FACULTAD DE INGENIERÍA

ASIGNATURA: Base de Datos II

ESTUDIANTE: Bonifacio Hilario Erick

DOCENTE: Mg. Raúl Fernández Bejarano

CICLO: V

SECCIÓN: A1

HYO-2025

Bases de Datos Relacionales (SQL)

La base de las bases de datos relacionales (RDBMS), ejemplificada por PostgreSQL, es el **Modelo Relacional** desarrollado por E.F. Codd en los años 70, que se basa en la teoría de conjuntos y la lógica de predicados.

El principio fundamental es la organización de los datos en **tablas** bidimensionales, donde cada fila es una **tupla** (registro) y las columnas representan **atributos** con tipos de datos estrictos.

Fundamentos del Modelo Relacional

Estructura Tabular

Organización de datos en tablas bidimensionales con filas (tuplas) y columnas (atributos) con tipos de datos estrictos.

Relaciones

Capacidad de definir relaciones claras entre tablas usando claves primarias y foráneas, permitiendo realizar *JOINs* complejos.

Propiedades ACID

La piedra angular de su fiabilidad:
Atomicidad, Consistencia,
Islamiento, Durabilidad.

La fortaleza de este modelo reside en la capacidad de definir **relaciones** claras entre tablas usando claves primarias y foráneas, lo que permite realizar *JOINs* complejos. La piedra angular de su fiabilidad son las propiedades ACID (Atomicidad, Consistencia, Islamiento, Durabilidad), que garantizan que las transacciones sean procesadas de manera segura y que la integridad de los datos se mantenga en todo momento, haciéndolas ideales para sistemas transaccionales críticos.

Bases de Datos No Relacionales (NoSQL)

Las bases de datos NoSQL, como MongoDB, surgieron para abordar las limitaciones de escalabilidad y la rigidez de los esquemas relacionales, especialmente con el auge de **Big Data** y las aplicaciones web modernas.

A diferencia de las SQL, no se limitan a un único modelo tabular, sino que utilizan estructuras diversas como **documentos** (JSON/BSON), **clave-valor**, o **grafos**.

Características de NoSQL

Su diseño favorece el **escalamiento horizontal** (distribuyendo la carga en múltiples servidores) y la **flexibilidad de esquema**, permitiendo a los desarrolladores iterar rápidamente sin necesidad de un plan de esquema rígido.

Escalamiento Horizontal

Distribución de la carga en múltiples servidores para manejar grandes volúmenes de datos y alta concurrencia. 523

Flexibilidad de Esquema

Permite a los desarrolladores iterar rápidamente sin necesidad de un plan de esquema rígido. <u>Đ</u>Đ

Modelo BASE

Básicamente Disponible, Estado Suave, Consistencia Eventual: prioriza disponibilidad y rendimiento sobre consistencia inmediata.

Teóricamente, a menudo se adhieren al modelo BASE (Básicamente Disponible, Estado Suave, Consistencia Eventual), priorizando la **disponibilidad** y el **rendimiento** sobre la consistencia inmediata, una compensación vital para aplicaciones de alta concurrencia.

Bases de Datos Multimodelo (Híbridas)

El enfoque multimodelo, representado por bases de datos como ArangoDB, es una evolución que busca la eficiencia y la simplicidad operacional al unificar varios modelos de datos distintos (Documento, Grafo, Clave-Valor) dentro de **un solo núcleo de motor de base de datos**.

Ventajas del Enfoque Multimodelo

El principio central es que una aplicación moderna a menudo necesita diferentes modelos de datos para diferentes tareas (ej. documentos para perfiles de usuario y grafos para relaciones entre ellos).

Un Solo Motor

Unifica varios modelos de datos distintos dentro de un solo núcleo de motor de base de datos.

Lenguaje Unificado

Gestiona todo con una única base de datos y un lenguaje de consulta unificado como AOL.

Desarrollo Ágil

Evita la complejidad de integrar y sincronizar múltiples bases de datos de un solo modelo.

El multimodelo permite gestionar todo esto con una única base de datos y un **lenguaje de consulta unificado** (como AQL), evitando la complejidad y la sobrecarga de latencia de tener que integrar y sincronizar múltiples bases de datos de un solo modelo (*persistencia políglota*). Esto resulta en un desarrollo más ágil y en la capacidad de ejecutar consultas que combinan las fortalezas de cada modelo.

Cuadro Comparativo

PostgreSQL vs MongoDB vs ArangoDB

Características	PostgreSQL (Relacional)	MongoDB (NoSQL - Documentos)	ArangoDB (Híbrido/Multimodelo)
Modelo de Datos	Relacional: Tablas, filas, columnas, esquemas fijos.	Documentos (JSON/BSON): Colecciones flexibles, esquema dinámico.	Multimodelo: Soporta Documento, Grafo y Clave-Valor nativamente.
Lenguaje de Consulta	SQL (Structured Query Language).	MongoDB Query Language (MQL) (basado en JSON) y el Aggregation Framework.	AQL (ArangoDB Query Language), declarativo y optimizado para multimodelos.

Ventajas y Limitaciones

PostgreSQL

Ventajas:

- ACID estricto: Alta integridad y consistencia de datos.
- Soporte de JOINs complejos y transacciones.
- Madurez, robustez y amplio ecosistema.

Limitaciones:

- Baja escalabilidad horizontal (principalmente vertical).
- Poca flexibilidad para manejar datos no estructurados o esquemas cambiantes.

MongoDB

Ventajas:

- Gran flexibilidad de esquema.
- Escalabilidad horizontal superior.
- Ideal para datos cambiantes y grandes volúmenes de datos.

Limitaciones:

- Consistencia eventual (no estricta).
- Transacciones complejas limitadas.
- Dificultad para manejar relaciones complejas entre documentos.

ArangoDB

Ventajas:

- Flexibilidad y rendimiento de NoSQL con capacidad de JOINs de datos relacionales/gráficos.
- Un solo sistema para múltiples necesidades de datos.

Limitaciones:

- Menos maduro que los sistemas SQL tradicionales.
- La optimización y el modelado pueden ser más complejos al usar múltiples modelos.

Escenarios de Uso

PostgreSQL (Relacional)

- Sistemas Financieros/Bancarios (alta integridad).
- Sistemas ERP/CRM.
- Aplicaciones con datos altamente estructurados y relaciones fijas.

MongoDB (NoSQL - Documentos)

- Catálogos de productos (con atributos variables).
- Big Data y IoT.
- Plataformas de contenido dinámico (ej. blogs, CMS).

ArangoDB (Híbrido/Multimodelo)

- Aplicaciones que requieren datos de documentos y relaciones de grafos (ej. redes sociales, motores de recomendación, análisis de fraude).
- Proyectos que necesitan consolidar bases de datos.