Example 189: As shown in Figure 1, the quadrilateral ABCD, $\angle DAB = \angle BCD$, draw perpendicular segments DL, DH, DK through D to AB, BC, CA, and I is the midpoint of AC. Prove: K, L, H, I4 points in a circle.

Proof:
$$\frac{\frac{K-H}{K-L}}{\frac{I-H}{I-L}} = \frac{\frac{B-A}{A-D}}{\frac{K-D}{K-D}} \frac{\frac{C-D}{A-B}}{\frac{K-D}{K-D}} \frac{\frac{C-E}{F-A}}{\frac{F-D}{D-C}} \frac{A-F}{I-H} \frac{L-I}{E-C}.$$

Explanation: Assuming that AB intersects $\bigcirc O_2$ with E, it is easy to prove that \triangle DAE is an isosceles triangle. Let BC intersect $\bigcirc O_1$ at F, it is easy to prove that \triangle DFC is an isosceles triangle. Then LK $/\!\!/$ EC, IH $/\!\!/$ AF, \triangle DAE $\hookrightarrow \triangle$ DFC, \triangle DAF $\hookrightarrow \triangle$ DEC