

Lecture 9: Introduction to Statistical Inference

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes
KAIST EE

June 12, 2021

(1) Overview on Statistical Inference

(2) Bayesian Inference: Framework

(3) Examples

(4) MAP (Maximum A Posteriori) Estimator

(5) LMS (Least Mean Squares) Estimator

(6) LLMS (Linear LMS) Estimator

(7) Classical Inference: ML Estimator

June 12, 2021 1 / 67

Roadmap

What is Statistical Inference?

June 12, 2021 2 / 67

- (1) Overview on Statistical Inference
- (2) Bayesian Inference: Framework
- (3) Examples
- (4) MAP (Maximum A Posteriori) Estimator
- (5) LMS (Least Mean Squares) Estimator
- (6) LLMS (Linear LMS) Estimator
- (7) Classical Inference: ML Estimator

Examples

- Take 1000 voters uniformly at random, and count the popularity of each candidate to infer the true popularity.
- COVID-19 has spread over a collection of people, and we collect a sample of COVID-19 infectees to infer the true source of infection.
- \circ When an original signal S is transmitted over the KAIST Wi-Fi connection, the received signal X becomes X=aS+W, where 0< a< 1 and $W\sim \mathcal{N}(0,1)$. If we have 10 samples of (S,X) values, what is the inferred value of a?

 Process of extracting information about an unknown variable or an unknown model from noisy available data KAISTEE

KAIST EE

- 1. Samples are likely to be a good representation of the unknown
- 2. There exists uncertainty (i.e., noise) as to how well the sample represents the unknown
- 3. How to obtain samples has impact on inference (e.g., when we need to pay for online surveys)

L9(1) June 12, 2021 5 / 67

Source: Introduction to Probability course by MIT

- Inference
- Using data, probabilistic models or parameters for models are determined.
- Why building up models?
 - Analysis is possible, so that predictions and decisions are made.
- Recently, deep learning
- Connecting big data and big model building

L9(1) June 12, 2021 6 / 67

What to Infer?: Unknown Model vs. Unknown Variable

What Kind?: Hypothesis Testing vs. Estimation

- X = aS + W
- Model building
 - \circ know the original signal S, observe X
 - infer the model parameter a
- Variable estimation
 - know a, observe X
 - infer the original signal *S*
- Same mathematical structure, because the parameters in models are variables in many cases

- Hypothesis testing
 - Unknown: a few possible ones
 - $\circ~$ Goal: small probability of incorrect decision
 - (Ex) Something detected on the radar. Is it a bird or an airplane?
- Estimation
 - Unknown: a value included in an infinite, typically continuous set
 - Goal: Finding the value close to the true value
 - $^{\circ}$ (Ex) Biased coin with unknown probability of head $\theta \in [0,1].$ Data of heads and tails. What is θ ?
 - (Note) If you have the candidate values of $\theta = \{1/4, 1/2, 3/4\}$, then it's a hypothesis testing problem

L9(1) June 12, 2021 7 / 67 L9(1) June 12, 2021 8 / 67

- Biased coin with parameter θ (probability of head). Assume that $\theta \in \{1/4, 3/4\}$.
- Throw the coin 3 times and get (H, H, H). Goal: infer θ , 1/4 or 3/4?
- Distribution of θ (prior) e.g.,

$$\mathbb{P}\left(\theta = \frac{3}{4}\right) = 1/2, \quad \mathbb{P}\left(\theta = \frac{1}{4}\right) = 1/2$$

• Use Bayes' rule and find the posterior:

$$\mathbb{P}\Big[\theta = \frac{3}{4}\Big|(HHH)\Big] = \frac{27}{28}, \ \mathbb{P}\Big[\theta = \frac{1}{4}\Big|(HHH)\Big] = \frac{1}{28}$$

- Choose θ with larger posterior probability.
- Bayesian approach (Chapter 8)

L9(1)

• Find the probability of (H, H, H), if $\theta = \frac{1}{4}$ or $\frac{3}{4}$ (likelihood)

$$\mathbb{P}\Big[(HHH)|\theta = \frac{3}{4}\Big] = \left(\frac{3}{4}\right)^3$$

$$\mathbb{P}\Big[(HHH)|\theta = \frac{1}{4}\Big] = \left(\frac{1}{4}\right)^3$$

- Choose θ with a larger likelihood
- Classical approach (Chapter 9)

(Note) There are other inference methods, and here we just show examples.

Bayesian approach

- Unknown: random variable with some distribution (prior)
- Unknown model as chosen randomly from a give model class
- Observed data x gives:
- posterior distribution $p_{\Theta|X}(\theta|x)$
- Choose θ with larger posterior probability (other methods exist)

Classical approach

- Unknown: deterministic value
- Unknown model as one of multiple probabilistic models
- Observed data x gives:
 - likelihood $p(X;\theta)$
- Choose θ with larger likelihood (other methods exist)

L9(1) June 12. 2021 10 / 67

Different Views: Bayesian vs. Classical (3)

June 12, 2021

9 / 67

Roadmap

- Fundamental difference about the nature of unknown models or variables
- Random variable or deterministic quantity
- Who is the winner? A century-long debate
- Example of debate: mass of the electron by noisy measurement
 - Classical. while unknown, it is a constant and there is no justification for modeling it as a random variable.
 - Bayesian. Prior distribution reflects our state of knowledge, e.g., some range of candidate values from our previous noisy measurements.
- Particular prior? too arbitrary vs. every statistical procedure's hidden choices
- Pratical issues: Bayesian approach is often computationally intractable (multi-dimensional integrals)

- (1) Overview on Statistical Inference
- (2) Bayesian Inference: Framework
- (3) Examples
- (4) MAP (Maximum A Posteriori) Estimator
- (5) LMS (Least Mean Squares) Estimator
- (6) LLMS (Linear LMS) Estimator
- (7) Classical Inference: ML Estimator

Framework of Bayesian Inference

Remind: Bayes' Rule: 4 Versions

- Unknown Θ
 - physical quantity or model parameter
 - random variable
 - prior distribution p_{Θ} and f_{Θ}
- Observations or measurements X
 - observation model $p_{X|\Theta}$ and $f_{X|\Theta}$
- That is, the joint distribution of X and Θ $(p_{X,\Theta}(x,\theta))$ and $f_{X,\Theta}(x,\theta)$ is given
- Find the posterior distribution $p_{\Theta|X}$ and $f_{\Theta|X}$, using Bayes' rule.

- The posterior distribution is the complete answer of the Bayesian inference.
- However, one may use it for further processing, depending on what he/she wants, e.g., point estimation.
- Multiple observations and multiple parameters are possible
 - $X = (X_1, \ldots, X_n)$
 - $\circ \Theta = (\Theta_1, \ldots, \Theta_n)$

Θ: discrete, X: discrete

$$p_{\Theta|X}(\theta|x) = \frac{p_{\Theta}(\theta)p_{X|\Theta}(x|\theta)}{p_X(x)}$$
$$p_X(x) = \sum_{\theta'} p_{\Theta}(\theta')p_{X|\Theta}(x|\theta')$$

• Θ: continuous, *X*: continuous

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{f_{X}(x)}$$
$$f_{X}(x) = \int f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'$$

Θ: discrete, X: continuous

$$p_{\Theta|X}(\theta|x) = \frac{p_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{f_{X}(x)}$$
$$f_{X}(x) = \sum_{\theta'} p_{\Theta}(\theta')f_{X|\Theta}(x|\theta')$$

• Θ: continuous, *X*: discrete

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)p_{X|\Theta}(x|\theta)}{p_{X}(x)}$$
$$p_{X}(x) = \int f_{\Theta}(\theta')p_{X|\Theta}(x|\theta')d\theta'$$

L9(2)

June 12, 2021 13 / 67

L9(2)

June 12, 2021 14 / 67

Roadmap

KAIST EE

Example: Romeo and Juliet, Single Observation

- (1) Overview on Statistical Inference
- (2) Bayesian Inference: Framework
- (3) Examples
- (4) MAP (Maximum A Posteriori) Estimator
- (5) LMS (Least Mean Squares) Estimator
- (6) LLMS (Linear LMS) Estimator
- (7) Classical Inference: ML Estimator

- Romeo and Juliet start dating, where Romeo is late by $X \sim \mathcal{U}[0,\theta]$.
- Unknown: θ modeled by a rv $\Theta \sim \mathcal{U}[0,1]$.
- Observation: Romeo was late by x.
- Prior and observation model (likelihood)

$$f_{\Theta}(\theta) = egin{cases} 1, & 0 \leq heta \leq 1 \ 0, & ext{otherwise} \end{cases}, \qquad f_{X|\Theta}(x| heta) = egin{cases} rac{1}{ heta}, & 0 \leq x \leq heta \ 0, & ext{otherwise} \end{cases}$$

Posterior

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{\int_0^1 f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'} = \begin{cases} \frac{1/\theta}{\int_x^1 \frac{1}{\theta'}d\theta'} = \frac{1}{\theta|\log x|}, & x \le \theta \le 1, \\ 0, & \theta < x \text{ or } \theta > 1 \end{cases}$$

• What happens if we have more observation samples?

- Romeo was late *n* times by $\mathbf{X} = (X_1, X_2, \dots, X_n), X_i \sim \mathcal{U}[0, \theta].$
- X_1, \ldots, X_n are conditionally independent, given $\Theta = \theta$.
- Unknown: θ modeled by a rv $\Theta \sim \mathcal{U}[0,1]$.
- Observation: Romeo was late *n* times by $\mathbf{x} = (x_1, x_2, \dots, x_n)$
- See Example 8.2 at pp. 414 for more detailed treatment.

- E-mail: spam (1) or legitimate (2), $\Theta \in \{1,2\}$, with prior $p_{\Theta}(1)$ and $p_{\Theta}(2)$.
- $\{w_1, w_2, \dots, w_n\}$: a collection of words which suggest "spam".
- For each i, a Bernoulli $X_i = 1$ if w_i appears and 0 otherwise.
- Observation model $p_{X_i|\Theta(x_i|1)}$ and $p_{X_i|\Theta(x_i|2)}$ are known.
- Assumption: Conditioned on Θ , X_i are independent.
- Posterior PMF

L9(3)

$$\mathbb{P}\Big[\Theta = m|(x_1,...,x_n)\Big] = \frac{p_{\Theta}(m)\prod_{i=1}^n p_{X_i|\Theta}(x_i|m)}{\sum_{i=1,2}p_{\Theta}(j)\prod_{i=1}^n p_{X_i|\Theta}(x_i|j)}, \quad m = 1,2$$

L9(3) June 12, 2021 17 / 67

June 12, 2021 18 / 67

Example: Biased Coin with Beta Prior (1)

Background: Beta Distribution

- ullet Biased coin with probability of head heta
- Unknown θ : modeled by Θ with some prior $f_{\Theta}(\theta)$
- Observation X: number of heads out of n tosses
- Question. Suppose that you have freedom to choose the form of the prior distribution. What prior will you choose? Requirement of "good" priors?
- We will look at the prior whose distribution is something called the Beta distribution.

Beta distribution

A continuous rv Θ follows a beta distribution with integer parameters $\alpha, \beta > 0$, if

$$f_{\Theta}(\theta) = egin{cases} rac{1}{B(lpha,eta)} heta^{lpha-1} (1- heta)^{eta-1}, & 0 < heta < 1, \ 0, & ext{otherwise}, \end{cases}$$

where $B(\alpha, \beta)$, called Beta function, is a normalizing constant, given by

$$B(\alpha,\beta) = \int_0^1 \theta^{\alpha-1} (1-\theta)^{\beta-1} d\theta = \frac{(\alpha-1)!(\beta-1)!}{(\alpha+\beta-1)!}$$

- See https://youtu.be/8yaRt24qA1M for the integration in the Beta function formula.
- A special case of Beta(1,1) is $\mathcal{U}[0,1]$

- If $\Theta \sim \text{Beta}(\alpha, \beta)$, then $\Theta | \{X = k\} \sim \text{Beta}(k + \alpha, n k + \beta)$
- In other words, Beta prior ⇒ Beta posterior (why useful?)

Proof.

- (a) First, the posterior pdf is given by: $f_{\Theta|X}(\theta|k) = cf_{\Theta}(\theta)p_{X|\Theta}(k|\theta) = c\binom{n}{k}f_{\Theta}(\theta)\theta^{k}(1-\theta)^{n-k}, \ c \ \text{the normalizing constant}$
- (b) Next, for Beta (α, β) prior, $f_{\Theta}(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha 1} (1 \theta)^{\beta 1}$.
- (c) Then, $f_{\Theta|X}(\theta|k) = c \binom{n}{k} f_{\Theta}(\theta) \theta^k (1-\theta)^{n-k} = \frac{d}{B(\alpha,\beta)} \cdot \theta^{\alpha+k-1} (1-\theta)^{\beta+n-k-1}$, where $d = c \binom{n}{k}$.

 \circ Inference of a parameter θ

- Single observation
- X: noisy observation of θ , modeled as: $X = \theta + W$, where $W \sim \mathcal{N}(0, \sigma^2)$
- Model θ with a rv $\Theta \sim \mathcal{N}(x_0, \sigma_0^2)$ (normal prior)
- Θ and W are indendent

L9(3)

• Question. Given an observation x, what is the posterior $f_{\Theta|X}(\theta|x)$?

- Multiple *n* observations
- *n* observations of θ : $W_i \sim \mathcal{N}(0, \sigma_i^2)$

$$X_1 = \theta + W_1, \quad W_1 \sim \mathcal{N}(0, \sigma_1^2)$$
:

$$X_n = \theta + W_n, \quad W_n \sim \mathcal{N}(0, \sigma_n^2)$$

- Model θ with $\Theta \sim \mathcal{N}(x_0, \sigma_0^2)$
- Θ, W_1, \ldots, W_n are indendent
- Question. Given an observation x, what is the posterior $f_{\Theta|X}(\theta|x)$?

$$X = (X_1, \dots, X_n) \text{ and } x = (x_1, \dots, x_n),$$

L9(3) June 12, 2021 21 / 67

June 12, 2021

Background: The PDF Form of Gaussian

KAIST EE

Background: Product of Two Gaussian Densities

22 / 67

Lemma. Up to recaling, the pdf of the form $e^{-\frac{1}{2}(ax^2-2bx+c)}$ is $\mathcal{N}(\frac{b}{a},\frac{1}{a})$.

- (Rough) Proof. Note that the pdf of $\mathcal{N}(\mu, \sigma^2)$: $f_X(x) = e^{-(x-\mu)^2/2\sigma^2}$ up to rescaling. Then,
 - $-\frac{1}{2\sigma^2}(x^2 2\mu x + \mu^2) = -\frac{1}{2}(ax^2 2bx + c)$
 - Thus, $\sigma^2 = \frac{1}{a}$ and $\frac{\mu}{\sigma^2} = b \implies \mu = b\sigma^2 = \frac{b}{a}$

Theorem. The product of two Gaussian pdfs $\mathcal{N}(\mu_0, \nu_0)$ and $\mathcal{N}(\mu_1, \nu_1)$ is $\mathcal{N}\left(\frac{\nu_1\mu_0 + \nu_0\mu_1}{\nu_0 + \nu_1}, \frac{\nu_0\nu_1}{\nu_0 + \nu_1}\right)$.

Proof. Using the Lemma in the previous slide, i.e., up to recaling, the pdf of the form $e^{-\frac{1}{2}(ax^2-2bx+c)}$ is $\mathcal{N}(\frac{b}{2},\frac{1}{2})$,

$$\exp\left(-(x-\mu_0)^2/2\nu_0\right) \times \exp\left(-(x-\mu_1)^2/2\nu_1\right)$$

$$= \exp\left[-\frac{1}{2}\left(\left(\frac{1}{\nu_0} + \frac{1}{\nu_1}\right)x^2 - 2\left(\frac{\mu_0}{\nu_0} + \frac{\mu_1}{\nu_1}\right)x + c\right)\right]$$

$$\implies \mathcal{N}\left(\nu\left(\frac{\mu_0}{\nu_0} + \frac{\mu_1}{\nu_1}\right), \overbrace{\frac{1}{\nu_0^{-1} + \nu_1^{-1}}}^{=\nu}\right) = \mathcal{N}\left(\frac{\nu_1\mu_0 + \nu_0\mu_1}{\nu_0 + \nu_1}, \frac{\nu_0\nu_1}{\nu_0 + \nu_1}\right)$$

L9(3) June 12, 2021 23 / 67 L9(3) June 12, 2021 24 / U

KAIST EE

Theorem. The product of n+1 Gaussian pdfs $\mathcal{N}(\mu_0,\nu_0),\ \mathcal{N}(\mu_1,\nu_1),\ldots,\ \mathcal{N}(\mu_n,\nu_n)$, is $\mathcal{N}(\mu,\nu)$, where

$$\mu = \frac{\sum_{i=0}^{n} \frac{\mu_i}{\nu_i}}{\sum_{i=0}^{n} \frac{1}{\nu_i}}, \qquad \nu = \frac{1}{\sum_{i=0}^{n} \frac{1}{\nu_i^2}}$$

• *n* observations of θ : $W_i \sim \mathcal{N}(0, \sigma_i^2)$, and θ with the normal prior $\Theta \sim \mathcal{N}(x_0, \sigma_0^2)$

$$X_i = \theta + W_i, \quad W_i \sim \mathcal{N}(0, \sigma_i^2), \quad i = 1, \dots, n$$

- Θ, W_1, \ldots, W_n are indendent and let $X = (X_1, \ldots, X_n), x = (x_1, \ldots, x_n)$.
- Our interest. The poterior pdf $f_{\Theta|X}(\theta|x)$.
- Prior. $f_{\Theta}(\theta) = c_1 \cdot \exp\left\{-\frac{(\theta x_0)^2}{2\sigma_0^2}\right\}$
- Observation model. Noting that X_1, X_2, \dots, X_n are independent,

$$f_{X|\Theta}(x|\theta) = c_2 \cdot \exp\left\{-\frac{(\theta - x_1)^2}{2\sigma_1^2}\right\} \cdots \exp\left\{-\frac{(\theta - x_n)^2}{2\sigma_n^2}\right\}$$

L9(3) June 12, 2021 25 / 67

L9(3) June 12, 2021 26 /

Example: Parameter Inference with Normal Prior (3)

Example: Parameter Inference with Normal Prior (4)

• Numerator: $f_{\Theta}(\theta) f_{X|\Theta}(x|\theta) = c_1 c_2 \cdot \exp\left\{-\sum_{i=0}^n \frac{(x_i - \theta)^2}{2\sigma_i^2}\right\}$, which can be reexpressed as the following, using the product of n+1 Gaussians:

$$c_1c_2\cdot\exp\left\{-\sum_{i=0}^n\frac{(x_i-\theta)^2}{2\sigma_i^2}\right\}=d\cdot\exp\left\{-\frac{(\theta-m)^2}{2v}\right\},$$

where
$$m = \frac{\sum_{i=0}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=0}^{n} \frac{1}{\sigma_i^2}}, \qquad v = \frac{1}{\sum_{i=0}^{n} \frac{1}{\sigma_i^2}}$$

• Denominator: just a constant, not a function of θ

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{\int f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'}$$

• Thus, the posterior pdf $f_{\Theta|X}(\theta|x) = a \cdot \exp\left\{-\frac{(\theta-m)^2}{2v}\right\}$, where

$$m = \frac{\sum_{i=0}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=0}^{n} \frac{1}{\sigma_i^2}}, \qquad v = \frac{1}{\sum_{i=0}^{n} \frac{1}{\sigma_i^2}}$$

- Prior: Normal, Posterior: Normal
- Special case when $\sigma^2=\sigma_0^2=\sigma_1^2=\cdots=\sigma_n^2.$ Then,

$$m = \frac{x_0 + x_1 + \dots x_n}{n+1}, \qquad v = \frac{\sigma^2}{n+1}$$

- the prior mean x_0 acts just as another observation.
- $\circ~$ the standard deviation of the posterior goes to 0, at the rough rate of $1/\sqrt{n}.$

- Recursive inference is possible.
- Suppose that after X_1, \ldots, X_n are observed, an additional observation X_{n+1} is observed.
- Instead of solving the inference problem from scratch, we can view $f_{\Theta|X_1,...,X_n}$ as our prior, use the new observation to obtain the new posterior $f_{\Theta|X_1,...,X_n,X_{n+1}}$
- In the example of parameter inference with the Normal prior, with the new observation $x_{n+1} \sim \mathcal{N}(x_{n+1}, \sigma_{n+1}^2)$, the posterior pdf is nothing but the Normal pdf of:

$$\mathsf{mean} = \frac{(m/v) + (\mathsf{x}_{n+1}/\sigma_{n+1}^2)}{(1/v) + (1/\sigma_{n+1}^2)}, \qquad \mathsf{variance} = \frac{1}{(1/v) + (1/\sigma_{n+1}^2)}$$

(1) Overview on Statistical Inference

(2) Bayesian Inference: Framework

- (3) Examples
- (4) MAP (Maximum A Posteriori) Estimator
- (5) LMS (Least Mean Squares) Estimator
- (6) LLMS (Linear LMS) Estimator
- (7) Classical Inference: ML Estimator

L9(3) June 12, 2021 29 / 67

L9(4)

June 12, 2021 30 / 67

Point Estimation

Two Natural Point Estimates

M1. Choose the largest: Maximum a posteriori probability (MAP) rule

$$\hat{\theta}_{\mathsf{MAP}} = \operatorname{arg\,max}_{\theta} p_{\Theta|X}(\theta|x), \quad \hat{\theta}_{\mathsf{MAP}} = \operatorname{arg\,max}_{\theta} f_{\Theta|X}(\theta|x)$$

M2. Choose the mean: Conditional expectation, aka LMS (Least Mean Square)

$$\hat{ heta}_{\mathsf{LMS}} = \mathbb{E}[\Theta|X=x]$$

- Why MAP and LMS are good? Not mathematically clear yet (We will discuss later)
- Notation: The community uses $\hat{\theta}$ to mean the estiamted value, i.e., hat for estimated value.

Point Estimate

- Given observation x, which single value θ are you going to choose as your inference result? People often want just the summary and a simple answer.
- $\circ~$ Very often, $\theta,$ our inference target, is by nature a single value, i.e., mass of the electron.

- Random observation: X
- Observation instance: x
- Estimate as a mapping from x to a number

$$\hat{\theta} = g(x), \quad \hat{\theta}_{MAP} = g_{MAP}(x), \quad \hat{\theta}_{LMS} = g_{LMS}(x)$$

• Estimator as a mapping from X to a random variable

$$\hat{\Theta} = g(X), \quad \hat{\Theta}_{MAP} = g_{MAP}(X), \quad \hat{\Theta}_{LMS} = g_{LMS}(X)$$

From now on we focus on the MAP estimate, mainly based on the examples that we've discussed in the previous section.

L9(4)

June 12, 2021 33 / 67

L9(4)

June 12. 2021 34 / (

Example: Romeo and Juliet

Example: Spam Filtering

Slide 18 for more details

- Slide 16 for more details
- Romeo and Juliet start dating, where Romeo is late by $X \sim \mathcal{U}[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim \mathcal{U}[0,1]$.
- Observation: Romeo was late by x.
- Question. Given the observation sample x, what is $\hat{\theta}_{MAP}$?
- Intuition. As x grows, $\hat{\theta}_{MAP}$ decreases or increases? Increases. Why?
- Posterior: $f_{\Theta|X}(\theta|x) = \begin{cases} \frac{1}{\theta|\log x|}, & x \leq \theta \leq 1, \\ 0, & \theta < x \text{ or } \theta > 1 \end{cases}$
- Given x, $f_{\Theta|X}(\theta|x)$ is decreasing in θ over [x,1]. $\Longrightarrow \hat{\theta}_{MAP} = x$.

- E-mail: spam (1) or legitimate (2), $\Theta \in \{1, 2\}$, with prior $p_{\Theta}(1)$ and $p_{\Theta}(2)$.
- $\{w_1, w_2, \dots, w_n\}$: a collection of words which suggest "spam".
- For each i, a Bernoulli $X_i = 1$ if w_i appears and 0 otherwise.
- Assumption: Conditioned on Θ , X_i are independent.
- Posterior PMF

$$\mathbb{P}\Big[\Theta = m|(x_1,...,x_n)\Big] = \frac{p_{\Theta}(m)\prod_{i=1}^n p_{X_i|\Theta}(x_i|m)}{\sum_{j=1,2} p_{\Theta}(j)\prod_{i=1}^n p_{X_i|\Theta}(x_i|j)}, \quad m = 1,2$$

• MAP rule for this hypothesis testing problem. Decided that the message is spam if

$$p_{\Theta}(1) \prod_{i=1}^{n} p_{X_i|\Theta}(x_i|1) > p_{\Theta}(2) \prod_{i=1}^{n} p_{X_i|\Theta}(x_i|2)$$

Slide 21 for more details

- ullet Biased coin with probability of head heta
- Unknown θ : modeled by Θ with some prior $f_{\Theta}(\theta)$
- Observation X: number of heads out of n tosses
 - If $\Theta \sim \text{Beta}(\alpha, \beta)$, then $\Theta | \{X = k\} \sim \text{Beta}(k + \alpha, n k + \beta)$
 - $f_{\Theta|X}(\theta|k) \propto \theta^{\alpha+k-1} (1-\theta)^{\beta+n-k-1}$
- MAP estimate: Taking the logarithm,

$$\hat{\theta}_{\mathsf{MAP}} = \arg\max_{\theta} \left[(\alpha + k - 1) \log \theta + (\beta + n - k + 1) \log(1 - \theta) \right] = \frac{\alpha + k - 1}{\alpha + \beta - 2 + n}$$

• When $\alpha = \beta = 1$ (i.e., $\mathcal{U}[0,1]$ prior), $\hat{\theta}_{MAP} = \frac{k}{n}$

L9(4) June 12, 2021 37 / 67

Slide 27 for more details

• The posterior pdf $f_{\Theta|X}(\theta|x) = a \cdot \exp\left\{-\frac{(\theta-m)^2}{2v}\right\}$, where

$$m = \frac{\sum_{i=0}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=0}^{n} \frac{1}{\sigma_i^2}}, \qquad v = \frac{1}{\sum_{i=0}^{n} \frac{1}{\sigma_i^2}}$$

- The pdf is normal, so it is maximized when $\theta =$ mean.
- Thus, $\hat{\theta}_{MAP} = m$.

L9(4) June 12, 2021 38 / 6

Why MAP Is Good? (1)

KAIST EE

Why MAP Is Good? (2)

• MAP estimate is intuitive, but we need more mathematical evidence for its performance guarantee. We would trust its quality if it is optimal in some sense.

• MAP: $\hat{\theta}_{MAP} = 2$

• Given X = x, θ that minimizes the probability of incorrect decision?

$$\hat{\theta}_{\mathsf{MAP}} = \arg\min_{\hat{\theta}=1,2,3} \mathbb{P}(\hat{\theta} \neq \Theta | X = x)$$

Average probability of incorrect decision

$$\mathbb{P}(\hat{\Theta} \neq \Theta) = \sum_{x} \mathbb{P}(\hat{\Theta} \neq \Theta | X = x) p_{X}(x)$$
$$= \sum_{x} \mathbb{P}(\hat{\theta} \neq \Theta | X = x) p_{X}(x)$$
$$\geq \sum_{x} \mathbb{P}(\hat{\theta}_{MAP} \neq \Theta | X = x) p_{X}(x)$$

- Claim 1. For a given x, the MAP rule minimizes the probability of an incorrect decision.
- Claim 2. The MAP rule minimizes the overall probability of an incorrect decision, averaged over x.
- Proof. Let I and I_{MAP} be the indicator rv, representing the correct decision by any general estimator and the MAP estimator, respectively.

$$\mathbb{E}[I|X=x] = \mathbb{P}\Big[g(X) = \Theta|X=x\Big] \leq \mathbb{P}\Big[g_{\mathsf{MAP}}(X) = \Theta|X=x\Big] = \mathbb{E}[I_{\mathsf{MAP}}|X=x]$$

Thus, Claim 1 holds. We now take the expectation of the above equations, the law of iterated expectations leads to Claim 2.

- (1) Overview on Statistical Inference
- (2) Bayesian Inference: Framework
- (3) Examples
- (4) MAP (Maximum A Posteriori) Estimator
- (5) LMS (Least Mean Squares) Estimator
- (6) LLMS (Linear LMS) Estimator
- (7) Classical Inference: ML Estimator

 MAP: the estimate which maximizes the posterior pdf, which solves the following optimization problem (minimizing the prob. of incorrect decision):

$$\min_{\hat{\theta}} \mathbb{P}\Big[\Theta
eq \hat{\theta} | X = x\Big]$$

• What about applying other objective function? Like the following one (mean squared error)?

$$\min_{\hat{\theta}} \mathbb{E}\Big[(\Theta - \hat{\theta})^2 | X = x\Big]$$

Least Mean Square (LMS) Estimate

L9(5)

June 12, 2021 41 / 67

L9(5)

June 12, 2021 42 / 67

What's the Form?: LMS Estimator (1)

What's the Form?: LMS Estimator (2)

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$. Assume $\Theta \sim \mathcal{U}[4, 10]$.
- Assume that no observations available
- MAP estimate
 - Any value $\hat{ heta}_{\mathsf{MAP}} \in [4,10]$ (why? posterior = prior), not very useful
- What is the other choice?
 - Expectation: $\hat{\theta} = \mathbb{E}[\Theta] = 7$
 - looks reasonable, but why?
- First, it makes sense, but, second, it also minimizes the mean squared error (MSE)

$$\min_{\hat{\theta}} \mathbb{E} \Big[(\Theta - \hat{\theta})^2 \Big] = \min_{\hat{\theta}} \left(\mathsf{var}(\Theta - \hat{\theta}) + \left(\mathbb{E}[\Theta - \hat{\theta}] \right)^2 \right) = \min_{\hat{\theta}} \left(\mathsf{var}(\Theta) + \left(\mathbb{E}[\Theta - \hat{\theta}] \right)^2 \right)$$

- minimized when $\hat{\theta} = \mathbb{E}[\Theta]$

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$.
- Observation X = x with model $f_{X|\Theta}(x|\theta)$
- Minimizing conditional mean squared error

$$\min_{\hat{\theta}} \mathbb{E}\Big[(\Theta - \hat{\theta})^2 | X = x\Big]$$

- \circ minimized when $\hat{ heta} = \mathbb{E}[\Theta|X=x]$
- LMS estimator $\hat{\Theta} = \mathbb{E}[\Theta|X]$
- \bullet What is the mean squared error of the LMS estimate?
 - When X = x, $\mathbb{E}\Big[\big(\Theta \mathbb{E}[\Theta|X = x]\big)^2 | X = x\Big] = \text{var}\Big(\Theta|X = x\Big)$
 - Averaged over X: $\mathbb{E}\Big[(\Theta \mathbb{E}[\Theta|X])^2\Big] = \mathbb{E}\Big[\mathsf{var}(\Theta|X)\Big]$

Slides 17 and 35 for more details

- Romeo and Juliet start dating, where Romeo is late by $X \sim \mathcal{U}[0, \theta]$.
- Unknown: θ modeled by a ry $\Theta \sim \mathcal{U}[0,1]$.
- Observation: Romeo was late by x.
- $\bullet \ \, \mathsf{Posterior} \colon f_{\Theta|X}(\theta|x) = \begin{cases} \frac{1}{\theta |\log x|}, & x \leq \theta \leq 1, \\ 0, & \theta < x \text{ ,or } \theta > 1 \end{cases}$
- $\hat{\theta}_{MAP} = x$.
- LMS estimator:

L9(5)

$$\hat{\theta}_{LMS} = \mathbb{E}[\theta|X = x] = \int_{x}^{1} \theta \frac{1}{\theta |\log x|} d\theta = \frac{(1-x)/|\log x|}{\theta |\log x|}$$

- Biased coin with prob. of head θ . Unknown θ modeled by Θ with prior $f_{\Theta}(\theta)$.
- Observation X: number of heads out of n tosses
- If $\Theta \sim \text{Beta}(\alpha, \beta)$, then $\Theta | \{X = k\} \sim \text{Beta}(k + \alpha, n k + \beta)$
- MAP estimate

$$\hat{\theta}_{\mathsf{MAP}} = \frac{\alpha + k - 1}{\alpha + \beta - 2 + n}$$

• For $\alpha = \beta = 1$

$$\hat{\theta}_{MAP} = \frac{k}{n}$$

• Fact. If $\Theta \sim \text{Beta}(\alpha, \beta)$.

$$\mathbb{E}[\Theta] = \frac{1}{B(\alpha,\beta)} \int_0^1 \theta \theta^{\alpha-1} (1-\theta)^{\beta-1} d\theta = \frac{B(\alpha+1,\beta)}{B(\alpha,\beta)} = \frac{\alpha}{\alpha+\beta}$$

$$\mathbb{E}[\Theta|X=k] = \frac{k+\alpha}{k+\alpha+n-k+\beta} = \frac{k+\alpha}{\alpha+\beta+n}$$

 $(\mathcal{U}[0,1] \text{ prior}),$ $\hat{\theta}_{\mathsf{MAP}} = \frac{k}{n}$ $\circ \mathsf{E}[\Theta|X = k] = \frac{k+\alpha}{k+\alpha+n-k+\beta} = \frac{k+\alpha}{\alpha+\beta+n}$ $\circ \mathsf{For} \ \alpha = \beta = 1 \ (\mathcal{U}[0,1] \ \mathsf{prior}) \colon \mathbb{E}[\Theta|X = k] = \frac{k+1}{n+2}$

L9(5) June 12, 2021 45 / 67 June 12, 2021

Example: Parameter Inference with Normal Prior

KAIST EE

Example: Signal Recovery from Noisy Measurement (1)

- Slides 27 and 38 for more details
- The posterior pdf $f_{\Theta|X}(\theta|x) = a \cdot \exp\left\{-\frac{(\theta-m)^2}{2\nu}\right\}$, where

$$m = \frac{\sum_{i=0}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=0}^{n} \frac{1}{\sigma_i^2}}, \qquad v = \frac{1}{\sum_{i=0}^{n} \frac{1}{\sigma_i^2}}$$

- The pdf is normal, so it is maximized when $\theta = \text{mean}$.
- Thus, $\hat{\theta}_{MAP} = m$.
- What is the LMS esitmate?

$$\hat{\theta}_{\mathsf{LMS}} = \mathbb{E}[\Theta|X = x] = m$$

- Send signal θ with the uniform noise $W \sim \mathcal{U}[-1,1]$. Observe X
- $X = \Theta + W$, where model θ with $\Theta \sim \mathcal{U}[4, 10]$
- Given $\Theta = \theta$, $X = \theta + W \sim \mathcal{U}[\theta 1, \theta + 1]$.

$$f_{\Theta,X}(\theta,x) = f_{\Theta}(\theta) f_{X|\Theta}(x|\theta) = \begin{cases} \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12}, & \text{if } 4 \leq \theta \leq 10, \ \theta - 1 \leq x \leq \theta + 1, \\ 0, & \text{otherwise} \end{cases}$$

 $\hat{\theta}_{LMS} = \mathbb{E}[\Theta|X = x]$: midpoint of the corresponding vertical section

- What is conditional MSE? $\mathbb{E}\Big[(\Theta \mathbb{E}[\Theta|X=x])^2|X=x\Big]$
- Given X=3, it's the variance of $\mathcal{U}[4,4]=0$
- Given X = 5, it's the variance of $\mathcal{U}[4, 6] = (6 4)^2/12 = 1/3$
- The rising pattern between X=3 and X=5 is quadratic. This is because the expectation increases linearly, where the variance increases in a quadratic manner.

L9(5) June 12, 2021 49 / 67

- Observation model $f_{X|\Theta}(x|\theta)$ may not be always available
- ullet Finding the posterior distribution is hard for multi-dimensional Θ
- Θ is very often high-dimensional, especially in the era of big data and deep learning
 - AlexNet in image recognition: 61M parameters
 - GPT-3 in natural language processing: 175B parameters
- Any alternative to LMS estimator?

L9(5) June 12, 2021 50 / 67

Roadmap

KAIST EE

Linear LMS (LLMS) Estimator: Approach

- (1) Overview on Statistical Inference
- (2) Bayesian Inference: Framework
- (3) Examples
- (4) MAP (Maximum A Posteriori) Estimator
- (5) LMS (Least Mean Squares) Estimator
- (6) LLMS (Linear LMS) Estimator
- (7) Classical Inference: ML Estimator

()

- · Give up optimality, but choose a simple, but good one.
- General estimators $\hat{\Theta} = g(X)$, LMS estimator $\hat{\Theta}_{LMS} = \mathbb{E}[\Theta|X]$
- We consider a restricted class of g(X)
 - Estimator: $\hat{\Theta} = aX + b$
 - Estimate: Given X = x, $\hat{\theta} = \boxed{ax + b}$
- Our goal is to try our best within this restricted class:

$$\min_{a,b} \mathbb{E}\Big[(\Theta - aX - b)^2 | X = x\Big], \qquad \min_{a,b} \mathbb{E}\Big[(\Theta - aX - b)^2\Big]$$

• Linear models are always the first choice for a simple design in engineering.

LLMS Estimator: Mean Squared Error

LLMS

$$\hat{\Theta}_L = \mathbb{E}(\Theta) + \frac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big) = \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_X} \Big(X - \mathbb{E}(X) \Big),$$

where the correlation coefficient $\rho = \frac{\text{cov}(\Theta, X)}{\sigma \circ \sigma x}$

- No need of distributions on Θ and X: only means, variances, and covariances
- If $\rho > 0$:
- Baseline ($\mathbb{E}[\Theta]$) + correction term
- If $X > \mathbb{E}[X] \Longrightarrow \hat{\Theta}_{I} > \mathbb{E}[\Theta]$
- If $X < \mathbb{E}[X] \Longrightarrow \hat{\Theta}_L < \mathbb{E}[\Theta]$

L9(6)

- If $\rho = 0$ (uncorrelated):
 - $-\hat{\Theta}_L = \mathbb{E}[\Theta]$
- No use of data X

- Just baseline ($\mathbb{E}[\Theta]$)

June 12, 2021 53 / 67 • MSE $\mathbb{E}[(\hat{\Theta}_{\ell} - \Theta)^2]$?

• Assume $\mathbb{E}[\Theta] = \mathbb{E}[X] = 0$ (for simplicity). Then, $\mathsf{MSE} = \mathbb{E}\left[(\Theta - \rho \frac{\sigma_{\Theta}}{\sigma_{X}}X)^{2}\right]$

• Note that $var[\Theta] = \sigma_{\Theta}^2 = \mathbb{E}(\Theta^2)$ and $var[X] = \sigma_X^2 = \mathbb{E}(X^2)$

$$\mathbb{E}\Big[(\Theta - \rho \frac{\sigma_{\Theta}}{\sigma_{X}} X)^{2}\Big] = \text{var}(\Theta - \rho \frac{\sigma_{\Theta}}{\sigma_{X}} X)$$
$$= \text{var}(\Theta) + \left(\rho \frac{\sigma_{\Theta}}{\sigma_{X}}\right)^{2} \text{var}(X) - 2\left(\rho \frac{\sigma_{\Theta}}{\sigma_{X}}\right) \text{cov}(\Theta, X) = (1 - \rho^{2}) \text{var}[\Theta]$$

- Uncertainty about Θ after observation decreases by the factor of $1-\rho^2$
- What happens if $|\rho| = 1$ or $\rho = 0$?

$$\hat{\Theta}_L = \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_X} \Big(X - \mathbb{E}(X) \Big)$$

L9(6) June 12, 2021

Linear LMS (LLMS) Estimator: Proof

KAIST EE

Example: Romeo and Juliet (1)

 $\hat{\Theta}_L = \mathbb{E}(\Theta) + rac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big)$ $= \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_{X}} \Big(X - \mathbb{E}(X) \Big)$

 $\min_{a,b} \mathsf{ERR}(a,b) = \min_{a,b} \mathbb{E} \Big[(\Theta - aX - b)^2 \Big]$

- Assume a was found.

$$\mathbb{E}\Big[(Y-b)^2\Big], \quad Y=\Theta-aX$$

- Minimized when $b = \mathbb{E}(Y) = \mathbb{E}(\Theta) - a\mathbb{E}(X)$. Slide pp. 43

$$ERR(a, b) = \mathbb{E}[(Y - \mathbb{E}[Y])^{2}] = var(Y)$$

$$= var[\Theta] + a^{2}var[X] - 2acov(\Theta, X)$$
(3)

(1)

(2)

- (3) is minimized when $a = \frac{\text{cov}(\Theta, X)}{\text{var}[X]}$. Then,

$$\hat{\Theta}_L = aX + b = aX + \mathbb{E}(\Theta) - a\mathbb{E}(X)$$

= $\mathbb{E}(\Theta) + a(X - \mathbb{E}(X)) = (1)$

- Using $ho = rac{\operatorname{cov}(\Theta,X)}{\sigma_\Theta\sigma_X},$ we get:

$$a = \frac{\rho \sigma_{\Theta} \sigma_{X}}{\sigma_{X}^{2}} = \frac{\rho \sigma_{\Theta}}{\sigma_{X}}$$

- Then, we have (2)

Slides 17, 35, and 45 for more details

- Romeo and Juliet start dating, where Romeo is late by $X \sim \mathcal{U}[0, \theta]$.
- Unknown: θ modeled by a ry $\Theta \sim \mathcal{U}[0,1]$.
- Random observation: X
- $\hat{\Theta}_{MAP} = X$, and $\hat{\Theta}_{IMS} = (1 X)/|\log X$.
- Question. What is the LLMS estimator $\hat{\Theta}_{i}$?

Example: Romeo and Juliet (2)

KAIST EE

Example: Biased Coin with Uniform Prior

$$\hat{\Theta}_{\mathsf{L}} = \mathbb{E}(\Theta) + rac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big)$$

- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[\Theta/2] = 1/4$
- Using $\mathbb{E}[\Theta] = 1/2$ and $\mathbb{E}[\Theta^2] = 1/3$. $var[X] = \mathbb{E}[var[X|\Theta]] + var[\mathbb{E}[X|\Theta]]$

$$\begin{aligned}
\text{Var}[X] &= \mathbb{E}[\text{Var}[X|\Theta]] + \text{Var}[\mathbb{E}[X|\Theta]] \\
&= \frac{1}{12}\mathbb{E}[\Theta^2] + \frac{1}{4}\text{Var}[\Theta] = \frac{7}{144}
\end{aligned}$$

• $cov(\Theta, X) = \mathbb{E}[\Theta X] - \mathbb{E}[\Theta]\mathbb{E}[X]$

$$\mathbb{E}[\Theta X] = \mathbb{E}[\mathbb{E}[\Theta X | \Theta]] = \mathbb{E}[\Theta \mathbb{E}[X | \Theta]]$$
$$= \mathbb{E}[\Theta^2 / 2] = 1/6$$

$$cov(\Theta, X) = 1/6 - 1/2 \cdot 1/4 = 1/24$$

•
$$\hat{\Theta}_L = \frac{1}{2} + \frac{1/24}{7/144}(X - \frac{1}{4}) = \frac{6}{7}X + \frac{2}{7}$$

• Biased coin with probability of head
$$\theta$$

- Unknown $\Theta \sim \mathcal{U}[0,1]$, $-\mathbb{E}[\Theta] = 1/2, \, \text{var}[\Theta] = 1/12$
- n tosses. X: number of heads.
- $p_{X|\Theta}(k|\theta) \sim \text{Binomial}(n,\theta)$

•
$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[n\Theta] = n/2$$

$$\begin{aligned} \operatorname{var}(X) &= \mathbb{E}[\operatorname{var}(X|\Theta)] + \operatorname{var}(\mathbb{E}[X|\Theta]) \\ &= \mathbb{E}[n\Theta(1-\Theta)] + \operatorname{var}[n\Theta] \\ &= \frac{n}{2} - \frac{n}{3} + \frac{n^2}{12} = \frac{n(n+2)}{12} \end{aligned}$$

$$cov(\Theta, X) = \mathbb{E}[\Theta X] - \mathbb{E}[\Theta]\mathbb{E}[X] = \mathbb{E}[\Theta X] - n/4$$

$$\begin{split} \mathbb{E}[\Theta X] &= \mathbb{E}[\mathbb{E}[\Theta X | \Theta]] = \mathbb{E}[\Theta \mathbb{E}[X | \Theta]] \\ &= \mathbb{E}[n\Theta^2] = n/3 \end{split}$$

$$cov(\Theta, X) = \frac{n}{3} - \frac{n}{4} = \frac{12}{n}$$

$$\hat{\Theta}_L = \frac{1}{2} + \frac{n/12}{n(n+2)/12}(X - \frac{n}{2}) = \frac{X+1}{n+2}$$

- $\hat{\Theta}_{MAP} = \frac{X}{n}$
- $\hat{\Theta}_{LMS} = \frac{X+1}{n+2}$
- $\hat{\Theta}_{I} = \hat{\Theta}_{LMS}!$ Intuitive?
- Yes, because the LMS esitmator was linear.

L9(6)

June 12, 2021 57 / 67 L9(6)

June 12, 2021

58 / 67

Roadmap

KAIST EE

Framework of Classical Inference (1)

- (1) Overview on Statistical Inference
- (2) Bayesian Inference: Framework
- (3) Examples
- (4) MAP (Maximum A Posteriori) Estimator
- (5) LMS (Least Mean Squares) Estimator
- (6) LLMS (Linear LMS) Estimator
- (7) Classical Inference: ML Estimator

- Unknown θ
 - deterministic (not random) quantity (thus, no prior distribution)
 - No prior, No posterior probabilities
- Observations or measurements X
 - \circ Random observation X's distribution just depends on θ
 - Notation: $p_X(x;\theta)$ and $f_X(x;\theta)$, θ -parameterized distribution of observations
- Choosing one among multiple probabilistic models
 - \circ Each θ corresponds to a probabilistic model

Problem types

• Estimation: θ : prob. of head?

• Hypothesis testing: $\theta = 1/2$ or $\theta = 1/4$?

• Significance testing: $\theta = 1/2$ or not?

Key inference methods

ML (Maximum Likelihood) estimation

Linear regression

Likelihood ratio test

Significant testing

• Just a taste in this course.

L9(7) June 12, 2021 61 / 67

- Random observation $x = (x_1, x_2, \dots, x_n)$ of $X = (X_1, X_2, \dots, X_n)$
 - Assume a scalar θ and a vector of multiple observations in this lecture.

• Likelihood $p_X(x_1, x_2, \ldots, x_n; \theta)$

 $\circ p_X(x_1,x_2,\ldots,x_n;\theta)$

- The probability that the observed value x arises when the parameter is θ .

ML (Maximum Likelihood) estimation

$$\hat{\theta}_{\mathsf{ML}} = \operatorname{arg\,max}_{\theta} p_X(x_1, x_2, \dots, x_n; \theta)$$

• Very often, X_i s are independent. Then, ML equals to maximizing the log-likelihood:

$$\log p_X(x_1, x_2, \dots, x_n; \theta) = \log \prod_{i=1}^n p_{X_i}(x_i; \theta) = \sum_{i=1}^n \log p_{X_i}(x_i; \theta)$$

L9(7) June 12, 2021 62 / 67

ML vs. MAP

Example: Romeo and Juliet

- ML and MAP: How are they related?
- MAP in the Bayesian inference

$$\hat{\theta}_{\mathsf{MAP}} = \arg\max_{\theta} p_{\Theta|X}(\theta|x) = \arg\max_{\theta} \frac{p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{p_{X}(x)} = \frac{1}{p_{X}(x)} \arg\max_{\theta} \frac{p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{p_{X}(x)}$$

• ML in the classical inference

$$\hat{\theta}_{\mathsf{ML}} = \arg\max_{\theta} \underset{\theta}{\mathsf{p}_{\mathsf{X}}(\mathsf{x};\theta)}$$

- $p_{X|\Theta}(x|\theta)$ in the Bayesian setting corresponds to $p_X(x;\theta)$ in the classical setting.
- Thus, when Θ is uniform (complete ignorance of Θ) in MAP, MAP == ML

Slides 17, 35, 45, and 56 for more details

- Romeo and Juliet start dating. Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim \textit{U}[0,1].$
- MAP: $\hat{\theta}_{MAP} = x$
- LMS: $\hat{\theta}_{LMS} = (1-x)/|\log x|$
- LLMS: $\hat{\theta}_{L} = \frac{6}{7}x + \frac{2}{7}$
- ML: $\hat{\theta}_{MI} = \hat{\theta}_{MAP} = x$

- *n* identical, independent exponential rvs, X_1, X_2, \ldots, X_n with parameter θ .
- Observation x_1, x_2, \ldots, x_n
- What is the ML estimate of θ ?
- Reminder. $X \sim \exp(\lambda)$

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases} \quad \mathbb{E}[X] = 1/\lambda$$

• Any guess? $\hat{\theta}_{\text{ML}} = \frac{n}{x_1 + x_2 ... x_n}$

$$\arg\max_{\theta} f_X(x;\theta) = \arg\max_{\theta} \prod_{i=1}^n \theta e^{-\theta x_i} = \arg\max_{\theta} \left(n \log \theta - \theta \sum_{i=1}^n x_i \right)$$

Questions?

L9(7)

June 12, 2021 65 / 67

L9(7)

June 12, 2021 66 / 67

Review Questions

- 1) What is statistical inference?
- 2) Draw the building blocks of Bayesian inference and explain how it works.
- 3) What are MAP and LMS estimators and their underlying philosophies?
- 4) What is LLMS estimator and why is it useful?
- 5) Compare the classical and Bayesian inference.
- 6) What is the ML estimator and how is it related to the MAP estimator?