1

Lemma: 1

 \mathcal{M} is a field.

Proof

(i) Since $\forall E \subset \Omega$,

$$P^*(\emptyset \cap E) + P^*(\emptyset^c \cap E) = P^*(\emptyset) + P^*(E)$$
$$= P^*(E)$$

So $\emptyset \in \mathcal{M}$.

- (ii) $A \in \mathcal{M} \Rightarrow A^c \in \mathcal{M}$ by the symmetry of the definition of \mathcal{M} .
- (iii) Given $A_1, A_2 \in \mathcal{M}$. Want $A_1 \cup A_2 \in \mathcal{M}$. We can show that $A_1 \cap A_2 \in \mathcal{M}$.

$$P^{*}((A_{1} \cap A_{2}) \cap E) + P^{*}((A_{1} \cap A_{2})^{c} \cap E)$$

$$= P^{*}(A_{1} \cap A_{2} \cap E) + P^{*}((A_{1} \cap E \cap A_{2}^{c})$$

$$\cup (A_{2} \cap E \cap A_{1}^{c}) \cup (A_{1}^{c} \cap A_{2}^{c} \cap E))$$

$$\leq P^{*}(A_{1} \cap A_{2} \cap E) + P^{*}(A_{1} \cap E \cap A_{2}^{c})$$

$$+ P^{*}(A_{2} \cap E \cap A_{1}^{c}) + P^{*}(A_{1}^{c} \cap A_{2}^{c} \cap E)$$

$$= A + B + C + D$$

$$(1)$$

$$A + B = P^*(A_2 \cap (A_1 \cap E)) + P^*(A_2^c \cap (A_1 \cap E))$$

$$\leq P^*(A_1 \cap E) \text{ since } A_2 \in \mathcal{M}$$

$$C + D = P^*(A_2 \cap (E \cap A_1^c)) + P^*(A_2^c \cap (E \cap A_1^c))$$

$$\leq P^*(A_1^c \cap E)$$

So
$$(1) \le (A+B) + (C+D) \le P^*(A_1 \cap E) + P^*(A_1^c \cap E) \le P^*(E)$$

since $A_1 \in \mathcal{M}$.

Lemma: 2

Countable additivity holds for sets in \mathcal{M} .

Note.
$$A_1, A_2, \ldots \in \mathcal{M}$$
, disjoint then $P^*(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P^*(A_n)$

Proof

1) Prove finite additivity: given $A_1, \ldots \in \mathcal{M}$, disjoint, and $E \in \Omega$. Since $(E \cap A_1) \cup (E \cap A_2)$ are disjoint, $A_1 \cap [E \cap (A_1 \cup A_2)] = A_1 \cap E$. Also $A_2 \subset A^c$.

$$P^*(E \cap (A_1 \cup A_2)) = P^*(A_1 \cap [E \cap (A_1 \cap A_2)]) + P^*(A_1^c \cap [E \cap (A_1 \cup A_2)])$$

= $P^*(A_1 \cap E) + P^*(A_2 \cap E)$

2) Countable additivity: $A_1A_2... \in \mathcal{M}$, disjoint

$$P^*(E \cap \bigcup_{n=1}^{\infty} A_n) = P^*(\bigcup_{n=1}^{\infty} (E \cap A_n))$$

$$\leq \sum_{n=1}^{\infty} P^*(E \cap A_n)$$

On the other hand:

$$P^*(E \cap \left(\bigcup_{n=1}^{\infty} A_n\right)) \ge P^*\left(E \cap \bigcup_{n=1}^{\infty} A_n\right)$$
$$= \sum_{n=1}^{\infty} P^*(E \cap A_n) \text{ by 1) above}$$

Let
$$n \to \infty$$
 $P^*(E \cap \bigcup_{n=1}^{\infty} A_n) \ge \sum_{n=1}^{\infty} P^*(E \cap A_n)$

Lemma: 3

 \mathcal{M} is a σ -field.

Proof

We only need to show that it is closed under countable unions. Given $A_1, A_2, \ldots \in \mathcal{M}$. Let $A = \bigcup_{n=1}^{\infty} A_n$. We want to show that $A \in \mathcal{M}$.

Assume A_1, A_2 .. are disjoint. If not write $A = A_1 \cup (A_2 \setminus A_1) \cap \ldots$ which is a disjoint union.

Let $B_m := \bigcup_{n=1}^m A_n$. Note that $B_m \in \mathcal{M}$ since \mathcal{M} is a field. Notice

$$B_m \subset \bigcup_{n=1}^{\infty} A_n = A \Rightarrow A^c \subset B_m^c. \text{ So } \forall E \subset \Omega,$$

$$P^*(E) = P^*(B_M \cap E) + P^*(B_m^c \cap E)$$

$$= P^*\left(\bigcup_{n=1}^m (A_n \cap E)\right) + P^*(B_m^c \cap E)$$

$$\geq \sum_{n=1}^{\infty} P^*(A_n \cap E) + P^*(A^c \cap E)$$

Let $m \to \infty$,

$$P^*(E) \ge \sum_{n=1}^{\infty} P^*(A_n \cap E) + P^*(A^c \cap E)$$
$$= P^* \left(\bigcup_{n=1}^{\infty} (A_n \cap E) \right) + P^*(A^c \cap E)$$
$$= P^* \left(\bigcup_{n=1}^{\infty} A_n \cap E \right) + P^*(A^c \cap E)$$
$$= P^*(A \cap E) + P^*(A^c \cap E)$$

Hence $A \in \mathcal{M}$.

Lemma: 4

 $\mathcal{F}_0 \subset \mathcal{M}$.

Lemma: 5

 $A \in \mathcal{F}_0 \Rightarrow P^*(A) = P(A).$

Since $P(\Omega) = 1$, by Lemma 5, $P^*(\Omega) = 1$. Now we have $P^*(\emptyset) = 0$, $P^*(\Omega) = 1$, $\emptyset \subset A \subset \Omega \Rightarrow 0 \leq P^*(A) \leq 1$, and P^* is countably additive on \mathcal{M} . It follows that P^* is a probability measure on \mathcal{M} and $P^* = P$ for set on $\mathcal{F}_0 \subset \mathcal{M}$.