Equation 3

$$V\left(t+\frac{1}{2}\Delta t\right)=V(t)+\left[\frac{1}{m}\left(F(r(t),t)+R(t)\right]-gv(t)\right]\frac{\Delta t}{2}$$

$$*a(t)=F(r_1t)+R(t)$$

$$-gv(t)$$

$$V\left(t+\frac{1}{2}\Delta t\right)=V(t)+a(t)\Delta t$$
New equation 3

Equation 4

$$r(t+\delta t) = r(t) + v(t+\frac{1}{2}\delta t) \delta t$$

$$r(t+\delta t) = r(t) + v(t) + \alpha(t) \frac{1}{2}\delta t \dots \text{ Now equation } t$$

Equation 5

$$V(t+bt) = \left[V(t+bt) + \frac{F(v(t+bt),t+bt+R(t+bt))}{m} + \frac{bt}{z}\right] \frac{1}{1+y} \frac{bt}{z}$$

$$V(t+bt) = \left[V(t) + \alpha(t) \cdot \frac{bt}{z} + \alpha(t+bt)\right] \frac{1}{z} \frac{1}{1+z} \dots \text{New equation } S$$

The difference in these equations is that they contain "new terms" (drag and random pertubotions).

when
$$s=0$$
 and $l(t)=0$

BBK: $v(t+\delta t) = v(t) + a(t) \frac{\delta t}{2} + \frac{F(v(t+\delta t), t+\delta t+R(t+\delta t))}{m} \frac{\Delta t}{2} \cdot \frac{1}{160t}$
 $v(t+\delta t) = v(t) + a(t) \frac{\delta t}{2} + a(t+\delta t) \frac{\delta t}{2} \cdot \frac{1}{160t}$

V.fut = Vecor + 0.5, a-current + 0.5, a-fut.df

reviet ... velouty:

Using BDK DOES reduce equations implementing the velocity veret algorithm

when r=0 and R(t)=0.

Gyereise 2:

DONE, in Github as "BBK"

Exercise 3:

The bond longth us time trajectory changes. The energies seem to converge at the same temperature used in simulations.

Exercise 4'.

It you decrease the gamma, all trajectories change significantly. Love gamme gave a lower mean temp. for last 1000 time. Steps but increased for the next 1000 time steps.