Analysis of Variance (cont.)

Presenters 10/14/2016

7:50-8:00	Group 16
8:00 -8:10	Group 7
8:10-8:20	Group 3
8:20-8:30	Group 19

16Wang, Yirer	n Li,	Yanjin	Wen, Litor	ng Lu, Yic		un, uechun	Wang,	Yue Zł	nao, Fei	
7Zhang, Yunyi	Qin, Yunlin	Liu, Haojiang	Fei, Yang	Kim, Hayou ng	Cho,	Song Hyou yuk ook	ingm	ı, Yang	Wang, Weitong	
3Bai, Silvia	Cai, Weipan	Dai, Di	Han, Siqi	Xie, Tianzha	Yang, o Meng			iuang, iiyu	Zhang, Yifan	Huan Rui
19Xiao, Han	Cui, Han	,	eng, Sh ingjing Tia	neng, an Z	hao, Ran	Zhang, Yimin	Zhi, Chi	Xin, X	ieke Xue, L	ifu

One-Way ANOVA

• Data: $Y_{ij}, i = 1, \dots, I; j = 1, \dots, n_i$

 Y_{ij} is distributed normally with mean μ_i , and constant variance

Wish to test:

$$H_0: \mu_1 = \cdots = \mu_I$$

against the alternative $H_1: \mu_i \neq \mu_j$ for at least one pair $(i, j), i \neq j$.

One approach to model the data is to use the following formulation,

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

One-Way ANOVA Table

Source of		Sum of	Mean
Variation	df	Squares	Squares
Treatment	I-1	SSTrt	SSTrt/(I-1)
Error	N-I	SSE	SSE/N-I
			-
Total	N-1	SST	

A test statistic for H_o may be constructed based on the ratio

$$F = MSTrt/MSE$$

which, under H_o and model assumptions, has an $F_{I-1,N-I}$ distribution, where $N = \Sigma_i n_i$.

Two-Way ANOVA

ANOVA model is given by:

$$Y_{ijk} = \mu_{ij} + \epsilon_{ijk}$$

where $i = 1, \dots, I, j = 1, \dots, J, k = 1, \dots, n_{ij}$, and ϵ_{ijk} are typically assumed to be i.i.d. $N(0, \sigma^2)$.

OLS estimator:

$$\hat{\mu}_{ij} = ar{Y}_{ij.}$$

It is often more convenient to use the following alternative formulation

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

Two-Way ANOVA Table: Balanced Design

Source	df	SS	MS
A	I-1	SSA	$\overline{MSA=SSA/(I-1)}$
В	J-1	SSB	MSB=SSB/(J-1)
AB	(I-1)(J-1)	SSAB	MSAB/(I-1)(J-1)
Error	IJ(n-1)	SSE	SSE/IJ(n-1)
Total	IJN-1	SST	

When the interaction term is significant:

Evaluate the nature and strength of the interaction.

Suppose X_{ij} is a covariate of interest, and consider the ANOCVA model

$$Y_{ij} = \mu_i + \beta X_{ij} + \epsilon_{ij}$$

Note that

$$m{Y}_i = pprox \hat{\mu}_i + eta ar{X}_i$$

Thus, comparing μ_i and μ_k based on $\bar{Y}_{i.} - \bar{Y}_{k.}$ would be inappropriate unless $\bar{X}_{i.} = \bar{X}_{k.}$. So, comparison is generally performed at a common value of X, say $\bar{X}_{..}$. For convenience, let

$$Y_{ij} = \mu_i + \beta (X_{ij} - \bar{X}_{..}) + \epsilon_{ij}$$

Adjusted mean (a.k.a. LS Mean)

$$\hat{\mu}_i = \hat{Y}_{i.} - \hat{eta}(ar{X}_{i.} - ar{X}_{..})$$

In the above

$$\hat{\beta} = \frac{\sum_{i=1}^{I} \sum_{j=1}^{n_i} (y_{ij} - \bar{Y}_{i.})(X_{ij} - \bar{X}_{i.})}{\sum_{i=1}^{I} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2}$$

$$\hat{\sigma}^2 = \frac{1}{N - I - 1} \sum_{ij} (Y_{ij} - \hat{\mu}_{i.} - \hat{\beta}(\bar{X}_{i.} - \bar{X}_{..}))^2$$

$$var(\hat{\beta}) = \frac{\sigma^2}{\sum_{i=1}^{I} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2}$$

Other ANOVA Models

- **Example 1**. Study on effects of teaching methods on student performance. <u>All</u> 5 teachers in a given school (i.e., 5 different methods) included in a study, each assigned 10 students at random. At the end of a training period, scores on a standardized test recorded.
- **Example 2**. In another school there are 100 teachers. 5 teachers chosen at random (i.e., 5 different methods), and each assigned 10 students at random. At the end of a training period, scores on a standardized test recorded.

NB: The first school corresponds to Fixed Effects ANOVA (Model I), since all the levels of the factor "Teacher" are in the study.

The levels of the factor "Teacher" in the second case are random. Corresponds to Random Effects ANOVA (Model II)

One Way Random Effects ANOVA Model (Model II)

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

where μ_i are iid $N(\mu, \sigma_A^2)$, ϵ_{ij} are also iid $N(0, \sigma_e)$, and independent of μ_i . Note that if all teachers teach the same way, $\mu_i = \mu$, and hence $\sigma_A^2 = 0$.

A test for treatment difference may then be formulated in term sof

$$H_0: \sigma_A^2 = 0$$

VS

$$H_1: \sigma_A^2 > 0$$

Total sum of squares (SST) decomposed:

- Sum of squares due to treatment (SSA)+
- Error sum of squares (SSE), where

$$SSA = \sum\limits_{i} n_i (ar{Y}_{i.} - ar{Y}_{..})^2$$

$$SSE = \sum_{i} \sum_{i} (Y_{ij} - \bar{Y}_{i.})^2$$

Assuming all $n_i = n$, it can also be shown that,

$$E[MSA] = E[SSA/(I-1)] = n\sigma_A^2 + \sigma_e^2.$$

$$E(MSE) = \sigma_e^2.$$

To test

$$H_0: \sigma_A^2 = 0$$

VS

$$H_1: \sigma_A^2 > 0$$

$$F = \frac{MSA}{MSE}$$

which under H_o has an $F_{I-1,N-I}$ distribution

Remark: In the One-way case, the test similar to that of Fixed Effects model

Reading assignment: Confidence intervals for

 σ_A^2 and

 $\frac{\sigma_A^2}{\sigma_A^2 + \sigma_e^2}$

Two-Factor Models: Model II

$$Y_{ijk} = \mu + a_i + b_j + (ab)_{ij} + \epsilon_{ijk}$$

where $i=1,\dots,I; j=1,\dots,J; k=1,\dots,n_{ij};$ $a_i,b_j,(ab)_{ij},\epsilon_{ijk}$ are mutually independent normal random variables, with mean 0, and respective variances: $\sigma_A^2,\sigma_B^2,\sigma_{AB}^2,\sigma_e^2$.

When the design is balanced, we have

$$SST = SSA + SSB + SSAB + SSE$$

where

$$SSA = nJ \sum_{i} (\bar{Y}_{i..} - \bar{Y}_{..})^{2}$$
 $SSB = nI \sum_{j} (\bar{Y}_{.j.} - \bar{Y}_{..})^{2}$
 $SSAB = n \sum_{ij} (\bar{Y}_{ij.} - \bar{Y}_{i..} - \bar{Y}_{..})^{2} + \bar{Y}_{..})^{2}$
 $SSE = \sum_{ijk} (Y_{ijk} - \bar{Y}_{ij.})^{2}$

and

$$SST = \sum_{i \neq k} (Y_{ijk} - \bar{Y}_{..})^2$$

$$E(MSA) = \sigma_e^2 + n\sigma_{AB}^2 + nJ\sigma_A^2$$

 $E(MSB) = \sigma_e^2 + n\sigma_{AB}^2 + NI\sigma_B^2$
 $E(MSAB) = \sigma_e^2 + n\sigma_{AB}^2$

and

$$E(MSE) = \sigma_e^2$$

Two-Way Random Effects Model ANOVA Table

Source	df	SS	MS	EMS
A	I-1	SSA	SSA/(I-1)	$\sigma_e^2 + n\sigma_{AB}^2 + nJ\sigma_A^2$
В	J-1	SSB	SSB/(J-1)	$\sigma_e^2 + n\sigma_{AB}^2 + nI\sigma_B^2$
AB	(I-1)(J-1)	SSAB	SSAB/(I-1)(J-1)	$\sigma_e^2 + n\sigma_{AB}^2$
Error	(n-1)IJ	SSE	SSE/(n-1)IJ	σ_e^2
				-
TOTAL	N-1	SST		

Mixed Effects Models: Model III

Example: Suppose three treatments are to be compared.

- 5 hospitals selected at random from a district of 100 hospitals
- 5 patients are randomly assigned to each treatment in each hospital
- •The factor "treatment" is fixed, since all the levels are included in the study.
- "Hospital" is random, since the levels are a random sample.

Two-way Mixed Effects Model

$$Y_{ijk} = \mu + \alpha_i + b_j + (\alpha b)_{ij} + \epsilon_{ijk}$$

where μ and α_i are constant,

$$b_j \sim N(\mu,\sigma_b^2) \ (lpha b)_{ij} \sim N(0,rac{(I-1)}{I}\sigma_{AB}^2),$$

 ϵ_{ijk} is $N(0, \sigma_e^2)$, and all the random quantities are mutually independent.

 $Two\ \hbox{-}Way\ Mixed\ Effects\ ANOVA\ Table$

Source	df	SS	MS	EMS
A (Fixed)	I-1	SSA	SSA/(I-1)	$\sigma_e^2 + \frac{nJ}{J-1} \sum_i \alpha_i^2 + n\sigma_{AB}^2$
B (Random)	J-1	SSB	SSB/(J-1)	$\sigma_e^2 + nI\sigma_B^2$
AB (Random)	(I-1)(J-1)	SSAB	SSAB/(I-1)(J-1)	$\sigma_e^2 + n\sigma_{AB}^2$
Error (Random)	(n-1)IJ	SSE	SSE/(n-1)IJ	σ_e^2
TOTAL	N-1	SST		

Two - Way Mixed Effects ANOVA Table: Balanced Design

Inference about the fixed effect (A)

$$H_0: \alpha_i = 0$$

Source	df	SS	MS	EMS
A (Fixed)	I-1	SSA	SSA/(I-1)	$\sigma_s^2 + \frac{nJ}{J-1} \sum_i \alpha_i^2 + n\sigma_{AB}^2$
B (Random)	J-1	SSB	SSB/(J-1)	$\sigma_e^2 + nI\sigma_B^2$
AB (Random)	(I-1)(J-1)	SSAB	SSAB/(I-1)(J-1)	$\sigma_e^2 + n\sigma_{AB}^2$
Error (Random)	(n-1)IJ	SSE	SSE /(n-1)IJ	σ_{e}^{2}
TOTAL	N-1	SST		

$$F = \frac{MSA}{MSAB}$$

which under H_o has an $F_{I-1,(I-1)(J-1)}$ distribution

If the interaction term is not significant, then an appropriate test statistic, based on the reduced model, is

$$F = \frac{MSA}{MSAB + MSE}$$

Null distribution?

Inference about the random effect (B)

$$H_0: \beta_j = 0$$

Two - Way Mixed Effects ANOVA Table: Balanced Design

Source	df	SS	MS	EMS
A (Fixed)	I-1	SSA	SSA/(I-1)	$\sigma_e^2 + \frac{nJ}{J-1} \sum_i \alpha_i^2 + n\sigma_{AB}^2$
B (Random)	J-1	SSB	SSB/(J-1)	$\sigma_e^2 + nI\sigma_B^2$
AB (Random)	(I-1)(J-1)	SSAB	SSAB/(I-1)(J-1)	$\sigma_e^2 + n\sigma_{AB}^2$
Error (Random)	(n-1)IJ	SSE	SSE /(n-1)IJ	σ_e^2
TOTAL	N-1	SST		

$$F = \frac{MSB}{MSE}$$

which under H_o has an $F_{I-1,(n-1)IJ}$ distribution

-

Example. Consider a study comparing 3 teaching methods.

- A random sample of 5 schools selected
- From each school 3 teachers randomly chosen.
 - Each teacher was then assigned a teaching method at random and asked to apply it in their class of about 20 students each.
- The scores (Y_{ij}) of each student were then recorded at the end of the semester.

In this example, each level of the factor "teacher' occurs with only one level of "school", and each of the 15 levels is meaningful only given the level of "school". The factor "teacher" is said to be nested within "school".

Two-Way Nested Designs

When both factors are random,

$$Y_{ijk} = \mu + a_i + b_{j(i)} + \epsilon_{ijk}$$

where $b_{j(i)}$ denotes the effect of B at the j'th level, when A is at the i'th level. Further a_i , $b_{j(i)}$ and ϵ_{ijk} are mutually independent normal

random variables, with mean 0 and, respective variances:

$$\sigma_A^2$$
, $\sigma_{B(A)}^2$ and σ_e^2

For the balanced case, the sums of squares are given by:

$$SSA = Jn \sum_{i} (\bar{Y}_{i..} - \bar{Y}_{...})^{2}$$
$$SSB(A) = n \sum_{ij} (\bar{Y}_{ij.} - \bar{Y}_{i..})^{2}$$
$$SSE = \sum_{ijk} (\bar{Y}_{ijk} - \bar{Y}_{ij.})^{2}$$

Two -Way Nested Random Effects ANOVA Table

Source	df	SS	MS	EMS
A (Random)	I-1	SSA	SSA/(I-1)	$\sigma_e^2 + nJ\sigma_A^2 + n\sigma_{B(A)}^2$
B(A) (Random)	I(J-1)	SSB(A)	SSB(A)/I(J-1)	$\sigma_e^2 + n\sigma_{B(A)}^2$
Error (Random)	(n-1)IJ	SSE	SSE / (n-1)IJ	σ_e^2
, ,	, ,		, , ,	-
TOTAL	N-1	SST		

When A is fixed and B is random, and B(A):

Source	df	SS	MS	EMS
A (Fixed)	I-1	SSA	SSA/(I-1)	$\sigma_e^2 + nJ \frac{Jn}{I-1} \sum_i \alpha_i^2$
B(A) (Random)	I(J-1)	SSB(A)	SSB(A)/I(J-1)	$\sigma_e^2 + \frac{n}{I(n-1)} \sum_{ij} \beta_{j(i)}^2$
				- 1(n 1) 5 J(t)
Error (Random)	(n-1)IJ	SSE	SSE/(n-1)IJ	σ_{e}^{2}
, ,	\ /		/ \ /	·
TOTAL	N-1	SST		

Repeated Measures Design

Example. Consider a clinical trial comparing three treatment groups. Subjects were randomized to each treatment, and measurements were taken at weekly.

Observation taken over time on the same subject may be correlated.

•The usual ANOVA will not be applicable to this case.

Repeated Measures Design

Let Y_{ijk} denot the measurement on the k'th subject, assigned to treatment i, and taken at time j.

$$Y_{ijk} = \mu + \alpha_i + \tau_j + (\alpha \tau)_{ij} + S(\alpha)_{k(i)} + \epsilon_{ijk}$$

where α_i is the i'th treatment effect, τ is time effect, and $S(\alpha)$ stands for subject nested in treatment.

Since the error terms may be correlated, several correlation structures may be possible:

Compound symmetry (i.e., equal correlations)

$$Corr(Y_{ijk}, Y_{ilk}) = \rho, \ \forall j \neq l$$

- AR(1)
- Unstructured

The following is a decomposition of the Total Sum of Squares (SST)

$$SSTreatment = J\sum_{i} n_{i}(ar{Y}_{i..} - ar{Y}_{...})^{2} \ SSTime = n_{+}\sum_{j}(ar{Y}_{.j.} - ar{Y}_{...})^{2} \ SSTreat*Time = \sum_{i,j} n_{i}(ar{Y}_{ij.} - ar{Y}_{i..} - ar{Y}_{.j.} + ar{Y}_{...})^{2} \ SSS(Treat) = J\sum_{i,k} n_{i}(ar{Y}_{i.k} - ar{Y}_{i..})^{2} \ SSE = \sum_{ijk} (Y_{ijk} - ar{Y}_{i.k} - ar{Y}_{ij.} + ar{Y}_{i...})^{2} \ SST = \sum_{i,jk} (Y_{ijk} - ar{Y}_{ijk} - ar{Y}_{i...})^{2}$$

$Repeated\ Measures\ ANOVA\ Table$

Source	df	SS	F Statistic
Treatment	I-1	SS Treat	$\frac{MSTreat}{MS \ S(Treat)}$
Time	J-1	SS Time	$\frac{MSTime}{MSE}$
${\bf Treat*Time}$	(I-1)(J-1)	SS $Time*Time$	$\frac{MSTreat*Time}{MSE}$
S (Treat)	$\sum_{i} (n_i - 1) = n_+ - I$	${\rm SS}~{\rm S(Treat)}$	$\frac{MSS(Treat)}{MSE}$
Error	$(\sum_{i} n_i - J)(J-1)$	SSE	
Total	SST		

Remarks:

• $\frac{MSTime}{MSE}$ and $\frac{MSTreat*Time}{MSE}$ may not have an F distribution with the usual degrees of freedom. Indeed, actual significance may be less strong than given by table.

Under certain conditions (Huynh & Feldt), the distributions are F (e.g., when the correlation structure is independent or exchangeable or AR(1).

 More generally, models that take into account the correlation structure must be used (SAS PROC MIXED).

Example: Repeated measures

Subjects randomized to either Group 1, 2 or 3.

For each subject, response measured at Time 1, 2 and 3, following randomization and treatment.

```
ID Grp T Y
       15
    2 29
  1 3 25
    1 11
  1 2 28
  1 3 27
 2 1 14
  2 2 12
  2 3 16
      11
  2 2 10
  2 3 13
  3 1 21
5
  3 2 22
5
  3 3 19
  3 1 14
6
  3 2 18
  3 3 16
  3 1 13
  3 2 10
   3 3 11
```

Grp = Group. T = time.

Source	DF	SS3	MS	F	Pr > F
Group	2	303	152	50.50	<.0001
ID(Group)	4	143	35.7	11.90	0.0019
Time	2	105	52.6	17.53	0.0012
Group*Time	4	211.6	52.9	17.63	0.0005

Tests of Hypotheses Using the Type III MS for ID(Group) as an Error Term Source DF Type III SS MS F Value Pr > F Group 2 303 152 4.24 0.1027

Reading Assignment:

SAS' PROC GLM gives Type I - Type III SS.

Example: Model Y= A+B+A*B

Type I SS: Order-dependent (hierarchical, sequential). Each effect is adjusted for all other effects that appear earlier (to the left) in the model, but not for any effects that appear later in the model.

Type II SS are the reduction in the SSE due to adding the effect to a model that contains all other effects except effects that contain the effect being tested

Types III SS are each adjusted for all other effects in the model, regardless of order.

```
proc glm data=repeat;
class ID Group Time;
model Y=Group ID(Group)Time group*time/ss1;
test h=group e=id(group);
run;
```

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Group	2	302.9761905	151.4880952	50.50	<.0001
ID(Group)	4	142.8333333	35.7083333	11.90	0.0019
Time	2	80.3809524	40.1904762	13.40	0.0028
Group*Time	4	211.6190476	52.9047619	17.63	0.0005

Tests of Hypotheses Using the Type I MS for ID(Group) as an Error Term

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Group	2	302.9761905	151.4880952	4.24	0.1027

Reading assignment: Compare the above results with the results obtained using the R function aov(Y ~ Group*Time+Error(ID))

proc mixed data=repeat;
class ID Group Time;
model Y=Group Time group*time;
repeated/type=cs subject=ID;
run;

Type 3 Tests of Fixed Effects

1	lum	Den		
Effect	DF	DF	F Value	Pr > F
Group	2	4	4.24	0.1027
Time	2	8	17.53	0.0012
Group*Tin	ne 4	8	17.63	0.0005

Problem Set

Consider the *ChickWeight* data in R. The body weights of the chicks were measured at birth (i.e., time=0) and every second day thereafter until day 20. They were also measured on day 21. There were four groups of chicks on different protein diets.

Perform an appropriate repeated measures ANOVA to determine whether there is a significant difference in the mean weights of the four groups using the measurements on Days 4, 8,12, 16 and 20.

- 1. Do the analyses assuming compound symmetry, unstructured and AR(1) covariance structures and compare the results.
- 2. In each case determine whether it might be appropriate to adjust for Birth Weight
- 3. Check the validity of your assumptions

Name:	Name:	Name:	Name:	Name:	Name:	Name:	Name:	Name:	Name:
Last, First	Last, First	Last, First	Last, First	Last, First	Last, First	Last, First	Last, First	Last, First	Last, First
Wang,		He,			Tao,				
1Yicheng	Xue, Yichao	Hanming	Zhang, Tian	•	Mengyuan	Tian, Jiani	Wang, Shiyu		
		Wu,	Yang,	Aoyuan,		Zhang,		Gao,	Shi,
2Li, Jingwei	Liu, Ao	Xiangyu	Yutong	Liao	Yi, Jian	Wanyi	Wang, Jia	Duanhong	Hanqing
				Xie,	Yang,			Zhang,	
³ Bai, Silvia	Cai, Weipan	Dai, Di	Han, Siqi	Tianzhao	Mengting	Zeng, Cen	Zhuang, Shiyu	ı <mark>Yifan</mark>	Huang, Rui
		Huang,Xian	Tang,Mingz					Zuo,Zhaoy	
4 Zuo, Nianyao	Chen, Jiayang	gkai	hen	He,Jin	Li,Weihan	Gao,Fei	Qin,Liwen	u	
		Chen,	Huang,				Zhang,	Yue,	
5 Yang, Chuhan	Duan, Ziying	Jinglin	Yirui	Zhu, Ming	Liu, Zhaoze	Yin, Qing	Baizheng	Wenshu	Zeng, Neng
You,		Zhou,		Bao,		Yang,			
6Guanzhong	Wang, Lu	Xingyu	Luan, Sitao	Wenhang	Liu, Chang	Tianmeng	Zhu, Feiran	Chen, Jie	
						Song,			
		Liu,		Kim,	Cho,	Hyoungmo		Wang,	
7 <mark>Zhang, Yunyi</mark>	Qin, Yunlin	Haojiang	Fei, Yang	Hayoung	Younhyuk	ok	Fan, Yang	Weitong	
								Lin, Chi-	
8Jin, Chengzhe	Liu, Youzhu	Yu, Xingzao	Zhu, Ying	You, Jiwen	Li, Linna	Lyu, Yihua	Ye, Hexiu	Heng	Jiang, Bo
	Cheng,		Wang,	Shang,					
9Wang, Suling	Tianyuan	Li, Cheng	Han	Renfei	Yao, Wei	Yu, Zhao			
		Zhou,	Chen,	Huang,					
10 Chen, Haoyang	lin	Longwei	Zachary	Biyue	Qian, Quan				
			Zhang,Xiao						
11 Nian, Yigun	An, Huilong	Lin, Zida	han	Hu, Yifei	Qin, Yu	Dai, Peijun	Gu, Kexin		
12 Gao, Chenying	Yao, Weichi								
	Zhou,	Jiang,	Teng,	Wang,					
13 Sun, Yuhan	Jingying	Chencheng	_	Yanran	Gu, Xinghao	Chen, Ying	Meng, Ziwei		
	<u> </u>	Wang,	, ,	Zhang,			<u> </u>		
14Jin, Zhaoyan	Ji, Chenlu	Jiayi	Lu, Ke	Xuan	Zhang, Chi	Lang, Yifei	Yu, Tianying		
		Zhao,	Zhang,			Zhang,	Wang,	Zhou,	

Name: Last, First	Name: Last, First	Name: Last, First	Name: Last, First	Name: Last, First	Name: Last, First	Name: Last, First	Name: Last, First	Name: Last, First	Name:
16Wang, Yiren 17Chen, Yihe		Wen, Litong		Sun, Xuechun		Zhao, Fei	Eddt, Tillst	Luse, i ii se	Lusty i ii st
18 Mu, Jing	Zhou, Wuge			Zhang, Yueqi	Feng, Lingkang	Shi, Yuchen	Chen, Yanxi	Zhang, Qianyun	Min, Shengjie
19Xiao, Han	Cui, Han	<u> </u>	Feng, Jingjing	Sheng, Tian		Zhang, Yimin	Zhi, Chi	Xin, Xieke	Xue, Lifu
20Shi,Ruixiong	Meng,Bai	Shi,Yuchen	Sha,Ouwen	Tan,Xiaolu	Zhang,Shijia				
21 Qian,Chao	Wu,Lepeng	-	Xia, Fenglin	-	_		Zhang,Daqi	Wei,Chaoj ie	Zhou,Wenjin g
22Li, Rong	Su, Zijian	Dai,		Zhong, Jiayi		V 6		Chen,Yeyu	
23Sun, Yating 24Wang, Zehao	Ru, Xiao Li, Chi		Lin, Xu Wang, Siying	Ren, Wen Jin, Yong	Wang, Jiayu Wang, Yuqing		Song, Shuli Cai, Yanrui	n Wang, Zhaoxing	
Sanchez Azcarate, Juan 25Jose	Diego Joaquin, Juan Jose	Campos Gutierrez,	Setia, Ekansha	Sharma, Vrinda		Zhang, Jingya			
26 Chen, Tianyi	Zhang, Shaotian	Ni, Mengjia	Zhao, Mojia	Sun, Yixin					
27 Zhao, Jingdan	Yao, Mi	Zhang, Sumi	Zhang, Jinglun	Sun, Haocheng		Wang, Yuanyuan			
28 Xu, Linyihui 29 Dessouky, Omar 30 William Raikes	Kun Fan	Shuzhe Wu	Xi Lu	An, Ji	Gao, Qihua	Fan, Zhenlan	Sheng,Ming	Zhang, Lu	