

Team:

David Rocha	84807	Advisors:		Collaborators:	
Francisco Morgado	85009				
Cristiano Santos Leandro Cardoso João Soares	79671 80311 79955	José Fonseca Joaquim Ferreira	jaf@ua.pt jjcf@ua.pt	Paulo Vasconcelos	jmacedo@ua.pt (DECivil) paulobvasconcelos@ua.pt pedro.teix@ua.pt

Outline

- Introduction
 - Context
 - Clients
 - Motivations and Objectives
 - Features
- The System
 - Architecture
 - Used Tools
 - Demonstration
 - Usability Tests
- Conclusion
 - Requirements Revision
 - Challenges
 - Improvements

Context

- This project is part of PASMO Plataforma Aberta para o
 desenvolvimento e experimentação
 de Soluções para a MObilidade.
- Intelligent mobility support.
- Road safety.

Clients / Stakeholders

- Common User
 - o Generic Data
 - Real Time
- Public Entity
- Traffic Managers
 - Historical Data
 - More specific

Motivations and Objectives

- Improve traffic classification in Barra and Costa Nova.
- Provide useful generic data about traffic to the common population.
- Provide more detailed statistics to traffic managers.
 - Weekly, daily and per hour.
 - Classification and density.

Features

- Visualization of charts related to some functions.
 - Traffic Density
 - Traffic Classification

• Visualization of in/out flow in real time and in different time intervals.

Features

- Direct comparison of values between different time intervals.
- Fusion between data from radars and cameras.
 - Considering that the vehicle
 classification and tracking will serve
 as a tool to calibrate radars.

The System

Architecture

Used Tools

Client Side

- HTML, CSS and JavaScript: Used to control the interface and the application flow.
- Chart.js: Used to create the application charts.
- Leaflet: Used to get and customize the maps.

• Server Side

- PHP: Used to establish the connection between the web application and the database.
- Java: Used to access data from the PASMO API, process that data and inject it in our database.
- MySQL: Used to create the database, store and access the processed data.

Used Tools

Python

 Used to create the application that classifies and counts the vehicles.

Darknet

 Used to create and train the neural network to categorize the vehicles.

YOLO

• Uses neural network to categorize vehicles.

Used Tools

- Deep Sort Algorithm
 - Used to track vehicles.
- Jetson Nano
 - Board with powerful GPU.

Deep Sort

- Track an object through an entire video.
- If there are 3 detected cars, the tracker identifies 3 separate detections.
- The tracker needs to track them across subsequent frames (with the help of an ID).

Web Application

Object Tracking and Classification

Usability Tests

- User centered design.
- The graphic shows part of the answers of the usability tests made.
- Note that the tests were performed by regular users, giving us some information that lead to light changes in the appearance of the application.

Conclusion

Requirements RevisionHigh Priority

- Visualization of charts related to some functions. ✓
- Visualization of in/out flow in real time. <a>\checkmark
- Information efficiently updated. 🗸
- Equipment selection should be done through a minimap. ✓
- Distinction between users on viewing permissions. ✓
- Database updates in 15 minute intervals. ✓
- YOLO utilization to categorize vehicles. ✓
- 10% increase in success rate of vehicle categorization. (?)

Requirements RevisionMedium Priority

- Direct comparison between different zones. X
- Direct comparison between different time intervals. ✓
- Visualization of in/out fluxe in different time intervals.
- Selection of 1 or more radars do analyze data from. ✓
- Database Security. X
- Exhaustive documentation. ✓
- Database updates in 10 minute intervals. ✓
- 15% increase in success rate of vehicle categorization. (?)

Requirements RevisionLow Priority

- Visualization of meteorological data. ✓
- Database updates in 5 minute intervals. ✓
- 20% increase in success rate of vehicle categorization. (?)

Challenges

- Social Confinement.
 - Also an opportunity.
- Jetson performance issues.
- Dealing with a fully deployed system:
 - Occasional radar malfunctions.
 - Occasional changes to the availability of the API.

Future Improvements

- Automated fusion between radar and camera data.
- More options to view the information (chart types).
- More dashboards (meteorology, speed).
- SSL Certificate to make the connections secure.
- Mobile application.