Design and Analysis of Algorithms Part IV: Graph Algorithms

Lecture 30: Single Source Shortest Path

Bellman-Ford

童咏昕

北京航空航天大学 计算机学院

图算法篇概述

- 在算法课程第四部分"图算法"主题中,我们将主要聚焦于如下经典问题:
 - Basic Concepts in Graph Algorithms(图算法的基本概念)
 - Breadth-First Search (BFS, 广度优先搜索)
 - Depth-First Search (DFS, 深度优先搜索)
 - Cycle Detection (环路检测)
 - Topological Sort (拓扑排序)
 - Strongly Connected Components(强连通分量)
 - Minimum Spanning Trees (最小生成树)
 - Single Source Shortest Path (单源最短路径)
 - All-Pairs Shortest Paths (所有点对最短路径)
 - Bipartite Graph Matching (二分图匹配)
 - Maximum/Network Flows (最大流/网络流)

算法思想

算法实例

算法分析

算法性质

• 从知春路到其他站点,如何安排路线?

Dijkstra算法可以求解单源最短路径

• 从知春路到其他站点,如何安排路线?

Dijkstra算法适用范围: 边权为正的图

• 图中存在<mark>负权边</mark>,Dijkstra算法不再适用

u

执行Dijkstra算法

执行Dijkstra算法

图中存在负权边,Dijkstra算法不再适用

Dijkstra算法: 到黑色顶点的最短路应该已经计算出

图中存在负权边,Dijkstra算法不再适用

Dijkstra算法: 到黑色顶点的最短路应该已经计算出

问题: 图中存在负权边时,是否存在单源最短路径?

- 图中存在负权边时,是否存在单源最短路径?
 - 如果源点s可达负环,则难以定义最短路径

- 图中存在负权边时,是否存在单源最短路径?
 - 如果源点s可达负环,则难以定义最短路径

- 图中存在负权边时,是否存在单源最短路径?
 - 如果源点s可达负环,则难以定义最短路径

若源点s无可达负环,则存在源点s的单源最短路径

单源最短路径问题

Single Source Shortest Paths Problem

输人

- 带权图*G* =< *V*, *E*, *W* >
- 源点编号s

问题定义

单源最短路径问题

Single Source Shortest Paths Problem

输入

- 带权图G =< V, E, W >
- 源点编号s

输出

- 源点s到所有其他顶点t的最短距离 $\delta(s,t)$ 和最短路径< s, ..., t >
- 或存在源点*s*可达的负环

单源最短路径问题

Single Source Shortest Paths Problem

输入

- 带权图G =< V, E, W >
- 源点编号s

输出

- 源点s到所有其他顶点t的最短距离 $\delta(s,t)$ 和最短路径< s, ..., t >
- · 或存在源点s可达的负环

挑战1: 图中存在负权边时, 如何求解单源最短路径?

单源最短路径问题

Single Source Shortest Paths Problem

输入

- 带权图G =< V, E, W >
- 源点编号s

输出

- 源点s到所有其他顶点t的最短距离 $\delta(s,t)$ 和最短路径< s,...,t >
- 或存在源点*s*可达的负环

挑战1: 图中存在负权边时, 如何求解单源最短路径?

挑战2: 图中存在负权边时,如何发现源点可达负环?

算法思想

算法实例

算法分析

算法性质

Dijkstra算法通过松弛操作迭代更新最短距离

• 存在负权边时,需要比Dijkstra算法更多次数的松弛操作

• 存在负权边时,需要比Dijkstra算法更多次数的松弛操作

2 → **1**

• 存在负权边时,需要比Dijkstra算法更多次数的松弛操作

问题: 图中存在负权边时,如何利用松弛操作求解单源最短路?

算法思想

- Bellman-Ford算法
 - 解决挑战1: 图中存在负权边时,如何求解单源最短路径?
 - \circ 每轮对所有边进行松弛,持续迭代|V|-1轮

算法思想

- Bellman-Ford算法
 - 解决挑战1: 图中存在负权边时, 如何求解单源最短路径?
 - 每轮对所有边进行松弛,持续迭代|V| 1轮
 - 解决挑战2: 图中存在负权边时, 如何发现源点可达负环?
 - 。 若第|V|轮仍松弛成功,存在源点s可达的负环

算法思想

算法实例

算法分析

算法性质

$oldsymbol{V}$	S	t	x	y	Z
pred	N	N	N	N	N
dist	∞	∞	∞	∞	∞

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

松弛顺序: (x,z),(t,x),(x,t),(t,z),(y,x),(y,z),(t,y),(s,t),(s,y)

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

松弛顺序: (x,z),(t,x),(x,t),(t,z),(y,x),(y,z),(t,y),(s,t),(s,y)

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

松弛顺序: (x,z),(t,x), (x,t),(t,z),(y,x),(y,z), (t,y),(s,t),(s,y)

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

松弛顺序: (x,z),(t,x), (x,t),(t,z),(y,x),(y,z), (t,y),(s,t),(s,y)

── 松弛失败

── 松弛成功

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

松弛顺序: (x,z),(t,x), (x,t),(t,z),(y,x),(y,z), (t,y),(s,t),(s,y)

──── 松弛失败

→ 松弛成功

V	S	t	\boldsymbol{x}	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

── 松弛失败

── 松弛成功

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	S	N	N	N
dist	0	6	∞	∞	∞

──── 松弛失败

$oldsymbol{V}$	S	t	x	y	Z
pred	N	S	N	S	N
dist	0	6	∞	7	∞

──── 松弛失败

→ 松弛成功

V	S	t	\boldsymbol{x}	y	Z
pred	N	S	N	S	N
dist	0	6	∞	7	∞

──── 松弛失败

── 松弛成功

第2轮:松弛所有边

V	S	t	x	y	Z
pred	N	S	N	S	N
dist	0	6	∞	7	∞

──── 松弛失败

→ 松弛成功

第2轮:松弛所有边

V	S	t	x	y	Z
pred	N	S	t	S	N
dist	0	6	11	7	∞

V	S	t	x	y	Z
pred	N	S	t	S	N
dist	0	6	11	7	∞

松弛顺序: (x,z), (t,x), (x,t), (t,z), (y,x), (y,z),

(t,t),(t,z),(y,x),(y,z),(t,y),(s,t),(s,y)

── 松弛失败

→ 松弛成功

第2轮:松弛所有边

V	S	t	x	y	Z
pred	N	S	t	S	t
dist	0	6	11	7	2

$oldsymbol{V}$	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

── 松弛失败

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

── 松弛失败

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	2

── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

── 松弛成功

第4轮:松弛所有边

$oldsymbol{V}$	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

→ 松弛成功

第4轮:松弛所有边

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

── 松弛成功

松弛结束

问题背景

算法思想

算法实例

算法分析

算法性质


```
输入: \[ egin{align*} & & \hat{\mathbf{m}} \mathbf{L} \colon \mathbf{B}G = < V, E, W >, 源点s \\ & & \hat{\mathbf{m}} \mathbf{L} \colon \hat{\mathbf{H}} \otimes \mathbf{B} \otimes \mathbf{E}P \\ & & \hat{\mathbf{m}} \mathbf{L} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \mathbf{L} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \\ & \hat{\mathbf{m}} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E} \otimes
```

伪代码


```
输入: 图G=< V, E, W>, 源点s 输出: 单源最短路径P 新建一维数组dist[1..|V|], pred[1..|V|] //初始化 for u\in V do  | dist[u] \leftarrow \infty | pred[u] \leftarrow NULL  end  dist[s] \leftarrow 0  初始化源点距离
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
                                                    进行|V|-1轮松弛
 -|-\mathbf{for}(u,v)\in E\cdot \mathbf{do}-
        if dist[u] + w(u, v) < dist[v] then
          dist[v] \leftarrow dist[u] + w(u,v)
         pred[v] \leftarrow u
        end
    end
 end
 for (u, v) \in E do
    if dist[u] + w(u, v) < dist[v] then
        print 存在负环
        break
     end
 end
```



```
//执行单源最短路径算法
for i \leftarrow 1 \ to \ V = 1 \ do
  for (u,v) \in E do
                                            对所有边进行松弛操作
    if dist[u] + w(u, v) < dist[v] then
       dist[v] \leftarrow dist[u] + w(u,v)
        pred[v] \leftarrow u
      end
   end
end
for (u, v) \in E do
   if dist[u] + w(u, v) < dist[v] then
      print 存在负环
       break
   end
end
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
      for (u, v) \in E do
          \begin{array}{|c|c|c|} \textbf{if } \underline{dist}[u] + w(u,v) < \underline{dist}[v] \textbf{ then} \\ \underline{dist}[v] \leftarrow \underline{dist}[u] + w(u,v) \\ \underline{pred}[v] \leftarrow u \end{array} 
                                                                                            更新辅助数组
         \operatorname{end}
      end
end
for (u, v) \in E do
      if dist[u] + w(u, v) < dist[v] then
            print 存在负环
            break
      end
end
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
    for (u, v) \in E do
       if dist[u] + w(u, v) < dist[v] then
           dist[v] \leftarrow dist[u] + w(u,v)
          pred[v] \leftarrow u
       end
    end
end
for (u,v) \in E do
                                                   判断是否存在负环
    if dist[u] + w(u, v) < dist[v] then
       print 存在负环
        break
    \operatorname{end}
end
```

时间复杂度分析


```
输入: 图G=< V, E, W>, 源点s 输出: 单源最短路径P 新建一维数组dist[1..|V|], pred[1..|V|] //初始化 for u \in V do  \begin{vmatrix} dist[u] \leftarrow \infty \\ pred[u] \leftarrow NULL \\ end \\ dist[s] \leftarrow 0 \end{vmatrix}
```

时间复杂度分析

• Bellman-Ford(G, s)

```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
   for (u, v) \in E do
                                                O(|E|)
      if dist[u] + w(u, v) < dist[v] then
         dist[v] \leftarrow dist[u] + w(u,v)
        pred[v] \leftarrow u
       end
   end
end
for (u, v) \in E do
   if dist[u] + w(u, v) < dist[v] then
       print 存在负环
       break
   end
end
```

时间复杂度分析

• Bellman-Ford(G, s)

时间复杂度分析

• Bellman-Ford(G, s)

```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
   for (u, v) \in E do
       if dist[u] + w(u, v) < dist[v] then
          dist[v] \leftarrow dist[u] + w(u,v)
        pred[v] \leftarrow u
       end
   end
end
for (u, v) \in E do
   if dist[u] + w(u, v) < dist[v] then
       print 存在负环
       break
                                          时间复杂度O(|E| \cdot |V|)
   end
\mathbf{end}
```


问题背景

算法思想

算法实例

算法分析

算法性质

算法思想

Bellman-Ford算法

挑战1: 图中存在负权边时,如何求解单源最短路径?

○ 解决方案: 每轮对所有边进行松弛,持续迭代|V| - 1轮

● 挑战2:图中存在负权边时,如何发现源点可达负环?

。解决方案: 若第|V|轮仍松弛成功,存在源点s可达的负环

- 挑战1: 图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V|-1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

- 挑战1:图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

- 挑战1: 图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

第1轮次

- 挑战1:图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

第1轮次

第2轮次

- 挑战1:图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

 s
 v2
 w3
 …
 w|v|
 …
 w|v|
 …
 か|v|
 …
 か|v|
 か|v|

- 挑战1:图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V|-1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|} >$ 至多经过|V| 1条边

- 挑战1:图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V|-1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

最坏情况下进行|V| - 1轮松弛操作,可以保证求得单源最短路径

- 挑战2: 图中存在负权边时,如何发现源点可达负环?
 - 解决方案: 若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

- 挑战2: 图中存在负权边时,如何发现源点可达负环?
 - 解决方案:若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

第2轮次结束(|V| - 1 = 3 - 1 = 2) 最短路径应已求出

- 挑战2: 图中存在负权边时,如何发现源点可达负环?
 - 解决方案: 若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

- 挑战2: 图中存在负权边时,如何发现源点可达负环?
 - 解决方案: 若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

- 挑战2: 图中存在负权边时,如何发现源点可达负环?
 - 解决方案: 若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

第|V|轮仍松弛成功的原因:存在源点可达的负环

小结

	广度优先搜索	Dijkstra算法	Bellman-Ford算法
适用范围	无权图	带权图 (所有边权为正)	带权图
松弛次数		<i>E</i> 次	V · E 次
数据结构	队列	优先队列	
运行时间	O(V + E)	$O(E \cdot \log V)$	$O(E \cdot V)$

