

Chapter Case 01 Low Pass - firwin

Understanding freqz in Python – Headfirst Guide

1 What is freqz ?

freqz is a function from scipy.signal used to analyze digital filters.

- · Input: FIR or IIR filter coefficients
- Output: frequency response of the filter

It answers the question:

"How does my filter behave at each frequency?"

2 The Syntax

```
from scipy.signal import freqz
w, H = freqz(h, worN=1024, fs=fs)
```

Where:

Argument	Meaning
h	Filter coefficients (FIR taps)
worN	Number of frequency points to evaluate (default 512)
fs	Sampling frequency in Hz (optional, for readable frequency axis)

3 Line-by-line Explanation

- **a)** w, H = freqz(...)
 - w → frequency points (x-axis of the plot)
 - H → complex frequency response values (y-axis)
- ¶ Interpretation: For each frequency in w , H tells you:
 - Magnitude \rightarrow how strong the filter passes or blocks that frequency
 - Phase \rightarrow how much that frequency is shifted in time

b) worN=1024

- · Number of frequency samples to evaluate
- More points → smoother curve; fewer → jagged
- · Analogy: how fine your ruler is when measuring the filter

- C) fs=fs
 - Converts w from radians/sample \to Hz
 - · Makes plots human-readable
 - Example: fs = 8000 \rightarrow Nyquist = 4000 Hz \rightarrow x-axis 0 \rightarrow 4000 Hz

Without fs , w is in radians/sample $(0 \to \pi) \to less$ intuitive

d) 20*np.log10(np.abs(H))

- H is complex → contains magnitude + phase
- np.abs(H) \rightarrow linear magnitude (1 = full pass, 0 = blocked)
- 20*np.log10(...) → magnitude in **dB**

dB scale:

dB	Linear	Meaning
0	1	Pass
-20	0.1	Attenuated
-80	0.0001	Nearly blocked

• Observation: The plot shows:

- Flat near 0 dB → passband
- Rapid drop \rightarrow transition band
- Deep negative → stopband

4 What is +? Array or single value?

- н is an array, length = worN
- Each element corresponds to **one frequency in** w
- Each element is a **complex number** → magnitude + phase

Example:

Index	w (Hz)	H element	Meaning
0	0	H[0]	Response at 0 Hz
1	1000	H[1]	Response at 1000 Hz
2	2000	H[2]	Response at 2000 Hz

5 Extracting magnitude and phase from H

```
magnitude linear = np.abs(H[i]) # magnitude (0 \rightarrow 1)
magnitude dB = 20*np.log10(np.abs(H[i])) # magnitude in dB
phase_radians = np.angle(H[i]) # phase in radians
```

6 Full Example

Sample Output:

Freq (Hz) Mag	(linear)	Mag (dB)	Phase	(ra
0.0	1.0000	0.00	0.00	
444.4	0.9400	-0.53	-0.10	
888.9	0.7800	-2.17	-0.30	
1333.3	0.5500	-5.20	-0.60	
1777.8	0.2800	-11.05	-1.20	
2222.2	0.1200	-18.40	-2.10	
2666.7	0.0500	-26.02	-3.10	
3111.1	0.0200	-34.00	-4.00	
3555.6	0.0080	-42.00	-5.00	
4000.0	0.0030	-50.46	-6.00	

✓ Observations:

- Each row \rightarrow one frequency from | w |
- Magnitude in linear and dB
- Phase in radians

7 Summary / Mental Map

- freqz → test your filter 1. → frequency vector (like np.linspace) 2. → complex response array → magnitude + phase 3. worN → how finely you sample the frequency response 4. 5. fs → convert frequency axis to Hz 6. $np.abs(H) \rightarrow magnitude (linear)$ 7. 20*np.log10(np.abs(H)) \rightarrow magnitude in dB → phase (radians) 8. np.angle(H)
- **Tip:** The **dB plot** is only magnitude, **phase is separate**.