

# North East University Bangladesh

Department of Computer Science and Engineering

# Lab Report

**Experiment Name:** Diode Circuit Analysis

**Experiment No:** 02

### Submitted to

Shahadat Hussain Pervez Lecturer of CSE Dept. North East University Bangladesh

# **Submitted by**

Md. Abdul Mutalib ID: 190303020001

Semester: 8th

Session: Fall-19

# **Table of Contents**

| Objective                           | 2 |
|-------------------------------------|---|
| Theory                              | 2 |
| Apparatus Needed                    | 2 |
| Circuits                            | 2 |
| Procedure                           | 2 |
| Report                              | 3 |
| Table of Figure                     |   |
| Figure 1 Circuit for diode analysis | 2 |
| Figure 2 Positive Logic OR Gate     | 2 |
| Figure 3 Positive Logic AND Gate    |   |
| Table of Tables                     |   |
| Table 1 Data for circuit 1          | 3 |
| Table 2 Data for circuit 2          |   |
| Table 3 Data for circuit 3          | 3 |

## **Objective**

The objective of this experiment is to analyse simple diode circuits and to build logic circuits using diodes and resistors.

## **Theory**

Theory needed for this lab should be read from lecture 3 of theory course.

#### **Apparatus Needed**

- Trainer Board (Bread board)
- Diodes
- Resistor
- DC Voltmeter

- DC Ammeter
- DC power supply
- Function Generator
- Oscilloscope
- Connecting wires

#### **Circuits**

For analysis of diode circuit. Here, I have shown three figures (1,2,3) circuit for diode analysis.



Figure 1 Circuit for diode analysis



Figure 2 Positive Logic OR Gate

Figure 3 Positive Logic AND Gate

#### **Procedure**

- 1. Analytically find *ID*, *VD2*, and *V*0 for the circuit in figure 1 and record the result in table 1.
- 2. Implement the circuit in figure 1.

- 3. Find ID, VD2, and V0 from the circuit and record the result in table 1.5V
- 4. Implement the circuit in figure 2 and apply inputs according to the table 2 and note the output voltages in table 2 to check if OR gate is properly implemented or not.
- 5. Implement the circuit in figure 3 and apply inputs according to the table 3 and note the output voltages in table 3 to check if AND gate is properly implemented or not.

Table 1 Data for circuit 1

| Measurement | Theoretical value (Step 1) | Practical value (Step 2) |
|-------------|----------------------------|--------------------------|
| $I_D$       |                            |                          |
| $V_{D2}$    |                            |                          |
| $V_0$       |                            |                          |

Table 2 Data for circuit 2

| Input 1 Voltage | Input 2 Voltage | Output Voltage | Output logic level |
|-----------------|-----------------|----------------|--------------------|
| 0 V             | 0 V             |                |                    |
| 0 V             | 5 V             |                |                    |
| 5 V             | 0 V             |                |                    |
| 5 V             | 5 V             |                |                    |

Table 3 Data for circuit 3

| Input 1 Voltage | Input 2 Voltage | Output Voltage | Output logic level |
|-----------------|-----------------|----------------|--------------------|
| 0 V             | 0 V             |                |                    |
| 0 V             | 5 V             |                |                    |
| 5 V             | 0 V             |                |                    |
| 5 V             | 5 V             |                |                    |

## Report

- 1. Carefully Fill all the data for table 1, 2, 3.
- 2. Comment on the learnings from this LAB.