Partial Evaluation and Normalisation by Traversals

Work in progress by:

- ▶ Daniil Berezun Saint Petersburg State University
- Neil D. Jones DIKU, University of Copenhagen (prof. emeritus)

INTRODUCTION

The much-studied game semantics for PCF can be thought of as a PCF interpreter

Ong [?] shows that

a λ -expression M can be evaluated by the algorithm that constructs a traversals of M.

A traversal is a sequence of

▶ tokens, subexpressions of M

(think: M = program, tokens = program points)

- Any token may have a back pointer
- Oxford normalization procedure (ONP)
 - ullet Constructs $\mathfrak{Trav}(M)$

START POINT

► An operational view of the Oxford normalisation procedure:

interpreter for λ -expressions

- ullet Let $tr = t_0 ullet t_1 ullet \cdots ullet t_n \in \mathfrak{Trav}(M)$ where t_i is a token
- Syntax-directed inference rules:

based on syntax of the end-tokens t_n

- Action: add 0, 1 or more extensions of tr to $\mathfrak{Trav}(M)$. For each,
 - * Add a new token t', yielding $tr \bullet t'$
 - * Add a back pointer from t'
- **▶** Data types:
 - $ullet tr \in extstyle Tr = Item^*$
 - ullet ltem = subexpression(M) imes Tr

SOME ONP CHARACTERISTICS

Oxford normalization procedure

- ▶ Applies to simply-typed λ -expressions
- ▶ Begins by translating M into η -long form
- ► Realises the compete head linear reduction of *M*
- ightharpoonup Correctness: by game semantics and categories, using M's types
- ▶ ONP uses no β -reduction, environments, . . .
- \blacktriangleright While running, ONP does not use the types of M at all

Goals of this research:

- ▶ Extend *ONP* to *UNP*, for the *untyped* λ -calculus
- ▶ Partially evaluate a normaliser

PARTIAL EVALUATION, BRIEFLY

Partial Evaluation = program specialization. Defining property of spec:

$$\forall p \in Programs \ . \ \forall s,d \in Data \ . \ \llbracket\llbracket spec \rrbracket(p,s) \rrbracket(d) = \llbracket p \rrbracket(s,d)$$

ightharpoonup Given program p and static data s, spec builds a residual program

$$p_s \stackrel{def}{=} \llbracket spec
rbracket p s$$

- **▶** Program speedup by precomputation
- **►** Staging transformation:
 - $\llbracket p \rrbracket (s,d)$ is a 1 stage computation
 - ullet $[\![spec]\!](p,s)]\!](d)$ is a 2 stage computation
- ► Applications: compiling, and compiler generation
- ► An old idea: Semantics directed compiler generation

WHY PARTIALLY EVALUATE NP

1. The spec equation for a normaliser program $\overline{ extsf{NP}: \Lambda o Traversals}$

$$orall M \in \Lambda$$
 . $\llbracket \llbracket spec
rbracket (\mathsf{NP}, M)
rbracket () = \llbracket \mathsf{NP}
rbracket (M)
rbracket$

2. λ -calculus tradition: M is self-contained

Why break normalisation into 2 stages?

(a) The specialized output $NP_M = [spec](NP, M)$ can be in a much simplier language than λ -calculus

Our candidate is some low-level language, LLL

(b) 2 stages will be natural for *semantics-directed compiler generation* LLL can be an intermediate language to express semantics:

 $lackbox{\sf NP}_1 \ = \ \llbracket spec
rbracket \ {\sf NP} \ M \ : \ \Lambda o LLL$

 $lackbox{\sf NP}_2 \ = \ \llbracket _
bracket \ : \ LLL o Traversals \
bracket \ ext{a semantic function}$

HOW TO PARTIALLY EVALUATE ONP

- 1. Annotate parts of normalization procedure as either static or dynamic
 - (a) Tokens are static (subexpressions of M; finitely many)
 - (b) Back pointers are dynamic (unboundedly many)
 - (c) So the traversal is dynamic too
- 2. Computations in *ONP* are either unfolded or residualised
 - ► Perform fully static computations at partial evaluation time
 - ► Operations to build or test a traversal: generate residual code

THE RESIDUAL PROGRAM $\mathit{ONP}_M = \llbracket \mathit{spec} rbracket$ ONP M

ONP is semi-compositional:

Any recursive ONP call has a substructure of M as argument

Consequences:

- ► The partial evaluator can do (at specialization time)
 all of the ONP operations that depend only on M
- ▶ ONP_M performs no operations at all on λ -expressions
- ightharpoonup A specialized program ONP_M contains "residual code":
 - operations to extend the traversal
 - operations to follow back pointers
- ► Subexpressions of *M* will appear, but are only used as tokens

 Tokens are indivisible: used as labels and for equality comparisons

STATUS: OUR WORK ON SIMPLY-TYPED λ -calculus

- 1. We have one version of ONP in HASKELL and another in SCHEME
- 2. Scheme version: nearly ready to apply automatic partial evaluation Plan: use the UNMIX partial evaluator (Sergei Romanenko)
- 3. The *LLL* program are only linearly larger than M, $|p_M| = O(|M|)$
- 4. Handwritten a *generating extension* of *ONP*

If
$$p_{m{M}} = \llbracket \mathsf{ONP} ext{-gen}
rbracket^{Scheme}(m{M})$$
 then $orall m{M}$. $\llbracket m{M}
rbracket^{\Lambda} = \llbracket p_{m{M}}
rbracket^{m{LLL}}$

5. Next steps:

- ► Produce a generating extension, automatically, using UNMIX
- ► Redefine LLL formally as a clean stand-alone subset of HASKELL
- ► Use Haskell supercompiler
- ► Extend existing approach to programs with dynamic input

STATUS: OUR WORK ON THE UNTYPED λ -calculus

- 1. **UNP** is a normaliser for Λ
- 2. UNP has been done in HASKELL and works on a variety of examples
- 3. Some traversal items may have two back pointers, in comparison: *ONP* uses only one
- 4. As *ONP*, *UNP* is also defined semi-compositionally by recursion on syntax of λ -expression M
- 5. By specializing *UNP*, an arbitrary untyped λ -expression can be translated to *LLL*
- 6. Correctness proof: pending

TOWARDS SEPARATING PROGRAMS FROM DATA IN Λ

One more research direction:

- ▶ An idea: consider a computation of λ -expression M on input d as a two-player game between the LLL -codes for M and d
- ▶ An interesting example in this case a is usual λ -calculus definition of function mult on Church numerals
 - Amaizing fact: loops come from out of nowhere
 - We also expect that we can do the computation (in this case)
 entirely without back pointers
- Communicating version of LLL.

REFERENCES