Coding Competitions Farewell Rounds - Round B

Spacious Sets

Problem

Ada and John are best friends. Since they are getting bored, Ada asks John to solve a puzzle for her

A set S is considered *spacious* if the absolute difference between each pair of distinct elements of S is at least \mathbf{K} , that is, $|x-y| \geq \mathbf{K}$ for all $x, y \in S$, with $x \neq y$.

Ada has a list of distinct integers A of size N, and an integer K. For each A_i , she asks John to find the maximum size of a set S_i made of elements from A, such that S_i contains A_i and is spacious.

Note: The sets S_i do not need to be made of consecutive elements from the list.

Input

The first line of the input gives the number of test cases, T. T test cases follow.

The first line of each test case contains two integers ${\bf N}$ and ${\bf K}$.

The next line contains N integers $A_1 A_2 \dots A_N$.

Output

For each test case, output one line containing Case #x: $y_1 y_2 \dots y_N$, where x is the test case number (starting from 1) and y_i is the maximum size of a spacious set of elements from A that contains A_i .

Limits

Time limit: 20 seconds. Memory limit: 2 GB. $1 \leq \mathbf{T} \leq 100$. $-10^9 \leq \mathbf{A_i} \leq 10^9$, for all i. $\mathbf{A_i} \neq \mathbf{A_i}$, for all $i \neq j$.

Test Set 1 (Visible Verdict)

$$1 \le \mathbf{N} \le 10.$$

 $1 < \mathbf{K} < 100.$

Test Set 2 (Visible Verdict)

$$1 \leq \mathbf{K} \leq 10^9$$
. For at most 15 cases: $1 \leq \mathbf{N} \leq 10^5$. For the remaining cases: $1 \leq \mathbf{N} \leq 10^3$.

Sample

Sample Input

```
2
3 2
1 2 3
2 7 11 19 5 3
```

Sample Output

```
Case #1: 2 1 2
Case #2: 4 4 4 4 3 4
```

In Sample Case #1, a spacious set cannot contain 1 and 2, nor it can contain 2 and 3. That implies that $S_2=\{2\}$ and using $S_1=S_3=\{1,3\}$ makes them of maximum size.

In Sample Case #2, possible sets of maximum size are:

- $\begin{array}{ll} \bullet & S_1=S_2=S_3=S_4=\{2,7,11,19\},\\ \bullet & S_5=\{11,19,5\}, \text{ and}\\ \bullet & S_6=\{7,11,19,3\}. \end{array}$