Assignment -2

Data Visualization and Pre-processing

Assignment Date	19 September 2022			
Student Name	Balasubramanian A			
Student Roll Number	953719104012			
Maximum Marks	2 Marks			

QUESTION 1: Load

the dataset:-

SOLUTION:

```
import pandas as pd import
seaborn as sns
df=pd.read_csv("/content/Churn_Modelling.csv")
df.dtypes
```

OUTPUT:

	- 11											3	Pytnon
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSala
0		15634602	Hargrave	619	France	Female	42		0.00				101348.
1		15647311	Hill	608	Spain	Female	41		83807.86				112542.
2		15619304	Onio	502	France	Female	42		159660.80				113931.
3		15701354	Boni	699	France	Female	39		0.00				93826.
4		15737888	Mitchell	850	Spain	Female	43		125510.82				79084.
9995	9996	15606229	Obijiaku	771	France	Male	39		0.00				96270.
9996	9997	15569892	Johnstone	516	France	Male		10	57369.61				101699.
9997	9998	15584532	Liu	709	France	Female	36		0.00				42085.
9998	9999	15682355	Sabbatini	772	Germany	Male	42		75075.31				92888.
9999	10000	15628319	Walker	792	France	Female	28		130142.79				38190.
10000 -	10000 rows × 14 columns												
10000 TOWS × 14 COLUMNIS													

QUESTION 2:

Perform Below Visualizations.

- Univariate Analysis
- Bi Variate Analysis Multi Variate Analysis

SOLUTION:

```
df.boxplot(column="EstimatedSalary")
df.boxplot(column="Balance")
df.boxplot(column="Age")
df.boxplot(column="CreditScore") OUTPUT:
```


QUESTION 3:

Perform descriptive statistics on the dataset

SOLUTION:

df.describe()

OUTPUT:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	

QUESTION 4:

Handle the Missing values.

SOLUTION:

OUTPUT:

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

```
RowNumber
                   0
CustomerId
                   0
Surname
                   0
                             RowNumber
                                                0.000000
CreditScore
                   0
                             CustomerId
                                                0.001149
Geography
                   0
                             CreditScore
                                               -0.071607
Gender
                   0
                                                1.011320
Age
                   0
                             Tenure
                                                0.010991
Tenure
                   0
                             Balance
                                               -0.141109
Balance
                   0
                             NumOfProducts
                                                0.745568
NumOfProducts
                   0
                             HasCrCard
                                               -0.901812
HasCrCard
                   0
                             IsActiveMember
                                               -0.060437
IsActiveMember
                   0
                             EstimatedSalary
                                                0.002085
EstimatedSalary
                   0
                             Exited
                                                1.471611
Exited
                   0
                             dtype: float64
dtype: int64
```

QUESTION 5:

Find the outliers and replace the outliers

SOLUTION:

```
out =
df.drop(columns=['Gender','Tenure','HasCrCard,'IsActiveMember','NumOfProducts'
,'Exited'].quantile([q=0.25,0.50]))
Q1=out.iloc[0]
Q3=out.iloc[1] iqr=Q3-
Q1
```

OUTPUT:

```
RowNumber
                  0.000000
CustomerId
                 0.001149
CreditScore
                 -0.071607
                  1.011320
Tenure
                  0.010991
Balance
                 -0.141109
NumOfProducts
                  0.745568
HasCrCard
                 -0.901812
IsActiveMember
                 -0.060437
EstimatedSalary
                  0.002085
                  1.471611
Exited
dtype: float64
```

QUESTION 6:

Scale the independent variables **SOLUTION**:

```
ct = ColumnTransformer([("oh",OneHotEncoder(),[1,2])],remainder="passthrough")
feature_onehot= ct.fit_transform(feature)
feature_onehot
```

OUTPUT:

```
array([[1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00, 1.0000000e+00, 1.0134888e+05], [0.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 0.0000000e+00, 1.0000000e+00, 1.1254258e+05], [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 9.3826630e+04], ..., [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 1.0000000e+00, 1.0000000e+00, 0.00000000e+00, ..., 1.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.00000000e+00, ..., 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.00000000e+00, ..., 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.0000000e+00, ..., 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, ..., 0.000000000e+00, ..., 0.000000000e+00, ..., 0.00000000e+00, 0.000000000e+00, ..., 0.
```

QUESTION 7:

Split the data into training and testing **SOLUTION**:

```
TrainX testX trainY testY testX_scale trainY
```

OUTPUT:

```
array([[0.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
                                                                                       array([[1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
        0.0000000e+00, 8.4300400e+04],
                                                                                              1.0000000e+00, 1.1045799e+05],
       [0.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 1.0000000e+00,
                                                                                             [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
       1.0000000e+00, 1.4203307e+05],
                                                                                              0.0000000e+00, 6.3981370e+04],
       [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
                                                                                              [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
       1.0000000e+00, 1.6737626e+05],
                                                                                              0.0000000e+00, 1.1343608e+05],
       [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
                                                                                              [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
       0.0000000e+00, 3.8270470e+04],
                                                                                              0.0000000e+00, 2.6450570e+04],
       [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
                                                                                              [0.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 1.0000000e+00,
        0.0000000e+00, 1.1812088e+05],
                                                                                              0.0000000e+00, 5.4947510e+04],
       [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
                                                                                              [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
       1.0000000e+00, 9.7755290e+04]])
                                                                                              0.0000000e+00, 1.6318162e+05]])
```

Name: Exited, Length: 3994, dtype: int64

```
Name: Exited, Length: 999, dtype: int64

Name: Exited, Length: 3994, dtype: int64

Name: Exited, Length: 999, dtype: int64
```