Summary of TTK4150 Nonlinear Control Systems

Morten Fyhn Amundsen & Erik Liland

August 31, 2016

Contents

1	Math							
	1.1	Metric norms	2					
	1.2	Boundedness and \mathcal{L}_p -norms	3					
	1.3	Properties of norms	3					
	1.4	Matrix properties	3					
2	Seconds-order systems							
	2.1	Behaviour near equilibria	4					
	2.2	Periodic orbits	4					
3	Lyapunov stability							
	3.1	Autonomous systems	5					
	3.2	Invariance principle	6					
	3.3	Linear systems and linearisation	6					
	3.4	Comparison functions	6					
	3.5	Nonautonomous systems	7					
	3.6	Converse theorems	8					
	3.7	Input-to-state stability	8					
4	Passivity							
	4.1	Memoryless functions	9					
	4.2	State models	9					
	4.3	\mathcal{L}_2 and Lyapunov stability $\dots \dots \dots \dots \dots \dots$	9					
	4.4	Feedback systems	9					

Stability of perturbed systems						
5.1	Vanishing perturbation	10				
5.2	Nonvanishing perturbation	11				
Perturbation theory and averaging						
6.1	Periodic perturbation of autonomous systems	11				
6.2	Averaging	11				
Feedback linearization						
7.1	Input-output linearization	12				
7.2	Full-state linearization	13				
7.3	State feedback control	13				
Nonlinear design tools						
8.1	Backstepping	13				
8.2	Passivity-based control	14				
do						
• Estimate of R_A						
• K/KL-based stability (p28 slide6)						
• L/L-infinity stability						
• D	ef. 5.1					
• Theorem 10.4						
Nonvanishing perturbation.						
• Tl	heorem 6.3					
	5.1 5.2 Per 6.1 6.2 Feed 7.1 7.2 7.3 Non 8.1 8.2 • K • L/ • D • TI • N	5.1 Vanishing perturbation $$				

1 Math

1.1 Metric norms

General p-norm

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 (1)

Taxicab norm (p = 1)

$$||x||_1 = \sum_{i=1}^n |x_i| \tag{2}$$

Euclidean norm (p = 2)

$$||x||_2 = \sqrt{x_1^2 + \dots + x_n^2} \tag{3}$$

1.2 Boundedness and \mathcal{L}_p -norms

 \mathcal{L}_p -norm

$$||f||_p = \left(\int_a^b |f(\tau)|^p d\tau\right)^{1/p} \tag{4}$$

 \mathcal{L}_{∞} -norm

$$||f||_{\infty} = \sup_{a \le t \le b} |f(t)| \tag{5}$$

Boundedness

$$f \in \mathcal{L}_p \Leftrightarrow \left\| f \right\|_p < \infty \tag{6}$$

1.3 Properties of norms

Hölder's inequality

$$||fg||_{1} \le ||f||_{p} ||g||_{q} \tag{7}$$

with $\frac{1}{p} + \frac{1}{q} = 1$.

1.4 Matrix properties

Singular A matrix is *singular* iff its determinant is zero.

Skew-symmetry A matrix *A* is *skew-symmetric* iff

$$-A = A^T. (8)$$

Jacobian The *Jacobian* matrix is defined by

$$J = \frac{\mathrm{d}f}{\mathrm{d}x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}. \tag{9}$$

Hurwitz A matrix *A* is *Hurwitz* if all eigenvalues of *A* satisfy $\Re \lambda_i < 0$.

Positive definite A matrix being *positive definite* is equivalent to

- all its eigenvalues being positive,
- all its leading principal minors being positive.

In addition, we have

$$\lambda_{\min}(H)x^T x \le x^T H x \le \lambda_{\max}(H)x^T x \tag{10}$$

for a positive definite $x^T H x$.

2 Seconds-order systems

$$\dot{x} = f(x), \quad x \in \mathbb{R}^2 \tag{11}$$

2.1 Behaviour near equilibria

Linearise and find eigenvalues at each equilibrium:

- Real λ
 - $-\lambda_1 < \lambda_2 < 0 \implies$ Stable node.
 - 0 < λ₁ < λ₂ ⇒ Unstable node.
 - $-\lambda_1 < 0 < \lambda_2 \implies$ Saddle point.
- Complex $\lambda_{1,2} = \alpha \pm \beta i$
 - $-\alpha = 0 \implies \text{Center.}$
 - $-\alpha < 0 \implies$ Stable focus.
 - $-\alpha > 0 \implies$ Unstable focus.

2.2 Periodic orbits

Lemma 2.1 (Poincaré-Bendixson criterion) Consider (11). Let M be a bounded, closed subset of the plane such that

- *M* contains no equilibria, or *one* equilibrium for which the eigenvalues of the Jacobian has positive real parts,
- All trajectories in *M* stay in *M*.

Then, *M* contains a periodic orbit.

Lemma 2.2 (Bendixson (negative) criterion) If

$$\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \tag{12}$$

is not zero and does not change sign on a simply connected region \mathbb{D} , then (11) has no periodic orbits in \mathbb{D} .

Corollary 2.1 (The index method)

- Nodes, foci, and centers have index 1.
- Saddle points have index -1.

The sum of indices of all equilibria within a periodic orbit is always 1.

3 Lyapunov stability

Lyapunov function (LF) V(x) is an LF iff

- $V \in C^1$
- V(0) = 0 $V(x) > 0 \quad \forall \quad x \in \mathbb{D} \setminus \{0\}$
- $\dot{V}(0) = 0$ $\dot{V}(x) \le 0 \quad \forall \quad x \in \mathbb{D} \setminus \{0\}$

Strict Lyapunov function (SLF) V(x) is an SLF iff it is an LF and

•
$$\dot{V}(x) < 0 \quad \forall \quad x \in \mathbb{D} \setminus \{0\}$$

3.1 Autonomous systems

Theorem 4.1 (Direct Lyapunov method)

- If \exists an LF for the origin, then the origin is stable.
- If \exists an SLF for the origin, then the origin is asymptotically stable.

Theorem 4.2 (GAS) If \exists an SLF V for the origin and V is radially unbounded, then the origin is globally asymptotically stable.

3.2 Invariance principle

Invariant set A set M is an *invariant set* w.r.t. $\dot{x} = f(x)$ if

$$x(0) \in M \implies x(t) \in M \quad \forall t \in \mathbb{R}.$$
 (13)

(Any solution in *M* stays in *M* for all future and past.)

Theorem 4.4 (LaSalle's theorem) If $\exists V : \mathbb{D} \to \mathbb{R}$ such that

- $V \in C^1$,
- $\exists c > 0$ such that $\Omega_c = \{x \in \mathbb{R}^n | V(x) \le c\} \subseteq \mathbb{D}$ is bounded,
- $\dot{V}(x) \leq 0 \quad \forall \quad x \in \Omega_c$.

Let $E = \{x \in \Omega_c | \dot{V}(x) = 0\}$. Let M be the largest invariant set in E. Then

$$x(0) \in \Omega_c \implies x(t) \xrightarrow{t \to \infty} M.$$
 (14)

Corollary 4.1 Let $x^* = 0$ for $\dot{x} = f(x)$. If for an LF V(x) we have $\dot{V}(x) \le 0$ on D: Let $S = \{x \in D | \dot{V}(x) = 0\}$ and only $x(t) \equiv 0$ can stay in S, then x = 0 AS.

Corollary 4.2 If corollary 4.1 holds with $D = \mathbb{R}^n$, then x = 0 GAS.

3.3 Linear systems and linearisation

Theorem 4.7 (Lyapunov's indirect method) Let $x^* = 0$ for $\dot{x} = f(x)$ where $f : \mathbb{D} \to \mathbb{R}^n$ satisfies $f \in \mathbb{C}^1$ and \mathbb{D} is a neighborhood of the origin. Let

$$A = \frac{\partial f}{\partial x}(x)\big|_{x=0} \tag{15}$$

and λ_i be the eigenvalues of A. Then

- 1. $\Re \lambda_i < 0$ for all $\lambda_i \implies x = 0$ AS.
- 2. $\Re \lambda_i > 0$ for any $\lambda_i \implies x = 0$ unstable.

3.4 Comparison functions

Class \mathcal{K} **function** A continuous function $\alpha:[0,a)\to[0,\infty)$ belongs to class \mathcal{K} iff

- it is stricly increasing,
- $\alpha(0) = 0$.

Class \mathcal{K}_{∞} **function** A continuous function $\alpha:[0,a)\to[0,\infty)$ belongs to class \mathcal{K}_{∞} iff

- it is of class \mathcal{K} ,
- $a = \infty$,
- $\alpha(r) \xrightarrow{r \to \infty} \infty$.

Class \mathcal{KL} **function** A continuous function $\beta:[0,a)\times[0,\infty)\to[0,\infty)$ belongs to class \mathcal{KL} if for each fixed s

• $\beta(r, s)$ is a class \mathcal{K} function w.r.t. r,

and for each fixed r

- $\beta(r, s)$ is decreasing w.r.t. s,
- $\beta(r,s) \xrightarrow{s \to \infty} 0$.

3.5 Nonautonomous systems

$$\dot{x} = f(t, x), \quad f: [0, \infty) \times \mathbb{D} \to \mathbb{R}^n$$
 (16)

Decrescentness V(t,x) is decrescent iff

$$V(t,0) = 0$$

$$V(t,x) \le W_2(x)$$

$$\forall t \ge 0, \text{ for some pos. def. } W_2(x).$$
(17)

Theorem 4.8–4.9 Let $V:[0,\infty)\times\mathbb{D}\to\mathbb{R}$ and $V\in C^1$ for (16). Then $x^*=0$ is

	S	US	UAS	GUAS
\overline{V}	PD	PD, decr.	PD, decr.	PD, decr., RU
\dot{V}	NSD	NSD	ND	ND
$\forall x \in$	\mathbb{D}	\mathbb{D}	\mathbb{D}	\mathbb{R}^n

(PD = positive definite, decr. = decrescent, RU = radially unbounded, NSD = negative semidefinite, ND = negative definite.)

Theorem 4.10 (exponential stability) If $\exists a, k_1, k_2, k_3 > 0$ such that

- $V \in C^1$
- $k_1 ||x||^a \le V(x) \le k_2 ||x||^a \quad \forall \ x \in \mathbb{D}$
- $\dot{V}(x) \leq -k_3||x||^a \quad \forall x \in \mathbb{D}$

then x = 0 ES. If $\mathbb{D} = \mathbb{R}^n$, x = 0 is GES.

3.6 Converse theorems

Corollary 4.3 The origin of $\dot{x} = f(x)$ is ES iff *A* is Hurwitz, where

$$A = \left[\frac{\partial f}{\partial x} \right] \bigg|_{x=0}. \tag{18}$$

3.7 Input-to-state stability

$$\Sigma: \quad \dot{x} = f(t, x, u) \tag{19}$$

Theorem 4.19 Let $V:[0,\infty)\times\mathbb{R}^n\to\mathbb{R}$ be cont. diff.able such that

$$\alpha_1(||x||) \le V(t,x) \le \alpha_2(||x||) \tag{20}$$

$$\dot{V} \le -W_3(x) \quad \forall \quad ||x|| \ge \rho\left(||u||\right) > 0 \tag{21}$$

 $\forall (t, x, u) \in [0, \infty) \times \mathbb{R}^n \times \mathbb{R}^m$, where

- $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$,
- $\rho \in \mathcal{K}$, and
- $W_3(x)$ is a cont. pos. def. function on \mathbb{R}^n .

Then, the system is ISS with $\gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho$.

ISS vs. 0-GUAS

$$\Sigma ISS \implies \Sigma 0 - GUAS$$
 (22)

$$\neg(\Sigma \text{ 0-GUAS}) \implies \neg(\Sigma \text{ ISS}) \tag{23}$$

Lemma 4.6 (ISS vs. 0-GES) For (19) with $f \in C^1$ and f globally Lipschitz in (x, u), then

$$\Sigma \text{ 0-GES } \Longrightarrow \Sigma \text{ ISS.}$$
 (24)

Lemma 4.7 The cascade of a GUAS and an ISS system is ISS. (Output of GUAS is the input of ISS.)

4 Passivity

$$\dot{x} = f(x, u) \tag{25}$$

$$y = h(x, u) \tag{26}$$

4.1 Memoryless functions

Definition 6.1 The system y = h(t, u) is

- passive if $u^T y \ge 0$,
- lossless if $u^T y = 0$,
- input-feedforward passive if $u^T y \ge u^T \phi(u)$ for some $\phi(u)$,
- input strictly passive if it is IFP and $u^T \phi(u) > 0 \ \forall \ y \neq 0$,
- output-feedback passive if $u^T y \ge y^T \rho(y)$ for some $\rho(y)$,
- output strictly passive if it is OFP and $y^T \rho(y) > 0 \ \forall \ y \neq 0$.

4.2 State models

Definition 6.3 The system (25)–(26) with storage function $V(x) \ge 0$ is

- passive if $u^T y \ge \dot{V}$,
- lossless if $u^T y = \dot{V}$,
- input-feedforward passive if $u^T y \ge \dot{V} + u^T \phi(u)$ for some function ϕ ,
- input strictly passive if it is IFP with $u^T \phi(u) > 0 \ \forall \ u \neq 0$,
- output-feedback passive if $u^T y \ge \dot{V} + y^T \rho(y)$ for some function ρ ,
- output strictly passive if it is OFP with $y^T \rho(y) > 0 \ \forall \ y \neq 0$,
- strictly passive if $u^T y \ge \dot{V} + \psi(x)$ for some pos. def ψ .

4.3 \mathcal{L}_2 and Lyapunov stability

Lemma 6.5 (finite-gain \mathcal{L}_2 **stable)** If a system is output strictly passive with $\rho(y) = \delta y$ with $\delta > 0$ then it is finite-gain \mathcal{L}_2 stable with gain $\gamma \leq \delta^{-1}$.

Definition 6.5 (zero-state observability) The system (25)–(26) is zero-state observable if only the solution $x(t) \equiv 0$ of $\dot{x} = f(x,0)$ can stay in $S = \{x \in \mathbb{R}^n | h(x,0) = 0\}$.

4.4 Feedback systems

Theorem 6.1 The feedback connection of two passive systems is passive, with $V = V_1 + V_2$.

Figure 1: Feedback connection

Theorem 6.2 (\mathcal{L}_2 -stability of feedback connection) If H_1 and H_2 satisfy

$$e_i^T y_i \ge \dot{V}_i + \epsilon_i e_i^T e_i + \delta_i y_i^T y_i \tag{27}$$

and

$$\epsilon_1 + \delta_2 > 0 \text{ and } \epsilon_2 + \delta_1 > 0$$
 (28)

then the feedback connection is finite-gain \mathcal{L}_2 -stable.

5 Stability of perturbed systems

We consider perturbed systems on the form

$$\dot{x} = f(t, x) + g(t, x) \tag{29}$$

with nominal systems

$$\dot{x} = f(t, x). \tag{30}$$

5.1 Vanishing perturbation

Lemma 9.1

- The origin is an ES equilibrium of the nominal system.
- V(t, x) is an LF of the nominal system, and satisfies

$$c_1 ||x||^2 \le V(t, x) \le c_2 ||x||^2$$
 (31)

and

$$\left\| \frac{\partial V}{\partial x} \right\| \le c_4 \|x\| \,. \tag{32}$$

• The perturbation q(t, x) satisfies

$$\|g(t,x)\| \le \gamma \|x\|, \quad \gamma < \frac{c_3}{c_4}.$$
 (33)

Then $x^* = 0$ of the perturbed system is ES. If the assumptions hold globally, x = 0 is GES.

5.2 Nonvanishing perturbation

6 Perturbation theory and averaging

$$\dot{x} = f(x) + \epsilon g(t, x, \epsilon) \tag{34}$$

6.1 Periodic perturbation of autonomous systems

Definition of $P_{\epsilon}(x)$: $\phi(t; t_0, x_0, \epsilon)$ is the solution of (34) that starts at (t_0, x_0) . $P_{\epsilon}(x)$ is

$$P_{\epsilon}(x) = \phi(T; 0, x, \epsilon) \tag{35}$$

Lemma 10.1 The system (34) has a T-periodic solution iff

$$x = P_{\epsilon}(x) \tag{36}$$

has a solution.

6.2 Averaging

7 Feedback linearization

Consider a class of nonlinear systems of the form

$$\dot{x} = f(x) + G(x)u$$

$$y = h(x)$$

$$u = \alpha(x) + \beta(x)v$$

$$z = T(x)$$
(37)

where *u* is a state feedback conboller, and *T* is a change of variables.

To be able to cancel nonlinearities with feedback the input and non-linearities must appear together as a sum $\lambda(x) + u$ or as a product $\lambda(x)u$, where the matrix $\lambda(x)$ is non-singular in the domain of interest, and $u = \beta(x)v$, $\beta(x) = \lambda^{-1}$.

Definition 13.1 A nonlinear system as (37) where $f: D \to \mathbb{R}^n$ and $G: D \to \mathbb{R}^{n \times p}$ are sufficiently smooth on a domain $D \subseteq \mathbb{R}^n$, is said to be feedback linearizable (or input-state linearizable) if there exists a diffeomorphism $T: D \to \mathbb{R}^n$ such that $D_z = T(D)$ contains the origin and the change of variables z = T(x) transforms (37) into the form

$$\dot{z} = Az + B\lambda(x)[u - \alpha(x)] \tag{38}$$

with (A, B) controllable and $\lambda(x)$ nonsingular $\forall x \in D$.

7.1 Input-output linearization

Consider (37) which satisfies Def. 13.1. The derivative \dot{y} is given by

$$\dot{y} = \frac{\partial h}{\partial x} \left(f(x) + g(x) \right) \triangleq L_f h(x) + L_g h(x) u \tag{39}$$

where $L_f h(x) \triangleq \frac{\partial h}{\partial x} f(x)$ is the *Lie Derivative* of h w.r.t. f.

Relative degree The relative degree is the number of times y must be differentiated until $u \in D_0 \subseteq D$ appears. A system must have a well defined relative degree to be input-output linearizable. (It must also be minimum phase.)

Diffeomorphism Wikipedia: In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are smooth.

Theorem 13.1 Consider (37) with relative degree $\rho \le n$ in D. If $\rho = n$, then for every $x_0 \in D$, a neighborhood N of x_0 exists such that the map

$$T(x) = \begin{bmatrix} h(x) \\ L_f h(x) \\ \vdots \\ L_f^{n-1} h(x) \end{bmatrix}$$

$$(40)$$

restricted to N, is a diffeomorphism on N. If $\rho < n$, then, for every $x_0 \in D$, a neighborhood N of x_0 and smooth function $\phi_1(x), \ldots, \phi_{n-\rho}(x)$ exist such that

$$\frac{\partial \phi_i}{\partial x} g(x) = 0, \text{ for } 1 \le i \le n - \rho, \forall x \in D_0$$
(41)

is satisfied $\forall x \in N$ and the map

$$z = T(x) = \begin{bmatrix} \phi_1(x) \\ \vdots \\ \phi_{n-\rho}(x) \\ --- \\ h(x) \\ \vdots \\ L_f^{\rho-1}h(x) \end{bmatrix} \triangleq \begin{bmatrix} \phi(x) \\ --- \\ \psi(x) \end{bmatrix} \triangleq \begin{bmatrix} \eta \\ --- \\ \xi \end{bmatrix}$$

$$(42)$$

restricted to N, is a diffeomorphism on N.

Method

- 1. Set system on following form $\dot{x} = f(x) + g(x)u$
- 2. Find the relative degree ρ , ($\rho = n \Rightarrow$ no internal dynamics)
- 3. Write the system in normal form (external and internal dynamics)
- 4. Choose *u* to cancel the nonlinearities
- 5. Analyze the zero-dynamics
- 6. Choose *v* to solve the control problem

7.2 Full-state linearization

7.3 State feedback control

8 Nonlinear design tools

8.1 Backstepping

General idea Start by selecting a state x_i , where i is some index. Given $\dot{x}_i = f_i(x)$, consider one of the other states present in f_i as the input. Let's call this state x_j . Find an expression $x_j = \phi_j(x)$ that stabilizes x_i . (Using a Lyapunov function $V(x_i)$.) Then, define $z_j = x_j - \phi_j(x)$, and rewrite the system in terms of x_i and z_j . Now, considering \dot{z}_j , use the same method to find an expression for a state present in \dot{z}_j to stabilize z_j and x_i . (Now with a Lyapunov function $V(x_i, z_j)$.) Keep going until you run out of states to stabilize.

8.2 Passivity-based control

$$\dot{x} = f(x, u) \tag{43}$$

$$y = h(x) \tag{44}$$

Theorem 14.4 If (43)–(44) is

- passive with an RU, pos. def. storage function,
- zero-state observable

then x=0 can be globally stabilized by $u=-\phi(y)$, with ϕ locally Lipschitz with $\phi(0)=0,\,y^T\phi(y)>0 \,\forall y\neq 0.$