## PCT

#### 国際事務局



## 特許協力条約に基づいて公開された国際出願

JP.

(51) 国際特許分類 5 C07D 215/00, 215/00, 235/00 C07D 239/72, 239/84, 239/94 C07D 239/95, A61K 31/47 A61K 31/505

(71) 出願人(米国を除くすべての指定国について)

高瀬保孝(TAKASE, Yasutaka)[JP/JP]

遊辺信久(WATANABE, Nobuhisa)(JP/JP)

松井 鼓(MATSUI, Makoto)[JP/JP]

生田博憲(IKUTA, Hironori)[JP/JP]

木村禎治(KIMURA, Teiji)[JP/JP]

佐伯隆生(SAEKI, Takao)[JP/JP]

(75) 発明者/出願人(米国についてのみ)

エーザイ株式会社(EISAI CO., LTD.)[JP/JP]

〒112-88 東京都文京区小石川4丁目6番10号 Tokyo, (JP)

〒305 茨城県つくは市泰日4-19-13 エーザイ紫山寮308

〒305 茨城県つくは市天久保2-23-5 メゾン学園105

〒466 愛知県名古屋市昭和区山里町69番地 Aichi, (JP)

〒305 茨城県つくば市梅園2-16-1 ルンピーニ梅園604

〒300-12 茨城県牛久市栄町2-35-12 Ibaraki. (JP)

(11) 国際公開番号

WO 93/07124

(43) 国際公開日

1993年4月15日(15.04.1993)

(21)国際出願番号 (22) 国際出願日

PCT/JP92/01258

**A1** 

1992年9月30日(30.09.92)

(30) 優先権データ

(72)発明者;および

Ibaraki, (JP)

Ibaraki, (JP)

Ibaraki, (JP)

特顯平3/320853

1991年9月30日(30.09.91)

足立秀之(ADAOHI, Hideyuki)[JP/JP]

〒300-03 茨城県稲敷郡阿見町中央7-7-18 Ibaraki, (JP)

徳村忠一(TOKUMURA, Tadakazu)[JP/JP]

〒300 茨城県土浦市桜ヶ丘町32-5 Ibaraki, (JP)

餅田久利(MOCHIDA, Hisatoshi)[JP/JP]

〒483 愛知県江南市藤ケ丘7-1-2 江南団地216-106

Aichi. (JP)

秋田靖典(AKITA, Yasunori)[JP/JP]

〒300-24 茨城県筑波郡谷和原村下小目122 Ibaraki, (JP)

左右田茂(SOUDA, Shigeru)[JP/JP]

〒300-12 茨城原牛久市牛久町1687-21 Ibaraki, (JP)

弁理士 古谷 磬,外(FURUYA, Kaoru et al.) 〒103 東京都中央区日本橋堀留町1-8-11 日本橋TMヒル

Tokvo. (JP)

(81) 指定国

AT(欧州特許), AU, BE(欧州特許), OA, OH(欧州特許),

DE(欧州特許), DK(欧州特許), ES(欧州特許), FI.

FR(欧州特許), GB(欧州特許), GR(欧州特許), HU,

IE(欧州特許), IT(欧州特許), JP, KR, LU(欧州特許),

NL(欧州特許)。NO. RU. SE(欧州特許)。US.

添付公開書類

国際調査報告書

(54) Title: NITROGENOUS HETEROCYCLIC COMPOUND

〒302-01 茨城県北相馬郡守谷町松前台2-9-6 Ibaraki, (JP)

(54) 発明の名称 含窒素複素瑕化合物



(57) Abstract

A nitrogenous heterocyclic compound represented by general formula (I) or a pharmacologically acceptable salt thereof. efficacious in treating various ischemic cardiac diseases, wherein ring A represents a benzene, pyridine or cyclohexane ring; ring B represents a pyridine, pyrimidine or imidazole ring; R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> and R<sup>4</sup> represent each hydrogen, halogen, lower alkoxy, etc.; R<sup>5</sup> represents -NR<sup>11</sup>R<sup>12</sup> (wherein R<sup>11</sup> and R<sup>12</sup> represent each hydrogen, lower alkyl, etc.), etc.; and R<sup>6</sup> represents (a) (wherein R<sup>11</sup> and R<sup>12</sup> represents (b) (wherein R<sup>11</sup> and R<sup>12</sup> represents (c) (wherein R<sup>12</sup> and R<sup>12</sup> represents (c) (wherein R<sup>13</sup> and R<sup>12</sup> represents (c) (wherein R<sup>13</sup> and R<sup>13</sup> and R<sup>14</sup> and R<sup>14</sup> and R<sup>15</sup> an ein R<sup>19</sup> represents hydrogen, lower alkyl, etc.; R<sup>20</sup>, R<sup>21</sup> and R<sup>22</sup> represent each hydrogen, halogen, hydroxy, etc.; and r represents an integer of 0.1 to 8), etc.

(57) 要約

種々の虚血性心疾患などに有効な、下記式(1)で表される含窒 素複素環化合物またはその薬理学的に許容できる塩を提供する。



[式(1)中、環Aはベンゼン環、ピリジン環又はシクロヘキサン環、環Bはピリジン環、ピリミジン環又はイミダソール環を意味する。 $R^1$ 、 $R^2$ 、 $R^3$  及び $R^4$  は水素原子、ヘロゲン原子、低級アルコキシ基等の基を意味し、 $R^3$  は式 $-NR^{11}$   $R^{12}$ (式中、 $R^{11}$ 、 $R^{12}$  は水素原子、低級アルキル基等の基を意味する。)で示される基等

の基、 $R^{0}$  は式  $-N-(CH_{2})$  r-  $R^{20}$  (式中、 $R^{10}$  は水

素原子、低級アルキル基等的基、R<sup>20</sup>、R<sup>21</sup>、R<sup>22</sup> は水素原子、ヘロケン原子、水酸基等的基を意味する。 rは 0 又は 1 ~8 の整数を意味する。) で示される基等を意味する。〕

#### 情報としての用途のみ

PCTに基づいて公開される国際出願のハンフレット第1頁にPCT加盟国を同定するために使用されるコード

AT オーストトー BB オースストトー BB ストー サーススペーー BF ファ ソ BG マーマー BG ファー BG ファー CA サーフー CA サーフー CF サーフー CG スコカチ・チーア CC エース・ファッツ CC スニュッツ CC スニュッツ CC スニュッツ CC スニュークン CC スコカチ・チーアフス TE S フィー ES アフス

## 明 細 書

#### 含窒素複素環化合物

#### 〔産業上の利用分野〕

本発明は、医薬として優れた作用を有する含窒素複素環化合物に関する。 (発明の背景及び先行技術)

虚血性心疾患の1つである狭心症は、これまで高齢者に多い疾患として知られてきた。その治療剤としては、硝酸及び亜硝酸化合物、カルシウム拮抗剤、 $\beta$  - 遮断剤などが使われてきたが、狭心症治療や心筋梗塞への進展予防にはまだまだ効果が不十分である。さらに最近、生活形態の変化、社会の複雑化に伴うストレスの増大などにより、狭心症患者の年齢の低下、病態の複雑化などがみられるようになり、新しいタイプのより優れた薬剤が渇望されている。

現在使用されている先に挙げた薬剤のうち、硝酸及び亜硝酸化合物の作用は、細胞内セカンドメッセンジャーとして知られているサイクリックヌクレオチドの中のサイクリックGMP(以下cGMPと略す)が関与していると考えられている。cGMPについては血管平滑筋ならびに気管支平滑筋の弛緩作用がよく知られている。これらの薬剤の作用機序は必ずしも明らかではないが、このcGMPの活性はグアニレートシクラーゼを活性化し、cGMP合成を促進することに起因するものと一般に考えられている。しかし、これらの薬剤は、生物学的利用率が低く、比較的作用時間が短い。また、耐性を生じることが報告されており、臨床上問題となっている。

このような実情に鑑み、本発明者等は新しいタイプのより優れた薬剤を開発すべく探索研究に着手した。

すなわち本発明者らは、cGMPホスホジエステラーゼ(以下cGMP-PD

Eと略す)阻害作用に着目し、これらの作用を有する化合物について長年にわたって鋭意研究を重ねてきた。その結果下記に示す含窒素複素環化合物がこれらの作用を有し、種々の虚血性心疾患などに有効であることを見出し、本発明を完成した。

医薬として有用なキナゾリン誘導体としては、例えば特表平2-502462 号が挙げられるが、本発明化合物とは構造・作用共に異にするものである。

#### (発明の開示)

本発明は、下記一般式(1) で表される含窒素複素環化合物またはその薬理学的 に許容できる塩を提供する。



(式(1) 中、環Aはベンゼン環、ビリジン環又はシクロヘキサン環を意味する。 環Bはビリジン環、ビリミジン環又はイミダゾール環を意味する。

ただし、環Aと環Bは2つの原子を共有して結合しており、その共有する原子は炭素原子でも窒素原子でもよい。

なお、環Aがピリジン環の場合であって、このピリジン環の窒素原子を環B

が共有して結合している場合以外のときは、環Aは

R<sup>1</sup> R<sup>2</sup> で示される

ものとする。

R¹、R²、R³及びR⁴は同一又は相異なる水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい低級アルキル基、置換されていてもよいシクロアル

WO 93/07124 PCT/JP92/01258

キル基、低級アルコキシ基、ハイドロキシアルキル基、ニトロ基、シアノ基、(a)

アシルアミノ基、保護されていてもよいカルボキシル基、式 $-S-R^7$ (式中、 $R^1$ は低級アルキル基を意味し、nは0又は $1\sim2$ の整数を意味する。)で示される基、又は、式-N  $R^{45}$  (式中、 $R^{45}$ 、 $R^{46}$  は同一又は相異なる水素原子あるいは低級アルキル基を意味する。  $R^{45}$ と $R^{46}$  が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基を意味する。また、 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^4$ のうちの2つが一緒になってメチレンジオキシ、エチレンジオキシ又はフェニル環を形成してもよい。

R<sup>6</sup>は水素原子、ハロゲン原子、水酸基、ヒドラジノ基、低級アルキル基、置換されていてもよいシクロアルキル基、低級アルコキシ基、低級アルケニル基、保護されていてもよいカルボキシアルキル基、保護されていてもよいカルボキシアルケニル基、ハイドロキシアルキル基、保護されていてもよいカルボキシ

(式中、R<sup>23</sup> は水酸基、低級アルキル基、低級アルコキシ基、ハイドロキシアルキル基又はハイドロキシアルキルオキシ基を意味する。)で示される基、置換されていてもよいヘテロアリール基、置換されていてもよい1,3-ベンズジオキソリル基、置換されていてもよい1,4-ベンズジオキシル基、置換さ

R<sup>6</sup>は水素原子、ハロゲン原子、水酸基、アミノ基、低級アルキル基、低級アルコキシ基、低級アルケニル基、1,3-ベンズジオキソリルアルキルオキシ基、1,4-ベンズジオキシルアルキルオキシ基、置換されていてもよいフェ

は相異なる水素原子、低級アルキル基又は低級アルコキシ基を意味する。さらに、 $R^{13}$ 、 $R^{14}$ は一緒になってメチレンジオキシ又はエチレンジオキシを形成

していてもよい。)で示される基、式
$$-N$$
 で示される基、 $R^{16}$   $R^{16}$ 

 $R^{16}$ で示される基(これらの式中、  $R^{16}$ 、  $R^{16}$ は、同一又は相異

なる水素原子、低級アルキル基又は低級アルコキシ基を意味する。さらに  $R^{16}$  と  $R^{16}$ は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)、ピペリジン-4-スピロ-2 - ジオキサン-1-イル基、式

-Z-(CH<sub>2</sub>)。-  $R^{4\,8}$  (式中、  $R^{4\,8}$ 、  $R^{4\,9}$  は同一又は相異なる水素原子、

低級アルキル基又は低級アルコキシ基を意味する。さらに、R48とR48は、一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。 Zは

硫黄原子又は酸素原子を意味する。)で示される基、式-N R<sup>50</sup> (式中、

R<sup>50</sup> は水酸基、ハロゲン原子、低級アルキル基、低級アルコキシ基、保護されていてもよいカルボキシル基、シアノ基、ハイドロキシアルキル基又はカルボ

キシアルキル基を意味する。)で示される基、式 $-N-Y-R^{18}$  〔式中、 $R^{17}$  は水素原子、低級アルキル基、アシル基、低級アルコキシアルキル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 Yは式 $-(CH_2)_{\mathfrak{q}}$ - (式中、qは0又は $1\sim8$ の整数を意味する)で示される基、

又は式-C-で示される基を意味する。さらに式 $-(CH_2)$ 。で示される基において、qが $1\sim8$ の整数のとき、それぞれの炭素は $1\sim2$ 個の置換基を有していてもよい。 $R^{18}$ は水素原子、水酸基、保護されていてもよいカルボキシル基、シアノ基、アシル基、置換されていてもよいヘテロアリール基又は置換されていてもよいシクロアルキル基を意味する。)で示される基、又は

アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 R<sup>20</sup>、 R<sup>21</sup>、 R<sup>22</sup>は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシル基、アシルアミノ基、アルキルスルホニルアミノ基、ヒドロキシイミノアルキル基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、 R<sup>20</sup>、 R<sup>21</sup>、 R<sup>22</sup>のうち2つが一緒になって窒素原子、硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは0又は1~8の整数を意味する。) で示される基を意味する。]

前記一般式(1) で表される含窒素複素環化合物又はその薬理学的に許容できる 塩の好ましい態様の一つとして、下記一般式(I)で表されるキナゾリン誘導体 又はその薬理学的に許容できる塩が挙げられる。

〔式(I)中、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>及びR<sup>4</sup>は同一又は相異なる水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ハイドロキシアルキル基、シアノ基、ア

シルアミノ基、保護されていてもよいカルボキシル基、式-S-R7(式中、R7

WO 93/07124 PCT/JP92/01258

は低級アルキル基を意味し、nは0又は $1\sim2$ の整数を意味する。)で示される基を意味する。また、 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^4$ のうちの2つが一緒になってメチレンジオキシ、エチレンジオキシ又はフェニル環を形成してもよい。

R<sup>5</sup>は水素原子、ハロゲン原子、水酸基、ヒドラジノ基、低級アルキル基、低級アルコキシ基、低級アルケニル基、保護されていてもよいカルボキシアルキル基、保護されていてもよいカルボキシアルケニル基、ハイドロキシアルキル

(0)<sub>m</sub>

基、保護されていてもよいカルボキシル基、式 $-\ddot{S}-R^8$ (式中、 $R^8$ は低級アルキル基を意味し、mは0又は $1\sim2$ の整数を意味する。)で示される基、式 $-0-R^9$ (式中、 $R^9$ は保護されていてもよいハイドロキシアルキル基、保護されていてもよいカルボキシアルキル基又はベンジル基を意味する。)で示される

基、式 - (式中、R<sup>23</sup> は水酸基、低級アルキル基、低級アルコキシ

基、ハイドロキシアルキル基又はハイドロキシアルキルオキシ基を意味する。)で示される基、置換されていてもよいヘテロアリール基、置換されていてもよい 1, 3 - ベンズジオキソリル基、置換されていてもよい 1, 4 - ベンズジオキシル基、置換されていてもよい 1, 4 - ベンズジオキシルアルキル基、置換されていてもよい 1, 4 - ベンズジオキシルアルキル基、式 -  $C(R^{24})$  = X (式中、 Xは酸素原子又は式 = N- $R^{10}$  (式中、  $R^{10}$ は水酸基又は保護されていてもよいカルボキシアルキルオキシ基を意味する。)で示される基を意味し、 $R^{24}$ は水素原子又は低級アルキル基を意味する。)で示される基、又は式 -  $NR^{11}R^{12}$ (式中、  $R^{11}$  、  $R^{12}$  は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アルキルカルバモイル基、 1, 3 - ベンズオキソリルアルキル基又は 1, 4 - ベンズジオキシルアルキル基を意味する。さらに、  $R^{11}$ と $R^{12}$ 

が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子 を含んでいてもよい環を形成することができる。また、この環は置換されてい てもよい。)で示される基を意味する。

R<sup>6</sup>は水素原子、ハロゲン原子、水酸基、アミノ基、低級アルキル基、低級アルコキシ基、1,3-ベンズジオキソリルアルキルオキシ基、1,4-ベンズジオキシルアルキルオキシ基、置換されていてもよいフェニルアルキルオキシ

低級アルキル基又は低級アルコキシ基を意味する。さらに、R<sup>13</sup>、R<sup>14</sup> は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)で

示される基、式
$$-N$$
 で示される基、式 $-N$  で示される基、 $R^{15}$   $R^{16}$ 

式-N 
$$R^{15}$$
  $R^{15}$   $R^{16}$ で示される基、式-N  $R^{16}$ で示される基(これらの式

中、  $R^{15}$ 、  $R^{16}$ は、水素原子、低級アルキル基又は低級アルコキシ基を意味する。 さらに  $R^{15}$ と  $R^{16}$ は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)、ピペリジンー 4 - スピロー $2^{\prime\prime}$  - ジオキサン- 1 -

イル基、 式 $-N-Y-R^{18}$  〔式中、 $R^{17}$  は水素原子、低級アルキル基、アシル基、低級アルコキシアルキル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 Yは式 $-(CH_2)$ 。 (式中、qは 0

|| | 又は1~8の整数を意味する)で示される基、又は式-C-で示される基を意 味する。さらに式 $-(CH_2)$ 。で示される基において、qが $1\sim8$ の整数のとき、それぞれの炭素は $1\sim2$ 個の置換基を有していてもよい。 $R^{18}$ は水素原子、水酸基、保護されていてもよいカルボキシル基、シアノ基、アシル基、置換され

ていてもよいヘテロアリール基又は式 () で示される基を意味す

$$R^{19}$$
 |  $R^{20}$  る。)で示される基、又は式  $-N^{-1}$  (式中、 $R^{19}$  は水素

原子、低級アルキル基、低級アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。  $R^{20}$ 、  $R^{21}$  、  $R^{22}$ は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシルアミノ基、アルキルスルホニルアミノ基、ヒドロキシイミノアルキル基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ のうち 2 つが一緒になって窒素原子、硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは 0 又は 1  $\sim$  8 の整数を意味する。 ) で示される基を意味する。  $\}$ 

また、本発明は、前記含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする、ホスホジエステラーゼ阻害作用が有効な、特にサイクリック-GMPホスホジエステラーゼ阻害作用が有効な疾患の予防・治療剤を提供する。

そのような疾患として、虚血性心疾患、具体的には狭心症、高血圧、心不全及 び喘息が挙げられる。 WO 93/07124 PCT/JP92/01258

さらに、本発明は、治療に有効な量の前記含窒素複素環化合物及び/又はその 薬理学的に許容できる塩と、薬理学的に許容される賦形剤とからなる医薬組成物 を提供する。

そして、本発明は、ホスホジエステラーゼ阻害作用が有効な疾患の治療薬を製造するという含窒素複素環化合物又はその薬理学的に許容できる塩の用途、及び、ホスホジエステラーゼ阻害作用が有効な疾患に罹患している患者に、含窒素複素環化合物及び/又はその薬理学的に許容できる塩を、治療に有効な量投与することからなる疾患の治療方法を提供する。

本発明化合物(1) における上記の定義において、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 、 $R^6$ 、 $R^7$ 、  $R^{8}$ ,  $R^{11}$ ,  $R^{12}$ ,  $R^{13}$ ,  $R^{14}$ ,  $R^{15}$ ,  $R^{16}$ ,  $R^{17}$ ,  $R^{19}$ ,  $R^{20}$ ,  $R^{21}$ ,  $R^{22}$ ,  $R^{23}$ , R<sup>24</sup>、 R<sup>45</sup>、 R<sup>46</sup>、 R<sup>48</sup>、 R<sup>49</sup>、R<sup>50</sup> の定義にみられる低級アルキル基とは、炭 素数1~8の直鎖もしくは分枝状のアルキル基、例えばメチル基、エチル基、プ ロピル基、イソプロピル基、ブチル基、イソブチル基、 sec-ブチル基、tert-プチル基、ペンチル基(アミル基)、ネオペンチル基、tert-ペンチル基、2-メチルプチル基、3-メチルプチル基、1,2-ジメチルプロピル基、ヘキシル 基、イソヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチ ルペンチル基、2, 2-ジメチルブチル基、2, 3-ジメチルブチル基、3, 3 - ジメチルブチル基、2-エチルブチル基、1,1,2-トリメチルプロピル基、 1, 2, 2-トリメチルプロピル基、1-エチル-1-メチルプロピル基、1-エチルー2-メチルプロピル基、ヘプチル基、オクチル基などを意味する。これ らのうち好ましい基としては、メチル基、エチル基、プロピル基、イソプロビル 基などを挙げることができる。これらのうち特に好ましい基としては、メチル基、 エチル基を挙げることができる。

また、これら低級アルキル基は、末端の炭素原子がスルホン酸基( $-S0_3H$ ) や式  $-0N0_2$  で示される基で置換されていてもよい。さらに、スルホン酸基は、式  $-S0_3Na$ 、式 $-S0_3K$  で示される基のような塩を形成していてもよい。

 $R^1$ 、 $R^2$ 、 $R^3$ および $R^4$ の定義にみられるハロゲン原子で置換されていてもよい低級アルキル基とは、上記低級アルキル基の水素原子が1 個または2 個以上ハロゲン原子で置換されていてもよい低級アルキル基を意味する。

 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 、 $R^6$ 、  $R^{13}$ 、  $R^{14}$ 、  $R^{15}$ 、  $R^{16}$ 、  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ 、  $R^{23}$ 、  $R^{48}$  、  $R^{49}$  、  $R^{50}$  の定義の中にみられる低級アルコキシ基とは、炭素数  $1 \sim 8$  の 直鎖もしくは分枝状のアルコキシ基、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-プトキシ基、イソプトキシ基、 sec-プトキシ基、tert-プトキシ基、2-メチルプトキシ基、2, 3-ジメチルプトキシ基、ヘキシルオキシ基などを意味する。これらのうち好ましい基としては、メトキシ基、エトキシ基などを挙げることができる。

 $R^5$ 、 $R^6$ 、  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ の定義にみられる低級アルケニル基とは、上記低級アルキル基から誘導される基、例えばエチレン基、プロピレン基、ブヂレン基、イソブチレン基などを挙げることができる。

 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 、  $R^{11}$ 、  $R^{12}$ 、  $R^{17}$ 、  $R^{19}$ 、 $R^{23}$  、  $R^{50}$  の定義にみられる ハイドロキシアルキル基とは、上記の低級アルキル基から誘導される基を意味する。

R®の定義において、保護されていてもよいハイドロキシアルキル基とは、ハイドロキシアルキルにおける水酸基が、例えばニトロ基で保護された基である場合や、メチル基、エチル基など上記に掲げた低級アルキル基で保護された基である場合や、アセチル基、プロピオニル基、ブチロイル基、ピバロイル基、ニコチノイル基などのアシル基で保護された基である場合や、その他cGMP-PDE阻害活性を有すると思われる基で保護された基である場合が挙げられる。また、こ

れらの保護基は生体内ではずれて又はそのままで薬効を発揮する。

R<sup>17</sup>、R<sup>18</sup>、R<sup>19</sup>、R<sup>20</sup>、R<sup>21</sup>、R<sup>22</sup>の定義にみられるアシル基とは、脂肪族、 芳香族、複素環から誘導されたアシル基、例えばホルミル基、アセチル基、プロピオニル基、ブチリル基、バレリル基、イソバレリル基、ピバロイル基などの低級アルカノイル基、ベンゾイル基、トルオイル基、ナフトイル基などのアロイル基、フロイル基、ニコチノイル基、イソニコチノイル基などのヘテロアロイル基などを挙げることができる。これらのうち好ましくは、ホルミル基、アセチル基、ベンゾイル基などを挙げることができる。

R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>、R<sup>5</sup>、R<sup>18</sup>、R<sup>50</sup>の定義においてカルボキシル基の保護基とし ては、メチル、エチル、 t ープチルなどの低級アルキル基; p ーメトキシベンジ ル、p-ニトロベンジル、3, 4-ジメトキシベンジル、ジフェニルメチル、ト リチル、フェネチルなどの置換基を有していても良いフェニル基で置換された低 ′級アルキル基;2,2,2-トリクロロエチル、2-ヨードエチルなどのハロゲ ン化低級アルキル基;ピバロイルオキシメチル、アセトキシメチル、プロピオニ ルオキシメチル、ブチリルオキシメチル、バレリルオキシメチル、1-アセトキ シエチル、2-アセトキシエチル、1-ピバロイルオキシエチル、2-ピパロイ ルオキシエチルなどの低級アルカノイルオキシ低級アルキル基:パルミトイルオ キシエチル、ヘプタデカノイルオキシメチル、1-パルミトイルオキシエチルな どの高級アルカノイルオキシ低級アルキル基;メトキシカルボニルオキシメチル、 1-プトキカルボニルオキシエチル、1-(イソプロポキシカルボニルオキシ) エチル等の低級アルコキシカルボニルオキシ低級アルキル基;カルボキシメチル、 2-カルボキシエチル等のカルボキシ低級アルキル基:3-フタリジル等の複素 環基;4-グリシルオキシベンゾイルオキシメチル、4-〔N-(t-プトキシ カルボニル)グリシルオキシ)ベンソイルオキシメチル等の置換基を有していて も良いベンゾイルオキシ低級アルキル基; (5-メチルー2-オキソー1, 3ジオキソレンー4ーイル)メチル等の(置換ジオキソレン)低級アルキル基;1 ーシクロヘキシルアセチルオキシエチル等のシクロアルキル置換低級アルカノイルオキシ低級アルキル基、1ーシクロヘキシルオキシカルボニルオキシエチル等のシクロアルキルオキシカルボニルオキシ低級アルキル基などが挙げられる。

更に、種々の酸アミドとなっていても良いが、生体内で分解してカルボキシル 基になりうる保護基であればいかなるものでも良い。これらの保護基は、生体内 ではずれて又はそのままで薬効を発揮する。

 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 、 $R^{18}$  の定義にみられる置換されていてもよいシクロアルキル基とは、炭素数  $3\sim 8$  のものを意味するが、好ましくは炭素数  $3\sim 6$  のものである。

 $R^5$ 、 $R^{18}$  、 $R^{20}$  、 $R^{21}$  および $R^{22}$  の定義にみられる置換されていてもよいヘテロアリール基においてヘテロアリールとは、ヘテロ原子として $1\sim2$  個の酸素原子、窒素原子または硫黄原子を含んだ $5\sim7$  員環の単環基または縮合ヘテロ環基をいい、例えばフリル基、ピリジル基、チエニル基、イミダゾリル基、キナゾリル基、ベンゾイミダゾリル基などが挙げられる。

R<sup>11</sup>、R<sup>12</sup>の定義にみられる置換されていてもよいヘテロアリールアルキル基においてヘテロアリールとは、上記のヘテロアリール基と同様の意味を有する。また、この場合のアルキル基とは、上記低級アルキル基と同様の意味を有する。

R<sup>11</sup>, R<sup>12</sup>及び R<sup>45</sup>, R<sup>46</sup>の定義に見られる「R<sup>11</sup>(<sup>45</sup>) とR<sup>12</sup>(<sup>46</sup>) が結合している 窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成 することができる」とは、具体的に例を挙げれば、ピペリジノ基、ピペラジノ基、モルホリノ基などを意味する。さらにこの環に置換しうる置換基としては、水酸 基;塩素原子、フッ素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル、エチル、tープチルなどの低級アルキル基;メトキシ、エトキシ、tープトキシ などの低級アルコキシ基;シアノ基;保護されていてもよいカルボキシル基;ヒ

ドロキシアルキル基:カルボキシアルキル基:テトラゾリル基などのヘテロアリール基などを挙げることができる。これら置換基は、上記環に1~2個有することができる。

また、 $R^5$ ,  $R^{18}$ ,  $R^{20}$ ,  $R^{21}$ ,  $R^{22}$ の定義に見られる「置換されていてもよいへテロアリール基」、 $R^6$ の定義にみられる「置換されていてもよいフェニルアルキルオキシ基」、 $R^5$ の定義にみられる「置換されていてもよい1,3 -ベンズジオキソリル基、置換されていてもよい1,4 -ベンズジオキシル基、置換されていてもよい1,4 -ベンズジオキソリルアルキル基、置換されていてもよい1,4 -ベンズジオキソリルアルキル基」、 $R^6$ の定義にみられる「置換されていてもよいベンジル基」、 $R^{11}$  、 $R^{12}$  の定義にみられる「置換されていてもよいベンジル基」において、置換基としては、例えば、水酸基:ニトロ基;塩素原子、フッ素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル、エチル、tープチルなどの低級アルキル基;メトキシ、エトキシ、tープトキシなどの低級アルコキシ基;保護されていてもよいカルボキシル基;ヒドロキシアルキル基;カルボキシアルキル基;テトラブリル基などを挙げることができる。

更に Yの定義にみられる「式-( $CH_2$ )。-で示される基において、q が  $1 \sim 8$  の整数のとき、それぞれの炭素は  $1 \sim 2$  個の置換基を有していてもよい。」において、置換基とは、上記の置換基と同様の意味を有する。

R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>、 R<sup>20</sup>、 R<sup>21</sup>、R<sup>22</sup> の定義においてアシルアミノ基とは、上記のアシル基がアミノ基の窒素原子に結合した基、すなわちモノ置換-アシルアミノ基、ジ置換のアシルアミノ基を意味するが、モノ置換のアシルアミノ基が好ましい。

 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 、 $R^6$ 、  $R^{20}$ 、  $R^{21}$ 、 $R^{22}$  、 $R^{50}$  の定義においてハロゲン原子とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子などを意味する。

 $R^5$ 、 $R^8$ 、  $R^{10}$ 、  $R^{11}$ 、  $R^{12}$ 、  $R^{17}$ 、  $R^{18}$  の定義において保護されていてもよい

カルボキシアルキル基とは、上記カルボキシル基の保護基によって保護されていてもよいカルボキシアルキル基を意味する。また、このカルボキシアルキルにおけるカルボキシ基は上記低級アルキル基のいずれかの炭素原子に1~2個結合していてよいものとする。

R<sup>5</sup>の定義において保護されていてもよいカルボキシアルケニル基とは、上記カルボキシル基の保護基によって保護されていてもよいカルボキシアルケニル基を意味する。また、このカルボキシアルケニルにおけるカルボキシル基は、上記低級アルケニル基のいずれかの炭素原子に1~2個結合していてよいものとする。

 $R^{17}$ 、 $R^{19}$ 、 $R^{20}$ 、 $R^{21}$ 、 $R^{22}$  の定義において低級アルコキシアルキル基とは、上記の低級アルキル基より誘導される基、例えばメトキシメチル基、メトキシエチル基、メトキシブチル基、エトキシエチル基などを挙げることができる。

R<sup>11</sup>、R<sup>12</sup> の定義においてアミノアルキル基とは、上記の低級アルキル基を構成しているいずれかの炭素原子にアミノ基が置換している基を意味する。

R<sup>11</sup>、R<sup>12</sup> の定義においてアルキルカルバモイル基とは、上記低級アルキル基より誘導される基を意味する。

R<sup>11</sup>、R<sup>12</sup>の定義にみられる保護されていてもよいカルボキシアルキルカルバモイル基とは、上記アルキルカルバモイル基のアルキルのいずれかの炭素に保護されていてもよいカルボキシが結合しているものを意味する。

 $R^{20}$ 、  $R^{21}$ 、  $R^{22}$  の定義においてアルキルスルホニルアミノ基とは、上記低級アルキル基より誘導される基を意味する。

 $R^{20}$ 、  $R^{21}$ 、  $R^{22}$  の定義にみられるヒドロキシイミノアルキル基とは、上記低級アルキル基のいずれかの炭素原子にヒドロキシイミノ基が結合したものをいう。

R<sup>20</sup>、R<sup>21</sup>、R<sup>22</sup> の定義にみられるアルキルオキシカルボニルアミノ基とは、 上記低級アルキル基から誘導されたアルキルオキシカルボニルがアミノ基の窒素 原子にモノあるいはジ置換したものをいうが、モノ置換のアルキルオキシカルボ ニルアミノ基の方が好ましい。

R<sup>20</sup>、 R<sup>21</sup>、R<sup>22</sup> の定義にみられるアルキルオキシカルボニルオキシ基とは、 上記低級アルキル基から誘導されたアルキルオキシカルボニルが酸素原子に結合 している基を意味する。

R<sup>23</sup>の定義にみられるハイドロキシアルキルオキシ基とは、上記ハイドロキシアルキル基より誘導される基を意味する。

本発明化合物群は、環Aと環Bが一緒になって、2環性の、又は環Aの置換基のうちの2つが一緒になって環を形成する場合には3環以上の環部を形成するものであるが、これらの中で好ましいものは以下のものである。

この中でもさらに好ましいものは、a)、b)、c)、e)を挙げることができ、更に 好ましくはa)、b)、c)を挙げることができる。最も好ましいのはa)である。

薬理学的に許容できる塩とは、例えば塩酸塩、臭化水素酸塩、硫酸塩、燐酸塩 等の無機酸塩、例えば酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、 ベンゼンスルホン酸塩、トルエンスルホン酸塩等の有機酸塩、又は例えばアルギ ニン、アスパラギン酸、グルタミン酸等のアミノ酸との塩などを挙げることができる。更に化合物によってはNa、K、Ca、Mg等の金属塩をとることがあり、本発明の薬理学的に許容できる塩に包含される。

また、本発明化合物群は置換基の種類や組み合わせなどによって、シス体、トランス体などの幾何異性体や、d体、1体などの光学異性体等の各種異性体をとり得るが、いずれの異性体も本発明化合物群に包含されることは言うまでもない。

本発明の理解を容易にするために、本発明の好ましい化合物群の一例を具体的に示すが、これらは本発明の化合物を限定するものではないことは言うまでもない。

最も好ましい化合物群を具体的に示すと、下記の一般式(A) で表される化合物 及びその薬理学的に許容できる塩である。

〔一般式(A) において、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^{11}$  、 $R^{12}$  、 $R^{19}$  、 $R^{20}$  、 $R^{21}$  、 $R^{22}$  およびr は一般式(1) におけるこれら各々と同様の意味を有する。〕

R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>およびR<sup>4</sup>としては、同一又は相異なる水素原子、ハロゲン原子又は シアノ基が好ましく、その中でもさらに好ましくは水素原子、シアノ基、塩素原 子である。

 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^4$ の好ましい組み合わせは、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ のいずれか 1 つがシアノ基又は塩素原子であり、残りの 3 つが水素原子である場合であり、その中でも $R^2$ がシアノ基又は塩素原子であり、 $R^1$ 、 $R^3$ 及び $R^4$ が水素原子である場合が最も好ましい。

 $R^{11}$ 、 $R^{12}$  は同一又は相異なる水素原子、低級アルキル基、保護されていてもよいカルボキシアルキル基である場合が好ましく、また、これらの中でも水素原子、メチル基、3-カルボキシプロピル基が好ましい。

更に最も好ましい R<sup>11</sup>とR<sup>12</sup> は、結合している窒素原子と一緒になって置換されていてもよい環を形成する場合であり、この中でもピペリジン環が最も好ましい。まこ、この環は低級アルキル基、低級アルコキシ基、保護されていてもよいカルボキシル基、水酸基、ハロゲン原子、ヒドロキシアルキル基、カルボキシアルキル基などの置換基で置換されているとさらに好ましく、この中でも特に好ましくは、保護されていてもよいカルボキシル基である。

R<sup>1</sup><sup>8</sup> は水素原子又はメチル基、エチル基などの低級アルキル基が好ましいが、 特に水素原子が好ましい。

rは0、1または2が好ましく、1が最も好ましい。

 $R^{20}$ 、 $R^{21}$  及び $R^{22}$  は、水素原子、低級アルキル基、低級アルコキシ基、ハロゲン原子、又は  $R^{20}$ 、 $R^{21}$  もしくは $R^{22}$  のうち 2 つが一緒になってメチレンジオキシもしくはエチレンジオキシを形成するものが好ましい。

## (製造方法)

以下に本発明化合物の代表的な製造方法を示す。

以下においては、主にキナゾリン骨格を有する化合物について説明するが、環 部がその他の骨格の場合にも、同様に適用できる。

# 製造方法1

一般式(I)において、R<sup>5</sup>が水素原子、ハロゲン原子及びキナゾリン骨格に直接炭素原子で結合する基の中から選択される基のとき、以下の方法でも製造することができる。

 $(0)_{m}$ 

オキシ塩化リン 又は オキシ塩化リン+五塩化リン/加熱

(一連の式中、 $R^5$ . は前記 $R^5$ において、水素原子、ハロゲン原子及び前記キナゾリン骨格に直接炭素原子で結合する基から選択される基を示す。 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^4$ は前記の意味を有する。)

すなわち、一般式 (II) で表されるキナゾリン誘導体にオキシ塩化リンを作用させるか、五塩化リン存在下オキシ塩化リンを作用させ加熱することにより、一般式(III) で表されるキナゾリン誘導体を得る反応である。

# 製造方法2

一般式(I)において、 $R^5$ が水素原子、ハロゲン原子、 式 $-S-R^8$ (式中、 $R^8$ 、 mは前記の意味を有する)で示される基、式 $-0-R^9$  (式中、 $R^9$ は前記の意味を有する。)で示される基、置換されていてもよいヘテロアリール基、環部に直接炭素原子で結合する基(例えば、低級アルキル基、保護されていてもよいカルボキシル基、置換されていてもよい1, 3-ベンゾジオキソリル基、置換されて

いてもよい 1, 4-ベンゾジオキシル基、置換されていてもよい 1, 3-ベンゾジオキソリルアルキル基及び置換されていてもよい 1, 4-ベンゾジオキシルアルキル基)から選択される基であり、 $R^6$ が前記 $R^6$ の定義から水素原子、ハロゲン原子、低級アルキル基を除いた中から選択される基のとき、以下の方法で得ることができる。

$$R^2$$
  $R^1$   $R^6$   $R^4$   $R^6$   $R^6$   $R^2$   $R^4$   $R^6$   $R^6$   $R^2$   $R^4$   $R^6$   $R^$ 

〔一連の式中、R¹、R²、R°及びR⁴は前記の意味を有する。R⁵。は水素原子、ハ

れる基を意味する。R<sup>6</sup>。は前記R<sup>6</sup>の定義から水素原子、ハロゲン原子、低級アルキル基を除いた中から選択される基を意味する。 Bは脱離基を意味する。 J すなわち、一般式 (IV) で表されるキナゾリン誘導体と一般式 (VI) で表される化合物を縮合させることにより、目的化合物 (V) を得るという方法である。

式中 Eで表される脱離基としては、ハロゲン原子、アルコキシ基が挙げられる。 本方法は必要により、塩基の存在下で反応をすすめることができる。

塩基としては、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基、ナトリウムメトキシド、カリウム t ーブトキシド等のアルコキシド類等が挙げられる。

反応溶媒としては、反応に関与しないあらゆる溶媒を使用できるが、例として エタノール、イソプロピルアルコール、テトラヒドロフラン、ジメチルホルムア ミド、ジメチルスルホキシド等を挙げることができる。また、本方法は、場合に よって反応溶媒が存在しなくても反応をすすめることができる。

反応温度は-20℃~ 300℃が好ましい。

## 製造方法3

一般式(I)において、R<sup>5</sup>が前記R<sup>5</sup>の定義から水素原子、ハロゲン原子及びキナゾリン骨格に直接炭素原子で結合する基を除いた中から選択される基であり、R<sup>6</sup>が前記R<sup>6</sup>の定義からハロゲン原子を除いた中から選択される基であるときは、以下の方法で製造することができる。

(一連の式中、 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^4$ は前記の意味を有する。 $R^5$ 。は前記 $R^5$ の定義から水素原子、ハロゲン原子及びキナゾリン骨格に直接炭素原子で結合する基を除いた中から選択される基を意味する。

R<sup>6</sup>。は前記R<sup>6</sup>の定義からハロゲン原子を除いた中から選択される基を意味する。

## Fは脱離基を意味する。)

すなわち、一般式(VII) で表される化合物と一般式(IX) で表される化合物を縮合させることにより、目的化合物(VIII)を得るという方法である。

式中 Fで表される脱離基としては、ハロゲン原子、アルキルチオ基などを例と して挙げることができる。

本方法は、必要により塩基の存在下で反応をすすめることができる。

塩基としては、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウム tーブトキシドなどのアルコキシド類などを挙げることができる。

反応溶媒としては、反応に関与しないあらゆる溶媒が使用できるが、例を挙げればエタノール、イソプロパノール、テトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシドなどを挙げることができる。

反応温度は0℃~ 300℃が好ましい。

#### 製造方法 4

0 || 一般式(I)において、R<sup>5</sup>が式-C-R<sup>24</sup> (式中、R<sup>24</sup> は水素原子、低級アル キル基を意味する。)で示される基のときは、以下の方法でも製造することがで きる。

$$R^2$$
  $R^1$   $R^6$   $R^2$   $R^1$   $R^6$   $R^2$   $R^3$   $R^4$   $R^6$   $R^2$   $R^4$   $R^6$   $R^2$   $R^4$   $R^6$   $R^2$   $R^4$   $R^6$   $R^6$   $R^2$   $R^4$   $R^6$   $R^6$   $R^2$   $R^4$   $R^6$   $R^6$   $R^7$   $R^8$   $R^8$ 

 $(-連の式中、<math>R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 及び $R^6$ は前記の意味を有する。  $R^{24}$ 、 $R^{25}$  は同一又は相異なる水素原子又は低級アルキル基を意味する。)

すなわち、一般式(X)で表される化合物を通常の還元剤や求核試薬により、 直接又は場合によってはアルコール体(XII)を経由して酸化して目的化合物(XI) を得る方法である。

還元剤としては、リチウムアルミニウムハイドライド、水素化ホウ素ナトリウム、ジイソプチルアルミニウムハイドライドなどを挙げることができる。

求核試薬としては、メチルリチウム、メチルマグネシウムプロミド等の低級ア ルキル金属などを挙げることができる。

アルコールを経由した場合の酸化剤としては、重クロム酸カリウム-硫酸、ジメチルスルホキシド-オキザリルクロリド等が挙げられる。

反応溶媒としては、反応に関与しないあらゆる溶媒を使用することができる。 反応温度は0℃から溶媒の還流温度である。

## 製造方法5

一般式 (I) において、R<sup>5</sup>が式-C=N-OR<sup>10</sup> (式中、 R<sup>10</sup>、R<sup>24</sup> は前記の意 | | R<sup>24</sup>

味を有する。)で示される基のときは、以下の方法でも製造することができる。

(一連の式中、R¹、R²、R³、R⁴、R⁶、R¹⁰及びR²⁴は前記の意味を有する。)
 すなわち、一般式(XI)で表される化合物とヒドロキシアミンを反応させて、
 一般式(XIII)で表される化合物を得る方法である。

反応溶媒は、反応に関与しないあらゆる溶媒を使用することができる。

反応温度は0℃から溶媒の還流温度である。

## 製造方法 6

一般式(
$$I$$
)において、 $R^5$ が式 $-C=C$  (式中、  $R^{24}$ は前記の意味を有  $R^{24}$ 

する。 R<sup>26</sup>は水素原子又は低級アルキル基を意味する。 R<sup>27</sup>は水素原子、低級アルキル基、保護されていてもよいカルボキシル基、保護されていてもよいカルボキシアルキル基を意味する。) で示される基のとき、以下の方法によっても製造することができる。

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{3} \xrightarrow{R^{4}} N \xrightarrow{C} Q$$

$$R^{24}$$

$$(Ph0)_{2}PCH \xrightarrow{R^{26}} (XVI) \times Id$$

$$Ph \xrightarrow{Ph} P = C \xrightarrow{R^{26}} (XVII)$$

(一連の式中、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>、R<sup>6</sup>、 R<sup>24</sup>、 R<sup>26</sup>、R<sup>27</sup> は前記の意味を有する。 Phはフェニル基を意味する。)

すなわち、一般式 (XIV)で表される化合物を一般式(XVI) 又は一般式(XVII)で表される化合物とウィティッヒ反応により反応させ、一般式(XV)で表される化合

物を得る方法である。

反応溶媒は、反応に関与しないあらゆる溶媒を使用することができる。 反応温度は0℃から溶媒の還流温度までである。

#### 製造方法?

一般式(
$$I$$
)において、 $R^5$ が式 $-CH-CH$  $R^{2^6}$  $R^{2^7}$ (式中、 $R^{2^4}$ 、 $R^{2^6}$ 、 $R^{2^7}$ は $R^{2^4}$ 

前記の意味を有する。)で示されるとき、以下の方法でも製造することができる。

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{2} \xrightarrow{R^{2}} N$$

$$C = C \xrightarrow{R^{2} 6}$$

$$R^{2} \xrightarrow{R^{2}} R^{4}$$

$$Pd - C \Rightarrow S \lor l \ddagger Pt$$

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{2} \xrightarrow{R^{2}} N$$

$$CH - CH \xrightarrow{R^{2} 6}$$

$$R^{2} \xrightarrow{R^{2} 6}$$

$$R^{2} \xrightarrow{R^{2}} N$$

$$CH - CH \xrightarrow{R^{2} 7}$$

$$R^{2} \xrightarrow{R^{2} 7}$$

$$R^{2} \xrightarrow{R^{2} 7}$$

$$R^{2} \xrightarrow{R^{2} 7}$$

$$R^{2} \xrightarrow{R^{2} 7}$$

$$R^{3} \xrightarrow{R^{4}} N$$

$$R^{2} \xrightarrow{R^{2} 7}$$

$$R^{2} \xrightarrow{R^{2} 7}$$

$$R^{2} \xrightarrow{R^{2} 7}$$

$$R^{3} \xrightarrow{R^{4}} N$$

$$R^{2} \xrightarrow{R^{2} 7}$$

$$R^{3} \xrightarrow{R^{4}} N$$

$$R^{2} \xrightarrow{R^{2} 7}$$

$$R^{3} \xrightarrow{R^{4}} N$$

$$R^{2} \xrightarrow{R^{4}} N$$

(一連の式中、R¹、R²、R³、R⁴、R⁶、 R²⁴、R²⁶ 及び R²¹は前記の意味を有する。)

すなわち、製造方法 6 で得られた一般式(XV)で表される化合物を還元することによって、目的化合物(XVIII) を得る方法である。

還元は通常の方法、例えばパラジウムー炭素あるいは白金触媒による接触還元

などによって行われる。

反応溶媒は、反応に関与しないあらゆる溶媒が用いられる。

## 製造方法 8

一般式 (I) において、
$$R^6$$
が式  $-N$ -( $CH_2$ )。 $R^{20}$  (式中、 $R^{19}$ 、 $R^{20}$ 、 $R^{19}$ 

 $\mathbb{R}^{21}$  及び $\mathbf{r}$  は前記の意味を有する。)で示される基のときは、以下の方法でも製造することができる。

(一連の式において、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 、  $R^{19}$ 、  $R^{20}$ 、 $R^{21}$  及びrは前記の意味を有する。)

すなわち、一般式(XIX) で表される化合物を還元して、目的化合物(XX)を得る方法である。

還元は通常の方法、例えばパラジウムー炭素あるいは白金触媒による接触還元 又は鉄、スズを用いた還元などで行われる。

反応溶媒は、反応に関与しないあらゆる溶媒を使用することができる。

## 製造方法 9

一般式(I)において、R<sup>5</sup>が式-O-R<sup>9</sup>'(式中、R<sup>9</sup>'は保護されていてもよいカ ルボキシアルキル基を意味する。)で示される基のとき、以下の方法で製造する ことができる。

## (第一工程)

$$R^2$$
  $R^1$   $R^6$   $R^6$   $R^3$   $R^4$   $R^6$   $R^6$   $R^2$   $R^1$   $R^6$   $R^2$   $R^4$   $R^6$   $R^7$   $R^6$   $R^7$   $R^8$   $R^8$ 

(一連の式において、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 及び $R^6$ は前記の意味を有する。 mは 0 又は  $1\sim 2$  の整数を意味する。)

すなわち、一般式(XXI)で表される化合物を通常の方法で酸化して、一般式(XXII)で表される化合物を得る反応である。

酸化剤としては、通常用いられる酸化剤ならばあらゆるものが使用できるが、

例えば六価クロム、ジメチルスルホキシド、オキザリルクロリド等を挙げること ができる。

反応溶媒としては、反応に関与しないあらゆる溶媒を使用することができる。 反応温度は0℃から溶媒の還流温度までである。

# (第二工程)

$$R^{28}$$
  $P = C - COOR^{30}$  (XXIII)'  $R^{28}$   $P = C - COOR^{30}$   $R^{29}$   $R^{29}$   $R^{29}$   $R^{2}$   $R^{2}$   $R^{2}$   $R^{2}$ 

$$\begin{array}{c|c}
R^{2} & R^{6} \\
R^{3} & N \\
\hline
 & N \\
 & O - (CH_{2})_{m} - CH = C - COOR^{30} \\
\hline
 & R^{29}
\end{array}$$
(XXIV)

(一連の式において、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^6$ 及び mは前記の意味を有する。 $R^{28}$ 、 $R^{20}$ 、 $R^{30}$  は同一又は相異なる水素原子又は低級アルキル基を意味する。)

すなわち、第一工程で得られた化合物(XXII)にウィティッヒ試薬(XXIII) 又は (XXIII) と反応させて、一般式(XXIV)で表される化合物を得る方法である。

反応溶媒は、反応に関与しないあらゆるものを用いることができる。 反応温度は0℃から溶媒の還流温度までである。

# (第三工程)

$$R^{2}$$
  $R^{1}$   $R^{6}$   $R^{2}$   $R^{4}$   $R^{6}$   $R^{2}$   $R^{2}$   $R^{2}$   $R^{2}$   $R^{2}$   $R^{2}$   $R^{3}$   $R^{4}$   $R^{6}$   $R^{2}$   $R^{2}$   $R^{2}$   $R^{3}$   $R^{4}$   $R^{6}$   $R^{2}$   $R^{2}$   $R^{3}$   $R^{4}$   $R^{6}$   $R^{2}$   $R^{2}$   $R^{3}$   $R^{4}$   $R^{6}$   $R^{2}$   $R^{4}$   $R^{6}$   $R^{$ 

(一連の式において、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^6$ 、 $R^{29}$  、 $R^{30}$  及び mは前記の意味を有する。)

すなわち、第二工程で得られた化合物(XXIV)を還元して、目的化合物(XXV)を 得るという方法である。

還元は通常の方法により行われるが、例えばパラジウムー炭素あるいは白金触 媒による接触還元などが挙げられる。

#### 製造方法10

一般式(I)において、
$$R^6$$
が式  $-N$ -( $CH_2$ )。 $R^{20}$  (式中、 $R^{19}$ 、 $R^{20}$ 、 $R^{19}$  (式中、 $R^{19}$ 、 $R^{20}$ 、 $R^{19}$ 

R<sup>2</sup>1 及びr は前記の意味を有する。 R<sup>3</sup>1はアシル基、低級アルキルスルホニル基、低級アルキルオキシカルボニル基を意味する。)で示される基のときは、以下の方法でも製造することができる。

(一連の式において、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>、R<sup>5</sup>、 R<sup>18</sup>、 R<sup>20</sup>、R<sup>21</sup> 、R<sup>31</sup> 及びrは 前記の意味を有する。)

すなわち、製造方法8で得られた一般式(XX)で表される化合物を塩基存在下、 通常の方法によるアシル化、スルホニル化又はアルコキシカルボニル化すること により、目的化合物(XXVI)を得る方法である。 アシル化剤としては、酸クロリド、酸無水物、混合酸無水物などのカルボン酸活性体、ジシクロヘキシルカルボジイミドなどの縮合剤等、通常用いられるあらゆるアシル化剤が用いられる。

スルホニル化剤としては、通常用いられるあらゆるスルホニル化剤が使用可能 \*だが、例を挙げれば、低級アルキルスルホニルクロリド、低級アルキルスルホン 酸無水物などである。

アルコキシカルボニル化剤としては、通常用いられるあらゆるアルコキシカルボニル化剤、例えば低級アルキルオキシカルボニルクロリド、低級アルキルピロカーボネートなどを挙げることができる。

塩基としては、あらゆる塩基が使用可能だが、例えばピリジン、トリエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基などを挙げることができる。

# 製造方法11

一般式(1) において、環Aがベンゼン環、ピリジン環、シクロヘキサン環のいずれかから選択され、環Bがピリジン環、ピリミジン環、イミダゾール環から選択され、かつ $R^5$ が前記 $R^5$ の定義のうち環部に直接炭素原子で結合する基を除いたものから選択される基を意味し、 $R^6$ が前記 $R^6$ の定義のうち環部に直接炭素原子で結合する基を除いたものから選択される基のとき、一般式(1)で表される化合物は、以下の方法でも製造することができる。尚、以下には上記の代表として環部がキナゾリン骨格を形成している場合を示す。

# (第一工程)

$$\begin{array}{c|c}
R^2 & X \\
R^3 & X
\end{array}$$

$$\begin{array}{c}
R^4 & X
\end{array}$$
(XXVII)

$$\begin{array}{c|c}
R^{5} & -H \\
R^{2} & N \\
R^{3} & N \\
\end{array}$$
(XXVIII)

(一連の式中、 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$  は前記の意味を有する。 $R^5$  は前記 $R^5$ の定義のうち、環部に直接炭素原子で結合する基を除いたものの中から選択される基を意味する。 Xはハロゲン原子を意味する。 )

すなわち、通常の方法による縮合反応である。

反応溶媒は、イソプロピルアルコールなどのアルコール系溶媒、テトラヒドロフランなどのエーテル系溶媒、ジメチルホルムアミドなどを用いるのが好ましいが、反応に関与しないあらゆる有機溶媒を用いることができる。

 $R^6$ 。が窒素原子で環部に結合する場合は、トリエチルアミン等の3級アミン存在下で加熱環流して発生する HC1を除去しながら反応をすすめるのが好ましい。また、 $R^6$ 。が酸素原子や硫黄原子で環部に結合する場合、水酸化ナトリウム、炭酸ナトリウムなどのアルカリ存在下で加熱環流して反応を進行させるのが好ましい。

#### (第二工程)

$$\begin{array}{c|c}
R^{6} \cdot -H \\
R^{2} & R^{1} & R^{5} \cdot \\
R^{3} & R^{4} & R^{6} \cdot 
\end{array}$$
(XXIX)

(一連の式中、 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$ , Xは前記の意味を有する。 $R^6$ 。は前記 $R^6$ の定義の中から、環部に直接炭素原子で結合する基を除くものから選択される基を意味する。)

第一工程で得られた化合物(XXVIII)を通常の方法で一般式 R<sup>6</sup> -Hで示される化合物と縮合させる反応である。

反応溶媒は、イソプロピルアルコールなどのアルコール系溶媒、テトラヒドロフランなどのエーテル系溶媒、ジメチルホルムアミドなどを用いるのが好ましいが、反応に関与しないあらゆる有機溶媒を用いることができる。

R<sup>6</sup>. が窒素原子で環部に結合する場合は、トリエチルアミン、ピリジン、エチルジイソプロピルアミンなどの有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水素化ナトリウム、水酸化ナトリウム等の無機塩基、ナトリウムメトキシド、カリウム tーブトキシド等のアルコキシド等の存在下で加熱還流して反応をすすめるのが好ましい。また、R<sup>6</sup>. が酸素原子や硫黄原子で環部に結合する場合、水酸化ナトリウム、炭酸ナトリウムなどのアルカリ存在下で加熱還流して反応を進行させるのが好ましい。

# 製造方法12

一般式(1) で示される化合物が次の一般式(XXXII):

$$\begin{array}{c|c}
R^1 & R^6 \\
R^3 & N \\
R^4 & R^6
\end{array}$$
(XXXII)

で示される化合物であるとき、この化合物は以下の方法でも製造することができる。

(一連の式中、R<sup>1</sup>,R<sup>2</sup>,R<sup>3</sup>,R<sup>4</sup> およびR<sup>5</sup>は前記の意味を有する。R<sup>6</sup>。は前記R<sup>6</sup>の 定義中、環部に直接炭素原子で結合する基から選択される基を意味する。) すなわち、アルカリ存在下、通常の方法で、例えばピペロニルクロライド (XXXI)を一般式(XXX) で示されるベンズイミダゾール誘導体と反応させて、目的 化合物を得る反応である。

アルカリとしては、ヨウ化ナトリウムなどが好ましい。

反応溶媒としては、反応に関与しないあらゆる溶媒が使用可能であるが、好ま

しくはジメチルホルムアミドなどの極性溶媒を挙げることができる。

反応温度は約60~ 100℃が好ましく、特に好ましくは約70~80℃である。

## 製造方法13

本発明化合物は、以下の方法でも製造することができる。

## (第一工程)

$$R^3$$
 $R^4$ 
 $Q$ 
 $Q$ 
 $R^6 a-H$ 

$$\mathbb{R}^{2}$$
 $\mathbb{R}^{1}$ 
 $\mathbb{R}^{6}$ 
 $\mathbb{Q}^{6}$ 

(一連の式中、 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$  は前記の意味を有する。 $R^6$ 。は前記 $R^6$ の定義から 環部に直接炭素原子で結合する基を除いたものの中から選択される基を意味す る。 Q及び $Q^1$ はハロゲン原子を意味する。)

第一工程は、通常の方法による縮合反応である。

R<sup>6</sup> a が窒素原子で環部に結合する場合は、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基、ナトリウムメトキシド、カリウム tープトキシド等のアルコキシド類等の存在下で加熱還流して反応をすすめるのが好ましい。また、R<sup>6</sup> a が酸素原子や硫黄原子で環部に結

合する場合、水酸化ナトリウム、炭酸ナトリウムなどの無機塩基存在下で加熱還 流して反応を進行させるのが好ましい。

反応溶媒としては、反応に関与しないあらゆる溶媒を使用できるが、例として エタノール、イソプロピルアルコールなどのアルコール系溶媒、テトラヒドロフ ランなどのエーテル系溶媒、ジメチルホルムアミド、ジメチルスルホキシド等を 挙げることができる。また、本方法は、場合によって反応溶媒が存在しなくても 反応をすすめることができる。

#### (第二工程)

$$R^3$$
 $R^4$ 
 $R^5$ 
 $R^6$ 
 $R^6$ 
 $R^5$ 
 $R^6$ 

R4

(一連の式中、 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^6$ <sub>a</sub>, Qは前記の意味を有する。 $R^5$ <sub>a</sub>は前記 $R^5$ の定義中から環部に直接炭素原子で結合する基を除くものから選択される基を意味する。)

すなわち、第一工程で得られた化合物と一般式R<sup>5</sup>。-Hで表される化合物を縮合させることにより、目的化合物を得るという方法である。

本方法は、必要により塩基の存在下で反応をすすめることができる。

塩基としては、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウム t \*\* ープトキシドなどのアルコキシド類などを挙げることができる。

反応溶媒としては、反応に関与しないあらゆる溶媒が使用できるが、例を挙げればエタノール、イソプロパノールなどのアルコール系溶媒、テトラヒドロフランなどのエーテル系溶媒、ジメチルホルムアミド、ジメチルスルホキシドなどを挙げることができる。

反応温度は0℃~ 300℃が好ましい。

R<sup>5</sup>。が窒素原子で環部に結合する基の場合は、トリエチルアミン等の3級アミン存在下で加熱還流して反応をすすめるのが好ましい。また、R<sup>5</sup>。が酸素原子や硫黄原子で環部に結合する基の場合、水酸化ナトリウム、炭酸ナトリウムなどのアルカリ存在下で加熱還流して反応を進行させるのが好ましい。

以上製造方法 1~13で得られた化合物は、水酸化ナトリウムや水酸化カリウム、メタンスルホン酸クロルなどを加えるなど、通常行われる方法によって塩をつくることができる。

次に製造方法で用いた原料化合物の製造方法を示す。

# 製造方法A

製造方法13で用いた出発物質のうち、環部がキナゾリン環であり、 Q及びQ' が塩素原子である化合物は以下の方法でも製造することができる。

$$\begin{array}{c|c}
R^{2} & COX' \\
\hline
R^{3} & NH_{2}
\end{array}$$
(a)

(第一工程)
$$R^{2} \xrightarrow{R^{1}} 0$$

$$R^{3} \xrightarrow{R^{4}} N$$
(b)
$$R^{2} \xrightarrow{R^{1}} C1$$

$$R^{2} \xrightarrow{N} C1$$
(c)

(一連の式中、 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$  は前記の意味を有する。X は水酸基、アルコキシ 基又はアミノ基のいずれかの基を意味する。)

すなわち、化合物(a) を通常行われる方法で閉環し、化合物(b) を得、その後 通常の方法で塩素化することにより、目的化合物(c) を得る方法である。

第一工程は、閉環反応である。尿素と化合物(a) を反応させて化合物(b) を得る工程である。この場合の反応温度は約 170~ 190℃が好ましく、反応溶媒は反応に関与しないものであればあらゆる有機溶媒を用いることができるが、好ましくはN-メチルピロリドンなどを挙げることができる。また、本工程は無溶媒でも反応を進行させることができる。

さらに、X がアミノ基である時は、カルボニルジイミダゾールなどにより環化 させるか、あるいはクロロギ酸エステルなどでウレタンにした後、酸あるいは塩 基性条件下環化させることによっても得ることができる。 第二工程は、塩素化反応である。この工程は、通常行われる方法で行うことができるが、例えば、五塩化リンおよびオキシ塩化リン、又は、オキシ塩化リンと、 攪拌下加熱還流して塩素化する方法などを挙げることができる。

# 製造方法 В

製造方法1で用いた出発物質(II)は以下の方法で製造することができる。

$$R^2$$
  $R^1$   $CONH_2$   $R^3$   $R^4$   $NH_2$   $R^4$   $NH_2$   $R^4$   $NH_2$   $R^2$   $R^1$   $CONH_2$   $R^2$   $R^4$   $R^4$   $R^5$   $R^4$   $R^5$   $R^4$   $R^5$   $R^5$   $R^4$   $R^5$   $R^6$   $R^6$ 

(一連の式中、 R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>は前記の意味を有する。R<sup>5</sup>。は前記R<sup>5</sup>の定義中、 ハロゲン原子、環部に炭素原子で結合する基の中から選択される基を意味する。) すなわち、第一工程で通常の方法によりアミド体を得、第二工程で酸又は塩基 の存在下で閉環させる反応である。

アミド体(e) は通常の方法で得ることができるが、例えば、塩基存在下、化合物(d) を $R^5$ 。-COC1 で示される酸塩化物等のアシル化剤と反応させることにより得ることができる。

塩基としては、好ましくはトリエチルアミン等の3級アミンやピリジンなどの 有機塩基を挙げることができる。

アシル化剤としては、具体的には、ベンゾイルクロリド、アセチルクロリド、 エチルオキサリルクロリド、ベンジルオキシアセチルクロリドなどの酸塩化物等 を挙げることができる。

反応温度は約0℃~30℃が好ましい。

第二工程においては、第一工程で得られた化合物(e)を、酸又は塩基存在下、加熱還流することによって、化合物(f)が得られる。

酸としては、無水酢酸などを挙げることができる。

塩基としては、水酸化ナトリウムなどを挙げることができる。

# 製造方法C

製造方法1において、R<sup>5</sup>。が水素原子のとき、出発物質(II)は以下の方法でも製造することができる。

$$R^2$$
  $R^3$   $R^4$   $COX"$   $R^3$   $R^4$   $NH_2$   $R^4$   $R^4$ 

 $(一連の式中、 R^1, R^2, R^3, R^4$ は前記の意味を有する。X''は水酸基又は低級アルコキシ基を意味する。)

すなわち、通常の方法による閉環反応である。

例えば、原料化合物(g) をホルムアミドと加熱還流して縮合させるか、ギ酸と加熱することにより、目的化合物(h) を合成することができる。

## 〔発明の効果〕

次に本発明化合物の効果を詳述するために、実験例を掲げる。

### 実験例

# プタ大動脈より得た c GMP-PDEを用いた酵素阻害作用

#### 1. 実験方法

プタ大動脈より調製した c GMP-PDEの酵素活性を、Thompsonらの方法 (\*\*) に準じて測定した。 1 mM E G T A 存在下、 1  $\mu$  M c G M P を基質として測定した。本発明化合物は、 DMSOで溶解し反応液に加え、阻害活性をみた。なお、反応液中の DMSOの最終濃度は 4 %以下とした。

(1) Thomson, W. J. and Strada, S. J., Cyclic Nucleotide Phosphodiesterase (PDE), in Methods of Enzymatic analysis, vol 4, p127-234, 1984 c GMP-PDEの調製

ブタ大動脈を細断し、Buffer A(20mM Tris/HCl, 2mM Mg acetate, 1mM Dithiothreitol, 5mM EDTA, 1400TIU/リットルaprotinin, 10mg/リットル leupeptin, 1mM benzamidine, 0.2mM PMSF, pH 7.5) の10倍容を加え、ホモジネートした。ホモジネートを10万×g、1時間で遠心し、得られた上清

をDEAE-Toyopearl 650S(Tosoh. Tokyo, Japan) カラムにかけた。Buffer B(50mM Tris/HCl. 0.1mM EGTA, 2mM Mg acetate, 1mM Dithiothreitol, 0.2mM PMSF, pH 7.5) でカラムを洗浄した後、0.05~0.4M NaCl のグレージェントをかけて溶出し、CaM-independent cGMP-PDE分画を得た。

# 2. 実験結果

表 1-6B に本発明化合物における実験結果を示す。

表 1

| 実施例Na | I C 50 (μM) |
|-------|-------------|
| 7     | 1.0         |
| 1 9   | 0.39        |
| 2 2   | 0.36        |
| 2 5   | 0.78        |
| 3 3   | 0.37        |
| 3 8   | 0.42        |
| 4 0   | 0.65        |
| 4 1   | 0.35        |
| 4 2   | 0.19        |
| 4 5   | 0.41        |
| 4 6   | 0.24        |
| 4 9   | 0.041       |
| 5 0   | 0.032       |
| 5 1   | 0.069       |
| 5 2   | 0.069       |
| 5 3   | 0.12        |
| 5 4   | 0.47        |
| 5 5   | 0.030       |
| 5 7   | 0.038       |
| 5 8   | 0.042       |
| 5 9   | 0.27        |
| 6 0   | 0.18        |
| 6 1   | 0.42        |

| 実施例No. | I C 5 0 (μM) |
|--------|--------------|
| 6 4    | 0.38         |
| 6 5    | 0.093        |
| 6 7    | 0.14         |
| 6 8    | 0.62         |
| 6 9    | 0.19         |
| 7 0    | 0.84         |
| 7 1    | 0.81         |
| 7 2    | 0.73         |
| 7 3    | 0.94         |
| 7 4    | 0.35         |
| 7 8    | 0.50         |
| 8 1    | 0.44         |
| 8 2    | 0.55         |
| 8 3    | 0.024        |
| 8 4    | 0.22         |
| 8 6    | 0.96         |
| 8 7    | 0. 68        |
| 8 9    | 0.16         |
| 9 1    | 0.036        |
| 9 2    | 0.094        |
| 9 3    | 0.032        |
| 9 5    | 0.20         |
| 9 7    | 0.79         |

| 実施例Na | I C 50 (μM) |
|-------|-------------|
| 9 8   | 0.062       |
| 1 0 4 | 0.010       |
| 1 0 5 | 0.18        |
| 1 0 7 | 0.0040      |
| 1 1 4 | 0.0030      |
| 1 1 2 | 0.0020      |
| 1 1 5 | 0.0020      |
| 1 2 0 | 0.0010      |
| 1 2 1 | 0.65        |
| 1 2 2 | 0. 0050     |
| 1 2 3 | 0.031       |
| 1 2 4 | 0.0080      |
| 1 2 5 | 0.0090      |
| 1 2 6 | 0.0010      |
| 1 2 7 | 0.11        |
| 1 2 8 | 0.30        |
| 1 3 3 | 0.77        |
| 1 3 4 | 0.0050      |
| 1 3 6 | 0.93        |
| 1 3 7 | 0.38        |
| 1 3 8 | 0.81        |
| 1 3 9 | 0.021       |
| 1 4 0 | 0.68        |
| L     |             |

| 1 4 6       0.015         1 5 0       0.0072         1 5 1       0.081         1 5 2       0.11         1 6 4       0.0080         1 6 5       0.016         1 6 6       0.026         1 6 7       0.56         1 6 8       0.011         1 7 0       0.029         1 7 1       0.0040         1 7 2       0.095         1 7 4       0.0040         1 7 5       0.0060         1 7 6       0.0030         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080         1 8 3       0.00040 | 実施例No | I C 50 (μM) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| 1 5 1       0.081         1 5 2       0.11         1 6 4       0.0080         1 6 5       0.016         1 6 6       0.026         1 6 7       0.56         1 6 8       0.011         1 7 0       0.029         1 7 1       0.00040         1 7 2       0.095         1 7 4       0.0040         1 7 5       0.0060         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                            | 1 4 6 | 0015        |
| 1 5 2       0.11         1 6 4       0.0080         1 6 5       0.016         1 6 6       0.026         1 6 7       0.56         1 6 8       0.011         1 7 0       0.029         1 7 1       0.0040         1 7 2       0.095         1 7 4       0.0040         1 7 5       0.0060         1 7 6       0.0030         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                            | 1 5 0 | 0.0072      |
| 1 6 4       0.0080         1 6 5       0.016         1 6 6       0.026         1 6 7       0.56         1 6 8       0.011         1 6 9       0.011         1 7 0       0.029         1 7 1       0.00040         1 7 2       0.095         1 7 4       0.0040         1 7 5       0.0060         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                                                     | 1 5 1 | 0. 081      |
| 1 6 5       0.016         1 6 6       0.026         1 6 7       0.56         1 6 8       0.011         1 6 9       0.011         1 7 0       0.029         1 7 1       0.00040         1 7 2       0.095         1 7 4       0.0040         1 7 5       0.0060         1 7 6       0.0030         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                                                     | 1 5 2 | 0.11        |
| 1 6 6       0.026         1 6 7       0.56         1 6 8       0.011         1 6 9       0.011         1 7 0       0.029         1 7 1       0.0040         1 7 2       0.095         1 7 4       0.0040         1 7 5       0.0060         1 7 6       0.0030         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                                                                                | 1 6 4 | 0.0080      |
| 1 6 7       0.56         1 6 8       0.011         1 6 9       0.011         1 7 0       0.029         1 7 1       0.00040         1 7 2       0.095         1 7 4       0.0040         1 7 5       0.0060         1 7 6       0.0030         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                                                                                                         | 1 6 5 | 0.016       |
| 1 6 8       0.011         1 6 9       0.011         1 7 0       0.029         1 7 1       0.00040         1 7 2       0.095         1 7 4       0.0040         1 7 5       0.0060         1 7 6       0.0030         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                                                                                                                                  | 1 6 6 | 0.026       |
| 1 6 9       0.011         1 7 0       0.029         1 7 1       0.00040         1 7 2       0.095         1 7 4       0.0040         1 7 5       0.0060         1 7 6       0.0030         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                                                                                                                                                            | 1 6 7 | 0.56        |
| 1 7 0       0.029         1 7 1       0.00040         1 7 2       0.095         1 7 4       0.0040         1 7 5       0.0060         1 7 6       0.0030         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                                                                                                                                                                                      | 1 6 8 | 0.011       |
| 1 7 1       0.00040         1 7 2       0.095         1 7 4       0.0040         1 7 5       0.0060         1 7 6       0.0030         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                                                                                                                                                                                                                | 1 6 9 | 0.011       |
| 1 7 2       0.095         1 7 4       0.0040         1 7 5       0.0060         1 7 6       0.0030         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                                                                                                                                                                                                                                            | 1 7 0 | 0.029       |
| 1 7 4       0.0040         1 7 5       0.0060         1 7 6       0.0030         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                                                                                                                                                                                                                                                                      | 171   | 0.00040     |
| 1 7 5       0.0060         1 7 6       0.0030         1 7 7       0.012         1 7 8       0.011         1 7 9       0.0020         1 8 0       0.0090         1 8 1       0.0050         1 8 2       0.0080                                                                                                                                                                                                                                                                                                                                                                                 | 1 7 2 | 0.095       |
| 1 7 6     0.0030       1 7 7     0.012       1 7 8     0.011       1 7 9     0.0020       1 8 0     0.0090       1 8 1     0.0050       1 8 2     0.0080                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 7 4 | 0.0040      |
| 1 7 7     0.012       1 7 8     0.011       1 7 9     0.0020       1 8 0     0.0090       1 8 1     0.0050       1 8 2     0.0080                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 175.  | 0.0060      |
| 1 7 8     0.011       1 7 9     0.0020       1 8 0     0.0090       1 8 1     0.0050       1 8 2     0.0080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 176   | 0.0030      |
| 1 7 9     0.0020       1 8 0     0.0090       1 8 1     0.0050       1 8 2     0.0080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 177   | 0.012       |
| 1 8 0     0.0090       1 8 1     0.0050       1 8 2     0.0080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178   | 0. 011      |
| 1 8 1 0.0050<br>1 8 2 0.0080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 7 9 | 0.0020      |
| 1 8 2 0.0080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 8 0 | 0.0090      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 8 1 | 0.0050      |
| 1 8 3 0.00040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 8 2 | 0.0080      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 8 3 | 0.00040     |

| 実施例Na | I C 50 (μM) |
|-------|-------------|
| 1 8 4 | 0.0060      |
| 1 8 5 | 0.010       |
| 1 8 7 | 0.12        |
| 1 8 8 | 0.029       |
| 1 8 9 | 0.016       |
| 1 9 0 | 0.0050      |
| 1 9 1 | 0.019       |
| 1 9 2 | 0. 020      |
| 1 9 3 | 0.00080     |
| 1 9 4 | 0.0040      |
| 1 9 7 | 0.066       |
| 2 0 0 | 0.064       |
| 2 0 1 | 0.049       |
| 2 0 2 | 0.0020      |
| 2 0 3 | 0.028       |
| 2 0 4 | 0.0040      |
| 2 0 6 | 0.029       |
| 2 0 8 | 0.00019     |
| 2 1 3 | 0.023       |
| 2 1 4 | 0.0090      |
| 2 1 6 | 0.017       |
| 2 2 0 | 0.00024     |
| 2 2 2 | 0. 0065     |

表 6 A

| 実施例No. | I C 50 (μM) |
|--------|-------------|
|        |             |
| 2 2 7  | 0.0026      |
| 2 2 8  | 0.00052     |
| 2 3 0  | 0.0058      |
| 2 3 1  | 0.41        |
| 2 3 2  | 0.044       |
| 2 3 3  | 0.013       |
| 2 3 4  | 0.0060      |
| 2 3 5  | 0.0020      |
| 2 3 6  | 0.0060      |
| 2 3 7  | 0.014       |
| 2 3 8  | 0.0050      |
| 2 3 9  | 0.0080      |
| 2 4 0  | 0.0040      |
| 2 4 1  | 0.18        |
| 2 4 3  | 0.00015     |
| 2 4 4  | 0.0090      |
| 2 4 5  | 0.10        |

表 6B

| 実施例No   | I C 50 (μM) |
|---------|-------------|
| 关心 Minu | 1010 (12.5) |
| 2 5 5   | 0.032       |
| 2 5 6   | 0.0021      |
| 2 6 0   | 0.00016     |
| 2 6 2   | 0.88        |
| 2 6 6   | 0.11        |
| 2 7 8   | 0. 25       |
| 2 8 0   | 0. 25       |
| 3 7 6   | 0.021       |

上記の実験例から、本発明化合物は、PDE、ことにcGMP-PDE阻害作用を有することが明らかとなった。すなわち、本発明化合物は、cGMP-PDE阻害作用を示すことにより、cGMPの生体内濃度を上昇させる効果を有することが明らかとなった。従って、本発明化合物である含窒素複素環化合物は、cGMP-PDE阻害作用が有効である疾患の予防及び治療に有効である。これらの疾患として例を挙げれば、例えば、狭心症、心筋梗塞、慢性および急性心不全などの虚血性心疾患、肺性心を併発していてもよい肺高血圧症、その他あらゆる成因による高血圧症、末梢循環不全、脳循環不全、脳機能不全および気管支喘息、アトピー性皮膚炎若しくはアレルギー性鼻炎等のアレルギー性疾患等を挙げることができる。

また、本発明化合物群の中にはカルモジュリン依存型PDEを阻害するものも含まれている。この作用が有効な疾患は上述のcGMP-PDE阻害作用が有効な疾患と同様の可能性が高く、この点からも、本発明化合物は、上記疾患の予防および治療に使用できるものであるといえる。

また、本発明化合物は、毒性が低く安全性も高いので、この意味からも本発明価値が高い。

本発明化合物をこれらの医薬として使用する場合は、経口投与若しくは非経口 投与により投与される。投与量は、症状の程度;患者の年令、性別、体重、感受 性差;投与方法;投与の時期、間隔、医薬製剤の性質、調剤、種類;有効成分の 種類などによって異なり、特に限定されない。

経口投与の場合は、通常成人 1 日あたり約  $1\sim1,000$ mg 、好ましくは約  $5\sim500$ mg 、更に好ましくは $10\sim100$  mgであり、これを通常 1 日  $1\sim3$  回にわけて投与する。

注射の場合は、通常  $1~\mu$  g / kg  $\sim$  3.000  $\mu$  g / kg  $\sim$  5.000  $\mu$  g / kg  $\sim$  1.000  $\mu$  g / kg  $\sim$  8.000  $\mu$  g / kg  $\sim$  9.000  $\mu$  g

経口用固形製剤を調製する場合は、主薬に賦形剤、更に必要に応じて結合剤、 崩壊剤、滑沢剤、着色剤、矯味矯臭剤などを加えた後、常法により錠剤、被覆錠 剤、顆粒剤、散剤、カプセル剤などとする。

賦形剤としては、例えば乳糖、コーンスターチ、白糖、ブドウ糖、ソルビット、結晶セルロース、二酸化ケイ素などが、結合剤としては、例えばポリビニルアルコール、ポリビニルエーテル、エチルセルロース、メチルセルロース、アラビアゴム、トラガント、ゼラチン、シェラック、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、クエン酸カルシウム、デキストリン、ペクチン等が、滑沢剤としては、例えばステアリン酸マグネシウム、タルク、ポリエチレングリコール、シリカ、硬化植物油等が、着色剤としては医薬品に添加することが許可されているものが、矯味矯臭剤としては、ココア末、ハッカ脳、芳香酸、ハッカ油、龍脳、桂皮末等が用いられる。これらの錠剤、顆粒剤には糖衣、ゼラチン衣、その他必要により適宜コーティングすることは勿論差し支えない。

注射剤を調製する場合には、主薬に必要によりpH調整剤、緩衝剤、懸濁化剤、

溶解補助剤、安定化剤、等張化剤、保存剤などを添加し、常法により静脈、皮下、筋肉内注射剤とする。その際必要により、常法により凍結乾燥物とすることも必要である。

懸濁剤としての例を挙げれば、例えばメチルセルロース、ポリソルベート80、
ヒドロキシエチルセルロース、アラビアゴム、トラガント末、カルボキシメチル
セルロースナトリウム、ポリオキシエチレンソルビタンモノラウレートなどを挙
げることができる。

溶解補助剤としては、例えばポリオキシエチレン硬化ヒマシ油、ポリソルベート80、ニコチン酸アミド、ポリオキシエチレンソルビタンモノラウレート、マグロゴール、ヒマシ油脂肪酸エチルエステルなどを挙げることができる。

#### (実施例)

次に本発明の実施例を掲げるが、本発明がこれらのみに限定されることがないことは言うまでもない。また、実施例に先立って、本発明の化合物の原料化合物の製造例を掲げる。尚、Meはメチル基、Etはエチル基、 Bzlはベンジル基、Acはアセチル基を示す。

## 製造例1

2-エトキシカルボニルー6-クロロキナゾリン-4(3H)-オン

2-アミノ-5-クロロベンズアミド2.50g (0.0147モル)をピリジン15mlに 溶解させ、室温攪拌下、エチルオキサリルクロリド 2.0mlを滴下する。数時間攪 拌後、溶媒を減圧下留去し、得られる残渣をそのまま次の反応に使用した。

残渣を酢酸50mlに溶解させ、これに無水酢酸5mlを加え一昼夜加熱還流する。

溶媒を減圧下留去し、得られる結晶にエタノールを加え、結晶を濾取する。エタ ノール、エーテルで洗い、風乾して、標題化合物の淡黄色晶2.78gを得た。

•収率;75%

・融 点;239~240℃

• Mass;  $253(M+H)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.36(3H, t, J=7.2Hz), 4.39(2H, q, J=7.2Hz), 7.86(1H, d, J=8.8Hz),

7. 92(1H, dd, J=8. 8Hz, 2. 4Hz), 8. 11(1H, d, J=2. 4Hz), 12. 85(1H, brs)

#### 実施例 1

## 4-クロロー6-シアノキナゾリン

4-ヒドロキシー6-カルバモイルキナゾリン2g、塩化チオニル30ml及びオキシ塩化リン60mlの混合物を20時間加熱還流した。反応液を減圧下濃縮し、得られた残渣を酢酸エチル 100mlに溶解した。これを水洗(150ml) 後、硫酸マグネシウムで乾燥後、減圧下濃縮し、シリカゲルカラムクロマトグラフィーに付した。酢酸エチル及びアセトンで溶出し、標題化合物を800mg 得た。

・分子式; C<sub>9</sub>H<sub>4</sub>N<sub>3</sub>Cl (189.5)

• 収率:40%

・融 点;>290℃

• Mass:  $190(M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

7.79(1H, d, J=8.8Hz), 8.16(1H, dd, J=8.8Hz, 2.0Hz), 8.26(1H, s),

8. 49(1H, d, J=2.0Hz)

## 実施例2

# 2, 4-ジクロロー6-シアノキナゾリン

$$NC$$
 $C1$ 
 $N$ 
 $C1$ 

2, 4-ジヒドロキシー6-カルバモイルキナゾリン12g及び五塩化リン48.8 gをオキシ塩化リン 200ml及び塩化チオニル70mlに懸濁し、24時間加熱還流した。 反応液を減圧下濃縮し、得られた結晶性残渣を酢酸エチル 100ml及びn-ヘキサン 100mlで洗い、標題化合物を 6.8g得た。

·分子式; C<sub>8</sub>H<sub>3</sub>Cl<sub>2</sub>N<sub>3</sub>

• 収 率;52%

・融 点:161~163℃

• Mass:  $224(M+1)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>):

7.94(1H, d, J=8.0Hz), 8.00(1H, dd, J=8.0Hz, 2.0Hz), 8.49((1H, d, J=2.0Hz)

# 実施例3

2-エトキシカルボニル-4,6-ジクロロキナゾリン

製造例 1 で得られた 2 - エトキシカルボニルー 6 - クロロキナゾリンー 4 ( 3 H) - オン2.68 g (0.0106モル)をオキシ塩化リン40mlに懸濁させ、1 時間加熱

還流する。溶媒を減圧下留去し、残渣を酢酸エチルに溶解させ、飽和重曹水にて 洗う。有機層を分液し、無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧下 溶媒留去し、標題化合物の淡黄色晶2.82gを得た。

• 収率(%);98

・融点(℃);129~130

• Mass :  $271(M+1)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

1.50(3H, t, J=7.2Hz), 4.60(2H, q, J=7.2Hz), 7.99(1H, dd, J=8.8Hz, 2.4Hz),

8. 25(1H, d, J=8. 8Hz), 8. 34(1H, d, J=2. 4Hz)

### 実施例 4

4-(3, 4-メチレンジオキシベンジル) アミノ-6, 7, 8-トリメトキシ キナゾリン

4-クロロー6, 7, 8-トリメトキシキナゾリン21.2g(0.083モル)、ピペロニルアミン17.0g(0.112モル)、炭酸ナトリウム13.5g(0.127モル)をイソプロピルアルコール 400mlに混合し、一昼夜加熱還流した。反応液を減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)にて精製後、酢酸エチルより再結晶して、標題化合物の淡黄色針状晶21.3gを得た。

·分子式: C19H19N3O5

・収率(%);69

・融点(℃);197~198

• Mass ;  $370(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>));

3.94(3H, s), 4.03(3H, s), 4.12(3H, s), 4.76(2H, d, J=8.0Hz),

5.55(1H, brs), 5.97(2H, s), 6.64(1H, s), 6.80(1H, d, J=8.0Hz),

6.87(1H, d, J=8.0Hz), 6.91(1H, s), 8.66(1H, s)

### 実施例5~48

実施例 4 の方法に準じて次の化合物を合成した。

## 実施例5

4-(3,4-メチレンジオキシフェニル)アミノ-6,7,8-トリメトキシ キナゾリン

·分子式; C18H17N3O5

· 収率 (%);58

・融点(℃);254~255 (分解)

• Mass ; 356(M+H)+

• NMR  $\delta$  (CDCl<sub>3</sub>);

4.02(3H, s), 4.05(3H, s), 4.13(3H, s), 5.99(2H, s),

6.83(1H, d, J=7.6Hz), 7.02(1H, d, J=7.6Hz), 7.32(1H, s), 7.33(1H, s),

8.49(1H.brs), 8.63(1H,s)

### 実施例 6

# 4 -ベンジルアミノー6, 7, 8-トリメトキシキナゾリン

·分子式; C18H19N2O3

· 収率(%);91

・融点(℃);180~181

• Mass ;  $326(M+H)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

3.94(3H,s), 4.03(3H,s), 4.13(3H,s), 4.87(2H,d,J=5.2Hz),

5.62(1H, brs), 6.65(1H, s), 7.4(5H, m), 8.67(1H, s)

# 実施例7

# 4-(4-メトキシベンジル)アミノー6,7,8-トリメトキシキナゾリン

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \end{array}$$

·分子式 ; C19H21N3O4

· 収率(%);97

・融点(℃):174~175

• Mass :  $356(M+H)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>):

3.82(3H, s), 3.93(3H, s), 4.03(3H, s), 4.13(3H, s),

4.79(2H, d, J=4.8Hz), 5.53(1H, brs), 6.63(1H, s),

6. 92(2H, d, J=8. 4Hz), 7. 35(2H, d, J=8. 4Hz), 8. 67(1H, s)

### 実施例8

# 4-(3-メトキシベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C18H21N3O4

·収率(%);89

・融点(℃);142~143

• Mass ;  $356(M+H)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>) :

3.80(3H.s). 3.96(3H.s), 4.03(3H.s), 4.12(3H.s),

4.85(2H, d, J=4.8Hz). 5.96(1H, brs). 6.76(1H, s).

6.86(1H, d, J=8.0Hz), 6.99(1H, d, J=8.0Hz), 7.02(1H, s),

7.29(1H, t, J=8.0Hz), 8.65(1H, s)

# 実施例9

4-(4-ニトロベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C18H18N4O5

· 収率(%);28

・融点(℃);210~212

• Mass ;  $371(M+H)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

3.97(3H, s), 4.05(3H, s), 4.13(3H, s), 5.01(2H, d, J=5.6Hz),

5.96(1H, brs), 6.76(1H, s), 7.54(2H, d, J=8.8Hz),

8.17(2H, d, J=8.8Hz), 8.62(1H, s)

### 実施例10

# 4-(3-ニトロベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \end{array}$$

·分子式 ; C<sub>18</sub>H<sub>18</sub>N<sub>4</sub>O<sub>5</sub>

・収率(%);30

・融点(℃);159~160

· Mass ; 371(M+H)\*

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.97(3H, s), 4.04(3H, s), 4.12(3H, s), 4.99(2H, d, J=5.6Hz),

6.06(1H.brs), 6.79(1H.s), 7.51(1H.t, J=8.0Hz),

7.76(1H, d, J=8.0Hz), 8.12(1H, d, J=8.0Hz), 8.22(1H, s), 8.63(1H, s)

# 実施例 1 1

# 4-(4-クロロベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C18H18N3O3Cl

・収率(%);61

・融点(℃);181~182

· Mass ; 360(M+H)+

·NMR δ(CDCl<sub>3</sub>);

3.94(3H, s), 4.03(3H, s), 4.12(3H, s), 4.85(2H, d, J=5.6Hz),

5.76(1H.brs), 6.70(1H.s), 7.32(4H.brs), 8.64(1H.s)

# <u>実施例12</u>

4-(3-クロロベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C18H18N3O3Cl

・収率(%);85

・融点(℃);161~162

• Mass;  $360(M+H)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

3.97(3H, s), 4.04(3H, s), 4.13(3H, s), 4.87(2H, d, J=5.2Hz),

5.66(1H, brs), 6.68(1H, s), 7.29(3H, s), 7.39(1H, s), 8.65(1H, s)

## 実施例 1 3

# 4-フルフリルアミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C16H17N3O4

• 収率(%);81

・融点(℃);198~199

• Mass;  $316(M+H)^+$ 

# ·NMR $\delta$ (CDCl<sub>3</sub>) :

3.97(3H, s), 4.03(3H, s), 4.12(3H, s), 4.87(2H, d, J=5.2Hz),

5.67(1H.brs). 6.37(2H.m). 6.68(1H.s). 7.42(1H.s). 8.67(1H.s)

## 実施例14

# 4-(4-ピコリル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C17H18N4O3

・収率(%);76

・融点 (℃) ;166 ~168

· Mass ; 327(M+H) +

• NMR  $\delta$  (CDCl<sub>3</sub>) :

3.97(3H, s), 4.05(3H, s), 4.12(3H, s), 4.92(2H, d, J=6.0Hz),

6.06(1H, brs), 6.80(1H, s), 7.28(2H, d, J=6.0Hz),

8.55(2H, d, J=6.0Hz), 8.62(1H, s)

# 実施例 1 5

# 4-(4-エチルベンジル)アミノー6,7,8-トリメトキシキナゾリン

$$\begin{array}{c} \text{HN} \\ \text{MeO} \\ \text{MeO} \\ \end{array}$$

·分子式 ; C20H23N3O3

・収率(%);88

・融点 (℃) ;195 ~196

• Mass :  $354(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.25(3H, t, J=7.6Hz). 2.67(2H, q, J=7.6Hz), 3.94(3H, s), 4.03(3H, s),

4.13(3H, s), 4.83(2H, d, J=4.8Hz), 5.56(1H, brs), 6.63(1H, s),

7.23(2H, d, J=8.0Hz), 7.35(2H, d, J=8.0Hz), 8.67(1H, s)

### 実施例 1 6

4-(インダン-5-イルメチル) アミノー6, 7, 8-トリメトキシキナゾリ

<u>ン</u>

·分子式 ; C21H23N3O3

・収率(%);61

・融点(℃);198~~199

• Mass ;  $366(M+H)^{+}$ 

• NMR  $\delta$  (CDC1<sub>3</sub>);

2.11(2H, quintet, J=7.2Hz), 2.93(4H, t, J=7.2Hz), 3.94(3H, s),

4.04(3H,s), 4.14(3H,s), 4.83(2H,d,J=4.4Hz), 5.55(1H,brs),

6.64(1H, s), 7.2~7.3(3H, m), 8.68(1H, s)

#### 実施<u>例 1 7</u>

# 4-(4-カルボキシベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C19H19N3O5

·収率(%);86

·融点(℃);227~228 (分解)

• Mass ; 370(M+H)+

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

3.89(3H,s), 3.92(3H,s), 3.98(3H,s), 4.86(2H,d,J=5.6Hz),

7.46(2H, d, J=8.0Hz), 7.54(1H, s), 7.90(2H, d, J=8.0Hz),

8.35(1H.s), 8.67(1H.brs)

# 実施例18

<u>4-(3-ヒドロキシメチルベンジル) アミノ-6, 7, 8-トリメトキシキナ</u> <u>ブリン</u>

·分子式 ; C18H21N3O4

・収率(%);86

・融点(℃);アモルファス

• Mass ;  $356(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.93(3H,s), 4.03(3H,s), 4.12(3H,s), 4.70(2H,s),

4.86(2H, d, J=5.2Hz), 5.82(1H, brs), 6.72(1H, s). 7.3~7.4(4H, m),

8.63(1H,s)

## 実施例19

<u>4-(3, 4-ジクロロベンジル) アミノ-6, 7, 8-トリメトキシキナゾリン</u>

$$\begin{array}{c|c} & & & \\ \text{MeO} & & & \\ & & \text{MeO} & \\ \end{array}$$

·分子式 ; C18H17N3O3Cl2

・収率(%);85

・融点(℃):205~206

• Mass ; 394(M+H)+

· NMR  $\delta$  (CDCl<sub>3</sub>);

3.97(3H, s), 4.04(3H, s), 4.12(3H, s), 4.84(2H, d, J=5.6Hz),

5.88(1H, brs), 6.74(1H, s), 7.24(1H, d, J=8.4Hz),

7.40(1H, d, J=8.4Hz), 7.47(1H, s), 8.63(1H, s)

### 実施例20

4-(3-クロロ-4-メトキシベンジル) アミノー6, 7, 8-トリメトキシ キナゾリン

·分子式 ; C19H20N3O4CI

• 収率(%);83

・融点(℃):164~165

• Mass :  $390(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>) :

3.90(3H,s), 3.97(3H,s), 4.04(3H,s), 4.13(3H,s),

4.80(2H.d.J=5.2Hz), 5.90(1H.brs), 6.75(1H.s),

6.91(1H, d, J=8.8Hz), 7.30(1H, dd, J=8.8Hz, 2.0Hz),

7. 43(1H, d, J=2. 0Hz), 8. 65(1H, s)

# 実施例21

 $\frac{4-(3, 4-ジフルオロベンジル) アミノー<math>6, 7, 8-$ トリメトキシキナゾ リン

·分子式 ; C18H17N3O3F2

・収率(%);96

・融点(℃);175~177

• Mass ;  $362(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.97(3H, s), 4.04(3H, s), 4.13(3H, s), 4.85(2H, d, J=5.2Hz).

5.73(1H, brs), 6.69(1H, s),  $7.1 \sim 7.3(3H, m)$ , 8.64(1H, s)

### 実施例22

シキナゾリン

4 - (3 - 7)ルオロー4 - 3トキシベンジル) アミノー6, 7, 8 -トリメトキ

·分子式 ; C<sub>1</sub> 9H<sub>2</sub> oN<sub>3</sub>O<sub>4</sub>F

・収率(%);82

・融点(℃);171~172

• Mass :  $374(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.89(3H,s), 3.98(3H,s), 4.04(3H,s), 4.12(3H,s),

4.81(2H, d, J=5.6Hz), 6.27(1H, brs), 6.86(1H, s), 6.94(1H, m),

7.  $14 \sim 7$ . 19(2H, m), 8. 64(1H, s)

#### 実施例23

4-(3,4-ジメトキシベンジル)アミノー6,7,8-トリメトキシキナゾ

PCT/JP92/01258

WO 93/07124

<u>リン</u>

·分子式 ; C20H23N3O5

• 収率(%);32

・融点(℃);171~172

· Mass ; 386(M+H)+

·NMR δ(CDCI3):

3.87(3H,s), 3.89(3H,s), 3.94(3H,s), 4.03(3H,s), 4.13(3H,s),

4.79(2H.d., J=5.2Hz), 5.67(1H.brs), 6.69(1H.s),

6.86(1H, d, J=8.8Hz), 6.96(1H, s), 6.98(1H, d, J=8.8Hz), 8.67(1H, s)

# 実施例24

<u>4-(4-ヒドロキシ-3-メトキシベンジル)アミノ-6,7,8-トリメト</u> キシキナブリン

・分子式 ; C19H21N3O5

• 収率(%);16

・融点(℃);201~202 (分解)

• Mass ;  $372(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>) :

3.88(3H,s), 3.96(3H,s), 4.03(3H,s), 4.12(3H,s),

4.78(2H, d, J=5.2Hz), 6.00(1H, brs), 6.77(1H, s), 6.91(1H, s),

6.92(1H,s), 6.97(1H,s), 8.65(1H,s)

### 実施例 2 5

# <u>4-(3, 4-エチレンジオキシベンジル) アミノ-6, 7, 8-トリメトキシ</u> キナゾリン

·分子式 ; C20H21N3O5

・収率(%);92

・融点(℃);217~219

• Mass ;  $384(M+H)^+$ 

• NMR  $\delta$  (CDC1<sub>3</sub>);

3.95(3H,s), 4.03(3H,s), 4.13(3H,s), 4.26(4H,s),

4.75(2H, d, J=5.2Hz), 5.54(1H, brs), 6.64(1H, s),

6.87(1H, d, J=8.0Hz), 6.90(1H, d, J=8.0Hz).

6.94(1H.s). 8.66(1H.s)

### 実施例26

·分子式 ; C23H27N3O5

· 収率 (%);49

・融点(℃);120~121

• Mass ;  $426(M+H)^+$ 

·NMR δ(CDCl<sub>3</sub>):

3.41(2H, d, J=6.8Hz), 3.48(3H, s), 3.94(3H, s), 4.03(3H, s),

4.12(3H, s), 4.77(2H, d, J=5.2Hz), 5.06(2H, m), 5.21(2H, s),

5.78(1H, brs), 5.98(1H, m), 6.71(1H, s), 7.07(1H, d, J=8.4Hz),

7.23(1H.s), 7.24(1H.d.J=8.4Hz), 8.65(1H.s)

# 実施例 2 <u>7</u>

<u>4-(ベンズイミダゾール-5-イルメチル)アミノー6,7,8-トリメトキシキナゾリン</u>

·分子式 ; C19H19N5O3

・収率(%);52

・融点(℃);235~240 (分解)

• Mass ;  $366(M+H)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.93(3H,s), 3.95(3H,s), 3.98(3H,s), 4.97(2H,d,J=6.0Hz),

7.30(1H, dd, J=8.4Hz, 1.6Hz), 7.57(1H, d, J=8.4Hz), 7.63(1H, d, J=1.6Hz),

7.83(1H,s), 8.31(1H,s), 8.36(1H,brs), 8.52(1H,s), 9.76(1H,brs)

### <u>実施例28</u>

4-(4-ベンジルオキシー3-ニトロベンジル)アミノー6,7,8-トリメ

### トキシキナゾリン

·分子式 ; C<sub>25</sub>H<sub>24</sub>N<sub>4</sub>O<sub>6</sub>

· 収率(%);81

・融点(℃):181~182

• Mass ;  $477(M+1)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

3.98(3H, s), 4.03(3H, s), 4.10(3H, s), 4.85(2H, d, J=5.2Hz),

5.21(2H,s), 6.54(1H,brs), 6.93(1H,s), 7.06(1H,d,J=8.4Hz),

7.  $30\sim7$ . 45(5H, m), 7. 60(1H, dd, J=8. 4Hz), 7. 87(1H, d, J=2. 4Hz),

8.61(1H,s)

### 実施例 29

4-(4-クロロ-3-ニトロベンジル) アミノ-6, 7, 8-トリメトモジキナゾリン

$$\begin{array}{c|c} & & & & \\ & & & & \\ \text{Me0} & & & & \\ & & & & \\ \text{Me0} & & & & \\ \end{array}$$

·分子式 ; C18H17N4O5Cl

• 収率(%);88

・融点(℃);218~219 (分解)

• Mass : 405(M+H) +

· NMR & (CDCl3):

3.98(3H,s), 4.04(3H,s), 4.13(3H,s), 4.93(2H,d,J=6.0Hz),

5.98(1H, brs), 6.75(1H.s), 7.50(1H, d, J=8.4Hz),

7.58(1H. dd, J=8.4Hz. 2.0Hz), 7.87(1H. d, J=2.0Hz), 8.61(1H.s)

# <u>実施例30</u>

# 4-(2-プロポキシベンジル)アミノ-6,7,8-トリメトキシキナゾリン

·分子式 ; C21H25N3O4

• 収率(%);80

・融点(℃);139~140

• Mass ;  $384(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.07(3H, t, J=7.4Hz), 1.85(2H, m), 3.95(3H, s), 4.02(3H, s),

4.02(2H, t, J=6.4Hz), 4.10(3H, s), 4.89(2H, d, J=5.6Hz), 6.72(1H, s),

6.9(2H, m), 7.28(1H, m), 7.38(1H, d, J=7.2Hz), 8.64(1H, s)

### 実施例 3 <u>1</u>

<u>4-(2, 4, 6-トリメトキシベンジル) アミノー6, 7, 8-トリメトキシ</u> キナゾリン

·分子式 ; C21H25N3O6

・収率(%);64

・融点(℃);213~215

• Mass; 416(M+H) +

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.85(9H, s), 3.92(3H, s), 4.01(3H, s), 4.11(3H, s),

4.79(2H, d, J=4.4Hz), 5.65(1H, brs), 6.20(2H, s), 6.60(1H, s),

8.68(1H, s)

### 実施<u>例32</u>

<u>4-(3, 4, 5-トリメトキシベンジル) アミノー6, 7, 8-トリメトキシ</u> キナゾリン

$$\begin{array}{c|c} & & & \\ \text{MeO} & & & \\ & & \text{MeO} & \\ \end{array}$$

·分子式 ; C21H25N3O6

·収率(%);60

・融点(℃);153~154

· Mass ; 416(M+H) +

· NMR  $\delta$  (CDC1<sub>3</sub>) :

3.85(9H.s), 3.97(3H,s), 4.03(3H,s), 4.13(3H,s),

4.80(2H, d, J=5.6Hz), 6.66(2H, s), 6.80(1H, s), 8.66(1H, s)

# <u>実施例33</u>

4-(2-0-1-4, 5-x+1-2) 5-x+1-2 5-x+1-2 1-6, 7, 8-1-2 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4

·分子式 ; C19H18N3O5Cl

• 収率(%);76

・融点(℃);220~221

• Mass :  $404(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.97(3H, s), 4.02(3H, s), 4.11(3H, s), 4.86(2H, d, J=6.0Hz),

5.95(2H,s), 6.70(1H,brt, J=6.0Hz), 6.86(1H,s), 6.95(1H,s),

6.98(1H, s), 8.61(1H, s)

#### 実施例 3 4

<u>4-(4,5-メチレンジオキシ-2-ニトロベンジル)アミノ-6,7,8-</u>トリメトキシキナゾリン

$$\begin{array}{c|c} & & & \\ \text{Me0} & & & \\ \text{Me0} & & & \\ \text{Me0} & & & \\ \end{array}$$

·分子式 ; C19H18N4O7

・収率(%);15

・融点(℃);182~183

• Mass ;  $415(M+H)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

3.99(3H,s), 4.02(3H,s), 4.10(3H,s). 5.08(2H,d,J=6.4Hz),

6.09(2H,s), 6.82(2H,s & brs), 7.27(1H,s), 7.57(1H,s), 8.61(1H,s)

#### 実施例35

4-[2-(4-ニトロフェニル) エチル] アミノー6, 7, 8-トリメトキシ キナゾリン

$$\begin{array}{c} \text{Me0} \\ \text{Me0} \\ \text{Me0} \end{array}$$

·分子式 ; C19H20N4O5

・収率(%);58

・融点(℃);152~153

· Mass : 385(M+H)+

·NMR δ(CDCl<sub>3</sub>);

3.18(2H, t, J=7.2Hz), 3.92(3H, s), 3.96(3H, m), 4.04(3H, s),

4.13(3H,s), 5.57(1H.brs), 6.58(1H,s), 7.41(2H,d,J=8.8Hz),

8.17(2H.d.J=8.8Hz), 8.66(1H.s)

# 実施例36

4-(2-(3, 4-メチレンジオキシフェニル) エチル) アミノー<math>6, 7, 8

# <u>- トリメトキシキナゾリン</u>

·分子式 ; C20H21N3O5

·収率(%);68

・融点 (℃) ;193 ~194

• Mass ;  $384(M+H)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

2.96(2H, t, J=6.8Hz), 3.87(2H.m), 3.93(3H,s), 4.03(3H,s),

4.12(3H, s), 5.43(1H, brs), 5.95(2H, s), 6.52(1H, s),

6.71(1H, d, J=8.0Hz), 6.77(1H, s), 6.78(1H, d, J=8.0Hz),

8.65(1H, s)

### 実施例 3 7

キシキナゾリン

·分子式 ; C16H10N5O3

・収率(%);77

・融点(℃);164~166 (分解)

• Mass ;  $330(M+H)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.00(2H, t, J=7.2Hz), 3.81(2H, m), 3.87(3H, s), 3.92(3H, s),

3.97(3H,s), 7.25(1H,s), 7.56(1H,s), 8.39(1H,s), 8.45(1H,s).

8.50(1H, brs)

#### 実施例38

# トリメトキシキナゾリン

·分子式 ; C20H21N3O5

• 収率 (%);67

・融点(℃);200~201

· Mass : 384(M+H)+

• NMR δ (CDCl<sub>3</sub>);

1.67(2H, d, J=6.8Hz), 3.99(3H, s), 4.04(3H, s), 4.13(3H, s),

5.47(1H, brs), 5.57(1H, t, J=6.8Hz), 5.97(2H, s), 6.65(1H, s),

6.81(1H, d, J=7.6Hz), 6.94(1H, d, J=7.6Hz), 6.95(1H, s), 8.63(1H, s)

## 実施例 3 9

# - 6, 7, 8 - トリメトキシキナゾリン

·分子式 ; C21H23N3O5

・収率(%);4

・融点(℃);191~192.

• Mass ;  $398(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.90(6H, s), 4.03(3H, s), 4.03(3H, s), 4.09(3H, s), 5.93(2H, s),

6.74(1H, d, J=7.6Hz), 6.82(1H, s), 6.92(2H, m), 8.46(1H, s)

### 実施例40

·分子式 ; C<sub>21</sub>H<sub>23</sub>N<sub>3</sub>O<sub>5</sub>

• 収率(%);73

・融点(℃);100~101

• Mass ;  $398(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>) :

1.37(3H, t, J=7.0Hz), 3,56(3H, s), 3.67(2H, q, J=7.0Hz), 4.03(3H, s).

4.11(3H, s), 4.79(2H, s), 5.98(2H, s), 6.85(1H, d, J=7.2Hz),

6.93(1H,s), 6.93(1H,d,J=7.2Hz), 6.97(1H,s), 8.69(1H,s)

#### 実施例41

 $\frac{4-(N-(x++y))-(3,4-x+y)-(3,4-x+y)}{(4-(x++y))}$   $\frac{4-(N-(x++y))+(x+y)}{(x++y)}$ 

·分子式 ; C23H25N3O7

• 収率 (%);41

·融点(℃);油状物質

• Mass : 456(M+H) +

• NMR  $\delta$  (CDCl<sub>3</sub>) :

1.29(3H, t, J=7.2Hz), 3.44(3H, s), 4.02(3H, s), 4.10(3H, s),

4.20(2H,s), 4.25(2H,q,J=7.2Hz), 4.98(2H,s), 6.00(2H,s),

6.88(1H, d, J=8.0Hz), 6.97(1H, s), 7.01(1H, d, J=8.0Hz), 8.64(1H, s)

### 実施例 4 2

 $\frac{4-(N-(2-x)++)x+\nu)-(3,4-x+\nu)y}{(3,4-x+\nu)y}$  ミノ $(3,4-x+\nu)y$ 

·分子式 ; C22H25N3O6

・収率(%);21

・融点(℃);87~88

• Mass : 428(M+H)+

### • NMR $\delta$ (CDCl<sub>3</sub>);

3.36(3H,s), 3.58(3H,s),  $3.80\sim3.85(4H,m)$ , 4.02(3H,s),

4.10(3H, s), 4.92(2H, s), 5.97(2H, s), 6.83(1H, d, J=7.6Hz),

6.92(1H, d, J=7.6Hz), 6.94(1H, s), 7.19(1H, s), 8.67(1H, s)

### 実施例 4 3

·分子式 ; C22H25N3O5

・収率(%);79

・融点(℃);157~158

• Mass ;  $412(M+H)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

3.11(2H, t, J=5.8Hz), 3.87(3H, s), 3.89(3H, s), 3.96(2H, t, J=5.8Hz),

3.99(3H, s), 4.07(3H, s), 4.14(3H, s), 4.80(2H, s), 6.67(1H, s),

6.71(1H, s), 7.03(1H, s), 8.74(1H. s)

## <u>実施例 4 4</u>

<u>4- (4- (1-ヒドロキシエチル) ベンジル) アミノー 6-メトキシキナゾリン</u>

$$\begin{array}{c|c} & & & \\ \text{MeO} & & & \\ \hline & & \\ N & & \\ \end{array} \begin{array}{c} \text{Me} \\ \text{OH} \end{array}$$

·分子式 ; C18H19N3O2

・収率(%);46

・融点(℃);アモルファス

· Mass ; 310(M+H)+

· NMR  $\delta$  (CDCl<sub>3</sub>) :

1.47(2H, d, J=6.4Hz), 3.91(3H, s), 4.87(2H, d, J=5.2Hz),

4.84~4.94(1H.m), 7.34~7.42(6H,m), 7.59(1H,brs),

7.79(1H.d.J=8.8Hz), 8.52(1H.s)

### 実施例 4 5

# 4-(ベンズイミダゾール-5-イルメチル)アミノ-6-メトキシキナゾリン

・分子式 ; C<sub>17</sub>H<sub>15</sub>N<sub>5</sub>O

・収率(%);18

・融点(℃);254~255

· Mass ; 306(M+1)+

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

3.88(3H,s), 4.91(2H,d,J=6.0Hz), 7.24(1H,d,J=8.4Hz),

7. 40(1H, dd, J=9. 2Hz, 2. 8Hz), 7. 54(1H, d, J=8. 4Hz), 7. 56(1H, s),

7.63(1H, d, J=9.2Hz), 7.73(1H, d, J=2.8Hz), 8.16(1H, s), 8.37(1H, s),

8.67(1H, t, J=6.0Hz), 12.33(1H, brs)

### 実施例 4 6

# 4-(3,4-メチレンジオキシベンジル)アミノ-6-メトキシキナゾリン

·分子式 ; C17H16N3O3

• 収率(%);86

・融点 (℃);207~208

• Mass :  $310(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.89(3H,s), 4.78(2H,d,J=5.2Hz), 5.70(1H,brs), 5.97(2H,s),

6.80(1H, d, J=7.6Hz), 6.9(3H, m), 7.40(1H, d, J=9.2Hz),

7.80(1H, d, J=9.2Hz), 8.63(1H, s)

#### 実施例47

# <u>4- (2- (3, 4-メチレンジオキシフェニル) ピロリジノ) - 6-メトキシ</u> キナゾリン

$$\operatorname{Me0} \longrightarrow \operatorname{N}_{N} \longrightarrow 0$$

·分子式 ; C20H18N3O3

·収率(%);85

・融点(℃);油状物質

• Mass ;  $350(M+1)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

1.95~2.10(3H, m), 2.37(1H, m), 3.58(3H, s), 4.05~4.20(2H, m),

5.58(1H,m), 5.93(1H,s), 5.94(1H,s), 6.78(1H,d,J=8.4Hz),

6.84(1H,s), 6.85(1H,d,J=8.4Hz), 7.30(1H,d,J=10.0Hz), 7.35(1H,s),

7.74(1H. d. J=10.0Hz). 8.53(1H. s)

### 実施例 4 8

# 4-(4-メトキシ-3-ニトロベンジル)アミノー6-メトキシキナゾリン

·分子式 ; C17H16N4O4

·収率(%);22

・融点(℃);205~206 (分解)

• Mass :  $341(M+1)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

3.93(3H,s), 3.94(3H,s), 4.91(2H,d,J=6.0Hz),

7.07(1H, dd, J=8.4Hz, 1.2Hz). 7.21(1H, d, J=1.2Hz).

7. 39(1H, dd, J=9. 2Hz, 2. 4Hz), 7. 53(1H, d, J=2. 4Hz),

7.75(1H, d, J=9.2Hz), 7.82(1H, d, J=8.4Hz), 8.03(1H, brs), 8.51(1H, s)

#### 実施例 4\_9

# 4-(3,4-メチレンジオキシベンジル)アミノ-6-メチルチオキナゾリン

$$\operatorname{MeS} \bigvee_{N}^{\operatorname{HN}} 0$$

4-クロロー6-メチルチオキナゾリン4.12g(0.0196モル)、ピペロニルアミン3.70g(0.0245モル)、炭酸ナトリウム3.50g(0.0330モル)をイソプロピルアルコール 100mlに混合し、一昼夜加熱還流する。反応液を減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチルーnーヘキサン)により精製後、クロロホルム-n-ヘキサンより再結晶して、標題化合物の淡黄色晶5.32gを得た。

·分子式 ; C<sub>17</sub>H<sub>15</sub>O<sub>2</sub>N<sub>3</sub>S

・収率(%);83

・融点(℃);174~175

• Mass ;  $326(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

2.59(3H, s), 4.79(2H, d, J=5.6Hz), 5.93(2H, s), 6.77(1H, d, J=8.0Hz).

6.89(1H, d, J=8.0Hz), 6.94(1H, s), 7.62(1H, dd, J=8.8Hz, 2.0Hz),

7.75(1H, d, J=8.8Hz), 7.97(1H, d, J=2.0Hz), 8.10(1H, brs), 8.56(1H, s)

### 実施例 5 0 ~ 5 4

実施例49の方法に準じて次の化合物を合成した。

### 実施例 5\_0

# 4-(3, 4-ジクロロベンジル) アミノー6-メチルチオキナゾリン

·分子式 ; C16H13N3SCl2

· 収率(%);85

・融点(℃);184~185

· Mass ; 350(M+H)+

• NMR  $\delta$  (CDC1<sub>3</sub>);

2.61(3H, s), 4.83(2H, d, J=5.6Hz), 7.28(1H, dd, J=8.4Hz, 2.0Hz),

7.40(1H, d, J=8.4Hz), 7.51(1H, d, J=2.0Hz), 7.64(1H, dd, J=8.8Hz.2.0Hz),

7.76(1H, d, J=8.8Hz), 7.97(1H, d, J=2.0Hz), 8.19(1H, brs), 8.55(1H, s)

## 実施例 5 1

<u>ン</u>

4-(3-フルオロー4-メトキシベンジル)アミノー6-メチルチオキナゾリ

·分子式 ; C17H16N3OSF

・収率(%);89

・融点(℃);168~169

• Mass ;  $330(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

2.58(3H,s), 3.90(3H,s), 4.82(2H,d,J=5.6Hz), 6.29(1H,brs),

6.95(1H, m), 7.13~7.18(2H, m), 7.54(1H, s), 7.63(1H, d, J=8.8Hz).

7.79(1H.d, J=8.8Hz), 8.64(1H.s)

### 実施例 5 2

 $\frac{4 - ( \ddot{n} ) \ddot{n} + ( \ddot{n}$ 

·分子式 ; C17H15N6S

• 収率(%);48

・融点(℃);271~275 (分解)

• Mass ; 322(M+H)+

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.67(3H, s), 5.06(2H, d, J=5.6Hz), 7.47(1H, d, J=8.4Hz),

7.68(1H, d, J=8.8Hz), 7.77(2H, m), 7.87(1H, d, J=8.8Hz),

8.40(1H,s), 8.77(1H,s), 8.84(1H,s), 10.68(1H,brs)

### 実施例 5 3

·分子式 ; C20H21N3O3S

· 収率(%);27

・融点(℃);92~93

· Mass : 384(M+H) +

· NMR  $\delta$  (CDCl<sub>3</sub>) :

2.16(3H, s). 3.35(3H, s). 3.82(2H, t, J=5.0Hz). 3.89(2H, t, J=5.0Hz).

5.01(2H, s), 5.98(2H, s), 6.84(1H, d, J=8.4Hz), 6.89(1H, d, J=8.4Hz),

6.90(1H, s), 7.56(1H, dd, J=8.8Hz, 2.0Hz), 7.66(1H, d, J=2.0Hz),

7.82(1H, d, J=8.8Hz)

### 実施例 5 4

4 - (N - (2 - ヒドロキシエチル) - (3, 4 - メチレンジオキシベンジル)

# アミノ) - 6 - メチルチオキナゾリン

·分子式 ; C19H19N3O3S

・収率(%);21

・融点(℃);146~147(分解)

• Mass;  $370(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

2.00(3H,s), 3.93(2H,t,J=4.2Hz), 4.01(2H,t,J=4.2Hz), 5.00(2H,s),

6.01(2H,s), 6.89(3H,m), 7.57(2H,m), 7.82(1H,d,J=9.2Hz), 8.55(1H,s)

### 実施例55

# 4-(4-クロロ-3-ニトロベンジル)アミノー6-クロロキナゾリン

4,6-ジクロロキナゾリン3.00g(0.015モル)、4-クロロ-3-ニトロベンジルアミン 塩酸塩3.80g(0.0170モル)を、イソプロピルアルコール 100ml、トリエチルアミン15mlに溶解させ、一昼夜加熱還流する。減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム-酢酸エチル)により精製後、クロロホルム-n-ヘキサンより再結晶して、標題化合物の淡黄色晶4.85gを得た。

·分子式 ; C<sub>15</sub>H<sub>10</sub>N<sub>4</sub>O<sub>2</sub>Cl<sub>2</sub>

・収率(%);92

・融点(℃);199~200

· Mass ; 349(M+H)+

· NMR  $\delta$  (CDCl<sub>3</sub>);

4.85(2H, d, J=6.0Hz), 7.49(1H, d, J=8.4Hz), 7.61(1H, dd, J=8.4Hz, 2.0Hz),

7.66(1H, dd, J=8.8Hz, 2.0Hz), 7.76(1H, d, J=8.8Hz), 7.96(1H, d, J=2.0Hz),

8. 20(1H, d, J=2. 0Hz), 8. 23(1H, brt, J=6. 0Hz), 8. 58(1H, s)

WO 93/07124 PCT/JP92/01258

#### 実施例 5 6

4, 6-ジクロロキナゾリン704mg に2-プロパノール30ml、トリエチルアミン1.07g、α-エトキシカルボニル-3, 4-メチレンジオキシベンジルアミン1.01gを加え、4時間還流した。水を加え、クロロホルムで3回抽出し、合わせた有機層を硫酸マグネシウムで乾燥後、溶媒を減圧留去し、残渣を再結晶(エタノールー酢酸エチルーヘキサン)し、標題化合物 1.167gを得た。

·分子式 ; C18H16N3O4CI

・収率(%);86

・融点(℃);169~170

· Mass m/e ; 386(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>) ;

1.28(3H, t, J=7.2Hz), 4.27(2H, m), 5.85(1H, d, J=6.4Hz), 5.98(2H, s),

6.70(1H. brs). 6.81(1H. d. J=8.8Hz). 6.99(2H. m).

7. 10(1H, dd, J=8. 8Hz, 2. 4Hz), 7. 83(1H, d, J=2. 4Hz).

8.85(1H, d, J=8.8Hz), 8.63(1H, s)

# <u>実施例57~64</u>

実施例55~56の方法に準じて次の化合物を合成した。

# 実施例 5 7

# 4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン

·分子式 ; C16H12N3O2Cl

・収率(%);76

・融点(℃);199~200

• Mass ;  $314(M+H)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>) :

4.76(2H, d, J=5.6Hz), 5.82(1H, brs), 5.98(2H, s), 6.81(1H, d, J=8.0Hz),

6.87(1H, d, J=8.0Hz), 6.89(1H, s), 7.67(1H, s), 7.69(1H, d, J=8.0Hz),

7.81(1H, d, J=8.0Hz), 8.70(1H, s)

## 実施例 5 8

# 4-(3, 4-ジクロロベンジル) アミノ-6-クロロキナゾリン

·分子式 ; C15H10N3Cl3

・収率(%);72

・融点(℃);215~216

• Mass ;  $338(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>) :

4.85(2H, d, J=5.6Hz). 5.94(1H, brs), 7.24(1H, d, J=8.4Hz),

7. 43(1H, d, J=8. 4Hz), 7. 70(1H, d, J=9. 2Hz), 7. 72(1H, s).

7.83(1H, d, J=9.2Hz), 8.68(1H, s)

### 実施例59

# 4-(3,4-ジメトキシベンジル)アミノ-6-クロロキナゾリン

·分子式 ; C17H16N3O2Cl

·収率(%);73

・融点(℃);174~175

· Mass ; 330(M+H)+

· NMR  $\delta$  (CDCl<sub>3</sub>) :

3.87(6H, s), 4.78(2H, d, J=5.2Hz), 6.85(1H, d, J=8.0Hz),

6.96(1H, d, J=8.0Hz), 6.98(1H, s), 7.34(1H, brs),

7.65(1H, dd, J=9.2Hz, 2.0Hz), 7.78(1H, d, J=9.2Hz),

8.08(1H, d, J=2.0Hz), 8.65(1H, s)

# 実施例 6 0

# 4-(ベンズイミダゾール-5-イルメチル)アミノー6-クロロキナゾリン

·分子式 ; C16H12N6Cl

· 収率(%);76

·融点(°C);243~244 (分解)

• Mass ;  $310(M+H)^+$ 

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

4.89(2H, d, J=5.6Hz), 7.27(1H, d, J=8.4Hz), 7.55(1H, d, J=8.4Hz),

7.59(1H, s), 7.72(1H, d, J=8.8Hz), 7.80(1H, dd, J=8.8Hz, 2.4Hz),

8.25(1H,s), 8.50(1H,s), 8.53(1H,d,J=2.4Hz), 9.07(1H,brt,J=5.6Hz)

#### 実施例 6 1

4-(2-メトキシ-2, 3-ジヒドロベンゾフラン-5-イル)メチルアミノ -6-クロロキナゾリン

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C18H16N3O2Cl (341.798)

· 収率 (%);53

・融点(℃);178~179

· Mass ;  $342(MH^+)$ 

• NMR  $\delta$  (DMS0-d<sub>6</sub>);

2.88(1H, dd, J=2.0Hz, 17.0Hz), 3.28~3.34(1H, m), 4.68(1H, d, J=5.7Hz),

5.68(1H, dd. J=2.0Hz, 6.6Hz), 6.79(1H, d. J=8.2Hz), 7.14(1H, d, J=8.2Hz),

7.24(1H, s), 7.70(1H, d, J=9.0Hz), 7.79(1H, dd, J=2.2Hz, 9.0Hz),

8. 46(1H, d, J=2. 2Hz), 8. 48(1H, s), 8. 82(1H, t, J=5. 7Hz)

### 実施例 6 2

<u>4-(2-メチルベンズイミダゾール-5-イルメチル)アミノー6-クロロキナゾリン</u>

$$C1 \xrightarrow{HN \longrightarrow N} Me$$

·分子式 : C17H14N5Cl

・収率(%);17

・融点(℃);273~274 (分解)

· Mass : 324(M+H)+

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.71(3H, s), 4.94(2H, d, J=5.6Hz), 7.48(1H, d, J=8.4Hz),

7.63(1H, d, J=8.4Hz), 7.70(1H, s), 7.77(1H, d, J=8.8Hz),

7.86(1H, dd, J=8.8Hz, 2.0Hz), 8.58(1H, s), 8.65(1H, d, J=2.0Hz),

9.65(1H.brs)

# <u>実施例 6 3</u>

<u>4-〔1-メチル-1-(3, 4-メチレンジオキシフェニル) エチル〕-アミ</u> <u>ノー6-クロロキナゾリン</u>

·分子式 ; C18H16N3O2Cl

・収率(%);32

・融点(℃):175~176

• Mass ;  $342(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.92(6H.s). 5.95(2H.s). 6.14(1H.brs). 6.76(1H.d.J=7.6Hz).

6.92(1H, d, J=7.6Hz), 6.93(1H, s), 7.67(1H, dd, J=8.8Hz),

7.77(1H, d, J=2.0Hz), 7.86(1H, d, J=8.8Hz), 8.50(1H, s)

## 実施例 6 4

# 4-(3,4-メチレンジオキシベンジル)アミノ-6-エトキシキナゾリン

·分子式; C18H17N3Os

・収率(%);44

・融点(℃);190~191

• Mass ;  $324(M+H)^+$ 

• NMR  $\delta$  (CDC1<sub>3</sub>):

1.46(3H, t, J=6.8Hz), 4.10(2H, q, J=6.8Hz), 4.77(2H, d, J=5.2Hz),

5.68(1H.brs), 5.97(2H.s), 6.80(1H.d.J=8.0Hz), 6.87~6.92(3H.m),

7. 39(1H, dd, J=9. 2Hz, 2. 8Hz). 7. 79(1H, d, J=9. 2Hz), 8. 62(1H, s)

## 実施例 6 5

# 4-(3,4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

4-クロロー 6-シアノキナゾリン140mg にイソプロピルアルコール15ml、トリエチルアミン75mg及びピペロニルアミン125mg を加え、5時間加熱還流した。 沈殿物を濾取し、シリカゲルカラムクロマトグラフィーに付した。酢酸エチルで 溶出し、標題化合物を200mg 得た。

·分子式 ; C<sub>17</sub>H<sub>12</sub>N<sub>4</sub>O<sub>2</sub>

・収率(%);89

・融点(℃);243~244

· Mass ; 305 (M+1)+

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

4.67(2H, d, J=5.6Hz), 5.96(2H, s), 6.84(2H, s), 6.95(1H, s),

7.77(1H, d, J=8.4Hz), 8.56(1H, s), 8.89(1H, s), 9.04(1H, br)

# 実施例 6 6 ~ 8 7

実施例65の方法に準じて以下の化合物を合成した。

# <u>実施例 6 6</u>

4- (3-(1-イミダゾリル) プロピル) アミノー6-シアノキナゾリン

·分子式 ; C15H14N6

· 収率 (%);22

・融点(℃);196~197

• Mass m/e; 279(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>) :

2.27(2H, quintet, J=6.4Hz), 3.66(2H, q, J=6.4Hz), 4.17(2H, t, J=6.4Hz),

7.07(1H,s), 7.11(1H,s), 7.82(1H,s), 7.82(1H,s), 8.09(1H,s),

8.37(1H, brs), 8.66(1H, s), 8.84(1H, s)

### 実施例 6 7

# 4- (ベンズイミダゾール-5-イル) メチルアミノー6-シアノキナゾリン

·分子式 ; C<sub>17</sub>H<sub>12</sub>N<sub>6</sub>

· 収率 (%);68

・融点(℃);274~277

• Mass  $: 301 (M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

4.88(2H, d, J=5.6Hz). 7.21~7.24(1H, m), 7.35~7.76(2H, m),

7.78(1H. d. J=8.8Hz), 7.06(1H. dd. J=8.8Hz.1.6Hz), 8.15(1H.s),

8.57(1H,s), 8.92(1H,s), 9.14(1H,m), 12.32(1H,m)

### 実施例 6 8

4-(3,4-メチレンジオキシベンジル)アミノ-6-エトキシカルボニルキ

# ナゾリン

·分子式 ; C19H17N3O4

· 収率 (%);48

・融点(℃);156~157

· Mass : 352(M+H)+

·NMR δ(CDCl<sub>3</sub>):

1.43(3H, t, J=7.2Hz), 4.44(2H, q, J=7.2Hz), 4.79(2H, d, J=5.2Hz),

5.98(2H,s), 6.14(1H,brs), 6.82(1H,d,J=8.0Hz), 6.89(1H,d,J=8.0Hz),

6.90(1H,s), 7.87(1H,d,J=8.8Hz), 8.33(1H,d,J=8.8Hz), 8.46(1H,s),

8.74(1H, s)

## 実施例 6 9

4-(3,4-メチレンジオキシベンジル)アミノ-6-メチルキナゾリン

$$\begin{array}{c} \text{HN} \\ \text{Me} \\ \end{array}$$

·分子式 ; C17H15N3O2

· 収率(%);68

・融点(℃);203~204

• Mass ;  $294(M+H)^+$ 

·NMR δ(CDCl<sub>3</sub>);

2.49(3H, s), 4.76(2H, d, J=5.6Hz), 5.79(1H, brs), 5.96(2H, s),

6.81(1H, d, J=8.0Hz), 6.88(1H, d, J=8.0Hz), 6.91(1H, s), 7.44(1H, s),

7.57(1H, d, J=8.4Hz), 7.76(1H, d, J=8.4Hz), 8.66(1H, s)

## 実施例70

# 4-(3,4-メチレンジオキシベンジル)アミノ-6,7-ジメトキシキナゾ

リン

·分子式 ; C18H17N3O4

·収率(%):77

・融点(℃);221~222

• Mass :  $340(M+H)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>) ;

3.88(3H,s), 3.89(3H,s), 4.68(2H,d,J=6.0Hz), 5.97(2H,s),

6.85(2H.s), 6.94(1H,s), 7.09(1H,s), 7.64(1H,s), 8.33(1H,s),

8.37(1H, t, J=6.0Hz)

### 実施例 7\_1\_

<u>4-(3, 4-メチレンジオキシベンジル) アミノー6, 8-ジメトキシキナゾリン</u>

$$\begin{array}{c} \text{HN} \\ \text{MeO} \\ \end{array}$$

·分子式 ; C18H17N3O4

・収率(%);88

・融点(℃);217~218

 $\cdot$  Mass ; 340(M+H)<sup>+</sup>

• NMR  $\delta$  (CDCl<sub>3</sub>) :

3.89(3H,s), 4.01(3H,s), 4.77(2H,d,J=5.2Hz), 5.63(1H,brs),

5. 97(2H, s), 6. 42(1H, d, J=2. 4Hz), 6. 77(1H, d, J=2. 4Hz),

6.80(1H, d, J=7.6Hz), 6.88(1H, dd, J=7.6Hz, 1.6Hz), 6.92(1H, d, J=1.6Hz),

8.65(1H,s)

# <u> 実施例72</u>

<u>4-(3,4-メチレンジオキシベンジル)アミノ-5,6-ジメトキシキナゾリン</u>

·分子式 ; C18H17N3O4

・収率(%);74

・融点(℃);122~123

• Mass ;  $340(M+1)^+$ 

· NMR  $\delta$  (CDC1<sub>3</sub>);

3.97(6H, s), 4.77(2H, d, J=5.2Hz), 5.97(2H, s), 6.81(1H, d, J=8.0Hz),

6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.88(1H, d, J=1.6Hz), 7.49(1H, d, J=8.8Hz),

7.82(1H, d, J=8.8Hz), 8.51(1H, s), 8.64(1H, brs)

#### 実施例73

# 4-(3,4-メチレンジオキシベンジル)アミノ-6-アセトアミド-7-メ

# トキシキナゾリン

·分子式 ; C1.8H1.8N4O4

・収率(%);66

・融点(℃);164~165

• Mass ;  $367(M+H)^+$ 

## • NMR $\delta$ (CDCl<sub>3</sub>);

2.26(3H,s), 4.04(3H,s), 4.76(2H,d,J=5.6Hz), 5.95(2H,s),

6.22(1H, brs), 6.77(1H, d, J=8.0Hz), 6.85(1H, d, J=8.0Hz),

6.89(1H,s), 7.31(1H,s), 8.02(1H,brs), 8.59(1H,s), 8.81(1H,s)

### 実施例74

4-(3,4-メチレンジオキシベンジル)アミノ-6-メチルチオー7-メト

# キシキナ<u>ゾリン</u>

·分子式 ; C18H17N3O3S

· 収率(%);39

・融点(℃);200~205 (分解)

• Mass ; 356(M+H)+

·NMR δ(CDCl<sub>3</sub>);

2.50(3H,s), 4.01(3H,s), 4.78(2H,d,J=5.6Hz), 5.95(2H,s),

6.13(1H, brs), 6.79(1H, d, J=8.0Hz), 6.88(1H, d, J=8.0Hz),

6.91(1H, s), 7.15(1H, s), 7.33(1H, s), 8.56(1H, s)

# 実施<u>例 7 5</u>

4-(3,4-メチレンジオキシベンジル)アミノキナゾリン

·分子式 ; C16H13N3O2

• 収率(%);69

・融点(℃);197~198

• Mass :  $280(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

4.78(2H. d. J=5.2Hz), 5.85(1H. brs), 5.96(2H. s), 6.80(1H. d. J=8.0Hz).

6.88(1H, d, J=8.0Hz). 6.91(1H, s). 7.46(1H, t, J=8.0Hz).

7.68(1H, d, J=8.0Hz), 7.75(1H, t, J=8.0Hz), 7.87(1H, d, J=8.0Hz).

8.71(1H, s)

## 実施例76

# 4-(3,4-メチレンジオキシベンジル)アミノ-8-メトキシキナゾリン

·分子式 ; C<sub>17</sub>H<sub>15</sub>N<sub>3</sub>O<sub>3</sub>

·収率(%);76

・融点(℃);195~196

 $\cdot$  Mass : 310(M+H) $^+$ 

## • NMR $\delta$ (CDCl<sub>3</sub>);

4.03(3H, s), 4.78(2H, d, J=5.6Hz), 5.94(2H, s), 6.77(1H, d, J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.92(1H, s), 6.95(1H, brs), 7.12(1H, d, J=8.0Hz),

7.39(1H, t, J=8.0Hz), 7.48(1H, d, J=8.0Hz), 8.70(1H, s)

### 実施例<u>77</u>

# 4-(3,4-メチレンジオキシベンジル)アミノ-7-クロロキナゾリン

·分子式 ; C21H22N3O2Cl

· 収率 (%);62

・融点(℃);209~210

• Mass ; 314(M+H)+

• NMR  $\delta$  (CDCl<sub>3</sub>):

4.77(2H, d, J=5.6Hz), 5.95(2H, s), 6.78(1H, d, J=8.0Hz),

6.88(1H, d, J=8.0Hz), 6.92(1H, s), 7.39(1H, dd, J=8.8Hz, 2.0Hz),

7.4(1H, brs), 7.83(1H.d, J=2.0Hz), 7.96(1H, d, J=8.8Hz), 8.63(1H, s)

:=

# 実施例78

# 4-(3, 4-メチレンジオキシベンジル)アミノベンゾ〔g〕キナゾリン

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C<sub>20</sub>H<sub>15</sub>N<sub>3</sub>O<sub>2</sub> (329)

· 収率(%);45

・融点(℃);265 (分解)

• Mass :  $330(M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

4. 92(2H, d, J=6.0Hz), 5. 97(2H, s), 6. 88(1H, d, J=8.0Hz),

6.94(1H, dd, J=8.0Hz, 1.6Hz), 7.06(1H, d, J=1.6Hz), 7.68~7.81(2H, m),

8.11(1H, d, J=8.4Hz), 8.21(1H, d, J=8.4Hz), 8.33(1H, s), 8.90(1H, s),

9.36(1H, s), 11.09(1H, br)

### 実施例 7<u>9</u>

4-(3,4-メチレンジオキシベンジル)アミノ-6,7-メチレンジオキシ

## キナゾリン

·分子式 ; C<sub>17</sub>H<sub>13</sub>N<sub>3</sub>O<sub>4</sub> (323)

· 収率(%);55

・融点(℃);229~231

• Mass :  $324(M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

4. 62(2H, d, J=5.6Hz), 5. 94(2H, s), 6. 16(2H, s), 6. 79(1H, d, J=8.0Hz).

6.82(1H, dd, J=8.0Hz, 2.0Hz), 6.89(1H, d, J=2.0Hz), 7.06(1H, s),

7.68(1H, s), 8.26(1H, brt, J=5.6Hz), 8.28(1H, s)

WO 93/07124 PCT/JP92/01258

#### 実施例 8 0

<u>4-(3, 4, 5-トリメトキシベンジル) アミノー6, 7-メチレンジオキシ</u> キナゾリン

·分子式 ; C19H19N3O5 (369)

• 収率(%);59

・融点(℃);240~241

• Mass ;  $370(M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

3.61(3H, s), 3.70(6H, s), 4.65(2H, d, J=6.0Hz), 6.16(2H, s),

6.675(2H.s), 7.06(1H.s), 7.72(1H.s), 8.23(1H.brt, J=6.0Hz),

8.30(1H,s)

## 実施例 8 1

2-メチルー4-(3, 4-メチレンジオキシベンジル) 7 > 1-6 > 7 > 8- トリメトキシキナゾリン

·分子式 ; C20H21N3O5

·収率(%);58

・融点(℃);190~191

• Mass ;  $384(M+H)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>) :

2.67(3H,s), 3.93(3H,s), 4.01(3H,s), 4.11(3H,s),

4.77(2H, d, J=5.2Hz), 5.96(2H, s), 6.70(1H, s), 6.79(1H, d, J=7.6Hz),

6.89(1H, d, J=7.6Hz), 6.93(1H, s)

#### 実施例 8 2

# 2-イソプロピルー4-(3,4-メチレンジオキシベンジル)アミノー6-メ

## トキシキナゾリン

·分子式 ; C20H21N3O3

· 収率(%);84

・融点(℃);157~158

• Mass ;  $352(M+1)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

1.36(6H, d, J=6.8Hz), 3.15(1H, septet, J=6.8Hz), 3.88(3H, s),

4.81(2H, d, J=5.6Hz), 5.94(2H, s), 6.78(1H, d, J=8.0Hz),

6.91(1H, dd, J=8.0Hz, 2.0Hz), 6.96(1H, d, J=2.0Hz),

6.99(1H, brd, J=2.4Hz), 7.32(1H, dd, J=9.2Hz, 2.4Hz).

7. 79(1H, d, J=9. 2Hz)

#### 実施例 8 3

·分子式 ; C<sub>25</sub>H<sub>22</sub>N<sub>3</sub>O<sub>3</sub>Cl

・収率(%);20

・融点 (℃);208~209

• Mass :  $446(M+1)^+$ 

·NMR δ(CDCl₃) ;

0.97(3H. t. J=7.6Hz). 1.71~1.81(2H.m). 4.01(2H.t.J=6.4Hz).

4.81(2H, brs), 5.80(1H, br), 5.96(2H, s), 6.79~7.86(10H, m)

# 実施例 8 4

2-(2-プロポキシフェニル)-4-(3,4-メチレンジオキシベンジル)アミノキナゾリン

·分子式 ; C<sub>25</sub>H<sub>23</sub>N<sub>3</sub>O<sub>3</sub> (413)

·収率(%);15

・融点(℃);130~131

• Mass ;  $414(M+1)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

0.96(3H, t, J=7.2Hz),  $1.71\sim1.77(2H, m)$ , 4.00(2H, t, J=6.4Hz),

4.83(2H, s), 5.95(2H, s), 6.77~7.93(12H, m)

#### 実施例 8 5

<u>4-(3, 4-メチレンジオキシベンズアミド)-6,7,8-トリメトキシキ</u>ナゾリン

·分子式 ; C19H17N2O6

・収率(%);13

・融点(℃);190~192

• Mass ;  $384(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

4.10(6H,s), 4.12(3H,s), 6.07(2H,s), 6.91(1H,d,J=8.0Hz),

7.86(1H,s), 7.90(1H,s), 8.06(1H,d,J=8.0Hz), 8.18(1H,s)

#### 実施例86

4-(3, 4-メチレンジオキシベンジル)オキシ-6,7,8-トリメトキシ

PCT/JP92/01258 WO 93/07124

# キナゾリン

·分子式 ; C19H18N2O6

· 収率(%);49

・融点(℃);141~142

· Mass : 371(M+H)+

· NMR & (CDCl3);

3.97(3H,s), 4.05(3H,s), 4.13(3H,s), 5.53(2H,s), 5.99(2H,s),

6.84(1H, d, J=8.0Hz), 7.00(1H, dd, J=8.0Hz, 2.0Hz), 7.02(1H, d, J=2.0Hz),

7.20(1H, s), 8.74(1H, s)

## <u>実施例 8 7</u>

# 4-(3,4-メチレンジオキシベンジル)オキシ-6-メチルチオキナゾリン

·分子式 ; C<sub>17</sub>H<sub>14</sub>N<sub>2</sub>O<sub>3</sub>Cl

·収率(%);69

・融点(℃);104~105

• Mass  $: 327(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

2.59(3H.s), 5.56(2H,s), 6.00(2H.s), 6.85(1H,d,J=8.0Hz),

7.01(1H, dd, J=8.0Hz, 1.6Hz), 7.03(1H, d, J=1.6Hz),

7.72(1H, dd, J=8.8Hz, 1.6Hz), 7.88(1H, d, J=8.8Hz), 7.89(1H, d, J=1.6Hz),

8.78(1H, s)

#### 実施例 8 8

#### 2, 4, 6-トリメトキシキナゾリン

2,4-ジクロロー6-メトキシキナゾリン 5.0g(0.022モル)をメタノール 150 mlに懸濁させ、水素化ナトリウム 3.5gを徐々に加えた後、加熱還流する。 数時間後、反応液を減圧濃縮し、水を加えて析出晶を濾取し、水で洗い風乾して、標題化合物の粗黄色晶 4.8gを得た。

・融点(℃);143~144

• Mass ;  $221(M+1)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

3.90(3H.s), 4.08(3H.s), 4.18(3H.s), 7.36(1H.d.J=2.8Hz).

7. 39(1H. dd, J=8. 8Hz, 2. 8Hz). 7. 67(1H. d, J=2. 8Hz)

#### 実施例 8 9

2, 6-ジメトキシー4-(3, 4-メチレンジオキシベンジル) アミノキナゾ リン

実施例 8 8 で得られた 2 , 4 , 6 ートリメトキシキナゾリン2.00 g (8.26 1 モル) のジメチルスルホキシド (15 ml) 溶液にピペロニルアミン3.75 g (24.8 1 リモル) を加え、150 ~160 ℃で加熱攪拌する。 1 時間後、反応液をシリカゲルカラムクロマトグラフィー (酢酸エチルー1 ーへキサン)により精製し、酢酸エチルー1 ーへキサンより再結晶して、標題化合物の淡黄色晶1.50 g を得た。

·分子式 ; C18H17N3O4

· 収率 (%);18

・融点(℃);166~167

• Mass ;  $340(M+1)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

3.89(3H,s), 4.03(3H,s), 4.77(2H,d,J=5.2Hz), 5.94(2H,s),

6.76(1H, d, J=8.0Hz). 6.89(1H, dd, J=8.0Hz, 1.2Hz), 6.93(1H, d, J=1.2Hz),

7. 29(1H. dd, J=8. 8Hz, 2. 8Hz), 7. 32(1H, brs), 7. 59(1H, d, J=8. 8Hz)

# <u>実施例90</u>

# 2, 4-ビスベンジルオキシー6-メトキシキナゾリン

ベンジルアルコール3mlをテトラヒドロフラン50mlに溶解させ、水素化ナトリ

ウム 1.0gを加えて30分間40~50℃にて攪拌した後、2, 4 - ジクロロー6 - メトキシキナゾリン2.50g (0.0109モル)を加え、数時間加熱還流する。反応液に水を加え、クロロホルムで抽出し、有機層を無水硫酸マグネシウムで乾燥する。濾過、減圧下溶媒を留去し、得られる結晶をクロロホルム-n-ヘキサンより再結晶して、標題化合物の黄色晶3.84gを得た。

• 収率(%);95

・融点(℃);144~145

• Mass ;  $373(M+1)^+$ 

• NMR  $\delta$  (CDC1<sub>3</sub>);

3.87(3H, s), 5.53(2H, s), 5.62(2H, s),  $7.31 \sim 7.55(12H, m)$ ,

7. 70(1H, d, J=8. 8Hz)

#### 実施例91

$$\begin{array}{c} \text{MeO} \\ \\ \text{N} \\ \\ \text{OBz1} \end{array}$$

·分子式 ; C24H21N3O4

·収率(%);18

・融点(℃):163~164

• Mass ; 416(M+H)+

· NMR  $\delta$  (CDCl<sub>3</sub>) :

3.86(3H,s). 4.75(2H.d, J=5.2Hz). 5.49(2H.s). 5.68(1H,brs).

5.96(2H, s), 6.79(1H, d, J=8.0Hz), 6.84~6.87(3H, m),

7.28~7.36(4H, m), 7.51~7.53(2H, m), 7.63(1H, d, J=9.2Hz)

# 実施例 9 2

2, 6-ジクロロ-4-(3, 4-メチレンジオキシベンジル) アミノキナゾリ ン

$$C1$$
 $N$ 
 $C1$ 
 $0$ 

2, 4, 6 ートリクロロキナゾリン 3.6g、ピペロニルアミン 2.4g、トリエチルアミン 1.6g及びイソプロピルアルコール50mlの混合物を 1.5時間加熱還流した。熱時、沈殿物を濾取して、標題化合物を 5.2g 得た。

·分子式 ; C16H11N3O2Cl2

· 収率(%);98

・融点(℃);215

· Mass ; 349 (M+1)+

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

4.61(2H,s), 5.97(2H,s), 6.85(2H,s), 6.95(1H,s),

7. 63(1H, d, J=8. 8Hz), 7. 80(1H, dd, J=8. 8Hz, 2. 4Hz),

8. 45(1H, d, J=2. 4Hz), 9. 24(1H, br)

#### 実施例 9 3

<u>2-クロロ-4-(3, 4-メチレンジオキシベンジル) アミノー6-シアノキ</u>ナゾリン

2, 4-ジクロロー6-シアノキナゾリン2gにイソプロピルアルコール35ml、トリエチルアミン900mg及びピペロニルアミン1.35gを加え、1.5時間加熱還流した。熱時、反応混合物中の沈殿物を濾取して、標題化合物を2.4g得た。

·分子式 ; C<sub>17</sub>H<sub>11</sub>N<sub>4</sub>O<sub>2</sub>Cl

· 収率(%);79

・融点(℃);234~236(分解)

• Mass ;  $339 (M+1)^+$ 

• NMR  $\delta$  (DMS0-d<sub>6</sub>);

4.63(2H, d, J=5.6Hz), 5.97(2H, s), 6.86(2H, s), 6.97(1H, s),

7.72(1H, d, J=8.4Hz), 8.10(1H, dd, J=8.4Hz.1.8Hz),

8.90(1H, d, J=1.8Hz), 9.50(1H, br)

#### 実施例 9 4

2-クロロ-4-(3-クロロ-4-メトキシベンジル) アミノー6-シアノキ ナゾリン

2, 4-ジクロロー6-シアノキナゾリン4gに3-クロロー4-メトキシベンジルアミン3.9g、トリエチルアミン3.97g、2-プロパノール 200mlを加え30分間還流した。反応混合物を室温まで冷し、析出した結晶を遮取し、水、クロロホルムで順次洗浄し、標題化合物を5.563g得た。

·分子式 ; C<sub>17</sub>H<sub>12</sub>N<sub>4</sub>OCl<sub>2</sub>

·収率(%);87

・融点(℃);264~266

• Mass m/e : 359(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.90(3H, s), 4.73(2H, d, J=5.2Hz), 6.92(1H, d, J=8.4Hz),

7.33(1H, dd, J=8.4Hz, 2.0Hz), 7.45(1H, d, J=2.0Hz), 7.74(1H, d, J=8.4Hz),

7.83(1H, dd, J=8.4Hz, 1.6Hz), 8.78(1H, d, J=1.6Hz), 8.85(1H, brs)

# 実施例95~105

実施例88~94の方法に準じて次の化合物を合成した。

# 実施例 9 5

<u>2-クロロ-4-(3, 4-メチレンジオキシベンジル) アミノー6, 7, 8-</u> トリメトキシキナゾリン

·分子式 ; C19H18N3O5Cl

・収率(%);50

・融点 (℃) ;193 ~194

• Mass ;  $404(M+H)^+$ 

• NMR  $\delta$  (CDC1<sub>3</sub>) :

3. 94(3H, s), 4. 03(3H, s), 4. 10(3H, s), 4. 75(2H, d, J=5.2Hz).

5.65(1H, brs), 5.98(2H, s), 6.59(1H, s), 6.81(1H, d, J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.91(1H.s)

# <u>実施例96</u>

2-0ロロー4-(3-0ロロー4-メトキシベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式; C18H18Cl2N3O4

· 収率 (%);45

・融点(℃);199~200

· Mass ; 424(M+1)+

• NMR  $\delta$  (CDC1<sub>3</sub>) :

3.89(3H, s), 3.95(3H, s), 4.02(3H, s), 4.08(3H, s),

4.76(2H.d.J=5.6Hz), 6.39(1H.brs), 6.83(1H.s), 6.89(1H.d.J=8.3Hz),

7. 31 (1H, dd, J=8. 4Hz. 2. 0Hz), 7. 40 (1H, d, J=2. 0Hz)

#### 実施例 9\_7

2-2-1-4-(3,4-1) 4-1+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2-2+1 2

$$\begin{array}{c|c} & & & \\ \text{MeO} & & & \\ & & & \\ \text{MeO} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C18H16N3O4Cl

· 収率 (%);97

・融点(℃);177~178

• Mass :  $374(M+H)^+$ 

·NMR & (CDCI3);

3.95(3H, s), 3.97(3H, s), 4.75(2H, d, J=5.2Hz), 5.74(1H, brt, J=5.2Hz),

5.97(2H, s), 6.80(1H, d, J=8.0Hz), 6.81(1H, s),

6.88(1H, dd, J=8.0Hz, 2.0Hz), 6.91(1H, d, J=2.0Hz), 7.14(1H, s)

# 実施例 9 8

2-クロロ-4-(3, 4-メチレンジオキシベンジル) アミノー6-メトキシ キナゾリン

·分子式 ; C17H14N3O3Cl

· 収率(%);80

・融点(℃);202~203

• Mass ;  $344(M+1)^+$ 

·NMR & (CDCl3):

3.91(3H, s), 4.77(2H, d, J=5.6Hz), 5.94(2H, s), 6.76(1H, d, J=8.0Hz),

6.91(1H, dd, J=8.0Hz, 1.6Hz), 6.95(1H, d, J=1.6Hz).

7.35(1H, dd, J=9.2Hz, 2.8Hz), 7.46(1H, brd, J=2.8Hz),

7.69(1H.d.J=9.2Hz), 7.90(1H.brs)

#### 実施例 9 9

<u>2-クロロー4-(3-クロロー4-メトキシベンジル) アミノー6-メトキシ</u> キナゾリン

$$\begin{array}{c|c} & & & \\ \text{MeO} & & & \\ \hline & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

·分子式 ; C17H15N3O2Cl2

・収率(%);88

・融点(℃):171~172

· Mass ; 364(M+1)+

• NMR  $\delta$  (DMS0):

3.83(3H,s), 3.88(3H,s), 4.68(2H,d,J=5.6Hz), 7.13(1H,d,J=8.8Hz),

7. 33(1H. dd, J=2. 4Hz, 8. 8Hz), 7. 44(1H. dd, J=2. 8Hz, 9. 2Hz),

7. 46(1H, d, J=2. 4Hz), 7. 58(1H, d, J=9. 2Hz), 7. 72(1H, d, J=2. 8Hz),

9.05(1H, t, J=5.6Hz)

#### 実施例 1 0 0

# 2, 6-ジクロロー4-ベンジルアミノキナゾリン

·分子式 ; C15H11N3Cl2

· 収率(%);77

・融点(℃);227~228

·NMR & (CDCl3);

4.85(2H.d, J=5.2Hz), 5.97(1H.brs), 7.33~7.43(5H.m),

7.62(1H, d, J=2.0Hz), 7.68(1H, dd, J=8.8Hz, 2.0Hz),

7.74(1H, d, J=8.8Hz)

# 実施例 1 0 1

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C17H18N3O2Cl2

・収率(%);71

・融点(℃);228~229

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.88(2H, t, J=7.4Hz), 3.68(2H, m), 5.96(2H, s),

6.70(1H.dd, J=8.0Hz, 1.6Hz), 6.81(1H.d, J=8.0Hz), 6.87(1H.d, J=1.6Hz),

7.63(1H, d, J=8.8Hz), 7.80(1H, dd, J=8.8Hz, 2.0Hz), 8.40(1H, d, J=2.0Hz),

8.86(1H, d, J=5.2Hz)

#### 実施例102

2, 6-ジクロロー4ー(3-クロロー4-メトキシベンジル)アミノキナソリ

<u>ン</u>

·分子式 ; C16H12N3OCl3

・収率(%);93

・融点(℃);207~208

• Mass m/e; 368(M+1)

#### • NMR $\delta$ (CDC1<sub>3</sub>);

3.90(3H, s), 4.73(2H, d, J=5.6Hz), 6.91(1H, d, J=8.4Hz),

7. 32(1H, d, J=8. 4Hz, 2. 0Hz), 7. 45(1H, d, J=2. 0Hz),

7. 62(1H, dd, J=8. 8Hz, 2. 0Hz), 7. 66(1H, d, J=8. 8Hz),

8.07(1H, brs). 8.16(1H, d, J=2.0Hz)

#### 実施例 1 0 3

2, 6-ジクロロー4-(ベンズイミダゾール-5-イル)メチルアミノキナゾリン

$$C1 \xrightarrow{HN \\ N \\ C1} \xrightarrow{N} H$$

·分子式 ; C16H11N5Cl2 (344.205)

· 収率 (%);81

・融点(℃);>290

• Mass : 344(M+1)+

• NMR  $\delta$  (DMS0):

4.85(2H.d.J=6.0Hz), 7.25(1H.dd,J=1.6Hz.6.4Hz).

7.57(1H, d, J=6.4Hz). 7.60(1H, s), 7.66(1H, d, J=8.8Hz).

7.83(1H, dd, J=2.0Hz, 8.8Hz), 8.21(1H, s), 8.44(1H, brs).

8.52(1H, d, J=2.0Hz), 9.37(1H, t, J=6.0Hz)

# 実施例104

<u>2-クロロー4-(ベンズイミダゾール-5-イル)メチルアミノー6-シアノ</u> キナゾリン

·分子式 ; C<sub>17</sub>H<sub>11</sub>N<sub>6</sub>Cl (334.5)

・収率(%);58

・融点(℃);>290

• Mass ;  $335 (M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>)

4.81(2H, s),  $7.21\sim7.68(3H, m)$ , 7.73(1H, d, J=8.8Hz),

8.10(1H, d, J=8.8Hz), 8.17(1H.s), 8.91(1H.s), 9.55(1H.br)

#### 実施例105

$$\begin{array}{c|c} HO & & & \\ MeO & & & \\ MeO & & & \\ MeO & & & \\ \end{array}$$

·分子式 ; C21H22N3O6Cl

・収率(%);55

• Mass :  $448(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.38(3H, s), 3.88(2H, t, J=4.4Hz), 4.01(2H, t, J=4.4Hz), 4.03(3H, s), 4.07(3H, s), 4.92(2H, s), 6.01(2H, s), 6.88~6.91(3H, m), 7.00(1H, s)

#### 実施例 1 0 6

2-ホルミルー4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロ キナゾリン

2-エトキシカルボニルー4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン0.50g(0.0013モル)を塩化メチレン20ml、テトラヒドロフラン20mlの混合溶媒に溶解させ、-78℃攪拌下、水素化ジイソプチルアルミニウムの1.0Mトルエン溶液を2.6ml滴下する。数時間-78℃にて攪拌後、反応液にメタノール20mlを加え、減圧下溶媒を留去する。残渣をシリカゲルカラムクロマトグラフィーにて精製した後、酢酸エチルーn-ヘキサンより再結晶し、標題化合物の淡黄色晶0.23gを得た。

・収率(%);52

・融点(℃);200~202 (分解)

• Mass :  $342(M+1)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

4.86(2H, d, J=5.2Hz), 5.98(2H, s), 6.81(1H, d, J=7.6Hz),

6. 90(1H, d, J=7. 6Hz), 6. 92(1H, s), 7. 72(1H, d, J=2. 0Hz),

7.77(1H, dd, J=8.8Hz, 2.0Hz), 8.01(1H, d, J=8.8Hz), 10.05(1H, s)

#### 実施例107

 $\frac{2-x++2nux-u-4-(3, 4-x++v-2)x+2v-2u)}{6-2u-2}$ 

2-xトキシカルボニルー 4, 6-ジクロロキナゾリン2.72g(0.0100モル)、ピペロニルアミン1.75g(0.0116モル)、炭酸ナトリウム1.60g(0.0151モル)をイソプロピルアルコール 100mlにて混合し、一昼夜加熱還流する。溶媒を減圧下留去し、得られる残渣をシリカゲルカラムクロマトグラフィーにより精製した後、クロロホルム-n-ヘキサンより再結晶し、標題化合物の無色針状晶3.56gを得た。

·分子式 ; C19H16N3O4Cl

・収率(%);92

・融点(℃);212~213

• Mass :  $386(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.49(3H, t, J=7.2Hz), 1.54(2H, q, J=7.2Hz), 4.83(2H, d, J=5.6Hz),

5.96(1H, brs), 5.97(2H, s), 6.80(1H, d, J=8.0Hz),

6. 91(1H, dd, J=8. 0Hz, 1. 6Hz), 6. 97(1H, d, J=1. 6Hz), 7. 70(1H, d, J=2. 0Hz),

7.72(1H, dd, J=8.8Hz, 2.0Hz), 8.00(1H, d, J=8.8Hz)

# 実施例 1 0 8 ~ 1 1 1

実施例106又は実施例107の方法に準じて以下の化合物を得た。

#### 実施例 1 0 8

# 2-エトキシカルボニルー4-(3-クロロ-4-メトキシベンジル)アミノー 6-クロロキナゾリン

·分子式 ; C18H17N3O3Cl2

· 収率(%);88

・融点(℃);185~186

· Mass ; 406(M+1) \*

· NMR  $\delta$  (CDCl<sub>3</sub>);

1.49(3H, t, J=7.2Hz), 3.90(3H, s), 4.54(2H, q, J=7.2Hz),

4.84(2H, d, J=5.2Hz), 6.09(1H, brs), 6.90(1H, d, J=8.4Hz),

7. 33(1H, dd, J=8. 4Hz, 2. 4Hz). 7. 48(1H, d, J=2. 4Hz).

7.72(1H, dd, J=8.8Hz, 2.4Hz), 7.74(1H, d, J=2.4Hz),

7. 99(1H, d, J=8. 8Hz)

# 実施例109

2-x++yカルボニルー4-(3, 4-x)チレンジオキシベンジル) アミノー 6, 7, 8-+リメトキシキナゾリン

·分子式 ; C22H23N3O7

・収率(%);定量的

・融点(℃);163~165(分解)

• Mass ;  $442(M+1)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>) :

1.45(3H, t. J=7.2Hz), 3.94(3H, s), 4.02(3H, s), 4.18(3H, s),

4.46(2H, q, J=7.2Hz), 4.80(2H, d, J=5.2Hz), 5.89(1H, brt, J=5.2Hz),

5.94(2H, s), 6.74(1H, d, J=7.6Hz), 6.76(1H, s),

6.86(1H, dd, J=7.6Hz, 1.6Hz), 6.94(1H, d, J=1.6Hz)

#### 実施例 1 1 0

2-エトキシカルボニル-4-(3-クロロ-4-メトキシベンジル)アミノー

#### 6-メトキシキナゾリン

·分子式 ; C20H20N3O4Cl

・収率(%);73

・融点(℃);192~193

• Mass :  $402(M+1)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

1. 49(3H, t, J=7.2Hz), 3. 90(3H, s), 3. 91(3H, s), 4. 53(2H, q, J=7.2Hz),

4.86(2H.d.J=5.6Hz), 5.90(1H.brt,J=5.6Hz), 6.90(1H.d.J=8.4Hz),

6.96(1H, d, J=2.4Hz), 7.36(1H, dd, J=8.4Hz, 2.4Hz),

7. 44(1H. dd. J=9. 2Hz. 2. 4Hz), 7. 49(1H. d. J=2. 4Hz), 8. 00(1H. d. J=9. 2Hz)

# 実施例111

<u>2-エトキシカルボニルー4-(ベンズイミダゾールー5-イルメチル)アミノ</u> -6-メトキシキナゾリン

·分子式 ; C20H19N5O3

・収率(%);48

・融点(℃);244~245 (分解)

· Mass ; 378(M+1)+

· NMR  $\delta$  (DMSO-d<sub>6</sub>) :

1.35(3H, t, J=7.2Hz), 3.90(3H, s), 4.33(2H, q, J=7.2Hz),

4.94(2H, d, J=6.0Hz), 7.31(1H, d, J=8.0Hz), 7.47(1H, dd, J=8.8Hz, 2.8Hz),

7.53(1H, d, J=8.0Hz), 7.65(1H, brs), 7.77(1H, d, J=8.8Hz), 7.78(1H, s),

8.17(1H,s), 8.89(1H,brt,J=6.0Hz)

# <u>実施例112</u>

تَخ

2-ホルミルー4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン4.00g (0.0117モル) のテトラヒドロフラン 250ml溶液に、水素化ナトリウム0.52g(0.013モル) を加え、氷冷攪拌下、トリエチル 2-ホスホノプロピオネート 2.8ml(0.013モル) を滴下する。しばらく氷冷攪拌を続けた後、室温まで昇温し、さらに1時間攪拌した。8 M塩酸-エタノール 1.5mlを加え、少量のシリカゲルを通した後、減圧下溶媒を留去し、残渣をカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)により精製し、クロロホルム-n-ヘキサンより再結晶して、標題化合物2.00gを得た。

· 分子式 ; C<sub>22</sub>H<sub>20</sub>N<sub>3</sub>O<sub>4</sub>Cl

· 収率 (%);40

・融点 (℃) ;179 ~180 (分解)

• Mass ;  $426(M+1)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.35(3H, t, J=7.2Hz), 2.50(3H, d, J=1.6Hz), 4.29(2H, q, J=7.2Hz),

4.78(2H, d, J=5.2Hz), 5.77(1H, brt, J=5.2Hz), 5.97(2H, s),

6.81(1H, d, J=8.0Hz), 6.87(1H, dd, J=8.0Hz, 1.6Hz), 6.89(1H, d, J=1.6Hz),

7.62(1H, q, J=1.6Hz), 7.64(1H, d, J=2.0Hz), 7.68(1H, dd, J=8.8Hz, 2.0Hz).

7.81(1H, d, J=8.8Hz)

# 実施例113~119

実施例112の方法に準じて以下の化合物を得た。

# <u>実施例113</u>

(Z) - 2 - (2 - エトキシカルボニル - 1 - プロペニル) - 4 - (3, 4 - メ チレンジオキシベンジル) アミノー6 - 2 - クロロキナゾリン

·分子式 ; C22H20N3O4Cl

・収率(%);13

·収量(g);0.64

・融点(℃):162~164 (分解)

• Mass ;  $426(M+1)^+$ 

·NMR & (CDCl3);

1. 20(3H, t, J=7. 2Hz), 2. 17(3H, d, J=1. 6Hz), 4. 21(2H, q, J=7. 2Hz),

4.70(2H, d, J=4.8Hz), 5.64(1H, brs), 5.97(2H, s), 6.53(1H, q, J=1.6Hz),

6.81(1H, d, J=7.6Hz). 6.85(1H, dd, J=7.6Hz.1.6Hz), 6.87(1H, d, J=1.6Hz),

7.58(1H. d. J=2.4Hz), 7.62(1H. dd, J=8.8Hz, 2.4Hz), 7.71(1H. d. J=8.8Hz)

#### 実施例 1 1 4

(E) - 2 - (2 - x + 2) ルボニルビニル) - 4 - (3, 4 - x + 2) キシベンジル) アミノー6 - 2 ロロキナゾリン

·分子式 ; C21H18N3O4Cl

· 収率 (%);67

・融点 (℃) ;195 ~196

• Mass ;  $412(M+1)^+$ 

·NMR  $\delta$  (CDC1<sub>3</sub>);

1.35(3H, t, J=7.2Hz), 4.29(2H, q, J=7.2Hz), 4.80(2H, d, J=5.2Hz),

5.77(1H, brs), 5.97(2H, s), 6.81(1H, d, J=7.6Hz), 6.89(1H, d, J=7.6Hz),

6. 90(1H, s), 7. 21(1H, d, J=15. 6Hz), 7. 64(1H, d, J=2. 0Hz).

7. 66(1H, d, J=15. 6Hz), 7. 68(1H, dd, J=9. 2Hz, 2. 0Hz), 7. 82(1H, d, J=9. 2Hz)

## 実施例 1 1 <u>5</u>

(E) - 2 - (2 - エトキシカルボニルビニル) - 4 - (3 - クロロー 4 - メト キシベンジル) アミノー6 - クロロキナゾリン

·分子式 ; C21H19N3O3Cl2

・収率(%);74

・融点(℃);211~212

• Mass :  $432(M+1)^+$ 

·NMR δ(CDCl<sub>3</sub>);

1.35(3H, t, J=7.2Hz), 3.89(3H.s), 4.28(2H, q, J=7.2Hz),

4.79(2H. d. J=5.6Hz), 6.91(1H. d. J=8.4Hz), 7.16(1H. d. J=15.6Hz),

7.33(1H, dd, J=8.4Hz, 2.0Hz), 7.46(1H, d, J=2.0Hz).

7. 62(1H, d, J=15. 6Hz), 7. 64(1H, dd, J=8. 8Hz, 2. 4Hz),

7.75(1H, d, J=8.8Hz), 7.77(1H, brs), 8.16(1H, d, J=2.4Hz)

# 実施例116

# 

·分子式 ; C22H21N3O3Cl2

· 収率(%);54

・融点(℃);154~155

• Mass ;  $446(M+1)^+$ 

·NMR & (CDCI3) ;

1.35(3H, t, J=7.2Hz), 2.48(3H, d, J=1.6Hz), 3.91(3H, s),

4.29(2H, q, J=7.2Hz), 4.80(2H, d, J=5.2Hz), 5.82(1H, brt, J=5.2Hz),

6. 92(1H, d, J=8. 8Hz), 7. 27(1H, dd, J=8. 8Hz, 2. 0Hz),

7. 42(1H, d, J=2. 0Hz), 7. 62(1H, q, J=1. 6Hz), 7. 67(1H, d, J=2. 4Hz),

7. 69(1H, dd, J=8. 8Hz, 2. 4Hz), 7. 82(1H, d, J=8. 8Hz)

# 実施例117

<u>(乙)−2−(2−エトキシカルボニル−1−プロペニル)−4−(3−クロロ</u> −4−メトキシベンジル)アミノ−6−クロロキナゾリン

·分子式 ; C<sub>22</sub>H<sub>21</sub>N<sub>3</sub>O<sub>3</sub>Cl<sub>2</sub>

• 収率(%);11

・融点(℃);141~142

· Mass ; 446(M+1)+

· NMR  $\delta$  (CDC1<sub>3</sub>);

1.19(3H, t, J=7.2Hz), 2.17(3H, d, J=1.6Hz), 3.91(3H, s),

4. 19(2H, q, J=7. 2Hz), 4. 73(2H, d, J=5. 2Hz), 5. 69(1H, brt, J=5. 2Hz),

6.53(1H, q, J=1.6Hz), 6.92(1H, d, J=8.4Hz), 7.26(1H, dd, J=8.4Hz, 2.0Hz),

7. 40(1H, d, J=2. 0Hz), 7. 60(1H, d, J=2. 0Hz), 7. 63(1H, dd, J=8. 8Hz, 2. 0Hz),

7.71(1H, d, J=8.8Hz)

#### 実施例118

·分子式 ; C25H27N3O7

• 収率(%);51

・融点(℃);175~176

• Mass :  $482(M+1)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.35(3H, t, J=7.2Hz), 2.52(3H, d, J=1.6Hz), 3.95(3H, s), 4.04(3H, s),

4.14(3H, s), 4.28(2H, q, J=7.2Hz), 4.80(2H, d, J=5.2Hz),

WO 93/07124 PCT/JP92/01258

5.60(1H.brt, J=5.2Hz), 5.96(2H.s), 6.67(1H.s), 6.80(1H.d.J=8.0Hz),

6.87(1H, dd, J=8.0Hz, 1.6Hz), 6.90(1H, d, J=1.6Hz), 7.69(1H, q, J=1.6Hz)

# 実施例119

(Z) - 2 - (2 - X) エトキシカルボニルー1 - 2 ロペニル)-4 - (3, 4 - X) チレンジオキシベンジル)アミノー6, 7, 8 - トリメトキシキナゾリン

·分子式 ; C<sub>25</sub>H<sub>27</sub>N<sub>3</sub>O<sub>7</sub>

・収率(%);11

・融点(℃);157~158 (分解)

· Mass : 482(M+1)+

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.19(3H, t, J=7.2Hz), 2.16(3H, s), 3.92(3H, s), 4.02(3H, s),

4.09(3H, s), 4.21(2H, q, J=7.2Hz), 4.72(2H, d, J=5.2Hz), 5.43(1H, brs),

5.96(2H, s), 6.59~6.61(2H, m), 6.80(1H, d, J=8.0Hz), 6.86~6.89(2H, m)

# 実施例120

(E) - 2 - (2 - カルボキシー 1 - プロペニル) - 4 - (3, 4 - メチレンジ オキシベンジル) アミノー <math>6 - 2 ロロキナゾリン

(E) -2-(2-x++)カルボニルプロペニル) -4-(3,4-)チレンジオキシベンジル) アミノー6-クロロキナゾリン1.00g(0.0023モル) をテトラヒドロフラン5 ml、エタノール20mlに溶解させ、1 N水酸化ナトリウム水溶液20mlを加えて数時間室温攪拌した。1 N塩酸20mlにて中和し、減圧下濃縮して析出する結晶を濾取し、水で洗って風乾し、標題化合物0.85gを得た。

·分子式 ; C20H16N3O4Cl

• 収率(%);91

・融点(℃);145~146

· Mass ; 398(M+1)+

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.36(3H, d, J=1.6Hz), 4.70(2H, d, J=5.6Hz), 5.97(2H, s), 6.85(2H, s).

6.95(1H, s). 7.34(1H, q, J=1.6Hz), 7.72(1H, d, J=8.8Hz).

7.79(1H, dd, J=8.8Hz, 2.0Hz), 8.46(1H, d, J=2.0Hz),

8.86(1H, brt, J=5.6Hz)

# 実施例121~128

実施例120の方法に準じて以下の化合物を得た。

# 実施例121

·分子式 ; C17H12N3O4Cl

· 収率(%);定量的

・融点(℃);240 (分解)

• Mass ;  $402(M-1+2Na)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>) ;

4.71(2H, d, J=5.6Hz), 5.96(2H, s), 6.83(1H, d, J=8.0Hz).

6.89(1H, dd, J=8.0Hz, 1.2Hz), 7.06(1H, d, J=1.2Hz),

7.75(1H, dd, J=8.8Hz, 2.4Hz), 7.90(1H, d, J=8.8Hz),

8.48(1H, d, J=2.4Hz), 8.82(1H, brt, J=5.6Hz)

# <u>実施例122</u>

·分子式 ; C19H14N3O4Cl

・収率(%);43

・融点(℃);114~115

• Mass :  $428(M-1+2Na)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

4.71(2H, d, J=5.6Hz), 5.96(2H, s), 6.84(1H, d, J=8.0Hz),

6.90(1H, dd, J=8.0Hz, 1.6Hz), 6.99(1H, d, J=1.6Hz),

7. 02(1H, d, J=15.6Hz), 7. 23(1H, d, J=15.6Hz), 7. 73(1H, d, J=9.2Hz),

7.78(1H, dd, J=9.2Hz, 2.0Hz), 8.44(1H, d, J=2.0Hz),

8.89(1H, brt, J=5.6Hz)

#### 実施例123

(Z) - 2 - (2 - カルボキシ - 1 - プロペニル) - 4 - (3, 4 - メチレンジ オキシベンジル) アミノー<math>6 - 2 ロロキナゾリン

·分子式 ; C20H16N3O4Cl

· 収率(%);定量的

・融点(℃);195~196 (分解)

• Mass ;  $398(M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

2.10(3H, d, J=1.6Hz), 4.70(2H, d, J=5.6Hz), 5.97(2H, s),

6.56(1H, d, J=1.6Hz), 6.86(1H, d, J=8.0Hz), 6.91(1H, dd, J=8.0Hz, 1.6Hz),

7.00(1H, d, J=1.6Hz), 7.65(1H, d, J=9.2Hz), 7.81(1H, dd, J=9.2Hz, 2.4Hz),

8.46(1H, d, J=2.4Hz), 8.96(1H, brt, J=5.6Hz)

#### 実施例124

# (E) - 2 - (2 - カルボキシビニル) - 4 - (3 - クロロ-4 - メトキシベンジル) アミノー<math>6 - 2クロロキナゾリン

·分子式 ; C19H15N3O3Cl2

· 収率(%);定量的

・融点(℃);109~110

• Mass;  $448(M-1+2Na)^+$ 

- NMR  $\delta$  (DMSO-d<sub>6</sub>):

3.81(3H, s), 4.73(2H, d, J=5.6Hz), 6.95(1H, d, J=15.6Hz),

7.05(1H, d, J=15.6Hz). 7.08(1H, d, J=8.4Hz).

7.37(1H. dd, J=8.4Hz.2.0Hz), 7.48(1H.d, J=2.0Hz),

7.68(1H, d, J=8.8Hz), 7.73(1H, dd, J=8.8Hz, 2.0Hz).

8.42(1H, d, J=2.0Hz), 8.91(1H, brt, J=5.6Hz)

# 実施例125

(E) -2-(2-カルボキシ-1-プロペニル) -4-(3-クロロ-4-メトキシベンジル) アミノ-6-クロロキナゾリン

·分子式 ; C20H17N3O3Cl2

・収率(%);定量的

・融点(℃);151~152

• Mass ;  $462(M-1+2Na)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.33(3H, d, J=1.2Hz), 3.82(3H, s), 4.72(2H, d, J=5.6Hz),

7.09(1H, d, J=8.4Hz), 7.20(1H, d, J=1.2Hz), 7.32(1H, dd, J=8.4Hz, 2.0Hz),

7.44(1H, d, J=2.0Hz), 7.67(1H, d, J=8.8Hz), 7.74(1H, dd, J=8.8Hz, 2.4Hz),

8.43(1H, d, J=2.4Hz), 8.87(1H, brt. J=5.6Hz)

#### 実施例 1 2 6

(Z) - 2 - (2 - カルボキシ- 1 - プロペニル) - 4 - (3 - クロロ- 4 - メ)トキシベンジル) アミノー6 - クロロキナゾリン

·分子式 ; C<sub>20</sub>H<sub>17</sub>N<sub>3</sub>O<sub>3</sub>Cl<sub>2</sub>

・収率(%);定量的

・融点(℃);207~208(分解)

• Mass :  $418(M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.10(3H, d, J=1.4Hz), 3.83(3H, s), 4.72(2H, d, J=5.2Hz),

6.54(1H, d, J=1.4Hz), 7.10(1H, d, J=8.4Hz), 7.38(1H, dd, J=8.4Hz, 2.4Hz),

7. 49(1H, d, J=2. 4Hz), 7. 65(1H, d, J=8. 8Hz), 7. 81(1H, dd, J=8. 8Hz, 2. 4Hz),

8.44(1H, d, J=2.4Hz), 8.95(1H, brt, J=5.2Hz)

#### 実施例127

(E) -2-(2-カルボキシ-1-プロペニル) -4-(3,4-メチレンジ オキシベンジル) アミノー <math>6, 7, 8-トリメトキシキナゾリン

·分子式 ; C23H23N3O7

• 収率(%);91

・融点(℃);200~201 (分解)

• Mass :  $454(M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.38(3H.s), 3.89(3H,s), 3.92(3H,s), 4.01(3H,s),

4.71(2H, d, J=5.6Hz), 5.97(2H, s), 6.85(2H, s), 6.93(1H, s),

7.37(1H.s), 7.53(1H.s), 8.53(2H.brt, J=5.6Hz), 12.55(1H.brs)

# 実施例128

(Z) - 2 - (2 - カルボキシー1 - プロペニル) - 4 - (3, 4 - メチレンジオキシベンジル) アミノー<math>6, 7, 8 - トリメトキシキナゾリン

·分子式 ; C23H23N3O7

• 収率(%);90

・融点(℃);237~238.(分解)

• Mass ;  $454(M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.11(3H, d, J=1.2Hz), 3.92(3H, s), 3.93(3H, s), 3.94(3H, s).

4.76(2H, d, J=5.6Hz), 5.98(2H, s), 6.8~6.9(3H, m), 6.97(1H, s),

7.61(1H, s), 9.08(1H, brt, J=5.6Hz)

#### 実施例129

4 - (α - カルボキシ - 3, 4 - メチレンジオキシベンジル) アミノー<math>6 - 2ロキナゾリン

 $4-(\alpha-x++)$ カルボニル-3, 4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 100mgにエタノール10ml、水5ml、水酸化ナトリウム20mgを加え、10分間還流した。反応液を減圧濃縮し、水20mlを加えた後、1N塩酸で中和した。析出した結晶を濾取し、標題化合物45mgを得た。

·分子式 ; C17H12N3O4Cl

・収率(%);49

・融点(℃);235~236

· Mass m/e; 358(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

5.75(1H, d, J=6.4Hz), 6.01(2H, s), 6.89(1H, d, J=8.0Hz),

7.00(1H, d, J=8.0Hz), 7.08(1H, s), 7.70(1H, d, J=8.8Hz),

7.75(1H, dd, J=1.6Hz, 8.8Hz), 8.49(1H, s), 8.59(1H, d, J=6.4Hz),

8.70(1H, d, J=1.6Hz)

#### 実施例130~131

実施例129の方法に準じて以下の化合物を得た。

#### 実施例 1 3 0

4 - (N - (カルボキシメチル) - (3, 4 - メチレンジオキシベンジル) アミ <math>(1) - 6, 7, 8 -トリメトキシキナゾリン

·分子式 ; C21H2iN3O7

·収率(%);90

・融点 (℃) ;134 ~136

· Mass ; 428(M+H)+

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.43(3H, s), 4.06(3H, s), 4.17(3H, s), 4.62(2H, s), 5.16(2H, s),

6.03(2H,s), 6.87(1H,s), 6.91(2H,s), 7.06(1H,s), 8.87(1H,s)

#### 実施例131

4-(3,4-メチレンジオキシベンジル)アミノ-6-カルボキシキナゾリン

·分子式 ; C17H13N3O4

· 収率(%);98

・融点(℃);247~248 (分解)

• Mass ;  $324(M+H)^+$ 

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

4.86(2H, d, J=5.6Hz), 5.99(2H, s), 6.89(1H, d, J=8.0Hz),

6.92(1H, d, J=8.0Hz), 7.02(1H, s), 7.92(1H, d, J=8.8Hz),

8.46(1H, d, J=8.8Hz), 8.96(1H, s), 9.20(1H, s), 10.88(1H, brs)

#### 実施例132

 $4 - (\alpha - \pi )$   $\alpha - 3$   $\alpha - 3$   $\alpha - 3$   $\alpha - 4$   $\alpha - 3$   $\alpha - 4$   $\alpha -$ 

 $4-(\alpha-x$ トキシカルボニルー 3, 4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 200mgに10%のアンモニアエタノール溶液20mlを加え、室温で 3日間攪拌した。析出している結晶を遮取し、標題化合物60mgを得た。

·分子式 ; C17H13N4O3Cl

• 収率 (%);32

・融点(℃);230~231

· Mass m/e : 357(M+1)

·NMR δ(CDC13+DMSO-d6);

5.96(3H, m), 6.42(1H, brs), 6.79(1H, d, J=8.0Hz),

7.09(1H, dd, J=8.0Hz, 1.6Hz), 7.14(1H, d, J=1.6Hz), 7.15(1H, brs),

7.67(1H, dd, J=8.8Hz, 2.0Hz), 7.75(1H, d, J=8.8Hz), 8.28(1H, d, J=2.0Hz),

8.57(1H,s)

#### 実施例133~134

実施例132の方法に準じて以下の化合物を得た。

#### 実施例133

<u>4-(3, 4-メチレンジオキシベンジル) アミノ-6-カルバモイルキナゾリン</u>

$$\begin{array}{c|c} & & & \\ & & & \\ 0 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

・分子式 ; C<sub>17</sub>H<sub>14</sub>N<sub>4</sub>O<sub>3</sub>

• Mass ;  $323(M+H)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

4.68(2H, d, J=6.0Hz), 5.97(2H, s), 6.85(1H, d, J=8.0Hz),

6.88(1H, d, J=8.0Hz), 6.97(1H, s), 7.55(1H, brs), 7.70(1H, d, J=8.4Hz),

7.97(1H.brs). 8.18(1H.dd, J=8.4Hz, 1.6Hz), 8.50(1H.s),

8.84(1H, d, J=1.6Hz), 8.92(1H, brt, J=6.0Hz)

#### 実施例134

## 

·分子式 ; C17H13C1N4O3

·収率(%);71

·融点(℃);245~247 (分解)

• Mass : 357(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

4.77(2H, d, J=5.2Hz), 5.97(2H, s), 6.85(1H, d, J=8.0Hz),

6.92(1H, d, J=8.0Hz), 7.04(1H, s), 7.66(1H, brs), 7.83(2H, m).

8.07(1H.brs), 8.49(1H.s), 8.99(1H.brs)

#### 実施例135

## 

4-(α-エトキシカルボニル-3, 4-メチレンジオキシベンジル)アミノ

-6-クロロキナゾリン 200mgにエタノール10ml、水素化ホウ素ナトリウム 197 mgを加え、30分間還流した。水 5 mlを加え、溶媒を減圧濃縮した後、再び水10mlを加えた。析出した結晶を濾取し、標題化合物30mgを得た。

·分子式 ; C17H14N3O3Cl

• 収率(%);17

・融点(℃):204~205

• Mass m/e ; 344(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>(+DMSO-d<sub>6</sub>));

3.95(2H, m), 5.43(1H, q, J=4.4Hz), 5.92(1H, d, J=1.6Hz).

5.93(1H, d, J=1.6Hz), 6.76(1H, d, J=8.0Hz), 6.90(1H, dd, J=8.0Hz, 1.6Hz),

6.95(1H, d, J=1.6Hz), 7.60(1H, brs), 7.65(1H, dd, J=8.4Hz, 2.4Hz),

7.74(1H, d, J=8.4Hz). 8.31(1H, d, J=2.4Hz), 8.53(1H, s)

#### 実施例136

<u>4-〔(3,4-メチレンジオキシベンジル)アミノ-6-ヒドロキシメチルキ</u>ナゾリン

実施例135の方法に準じて標題化合物を得た。

・分子式 ; C<sub>17</sub>H<sub>15</sub>N<sub>3</sub>O<sub>3</sub>

· 収率(%);34

・融点(℃);176~177

• Mass m/e : 310(M+1)

#### • NMR $\delta$ (DMS0-d<sub>6</sub>);

4.62(2H, d, J=5.6Hz), 4.65(2H, d, J=5.6Hz), 5.36(1H, t, J=5.6Hz),

5.94(2H.s), 6.82(1H.s), 6.82(1H.s), 6.92(1H.s),

7.63(1H, d, J=8.4Hz), 7.70(1H, d, J=8.4Hz), 8.20(1H, s), 8.41(1H, s),

8.74(1H, t, J=5.6Hz)

#### 実施例137

4-(3, 4-メチレンジオキシベンジル) アミノ-6-メチルスルフィニルキ ナゾリン

4-(3,4-メチレンジオキシベンジル)アミノー6-メチルチオキナゾリン1.80g(5.53ミリモル)のクロロホルム(100ml)溶液に、氷冷攪拌下、m-クロロ過安息香酸1.20g(6.95ミリモル)のクロロホルム(30ml)溶液を滴下する。数時間氷冷攪拌した後、反応液を飽和重曹水で洗い、無水硫酸マグネシウムで乾燥する。濾過後、シリカゲルカラムクロマトグラフィー(酢酸エチルーアセトン)にて精製し、クロロホルムーnーヘキサンより再結晶して、標題化合物の淡黄色晶1.51gを得た。

·分子式 ; C<sub>17</sub>H<sub>15</sub>N<sub>3</sub>O<sub>3</sub>S

・収率(%);80

・融点(℃);154~155

· Mass ; 342(M+H)+

• NMR  $\delta$  (CDCl<sub>3</sub>) :

2.75(3H, s), 4.80(2H, d, J=5.2Hz), 5.96(2H, s), 6.80(1H, d, J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.91(1H, s), 7.06(1H, brs), 7.64(1H, d, J=8.8Hz),

7.98(1H, d, J=8.8Hz), 8.43(1H, s), 8.74(1H, s)

#### 実施例138

<u>4-(3,4-メチレンジオキシベンジル)アミノ-6-メチルスルホニルキナ</u> プリン

$$\operatorname{MeSO}_2 \xrightarrow{\operatorname{HN}} 0$$

実施例137で得られた4-(3,4-メチレンジオキシベンジル)アミノー6-メチルスルフィニルキナゾリン1.00g(2.93ミリモル)のクロロホルム(50ml)溶液に、室温攪拌下、m-クロロ過安息香酸0.65g(3.8ミリモル)のクロロホルム(20ml)溶液を滴下する。数時間室温攪拌した後、反応液を飽和重曹水で洗い、無水硫酸マグネシウムで乾燥する。濾過後、シリカゲルカラムクロマトグラフィー(酢酸エチル)にて精製し、クロロホルム-n-ヘキサンより再結晶して、標題化合物の黄色晶0.85gを得た。

·分子式 ; C17H15N3O4S

・収率(%);81

・融点(℃);192~193

• Mass ; 358(M+H)+

· NMR  $\delta$  (CDCl<sub>3</sub>) :

3.13(3H, s), 4.80(2H, d, J=5.2Hz), 5.95(2H, s), 6.79(1H, d, J=8.0Hz),

6.91(1H, d, J=8.0Hz), 6.95(1H, s), 8.05(1H, d, J=8.8Hz),

8.17(1H, d, J=8.8Hz), 8.72(1H, s), 8.81(1H, brs), 8.98(1H, s)

#### 実施例139

2-ヒドロキシメチルー4-(3, 4-メチレンジオキシベンジル) アミノ-6

2-ベンジルオキシメチル-4-(3, 4-メチレンジオキシベンジル)アミ ノー6-メトキシキナゾリン1.26g(2.93ミリモル)の酢酸エチルーエタノール 溶液(20ml-20ml)に10%パラジウム-カーボン粉末 1.5gを加え、水素気流下 一昼夜室温攪拌する。反応液をセライト濾過し、熱酢酸エチルーエタノールで洗 って、濾液と洗液とを減圧下溶媒留去し、標題化合物の淡黄色晶0.89gを得た。

·分子式 ; C<sub>18</sub>H<sub>17</sub>N<sub>3</sub>O<sub>4</sub>

収率(%);89

・融点(℃);216~218

• Mass ;  $340(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.91(3H, s), 4.15(1H, brs), 4.68(2H, brs), 4.77(2H, d, J=5.6Hz),

5.95(2H,s), 6.79(1H,d,J=7.6Hz), 6.85(1H,brs).

6.88(1H, dd, J=7.6Hz, 1.6Hz), 6.92(1H, d, J=1.6Hz), 7.21(1H, d, J=2.8Hz),

7.37(1H, dd, J=9.2Hz, 2.8Hz), 7.72(1H, d, J=9.2Hz)

#### 実施例140

2-ヒドロキシー4-(3, 4-メチレンジオキシベンジル)アミノー6-メト

#### キシキナゾリン

実施例139の方法に準じて標題化合物を得た。

·分子式 ; C17H15N3O4

· 収率 (%);16

・融点(℃);215~217 (分解)

• Mass ; 326(M+H)+

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.79(3H, s), 4.62(2H, d, J=5.6Hz), 5.98(2H, s), 6.84~6.87(2H, m),

6.94(1H.s), 7.09(1H.d, J=8.8Hz), 7.22(1H, dd, J=8.8Hz, 2.8Hz),

7.60(1H.d.J=2.8Hz). 8.65(1H.brt,J=5.6Hz). 10.55(1H.s)

#### <u>実施例141</u>

 $\frac{2-\pi \nu \in \nu - 4 - (3, 4 - \nu \in \nu)}{2 + \nu \in \nu}$  シキナゾリン

塩化オキサリル 1.0ml (11ミリモル) の塩化メチレン10ml溶液に、-78℃攪拌 ざ 下ジメチルスルホキシド 1.5mlの塩化メチレン5ml溶液を滴下する。-78℃にて 15分間攪拌後、2-ヒドロキシメチル-4-(3,4-メチレンジオキシベンジル)アミノ-6-メトキシキナゾリン0.74g(2.2ミリモル)のジメチルスルホキシド7ml溶液を滴下する。-78℃にて20分間攪拌後、トリエチルアミン5mlを滴下して室温まで昇温させながら30分間攪拌する。反応液に水を加え、クロロホルムで抽出し、有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧下溶媒留去して、標題化合物の粗茶褐色油状物0.74gを得た。

·分子式 ; C18H15N3O4

・収率(%);定量的

• NMR  $\delta$  (CDC1<sub>3</sub>) :

3.93(3H.s), 4.86(2H.d, J=5.6Hz), 5.95(2H.s), 6.28(1H.brs),

6.78(1H, d, J=8.0Hz), 6.89(1H, dd, J=8.0Hz, 1.6Hz),

6. 92(1H, d, J=1. 6Hz), 7. 09(1H, d, J=2. 8Hz), 7. 47(1H, dd, J=9. 2Hz, 2. 8Hz),

7. 97(1H, d, J=9. 2Hz), 10. 02(1H, s)

#### 実施例142

2-カルボキシー4-(3, 4-メチレンジオキシベンジル) アミノー6-メトキシキナゾリン

実施例 141で得られた 2-ホルミル-4-(3,4-メチレンジオキシベンジル) アミノー<math>6-メトキシキナゾリン0.59g(1.8ミリモル) の 1,4-ジオキサン20m1溶液に、酸化銀(I) 1.00g、1 N水酸化ナトリウム水溶液15m1を加え、60 C にて攪拌する。30分後、反応液をセライトにて濾過し、少量のジオキサン、

水で洗って、遮液と洗液とを1N塩酸にて中和し、クロロホルム-エタノールで抽出する。有機層を無水硫酸マグネシウムで乾燥後、濾過し、遮液を減圧下溶媒留去して、得られる結晶を遮取し、クロロホルムで洗い、標題化合物の淡黄色晶0.34gを得た。

·分子式 ; C18H15N3O5

·収率(%);55

・融点 (℃) ;190 ~191 (分解)

• Mass ;  $354(M+H)^+$ 

·NMR δ(DMSO-d<sub>6</sub>);

3.90(3H, s). 4.77(2H, d, J=5.6Hz), 5.97(2H, s), 6.86(1H, d, J=8.0Hz),

6. 92(1H, d, J=8. 0Hz), 7. 05(1H, s), 7. 49(1H, dd, J=9. 2Hz, 2. 8Hz).

7.76(1H. d. J=2.8Hz). 7.79(1H. d. J=9.2Hz). 8.91(1H. brt. J=5.6Hz)

#### 実施例143~145

実施例141~142の方法に準じて以下の化合物を得た。

#### 実施例143

4-(3-ホルミルベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C19H19N3O4

· 収率(%);定量的

・融点(℃);油状物質

• NMR δ (CDCl<sub>3</sub>) ;

3.96(3H,s), 4.04(3H,s), 4.13(3H,s), 4.97(2H,d,J=5.6Hz),

5.97(1H, brt, J=5.6Hz), 6.76(1H, s), 7.53(1H, t, J=7.6Hz),

7.70(1H, d, J=7.6Hz), 7.81(1H, d, J=7.6Hz), 7.91(1H, s), 8.64(1H, s),

10.00(1H, s)

#### 実施例144

### 4-(3-カルボキシベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C19H19N3O5

・収率(%);45

·融点(℃);245~246 (分解)

• Mass ;  $370(M+H)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.89(3H,s), 3.93(3H,s), 3.98(3H,s), 4.86(2H,d, J=5.6Hz),

7.46(1H, d, J=7.6Hz), 7.56(1H, s), 7.62(1H, d, J=7.6Hz),

7.83(1H, d, J=7.6Hz), 7.95(1H, s), 8.39(1H, s), 8.83(1H, brs)

#### <u>実施例145</u>

#### 4-(4-アセチルベンジル)アミノ-6-メトキシキナゾリン

· 分子式 ; C<sub>18</sub>H<sub>17</sub>N<sub>3</sub>O<sub>2</sub>

· 収率(%);41

・融点(℃);204~206

• Mass ; 308(M+H)+

·NMR  $\delta$  (CDCl<sub>3</sub>);

2.60(3H,s), 3.91(3H,s), 4.97(2H,d,J=5.6Hz), 5.96(1H,brs),

6.98(1H, s), 7.42(1H, d, J=9.2Hz), 7.50(2H, d, J=8.0Hz).

7.82(1H, d, J=9.2Hz), 7.94(2H, d, J=8.0Hz), 8.61(1H, s)

#### 実施例 1 4 6

2-ヒドロキシイミノメチルー4-(3, 4-メチレンジオキシベンジル)アミ1-6-クロロキナゾリン

2-ホルミルー4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン1.00g(2.93ミリモル)のエタノール<math>30ml溶液に、ヒドロキシルアミン塩酸塩0.60g、1 N水酸化ナトリウム水溶液 3.0mlを加え、60 にて30 分間攪拌する。放冷後、析出晶を濾取し、エタノール、n- キサンで洗って風乾し、標題化合物の白色晶1.00gを得た。

·分子式 ; C17H13N4O3Cl

·収率(%);96

・融点(℃):245~246 (分解)

• Mass : 357(M+1)

#### • NMR $\delta$ (DMSO-d<sub>6</sub>);

4.69(2H, d, J=6.0Hz), 5.96(2H, s), 6.84(1H, d, J=7.6Hz),

6. 91(1H, d, J=7. 6Hz, 1. 6Hz), 7. 05(1H, d, J=1. 6Hz),

7.72(1H, d, J=8.8Hz), 7.78(1H, dd, J=8.8Hz, 2.0Hz), 7.96(1H, s),

8.45(1H, d, J=2.0Hz), 8.91(1H.brt, J=6.0Hz), 11.83(1H.s)

#### 実施例147~149

実施例146の方法に準じて以下の化合物を得た。

#### 実施例147

2-ヒドロキシイミノメチル-4-(3, 4-メチレンジオキシベンジル)アミノ-6-メトキシキナゾリン

·分子式 ; C18H16N4O4

・収率(%);46

・融点(℃);229~230 (分解)

• Mass ; 353(M+H) \*

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.88(3H, s), 4.72(2H, d, J=5.6Hz), 5.96(2H, s), 6.85(1H, d, J=8.0Hz),

6.91(1H, d, J=8.0Hz), 7.05(1H, s), 7.40(1H, dd, J=9.2Hz, 2.8Hz).

7.66(1H, d, J=9.2Hz), 7.69(1H, d, J=2.8Hz), 7.94(1H, s).

8.62(1H, brt, J=5.6Hz), 11.63(1H, s)

#### 実施例148

# 4-(3-ヒドロキシイミノメチルベンジル) アミノ-6, 7, 8-トリメトキシキナゾリン

·分子式 ; C19H20N4O4.

・収率(%);56

・融点(℃);231~232 (分解)

• Mass : 369(M+H)+

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.88(3H,s), 3.91(3H,s), 3.98(3H,s), 4.80(2H,d,J=6.0Hz),

7.3~7.5(3H.m), 7.52(1H.s), 7.60(1H.s), 8.11(1H.s), 8.35(1H.s),

8.60(1H.brs), 11.17(1H.s)

#### 実施例 1 4 9

<u>4- [4- (1-ヒドロキシイミノエチル) ベンジル] アミノー6-メトキシキナブリン</u>

$$\begin{array}{c|c} & & & \\ \text{MeO} & & & \\ \hline & N & & \\ \hline & N & & \\ \end{array}$$

·分子式 ; C18H18N4O2

・収率(%);定量的

・融点(℃);245~246(分解)

• Mass ;  $323(M+H)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

2.13(3H, s). 3.95(3H, s). 4.97(2H, d, J=5.6Hz). 7.44(2H, d, J=8.4Hz).

7.63(2H, d, J=8.4Hz), 7.68(1H, dd, J=9.2Hz, 2.8Hz).

7.83(1H, d, J=9.2Hz), 8.14(1H, d, J=2.8Hz), 8.84(1H, s), 10.75(1H, brs),

11.18(1H,s)

#### 実施例 1 5 0

2-エトキシカルボニルメトキシイミノメチル-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン

2-ヒドロキシイミノメチルー4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン0.50g(1.4ミリモル)のジメチルホルムアミド25ml 懸濁液に水素化ナトリウム0.10g(2.5ミリモル)を加え攪拌する。30分後プロモ酢酸エチルの25ml(2.3ミリモル)を滴下し、数時間室温攪拌した後、反応液に水を加え、酢酸エチルで抽出する。有機層を無水硫酸マグネシウムで乾燥後、濾過し、滤液を減圧下溶媒留去する。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)にて精製し、標題化合物の淡黄色晶0.52gを得た。

·分子式 ; C21H18N4O5Cl

· 収率(%);84

・融点(℃);154~155

• M a · s s ; 443(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>):

1.29(3H, t. J=7.2Hz), 4.23(2H, q, J=7.2Hz), 4.74(2H, d, J=5.2Hz),

4.88(2H,s), 5.96(2H,s), 6.03(1H,brt,J=5.2Hz), 6.78(1H,d,J=7.6Hz),

6.87(1H, d, J=7.6Hz, 1.6Hz), 6.93(1H, d, J=1.6Hz),

7.65(1H, dd, J=8.8Hz, 2.0Hz), 7.70(1H, d, J=2.0Hz), 7.84(1H, d, J=8.8Hz),

8. 25(1H. s)

#### 実施例151

## 4-(3-アミノー4-クロロベンジル)アミノー6-クロロキナゾリン

4-(4-クロロー3-ニトロベンジル) アミノー6-クロロキナゾリン1.00 g(2.86ミリモル)、鉄粉0.85g、酢酸10ml、エタノール50mlの混合物を数時間加熱還流する。減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)により精製し、標題化合物の淡黄色晶0.91gを得た。

·分子式 ; C15H12N4Cl2

· 収率 (%);定量的

・融点(℃);226~229 (分解)

• Mass :  $319(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

4.19(2H, brs), 4.73(2H, d, J=6.0Hz), 6.71(1H, dd, J=8.0Hz, 2.0Hz),

6.83(1H, d, J=2.0Hz), 7.18(1H, d, J=8.0Hz), 7.64(1H, dd, J=8.8Hz, 2.0Hz), 7.72(1H, brs), 7.74(1H, d, J=8.8Hz), 8.19(1H, d, J=2.0Hz), 8.60(1H, s)

#### 実施例152

### 4-(4-クロロ-3-ホルムアミドベンジル)アミノー6-クロロキナゾリン

実施例151で得られた4-(3-アミノ-4-クロロベンジル)アミノ-6
-クロロキナゾリン0.90g(2.82ミリモル)を蟻酸15mlに溶解させ、無水酢酸1
mlを加えて数時間室温攪拌した。減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)により精製後、酢酸エチルより再結晶して、標題化合物の淡黄色晶0.64gを得た。

·分子式 ; C16H12N4OCl2

・収率(%);65

・融点(℃);229~230

• Mass ;  $347(M+H)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

4.74(2H, d, J=5.6Hz), 7.15(1H, dd, J=8.4Hz, 2.0Hz), 7.43(1H, d, J=8.4Hz).

7.72(1H, d, J=8.8Hz), 7.80(1H, dd, J=8.8Hz, 2.0Hz), 8.16(1H, d, J=2.0Hz),

8.32(1H, d, J=2.0Hz), 8.45(1H, s), 8.46(1H, s), 8.95(1H, brs),

9.83(1H, brs)

#### 実施例153

4-(3-ホルムアミド-4-メトキシベンジル)アミノー6-クロロキナゾリ

스

$$\begin{array}{c|c} & H \\ & N-CHO \\ \hline \\ OMe \end{array}$$

4-(3-ニトロー4-メトキシベンジル)アミノー6-クロロキナゾリン1g、酢酸4ml、水4ml、エタノール40mlの混合物をゆるやかに加熱還流しながら鉄粉末1gを少量ずつ加え、2時間加熱還流した。反応液の不溶物を遮去し、褐色の遮液に濃塩酸を少しずつ加え黄色澄明液を得、氷冷して析出した結晶を遮取、乾燥して、4-(3-アミノー4-メトキシベンジル)アミノー6-クロロキナゾリン塩酸塩を1.1g得た。この塩酸塩をエタノールー水に溶解し、15%水酸化ナトリウム水溶液を少しずつ加えアルカリ性にし、次いで水を少しずつ加え、生じた結晶を遮取、水洗、乾燥して、4-(3-アミノー4-メトキシベンジル)アミノー6-クロロキナゾリン(アニリン体)770mgを得た。次に氷冷下無水酢酸2mlに蟻酸1mlを滴下し、その後50℃で15分間加熱し、直ちに氷冷し、その混合物に上記アニリン体200mgを結晶のまま加えた。同温で1時間、次いで室温で1時間反応し、水を加えて生じた結晶を遮取、水洗、乾燥し、標題化合物を130mg得た。

·分子式 ; C17H15N4O2Cl (342.786)

• 収率(%);60

・融点(℃);208~209

· Mass ; 343 (MH) +

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

3.82(3H, s), 4.68(2H, d, J=5.7Hz), 6.98(1H, d, J=8.2Hz),

7. 09(1H, dd, J=2. 0Hz, 8. 2Hz), 7.71(1H, d, J=9. 0Hz),

7.79(1H, dd, J=2.4Hz, 9.0Hz), 8.23(1H, d, J=2.0Hz).

8.27(1H, d, J=2.4Hz), 8.47(2H, s), 8.88(1H, t, J=5.7Hz), 9.62(1H, brs)

#### 実施例 1 5 4

<u>4-(3-メタンスルホニルアミノ-4-クロロベンジル) アミノ-6-クロロ</u> キナゾリン

$$\begin{array}{c|c} & H \\ N-S0_2 \text{Me} \\ \\ C1 \\ \end{array}$$

4-(3-アミノ-4-クロロベンジル) アミノ-6-クロロキナゾリン 100 mg、ピリジン3 mlの混合物にメタンスルホニルクロリド75μ1を加え、室温で 1.5 時間攪拌した。反応混合物に水20mlを少しずつ加え、生じた結晶を濾取し、水洗、乾燥し、標題化合物 109mgを得た。

·分子式 ; C16H14N4O2SC12 (397.284)

· 収率 (%);88

・融点(℃);209~210

· Mass ; 397 (MH) +

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.01(3H, s), 4.75(2H, d, J=5.7Hz), 7.23(1H, dd, J=2.2Hz, 8.2Hz),

7. 45(1H, d, J=8. 2Hz), 7. 46(1H, d, J=2. 2Hz), 7. 73(1H, d, J=9. 0Hz),

7.81(1H, dd, J=2.4Hz, 9.0Hz), 8.45(1H, d, J=2.4Hz), 8.47(1H, s),

8.97(1H, brt, J=5.7Hz), 9.4(1H, brs)

#### <u>実施例155~161</u>

実施例151~154の方法に準じて以下の化合物を得た。

#### 実施例155

4-(3-アミノ-4-ヒドロキシベンジル)アミノ-6,7,8-トリメトキ シキナゾリン

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \end{array}$$

·分子式 ; C18H20N4O4

· 収率 (%);定量的

・融点(℃);アモルファス

 $Mass : 357(M+H)^{+}$ 

·NMR & (CDCl3);

3.68(1H, brs), 3.82(1H, brs), 3.95(3H, s), 4.02(3H, s), 4.11(3H, s),

4.68(2H, d, J=4.4Hz), 6.61(1H, brs), 6.64(1H, d, J=7.6Hz).

6.77(1H. d. J=7.6Hz), 7.01(1H.s), 8.50(1H.brs), 8.60(1H.s)

#### 実施例 1 5 6

4-(3-エトキシカルボニルアミノ-4-エトキシカルボニルオキシベンジル)

アミノー6, 7, 8ートリメトキシキナゾリン

·分子式 ; C24H28N4O8

• 収率(%);54

・融点(℃);229~230 (分解)

• Mass :  $501(M+H)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>) :

1.31(3H, t, J=7.2Hz), 1.40(3H, t, J=7.2Hz), 3.95(3H, s), 4.03(3H, s),

4.11(3H, s), 4.21(2H, q, J=7.2Hz), 4.35(2H, q, J=7.2Hz),

4.81(1H, d, J=5.2Hz), 5.80(1H, brt, J=5.2Hz), 6.74(1H, s), 6.87(1H, s),

7.13(1H, d, J=8.0Hz), 7.20(1H, d, J=8.0Hz), 8.18(1H, brs), 8.64(1H, s)

#### 実施例 1 5 7

### 4- [ベンズオキサゾール-2 (3H) -オン-5-イルメチル] アミノー6,

#### 7, 8-トリメトキシキナゾリン

$$\begin{array}{c} H \\ N \\ Me0 \\ Me0 \\ Me0 \end{array}$$

·分子式 ; C18H18N4O5

・収率(%);62

・融点(℃);232~233 (分解)

· Mass ; 383(M+H)+

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.87(3H,s), 3.90(3H,s), 3.96(3H,s), 4.78(2H,d,J=5.6Hz),

7.06(1H, s), 7.07(1H, d, J=8.0Hz), 7.20(1H, d, J=8.0Hz), 7.50(1H, s),

WO 93/07124 PCT/JP92/01258

8.35(1H,s), 8.58(1H,brt,J=5.6Hz), 11.48(1H,brs)

#### 実施例158

4 - (4 - ヒドロキシ - 3 - メタンスルホニルアミノベンジル) アミノ - 6, 7,

8-トリメトキシキナゾリン

$$\begin{array}{c} H \\ N-SO_2 Me \\ MeO \\ MeO \end{array}$$

·分子式 ; C19H22N4O6S

・収率(%);56

・融点 (℃);215 ~216 (分解)

• Mass ; 435(M+H) +

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.91(3H,s), 3.86(3H,s), 3.89(3H,s), 3.96(3H,s),

4.65(2H, d, J=5.6Hz). 6.83(1H, d, J=8.0Hz). 7.04(1H, dd, J=8.0Hz, 2.0Hz).

7.22(1H, d, J=2.0Hz), 7.50(1H, s), 8.34(1H, s), 8.52(1H, brt, J=5.6Hz),

8.66(1H.brs), 9.75(1H.brs)

#### 実施例159

<u>4-(3-アミノ-4-クロロベンジル)アミノ-6,7,8-トリメトキシキナブリン</u>

·分子式 ; C18H18N4O3Cl

·収率(%);86

・融点(℃);181~182 (分解)

• Mass ;  $375(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.95(3H,s), 4.03(3H,s), 4.08(2H,brs), 4.13(3H,s),

4.75(2H, d, J=5.6Hz), 5.65(1H, brs), 6.67(1H, s),

6.72(1H, dd, J=8.0Hz, 2.0Hz), 6.81(1H, d, J=2.0Hz), 7.23(1H, d, J=8.0Hz),

8.65(1H.s)

#### 実施例 1 6 0

·分子式 ; C19H19N4O4Cl

・収率(%);68

・融点(℃);202~204 (分解)

• Mass :  $403(M+H)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.88(3H,s), 3.91(3H,s), 3.98(3H,s), 4.75(2H,d,J=5.6Hz),

7.14(1H, dd, J=8.4Hz, 2.0Hz), 7.42(2H, d, J=8.4Hz), 7.52(1H, s),

8.15(1H.d.J=2.0Hz), 8.32(1H.s), 8.35(1H.s), 8.67(1H.brs),

9.83(1H, brs)

#### 実施例 1 6 1

## 4-(3-アセタミド-4-クロロベンジル)アミノー6-クロロキナゾリン

·分子式 ; C<sub>17</sub>H<sub>14</sub>N<sub>4</sub>OCl<sub>2</sub> (361.232)

・収率(%);77

・融点(℃);267~268

• Mass : 361 (MH) +

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.06(3H, s), 4.74(2H, d, J=5.7Hz), 7.17(1H, dd, J=2.0Hz, 8.2Hz),

7.42(1H, d, J=8.2Hz), 7.69(1H, brs), 7.72(1H, d, J=9.0Hz),

7.81(1H.dd, J=2.4Hz, 9.0Hz), 8.45(1H.d, J=2.4Hz), 8.46(1H.s),

8.96(1H, brt, J=5.7Hz), 9.48(1H, brs)

#### <u>実施例162</u>

4-(3, 4-ジヒドロキシベンジル) アミノー<math>6, 7, 8-トリメトキシキナ

#### ゾリン 塩酸塩

4-(3,4-メチレンジオキシベンジル)アミノー6,7,8-トリメトキシキナゾリン2.00g(5.41ミリモル)のクロロホルム150ml溶液に、三塩化ホウ素の1.0M塩化メチレン溶液30mlを室温攪拌下滴下した。2日間室温攪拌した後にメタノールを加え、減圧下溶媒留去した。この操作を3回繰り返した後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム-n-ヘキサン)により精製した。溶出液に塩酸-エタノールを加えて、減圧下溶媒留去後、エタノールを加えて結晶を濾取し、標題化合物の無色針状晶0.59gを得た。

·分子式 ; C<sub>18</sub>H<sub>19</sub>N<sub>3</sub>O<sub>5</sub>·HCl

・収率(%);28

・融点(℃);204~205 (分解)

• Mass :  $358(M+H)^+$ 

• NMR  $\delta$  (DMS0-d<sub>6</sub>);

3.98(3H,s), 3.99(3H,s), 3.99(3H,s), 4.78(2H,d,J=5.6Hz),

6.  $65 \sim 7.71(2H, m)$ , 6. 79(1H, s), 7. 94(1H, s), 8. 71(1H, s).

8.90(2H, brs), 10.54(1H, brs), 14.06(1H, brs)

#### 実施例 1 6 3

4-(3,4-ジヒドロキシベンジル)アミノ-6-クロロキナゾリン 塩酸塩

4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン 2.00g(6.37ミリモル)のクロロホルム 150ml溶液に、三塩化ホウ素の 1.0M塩化メチレン溶液40mlを室温攪拌下滴下した。2日間室温攪拌した後にメタノールを加え、減圧下溶媒留去した。この操作を2回繰り返した後、析出晶をメタノールで洗い、エタノールより再結晶して、標題化合物の黄色晶1.53gを得た。

·分子式 ; C<sub>15</sub>H<sub>12</sub>N<sub>3</sub>O<sub>2</sub>Cl·HCl

・収率(%);71

・融点(℃);154~155 (分解)

• Mass :  $302(M+H)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

4:74(2H, d, J=5.6Hz), 7.67(1H, dd, J=8.0Hz, 2.0Hz), 6.70(1H, d, J=8.0Hz),

6.81(1H, d, J=2.0Hz), 7.87(1H, d, J=8.8Hz), 8.02(1H, dd, J=8.8Hz, 2.0Hz),

8.76(1H, d, J=2.0Hz), 8.85(1H, s), 8.90(2H, brs), 10.42(1H, brs)

#### <u> 実施例164</u>

2-(2-x++シエト+シ)-4-(3,4-x+レンジオキシベンジル) アミノー<math>6-クロロキナゾリン

エチレングリコールモノメチルエーテル20mlと55%水素化ナトリウム70mgの混合物を 100℃に加熱し、2,6-ジクロロ-4-(3,4-メチレンジオキシベンジル)アミノキナゾリン 500mgとエチレングリコールモノメチルエーテル5 ml の混合物を加え、2時間加熱還流した。反応液を水50ml中に注ぎ、酢酸エチル50 mlで2回抽出した。有機層を塩化ナトリウム水溶液70mlで2回洗い、硫酸マグネシウムで乾燥し、減圧下濃縮して結晶性残渣を得た。残渣を酢酸エチルーn-ヘキサンより再沈段させ、標題化合物を 420mg得た。

·分子式 ; C19H18N3O4Cl

• 収率(%);75

・融点(℃);138~139

• Mass ; 388 (M+1) +

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.43(3H, s), 3.78~3.81(2H, m), 4.57~4.61(2H, m),

4.73(2H, d, J=5.2Hz), 5.72(1H, br), 5.96(2H, s), 6.79~6.87(3H, m),

 $7.52 \sim 7.58(3H, m)$ 

#### 実施例165~177

実施例162~164の方法に準じて以下の化合物を得た。

#### 実施例165

<u>2-メトキシ-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン</u>

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C17H14N3O3Cl

・収率(%);15

・融点(℃);187~189

Mass ; 344 (M+1)+

· NMR  $\delta$  (CDCl<sub>3</sub>);

4.03(3H,s), 4.50(2H,d,J=5.6Hz), 5.91(1H,br), 5.96(2H,s),

6.78(1H, d, J=7.6Hz), 6.81(1H, dd, J=7.6Hz, 1.6Hz), 6.82(1H, d, J=1.6Hz),

7.58~7.60(3H,m)

#### 実施例 1 6 6

#### <u>キナゾリン</u>

·分子式 ; C<sub>18</sub>H<sub>14</sub>N<sub>4</sub>O<sub>3</sub> (334)

・収率(%);23

·融点(℃):224 (分解)

· Mass ; 335 (M+1) \*

• NMR  $\delta$  (DMSO-d<sub>6</sub>) ;

3.87(3H.s), 4.60(2H.brs), 5.95(2H.s), 6.84(2H.s), 6.95(1H.s),

7.55(1H. d, J=8.8Hz), 7.94(1H. dd, J=8.8Hz, 1.6Hz), 8.83(1H. d, J=1.6Hz),

9.18(1H.br)

#### 実施例 1 6 7

## 2, 6, 7, 8-テトラメトキシー4-(3, 4-メチレンジオキシベンジル)-アミノキナゾリン

·分子式 ; C20H21N3O6

・収率(%);28

・融点(℃);128~~129

· Mass ; 400(M+H)+

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.91(3H, s), 4.04(3H, s), 4.07(3H, s), 4.14(3H, s),

4.75(2H, d, J=5.2Hz), 5.51(1H, brs), 5.97(2H, s), 6.60(1H, s),

6.80(1H, d, J=8.0Hz), 6.87(1H, dd, J=8.0Hz, 2.0Hz), 6.90(1H, d, J=2.0Hz)

#### 実施例 1 6 8

2-(2-ヒドロキシエトキシ)-4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

$$C1$$
 $N$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 

·分子式 ; C18H16N3O4Cl (373.5)

·収率(%);97

・融点 (℃) ;191 ~193

• Mass :  $374 (M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.65~3.69(2H, m), 4.27(2H, dd, J=8.8Hz, 5.6Hz), 4.60(2H, d, J=5.2Hz),

4.82(1H.t.J=5.6Hz), 5.95(2H.s), 6.81~6.84(2H.m), 6.92(1H.s),

7.47(1H, d, J=8.8Hz), 7.65(1H, dd, J=8.8Hz, 2.2Hz), 8.34(1H, d, J=2.2Hz),

8.82(1H.br)

#### 実施例 1 6 9

2-(2-ヒドロキシエトキシ) - 4-(3, 4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン

$$\begin{array}{c|c} & & & & \\ & & & & \\ N & & & & \\ N & & & \\ \end{array} \begin{array}{c} & & & \\ 0 & & \\ \end{array} \begin{array}{c} & & \\ 0 & & \\ \end{array}$$

·分子式 ; C19H16N4O4 (364)

・収率(%):94

・融点(℃);227~229

· Mass ; 365 (M+1)\*

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.68(2H. t. J=5.2Hz), 4.30(2H. t. J=5.2Hz), 4.44(1H. br), 5.97(2H. s),

6.82(2H.s), 6.95(1H.s), 7.54(1H.d.J=8.4Hz).

7.95(1H, dd, J=8.4Hz, 1.6Hz), 8.78(1H, d, J=1.6Hz), 9.04(1H, br)

#### 実施例170

### 

$$\begin{array}{c} \text{HN} \\ \text{MeO} \\ \text{N} \\ \text{O} \end{array} \begin{array}{c} \text{OMe} \\ \text{OMe} \\ \end{array}$$

·分子式 ; C20H21N3O5 (383)

・収率(%);68

・融点(℃);118~119

• Mass :  $384 (M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.26(3H, s), 3.60(2H, t, J=4.8Hz), 3.61(3H, s), 4.33(2H, t, J=4.8Hz),

4. 63(2H, d, J=6. 0Hz), 5. 95(2H, s), 6. 81(1H, d, J=7. 6Hz),

6.84(1H, dd, J=7.6Hz, 0.4Hz), 6.91(1H, d, J=0.4Hz),

7. 29(1H, dd, J=8.8Hz, 2.8Hz), 7. 40(1H, d, J=8.8Hz), 7. 63(1H, d, J=2.8Hz),

8. 62(1H, br)

#### 実施例 1 7 1

2-(2-x)キシエトキシ)-4-(ベンズイミダゾール-5-イル) メチルアミノ-6-シアノキナゾリン

·分子式 ; C20H18N6O2 (374)

・収率(%);68

·融点(℃);267 (分解)

· Mass : 375 (M+1)+

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

3.21(3H, s), 3.60(2H, s), 4.40(2H, s), 4.82(2H, s), 7.17~7.66(4H, m),

7.94(1H, d, J=9.6Hz), 8.16(1H, s), 8.81(1H, s), 9.15(1H, br)

#### 実施例172

 $2 - \mathcal{I}$ ロポキシー  $4 - (3, 4 - \mathsf{y} + \mathsf{D} \cup \mathsf{D} \cup \mathsf{J} + \mathsf{D} \cup \mathsf{D} \cup$ 

·分子式 ; C22H25N3O6

・収率(%);6

・融点(℃);122~123

· Mass ; 428(M+H)+

• NMR  $\delta$  (CDCl<sub>3</sub>) :

1.05(3H, t, J=7.4Hz), 1.89(2H, m), 3.90(3H, s), 4.03(3H, s),

4.13(3H, s), 4.41(2H, t, J=7.0Hz), 4.76(2H, d, J=5.2Hz), 5.49(1H, brs),

5.97(2H, s), 6.60(1H, s), 6.80(1H, d, J=8.0Hz), 6.87(1H, d, J=8.0Hz),

6.90(1H.s)

#### 実施例<u>173</u>

## 2-(3-ヒドロキシプロポキシ) - 4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C19H18N2O4C1 (387.5)

・収率(%);60

・融点(℃);118~120

· Mass ; 388 (M+1) +

• NMR  $\delta$  (CDC1<sub>3</sub>) :

2.02(2H, tt, J=5.6Hz, 5.6Hz), 3.70(2H, t, J=5.6Hz), 3.95(1H, br),

4.66(2H, t, J=5.6Hz), 4.71(2H, d, J=5.2Hz), 5.95(2H, s), 6.08(1H, br),

6.77(1H, d, J=8.0Hz), 6.83(1H, d, J=8.0Hz), 6.85(1H, s),

7.51(1H, d, J=8.8Hz), 7.56(1H, dd, J=8.8Hz, 2.0Hz), 7.61(1H, d, J=2.0Hz)

#### <u>実施例174</u>

## $\frac{2-(4-ヒドロキシブトキシ)-4-(3,4-メチレンジオキシベンジル)}{アミノ-6-クロロキナゾリン}$

$$C1$$
 $N$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 

·分子式 ; C20H20N3O4CI (401.5)

• 収率(%);23

・融点 (℃) ; 121 ~124

• Mass ;  $402 (M+1)^+$ 

·NMR δ(CDCl<sub>3</sub>);

1.47~1.73(4H, m), 3.40~3.47(2H, m), 4.20(2H, t, J=6.7Hz).

4.55(2H, d, J=5.2Hz), 5.72(2H, s), 6.56(1H, d, J=8.0Hz),

6.66(1H, dd, J=8.0Hz, 1.6Hz), 6.71(1H, d, J=1.6Hz), 7.30(2H, s),

7.88(1H, brt. J=5.2Hz), 7.99(1H, s)

#### 実施例 1 7 5

# $\frac{2-(4-x)++ y}{2-(4-x)++ y} - 4-(3, 4-x)+ y$ $\frac{2-(4-x)++ y}{2-(4-x)++ y}$

·分子式 ; C21H22N3O4Cl (415.5)

・収率(%);26

・融点(℃);120~123

· Mass ; 416 (M+1)+

· NMR & (CDCl3);

1.77(2H, tt, J=8.8Hz, 6.8Hz), 1.90(2H, tt, J=8.8Hz, 6.8Hz), 3.34(3H, s),

3. 44(2H, t, J=6.8Hz). 4. 44(2H, t, J=6.8Hz). 4. 72(2H, d, J=5.2Hz).

5.71(1H, br), 5.96(2H, s), 6.79(1H, d, J=8.0Hz),

6.84(1H.dd, J=8.0Hz, 1.8Hz), 6.87(1H.d, J=1.8Hz), 7.53~7.59(3H, m)

#### 実施例176

2-(6-ヒドロキシヘキシルオキシ)-4-(3,4-メチレンジオキシベンジル) アミノー<math>6-クロロキナゾリン

$$C1$$
 $N$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 

·分子式 ; C22H24N3O4Cl (429.5)

· 収率(%);66

・融点(℃);144~146

• Mass :  $430 (M+1)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

1.14~1.40(6H, m), 1.58~1.64(2H, m), 3.06(1H, br), 3.38(2H, br),

4.17(2H, t, J=6.8Hz). 4.52(2H, d, J=5.6Hz), 5.73(2H, s).

6.56(1H, d, J=8.0Hz), 6.66(1H, dd, J=8.0Hz, 1.6Hz).

6.71(1H.d.J=1.6Hz), 7.30(2H.s), 7.85(1H.br), 7.96(1H.s)

#### 実施例 1 7 7

2-ヒドロキシー4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン

ž

·分子式 ; C16H12N3O3Cl (329.5)

·融点(℃);257 (分解)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

4.668(2H, d, J=5.6Hz), 5.967(2H, s), 6.846~6.905(2H, m),

6.995(1H, s), 7.821~7.859(2H, m), 8.508(1H, s), 10.103(1H, br),

11.916(1H,s)

#### 実施例 1 7 8

2-(2, 3-3)ヒドロキシプロピル) オキシ-4-(3, 4-3) サベンジル) アミノ-6-0 ロロキナゾリン

5-ヒドロキシー2-フェニルー1, 3-ジオキサン 300mgとジメチルホルムアミド5mlの混合物に水素化ナトリウム 100mgを加え、80°Cに加熱して発泡がおさまったら、2, 6-ジクロルー4-(3, 4-メチレンジオキシベンジル)アミノキナゾリン 300mgを結晶のまま加え、その後 140°C、2時間加熱した。冷後水を加え酢酸エチルで抽出し、酢酸エチルーベンゼン系溶媒でシリカゲルカラムクロマトグラフィーにより精製し、2-(2-フェニルー1, 3-ジオキサンー5-イル)オキシー4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリンを 118mg得た。この化合物 100mgを常法により濃塩酸-エタノールで加水分解したところ、転移して標題化合物60mgを得た。

·分子式 ; C19H18ClN3O5

• 収率(%);73

・融点(℃);106~107

• Mass :  $404(MH^+)$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>) ;

3.42(2H, t, J=5.7Hz), 3.79(1H, sextet, J=5Hz),

4.17(1H, dd, J=6.6Hz, 11.0Hz), 4.31(1H, dd, J=4.2Hz, 11.0Hz),

4. 63(2H, d, J=5.7Hz), 4. 66(1H, t, J=6.0Hz), 4. 94(1H, d, J=5.3Hz),

5.98(2H,s), 6.85(2H,s), 6.95(1H,s), 7.49(1H,d,J=9.0Hz),

7. 68(1H, dd, J=2. 4Hz, 9. 0Hz). 8. 37(1H. d, J=2. 4Hz), 8. 83(1H, t, J=5. 7Hz)

#### 実施例 1 7 9

2-(3-カルボキシプロピル) オキシ-4-(3, 4-メチレンジオキシベンジル) アミノ-<math>6-シアノキナゾリン

オキザリルクロリド  $150\mu1$  と塩化メチレン15mlの混合物をドライアイス-アセトン浴で冷却しておき、まずジメチルスルホキシド  $250\mu1$  をゆっくり滴下し、次いで10分後同温で2-(2-ヒドロキシエチル)オキシ-4-(3,4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン 500mgのジメチルスルホキシド 1mlに溶解した溶液を滴下し、さらに10分後同温でN, N-ジイソプロピルエチルアミン 1.4mlを滴下した。同温で10分間攪拌した後、室温に戻し、20分後にエトキシカルボニルメチレントリフェニルホスホラン600mg を結晶のまま加え、30分間反応させた。反応液に水を加え酢酸エチルで抽出し、酢酸エチルーベンゼン系溶媒でシリカゲルカラムクロマトグラフィーにより精製し、2-(3-

WO 93/07124 PCT/JP92/01258

エトキシカルボニルー 2 -プロペニル) オキシー 4 - (3, 4 - y チレンジオキシベンジル) アミノー 6 - シアノキナゾリン (cis/trans mixture)を400mg 得た。

上記化合物全量を酢酸エチル30mlに溶解し、10%パラジウムー炭素を触媒に用いて常圧接触還元し、酢酸エチルーベンゼン系溶媒でシリカゲルカラムクロマトグラフィーにより精製し、2-(3-エトキシカルボニルプロピル)オキシー4-(3,4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン(飽和エステル)を250mg得た。

上記飽和エステル 250mgをエタノール50mlに溶解し、1 N水酸化ナトリウム水溶液 1.7mlを加え、室温で10時間、次いで40℃で2時間反応し、冷後、1 N塩酸水 1.7mlを加えて中和し、さらに水を加えて生じた結晶を濾取した。これをエタノール-水で再結晶し、標題化合物 200mgを得た。

·分子式 ; C<sub>21</sub>H<sub>18</sub>N<sub>4</sub>O<sub>5</sub> (406.398)

・収率(%);86

・融点(℃);>290

• Mass ;  $407(MH^+)$ 

• NMR  $\delta$  (DMSO):

- 1.93(2H, quintet, J=7Hz), 2.35(2H, t, J=7.3Hz), 4.32(2H, t, J=6.6Hz),
- 4.64(2H, d, J=5.7Hz), 5.98(2H, s), 6.87(2H, s), 6.97(1H, s),
- 7.56(1H, d, J=8.8Hz), 7.96(1H, dd, J=1.8Hz, 8.8Hz), 8.80(1H, d, J=1.8Hz),
- 9.05(1H, t. J=5.7Hz)

#### 実施例180

<u>2-メチルチオー4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン</u>

į

$$C1$$
 $N$ 
 $S-Me$ 

2,6-ジクロロ-4-(3,4-メチレンジオキシベンジル)アミノキナゾリン1gにN,N-ジメチルホルムアミド20ml、ナトリウムチオメトキシド 221mgを加え110℃で1時間攪拌した。1N塩酸を加え中和し、室温で1時間攪拌した後、水を加えた。析出した結晶を濾取し、標題化合物 780mgを得た。

·分子式 ; C17H14ClN3O2S

・収率(%);76

・融点(℃);214~216

• Mass m/e ; 360(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>);

2.66(3H,s), 4.85(2H,d,J=5.6Hz), 5.93(2H,s), 6.73(1H,d,J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.93(1H, s), 7.64(1H, dd, J=8.8Hz, 2.0Hz),

8.16(1H. d. J=8.8Hz). 8.77(1H. d. J=2.0Hz)

#### 実施例181

2-2000-4-(3, 4-メチレンジオキシベンジル)アミノー6-27ノキナゾリン 338ng、モルホリン 435ng及びイソプロピルアルコール20mlの混合物を 3時間加熱還流した。加熱したまま水30mlを加え、沈殿物を濾取した。沈殿物を水30ml及び酢酸エチル30mlで洗滌し、標題化合物を 310ng得た。

· 分子式 ; C<sub>21</sub>H<sub>19</sub>N<sub>5</sub>O<sub>3</sub> (389)

・収率(%);80

・融点(℃);270~272 (分解)

• Mass ;  $390 (M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.57~3.61(4H,m), 3.73~3.79(4H,m), 4.57(2H,d,J=5.6Hz),

5.95(2H, s). 6.82(1H, d, J=8.0Hz), 6.85(1H, d, J=8.0Hz), 6.93(1H, s).

7.27(1H, d, J=8.8Hz), 7.74(1H, dd, J=8.8Hz, 1.6Hz), 8.56(1H, d, J=1.6Hz),

8.75(1H, brt, J=5.6Hz)

#### 実施例182~183

実施例181の方法に準じて以下の化合物を合成した。

#### 実施例 1 8 2

2-モルホリノー4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C20H19N4O3Cl (398.850)

• 収率(%);96

・融点(℃);208~209

· Mass ; 399 (MH) +

• NMR  $\delta$  (DMSO-d<sub>6</sub>):

3.61(4H, t, J=5Hz), 3.72(4H, t, J=5Hz), 4.58(2H, d, J=5.7Hz),

5.97(2H, s), 6.85(2H, s), 6.95(1H, s), 7.28(1H, d, J=9.0Hz),

7.51(1H, dd, J=2.4Hz, 9.0Hz). 8.18(1H, d, J=2.4Hz), 8.60(1H, t, J=5.7Hz)

#### 実施例183

# 2-モルホリノ-4-(3-クロロ-4-メトキシベンジル) アミノ-6-シア ノキナゾリン

·分子式 ; C21H20N5O2Cl (407.5)

・収率(%);51

・融点(℃);222~223

• Mass ;  $410 (M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

 $3.56 \sim 3.61(4H, m)$ ,  $3.74 \sim 3.80(4H, m)$ , 3.80(3H, s),

4. 58(2H, d, J=5.2Hz), 7.  $27\sim7$ . 32(2H, m), 7. 44(1H, d, J=1.6Hz).

7.75(1H, dd, J=8.8Hz, 1.6Hz), 8.55(1H, d, J=1.6Hz).

8.80(1H, brt, J=5.2Hz)

#### 実施例184

2-(4-ヒドロキシピペリジノ)-4-(3,4-メチレンジオキシベンジル) アミノー6-シアノキナゾリン

2-クロロー4-(3,4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン 339mg、4-ヒドロキシピペリジン 500mg及びN,N-ジメチルホルムアミド20mlの混合物を5時間加熱還流した。反応液を水50ml中に注ぎ、酢酸エチル50mlを加え、不溶物を逮去した。濾液の有機層を硫酸マグネシウムで乾燥し、減圧下濃縮して結晶性残渣を得た。この残渣をクロロホルムで洗滌し、標題化合物を145mg 得た。

·分子式 ; C<sub>22</sub>H<sub>21</sub>N<sub>5</sub>O<sub>3</sub> (403)

・収率(%);36

・融点(℃);229

• Mass ;  $404 (M+1)^+$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

1.19~1.30(2H, m), 1.64~1.77(2H, m), 3.21~3.30(2H, m),

3.63~3.75(1H, m), 4.34~4.38(2H, m), 4.55(2H, d, J=5.6Hz),

4.66(1H, d. J=4.0Hz), 5.94(2H, s), 6.80~6.86(2H, m),

6.93(1H, d, J=0.8Hz). 7.24(1H, d, J=8.4Hz). 7.70(1H, dd, J=8.4Hz, 1.6Hz).

8.52(1H, d, J=1.6Hz), 8.70(1H, br)

# 実施例185~191

実施例184の方法に準じて以下の化合物を得た。

#### 実施例185

 $\frac{2-(4-t)-t}{2-(4-t)-t}$   $\frac{2-(4-t)-t}{2-(4-t)-t}$   $\frac{2-(4-t)-t}{2-(4-t)-t}$ 

·分子式 ; C21H21N4O3Cl (412.877)

· 収率(%);56

・融点(℃);157~158

· Mass ;  $413(MH^+)$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.2~1.3(2H.m), 1.6~1.8(2H.m), 3.1~3.2(2H.m), 3.6~3.7(1H.m).

4.  $3\sim4$ . 4(2H, m), 4. 55(2H, d, J=5. 7Hz), 4. 65(1H, d, J=4. 4Hz),

5.96(2H,s), 6.84(2H,s), 6.95(1H,s), 7.24(1H,d,J=9.0Hz),

7. 47(1H, dd, J=2. 4Hz, 9. 0Hz), 8. 13(1H, d, J=2. 4Hz), 8. 53(1H, t, J=5. 7Hz)

#### 実施例186

2-(4-EFD+VUペリジノ)-4-(3-DDD-4-VF+Vベンジル)アミノー6-Vアナブリン

·分子式 ; C22H22N5O2Cl (423.5)

• 収率(%);80

・融点(℃);207~208

· Mass ; 424 (M+1) +

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.18~1.30(2H, m), 1.65~1.76(2H, m), 3.21~3.33(2H, m), 3.30(3H, s),

3.64~3.72(1H, m), 4.29~4.37(2H, m), 4.57(2H, d, J=5.6Hz).

4.66(1H, d, J=1.8Hz), 7.07(1H, d, J=8.4Hz), 7.24(1H, d, J=8.8Hz),

7. 29(1H, dd, J=8. 4Hz, 2. 0Hz), 7. 43(1H, d, J=2. 0Hz),

7.71(1H, dd, J=8.8Hz, 2.0Hz), 8.51(1H, d, J=2.0Hz).

8.74(1H.brt, J=1.8Hz)

# <u> 実施例187</u>

 $\frac{2-(2-ヒドロキシエチル) アミノー4-(3,4-メチレンジオキシベンジ ル) アミノー6,7,8-トリメトキシキナゾリン$ 

·分子式 ; C21H24N4O6

• 収率(%);38

・融点(℃);アモルファス

• Mass ;  $429(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.60(2H, m), 3.88(3H, s & 1H, m), 3.99(3H, s), 4.01(3H, s),

4.67(2H, d, J=5.6Hz), 5.32(1H, brs), 5.53(1H, brs), 5.97(2H, s),

6.55(1H, s), 6.80(1H, d, J=8.0Hz), 6.85(1H, d, J=8.0Hz), 6.89(1H, s)

#### 実施例188

2-(2-ヒドロキシエチル) アミノー4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C18H17N4O3Cl

· 収率 (%);47

・融点(℃);138~139

• Mass m/e : 373(M+1)

· NMR  $\delta$  (CDCl<sub>3</sub>(+DMSO-d<sub>6</sub>));

3.60(2H.m), 3.79(2H, t, J=4.8Hz), 4.65(2H, d, J=5.2Hz), 5.94(2H, s).

6.76(1H, d, J=8.0Hz). 6.85(1H, dd, J=8.0Hz, 2.0Hz), 6.90(1H, d, J=2.0Hz).

7.34(1H, d, J=8.8Hz), 7.44(1H, dd, J=8.8Hz, 2.4Hz), 8.02(2H, brs)

#### 実施例189

1

# 

·分子式 ; C19H19N4O3Cl

・収率(%);48

・融点(℃):146~148

· Mass m/e; 387(M+1)

• NMR  $\delta$  (CDCI<sub>3</sub> (+DMSO-d<sub>6</sub>)) :

3.27(3H, s), 3.82(2H, t, J=4.8Hz), 3.89(2H, t, J=4.8Hz),

4.67(2H, d, J=5.6Hz), 5.95(2H, s), 6.77(1H, d, J=8.0Hz).

6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.90(1H, d, J=1.6Hz), 7.43(2H, m),

7.76(1H.brs)

#### 実施例190

2-(2-ヒドロキシメチルピロリジン-1-イル)-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C<sub>21</sub>H<sub>21</sub>N<sub>4</sub>O<sub>3</sub>Cl (412.877)

・収率(%);70

・融点(℃):182~183

• Mass ;  $413(MH^+)$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.8 $\sim$ 2.0(4H, br 2 peaks), 3.4  $\sim$ 3.7(3H, br 2 peaks),

4.1~4.2(1H, brs), 4.58(2H, d, J=5.8Hz), 5.96(2H, s),

6.84(1H, d, J=8.0Hz), 6.88(1H, dd, J=1.3Hz.8.0Hz).

6.96(1H, d, J=1.3Hz), 7.23(1H, d, J=8.8Hz),

7. 47(1H, dd, J=2. 4Hz, 8. 8Hz), 8. 15(1H, d, J=2. 4Hz), 8. 4~8. 6(1H, brs)

#### 実施例191

# 2-ビス(2-ヒドロキシエチル) アミノ-4-(3, 4-メチレンジオキシベンジル) アミノ-6-クロロキナゾリン

·分子式 ; C20H21N4O4Cl (416.865)

• 収率(%);56

・融点(℃);167~168

• Mass :  $417(MH^+)$ 

• NMR  $\delta$  (DMS0-d<sub>6</sub>):

3.5~3.7(8H, br 2 peaks), 4.56(2H, d, J=5.7Hz), 5.96(2H, s),

6,85(2H,s), 6.93(1H,s), 7.22(1H,d,J=9.0Hz),

7. 47(1H, dd, J=2. 4Hz, 9. 0Hz), 8. 15(1H, d, J=2. 4Hz).

8.55(1H, brt, J=5.7Hz)

#### 実施例 1 9 2

 $\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ 

水素化ナトリウム66mgのジメチルホルムアミド6ml懸濁液に0℃でイミダゾール 103mgを加え10分間攪拌した。室温にて2,6-ジクロロ-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 500mgを加え、100℃で20分間攪拌した。水を加え、析出した結晶を遮取し、水、エタノールーアセトンで順次洗浄し、標題化合物 325mgを得た。

·分子式 ; C19H14N5O2Cl

・収率(%);59

・融点(℃);275~276 (分解)

· Mass m/e : 380(M+1)

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

4.74(2H, d, J=5.6Hz). 5.96(2H, s). 6.85(1H, d, J=8.0Hz).

6.95(1H, dd, J=8.0Hz, 1.6Hz), 7.03(1H, d, J=1.6Hz), 7.08(1H, d, J=1.2Hz),

7. 68(1H, d, J=8. 8Hz), 7. 78(1H, dd, J=8. 8Hz, 2. 4Hz), 7. 94(1H, d, J=1. 2Hz),

8.47(1H, d, J=2.4Hz), 8.58(1H, t, J=2.4Hz), 9.28(1H, t, J=5.6Hz)

#### 実施例193~197

実施例192の方法に準じて以下の化合物を得た。

#### 実施例193

·分子式 ; C20H14N6O2 (370)

• 収率(%);81

・融点(℃);>290

• Mass ;  $371 (M+1)^+$ 

• NMR  $\delta$  (DMS0-d<sub>6</sub>) :

4.74(2H, d, J=6.0Hz), 5.95(2H, s), 6.86(1H, d, J=8.0Hz).

6.95(1H, dd, J=8.0Hz, 1.6Hz), 7.04(1H, d, J=1.6Hz),

7.09(1H, d, J=1.6Hz), 7.73(1H, d, J=8.4Hz), 7.95(1H, d, J=1.6Hz),

8.06(1H, dd, J=8.4Hz.1.6Hz), 8.61(1H, d, J=1.6Hz), 8.87(1H, d, J=1.6Hz),

9.47(1H, brt, J=6.0Hz)

#### 実施例194

 $\frac{2-ペンチルアミノー4-(3,4-メチレンジオキシベンジル)アミノー6-$ クロロキナゾリン

·分子式 ; C21H23N4O2Cl

·収率(%);97

・融点(℃);194~195

· Mass m/e; 399(M+1)

· NMR  $\delta$  (CDC1<sub>3</sub>);

0.86(3H.t.J=7.2Hz), 1.29(4H.m), 1.58(2H.quintet,J=6.8Hz),

3.47(2H, q, J=6.8Hz), 4.78(2H, d, J=5.6Hz), 5.87(2H, s),

6.66(1H.d.J=8.0Hz), 6.89(1H.d.J=8.0Hz), 6.94(1H.s),

7.26(1H, d, J=8.8Hz), 7.41(1H, d, J=8.8Hz), 7.90(1H, t, J=5.6Hz),

8.55(1H.s), 9.53(1H.brs)

# <u>実施例195</u>

 $\frac{2-(2-r \in J + T + U)}{r \in J - 4 - (3, 4-x \in U)}$  アミノー 6, 7, 8 ートリメトキシキナゾリン

$$\begin{array}{c} & & & \\ \text{MeO} & & & \\ \text{MeO} & & & \\ \text{MeO} & & & \\ \text{H} & & & \\ \end{array}$$

·分子式 ; C<sub>21</sub>H<sub>25</sub>N<sub>5</sub>O<sub>5</sub>

・収率(%);87

融点(℃);アモルファス

• Mass ;  $428(M+H)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.44(2H,s), 2.93(2H,t,J=6.0Hz), 3.57(2H,brs), 3.88(3H,s).

4.00(3H, s), 4.07(3H, s), 4.70(2H, d, J=4.8Hz), 5.16(1H, brs),

5.51(1H, brs), 5.96(2H, s), 6.56(1H, s), 6.80(1H, d, J=8.0Hz),

6.86(1H, d, J=8.0Hz), 6.90(1H.s)

#### 実施例196

2-ヒドラジノ-4-(3, 4-メチレンジオキシベンジル) アミノー<math>6, 7,

#### 8-トリメトキシキナゾリン

$$\begin{array}{c|c} & & & & \\ \text{Me0} & & & & \\ \text{Me0} & & & & \\ \text{MeO} & & & & \\ \end{array}$$

·分子式 ; C19H21N5O5

・収率(%);12

·融点(℃);油状物質

• Mass ;  $400(M+H)^+$ 

·NMR δ(CDCl<sub>3</sub>);

3.88(3H, s), 3.99(3H, s), 4.05(3H, s), 4.66(2H, d, J=3.6Hz).

5.92(2H.s), 6.75(1H.d.J=8.0Hz), 6.83(1H.d.J=8.0Hz), 6.87(1H.s),

7.04(2H, brs)

#### 実施例197

 $\frac{2-(\pi n)(\pi + 1)(\pi +$ 

·分子式 ; C18H16N5O3Cl

・収率(%);63

・融点(℃);259~260 (分解)

· Mass m/e: 386(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

4.02(2H, d, J=4.8Hz), 4.66(2H, d, J=5.6Hz), 5.97(2H, s),

6.86(1H, d, J=8.0Hz), 6.91(1H, d, J=8.0Hz), 6.99(1H, s), 7.19(1H, s),

7.50(1H, d, J=8.8Hz), 7.61(1H, s), 7.83(1H, d, J=8.8Hz), 8.09(1H, brs),

8.49(1H, brs), 10.03(1H, brs)

### 実施例198

2-(3, 4-メチレンジオキシベンジル) アミノ-4, 6, 7, 8-テトラメ トキシキナゾリン

2-クロロ-4, 6, 7, 8-テトラメトキシキナゾリン1.00g(3.51ミリモル)、ピペロニルアミン0.60g(3.97ミリモル)、炭酸ナトリウム0.60gをイソプロピルアルコール30mlに混合し、一昼夜加熱還流する。反応液を減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)により精製し、標題化合物の油状物質0.12gを得た。

·分子式 ; C20H21N3O6

· 収率 (%):9

·融点(°C);油状物質

• NMR  $\delta$  (CDCl<sub>3</sub>);

3.91(3H, s), 4.02(3H, s), 4.04(6H, s), 4.63(2H, d, J=6.0Hz).

5.30(1H, brs), 5.93(2H, s), 6.75(1H, d, J=8.0Hz),

6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.92(1H, d, J=1.6Hz), 7.06(1H, s)

#### 実施例199

# 2-クロロー4, 6, 7, 8-テトラメトキシキナゾリン

2,4-ジクロロー6,7,8-トリメトキシキナゾリン5.00g(17.3ミリモル)をメタノール 100mlに懸濁させ、水素化ナトリウム 1.5gを徐々に加えた後、加熱還流する。数時間後、反応液を減圧濃縮し、水を加えて析出晶を濾取し、水で洗い、風乾して、標題化合物の淡桃色晶4.80gを得た。

· 収率 (%);97

・融点 (℃) ;119 ~120

• Mass ;  $285(M+1)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>) :

3.98(3H,s), 4.06(3H,s), 4.12(3H,s), 4.19(3H,s), 7.17(1H.s)

#### 実施例 2 0 0

2-アミノー4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキ ナゾリン

2,6-ジクロロ-4-(3,4-メチレンジオキシベンジル)アミノキナゾリン 2.0gを圧力容器内のエタノール性アンモニア50ml中、120℃で18時間加熱した。冷却後、減圧下反応液を濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーに付した。クロロホルム-メタノール(9:1)で溶出し、標題化合物を830mg得た。

·分子式 ; C16H13N4O2Cl

・収率(%);44

·融点(℃);285 (分解)

· Mass ; 329 (M+1) +

·NMR & (CDCl3);

4.67(2H.d.J=5.6Hz), 4.98(2H.br), 5.74(1H.br), 5.96(2H.s),

6.78(1H, d, J=7.6Hz), 6.83(1H, dd, J=7.6Hz, 1.6Hz), 6.86(1H, d, J=1.6Hz),

7.38(1H, d, J=9.6Hz), 7.46~7.49(2H, m)

#### 実施例 2 0 1

2-アミノー4-(3,4-メチレンジオキシベンジル)アミノー6-シアノキ

#### ナゾリン

実施例199~200の方法に準じて標題化合物を得た。

·分子式 ; C<sub>17</sub>H<sub>13</sub>N<sub>5</sub>O<sub>2</sub> (319)

·収率(%);60

・融点(℃);284 (分解)

• Mass ;  $320 (M+1)^+$ 

• NMR  $\delta$  (CDCl<sub>3</sub>) :

4.31(2H, d, J=5.6Hz), 5.25(2H, brs), 5.58(2H, s), 6.40(1H, d, J=7.6Hz),

6.51(1H, dd, J=7.6Hz, 1.2Hz), 6.57(1H, d, J=1.2Hz), 6.95(1H, d, J=8.4Hz),

7.25(1H, dd, J=8.4Hz, 1.6Hz), 8.00(1H, br), 8.20(1H, d, J=1.6Hz)

#### 実施例202

2-アミノー4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン 500mgにジメチルスルホキシド4ml、イソシアン酸メチル 260mgを加

え、50℃で3時間攪拌した。過剰のイソシアン酸メチルを減圧留去後、クロロホルム、水を加え、濾過し、その濾液をクロロホルムで2回抽出した。合わせた有機層を水で2回洗浄後、硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ベンゼン-アセトン)で精製し、さらに再結晶(ベンゼン-クロロホルム-エタノール)し、標題化合物72mgを得た。

·分子式 ; C18H16N5O3Cl

・収率(%);12

・融点(℃);245~247

• Mass m/e ; 386(M+1)

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.75(3H, d, J=4.4Hz), 4.56(2H, d, J=6.0Hz), 5.95(2H, s),

6.82(1H, d, J=8.4Hz), 6.92(1H, d, J=8.4Hz), 7.11(1H, s),

7.56(1H, d, J=8.8Hz), 7.67(1H, dd, J=8.8Hz, 1.6Hz), 8.27(1H, d, J=1.6Hz),

8. 90(1H, t, J=6.0Hz), 9. 20(1H, s), 9. 38(1H, d, J=4.4Hz)

# 実施例203~204

実施例202の方法に準じて以下の化合物を得た。

# 実施例203

 $2 - \forall z \ (x + y + y + y + z) = 1 - 4 - (3, 4 - x + y + y + z)$   $\exists y \ y \ z \ (x + y + y + y + z) = 1 - 4 - (3, 4 - x + y + z)$ 

·分子式; C20H19N6O4Cl

・収率(%);8

· 収量 (mg); 45

・融点(℃);243~245

• Mass m/e : 443(M+1)

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.71(6H, d, J=4.8Hz), 4.53(2H, d, J=6.0Hz), 5.94(2H, s),

6.80(1H, d, J=8.0Hz), 6.85(1H, d, J=8.0Hz), 6.95(1H, s),

7.66(1H, d, J=8.8Hz), 7.72(1H, dd, J=8.8Hz, 2.0Hz).

8.32(1H, dd, J=2.0Hz). 8.85(1H, dd, J=4.8Hz), 9.01(1H, t, J=6.0Hz)

#### 実施例 2 0 4

 $2 - (n - \vec{j} + \vec{j}$ 

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C21H22N5O3Cl

・収率(%);40

・融点(℃);209~210

• Mass m/e; 428(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

0.89(3H, t, J=7.2Hz), 1.33(2H, sextet, J=7.2Hz),

1.45(2H, quintet, J=7.2Hz). 3.18(2H, t, J=7.2Hz). 4.56(2H, d, J=6.0Hz),

5.95(2H,s), 6.83(1H,d,J=8.0Hz), 6.91(1H,d,J=8.0Hz), 7.09(1H.s),

7.46(1H, d, J=8.8Hz), 7.66(1H, dd, J=8.8Hz, 2.0Hz), 8.27(1H, d, J=2.0Hz),

8.90(1H, t, J=6.0Hz), 9.17(1H, s), 9.58(1H, t, J=7.2Hz)

#### 実施例205

2-(4-x)+2カルボニルピペリジノ)-4-(3,4-x)+2ベンジル)アミノー6-2ロロキナゾリン

実施例 9 2で得られた 2, 6 - ジクロロー 4 - (3, 4 - メチレンジオキシベンジル) アミノキナゾリン 1 gにイソニペコチン酸メチル 3.61 g、トリエチルアミン2.32 g 及び 2 - プロパノール 5 mlを加え、 100分間還流した。クロロホルムで 2 回抽出し、合わせた有機層を水で洗浄後、硫酸マグネシウムで乾燥した。溶媒を留去後、残渣を再結晶 (エタノールー水) し、標題化合物 1.31 g を得た。

·分子式 ; C24H25C1N4O4

・収率(%);97

・融点(℃):118~119

• Mass ; 469(M+1)

·NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.18(3H, t, J=7.2Hz), 1.42(2H, m), 1.82(2H, m), 2.58(1H, m),

2.98(2H, m), 4.06(2H, q, J=7.2Hz), 4.56(2H, d, J=5.6Hz), 4.62(2H, m),

5.96(2H, s), 6.82(1H, d, J=8.0Hz), 6.86(1H, dd, J=8.0Hz, 1.6Hz),

6.94(1H, d, J=1.6Hz), 7.26(1H, d, J=9.2Hz), 7.48(1H, dd, J=9.2Hz, 2.4Hz),

8.15(1H, d, J=2.4Hz), 8.56(1H, brt, J=5.6Hz)

#### 実施例206

2-(4-x)キシカルボニルピペリジノ)-4-(3,4-x) ベンジル)アミノ-6-クロロキナゾリン 塩酸塩

実施例205で得られた2-(4-エトキシカルボニルピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリンから、エタノール-塩酸-エーテルを用い、標題化合物を得た。

·分子式 ; C24H25C1N4O4·HC1

・収率(%);97

・融点(℃);174~175

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.20(3H, t, J=7.2Hz), 1.59(2H, m), 1.97(2H, m), 2.75(1H, m),

3.31(2H, m), 4.09(2H, q, J=7.2Hz), 4.53(2H, m), 4.67(2H, d, J=5.6Hz),

5.98(2H,s), 6.86(1H,d,J=8.0Hz), 6.90(1H,dd,J=8.0Hz,1.6Hz),

7.01(1H, d, J=1.6Hz), 7.83(1H, dd, J=8.8Hz, 2.0Hz), 7.91(1H, d, J=8.8Hz).

8.52(1H, d, J=2.0Hz), 10.15(1H, brs), 12.28(1H, brs)

# 実施例 2 0 7

2-(4-エトキシカルボニルピペリシノ)-4-(3,4-メチレンジオキシ

#### ベンジル) アミノー6-シアノキナゾリン

2-クロロー4-(3, 4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン1gにイソニペコチン酸エチル3.71g、トリエチルアミン2.38g及び2-プロパノール10mlを加え、1時間還流した。反応液を室温まで冷やした後、析出した結晶を濾取した。水、エーテルで順次洗浄し、標題化合物 1.126gを得た。

·分子式 ; C<sub>25</sub>H<sub>25</sub>N<sub>5</sub>O<sub>4</sub>

•収率(%);83

・融点(℃):192~193

• Mass : 460(M+1)

• NMR  $\delta$  (CDC1<sub>3</sub>):

1.26(3H, t. J=7.2Hz), 1.71(2H, m), 1.99(2H, m), 2.59(1H, m),

3.12(2H, brt, J=12.0Hz), 4.15(2H, q, J=7.2Hz), 4.67(2H, d, J=5.2Hz),

4.82(2H, dt, J=13.2Hz, 3.6Hz), 5.96(2H, s), 6.79(1H, d, J=8.0Hz),

6.85(1H, dd, J=8.0Hz, 1.6Hz), 6.88(1H, d, J=1.6Hz), 7.42(1H, brs),

7.61(1H, dd, J=8.8Hz, 1.6Hz), 7.84(1H, brs)

#### 実施例208

2-(4-x++)カルボニルピペリジノ)-4-(3-)ロロー4-x++シベンジル)アミノ-6-シアノキナゾリン

2-2ロロー 4-(3-2)ロロー 4-3トキシベンジル)アミノー 6-2アノキナゾリン 1 g にイソニペコチン酸エチル 3.5 g、トリエチルアミン 2.25 g 及び2-2 ロパノール 30 mlを加え、30 分間還流した。反応液を室温まで冷やした後、析出した結晶を濾取し、水、エタノールで順次洗浄し、標題化合物 1.13 g を得た。

·分子式 ; C<sub>25</sub>H<sub>26</sub>N<sub>5</sub>O<sub>3</sub>Cl

・収率(%);85

・融点(℃);202~203

• M = s + 30(M+1)

• NMR  $\delta$  (CDC1<sub>3</sub>) :

1.26(3H, t, J=7.2Hz), 1.72(2H, m), 1.99(2H, m), 2.59(1H, m),

3.13(2H, brt, J=11.2Hz), 3.90(3H, s), 4.15(2H, q, J=7.2Hz),

4.69(2H, d, J=5.6Hz), 4.80(2H, m), 6.91(1H, d, J=8.4Hz),

7. 25(1H, dd, J=8. 4Hz, 2. 4Hz), 7. 42(1H, d, J=2. 4Hz), 7. 43(1H, brs),

7.61(1H, dd, J=8.8Hz, 1.6Hz), 7.87(1H, brs)

#### 実施例209

2-クロロ-4-(3, 4-メチレンジオキシベンジル) アミノー6-シアノキナゾリン 400mgにN-メチルー4-アミノ酪酸エチル塩酸塩 858mg、トリエチルアミン 238mg及び2-プロパノール4ml、N, N-ジメチルホルムアミド2mlを加え、1時間還流した。室温まで冷やした後、反応液を濾過し、濾液を減圧下溶媒留去した。残渣を再結晶(エタノール-水)し、標題化合物 410mgを得た。

·分子式 ; C<sub>24</sub>H<sub>25</sub>N<sub>5</sub>O<sub>4</sub>

·収率(%);78

・融点 (℃) ; 152 ~153

• Mass : 448(M+1)

• NMR  $\delta$  (CDC1<sub>3</sub>):

1.22(3H, t, J=6.8Hz), 1.97(2H, brs), 2.30(2H, brs), 3.24(3H, s).

3.75(2H, brs), 4.10(2H, q, J=6.8Hz), 4.68(2H, d, J=5.2Hz), 5.96(2H, s),

6.79(1H, d, J=8.0Hz), 6.84(1H, d, J=8.0Hz), 6.87(1H, s), 7.42(1H, brs),

7.60(1H.d.J=8.8Hz). 7.81(1H.brs)

# 実施例210~221

実施例205~209の方法に準じて以下の化合物を得た。

#### 実施例210

2-(4-エトキシカルボニルピペリジノ)-4-(3, 4-メチレンジオキシベンジル)アミノー6,7,8-トリメトキシキナゾリン 塩酸塩

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \end{array} \begin{array}{c} \text{HN} \\ \text{N} \\ \text{COOEt} \\ \end{array} \begin{array}{c} \text{HCI} \\ \text{COOEt} \\ \end{array}$$

・分子式 ; C27H32N4O7・HC1

· 収率 (%);65

・融点(℃);148~150

• Mass ; 525(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.275(3H, t, J=7.2Hz), 1.76(2H, m), 2.03(2H, m), 2.63(1H, m),

3.38(2H,m), 3.99(3H,s), 4.08(3H,s), 4.12(3H,s),

4.17(2H, q, J=7.2Hz), 4.28(2H, m), 4.63(2H, d, J=6.0Hz), 5.88(2H, s),

6.68(1H, d, J=8.0Hz), 6.92(1H, dd, J=8.0Hz, 1.6Hz), 6.97(1H, d, J=1.6Hz),

8.23(1H,s), 9.38(1H,brs), 11.1(1H,s)

#### 実施例 2 1 1

2-(4-x)キシカルボニルピペリジノ) -4-(3-2)ロロー4-xトキシベンジル) アミノー 6, 7, 8-トリメトキシキナゾリン 塩酸塩

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{N} \\ \text{N} \\ \text{COOEt} \\ \end{array} \\ \cdot \text{HC1}$$

·分子式 ; C27H33N4O6Cl·HCl

• 収率(%);93

・融点(℃);177~178

• Mass ; 545(M+1)

· NMR  $\delta$  (CDCl<sub>3</sub>);

1.27(3H, t, J=7.2Hz). 1.80(2H, m). 2.06(2H, m). 2.67(1H, m).

3.40(2H,m), 3.82(3H,s), 3.98(3H,s), 4.07(3H,s), 4.11(3H,s),

4.17(2H, q, J=7.2Hz), 4.27(2H, m), 4.65(2H, d, J=6.0Hz),

6.84(1H, d, J=8.8Hz), 7.40(1H, d, J=2.0Hz), 7.48(1H, dd, J=8.8Hz, 2.0Hz),

8.23(1H,s), 9.26(1H,s), 11.27(1H.brs)

#### 実施例<u>212</u>

<u>2-(4-エトキシカルボニルピペリジノ)-4-(3-クロロ-4-メトキシ</u>ベンジル)アミノ-6-クロロキナゾリン 塩酸塩

·分子式 ; C24H26N4O3Cl2·HCl

・収率(%);97

・融点(℃);201~204

· Mass ; 489(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.17(3H, t, J=7.2Hz), 1.56(2H, m), 1.93(2H, m), 2.71(1H, m),

3.30(2H.m), 3.80(3H.s), 4.06(2H,q,J=7.2Hz), 4.48(2H.m),

4.66(2H, d, J=5.2Hz). 7.09(1H, d, J=8.4Hz). 7.34(1H, dd, J=8.4Hz, 2.0Hz),

7.49(1H, d, J=2.0Hz), 7.83(2H, brs), 8.48(1H, brs), 10.8(1H, brs)

#### 実施例 2 1 3

·分子式 ; C20H19N4O4Cl

・収率(%);55

・融点(℃);218~219(分解)

• Mass m/e ; 415(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.13(3H, t, J=7.2Hz), 4.07(2H, q, J=7.2Hz), 4.18(2H, brs),

4.63(2H, brd, J=4.0Hz), 5.97(2H, s), 6.85~6.92(3H, m), 7.53(1H, brs),

7.84(1H, brd, J=8.0Hz), 8.35(1H, brs), 8.50(2H, m)

#### 実施例214

2-(3-x++y)カルボニルプロピル) アミノー4-(3, 4-x+y)オシベンジル) アミノー6-0ロロキナゾリン

·分子式 ; C22H23N4O4Cl

· 収率 (%);44

・融点(℃);96~98

• Mass m/e ; 443(M+1)

· NMR  $\delta$  (CDCl<sub>3</sub>) ;

1.24(3H, t, J=6.8Hz), 1.96(2H, quintet, J=7.2Hz), 2.41(2H, t, J=7.2Hz),

3.54(2H, q, J=7.2Hz), 4.12(2H, q, J=6.8Hz), 4.66(2H, q, J=5.2Hz),

5.97(2H, s), 6.79(1H, d, J=8.0Hz), 6.84(1H, d, J=8.0Hz), 6.87(1H, s),

7.30(1H, d, J=8.0Hz), 7.44(1H, s), 7.47(1H, d, J=8.0Hz)

# <u> 実施例215</u>

2-(N-(3-x)+2)カルボニルプロピル)-N-xチルアミノ〕-4-(3, 4-xチレンジオキシベンジル)アミノ-6-クロロキナゾリン 塩酸塩

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

·分子式 ; C23H25N4O4Cl·HCl

・収率(%);67

・融点 (℃) ;182 ~183

• Mass ; 457(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>+DMS0-d<sub>6</sub>);

1.23(3H, t, J=7.2Hz), 1.90(2H, brs), 2.25(2H, brs), 2.84(3H, brs),

3.56(2H, brs), 4.10(2H, q, J=7.2Hz), 4.70(2H, d, J=5.6Hz), 5.94(2H, s),

6.76(1H, d, J=7.6Hz), 6.87(2H, m), 7.54(1H, dd, J=9.2Hz, 2.0Hz),

8.40(1H, d, J=2.0Hz), 8.66(1H, d, J=9.2Hz), 9.69(1H, brs)

#### 実施例216

2-(5-x)+20カルボニルペンチル) アミノー4-(3, 4-x)+20カンジオ キシベンジル) アミノー6-00ロキナゾリン

·分子式 ; C24H27N4O4Cl

· 収率(%);46

・融点(℃);109~110

• Mass m/e ; 471(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>):

1.25(3H, t, J=7.2Hz), 1.43(2H, quintet, J=7.6Hz), 1.66(4H, m),

2.31(2H, t, J=7.6Hz), 3.49(2H, q, J=7.6Hz), 4.12(2H, q, J=7.2Hz).

4.68(2H, d, J=5.2Hz), 5.97(2H, s), 6.79(1H, d, J=8.0Hz),

6.84(1H, d, J=8.0Hz), 6.87(1H, s), 7.43(3H, m)

#### 実施例217

# 

·分子式 ; C23H23N4O4Cl·HCl

・収率(%);52

・融点(℃);206~208

· Mass ; 455(M+1)

• NMR δ (CDCl<sub>3</sub>);

1.19(3H, t, J=7.2Hz). 2.17(3H, m), 2.32(1H, m), 4.12(2H, m),

4.24(2H, m), 4.62(2H, m), 4.67(1H, m), 5.93(2H, s),

6.77(1H, d, J=8.0Hz), 6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.89(1H, d, J=1.6Hz),

7.54(1H, d, J=8.8Hz), 8.38(1H, s), 8.64(1H, d, J=8.8Hz), 9.67(1H, brs),

13.38(1H, brs)

#### 実施例218

2-(N-x)+2 カルボニルメチル-N-x チレンジオキシベンジル) アミノ-6-2 アノキナブリン

·分子式 ; C22H21N5O4

· 収率(%);75

・融点(℃);171~172

• Mass ; 420(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.12(3H, m), 3.18(3H, s), 4.03(2H, m), 4.38(2H, m), 4.51(2H, m),

5.95(2H,s), 6.84(3H,m), 7.30(1H,m), 7.76(1H,m), 8.58(1H,s),

8.79(1H.m)

#### 実施例 2 1 9

$$\begin{array}{c|c} & & & & \\ & & & & \\ NC & & & & \\ & & & & \\ N & & & \\ N & & & \\ N & & \\ & & \\ 1 & \\ Et & & \\ \end{array}$$

·分子式 ; C<sub>25</sub>H<sub>27</sub>N<sub>5</sub>O<sub>4</sub> (461.522)

· 収率(%):61

・融点(℃);142~143

• Mass ; 462(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) ;

1.0~1.15(3H. br 2 peaks), 1.13(3H. t. J=7.1Hz).

1.65~1.9(2H. br 2 peaks). 2.15~2.35(2H. br 2 peaks), 3.58(4H. brs),

4.01(2H, q, J=7.1Hz), 4.58(2H, d, J=5.7Hz), 5.96(2H, s), 6.84(2H, s),

6.93(1H, s), 7.25(1H, brs), 7.72(1H, dd, J=1.8Hz, 8.8Hz),

8.56(1H, d, J=1.8Hz), 8.72(1H, t, J=5.7Hz),

# 実施例220

·分子式 ; C24H26N5O3Cl

・収率(%);72

・融点(℃):127~128

· Mass : 468 (M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.11(3H, t, J=7.2Hz), 1.74(2H, brs), 2.14(2H, brs), 3.09(3H, s),

3.62(2H, brs), 3.81(3H, s), 3.98(2H, q, J=7.2Hz), 4.61(2H, d, J=6.0Hz),

7.07(1H, d, J=8.8Hz), 7.20~7.36(2H, m), 7.42(1H, s),

7.72(1H, d, J=8.8Hz), 8.55(1H, s), 8.75(1H, t, J=6.0Hz)

#### 実施例221

#### 4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン 塩酸塩

·分子式 ; C24H23N5O4 · HC1

· 収率 (%);44

・融点(℃);231~232

• Mass : 446(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.21(3H, t, J=7.2Hz), 2.19(3H, m), 2.36(1H, m), 4.15(2H, m),

4.28(2H, m), 4.62(2H, m), 4.76(1H, m), 5.95(2H, s),

6.79(1H, d, J=8.0Hz), 6.86(1H, d, J=8.0Hz), 6.88(1H.s),

7.80(1H, dd, J=8.8Hz, 1.6Hz), 8.82(1H, d, J=1.6Hz), 8.87(1H, d, J=8.8Hz),

9.85(1H, brs), 13.81(1H, s)

#### 実施例222

2-(4-x)トキシカルボニルピペリジノ)-4-(3,4-x)チレンジオキシベンジル)アミノー6-クロロキナゾリン1gにxタノール10ml、x5 ml及び水酸化ナトリウム 820mgを加え、x20分間還流した。溶媒を減圧濃縮した後、x1 N 塩酸を加え中和し、析出した結晶を遮取し、標題化合物 920mgを得た。

·分子式 ; C22H21N4O4Cl

·収率(%);98

・融点(℃);221~222

• Mass m/e : 441(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

1.38(2H, m), 1.80(2H, dd, J=13.2Hz, 2.4Hz), 2.48(1H, m),

2.96(2H, t, J=12.0Hz), 4.54(2H, d, J=5.6Hz),

4.56(2H, dt, J=12.0Hz, 3.2Hz), 5.94(2H, s), 6.81(1H, d, J=8.0Hz),

6.84(1H, d, J=8.0Hz), 6.93(1H, s), 7.24(1H, d, J=9.2Hz),

7. 46(1H, dd, J=9. 2Hz, 2. 0Hz), 8. 13(1H, d, J=2. 0Hz), 8. 55(1H, t, J=5. 6Hz)

# 実施例 2 2 3

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリンナトリウム塩

実施例222で得られた2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン5.00g(11.3ミリモル)に1N水酸化ナトリウム水溶液12ml、水40mlを加え、加熱溶解させた後、放冷する。析出晶を吸引減取し、少量の水で洗った後、五酸化リン存在下減圧乾燥し、標題化合物4.34gを得た。

·分子式 ; C22H20ClN4O4Na

・収率(%);83

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.42(2H, m), 1.73(2H, m), 2.06(1H, m), 2.95(2H, m), 4.52(2H, m),

4.56(2H, d, J=5.6Hz), 5.95(2H, s), 6.81(1H, d, J=8.0Hz),

6.86(1H, dd, J=8.0Hz, 1, 6Hz). 6.95(1H, d, J=1.6Hz), 7.22(1H, d, J=9.2Hz).

7. 44(1H, dd, J=9. 2Hz, 2, 4Hz), 8. 13(1H, d, J=2. 4Hz),

8.58(1H, brt, J=5.6Hz)

#### 実施例224

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナブリン カリウム塩

実施例222で得られた2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン5.50g(12.5ミリモル)に1N水酸化カリウム水溶液12.5ml、水40mlを加え、加熱溶解させ、濾過した後、反応液を減圧下濃縮する。残渣にエタノール、エーテルを加えて析出する結晶を濾取し、エーテルで洗った後、五酸化リン存在下減圧乾燥し、標題化合物4.69gを得た。

·分子式 ; C22H20C1N4O4K

· 収率 (%);78

・融点(℃);230~234 (分解)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.39(2H, m), 1.69(2H, m), 1.96(1H, m), 2.94(2H, m), 4.48(2H, m),

4.55(2H, d, J=5.6Hz), 5.96(2H, s), 6.81(1H, d, J=8.0Hz),

6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.94(1H, d, J=1.6Hz), 7.22(1H, d, J=8.8Hz),

7. 43(1H, dd, J=8.8Hz, 2.4Hz), 8.11(1H, d, J=2.4Hz).

8.50(1H, brt, J=5.6Hz)

#### 実施例 2 2 5

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン 塩酸塩

実施例222で得られた2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン2.00g(4.54ミリモル)をテトラヒドロフラン-エタノール(25ml-25ml)に加熱溶解させ、8 M HClエタノール溶液 1.0mlを滴下する。放冷後、析出する結晶を濾取し、テトラヒドロフランで洗い、通風乾燥して、標題化合物1.87gを得た。

·分子式 ; C22H21N4O4Cl·HCl

• 収率(%);86

・融点(℃);284~286

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.58(2H, m), 1.96(2H, m), 2.65(1H, m), 3.3(2H, m), 4.47(2H, m),

4.67(2H, d, J=5.6Hz), 5.98(2H, s), 6.87(1H, d, J=8.0Hz),

6.90(1H, dd, J=8.0Hz, 1.6Hz), 7.00(1H, d, J=1.6Hz), 7.83(2H, brs),

8.49(1H, brs), 10.09(1H, brs), 12.11(1H, brs), 12.40(1H, brs)

#### 実施例226

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル) アミノ-6-クロロキナゾリン メタンスルホン酸塩

実施例222で得られた2-(4-カルボキシピペリジノ)-4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン2.00g(4.54ミリモル)をテトラヒドロフラン-エタノール(25ml-25ml)に加熱溶解させ、メタンスルホン酸0.31ml(4.78ミリモル)を滴下する。放冷後、析出する結晶を濾取し、テトラヒドロフランで洗い、通風乾燥して、標題化合物2.21gを得た。

·分子式 ; C22H21N4O4Cl·CH4O3S

• 収率 (%); 91

・融点(℃);265~266

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.59(2H, m), 1.97(2H, m), 2.32(3H, s), 2.65(1H, m), 3.3(2H, m),

4.40(2H, m), 4.68(2H, d, J=5.6Hz), 5.98(2H, s), 6.87(1H, d, J=8.0Hz),

6. 90(1H, dd, J=8. 0Hz, 1, 6Hz), 6. 98(1H, d, J=1. 6Hz), 7. 67(1H, d, J=8. 8Hz),

7.84(1H. dd, J=8.8Hz, 2.0Hz), 8.42(1H. d, J=2.0Hz), 9.95(1H. brs),

11.76(1H. brs), 12.37(1H. brs)

#### 実施例227

2-(4-x)キシカルボニルピペリジノ)-4-(3,4-x)チレンジオキシベンジル)アミノー6-シアノキナゾリン 318mgにxタノール20ml、1 N水酸化ナトリウム水溶液 2.0mlを加え、50°Cで30分間攪拌した。1 N塩酸で中和した後、析出した結晶を遮取し、シリカゲルカラムクロマトグラフィー(クロロホルム-x9ノール)で精製し、標題化合物 116mgを得た。

·分子式 ; C23H21N5O4

• 収率(%);39

・融点(℃);269~271

• Mass m/e; 432(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

1.40(2H, m), 1.79(2H, m), 2.41(1H, m), 3.04(1H, dt, J=11.2Hz, 1.2Hz),

4.55(2H, d, J=5.6Hz), 4.57(2H, m), 5.95(2H, s), 6.82(1H, d, J=8.0Hz),

6.84(1H, d, J=8.0Hz), 6.94(1H, s), 7.25(1H, d, J=8.8Hz),

7.71(1H, d, J=8.8Hz), 8.53(1H, s), 8.72(1H, t, J=5.6Hz)

#### 実施例 2 2 8

 $\frac{2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル)}{アミノ-6-シアノキナゾリン}$ 

2-(4-エトキシカルボニルピペリジノ)-4-(3-クロロ-4-メトキシベンジル)アミノ-6-シアノキナゾリン 1.0gにテトラヒドロフラン30ml、エタノール30ml、1N水酸化ナトリウム水溶液14mlを加え、室温で16時間攪拌した。1N塩酸で中和し、水 100mlを加え、析出した結晶を遮取した。結晶をテトラヒドロフラン-エタノール-水で再結晶し、標題化合物 860mgを得た。

·分子式 ; C23H22N5O3Cl

• 収率 (%);91

・融点(℃);277~278 (分解)

· Mass m/e : 452(M+1)

- NMR  $\delta$  (DMSO-d<sub>6</sub>):

1.40(2H, m), 1.84(2H, m), 2.51(1H, m), 3.05(2H, dt, J=12Hz, 2.4Hz),

3.82(3H, s), 4.59(2H, d, J=5.6Hz), 4.63(2H, m), 7.08(1H, d, J=8.4Hz),

7.28(1H, d, J=8.8Hz), 7.32(1H, dd, J=8.4Hz, 2.0Hz), 7.45(1H, d, J=2.0Hz),

7.74(1H, dd, J=8.8Hz, 2.0Hz), 8.54(1H, d, J=2.0Hz), 8.79(1H, t, J=5.6Hz)

#### 実施例229

<u>2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル</u>) アミノ-6-シアノキナゾリン ナトリウム塩

実施例228で得られた2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル)アミノー6-シアノキナゾリン1.00g(2.21ミリモル)をテトラヒドロフラン-エタノール(30ml-40ml)に加熱溶解させ、1N水酸化ナトリウム水溶液 2.3ml、水 100mlを加え、減圧下濃縮する。析出する結晶を濾取し、水で洗い、通風乾燥して、標題化合物0.45gを得た。

·分子式 ; C<sub>23</sub>H<sub>21</sub>N<sub>5</sub>O<sub>3</sub>ClNa

・収率(%);43

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

1.45(2H, m), 1.75(2H, m), 2.12(1H, m), 3.06(2H, m), 3.81(3H, s).

4.52(2H, m), 4.58(2H, d, J=5.6Hz), 7.07(1H, d, J=8.8Hz),

7.24(1H, d, J=8.4Hz), 7.32(1H, dd, J=8.4Hz, 2, 0Hz), 7.45(1H, d, J=2.0Hz),

7.69(1H, dd, J=8.8Hz, 2, OHz). 8.54(1H, d, J=2.0Hz),

8.86(1H.brt, J=5.6Hz)

#### 実施例230

2 - (N - (3 - カルボキシプロピル) - N - メチルアミノ) - 4 - (3, 4 - メチレンジオキシベンジル) アミノー<math>6 - シアノキナブリン

2- [N-(3-エトキシカルボニルプロピル)-N-メトキシアミノ]-4-(3,4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン 389mgにエタノール20ml、1N水酸化ナトリウム水溶液2.61mlを加え、室温で4時間、50℃で10分間攪拌した。1N塩酸で中和し、析出した結晶を遮取した。結晶をシリカゲルカラムクロマトグラフィー(クロロホルム-メタノール)で精製し、更にエタノールーアセトン-水で再結晶し、標題化合物 305mgを得た。

·分子式 ; C22H21N5O4

• 収率(%);84

・融点(℃);138~140

· Mass m/e ; 420(M+1)

· NMR  $\delta$  (CDCl<sub>3</sub>(+DMSO-d<sub>6</sub>));

1.96(2H. brs), 2.31(2H. brs), 3.24(3H.s), 3.76(2H. brs),

4.67(2H, d, J=5.6Hz), 5.94(2H, s), 6.77(1H, d, J=8.0Hz),

6.86(1H.d.J=8.0Hz), 6.91(1H.s), 7.58(1H.brs), 7.61(1H.d.J=8.4Hz),

8.48(2H, m)

#### 実施例231~245

実施例222~230の方法に準じて以下の化合物を得た。

#### 実施例 2.3 1

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)

## -アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C<sub>25</sub>H<sub>28</sub>N<sub>4</sub>O<sub>7</sub>

・収率(%);73

・融点(℃);216~217

• Mass m/e ; 297(M+1)

• NMR  $\delta$  (CDC1<sub>3</sub>);

1.80(2H, m), 2.05(2H, m), 2.65(1H, m), 3.39(2H, dt, J=10.8Hz, 2.8Hz),

3.98(3H,s), 4.07(3H,s), 4.13(3H,s), 4.26(2H,m),

4.70(2H, d, J=6.0Hz), 5.88(2H, s), 6.69(1H, d, J=7.6Hz).

6.95(1H, dd, J=7.6Hz, 1.6Hz), 7.02(1H, d, J=1.6Hz), 8.38(1H, s),

9.36(1H, s), 11.24(1H, t, J=6.0Hz)

#### 実施例232

2 - (4 - カルボキシピペリジノ) - 4 - (3 - クロロー 4 - メトキシペンジル) マミューロ 7 - 8 - トルメトキシキナゾリン

·分子式 ; C<sub>25</sub>H<sub>28</sub>N<sub>4</sub>O<sub>6</sub>Cl

・収率(%);90

・融点(℃);197~198

• Mass m/e; 517(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.45(2H, brs), 1.90(2H, brs), 2.59(1H, brs), 3.22(2H, brs),

3.80(3H,s), 3.90(6H,s), 3.92(3H,s), 4.39(2H,brs),

4.65(2H, d, J=5.2Hz), 7.05(1H, d, J=8.4Hz), 7.33(1H, d, J=8.4Hz),

7.45(1H.s), 7.76(1H.brs), 10.70(1H.brs)

#### 実施例 2 3 3

# 2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)

## アミノー 6 -メトキシキナゾリン

·分子式 ; C23H24N4O5 (436)

·収率(%);79

・融点(℃);263 (分解)

• Mass :  $437 (M+1)^+$ 

· NMR  $\delta$  (DMSO-d<sub>6</sub>) :

1.51~1.59(2H, m), 1.86~1.95(2H, m), 2.59~2.64(1H, m),

3.21~3.28(2H, m), 4.39~4.44(2H, m), 4.67(2H, d, J=5.6Hz),

5.78(2H, s), 6.85(1H, d, J=7.6Hz), 6.89(1H, d, J=7.6Hz),

6.99(1H, s), 7.42(1H, dd, J=9.2Hz, 1.6Hz), 7.72(1H, d, J=9.2Hz),

7.86(1H, d, J=1.6Hz), 10.02(1H, br), 11.89(1H, s)

#### 実施例 2 3 4

 $\frac{2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル)}{アミノ-6-メトキシキナゾリン}$ 

·分子式 ·; C23H25N4O4Cl (456.930)

· 収率(%);81

・融点(℃);245 (分解)

• Mass ;  $457(MH^+)$ 

· NMR

1.3  $\sim$ 1.5(2H, m), 1.79(2H, d, J=10Hz), 2.4 $\sim$ 2.5(1H, m),

2.91(2H, t, J=11Hz), 3.81(3H, s), 4.56(2H, d, J=13Hz),

4.60(2H, d, J=5.7Hz), 7.09(1H, d, J=8.6Hz), 7.18(1H, dd, J=2.7Hz, 9.2Hz),

7.24(1H, d, J=9.2Hz), 7.32(1H, dd, J=2.2Hz, 8.6Hz), 7.45(1H, d, J=2.2Hz),

7.49(1H, d, J=2.7Hz), 8.42(1H, t, J=5.7Hz), 12.15(1H, brs)

#### 実施例235

2- (4-カルボキシピペリジノ) -4- (3-クロロ-4-メトキシベンジル) アミノ-6-クロロキナゾリン

·分子式 ; C<sub>22</sub>H<sub>22</sub>N<sub>4</sub>O<sub>3</sub>Cl<sub>2</sub>

• 収率(%);92

・融点(℃);280~281

· Mass m/e ; 461(M+1)

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.59(2H, m), 1.94(2H, brd, J=11.6Hz), 2.62(1H, brs), 3.32(2H, m),

3.79(3H, s), 4.52(2H, d, J=13.6Hz), 4.64(2H, d, J=4.8Hz),

6.99(1H, d, J=8.4Hz), 7.30(1H, d, J=8.4Hz), 7.42(1H, s).

7.69(1H.d.J=8.8Hz). 8.00(1H.d.J=8.8Hz), 8.51(1H.s), 10.24(1H.s),

12. 42(1H, s)

#### 実施例 2 3 6

· 分子式 ; C<sub>2 2</sub>H<sub>2 1</sub>N<sub>6</sub>O<sub>2</sub>Cl (436.903)

・収率(%);99

・融点(℃);230 (分解)

• Mass ;  $437 (MH)^+$ 

• NMR  $\delta$  (DMS0-d<sub>6</sub>);

1.3~1.5(2H, m), 1.82(2H, d, J=10Hz), 2.4~2.5(1H, m),

2. 98(2H, t, J=11Hz), 4. 60(2H, d, J=13Hz), 4. 77(2H, d, J=5. 7Hz),

7.2  $\sim$ 7.3(2H, m), 7.45  $\sim$ 7.6(3H, m), 8.16(1H, s), 8.19(1H, d, J=2.4Hz),

8.68(1H, t, J=5.7Hz), 12.17(1H, brs), 12.33(1H, brs)

#### 実施例237

·分子式 ; C18H15N4O4Cl

• 収率(%);64

・融点(℃);260~261 (分解)

• Mass m/e ; 387(M+1)

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

4.00(2H, brs), 4.57(2H, d, J=5.6Hz), 5.93(2H, s), 6.79(1H, d, J=8.0Hz),

6.86(1H, d, J=8.0Hz), 6.95(1H, s), 7.35(1H, brs), 7.50(1H, brs).

8.30~8.50(2H, m)

#### 実施例238

 $2-(3-\pi)$ ルボキシプロピル) アミノー $4-(3,4-\chi$ チレンジオキシベンジル) アミノー $6-\phi$ ロロキナゾリン

·分子式 ; C20H19N4O4CI

·収率(%);88

・融点(℃);170~172

· Mass m/e : 415(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

1.71(2H. brs), 2.23(2H. brs), 3.27(2H. brs), 4.56(2H. d. J=5.6Hz),

5.95(2H, s), 6.82(3H, m), 6.95(1H, s), 7.20(1H, brs).

7.46(1H, dd, J=8.8Hz, 1.6Hz). 8.12(1H, d, J=1.6Hz)

#### <u> 実施例239</u>

2-(5-カルボキシペンチル) アミノー4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

・分子式 ; C22H23N4O4Cl

・収率(%);80

・融点(℃);190~192

• Mass m/e ; 443(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.25(2H, brs), 1.47(4H, brs), 2.16(2H, brs), 3.31(2H, brs),

4.60(2H, brs), 5.94(2H, s), 6.84(2H, s), 6.96(1H, s), 7.33(1H, brs).

7.60(1H, brs), 8.25(1H, brs)

#### 実施例 2 4 0

2 - (N - (3 - カルボキシプロピル) - N - メチルアミノ) - 4 - (3, 4 - メチレンジオキシベンジル) アミノ<math>-6 - 20 ロロキナゾリン

·分子式; C21H21N4O4Cl

· 収率(%);92

・融点(℃);143~144

· Mass m/e ; 429(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>(+CD<sub>3</sub>OD));

1.79(2H, brs), 2.20(2H, brs), 3.21(3H, s), 3.71(2H, t, J=7.2Hz),

4.65(2H, s), 5.95(2H, s), 6.81(1H, d, J=8.0Hz), 6.86(1H, d, J=8.0Hz).

6.95(1H, s), 7.79(1H, d, J=8.8Hz), 7.85(1H, d, J=8.8Hz), 8.49(1H, s)

#### 実施例 2 4 1

 $2 - (N - \pi n \pi + \nu x + \mu - N - x + \mu r + \nu x + \mu r + \nu x + \nu x$ 

·分子式 ; C20H17N5O4

• 収率(%);68

・融点(℃);268~270

• Mass m/e : 392(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

3.11(3H,s). 4.13(2H,brs), 4.56(2H,m), 5.94(2H,s), 6.83(2H,m),

6.93(1H, d, J=14.4Hz), 7.20(1H, m), 7.66(1H, m), 8.51(1H, s),

8.62(1H.m)

#### 実施例 2 4 2

·分子式 ; C23H23N5O4 (433.468)

• 収率(%);96

・融点(℃);186~187

• Mass : 434(M+1)

• NMR  $\delta$  (DMS0-d<sub>6</sub>);

 $1.0\sim1.15(3H. br 2 peaks)$ ,  $1.65\sim1.85(2H. br 2 peaks)$ .

 $2.1\sim2.25(2H, br\ 2 peaks)$ , 3.57(4H, brs), 4.58(2H, d, J=5.7Hz),

5.96(2H, s), 6.84(2H, s), 6.93(1H, s), 7.26(1H, d, J=8.8Hz),

7.72(1H, dd, J=1.8Hz, 8.8Hz), 8.56(1H, d, J=1.8Hz), 8.71(1H, brs)

#### 実施例243

2 - (N - (3 - カルボキシプロピル) - N - メチルアミノ) - 4 - (3 - クロロ - 4 - メトキシベンジル) アミノー<math>6 - シアノキナゾリン

·分子式 ; C22H22N5O3Cl

· 収率(%);88

・融点(℃):108~109

• Mass ; 440(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.73(2H, brs), 2.13(2H, brs), 3.11(3H, s), 3.63(2H, brs), 3.82(3H, s),

4.61(2H, d, J=5.6Hz), 7.07(1H, d, J=8.4Hz), 7.27(1H, d, J=8.8Hz),

7.31(1H, d, J=8.4Hz), 7.43(1H, s), 7.72(1H, s), 8.55(1H, s).

8.74(1H, brt, J=5.6Hz), 12.02(1H, brs)

#### 実施例 2 4 4

## 2-(4-カルボキシピペリジノ)-4-(ベンズイミダゾール-5-イル)メ

## チルアミノー6ーシアノキナゾリン

·分子式 ; C23H21N7O2 (427)

• 収率 (%);50

・融点(℃);>290

· Mass : 428 (M++1)

· NMR  $\delta$  (DMSO-d<sub>6</sub>) :

1.29~1.42(2H, m), 1.76~2.20(2H, m), 2.39~2.51(2H, m),

2.99~3.07(3H, m), 4.60~4.64(2H, m), 4.76(2H, d, J=5.6Hz),

7. 23(1H, d, J=8. 4Hz), 7. 25(1H, d, J=8. 8Hz), 7. 51(1H, d, J=8. 4Hz),

7.56(1H.s), 7.71(1H.dd, J=8.4Hz.1.6Hz), 8.14(1H.s).

8.57(1H, d, J=1.6Hz). 8.82(1H, brt, J=5.6Hz)

#### <u> 実施例245</u>

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)

アミノー 6 -カルバモイルキナゾリン

·分子式 ; C23H23N5O5 (449)

・収率(%);6

・融点(℃):180~182 (分解)

• Mass ; 450(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

1.39(2H,m), 1.81(2H,m), 2.48(1H,m), 2.99(2H,m),

4.55(2H, d, J=5.6Hz), 4.62(2H, m), 5.93(2H, s), 6.81(1H, d, J=7.6Hz),

6.85(1H, dd, J=7.6Hz, 1.6Hz), 6.95(1H, d, J=1.6Hz), 7.20(1H, d, J=8.8Hz),

7.27(1H, br), 7.71(1H, br), 7.92(1H, dd, J=8.8Hz, 2.0Hz).

8.57(1H, d, J=2.0Hz), 8.59(1H, brt, J=5.6Hz), 12.09(1H, br)

#### 実施例246

2 - ベンジルオキシメチルー4 - クロロー6 - メトキシキナゾリン

2 - ベンジルオキシメチルー 6 - メトキシキナゾリンー 4 (3 H) - オン1.50 g (5.06ミリモル) のアセトニトリル75ml 懸濁液にオキシ塩化リン30mlを加え、加熱還流する。1 時間後、反応液を減圧下溶媒留去し、得られる残渣をクロロホ

ルムに溶解させ、飽和重曹水で洗う。有機層を無水硫酸マグネシウムで乾燥後、 濾過し、濾液を減圧下溶媒留去する。残渣をシリカゲルカラムクロマトグラフィ ー (酢酸エチルーn - ヘキサン) により精製し、標題化合物の黄色晶1.10gを得 た。

· 収率(%);69

・融点(℃);49~50

· Mass ; 315(M+1) \*

· NMR  $\delta$  (CDCl<sub>3</sub>);

3.98(3H,s), 4.79(2H,s), 4.84(2H,s), 7.42(1H,d,J=2.8Hz),

7.26~7.46(5H, m), 7.57(1H, dd, J=9.2Hz, 2.8Hz), 8.01(1H, d, J=9.2Hz)

#### 実施例 2 4 7

2-ベンジルオキシメチルー4-(3,4-メチレンジオキシベンジル)-アミ1-6-メトキシキナゾリン

$$\begin{array}{c|c} & & & \\ & & & \\ \text{MeO} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

実施例246で得られた2-ベンジルオキシメチル-4-クロロ-6-メトキシキナゾリン0.74g(2.4ミリモル)、ピペロニルアミン0.55g(3.6ミリモル)、 炭酸ナトリウム0.50gをイソプロピルアルコール20mlに混合し、加熱還流する。6時間後反応液を減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)により精製後、クロロホルム-n-ヘキサンより再結晶して、標題化合物の黄色晶1.01gを得た。

·分子式 ; C<sub>25</sub>H<sub>23</sub>N<sub>3</sub>O<sub>4</sub>

・収率(%);定量的

・融点(℃);158~159

• NMR  $\delta$  (CDCl<sub>3</sub>) :

3.91(3H, s), 4.69(2H, s), 4.77(2H, s), 4.79(2H, d, J=5.6Hz),

5.94(2H, s), 6.77(1H, d, J=7.6Hz), 6.90(1H, dd, J=7.6Hz, 1.6Hz),

6.94(1H, d, J=1.6Hz). 7.10(1H, brs), 7.25~7.35(5H, m).

7.41~7.44(2H, m), 7.81(1H, d, J=9.2Hz)

実施例248~252

実施例222~230の方法に準じて以下の化合物を得た。

#### 実施例 2 4 8

2, 6-ジクロロー4- (3, 4-メチレンジオキシベンジル) オキシキナソリ

<u>ン</u>

$$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}$$

·分子式 ; C16H10Cl2N2Os

• 収率(%);55

・融点(℃);141~142

-Mass m/e ; 349(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>):

5.54(2H, s), 6.01(2H, s), 6.86(1H, d, J=8.8Hz), 7.01(1H, d, J=8.8Hz).

7.02(1H, s), 7.76(1H, dd, J=8.0Hz, 2.4Hz), 7.81(1H, dd, J=8.0Hz, 0.8Hz),

8.09(1H, dd, J=2.4Hz, 0.8Hz)

#### 実施例 2 4 9

2 - (4 - カルボキシピペリジノ) - 4 - (3, 4 - メチレンジオキシベンジル)

## オキシー6-クロロキナゾリン

· 分子式 ; C22H20ClN3O5

·収率(%);84

・融点 (℃) : 145 ~147

· Mass m/e: 442(M+1)

·NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.47(2H, m), 1.88(2H, m), 2.49(1H, m), 3.10(2H, brt. J=13.2Hz),

4.60(2H, brd, J=13.2Hz), 5.43(2H, s), 6.01(2H, s).

6.91(1H, d, J=8.0Hz), 7.02(1H, d, J=8.0Hz), 7.11(1H.s),

7.39(1H, d, J=8.8Hz), 7.61(1H, dd, J=8.8Hz, 2.4Hz),

7.77(1H, d, J=2.4Hz)

#### 実施例 2 5 0

2, 6-ジクロロー4-(3, 4-メチレンジオキシベンジル)チオキナゾリン

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C16H10Cl2N2O2S

・収率(%);92

・融点(℃);180~182

• Mass m/e ; 365(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>);

4.55(2H,s), 5.96(2H,s), 6.77(1H,d,J=8.4Hz), 6.96(1H,s).

6.96(1H, d, J=8.4Hz), 7.77(1H, dd, J=8.8Hz, 2.0Hz),

7.82(1H, d, J=8.8Hz), 7.99(1H, d, J=2.0Hz)

#### 実施例 2 5 1

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)

#### チオー6-クロロキナゾリン

·分子式 ; C22H20ClN3O4S

· 収率(%);98

・融点(℃);153~154

· Mass m/e ; 458(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

1.50(2H.m), 1.82(2H.m), 2.39(1H.brs), 3.18(2H.m), 4.48(2H.s),

4.55(2H, brs), 5.96(2H, s), 6.82(1H, d, J=8.0Hz), 6.92(1H, d, J=8.0Hz),

6.99(1H, s), 7.41(1H, brd, J=8.8Hz), 7.62(1H, brd, J=8.8Hz),

7.69(1H, brs)

#### 実施例 2 5 2

·分子式 ; C21H20ClN505

·収率(%);11

・融点(℃);油状物質

· Mass m/e : 458(MH+)

· NMR  $\delta$  (CDCl<sub>3</sub>) ;

1.71~1.82(2H, m), 2.02~2.10(2H, m), 3.56~3.63(2H, m),

4.39~4.44(2H, m), 4.66(2H, d, J=5.2Hz), 5.18~5.22(1H, m),

5.61(1H, brt, J=5.2Hz), 5.96(2H, s), 6.79(1H, d, J=7.6Hz),

6.84(1H, dd, J=7.6Hz, 1.2Hz), 6.87(1H, d, J=1.2Hz).

7.39(1H, d, J=8.8Hz), 7.43~7.47(2H, m)

#### 実施例 2 5 3

## 2, 6-ジクロロー4-(3, 4-メチレンジオキシベンジル) アミノキノリン

#### a) 2, 4, 6-トリクロロキノリン

5-クロロアントラニル酸メチルエステルから出発して、ジャーナル・オブ・アメリカン・ケミカル・ソサイアティー、68巻、1285頁(1946年)と同様な方法で標題化合物を得た。

• NMR  $\delta$  (CDCl<sub>3</sub>) :

7.55(1H, s), 7.74(1H, dd, J=9.0Hz, 2.2Hz), 7.98(1H, d, J=9.0Hz),

8. 19(1H, d, J=2. 2Hz)

b) <u>2,6-ジクロロ-4-(3,4-メチレンジオキシベンジル)アミノキ</u> ノリン

a) で得られた化合物 500 mg、3, 4-メチレンジオキシベンジルアミン 350 mg、N, N-ジイソプロピルエチルアミン 1 ml、N-メチル-2-ピロリドン 4 ml 0混合物を 130 C 0油浴中10時間反応させた。反応液に水を加え、酢酸エチルで抽出し、酢酸エチル層は水、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー( $5 \sim 20\%$ 酢酸エチル/ヘキサン)に付し、高極性成分として標題化合物 430 mgを得た。

·分子式 ; C<sub>17</sub>H<sub>12</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>3</sub>

・融点 (℃) ;198 ~199 ℃

• Mass m/e : 347(M+1)

#### • NMR δ (CDCl<sub>3</sub>);

4.39(2H.d.J=4.9Hz), 5.21(1H.t,J=4.9Hz), 6.00(2H.s), 6.47(1H.s),

6.82~6.87(3H.m), 7.58(1H, dd, J=9.0Hz, 2.2Hz), 7.65(1H, d, J=2.2Hz),

7.84(1H, d, J=9.0Hz)

同時に低極性成分として 4, 6-ジクロロ-2-(3, 4-メチレンジオキシベンジル) アミノキノリン <math>190mgを得た。

#### • NMR $\delta$ (CDCI<sub>3</sub>) :

4.58(2H.d.J=5.7Hz), 5.00(1H.brt,J=5.7Hz), 5.94(2H,s), 6.74(1H,s),

6.77(1H, d, J=7.9Hz), 6.84(1H, dd, J=7.9Hz, 1.6Hz), 6.88(1H, d, J=1.6Hz),

7.50(1H, dd, J=9.0Hz, 2.4Hz), 7.62(1H, d, J=9.0Hz), 7.96(1H, d, J=2.4Hz)

#### 実施例 2 5 4

## 2, 6-ジクロロー4-(3-クロロー4-メトキシベンジル)アミノキノリン

$$C1$$
 $N$ 
 $C1$ 
 $OMe$ 

実施例253の方法に準じて標題化合物を得た。

·分子式 ; C17H13Cl3N2O

・収率(%);59

・融点(℃);204~205

·NMR  $\delta$  (CDC1<sub>3</sub>) :

3.91(3H,s), 3.40(3H,s), 4.38(2H,d,J=5.1Hz), 4.97(1H,t,J=5.1Hz).

5.93(1H, s), 6.93(1H, d, J=8.4Hz), 7.24(1H, dd, J=8.4Hz, 2.2Hz),

7. 40(1H, d, J=2. 2Hz), 7. 50(1H, dd, J=8. 8Hz, 2. 2Hz), 7. 59(1H, d, J=2. 2Hz),

7.71(1H, d, J=8.8Hz)

#### 実施例 2 5 5

 $2 - (4 - \pi \mu \ddot{x} + \nu \ddot{x}$ 

- a) 2-(4-x++)カルボニルピペリジノ) -4-(3, 4-x++) オキシベンジル) アミノー6-クロロキノリン
- 2,6-ジクロロ-4-(3,4-メチレンジオキシベンジル)アミノキノリン 130mg、イソニペコチン酸エチルエステル 500μ1、N-メチル-2-ピロリドン1mlの混合物を 150℃の油浴中3時間加熱した。反応液を冷却後、水を加え、酢酸エチルで抽出し、酢酸エチル層は水、飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(20~50%酢酸エチル/ヘキサン)で精製し、標題化合物 150mgを得た。
- NMR  $\delta$  (CDCl<sub>3</sub>) :
  - 1.26(3H, t. J=7.1Hz), 1.70~1.81(2H, m), 1.95~2.02(2H, m),
  - 2.54(1H, tt, J=11.2Hz, 3.8Hz), 2.97~3.06(2H, m), 4.14(2H, q, J=7.1Hz),
  - 4.32~4.39(4H, m), 4.86(1H, t, J=5.5Hz), 5.98(3H, s).
  - 6.81(1H, d, J=7.7Hz), 6.84~6.89(2H, m), 7.39(1H, dd, J=9.0Hz, 2.4Hz),
  - 7.47(1H, d, J=2.4Hz), 7.55(1H, d, J=9.0Hz)
- b) 2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベ

## ンジル) アミノー6-クロロキノリン

a)で得られた化合物 150mg、1 N水酸化ナトリウム水溶液 1 ml、エタノール 10mlの混合物を60℃の油浴中 2 時間加熱した。反応液を濃縮し、水を加え、さらに1 N塩酸 1 mlを加え中和し、生じた結晶を遮取し、水洗、乾燥することにより、標題化合物130mg を得た。

·分子式 ; C23H22C1N3O4

·収率(%);92

・融点(℃);235~237

· Mass m/e ; 440(M+1)

• NMR  $\delta$  (DMS0-d<sub>6</sub>);

1.37~1.50(2H.m), 1.77~1.86(2H.m), 2.89~3.00(2H.br.3 peak),

4.20~4.28(2H, br, 2 peak), 4.42(2H, d, J=5.7Hz), 5.96(2H, s),

5.97(1H, s), 6.85(1H, d, J=7.9Hz), 6.92(1H, dd, J=7.9Hz.1.5Hz),

6.98(1H.d.J=1.5Hz), 7.42(2H.brs), 7.58(1H.brs), 8.15(1H.brs)

#### 実施例 2 5 6

<u>2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル)</u> アミノー6-クロロキノリン

実施例255の方法に準じて標題化合物を得た。

·分子式 ; C23H23Cl2N3O3

・融点(℃);282~283

• Mass m/e ; 460(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.36~1.48(2H,m), 1.76~1.84(2H,m), 2.43~2.53(1H,m),

2.91(2H, t, J=11.2Hz), 4.26(2H, brd, J=13.2Hz), 4.44(2H, d, J=5.9Hz),

5.97(1H, s), 7.10(1H, d, J=8.6Hz), 7.36(1H, dd, J=8.6Hz, 2.2Hz),

7.38(2H, s), 7.50(2H, brs and d, J=2.2Hz), 8.11(1H, s)

#### 実施例 2 5 7

<u>2-メトキシー4-(3-クロロー4-メトキシベンジル)アミノー6-クロロ</u> キノリン

2,6-ジクロロー4-(3-クロロー4-メトキシベンジル)アミノキノリン 200mg、メタノール 0.5ml、カリウム tープトキシド 200mg、1,4-ジオキサン3mlの混合物を1時間加熱還流した。反応液を冷却後、水を加え、酢酸エチルで抽出し、酢酸エチル層は飽和食塩水で洗い、無水硫酸マグネシウムで乾燥後、濃縮した。シリカゲルカラムクロマトグラフィー(10~30%酢酸エチル/ヘキサン)で精製後、酢酸エチルーヘキサンから再結晶して、標題化合物 150mgを得た。

·分子式 ; C18H18Cl2N2O2

・収率(%);76

・融点(℃):170~171

#### · NMR $\delta$ (CDCl<sub>3</sub>) :

3.93(3H, s), 4.42(2H, d, J=5.2Hz), 5.22(1H, t, J=5.2Hz), 6.46(1H, s),

6.96(1H, d, J=8.4Hz), 7.25(1H, dd, J=8.4Hz, 2.2Hz), 7.41(1H, d, J=2.2Hz),

7.59(1H, dd, J=9.0Hz, 2.2Hz), 7.66(1H, d, J=2.2Hz), 7.85(1H, d, J=9.0Hz)

#### 実施例 2 5 8

実施例253のb)で副生した4,6-ジクロロ-2-(3,4-メチレンジオキシベンジル)アミノキノリン 140mgを用いて実施例255と同様の操作を行い、標題化合物 130mgを得た。

·分子式 ; C23H22CIN3O4

・収率(%);99

・融点(℃);270~272

• Mass m/e : 440(M+1)

• NMR  $\delta$  (DMS0-d<sub>6</sub>);

1.78~1.89(2H, m), 1.96~2.04(2H, m), 2.70~2.79(2H, m),

3.26~3.36(2H, m), 4.49(2H, d, J=5.7Hz), 5.96(2H, s), 6.37(1H, s).

6.85(2H,s), 6.94(1H,s), 7.37(1H,t,J=5.7Hz),

7. 41(1H, dd, J=8. 8Hz, 2. 4Hz), 7. 46(1H, d, J=8. 8Hz), 7. 60(1H, d, J=2. 4Hz)

#### \_\_実施例2<u>59</u>

<u>2-クロロー4-(3-クロロー4-メトキシベンジル) アミノー6-シアノキ</u> <u>ノリン</u>

### a) 4-ヒドロキシキノリン-2-オン-6-カルボン酸

4-アミノベンゼン-1, 4-ジカルボン酸ジメチルエステルから出発し、ジャーナル・オブ・アメリカン・ケミカル・ソサイアティー, 68巻, 1285頁(1946年)と同様の操作で標題化合物を得た。

#### • NMR $\delta$ (DMSO-d<sub>6</sub>) :

5.79(1H, s), 7.31(1H, d, J=8.6Hz), 8.02(1H, dd, J=8.6Hz, 2.0Hz),

8.39(1H, d, J=2.0Hz), 11.51(1H, s), 11.63(1H, brs), 12.86(1H, brs)

### b) 2, 4-ジクロロキノリン-6-カルボキサミド

a)で得られた化合物 9 g、オキシ塩化リン50mlの混合物を 1 時間加熱還流した。反応液を濃縮し、残渣に酢酸エチルーアセトンを加えて均一の懸濁液とし、 氷冷した濃アンモニア水の中に攪拌しながらゆっくり注いだ。30分後、析出した 結晶を濾取し、水、酢酸エチルで洗った後、乾燥して、標題化合物8.96gを得た。

#### • NMR $\delta$ (DMSO-d<sub>6</sub>);

7.72(1H, brs), 8.06(1H, s), 8.10(1H, d, J=8.8Hz),

8.34(1H, dd, J=8.8Hz, 2.0Hz), 8.43(1H, brs), 8.73(1H, d, J=2.0Hz)

#### c) 2, 4-9900-6-971+199

- b)で得られた化合物 3 g、塩化リチウム 300mg、オキシ塩化リン30mlの混合物を 2 時間加熱還流した。反応液を濃縮し、ベンゼン 120mlを加え、飽和炭酸水素ナトリウム水溶液で洗い、ベンゼン層は飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、シリカゲルベッドを通して濾過後、シリカゲルはさらにベンゼンで洗い、合わせて濃縮し、残渣を酢酸エチルーへキサンから再結晶して、標題化合物 2.15 g を得た。
- · NMR  $\delta$  (CDCl<sub>3</sub>);
  - 7.65(1H, s), 7.95(1H, dd, J=8.8Hz, 1.8Hz), 8.14(1H, d, J=8.8Hz),
  - 8.60(1H, d, J=1.8Hz)
- d) 2-2-1-4-(3-2-1-4-1)7/4/12
- c)で得られた化合物 1 g、3-2 ロロー4- メトキシベンジルアミン 塩酸塩 1 g、N, N- ジイソプロピルエチルアミン 2.4 ml、N- メチルー2- ピロリドン10 mlの混合物を 130  $\mathbb{C}$  油浴で 1 時間加熱、反応させた。冷後、水、酢酸エチルを加え、生じた結晶を遮取し、水、酢酸エチルで洗った後、乾燥して、標題化合物610 mg を得た。

·分子式 ; C18H13Cl2N30

·収率(%);38

・融点(℃);254~255

• NMR  $\delta$  (CDCl<sub>3</sub>):

3.94(3H, s), 4.45(2H, d, J=4.9Hz), 5.41(1H, d, J=4.9Hz), 6.54(1H, s),

6. 98(1H, d, J=8. 4Hz), 7. 26(1H, dd, J=8. 4Hz, 2. 2Hz), 7. 41(1H, d, J=2. 2Hz),

7.80(1H, dd, J=8.8Hz, 1.6Hz), 7.97(1H, d, J=8.8Hz), 8.08(1H, d, J=1.6Hz)

#### 実施例 2 6 0

 $\frac{2-(4-)$ ルボキシピペリジノ) -4-(3-)ロロ-4-メトキシベンジル)  $r \in J-6-$ シアノキノリン

## 

2-クロロー4-(3-クロロー4-メトキシベンジル)アミノー6-シアノキノリン 750mg、イソニペコチン酸 1.6ml、N-メチル-2-ピロリドン5mlの混合物を 130℃油浴中 3 時間加熱した。冷後、反応液に水を加え、酢酸エチルで抽出し、酢酸エチル層は水、飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(20~40%酢酸エチル/ヘキサン)に付し、次いで酢酸エチルーヘキサンから再結晶して、標題化合物 860mgを得た。

#### • NMR $\delta$ (CDCl<sub>3</sub>);

- 1.26(3H, t, J=7.1Hz), 1.68 $\sim$ 1.79(2H, m), 1.95 $\sim$ 2.03(2H, m),
- 2.58(1H, tt, J=11.0Hz, 4.0Hz), 3.03~3.12(2H, m), 3.92(3H, s),
- 4. 15(2H, q, J=7. 1Hz), 4. 36~4. 43(4H, m), 5. 08(1H, t, J=5. 1Hz),
- 5.94(1H, s), 6.95(1H, d, J=8.4Hz), 7.26(1H, dd, J=8.4Hz, 2.2Hz).
- 7. 42(1H, d, J=2.2Hz), 7.  $55\sim7.61(2H, m)$ , 7. 88(1H, s)

## b) $2-(4-\pi)\pi+\nu$ ピペリジノ) $-4-(3-\pi)\pi$ ンジル) アミノ $-6-\nu$ アノキノリン

a) で得られた化合物 500mg、1 N水酸化ナトリウム水溶液 2 ml、テトラヒドロフラン20ml、エタノール25mlの混合物を50℃で2 時間反応させた。1 N塩酸 2

mlを加え、約20ml程留去すると、結晶が析出してきた。この結晶を遮取し、水、 酢酸エチルで洗った後、乾燥して、標題化合物 460mgを得た。

·分子式 ; C<sub>24</sub>H<sub>23</sub>C1N<sub>3</sub>O<sub>3</sub>

· 収率 (%);98

・融点(℃);274~276 (分解)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.35~1.47(2H, m), 1.78~1.87(2H, m), 2.47~2.56(1H, m),

2.95~3.04(2H, m), 3.81(3H, s), 4.30~4.39(2H, m), 4.46(2H, d, J=5.7Hz),

6.01(1H, s), 7.11(1H, d, J=8.6Hz), 7.37(1H, dd, J=8.6Hz, 2.2Hz),

7. 40(1H, d, J=8.8Hz), 7. 52(1H, d, J=2.2Hz), 7. 65(1H, dd, J=8.8Hz, 1.6Hz),

7.68(1H, t. J=5.7Hz), 8.55(1H, d. J=1.6Hz), 12.20(1H, brs)

#### 実施例 2 6 1

2-クロロ-8-(3, 4-メトキシジオキシベンジル) アミノピリド (2, 3 -d) ピリミジン

2, 8-ジクロロビリド (2, 3-d) ビリミジン 118mgの20mlテトラヒドロフラン溶液にトリエチルアミン66mg、ピペロニルアミン89mgを加え、室温で16時間攪拌した。水を加え、析出した結晶を遮取し、標題化合物166mg を得た。

·分子式 ; C<sub>15</sub>H<sub>11</sub>ClN<sub>4</sub>O<sub>2</sub>

・収率(%);89

・融点(℃);200~202

• Mass m/e ; 315(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

4.64(1H, d, J=5.6Hz), 5.97(2H, s), 6.85(1H, d, J=8.0Hz),

6.87(1H, d, J=8.0Hz), 6.96(1H, s), 7.55(1H, dd, J=8.0Hz, 4.4Hz),

8.73(1H, dd, J=8.0Hz, 1.6Hz), 8.96(1H, dd, J=4.4Hz, 1.6Hz),

9.46(1H, t, J=5.6Hz)

#### 実施例262

2-(4-カルボキシピペリジノ) -8-(3, 4-メチレンジオキシベンジル) アミノピリド (2, 3-d) ピリミジン

a) 2-(4-x++)カルボニルピペリジノ) -8-(3, 4-x+) オキシベンジル) アミノピリド  $\{2, 3-d\}$  ピリミジン

2-クロロ-8-(3, 4-メチレンジオキシベンジル)アミノピリド〔2, 3-d〕ピリミジン 127mgの8mlテトラヒドロフラン溶液にトリエチルアミン41

WO 93/07124 PCT/JP92/01258

mg、イソニペコチン酸エチル190mg を加え、2時間還流する。反応液に水を加え、クロロホルムで2回抽出し、合わせた有機層を硫酸マグネシウムで乾燥し、溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製し、標題化合物 175mg(収率 100%)を得た。

b)  $2-(4-\pi)\pi$   $\frac{2}{2}$   $\frac{2}{2}$ 

2-(4-x)トキシカルボニルピペリジノ)-8-(3,4-x)チレンジオキシベンジル)アミノピリド [2,3-d] ピリミジン 170mgの10mlxタノール溶液に1N水酸化ナトリウム1.56mlを加え、室温で6時間攪拌した。1N塩酸、水を加えて中和した後、析出した結晶を遮取し、標題化合物 121mgを得た。

·分子式 ; C21H21N5O4

・収率(%);76

・融点(℃);255~256

· Mass m/e ; 408(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.39(2H, m), 1.80(2H, m), 2.51(1H, m), 3.01(2H, brt, J=11.2Hz),

4.56(2H, d, J=5.6Hz), 4.61(2H, brd, J=12.8Hz), 5.94(2H, s),

6.82(1H, d, J=8.0Hz), 6.84(1H, d, J=8.0Hz), 6.93(1H, s),

7.03(1H, dd, J=8.0Hz, 4.4Hz), 8.38(1H, dd, J=8.0Hz, 1.6Hz),

8.61(1H, dd, J=4.4Hz, 1.6Hz), 8.70(1H, t, J=5.6Hz), 12.16(1H, brs)

#### 実施例 2 6 3

<u>5-クロロー2-メタンスルホニルー1-(3,4-メチレンジオキシベンジル)</u>ベンズイミダゾール

$$0$$
 $N$ 
 $SO_2Me$ 

6-2000-2-メルカプトベンズイミダゾール8.89gをジメチルホルムアミド 150mlに溶解し、氷冷下、炭酸カリウム6.65gとヨウ化メチル6.15gを加え、同温で50分間攪拌した。水を加え、酢酸エチルで抽出した。乾燥後、減圧下濃縮し、粗6-200-2-メチルチオベンズイミダゾールを得た。

上で得られた粗精製物を塩化メチレン 100mlに溶解し、80%m-CPBA 17.3 gを氷冷下加え、室温で一夜攪拌した。チオ硫酸ナトリウム7gを加え、室温で30分間攪拌し、水を加えた。有機層を分取し、乾燥後、シリカゲルカラムクロマトグラフィーに付して6-クロロ-2-メタンスルホニルベンズイミダゾール10 gを得た。

6-クロロ-2-メタンスルホニルベンズイミダゾール 2.3gをジメチルホルムアミド30mlに溶解し、氷冷下60%水素化ナトリウム 480mg、ピペロニルクロリド2.04gを加え、80℃で4時間加熱した。室温で一夜放置後、不溶物を遮去し、減圧下濃縮した。シリカゲルカラムクロマトグラフィーに付し、標題化合物を得た。

·分子式 ; C16H13ClN2O4S

• 収率 (%);25

・融点(℃):129~131

• Mass m/e ;  $365(MH^+)$ 

• NMR  $\delta$  (CDCl<sub>3</sub>) :

3.48(3H, s), 5.64(2H, s), 5.91(2H, s), 6.73~6.76(3H, m),

7.27(1H, d, J=8.8Hz), 7.31(1H, dd, J=8.8Hz, 2.0Hz).

7. 80(1H, d, J=2.0Hz)

#### 実施例 2 6 <u>4</u>

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

実施例 2 6 3 において、5 - クロロー 2 - メタンスルホニルー 1 - (3, 4 - メチレンジオキシベンジル) ベンズイミダゾール溶出後に更に溶出することにより、標題化合物を得た。

·分子式 ; C16H13ClN2O4S

・収率(%);22

・融点(℃);140~142

· Mass m/e ; 365(MH+)

• NMR  $\delta$  (CDCl<sub>3</sub>) :

3.48(3H, s), 5.62(2H, s), 5.93(2H, s), 6.73~6.77(3H, m),

7. 32(1H, d, J=8. 4Hz), 7. 33(1H, d, J=1. 2Hz), 7. 74(1H, dd, J=8. 4Hz, 1. 2Hz)

#### 実施例 2 6 5

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

5-クロロー2-スルホニルメチルー1-(3,4-メチレンジオキシベンジル)ベンズイミダゾールと6-クロロー2-スルホニルメチルー1-(3,4-メチレンジオキシベンジル)ベンズイミダゾールの混合物 448mgをメタノール20mlに溶解し、28%ナトリウムメトキシド10mlを加え、1.5時間加熱還流した。氷冷し、10%塩酸で中和し、酢酸エチルで抽出した。乾燥後、減圧下濃縮し、シリカゲルカラムクロマトグラフィーに付して標題化合物を得た。

·分子式 ; C16H13CIN2O3

· 収率 (%);31

・融点(℃):117~118

· Mass m/e;  $317(MH^+)$ 

• NMR  $\delta$  (CDCl<sub>3</sub>) :

4.21(3H, s), 5.01(2H, s), 5.92(2H, s), 6.65(1H, d, J=1.6Hz).

6.68(1H, dd, J=8.0Hz, 1.6Hz), 6.73(1H, d, J=8.0Hz),

6. 96(1H, d, J=8. 4Hz), 7. 05(1H, dd, J=8. 4Hz, 2. 0Hz),

7. 51(1H. d. J=2.0Hz)

# 実施例 2 6 6

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

実施例265において、5-クロロ-2-メトキシ-1-(3, 4-メチレンジオキシベンジル) ベンズイミダゾール溶出後に更に溶出することにより、標題化合物を得た。

·分子式 ; C16H13ClN2O3

・収率(%);26

・融点(℃):133~134

· Mass m/e : 317(MH+)

• NMR  $\delta$  (CDCl<sub>3</sub>);

4.21(3H,s), 4.99(2H,s), 5.92(2H,s), 6.65(1H,d,J=1.6Hz),

6.68(1H, dd, J=8.0Hz, 1.6Hz), 6.74(1H, d, J=8.0Hz), 7.05(1H, d, J=1.6Hz),

7.10(1H, dd, J=8.8Hz, 1.6Hz), 7.43(1H, d, J=8.8Hz)

# <u>実施例267~280</u>

実施例263~266の方法に準じて以下の化合物を得た。

# <u>実施例267</u>

1-(3,4-メチレンジオキシベンジル)ベンズイミダゾール

·分子式 ; C<sub>15</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub>

· 収率(%);34

・融点(℃):107~108

· Mass m/e ; 253(MH+)

• NMR  $\delta$  (CDCl<sub>3</sub>) :

5.23(2H, s), 5.92(2H, s), 6.63(1H, d, J=1.6Hz).

6.70(1H, dd, J=8.0Hz, 1.6Hz), 6.76(1H, d, J=8.0Hz), 7.23~7.32(3H, m),

 $7.80 \sim 7.83(1 \text{H}, \text{m}), 7.92(1 \text{H}, \text{s})$ 

# 実施例268

# 1-(2-プロポキンベンジル) ベンズイミダゾール

·分子式 ; C17H18N2O

・収率(%);89

・融点(℃);85~86

· Mass m/e ;  $267(MH^+)$ 

• NMR  $\delta$  (CDC1<sub>3</sub>) :

1.02(3H. t. J=7.4Hz). 1.78~1.86(2H.m). 3.95(2H.t. J=6.6Hz).

5.35(2H, s). 6.86~6.90(2H, m), 7.06~7.09(1H, m),

7. 23~7. 28(3H, m), 7. 40~7. 43(1H, m), 7. 79~7. 82(1H, m),

7.99(1H, s)

### 実施例 2 6 9

# 2-(3,4-メチレンジオキシベンジル)ベンズイミダゾール

$$\bigcup_{N} \bigcup_{0}$$

·分子式 ; C<sub>15</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub>

• 収率(%);62

・融点(℃);143~146

· Mass m/e ; 253(MH+)

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

4.43(2H,s), 5.99(2H,s), 6.89~6.94(2H,m), 7.09(1H,s),

7.48~7.52(2H, m), 7.72~7.76(2H, m)

## 実施例 2 7 0

# 1-(3,4-メチレンジオキシベンジル)-6-メトキシベンズイミダゾール

$$Me0 \xrightarrow{N} N$$

·分子式 ; C16H14N2O3

· 収率(%);70

・融点(℃);134~135

• Mass m/e;  $283(M+1)^+$ 

· NMR  $\delta$  (CDCl<sub>3</sub>);

3.82(3H,s), 5.21(2H,s), 5.95(2H,s), 6.64(1H,d,J=1.8Hz),

6.71(1H, dd, J=7.6Hz, 1.8Hz), 6.75(1H, d, J=2.4Hz), 6.78(1H, d, J=7.6Hz).

6.93(1H, dd, J=8.8Hz.2.4Hz), 7.70(1H, d, J=8.8Hz), 7.90(1H, s)

#### 実施例271

 $1 - (2 - \rho - 1 - 4, 5 - y + \nu )$   $2 - \beta - y + \nu$   $2 - \beta$   $3 - y + \nu$   $2 - \beta$   $2 - \beta$ 

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C16H13ClN2O3

· 収率(%);81

・融点(℃):108~109

• Mass m/e ; 317(M+1)\*

• NMR  $\delta$  (CDCl<sub>3</sub>) :

3.84(3H,s), 5.322(2H,s), 5.97(2H,s), 6.40(1H,s), 6.80(1H,s),

6.91(1H,s), 6.95(1H,d,J=8.8Hz), 7.72(1H,d,J=8.8Hz), 7.96(1H,s)

# 実施例 2 7 2

 $1 - (2 - (3, 4 - \cancel{4} + \cancel{4$ 

$$\mathbb{M} \in \mathbb{N} \longrightarrow \mathbb{N} \longrightarrow \mathbb{N}$$

·分子式 ; C17H16N2O3

・収率(%);69

· 融点 (℃);油状物質

· Mass m/e : 297(M+1) +

·NMR & (CDCl3);

3.04(2H, t, J=6.8Hz), 3.87(3H, s), 4.31(2H, t, J=6.8Hz),

5.93(2H, s), 6.43(1H, dd, J=8.0Hz, 2.0Hz), 6.52(1H, d, J=2.0Hz),

6.68(1H, d, J=8.0Hz), 6.77(1H, d, J=2.4Hz), 6.92(1H, dd, J=8.8Hz, 2.4Hz),

7.57(1H, s). 7.67(1H, d, J=8.8Hz)

# <u>実施例273</u>

6-クロロ-1-(3, 4-メチレンジオキシベンジル) ベンズイミダゾール

$$C1$$
 $N$ 
 $0$ 

·分子式 ; C15H11ClN2O2

・融点(℃);122~123

· Mass m/e ; 287(MH $^+$ )

• NMR  $\delta$  (CDCl<sub>3</sub>) :

5.18(2H, s), 5.94(2H, s), 6.61(1H, d, J=1.2Hz),

6.68(1H, dd, J=8.0Hz, 1.2Hz), 6.77(1H, d, J=8.0Hz), 7.22~7.40(2H, m),

7.71(1H, d, J=8.8Hz), 7.90(1H, s)

#### 実施例 2 7 4

5-クロロ-1-(3, 4-メチレンジオキシベンジル) ベンズイミダゾール

$$C1$$
 $N$ 
 $0$ 

·分子式 ; C15H11ClN2O2

・収率(%);83

・融点(℃);113~114

· Mass m/e;  $287(MH^+)$ 

#### • NMR $\delta$ (CDCI<sub>3</sub>);

5.20(2H, s). 5.93(2H, s). 6.60(1H, d, J=1.6Hz),

6.67(1H, dd, J=7.6Hz, 1.6Hz), 7.76(1H, d, J=7.6Hz), 7.18~7.20(2H, m),

7.78(1H, s), 7.93(1H, s)

### 実施例 2 7 5

6-クロロー [3-(3, 4-メチレンジオキシフェニル) プロピル] ベンズイ ミダゾール

·分子式 : C17H15ClN2O2

•,収率(%);40

・融点(℃);107~109

·Mass m/e : 315(MH+)

·NMR & (CDC13);

2.13~2.21(2H, m), 2.54(2H, t, J=7.4Hz), 4.11(2H, t, J=7.2Hz),

5.94(2H,s), 6.59(1H,dd,J=8.0Hz,1.6Hz), 6.64(1H,d,J=1.6Hz),

6.75(1H, d, J=8.0Hz). 7.24(1H, dd, J=8.4Hz, 2.0Hz),

7.31(1H, d, J=2.0Hz), 7.71(1H, d, J=8.4Hz), 7.84(1H, s)

## 実施例 2 7 6

6-2ロロ-2ーホルミル-1ー(3, 4ーメチレンジオキシベンジル)ベンズ

#### イミダゾール

·分子式 ; C16H11ClN2O3

• 収率(%);55

・融点(℃);120~122

• Mass m/e; 315(MH $^+$ )

• NMR  $\delta$  (CDCl<sub>3</sub>);

5.71(2H, s), 5.93(2H, s), 6.64(1H, d, J=1.6Hz),

6.70(1H, dd, J=7.6Hz, 1.6Hz), 6.75(1H, d, J=7.6Hz).

7.36(1H, dd, J=8.8Hz, 2.0Hz), 7.46(1H, d, J=2.0Hz), 7.86(1H, d, J=8.8Hz),

10.11(1H.s)

### 実施例277

2-rミノー6-クロロー1-(3, 4-メチレンジオキシベンジル) ベンズイミダゾール

$$C1$$
 $N$ 
 $NH_2$ 

·分子式 ; C<sub>15</sub>H<sub>12</sub>ClN<sub>3</sub>O<sub>2</sub>

- 収率 (%);10

・融点(℃);223~224

· Mass m/e;  $302(MH^+)$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

5.13(2H, s), 5.95(2H, s), 6.68~6.71(3H, m), 6.77(1H, d, J=1.6Hz),

6.84(1H, d, J=7.6Hz), 6.90(1H, dd, J=8.4Hz, 2.4Hz), 7.07(1H, d, J=8.4Hz),

7.18(1H, d, J=2.4Hz)

### 実施例 2 7 8

·分子式 ; C18H13ClN4O2

· 収率(%);41

・融点(℃);127~129

· Mass m/e ; 353(MH+)

• NMR  $\delta$  (CDCl<sub>3</sub>) :

5. 20(2H, s), 5. 97(2H, s), 6.  $48\sim6.50(2H, m)$ , 6. 76(1H, d, J=7.2Hz).

7.23~7.35(4H, m), 7.72(1H, d, J=8.4Hz), 7.89(1H, s)

# 実施例 2 7 9

# $\frac{2-(4-n)}{(2-n)} = \frac{2-(4-n)}{(2-n)} = \frac{2$

·分子式 ; C21H20ClN3O4

・収率(%);84

・融点 (℃) ; 201 ~202

· Mass m/e;  $414(MH^+)$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.64~1.77(2H, m), 1.84~1.90(2H, m), 2.40~2.46(1H, m),

2.92~3.00(2H, m), 3.43~3.47(2H, m), 5.15(2H, s), 5.96(2H, s),

6.60(1H, dd, J=8.0Hz, 1.6Hz), 6.72(1H, d, J=1.6Hz), 6.82(1H, d, J=8.0Hz),

7.03(1H, dd, J=8.4Hz, 2.0Hz), 7.18(1H, d, J=8.4Hz), 7.42(1H, d, J=2.0Hz)

# 実施例280

·分子式 ; C21H20ClN3O4

・融点(℃);アモルファス

· Mass m/e ; 414(MH+)

-NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.70~1.79(2H.m), 1.80~1.89(2H.m), 2.31~2.42(1H.m),

2.90~2.97(2H, m), 3.39~3.45(2H, m), 5.15(2H, s), 5.96(2H, s),

6.61(1H, d, J=8.0Hz), 6.73(1H, s), 6.83(1H, d, J=8.0Hz),

7.06(1H, dd, J=8.4Hz, 2.0Hz), 7.30(1H, d, J=2.0Hz), 7.38(1H, d, J=8.4Hz)

# 実施例281~291

実施例88~94の方法に準じて以下の化合物を得た。

# 実施例 2 8 1

·分子式 : C23H21Cl2N5O3

•収率(%);98

・融点(℃);255~256 (分解)

·Mass m/e : 486(M+1)+

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.36(2H. brm). 1.80(2H. brm). 2.52(1H. m). 3.03(2H. m). 3.78(3H. s).

4.59(2H, d, J=6.0Hz), 4.59(2H, brm), 7.29(1H, d, J=8.8Hz), 7.50(2H, s),

7.75(1H, dd, J=8.8Hz, 1.6Hz), 8.53(1H, d, J=1.6Hz),

8.85(1H, brt, J=6.0Hz), 12.18(1H, brs)

#### 実施例 2 8 2

# 2, 6-ジクロロ-4-(4-エトキシカルボニルピペリジノ) キナゾリン

·分子式 ; C16H17Cl2N3O2

· 収率 (%);100

・融点(℃):101~103

• Mass m/e ; 354(M+1)

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.30(3H, t, J=7.2Hz), 1.99(2H, m), 2.14(2H, m), 2.69(1H, m),

3. 35(2H, dt, J=11. 2Hz, 2. 4Hz), 4. 20(2H, q, J=7. 2Hz).

4.31(2H, dt, J=13.6Hz, 3.6Hz), 7.67(1H, dd, J=8.8Hz, 2.2Hz),

7.76(1H, d, J=8.8Hz), 7.79(1H, d, J=2.2Hz)

# 実施例 2 8 3

2-(N-(2-(2-ピリジル) エチル) ] メチルアミノー<math>4-(3, 4-) チレンジオキシベンジル) アミノー6-クロロキナゾリン 二塩酸塩

·分子式 ; C24H22ClN5O2·2HCl

・収率(%);94

・融点(℃):234~236 (分解)

• Mass  $m/e : 448(M+1)^+$ 

· NMR & (DMSO-de);

3.2~3.3(5H, br). 4.12(2H, br), 4.61(2H, br), 5.97(2H, s),

6.82(1H, brd), 6.88(1H, brd), 7.00(1H, s), 7.74(2H, br),

7.86(1H, dd, J=9.2Hz, 2.0Hz), 8.01(1H, br), 8.26(1H, br),

8.57(1H, d, J=2.0Hz), 8.74(1H, br), 10.16(1H, brs), 12.12(1H, brs)

# 実施例284

2-(4-(カルボキシピペリジノ)-4-(3, 4-ジヒドロキシベンジル) アミノー6-クロロキナゾリン

・分子式 ; C21H21ClN4O4

• 収率(%);95

・融点(℃);216~218 (分解)

• Mass m/e;  $429(MH^+)$ 

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.38~1.47(2H, m), 1.80~1.84(2H, m), 2.44~2.49(1H, m),

2.93~3.00(2H, m), 4.48(2H, d, J=5.6Hz), 4.57~4.61(2H, m),

6.  $60 \sim 6$ . 65(2H, m), 6. 74(1H, d, J=1.6Hz), 7. 24(1H, d, J=8.8Hz).

7.46(1H, dd, J=8.8Hz. 2.0Hz), 8.15(1H, d, J=2.0Hz), 8.48(1H, brs),

8.675(1H,s), 8.75(1H,s), 12.14(1H,brs)

#### 実施例 2 8 5

# 2, 6-ジクロロー4-(5-ヒドロキシペンチル)アミノキナゾリン

·分子式 ; C13H15Cl2N3O

· 収率(%);82

・融点(℃);134~135

• Mass m/e; 300(M+1)+

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.53(2H, m), 1.65(2H, m), 1.76(2H, m), 3.63(2H, m), 3.66(2H, m),

7.61(1H, dd, J=8.8Hz, 2.4Hz), 7.67(1H, d, J=8.8Hz), 7.85(1H, brs).

8.20(1H, d, J=2.4Hz)

#### 実施例286

#### WO 93/07124

# 2-(4-カルボキシピペリジノ)-4-(5-ニトロキシペンチル)アミノー6-クロロキナゾリン

·分子式 ; C19H24ClN5O5

·収率(%);80

・融点(℃);176~179 (分解)

• Mass m/e;  $438(MH^+)$ 

• NMR δ (DMSO-d<sub>6</sub>) ;

1.34~2.00(10H, m), 2.57~2.64(1H, m), 3.18~3.59(4H, m),

4.44~4.58(4H, m), 7.72~7.86(2H, m), 8.39~8.41(1H, m),

12.31(2H, brs)

# 実施例287

2-(カルボキシメチル)メチルアミノ-4-(3-ピリジルメチル)アミノ-6-クロロキナゾリン

·分子式 ; C<sub>17</sub>H<sub>16</sub>ClN<sub>5</sub>O<sub>2</sub>

・収率(%);97

・融点(℃);222~223

• Mass m/e ; 358(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

3.10(3H.s), 4.22(2H.brs), 4.63(2H.brs), 7.31(2H.m), 7.48(1H,m),

7.72(1H, m), 8.14(1H, d, J=2.4Hz), 8.43(1H, d, J=4.8Hz), 8.59(1H, m),

8.66(1H, brs)

#### 実施例288

 $\frac{2-(N-(3-カルボキシプロピル)-N-メチルアミノ)-4-(3-ピリ ジルメチル) アミノー<math>6-クロロキナゾリン$ 

·分子式 ; C18H20ClN5O2

· 収率 (%);41

・融点(℃);110~112

• Mass m/e; 386(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.67(2H, brs), 2.09(2H, m), 3.02(3H, s), 3.53(2H, t, J=6.8Hz),

4. 67(2H, d, J=5. 6Hz), 7. 24(2H, d, J=8. 8Hz), 7. 31(1H, dd, J=8. 0Hz, 4. 8Hz),

7. 47(1H. dd. J=8. 8Hz. 2. 0Hz), 7. 73(1H, d, J=8. 0Hz), 8. 13(1H. d. J=2. 0Hz).

8.41(1H.d.J=4.8Hz), 8.58(1H.s), 8.62(1H.brs), 12.04(1H.brs)

# <u> 実施例289</u>

2-(4-カルボキシピペリジノ)-4-(2-ピリジルメチル) アミノー<math>6-

クロロキナゾリン

C1 N N COOH

·分子式 ; C20H20C1N5O2

·収率(%);92

・融点(℃);235~237

· Mass m/e : 398(M+1)

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.25~1.45(2H, m), 1.71~1.83(2H, m), 2.45~2.54(1H, m),

2.93~3.10(2H, m), 4.37~4.48(2H, m), 4.77(2H, d, J=5.5Hz),

7. 25(1H, dd, J=7.7Hz, 5. 0Hz), 7. 37(1H, d, J=7.7Hz), 7. 48(1H, brs),

7.63(1H, brs), 7.73(1H, td, J=7.7Hz.1.6Hz), 8.34(1H, brs),

8.51(1H, brd, J=5.0Hz), 12.23(1H, brs)

## 実施例 2 9 0

 $2-(4-\pi)$ ルボキシピペリジノ)-4-(3-ピリジルメチル)アミノ-6-クロロキナゾリン

·分子式 ; C20H20ClN5O2

• 収率(%);93

・融点(℃);>250

• Mass m/e; 398(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

1.45~1.60(2H, m), 1.84~1.97(2H, m), 2.58~2.68(1H, m),

3.  $25\sim3$ . 45(2H, m),  $4.45\sim4$ . 54(2H, m), 4.80(2H, d, J=5.7Hz),

7.41(1H, dd, J=7.9Hz. 4.8Hz), 7.82(1H, dd, J=9.0Hz, 2.0Hz).

7.86 $\sim$ 7.96(2H, m), 8.50(1H, d, J=4.8Hz), 8.55(1H, d, J=1.6Hz).

8. 69(1H, s)

#### 実施例291

2-(4-カルボキシピペリジノ)-4-(4-ピリジルメチル)アミノ-6-クロロキナブリン

نتية

·分子式 ; C<sub>2</sub> oH<sub>2</sub> oClN<sub>5</sub>O<sub>2</sub>

· 収率(%);89

・融点(℃);167~168

· Mass m/e ; 398(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.24~1.36(2H, m), 1.68~1.77(2H, m), 2.40~2.49(1H, m),

2.86~2.96(2H, m), 4.42~4.50(2H, m), 4.66(2H, d, J=5.7Hz),

7.28(1H. d. J=9.0Hz), 7.34(2H. d. J=6.0Hz), 7.51(1H. dd, J=9.0Hz, 2.4Hz),

8.18(1H, d, J=2.4Hz), 8.47(2H, d, J=6.0Hz), 8.74(1H, t, J=5.7Hz)

#### 実施例292

2-(6-Eドロキシヘキシルオキシ)-4-(3,4-Xチレンジオキシベンジル)アミノ-6-クロロキナゾリン 860mgをピリジン15mlに溶解し、氷冷下メチルクロリド 570mgを加え、10時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。乾燥後、溶媒を濃縮し、粗2-(6-F)シルオキシヘキシルオキシ)-4-(3,4-Xチレンジオキシベンジル)アミノ-6-クロロキナゾリン 1.2gを得た。

この粗生成物にヨウ化ナトリウム3g、ジメチルホルムアミド30mlを加え、60 ℃で1時間加熱した。水を加え、酢酸エチルで抽出した。有機層を塩化ナトリウ ム水溶液で洗い、乾燥後、濃縮した。シリカゲルカラムクロマトグラフィーで精製し、2-(6-3-ドヘキシルオキシ)-4-(3,4-メチレンジオキシベンジル) アミノ-6-クロロキナゾリン 450mgを得た。

2-(6-3-ドヘキシルオキシ)-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン 410mgをアセトニトリル15mlに懸濁し、硝酸銀 900mgを加え、60°Cで1時間加熱した。水、酢酸エチルを加え、不溶物をセライト濾去し、有機層を分取し、乾燥後、シリカゲルカラムクロマトグラフィーに付し、標題化合物を 340mg得た。

·分子式 ; C<sub>2 2</sub>H<sub>2 3</sub>ClN<sub>4</sub>O<sub>6</sub> (474.5)

· 収率(%);95

・融点(℃);121~122

· Mass ; 475 (MH+)

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.  $42\sim1.59(4H, m)$ , 1.  $70\sim1.89(4H, m)$ , 4. 43(4H, q, J=6.8Hz),

4. 73(2H, d, J=4.4Hz), 5. 95(2H, s), 6. 28(1H, br), 6. 77(1H, d, J=8.0Hz).

6.83(1H, d, J=8.0Hz), 6.85(1H, s), 7.54(1H, d, J=8.8Hz),

7.58(1H, d, J=8.8Hz), 7.66(1H, s)

## <u>実施例293</u>

2-(3-スルホキシプロポキシ)-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン ナトリウム塩

2-(3-ヒドロキシプロポキシ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン1g、三酸化硫黄トリメチルアミン錯体 540 mgをピリジン10mlに懸濁し、室温で一夜攪拌する。酢酸エチルを加え、結晶を遮取する。結晶をメタノールに懸濁し、1N水酸化ナトリウムを加え溶解する。この溶液にエーテルを加えると結晶が析出する。これを遮取して標題化合物を400 mg (32%) 得た。

·分子式 ; C1, H1, ClN3NaO7S (489.5)

・収率(%);32

・融点(℃);190~192 (分解)

• Mass ; 490 (MH+)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) ;

1.90~1.95(2H.m), 3.82(2H,t,J=6.4Hz), 4.28(2H,t,J=6.8Hz),

4.61(2H, d, J=5.6Hz), 5.95(2H, s), 6.84(2H, s), 6.98(1H, s),

7.50(1H, d, J=8.8Hz). 7.64(1H, dd, J=8.8Hz, 2.4Hz), 8.84(1H, d, J=2.4Hz),

8.79(1H, t, J=1.6Hz)

# 実施例294

2-(4-エトキシカルボニルピベリジノ) カルボニル-4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン 塩酸塩

2-カルボキシ-4-(3,4-メチレンジオキシベンジル)アミノ-6-ク

ロロキナゾリン0.78g(2.2ミリモル)、イソニペコチン酸エチル0.50g(3.2ミリモル)のジメチルホルムアミド7μ1溶液に、氷冷攪拌下、シアノリン酸ジエチル0.50ml(3.3ミリモル)のジメチルホルムアミド3ml溶液、トリエチルアミン0.50ml(3.6ミリモル)を順次滴下し、30分間氷冷攪拌した後、室温にて3時間攪拌した。反応液に水を注ぎ、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥した。濾過後、減圧下溶媒を留去し、塩酸-エタノール-エーテルより結晶化させ、標題化合物0.96gを得た。

·分子式 ; C<sub>25</sub>H<sub>25</sub>ClN<sub>4</sub>O<sub>5</sub>·HCl

・収率(%);82

・融点(℃);205~206 (分解)

• Mass m/e ; 497(M+1) \*

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.18(3H, t, J=7.2Hz), 1.51(2H, m), 1.70(1H, m), 1.95(1H, m), 2.66(1H, m),

3.02(1H, m), 3.11(1H. m), 3.62(1H, m), 4.08(2H, q, J=7.2Hz), 4.31(1H, m),

4.71(1H, dd, J=14.9Hz, 6.0Hz), 4.78(1H, dd, J=14.9Hz, 6.0Hz),

5. 97(2H, s), 6. 84(1H, d, J=8. 0Hz), 6. 87(1H, dd, J=8. 0Hz, 1. 2Hz).

6.97(1H, d, J=1.2Hz), 7.82(1H, d, J=9.2Hz), 7.97(1H, dd, J=9.2Hz, 2.0Hz),

8.67(1H, d, J=2.0Hz), 10.13(1H, brs)

#### 実施例 2 9 5

2-(N-(2-スルホエチル) カルバモイル) <math>-4-(3, 4-メチレンジオ キシベンジル) アミノー6-クロロキナゾリン 塩酸塩

2-カルボキシー4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン0.50g(1.4ミリモル)、タウリンナトリウム塩0.28g(1.9ミリモル)のジメチルホルムアミド15ml溶液に、氷冷攪拌下、シアノリン酸ジエチル0.60ml(3.8ミリモル)、トリエチルアミン0.90ml(6.4ミリモル)を順次滴下し、数日間室温攪拌した。反応液に1N塩酸10mlを加え、水を加え、析出晶を濾取し、水で洗った後、風乾し、標題化合物0.61gを得た。

·分子式 ; C10H17ClN4O6S·HCl

• 収率(%);93

· NMR  $\delta$  (DMSO-d<sub>6</sub>);

2.76(2H, t, J=6.4Hz), 3.67(2H, q, J=6.4Hz), 5.01(2H, d, J=5.6Hz),

5.99(2H, s), 6.88(1H, d, J=7.6Hz), 7.05(1H, dd, J=7.6Hz, 1.6Hz),

7.11(1H, d, J=1.6Hz). 8.09(1H, dd, J=8.8Hz, 2.0Hz).

8.13(1H, d, J=8.8Hz), 8.68(1H, d, J=2.0Hz), 9.97(1H, t, J=5.6Hz),

10.55(1H, brs)

# 実施例296

2-(4-シス-カルボキシシクロヘキシル)-4-(3, 4-メチレンジオキ シベンジル)アミノー6-クロロキナゾリン

a) 2-(4-x++)カルボニルシクロヘキシルカルボニル) アミノー 5- クロロベンツアミド

2-アミノ-5-クロロベンツアミド 塩酸塩1.23g、N, N-ジイソプロビ

ルエチルアミン3 ml、テトラヒドロフラン 100mlの混合物に、室温で、4-エトキシカルボニルシクロヘキサンカルボニルクロリド 1.5gを加え、室温で一晩反応させた。水を加え、酢酸エチルで抽出し、水、飽和食塩水で洗った後、硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(30~35%酢酸エチル/ヘキサン)に付し、標題化合物 1.5gを得た。(シス、トランスの混合物)

- b) <u>2-(4-エトキシカルボニルシクロヘキシル)-6-クロロキナゾリン</u> -4-オン
- a)で得た化合物 1.3gをエタノール20m1に懸濁し、そこへ室温でカリウム tープトキシド 320mgを3回に分けて加え、室温で一晩反応させた。反応液を一部濃縮し、水を加え、次いで1 N塩酸 3.5mlを加え、析出した結晶を濾取し、水洗後、五酸化リン上で真空乾燥し、標題化合物1.16gを得た。(シス、トランスの混合物)
- c) <u>2-(4-シス-エトキシカルボニルシクロヘキシル)-4,6-ジクロ</u>ロキナゾリン
- b)で得た化合物 1.0gにオキシ塩化リン20mlを加え、2時間加熱還流した。 反応液を濃縮し、残渣にクロロホルム50mlを加えて溶解し、氷冷した飽和炭酸水 素ナトリウム水溶液に注ぎ、クロロホルム層を取り、水層をクロロホルム30mlで 抽出し、合わせたクロロホルム層は飽和食塩水で洗い、硫酸マグネシウムで乾燥 後、シリカゲルベッドを通して濾過した。シリカゲルは10%酢酸エチル/ヘキサンで洗い、滤液を合わせて濃縮し、残渣をシリカゲルカラムクロマトグラフィー (5%酢酸エチル/ヘキサン)に付し、標題化合物 145mgを得た。
- NMR  $\delta$  (CDCl<sub>3</sub>) :
  - 1.28(3H. t, J=7.2Hz), 1.69~1.78(2H.m), 1.92~2.02(2H.m),
  - 2.05~2.21(4H.m), 2.61~2.68(1H.m), 3.05~3.13(1H.m),

- 4.17(2H, q, J=7.2Hz), 7.83(1H, dd, J=9.2Hz, 2.4Hz), 7.94(1H, d, J=9.2Hz),
- 8.19(1H, d, J=2.4Hz)

同時により極性の高い成分として2-(4-トランス-エトキシカルボニルシクロヘキシル) -4, 6-ジクロロキナゾリン 470mgを得た。

- ·NMR & (CDCl3);
  - 1.28(3H, t, J=7.2Hz). 1.57~1.69(2H, m), 1.71~1.84(2H, m),
  - 2.13~2.24(4H, m), 1.41(1H, tt, J=12.2Hz, 3.5Hz),
  - 2.99(1H, tt, J=12.2Hz, 3.5Hz), 4.15(2H, q, J=7.2Hz),
  - 7.84(1H, dd, J=9.2Hz, 2.4Hz), 7.94(1H, d, J=9.2Hz), 8.20(1H, d, J=2.4Hz)
- d) 2-(4-)スーエトキシカルボニルシクロヘキシル) -4-(3, 4-) メチレンジオキシベンジル) アミノー6-クロロキナゾリン
- c)で得た化合物 145mg、3,4-メチレンジオキシベンジルアミン80mg、トリエチルアミン20μ1、イソプロピルアルコール5mlの混合物を80℃で3時間反応させ、反応液を濃縮し、酢酸エチル-水で抽出した。酢酸エチル層は、水、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(15%酢酸エチル/ヘキサン)に付し、標題化合物190mg を得た。
- ·NMR δ(CDCl<sub>3</sub>);
  - 1.25(3H, t, J=7.2Hz), 1.66~1.75(2H, m), 1.84~1.72(2H, m),
  - 2.05~2.23(4H, m), 2.60~2.66(1H, m), 2.85~2.93(1H, m),
  - 4.15(2H, q, J=7.2Hz), 4.74(2H, d, J=5.6Hz), 5.72(1H, t, J=5.6Hz),
  - 5.96(2H, s), 6.79(1H, d, J=8.0Hz), 6.85~6.90(2H, m), 7.58~7.62(2H, m),
  - 7.74(1H, d, J=9.6Hz)

d)で得られた化合物にエタノール25ml、1N水酸化ナトリウム水溶液2mlを加え、60℃で8時間、さらに加熱還流で3時間反応させた。反応液を室温まで冷却し、1N塩酸水溶液2mlを加え、部分濃縮した。析出した結晶を濾取した後、水、ジエチルエーテルで洗い、五酸化リン上で真空乾燥し、標題化合物 138mgを得た。

·分子式; C23H22ClN3O4

• 収率(%);77

・融点(℃);152~153

• Mass m/e; 440(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.54~1.64(2H, m), 1.66~1.76(2H, m), 1.89~2.02(4H, m),

2.69~2.77(1H, m), 4.63(2H, d, J=5.6Hz), 5.96(2H, s),

6.84(1H, d, J=8.0Hz) 6.89(1H, dd, J=8.0Hz, 1.6Hz), 6.95(1H, d, J=1.6Hz),

7.63(1H, d, J=8.8Hz), 7.71(1H, dd, J=8.8Hz, 2.4Hz), 8.36(1H, d, J=2.4Hz),

8.71(1H, t, J=5.6Hz)

# 実施例 2 9 7

2-(4-hランス-カルボキシシクロヘキシル)-4-(3, 4-メチレンジオキシベンジル) r ミノ-6-クロロキナゾリン

a) 2-(4-h) 2-(1-h) 2-(1-h)

実施例296のc)で得られたトランス異性体 145mgを用い、実施例296のd)と同様の操作を行い、標題化合物 180mgを得た。

- NMR  $\delta$  (CDCl<sub>3</sub>);
  - 1.27(3H, t, J=7.2Hz). 1.54~1.67(2H, m), 1.70~1.83(2H, m).
  - 2.08~2.17(4H, m), 2.39(1H, tt, J=12.2Hz, 3.2Hz),
  - 2.79(1H, tt. J=12.2Hz, 3.2Hz), 4.14(2H, q, J=7.2Hz), 4.76(2H, d, J=5.5Hz),
  - 5.82(1H, t, J=5.5Hz), 5.96(2H, s), 6.79(1H, d, J=7.9Hz).
  - 6.86(1H, dd, J=7.9Hz, 1.6Hz), 6.90(1H, d, J=1.6Hz), 7.59~7.63(2H, m),
  - 7.73(1H, d, J=7.9Hz)
- b) 2-(4-h)ランスーカルボキシシクロヘキシル) -4-(3, 4-x)レンジオキシベンジル) アミノー6-クロロキナゾリン
- a) で得られた化合物を実施例296のe) と同様に加水分解し、標題化合物 163mg を得た。
- ·分子式 ; C23H22ClN3O4
- 収率(%);96
- ・融点(℃);245~246
- Mass m/e : 440(M+1)
- NMR  $\delta$  (DMSO-d<sub>6</sub>) :
  - 1.38~1.50(2H, m), 1.55~1.68(2H, m), 1.94~2.04(4H, m),
  - 2.34(1H, tt, J=11.9Hz, 3.1Hz), 2.60(1H, tt, J=11.9Hz, 3.1Hz),
  - 4.66(2H, d, J=5.7Hz), 5.97(2H, s), 6.85(1H, d, J=8.1Hz),
  - 6.88(1H, dd, J=8.1Hz, 1.5Hz), 6.98(1H, d, J=1.5Hz), 7.63(1H, d, J=9.0Hz),
  - 7.72(1H, dd, J=9.0Hz, 2.4Hz), 8.37(1H, d, J=2.4Hz),
  - 8.71(1H.brt, J=5.7Hz). 12.04(1H,s)

# <u>実施例298</u>

 $\frac{2-(4-1)-2}{2}$   $\frac{2-(4-1)-2}{2}$   $\frac{2-(4-1)-2}{2}$   $\frac{2-(4-1)-2}{2}$ 

4-アミノベンゼン-1, 3-ジカルボキサミド 3.6g、N, N-ジメチルアニリン5ml、テトラヒドロフラン50mlの混合物に4-メトキシカルボニルシクロヘキサンカルボニルクロリド 5.1gを室温で加え、そのまま一晩反応させた。反応液に水を加え、析出した結晶を遮取し、水、ジエチルエーテルで洗った後、乾燥して、標題化合物5.77gを得た。

- b) 2-(4-x++) 2-(4-x++) 2-(4-x++) 2-(4-x++) 2-(4-x++) 2-(4-x++)
- a)で得た化合物 5.7gをメタノール 200mlに懸濁し、カリウム tーブトキシド1.84gを加え、室温で一晩反応させた。反応液に水、濃塩酸を加え、酸性にして、生じた結晶を濾取した後、水、ジエチルエーテルで洗い、乾燥し、標題化合物5.04gを得た。
- c) <u>2-(4-トランス-メトキシカルボニルシクロヘキシル)-4-クロロ</u> -シアノキナゾリン
- b)で得た化合物 2.0g、塩化リチウム 2.0g、オキシ塩化リン40mlの混合物 を 6 時間加熱還流した。反応液中の不溶物を濾去した後、濃縮し、残渣をシリカ ゲルカラムクロマトグラフィー (10%酢酸エチル/ヘキサン) に付し、トランス

体とシス体と分離し、標題化合物を 180mg得た。

- NMR  $\delta$  (CDC1<sub>3</sub>) :
  - 1.57~1.70(2H, m), 1.72~1.84(2H, m), 2.12~2.26(4H, m),
  - 2. 43(1H, tt. J=12. 3Hz. 3. 2Hz). 3.03(1H, tt. J=11. 9Hz. 3.0Hz).
  - 3.71(3H, s). 8.04(1H, dd, J=8.8Hz, 1.6Hz).
  - 8.08(1H, dd, J=8.8Hz, 0.5Hz), 8.62(1H, dd, J=1.6Hz, 0.5Hz)
- d) 2-(4-h) 2-(3-h) 2-(3-h)
- c)で得られた化合物 180mg、3,4-メチレンジオキシベンジルアミン 100mg、トリエチルアミン 200μ1、イソプロピルアルコール5mlの混合物を80℃で1時間反応させた。反応液を濃縮し、酢酸エチルー水で抽出した。酢酸エチル層は飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(10%酢酸エチル/ベンゼン)に付し、標題化合物 157mgを得た。
- ·NMR δ(CDCl<sub>3</sub>) :
  - 1.55~1.68(2H, m). 1.70~1.82(2H, m), 2.10~2.18(4H, m),
  - 2. 42(1H, tt, J=12. 3Hz, 3. 2Hz), 2. 81(1H, tt, J=11. 9Hz, 3. 0Hz), 3. 70(3H, s),
  - 4.78(2H, d, J=5.5Hz), 6.96(2H, s), 6.20(1H, t, J=5.5Hz),
  - 6.80(1H, d, J=7.9Hz), 6.88(1H, dd, J=7.9Hz, 1.6Hz), 6.90(1H, d, J=1.6Hz),
  - 7.82(2H,s), 8.11(1H,s)
- e) 2-(4-h)ランスーカルボキシシクロヘキシル) -4-(3, 4-y) レンジオキシベンジル) アミノー6-シアノキナブリン
- d) で得られた化合物 157mg、1N水酸化ナトリウム水溶液 1ml、メタノール 3ml、テトラヒドロフラン 6mlの混合物を室温で24時間反応させた。1N塩酸 1mlを加え、さらに水 5mlを加えて析出した結晶を滤取し、水洗後、乾燥して、標

題化合物 138mgを得た。

·分子式 ; C24H22N4O4

・収率(%);91

・融点(℃);269~270

· Mass m/e ; 431(M+1)

• NMR  $\delta$  (DMSO-d<sub>6</sub>) :

1.38~1.50(2H,m), 1.55~1.68(2H,m), 1.95~2.04(4H,m),

2.24(1H, tt, J=11.9Hz, 3.1Hz), 2.63(1H, tt, J=11.9Hz, 3.1Hz),

4.68(2H, d, J=5.7Hz), 5.97(2H, s), 6.86(1H, d, J=7.9Hz),

6. 90(1H, dd, J=7. 9Hz, 1. 5Hz), 6. 99(1H, d, J=1. 5Hz), 7. 71(1H, d, J=8. 8Hz),

8.01(1H, dd, J=8.8Hz.1.6Hz), 8.82(1H.d, J=1.6Hz), 8.95(1H, t, J=5.7Hz)

#### 実施例299

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

実施例296と同様の操作で標題化合物を得た。

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.27(3H, t, J=7.1Hz), 3.93(2H, s), 4.22(2H, q, J=7.1Hz),

4.71(2H, d, J=5.5Hz). 5.83(1H, t, J=5.5Hz). 5.96(2H, s),

6.78(1H, d, J=7.9Hz), 6.85(1H, dd, J=7.9Hz, 1.6Hz).

6.89(1H, d, J=1.6Hz), 7.60 $\sim$ 7.65(2H, m), 7.74(1H, d, J=9.0Hz)

- a) で得られた化合物 200mg、エタノール20mlの混合物を氷冷し、ここにアンモニアガスを通じて飽和させ、ゆっくり室温に戻して3日間反応させた。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(0~20%エタノール/酢酸エチル)に付し、標題化合物24mgを得た。

#### 実施例300

2-(4-カルバモイルピペリジノ)-4-(3, 4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 3.8g (0.0086モル)に塩化チオニル75ml、アセトニトリル 150mlを加え、1時間加熱還流した。反応液を減圧下溶媒留去し、残渣に飽和重曹水、トリエチルアミンを加え、酢酸エチルで抽出する。有機層を飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥し、濾過、減圧下溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)にて精製後、クロロホルム-n-ヘキサンより再結晶して、標題化合物 3.1gを

#### 得た。

·分子式 ; C<sub>22</sub>H<sub>20</sub>ClN<sub>5</sub>O<sub>2</sub>

· 収率(%);85

・融点 (℃) ;169 ~170

• NMR  $\delta$  (CDC1<sub>3</sub>);

1.88(2H, m), 1.95(2H, m), 2.87(1H, m), 3.73(2H, m), 4.25(2H, m),

4.67(2H, d, J=5.6Hz), 5.65(1H, t, J=5.6Hz), 5.97(2H, s),

6.79(1H, d, J=8.0Hz), 6.84(1H, dd, J=8.0Hz, 1.6Hz),

6.87(1H, d, J=1.6Hz), 7.39(1H, d, J=8.8Hz), 7.44(1H, d, J=2.4Hz),

7. 46(1H, dd, J=8. 8Hz, 2. 4Hz)

#### 実施例301

2-[4-(1H-テトラゾール-5-イル) ピペリジノ] -4-(3,4-メ チレンジオキンベンジル) アミノー6-クロロキナゾリン 塩酸塩

2-(4-シアノピペリジノ)-4-(3, 4-メチレンジオキシベンジル) アミノ-6-クロロキナゾリン0.50g(0.0012モル)、トリメチルスタニルアジド0.50g(0.0024モル)にトルエン10mlを加え、二昼夜加熱還流した。反応液を減圧下溶媒留去し、残渣をエタノール10mlに懸濁させ、1 N塩酸10mlを加え、数時間室温にて攪拌した。結晶を濾取、水で洗った後、風乾し、標題化合物0.60g

#### を得た。

·分子式 ; C22H21ClN8O2·HCl

· 収率 (%);定量的

・融点(℃);212~214

• Mass m/e;  $465(M+1)^+$ 

- NMR  $\delta$  (DMSO-d<sub>6</sub>);

1.80(2H, m), 2.17(2H, m), 3.45(2H, m), 4.62(2H, m), 4.69(2H, d, J=5.6Hz),

5.97(2H, s), 6.86(1H, d, J=7.6Hz), 6.91(1H, dd, J=7.6Hz, 1.6Hz),

7.01(1H, d, J=1.6Hz), 7.84(1H, dd, J=8.8Hz, 1.6Hz), 7.88(1H, d, J=8.8Hz),

8.51(1H, d, J=1.6Hz), 10.13(1H, brs), 12.28(1H, brs)

#### 実施例302

2-(1H-テトラゾール-5-イル)-4-(3,4-メチレンジオキシベンジル) アミノー<math>6-クロロキナゾリン 塩酸塩

実施例301の方法に準じて標題化合物を得た。

·分子式 ; C17H12C1N7O2・HC1

・収率(%);37

・融点(℃);201~204 (分解)

· Mass m/e ; 382(MH) +

## • NMR $\delta$ (DMSO-d<sub>6</sub>);

4.90(2H, d, J=5.6Hz), 5.97(2H, s), 6.87(1H, d, J=8.0Hz),

6.98(1H, dd, J=8.0Hz, 2.0Hz), 7.11(1H, d, J=2.0Hz), 7.92~7.94(2H, m),

8.60(1H, d, J=1.6Hz), 9.53(1H, brs)

## 実施例303~410

前記のいずれかの方法で、以下に示す化合物を合成した。

## 実施例303

2-クロロー4-(3,4-メチレンジオキシベンジル)アミノー6-メトキシ

## - 7 - シクロペンチルオキシ<u>キナゾリン</u>

·分子式 ; C22H22ClN3O4

・収率(%);88

・融点(℃);176~177

· Mass ; 428(M+1)+

• NMR  $\delta$  (CDCl<sub>3</sub>);

1.64(2H, m), 1.82(2H, m), 1.93(2H, m), 2.02(2H, m), 3.90(3H, s),

4.74(2H, d, J=5.6Hz), 4.85(1H, m), 5.72(1H, t, J=5.6Hz), 5.96(2H, s),

6.79(1H, d, J=7.6Hz), 6.79(1H, s), 6.87(1H, dd, J=7.6Hz, 1.6Hz),

6.90(1H, d, J=1.6Hz), 7.11(1H, s)

| 孙                 |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 響                 |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |
| NMR               | δ (DMSO-d <sub>4</sub> ); 1.70(2H, brs), 1.90(2H, m), 2.54(1H, m) 3.11(2H, m), 3.98(2H, m) 4.40(2H, d, J=6.4Hz), 5.93(2H, s) 6.80(2H, brs), 6.84(1H, brs) 7.02(1H, m), 7.28(1H, m), 7.44(1H, brs) 7.68(1H, d, J=8.8Hz), 12.24(1H, brs) | δ (DMSO-d <sub>s</sub> );<br>1. 36(2H, m), 1. 79(2H, m), 2. 47(1H, m)<br>2. 96(2H, t, J=11. 2Hz)<br>4. 55(2H, d, J=5. 6Hz), 4. 58(2H, m)<br>5. 93(2H, s), 6. 82(2H, s) 6. 92(1H, s)<br>7. 05(1H, dd, J=8. 8Hz, 2. 4Hz)<br>7. 23(1H, d, J=2. 4Hz)<br>8. 00(1H, d, J=8. 8Hz)<br>8. 58(1H, t, J=5. 6Hz), 12. 15(1H, brs) |
| Mass              | 441 (M+1)                                                                                                                                                                                                                              | 441 (M+1)                                                                                                                                                                                                                                                                                                             |
| <b>収</b> 容<br>(%) | 26                                                                                                                                                                                                                                     | 97                                                                                                                                                                                                                                                                                                                    |
| 融点 収率(*C) (%)     | 264-<br>265                                                                                                                                                                                                                            | 258-<br>259                                                                                                                                                                                                                                                                                                           |
| R                 | N—-C00H                                                                                                                                                                                                                                | HIN NH                                                                                                                                                                                                                                                                                                                |
| 924               | NH NH                                                                                                                                                                                                                                  | H000-C00H                                                                                                                                                                                                                                                                                                             |
| R3                | 61                                                                                                                                                                                                                                     | C1                                                                                                                                                                                                                                                                                                                    |
| 実施例               | 304                                                                                                                                                                                                                                    | 305                                                                                                                                                                                                                                                                                                                   |

~

裘

|     | 淅                               | ·                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                       |
|-----|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L   | 鑩                               |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                         |
|     | NMR                             | δ (CDC1 <sub>8</sub> );<br>1. 25(3H, t, J=7. 2Hz), 1. 64-1. 77(2H, m)<br>1. 94-2. 01(2H, m), 2. 52-2. 61(1H, m)<br>3. 04-3. 14(2H, m), 3. 25(3H, s)<br>3. 91(3H, s), 4. 14(3H, q, J=7. 2Hz)<br>4. 72-4. 81(2H, m), 4. 74(2H, s)<br>6. 93(1H, d, J=8. 4Hz)<br>7. 19(1H, dd, J=8. 4Hz, 2. 0Hz)<br>7. 37(1H, d, J=2. 0Hz)<br>7. 43(1H, d, J=8. 4Hz)<br>7. 58(1H, dd, J=8. 4Hz)<br>8. 06(1H, d, J=2. 0Hz) | 5 (DMS0-d <sub>6</sub> ): 1. 35-1. 50(2H, m). 1. 79-1. 86(2H, m) 2. 50-2. 55(1H, m). 2. 99-3. 08(2H, m) 3. 30(3H, s). 4. 54-4. 62(2H, m) 4. 81(2H, s). 5. 98(2H, s) 6. 82(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 87(1H, d, J=8. 0Hz) 7. 33(1H, d, J=2. 4Hz) 7. 71(1H, dd, J=2. 4Hz) 8. 27(1H, d, J=1. 6Hz) 8. 27(1H, d, J=1. 6Hz) |
|     | Mass                            | 494(MH+)                                                                                                                                                                                                                                                                                                                                                                                              | 446(MH+)                                                                                                                                                                                                                                                                                                                |
| £ E | 収率<br>(%)                       | . 66                                                                                                                                                                                                                                                                                                                                                                                                  | 44                                                                                                                                                                                                                                                                                                                      |
|     | 融 点 収率<br>(°C) (%)<br>7モルフィス 93 |                                                                                                                                                                                                                                                                                                                                                                                                       | 196-<br>198                                                                                                                                                                                                                                                                                                             |
|     | Me _N _C1                       |                                                                                                                                                                                                                                                                                                                                                                                                       | Me N O                                                                                                                                                                                                                                                                                                                  |
|     | Rs                              | -N → C00Et                                                                                                                                                                                                                                                                                                                                                                                            | -N-C00H                                                                                                                                                                                                                                                                                                                 |
|     | CN R2                           |                                                                                                                                                                                                                                                                                                                                                                                                       | CN                                                                                                                                                                                                                                                                                                                      |
| #   | <b>秋福室</b> 306                  |                                                                                                                                                                                                                                                                                                                                                                                                       | 307                                                                                                                                                                                                                                                                                                                     |

**∞** 

1424

| 袮                  |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 垂                  |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |
| NMR                | δ (DMSO-d <sub>6</sub> ); 1. 97(2H, quintet, J=7.4Hz) 2. 26(2H, t, J=7.4Hz) 2. 26(2H, t, J=7.4Hz) 2. 72(2H, t, J=7.4Hz) 3. 82(3H, s), 4. 67(2H, d, J=5.7Hz) 7. 08(1H, d, J=8.6Hz) 7. 34(1H, dd, J=8.6Hz) 7. 47(1H, d, J=2.2Hz) 7. 64(1H, d, J=9.0Hz) 7. 74(1H, dd, J=9.0Hz) 8. 37(1H, d, J=5.4Hz) 8. 76(1H, t, J=5.7Hz) | δ (DMSO-d <sub>e</sub> ); 1. 28-1. 88(10H, m), 2. 46-2. 48(1H, m) 2. 91-3. 01(2H, m), 3. 35-3. 42(4H, m) 4. 39(1H, brs), 4. 57-4. 63(2H, m) 7. 22(1H, d, J=8. 8Hz) 7. 43(1H, dd, J=8. 8Hz, 2. 4Hz) 8. 11(1H, brt, J=4. 0Hz) 8. 15(1H, d, J=2. 4Hz) |
| Mass               | 420 (M+1)                                                                                                                                                                                                                                                                                                               | 393 (MH+)                                                                                                                                                                                                                                          |
| 収率(%)              | 66                                                                                                                                                                                                                                                                                                                      | 17                                                                                                                                                                                                                                                 |
| 融 点 収率<br>(°C) (%) | 180-                                                                                                                                                                                                                                                                                                                    | > 250                                                                                                                                                                                                                                              |
|                    | IIN C1                                                                                                                                                                                                                                                                                                                  | HN<br>I                                                                                                                                                                                                                                            |
| جج<br>م            | Н000                                                                                                                                                                                                                                                                                                                    | -N-C00H                                                                                                                                                                                                                                            |
| R2                 | c1                                                                                                                                                                                                                                                                                                                      | C1                                                                                                                                                                                                                                                 |
| <b>张福室</b> . 808   |                                                                                                                                                                                                                                                                                                                         | 309                                                                                                                                                                                                                                                |

တ

裘

| 袮                  |                                                                                                                                                                                                                                                                                                                         | ·                                                                                                                                                                  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 印                  |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                    |
| NMR                | 6 (DMSO);<br>0. 23-0. 29(2H, m). 0. 41-0. 48(2H, m)<br>1. 11-1. 22(1H, m). 1. 40-1. 52(2H, m)<br>1. 81-1. 87(2H, m). 2. 45-2. 52(1H, m)<br>2. 93-3. 01(2H, m). 3. 26-3. 35(2H, m)<br>4. 60-4. 67(2H, m)<br>7. 25(1H, d. J=9. 2Hz)<br>7. 47(1H, dd, J=9. 2Hz)<br>8. 14(1H, m). 8. 16(1H, d. J=2. 4Hz)<br>12. 18(1H, brs) | δ (DMSO-d <sub>6</sub> ); 1.98(2H, m), 2.64(1H, m); 3.89(2H, m), 4.23(2H, brd, J=13.2Hz); 7.71(1H, d, J=8.8Hz); 7.84(1H, dd, J=8.8Hz, 2.0Hz); 7.93(1H, d, J=2.0Hz) |
| Mass               | 361 (MH+)                                                                                                                                                                                                                                                                                                               | 326(M+1)                                                                                                                                                           |
| <b>長を</b> (%)      | 100                                                                                                                                                                                                                                                                                                                     | 43                                                                                                                                                                 |
| 融 点 収率<br>(°C) (%) | > 250                                                                                                                                                                                                                                                                                                                   | 172-<br>174                                                                                                                                                        |
| Re                 | HA I                                                                                                                                                                                                                                                                                                                    | —N——С00Н                                                                                                                                                           |
| Rs                 | — М— СООН                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                 |
| R 2:               | 13                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                                                                 |
| 実施例                | 310                                                                                                                                                                                                                                                                                                                     | 311                                                                                                                                                                |

E E

1 0

HP

| 命            | 塩酸塩                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR          | δ (DMSO-d <sub>4</sub> );<br>1. 60(2H, m), 1.74(2H, m)<br>1. 97(4H, brt, J=15.2Hz), 2. 68(2H, m)<br>3. 32(2H, t, J=11.6Hz)<br>3. 53(2H, t, J=11.6Hz)<br>4. 36(2H, d, J=13.6Hz)<br>4. 57(2H, d, J=13.2Hz)<br>7. 82(1H, d, J=9.2Hz)<br>7. 86(1H, s), 8. 18(1H, d, J=9.2Hz)<br>13. 0(1H, brs) | δ (DMSO-d <sub>6</sub> ); 1. 21(3H, t, J=7. 2Hz), 1. 75(2H, brm) 1. 95(2H, brm), 2. 65(1H, m) 3. 14(2H, brm), 4. 00(2H, brm) 4. 10(2H, q, J=7. 2Hz) 4. 43(2H, d, J=6. 0Hz), 5. 94(2H, s) 6. 80(2H, brs), 6. 91(1H, brs) 7. 34(1H, brd, J=9. 2Hz) 7. 43(1H, brs) 7. 51(1H, dd, J=9. 2Hz) 7. 62(1H, d, J=2. 4Hz) |
| Mass         | 419(M+1)                                                                                                                                                                                                                                                                                   | 469(M+1)                                                                                                                                                                                                                                                                                                       |
| 収率(%)        | 91                                                                                                                                                                                                                                                                                         | 92                                                                                                                                                                                                                                                                                                             |
| 融点 収率(°C)(%) | 260-                                                                                                                                                                                                                                                                                       | 159-<br>160                                                                                                                                                                                                                                                                                                    |
| 88           | N—-                                                                                                                                                                                                                                                                                        | −N—C00Bt                                                                                                                                                                                                                                                                                                       |
| 8. Y.        | нооо(N                                                                                                                                                                                                                                                                                     | N-N-                                                                                                                                                                                                                                                                                                           |
| R            | 13                                                                                                                                                                                                                                                                                         | 13                                                                                                                                                                                                                                                                                                             |
| <b>张福</b> 庭  | 312                                                                                                                                                                                                                                                                                        | 313                                                                                                                                                                                                                                                                                                            |

\_

版

| Г |                                     |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |
|---|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 析                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |
|   | 卷                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |
|   | NMR                                 | δ (DMSO-d <sub>e</sub> ); 1. 75(2H, brm), 1. 94(2H, brm) 2. 56(1H, m), 3. 14(2H, brm) 3. 99(2H, brm), 4. 43(2H, d, J=6. 4Hz) 5. 94(2H, s), 6. 81(2H, brs) 6. 91(1H, brs), 7. 34(1H, brd, J=8. 8Hz) 7. 43(1H, brs) 7. 51(1H, dd, J=8. 8Hz, 2. 4Hz) 7. 62(1H, d, J=2. 4Hz) | δ (DMS0): 1. 22-1. 33(2H, m), 1. 36-1. 51(4H, m) 1. 69-1. 82(4H, m), 2. 25-2. 81(1H, m) 2. 97-3. 06(2H, m), 3. 32-3. 52(4H, m) 4. 29-4. 52(3H, m), 4. 72(2H, brs) 5. 98(2H, s), 6. 80-6. 92(2H, m) 7. 29(1H, d, J=9. 2Hz), 7. 45(1H, dd, J=9. 2Hz), 7. 60(1H, d, J=1. 2Hz) |
|   | Mass                                | 441 (M+1)*                                                                                                                                                                                                                                                               | 527 (MH+)                                                                                                                                                                                                                                                                  |
|   | 収率(%)                               | . 89                                                                                                                                                                                                                                                                     | 89                                                                                                                                                                                                                                                                         |
|   | 融 点 収率<br>(°C) (%)<br>238-<br>(分解点) |                                                                                                                                                                                                                                                                          | 170<br>(分解点)                                                                                                                                                                                                                                                               |
|   | R¢                                  | -N-C00H                                                                                                                                                                                                                                                                  | HO                                                                                                                                                                                                                                                                         |
| - | RPS                                 | N H                                                                                                                                                                                                                                                                      | -N-C00H                                                                                                                                                                                                                                                                    |
|   | R²                                  |                                                                                                                                                                                                                                                                          | C1                                                                                                                                                                                                                                                                         |
| - | 実施例                                 | 314                                                                                                                                                                                                                                                                      | 315                                                                                                                                                                                                                                                                        |

| a - N    | N N N N  |
|----------|----------|
| <u> </u> | <i>)</i> |

##X

|       | _        |                                                                                                                                                                                                                                                                                                                                               |
|-------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 松     | 1        |                                                                                                                                                                                                                                                                                                                                               |
| 雹     |          |                                                                                                                                                                                                                                                                                                                                               |
| NMR   |          | 6 (CDC1 <sub>8</sub> );<br>1. 26(3H, t, J=7. 2Hz)<br>1. 66-1. 77(2H, m), 1. 93-2. 01(2H, m)<br>2. 51-2. 62(1H, m), 3. 09-3. 13(2H, m)<br>3. 23(3H, s), 4. 14(2H, q, J=7. 2Hz)<br>4. 74-4. 80(2H, m), 4. 79(2H, s)<br>5. 98(2H, s), 6. 80-6. 84(3H, m)<br>7. 42(1H, d, J=8. 8Hz)<br>7. 57(1H, dd, J=8. 8Hz, 2. 0Hz),<br>8. 05(1H, d, J=2. 0Hz) |
| 6     | N 0      | 474(MH+)                                                                                                                                                                                                                                                                                                                                      |
| >     | Z.       | 474                                                                                                                                                                                                                                                                                                                                           |
| 収率    | (%)      | 2                                                                                                                                                                                                                                                                                                                                             |
| 凝     | (%) (2.) | 在<br>会<br>受<br>放                                                                                                                                                                                                                                                                                                                              |
| C     | ×        | Me N O                                                                                                                                                                                                                                                                                                                                        |
| . R s |          | -NC00Bt                                                                                                                                                                                                                                                                                                                                       |
| 20    | ¥        | S                                                                                                                                                                                                                                                                                                                                             |
| 実施例   |          | 316                                                                                                                                                                                                                                                                                                                                           |

| 每           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR         | δ (DMSO-d <sub>6</sub> );<br>1.49(2H, m), 1.88(2H, m), 2.53(1H, m)<br>3.08(2H, m), 3.74(3H, s)<br>4.58(2H, d, J=5.2Hz), 4.61(2H, m)<br>6.71(1H, d, J=8.0Hz)<br>6.80(1H, dd, J=8.0Hz), 6.99(1H, d, J=2.0Hz), 7.38(1H, brs)<br>7.56(1H, brs), 8.25(1H, brs)<br>8.86(1H, s), 12.19(1H, brs) | δ (DMSO-d <sub>6</sub> ); 1.48(2H, m), 1.88(2H, m), 2.54(1H, m) 3.10(2H, m), 3.72(3H, s), 4.54(2H, m) 4.56(2H, d, J=5.6Hz) 6.77(1H, dd, J=8.0Hz, 2.0Hz) 6.82(1H, d, J=2.0Hz) 6.84(1H, d, J=8.0Hz) 7.45(1H, brs), 7.60(1H, brs) 8.28(1H, brs), 8.90(1H, s) 12.21(1H, brs) |
| Mass        | 443(M+1) <sup>*</sup>                                                                                                                                                                                                                                                                    | 443(M+1)                                                                                                                                                                                                                                                                 |
| 坂奉(%)       | 定量的                                                                                                                                                                                                                                                                                      | 92                                                                                                                                                                                                                                                                       |
| 融点収率(°C)(%) | 244-<br>245                                                                                                                                                                                                                                                                              | 254-<br>255<br>(分解点)                                                                                                                                                                                                                                                     |
| Re          | HN ONE                                                                                                                                                                                                                                                                                   | HN OMe                                                                                                                                                                                                                                                                   |
| R           | -N ← C00H                                                                                                                                                                                                                                                                                | -и—-соон                                                                                                                                                                                                                                                                 |
| R²          | C1                                                                                                                                                                                                                                                                                       | <b>5</b>                                                                                                                                                                                                                                                                 |
| 実施例         | 317                                                                                                                                                                                                                                                                                      | 318                                                                                                                                                                                                                                                                      |

2 - E.

#X

| NMR  6 (DMS0-d <sub>6</sub> ); 8.71(3H, S), 4.57(2H, d, J=5.6Hz) 6.74(1H, dd, J=8.4Hz, 2.0Hz) 6.84(1H, d, J=8.4Hz) 7.62(1H, d, J=8.8Hz) 7.79(1H, dd, J=8.8Hz) 8.46(1H, dd, J=8.8Hz) 8.46(1H, S), 9.22(1H, t, J=5.6Hz) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| δ (DMS0-d <sub>s</sub> ) 3. 71(3H, s) 6. 74(1H, d, e) 6. 84(1H, d, 7. 62(1H, d, 7. 79(1H, d, d) 8. 46(1H, d, d) 8. 91(1H, s)                                                                                          |
| Mass<br>350(M+1) <sup>→</sup>                                                                                                                                                                                         |
| (%) (%) 28                                                                                                                                                                                                            |
| 融 点 収率<br>(°C) (%)<br>193-<br>194 58                                                                                                                                                                                  |
| Re OH I OMe                                                                                                                                                                                                           |
| C1                                                                                                                                                                                                                    |
| C1 C1                                                                                                                                                                                                                 |
| <b>联</b> 福室 818                                                                                                                                                                                                       |

\* Z-\Z

1 5

嵌

| 松      |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 霉      |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NMR    | δ (CDC1 <sub>s</sub> );<br>1. 26(3H, t, J=7. 2Hz), 1. 72(2H, m)<br>1. 98(2H, m), 2. 56(1H, m), 3. 05(2H, m)<br>3. 88(3H, s), 4. 15(2H, q, J=7. 2Hz)<br>4. 68(2H, d, J=5. 2Hz), 4. 82(2H, m)<br>5. 56(1H, t, J=5. 2Hz), 5. 65(1H, brs)<br>6. 90(3H, m), 7. 39(1H, d, J=8. 8Hz)<br>7. 42(1H, d, J=2. 4Hz)<br>7. 44(1H, dd, J=8. 8Hz, 2. 4Hz) | δ (CDC1 <sub>8</sub> );<br>1. 26(3H, t, J=7, 2Hz), 1. 72(2H, m)<br>1. 97(2H, m), 2. 55(1H, m), 3. 04(1H, m)<br>3. 90(3H, s), 4. 15(2H, q, J=7, 2Hz)<br>4. 66(2H, d, J=5, 2Hz), 4. 80(2H, m)<br>5. 57(1H, t, J=5, 2Hz), 5. 68(1H, brs)<br>6. 83(1H, d, J=8, 0Hz)<br>6. 87(1H, dd, J=8, 0Hz), 7. 38(1H, d, J=2, 0Hz)<br>7. 38(1H, d, J=2, 0Hz), 7. 38(1H, d, J=2, 4Hz)<br>7. 41(1H, d, J=2, 4Hz)<br>7. 43(1H, dd, J=8, 8Hz), 2. 4Hz) |
| Mass   | 471 (M+1) <sup>*</sup>                                                                                                                                                                                                                                                                                                                     | 471(M+1)*                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 収率(%)  | 78                                                                                                                                                                                                                                                                                                                                         | 91.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 融点(*C) | 173-<br>174                                                                                                                                                                                                                                                                                                                                | 170-                                                                                                                                                                                                                                                                                                                                                                                                                               |
| R°     | HN OME                                                                                                                                                                                                                                                                                                                                     | HN OMe                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rs     | -N\C00Et                                                                                                                                                                                                                                                                                                                                   | 1-C00Et                                                                                                                                                                                                                                                                                                                                                                                                                            |
| R²     | C1                                                                                                                                                                                                                                                                                                                                         | <b>C</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 実施例    | 320                                                                                                                                                                                                                                                                                                                                        | 321                                                                                                                                                                                                                                                                                                                                                                                                                                |

| •       |    | <u>8</u>     |
|---------|----|--------------|
| 69      | Z- | $\checkmark$ |
| ъ.<br>- | -≪ | Z            |
|         |    |              |
|         |    | <i>]]</i>    |
| •       | ./ | •            |
| •       | 24 |              |

-

| 备                  | 塩酸塩                                                                                                                                                                                                                                                                       | 祖                                                                                                                                                                                                                                                                    |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR                | δ (DMSO-d <sub>a</sub> ); 1. 53(2H, m), 1. 90(2H, m), 2. 62(1H, m) 3. 29(2H, m), 4. 41(2H, m) 4. 83(2H, d, J=5. 6Hz) 7. 74(1H, d, J=8. 4Hz) 7. 76(1H, dd, J=8. 4Hz) 7. 85(1H, d, J=8. 4Hz) 7. 90(1H, d, J=8. 4Hz) 8. 15(1H, d, J=2. 0Hz) 10. 34(1H, brs), 12. 28(1H, brs) | δ (DMSO-d <sub>4</sub> ); 1.58(2H, m), 1.95(2H, m), 2.63(1H, m) 3.32(2H, m), 4.45(2H, m), 4.62(2H, d, 1=5.2Hz), 5.33(2H, brs) 6.58(1H, dd, 1=8.0Hz, 2.0Hz) 7.13(1H, d, 1=8.0Hz) 7.85(1H, d, 1=8.8Hz) 7.85(1H, d, 1=8.8Hz) 8.51(1H, s), 10.14(1H, brs) 12.22(1H, brs) |
| Mass               | 476(M+1)*                                                                                                                                                                                                                                                                 | 446(M+1)*                                                                                                                                                                                                                                                            |
| <b>坂松</b>          | 66                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                    |
| 融 点 収率<br>(°C) (%) | > 260                                                                                                                                                                                                                                                                     | > 260                                                                                                                                                                                                                                                                |
|                    | HN NO2                                                                                                                                                                                                                                                                    | HIN NH2                                                                                                                                                                                                                                                              |
| Rs                 |                                                                                                                                                                                                                                                                           | -N-C00H                                                                                                                                                                                                                                                              |
| R²                 | 61                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |
| 実施例                | 322                                                                                                                                                                                                                                                                       | 323                                                                                                                                                                                                                                                                  |

| 一杯                 |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                 |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 毎                  |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                 |
| NMR                | δ (DMSO-d <sub>6</sub> ); 1, 20(3H, t, J=7, 2Hz), 1, 57(2H, m) 1, 96(2H, m), 2, 73(1H, m), 3, 31(2H, m) 4, 08(2H, q, J=7, 2Hz), 4, 49(2H, m) 4, 61(2H, d, J=5, 6Hz) 6, 59(1H, dd, J=8, 0Hz) 7, 13(1H, d, J=8, 0Hz) 7, 18(1H, dd, J=9, 2Hz) 7, 85(1H, dd, J=9, 2Hz) 8, 53(1H, d, J=9, 2Hz) 10, 19(1H, brt, J=5, 6Hz) 12, 31(1H, brs) | \$\( \text{OMS0-d}_6 \) :  3.74(3H, \text{S}_1, \text{ 4.58(2H, \text{d}_1) = 5.6Hz} \)  6.70(1H, \text{d}_1 = 8.0Hz} \)  6.75(1H, \text{d}_1 = 8.0Hz} \)  7.00(1H, \text{d}_1 = 1.6Hz} \)  7.61(1H, \text{d}_1 = 8.8Hz} \)  7.78(1H, \text{dd}_1 = 8.8Hz} \)  8.46(1H, \text{d}_1 = 2.4Hz} \)  8.19(1H, \text{t}_1 = 5.6Hz} \) |
| Mass               | 476(M+1)*                                                                                                                                                                                                                                                                                                                           | 350(M+1)                                                                                                                                                                                                                                                                                                                        |
| (%)                | 25                                                                                                                                                                                                                                                                                                                                  | 77                                                                                                                                                                                                                                                                                                                              |
| 融 点 収率<br>(°C) (%) | 218-<br>219<br>(分解点)                                                                                                                                                                                                                                                                                                                | 186-<br>187                                                                                                                                                                                                                                                                                                                     |
| Re                 | HN NH2                                                                                                                                                                                                                                                                                                                              | ни 1                                                                                                                                                                                                                                                                                                                            |
| Rs                 | −N C00Bt                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                              |
| R²                 | 61                                                                                                                                                                                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                              |
| <b>米福</b> 例        | 324                                                                                                                                                                                                                                                                                                                                 | 325                                                                                                                                                                                                                                                                                                                             |

|    |            | 200          |
|----|------------|--------------|
| _  | <u>"</u> ~ | $\checkmark$ |
| å- | ≪          | ~            |
|    | <u> </u>   | ₹(           |
|    |            | //           |
|    | ./_        |              |
| ŝ  |            |              |

∞ —

美

| 備考                | 塩酸塩                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                       |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR               | δ (DMSO-d <sub>6</sub> );<br>1. 198(3H, t, J=7. 2Hz)<br>1. 203(3H, t, J=7. 2Hz), 1. 65(2H, m)<br>1. 78(2H, m), 2. 01(4H, m), 2. 76(1H, m)<br>2. 82(1H, m), 3. 31(2H, m), 3. 55(2H, m)<br>4. 09(2H, q, J=7. 2Hz)<br>4. 10(2H, q, J=7. 2Hz), 4. 41(2H, m)<br>4. 53(2H, m)<br>7. 84(1H, dd, J=8. 8Hz, 1. 6Hz)<br>7. 90(1H, d, J=1. 6Hz)<br>8. 00(1H, d, J=8. 8Hz) | δ (DMSO-d <sub>δ</sub> ); 4. 81 (2H, d, J=5. 6Hz) 7. 67 (1H, d, J=8. 4Hz) 7. 71 (1H, dd, J=8. 4Hz) 7. 74 (1H, dd, J=8. 4Hz) 7. 84 (1H, dd, J=8. 4Hz) 7. 84 (1H, dd, J=8. 4Hz) 8. 11 (1H, d, J=2. 0Hz) 8. 44 (1H, d, J=2. 0Hz) 9. 39 (1H, t, J=5. 6Hz) |
| Mass              | 475(M+1) <sup>*</sup>                                                                                                                                                                                                                                                                                                                                          | 383(M+1)                                                                                                                                                                                                                                              |
| (%)               | 92                                                                                                                                                                                                                                                                                                                                                             | 1.1                                                                                                                                                                                                                                                   |
| 勝点 収率<br>(°C) (%) | 175-<br>176                                                                                                                                                                                                                                                                                                                                                    | 220-<br>221                                                                                                                                                                                                                                           |
| . 24              | -N-C00Bt                                                                                                                                                                                                                                                                                                                                                       | HN<br>I                                                                                                                                                                                                                                               |
| Ω.                | _N—C00Bt                                                                                                                                                                                                                                                                                                                                                       | 61                                                                                                                                                                                                                                                    |
| 2 2               | 13                                                                                                                                                                                                                                                                                                                                                             | 61                                                                                                                                                                                                                                                    |
| 実施例               | 326                                                                                                                                                                                                                                                                                                                                                            | 327                                                                                                                                                                                                                                                   |

.. o. ...

| 命      | 塩酸塩                                                                                                                                                                                                                                                                                                                                    | 塩<br>酸<br>塩                                                                                                                                                                                                                                                                                       |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR    | δ (DMSO-d <sub>6</sub> ): 1. 20(3H, t. J=7. 2Hz), 1.51(2H, m) 1. 89(2H, m), 2. 72(1H, m), 3. 27(2H, m) 4. 08(2H, q. J=7. 2Hz), 4. 44(2H, m) 4. 82(2H, d. J=5. 6Hz) 7. 73(1H, d. J=8. 4Hz) 7. 76(1H, dd. J=8. 4Hz) 7. 85(1H, dd. J=8. 8Hz, 2. 0Hz) 7. 92(1H, d. J=8. 8Hz) 8. 14(1H, d. J=2. 0Hz) 8. 52(1H, d. J=2. 0Hz) 12. 35(1H, brs) | δ (DMSO-d <sub>6</sub> ); 1. 58(2H, m), 1. 95(2H, m), 2. 63(1H, m) 3. 32(2H, m), 4. 45(2H, m) 4. 62(2H, d, J=5. 2Hz), 5. 33(2H, brs) 6. 58(1H, dd, J=8. 0Hz, 2. 0Hz) 7. 13(1H, d, J=2. 0Hz) 7. 13(1H, d, J=8. 0Hz) 7. 85(1H, d, J=8. 8Hz) 7. 85(1H, d, J=8. 8Hz) 10. 14(1H, brs), 12. 22(1H, brs) |
| Mass   | 504(M+1) <sup>+</sup>                                                                                                                                                                                                                                                                                                                  | 446(M+1) <sup>*</sup>                                                                                                                                                                                                                                                                             |
| 収率(%)  | 73                                                                                                                                                                                                                                                                                                                                     | 65                                                                                                                                                                                                                                                                                                |
| 融点(°C) | 230-231                                                                                                                                                                                                                                                                                                                                | > 260                                                                                                                                                                                                                                                                                             |
| R°     | HN N02                                                                                                                                                                                                                                                                                                                                 | HIN I                                                                                                                                                                                                                                                                                             |
| . P.S. | -N - C00Et                                                                                                                                                                                                                                                                                                                             | -N-C00H                                                                                                                                                                                                                                                                                           |
| R2     |                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                                                                                                                                                                                                |
| 実施例    | 328                                                                                                                                                                                                                                                                                                                                    | 329                                                                                                                                                                                                                                                                                               |

| <b>%</b> -⟨ | Z \ Z          |
|-------------|----------------|
| 2×          | <b>&gt;_</b> / |

XIII

| 淅               | *                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 帶               |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                       |
| NMR             | δ (CDCl <sub>s</sub> );<br>1. 95-2. 10(3H, m), 2. 37(1H, m)<br>3. 58(3H, s), 4. 05-4. 20(2H, m)<br>5. 58(1H, m), 5. 93(1H, s), 5. 94(1H, s)<br>6. 78(1H, d, J=8. 4Hz), 6. 84(1H, s)<br>6. 85(1H, d, J=8. 4Hz)<br>7. 30(1H, d, J=10. 0Hz), 7. 35(1H, s)<br>7. 74(1H, d, J=10. 0Hz), 8. 53(1H, s) | δ (DMS0-d <sub>6</sub> );<br>1. 44(2H, m), 1. 82(2H, m), 2. 03(2H, m), 2. 46(1H, m), 2. 94(2H, m), 3. 59(2H, m), 3. 96(2H, t, J=6.0Hz), 4. 62(2H, m), 5. 91(2H, s), 6. 32(1H, dd, J=8. 4Hz, 2. 4Hz), 6. 56(1H, d, J=2. 4Hz), 7. 22(1H, d, J=8. 4Hz), 7. 22(1H, d, J=8. 8Hz), 7. 44(1H, dd, J=8. 8Hz), 7. 44(1H, dd, J=8. 8Hz), 7. 44(1H, brt), 8. 08(1H, d, J=2. 4Hz) |
| Mass            |                                                                                                                                                                                                                                                                                                 | 485(M+1)*                                                                                                                                                                                                                                                                                                                                                             |
| 収率(%)           |                                                                                                                                                                                                                                                                                                 | 83                                                                                                                                                                                                                                                                                                                                                                    |
| 融点収率<br>(°C)(%) | 油块<br>物質                                                                                                                                                                                                                                                                                        | 139-                                                                                                                                                                                                                                                                                                                                                                  |
| Re              |                                                                                                                                                                                                                                                                                                 | O NH NH                                                                                                                                                                                                                                                                                                                                                               |
| R°              | H                                                                                                                                                                                                                                                                                               | -N-C00H                                                                                                                                                                                                                                                                                                                                                               |
| R²              | ОМе                                                                                                                                                                                                                                                                                             | 61                                                                                                                                                                                                                                                                                                                                                                    |
| 実施例             | 330                                                                                                                                                                                                                                                                                             | 331                                                                                                                                                                                                                                                                                                                                                                   |

| 確                  | 塩<br>酸<br>塩                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                            |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR                | δ (DMSO-d <sub>6</sub> ); 1. 18(3H, t, J=7. 2Hz), 1. 59(2H, m) 1. 95(2H, m), 2. 05(2H, m), 2. 72(1H, m) 3. 3(2H, m), 3. 71(2H, m) 3. 98(2H, t, J=6. 0Hz) 4. 07(2H, q, J=7. 2Hz), 4. 48(2H, m) 5. 91(2H, s) 6. 29(1H, dd, J=8. 4Hz, 2. 4Hz) 6. 52(1H, d, J=2. 4Hz) 6. 52(1H, d, J=8. 4Hz), 7. 81(2H, brs) 8. 41(1H, brs), 9. 59(1H, brs) | δ (CDC1 <sub>8</sub> );<br>2. 21(2H, m). 3. 88(2H, m)<br>4. 16(2H, t, J=5. 4Hz), 5. 94(2H, s)<br>6. 39(1H, dd, J=8. 4Hz, 2. 8Hz)<br>6. 56(1H, d, J=2. 8Hz), 6. 72(1H, brs)<br>6. 74(1H, d, J=8. 4Hz)<br>7. 63(1H, dd, J=2. 0Hz)<br>7. 66(1H, dd, J=8. 8Hz, 2. 0Hz)<br>7. 70(1H, d, J=8. 8Hz) |
| Mass               | 513(M+1)                                                                                                                                                                                                                                                                                                                                | 392(M+1) <sup>+</sup>                                                                                                                                                                                                                                                                        |
| (%)                | 97                                                                                                                                                                                                                                                                                                                                      | 87                                                                                                                                                                                                                                                                                           |
| 融 点 収率<br>(°C) (%) | 184-<br>185                                                                                                                                                                                                                                                                                                                             | 148-<br>149                                                                                                                                                                                                                                                                                  |
| R <sup>6</sup>     | HN 0 1                                                                                                                                                                                                                                                                                                                                  | HN O                                                                                                                                                                                                                                                                                         |
| . D.               | -NC00Et                                                                                                                                                                                                                                                                                                                                 | CJ                                                                                                                                                                                                                                                                                           |
| R2                 | . 13                                                                                                                                                                                                                                                                                                                                    | C1                                                                                                                                                                                                                                                                                           |
| 実施例                | 332                                                                                                                                                                                                                                                                                                                                     | 333                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |

| &-≪ | Z-\\ |
|-----|------|
| 22  |      |

8

| 籗           |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                           |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR         | δ (DMSO-d <sub>6</sub> );<br>1.39(2H, m), 1.80(2H, m), 2.47(1H, m)<br>2.96(2H, m), 4.57(2H, m)<br>4.66(2H, d, J=5, 6Hz)<br>7.15-7.45(6H, m)<br>7.48(1H, dd, J=9.2Hz, 1.6Hz)<br>8.17(1H, d, J=1.6Hz), 8.64(1H, brs)<br>12.15(1H, brs) | δ (CDC1 <sub>3</sub> );<br>1. 62-1. 79(2H, m), 1. 96-2. 03(2H, m)<br>1. 57-1. 64(1H, m), 3. 08-3. 18(2H, m)<br>3. 25(3H, s), 3. 91(3H, s)<br>4. 70-4. 79(2H, m), 4. 80(2H, s)<br>6. 93(1H, d, J=8. 4Hz)<br>7. 19(1H, dd, J=8. 4Hz, 2. 0Hz)<br>7. 36(1H, d, J=8. 8Hz)<br>7. 58(1H, dd, J=8. 8Hz)<br>8. 06(1H, d, J=2. 0Hz) |
| Mass        | 397(M+1)*                                                                                                                                                                                                                            | 466(MH+)                                                                                                                                                                                                                                                                                                                  |
| 収率(%)       | 09                                                                                                                                                                                                                                   | 40                                                                                                                                                                                                                                                                                                                        |
| 融点収率(°C)(%) | 240-<br>241<br>(分解点)                                                                                                                                                                                                                 | 176-                                                                                                                                                                                                                                                                                                                      |
| R°          | NH -                                                                                                                                                                                                                                 | Me _N C1                                                                                                                                                                                                                                                                                                                  |
| 202         | -N—-cooн                                                                                                                                                                                                                             | -N-C00H                                                                                                                                                                                                                                                                                                                   |
| R2          | C1                                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                                                                         |
| 実施例         | 334                                                                                                                                                                                                                                  | 335                                                                                                                                                                                                                                                                                                                       |

დ 7

| 龜              |                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                               |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR            | δ (DMSO-d <sub>δ</sub> );<br>3. 42(3H, s), 4. 93(2H, s), 5. 99(2H, s)<br>6. 86(1H, dd, J=8. 0Hz, 1. 6Hz)<br>6. 90(1H, d. J=8. 0Hz)<br>6. 98(1H, d. J=1. 6Hz)<br>7. 73(1H, d. J=8. 4Hz)<br>8. 08(1H, dd, J=8. 4Hz)<br>8. 63(1H, dd, J=2. 0Hz) | δ (DMSO-d <sub>6</sub> ); 3. 44(3H, s), 3. 83(3H, s), 4. 95(2H, s) 7. 13(1H, d, J=8. 8Hz) 7. 34(1H, dd, J=8. 8Hz, 2. 4Hz) 7. 50(1H, d, J=2. 4Hz) 7. 74(1H, d, J=8. 8Hz) 8. 08(1H, dd, J=8. 8Hz) 8. 65(1H, dd, J=1. 6Hz) 8. 65(1H, dd, J=1. 6Hz) |
| Mass           | 353(MH+)                                                                                                                                                                                                                                     | 373(MH+)                                                                                                                                                                                                                                        |
| 収率(%)          | 88                                                                                                                                                                                                                                           | 98                                                                                                                                                                                                                                              |
| 融点 収率(*C)(%)   | 156-<br>158                                                                                                                                                                                                                                  | 173-<br>175                                                                                                                                                                                                                                     |
| R              | Me N I O                                                                                                                                                                                                                                     | Me N C1                                                                                                                                                                                                                                         |
| Rs             | 61                                                                                                                                                                                                                                           | (3)                                                                                                                                                                                                                                             |
| R <sup>2</sup> | ĊN                                                                                                                                                                                                                                           | CN                                                                                                                                                                                                                                              |
| 実施例            | 336                                                                                                                                                                                                                                          | 337                                                                                                                                                                                                                                             |

~

| 松         |                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                          |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |  |
| NMR       | δ (DMSO-d <sub>6</sub> ); 3. 83(3H, s), 4. 75(2H, d, J=5. 6Hz) 7. 10(1H, d, J=8. 4Hz) 7. 38(1H, dd, J=8. 4Hz) 7. 53(1H, dd, J=8. 4Hz) 7. 53(1H, d, J=2. 4Hz) 7. 84(1H, d, J=8. 8Hz) 7. 84(1H, d, J=8. 8Hz) 7. 88(1H, dd, J=8. 8Hz) 8. 50(1H, dd, J=9. 0Hz) 9. 15(1H, brt, J=5. 6Hz) | 5 (DMS0-d <sub>6</sub> ); 1. 97(2H, quintet, J=7. 4Hz) 2. 26(2H, t, J=7. 4Hz) 2. 72(2H, t, J=7. 4Hz) 2. 72(2H, t, J=7. 4Hz) 4. 67(2H, d, J=5. 7Hz) 7. 08(1H, d, J=8. 6Hz) 7. 34(1H, d, J=8. 6Hz) 7. 47(1H, d, J=2. 2Hz) 7. 64(1H, d, J=9. 0Hz) 7. 74(1H, d, J=9. 0Hz) 8. 37(1H, d, J=2. 4Hz) 8. 37(1H, d, J=5. 7Hz) 8. 76(1H, t, J=5. 7Hz) |  |
| Mass      | 378 (M+1)*                                                                                                                                                                                                                                                                          | 420(M+1)*                                                                                                                                                                                                                                                                                                                                  |  |
| 収率(%)     | 93                                                                                                                                                                                                                                                                                  | 66                                                                                                                                                                                                                                                                                                                                         |  |
| 顧 点 (°C)  | 187~<br>188                                                                                                                                                                                                                                                                         | 180-                                                                                                                                                                                                                                                                                                                                       |  |
| R         | HN C1                                                                                                                                                                                                                                                                               | HN C1                                                                                                                                                                                                                                                                                                                                      |  |
| R6 — C00H |                                                                                                                                                                                                                                                                                     | C00H                                                                                                                                                                                                                                                                                                                                       |  |
| R2        | ü                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                          |  |
| 実施例       | 838                                                                                                                                                                                                                                                                                 | 339                                                                                                                                                                                                                                                                                                                                        |  |

|          |         | 10  |
|----------|---------|-----|
|          |         | Š   |
| 9        | 7-      | 1   |
| $\simeq$ | -<      | 7   |
|          | <i></i> | =/  |
|          |         | _// |
|          |         |     |
| •        |         |     |

. 2

至

| 縮      | <b>益</b><br><b>發</b><br><b>占</b>                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR    | δ (DMSO-d <sub>6</sub> );<br>1. 20(3H, t, J=7. 2Hz), 1. 67(2H, m)<br>2. 01(2H, m), 2. 77(1H, m)<br>2. 89(2H, t, J=7. 2Hz), 3. 39(2H, m)<br>3. 75(2H, m), 4. 10(2H, q, J=7. 2Hz)<br>4. 56(2H, m), 5. 96(2H, s)<br>6. 69(1H, dd, J=8. 0Hz, 1. 6Hz)<br>6. 80(1H, d, J=8. 0Hz)<br>6. 86(1H, d, J=1. 6Hz)<br>7. 83(1H, dd, J=8. 8Hz, 2. 4Hz)<br>7. 95(1H, d, J=8. 8Hz)<br>8. 44(1H, d, J=2. 4Hz), 9. 69(1H, brs)<br>12. 34(1H, brs) | δ (DMSO-d <sub>s</sub> ); 1. 50(2H, m), 1. 88(2H, m), 2. 52(1H, m) 2. 86(2H, t, J=7. 4Hz), 3. 03(2H, m) 3. 63(2H, m), 4. 65(2H, m), 5. 96(2H, s) 6. 69(1H, d, J=8. 0Hz) 6. 82(1H, d, J=8. 0Hz), 6. 83(1H, s) 7. 27(1H, d, J=9. 2Hz) 7. 48(1H, dd, J=9. 2Hz) 8. 10(1H, dd, J=2. 4Hz), 8. 17(1H, brs) 12. 19(1H, brs) |
| Mass   | 483(M+1)*                                                                                                                                                                                                                                                                                                                                                                                                                      | 455(M+1) <sup>*</sup>                                                                                                                                                                                                                                                                                               |
| 収率(%)  | 88                                                                                                                                                                                                                                                                                                                                                                                                                             | 75                                                                                                                                                                                                                                                                                                                  |
| 融点(°C) | 173-<br>174                                                                                                                                                                                                                                                                                                                                                                                                                    | 186-<br>187                                                                                                                                                                                                                                                                                                         |
| Re     | HIN O                                                                                                                                                                                                                                                                                                                                                                                                                          | NH NH                                                                                                                                                                                                                                                                                                               |
| Rs     | -N-COOBt                                                                                                                                                                                                                                                                                                                                                                                                                       | -и - соон                                                                                                                                                                                                                                                                                                           |
| R2     | CI                                                                                                                                                                                                                                                                                                                                                                                                                             | C1                                                                                                                                                                                                                                                                                                                  |
| 実施例    | 340                                                                                                                                                                                                                                                                                                                                                                                                                            | 341                                                                                                                                                                                                                                                                                                                 |

R<sup>2</sup>

ယ

2

至

| 备              | 塩酸塩                                                                                                                                                                                                                                                                     | 型<br>型<br>型                                                                                                                                                                                                                                               |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NMR            | δ (DMSO-d <sub>a</sub> );<br>1. 19(3H, t, J=7. 2Hz), 1. 57(2H, m)<br>1. 94(2H, m), 2. 73(1H, m), 3. 31(2H, m)<br>4. 08(2H, q, J=7. 2Hz), 4. 48(2H, m)<br>4. 77(2H, d, J=5. 6Hz)<br>7. 25-7. 45(5H, m), 7. 85(2H, s)<br>8. 52(1H, s), 10. 19(1H, brs)<br>12. 19(1H, brs) | δ (DMSO-d <sub>e</sub> );<br>1. 12(3H, t, J=7. 2Hz), 1. 80(2H, brs)<br>2. 23(2H, brs), 3. 24(3H, s)<br>3. 73(2H, brs), 3. 82(3H, s)<br>3. 99(2H, q, J=7. 2Hz)<br>4. 71(2H, d, J=6. 0Hz)<br>7. 09(1H, d, J=8. 8Hz)<br>7. 35(1H, d, J=8. 4Hz), 7. 48(1H, s) |  |
| Mass           | 425(M+1)*                                                                                                                                                                                                                                                               | 477(H+1) <sup>*</sup>                                                                                                                                                                                                                                     |  |
| (%)            | 95                                                                                                                                                                                                                                                                      | 41                                                                                                                                                                                                                                                        |  |
| 融点 収容(*C)(%)   | 166-                                                                                                                                                                                                                                                                    | 212-<br>213                                                                                                                                                                                                                                               |  |
| ъ.<br>В        | NH<br>NH                                                                                                                                                                                                                                                                | HN C1                                                                                                                                                                                                                                                     |  |
| R°             | -N—coort                                                                                                                                                                                                                                                                | -N<br>-<br>-<br>Me                                                                                                                                                                                                                                        |  |
| R <sup>2</sup> | 13                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                         |  |
| <b>张</b> 插囱    | 342                                                                                                                                                                                                                                                                     | 343                                                                                                                                                                                                                                                       |  |

椒

| 妆              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 锤              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :         |
| NMR            | δ (DMSO-d <sub>6</sub> ); 1. 74(2H, brm), 1. 59(2H, brm) 3. 10(3H, s), 3. 61(2H, t, j=7. 2Hz) 3. 81(3H, s), 4. 61(2H, d, j=5. 6Hz) 7. 07(1H, d, j=8. 4Hz) 7. 31(1H, dd, j=8. 4Hz, 2. 0Hz) 7. 36(1H, brs), 7. 43(1H, d, j=2. 0Hz) 7. 55(1H, brs), 8. 20(1H, brs) 12. 03(1H, brs) 8. 20(1H, brs) 5 (DMSO-d <sub>6</sub> ); 8. 81(3H, s), 4. 71(2H, d, j=5. 6Hz) 7. 55(2H, s), 7. 76(1H, d, j=8. 4Hz) 8. 14(1H, dd, j=8. 4Hz, 2. 0Hz) 9. 49(1H, brt, j=5. 6Hz) 9. 49(1H, brt, j=5. 6Hz) |           |
| Mass           | 449(M+1)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 393(M+1)* |
| 収率<br>(%)      | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 78        |
| 融点収率(°C)(%)    | 140-<br>141                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 248-      |
| R              | HN CI OMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HN C1     |
| R6 - N C00H He |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15        |
| R2 C1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S         |
| <b>联福室</b> 344 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 345       |

| ° | z- | . S. |
|---|----|------|
| 2 |    |      |

∞ ~'

衺

| 每                  |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                        |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR                | δ (DMSO-d <sub>e</sub> ); 1. 17(3H, t, J=7. 2Hz), 1. 36(2H, brm) 1. 82(2H, brm), 2. 62(1H, m) 3. 03(2H, m), 3. 78(3H, s) 4. 05(2H, q, J=7. 2Hz) 4. 59(2H, brd, J=5. 6Hz) 4. 63(2H, brm), 7. 29(1H, d, J=8. 8Hz) 7. 50(2H, s) 7. 50(2H, s) 8. 53(1H, dd, J=8. 8Hz, 2. 0Hz) 8. 53(1H, d, J=2. 0Hz) 8. 86(1H, brt, J=5. 6Hz) | δ (CDC1 <sub>8</sub> ) :<br>1. 25-2. 02(12H, m), 2. 47-2. 57(1H, m)<br>3. 02-3. 18(2H, m), 3. 50-3. 58(2H, m)<br>4. 42(2H, t, J=6. 6Hz)<br>4. 63-4. 74(2H, m), 4. 75(2H, s)<br>5. 47(2H, s), 6. 80-6. 81(3H, m)<br>7. 41(1H, dd, J=8. 0Hz, 2. 0Hz)<br>7. 50(1H, d, J=8. 0Hz)<br>7. 62(1H, d, J=2. 0Hz) |
| Mass               | 514(M+1) <sup>+</sup>                                                                                                                                                                                                                                                                                                     | 572(MH+)                                                                                                                                                                                                                                                                                               |
| 長裕(%)              | 88                                                                                                                                                                                                                                                                                                                        | 19                                                                                                                                                                                                                                                                                                     |
| 融 点 収率<br>('C) (%) | 207-208                                                                                                                                                                                                                                                                                                                   | <b>ን</b>                                                                                                                                                                                                                                                                                               |
| R.                 | HN<br>I OMe                                                                                                                                                                                                                                                                                                               | O <sub>2</sub> NO N <sub>2</sub> O                                                                                                                                                                                                                                                                     |
| R°                 | -N-C00Bt                                                                                                                                                                                                                                                                                                                  | -м∕-Соон                                                                                                                                                                                                                                                                                               |
| R²                 | CN                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                                                                     |
| 実祖例                | 346                                                                                                                                                                                                                                                                                                                       | 847                                                                                                                                                                                                                                                                                                    |

Z Z Z

2 9

寒

| - 教          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 鑩            |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                                                                                                             |
| NMR          | δ (DMSO-d <sub>8</sub> ); 1. 40(2H, m), 1. 72(2H, m), 2. 34(1H, m) 2. 54(2H, t, J=7. 2Hz), 2. 89(2H, m) 3. 31(2H, m), 3. 82(3H, s) 4. 59(2H, d, J=5. 6Hz), 4. 78(2H, m) 7. 09(1H, d, J=8. 4Hz) 7. 28(1H, d, J=8. 4Hz) 7. 32(1H, dd, J=8. 4Hz, 2. 0Hz) 7. 45(1H, d, J=2. 0Hz) 7. 72(1H, dd, J=8. 4Hz, 2. 0Hz) 7. 72(1H, dd, J=2. 0Hz) 7. 74(1H, t, J=5. 6Hz) 8. 54(1H, d, J=2. 0Hz) 8. 54(1H, d, J=2. 0Hz) 8. 77(1H, t, J=5. 6Hz) | δ (DMSO-d <sub>s</sub> ); 1. 38-1. 47(2H, m), 1. 80-1. 84(2H, m) 2. 44-2. 49(1H, m), 2. 93-3. 00(2H, m) 4. 48(2H, d, J=5. 6Hz) 4. 57-4. 61(2H, m), 6. 60-6. 65(2H, m) 6. 74(1H, d, J=1. 6Hz) 7. 24(1H, d, J=8. 8Hz) 7. 46(1H, dd, J=8. 8Hz) 8. 15(1H, d, J=2. 0Hz), 8. 48(1H, brs) 8. 675(1H, s), 8. 75(1H, s) 12. 14(1H, brs) |
| Mass         |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 429 (MH+)                                                                                                                                                                                                                                                                                                                      |
| (%)          | 29                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                |
| 融 点(°C)      | > 250                                                                                                                                                                                                                                                                                                                                                                                                                            | 216-<br>218<br>(分解点)                                                                                                                                                                                                                                                                                                           |
|              | HN<br>-<br>OMe                                                                                                                                                                                                                                                                                                                                                                                                                   | HN I I                                                                                                                                                                                                                                                                                                                         |
| S CZ         | -N H SO.8Na                                                                                                                                                                                                                                                                                                                                                                                                                      | Н00Э—√N—                                                                                                                                                                                                                                                                                                                       |
| R2           | NC                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                                                                                                                                                                                                                                                                                                                             |
| <b>张</b> 相 屋 | 348                                                                                                                                                                                                                                                                                                                                                                                                                              | 349                                                                                                                                                                                                                                                                                                                            |

| 析        | ,                                              |             |                                                                                                                                                                                               |
|----------|------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 每        |                                                |             |                                                                                                                                                                                               |
| NMR      | . \$\( \cup \cup \cup \cup \cup \cup \cup \cup |             | δ (CDC1 <sub>s</sub> ); 1.87(2H, m), 1.99(2H, m), 2.63(1H, m) 3.73(2H, m), 4.00(3H, s), 4.03(3H, s) 4.11(3H, s), 4.58(2H, m), 4.80(1H, s) 5.17(1H, s), 6.14(1H, brs), 6.80(1H, s) 8.59(1H, s) |
| Mass     | 362(M+1)                                       | 376(M+1)*   | 362(M+1) <sup>*</sup>                                                                                                                                                                         |
| 京<br>(%) | 70                                             | 37          | 70                                                                                                                                                                                            |
| (C)      | 163-                                           | 173-<br>174 | 170-<br>171                                                                                                                                                                                   |
| 2        | H NH                                           | HNH NH      | H III                                                                                                                                                                                         |
| R.       | МеО                                            | MeO         | МеО                                                                                                                                                                                           |
| ۳.       | МеО                                            | МеО         | MeO                                                                                                                                                                                           |
| R2       | MeO                                            | MeO         | МеО                                                                                                                                                                                           |
| 実施例      | 350                                            | 351         | 352                                                                                                                                                                                           |

က

KH.

| 妆        |                                                                                                                                                                                               |                                                                                                                                                                                                 |                                                                                                                                                                                  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 鑩        |                                                                                                                                                                                               |                                                                                                                                                                                                 |                                                                                                                                                                                  |
| NMR      | δ (CDC1, ); 1.80(2H, m), 1.97(2H, m)<br>2.07(1H, m), 3.64(2H, m), 3.98(3H, s)<br>4.03(3H, s), 4.10(3H, s), 4.58(2H, m)<br>4.83(1H, s), 5.12(1H, s), 6.24(1H, brs)<br>6.92(1H, s), 8.60(1H, s) | δ (CDCl <sub>8</sub> ); 2. 16(2H, quintet, J=6. 8Hz) 2. 52(1H, t, J=6. 8Hz) 3. 85(2H, dt, J=6. 8Hz, 6. 0Hz) 3. 99(3H, s), 4. 03(3H, s), 4. 10(3H, s) 6. 29(1H, brs), 6. 90(1H, s), 8. 60(1H, s) | δ (CDC1 <sub>s</sub> ); 1.81(2H, m), 1.94(2H, m) 2.47(2H, t, J=6.8Hz) 3.75(2H, dt, J=6.8Hz, 6.0Hz) 4.00(3H, s), 4.03(3H, s), 4.11(3H, s) 5.91(1H, brs), 6.82(1H, s), 8.60(1H, s) |
| Mass     | 376(M+1) <sup>→</sup>                                                                                                                                                                         | 303(M+1)*                                                                                                                                                                                       | 317(M+1)                                                                                                                                                                         |
| 長(%)     | 24                                                                                                                                                                                            | 88                                                                                                                                                                                              | . 94                                                                                                                                                                             |
| 爾 点(°C)  | 143-                                                                                                                                                                                          | 139-                                                                                                                                                                                            | 160-<br>161                                                                                                                                                                      |
| 84<br>84 | HIN                                                                                                                                                                                           | HN                                                                                                                                                                                              | HIN                                                                                                                                                                              |
| <u>~</u> | Me0                                                                                                                                                                                           | MeO                                                                                                                                                                                             | МеО                                                                                                                                                                              |
| . S      | MeO                                                                                                                                                                                           | MeO                                                                                                                                                                                             | MeO                                                                                                                                                                              |
| R 2      | МеО                                                                                                                                                                                           | МеО                                                                                                                                                                                             | MeO                                                                                                                                                                              |
| 実施例      | 353                                                                                                                                                                                           | 354                                                                                                                                                                                             | 355.                                                                                                                                                                             |

R3 R4 R6

裘

3 2

| 魯                 | 9.                                                                                                                                                                      |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR               | δ (CDC1,); 1. 6-1. 8(6H, m), 2. 40(2H, t, J=7. 0Hz) 3. 70(2H, dt, J=7. 0Hz, 5. 6Hz) 4. 00(3H, s), 4. 03(3H, s), 4. 11(3H, s) 6. 00(1H, brs), 6. 84(1H, s), 8. 60(1H, s) |
| Mass              | 331 (N+1)                                                                                                                                                               |
| <b>収率</b><br>(%)  | 75                                                                                                                                                                      |
| 融点 成率<br>(°C) (%) | 155-<br>156 <sup>-</sup>                                                                                                                                                |
| æ                 | HN                                                                                                                                                                      |
| <b>*</b> ≃        | MeO                                                                                                                                                                     |
| R.                | MeO                                                                                                                                                                     |
| R²                | MeO                                                                                                                                                                     |
| 実施例               | 356                                                                                                                                                                     |
|                   |                                                                                                                                                                         |

လ လ

裘

| NH NH | ) N N N N N N N N N N N N N N N N N N N | N Rs |
|-------|-----------------------------------------|------|
| ;     | <b>24</b>                               |      |

|             |                                                                                                                                                                                                                                                                                                                                                      | <del> </del>                                                                                                                                                                                                                                                       |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 析           |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                    |
| 龜           |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                    |
| NMR         | δ (DMSO-d <sub>θ</sub> );<br>0.93(2H, m), 1.18(2H, m), 1.44(1H, m)<br>1.51(2H, m), 1.64(2H, brd, J=12.0Hz)<br>2.18(2H, t, J=7.6Hz), 2.75(2H, brt, J=12.0Hz)<br>4.53(2H, d, J=5.6Hz), 4.73(2H, brd, J=12.8Hz)<br>5.94(1H, s), 6.83(2H, s), 6.93(1H, s)<br>7.22(1H, d, J=8.8Hz)<br>7.45(1H, dd, J=8.8Hz)<br>8.11(1H, d, J=2.4Hz), 8.50(1H, t, J=5.6Hz) | δ (DMSO-d <sub>s</sub> ): 1. 90-1. 95(2H, m), 3. 82(2H, t, J=6. 4Hz) 4. 28(2H, t, J=6. 8Hz), 4. 61(2H, d, J=5. 6Hz) 5. 95(2H, s), 6. 04(2H, s), 6. 13(1H, s) 7. 50(1H, d, J=8. 8Hz) 7. 64(1H, dd, J=8. 8Hz, 2. 4Hz) 8. 54(1H, d, J=2. 4Hz), 8. 75(1H, t, J=1. 6Hz) |
| Mass        | 483(M+1)                                                                                                                                                                                                                                                                                                                                             | 490 (MH+)                                                                                                                                                                                                                                                          |
| 点 収率() (%)  | 85                                                                                                                                                                                                                                                                                                                                                   | 32                                                                                                                                                                                                                                                                 |
| 融点収率(°C)(%) | 225-<br>227                                                                                                                                                                                                                                                                                                                                          | 190-<br>192<br>(分解点)                                                                                                                                                                                                                                               |
| Rs          | -М Соон                                                                                                                                                                                                                                                                                                                                              | 0<br>   0<br>   0<br>   0                                                                                                                                                                                                                                          |
| R²          | C1                                                                                                                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                 |
| 実施例         | 357                                                                                                                                                                                                                                                                                                                                                  | 358                                                                                                                                                                                                                                                                |

|   | 級                   |  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                | 塩酸塩                                                                                                                                                                                                                                                                                                                  |
|---|---------------------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 每 |                     |  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |
|   | NMR                 |  | δ (CDC1, ); 1. 42-1. 59(4H, m), 1. 70-1. 89(4H, m), 4. 43(4H, q, J=6. 8Hz), 4. 73(2H, d, J=4. 4Hz) 5. 95(2H, s), 6. 28(1H, br) 6. 77(1H, d, J=8. 0Hz), 6. 83(1H, d, J=8. 0Hz) 6. 85(1H, s), 7. 54(1H, d, J=8. 8Hz) 7. 58(1H, d, J=8. 8Hz), 7. 66(1H, s) | δ (DMSO-d <sub>6</sub> );<br>2. 66(4H, t, J=4. 8Hz), 3. 66(1H, t, J=4. 8Hz)<br>4. 54(2H, d, J=6. 0Hz), 5. 94(2H, s)<br>6. 83(2H, s), 6. 92(1H, s), 7. 22(1H, d, J=8. 8Hz)<br>7. 46(1H, dd, J=8. 8Hz, 2. 4Hz)<br>8. 12(1H, d, J=2. 4Hz), 8. 51(1H, t, J=6. 0Hz) | δ (DMSO-dε); 1. 58(2H, m), 1. 95(2H, m), 2. 75(1H, m) 3. 3(2H, m), 3. 61(3H, s), 4. 46(2H, m) 4. 65(2H, d, J=5. 6Hz), 5. 96(2H, s) 6. 84(1H, d, J=8. 0Hz) 6. 87(1H, dd, J=8. 0Hz, 1. 2Hz) 6. 97(1H, d, J=1. 2Hz), 7. 78(1H, brd, J=8. 8Hz) 7. 81(1H, brd, J=8. 8Hz), 8. 45(1H, brs) 10. 05(1H, brs), 12. 05(1H, brs) |
|   | Mass                |  | 475(MH+)                                                                                                                                                                                                                                                | 398 (M+1)                                                                                                                                                                                                                                                      | 455(M+1)*                                                                                                                                                                                                                                                                                                            |
|   |                     |  | 95                                                                                                                                                                                                                                                      | 86                                                                                                                                                                                                                                                             | 83                                                                                                                                                                                                                                                                                                                   |
|   | Re 点 版本 Re (*C) (%) |  | 121-<br>122                                                                                                                                                                                                                                             | 173-<br>175                                                                                                                                                                                                                                                    | 233-<br>234                                                                                                                                                                                                                                                                                                          |
|   |                     |  | - 0 V ONO 2                                                                                                                                                                                                                                             | HN                                                                                                                                                                                                                                                             | — N—С00Же                                                                                                                                                                                                                                                                                                            |
|   | R2                  |  | 61                                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                                                                             | 13                                                                                                                                                                                                                                                                                                                   |
|   | 東插例                 |  | 359                                                                                                                                                                                                                                                     | 360                                                                                                                                                                                                                                                            | 361                                                                                                                                                                                                                                                                                                                  |

HIN NO SECOND SE

8 5

器

| #          | h           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | ·<br>물      |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
| 0 2 2      | X 101 V     | δ (DMSO-d <sub>8</sub> ); 1.48(2H, m), 1.64(1H, m), 1.85(1H, m) 2.36(1H, m), 2.96(2H, m), 3.28(1H, m) 4.19(1H, m), 4.64(2H, d, J=5.6Hz) 5.95(2H, s), 6.82(2H, s), 6.93(1H, s) 7.71(1H, brd), 7.79(1H, brd), 8.47(1H, s) 9.04(1H, brs) | δ (CDCl <sub>8</sub> );<br>4. 76(2H, d, J=5. 2Hz), 5. 97(2H, s)<br>6. 15(1H, brs), 6. 80(1H, d, J=8. 0Hz)<br>6. 87(1H, dd, J=8. 0Hz, 1. 6Hz)<br>7. 44(1H, ddd, J=8. 0Hz, 6. 8Hz, 1. 6Hz)<br>7. 66(1H, d, J=8. 0Hz), 7. 74(1H, t, J=6. 8Hz)<br>7. 78(1H, dd, J=6. 8Hz, 1. 6Hz) |
| V o M      | N 0         |                                                                                                                                                                                                                                       | 314(M+1)                                                                                                                                                                                                                                                                      |
| 収率         | (%)         | 12                                                                                                                                                                                                                                    | 94                                                                                                                                                                                                                                                                            |
| 融点         | (%) (D.)    |                                                                                                                                                                                                                                       | 191-<br>192                                                                                                                                                                                                                                                                   |
| <b>5</b> C |             | N - C00H                                                                                                                                                                                                                              | <b>C1</b>                                                                                                                                                                                                                                                                     |
| . D2       | <b>=</b>    | . 13                                                                                                                                                                                                                                  | æ                                                                                                                                                                                                                                                                             |
| Pin 12     | \$ <b>E</b> | 362                                                                                                                                                                                                                                   | 363                                                                                                                                                                                                                                                                           |

| •   | 0,        |
|-----|-----------|
|     | »<br>~_~~ |
| E – |           |
|     |           |

響

| HN | R <sup>2</sup> | i a |
|----|----------------|-----|
|    | ∞ ≃            |     |

8 7

裘

| NMR         | δ (DMSO-d <sub>s</sub> ); 1. 38(2H, m), 1. 79(2H, brd, J=12. 8Hz) 2. 47(1H, m), 2. 94(2H, brt, J=11. 2Hz) 4. 56(2H, d, J=5. 6Hz), 4. 61(2H, m) 5. 93(2H, s), 6. 81(1H, d, J=8. 0Hz) 6. 84(1H, dd, J=8. 0Hz, 1. 6Hz) 7. 24(1H, d, J=1. 6Hz), 7. 04(1H, t, J=8. 4Hz) 7. 24(1H, d, J=8. 4Hz), 7. 48(1H, t, J=8. 4Hz) 7. 98(1H, t, J=8. 4Hz), 8. 47(1H, brs) 12. 13(1H, brs) | δ (DMSO-d <sub>6</sub> );<br>1.12(3H, s), 1.25(2H, m), 1.88(2H, m)<br>3.23(2H, m), 4.20(2H, m), 4.53(2H, d, J=6.0l)<br>5.94(2H, s), 6.83(2H, s), 6.92(1H, s)<br>7.23(1H, d, J=9.2Hz)<br>7.46(1H, dd, J=9.2Hz)<br>8.12(1H, d, J=2.4Hz), 8.53(1H, t, J=6.0Hz) |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mass        | 407(M+1)                                                                                                                                                                                                                                                                                                                                                                 | 455(M+1)                                                                                                                                                                                                                                                    |
| 坂を          | 97                                                                                                                                                                                                                                                                                                                                                                       | 81                                                                                                                                                                                                                                                          |
| 報 点 収録      | 159-<br>161                                                                                                                                                                                                                                                                                                                                                              | 243-<br>245                                                                                                                                                                                                                                                 |
| R°          | -N-C00H                                                                                                                                                                                                                                                                                                                                                                  | -N COOH                                                                                                                                                                                                                                                     |
| R2          | æ                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                                                                                                                                                          |
| <b>张祐</b> 原 | 364                                                                                                                                                                                                                                                                                                                                                                      | 365                                                                                                                                                                                                                                                         |

|   | 響              |                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                       |
|---|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | NMR            | 5 (DMSO-d <sub>4</sub> );<br>1. 66(2H, quintet, J=7. 2Hz)<br>2. 24(2H, t, J=7. 2Hz), 2. 29(2H, t, J=7. 2Hz)<br>2. 35(4H, m), 3. 72(4H, m), 4. 55(2H, d, J=5. 6Hz)<br>5. 95(2H, s), 6. 83(2H, s), 6. 93(1H, s)<br>7. 24(1H, d, J=8. 8Hz)<br>7. 47(1H, dd, J=8. 8Hz, 2. 4Hz)<br>8. 14(1H, d, J=2. 4Hz), 8. 53(1H, t, J=5. 6Hz) | δ (DMSO-d <sub>θ</sub> );<br>2. 79(3H, s), 3. 14(2H, m), 3. 54(2H, m)<br>3. 62(2H, m), 4. 71(2H, d, J=5. 6Hz), 4. 94(2H, m)<br>5. 99(2H, s), 6. 87(1H, d, J=8. 0Hz)<br>6. 94(1H, dd, J=8. 0Hz, 1. 6Hz)<br>7. 03(1H, d, J=1. 6Hz), 7. 87(1H, brd)<br>8. 07(1H, brs), 8. 60(1H, brs), 10. 29(1H, brs)<br>11. 36(1H, brs), 13. 13(1H, brs) |
|   | Mass           | 484(M+1)                                                                                                                                                                                                                                                                                                                     | 定量的 412(M+1) <sup>*</sup>                                                                                                                                                                                                                                                                                                               |
| - | 収率<br>(%)      | 66                                                                                                                                                                                                                                                                                                                           | 定量的                                                                                                                                                                                                                                                                                                                                     |
|   | 融 点 概率<br>(°C) | 174-<br>175                                                                                                                                                                                                                                                                                                                  | 237-239 (分解点)                                                                                                                                                                                                                                                                                                                           |
|   |                | 00Н                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                         |
|   | S S            | - N C00H                                                                                                                                                                                                                                                                                                                     | _N-Me                                                                                                                                                                                                                                                                                                                                   |
|   | R2 R5          | C1 -N_N_C                                                                                                                                                                                                                                                                                                                    | C1 —N—Me                                                                                                                                                                                                                                                                                                                                |
| - | <b>&amp;</b>   |                                                                                                                                                                                                                                                                                                                              | M-N-N-                                                                                                                                                                                                                                                                                                                                  |

|    | 0        |
|----|----------|
|    | ><br>z-( |
| ¥- |          |
|    |          |

გ 8

НX

| 淅          |         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |
|------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 卷          | _       |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |
| NMR        |         | δ (DMSO-d <sub>4</sub> );<br>2. 53(4H, m), 3. 00(2H, brs), 3. 75(4H, m)<br>4. 53(2H, brd, J=6. 0Hz), 5. 94(2H, s)<br>6. 82(2H, brs), 6. 92(1H, s)<br>7. 23(1H, d, J=8. 8Hz), 7. 47(1H, brd, J=8. 8Hz)<br>8. 14(1H, brs), 8. 55(1H, t, J=6. 0Hz) | δ (DMSO-d <sub>6</sub> );<br>2.39(6H, m), 2.56(2H, t, J=7.2Hz)<br>3.71(2H, brs), 4.55(2H, d, J=5.6Hz)<br>1.83(2H, s), 6.93(1H, s), 7.24(1H, d, J=8.8Hz)<br>7.48(1H, dd, J=8.8Hz, 2.4Hz)<br>8.14(1H, d, J=2.4Hz), 8.55(1H, t, J=5.6Hz) | δ (DMSO-d <sub>8</sub> );<br>2.86(2H, t, J=7.2Hz), 3.53(2H, q, J=8.0Hz)<br>4.74(2H, d, J=5.2Hz), 5.97(2H, s)<br>6.86-6.89(2H, m), 7.01(1H, d, J=1.2Hz)<br>7.18-7.32(5H, m), 7.83(1H, d, J=8.8Hz)<br>7.86(2H, dd, J=8.8Hz, 2.0Hz)<br>8.50(1H, d, J=2.0Hz), 8.70(1H, brt, J=5.2Hz)<br>9.02(1H, brt, J=5.0Hz) |
| Mass       |         | 456 (M+1)                                                                                                                                                                                                                                       | 470(M+1)                                                                                                                                                                                                                              | 461 (MH+)                                                                                                                                                                                                                                                                                                  |
| <b>安</b>   |         |                                                                                                                                                                                                                                                 | 06                                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                                                                                                         |
| 衛          | 型<br>35 |                                                                                                                                                                                                                                                 | 174-<br>176                                                                                                                                                                                                                           | 166-<br>169<br>(分解点)                                                                                                                                                                                                                                                                                       |
| 7.5<br>8.6 |         | -NN COOH                                                                                                                                                                                                                                        | HOO2 N-                                                                                                                                                                                                                               | - CONH                                                                                                                                                                                                                                                                                                     |
| . R2       |         | 13                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                    | 13                                                                                                                                                                                                                                                                                                         |
| 実施         | 室       | 368                                                                                                                                                                                                                                             | 369                                                                                                                                                                                                                                   | 370                                                                                                                                                                                                                                                                                                        |

|          | \ <sub>0</sub> |         |
|----------|----------------|---------|
| <u> </u> | $\leq$         |         |
| ~        | <u>/</u> /     | ≟<br>`` |
| ,<br>₹   | $ \langle$     | _{      |
|          |                | _//     |
|          | ~              |         |

တ

铍

| 龜              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                   |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR            | δ (DMSO-d <sub>6</sub> );<br>3. 37(2H, q, J=6. 0Hz), 3. 53(2H, q, J=5. 8Hz)<br>4. 75(2H, d, J=6. 0Hz), 4. 82(1H, t, J=5. 4Hz)<br>5. 97(2H, s), 6. 86(1H, d, J=8. 0Hz)<br>6. 94(1H, dd, J=8. 0Hz, 1. 6Hz)<br>7. 04(1H, d, J=1. 6Hz), 7. 81-7. 88(2H, m)<br>8. 50(1H, d, J=2. 0Hz), 8. 64(1H, t, J=6. 0Hz)<br>9. 04(1H, t, J=6. 0Hz) | δ (DMSO-d <sub>8</sub> ): 0.99(3H, t, J=7.4Hz), 1.79-1.84(2H, m) 4.41(2H, t, J=6.6Hz), 4.83(2H, d, J=5.6Hz) 5.97(2H, s), 6.85(1H, d, J=28.0Hz) 6.93(1H, dd, J=8.0Hz, 1.6Hz) 7.03(1H, d, J=1.6Hz), 7.87(1H, d, J=8.8Hz) 7.91(1H, dd, J=8.8Hz, 2.2Hz) 8.56(1H, d, J=2.2Hz), 8.727(1H, brt, J=5.6Hz) |
| Mass           | 401 (MH+)                                                                                                                                                                                                                                                                                                                          | 424(MH+)                                                                                                                                                                                                                                                                                          |
| 収率(%)          | 42                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                   |
| 融点収率(°C)(%)    | 223-<br>225<br>(分解点)                                                                                                                                                                                                                                                                                                               | 199-<br>201<br>(分解点)                                                                                                                                                                                                                                                                              |
| R®             | - CONH OH                                                                                                                                                                                                                                                                                                                          | -c-0<br>  <br>  N<br>  CN                                                                                                                                                                                                                                                                         |
| R <sup>2</sup> | 10                                                                                                                                                                                                                                                                                                                                 | 61                                                                                                                                                                                                                                                                                                |
| 1, 1           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                   |

|       | ^ | •                                            | •                                             |
|-------|---|----------------------------------------------|-----------------------------------------------|
| 9     |   |                                              |                                               |
|       |   |                                              | 22                                            |
| (     |   | <i>z</i> -                                   | $\langle                                    $ |
| TWI . | Ē | <u>}                                    </u> | $\langle \ \rangle$                           |
|       |   | <u>}_</u>                                    | //                                            |
|       | 2 | =                                            |                                               |

|          | `o<br>/     |
|----------|-------------|
| <u>₹</u> | <br>Z-\<br> |
|          | <u></u>     |

表 4 1

| *   |             |                                                                                                                                                                                                              | !                                                                                                                                                    | 塩酸塩                                                                                                                                                                                                                                                                                                                                                          |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4   | Š           |                                                                                                                                                                                                              |                                                                                                                                                      | #.                                                                                                                                                                                                                                                                                                                                                           |
| aNN | 14171       | δ (DMSO-d <sub>6</sub> );<br>4. 63(2H, d, J=5. 6Hz), 5. 99(2H, s), 6. 87(2H, s)<br>6. 97(1H, s), 7. 57(1H, d, J=8. 8Hz)<br>7. 92(1H, dd, J=8. 8Hz, 2. 0Hz)<br>8. 61(1H, d, J=2. 0Hz), 9. 26(1H, t, J=5. 6Hz) | δ (DMSO-d <sub>6</sub> );<br>4. 65(2H, d, J=5. 6Hz), 5. 99(2H, s), 6. 87(2H, s)<br>6. 97(1H, s), 7.71(2H, m), 8. 17(1H, m)<br>9. 14(1H, t, J=5. 6Hz) | δ (DMSO-d <sub>6</sub> );<br>1.17(3H, t, J=7.2Hz), 1.56(2H, m), 1.94(2H, m)<br>2.72(1H, m), 3.8(2H, m), 4.06(2H, q, J=7.2Hz)<br>4.49(2H, m), 4.64(2H, d, J=6.0Hz), 5.95(2H, s)<br>6.83(1H, d, J=8.0Hz)<br>6.87(1H, dd, J=8.0Hz, 1.6Hz)<br>6.97(1H, d, J=1.6Hz), 7.80(1H, d, J=8.8Hz)<br>7.91(1H, dd, J=8.8Hz, 2.0Hz)<br>8.60(1H, d, J=2.0Hz), 10.10(1H, brs) |
| Mag | 0<br>0<br>d | 392(M+1)*                                                                                                                                                                                                    | 332(M+1)*                                                                                                                                            | 513(M+1)*                                                                                                                                                                                                                                                                                                                                                    |
|     |             | 38                                                                                                                                                                                                           | 89                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                              |
| 収率  | (%)         | 80                                                                                                                                                                                                           | 80                                                                                                                                                   | . 80                                                                                                                                                                                                                                                                                                                                                         |
| 融点  | (°C) (%)    | 213-<br>214                                                                                                                                                                                                  | 192-<br>193                                                                                                                                          | 239-<br>240                                                                                                                                                                                                                                                                                                                                                  |
| 9 0 |             | 61                                                                                                                                                                                                           | 10                                                                                                                                                   | -N—C00Bt                                                                                                                                                                                                                                                                                                                                                     |
| D2  | 4           | Br                                                                                                                                                                                                           | Č.,                                                                                                                                                  | Br                                                                                                                                                                                                                                                                                                                                                           |
| 実特  | 室           | 373                                                                                                                                                                                                          | 374                                                                                                                                                  | 375                                                                                                                                                                                                                                                                                                                                                          |

狹

| 響              |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NMR            | δ (DMSO-d <sub>6</sub> ); 1. 38(2H, m), 1. 79(2H, m), 2. 46(1H, m) 2. 95(2H, m), 4. 53(2H, d, J=6. 0Hz), 4. 58(2H, m) 5. 93(2H, s), 6. 80(1H, d, J=8. 0Hz) 6. 83(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 91(1H, d, J=1. 6Hz), 7. 16(1H, d, J=9. 2Hz) 7. 55(1H, dd, J=9. 2Hz, 2. 4Hz) 8. 24(1H, d, J=2. 4Hz), 8. 52(1H, t, J=6. 0Hz) 12. 13(1H, brs) | δ (CDC1 <sub>8</sub> );<br>1. 62(2H, m), 1. 73(4H, m), 3. 21(4H, t, J=5. 4Hz)<br>4. 76(2H, d, J=5. 2Hz), 5. 80(1H, t, J=5. 2Hz)<br>5. 97(2H, s), 6. 76(1H, d, J=2. 4Hz)<br>6. 81(1H, d, J=8. 0Hz)<br>6. 88(1H, dd, J=8. 0Hz, 1. 2Hz)<br>6. 91(1H, d, J=1. 2Hz)<br>7. 48(1H, dd, J=9. 2Hz, 2. 4Hz)<br>7. 66(1H, d, J=9. 2Hz) |  |
| Mass           | 485(M+1)*                                                                                                                                                                                                                                                                                                                                | 397 (N+1) <sup>+</sup>                                                                                                                                                                                                                                                                                                      |  |
| (%)            | 96                                                                                                                                                                                                                                                                                                                                       | 38                                                                                                                                                                                                                                                                                                                          |  |
| 融点 収率 (*C) (%) | 209-                                                                                                                                                                                                                                                                                                                                     | 200-<br>201                                                                                                                                                                                                                                                                                                                 |  |
| Rs             | нооэ                                                                                                                                                                                                                                                                                                                                     | C1                                                                                                                                                                                                                                                                                                                          |  |
| . Z            | B                                                                                                                                                                                                                                                                                                                                        | ک                                                                                                                                                                                                                                                                                                                           |  |
| 実施例            | 376                                                                                                                                                                                                                                                                                                                                      | 377                                                                                                                                                                                                                                                                                                                         |  |
| <del></del>    |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |  |

| < |      |   |
|---|------|---|
|   |      |   |
|   |      |   |
|   | - Z- | - |

N

芸

|      |    | •   |
|------|----|-----|
|      |    | 'R° |
| KII- | R. |     |
|      |    |     |

| 析          |                                                                                                                                                  |                                                |                                                                                                                                                                                                                                                                                                                                                      |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 穩          | ,<br>1                                                                                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                      |  |
| NMR        | δ (DMSO-d,);<br>2.99(6H, s), 4.63(2H, d, J=6.0Hz), 5.96(2H, s)<br>6.84(2H, s), 6.93(1H, s), 7.20(1H, d, J=2.8Hz)<br>7.37(1H, dd. J=9.2Hz, 2.8Hz) | 7. 46(1H, d, J=9. 2Hz), 8. 84(1H, t, J=6. 0Hz) | δ (DMSO-d <sub>8</sub> );<br>2. 43(2H, t, J=6. 4Hz), 2. 56(2H, t, J=6. 4Hz)<br>3. 46(4H, brs), 3. 71(2H, brs), 3. 77(2H, brs)<br>4. 56(2H, d, J=5. 6Hz), 5. 95(2H, s)<br>6. 83(1H, d, J=8. 0Hz), 6. 86(1H, d, J=8. 0Hz)<br>6. 94(1H, s), 7. 27(1H, d, J=8. 8Hz)<br>7. 50(1H, dd, J=8. 8Hz, 2. 0Hz)<br>8. 16(1H, d, J=2. 0Hz), 8. 61(1H, t, J=5. 6Hz) |  |
| Mass       | 357 (M+1) <sup>+</sup>                                                                                                                           |                                                | 498 (M+1)                                                                                                                                                                                                                                                                                                                                            |  |
| 収率         | 84                                                                                                                                               |                                                | 98                                                                                                                                                                                                                                                                                                                                                   |  |
| を 点 収を (の) | 226-<br>227                                                                                                                                      | (分解点)                                          | 183-                                                                                                                                                                                                                                                                                                                                                 |  |
| Re         | 10                                                                                                                                               |                                                | H000 N -                                                                                                                                                                                                                                                                                                                                             |  |
| R2         | Me N-                                                                                                                                            |                                                | 61                                                                                                                                                                                                                                                                                                                                                   |  |
| 実施         | 378                                                                                                                                              |                                                | 379                                                                                                                                                                                                                                                                                                                                                  |  |

\_ 3 2 1 -

| 析           |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 垂           |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                  |
| NMR         | 5 (DNSO-d <sub>6</sub> ); 3.44(6H, m), 3.73(2H, m), 3.78(2H, m) 4.56(2H, d, J=5.6Hz), 5.93(2H, s) 6.83(1H, d, J=8.0Hz), 6.85(1H, d, J=8.0Hz) 6.94(1H, s), 7.27(1H, d, J=8.8Hz) 7.50(1H, dd, J=8.8Hz, 2.0Hz) 8.16(1H, d, J=2.0Hz), 8.61(1H, t, J=5.6Hz) | δ (CDC1 <sub>3</sub> );<br>1.00(3H, t, J=7.6Hz)<br>1.70(2H, sextet, J=7.6Hz)<br>2.36(2H, t, J=7.6Hz). 3.54(2H, brs)<br>3.69(2H, t, J=4.8Hz). 3.89(2H, t, J=4.8Hz)<br>3.92(2H, brs). 4.68(2H, d, J=5.2Hz)<br>5.65(1H, brs). 5.97(2H, s)<br>6.80(1H, d, J=8.0Hz)<br>6.84(1H, dd, J=8.0Hz). 7.40(1H, m). 7.46(1H, m)<br>7.48(1H, m) |
| Mass        | 484 (M+1)                                                                                                                                                                                                                                              | 468 (M+1)                                                                                                                                                                                                                                                                                                                        |
| 収率<br>(%)   | 85                                                                                                                                                                                                                                                     | 62                                                                                                                                                                                                                                                                                                                               |
| 融点収率(°C)(%) | 193-<br>195                                                                                                                                                                                                                                            | 204-<br>205                                                                                                                                                                                                                                                                                                                      |
| Rs          | H000 N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                               | > 0<br>> 1                                                                                                                                                                                                                                                                                                                       |
| R2          | 13                                                                                                                                                                                                                                                     | C1                                                                                                                                                                                                                                                                                                                               |
| 実施例         | 380                                                                                                                                                                                                                                                    | 381                                                                                                                                                                                                                                                                                                                              |

|      | <b>&gt;</b> |
|------|-------------|
| NH — | R. R.       |
|      |             |

| 籗                  | 型 型                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NMR                | δ (DMSO-d <sub>6</sub> ); 1.58(2H, m), 1.95(2H, m), 2.75(1H, m) 3.3(2H, m), 3.61(3H, s), 4.46(2H, m) 4.65(2H, d, J=5, 6Hz), 5.96(2H, s) 6.84(1H, d, J=8.0Hz), 6.96(2H, s) 6.87(1H, dd, J=8.0Hz, 1.2Hz) 6.97(1H, d, J=1.2Hz), 7.78(1H, brd, J=8.8Hz) 7.81(1H, brd, J=8.8Hz), 8.45(1H, brs) 10.05(1H, brs), 12.05(1H, brs) | δ (CDC1 <sub>8</sub> );<br>1. 25(3H, t, J=7. 2Hz), 1. 54(1H, m), 1. 70(1H, m)<br>1. 78(1H, m), 2. 11(1H, m), 2. 52(1H, m),<br>2. 98(1H, m), 3. 14(1H, m), 4. 15(2H, q, J=7. 2Hz)<br>4. 66(2H, m), 4. 78(1H, m), 4. 98(1H, m)<br>5. 61(1H, brt), 5. 95(2H, s)<br>6. 78(1H, d, J=8. 0Hz)<br>6. 85(1H, dd, J=8. 0Hz)<br>6. 88(1H, dd, J=1. 6Hz), 7. 37-7. 44(3H, m) |  |
| Mass               | 455(M+1) <sup>*</sup>                                                                                                                                                                                                                                                                                                    | 469(M+1)*                                                                                                                                                                                                                                                                                                                                                        |  |
| 収率<br>(%)          | 93                                                                                                                                                                                                                                                                                                                       | 66                                                                                                                                                                                                                                                                                                                                                               |  |
| 融 点 収率<br>(°C) (%) | 233-<br>234                                                                                                                                                                                                                                                                                                              | <b>ፓ</b> ቴ <b>ስ</b> ፓተለ                                                                                                                                                                                                                                                                                                                                          |  |
| R <sup>5</sup> N   |                                                                                                                                                                                                                                                                                                                          | COOEt -N                                                                                                                                                                                                                                                                                                                                                         |  |
| R²                 | 63                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                               |  |
| 実施例                | 382                                                                                                                                                                                                                                                                                                                      | 383                                                                                                                                                                                                                                                                                                                                                              |  |

E NO STATE OF THE STATE OF THE

ž 4

級

|   | 靴                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                          |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 每                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                          |
|   | δ (DMS0-d <sub>6</sub> ); 1. 34(1H, m), 1. 56(1H, m), 1. 65(1H, m) 1. 97(1H, m), 2. 28(1H, m), 2. 85(1H, m) 2. 95(1H, m), 4. 53(2H, m), 4. 57(1H, m) 4. 81(1H, m), 5. 93(2H, s), 6. 78(1H, d, J=8. 0Hz) 6. 84(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 91(1H, d, J=1. 6Hz), 7. 24(1H, d, J=8. 8Hz) 7. 45(1H, dd, J=8. 8Hz, 2. 4Hz) 8. 12(1H, d, J=2. 4Hz), 8. 55(1H, brs) |                      | δ (CDC1 <sub>8</sub> ):<br>3.18(1H, br), 4.75(2H, d, J=5.2Hz)<br>5.97(2H, s), 6.17(1H, br)<br>6.81(1H, d, J=8.4Hz)<br>6.87(1H, dt, J=8.4Hz, 1.6Hz)<br>6.88(1H, d, J=1.6Hz), 7.72(1H, d, J=2.0Hz)<br>7.75(1H, dd, J=8.8Hz, 2.0Hz)<br>7.85(1H, d, J=2.0Hz) |
|   | Mass<br>441(M+1) <sup>+</sup>                                                                                                                                                                                                                                                                                                                                 |                      | 339(M+1)*                                                                                                                                                                                                                                                |
|   | 収率<br>(%)                                                                                                                                                                                                                                                                                                                                                     | 98                   | 35                                                                                                                                                                                                                                                       |
|   | 融点収率(°C)(%)                                                                                                                                                                                                                                                                                                                                                   | 275-<br>276<br>(分解点) | 198-<br>199                                                                                                                                                                                                                                              |
|   | Rs                                                                                                                                                                                                                                                                                                                                                            | C00H                 | NO                                                                                                                                                                                                                                                       |
|   | R²                                                                                                                                                                                                                                                                                                                                                            |                      | 10                                                                                                                                                                                                                                                       |
| · | 実施例                                                                                                                                                                                                                                                                                                                                                           | 384                  | 385                                                                                                                                                                                                                                                      |

| e \ | 0,     |
|-----|--------|
|     | »<br>~ |
| E-  |        |
|     | Z. Z.  |

м 4

| *       | Æ         |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                       |
|---------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 型       | ₹ .       |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                       |
| QXX     | וא ואו גל | δ (CDC1 <sub>3</sub> );<br>2. 59(3H, s), 4. 79(2H, d, J=5. 6Hz)<br>5. 93(2H, s), 6. 77(1H, d, J=8. 0Hz)<br>6. 89(1H, d, J=8. 0Hz), 6. 94(1H, s)<br>7. 62(1H, dd, J=8. 8Hz, 2. 0Hz)<br>7. 75(1H, d, J=8. 8Hz), 7. 97(1H, d, J=2. 0Hz)<br>8. 10(1H, brs), 8. 56(1H, s) | δ (CDCl <sub>s</sub> );<br>2.75(3H, s), 4.80(2H, d, J=5.2Hz)<br>5.96(2H, s), 6.80(1H, d, J=8.0Hz)<br>6.89(1H, d, J=8.0Hz), 6.91(1H, s)<br>7.06(1H, brs), 7.64(1H, d, J=8.8Hz)<br>7.98(1H, d, J=8.8Hz), 8.43(1H, s), 8.74(1H, s) | δ (DMSO-d <sub>θ</sub> );<br>1. 68(2H, m), 3.11(3H, S), 3.40(2H, t, J=6. 2Hz)<br>3. 65(2H, t, J=7. 0Hz), 4. 60(2H, d, J=5. 6Hz)<br>6. 83(1H, d, J=7. 6Hz), 6. 87(1H, dd, J=7. 6Hz, 1. 2Hz)<br>6. 95(1H, dd, J=7. 6Hz, 1. 2Hz)<br>6. 95(1H, d, J=1. 2Hz), 7.31(1H, br)<br>7. 52(1H, br), 8. 19(1H, br) |
| 2 2 3 4 | M s s     | 326(M+H) <sup>→</sup>                                                                                                                                                                                                                                                | 342(M+H) <sup>+</sup>                                                                                                                                                                                                           | 401 (M+1)*                                                                                                                                                                                                                                                                                            |
| 负率      | (%)       | 83                                                                                                                                                                                                                                                                   | 80                                                                                                                                                                                                                              | 7.1                                                                                                                                                                                                                                                                                                   |
| 哥河      | (%) (2.)  | 174-<br>175                                                                                                                                                                                                                                                          | 154-<br>155                                                                                                                                                                                                                     | 154-<br>155                                                                                                                                                                                                                                                                                           |
| 9 Q     | и         | H                                                                                                                                                                                                                                                                    | Н                                                                                                                                                                                                                               | − N ∕ OH<br> <br>  Me                                                                                                                                                                                                                                                                                 |
| 03      | ¥         | MeS                                                                                                                                                                                                                                                                  | 0<br>†<br>-S-Me                                                                                                                                                                                                                 | C1                                                                                                                                                                                                                                                                                                    |
| 张林      | 医         | 386                                                                                                                                                                                                                                                                  | 387                                                                                                                                                                                                                             | 388                                                                                                                                                                                                                                                                                                   |

HI N

7

裳

| 施 成 収率                                                         |   | 垂         |                      |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------|---|-----------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R2 R3 (°C) (%) (%) (°C) (%) (%) (%) (%) (%) (%) (%) (%) (%) (% |   | NMR       | S                    | δ (DMSO-d <sub>θ</sub> ); 4. 62(2H, d, J=5, 6Hz), 5. 47(2H, s), 5. 45(2H, s) 6. 81-6. 82(2H, m), 6. 90(1H, s) 7. 51(2H, d, J=8. 0Hz), 7. 57(1H, d, J=8. 8Hz) 7. 90(2H, d, J=8. 0Hz) 7. 96(1H, dd, J=8. 8Hz, 2. 0Hz) 8. 79(1H, dd, J=2. 0Hz), 9. 10(1H, brt, J=5. 1Hz) | δ (CDC1 <sub>8</sub> );<br>3.92(3H, s), 4.74(2H, d, J=5.2Hz), 5.58(2H, s)<br>5.92-5.99(1H, m), 5.99(2H, s)<br>6.60-6.69(3H, m), 7.57(2H, d, J=8.0Hz)<br>7.70(1H, d, J=8.8Hz)<br>7.80(1H, dd, J=8.8Hz, 1.6Hz)<br>7.95(1H, d, J=1.6Hz), 8.03(2H, d, J=8.0Hz) |
| C1 C1 C1 C2 C00H C5 C00Me                                      | - | Mass      | 334(M+1)*            | 455(MH+)                                                                                                                                                                                                                                                              | 469(MH+)                                                                                                                                                                                                                                                   |
| C1 C1 C1 C2 C00H C5 C00Me                                      |   | 収率<br>(%) | 48                   | 29                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                            |
| C1 C1 C1 C1 C00H                                               |   | 融点(°C)    | 194-<br>195<br>(分解点) | 298-<br>300<br>(分解点)                                                                                                                                                                                                                                                  | 176-                                                                                                                                                                                                                                                       |
|                                                                |   | R°        | <b>C1</b>            | — 0— Соон                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                            |
| <b>報報</b> 389 389 381 381 381 381                              |   | . Z       | 13                   | CS                                                                                                                                                                                                                                                                    | S                                                                                                                                                                                                                                                          |
|                                                                |   | 実施例       | 389                  | 390                                                                                                                                                                                                                                                                   | 391                                                                                                                                                                                                                                                        |

| ₹- | /<br>_{ | N Rs |
|----|---------|------|
|    | .≈<br>  |      |

訊

| 淅                |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 鑩                |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |
| NMR              | δ (DMSO-d <sub>4</sub> ); 1. 39(2H, m), 1. 69(2H, m), 2. 31(1H, m) 2. 54(2H, t, J=7. 2Hz), 2. 82(2H, m) 3. 31(2H, m), 4. 56(2H, d, J=5. 6Hz) 4. 74(2H, m), 5. 96(2H, s), 6. 83(1H, d, J=8. 0Hz) 6. 94(1H, d <sub>4</sub> , J=1. 6Hz), 7. 26(1H, d, J=8. 8Hz) 7. 47(1H, d <sub>4</sub> , J=8. 8Hz), 7. 26(1H, d, J=8. 8Hz) 7. 72(1H, t, J=5. 6Hz), 8. 14(1H, d, J=2. 4Hz) 8. 54(1H, t, J=5. 6Hz) | δ (DMSO-d <sub>6</sub> );<br>1. 01(2H, m), 1. 66(2H, brd, J=13. 2Hz)<br>1. 90(1H, brs), 2. 12(2H, d, J=7. 2Hz)<br>2. 79(2H, brt, J=12. 0Hz)<br>4. 53(2H, d, J=5. 6Hz), 4. 71(2H, brd, J=13. 2Hz)<br>5. 94(2H, s), 6. 82(2H, m), 6. 92(1H, s)<br>7. 22(1H, d, J=8. 8Hz)<br>7. 45(1H, dd, J=8. 8Hz, 2. 4Hz)<br>8. 11(1H, d, J=2. 4Hz), 8. 51(1H, t, J=5. 6Hz) |
| Mass             |                                                                                                                                                                                                                                                                                                                                                                                                 | 455(M+1)                                                                                                                                                                                                                                                                                                                                                    |
| 収率 (%)           | 51                                                                                                                                                                                                                                                                                                                                                                                              | 96                                                                                                                                                                                                                                                                                                                                                          |
| 融点収率<br>(°C) (%) | 230(分解点)                                                                                                                                                                                                                                                                                                                                                                                        | 255-<br>256                                                                                                                                                                                                                                                                                                                                                 |
| . R <sup>5</sup> | - N H SO <sub>s</sub> Na                                                                                                                                                                                                                                                                                                                                                                        | - N C00H                                                                                                                                                                                                                                                                                                                                                    |
| R3               | 61                                                                                                                                                                                                                                                                                                                                                                                              | 61                                                                                                                                                                                                                                                                                                                                                          |
| 実施例              | 382                                                                                                                                                                                                                                                                                                                                                                                             | 393                                                                                                                                                                                                                                                                                                                                                         |

|    | <b>,</b>        |
|----|-----------------|
| E- | )<br>_z_{<br>_z |
|    |                 |

4.9

搬

| 龍州             |           |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |
|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *              | <u> </u>  |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |
| a WN           | VI [4] N. | δ (DMSO-d <sub>8</sub> );<br>3.54(2H, s), 4.66(2H, d, J=5.7Hz)<br>5.97(2H, s), 6.84(1H, d, J=7.9Hz)<br>6.90(1H, dd, J=7.9Hz, 1.6Hz)<br>6.98(2H, brs, d, J=1.6Hz), 7.43(1H, brs)<br>7.66(1H, d, J=9.0Hz)<br>7.76(1H, dd, J=9.0Hz)<br>8.40(1H, d, J=2.2Hz), 8.77(1H, t, J=5.7Hz) | δ (DMSO-d <sub>6</sub> );<br>4.39(2H, d, J=6.0Hz), 4.55(2H, d, J=5.6Hz)<br>5.93(4H, d, J=8.0Hz), 6.77(5H, m)<br>6.80(1H, br), 7.20(2H, br)<br>7.45(1H, dd, J=8.8Hz, 0.8Hz)<br>8.11(1H, d, J=2.4Hz), 8.38(1H, br) |
| Mass           |           | 371 (M+1)                                                                                                                                                                                                                                                                      | 463(M+1)                                                                                                                                                                                                         |
| 点収率            | (%)       | 13                                                                                                                                                                                                                                                                             | 54                                                                                                                                                                                                               |
| 融点             | (%) (D,)  | 222-<br>223                                                                                                                                                                                                                                                                    | 176-<br>177                                                                                                                                                                                                      |
| R <sup>5</sup> |           | CONH2                                                                                                                                                                                                                                                                          | $\left\langle \begin{array}{c} 0 \\ \\ N \end{array} \right\rangle$                                                                                                                                              |
| R <sup>2</sup> |           | 61                                                                                                                                                                                                                                                                             | 13                                                                                                                                                                                                               |
| 実施例            |           | 394                                                                                                                                                                                                                                                                            | 395                                                                                                                                                                                                              |

| 0   | 0               |                |
|-----|-----------------|----------------|
|     | <u>₹</u> }<br>_ | B <sub>6</sub> |
| NH. | _{ <u></u>      |                |
| . • | . B.            | <b>_</b>       |

က

至

|   | N N N N N N N N N N N N N N N N N N N |
|---|---------------------------------------|
| R |                                       |
|   |                                       |

|                    | T                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 靴                  |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                        |  |
| 程                  | 1                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |  |
| NMR                | δ (CDC1,); 3.92(3H, s), 4.74(2H, d, J=5.2Hz), 5.58(2H, s); 5.92-5.99(1H, m), 5.98(2H, s), 6.60-6.69(3H, m), 7.57(2H, d, J=8.0Hz) 7.70(1H, d, J=8.8Hz) 7.80(1H, dd, J=8.8Hz) 7.95(1H, dd, J=1.6Hz) 7.95(1H, dd, J=1.6Hz), 8.03(2H, d, J=8.0Hz) | δ (DMSO-d <sub>e</sub> );<br>4. 62(2H, d, J=5. 6Hz), 5. 47(2H, s), 5. 45(2H, s)<br>6. 81-6. 82(2H, m), 6. 90(1H, s)<br>7. 51(2H, d, J=8. 0Hz), 7. 57(1H, d, J=8. 8Hz)<br>7. 90(2H, d, J=8. 0Hz)<br>7. 91(1H, dd, J=8. 8Hz, 2. 0Hz)<br>8. 79(1H, d, J=2. 0Hz), 9. 10(1H, brt, J=5. 1Hz) |  |
| Mass               | 469 (MH+)                                                                                                                                                                                                                                     | 455 (MH+)                                                                                                                                                                                                                                                                              |  |
| 母(%)               | 35                                                                                                                                                                                                                                            | 29                                                                                                                                                                                                                                                                                     |  |
| 器 点 収略<br>(°C) (%) | 176-                                                                                                                                                                                                                                          | 298-<br>300<br>(分解点)                                                                                                                                                                                                                                                                   |  |
| R°                 | -0—С00Ме                                                                                                                                                                                                                                      | H000)                                                                                                                                                                                                                                                                                  |  |
| R²                 | CN                                                                                                                                                                                                                                            | CN                                                                                                                                                                                                                                                                                     |  |
| 実施例                | 396                                                                                                                                                                                                                                           | 397                                                                                                                                                                                                                                                                                    |  |

| O NI |                | N<br>Re     |
|------|----------------|-------------|
|      | R <sup>2</sup> | <b>&gt;</b> |
| 3    |                |             |

| 析               | 砬                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 癰               | 塩酸塩                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                |
| NMR             | δ (DMSO-d <sub>6</sub> ); 1. 10(6H, s), 1. 11(3H, t, J=7. 2Hz) 1. 76(2H, brs), 3. 22(3H, s), 3. 64(2H, m) 3. 97(2H, q, J=7. 2Hz), 4. 71(2H, d, J=5. 6Hz) 5. 97(2H, s), 6. 84(2H, s), 6. 95(1H, s) 7. 84(1H, dd, J=9. 2Hz, 2. 0Hz) 7. 93(1H, d, J=9. 2Hz), 8. 53(1H, d, J=2. 0Hz) 10. 10(1H, brs), 11. 95(1H, brs) | δ (DMSO-d <sub>8</sub> );<br>1.086(6H, s), 1.66(2H, m), 3.03(3H, s)<br>3.54(2H, m), 4.59(2H, d, J=5.6Hz), 5.94(2H, s)<br>6.82(2H, s), 6.90(1H, s), 7.22(1H, d, J=9.2Hz)<br>7.45(1H, dd, J=9.2Hz, 2.0Hz)<br>8.12(1H, d, J=2.0Hz), 8.46(1H, brs) |
| Mass            | 485 (N+1)                                                                                                                                                                                                                                                                                                         | 457 (M+1)                                                                                                                                                                                                                                      |
| 収率(%)           | 27                                                                                                                                                                                                                                                                                                                | 78                                                                                                                                                                                                                                             |
| 融点収率(°C)(%)     | 236-<br>237                                                                                                                                                                                                                                                                                                       | 240-<br>241<br>(分解点)                                                                                                                                                                                                                           |
| Rs              | Me Me —————————————————————————————————                                                                                                                                                                                                                                                                           | Me Me — — N — COOH   I   Me                                                                                                                                                                                                                    |
| R2 C1           |                                                                                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                             |
| <b>米福</b> 彦 898 |                                                                                                                                                                                                                                                                                                                   | 399                                                                                                                                                                                                                                            |

| -    | Q NZ             | 71741                                 | δ (DMSO-d <sub>6</sub> );<br>1. 05(3H, d, J=6. 0Hz), 1. 51(1H, m), 1. 81(1H, m)<br>2. 26(1H, m), 3. 05(3H, s), 3. 57(2H, m)<br>4. 57(2H, d, J=5. 6Hz), 5. 94(2H, s), 6. 82(2H, s)<br>6. 91(1H, s), 7. 28(1H, d, J=8. 8Hz)<br>7. 46(1H, dd, J=8. 8Hz, 1. 2Hz)<br>8. 13(1H, d, J=1. 2Hz), 8. 49(1H, brs) | δ (CDC1 <sub>8</sub> );<br>2. 85(2H, t, J=7. 0Hz), 3. 72-3. 78(2H, m)<br>4. 85(2H, d, J=5. 2Hz), 5. 84(2H, s)<br>6. 35(1H, brt, J=5. 4Hz), 6. 66(1H, d, J=8. 0Hz) | 6. 82(1H, du, J=0. OHZ, 1. OHZ,<br>6. 82(1H, d, J=1. 6Hz), 7. 18-7. 29(5H, m)<br>7. 61(1H, dd, J=8. 8Hz, 2. 2Hz)<br>7. 69-7. 72(2H, m), 7. 99(1H, br) |
|------|------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 443(M+1)                                                                                                                                                                                                                                                                                               | 485(MH+)                                                                                                                                                          | ·                                                                                                                                                     |
| :    | 点収率              | (%)                                   | 21                                                                                                                                                                                                                                                                                                     | 80                                                                                                                                                                |                                                                                                                                                       |
|      | 强                | (%) (C)                               | 148-<br>150                                                                                                                                                                                                                                                                                            | 180-<br>182                                                                                                                                                       | (分解点)                                                                                                                                                 |
| ₩ Kr | O                | ď                                     | Me COOH                                                                                                                                                                                                                                                                                                | HN-0=2                                                                                                                                                            | NO NO                                                                                                                                                 |
|      | D2               | 4                                     | (3)                                                                                                                                                                                                                                                                                                    | C1                                                                                                                                                                |                                                                                                                                                       |
|      | -                | 金                                     | 400                                                                                                                                                                                                                                                                                                    | 401                                                                                                                                                               |                                                                                                                                                       |
|      |                  |                                       |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                   |                                                                                                                                                       |

辨

鑩

ಬ

表

| 鑩                 |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NMR               | δ (DMSO-d <sub>8</sub> ); 3.77-3.81(2H, m), 4.76(2H, t, J=5.2Hz) 4.92(2H, d, J=6.0Hz), 5.97(2H, s) 6.86(1H, d, J=8.0Hz) 6.97(1H, dd, J=8.0Hz, 2.0Hz) 7.05(1H, d, J=2.0Hz), 7.83(1H, d, J=8.8Hz) 7.92(1H, dd, J=8.8Hz, 2.4Hz) 8.56(1H, d, J=2.4Hz), 9.04(1H, t, J=6.0Hz) 9.4848(1H, t, J=6.0Hz) | δ (DMSO-d <sub>δ</sub> );<br>3. 44-3. 48(2H, m), 3. 56-3. 60(2H, m)<br>4. 37-4. 51(3H, m), 5. 94(2H, s)<br>6. 83(1H, d, J=8. 0Hz)<br>6. 94(1H, dd, J=8. 0Hz, 1. 6Hz)<br>7. 02(1H, dd, J=1. 6Hz), 7. 80(1H, d, J=8. 8Hz)<br>7. 89(1H, dd, J=8. 8Hz, 2. 4Hz)<br>8. 53(1H, d, J=2. 4Hz), 9. 20(1H, br) |  |  |
| Mass              | 470(MH+)                                                                                                                                                                                                                                                                                       | 425 (MH+)                                                                                                                                                                                                                                                                                           |  |  |
| 性点 収率<br>(*C) (%) | 62                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                                                                                                                                  |  |  |
| माः 🔾             |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |  |  |
| 融。                | 169                                                                                                                                                                                                                                                                                            | 243-<br>245<br>(分解点)                                                                                                                                                                                                                                                                                |  |  |
| Re<br>Re          | H<br>- C-N<br>                                                                                                                                                                                                                                                                                 | H 243-<br>   245-<br>   245-<br>                                                                                                                                                                                                                                                                    |  |  |
| 102E              | CN OND 2                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     |  |  |

| H N N N N N N N N N N N N N N N N N N N |
|-----------------------------------------|
| - Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z |

MX CD

| <u></u> |               | -    |
|---------|---------------|------|
| M-      | //<br>-{<br>} | N Rs |
|         | ~<br>~        |      |

| ₩           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 龕           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       |
| NMR         | δ (DMSO-d <sub>6</sub> );<br>4.41(2H, d, J=6.0Hz), 4.66(2H, d, J=5.6Hz)<br>4.84(1H, t, J=6.0Hz), 5.95(2H, s)<br>6.83(1H, d, J=7.6Hz)<br>6.86(1H, dd, J=7.6Hz, 1.6Hz)<br>6.97(1H, d, J=1.6Hz), 7.67(1H, d, J=8.8Hz)<br>7.75(1H, dd, J=8.8Hz, 2.4Hz)<br>8.40(1H, d, J=2.4Hz), 8.78(1H, t, J=5.6Hz) | δ (DMSO-d <sub>6</sub> );<br>1. 97(2H, quintet, J=7. 4Hz)<br>2. 26(2H, t, J=7. 4Hz), 2. 72(2H, t, J=7. 4Hz)<br>4. 65(2H, d, J=5. 7Hz), 5. 97(2H, s)<br>6. 83(1H, d, J=8. 0Hz)<br>6. 88(1H, dd, J=8. 0Hz, 1. 6Hz)<br>6. 96(1H, d, J=1. 6Hz), 7. 63(1H, d, J=9. 0Hz)<br>7. 73(1H, dd, J=2. 2Hz), 8. 72(1H, t, J=5. 7Hz) |
| Mass        | 344 (MH+)                                                                                                                                                                                                                                                                                        | 400 (M+1)                                                                                                                                                                                                                                                                                                             |
|             |                                                                                                                                                                                                                                                                                                  | 97                                                                                                                                                                                                                                                                                                                    |
| 融点収率(°C)(%) | 210<br>213<br>(分解点)                                                                                                                                                                                                                                                                              | 191-<br>. 192                                                                                                                                                                                                                                                                                                         |
| R.          | HO >                                                                                                                                                                                                                                                                                             | НООО                                                                                                                                                                                                                                                                                                                  |
| R2          | ទ                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                     |
| 実施例         | 404                                                                                                                                                                                                                                                                                              | 405                                                                                                                                                                                                                                                                                                                   |

| 盘                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NMR                | δ (DMSO-d <sub>8</sub> );<br>1. 98(2H, quintet, J=7. 4Hz)<br>2. 29(2H, t, J=7. 4Hz), 2. 75(2H, t, J=7. 4Hz),<br>4. 68(2H, d, J=5. 7Hz), 5. 97(2H, s)<br>6. 85(1H, d, J=7. 9Hz)<br>6. 89(1H, dd, J=7. 9Hz, 1. 6Hz)<br>6. 98(1H, d, J=8. 6Hz), 7. 72(1H, d, J=8. 6Hz)<br>8. 02(1H, dd, J=8. 6Hz), 1. 6Hz)<br>8. 84(1H, d, J=1. 6Hz), 8. 96(1H, t, J=5. 7Hz) | δ (DMSO-d <sub>6</sub> );<br>2. 71(2H, t, J=7.1Hz), 2. 96(2H, t, J=7.1Hz)<br>4. 65(2H, d, J=5.7Hz), 5. 97(2H, s)<br>6. 85(1H, d, J=7.9Hz)<br>6. 89(1H, dd, J=7.9Hz, 1. 6Hz)<br>6. 98(1H, d, J=1.6Hz), 7. 62(1H, d, J=9.0Hz)<br>7. 73(1H, dd, J=9.0Hz, 2. 2Hz)<br>8. 39(1H, d, J=3. 2Hz), 8. 73(1H, t, J=5.7Hz) |  |
| Mass               | 391 (M+1)                                                                                                                                                                                                                                                                                                                                                 | 386(M+1)                                                                                                                                                                                                                                                                                                       |  |
| 収率(%)              | 55                                                                                                                                                                                                                                                                                                                                                        | 66                                                                                                                                                                                                                                                                                                             |  |
| 融 点 収率<br>(°C) (%) | 245-<br>246<br>201-<br>202                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                |  |
| R.                 | С00Н                                                                                                                                                                                                                                                                                                                                                      | Н000                                                                                                                                                                                                                                                                                                           |  |
| C R 2              |                                                                                                                                                                                                                                                                                                                                                           | 61                                                                                                                                                                                                                                                                                                             |  |
| <b> </b>           |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                |  |

|     | )<br>/          |
|-----|-----------------|
|     | ><br>z-√<br>z-√ |
| `₹- |                 |
|     |                 |

и×

| 备                | 塩酸塩                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                        |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR              | δ (DMSO-d <sub>6</sub> ); 1. 40 (2H, m), 1. 71 (2H, m), 2. 84 (1H, m) 2. 82 (2H, m), 4. 56 (2H, d, J=5. 6Hz), 4. 74 (2H, m) 5. 95 (2H, s), 6. 73 (1H, brs) 6. 82 (1H, d, J=8. 0Hz), 1. 6Hz) 6. 86 (1H, dd, J=8. 0Hz, 1. 6Hz) 7. 25 (1H, d, J=1. 6Hz), 7. 25 (1H, brs) 7. 25 (1H, d, J=8. 8Hz) 7. 47 (1H, dd, J=8. 8Hz) 8. 14 (1H, d, J=2. 4Hz), 8. 53 (1H, brt, J=5. 6Hz) | δ (DMSO-d <sub>g</sub> );<br>1.27(3H, t, J=7.0Hz), 3.21(3H, s)<br>4.30(2H, q, J=7.0Hz), 4.55(2H, brs)<br>4.97(2H, s), 5.89(2H, s), 6.52-8.42(10H, m)<br>12.20(1H, brs) |
| Mass             | 440(M+1)*                                                                                                                                                                                                                                                                                                                                                                 | 505 (MH+)                                                                                                                                                              |
| 収率(%)            | 79                                                                                                                                                                                                                                                                                                                                                                        | 81                                                                                                                                                                     |
| 融点収率<br>(°C) (%) | 231-<br>232<br>(分解点)                                                                                                                                                                                                                                                                                                                                                      | 215<br>(分解点)                                                                                                                                                           |
| Rs               | -N -CONH2                                                                                                                                                                                                                                                                                                                                                                 | -N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N                                                                                                                                 |
| R2               | C1                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                     |
| 実施例              | 408                                                                                                                                                                                                                                                                                                                                                                       | 409                                                                                                                                                                    |

| R <sup>2</sup> |  |
|----------------|--|

裘

| HN | N. N. N. S. | N R & |
|----|-------------------------------------------------|-------|
|    | 2≈                                              |       |

| 松        |                                                                                                                                                                                                                                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 毎        |                                                                                                                                                                                                                                                                    |
| NMR      | δ (DMSO-d <sub>8</sub> );<br>3.07(2H, s), 4.50(2H, brs), 4.81(2H, s)<br>5.89(2H, s), 6.51-6.88(3H, m)<br>7.22(2H, d, J=8.0Hz), 7.26(1H, d, J=9.2Hz)<br>7.48(1H, dd, J=9.2Hz, 2.4Hz)<br>7.80(2H, d, J=8.0Hz), 8.15(1H, d, J=2.4Hz)<br>8.58(1H, brs), 12.77(1H, brs) |
| Mass     | 91 477(MH+)                                                                                                                                                                                                                                                        |
| (%)      | 91                                                                                                                                                                                                                                                                 |
| 融点 収率    | 279-<br>280<br>(分解点)                                                                                                                                                                                                                                               |
| Rs       | -N<br>   <br>  Me<br>  C00H                                                                                                                                                                                                                                        |
| R 2      | 13                                                                                                                                                                                                                                                                 |
| <b>张</b> | 410                                                                                                                                                                                                                                                                |

### 請求の範囲

1. 下記一般式(1) で表される含窒素複素環化合物またはその薬理学的に許容できる塩。



(式(1) 中、環Aはベンゼン環、ピリジン環又はシクロヘキサン環を意味する。 環Bはピリジン環、ピリミジン環又はイミダゾール環を意味する。

ただし、環Aと環Bは2つの原子を共有して結合しており、その共有する原子は炭素原子でも窒素原子でもよい。

なお、環Aがピリジン環の場合であって、このピリジン環の窒素原子を環B

が共有して結合している場合以外のときは、環Aは R<sup>2</sup>、

R<sup>1</sup> R<sup>2</sup> で示される

 $(0)_n$ 

ものとする。

 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^4$ は同一又は相異なる水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい低級アルキル基、置換されていてもよいシクロアルキル基、低級アルコキシ基、ハイドロキシアルキル基、ニトロ基、シアノ基、

 $\parallel$  アシルアミノ基、保護されていてもよいカルボキシル基、式 $-S-R^7$ (式中、  $R^7$ は低級アルキル基を意味し、nは0又は $1\sim2$ の整数を意味する。)で示さ

 $(0)_{m}$ 

れる基、又は、式-N< $R^{45}$ (式中、 $R^{45}$ 、 $R^{46}$ は同一又は相異なる水素原子

あるいは低級アルキル基を意味する。  $R^{45}$  と $R^{46}$  が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基を意味する。また、 $R^{1}$ 、 $R^{2}$ 、 $R^{3}$ 及び $R^{4}$ のうちの2つが一緒になってメチレンジオキシ、エチレンジオキシ又はフェニル環を形成してもよい。

R<sup>5</sup>は水素原子、ハロゲン原子、水酸基、ヒドラジノ基、低級アルキル基、置換されていてもよいシクロアルキル基、低級アルコキシ基、低級アルケニル基、保護されていてもよいカルボキシアルキル基、保護されていてもよいカルボキシアルケニル基、ハイドロキシアルキル基、保護されていてもよいカルボキシ

ル基、式 $-S-R^8$ (式中、 $R^8$ は低級アルキル基を意味し、mは0又は $1\sim2$ の整数を意味する。)で示される基、式 $-0-R^8$ (式中、 $R^8$ は保護されていてもよいハイドロキシアルキル基、保護されていてもよいカルボキシアルキル基又は置換されていてもよいベンジル基を意味する。)で示される基、式  $-R^{23}$ 

(式中、 $R^{23}$  は水酸基、低級アルキル基、低級アルコキシ基、ハイドロキシアルキル基又はハイドロキシアルキルオキシ基を意味する。)で示される基、置換されていてもよいへテロアリール基、置換されていてもよい 1 、 3 - ベンズジオキソリル基、置換されていてもよい 1 、 4 - ベンズジオキシル基、置換されていてもよい 1 、 4 - ベンズジオキシル基、置換されていてもよい 1 、 4 - ベンズジオキンリルアルキル基、置換されていてもよい 1 、 4 - ベンズジオキシルアルキル基、式 -  $C(R^{24})$  = X (式中、 Xは酸素原子、硫黄原子又は式=N- $R^{10}$  (式中、  $R^{10}$ は水酸基、シアノ基又は保護されて

いてもよいカルボキシアルキルオキシ基を意味する。)で示される基を意味し、 $R^{24}$ は水素原子又は低級アルキル基を意味する。〕で示される基、又は式 $-NR^{11}R^{12}$ (式中、 $R^{11}$ 、 $R^{12}$  は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アルキルカルバモイル基、保護されていてもよいカルボキシアルキルカルバモイル基、置換されていてもよいヘテロアリールアルキル基、1,3-ベンズオキソリルアルキル基又は1, $4-ベンズジオキシルアルキル基を意味する。さらに、<math>R^{11}$ と $R^{12}$ が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基を意味する。

R<sup>6</sup>は水素原子、ハロゲン原子、水酸基、アミノ基、低級アルキル基、低級アルコキシ基、低級アルケニル基、1,3-ベンズジオキソリルアルキルオキシ基、1,4-ベンズジオキシルアルキルオキシ基、置換されていてもよいフェ

ニルアルキルオキシ基、式
$$-N$$
  $R^{13}$   $($ 式中、 $R^{13}$  、 $R^{14}$  は同 $-$ 又

は相異なる水素原子、低級アルキル基又は低級アルコキシ基を意味する。さらに、 $R^{13}$ 、 $R^{14}$ は一緒になってメチレンジオキシ又はエチレンジオキシを形成

していてもよい。)で示される基、式
$$-N$$
 で示される基、 $R^{15}$   $R^{15}$   $R^{16}$ 

$$R^{16}$$
で示される基(これらの式中、  $R^{16}$ 、  $R^{16}$ は、同一又は相異

なる水素原子、低級アルキル基又は低級アルコキシ基を意味する。さらに  $R^{16}$  と  $R^{16}$ は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)、ピペリジン-4-スピロ-2'-ジオキサン-1-イル基、式

$$-Z$$
-(CH<sub>2</sub>)。 $R^{4\,8}$  (式中、  $R^{4\,8}$ 、  $R^{4\,9}$  は同一又は相異なる水素原子、

低級アルキル基又は低級アルコキシ基を意味する。さらに、R<sup>48</sup>とR<sup>49</sup>は、一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。 Zは

硫黄原子又は酸素原子を意味する。)で示される基、式-N R<sup>50</sup> (式中、

R<sup>50</sup> は水酸基、ハロゲン原子、低級アルキル基、低級アルコキシ基、保護されていてもよいカルボキシル基、シアノ基、ハイドロキシアルキル基又はカルボ

キシアルキル基を意味する。)で示される基、式 $-N-Y-R^{18}$  〔式中、 $R^{17}$  は水素原子、低級アルキル基、アシル基、低級アルコキシアルキル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 Yは式 $-(CH_2)$ 。 (式中、qは0又は $1\sim8$ の整数を意味する)で示され

る基、又は式-C-で示される基を意味する。さらに式 $-(CH_2)$ 。-で示される基において、qが $1\sim8$ の整数のとき、それぞれの炭素は $1\sim2$  個の置換基を有していてもよい。 $R^{18}$  は水素原子、水酸基、保護されていてもよいカルボキシル基、シアノ基、アシル基、置換されていてもよいヘテロアリール基又は置換

されていてもよいシクロアルキル基を意味する。〕で示される基、又は

$$R^{19}$$
 式  $-N^{-}(CH_2)_r$   $R^{20}$  (式中、 $R^{19}$  は水素原子、低級アルキル基、低級  $R^{21}$  )

アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシル基、アシルアミノ基、アルキルスルホニルアミノ基、ハイドロキシイミノアルキル基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ のうち2つが一緒になって窒素原子、硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは0又は1~8の整数を意味する。) で示される基を意味する。]

2. 下記一般式(2) で表される請求項1記載の含窒素複素環化合物又はその薬理 学的に許容できる塩。

(式(2) 中のR<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>、R<sup>5</sup>及びR<sup>6</sup>は、各々、式(1) 中のR<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>、R<sup>5</sup>及びR<sup>6</sup>と同様の意味を有する。)

3. 下記一般式(I)で表される請求項1記載の含窒素複素環化合物又はその薬

 $(0)_n$ 

理学的に許容できる塩。

〔式(I)中、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>及びR<sup>4</sup>は同一又は相異なる水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ハイドロキシアルキル基、シアノ基、ア

シルアミノ基、保護されていてもよいカルボキシル基、式 $-\ddot{S}-R^7$ (式中、 $R^7$  は低級アルキル基を意味し、n は 0 又は  $1\sim 2$  の整数を意味する。)で示される基を意味する。また、 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^4$ のうちの 2 つが一緒になってメチレンジオキシ、エチレンジオキシ又はフェニル環を形成してもよい。

R<sup>5</sup>は水素原子、ハロゲン原子、水酸基、ヒドラジノ基、低級アルキル基、低級アルコキシ基、低級アルケニル基、保護されていてもよいカルボキシアルキル基、保護されていてもよいカルボキシアルケニル基、ハイドロキシアルキル

 $(0)_{m}$ 

基、保護されていてもよいカルボキシル基、式 − S − R<sup>8</sup>(式中、R<sup>8</sup>は低級アルキル基を意味し、mは0又は1~2の整数を意味する。)で示される基、式 − 0-R<sup>9</sup>(式中、R<sup>9</sup>は保護されていてもよいハイドロキシアルキル基、保護されていてもよいカルボキシアルキル基又はベンジル基を意味する。)で示される 基、式 − (式中、R<sup>23</sup> は水酸基、低級アルキル基、低級アルコキシ 基、ハイドロキシアルキル基又はハイドロキシアルキルオキシ基を意味する。)で示される基、置換されていてもよいヘテロアリール基、置換されていてもよ

い1,3 -ベンズジオキソリル基、置換されていてもよい1,4 -ベンズジオキソリルアルキル基、置換されていてもよい1,4 -ベンズジオキシルアルキル基、式-C( $R^{24}$ )=X (式中、Xは酸素原子又は式=N-R $^{10}$  (式中、 $R^{10}$ は水酸基又は保護されていてもよいカルボキシアルキルオキシ基を意味する。)で示される基を意味し、 $R^{24}$ は水素原子又は低級アルキル基を意味する。)で示される基、又は式-NR $^{11}$ R $^{12}$ (式中、 $R^{11}$ 、 $R^{12}$  は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アルキルカルバモイル基、1,3 -ベンズオキソリルアルキル基又は1,4 -ベンズジオキシルアルキル基を意味する。さらに、 $R^{11}$ と $R^{12}$ が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基を意味する。

R<sup>6</sup>は水素原子、ハロゲン原子、水酸基、アミノ基、低級アルキル基、低級アルコキシ基、1,3-ベンズジオキソリルアルキルオキシ基、1,4-ベンズジオキシルアルキルオキシ基、置換されていてもよいフェニルアルキルオキシ

基、式
$$-N$$
  $R^{13}$  (式中、 $R^{13}$  、 $R^{14}$  は同一又は相異なる水素原子、 $R^{14}$ 

低級アルキル基又は低級アルコキシ基を意味する。さらに、R<sup>13</sup>、R<sup>14</sup>は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)で

示される基、式
$$-N$$
 で示される基、式 $-N$  で示される基、 $R^{15}$   $R^{16}$ 

式
$$-N$$
  $R^{15}$   $R^{16}$ で示される基、式 $-N$   $R^{16}$ で示される基(これらの式

中、  $R^{15}$ 、  $R^{16}$ は、水素原子、低級アルキル基又は低級アルコキシ基を意味する。 さらに  $R^{15}$ と  $R^{16}$ は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)、ピペリジン-4-スピロ-2'-ジオキサン-1-

イル基、  $式-N-Y-R^{18}$  〔式中、 $R^{17}$  は水素原子、低級アルキル基、アシル基、低級アルコキシアルキル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 Yは式- $(CH_2)$ 。- (式中、qは0又

は  $1 \sim 8$  の整数を意味する)で示される基、又は式-C-で示される基を意味する。さらに式 $-(CH_2)$ 。で示される基において、q が  $1 \sim 8$  の整数のとき、それぞれの炭素は  $1 \sim 2$  個の置換基を有していてもよい。 $R^{18}$  は水素原子、水酸基、保護されていてもよいカルボキシル基、シアノ基、アシル基、置換され

ていてもよいヘテロアリール基又は式
$$-$$
(の) で示される基を意味する。)

$$R^{1\,9}$$
 (式中、 $R^{1\,9}$  は水素原子、低級で示される基、又は式  $-N$ -( $CH_2$ )。 $R^{2\,2}$  (式中、 $R^{1\,9}$  は水素原子、低級

アルキル基、低級アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ

基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシル基、アシルアミノ基、アルキルスルホニルアミノ基、ハイドロキシイミノアルキル基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、 $R^{20}$ 、 $R^{21}$ 、 $R^{22}$ のうち2つが一緒になって窒素原子、硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは0又は1~8の整数を意味する。) で示される基を意味する。)

4. 下記一般式(3) で表される請求項1記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

(式(3) 中のR<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>、R<sup>5</sup>及びR<sup>6</sup>は、各々、式(1) 中のR<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>、R<sup>5</sup>及びR<sup>6</sup>と同様の意味を有する。〕

5. 下記一般式(4) で表される請求項1記載の含窒素復素環化合物又はその薬理学的に許容できる塩。

$$\begin{array}{c|c}
R^{1} & R^{6} \\
R^{2} & N \\
R^{3} & R^{4}
\end{array}$$

$$(4)$$

(式(4) 中のR<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>、R<sup>5</sup>及びR<sup>6</sup>は、各々、式(1) 中のR<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>、R<sup>5</sup>及びR<sup>6</sup>と同様の意味を有する。〕

6. 下記一般式(5) で表される請求項1記載の含窒素複素環化合物又はその薬理 学的に許容できる塩。

$$\begin{array}{c|c}
R^2 & R^1 & R^6 \\
\hline
R^3 & N & N^6 \\
\end{array}$$
(5)

 (式(5) 中のR¹、R²、R³、R⁵及びR⁶は、各々、式(1) 中のR¹、R²、R³、R⁵及び

 R⁶と同様の意味を有する。〕

- 7. 前記一般式(1) において、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>及びR<sup>4</sup>が同一又は相異なる水素原子、 シアノ基、ハロゲン原子又は低級アルコキシ基である請求項 1 記載の含窒素複 素環化合物又はその薬理学的に許容できる塩。
- 8. 前記一般式(1) において、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>及びR<sup>4</sup>のうちの1つがシアノ基、塩素原子又はメトキシ基である請求項1記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 9. 前記一般式(I)において、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>及びR<sup>4</sup>が同一又は相異なる水素原子、シアノ基、ハロゲン原子又は低級アルコキシ基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 10. 前記一般式(I)において、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>及びR<sup>4</sup>のうちの1つがシアノ基、塩素原子又はメトキシ基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 11. 前記一般式 (I) において、R<sup>2</sup>がシアノ基である請求項3記載の含窒素複素 環化合物又はその薬理学的に許容できる塩。
- 12. 前記一般式(I)において、R<sup>2</sup>がハロゲン原子である請求項3記載の含窒素 複素環化合物又はその薬理学的に許容できる塩。
- 13. 前記一般式(I)において、R2が塩素原子である請求項3記載の含窒素複素

環化合物又はその薬理学的に許容できる塩。

- 14. 前記一般式(I)において、R<sup>2</sup>が低級アルコキシ基である請求項3記載の含 窒素復素環化合物又はその薬理学的に許容できる塩。
- 15. 前記一般式(I)において、R<sup>2</sup>がメトキシ基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 16. 前記一般式(I)において、 $R^5$ が式 $-NR^{11}R^{12}$ (式中、 $R^{11}$ 、 $R^{12}$  は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アルキルカルバモイル基、1,3 -ベンズジオキソリルアルキル基又は1, 4 -ベンズジオキシルアルキル基を意味する。さらに、 $R^{11}$ と $R^{12}$  が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

$$R^{10}$$
 | R<sup>20</sup> | (式中、 $R^{6}$ が式  $-N^{-}(CH_{2})$ ,  $R^{21}$   $R^{21}$ 

は水素原子、低級アルキル基、低級アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシル基、アシルアミノ基、アルキルスルホニルアミノ基、ハイドロキシイミノアルキル基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ のうち2つが一緒になって窒素原子、

硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは0又は1~8の整数を意味する。)で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

18. 前記一般式(I)において、R<sup>5</sup>が式-N (式中、R<sup>6</sup>° は保護されていてもよい水酸基、シアノ基、ハロゲン原子、低級アルキル基、低級アルコキシ基、保護されていてもよいカルボキシル基、ハイドロキシアルキル基、カルボキシアルキル基又はヘテロアリール基を意味する。)である請求項3に記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

19. 前記一般式(I)において、R<sup>5</sup>が式-N -R<sup>61</sup> (式中、R<sup>61</sup> は保護されていてもよいカルボキシル基又はヘテロアリール基を意味する。)で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

CH<sub>3</sub>

- 20. 前記一般式 (I) において、R<sup>5</sup>が式-N-(CH<sub>2</sub>)<sub>U</sub>-R<sup>61</sup> (式中、R<sup>61</sup> は保護されていてもよいカルボキシル基、uは3又は4を意味する。) で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 21. 前記一般式( I )において、 $R^6$ が式 $-NHCH_2$  0 で示される基である

請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

22. 前記一般式 ( I ) において、R<sup>6</sup>が式-NHCH<sub>2</sub> で示される基であるOCH<sub>8</sub>

請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

23. 前記一般式 (I) において、 $R^1$ 、 $R^3$ 及び $R^4$ が水素原子であり、 $R^2$ が塩素原子で

で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

24. 前記一般式 (I) において、 $R^1$ 、 $R^3$ 及び $R^4$ が水素原子であり、 $R^2$ がシアノ基で

で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

25. 前記一般式 ( I ) において、 $R^1$ 、 $R^3$ 及び $R^4$ が水素原子であり、 $R^2$ がシアノ基で

基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

- 26. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とするホスホジエステラーゼ阻害作用が有効な疾患の予防・治療 剤。
- 27. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とするサイクリック-GMPホスホジエステラーゼ阻害作用が有効な疾患の予防・治療剤。
- 28. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容でき

る塩を有効成分とする虚血性心疾患予防・治療剤。

- 29. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする狭心症予防・治療剤。
- 30. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする高血圧予防・治療剤。
- 31. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする心不全予防・治療剤。
- 32. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする喘息予防・治療剤。
- 33. 治療有効な量の請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩と、薬理学的に許容される賦形剤とからなる医薬組成物。
- 34. ホスホジエステラーゼ阻害作用が有効な疾患の治療薬を製造するという請求項1 又は3 記載の含窒素復素環化合物又はその薬理学的に許容できる塩の用途。
- 35. ホスホジエステラーゼ阻害作用が有効な疾患に罹患している患者に、請求項1 又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を、治療に有効な量投与することからなる疾患の治療方法。

## INTERNATIONAL SEARCH REPORT

International Application No. PCT/JP92/01258

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                            | International Application No PCT                                                                                                                                                                                                                                                                                                                                                                                                              | /JP92/01258                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I. CLASSIFICATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N OF SUBJECT MATTER (if several classic                                                                                                                                                                                                                                                                                                                                    | fication symbols apply, indicate all) 6                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                     |
| According to Internat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ional Patent Classification (IPC) or to both Nati                                                                                                                                                                                                                                                                                                                          | onal Classification and IPC                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                     |
| Int. C1 <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C07D215/00, 215/00, 239/95, A61K31/47, 3                                                                                                                                                                                                                                                                                                                                   | 235,00, 239/72, 239<br>1/505                                                                                                                                                                                                                                                                                                                                                                                                                  | 9/84, 239/94,                                                                                                                                                                                                                                       |
| II. FIELDS SEARCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum Documen                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
| Classification System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                            | Classification Symbols                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     |
| IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C07D215/00, C07D235/<br>A61K31/47, 31/505                                                                                                                                                                                                                                                                                                                                  | 00, 239/72-95,                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Documentation Searched other t to the Extent that such Documents                                                                                                                                                                                                                                                                                                           | han Minimum Documentation are included in the Fields Searched <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
| III. DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONSIDERED TO BE RELEVANT 9                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
| Category • \ Cita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lion of Document, 11 with indication, where app                                                                                                                                                                                                                                                                                                                            | ropriate, of the relevant passages 12                                                                                                                                                                                                                                                                                                                                                                                                         | Relevant to Claim No. 13                                                                                                                                                                                                                            |
| Octo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A, 57-171973 (Rhone-Po<br>per 22, 1982 (22. 10.<br>, A, 56766 & US, A, 44                                                                                                                                                                                                                                                                                                  | 82),                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1, 4, 33, 34                                                                                                                                                                                                                                        |
| Febru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A, 59-33264 (Pfizer Co<br>lary 23, 1984 (23. 02.<br>ily: none)                                                                                                                                                                                                                                                                                                             | erp.),<br>84),                                                                                                                                                                                                                                                                                                                                                                                                                                | 1, 4, 26-31,<br>33, 34                                                                                                                                                                                                                              |
| June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A, 53-71088 (Abbot Lab<br>24, 1978 (24. 06. 78)<br>, A, 4093726 & GB, A,                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1, 5, 30, 33<br>34                                                                                                                                                                                                                                  |
| May :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A, 58-79983 (Kanebo, L<br>13, 1983 (13. 05. 83),<br>, A, 79545 & US, A, 44                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1, 5, 33, 34                                                                                                                                                                                                                                        |
| Apri:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A, 63-96174 (Beringer<br>L 27, 1988 (27. 04. 88<br>, A, 3634066 & EP, A,<br>, A, 4882342                                                                                                                                                                                                                                                                                   | (i) ,                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1, 5, 26-31,<br>33, 34                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A, 64-74 (Otsuka Pharmory, Inc.),                                                                                                                                                                                                                                                                                                                                          | naceutical                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1, 5, 26-34                                                                                                                                                                                                                                         |
| "A" document defir considered to the considered | of cited documents: 10 ning the general state of the art which is not be of particular relevance nt but published on or after the international th may throw doubts on priority claim(s) or to establish the publication date of another r special reason (as specified) rring to an oral disclosure, use, exhibition or lished prior to the international filing date but | "T" later document published after the priority date and not in conflict wit understand the principle or theory.  "X" document of particular relevance; be considered novel or cannot to inventive step document of particular relevance; be considered to involve an inventive combined with one or more of combination being obvious to a priority of the same particular relevance.  "E" document member of the same particular relevance. | n the application but clied to<br>y underlying the invention<br>the claimed invention cannot<br>be considered to involve an<br>the claimed invention cannot<br>tive step when the document<br>ther such documents, such<br>erson skilled in the art |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | riority date claimed                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
| IV. CERTIFICATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                            | Date of Mailing of this International Se                                                                                                                                                                                                                                                                                                                                                                                                      | earch Report                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ompletion of the International Search 16, 1992 (16. 11. 92)                                                                                                                                                                                                                                                                                                                | December 8, 1992                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |
| International Searchin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng Authority                                                                                                                                                                                                                                                                                                                                                               | Signature of Authorized Officer                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Patent Office                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |

| FURTHER        | INFORMATION CONTINUED FROM THE SECOND SHEET                                                                                                                                                                                                                                                                                                 |                                   |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|                | January 5, 1989 (05. 01. 89), (Family: none)                                                                                                                                                                                                                                                                                                |                                   |
| x              | JP, A, 55-160776 (Warnar-Lambert Co.),<br>December 13, 1980 (13. 12. 80),<br>& EP, A, 18151 & US, A, 4271164                                                                                                                                                                                                                                | 1, 6, 30, 33                      |
| X              | JP, A, 61-167688 (Bayer AG.),<br>July 29, 1986 (29. 07. 86),<br>& EP, A, 189045 & US, A, 4621082                                                                                                                                                                                                                                            | 1, 6, 26-31<br>33, 34             |
| X              | JP, A, 63-216884 (The Wellcome<br>Foundation Ltd.),<br>September 9, 1988 (09. 09. 88),                                                                                                                                                                                                                                                      | 1, 6, 33, 3                       |
| v[文] OB        | SERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 1                                                                                                                                                                                                                                                                                   |                                   |
| 1.XX Clair     | national search report has not been established in respect of certain claims under Article 17(2) in numbers 35 because they relate to subject matter not required to be searched by Claim 35 pertains to a medical treatment of by by curing.                                                                                               |                                   |
|                | m numbers, because they are dependent claims and are not drafted in accordance                                                                                                                                                                                                                                                              | ce with the second and third      |
| 3. Clai<br>sen | ences of PCT Rule 6.4(a).                                                                                                                                                                                                                                                                                                                   |                                   |
| VI. OB         | SERVATIONS WHERE UNITY OF INVENTION IS LACKING 2                                                                                                                                                                                                                                                                                            |                                   |
| This Inter     | national Searching Authority found multiple inventions in this international application as                                                                                                                                                                                                                                                 | follows:                          |
| clai           | all required additional search fees were timely paid by the applicant, this international search<br>ms of the international application.<br>only some of the required additional search fees were timely paid by the applicant, this internation see claims of the international application for which fees were paid, specifically claims: | onal search report covers only    |
| 3. No          | required additional search fees were timely paid by the applicant. Consequently, this internation invention first mentioned in the claims; it is covered by claim numbers:                                                                                                                                                                  | al search report is restricted to |
| invi           | all searchable claims could be searched without effort justifying an additional fee, the Internation to payment of any additional fee.                                                                                                                                                                                                      | nal Searching Authority did not   |
| [] The         | n Protest<br>additional search fees were accompanied by applicant's protest.                                                                                                                                                                                                                                                                |                                   |
| No             | protest accompanied the payment of additional search fees.                                                                                                                                                                                                                                                                                  |                                   |

| PORTHER                                                                                     | INFORMATION CONTINUED FROM THE SECOND SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | **                                                                                      |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1                                                                                           | & EP, A, 279565 & US, A, 4618759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |
|                                                                                             | a mr, n, 21,5505 a 52, 54, 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,0                                                                                     |
| x                                                                                           | JP, A, 61-33185 (Pfizer Corp.),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-3, 7-31,                                                                              |
|                                                                                             | February 17, 1986 (17, 02, 86),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33, 34                                                                                  |
|                                                                                             | & EP, A, 168151 & US, A, 4647565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-3, 7-25,                                                                              |
| Х                                                                                           | JP, A, 61-140568 (Mitsui Petrochemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30, 33, 34                                                                              |
|                                                                                             | Industries, Ltd. and another),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30, 30, 31                                                                              |
|                                                                                             | June 27, 1986 (27. 06. 86),<br>& EP, A, 188094 & US, A, 4734418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |
|                                                                                             | & EP, A, 100094 & OD, M, 4731110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |
| x                                                                                           | JP, A, 3-17068 (Smithkline Beecham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-3, 7-25,                                                                              |
| Λ                                                                                           | Intercredit B.V.),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33, 34                                                                                  |
|                                                                                             | January 25, 1991 (25. 01. 91),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                |
|                                                                                             | SERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |
| This interr                                                                                 | national search report has not been established in respect of certain claims under Article 17(2) (a) for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or the following reasons:                                                               |
|                                                                                             | n numbers . because they relate to subject matter not required to be searched by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is Authority, namely:                                                                   |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |
|                                                                                             | n numbers , because they relate to parts of the international application that do not col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mply with the prescribed                                                                |
| 2.∐ Clair<br>regu                                                                           | m numbers , because they relate to parts of the international application that do not ex-<br>tirements to such an extent that no meaningful international search can be carried out, specifi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ically:                                                                                 |
| ,                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |
|                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 1                                                                                     |
| 1                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |
| I                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                       |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |
|                                                                                             | and the second record r | ith the second and third                                                                |
| 3. Claic                                                                                    | m numbers . , because they are dependent claims and are not drafted in accordance w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ith the second and third                                                                |
| sent                                                                                        | ences of PCT Rule 6.4(a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ith the second and third                                                                |
| vi. OB                                                                                      | ences of PCT Rule 6.4(a).  SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |
| sent                                                                                        | ences of PCT Rule 6.4(a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |
| vi. OB                                                                                      | ences of PCT Rule 6.4(a).  SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |
| sent                                                                                        | ences of PCT Rule 6.4(a).  SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |
| vi. OB                                                                                      | ences of PCT Rule 6.4(a).  SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |
| vi. OB                                                                                      | ences of PCT Rule 6.4(a).  SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |
| VI. OB. This Interest                                                                       | ences of PCT Rule 6.4(a).  SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup> national Searching Authority found multiple inventions in this international application as folice and the international search fees were timely paid by the applicant, this international search represents of the international application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ows:<br>port covers all searchable                                                      |
| VI. OB. This Interest                                                                       | ences of PCT Rule 6.4(a).  SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup> national Searching Authority found multiple inventions in this international application as folic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ows:<br>port covers all searchable                                                      |
| VI. OB. This Interest                                                                       | SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup> national Searching Authority found multiple inventions in this international application as follows:  all required additional search fees were timely paid by the applicant, this international search regions of the international application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ows:<br>port covers all searchable                                                      |
| VI. OB.  This Interest  1. As a clair  2. As c                                              | SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup> national Searching Authority found multiple inventions in this international application as follows:  all required additional search fees were timely paid by the applicant, this international search represents of the international application.  analysis some of the required additional search fees were timely paid by the applicant, this international sections of the international application for which fees were paid, specifically claims:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ows:<br>port covers all searchable<br>search report covers only                         |
| VI. OB.  This Interest  1. As a clair  2. As c                                              | SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup> national Searching Authority found multiple inventions in this international application as follows:  all required additional search fees were timely paid by the applicant, this international search representation of the international application.  The property of the required additional search fees were timely paid by the applicant, this international search fees were paid, specifically claims:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ows:<br>port covers all searchable<br>search report covers only                         |
| VI. OB.  This Interest  1. As a clair  2. As c                                              | SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup> national Searching Authority found multiple inventions in this international application as follows:  all required additional search fees were timely paid by the applicant, this international search represents of the international application.  analysis some of the required additional search fees were timely paid by the applicant, this international sections of the international application for which fees were paid, specifically claims:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ows:<br>port covers all searchable<br>search report covers only                         |
| VI. OB.  This Interest  1. As a clair  2. As c those  3. No r the                           | SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup> mational Searching Authority found multiple inventions in this international application as follows:  all required additional search fees were timely paid by the applicant, this international search represents of the international application.  and some of the required additional search fees were timely paid by the applicant, this international sectains of the international application for which fees were paid, specifically claims:  required additional search fees were timely paid by the applicant. Consequently, this international section first mentioned in the claims: it is covered by claim numbers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oort covers all searchable<br>search report covers only<br>arch report is restricted to |
| VI. OB.  This Interest  1. As a clair  2. As a those  3. No r the                           | SERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup> mational Searching Authority found multiple inventions in this international application as follows:  all required additional search fees were timely paid by the applicant, this international search represents of the international application.  analysome of the required additional search fees were timely paid by the applicant, this international sectains of the international application for which fees were paid, specifically claims:  required additional search fees were timely paid by the applicant. Consequently, this international sections first mentioned in the claims: it is covered by claim numbers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oort covers all searchable<br>search report covers only<br>arch report is restricted to |
| vi. OB  This Interd  1. As a clair  2. As 0 thos  3. No r the  4. As a invit                | SERVATIONS WHERE UNITY OF INVENTION IS LACKING 2  mational Searching Authority found multiple inventions in this international application as follows:  all required additional search fees were timely paid by the applicant, this international search represents of the international application.  Inly some of the required additional search fees were timely paid by the applicant, this international eclaims of the international application for which fees were paid, specifically claims:  required additional search fees were timely paid by the applicant. Consequently, this international search first mentioned in the claims; it is covered by claim numbers:  Ill searchable claims could be searched without effort justifying an additional fee, the International Searchable claims could be searched without effort justifying an additional fee, the International Searchable claims additional fee.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oort covers all searchable<br>search report covers only<br>arch report is restricted to |
| sent  VI. OB  This Interes  1. As a clair  2. As a those  3. No re  4. As a invit  Remark o | SERVATIONS WHERE UNITY OF INVENTION IS LACKING 2  mational Searching Authority found multiple inventions in this international application as follows:  all required additional search fees were timely paid by the applicant, this international search represents of the international application.  Inly some of the required additional search fees were timely paid by the applicant, this international eclaims of the international application for which fees were paid, specifically claims:  required additional search fees were timely paid by the applicant. Consequently, this international search first mentioned in the claims; it is covered by claim numbers:  Ill searchable claims could be searched without effort justifying an additional fee, the International Searchable claims could be searched without effort justifying an additional fee, the International Searchable claims additional fee.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oort covers all searchable<br>search report covers only<br>arch report is restricted to |

| FURTHER INFORMATION CONTINUE                                                         | D FROM THE SECOND SHEET                                                                                                    |                                                  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| FURTHER INFORMATION CONTINUES                                                        | 4833 & EP, A, 404322                                                                                                       |                                                  |
| :                                                                                    | 1., 28(1), 12-17 (1985)                                                                                                    | 1-3, 7-34                                        |
| 1                                                                                    |                                                                                                                            |                                                  |
|                                                                                      | ·                                                                                                                          | 1                                                |
| :                                                                                    |                                                                                                                            | :                                                |
| :<br>!                                                                               |                                                                                                                            |                                                  |
| i<br>I                                                                               |                                                                                                                            | •                                                |
| 1                                                                                    |                                                                                                                            |                                                  |
| 1                                                                                    |                                                                                                                            | į                                                |
|                                                                                      |                                                                                                                            |                                                  |
| I WALLE CENT                                                                         | TAIN CLAIMS WERE FOUND UNSEARCHABLE 1                                                                                      |                                                  |
| V. OBSERVATIONS WHERE CERT                                                           | Alle Courts of angular claims under Artic                                                                                  | de 17(2) (a) for the following reasons:          |
|                                                                                      | ot been established in respect of certain claims under Articuse they relate to subject matter not required to be sea       | arched by this Authority, namely:                |
| . Claim numbers , becau                                                              | ise they related to easy.                                                                                                  |                                                  |
|                                                                                      |                                                                                                                            |                                                  |
|                                                                                      |                                                                                                                            |                                                  |
|                                                                                      |                                                                                                                            |                                                  |
|                                                                                      | t and institution the                                                                                                      | et do not comply with the prescribed             |
| Claim numbers , becau                                                                | ise they relate to parts of the international application the<br>it that no meaningful international search can be carriet | d out, specifically:                             |
| requirements to seen an emer                                                         |                                                                                                                            |                                                  |
|                                                                                      | •                                                                                                                          |                                                  |
|                                                                                      |                                                                                                                            |                                                  |
|                                                                                      |                                                                                                                            |                                                  |
|                                                                                      | and the second desired in B                                                                                                | coordance with the second and third              |
| Claim numbers . , becar<br>sentences of PCT Rule 6.4(a).                             | use they are dependent claims and are not drafted in a                                                                     | ccordance viiii iii iii iii ii ii ii ii ii ii ii |
| VI. OBSERVATIONS WHERE UNIT                                                          | TY OF INVENTION IS LACKING 2                                                                                               |                                                  |
| VI, TOBSERVATIONS WITCHE ON                                                          | ty found multiple inventions in this international applica                                                                 | ation as follows:                                |
| This International Searching Authori                                                 | ry found maniple mechanism was                                                                                             |                                                  |
|                                                                                      |                                                                                                                            |                                                  |
|                                                                                      |                                                                                                                            | •                                                |
|                                                                                      |                                                                                                                            | al search report covers all searchable           |
| As all required additional searce claims of the international app                    | th fees were timely paid by the applicant, this internation<br>plication.                                                  | an analysis sections                             |
|                                                                                      | to the second simply paid by the applicant this                                                                            | international search report covers only<br>ims:  |
| those claims of the internation                                                      | Iditional search fees were timely paid by the application for which fees were paid, specifically cla                       |                                                  |
|                                                                                      | a a a a a a a a a a a a a a a a a a a                                                                                      | emational search report is restricted to         |
| No required additional search fe                                                     | es were timely paid by the applicant. Consequently, this int<br>in the claims; it is covered by claim numbers:             | ornational accident approximation and accident   |
| (US MACHMON MOT MICHAEL                                                              |                                                                                                                            |                                                  |
| ما ادار می است. ادار از                          | e searched without effort justifying an additional fee, the Int                                                            | ternational Searching Authority did not          |
| <ol> <li>As all searchable claims could be invite payment of any addition</li> </ol> | nal fee.                                                                                                                   | ·                                                |
| Romadi on Protest                                                                    |                                                                                                                            |                                                  |
| The additional search fees we                                                        | re accompanied by applicant's protest.  payment of additional search fees.                                                 |                                                  |
| Mo blosser accompanies me                                                            | <u> </u>                                                                                                                   |                                                  |

| I. 発明                                                                       | I. 発明の属する分野の分類  |                                           |                                       |                |  |
|-----------------------------------------------------------------------------|-----------------|-------------------------------------------|---------------------------------------|----------------|--|
| 国際特許                                                                        | 分類 (IPC         | Int. C.25 C07D2                           | 15/00, 215/00, 2                      | 35/00,         |  |
|                                                                             |                 | 239/72 239/8                              | 4, 239/94, 239/9                      | 5,             |  |
|                                                                             |                 | A 6 1 K 3 1 / 4 7, 3 1 /                  | •                                     |                |  |
|                                                                             |                 |                                           |                                       |                |  |
| 11. 国際                                                                      | 京調査を行・          |                                           |                                       |                |  |
|                                                                             |                 |                                           | た最小限資料                                | · ·            |  |
| 分類                                                                          | 体 系             | · 分                                       | 類記号                                   |                |  |
|                                                                             |                 | 007D215/00 C                              | 07D235/00, 239/                       | ′72-95.        |  |
| IP                                                                          | C C             |                                           |                                       |                |  |
|                                                                             |                 | A 6 1 K 3 1 / 4 7, 3 1/                   | 7 5 0 3                               |                |  |
|                                                                             | ]               | 最小限資料以外の資:                                | 料で調査を行ったもの                            |                |  |
| ,                                                                           |                 |                                           | *                                     |                |  |
|                                                                             |                 |                                           |                                       |                |  |
|                                                                             |                 |                                           |                                       |                |  |
| Ⅲ. 関連                                                                       | 重する技術に          | <b>C関する文献</b>                             |                                       |                |  |
| 引用文献の<br>カテゴリー ※                                                            |                 | 文献名 及び一部の箇所が関連すると                         | きは、その関連する箇所の表示                        | 請求の範囲の番号       |  |
| カテゴリー・・・                                                                    |                 |                                           |                                       |                |  |
| $\mathbf{x}$                                                                | JP.             | A. 57-171973(p.                           | ーン・プーラン・サント)                          | , 1, 4, 33, 34 |  |
| 1                                                                           | 22              | 10月. 1982(22. 10                          | . 82)                                 |                |  |
|                                                                             | &EP.            | A, 56766 & US, A                          | , 4421920                             | 1              |  |
|                                                                             |                 |                                           |                                       |                |  |
| X                                                                           | JP.             | A, 59-33264(ファ                            | イザー・コーポレーション)                         | , 1, 4, 20-31, |  |
|                                                                             | 23.             | 2月. 1984(23.02.                           | 84), (ファミリーなし)                        | 33, 34         |  |
|                                                                             |                 |                                           | ァト・ラボラトリーズ),                          | 1 5 30 33      |  |
| X                                                                           | JP.             | 1, 53-71088() T                           | 78)                                   | 34             |  |
|                                                                             | 24.             | 6月、1978(24.06.<br>A. 4093726&GB           | . A. 1583357                          |                |  |
|                                                                             | <b>αυ</b> σ,    | , A, 4 0 9 0 1 2 0 a a a                  |                                       |                |  |
| х                                                                           | IP              | A. 58-79983(鐘紡                            | 株式会社),                                | 1, 5, 33, 34   |  |
| Λ.                                                                          | 13              | 5月. 1983(13.05.                           | 83)                                   |                |  |
|                                                                             | & EP            | A. 79545&US. A                            | , 4430343                             |                |  |
|                                                                             |                 | -                                         | · · · · · · · · · · · · · · · · · · · |                |  |
| Х                                                                           | JP,             | A, 63-96174(~-                            | リンガー・マンハイム・ゲ                          | 1, 5, 26-31    |  |
|                                                                             |                 |                                           |                                       |                |  |
|                                                                             | 献のカテコ           |                                           | 「T」国際出願日又は優先日の後に公表                    |                |  |
|                                                                             |                 | 之献ではなく、一般的技術水準を示すもの<br>5が、国際出願日以後に公表されたもの | のために引用するもの                            | の放送人は是属の生活     |  |
| 「L」優先                                                                       | 権主張に疑う          | 差を提起する文献又は他の文献の発行日                        | 「X」特に関連のある文献であって、当                    |                |  |
|                                                                             | くは他の特別<br>由を付す) | 別な理由を確立するために引用する文献                        | 規性又は進歩性がないと考えられ<br>「Y」特に関連のある文献であって、当 |                |  |
| 「〇」口頭による開示、使用、展示等に官及する文献 文献との、当業者にとって自明である組合せによって進                          |                 |                                           |                                       |                |  |
| 「P」国際出願日前で、かつ優先権の主張の基礎となる出願の 歩性がないと考えられるもの<br>日の後に今寿された文献 「&」同一パテントファミリーの文献 |                 |                                           |                                       |                |  |
| 日の後に公表された文献 「&」同一パテントファミリーの文献                                               |                 |                                           |                                       |                |  |
| IV. EE                                                                      |                 |                                           |                                       |                |  |
| 国際調査を完了した日 国際調査報告の発送日                                                       |                 |                                           |                                       |                |  |
|                                                                             | 16. 11. 92      |                                           |                                       |                |  |
| 国際調査機関 権限のある職員 4 C 7                                                        |                 |                                           | 4C 7019                               |                |  |
|                                                                             | •               |                                           |                                       | 4C 7019        |  |
|                                                                             | 本国特制            | 井庁(ISA/JP)                                | 特許庁審査官 佐 野                            | 整博 🚳           |  |
| l                                                                           |                 |                                           |                                       |                |  |

| •             |                                              |                                  |
|---------------|----------------------------------------------|----------------------------------|
| 第2~           | ージから続く情報                                     |                                  |
|               | (Ⅲ欄の続き)                                      |                                  |
| İ             |                                              | 33, 34                           |
|               | ゼルシャフト・ミット・ベシュレンクテル・ヘフツング),                  | 33, 34                           |
|               | 97 4B 1988 (27, 04, 88),                     |                                  |
|               | &DE. A. 3634066&EP. A. 266558                |                                  |
|               | &US, A, 4882342                              | ·                                |
| 1             | <del>-</del>                                 | 1, 5, 26-34                      |
| X             | JP, A, 64-74(株式会社 大塚製薬工場).                   | 1, 0, 20 04                      |
|               | 5. 1月. 1989(05. 01. 89), (ファミリーなし)           | ,                                |
|               |                                              | 1, 6, 30, 33,                    |
| X             | JP, A, 55-160776(ワーナー・ランバート・コンパ              | 34                               |
|               | =),                                          |                                  |
| V J.          | 一部の請求の範囲について国際調査を行わないときの意見                   |                                  |
| V. V.         | <br>  求の範囲については特許協力条約に基づく国際出願等に関する法律第8条第3項の規 | 定によりこの国際                         |
|               |                                              |                                  |
| 調査報告          | を作成しない。その理由は、次のとおりである。                       |                                  |
| , -           | 請求の範囲 35 は、国際調査をすることを要しない事項を内容とするもので         | ある。                              |
| 1. <u>V</u> ; |                                              |                                  |
|               | 人の身体の治療による処置方法である。                           |                                  |
|               | 10年      | 延んだたしていた                         |
| 2             | 請求の範囲は、有効な国際調査をすることができる程度にまで所定の要             | TEM CO.CV                        |
|               | い国際出願の部分に係るものである。                            |                                  |
|               | い国際田殿の部分に取るものである。                            |                                  |
|               | 請求の範囲は、従属請求の範囲でありかつ PCT 規則 6. 4(a)第 2 文の規定   | とに従って起草され                        |
| 3. 🔲          | 請求の範囲は、従属請求の範囲でありかり101 続続しているとうに             |                                  |
|               | ていない。                                        |                                  |
|               | マンフィング いっ 平洋 かいたい アン・カント きの音見                |                                  |
|               | 発明の単一性の要件を満たしていないときの意見                       |                                  |
| 次に並           | でるようにこの国際出願には二以上の発明が含まれている。                  |                                  |
|               |                                              |                                  |
|               |                                              |                                  |
|               |                                              |                                  |
|               | ,                                            |                                  |
|               |                                              |                                  |
| 1 -           | 追加して納付すべき手数料が指定した期間内に納付されたので、この国際調査報告は       | 、国際出願のすべ                         |
|               | の大学を大部式の範囲をついて作成した。                          |                                  |
| 2. 🗆          | 追加して納付すべき手数料が指定した期間内に一部分しか納付されなかったので、と       | の国際調査報告は、                        |
|               | 手数料の納付があった発明に係る次の請求の範囲について作成した。              |                                  |
|               | =**♪の袋冊                                      | anders than a state of the state |
| 3.            | 追加して執付すべき手数料が指定した期間内に納付されなかったので、この国際調査       | E報告は、請求の軸                        |
| "-            | 囲に最初に記載された発明に係る次の請求の範囲について作成した。              |                                  |
| ł             | **** *********************************       |                                  |
|               | 追加して納付すべき手数料を要求するまでもなく、すべての調査可能な請求の範囲R       | こついて、混査するこ                       |
| * -           | とができたので、追加して納付すべき手数料の納付を命じなかった。              |                                  |
| ag times      | 数料異路の申立てに関する注意                               |                                  |
|               | で加えて始付するき毛数料の統付と同時に、追加手数料異議の甲立てかされた。         |                                  |
| l H           | 追加して納付すべき手数料の納付に際し、追加手数料異議の申立てがされなかった。       |                                  |
| _             |                                              |                                  |

| 甲文献の※<br>テゴリー※ | する技術に関する文献(第2ページからの続き)<br>  引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示 | 請求の範囲の番号                                                      |
|----------------|--------------------------------------------------------------|---------------------------------------------------------------|
| 7-79-M         | 引用 <b>人</b> 献名及び一部の箇別が、民産するとされ、その民産する箇別で及小                   | 明水色和色面                                                        |
|                | 13.12月.1980(13.12.80)                                        |                                                               |
|                | & EP. A, 18151 & US, A, 4271164                              |                                                               |
|                |                                                              |                                                               |
| X              | JP, A, 61-167688(バイエル・アクチェンゲゼルシ                              |                                                               |
|                | +フト),<br>29.7月、1986(29.07.86)                                | 33, 34                                                        |
|                | & EP, A, 189045 & US, A, 4621082                             |                                                               |
|                |                                                              |                                                               |
| X              | JP, A, 63-216884(ザ ウエルカム ファウンデー                              | 1, 6, 33, 3                                                   |
|                | ション リミテッド),                                                  |                                                               |
|                | 9. 9月. 1988(09. 09. 88)                                      |                                                               |
| -              | & EP. A, 279565 & US, A, 4618759                             |                                                               |
| X              | JP, A, 61-33185(ファイザー・コーポレーション),                             | 1-3 7-31                                                      |
|                | 17. 2月. 1986(17. 02. 86)                                     | 3 3, 3 4                                                      |
|                | & EP. A, 168151 & US, A, 4647565                             |                                                               |
|                |                                                              |                                                               |
| X              | JP. A. 61-140568(三井石油化学工業株式会社                                | $\begin{vmatrix} 1-3, & 7-25 \\ 30, & 33, & 34 \end{vmatrix}$ |
|                | 外1名)。<br>27.6月、1986(27.06.86)                                | 30, 33, 34                                                    |
|                | & EP, A, 188094 & US, A, 4734418                             |                                                               |
|                |                                                              | ÷                                                             |
| X              | JP, A, 3-17068 (スミスクライン・ビーチャム・イン                             |                                                               |
|                | タークレディット・ビー・ベー),                                             | 33, 34                                                        |
|                | 25.1月.1991(25.01.91)<br>&US, A. 5064833&EP, A. 404322        |                                                               |
|                |                                                              |                                                               |
| X              | J. Med. Chem., 28(1), 12-17(1985)                            | 1-3, 7-34                                                     |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
| •              |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
|                |                                                              |                                                               |
| - 1            |                                                              |                                                               |

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

#### BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.