Best Available Copy

Application No. 10/049,245
Amendment dated June 27, 2005
Reply to Office action dated March 2, 2005

Page 2 of 26

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-46. (canceled)

47. (currently amended) A method for the electrophoretic separation of particles, particularly of membrane-adherent macromolecules, the method comprising:

applying the particles to be separated on to a substrate-supported membrane such that the particles are mobile across a surface of the substrate-supported membrane;

providing an electrical field having a direction that is oriented along the surface across which the particles are mobile; and

performing electrophoresis according to at least one of:

electrical field such that a resulting force acts on the particles causing movement among the particles that depends on the length of the particles, and using, as the a substrate supporting the substrate-supported membrane, a substrate supported membrane having that has a structured membrane.

compatible surface wherein the surface of the substrate supported membrane is structured to provide that provides a force acting on the moving particles

Page 3 of 26

particles.

- 48. (previously presented) A method according to claim 47, wherein the substratesupported membrane is a fluid lipid membrane, particularly comprising at least one of the lipids activated by PEG and DAC-Chol lipids.
- 49. (previously presented) A method according to claim 48, wherein the fluid lipid membrane is a cationic fluid lipid membrane.
- 50. (previously presented) A method according to claim 48, wherein the fluid lipid membrane includes amphiphilic macromolecules.
- 51. (previously presented) A method according to claim 48, wherein the fluid lipid membrane includes bilayers of charged lipids.
- 52. (previously presented) A method according to claim 47, wherein the electrical field is a pulsed electrical field.
- 53. (previously presented) A method according to claim 47, wherein the electrical field is an alternating field on which a time constant field is superimposed.

Page 4 of 26

- 54. (previously presented) A method according to claim 53, wherein the alternating field and the time constant field are superimposed in a crosswise manner.
- 55. (currently amended) A method according to claim 47, wherein the substrate supported membrane includes a substrate having a structured membrane-compatible surface including ribs, supporting the membrane.
- 56. (previously presented) A method according to claim 55, wherein the substrate exhibits a periodicity ranging from 2 nm to 200 nm.
- 57. (previously presented) A method according to claim 55, wherein the ribs have a height in the range of 1 nm to 10 nm.
- 58. (previously presented) A method according to claim 55, wherein the electrical field is a time constant field having a direction that is substantially parallel to the ribs.
- 59. (previously presented) A method according to claim 47, wherein said movement is a rotation.
- 60. (currently amended) A method according to claim 47, wherein:

 the substrate supported membrane substrate includes an exclusion area in which
 the particles are not mobile; and

Page 5 of 26

the method further comprises collecting the particles at said exclusion area upon providing the electrical field, prior to performing the electrophoresis.

61. (previously presented) A method according to claim 60, wherein:
the substrate-supported membrane is a fluid lipid membrane, particularly
comprising at least one of the lipids activated by PEG and DAC-Chol lipids; and
the exclusion area is a non-fluid area of the fluid lipid membrane.

62. (currently amended) A method of observing an electrophoretic separation, comprising:

applying the particles to be separated on a substrate supported membrane such that the particles are mobile across a surface of the substrate supported membrane;

providing an electrical field having a direction that is oriented along the surface across which the particles are mobile;

performing electrophoresis according to at least one of

electrical field such that a resulting force acts on the particles causing movement among the particles that depends on the length of the particles, and using, as the substrate supported membrane, a substrate supported membrane having a structured surface, wherein the surface of the substrate supported surface, wherein the surface of the substrate supported membrane is structured to provide a force acting on the particles

Page 6 of 26

particles;

performing the method for the electrophoretic separation of particles of claim 47; recording digitized image data of the electrophoretic movement; and evaluating the recorded image data using a computer.

- 63. (previously presented) A method according to claim 47, wherein the particles to be separated include at least one of DNA, RNA, DNA-oligomers, RNA-oligomers, and proteins.
- 64. (currently amended) A method according to claim 47, further comprising providing a pH gradient, wherein the particles migrate in according to the pH gradient.
- 65. (previously presented) A method according to claim 64, wherein the pH gradient is provided parallel to the electrical field.
- 66. (previously presented) A method according to claim 64, wherein the pH gradient is provided substantially perpendicular to the electrical field.
- 67. (currently amended) A microchannel electrophoresis chamber, comprising at least one channel having a bottom surface including a A substrate-supported membrane, the substrate-supported membrane comprising:

Page 7 of 26

- a substrate and a fluid lipid membrane, wherein the fluid lipid membrane is dried up.
- 68. (currently amended) A substrate supported membrane microchannel electrophoresis chamber according to claim 67, wherein the fluid lipid membrane includes cationic lipids.
- 69. (currently amended) A substrate supported membrane microchannel electrophoresis chamber according to claim 67, wherein the fluid lipid membrane includes amphiphilic macromolecules.
- 70. (currently amended) A substrate supported membrane microchannel electrophoresis chamber according to claim 67, wherein the fluid lipid membrane includes bilayers of charged lipids.
- 71. (currently amended) A substrate-supported membrane microchannel electrophoresis chamber according to claim 67, wherein the fluid lipid membrane includes at least one non-fluid area.
- 72. (currently amended) A substrate supported membrane microchannel electrophoresis chamber according to claim 67, wherein the substrate includes an optically transparent material.

Page 8 of 26

- 73. (currently amended) A substrate supported membrane microchannel electrophoresis chamber according to claim 72, wherein the optically transparent material includes plastic.
- 74. (currently amended) A substrate-supported membrane microchannel electrophoresis chamber according to claim 73, wherein the plastic includes at least one of PC, PMMA, PS, PE, and plastic formed of cyclic olefins.
- 75. (currently amended) A substrate supported membrane microchannel electrophoresis chamber according to claim 72, wherein the optically transparent material includes glass.
- 76. (currently amended) A microchannel electrophoresis chamber, comprising:

 at least one channel paving a bottom surface including a substrate supported

 membrane according to claim 67,; and further comprising an electrode assembly

 connected to the channel.
- 77. (previously presented) A microchannel electrophoresis chamber according to claim 76, wherein each channel has a width ranging from 1 μ m to 10 mm.

Page 9 of 26

- 78. (previously presented) A microchannel electrophoresis chamber according to claim 76, wherein each channel has a depth ranging from 10 nm to 20 μ m.
- 79. (previously presented) A microchannel electrophoresis chamber according to claim 76, wherein the at least one channel is a plurality of channels arranged as a two-dimensional matrix.
- 80. (previously presented) A microchannel electrophoresis chamber according to claim 76, wherein the electrode assembly includes an electrode disposed at each longitudinal end of each said channel.
- 81. (previously presented) A microchannel electrophoresis chamber according to claim 76, wherein the electrode assembly includes an electrode extending longitudinally in the direction of the channel at each side of each channel.
- 82. (new) A method for the electrophoretic separation of particles, particularly of membrane-adherent macromolecules, the method comprising:

non-specifically binding the particles to a substrate-supported membrane such that the particles are mobile across a surface of the substrate-supported membrane;

providing an electrical field having a direction that is oriented along the surface across which the particles are mobile; and

Page 10 of 26

performing electrophoresis according to cause movement among the particles that depends on the length of the particles;

wherein the substrate supported membrane is a cationic fluid lipid membrane.

- 83. (new) The method of claim 82, wherein performing electrophoresis includes temporarily modifying at least one of the strength and the direction of the electrical field such that a resulting force acts on the particles, thereby causing movement among the particles that depends on the length of the particles.
- 84. (new) The method of claim 82, wherein performing electrophoresis includes using a substrate to support the substrate-supported membrane that has a structured membrane-compatible surface that provides a force acting on the moving particles that depends on the length of the particles.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.