Master thesis

Enhancements to the REVIVALS package

Introduction

Aim

1. We are trying to estimate a total

Aim

1. We are trying to estimate a total

Horvitz-Thompson?
$$\hat{\theta} = \sum_{i \in s} d_i y_i$$

Aim

1. We are trying to estimate a total

2. Issues

Editing stage has already been done

1. We are trying to estimate a total

2. Issues

Editing stage has already been done

3. We need robust estimators

Workdone

• Beaumont et. al. (2013) proposed to use the conditional bias (CB) as a measure of influence

Robust version of the Horvitz-Thompson estimator

• C. Favre-Martinoz started to build a package (revivals)

GENERAL GOAL

Enhancing the revivals package

Workdone

1.

wrapper

1. Conditional Bias estimation

2. Robust HT estimation

3. Associated tuning constant

4. Robust estimator under winsorised form

2. Robustness enhancements

3. Article

SUMMARY

- Introduction
- Dissecting the revivals package
- Application with wrapper function

• Finite population of N units: $U = \{1, ..., N\}$

• Finite population of N units: $U = \{1, ..., N\}$

• Variable of interest: y_i , $\forall i \in U$

Finite population of N units:

$$U = \{1, ..., N\}$$

Variable of interest:

$$y_i$$
, $\forall i \in U$

• Sample:

$$s = \begin{pmatrix} I_1, \, \dots, \, I_i, \, \dots, \, I_N \end{pmatrix}^T$$
 where $I_i = \left\{ egin{array}{ll} 1 & ext{if } i \in s \\ 0 & ext{otherwise.} \end{array}
ight.$

Finite population of N units:

$$U = \{1, ..., N\}$$

Variable of interest:

$$y_i$$
, $\forall i \in U$

Sample:

$$s = \begin{pmatrix} I_1, \dots, I_i, \dots, I_N \end{pmatrix}^T$$
 where $I_i = \begin{cases} 1 & \text{if } i \in s \\ 0 & \text{otherwise.} \end{cases}$

• 1st-order inclusion probabilities: $\pi_i = \mathbb{P}(i \in S)$

Finite population of N units:

$$U = \{1, ..., N\}$$

Variable of interest:

$$y_i$$
, $\forall i \in U$

Sample:

$$s = \begin{pmatrix} I_1, \, \dots, \, I_i, \, \dots, \, I_N \end{pmatrix}^T$$
 where $I_i = \left\{ egin{array}{ll} 1 & ext{if } i \in s \ 0 & ext{otherwise.} \end{array}
ight.$

• 1st-order inclusion probabilities: $\pi_i = \mathbb{P}(i \in S)$

Design weight:

$$d_i = \frac{1}{\pi_i}$$

Design	Description	π_i
si	We draw a sample of size n with equiprobability among all possible samples.	$\frac{n}{N}$
poisson	We fix $\pi=(\pi_1,\pi_2,,\pi_N)$ and randomly draw each observation independently. The sample size is random	(fixed)
rejective	We fix $\pi = (\pi_1, \pi_2,, \pi_N)$ and follow a Poisson design, rejecting all samples until we obtain one of size n .	(fixed)

Table 1: Non-stratified sampling designs used in REVIVALS

Literature review Conditional bias

• For a parameter heta and an estimator $\hat{ heta}$ (Moreno-Rebollo et al. - 1999):

$$B_i^{\hat{\theta}}(I_i=1) = \mathbb{E}(\hat{\theta}-\theta \mid I_i=1),$$

• In the case of the HT estimator of a total, it becomes:

$$B_i^{HT}(I_i = 1) = \sum_{j \in U} \left(\frac{\pi_{ij}}{\pi_i \pi_j} - 1 \right) y_j$$

Notation: $B_i^{HT}(I_i = 1)$ will simply be denoted B_i^{HT}

Literature review Conditional bias

Revivals function HTcondbiasest

SI

Theoretical

$$B_i^{HT} = \frac{N}{N-1} \left(\frac{N}{n} - 1\right) (y_i - \bar{Y}_U), \ \forall i \in U, \qquad \text{where } \bar{Y}_U = \frac{1}{N} \sum_{i \in U} y_i$$

where
$$\bar{Y}_U = \frac{1}{N} \sum_{i \in U} y_i$$

Estimated

$$\hat{B}_i^{HT} = \frac{n}{n-1} \left(\frac{N}{n} - 1 \right) (y_i - \bar{y}), \ \forall i \in U, \qquad \text{where } \bar{y} = \frac{1}{n} \sum_{i \in S} y_i$$

where
$$\bar{y} = \frac{1}{n} \sum_{i \in S} y_i$$

Conditions to check: n > 1 / N is known

Literature review Conditional bias

POISSON

Theoretical

$$B_i^{HT} = \left(\frac{1}{\pi_i} - 1\right) y_i$$

No need to estimate it

Revivals function
HTcondbiasest

Literature review Robust estimator

Revivals function robustest

How to use the conditional bias in order to obtain robust estimators in a design-based framework?

=> Robust Horvitz-Thompson (RHT) estimator (Beaumont et al. - 2013):

$$\hat{t}_{y}^{RHT} = \hat{t}_{y}^{HT} - \frac{1}{2} \left(\hat{B}_{min}^{HT} + \hat{B}_{max}^{HT} \right)$$

Literature review Associated constant c

Revivals function tuningconst

General form

$$\hat{t}_y^{RHT} = \hat{t}_y^{HT} - \sum_{i \in S} \hat{B}_i^{HT} (I_i = 1) + \sum_{i \in S} \psi(\hat{B}_i^{HT} (I_i = 1))$$

where ψ is the Huber function, defined as: $\psi(x) = \text{sign}(x) \times \min(|x|, c)$ where c > 0.

Literature review Associated constant c

Revivals function tuningconst

General form

$$\hat{t}_y^{RHT} = \hat{t}_y^{HT} - \sum_{i \in S} \hat{B}_i^{HT} (I_i = 1) + \sum_{i \in S} \psi(\hat{B}_i^{HT} (I_i = 1))$$

where ψ is the Huber function, defined as: $\psi(x) = \text{sign}(x) \times \min(|x|, c)$ where c > 0.

Optimal constant c?

$$\min_{c} \max\{|\hat{B}_i^{RHT}(c)| i \in s\}$$

Literature review Winsorised form

Revivals function robustweights

Idea: if
$$d_i y_i > K$$
 then $y_i \to \tilde{y}_i$.

$$\rightarrow \hat{t} = \sum_{i \in S} d_i \tilde{y}_i$$

Literature review Winsorised form

Revivals function robustweights

Idea: if
$$d_i y_i > K$$
 then $y_i \to \tilde{y}_i$.

$$\rightarrow \hat{t} = \sum_{i \in S} d_i \tilde{y}_i \iff \hat{t} = \sum_{i \in S} \tilde{d}_i y_i$$

Literature review Winsorised form

Revivals function robustweights

Idea: if $d_i y_i > K$ then $y_i \to \tilde{y}_i$.

$$\rightarrow \hat{t} = \sum_{i \in S} d_i \tilde{y}_i \iff \hat{t} = \sum_{i \in S} \tilde{d}_i y_i$$

2 winsorisation forms

Standard

$$\tilde{d}_{i}^{S} = d_{i} \frac{min\left(y_{i}, \frac{K}{d_{i}}\right)}{y_{i}}$$

Dalén-Tambay

$$\tilde{d}_i^{DT} = 1 + (d_i - 1) \frac{\min\left(y_i, \frac{K}{d_i}\right)}{y_i}$$

Literature review Winsorisation constant

Revivals function
determinconstws
determinconstwDT

Optimal constant K_{opt} ?

- We want: $\hat{t}_y^{BHR} = \hat{t}_y^{std} = \hat{t}_y^{DT}$
- We know that: $\hat{t}_y^{RHT} = \hat{t}_y^{HT} \frac{1}{2} \left(\hat{B}_{min}^{HT} + \hat{B}_{max}^{HT} \right)$
- Same form: $\hat{t}_y^{HT} + \Delta(K)$

$$\min_{K} \max\{ |\hat{B}_{i}^{RHT}(K)| i \in s \}$$

$$\Leftrightarrow \Delta(K) = -\frac{1}{2} \left(\hat{B}_{min}^{HT} + \hat{B}_{max}^{HT} \right)$$

$$\Leftrightarrow \sum_{j \in s} a_j \max\left(0, d_j y_j - K\right) = \frac{\hat{B}_{min}^{HT} + \hat{B}_{max}^{HT}}{2}$$

Revivals Structure

1. Conditional Bias estimation

2. Robust HT estimation

3. Associated tuning / winsorisation constants

4. Robust weights computation

Illustration with the wrapper function

Illustration Data presentation

rec99htegne database:

- -N = 554 observations
- p=7 variables regarding the French communes in the Haute-Garonne department

	CODE_N	COMMUNE	BVQ_N	POPSDC99	LOG	LOGVAC	STRATLOG
1	31014	ARGUENOS	31020	57	94	1	1
2	31131	CAZAUNOUS	31020	47	56	4	1
3	31348	MONCAUP	31020	26	57	2	1
4	31447	RAZECUEILLE	31020	37	89	6	1
5	31140	CHEIN-DESSUS	31020	184	174	28	2

Illustration Data presentation

rec99htegne database:

- -N = 554 observations
- p=7 variables regarding the French communes in the Haute-Garonne department

	CODE_N	COMMUNE	BVQ_N	POPSDC99	LOG	LOGVAC	STRATLOG
1	31014	ARGUENOS	31020	57	94	1	1
2	31131	CAZAUNOUS	31020	47	56	4	1
3	31348	MONCAUP	31020	26	57	2	1
4	31447	RAZECUEILLE	31020	37	89	6	1
5	31140	CHEIN-DESSUS	31020	184	174	28	2

Illustration Data presentation

Basic descriptive statistics for LOGVAC

Min	Q1	Median	Mean	Q3	Max	$\mathbb{V}ar$	Kurtosis	Skewness
0.00	4.00	8.00	19.44	20.00	350.00	1104.50	29.450	4.533

LOGVAC density plot

any drawn sample will potentially contain some very influential values

• Sample size: n = 80 units

- Sample size: n = 80 units
- First order incl. probabilities

$$\pi_i = \frac{80}{554} \simeq 0.144$$

- Sample size: n = 80 units
- First order incl. probabilities

$$\pi_i = \frac{80}{554} \simeq 0.144$$

- Poisson and Rejective: use

use an auxiliary variable LOG

Linear relationship

Confirms the validity of LOG as an auxiliary variable.

• $\rho(LOG, LOGVAC) \simeq 0.8189$

- Sample size: n = 80 units
- First order incl. probabilities

$$\pi_i = \frac{80}{554} \simeq 0.144$$

- Poisson and Rejective:

$$\pi_i = \frac{log_i \times n}{LOG} = \frac{log_i \times 80}{197314}$$

Illustration Syntax

```
wrapper(data = ech,
        varname = c("LOGVAC"),
        gn = N,
        est_type = c("BHR", "standard", "DT"),
        method = "si",
        pii = ech$piks,
        id = "CODE_N")
```

```
wrapper(data = ech,
        varname = c("LOGVAC"),
        gn = N,
        est_type = c("BHR", "standard", "DT"),
        method = "si",
        pii = ech$piks,
        id = "CODE_N")
```

```
wrapper(data = ech,
        varname = c("LOGVAC"),
        gn = N,
        est_type = c("BHR", "standard", "DT"),
        method = "si",
        pii = ech$piks,
        id = "CODE_N")
```

```
wrapper(data = ech,
        varname = c("LOGVAC"),
        gn = N,
        est_type = c("BHR", "standard", "DT"),
        method = "si",
        pii = ech$piks,
        id = "CODE_N")
```

```
wrapper(data = ech,
        varname = c("LOGVAC"),
        gn = N,
        est_type = c("BHR", "standard", "DT"),
        method = "si",
        pii = ech$piks,
        id = "CODE_N")
```

```
wrapper(data = ech,
        varname = c("LOGVAC"),
        gn = N,
        est_type = c("BHR", "standard", "DT"),
        method = "si",
        pii = ech$piks,
        id = "CODE_N")
```

```
wrapper(data = ech,
        varname = c("LOGVAC"),
        gn = N,
        est_type = c("BHR", "standard", "DT"),
        method = "si",
        pii = ech$piks,
        id = "CODE_N")
```

```
wrapper(data = ech,
        varname = c("LOGVAC"),
        gn = N,
        est_type = c("BHR", "standard", "DT"),
        method = "si",
        pii = ech$piks,
        id = "CODE_N")
```

Illustration Summary tables

	est_type	var	RHT	tuning_const	HT	${ m rel_diff}$	nb_modif_weights
1	BHR	LOGVAC	11776.00	642.00	12284.95	-4.14	1
2	standard	LOGVAC	11776.00	973.00	12284.95	-4.14	1
3	DT	LOGVAC	11776.00	887.10	12284.95	-4.14	1

Table 5: Summary table for SRSWOR

	$\operatorname{est_type}$	var	RHT	$tuning_const$	HT	${ m rel_diff}$	$nb_modif_weights$
1	BHR	LOGVAC	11174.90	239.78	11323.94	-1.32	5
2	standard	LOGVAC	11174.90	292.60	11323.94	-1.32	5
3	DT	LOGVAC	11174.90	271.66	11323.94	-1.32	6

Table 6: Summary table for Poisson sampling

Illustration Detailed tables

CODE_N	init_weight	LOGVAC	condbias LOGVAC	new_weights LOGVAC_BHR	modifed LOGVAC_BHR	new_weights LOGVAC_standard	modifed LOGVAC_standard	new_weights LOGVAC_DT	modifed LOGVAC_DT
31342	6.92	10.00	-73.05	6.92	FALSE	6.92	FALSE	6.92	FALSE
31020	6.92	90.00	406.95	6.92	FALSE	6.92	FALSE	6.92	FALSE
31086	6.92	5.00	-103.05	6.92	FALSE	6.92	FALSE	6.92	FALSE
31002	6.92	7.00	-91.05	6.92	FALSE	6.92	FALSE	6.92	FALSE
31264	6.92	11.00	-67.05	6.92	FALSE	6.92	FALSE	6.92	FALSE

Table 7: Detailed table for SRSWOR

CODE_N	init_weight	LOGVAC	condbias LOGVAC	new_weights LOGVAC_BHR	modifed LOGVAC_BHR	new_weights LOGVAC_standard	modifed LOGVAC_standard	new_weights LOGVAC_DT	modifed LOGVAC_DT
31342	15.81	10.00	148.12	15.81	FALSE	15.81	FALSE	15.81	FALSE
31083	19.60	16.00	297.64	15.99	TRUE	18.29	TRUE	17.11	TRUE
31027	34.37	4.00	133.50	34.37	FALSE	34.37	FALSE	34.37	FALSE
31052	4.21	20.00	64.26	4.21	FALSE	4.21	FALSE	4.21	FALSE

Table 8: Detailed table for Poisson sampling

Revivals Robustness - Warnings

- Notification that d_i is redundant and only π_i is being used ;
- For rejective sampling design, D must be large enough and N/D bounded;
- Message when the estimation method is wrongly specified or multiple methods are specified. In both cases the method is set to 'si' by default.
- Warning when one of the interest variables contains negative values: it could be that the $\hat{B}^{HT}_{\min} + \hat{B}^{HT}_{\max}$ from the robust estimator equation $\hat{t}^{RHT}_y = \hat{t}^{HT}_y \frac{1}{2} \left(\hat{B}^{HT}_{\min} + \hat{B}^{HT}_{\max} \right)$ is negative.

Revivals Robustness - Stops

- We make sure that none of the interest variables contains any missing value;
- We stop the code when π_i (or d_i) has a different number of rows than the data file;
- We check that $\frac{1}{2}(\hat{B}_{min} + \hat{B}_{max}) \geq 0 \Leftrightarrow \hat{B}_{max} \geq -\hat{B}_{min}$. Functions determinconsts and determinconstwDT giving the winsorisation constants do not work otherwise.

Conclusion

Bibliography

- J. Dalén. Practical estimators of a population total which reduce the impact of large observations. Statistiska centralbyrån, 1987.
- J.-L. Tambay. "An Integrated Approach for the Treatment of Outliers in Sub-Annual Economic Surveys". In: Proceedings of the Section on Survey Research Methods: American Statistical Association. 1988, pp. 229–234.
- P.N. Kokic and P.A. Bell. "Optimal winsorizing cutoffs for a stratified finite population estimator". In: Journal of Official Statistics 10.4 (1994), p. 419.
- J.-L. Moreno-Rebollo, A. Muñoz-Reyes, and J. Muñoz-Pichardo. "Miscellanea. influence diagnostic in survey sampling: conditional bias". In: Biometrika 86.4 (1999), pp. 923–928.
- J.-F. Beaumont, D. Haziza, and A. Ruiz-Gazen. "A unified approach to robust estimation in finite population sampling". In: Biometrika 100.3 (2013), pp. 555–569.
- C. Favre-Martinoz. "Estimation robuste en population finie et infinie". PhD thesis. 2015.

Bibliography

- C. Favre-Martinoz, A. Ruiz-Gazen, J.-F. Beaumont, and D. Haziza. "Robustness in survey sampling using the conditional bias approach with R implementation". In: Convegno della Società Italiana di Statistica. Springer. 2016, pp. 3–13.
- Y. Tillé and A. Matei. "Package 'sampling'". In: Survey Sampling. Kasutatud 23 (2016), p. 2017. url: http://cran.r-%20project.org/src/contrib/Descriptions/sampling. html.
- J.-M. Béguin and O. Haag. "Méthodologie de la statistique annuelle d'entreprises. description du système «ésane»". In: (2017).
- T. Deroyon and C. Favre-Martinoz. "Comparison of the conditional bias and Kokic and Bell methods for Poisson and stratified sampling". In: Survey Methodology 44.2 (2018), pp. 309-338.