EECS 127/227AT Optimization Models in Engineering Spring 2020

Homework 8

This homework is due Friday, March 20, 2020 at 23:00 (11pm). Self grades are due Friday, April 3, 2020 at 23:00 (11pm).

This version was compiled on 2020-03-14 18:52.

Submission Format: Your homework submission should consist of a single PDF file that contains all of your answers (any handwritten answers should be scanned) as well as your IPython notebook with solutions saved as a PDF.

Note to students: The final problem on the exam brought together many different concepts we studied through the first half of the class. We want to give you a chance to think through the problem and learn from it in a relaxed and collaborative way. We provide some solution skeletons and additional hints below to help you work through the problems.

1. Duality

Consider the function

$$f(\vec{x}) = \vec{x}^{\top} A \vec{x} - 2 \vec{b}^{\top} \vec{x}.$$

First, we consider the unconstrained optimization problem

$$p^* = \min_{\vec{x} \in \mathbb{R}^n} f(\vec{x}) = \min_{\vec{x} \in \mathbb{R}^n} \vec{x}^\top A \vec{x} - 2 \vec{b}^\top \vec{x}$$
 (1)

for a real $n \times n$ symmetric matrix $A \in \mathbb{S}^n$ and $\vec{b} \in \mathbb{R}^n$. If the problem is unbounded below, then we say $p^* = -\infty$. Let \vec{x}^* denote the minimizing argument of the optimization problem.

(a) Suppose $A \succeq 0$ (positive semidefinite) and $\vec{b} \in \mathcal{R}(A)$. Let $\operatorname{rank}(A) = n$. Find p^* .

Hint: What does $A \succeq 0$ tell you about the function f? How can you leverage the rank of A to compute p^* ?

Solution: $p^* = -\vec{b}^{\top} A^{-1} \vec{b}$.

(b) Suppose $A \succeq 0$ (positive semidefinite) and $\vec{b} \in \mathcal{R}(A)$ as before. Let A be rank-deficient, i.e., rank(A) = r < n. Let A have the compact/thin and full SVD as follows, with diagonal positive definite $\Lambda_r \in \mathbb{R}^{r \times r}$:

$$A = U_r \Lambda_r U_r^\top = \begin{bmatrix} U_r & U_1 \end{bmatrix} \begin{bmatrix} \Lambda_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} U_r^\top \\ U_1^\top \end{bmatrix}.$$

Show that the minimizer \vec{x}^* of the optimization problem (1) is not unique by finding a general form for the family of solutions for \vec{x}^* in terms of $U_r, U_1, \Lambda_r, \vec{b}$.

Hint: As before, $A \succeq 0$ gives you some information about the objective function f. Can you use this information along with the fact that $b \in \mathcal{R}(A)$ to obtain a general form for the minimizers of f? Use the fact that any vector $\vec{x} \in \mathbb{R}^n$ can be written as $\vec{x} = U_r \vec{\alpha} + U_1 \vec{\beta}$ for unique $\vec{\alpha}, \vec{\beta}$.

Solution:

$$\vec{x}^* = U_r \lambda_r^{-1} U_r^{\top} \vec{b} + U_1 \vec{\beta},$$

for any $\beta \in \mathbb{R}^{n-r}$.

(c) If $A \not\succeq 0$ (A not positive semi-definite) show that $p^* = -\infty$ by finding \vec{v} such that $f(\alpha \vec{v}) \to -\infty$ as $\alpha \to \infty$.

Hint: $A \not\succeq 0$ means that there exists \vec{v} such that $\vec{v}^{\top} A \vec{v} < 0$.

Solution: $p^* = -\infty$.

(d) Suppose $A \succeq 0$ (positive semidefinite) and $\vec{b} \notin \mathcal{R}(A)$. Find p^* . Justify your answer mathematically.

Hint: From FTLA, we know that $\mathbb{R}^n = \mathcal{R}(A^\top) \oplus \mathcal{N}(A)$. Therefore, $\vec{b} = \vec{v}_1 + \vec{v}_2$ where $\vec{v}_1 \in \mathcal{R}(A) = \mathcal{R}(A^\top)$ and $\vec{v}_2 \in \mathcal{N}(A)$.

Solution: $p^* = -\infty$.

For parts (e) and (f), consider real $n \times n$ symmetric matrix $A \in \mathbb{S}^n$ and $\vec{b} \in \mathbb{R}^n$. Let rank(A) = r, where $0 \le r \le n$. Now we consider the constrained optimization problem

$$p^* = \min_{\vec{x} \in \mathbb{R}^n} \vec{x}^\top A \vec{x} - 2 \vec{b}^\top \vec{x}$$
s.t. $\vec{x}^\top \vec{x} > 1$. (2)

- (e) Write the Lagrangian $\mathcal{L}(\vec{x}, \lambda)$, where λ is the dual variable corresponding to the inequality constraint.
- (f) For any matrix $C \in \mathbb{R}^{n \times n}$ with $\operatorname{rank}(C) = r \leq n$ and compact SVD

$$C = U_r \Lambda_r V_r^{\top},$$

we define the pseudoinverse as

$$C^{\dagger} = V_r \Lambda_r^{-1} U_r^{\top}.$$

We use the "dagger" operator to represent this. If \vec{d} lies in the range of C, then a solution to the equation $C\vec{x} = \vec{d}$, can be written as $\vec{x} = C^{\dagger}\vec{d}$, even when C is not full rank. Show that the dual problem to the primal problem (2) can be written as,

$$d^* = \max_{\substack{\lambda \geq 0 \\ A - \lambda I \succeq 0 \\ \vec{b} \in \mathcal{R}(A - \lambda I)}} -\vec{b}^\top (A - \lambda I)^\dagger \vec{b} + \lambda.$$

Hint: To show this, first argue that when the constraints are not satisfied $\min_{\vec{x}} \mathcal{L}(\vec{x}, \lambda) = -\infty$. Then show that when the constraints are satisfied, $\min_{\vec{x}} \mathcal{L}(\vec{x}, \lambda) = -\vec{b}^{\top} (A - \lambda I)^{\dagger} \vec{b} + \lambda$. Compute $g(\lambda)$ and explore it's behavior under the constraints.