Learning From Data Lecture 2 The Perceptron

The Learning Setup
A Simple Learning Algorithm: PLA
Other Views of Learning
Is Learning Feasible: A Puzzle

M. Magdon-Ismail CSCI 4100/6100

RECAP: The Key Players

• Salary, debt, years in residence, . . .

input
$$\mathbf{x} \in \mathbb{R}^d = \mathcal{X}$$
.

• Approve credit or not

output
$$y \in \{-1, +1\} = \mathcal{Y}$$
.

 \bullet True relationship between **x** and y

target function $f: \mathcal{X} \mapsto \mathcal{Y}$.

(The target f is unknown.)

• Data on customers

data set
$$\mathcal{D} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N).$$

 $(y_n = f(\mathbf{x}_n).)$

 $\mathcal{X} \mathcal{Y}$ and \mathcal{D} are *given* by the learning problem; The target f is fixed but unknown.

We learn the function f from the data \mathcal{D} .

A Simple Learning Model

- Input vector $\mathbf{x} = [x_1, \dots, x_d]^{\mathrm{T}}$.
- Give importance weights to the different inputs and compute a "Credit Score"

"Credit Score" =
$$\sum_{i=1}^{d} w_i x_i$$
.

• Approve credit if the "Credit Score" is acceptable.

Approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold}$$
, ("Credit Score" is good)

Deny credit if $\sum_{i=1}^{d} w_i x_i < \text{threshold}$. ("Credit Score" is bad)

ullet How to choose the importance weights w_i

```
input x_i is important \implies large weight |w_i| input x_i beneficial for credit \implies positive weight w_i > 0 input x_i detrimental for credit \implies negative weight w_i < 0
```

A Simple Learning Model

Approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold},$$

Deny credit if $\sum_{i=1}^{d} w_i x_i < \text{threshold}.$

can be written formally as

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} w_i x_i\right) + w_0\right)$$

The "bias weight" w_0 corresponds to the threshold. (How?)

The Perceptron Hypothesis Set

We have defined a *Hyopthesis set* \mathcal{H}

$$\mathcal{H} = \{h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})\}$$

 \leftarrow uncountably infinite \mathcal{H}

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} \in \mathbb{R}^{d+1}, \qquad \mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix} \in \{1\} \times \mathbb{R}^d.$$

This hypothesis set is called the *perceptron* or *linear separator*

Geometry of The Perceptron

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

(Problem 1.2 in LFD)

Which one should we pick?

Use the Data to Pick a Line

A perceptron fits the data by using a line to separate the +1 from -1 data.

Fitting the data: How to find a hyperplane that *separates* the data? ("It's obvious - just look at the data and draw the line," is not a valid solution.)

How to Learn a Final Hypothesis g from \mathcal{H}

We want to select $g \in \mathcal{H}$ so that $g \approx f$.

We certainly want $g \approx f$ on the data set \mathcal{D} . Ideally,

$$g(\mathbf{x}_n) = y_n.$$

How do we find such a g in the *infinite* hypothesis set \mathcal{H} , if it exists?

Idea! Start with some weight vector and try to improve it.

The Perceptron Learning Algorithm (PLA)

A simple iterative method.

1:
$$\mathbf{w}(1) = \mathbf{0}$$

如何演示下面的例子

- 2: **for** iteration t = 1, 2, 3, ...
- the weight vector is $\mathbf{w}(t)$.
- From $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ pick any misclassified example.
- 5: Call the misclassified example (\mathbf{x}_*, y_*) ,

$$sign\left(\mathbf{w}(t) \bullet \mathbf{x}_*\right) \neq y_*.$$

6: Update the weight:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + y_* \mathbf{x}_*.$$

7:
$$t \leftarrow t + 1$$

PLA implements our idea: start at some weights and try to improve.

"incremental learning" on a single example at a time

Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.

Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.

Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.

Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.

Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.

ITERATION 4

Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.

Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.

After how long?

Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.

After how long?

What if the data cannot be fit by a perceptron?

We can Fit the Data

- We can find an h that works from <u>infinitely</u> many (for the perceptron). (So computationally, things seem good.)
- Ultimately, remember that we want to *predict*.

 We don't care about the data, we care about "outside the data".

Can a limited data set reveal enough information to pin down an entire target function, so that we can predict outside the data?