Линейная алгебра

Нормированные пространства

Глеб Карпов

МНаД ФКН ВШЭ

Пространства со скалярным произведением (Inner product spaces)

і Скалярное произведение

Пусть $\mathbb V$ — векторное пространство. Скалярное произведение на $\mathbb V$ — это **функция**, которая каждой паре векторов $\mathbf x, \mathbf y$ сопоставляет скаляр, обозначаемый как $(\mathbf x, \mathbf y)$ или $\langle \mathbf x, \mathbf y \rangle$, так что выполняются свойства 1–4 ниже.

- 1. Симметричность (сопряжённая): $(\mathbf{x}, \mathbf{y}) = (\mathbf{y}, \mathbf{x})$,
- 2. Линейность: $(\alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z}) = \alpha(\mathbf{x}, \mathbf{z}) + \beta(\mathbf{y}, \mathbf{z})$ для любых векторов $\mathbf{x}, \mathbf{y}, \mathbf{z}$ и любых скаляров α, β
- 3. Неотрицательность: $(\mathbf{x}, \mathbf{x}) \ge 0 \quad \forall \mathbf{x}$,

(dX,Z)=d(X,Z)

4. Невырожденность: $(\mathbf{x}, \mathbf{x}) = 0$ тогда и только тогда, когда $\mathbf{x} = \mathbf{0}$.

Скалярное произведение в координатных пространствах

i Definition

Скалярное произведение двух векторов $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ — это число, вычисляемое по формуле:

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n \qquad = \langle v_i v \rangle = \langle v_i v \rangle$$

Геометрический смысл:

где
$$\theta$$
 — угол между векторами ${f u}$ и ${f v}$.

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| \cdot |\mathbf{v}| \cdot \cos \theta$$

$$\|\mathcal{U}\|_{2} = \sqrt{u_{1}^{2} + \dots + u_{n}^{2}} = \sqrt{\langle \mathcal{U}, \mathcal{U} \rangle}$$

Обозначения скалярного произведения

Различные способы записи

1. Через транспонирование

$$\mathbf{u}^T \mathbf{v}$$

Матричная форма:

$$\mathbf{u}^T\mathbf{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow \boxed{1 \text{ in }}$$

Результат:

$$=u_1v_1+u_2v_2+\cdots+u_nv_n$$

2. Через угловые скобки

$$\langle \mathbf{u}, \mathbf{v} \rangle \longrightarrow \mathbb{R}$$

Альтернативно: - $\mathbf{u} \cdot \mathbf{v}$ — точечное произведение **Обозначения эквивалентны:**

$$\mathbf{u}^T\mathbf{v} = \langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = \langle \mathbf{u}, \mathbf{v} \rangle$$

$$\overline{u'}v = \overline{\sum} u_i v_i
\angle u_i v_i = \overline{\sum} u_i v_i$$

Слайд для записей

$$X \in \mathbb{R}^{n}$$
 $Y \in \mathbb{R}^{n}$
 $Y = (XAY) = (YA)Y = (YA)$

Нормированные пространства

Свойства нормы:

- 1. Однородность: $\|\alpha \mathbf{v}\| = |\alpha| \cdot \|\mathbf{v}\|$ для любых \mathbf{v} и скаляров α .
- 2. Неравенство треугольника: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.
- 3. Неотрицательность: $\|\mathbf{v}\| \ge 0$ для всех векторов \mathbf{v} .
- 4. Невырожденность: $\|\mathbf{v}\| = 0$ тогда и только тогда, когда $\mathbf{v} = \mathbf{0}$.
- і Определение (норма и нормированное пространство)

Пусть в векторном пространстве V каждой вектору ${\bf v}$ сопоставлено число $\|{\bf v}\|$ так, что выполняются свойства 1–4 выше. Тогда функция ${\bf v}\mapsto \|{\bf v}\|$ называется нормой. Векторное пространство V, оснащённое нормой, называется нормированным пространством.

$$V = |R[x, n]$$

$$\angle F, g \rangle = \int_{-1}^{1} F \cdot g \cdot dx$$

Разные нормированные пространства

$$\|\mathbf{X}\|_{2} = \sqrt{\mathbf{X}_{1}^{2} + \dots + \mathbf{X}_{n}^{2}} = \sqrt{\mathbf{X}_{1} \mathbf{X}_{2}}$$

Любое пространство со скалярным произведением является нормированным, поскольку норма $\|\mathbf{v}\|=\sqrt{(\mathbf{v},\mathbf{v})}$ удовлетворяет свойствам 1–4. Однако существуют и другие нормы. Например, для $p,1 \le p < \infty$, можно определить норму $\|\cdot\|_n$ на \mathbb{R}^n как

 $\|\mathbf{x}\|_{p} = (|x_{1}|^{p} + |x_{2}|^{p} + ... + |x_{n}|^{p})^{1/p} = \left(\sum_{k=1}^{n} |x_{k}|^{p}\right)^{1/p}.$

Также можно определить норму
$$\|\cdot\|_{\infty}$$
 (при $\widehat{p}=\infty$) как

$$\|\Delta\|_{2} = \|(y - \tilde{y})\|_{2}$$

 $\|\mathbf{x}\|_{\infty} = \max\{|x_k|: k = 1, 2, \dots, n\}$

Ортогональность. Ортогональные и ортонормированные базисы.

і Определение

Два вектора ${\bf u}$ и ${\bf v}$ называются ортогональными (перпендикулярными), если (${\bf u},{\bf v}$) = 0. Запись ${\bf u}\perp {\bf v}$ обозначает ортогональность векторов.

Для ортогональных векторов \mathbf{u} и \mathbf{v} верно тождество Пифагора:

$$\|\mathbf{u} + \mathbf{v}\|_{\mathbf{L}}^2 = \|\mathbf{u}\|_{\mathbf{L}}^2 + \|\mathbf{v}\|_{\mathbf{L}}^2$$
 if $\mathbf{u} \perp \mathbf{v}$

Доказательство:

$$\begin{split} \|\mathbf{u}+\mathbf{v}\|_{\mathbf{L}}^2 &= \|\mathbf{u}\|_{\mathbf{L}}^2 + \|\mathbf{v}\|_{\mathbf{L}}^2 &\quad \text{if } \mathbf{u} \perp \mathbf{v} \\ \|\mathbf{u}+\mathbf{v}\|_{\mathbf{L}}^2 &= (\mathbf{u}+\mathbf{v},\mathbf{u}+\mathbf{v}) = (\mathbf{u},\mathbf{u}) + (\mathbf{v},\mathbf{v}) + (\mathbf{u},\mathbf{v}) + (\mathbf{v},\mathbf{u}) \\ &= \|\mathbf{u}\|_{\mathbf{L}}^2 + \|\mathbf{v}\|_{\mathbf{L}}^2 \\ &\qquad \qquad ((\mathbf{u},\mathbf{v}) = (\mathbf{v},\mathbf{u}) = 0 \text{ because of orthogonality }). \end{split}$$

Ортогональные базисы. $\langle a,b \rangle = \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{2}} + 0 + \frac{1}{\sqrt{3}} \cdot \left(-\frac{1}{\sqrt{2}} \right) = 0$

Система векторов ${\bf v}_1, {\bf v}_2, \dots, {\bf v}_n$ называется ортогональной, если любые два вектора взаимно ортогональны, то есть $({\bf v}_j, {\bf v}_k)=0$ при $j\neq k$. Если дополнительно $\|{\bf v}_k\|=1$ для всех k, то система называется ортонормированной.

Зачем это нужно?

$$\mathbf{x} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n = \sum_{i=1}^n \alpha_j \mathbf{v}_j$$

Взяв скалярное произведение обеих частей равенства с \mathbf{v}_1 , получаем

$$(\mathbf{x}, \mathbf{v}_1) = \sum_{j=1}^{n} \alpha_j (\mathbf{v}_j, \mathbf{v}_1) = \alpha_1 (\mathbf{v}_1, \mathbf{v}_1) = \alpha_1 \|\mathbf{v}_1\|^2$$

Аналогично, беря скалярное произведение обеих частей с \mathbf{v}_k , получаем

$$(\mathbf{x}, \mathbf{v}_k) = \sum_{i=1}^n \alpha_j \left(\mathbf{v}_j, \mathbf{v}_k \right) = \alpha_k \left(\mathbf{v}_k, \mathbf{v}_k \right) = \alpha_k \left\| \mathbf{v}_k \right\|^2$$

Итак

$$\alpha_k = \frac{(\mathbf{x}, \mathbf{v}_k)}{\|\mathbf{v}_k\|^2}$$