EXAMEN EXTRAORDINARIO

Grado en Ingeniería Informática

APELLIDOS		
NOMBRE	GRUPO	

Problema 1. Considera la sucesión monótona *creciente* definida por la siguiente formula de recurrencia

$$\begin{aligned} &\alpha_0=1\,,\\ &\alpha_n=\sqrt{\frac{2+3\alpha_{n-1}}{2}}\,,\quad n\geq 1\,. \end{aligned}$$

- (a) [1 punto] Demuestra que la sucesión es acotada.
- (b) [1 punto] Calcula $\lim_{n\to\infty} a_n$.

SOLUCIÓN

Supongamos que la sucesión tiene límite finito, esto es $\mathfrak{a}=\lim_{n\to\infty}\mathfrak{a}_n$. Pues, tomando $n\to\infty$ en ambos lados de la formula de recurrencia de la sucesión, tenemos

$$a = \sqrt{\frac{2+3a}{2}} \implies a^2 = \frac{3}{2}a+1 \implies a = -\frac{1}{2}, 2,$$

donde el valor a=-1/2 debemos descartarlo porque la sucesión es creciente y tiene términos positivos. Entonces, a=2 es el único *candidato* a ser el valor del límite.

Ahora, demostramos por *inducción* que la sucesión es acotada, esto es $0 \le a_n \le 2$ para $n \ge 0$. Primero, dicha propiedad vale para n = 0, pues $0 \le a_0 = 1 \le 2$. Luego, suponiendo que $0 \le a_k \le 2$ para $k \ge 0$ genérico, obtenemos

$$0 \, \leq \, \alpha_{k+1} = \sqrt{\frac{2+3\alpha_k}{2}} \, \leq \, \sqrt{\frac{2+6}{2}} \, = \, 2 \, .$$

Por tanto, la sucesión es acotada y tiene límite finito cuyo valor es $\alpha = 2$, como calculado anteriormente.

Problema 2. Considera la función

$$f(x) = \begin{cases} \arctan\left(\frac{1}{x^2}\right) + \frac{\pi}{2} & \text{si } x \neq 0 \\ \pi & \text{si } x = 0. \end{cases}$$

- (a) [1 punto] Demuestra que la función f es derivable para todo $x \in \mathbb{R}$.
- (b) [1 punto] Encuentra para que $x \in \mathbb{R}$ la función f es creciente.

SOLUCIÓN

Para $x \neq 0$, f es derivable siendo composición de funciones derivables y tenemos

$$f'(x) = \frac{-2x}{x^4 + 1},$$

mientras que, para x = 0, obtenemos

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\arctan\left(\frac{1}{x^2}\right) + \frac{\pi}{2} - \pi}{x} = \lim_{x \to 0} \frac{-2x}{x^4 + 1} = 0,$$

donde la regla de l'Hôpital se ha usado en la penúltima igualdad. Entonces, f es derivable en x=0 también. Además, f es creciente para x<0 porque f'(x)>0 cuando x es negativa.

Problema 3. Sea $F(x) = \int_0^{x^3} \ln \left(t^{\frac{1}{3}} + \frac{1}{2} \right) dt$.

- (a) [1.5 puntos] Encuentra y clasifica los extremos locales de F(x) para $x \in (0, 1)$.
- (b) [1.5 puntos] Usa el polinomio de Maclaurin de grado 3 de F(x) para estimar F(0,2).

SOLUCIÓN

- (a) Gracias al Teorema Fundamental del Cálculo, tenemos $F'(x) = 3x^2 \ln (x + \frac{1}{2})$. Por tanto, el único punto crítico en el intervalo (0,1) es x = 1/2. Además, F es decreciente para x < 1/2 (F' < 0) y creciente para x > 1/2 (F' > 0). Entonces, x = 1/2 es un mínimo local.
- (b) El polinomio de Maclaurin de grado 3 para F(x) es $P_3(x) = \ln\left(\frac{1}{2}\right) x^3$, por tanto tenemos

$$F(0,2) \approx \ln\left(\frac{1}{2}\right) (0,2)^3 \approx -0,0055.$$

Problema 4. [1.5 puntos] Calcula $\int_{\epsilon}^{5} \frac{dx}{x \ln(x)}$.

SOLUCIÓN

Aplicando el cambio de variable $\mathfrak{u}=ln(x)$ ($d\mathfrak{u}=dx/x$) tenemos

$$\int_{e}^{5} \frac{dx}{x \ln(x)} = \int_{1}^{\ln(5)} \frac{du}{u} = \ln(\ln(5)) - 0 = \ln(\ln(5)).$$

Problema 5. [1.5 puntos] Estudia la convergencia de la integral impropia $\int_0^\infty \frac{|\sin(x)|}{x+x^2} dx$.

SOLUCIÓN

La integral converge porque, por ejemplo, podemos escribir

$$\int_0^\infty \frac{|\sin(x)|}{x+x^2} \, dx = \int_0^1 \frac{|\sin(x)|}{x+x^2} \, dx + \int_1^\infty \frac{|\sin(x)|}{x+x^2} \, dx,$$

donde la primera integral de la derecha converge gracias al criterio de comparación al límite con $\int_0^1 \frac{1}{x^{1/2}} \, dx$ y la segunda integral converge gracias al criterio de comparación al límite con $\int_1^\infty \frac{1}{x^{3/2}} \, dx$.