COMP 4462 Data Visualization Tutorial

CHEN Chang PAN Ziqi

Friday 27 September, 2024

Visualization process

Prepare data

- Get data
 - Download, crawl, collect
- Load data
 - Load data into visualization software
- Transform, join and aggregate
 - Make data to the form that ready to be drawn
- Filter
 - Clean up data and remove irrelevant information

Draw data (visualize)

- Visual encoding design
 - It's what you learn from the lectures
 - Marks and channels
 - o Position, color, size, shape, etc.
- Interactions
 - o Pan and zoom, select and filter
 - Click, drag and drop, scroll, and keyboard input, etc.

Get data

- Download data prepared by the others
 - Kaggle Dataset
 - World Bank
 - And many more
- Crawl from the web
 - Write you own program to crawl
 - From API
 - Extract from HTML or JSON
 - Python: Scrapy, Beautiful Soup
 - Nodejs: Cheerio
- Collect by yourself
 - Most costly
 - Takes time and efforts
 - o But sometimes you have to when there is no existing dataset

Load data

- Most common
 - o csv, tsv: comma separated value, tab separated value
 - xlsx: Excel
 - HTTP request: Ajax, JSON, XML
- Databases
 - SQL: Oracle, MySQL, PostgreSQL, MS SQL, etc.
 - Structured, normalized
 - NoSQL: MongoDB
 - Document based
- PDF
 - Tableau supports import from PDF.
 - o Import PDF to Excel: <u>reference1</u>, <u>reference2</u>.
- Other source
 - Google Cloud Public Datasets
 - Only available through Google Cloud
 - Too big to be downloaded

Clean data

- Data is always dirty
 - Missing values
 - Typo
 - Overloaded fields (mixing continuous numbers with text)
 - Mismatch primary keys / external keys
 - Duplicated entries
 - Missing data for several days
 - Equipment failure / bugs in crawler programs / website is down
 - O Non-sense error in data, e.g. integer overflow, or just not making any sense
 - Emoji / language / accent decoration
 - Identical typeface but different in unicode
- Depends on severity, it can be very nasty to deal with
- Data normalization
 - Google Text Normalization Challenge

Transform, join and aggregate

- Ranking
 2018
 2017
 2016
 2015

 CS
 14
 19
 14
 8

 CHEM
 23
 27
 28
 25
- Manipulate data to the form for visualization
 - Wide form
 - Long form
 - Derive attributes: percentage changes, year-to-year changes
- Join
 - Linking up multiple table or data sources
 - o <u>Inner join, left join, right join, outer join</u>
 - Commonly join on ID
 - Sometimes on date
 - Sometimes on multiple attributes
- Aggregate
 - Statistical: counting, sum, average, median, etc.
 - Grouping: binning, frequency, time slicing
 - Moving average, running sum

Subject	Ranking	Year
CS	14	2018
CS	19	2017
CS	14	2016
CS	8	2015
CHEM	23	2018
CHEM	27	2017
CHEM	28	2016
CHEM	25	2015

Filter

- Reduce the number of items to show
- Focus only on relevant data, clean up irrelevant data
 - Base on user interest
 - Or users' level of authority
 - Not everyone can access all the data
 - Time relevancy
 - Outdated data are no longer relevant to real-time analysis
 - Geographic relevance
 - You don't care about restaurants outside Hong Kong (unless you're going to travel)
- Hard to show all with a limited screen size
 - Especially on mobile device
 - o Reduce cluttering, more "clickable" on screen to show item details
- Zoom in to a specific small subset of data
 - Then you can show more detail of each item
 - Google Maps, zoom in to show more detailed terrain

Tableau

Visualization with Tableau and data processing pipeline

Install Tableau beforehand

- Tableau student (Full version, preferred):
 https://www.tableau.com/academic/students
- Or Tableau Public: https://public.tableau.com

Tableau

- Tableau Public
 - Free
 - All saved works are public
 - Publicly viewable, downloadable
 - Must connect to the internet in order to save
 - Less data connectors
- Tableau Desktop
 - Free for students, need verification
 - Can save locally, use without connecting to the internet
 - More data connectors
- Tableau Prep
 - Prepare data for visualization
- Tableau Server
 - Standalone, dedicated server
 - Enterprise level, expensive

Load Data

Take the dataset (global_superstore_2016.xlsx) from GitHub as an example.

For Desktop

Load Data

Take the dataset (global_superstore_2016.xlsx) from GitHub as an example.

For Web Authoring

Load Data

If you page is like this, click **update now** to reach the status shown on the left.

Change to Sheet 1

Basic Plotting: Select Row and Column

Basic Plotting: Select Row and Column

Basic Plotting: Adjust Date

Basic Plotting: Marks with Color

Basic Plotting: Ta-Da

Export Image (Not available in Tableau Public)

Plotting with Map

Create a new sheet first.

Drag Longitude to Columns, and Latitude to Rows

Plotting with Map: Encode with Size and Color

Adjust Color and Size

Calculated Field

Create another new sheet.

For Tableau desktop, click "Create Calculated Field" by right clicking on "Dimensions" or "Measures"

For Tableau public, click "Create--Calculated Field" by right clicking on "Dimensions" or "Measures"

Calculated Field

Aggregate

Plotting is easy using "Show Me"

Gray-out means not suitable for the current selected data types.

Try different combinations for different plots!

Filter

Filter

Interactive filtering

Lab exercise

- Tasks
 - Download dataset (world_data.csv) from <u>GitHub</u>
 - o <u>Import data from **Text** file</u>
 - Watch the video <u>Hans Rosling: 200 years in 4 minutes BBC News</u>
 - Recreate the bubble chart in the video with data of <u>2020</u> (An example is shown in the next page)
 - Column: Gdppc Cppp
 - Row: Life Expectancy
 - Size: Population
 - Color: World 4Region
 - Label: Country
 - Remember to set a filter to get Year 2020 data
 - o Take a screenshot and upload to Canvas in .png format
 - Mac: cmd+shift+4
 - Windows: <u>Snipping Tool</u>

Lab exercise

- Optional
 - Try using "Show me" to create different charts
 - Plotting data on map, adjust color and size
 - Create "Calculated Field", e.g. total GDP
 - Add an interactive filter

Lab exercise

An example of submitted image.

More topics on Tableau

- Coursera course
 - https://www.coursera.org/learn/analytics-tableau
- Tableau training videos
 - https://www.tableau.com/learn/training
- Tableau Viz Gallery
 - https://www.tableau.com/solutions/gallery
- Other notable features of Tableau
 - Dashboard, Storyboard
 - Parameters
 - Grouping
 - Table join
 - Features in "Analytics" tab, e.g. Trend Line, Cluster
 - Quick table calculation (e.g. running sum)
 - Tableau Prep
 - Import data from pdf

Next Tutorial

Data scientist toolbox:
Python, Jupyter
Notebook and Pandas

- Prepare your Google account beforehand
 - For using <u>Google Colab</u>
 - Jupyter notebook environment
 - Free!
 - No setup
- Alternatively, you can use Jupyter notebook on your computer, but that is cumbersome
- Learn more about Pandas