Fully abstract models for effectful λ -calculi via category-theoretic logical relations

Ohad Kammar[†] and Shin-ya Katsumata* and Philip Saville[‡]

[†]School of Informatics University of Edinburgh

*National Institute of Informatics
Tokyo

[‡]Department of Computer Science University of Oxford

preprint & these slides at philipsaville.co.uk

with sum types

A category-theoretic construction that:

takes a [suitable] model of an effectful $\lambda\text{-calculus}$

 \dots and returns an adequate & fully-abstract model

with sum types

A category-theoretic construction that:

takes a [suitable] model of an effectful $\lambda\text{-calculus}$

... and returns an adequate & fully-abstract model

with sum types

A category-theoretic construction that:

takes a [suitable] model of an effectful λ -calculus

 \dots and returns an adequate & fully-abstract model

with sum types

A category-theoretic construction that:

takes a [suitable] model of an effectful $\lambda\text{-calculus}$

... and returns an adequate & fully-abstract model

Adequacy and full abstraction

$$\Gamma \vdash M \simeq_{\mathrm{ctx}} M' : \sigma \qquad \Longleftrightarrow \qquad \begin{array}{c} \mathcal{C}[M] \Downarrow V \iff \mathcal{C}[M'] \Downarrow V \\ \mathcal{C}[-] \text{ any closed ground context} \end{array}$$

Intuition:
swapping M and M'
doesn't affect
observable behaviour

$$\Gamma \vdash M \simeq_{\operatorname{ctx}} M' : \sigma \qquad \Longleftrightarrow \qquad \begin{array}{c} \mathcal{C}[M] \Downarrow V \iff \mathcal{C}[M'] \Downarrow V \\ \mathcal{C}[-] \text{ any closed ground context} \end{array}$$

Reasoning about \simeq_{ctx} is hard

motivates semantic interpretation [M]

$$\Gamma \vdash M \simeq_{\operatorname{ctx}} M' : \sigma \qquad \Longleftrightarrow \qquad \begin{array}{c} \mathcal{C}[M] \Downarrow V \iff \mathcal{C}[M'] \Downarrow V \\ \mathcal{C}[-] \text{ any closed ground context} \end{array}$$

Reasoning about \simeq_{ctx} is hard

motivates semantic interpretation [M]

How does
$$[\![M]\!] = [\![M']\!]$$
 relate to $M \simeq_{\text{ctx}} M'$?
$$[\textit{c.f.} \text{ soundness and completeness in logic}]$$

$$\Gamma \vdash M \simeq_{\operatorname{ctx}} M' : \sigma \qquad \Longleftrightarrow \qquad \begin{array}{c} \mathcal{C}[M] \Downarrow V \iff \mathcal{C}[M'] \Downarrow V \\ \mathcal{C}[-] \text{ any closed ground context} \end{array}$$

Reasoning about \simeq_{ctx} is hard

motivates semantic interpretation [M]

How does $[\![M]\!] = [\![M']\!]$ relate to $M \simeq_{\text{ctx}} M'$?

[c.f. soundness and completeness in logic]

Adequacy: $\llbracket M \rrbracket = \llbracket M' \rrbracket \implies M \simeq_{\operatorname{ctx}} M'$

Full abstraction: $M \simeq_{\text{ctx}} M' \implies \llbracket M \rrbracket = \llbracket M' \rrbracket$

$\textbf{Contextual equivalence} \ [\texttt{Morris}, \ \texttt{Milner}, \ldots]$

$$\Gamma \vdash M \simeq_{\operatorname{ctx}} M' : \sigma \qquad \Longleftrightarrow \qquad \begin{array}{c} \mathcal{C}[M] \Downarrow V \iff \mathcal{C}[M'] \Downarrow V \\ \mathcal{C}[-] \text{ any closed ground context} \end{array}$$

Reasoning about \simeq_{ctx} is hard

 \longrightarrow motivates semantic interpretation $[\![M]\!]$

How does
$$[\![M]\!] = [\![M']\!]$$
 relate to $M \simeq_{\text{ctx}} M'$?

[c.f. soundness and completeness in logic]

Adequacy:
$$\llbracket M \rrbracket = \llbracket M' \rrbracket \implies M \simeq_{\operatorname{ctx}} M'$$

Full abstraction: $M \simeq_{\text{ctx}} M' \implies \llbracket M \rrbracket = \llbracket M' \rrbracket$

In an adequate, fully abstract model semantic equality characterises contextual equivalence

Effectful λ -calculi

Specified by a signature: you choose

Specified by a signature: you choose

• A monadic effect *e.g.* exceptions

Specified by a signature: you choose

• A monadic effect *e.g.* exceptions

• Base types nat, bool, ...

Specified by a signature: you choose

• A monadic effect *e.g.* exceptions

• Base types nat, bool, ...

ullet Effectful operations ${
m raise}_e, \dots$

Specified by a signature: you choose

- A monadic effect
- Base types
- Effectful operations
- Elicetiai operatioi
- Primitives

e.g. exceptions

nat, bool, ...

raise_e, ...

 $\underline{\mathbf{n}}$: nat, and: bool * bool \rightarrow bool, ...

Specified by a signature: you choose

```
• A monadic effect e.g. exceptions
```

• Base types nat, bool, ...

• Effectful operations raise_e, ...

• Primitives $\underline{\mathbf{n}}$: nat, and : bool * bool \rightarrow bool, ...

→ determines a HO language with products & sums

e.g. a HO language with exceptions

- A monadic effect
- Base types
- Effectful operations
- Primitives

e.g. exceptions

nat, bool, ...

raise_e, ...

 $\underline{\mathbf{n}}$: nat, and : bool * bool \rightarrow bool, . . .

- A monadic effect
- Base types
- Effectful operations
- Primitives

```
e.g. exceptions nat, bool, ...
```

raise_e, ...

 $\underline{\mathbf{n}}$: nat, and: bool * bool \rightarrow bool, ...

Effectful λ -calculi: semantics [à la Moggi]

Specified by a model: you choose

- A monadic effect
- Base types
- Effectful operations
- Primitives

- e.g. exceptions
 - nat, bool, ...
 - $raise_e, \dots$
 - $\underline{\mathbf{n}}$: nat, and : bool * bool \rightarrow bool, ...

Effectful λ -calculi: semantics [à la Moggi]

Specified by a model: you choose

• A CCC *M* with (0, +)

e.g. Set

- A monadic effect
- Base types
- Effectful operations
- Primitives

- e.g. exceptions
 - nat, bool, ...
 - raise_e, ...
 - $\underline{\mathbf{n}}$: nat, and : bool * bool \rightarrow bool, ...

Effectful λ -calculi: semantics [à la Moggi]

Specified by a model: you choose

• A CCC *M* with (0, +)

e.g. Set

Strong monad T

$$T(X) = X + E$$

- A monadic effect
- Base types
- Effectful operations
- Primitives

- e.g. exceptions
 - nat, bool, ...
 - $raise_e, \dots$
 - $\underline{\mathbf{n}}$: nat, and: bool * bool \rightarrow bool, ...

Effectful λ -calculi: semantics [à la Moggi]

Specified by a model: you choose

- A CCC *M* with (0, +)
- Strong monad T
- $[\![\beta]\!] \in \mathcal{M}$ for each base type β

e.g. Set

$$T(X) = X + E$$

$$[\![\mathrm{bool}]\!]=2,[\![\mathrm{nat}]\!]=\mathbb{N}$$

- A monadic effect
- Base types
- Effectful operations
- Primitives

- e.g. exceptions
 - nat, bool, ...
 - $raise_e, \dots$
 - $\underline{\mathbf{n}}$: nat, and : bool * bool \rightarrow bool, ...

Effectful λ -calculi: semantics [à la Moggi]

Specified by a model: you choose

- A CCC *M* with (0, +)
- Strong monad T
- $[\![\beta]\!] \in \mathcal{M}$ for each base type β
- Arrows interpreting the operations and primitives

$$T(X) = X + E$$

$$[bool] = 2, [nat] = \mathbb{N}$$

$$[[raise_e]] = \lambda x \cdot inl(e),$$

$$[\![\underline{\mathbf{n}}]\!] = (* \mapsto n : 1 \to \mathbb{N})$$

- A monadic effect
- Base types
- Effectful operations
- Primitives

- e.g. exceptions
 - nat, bool, ...
 - $\underline{\mathbf{n}}$: nat, and: bool * bool \rightarrow bool, ...

Effectful λ -calculi: semantics [à la Moggi]

Specified by a model: you choose

- A CCC *M* with (0, +)
- Strong monad T
- Strong monau 1
- Arrows interpreting the operations and primitives
- [β] ∈ M for each base type β [bool] = 2, [nat] = N
 Arrows interpreting the [raise_e] = λx . inl(e),

e.g. Set

r—n

 $[n] = (* \mapsto n : 1 \to \mathbb{N})$

T(X) = X + E

 \longrightarrow determines an interpretation $\llbracket \Gamma \vdash M : \sigma \rrbracket : \llbracket \Gamma \rrbracket \rightarrow T \llbracket \sigma \rrbracket$

chosen base types,effect operations,& primitives

semantic mode

= CCC with coproducts \mathcal{M}

+ strong monad 7

+ conditions on M interr

onditions on \mathcal{M} , interp

sufficient: full d at

 \downarrow

fully abstract model $OHR(\mathcal{M})$

inspired by O'Hearn & Riecke's PCF model, 1999

concrete over \mathcal{M} :
maps in $\mathrm{OHR}(\mathcal{M})$ are
maps in \mathcal{M} satisfying predicates

chosen base types, effect operations, & primitives

= CCC with coproducts \mathcal{M}

+ strong monad T

L conditions on A4 intern

Conditions on Jvt, interp

 \downarrow

sufficient: full definability at base types

fully abstract model $OHR(\mathcal{M})$ putational λ -calculus + constants + s

inspired by <u>O'H</u>earn & <u>R</u>iecke's PCF model, 1995

concrete over \mathcal{M} :
maps in $\mathrm{OHR}(\mathcal{M})$ are
maps in \mathcal{M} satisfying predicates

chosen base types, effect operations, & primitives

semantic model

= CCC with coproducts $\ensuremath{\mathcal{M}}$

+ strong monad T

+ interpretation

+ conditions on \mathcal{M} , interp.

sufficient: full definability at base types

fully abstract model $\mathrm{OHR}(\mathcal{M})$ of computational λ -calculus + constants + sums

inspired by O'Hearn & Riecke's PCF model, 1995

concrete over \mathcal{M} :
maps in $\mathrm{OHR}(\mathcal{M})$ are
maps in \mathcal{M} satisfying predicates

signature chosen base t

chosen base types, effect operations, & primitives semantic model

= CCC with coproducts \mathcal{M} + strong monad T

+ interpretation

+ conditions on \mathcal{M} , interp.

 \Downarrow

sufficient: full definability at base types

fully abstract model $OHR(\mathcal{M})$ of computational λ -calculus + constants + sums

inspired by O'Hearn & Riecke's PCF model, 1995

concrete over \mathcal{M} : maps in $OHR(\mathcal{M})$ are maps in \mathcal{M} satisfying predicates

chosen base types, effect operations, & primitives semantic model

= CCC with coproducts \mathcal{M}

+ strong monad T

+ interpretation + conditions on \mathcal{M} , interp.

7VI, INLE

sufficient: full definability at base types

fully abstract model $OHR(\mathcal{M})$ of computational λ -calculus + constants + sums

inspired by O'Hearn & Riecke's PCF model, 1995

concrete over \mathcal{M} : maps in $OHR(\mathcal{M})$ are maps in \mathcal{M} satisfying predicates

Cranking the handle

signature

$$\begin{split} \textit{e.g.} \ \mathsf{base} \ \mathsf{types} \ \mathrm{nat}, \mathsf{bool} \\ + \ \mathsf{primitives} \ \mathsf{tt}, \mathrm{ff}, \underline{\mathrm{n}} \ \mathsf{for} \ \textit{n} \in \mathbb{N} \\ + \ \mathsf{effect} \ \mathsf{operation} \ \mathrm{read}, \ \ldots \end{aligned}$$

semantic model

 $\begin{array}{l} \textit{e.g.} \; \mathsf{subcategory} \; \mathsf{Set}_{\kappa} \; \; \mathsf{of} \; \mathsf{Set} \\ + \; \; \mathsf{reader} \; \mathsf{monad} \; \mathsf{R} \\ + \; [\![\mathsf{nat}]\!] = \mathbb{N}, \\ [\![\mathsf{bool}]\!] = \{0,1\}, \; \dots \\ \\ \mathsf{not} \; \mathsf{fully} \; \mathsf{abstract!} \\ \mathsf{(Matache} \; \& \; \mathsf{Staton)} \\ \end{array}$

fully abstract model of read-only state

Cranking the handle

signature

e.g. base type real
+ primitive <u>f</u> for each measurable f
+ effect operations
sample, score, normalise, . . .

semantic model

 $\begin{array}{l} \textit{e.g.} \; \mathsf{small} \; \mathsf{sub\text{-}CCC} \; \mathsf{of} \; \mathsf{Qbs} \\ + \; \mathsf{probability} \; \mathsf{monad} \\ + \; [\![\mathrm{real}]\!] \; = \; (\mathbb{R}, \Sigma_{\mathbb{R}}) \end{array}$

fully abstract model of idealised probabilistic programming language

The OHR construction

The big picture

Obstruction to full abstraction:

∃ 'bad' morphisms expressing behaviour the syntax cannot [c.f. parallel-or]

The big picture

Obstruction to full abstraction:

∃ 'bad' morphisms expressing behaviour the syntax cannot [c.f. parallel-or]

$$M \simeq_{\mathrm{ctx}} M'$$
 \Longrightarrow $[\![M]\!](i) = [\![M']\!](i)$ for all 'program-like' inputs i

Obstruction to full abstraction:

∃ 'bad' morphisms expressing behaviour the syntax cannot [c.f. parallel-or]

$$M \simeq_{\operatorname{ctx}} M' \Longrightarrow \llbracket M \rrbracket(i) = \llbracket M' \rrbracket(i)$$
 for all 'program-like' inputs i

Obstruction to full abstraction:

∃ 'bad' morphisms expressing behaviour the syntax cannot [c.f. parallel-or]

$$M \simeq_{\mathrm{ctx}} M'$$
 \Longrightarrow $\llbracket M \rrbracket(i) = \llbracket M' \rrbracket(i)$ for all 'program-like' inputs i κ bad \Longrightarrow can have $\llbracket M \rrbracket(\kappa) \neq \llbracket M' \rrbracket(\kappa)$

Obstruction to full abstraction:

∃ 'bad' morphisms expressing behaviour the syntax cannot [c.f. parallel-or]

$$M \simeq_{\mathrm{ctx}} M'$$
 \Longrightarrow $[\![M]\!](i) = [\![M']\!](i)$ for all 'program-like' inputs i κ bad \Longrightarrow can have $[\![M]\!](\kappa) \neq [\![M']\!](\kappa)$

Solution:

refine the model to remove all bad morphisms

Obstruction to full abstraction:

 \exists 'bad' morphisms expressing behaviour the syntax cannot [c.f. parallel-or]

Solution:

refine the model to remove all bad morphisms

What follows:

- 1. A general construction for refining models [hom-sets and function spaces!]
- 2. How to instantiate to remove all bad morphisms

A general construction for refining models

 $\mathbf{Aim} \colon \mathsf{refine} \ \mathsf{a} \ \mathsf{category} \ \mathcal{M} \ \mathsf{so} \ \mathsf{maps} \ \mathsf{all} \ \mathsf{satisfy} \ \mathsf{certain} \ \mathsf{properties}$

 $\mbox{\bf Aim:}$ refine a category ${\cal M}$ so maps all satisfy certain properties

Example: category Pred over Set:

objects: pairs $(W \in Set, predicate A \subseteq W)$

maps: maps in $\mathcal M$ preserving the predicates

$\mbox{\bf Aim:}\,$ refine a category ${\cal M}$ so maps all satisfy certain properties

```
The category Pred(\mathcal{M}):
```

```
objects: pairs (W \in \mathcal{M}, \text{ 'relation' on } W)
[unary, n-ary, varying arity; families of relations,...]
```

A 4

maps: maps in ${\mathcal M}$ preserving the relations

$\mbox{\bf Aim} :$ refine a category ${\cal M}$ so maps all satisfy certain properties

The category $Pred(\mathcal{M})$:

```
objects: pairs (W \in \mathcal{M}, \text{ 'relation' on } W) [unary, n-ary, varying arity; families of relations,...]
```

maps: maps in $\mathcal M$ preserving the relations

Aim: refine a category ${\mathcal M}$ so maps all satisfy certain properties

The category $\operatorname{Pred}(\mathcal{M})$:

objects: pairs $(W \in \mathcal{M}, \text{ 'relation' on } W)$ [unary, n-ary, varying arity; families of relations,...]

maps: maps in ${\mathcal M}$ preserving the relations

 $\textbf{Aim:} \ \ \text{refine a category} \ \mathcal{M} \ \ \text{so maps all satisfy certain properties}$

The category $\operatorname{Pred}(\mathcal{M})$:

objects: pairs $(W \in \mathcal{M}, \text{`relation'} \text{ on } W)$

[unary, n-ary, varying arity; families of relations,...]

maps: maps in ${\mathcal M}$ preserving the relations

 $\textbf{Aim} \colon \mathsf{refine} \ \mathsf{a} \ \mathsf{category} \ \mathcal{M} \ \mathsf{so} \ \mathsf{maps} \ \mathsf{all} \ \mathsf{satisfy} \ \mathsf{certain} \ \mathsf{properties}$

The category $\operatorname{Pred}(\mathcal{M})$:
objects: pairs $(W \in \mathcal{M}, \text{`relation' on } W)$

[unary, n-ary, varying arity; families of relations,...] maps: maps in \mathcal{M} preserving the relations

Aim: refine a category ${\mathcal M}$ so maps all satisfy certain properties

The category $\operatorname{Pred}(\mathcal{M})$:
objects: pairs $(W \in \mathcal{M}, \text{`relation' on } W)$ [unary, n-ary, varying arity; families of relations,...]

maps: maps in ${\mathcal M}$ preserving the relations

Aim: refine a category \mathcal{M} so maps all satisfy certain properties

The category $\operatorname{Pred}(\mathcal{M})$: objects: pairs $(W \in \mathcal{M}, \text{ 'relation' on } W)$ [unary, n-ary, varying arity; families of relations,...]

maps: maps in \mathcal{M} preserving the relations

A general construction for refining a model ${\cal M}$

 \longrightarrow OHR(\mathcal{M}) will be Conc(\mathcal{M}) for a careful choice of "relations"

Obstruction to full abstraction:

 \exists 'bad' morphisms expressing behaviour the syntax cannot [c.f. parallel-or]

Solution:

refine the model to remove all bad morphisms

What follows:

- $\begin{tabular}{ll} 1. A general construction for refining models \\ & [hom-sets \ \underline{and} \ function \ spaces!] \end{tabular}$
- 2. How to instantiate to remove all bad morphisms

Obstruction to full abstraction:

 \exists 'bad' morphisms expressing behaviour the syntax cannot [c.f. parallel-or]

Solution:

refine the model to remove all bad morphisms

What follows:

- √ A general construction for refining models
 [hom-sets and function spaces!]
 - ? How to instantiate to remove all bad morphisms

Instantiating the general construction

If f is definable $(f = [M]) \dots$

If f is definable $(f = [M]) \dots$ it can't be bad

If f is definable (f = [M]) ...it can't be bad suggests: suffices to cut out all non-definable maps If f is definable $(f = [M]) \dots$ it can't be bad suggests: suffices to cut out all non-definable maps

Lemma: [c.f. Curien's "definable separability condition"] any well-pointed model in which every map $\llbracket \Gamma \rrbracket \to T \llbracket \sigma \rrbracket$ is definable is fully abstract. $f = g : X \to Y$ iff $f \circ \gamma = g \circ \gamma \text{ for all } \gamma : 1 \to X$

```
If f is definable (f = [M]) ...it can't be bad suggests: suffices to cut out all non-definable maps
```

```
Lemma: [c.f. Curien's "definable separability condition"] any well-pointed model in which every map \llbracket \Gamma \rrbracket \to \mathcal{T} \llbracket \sigma \rrbracket is definable is fully abstract. f = g : X \to Y iff f \circ \gamma = g \circ \gamma for all \gamma : 1 \to X
```

Question: which relations guarantee definability? [Plotkin, Jung & Tiuryn, Alimohamed, ...]

```
If f is definable (f = [M]) \dots it can't be bad suggests: suffices to cut out all non-definable maps
```

```
Lemma: [c.f. Curien's "definable separability condition"] any well-pointed model in which every map \llbracket \Gamma \rrbracket \to T \llbracket \sigma \rrbracket is definable is fully abstract. f = g: X \to Y iff f \circ \gamma = g \circ \gamma \text{ for all } \gamma: 1 \to X
```

```
Question: which relations guarantee definability?

[Plotkin, Jung & Tiuryn, Alimohamed, ...]

f is definable ←⇒ f preserves every logical relation

type-indexed family of relations compatible with type- & term-formers
```

Question: which relations guarantee definability?

[Plotkin, Jung & Tiuryn, Alimohamed, ...]

f is definable \iff f preserves every logical relation

type-indexed family of relations compatible with type- & term-formers

Question: which relations guarantee definability?

[Plotkin, Jung & Tiuryn, Alimohamed, . . .]

f is definable \iff f preserves every logical relation

type-indexed family of relations compatible with type- & term-formers

Question: which relations guarantee definability?

[Plotkin, Jung & Tiuryn, Alimohamed, ...]

f is definable \iff f preserves every logical relation

type-indexed family of relations compatible with type- & term-formers

Strategy

instantiate general construction with a set $\ensuremath{\mathbb{I}}$ and an interpretation s.t.

Question: which relations guarantee definability?

[Plotkin, Jung & Tiuryn, Alimohamed, ...]

f is definable \iff f preserves every logical relation

type-indexed family of relations compatible with type- & term-formers

Strategy

instantiate general construction with a set ${\mathbb I}$ and an interpretation s.t.

1. objects of $OHR(\mathcal{M})$ are pairs $(W, \{R_i \mid i \in \mathbb{I}\})$ + concreteness

Question: which relations guarantee definability?

[Plotkin, Jung & Tiuryn, Alimohamed, . . .]

f is definable \iff f preserves every logical relation

type-indexed family of relations compatible with type- & term-formers

Strategy

instantiate general construction with a set ${\mathbb I}$ and an interpretation s.t.

- 1. objects of OHR(\mathcal{M}) are pairs $(W, \{R_i \mid i \in \mathbb{I}\})$ + concreteness
- 2. for any logical relation $(L_{\sigma} \mid \sigma \in \text{Type})$ there exists $i_0 \in \mathbb{I}$ s.t.

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = \mathbf{L}_{\sigma}$$

for every type σ

instantiate general construction with a set I and an interpretation s.t.

- 1. objects of $\mathrm{OHR}(\mathcal{M})$ are pairs $(W,\{R_i\mid i\in\mathbb{I}\})$ + concreteness
- 2. for any logical relation $(L_{\sigma} \mid \sigma \in \text{Type})$ there exists $i_0 \in \mathbb{I}$ s.t.

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = L_{\sigma}$$

Then:

$$\left(\begin{array}{c} f: \llbracket \Gamma \rrbracket \to \mathrm{H}\, \hat{T} j \llbracket \sigma \rrbracket \\ \mathrm{in}\ \mathrm{OHR}(\mathcal{M}) \end{array}\right)$$

instantiate general construction with a set I and an interpretation s.t.

- 1. objects of $OHR(\mathcal{M})$ are pairs $(W, \{R_i \mid i \in \mathbb{I}\})$ + concreteness
- 2. for any logical relation $(L_{\sigma} \mid \sigma \in \text{Type})$ there exists $i_0 \in \mathbb{I}$ s.t.

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = L_{\sigma}$$

Then:

$$\left(\begin{array}{c} f: \llbracket \Gamma \rrbracket \to \mathrm{H}\, \hat{T} j \llbracket \sigma \rrbracket \\ \text{in } \mathrm{OHR}(\mathcal{M}) \end{array}\right) \iff \left(\begin{array}{c} f \text{ preserves} \\ \text{every relation } R_i \end{array}\right)$$

instantiate general construction with a set I and an interpretation s.t.

- 1. objects of $OHR(\mathcal{M})$ are pairs $(W, \{R_i \mid i \in \mathbb{I}\})$ + concreteness
- 2. for any logical relation $(L_{\sigma} \mid \sigma \in \text{Type})$ there exists $i_0 \in \mathbb{I}$ s.t.

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = L_{\sigma}$$

Then:

$$\begin{pmatrix} f : \llbracket \Gamma \rrbracket \to \operatorname{H} \hat{T} j \llbracket \sigma \rrbracket \\ \operatorname{in} \operatorname{OHR}(\mathcal{M}) \end{pmatrix} \iff \begin{pmatrix} f \text{ preserves} \\ \operatorname{every relation } R_i \end{pmatrix}$$
$$\implies \begin{pmatrix} f \text{ preserves} \\ \operatorname{the logical relation } L \end{pmatrix}$$

instantiate general construction with a set I and an interpretation s.t.

- 1. objects of $OHR(\mathcal{M})$ are pairs $(W, \{R_i \mid i \in \mathbb{I}\})$ + concreteness
- 2. for any logical relation $(L_{\sigma} \mid \sigma \in \text{Type})$ there exists $i_0 \in \mathbb{I}$ s.t.

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = L_{\sigma}$$

Then:

$$\begin{pmatrix} f : \llbracket \Gamma \rrbracket \to \mathrm{H} \hat{T} j \llbracket \sigma \rrbracket \\ \text{in } \mathrm{OHR}(\mathcal{M}) \end{pmatrix} \iff \begin{pmatrix} f \text{ preserves} \\ \text{every relation } R_i \end{pmatrix}$$
$$\implies \begin{pmatrix} f \text{ preserves} \\ \text{the logical relation } L \end{pmatrix}$$

Hence: every map in $OHR(\mathcal{M})$ is definable

instantiate general construction with a set I and an interpretation s.t.

- 1. objects of $OHR(\mathcal{M})$ are pairs $(W, \{R_i \mid i \in \mathbb{I}\})$ + concreteness
- 2. for any logical relation $(L_{\sigma} \mid \sigma \in \text{Type})$ there exists $i_0 \in \mathbb{I}$ s.t.

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = L_{\sigma}$$

Then:

$$\begin{pmatrix} f : \llbracket \Gamma \rrbracket \to \mathrm{H} \hat{T} j \llbracket \sigma \rrbracket \\ \text{in } \mathrm{OHR}(\mathcal{M}) \end{pmatrix} \iff \begin{pmatrix} f \text{ preserves} \\ \text{every relation } R_i \end{pmatrix}$$
$$\implies \begin{pmatrix} f \text{ preserves} \\ \text{the logical relation } L \end{pmatrix}$$

Hence: every map in $OHR(\mathcal{M})$ is definable

Hence: $OHR(\mathcal{M})$ is fully abstract

Strategy: suffices for full abstraction!

instantiate general construction with a set ${\mathbb I}$ and an interpretation s.t.

- 1. objects of $OHR(\mathcal{M})$ are pairs $(W, \{R_i \mid i \in \mathbb{I}\})$
- 2. for any logical relation $(L_{\sigma} \mid \sigma \in \text{Type})$ there exists $i_0 \in \mathbb{I}$ s.t.

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = L_{\sigma}$$

Strategy: suffices for full abstraction!

instantiate general construction with a set I and an interpretation s.t.

- 1. objects of $OHR(\mathcal{M})$ are pairs $(W, \{R_i \mid i \in \mathbb{I}\})$ + concreteness
- 2. for any logical relation $(L_{\sigma} \mid \sigma \in \text{Type})$ there exists $i_0 \in \mathbb{I}$ s.t.

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = \textit{L}_{\sigma}$$

How do we choose \mathbb{I} and [-]?

Strategy: suffices for full abstraction!

instantiate general construction with a set I and an interpretation s.t.

- 1. objects of $OHR(\mathcal{M})$ are pairs $(W, \{R_i \mid i \in \mathbb{I}\})$ + concreteness
- 2. for any logical relation $(L_{\sigma} \mid \sigma \in \text{Type})$ there exists $i_0 \in \mathbb{I}$ s.t.

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = \textit{L}_{\sigma}$$

How do we choose \mathbb{I} and [-]? The intuition:

$$\bullet \ \mathbb{I} = \left\{ \begin{array}{c} \mathsf{set} \ \mathsf{of} \ \mathsf{logical} \ \mathsf{relations} \\ \mathsf{over} \ \mathsf{OHR}(\mathcal{M}) \end{array} \right\}$$

Strategy: suffices for full abstraction!

instantiate general construction with a set I and an interpretation s.t.

- 1. objects of $OHR(\mathcal{M})$ are pairs $(W, \{R_i \mid i \in \mathbb{I}\})$ + concreteness
- 2. for any logical relation $(L_{\sigma} \mid \sigma \in \text{Type})$ there exists $i_0 \in \mathbb{I}$ s.t.

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = L_{\sigma}$$

How do we choose \mathbb{I} and [-]? The intuition:

•
$$\mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$$

• Interpretation: i₀ just looks up the required relation

•
$$\mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$$

• Interpretation: i₀ just looks up the required relation

A problem: circular dependencies!

•
$$\mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$$

• Interpretation: i₀ just looks up the required relation

A problem: circular dependencies!

define $\mathrm{OHR}(\mathcal{M})$

- $\mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$
- Interpretation: i₀ just looks up the required relation

A problem: circular dependencies!

define $OHR(\mathcal{M})$ every

choose index set \mathbb{I} so every logical relation over $OHR(\mathcal{M})$ appears

- $\mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$
- Interpretation: i₀ just looks up the required relation

define $\mathrm{OHR}(\mathcal{M})$ choose index set \mathbb{I} so every logical relation over $\mathrm{OHR}(\mathcal{M})$ appears

define "logical relation" \longleftarrow over $\mathrm{OHR}(\mathcal{M})$

- $\mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$
- Interpretation: i₀ just looks up the required relation

$$\bullet \ \mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$$

• Interpretation: i₀ just looks up the required relation

•
$$\mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$$

• Interpretation: *i*₀ just looks up the required relation

A problem: circular dependencies! **Solution**: relations over $OHR(\mathcal{M})$ are relations over \mathcal{M} choose family I so define $OHR(\mathcal{M})$ every possible relation over \mathcal{M} appears identify logical relations over $OHR(\mathcal{M})$ amongst these relations

objects: $(W \in \mathcal{M}, \{R_i \mid i \in \mathbb{I}\})$ + concreteness | maps: maps in \mathcal{M} preserving all R_i

The OHR construction $\mathrm{OHR}(\mathcal{M})$

objects: $(W \in \mathcal{M}, \{R_i \mid i \in \mathbb{I}\})$ + concreteness | maps: maps in \mathcal{M} preserving all R_i

1. Choose \mathbb{I} 'containing' every relation over \mathcal{M} , hence every relation over $\mathrm{OHR}(\mathcal{M}),\ldots$

objects: $(W \in \mathcal{M}, \{R_i \mid i \in \mathbb{I}\})$ + concreteness | maps: maps in \mathcal{M} preserving all R_i

- 1. Choose \mathbb{I} 'containing' every relation over \mathcal{M} , hence every relation over $\mathrm{OHR}(\mathcal{M}),\ldots$
- 2. ... so we can define an interpretation satisfying

$$\exists i_0 \in \mathbb{I} \ . \ \left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \beta \end{array} \right) = L_{\beta}$$

for every logical relation ($L_{\sigma} \mid \sigma \in \mathrm{Type}$) and base type β

objects: $(W \in \mathcal{M}, \{R_i \mid i \in \mathbb{I}\})$ + concreteness | maps: maps in \mathcal{M} preserving all R_i

- 1. Choose \mathbb{I} 'containing' every relation over \mathcal{M} , hence every relation over $\mathrm{OHR}(\mathcal{M}),\ldots$
- 2. ... so we can define an interpretation satisfying

$$\exists i_0 \in \mathbb{I} \ . \ \left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \beta \end{array} \right) = L_{\beta}$$

for every logical relation ($L_{\sigma} \mid \sigma \in Type$) and base type β

3. Prove by induction that

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = L_{\sigma}$$

for all types σ

objects: $(W \in \mathcal{M}, \{R_i | i \in \mathbb{I}\})$ + concreteness | maps: maps in \mathcal{M} preserving all R_i

- 1. Choose \mathbb{I} 'containing' every relation over \mathcal{M} , hence every relation over $\mathrm{OHR}(\mathcal{M}),\ldots$
- 2. ... so we can define an interpretation satisfying

$$\exists i_0 \in \mathbb{I} \cdot \left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \beta \end{array} \right) = L_{\beta}$$

for every logical relation ($L_{\sigma} \mid \sigma \in \text{Type}$) and base type β

3. Prove by induction that

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = L_{\sigma}$$

for all types σ

4. ... hence every map preserves every logical relation,

objects: $(W \in \mathcal{M}, \{R_i \mid i \in \mathbb{I}\})$ + concreteness | maps: maps in \mathcal{M} preserving all R_i

- 1. Choose \mathbb{I} 'containing' every relation over \mathcal{M} , hence every relation over $\mathrm{OHR}(\mathcal{M}),\ldots$
- 2. ... so we can define an interpretation satisfying

$$\exists i_0 \in \mathbb{I} \cdot \left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \beta \end{array} \right) = L_{\beta}$$

for every logical relation ($L_{\sigma} \mid \sigma \in \text{Type}$) and base type β

3. Prove by induction that

$$\left(\begin{array}{c} \text{relation at index } i_0 \\ \text{for interpretation of } \sigma \end{array}\right) = L_{\sigma}$$

for all types σ

- 4. ... hence every map preserves every logical relation,
- 5. ... hence every map is definable & the model is fully abstract

The OHR construction

Codomain fibration on presheaves

vvv relations are Kripke relations of varying arity

1. A construction that takes a signature and a well-pointed model and returns a fully abstract model

- 1. A construction that takes a signature and a well-pointed model and returns a fully abstract model
- 2. Holds over Set whenever there's a name for every $x \in [\beta]$.

- 1. A construction that takes a signature and a well-pointed model and returns a fully abstract model
- 2. Holds over Set whenever there's a name for every $x \in [\![\beta]\!]$.

Key ideas

- 1. A construction that takes a signature and a well-pointed model and returns a fully abstract model
- 2. Holds over Set whenever there's a name for every $x \in [\![\beta]\!]$.

Key ideas

1. Cut out bad maps using the general construction: pair objects with families of concrete relations

- 1. A construction that takes a signature and a well-pointed model and returns a fully abstract model
- 2. Holds over Set whenever there's a name for every $x \in [\![\beta]\!]$.

Key ideas

- 1. Cut out bad maps using the general construction: pair objects with families of concrete relations
- 2. Preserving every logical relation \implies ensures definability

- 1. A construction that takes a signature and a well-pointed model and returns a fully abstract model
- 2. Holds over Set whenever there's a name for every $x \in [\![\beta]\!]$.

Key ideas

- 1. Cut out bad maps using the general construction: pair objects with families of concrete relations
- 2. Preserving every logical relation \implies ensures definability
- 3. Avoid circularity by choosing indexing set \mathbb{I} carefully.

- 1. A construction that takes a signature and a well-pointed model and returns a fully abstract model
- 2. Holds over Set whenever there's a name for every $x \in [\![\beta]\!]$.

Key ideas

- 1. Cut out bad maps using the general construction: pair objects with families of concrete relations
- 2. Preserving every logical relation \implies ensures definability
- 3. Avoid circularity by choosing indexing set \mathbb{I} carefully.

Still to do

- 1. Weaken assumptions: well-pointedness, hull functor H, ...
- 2. Enrichment view recover recursion?
- 3. Universal property?

- 1. A construction that takes a signature and a well-pointed model and returns a fully abstract model
- 2. Holds over Set whenever there's a name for every $x \in [\![\beta]\!]$.

Key ideas

- 1. Cut out bad maps using the general construction: pair objects with families of concrete relations
- 2. Preserving every logical relation \implies ensures definability
- 3. Avoid circularity by choosing indexing set I carefully.

Still to do

philip.saville@cs.ox.ac.uk

- 1. Weaken assumptions: well-pointedness, hull functor H, ...
- 2. Enrichment view recover recursion?
- 3. Universal property?

•
$$\mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$$

• Interpretation: i₀ just looks up the required relation

- $\mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$
- Interpretation: i₀ just looks up the required relation

Avoid circularity! Quantify over enough relations so that

• $i \in \mathbb{I}$ is a tuple (\ldots, R, \ldots) with R a relation

- $\mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$
- Interpretation: i₀ just looks up the required relation

Avoid circularity! Quantify over enough relations so that

- $i \in \mathbb{I}$ is a tuple (\ldots, R, \ldots) with R a relation
- choose the semantic interpretation

$$\begin{pmatrix} \mathsf{carrier} \ \mathsf{of} \ \llbracket \beta \rrbracket \\ \mathsf{in} \ \mathsf{OHR}(\mathcal{M}) \end{pmatrix} := \begin{pmatrix} \mathsf{interpretation} \\ \mathsf{of} \ \beta \ \mathsf{in} \ \mathcal{M} \end{pmatrix}$$

$$\begin{pmatrix} \mathsf{relation} \ \mathsf{at} \ \mathsf{index} \\ (\dots, R, \dots) \ \mathsf{for} \ \llbracket \beta \rrbracket \end{pmatrix} := R$$

- $\mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$
- Interpretation: i₀ just looks up the required relation

Avoid circularity! Quantify over enough relations so that

- $i \in \mathbb{I}$ is a tuple (\ldots, R, \ldots) with R a relation
- choose the semantic interpretation

$$\begin{pmatrix} \mathsf{carrier} \ \mathsf{of} \ \llbracket \beta \rrbracket \\ \mathsf{in} \ \mathsf{OHR}(\mathcal{M}) \end{pmatrix} := \begin{pmatrix} \mathsf{interpretation} \\ \mathsf{of} \ \beta \ \mathsf{in} \ \mathcal{M} \end{pmatrix}$$

$$\begin{pmatrix} \mathsf{relation} \ \mathsf{at} \ \mathsf{index} \\ (\dots, R, \dots) \ \mathsf{for} \ \llbracket \beta \rrbracket \end{pmatrix} := R$$

• choose $i_0 := (\ldots, \underline{L}_{\beta}, \ldots);$

- $\mathbb{I} = \left\{ \begin{array}{c} \text{set of logical relations} \\ \text{over } \mathrm{OHR}(\mathcal{M}) \end{array} \right\}$
- Interpretation: i₀ just looks up the required relation

Avoid circularity! Quantify over enough relations so that

- $i \in \mathbb{I}$ is a tuple (\ldots, R, \ldots) with R a relation
- choose the semantic interpretation

$$\begin{pmatrix} \mathsf{carrier} \ \mathsf{of} \ \llbracket \beta \rrbracket \\ \mathsf{in} \ \mathsf{OHR}(\mathcal{M}) \end{pmatrix} := \begin{pmatrix} \mathsf{interpretation} \\ \mathsf{of} \ \beta \ \mathsf{in} \ \mathcal{M} \end{pmatrix}$$

$$\begin{pmatrix} \mathsf{relation} \ \mathsf{at} \ \mathsf{index} \\ (\dots, R, \dots) \ \mathsf{for} \ \llbracket \beta \rrbracket \end{pmatrix} := R$$

• choose $i_0 := (\dots, L_{\beta}, \dots)$; prove for all σ by induction