MODELIZACIÓN

APUNTES DEL CURSO 2019-2020 IMPARTIDO POR RAFAEL ORIVE ILLERA

Rafael Sánchez

Revisión del 30 de enero de 2020 a las 02:35.

Índice general

Ι	Primer parcial	5
	Análisis dimensional 1.1. Magnitudes. Teorema Π	7 8
II	Apéndices	11
2.	Índices	13

ÍNDICE GENERAL

Parte I Primer parcial

Capítulo 1

Análisis dimensional

El análisis dimensional es una herramienta que nos permite simplificar el estudio de cualquier fenómeno que involucre varias magnitudes físicas para tratarlas como variables independientes. Esto nos ayudará a simplificar los modelos matemáticos de lo que queramos estudiar.

Vamos a comenzar con un ejemplo introductorio a la asignatura, con el que se busca de alguna forma introducir conceptos que si bien no son del todo matemáticos o formales serán de utilidad en el desarrollo del curso.

Ejemplo 1 (Segunda Ley de Newton - Ley física)

La segunda ley de Newton se puede escribir como la ecuación diferencial:

$$m\ddot{x}(t) = F(x,t), \ t \in [0,T]$$

donde m representa la masa de un objeto, x(t) la posición del mismo respecto del tiempo, F(x,t) la fuerza que se ejerce sobre él y T es el tiempo final.

Para completar el problema daremos un par de condiciones iniciales:

 $x(0) = x_0$ la posición inicial

 $\dot{x}(0) = v_0$ la velocidad inicial

En el análisis dimensional analizaremos que magnitudes entran en juego en la ley. En este caso tenemos:

- \blacksquare m masa.
- \blacksquare x posición.
- lacksquare F fuerza.
- T tiempo final.
- x_0 posición inicial.
- v_0 velocidad inicial.

Por tanto nuestra función final será de la forma:

$$f(m, x, F, T, x_0, v_0) = 0$$

que es otra forma de expresar la **ley**. Además, querremos ver de qué **magnitudes** dependen estos 6 parámetros. Esto lo expresaremos con la notación:

$$\lceil p \rceil = M$$

donde p representa un parámetro y M una magnitud (también puede ser un producto de ellas). En nuestro caso tenemos:

- \blacksquare [m] = M. Masa, una magnitud elemental.
- [x] = L. Longitud, una magnitud elemental.
- $[T] = \tau$. Tiempo, una magnitud elemental.
- \bullet $[x_0] = L$. Longitud.
- $\bullet \ \ [v_0] = L \cdot \tau^{-1}. \ Velocidad, \ longitud \times \ tiempo^{-1}.$
- $[F] = [m \cdot \ddot{x}] = M \cdot L \cdot \tau^{-2}.$ Fuerza, masa \times longitud \times tiempo $^{-2}.$

1.1. Magnitudes. Teorema Π .

Vamos a suponer la existencia de L_1, \ldots, L_n magnitudes elementales con $n < \infty \in \mathbb{N}$, es decir, cada L_i es independiente de cada magnitud de $\mathcal{L} \setminus L_i$. Diremos que una colección de magnitudes conforman un sistema.

Definición 1 (Dimensión de una magnitud). Sea $a \in \mathbb{R}$ una medida de una magnitud A en un sistema L_1, \ldots, L_n . Si cambiamos a un sistema L'_1, \ldots, L'_n con $L'_i = \lambda_i L_i$ y sea a' la medida de A en el nuevo sistema, entonces si se cumple que:

$$a' = a \cdot \lambda_1^{a_1} \cdot \dots \cdot \lambda_n^{a_n}$$

para una serie de escalares a_1, \ldots, a_n , entonces diremos que la magnitud A tiene **dimensión** $L_1^{a_1} \cdots L_n^{a_n}$ y lo expresamos por:

$$[A] = L_1^{a_1} \cdots L_n^{a_n}$$

Cuando el sistema L_1, \ldots, L_n esté fijado podremos identificar la dimensión de la magnitud A con el vector de escalares (a_1, \ldots, a_n) .

Recordando el ejemplo de la segunda ley de Newton, donde teníamos tres magnitudes elementales (L, τ, M) , si consideramos que nuestro sistema L_1, \ldots, L_n es dicha 3-tupla, entonces podemos expresar las magnitudes no elementales como 3-tuplas (o vectores de \mathbb{R}^3):

- $v_0 = L \cdot \tau^{-1} = (1, -1, 0)$
- $\bullet \ \left\lceil F \right\rceil = \left\lceil m\ddot{x} \right\rceil = M \cdot L \cdot \tau^{-1} = (1,-2,1)$

Ejemplo 2 (Dimensión de una magnitud)

Sea $L_1 = \{m\}$ y $L_2 = \{s\}$ un sistema de magnitudes (longitud en metros y tiempo en segundos respectivamente), consideramos la magnitud de la velocidad V que tiene dimensión:

$$[V] = L_1 \cdot L_2^{-1} = (1, -1)$$

entonces, si tenemos una medida $v=30^m/s$ y queremos ver su medida L' en el sistema:

$$L'_1 = 10^{-3}L_1$$
 con L'_1 longitud en km $L'_2 = \frac{1}{3600}L_2$ con L'_2 tiempo en h

entonces:

$$v' = v \cdot \lambda_1 \cdot \lambda_2^{-1} = \frac{30 \cdot 3.6 \cdot 10^3}{10^3} = 108^{km/h}$$

Proposición 1 (Expresión de una magnitud dependiente). Sean A,B dos magnitudes tales que:

$$[A] = L_1^{a_1} \cdots L_n^{a_n}$$
$$[B] = L_1^{b_1} \cdots L_n^{b_n}$$

Sea C otra magnitud dependiente de A y B, tal que si a,b son medidas de A, B y C y $\exists p,q,d$ tales que $c=d\cdot a^p+b^q$ con p,q,d independientes de las unidades L_1,\ldots,L_n , entonces:

$$[C] = L_1^{a_1p + b_1q} \cdots L_n^{a_np + b_nq}$$

Demostración. Sean $L_i' = \lambda_i L_i$ un nuevo sistema, entonces:

$$a' = a \cdot \lambda_1^{a_1} \cdots \lambda_n^{a_n}, \quad b' = b \cdot \lambda_1^{b_1} \cdots \lambda_n^{b_n}$$

y por tanto c' es:

$$c' = da'^p + b'^q = d(a\lambda_1^{a_1} \cdots \lambda_n^{a_n})^p + (b\lambda_1^{b_1} \cdots \lambda_n^{b_n})$$

$$= (da^p + b^q) \cdot (\lambda_1^{a_1p + b_1q} \cdots \lambda_n^{a_np + b_nq})$$

$$= c \cdot (\lambda_1^{a_1p + b_1q} \cdots \lambda_n^{a_np + b_nq}) \Longrightarrow$$

$$[C] = L_1^{a_1p + b_1q} \cdots L_n^{a_np + b_nq}$$

 \Diamond

Definición 2 (Matriz de dimensiones). Dados q_1, \ldots, q_m magnitudes, tales que su dimensión es:

$$[q_i] = L_1^{a_{i_1}} \cdots L_n^{a_{i_n}}$$

llamamos matriz de dimensiones a la matriz $(n \times m)$:

$$\begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

que tiene n filas (una por cada magnitud elemental L_i) y m columnas (una por cada magnitud del problema q_i)

Observación. Los índices de los elementos de la matriz quedan permutados respecto de la notación habitual.

Retomando el ejemplo de la segunda ley de Newton tendríamos la matriz de dimensiones:

Definición 3 (Magnitud adimensional). Una magnitud Π se dice adimensional si $[\Pi] = 1$.

Hallar magnitudes adimensionales en los distintos problemas nos ayuda a simplificar el estudio de los mismos. Retomemos el ejemplo de la segunda ley de Newton, vamos a intentar reducir la dimensión del problema.

Ejemplo 3 (Reduciendo la dimensión del ejemplo 1)

Recordemos que teníamos 6 parámetros (x, x_0, v_0, T, F, m) . Una forma de reducir los parámetros es intentar enmascarar los valores iniciales en nuevas variables.

Recordemos que tanto x como x_0 tenían la misma dimensión. Gracias a ello podemos definir un nuevo parámetro y sin dimensión:

$$y = \frac{x}{x_0}$$

Además, como $x(0) = x_0$ tendremos que y(0) = 1 y como $\dot{x}(0) = v_0$ entonces $\dot{y}(0) = \frac{v_0}{x_0}$.

Podemos también hacer lo mismo con el tiempo, recordemos que en la fórmula original la variable t pertencía a [0,T]. Podemos definir entonces:

$$\frac{t}{T} = \tau$$

y por tanto $\tau \in [0, 1]$, con lo que hemos eliminado T. Sin embargo, cambiar t tiene consecuencias debido que es la variable respecto de la que se diferencia x (y por tanto y), tenemos que ver como afectan estos cambios a nuestras variables.

Usaremos la notación \dot{x} para referirnos a $\frac{\partial x}{\partial t}$ y x' para referirnos a $\frac{\partial x}{\partial \tau}$.

Entonces obtenemos:

$$y' = \frac{\partial y}{\partial \tau} = \frac{1}{x_0} \frac{\partial x}{\partial \tau} = \frac{T}{x_0} \frac{\partial x}{\partial t} = \frac{T}{x_0} \dot{x} \implies y'(0) = \frac{T}{x_0} \cdot v_0 = \tilde{q}$$

y de nuevo $\left[\tilde{q}\right] = 1$.

Recordemos que nuestro problema comenzaba con $m\ddot{x}=F$, vamos a usar esto para encontrar otro parámetro adimensional.

$$\begin{split} \frac{\partial x}{\partial t} &= \frac{x_0}{T} \frac{\partial y}{\partial \tau} \\ \frac{\partial^2 x}{\partial t^2} &= \frac{x_0}{T} \frac{\partial}{\partial t} \left(\frac{\partial y}{\partial \tau} \right) = \frac{x_0}{T} \frac{\partial \tau}{\partial t} \frac{\partial^2 y}{\partial \tau^2} = \frac{x_0}{T} \cdot y'' \\ \frac{mx_0}{T^2} \cdot y'' &= F \implies y'' = \frac{T^2}{mx_0} \cdot F = f \end{split}$$

y podemos comprobar que [f]=1. Recapitulado, hemos conseguido encontrar nuevos parámetros adimensionales $y, \, \tilde{q}=y', \, f=y''$ haciendo algunos cambios en el problema. Con esto, podemos reescribir el problema de valores iniciales con los nuevos parámetros adimensionales:

$$y'' = f = \frac{T^2}{mx_0} \cdot F$$
$$y(0) = 1$$
$$y'(0) = \tilde{q} = \frac{Tv_0}{x_0}$$

Definición 4 (Ley invariante). Sea una ley $f(q_1, \ldots, q_m) = 0$, se dice que es **invariante** frente al cambio de unidades $L'_1 = \lambda_1 L_1, \ldots L'_n = \lambda_n L_n$ si verifica que $f(q'_1, \ldots, q'_m) = 0$ para q'_1, \ldots, q'_m las medidas de q_1, \ldots, q_m en las nuevas unidades L'_1, \ldots, L'_n . Informalmente:

Una ley es invariante cuando sigue siendo cierta tras el cambio de variables del problema

Teorema 2 (Teorema II). Sea $f(q_1, \ldots, q_m) = 0$ una ley invariante con q_1, \ldots, q_m magnitudes con matriz de dimensiones:

$$D = \begin{pmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{mn} \end{pmatrix}$$

tal que n < m y el rango de D es $r \le n$. Entonces existen m-r cantidades Π_1, \ldots, Π_{m-r} que van a ser magnitudes adimensionales tales que la ley invariante es equivalente a una relación $F(\Pi_1, \ldots, \Pi_{m-r}) = 0$.

Parte II

Apéndices

Capítulo 2

Índices

Lista de definiciones

1.	Definición (Dimensión de una magnitud)	8
2.	Definición (Matriz de dimensiones)	(
3.	Definición (Magnitud adimensional)	Ć
4.	Definición (Ley invariante)	1(

Lista de teoremas

1.	Proposición (Expresión de una magnitud dependiente)	8
2.	Teorema (Teorema Π)	10

18 LISTA DE TEOREMAS

Lista de ejemplos

1.	Ejemplo	(Segunda Ley de Newton - Ley física)	7
2.	Ejemplo	(Dimensión de una magnitud)	8
3.	Ejemplo	(Reduciendo la dimensión del ejemplo 1)	9

20 LISTA DE EJEMPLOS

Lista de ejercicios