Important Libraries Do a check to gain more information about requests module: https://www.w3schools.com/python/module_requests.asp

Know More about Python List: https://www.w3schools.com/python/python_lists_access.asp, https://www.w3schools.com/python/python/python_lists_access.asp

If you want to know more about BeautifulSoup : https://beautiful-soup-4.readthedocs.io/en/latest/

Not possible to cover every concept today, but I can give you the basic understanding about it:

You can always remove the '#' and run the following commands , also '#' is used to make a comment in python

```
name="email" autofocus="true" placeholder="Enter your e-mail address">\n
<input type="hidden" name="src_url" value="/internships/%3Fhtml.parser">\n
<input type="hidden" id="subscription location" name="subscription location"</pre>
value="subscription popup new">\n
                                                               <span class="input-</pre>
group-btn"><button type="submit" class="btn btn-primary btn-input"</pre>
id="but_subscription_popup_form">Subscribe</button></span>\n
                            </div>\n
                                                     </form>\n
                                                                               <div
class="subscription_alert_footer">\n
                                                         <div
                                                  <a href="#"
class="link container">\n
id="already_subscribed">I\'m already subscribed</a>\n
                                                                           </div>\n
<div class="link_container">\n
                                                       <a href="#"
id="no thanks">No, thanks</a>\n
                                                    </div>\n
</div>\n
                    </div>\n
                                     </div>\n
                                                 </div>\n\n
                                                                 <script
nonce="YyqjQ7b/o4iVff0zkJ9I0A==">\n
(document.getElementById("subs timer") != null) {\n
                                                                 var distance = new
Date(\'2024/06/01 00:00:00\').getTime() - new Date(\'2024/05/31
01:23:46\').getTime();\n\n
                                      var x = setInterval(function () {\n
if (distance < 0) {\n
                                          clearInterval(x);\n
document.getElementById("subs_timer").innerHTML = "";\n
                                                                         }\n\n
var hours = Math.floor((distance % (1000 * 60 * 60 * 24)) / (1000 * 60 * 60));\n
var minutes = Math.floor((distance % (1000 * 60 * 60)) / (1000 * 60));\n
var seconds = Math.floor((distance % (1000 * 60)) / 1000);\n\n
                                                                                if
(hours == 0 && minutes == 0 && seconds == 0) {\n
clearInterval(x);\n
document.getElementById("subs timer").innerHTML = "";\n
                                                                         }\n\n
                                        hours = "0" + hours \n
if (hours < 10) {\n
                                                                              }\n
                                          minutes = "0" + minutes\n
if (minutes < 10) {\n
                   if (seconds < 10) {\n
                                                             seconds = "0" +
}\n
seconds\n
                         }\n\n
                                               distance = distance - 1000;\n
```

url='https://internshala.com/internships/'

Getting Responses from the website

```
resp=requests.get(url,'html.parser')
print(resp.status_code)

→ 200

fieldname=input("Enter your profile : ")

→ Enter your profile : web development

field=fieldname.replace(' ','-')
```

URL Handling

```
modified_url=url+str(field)+'-internship/'
print(f"Status :{requests.get(modified_url)}")
print(modified_url)
```

```
Status :<Response [200]>
    https://internshala.com/internships/web-development-internship/
```

```
resp_new=requests.get(modified_url)
soup=bsp(resp_new.content, 'html.parser')
#print(soup)
# type(soup)
pages=int(soup.find('span',id='total_pages').text)
# print(pages)
urlList = []
page = 1
while page <= pages:
  newUrl = modified_url+str(f"page-{page}/")
  urlList.append(newUrl)
  page +=1
# print(urlList)
soup2 = []
for url in urlList:
  resp_new=requests.get(url)
  soup3=bsp(resp_new.content,'html.parser')
  soup2.append(soup3)
# print(len(soup2))
# print(soup.prettify())
```

Scraping

```
name=[]
for soup in soup2:
    names=soup.find_all('div',class_='individual_internship_header')
    for i in names:
        name.append(i)
# print(len(name))
#print(name)

# print(type(name))
# profile=name.find_all('h3',class_='heading_4_5 profile')
```

```
# for i in name:
   p=i.find('h3',class_='heading_4_5 profile')
 # print(p)
 # print(p.text)
 # print(p.text.strip())
 # break
profile=[]
for i in name:
  p=i.find('h3',class = 'heading 4 5 profile')
 # print(p)
 # print(p.text)
 # print(p.text.strip())
  a=p.text.strip()
 profile.append(a)
 #break
# print(len(profile))
print(f"All profiles available are : {profile}")
→ All profiles available are : ['Web Development', 'PHP Development', 'Demo Post', 'Flu
company=[]
for i in name:
  com=i.find('p').text.strip()
 #print(com)
  company.append(com)
# print(len(company))
print(company)
['Stirring Minds', 'UI TECH LAB LLP', 'Seven Arc Info Systems LLP', 'AppyHigh Technol
detail=[]
for soup in soup2:
  detailList=soup.find_all('div',class_='individual_internship_internship')
 for i in detailList:
   detail.append(i)
# len(detail)
#print(detail[0])
location=[]
for i in detail:
  loc=i.find('a').text
 location.append(loc)
 #print(loc)
# print(len(location))
print(f"Locations are : {location}")
    Locations are : ['Delhi', 'Patna', 'Gurgaon', 'Gurgaon', 'Jaipur', 'Work from home',
```

```
duration_detail1=[]
for soup in soup2:
 duraList=soup.find_all('div',class_='item_body')
 for i in duraList:
    duration detail1.append(i)
duration=[]
i = 1
while i < len(duration detail1):
  duration.append(duration_detail1[i].text.strip()[0])
# print(len(duration))
print(duration)
→ ['6', '6', '1', '6', '6', '6', '6', '3', '6', '6', '3', '2', '3', '6', '6', '6', '3',
stipend=[]
for soup in soup2:
  stipList=soup.find_all('span',class_='stipend')
 for i in stipList:
   val=i.text
    stipend.append(val)
# print(len(stipend))
print(f"Stipend is : {stipend}")
→ Stipend is : ['₹ 7,000 /month', '₹ 5,000 /month', '₹ 10,000 /month', '₹ 15,000-18,000
cont=[]
for soup in soup2:
  coutList=soup.find_all('div',class_='cta_container')
 for i in coutList:
    cont.append(i)
application_link=[]
for i in cont:
  anc=i.find('a')
  link=anc.get('href')
 #print(link)
  updated_link='https://internshala.com/'+link
 #print(updated link)
  application link.append(updated link)
# print(len(application_link))
print(f"Application Link is : {application link}")
Application Link is : ['https://internshala.com//internship/details/web-development-i
```

```
dataTable = {
    'profile': profile,
    "company": company,
    "location": location,
    "stipend":stipend,
    "duration": duration,
    "application Link": application_link
    }

df = pd.DataFrame(dataTable)
#mpint(f"""{len(nnofile)} {len(company)} {len(location)} {len(duration)} {len(stipend)} {
    filename='internship_data_'+str(fieldname.replace(' ','_'))+'.csv'
    print(filename)

    internship_data_web_development.csv

df.to_csv(filename, index=False)
```

New Section

Find Duration of each individual internship All the information u have got till now create a dataframe out of it using pandas Save the dataframe in CSV Create a general Code to fetch data from any number of page:

Remember: https://internshala.com/internships/analytics-internship/page-1/ and https://internshala.com/internships/analytics-internship/ both are same

```
from google.colab import drive
drive.mount('/content/drive')
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
df = pd.read_csv("/content/drive/MyDrive/Ecommerce Customers.csv")
df.head(10)
df.shape
df.dtypes
→ Email
                              object
     Address
                              object
     Avatar
                              object
     Avg. Session Length
                             float64
     Time on App
                             float64
     Time on Website
                             float64
     Length of Membership
                             float64
     Yearly Amount Spent
                             float64
    dtype: object
df.isnull().sum()
→ Email
                             0
     Address
     Avatar
                             0
     Avg. Session Length
     Time on App
     Time on Website
     Length of Membership
    Yearly Amount Spent
dtype: int64
df.describe()
```

₹		Avg. Session Length	Time on App	Time on Website	Length of Membership	Yearly Amount Spent
	count	500.000000	500.000000	500.000000	500.000000	500.000000
	mean	33.053194	12.052488	37.060445	3.533462	499.314038
	std	0.992563	0.994216	1.010489	0.999278	79.314782
	min	29.532429	8.508152	33.913847	0.269901	256.670582
	25%	32.341822	11.388153	36.349257	2.930450	445.038277
	50%	33.082008	11.983231	37.069367	3.533975	498.887875
	75%	33.711985	12.753850	37.716432	4.126502	549.313828
	max	36.139662	15.126994	40.005182	6.922689	765.518462

```
x = df['Time on App']
y = df['Yearly Amount Spent']
plt.scatter(x, y, color='blue', marker='o')
plt.title('Sctter Plot - Time on app ')
plt.xlabel('Time on App')
plt.ylabel('Yearly Amount Spent')
plt.show()
```



```
x = df['Time on Website']
y = df['Yearly Amount Spent']
plt.scatter(x, y, color='blue', marker='o')
plt.title('Scatter Plot - Time on Web vs Yearly Amount Spent')
plt.xlabel('Time on Web')
plt.ylabel('Yearly Amount Spent')
```


corr = df.select_dtypes('number').corr()
sns.heatmap(corr)

df.drop(['Email', 'Address', 'Avatar'],axis=1 ,inplace=True)
df.head(10)

}	Avg. Session Length	Time on App	Time on Website	Length of Membership	Yearly Amount Spent
0	34.497268	12.655651	39.577668	4.082621	587.951054
1	31.926272	11.109461	37.268959	2.664034	392.204933
2	33.000915	11.330278	37.110597	4.104543	487.547505
3	34.305557	13.717514	36.721283	3.120179	581.852344
4	33.330673	12.795189	37.536653	4.446308	599.406092
5	33.871038	12.026925	34.476878	5.493507	637.102448
6	32.021596	11.366348	36.683776	4.685017	521.572175
7	32.739143	12.351959	37.373359	4.434273	549.904146
8	33.987773	13.386235	37.534497	3.273434	570.200409
9	31.936549	11.814128	37.145168	3.202806	427.199385

from sklearn.model_selection import train_test_split

y = df[['Yearly Amount Spent']]

X = df.drop(columns=['Yearly Amount Spent'])

y.head(5)

₹	Yearly Amount Spent				
	0	587.951054			
	1	392.204933			
	2	487.547505			
	3	581.852344			
	4	599.406092			

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)

X_test.shape

→ (100, 4)

```
X_train.shape
```

→ (400, 4)

from sklearn.preprocessing import StandardScaler

scl = StandardScaler()
scaled_X_train = scl.fit_transform(X_train)

scaled_X_test = scl.fit_transform(X_test)

pd.DataFrame(scaled_X_train)

	0	1	2	3
0	-1.822160	1.205863	-0.125495	-1.272752
1	-0.921078	-2.041998	0.081056	0.002643
2	0.765303	-0.892446	-0.785963	0.774123
3	-0.216300	-0.241272	-0.279913	-0.060903
4	0.333489	0.716997	-1.520914	-0.305554
	***	***	***	***
395	0.080599	1.835929	2.084425	-0.629094
396	-0.680505	-1.409122	0.891667	-0.131719
397	2.723773	-1.192048	-1.506509	2.598134
398	0.121726	-0.452630	-1.110151	0.102238
399	-0.194598	-0.087798	-0.053617	-0.080550

400 rows × 4 columns

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

lr = LinearRegression()
lr.fit(scaled_X_train, y_train)

y_pred = lr.predict(scaled_X_test)

y_pred

 $\overline{\pm}$

[בטפטנטנט.א'כ], [529.78443183], [487.40146045], [669.09605192], [579.48540182], [544.35890877], [288.31426732], [512.82731915], [601.56260052], [433.69746917], [471.39921528], [516.84171225], [418.48851112], [498.66453583], [552.7273268], [451.39693179], [520.4980463], [630.32492152], [517.1108975], [515.53327877], [526.69976729], [590.57903691], [466.98137317]])

y_test

₹		Yearly	Amount	Spent
	304		494.6	887156
	340		501.1	122492
	47		563.6	672873
	67		469.3	310861
	479		402.1	167122

	11		522.3	337405
	192		505.	119638
	92		515.8	328815
	221		591.4	137736
	110		459.2	285123

100 rows × 1 columns