Three-way reactions in MCell

The rate of reaction of a molecule that can engage in a three-way reaction with reactants I and J at concentrations ρ_I and ρ_J is $\kappa \rho_I \rho_J$. Suppose that a single molecule moves a distance R while sweeping out an interaction area of δA . Then the expected number of hits, assuming that the concentration of I and J is low, is

$$n_{\rm hits} = R \, \delta A \, \rho_I \cdot R \, \delta A \, \rho_J$$

Thus, the expected number of hits for a molecule with a diffusion length constant of λ is

$$n_{\text{hits}} = \int_0^\infty \rho_I \rho_J \delta A^2 R^2 \frac{4\pi R^2}{\pi^{3/2} \lambda^3} e^{-R^2/\lambda^2} dR = \frac{3}{2} \rho_I \rho_J \delta A^2 \lambda^2$$

If we let *p* be the probability of reaction, then

$$\kappa \rho_I \rho_J \Delta t = p \cdot n = p \cdot \frac{3}{2} \rho_I \rho_J \delta A^2 \lambda^2$$

Solving for p gives

$$p = \frac{\kappa}{6D\delta A^2}$$

assuming that Δt is the time step for the moving molecule. If we let all three reactants move and react—let us number them 1, 2, and 3—then we matching the total rate gives

$$\kappa \rho_1 \rho_2 \rho_3 \Delta t = \frac{3}{2} \rho_1 \rho_2 \rho_3 \delta A^2 \left(p_1 \frac{\Delta t}{\Delta t_1} \lambda_1^2 + p_2 \frac{\Delta t}{\Delta t_2} \lambda_2^2 + p_3 \frac{\Delta t}{\Delta t_3} \lambda_3^2 \right)$$

where in general the individual molecules may move with custom timesteps Δt_i . We let $p_1 = p_2 = p_3 = p$ to give

$$p = \frac{\kappa}{6(D_1 + D_2 + D_3) \,\delta A^2}$$

This solution also works for the cases where some of the reactants can't move (as D_i will be zero and will drop out of the equation).

Now suppose that the reaction takes place near a surface such that for a fraction a of the distance, the molecule sweeps out $\delta A^* < \delta A$ of area instead of δA . The expected number of hits is then

$$n_{\text{hits}}^{\star} = R \rho_I \left((1 - a) \delta A + a \delta A^{\star} \right) R \rho_J \left((1 - a) \delta A + a \delta A^{\star} \right)$$

which we can rewrite as

$$n_{\text{hits}}^{\star} = n_{\text{hits}} \left((1-a)^2 + 2a(1-a) \frac{\delta A^{\star}}{\delta A} + a^2 \left(\frac{\delta A^{\star}}{\delta A} \right)^2 \right)$$

where the first term occurs when both hits are in the unconstrained space, the second when one target molecule is in the unconstrained space and one is in the constrained space, and the third when both targets are in the constrained space. If we multiply the probability of reaction by the inverse of the fractional areas for each target, i.e., by $\delta A/\delta A^*$ if one target is in the constrained space and $(\delta A/\delta A^*)^2$ when both are in the constrained space, we then find that the total rate of reaction is

$$pn_{\text{hits}}\left((1-a)^2 \cdot 1 \cdot 1 + 2a(1-a)\frac{\delta A^*}{\delta A} \cdot 1 \cdot \frac{\delta A}{\delta A^*} + a^2\left(\frac{\delta A^*}{\delta A}\right)^2 \cdot \frac{\delta A}{\delta A^*} \cdot \frac{\delta A}{\delta A^*}\right) = pn_{\text{hits}}$$

That is, the reaction rate is unchanged, which is exactly what we want. Since a is arbitrary, we can make a differentially small and thus the result holds for arbitrary restrictions of the swept area.

N-way reactions in MCell

Generalizing to N + 1 reactants (one moving and N targets), where N is a positive integer, we find that the collision rate is

$$n_{\text{hits}} = \int_0^\infty dR \cdot \prod_{i=1}^N \rho_i \cdot (R\delta A)^N \cdot \frac{4\pi R^2}{\pi^{3/2} \lambda^3} e^{-R^2/\lambda^2} = \prod_{i=1}^N \rho_i \cdot \frac{2\lambda^N \delta A^N}{\sqrt{\pi}} \Gamma\left(\frac{N+3}{2}\right)$$

and the bulk rate is $\kappa \cdot \prod_{i=1}^{N} \rho_i \cdot \Delta t$, so equating probabilities gives

$$p = \frac{\kappa \sqrt{\pi \Delta t}}{2\lambda^N \delta A^N \Gamma\left(\frac{N+3}{2}\right)}$$

Note that $\Gamma(N) = (N-1)!$ and $\Gamma(N+\frac{1}{2}) = \sqrt{\pi} \cdot 2^{-2N} \cdot (2N)!/N! = \sqrt{\pi} \cdot \prod_{i=1}^{N} \frac{2i-1}{2}$. If we have multiple moving molecules,

$$\kappa \cdot \prod_{i=1}^{N+1} \rho_i \cdot \Delta t = \prod_{i=1}^{N+1} \rho_i \cdot \frac{2\delta A^N}{\sqrt{\pi}} \Gamma\left(\frac{N+3}{2}\right) \cdot \sum_{i=1}^{N+1} p_i \frac{\Delta t}{\Delta t_i} \lambda_i^N$$

so that, if we set all the p_i to be equal,

$$p = \frac{\kappa \sqrt{\pi}}{2\Gamma\left(\frac{N+3}{2}\right) \delta A^N \sum \frac{\lambda_i^N}{\Delta t_i}}$$

By induction on the result for pairs of targets in the 3-way case, we also see that if a target *i* is hit in a restricted space, the reaction probability should be multiplied by $\delta A/\delta A_i^*$.

Converting 3-way reactions to 2-way reactions

Suppose we have a three-way reaction

$$A_1 + A_2 + A_3 \xrightarrow{k} A_{123}$$

which we wish to approximate by nine bimolecular reactions:

$$\begin{array}{ccccc}
A_{1} + A_{2} & \xrightarrow{k_{12}} & A_{12} \\
A_{1} + A_{3} & \xrightarrow{k_{13}} & A_{13} \\
A_{2} + A_{3} & \xrightarrow{k_{23}} & A_{23} \\
& A_{12} & \xrightarrow{k_{-12}} & A_{1} + A_{2} \\
& A_{13} & \xrightarrow{k_{-13}} & A_{1} + A_{3} \\
& A_{23} & \xrightarrow{k_{-23}} & A_{2} + A_{3} \\
& A_{3} + A_{12} & \xrightarrow{k_{3}} & A_{123} \\
& A_{2} + A_{13} & \xrightarrow{k_{2}} & A_{123} \\
& A_{1} + A_{23} & \xrightarrow{k_{1}} & A_{123}
\end{array}$$

At quasi-steady state, we want to match rate of entry in to the A_{123} state:

$$kA_1A_2A_3 = k_1A_1A_{23} + k_2A_2A_{13} + k_3A_3A_{12}$$
 (1)

And we also wish to keep the quasi-steady state concentrations of the intermediates A_{12} , A_{13} , and A_{23} low compared to the starting materials. In general, we will have

$$\frac{d}{dt}A_{hi} = -k_j A_j A_{hi} - k_{-hi} A_{hi} + k_{hi} A_h A_i \approx 0$$

so that

$$A_{hi} \approx \frac{k_{hi}A_hA_i}{k_{-hi} + k_jA_j}$$

If we want this to be roughly independent of the concentration of A_j then we require $k_{-hi} \gg k_j A_j$ and can rewrite this as

$$A_{hi} \approx \frac{k_{hi}}{k_{-hi}} A_h A_i \left(1 - \frac{k_j A_j}{k_{-hi}} \right)$$

If we further require that A_{hi} be small compared to A_h and A_i , we also require $\frac{k_{hi}}{k_{-hi}} \ll \frac{1}{\max(A_h,A_i)}$. Let A_+ be the largest value of any of the A_i during a simulation. Furthermore, let us set all k_j to be k^* , all k_{hi} to be k^{\dagger} and all k_{-hi} to be k^{\ddagger} . Then our constraints require that $k^{\ddagger} \gg k^*A_+$ and $k^{\dagger} \ll k^{\ddagger}\frac{1}{A_+}$; taken together, $k^{\dagger} \approx k^*$ is a valid solution, so we may as well make the two the same, k'. Thus, we have a forward reaction rate k' for all binding reactions and a backward reaction rate k^{\ddagger} for dissociation of the intermediates.

Thus, equation (1) becomes

$$kA_1A_2A_3 \approx k'A_1\frac{k'}{k^{\ddagger}}A_2A_3 + k'A_2\frac{k'}{k^{\ddagger}}A_1A_3 + k'A_3\frac{k'}{k^{\ddagger}}A_1A_2 = 3\frac{{k'}^2}{k^{\ddagger}}A_1A_2A_3$$

with a first-order error term

$$-\frac{k'^3}{k^{\frac{3}{2}}}A_1A_2A_3(A_1+A_2+A_3)$$

If we let $k^{\ddagger} = \alpha k'$, where $\alpha \gg A_+$, we then have

$$k \approx \frac{3}{\alpha}k' - \frac{A_1 + A_2 + A_3}{\alpha^2}k'$$

Thus,

$$k_1 = k_2 = k_3 = k_{12} = k_{13} = k_{23} = k' \approx \frac{1}{3}\alpha k$$

and

$$k_{-12} = k_{-13} = k_{-23} = k^{\ddagger} \approx \frac{1}{3} \alpha^2 k$$

Note that our fractional error is approximately $1/\alpha$, i.e. if we let $\alpha = 100A_+$ our fractional error would be under 1%.