

ESC201: Introduction to Electronics

MODULE 5: AMPLIFIERS

Dr. Shubham Sahay,
Assistant Professor,
Department of Electrical Engineering,
IIT Kanpur

Why do Transistors Amplify Signals if Biased Properly

Ideal transistor

REVISITING LOAD LINE ANALYSIS

- $ightharpoonup I_2 = I_1$ (no change in the direction); $V_2 = V_{supply} V_1$ i.e. $V_1 = V_{supply} V_2$
- \triangleright Current in both Elements 1 & 2 is I_{op} .
- \triangleright Voltage in node X is V_{op} .
- Voltage drop is V_{op} and $(V_{supply} V_{op})$ in Elements 1 & 2, respectively. Dr. Shubham Sahay ESC201

Revised Amplifier Schematic for Device Y

Do we really need two DC power supplies?

$$V_B = V_{CC} \times \frac{R_2}{R_1 + R_2}$$

Remember: input of Y is open circuit

MOSFETs: Workhorse of Semiconductor Industry

MOSFET: Metal Oxide Semiconductor Field effect Transistor

Drain current is controlled by gate voltage

BJT vs. MOSFET

High gain

Small caps

Static power

Low gain

Large caps

Dynamic power

The MOSFET

Water Analogy – $V_{\rm G}$ control

Switch Model of NMOS Transistor

Threshold Voltage Concept

- Conductivity of the channel is modulated by the gate voltage
 - Larger the voltage difference between gate and source, the smaller the resistance of the conducting channel and the larger the current
- The value of V_{GS} where strong inversion occurs is called the threshold voltage, V_T

Water Analogy - Effect of $V_{\rm G}$ and $V_{\rm DS}$

- When a wall present between source/drain reservoirs is pulled up: water flows (ON)
- Good control over leakage through or over the wall and well set open/closed state.

Transistor in Linear Mode

Assuming $V_{GS} > V_{T}$

The current is a linear function of both V_{GS} and V_{DS}

Voltage-Current Relation: Linear Mode

For long channel devices

$$ho$$
 When $V_{DS} \le V_{GS} - V_{T}$

$$I_D = k_n \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{{V_{DS}}^2}{2} \right]$$

where

 $k'_n = \mu_n C_{ox} = \mu_n \epsilon_{ox}/t_{ox} = is$ the process transconductance parameter (μ_n is the carrier mobility (m²/Vsec))

 $k_n = k'_n$ W/L is the gain factor of the device

For small V_{DS} , there is a linear dependence between V_{DS} and I_{D} , hence the name resistive or linear region

Transistor in Saturation Mode

Assuming $V_{GS} > V_{T}$

The current remains constant (saturates).

Voltage-Current Relation: Saturation Mode

For long channel devices

ho When $V_{DS} \ge V_{GS} - V_{T}$

$$I_D = k_n \frac{W}{L} \left[\frac{(V_{GS} - V_T)^2}{2} \right]$$

Voltage difference over the induced channel (from the pinch-off point to the source) remains fixed at $V_{GS} - V_{T}$

However, the effective length of the conductive channel is modulated by the applied V_{DS}, so

$$I_D = I_D' (1 + \lambda V_{DS})$$

where λ is the channel-length modulation (varies with the $_{Dr.\ Shubham\ Sahay\ ESC201}$ verse of the channel length)

Factors Determining Current

1/

DC and AC model of a MOSFET

$$g_m = \frac{2I_{DSQ}}{V_{GSQ} - V_{THN}} = \sqrt{2I_{DSQ}\beta}$$

$$r_o = \frac{1}{\lambda_n I_{DSQ}}$$

 λ_N is the channel length modulation parameter

Example 1

$$KP_N = 100\mu A/V^2$$
; $V_{THN} = 1V$; $\lambda_n = 0.01V^{-1}$

Determine I_{DS} and V_{DS}

Example 2

$$KP_N = 100 \mu A/V^2; V_{THN} = 1V; \lambda_n = 0.01 V^{-1}$$

Determine I_{DS} and V_{DS}

$$V_{DS} = V_{GS}$$

 $\Rightarrow V_{DS} > V_{GS} - V_{THN} = V_{DSAT} \Rightarrow \text{Saturation}$

$$I_{DS} = KP_N \times \frac{W}{L} \times \frac{(V_{GS} - V_{THN})^2}{2}; V_{GS} = 3.3 - I_{DS} \times 80 \times 10^3$$

 $\Rightarrow I_{DS} = 2.48 \times 10^{-5} A; V_{GS} = 1.315 V$

For the other solution VGS = 0.653V which is not possible since it is less than V_{THN}