Congruence Testing for Point Sets in 4-Space

Heuna Kim

Advisor: Günter Rote

Freie Universität Berlin

Congruence Testing Problem

Congruence \Leftarrow Translations + Rotations

Congruence Testing Problem

Congruence \Leftarrow Translations + Rotations

A, B: point sets

Previous Algorithms

```
n: \# points
```

- Plane (2-Space): $O(n \log n)$ -time algorithms by Manacher (1976), Atallah (1985), Highnam (1986)
- 3-Space : $O(n \log n)$ -time algorithms by Sugihara (1984), Atkinson (1987), Alt, Mehlhorn, Wagener and Welzl (1988)

Previous Algorithms

− d-Space :

```
by Alt, Mehlhorn, Wagener and Welzl (1988) O(n^{d-2}\log n)\text{-time algorithm for }d\geq 3 by Akutsu (1998) with an idea of Matoušek: a randomized O(n^{\lfloor d/2\rfloor/2}\log n)\text{-time algorithm for }d\geq 6 O(n^{3/2}\log n)\text{-time algorithm for }d=4,5 by Brass and Knauer (2003)
```

 \Rightarrow Conjecture : $O(n \log n)$ for any fixed d

 $O(n^{\lceil d/3 \rceil} \log n)$ -time algorithm for $d \ge 3$

4-Space

- Deterministic: $O(n^2 \log n)$ -time by Brass and Knauer
- Randomized : $O(n^{3/2} \log n)$ -time by Akutsu

 \Rightarrow New Algorithm : $O(n \log n)$ -time in 4-Space

Outline

Problem definition

Basic principles

Apply *condensing* principles until *dimension reduction* is affordable on a *closest-pair* graph

New algorithm

Outline

Problem definition

Basic principles

Condensing

Dimension Reduction

Closest-pair graphs

New algorithm

 \boldsymbol{A}

$$dist_c = r_1$$

$$dist_c = r_2$$

$$dist_c = r_3$$

A'

 $dist_c = r_1$

 \boldsymbol{A}

A' $dist_c = r_1$

- More structure
 - e.g.) all points are on a sphere
 - Reduction of # points
 - e.g.) $|A'| = \frac{2}{3}|A|$ for each pruning,

$$O(|A|\log|A|) + O(\frac{2}{3}|A|\log|A|) +$$

$$O(\frac{4}{9}|A|\log|A|) + \dots = O(|A|\log|A|)$$

A

Midpoints!

A'

Extensions of Pruning

any equivariant mappings f; that is, fR=Rf for any rotation R

Only Temporarily!!!

restore all points once

we can afford dimension reduction

Outline

Problem definition

Basic principles
 Condensing
 Dimension Reduction
 Closest-pair graphs

New algorithm

Outline

Problem definition

Basic principles

Condensing
Dimension Reduction
Closest-pair graphs

New algorithm

Closest-Pair Graphs

$$G=(V,E)$$
: $V=A$,
$$E=\{(u,v)|\ dist(u,v): \mbox{minimum }\}$$

Construction : $O(n \log n)$ time in any fixed dimension d

The maximum degree : $C^d = O(1)$

 \Rightarrow # edges = O(n).

Outline

Problem definition

Basic principles

New algorithm

Outline

- Problem definition

Basic principles

New algorithm

Overview

An Example of Modules

An orbit cycles: a helix around a great circle

If Projections are Ellipses

If Projections are Circles

All the great circles are in the same Hopf bundle

⇒ Great circles = Points on a 2-sphere Condense into at most 12 points on a 2-sphere

Picture by Niles Johnson, The Ohio State University, from Wikipedia

Overview of the New Algorithm

Closer to $O(n \log n)$ for fixed d?

Thank you

Iterative Pruning for A and B

- Prune by distance from the origin
- Construct the closest-pair graph
- Prune by congruence type of edge figures
 - Edge figures
 two adjacent vertices and their neighbors

Basic principles

Pruning
Dimension Reduction
Closest-pair graphs

New algorithm

Overview Modules

Generating orbit-cycles
Marking and pruning great circles
2+2 dimension reduction
Mirror case

Basic principlesPruning

Dimension Reduction

Closest-pair graphs

New algorithm

Overview

Modules

Generating orbit-cycles

Marking and pruning great circles

2+2 dimension reduction

Mirror case

Generating Orbit-Cycles

 A_0 is on the 3-sphere

G: the closest-pair graph of A_0

D: the directed version of G.

Predecessor-Successor Figures

$$s(uv) = \{vw : vw \in E, \angle uvw = \alpha\}$$

Canonical Orbit-Cycles

Fix $t_0u_0v_0w_0$.

```
For edge-transitive cases : for every a_3 \in s(a_1a_2), there exists a unique a_4 \in s(a_2a_3) such that a_1a_2a_3a_4 and t_0u_0v_0w_0 are congruent.
```

 $R[a_1a_2a_3] = a_2a_3a_4$ is uniquely determined

Basic principles

Pruning
Dimension Reduction
Closest-pair graphs

New algorithm

Overview Modules

Generating orbit-cycles
Marking and pruning great circles
2+2 dimension reduction
Mirror case

Basic principles

Pruning

Dimension Reduction

Closest-pair graphs

New algorithm

Overview

Modules

Generating orbit-cycles

Marking and pruning great circles

2+2 dimension reduction

Mirror case

$\cos \alpha$

the minor axis of the projection of a unit circle in P_i to P_j .

 $\cos \beta$: the major axis of the same ellipse

$$\alpha \neq \beta$$

$$\alpha = \beta$$

- All the great circles are in the same Hopf bundle
- A set of great circles decides one Hopf fibration
 - ⇒ Great circles = Points in a 2-sphere
 Prune on the 2-sphere

Picture by Niles Johnson, The Ohio State University, from Wikipedia

$$\alpha = \beta$$

- All the great circles are in the same Hopf bundle
- A set of great circles decides one Hopf fibration
 - ⇒ Great circles = Points in a 2-sphere
 Prune on the 2-sphere

Picture by Niles Johnson, The Ohio State University, from Wikipedia

Marking and Condensing Great Circles

If the pruned pairs of great circles have angles (α, β) such that

- $-\alpha \neq \beta$
- $\alpha = \beta$ with the different chirality from the previous pairs

 $-\alpha = \beta$ with the same chirality from the previous pairs

Marking and Condensing Great Circles

If the pruned pairs of great circles have angles (α, β) such that

$$-\alpha \neq \beta$$

 $-\alpha=\beta$ with the different chirality from the previous pairs

Marking on Great Circles

 $-\alpha = \beta$ with the same chirality from the previous pairs

Condensing by Using 2-Sphere

Basic principles

Pruning
Dimension Reduction
Closest-pair graphs

New algorithm

Overview Modules

Generating orbit-cycles
Marking and pruning great circles
2+2 dimension reduction
Mirror case

Basic principles

Pruning

Dimension Reduction

Closest-pair graphs

New algorithm

Overview

Modules

Generating orbit-cycles

Marking and pruning great circles

2+2 dimension reduction

Mirror case

2+2 dimension reduction

Fix a plane P and its orthogonal plane Q as invariant subspaces.

Project to either

- a unit circle C_P in P or
- a unit circle C_Q in Q or
- a flat torus $C_P \times C_Q$

 \Rightarrow translation of labeled points in a flat torus $\mathbb{S}^1 \times \mathbb{S}^1$

Canonical Set Procedures

A map from A to A' for a subgroup Θ of symmetries in a space

- 1. Symmetries are preserved : $Sym_{\Theta}(A') = Sym_{\Theta}(A)$.
- 2. $\operatorname{\mathsf{Sym}}_{\Theta}(A')$ acts transitively on A' :

for every $p, q \in A'$, there is $R \in \mathsf{Sym}_{\Theta}(A')$ s.t $R: p \mapsto q$.

3. A' is canonical:

if RA = B, B' = RA' where $R \in \Theta$.

If
$$R \in \Theta : p \mapsto q, p \in A', q \in B'$$
, $RA = B$

for translation in \mathbb{S}^1 : lexicographically smallest axis for translation in $\mathbb{S}^1 \times \mathbb{S}^1$: prune by Delaunay triangulations and Voronoi regions in the plane

Basic principles

Pruning
Dimension Reduction
Closest-pair graphs

New algorithm

Overview Modules

Generating orbit-cycles
Marking and pruning great circles
2+2 dimension reduction
Mirror case

Basic principles

Pruning

Dimension Reduction

Closest-pair graphs

New algorithm

Overview

Modules

Generating orbit-cycles

Marking and pruning great circles

2+2 dimension reduction

Mirror case

Mirror Case

two main cases:

- 4-dimensional regular polytopes
- → the number of vertices is bounded
- \Rightarrow 1+3 dimension reduction

the Cartesian product of regular polygons in orthogonal planes

 \Rightarrow 2+2 dimension reduction

Exact Congruence Testing Problem

Approximate?

Exact Congruence Testing Problem

The *approximate* problem: *NP-hard* [Iwanowski 1991, Dieckmann 2012]

⇒ Real-RAM(Random Access Machine) model

The Real-RAM Model

- exact arithmetic with real numbers
- examples of O(1)-time operations square roots, sines and cosines, eigenvalues of 4×4 matrices,
- Why?
 only with rational coordinates,
 a fivefold symmetry is impossible in any dimension.
 not interesting...

In 2-space, by string matching [Manacher 1976].

$$r_1\theta_1r_2r_3\theta_3r_4\theta_4r_5\theta_5r_7r_6\theta_6r_8\theta_8$$

Alternate distances r_i and angle θ_j in a cyclic order.

If points and the origin are colinear, sort from the closest to the farthest

Cyclic Shifts?

In 3-space, by labeled polyhedral (3-connected and planar) graph isomorphism [Alt et. al. 1988]

In d-space,

 $O(n^{d-2}\log n)$ by matching one $a\in A$ and all $b\in B$ [Alt et. al. 1988]

 $O(n^{\lfloor \frac{d}{2} \rfloor} \log n)$ by matching a pair of points and all the pairs of points in the closest pair graph [Matoušek]

In d-space,

 $O(n^{\lceil \frac{d}{3} \rceil} \log n)$ by matching triples of points but still avoiding the inner isometry of the triples

[Brass and Knauer 2002]

In d-space,

Only problematic case : point sets in orthogonal subspaces

Add anti-podal points.

Then q, q^\prime are in orthogonal subspaces if and only if

$$dist(\{q, -q\}, \{q', -q'\}) = \sqrt{2}.$$

[Brass and Knauer 2002]

Translation

Congruence = Translations + Rotations

Any congruence mapping maps the centroid to the centroid

Translation

Congruence = Translations + Rotations

The centroids \Rightarrow The origins

Dimension Reduction

Fix subspaces as invariant spaces and match them.

Example: 1+3 dimension reduction

If
$$|A| = |B| = O(1)$$
,

try to match *ONE* $a \in A$ to *ALL* $b \in B$.

do congruence testing in H_a and H_b .

 H_v : the hyperplane orthogonal to v.

Lexicographically Smallest Axes

$$\begin{array}{c} d_{1}\theta_{1}d_{2}\theta_{2}d_{3}\theta_{3}d_{4}\theta_{4}\times 4\\ \text{VS.}\\ d_{2}\theta_{2}d_{3}\theta_{3}d_{4}\theta_{4}d_{1}\theta_{1}\times 4\\ \text{VS.}\\ d_{3}\theta_{3}d_{4}\theta_{4}d_{1}\theta_{1}d_{2}\theta_{2}\times 4\\ \text{VS.}\\ d_{4}\theta_{4}d_{1}\theta_{1}d_{2}\theta_{2}d_{3}\theta_{3}\times 4 \end{array}$$

Lexicographically Smallest Axes

The lexicographically smallest string : $d_1\theta_1d_2\theta_2d_3\theta_3d_4\theta_4\times 4$

Basic principles

Pruning
Dimension Reduction
Closest-pair graphs

New algorithm

Overview Modules

Basic principles
 Pruning
 Dimension Reduction
 Closest-pair graphs

New algorithmOverviewModules

Basic principles

Pruning
Dimension Reduction
Closest-pair graphs

New algorithm

Overview Modules

Basic principlesPruningDimension Reduction

Closest-pair graphs

New algorithm

Overview

Modules

Generating orbit-cycles

Marking and pruning great circles

2+2 dimension reduction

Mirror case

Basic principles

Pruning
Dimension Reduction
Closest-pair graphs

New algorithm

Overview Modules

Basic principles

Pruning

Dimension Reduction

Closest-pair graphs

New algorithm

Overview

Modules

Generating orbit-cycles

Marking and pruning great circles

2+2 dimension reduction

Mirror case

Problem definition

Basic principles

New algorithm

Problem definition
 Congruence
 Previous Results

Basic principles

New algorithm