Short-Period, Fa and Long Period Fv Site Coefficients

Mapped Risk-Targeted Maximum Considered Earthquake (MCER) Spectral Response Acceleration Parameter Table 11.4-1 Short-Period Site Coefficient, F.

			at Short Period			
• Site	• S ₂ S	s.0 = 85 = 0.5	. Ss = 0.75	. Sr = 1.0	35 ± 55.1	S, 2 1.5
¥	0.8 0.9	0.8 0.8	0.8 0.8	80 0.8	දි. 0 80	8.0
8	0.9 1.0	0.1 6.0	0.1 6.0	0.1 6.0	0-1 6:0	6.0
C	1.3 1.2	1.3 (.2	1.2	1.2 [-0	1.2 1.0	1.2
Q	1.6 1.6	A.1 P.1	2.1 2.1	1.1 1.4	1.0 1.0	1.0
E	2.4 2.5	1.7 1.07	1.3 1.2	1.3 1.7 See Section 1849	See Section 11.4.7 See Section 11.4.7	See Section 11.4.7
t.	See Section 11.4.7	See Section 11.4.7	See Section 11.4.7	See Section 11.4.7	See Section 11.4.7	See Section 11.4.7
Niotes	National Inches of the Contract of the Contrac	Landa Caranta Landa				

Note: Use straight-line interpolation for intermediate values of S₁.

Table 11.4-2 Long-Period Site Coefficient, F.

Mapped Risk-Targeted Maximum Considered Earthquake (MCER) Spectral Response Acceleration Parameter

A 0.8 0.8 0.8 </th <th></th> <th></th> <th></th> <th>מו ו-פ ו פוופת</th> <th>2</th> <th></th> <th></th>				מו ו-פ ו פוופת	2		
0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 <th>He Chas</th> <th>5, ≤ 0.1</th> <th>S₁ = 0.2</th> <th>. St = 0.3</th> <th>• S; =0.4</th> <th>S. 305 C</th> <th>7 25</th>	He Chas	5, ≤ 0.1	S ₁ = 0.2	. St = 0.3	• S; =0.4	S. 305 C	7 25
0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 1.5 1	4	0.8 0.8	G.0 8.0	0.8 0.8	6.0 8.0	0.8 0.8	0.8
1.5 1.7 1.5 1.6 1.5 1.5 1.5 1.4 1.5 1.3 2.4 7.4 2.2' 7.0 2.0' 1.8 1.9' 1.6 1.8' 1.5 4.2 3.5 3.3' 3.2 2.8' 2.9 2.4' 2.4 2.2' 2'4 See Section 11.4.7	В	0.8 1.0	O.1 8.0	0.8 1.0	0.1 8.0	0.1 8.0	0.8
2.4 7.4 2.21 7.0 1.8 1.91 1.6 1.81 1.5 4.2 3.5 3.31 3.2 2.81 2.6 2.41 2.4 2.1 2.4	ပ	1.1 21	1.5 1.6	1.5 1.5	1.5 1.4	15 1.3	1.4
4.2 3.5 3.3¹ 3.2¹ 3.2¹ 3.6 2.8¹ 7.6 2.4¹ 7.4 2.2¹ 7.4 See Section 11.4.7	D	2.4 7.4	2.2 2.0	2.0' 1.8	9 61		1.71
See Section 11.4.7 See Section 11.4.7 See Section 11.4.7 See Section 11.4.7	Э	42 3.5	33 32	2.8 2.9	2.4 Z.A	2.2' 2.4	2.01
	ĹĻ	See Section 11.4.7	See Section 11.4.7	See Section 11.4.7		See Section 11.4.7	See Section 11.4.7

Note: 'Also, see requirements for site-specific ground motions in Section 11.4.7.

Note: Use straight-line interpolation for intermediate values of S₁.

Site Coefficient FPGA

Table 11.8-1 Site Coefficient FPGA

	Mapped Maxim	um Considered (Seometric Mean	(MCE ₆) Peak Gro	Mapped Maximum Considered Geometric Mean (MCE ₆) Peak Ground Acceleration, PGA	, PGA
Site Class	PGA ≤ 0.1	PGA - 0.1	PGA = 0.3	PGA - 0.4	PGA = 0.5 ZA	PGA ≥ 0.6 N
A	0.8 o.B	0.8 0.8	0.8 0.8	G.0 8.0	0.8 o.B	8.0
В	0.1 60	0.7 6.0	0.9 1.0	0 1 60	0./ 6.0	6.0
U	1.3 1.2	12 1.7	1.2	0 1 71	12 1.0	1.2
D	1.6 1.6	14 1.4	2-1 61	17 71	0.1 1.0	1:1
ш	2.4 2.5	١٠١ و١	7 1 9 1	b 0 71	12 0 9	1.1
Ħ	See Section 11.4.7	See Section 11.4.7	See Section 11.4.7	See Section 11.4.7 See Section 11.4.7	See Section 11.4.7 See Section 11.4.7	See Section 11.4.7

Note: Use straight-line interpolation for intermediate values of PGA.

Note:

- Vs30 site condition of 760 The new site coefficients (black) are based on M/s
- site condition of 1050 M/s The old site coefficients

Figure 3.4.1-1—Design Response Spectrum, Construction Using Three-Point Method

Bridge Design and Drafting Manual – October 2016 Oregon Department of Transportation Section 1 - Design

Replace AASHTO Guide Spec Table 3.4.2.3-1 with two following tables:

Table 1.17.3-1A

Values of Site Factor, From at Zero-Period on Acceleration Spectrum

Sito Olace		Mapped Peak Ground	ak Ground Acce	Acceleration Coefficient	ient (PGA)	
)	PGA < 0.1	PGA = 0.2	PGA = 0.3	PGA = 0.4	PGA = 0.5	PGA ≥ 0.6
A	8.0	0.8	0.8	8.0	0.8	0.8
B	6.0	6'0	6.0	6.0	6.0	6.0
0	1.3	1.2	1.2	1.2	1.2	1.2
D	1.6	1.4	1.3	1.2	11	
3	2.4	6.1	9.1	11	1.2	=
ĮŢ.	•	***	•	•	••	•

Table 1.17.3.1B

Values of Site Factor, F., for Short-Period Range of Acceleration Spectrum

Charles Charles	×	Mapped Spectral	Acceleration	Coefficient at Pe	TPeriod 0.2 sec (Ss)	100
olle Ciass	S _s < 0.25	S _s = 0.5	S _s = 0.75	S _s = 1.0	$S_S = 1.25$	S _s ≥ 1.5
A	8.0	8.0	8.0	0.8	0.8	0.8
B	6'0	6.0	6.0	6.0	6.0	6.0
O	1.3	13	1.2	1.2	1.2	1.2
O	1,6	1,4	1.2	1	1.0	1.0
E	2.4	1.7	1.3	1	••	•
F-1		•	**	-0	*	•

Replace AASHTO Guide Spec Table 3.4.2.3-2 with following table:

Table 1.17.3-1C

Values of Site Factor, F., for Long-Period Range of Acceleration Spectrum

	Mappe	d Spectral Resp	esponse Accelerat	ration Coefficient	at Period 1.0 se	ec (S ₁)
2000	S ₁ < 0.1	S' = 0.2	S ₁ = 0.3	S ₁ = 0.4	S ₁ = 0.5	S, ≥ 0.6
\	0.8	8.0	8.0	8.0	9.0	0.8
83	0.8	8.0	8.0	8.0	80	0.8
O	1.5	t)	1.5	1.5	5:	14
D.	2.4	2.2	2.0	1.9	-8	1.7
1	4.2	er er	28.	24	20	000

Bridge Design and Drafting Manual – October 2016 Oregon Department of Transportation Section 1 - Design

••	
	1
••	
••	
•	
**	
F ²	Notes:

-Use straight-line interpolation for intermediate values of PGA, Ss., or Ss.

2 – Perform a site-specific geotechnical investigation and dynamic site response analysis for all sites in Site Class F. Perform a ground motion hazard analysis for structures on Site Class E sites with S_s greater han or equal to 1.0.

Perform a ground motion hazard analysis for structures on Site Class D and E sites with S, greater than or equal to 0.2.

"Operational" Criteria: Design all bridges on and West of US97 to remain "Operational" after a full rupture of Cascadia Subduction Zone Earthquake (CSZE). The full rupture CSZE hazard maps are available at the ODOT Bridge Section website.

The CSZE is a deterministic event, and a deterministic Design Response Spectrum must be generated. To allow for consistency and efficiency in design for the CSZE, an application for generating the Design Response Spectra has been developed by Portland State University, Latitude, Longitude, and V_{son} are the needed input for running the application. This application can be accessed at the following link:

hittp://www.oregon.gov/ODOT/HWY/BRIDGE/Pages/seismic.aspx

To satisfy the "Operational" criteria, comply with the following requirements and guidelines:

Seismic Design Categories (SDC) A, B, C and D

Verify the "Operational" performance for Cascadia Subduction Zone Earthquake when
potentially liquefiable soils are present on site.

Seismic Design Categories (SDC) A and B

No structural analysis is required for "Operational" criteria.

Seismic Design Category (SDC) C

• Satisfy equation 4.8-1 of the AASHTO Guide Spec ($\Delta_{\rm L}^{\rm L}$) for each bridge bent, where $\Delta_{\rm C}^{\rm L}$ is determined from the equation 4.8.1.1 of the AASHTO Guide Spec (displacement capacity for

Seismic Design Category (SDC) D

- Meet all design requirements for SDC D according to the AASHTO Guide Specifications for LRFD Seismic Bridge Design, except as modified below:
- o Ensure the maximum concrete strain in confined section of the columns does not exceed ϵ_{cc} = 0.005
- Ensure the maximum strain of reinforcing steel does not exceed 2°E_{sh}, where E_{sh} is defined on Table 8.4.2-1 of the AASHTO Guide Spec.
 - o Ensure the maximum strain of prestressing steel (for 270 ksi strands) does not exceed $\xi_{\rm p,EE}=0.0086$

Non-conventional Bridges: Guide Spec. 3.7 states that the seismic provisions of this Manual are