project 4

Yun Siyu 17307110448 2019.12.12

Problem 1: Warmup

1a. Question

Suppose we have a sensor reading for the second timestep, $D_2 = 0$. Compute the posterior distribution $P(C_2 = 1 \mid D_2 = 0)$.

1a. Answer

According to Bayesian network

$$\begin{split} P(C_2 = 1 \mid D_2 = 0) &= \frac{P(C_2 = 1, D_2 = 0)}{P(D_2 = 0)} \\ &= \frac{P(C_2 = 1) * P(D_2 = 0 \mid C_2 = 1)}{P(D_2 = 0)} \\ &= \frac{P(C_2 = 1) * P(D_2 = 0 \mid C_2 = 1)}{\sum_{C_2} P(D_2 = 0, C_2)} \\ &= \frac{\sum_{C_1} P(C_2 = 1 \mid C_1) * P(C_1) * P(D_2 = 0 \mid C_2 = 1)}{\sum_{C_2} P(D_2 = 0, C_2)} \\ &= \frac{\sum_{C_1} P(C_2 = 1 \mid C_1) * P(C_1) * P(D_2 = 0 \mid C_2 = 1)}{\sum_{C_2} P(D_2 = 0 \mid C_2) * P(C_2)} \end{split}$$

so we're going to compute the numerator and the denominator separately

$$(P(C_2 = 1 \mid C_1 = 0) * P(C_1 = 0) + P(C_2 = 1 \mid C_1 = 1) * P(C_1 = 1)) * P(D_2 = 0 \mid C_2 = 1) = \eta * [\epsilon * 0.5 + (1 - \epsilon) * 0.5]$$

for the denominator

$$P(C_2 = 1) = P(C_2 = 1 \mid C_1 = 0) * P(C_1 = 0) + P(C_2 = 1 \mid C_1 = 1) * P(C_1 = 1)$$

$$= +(1 - \epsilon) * 0.5 + \epsilon * 0.5$$

$$P(C_2 = 0) = P(C_2 = 0 \mid C_1 = 0) * P(C_1 = 0) + P(C_2 = 0 \mid C_1 = 1) * P(C_1 = 1)$$

$$= \epsilon * 0.5 + (1 - \epsilon) * 0.5$$

so the denominator is

$$\sum_{C_2} P(D_2 = 0 \mid C_2) * P(C_2) = \epsilon * 0.5 + (1 - \epsilon) * 0.5$$

Therefore,

$$P(C_2 = 1 \mid D_2 = 0) = \frac{\eta * \left[\epsilon * 0.5 + (1 - \epsilon) * 0.5\right]}{\epsilon * 0.5 + (1 - \epsilon) * 0.5}$$
$$= \eta$$

1b. Question

Suppose a time step has elapsed and we got another sensor reading $D_3 = 1$, but we are still interested in C_2 . Compute the posterior distribution $P(C_2 = 1 \mid D_2 = 0, D_3 = 1)$.

1b. Answer

it is the same as 1a, so the answer is

$$P(C_2 = 1 \mid D_2 = 0, D_3 = 1) = \frac{P(C_2 = 1, D_2 = 0, D_3 = 1)}{P(D_2 = 0, D_3 = 1)}$$

For the numerator

$$P(C_2 = 1, D_2 = 0, D_3 = 1) = \sum_{C_1, C_3} P(C_1)P(C_2 = 1 \mid C_1)P(D_2 = 0 \mid C_2 = 1)P(C_3 \mid C_2 = 1)P(D_3 = 1 \mid C_3)$$
$$= \eta \left[(1 - \epsilon)(1 - \eta) + \epsilon \eta \right] * \left[\epsilon * 0.5 + (1 - \epsilon) * 0.5 \right]$$

and for the denominator

$$P(C_2 = 0, D_2 = 0, D_3 = 1) = \sum_{C_1, C_3} P(C_1) P(C_2 = 0 \mid C_1) P(D_2 = 0 \mid C_2 = 0) P(C_3 \mid C_2 = 0) P(D_3 = 1 \mid C_3)$$

$$= (1 - \eta) * [(1 - \epsilon)\eta + \epsilon(1 - \eta)] * [\epsilon * 0.5 + (1 - \epsilon) * 0.5]$$

$$P(D_2 = 0, D_3 = 1) = P(C_2 = 0, D_2 = 0, D_3 = 1) + P(C_2 = 1, D_2 = 0, D_3 = 1)$$
$$= (\eta [(1 - \epsilon)(1 - \eta) + \epsilon \eta] + (1 - \eta)[(1 - \epsilon)\eta + \epsilon(1 - \eta)]) * [\epsilon * 0.5 + (1 - \epsilon) * 0.5]$$

so the answer is

$$P(C_2 = 1 \mid D_2 = 0, D_3 = 1) = \frac{P(C_2 = 1, D_2 = 0, D_3 = 1)}{P(D_2 = 0, D_3 = 1)}$$
$$= \frac{\eta [(1 - \epsilon)(1 - \eta) + \epsilon \eta]}{\eta [(1 - \epsilon)(1 - \eta) + \epsilon \eta] + (1 - \eta)[(1 - \epsilon)\eta + \epsilon(1 - \eta)]}$$

1c. Answer

i.

Compute and compare the probabilities $P(C_2 = 1 \mid D_2 = 0)$ and $P(C_2 = 1 \mid D_2 = 0, D_3 = 1)$. Give numbers, round your answer to 4 significant digits.

Answer:

$$P(C_2 = 1 \mid D_2 = 0) = \eta = 0.2000$$

 $P(C_2 = 1 \mid D_2 = 0, D_3 = 1) = 0.4157$

ii.

How did adding the second sensor reading $D_3 = 1$ change the result? Explain your intuition in terms of the car positions with respect to the observations.

Answer:

From i, we can see that $P(C_2 = 1 \mid D_2 = 0) < P(C_2 = 1 \mid D_2 = 0, D_3 = 1)$. Hence, we can come to a conclusion that adding the second sensor $D_3 = 1$ increased the probability of $P(C_2) = 1$. The car's position observed at t+1-th step is related to the car's position at t-th step. So the observation of $D_3 = 1$ increased the probability of $C_2 = 1$.

iii.

What would you have to set ϵ while keeping $\eta = 0$ so that $P(C_2 = 1 \mid D_2 = 0) = P(C_2 = 1 \mid D_2 = 0, D_3 = 1)$? Explain your intuition in terms of the car positions with respect to the observations.

Answer:

from the 1a and 1b, we know that

$$P(C_2 = 1 \mid D_2 = 0) = \eta$$

$$P(C_2 = 1 \mid D_2 = 0, D_3 = 1) = \frac{\eta [(1 - \epsilon)(1 - \eta) + \epsilon \eta]}{\eta [(1 - \epsilon)(1 - \eta) + \epsilon \eta] + (1 - \eta)[(1 - \epsilon)\eta + \epsilon(1 - \eta)]}$$

so, if $P(C_2 = 1 \mid D_2 = 0) = P(C_2 = 1 \mid D_2 = 0, D_3 = 1)$, we can solve the equation that

$$\epsilon = 0.5$$

Set $\epsilon = 0.5$. Hence $P(C_t \mid C_{t-1}) = 0.5$, in any condition, while. Thus the effect of C_{t-1} on C_t can be eliminated, and we don't need to consider the transition probability of $P(C_3 \mid C_2)$.

Problem 2: Emission probabilities

2a. The code is in submission.py.

Problem 3: Transition probabilities

3a. The code is in submission.py.

Problem 4: Particle filtering

4a. The code is in submission.py.