- 1. Sea el sistema de la figura, donde h[n] es un filtro pasa bajos ideal con frecuencia de corte de $\frac{\pi}{4}$ rad/muestras. Se pide:
 - a) Determine $x_1[n]$ y y[n] cuando $x[n] = \delta[n]$.
 - b) Determine $x_1[n]$ y y[n], cuando $x(t) = 4cos(2\pi 50t) + 2cos(2\pi 100t) + cos(2\pi 150t)$. Grafique las transformadas de Fourier de x(t), $x_1[n]$ y y[n].

Si
$$Y(j \omega) = u(\omega + \pi) - u(\omega - \pi)$$

Por tabla

$$y[n] = \sin(\pi n) / \pi n$$

Figura 2

$$fn = 14W = 2(7W)$$

$$\omega s = 8 W = 2\pi/Ts$$

Ts = $\pi/4W$

$$\Omega = Ts\omega$$
 $\Omega = \omega \pi/4W$

2. Considere la señal periódica $\boldsymbol{x}(t)$ con período T de la figura.

- a) Encuentre los coeficientes de Fourier.
- b) Considere la señal y(t) que se obtiene de pasar la señal x(t) por un sistema con respuesta al impulso dada por h(t)=u(t)-u(t-T). Encuentre los coeficientes de Fourier de la misma.

$$a_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jk\omega_0 t} dt, \ k \in \mathbb{Z}, \ \omega_0 = \frac{2\pi}{T}$$