Math 185

Homework #9

Chapter V, Sec. 4. ex. 1d, 1f, 3; Sec. 5, ex. 1c; Sec. 6, ex. 3; Sec. 7, ex. 1a, 1f, 1i; Sec. 7, ex. 9, 11;

Extra Problem (by the link)

Sec. 4. ex 1: Find the radius of convergence of the power series for the following functions, expanded about the indicated point

(d)
$$\operatorname{Log} z$$
, about $z = 1 + 2i$

The nearest singularity is 0, since (1,2) is in the first quadrant

$$R = |1 + 2i| = \sqrt{1 + 4} = \sqrt{5}$$

(f)
$$\frac{z-i}{z^3-z}$$
 about $z=2i$

$$z^3 - z = z(z^2 - 1) = z(z - 1)(z + 1)$$

singularities at 0, -1, 1

nearest is at 0

$$R = |2i| = \sqrt{2^2} = 2$$

Sec. 4. ex. 3 Find the power series expansion of ${
m Log}~z$ about the point z=i-2. Show that the radius of convergence of the series is $R=\sqrt{5}$. Explain why this does not contradict the discontinuity of ${
m Log}~z$ at z=-2

$$\operatorname{Log} z = \sum_{k=0}^{\infty} a_k (z - (i-2))^k$$

$$a_0 = \operatorname{Log}(i-2) = \log(\sqrt{5}) + \operatorname{Arg}(i-2)$$

$$a_1 = \frac{1}{i-2}$$

$$a_2 = -rac{1}{2(i-2)^2}$$

$$a_3 = \frac{2}{6(i-2)^3} = \frac{1}{3(i-2)^3}$$

$$a_k = (-1)^{k+1} rac{1}{k(i-2)^k}, k \geq 1$$

$$|a_k/a_{k+1}|=|rac{(k+1)(i-2)^{k+1}}{k(i-2)^k}|=|rac{(k+1)(i-2)}{k}| o |i-2|$$
 as $k o \infty$

and
$$|i-2|=\sqrt{1^2+(-2)^2}=\sqrt{5}$$

so
$$R=\sqrt{5}$$

$$ext{Log } z = ext{Log}(i-2) + \sum_{k=1}^{\infty} rac{(-1)^{k+1}}{k(i-2)^k} (z - (i-2))^k$$

This power series has the same radius of convergence as that for $\frac{1}{z}$, which is analytic on any disk contained in $\mathbb{C}\setminus\{0\}$.

In the part of the disk that goes beyond the cut (the negative real axis and origin), the series expansion does not agree.

 $\operatorname{Log} z$ extends to be analytic for $|z-(i-2)|<\sqrt{5}$, though the extension does not coincide with $\operatorname{Log} z$ in the part of the disk in the lower half plane

Sec. 5. ex. 1: Expand the following functions in power series about ∞ :

(c)
$$e^{1/z^2}$$

$$g(w) = f(1/w) = e^{w^2}$$

using
$$e^z = \sum_{k=0}^\infty z^k/k!$$

$$e^{w^2} = \sum_{k=0}^{\infty} rac{w^{2k}}{k!}$$

$$e^{1/z^2} = \sum_{k=0}^{\infty} rac{1}{z^{2k}k!}$$

Sec. 6. ex. 3: Show that $\frac{e^z}{1+z}=1+\frac{1}{2}z^2-\frac{1}{3}z^3+\frac{3}{8}z^4-\frac{11}{30}z^5+\dots$ Show that the general term of the power series is given by $a_n=(-1)^n[\frac{1}{2!}-\frac{1}{3!}+\dots+\frac{(-1)^n}{n!}]$. What is the radius of convergence of the series?

$$1/(1+z) = \sum_{k=0}^{\infty} (-1)^k z^k = b_k z^k$$

$$e^z = \sum_{k=0}^{\infty} z^k/k! = \sum a_k z^k$$

$$e^z/(1+z) = \sum c_k z^k$$

so
$$a_k=1/k!$$
 , $b_k=(-1)^k \implies$

$$c_k = a_k b_0 + a_{k-1} b_1 + \ldots + a_0 b_k = \frac{1}{k!} - \frac{1}{(k-1)!} + \ldots + (-1)^{k-1} + (-1)^k = \frac{1}{k!} - \frac{1}{(k-1)!} + \ldots + \frac{(-1)^{k-2}}{2}$$

so
$$c_k = (-1)^k [rac{(-1)^{-2}}{2} + rac{(-1)^{-3}}{3!} + \ldots + rac{(-1)^{-k}}{k!}]$$

which is equivalent to $c_k=(-1)^k[rac{1}{2!}-rac{1}{3!}+\ldots+rac{(-1)^k}{k!}]$

and
$$c_0 = 1, c_1 = (1*1) + (1*(-1)) = 0$$

and using the above equation:

$$c_2 = 1/2$$

$$c_3 = -1/2 + 1/6 = -2/6 = -1/3$$

$$c_4 = 1/2 - 1/6 + 1/24 = \frac{12-4+1}{24} = \frac{9}{24} = \frac{3}{8}$$

$$c_5 = -1/2 + 1/6 - 1/24 + 1/120 = -\frac{3}{8} + \frac{1}{120} = \frac{-44}{120} = -11/30$$

Since we are looking at the power series about $z_0=0$, and the nearest singularity is at z=-1, The radius of convergence is R=|-1|=1

Sec 7. ex. 1: Find the zeros and orders of zeros of the following functions

(a)
$$\frac{z^2+1}{z^2-1}$$

$$f(i) = 0, f(-i) = 0$$

and
$$f'(z)=rac{2z(z^2-1)-2z(z^2+1)}{\left(z^2-1
ight)^2}=rac{-4z}{\left(z^2-1
ight)^2}$$
 , which is not zero at $z=\pm i$

so each of the zeros, $\pm i$ are simple zeros

(f)
$$\frac{\cos z - 1}{z^2}$$

zeros at $z=2\pi n$

$$f'(z)=rac{-z^2\sin z-2z(\cos z-1)}{z^4}$$

$$f'(2\pi n) = rac{-(2\pi n)^2(0) - 4\pi n(0)}{16n^4\pi^4} = 0$$

$$f''(z) = rac{(-2z\sin z - z^2\cos z - 2(\cos z - 1) + 2z(\sin z))(z^4) - 4z^3(-z^2\sin z - 2z(\cos z - 1))}{z^8}$$

$$f''(2\pi n)=rac{(2\pi n)^4(-(2\pi n)^2}{(2\pi n)^8}
eq 0$$

so double zeros at $z=2\pi n$ when $n \neq 0$,

$$\cos z - 1 = \sum_{k=1}^{\infty} \frac{(-1)^k z^{2k}}{(2k)!}$$

and
$$\frac{\cos z - 1}{z^2} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1} z^{2k}}{(2(k+1))!}$$

so z=0 is not a zero, since $a_0=-1/2$

(i) $\frac{\log z}{z}$ (principal value)

$$\text{Log } 1 = \log(1) + \text{Arg } (1) = 0 + 0 = 0$$
, since $\text{Arg}(1) \in (-\pi, \pi]$

so z=1 is a zero

$$f'(z)=rac{1-{
m Log}\;z}{z^2}$$
 , which is not 0 at $z=1$, so $z=1$ is a simple zero

Sec. 7. ex. 9: Show that if the analytic function f(z) has a zero of order N at z_0 , then $f(z)=g(z)^N$ for some function g(z) analytic near z_0 and satisfying $g'(z_0)\neq 0$

we can write f(z) as $f(z)=(z-z_0)^Nh(z)$, where h(z) is analytic at z_0 and $h(z_0)
eq 0$

 $g(z)=(z-z_0)e^{\log(h(z))/N}$, for a branch of logarithm containing $h(z_0)$ so: $f_m(z)={
m Log}\;z+2\pi i m$, where $m\in(-\infty,\infty)$

$$g'(z_0) = e^{\log(h(z_0))/N} + (z_0 - z_0) \frac{d}{dz} [e^{\log(h(z))/N}]_{z=z_0} \neq 0$$

since $e^z
eq 0$ for all $z \in \mathbb{C}$

and obviously
$$g(z)^N = (z - z_0)^N h(z) = f(z)$$

also e^z is analytic, $(z-z_0)$ is analytic

and $\log(h(z))/N$ is analytic for the branch containing $h(z_0)$

so g(z) is a composition of functions that are analytic near z_0 , so it is analytic near z_0

Sec. 7. ex. 11: Show that if f(z) is a nonconstant analytic function on a domain D, then the image under f(z) of any open set is open.

at any point $z_0 \in D$, where $f'(z_0) \neq 0$,

there is a small disk $U \subset D$ containing z_0 such that f(z) is one-to-one on U, and the image V = f(U) of U is open

f maps open disks to open sets, so for any z_0 where $f'(z_0) \neq 0$, f(D) contains an open disk centered at $f(z_0)$, so f(D) is open

and since any open set in D is a union of open disks, for any z_0 in an open set,

there is a disk that is contained in U and D s.t. a disk centered at $f(z_0)$ is contained in the image of this set under f, so the image is open.

if
$$f'(z_0) = 0$$
:

What I will use:

1. $z \mapsto az + b$ is open when $a \neq 0$

let
$$a=Ae^{i\phi}$$
 , where $A\in\mathbb{R}^+$ and $\phi\in\mathbb{R}$

for any open disk centered on z_0 with radius r,

$$z$$
 in this disk satisfies $|z|-|z_0|\leq |z-z_0|<|re^{i\theta}|$, for any $\theta\in\mathbb{R}$

let
$$w_0 = az_0 + b$$
, and for any z in the disk, let $w = az + b$

$$|w-w_0| = |a(z-z_0)| = |Ae^{i\phi}||z-z_0| < |Ae^{i\phi}||re^{i\theta}| = Ar$$

so the image of any open disk is also an open disk

⇒ since open sets are unions of open disks, this mapping is open

2. z^k where $k \in \mathbb{N}$ is open

Show for a disk centered at origin with radius r

the image of this disk will be an open disk centered at origin with radius r^k

3. The composition of open mappings is open

if
$$f$$
 is open on D_1 and g is open on D_2 and $g(D_2)\subset D_1$

then
$$f(g(D_2))$$
 is open

$$\text{if } f(z_0) = 0 \\$$

then
$$f(z)=g(z)^N$$
 (as in exercise 9)

and from 2., f(z) is open

if
$$f(z_0) \neq 0$$

then we can define
$$f^*(z) = f(z) - f(z_0)$$
, so $f^*(z_0) = 0$

and so
$$f^*(z) = g(z)^N$$
 (as in exercise 9)

and
$$f(z) = g(z)^N + f(z_0)$$

and since f(z) is a composition of g(z), z^N , and $z+f(z_0)$ (each are open maps)

f(z) is open

Extra Problem (by the link)

1. Let C be the right half of the unit circle centered at origin. Does there exist an entire function $f:\mathbb{C}\to\mathbb{C}$ with the specified values on C:

$$f(e^{i heta})=e^{i heta/2}$$
 for all $heta\in[-rac{\pi}{2},rac{\pi}{2}]$

so C is a set that has a non isolated point (every point on the right half of the unit circle gets arbitrarily close to each other)

and any function f(z) s.t. f maps $e^{i heta}$ to $e^{i heta/2}$ for all $heta \in [-\pi/2,\pi/2]$

is equal to $g(z) = \sqrt{z}$ on C, which is analytic on the entire slit plane $\mathbb{C} \setminus (-\infty, 0]$

and by the Uniqueness Principle, if f(z) is also analytic on the slit plane,

f(z) = g(z) for all z in the slit plane

however, g(z) is not analytic for any point in $(-\infty, 0]$ (not continuous)

if f(z) were entire, it would also need to be analytic on $(-\infty,0)$

but as z o the negative axis, f(z) has no limit, (approaching the $-r\in\mathbb{R}$ from the top, we have $f(z) o i\sqrt{r}$ but coming up from the bottom, $f(z) o -i\sqrt{r}$)

so f(z) is not continuous on $(-\infty,0]$

so f cannot be entire.