EVALUATION OF MINIBURN

TEST DATA FOR THE SQI

Support of Interim Operations

DTIC ELECTE JAN 2 5 1996

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

DIAC QUALITY INSPECTED 1

EVALUATION OF MINIBURN TEST DATA FOR THE SQI Support of Interim Operations

23 June 1993

DILC ELECTE 'JAN 2 5 1996

ACCESIO	ni roi
DTIC	ounced 🗆
Ву	
Distrib	ution /
А	vailability Codes
Dist	Avail and / or Specia l
A-1	

19960119 025

Prepared By:

ROY F. WESTON, INC. 1 Weston Way West Chester, PA 19380-1499

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 06/23/93 3. REPORT TYPE AND	DATES COVERED
4. TITLE AND SUBTITLE EVALUATION OF MINIBURN TEST DATA FOR THE SQI, SUPPORT OF INTERIM OPERATIONS	5. FUNDING NUMBERS
6. AUTHOR(S)	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
ROY F. WESTON, INC. West Chester, Pa	93263R02
	40 SPONSORIUS (MONITORIUS
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
ROCKY MOUNTAIN ARSENAL (CO.). PMRMA	
COMMERCE CITY, CO	
11. SUPPLEMENTARY NOTES	
,	
12a. DISTRIBUTION/AVAILABILITY STATEMENT	12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED	
13. ABSTRACT (Maximum 200 words)	
THE PURPOSE OF THIS REPORT IS TO ANALYZE THE RESULTS OBTAIN RUNS ("MINIBURNS") OF BASIN F LIQUID AT RMA SUBMERGED QUENT SPECIFICALLY, THE ANALYSIS FOCUSES ON THE FOLLOWING ISSUES LEVEL OF MEASURED RELEASE PRODUCTS, IN COMPARISON TO THOSE 2). (2) THE ACTUAL ("AS BUILT") OPERATING CONDITIONS, IN DESIGN SPECIFICATIONS (SECTION 3) (3) THE ESTIMATED RISK ON THE MEASURED EMISSION RATES, IN COMPARISON TO THOSE BASEMMISSION RATES (SECTION 4). THE PREDICTED EMISSIONS, DESIGNED RESULTS (SECTION 4). THE PREDICTED EMISSIONS, DESIGNED RESULTS (SECTION 4). THE PREDICTED EMISSIONS OF THE PRESENTED ORIGINALLY IN THE FINAL DRAFT IN ASSESSMENT (RTIC # 92222RO2).	NCH INCINERATOR (SQI). S: (1) THE NATURE AND E PREDICTED (SECTION COMPARISON TO THE TO HUMAN HEALTH BASED SED ON PREDICTED SIGN PARAMETERS AND
14. SUBJECT TERMS	15. NUMBER OF PAGES
CANCER RISKS, HCI, AMMONIA, BASIN F, SQI	16. PRICE CODE
	CATION OF A PETERS
17. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT	CATION 20. LIMITATION OF ABSTRACT
UNCLASSIFIED	

TABLE OF CONTENTS

Section No.		<u>Title</u>	<u>Page</u>
1	INTR	ODUCTION	1-1
	1.1	Objectives of Report	1-1
2	EMIS	SSIONS DATA	2-1
	2.1	Introduction	2-1
	2.2	Test Results	2-1
	2.3	Data Analysis and Comparison With	
		Predicted Emissions Rates	2-2
	2.4	Conclusions	2-10
3	EVAL	LUATION OF OPERATIONAL PARAMETERS	3-1
	3.1	Objectives	3-1
	3.2		3-1
	3.3	Conclusions	3-1
4	RISK	EVALUATION	4-1
	4.1	Introduction	4-1
	4.2	Estimated Risks From Detected Chemicals	4-1
		4.2.1 Emission Rates Used to Estimate Risk	4-1
		4.2.2 Estimated Cancer Risks	4-6
		4.2.3 Estimated Noncancer Risks	4-6
	4.3	Potential Risks From Chemicals Not Detected	4-6
	4.4	Summary and Conclusions	4-9
5	SUM	MARY AND CONCLUSIONS	5-1
6	REFE	ERENCES	6-1
APPENDIX A		AILED DOCUMENTATION OF RISK EVALUATION	N FOR 100

LIST OF TABLES

<u>Table</u>	<u>Title</u>	<u>Page</u>
2-1	Summary of Particulate, HCI, and Ammonia Test Data and Test Results	2-3
2-2	Summary of Volatile Test Data and Test Results	2-4
2-3	Summary of Semi-Volatile and Organo-Pesticide Compounds Test Data and Test Results	2-5
2-4	Summary of Dioxin/Furan Test Data and Test Results	2-7
2-5	Summary of Metals Test Data and Test Results	2-8
3-1	"Design" Vs. "100 Percent Basin F" Stack Characteristics of the SQI	3-2
3-2	Comparison of "Design" Vs. "100 Percent Basin F" Predicted Maximum One-Hour Concentrations and Distance From The SQI	3-3
4-1	Overview of Exposure Scenarios	4-2
4-2	Final List of Pollutants and Respective Exposure	4-3
4-3	Total Lifetime Carcinogenic Risk for Resident A	4-7
4-4	Total Hazard Index for Resident A Child	4-8
4-5	Summary of Risk Estimates Based on Predicted and	4-10

SECTION 1 INTRODUCTION

1.1 OBJECTIVES OF REPORT

The purpose of this report is to analyze the results obtained during test burn runs ("miniburns") of Basin F liquid at the Rocky Mountain Arsenal Submerged Quench Incinerator (SQI). Specifically, the analysis focuses on the following issues:

- The nature and level of measured release products, in comparison to those predicted (Section 2).
- The actual ("as-built") operating conditions, in comparison to the design specifications (Section 3).
- The estimated risk to human health based on the measured emission rates, in comparison to those based on predicted emission rates (Section 4).

The predicted emissions, design parameters and human health risks were presented originally in the *Final Draft Human Health Risk Assessment* (WESTON, 1991).

SECTION 2

EMISSIONS DATA

2.1 INTRODUCTION

Roy F. Weston, Inc., (WESTON®) recently completed several tests ("miniburns") at the SQI located at the Rocky Mountain Arsenal in Denver, Colorado. WESTON has reviewed these test results and compared the measured values with the original predicted values in the *Final Draft Human Health Risk Assessment* (WESTON, 1991). This section of the report is a summary of results from the Shakedown Number 4 test program in which the fuel feed to the incinerator was 100 percent Basin F liquid. A review of the 50 percent miniburn data showed that these emissions results were similar to the 100 percent miniburn data set. The 100 percent miniburn data will reflect the expected results from the trial burn and were therefore used in this risk evaluation.

2.2 <u>TEST RESULTS</u>

The sampling and analytical methods used for the Shakedown Number 4 test program consisted of the following:

- Method 0050 (Particulate/HCl)
- Method 5 (Modified to determine ammonia)
- Method 0030 (Volatile organics)
- Method 0010 (Semi-volatile organics and pesticides)
- Method 23 (PCDD/PCDF)
- Method 29 (Multi-metals)

Multiple analyses were performed for each class of chemicals as follows:

Class	Number of <u>Measurements</u>
Acids/Particulates	4
Ammonia	2
Volatile Organics	4
Semivolatile Organics	2
PCDF/PCDD	2
Metals	2

In the case of the volatile organics, two of the runs contained two added principle organic hazardous constituents (POHCs) (carbon tetrachloride and chlorobenzene) for the purpose of estimating destruction removal efficiency (DRE). The DRE was over 99.999% for both chemicals for both runs. These POHCs were not included in the second two test runs.

The results of the analyses for each of the chemical classes are presented in Tables 2-1 to 2-5.

2.3 DATA ANALYSIS AND COMPARISON WITH PREDICTED EMISSION RATES

Inspection of the data presented in Tables 2-1 to 2-5, and comparison of these measured emission rates with the predicted values used in the *Final Draft Human Health Risk Assessment* (WESTON, 1991) reveals the following conclusions:

- There is good reproducibility between measurements. That is, a chemical was
 usually detected either in all or in none of the measurements. Moreover,
 when detected in multiple measurements, the values were generally consistent
 with each other.
- A large number of chemicals originally predicted to be present were not detected in the stack effluent. As discussed in a separate document

TABLE 2-1 RMA - SQI DENVER, COLORADO SUMMARY OF PARTICULATE, HCI, AND AMMONIA TEST DATA AND TEST RESULTS

UCL/MAX PREDICTED BASE CASE EMISSIONS	48 0.0307 00 0.0247 08 0.0384 21 2.1101 0.5000	29 3.0260 29 0.1331 30 0.0168 0.1700 35 99.23		06 1.21B-05 17 275 84 0.7070 0.0060
AVERAGE	0.0248 0.0200 0.0308 1.6521 0.2082	2.24E-07 2.3694 0.1029 0.0130 8.73		9.59E-06 217 4.51 0.5686
4 05–23–93 0753–1030	0.021 0.0174 0.0265 1.3633	2.81B-07 2.9698 0.1218 9.92 > 98.77		
3 05-22-93 1545-1803	0.0245 0.0202 0.0307 1.6307	2.86E-07 3.0260 0.1331 NA NA		
2 05-20-93 1311-1540	0.0209 0.0167 0.0261 1.4036	2.00E-07 2.1189 0.0944 8.13	2 05-25-93 1119-1351	7.04E-06 159 3.41
1 05-20-93 0959-1247	0.0319 0.0255 0.0399 2.2090	1.29E-07 1.3628 0.0624 (CL)(2) 8.13	1 05-23-93 1223-1427	1.21B-05 275 5.61
TEST DATA: Test run number Test date Test time period	PARTICULATE EMISSIONS: Concentration, gr/dscf @7% O2 Concentration, gr/dscf @1% CO2 Mass rate, lbs/hr Mass rate, g/sec	HCI EMISSIONS: Concentration, lbs/dscf Concentration, ppm/v Mass rate, lbs/hr Mass rate, glscc POHC Chloride Feed Rate, lb/hr (as HCL)(2) HCL Removal Efficiency, %(1)	TEST DATA: Test run number Test date Test time period	AMMONIA EMISSIONS: Concentration, lbs/dscf Concentration, ppm/v Mass rate, lbs/hr

(1) Inlet chloride feed rate based on carbon tetrachloride and chlorobenzene(POHC) injection rates. This does not account for other chlorides present in Basin F liquid, therefore greater than values are reported for HC removal efficiency.

TABLE 2-2 RMA - SQI DENVER, COLORADO SUMMARY OF VOLATILE TEST DATA AND TEST RESULTS

1991 BASE CASE PREDICTIED EMISSION RATE	30 s/8	1.565 - 08	2.53E-05 9.36E-10	2.62E-07	2.33E-08	2.16E-09		5.7713-08	4.621508	1.3715 08	1 4215-08	2.46E-09 8.55E-09	2.54E-05 2.73E-08 1.30E-05
UCLMAX	g/sæ	N N NA	1.40E-04 NA NA	NA 9.00E-05	AN A	NA 1.41E-04	Υ X X	4.27E-05 NA NA	\$ \$	NA 1.21E-04 NA	ž ž ž	3.79E-05 NA	7.82E-05 NA NA
AVERAGE RUNS 1,2,3,and 4	3/8¢¢	O N	6.15E-05 ND ND	ND 6.92E-05	OZ Z	ND 1.03E-04	22	3.66E-05 ND	22	ND 5.21E-05 ND	2 2 2	2.89E-05 ND	6.66E-05 ND ND
AVEI RUNS 1	_c m/8π	ÖZ Z	17.06 ON CN	ND 19.84	2 2 2	ND 11.62	2 2	10.33 CX CX CX	22	ND 25	2 2 9	8.8 S S	18.76 UD UD
2) ED)	g/sæ	6.83E-06 6.83E-06	4.09E-05 1.12E-05 1.12E-05	1.12E-05 6.44E-05	5.59E-06	5.59E-06	5.59E-06 6.83E-06	4.27E-05 5.59E-06	5.59E-06 6.83E-06	5.59E-06 5.59E-06 5.59E-06	5.59E-06	2.76E-05 5.59E-06	7.82E-05 6.83E-06 5.59E-06
4 STACK AVERAGE (2) (NO POHCADDED)		N ON ON ON	2 2	2 2	2 2 2	Ž	₽ Q	2 2	2 2	222	22	2 2	NO ON
S. AVE	µg/m³	3.76	6.15	6.15	3.07	3.07	3.07	3.07	3.07	3.07 3.07 3.07	3.07	3.07 3.07	21.49 3.76 3.07
	Βπ	2 Q	25	2 2	222	S	S S	5 5	2 2	222	22	2 2	Š Š
CK GE(2) DDED)	30.5kg	6.02E06 6.02E06	3.01E-05 .1.20E-05	9.89E-06 9.40E-05	2.47E-06	2.47E-06 9.17E-05	2.47E-06 2.47E-06	3.63E-05 2.47E-06	2.47E-06 6.02E-06	2.47E - 06 2.47E - 06 2.47E - 06	2.47E-06	2.58E-05 2.47E-06	6.51E-05 6.02E-06 2.47E-06
3 STACK AVERAGE (2) (NO POHCADDED)		2 2	2 2				25					2 2	22
(NO P	µg/m³	3.863.86	9.64 7.73	(,,		~		_			317		20.87 < 3.86) 3.17
		N N N	5 5 5 5				22				225		L
2(2) DED)	æs/8	5.66E-06 9.38E-06	1.60E-04 < 1.35E-05 1.14E-05									5.71E-06 5.71E-06	4.78E-05 < 6.76E-06 \$.71E-06
2 STACK AVERAGE (2) POHC ADDED)			Å Č	S	2 5	2 2	25	2 2	2 2 2	2 2	22	2 2	Š Š
SI AVER	μg/m ³	1.54	43.56	6.20	3.10	3.10	3.10			3.10 20.63 3.10	3.10	3.10 3.10	3.67 3.10
	4		Š S	S	2 2	2 2	22	S S	2 2 2	9 9	229	2 2	Š S
¢ E(2) DED)	305/8	6.74E-06 6.56E-06	1.46E-05 1.46E-05	1.46E-05 6.63E-05	7.28E-06	7.28E-06	7.28E-06	3.91E-05 7.28E-06		7.28E-06 1.24E-04 7.28E-06	7.28E-06	3.99E-05 1.10E-05	((-
1 STACK AVERAGE (2) (POHCADDED)			222	2	2 2 2	2 2	22	2 2	2 2 2	2 2	22	2 2	<u>8</u> 8
A O	μg/m³	1.76 17.1	7.61	_	9.80		3.80	-		•		10.43	- .
				2 2	222	2 <u>2</u>	22	25	555	g g	22	2 2	5 5
		POHC VOST EMISSIONS: Carbon Tetrachloride Chlorobenzene	VOST EMISSIONS: Chloromethane (Methyl Chloride) Brom omethane (Methyl Bromide)	Chlorodhane (Ethyl Chloride) Methylene chloride (1)	Carbon Disultate 1,1 - Dishloroethene	1,1 - Deniorochane 1,2 - Dichloroethene (total)	1,2 – Dichloroethane (EDC)	Bromodichloromethane 1,2-Dichloropropane	Trichloroethene (TCE) Dibromochloromethane	1,1,2-Trichlorocthane Benzene trans-1,3-Dichloropropene	Bromoform Tetrachloroethene (PCE)	1,1,2,2~1'etrachiorodhane Toluene Ethylberzene	Styrene Xylenes(total) Dimethydisulfide

ND = Not Detected. Half sample detection limit.
*Emmision rates for these two chemicals based on runs 3 and 4 only.

TABLE 2-3
RMA - SQI
DENVER, COLORADO
SUMMARY OF SEMI-VOLATILE AND ORGANO- PESTICIDE COMPOUNDS TEST DATA AND TEST RESULTS

Test Data Run number Location Date	1 STA 05-2: 1153-	CK 3-93	2 STAC 05-25 1042-	-93	AVER	AGE .	UCL/MAX	1991 PREDICTE BASE CAS EMISSION
Time period	μg/dscm	g/sec	µg/dscm	g/sec	μg/dscm	g/sec	g/sec	g/sec
Semivolatile Organic Compounds								
Emission Concentration Data								
Phenol	2.60 B	8.75E-06 B	2.17 B	7.81E-06 B	2.38	8.28E-06	8.75E-06	1.37E-
Bis (2-chloroethyl) ether	ND	ND	ND	ND	ND	ND	NA	
2-Chlorophenol	ND	ND	ND	ND	ND	ND	NA	
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	NA	
1.4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	NA	
Benzyl alchohol	ND	ND	ND	ND	ND	ND	NA	
1.2 – Dichlorobenzene	ND	ND	ND	ND	ND	ND	NA	
	ND	ND	ND	ND	ND	ND	NA	
2-Methylphenol		ND	ND	ND	ND	ND	NA	
bis - (2 - Chloroisopropyl) ether	ND		ND	ND	ND	ND	NA	
4-Methylphenol	ND	ND		ND	ND	ND	NA	
N-Nitroso-Di-n-propylamine	ND	ND	ND		ND	ND	NA NA	1
Hexachloroethane	ND	ND	ND	ND				ı
Nitrobenzene	ND	ND	ND	ND	ND	ND	NA NA	l
Isophorone	ND	ND	ND	ND	ND	ND	NA	1
2-Nitrophenol	ND	ND	ND	ND	ND	ND	NA	1
2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	NA 1 20E O	1.000
Benzoic acid	54.25 B	1.83E-04 B	23.84 B	8.59E-05 B	39.04	1.34E-04	1.83E-04	1.27E-
bis(2-Chloroethoxy)methane	ND	ND	ND	ND	ND	ND	NA	
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND	NA	1
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	NA	l I
Naphthalene	ND B	ND B	· ND BC	ND BC	ND	ND	NA	i i
4-Chloroaniline	ND	ND	ND	ND	ND	ND	NA	
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	NA	1
4-Chloro-3-methylphenol	ND	ND	ND	ND	ND	ND	NA	
2 – Mehtylnapthalene	ND	ND	ND	ND	ND	ND	NA	
	ND	ND	ND ND	ND	ND	ND	NA	
Hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	NA	1
2,4,6-Trichlorophenol		ND	ND	ND	ND	ND	NA	ì
2,4,5 – Trichlorophenol	ND ND	ND	ND ND	ND	ND	ND	NA	
2-Chloronapthalene	ND		ND ND	ND ND	ND	ND	NA NA	
2-Nitroanaline	ND	ND		3.90E-06	1.12	3.90E-06	3.90E-06	d
Dimethylpthalate	1.15	3.89E-06	1.08		ND	3.90E-06 ND	3.90E-00	1
Acenaphthylene	ND	ND	ND	ND				1
2,6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	NA	
3-Nitroanaline	ND	ND	ND	ND	ND	ND	NA	
Acenapthene	ND	ND	ND	ND	ND	ND	NA	
2,4-Dinitrophenol	ND	ND	ND	ND	ND	ND	NA	
4-Nitrophenol	ND	ND	ND	ND	ND	ND	NA	1
Dibenzofuran	ND	ND	ND	ND	ND	ND	NA	
2.4 - Dinitrotoluene	ND	ND	ND	ND	ND	ND	NA	
Diethylphthalate	3.17	1.07E-05	3.52	1.27E-05	3.35	1.17E-05	1.27E-05	5
4-Chlorophenyl-phenylether	ND	ND	ND	ND	ND	ND	NA	
Fluorene	ND	ND	ND	ND	ND	ND	NA	
4-Nitroanaline	ND	ND	ND	ND	ND	ND	NA	
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	NA	
n-Nitrosodiphenylamine(1)	ND	ND	ND	ND	ND	ND	NA	1
4-Bromophenyl-phenylether	ND	ND	ND	ND	ND	ND	NA	1
Hexachlorobenzene	ND	ND	ND	ND	ND	ND	NA	
	ND	ND	ND	ND	ND	ND	NA	
Pentachlorophenol	ND ND	ND	ND	ND	ND	ND	NA	1
Phenanthrene	ND	ND	ND	ND	ND	ND	NA	1
Anthracene		ND	ND	ND	ND	ND	NA	
Carbazole	ND PC		ND BC	ND BC	ND	ND	NA	
Di-n-butylphthalate	ND BC				ND	ND	NA NA	
Fluoranthene	ND	ND	ND	ND			NA NA	1
Pyrene	ND	ND	ND ND	ND	ND	ND 9 27F OC		, I
Butylbenzylpthalate	3.46	1.17E-05		O < 4.88E-06	2.41	8.27E-06	1.17E-0	'l
3,3'-Dichlorobenzidine	ND	ND	ND	ND	ND	ND	NA	
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	NA	
Chrysene	ND	ND	ND	ND	ND	ND	NA 104F	.1
bis(2-Ethylhexyl)phthalate	5.77	1.94E-05	5.15	1.85E-05	5.46	1.90E-05	1.94E-0	'I
Di-n-Octylpthalate	ND	ND	ND	ND	ND	ND	NA	
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	NA	
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	NA	
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	NA	1
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	NA	1
Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND	NA	1
	ND	ND	ND	ND .	ND	ND	NA	
Benzo(g,h,i)perylene	ND	ND ND	ND	ND	ND	ND	NA	
Quinoline		ND	ND	ND	ND	ND	NA	1
4,4-Dichlorobiphenyl	ND	ND	ND	ND	ND	ND	NA	1
Pentachlorobenzene	ND	ND	11 1415	140	1,10	140		

TABLE 2-3 (cont)

RMA - SQI

DENVER, COLORADO

SUMMARY OF SEMI-VOLATILE AND ORGANO- PESTICIDE COMPOUNDS TEST DATA AND TEST RESULTS

Test Data Run number Location Date Time period	05-	1 CACK -23-93 3-1723		2 STACK 55-25-93 042-1629	AVERAGE		UCL/MAX	1991 PREDICTE BASE CASI EMISSION:
Time period	μg/dscm	g/sec	μg/dscm	g/sec	μg/dscm		g/sec	g/sec
Organochlorine Pesticides/PCB					·			ļ.
Emission Concentration Data								
Alpha – BHC	ND	ND	ND	ND	ND	ND	NA	
Beta - BHC	ND	ND	ND	ND	ND	ND	NA	
Delta BHC	ND	ND	ND	ND	ND	ND	, NA	ŀ
gamma-BHC	ND	ND	ND	ND	ND	ND	NA	
Heptachlor	ND	ND	ND	ND	ND	ND	NA	
Aldrin	ND	ND	ND	ND	ND	ND	NA	
Heptachlor epoxide	ND	ND	ND	ND	ND	ND	NA	
Endosulfan I	ND	ND	ND	ND	ND	ND	NA	1
Dieldrin	ND	ND	ND	ND	ND	ND	NA	
4,4'-DDE	ND	ND	ND	ND	ND	ND	NA	
Endrin	ND	ND	ND	ND	ND	ND	NA	
Isodrin	ND	ND	ND	ND	ND	ND	NA	
Endosulfan II	ND	ND	ND	ND	ND	ND	NA	
4,4'-DDD	ND	ND	ND	ND	ND	ND	NA	
Endosulfan sulfate	ND	ND	ND	ND	ND	ND	NA	
4,4'-DDT	ND	ND	ND	ND	ND	ND	NA	1
Methoxychlor	ND	ND .	ND	ND .	ND	ND	NA	1
Endrin ketone	ND	ND	ND	ND	ND	ND	NA	
alpha-Chiordane	ND	ND	ND	ND	ND	ND	NA	
gamma-Chlordane	ND	ND	ND	ND	ND	ND	NA	
Toxaphene	ND	ND	ND	ND	ND	ND	NA	ļ
Aroclor - 1016	ND	ND	ND	ND	ND	ND	NA	
Aroclor-1221	ND	ND	ND	ND	ND	ND	NA	
Aroclor - 1232	ND	ND	ND	ND	ND	ND	NA	
Aroclor - 1242	ND	ND	ND	ND	ND	ND	NA	j
Aroclor - 1248	ND	ND	ND	ND	ND	ND	NA	
Aroclor - 1254	ND	ND	ND	ND	ND	ND	NA	1
Aroclor-1260	ND	ND	ND	ND	ND	ND	NA	
Organophosphorous Pesticides/PCB								
Emission Concentration Data	ND	ND	ND	ND	ND	ND	NA	
Atrazine	ND	ND	ND	ND	ND	ND	NA	Į .
Dichlorvos	ND	ND	ND	ND	ND	ND	NA	i .
Mevinphos		ND	ND	ND	ND	ND	NA	1
Ethoprop	ND ND	ND ND	ND	ND	ND	ND	NA	
Naled	ND	ND	ND	ND	ND	ND	NA	
Phorate Demotor O	ND	ND	ND	ND	ND	ND	NA	
Demeton, O Demeton, S	ND	ND	ND	ND	ND	ND	NA	
Diazinon	ND	ND	ND	ND	ND	ND	NA	
Disulfoton	ND	ND	ND	ND	ND	ND	NA	
	0.52	1.75E-06	ND < 0.11	ND < 1.95E-07	0.29	9.73E-07	1.75E-0	5
Methyl Parathion		ND	ND ND	ND	ND	ND	NA	
Ronnel Malathion	ND ND	ND	ND	ND	ND	ND	NA	
Malathion Fenthion	ND	ND	ND	ND	ND	ND	NA	
Ethyl Prathion	ND	ND	ND	ND	ND	ND	NA	
	ND	ND	ND	ND	ND	ND	NA	
Chlorpyrifos Fensulfothion	ND	ND	ND	ND	ND	ND	NA	
_	ND	ND	ND	ND	ND	ND	NA	
Trichloronate Merphos	ND	ND	ND	ND	ND	ND	NA	
	ND	ND	ND	ND	ND	ND	NA	
Stirophos Bolstar	ND	ND	ND	ND	ND	ND	NA	
	ND	ND	ND	ND	ND	ND	NA	1
Azinphos – methyl	ND	ND	ND	ND	ND	ND	NA	1
Coumaphos	ND	ND	ND	ND	ND	ND	NA	1
Supona	ND ND	ND	ND	ND	ND	ND	NA	1
Tokuthion	עא	MD	l KD	ND	מא	T.D	1 ****	1

 $B = Detected \ in \ blank \ train; \ reported \ values \ have been \ blank \ corrected.$ $BC = Detected \ in \ blank \ train; \ test \ run \ values \ were \ less \ than \ blank \ train \ values.$ $ND = Not \ Detected. \ Half \ sample \ detection \ limit.$

TABLE 2-4 RMA - SQI DENVER, COLORADO SUMMARY OF DIOXINFURAN TEST DATA AND TEST RESULTS

1991 PREDICTED BASE CASE EMISSIONS	ghec		1.50E-10
UCLMAX	g/scc	NA 4.889E-12 7.898E-13 9.82E-13 NA NA NA NA NA NA NA NA NA NA	3.5Æ-11
AVERAGE	g/sec	ND 3.42E-12 4.90E-13 5.63E-13 7.84E-13 ND ND 0.0 0.0 7.33E-13 7.34E-13 7.34E-13 1.96E-13 2.13E-13 3.92E-12 9.79E-13 1.96E-13 8.32E-14 6.85E-14 6.85E-14	3.3Œ-11
AVE	msp/8#	ND 9,648-07 1,368-07 1,588-07 2,108-07 ND ND ND 0,0 0,0 0,0 1,098-07 2,728-07 5,48-06 1,098-07 5,988-07 1,098-07 5,988-07 1,988-07 1,948-09 1,948-09	9.34E-06
	304/B	ND < 1.96E-12 ND < 4.91E-13 ND < 3.44E-13 ND 3.44E-13 ND 9.82E-13 ND 0.00	3.168-11
2 STACK 05-25-93 1042-1639	µg/dscm	ND < 1.00E - 06 ND < 1.00E - 06 ND < 2.64E - 07 ND < 1.85E - 07 ND	8.52E – 06
	ghec	ND 4.89E-12 4.89E-13 7.82E-13 5.86E-13 ND 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.5Æ-11
1 STACK 05-23-93 1133-1723	н g/dscm	ND 1,40E - 06 1,40E - 07 1,40E - 07 2,24E - 07 ND 1,68E - 07 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,10E - 07 6,13E - 07 1,12E - 07 6,13E - 07 6,10E	1.02E-05
TEST DATA Test run number Test location Test date Test time period		TOXICITY EQUIVALENCY EMISSIONS (1-TEFs,#9) 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD Total PCDD Total PCDD Total HCDD Total HCDD Total HCDD Total HCDD Total HCDP 1,2,3,7,8-PeCDF 1,2,3,7,8-HxCDF 1,2,3,7,8-HxCDF 1,2,3,6,8-HxCDF 1,2,3,6,8,-HxCDF 1,2,3,6,8,-Hx	TOTAL 2,3,7,8-TCDD EQUIVALENTS

ND = Not Detected. Half sample detection limit.

TABLE 2–5 RMA – SQI DENVER, COLORADO SUMMARY OF METALS TEST DATA AND TEST RESULTS

TEST DATA Test run number Test location Test date	-50	1 05-20-93		05-	2 05-22-92		AVE	AVERAGE	UCLMAX	1991 PREDICTED BASE CASE
Test time period	9560	0959-1232		154	1545-1803					EMISSIONS
	μg/m³	g/sec		μg/m³		g/sec	μg/m³	g/sec	39s/g	g/sec
METALS										-
TRIAL BURN METALS Antimony (Sh)	CX	QN		ND		ND	ND	ND	NA AN	2.28E-05
Arsenic (As)	Q	QN		ND		ND	QN	QN	Y.	1.29E-04
Barium(Ba)	1.83	6.96E-06	NDA	2.00	ND	3.59E-06	1.41	5.28E-06	6.96E-06	3.16E-05
Beryllium(Be)	ND	QN		ND		ΩN	QN	Q	Y:	1.32E-06
Cadmium (Cd)	ΩN	QN		ND		QN	QN.	ON CO.	NA Post	2.02E - 03
Chromium (Cr)	1.31	5.00E-06	VQN	2.41	NDN	4.33E-06	1.70	4.6/E-06	5.00E - 00	1 21R - 01
Copper(Cu)	1701.42	6.48E-03		21.70		7.81R-05	25.05	9.31E-05	1.08E-04	4.05E-05
Memmy (He)	49.05	1.87F-04		56.65		2.04E-04	52.85	1.95E-04	2.04E-04	3.57E-05
Nickel (Ni)	5.72	2.18E-05	NDA	11.45	ND	2.06E-05	5.72	2.12E-05	2.18E-05	1.03E-03
Selenium(Se)	0.45	1.73E-06	NDV	30.12	ND	5.42E-05	7.76	2.80E-05	1.73E-06	3.31E-04
Silver(Ag)	1.95	7.41E-06	NDA	4.87	ND	8.77E-06	2.19	8.09E-06	7.41E-06	3.43E-06
Thallium(T1)	ND< 0.97	ND< 1.84E-06		93.56		3.37E-04	47.02	1.69E-04	3.37E-04	3.33E-04
Vanadium(V)		6.60E-06	NDA	3.82	ND	6.87E-06	1.82	6.74E-06	6.60E-06	8.42E-05
Zinc(Zn)	156.07	5.94E-04		250.95		9.03E-04	203.51	7.49E-04	9.03E-04	5.86E-04
OTHER METALS										
Aluminum(Al)	101.52	3.87E-04		91.60		3.30E-04	96.56	3.58E-04	3.87E-04	6.49E-04
Boron(B)	243.15	9.26E-04		NA		NA	243.15	4.63E-04	9.26E-04	9.63E-04
Calcium(Ca)	205.46	7.83E-04		231.97		8.35E-04	218.71	8.09E-04	8.35E-04	2.02E-05
Cobalt(Co)	QN	QN		NO.		ON COL	ON CO	ON SC.	1 410	15.
Iron(Fe)	36.97	1.41E-04		30.13		1.08E - 04	33.33	1.63E.1	NAN	
Lithium(Li)	ON ON	ON C		ON S		0 19E 0	72.27	8 64R-05	9.18E-05	
Manganese(Mn)	C7.17	8.09E-03		U.C. C.I.		CN CN	Š	CN	Y Z	
Molybdenum(Mo)	ND SE	ND 2008-04		N.D.		2.20E-04	28.00	2.15E-04	2.20E-04	
Titanium(Ti)	0.61	2.32E-06	NDA	2.70	NDA	4.86E-06	0.98	3.59E-06	2.32E-06	2.20E-06
(11)										

(4) Value represents the 1991 predicted emission rate for Cr⁺⁶. ND = Not Detected. Half sample detection limit.

(Evaluation of The Detection Limits For The SQI Trial Burn Data, WESTON, 1993), the detection limits for these chemicals were sufficiently low that they would have been observed if they contributed a significant level of risk.

- Most of the chemicals detected during the 100 percent miniburn were expected. The measured emission rates ranged from well below to well above the predicted emission rates (see Tables 2-1 to 2-5).
- Several chemicals were detected in stack emissions during the 100 percent miniburn which were not evaluated in the 1991 predictive risk assessment:
 - Carbon disulfide
 - Bromodichloromethane
 - Methyl parathion
 - Dimethylphthalate
 - Diethylphthalate
 - Butylbenzylphthalate
 - Bis(2-ethylhexyl)phthalate

The origin of these chemicals is not clear because none were detected in the Basin F liquid, and it is not expected that they would be formed during the incineration process. Nevertheless, all of these chemicals were assumed to be authentic contaminants and were evaluated in the risk evaluation (Section 4).

Benzene was detected in runs 1 and 2 (where chlorobenzene was added as a "spike"), but not in runs 3 and 4 (when no chemicals were added as a spike). This suggests that the benzene detected in runs 1 and 2 is an artifact due to the breakdown of the added chlorobenzene. However, because this is not certain, and because low levels of benzene were predicted to be present, the measured values of benzene are assumed to be authentic release products.

2.4 <u>CONCLUSIONS</u>

There are a number of differences between the predicted and measured levels of chemicals emitted from the SQI. In some cases, release rates were lower than expected, while in other cases release rates were greater. Several unexpected chemicals were also detected. As discussed in Section 4, these differences result in a decrease in the estimated risk from SQI operations.

SECTION 3

EVALUATION OF OPERATIONAL PARAMETERS

3.1 OBJECTIVES

This section compares the "design" stack parameters (determined from the 100 percent miniburn test) needed to model pollutant dispersion and deposition rates with the "as-built" parameters (presented in the Final Draft Risk Assessment (WESTON, 1991)).

3.2 STACK PARAMETERS

The effect of changes of the main stack physical conditions on the ambient impact of the SQI was determined through an air quality screening modeling analysis of the design stack characteristics used in the original risk assessment and the "as-built" stack characteristics as reflected by the results of the miniburn combusting 100 percent Basin F liquid. The U. S. EPA SCREEN model was used to predict the maximum 1-hr concentration for the "design" and "as-built" stack parameters. The stack parameters and the results of the modeling are presented in Tables 3-1 and Table 3-2, respectively. As seen from Table 3-1, the "100 percent Basin F" ("as-built") values for exit velocity, stack diameter and exit temperature were slightly higher than the design conditions. As shown in Table 3-2, the effect of the "100 percent Basin F" stack parameters on the ambient impact was a 15 percent decrease in the predicted maximum 1-hour pollutant concentration, and an increase of 7 percent of the distance to the maximum predicted concentration.

3.3 CONCLUSIONS

Based on the screening air quality modeling analysis, the environmental impact of the releases measured during the 100 percent miniburn is less than predicted in the *Final Draft Human Health Risk Assessment* (WESTON, 1991).

Table 3-1
"Design" Vs. "100 Percent Basin F" Stack Characteristics of the SQI

Parameters	Design*	100% Basin F Liquid ^b
Base Elevation (m)	1,578	1,578
Stack Height (m)	30.48	30.48
Inside Diameter (m)	1.02	1.07
Exit Velocity (mps)	14.8	16.2
Exit Temperature (°K)	354	357

^a Design stack parameters obtained from Final Draft Human Health Risk Assessment, June 1991, Table 6-1 (WESTON, 1991).

^b "As-built" stack parameters obtained from 100 percent Basin F Liquid Miniburn Test Results, 20 May 1993.

Table 3-2

Comparison of "Design" Vs. "100 Percent Basin F" Predicted Maximum
One-Hour Concentrations and Distance From the SQI

SQI Condition	Maximum 1-hour Concentration (μg/m³)	Distance 1-hour Maximum (m)
Design ^a	14.87	329
100% Basin F Liquid ^b	12.63	352

^aFinal Draft Human Health Risk Assessment, Section 6 (WESTON, 1991). ^b100 Percent Basin F Liquid Miniburn Test Results, 20 May 1993.

SECTION 4 RISK EVALUATION

4.1 INTRODUCTION

This section presents the estimated reasonable maximum health risks to the maximally exposed residential population ("Resident A" scenario; WESTON, 1991) due to the release of contaminants in SQI stack effluent measured during the 100 percent miniburn. Table 4-1 reviews the exposure pathways which were evaluated for this scenario, and Table 4-2 shows which chemicals were evaluated for each pathway. All assumptions regarding dispersion, deposition, exposure and toxicity were the same as employed in the 1991 Risk Assessment. For chemicals detected during the miniburn but which were not predicted in the 1991 report, the physical-chemical properties and toxicity values were retrieved from standard literature sources and are presented in Appendix A, along with other documentation of the risk evaluation.

4.2 ESTIMATED RISKS FROM DETECTED CHEMICALS

4.2.1 Emission Rates Used to Estimate Risk

Risks were estimated for all chemicals detected in one or more of the analytical runs performed during the 100 percent miniburn. In accord with EPA (1989) guidance, the emission rate used to calculate exposure point concentrations was equal to the 95th upper confidence limit (UCL₉₅) of the arithmetic mean of the data. When a chemical was detected in one or more samples but was not detected in others, all detected and nondetected samples were included in the average and UCL₉₅ calculations employed one-half the reported sample quantitation limit for the nondetects. Also in accord with EPA (1989) guidance, if the UCL₉₅ was higher than the highest detected (maximum) value, the highest detected value was selected as the exposure concentration. The resulting emission rates (those used to calculate exposure and risk) are shown in Tables 2-1 to 2-5 (Section 2).

Table 4-1

Overview of Exposure Scenarios

Resident-A Scenario

Receives maximum off-site inhalation exposure of vapors and particulates.

Eats vegetables grown at the maximum off-site dry deposition location.

Eats beef and drinks milk from cattle raised at the farm location.*

Contacts soil at the maximum off-site dry deposition location.

Ingests indoor dust and outdoor soil at the maximum off-site dry deposition location.

Eats fish from Engineers Lake.

Consumes breast milk as an infant.

A farm was assumed to be located where deposition (wet and dry) and air concentration are highest for that land use.

Table 4-2

Final List of Pollutants and Respective Exposure Pathways to Be Evaluated

Pollutants	Inhalation	Vegetable Consumption	Milk Consumption	Beef Consumption	Soil/Dust Ingestion	Fish Consumption	Dermal Absorption	Breast Milk Ingestion
Organics								
Benzene	X							×
Benzoic Acid	X	X	X	×	×	X	×	x
Bis(2-ethylhexyl)phthalate	×	X	X	X	×	X	×	X
Bromodichloromethane	×							×
Butylbenzyl phthalate	×	×	X	X	X	X	×	×
Carbon disulfide	×							×
Chloroform	X							X
Diethyl phthalate	X	X	X	×	×		×	×
Dimethyl phthalate	X	X	X	×	×		×	×
Dioxins/Furans	X	X	X	×	×	×	×	×
Methyl Chloride	X							X
Methylene Chloride	X							×
Methyl Parathion	X	X	X	×	×	×	×	X
Phenol	X	X	×	×	×		×	×
Styrene	X							×
Toluene	×							×

Table 4-2

Final List of Pollutants and Respective Exposure Pathways to Be Evaluated (continued)

Pollutants	Inhalation	Vegetable Consumption	Milk Consumption	Beef Consumption	Soil/Dust Ingestion	Fish Consumption	Dermal Absorption	Breast Milk Ingestion
Inorganics								
Aluminum	X							
Ammonia	X							
Barium	X							
Boron	X			٠				
Calcium	X							
Chromium (III)	X							
Chromium (VI)	X						-	
Copper	Х	X	×	×	×	X	×	
Iron	X							
Lead								
Manganese	X							
Mercury	X	X	×	×	×		×	
Nickel	X							
Selenium	X							
Silver	Х							
Thallium	×							
Tin	X							

4-4

Table 4-2

Final List of Pollutants and Respective Exposure Pathways to Be Evaluated (continued)

Pollutants	Inhalation	Vegetable Consumption	Milk Consumption	Beef Consumption	Soil/Dust Ingestion	Milk Beef Soil/Dust Fish Consumption Consumption	Dermal Absorption	Breast Milk Ingestion
Titanium	х							
Vanadium	X					×		
Zinc	×					×		
Criteria Pollutants/ Acid Gases								-
Hydrogen Chloride	X							
Particulate Matter	X							

X = Pollutant is of potential concern through this exposure route or pathway.

4.2.2 Estimated Cancer Risks

Table 4-3 presents the estimated total lifetime cancer risks to "Resident A" based on the chemicals detected during the 100 percent miniburn. As shown, the total cancer risk is estimated to be 8.7E-10, more than 1,000-times less than the benchmark level of concern (1E-06). Risks to other populations are even lower.

4.2.3 Estimated Noncancer Risks

Table 4-4 presents the estimated noncancer risks to the Resident A child. As shown, the screening level Hazard Index (i.e., assuming all of the noncancer effects are additive) is 1.5E-02, nearly 100-fold less than the benchmark level of concern (HI = 1E+00). Because some of the noncancer effects are on separate target tissues and the risks are not additive, the true margin of safety is even larger. As shown in Appendix A, the noncancer risks to the Resident A Adult (6.7E-03) and the Infant (1.0E-02) are both less than for the child, and are also well below the benchmark of 1E+00.

4.3 POTENTIAL RISKS FROM CHEMICALS NOT DETECTED

It is possible that some chemicals are present in the stack effluent at concentration levels too low to be measured. In order to investigate the possible consequence of this, risks were calculated for the Resident A population based on the worst case assumption that all chemicals which were predicted to be present but were not detected were actually present at concentrations equal to their detection limits. (A separate report, entitled "Evaluation of Detection Limits for the SQI Trial Burn Data," WESTON, 1993, presents more detail on this approach). The results are as follows:

TABLE 4-3 TOTAL LIFETIME CARCINOGENIC RISK

RES-A BASE CASE	INHALATION CARC. RISK	INGESTION CARC. RISK	DERMAL CARC. RISK	TOTAL LIFETIME CARC. RISK
DRGANICS Benzene Bis(2-ethylhexyl)phthalate Bromodichloromethane Chloroform Dioxins/Furans (EPA TEFs) Methyl Chloride Methylene Chloride Styrene	1.88E-11 1.45E-12 1.42E-11 6.11E-11 2.15E-11 4.72E-12 7.95E-13	8.60E-15 3.22E-10 1.30E-13 4.21E-14 2.86E-10 8.92E-14 3.31E-14	1.84E-14 NA NA 3.62E-13 NA NA	1.88E-11 3.23E-10 1.43E-11 6.12E-11 3.08E-10 4.81E-12 8.28E-13 9.52E-13
INORGANICS Chromium (VI) Nickel	3.73E-11 9.80E-11	₩.	N A	3.73E-11 9.80E-11
Total	2.59E-10	6.08E-10	3.80E-13	8.67E-10

TABLE 4-4 CHILD HAZARD INDEX

RES-A BASE CASE	INHALATION HAZARD QUOTIENT	VEGETABLE INGESTION HAZARD QUOTIENT	MILK INGESTION HAZARD QUOTIENT	BEEF INGESTION HAZARD QUOTIENT	SOIL/DUST INGESTION HAZARD QUOTIENT	FISH INGESTION HAZARD QUOTIENT	DERMAL EXPOSURE HAZARD QUOTIENT	TOTAL CHILD HAZARD INDEX
ORGANICS	8.41E-07	W	NA	N.	Ä	NA	ΥN	8.41E-07
Renzoic Acid	1.04E-08	5.41E-10	5.36E-14	8.31E-15	2.56E-11	1.74E-12	1.74E-11	1.09E-08
Bis(2-ethylhexyl)phthalate	8.61E-07	1.64E-06	7.41E-06	3.59E-07	5.43E-10	2.47E-10	3.70E-10	1.03E-05
Bromodichloromethane	4.83E-07	AN A	N A	NA NA	¥	NA.	NA I	4.83E-07
Butylbenzyl phthalate	1.32E-08	1.11E-07	4.20E-11	2.29E-12	3.27E-11	9.98E-11	2.23E-11	1.24E-07
Carbon Disulfide	1.12E-06	A.	AN	¥	¥	YN:	YY:	1.12E-06
Chloroform	6.39E-07	A	Y Y	Y Y	Y Y	YY:	NA C	6.39E-07
Diethyl phthalate	5.64E-07	1.99E-10	3.95E-14	5.56E-15	8.88E-12	Y.	6.05E-12	5.64E-07
	1.73E-07	7.67E-12	3.25E-16	5.18E-17	2.18E-15	NA I	1.49E-15	1.755-07
Dioxins/Furans (EPA TEFs)	8.04E-06	1.80E-07	7.68E-08	1.31E-08	1.99E-08	5.64E-07	1.35E-08	8.91E-U6
Methyl Chloride	3.02E-07	¥:	¥:	¥ :	<u> </u>	K S	Z :	3.UZE-U/
Methylene Chloride	2.58E-08	Y X	A L	NA TOTAL	AN COLL	1 2/E-00	2 47E-00	2 075-06
Methyl parathion	1.945-06	7.02E-08	1 005-12	1.325-12	3.92E-09	NA NA	5 56E-12	1 03E-02
Phenot Strange	4 10E-07	NA NA	NA NA	Z AZ	NA I	Y A	NA I	6.19E-08
Toluene	7.53E-08	ž	N A	¥	¥	NA	N	7.53E-08
INORGANICS		:	;	•	:	ļ	•	201.05
Aluminum	4.30E-05	¥ :	Z Z	¥	¥	N .	X 9	5 405-03
Ammonta	2.00E-U3	¥ ×	¥	¥ 4	Z Z	X 4	Z Z	1.58F-05
Boron	3 67F-05	(d	Z Z	Z Z	Z Z	¥ ₩	×	3.67E-05
	9.27E-05	Ą	X	¥	ž	Y.	AN	9.27E-05
Chromium (111)	2.14E-06	AN	N	Ā	¥X	AN	N V	2.14E-06
	7.55E-07	۸N	AN	AN	AN	AN.	NA.	7.55E-07
	1.44E-03	9.33E-07	8.86E-08	1.53E-08	9.54E-08	6.46E-06	6.50E-08	1.45E-03
Iron	3,13E-05	Y.	¥:	¥:	¥:	¥ :	¥ ¥	3.13E-U5
Manganese	1.82E-04	AN A	NA O	1 EZE-04	7 915-07	¥ \$	2 505-07	1.02E-04
Mercury	2.59E-04	3.0/E-UD	V. 00E-100	00-3/C-1	7.01E-07	E 3	NA NA	0 48E-05
Nickel	1 02E-05	4 4 2 2	¥ Z	X	(V	(A	Z Z	1.92F-06
	1 65F-06	4 4	Y X	Y AN	Y Y	N N	ž	1.65E-04
That I find	7.48E-04	¥ X	×	¥	AN	A	X	7.48E-04
Tin	2,44E-05	AN	A.	Ν	AN	및	X A	2.44E-05
Titanium	5.15E-08	NA AN	NA NA	NA	AN	밀	¥.	5.15E-08
Vanadium	2.93E-05	NA	X	AN	AN A	3.23E-10	X X	2.93E-05
Zinc	2.00E-05	NA	NA	V V	ΑN	4.84E-08	ď Z	2.01E-05
. CRITERIA POLLUTANTS/							•	
ACID GASES	100	:				2	*	1 005-02
Hydrogen Chloride Particulate Matter	1.90E-03 4.21E-03	A A	X X	X X	X X	X X	Χ×	4.21E-03
						1		
Total (Hazard Index)	1.52E-02	6.61E-06	7.67E-06	1.96E-06	5.00E-07	7.08E-06	3.41E-07	1.52E-02

Estimated Risk Levels
If All Non-Detects Were
Assumed to Be Present

Effect Category

Cancer

2.6E-07

Noncancer

2.0E-02

Thus, even under this worst-case scenario (which is considered to be extremely unrealistic), the total cancer and noncancer risks would still be less than the benchmark levels of concern.

4.4 SUMMARY AND CONCLUSIONS

Table 4-5 summarizes the estimated human health risks to nearby residents based on the originally predicted emission rates and on the emission rates measured during the 100 percent miniburn. It is apparent that the total cancer and noncancer risks from all chemicals measured in the 100 percent miniburn test are lower than originally predicted and are well below the cancer and hazard index benchmarks of 1E-06 and 1, respectively. Even using the assumption that all nondetected chemicals originally predicted in the risk assessment (WESTON, 1991) were hypothetically contributing a risk, the total cancer and noncancer risks from all chemicals (both detected and nondetected) would still be below the benchmarks of concern.

Based on the results of the 100 percent miniburn test, it is concluded that the emissions from the SOI will not present human health risks which exceed the benchmarks.

Table 4-5 Summary of Risk Estimates Based on **Predicted and Measured Emissions**

	Estimated Human H	ealth Risk Based On
Category	Predicted Emissions ^a	Measured Emissions ^b
Cancer Risk	1.4E-08	8.7E-10
Noncancer Risk ^c Adult Child Infant	7.4E-02 1.7E-01 1.1E-01	6.7E-03 1.5E-02 1.0E-02

^a Final Draft Human Health Risk Assessment, Section 10 (WESTON, 1991).
^b 100 Percent Miniburn Test Data, 20 May 1993.

^c Hazard index.

SECTION 5

SUMMARY AND CONCLUSIONS

The results from the evaluation of emissions data (Section 2) show that for the chemicals detected, the measured emission rates ranged from lower to higher than the predicted base case emission rates. A number of chemicals that were predicted to occur at very low concentrations were not detected.

Evaluation of the stack parameters measured during the 100 percent miniburn revealed only small differences compared to the design parameters (Section 3). The differences which do exist will tend to decrease the level of contaminants which reach the environment.

Quantitative risk evaluation of the test burn emissions data revealed that total risks from the SQI operation are lower than predicted, and are well below the benchmarks of concern (Section 4). Based on these findings, the results of the 100 percent miniburn strongly support the conclusion that operation of the SQI will not result in significant health risks to humans.

SECTION 6

REFERENCES

- EPA (U.S. Environmental Protection Agency), 1980. AWQC for Phthalate Esters, EPA 440/5-80-067, October 1980.
- EPA (U.S. Environmental Protection Agency), 1986. Superfund Public Health Evaluation Manual. Office of Emergency and Remedial Response. Washington, D.C. EPA/600/8-91/011B.
- EPA (U.S. Environmental Protection Agency), 1989. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A), Interim Final, EPA/540/1-89/002, December 1989.
- Howard, P.H. 1989. Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Vol I: Large Production and Priority Pollutants. Lewis Publishers, Inc., Chelsea, Michigan.
- Howard, P.H., 1990. Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Vol II: Solvents. Lewis Publishers, Inc., Chelsea, Michigan.
- Schnoor, J.L., C. Sato, D. McKenchie, and D. Sahoo, 1987. Process, Coefficients and Models for Simulating Toxic Organics and Heavy Metals in Surface Waters. Prepared for Environmental Research Laboratory. U.S. Environmental Protection Agency, Athens, Georgia. EPA/600/3-87/-15.
- WESTON (Roy F. Weston, Inc.), 1991. Final Draft Human Health Risk Assessment. Interim Response Action, Basin F Liquid Incineration Project, Contract No. DACW-45-90-D-0015.
- WESTON (Roy F. Weston, Inc.), 1993. Evaluation of Detection Limits for the SQI Trial Burn Data, Treatment in Final Human Health Multipathway Risk Assessment. 9 June 1993.

APPENDIX A

DETAILED DOCUMENTATION OF RISK EVALUATION FOR 100 PERCENT BASIN F LIQUID MINIBURN TEST DATA

APPENDIX A

DETAILED DOCUMENTATION OF RISK EVALUATION FOR 100 PERCENT BASIN F LIQUID MINIBURN TEST DATA

The following information is summarized in the Appendix tables:

<u>Table A-1</u> -	Physical/Chemical Parameters For the New Chemicals
	Detected in the 100 Percent Miniburn

- <u>Table A-2</u> Carcinogenic Slope Factors For All Detected Chemicals
- Table A-3 Adult Resident A Carcinogenic Risk
- Table A-4 Child Resident A Carcinogenic Risk
- Table A-5 Infant Resident A Carcinogenic Risk
- Table A-6 Total Lifetime Carcinogenic Risk By Exposure Route Resident A
- Table A-7 Percent Contribution by Pathway For Carcinogens Resident A
- <u>Table A-8</u> Noncarcinogenic Reference Doses For All Detected Chemicals
- Table A-9 Adult Resident A Hazard Index
- Table A-10 Infant Resident A Hazard Index

T:\SQI-APP

Table A.1 Physical/Chemical Properties for the New Chemicals Detected in the 100% Miniburn

Organics	log Kow	Reference	Koc (ml/g)	Reference	Fish BCF (I/Kg)	Reference
Bis(2-ethylhexyl) phthalate	: 4	Schnoor, 1987	100000	Howard, 1989	77.5	EPA, 1980
Bromodichloromethane	2.10	Schnoor, 1987	53-251	Howard, 1990	Ž	
Butyl benzyl phthalate	5.56	Schnoor, 1987	68-350	Howard, 1989	718	Schnoor, 1987
Diethyl phthalate	2.50	EPA, 1986	142	EPA, 1986	117	EPA, 1986
Dimethyl phthalate	1.56	(C)	44-160	Howard, 1989	57	Schnoor, 1987
Methyl Parathion	1.91	EPA, 1986	460	EPA, 1986	95	Schnoor, 1987

NA - Not Applicable

Table A-2

Slope Factors for Carcinogenic Health Effects (mg/kg/day)-1 Rocky Mountain Arsenal (RMA)

OSF OSF IRIS, 1993 EPA, 1992 IRIS, 1993 EPA, 1990 IRIS, 1990	Pollutant	EPA Carcinogenicity Classification	IARC Carcinogenicity Classification	Inhalation Route Slope Factor	Reference or Basis of Inhalation Slope Factor	Oral Route Slope Factor	Reference or Basis of Oral Slope Factor	Dermal Route Slope Factor
exyl)phthalate B2 2B 1.40E-02 OSF oromethane B2 NL 6.20E-02 OSF rans (as 2,3,7,8) B2 2B 1.13E+05* EPA, 1992 oride C 3 6.30E-03 EPA, 1990 Chloride B2 2B 1.65E-03 IRIS, 1993 W1) Ab 1 4.10E+01 IRIS, 1990	anics							
oromethane B2 NL 6.20E-02 OSF rans (as 2,3,7,8) B2 2B 1.13E+05* EPA, 1992 oride C 3 6.30E-03 EPA, 1990 Chloride B2 2B 1.65E-03 IRIS, 1993 Chloride B2 2B 2.00E-03 EPA, 1990 (VI) Ab 1 4.10E+01 IRIS, 1990	2-ethylhexyl)phthalate	B2	2B	1.40E-02	OSF	1.40E-02	IRIS, 1993	2.80E-02 (sv)
rans (as 2,3,7,8) B2 2B 8.10E-02 IRIS, 1993 oride C 3 6.30E-03 EPA, 1990 Chloride B2 2B 1.65E-03 IRIS, 1993 Chloride B2 2B 2.00E-03 EPA, 1990 (VI) Ab 1 4.10E+01 IRIS, 1990	nodichloromethane	B2	NL	6.20E-02	OSF	6.20E-02	IRIS, 1993	NC (v)
rans (as 2,3,7,8) B2 2B 1.13E+05* EPA, 1992 oride C 3 6.30E-03 EPA, 1990 Chloride B2 2B 1.65E-03 IRIS, 1993 VI) Ab 1 4.10E+01 IRIS, 1990	лобогт	B2	2B	8.10E-02	. IRIS, 1993	6.10E-03	IRIS, 1993	NC (v)
oride C 3 6.30E-03 EPA, 1990 Chloride B2 2B 1.65E-03 IRIS, 1993 B2 2B 2.00E-03 EPA, 1990 (VI) Ab 1 4.10E+01 IRIS, 1990	kins/Furans (as 2,3,7,8)D)	B2	2B	1.13E+05ª	EPA, 1992	1.50E+05	EPA, 1992	3.00E+05 (sv)
Chloride B2 2B 1.65E-03 IRIS, 1993 B2 2B 2.00E-03 EPA, 1990 (VI) Ab 1 4.10E+01 IRIS, 1990	hyl Chloride	S	3	6.30E-03	EPA, 1990	1.30E-02	EPA, 1990	NC (v)
(VI) A ^b 128 2.00E-03 EPA, 1990 (VI) A ^b 1 4.10E+01 IRIS, 1990	hylene Chloride	B2	2B	1.65E-03	IRIS, 1993	7.50E-03	IRIS, 1993	NC (v)
(VI) A ^b 1 4.10E+01 IRIS, 1990	ene	B2	2B	2.00E-03	EPA, 1990	3.00E-02	EPA, 1990	NC (v)
A ^b 1 4.10E+01 IRIS, 1990	ganics							
	omium (VI)	Α _b	1	4.10E+01	IRIS, 1990	NC	-	NC (i)
IRIS, 1993	kel (as soluble salts)	A^b	1	8.40E-01	IRIS, 1993	NC	•	NC (i)

Footnotes:

NC = Not a carcinogenic concern through the oral and dermal routes of exposure. NL = Not listed.

OSF = Oral Slope Factor.

- Substance was treated as a volatile (v), semi-volatile (sv), or an inorganic (i) in deriving the dermal slope factor.

* Based on a slope factor of 1.56E+05 (mg/kg/day)⁻¹, adjusted for 0.75 inhalation retention.

b Classification is for the inhalation route only.

TABLE A-3 ADULT CARCINOGENIC RISK

RES-A BASE CASE	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL ADULT CARC. RISK
ORGANICS Benzene Bis(2-ethylhexyl)phthalate Bromodichloromethane Chloroform Dioxins/Furans (EPA TEFs) Methyl Chloride Methylene Chloride Styrene	2.75E-10 NA NA NA 7.38E-13 NA	9.46E-12 NA NA NA NA NA NA	1.08E-12 NA NA 7.23E-14 NA NA	1.52E-14 NA NA NA NA NA NA	2.80E-14 NA NA 3.42E-11 NA NA	1.12E-14 NA NA NA NA NA NA	2.85E-10 NA NA 3.56E-11 NA NA
INORGANICS Chromium (VI) Nickel	N N N	X X A A	A A	AN A	A A	N N	NA NA
Total	2.75E-10 AED A	-10 9.54E-12 1.15E-' AED Adult Exposure Duration	1.15E-12 Duration	3.12E-13 64 Y	.13 3.43E-11 64 YEARS	2.30E-13	3.21E-10

TABLE A-4 CHILD CARCINOGENIC RISK

RES-A BASE CASE	INHALATION CARC. RISK	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL CHILD CARC. RISK
ORGANICS Benzene Bis(2-ethylhexyl)phthalate Bromodichloromethane Chloroform Dioxins/Furans (EPA TEFs) Methyl Chloride Methylene Chloride Styrene	1.14E-11 8.79E-13 8.56E-12 3.69E-11 1.30E-11 2.85E-12 4.80E-13	3.21E-11 NA NA 9.88E-14 NA	4.27E-12 NA NA A NA NA NA NA	2.11E-13 NA NA 1.53E-14 NA NA	1.07E-14 1.07E-14 NA 1.0E-13 NA NA	6.04E-15 NA NA NA NA NA NA	7.29E-15 NA NA 1.43E-13 NA NA	1.14e-11 3.75e-11 8.56e-12 3.69e-11 1.95e-11 2.85e-12 4.80e-13
INORGANICS Chromium (VI) Nickel	2.25E-11 5.92E-11	N N N	A A	A A	N N N	N N N	A A	2.25E-11 5.92E-11
Total	1.56E-10	3.22E-11	4.31E-12	2.26E-13	2.21E-13	6.04E-12	1.50E-13	2.00E-10
	CED	Child Exposure Duration Child Inhalation Duration	e Duration ion Duration	W	YEARS YEAR			

TABLE A-5 INFANT CARCINOGENIC RISK

BREAST MILK TOTAL INGESTION INFANT CARC. CARC. RISK	8.60E-15 7.44E-12 7.16E-14 6.47E-13 1.30E-13 5.73E-12 4.21E-14 2.42E-11 2.53E-10 8.92E-14 1.5E-13 4.46E-13 1.15E-13 4.46E-11 NE 3.88E-11	2,45E-10 3,47E-10	Infant Exposure Duration Infant Inhalation Duration
INHALATION CARC. RISK	7.43E-12 5.75E-13 5.60E-12 2.42E-11 8.49E-12 1.87E-12 3.14E-13 3.31E-13 3.31E-11	1.02E-10	. IED 110
RES-A Base case	ORGANICS Benzene Bis(2-ethylhexyl)phthalate Bromodichloromethane Chloroform Dioxins/Furans (EPA TEFs) Methylene Chloride Methylene Chloride Styrene INORGANICS Chromium (VI)	Total	

TABLE A-6 TOTAL LIFETIME CARCINOGENIC RISK

RES-A BASE CASE	INHALATION CARC. RISK	BREAST MILK INGESTION CARC. RISK	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL LIFETIME CARC. RISK
ORGANICS Benzene Bis(2-ethylhexyl)phthalate Bromodichloromethane Chloroform Dioxins/Furans (EPA TEFs) Methyl Chloride Methylene Chloride Styrene	1.88E-11 1.45E-12 1.42E-11 6.11E-11 2.15E-12 7.95E-13 8.37E-13	8.60e-15 7.16e-14 1.30e-13 4.21e-14 2.44e-10 8.92e-14 3.31e-14	3.07E-10 NA NA NA 8.37E-13 NA NA	1.37E-11 NA NA 1.28E-13 NA NA NA	NA 1.29E-12 NA NA 8.76E-14 NA NA	2.59E-14 NA NA 5.07E-13 NA NA	3.29E-14 NA NA 4.03E-11 NA NA	1.84E-14 NA NA 3.62E-13 NA NA NA	1.88E-11 3.23E-10 1.43E-11 6.12E-11 3.08E-10 4.8.28E-13 9.52E-13
INDRGANICS Chromium (VI) Nickel	3.73E-11 9.80E-11	M M	A A	A K	N A A	A K	N N	A A	3.73E-11 9.80E-11
Total	2.59E-10	2.45E-10	3.08E-10	1.39E-11	1.38E-12	5.33E-13	4.03E-11	3.80E-13	8.67E-10

	2	BY PATHWAY
TABLE A-7	CARCINOGENIC	CONTRIBUTION

	ш
	S
	2
	C
ζ	
	ш
n	S
ш	4
×	α

W.	36.9759 31.7564 1.1005 0.1331 0.0360 3.9499	0.0265	18.0256	4.9625 3.7171 0.4971 0.0261 0.0254 0.6968	0.0173	11.7968	28.1954	100.000
Adult Inhalation	Ingestion Vegetables Milk Beef Soil\Dust Fish	Dermal	Child Inhalation	Ingestion Vegetables Milk Beef Soil\Dust Fish	Dermal	Infant Inhalation	Breast Milk Ingestion	Total

Table A-8

Rocky Mountain Arsenal (RMA)
Reference Doses (RfDs) for Noncarcinogenic Health Effects (mg/kg-day)

Pollutant	Inhalation Route	Reference or Basis of	Oral Route	Reference or Basis of	Dermal Route RfD
	KID	Illiaiaiauon NID	A CONTRACTOR		
Organics					
Benzoic Acid	4.00E+00	Oral RfD	4.00E+00	IRIS, 1993	2.00E+00 (sv)
Bis(2-ethylhexyl)phthalate	5.10E-03	ACGIH-TWA	2.00E-02	IRIS, 1993	1.00E-02 (sv)
Bromodichloromethane	2.00E-02	Oral RfD	2.00E-02	IRIS, 1993	NC (v)
Butylbenzyl phthalate	2.00E-01	Oral RfD	2.00E-01	IRIS, 1993	1.00E-01 (sv)
Chloroform	5.00E-02	ACGIH-TWA	1.00E-02	IRIS, 1993	NC (v)
Diethyl phthalate	5.10E-03	ACGIG-TWA	8.00E-01	IRIS, 1993	4.00E-01 (sv)
Dimethyl phthalate	5.10E-03	ACGIH-TWA	1.00E+01	EPA, 1992	5.00E+00 (sv)
Dioxins/Furans (as 2,3,7,8 TCDD)	1.00E-09	Oral RfD	1.00E-09	ATSDR, 1989	5.00E-10 (sv)
Methyl Chloride	1.05E-01	ACGIH-TWA	1.80E-02	Derived	NC (v)
Methylene Chloride	8.57E-01	EPA, 1992	6.00E-02	EPA, 1993	NC (v)
Methyl Parathion	2.04E-04	ACGIH-TWA	2.50E-04	IRIS, 1993	1.25E-04 (sv)
Phenol	1.94E-02	ACGIH-TWA	6.00E-01	IRIS, 1993	3.00E-01 (sv)
Styrene	2.86E-01	IRIS, 1993	2.00E-01	IRIS, 1993	NC (v)
Toluene	1.14E-01	IRIS, 1993	2.00E-01	IRIS, 1993	NC (v)
Inorganics					
Aluminum	2.04E-03ª	ACGIH-TWA	NE		NC (i)
Ammonia	2.86E-02	IRIS, 1993	NE	1	NC (i)

Table A-8

Rocky Mountain Arsenal (RMA)
Reference Doses (RfDs) for Noncarcinogenic Health Effects (mg/kg-day)
(Continued)

Reference Doses (RIDs) for Noncarcinogenic freatin Effects (mg/kg-uay) (Continued)	(KIDS) 10r NOI ((oncarcinogenic riea (Continued)	iui Ellects (mg/ ng-uay)	
Pollutant	Inhalation Route RfD	Reference or Basis of Inhalation RfD	Oral Route RfD	Reference or Basis of Oral RfD	Dermal Route RfD
Barium	1.00E-04	EPA, 1992	NE	ł	NC (I)
Boron	5.71E-03	EPA, 1992	NE	1	NC (i)
Calcium	2.04E-03°	ACGIH-TWA	NC	ŀ	NC (i)
Chromium (III)	5.10E-04	ACGIH-TWA	NE	i	NC (i)
Chromium (VI)	5.10E-05	ACGIH-TWA	NE	i	NC (i)
Copper	1.02E-03	ACGIH-TWA	3.80E-02	Ebasco, 1990	1.90E-03 (i)
Iron	1.02E-03°	ACGIH-TWA	R	I	NC (i)
Manganese	1.14E-04	IRIS, 1993.	NE	i	NC (i)
Mercury	8.57E-05	EPA, 1992	3.00E-04	EPA, 1990	1.50E-05 (i)
Nickel	5.10E-05 ^d	ACGIH-TWA	NE	1	NC (i)
Selenium	2.04E-04	ACGIH-TWA	NC	1	NC (i)
Silver	1.02E-05	ACGIH-TWA	NC	-	NC (i)
Thallium	1.02E-04	ACGIH-TWA	NE		NC
Tin	2.04E-03	ACGIH-TWA	NE		NC (i)
Titanium	1.02E-02 ^t	ACGIH-TWA	NE	•	NC (i)
Vanadium	5.10E-05	ACGIH-TWA	7.00E-03	EPA, 1990	NC (i)
Zinc	1.02E-02 ^g	ACGIH-TWA	3.00E-01	EPA, 1990	NC (i)

Table A-8

Reference Doses (RfDs) for Noncarcinogenic Health Effects (mg/kg-day) Rocky Mountain Arsenal (RMA) (Continued)

	Inhalation	Reference or	Oral	Reference or	Dermal
Pollutant	Route	Basis of	Route	Basis of	Route
	RfD	Inhalation RfD	RfD	Oral RfD	RfD
Other Acid Gases/ Criteria Pollutants					
Hydrogen Chloride	2.00E-03	IRIS, 1993	В	1	Ð
Particulate Matter	1.43E-02	NAAQS	NC	-	NC

Footnotes:

ACGIH-TWA = American Conference of Governmental Industrial Hygienists. Time-Weighted Average

= There were insufficient data to predict the fate in either surface water or soil. The chemical was therefore not evaluated through

the inhalation or dermal route.

National Ambient Air Quality Standard **NAAOS**

= Not of concern through this exposure route (see Section 8)

= Not evaluated. Substance is of concern through the fish ingestion pathway only, but could not be evaluated due to the availability of a fish bioconcentration factor S E

Substance was treated as a volatile (v), semi-volatile (sv), or inorganic (i) in deriving the dermal reference dose.

^a Converted from TLV for soluble salts as aluminum.

^b Converted from TLV for calcium oxide and converted to "as calcium."

Converted from TLV for soluble salts as iron, the most conservative value for inorganic iron.

Converted from TLV for soluble compounds as nickel, the most conservative value.

Converted from TLV for soluble compounds as silver, the most conservative value.

Converted from TLV for titanium dioxide and converted to "as titanium."

Converted from TLV for zinc oxide dust rather than fume and converted to "as zinc."

TABLE A-9
ADULT HAZARD INDEX

	769787778978788 8888888	$ \nabla \mathcal{L} \nabla $	4 D D	
TOTAL ADULT HAZARD INDEX	3.72E-07 4.88E-09 2.90E-06 2.14E-07 7.97E-08 4.98E-07 2.50E-07 7.67E-08 3.93E-07 1.05E-08 9.01E-07 4.55E-08 3.33E-08	1,90e-05 2,48E-05 6,98E-06 1,63E-05 4,10E-05 3,34E-07 1,39E-05 8,50E-07 7,29E-05 3,31E-04 1,39E-05 8,50E-07 1,30E-05 1,30E-05 8,90E-06	8.42E-04 1.87E-03 6.74E-03	
DERMAL EXPOSURE HAZARD QUOTIENT	2.09E-12 4.42E-11 NA 2.67E-12 NA NA 7.24E-13 1.78E-14 1.62E-09 NA NA N	3.10E-08 NA NA N	NA NA 4.08E-08	
FISH INGESTION HAZARD QUOTIENT	7.72E-13 1.09E-10 4.42E-11 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA N	NA NA 3.13E-06	
SOIL/DUST INGESTION HAZARD QUOTIENT	2.83E-12 6.01E-11 3.62E-12 NA NA N	1.06E-08 NA NA N	NA NA 5.54E-08	
BEEF INGESTION HAZARD QUOTIENT	3.33E-15 1.44E-07 1.44E-07 NA 2.23E-15 2.08E-17 4.84E-09 NA NA NA NA NA NA NA NA NA NA NA NA NA	NAN NA	NA NA 7.84E-07	
MILK INGESTION HAZARD QUOTIENT	9.28E-15 1.28E-06 1.28E-06 NA 7.27E-12 NA 1.17E-08 NA 1.49E-12 1.89E-15 NA	1.54E-08 NA NA N	NA NA 1,33E-06	
VEGETABLE INGESTION HAZARD QUOTIENT	2.84E-10 1.09E-06 1.09E-06 NA 7.37E-08 NA 1.15E-10 4.25E-12 9.75E-08 NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA 3.81E-06	
INHALATION HAZARD QUOTIENT	3.72E-07 4.59E-09 3.81E-07 2.14E-07 5.87E-09 4.98E-07 2.50E-07 7.67E-08 3.56E-06 1.34E-07 1.05E-08 2.74E-08 3.35E-08	1.90e-05 2.48e-03 6.98e-05 1.63e-05 4.10e-05 9.50e-07 3.34e-07 6.37e-04 1.39e-05 8.08e-05 2.39e-04 7.29e-05 3.31e-04 1.30e-05 1.30e-05 8.50e-07 7.29e-05 8.50e-07 7.29e-05 8.50e-07 8.5	8.42E-04 1.87E-03 6.73E-03	
RES-A BASE CASE	ORGANICS Benzene Benzoic Acid Bis(2-ethylhexyl)phthalate Bromodichloromethane Butylbenzyl phthalate Carbon Disulfide Chloroform Diethyl phthalate Dimethyl phthalate Dimethyl Chloride Methyl Chloride Methyl parathion Phenol Styrene	INORGANICS Aluminum Ammonia Barium Barium Calcium Chromium (111) Chromium (V1) Copper Iron Manganese Mercury Nickel Selenium Silver Thallium Tianium Vanadium	CRITERIA POLLUTANTS/ ACID GASES Hydrogen Chloride Particulate Matter Total (Hazard Index)	

TABLE A-10 INFANT HAZARD INDEX

ASE CASE	INHALATION HAZARD QUOTIENT	BREAST MILK INGESTION HAZARD QUOTIENT	TOTAL INFANT HAZARD INDEX
DRGANICS Benzene Benzene Benzencic Acid Bis(2-ethylhexyl)phthalate Bromodichloromethane Butylbenzyl phthalate Carbon Disulfide Chloroform Diethyl phthalate Dimethyl phthalate Dimethyl phthalate Dimethyl phthalate Methyl chloride Methyl chloride Methyl chloride Methyl parathion Phenol Styrene Toluene	5.50E-07 6.78E-09 5.64E-07 3.16E-07 8.67E-09 7.36E-07 7.36E-07 7.36E-07 1.13E-07 1.56E-08 4.05E-08 4.05E-08	2.08E-08 2.00E-09 1.79E-08 7.32E-09 1.09E-08 4.87E-10 5.34E-10 5.94E-12 1.14E-04 2.67E-08 5.05E-07 3.05E-07 8.13E-09	5.71E-07 8.78E-09 5.81E-07 3.24E-07 1.96E-08 7.36E-07 4.66E-07 3.69E-07 1.13E-07 1.19E-04 2.24E-07 2.24E-07 4.19E-08 4.19E-08
וסותבות	10111	1	
INORGANICS Aluminum Ammonia Barium Barium Boron Calcium Chromium (VI) Copper Iron Manganese Mercury Nickel Selenium Silver Tin Titanium Vanadium Zinc CRITERIA POLLUTANTS/	2.81E-05 3.66E-03 1.05E-05 2.40E-05 6.07E-05 1.40E-04 2.05E-05 1.19E-04 3.53E-05 1.08E-04 4.90E-04 4.90E-04 1.06E-05 1.08E-04 1.90E-04 1.90E-04		2.81E-05 3.66E-03 1.03E-05 2.40E-05 6.07E-05 1.40E-06 2.05E-06 1.26E-06 1.08E-04 4.90E-06 1.60E-06 1.31E-05
	1.24E-03	N N	1.24E-03 2.76E-03
Total (Hazard Index)	9.95E-03	1.14E-04	1.01E-02