南京大学2010年大学数学(第二层次)期终试卷(A卷)(2010年6月23日)

题号	 =	Ξ.	. 四	五	六	七	- 八 -	总 分
得分								

	得分	评卷人	<u>-</u> ,	简答题	(每小题	6分,	共 24	分)
1					10.00			

1. 设
$$\frac{x}{z} = e^{y+z}$$
, 计算 $x \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$.

2. 求过直线
$$\begin{cases} 4x - y + 3z - 1 = 0 \\ x + 5y - z + 2 = 0 \end{cases}$$
 且与平面 $2x - y + 5z + 2 = 0$ 垂直的平面方程.

3. 交換积分次序
$$I = \int_{-\sqrt{2}}^{\sqrt{2}} dx \int_{x^2}^{4-x^2} f(x,y) dy$$

4. 将线性无关向量组: $\alpha_1 = (1, 1, 0, 1)^T$, $\alpha_2 = (1, 0, 1, 0)^T$, $\alpha_3 = (1, 0, 0, -1)^T$ 规范正交化.

-	得分	评卷人	 水函数	$z = x^2 -$	$xy + y^2 -$	2x + y	的极值.	(10 分
	· "		 T.E.M.	~	<i>y</i>			

得分	评卷人	三、计質	i = m	$(x+y)^2 dS,$	其中 ∑	为球面	$x^2 + y^2 +$	$-z^2=a^2.$	(10分)
V			Σ	(w y) wo,	·				

得分	评卷人	四、计算三重积分 $I=\int_{\mathbb{R}}$	$II(x^2 + u^2) dx du dz$	其中 V 是由曲面	$\vec{\Pi} x^2 + y^2 = 2x$
			j (2 1 g)awagaz,		

与平面 z=2 所围成的区域. (10 分)

得分	评卷人

五、计算曲线积分 $I=\int_{\Gamma}(e^x\sin y-2y)dx+(e^x\cos y-2)dy$ 其中 Γ 为

 $x^2 + y^2 = ax$ (a > 0) 的从 A(a, 0) 到 O(0, 0) 的上半圆周. (10 分)

得分	评卷人

六、计算第二型曲面积分 $I=\iint\limits_{\Sigma}xdydz+ydzdx+zdxdy$, 其中 Σ 为圆柱

面 $x^2 + y^2 = a^2$ 介于 z = -1 与 z = 1 之间部分的外侧. (12 分)

ı			1		
	得分	评卷人	七、讨论 λ 取何值时,方程组	$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + x_2 + x_3 = 1 \end{cases}$	干解? 有解?
1			一、 內尼 / 取同值时, 刀径组	$\begin{cases} x_1 + \lambda x_2 + x_3 = \lambda \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$)LM+: HM+:
1			The state of the s	(11 1,12 1 1,113	

得分 i	平卷人 , , ,	12 分) 已知矩阵 A =	$\binom{2}{1}$	1	1	En 1	4	0	0 \	±9/N.
	,, (12 分) C 知起件 A =	1	1	a /	$\exists B = $	0	0	b.	111以;

(1) 求 a, b 的值. (2) 求正交矩阵 P, 使 $P^{-1}AP = B$.

南京大学2010年大学数学(第二层次)期终试卷(A卷)参考答案(2010年6月23日) 一、简答题(每小题6分, 共 24 分)

$$\frac{\partial z}{x} = \frac{z}{x(1+z)}, \frac{\partial z}{y} = -\frac{z}{1+z}$$

$$x\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0.$$

- 且与平面2x y + 5z + 2 = 0垂直的平面方程.
- 3. 交换积分次序 $I = \int_{-\sqrt{2}}^{\sqrt{2}} dx \int_{x^2}^{4-x^2} f(x,y) dy$ 解. $I = \int_0^2 dy \int_{-\sqrt{y}}^{\sqrt{y}} f(x,y) dx + \int_2^4 dy \int_{-\sqrt{4-y}}^{\sqrt{4-y}} f(x,y) dx$
- 4. 将线性无关向量组: $\alpha_1=(1,1,0,1)^T, \alpha_2=(1,0,1,0)^T, \alpha_3=(1,0,0,-1)^T$ 规范正交化. $\beta_1 = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0, 0)^T, \beta_2 = (\frac{\sqrt{6}}{6}, -\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{3}, 0)^T, \beta_3 = (\frac{\sqrt{3}}{6}, -\frac{\sqrt{3}}{6}, -\frac{\sqrt{3}}{6}, -\frac{\sqrt{2}}{2})^T$

二. 求函数 $z = x^2 - xy + y^2 - 2x + y$ 的极值. (10分)

$$\begin{cases} \frac{\partial z}{\partial x} = 2x - y - 2 = 0 \\ \frac{\partial z}{\partial y} = -x + 2y + 1 = 0 \end{cases}$$

得x=1,y=0.

又因为 $\frac{\partial^2 z}{\partial x^2} = 2$, $\frac{\partial^2 z}{\partial x \partial y} = -1$, $\frac{\partial^2 z}{\partial y^2} = 2$ 于是 $B^2 - AC = 3 < 0$,A > 0,故(1,0) 是极小值点

三. 计算 $I = \iint (x+y)^2 dS$, 其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$. (10分)

解. 由对称性可知: $\iint_{\Sigma} xydS = 0$ 并且 $\iint_{\Sigma} x^2dS = \iint_{\Sigma} y^2dS = \iint_{\Sigma} z^2dS = \frac{1}{3} \iint_{\Sigma} (x^2 + y^2 + z^2)dS = \frac{1}{3} \iint_{\Sigma} a^2dS = \frac{4}{3}\pi a^4$, 于是 $I = \iint_{\Sigma} (x^2 + y^2 + 2xy)dS = \frac{2}{3} \iint_{\Sigma} (x^2 + y^2 + z^2)dS = \frac{8}{3}\pi a^4$

四. 计算三重积分 $I=\iiint\limits_V(x^2+y^2)dxdydz$,其中V是由曲面 $x^2+y^2=2z$ 与平面 z=2 所 围成的区域. (10分)

解. 设 $x = r \cos \theta, y = r \sin \theta, z = z,$ 则

$$I = \int_0^{2\pi} d\theta \int_0^2 r^3 dr \int_{\frac{r^2}{2}}^2 dz$$
$$= 2\pi \int_0^2 (2 - \frac{r^2}{2}) r^3 dr$$
$$= \frac{16}{3} \pi$$

五、计算曲线积分 $I=\int_{\Gamma}(e^x\sin y-2y)dx+(e^x\cos y-2)dy$ 其中 Γ 为 $x^2+y^2=ax$ 的 从A(a,0) 到 O(0,0) 的上半圆周. (10分)

解. 连接OA, 与 Γ 一起构成一封闭曲线, 设其所围成的区域为D. 由Green 公式, 可得

$$\int_{\Gamma + OA} (e^x \sin y - 2y) dx + (e^x \cos y - 2) dy = \iint\limits_D 2dx dy = \frac{\pi a^2}{4}$$

又因为

$$\int_{CA} (e^x \sin y - 2y) dx + (e^x \cos y - 2) dy = 0$$

所以

$$I = \frac{\pi a^2}{4} - \int_{OA} (e^x \sin y - 2y) dx + (e^x \cos y - 2) dy = \frac{\pi a^2}{4}.$$

六、计算第二型曲面积分 $I=\int \int x dy dz+y dz dx+z dx dy$, 其中 Σ 为圆柱面 $x^2+y^2=a^2$ 介 于z = -1与z = 1之间部分的外侧. (12分)解. 设

$$\begin{split} & \Sigma_1 = \{(x,y,z)|x^2+y^2 \leq a^2, z=1\} \\ & \Sigma_2 = \{(x,y,z)|x^2+y^2 \leq a^2, z=-1\} \end{split}$$

则 $\Sigma + \Sigma_1 + \Sigma_2$ 构成一封闭曲面, 取外侧. 并记 $\Sigma + \Sigma_1 + \Sigma_2$ 所围成的立体区域为 Ω , 由奥高 公式,得

$$\iint_{\Sigma + \Sigma_1 + \Sigma_2} x dy dz + y dz dx + z dx dy$$

$$= \iiint_{\Omega} 3 dx dy dz$$

$$= 6\pi a^2$$

$$D_{xy} = \{(x,y)|x^2 + y^2 \le a^2\}$$

则

$$\iint\limits_{\Sigma_1} x dy dz + y dz dx + z dx dy = \iint\limits_{D_{xy}} dx dy = \pi a^2$$

$$\iint\limits_{\Sigma_2} x dy dz + y dz dx + z dx dy = -\iint\limits_{D_{xy}} -1 dx dy = \pi a^2$$

所以

$$I = 6\pi a^2 - \pi a^2 - \pi a^2 = 4\pi a^2$$

无解?有解?在有解的情形, 水其解 $x_1 + \lambda x_2 + x_3 = \lambda$ $x_1 + x_2 + \lambda x_3 = \lambda^2$ (12分)

解. 原方程组的系数矩阵行列式
$$\begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda + 2)(\lambda - 1)^2$$

(1) 当 $\lambda \neq -2$ 且 $\lambda \neq 1$ 时,有唯一解 $x_1 = -\frac{\lambda+1}{\lambda+2}, x_2 = \frac{1}{\lambda+2}, x_3 = \frac{(\lambda+1)^2}{\lambda+2}$ (2) 当 $\lambda = 1$ 时,原方程组与 $x_1 + x_2 + x_3 = 1$ 同解.对应的基础解系 $\alpha_1 = (-1, 0, 1)^T, \alpha_2 = (-1, 0, 1)^T$ $(-1,1,0)^T$,特解 $\alpha = (1,0,0)^T$.故通解为 $x = k_1\alpha_1 + k_2\alpha_2 + \alpha$. (3) 当 $\lambda = -2$ 时,r(A) = 2,增广矩阵的秩=3,因此原方程组无解.

八、(12分) 已知
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & a \end{pmatrix}$$
与 $B = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & b \end{pmatrix}$ 相似

(1) 求a, b的值.

(2) 求正交矩阵P, 使 $P^{-1}AP = B$.

解. (1) 由于相似的矩阵有相同的特征值与特征多项式, 故 $\lambda=4$ 为 $|\lambda I-A|=0$ 的根, 代 入后, 解得 a = 2; 又因为|A| = |B|, 解得b = 1. (2) A 的特征值为 $\lambda_1 = 4, \lambda_2 = \lambda_3 = 1$.

属于 $\lambda_1 = 4$ 的特征向量为 $\alpha_1 = (1,1,1)^T$,单位化,得 $p_1 = (\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3})^T$. 属于 $\lambda_2 = \lambda_3 = 1$ 的特征向量为 $\alpha_2 = (-1,1,0)^T$, $\alpha_3 = (-1,0,1)^T$;标准化,正交化后,得

$$\begin{split} p_2 &= (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0)^T, p_3 = (-\frac{\sqrt{6}}{6}, -\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{3})^T \\ & \Leftrightarrow P = \begin{pmatrix} \frac{\sqrt{3}}{3} & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & 0 & \frac{\sqrt{6}}{3} \end{pmatrix}, \text{ MI} P^{-1}AP = B. \end{split}$$