→ Women's Tennis Serve Stats

Rachel In rji245

SDS 348

5/10/2021

This dataset includes the service game stats for the top 50 women's tennis players in the Women's Tennis Association for 2019. I referred to the WTA Tennis website as well as a website called TennisAbstract to collect and acquire the data.

```
# Run to allow multiple outputs from a single chunk
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

# Import packages
import numpy as np
import pandas as pd
import seaborn as sns
import scipy.stats as stats
import matplotlib.pyplot as plt

# Import and view the dataset
serve = pd.read_excel("/content/WTA Top_50 Serve Stats.xlsx")
serve.head()
serve.tail()
```

	Rank	player	Hand	Height	M	M W		w rc	SPW A	ces	AcePerc	DFs	DF	Perc	1stln	1stPerc	2ndPerc	HldPerc
0	1st	A.Barty	right	under	64	52	0.8	313 0.	637	409	0.092	198		0.044	0.577	0.729	0.512	0.797
1	2nd	N.Osaka	right	above	51	40	0.7	784 O.	621	351	0.098	97		0.027	0.609	0.719	0.469	0.778
2	3rd	S.Halep	right	under	56	39	0.6	896 O.	587	87	0.023	138		0.037	0.692	0.635	0.479	0.698
3	4th	S.Kenin	right	under	70	48	0.6	886 0.	599	137	0.026	278		0.052	0.654	0.662	0.480	0.742
4	5th	E.Svitolina	right	under	61	39	0.6	39 0.	580	226	0.050	183		0.041	0.603	0.667	0.448	0.697
	Rank	playe	er Han	d Heig	ht	M	M W	M W Perc	SPW	Ace	s AcePe	erc I	Fs	DFPer	c 1stl	n 1stPer	c 2ndPer	c HldPerc
45	46th	M.Bouzko	va rigl	nt abo	ve	47	29	0.617	0.560	4	0.0)24	53	0.03	2 0.63	6 0.60	0.47	77 0.638
46	47th	N.Podorosl	ka rigl	ht und	der	49	29	0.592	0.488	. (0.0	000	7	0.08	3 0.65	5 0.56	64 0.34	15 0.444
47	48th	S.Stepher	ns rigl	ht und	der	41	22	0.537	0.559	4:	3 0.0)15	72	0.02	4 0.69	0 0.59	94 0.48	0.626
48	49th	M.Linet	tte rigl	ht und	der	51	31	0.608	0.584	16	1 0.0)49	126	0.03	9 0.58	4 0.65	58 0.48	0.704

```
\# Number of observations and columns serve.shape
```

(50, 16)

Information about the variables
serve.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 16 columns):
Column Non-Null Count Dtype
----0 Rank 50 non-null object
1 player 50 non-null object
2 Hand 50 non-null object
3 Height 50 non-null object

1	player	50 non-null	object
2	Hand	50 non-null	object
3	Height	50 non-null	object
4	M	50 non-null	int64
5	M W	50 non-null	int64
6	M W Perc	50 non-null	float64
7	SPW	50 non-null	float64
8	Aces	50 non-null	int64

```
AcePerc
               50 non-null
                                float64
10 DFs
               50 non-null
                               int64
11 DFPerc
              50 non-null
                               float64
12 1stln
               50 non-null
                                float64
13 1stPerc 50 non-null
                               float64
14 2ndPerc 50 non-null
15 HldPerc 50 non-null
                               float64
                                float64
dtypes: float64(8), int64(4), object(4)
memory usage: 6.4+ KB
```

• The dataset includes 16 variables (12 numerical and 4 categorical) and 50 observations. For the numeric variables, there are 8 where the data type is considered *float64* (double presicion float), and 4 which are considered the data type *int64* (integer).

Summary Statistics

For more information of the variables, I provided some summary statistics for the numeric variables. They include the number of observations (count), some descriptive statistics (min, max, median, and mean), standard deviation (std), quartile values (25%, 50%, and 75%), and variance (var).

```
# Summary statistics
(serve.describe()
.T)
(serve.filter(['M','M W', 'M W Perc', 'SPW', 'Aces', 'AcePerc', 'DFs','DFPerc', '1stln', '1stPerc', '2ndPerc', 'HldPerc'])
.agg(['median', 'var'])
.T)
```

	count	mean	std	min	25%	50%	75%	max
М	50.0	47.58000	12.010353	25.000	40.00000	47.5000	54.50000	81.000
МW	50.0	30.00000	9.936533	14.000	23.00000	28.0000	35.00000	55.000
M W Perc	50.0	0.62470	0.097700	0.455	0.54700	0.6090	0.68425	0.862
SPW	50.0	0.58416	0.027177	0.488	0.56825	0.5810	0.59875	0.646
Aces	50.0	156.44000	110.715145	0.000	70.50000	135.0000	205.00000	488.000
AcePerc	50.0	0.04670	0.024952	0.000	0.02650	0.0425	0.05675	0.114
DFs	50.0	146.60000	83.182857	7.000	89.50000	126.0000	201.75000	350.000
DFPerc	50.0	0.04620	0.015314	0.024	0.03525	0.0430	0.05675	0.084
1stIn	50.0	0.62216	0.039794	0.538	0.59500	0.6215	0.65150	0.726
1stPerc	50.0	0.65516	0.039929	0.564	0.63050	0.6480	0.68100	0.752
2ndPerc	50.0	0.46862	0.029869	0.345	0.46325	0.4770	0.48350	0.512
HIdPerc	50.0	0.69314	0.061779	0.444	0.65875	0.6930	0.73250	0.801

	median	var
M	47.5000	144.248571
MW	28.0000	98.734694
M W Perc	0.6090	0.009545
SPW	0.5810	0.000739
Aces	135.0000	12257.843265
AcePerc	0.0425	0.000623
DFs	126.0000	6919.387755
DFPerc	0.0430	0.000235
1stln	0.6215	0.001584
1stPerc	0.6480	0.001594
2ndPerc	0.4770	0.000892
HIdPerc	0.6930	0.003817

▼ Exploratory Data Analysis

*Here, I took the numeric variable *AcePerc* (percentage of aces) and the categorical variable *Height* (above or equal/under 5'9"). To determine whether the mean ace percentage differs between players above and players equal to/under 5'9", an independent t-test was performed, where the null hypothesis was that the ace percentage means between players above and equal/under 5'9" were not significantly different. I also included visuals displaying the relationship between the two variables.

```
# Create violin plot to display relationship between 'AcePerc' and 'Height
sns.violinplot(data = serve, x = "AcePerc", y = "Height").set_title('Violin Plot of Ace Percentage based on Height')
```

 ${\tt Text(0.5,\ 1.0,\ 'Violin\ Plot\ of\ Ace\ Percentage\ based\ on\ Height')}$

The violin plot shows that the two white dots, which represent the mean/median, do not fall within each other's interquartile ranges (the bold black line). This indicates that the means of ace percentage between above and under are likely significantly different. After performing the independent t-test, I found that there was a significant difference in mean ace percentage between those above and those equal/under 5'9" since the p-value was less than 0.05 (t-stat = 2.51; p-value = 0.01).

Additional Visuals

I constructed a heatmap for the correlation matrix of the numeric variables as well as univariate and bivariate plots for only 7 of the numeric variables since there would be too many plots if all 12 numeric variables were included. *Looking at the heatmap, only considering the magnitude and not the sign of the value, the highest correlation is found between HIdPerc and SPW with 0.98, and the lowest correlation is found between M W Perc and 2ndPerc with 0.016.

```
# Create heatmap for the correlation matrix (numeric variables)
sns.heatmap(serve.corr(), annot = True, cbar kws= {'orientation': 'horizontal'}, cbar = False, cmap = 'PuBu')
     <matplotlib.axes._subplots.AxesSubplot at 0x7f981e4c8590>
                                              -0.14 0.42 0.091
                       0.24 0.36 0.62
                   1 0.62 0.53 0.67 0.37 0.63
                                            24-0.089
                                                   0.57 0.11
                  0.62 1 0.51 0.35 0.37 0.11 0.081 0.12
                                                   0.5 0.016 0.53
      M W Perc
               0.36 0.53 0.51 1 0.73 0.79 0.38 -0.14 -0.26 0.9 0.62 0.98
               0.79 0.86 1 0.3 0.038-0.52
       AcePerc
               0.73 0.63 0.11 0.38 0.59 0.3
                                       1 0.62 -0.34 0.48 0.11
          DFs
               0.28 0.24 0.081-0.14 0.14 0.038 0.62 1 -0.28 0.11 -0.43 -0.15
         1stin --0.14-0.089 0.12 -0.26 -0.43 -0.52 -0.34 -0.28 1 -0.48 -0.22 -0.21
                                       0.48 0.11 -0.48
        2ndPerc -0.091 0.11 0.016 0.62 0.17 0.23 0.11 -0.43 -0.22
                                  0.73 0.42 -0.15 -0.21 0.87
        HIdPerc -
                       M W Perc
# Bivariate and univariate relationship plots
sns.pairplot(serve.filter(['M W Perc', 'SPW', 'AcePerc', 'DFPerc', '1stPerc', '2ndPerc', 'HldPerc']))
```


References

 $\frac{https://www.wtatennis.com/stats/2019}{f=A2019qqs00w1} (https://www.wtatennis.com/stats/2019) \ and \ \frac{http://www.tennisabstract.com/cgi-bin/leaders_wta.cgi?}{f=A2019qqs00w1} (https://www.tennisabstract.com/cgi-bin/leaders_wta.cgi?} (https://wta.cgi-bin/leaders_wta.cgi?} (https://wta.cgi-bin/leaders_wta.cgi$

✓ 23s completed at 11:18 PM