Sezgisel Arama

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

- · G.W.Leibniz:
- Özel buluşlara çok değer vermiyorum ve en çok arzu ettiğim şey, icat etme sanatını mükemmelleştirmek ve problemin çözümlerini bulmaktan ziyade, çözüm yöntemlerini bulmaktır; çünkü tek bir yöntem, sayısız çözümleri kapsar.
- · Fagenbaum ve Fieldman:
- Sezgisellik (sezgisel kurallar, sezgisel yöntem) problemin durum uzayı çok büyük olduğunda, çözümün aranmasını kesin biçimde sınırlayan herhangi bir kural, strateji, hile, sadeleştirme ve diğer etmenler kullanımıdır.
- Arama algoritmalarında sezgi: hedefe ne kadar yakın olduğumuza dair tahmin üretmek

Mehmet Fatih AMASYALI Yanay 7eka Ders Notları

Sezgisel Arama Algoritmaları

- · İlk En İyi Arama Best-first search
- A* arama
- Lokal arama Local search algorithms
 - Tepe Tırmanma- Hill-climbing search
 - Rasgele Başlangıçlı Tepe Tırmanma- Random-restart hill climbing
 - Paralel Tepe Tırmanma Local beam search
 - Benzetimli Tavlama Simulated annealing search
 - Genetik Algoritmalar

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

İlk En İyi Arama Algoritması Best first search

- kuyruk = [kök durum]
- bulundu = FALSE
- While (kuyruk <> boş) and (bulundu = FALSE)
 - Kuyruktan ilk durum'u (N) çek
 - Eğer N hedef durumsa, bulundu = TRUE
 - N'den gidilebilecek tüm durumları kuyruğun sonuna ekle
 - Kuyruktaki durumlara değerlendirme fonksiyonuna göre bir puan ver ve durumları bu puanlara göre küçükten büyüğe sırala

Mehmet Fatih AMASYALI Yanay 7eka Ders Notları

İlk En İyi Arama Algoritmasının Değerlendirme Fonksiyonu

- Değerlendirme fonksiyonu
- f(n) = h(n) (heuristic)
- = mevcut durumun hedefe tahmini uzaklığı
- Örnek h_{SLD}(n) = mevcut durumun (n) Hedefe kuş uçuşu mesafesi (SLD→Shortest Line Distance)
- Algoritma her adımda hedefe en yakın gözüken duruma ilerler.

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

İlk En İyi Arama'nın Analizi

- Complete? Hayır, Loop'lara takılabilir.
 (Örneğin hedefe aynı mesafede iki durum arasında sonsuz döngü)
- <u>Time?</u> O(b^m), Ancak iyi sezgisel kurallar büyük iyileşmeler sağlayabilir.
- Space? O(b^m), Tüm durumlar hafızada
- Optimal? Hayır

Mehmet Fatih AMASYALI Yanay 7eka Ders Notları

A* Arama

- Fikir: Kökten itibaren toplam maliyeti yüksek durumlara gidişi engellemek
- Değerlendirme Fonksiyonu:
- f(n) = g(n) + h(n)
- g(n) = Kökten mevcut duruma (n) gelişin maliyeti
- *h(n)* = Mevcut durumdan (n) hedefe gidişin tahmini maliyeti
- f(n) = Kökten hedefe n'den geçilerek gidişin tahmini maliyeti

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

A* Arama Örneği

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

A*'ın Analizi

- Complete? Evet, Loop'lara takılmaz. (?)
- <u>Time?</u> O(b^m), Ancak iyi sezgisel kurallar büyük iyileşmeler sağlayabilir.
- Space? O(bm), Tüm durumlar hafızada
- Optimal? Evet (ama değerlendirme fonksiyonlarına bağlı)

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

8 Taş İçin Sezgisel Kurallar

- $h_1(n)$ = Yerinde olmayan taşların sayısı
- h₂(n) = Taşların hedefteki yerlerine uzaklıkları toplamı (yatay ve dikey hane toplamları- Manhattan distance)

Start State

Goal State

- $h_1(S) = ?8$
- $h_2(S) = ?$ 3+1+2+2+2+3+3+2 = 18

Mehmet Fatih AMASYALI Yanay 7eka Ders Notları

31.03.2021

							1						
				0	1	2							
				3	4	5							
				6	7								
Hedef Durum													
0	1	2						0	2	5			
3	4	5						3	1	7			
6		7						6		4			
ŀ	h ₁ =1 h ₂ =1			h ₁ =5 h ₂ =1+1+1+2+2=7									
Mehmet Fatih AMASYALI	yildiz teknik üniversitesi bilgisayar mühendisliği bölümü												

Baskınlık / Dominance

- Geçerli iki sezgisel kural için tüm durumlarda
- $h_2(n) \ge h_1(n)$ ise
- h₂ baskındır / dominates h₁
- h_2^{-} arama için daha uygundur
- 8 taş için Arama Maliyetleri (test edilen durum sayısı ortalaması):
- d=12 IDS = 3,644,035 node $A^*(h_1)$ = 227 node $A^*(h_2)$ = 73 node
- d=24 IDS = çoook node $A^*(h_1) = 39,135$ node $A^*(h_2) = 1,641$ node

Mehmet Fatih AMASYALI Yanay 7eka Ders Notları

Esnetilmiş Problemler

- Orijinal problemden daha az kısıtlama içeren problemlere denir.
- 8 taş'ta bir taş istediği yere gidebilir dersek h₁(n) en kısa çözümü verir.
- 8 taş'ta bir taş istediği komşusuna gidebilir dersek h₂(n) en kısa çözümü verir.

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM

Yeni Problem

G: Hedef: Tüm W'ler B'lerin solunda Operatörler:

- 1) Bir taş yanındaki taşın diğer yanı boşsa üzerinden atlayabilir. Maliyeti 2.
- 2) Bir taş yanındaki boş yere gidebilir. Maliyeti 1.

H önerileri?

Mehmet Fatih AMASYALI Yanay 7eka Ders Notları

Şekil-1 → Farklı şehirler arasındaki yol bağlantısı. Bağlantılardaki değerler → Şehirler arasındaki mesafe

Şekil-2→ Farklı şehirlerin G şehrine olan doğrusal uzaklığı Amaç → S şehrinden G şehrine gitmek

Mehmet Fatih AMASYALI Yapay Zeka Ders Notlan

Bir Soru

 Aşağıdaki labirentlerde A*, Best-First, Düşük maliyetli arama, Enlemesine / Derinlemesine arama nereleri dener ? Nasıl yollar bulur?

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

• A* 'ın optimalliği

A* optimaldir, eğer:

 h gerçek maliyeti
 daha düşük tahmin
 ediyorsa ve tüm
 maliyetler pozitifse

- G optimal, G2 suboptimal çözüm olsun.
- Stack'te n (optimal yola götüren seçim) ve G2 var.
- A*, G2'yi n'den önce açar mı (stack'ten çeker mi) ?
- Eğer f(n)<f(G2) yi gösterirsek n, G2'den önce seçilir.

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

YILDIZ TEKNIK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

A* 'ın optimalliği

- f(G2) = g(G2) h(G2) = 0 olduğundan
- f(G) = g(G) h(G) = 0 olduğundan
- g(G2) > g(G) G2 optimal değil
- f(G2) > f(G) f(G2)=g(G2)+h(G2) ve
- f(G)=g(G)+h(G)
 h(n) ≤ h*(n) h* gerçek maliyet
- g(n) + h(n) ≤ g(n) + h*(n) iki tarafa da g(n) ekle
- $f(n) \le f(G)$ g(n)+h(n)=f(n) ve $g(n)+h^*(n)=f(G)$
- f(n) < f(G2) f(G2) > f(G) olduğundan

Mehmet Fatih AMASYALI Yanay Zeka Ders Notlari

Tek robotla keşif algoritması

- · Hedefleri belirle
- · Hedeflerin iyiliğini hesapla
- Hedefi seç
- Robot-hedef için yol bul (A*)
- · Robotu hedefine doğru ilerlet
- Robot hedefine varınca başa dön

Mehmet Fatih AMASYALI Yapay Zeka Ders Notlari

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Çok robotla keşif algoritması

- · Hedefleri belirle
- Hedeflerin her bir robot için iyiliklerini hesapla
- Robot-hedef eşlemesi yap
- Eşlenmiş robot-hedef ikilileri için yolları bul
- Robotları hedeflerine doğru ilerlet
- Robotlardan biri hedefine varınca başa dön

Mehmet Fatih AMASYALI Yanay 7eka Ders Notları

Özet

- Sezgisel arama yöntemleri, problem hakkındaki bilgiden yararlanırlar.
- Sezgi (Heuristic), hedefe ulaşmak için kalan maliyetin tahminidir.
- İyi bir sezgi, arama süresini, üstelden doğrusala indirir.
- A*, Al'da anahtar teknolojidir.

Mehmet Fatih AMASYALI Yanay 7eka Ders Notları

Kaynaklar

- http://aima.cs.berkeley.edu/
- http://www.cs.trincoll.edu/~ram/cpsc352/n otes/astar.html

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları