Algorithm Foundations of Data Science and Engineering Welcome Tutorial :-)

Tutorial 4

GAO Ming

DaSE @ ECNU

18 Mar., 2019

Tutorial 4

- 1. Given an input stream < 4,1,3,5,1,3,2,6,7,0,9 > and hash functions in the form of $h(x) = (ax + b) \mod 8$, where a and b are two arbitrary integers. If there are three following hash functions:
 - (1) $h(x) = (3x+2) \mod 8$;
 - (2) $h(x) = (7x+5) \mod 8$;
 - (3) $h(x) = (5x+3) \mod 8$;

Please address the following questions:

- a. Find the frequency count of every item given by Count-Min sketch;
- b. Analyze the accurate of counting result in a.;
- c. If we try to find the (ε, δ) -approximations of the frequency count, how to modify the algorithm;
- 2. Let the largest and second largest eigenvalues of matrix A be 2 and 1.7, respectively. Is it possible to find the largest eigenvalue via using the power iteration approach? Please explain how fast the power method converges?

Tutorial 4

3. Given a matrix

$$A = \left(\begin{array}{cc} 2 & 1 \\ 4 & 5 \end{array}\right)$$

- a. Compute the eigenvalues and eigenvectors of A;
- b. Given a starting vector $v = (1,1)^T$, approximate the largest eigenvalue and eigenvector of A via using the power method.
- 4. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be eigenvalues of matrix $A \in \mathbb{R}^{n \times n}$. Prove that
 - a. The matrix $A \sigma I$ has eigenvalue $\lambda_i \sigma$ for $i = 1, 2, \dots, n$;
 - b. The invertible matrix $(A \sigma I)^{-1}$ has eigenvalue $(\lambda_i \sigma)^{-1}$ for $i = 1, 2, \dots, n$.