# 第二章习题答案

王子康 2024.03.23

1

# 数据参考

P11

| MJ = 0.5     | MJSW=0.3       | CGDO=0.3e-9     | JS=0.5e-8         |
|--------------|----------------|-----------------|-------------------|
| TOX = 9e - 9 | PB=0.9         | CJ = 0.94e - 3  | CJSW = 0.32e - 11 |
| NSUB=5e+14   | LD = 0.09e - 6 | UO=100          | LAMBDA=0.2        |
| LEVEL=1      | VTO = -0.8     | GAMMA = 0.4     | PHI=0.8           |
| PMOS 模型      |                |                 |                   |
| MJ = 0.45    | MJSW=0.2       | CGDO = 0.4e - 9 | JS=1.0e-8         |
| TOX = 9e - 9 | PB=0.9         | CJ = 0.56e - 3  | CJSW = 0.35e - 11 |
| PSUB=9e+14   | LD=0.08e-6     | UO=350          | LAMBDA=0.1        |
| LEVEL=1      | VTO=0.7        | GAMMA = 0.45    | PHI=0.9           |
| NMOS 模型      |                |                 |                   |

 $L = 0.5 \mu m$ 

| VTO:    | V <sub>sB</sub> =0 时的阈值电压 | (单位:V)                 |
|---------|---------------------------|------------------------|
| GAMMA:  | 体效应系数                     | (单位:V <sup>1/2</sup> ) |
| PHI:    | $2\Phi_{\mathbb{F}}$      | (单位:V)                 |
| TOX:    | 栅氧厚度                      | (单位:m)                 |
| NSUB:   | 衬底掺杂浓度                    | (单位 cm <sup>-3</sup> ) |
| LD:     | 源/漏侧扩散长度                  | (单位:m)                 |
| UO:     | 沟道迁移率                     | (单位:cm²/V/s)           |
| LAMBDA: | 沟道长度调制系数                  | (单位:V-1)               |
| CJ:     | 单位面积的源/漏结电容               | (单位:F/m²)              |
| CJSW:   | 单位长度的源/漏侧壁结电容             | (单位:F/m)               |
| PB:     | 源/漏结内建电势                  | (单位:V)                 |
| MJ:     | CJ公式中的幂指数                 | (无单位)                  |
| MJSW:   | CJSW 等式中的幂指数              | (无单位)                  |
| CGDO:   | 单位宽度的栅-漏覆盖电容              | (单位:F/m)               |
| CGSO:   | 单位宽度的栅-源覆盖电容              | (单位:F/m)               |
| JS:     | 源/漏结单位面积的漏电流              | (单位:A/m²)              |

示硅的介电常数。由于  $C_{ox}$ 在器件和电路计算中经常出现,所以记住它的值是有帮助的:当  $t_{ox}$   $\approx$  20 Å 时, $C_{ox}$   $\approx$  17. 25  $(F/\mu m^2)$ 。这样,对于其它的氧化层厚度, $C_{ox}$  的值可以依比例确定。

#### 习题2.2

2.2 W/L=50/0.5,  $|I_{\rm D}|=0.5$  mA, 计算 NMOS 和 PMOS 的跨导和输出阻抗,以及本征增  $\stackrel{\leftarrow}{\text{According}}$  to the Graphic 2.1 & Page 11

$$\begin{split} \mu_n &= 350 \ cm^2/V/s & C_{ox}|_{t_{ox}} = 90 \ \dot{A} = \frac{17.25}{90} \times 20 = 3.83 fF/\mu m^2 & \lambda_n = 0.1/V \\ gm_n &= \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} = 3.66 mS & r_o = \frac{1}{\lambda I_D} = 20 k\Omega & Selfgain_n = gm_n r_o = 73.6 = 37.3 dB \end{split}$$

$$\mu_{p} = 100 \ cm^{2}/V/s \qquad \qquad \lambda_{n} = 0.2/V$$
 
$$gm_{p} = \sqrt{2\mu_{n}C_{ox}\frac{W}{L}I_{D}} = 1.96mS \qquad r_{o} = \frac{1}{\lambda I_{D}} = 10k\Omega \qquad \qquad Selfgain_{p} = gm_{p}r_{o} = 19.6 = 25.8dB$$

3

### 习题2.5c

2.5 对于图 2.47 的每个电路, 画出  $I_X$  和晶体管跨导关于  $V_X$  的函数曲线草图,  $V_X$  从 0 变化 到  $V_{DD}$ 。在(a)中,假设  $V_X$  从 0 变化到 1.5 V。





2.  $V_x > 1.9V \ V_{GS} = -0.9V \ \text{Cut-off}$ 



#### 习题2.7c

2.7 对于图 2.49 的每个电路, 画出  $V_{\text{out}}$  关于  $V_{\text{in}}$  的函数曲线草图。  $V_{\text{in}}$  从 0 变化到  $V_{\text{DD}}$  。



- $V_{in} = V_{in} = V_{out} = V$



5

## 习题2.11a

2.11 对于图 2.53 的每个电路, 画出  $V_X$  关于时间的函数曲线草图。每个电容器的初始电压 如图所示。



$$\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{in} - V_{X} - V_{th})^{2} = C_{1}\frac{dV_{X}}{dt}$$

$$V_{X} = 2.3 - \frac{1}{\frac{1}{2C_{1}}\mu_{n}C_{ox}\frac{W}{L}t + \frac{1}{1.3}}$$

$$V_X|_{t=0} = 1V$$



#### 习题2.25

2. 25 NMOS 电流源, $I_D$ =0. 5 mA,工作时漏-源电压必须低至 0. 4 V。如果所需的最小输出阻抗为 20 k $\Omega$ ,计算器件的长度和宽度。如果器件是折叠结构,如图 2. 33 所示,且 E= 3  $\mu$ m,计算其栅-源、栅-漏、源-衬底电容。

$$\begin{split} r_o &= 20k\Omega = \frac{1}{\lambda I_D} \quad \& \quad \lambda \propto \frac{1}{L} \to \ L = 0.5 \mu \text{m} \\ V_{dsat} &= V_{GS} - V_{th} = 0.4 V \quad I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2 \to W/L \approx 46.6 \\ &\text{ (1)} \quad L = L_{eff} \qquad W = 23.3 \mu m \\ &\text{ (2)} \quad L \neq L_{eff} \qquad \frac{W}{L_{eff}} = 46.6 \qquad L_{eff} = L - 2L_D = 0.5 - 0.08 \times 2 = 0.34 \mu m \qquad W = 15.8 \mu m \end{split}$$