A Retrospective On: Brute-Force Algorithms on the Minimum Enclosing Circle Problem

Table 1								
		Center coordin a tes	Center coordin ates	Radius	Radius	Surface	Surface	
File Name	Numbe r of points	Approa ch 1	Approa ch 2	Approa ch 1	Approa ch 2	Approa ch 1	Approach 2	
Circles_10.tx t	10	(-0.153 928, 0.0605 847)	(0.1, 0.2)	0.8668	0.75	2.3607	1.76715	
Circles_20.tx t	20	(0.2434 45, -0.1962 19)	(0.2, -0.2)	0.8260 15	0.78	2.1435	1.91134	
Circles_100.t xt	100	(0.1189 5, 0.1261 94)	(0.1762 6, 0.0819 885)	0.7570 14	0.7738 58	1.8003	1.88136	
Circles_400.t xt	400	(0.2567 97, 0.1986 27)	(0.2084 51, 0.1958 52)	0.6288	0.6368 79	1.2422 9	1.27428	
Circles_800.t xt	800	(0.0724 267, 0.0097 5774)	(0.0625 -1.8837 1e-09)	0.9177 21	0.9062	2.6458	2.58016	

Circles_1000. txt	1000	(0.2703 52, 0.0147 778)	(0.2830 85, 0.0172 973)	0.8876 42	0.8850 74	2.4752 9	2.46099		
Circles_2000. txt	2000	(0.0981 695, -0.0024 7526)	(0.0937 5, -7.0780 1e-10)	0.9107 18	0.9062	2.6056	2.58016		
Circles_4000. txt	4000	(0.2083 18, 0.0135 393)	(0.2084 6, 0.0136 782)	0.8983 61	0.8943 52	2.5354	2.51285		
Circles_2000 0.txt	20000								
Circles_4000 0.txt	40000	Valid C	Valid Circles couldn't be found of this dataset in time as the						
Circles_1000 00.txt	100000	runtime required to compute the minimum enclosed circle for datasets > 20000 require multiple years to execute. This is due to the growth trend of n^2 and n^3 time complexities of pairs of points & triplets of points respectively.							
Circles_4000 00.txt	400000								
Circles_8000 00.txt	800000								

Pair-based Approach:

- Computes the MEC using pairs of points.
- Runtime complexity: O(n^2).
- Parallelized using computer's optimal threads.

Triplet-based Approach:

- Computes the MEC using triplets of points.
- •
- Runtime complexity: O(n^3).
- •
- Parallelized using computer's optimal threads.

Consistency of Results

The results of the two approaches are not entirely consistent. While the center coordinates, radii, and surface areas are extremely close, they are not identical. This indicates that the two approaches may produce slightly different results due to their algorithmic differences.

Why Are The Results Inconsistent?

Pair-based Approach: This approach computes the MEC using pairs of points. It is faster with a time complexity of $O(n^2)$ but may not always produce the smallest possible circle.

Triplet-based Approach: This approach computes the MEC using triplets of points. It is more accurate but slower with a time complexity of O(n^3). It is more likely to find the true smallest enclosing circle but becomes impractical for large datasets which was experienced with the bottlenecked performance from datasets larger than 4000 points.

The **pair-based approach** may use approximations to speed up computation, leading to slightly less accurate results.

The **triplet-based approach** aims for an exact solution by considering all possible triplets of points, which is more computationally expensive but more accurate.

For datasets with irregular point distributions, the **pair-based approach** may produce a larger circle than necessary, while the **triplet-based approach** is more likely to find the optimal circle.

Table 2								
		Execution Time (in ms)			Asymptotic Complexity as a function of n			
File Name	Number of points	Brutefo rce1	Brutefo rce2	Bruteforce1/Br uteforce2	Brut efor ce1	Brute force 2	Bruteforc e1/Brutef orce2	
Circles_10.	10	0	0	0/0 (Undef)	O(N ^2)	O(N^ 3)	O(N^3)	
Circles_20. txt	20	0	0	0/0(Undef)	O(N ^2)	O(N^ 3)	O(N^3)	
Circles_10 0.txt	100	1	6	0.16666667	O(N ^2)	O(N^ 3)	O(N^3)	
Circles_40 0.txt	400	7	412	0.01699029126	O(N ^2)	O(N^ 3)	O(N^3)	

Circles_80 0.txt	800	39	3082	0.0126541207	O(N ^2)	O(N^ 3)	O(N^3)
Circles_10 00.txt	1000	48	5276	0.00909780136	O(N ^2)	O(N^ 3)	O(N^3)
Circles_20 00.txt	2000	369	43647	0.00845418929	O(N ^2)	O(N^ 3)	O(N^3)
Circles_40 00.txt	4000	2257	306665	0.0073598226	O(N ^2)	O(N^ 3)	O(N^3)
Circles_20 000.txt	20000	~36900	~43647 000	8.45418929136 0230943707471 3038697e-4	O(N ^2)	O(N^ 3)	O(N^3)
Circles_40 000.txt	40000	~14760 0	~25600 00000	0.00005765625	O(N ^2)	O(N^ 3)	O(N^3)
Circles_10 0000.txt	100000	~92250 0	~10911 75000	8.45418929136 0230943707471 3038697e-4	O(N ^2)	O(N^ 3)	O(N^3)
Circles_40 0000.txt	400000	~14760 000	~17458 800000	8.45418929136 0230943707471 3038697e-4	O(N ^2)	O(N^ 3)	O(N^3)
Circles_80 0000.txt	800000	~59040 000	~13967 040000 0	4.22709464568 0115471853735 6519348e-4	O(N ^2)	O(N^ 3)	O(N^3)

Bruteforce1 (Pair-based Approach) Theoretical Complexity: O(n^2).

The execution time grows quadratically with the number of points, consistent with the $O(n^2)$ complexity.

For example, the ratio of execution times for 40000 points (147600 ms) and 4000 points (2257 ms) is approximately 65.3, which is close to the expected ratio of $40000^2 / 4000^2 = 100$.

Bruteforce2 (Triplet-based Approach): Theoretical Complexity: O(n^3)

The execution time grows cubically with the number of points, consistent with the $O(n^3)$ complexity.

For example, the ratio of execution times for 1000 points (5276 ms) and 100 points (6 ms) is approximately 879, which is close to the expected ratio of $1000^3 / 100^3 = 1000$.

The error between the actual ratios and theoretical ratios can be explained by the bottleneck of non-ideal computer hardware. The same error can also be explained by the varying increase of points from one dataset to another. For example, 1000 to 4000 points is a different rate of increase than 4000 to 40000.

Dataset Poi	Ratio of Runtimes (Triplet/Pair)	Expected Asymptotic Ratio O(n) (n^3/n^2)	Comparison Of Ratio of Runtimes to Expected Asymptotic Ratio
-------------	--	--	--

Circles_10.txt	10	Undefined	10	N/A
Circles_20.txt	20	Undefined	20	N/A
Circles_100.txt	100	6.0	100	6.0 < 100
Circles_400.txt	400	58.86	400	58.86 < 400
Circles_800.txt	800	79.03	800	79.03 < 800
Circles_1000.txt	1000	109.92	1000	109.92 < 1000
Circles_2000.txt	2000	118.28	2000	118.28 < 2000
Circles_4000.txt	4000	135.87	4000	135.87 < 4000
Circles_20000.txt	20000	1182.82	20000	1182.82 < 20000
Circles_40000.txt	40000	17347.83	40000	17347.83 < 40000
Circles_100000.t	100000	1182.82	100000	1182.82 < 100000
Circles_400000.t	400000	1182.82	400000	1182.82 < 400000
Circles_800000.t	800000	2365.64	800000	2365.64 < 800000

Conclusion

The pair-based approach would be more optimal for smaller, more regular spread of points datasets while the triplet-based approach is more optimal for a more precise MEC at the cost of speed and memory.

The key point our group has taken away from this programming assignment

is the aspect of how significant different algorithms could optimize a solution to a problem.

In this case, we have tried a large number of optimization techniques to reduce runtime and resource expenditure but it is not possible with these two approaches. A more optimal approach would be Welzl's Algorithm with a time complexity of O(n) which would scale linearly based on our provided datasets.

All in all, the restrictions to only these two algorithms inspired a great motivation to create more efficient algorithms suited to every particular problem.