Slides Handout

Color Scheme

• Orange: times

• Violet: before infection probabilities

• Blue: infection rates

• Purple: removal rates

Glossary

 \bullet N total individuals and n infected individuals

 \bullet r_j and i_j are removal and infection times for j

• β_{kj} is infection rate k applies to j

- $B_j := \sum_{k=n+1}^N eta_{jk}$ is sum of rates j applies to never-infecteds

• θ_j parameterizes infectious period $r_j - i_j \sim P_{\theta_j}$

 $-\theta_i = (m_i, \gamma_i)$ for Erlang periods

 $-\delta_j := \gamma_j + B_j$ is new rate after change of variable

• τ_{kj} is time k applies pressure to j

 $-\omega_{jk} = \tau_{jk} + \tau_{kj}$ is joint time

- $W=\sum_{j=2}^{n}\sum_{k\neq j}^{n} \tau_{kj}$ is cumulative time infective pressure is exerted

• ψ_j is $P(j \text{ evades infection until time } i_j)$

 $-\psi_{jk}$ is $P(j \text{ evades infection from } k \text{ until time } i_j)$

• χ_j is infective pressure on j at i_j

• ϕ_j is P(j fails to infect the N-n never-infecteds)