Limpet Heat Budget Model Overview

1. What limpetheatbudgetmodel.R does

Block	Purpose	Key outputs
Clear workspace & set meteorological inputs	Fixes one set of conditions (solar irradiance = 1 W m^{-2} , Ta = 25 °C, etc.).	Isw, Ta, Tw, u, φ
Limpet geometry & heat capacity	Treats the shell as a right cone frustum, stores radius (R), height (H), lateral area (Al), conductive contact area (Acd), and calculates the heat capacity of a seawater-filled limpet body (<i>J per °C</i>).	Ap (projected area to sun), JperC
Optical & radiative constants	Short-wave absorptivity, long-wave emissivity/absorptivity, Stefan-Boltzmann σ .	-
Air & rock properties	Gives kinematic viscosity, thermal conductivity of air; granite thermal conductivity, density, specific heat; sky view factor <i>Vs</i> .	_
Convective heat tools	Calculates Reynolds (Re), Nusselt (Nu), and the convective heat-transfer coefficient <i>h_c</i> .	h_c
Energy-balance coefficients (q1 – q5)	Pre-computes constant factors for the energy- balance equation: $q1$ = short-wave gain $q2$, $q3$ = linearised long-wave terms $q4$ = convective term $q5$ = conduction into rock	_
Iterative loop (10 000 × 30 s ≈ 3.5 d)	Initializes rock as an isothermal column (ocean temp) then steps forward, updating: • temperature gradient in rock (finite-difference) • limpet body temperature T_b (solves linear energy-balance eqn each step).	Final body temperature <i>Tb</i> and rock profile <i>Tr</i> .
Flux bookkeeping	After equilibrium, recomputes each heat-flux term so you can see the relative magnitudes (W sw, W lw, W cv, W cd).	Printed values.

Essentially this is a **steady-state finder**: it cranks through enough 30-second steps that the limpet–rock system stops changing, then reports the equilibrium body temperature and flux partitioning for a single micro-climate.

2. What limpetheatbudgetmodel_dynamic.R does

Block	Purpose	Key outputs
Synthetic time series	Builds 30-s data for 6 days (3-day burn-in, 3-day output) with: • sinusoidal solar irradiance (Isw) • sinusoidal air temperature (Ta) • corresponding sun angle φ.	Vectors Signallsw, SignalTa, Signal.phi.
Rock initialization	Starts the rock column at ocean temp (Tw) just like script 1.	Tr (length = TidalRange/ Δz = 200 cells).
hot_limpets()	A single-time-step solver – it is the guts of script 1 wrapped in a function. Returns 12 values: <i>Tb</i> , <i>Tr</i> [2], Vector of length 12 each flux term, projected area pieces, etc.	
hot_rocks()	Updates the rock column one time step forward (explicit finite-difference). Uses Δt = 30 s (hard-coded).	
Main loop over all 30-s steps	For each time step <i>i</i> : 1. Call hot_limpets() with the current meteorological inputs. 2. Record its return values in a growing data frame df. 3. Overwrite the surface rock cell with the newly computed body temperature. 4. Diffuse heat through the rock with hot_rocks().	Time series of body temp, rock surface temp, and each flux term.
Quick-look plots	Simple base-graphics plots and histograms.	Visual QC only.

So this script delivers a **dynamic simulation**—a moving body temperature that responds to diurnal forcing—and exposes every state variable for plotting or statistical analysis.

3. Key differences side-by-side

Theme	limpetheatbudgetmodel.R (static)	limpetheatbudgetmodel_dynamic.R (dynamic)
Purpose	Finds equilibrium under one micro-climate.	Simulates transient response over many days.
Forcing	Single, hard-coded set of environmental drivers.	Periodic (sinusoidal) drivers; sun angle moves.
Structure	Monolithic script; uses a single long for -loop to converge.	Modularised into two functions; outer loop over time.
Rock conduction	Updates rock every iteration inside equilibrium loop.	Updates rock after solving limpet step, using explicit finite-difference with fixed $30 \text{ s} \Delta t$.
Projected area (Ap) logic	Original formula only; can sometimes return a negative additive term ah which shrinks Ap.	Adds a safety check if(Ap < Acd*abs(cos φ)) to avoid impossible negative area.
Outputs	Just prints final values and fluxes.	Returns a full data frame; quick base R plots included.
Run-time	10 000 iterations regardless of convergence.	Δt = 30 s fixed; total iterations = days × 2880.
Extensibility	Hard to vary parameters.	Easier: inputs are function arguments, but most constants still hard-coded.