

Answering Causal Questions With Reinforcement Learning

Lukas Blübaum

Supervisor: Dr. Stefan Heindorf

Data Science Group Paderborn University

- Causal Questions
 - Determine relationships between causes and effects
 - ► E.g. understand what effects a cause could have in the future

Binary Causal QuestionsDoes pneumonia cause anemia?

Open-Ended Questions
What can cause anemia?

Comprehension Questions
How does pneumonia cause anemia?

- ► Causal Questions
 - Determine relationships between causes and effects
 - E.g. understand what effects a cause could have in the future
- Use Cases
 - Search engines
 - Virtual assistants like Alexa
 - Automated decision-making

Binary Causal QuestionsDoes pneumonia cause anemia?

Open-Ended Questions
What can cause anemia?

Comprehension Questions
How does pneumonia cause anemia?

- Causal Questions
 - Determine relationships between causes and effects
 - E.g. understand what effects a cause could have in the future
- ▶ Use Cases
 - Search engines
 - Virtual assistants like Alexa
 - Automated decision-making
- ► Limitations of prior approaches
 - ▶ Often not explainable
 - Lack of large-scale datasets of causal relations of high quality

Binary Causal QuestionsDoes pneumonia cause anemia?

Open-Ended Questions
What can cause anemia?

Comprehension Questions
How does pneumonia cause anemia?

- Solution
 - Perform walks on a knowledge graph
 - ► Formulated as a sequential decision problem via reinforcement learning

Does pneumonia cause anemia?

- Solution
 - Perform walks on a knowledge graph
 - ► Formulated as a sequential decision problem via reinforcement learning
- ► Advantages
 - ► Answers are explainable⇒ Can follow the reasoning chain
 - ► Can answer binary and open-ended questions

Does pneumonia cause anemia?

- Solution
 - Perform walks on a knowledge graph
 - ► Formulated as a sequential decision problem via reinforcement learning
- Advantages
 - Answers are explainable
 - \Rightarrow Can follow the reasoning chain
 - Can answer binary and open-ended questions
- ▶ Contributions
 - Approach to answer binary causal questions via reinforcement learning
 - ► Introduce an Actor-Critic (A2C) based agent with generalized advantage estimation (GAE)
 - Supervised learning and reward shaping to deal with large action spaces and sparse rewards

Does pneumonia cause anemia?

CauseNet

Large-Scale Causal Knowledge Graph

- \blacktriangleright $\mathcal{K} = (\mathcal{E}, \mathcal{R})$: entities \mathcal{E} , relations \mathcal{R}
- ▶ R = {mayCause}:
 ⇒ Claimed causal relations
- Meta-information like the original sentence and the URL for each relation
- ► Two configurations: CauseNet-Precision and CauseNet-Full [Heindorf et al., 2020]

CauseNet

Large-Scale Causal Knowledge Graph

- \blacktriangleright $\mathcal{K} = (\mathcal{E}, \mathcal{R})$: entities \mathcal{E} , relations \mathcal{R}
- ▶ R = {mayCause}:
 ⇒ Claimed causal relations
- Meta-information like the original sentence and the URL for each relation
- Two configurations: CauseNet-Precision and CauseNet-Full [Heindorf et al., 2020]

Causal Questions

- Does pneumonia cause fatigue?
- Is sepsis caused by pneumonia?

Task and Problem Definition

Causal Question Answering on Knowledge Graph ${\mathcal K}$

- ► Input:
 - \blacktriangleright $\mathcal{K} = (\mathcal{E}, \mathcal{R})$ with $\mathcal{R} = \{cause\}$
 - Question q with exactly one cause e_c and one effect e_e
 Does pneumonia (= e_c) cause anemia (= e_e)?

Task and Problem Definition

Causal Question Answering on Knowledge Graph ${\mathcal K}$

- ► Input:
 - \blacktriangleright $\mathcal{K} = (\mathcal{E}, \mathcal{R})$ with $\mathcal{R} = \{cause\}$
 - Question q with exactly one cause e_c and one effect e_e Does pneumonia (= e_c) cause anemia (= e_e)?
- Output:
 - ▶ Path: $(e_c, e_1, ..., e_e)$ with $e_c, e_i, e_e \in \mathcal{E}$
 - ► If such a path can be found answer "yes" and "no" otherwise

Task and Problem Definition

Causal Question Answering on Knowledge Graph ${\mathcal K}$

- ► Input:
 - \blacktriangleright $\mathcal{K} = (\mathcal{E}, \mathcal{R})$ with $\mathcal{R} = \{cause\}$
 - Question q with exactly one cause e_c and one effect e_e Does pneumonia (= e_c) cause anemia (= e_e)?
- Output:
 - ▶ Path: (e_c, e_1, \dots, e_e) with $e_c, e_i, e_e \in \mathcal{E}$
 - ► If such a path can be found answer "yes" and "no" otherwise
- ► Challenges:
 - Only one relation type contrary to prior approaches
 ⇒ Large action space
 - ► CauseNet-Precision has 80,223 entities

Reinforcement Learning

▶ Policy gradient methods with policy network $\pi_{\theta}(a_t|s_t)$:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log(\pi_{\theta}(a_{t}|s_{t})) \Psi_{t} \right]$$

Reinforcement Learning

▶ Policy gradient methods with policy network $\pi_{\theta}(a_t|s_t)$:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log(\pi_{\theta}(a_{t}|s_{t})) \Psi_{t} \right]$$

Possible forms for Ψ_t [Schulman et al., 2016]:

$$R_t = \sum_{i=0}^{T-t} \gamma^i r_{t+i} \qquad \qquad \mathcal{A}_t^{\psi} = R_t(\lambda) - V_{\psi}(s_t)$$

Reinforcement Learning

▶ Policy gradient methods with policy network $\pi_{\theta}(a_t|s_t)$:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log(\pi_{\theta}(a_{t}|s_{t})) \Psi_{t} \right]$$

▶ Possible forms for Ψ_t [Schulman et al., 2016]:

$$R_t = \sum_{i=0}^{T-t} \gamma^i r_{t+i} \qquad \qquad \mathcal{A}_t^{\psi} = R_t(\lambda) - V_{\psi}(s_t)$$

- ► Monte-Carlo return R_t unbiased but high variance \Rightarrow REINFORCE
- Advantage \mathcal{A}_t^{ψ} introduces value network $V_{\psi}(s_t)$ to reduce variance \Rightarrow Advantage Actor-Critic (A2C) [Mnih et al., 2016]
- ▶ Using the λ -return $R_t(\lambda)$ in the advantage yields the generalized advantage estimation (GAE) [Schulman et al., 2016]

Agent, States, Actions

- Agent
 - $ightharpoonup \pi_{\theta}(a_t|s_t)$: policy network
 - ⇒ Distribution over actions
 - $ightharpoonup V_{\psi}(s_t)$: value network
 - \Rightarrow Reward from state s_t onwards

Agent, States, Actions

- Agent
 - $\blacktriangleright \pi_{\theta}(a_t|s_t)$: policy network
 - ⇒ Distribution over actions
 - $ightharpoonup V_{\psi}(s_t)$: value network
 - \Rightarrow Reward from state s_t onwards
- States
 - \triangleright s = (q, e_t, e_t, h_t, e_e)
 - Question Embedding q
 - ► Current entity e_t, target entity e_e
 - ► History h_t (LSTM hidden states)

Agent, States, Actions

- Agent
 - ► $\pi_\theta(a_t|s_t)$: policy network
 - ⇒ Distribution over actions
 - $ightharpoonup V_{\psi}(s_t)$: value network
 - \Rightarrow Reward from state s_t onwards
- States
 - \triangleright s = (q, e_t, e_t, h_t, e_e)
 - Question Embedding q
 - Current entity e_t, target entity e_e
 - ► History **h**_t (LSTM hidden states)
- Actions
 - ► All neighboring entities of e_t :

$$A(s_t) = \{e | (e_t, r, e) \in \mathcal{K}\}$$

Actions, Transitions, Rewards

- Actions
 - ► STAY action:

$$A(s_t) = A(s_t) \cup \{STAY\}$$

► Including inverse edges

Actions, Transitions, Rewards

- Actions
 - STAY action:

$$A(s_t) = A(s_t) \cup \{STAY\}$$

- ► Including inverse edges
- ▶ Transitions
 - \blacktriangleright $\delta(s_t, a_t) = s_{t+1}$ where $a_t = e_{t+1}$
 - Deterministic and entirely defined by the graph

Actions, Transitions, Rewards

- Actions
 - ► STAY action:

$$A(s_t) = A(s_t) \cup \{STAY\}$$

- ► Including inverse edges
- ▶ Transitions
 - \blacktriangleright $\delta(s_t, a_t) = s_{t+1}$ where $a_t = e_{t+1}$
 - Deterministic and entirely defined by the graph
- Rewards
 - $ightharpoonup \mathcal{R}(s_{T-1}) = r_t \text{ with } r_t = 1 \text{ if } e_{T-1} = e_e$ and $r_t = 0$ otherwise
 - ▶ 0 at all other time steps⇒ sparse reward

- ► Network Architecture
 - ► LSTM to include the path history
 - Stack two feedforward networks on top
 - \Rightarrow For policy network and value network

- Network Architecture
 - LSTM to include the path history
 - Stack two feedforward networks on top
 - ⇒ For policy network and value network
- Preprocessing of questions
 - ► No negative information in CauseNet
 - ⇒ Only use positive questions
 - ► Find e_c and e_e in graph via exact string matching

Training

- Network Architecture
 - ► LSTM to include the path history
 - Stack two feedforward networks on top
 - \Rightarrow For policy network and value network
- ► Preprocessing of questions
 - ► No negative information in CauseNet
 - ⇒ Only use positive questions
 - Find e_c and e_e in graph via exact string matching
- ► Sample rollouts
 - ► Starting at e_c sample rollouts of length T
 - ► If e_e found, the agent should use the STAY action

```
rollout = (
```

pneumonia

DICE

- ▶ Network Architecture
 - ► LSTM to include the path history
 - ► Stack two feedforward networks on top ⇒ For policy network and value network
- ► Preprocessing of questions
 - ► No negative information in CauseNet ⇒ Only use positive questions
 - ► Find e_c and e_e in graph via exact string matching
- ► Sample rollouts
 - ► Starting at e_c sample rollouts of length T
 - ► If e_e found, the agent should use the STAY action

rollout =
$$((s_0, a_0, r_0),$$

DICE

- ▶ Network Architecture
 - ► LSTM to include the path history
 - ► Stack two feedforward networks on top ⇒ For policy network and value network
- ► Preprocessing of questions
 - ► No negative information in CauseNet ⇒ Only use positive questions
 - ► Find e_c and e_e in graph via exact string matching
- ▶ Sample rollouts
 - ► Starting at e_c sample rollouts of length T
 - ► If e_e found, the agent should use the STAY action

rollout =
$$((s_0, a_0, r_0), (s_1, a_1, r_1),$$

- ▶ Network Architecture
 - ► LSTM to include the path history
 - ➤ Stack two feedforward networks on top ⇒ For policy network and value network
- Preprocessing of questions
 - ► No negative information in CauseNet ⇒ Only use positive questions
 - ► Find ec and ee in graph via exact string matching
- ▶ Sample rollouts
 - ► Starting at e_c sample rollouts of length T
 - ► If e_e found, the agent should use the STAY action

rollout =
$$((s_0, a_0, r_0), (s_1, a_1, r_1), (s_2, a_2, r_2))$$

Update Rules

- ► Using Synchronous Advantage Actor-Critic (A2C) with GAE
- ► Actor: policy network $\pi_{\theta}(a_t|s_t)$:

$$\nabla_{\theta} J(\theta) = -\frac{1}{B} \sum_{i}^{B} \sum_{t=0}^{T-2} \nabla_{\theta} \log(\pi_{\theta}(a_{t}|s_{t})) \mathcal{A}_{t}^{\psi} + \beta H_{\pi_{\theta}}$$

- ▶ *B*: batch size, *T*: episode length, A_t^{ψ} : GAE
- $ightharpoonup H_{\pi_{\theta}}$: entropy regularization \Rightarrow exploration vs. exploitation

Update Rules

- ► Using Synchronous Advantage Actor-Critic (A2C) with GAE
- ► Actor: policy network $\pi_{\theta}(a_t|s_t)$:

$$\nabla_{\theta} J(\theta) = -\frac{1}{B} \sum_{i}^{B} \sum_{t=0}^{T-2} \nabla_{\theta} \log(\pi_{\theta}(a_{t}|s_{t})) \mathcal{A}_{t}^{\psi} + \beta H_{\pi_{\theta}}$$

- ▶ B: batch size, T: episode length, A_t^{ψ} : GAE
- $ightharpoonup H_{\pi_{\theta}}$: entropy regularization \Rightarrow exploration vs. exploitation
- ► Critic: value network $V_{\psi}(s_t)$:

$$\nabla_{\psi} J(\psi) = \frac{1}{B(T-1)} \sum_{i}^{B} \sum_{t=0}^{T-2} \nabla_{\psi} (R_{t}(\lambda) - V_{\psi}(s_{t}))^{2}$$

► MSE between λ -return and value network predictions $V_{\psi}(s_t)$

Inference

Inference Time

- ► Receive positive and negative questions
- ► Answer "yes" if a path was found and "no" otherwise

Inference

Inference Time

- Receive positive and negative questions
- ► Answer "yes" if a path was found and "no" otherwise
- ▶ Greedy decoding:
 - ► Choose action: $arg \max_{a_t \in A(s_t)} \pi_{\theta}(a_t|s_t)$
 - Myopic behavior

Inference

Inference Time

- Receive positive and negative questions
- ► Answer "yes" if a path was found and "no" otherwise
- Greedy decoding:
 - ► Choose action: $arg \max_{a_t \in A(s_t)} \pi_{\theta}(a_t|s_t)$

 - Myopic behavior

- Paths ranked by their probability
- Probability of path $p = (e_c, e_1, \dots, e_{T-1})$ with $e_t = a_{t-1}$:

Beam Width = 2

Beam Width = 2

Beam Width = 2

Beam Width = 2

Walkthrough

Beam Width = 2

Question: Does pneumonia cause anemia?

Bootstrapping with Supervised Learning

- ► Problem: large action space + sparse rewards
 - ► Slow convergence
 - ► Guidance in the beginning

Bootstrapping with Supervised Learning

- ▶ Problem: large action space + sparse rewards
 - Slow convergence
 - Guidance in the beginning
- ► Generating expert demonstrations [Xiong et al., 2017]:
 - ► Paths from a breadth-first search (BFS)
 - Preprocessing step for each question q Find path between e_c and e_e

Bootstrapping with Supervised Learning

- ► Problem: large action space + sparse rewards
 - Slow convergence
 - ► Guidance in the beginning
- ► Generating expert demonstrations [Xiong et al., 2017]:
 - Paths from a breadth-first search (BFS)
 - Preprocessing step for each question q Find path between e_c and e_e
- Supervised gradient update:
 - $ightharpoonup r_t = 1$ at each time step
 - Batch size B, episode length T
 - ► Entropy regularization $H_{\pi_{\theta}}$

$$\nabla_{\theta} J(\theta) = -\frac{1}{B} \sum_{i}^{B} \sum_{t=0}^{T-2} \nabla_{\theta} \log(\pi_{\theta}(a_{t}|s_{t})) r_{t} + \beta H_{\pi_{\theta}}$$

Reward Shaping

- ► Problem: sparse rewards
 - ► Agent only receives a reward if $e_{T-1} = e_e$
 - ► Rarely finds correct paths at the start

Reward Shaping

- ► Problem: sparse rewards
 - ► Agent only receives a reward if $e_{T-1} = e_e$
 - Rarely finds correct paths at the start
- ► Introduce auxiliary reward:
 - Score last node according to its relevance to the question [Yasunaga et al., 2021]

Does pneumonia cause anemia?

Reward Shaping

- ► Problem: sparse rewards
 - ► Agent only receives a reward if $e_{T-1} = e_e$
 - Rarely finds correct paths at the start
- Introduce auxiliary reward:
 - Score last node according to its relevance to the question [Yasunaga et al., 2021]
- ▶ Updated reward:

$$\mathcal{R}'(\mathsf{s}_{T-1}) = \begin{cases} \mathcal{R}(\mathsf{s}_{T-1}), & \mathcal{R}(\mathsf{s}_{T-1}) = 1\\ \mathsf{Score}(q, \mathsf{e}_{T-1}) \cdot \omega, & \mathsf{otherwise} \end{cases}$$

Where Score is defined as:

$$Score(q, e_{T-1}) = LM_{head}(LM_{enc}([q; e_{T-1}]))$$

► LM_{head}: feedforward network, LM_{enc}: language model encoder

Evaluation

MS MARCO							
	Accuracy	F ₁	Recall	Precision	Nodes		
Agent 2-Hop Agent 3-Hop	0.460 0.529	0.562 0.648	0.408 0.511	0.901 0.884	26 27		
BFS 2-Hop BFS 3-Hop	0.494 0.589	0.612 0.714	0.471 0.605	0.875 0.871	1,727 3,339		
UnifiedQA-v2	0.722	0.828	0.789	0.871	-		

SemEval

	Accuracy	F ₁	Recall	Precision	Nodes
Agent 2-Hop	0.769	0.714	0.575	0.943	27
Agent 3-Hop	0.775	0.727	0.598	0.929	29
BFS 2-Hop	0.815	0.787	0.678	0.937	1,565
BFS 3-Hop	0.751	0.754	0.759	0.750	3,687
UnifiedQA-v2	0.497	0.653	0.943	0.500	-

Ablation Study

	MS MARCO				SemEval			
	A	F ₁	R	Р	A	F ₁	R	P
Agent 2-Hop	0.460	0.562	0.408	0.901	0.769	0.714	0.575	0.943
Beam Search	0.293	0.306	0.184	0.911	0.613	0.374	0.230	1.000
 Supervised Learning 	0.342	0.397	0.257	0.891	0.682	0.538	0.369	1.000
Actor-Critic	0.441	0.539	0.386	0.896	0.740	0.657	0.494	0.977
 Inverse Edges 	0.422	0.513	0.359	0.899	0.740	0.651	0.483	1.000
+ Reward Shaping (0.1)	0.449	0.548	0.395	0.898	0.757	0.691	0.540	0.959
+ Reward Shaping (1.0)	0.403	0.489	0.336	0.893	0.769	0.706	0.552	0.980

Effects of Supervised Learning

Effects of Supervised Learning

Number of Explored Paths + Entropy of Policy Network

Conclusion

- Summary
 - ► Introduced an Actor-Critic (A2C) based agent to answer causal questions
 - Extended with supervised learning and reward shaping

Conclusion

- Summary
 - Introduced an Actor-Critic (A2C) based agent to answer causal questions
 - Extended with supervised learning and reward shaping

Conclusion

Supervised learning provides an effective foundation

► Effectively prunes the search space by around 99%

► Paths can be used as explanations

⇒ Use meta-information to verify the claims

Conclusion

Summary

- Introduced an Actor-Critic (A2C) based agent to answer causal questions
- Extended with supervised learning and reward shaping

► Conclusion

Supervised learning provides an effective foundation

► Effectively prunes the search space by around 99%

► Paths can be used as explanations

 \Rightarrow Use meta-information to verify the claims

Future Work

- ► Extend to open-ended questions

 ⇒ Straightforward extension via majority voting
- ► Add different causal knowledge graphs
- Explore ways to consider negative causal questions during training

References I

[Heindorf et al., 2020] Heindorf, S., Scholten, Y., Wachsmuth, H., Ngomo, A.-C. N., and Potthast, M. (2020).

 $\label{lem:causenet: Towards a causality graph extracted from the web. \\$

In CIKM. ACM.

[Mnih et al., 2016] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and Kavukcuoglu, K. (2016).

Asynchronous methods for deep reinforcement learning.

In Balcan, M. and Weinberger, K. Q., editors, *Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016*, volume 48 of *JMLR Workshop and Conference Proceedings*, pages 1928–1937. JMLR.org.

[Schulman et al., 2016] Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P. (2016). High-dimensional continuous control using generalized advantage estimation.

In Bengio, Y. and LeCun, Y., editors, 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

[Xiong et al., 2017] Xiong, W., Hoang, T., and Wang, W. Y. (2017).

DeepPath: A reinforcement learning method for knowledge graph reasoning.

In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 564–573, Copenhagen, Denmark. Association for Computational Linguistics.

References II

[Yasunaga et al., 2021] Yasunaga, M., Ren, H., Bosselut, A., Liang, P., and Leskovec, J. (2021). QA-GNN: Reasoning with language models and knowledge graphs for question answering. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 535–546, Online. Association for Computational Linguistics.

λ -return & GAE

N-step returns:

$$R_t^{(n)} = \sum_{i=0}^{n-1} \gamma^i r_{t+i} + \gamma^n V_{\psi}(s_{t+n})$$

- ▶ Which n is best?
- \blacktriangleright λ -return exponentially-weighted average of *n*-step returns:

$$R_t(\lambda) = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + \lambda^{T-t-1} R_t^{(T-t)}$$

Network Architecture

► LSTM:

$$\mathbf{h_t} = \begin{cases} LSTM(\mathbf{0}; [\mathbf{q}, \mathbf{e_c}]), & \text{if } t = 0 \\ LSTM(\mathbf{h_{t-1}}, [\mathbf{q}; \mathbf{e_t}]), & \text{otherwise} \end{cases}$$

▶ Policy network $\pi_{\theta}(a_t|s_t)$:

$$\pi_{\theta}(a_t|s_t) = \sigma(\mathbf{A_t} \times W_2 \times ReLU(W_1 \times \mathbf{h_t}))$$

$$a_t \sim Categorical(\pi_{\theta}(a_t|s_t))$$

- ▶ $\mathbf{A_t} \in \mathcal{R}^{|A(s_t)| \times 2d}$ embeddings of actions $a_t \in \mathcal{A}(s_t)$
- $ightharpoonup \sigma$: softmax operator
- ▶ Value network $V_{\psi}(s_t)$:

$$V_{\psi}(s_t) = W_4 \times ReLU(W_3 \times \mathbf{h_t})$$

Entropy

$$H_{\pi_{\theta}} = \frac{1}{B(T-1)} \sum_{i}^{B} \sum_{t=0}^{T-2} \left(-\sum_{a_{t} \in \mathcal{A}(s_{t})} \pi_{\theta}(a_{t}|s_{t}) \log \pi_{\theta}(a_{t}|s_{t}) \right)$$

Beam Search Evaluation

Inference Time

Inverse Edges

- ► Pro:
 - Undo wrong actions
 - ► Reach nodes that could otherwise not be reached in *T* steps
- ► Con:
 - ► Introduction of false positives
 - Atleast in theory it might not make sense to take an inverse edge
- ▶ Does e_1 cause e_4 ? and T = 2:

Examples

Agent 3-Hop

Cause: h. pylori Effect: vomiting

Path: h. pylori $\stackrel{\text{cause}}{\Longrightarrow}$ peptic ulcer disease $\stackrel{\text{cause}}{\Longrightarrow}$ vomiting

Cause: Xanax Effect: hiccups

Path: xanax $\xrightarrow{\text{cause}}$ anxiety $\xrightarrow{\text{cause}}$ stress $\xrightarrow{\text{cause}}$ hiccups

Path: chocolate $\xrightarrow{\text{cause}}$ constipation $\xrightarrow{\text{cause}}$ depression $\xrightarrow{\text{cause}^{-1}}$ constipation

Path: rainfall $\xrightarrow{\text{cause}}$ flooding $\xrightarrow{\text{cause}}$ landslides $\xrightarrow{\text{STAY}}$ landslides