The selection sort algorithm sorts an array by repeatedly finding the minimum element from unsorted part and putting it at the beginning. The algorithm maintains two subarrays in each array.

Merge sort is a "divide and conquer" algorithm wherein we first divide the problem into subproblems. When the solutions for the subproblems are ready, we combine them together to get the final solution to the problem.

This is one of the algorithms which can be easily implemented using recursion as we deal with the subproblems rather than the main problem.

```
public static void mergeSort(int[] a, int n) {
    if (n < 2) {
        return;
    }
    int mid = n / 2;
    int[] I = new int[mid];
    int[] r = new int[n - mid];
    for (int i = 0; i < mid; i++) {
        I[i] = a[i];
    }
    for (int i = mid; i < n; i++) {
        r[i - mid] = a[i];
    }
    mergeSort(I, mid);
    mergeSort(r, n - mid);
    merge(a, I, r, mid, n - mid);
}</pre>
```

The algorithm can be described as the following 2 step process:

- 1. Divide: In this step, we divide the input array into 2 halves, the pivot being the midpoint of the array. This step is carried out recursively for all the half arrays until there are no more half arrays to divide.
- 2. Conquer: In this step, we sort and merge the divided arrays from bottom to top and get the sorted array.

Linear search is used to search a key element from multiple elements. Linear search is less used today because it is slower than binary search and hashing.

Linear search is rarely used practically because other search algorithms such as the binary search algorithm and hash tables allow significantly faster-searching comparison to Linear search.

Calculating an Algorithm's Running Time The acronym Big-O is used to categorize the temporal complexity of algorithms. A good algorithm not only discovers a solution, but it does so rapidly and effectively. We evaluate the time complexity of an algorithm rather than the exact number of operations it will complete. Time complexity is a measure of how much longer an algorithm will take to run (in number of operations). (in number of operations) as the size of the input increases. This only examines the proportional time of the largest components of the algorithm.

The table blew describes all the way.

```
public class LinearSearchExample{
public static int linearSearch(int[] arr, int key){
    for(int i=0;i<arr.length;i++){
        if(arr[i] == key){
            return i;
        }
        return -1;
    }
    public static void main(String a[]){
        int[] a1= {10,20,30,50,70,90};
        int key = 50;
        System.out.println(key+" is found at index:
"+linearSearch(a1, key));
    }</pre>
```

O(1) - Constant Time	<mark>O(log n) -</mark>	O(n) - Linear	O(n log n) - Linearithmic	O(n2) - Quadratic Time	O(2n) -		O(n!) - Factorial Time
	Logarithmic Time	<mark>Time</mark>	<mark>time</mark>		Exponen	<mark>tial Time</mark>	
The algorithm	As the size of input	The running time	log(n) is much closer to n	The algorithm's running	Table of	n vs. 2n	This algorithm's running time
performs a constant	n increases, the	of an algorithm	than to n2,	time grows in	(reverse of log(n)		grows in proportion to n!, a really
number of	algorithm's	grows in	so, this running time is	proportion to the	table)		large number. O(n!) becomes too
operations	running time grows	proportion to	closer to linear than	square of the input size			large for modern computers as
regardless of the size	by log(n).	the size of input.	to higher running times	and is common when	n	2n	soon as n is greater than 15+ (or
of the input.	This rate of growth	Examples:	(and no one actually says	using nested loops.	1	2	upper teens). This issue shows up
Examples:	is relatively slow,	Search through	"Linearithmic").	Examples:	10	~1000	when you try to solve a problem
Access a single	so O(log n)	an unsorted	Examples:	Printing the	20	~1M	by trying out every possibility, as
number in an array	algorithms are	array for a	Sort an an array with	multiplication table for	30	~1B	in the traveling salesman
by index	usually very fast.	number	QuickSort or Merge Sort.	a list of numbers			problem.
Add 2 numbers	As you can see in	Sum all the	When recursion is involved	d, Insertion Sort			Examples:
together.	the table below,	numbers in an	calculating				Go through all Permutations of a
	when n is 1 billion,	array	the running time can be				string
	log(n) is only 30.	Access a single	complicated.				Traveling Salesman Problem
		number in a	You can often work out a				(brute-force solution)
		LinkedList by	sample case to estimate				
		index	what the running time will				
			be. See Quick Sort for mor	e			
			inf				