

ARE YOU READY?

T-i α β γ A 1 2 4 B 5 3 4 C 5 4 8

Example 1

- Assign the agents A, B, C to the activities α , β , γ . The cost for each agent to perform each activity is given by the following cost matrix:
- First we need to declare the decision variables:

$$x_{ij} = Agent \ i \ assigned \ to \ activity \ j \ where \ i = 1 = A, 2 = B, 3 = C \ and \ j = 1 = \alpha, 2 = \beta, 3 = \gamma$$

Next we will create the objective function:

$$\min z = x_{11} + 2x_{12} + 4x_{13} + 5x_{21} + 3x_{22} + 4x_{23} + 5x_{31} + 4x_{32} + 8x_{33}$$

• In the first few constraints we need to make sure that only one activity is assigned per agent:

s.
$$t.x_{11} + x_{12} + x_{13} = 1$$

 $x_{21} + x_{22} + x_{23} = 1$
 $x_{31} + x_{32} + x_{33} = 1$

Task Assignment IP

 In the next few constraints we need to make sure that only one agent is assigned per activity:

s.t.
$$x_{11} + x_{21} + x_{31} = 1$$

 $x_{12} + x_{22} + x_{32} = 1$
 $x_{13} + x_{23} + x_{33} = 1$

• Lastly, we need to add our sign restrictions:

$$x_{ij} = 0 \text{ or } 1$$

Steps:

- **Step 1**: Add dummy row/column if the matrix is not even.
- Step 2: Row reduction
- Step 3: Column reduction
- Step 4: Conditional check. If the amount of lines = matrix size, table is optimal, stop and continue to Step 6. If the amount of lines ≠ matrix size, table is not optimal, continue to Step 5.
- Step 5a: Choose the smallest value in the table that is not covered by any lines. We will call this value a
- **Step 5b**: Subtract *a* from every uncovered element in the matrix.
- **Step 5c**: Add *a* to every element in the matrix that is covered twice (+where two lines cross).
- **Step 5d**: Leave the values as they are if they are covered by one line. Calculate the new matrix and go back to **Step 4**.
- **Step 6:** Select the appropriate 0s and apply the selection to the initial matrix, disregarding dummy rows or columns. Calculate the optimal task assignment z objective by calculating the sum of all selected values in the original matrix.

 Now we will solve the Task assignment IP we created in the previous slide:

T-i	α	β	γ
Α	1	2	4
В	5	3	4
С	5	4	8

Row reduction:

T-i	α	β	γ
Α	1	2	4
В	5	3	4
С	5	4	8

T-į	α	β	γ
Α	0	1	3
В	2	0	1
С	1	0	4

• Column reduction:

T-į	α	β	γ
Α	0	1	3
В	2	О	1
С	1	0	4

T-į	α	β	γ
Α	0	1	2
В	2	0	0
С	1	0	3

Conditional check:

Choosing 0s:

• Substitute value from initial table:

• Total cost:
$$1 + 4 + 4 = 9$$
 or $\min z = x_{11} + 2x_{12} + 4x_{13} + 5x_{21} + 3x_{22} + 4x_{23} + 5x_{31} + 4x_{32} + 8x_{33}$

•
$$\min z = (1) + 2(0) + 4(0) + 5(0) + 3(0) + 4(1) + 5(0) + 4(1) + 8(0) = 9$$

Task Assignment IP

Example 2

Assign the agents A, B, C, D, and E to the activities α , β , γ , and δ . The cost for each agent to perform each activity is given by the following cost matrix:

A 10 19 8 15 B 10 18 7 17 C 13 16 9 14 D 12 19 8 18 E 14 17 10 19

First we need to declare the decision variables:

$$x_{ij}$$
 = Agent i assigned to activity j where $i = 1 = A, 2 = B, 3 = C, 4 = D, 5$
= E and $j = 1 = \alpha, 2 = \beta, 3 = \gamma, 4 = \delta$

• Next we will create the objective function:

$$z = 10x_{11} + 19x_{12} + 8x_{13} + 15x_{14} + 10x_{21} + 18x_{22} + 7x_{23} + 17x_{24} +$$
min
$$13x_{31} + 16x_{32} + 9x_{33} + 14x_{34} +$$

$$12x_{41} + 19x_{42} + 8x_{43} + 18x_{44} +$$

$$14x_{51} + 17x_{52} + 10x_{53} + 19x_{54}$$

Task Assignment IP

 In the first few constraints we need to make sure that only one activity is assigned per agent:

s.
$$t.x_{11} + x_{12} + x_{13} + x_{14} \le 1$$

 $x_{21} + x_{22} + x_{23} + x_{24} \le 1$
 $x_{31} + x_{32} + x_{33} + x_{34} \le 1$
 $x_{41} + x_{42} + x_{43} + x_{44} \le 1$
 $x_{51} + x_{52} + x_{53} + x_{54} \le 1$

 In the next few constraints we need to make sure that only one agent is assigned per activity:

s.
$$t.x_{11} + x_{21} + x_{31} + x_{41} + x_{51} = 1$$

 $x_{12} + x_{22} + x_{32} + x_{42} + x_{52} = 1$
 $x_{13} + x_{23} + x_{33} + x_{43} + x_{53} = 1$
 $x_{14} + x_{24} + x_{34} + x_{44} + x_{54} = 1$

Lastly, we need to add our sign restrictions:

$$x_{ij} = 0 \text{ or } 1$$

Now we will solve the Task assignment IP we created in the

previous slide:

T-i	α	β	γ	δ
Α	10	19	8	15
В	10	18	7	17
С	13	16	9	14
D	12	19	8	18
Ε	14	17	10	19

Add dummy column:

T-i	α	β	γ	δ	ε
Α	10	19	8	15	19
В	10	18	7	17	19
С	13	16	9	14	19
D	12	19	8	18	19
E	14	17	10	19	19

• Row reduction:

T-2	α	β	γ	δ	ε
А	10	19	8	15	19
В	10	18	7	17	19
С	13	16	9	14	19
D	12	19	8	18	19
E	14	17	10	19	19

T-2	α	β	γ	δ	ε
Α	2	11	0	7	11
В	3	11	0	10	12
С	4	7	0	5	10
D	4	11	0	10	11
E	4	7	0	9	9

• Column reduction:

T-2	α	β	γ	δ	ε
Α	2	11	0	7	11
В	3	11	0	10	12
С	4	7	0	5	10
D	4	11	0	10	11
Е	4	7	0	9	9

T-2	α	β	γ	δ	ε
Α	0	4	0	2	2
В	1	4	0	5	3
С	2	0	0	0	1
D	2	4	0	5	2
Е	2	0	0	4	0

Conditional check:

T-2	α	β	γ	δ	ε
Α	0	4	-0-	2	2
В	1	4	0	5	3
C	2	0	0_	0	11
D	2	4	0	5	2
E	2	0	0	4	0

When the table is not optimal do the following:

T-3	α	β	γ	δ	ε
Α	0	4	1	2	2
В	0	3	0	4	2
С	2	0	1	0	1
D	1	3	0	4	1
E	2	0	1	4	0

• Conditional check:

T-3	α	β	γ	δ	ε
Α	0	4	1	2	2
В	0	3	0	4	2
c	2	0	1	0	1
D	1	3	0	4	1
E	- 2	0	-1	4	0

When the table is not optimal do the following:

T-4	α β	γδ	ε
А	0	3 1	1 1
В	0	2 0	3 1
С	3	0 2	0 1
D	1	2 0	3 0
E	3	0 2	4 0

• Conditional check:

T-4	α β	γδ	ε
A	0	3 1	1 1
В	-0-	2 0	3 1
c	3	0 2	0 1
D	1	2 0	3 0
E	3	0 2	4 0
-	_		

When the table is optimal do the following:

T-4	α	β	γ	δ	ε
Α	0	3	1	1	1
В	0	2	0	3	1
С	-3	0	2	0	1
D	1	2	0	3	0
Е	3	0	2	4	0

T-5*	α	β	γ	δ	ε
Α	10	19	8	15	19
В	10	18	7	17	19
С	13	16	9	14	19
D	12	19	8	18	19
E	14	17	10	19	19

• Total Cost = 10 + 7 + 14 + 17 = 48

Exercises

• Five employees are available to perform four jobs. The time it takes each person to perform each job is given in the table. A dash indicates that the person cannot do that particular job.

		Time (hours				
Person	Job 1	Job 2	Job 3	Job 4		
1	22	18	30	18		
2	18	_	27	22		
3	26	20	28	28		
4	16	22	_	14		
5	21	_	25	28		

- Formulate an Integer Programming Model to determine the assignment of employees to jobs that minimizes the total time required to perform the four jobs.
- Solve the formulate Integer Programming Model using the Hungarian Algorithm.

Exercises

• The Polokwane board of education is taking bids on the city's four school bus routes. Four companies have made the bids in the table:

	Bids						
Company	Route 1 Route 2 Route 3 Route 4						
1	R4 000	R5 000	_	_			
2	_	R4 000	_	R4 000			
3	R3 000	_	R2 000	_			
4	_	_	R4 000	R5 000			

- Suppose each bidder can be assigned only one route. Formulate an Integer Programming Model to assign the companies to routes to minimize Polokwane's cost of running the four bus routes.
- Solve the formulate Integer Programming Model using the Hungarian Algorithm
- Suppose that each company can be assigned two routes. Formulate an Integer Programming Model to assign the companies to routes to minimize Polokwane's cost of running the four bus routes.
- Solve the formulate Integer Programming Model using the Hungarian Algorithm

Exercises

• Assign the agents A, B, C, D, and E to the activities α , β , γ , and δ . The cost for each agent to perform each activity is given by the following cost matrix:

	Task				
Agent	α	β	γ	δ	ε
Α	20	38	16	30	28
В	20	36	14	34	24
С	26	32	18	28	26
D	24	38	16	38	20
E	28	34	20	38	18
F	30	34	28	38	36

- Formulate an Integer Programming Model to determine the assignment of agents to activities that minimizes the total costs required to perform the different activities.
- Solve the formulate Integer Programming Model using the Hungarian Algorithm.

info@belgiumcampus.ac.za

+27 10 593 5368

+27 (0) 12 543-1617

PO Box 60327, Karenpark 0118, South Africa

@BelgiumCampusSA

@BelgiumCampus

/Belgium Campus

Ekurhuleni Campus 45A Long Street **Kempton Park**

Nelson Mandela Bay Campus 6 Uitenhage Road North End, Port Elizabeth,