Dérivées des fonctions usuelles					
Fonction f		Fonction dérivée f'	Intervalles de dérivabilité		
P	f(x) = k (constante réelle)	f'(x) = 0	IR	1	
U	f(x) = x	f'(x) = 1	IR	2	
I	f(x) = ax + b	f'(x) = a	IR	3	
S	$f(x) = x^2$	f'(x) = 2x	IR		
S	$f(x) = x^{n} (n \in \mathbb{N})$	$f'(x) = nx^{n-1}$	IR		
A	$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$]0; +∞[]-∞; 0[
N	$f(x) = \frac{1}{x^n} = x^{-n} \ (n \in \mathbb{N})$	$f'(x) = -\frac{n}{x^{n+1}} = -nx^{-n-1}$]0; +∞[]-∞; 0[
С	$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$]0; +∞[4	
Е	$f(x) = x^{\alpha}$	$f'(x) = \alpha x^{\alpha - 1}$	selon les valeurs de l'exposant α, voir les dérivées précédentes	5	
$f(x) = \cos x$		$f'(x) = -\sin x$	IR		
$f(x) = \sin x$		$f'(x) = \cos x$	IR		
$f(x) = \tan x$		$f'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x$	$\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ $\left] \frac{\pi}{2} + k\pi; \frac{\pi}{2} + (k+1)\pi \right[$		
$f(x) = e^x$		$f'(x) = e^x$	IR		
$f(x) = \ln x$		$f'(x) = \frac{1}{x}$]0; +∞[

(1) Une fonction constante est représentée par une droite de coefficient directeur (pente) nul.

En tout point de cette droite, le coefficient directeur (pente) est nulle.

(2) La fonction $x \mapsto x$ est représentée par une droite de coefficient directeur (pente) égal à 1

En tout point de cette droite, le coefficient directeur (pente) est égal à 1.

(3) La fonction $x \mapsto ax + b$ est représentée par une droite de coefficient directeur (pente) égal à a.

En tout point de cette droite, le coefficient directeur (pente) est égal à a.

(4)
$$\sqrt{x} = x^{1/2}$$

(5) Cette ligne résume toutes celles qui précèdent. C'est la formule à retenir pour déterminer les primitives d'une fonction puissance.

Dérivées et opérations Dans ce formulaire, <i>u</i> et <i>v</i> sont des fonctions					
Opérations sur les fonctions	Dérivées	Conditions			
f = u + v	f' = u' + v'	u et v dérivables sur un intervalle I			
$f = ku \ (k \ \text{constante})$	f' = ku'	u dérivable sur un intervalle I			
f = uv	f' = u'v + v'u	u et v dérivables sur un intervalle I			
$f=\frac{1}{v}$	$f' = \frac{-v'}{v^2}$	v dérivable sur un intervalle I et v ne s'annule pas sur cet intervalle I			
$f = \frac{u}{v}$	$f' = \frac{u'v - v'u}{v^2}$	u et v dérivable sur un intervalle I et v ne s'annule pas sur cet intervalle I			
1 $f = v \circ u$	$f'=u'\times (v'\circ u)$	u dérivable sur un intervalle I à valeurs dans J , et, v dérivable sur J .			
$f = u^{\alpha}$	$f' = \alpha u' u^{\alpha - 1}$	selon les valeurs de α			
$f = \sqrt{u}$	$f' = \frac{u'}{2\sqrt{u}}$	u dérivable sur un intervalle I et $u > 0$			
$f = \cos u$	$f' = -u' \times \sin u$	<i>u</i> dérivable sur un intervalle <i>I</i>			
$f = \sin u$	$f' = u' \times \cos u$	<i>u</i> dérivable sur un intervalle <i>I</i>			
$f = e^u$	$f' = u' \times e^u$	<i>u</i> dérivable sur un intervalle <i>I</i>			
$f = \ln u$	$f' = \frac{u'}{u}$	u dérivable sur un intervalle I et $u > 0$			
f(x) = u(ax + b)	f'(x) = au'(ax + b)	ax + b appartient à un intervalle sur lequel u est dérivable			

(1) La dérivée d'une fonction composée

Toutes les lignes qui suivent sont des cas particuliers de cette formule générale