

VALUE-PASSING CCS COMPILER

Languages for Concurrency and Distribution exam project

Alberto Lazari

April 4, 2024

Syntax

Syntax to define

- vCCS, for the parser
- CCS, for encoding and output printing

Syntax to define

- vCCS, for the parser
- CCS, for encoding and output printing

Inspired from CAAL's syntax

Value-passing CCS syntax

Constants

- $n \in \mathbb{N}$
- $k \in K$
- $x \in Var$
- $a \in \mathcal{A}$

Expressions

$$e := n$$

$$| (e)$$

$$| x$$

$$| e \text{ abop } e$$

$$abop := + | - | * | /$$

Booleans

bbop
$$:= | \neq | < | > | \leqslant | \geqslant$$

Processes

$$P \coloneqq 0$$

$$\mid cP$$

$$\mid act.P$$

$$\mid k \mid k(args)$$

$$\mid if b then P$$

$$\mid P + P \mid P \mid P$$

$$\mid P[f] \mid P \setminus L$$

$$\operatorname{act} \coloneqq \tau \mid a(x) \mid 'a(e)$$

$$\operatorname{args} \coloneqq \varepsilon \mid e \mid e, \operatorname{args}$$

$$f \coloneqq \varepsilon \mid a/a \mid a/a, f$$

$$\operatorname{channels} \coloneqq \varepsilon \mid a \mid a, \operatorname{channels}$$

$$L \coloneqq a \mid \{\} \mid \{\operatorname{channels}\}$$

Program

$$\pi \coloneqq P$$

$$\mid k = P; \pi$$

$$\mid k(\text{params}) = P; \pi$$

$$\text{params} \coloneqq \varepsilon \mid x \mid x, \text{params}$$

Pure CCS syntax

Constants

- $k \in K$
- $a \in \mathcal{A}$

Processes

$$P := 0$$

$$| (P)$$

$$| \text{act.}P$$

$$| k$$

$$| P+P$$

$$| P|P$$

$$| P[f] | P \setminus L$$

$$act := \tau \mid a \mid 'a$$

$$f := a/a \mid a/a, f$$

$$channels := a \mid a, channels$$

$$L := a \mid \{channels\}$$

Program

$$\pi \coloneqq P \\ \mid k = P; \pi$$

Compiler components

Architecture

- vCCS parser
- CCS interface
- vCCS to CCS encoder
- vCCS encoding utilities

vCCS parser

Classic components to parse a language

- Abstract syntax tree (AST)
- Parser
- Lexer

CCS interface

Basic CCS support for the encoder results

- AST
- Pretty printer

vCCS to CCS encoder

Implementation of []

Defined by structural induction on vCCS processes

vCCS to CCS encoder

Implementation of []

Defined by structural induction on vCCS processes

Considerations:

Programs are the root nodes of my syntax

vCCS to CCS encoder

Implementation of []

Defined by structural induction on vCCS processes

Considerations:

- Programs are the root nodes of my syntax
- More syntax cases than just π and P to consider in practice

Functions that solve CCS encoding sub-tasks

Functions that solve CCS encoding sub-tasks

Booleans/expressions evaluation

$$\operatorname{out}((1+3)/2) \rightarrow \operatorname{out}(2)$$

Functions that solve CCS encoding sub-tasks

Booleans/expressions evaluation

$$\operatorname{out}((1+3)/2) \rightarrow \operatorname{out}(2)$$

Variable substitution

$$k(x) \rightarrow k(1)$$

Functions that solve CCS encoding sub-tasks

Booleans/expressions evaluation

$$\operatorname{out}((1+3)/2) \rightarrow \operatorname{out}(2)$$

Variable substitution

$$k(x) \rightarrow k(1)$$

Variable expansion

$$in(x).k(x) \rightarrow in_1(x).k(1) + in_2(x).k(2) + ...$$

Technological stack

Choice: OCaml

Widely used ML dialect

Choice: OCaml

Widely used ML dialect

Pros

Pattern matching!

Choice: OCaml

Widely used ML dialect

Pros

- Pattern matching!
- I know ML

Choice: OCaml

Widely used ML dialect

Pros

- Pattern matching!
- I know ML
- Popular parser generators available

Parser generator

OCaml versions of lex and yacc available

- ocamllex, the standard
- Menhir, more recent twist on ocamlyacc

Package manager

- Language setup with opam init
- Project build and installation with opam install.
- Powerful build system with Dune

Implementation

Abstract syntax tree

Store syntax elements

```
type act =
   Tau
   Input of string * string
   Output of string * expr
type proc =
   Nil
   Act of act * proc
   Const of string * expr list
   If of boolean * proc
   Sum of proc * proc
   Paral of proc * proc
    Red of proc * (string * string) list
```


Parser

Tokens

 \downarrow

AST nodes

```
%token <string> ID
%token TAU
%token POINT
%token IF THEN
%token PIPE
act:
   TAU { Tau }
   a = ID LPAREN x = ID RPAREN { Input (a, x) }
proc:
   a = act POINT p = proc { Act (a, p) }
   IF b = boolean THEN p = proc { If (b, p) }
   p1 = proc PIPE p2 = proc { Paral (p1, p2) }
```

Lexer

Characters sequences

 \downarrow

Parser tokens

```
let blank = [' ' ' t' ' n']+
let letter = ['a'-'z' 'A'-'Z']
let tau = "\tau" | "tau"
rule read = parse
   blank+ { read lexbuf }
          { EQ }
   tau { TAU }
   '.' { POINT }
   "if" { IF }
   "then" { THEN }
      { PIPE }
   id
          { ID (Lexing.lexeme lexbuf) }
```

Encoder

Trivial cases

$$\llbracket \quad \rrbracket : \operatorname{Proc}_{\operatorname{vCCS}} \to \operatorname{Proc}$$

$$\llbracket P \rrbracket_{\pi} = \llbracket P \rrbracket$$

$$\llbracket k = P; \pi \rrbracket_{\pi} = (k = \llbracket P \rrbracket; \operatorname{encode}(\pi))$$

Trivial cases

 $\operatorname{eval}_e : \operatorname{expr} \to \mathbb{N}$

 $\operatorname{eval}_e : \operatorname{expr} \to \mathbb{N}$

$$eval_e(n) = n$$

$$\operatorname{eval}_e(e_1 \text{ op } e_2) = \operatorname{eval}_e(e_1) \text{ op } \operatorname{eval}_e(e_2)$$

 $\operatorname{eval}_e : \operatorname{expr} \to \mathbb{N}$

$$\operatorname{eval}_e(n) = n$$

 $\operatorname{eval}_e(e_1 \text{ op } e_2) = \operatorname{eval}_e(e_1) \text{ op } \operatorname{eval}_e(e_2)$

$$\operatorname{eval}_e(x) = ?$$

 $\operatorname{eval}_e : \operatorname{expr} \to \mathbb{N}$

$$\operatorname{eval}_e(n) = n$$

$$\operatorname{eval}_e(e_1 \text{ op } e_2) = \operatorname{eval}_e(e_1) \text{ op } \operatorname{eval}_e(e_2)$$

$$\operatorname{eval}_e(x) = ? \rightarrow \operatorname{error}: \text{ unbound variable } x$$

Evaluation – booleans

 $eval_b : boolean \rightarrow \{true, false\}$

Evaluation – booleans

 $\operatorname{eval}_b : \operatorname{boolean} \to \{\operatorname{true}, \operatorname{false}\}$

$$\operatorname{eval}_b(\operatorname{true}) = \operatorname{true} \, \operatorname{eval}_b(\operatorname{false}) = \operatorname{false}$$

$$\operatorname{eval}_b(\operatorname{not} \, b) = \neg b$$

$$\operatorname{eval}_b(b_1 \, \operatorname{or} \, b_2) = b_1 \vee b_2 \qquad \operatorname{eval}_b(b_1 \, \operatorname{and} \, b_2) = b_1 \wedge b_2$$

$$\operatorname{eval}_b(e_1 \, \operatorname{op} \, e_2) = \operatorname{eval}_e(e_1) \, \operatorname{op} \, \operatorname{eval}_e(e_2)$$

op := =
$$|\neq|<|>|\leqslant|>$$

Evaluation

$$\llbracket \ {}^{\shortmid}a(e).P \ \rrbracket = {}^{\backprime}a_n.\llbracket \ P \ \rrbracket$$

$$[\![k(e_1,...,e_h)]\!] = k_{n_1,...,n_h}$$

$$\llbracket \text{ if } b \text{ then } P \rrbracket = \begin{cases} \llbracket P \rrbracket \\ 0 \end{cases}$$

$$n = \operatorname{eval}_e(e)$$

$$n_i = \operatorname{eval}_e(e_i)$$

$$eval_b(b) = true$$

$$eval_b(b) = false$$

Let's start a small digression...

Expansion

Missing cases

$$[\![k(x_1,...,x_h)=P;\pi]\!]_{\pi}=?$$

$$\llbracket a(x).P \rrbracket = ?$$

Missing cases

Variable binders

$$[\![k(x_1,...,x_h)=P;\pi]\!]_{\pi}=?$$

$$\llbracket a(x).P \rrbracket = ?$$

Missing cases

Variable binders

$$[\![k(x_1,...,x_h)=P;\pi]\!]_{\pi}=?$$

$$[a(x).P] = ?$$

Also channel manipulators

$$[\![P \setminus L]\!] = ?$$

$$\llbracket P[f] \rrbracket = ?$$

The problem

Cannot expand for infinite number of values

$$in(x).k(x) \longrightarrow in_0.k_0 + in_1.k_1 + in_2.k_2 + in_3.k_3 + ...$$

The problem

Cannot expand for infinite number of values

$$in(x).k(x) \longrightarrow in_0.k_0 + in_1.k_1 + in_2.k_2 + in_3.k_3 + ...$$

⇒ Finite value domain needed

$$\operatorname{in}(x).k(x) \overset{D=\{0,1,2\}}{\longrightarrow} \operatorname{in}_0.k_0 + \operatorname{in}_1.k_1 + \operatorname{in}_2.k_2$$

Variable substitution

Let's introduce variable substitution first:

 $P\{n/x\} \rightarrow \text{replace all (free) occurrences of } x \text{ with value } n$

Variable substitution - booleans/expressions

$$\{/\}_b : \text{boolean} \to \text{Var} \to \mathbb{N} \to \text{boolean}$$

$$\{/\}_e : \exp r \rightarrow \operatorname{Var} \rightarrow \mathbb{N} \rightarrow \exp r$$

Variable substitution – booleans/expressions

$$\left\{/\right.\right\}_b: \text{boolean} \ \to \ \text{Var} \ \to \ \mathbb{N} \ \to \ \text{boolean} \qquad \left\{/\right.\right\}_e: \text{expr} \ \to \ \text{Var} \ \to \ \mathbb{N} \ \to \ \text{expr}$$

$$\begin{split} &(\text{not }b) \big\{ {}^{n}\!/_{x} \big\}_{b} = \text{not }b \big\{ {}^{n}\!/_{x} \big\}_{b} \\ &(b_{1} \text{ and }b_{2}) \big\{ {}^{n}\!/_{x} \big\}_{b} = b_{1} \big\{ {}^{n}\!/_{x} \big\}_{b} \text{ and }b_{2} \big\{ {}^{n}\!/_{x} \big\}_{b} \\ &(b_{1} \text{ or }b_{2}) \big\{ {}^{n}\!/_{x} \big\}_{b} = b_{1} \big\{ {}^{n}\!/_{x} \big\}_{b} \text{ or }b_{2} \big\{ {}^{n}\!/_{x} \big\}_{b} \\ &(e_{1} \text{ op }e_{2}) \big\{ {}^{n}\!/_{x} \big\}_{b} = e_{1} \big\{ {}^{n}\!/_{x} \big\}_{e} \text{ op }e_{2} \big\{ {}^{n}\!/_{x} \big\}_{e} \\ &b \big\{ {}^{n}\!/_{x} \big\}_{b} = b \end{split}$$

Variable substitution – booleans/expressions

$$\left\{ / \right\}_b : \text{boolean} \ o \ \text{Var} \ o \ \mathbb{N} \ o \ \text{boolean}$$

$$\left\{/\right.\right\}_e: \mathrm{expr} \ \rightarrow \ \mathrm{Var} \ \rightarrow \ \mathbb{N} \ \rightarrow \ \mathrm{expr}$$

$$\begin{split} &(\text{not }b) \big\{ {}^{n}\!/_{x} \big\}_{b} = \text{not }b \big\{ {}^{n}\!/_{x} \big\}_{b} \\ &(b_{1} \text{ and }b_{2}) \big\{ {}^{n}\!/_{x} \big\}_{b} = b_{1} \big\{ {}^{n}\!/_{x} \big\}_{b} \text{ and }b_{2} \big\{ {}^{n}\!/_{x} \big\}_{b} \\ &(b_{1} \text{ or }b_{2}) \big\{ {}^{n}\!/_{x} \big\}_{b} = b_{1} \big\{ {}^{n}\!/_{x} \big\}_{b} \text{ or }b_{2} \big\{ {}^{n}\!/_{x} \big\}_{b} \\ &(e_{1} \text{ op }e_{2}) \big\{ {}^{n}\!/_{x} \big\}_{b} = e_{1} \big\{ {}^{n}\!/_{x} \big\}_{e} \text{ op }e_{2} \big\{ {}^{n}\!/_{x} \big\}_{e} \\ &b \big\{ {}^{n}\!/_{x} \big\}_{b} = b \end{split}$$

$$n{n \choose x}_e = n$$

$$y{n \choose x}_e = \begin{cases} n & \text{if } x = y \\ y & \text{otherwise} \end{cases}$$

$$(e_1 \text{ op } e_2){n \choose x}_e = e_1{n \choose x}_e \text{ op } e_1{n \choose x}_e$$

Variable substitution – processes

 $\{/\}: \operatorname{Proc}_{\operatorname{vCCS}} \to \operatorname{Var} \to \mathbb{N} \to \operatorname{Proc}_{\operatorname{vCCS}}$

Variable substitution – processes

$$\{/\}: \operatorname{Proc}_{\operatorname{vCCS}} \to \operatorname{Var} \to \mathbb{N} \to \operatorname{Proc}_{\operatorname{vCCS}}$$

$$\begin{split} 0\{^{n}\!/_{x}\} &= 0 \\ (P+Q)\{^{n}\!/_{x}\} &= P\{^{n}\!/_{x}\} + Q\{^{n}\!/_{x}\} \\ (P\mid Q)\{^{n}\!/_{x}\} &= P\{^{n}\!/_{x}\} \mid Q\{^{n}\!/_{x}\} \\ (P[f])\{^{n}\!/_{x}\} &= P\{^{n}\!/_{x}\}[f] \\ (P\setminus L)\{^{n}\!/_{x}\} &= P\{^{n}\!/_{x}\} \setminus L \end{split}$$

Variable substitution – processes

$$\{/\}: \operatorname{Proc}_{\operatorname{vCCS}} \to \operatorname{Var} \to \mathbb{N} \to \operatorname{Proc}_{\operatorname{vCCS}}$$

$$\begin{split} 0\{^{n}\!/_{x}\} &= 0 \\ (P+Q)\{^{n}\!/_{x}\} &= P\{^{n}\!/_{x}\} + Q\{^{n}\!/_{x}\} \\ (P\mid Q)\{^{n}\!/_{x}\} &= P\{^{n}\!/_{x}\} \mid Q\{^{n}\!/_{x}\} \\ (P[f])\{^{n}\!/_{x}\} &= P\{^{n}\!/_{x}\}[f] \\ (P\setminus L)\{^{n}\!/_{x}\} &= P\{^{n}\!/_{x}\} \setminus L \end{split}$$

$$(a(y).P)\{^n\!/_x\} = \begin{cases} a(y).P\{^n\!/_x\} & \text{if } y \neq x \\ a(y).P & \text{otherwise} \end{cases}$$

$$('a(e).P)\{^n\!/_x\} = 'a\!\left(e\{^n\!/_x\}_e\right).P$$

$$k(e_1,...,e_n)\{^n\!/_x\} = k\!\left(e_1\{^n\!/_x\}_e,...,e_n\{^n\!/_x\}_e\right)$$

$$(\text{if } b \text{ then } P)\{^n\!/_x\} = \text{if } b\{^n\!/_x\}_b \text{ then } P\{^n\!/_x\}$$

Constant parameter

Expand first parameter: $k(x_1,x_2) \stackrel{D=\{0,1\}}{\longrightarrow} k_0(x_2); k_1(x_2)$

Constant parameter

Expand first parameter: $k(x_1,x_2) \stackrel{D=\{0,1\}}{\longrightarrow} k_0(x_2); k_1(x_2)$

$${}^{D}\langle \rangle_{k}: 2^{\mathbb{N}} \to \operatorname{Prog}_{\operatorname{vCCS}} \to \operatorname{Prog}_{\operatorname{vCCS}}$$

Constant parameter

Expand first parameter: $k(x_1,x_2) \stackrel{D=\{0,1\}}{\longrightarrow} k_0(x_2); k_1(x_2)$

$${}^{D}\langle \rangle_{k}: 2^{\mathbb{N}} \to \operatorname{Prog}_{\operatorname{vCCS}} \to \operatorname{Prog}_{\operatorname{vCCS}}$$

Input variable

$$^{D}\langle \ \rangle_{a}:2^{\mathbb{N}} \to \operatorname{Proc}_{\operatorname{vCCS}} \to \operatorname{Proc}_{\operatorname{vCCS}}$$

Input variable

$${}^{D}\langle \rangle_{a}: 2^{\mathbb{N}} \to \operatorname{Proc}_{\operatorname{vCCS}} \to \operatorname{Proc}_{\operatorname{vCCS}}$$

Redirection function

$$^{D}\langle \ \rangle_{f}:2^{\mathbb{N}} \to \operatorname{Proc}_{\operatorname{vCCS}} \to \operatorname{Proc}_{\operatorname{vCCS}}$$

Redirection function

$${}^{D}\langle \rangle_{f}: 2^{\mathbb{N}} \to \operatorname{Proc}_{\operatorname{vCCS}} \to \operatorname{Proc}_{\operatorname{vCCS}}$$

$$^{\varnothing}\langle\,P[f]\,\rangle_f = P$$

$$^{\{n_1,n_2,\ldots,n_h\}}\langle\,P[f]\,\rangle_f = P \big[f_{n_1},f_{n_2},\ldots,f_{n_h}\big]$$

$$^{D}\langle\,P\,\rangle_f = P$$

Where
$$f = a/b, c/d, ... \implies f_n = a_n/b_n, c_n/d_n, ...$$

Restricted channels

$$^{D}\langle \ \rangle_{L}:2^{\mathbb{N}} \,
ightarrow \, \operatorname{Proc}_{\operatorname{vCCS}} \,
ightarrow \, \operatorname{Proc}_{\operatorname{vCCS}}$$

Restricted channels

$$^{D}\langle \ \rangle_{L}:2^{\mathbb{N}} \to \operatorname{Proc}_{\operatorname{vCCS}} \to \operatorname{Proc}_{\operatorname{vCCS}}$$

$${}^{\varnothing}\langle P \setminus L \rangle_L = P$$

$$^{\{n_1,n_2,\ldots,n_h\}}\langle\,P\setminus L\,\,\rangle_L = P\setminus \left(L_{n_1}\cup L_{n_2}\cup\ldots\cup L_{n_h}\right)$$

$$^{D}\langle P \rangle_{L} = P$$

Where
$$L=a,b,... \implies L_n=a_n,b_n...$$

Now, back to the encoder

Expansion – constants

$$\left[\!\!\left[\left. k(x_1,...,x_h) = P;\pi \right.\right]\!\!\right]_\pi = \left[\!\!\left[\left. \left. \right| \left. k(x_1,...,x_h) = P \right.\right\rangle_k;\pi \right.\right]\!\!\right]_\pi$$

Expansion – constants

Expansion – input

$$\llbracket a(x).P \rrbracket = \llbracket {}^D \langle a(x).P \rangle_a \rrbracket$$

$$\llbracket a_n(x).P \rrbracket = a_n.\llbracket P \rrbracket$$

Expansion – redirection

Expansion – restriction

Bounded evaluation

$$^{D}\mathrm{eval}_{e}:2^{\mathbb{N}}\rightarrow\mathrm{expr}\rightarrow\mathbb{N}$$

Bounded evaluation

$$^{D}\mathrm{eval}_{e}:2^{\mathbb{N}}\
ightarrow\ \mathrm{expr}\
ightarrow\ \mathbb{N}$$

$$^{D}\operatorname{eval}_{e}(e) = \operatorname{eval}_{e}(e), \quad \operatorname{eval}_{e}(e) \in D$$

$$^{D}\operatorname{eval}_{e}(e) = \operatorname{eval}_{e}(e), \quad \operatorname{eval}_{e}(e) \notin D$$

Bounded evaluation

Given a finite domain $D \subseteq \mathbb{N}$

$$^{D}\mathrm{eval}_{e}:2^{\mathbb{N}}\,\rightarrow\,\mathrm{expr}\,\rightarrow\,\mathbb{N}$$

$$^{D}\operatorname{eval}_{e}(e) = \operatorname{eval}_{e}(e), \quad \operatorname{eval}_{e}(e) \in D$$

$$^{D}\operatorname{eval}_{e}(e) = \operatorname{eval}_{e}(e), \quad \operatorname{eval}_{e}(e) \notin D$$

→ error: out of bounds value evaluated

Demo time!