

1508NN2T 1508NN10 1508NN7Y 5559VH15 5559VH14 5559VH4Y 1636PP2Y 1636PP2Y 1645PY4Y 1645PY4Y 1645PY1Y 1645PY1Y 1845PY1Y 1886BE5Y 1886BE3Y 1886BE3Y 1886BE3Y

Серия микроконтроллеров 1986ВЕ9х на базе ядра ARM Cortex-M3

Серия 1986ВЕ9х

	1986BE91T	1986ВЕ92У	1986ВЕ93У			
Корпус	132 вывода	64 вывода	48 выводов			
Ядро	ARM Cortex-M3					
ПЗУ	128 Кбайт Flash					
ОЗУ	32 Кбайт					
Питание	2,23,6 B					
Частота	80 МГц					
Температура	Минус 60+125С					
USER IO	96	43	30			
USB	Device и Host (Full Speed и Low Speed) встроенный РНҮ					
UART	2	2	2			
CAN	2	2	2			
SPI	2	2	2			
I2C	1	1	1			
RC генераторы	8 МГц и 40 КГц	8 МГц и 40 КГц	8 МГц и 40 КГц			
Внеш. генераторы	216 МГц и 32 КГц	216 МГц и 32 КГц	216 МГц			
ADC	16 каналов	8 каналов	4 канала			
DAC	2	1	1			
Компаратор	3 входа	2 входа	2 входа			
Внешняя шина	32 разряда	8 разрядов	Нет			

132-х выводной корпус

64-х выводной корпус

48-ми выводной корпус

Структура доклада

- Процессорное ядро ARM Cortex-M3
- Режимы энергопотребления
- Цифровые интерфейсы
- Аналоговые блоки
- Режимы работы
- Средства отладки

Структура 1986ВЕ9х

Основное питание Ucc = 2,2...3,6B

Питание ядра DUcc = 1,8B Формируется встроенным LDO

Батарейное питание BUcc = 1,8...3,6B

Аналоговое питание AUcc = 2,4...3,6B

Структура 1986ВЕ9х

Ядро ARM Cortex-M3

В 2008 году Дизайн Центр Миландр приобрел исходные Verilog коды процессорного ядра ARM Cortex-M3.

- 32 разрядное RISC ядро
- Набор инструкций Thumb-2 (смесь 16-ти и 32-х битных инструкций)
- 16 х 32-битный регистров процессора
- Эффективная система прерываний
- Управление энергопотреблением
- Блок защиты памяти MPU
- Встроенный системный таймер SysTick
- Встроенные средства отладки
- Поддержка Операционной Среды

Контроллер NVIC

- Автоматическое сохранение и восстановление контекста
- Mexaнизм tail-chaining, ускоренное обработка нескольких прерываний
- Mexaнизм late-arrival, быстрый переход на более приоритетное прерывание
- Инструкция WFI, переход в SLEEP режим до прерывания
- Sleep-on-exit, переход в SLEEP после выполнения обработчика

Производительность

	1986BE91	LPC1768	STM32F103	SAM3U4E	LM3S9B90
Производитель	Миландр	NXP	STMicroelectronics	Atmel	Texas Instruments (LuminaryMicro)
Тактовая частота	80 МГц	100 МГц	72 МГц	96 МГц	80 МГц
Объем ПЗУ	128 Кбайт FLASH	До 512 Кбайт FLASH	До 512 Кбайт FLASH	До 256 Кбайт FLASH	До 256 Кбайт FLASH
Объем ОЗУ	32 Кбайт	До 64 Кбайт	До 64 Кбайт	До 48 Кбайт	До 96 Кбайт

Производительность ядра ARM Cortex™-M3 Производительность ядра ARM7TDMI

- 1,25 DMIPS/МГц*
- 0,95 DMIPS/МГц (ARM)
- 0,74 DMIPS/МГц (Thumb)

^{* -} при нулевой задержке памяти

Производительность

Максимальное потребление:

Включены все периферийные цифровые и аналоговые блоки

Тактовая частота ядра и периферии 80 МГц

Тактовая частота USB 48 МГц

Динамический ток потребления до 120 мА

Зависимость потребления микросхемы от частоты ядра Периферия выключена, Т=25С

Зависимость потребления микросхемы от частоты ядра Вся периферия включена, USB работает на 48 МГц, T=25C

Режим SLEEP:

Могут быть включены все периферийные цифровые и аналоговые блоки

Не тактируется ядро, Flash, DMA, O3У и внешняя шина

Тактовая частота USB 48 МГц

Пробуждение от прерываний

Динамический ток потребления до 40 мА

Режим SLEEPDEEP:

Могут быть включены только АЦП, ЦАП, Компаратор, PVD, NVIC с тактированием от LSI

Не тактируется ядро, Flash, DMA, ОЗУ и внешняя шина

Пробуждение от прерываний

Динамический ток потребления до 2 мА

ЗАО "ПКК МИЛАНДР"

Режимы потребления

Зависимость потребления микросхемы в режиме DEEPSLEEP от температуры

Режим STANDBY:

Выключено питание DUcc

Работают только LSI, LSE, RTC и BKP блоки.

Пробуждение от сигнала WAKEUP и ALARM RTC

Динамический ток потребления до 15 мкА

Время запуска не более 20мкс

Зависимость потребления микросхемы в режиме STANDBY от температуры и напряжения питания

Режим BATTERY ONLY:

Выключено питание DUcc Выключено питание Ucc

Работают только LSE, RTC и BKP блоки

Пробуждение по появлению питания Ucc

Динамический ток потребления до 5 мкА

Время запуска не более 6 мс

Зависимость потребления микросхемы в режиме BATTERY ONLY от режима работы и напряжения питания, T=25C

Зависимость потребления микросхемы в режиме BATTERY ONLY от температуры и напряжения питания (LSE и RTC включены)

- 6 x портов ввода-вывода (до 96 User I/O)
- 2 x UART (до 5 Мбит/сек)
- 2 x SSP (до 40 Мбит/с мастер, до 6 Мбит/с ведомый)
- 1 x I2C (только мастер режим)
- 2 x CAN (до 1 Мбит/с, 32 буфера сообщений)
- 1 x USB (до 12 Мбит/с, встроенный РНҮ)
- 3 x Timer (4 канала на таймер, функции ШИМ и Захват)
- 1 x DMA (Работа с ОЗУ, Периферией и Внешней шиной)

Порты Ввода-Вывода:

- 6 Портов ввода вывода разрядность 16 бит
- Индивидуальное управление каждым выводом
- Универсальный цифровой пользовательский порт ввода-вывода Iload = 4мA, Uoh = 2.4B, Uol=0.4B Uih = 2.0B, Uil = 0.8B, Uimax=5.5B*
- Аналоговый режим работы вывода
 Uimax=Ucc* (не толерантны к 5В порт PD[15:0] и PE[10:0])
- Управляемая мощность выходного драйвера

PowerTX=01 – фронт 200 нс

PowerTX=10 – фронт 30 нс

PowerTX=11 – фронт 10 нс

- Встроенные резисторы подтяжки вывода PullUp – 50K и PullDown – 50K

- Управляемый входной гистерезис

SHM=0 - 200 MB

SHM=1 - 400 MB

- Режим работы с открытым стоком
- Основная, альтернативная и переопределенная функция Для CAN, UART, SSP, Timer более 6 вариантов расположения

Интерфейс UART:

- Два контроллера UART
- FIFO очередь приема и передачи до 16 байт
- Поддержка сигналов управления модемом: CTS, DCD, DSR, RTS, DTR и RI.
- Размерность данных 5,6,7 и 8 бит
- Бит четности
- 1 или 2 стоп бита
- обнаружение ложного старт бита
- скорость до 5 Мбит/с
- Поддержка IRDA канала
- Переопределяемые выводы

Интерфейс SSP:

- Два контроллера SPI
- FIFO 16 бит x 8
- Режимы младший бит вперед, старший бит вперед
- Режимы Motorola SPI, Microwire, TI SPI
- Переопределяемые выводы

Интерфейс USB:

- Встроенный аналоговый приемо-передатчик.
- Встроенные подтяжки линий D+ и D-
- Контроллер Function и Host
- Скорость Low Speed (1,5 Мбит/с) и Full Speed (12 Мбит/с)

Интерфейс CAN:

- Два контроллера CAN
- 32 буфера сообщений на контроллер
- собственный фильтр для каждого буфера
- Скорость 1 Мбит/с
- Переопределяемые выводы

Интерфейс I2C:

- только Master режим
- встроенный в вывод фильтр «иголок»

Внешняя системная шина:

- Внешняя память СОЗУ и ПЗУ
- Внешняя Flash и NAND Flash память данных
- Внешние синхронные устройства
- Раздельная шина Данных и Адреса
- nWE, nOE, nBE[3:0] сигналы
- Адресуемое пространство до 2,768 Гбайт

Таймеры:

- Встроенный в процессор Системный Таймер
- Три периферийных 16-ти разрядных Таймера
- Режим каскадного объединения
- Каждый таймер содержит 4 канала Захвата/ШИМ
- ШИМ сигнал прямой и инверсный
- Формирования «мертвой» зоны сигналов ШИМ
- Внешний сброс ШИМ

Контроллер прямого доступа в память DMA:

- 32 канала
- Аппаратные запросы DMA от UART, SSP, Timer и ADC
- Программные запросы
- Передача между ОЗУ, Периферией и Внешней системной шиной
- Передача данных различной разрядности
- Различные механизмы расположения данных
- Основная и альтернативная структура управления
- Различные приоритеты каналов
- Конфигурация DMA хранится в ОЗУ

- Встроенный регулятор напряжения (питание DUcc 1,8B)
- 2 х АЦП на 16 каналов (12 Бит на 1 Мвыб/сек)
- Датчик температуры (в составе АЦП)
- Датчик опорного напряжения (в составе АЦП)
- 2 х ЦАП (12 бит, скорость преобразования 10 мкс)
- Компаратор (3 внешних входа, внутренняя шкала напряжений)
- 2 x PLL для умножения частоты (для Ядра и USB)
- Встроенные генераторы 8 МГц и 40 КГц (с подстройкой)
- Внешние генераторы 2...16 МГц и 32,768 КГц
- Батарейный домен с часами реального времени
- Детектор напряжений питания (Ucc и BUcc)

Подсистема питания:

- Внешнее питание 2,2...3,6В.
- Внешнее питание 2,4...3,6В при использовании АЦП и ЦАП
- Внешнее питание 3,0...3,6В при использовании USB
- Внешнее батарейное питание 1,8...3,6В
- Аппаратная схема сброса по включению и выключению питания
- Автоматический переход на батарейное питание

Встроенный регулятор напряжения

- Формирование напряжения питания для цифровой части 1,8В
- Большая нагрузочная способность до 150 мА
- Не требует внешних конденсаторов
- Подстройка выходного напряжения
- Эффективная обработка появления нагрузки и сброса нагрузки
- Режим STANDBY

Диаграмма работы регулятора напряжения DUcc при появлении нагрузки Ucc = 3,6B, T=25C

Диаграмма работы регулятора напряжения DUcc при сбросе нагрузки Ucc = 2,2B, T=25C

Диаграмма работы регулятора напряжения DUcc при переходе в режим STANDBY Ucc = 2,2B, T=25C

Структура АЦП в микроконтроллерах серии 1986ВЕ9х

АЦП:

- Два встроенных АЦП
- Разрядность до 12 Бит
- Скорость преобразования до 1 Мвыб/с
- Внутренние и внешние опорные напряжения
- 16 внешних каналов
- Автоматический последовательный опрос каналов
- Автоматический контроль диапазона
- Встроенный датчик опорного напряжения
- Встроенный датчик температуры

Интегральная нелинейность Eil dac = | 3| EMP при T=25C и T=125C

Дифференциальная нелинейность Eid dac = от -1 до +2 EMP

Интегральная нелинейность Eil dac = | 6| EMP при T= минус 60C

Структура ЦАП в микроконтроллерах серии 1986ВЕ9х

ЦАП:

- Два встроенных ЦАП
- Разрядность до 12 Бит
- Внутренние и внешние опорные напряжения

Интегральная нелинейность Eil dac = | 2| EMP

Дифференциальная нелинейность Eid dac = | 1| EMP

Компаратор:

- Один встроенный аналоговый компаратор
- Три внешних вход
- Внутренний генератор шкалы напряжений

Формирователь шкалы напряжений

- от питания Аисс
- от внешней опоры VREF+ и VREF-
- шаг шкалы ~ 110...140мB при Ucc = 3.3B

Аналоговый компаратор

- Входной гистерезис 8...12 мВ
- Напряжение IVREF 1.17...1.23B

PLL:

- Входная частота от 2 до 16 МГц
- Выходная частота от 2 до 100 МГц
- Коэффициенты умножения от х1 до х16
- Сигнал готовности PLL_RDY
- Возможность формирования некратных частот

Подсистема тактирования:

- встроенный RC генератор HSI 8 МГц (с подстройкой)
- встроенный RC генератор LSI 40 кГц (с подстройкой)
- внешний генератор HSE 2...16 МГц
- внешний генератор LSE 32 кГц (в батарейном домене)

Подстройка LSI генератора

- номинальная частота 40 КГц
- шаг подстройки ~ 1...4 КГц
- уход по питанию и температуре ~1КГц

Подстройка HSI генератора

- номинальная частота 8 МГц
- шаг подстройки ~ 40...100 КГц
- уход по питанию и температуре ~50КГц

Батарейный домен:

- 56 байт пользовательской памяти
- Регистры настройки микроконтроллера
- Внешний часовой генератор LSE 32,768 КГц
- Часы реального времени с калибровкой от 0 до минус 256 ppm
- Пробуждение процессора из STANDBY режима по будильнику
- Формирование прерываний «секунда», «будильник» и «переполнение»
- Программное преобразование в формат Sec:Min:Hour:Day:Month:Year

Детектор напряжения питания:

- анализ уровня основного питания Ucc с точностью 200 мВ
- анализ уровня батарейного питания BUcc с точностью 400 мВ
- прерывание при переходе заданного уровня

Режимы работы

- Микроконтроллер (отладка через JTAG/SW)

MODE[2:0] = 000 – Микроконтроллер отладка через порт PD MODE[2:0] = 001 – Микроконтроллер отладка через порт PB Запуск из внутренней Flash памяти

- Микропроцессор (отладка через JTAG/SW)

MODE[2:0] = 010 – Микропроцессор отладка через порт PD

MODE[2:0] = 011 – Микропроцессор без отладки

Запуск из внешней памяти с адреса 0х10000000

- UART загрузчик*

MODE[2:0] = 101 - UART загрузчик на порте PD

MODE[2:0] = 110 – UART загрузчик на порте PF

^{*} доступен только в 1986ВЕ91 и 1986ВЕ92

Режимы работы

Отладка через JTAG используется 5 выводов

Отладка через SWD используется 2 вывода

Режимы работы

UART загрузчик:

- 2 порта (PD[1:0] и PF[1:0])
- Стандартный RS-232 интерфейс (скорость 9600)
- Реализует команды:

CMD_LOAD – загрузить данные в память МК

CMD_VFY — считать данные из памяти МК

CMD_RUN – передать управление

CMD_BAUD – задать скорость связи

CMD_CR – запрос приглашения

CMD_SYNC – пустая команда (используется для синхронизации)

Отладочная плата 1986ВЕ91

ЗАО "ПКК МИЛАНДР"

Состав платы:

- USB интерфейс
- UART интерфейс
- САN интерфейс
- SPI интерфейс (на SD/MMC разъем)
- Внешняя системная шина

- LCD дисплей
- Клавиатура
- Резонаторы 8 Мгц и 32 кГц
- Отладка в средах Phyton, Keil и IAR
- JTAG адаптер JEM-ARM, ULINK2, JLink
- Набор ПО

Модуль ETHERNET

- На базе микросхемы 5600ВГ1

Модуль FLASH

- На базе микросхем 1636РР1
- Объем памяти 1 Мбайт

Модуль ОЗУ

- На базе микросхем 1645РУ4
- Объем памяти 1 Мбайт

Отладочная плата 1986ВЕ92 зао «ПКК МИЛАНДР»

Состав платы:

- USB интерфейс
- UART интерфейс
- CAN интерфейс
- SPI интерфейс (на SD/MMC разъем)

- LCD дисплей
- Клавиатура
- Резонаторы 8 Мгц и 32 кГц
- Отладка в средах Phyton, Keil и IAR
- JTAG адаптер JEM-ARM, ULINK2, JLink
- Набор ПО

Отладочная плата 1986ВЕ93 зао «ПКК МИЛАНДР»

Состав платы:

- USB интерфейс
- UART интерфейс
- CAN интерфейс
- SPI интерфейс (на SD/MMC разъем)

- LCD дисплей
- Клавиатура
- Резонатор 8 МГц
- Отладка в средах Phyton и Keil
- JTAG адаптер JEM-ARM, ULINK2, JLink
- Набор ПО

Средства разработки

CodeMaster-ARM:

- поддержка 1986ВЕ91 и модификаций
- компилятор С/С++, ассемблер
- отладчик
- трассировка
- внутрисхемное программирование
- USB JTAG адаптер JEM-ARM

Средства разработки

IAR Embedded Workbench:

Keil uVision3:

- поддержка 1986ВЕ91 и модификаций
- компилятор С/С++, ассемблер
- отладчик
- трассировка
- внутрисхемное программирование
- USB JTAG адаптер ULINK2

Базовое ПО

1508FIRT 1508FIRT 1508FIRT 1508FIRT 1508FIRT 1508FIRT 1508FIRT 1558VIH15 1558VIH19 1636PP2Y 1636PP2Y 1645PY1Y 1645PY1Y 1645PY1Y 1845PY1Y 1886BE5Y 1886BE3Y 1886BE3Y 1886BE3Y 1886BE3Y

Двухъядерный микроконтроллер для мультимедийных приложений

1901ВЦ1Т

Структура

Характеристики DSP

Ядро

Разрядность - 16 бит

Максимальная частота - 100 МГц

Объем памяти - 256 Кбайт

Тип данных - с фикс. точкой

Разрядность ALU - 40 бит

Аппаратный умножитель - 17 x 17

Периферия

McBSP - 3

Скорость McBSP - до 50 Мбит/с

Системный таймер - 1

Криптография - ГОСТ 28147-89

Аудиокодек - ′

DMA - 1

ЗАО "ПКК МИЛАНДР"

Аудио АЦП и ЦАП

Аудио АЦП

Разрядность - 16 бит

Частота дискретизации - до 26 кГц

Режим - Моно

Сигнал/шум - 79 Дб

Аудио ЦАП

Разрядность - 16 бит

Частота дискретизации - до 26 кГц

Режим - Моно

Сигнал/шум - 65 Дб

Нагрузочная способность - не менее 600 Ом

ЗАО "ПКК МИЛАНДР"

Характеристики RISC

Ядро

Разрядность - 32 бит

Максимальная частота - 100 МГц

Память программ (Flash) - 128 Кбайт

Память данных - 32 Кбайт

Периферия

SPI - 4 Внешяя шина - 32 бита

UART - 3 GPIO - 96

USB (Host и Device) - 1 ADC (12 разрядов) - 16 каналов

I2C (Macтер) - 1 DAC (12 разрядов) - 2 канала

SDIO - 1 Компаратор - 1

Таймер - 3 Батарейный домен - 56 байт

DMA - 1 Доступ к DSP - полный

Производительность

www.coremark.org

MCU	CoreMark TM			
IVICO	80 МГц	100 МГц	120 МГц	
STM32F1 STMicroelectronics	120	-	-	
1986BE9X Миландр	140	-	-	
LPC1768 NXP	150	183	-	
STM32F2 STMicroelectronics	n/d	n/d	251	
1901ВЦ1Т Миландр	180	205	224*	

^{* -} в нормальных условиях (T=25C, Ucc = 3.3B)

RISC vs DSP

Задача	RISC		DSP	
	Cycles	Code Size	Cycles	Code Size
FFT 64	4 764	718	1 160	522
FFT 1024	127 318	4 560	42 098	878
FIR 32 samples	3 727	162	1 198	84
IIR 32 samples	3 927	294	1 120	102

ЗАО "ПКК МИЛАНДР"

Энергопотребление

RISC + периферия

DSP + периферия

- 1 мА/МГц

- 0.3 мА/МГц

Режимы энергосбережения

DSP IDLE1

DSP IDLE2

DSP IDLE3

- останов ядра

- IDLE1 + останов памяти

- IDLE2 + останов периферии

RISC SLEEP

RISC DEEP SLEEP

- останов ядра

- останов ядра и периферии

StandBy

Battery Only

- не более 20 мкА

- не более 10 мкА

Средства отладки

Средства отладки

ЗАО "ПКК МИЛАНДР"

Среда разработки

- ASM & C Compiler

- Debugger

- Flash programmer

TI CodeComposer Studio для DSP:

- ASM & C Compiler
- Debugger

ЗАО "ПКК МИЛАНДР"

Сроки

Опытные образцы

- уже доступны

Завершение ОКР

- лето 2011 года

Серийные образцы

- начало 2012 год

Контакты

Адрес:

124498

г. Москва, Зеленоград, проезд 4806, дом 6 Телефоны/факсы:

+7 (495) 601-95-45

+7 (495) 981-54-33

Сайт:

http://www.milandr.ru

Интернет форум службы тех. поддержки:

http://forum.milandr.ru

Техническая поддержка:

+7 (495) 739-02-81