XGBClassifier Most Favorable for Breast Cancer Diagnosis

Rachel Khoo

Thinkful Capstone 2

September 2020

Who has cancer?

Eickhoff, Carsten. (2014). Crowd-powered experts: helping surgeons interpret breast cancer images. ACM International Conference Proceeding Series. 53-56. 10.1145/2594776.2594788.

Who has cancer?

Who has cancer?

Machine Learning can make diagnosis easier

• Area: 1001.0

• Texture: 10.38

• Compactness: 0.27760

• Concavity: 0.3001

Machine Learning can make diagnosis easier

• Area: 1001.0

• Texture: 10.38

• Compactness: 0.27760

• Concavity: 0.3001

XGBClassifier is the best model

• AUPRC: 0.9699

• Recall: 90%

	Predicted Benign	Predicted Malignant
True Benign	68	4
True Malignant	4	38

XGBClassifier is confident and accurate

Logistic Regression: Accuracy isn't everything

• AUPRC: 0.9466

• Recall: 93%

	Predicted Benign	Predicted Malignant
True Benign	71	1
True Malignant	3	39

Logistic Regression is more confidently wrong

Random Forest: good accuracy, bad recall

• AUPRC: 0.9395

• Recall: 88%

	Predicted Benign	Predicted Malignant
True Benign	71	1
True Malignant	5	37

RandomForest can still be useful

Every model has limitations

- XGB
 - Can't predict outside of sample
- Logistic Regression
 - Can be slow
- KNN
 - Slower
 - Not easily interpretable
 - Can't predict outside of sample

How can we improve accuracy?

More data

Spend more time tuning hyperparameters

PCA to reduce complexity redundancy

An ensemble method could be even better

