練習(7-1, 7-2)

Sec 7.1

3–32 Evaluate the integral.

7.
$$\int x^2 \sin \pi x \, dx$$
 9. $\int \ln(2x+1) \, dx$ 11. $\int \arctan 4t \, dt$ 17. $\int e^{2\theta} \sin 3\theta \, d\theta$ 19. $\int_0^{\pi} t \sin 3t \, dt$ 23. $\int_1^2 \frac{\ln x}{x^2} \, dx$

33.
$$\int \cos \sqrt{x} \ dx$$
 35. $\int_{\sqrt{\pi}/2}^{\sqrt{\pi}} \theta^3 \cos(\theta^2) \ d\theta$ **37.** $\int x \ln(1+x) \ dx$

45. (a) Use the reduction formula in Example 6 to show that

$$\int_0^{\pi/2} \sin^n x \, dx = \frac{n-1}{n} \int_0^{\pi/2} \sin^{n-2} x \, dx$$

where $n \ge 2$ is an integer.

(b) Use part (a) to evaluate $\int_0^{\pi/2} \sin^3 x \, dx$ and $\int_0^{\pi/2} \sin^5 x \, dx$.

(c) Use part (a) to show that, for odd powers of sine,

$$\int_0^{\pi/2} \sin^{2n+1} x \, dx = \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n+1)}$$

57-60 Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis.

59.
$$y = e^{-x}$$
, $y = 0$, $x = -1$, $x = 0$; about $x = 1$

7.1 Answers

7.
$$-\frac{1}{\pi}x^2\cos\pi x + \frac{2}{\pi^2}x\sin\pi x + \frac{2}{\pi^3}\cos\pi x + C$$

9.
$$\frac{1}{2}(2x+1)\ln(2x+1) - x + C$$
 11. $t \arctan 4t - \frac{1}{8}\ln(1+16t^2) + C$

17.
$$\frac{1}{13}e^{2\theta}(2\sin 3\theta - 3\cos 3\theta) + C$$
 19. $\pi/3$ **23.** $\frac{1}{2} - \frac{1}{2}\ln 2$

33.
$$2\sqrt{x} \sin \sqrt{x} + 2 \cos \sqrt{x} + C$$
 35. $-\frac{1}{2} - \pi/4$ **37.** $\frac{1}{2}(x^2 - 1) \ln(1 + x) - \frac{1}{4}x^2 + \frac{1}{2}x + \frac{3}{4} + C$

37.
$$\frac{1}{2}(x^2 - 1) \ln(1 + x) - \frac{1}{4}x^2 + \frac{1}{2}x + \frac{3}{4} + C$$

45. (b)
$$\frac{2}{3}, \frac{8}{15}$$
 59. $2\pi e$

Sec 7.2

1–49 Evaluate the integral.

3.
$$\int_{\pi/2}^{3\pi/4} \sin^5 x \, \cos^3 x \, dx$$
 7. $\int_0^{\pi/2} \cos^2 \theta \, d\theta$ 11. $\int (1 + \cos \theta)^2 \, d\theta$

$$\boxed{7.} \int_0^{\pi/2} \cos^2\theta \, d\theta$$

$$II. \int (1 + \cos \theta)^2 d\theta$$

17.
$$\int \cos^2 x \, \tan^3 x \, dx$$
 25. $\int \sec^6 t \, dt$ 33. $\int \frac{\tan^3 \theta}{\cos^4 \theta} \, d\theta$

25.
$$\int \sec^6 t \, dt$$

$$33. \int \frac{\tan^3 \theta}{\cos^4 \theta} \, d\theta$$

35.
$$\int x \sec x \tan x \, dx$$
 45. $\int \sin 5\theta \sin \theta \, d\theta$

45.
$$\int \sin 5\theta \sin \theta \, d\theta$$

61-64 Find the volume obtained by rotating the region bounded by the given curves about the specified axis.

61.
$$y = \sin x$$
, $y = 0$, $\pi/2 \le x \le \pi$; about the x-axis

63.
$$y = \sin x$$
, $y = \cos x$, $0 \le x \le \pi/4$; about $y = 1$

7.2 Answers

3.
$$-\frac{11}{294}$$
 7.

7.
$$\pi/4$$

3.
$$-\frac{11}{384}$$
 7. $\pi/4$ 11. $\frac{3}{2}\theta + 2\sin\theta + \frac{1}{4}\sin 2\theta + C$

17.
$$\frac{1}{2}\cos^2 x - \ln|\cos x| + C$$

25.
$$\frac{1}{5} \tan^5 t + \frac{2}{3} \tan^3 t + \tan t + C$$

33.
$$\frac{1}{6} \tan^6 \theta + \frac{1}{4} \tan^4 \theta + C$$

35.
$$x \sec x - \ln|\sec x + \tan x| + C$$

45.
$$\frac{1}{8} \sin 4\theta - \frac{1}{12} \sin 6\theta + C$$

61.
$$\pi^2/4$$

61.
$$\pi^2/4$$
 63. $\pi(2\sqrt{2}-\frac{5}{2})$