UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Dirección General de Cómputo y de Tecnologías de información y Comunicación Dirección de Docencia en TIC

Ciencia de datos

Ejercicio 3

Nombre:	Rodríguez	Fitta	José Emanuel	Fecha:	05/02/2022	
	Apellido Paterno	Apellido Materno	Nombre(s)			
				ón:		

Objetivo: El participante podrá reafirmar sus conocimientos de las operaciones básicas del álgebra lineal.

Instrucciones:

Desarrollar los siguientes ejercicios e indicar la respuesta final.

- 1) Sumar los vectores u = (4,-2,-1) y v = (-3, 1, 2).
 - a) (1, 1, 1)
 - b) (-1, 1, -1)
 - c) (1, -1, 1)
- 2) Sea el escalar k=-2 y el vector v = (-1, 0, -5), efectuar la multiplicación del escalar con el vector.
 - a) (-2, 0, 10)
 - b) (2, 0, 10)
 - c) (2, 0, -10)
- 3) Sean los vectores A = (4, 2, -6) y B = (-5, 3, -2), efectuar el producto punto.
 - a) -2
 - b) -14
 - c) 2
- 4) Calcular el producto vectorial de los vectores u = (1, 2, 3) y v = (-1, 1, 2).
 - a) (1, -5, 3)
 - b) (7, -1, -1)
 - c) (-1, 2, 6)

- 5) Calcular la norma del siguiente vector: u = (2, 2, -1,).
 - a) -3
 - b) 3
 - c) $-\sqrt{3}$
- 6) Efectuar la multiplicación del escalar k = 2 con la matriz:

$$A = \begin{bmatrix} 2 & -1 & -2 \\ 3 & 0 & -1 \\ 5 & 1 & 3 \end{bmatrix}$$

$$a) \begin{bmatrix} -4 & 2 & 4 \\ -6 & 0 & 2 \\ -10 & -2 & -6 \end{bmatrix} \quad b) \begin{bmatrix} 4 & 2 & 4 \\ 6 & 0 & 2 \\ 10 & 2 & 6 \end{bmatrix} \quad c) \begin{bmatrix} 4 & -2 & -4 \\ 6 & 0 & -2 \\ 10 & 2 & 6 \end{bmatrix}$$

7) Realizar la suma de las siguientes matrices:

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}; B = \begin{bmatrix} -2 & 9 \\ 3 & 5 \end{bmatrix}$$

$$a) \begin{bmatrix} 1 & 11 \\ 2 & 5 \end{bmatrix} \quad b) \begin{bmatrix} 4 & 19 \\ 2 & -9 \end{bmatrix} \quad c) \begin{bmatrix} -1 & 11 \\ 2 & 5 \end{bmatrix}$$

8) Llevar a cabo una multiplicación matricial con las siguientes matrices:

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1/4 & 1/2 & -1/4 \\ 1/2 & 0 & 1/2 \\ -1/4 & 1/2 & 1/4 \end{bmatrix}$$
$$a) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} b) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} c) \begin{bmatrix} 1/4 & 1/2 & 1/4 \\ 1/2 & 0 & 1/2 \\ 1/4 & 1/2 & 1/4 \end{bmatrix}$$

9) Calcular el determinante de la siguiente matriz:

$$A = \begin{bmatrix} 3 & 1 & -1 \\ 6 & 1 & -2 \\ 4 & -3 & 2 \end{bmatrix}$$

- a) Det |A|= 10
- b) Det |A|= -10
- c) Det |A|= 42

10) En la siguiente multiplicación matricial:

$$AB = \begin{bmatrix} 3 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ x & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- a) x = 2
- b) x = -2
- c) x = 3

¿Cuánto debe valer x, para que al efectuar la multiplicación se obtenga como resultado la matriz identidad?

Valor 1 punto c/u

1)
$$v = (4, -2, -1)$$
 $v = (-3, 1, 2)$
 $v + v = (1, -1, 1)$

2)
$$k=-2$$
 $v=(-1,0,-5)$
 $kv=(2,0,10)$

3)
$$A = (4,2,-6)$$
 $B = (-5,3,-2)$
 $A \cdot B = 4(-5) + 2(3) - 6(-2) = -20 + 6 + 12 = -2$

$$uxv = \begin{vmatrix} i & j & k \\ -1 & 1 & 2 \end{vmatrix} = (4-3)^{\frac{1}{2}} - (2+3)^{\frac{1}{2}} + (1+2)^{\frac{1}{2}}$$

$$= ^{\frac{1}{2}} - 5^{\frac{1}{2}} + 3^{\frac{1}{2}} = (1, -5, 3)$$

$$||u|| = \sqrt{\langle u, u \rangle} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3$$

6)
$$k=2$$
 $A = \begin{pmatrix} 2 & -1 & -2 \\ 3 & 0 & -1 \\ 5 & 1 & 3 \end{pmatrix}$

$$KA = \begin{pmatrix} 4 & -2 & -4 \\ 6 & 0 & -2 \\ 10 & 2 & 6 \end{pmatrix}$$

$$7) \quad A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} -2 & 9 \\ 3 & 5 \end{pmatrix}$$

$$A+B=\begin{pmatrix} -1 & 11\\ 2 & 5 \end{pmatrix}$$

8)
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} 1/4 & 1/2 & -1/4 \\ 1/2 & 0 & 1/2 \\ -1/4 & 1/2 & 1/4 \end{pmatrix}$

9) $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 \\ 0 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 \\ 0 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 \\ 0 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 \\ 0 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 \\ 0 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 \\ 0 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 \end{pmatrix}$