Лекция Аб МПавтоматы

Лекция Аб МП-автоматы

Вадим Пузаренко

15 октября 2023 г.

Автоматы с МП: определение

Лекция Аб МПавтоматы

Вадим Пузаренко

Определение Аб.1.

Определим автомат с магазинной памятью (МП-автомат) как многосортную структуру $\mathcal{M}=(Q,\Sigma,\Gamma,\Delta,s,Z_0,F)$, где составляющие её компоненты удовлетворяют следующим условиям:

- ullet $Q
 eq \varnothing$ конечное множество состояний (как у НКА);
- Σ конечный алфавит (входных символов) (как у НКА);
- Г конечный алфавит (стековых символов), содержит множество символов, помещаемых в магазин;
- $s \in Q$ начальный символ (МП-автомат находится в нём перед началом работы);
- ullet $F\subseteq Q$ множество конечных состояний;
- $Z_0 \in \Gamma$ начальный магазинный символ ("маркер дна"); вначале магазин содержит только данный символ;
- Δ , отношение перехода, конечное подмножество $(Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma) \times (Q \times \Gamma^*).$

Автоматы с МП: определение

Лекция А6 МПавтоматы

Вадим Пузаренко

Отношение перехода.

Как и у НКА, отношение Δ управляет поведением автомата. Если $\Delta((q,a,X),(p,\gamma))$, то выполняется следующее: находясь в состоянии q, считывая символ a и обозревая символ X на вершине магазина, переходим в состояние p и заменяем символ X на вершине магазина на цепочку γ (помещаем символы в последовательности справа налево).

Лекция Аб МПавтоматы

Вадим Пузаренко Магазинный автомат — это, по существу, ε -НКА с одним дополнением — магазином, в котором хранится цепочка "магазинных символов". Присутствие магазина означает, что в отличие от НКА магазинный автомат может "помнить" бесконечное количество информации. Однако в отличие от универсального компьютера, который также способен запоминать неограниченные объёмы информации, магазинный автомат имеет доступ к информации в магазине только с одного его конца в соответствии с принципом "последним пришёл — первым ушёл".

Лекция Аб МПавтоматы

Вадим Пузаренко Магазинный автомат — это, по существу, ε -НКА с одним дополнением — магазином, в котором хранится цепочка "магазинных символов". Присутствие магазина означает, что в отличие от НКА магазинный автомат может "помнить" бесконечное количество информации. Однако в отличие от универсального компьютера, который также способен запоминать неограниченные объёмы информации, магазинный автомат имеет доступ к информации в магазине только с одного его конца в соответствии с принципом "последним пришёл — первым ушёл".

Вследствие этого существуют языки, распознаваемые некоторой программой компьютера, которые не распознаются ни одним МП-автоматом. В действительности, МП-автоматы распознают в точности КС-языки.

Лекция Аб МПавтоматы

Вадим Пузаренко Магазинный автомат может обозревать символ на вершине магазина и совершать переход на основе текущего состояния, входного символа и символа на вершине магазина. Он может также совершить "спонтанный" переход, используя ε в качестве входного символа. За один переход автомат совершает следующие действия (здесь $(p,\gamma)\in\Delta(q,a,X)$).

Лекция Аб МПавтоматы

Вадим Пузаренко Магазинный автомат может обозревать символ на вершине магазина и совершать переход на основе текущего состояния, входного символа и символа на вершине магазина. Он может также совершить "спонтанный" переход, используя ε в качестве входного символа. За один переход автомат совершает следующие действия (здесь $(p,\gamma)\in\Delta(q,a,X)$).

- Прочитывает и пропускает входной символ $a \in \Sigma$, используемый при переходе. Если $a = \varepsilon$, то входные символы не пропускаются.
- ② Переходит в новое состояние p, которое может и не отличаться от предыдущего.
- ullet Заменяет символ X на вершине магазина некоторой цепочкой γ .

Лекция А6 МПавтоматы

Вадим Пузаренко

 $\gamma=arepsilon$. Из магазина удаляется символ X.

 $\gamma = X$. Магазин не меняется.

 $\gamma = Y_1 Y_2 \dots Y_{n-1} Y_n$. Удаляем из магазина символ X и вместо него помещаем последовательно $Y_n, \ Y_{n-1}, \dots, \ Y_2, \ Y_1$.

МП-автомат: графическое представление

Лекция Аб МПавтоматы

Вадим Пузаренко

Введём в рассмотрение диаграммы переходов следующим образом.

- Вершины ориентированного графа соответствуют состояниям МП-автомата.
- Стрелка определённого вида указывает на начальное состояние, а обведённые двойным кружком состояния являются заключительными.
- **②** Дуги соответствуют переходам МП-автомата в следующем смысле. Дуга, отмеченная $a, X/\alpha$ и ведущая из состояния q в p, означает, что $(p, \alpha) \in \Delta(q, a, X)$.

Вадим

Определение А6.2.

Конфигурация МП-автомата представляется тройкой (p, ζ, γ) , где $p \in Q$ (состояние, в котором находится автомат), $\zeta \in \Sigma^*$ (цепочка необработанных входных символов, оставшаяся часть входа), $\gamma \in \Gamma^*$ (содержимое магазина).

Определение А6.2.

Конфигурация МП-автомата представляется тройкой (p,ζ,γ) , где $p\in Q$ (состояние, в котором находится автомат), $\zeta\in \Sigma^*$ (цепочка необработанных входных символов, оставшаяся часть входа), $\gamma\in \Gamma^*$ (содержимое магазина).

Определение А6.3.

Пусть $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F)$ — МП-автомат. Определим следующие **переходы**.

- $\vdash_{\mathcal{P}}$. Предположим, что $(p, \alpha) \in \Delta(q, a, X)$. Тогда для всех цепочек $\zeta \in \Sigma^*$ и $\gamma \in \Gamma^*$ полагаем $(q, a \hat{\ } \zeta, X \hat{\ } \beta) \vdash_{\mathcal{P}} (p, \zeta, \alpha \hat{\ } \beta)$.
- $\vdash_{\mathcal{P}}^*$. Базис. Полагаем $I \vdash_{\mathcal{P}}^* I$ для любой конфигурации I. Индукция. $I \vdash_{\mathcal{P}}^* J$, если существует конфигурация K такая, что $I \vdash_{\mathcal{P}} K$ и $K \vdash_{\mathcal{P}}^* J$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Соглашение.

Если ясно из контекста, какой автомат рассматривается, индекс $\mathcal P$ будем опускать и записывать просто \vdash или \vdash^* вместо $\vdash_{\mathcal P}$ или $\vdash^*_{\mathcal P}$ соответственно.

Лекция Аб МПавтоматы

Вадим Пузаренко

Соглашение.

Если ясно из контекста, какой автомат рассматривается, индекс $\mathcal P$ будем опускать и записывать просто \vdash или \vdash^* вместо $\vdash_{\mathcal P}$ или $\vdash^*_{\mathcal P}$ соответственно.

Таким образом, $I \vdash^* J$, если существует такая последовательность конфигураций K_1, K_2, \ldots, K_n , у которой $I = K_1, J = K_n, K_i \vdash K_{i+1}$ для всех $i = 1, 2, \ldots, n-1$ $(n \in \omega)$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Предложение Аб.1.

Если $(q,\zeta_1,\alpha) \vdash^* (p,\zeta_2,\beta)$, то для любых цепочек $\eta \in \Sigma^*$ и $\gamma \in \Gamma^*$ имеем $(q,\zeta_1\hat{\ }\eta,\alpha\hat{\ }\gamma) \vdash^* (p,\zeta_2\hat{\ }\eta,\beta\hat{\ }\gamma)$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Предложение Аб.1.

Если $(q, \zeta_1, \alpha) \vdash^* (p, \zeta_2, \beta)$, то для любых цепочек $\eta \in \Sigma^*$ и $\gamma \in \Gamma^*$ имеем $(q, \zeta_1 \hat{\gamma}, \alpha \hat{\gamma}) \vdash^* (p, \zeta_2 \hat{\gamma}, \beta \hat{\gamma})$.

Доказательство.

Нетрудно показать индукцией по числу шагов последовательности конфигураций, приводящих $(q,\zeta_1\hat{\ }\eta,\alpha\hat{\ }\gamma)$ к $(p,\zeta_2\hat{\ }\eta,\beta\hat{\ }\gamma)$. Каждый из переходов в последовательности $(q,\zeta_1,\alpha)\vdash^*(p,\zeta_2,\beta)$ обосновывается переходами P без какого-либо использования η и/или γ . Следовательно, каждый переход обоснован и в случае, когда эти цепочки присутствуют на входе и в магазине.

Лекция Аб МПавтоматы

Вадим Пузаренко

Замечание Аб.1.

Полное обращение предложения не имеет места. Существуют действия, которые МП-автомат мог бы совершить путём выталкивания символов из стека, т.е. используя некоторые символы γ и заменяя их в магазине, что невозможно без обработки γ .

Лекция Аб МПавтоматы

Вадим Пузаренко

Замечание Аб.1.

Полное обращение предложения не имеет места. Существуют действия, которые МП-автомат мог бы совершить путём выталкивания символов из стека, т.е. используя некоторые символы γ и заменяя их в магазине, что невозможно без обработки γ .

Предложение Аб.2.

Если
$$(q, \zeta_1 \hat{\eta}, \alpha) \vdash^* (p, \zeta_2 \hat{\eta}, \beta)$$
, то $(q, \zeta_1, \alpha) \vdash^* (p, \zeta_2, \beta)$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Замечание Аб.1.

Полное обращение предложения не имеет места. Существуют действия, которые МП-автомат мог бы совершить путём выталкивания символов из стека, т.е. используя некоторые символы γ и заменяя их в магазине, что невозможно без обработки γ .

Предложение Аб.2.

Если
$$(q, \zeta_1 \hat{\eta}, \alpha) \vdash^* (p, \zeta_2 \hat{\eta}, \beta)$$
, то $(q, \zeta_1, \alpha) \vdash^* (p, \zeta_2, \beta)$.

Доказательство.

Проводится также индукцией по числу шагов последовательности конфигураций, приводящих (q, ζ_1, α) к (p, ζ_2, β) .

МП-автоматы и языки

Лекция А6 МПавтоматы Вадим

Пусть $\mathcal{M} = (Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F)$ — МП-автомат.

<u>МП-автома</u>ты и языки

Лекция А6 МПавтоматы Вадим

Пусть $\mathcal{M} = (Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F)$ — МП-автомат.

Допустимость по конечному состоянию.

$$L(\mathcal{M}) = \{ \alpha \mid (q_0, \alpha, Z_0) \vdash^* (q, \varepsilon, \beta)$$
 для некоторых $q \in F, \beta \in \Gamma^* \}.$

<u>МП-автома</u>ты и языки

Лекция Аб МПавтоматы

Вадим Пузаренко

Пусть $\mathcal{M} = (Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F)$ — МП-автомат.

Допустимость по конечному состоянию.

$$L(\mathcal{M}) = \{ \alpha \mid (q_0, \alpha, Z_0) \vdash^* (q, \varepsilon, \beta) \text{ для некоторых } q \in F, \beta \in \Gamma^* \}.$$

Допустимость по пустому магазину.

$$N(\mathcal{M}) = \{ \alpha \mid (q_0, \alpha, Z_0) \vdash^* (q, \varepsilon, \varepsilon)$$
для некоторого $q \in Q \}.$

Лекция Аб МПавтоматы

Вадим Пузаренко

Пример Аб.1.

Пусть $\mathcal{M}=(\{q_0,q_1,q_2\},\{0,1\},\{0,1,Z_0\},\Delta,q_0,Z_0,\{q_2\})$, где Δ определяется следующими правилами.

- $oldsymbol{\Delta}(q_0,a,Z_0)=\{(q_0,aZ_0)\},\ a\in\{0,1\}.$ Правило применяется вначале, когда автомат находится в состоянии q_0 и обозревает символ Z_0 на вершине магазина. Считываемый символ помещается в магазин; Z_0 остаётся в качестве маркера дна.
- $\Delta(q_0,a,b)=\{(q_0,ab)\}$, $a,b\in\{0,1\}$. Эти правила позволяют оставаться в состоянии q_0 и читать входные символы, помещая их на вершину магазина над предыдущим верхним символом.
- $\Delta(q_0, \varepsilon, X) = \{(q_1, X)\}, X \in \Gamma$. Правила позволяет автомату спонтанно (без чтения входа) переходить из состояния q_0 в состояние q_1 , не изменяя содержимого автомата.

Лекция Аб МПавтоматы

Вадим Пузаренко

Пример Аб.1 (продолжение).

- 4 $\Delta(q_1,a,a)=\{(q_1,\varepsilon)\}$, $a\in\{0,1\}$. В состоянии q_1 входные символы сравниваются с символами на вершинах магазина. В случае совпадения они выталкиваются.
- 5 $\Delta(q_1, \varepsilon, Z_0) = \{(q_2, Z_0)\}$. Если обнаружен маркер дна Z_0 , а автомат находится в состоянии q_1 , то автомат переходит в состояние q_2 .
- 6 $\Delta(q_2, \varepsilon, Z_0) = \{(q_2, \varepsilon)\}$. Обнуляет содержимое магазина.

Пример Аб.1 (продолжение).

- 4 $\Delta(q_1,a,a)=\{(q_1,\varepsilon)\}$, $a\in\{0,1\}$. В состоянии q_1 входные символы сравниваются с символами на вершинах магазина. В случае совпадения они выталкиваются.
- 5 $\Delta(q_1, \varepsilon, Z_0) = \{(q_2, Z_0)\}$. Если обнаружен маркер дна Z_0 , а автомат находится в состоянии q_1 , то автомат переходит в состояние q_2 .
- 6 $\Delta(q_2, \varepsilon, Z_0) = \{(q_2, \varepsilon)\}$. Обнуляет содержимое магазина.

Предложение Аб.3.

$$L(\mathcal{M}) = N(\mathcal{M}) = \{\alpha^{\hat{}} \alpha^R | \alpha \in \Sigma^*\}.$$

Лекция Аб МПавтоматы

Вадим Пузаренко

Доказательство.

(\supseteq) Пусть $\alpha \in \{0,1\}^*$; тогда $(q_0,\alpha \hat{\ } \alpha^R,Z_0) \vdash^* (q_0,\alpha^R,\alpha^{R^*}Z_0) \vdash (q_1,\alpha^R,\alpha^{R^*}Z_0) \vdash^* (q_1,\varepsilon,Z_0) \vdash (q_2,\varepsilon,Z_0) \vdash (q_2,\varepsilon,\varepsilon)$. Следовательно, $\alpha \hat{\ } \alpha^R \in \mathcal{L}(\mathcal{M}) \cap \mathcal{N}(\mathcal{M})$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Доказательство.

(\supseteq) Пусть $\alpha \in \{0,1\}^*$; тогда $(q_0,\alpha\hat{}_{\alpha}^R,Z_0) \vdash^* (q_0,\alpha^R,\alpha^R\hat{}_{\alpha}^R) \vdash (q_1,\alpha^R,\alpha^R\hat{}_{\alpha}^R\hat{}_{\alpha}^R) \vdash^* (q_1,\varepsilon,Z_0) \vdash (q_2,\varepsilon,Z_0) \vdash (q_2,\varepsilon,\varepsilon)$. Следовательно, $\alpha\hat{}_{\alpha}^R \in L(\mathcal{M}) \cap N(\mathcal{M})$.

(\subseteq) Заметим, что единственный путь достижения состояния q_2 состоит в том, чтобы находиться в состоянии q_1 и иметь Z_0 на вершине магазина. Кроме того, любое допускающее вычисление $\mathcal M$ начинается в состоянии q_0 , совершает один переход в q_1 и никогда не возвращается в q_0 . Таким образом, достаточно найти условия налагаемые на α , для которых $(q_0,\alpha,Z_0)\vdash^* (q_1,\varepsilon,Z_0)$; именно такие цепочки и распознаёт $\mathcal M$ по заключительному состоянию. Покажем индукцией по $\mathrm{lh}(\alpha)$ следующее несколько более общее утверждение: если $(q_0,\alpha,\gamma)\vdash^* (q_1,\varepsilon,\gamma)$, то $\alpha=\sigma^*\sigma^R$ для подходящего σ . Базис. Если $\alpha=\varepsilon$, то $\alpha=\sigma^*\sigma^R$, где $\sigma=\varepsilon$. Таким образом,

Базис. Если $\alpha = \varepsilon$, то $\alpha = \sigma \hat{\ } \sigma^R$, где $\sigma = \varepsilon$. Таким образом, заключение верно, и утверждение истинно. Отметим, что нет необходимости доказывать истинность гипотезы $(q_0, \varepsilon, \gamma) \vdash^* (q_1, \varepsilon, \gamma)$, хотя она и верна.

Лекция Аб МП-

Вадим Пузаренко

Доказательство (продолжение).

Индукция. Пусть $\alpha = a_1 a_2 \dots a_n$ для некоторого n > 0. Существуют следующие два перехода, которые $\mathcal M$ может совершить из конфигурации (q_0, α, γ) .

- $oldsymbol{0}$ $(q_0, \alpha, \gamma) \vdash (q_1, \alpha, \gamma)$. Теперь $\mathcal M$ может только выталкивать из магазина, находясь в состоянии q_1 . Тем самым, $\mathcal M$ должен вытолкнуть символ из магазина с чтением каждого входного символа, и $\mathrm{lh}(\alpha)>0$. Таким образом, если $(q_1, \alpha, \gamma) \vdash^* (q_1, \varepsilon, \beta)$, то цепочка β короче, чем цепочка γ , и не может ей равняться, т.е. посылка не выполняется.
- ② $(q_0, a_1 a_2 \ldots a_n, \gamma) \vdash (q_0, a_2 \ldots a_n, a_1 \hat{\gamma})$. Теперь последовательность переходов может завершиться конфигурацией $(q_1, \varepsilon, \gamma)$, только если последний переход является выталкиванием $(q_1, a_n, a_1 \hat{\gamma}) \vdash (q_1, \varepsilon, \gamma)$ и, следовательно, должно выполняться $a_n = a_1$. Нам также известно, что $(q_0, a_2 \ldots a_n, a_1 \hat{\gamma}) \vdash^* (q_1, a_n, a_1 \hat{\gamma})$. По предложению A6.2, имеем $(q_0, a_2 \ldots a_{n-1}, a_1 \hat{\gamma}) \vdash^* (q_1, \varepsilon, a_1 \hat{\gamma})$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Доказательство (окончание).

Так как $\ln(a_2\dots a_{n-1}) < n$, по индукционному предположению, $a_2\dots a_{n-1} = \beta_1\hat{\ }\beta_1^R$ для подходящего β_1 . Поскольку $\alpha = a_1\hat{\ }\beta_1\hat{\ }\beta_1^R\hat{\ }a_n$ и $a_1 = a_n$, заключаем, что $\alpha = \beta\hat{\ }\beta^R$, где $\beta = a_1\hat{\ }\beta_1$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Теорема Аб.1.

Если $L=N(\mathcal{P}_N)$ для некоторого МП-автомата $\mathcal{P}_N=(Q,\Sigma,\Gamma;\Delta,q_0,Z_0,F)$, то существует МП-автомат \mathcal{P}_F такой, что $L=L(\mathcal{P}_F)$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Теорема Аб.1.

Если $L=N(\mathcal{P}_N)$ для некоторого МП-автомата $\mathcal{P}_N=(Q,\Sigma,\Gamma;\Delta,q_0,Z_0,F)$, то существует МП-автомат \mathcal{P}_F такой, что $L=L(\mathcal{P}_F)$.

Замечание Аб.2.

Отметим, что результат работы МП-автомата \mathcal{P}_N не зависит от множества F заключительных состояний.

Лекция Аб МПавтоматы

Вадим Пузаренко

Теорема Аб.1.

Если $L=N(\mathcal{P}_N)$ для некоторого МП-автомата $\mathcal{P}_N=(Q,\Sigma,\Gamma;\Delta,q_0,Z_0,F)$, то существует МП-автомат \mathcal{P}_F такой, что $L=L(\mathcal{P}_F)$.

Замечание Аб.2.

Отметим, что результат работы МП-автомата \mathcal{P}_N не зависит от множества F заключительных состояний.

Доказательство.

Используется новый магазинный символ X_0 , который не должен быть элементом Γ ; он будет как маркером дна автомата \mathcal{P}_F , так и символом, позволяющим узнать, что \mathcal{P}_N опустошает магазин. Тем самым, если \mathcal{P}_F обозревает X_0 на вершине магазина, то он знает, что \mathcal{P}_N опустошает свой магазин на том же входе.

Лекция Аб МПавтоматы

Вадим Пузаренко

Доказательство (продолжение).

Нам понадобится также новое начальное состояние p_0 , единственной функцией которого будет задача затолкнуть Z_0 . стартовый символ автомата \mathcal{P}_N , на вершину магазина и перейти в состояние q_0 , начальное для \mathcal{P}_N . Далее \mathcal{P}_F имитирует работу автомата \mathcal{P}_N до тех пор, пока магазин \mathcal{P}_N станет пустым, что \mathcal{P}_F определяет по символу X_0 на вершине своего магазина. II , в конце концов, понадобится ещё одно состояние p_f , единственное заключительное для \mathcal{P}_F ; данный автомат переходит в него, как только \mathcal{P}_N обнаруживает пустой магазин. Тем самым, \mathcal{P}_F имеет следующий вид: $\mathcal{P}_F = (Q \uplus \{p_0; p_f\}, \Sigma, \Gamma \uplus \{X_0\}; \Delta_F, p_0, X_0, \{p_f\}),$ где Δ_F представимо в виде объединения, согласно следующим правилам:

Лекция Аб МПавтоматы

Вадим Пузаренко

Доказательство (продолжение).

- $oldsymbol{\Phi}_F(p_0,arepsilon,X_0)=\{(q_0,Z_0X_0)\}.$ В своём начальном состоянии автомат \mathcal{P}_F спонтанно переходит в начальное состояние автомата \mathcal{P}_N , заталкивая символ Z_0 в магазин.
- ② $\Delta(q,a,Y) = \Delta_F(q,a,Y)$, для всех $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$ и $Y \in \Gamma$.
- $oldsymbol{eta}_{\it F}(q,arepsilon,{\it X}_0)=\{(p_{\it f},arepsilon)\}$, для каждого $q\in Q$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Доказательство (продолжение).

- $igoplus_{F}(p_0,arepsilon,X_0)=\{(q_0,Z_0X_0)\}.$ В своём начальном состоянии автомат \mathcal{P}_F спонтанно переходит в начальное состояние автомата \mathcal{P}_N , заталкивая символ Z_0 в магазин.
- ② $\Delta(q,a,Y) = \Delta_F(q,a,Y)$, для всех $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$ и $Y \in \Gamma$.
- $oldsymbol{\delta} \Delta_F(q,arepsilon,X_0)=\{(p_f,arepsilon)\}$, для каждого $q\in Q$.

Докажем, что $\alpha \in L(\mathcal{P}_F) \Leftrightarrow \alpha \in \mathcal{N}(\mathcal{P}_N)$. (\Leftarrow) Пусть $\alpha \in \mathcal{N}(\mathcal{P}_N)$, а именно, $(q_0, \alpha, Z_0) \vdash_{\mathcal{P}_N}^* (q, \varepsilon, \varepsilon)$ для некоторого $q \in Q$. По правилу 2, автомат \mathcal{P}_F содержит все переходы автомата \mathcal{P}_N , из предложения A6.1 заключаем, что $(q_0, \alpha, Z_0 X_0) \vdash_{\mathcal{P}_F}^* (q, \varepsilon, X_0)$. Далее, выполняется соотношение

$$(p_0, \alpha, X_0) \vdash_{\mathcal{P}_F} (q_0, \alpha, Z_0 X_0) \vdash_{\mathcal{P}_F}^* (q, \varepsilon, X_0) \vdash_{\mathcal{P}_F} (p_f, \varepsilon, \varepsilon).$$
 (1)

Таким образом, $\alpha \in L(\mathcal{P}_F)$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Доказательство (окончание).

(\Rightarrow) Пусть $\alpha \in L(\mathcal{P}_F)$, а именно, $(p_0, \alpha, X_0) \vdash_{\mathcal{P}_F}^* (p_f, \varepsilon, \gamma)$ для некоторого $\gamma \in (\Gamma \cup \{X_0\})^*$. Отметим, что правило 1 может использоваться лишь однажды и только на первом шаге, а правило 3 — только на последнем шаге и также только один раз. Тем самым, приходим к соотношению (1) и, в частности, $(q_0, \alpha, Z_0 X_0) \vdash_{\mathcal{P}_F}^* (q, \varepsilon, X_0)$ для некоторого $q \in Q$. Так как $X_0 \not\in \Gamma$, а следовательно, и X_0 не встречается в отношении Δ перехода автомата \mathcal{P}_N , согласно правилу 2, заключаем, что $(q_0, \alpha, Z_0 X_0) \vdash_{\mathcal{P}_N}^* (q, \varepsilon, X_0)$ и $(q_0, \alpha, Z_0) \vdash_{\mathcal{P}_N}^* (q, \varepsilon, \varepsilon)$. Таким образом, $\alpha \in \mathcal{N}(\mathcal{P}_N)$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Теорема Аб.2.

Пусть $L=L(\mathcal{P}_F)$ для некоторого МП-автомата \mathcal{P}_F . Тогда существует МП-автомат \mathcal{P}_N , для которого имеет место $L=N(\mathcal{P}_N)$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Теорема Аб.2.

Пусть $L=L(\mathcal{P}_F)$ для некоторого МП-автомата \mathcal{P}_F . Тогда существует МП-автомат \mathcal{P}_N , для которого имеет место $L=N(\mathcal{P}_N)$.

Доказательство.

Пусть $\mathcal{P}_F = (Q, \Sigma, \Gamma; \Delta, q_0, Z_0, F)$ — МП-автомат из условия. Опишем конструкцию \mathcal{P}_N следующим образом. Добавляется переход по ε в новое состояние p из заключительного состояния автомата \mathcal{P}_F . Находясь в состоянии p, автомат \mathcal{P}_N опустошает содержимое магазина и ничего не прочитывает на входе. Таким образом, как только \mathcal{P}_F попадает в заключительное состояние, прочитав α , автомат \mathcal{P}_N опустошает свой магазин, также прочитав α .

Лекция Аб МПавтоматы

Вадим Пузаренко

Доказательство (продолжение).

Чтобы избежать случаи, когда \mathcal{P}_F опустошает свой магазин, не находясь в конечном состоянии, \mathcal{P}_N должен, как и ранее, также использовать маркер X_0 на дне магазина. Он является стартовым символом \mathcal{P}_N , и автомат должен начинать работу в новом состоянии p_0 , единственная функция которого — затолкнуть Z_0 в магазин и перейти в начальное состояние \mathcal{P}_F .

Лекция Аб МПавтоматы

Вадим Пузаренко

Доказательство (продолжение).

Положим $\mathcal{P}_N = (Q \uplus \{p_0, p\}, \Sigma, \Gamma \uplus \{X_0\}; \Delta_N, p_0, X_0, F)$, где Δ_N определяется следующим образом:

- $\Delta_N(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\}$. Работа начинается с заталкивания символа Z_0 автомата \mathcal{P}_F в магазин и перехода в начальное состояние \mathcal{P}_F .
- $oldsymbol{\Delta}_N(q,a,Y)\supseteq oldsymbol{\Delta}(q,a,Y)$ для всех $q\in Q$, $a\in \Sigma\cup\{arepsilon\}$ и $Y\in \Gamma$, т.е. \mathcal{P}_N имитирует работу \mathcal{P}_F .
- $igoplus_N(q,arepsilon,Y)\supseteq\{(p,arepsilon)\}$ для всех $q\in F$ и $Y\in \Gamma\cup\{X_0\}$. Как только \mathcal{P}_F распознаёт слово, \mathcal{P}_N может начать опустошение магазина и перейти в состояние p.
- $\Delta_N(p,\varepsilon,Y) = \{(p,\varepsilon)\}$ для всех $Y \in \Gamma \cup \{X_0\}$. Попав в состояние p, автомат \mathcal{P}_N выталкивает символы из магазина до его опустошения. При этом входные символы не читаются.

Лекция Аб МПавтоматы

Вадим Пузаренко Доказательство (продолжение).

Теперь необходимо доказать, что $\alpha \in N(\mathcal{P}_N) \Leftrightarrow \alpha \in L(\mathcal{P}_F)$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Доказательство (продолжение).

Теперь необходимо доказать, что $\alpha \in N(\mathcal{P}_N) \Leftrightarrow \alpha \in L(\mathcal{P}_F)$. (\Leftarrow) Пусть $(q_0, \alpha, Z_0) \vdash_{\mathcal{P}_F}^* (q, \varepsilon, \beta)$ для некоторых $q \in F$ и $\beta \in \Gamma^*$. Вспомним, что каждый переход автомата \mathcal{P}_F имеется и у \mathcal{P}_N , по правилу 2, а по предложению A6.1, $(q_0, \alpha, Z_0 X_0) \vdash_{\mathcal{P}_N}^* (q, \varepsilon, \beta^{\hat{}} X_0)$. Следовательно,

 $(p_0, \alpha, X_0) \vdash_{\mathcal{P}_N} (q_0, \alpha, Z_0 X_0) \vdash_{\mathcal{P}_N}^* (q, \varepsilon, \beta^* X_0) \vdash_{\mathcal{P}_N}^* (p, \varepsilon, \varepsilon).$ (Первый переход может осуществляться согласно правилу 1, а последний — согласно правилам 3 и 4). Таким образом, $\alpha \in \mathcal{N}(\mathcal{P}_N)$.

Лекция Аб МПавтоматы

Вадим Пузаренко

Доказательство (продолжение).

Теперь необходимо доказать, что $\alpha \in \mathcal{N}(\mathcal{P}_N) \Leftrightarrow \alpha \in L(\mathcal{P}_F)$. (\Leftarrow) Пусть $(q_0, \alpha, Z_0) \vdash_{\mathcal{P}_F}^* (q, \varepsilon, \beta)$ для некоторых $q \in F$ и $\beta \in \Gamma^*$. Вспомним, что каждый переход автомата \mathcal{P}_F имеется и у \mathcal{P}_N , по правилу 2, а по предложению A6.1, $(q_0, \alpha, Z_0 X_0) \vdash_{\mathcal{P}_N}^* (q, \varepsilon, \beta^{\hat{}} X_0)$. Следовательно,

 $(p_0, \alpha, X_0) \vdash_{\mathcal{P}_N} (q_0, \alpha, Z_0 X_0) \vdash_{\mathcal{P}_N}^* (q, \varepsilon, \beta^* X_0) \vdash_{\mathcal{P}_N}^* (p, \varepsilon, \varepsilon).$ (Первый переход может осуществляться согласно правилу 1, а последний — согласно правилам 3 и 4). Таким образом,

 $\alpha \in N(\mathcal{P}_N)$.

 (\Rightarrow) Пусть теперь $(p_0, \alpha, X_0) \vdash_{\mathcal{P}_N}^* (q, \varepsilon, \varepsilon)$ для некоторого $q \in Q \cup \{p_0, p\}$. Единственный путь, по которому \mathcal{P}_N может опустошить свой магазин, состоит в достижении состояния p, так как X_0 находится в магазине и является символом, для которого у \mathcal{P}_F переходы не определены. Поэтому q = p. Автомат \mathcal{P}_N может достичь состояния p только тогда, когда \mathcal{P}_F приходит в конечное состояние.

Конечное состояние → пустой магазин

Лекция А6 МП-

Вадим Пузаренко

Доказательство (окончание).

Первым переходом автомата \mathcal{P}_N может быть только переход, заданный правилом 1. Таким образом, каждое вычисление \mathcal{P}_N , подтверждающее распознаваемость слова α , выглядит следующим образом (здесь q — конечное состояние автомата \mathcal{P}_F).

$$(p_0, \alpha, X_0) \vdash_{\mathcal{P}_N} (q_0, \alpha, Z_0 X_0) \vdash_{\mathcal{P}_N}^* (q, \varepsilon, \beta^{\hat{}} X_0) \vdash_{\mathcal{P}_N}^* (p, \varepsilon, \varepsilon).$$
 Кроме того, все переходы между $(q_0, \alpha, Z_0 X_0)$ и $(q, \varepsilon, \beta^{\hat{}} X_0)$ осуществляются переходами автомата \mathcal{P}_F . Так как X_0 не участвует в переходах автомата \mathcal{P}_F , имеем $(q_0, \alpha, Z_0) \vdash_{\mathcal{P}_F}^* (q, \varepsilon, \beta)$. Таким образом, $\alpha \in L(\mathcal{P}_F)$.

Лекция A6 МПавтоматы Вадим

Спасибо за внимание.