Dynamic Programming

Xiyuan Yang 2025.10.05

MIT 6.006 Introduction to algorithms, focusing on dynamic programming.

Contents

1. Introduction	1
2. Recursive Algorithms	1
2.1. SRTBOT	1
2.2. Reusing Subproblem Solutions	2
2.3. DAG Simulations	2
2.4. Example	3
2.4.1. Solution with suffixes	
2.5. Conclusion for relate subproblem solution	4
3. Dynamic Programming Sub-Problems: LCS & LIS & Coins	4
3.1. Longest Common Subsequence (LCS)	4
3.2. Longest Increasing Subsequence (LIS)	5
3.3. Alternating Coin Game	
4. SubProblems Constraints and Expansions	7
4.1. Bellman-Ford Expansion SSSP	
4.1.1. DAG Shortest Path	7
4.2. APSP	7
4.3. Arithmetic Parenthesization	8
4.4. Piano Fingering	8
4.5. Guitar Fingering	9
4.5.1. Multiple Notes at Once	9
5. Pseudopolynomial	9
5.1. Rod Cutting	9
5.2. SubSet Sum	10
6. Conclusion	10

§1. Introduction

MIT 6.006 Introduction to algorithms.

This section will focus on **Dynamic Programming**.

§2. Recursive Algorithms

§2.1. SRTBOT

- 1. Subproblem definition
- 2. Relate subproblem solutions recursively
- 3. Topological order on sub-problems (to subproblem textbf{DAG}, for dependencies for all the sub problems.)
- 4. Base cases of relation

- 5. Original problem solution via subproblem(s)
- 6. Time analysis

Example (Merge Sort).

- 1. Define sub problems as a function accepting parameters!
- 2. Sometimes, the huge problem itself is one kind of sub problems.
- 3. Key: Finding the related relation between different sub problems.
- 4. Base Case: The initial & final statement for recursion

Memorization: The computation of sub problems may in multiple times!

- e.g. Fibonacci Problems
- In simple sub-problem decomposition, F(k) has been computed several times when solving F(k+i), i > 0.
- We need to use memorization to avoid repeated computation.

Recordings (Save memory and time).

- 空间换时间的算法思想, 通过预处理把计算问题变成查询问题。
- 同样, 也可以节省算法的空间复杂度。

Recordings (Important for finding relations).

- 动态规划问题的关键在于找到合适的子结构问题
- 从这个子结构出发,构建不同参数子规模的连接,可以从顶向下走递归,也可以自底向上走分治(本质还是递归的问题),中间可以做 mem 存储来节省时间复杂度。
- 使用 DAG 建模复杂问题。
 - ▶ 找到最优复杂度的问题本质可以看做是找 DAG 中的最短路问题!

§2.2. Reusing Subproblem Solutions

- Draw subproblem dependencies as a DAG
- How to solve them?
 - ▶ Top down: record subproblem solutions in a memo and re-use(recursion + memoization)
 - Bottom up: solve subproblems in topological sort order (usually via loops)
- For Fibonacci, n + 1 subproblems (vertices) and < 2n dependencies (edges)
- Time to compute is then O(n) additions

A subtlety is that Fibonacci numbers grow to $\Theta(n)$ bits long, potentially \gg word size w. This means the number of bits needed to store the n-th Fibonacci number is proportional to n. When n is large, this number can be much bigger than the standard word size of your computer's CPU (e.g., 32 or 64 bits). Each addition costs $O(\left\lceil \frac{n}{w} \right\rceil)$ time, so total cost is:

$$O\left(n\left\lceil\frac{n}{w}\right\rceil\right) = O\left(n + \frac{n^2}{w}\right)$$

time.

§2.3. DAG Simulations

Recall for DAG problems:

Problem 2.3.1 (SSSP Problems for DAG).

Given a graph G = (V, E) and a starting point $u \in V$. We need to **compute** $f(u, i), \forall i \in V$. We define f(i, i) = 0.

For an edge $u \to v$ with weight w(u, v), we can find a shorter path using **relaxation**:

$$dist[v] = \min(dist[v], dist[u] + w(u, v))$$

对于 DAG 来说,因为其独特的无环拓扑结构,使用拓扑排序来确定唯一的处理顺序,然后每个节点按照拓扑排序的顺序处理,最终保证每个节点处理的使用前驱节点已经处理过了。

Recordings (DFS and DP).

- 把问题分解成子问题之后再使用 DP 解决,本质上就是带记忆的 DFS Search。
- 递归函数本质上也可以看做是对一个 DAG 的 DFS 的过程。
- 在 DAG 建模的问题中,可以保证最终的出度为 0 的点只能是问题最后的结果,而入度为 0 的点是已知的结果。(比如拆分下来最小的结果)
 - ▶ 递归的过程本质上可以建模成对依赖关系的反向图的 DFS Search 过程,从大问题开始不断 搜索知道遇到出度(原图入度)为 0 的点。
- 说到底还是建模问题,要建模出结构良好的子结构问题。

§2.4. Example

Example (Bowling Example).

Bowling

- Given n pins labeled $0, 1, \ldots, n-1$
- Pin i has value v_i
- Ball of size similar to pin can hit either
 - 1 pin i, in which case we get v_i points
 - 2 adjacent pins i and i+1, in which case we get $v_i \cdot v_{i+1}$ points
- Once a pin is hit, it can't be hit again (removed)
- Problem: Throw zero or more balls to maximize total points
- Example: [-1, 1, 1, 1, 9, 9, 3, -3, -5, 2, 2]

Figure 1: Bowling Problems Demo

Sub problems design:

IF the input is a sequence:

• Prefixes x[:i], O(n)

- suffixes x[i:], O(n)
- substrings x[i:j]

§2.4.1. Solution with suffixes

- Sub problem: $B(i) \rightarrow [i:]$
- We need to compute B(0)
- relate:

$$B(i) = \max\{B(i+1), v_i + B(i+1), v_i \cdot v_i + 1 + B(i+2)\}\$$

• Classical Bottom DP from bottom-up!

§2.5. Conclusion for relate subproblem solution

- The general approach we're following to define a relation on subproblem solutions:
 - ► Identify a question about a subproblem solution that, if you knew the answer to, would reduce to "smaller" subproblem(s)
 - In case of bowling, the question is "how do we bowl the first couple of pins?"
 - ▶ Then locally brute-force the question by trying all possible answers, and taking the best
 - In case of bowling, we take the max because the problem asks to maximize
 - Alternatively, we can think of correctly guessing the answer to the question, and directly recurring; but then we actually check all possible guesses, and return the "best"
- The key for efficiency is for the question to have a small (polynomial) number of possible answers, so brute forcing is not too expensive
- Often (but not always) the nonrecursive work to compute the relation is equal to the number of answers we're trying

§3. Dynamic Programming Sub-Problems: LCS & LIS & Coins

Recordings (Why Sub problems?).

- Recursion and Reuse
- When sub problems overlap
- careful brute force. (Or clever brute force)

§3.1. Longest Common Subsequence (LCS)

Problem 3.1.1 (Basic LCS).

Given two strings A and B, find a longest (**not necessarily contiguous**) subsequence of A that is also a subsequence of B.

Define sub problems for multiple inputs: using a matrix, which is the **product of multiple** sub problem spaces.

For example, in this case, we define two sub-problems which are the suffixes for string A and suffixes for string B, the final sub problem space is the doc product of two independent sub-problem spaces. Of course, we can define matrix with higher dimensions for more complex problems.

Thus, define:

$$L(i, j) = LCS(A[i:], B[j:]), 0 \le i \le |A|, 0 \le j \le |B|$$

For A[|A|:], it means an empty string, it is easy to construct the initial statement.

Then, for the state transition equation:

We have:

$$\max(L(i, j+1), L(i+1, j)) \le L(i, j) \le \min(L(i, j+1), L(i+1, j)) + 1$$

if A(i) == B(j):

• We can prove that L(i,j) = L(i+1, j+1) + 1

else:

- at least one of A[i] and B[j] are not in the LCS.
- Thus, transform this problem into smaller sub problems.
- $\max(L(i, j + 1), L(i + 1, j))$

Recordings (Finding state transition equation).

- 问题的关键在于新加入的字母,这些字母往往会在状态转移方程中出现或者作为分支的判定条件
- 要思考在什么状态下, 该问题可以被修改成为更小的子问题进行运算

§3.2. Longest Increasing Subsequence (LIS)

Problem 3.2.1 (LIS problems).

Given a string A, find a longest (not necessarily contiguous) subsequence of A that strictly increases (lexicographically)

Still using the suffixes:

$$L(i) = LIS(A[i:])$$

- final statement, we need to solve L(0)
- initial statement, L(length_A) = 0 for it is an empty string.
- transition:
 - if i is in the longest sequence:
 - L(i) = L(i+1) + 1
 - if not:
 - L(i) = L(i+1)

However, it is not easy to find the "if" statement, thus, we need to **change the definition of** sub problems

We define: x(i) = length of longest increasing subsequence of suffix A[i:] that includes A[i].Then, we solve it again:

- final statement: result is the maximum value of $\{x(i)|i\in\{1,2,3,...,n\}\}$
- initial statement: $x(length_A) = 0$
- transition:
 - if s[i] < s[i+1]:</p>
 - x(i) = x(i+1) + 1
 - else:
 - it is still difficult
 - $-x(i) = \max\{1 + x(j) \mid i < j < |A|, A[j] > A[i]\} \cup \{1\}$
 - We need to traverse the processed string, which concat thr added s[i] into the current strings.

§3.3. Alternating Coin Game

Problem 3.3.1 (Alternating coin games).

Given sequence of n coins of value $v_0, v_1, ..., v_{n-1}$

- Two players ("me" and "you") take turns
- In a turn, take first or last coin among remaining coins
- My goal is to maximize total value of my taken coins, where I go first

The structure of the sub-problems are quite simple: we just need to define L(i, j) as the optimal total value I can get for the substring of $[i...j](i \le j)$

- final statement: L[0, n-1]
- initial statement: L[i,i]

However, it is hard to write the transition!

Thus, we will change to another solution:

 $x(i,j,p) = \text{maximum total value I can take when player } p \in \{\text{me, you}\} \text{ starts from coins of values } v_i...v_j.$

- me is p = 0
- you is p = 1

Recordings (Adding a new dimension).

We can add a new dimension when solving complex dp tasks.

- final statement: x(0, n-1, 0)
- initial statement:
 - x(i, i, 0) = s[i]
 - x(i, i, 1) = 0
- Then, the transition is:

$$L(i, j, 0) = \max(L(i, j - 1, 1) + a[j], L(i + 1, j, 1) + a[i])$$

$$L(i, j, 1) = \min(L(i, j - 1, 0) + a[j], L(i + 1, j, 0) + a[i])$$

• We must assume the component is clever enough.

Thus, we finish this problem in $O(n^2)$ running time.

§4. SubProblems Constraints and Expansions

§4.1. Bellman-Ford Expansion SSSP

§4.1.1. DAG Shortest Path

It is time when we solve the DAG problems using relaxation!

• Define sub problems:

 $\delta_k(s,v)$ means the weight of shortest path from s to v using at most k edges.

• We want to solve:

$$\delta_{|E|}(s,v)$$

• What we have:

$$\delta_0(s, v) = 0, \forall v \in V$$

$$\delta_i(s,s) = 0, \forall i \in \{0, 1, 2, ..., |V|\}$$

• Status transform

$$\delta(s,v) = \min\{\delta(s,u) + w(u,v) \mid u \in \mathrm{Adj}^-(v)\} \cup \{\delta_{k-1}(s,u)\}$$

Recordings (When to use DP?).

- 动态规划的状态转移方程经常出现 min max 等求最大最小值的组合
- 这是因为动态规划经常子问题定义的是一个最优化问题
- 而最优化问题的处理基本逻辑就是暴力枚举+取最值
 - ▶ 因此检查动态规划的正确性 (尤其遇到最大最小值) 可以看所有枚举情况是否被包含
 - ▶ 这也是为什么更复杂的动态规划需要分类讨论而不可以直接取最值,因为有时候并不 是简单的枚举!

§4.2. APSP

For all pairs shortest path: Floyd-Warshall

- For simple SSSP:
 - $O(|V|^2 |E|) = O(|V|^4)$

 $d(u, v, k) = \text{minimum weight of a path from } u \text{ to } v \text{ that only uses vertices from } \{1, 2, ..., k\} \cup \{u, v\}$

- What we want to solve: d(u, v, |V|)
- What we have:
 - d(u, v, 0) = w(u, v) if $(u, v) \in E$
 - d(u, v, 0) = w(u, v), otherwise
- transformation:
 - If k is in the shortest path: d(u, v, k) = d(u, k, k 1) + d(k, v, k 1)
 - If not: d(u, v, k) = d(u, v, k 1)

$$d(u,v,k) = \min(d(u,v,k-1), d(k,v,k-1) + d(u,k,k-1))$$

• Time complexity: $O(|V|^3)$

§4.3. Arithmetic Parenthesization

Problem 4.3.1 (Arithmetic Parenthesization).

- 给定一个数字序列, 两个数字之间存在加号或者乘号
- 你可以任意改变运算优先级(加括号)
- 求解: 最终最大的输出值
- Allow negative numbers

Idea: find the operations from the root. Sub-Problems: using substring!

Define sub problems:

x(i, j opt) = opt value with sub string from [i..j)

- $0 \le i, j \le n \text{ and opt } \in \{\min, \max\}$
- What we have:
 - x(i, i, opt) = 0
 - $x(i, i+1, \text{opt}) = a_i$
- Original Problems: $x(0, n, \max)$

$$x(i, j, \text{opt}) = \text{opt } \{x(i, k, \text{opt}') * kx(k, j, \text{opt}'')) \mid i < k < j; \text{opt}', \text{opt}'' \in \{\min, \max\}\}$$

§4.4. Piano Fingering

Problem 4.4.1 (Piano Fingering).

Piano Fingering

- Given sequence t_0, t_1, \dots, t_{n-1} of n single notes to play with right hand (will generalize to multiple notes and hands later)
- Performer has right-hand fingers $1, 2, \dots, F$ (F = 5 for most humans)
- Given metric d(t, f, t', f') of **difficulty** of transitioning from note t with finger f to note t' with finger f'
 - Typically a sum of penalties for various difficulties, e.g.:
 - 1 < f < f' and t > t' is uncomfortable
 - Legato (smooth) play requires $t \neq t'$ (else infinite penalty)
 - Weak-finger rule: prefer to avoid $f' \in \{4, 5\}$
 - $\{f, f'\} = \{3, 4\}$ is annoying
- Goal: Assign fingers to notes to minimize total difficulty

Figure 2: Piano Fingering

 $x(i, f) = \text{minimum total difficulty for playing notes } t_i, t_{i+1}, \ldots, \text{tn-1 starting with finger f on note } t_i$.

Define: x(i, f) is $\min\{x(i + 1, f') + d(t_i, f, t_{i+1}, f') \mid 1 \le f' \le F\}$

Time Complexity: $O(n \times F^2)$

§4.5. Guitar Fingering

Problem 4.5.1 (Guitar Fingering).

Guitar Fingering

- ullet Up to S= number of strings different ways to play the same note
- Redefine "finger" to be tuple (finger playing note, string playing note)
- Throughout algorithm, F gets replaced by $F \cdot S$
- Running time is thus $\Theta(n \cdot F^2 \cdot S^2)$

Figure 3: Guitar Fingering

 $F \to F \times S$

Time Complexity: $O(nF^2S^2)$

§4.5.1. Multiple Notes at Once

 t_i is a set of notes to play at time i.

 f_i is a mapping of placing notes with different fingers: $t_i \to \{1, 2, 3, ..., F\}$

For each fingering f_i , at most T^F choices, $T = \max_i |t_i|$

Time Complexity: $O(nT^{2F})$

§5. Pseudopolynomial

Definition 5.1 (Pseudopolynomial Time).

- 真多项式时间: T = O(poly(N)), 其中 N 代表着输入数据的编码长度。
 - ▶ 编码长度就是二进制字符串的长度
- 伪多项式时间: T = O(poly(U)), 其中 U 代表这个输入数据的最大值。
 - ▶ 例如经典的背包问题

§5.1. Rod Cutting

Problem 5.1.1 (Rod Cutting Problems).

- 给定一个长度为 L 的钢条, 现在允许将钢条切割成若干长度
- 每一个长度的子钢条都对应一个价值
- 求最大的价值长度

经典的动态规划算法:

$$X(l) = \max\{v(p) + X(l-p) \mid p \in [1,l]\}$$

§5.2. SubSet Sum

Problem 5.2.1 (Subset Sum problem).

- 给定一个集合有 n 个数字
- 求解集合的子集, 子集内所有元素的和为目标数字 target

动态规划本身并不复杂:

x(i,t): any subset of A[i:] sum to t

- What we have:
 - x(i,0) = True
 - x(n,t) = False (t != 0)
- Transformation:

$$x(n,t) = x(n+1,t) \lor (t-a[n] \ge 0 \land x(n+1,t-a[n]))$$

Time Complexity: O(nT)

Is it polynomial?

- Input size: n + 1, not polynomial in input size!
- for w-bit word RAM model: $T \leq 2^w$ and $w \geq \log(n+1)$
- for the least cases: $w \approx n$
- Then the time complexity: $O(n2^n)$

Recordings (Why not polynomial?).

- 在这里很复杂的一点是算法的运行时间同时和两个变量决定
 - ▶ 输入的数据量
 - ▶ 给定的目标值的大小
- 因此, 这不是一个单变量的多项式运行时间
- 而对于输入编码 w 来说,这个数字是指数级增长的!

§6. Conclusion

Main Features of Dynamic Programs

- · Review of examples from lecture
- Subproblems:
 - Prefix/suffixes: Bowling, LCS, LIS, Floyd-Warshall, Rod Cutting (coincidentally, really Integer subproblems), Subset Sum
 - Substrings: Alternating Coin Game, Arithmetic Parenthesization
 - Multiple sequences: LCS
 - Integers: Fibonacci, Rod Cutting, Subset Sum
 - * Pseudopolynomial: Fibonacci, Subset Sum
 - Vertices: DAG shortest paths, Bellman–Ford, Floyd–Warshall
- Subproblem constraints/expansion:
 - Nonexpansive constraint: LIS (include first item)
 - 2 × expansion: Alternating Coin Game (who goes first?), Arithmetic Parenthesization (min/max)
 - $\Theta(1) \times$ expansion: Piano Fingering (first finger assignment)
 - $\Theta(n) \times$ expansion: Bellman–Ford (# edges)

• Relation:

- **Branching** = # dependant subproblems in each subproblem
- $\Theta(1)$ branching: Fibonacci, Bowling, LCS, Alternating Coin Game, Floyd–Warshall, Subset Sum
- $\Theta(\text{degree})$ branching (source of |E| in running time): DAG shortest paths, Bellman–Ford
- $\Theta(n)$ branching: LIS, Arithmetic Parenthesization, Rod Cutting
- Combine multiple solutions (not path in subproblem DAG): Fibonacci, Floyd—Warshall, Arithmetic Parenthesization

· Original problem:

 Combine multiple subproblems: DAG shortest paths, Bellman–Ford, Floyd–Warshall, LIS, Piano Fingering

Figure 4: Summarization for all DP problems