

UNIVERSIDADE FEDERAL DO PARÁ GRADUAÇÃO EM ENGENHARIA MECÂNICA GERÊNCIA DE MANUTENÇÃO

Produtividade e Desempenho da Manutenção

Organização da Apresentação

- Introdução
- Medição de Desempenho e Produtividade de Manutenção
- Indicadores de desempenho
- Indicadores de desempenho para diferentes setores
- Valores de Benchmark
- Referências

- No contexto de sistema produtivo, produtividade é uma medida combinada de eficácia e eficiência.
 - Eficiência = saídas/entradas
 - Eficácia = garantir conformidade da saída com características especificadas

- A produtividade do sistema de produção depende da produtividade do sistema de manutenção, que também é uma medida combinada de eficácia e eficiência.
 - Eficiência = saídas/entradas
 - Eficácia = garantir ativos e equipamentos em boas condições, bem configurados e seguros para desempenhar suas funções requeridas
 - Ferramentas
 - Equipamentos
 - Mão-de-obra
 - Instrumentos de medição
 - Peças/componentes
 - Consumíveis

- Reparar
- Trocar peças/componentes
- Repor consumíveis
- Medir
- Inspecionar
- Analisar

 Serviços da manutenção

 Essa dependência ocorre porque os sistemas de manutenção operam em paralelo aos sistemas de produção para mantê-los em condições de uso e seguros para operar com custo mínimo.

• Para certos segmentos, os custos de manutenção são uma parcela significativa do custo operacional.

• Na indústria de mineração os custos de manutenção podem ser entre 20-50% do custo de produção, dependendo do nível de mecanização.

Escavadeira dragline fora de ação = perda de receita de US\$ 0,5-1,0 milhão por dia

Boeing 747 fora de ação = US\$ 0,5 milhão por dia

Há vários exemplos em que a falta de atividades de manutenção necessárias e corretas resultou em desastres e acidentes com perdas extensas.

- Explosão de um transformador;
- Transformador reserva (backup) ficou sem manutenção por um ano;
- Amapá: 800 mil pessoas sem energia por 22 dias em 2020;
- ANEEL multou a concessionária LMTE em R\$ 3,6 milhões + três diretores indiciados pela PF pelo Art.265.

Art. 265 - Atentar contra a segurança ou o funcionamento de serviço de água, luz, força ou calor, ou qualquer outro de utilidade pública: Pena - reclusão, de um a cinco anos, e multa.

- Como visto, avaliar o desempenho da manutenção é crítico para:
 - garantir a viabilidade econômica de muitas indústrias;

mitigar riscos na área de segurança;

atender às responsabilidades sociais;

• e aumentar a eficácia e eficiência dos ativos mantidos.

 Portanto, medir o desempenho da produtividade da manutenção é crítico para qualquer empresa de produção e operação, a fim de medir, monitorar, controlar e tomar decisões adequadas e oportunas.

 Uma vez que o custo de manutenção pode ser substancial em comparação ao custo operacional para diferentes indústrias, mais e mais organizações estão focadas em medir o desempenho da produtividade da manutenção.

Medição de Desempenho e Produtividade de Manutenção

• Um sistema de medição de desempenho (MD) é definido como o conjunto de métricas usadas para quantificar a eficiência e eficácia das ações (Neely et al., 1995)[1].

A medição do desempenho da manutenção (MDM) é definida como "o processo multidisciplinar de medir e justificar o valor criado pelo investimento em manutenção e cuidar dos requisitos dos acionistas da organização, que são vistos estrategicamente da perspectiva geral do negócio" (Parida, 2006)[1].

 As métricas consideradas correspondem a indicadores chave de desempenho (key performance indicator - KPI).

- Esse indicadores podem ser classificados em grupos de:
 - 1. Indicadores relacionados à satisfação do cliente;
 - Indicadores relacionados ao custo;
 - 3. Indicadores relacionados ao equipamento;
 - 4. Indicadores relacionados à tarefa de manutenção;
 - 5. Indicadores relacionados ao aprendizado e crescimento;
 - 6. Saúde, segurança e meio ambiente (SSM); e
 - 7. Indicadores relacionados à satisfação do funcionário.

• Um sistema de medição de desempenho da manutenção pode ser utilizado para identificar processos de negócios, áreas, departamentos e assim por diante, que precisam ser melhorados para atingir as metas organizacionais.

• Isso forma uma base sólida para decidir onde as melhorias são mais pertinentes em qualquer momento, ou seja, esse sistema orienta a tomada de decisão, tanto para a gerência quanto para os funcionários.

- Além de ser efetivamente utilizado para a melhoria e a avaliação do processo, os dados de MDM também podem ser usados:
 - Como uma ferramenta de marketing, fornecendo informações, como qualidade e tempo de entrega;
 - Para benchmarking, o que possibilita a comparação com outras organizações.

- Logo, um sistema de MDM pode ser encarado como uma ferramenta de:
 - planejamento estratégico;

relatório de gestão;

controle e monitoramento operacional; e

suporte ao gerenciamento de mudanças.

• Indicador de Desempenho (Performance Indicator - PI) - índice usado para medir o desempenho de qualquer sistema ou processo.

• Um PI compara as condições reais com um conjunto específico de condições de referência (requisitos), permitindo medir as distâncias entre a situação atual e a situação desejada (alvo), a chamada avaliação de "distância até o alvo" (EEA, 1999)[1].

Classificação dos Indicadores

Os PIs podem ser classificados como indicadores adiantados ou atrasados.

Fornecem uma indicação ou aviso da condição de desempenho com antecedência, agindo como guias de desempenho.

Ex: Indicadores não financeiros.

• Um bom sistema organizacional combina as medidas de resultado (indicadores atrasados) com os guias de desempenho (indicadores adiantados), pois eles estão inter-relacionados em uma cadeia de fins e meios.

 Para algumas empresas um determinado indicador se aplica satisfatoriamente, para outra não. Isto é uma questão de análise.

Assim, o PCM deve acompanhar aquilo que agrega valor, nada de desprender recursos para levantar e consolidar dados que não têm utilidade.

- Viana [2] destaca seis indicadores chamados de "índices de Classe Mundial":
 - MTBF Mean Time Between Failures, no Brasil conhecido como TMEF Tempo Médio Entre Falhas.
 - MTTR Mean Time To Repair, ou TMR Tempo Médio de Reparo.
 - TMPF Tempo Médio Para Falha.
 - Disponibilidade Física da Maquinaria.
 - Custo de Manutenção por Faturamento.
 - Custo de Manutenção por Valor de Reposição.

- Além desses, também falaremos sobre outros indicadores:
 - Eficácia geral do equipamento
 - Confiabilidade
 - Backlog
 - Retrabalho
 - índice de Corretiva
 - índice de Preventiva
 - Alocação de HH em OM
 - Treinamento na Manutenção
 - Taxa de Frequência de Acidentes
 - Taxa de Gravidade de Acidentes

No Brasil, os indicadores mais utilizados nas plantas industriais são os seguintes:

Indicadores de Desempenho Utilizados (% de Respostas)			
Tipos	1995	1997	1999
Custos	26,21	26,49	26,32
Freqüência de Falhas	17,54	12,20	14,24
Satisfação de Cliente	13,91	11,01	11,76
Disponibilidade Operacional	25,20	24,70	22,60
Retrabalho	9,07	5,65	8,36
Backlog	8,07	6,55	8,98
Não Utilizam	_	2,09	2,79
Outros Indicadores	_	11,31	4,95

MTBF

$$MTBF = \frac{HD}{NC}$$

- Sendo:
 - HD = soma das horas disponíveis do equipamento para a operação;
 - NC = número de intervenções corretivas neste equipamento no período.

MTBF

• A serventia deste índice é a de observar o comportamento da maquinaria, diante das ações mantenedoras.

 Se o valor do MTBF com o passar do tempo for aumentando, será um sinal positivo para manutenção, pois indica que o número de intervenções corretivas vem diminuindo, e consequentemente o total de horas disponíveis para a operação, aumentando.

MTTR

$$MTTR = \frac{HIM}{NC}$$

- Sendo:
 - HIM = soma das horas de indisponibilidade para a operação devido à manutenção;
 - NC = número de intervenções corretivas no período.

MTTR

$$MTTR = \frac{HIM}{NC}$$

TMPF (Tempo Médio Para Falha)

$$TMPF = \frac{HD}{N^{\circ} de falhas}$$

- MTTF (mean time to failure)
- Sendo:
 - HD = total de horas disponíveis do equipamento para a operação;
 - N° de falhas = Número de falhas detectadas em componentes não reparáveis.

TMPF (Tempo Médio Para Falha)

 Existem determinados componentes que não sofrem reparos, ou seja, após falharem são descartados, e substituídos por novos, tendo então um MTTR igual a zero.

O TMPF tem como foco este tipo de componente.

 Da mesma forma, o TMPF e o MTBF são distintos, já que o primeiro leva em consideração falhas em componentes não reparáveis e segundo em reparáveis.

 Segundo a NBR 5462, a Disponibilidade é a capacidade de um item estar em condições de executar uma certa função em um dado instante ou durante um intervalo de tempo determinado.

 De maneira geral a disponibilidade física (DF) representa o percentual de dedicação para operação de um equipamento, ou de um sistema produtivo, em relação às horas totais do período.

- Este índice se reveste de fundamental importância para manutenção, pois o nosso principal produto é DF, ou seja, disponibilizar o maior número de horas possível do equipamento para a operação.
- O mesmo também deve ser utilizado para verificar o comportamento operacional da maquinaria visando identificar "equipamentos-problema", que são os que retiram mais DF da planta.
- Neste caso, o pessoal da manutenção pode avaliar a possibilidade de aplicação de um FMEA (Failure Mode and Effect Analysis), ou até um processo de avaliação de desmobilização do equipamento.

- No contexto apresentado, a DF seria dada pela equação a seguir:
 - HT = horas trabalhadas;
 - HG = horas totais no período.

$$DF = \frac{HT}{HG} \times 100\%$$

 Nesse caso, as perdas por subvelocidade não afetam a disponibilidade física, recaindo na produtividade.

 Contudo, Viana [2] afirma que a fórmula do cálculo da disponibilidade varia de um setor produtivo para outro, e até mesmo de uma empresa concorrente para outra.

- Ele propõe a seguinte alternativa:
 - HO = tempo total de operação;
 - HM = tempo de paralisações preventivas e corretivas.

$$DF = \frac{HO}{HO + HM} \times 100\%$$

Disponibilidade

• Há possibilidade de variação até mesmo na literatura.

Kardec e Nascif [3] propõem duas opções:

• Disponibilidade inerente;

• Disponibilidade operacional.

Disponibilidade Inerente

Disponibilidade Inerente (%) =
$$\frac{1}{\text{TMEF}} \times 100$$

TMEF (em Inglês, MTBF) – Tempo Médio Entre Falhas, ou em Inglês, Mean Time Between Failures
TMPR (em Inglês, MTTR) – Tempo Médio Para Reparos, ou em Inglês, Mean Time To Repair

Disponibilidade Inerente

O termo inerente é usado porque são excluídos do TMPR todos os demais tempos (espera de sobressalentes, deslocamentos), ou seja, o TMPR considera apenas as manutenções corretivas.

Disponibilidade Operacional

Disponibilidade Operacional (%) =
$$\frac{\uparrow}{TMEM} \times 100$$
TMEM + TMP

- TMEM (em inglês, MTBM) Tempo médio entre ações de manutenção (Mean time between maintenance actions);
- TMP (MDT) tempo médio de paralisações (Mean downtime)
- Nesse caso, o TMP inclui o TMPR e os demais tempos (de espera, atrasos, manutenções preventivas ou inspeções).

Disponibilidade Operacional

- Para aumentar o TMEM:
 - Atuar para reduzir os tempos de Manutenção (treinamento, planejamento);
 - Usar ao máximo técnicas preditivas, já que contribuem para execução de uma manutenção planejada;
 - Implementar a Engenharia de Manutenção.

- Mudança cultural na empresa dedicada:
 - Consolidar a rotina;
 - Implantar a melhoria contínua;
 - Perseguir o benchmarking.

Disponibilidade Operacional

- Para reduzir o TMP (MDT):
 - Implementar a Engenharia de Manutenção:
 - a melhoria contínua pode aperfeiçoar o planejamento, logística, suprimentos;
 - Levaria a sinergia entre manutenção, operação, inspeção.

Melhorar a capacitação técnica (treinamento).

$$CMF = \frac{Custo\ total\ de\ manutenção}{Faturamento\ bruto}\ x\ 100\%$$

- A composição dos custos de manutenção envolve:
 - Pessoal Despesas com salários e prêmios (diretos), encargos sociais e benefícios concedidos pela empresa (indiretos), e gastos com aperfeiçoamento do efetivo;
 - Materiais Custo de reposição dos itens (diretos), energia elétrica, consumo d'água e capital imobilizado (indiretos), custos ligados à administração do almoxarifado e setor de compras.

- A composição dos custos de manutenção envolve:
 - Contratação de Serviços Externos Contratos com empresas externas para serviços permanentes ou circunstanciais.
 - Perda de Faturamento São os custos da perda de produção, e custos com desperdício de matéria-prima.

- A composição dos custos de manutenção envolve:
 - Depreciação corresponde à perda do valor sofrida pelos ativos fixos renováveis com o decorrer do tempo. A depreciação pode ser classificada como física, quando ocorre o desgaste pelo uso ou pela ação do tempo, ou econômica, que é a perda do valor econômico do bem em função do obsoletismo (seja ele do equipamento, do processo ou do produto) e das mudanças no gosto do consumidor.

 As taxas de depreciação são fixadas através da Instrução Normativa da Secretaria da Receita Federal e variam conforme a natureza do bem e com o uso durante sua vida útil.

Ver:

• http://normas.receita.fazenda.gov.br/sijut2consulta/link.action?idAto=15004&v isao=original

Pesquisas da ABRAMAN:

	Composição dos Custos de Manutenção (%)				
Ano	Pessoal	Material	Serviços Contratados	Outros	
1999	36,07	31,44	23,60	8,89	
1997	38,13	31,10	20,28	10,49	
1995	35,46	33,92	21,57	9,05	
Média	36,55	32,15	21,85	9,45	

Pesquisas da ABRAMAN:

Ano	Custo Total da Manutenção / Faturamento Bruto	
1999	3,56%	
1997	4,39%	
1995	4,26%	

Tabela 1: Custo de manutenção em relação ao faturamento bruto. (Abraman 2011).

Setores	Percentual do Faturamento Bruto	
Alimento e Bebida	1,40	
Automotivo e Metalúrgico	3,46	
Borracha e Plástico	4,00	
Cimento e Construção Civil	3,00	
Eletroeletrônico e Telecomunicações	4,00	
Energia Elétrica	2,36	
Farmacêutico	3,33	
Fertilizante, Agroindústria e Químico	4,00	
Hospitalar	2,50	
Móveis	3,67	
Máquinas e Equipamentos	3,33	
Mineração	8,67	
Papel e Celulose	2,50	
Predial	1,00	
Petróleo	3,73	
Petroquímico	1,67	
Saneamento e Serviços	5,00	
Siderúrgico	6,67	
Têxtil	3,00	
Transporte	>10,00	
MÉDIA GERAL	4,47%	

Figura 1: Custo Anual da Manutenção com base no Pib. (Abraman 2011).

Custo de manutenção por valor de reposição

 Este índice consiste na relação entre o custo total de manutenção de um determinado equipamento com o seu valor de compra.

$$CPMV = \frac{Custo total de manutenção}{Valor de compra do equip.} \times 100\%$$

Custo de manutenção por valor de reposição

• Deve ser calculado apenas para equipamentos de criticidade alta.

• É dispendioso e pouco preciso o controle de todos os equipamentos.

 Segundo Viana[2], CMPV < 6% seria um valor aceitável no período de um ano, mas pode ser maior caso o retorno financeiro e estratégico do equipamento justifiquem um elevado custo de manutenção.

Eficácia geral do equipamento

 A multiplicação da disponibilidade e das taxas de produção e qualidade fornece o valor da eficácia geral do equipamento (overall equipment effectiveness - OEE), que é um dos indicadores-chave de desempenho (KPIs) mais importantes e eficazes na medição de desempenho [1].

$$OEE = A \times P \times Q$$

Eficácia geral do equipamento

- Onde:
 - A (disponibilidade) = (tempo planejado tempo de inatividade)/tempo planejado;

- P (taxa de produção) = (tempo padrão/unidade)x(unidade produzida)/tempo operacional;
 - Sendo que: tempo operacional = tempo planejado tempo de inatividade;

Q (taxa de qualidade) = (produção total - quantidade ou número defeituoso)/produção total;

Confiabilidade

$$R(t) = e^{-\lambda t}$$

- t = intervalo de tempo considerado
- Taxa de falha (λ): o inverso do tempo médio entre falhas

$$\lambda = \frac{1}{TMEF}$$

- A Confiabilidade é função do tempo e não um número definido.
- Incorreto:
 - "Este equipamento tem confiabilidade de 0,97 (97%)."
- Correto:
 - "Este equipamento tem uma confiabilidade de 97% ao longo de um ano."
 - Ou seja, ao longo de um ano, a probabilidade do equipamento não falhar é de 97%. Não significa que vai operar 97% do tempo.

• Segundo Branco Filho [4], Backlog é o "tempo que uma equipe de manutenção deve trabalhar para concluir todos os serviços pendentes, com toda a sua força de trabalho, e se não forem adicionadas novas pendências durante a execução dos serviços até então registrados e pendentes em posse da equipe de Planejamento e Controle de Manutenção".

 Ou seja, é a soma de todas as horas previstas de HH em carteira, divididas pela capacidade instalada da equipe de executantes:

Backlog =
$$\frac{\Sigma \text{ HH em carteira}}{\Sigma \text{ HH em instalado}}$$

• De acordo com NBR 5462 o tempo de manutenção em homens-hora é a "soma das durações dos tempos de manutenção que cada indivíduo da equipe utilizou, expressa em homens-hora, para um certo tipo de ação de manutenção ou durante um dado intervalo de tempo".

 O HH instalado deve levar em consideração uma certa perda, pois nenhum profissional estará todo tempo dedicado aos serviços de manutenção.

- Uma parte da carga horária é dedicada a outras tarefas, como:
 - reuniões,
 - treinamentos,
 - organização da oficina, etc.

Normalmente, considera-se um desconto de 20%.

 O Backlog pode ser estratificado por especialidade, visando valores do índice em nível de mecânicos, eletricistas, caldeireiros, etc.

 Isto facilita a análise e, consequentemente, a decisão em relação às carências na equipe, pois denunciará os gargalos negativos; falta de HH em uma determinada especialidade, sobra em outra.

 Desta forma, teremos um excelente balizador para a definição da composição das equipes de manutenção.

Há casos em que podem haver grandes flutuações na demanda de serviços.

• Ex: preventiva de um motor de combustão.

 Nesses casos, recorremos ao Backlog Histórico, que consiste em considerar os serviços passados requeridos.

• Com isso, temos uma previsibilidade baseada na história de manutenção das demandas inerentes àquelas especialidades.

• Backlog Histórico pode apresentar diferentes comportamentos:

- Comportamento estável, restando saber se o valor de backlog está em um patamar aceitável ou não.
- Se não estiver, avaliar a possibilidade de:
 - Aumentar da produtividade da mão-de-obra;
 - Horas extras;
 - Contratação de equipe temporária;
 - Aumento da equipe.

• Backlog Histórico pode apresentar diferentes comportamentos:

- Nesse caso, em certo momento haverá pessoal ocioso.
- Isso pode acontecer em função de:
 - Queda das solicitações de serviços;
 - Aumento da produtividade da manutenção, com aquisição de novas ferramentas, treinamentos, etc.

Backlog Histórico pode apresentar diferentes comportamentos:

- Isso pode acontecer em função de:
 - Aumento de demanda;
 - Capacidade instalada insuficiente;
 - Baixa qualidade na manutenção;
 - Descontrole do PCM no calendário de preventivas;
 - Deficiência na supervisão da execução de serviços.

Backlog Histórico pode apresentar diferentes comportamentos:

Isso acontece quando há uma ocorrência de corretiva com tempo de execução bem alto, como, por exemplo, a quebra de um rolamento de giro de uma dragline.

Backlog Histórico pode apresentar diferentes comportamentos:

- Neste caso pode ter ocorrido a contratação de uma equipe externa;
- Ou redução da demanda de manutenção através da relocação de recursos de uma área para outra (manutenção para operação, por exemplo).

• Backlog Histórico pode apresentar diferentes comportamentos:

Descontrole do processo, devido problemas de PCM.

Índice de retrabalho

 Representa o percentual de horas trabalhadas em Ordens de Manutenção encerradas, reabertas por qualquer motivo, em relação ao total geral trabalhado no período.

Índice de Retrabalho =
$$\frac{\Sigma \text{ HH em OM reabertas}}{\Sigma \text{ HH total no período}} \times 100\%$$

Índice de retrabalho

• Indica a qualidade dos serviços de manutenção.

 O ideal é que o seu valor seja zero, ou seja, após a intervenção mantenedora não haja ocorrência de falha com a mesma origem da primeira OM.

Índice de retrabalho

mês	hh retrabalho	total hh apropriado	% retrabalho
J	80	1540	5,2
F	120	1400	8,6
М	12	1380	0,9
Α	60	1320	4,5
М	240	1480	16,2
J	0	1500	0,0
J	16	1540	1,0
Α	32	1250	2,6
S	48	1350	3,6
0	12	1100	1,1
N	24	1280	1,9
D	84	1460	5,8

Índice de corretiva (IC)

- Indica o % de ações corretivas, sendo:
 - HMC = horas de manutenção em corretiva;
 - HMP = horas de manutenção em preventiva.

Índice de Corretiva =
$$\frac{\Sigma \text{ HMC}}{\Sigma \text{ HMC} + \Sigma \text{ HMP}} \times 100\%$$

Índice de corretiva (IC)

• Segundo Viana[2], um patamar aceitável de corretivas deve estar abaixo de 25% do total de horas de manutenção na planta.

Improvável que seja zero.

Normalmente, indice de corretiva acima de 50% indica o caos na manutenção.
 Efeito "bola de neve"!

Índice de preventiva (IP)

- Indica o % de ações preventivas, sendo:
 - HMC = horas de manutenção em corretiva;
 - HMP = horas de manutenção em preventiva.

Índice de Preventiva =
$$\frac{\Sigma \text{ HMP}}{\Sigma \text{ HMC} + \Sigma \text{ HMP}} \times 100\%$$

Índice de preventiva (IP)

Comportamento oposto ao de IC.

• Para Viana [2], um patamar aceitável seria acima de 75% do total.

• Se o aumento do IC leva a uma série de impactos negativos em quase todos os índices de manutenção, o aumento do IP provoca o contrário.

Aplicação de HH por tipo de manutenção

 Esses indicadores estratificam a aplicação da mão de obra disponível nas diversas técnicas de manutenção permitindo a constatação e posterior plano de ação para melhoria.

Aplicação de HH por tipo de manutenção

Indicador	Fórmula
% preventiva	hh apropriado preventiva %PM= hh disponível para apropriação
% preditiva	hh apropriado preditiva (monitoramento) %PdM= hh disponível para apropriação
% inspeção de manutenção	hh apropriado inspeção de manutenção %IM= hh disponível para apropriação
% corretiva não planejada	hh apropriado corretiva não planejada %MC= hh disponível para apropriação
% corretiva planejada	hh apropriado corretiva planejada %MCP= hh disponível para apropriação

Hh disponivel para apropriação = PM + PdM + IM + MC + MCP

Aplicação de HH por tipo de manutenção

Observação de forma gráfica:

hh apropriado por tipo de manutenção

Alocação de HH em OM

• O indicador de Homens Hora alocado em Ordem de Manutenção informa o percentual de horas da manutenção oficializada na burocracia do PCM.

% HH alocado em OM =
$$\frac{\Sigma \text{ HH indicado em OM}}{\Sigma \text{ HH instalado em um mês}} \times 100\%$$

Alocação de HH em OM

- É útil por dois motivos:
 - Indica o nível de utilização do sistema de manutenção adotado pela empresa.

 Indica o percentual de dedicação a serviços indiretos da manutenção, como também do nível de ociosidade ou sobrecarregamento das equipes (diferentes turnos).

Absenteísmo

• À medida que o absenteísmo aumenta, pode-se estar diante de um problema relacionado a clima organizacional ou motivação do pessoal

Treinamento na Manutenção

• O índice de Treinamento na Manutenção corresponde ao percentual de HH dedicado a aperfeiçoamento, com relação ao HH instalado em um determinado período.

Treinamento na Manutenção =
$$\frac{\Sigma \text{ HH dedicado a treinamentos}}{\Sigma \text{ HH instalado no período}} \times 100\%$$

Este indicador, aliado aos índices de preventiva, retrabalho, corretiva, entre outros, mostra o quanto repercutem os treinamentos na melhoria dos índices de manutenção.

Taxa de frequência de acidentes

 A taxa de frequência de acidentes representa o número de acidentes por milhão de HH trabalhado.

Taxa de Freqüência =
$$\frac{\text{Número de Acidentes}}{\text{Homens Horas Trabalhado}} \times 10^6$$

Taxa de frequência de acidentes

• Este indicador é extremamente importante para a manutenção, pois mensura a eficiência das ações em busca de um ambiente seguro para o trabalho.

 Claro que por si só não nos possibilita traçar um plano de segurança eficiente, mas funciona como um limite.

Taxa de frequência de acidentes

- LEI No 6.367, DE 19 DE OUTUBRO DE 1976:
 - Art. 2º Acidente do trabalho é aquele que ocorrer pelo exercício do trabalho a serviço da empresa, provocando lesão corporal ou perturbação funcional que cause a morte, ou perda, ou redução, permanente ou temporária, da capacidade para o trabalho.

Pesquisa ABRAMAN:

Setores	Taxa de Freqüência
Açúcar / Alimento / Bebida / Fumo	-
Cimento / Cerâmica	18,91
Eletricidade / Energia	6,49
Enga / Constr. / Pr. Serv. / Saneamento	11,59
Eletroeletrônica	_
Farmacêutico	40,39
Hospitalar	_
Máquinas / Equipamentos	24,25
Mineração / Metalurgia	21,66
Material de Transporte	35,47
Papel / Celulose	19,01
Petróleo	8,60
Petroquímico	13,55
Plásticos / Borracha	38,45
Predial / Hotelaria	24,44
Químico	37,30
Siderúrgico	14,70
Têxtil	14,13
Transporte	31,45
Média	22,52

Taxa de gravidade de acidentes

 Consiste no total de homens horas perdido decorrente de acidente de trabalho, por milhão de HH trabalhado.

Taxa de Gravidade =
$$\frac{\text{Total de HH perdido}}{\text{Homens Horas Trabalhado}} \times 10^6$$

Pesquisa ABRAMAN:

Setores	Taxa de Gravidade
Açúcar / Alimento / Bebida / Fumo	
Cimento / Cerâmica	176,00
Eletricidade / Energia	225,82
Enga / Constr. / Pr. Serv. / Saneamento	443,60
Eletroeletrônica	_
Farmacêutico	235,67
Hospitalar	
Máquinas / Equipamentos	544,78
Mineração / Metalurgia	363,07
Material de Transporte	355,00
Papel / Celulose	195,08
Petróleo	156,25
Petroquímico	168,30
Plásticos / Borracha	115,79
Predial / Hotelaria	200,00
Químico	457,01
Siderúrgico	629,17
Têxtil	67,50
Transporte	311,58
Média	290,29

Indicadores de desempenho para diferentes setores

Alguns ID para diferentes setores

• Nesse tópico serão listados alguns indicadores usados em diferentes setores de acordo com Parida e Kumar [1].

Óleo e Gás

- Produção
 - Volumes produzidos de óleo e gás (m3).
 - Produção planejada de óleo e gás (m3).

- Integridade técnica
 - Backlog de manutenção preventiva.
 - Backlog de manutenção corretiva.
 - Número de ordens de serviço corretivas.

Óleo e Gás

- Parâmetros de manutenção
 - homem-hora em manutenção de sistema de segurança.
 - homem-hora em manutenção do sistema produtivo.
 - homem-hora em manutenção de outros sistemas.
 - Total de homem-hora em manutenção.

- Parada de produção
 - Devido à manutenção (m3).
 - Devido à operação (m3).
 - Devido às operações de perfuração/poço (m3).
 - Clima e outras causas (m3).

Setor ferroviário

- Utilização da capacidade da infraestrutura;
- Restrição da capacidade da infraestrutura;
- Horas de atrasos de trens devido à infraestrutura;
- Número de trens de carga atrasados devido à infraestrutura;
- Número de interrupções devido à infraestrutura;
- Custo de manutenção por via-quilômetro;
- Volume de tráfego;
- Número de acidentes envolvendo veículos ferroviários;

Setor ferroviário

- Número de acidentes em passagens em nível;
- Consumo de energia por área;
- Uso de material perigoso ao meio ambiente;
- Uso de materiais não renováveis;
- Número total de interrupções funcionais; e
- Número total de observações de inspeção urgentes.

Indústrias de Processos em Geral

- Tempo de inatividade (horas);
- Horas-extra;
- Tarefas de manutenção planejadas;
- Tarefas não planejadas;
- Número de novas ideias geradas;
- Treinamento de habilidades e melhorias;
- Reclamações de funcionários;
- Custo de manutenção por tonelada.

- Relacionado à satisfação do cliente
 - índice de duração média de interrupção do sistema = soma da duração da interrupção / número total de chamados atendidos;
 - índice de duração média de interrupção do cliente = soma da duração da interrupção do cliente / número total de interrupções do cliente;
 - índice de satisfação do cliente, obtido por meio de pesquisa com clientes.

- Relacionado a custos
 - Custo total de manutenção; e
 - Margem de lucro.

- Planta/Processo
 - Tempo de inatividade; e
 - Eficácia geral do equipamento (OEE).

- Tarefa de manutenção relacionada
 - Número de paradas não planejadas (número e tempo);
 - Número de trabalho de emergência;
 - Custo de estoque.

- Aprendizado e crescimento/inovação
 - Número de novas ideias geradas; e
 - Treinamento de habilidades e melhorias.

- Saúde, segurança e meio ambiente (SSM)
 - Número de acidentes; e
 - Número de reclamações de SSM.

- Relacionado à satisfação dos funcionários
 - Nível de satisfação dos funcionários.

Valores de Benchmark

Alguns valores de Benchmark

Wireman [8] destaca alguns valores de referência para certos indicadores:

Indicador	Nível baixo	Nível alto	Melhor prática
Custo de Manutenção/valor estimado da			
reposição	2%	5%	2%
Técnicos para Supervisor	8:1	15:1	10:1
Técnicos para Planejador	15:1	25:1	20:1
Custo de manutenção/faturamento	1%	5%	2%
Custos de mão de obra de			
manutenção/Faturamento	0,6%	2,5%	1,0%
Custos de manutenção de			
estoques/faturamento	0,4%	2,5%	1,0%
Cobertura de Ordem de Serviço	60%	100%	100%

Alguns valores de Benchmark

Wireman [8] destaca alguns valores de referência para certos indicadores:

Indicador	Nível baixo	Nível alto	Melhor prática
Conformidade com a Manutenção Preventiva	65%	100%	100%
Nível de Manutenção Planejada	35%	95%	>80%
Envolvimento do Operador na Manutenção			
Preventiva	1%	10%	Varia
Horas reativas/Horas totais	5%	50%	<10%
Disponibilidade do equipamento	65%	99,9%	Varia
Eficácia geral do equipamento (OEE)	<20%	>85%	Varia

Referências

- [1] Parida, A., Kumar, U. (2009). Maintenance Productivity and Performance Measurement. In: Ben-Daya, M., Duffuaa, S., Raouf, A., Knezevic, J., Ait-Kadi, D. (eds) Handbook of Maintenance Management and Engineering. Springer, London. https://doi.org/10.1007/978-1-84882-472-0_2
- [2] Viana, HRG. Planejamento e controle de Manutenção. 2002.
- [3] Kardec, A. e Nascif, J. Manutenção: Função estratégica. 3 ed. 2009.
- [4] Gil Branco Filho. Dicionário de Termos de Manutenção, Confiabilidade e Qualidade 1996.
- [5] Julio Nascif. Indicadores da Manutenção. E-book.
- [6]https://www.planalto.gov.br/ccivil_03/leis/l6367.htm#:~:text=ao%20empregado%20dom%C3%A9st ico.-,Art.,da%20capacidade%20para%20o%20trabalho
- [7] Parida A (2006) Development of a multi-criteria hierarchical framework for maintenance performance measurement: Concepts, issues and challenges, Doctoral thesis, Luleå University of Technology, 2006:37, ISBN: LTU-DT-06/37-SE, http://epubl.ltu.se/1402-1544/2006/37/index-en.html
- [8] Wireman, Terry. Benchmarking best practices in maintenance management / Terry Wireman. p. 231. Industrial Press Inc. 2004.