I) Найти неопределенные интегралы:

a)
$$\int \frac{(2\arcsin^3 x + 3)dx}{\sqrt{1 - x^2}}$$
; 6) $\int x^2 \ln x dx$; B) $\int \frac{(1 - 2x)dx}{(x^2 + 4)(x - 3)}$.

$$\mathbf{6}) \int x^2 \ln x dx; \quad \mathbf{B})$$

$$\mathbf{B}) \int \frac{\left(1-2x\right)dx}{\left(x^2+4\right)\left(x-3\right)}.$$

II)

- а) Исследовать на сходимость несобственный интеграл и вычислить его, если он сходится: $\int_{-\infty}^{\infty} \frac{dx}{x^3}$.
- **б)** Вычислить определенный интеграл: $\int_{-x^4}^4 \frac{\sqrt{x^2 4}}{x^4} dx$.
- в) Расставить пределы интегрирования в тройном интеграле $\iiint dV$, переходя к цилиндрическим координатам: где V: $\{x^2 + y^2 \le 3z; x^2 + y^2 + z^2 \le 4 \}$. Сделать чертёж области интегрирования.

III)

- а) Вычисление длины дуги гладкой кривой с помощью определённого интеграла (случаи задания кривой в явном виде, в неявном виде, в полярных координатах, параметрическим способом). Вычисление длины дуги с помощью криволинейного интеграла 1-го рода.
- **б)** Вычислить дифференциал дуги, ds, где дуга Γ : $y = x^2 1$; сделать чертёж.
- **в)** Вычислить криволинейный интеграл первого рода: $\int_{\Gamma} (x^2 y) ds$, где Γ : $y = x^2 - 1$; если $1 \le x \le 2$.

IV)

- **а)** Дано пространственное тело $\sqrt{x^2 + y^2} \le z \le 1$ и векторное поле $\mathbf{a} = x^2 \mathbf{i} + y^2 \mathbf{j} + z \mathbf{k}$. Сделать чертёж и вычислить div \mathbf{a} .
- б) Доказать теорему Гаусса-Остроградского и с помощью неё найти поток векторного поля $\mathbf{a} = x^2 \mathbf{i} + y^2 \mathbf{j} + z \mathbf{k}$ через замкнутую поверхность σ , ограничивающую тело $\sqrt{x^2 + y^2} \le z \le 1$, в направлении внешней нормали.
- в) Проверить результат непосредственно, вычисляя потоки через все гладкие части поверхности σ .