ЛАБОРАТОРНАЯ РАБОТА № 4.4.4

Интерферометр Фабри - Перо

выполнила студентка группы Б03-303 Мария Шишкарёва

Долгопрудный, 2025 г.

1 Цель работы:

определить характеристики интерферометра Фабри-Перо: база интерферометра, добротность, линейная дисперсия, аппаратная разрешающая способность.

2 В работе используются:

ртутная и натриевая лампы, интерферометры Фабри-Перо, катетометры, линзы, светофильтры, оптические скамьи

3 Теория (Интерферометр Фабри-Перо):

Рис. 1: Интерферометр Фабри-Перо

Интерферометр Фабри–Перо состоит из двух стеклянных (или кварцевых) пластин P1 и P2, внутренние плоские поверхности которых хорошо отполированы (с точностью до $10^{-2}\lambda$) и установлены параллельно друг другу. На эти поверхности наносятся хорошо отражающие покрытия. Наружные поверхности пластин обычно составляют небольшой угол с внутренними, чтобы световой блик, отраженный от наружных поверхностей, не мешал наблюдениям. Интерферометр Фабри–Перо можно рассматривать как плоскопараллельную воздушную пластину, на которой происходят многократные отражения и интерференция световых лучей. Интерференционная картина, наблюдаемая в фокальной плоскости линзы Π , состоит из концентрических колец равного наклона. Для двух соседних лучей, распространяющихся между зеркалами

интерферометра под углом θ , разность хода определяется соотношением

$$\Delta = 2L\cos\theta$$

где L — расстояние между зеркалами. Разрешающей способностью прибора называют величину

$$R = \frac{\lambda}{\delta \lambda}$$

разрешающая способность характеризует возможность прибора различать две близкие спектральные линии с длинами волн λ и $\lambda + \delta\lambda$

Угловая дисперсия определяется как

$$D = \frac{d\varphi}{d\lambda}$$

По величине угловой дисперсии можно определить угловое расстояние между двумя близкими спектральными линиями: $\delta \varphi = D \delta \lambda$

Дисперсионная область – предельная ширина спектрального интервала $\Delta\lambda$ прибора, для которой дифракционные максимумы соседних порядков не перекрываются. Она определяет диапазон длин волн, при которых прибор может быть использоан для анализа спектра.

В случае интерферометра Фабри-Перо интерференционные максимумы будут наблюдаться для волн, падающих под углами θ_m , удовлетворяющими условию:

$$2L\cos\theta_m = m\lambda,\tag{1}$$

где L - база интерферометра. Для малых углов выражение можно переписать как

$$\theta_m^2 = 2 - \frac{\lambda}{L}m\tag{2}$$

Так как $\theta(i) = \frac{d(i)}{2f}$, где f — фокусное расстояние линзы, стоящей после интерферметра, а d(i) — диаметр i-ого кольца, можно получить зависимость угла на максимум интерференции от его номера или диаметра кольца

$$\frac{d^2(i)}{4f^2} = \theta^2(i) = \text{const} + \frac{i\lambda}{L}$$
 (3)

Выражение можно преобразовать для получения угловой дисперсии:

$$D_{\text{yff}} \approx -\frac{1}{\lambda \theta_m},$$
 (4)

где $\theta_m = \frac{d}{2f}$ в данной работе (f – фокусное расстояние используемой в работе линзы).

Также для малых углов условие возникновения интерференционного кольца можно записать в виде:

$$\frac{\lambda}{L} = \frac{1}{4f^2} \frac{\Delta(d_i^2)}{\Delta(i)},\tag{5}$$

Отсюда следует используемая в работе формула для линейной дисперсии, которая используется в работе:

$$D = \frac{2f^2}{\lambda d} \tag{6}$$

Аппаратная разрешающая способность для порядка спектра $m \approx \frac{2L}{\lambda}$ может быть найдена как:

$$R = \frac{\lambda}{\delta \lambda} = \frac{\pi \sqrt{r}}{1 - r} m = Nm, \tag{7}$$

где $N = \frac{\pi\sqrt{r}}{1-r}$ — число интерферирующих лучей.

Дисперсионная область интерферометра Фабри-Перо может быть найдена по следующей формуле:

$$\Delta \lambda = \frac{\lambda^2}{2L}.\tag{8}$$

4 Схема установки:

В работе используются ртутная и натриевая лампы; интерферометры Фабри-Перо, катетометры, линзы, светофильтры, оптические скамьи.

Рис. 2: Схема установки

На схеме S — лампа, Π_0 — линза, C — светофильтр, И $\Phi\Pi$ — интерферометр Фабри-Перо, T — зрительная труба. Диаметры колец измеряются с помощью микроскопа катетометра.

5 Результаты измерений:

5.1 Ртутная лампа

погрешность катетометра $\sigma=0.02$ мм фокусное расстояние линзы f=50 мм

зелёный фильтр					
m	$d_{\text{верх}}$, мм	$d_{\text{низ}}$, мм			
1	197.64	152.14			
2	195.95	153.56			
3	193.93	155.03			
4	191.91	156.41			
5	189.67	158.28			
6	187.23	159.95			
7	183.54	170.31			

жёлтый фильтр							
m	$d_{\text{верх}1}$, мм	$d_{\text{hиз}1}$, мм		$d_{\text{верх2}}$, мм	$d_{\text{низ}2}$, мм		
1	198.00	155.90		197.40	156.30		
2	196.30	157.59		195.83	158.07		
3	194.64	159.31		193.97	159.99		
4	192.81	161.21		192.11	161.91		
5	190.63	163.57		191.84	164.23		
6	188.00	166.15		186.95	167.15		
7	184.43	169.82		182.74	171.67		

$$\delta r_{
m 3ел} = ((181.01 - 179.93) \pm 0.02)$$
 мм $= (1.08 \pm 0.02)$ мм $\delta r_{
m ж\ddot{e}_{JT}} = ((182.12 - 172.35) \pm 0.02)$ мм $= (9.77 \pm 0.02)$ мм

5.2 Натриевая лампа

погрешность катетометра $\sigma = 0.02$ мм фокусное расстояние линзы f = 94 мм

жёлтый фильтр						
m	$d_{\text{верх}1}$, мм	$d_{\text{hиз}1}$, мм		$d_{\text{верх2}}$, мм	$d_{\text{низ}2}$, мм	
1	174.50	136.71		174.01	137.12	
2	173.00	138.05		172.52	138.51	
3	171.44	139.60		170.91	140.13	
4	169.74	141.38		169.11	141.99	
5	167.73	143.37		167.14	144.05	
6	165.31	145.75		164.35	146.61	
7	162.19	149.05		160.53	150.63	

$$\delta r_{
m w\ddot{e}_{
m JT}} = ((160.51$$
 - $160.27)$ \pm $0.02)$ мм $= (0.24$ \pm $0.02)$ мм

6 обработка результатов:

6.1 Зелёный фильтр ртутной лампы

Строим график зависимости $d^2(i)$ и по коэффиценту наклона находим базу L интерферометра, используя формулу (5):

коэффициент наклона $k = (221.01 \pm 0.06) \ \text{мм}^2$

$$\lambda \; (\mathrm{Hg}) = 546.10 \; \mathrm{HM}$$

$$L = (119.593 \pm 0.062)$$
 мкм

6.2 Жёлтый фильтр ртутной лампы

Строим график зависимости <d $> (\frac{1}{\Delta d})$:

коэффициент наклона $k=(32.18\pm0.74)~\text{мм}^2$ По коэффициенту наклона прямой находим разность длин волн Δ λ для жёлтой пары линий ртути (λ (Hg) = 578 нм) по формуле (5):

$$\Delta$$
 $\lambda = (3.84 \pm 0.09)$ Арм

6.3 Натриевая лампа

Проводим аналогичные рассчёты для жёлтого света натриевой лампы

$$\Delta \; \lambda = (5.36 \pm 0.13) \; \mathrm{Apm}$$
 $\mathrm{L} = (116.134 \pm 0.072) \; \mathrm{mkm}$

6.4 Дополнительные расчёты

6.4.1 Натриевая лампа

Экспериментальное значение линейной дисперсии интерферометра:

$$D = (0.29 \pm 0.01)$$

Теоретическое значение линейной дисперсии интерферометра:

$$D = (0.27 \pm 0.05)$$

Аппаратная разрешающая способность:

$$R_a = 8355.3 \pm 2.6$$

6.4.2 Ртутная лампа

Экспериментальное значение линейной дисперсии интерферометра:

$$D = (0.30 \pm 0.08)$$

Теоретическое значение линейной дисперсии интерферометра:

$$D = (0.39 \pm 0.06)$$

Аппаратная разрешающая способность:

$$R_a = 6101.5 \pm 1.9$$

7 Вывод:

Были найдены характеристики интерферометра Фабри-Перо: база интерферометра, добротность, линейная дисперсия и аппаратная разрешающая способность. Результаты измерений и вычислений совпадают с теоретическими данными в пределах погрешностей