

Huazhong University of Science and Technology The Department of Electronics and Information Engineering

Electronic Circuit Analysis and Design

Dr. Tianping Deng

Email: dengtp@hust.edu.cn

Contents

PART 1 SEMICONDUCTOR DEVICES AND BASIC APPLICATIONS

Chapter 1 Semiconductor Materials and Diodes

Chapter 2 Diode Circuits

Chapter 3 The Field-Effect Transistor

Chapter 4 Basic FET Amplifiers

Chapter 5 The Bipolar Junction Transistor

Chapter 6 Basic BJT Amplifiers

Chapter 7 Frequency Response

Chapter 8 Output Stages and Power Amplifiers

PART 2 ANALOG ELECTRONICS

Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits

Chapter 10 Integrated Circuit Biasing and Active Loads

Chapter 11 Differential and Multistage Amplifiers

Chapter 12 Feedback and Stability

Chapter 13 Operational Amplifier Circuits

Chapter 14 Nonideal Effects in Operational Amplifier Circuits

Chapter 15 Applications and Design of Integrated Circuits

Ch4 Basic FET Amplifiers

- 4.1 The MOSFET Amplifier
- 4.2 Basic Transistor Amplifier Configurations
- 4.3 The Common Source Amplifier
- 4.4 The Common Drain (Source Follower) Amplifier
- 4.5 The Common Gate Configuration
 - 4.5.1 Small voltage and current gains
 - 4.5.2 Input and output Impedance
- 4.6 The Three Basic Amplifier Configuration: Summary and comparison

Ch4 Basic FET Amplifiers

4.1 The MOSFET Amplifier

4.1.1 Graphical Analysis, Load line, and small signal parameters

4..1.2 small signal equivalent circuit

4.1 The MOSFET Amplifier

signals sound

Analog circuits

amplifiers

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary of notation	
Variable	Meaning
$i_{ m D}, v_{ m GS}$	Total instantaneous values
$I_{ m D}, V_{ m GS}$	DC values
$i_{ m d}, \ v_{ m gs}$	instantaneous ac values
$I_{ m d},V_{ m gs}$	Phase values

$$\begin{aligned} v_{\rm GS} &= \mathsf{V}_{\rm GSQ} + v_{\rm i} = \mathsf{V}_{\rm GSQ} + v_{\rm gs} \\ i_{\rm D} &= K_{\rm n} (v_{\rm GS} - V_{\rm T})^2 \\ &= K_{\rm n} (V_{\rm GSQ} + v_{\rm gs} - V_{\rm T})^2 \\ &= K_{\rm n} (V_{\rm GSQ} - V_{\rm T})^2 \\ &+ 2K_{\rm n} (V_{\rm GSQ} - V_{\rm T}) v_{\rm gs} + K_{\rm n} v_{\rm gs}^2 \\ &= I_{\rm DQ} + g_{\rm m} v_{\rm gs} + K_{\rm n} v_{\rm gs}^2 \\ &= I_{\rm DQ} + g_{\rm m} v_{\rm gs} + K_{\rm n} v_{\rm gs}^2 \\ i_{\rm D} &= I_{\rm DQ} + g_{\rm m} v_{\rm gs} = I_{\rm DQ} + i_{\rm d} \\ i_{\rm d} &= g_{\rm m} v_{\rm gs} \end{aligned}$$

Copyright ® The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$i_{\rm d} = g_{\rm m} v_{\rm gs} \qquad \lambda \neq 0$$

$$\lambda \neq 0$$

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$g_m = 2K_n(V_{GSQ} - V_{TN}) = 2\sqrt{K_n I_{DQ}}$$

Values depends on Q-point

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} = \frac{i_{d}}{v_{gS}}$$

$$g_{m} = 2K_{n}(V_{GSQ} - V_{TN}) = 2\sqrt{K_{n}I_{DQ}}$$

$$r_{o} = (\frac{\partial i_{D}}{\partial v_{DS}})^{-1}$$

$$r_{o} = [\lambda K_{n}(V_{GSQ} - V_{TN})^{2}]^{-1} \cong [\lambda I_{DQ}]^{-1}$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

small signal equivalent circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 V_{DD}

 v_{DS}

$$V_{\rm GSQ}$$
=2.12V

$$V_{\rm DD} = 5 \mathrm{V}$$

$$R_{\rm D}=2.5{\rm k}\Omega$$

$$V_{\rm TN}=1{\rm V}$$

$$K_{\rm n} = 0.80 \,{\rm mA/V_{i}^{2}}$$

$$\lambda=0.02V^{-1}$$
 $i_D\downarrow \leq R$

 v_{GS}

Determine small voltage gain.

 $\circ v_O$

Sol:
$$I_{\rm D} = K_{\rm n} (V_{\rm GS} - V_{\rm TN})^2$$

$$=0.8(2.12-1)^2=1$$
mA

$$V_{\rm DS} = V_{\rm DD} - I_{\rm D} R_{\rm D} = 5 - 1 * 2.5 = 2.5 {\rm V}$$

$$V_{\rm DSO}$$
 =2.5V> $V_{\rm GS}$ - $V_{\rm TN}$

Which region? **Saturation region**

$$g_m = 2K_n(V_{GSQ} - V_{TN})$$

$$= 2 \times 0.8(2.12 - 1) = 1.79 \text{mS}$$

 V_{GSQ}

Determine small voltage gain.

Sol:
$$r_o \cong [\lambda I_{DQ}]^{-1} = 50 \text{k}\Omega$$

$$V_{\rm i} = V_{\rm gs}$$

$$V_0 = -g_{\rm m} \cdot V_{\rm gs} \cdot (r_0//R_{\rm D})$$

$$A_v = V_o / V_i = -g_m (r_o || R_D)$$

=-4.26

Problem-Solving Technique: MOSFET AC Analysis

- 1. Analyze circuit with only the dc sources to find quiescent solution.

 Transistor must be biased in saturation region for linear amplifier.
- 2. Replace elements with small-signal model.
- 3. Analyze small-signal equivalent circuit, setting dc sources to zero, to produce the circuit to the time-varying input signals only.

Ch4 Basic FET Amplifiers

- 4.1 The MOSFET Amplifier
- 4.2 Basic Transistor Amplifier Configurations
- 4.3 The Common Source Amplifier
- 4.4 The Common Drain (Source Follower) Amplifier
- 4.5 The Common Gate Configuration
 - 4.5.1 Small voltage and current gains
 - 4.5.2 Input and output Impedance
- 4.6 The Three Basic Amplifier Configuration: Summary and comparison

4.2 Basic Transistor Amplifier Configurations

Common source

Common Drain

Common gate

Ch4 Basic FET Amplifiers

- 4.1 The MOSFET Amplifier
- 4.2 Basic Transistor Amplifier Configurations
- 4.3 The Common Source Amplifier
- 4.4 The Common Drain (Source Follower) Amplifier
- 4.5 The Common Gate Configuration
 - 4.5.1 Small voltage and current gains
 - 4.5.2 Input and output Impedance
- 4.6 The Three Basic Amplifier Configuration: Summary and comparison

4.3 The Common Source Amplifier

DC analysis:

Coupling capacitor is assumed to be open.

AC analysis:

Coupling capacitor is assumed to be a short.

DC voltage supply is set to zero volts.

4.3 The Common Source Amplifier

capacitor is essentially a short circuit to signals with frequencies greater than 2 kHz.

Copyright The McGraw-Hill Companies, Inc. Permission required for reprod Fig. 4.14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$V_{gs} = V_i \cdot \left(\frac{R_i}{R_i + R_{Si}}\right) \quad V_o = -g_m \cdot V_{gs} \cdot (r_o / / R_D)$$

$$A_{v} = V_{o}/V_{i} = -g_{m}(r_{o} || R_{D})(\frac{R_{i}}{R_{i} + R_{Si}})$$

Small AC input signal for output response to be linear.

$$V_{\rm DD}$$
=10V
 R_1 =70.9k Ω
 R_2 =29.1k Ω
 $R_{\rm D}$ =5k Ω
 $V_{\rm TN}$ =1.5V
 $K_{\rm n}$ =0.50mA/V²
 λ =0.01V⁻¹
 $R_{\rm Si}$ =4k Ω

SOL:

DC Analysis

$$V_{GSQ} = \frac{R_2}{R_1 + R_2} V_{DD}$$

$$= \frac{29.1}{70.9 + 29.1} 10 = 2.91 V$$

$$I_D = K_n (V_{GS} - V_{TN})^2$$

$$= 0.5(2.91 - 1.5)^2 = 1 \text{mA}$$

$$V_{DSQ} = 5 V > V_{GS} - V_{TN}$$

$$=10-(1)(5)=5V$$

Saturation region

$$R_{\rm i} = R_{\rm i} / R_{\rm 2} = 70.9 / 29.1 = 20.6 \text{k}\Omega$$

$$R_{\rm o} = R_{\rm D} / / r_{\rm o} = 5 / / 100 = 4.76 \text{k}\Omega$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$V_{gs} = V_i \cdot \left(\frac{R_i}{R_i + R_{Si}}\right) \qquad V_o = -g_m \cdot V_{gs} \cdot (r_o //R_D)$$

$$A_{v} = V_{o}/V_{i} = -g_{m}(r_{o}||R_{D})(\frac{R_{i}}{R_{i} + R_{Si}}) = -5.62$$

4.3.2 Common Source Amplifier with Source resistor

SOL:

DC Analysis

$$V_{GSQ} = 1.50V$$

$$I_{D} = 0.50 \text{mA}$$

$$I_{\rm D} = 0.50 \text{mA}$$

$$V_{\rm DS} = 6.25 {\rm V}$$

$$g_m = 2K_n(V_{GSQ} - V_{TN})$$
=1.4mS

$$r_o \cong [\lambda I_{DQ}]^{-1} = \infty$$

Permission required for reproduction or display.

Fig.4.19

4.3.2 Common Source Amplifier with Source resistor

Small-Signal Equivalent Circuit

$$V_{o} = -g_{m} \cdot V_{gs} \cdot R_{D}$$

$$V_{i} = V_{gs} + g_{m} \cdot V_{gs} \cdot R_{S}$$

$$A_{v} = \frac{-g_{m}R_{D}}{1 + g_{m}R_{S}}$$

4.3.3 Common Source Circuit with Source bypass Capacitor

SOL:

4.3.3 Common Source Circuit with Source bypass Capacitor

Small-signal equivalent circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$A_v = -g_m R_D = -9.9$$

Contents

PART 1 SEMICONDUCTOR DEVICES AND BASIC APPLICATIONS

Chapter 1 Semiconductor Materials and Diodes

Chapter 2 Diode Circuits

Chapter 3 The Field-Effect Transistor

Chapter 4 Basic FET Amplifiers

Chapter 5 The Bipolar Junction Transistor

Chapter 6 Basic BJT Amplifiers

Chapter 7 Frequency Response

Chapter 8 Output Stages and Power Amplifiers

PART 2 ANALOG ELECTRONICS

Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits

Chapter 10 Integrated Circuit Biasing and Active Loads

Chapter 11 Differential and Multistage Amplifiers

Chapter 12 Feedback and Stability

Chapter 13 Operational Amplifier Circuits

Chapter 14 Nonideal Effects in Operational Amplifier Circuits

Chapter 15 Applications and Design of Integrated Circuits

Ch4 Basic FET Amplifiers

- 4.1 The MOSFET Amplifier
- 4.2 Basic Transistor Amplifier Configurations
- 4.3 The Common Source Amplifier
- 4.4 The Common Drain (Source Follower) Amplifier
- 4.5 The Common Gate Configuration
 - 4.5.1 Small voltage and current gains
 - 4.5.2 Input and output Impedance
- 4.6 The Three Basic Amplifier Configuration: Summary and comparison

Review

Ch4 Basic FET Amplifiers

- 4.1 The MOSFET Amplifier
- 4.2 Basic Transistor Amplifier Configurations
- 4.3 The Common Source Amplifier
- 4.4 The Common Drain (Source Follower) Amplifier
 - 4.4.1 Small-signal voltage gain
 - 4.4.2 Input and Output Impedance

4.4 The Common Drain (Source Follower) Amplifier

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Source Follower

4.4.1 Small-signal voltage gain

Small-Signal Equivalent Circuit

4.4.1 Small-signal voltage gain

4.4.2 Input and Output Impedance

$$R_{\rm i} = R_{\rm 1} / R_{\rm 2}$$

4.4.2 Input and Output Impedance

$$R_O = \frac{V_x}{I_x}$$

4.4.2 Input and Output Impedance

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$I_x + g_m V_{gs} = \frac{V_x}{R_S} + \frac{V_x}{r_o}$$

$$R_o = \frac{V_x}{I_x} = \frac{1}{g_m} \left\| R_S \right\| r_o$$

Output Resistance is very low.

Without significant loading effects.

Example

 $R_{Si} = 4 \,\mathrm{k}\Omega$.

Calculate the small-signal voltage gain

Solution: dc analysis

$$I_{DQ} = 7.97 \,\mathrm{mA} \ V_{GSQ} = 2.91 \,\mathrm{V}.$$

$$g_m = 2K_n(V_{GSQ} - V_{TN}) = 2(4)(2.91 - 1.5) = 11.3 \,\text{mA/V}$$

$$r_o \cong [\lambda I_{DQ}]^{-1} = [(0.01)(7.97)]^{-1} = 12.5 \,\mathrm{k}\Omega$$

$$R_i = R_1 || R_2 = 162 || 463 = 120 \,\mathrm{k}\Omega$$

$$A_{v} = \frac{g_{m}(R_{S}||r_{o})}{1 + g_{m}(R_{S}||r_{o})} \cdot \frac{R_{i}}{R_{i} + R_{Si}} = \frac{(11.3)(0.75||12.5)}{1 + (11.3)(0.75||12.5)} \cdot \frac{120}{120 + 4} = +0.860$$

Contents

PART 1 SEMICONDUCTOR DEVICES AND BASIC APPLICATIONS

Chapter 1 Semiconductor Materials and Diodes

Chapter 2 Diode Circuits

Chapter 3 The Field-Effect Transistor

Chapter 4 Basic FET Amplifiers

Chapter 5 The Bipolar Junction Transistor

Chapter 6 Basic BJT Amplifiers

Chapter 7 Frequency Response

Chapter 8 Output Stages and Power Amplifiers

PART 2 ANALOG ELECTRONICS

Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits

Chapter 10 Integrated Circuit Biasing and Active Loads

Chapter 11 Differential and Multistage Amplifiers

Chapter 12 Feedback and Stability

Chapter 13 Operational Amplifier Circuits

Chapter 14 Nonideal Effects in Operational Amplifier Circuits

Chapter 15 Applications and Design of Integrated Circuits

Ch4 Basic FET Amplifiers

- 4.1 The MOSFET Amplifier
- 4.2 Basic Transistor Amplifier Configurations
- 4.3 The Common Source Amplifier
- 4.4 The Common Drain (Source Follower) Amplifier
- 4.5 The Common Gate Configuration
 - 4.5.1 Small voltage and current gains
 - 4.5.2 Input and output Impedance
- 4.6 The Three Basic Amplifier Configuration: Summary and comparison

4.5 The Common Gate Configuration

$$V_{o} = -g_{m} \cdot V_{gs} \cdot (R_{D}//R_{L})$$

$$V_{i} = I_{i} \cdot R_{Si} - V_{gs}$$

$$I_{i} = -g_{m} \cdot V_{gs}$$

$$A_{v} = \frac{g_{m}(R_{D} || R_{L})}{1 + g_{m}R_{Si}}$$

Norton equivalent circuit

$$A_{i} = \frac{I_{O}}{I_{i}} = \left(\frac{R_{D}}{R_{D} + R_{L}}\right) \left(\frac{g_{m}R_{Si}}{1 + g_{m}R_{Si}}\right)$$

$$A_{i} = \frac{I_{O}}{I_{i}} = \left(\frac{R_{D}}{R_{D} + R_{L}}\right) \left(\frac{g_{m}R_{Si}}{1 + g_{m}R_{Si}}\right)$$

$$R_{D} >> R_{L}$$

$$g_{m}R_{Si} >> 1$$

$$A_{i} = 1$$
Current follower

4.5.2 Input and output Impedance

$$R_{i} = \frac{-V_{gs}}{I_{i}} = \frac{-V_{gs}}{-g_{m}V_{gs}} = \frac{1}{g_{m}}$$

Input Impedance is very low

4.5.2 Input and output Impedance

$$R_{\rm O} = R_D$$

4.6 The Three Basic Amplifier Configuration: Summary and comparison

CS CD CG

Comparing three basic circuit of field effect transistor

	Common-source	Common-drain	Common-gate
Circuit	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_1 R_{g1} R_{d1} C_2 C_3 C_3 C_3
Voltage- gain	$A_{\rm V} = -g_{\rm m}(R_{\rm d}//r_{\rm o})$	$A_{\rm V} = \frac{g_{\rm m}(R_{\rm d}//r_{\rm o})}{1 + g_{\rm m}(R_{\rm d}//r_{\rm o})}$	$A_{\rm V} = \frac{(g_{\rm m} + 1/r_{\rm o})R_{\rm D}}{1 + (R_{\rm D}/r_{\rm o})} \approx g_{\rm m}R_{\rm D}$
Input resistor	$R_{\rm i} = R_{\rm g1} // R_{\rm g2}$	$R_{\rm i} = R_{\rm g1} / / R_{\rm g2}$	$R_{\rm i} = \frac{1}{g_{\rm m}} /\!/ R$
Output resistor	$R_{\rm o} = R_{\rm d}//r_{\rm o}$	$R_{\rm o} = \frac{1}{g_{\rm m}} //R //r_{\rm o}$	$R_{\rm o} = R_{\rm d}//r_{\rm o}$
Features	1. Voltage gain is large 2. Input and output voltage have opposing phase 3. Input resistance is large	1. Voltage gain is less than 1 and similar to 1 2. Input and output voltages have same phase 3. Input resistance is large 4. Output resistance is small	1.Voltage gain is large 2.Input and output voltages have same phase 3.Input resistance is small

Comparing three basic circuit of field effect transistor

Configuration	Voltage Gain	Current Gain	Input Resistance	Output Resistance
Common Source	$A_v > 1$		R_{TH}	Moderate to high
Source Follower	$A_{\rm v} \approx 1$		R_{TH}	Low
Common Gate	$A_{\rm v} > 1$	$A_i \approx 1$	Low	Moderate to high

The i_D - V_{GS} Characteristic in Saturation

For chapter 3 and chapter 4:

1. MOSFET structure, feature, i-v characteristic

	NMOS E-Mode	NMOS D-Mode	PMOS E-Mode	NMOS D-Mode
Circuit Symbol	g i_D s	g i_D s	g i _D	g i _D
Output Characteristic	$ \begin{array}{c c} i_{\text{D}} & v_{\text{GS}} = 5V \\ \hline 4 \\ \hline 3 \\ \hline 0 & v_{\text{DS}} \end{array} $	$ \begin{array}{c c} i_{\rm D} & 0.2 \\ \hline v_{\rm GS} = 0V \\ \hline -0.2 \\ -0.4 \\ \hline v_{\rm DS} \end{array} $	$ \begin{array}{c c} i_{\text{D}} & v_{\text{GS}} = -6V \\ \hline & -5 \\ \hline & -4 \\ \hline & -v_{\text{DS}} \end{array} $	$ \begin{array}{c c} i_{\text{D}} & -1 \\ \hline v_{\text{GS}} = 0 \\ \hline v_{\text{DS}} \\ \hline -v_{\text{DS}} \end{array} $
Transfer Characteristic	i_{D} O V_{T} v_{GS}	$v_{\rm P} = v_{\rm GS}$	$V_{\rm T} = O = V_{\rm GS}$	$i_{ m D}$ O $V_{ m P}$ $v_{ m GS}$
$V_{ m GS}$ (Saturation Reg.)	$V_{\rm GS} > V_{\rm TN} > 0$	$V_{\rm GS} > V_{\rm P}$	$V_{\rm GS} < V_{\rm TP} < 0$	$V_{\rm GS} < V_{\rm P}$
$V_{ m DS}$ (Saturation Reg.)	$V_{\rm DS} > V_{\rm GS} - V_{\rm TN} > 0$	$V_{\mathrm{DS}} > 0$	$V_{\mathrm{DS}} < V_{\mathrm{GS}} - V_{\mathrm{TP}} < 0$	V _{DS} < 0

HINT CERTIFICATION

Overview

2. DC analysis

Calculate
$$V_{GS}$$
, I_{D} , V_{DS}

A For enhancement NMOS

Saturation region

$$I_{D} = K_{n} (V_{GS} - V_{T})^{2}$$

$$V_{DS} = 2V_{DD} - I_{D} (R_{d} + R)$$

Non-saturation region

$$I_{\mathrm{D}} = 2K_{\mathrm{n}}(V_{\mathrm{GS}} - V_{\mathrm{T}})V_{\mathrm{DS}}$$
$$V_{\mathrm{DS}} = 2V_{\mathrm{DD}} - I_{\mathrm{D}}(R_{\mathrm{d}} + R)$$

B. For depletion NMOS

$$I_{\rm D} = I_{\rm DSS} (1 - \frac{V_{\rm GS}}{V_{\rm P}})^2$$
 $(V_{\rm P} \le V_{\rm GS})$

Overview

3. AC analysis

(1) The Reason of Using Multistage Circuit

A single transistor amplifier will not be able to meet the combined specifications of a given amplification factor, input resistance, and output resistance.

(2) Cascade Configuration

3 circuits are connected in series, or cascaded. Each circuit can be CE, CC, or CB configuration

Figure 6.68 A generalized three-stage amplifier

(3) Loading effect

E.g. R_{i2} is the load of stage 1.

$$R_{i2} = R_{L1}$$

$$R_{o1} = R_{S2}$$

Figure 6.68 A generalized three-stage amplifier

$$K_{\text{nl}} = 0.5 \,\text{mA}/V^2$$
, $K_{\text{n2}} = 0.2 \,\text{mA}/V^2$, $V_{\text{TNl}} = V_{\text{TN2}} = 1.2 \,\text{V}$, $\lambda_1 = \lambda_2 = 0$

$$R_{\rm d1} = 16 \text{k}\Omega, R_{\rm s1} = 3.9 \text{k}\Omega, R_{\rm g1} = 390 \text{k}\Omega, R_{\rm g2} = 140 \text{k}\Omega,$$

$$R_{\rm si} = 5 \text{k}\Omega, R_{\rm s2} = 8.2 \text{k}\Omega, \quad R_{\rm L} = 4 \text{k}\Omega, V_{\rm DD} = V_{\rm SS} = 5 \text{V}$$

SOL: 1.Q-point

$$V_{\text{GSQ1}} = V_{\text{G1}} - V_{\text{S1}} = \frac{R_{\text{g2}}}{R_{\text{g1}} + R_{\text{g2}}} (V_{\text{DD}} + V_{\text{SS}}) - I_{\text{DQ1}} R_{\text{S1}}$$
$$= \frac{140}{390 + 140} \times 10 - 3.9 I_{\text{DQ1}} = 2.64 - 3.9 I_{\text{DQ1}}$$

In sat.

$$I_{\text{DQ1}} = K_{\text{n1}} (V_{\text{GSQ1}} - V_{\text{TN1}})^2 = 0.5 (V_{\text{GSQ1}} - 1.2)^2$$

$$V_{\text{GSQ1}} = 2.64 - 3.9 \times 0.5 (V_{\text{GSQ1}} - 1.2)^2$$

$$V_{\text{GSQ1}} = \frac{3.68 \pm \sqrt{3.68^2 - 4 \times 1.95 \times 0.168}}{2 \times 1.95} \text{V}$$

$$= \frac{3.68 \pm 3.497}{3.9} \text{V} \quad \text{get} \quad V_{\text{GSQ1}} = 1.84 \text{V}$$

 $I_{\text{DO1}} = 0.5(V_{\text{GSO1}} - V_{\text{TN1}})^2 = 0.2 \text{mA}$

 $V_{\text{DSO1}} = V_{\text{DD}} + V_{\text{SS}} - I_{\text{DO1}} (R_{\text{d1}} + R_{\text{S1}}) = 6.02 \text{V}$

MULTISTAGE AMPLIFIERS

For T₂

$$\begin{split} V_{\rm G2} &= V_{\rm D1} = V_{\rm DD} - I_{\rm DQ1} R_{\rm d1} = (5 - 0.2 \times 16) \text{V} = 1.8 \text{V} \\ V_{\rm GSQ2} &= V_{\rm G2} - V_{\rm S2} = 1.8 - I_{\rm DQ2} R_{\rm S2} + V_{\rm SS} \\ I_{\rm DQ2} &= K_{\rm n2} (V_{\rm GSQ2} - V_{\rm TN2})^2 \\ &= 0.2 (1.8 - I_{\rm DQ2} \times 8.2 + 5 - 1.2)^2 \\ &= 0.2 (5.6 - 8.2 I_{\rm DQ2})^2 \\ I_{\rm DO2}^2 &= 1.44 I_{\rm DO2} + 0.466 = 0 \end{split}$$

$$I_{DQ2} = \frac{1.44 \pm \sqrt{1.44^2 - 4 \times 0.466}}{2} \text{ mA} = \frac{1.44 \pm 0.458}{2} \text{ mA}$$

get
$$I_{DQ2} = \frac{(1.44 - 0.458)}{2} \approx 0.49 \text{mA}$$

$$V_{GSQ2} = (1.8 + 5 - 0.49 \times 8.2) \text{ V} = 2.78 \text{ V}$$

$$V_{DSO2} = V_{DD} + V_{SS} - I_{DO2} R_{S2} = (10 - 8.2 \times 0.49) \text{ V} = 5.98 \text{ V}$$

$\mathbf{2.\,A}_v$

$$g_{m1} = 2K_{n1}(V_{GSQ1} - V_{TN1}) = 2 \times 0.5(1.84 - 1.2) \text{mA} \cdot \text{V}^{-1} = 0.64 \text{mA} \cdot \text{V}^{-1}$$
$$g_{m2} = 2K_{n2}(V_{GSQ2} - V_{TN2}) = 2 \times 0.2(2.78 - 1.2) \text{mA} \cdot \text{V}^{-1} = 0.632 \text{mA} \cdot \text{V}^{-1}$$

If not sketch this small signal circuit, how to get this?

1 , (12 points)

For the NMOS amplifier in Figure 1, the circuit parameters are:

$$K_{\rm n} = 1 \, {\rm mA/V^2}, \ \lambda = 0; \ V_{\rm T} = 2 \, {\rm V}, \ g_{\rm m} = 2 \, K_{\rm n} (V_{\rm GSQ} - V_{\rm T}) = 2 \sqrt{K_{\rm n} I_{\rm DQ}} ,$$

In the saturation region, the drain current is $i_D = K_n (v_{GS} - V_T)^2$,

In the nonsaturation region, the drain current is $i_D \approx 2K_n(v_{GS} - V_T)v_{DS}$,

- (1) Find the Q-point;
- (2) Sketch the Small-Signal Equivalent Circuit;
- (3) Find $A_v = v_o / v_i$;
- (4) Find R_i and R_o

