

LES MOLÉCULES

I) <u>Différentes molécules</u>

Les atomes, mis à part les gaz nobles, cherchent à s'associer avec d'autres atomes pour former des molécules. Des liaisons se forment grâce aux **électrons célibataires** situés sur la dernière couche des atomes. La réalisation de ces liaisons permet d'obtenir une couche électronique externe en **octet** (quatre doublets) ou en **duet** (un doublet).

Formule brute	Nom	Composition	Electrons du dernier niveau	Formule développée	Modèle moléculaire
H_2	Dihydrogène	2 atomes d'hydrogène	Н∙∙Н	H – H	
O_2	Dioxygène	2 atomes d'oxygène	⟨ O∷O ⟩	O = O	
CO ₂	Dioxyde de carbone	1 atome de carbone et 2 atomes d'oxygène	⟨ O∷C∷O ⟩	O = C = O	
H ₂ O	Eau	1 atome d'oxygène de 2 atomes d'hydrogène	H H	O / \ H H	mod on the
CH ₄	Méthane	1 atome de carbone et 4 atomes d'hydrogène	H C H H	H H – C – H H	
НСℓ	Chlorure d'hydrogène	1 atome de chlore et un atome d'hydrogène	Н∙∙Сℓ	Н−Сℓ	•

II) Masse molaire moléculaire

La masse molaire moléculaire est la masse d'une mole de molécules. Elle s'exprime en g/mol et est obtenue en réalisant la somme des masses molaires atomiques des atomes constituant la molécule.

Exemple

Masse molaire du dioxyde de carbone CO₂:

Sachant que M(C) = 12 g/mol et M(O) = 16 g/mol

 $M(CO_2) = 1 \times M(C) + 2 \times M(O)$ $M(CO_2) = 1 \times 12 + 2 \times 16$

Donc $M(CO_2) = 44 \text{ g/mol}$

Cours sur les molécules 1/1