산학캡스톤 프로젝트 제안서

신청 기업명	(주)엠웨이브스			사업장 위치	안산시 상록구	
담당자	소 속		성 명	명남수	직 위	대표
	연락처	010-8685-1668	e-mail	nsmyung@gmail.com		
관련분야	□ 빅데이터 처리 □ 애플리케이션SW □ 인공지능 □ 컴퓨터 보안 ■ 임베디드SW □ 멀티미디어컨텐츠(AR/VR, 게임 등) ■ 기타 (Robot)					
프로젝트 명	Cable free robot arm: 임의 회전 조작가능한 차세대 Robot 프로토타입					
프로젝트 개요	DAPPEM을 사용하는cable free 다축구동 로봇: 상단축에 연결되는 신호 및 전력 cable 배제 Robot 및 전동기 및 전력제어기술 개발					
추진 배경	□ 배경/ 필요성 - 산업현장 문제점 기술					
	엠웨이브스 DAPPEM 기술은 저속에서도 감속기어 없이 강한 회전력을 생성하고, 에 너지회생이 우수하여, 가볍고, 높은 효율을 가지는 robot arm 구현이 가능하다. 이를 이용한 다축 로봇암에서 상단 축을 구동하는데 제어신호/전력공급 cable을 배제할 수 있으며, 빠른 응답, 제어가 가능 할 것으로 기대함. 이러한 Robot arm 이 상용화 된 다면 공장자동화 분야에서 생산성 향상을 기대할 수 있다.					
개발 목표	□ 개발 목표 — 개발하고자 하는 시스템의 목표					
	다축 (2축 이상) 제어 Cableless Robot arm 소형 Proof of concept system 제작 시현					
	신호처리 및 제어 이론/기술 멘토링 이중 동동구동 전동기 (DAPPEM) 기본 설계, 구동에 필요한 모두					
결과물	□ 최종 기대 결과물 (졸업작품으로 전시할 소프트웨어 시현물)					
	 2-3축 제어 Cablefree Robot arm Proof of concept system 3D print 제작 시연 설계문서, Computer simulation, 제어 GUI, 자체시험결과문서 					
인턴십 연계	■ 여름병	방학 인턴십	울방학	인턴십 🗆	인턴십 '	안함