Life Expectancy Prediction

Project Overview & Problem Statement

PROBLEM STATEMENT:

LIFE EXPECTANCY IS A CRUCIAL MEASURE OF A NATION'S HEALTH AND DEVELOPMENT. NUMEROUS FACTORS SUCH AS GDP, HEALTHCARE INVESTMENT, EDUCATION, DISEASE PREVENTION, AND NUTRITION CONTRIBUTE TO LIFE EXPECTANCY ACROSS COUNTRIES. DESPITE RICH HISTORICAL HEALTH DATASETS, MANY COUNTRIES STRUGGLE TO USE THIS DATA EFFECTIVELY FOR PREDICTIVE INSIGHT. THIS PROJECT AIMS TO BUILD ACCURATE MODELS TO PREDICT LIFE EXPECTANCY AND HELP GUIDE POLICY DECISIONS USING DATA-DRIVEN INSIGHTS.

OBJECTIVE:

- ANALYZE THE RELATIONSHIPS BETWEEN SOCIO-ECONOMIC AND HEALTH INDICATORS AND LIFE EXPECTANCY.
- BUILD REGRESSION MODELS TO PREDICT LIFE EXPECTANCY USING THESE FEATURES.
- COMPARE MODEL PERFORMANCE TO DETERMINE THE MOST EFFECTIVE APPROACH.
- VISUALIZE ACTUAL VS PREDICTED OUTCOMES TO EVALUATE MODEL ACCURACY.
- RECOMMEND DATA-DRIVEN STRATEGIES FOR IMPROVING GLOBAL HEALTH FORECASTING.

Dataset Overview

	Column Name	Description	Column Name	Description	
	Country	Name of the country	Polio	% of children immunized against polio	
	Year	Year of observation	Total expenditure	Health expenditure (% of total government	
	Status	Development status (Developed / Developing)	Diphtheria	spending) % of children immunized against diphtheria	
	Life expectancy	Average number of years a person is expected to live	HIV/AIDS	Deaths due to HIV/AIDS per 1,000 people	
	Adult Mortality	Deaths between ages 15–60 per 1,000 people	GDP	Gross Domestic Product per capita	
	Infant deaths	Infant deaths per 1,000 live births	Population	Total population	
	Alcohol	Per capita alcohol consumption (litres)	Thinness 1-19 years	% of thinness among youth (ages 1–19)	
	Hepatitis B	% of 1-year-olds immunized against Hepatitis B	Thinness 5-9 years	% of thinness among young children (ages 5–9)	
١	Measles	Number of reported measles cases	1111111033 0 7 YOUIS	70 of Hillings affering yearing children (ages 5 7)	
	BMI	Average Body Mass Index	Income composition of	Composite index of income and development	
	Under-five deaths	Deaths of children under age five per 1,000 live births	resources Schooling	Average years of schooling	

Process

- 1. Imported libraries for data handling, visualization, and modeling (e.g., pandas, scikit-learn, XGBoost).
- 2. Loaded the dataset and displayed the first few rows.
- 3. Handled missing values with mean imputation and encoded the categorical Status column.
- 4. Dropped non-numeric columns like Country and Year.
- 5. Analyzed correlations, visualized with a heatmap to identify top influencing features.
- 6. Split data into training and test sets for modeling.
- 7. Trained models: Linear Regression, Random Forest, and XGBoost.
- 8. Evaluated performance using RMSE and R² Score and selected the best model.
- 9. Visualized predictions and compared actual vs predicted life expectancy values.
- 10. Insight and Conclusion.

ALL MODEL RESULT

	Model	RMSE	R ² Score
1	Random Forest	1.65	0.9686
2	XGBoost	1.76	0.9643
0	Linear Regression	3.90	0.8241

- 1. Random Forest delivered the best performance with an RMSE of 1.65 and R² score of 0.9686.
- 2. XGBoost closely followed with RMSE 1.76 and R² 0.9643, showing strong predictive power.
- 3. Linear Regression lagged behind significantly (RMSE 3.90, R² 0.8241), indicating poor fit.
- 4. Both tree-based models captured the data's complexity far better than the linear model. **Higher R² and lower RMSE** from ensemble methods indicate strong model generalization.

Conclusion

Tree-based ensemble models like Random Forest and XGBoost are far more effective for predicting life expectancy, with Random Forest being the top-performing model due to its superior accuracy and stability.

Actual vs Predicted value

CONCLUSION

THE SCATTER PLOT OF ACTUAL VS PREDICTED LIFE EXPECTANCY SHOWS A STRONG LINEAR ALIGNMENT ALONG THE RED DIAGONAL, INDICATING THAT THE MODEL'S PREDICTIONS CLOSELY MATCH THE TRUE VALUES. MOST DATA POINTS CLUSTER TIGHTLY AROUND THE LINE, DEMONSTRATING HIGH ACCURACY AND MINIMAL PREDICTION ERROR. THIS CONFIRMS THAT THE CHOSEN MODEL—LIKELY RANDOM FOREST—IS HIGHLY EFFECTIVE AT CAPTURING THE UNDERLYING PATTERNS IN THE DATA. OVERALL, THE MODEL GENERALIZES WELL AND IS SUITABLE FOR REAL-WORLD LIFE EXPECTANCY FORECASTING.

Final Conclusion

- 1. TREE-BASED MODELS LIKE RANDOM FOREST AND XGBOOST SIGNIFICANTLY OUTPERFORM LINEAR REGRESSION IN PREDICTING LIFE EXPECTANCY.
- 2. RANDOM FOREST IS THE MOST RELIABLE MODEL, OFFERING BOTH LOW ERROR AND HIGH CONSISTENCY.
- 3. THESE MODELS EFFECTIVELY CAPTURE COMPLEX RELATIONSHIPS, MAKING THEM SUITABLE FOR REAL-WORLD FORECASTING BASED ON DEMOGRAPHIC AND HEALTH INDICATORS.