfaite :

- 1. Tout $x \in E$ est une combinaison linéaire des $x_i, i \in I$.
- 2. $Vect((x_i)_{i\in I}) = E$. Si de plus I = [1, n], les points précédents sont équivalents à :
- 3. $E = \sum_{i=1}^{n} \mathbb{K} x_i$.
- 4. La fonction $\varphi: \mathbb{K}^n \to E; (\lambda_1, \dots, \lambda_n) \mapsto \lambda_1 x_1 + \dots + \lambda_n x_n$ est surjective.

$$1 \Leftrightarrow 2$$

RAF, il s'agit des définitions.

$$Vect((x_i)_{i \in I}) = Vect(x_1, \dots, x_n)$$
$$= \mathbb{K}x_1 + \dots + \mathbb{K}x_n (20.44)$$

Donc $2 \Leftrightarrow 3$.

$$3 \Leftrightarrow 4$$

RAF, il s'agit des définitions.

20.68 Stabilité des familles génératrices par ajout

Propostion 20 68

Toute famille contenant une famille génératrice de E est une famille génératrice de E.

Soit $(x_i)_{i\in I}$ une famille quelconque et on suppose qu'il existe $J\subset I$ tel que $(x_i)_{i\in J}$ est génératrice.

$$E \supset Vect((x_i)_{i \in I}) \supset Vect((x_i)_{i \in J}) = E$$

20.69 Restriction d'une famille génératrice

Propostion 20.69

La famille obtenue en retirant un élément x d'une famille génératrice de E est encore génératrice si et seulement si x est une combinaison linéaire des autres vecteurs de la famille.

RAF: (20.36.5)

20.71 Liberté d'une famille génératrice minimale

Propostion 20.71

Une famille génératrice minimale est libre.

Soit $(x_i)_{i \in I}$ une famille génératrice minimale.

On suppose $\sum_{i \in I} \lambda_i x_i = 0$ avec $(\lambda_i)_{i \in I}$ une famille de scalaires à support fini.

Soit $k \in I$, on a:

$$\lambda_k x_k = -\sum_{i \in i \neq k} \lambda_i x_i \in Vect((x_i)_{i \in I \setminus \{k\}})$$

Or $x_k \notin Vect((x_i)_{i\neq k})$ car la famille est minimale (20.69). Donc $\lambda_k = 0$.

20.78 Famille échelonnée en degrés

Propostion 20.78

Si (P_0, \ldots, P_n) est une famille d'éléments de $\mathbb{K}_n[X]$ telle que pour tout $k \in [0, n]$, $\deg(P_k) = k$, alors (P_0, \ldots, P_n) est une base de $\mathbb{K}_n[X]$.

Soit $P \in \mathbb{K}_n[X]$. Soit $(\lambda_0, \dots, \lambda_n) \in \mathbb{K}^{n+1}$. On a :

$$\sum_{i=0}^{n} \lambda_i P_i = P$$

$$\Leftrightarrow \begin{cases} \lambda_n c_n + \dots = a_n \\ \vdots \\ \lambda_0 c_0 = a_0 \end{cases}$$

où c_0, \ldots, c_n sont les coefficients dominants de P_0, \ldots, P_n et $P = \sum_{k=0}^n a_k X^k$.

Le système est triangulaire supérieur avec une diagonale ne contenant aucun 0 il est inversible.

Il existe bien une unique famille $(\lambda_0, \dots, \lambda_n)$ telle que $P = \sum_{i=0}^n \lambda_k P_i$.