ARTIFICIAL INTELLIGENCE (CSC 462) ASSIGNMENT # 2

NAME: MUAAZ BIN MUKHTAR

REG NO: FA21-BSE-045

CLASS & SECTION: BSSE-5A

SUBMITTED TO: SIR WAQAS ALI

DATE SUBMITTED: 27-10-2023

Department of Computer Science

QUESTION 1

1. Network Routing Optimization:

Problem: Determine the optimal paths for data packets to be transmitted through a computer network, minimizing latency and maximizing throughput.

Representation: A set of routes or paths through the network nodes.

Initial Population: Randomly generated sets of network routes.

Evaluation Function: The total latency or time taken for data packets to travel through the network.

Mutation: Alter or reconfigure certain nodes or links in the routes.

Crossover Procedure: Uniform Crossover, where paths are exchanged between two parent solutions to create offspring routes.

Exit Criteria: When a specified level of network efficiency is achieved or after a certain number of generations.

2. Feature Selection in Machine Learning:

Problem: Select the most relevant features from a given dataset to improve the performance of a machine learning model.

Representation: A binary vector where each element represents the presence or absence of a feature.

Initial Population: Randomly generated binary feature vectors.

Evaluation Function: The performance metric (e.g., accuracy, F1-score) of the machine learning model trained on the selected features.

Mutation: Flip the value of a feature (i.e., include/exclude a feature).

Crossover Procedure: One-Point Crossover for binary vectors to exchange feature subsets between parent solutions.

Exit Criteria: When the machine learning model achieves a satisfactory level of performance or after a certain number of generations.

3. Inventory Management in Supply Chain:

Problem: Determine the optimal inventory levels for various products in a supply chain network to minimize holding costs while meeting customer demand.

Representation: A set of integers representing the inventory levels for different products.

Initial Population: Randomly generated sets of inventory levels for products.

Evaluation Function: The total cost incurred, considering holding costs and penalties for stockouts.

Mutation: Adjust the inventory levels for specific products.

Crossover Procedure: Blend Crossover for integer variables, blending the values of parent solutions to create offspring inventory levels.

Exit Criteria: When a certain cost threshold is reached or after a certain number of generations.

QUESTION 2

1. Initialization:

Create an initial population of potential solutions (chromosomes). Each chromosome represents a placement of queens on the chessboard. Define a fitness function that evaluates how good a solution is. In this case, it should penalize solutions where queens threaten each other.

2. Selection

Use a selection method (e.g., roulette wheel selection, tournament selection) to choose parents from the population based on their fitness.

3. Crossover

Apply crossover (recombination) to the selected parents to create new offspring chromosomes. This combines the genetic material of two parents to create one or more children.

4. Mutation

Apply mutation to the offspring. This introduces small random changes to the chromosomes. In this context, mutation might involve randomly moving a queen to a different position.

5. Evaluate Fitness

Evaluate the fitness of the new offspring generated through crossover and mutation.

6. Survivor Selection

Select the next generation from the current population and the offspring. This can be done using methods like elitism (keeping the best solutions) or generational replacement.

7. Termination Condition

Check if a termination condition is met. This could be a maximum number of generations reached, or a solution with adequate fitness is found.

8. Repeat

If the termination condition is not met, repeat steps 2 through 7 until a satisfactory solution is found.

START

[0,1,5,6,0,2,6,5]

	0	1	2	3	4	5	6	7
0	Q				Q			
1		Q						
2						Q		
3								
4								
5			Q					Q
6				Q			Q	
7								

[7,1,5,6,0,2,6,5]

	0	1	2	3	4	5	6	7
0					Q			
1		Q						
3						Q		
3								
4								
5			Q					Q
6				Q			Q	
7	Q							

[7,1,4,6,0,2,6,5]

	0	1	2	3	4	5	6	7
0					Q			
1		Q						
2						Q		
3								
4			Q					
5								Q
6				Q			Q	
7	Q							

[7,1,4,2,0,2,6,5]

	0	1	2	3	4	5	6	7
0					Q			
1		Q						
2				Q		Q		
3								
4			q					
5								Q
6							Q	
7	Q							

[7,1,4,2,0,6,6,5]

	0	1	2	3	4	5	6	7
0					ď			
1		Q						
2				Q				
3								
4			Q					
5								Q
6						Q	q	
7	Q							

[7,1,4,2,0,6,3,5]

	0	1	2	3	4	5	6	7
0					ď			
1		ď						
2				q				
3							ď	
4			ď					
5								Q
6						Q		
7	Q							

QUESTION 3

1)

	Variables	Initial Domains
Algorithms Requirement (AR)	10, 11, 12, 13, 15	10, 11, 12, 13, 15
Machine Learning Requirement (MLR)	12, 13, 15	12, 13, 15
Communications Requirement (CR):	15, 17, 16	15, 17, 16
ICT Requirement (ICTR)	12, 18	12, 18

2)

Algorithms Requirement (AR):

If Mateen has already taken 10, then domain of AR: {11, 12, 13, 15} If Mateen has already taken 11, then domain of AR: {10, 12, 13, 15} If Mateen has already taken 12, then domain of AR: 10, 13, 15} If Mateen has already taken 13, then domain of AR: {10, 12, 15} If Mateen has already taken 15, then domain of AR: {10, 11, 12, 13}

Machine Learning Requirement (MLR):

If Mateen has already taken 12, then domain of MLR: {13, 15} If Mateen has already taken 13, then domain of MLR: {12, 15} If Mateen has already taken 15, then domain of MLR: {12, 13}

Communications Requirement (CR):

No constraints are applied based on what Mateen has taken.

ICT Requirement (ICTR):

If Mateen has already taken 12, then domain of ICTR: {18}. If Mateen has already taken 18, then domain of ICTR: {12}.

Schedule:

Based on the constraint propagation, Mateen can select the following classes to satisfy all requirements:

AR: 10 MLR: 12 CR: 15 ICTR: 18

6