Cryptography 111

TOC

Today

- Homomorphic
- Elliptic Curve
- Signature
- Quantum
- LFSR
- PRNG

同態加密 | Homomorphic Encryption

同態 | Homomorphism

定義

$$\circ \quad f(x*y) = f(x)*f(y)$$

Partial homomorphic encryption

○ 部份運算 (e.g. RSA:乘法、次方)

Fully homomorphic encryption

○ 任意運算 (e.g. Lattice-based)

回顧RSA | Recall RSA

定義:

$$\circ$$
 $E(m) := m^e \mod N$

乘法

$$(m_1) * E(m_2) = m_1^e * m_2^e = (m_1 * m_2)^e = E(m_1 * m_2)$$

次方

回顧ElGamal | Recall ElGamal

定義

$$\circ \quad E(m) \coloneqq m \ s$$

乘法

定義

- $\circ \quad E(m) \coloneqq g^m * r^N \mod N^2$
- $\circ \quad N = pq, \ r = \operatorname{rand}(Z_{N^2}^*)$

特點

- 同態運算:加法,乘法
- 密文不固定
- 離散對數(?)

離散對數 | Discrete Logarithm

定義

o $b^x = a$,給定 a, b 找出 x

難度

- Subexponential (classical): Number Field Sieve
- o Polynomial (quantum): Shor's algorithm

离t 散對數特例 | A Special Case of Discrete Logarithm

 $b^x = a \mod N^2$,給定 a, b 找出 $x \mod N$

先考慮 b = g = N + 1 的情況

$$o b^{x} = (N+1)^{x} = 1 + N^{1} C_{1}^{x} + N^{2} C_{2}^{x} + N^{3} C_{3}^{x} \dots = 1 + Nx \mod N^{2}$$

 $\circ \frac{a-1}{N} = (x \mod N)$, 這裡的除法是整數除法

在 $b \neq N + 1$ 的情況,可以用換底公式來計算

$$\circ \quad \log_b a = \frac{\log_g a}{\log_g b} \mod N$$

金鑰生成

- \circ 私鑰 p,q= primes of equivalent length, $\lambda=\phi(N)=(p-1)(q-1)$
- \circ 公鑰 N = pq, g = N + 1

加密

- $\circ \quad r = \operatorname{rand}(Z_{N^2}^*)$
- $\circ \quad E(m) \coloneqq g^m \, r^N \, \mod N^2$

解密

 $\circ \quad m = \log_q(E(m)^{\lambda} \mod N^2) \lambda^{-1} \mod N$

正確性

- $\circ \quad E(m)^{\lambda} = g^{m\lambda} r^{N\lambda} = g^{m\lambda} \mod N^2$
- $\circ \quad \log_g \left(E(m)^{\lambda} \mod N^2 \right) \lambda^{-1} = m\lambda \ \lambda^{-1} = m \mod N$

同態運算

Task

- Hackover 2018 oblivious
- HITCON 2018 Lost Modulus

离性为数 | Discrete Logarithm

暴力硬解 | Naïve Bruteforce

問題: $b^m = a$, $a, b \in G$, ord(G) = n , 給定 a, b, n , 找出 m

算法

 \circ 測試所有可能的 m

複雜度

 \circ 平均 $\frac{n}{2}$ 次會找到,複雜度 O(n)

Pohlig-Hellman

在每個 subgroup 解離散對數後用 CRT 組回來

算法

$$\circ$$
 ord $(G) = n = p_0^{e_0} p_1^{e_1} p_2^{e_2} \dots$

$$\circ b_i \coloneqq b^{n/p_i^{e_i}} , \ a_i \coloneqq a^{n/p_i^{e_i}}$$

- \circ 解 $\log_{b_i} a_i$ 獲得 $m_i = m \mod p_i^{e_i}$
- 用 CRT 計算 *m*

Baby-step Giant-step

算法

- \circ $k \coloneqq \left[\sqrt{n}\right]$
- 計算並儲存 b^{yk} , $0 < y \le k+1$
- 找到 x, y 使得 $a^x = b^{yk}$, 0 < x < k
- $\circ \quad m = x^{-1}yk \mod n$

複雜度

$$\circ \quad \text{time} = O(\sqrt{n}) \quad \text{space} = O(\sqrt{n})$$

Pollard's rho

算法

- \circ 找到 $a^x b^y = a^u b^v$
- $\circ \quad mx + y = mu + v \mod n$
- $\circ \quad m = (v y) / (x u) \mod n$

複雜度

o time = $O(\sqrt{n})$ space = O(1)

Pseudo random sequence

定義

$$\circ \quad x_{i+1} = f(x_i)$$

○ 一遇到重複的就會開始循環

例子

 \circ 從 $x_0 = 2$ 開始:2, 0, 6, 3, 1, 6, 3, 1, …

複雜度

 $\circ \quad \text{time} = O(\sqrt{n}) \cdot \text{birthday paradox}$

Χ	f(x)
0	6
1	6
2	0
3	1
4	4
5	3
6	3
7	4
8	0

Pseudo random sequence

Pollard's rho random sequence

$$\circ$$
 $s_i \coloneqq a^x b^y$

$$\circ \quad s_{i+1} = f(s_i) = \begin{cases} as_i & s \in S_0 & (x \leftarrow x + 1) \\ s_i^2 & s \in S_1 & (x \leftarrow x * 2, y \leftarrow y * 2) \\ bs_i & s \in S_2 & (y \leftarrow y + 1) \end{cases}$$

$$\circ$$
 找 $a^x b^y = s_i = s_{i+\lambda} = a^u b^v$

Floyd's Tortoise and Hare

算法

- \circ 檢查 s_i , s_{2i} 是否相等
- \circ $i \leftarrow i + 1$

複雜度

 \circ $O(\lambda)$

Pollard's rho

算法

- \circ 找到 $a^x b^y = a^u b^v$
- $\circ \quad mx + y = mu + v \mod n$
- $\circ \quad m = (v y) / (x u) \mod n$

複雜度

o time = $O(\sqrt{n})$ space = O(1)

簽章 | Signature

數字簽章算法 I DSA

參數生成

- p = aq + 1,其中 p,q 都是質數, a 是正整數
- $g = h^a \mod p$, 其中 h 是正整數 (通常是2), $g \neq 1$
- 公開參數為 (p, q, g)

金鑰生成

- 私鑰:隨機生成在 0 到 q 之間的數字 x
- \circ 公鑰: $y = g^x$

數字簽章算法 I DSA

簽名

- \circ 隨機生成在 1 到 q 之間的正整數 k
- $\circ \quad r = (g^k \mod p) \mod q$
- $\circ \quad s = k^{-1}(H(m) + xr) \mod q$

數字簽章算法 DSA

驗證

- ∞ 檢查 0 < r < q 以及 0 < s < q
- $\circ \quad w = s^{-1} \mod q$
- \circ $u_1 = H(m) w \mod q$
- \circ $u_2 = r w \mod q$
- $\circ \quad v = (g^{u_1} y^{u_2} \mod p) \mod q$
- 檢查 *v* = *r*

數字簽章算法 I DSA

正確性

- $w = s^{-1} = k (H(m) + xr)^{-1} \mod q$
- $\circ \quad v = \left(g^{H(m)\,w}\,y^{rw} \mod p\right) \mod q$
- $\circ \quad v = \left(g^{H(m)\,w}\,g^{xrw} \mod p\right) \mod q$
- $\circ \quad v = \left(g^{(H(m) + xr) w} \mod p\right) \mod q$
- $\circ \quad v = (g^k \mod p) \mod q$

Reuse k

重複使用 k (或是 k 之間有些關係)會造成私鑰 x 能被還原出來

$$\circ \quad s_i = k^{-1} \left(H(m_i) + xr \right)$$

$$\circ \quad s_1 - s_0 = k^{-1} \left(H(m_1) - H(m_0) \right)$$

解決方法

 \circ k = HMAC(m'),其中 m' 從 H(m) 經過一些運算後取得

現實案例

Sony PS3 ECDSA key recover

Ed25519

設計上盡量避免了實做上容易犯錯的點

$$\circ$$
 $k = H(H_{b...2b-1}(k), M)$

使用 Edwards Curve

- 運算速度較一般的橢圓曲線快速
- Montgomery ladder 避免旁路攻擊
- 同樣 security-level 簽章長度較短

量子 | Quantum

BQP

- Bounded-error Quantum Polynomial time
- 有至少 1/3 的機率會輸出正確答案
- 傳統電路可以轉換成量子電路
 - BQP包含 P
- BQP =?= NP

Basic Quantum

- 傳統上一個 bit 只會是 0 或是 1
- 而 qubit 可以是 0 和 1 中間的疊加態
 - 寫成 $a|0\rangle + b|1\rangle$, 其中 $a^2 + b^2 = 1$
- 沒有辦法複製一顆量子
- 能夠做兩種操作:測量或乘上一個 Unitary Matrix
 - X: NOT, CX: XOR, CCX: AND ···

Measurement

- 沒有辦法直接測量出 a, b 是什麼
- 我們可以選一組基底做測量
 - 以 |0⟩ 和 |1⟩ 做測量的話,
 - 有 a² 的機率塌陷到 |1)
 - 有 b² 的機率塌陷到 |0⟩

Measurement

- 沒有辦法直接測量出 a, b 是什麼
- 我們可以選一組基底做測量
 - 以 | √⟩ 和 | /> 做測量的話,
 - 有0的機率塌陷到 | へ)
 - 有1的機率塌陷到 | /〉

Entanglement

多於一顆但是互相獨立

 $(a|0\rangle + b|1\rangle) \otimes (c|0\rangle + d|1\rangle) = ac|00\rangle + ad|01\rangle + bc|10\rangle + bd|11\rangle$

多於一顆且互相纏結

- \circ $a|00\rangle + b|11\rangle$
- 當我們測量一顆得到 0,代表狀態塌陷到 |00〉,測量另一顆一定也是 0

Shor's algorithm

在 Polynomial time 做整數分解 算法

- 隨機選一個小於 N 的正整數 a
- \circ 使用量子演算法找出 r 使得 $f(x) = a^x \mod N$, f(x) = f(x+r)
- \circ $a^r = 1 \mod N$
- $\alpha^r 1 = (a^{r/2} 1)(a^{r/2} + 1) = kN$
- $\circ \quad p = \gcd\left(N, \left(a^{r/2} 1 \mod N\right)\right)$

Period finding

算法

- $Q = 2^q$, $N^2 < Q < 2N^2$
- 建造 x 為 0 到 Q 所有數字的疊加態 (所有 q 個 bit 都互相獨立且在 $|0\rangle + |1\rangle$ 的狀態)
- 計算 f(x), 並且測量 f(x) 得到 y
- \circ x 塌陷到所有 $a^x = y$ 的解 $(x_0, x_0 + r, x_0 + 2r ...)$ 的疊加態
- 對 x 進行 QFT, 得到 (r, 2r, 3r ...) 的疊加態
- \circ 測量並計算與 Q 的連分數展開得到 r

給定函數
$$f(x) = \begin{cases} -1 & x = w \\ 1 & x \neq w \end{cases}$$
, $0 \le x < N$, 找出 $w \circ$ 舉例來說

$$o f(x) = \begin{cases} -1 & \text{SHA256}(x) = h \\ 1 & \text{SHA256}(x) \neq h \end{cases}$$

概念:一直放大 |w) 的機率然後測量獲得 w

複雜度: $O(\sqrt{N})$

BB84

基於量子不可複製和測不準的特性 (c.f. DHKE,基於Dlog的難度)

Alice的隨機位元	0	1	1	0	1	0	0	1
Alice隨機選擇的基	+	+	×	+	×	×	×	+
Alice所傳光子的偏振態	1	→	`	1	`	7	7	→
Bob隨機選擇測量的基	+	×	×	×	+	×	+	+
Bob測量的光子的偏振態	1	7	`	7	→	7	→	→
在公共通道中對比基								
共有的金鑰	0		1			0		1

Survivors

Asymmetric

- X Factoring: RSA, Paillier ···
- X Discrete Log: DHKE, ElGamal, ECC ···
- ✓ Lattice-based
- √ Hash-based: Lamport signature …

• • •

Symmetric

✓ Double the key size due to Grover's algorithm

• • •

偽亂數產生器 | PRNG

Linear congruential generator (LCG)

定義

 $\circ \quad x_{i+1} = ax_i + b \mod m$

變形

- Raw: $x_{i-1} = a^{-1} (x_i b) \mod m$
- 保留 Low order bits:估上下界
- 保留 High order bits:LLL reduction

XORShift

運算速度快,程式碼簡單

定義

$$\circ$$
 $x \oplus = (x \ll a); x \oplus = (x \gg b); x \oplus = (x \ll c);$

分析技巧

 \circ 把 x 看成 bit vector,XOR 和 Shift 可以寫成 GF(2) 下的矩陣乘法

LFSR

- 暫存器的初始值是 seed
- 一次輸出一個 bit
 - 輸出的 bit 會變成第一個暫存器的值

- 分析技巧
 - 跟 XORShift 一樣用 bit vector 和 GF(2) 矩陣來處裡

Filtered LFSR

● 從輸出第一個暫存器改成對整個state做非線性運算

$$\circ \quad s_{i+1} = LFSR(s_i); \quad o = f(s_{i+1})$$

- 分析方法
 - \circ 找 f 的 線性 (或low degree) annihilator g
 - $\forall x : f(x) = 1, \ g(x) = 0$
 - 對於所有 $f(s_i) = 1$ 的地方用 $g(s_i)$ 建聯立方程式並求解

Mersenne Twister (MT19937)

- 週期長、沒專利、通過很多測試 …
- 許多語言的預設算法:MATLAB, PHP, Python, R, Ruby, Octave …
- 狀態為 624 個 32-bits 的數字
- x_i 由 x_{i-624} , x_{i-623} , x_{i-227} 三個數字運算而成
- 輸出前會先經過一個可逆的非線性函數
 - 可以由連續 624 個 32bits 的輸出還原出狀態
 - 可以由足夠多獨立的 bits 解方程式還原出狀態

CSPRNG

● 定義

○ 給定 k 個 bits,沒有已知的多項式時間算法能以高於 1 / 2 的機率輸出第 k+1 bit。

Cipher-based

- CTR mode, IV = seed
- Stream cipher, IV = seed

Hash-based

$$\circ$$
 $x_{i+1} = x_i + 1; o_{i+1} = H(x_i)$