Lecture 7: Operational Semantics I

Yu Feng Winter 2024

What does a program mean?

- We have learned how to specify syntax.
 - Example: let $x = lambda \ lambda$ is not a valid λ^+ program
 - But we have not yet talked about what the meaning of a program is.
- First question: What is the meaning of a program in λ^+ ?
 - Answer: The value the program evaluates to
 - Example: let x=3 in x Value:3

- Option 1: Don't worry too much
- Developer of language has some informal concept of the intended meaning, implement a compiler/interpreter that does whatever the language designers believe to be reasonable.
- Then, declare the meaning to be whatever the compiler produces
- A terrible idea

- Why is this such a bad idea?
- This approach promotes bugs/inconsistencies to expected behavior.
- Hides specification of language in many implementation details
- Makes it almost impossible to implement another compiler that accepts the same language
- Unfortunately, this is (still) a very common approach
- Languages designed this way: C, C++ (to some extent), Perl, PHP, JavaScript, ...

- Option 2: Try to write out precisely the meaning of each language construct in documentation, then follow this description in implementation
- Example: Describe the meaning of $e_1 + e_2$ in the λ^+ language:
- First attempt: "This evaluates to the sum of e_1 and e_2 "
- What if e_1 or e_2 is not a number?
- Second attempt: "This evaluates to the sum if both e_1 and e_2 evaluate to numbers, and is stuck if either of them evaluate to a list"
- What if e is lambda?...

- Written language is, by nature, ambiguous. It is very difficult to fully specify the meaning of all language constructs this way
- Easy to miss cases
- Results in long, complicated and difficult to understand specifications, but an improvement over no specification

Written specification in practice

• Let's look at the ISO C++ standard: page 34:

©18O/IEC N4582

A declaration is a definition unless it declares a function without specifying the function's body (8.4), it contains the extern specifier (7.1.1) or a linkage-specification^{2b} (7.5) and neither an initializer nor a function-body, it declares a static data member in a class definition (9.2, 9.4), it is a class name declaration (9.1), it is an opaque-enum-declaration (7.2), it is a template-parameter (14.1), it is a parameter-declaration (8.3.5) in a function declarator that is not the declarator of a function-definition, or it is a typedef declaration (7.1.3), an alias-declaration (7.1.3), a using-declaration (7.3.3), a static assert-declaration (Clause 7), an attribute-declaration (Clause 7), an empty-declaration (Clause 7), a using-directive (7.3.4), an explicit instantiation declaration (14.7.2), or an explicit specialization (14.7.3) whose declaration is not a definition.

[Example: all but one of the following are definitions:

```
// defines a
 int a:
                                     // defines o
 extern const int c = 1:
 int f(int x) { return x+a; }
                                     // defines f and defines x
  struct S { int a; int b; };
                                    // defines 3, S::a, and S::b
                                     // defines X
  atruct X {
                                     // defines non-static data member x
   int x:
                                     // declares static data member y
    static int y;
   X(): x(0) \{ \}
                                     // defines a constructor of X
 };
 int X::y = 1;
                                     // defines X::y
  enum { up, down };
                                     // defines up and down
                                     // defines N and N::d.
 namespace N { int d; }
                                     // defines 111
 namespace N1 = N;
                                     // defines anX
 X anX;
whereas these are just declarations:
 extern int a:
                                     // declares a
  extern const int c;
                                     // declares c
  int f(int);
                                     // declares f
  struct S;
                                     // declares 3
  typedef int Int;
                                     // declares Int
  extern X anotherX;
                                     // declares anotherX
  using N∷d;
                                     // declares d
```

Machine model

- To study the operational semantics, we must understand what our machine model will require.
- Need to know when our machine is "done" executing a program: the final expressions are values.

Values in λ^+

- We define a value in an inductive way:
 - Any integer i is a value.
 - Boolean constants true and false are values
 - Any lambda expression lambda x. e is a value.
 - Nil is a value.
 - If v_1 , v_2 are values, then $v_{1::}v_2$ are values.
 - No other expression is a value.

Values in λ^+

• Those expressions are values:

```
10 lambda x. 1+2 true Nil 10:: lambda y. y
```

• Those expressions are NOT values:

$$1+2$$
 (lambda x . $1+2$)10 if Nil then 10 else 20 ($1+2$) :: Nil

Inference rules

```
Hypothesis 1
...
Hypothesis N
⊢ Conclusion
```

• This means "given hypothesis1,...N, the conclusion is provable"

Miterm 1 grade
$$>= 70$$
...
Final grade $>= 140$
 \vdash Final grade: A

- Operational semantics: define how program states are related to final values
- The *big-step* evaluation relation asserts that we can prove for any expression of the form e that the meaning of this expression will evaluate to v

$$e \Downarrow v$$

$$\overline{i \Downarrow i}$$
 Int

Any integer constant i will evaluate to itself

$$\frac{e_1 \Downarrow i_1 \qquad e_2 \Downarrow i_2}{e_1 + e_2 \Downarrow i_1 + i_2} \text{ Add}$$

if e_1 and e_2 both evaluate to integers, then $e_1 + e_2$ evaluates to the sum of those integers

$$\begin{array}{c} \text{Int} \\ \text{Add} \\ \hline \frac{1 \Downarrow 1}{1 + 2 \Downarrow 3} & \frac{2 \Downarrow 2}{4 \Downarrow 4} \\ \hline 1 + 2 \Downarrow 3 & 4 \Downarrow 4 \\ \hline (1 + 2) + 4 \Downarrow 7 \end{array} \text{Add} \\ \text{Add} \\ \end{array}$$

$$\frac{e_1 \Downarrow i_1 \qquad e_2 \Downarrow i_2 \qquad i_1 \odot i_2 \text{ holds}}{e_1 \odot e_2 \Downarrow \mathsf{true}} \, \mathsf{PREDTRUE}$$

$$\frac{e_1 \Downarrow i_1 \qquad e_2 \Downarrow i_2 \qquad i_1 \odot i_2 \text{ does not hold}}{e_1 \odot e_2 \Downarrow \mathsf{false}} \text{ PredFalse}$$

The predicate operators $\odot \in \{=, <, >\}$ evaluate to false if the predicate does not hold and to true otherwise

$$\frac{e_1 \Downarrow \mathsf{true}}{\mathsf{if} \ e_1 \, \mathsf{then} \ e_2 \, \mathsf{else} \, e_3 \Downarrow v} \ \mathsf{IFTRUE}$$

$$\frac{e_1 \Downarrow \mathsf{false}}{\mathsf{if}\ e_1 \mathsf{then}\ e_2 \mathsf{else}\ e_3 \Downarrow v} \ \mathsf{IFFALSE}$$

 $\overline{\mathsf{lambda}\,x.\;e \Downarrow \mathsf{lambda}\,x.\;e} \; \mathsf{Lambda}$

Lambda abstractions just evaluate to themselves

$$\frac{e_1 \Downarrow \mathsf{lambda}\, x. \ e_1' \qquad e_2 \Downarrow v \qquad [x \mapsto v] e_1' \Downarrow v'}{(e_1 \ e_2) \Downarrow v'} \ \mathsf{APP}$$

To evaluate the application (e_1 e_2), we first evaluate the expression e_1 . The operational semantics "get stuck" if e_1 is not a lambda abstraction. This notion of "getting stuck" in the operational semantics corresponds to a runtime error. Assuming the expression e_1 evaluates to a lambda expression, and e_2 evaluates to a value v, we evaluate the application expression by binding v to x and then evaluating the expression $[x \rightarrow v]e'_1$ as in β -reduction in lambda calculus.

$$\frac{e_1 \Downarrow v_1 \qquad [x \mapsto v_1]e_2 \Downarrow v_2}{\det x = e_1 \text{ in } e_2 \Downarrow v_2} \text{ Let}$$

First evaluate the initial expression e_1 , which yields value v_1 . Next, we substitute x with v_1 in e_2 , and evaluate it to v_2 , which becomes the result of evaluating the entire let expression.