**Twierdzenie** (Helly). Niech T będzie drzewem a  $\mathcal{T}$  dowolną rodziną jego poddrzew. Dla dowolnego  $k \in \mathbb{N}_1$  rodzina  $\mathcal{T}$  zawiera k rozłącznych wierzchołkowo drzew albo istnieje zbiór co najwyżej k-1 wierzchołków T przecinający niepusto każde drzewo w  $\mathcal{T}$ .

Dowód. Ukorzeniamy drzewo T i wybieramy drzewo z  $\mathcal{T}$  z najniżej położonym korzeniem. Wybieramy ten korzeń i pozbywamy się wszystkich drzew, do których on należał. Kontynuujemy – jeśli wybierzemy k wierzchołków, to drzewa w nich ukorzenione były rozłączne (bo wybieraliśmy najniższe korzenie), a jeśli wcześniej skończą się nam drzewa, to mamy zbiór co najwyżej k-1 wierzchołków, z którym każde drzewo tnie się niepusto.

**Twierdzenie.** Niech  $n \in \mathbb{N}_1$  i niech  $A_1, \ldots, A_n$  będą parami różnymi podzbiorami [n]. Istnieje  $x \in [n]$  takie, że  $A_1 \setminus \{x\}, \ldots, A_n \setminus \{x\}$  są parami różne.

Dowód. Robimy graf na tych zbiorach, krawędź, jeśli różnią się jednym elementem. Zakładamy nie wprost, że teza jest fałszywa, czyli ten graf ma n krawędzi. Jest co najmniej tyle krawędzi, co wierzchołków, więc jest cykl (dowód indukcyjny: jak istnieje wierzchołek stopnia 1, to go usuwamy i indukcyjnie, jak wszystkie mają większy, to można iść zaczynając z dowolnego, w końcu się zapętlimy). Cykl daje sprzeczność, bo znaczy, że są dwa zbiory, które różni pewien element x, ale można uzyskać jeden z drugiego dodając i usuwając elementy inne niż x.

**Twierdzenie.** Dowolne dwie najdłuższe ścieżki w spójnym grafie G mają niepuste przecięcie.

Dowód. Gdyby były niepołączone, to ze spójności istnieje między nimi ścieżka. Bierzemy tą ścieżkę i na każdym jej końcu dokładamy dłuższą połowę każdej z najdłuższych ścieżek. Daje nam to ścieżkę dłuższą od najdłuższej − sprzeczność.

**Twierdzenie.** Każdy spójny graf G zawiera ścieżkę długości co najmniej  $\min\{2\delta(G), |V(G)|-1\}$ .

Dowód. Załóżmy, że dla najdłuższej ścieżki  $x_1x_2\dots x_k$  zachodzi  $k<\min\{2\delta(G),|V(G)|-1\}$ . Wszyscy sąsiedzi  $x_1,x_k$  na niej leżą (inaczej można wydłużyć).  $k<2\delta(G)$ , więc z co najmniej  $\delta(G)$  sąsiadów  $x_1$  i co najmniej  $\delta(G)$  takich  $x_{i+1}$ , że  $x_i$  jest sąsiadem  $x_k$  jeden się powtarza i jest sytuacja jak na rysunku. k<|V(G)|-1, więc istnieje wierzchołek y nieleżący na ścieżce, który ze spójności G jest z nią połączony w pewnym wierzchołku  $x_j$ . Ścieżka  $y\dots x_j\dots x_ix_k\dots x_{i+1}x_1\dots x_{j-1}$  (lub analogiczna , jeśli  $x_j$  leży za  $x_{i+1}$ ) jest dłuższa niż najdłuższa ścieżka – sprzeczność.



Strona 1/2

**Twierdzenie** (Bondy-Chvátal; 1976). Niech u, v będzie parą niesąsiadujących wierzchołków w G, spełniającą nierówność  $\deg(u) + \deg(v) \ge n$ . Wtedy zachodzi:

Graf G jest hamiltonowski  $\iff$  Graf G + uv jest hamiltonowski.

Dowód. Strona ( $\Longrightarrow$ ) jest oczywista – w większym grafie istnieje ten sam cykl Hamiltona. Dla dowodu ( $\Longleftrightarrow$ ) bierzemy cykl Hamiltona i zakładamy, że uv do niego należy (inaczej cykl istnieje też w mniejszym grafie). Na ścieżce  $u\leadsto v$  musi istnieć sytuacja jak na rysunku, bo sąsiadów u i wierzchołków poprzedzających sąsiada v jest na niej więcej niż wierzchołków w grafie. Mamy cykl Hamiltona  $u\ldots x_iv\ldots x_{i+1}u$ .



**Twierdzenie** (Pósa; 1962). Niech G będzie grafem o  $n \in \mathbb{N}_3$  wierzchołkach i niech  $d_1 \leq \ldots \leq d_n$  będzie ciągiem stopni G. Jeśli dla każdego i takiego, że  $1 \leq i < \frac{n}{2}$  mamy  $d_i \geq i + 1$ , to G ma cykl Hamiltona.

Dowód. Z twierdzenia Bondy'ego-Chvátala możemy dodać wszystkie krawędzie między wierzchołkami o indeksach  $i \geq \frac{n}{2}$  nie zmieniając hamiltonowskości grafu. Następnie działamy indukcyjnie: jeśli w grafie są wszystkie krawędzie między wierzchołkami  $v_{j+1}, \ldots, v_n$ , to każdy z nich na stopień co najmniej n-j-1, a że  $d_j \geq j+1$ , to można dodać wszystkie krawędzie między  $v_j$  a dalszymi wierzchołkami. W ten sposób otrzymujemy klikę, a ona ma cykl Hamiltona, więc w oryginalnym grafie też był cykl Hamiltona.

**Twierdzenie.** Każdy graf G ma podgraf dwudzielny H taki, że  $|E(H)| \ge \frac{1}{2}|E(G)|$ .

Dowód. Bierzemy dowolny graf dwudzielny  $H \subseteq G$  z V(H) = V(G). Jeśli  $\deg_H(v) < \frac{1}{2} \deg_G(v)$ , to przesuwamy go do drugiej grupy wierzchołków. Proces się zatrzyma, bo stopnie wierzchołków w H rosną. Ostatecznie  $\forall_{v \in V(H)} \deg_H(v) \geq \frac{1}{2} \deg_G(v)$ , a więc  $|E(H)| \geq \frac{1}{2} |E(G)|$ .

**Twierdzenie.** Każdy zawierający jakaś krawedź graf G ma podgraf H taki, że  $2\delta(H) > d(H) > d(G)$ .

Dowód. Zaczynamy od  $H_0 = G$  i konstrukcja indukcyjna. Jeśli  $2\delta(H_i) \leq d(H_i)$ , to usuwamy wierzchołek o minimalnym stopniu, tworząc  $H_{i+1}$ . Wtedy  $d(H_{i+1}) \geq d(H_i)$ . Pod koniec procesu graf H niepusty, bo  $d(\emptyset) = 0 < d(G)$ , zatem nie ma już wierzchołków do usuwania i  $2\delta(H) > d(H) \geq d(G)$ .

**Twierdzenie.** Każdy graf G z  $d(G) \ge 4k$  ma podgraf dwudzielny H taki, że  $\delta(H) \ge k$ .

Dowód. W grafie o  $d(G) \ge 4k$  istnieje podgraf D taki, że  $2\delta(D) \ge 4k$ , a z  $\delta(D) \ge 2k$  istnieje jego podgraf dwudzielny H z co najmniej połową jego krawędzi, czyli  $\delta(H) \ge k$ .

Strona 2/2