变化的电磁场

习题课

知识结构

・重点难点

感应电动势的计算

一、选择题

1. 两根无限长平行直导线载有大小相等方向相反的电流I,

均以 $rac{\mathrm{d}I}{\mathrm{d}t}$ 的变化率增长,一矩形线圈位于导线平面内(如

图),则:

- [🔐](A)线圈中无感应电流.
 - (B) 线圈中感应电流为顺时针方向.
 - (C) 线圈中感应电流为逆时针方向.
 - (D) 线圈中感应电流方向不确定.

按题意,通过矩形线圈的磁通量随时间穿 ——出增加,由楞次定律可确定,电流为顺时针方 ——一向.

知识点: 楞次定律

- 一闭合正方形线圈放在均匀磁场中,线圈可绕通过其中心且与一边平行的转轴 OO'转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?
- [D] (A) 把线圈的匝数增加到原来的两倍.
 - (B) 把线圈的面积增加到原来的两倍,而形状不变.
 - (C) 把线圈切割磁力线的两条边增长到原来的两倍.
 - (D) 把线圈的角速度 ω 增大到原来的两倍.

$$i = -\frac{1}{R} \frac{d\Phi}{dt} = -\frac{1}{R} \frac{d}{dt} (BS \cos \omega t)$$

$$= \frac{BS\omega}{R} \sin \omega t$$

$$= \frac{BS\omega}{R} + \frac{2}{R} + \frac{2}$$

知识点: 法拉第电磁感应定律、感应电流

3. 对于单匝线圈取自感系数的定义式为 $L=rac{arPhi}{I}$. 当线圈的

几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L

- [C](A)变大,与电流成反比关系.
 - (B) 变小.
 - (C) 不变.
 - (D). 变大,但与电流不成反比关系

电流I变化,磁通量 Φ 也随着变化.

自感系数由线圈自身的性质决定.

知识点: 自感系数

4. 面积为S 和2S 的两圆线圈 1、2 如图放置,通有相同的电流 I. 线圈 1 的电流所产生的通过线圈 2 的磁通用 Φ_{21} 表示,线圈 2 的电流所产生的通过线圈 1 的磁通用 Φ_{12} 表示,则 Φ_{21} 和 Φ_{12} 的大小关系为:

[C] (A)
$$\Phi_{21} = 2\Phi_{12}$$
. (B) $\Phi_{21} > \Phi_{12}$.
(C) $\Phi_{21} = \Phi_{12}$. (D) $\Phi_{21} = \frac{1}{2}\Phi_{12}$.

互感系数的定义,
$$M = \frac{\Phi_{12}}{I_2} = \frac{\Phi_{21}}{I_1}$$

$$: \boldsymbol{I_1} = \boldsymbol{I_2} \quad \therefore \boldsymbol{\varPhi_{12}} = \boldsymbol{\varPhi_{21}}$$

知识点: 互感系数

- 5. 在圆柱形空间内有一磁感强度为 \bar{B} 的均匀磁场,如图所
- 示. \vec{B} 的大小以速率 $\frac{\mathrm{d}B}{\mathrm{d}t}$ 变化. 在磁场中有 A、B 两点,其

间分别放置直导线 AB 和弯曲的导线 AB,则

- $[\quad D \quad]$ (A) 电动势只在直导线 AB 中产生.
 - (B) 电动势只在弯曲的导线 AB 中产生.
 - (C) 电动势在直导线 AB 和弯曲的导线 AB 都产生,且两者大小相等.
 - (D)直导线 AB 中的电动势小于弯曲的导线 AB中的电动势.

$$\varepsilon_i = -\frac{\mathrm{d}\,\Phi}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}t} \iint_S \vec{B} \cdot \mathrm{d}\vec{S}$$

三角形 OAB < 扇形 OAB

知识点: 感生电动势

6. 真空中一根无限长直细导线上通电流 I,则距导线垂直距离为 a 的空间某点处的磁能密度为

[B] (A)
$$\frac{1}{2}\mu_0 \left(\frac{\mu_0 I}{2\pi a}\right)^2$$
. (B) $\frac{1}{2\mu_0} \left(\frac{\mu_0 I}{2\pi a}\right)^2$.

(C)
$$\frac{1}{2} \left(\frac{2\pi a}{\mu_0 I} \right)^2$$
. (D) $\frac{1}{2\mu_0} \left(\frac{\mu_0 I}{2a} \right)^2$.

$$w_{\rm m} = \frac{1}{2} HB = \frac{1}{2} \frac{B^2}{\mu_0} = \frac{1}{2\mu_0} \left(\frac{\mu_0 I}{2\pi a} \right)^2$$

知识点:磁场能量密度

- 7. 电磁波的电场强度 \bar{E} 、磁场强度 \bar{H} 和传播速度 \bar{u} 的关系是
- - (B) 三者互相垂直, 而 \bar{E} 、 \bar{H} 、 \bar{u} 构成右旋系统.
 - (C) 三者中 \vec{E} 和 \vec{H} 是同方向的,但都与 \vec{u} 垂直.
 - (D) 三者中 \bar{E} 和 \bar{H} 可以是任意方向的,但都必须与 \bar{u} 垂直.

能流密度矢量(坡印廷矢量):

$$\vec{S} = \vec{E} \times \vec{H}$$

知识点: 坡印廷矢量

- 8. 对位移电流,有下述四种说法,请指出哪一种说法正确.
- [▲](A)位移电流的本质反映了变化的电场.
 - (B) 位移电流是由线性变化磁场产生的.
 - (C) 位移电流的热效应服从焦耳-楞次定律.
 - (D) 位移电流的磁效应不服从安培环路定理.

$$I_d = \frac{\mathrm{d} \Phi_D}{\mathrm{d}t} = \int_S \frac{\partial D}{\partial t} \cdot \mathrm{d}\vec{S}$$

知识点: 位移电流

二、填空题

1. 用导线制成一半径为 $r = 10 \, \text{cm}$ 的闭合圆形线圈,其电阻 $R = 10 \, \Omega$,均匀磁场垂直于线圈平面.欲使电路中有一稳定的感应电流 $i = 0.010 \, \text{A}$, B 的变化率应为

$$\frac{\mathrm{d}B}{\mathrm{d}t} = \underline{\qquad}$$

$$i = \frac{1}{R} \frac{d\Phi}{dt} = \frac{1}{R} \frac{dB}{dt} \cdot \pi r^2$$

$$\frac{\mathrm{d}B}{\mathrm{d}t} = 3.18\,\mathrm{T}\cdot\mathrm{s}^{-1}$$

知识点: 法拉第电磁感应定律、感应电流

2. 如图所示,等边三角形的金属框,边长为l,放在均匀磁场中,ab边平行于磁感应强度 B,当金属框绕 ab 边以角 速 度 ω 转 动 时, ca 边 上 沿 ca 的 电 动 势 为 . 金属框内的总电动势为

(规定电动势沿abca 绕向为正值).

$$\mathscr{E}_{ac} = \int_{a}^{c} (\bar{\boldsymbol{v}} \times \bar{\boldsymbol{B}}) \cdot d\bar{\boldsymbol{l}} = \int_{0}^{l} \omega l \cos 30^{\circ} \cdot \boldsymbol{B} \cos 30^{\circ} d\boldsymbol{l}$$

$$\therefore \mathscr{E}_{ca} = -\mathscr{E}_{ac} = -\frac{3}{8} \omega B l^2$$

$$\mathscr{E}_{ac} = \mathscr{E}_{bc}$$
 : $\mathscr{E}_{abca} = 0$

知识点: 动生电动势

3. 如图所示,矩形区域为均匀稳定磁场,半圆形闭合导线回路在纸面内绕轴 ()作逆时针方向匀角速转动, ()点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时. 画出半圆形导线回路中产生的感应电动势随时间的变化曲线.

$$\Phi = BS = B \cdot \pi R^2 \frac{\omega t}{2\pi} = \frac{BR^2 \omega}{2} t$$

知识点:感应电动势

4. 如图所示,一长圆柱状磁场,磁场方向沿轴线并垂直纸面向里,磁场大小既随到轴线的距离r 成正比而变化,又随时间t 作正弦变化,即 $B = B_0 r \sin \omega t$, $B_0 \times \omega$ 均为常量. 若在磁场内放一半径为 α 的金属圆环,环心在圆柱状磁场的轴线上,则金属环中的感生电动势为

取回路正向顺时针,则

$$\Phi = \int B2\pi \, r dr = \int_{0}^{a} B_{0} 2\pi r^{2} \sin \omega \, t dr$$

$$= \frac{2\pi}{3} B_{0} a^{3} \sin \omega \, t$$

$$\mathcal{E}_{i} = -\frac{d\Phi}{dt} = -\frac{2\pi}{3} B_{0} a^{3} \omega \cos \omega \, t$$

5. 桌子上水平放置一个半径 $r = 10 \,\mathrm{cm}$ 的金属圆环,其电阻 $R = 1\Omega$. 若地球磁场磁感应强度的竖直分量为 $5 \times 10^{-5} \,\mathrm{T}$. 那么将环面翻转一次,沿环流过任一横截面的电荷 $q = 3.14 \times 10^{-6} \,\mathrm{C}$

$$q = \int_{t} \mathbf{I} dt = -\frac{1}{R} \int_{t} \frac{d\Phi}{dt} dt = -\frac{1}{R} \Delta \Phi$$

$$= -\frac{1}{R} (\Phi_{2} - \Phi_{1}) = -\frac{1}{R} [(-B \cdot \pi r^{2}) - B \cdot \pi r^{2}]$$

$$= \frac{1}{R} 2B \cdot \pi r^{2}$$

知识点: 法拉第电磁感应定律

6. 一自感线圈中,电流强度在 $0.002 \,\mathrm{s}$ 内均匀地由 $10 \,\mathrm{A}$ 增加到 $12 \,\mathrm{A}$,此过程中线圈内自感电动势为 $400 \,\mathrm{V}$,则线圈的自感系数 L=

$$\mathscr{E}_{L} = \left| -L \frac{dI}{dt} \right|$$

$$L = \mathcal{E}_L / \frac{dI}{dt} = 400 / \frac{12 - 2}{0.002} = 0.4 \text{ H}$$

知识点: 自感电动势、自感系数

7. 真空中两只长直螺线管 1 和 2, 长度相等,单层密绕匝数相同,直径之比 $d_1: d_2 = 1: 4$. 当它们通以相同电流时,两螺线管贮存的磁能之比 $W_{m_1}: W_{m_2} = 1: 16$.

$$W_m = \frac{1}{2}LI^2 \qquad L = \mu n^2 lS$$

$$S_1: S_2 = \frac{1}{4}\pi d_1^2: \frac{1}{4}\pi d_2^2$$

知识点:磁场能量

8. 图示为一圆柱体的横截面,圆柱体内有一均匀电场 \bar{E} ,其方向垂直纸面向内, \bar{E} 的大小随时间 t 线性增加,P 为柱体内与轴线相距为 r 的一点,则 P 点的位移电流密度的方向为 垂直纸面向里;P 点感生磁场的方向为 .

垂直OP连线向下

$$I_d = \frac{\mathrm{d} \Phi_D}{\mathrm{d} t} = \int_S \frac{\partial D}{\partial t} \cdot \mathrm{d} \vec{S}$$

电流方向和磁场方向互为满足右手螺旋.

知识点: 位移电流

三、计算题

1. 如图所示,载有电流的I 长直导线附近放一导体半圆环 MN ,半圆环与长直导线共面,且端点 MN 的连线与长直导线垂直. 半圆环的半径为b ,环心O 与导线相距a . 设半圆环以速度v 平行导线平移,求半圆环内感应电动势的大小和方向.

解: 动生电动势
$$\varepsilon_{MN} = \int_{MN} (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

$$oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{MN}} = oldsymbol{arepsilon}_{MN} + oldsymbol{arepsilon}_{\overline{NM}} = oldsymbol{0} \quad oldsymbol{arepsilon}_{MN} = -oldsymbol{arepsilon}_{\overline{NM}} = oldsymbol{arepsilon}_{\overline{MN}} \mid$$

$$\varepsilon_{\overline{MN}} = \int_{\overline{MN}} (\vec{v} \times \vec{B}) \cdot d\vec{l} = \int_{a-b}^{a+b} -v \frac{\mu_0 I}{2\pi x} dlx = -\frac{\mu_0 I v}{2\pi} \ln \frac{a+b}{a-b}$$

负号表示 ε_{MN} 的方向与 x 轴相反. 方向 $N \rightarrow M$.

- 2. 如图所示,有一弯成 θ 角的金属架 COD 放在磁场中,磁感应强度 \bar{B} 的方向垂直于金属架 COD 所在平面. 一导体杆 MN 垂直于 OD 边,并在金属架上以恒定速度 \bar{v} 向右滑动, \bar{v} 与 MN 垂直. 设 t=0 时, x=0 ,求下列两情形,框架内的感应电动势.
 - (1) 磁场分布均匀,且 \bar{B} 不随时间改变.
 - (2) 非均匀的时变磁场 $B = Kx \cos \omega t$. (其中 K 为常量)

解: (1)
$$\Phi = \frac{1}{2}Bxy \quad y = x \operatorname{tg} \theta \quad x = vt$$
 由法拉第电磁感应定律:
$$\varepsilon_i = -\frac{d\Phi}{dt} = -\frac{d}{dt}\left(\frac{1}{2}B\operatorname{tg}\theta x^2\right)$$

$$= -\frac{1}{2}B\tan\theta 2x\frac{dx}{dt} = B\tan\theta v^2t \quad 方向为 M\rightarrow N.$$

(2) 对于非均匀时变磁场 $B = Kx \cos \omega t$ 取回路绕行的正向为 $O \rightarrow N \rightarrow M \rightarrow O$,则 dx' 取 $d\Phi = B dS = By' dx'$ $y' = x' \tan \theta$ $d\Phi = Bx' \tan \theta dx' = Kx'^2 \cos \omega t \tan \theta dx'$

$$\Phi = \int_0^x Kx'^2 \cos \omega t \tan \theta dx' = \frac{1}{3} Kx^3 \cos \omega t \tan \theta$$

$$\varepsilon_{i} = -\frac{d\Phi}{dt} = \frac{1}{3}K\omega x^{3} \sin \omega t \tan \theta - Kx^{2}v \cos \omega t \tan \theta$$
$$= Kv^{3} \tan \theta \left(\frac{1}{3}\omega t^{3} \sin \omega t - t^{2} \cos \omega t\right)$$

 $\varepsilon_i > 0$,则 ε_i 方向与所设绕行正向一致, $\varepsilon_i < 0$,则 ε_i 方向与所设绕行正向相反.

- 3. 无限长直导线通以电流 $I = I_0 e^{-4t}$. 有一与之共面的矩形线圈,其边长为 L 的长边与长直导线平行. 两长边与长直导线的距离分别为 a 、 b ,位置如图所示.
- 求:(1)矩形线圈内的感应电动势的大小和感应电动势的 方向.
 - (2) 导线与线圈的互感系数.

(2)
$$M = \frac{\Phi}{I} = \frac{\frac{\mu_0 LI}{2\pi} \ln \frac{b}{a}}{I} = \frac{\mu_0 L}{2\pi} \ln \frac{b}{a}$$

- 4. 两根长直导线平行放置,导线本身的半径为a,两根导线间距离为b(b >> a). 两根导线中分别通以恒定电流I,两电流方向相反.
 - (1) 求这两导线单位长度的自感系数(忽略导线内磁通).
- (2) 若将导线间距离由b增大到2b,求磁场对单位长度导线做的功.
- (3) 导线间的距离由 b 增大到 2b ,则对应于导线单位长度的磁能改变了多少?是增加还是减少?
- 解: (1) 两直导线在无穷远处形成闭合回路.

$$\Phi = \int_{S} \vec{B} \cdot d\vec{S} = \int_{a}^{b-a} \left[\frac{\mu_{0}I}{2\pi r} + \frac{\mu_{0}I}{2\pi (b-r)} \right] ldr$$
$$= \frac{\mu_{0}I}{\pi} \ln \frac{b-a}{a}$$

二 单位长度自感系数为:

$$L_0 = \frac{L}{l} = \frac{\Phi}{l l} = \frac{\mu_0}{\pi} \ln \frac{b - a}{a}$$

(2) 两等值反向的直线电流间的作用力为排斥力,将导线沿受力方向移动 dr 距离时,磁场力对单位长度导线做功为:

$$\frac{dW}{dl} = \frac{dF}{dl} \cdot dr = \frac{\mu_0 I^2}{2\pi r} dr$$

$$dF = I d\bar{l} \times \bar{B}$$

$$dF = I dl \frac{\mu_0 I}{2\pi r}$$

$$W = \int_b^{2b} \frac{\mu_0 I^2}{2\pi r} dr = \frac{\mu_0 I^2}{2\pi} \ln 2$$

$$\frac{dF}{dl} = \frac{\mu_0 I^2}{2\pi r}$$

(3) 导线间距为 2b 时的单位长度自感系数为

$$L' = rac{\mu_0}{\pi} \ln rac{2b-a}{a}$$
磁能增量 $\Delta W = rac{1}{2}L'I^2 - rac{1}{2}L_oI^2$

$$= rac{1}{2}I^2 \left(rac{\mu_0}{\pi} \ln rac{2b-a}{a} - rac{\mu_0}{\pi} \ln rac{b-a}{a}
ight)$$

$$= rac{\mu_0 I^2}{2\pi} \ln rac{2b-a}{b-a} > 0$$

这说明磁能增加了.