

«Шкипер» - умный питомец

Версия документа: 1.0

Внешний вид:

Оборудование: базовый набор Lego Mindstorms Education EV3.

Описание. Создание электронных домашних питомцев с основами искусственного интеллекта – одно из направлений робототехники в наше время. Маленькие роботы могут выражать эмоции с помощью звука и жидкокристаллических дисплеев, передвигаться по комнате и распознавать простые речевые команды от человека. Такие роботы часто могут взаимодействовать с другими устройствами – умными колонками, планшетом, смартфоном или элементами умного дома.

Скриншот из видео «EMO Launch video: The Coolest Al Desktop Pet with Personality and Ideas». youtube.com

В этой работе ты соберешь умного шагающего робота по кличке «Шкипер». Твоя задача – научить «Шкипера» реагировать на простые команды с помощью датчика цвета и ультразвукового датчика. Этот робот не сможет поворачивать туда, куда тебе хочется, ведь он имеет всего один сервомотор. Зато собирается он очень быстро и имеет наименьшее количество деталей.

Содержание

Часть 1.	Сборка конструкции	3
Часть 2	Залачи	14

Часть 1. Сборка конструкции

Закрепи большой мотор на блоке EV3

Вид на крепление крупным планом:

6

Установи ось длиной 5 модулей с коротким кривошипом для левой ноги робота

15

Установи ось длиной 6 модулей для правой ноги робота

16 Кривошипы должны быть ориентированы на 180 градусов относительно друг друга

Закрепи левую ногу

Вид на крепление крупным планом:

24

Собери вторую ногу по принципу зеркального отражения.

Установи правую ногу на свое место

Соедини датчики и сервомотор с микрокомпьютером EV3 с помощью кабелей (пример с креплением датчиков смотри на фотографии ниже):

26

«1» - порт для подключения датчика цвета;

«4» - порт для подключения ультразвукового датчика;

«D» - порт для подключения большого мотора EV3.

«Шкипер» в сборе:

Часть 2. Задачи

Задача 1.

Примерная блок-схема алгоритма:

Программирование ультразвукового датчика (пропасть)

Запрограммируй «Шкипера» так, чтобы при наведении руки к ультразвуковому датчику он пробуждался и после короткого сигнала шёл вперед, пока датчик не обнаружит препятствие в виде пропасти.

Пример крепления ультразвукового датчика для решения задачи №1

4

Задача 2.

Примерная блок-схема алгоритма:

Программирование ультразвукового датчика (старт-стоп)

Напиши программу, при которой пробуждение робота и его остановка происходит при наведении руки к ультразвуковому датчику.

После пробуждения робот идет вперед с заданной мощностью сервомотора. Ориентацию ультразвукового датчика поменяйте на «смотрит вперед». Зацикли эту программу.

Пример крепления ультразвукового датчика для решения задачи №2

Задача 3.

Примерная блок-схема алгоритма:

Программирование датчика цвета в режиме «Яркость отраженного света» (старт-стоп)

Напиши программу, при которой пробуждение робота и его остановка происходит при наведении руки к датчику цвета, работающем в режиме «Яркость отраженного света».

Чем ближе поднести руку к датчику, тем больше процент отраженного от ладони света.

Задача 4.

Программирование датчика цвета в режиме «Цвет» (старт-стоп с разной мощностью мотора)

Напиши программу, при которой пробуждение робота и его остановка происходит при наведении к датчику цвета цветной метки.

- 1) Черная метка движение назад с мощность сервомотора 20%.
- 2) Зеленая метка движение вперед с мощность сервомотора 20%.
- 3) Желтая метка движение вперед с мощность сервомотора 40%.
- 4) Красная метка движение вперед с мощность сервомотора 60%.

Остановить робота можно меткой любого цвета из заданных.

Цветные метки можно изготовить из цветной бумаги, а также собрав их из цветных балок набора Lego EV3.

Примерная блок-схема алгоритма:

