Dipolar interactions in dense ensembles of Nitrogen-Vacancy centers

Clément Pellet-Mary, Maxime Perdriat, Gabriel Hétet

Nano-optics group

Team main activities

Dipole-dipole coupling between dense ensemble of spins

→ Modification of the spin population dynamics

Levitation of a micro-diamond in a Paul trap

→ Coupling the spin levels to the mechanical degree of freedom of the diamond

Optical properties of NV⁻ centers

NV⁻ center electronic structure

NV center spin sub-levels

Optically Detected Magnetic Resonance (ODMR)

Modification of the spin T_1 with dense ensemble

When reaching a critical (~ 1 ppm) NV density :

- Lifetimes get shorter
- Polarization profile get non-exponential

Dipole-dipole coupling $J \approx 30$ kHz for [NV]=3 ppm

 \rightarrow Depolarization slower than the flip-flop rate

Modification of the spin T_1 due to resonant dipole coupling

Dipole-dipole coupling in zero magnetic field

$$|+\rangle = \frac{|+1\rangle + |-1\rangle}{\sqrt{2}} \quad |-\rangle = \frac{|+1\rangle - |-1\rangle}{\sqrt{2}}$$

- Level anti-crossing in zero magentic field
- → New single-spin Hamiltonian eigenstates
- \rightarrow Modification of the dipole-dipole interaction
- \bullet Near-resonance of double-flip terms $|0,+\rangle\!\langle -,0|$

Conclusion

- The NV⁻ center is an optically active defect in diamond which allows an optical control and readout of its spin state.
- The depolarization of the spins is modified in dense ensemble due to dipole-dipole coupling.
- This effect is even stronger in zero-magnetic field.

Bonus: Magnetometry in zero magnetic field

