Friday, 8 January, 2021 11:49 AM Juny machines (TOG) Module-y Three address codes (compiler) Tusing M/L M: (a, 2, 1, 8, 20, A, F) Q- Hon-empty finite met of studies E- " " " mpt symbol S:GXT -> QXT XD 0=7R,L1 2066 - Whitel skle DET - Blank Symbol (1 \$ E) FEQ + to empty finds set of four ships present Representation of TMs. SHAPSHOT OF TM W= 21 /2 /3 - x=xix | x - - 7/n, | W = n 8 (2, xi) = (p, y, R) ~ Last $\begin{cases} (2, x_i) = (p, y, R) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_i) = (x_1 x_1 - x_i) \\ (x_1 x_1 - x_i) = (x_1 x_1 - x_i) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_i) = (x_1 x_1 - x_i) \\ (x_1 x_1 - x_i) = (x_1 x_1 - x_i) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \end{cases} \qquad \begin{cases} (x_1 x_1 - x_1) = (x_1 x_1 - x_1) \\ (x_$

$$\begin{cases} (3, 1i) = (1, 2) \\ (1, 1i) =$$

- 2) Representation by Transition Table
- Representation by Tenselm Diagrams
- Dainna TM to accept L= Jamba/n>19 = {96,9966,999666,90946666,---

4					
		Tape	symbols		
programa !	9	Ь	×	Y	1
× (7)	XRE V	_	_	YR23	
~ (M	aRZ,	YLEZV	_) YR 21	
(\mathfrak{I}_{1})	962	_	XR2.	Y L 22	
\sim	-	-	-	YR93	$\Delta R Z_{Y}$
(93)	_	- (_	_	
(4)		1			WLL VX9 Y

a a a b b | - × 99 ×

abb To alb L × 7,66 L 2×46 L ×20×6 L ×736 m/c holls mon

m Tri

also does not accepted by TM

m TW also does not accepted by TM M= (12,2, 2,24, 19,6), (9,6), (4,6), 1 Ever no 0+3/3
2=111,1111,--7 8=214, Even no of 2/8 2,111 > X2,111 - XXX2,1 - XXX2,0 2,111 > X2,111 - XX201 - XXX2,0 9 W_1, W_2 Tape symbols Shit-es 5(9.1) = 1 (2017)

New Section 2 Page 3

IR2

TM for palindromes strings over {a, b}

Palindromes

w is a palindrome iff

wil = w

(b,b,L)
(con length (E, 4a, bb, aaaa, abby baab
(bbb, -) Old Jangh (9, 6, 9, 9, 9, 696, 696, 646, ---)

ababa

2, ababa - 12/2/21 - 4 Labata - 4

States	9	Tape Synibals	
	9R2 ₁ 9R2 ₁	 bR?z - bR?z ΔR?z	946639
192	_		

Q: pesign 9 7M for accept all palindsomes over 39,6}

20 A Storm w 18 a palindrone 1/2 W?= W

Even lensth pulmotrons = 18,99,66, 999, 966, 646, 646, -- }

Cold " " = {9,6,999,969,666,666,---}

20 969 - A2,69 - A68,9 - A68,4 - A68,5 - A68,5

 830 PP VOL 250 PP VOL CHINA 21 62, 40 1- 41 25 DA 1-AZ60AD4 1- 4AZ6ABA AA 457 DA

Three-address (Intermediate codes) ar-(b+1)

(i) Postfix nothin

(11) Three address coole

(i) Postfr notaring

Stepl are (bc+)

(11) Thre-addring (add symptom)

This b+((1)) Thre-Ta (1)

This are Ta (1)

This are Ta (1)

This are Ta (1)

This are Ta (1)

Constret Syndin free and posthi notation for the Entersion

71 = (a+be(be()) 1 d - (1(++9))

(Synder tra)

in+ wolled)) + d - e/ (f+9)

$$(a+b)(b(c)) \uparrow d - e/(f+g)$$

$$(a+f(b)(c)) \uparrow d - e/(f+g)$$

$$(a+f(b)(c)) \uparrow d - e/(f+g)$$

$$(a+f(c)) \uparrow d - e/(f+g)$$

$$($$

$$T_{2}! = b \approx T_{1}$$

$$T_{3}! = q + T_{2}$$

$$T_{3}! = T_{3} \uparrow d$$

$$T_{5}! = f + f$$

$$T_{6}! = e/T_{5}$$

$$T_{1}! = T_{4} - T_{5}$$

$$T_{3} - add f \circ M$$

$$Code$$

Q: Translate the expression. -(9+6) o (c+d) + (9+6+6) (into
(i) Quadroples (ii) Triples ((11) Indirect Triples

$$T_{1}! = 9t^{2}$$
 $T_{2}! = -T_{1}$
 $T_{3}! = (+d)$
 $T_{4}! = T_{2} \times T_{3}$
 $T_{5}! = T_{1} + C$
 $T_{6}! = T_{4} + T_{5}$

7		operator	cperand 1	operand 2	Result
	(1) (1) (1) (1) (1) (1)	+ + + + + + + + + + + + + + + + + + + +	9 T ₁ C T ₂ T ₁ Ty	5 4 73 (Ts	T ₁ T ₂ T ₃ T ₄ T ₅ T ₆
Ovedorplas					

(ii) Tolples

(il)	Toples
(11/	1011

_	_			
1		Operator	Sparont 1	Sperand 2
	(1)	+	9	6
	(L)	_	LI)	
	(1)	+		d
	(4)	×	(1)	(<u>3)</u>
/((5)	+	(1)	< V
	/	+	(4)	(5)
-	(4)	, ,		

Spz

d

(300)

(sov)

(100)

C

(200) (m)

(400)

(Triples)

Indirect	Triples
"Ind" -	

-				_	
•		Shyterrout			Opens
	(IN)	(1)		(111)	+
	(100)	(2)		(201)	_
	(300)	(3)		(3m)	+
	(40V)	(4)		(400)	<u>ب</u> +
	(5W) V	(5)		((w))	+_
ľ	(6 m)	(2)	1	-4	

(de sui intoxx; p= 82;

point (11, 2) = 10 V pamif (11, Ept) = 10

(5) Constret June-colleges codes for me following;

(11)
$$f_3! = \chi + 1$$

```
(1-/ )~1- (1)/
 (11) f3: = x+1
 (12) 2:= t3
 (M Buit
       while ach do
 (9)
           if czd Man
             x:= 4+2
            CDX
            11:- y-2
    (1) if all godo (3)
    (2) god (11)
    (3) if (2d god (5)
    (4) gdo (8)
   (5) ti:= y+2
   (1) 71:-11
   (1) golo (1)
   (8) Ell= y-Z
   (9) 7:= tz
  (10) gop (1)
   (11) Exit
0,
       main ()
         { Ind 1:1;
          (ht 9210)
          While ( ¿ L = 10)
           asi]=i;
                                            981) = 14(9) + (11)XW
                                             a[s] = la+4x2=108
  (1) (4=1 >
                                                9[] - box(9)+(1-1)W
 (2) if iz=10 godi (4)
  (3) guto (10)
                         Let w= 4 systes/ward
                                                azi) = bulk) - w, + ixv

ti = ixw (offret)

(buse altress)
  (4) ti = ix4 V
  (5) 42: = bae(a)-4
  (6) talt 1]= i;
                                                  ALI)= [ [tilli]
  (7) by: - i+1
  (4) (=1)
```

~ ~~ (J)

Q write 3-address cale for the following Jordann Longment

(0; white (acc and BZD) do If A Et Men an while AZSOdo A: - A+3

W-4 by Jey word

44,00 m 89.

New Section 2 Page 10

Q $\chi = a I i] +1$ all] = b[cli] alistij = blistkje c[k)[i] 911) = 9[1]+ b[1]

dixA2 10/90

(3) ti= tribby

(1) 12 = box 19) - 4

$$\begin{aligned}
t_1 &= i \times dz \\
t_2 &= t_2 + j \\
t_3 &= t_2 \times \omega \\
t_4 &= add(a) - C \\
q_1 &= 1 &= t_3 &= t_3
\end{aligned}$$

	lón	ð	102	104
	9[1][:17	9[1]tz]	91113]
Ľ	a[1]	ΙIJ	9[17][2]	a [27 137]
	106	(108	, (18

$$d_1 \times d_2 = 2 \times 3 \quad (d_1 = 2, d_2 = 3)$$

 $k = 2$

$$t_1 = i \times d_1 = 2 \times 3 = 6$$

$$t_1 = t_1 + j = 6 + 1 = 7$$

$$(17) t_{15} = \frac{1 \times 20}{1 \times 10^{-1}}$$

$$(17) \quad t_{16} = t_{18} + K$$

$$(14) \quad t_{16} = t_{18} + K$$

$$\begin{cases} 1 \\ (1) \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} = \begin{cases} 1 \\ (1) \end{cases} \quad \end{cases} \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \end{cases} \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \end{cases} \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \end{cases} \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \end{cases} \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \end{cases} \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \end{cases} \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \end{cases} \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \end{cases} \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \end{cases} \end{cases} \quad \end{cases} \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \end{cases} \end{cases} \quad \end{cases} \end{cases} \quad \begin{cases} 1 \\ (1) \end{cases} \quad \end{cases} \end{cases} \quad$$

(24)
$$t_{11} = t_{71} \times w$$
(24) $t_{12} = t_{73} t_{12} t_{13}$
(25) $t_{13} = t_{73} t_{12} t_{13}$
(27) $t_{73} = t_{19} \times t_{19}$

(34)
$$t_{29} = t_{2}(t_{1})$$

$$t_1 = i \times d_1 = 2 \times 3 = 6$$

 $t_2 = t_1 + j = 6 + 1 = 7$ $(= (d_1 + 1) \times 1)$
 $t_3 = t_1 \times w = 7 \times 2 = 19$ $= 8$
 $t_4 = add(g) - C = 1 + 2 = 92$

$$\begin{aligned}
&9[1][7] = t_{1}[t_{3}] \\
&= q_{2}(q_{1}) - (d_{2}t_{1}) \times W \le t_{4} \\
&= (i_{1}xd_{2}+1) \times W \le t_{3} \\
&= a_{2}(q_{1}) - d_{2}\times W - W \\
&+ i_{1}xd_{2}\times W + 1\times W \\
&= a_{2}(q_{1}) + [-(d_{1}t_{1}) + (i_{1}xd_{2}+1) \times W - (d_{2}t_{1})] \times W \\
&= a_{3}(q_{1}) + [-(d_{1}t_{1}) + (i_{1}xd_{2}+1) \times W - (d_{2}t_{1})] \times W \\
&= a_{3}(q_{1}) + (i_{1}xd_{2}+1) \times W - C \\
&= (a_{3}d_{3}-C) + (i_{1}xd_{2}+1) \times W - C
\end{aligned}$$

$$= (-1d\alpha) - () + (i \times d_2 + 1) \times \omega$$

$$= (-1d\alpha) - () + (i \times d_2 + 1) \times \omega$$

$$= (-1d\alpha) - () + (i \times d_2 + 1) \times \omega$$

$$= (-1d\alpha) - () + (i \times d_2 + 1) \times \omega$$

$$= (-1d\alpha) - (-1) \times \omega$$

$$= (-1d\alpha)$$