Compito di Geometria e Algebra per Ing. Informatica ed Elettronica 10-01-2017-A

Sia f: R³ → R⁴ la funzione lineare definita da

$$f((x,y,z)) = (y-2z, x+y+z, x+2y-z, x+kz) \ k \in \mathbf{R}$$

- a) Per ogni $k \in \mathbf{R}$ trovare una base e la dimensione di N_f (nucleo di f) e I_f (immagine
- b) Per i valori di k per i quali dim $I_f=2$, discutere l'appartenenza di ${\bf w}=(1,2,3,\alpha)$ ad I_f usando la riduzione a gradini ($\alpha \in \mathbf{R}$)
- Discutere il seguente sistema lineare

a)
$$\begin{cases} 3x - 4y + 6z + 3t = \alpha \\ y + \beta t = 0 \\ x - 2y + \alpha z - t = 0 \end{cases} (\alpha, \beta \in \mathbf{R})$$

- b) Discutere, al variare di $\beta \in \mathbf{R}$, il sistema lineare ottenuto dal precedente ponendo
- 3) a) Trovare l'operatore lineare f in \mathbb{R}^2 sapendo che

$$f((1,0)) = (2/\sqrt{5}, \alpha)$$
 e $f((0,1)) = (1/\sqrt{5}, \beta)$.

- b) Determinare $\alpha, \beta \in \mathbf{R}$ in modo che la matrice A associata ad f sia una matrice ortogonale.
- 4) Sia $A = \begin{pmatrix} 8 & 0 & 2 \\ 0 & 9 & 0 \\ 2 & 0 & 5 \end{pmatrix}$ (A è simmetrica).
 - a) Diagonalizzare A con una matrice ortogonale U.
 - b) Determinare $\alpha \in \mathbf{R}$ in modo che $\langle f_A((1,1,1)), (1,1,\alpha) \rangle$ sia maggiore di $\operatorname{tr}(A) + 4$, dove f_A è l'operatore lineare associato ad A
- 5) Trovare:
 - a) le equazioni ridotte della retta passante per P(1,2,3), parallela al piano
 - $\pi \equiv x-2y+z+5=0 \text{ e perpendicolare al vettore } \mathbf{v}=(1,-2,3) \ ;$ b) la minima distanza tra le rette $r_1 \equiv \left\{ \begin{array}{l} x=3z+5 \\ y=2z+3 \end{array} \right. , \ r_2 \equiv \left\{ \begin{array}{l} x=3z-5 \\ y=4z+2 \end{array} \right. ;$
 - c) le equazioni delle (eventuali) rette contenute nel piano $\pi_1 \equiv x+y+z-3=0,$ passanti per Q(1,1,1) e incidenti la retta $t \equiv \left\{ \begin{array}{l} x=-2y\\ z=-2y \end{array} \right.$
- 6) Trovare
 - a) l'equazione del cilindro che proietta la conica $\mathcal{C} \equiv \left\{ \begin{array}{l} x^2 + 2y^2 4 = 0 \\ z = 2 \end{array} \right.$ parallelamente al vettore $\mathbf{v} = (2, 1, 1)$,
 - b) i vertici della conica \mathcal{C}
 - N.B. Tutti i passaggi devono essere opportunamente motivati.