

STATISTIQUE INFÉRENTIELLE

Contrôle continu

Calculatrice non autorisée

30 novembre 2019 - durée 45min

Exercice 1 (8 points)

Soit X_1, \ldots, X_n $(n \ge 6)$ un échantillon aléatoire simple (**iid**) d'une population de moyenne μ et de variance σ^2 . On définit les estimateurs suivants:

$$T_1 = \overline{X}_n$$

$$T_2 = \frac{2X_1 - X_6 + X_4}{2}$$

- 1. Calculer $E(T_1)$ et $V(T_1)$. Selon le théorème central limite, quelle est la loi de l'estimateur T_1 ?
- 2. Montrer que les estimateurs T_1 et T_2 sont des estimateurs sans biais de $\mu.$
- 3. Entre T_1 et T_2 que choisir pour estimer μ .

Exercice 2 (6 points)

On considère la variable alétoire X de fonction de densité

$$f(x) = \frac{1}{2}(1 + \theta x), \quad -1 \le x \le 1$$

Proposer un estimateur de θ par la méthode de moments et démontrer qu'il est sans biais.

Exercice 3 (6 points)

On dit que X suit la loi de Rayleigh si sa densité est

$$f(x) = \frac{x}{\theta}e^{-x^2/2\theta}, \quad x > 0, \quad \theta > 0$$

Déterminer l'estimateur de θ par la méthode du maximum de vraisemblance.