Derivatives

First Order

$$\bullet \ f: \mathbb{R}^n \to \mathbb{R}, \ f(\boldsymbol{x}), \boldsymbol{x} = \begin{bmatrix} x_1, x_2, \cdots, x_n \end{bmatrix}^T$$
Gradient:
$$\nabla f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

Derivative: $Df(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_n} \end{bmatrix}$

- Relationship: $\nabla f(x) = Df(x)^T$
- Conclusions (use gradient):

Conclusions (use gradient)
$$\frac{\partial (\mathbf{x}^T \mathbf{a})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{a}^T \mathbf{x})}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial (\mathbf{x}^T \mathbf{x})}{\partial \mathbf{x}} = 2\mathbf{x}$$

$$\frac{\partial (\mathbf{x}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = \mathbf{A} \mathbf{x} + \mathbf{A}^T \mathbf{x}$$

$$\frac{\partial (\mathbf{a}^T \mathbf{x} \mathbf{x}^T \mathbf{b})}{\partial \mathbf{x}} = \mathbf{a} \mathbf{b}^T \mathbf{x} + \mathbf{b} \mathbf{a}^T \mathbf{x}$$

$$\nabla_{\mathbf{A}} \operatorname{tr}(\mathbf{A} \mathbf{B}) = \mathbf{B}^T$$

• $\boldsymbol{f}: \mathbb{R}^n \to \mathbb{R}^m, \, \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{x} = \left[x_1, x_2, \cdots, x_n\right]^T$

Derivative: Jacobian

$$Df(x) = \begin{bmatrix} Df_1(x) \\ Df_2(x) \\ \vdots \\ Df_m(x) \end{bmatrix} = \begin{bmatrix} (\nabla f_1(x))^{\mathrm{T}} \\ (\nabla f_2(x))^{\mathrm{T}} \\ \vdots \\ (\nabla f_m(x))^{\mathrm{T}} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Conclusions: D(Ax + b) = A

• $\mathbf{F}: S^n \to \mathbb{R}$

$$\nabla F(\mathbf{X}) = \begin{bmatrix} \frac{\partial F}{\partial X_{11}} & \cdots & \frac{\partial F}{\partial X_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F}{\partial X_{-1}} & \cdots & \frac{\partial F}{\partial X_{-n}} \end{bmatrix}$$

Conclusions: $\nabla_{\mathbf{X}} (\log \det \mathbf{X}) = \mathbf{X}^{-1}$

Second Order

Hessian (always symmetric)

$$f: \mathbb{R}^n \to \mathbb{R}, \ f(\boldsymbol{x}), \boldsymbol{x} = [x_1, x_2, \cdots, x_n]^T$$

$$\nabla^{2} f(\boldsymbol{x}) = D\left[\nabla f(\boldsymbol{x})\right] = \begin{bmatrix} D\left(\frac{\partial f}{\partial x_{1}}\right) \\ D\left(\frac{\partial f}{\partial x_{2}}\right) \\ \vdots \\ D\left(\frac{\partial f}{\partial x_{n}}\right) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}} \end{bmatrix}$$

Taylor Approximation

- $f: \mathbb{R}^n \to \mathbb{R}, f(\boldsymbol{x}), \boldsymbol{x} = [x_1, x_2, \cdots, x_n]^T$ $f(\boldsymbol{x}) \simeq f(\boldsymbol{x}_0) + \nabla f(\boldsymbol{x}_0)^T (\boldsymbol{x} - \boldsymbol{x}_0) + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_0)^T \nabla^2 f(\boldsymbol{x}_0) (\boldsymbol{x} - \boldsymbol{x}_0)$
- $f: \mathbb{R}^n \to \mathbb{R}^m$, $f(x), x = [x_1, x_2, \dots, x_n]^T$ $f(x) \simeq f(x_0) + Df(x_0) (x - x_0)$

Norm

Norm is a mapping $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$.

- Scaling: $||t\boldsymbol{x}|| = |t|||\boldsymbol{x}||$
- Triangle inequality: $||x + y|| \le ||x|| + ||y||$
- l_p norm: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$
 - One-norm: $\|x\|_1 = \sum_{i=1}^n |x_i|$
 - Two-norm (Euclidean Norm): $\|\boldsymbol{x}\| = \sqrt{\sum_{i=1}^n x_i^2}$
 - Infinity-norm: $\|\boldsymbol{x}\|_{\infty} = \max_{i=1}^{n} |x_i|$.
 - Dual norm: $\|\boldsymbol{z}\|_* = \sup_{\boldsymbol{x}} \left\{ \boldsymbol{z}^{\mathrm{T}} \boldsymbol{x} \mid \|\boldsymbol{x}\| \leq 1 \right\}$
- Cauchy-Schwartz Inequality $\langle x,y\rangle \leq \|x\|_2 \|y\|_2$

Inner Product

- Vector: $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y} = \sum_{i=1}^{n} x_i y_i$ - Orthogonal $\Leftrightarrow \langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$
- Matrix: $\langle X, Y \rangle = \operatorname{Tr} \left(X^{\mathrm{T}} Y \right) = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij} Y_{ij}$
- Properties: $f(A,B) = f(B,A), f(A+B,C) = f(A,B) + f(B,C), f(\gamma A,B) = \gamma f(A,B), f(A,A) \ge 0.$
- Frobenius norm: $||X||_F = \text{Tr}(X^TX) = \sqrt{\langle X, X \rangle} = \sum_{i=1}^m \sum_{j=1}^n X_{ij}^2$

SVD

Such a decomposition is always possible: $A = U\Sigma V^{\mathrm{T}}$

- $A \in \mathbb{R}^{m \times n}$, $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$, r is the rank of A.
- $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \cdots, \sigma_r)$ where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$
- U and V and orthogonal: $U^{\mathrm{T}}U = V^{\mathrm{T}}V = I \in \mathbb{R}^{r \times r}$
- Rotate (length i.e. 2-norm unchanged) scale rotate.
- $\sigma_{\max}(X) = \max_{\|v\|_2 \le 1} \|Xv\|_2$

Spectral Decomposition

For symmetric matrix $A \in S^n$, $A = Q\Lambda Q^T$.

- Q is orthogonal. $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n), \lambda_i \in \mathbb{R}, \forall i \text{ (real)}.$
- **PSD**: $A \in S_+^n \Leftrightarrow \boldsymbol{v}^{\mathrm{T}} A \boldsymbol{v} \ge 0 \quad \forall \boldsymbol{v} \in \mathbb{R}^n, \boldsymbol{v} \ne 0 \Leftrightarrow \lambda_i \ge 0$
- PD: $A \in S_{++}^n \Leftrightarrow v^T A v > 0 \quad \forall v \in \mathbb{R}^n, v \neq 0 \Leftrightarrow \lambda_i > 0$
- $v_i^T A v_i = \lambda_i$, where v_i, λ_i is the *i*-th eigenvec, eigenval of A.
- $\max_{\|v\|_2 \le 1} v^T A v = \lambda_{\max}$, v^* is the eigenvec for λ_{\max} .
- Power of symmetric matrix: $A^k = Q\Lambda^kQ^T, k \in \mathbb{Z}$
- Square Root: $A^{1/2} = Q \operatorname{diag} \left[\sqrt{\lambda_1} \sqrt{\lambda_2} \cdots \sqrt{\lambda_n} \right] Q^{\mathrm{T}}$

Linear Algebra

Some properties of determinant:

- A matrix **A** is non-singular (invertible) iff det $\mathbf{A} \neq 0$.
- det $\mathbf{A} = \prod_{n=1}^{N} \lambda_n$, i.e. a matrix is invertible iff $\lambda_n \neq 0, \forall n$.
- $\det \mathbf{AB} = \det \mathbf{A} \det \mathbf{B} = \det \mathbf{BA}$
- $\det \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}}$
- $\det \mathbf{A}^T = \det \mathbf{A}$
- $\det \alpha \mathbf{A} = \alpha^N \det \mathbf{A}$

Trace

- trace(**A**) = $\sum_{n=1}^{N} \lambda_n$
- $\operatorname{tr}(X^T) = \operatorname{tr}(X)$ $\operatorname{tr}(X+Y) = \operatorname{tr}(X) + \operatorname{tr}(Y)$ $\operatorname{tr}(\lambda X) = \lambda \operatorname{tr}(X)$
- $\langle A, B \rangle = \operatorname{tr}(B^T A) = \operatorname{tr}((B^T A)^T) = \operatorname{tr}(A^T B) = \langle B, A \rangle$

Inverse

- $AB = B^{-1}A^{-1}$ if both A and B are invertable.
- $(I+A)^{-1} \approx I A$ for 'small' A.
- If A is non-singular and symmetric, $A^{-1} = (A^{-1})^T$

Quadratic

• $\mathbf{x}^{\mathrm{T}}P\mathbf{x} = \sum_{i,j=1}^{n} x_i x_j P_{ij}$

Convex Sets

• Affine set: if $\forall x_1, x_2 \in C$ then $\theta x_1 + (1 - \theta) x_2 \in C, \forall \theta \in \mathbb{R}$ Affine combination: $\sum_{i=1}^n \theta_i x_i$, s.t. $\sum_{i=1}^n \theta_i = 1, \theta_i \in \mathbb{R}$ A set $C \subseteq \mathbb{R}^n$ is affine if the <u>line</u> through any two distinct points in C lies in C.

An affine set contains all affine combinations of points in the set.

- Convex set: if $\forall \boldsymbol{x}_1, \boldsymbol{x}_2 \in C$ then $\theta \boldsymbol{x}_1 + (1-\theta)\boldsymbol{x}_2 \in C, \theta \in [0,1]$ Convex combination: $\sum_{i=1}^n \theta_i \boldsymbol{x}_i$, s.t. $\sum_{i=1}^n \theta_i = 1, \ \theta_i \geq 0$ Convex hull of a set C is a set of all convex combinations of points in C.
- Cones: if $\forall x \in C$ then $\theta x \in C$, $\forall \theta \ge 0$. Conic combination: $\sum_{i=1}^{n} \theta_i x_i, \theta_i \ge 0$
- Proving \mathscr{P} is convex:
 - Pick $x_1 \in \mathscr{P}, x_2 \in \mathscr{P}$
 - Pick any $\theta \in [0, 1]$
 - Test $\theta x_1 + (1 \theta)x_2$. Is it in \mathscr{P} ?

Examples:

- Hyperplane: $\{x \mid a^{T}x = b\} = \{x \mid a^{T}(x x_0) = 0\}$ a is a normal vector, b determines the offset from origin.
- Half space: $\{ \boldsymbol{x} \mid \boldsymbol{a}^{\mathrm{T}} \boldsymbol{x} \leq \boldsymbol{b} \} = \{ \boldsymbol{x} \mid \boldsymbol{a}^{\mathrm{T}} (\boldsymbol{x} \boldsymbol{x}_0) \leq 0 \}$.

- Polyhedra: $\{x \mid Ax \leq b, Cx = d\}$
- Norm ball: $\mathcal{B} = \{x ||x|| \le 1\}$, is a convex set for all norms.
- Euclidean Ball: $\mathcal{B}\left(\boldsymbol{x}_{c},r\right)=\left\{ \boldsymbol{x}\mid\left(\boldsymbol{x}-\boldsymbol{x}_{c}\right)^{\mathrm{T}}\left(\boldsymbol{x}-\boldsymbol{x}_{c}\right)\leq r^{2}\right\}$
- Ellipse: $\mathcal{E}\left(\boldsymbol{x}_{c},\mathbf{P}\right)=\left\{\boldsymbol{x}\mid\left(\boldsymbol{x}-\boldsymbol{x}_{c}\right)^{\mathrm{T}}\mathbf{P}^{-1}\left(\boldsymbol{x}-\boldsymbol{x}_{c}\right)\leq1\right\},\mathbf{P}\in S_{++}^{n}$
 - Euclidean ball is an ellipse with $\mathbf{P} = \mathbf{I}r^2$
 - Geometry.
 - Use cols of Q.
 - $-x = Q\tilde{x} + x_c$
 - Volume is proportional to $\sqrt{\det P} = \sqrt{\prod_{i=1}^n \lambda_i}$
- S^n_{\perp} is a convex cone.
- Generalized inequalities: $x \leq_K y \leftrightarrow y x \in K$

Operation that preserves convexity:

- Intersection: If S_{α} is (affine,convex, conic) then $\cap_{\alpha} S_{\alpha}$ is (affine,convex, conic) (perhaps infinitely many).
- Affine map: $f: \mathbb{R}^n \to \mathbb{R}^m, f(x) = \mathbf{A}x + \mathbf{b}$. If S is convex, then
 - $\mathbf{f}(S) = \{ \mathbf{f}(\mathbf{x}) \mid \mathbf{x} \in S \}$ is convex, i.e., image of a convex set under affine map is convex.
 - $-\mathbf{f}^{-1}(S) = {\mathbf{x} \mid \mathbf{f}(\mathbf{x}) \in S}$ is convex, i.e., pre-image of ...

Properties of convex sets:

- Separating hyperplanes: If $S,T \subseteq \mathbb{R}^n$ are convex and disjoint i.e. $S \cap T = \emptyset$, then $\exists \boldsymbol{a} \in \mathbb{R}^n, \boldsymbol{a} \neq 0$ and $\boldsymbol{b} \in \mathbb{R}$ s.t. $\boldsymbol{a}^T \boldsymbol{x} \geq b, \forall \boldsymbol{x} \in S$ and $\boldsymbol{a}^T \boldsymbol{x} \leq b, \forall \boldsymbol{x} \in T$.
- Supporting hyperplane: If S is convex then $\forall x_0 \in \partial S$, $\exists \mathbf{a} \neq 0 \in \mathbb{R}^n \text{ s.t. } \mathbf{a}^{\mathrm{T}} \mathbf{x} \leq \mathbf{a}^{\mathrm{T}} x_0, \forall \mathbf{x} \in S$

Convex Functions

- If $f: \mathbb{R}^n \to \mathbb{R}$ is defined on a convex domain (i.e. dom $f \subseteq \mathbb{R}^n$ is a convex set), then f is <u>convex</u> if $\forall x, y \in \text{dom } f, \forall \theta \in [0, 1], f(\theta x + (1 \theta)y) \leq \theta f(x) + (1 \theta)f(y)$
- The <u>epigraph</u> of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the <u>set</u> epi $f = \{(\boldsymbol{x}, t) \in \mathbb{R}^{n+1} \mid \boldsymbol{x} \in \text{dom } f, t \geq f(\boldsymbol{x})\}$, where $\boldsymbol{x} \in \mathbb{R}^n, t \in \mathbb{R}$.

 f is a convex function \Leftrightarrow epif is a convex set.
- The <u>sublevel set</u> of a function $f : \mathbb{R}^n \to \mathbb{R}$ is $C(\alpha) = \{x \in \text{dom } f \mid f(x) \le \alpha\}$
 - f is a convex function $\Rightarrow C(\alpha)$ is a convex set.
 - Quasiconvex: all sublevel sets are convex.
 - Quasiconcave: all superlevel sets are convex.

Ways to show a function is convex

Use 1st order (differentiable)/2nd order (twice) conditions.

- f convex \Leftrightarrow dom f is a convex set and $\forall x, x_0 \in \text{dom } f$, $f(x) \ge f(x_0) + \nabla f(x_0)^{\mathrm{T}} (x x_0)$
- f convex \Leftrightarrow dom f is convex, $\forall x \in \text{dom } f, \nabla^2 f(x) \geq 0$

Reduce to scalar scenario.

- f is convex $\Leftrightarrow f(x_0 + tv)$ is convex in t.
- To prove f(x) is convex, choose a starting point $x_0 \in \mathbb{R}^n$ and a direction $v \in \mathbb{R}^n$, and prove $g(t) = f(x_0 + tv)$ is convex in $t \in \mathbb{R}$.

Use properties of operations that preserve convexity.

- Nonnegative weighted sums. If f_1, \ldots, f_m are convex, the nonnegative weighted sum of them $f = w_1 f_1 + \cdots + w_m f_m$ is convex.
- Composition with an affine mapping. Suppose $f: \mathbf{R}^n \to \mathbf{R}, A \in \mathbf{R}^{n \times m}$, and $b \in \mathbf{R}^n$. Define $g: \mathbf{R}^m \to \mathbf{R}$ by g(x) = f(Ax + b) with dom $g = \{x \mid Ax + b \in \text{dom } f\}$. Then if f is convex, so is g.
- Pointwise maximum. If f_1, \ldots, f_m are convex, their pointwise maximum $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex.
 - Sum of r largest components of $x \in \mathbb{R}^n$ is a convex function. $f(x) = \sum_{i=1}^r x_{[i]}$. Further, if $w_1 \geq w_2 \geq \cdots \geq w_r \geq 0$, then $\sum_{i=1}^r w_i x_{[i]}$ is convex.
- Composition. f(x) = h(g(x))
 - $g: \mathbb{R}^n \to \mathbb{R}, h: \mathbb{R} \to \mathbb{R}, f$ is convex if g convex, h convex and non-decreasing g concave, h convex and non-increasing
 - $g: \mathbb{R}^n \to \mathbb{R}^k, h: \mathbb{R}^k \to \mathbb{R}, f \text{ is convex if}$ $g_i \text{ is convex for all } i \in [k], \text{ h convex and non-decreasing in each argument}$

 $h(g(x)) = h(g_1(x), g_2(x), ..., g_k(x)), g_k : \mathbb{R}^n \to \mathbb{R}.$

Optimality Conditions

For unconstrained problems:

- x^* is a local minimum of $f \Rightarrow \nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \ge 0$.
- x^* is a local minimum of $f \leftarrow \nabla f(x^*) = 0$ and $\nabla^2 f(x^*) > 0$.

For constrained problems:

If f_0 is differentiable, then x^* is optimal $\Leftrightarrow \forall y \in C, \nabla f_0(x^*)^T (y - x^*) \ge 0$

Lagrange Method

• Primal problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- Domain $\mathcal{D} = \bigcap_{i=0}^m \operatorname{dom} f_i \cap \bigcap_{i=1}^p \operatorname{dom} h_i$
- Optimum: x^* , optimal value: p^*
- Lagrangian:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x),$$

- Dual function: $g(\lambda, \nu) = \min_{x \in \mathcal{D}} L(x, \lambda, \nu)$
- Dual optimization problem:

$$\begin{array}{ll} \underset{\lambda,\nu}{\text{maximize}} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

- Optimum: λ^*, ν^* , optimal value: d^*

Properties

- $g(\lambda, \nu)$ is concave in (λ, ν)
- $g(\lambda, \nu) \le g(\lambda^*, \nu^*) \le f_0(x^*) \le f_0(x)$
- Sufficient condition for strong duality: problem convex & Slater's condition $(\exists x, \text{s.t.} f_i(x) < 0, \forall i \in [m], Ax = b)$ holds.

KKT Conditions

• Primal feasibility:

$$f_i(x^*) \le 0, \forall i \in [m], \quad h_i(x^*) = 0, \forall i \in [p]$$

• Dual feasibility:

$$\lambda_i^{\star} \ge 0, \quad \forall i \in [m]$$

• First order condition:

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x^*) = 0$$

• Complementary slackness:

$$\lambda_i^{\star} f_i(x^{\star}) = 0, \quad \forall i \in [m]$$

Theorems

- If strong duality holds, (x^*, λ^*, μ^*) are primal & dual optimal, then (x^*, λ^*, μ^*) satisfies KKT.
- For **convex** opt. problem, if $(\tilde{x}, \tilde{\lambda}, \tilde{\mu})$ satisfies KKT, then strong duality holds and $(\tilde{x}, \tilde{\lambda}, \tilde{\mu})$ are primal & dual optimal.
- If problem is <u>differentiable</u>, <u>convex</u>, <u>strong duality holds</u>, (x, λ, μ) satisfies KKT \iff (x, λ, μ) are primal & dual optimal.