

北京交通大学

课程名称:编译原理

作业题目: 第四章作业

学号: 22281188

姓名: 江家玮

班级: 计科2204班

指导老师: 陈钰枫老师 报告日期: 2024-11-19

目录

第四章作业

- 4-1 (教材4-1) 消除下列文法的左递归
- 4-2 (教材4-3)对于如下文法,画出无左递归无回溯的递归下降分析程序框图。
- 4-3 (教材4-4) 求下列文法的FIRST集和FOLLOW集。
- 4-4 (教材4-8) 对于如下文法:
- 4-5 (教材4-9) 设已给文法
- 4-6 (教材4-13) 对于文法G[S]:
- 4-7 (教材4-20) 对于算符文法G[S]:
- 4-8 (教材4-31) 设已给文法G[E]:
- 4-9 (教材4-33) 对于算符文法
- 4-10 (教材4-35) 对于下列文法, 试构造LR(0)项目集规范族及识别全部活前缀的DFA。
- 4-11 (教材4-36) 构造题4-10的LR(0)分析表, 判定是否是LR(0)文法。
- 4-12 (教材4-37) 判定下列文法是哪一类LR文法,并构造LR分析表。
- 4-13 (教材4-38) 下列文法是否是SLR (1) 文法? 若是,构造相应的SLR (1) 分析表,若不是,则阐述其理由。

第四章作业

4-1 (教材4-1) 消除下列文法的左递归

(1) G[S]:S o SA|A,A o SB|B|(S)|(),B o [S]|[]

(2) G[S]:S o AS|b,A o SA|a

(3) G[S]:S o (T)|a|arepsilon T o S|T,S

(1) 解: ①

$$A1 = B$$
, $A2 = A$, $A3 = S$

2

$$a. i = 1, \ A_i = A_1 = B$$
 $b. i = 2, \ A_i = A_2 = A$
 $j = 1, \ A_j = A_1 = B$

改写: $A \rightarrow SB \mid [S] \mid [] | (S) | ()$

$$c. i = 3, Ai = A3 = S$$

 $j = 1, Aj = A1 = B$
 $j = 2, Aj = A2 = A$

改写: $S o SA|SB|[S]|[\]|(S)|(\)$

消除直接递归: $S \to ([] \, | \, () \, | \, [S] \, | \, (S)) \{A \, | \, B\}$

(2) 解: ①

$$A1 = A$$
, $A2 = S$

2

$$a. i = 1, Ai = A1 = A$$
 $b. i = 2, Ai = A2 = S$
 $j = 1, Aj = A1 = A$

改写: $S o SAS \mid aS \mid b$

消除直接递归: $S \rightarrow (aS \mid b) \{AS\}$

(3) 解: ①

$$A1 = T$$
, $A2 = S$

2

$$a. i = 1, Ai = A1 = T$$

改写: $T \rightarrow S\{,S\}$

$$b. i = 2, Ai = A2 = S$$

 $j = 1, Aj = A1 = T$

4-2 (教材4-3)对于如下文法,画出无左递归无回溯的递归下降分析程序框图。

(1)

P
ightarrow begind; Xend

X o d; X|sY

 $Y \rightarrow ; sY | arepsilon$

(2)

<程序 $> \rightarrow begin$ <语句> end

< 语句 >→< 赋值语句 > | < 条件语句 >

< 赋值语句 >→< 变量 >:=< 表达式 >

<条件语句 $>\rightarrow if$ <表达式>then<语句>

< 表达式 >→< 变量 >

<表达式 >→< 表达式 > + < 变量 >

<变量 $>\rightarrow i$

(1) 解: $P \rightarrow begind; Xend$

 $Y \to ; sY|arepsilon$

(2) 解: <程序 $>\rightarrow begin$ < 语句 > end

< 语句 >→< 赋值语句 > | < 条件语句 >

< 赋值语句 >→< 变量 >:=< 表达式 >

<条件语句 $> \rightarrow if <$ 表达式 > then < 语句 >

< 表达式 >→< 变量 >

< 表达式 >→< 表达式 > + < 变量 >

<变量 $> \rightarrow i$

4-3 (教材4-4) 求下列文法的FIRST集和FOLLOW集。

$$G[S]:S
ightarrow aAB|bA|arepsilon \ A
ightarrow aAb|arepsilon \ B
ightarrow bB|arepsilon$$

解:

$$\begin{aligned} \operatorname{FIRST}(aAB) &= a \\ \operatorname{FIRST}(bA) &= b \\ \operatorname{FIRST}(\epsilon) &= \epsilon \\ \operatorname{FIRST}(aAb) &= a \\ \operatorname{FIRST}(bB) &= b \\ \operatorname{FOLLOW}(S) &= \{\#\} \\ \operatorname{FOLLOW}(A) &= \{b, \#\} \\ \operatorname{FOLLOW}(B) &= \{\#\} \end{aligned}$$

4-4 (教材4-8) 对于如下文法:

$$G[S]:S\to Sb|Ab|b$$

$$A\to Aa|a$$

(1) 构造一个与G等价的LL(1)文法G';

解:

$$S
ightarrow AbS'|bS'$$
 $S'
ightarrow bS'|arepsilon$ $A
ightarrow aA'$ $A'
ightarrow aA'|arepsilon$

(2) 对于G',构造一个相应的LL(1)分析表。

	a	b	#
S	S o AbS'	S o b~S'	
S'		$S' \; o b \; S'$	S' oarepsilon
4	4		

A	A ightarrow a A'	b	#
A'	A' o a A'	A' oarepsilon	

$$S: \operatorname{FIRST}(AbS') = \{a\}, \ \operatorname{FIRST}(bS') = b, \ \operatorname{FOLLOW}(S) = \{\#\}$$

 $S': \operatorname{FIRST}(bS') = \{b\}, \ \operatorname{FIRST}(\epsilon) = \epsilon, \ \operatorname{FOLLOW}(S') = \{\#\}$
 $A: \operatorname{FIRST}(aA') = \{a\}, \ \operatorname{FOLLOW}(A) = \{b\}$
 $A': \operatorname{FIRST}(aA') = \{a\}, \ \operatorname{FIRST}(\epsilon) = \epsilon, \ \operatorname{FOLLOW}(A') = \{b\}$

4-5 (教材4-9) 设已给文法

G[S]:S
ightarrow SaB|bB A
ightarrow S|a B
ightarrow Ac

(1) 求出每个非终结符号的FIRST集和FOLLOW集;

$$FIRST(SaB) = \{b\}$$

$$FIRST(bB) = \{b\}$$

$$FIRST(S) = \{b\}$$

$$FIRST(a) = \{a\}$$

$$FIRST(Ac) = \{b, a\}$$

$$FOLLOW(S) = \{\#, a, c\}$$

$$FOLLOW(A) = \{c\}$$

$$FOLLOW(B) = \{a, \#\}$$

(2) 将它改写为LL(1)文法。

$$S
ightarrow bBS' \ S'
ightarrow aBS'\,|\,\epsilon \ A
ightarrow S\,|\,a \ B
ightarrow Ac$$

4-6 (教材4-13) 对于文法G[S]:

$$S o A/$$
 $A o Aa|AS|/$

(1) 构造G[S]的简单优先矩阵;

	S	A	/	a
S			>=	>
A	=	<	<	=
/			>	>
a			>	>

(2) 找出其中的多重定义元素,以验证G[S]不是简单优先文法。

4-7 (教材4-20) 对于算符文法G[S]:

$$S
ightarrow E$$
 $E
ightarrow E-T|T$ $T
ightarrow T*F|F$ $F
ightarrow P|-P$ $P
ightarrow (E)|i$

(1) 构造G的算符优先矩阵;

$$\begin{aligned} \text{FIRSTVT}(S) &= \{\#, *, -, (, i, --) \\ \text{FIRSTVT}(E) &= \{*, -, (, i, --) \\ \text{FIRSTVT}(T) &= \{*, --, (, i\} \\ \text{FIRSTVT}(F) &= \{--, (, i\} \\ \text{FIRSTVT}(P) &= \{(, i\} \\ \text{LASTVT}(S) &= \{\#, -, *,), i, --\} \\ \text{LASTVT}(E) &= \{-, *,), i, --\} \\ \text{LASTVT}(T) &= \{*, --,), i\} \\ \text{LASTVT}(F) &= \{--,), i\} \\ \text{LASTVT}(P) &= \{\}, i\} \end{aligned}$$

	*	-	()	i	#	
*	>	>	<	>	<	>	<
-	<	>	<	>	<	>	<
(<	<	<	=	<		<
)	>	>	=	>		>	
i	>	>		>		>	
#	<	<	<		<	=	<
	>	>	<	>	<	>	

(2) 指出G不是算符优先文法,即指出具有多重定义的优先矩阵元素;

解: -具有多重定义, 因此 G不是优先算符文法。

(3) 将G改写为算符优先文法。

$$S
ightarrow E \ E
ightarrow E-T|T \ T
ightarrow T*F|F \ F
ightarrow P|--P \ P
ightarrow (E)|i$$

4-8 (教材4-31) 设已给文法G[E]:

$$E
ightarrow E+T|T$$

$$T
ightarrow T*F|F$$

$$F
ightarrow P\uparrow F|P$$

$$P
ightarrow (E)|i$$

(1) 构造此文法的算符优先矩阵

$$E' \rightarrow E$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow P \uparrow F \mid P$$

$$P \rightarrow (E) \mid i$$
FIRSTVT $(E') = \{\#, +, *, \uparrow, (, i\}\}$
FIRSTVT $(E) = \{+, *, \uparrow, (, i\}\}$
FIRSTVT $(F) = \{\uparrow, (, i\}\}$
FIRSTVT $(F) = \{\uparrow, (, i\}\}$
FIRSTVT $(F) = \{(, i\}\}$
LASTVT $(E') = \{\#, +, *, \uparrow,), i\}$
LASTVT $(E) = \{+, *, \uparrow, h, i\}$
LASTVT $(F) = \{\uparrow, h, h, i\}$

	+	*	↑	()	i	#
+	>	<	<	<	>	<	>
*	>	>	<	<	>	<	>
↑	>	>	<	<	>	<	>
(<	<	<	<	=	<	
)	>	>	>	=	>		>
i	>	>	>		>		>
#	<	<	<	<		<	=

(2) 用Floyd方式将所得的优先矩阵线性化。

	+	*	↑	()	i	#
f	3	5	5	1	7	7	1
g	2	4	6	6	1	6	1

4-9 (教材4-33) 对于算符文法

$$S \to A[]$$

$$A \to [$$

$$A \to aA$$

(1) 构造相应的优先矩阵;

$$\begin{aligned} & \operatorname{FIRSTVT}(S) = \{[\} \\ & \operatorname{FIRSTVT}(A) = \{[,a,]\} \\ & \operatorname{FIRSTVT}(B) = \{a\} \\ & \operatorname{LASTVT}(S) = \{]\} \\ & \operatorname{LASTVT}(A) = \{[,a,]\} \\ & \operatorname{LASTVT}(B) = \{a\} \end{aligned}$$

]	1	a	#
[>			
]	>			>
а	>/<		<	
#	<			=

(2) 用Bell方法求优先函数;

]	1	a	#
f	5	7	5	1
g	5	5	6	1

(3) 检验此优先矩阵能否线性化。

解: 因为文法不是算符优先文法, 因此不能线性化。

4-10 (教材4-35) 对于下列文法, 试构造LR(0)项目集规范 族及识别全部活前缀的DFA。

G[S]:S o aSb

S o aSc

S o ab

解: 拓广后的文法为:

$$S' o S$$
 $S o aSb$
 $S o aSc$

S o ab

拓广文法后所有的项目为:

$$S'
ightarrow \cdot S$$
 $S'
ightarrow S \cdot S$
 $S
ightarrow \cdot aSb$
 $S
ightarrow aSb \cdot S$
 $S
ightarrow aSb \cdot S$
 $S
ightarrow aSc$
 $S
ightarrow aS \cdot c$
 $S
ightarrow aSc \cdot S$
 $S
ightarrow ab$
 $S
ightarrow ab$

$$C_0 = \operatorname{closure}(C_0) = \{S'
ightarrow \cdot S, S
ightarrow \cdot aSb, S
ightarrow \cdot aSc, S
ightarrow \cdot ab\} \ C_1 = GO(C_0, S) = \{S'
ightarrow S \cdot \} \ C_2 = GO(C_0, a) = \{S
ightarrow a \cdot Sb, S
ightarrow a \cdot Sc, S
ightarrow a \cdot b, S
ightarrow \cdot aSb, S
ightarrow \cdot aSc, S
ightarrow \cdot ab\} \ C_3 = GO(C_2, S) = \{S
ightarrow aS \cdot b, S
ightarrow aS \cdot c\} \ C_4 = GO(C_2, b) = \{S
ightarrow ab \cdot \} \ C_5 = GO(C_3, b) = \{S
ightarrow aSb \cdot \} \ C_6 = GO(C_3, c) = \{S
ightarrow aSc \cdot \}$$

4-11 (教材4-36) 构造题4-10的LR(0)分析表,判定是否是LR(0)文法。

解: 是LR (0) 文法。

状态	ACTION	ACTION	ACTION	ACTION	GOTO	GOTO
状态	а	b	С	#	S	S'
0	S2				1	
1				acc		
2		S4			3	
3		S5	S6			
4	r3	r3	r3	r3		
5	r1	r1	r1	r1		
6	r2	r2	r2	r2		

4-12 (教材4-37) 判定下列文法是哪一类LR文法,并构造LR分析表。

G[S]:S o (SR

S o a

R
ightarrow , SR

 $R \rightarrow$)

解: 拓展后的文法为:

$$S' \rightarrow S$$

$$S \rightarrow (SR$$

$$S \rightarrow a$$

$$R \rightarrow, SR$$

$$R \rightarrow)$$

拓广文法后所有的项目为:

$$S' \rightarrow \cdot S$$

$$S' \rightarrow S \cdot$$

$$S \rightarrow \cdot (SR$$

$$S \rightarrow (SR \cdot R)$$

$$S \rightarrow (SR \cdot R)$$

$$S \rightarrow a \cdot$$

$$S \rightarrow a \cdot$$

$$R \rightarrow \cdot , SR$$

$$R \rightarrow , SR$$

$$R \rightarrow , SR \cdot$$

$$C_0 = \operatorname{closure}(C_0) = \{S'
ightarrow \cdot S, S
ightarrow \cdot (SR, S
ightarrow \cdot a\}$$
 $C_1 = GO(C_0, S) = \{S'
ightarrow S \cdot \}$
 $C_2 = GO(C_0, () = \{S
ightarrow (\cdot SR, S
ightarrow \cdot (SR, S
ightarrow \cdot a)\}$
 $C_3 = GO(C_0, a) = \{S
ightarrow a \cdot \}$
 $C_4 = GO(C_2, S) = \{S
ightarrow (S
ightarrow R, R
ightarrow \cdot , SR, R
ightarrow \cdot)\}$
 $C_5 = GO(C_4, R) = \{S
ightarrow (SR
ightarrow S
ightarrow \cdot , SR, S
ightarrow \cdot (SR, S
ightarrow \cdot a)\}$
 $C_6 = GO(C_4, \cdot) = \{R
ightarrow \cdot , SR, S
ightarrow \cdot (SR, S
ightarrow \cdot a)\}$
 $C_7 = GO(C_4, \cdot) = \{R
ightarrow \cdot , SR, R
ightarrow \cdot \cdot , SR, R
ightarrow \cdot)\}$
 $C_9 = GO(C_8, R) = \{R
ightarrow \cdot , SR
ightarrow SR \cdot \}$

因为没有冲突项目,因此是LR(0)文法。

状态	ACTION	ACTION	ACTION	ACTION	ACTION	ACTION	GOTO	GОТО
状态	(a	,)	#	S	S'	R
0	S2	S3				1		
1					acc			
2						4		
3	r2	r2	r2	r2	r2			
4			S6	S7				5
5	r1	r1	r1	r1	r1			
6						8		
7	r4	r4	r4	r4	r4			
8								9
9	r3	r3	r3	r3	r3			

4-13 (教材4-38) 下列文法是否是SLR (1) 文法? 若是,构造相应的SLR (1) 分析表,若不是,则阐述其理由。

G[S]:S o Sab

S o bR

R o S

R o a

解: 拓展后的文法为:

$$S'
ightarrow S \ S
ightarrow Sab \ S
ightarrow bR \ R
ightarrow S$$

R o a

拓广文法后所有的项目为:

$$S' o S$$
 $S' o S$
 $S' o S$
 $S o Sab$
 $S o Sab$
 $S o Sa o b$
 $S o Sab$
 $S o bR$
 $S o Sab$
 $S o Sab$

不是SLR(1)文法,因为当前移进规约冲突无法解决。