REPUBLIC OF CAMEROON PEACE-WORK-FATHERLAND

MINISTRY OF HIGHER EDUCATION

THE UNIVERSITY OF YAOUNDE I

FACULTY OF MEDICINE AND BIOMEDICAL SCIENCES

REPUBLIQUE DU CAMEROUN PAIX-TRAVAIL-PATRIE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR

UNIVERSITE DE YAOUNDE I

FACULTE DE MEDECINE ET DES SCIENCES BIOMEDICALES

DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY

DELIVERY AFTER TREATMENT FOR MALARIA AT TERM: COMPARATIVE OUTCOME BETWEEN INDUCTION OF LABOUR AND EXPECTANT SPONTANEOUS LABOUR

Thesis submitted and publicly defended in partial fulfilment of the requirements for the Award of Medicinae Doctor (MD) degree by:

MBELE Chelsea NGOMO

19M001

Supervisor

Prof. MBU Robinson ENOW

Professor of Obstetrics and Gynaecology
Department of Obstetrics and
Gynaecology
Faculty of Medicine and Biomedical
sciences
University of Yaoundé I

Co-supervisors

Dr. EBONG Cliford EBONTANE

Senior Lecturer

Obstetrics and Gynaecology

Dr. MBOUA BATOUM Veronique

Senior Lecturer

Obstetrics and Gynaecology

Academic year 2023-2024

REPUBLIC OF CAMEROON PEACE-WORK-FATHERLAND

•••••

MINISTRY OF HIGHER EDUCATION

THE LIMITED SITY OF VACI

THE UNIVERSITY OF YAOUNDE I

•••••

FACULTY OF MEDICINE AND BIOMEDICAL SCIENCES

REPUBLIQUE DU CAMEROUN PAIX-TRAVAIL-PATRIE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR

I INIVED CITE DE VACIENDE

UNIVERSITE DE YAOUNDE I

FACULTE DE MEDECINE ET DES SCIENCES BIOMEDICALES

DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY

DELIVERY AFTER TREATMENT FOR MALARIA AT TERM: COMPARATIVE OUTCOME BETWEEN INDUCTION OF LABOUR AND EXPECTANT SPONTANEOUS LABOUR

Thesis submitted and publicly defended in partial fulfilment of the requirements for the Award of Medicinae Doctor (MD) degree by:

MBELE Chelsea NGOMO

19M001

Supervisor

Prof. MBU Robinson ENOW

Professor of Obstetrics and Gynaecology

Department of Obstetrics and

Gynaecology

Faculty of Medicine and Biomedical

sciences

University of Yaoundé I

Co-supervisors

Dr. EBONG Cliford EBONTANE

Senior Lecturer

Obstetrics and Gynaecology

Dr. MBOUA BATOUM Veronique

Senior Lecturer

Obstetrics and Gynaecology

Academic year 2023-2024

REPUBLIC OF CAMEROON PEACE-WORK-FATHERLAND

MINISTRY OF HIGHER EDUCATION

THE UNIVERSITY OF YAOUNDE I

FACULTY OF MEDICINE AND BIOMEDICAL SCIENCES

REPUBLIQUE DU CAMEROUN PAIX-TRAVAIL-PATRIE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR

UNIVERSITE DE YAOUNDE I

FACULTE DE MEDECINE ET DES SCIENCES BIOMEDICALES

DEPARTMENT OF OBSTETRICS AND GYNAECOLOGY

DELIVERY AFTER TREATMENT FOR MALARIA AT TERM: COMPARATIVE OUTCOME BETWEEN INDUCTION OF LABOUR AND EXPECTANT SPONTANEOUS LABOUR

Thesis submitted and publicly defended partial fulfilment of the requirements for the Award of Medicinae Doctor (MD) degree by:

MBELE Chelsea NGOMO

19M001

Supervisor Prof. MBU Robinson ENOW **JURY MEMBERS President** Professor of Obstetrics and Gynaecology Department of Obstetrics and Rapporteur Gynaecology **Co-supervisors Members Dr. EBONG Cliford EBONTANE** Senior Lecturer Obstetrics and Gynaecology Dr. MBOUA BATOUM Veronique Senior Lecturer Obstetrics and Gynaecology

Academic year 2023-2024

TABLE OF CONTENTS

DEDICATION	iv
ACKNOWLEDGEMENTS	v
THE ADMINISTRATIVE AND TEACHING STAFF FOR 2023/2024 OF THE FAC	CULTY
OF MEDICINE AND BIOMEDICAL SCIENCES	vi
THE PHYSICIAN'S OATH	xxi
SUMMARY	xxii
LIST OF TABLES	xxv
LIST OF FIGURES	xxvi
LIST OF ABBREVIATIONS	xxvii
CHAPTER: 1 INTRODUCTION	1
1.1. Background	2
1.2. Rationale	2
1.3. Research Question	3
1.4. Research Hypothesis	3
1.5. Research Objectives	3
1.5.1. General Objective	3
1.5.2. Specific Objectives	3
CHAPTER 2: LITERATURE REVIEW	4
2.1. INTRODUCTION	4
2.1.1. Definition of Operational Terms	4
2.1.2 Epidemiology	4
2.2. RECALL	6
2.2.1. Anatomy	6
2.2.2. Physiology	8
2.3. At Risk Pregnancy	10
2.4. Malaria in Pregnancy	10
2.4.1. General Overview	10

2.4.2. Pathophysiology	11
2.4.3. Clinical Signs and Symptoms	15
2.4.4. Diagnosis of Malaria	17
2.4.5. Management of Malaria	18
2.5. Induction of Labor	21
2.5.1. General Overview	21
2.5.2. Indications	21
2.5.3. Contraindications	21
2.5.4. Criteria of Induction	22
2.5.5. Methods of Induction	23
2.5.6. Complications of Induction of Labour	25
2.6. Review of Studies	26
2.6.1. In the world	26
2.6.2. In Africa	31
2.6.3. In Cameroon	34
CHAPTER 3: METHODOLOGY	39
3.1. TYPE OF STUDY	40
3.2. SITE OF STUDY	40
3.3. DURATION OF STUDY	40
3.4. STUDY POPULATION AND SAMPLE	40
3.4.1. Inclusion Criteria	40
3.4.2 Exclusion Criteria	41
3.4.3. Non-Inclusion Criteria	41
3.4.4. Sampling Method	41
3.4.5. Sample size Estimation	41
3.5. PROCEDURE	42
3.5.1. Administrative Formalities	42
3.5.2. Recruitment and Data Collection	42
3.5.3. Study Variables	43

3.6. STUDY RESOURCES	43
3.6.1. Data Collection and Management Tools	43
3.6.2. Human Resource	43
3.7. DATA ANALYSIS	44
3.8. ETHICAL CONSIDERATIONS	44
CHAPTER 4: RESULTS	45
4.1. Recruitment of study population	46
4.2. Socio-demographic profile of the study population	47
4.2.1. Age and marital status	47
4.2.2. Level of education and occupation	48
4.3. Clinical profile of the study population	49
4.3.2. Comorbidities and lifestyle during pregnancy	50
4.3.3. Pregnancy follow-up.	51
4.3.4. Bishop score	54
4.4. Maternal outcome in the study population	55
4.5. Fetal and neonatal outcome of the study population	56
4.5.1. Fetal complications at delivery	56
4.5.2. Neonatal characteristics at delivery	57
4.5.3. Neonatal outcomes	58
CHAPTER 5: DISCUSSION	59
CONCLUSION AND RECOMMENDATIONS	59
REFERENCES	59
ADDENDIV	50

DEDICATION

To my parents,

Professor NGOMO Horace MANGA

And

Mrs. NGOMO Julie ULE

ACKNOWLEDGEMENTS

First and foremost, praises and thanks to the Almighty God who carried me on eagle's wings throughout these seven years of medical school, showered me with unending blessings and kept me safe at all times. The outcome of this research work has been made possible, thanks to the support of many persons, some of whom deserve profound gratitude. Special thanks to;

- ❖ Professor MBU Robinson Director of the Yaoundé Gynaecology, Obstetrics and Pediatric Hospital (YGOPH) my supervisor. I'm deeply grateful to you for bringing the weight of your incredible experience and knowledge to this piece of work. You always made time for me, despite your numerous commitments to ensure that this piece of work is completed. Thank you for your patience, guidance and support.
- ❖ **Dr EBONG Cliford** my co-supervisor who devoted much time in continuously correcting this write-up, as well as giving orientations which permitted me to improve on the quality of this work.
- ❖ **Dr BATOUM Veronique** for accepting to co-supervise this thesis. I'm forever grateful for your tremendous support and help.
- ❖ The Dean and the entire staff of the Faculty of Medicine and Biomedical Sciences-University of Yaoundé I, for always leading us on the right path to success and making sure we had a grasp of everything we learned throughout medical school.
- ❖ The honorable jury members, for accepting to read through and evaluate my work and for your valuable input aimed at improving this work.
- ❖ The Director of the Yaoundé Central Hospital, for granting me authorization to carry out this research in your institution.
- ❖ The entire staff at the Obstetrics and Gynecology units of the YGOPH and YCH, for helping me throughout this work and providing the necessary assistance for it to come to fruition.
- My sincere gratitude goes to all the participants who played a crucial role in the completion of this study.
- ❖ I extend my heartfelt appreciation to my family, seniors and friends, their unwavering belief in my abilities has been a driving force in my pursuit of excellence.
- ❖ I'm extremely grateful to all those who directly or indirectly inspired and encouraged the completion of this work.

THE ADMINISTRATIVE AND TEACHING STAFF FOR 2023/2024 OF THE FACULTY OF MEDICINE AND BIOMEDICAL SCIENCES

ADMINISTRATIVE STAFF

Dean: Pr NGO UM Esther Juliettte epse MEKA

Vice-Dean in charge of academic activities: Pr. NTSAMA ESSOMBA Claudine Mireille

Vice Dean in charge of Students'records, follow-up and statistics: Pr. NGANOU Chris

Nadège epse GNINDJIO

Vice-Dean in charge of Research and Cooperation : Pr. ZEH Odile Fernande

Director of Academics, Students' records and Research: Dr VOUNDI VOUNDI Esther

Director of Administrative and Financial Affairs: Mrs. ESSONO EFFA Muriel Glawdis

General Coordinator of the Specialization Cycle: Pr NJAMNSHI Alfred KONGNYU

Chief of service, Finance: Mrs NGAMALI NGOU Mirelle Albertine epse WAH

Deputy Chief of service, Finance: Mrs MANDA BANA Marie Madeleine epse ENGUENE

Chief of service of General Administration and Personnel: Pr SAMBA Odette NGANO

épse. TCHOUAWOU

Chief of service, Certifications, Program for lectures and Research: Mrs. ASSAKO Anne

DOOBA

Deputy Chief of service, Certifications, Program for lectures and Research: Dr NGONO

AKAM MARGA Vanina

Chief of service, Students's records and statistics: Mr. BIENZA Aline

Deputy Chief of service, student's records and statistics: Mrs. FAGNI MBOUOMBO

AMINA epse. ONANA

Chief of service, Equipment and Maintenance: Mrs. HAWA OUMAROU

Deputy Chief of service, Equipment and Maintenance: Dr NDONGO née MPONO

EMENGUELE

Interim Chief Librarian: Ms. FROUISSOU nee MAME Marie-Claire

Stores Accountant: Mr. MOUMEMIE NJOUNDIYIMOUN MAZOU

PROGRAM AND SPECIALTY TRAINING COORDINATORS

Coordinator, Oral Medicine: Pr. BENGONDO MESSANGA Charles

Coordinator, Pharmacy: Pr. NTSAMA ESSOMBA Claudine

Internship Sector Coordinator: Pr. ONGOLO ZOGO Pierre

Coordinator, Specialization in Morbid Anatomy/Pathology: Pr. SANDO Zacharie

Coordinator, Specialization in Anaesthesia and Critical care: Pr. ZE MINKANDE

Jacqueline

Coordinator, Specialization in General Surgery: Pr. NGO NONGA Bernadette

Coordinator, Specialization in Gynaecology and Obstetrics : Pr. DOHBIT Julius SAMA

Coordinator, Specialization in Internal Medicine: Pr. NGANDEU Madeleine

Coordinator, Specialization in Pediatrics: Pr. MAH Evelyn MUNGYEH

Coordinator, Specialization in Clinical Laboratory Sciences: Pr. KAMGA FOUAMNO

Henri Lucien

Coordinator, Specialization in Radiology and Medical Imaging: Pr. ONGOLO ZOGO

Pierre

Coordinator, Specialization in Public Health: Pr. TAKOUGANG Innocent

Coordinator, Post-Graduate Education Program: Pr. KASIA Jean Marie

Focal Point, Project: Pr NGOUPAYO Joseph

CESSI Pedagogic Manager: Pr. ANKOUANE ANDOULO Firmin

HONORARY DIRECTORS OF THE CUSS (University Centre for Health Sciences)

Professor MONEKOSSO Gottlieb (1969-1978)

Professor EBEN MOUSSI Emmanuel (1978-1983)

Professor NGU LIFANJI Jacob (1983-1985)

Professor CARTERET Pierre (1985-1993)

HONORARY DEANS OF THE FMSB (Faculty of Medicine and Biomedical Sciences)

Professor SOSSO Maurice Aurélien (1993-1999)

Professor NDUMBE Peter (1999-2006)

Pr TETANYE EKOE Bonaventure (2006-2012)

Pr EBANA MVOGO Come (2012-2015)

TEACHING STAFF

NAMES RANK FIELD DEPARTMENT OF SURGERY AND SUBSPECIALTIES

SOSSO Maurice Aurélien (HD)	P	General Surgery
DJIENTCHEU Vincent de Paul	P	Neurosurgery
ESSOMBA Arthur (Interim HD)	P	General Surgery
HANDY EONE Daniel	P	Trauma/Orthopedic Surgery
MOUAFO TAMBO Faustin	P	Pediatric Surgery
NGO NONGA Bernadette	P	General Surgery
NGOWE NGOWE Marcellin	P	General Surgery
ZE MINKANDE Jacqueline	P	Anesthesia-Critical care
BAHEBECK Jean	AP	Orthopaedic Surgery
BANG GUY Aristide	AP	General Surgery
BENGONO BENGONO Roddy Stéphane	AP	Anesthesia-Critical care
FARIKOU Ibrahima	AP	Orthopaedic Surgery
JEMEA Bonaventure	AP	Anesthesia-Critical care
OWONO ETOUNDI Paul	AP	Anesthesia-Critical care
BEYIHA Gérard	AP	Anesthesia-Critical care
ESIENE Agnes	AP	Anesthesia-Critical care
EYENGA Victor Claude	AP	Surgery/Neurosurgery
GUIFO Marc Leroy	AP	General Surgery
NGO YAMBEN Marie Ange	AP	Orthopedic Surgery
TSIAGADIGI Jean Gustave	AP	Trauma/Orthopaedic Surgery
BELLO FIGUIM	SL	Neurosurgery
BIWOLE BIWOLE Daniel Claude Patrick	SL	General Surgery
FONKOUE Loïc	SL	Trauma/Orthopaedic Surgery

KONA NGONDO François Stéphane	SL	Anesthesia-Critical care
MBOUCHE Landry Oriole	SL	Urology
MEKEME MEKEME Junior Barthelemy	SL	Urology
MULUEM Olivier Kennedy	SL	Orthopaedic Surgery
NWAHA MAKON Axel Stéphane	SL	Urology
SAVOM Eric Patrick	SL	General Surgery
AHANDA ASSIGA	SL	General Surgery
AMENGLE Albert Ludovic	SL	Anesthesia-Critical care
BIKONO ATANGANA Ernestine Renée	SL	Neurosurgery
BWELE Georges	SL	General Surgery
IROUME Cristella Raïssa BIFOUNA ep. NTYO'O NKOUMOU	SL	Anesthesia-Critical care
NDIKONTAR KWINJI Raymond	SL	Anesthesia-Critical care
EPOUPA NGALLE Frantz Guy	L	Urology
MOHAMADOU GUEMSE Emmanuel	L	Orthopaedic Surgery
NYANIT BOB Dorcas	L	Pediatric Surgery
OUMAROU HAMAN NASSOUROU	L	Neurosurgery
ARROYE BETOU Fabrice Stephane	L	Thoracic and Cardiovascular surgery
FOLA KOPONG Olivier	L	General Surgery
FOSSI KAMGA GACELLE	L	Pediatric Surgery
GOUAG	L	Anesthesia-Critical care
FOUDA Jean Cedrick	L	Urology
MBELE Richard II	L	Thoracic Surgery
MFOUAPON EWANE Hervé Blaise	L	Neurosurgery
NGOUATNA DJEUMAKOU Serge Rawlings	L	Anesthesia-Critical Care
NYANKOUE MEBOUINZ Ferdinand	L	Orthopaedic/Trauma Surgery

DEPARTMENT OF INTERNAL MEDICINE AND SUBSPECIALTIES

SINGWE Madeleine epse NGANDEU (HD)	P	Internal Medicine/Rheumatology
ANKOUANE ANDOULO	P	Internal Medicine / Gastroenterology and Hepatology
ASHUNTANTANG Gloria Enow	P	Internal Medicine/Nephrology
BISSEK Anne Cécile	P	Internal Medicine/Dermatology
KAZE FOLEFACK François	P	Internal Medicine/Nephrology
KUATE TEGUEU Calixte	P	Internal Medicine/Neurology
KOUOTOU Emmanuel Armand	P	Internal Medicine/Dermatology
MBANYA Jean Claude	P	Internal Medicine/Endocrinology
NDJITOYAP NDAM Elie Claude	P	Internal Medicine/Gastroenterology and Hepatology
NDOM Paul	P	Internal Medicine/Oncology
NJAMNSHI Alfred KONGNYU	P	Internal Medicine/Neurology
NJOYA OUDOU	P	Internal Medicine/Gastroenterology and Hepatology
SOBNGWI Eugene	P	Internal Medicine/Endocrinology
PEFURA YONE Eric Walter	P	Internal Medicine/Pneumology
BOOMBHI Jerome	AP	Internal Medicine/Cardiology
FOUDA MENYE Hermine Danielle	AP	Internal Medicine/Nephrology
HAMADOU BA	AP	Internal Medicine/Cardiology
MENANGA Alain Patrick	AP	Internal Medicine/Cardiology
NGANOU Chris Nadège	AP	Internal Medicine/Cardiology
KOWO Mathurin Pierre	AP	Internal Medicine/ Gastroenterology and Hepatology
KUATE nee MFEUKEU KWA Liliane Claudine	AP	Internal Medicine/Cardiology
NDONGO AMOUGOU Sylvie	AP	Internal Medicine/Cardiology

ESSON MAPOKO Berthe Sabine epse		
PAAMBOG	SL	Internal Medicine/Oncology
ETOA NDZIE epse ETOGA Martine	SL	Internal Medicine/Endocrinology
Claude		
MAÏMOUNA MAHAMAT	SL	Internal Medicine/Nephrology
MASSONGO MASSONGO	SL	Internal Medicine/Pneumology
MBONDA CHIMI Paul-Cédric	SL	Internal Medicine/Neurology
NDJITOYAP NDAM Antonin Wilson	SL	Internal Medicine/Gastroenterology
NDOBO epse KOE Juliette Valérie	SL	Internal Madiaina/Cardialogy
Danielle	SL	Internal Medicine/Cardiology
NGAH KOMO Elisabeth	SL	Internal Medicine/Pneumology
NGARKA Leonard	SL	Internal Medicine/Neurology
NKORO OMBEDE Grace Anita	SL	Internal Medicine/Dermatology
NTSAMA ESSOMBA Marie Josiane	SL	Internal Medicine/Geriatrics
epse EBODE	SL	internal wedgeme/deriatries
OWONO NGABEDE Amalia Ariane	SL	Internal Medicine/Interventional Cardiology
ATENGUENA OBALEMBA Etienne	SL	Internal Medicine/Medical Oncology
DEHAYEM YEFOU Mesmin	SL	Internal Medicine/Endocrinology
KAMGA OLEN Jean Pierre Olivier	SL	Internal Medicine/Psychiatry
MENDANE MEKOBE Francine epse EKOBENA	SL	Internal Medicine/Endocrinology
MINTOM MEDJO Pierre Didier	SL	Internal Medicine/Cardiology
NTONE ENYIME Félicien	SL	Internal Medicine/Psychiatry
NZANA Victorine Bandolo epse	L	Internal Medicine/Nephrology
FORKWA MBAH	L	memai wedienie/wepinology
ANABA MELINGUI Victor Yves	L	Internal Medicine/Rheumatology
FOJO TALONGONG Baudelaire	L	Internal Medicine/Rheumatology
EBENE MANON Guillaume	L	Internal Medicine/Cardiology
ELIMBY NGANDE Lionel Patrick Joël	L	Internal Medicine/Nephrology

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

KUABAN Alain	L	Internal Medicine/Pneumology
NKECK Jan René	L	Internal Medicine
NSOUNFON ABDOU WOUOLIYOU	L	Internal Medicine/Pneumology
NTYO'O NKOUMOU Arnaud Laurel	L	Internal Medicine/Pneumology
TCHOUANKEU KOUNGA Fabiola	L	Internal Medicine/Psychiatry

DEPARTMENT OF MEDICAL IMAGING AND RADIOLOGY

ZEH Odile Fernande (HD)	P	Radiology/Medical Imaging
MOUELLE SONE	P	Radiotherapy
NKO'O AMVENE SAMUEL	P	Radiology/Medical Imaging
GUEGANG GOUJOU. Emmanuel	P	Medical Imaging/Neuroradiology
MOIFO Boniface	P	Radiology/Medical Imaging
ONGOLO ZOGO Pierre	AP	Radiology/Medical Imaging
SAMBA Odette NGANO	AP	Biophysics/Medical Physics
MBEDE Maggy epse ENDEGUE MANGA	SL	Radiology/Medical Imaging
MEKA'H MAPENYA Ruth-Rosine	SL	Radiotherapy
NWATSOCK Joseph Francis	L	Radiology/ Nuclear Medicine
SEME ENGOUMOU Ambroise Merci	L	Radiology/Medical Imaging
ABO'O MELOM Adèle Tatiana	L	Radiology and Medical Imaging

DEPARTMENT OF GYNAECOLOGY AND OBSTETRICS

NGO UM Esther Juliette epouse MEKA (HD)	AP	Gynaecology/Obstetrics
FOUMANE Pascal	P	Gynaecology/Obstetrics
KASIA Jean Marie	P	Gynaecology/Obstetrics
KEMFANG NGOWA Jean Dupont	P	Gynaecology/Obstetrics
MBOUDOU Emile	P	Gynaecology/Obstetrics
MBU ENOW Robinson	P	Gynaecology/Obstetrics

NKWABONG Elie	P	Gynaecology/Obstetrics
TEBEU Pierre Marie	P	Gynaecology/Obstetrics
FOUEDJIO Jeanne Hortence	AP	Gynaecology/Obstetrics
NOA NDOUA Claude Cyrille	AP	Gynaecology/Obstetrics
BELINGA Etienne	AP	Gynaecology/Obstetrics
ESSIBEN Félix	AP	Gynaecology/Obstetrics
DOHBIT Julius SAMA	AP	Gynaecology/Obstetrics
MVE KOH Valère Salomon	AP	Gynaecology/Obstetrics
EBONG Cliford EBONTANE	SL	Gynaecology/Obstetrics
MBOUA BATOUM Véronique Sophie	SL	Gynaecology/Obstetrics
MENDOUA Michèle Florence Epse NKODO	SL	Gynaecology/Obstetrics
METOGO NTSAMA Junie Annick	SL	Gynaecology/Obstetrics
NSAHLAI Christiane JIVIR FOMU	SL	Gynaecology/Obstetrics
NYADA Serge Robert	SL	Gynaecology/Obstetrics
TOMPEEN Isidore	L	Gynaecology/Obstetrics
MPONO EMENGUELE Pascale Epse NDONGO	L	Gynaecology/Obstetrics
NGONO AKAM Marga Vanina	L	Gynaecology/Obstetrics

DEPARTMENT OF OPTHALMOLOGY

DJOMOU François (HD)	P	ENT
EPEE Emilienne epse ONGUENE	P	Ophthalmology
KAGMENI Gilles	P	Ophthalmology
NDJOLO Alexis	P	ENT
NJOCK Richard	P	ENT
OMGBWA EBALE André	P	Ophthalmology
BILLONG Yannick	AP	Ophthalmology
DOHVOMA Andin Viola	AP	Ophthalmology

EBANA MVOGO Stève Robert	AP	Ophthalmology
KOKI Godefroy	AP	Ophthalmology
MINDJA EKO David	AP	ENT/Maxillofacial Surgery
NGABA Olive	AP	ENT
AKONO ZOUA ep ETEME Marie Evodie	SL	Ophthalmology
ANDJOCK NKOUO Yves Christian	SL	ENT
ATANGA Léonel Christophe	SL	ENT-MFS
MEVA'A BIOUELE Roger Christian	SL	ENT-MFS
MOSSUS Yannick	SL	ENT-MFS
MVILONGO TSIMI epse BENGONO Caroline	SL	Ophthalmology
NANFACK NGOUNE Chantal	SL	Ophthalmology
NGO NYEKI Adèle-Rose epse MOUAHA-BELL	SL	ENT-MFS
NOMO Arlette Francine	SL	Ophthalmology
ASMAOU BOUBA Dalil	L	ENT
BOLA SIAFA Antoine	L	ENT

DEPARTMENT OF PEDIATRICS

ONGOTSOYI Angèle Epse PONDY (HD)	P	Pediatrics
KOKI NDOMBO Paul	P	Pediatrics
ABENA OBAMA Marie Thérèse	P	Pediatrics
CHIABI Andreas	P	Pediatrics
CHELO David	P	Pediatrics
MAH Evelyn	P	Pediatrics
NGUEFACK Séraphin	P	Pediatrics
NGUEFACK epse DONGMO Felicite	P	Pediatrics

NGO UM KINJEL Suzanne Epse SAP	AP	Pediatrics
KALLA Ginette Claude Epse MBOPI KEOU	AP	Pediatrics
MBASSI AWA Hubert	AP	Pediatrics
NOUBI Nelly Epse KAMGAING Moting	AP	Pediatrics
EPEE Epse NGOUE Jeannette	SL	Pediatrics
KAGO TAGUE Daniel Armand	SL	Pediatrics
MEGUIEZE Claude-Audrey	SL	Pediatrics
MEKONE NKWELE Isabelle	SL	Pediatrics
TONY NENGOM Jocelyn	SL	Pediatrics

DEPARTMENT OF MICROBIOLOGY, PARASITOLOGY, HEMATOLOGY AND INFECTIOUS DISEASES

MBOPI KEOU François-Xavier (HD)	P	Bacteriology/Virology
ADIOGO Dieudonné	P	Microbiology/Virology
GONSU nee KAMGA Hortense	P	Bacteriology
MBANYA Dora	P	Hematology
OKOMO ASSOUMOU Marie Claire	P	Bacteriology/Virology
TAYOU TAGNY Claude	P	Microbiology/Hematology
LYONGA Emilia ENJEMA	AP	Medical Microbiology
TOUKAM Michel	AP	Microbiology
CHETCHA CHEMEGNI Bernard	AP	Microbiology/Hematology
NGANDO Laure epse MOUDOUTE	SL	Parasitology
NGOGANG Marie Paule	SL	Clinical Biology
NDOUMBA NKENGUE Annick epse MINTYA	SL	Hematology
VOUNDI VOUNDI Esther	SL	Virology
BOOM II YAP	SL	Microbiology
BEYALA Frédérique	L	Infectious diseases

ESSOMBA René Ghislain	L	Immunology and Infectious Diseases
MEDI SIKE Christiane Ingrid	L	Clinical Biology
ANGANDJI TIPANE Prisca epse ELLA	L	Clinical Biology/Hematology
Georges MONDINDE IKOMEY	L	Immunology
MBOUYAP Jolie Rosereine	L	Pharmacology

DEPARTMENT OF PUBLIC HEALTH

KAMGNO Joseph (HD)	P	Public Health/Epidemiology
ESSI Marie Josée	P	Public Health/Medical Anthropology
BEDIANG Georges Wylfred	AP	Medical Informatics/Public Health
NGUEFACK TSAGUE	AP	Public Health/Biostatistics
TAKOUGANG Innocent	AP	Public Health
TANYA nee NGUTI K.A.	AP	Nutrition
BILLONG Serges Clotaire	SL	Public Health
EYEBE EYEBE Serge Bertrand	SL	Public Health/Epidemiology
KEMBE ASSAH Felix	SL	Epidemiology
KWEDI JIPPE Anne Sylvie	SL	Epidemiology
MBA MAADJHOU Berjauline Camille	L	Public Health/Nutritional Epidemiology
MOSSUS Tatiana nee ETOUNOU AKONO	SL	Health Promotion Expert
NJOUMEMI ZAKARIAOU	SL	Public Health/Health Economics
ONDOUA MBENGONO Laure Julienne	L	Psychologist
ABBA-KABIR HAAMIT-M	L	Pharmacist
AMANI ADIDJA	L	Public health
ESSO ENDALLE Lovet Linda Augustine Julia	L	Public health

DEPARTMENT OF MORPHOLOGICAL SCIENCES AND MORBID ANATOMY

MENDIMI NKODO Joseph (HD)	P	Morbid Anatomy /Pathology
SANDO Zacharie	P	Morbid Anatomy/ Pathology
ESSAME OYONO	P	Morbid Anatomy/ Pathology
FEWOU Amadou	P	Morbid Anatomy/ Pathology
BISSOU MAHOP	AP	Sports Medicine
KABEYENE OKONO Angèle	AP	Histology/Embryology
AKABA Désiré	AP	Human Anatomy
NSEME Eric	AP	Legal Medecine
NGONGANG Gilbert Frank Olivier	SL	Legal Medecine
MENDOUGA MENYE Coralie Reine	L	Pathology
Bertine epse KOUOTOU		
ESSAME Eric Fabrice	L	Pathology

DEPARTMENT OF BIOCHEMISTRY

NDONGO EMBOLA epse TORIMIRO Judith (HD)	P	Molecular biology
PIEME Constant Anatole	P	Biochemistry
AMA MOOR Vicky Joceline	P	Clinical Biology/Biochemistry
EUSTACE BONGHAN BERINYUY	SL	Biochemistry
GUEWO FOKENG Magellan	SL	Biochemistry
MBONO SAMBA ELOUMBA Esther Astrid	L	Biochemistry

DEPARTMENT OF PHYSIOLOGY

ETOUNDI NGOA Laurent Serges (HD)	P	Physiology
ASSOMO NDEMBA Peguy Brice	AP	Physiology
David Emery TSALA	AP	Physiology
AZABJI KENFACK Marcel	SL	Physiology

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

DZUDIE TAMDJA Anastase	SL	Physiology
EBELL'A DALLE Ernest Remy Hervé	L	Human Physiology

DEPARTMENT OF PHARMACOLOGY AND TRADITIONAL MEDICINE

NGONO MBALLA Rose ABONDO (HD)	AP	African pharmaco-therapeutics
NDIKUM Valentine	SL	Pharmacology
ONDOUA NGUELE Marc Olivier	L	Pharmacology

DEPARTMENT OF ORAL SURGERY, MAXILLO-FACIAL SURGERY AND PERIODONTOLOGY

BENGONDO MESSANGA Charles (HD)	P	Stomatology
EDOUMA BOHIMBO Jacques Gérard	SL	Stomatology and Surgery
LOWE NANTCHOUANG Jacqueline Michèle epse ABISSEGUE	SL	Pediatric Dentistry
Jules Julien NDJOH	SL	Dental Surgery
MBEDE NGA MVONDO Rose	SL	Oral medicine
MENGONG epse MONEBOULOU Hortense	SL	Pediatric Dentistry
NOKAM TAGUEMNE M.E.	SL	Dental Medicine
BITHA BEYIDI Thècle Light Rose	L	Maxillofacial Surgery
GAMGNE GUIADEM Catherine M	L	Dental surgery
NIBEYE Yannick Carine Brice	L	Bacteriology
KWEDI Karl Guy Grégoire	L	Dental Surgery
NKOLO TOLO Francis Daniel	L	Dental Surgery

DEPARTMENT OF PHARMACOGNOSY AND PHARMACEUTICAL CHEMISTRY

NTSAMA ESSOMBA Claudine (HD)	Р	Pharmacognosy/Pharmaceutical chemistry
------------------------------	---	--

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

NGAMENI Bathélémy	P	Phytochemistry/Organic Chemistry
NGOUPAYO Joseph	P	Phytochemistry/Pharmacognosy
GUEDJE Nicole Marie	AP	Ethnopharmacology/Plant biology
BAYAGA Hervé Narcisse	L	Pharmacy

DEPARTMENT OF PHARMACOTOXICOLOGY AND PHARMACOKINETICS

ZINGUE Stéphane (HD)	AP	Physiology and Pharmacology
FOKUNANG Charles	P	Molecular biology
MPONDO MPONDO Emmanuel	P	Pharmacy
TEMBE Estella epse FOKUNANG	AP	Clinical Pharmacology
TABI OMGBA	SL	Pharmacy
ANGO Yves Patrick	SL	Chemistry of natural substances
NENE AHIDJO ep NJITUNG TEM	SL	Neuropharmacology

DEPARTMENT OF GALENIC PHARMACY AND PHARMACEUTICAL LEGISLATION

NNANGA NGA Emmanuel (HD)	P	Galenial Pharmacy
MBOLE Jeanne Mauricette epse MVONDO M.	SL	Quality management, Quality control of health products and food
NYANGONO NDONGO Martin	L	Pharmacy
SOPPO LOBE Charlotte Vanessa	L	Drug quality control
ABA'A Marthe Dereine	L	Drug Analysis
FOUMANE MANIEPI NGOUOPIHO Jacqueline Saurelle	L	Pharmacology
MINYEM NGOMBI Aude Périne epse AFUH	L	Pharmaceutical Regulation

KEY:

-HD= Head of Department

-**P**= Professor

-**AP**= Associate Professor

-SL= Senior Lecturer

Delivery after treatment for malaria at term: comparative outcome between in	nduction
of labour and expectant spontaneous labour	

-**L**=Lecturer

THE PHYSICIAN'S OATH

SUMMARY

BACKGROUND: Malaria is a public health burden worldwide and especially in Sub-Saharan Africa where a significant number of individuals are affected each year. Pregnant women are part of those that are very vulnerable to this disease. In Cameroon, no study has been carried out to assess the maternal and perinatal outcome after induction of labor versus spontaneous labour following complete treatment of malaria in the third trimester of pregnancy. It is imperative to consider the most optimal delivery approach be it induction or spontaneous labor in order to minimize adverse events especially in the context of malaria.

OBJECTIVE: The main objective was to assess the maternal and fetal outcome of pregnancy among women diagnosed and treated for malaria at term following immediate induction compared to expectant spontaneous labor.

METHOD: This was a clinical trial carried out at the Yaoundé Gynaecology, Obstetrics and Pediatric Hospital (YGOPH) and the Yaoundé Central Hospital (YCH). We collected data from 170 pregnant women who were diagnosed with malaria at term and received complete treatment. We had 85 women who accepted induction of labor and 85 women who accepted to go home and await spontaneous labour.

RESULTS: Primigravidaes and nulliparas were the most represented in both groups. The rate of cesarean section was significantly higher in the induction group compared to the spontaneous delivery group (RR: 2.66, 95% CI [1.47-4.81], p< 0.001). The induction group had a higher risk than the spontaneous delivery group of having labor abnormalities (RR: 3.59, 95% CI [1.75-12.02], p=0.001) and especially perineal tears (RR: 2.09, 95% CI [1.08-4.01], p=0.01) respectively. The induction group had a higher risk of non-reassuring fetal status (RR: 2.58, 95% CI [1.42-4.68], p=0.001) than the spontaneous delivery group. The spontaneous delivery group had more cases of intrauterine fetal demise than the induction group (RR: 0.18, 95% CI [0.04-0.79], p=0.009). Newborns of the induction group had a higher risk of requiring ventilation support compared to the spontaneous delivery group (RR: 2.6, 95% CI [0.96-6.97], p=0.039).

CONCLUSION: Induction of labor was more associated with adverse maternal and foetal outcomes compared to spontaneous delivery labor but foetal demise was more in the spontaneous delivery group.

KEYWORDS: malaria, labour, induction, spontaneous, outcome.

RÉSUMÉ

CONTEXTE: Le paludisme constitue un fardeau de santé publique dans le monde entier et particulièrement en Afrique subsaharienne où un nombre important de personnes sont touchées chaque année. Les femmes enceintes font partie des personnes très vulnérables à cette maladie. Au Cameroun, aucune étude n'a été réalisée pour évaluer l'issue maternelle et périnatale après le déclenchement du travail versus le travail spontané au cours du troisième trimestre de la grossesse. Il est impératif d'envisager l'approche d'accouchement la plus optimale, qu'il s'agisse du déclenchement du travail ou du travail spontané, afin de minimiser les événements indésirables, en particulier dans le contexte du paludisme.

OBJECTIF: L'objectif principal était d'évaluer l'issue maternelle et fœtale de la grossesse chez les femmes diagnostiquées et traitées pour le paludisme à terme après le déclenchement immédiat par rapport au travail spontané attendu.

MÉTHODE: Il s'agit d'un essai clinique réalisé à l'Hôpital Gynécology-Obstétrical et Pédiatrique de Yaoundé (YGOPH) et à l'Hôpital Central de Yaoundé (YCH). Nous avons collecté les données de 170 femmes enceintes chez qui le paludisme a été diagnostiqué à terme et qui ont reçu un traitement complet. Nous avons eu 85 femmes qui ont accepté le déclenchement du travail et 85 femmes qui ont accepté de rentrer chez elles et d'attendre un travail spontané.

RÉSULTATS: Les primigravidés et les nullipares étaient les plus représentées dans les deux groupes. Le taux de césarienne était significativement plus élevé dans le groupe d'induction que dans le groupe d'accouchement spontané (RR : 2,66, IC 95 % [1,47-4,81], p< 0,001). Le groupe d'induction avait un risque plus élevé que le groupe d'accouchement spontané d'avoir des anomalies du travail (RR : 3,59, IC à 95 % [1,75-12,02], p=0,001) et des déchirures périnéales (RR : 2,09, IC à 95 % [1,08-4,01], p=0,01) respectivement. Le groupe d'induction présentait un risque plus élevé d'état fœtal non rassurant (RR : 2,58, IC à 95 % [1,42-4,68], p=0,001) que le groupe d'accouchement spontané. Le groupe d'accouchement spontané présentait plus de cas de mort fœtale intra-utérine que le groupe d'induction (RR : 0,18, IC 95 % [0,04-0,79], p=0,009). Les nouveau-nés du groupe d'induction présentaient un risque plus élevé de nécessiter une assistance respiratoire par rapport au groupe d'accouchement spontané (RR : 2,6, IC à 95 % [0,96-6,97], p = 0,039).

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

CONCLUSION : Le déclenchement du travail était davantage associé à des issues maternelles et fœtales indésirables que le travail d'accouchement spontané, mais la mort fœtale était plus fréquente dans le groupe d'accouchement spontané.

MOTS CLÉS: paludisme, travail, déclenchement, spontané, issue.

LIST OF TABLES

Table I: Showing the Bishop's Score [47] 23
Table II : Population distribution by age and marital status 47
Table III : Population distribution by level of education and occupation 48
Table IV : Population distribution according to personal and family obstetrical characteristics
Table V: Population distribution according to comorbidities and lifestyle
Table VI : Population distribution according to number of ANCs, gestational age at fist ANC and qualification of ANC provider 51
Table VII: Population distribution according to prophylactic measures during pregnancy52
Table VIII: Population distribution according to pathologies during pregnancy53
Table IX : Population distribution according to Bishop score 54
Table X : Population distribution according to route of delivery and maternal complications 55
Table XI : Population distribution according to the foetal complications at delivery
Table XII : Population distribution according to the neonatal characteristics at delivery57
Table XIII: Population distribution according to the neonatal outcome 58

LIST OF FIGURES

Figure 1 : The map shows the number of new malaria cases per 100,000 individuals across
the world. The malaria incidence is highest in the central part of Africa north and
south of the equator [17]5
Figure 2: Distribution of pregnancies occurring in areas of Plasmodium falciparum and
Plasmodium vivax malaria transmission in 2020 by WHO regions (proportion of
global estimates) [18]6
Figure 3: Anatomy of the uterus [22]
Figure 4: Fetus in utero [23]
Figure 5 : The figure above shows plasmodium life cycle [33]12
Figure 6: Placental malaria and implications [36]
Figure 7: Life cycle of plasmodium in pregnant woman [35]
Figure 8: Dilation of cervix during labor and delivery [48]
Figure 9: Recruitment flow chart

LIST OF ABBREVIATIONS

ACOG: American College of Obstetricians and Gynaecologists

ACT: Artemisinin-based Combination Therapy

ANC: Antenatal Care

BW: Birthweight

IOL: Induction of Labour

ITNs: Insecticide Treated Bed Nets

ITPp: Intermittent Preventive Treatment for Pregnancy

IUFD: Intrauterine Foetal Death

IUGR: Intrauterine Growth Retardation

NICU: Neonatal Intensive Care Unit

NRFS: Non-Reassuring Foetal Status

PM: Placental Malaria

LBW: Low Birthweight

WHO: World Health Organization

YCH: Yaounde Central Hospital

YGOPH: Yaounde Gynaecology, Obstetrics and Paediatrics Hospital

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

CHAPTER: 1 INTRODUCTION

1.1. BACKGROUND

Malaria is a significant global health concern, particularly in regions where the disease is endemic. Pregnant women are particularly vulnerable to the adverse effects of malaria infection, with increased risks of maternal morbidity and adverse fetal outcomes [1, 2]. Globally in 2021, there were an estimated 247 million cases of malaria and specifically for the World Health Organisation (WHO) African Region, an estimated 234 million cases were recorded with 593000 deaths [3]. This region accounted for about 95% of cases and 96% of deaths globally [3] In fact approximately 13.3 million of the 40 million pregnancies that year in that region were exposed to malaria [3]. In West Africa and in Central Africa the prevalence of malaria among pregnant women was 41% and 40% respectively in 2021, causing low birth weight in about 354000 neonates for both regions [3]. In Cameroon, precisely in the city of Yaounde the prevalence of malaria in pregnancy was 69.2% according to a recent study in 2022 [4]. Malaria is caused by parasites of the genus plasmodium [5]. There are various species, with *Plasmodium falciparum* being the most incriminated in Africa [6, 7]. Abnormal pregnancy outcome such as stillbirth, preterm delivery, low-birth weight neonates and anemia in pregnancy are usually associated with malaria [8]. The clinical presentation of malaria depends on the plasmodium specie involved [4, 9]. Plasmodium falciparum, usually attaches itself to placental villi thereby obstructing the placental blood flow [7]. Susceptibility of women to placental malaria (PM) is due to increased parasites sequestered in the placenta mediated by chondroitin sulfate A (CSA) binding to the trophoblast and pregnancy-associated suppression of inflammatory responses caused by hormonal changes [4,10]. In placental malaria, the infested red blood cells are sequestrated in the intervillous space and attract mononuclear cells (mononuclear intervillous inflammatory infiltration). These cells secrete pro-inflammatory cytokines, especially tumor necrosis factor-alpha and interleukin-10. When these cytokines are released, blood flow is diminished hence there is decreased transfer of oxygen and nutrients to the fetus and conditions such as intrauterine growth restriction and intrauterine fetal demise may be observed [7, 9]. Most of these conditions occur and worsen during the third trimester especially during labor and if not properly managed have a huge impact on the pregnancy outcome which is the interest of our study.

1.2. RATIONALE

Malaria infection during pregnancy, particularly in the third trimester, can have detrimental effects on both the mother and the developing foetus [7]. The management of pregnant women with malaria during the third trimester poses a clinical challenge, necessitating careful

consideration of the optimal delivery approach to minimize fetal risks [11]. Labor induction and spontaneous labor represent two distinct approaches to delivery, each with significant implications for the outcome of pregnancy in the context of malaria [12]. The impact of labor induction versus spontaneous labor on fetal outcomes in the context of malaria infection during the third trimester remains poorly understood. Existing studies have provided conflicting results, with some suggesting that labor induction may improve fetal outcomes by reducing the duration of exposure to the maternal infection while others have reported no significant differences in outcomes between the two approaches [13]. Thus there is a need for further research to elucidate the association between both methods and pregnancy outcome. Hence the interest of our study to compare the outcome in both situations in a bid to help clinicians in their quest to adopt a better approach.

1.3. RESEARCH QUESTION

➤ What is the maternal and fetal outcome of pregnancy following induction of labor compared to expectant spontaneous labor for women treated for malaria at term?

1.4. RESEARCH HYPOTHESIS

➤ Women who go into labor spontaneously after treatment for malaria at term may have a better pregnancy outcome compared to those whose labor is induced.

1.5. RESEARCH OBJECTIVES

1.5.1. General Objective

Assess the maternal and fetal outcome of pregnancy among women treated for malaria at term following immediate induction compared to expectant spontaneous labor.

1.5.2. Specific Objectives

- 1. Describe the socio-demographic and clinical profile of pregnant women diagnosed and treated for malaria at term.
- 2. Determine the maternal and fetal outcome following induction of labour or spontaneous labour among these women at term.
- 3. Compare the outcome of pregnancy in the two approaches following treatment of malaria at term.

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

CHAPTER 2: LITERATURE REVIEW

2.1. INTRODUCTION

2.1.1. Definition of Operational Terms

- > Stillbirth; this is the delivery of a death fetus at or after the 22nd completed week of pregnancy or with a weight greater than 1000g.
- Low birth weight: A weight at birth of a neonate less than 2,500 grams but greater than 1500 grams
- > Preterm birth is defined by WHO as all births before 37 completed weeks of gestation
- Antenatal care (ANC) can be defined as the care provided by trained health-care professionals to pregnant women in order to ensure the best health conditions for both mother and baby during pregnancy.
- > Primiparous: a woman's 1st delivery
- ➤ Multiparous: a woman with prior deliveries
- Labor: Labor is defined as regular uterine contractions that cause cervical dilation and effacement, leading to delivery of the fetus and the products of conception.
- Intrauterine growth retardation: this is defined as a rate of fetal growth that is less than normal for the growth potential of a fetus for that particular gestational age.
- Paroxysm: a sudden attack or increase in intensity of a symptom usually occurring in intervals.

2.1.2 Epidemiology

Malaria is a mosquito borne disease of humans caused by parasitic protozoans of the genus plasmodium and the most dangerous specie is plasmodium falciparum which is responsible for most cases of malaria in Africa. It is an immense public health concern especially in pregnancy where there is a tendency towards increased severity of the disease caused by the transient depression of immunity that occurs during pregnancy.

Malaria is one of the killer diseases worldwide. Malaria is one of the most severe public health problems worldwide. It is a leading cause of death and disease in many developing countries, where young children and pregnant women are the groups most affected [14]. According to the 2021 World Malaria Report, nearly half the world's population lives in areas at risk of malaria transmission in 87 countries and territories. In 2020, malaria caused an estimated 241 million clinical episodes, and 627,000 deaths [15]. An estimated 95% of deaths in 2020 were in the WHO

African Region [15]. On average, 60%-70% of malaria cases have been due to *P. falciparum*, with the remainder caused by *P. vivax. Anopheles gambiae* is the main malaria vector [16]

Figure 1: The map shows the number of new malaria cases per 100,000 individuals across the world. The malaria incidence is highest in the central part of Africa north and south of the equator [17]

Figure 2: Distribution of pregnancies occurring in areas of *Plasmodium falciparum* and *Plasmodium vivax* malaria transmission in 2020 by WHO regions (proportion of global estimates) [18]

2.2. RECALL

2.2.1. Anatomy

The Uterus

The non-gravid uterus is situated in the pelvic cavity between the bladder anteriorly and the rectum posteriorly [19]. The uterus is pear shaped and consists of two major but unequal parts. The lower portion of this peritoneum forms the anterior boundary of the rectouterine cul-de-sac, or pouch of Douglas. Only the upper portion of the anterior wall of the uterus is so covered. The peritoneum in this area reflects forward onto the bladder dome to create the vesicouterine pouch. The lower portion of the anterior uterine wall is united to the posterior wall of the bladder by a well-defined loose connective tissue layer—the vesicouterine space. There is an upper triangular portion—the body or corpus, and a lower, cylindrical portion—the cervix, which projects into the vagina [20]. The isthmus is the union site of these two. It is of special obstetrical significance because it forms the lower uterine segment during pregnancy. The null gravid uterus measures 6 to 8 cm in length compared with 9 to 10 cm in multiparous women. The uterus averages 60 g and typically weighs more in parous women. In null gravidae, the fundus and cervix are approximately equal in length, but in multiparas, the cervix is only a little more than a third of the total length [21]

Figure 3: Anatomy of the uterus [22]

Pregnancy stimulates remarkable uterine growth due to muscle hypertrophy. The uterine fundus, a previously flattened convexity between tubal insertions, now becomes dome shaped. Moreover, the round ligaments appear to insert at the junction of the middle and upper thirds of the organ. The fallopian tubes elongate, but the ovaries appear unchanged [21]

The wall of the uterus is very thick and consists of 3 layers: serous, muscular, and mucous. The serous layer (perimetrium) is simply the peritoneal covering. It is thin and firmly adherent over the fundus and most of the body, and then thickens posteriorly and becomes separated from the muscle by the parametrium. The muscular layer (myometrium) is extremely thick at about 1.5–2.5 cm and continuous with that of the tubes and vagina. It also extends into the ovarian and round ligaments, into the cardinal ligaments at the cervix, and minimally into the uterosacral ligaments. Two principal layers of the muscular coat can be distinguished: (1) the outer layer, which is weaker and composed of longitudinal fibers; and (2) a stronger inner layer, the fibers

Of which are interlaced and run in various directions, having intermingled within them large venous plexuses. The muscle layer hypertrophies with the internal os to form a sphincter. The mucous layer (endometrium) is soft and spongy, composed of tissue resembling embryonic connective tissue. The surface consists of a single layer of ciliated columnar epithelium. The tissue is rather delicate and friable and contains many tubular glands that open into the cavity of the uterus [9]

Figure 4: Fetus in utero [23]

2.2.2. Physiology

Normal Pregnancy

Pregnancy or gestation, is the physiologic process of a developing fetus within the maternal body. For obstetric purposes, the gestational age or menstrual age is the time elapsed since the first day of the last normal menstrual period (LNMP), which actually precedes the time of oocyte fertilization. The gestational age is expressed in completed weeks. The start of the gestation (based on the LNMP) is usually 2 weeks before ovulation, assuming a 28-day regular menstrual cycle. The developmental or fetal age is the age of the conception calculated from the time of implantation, which is 4 to 6 days after ovulation is completed. The menstrual gestational age of pregnancy is calculated at 280 days or 40 completed weeks. The estimated due date (EDD) may be estimated by adding 7 days to the first day of the last menstrual period and subtracting 3 months plus 1 year (Naegel's rule) [9]

Diagnosis of pregnancy is made on the basis of amenorrhea and a positive pregnancy test, added to these, are a multitude of signs and symptoms which further suggest the onset of pregnancy. Some of these signs and symptoms are;

- Amenorrhea; cessation of menses caused by hormones produced by the corpus luteum.
- Nausea and vomiting; these begin as early as the 2nd week of gestation and usually resolves between the 13th and 16th week of gestation. Hyperemesis gravidarum is an extreme form of

nausea and vomiting and is characterized by dehydration, weight loss (up to 5%), and ketonuria. This can sometimes lead to the loss of pregnancy.

- Breast changes like breast pain (mastodynia), breast engorgement and secretion of colostrum.
- Fetal movement; the initial perception of fetal movements occurs around the 18-20th week of gestation in primiparous women and as early as 14 weeks 'gestation in multiparous women. This sign will be one of the most important in our study.
- Other changes include abdominal enlargement, Braxton Hick's contractions, linea nigra, and striae gravidarum.

Diagnostic methods include;

- 1) Pregnancy test; Sensitive, early pregnancy tests measure changes in the level of human chorionic gonadotropin (HCG). The β submit of hCG is produced by the syncytiotrophoblast 8 days after fertilization and may be detected in the maternal serum 8-11 days after conception or as early as 21-22 days after the LNMP. B-hCG levels peak at 10-12 weeks' gestation and decrease afterward. Generally, serum and urine levels return to normal (<5mIU/mL), 21–24 days after delivery or after a fetal loss [9]
- 2) Imaging studies; Ultrasound is one of the most useful technical aids in diagnosing and monitoring pregnancy. Cardiac activity is discernible at 5-6 weeks via transvaginal ultrasound. At the end of the embryonic period (10 weeks by LNMP), the embryo has a human appearance. The gestational age can be determined by the crown rump length between 6 and 13 weeks' gestation, with a margin of error of approximately 8% or 3–5 days [9]
- 3) Fetal Heart Tones; they are detectable by handheld Doppler (after 10 weeks' gestation) or by fetoscope (after 18–20 weeks' gestation). The normal heart rate is 110–160 beats per minute [9]

<u>Uterine size/fetal palpation</u>; uterine size can be used to diagnose pregnancy secondary to uterine enlargement. Later in pregnancy, the fetus can be palpated through the maternal abdominal wall (after 22 weeks), and the position can be determined by Leopold's manoeuvres [9]

Antenatal Care/Consultations

According to the WHO, antenatal care (ANC) can be defined as the care provided by skilled health-care professionals to pregnant women and adolescent girls in order to ensure the best health conditions for both mother and baby during pregnancy. The components of ANC include: risk

identification; prevention and management of pregnancy-related or concurrent diseases; and health education and health promotion. ANC reduces maternal and perinatal morbidity and mortality both directly, through detection and treatment of pregnancy-related complications, and indirectly, through the identification of women and girls at increased risk of developing complications during labour and delivery, thus ensuring referral to an appropriate level of care [24]

2.3. AT RISK PREGNANCY

At-risk pregnancy can be broadly defined as one in which the mother, foetus or new-born is or may possibly be at increased risk of morbidity or mortality before, during or after delivery. Some of the common disorders that complicate pregnancies are:

- Hyperemesis gravidarum
- Haemorrhagic disorders
- Hypertensive disorders in pregnancy
- Infections
- Gestational diabetes
- Foetal growth disorders
- Intrauterine foetal deaths
- Premature rupture of membranes
- Preterm labour

In this section, we will focus on infections in pregnancy precisely malaria.

2.4. MALARIA IN PREGNANCY

2.4.1. General Overview

Malaria is a life-threatening disease caused by parasites that are transmitted to people through the bites of infected female anopheles mosquitoes [25]. There are many species of the anopheles mosquitoes but few such as anopheles arabiensis, anopheles gambiae [26] (commonly called the African malaria mosquito), and anopheles coluzzi and anopheles funestus are classified as primary vectors for the malaria parasites [27]. Five species of the protozoan genus plasmodium usually infect humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, Plasmodium knowlesi. P.falciparum and P.vivax and account for the vast majority of cases [26]. P. falciparum causes the most severe disease and is the most common specie in the African region

[28]. Malaria infection during pregnancy has substantial risks for the pregnant woman, her fetus and the newborn child [29]. For the pregnant woman, malaria infection can lead to severe disease and death, and placental sequestration of the parasite, which can lead to maternal anaemia; it also puts the mother at increased risk of death before and after childbirth, and is an important contributor to stillbirth and preterm birth [3]. In June 2022, WHO published consolidated guidelines for malaria that contained a package of new and updated recommendations across a number of technical areas – from case management, vector control, vaccines, malaria chemoprevention and mass drug administration (MDA) to elimination [3].

2.4.2. Pathophysiology

The life cycle of the malaria parasite consists of human liver, human blood, and mosquito stages [30]. Malaria infection begins with the bite of the mosquito carrying the malaria parasite. During the bite, the infective mosquito injects the malaria parasite into the human host. After initially replicating in the liver, the parasites are released into the bloodstream. During the blood stage, parasites multiply in red blood cells, sometimes causing fever and other symptoms characteristic of malaria. Some of these parasites become a form which is infectious to mosquitoes. When the infected person is bitten again, the mosquito ingests blood containing the parasites, which then restarts the transmission cycle [31].

The malaria parasite life cycle involves 2 hosts. During a blood meal, a malaria-infected female *Anopheles* mosquito inoculates sporozoites into the human host. Sporozoites infect liver cells. There, the sporozoites mature into schizonts. The schizonts rupture and release merozoites. This initial replication in the liver is called the exoerythrocytic cycle.

Merozoites infect RBCs. There, the parasite multiplies asexually (called the erythrocytic cycle). The merozoites develop into ring-stage trophozoites. Some then mature into schizonts. The schizonts rupture, releasing merozoites. Some trophozoites differentiate into gametocytes. During a blood meal, an *Anopheles* mosquito ingests the male (microgametocytes) and female (macrogametocytes) gametocytes, beginning the sporogonic cycle. In the mosquito's stomach, the microgametes penetrate the macrogametes, producing zygotes. The zygotes become motile and elongated, developing into ookinetes. The ookinetes invade the midgut wall of the mosquito where they develop into oocysts. The oocysts grow, rupture, and release sporozoites, which travel to the mosquito's salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle [32].

Figure 5: the figure above shows plasmodium life cycle [33]

The Case in Pregnancy

The general immune suppression during pregnancy makes women more susceptible to many infections, including malarial infection especially during first trimester. During pregnancy, cell-mediated immune response is very low that is required to sustain the placenta, a new organ in first pregnancy. However, low cell-mediated immune response in placenta makes it preferred site for the parasite to hide from host immune responses. Placenta, which is the interface between mother and fetus, plays an important role in good pregnancy outcome and fetal development that is intricately dependent on the placenta. There are certain pathophysiological processes that occur in the placenta due to malarial infection especially due to *P.falciparum*, making the placenta the preferred site of sequestration and development of malaria parasite in pregnancy.

Placental Malaria

Malarial infection in placenta is characterized by sequestration of *Plasmodium falciparum*-infected erythrocytes and infiltration of immune cells within the intervillous spaces of the placenta. The placenta turns black due to deposition of the malarial pigment. The parasite densities are much higher in the placenta compared to peripheral blood. The thickening of placental basement membrane, perivillous fibrinoid deposits, and syncytial knotting results into altered exchange system between mother and fetus. The placental insufficiency to provide nutrients to the fetus causes intra-uterine growth retardation (IUGR) [34]. The enhanced susceptibility to infections during pregnancy results into high parasitemia and heavy infiltration of parasite-infected RBCs (iRBC) in placental vasculature, a privilege site where the parasite can avoid maternal immune response. The altered physiology and immunity during pregnancy and ability of P. falciparum-infected erythrocytes to sequester to various organs are all together responsible for severe malaria in pregnant women especially in first pregnancy and associated IUGR and LBWs in infants.

Elevated levels of pro-inflammatory cytokines, such as IFN- γ , IL-2, and TNF- α in reaction to iRBC in the placenta of malaria-infected women especially in primigravidae account for the observed placental pathology and adverse pregnancy outcomes. The levels of chemokines have been observed elevated in the placental intervillous spaces, which correlate with increased monocyte density, parasite density, and malaria pigments in the placenta. Maternal macrophages are the predominant source of chemokines in the placenta, but fetus cells can also contribute. The chemokines help to recruit macrophages, cytotoxic T cells, B cells, and granulocytes in the placenta and contribute to the pathologies of placental malaria [35]. There is excessive sequestration of iRBC and leukocytes in the intervillous spaces of placenta and formation of perivillous fibrin clot during malarial infection, which interfere blood flow across the placenta thus, nutrients to the fetus. Placental pathology in malaria is caused by expression of unique Plasmodium falciparum erythrocyte membrane protein (Pf EMP) on iRBC which helps the parasite to sequester into the placenta. Pf EMP 1, 2 and 3 are part of a group of receptors that have been observed on the surface of plasmodium falciparum infected erythrocytes that play a major role in sequestration [5]. Women, who have malaria during pregnancy, develop Pf EMP1-specific antibodies and these antibodies protect women from malaria in subsequent pregnancies. The more complications of placental malaria in primigravidae are due to the absence of this placental parasite-specific immunity [36]

Figure 6: placental malaria and implications [36]

Diagrammatic representation of the placental malaria and implications. Malarial infection during pregnancy results into infiltration of the parasite-infected RBCs to the intervillous space of placenta resulting into exacerbated inflammatory response. High inflammation causes oxidative stress-induced apoptotic cell death in the placenta. Decreased expressions of the heat shock protein genes (HSP 70, 60, 25) in the infected placenta further contribute to the placental pathology. All these pathological alterations in the placenta contribute to the poor pregnancy outcomes associated with malarial infection [36]

Figure 7: life cycle of plasmodium in pregnant woman [35]

2.4.3. Clinical Signs and Symptoms

The incubation period is usually

- 12 to 17 days for *P. vivax*
- 9 to 14 days for *P. falciparum*
- 16 to 18 days or longer for *P. ovale*
- About 1 month (18 to 40 days) or longer (years) for *P. malariae*

However, some strains of P. vivax in temperate climates may not cause clinical illness for months to > 1 year after infection [32]

Fever and rigors-the malaria paroxysm. Malarial paroxysm is caused by hemolysis of infected RBCs, released merozoites and other malaria antigens, and the inflammatory response they elicit. The classic paroxysm starts with malaise, abrupt chills and fever rising to 39 to 41° C, rapid and thready pulse, polyuria, headache, myalgia, and nausea. After 2 to 6 hours, fever falls, and profuse sweating occurs for 2 to 3 hours, followed by extreme fatigue. Fever is often hectic at the start of infection. In established infections, malarial paroxysms typically occur every 2 to 3 days depending on the species. Splenomegaly usually becomes palpable by the end of the first week of clinical disease but may not occur with *P. falciparum*. The enlarged spleen is soft and prone to traumatic rupture. Splenomegaly may decrease with recurrent attacks of malaria as functional immunity develops. After many bouts, the spleen may become fibrotic and firm or, in some patients, becomes massively enlarged (tropical splenomegaly) Hepatomegaly usually accompanies splenomegaly [37] In the case of severe malaria, there is an already established criteria of severity for malaria

- enumerated below
- -Impaired consciousness: A Glasgow coma score < 11 in adults or a Blantyre coma score < 3 in children
- Prostration: Generalized weakness so that the person is unable to sit, stand or walk without assistance
- Multiple convulsions: More than two episodes within 24 h
- Acidosis: A base deficit of > 8 mEq/L or, if not available, a plasma bicarbonate level of < 15 mmol/L or venous plasma lactate ≥ 5 mmol/L. Severe acidosis manifests clinically as respiratory distress (rapid, deep, laboured breathing).
- Hypoglycemia: Blood or plasma glucose < 2.2 mmol/L (< 40 mg/dL)
- Severe malarial anaemia: Haemoglobin concentration ≤ 5 g/dL or a haematocrit of $\leq 15\%$ in children <12 years of age (< 7 g/dL and < 20%, respectively, in adults) with a parasite count > 10 $000/\mu L$
- Renal impairment: Plasma or serum creatinine > 265 µmol/L (3 mg/dL) or blood urea > 20 mmol/L
- Jaundice: Plasma or serum bilirubin $> 50 \mu mol/L$ (3 mg/dL) with a parasite count $> 100 000 / \mu L$
- Pulmonary oedema: Radiologically confirmed or oxygen saturation < 92% on room air with a respiratory rate > 30/min, often with chest indrawing and crepitations on auscultation

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

- Significant bleeding: Including recurrent or prolonged bleeding from the nose, gums or venepuncture sites; haematemesis or melena
- Shock: Compensated shock is defined as capillary refill ≥ 3 s or temperature gradient on leg (mid to proximal limb), but no hypotension. Decompensated shock is defined as systolic blood pressure < 70 mm Hg in children or < 80 mmHg in adults, with evidence of impaired perfusion (cool peripheries or prolonged capillary refill).
- Hyperparasitaemia: P. falciparum parasitaemia> 10%

Effects of Malaria on Pregnancy

- ➤ In the first trimester, increased risk of abortion
- ➤ Anemia in mother and baby
- Prematurity(babies born before 37 weeks of gestation)
- ➤ Intra-uterine growth retardation
- ➤ Low birth weight
- Congenital malaria(rare)
- ➤ Maternal and neonatal mortality

2.4.4. Diagnosis of Malaria

Primarily in addition to clinical presentation, accurate and early diagnosis is critical for successful management [38]

Light microscopy of blood (thin and thick smears). Definitive diagnosis of malaria generally requires direct observation of malaria parasites in Giemsa-stained thick and thin blood smears. Thick blood smears are more difficult to interpret than thin blood smears but they are much more sensitive, as more blood is examined. Thick smears are more sensitive but more difficult to prepare and interpret as the RBCs are lysed before staining. Thin blood smears, in which parasites are seen within erythrocytes, are used to determine the species of the infecting parasite. The presence of diagnostic forms can vary markedly with the stage of the life cycle, especially early in disease [32, 37].

Rapid diagnostic tests that detect Plasmodium antigens or enzymes in blood [39]. Commercial rapid diagnostic tests for malaria are based on the presence of certain plasmodium antigens or enzymatic [32, 38] Assays may involve detection of a histidine-rich protein 2 (HRP-2) associated with malaria

parasites (especially *P. falciparum*) and detection of plasmodium-associated lactate dehydrogenase (pLDH). The rapid diagnostic tests are generally comparable in sensitivity to microscopy in detecting low levels of parasitemia, but they do not differentiate single infection from concurrent infection with more than one *Plasmodium* species or allow speciation except for *P. falciparum*.

Light microscopy and rapid diagnostic tests are complementary, and both should be done when available [38]. They have similar sensitivity. Negative results even in both does not exclude malaria in a patient with low parasitemia.

Polymerase chain reaction and species-specific DNA probes can be used but are not widely available at the point of care. They can help identify the infecting *Plasmodium* species after malaria is diagnosed. Because serologic tests may reflect prior exposure, they are not useful in the diagnosis of acute malaria [32]

2.4.5. Management of Malaria

Management of malaria in pregnancy involves the following three aspects

- > Treatment of malaria
- > Management of complications
- ➤ Management of labor

Treatment of Malaria

The artemisinin-based combination therapies are the currently recommended drugs for malaria endemic countries [38]. ACT is a combination of a rapidly acting artemisinin derivative with a longer-acting (more slowly eliminated) partner drug. The artemisinin component rapidly clears parasites from the blood (reducing parasite numbers by a factor of approximately 10 000 in each 48 h asexual cycle) and is also active against the sexual stages of the gametocytes that mediate onward transmission to mosquitos. The longer- acting partner drug clears the remaining parasites and provides protection against development of resistance to the artemisinin derivative. Partner drugs with longer elimination half-lives also provide a period of post-treatment prophylaxis.

The WHO-approved first-line ACT options are: artemether + lumefantrine, artesunate + amodiaquine, artesunate + mefloquine, dihydroartemisinin + piperaquine and artesunate + sulfadoxine-pyrimethamine. The ACTs are generally highly effective and well tolerated. This has contributed substantially to reduction in global morbidity and mortality from malaria [40]. In deciding which ACTs to adopt in national treatment policies, national policy- makers should take

into account: the pattern of resistance to antimalarial drugs in the country, the relative efficacy and safety of the combinations, their cost, the availability of pediatric formulations and the availability of co-formulated products [41].

Cameroon is one of the malaria endemic countries with established guidelines for the management of malaria as per WHO recommendations. Malaria in pregnancy is considered as severe malaria and each trimester is approached differently.

-First trimester

Treatment with quinine without a loading dose

Quinine bases: 8.3mg/kg of quinine bases in 4hrs infusion, every 8hrs. Relay is made with oral treatment as soon as the patient can swallow. The oral dose is 8.3mg/kg of quinine bases every 8hrs until the 7th day of treatment, starting from the beginning of the treatment. Max dose; 1,5g of quinine base per day.

-Second and third trimester

1st line; treatment with injectable artesunate. Dosage; 2.4mg/kg at 0, 12 and 24 hour mark followed by one administration every 24hrs until the patient is able to take oral treatment. For artesunate administration IV is preferred over IM route.

2nd line; the regimen with quinine used above in the first trimester.

Whatever regimen used, continue with oral quinine as soon as the lady can swallow. This should be at a dose of 8.3mg/kg of quinine base every 8hrs for a total of 7days from onset of treatment, otherwise administer ACTs for example Arthemether-Lumenfantrine (AL) for 3 days as from the second trimester of pregnancy. The recommended dosage regimen for AL: it is given twice a day for 3 days (total of 6 doses). First two doses should be given ideally 8h apart.

-Management of Complications

Severe malaria is associated with a variety of manifestations which have to be recognized and managed promptly as followed [41]

- Coma: maintain airway, place patient on his or her side, exclude other treatable causes of coma (e.g. hypoglycemia, bacterial meningitis); avoid harmful ancillary treatments, intubate if necessary.
- Hyperpyrexia: administer tepid sponging, fanning, a cooling blanket and paracetamol.
- Convulsions: maintain airways; treat promptly with intravenous or rectal diazepam, lorazepam, midazolam or intramuscular paraldehyde. Check blood glucose.

- Hypoglycemia: check blood glucose, correct hypoglycemia and maintain with glucose containing infusion. Although hypoglycemia is defined as glucose < 2.2 mmol/L, the threshold for intervention is < 3 mmol/L for children < 5 years and <2.2 mmol/L for older children and adults.
- Severe anaemia: transfuse with screened fresh whole blood.
- Acute pulmonary oedema: Prop patient up at an angle of 45 degrees, give oxygen, give a diuretic, stop intravenous fluids, intubate and add positive end expiratory pressure or continuous positive airway pressure in life-threatening hypoxemia.
- Acute kidney injury: exclude pre-renal causes, check fluid balance and urinary sodium; if in established renal failure, add hemofiltration or hemodialysis, or, if not available, peritoneal dialysis.
- Spontaneous bleeding and coagulopathy: transfuse with screened fresh whole blood (cryoprecipitate, fresh frozen plasma and platelets, if available); give vitamin K injection.
- Metabolic acidosis: exclude or treat hypoglycemia, hypovolemia and septicemia. If severe, add hemofiltration or hemodialysis
- Shock: suspect septicemia, take blood for cultures; give parenteral broad- spectrum antimicrobials, correct hemodynamic disturbances.

Not forgetting fluid therapy and fluid requirements should be assessed individually whether it be children or adults [41]

Prevention of Malaria

- -Use of insecticide treated nets [27] and indoor residual spraying at home.
- -Also the use of intermittent preventive treatment of malaria in pregnancy which is the treatment course of an antimalarial medicine at predetermined intervals, regardless of whether the pregnant woman is infected with malaria or not.

Sulfadoxine-pyrimethamine is widely used for malaria chemoprevention during pregnancy and should be started early in the 2nd trimester not before week 13 of gestation due to an increased risk of fetal malformation. Doses should be given at least one month apart at each ANC with the objective of ensuring at least three doses received.

-Management of Labour

The delivery approach in this women especially at term is a pertinent aspect of management for the outcome of the pregnancy [42]. Due to the potential risks of developing certain complications in these women with high-risk pregnancies, adequate obstetric interventions are carried out to

minimize this risk and ensure a safe delivery process [9]. One of such is labour induction which is usually recommended when the maternal and perinatal risks of continuing pregnancy outweigh those associated with expedited birth [43]. This intervention is equally associated with other significant complications such as uterine rupture and because of that, expectant management is also considered for these women that is allowing them to go into labor spontaneously. In both situations, childbirth is a risky event for both mother and fetus [44].

2.5. INDUCTION OF LABOUR

2.5.1. General Overview

Induction of labour (IOL) describes the artificial stimulation of adequate uterine contractions (after fetal viability) prior to spontaneous or natural labor initiation with the prime objective of achieving vaginal childbirth [12, 21]. Labor induction is a common and very useful intervention in contemporary obstetrics constituting about 25% of childbirths at term in developed countries, compared to approximately 4% and 12% in Africa and Asia respectively [45]. According to the World Health Organization (WHO) survey, about 9.6% of the deliveries involved labor induction. The proportion is higher in technologically advanced countries. In developed countries, induction of labor currently accounts for around one-quarter of all deliveries at term [44]. In the United States, the incidence of labor induction rose from 9.5 percent in 1991 to 27 percent in 2019 [21]. The main advantage of induction of labor lies in the facilitation of vaginal birth and avoidance of caesarean section (CS) with optimization of both maternal and fetal outcomes in carefully selected expectant mothers [12]. Generally, induction of labour may be is associated with pertinent maternal and perinatal risks [44]. Therefore, the decision to prescribe the procedure to any pregnant woman must be based on accurate clinical evidence and the expected benefits should outweigh the potential harms associated with the intervention [12, 45].

2.5.2. Indications

Maternal: Pre-eclampsia, eclampsia, premature rupture of membranes, oligohydramnios, post term pregnancies, abruptio placentae, chorio amnionitis, diabetes mellitus, heart diseases, kidney diseases, sickle cell disease

Fetal: intrauterine growth retardation, stillbirth, intrauterine fetal death [46].

2.5.3. Contraindications

Any contraindication to vaginal delivery first of all whether it be maternal or fetal.

Maternal: contracted pelvis, cephalopelvic disproportion, vasa previa, placenta previa, cervical cancer, active genital herpes simplex virus and human papilloma virus.

Fetal: malpresentation, non-reassuring fetal status. Then specific for induction: uterine scar, grand multipara

2.5.4. Criteria of Induction

Bishop's Score

The Bishop scoring system is based on a digital cervical exam of a patient with a zero point minimum and 13 point maximum. The scoring system utilizes cervical dilation, position, effacement, consistency of the cervix, and fetal station [47].

- Cervical dilation is the measure of how dilated the cervix is in centimeters. This is performed by estimating the average diameter of the open cervix.
- Effacement is the thinning or shortening of the cervix expressed as a percentage of the whole cervix. Zero percent effacement means the cervix is a normal, pre-labor length. Fifty percent effaced means the cervix is at half of the expected length. If the cervix is 100% effaced, it is paper thin.
- The station is the position of the fetal head relative to the ischial spines of the maternal pelvis. The ischial spines are halfway between the pelvic inlet and outlet. At zero station, the fetal head is at the level of the ischial spines. Above and below this level are divided into thirds, by which station is denoted with negative numbers above and positive numbers below the zero station. As a fetal head makes its descent, the station changes from -3, -2, -1, 0, +1, +2, and 3.
- Position refers to the position of the cervix relative to the fetal head and maternal pelvis.
- The consistency of the cervix refers to the feel of the cervix on the exam. A firm cervix has a consistency similar to the tip of the nose, while a soft cervix has a consistency similar to the lips of the oral cavity.

A Bishop score of 8 or greater is considered to be favorable for induction, or the chance of a vaginal delivery with induction is similar to spontaneous labor. A score of 6 or less is considered to be unfavorable if an induction is indicated cervical ripening agents may be utilized [47]

CERVICAL EFFACEMENT AND DILATATION DURING LABOR

Cervix is not effaced or dilated

Cervix is fully effaced and dilated to 2 cm

Cervix is fully dilated to 10 cm

Figure 8: Dilation of cervix during labour and delivery [48]

Table I: showing the Bishop's Score [47]

Score	0	1	2	3
Dilatation	0	1-2	3-4	>4
Effacement	0-30%	40-50%	60-70%	>80%
Station	-3	-2	-1/0	+1, +2, +3
Consistency	Firm	Medium	Soft	-
Position	Posterior	Middle	Anterior	-

2.5.5. Methods of Induction

The various methods of induction are divided into,

- -Mechanical: catheters and luminaria tents
- -Pharmacological; oxytocin and prostaglandins
- -Physical: amniotomy, membrane stripping
- Pharmacological methods
- Oxytocin: Oxytocin is a hormone that is produced naturally by the body, and which has a range of functions, including the stimulation of uterine contractions in the second and third stages of labor [21]. Oxytocin analogues, administered intravenously, are the commonest

induction agents used worldwide. Oxytocin is frequently administered when the cervix is dilated (or favorable) and may be combined with artificial rupture of the amniotic membranes [49]

- Prostaglandins: Prostaglandins are hormones produced naturally by the body that are important in the onset of labor. Prostaglandins promote cervical ripening and encourage the onset of labour by acting on cervical collagen so as to encourage the cervix to soften and stretch in preparation for childbirth [49]. Prostaglandins may also stimulate uterine contractions. There are various prostaglandins preparations available for induction such as prostaglandin F₂ alpha (PGF₂α, dinoprost), prostaglandin E₂ (PGE₂), prostaglandin E (PGE₁) and misoprostol (a synthetic analogue of PGE₁.

• Physical Methods

- Membrane sweeping; Membrane sweeping involves the clinician detaching the membranes from the lower uterine segment by a circular movement of the examining finger. Membrane sweeping is thought to lead to an increased production of prostaglandins [49].
- Amniotomy: amniotomy refers to rupture of the membranes using a plastic hooked instrument or, occasionally, surgical forceps. It may be carried out alone or in combination with oxytocin or prostaglandins to induce labour. This procedure is risk as it can introduce infection [49]

Mechanical Methods

- Catheters: Foley urinary catheters have been used for the induction of labour, as have double-balloon catheters. The catheter is introduced into the extra-amniotic space, and then the balloon is inflated to keep the catheter in place. Catheters are usually left in situ until they are expelled. In some cases a saline infusion is introduced into the extra-amniotic space via the catheter.
- Laminaria tents: Laminaria tents are made from sterile seaweed or synthetic materials.
 These devices are introduced into the cervical canal and expand to gradually stretch the cervix

There are other complementary methods such as sexual intercourse.

- Labour induction is a high-risk situation, experienced medical personnel must be present and
a theatre must be available for imminent cesarean section in case of failure of intervention. It
must be closely monitored on all levels as enumerated below:

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

- Fetal: fetal heart rate, membranes, amniotic fluid, moulding
- Maternal: neurological status, temperature, blood pressure, pulse
- Progress of labor: uterine contractions, cervical dilation, descent of the fetus.

2.5.6. Complications of Induction of Labour

- Maternal: uterine rupture, tears (cervical, vaginal, perineal), postpartum hemorrhage, sepsis,
 chorio-amnionitis, amniotic fluid embolism, failure leading to emergency cesarean section.
- Fetal: non reassuring fetal status, fetal death, birth trauma, cord prolapse.

Induction of labour is not a risk-free procedure so it must therefore be performed only when there is a clear medical indication for it. Pregnant women must be properly prepared and counseled on the procedure before it is carried out. Close monitoring is very important during the process.

2.6. REVIEW OF STUDIES

2.6.1. In the world

Title and place of	Author and	Setting	Results
study	year of study		
Drug treatment	Khalid A. J.	Thirty-five updated	This review evaluated the treatment
and prevention	Al Khaja*	national guidelines	and prevention of falciparum
of malaria	and Reginald	and the President's	malaria in pregnancy in 35 national
in pregnancy:	P. Sequeira	Malaria Initiative	guidelines/PMI-Malaria
a critical review	2021	(PMI), available in	Operational Plans (MOP) reports
of the guidelines		English language,	out of 95 malaria-endemic
		were reviewed. The	countries. Of the 35 national
		primary outcome	guidelines, 10 (28.6%) recommend
		measures were the	oral quinine plus clindamycin as
		first-line anti-	first-line treatment for
		malarial treatment	uncomplicated malaria in the first
		protocols adopted by	trimester. As the first-line option,
		national guidelines	artemether-lumefantrine, an
		for uncomplicated	artemisinin-based combination
		and complicated	therapy, is adopted by 26 (74.3%)
		falciparum malaria	of the guidelines for treating
		infections in early	uncomplicated or complicated
		(first) and late	malaria in the second and third
		(second and third)	trimesters. Intravenous artesunate is
		trimesters of	approved by 18 (51.4%) and 31
		pregnancy. The	(88.6%) guidelines for treating
		strategy of	complicated malaria during early
		intermittent	and late pregnancy, respectively. Of
		preventive treatment	the 23 national guidelines that
		of malaria in	recommend IPTp-SP strategy, 8
		pregnancy (IPTp)	(34.8%) are not explicit about
		with sulfadoxine-	directly observed therapy
			requirements, and three-quarters,

		pyrimethamine (SP)	17 (73.9%), do not specify contra-
		was also addressed.	indication of SP in human
			immunodeficiency virus (HIV)-
			infected pregnant women receiving
			cotrimoxazole prophylaxis. Most of
			the guidelines (18/23; 78.3%) state
			the recommended folic acid dose.
Comparison of	James Hong,	This systematic	Of the 5827 records identified in
Maternal Labor-	MD; Jessica	review and meta-	the search, 14 studies were eligible
Related	Atkinson,	analysis included	for inclusion in this review. These
Complications and	BBiomedSc;	randomized clinical	studies reported outcomes for 1 625
Neonatal Outcomes	Alexandra	trials, cohort studies,	899 women birthing a singleton
Following Elective	Roddy	and cross-sectional	pregnancy. Induction of labor at 39
Induction of Labor at	Mitchell,	studies reporting	weeks of gestation was associated
39 Weeks of	MPH;	perinatal outcomes	with a 37% reduced likelihood of
Gestation vs	Stephen	following induction	third- or fourth-degree perineal
Expectant	Tong, PhD;	of labor at 39 weeks	injury (OR, 0.63 [95% CI, 0.49-
Management: a	Susan P.	vs expectant	0.81]), in addition to reductions in
Systematic Review	Walker, MD;	management.	operative vaginal birth (OR, 0.87
and Meta-analysis	Anna		[95% CI, 0.79-0.97]), macrosomia
	Middleton,		(OR, 0.66 [95% CI, 0.48-0.91]),
	MPH;		and low 5-minute Apgar score (OR,
	Anthea		0.62 [95% CI, 0.40-0.96]). Results
	Lindquist,		were similar when confined to
	DPhil;		multiparous women only, with the
	Roxanne		addition of a substantial reduction
	Hastie, PhD		in the likelihood of emergency
	2023		cesarean section (OR, 0.61 [95%
			CI, 0.38-0.98]) and no difference in
			operative vaginal birth (OR.01
			[95% CI, 0.84-1.21]). However,
			among nulliparous women only,
			induction of labor was associated

			with an increased likelihood of
			shoulder dystocia (OR, 1.22 [95%
			CI, 1.02-1.46]) compared with
			expectant management,
Maternal and	Vivienne	We conducted a	A total of 55,694 births were
newborn outcomes	Souter MD,	retrospective cohort	included in the study cohort: 4002
with elective	Ian Painter	study using chart-	elective inductions at ≥39+0 weeks
induction of labor at	PhD, Kristin	abstracted data on	gestation and 51,692 births at
term	Sitcov BS,	births from January	39+0-42+6 week's gestation that
	Aaron B	1, 2012, to	were not electively induced. In
	Caughey MD	December 31, 2017,	nulliparous women, elective
	PhD	at 21 hospitals in the	induction at 39 weeks gestation was
		Northwest United	associated with a decreased
		States. The study	likelihood of cesarean birth (14.7%
		was restricted to	vs 23.2%; adjusted odds ratio, 0.61;
		singleton cephalic	95% confidence interval, 0.41–
		hospital births at	0.89) and an increased rate of
		39+0-42+6 week's	operative vaginal birth (18.5% vs
		gestation. Exclusions	10.8%; adjusted odds ratio, 1.8;
		included previous	95% confidence interval, 1.28–
		cesarean birth,	2.54) compared with on-going
		missing data for	pregnancies. In multiparous
		delivery type or	women, cesarean birth rates were
		gestational week at	similar in the elective inductions
		birth, antepartum	and on-going pregnancies. Elective
		stillbirth, and	induction at 39 weeks gestation was
		cesarean birth	associated with a decreased
		without any attempt	likelihood of pregnancy-related
		at vaginal birth, fetal	hypertension in nulliparous (2.2%
		anomaly, gestational	vs 7.3%; adjusted odds ratio, 0.28;
		diabetes mellitus,	95% confidence interval, 0.11–
		prepregnancy	0.68) and multiparous women
		diabetes mellitus,	(0.9% vs 3.5%; adjusted odds ratio,

and prepregnancy hypertension. The rate of cesarean birth for elective inductions at both 39 and 40 weeks gestation was compared with the rate in all other ongoing pregnancies in the same gestational week. Maternal outcomes (operative vaginal birth, shoulder dystocia, 3rd- or 4th-degree perineal laceration, pregnancy-related hypertension, and postpartum hemorrhage) and newborn infant outcomes (macrosomia, 5minute Apgar <7, resuscitation at delivery, intubation, respiratory complications, and neonatal intensive care unit admission) were also compared

between elective

0.24; 95% confidence interval, 0.15–0.38). Term elective induction was not associated with any statistically significant increase in adverse newborn infant outcomes. Elective induction of labor at 39 weeks gestation was associated with increased time from admission to delivery for both nulliparous (1.3 hours; 95% confidence interval, 0.2–2.3) and multiparous women (3.4 hours; 95% confidence interval, 3.2–3.6).

1	!	
	inductions and on-	
	going pregnancies at	
	39 and 40 weeks	
	gestation. Logistic	
	regression modeling	
	was used to produce	
	odds ratios for	
	outcomes with	
	adjustment for	
	maternal age and	
	body mass index.	
	Results were	
	stratified by parity	
	and gestational week	
	at birth. Duration of	
	hospital stay	
	(admission to	
	delivery, delivery to	
	discharge, and total	
	stay) were compared	
	between elective	
	inductions and on-	
	going pregnancies.	

2.6.2. In Africa

Title and place of study	Author and year of	Setting	Results
-	study	-	
The Prevalence of	Yalewayker Tegegne,	Six authors (YT, SA,	Among a total of 10207
Malaria among	Daniel Asmelash	SE, DA, AA, and AJZ)	studies, seven studies
Pregnant Women in	,Sintayehu Ambachew	independently	were included in this
Ethiopia: A Systematic	,Setegn Eshetie	conducted a search in	analysis. The estimated
Review and Meta-	,Ayenew Addisu ,and	PubMed, Google	pooled prevalence of
Analysis	Ayalew Jejaw Zeleke	Scholar, HINARI, and	malaria among
	2019	Science Direct	pregnant women in
		literature, using the key	Ethiopia was 12.72%
		words, for including	(95% CI: 7.45, 17.98).
		researches which were	In subgroup analysis,
		published up to August	the prevalence of
		2018. Then searched	malaria showed a
		articles were screened	significant variation
		by the title and abstract	between asymptomatic
		to consider the articles	and symptomatic
		in the full-text review.	cases, which was
		Following exclusion of	7.83% (95% CI: 2.23,
		duplicates, abstracts	13.43) and 17.97%
		and titles of 125 papers	(95% CI: 7. 3 1, 2 8 . 9
		were screened for	2),respectively
		eligibility criteria, and	
		seven were chosen for	
		full-text evaluation.	
		Differences in the	
		selection of articles	
		being included in the	
		review were resolved	
		by the third reviewer	
		decision, though there	
		was a very low degree	

		of discrepancy	
		between the authors in	
		the choice of articles	
		for the review. The	
		quality of articles was	
		assessed using Joana	
		Brigg's Institute (JBI)	
		critical appraisal	
		checklist for simple	
		prevalence	
Factors associated with	Kwame Adu-	Retrospective study	A total of 195 women
adverse obstetric	Bonsaffoh, Joseph	involving women with	who had IOL were
events following	Seffah	singleton gestations,	analysed with 161
induction of labor: a	2022	conducted at the Korle	(82.6%) and 34
retrospective study in a		Teaching Hospital in	(17.4%) undergoing
tertiary hospital in		Ghana. Multivariable	vaginal and caesarean
Ghana		logistic regression was	deliveries respectively.
		used to explore the	The main IOL methods
		factors associated with	used included
		adverse outcomes of	Misoprostol (91.3%),
		IOL	Oxytocin (5.1%) and
			Foley's catheter
			(3.6%). Composite
			adverse perinatal
			outcomes occurred in
			46 neonates (23.6%)
			comprising perinatal
			deaths (7.2%) and or
			NICU admission
			(21.0%). Caesarean
			delivery following IOL
			was significantly
			associated with

			nulliparity, gestational
			age <41 weeks,
			hypertensive disorders
			in pregnancy and birth
			weight ≥3.5kg.
			Gestational age <41
			weeks and birth weight
			<2.5kg were
			significantly associated
			with adverse perinatal
			outcome. Five women
			(2.6%) had uterine
			rupture all of which
			occurred in the
			misoprostol group.
Adverse neonatal	Melaku Laikemariam	A comparative cross-	The adverse neonatal
outcomes and	Almaz Aklilu Fikadu	sectional study was	outcomes among
associated factors	Waltengus Melkamu	conducted at Awi Zone	women who gave birth
among mothers who	Addis, Wubishet	public hospitals from	through induced labor
gave birth through	Gezimu, Fekadu Baye	May 1 to June 30,	were 41.1%, whereas
induced and	and Temesgen Getaneh	2022. A simple random	spontaneous labor was
spontaneous labor in	2023	sampling technique	10.3%. The odds of
public hospitals of Awi		was employed to select	adverse neonatal
zone, Northwest		788 (260 induced and	outcomes in induced
Ethiopia: a		spontaneous)	labor were nearly two
comparative cross-		women. The collected	times higher than in
sectional study		data were analyzed	spontaneous labor
		using statistical	(AOR = 1.89, 95% CI:
		package for social	1.11–3.22). No
		science (SPSS)	education (AOR= 2.00,
		software version 26.	95% CI: 1.56, 6.44),
		The Chi-square test	chronic disease (AOR
		and an independent t-	= 3.99, 95% CI: 1.87,

test were used for	8.52), male
categorical and	involvement (AOR=
continuous variables,	2.23, 95% CI: 1.23,
respectively. A binary	4.06), preterm birth
logistic regression was	(AOR= 9.83, 95% CI:
used to assess the	8.74, 76.37), operative
association between	delivery (AOR = 8.60,
the outcome and	95% CI: 4.63, 15.90),
explanatory variables.	cesarean section
In the bivariate	(AOR= 4.17, 95% CI:
analysis, a p-value ≤	1.94, 8.95), and labor
0.2 at a 95%	complications (AOR =
confidence interval	5.16, 95% CI: 2.90,
was used to consider	9.18) were
the variables in the	significantly associated
multivariate analysis.	factors with adverse
Finally, statistical	neonatal outcomes.
significance was stated	
at a p-value of less than	
0.05.	

2.6.3. In Cameroon

Title and place of study	Author and year of	Setting	Results
	study		
Chemokine modulation	Rosette	This was a retrospective	Overall, PM was
in microscopic and	Megnekou, Chris Marco	case-control study (1:3	associated with
submicroscopic	Mbianda Nana ,Jean	ratio) involving	increased plasma
Plasmodium falciparum	Claude Djontu ,Bernard	samples from 134	levels of CXCL-13 and
malaria infection in	Marie Zambo Bitye	women (34 PM+ and	CXCL-16 and low
women at delivery in	,Benderli Christine	100 PM-) enrolled at	levels of CXCL-4 and
Yaoundé ',Cameroon	Nana ,Berenice	delivery at the Marie	CCL-24 in both
	Kenfack Tekougang	Reine Health Center in	peripheral and
	Zangue, Christiane	Yaoundé ', Cameroon	placental blood

Josiane Donkeu ,Estelle between June 2013 and (0.0002 **♦** p **♦** 0.042). Essangui ,Rodrigue October 2018. Samples Similarly, CCL-24 Mbea Salawiss ,Reine were collected just after levels in peripheral and Ndeumou delivery and used to Medouen placental blood Seumko'o diagnose microscopic Lawrence samples were Ayong ,Rose and submicroscopic Gana significantly lower Fomban Leke Plasmodium falciparum insubmicroscopically 2023 infections. infected women Submicroscopic compared to healthy infections were controls (p=0.04 and detected by 0.02, reverse respectively). transcription LAMP Maternal hemoglobin whereas chemokine levels increased with levels were determined peripheral plasma by Magnetic Luminex levels ofCXCL-4 Screening Assay. (p=0.005), CXCL-16 (p=0.03), and CCL-24 (p=0.002) while birth weight was lower for babies born from women with high levels of peripheral CXCL-13 (p=0.0006) and low levels of cord CXCL-4 and CCL-24 (p=0.02)and 0.08, respectively). Together the data suggest that low levels of CXCL-4 and CCL-24 coupled with high plasma levels of CXCL-13 and for a lesser extend

			CXCL-16 represent
			signatures of PM in the
			study population.
			These findings are
			relevant for
			understanding the
			immune pathogenesis
			of PM and developing
			new therapeutic or
			preventive strategies
			against severe PM
			outcomes
Malaria in the third	Elie Nkwabong	A parity-matched	Of 3063 pregnant
trimester and maternal-	Diane N. Mayane	comparative cohort	women, 130 (4.2%)
perinatal outcome	Esther Meka	study was carried out	had TTM. Adverse
	Felix Essiben	between December 1,	outcomes associated
	2020	2018, and April 30,	with TTM were
		2019, in three	maternal anemia
		university teaching	(relative risk [RR] 10,
		hospitals in Yaoundé	95% confidence
		(Cameroon). Women	interval [CI] 4.91–
		with and without TTM	20.34), intrauterine
		were followed up till	fetal demise (RR 7.50,
		delivery. The variables	95% CI 1.47–38.06),
		analyzed included	preterm delivery (RR
		maternal and	4.50, 95% CI 2.37–
		gestational ages at	8.51), low birth weight
		delivery, the regimen of	(adjusted RR 2.88,
		intermittent preventive	95% CI 1.34–6.19),
		treatment, usage of	neonatal asphyxia
		insecticide-treated net,	especially if delivery
		history of malaria	occurred during
		recorded during	parenteral treatment

		pregnancy, birth and	(RR 5.18, 95% CI
		placenta weights, Apgar	2.56–10.48), transfer
		score, and early	of the newborn to the
		neonatal outcomes.	neonatal intensive care
		Fisher exact test, t-test,	unit (RR 4.38, 95% CI
		and logistic regression	2.59–7.42), and
		were used for	intrapartum or early
		comparison. P<0.05	neonatal death (RR
		was considered	4.18, 95% CI 1.48–
		statistically significant.	11.74). Third
			Trimester Malaria was
			associated with
			adverse perinatal
			outcome especially if
			labor started during
			parenteral treatment.
Impact of long lasting	Nfor Omarine Nlinwe	This study was	The prevalence of
insecticidal nets on	*, Fundoh Golory	therefore designed to	asymptomatic malaria
asymptomatic malaria	Nchefor, Negesa Bright	assess the impact of	was 10.14% (63/621),
during pregnancy, in a	Takwi	long lasting insecticidal	with a higher
rural and urban setting in	2022	nets (LLINs) on	prevalence among the
Cameroon		asymptomatic malaria	pregnant women in the
		in the pregnant women	rural setting (12.21%;
		attending the Foumbot	37/303), than the urban
		District Hospital (rural	setting (8.18%;
		setting) and the	26/318). As indicated
		Bamenda Regional	by the attributable risk,
		Hospital (urban	21% of malaria
		setting). This was a	incidence was
		hospital based cross-	attributed to absence of
		sectional study done	LLINs distribution in
		within three months.	neighborhoods of the
			rural setting

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

	meanwhile 10% of
	malaria incidence is
	attributed to absence of
	LLINs distribution in
	neighborhoods of the
	urban setting.

Delivery after treatment for malaria at term	: comparative outcome	between in	duction of
labour and expectant sp	ontaneous labour		

CHAPTER 3: METHODOLOGY

3.1. TYPE OF STUDY

We conducted a non-randomized clinical trial.

3.2. SITE OF STUDY

The study was carried out at the obstetrics and gynecology units of two reference hospitals in Yaoundé. These hospitals were chosen because of their great patient influx and adequate follow up of patients.

The Yaoundé Gynecology-Obstetrics and Pediatrics Hospital (YGOPH).

It is a reference health facility created in 2002 and specializes in mother and child health care. It's Obstetrics and Gynecology department has a capacity of 34 inpatient beds, 3 delivery tables, and 4 operating theatres with two laparoscopy columns. The service carries out an average of 3015 deliveries per annum with a staff of 14 specialists in obstetrics and gynaecology.

The Yaoundé Central Hospital

This reference hospital located at the heart of Yaoundé has one of the biggest and most specialized maternity units with over 72 in-patient beds, 6 delivery tables, 2 operating theatres and a large highly trained staff. It records about 219 deliveries per month.

3.3. DURATION OF STUDY

The study was carried out during a seven month period precisely from November 2023 to May 2024. During this period the following was accomplished; writing of protocol, obtention of ethical clearance and other authorization documents, data collection and analysis, thesis writing, proofreading and publishing of the results. Recruitment of participants began in January 2023 up to May 2024.

3.4. STUDY POPULATION AND SAMPLE

The study population comprised of pregnant women who were diagnosed with malaria at term and who had received full treatment.

3.4.1. Inclusion Criteria

- ➤ Gestational age at term (37weeks- 42weeks).
- > Diagnosis of malaria infection during pregnancy and complete treatment.
- Accepted to participate in study by signing the informed consent form.

3.4.2 Exclusion Criteria

- > Contraindications for induction of labour
- > Women who entered into labour before the end of treatment

3.4.3. Non-Inclusion Criteria

- ➤ Gestational age < 37weeks
- > Pregnant women at term with fevers other than malaria

3.4.4. Sampling Method

Patients were consecutively recruited until the desired sample size was obtained.

3.4.5. Sample size Estimation

To estimate the sample size, we used the sample size formula for a randomized clinical trial where

$$n = 1/(1-f) \left\{ 2(Z_{\alpha} + Z_{\beta})^{2} p(1-p) | (p_{0} - p_{1})^{2} \right\}$$

n= sample size

f= the proportion of study subjects expected to leave the study for reasons other than the outcome under investigation. There was no loss to follow up, thus f=0.

 $p_{0=}$ The proportion of the participants in the control treatment group who are expected to exhibit the outcome of interest

 $p_{1=}$ The proportion of the participants in the treatment group that are expected to exhibit the outcome of interest. This proportion is usually set relative to p_0

$$p = \{p_0 + p_1/2\}$$

 Z_{α} = 1.96 when confidence level is 95%

 Z_{β} = 1.28 When confidence level is 80%

Therefore
$$n=1/1-0\{2(1.96+1.28)^20.375(1-0.375)/(0.25-0.50)^2\}$$

n=79 participants

With a ratio of 1:1 that is 79 participants for induction of labour and 79 participants for spontaneous labour.

3.5. PROCEDURE

3.5.1. Administrative Formalities

The research proposal was approved by the supervisors before we requested for ethical clearance from the Institutional Review Board of the Faculty of Medicine and Biomedical Sciences of the University of Yaoundé I. We requested for authorizations and obtained them from the administrations of the Yaounde Gynaecology, Obstetrics and Pediatrics Hospital and the Yaoundé Central Hospital.

3.5.2. Recruitment and Data Collection

On a daily basis, we followed up in the various services, women who were admitted for malaria and at the end of complete treatment. We selected women at term who conformed to the selection criteria. The women were divided into two groups, those who accepted to deliver immediately by induction before discharge and those who accepted discharge and wait for spontaneous labour and delivery. The choice to be induced or wait for spontaneous labour was that of the women themselves and in collaboration with the treating doctor.

Induction was done using the standard protocol of the services and the uterotonic mostly used was misoprostol. Delivery was monitored using the partogram based on the norms and standard of the services. For those who opted to be discharged and wait for spontaneous labour, we made phone calls daily to monitor the beginning of spontaneous contractions and they were then asked to come to the respective hospitals and to the delivery rooms directly to meet with us and labour was managed using the partogram as well. In both case, labour was managed by experienced midwives who have long records of managing deliveries.

For specific objective 1: Baseline data were collected on enrolment including demographic information like age, marital status, profession, religion, level of education, past medical history and that of current pregnancy, gestational age, gravidity and parity.

For specific objective 2: Data sheets were used to monitor labour and variables collected included birthweight, Apgar score, neonatal intensive care unit admission, perinatal mortality as well as maternal complications. They were also used to monitor labour such as number and duration of contractions, foetal heart rate, cervical dilation, descent of the representing part, mode of delivery.

For specific objective 3: The information obtained by method of delivery was compared between the induction and spontaneous delivery groups. All these were recorded in the questionnaire which was designed, internally validated by supervisors, tested and then adapted for the study.

3.5.3. Variables studied

- > Sociodemographic data: these included age, gestational age, parity, marital status, religion, profession, level of education of the pregnant women.
- ➤ Medical and Obstetric profile: we checked for presence or past histories of comorbidities such as diabetes, hypertension.
- ➤ History of current pregnancy: we obtained information on the number of ANC, gestational age at first ANC, serology, prophylaxis received, morphology, lifestyle during pregnancy.
- ➤ Clinical presentation; fetal presentation, Bishop's score
- ➤ Perinatal data: mode of delivery (cesarean section or vaginal birth), Apgar score at birth, birthweight, coloration, neurological status, febrile illness, admission to NICU, early neonatal death
- > Delivery complications: postpartum hemorrhage, perineal tears

3.6. STUDY RESOURCES

3.6.1. Data Collection and Management Tools

Pre-established data collection worksheets

- > Patient medical records
- > A4 reams of paper
- Writing material (pens, pencils, and eraser)
- > Computer
- ➤ Microsoft Suite Package
- > USB flash drives

3.6.2. Human Resource

- Main Investigator

MBELE CHELSEA NGOMO

- -Supervisor
- -Co-Supervisors
- -Statistician

3.7. DATA ANALYSIS

Data collected was entered and analyzed using the IBM SPSS (Statistical Package for Social Sciences). Pearson's chi-square test was used for comparison between categorical data and Student's T-test for numerical data. All p values less than 0.05 will be considered statistically significant. Results were represented in tables and presented using relative risks, 95% confidence intervals and p-values.

3.8. ETHICAL CONSIDERATIONS

Ethical considerations were followed in accordance with the Helsinki Declaration which goes as thus- "It is the duty of physicians who are involved in medical research to protect the life, health, dignity, integrity, and right to self-determination, privacy, and confidentiality of personal information of research subjects". Prior to data collection for this study, Ethical clearance was obtained from the Institutional Review Board at the Faculty of Medicine and Biomedical Sciences, University of Yaoundé I.

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

CHAPTER 4: RESULTS

4.1. RECRUITMENT OF STUDY POPULATION

For this study, we actively recruited participants who came to the Obstetrics and Gynecology services of the YGOPH and the YCH from January 1st 2024 to May 30th 2024.

Figure 9: Recruitment flow chart

4.2. SOCIO-DEMOGRAPHIC PROFILE OF THE STUDY POPULATION

4.2.1. Age and marital status

Table II: Population distribution by age and marital status

Variables	Induction	Spontaneous	RR	p-value
	group	group		
	N=85; n(%)	N=85; n(%)	(CI at 95%)	
Age groups (in				
years)				
[15-19[9 (10.6)	10 (11.8)	0.88 (0.34-2.30)	0.500
[20-24[19 (22.4)	26 (30.6)	0.65 (0.32-1.30)	0.148
[25-29[27 (31.8)	28 (32.9)	0.94 (0.49-1.80)	0.500
[30-34[17 (20.0)	15 (17.6)	1.16 (0.54-2.52)	0.422
[35-39[10 (11.8)	4 (4.7)	2.70 (0.81-8.97)	0.081
[40-45[3 (3.5)	2 (2.4)	1.51 (0.24-9.32)	0.500
Marital status				
Married/Concubine	34 (40.0)	19 (22.4)	2.31 (1.18-4.52)	0.010
Single	51 (60.0)	66 (77.6)	1	

The age group most represented was 25-29 years with 31.8% and 32.8% respectively as shown in the table above.

4.2.2. Level of education and occupation

Table III: Population distribution by level of education and occupation

Variables	Induction	Spontaneous	RR	p-value
	group	group		
	N=85; n(%)	N=85; n(%)	(CI at 95%)	
Level of education				
Primary	7 (8.2)	9 (10.6)	0.75 (0.26-2.13)	0.397
College	24 (28.2)	22 (25.9)	1.12 (0.57-2.21)	0.432
High school	17 (20.0)	15 (17.6)	1.16 (0.54-2.52)	0.422
University	37 (43.5)	39 (45.9)	0.90 (0.49-1.66)	0.439
Occupation				
Informal sector	17 (20.0)	18 (21.2)	0.93 (0.44-1.95)	0.500
Student	28 (32.9)	23 (27.1)	1.32 (0.68-2.55)	0.252
Civil servant	11 (12.9)	18 (21.2)	0.55 (0.24-1.25)	0.110
Private servant	15 (17.6)	14 (16.5)	1.08 (0.48-2.41)	0.500
Unemployed	14 (16.5)	12 (14.1)	1.20 (0.51-2.77)	0.416

The groups were comparable for the level of study and occupation. The majority had secondary level of education and were mostly students as shown in Table II above.

4.3. CLINICAL PROFILE OF THE STUDY POPULATION

4.3.1. Obstetrical characteristics

Table IV: Population distribution according to personal and family obstetrical characteristics

Variables	Induction	Spontaneous	RR	P
	group	group		
	N=85; n(%)	N=85; n(%)	(CI at 95%)	
Gravidity				
Primigravidarum	34 (40.0)	37 (43.5)	0.86 (0.47-1.59)	0.378
Paucigravidarum	26 (30.6)	25 (29.4)	1.05 (0.54-2.03)	0.500
Multigravidarum	15 (17.6)	11 (12.9)	1.44 (0.62-3.35)	0.262
Grand	10 (11.8)	12 (14.1)	0.81 (0.33-1.99)	0.410
multigravidarum				
Parity				
Nulliparous	42 (49.4)	43 (50.6)	0.95 (0.52-1.74)	0.500
Primiparous	18 (21.2)	15 (17.6)	1.25 (0.58-2.68)	0.349
Pauciparous	10 (11.8)	16 (18.8)	0.57 (0.24-1.35)	0.143
Multiparous	12 (14.1)	8 (9.4)	1.58 (0.61-4.09)	0.238
Grand multiparous	3 (3.5)	3 (3.5)	1.00 (0.19-5.10)	0.659

The population was mainly primigravidas (40.0% vs 43.5%; p = 0.378) and nulliparas (49.4% vs 50.6%; p = 0.500) as shown in Table III above.

4.3.2. Comorbidities and lifestyle during pregnancy

Table V: Population distribution according to comorbidities and lifestyle

Variables	Induction	Spontaneous	RR	P
	group	group		
	N=85; n(%)	N=85; n(%)	(CI at 95%)	
Comorbidities				
HIV infection	2 (2.4)	2 (2.4)	1.00 (0.13-7.26)	0.690
Hepatitis B/C	0 (0.0)	1 (1.2)	/	0.500
Hypertension	2 (2.4)	2 (2.4)	1.00 (0.13-7.26)	0.690
Diabetes	0 (0.0)	2 (2.4)	/	0.249
Lifestyle				
Alcohol consumption	3 (3.5)	7 (8.2)	0.40 (0.10-1.63)	0.164
Tobacco consumption	1 (1.2)	2 (2.4)	0.49 (0.04-5.55)	0.500
Traditional	7 (8.3)	13 (15.3)	0.50 (0.19-1.33)	0.122
medication				

Regarding comorbidities during pregnancy, HIV infection was 2.4% in each of the groups (p = 0.690). As for lifestyle, no difference was found in the consumption of tobacco or traditional medications (p ≥ 0.05). (Table IV).

4.3.3. Pregnancy follow-up

Table VI: Population distribution according to number of ANCs, gestational age at fist ANC and qualification of ANC provider

Variables	Induction	Spontaneous	RR	p-value
	group	group		
	N=85; n(%)	N=85; n(%)	(CI at 95%)	
Number of ANC				
1-3	20 (23.5)	29 (34.1)	0.59 (0.30-1.16)	0.088
4	22 (25.9)	17 (20.0)	1.39 (0.68-2.86)	0.233
5-7	35 (41.2)	26 (30.6)	1.58 (0.84-2.98)	0.100
≥ 8	8 (9.4)	13 (15.3)	0.57 (0.22-1.46)	0.176
Gestational age at firs	st ANC (WA)			
< 12	23 (27.1)	26 (30.6)	0.84 (0.43-1.63)	0.368
[12-16[27 (31.8)	25 (29.4)	1.11 (0.58-2.14)	0.434
[16-20[18 (21.2)	18 (21.2)	1.00 (0.47-2.08)	0.574
[20-24[9 (10.6)	6 (7.1)	1.55 (0.53-4.59)	0.295
≥ 8	8 (9.4)	10 (11.8)	0.77 (0.29-2.08)	0.402
ANC provider				
Gynaecologist	36 (42.4)	32 (37.6)	1.21 (0.65-2.25)	0.319
General practitioner	36 (42.4)	27 (31.8)	1.57 (0.84-2.95)	0.102
Others	13 (15.3)	26 (30.6)	0.41 (0.19-0.86)	0.014

No difference was found between the groups in the number of antenatal care visits, nor in the gestational age at the first ANC visit, with respective mean values of $4.81 \pm 1,97$ ANC versus 4.78 ± 2.32 ANC (p = 0.915) and $15.15 \pm 5,54$ weeks of gestation versus 14.84 ± 6.49 weeks of gestation (p = 0.732) as shown in (Table V)

Table VII: Population distribution according to prophylactic measures during pregnancy

Variables	Induction	Spontaneous	RR	p-value
	group	group		
	N=85; n(%)	N=85; n(%)	(CI at 95%)	
TPI				
0	1 (1.2)	8 (9.4)	0.11 (0.01-0.93)	0.017
1-2	31 (36.5)	32 (37.6)	0.95 (0.51-1.77)	0.500
3-4	40 (47.1)	35 (41.2)	1.27 (0.69-2.32)	0.268
≥ 5	13 (15.3)	10 (11.8)	1.35 (0.55-3.28)	0.327
Slept under treated				
mosquito net				
Yes	71 (83.5)	61 (71.8)	1.99 (0.94-4.19)	0.048
No	14 (16.5)	24 (28.2)	1	
Iron / folic acid cons	sumption			
Yes	78 (91.8)	78 (91.8)	1.00 (0.33-2.98)	0.609
No	7 (8.2)	7 (8.2)	1	

Table VI showed that most women had received 3 to 4 doses of IMP during pregnancy that is 47.1% against 41.2% (p = 0.268). Most of them slept under a mosquito bed net impregnated with insecticide (83.5% vs 71.8%) and had taken iron alongside folic acid (91.8% vs 91.8%).

Table VIII: Population distribution according to pathologies during pregnancy

Pathologies during	Induction	Spontaneous	RR	P
pregnancy	group	group		
	N=85; n(%)	N=85; n(%)	(CI at 95%)	
Malaria in 1 st or 2 nd so	emester			
Yes	28 (32.9)	41 (48.2)	0.52 (0.28-0.98)	0.030
No	57 (67.1)	44 (51.8)	1	
Anaemia				
Yes	16 (18.8)	24 (28.2)	0.58 (0.28-1.21)	0.103
No	69 (81.2)	61 (71.8)	1	
Bleeding				
Yes	3 (3.5)	4 (4.7)	0.74 (0.16-3.41)	0.500
No	82 (96.5)	81 (95.3)	1	

Women whose labor had been induced had less frequent malaria in the first and second trimester of pregnancy, at 32.9% versus 48.2% of cases ($\mathbf{p} = \mathbf{0.030}$). As for anemia or bleeding during pregnancy, the frequencies were comparable in the two groups ($\mathbf{p} \ge 0.05$) as shown above in (Table VII).

4.3.4. Bishop score

Table IX: Population distribution according to Bishop score

Variables	Induction	Spontaneous	RR	p-value
	group	group		
	N=85; n(%)	N=85; n(%)	(CI at 95%)	
Bishop score				
< 7	24 (28.2)	14 (16.5)	1.99 (0.84-4.19)	0.048
≥ 7	61 (71.8)	71 (83.5)	0.50 (0.23-1.05)	0.048

Women in the induction of labour group had a higher frequency of a poor Bishop's score compared to women in the spontaneous labour group, at 28.2% and 16.5% respectively (RR: 1.99 (0.84-4.19); p=0.048) as shown in (Table VIII)

4.4. MATERNAL OUTCOME IN THE STUDY POPULATION

Table X: Population distribution according to route of delivery and maternal complications

Variables	Induction	Spontaneous	RR	p-value
	group	group		
	N=85; n(%)	N=85; n(%)	(CI at 95%)	
Mode of delivery				
Cesarian section	32 (37.6)	12 (14.1)	2.66 (1.47-4.81)	< 0.001
Vaginal delivery	53 (62.4)	73 (85.9)	0.72 (0.60-0.87)	< 0.001
Complications				
Labour abnormalities	22 (25.9)	6 (7.1)	3.59 (1.75-	0.001
			12.02)	
Perineal tears	23 (27.1)	11 (12.9)	2.09 (1.08-4.01)	0.017
Post partum	10 (11.8)	4 (4.7)	2.50 (0.81-7.66)	0.081
hemorrhage				

The caesarean section rate was higher in women who had induction of labour compared to those who had spontaneous labour, at 37.6% and 14.1% respectively (**RR: 2.66: p < 0.001**). Regarding maternal complications, women who had been induced had 3.5 times and 2 times more risk than those who entered labor spontaneously of having labour abnormalities such as precipitated labour and prolonged labour($\mathbf{p} = \mathbf{0.001}$) or perineal tears ($\mathbf{p} = \mathbf{0.017}$), respectively as illustrated in (Table IX)

4.5. FETAL AND NEONATAL OUTCOME OF THE STUDY POPULATION

4.5.1. Fetal complications at delivery

Table XI: Population distribution according to the foetal complications at delivery

Variables	Induction	Spontaneous	RR	p-value
	group	group		
	N=85; n(%)	N=85; n(%) (CI a	(CI at 95%)	
Fetal complications				
Non reassuring fetal	31 (36.5)	12 (14.1)	2.58 (1.42-4.68)	0.001
status(NRFS)				
Intrauterine fetal	2 (2.4)	11 (12.9)	0.18 (0.04-0.79)	0.009
demise(IUFD)				

The study of foetal complications during labour was characterized by a risk multiplied by 2.5 for foetuses in the induction group, of having a non-reassuring foetal status ($\mathbf{p} = \mathbf{0.001}$). More cases of intrauterine foetal death were found in the spontaneous delivery group as shown in (Table X) above.

4.5.2. Neonatal characteristics at delivery

Table XII: Population distribution according to the neonatal characteristics at delivery

Variables	Induction	Spontaneous	RR	p-value
	group	group		
	N=85; n(%)	N=85; n(%)	(CI at 95%)	
Sex				
Male	49 (57.6)	36 (42.4)	1.36 (1.01-1.85)	0.033
Female	36 (42.4)	49 (57.6)	0.73 (0.54-0.99)	0.033
Birth weight (in				
grams)				
[2000-2499[6 (7.1)	7 (8.2)	0.85 (0.30-2.44)	0.500
[2500-4000[77 (90.6)	74 (87.1)	1.43 (0.54-3.75)	0.314
≥ 4000	2 (2.4)	4 (4.7)	0.50 (0.09-2.65)	0.341
Hypotrophy				
Yes	0 (0.0)	0 (0.0)	/	/
No	85 (100.0)	85 (100.0)	/	/
Macrosomia				
Yes	2 (2.4)	4 (4.7)	0.50 (0.09-2.65)	0.341
No	83 (97.6)	81 (95.3)	1	
Apgar score				
0	2 (2.4)	11 (12.9)	0.16 (0.03-0.75)	0.009
1-6	2 (2.4)	2 (2.4)	1.00 (0.14-6.93)	0.690
≥ 7	81 (95,3)	72 (84.7)	1.12 (1.01-1.24)	0.019

The birth weight was comparable in both groups, with a normal birth weight predominating in 90.6% vs 87.1% (p = 0.314) respectively. As for the Apgar score, it was good in most cases for both groups, but more frequently so in the newborns of the induction group, at 95.3% vs 84.7% (p = 0.019) as shown in Table XI above.

4.5.3. Neonatal outcomes

Table XIII: Population distribution according to the neonatal outcomes

Variables	Induction	Spontaneous	RR	p-value
	group	group		
	N=85; n(%)	N=85; n(%)	(CI at 95%)	
Neonatal				
ressuscitation				
Yes	8(9.4)	3 (3.5)	2.66 (0.73-9.71)	0.106
No	77(90.6)	82 (96.5)	1	
Need for ventilation				
Yes	13(15.3)	5(5.9)	2.60 (0.96-6.97)	0.039
No	72 (84.7)	80(94.1)	1	
Neonatal intensive car	re unit			
admission				
Yes	21 (24.7)	14 (16.5)	1.50 (0.81-2.74)	0.127
No	64 (75.3)	71 (83.5)	1	

Regarding neonatal outcomes, the frequency of neonatal resuscitation was 9.4% in the induction group and 3.5% in the spontaneous delivery group with no statistical significance (p=0.106). Newborns in the induction group had 2.6 times higher risk of requiring ventilatory support compared to the spontaneous delivery group. There was no early neonatal death in our study. However, the observed difference was statistically significant (RR: 2.60 (0.96-6.97);p=0.039). as shown in Table XII above.

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

CHAPTER 5: DISCUSSION

Malaria and Pregnancy

Malaria is known to have deleterious effects on pregnancy and perinatal outcomes as it is a major public health concern in our country [50]. Therefore it is important to use the optimal delivery approach to minimize the occurrence of adverse events [29]. This was an experimental study with the aim of assessing the maternal and foetal outcome of pregnancy among women diagnosed and treated for malaria at term following induction of labour compared to expectant spontaneous labour. The study tested the hypothesis that pregnant women who enter into labour spontaneously after treatment of malaria at term may have a better pregnancy outcome compared to those whose labour was induced.

To achieve this, we collected data from 170 pregnant women who were diagnosed with malaria at term and received treatment over a period of five months running from Jan 1st 2024 through May 1st 2024. Half of these women were induced and the other half went into spontaneous labour after discharge. We then compared the maternal and foetal outcome among these groups of women.

Sociodemographic profile of pregnant women

The study population was comparable in terms of age between the induction of labour and spontaneous delivery groups. The mean ages for both groups were similar as well and most of the women fell in the age group of 25-30 years. This is slightly higher than the less than 21 years reported by a study conducted in Cameroon in 2018 for most age group affected by malaria [51]. Conversely very few women were found in the older age groups. This suggests that there is some decrease in susceptibility to malaria infection with increasing maternal age and emphasizes on the idea of possible existence of maternal-age dependent immunity that can be significant for the protection against malaria infection among pregnant women living in stable malaria transmission zones [51]. However with respect to the marital status, a significant difference (p=0.010) was observed in the participants with a higher proportion of women in the induced group married compared to those of the spontaneous labour group. Marital status has been previously associated with certain maternal and perinatal outcomes, with married women generally experiencing better outcomes compared to single women due to various social, economic and psychological factors that can impact the labour and delivery process, as well as postpartum outcomes[52].

The distribution of educational levels and occupation was similar for the two groups. The largest proportion in both groups had a university-level education (43.5% in the induced group vs 45.9% in the spontaneous labour group, p=0.439) and the most common occupation in both groups was

being a student (32.9% in the induction group vs 27.1% in the spontaneous delivery group, p=0.252).

Clinical profile of pregnant women

In our study, we found that the largest proportion of the women in both groups infested with malaria were primigravidae and nulliparous women compared to their multigravidae and multiparous counterparts. This has been observed in previous research [8, 25]. The explanation is that nulliparous and primigravidae women have not developed placenta parasite specific immunity compared to multiparous and multigravidae women who due to their successive pregnancy have acquired these antibodies against parasitized red blood cells that bind chondroitin sulphate A in the placenta [36].

Concerning lifestyle and comorbidities in our study, it was quite similar for both groups. The prevalence of HIV infection was 2.4% in our study population which is lower compared to the 6.0% prevalence reported in a study done in 2013 in Cameroon, HIV infected women have a higher susceptibility to pathologies like malaria that influence evolution of pregnancy[50]. The prevalence of hypertension in this study was 2.4%. There were two cases of diabetes and one case of Hepatitis B all in the spontaneous delivery group and none in the induction group. HIV infection adds to the deleterious effects of malaria in pregnancy due to diminished immunity [50]. The proportion of women who consumed alcohol during pregnancy was (3.5% vs 8.2%) for induction and spontaneous delivery groups respectively. In the same line, that of women who consumed tobacco (1.2% vs 2.4%) and then those who consumed traditional medication (8.3% vs 15.3%) respectively.

With respect to the antenatal care, there was no difference for both groups when considering the number of antenatal contacts and gestational age at first antenatal contact. Many of these pregnant women had taken more than 4 ANC contacts in both groups and a smaller proportion had less than 4 contacts that was 23.5% for the induction group and 34.1% for the spontaneous delivery group. The timing of the first ANC contact was similar with most women beginning ANC contacts at less than 20 weeks of gestation. Also we realized that most of the women of both groups had some significant level of follow up by an antenatal care provider, in many cases gynaecologists and general practitioners. The only statistically significant difference was that fewer women in the induction group saw other types of providers compared to the spontaneous delivery group. Overall the antenatal care received by the two groups during pregnancy appeared to have been well balanced.

The majority of women in both the induction (47.1%) and spontaneous delivery (41.2%) groups received 3-4 doses of intermittent preventive treatment for malaria during pregnancy. This finding is in line with the 42.1% in a study done in 2019 in Cameroon. The lack of any significant difference in the higher doses of IPTp suggests that they received comparable malaria prevention during pregnancy and this is essential because IPTp is one of the main interventions recommended by WHO to help curb the number of poor outcomes associated with the disease [25, 53]. Furthermore, malaria is one of the most common pathologies women suffer from during pregnancy [52]. The small but significantly lower proportion of women in the induction group who received no IPTp at all (1.2% vs 9.4%) may indicate slightly better adherence to malaria prevention guidelines in this group.

In this study, most of the women slept under insecticide-treated mosquito bed nets with a higher frequency in the induction group as compared to those of the spontaneous delivery group (83.5% vs 71.8%). This finding is also in line with the 81.13% reported in a study conducted in 2022 in Cameroon for the urban setting [14]. ITNs are a necessary intervention for preventing malaria in pregnancy [11, 26]. Consistent and proper use of ITNs helps mitigate the risk of malaria-related complications [14]. As for iron and folic acid supplementation, over 91% of the women in both groups received it throughout their pregnancy. This is very essential in combating pregnancy-related anemia and supporting foetal development [21].

Regarding malaria in the first and second trimesters, we noticed a significantly lower rate of malaria for the induction group compared to the spontaneous delivery group (32.9% vs 48.2%, p=0.030). This suggested that the induction group perhaps had better management of malaria during early pregnancy relative to the spontaneous delivery group. Malaria especially in the critical first trimester of pregnancy can have serious consequences for the mother and foetus [5]. The rates of pregnancy-related anaemia and bleeding during pregnancy was comparable for the two groups.

For the Bishop's score, our findings indicated that women in the induction group had a significantly higher frequency of Bishop's scores less than 7 compared to those of the spontaneous delivery group (p=0.048). This finding is comparable to studies conducted in Ethiopia [54–56]. This suggested that women who belonged to the induction group presented with a less favourable cervical condition compared to those who went into spontaneous labour at onset. The increased frequency of low Bishop's scores in the induction group is consistent with the fact that induction of labour is often performed in the setting of an unripe cervix and may contribute to the adverse outcomes associated with the procedure [12, 57].

Maternal outcome in the study population

For the mode of delivery, the frequency of caesarean section was significantly higher in the induction group compared to the spontaneous delivery group (37.6% vs 14.1%) respectively. This is similar to the findings of a study conducted in 2020 which reported a frequency of (33% vs 12%) for the induction group and spontaneous delivery group in a study conducted in South Africa [58]. Furthermore, a higher frequency of caesarean section in the induction group compared to spontaneous delivery group at (85.7% vs 14.3%) was reported in a study carried out in 2023 in Ethiopia and this large discrepancy is accounted for by the larger study population they investigated [44]. Conversely the rate of vaginal delivery was significantly lower in the induction group (62.4% vs 85.9%). This equally indicates that women whose labour was induced were 2.66 times more likely to have a caesarean delivery than those in the spontaneous delivery group. This finding suggests that induction of labour definitely led to more dysfunctional labour progressions ultimately resulting in more caesarean sections to ensure safe delivery of the babies [59].

Labour abnormalities such as precipitated labour, prolonged labour were more common in the induction group compared to the spontaneous delivery group and the difference was statistically significant (25.9% vs 7.1%, p=0.001) and a 3.5 higher risk than their spontaneous counterparts. This finding is consistent with a study conducted in 2021 that reported a value of 24.2% in Ethiopia for the induction group [55]. This finding points to potential challenges in labour progression and foetal descent with induction of labour.

Perineal tears were also more frequent in the induction group and the difference in both groups was statistically significant (p=0.017) with about a 2.1 times higher risk for women who were induced. This finding is contrary to what was reported in a study carried out in 2019 which showed no difference between the two groups carried out in Greece. Perineal trauma is often associated with more difficult second stages of labour, which may be more common when labour is induced [60].

The difference in postpartum haemorrhage rates between the two groups was not significant (11.4% vs 4.7% p=0.08) although the induction group had a higher risk. This finding is similar to what was reported in 2020 in South Africa where postpartum haemorrhage was found to be more prevalent in the induction group compared with the spontaneous delivery group (6.3% vs 4.7%) respectively[58].

Foetal and Neonatal Outcome of the Study Population

The rate of non-reassuring foetal status was significantly higher in the induction group compared to the spontaneous delivery group (31.6% vs 14.1%, p=0.001). New-borns of the induction group had

a 2.58 risk of having a non-reassuring foetal status during labour compared to those of the spontaneous delivery group. This finding is similar to what was reported in studies carried out in Somalia and Ghana in 2023(23.6%) and in 2022 (35.3%) respectively [12, 61]. This finding suggests that induction of labour may have increased the stress and strain on the foetus, potentially due to factors like stronger or more frequent uterine contractions and longer labour duration.

Intrauterine foetal death was significantly less common in the induction group compared to the spontaneous delivery group (p=0.009). Intrauterine foetal death is a major complication associated with malaria in pregnancy. The infested red blood cells sequestrated into the intervillous space attract mononuclear cells. These cells secrete proinflammatory cytokines, these changes reduce placental blood flow and subsequently there is decreased transfer of nutrients and oxygen to the foetus and intrauterine foetal demise may occur.

As for the neonatal characteristics, the induction group had a significantly higher proportion of male infants compared to the spontaneous delivery group (57.6% vs 42.4%, p=0.033). Sex differences in labour and delivery outcomes have been reported before, however the underlying mechanisms driving these sex-based differences are not fully understood and may involve a complex interplay of hormonal, genetic and physiological factors.

The birth weight distribution was similar between the two groups, with the majority of infants in both groups having a normal birth weight between 2500-4000g. Only a small proportion of infants in each group had low birth weights (less than 2500g) or macrosomia (more than 4000g) and the differences were not statistically significant. This suggested that neither labour induction nor expectant spontaneous labour had a significant impact on overall birth weight in our study population.

As for Apgar scores, a higher proportion of infants in the induction group had Apgar scores greater than 7 at 1 minute compared to the spontaneous delivery group (95.3% vs 84.7%, p=0.019). This finding is in agreement with findings reported in a study in carried out in the USA in 2023[43]. A similar finding is also reported in a study in India done in 2018, though in the study the difference is not statistically significant. This suggests better initial adaptation and wellbeing. It may be related to a factor like timely delivery. However, it is important to note that Apgar scores alone do not fully capture the complexity of neonatal status and longer-term outcomes should be considered. Moreover, different induction procedures may have some influence as well [62].

For neonatal resuscitation, the rate in the induction group was higher than that of the spontaneous delivery group (9.4% vs 3.5%). The 2.6 fold higher rate in the induction group was not significant

(p=0.106). This finding correlates with that reported in a study done in India with a rate of (4.9% vs 0.6%) in the induction group and spontaneous delivery group respectively and the difference was not significant as well (p=0.097) [63].

As for the need for ventilation, infants in the induction group had a 2.6-fold higher risk of requiring ventilatory support compared to the spontaneous delivery group (15.3% vs 5.9%). This difference was statistically significant (p=0.039). This finding indicates a potentially meaningful increase in respiratory distress or compromise among the new-borns of the induction group. This finding is similar to what was reported in a study carried out in Ethiopia in 2023, however it was contrary to what was reported in a study done in Greece in 2019 where induction of labour was associated with a significant reduction in the need for neonatal respiratory support [44, 60].

Regarding neonatal intensive care unit admission, a higher proportion of new-borns in the induction group were admitted to the neonatal intensive care unit compared to the spontaneous labour group (24.7% vs 16.5%). However this difference was not statistically significant (p=0.127). This finding is in line with studies in Sri Lanka and Ethiopia carried out in 2022 with a rate at (15.8% vs 8.6%, p<0.001) and in 2023 with a rate at (15.4% vs 5.7% p<0.001) for the induction group and spontaneous delivery group respectively [44, 64]. This finding in our study though not statistically significant suggests that new-borns of the induction group are more prone to neonatal complications requiring intensive care. This finding could be due to the fact that induction of labour results in early neonatal complications that need special care in the NICU [55].

Limitations of the study

This study was carried out in just two hospitals among the about 8000 hospitals in the country and with a small sample size which therefore limits its generalizability to the broader population of pregnant women who undergo induction of labour and those who go into spontaneous labour after diagnosis and treatment for malaria at term in the country and therefore cannot be utilized as a national statistics.

CONCLUSION AND RECOMMENDATIONS

Delivery after treatment for malaria at term: comparative outcome between induction of

labour and expectant spontaneous labour

CONCLUSION

At the end of this study we can draw the following conclusion,

- ❖ Most women in both groups were in their late 20s, married, students and had a secondary level education. They were mostly primigravidae and nulliparous women.
- ❖ Induction of labour as compared to spontaneous labour was significantly associated with increased risk of caesarean deliveries, labour abnormalities such as prolonged labour, precipitated labour and perineal tears.
- ❖ Higher rates of postpartum hemorrhage were observed with the induction group.
- ❖ Adverse neonatal outcome such as of non-reassuring fetal status was more in the women who delivered through induction.
- Infants delivered through induction had increased need for reanimation and admission into neonatal intensive unit.
- ❖ Women who went into spontaneous labour had a higher risk of foetal demise.

RECOMMENDATIONS

❖ To pregnant women,

- -To be cautious and seek medical attention as soon as they notice any irregularities especially in temperature.
- Adhere to all preventive measures put in place to reduce the burden of malaria infection in pregnancy including IPTp and sleeping under mosquito treated bed nets.

❖ To health personnel

- -To propose induction of labor as against discharge for anticipation of spontaneous labor because the latter is associated with foetal demise.
- -To include malaria prevention education during health promotion

***** To the Faculty of Medicine and Biomedical Sciences

-To encourage further studies on the comparative outcome between induction of labour and spontaneous labour after complete treatment of malaria at term.

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

REFERENCES

REFERENCES

- 1. World Malaria Report 2019: Pregnant Women & Children Hit The Hardest As Global Progress Stalls Health Policy Watch.
- 2. Malaria and Pregnancy: A Global Health Perspective PMC.
- 3. World malaria report 2022.
- 4. Diagnosis of malaria in pregnancy: accuracy of CareStartTM malaria Pf/PAN against light microscopy among symptomatic pregnant women at the Central Hospital in Yaoundé, Cameroon | Malaria Journal.
- 5. Kayatani AKK, Leke RGF, Leke RIJ, Fogako J, Taylor DW. Transplacental transfer of total immunoglobulin G and antibodies to Plasmodium falciparum antigens between the 24th week of gestation and term. Sci Rep. 2022 Nov 7;12:18864.
- 6. Leke RGF, Megnekou R, Leke RJI, Taylor DW, Thuita L, Suguitan AL, et al. malaria associated cytokine changes in the placenta of women with preterm deliveries in Yaounde, Cameroon. Am J Trop Med Hyg. 2003 Dec 1;69(6):574–81.
- 7. Nkwabong E, Mayane DN, Meka E, Essiben F. Malaria in the third trimester and maternal-perinatal outcome. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet. 2020 Oct;151(1):103–8.
- 8. Rogerson SJ, Desai M, Mayor A, Sicuri E, Taylor SM, van Eijk AM. Burden, pathology, and costs of malaria in pregnancy: new developments for an old problem. Lancet Infect Dis. 2018;18(4):e107–18.
- 9. Current Diagnosis & Treatment: Obstetrics & Gynecology, 12e |2015 | McGraw Hill Medical.
- 10. Megnekou R, Tenou S, Bigoga JD, Djontu JC, Medou FM, Lissom A. Placental malaria and modulation of immune and hormonal responses in Cameroonian women. Acta Trop. 2015 Jul 1;147:23–30.
- 11. Fokam EB, Ngimuh L, Anchang-Kimbi JK, Wanji S. Assessment of the usage and effectiveness of intermittent preventive treatment and insecticide-treated nets on the indicators of malaria among pregnant women attending antenatal care in the Buea Health District, Cameroon. Malar J. 2016 Mar 17;15:172.
- 12. Adu-Bonsaffoh K, Seffah J. Factors associated with adverse obstetric events following induction of labour: a retrospective study in a tertiary hospital in Ghana. Afr Health Sci. 2022 Dec;22(4):348–56.
- 13. Pharmacokinetics of Dihydroartemisinin and Piperaquine in Pregnant and Nonpregnant Women with Uncomplicated Falciparum Malaria | Antimicrobial Agents and Chemotherapy.
- 14. Nlinwe NO, Nchefor FG, Takwi NB. Impact of long lasting insecticidal nets on asymptomatic malaria during pregnancy, in a rural and urban setting in Cameroon. Parasite Epidemiol Control. 2022 Aug 14;18:e00265.
- 15. World malaria report 2021.

- 16. Tegegne Y, Asmelash D, Ambachew S, Eshetie S, Addisu A, Jejaw Zeleke A. The Prevalence of Malaria among Pregnant Women in Ethiopia: A Systematic Review and Meta-Analysis. J Parasitol Res. 2019 May 2;2019:e8396091.
- 17. Roser M, Ritchie H. Malaria. Our World Data.
- 18. Reddy V, Weiss DJ, Rozier J, Kuile FO ter, Dellicour S. Global estimates of the number of pregnancies at risk of malaria from 2007 to 2020: a demographic study. Lancet Glob Health. 2023 Jan 1;11(1):e40–7.
- 19. What's going on with my uterus? 3 conditions related to pelvic pain and bleeding | Women's Health | UT Southwestern Medical Center [Internet].
- 20. Anatomy: Fetus in Utero | Spectrum Health Lakeland.
- 21. Williams Obstetrics, 26e | AccessObGyn | McGraw Hill Medical.
- 22. Gentry A, Pagidas K. Assessment of Uterine Anatomy and Implications of Müllerian Disorders and Acquired Uterine Lesions on Fertility. In: Allahbadia GN, Ata B, Lindheim SR, Woodward BJ, Bhagavath B, editors. Textbook of Assisted Reproduction. Singapore: Springer; 2020. p. 7–20.
- 23. 36 weeks pregnant | Raising Children Network.
- 24. WHO recommendations on antenatal care for a positive pregnancy experience.
- 25. Kakuru A, Staedke SG, Dorsey G, Rogerson S, Chandramohan D. Impact of Plasmodium falciparum malaria and intermittent preventive treatment of malaria in pregnancy on the risk of malaria in infants: a systematic review. Malar J. 2019 Sep 3;18(1):304.
- 26. Koffi AA, Camara S, Ahoua Alou LP, Oumbouke WA, Wolie RZ, Tia IZ, et al. Anopheles vector distribution and malaria transmission dynamics in Gbêkê region, central Côte d'Ivoire. Malar J. 2023 Jun 22;22(1):192.
- 27. Wiebe A, Longbottom J, Gleave K, Shearer FM, Sinka ME, Massey NC, et al. Geographical distributions of African malaria vector sibling species and evidence for insecticide resistance. Malar J. 2017 Feb 20;16(1):85.
- 28. Fact sheet about malaria.
- 29. Yimam Y, Nateghpour M, Mohebali M, Abbaszadeh Afshar MJ. A systematic review and meta-analysis of asymptomatic malaria infection in pregnant women in Sub-Saharan Africa: A challenge for malaria elimination efforts. PloS One. 2021;16(4):e0248245.
- 30. Prevention CC for DC and. CDC Malaria About Malaria Biology. 2020
- 31. Shah MP, Hwang J, Choi L, Lindblade KA, Kachur SP, Desai M. Mass drug administration for malaria. Cochrane Database Syst Rev. 2021;(9).
- 32. Malaria Infectious Diseases. MSD Manual Professional Edition.
- 33. Figure: Plasmodium life cycle. MSD Manual Professional Edition.

- 34. Feeney ME. The immune response to malaria in utero. Immunol Rev. 2020;293(1):216–29.
- 35. Najjar N. The Effect of Dietary L-arginine on Malaria-Induced Dysregulation of Transporter Expression in a Murine Model of Placental Malaria. In 2017].
- 36. Sharma L, Shukla G. Placental Malaria: A New Insight into the Pathophysiology. Front Med
- 37. Crutcher JM, Hoffman SL. Malaria. In: Baron S, editor. Medical Microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston; 1996.
- 38. Prevention CC for DC and. CDC Malaria Diagnosis & Treatment (United States) Treatment (U.S.) Guidelines for Clinicians (Part 1). 2023
- 39. Mulongo Mbarambara P, Bangwa Bulase A, Muhumu Mututa P, Kyambikwa Bisangamo C. Accuracy of the rapid diagnostic test for malaria among pregnant women in the Kitutu Health Zone in eastern RD Congo. Med Sante Trop. 2018 Aug 1;28(3):316–9.
- 40. Al Khaja KAJ, Sequeira RP. Drug treatment and prevention of malaria in pregnancy: a critical review of the guidelines. Malar J. 2021 Jan 23;20(1):62.
- 41. WHO Guidelines for malaria.
- 42. Caughey AB, Sundaram V, Kaimal AJ, Gienger A, Cheng YW, McDonald KM, et al. Systematic review: elective induction of labor versus expectant management of pregnancy. Ann Intern Med. 2009 Aug 18;151(4):252–63, W53-63.
- 43. Hong J, Atkinson J, Roddy Mitchell A, Tong S, Walker SP, Middleton A, et al. Comparison of Maternal Labor-Related Complications and Neonatal Outcomes Following Elective Induction of Labor at 39 Weeks of Gestation vs Expectant Management: A Systematic Review and Meta-analysis. JAMA Netw Open. 2023 May 1;6(5):e2313162.
- 44. Laikemariam M, Aklilu A, Waltengus F, Addis M, Gezimu W, Baye F, et al. Adverse neonatal outcomes and associated factors among mothers who gave birth through induced and spontaneous labor in public hospitals of Awi zone, Northwest Ethiopia: a comparative cross-sectional study. BMC Pregnancy Childbirth. 2023 May 2;23(1):307.
- 45. World Health Organization. WHO recommendations: induction of labour at or beyond term. Geneva: World Health Organization; 2018
- 46. Souter V, Painter I, Sitcov K, Caughey AB. Maternal and newborn outcomes with elective induction of labor at term. Am J Obstet Gynecol. 2019 Mar;220(3):273.e1-273.e11.
- 47. Wormer KC, Bauer A, Williford AE. Bishop Score. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023
- 48. How likely am I to go into labor?: North Scottsdale Women's Health: OBGYNs.
- 49. Alfirevic Z, Keeney E, Dowswell T, Welton NJ, Medley N, Dias S, et al. Introduction. In: Which method is best for the induction of labour? A systematic review, network meta-analysis and cost-effectiveness analysis. NIHR Journals Library; 2016

- 50. Tonga C, Kimbi HK, Anchang-Kimbi JK, Nyabeyeu HN, Bissemou ZB, Lehman LG. Malaria risk factors in women on intermittent preventive treatment at delivery and their effects on pregnancy outcome in Sanaga-Maritime, Cameroon. PloS One. 2013;8(6):e65876.
- 51. Megnekou R, Djontu JC, Nana BC, Bigoga JD, Fotso M, Fogang B, et al. Accuracy of One Step malaria rapid diagnostic test (RDT) in detecting Plasmodium falciparum placental malaria infection in women living in Yaoundé, Cameroon. Malar J. 2018 Dec 4;17(1):450.
- 52. Ela ME, Cumber SN, Dakenyo RD, Tekam DD, Heumou PCB, Marvin GL, et al. [Association between malaria and low birth weight in Yaounde, Cameroon]. Pan Afr Med J. 2019;33:127.
- 53. Omang J, Ndep AO, Offiong D, Otu F, Onyejose K. Malaria in Pregnancy in Nigeria: A Literature Review. Int Healthc Res J. 2020 Feb 19;3(11):346–8.
- 54. Tadesse T, Assefa N, Roba HS, Baye Y. Failed induction of labor and associated factors among women undergoing induction at University of Gondar Specialized Hospital, Northwest Ethiopia. BMC Pregnancy Childbirth. 2022 Mar 3;22(1):175.
- 55. Debele TZ, Cherkos EA, Badi MB, Anteneh KT, Demssie FW, Abdo AA, et al. Factors and outcomes associated with the induction of labor in referral hospitals of Amhara regional state, Ethiopia: a multicenter study. BMC Pregnancy Childbirth. 2021 Mar 20;21(1):225.
- 56. Ejigu AG, Lambyo SH. Predicting factors of failed induction of labor in three hospitals of Southwest Ethiopia: a cross-sectional study. BMC Pregnancy Childbirth. 2021 May 19;21(1):387.
- 57. Nakano T, Muto H, Ishii K, Hayashi S, Okamoto Y, Mitsuda N. Factors associated with emergency cesarean delivery during induction of labor in nulliparous women aged 35 years or older at term. J Obstet Gynaecol Res. 2018;44(9):1747–51.
- 58. Vinod V, Bhat RG, Bhat PV, Zahoor N, Bhat S. Induction of labour a misused blessing: Prospective study of factors influencing the success of induction and comparison of fetomaternal outcomes with spontaneous labour. South Afr J Obstet Gynaecol. 2020 Dec;26(3):1–5.
- 59. Butler SE, Wallace EM, Bisits A, Selvaratnam RJ, Davey MA. Induction of labor and cesarean birth in lower-risk nulliparous women at term: A retrospective cohort study. Birth. 2024 Jan 3.
- 60. Sotiriadis A, Petousis S, Thilaganathan B, Figueras F, Martins WP, Odibo AO, et al. Maternal and perinatal outcomes after elective induction of labor at 39 weeks in uncomplicated singleton pregnancy: a meta-analysis. Ultrasound Obstet Gynecol. 2019;53(1):26–35.
- 61. Farah FQ, Aynalem GL, Seyoum AT, Gedef GM. The prevalence and associated factors of success of labor induction in Hargeisa maternity hospitals, Hargeisa Somaliland 2022: a hospital-based cross-sectional study. BMC Pregnancy Childbirth. 2023 Jun 13;23(1):437.
- 62. Lueth GD, Kebede A, Medhanyie AA. Prevalence, outcomes and associated factors of labor induction among women delivered at public hospitals of MEKELLE town-(a hospital based cross sectional study). BMC Pregnancy Childbirth. 2020 Apr 9;20(1):203.

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

- 63. Kumari G, Poonia K, Rani D. Prospective study to assess the fetal and maternal outcome in cases of low risk primigravida in induced versus spontaneous onset of labour .
- 64. Senanayake H, Mariani I, Valente EP, Piccoli M, Armocida B et al. Outcomes of induction versus spontaneous onset of labour at 40 and 41 GW: findings from a prospective database Sri Lanka. BMC Pregnancy Childbirth. 2022 Jun 27;(1):518.

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

APPENDIX

APPENDIX I

Informed Consent Form

Title: Delivery after treatment for malaria at term: comparative outcome between induction
of labour and expectant spontaneous labour
I, Mrs/Ms:, the undersigned, acknowledge that I
have been informed and fully briefed by the final year medical student, Mbele Chelsea Ngomo, on
the study entitled "Delivery after treatment for malaria at term: comparative outcome between
induction of labour and expectant spontaneous labour", in view of her M.D. Thesis under the
supervision of Prof. MBU ROBINSON ENOW, Dr. EBONG CLIFORD and Dr MBOUA
BATOUM
She precised that I am free to accept or deny to participate in the research.
 I have received and understood information pertaining to the aim of this study, the procedure
and possible constraints.
 I have been given adequate time to ask questions about the study.
- I accept that my medical records be consulted by the research personnel for research
purposes only and all data concerning me will be strictly confidential.
- My participation can be interrupted at any time if the principal investigator deems it
necessary or if I so wish.
- The research proposal has been reviewed and validated by the Ethics and Research
Committee of the Faculty of Medicine and Biomedical Sciences of the University of
Yaoundé I.
- At any time, I can ask for additional information from the investigator Mbele Chelsea
Ngomo using number +237 678194360
 I hereby accept to participate in the study under the aforementioned conditions.
Date :/
Investigator's signature Participant's signature

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

and expectant spontaneous racour
Fiche de consentement éclairée.
Mme/Mlle
${\bf Titre: \& Accouchement \ après \ traitement \ du \ paludisme \ a \ terme: resultat \ comparatif \ entre \ le}$
déclenchement du travail et le travail spontané attendu »
L'étudiante Mbele Chelsea Ngomo , étudiante en 7ème année de formation médicale à la FMSB,
m'a proposé de participer à une étude qu'ils mènent à l'Hôpital Central de Yaoundé et l'Hôpital
Gyneco-Obstetrique et Pediatrie de Yaoundé, pour sa thèse en fin de formation.
Cette étude a pour but principal d'évaluer le devenir des grossesses après traitement du paludisme
a terme : déclenchement du travail vs travail spontané.
- Elle m'a précisé que je suis libre d'accepter ou de refuser sa proposition. J'ai reçu des
informations concernant : le but de l'étude, la procédure et les analyses réalisées, les
possibles risques et les contraintes liés à l'étude et les avantages liés à l'étude.
- J'accepte que mon dossier médical soit consulté par les membres de l'équipe de recherche
et les informations utilisées dans le but de la recherche seulement. Toutes les informations
personnelles seront confidentielles.
 Le protocole de recherche relatif à cette étude a été revu et validé par le comité institutionnel
d'éthique et de la recherche de la faculté de médicine et des sciences biomédicales.
 À tout moment, je pourrai demander des informations supplémentaires à l'étudiante à travers
le contact : +237 678194360
 J'accepte donc de participer à cette étude sous les termes susmentionnés.
Date:/
Signature de l'investigateur Signature de la participant

Delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour

Mbele Chelsea Ngomo

19M001

7TH year General Medicine

Faculty of Medicine and Biomedical Sciences

University of Yaounde I

P.O.Box 1364 Yaounde

The president,

Institutional Ethical Review Board,

Faculty of Medicine and Biomedical Sciences,

University of Yaoundé 1.

Dear Professor,

Subject; An application for ethical clearance

I am a seventh year medical student at the Faculty of Medicine and Biomedical Sciences, and it is with great honour that we write you to apply for authorization to carry out our research study. We wish to carry out a research entitled; delivery after treatment for malaria at term: comparative outcome between induction of labour and expectant spontaneous labour, under the supervision of Professor MBU ROBINSON ENOW, Dr. EBONG CLIFORD and Dr MBOUA BATOUM. Attached to this demand is a copy of the research proposal. While hoping for a positive response, do accept our profound gratitude.

Yours sincerely,

MBELE CHELSEA NGOMO

Attachment: Copy of research proposal

APPENDIX III: RESEARCH AUTHORIZATION I

APPENDIX III: RESEARCH AUTHORIZATION II

APPENDIX IV: Questionnaire

Topic: DELIVERY AFTER TREATMENT OF MALARIA AT TERM: COMPARATIVE OUTCOME BETWEEN INDUCTION OF LABOUR AND EXPECTANT SPONTANEOUS LABOUR.

Date :/	Site:	Contact://///
Questionnaire No :		Patient code ://

	1 attent code ://	
Number	Variable	Answer
	1. SOCIODEMOGRAPHIC VARIABLES	
1.	Age (in years):	
2.	Marital status: Single = 1; Married = 2; Divorced = 3; Widow=4,	
	Concubine=5	
3.	Level of education: None = 1; Primary = 2; Secondary (6éme – 3éme) =	
	3; High school $(2nd - Tle) = 4$; University = 5	
4.	Occupation: Civil = 1; Private = 2; Informal = 3; student = 4; housewife	
	= 5; unemployed = 6	
5.	Region of origin: Extreme north = 1; North = 2; Adamawa = 3; Centre =	
	4; Littoral = 5; North West = 6; South West = 7; West = 8; East = 9; South	
	= 10, Stranger=11	
6.	Religion: Christian = 1; Muslim = 2; Atheist = 3, Animist=4	
	2. CLINICAL PROFILE	
9.	Gravidity:	
10.	Parity(term and preterm):	
11.	History of malaria in pregnancy? Yes=1 No=2	
12.	Are you a diabetic? Yes = 1; No = 2	
13.	Do you have hypertension? Yes = 1; No = 2	
14.	Do you have a history of HIV? Yes = 1; No = 2	
15.	Do you have a history of hepatitis? Yes = 1; No = 2	
16.	Have you bled during pregnancy before? Yes = 1; No = 2	
17.	Do you consume alcohol? Yes = 1; No = 2	
18.	Do you smoke? Yes=1: No=2	
19.	Consumption of traditional meds >3months? Yes = 1; No = 2	

3. HISTORY OF PREGNANCY				
19.	Gestational age at time of diagnosis(in weeks):			
20.	Number of antenatal consultations done:			
21.	Gestational age at first antenatal consultation(in weeks):			
22.	Antenatal consultations done by: Gynaecologist = 1; Resident/Intern= 2;			
	General Practitioner =3; Midwife = 4; Nurse = 5			
23.	HIV done? Yes = 1; No = 2			
24.	Hepatitis B done? Yes = 1; No = 2			
25.	Hepatitis C done? Yes = 1; No = 2			
26.	Syphilis done? Yes = 1; No = 2			
27.	Toxoplasmosis done? Yes = 1; No = 2			
28.	Anaemia in pregnancy? Yes = 1; No = 2			
29.	Did you take daily iron and folic acid? Yes = 1; No = 2			
30.	Number of VAT(anti-tetanus vaccine) doses:			
31.	Sleeping under insecticide treated long lasting mosquito nets? Yes = 1; No			
	= 2			
32.	Number of doses intermittent preventive treatment (TPI):			
33.	How many ultrasounds done:			
Confirmed Cases of Malaria in Pregnancy				
34.	Treatment completed? Yes=1; No=2			
35.	Bishop's Score:			
	4. DELIVERY OPTION			
36.	Immediate Induction=1; Discharge and wait for spontanoeus labour=2			
Complications due to Induction				
37.	Failure of induction=1; Prolonged labour=2; Perineal tears=3; Postpartum			
	hemorrhage=4; Uterine rupture=5; Nonreassuring fetal status=6;			
	Intrauterine fetal death=7; Cord Prolapse=8; Infection=9, Birth trauma=10			
Complications following Spontaneous labour				

38.	Prolonged labour=2; Perineal tears=3; Postpartum hemorrhage=4; Uterine				
	rupture=5; Nonreassuring fetal status=6; intrauterine fetal death=7; Cord				
	Prolapse=8; Infection=9, Birth trauma=10				
N	Mode of Delivery				
39.	Vaginal birth=1; Cesarean section=2				
Characteristics of Newborn					
40.	Early neonatal death? Yes=1, No=2				
41.	If alive sex? Male=1, Female=2				
42.	Apgar score at 1 st minute:				
43.	Apgar score at 5 th minute:				
44.	Newborn birthweight:				
45.	Fetal length in cm:				
46.	Fetal head circumference in cm:				
47.	Fetal mid upper arm circumference in cm:				
48.	Need for resuscitation? Yes=1; No=2				
49.	Need for ventilation? Yes=1; No=2				
50.	Neonatal intensive care unit(NICU) admission? Yes=1; No=2				
51.	Reason for NICU admission? Asphyxia=1; Intrauterine growth				
	restriction=2; Low birth weight=3; neonatal infection=4				