TECHNIQUES DE COMPILATION

2ème SI Houda Benali

ISSAT Mateur 2020/2021

2 - THÉORIE DES LANGAGES : NOTIONS DE BASE

- Modèle permettant de répondre "oui" ou "non" selon que la chaîne de caractères en entrée répond ou non à un modèle donné d'expression régulière.
- Un automate fini est une généralisation des diagrammes de transition
- Deux modèles équivalents, déterministe (AFD) et non déterministe (AFN).

- Automate fini non déterministe (AFN) ou déterministe (AFD):
 - Ensemble fini d'états E ;
 - Alphabet d'entrée fini Σ
 - Fonction de transition T
 - État initial e0 ;
 - Ensemble d'états terminaux F;
- AFD : $T : E \times \Sigma \rightarrow E$
 - au plus une transition par couple état-lettre
- AFN : $T : E \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^{E}$
 - plusieurs transitions possibles par couple ;
 - possibilités de transitions vides ou ε-transitions.

Langage reconnu par un automate fini

- N : automate fini, L(N) langage reconnu par N.
- Un langage reconnu par un automate est l'ensemble de chaines qui permettent de passer de l'état initial à l'état terminal.
- **Exemple**: $\Sigma = \{a, b\}$; ER = $(a|b)*ab \rightarrow AFN$

Exemple avec table de transition

Table de transition

Т	а	b
⇒0	1	0
1	2	1
←2	0	2

Expression régulière

- Les expressions régulières sont une importante notation pour spécifier formellement des modèles. Pour les définir correctement il nous faut faire l'effort d'apprendre un peu de vocabulaire :
 - On appelle alphabet un ensemble fini non vide Σ de symboles (lettres de 1 ou plusieurs caractères)
 - On appelle mot toute séquence finie d'éléments de Σ
 - On note ε le mot vide
 - On note Σ^* l'ensemble infini contenant tous les mots possibles sur Σ .

Expression régulière

 Elle permet de spécifier a priori un langage, alors que les automates permettent de tester l'appartenance d'un mot à un langage déjà spécifié.

Exemples:

- (a + b)* représente tous les mots sur {a, b}
- a*(ba*)* représente le même langage
- (a + b)*aab représente les mots se terminant par aab.

Expression régulière: Exemple

- Une ER décrivant les identificateurs en C pourrait être
 - Ident=(a|b|...|z|A|...|Z|_)(a|b|...|z|A|...|Z|_|0|...|9)*
 - Remarque: un peu illisible.
 - ➤ On utilise donc les définitions régulières.
 - Une définition régulière est une suite de définition de la forme
 - $d1 \rightarrow r1$ avec $r1 \in \Sigma^*$
 - $d2 \rightarrow r2$ avec $r2 \in (\Sigma U \{d1\})^*$
 - ...
 - $dn \rightarrow rn \text{ avec } rn \in (\Sigma \cup \{d1, d2, ..., dn-1\})^*$

Expression régulière: Exemple

- Une ER décrivant les identificateurs en C pourrait être
 - Ident=(a|b|...|z|A|...|Z|_)(a|b|...|z|A|...|Z|_|0|...|9)*
 - Remarque: un peu illisible.
 - > On utilise donc les définitions régulières.

IDENT (identificateurs) en C devient :

- Lettre \rightarrow A-Z|a-z
- Chiffre \rightarrow 0-9
- Sep → _
- Ident → (lettre|sep)(lettre|sep|chiffre)*

 Construction d'un AFN à partir d'une ER (construction de Thompson)

■ pour
$$\varepsilon$$
: $N(\varepsilon)$ start ε

• pour R_1R_2 : $N(R_1R_2)$

• pour R_1R_2 : $N(R_1R_2)$

• pour R_1R_2 : $N(R_1R_2)$

■ pour **R*** : *N*(*R**)

■ pour **R*** : *N*(*R**)

■ pour **R*** : *N*(*R**)

- **Exemple :** r = (a|b)*aab
 - N(r)

- Un AFD permet de résoudre le problème de choix multiple lors de la recherche d'un chemin validant un mot donné dans un automate non déterministe.
- Dans un AFD, un seul chemin permet la reconnaissance d'un mot.
 - Lemme1 : deux automates N1 et N2 sont dits équivalents si L(N1) =
 L(N2)
 - Lemme 2 : pour tout automate non déterministe, il existe un automate déterministe qui lui est équivalent.

- II existe des algorithmes permettant de rendre déterministe un automate non déterministe (c'est-à-dire de construire un AFD qui reconnait le même langage que l'AFN donné).
- L'AFD obtenu comporte en général plus d'états que l'AFN, donc le programme le simulant occupe plus de mémoire. Mais il est plus rapide.

- Un AFN ne contenant pas de ε -transitions
 - L'algorithme à suivre est le suivant :
 - Partir de l'état initial ;
 - Rajouter dans la table de transition tout les nouveaux 'états' produits avec leurs transitions;
 - Recommencer 2 jusqu'à ce qu'il n'y ait plus de nouvel 'état';
 - Tous les 'états' contenant au moins un état terminal deviennent terminaux;
 - Renuméroter alors les états.

- Un AFN ne contenant pas de ε -transitions
 - Exemple :
 - ER : (a|b)*aa(a|b)*
 - AFN:

Table de transition de l'AFN

	a	b
→0	0,1	0
1	2	-
← 2	2	2

- Un AFN ne contenant pas de ε -transitions
 - Exemple :
 - ER : (a|b)*aa(a|b)*
 - Application de l'algorithme :

T	a	b
→ 0		

• Un AFN ne contenant pas de ε -transitions

Exemple :

ER: (a|b)*aa(a|b)*

Application de l'algorithme : dernière étape

	a	b
$\rightarrow 0$	1	0
1	2	0
← 2	2	3
← 3	2	3

Cas général

Définition :

on appelle ϵ -fermeture d'un ensemble d'état $E = \{e_0, ..., e_n\}$ l'ensemble des états accessibles depuis un état e_i de E par des ϵ -transitions

- Algorithme: Soit M un automate non déterministe défini par (E, Σ, eo, F, T), l'algorithme de transformation en un AFD est le suivant:
 - 1. Construire l'état e'_0 tq $e'_0 = \varepsilon$ -fermeture (e_0) ;
 - 2. Rajouter dans la table de transition toutes les ε -fermetures des nouveaux 'états' produits avec leurs transitions ;
 - 3. Recommencer 2 jusqu'à ce qu'il n'y ait plus de nouvel 'état';
 - 4. Tous les 'états' contenant au moins un état terminal deviennent terminaux ;
 - Renuméroter alors les états.

- Exemple : r = (a|b)*aab
- N(r) par construction de Thompson

- Exemple : r = (a|b)*aab
- ε-fermeture:

- ε -fermeture (0) =
- ε -fermeture (1) =
- ε -fermeture (2) =
- ε -fermeture (3) =
- ε -fermeture (4) =
- ε -fermeture (5) =
- ε -fermeture (6) =
- ε -fermeture (7) =
- ε -fermeture (8) =
- ε -fermeture (9) =
- ε -fermeture (10) =

- Exemple : r = (a|b)*aab
- Table de transition:

	a	b
→ A		

$$\varepsilon$$
-fermeture (0) = {0, 1, 2, 4, 7} = A

$$\varepsilon$$
-fermeture (1) = {1, 2, 4} = B

$$\varepsilon$$
-fermeture (2) = {2} = C

$$\varepsilon$$
-fermeture (3) = {3, 6, 1, 2, 4} = D

$$\varepsilon$$
-fermeture (4) = {4}= E

$$\varepsilon$$
-fermeture (5) = {5, 6, 7, 1, 2, 4}= F

$$\epsilon$$
-fermeture (6) = {6, 7, 1, 2, 4}= G

$$\varepsilon$$
-fermeture (7) = {7}= H

$$\varepsilon$$
-fermeture (8) = {8}= I

$$\varepsilon$$
-fermeture (9) = {9}= J

$$\varepsilon$$
-fermeture (10) = {10}= K

- Exemple : r = (a|b)*aab
- AFD équivalent:

Minimiser un AFD

- Transformer le AFD en un autre AFD ayant le minimum nombre d'états et qui reconnait le même langage
 - Il faut éliminer les états dits « inaccessibles »
 - Par application de l'algorithme de marquage
 - En regroupant les états dits « congruents » (i.e. appartenant à la même classe d'équivalence) qui ont le même comportement sur les mêmes entrées

Minimiser un AFD : algorithme

- Construire une partition initiale P_i de l'ensemble des états avec deux groupes : les états finaux F et les états non finaux E-F
- 2. Appliquer la procédure partitionner (en classes d'équivalence) à P_i pour construire une nouvelle partition P_n .
- 3. Si $P_n = P_i$, soit $P_f = P_i$ et continuer à l'étape 4. Sinon répéter l'étape 2 avec $P_i = P_n$
- 4. Choisir un état dans chaque groupe de la partition P_f en tant que représentant de ce groupe. Les représentants seront les états de l'AFD réduit.
- 5. Si l'AFD réduit a un état mort **d**, alors supprimer **d** de l' AFD, supprimer aussi tout état **non accessible** depuis l'état de départ.

Minimiser un AFD : algorithme

Application

Т	а	b
→ A	В	С
В	В	D
С	В	С
D	В	E
← E	-	-

```
Pi = {E, ABCD}
Itération 1:

T(B, b) = D → partitionner : Pi = {E, B, ACD}
Itération 2 :

T(D, b) = E → partitionner Pi = {E, B, D, AC}
Pas d'autres partitions
```