

OBSOLETE PRODUCT

NO RECOMMENDED REPLACEMENT

Support Center at Support Center at Contact our Technical Support Center Support

CA3039

Diode Array

December 2000

Features

- Six Matched Diodes on a Common Substrate
- Excellent Reverse Recovery Time 1ns (Typ)
- V_F Match 5mV (Max)
- Low Capacitance $C_D = 0.65pF$ (Typ) at $V_R = -2V$

Applications

- Ultra-Fast Low Capacitance Matched Diodes for Applications in Communications and Switching Systems
- · Balanced Modulators or Demodulators
- Ring Modulators
- · High Speed Diode Gates
- Analog Switches

Description

The CA3039 consists of six ultra-fast, low capacitance diodes on a common monolithic substrate. Integrated circuit construction assures excellent static and dynamic matching of the diodes, making the array extremely useful for a wide variety of applications in communication and switching systems.

Five of the diodes are independently accessible, the sixth shares a common terminal with the substrate.

For applications such as balanced modulators or ring modulators where capacitive balance is important, the substrate should be returned to a DC potential which is significantly more negative (with respect to the active diodes) than the peak signal applied.

Part Number Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.	
CA3039	-55 to 125	12 Pin Metal Can	T12.B	
CA3039M	-55 to 125	14 Ld SOIC	M14.15	
CA3039M96	-55 to 125	14 Ld SOIC Tape and Reel	M14.15	

Pinouts

CA3039 (SOIC) TOP VIEW

CA3039 (METAL CAN) TOP VIEW

Absolute Maximum Ratings

Thermal Information

Т	hermal Resistance (Typical, Note 1)	θ_{JA} (°C/W)	θ _{JC} (oC/W)
	Metal Can Package	200	120
	SOIC Package	220	N/A
Ν	laximum Power Dissipation (Any One Die	ode)	100mW
Ν	laximum Junction Temperature (Metal Car	n Package)	175 ⁰ C
Ν	laximum Junction Temperature (Plastic F	Package)	150°C
Ν	laximum Storage Temperature Range	65	5 ⁰ C to 150 ⁰ C
Ν	laximum Lead Temperature (Soldering 1	0s)	300°C
	(SOIC - Lead Tips Only)		

Operating Conditions

Temperature Range -55°C to 125°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $T_A = 25^{\circ}C$; Characteristics apply for each diode unit, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
DC Forward Voltage Drop (Figure 1)	V_{F}	I _F = 50μA	-	0.65	0.69	V
		I _F = 1mA	-	0.73	0.78	V
		I _F = 3mA	-	0.76	0.80	V
		I _F = 10mA	-	0.81	0.90	V
DC Reverse Breakdown Voltage	$V_{(BR)R}$	I _R = -10μA	5	7	-	V
DC Reverse Breakdown Voltage Between Any Diode Unit and Substrate	$V_{(BR)R}$	I _R = -10μA	20	-	-	V
DC Reverse (Leakage) Current (Figure 2)	I _R	V _R = -4V	-	0.016	100	nA
DC Reverse (Leakage) Current Between Any Diode Unit and Substrate (Figure 3)	I _R	V _R = -10V	-	0.022	100	nA
Magnitude of Diode Offset Voltage (Note 2) (Figure 1)	V _{F1} - V _{F2}	I _F = 1mA	-	0.5	5.0	mV
Temperature Coefficient of V _{F1} - V _{F2} (Figure 4)	$\frac{\Delta \left V_{F1} - V_{F2} \right }{\Delta T}$	I _F = 1mA	-	1.0	-	μV/ ^o C
Temperature Coefficient of Forward Drop (Figure 5)	$\frac{\Delta V_{F}}{\Delta T}$	I _F = 1mA	-	-1.9	-	mV/ ^o C
DC Forward Voltage Drop for Anode-to- Substrate Diode (DS)	V _F	I _F = 1mA	-	0.65	-	V
Reverse Recovery Time	t _{RR}	I _F = 10mA, I _R = -10mA	-	1.0	-	ns
Diode Resistance (Figure 6)	R _D	f = 1kHz, I _F = 1mA	25	30	45	Ω
Diode Capacitance (Figure 7)	C _D	V _R = -2V, I _F = 0	-	0.65	-	pF
Diode-to-Substrate Capacitance (Figure 8)	C _{DI}	V _{DI} = 4V, I _F = 0	-	3.2	-	pF

NOTE:

2. Magnitude of Diode Offset Voltage is the difference in DC Forward Voltage Drops of any two diode units.

Typical Performance Curves

FIGURE 1. DC FORWARD VOLTAGE DROP (ANY DIODE) AND DIODE OFFSET VOLTAGE vs DC FORWARD CURRENT

FIGURE 2. DC REVERSE (LEAKAGE) CURRENT (D₁ - D₅) vs TEMPERATURE

FIGURE 3. DC REVERSE (LEAKAGE) CURRENT BETWEEN D1, D2, D3, D4, D5 AND SUBSTRATE vs TEMPERATURE

FIGURE 4. DIODE OFFSET VOLTAGE (ANY DIODE) vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 5. DC FORWARD VOLTAGE DROP (ANY DIODE) vs TEMPERATURE

FIGURE 6. DIODE RESISTANCE (ANY DIODE) vs DC FORWARD CURRENT

FIGURE 7. DIODE CAPACITANCE (D $_1$ - D $_5$) vs REVERSE VOLTAGE

FIGURE 8. DIODE-TO-SUBSTRATE CAPACITANCE vs REVERSE VOLTAGE