

Prof. Me. Alexandre Henrick Sistemas de Informação - 7º P

O copo está meio cheio ou meio vazio?

- Responder isso em um sistema binário pode ser difícil
- Nossas respostas se limitam entre [0, 1]
- Poderia o copo ter dois estados?

• A lógica fuzzy permite representar conhecimento com múltiplos estados

- Se custo BAIXO e benefício ALTO então custo-benefício ALTO
- Se custo ALTO e benefício ALTO então custo-benefício MÉDIO
- Se custo BAIXO e benefício BAIXO então custo-benefício MÉDIO
- Se custo ALTO e benefício BAIXO então custo-benefício BAIXO

- No exemplo anterior custo e benefício podem ter apenas valores ALTO ou BAIXO
- A lógica fuzzy vai nos permitir dizer que, por exemplo, custo alto é meio verdade ou meio falso
- Portanto podemos representar mais classes entre os valores Verdadeiro ou Falso

- Se custo-alto < 0.2 e benefício-alto > 0.8 então custo-benefício ALTO
- Custo-alto = um pouco falso
- Benefício-alto = mais verdadeiro

 Perceba que na imagem existem áreas e intesecções que podem ter múltiplos valores

- Para 15 graus temos uma intersecção entre muito frio e frio
- Se muito_frio = 0.5 e frio = 0.5

- Para 18 graus, temos diferentes valores para as variáveis
- Podemos ver que está mais frio do que muito frio

- Ou seja, avaliamos o grau de pertinência de um elemento a um conjunto
- Com a lógica fuzzy podemos atribuir valores que representam o pertencimento de um elemento a um ou mais conjuntos
- Vamos sempre utilizar valores no intervalo [0, 1]
 para representar o quanto um elemento pertence a
 um conjunto

- Variáveis linguísticas: São os conjuntos das nossas variaveis expressas em linguagem natural
- No exemplo anterior seriam os intervalos muito frio,
 frio, quente e muito quente
- ullet Formalmente chamamos de conjunto T
 - $T = \{muito_frio, frio, quente, muito_quente\}$

Sistema de Inferência Fuzzy

- É a primeira etapa
- Convertemos valores exatos (também conhecidos como crisp) em valores fuzzy
- Associamos os valores crisp aos conjuntos fuzzy usando uma função de pertinência
- A função de pertinência define o grau de pertencimento de um valor crisp a um conjunto fuzzy

Temperatura	Grau de pertencimento ao conjunto "frio"	Grau de pertencimento ao conjunto "médio"	Grau de pertencimento ao conjunto "quente"
10	1.0	0.0	0.0
15	0.7	0.3	0.0
20	0.3	0.7	0.0
25	0.0	0.7	0.3
30	0.0	0.3	0.7
35	0.0	0.0	1.0

- Para 20 graus temos:
 - 30% de pertencimento ao conjunto frio
 - o 70% de pertencimento ao conjunto médio

- Tipos de funções de pertinência:
 - Triangular Tem um pico no meio e decai linearmente para os lados
 - Trapezoidal Semelhante à triangular, mas com um topo achatado
 - Gaussiana Suaviza a transição com uma curva parecida com a distribuição normal

Base de Regras Fuzzy

- É o conjunto de regras fuzzy
- Define como o sistema fuzzy toma decisões baseado nos valores fuzzificados
- Essas regras são expressas na forma de sentenças do tipo SE-ENTÃO
- A partir das regras transformamos entradas fuzzificadas em saídas fuzzy

Base de Regras Fuzzy

- Vamos supor que queremos criar um sistema fuzzy para ajustar a velocidade de um carro com base na distância até o carro da frente e na velocidade atual
- Entrada 1: Distância ao carro da frente → Pode ser perto, médio ou longe
- Entrada 2: Velocidade do carro → Pode ser lenta, média ou rápida
- Saída: Ajuste na velocidade → Pode ser reduzir muito, reduzir pouco, manter, acelerar pouco ou acelerar muito

Base de Regras Fuzzy - Exemplos de regras

- SE a distância é pequena E a velocidade é rápida,
 ENTÃO reduzir muito a velocidade
- SE a distância é média E a velocidade é rápida,
 ENTÃO reduzir pouco a velocidade
- SE a distância é grande E a velocidade é lenta,
 ENTÃO acelerar muito

Base de Regras Fuzzy - Exemplos de regras

- SE a distância é grande E a velocidade é média,
 ENTÃO acelerar pouco
- SE a distância é média E a velocidade é média,
 ENTÃO manter a velocidade

- É a última etapa do sistema fuzzy
- Converte o resultado fuzzy (que está expresso em linguagem natural) em um valor numérico preciso
- No exemplo anterior após a aplicação das regras podemos ter os resultados: reduzir muito, reduzir pouco, acelerar muito, acelerar pouco e manter a velocidade
- Queremos transformar essas saídas em valores numéricos. Nesse exemplo valores no formato de KM/H

 O método mais comum é o centro de gravidade (centroid):

$$valor = rac{\sum (grau_pertencimento.valor_centroide)}{\sum (grau_pertencimento)}$$

- Imagine um sistema fuzzy para controle de temperatura de um climatizador
- Temos 3 conjuntos fuzzy:
 - Frio (10 20 graus)
 - Morno (18 25 graus)
 - Quente (22 30 graus)

- Suponha que a entrada é de 20 graus
- Após os primeiros passos temos os seguintes graus de pertencimento:

Conjunto Fuzzy	Grau Pertencimento	
Frio (10°C - 20°C)	0.3	
Morno (18°C - 25°C)	0.7	
Quente (22°C - 30°C)	0.0	

- Ou seja:
 - 20 graus é 30% frio
 - 20 graus é 70% morno
 - 20 graus não é quente

• Ao aplicar o método do centroid temos o resultado:

$$valor = rac{(0.3 imes 15) + (0.7 imes 22)}{0.3 + 0.7} \ = rac{4.5 + 15.4}{1.0} \ = rac{19.9}{1.0} \ = 19.9\,^{\circ}C$$

- Ou seja, a temperatura deve ser ajustada para 19.9 graus
- Perceba que no cálculo ponderamos o grau de pertinencia com os centroides de cada conjunto fuzzy
- Isso permite uma saída equilibrada mas ponderada pelo grau de pertencimento

https://github.com/scikit-fuzzy/scikit-fuzzy

Referências

- Baseado nos materiais disponibilizados pela professora Dra Rita Maria da Silva Julia. Disciplina de Machine Learning - UFU-FACOM
- Russell, S. J. 1., & Norvig, P. (1995). Artificial intelligence: a modern approach. Englewood Cliffs, N.J., Prentice Hall.
- IA Expert Academy. https://iaexpert.academy/
- https://www.inf.ufsc.br/~mauro.roisenberg/ine5377/ Cursos-ICA/LN-Sistemas Fuzzy.pdf