IMSRG with flowing 3N operators

some first explorations

Ragnar Stroberg

University of Washington

Progress in Ab initio Techniques for Nuclear Physics TRIUMF Vancouver, BC March 5, 2020

In-medium similarity renormalization group

Hebeler 2020; figure credit Heiko Hergert

$$H(s) = U(s)HU^{\dagger}(s)$$

$$\frac{dU}{ds} = \eta(s)U(s)$$

$$\frac{dH}{ds} = [\eta(s), H(s)]$$

$$H(s) = H^d(s) + H^{od}(s)$$

$$H^{od}(s) \to 0 \text{ as } s \to \infty$$

Flow equations:

$$H(s) = U(s)HU^{\dagger}(s)$$

$$\frac{dU}{ds} = \eta(s)U(s)$$

$$\frac{dH}{ds} = [\eta(s), H(s)]$$

$$H(s) = H^d(s) + H^{od}(s)$$

$$H^{od}(s) \to 0 \text{ as } s \to \infty$$

$$H = E_0 + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\}$$
$$+ \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\}$$

Flow equations:
$$\begin{aligned} \frac{dE_0}{ds} &= [\eta(s), H(s)]_{0b} \\ \frac{df}{ds} &= [\eta(s), H(s)]_{1b} \\ \frac{d\Gamma}{ds} &= [\eta(s), H(s)]_{2b} \\ \frac{dW}{ds} &= [\eta(s), H(s)]_{3b} \end{aligned}$$

$$H(s) = U(s)HU^{\dagger}(s)$$

$$\frac{dU}{ds} = \eta(s)U(s)$$

$$\frac{dH}{ds} = [\eta(s), H(s)]$$

$$H(s) = H^d(s) + H^{od}(s)$$

$$H^{od}(s) \to 0 \text{ as } s \to \infty$$

$$H = E_0 + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\}$$
$$+ \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\}$$

Flow equations:
$$\frac{dE_0}{ds} = [\eta(s), H(s)]_{0b}$$

$$\frac{df}{ds} = [\eta(s), H(s)]_{1b}$$

$$\frac{d\Gamma}{ds} = [\eta(s), H(s)]_{2b}$$

$$\frac{dW}{ds} = [\eta(s), H(s)]_{3b}$$

As $s \to \infty$, P space is decoupled from Q space.

Output is a shell model effective interaction

→ diagonalize with NuShellX, Antoine, Kshell etc.

$$U(s)=e^{\Omega(s)}$$
 , Magnus operator Ω

$$H(s) = e^{\Omega(s)} H e^{-\Omega(s)}$$

$$= H + [\Omega, H] = \frac{1}{2} [\Omega, [\Omega, H]] + \dots$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!} [\Omega, H]^k$$

Flow eq. for
$$\Omega$$
: $\frac{d\Omega}{ds} = \sum_{k=0}^{\infty} \frac{B_k}{k!} [\Omega, \eta]^k$

Sun et al. 2018

IMSRG(2) failings: excitation energies

Parzuchowski et al. 2017

IMSRG(2) failings: multi-shell decoupling

IMSRG(2) failings: reference dependence

Gaute Hagen, priv. comm.

IMSRG(3) corrections to IMSRG(2) flow

$$\frac{d}{ds}E_0 =$$

$$\begin{bmatrix} 3,3 \end{bmatrix} \rightarrow 0 \\
\sim n^6$$

$$\frac{d}{ds}f =$$

$$\begin{bmatrix} 2,3 \end{bmatrix} \rightarrow 1 \\
\sim n^6$$

$$\begin{bmatrix} 3,3 \end{bmatrix} \rightarrow 1 \\
\sim n^7$$

IMSRG(3) corrections to IMSRG(2) flow

$$\frac{d}{ds}E_0 =$$

$$\begin{bmatrix} [3,3] \to 0 \\ \sim n^6 \end{bmatrix}$$

$$\frac{d}{ds}f =$$

$$\begin{bmatrix} [2,3] \to 1 \\ \sim n^6 \end{bmatrix}$$

$$\begin{bmatrix} [3,3] \to 1 \\ \sim n^7 \end{bmatrix}$$

IMSRG(3) corrections to IMSRG(2) flow

$$\frac{d}{ds}E_0 = \bigcirc$$

$$[3,3] \rightarrow 0$$

$$\sim n^6$$

$$[2,3] \rightarrow 1$$
 $\sim n^6$

 $[3,3] \to 1$ $\sim n^7$

Error, keeping only n^7 terms:

- $E_0 \sim 5$ th order
- $f \sim 4$ th order
- $\Gamma \sim$ 4th order
- $W \sim 3 \text{rd order}$

$$[1,3] \rightarrow 3 \quad [2,3] \rightarrow 3$$

$$\sim n^7 \quad \sim n^8$$

$$[2,3] \rightarrow 3$$

$$\sim n^8$$

$$\begin{array}{cccc}
 & & & \\
 & & & \\
 & [2,3] \rightarrow 2 & [3,3] \rightarrow 2 \\
 & \sim n^7 & \sim n^8
\end{array}$$

 $\sim n^9$

 $[\Omega, [\Omega, H]_{3b}]_{2b}$

T.D. Morris PhD Thesis

Goose Tanks, and IMSRG(2*) approximation

Missing

Included

Remedy:
$$[\Omega, [\Omega, H]] \to [\Omega, [\Omega, H]] + [\Omega, \chi]$$

$$[\mathrm{IMSRG}(2^*) \ \mathrm{approx}]$$

¹²C ground state

- A: $[2,2] \to 3 +$ $[2,3] \to 2$, η_{2b} , Ω_{2b}
- B: A + η_{3b} , Ω_{3b}
- C: B + $[1,3] \rightarrow 3$
- D: C + $[3,3] \rightarrow 0$
- E: D + $[2,3] \rightarrow 1$
- F: E + $[1,3] \rightarrow 2$

 $\mathsf{IMSRG}(3_7)$ calculations made with cut

$$\tilde{e}_a + \tilde{e}_b + \tilde{e}_c \leqslant \tilde{E}_{max} = 2$$
,

$$\tilde{e}_a \equiv 2n_a + \ell_a - \epsilon_F$$

Multi-shell valence spaces and the intruder problem

Summary

- 3-body contributions can help stabilize IMSRG flow (e.g. ¹²C), and improve excitation energies
- Multi-shell decoupling leads to rapid growth of 3-body terms and loss of cluster hierarchy. Keeping 3 body terms is no help.
- ullet Main effects appear to come from n^7 scaling terms
- To do:
 - Optimize, factorize nested commutator terms to n^6
 - How best to use IMSRG(3) to assess uncertainty?

Thanks to Titus Morris, Takayuki Miyagi, Julien Ripoche, Alex Tichai, and Roland Wirth for helpful discussions.

Additional figures

- Hebeler, Kai (2020). "Three-Nucleon Forces: Implementation and Applications to Atomic Nuclei and Dense Matter". In: arXiv: 2002.09548. URL: http://arxiv.org/abs/2002.09548.
- Parzuchowski, N. M. et al. (2017). "Ab initio electromagnetic observables with the in-medium similarity renormalization group". In: Phys. Rev. C 96.3, p. 034324. ISSN: 2469-9985, DOI: 10.1103/PhysRevC.96.034324, arXiv: 1705.05511, URL: https://link.aps.org/doi/10.1103/PhysRevC.96.034324.
- Simonis, J. et al. (2017). "Saturation with chiral interactions and consequences for finite nuclei". In: Phys. Rev. C 96.1, p. 014303. ISSN: 2469-9985. DOI: 10.1103/PhysRevC.96.014303. arXiv: 1704.02915. URL: http://arxiv.org/abs/1704.02915http://link.aps.org/doi/10.1103/PhysRevC.96.014303.
- Stroberg, S. R. et al. (2019). "Non-Empirical Interactions for the Nuclear Shell Model: An Update". In: Annu. Rev. Nucl. Part. Sci. 69.1, pp. 307–362. ISSN: 0163-8998. DOI: 10.1146/annurev-nucl-101917-021120. arXiv: 1902.06154. URL: http://arxiv.org/abs/1902.06154.
- Sun, Z. H. et al. (2018). "Shell-model coupled-cluster method for open-shell nuclei". In: Phys. Rev. C 98.5, p. 054320. ISSN: 2469-9985. DOI: 10.1103/PhysRevC.98.054320. arXiv: 1806.07405. URL: http://arxiv.org/abs/1806.07405https://link.aps.org/doi/10.1103/PhysRevC.98.054320.