Appl. No. 10/773,343 Amdt. dated May 18, 2005

Reply to Office Action of Jan. 4, 2005

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1-36 (cancelled)

37. (Currently amended) An integrated semiconductor structure comprising:

a multijunction solar cell structure having at least first and second subcells; and

a bypass device integral to a subcell for passing current when the solar cell is

shadowed and having p-type, i-type, and n-type layers; wherein

the bypass device and the subcell have identical sequences of layers with substantially

the same thickness and form an integral semiconductor body.

38. (Previously submitted) The structure as defined in claim 37, wherein said

structure includes a substrate, wherein the subcells are formed on a first portion of the

substrate and said bypass device includes a bypass diode formed on a second portion of the

substrate.

39. (Currently amended) The structure as defined in claim 38, wherein the layers of

the subcells are epitaxially grown in a first process and the active layers of said bypass diode

are epitaxially grown over the layers of the subcells in a subsequent second process.

40. (Previously submitted) The structure as defined in claim 39, wherein said

epitaxially grown diode is electrically connected across at least said first and second subcells

to protect such first and second subcells against reverse biasing.

-3-

PALOALTO 51329 (2K)

- 41. (Previously submitted) The structure as defined in claim 39, wherein the bypass diode includes a metal/semiconductor contact.
- 42. (Previously submitted) The structure as defined in claim 41, wherein the metal/semiconductor contact is TiAu with InGaP.
- 43. (Previously submitted) The structure as defined in claim 41, wherein the metal/semiconductor contact forms a Schottky junction.
- 44. (Previously submitted) The structure as defined in claim 38, wherein the substrate is Ge.
- 45. (Previously submitted) The structure as defined in claim 37, wherein the second solar subcell is fabricated as least in part with InGaP.
- 46. (Previously submitted) The structure as defined in claim 37, wherein the first solar subcell is fabricated at least in part with GaAs.
- 47. (Currently Amended) A solar cell semiconductor devise device comprising:

 a semiconductor body having a sequence of layers of semiconductor material
 including a first region in which the sequence of layers of semiconductor material forms a

PALOALTO 51329 (2K) -4-

sequence of cells of a multijunction solar cell with the top layer of the top cell having a first polarity; and

a second region laterally spaced apart from said first region and in which the sequence of layers forms a support for an integral bypass diode to protect said sequence of cells against reverse biasing at less than breakdown voltage, the bottom layer of the bypass diode having said first polarity.

48. (Previously submitted) A device as defined in claim 47, wherein the sequence of layers of one of said cells and the sequence of layers of the bypass diode are epitaxially grown in the same process step.

49. (Previously submitted) A device as defined in claim 47, wherein the semiconductor body includes a Ge substrate, and at least one of the solar cells is fabricated at least in part with GaAs.

50. (Currently amended) A solar cell semiconductor device comprising:

a semiconductor structure having a sequence of layers of semiconductor material including a first region in which the sequence of layers of semiconductor material forms a sequence of eells subcells of a multijunction solar cell; and

a second region separated from said first region by a trough in said sequence of layers and in which the sequence of layers forms a support for an integral bypass diode to protect the

-5-

multijunction solar cell against reverse biasing by allowing current to pass when the solar cell is shadowed; wherein

the bypass device and the subcell have identical sequence of layers with substantially the same thickness and form an integral semiconductor body.

- 51. (Currently amended) A device as defined in claim 50, wherein the sequence of layers of semiconductor material said one cell and the sequence of layers of the bypass diode are epitaxially grown in a different process step.
- 52. (Currently amended) A device a defined in claim 50, wherein the semiconductor structure body includes a Ge substrate, and at least one of the cells is fabricated at least in part with GaAs.
- 53. (Previously submitted) A device as defined in claim 50, further comprising a lateral conduction layer lying over said layers of said second region for electrically connecting the multijunction solar cell to said bypass diode.
- 54. (Previously submitted) The device as defined in claim 53, wherein said structure includes a substrate, wherein the subcells are formed on a first portion of the substrate and said bypass diode is formed on a second portion of the substrate over said lateral conduction layer.

-6-

55. (Previously submitted) The device as defined in claim 53, wherein the solar cell and lateral conduction layer are epitaxially grown in a first process and the active layers of

said bypass diode are epitaxially grown in a subsequent second process.

56. (Currently amended) The device as defined in claim 55, wherein said epitaxially

grown diode is electrically connected across at least said first and second of said subcells to

protect such first and second subcells against reverse biasing at less than breakdown voltage.

57. (Previously submitted) The device as defined in claim 50, wherein the bypass

diode includes a metal/semiconductor contact.

58. (Previously submitted) The device as defined in claim 57, wherein the

metal/semiconductor contact is TiAu with InGaP.

59. (Previously submitted) The device as defined in claim 57, wherein the

metal/semiconductor contact forms a Schottky junction.

60. (Previously submitted) The device as defined in claim 50, wherein said bypass

diode includes p-type, i-type, and n-type layers.

61. (Previously submitted) The device as defined in claim 53, wherein the lateral

conduction layer is an n-doped GaAs layer for conducting electrical current.

-7-

- 62. (Previously submitted) The solar device of claim 60, wherein the p-type layer of the bypass diode is a p-doped GaAs layer and the n-type layer of the bypass diode is an n-doped GaAs layer.
- 63. (Previously submitted) The solar device of claim 60, wherein the i-type layer of the bypass diode is a lightly doped GaAs layer for reducing defect breakdown.
- 64. (Previously submitted) The solar device of claim 60, wherein the i-type layer of the bypass diode is an undoped GaAs layer for reducing defect breakdown.
 - 65. (Currently amended) A solar cell semiconductor device comprising: a substrate;
- a first sequence of layers of semiconductor material deposited on said substrate,; including a first region in which the sequence of layers of semiconductor material forms at least one cell of a multijunction solar cell; and
- a second region including said first sequence of layers, and a second sequence of layers that forms a bypass diode to protect said at least one cell against reverse biasing at less than breakdown voltage; and

a metal layer deposited on a portion of said substrate and over at least a portion of said second region for electrically shorting the first sequence of layers of said second region and to electrically connect to said bypass diode in said second region.

PALOALTO 51329 (2K) -8-

66. (Previously submitted) A device as defined in claim 65, further comprising a lateral conduction layer wherein said metal layer forms a shunt having a first contact on the solar cell and a second contact on the bypass diode, wherein said first contact is connected to the substrate to make an electrical connection to the solar cell and said second contact is connected to a lateral conduction layer to make an electrical connection to the bypass diode.

67. (Previously submitted) A device as defined in claim 65, further comprising a trough situated between the solar cell and the bypass diode that provides electrical isolation between the solar cell and the diode.

68. (Previously submitted) A device as defined in claim 66, further comprising a stop etch layer deposited over the lateral conduction layer.

69. (Previously submitted) A device as defined in claim 65, wherein said bypass diode includes p-type, i-type, and n-type layers.

70. (Previously submitted) A device as defined in claim 66, wherein the lateral conduction layer is an n-doped GaAs layer for conducting electrical current.

-9-

71. (Currently amended) A solar divide of device as defined in claim 69, wherein the p-type layer of the bypass diode is a p-doped GaAs layer and the n-type layer of the bypass diode is an n-doped GaAs layer.

72. (Currently amended) A solar-device as defined in of claim 69, wherein the i-type layer is a lightly doped GaAs layer for reducing defect breakdown.

73. (Currently amended) A solar device <u>as defined in of claim 69</u>, wherein the i-type layer is an undoped GaAs layer for reducing defect breakdown.

74-85. (Cancelled)

86. (Currently amended) An integrated semiconductor structure comprising:

a multijunction solar cell including first and second solar cells on a first portion of the semiconductor structure;

means integral to a second portion of said semiconductor structure overlying said second first portion for passing current when said multijunction solar cell is shaded; and a metal layer connecting said multijunction solar cell and said means for passing

another end of said metal layer is coupled to one terminal of said means for passing current.

current, wherein one end of said metal layer is coupled to the a base of said first solar cell and

87. (Previously submitted) The structure as structure as defined in claim 86, wherein said first solar cell is formed on a first portion of the substrate, and said means for passing current is a bypass diode formed on a second portion of the substrate.

88. (Previously submitted) The structure as defined in claim 87, wherein said first portion and said second portion are separated by a trough, and said metal layer lies over said trough.

89. (Currently amended) The structure as defined in claim 86, wherein said first and second solar cells are grown in a first process and said bypass diode is formed in a subsequent process.

90. (Currently amended) A solar cell semiconductor device comprising:

an integral semiconductor body having a sequence of layers of semiconductor material including a first region in which the sequence of layers of semiconductor material forms a sequence of cells of a multijunction solar cell, with the top layer of the top cell having a first polarity; and

a second region laterally spaced apart from said first region and in which the sequence of layers corresponding to the sequence of layers forming said cells forms a support structure for a bypass diode to protect said multijunction solar cell against reverse biasing at less than breakdown voltage, said bypass diode comprising at least one layer, wherein the bottom layer of the bypass diode has said first polarity.

PALOALTO 51329 (2K) -11-

- 91. (Previously submitted) A device as defined in claim 90, wherein the sequence of layers of said multijunction solar cell and the sequence of layers of the support structure are formed in the same process step.
- 92. (Previously submitted) A device as defined in claim 90, wherein the bypass diode is fabricated at least in part with GaAs.
 - 93. (Currently amended) A solar cell semiconductor devise device comprising: a substrate;
- a sequence of layers of material deposited on said substrate, including a first region in which the sequence of layers of material forms a plurality of cells of a multijunction solar cell, and a second region in which the corresponding sequence of layers the sequence of layers corresponding to the sequence of layers forming said cells forms a support for a bypass diode to protect said cell against reverse biasing; and
- a <u>planar</u> lateral conduction layer deposited over <u>said sequence of layers</u> the sequence <u>of layers in the second region</u> for making electrical contact to an active region of said bypass diode.
- 94. (Previously submitted) A device as defined in claim 93, wherein said lateral conduction layer in the first region is physically separated from the lateral conduction layer in the second region.

PALOALTO 51329 (2K) -12-

95. (Previously submitted) A device as defined in claim 93, wherein said lateral conduction layer is a highly doped layer.

96. (Previously submitted) A device as defined in claim 95, wherein said lateral

conduction layer is composed of GaAs.

97. (Previously submitted) A device as defined in claim 93, further comprising an etch

stop layer, deposited over said lateral conduction layer.

98. (Previously submitted) A device as defined in claim 93, wherein said substrate

forms an electrical connection path between said multijunction solar cell as said bypass diode.

99. (Previously submitted) A device as defined in claim 93, further comprising

a metal layer deposited on a portion of said substrate and over at least a portion of said

second region and functioning to (i) electrically short layers of said second region, and (ii)

connect the substrate to said lateral conduction layer to complete the electrical circuit between

the multijunction solar cell and the bypass diode.

100. (Currently amended) A solar cell semiconductor device comprising:

a substrate;

PALOALTO 51329 (2K) -13-

a sequence of layers of semiconductor material deposited on said substrate including a first region in which the sequence of layers of semiconductor material forms at least one cell of a multijunction solar cell, and a second region in which the corresponding sequence of layers a sequence of layers corresponding to the sequence of layers forming said at least one cell, forms a bypass diode to protect said cell against reverse biasing; and

wherein said sequence of layers the sequence of layers in the first and second regions includes a lateral conduction layer including a first portion disposed in said first region, and a second portion disposed in said second region and physically separated from said first portion.

- 101. (Previously submitted) A device as defined in claim 100, wherein said lateral conduction layer is a highly doped layer.
- 102. (Previously submitted) A device as defined in claim 100, wherein said lateral conduction layer is composed of GaAs.
- 103. (Previously submitted) A device as defined in claim 100, wherein one of the layers of said sequence of layers is a cap layer, and said lateral conduction layer is disposed directly over said cap layer.
- 104. (Previously submitted) A device as defined in claim 100, wherein said second portion of said lateral conduction layer makes electrical contact with a layer of said bypass diode.

PALOALTO 51329 (2K) -14-

105. (Previously submitted) A device as defined in claim 100, wherein said bypass diode comprises an n GaAs layer, and a p GaAs layer disposed over said n GaAs layer.

106. (Previously submitted) A device as defined in claim 100, further comprising a metal layer deposited on a portion of said substrate and over at least a portion of said second region and functioning to connect the substrate to a portion of said lateral conduction layer for completing the electrical circuit between the multijunction solar cell and the bypass diode.

107. (Currently amended) A solar cell semiconductor device comprising: a substrate;

a sequence of layers of semiconductor material deposited on said substrate, including a first region in which the a lower portion of said sequence of layers of semiconductor material forms a multijunction solar cell, and a second region in which the corresponding sequence of layers above said lower portion an upper portion of said sequence of layers forms a bypass diode to protect said cell against reverse biasing at less than breakdown voltage; and

a highly conductive lateral conduction layer deposited over the portion of said sequence of layers forming the multijunction solar cell, for making electrical contact with one layer of said bypass diode and forming a contact region to allow said bypass diode to be electrically connected to said multijunction solar cell.

PALOALTO 51329 (2K) -15-

Appl. No. 10/773,343

Amdt. dated May 18, 2005

Reply to Office Action of Jan. 4, 2005

108. (Previously submitted) A device as defined in claim 107, further comprising a

metal layer deposited on a portion of said substrate and over at least a portion of said second

region and functioning to connect the substrate to a portion of said lateral conduction layer for

completing the electrical circuit between the multijunction solar cell and the bypass diode.

109. (Previously submitted) A device as defined in claim 107, wherein said lateral

conduction layer includes a first portion disposed in said first region, and a second portion

disposed in said second region and separated from the first portion.

110. (Previously submitted) A device as defined in claim 107, wherein said lateral

conduction layer is composed of GaAs.

111. (Previously submitted) A device as defined in claim 109, wherein said second

portion of said lateral conduction layer makes electrical contact with a first active layer of said

bypass diode.

-16-