diabetes-analysis

September 27, 2023

1 IMPORTING LIBRARIES

```
[5]: import pandas as pd
  import numpy as np
  import seaborn as sns
  import matplotlib.pyplot as plt
  import matplotlib.gridspec as gridspec
  import scipy
  from matplotlib.colors import ListedColormap
  import warnings
  warnings.filterwarnings('ignore')
```

2 Loading Data Set for Performing EDA (exploraitory data analysis)

```
[9]: df= pd.read_csv("D:\Downloads\diabetes 01.csv")
print(df)
```

Pregnancies	Glucose	${ t BloodPressure}$	SkinThickness	Insulin	BMI	\
6	148	72	35	0	33.6	
1	85	66	29	0	26.6	
8	183	64	0	0	23.3	
1	89	66	23	94	28.1	
0	137	40	35	168	43.1	
•••		•••		•••		
10	101	76	48	180	32.9	
2	122	70	27	0	36.8	
5	121	72	23	112	26.2	
1	126	60	0	0	30.1	
1	93	70	31	0	30.4	
	6 1 8 1 0 10 2	6 148 1 85 8 183 1 89 0 137 10 101 2 122 5 121 1 126	6 148 72 1 85 66 8 183 64 1 89 66 0 137 40 10 101 76 2 122 70 5 121 72 1 126 60	6 148 72 35 1 85 66 29 8 183 64 0 1 89 66 23 0 137 40 35 10 101 76 48 2 122 70 27 5 121 72 23 1 126 60 0	6 148 72 35 0 1 85 66 29 0 8 183 64 0 0 1 89 66 23 94 0 137 40 35 168 10 101 76 48 180 2 122 70 27 0 5 121 72 23 112 1 126 60 0 0	6 148 72 35 0 33.6 1 85 66 29 0 26.6 8 183 64 0 0 23.3 1 89 66 23 94 28.1 0 137 40 35 168 43.1

	DiabetesPedigreeFunction	Age	Outcome
(0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0

2.288	33		1
		•••	
0.171	63		0
0.340	27		0
0.245	30		0
0.349	47		1
0.315	23		0
	0.171 0.340 0.245 0.349	0.171 63 0.340 27 0.245 30 0.349 47	0.171 63 0.340 27 0.245 30 0.349 47

[768 rows x 9 columns]

3 EDA starts from here

```
[13]: df.head(11)
## df.head () returns the toprows of the DataFrame
```

[13]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
5	5	116	74	0	0	25.6	
6	3	78	50	32	88	31.0	
7	10	115	0	0	0	35.3	
8	2	197	70	45	543	30.5	
9	8	125	96	0	0	0.0	
10	4	110	92	0	0	37.6	

```
DiabetesPedigreeFunction Age Outcome
0
                         0.627
                                 50
                                            1
1
                         0.351
                                            0
                                 31
                         0.672
2
                                 32
                                            1
3
                         0.167
                                 21
                         2.288
4
                                 33
                                            1
5
                         0.201
                                 30
                                            0
6
                         0.248
                                            1
                                 26
                         0.134
7
                                 29
                                            0
8
                         0.158
                                 53
                                            1
9
                         0.232
                                 54
                                            1
10
                         0.191
                                 30
                                            0
```

```
[14]: df.tail(11) ## df.tail() returns the lastrows of the DataFrame
```

759	6	190	92	0	0	35.5
760	2	88	58	26	16	28.4
761	9	170	74	31	0	44.0
762	9	89	62	0	0	22.5
763	10	101	76	48	180	32.9
764	2	122	70	27	0	36.8
765	5	121	72	23	112	26.2
766	1	126	60	0	0	30.1
767	1	93	70	31	0	30.4

	DiabetesPedigreeFunction	Age	Outcome
757	0.258	52	1
758	0.197	26	0
759	0.278	66	1
760	0.766	22	0
761	0.403	43	1
762	0.142	33	0
763	0.171	63	0
764	0.340	27	0
765	0.245	30	0
766	0.349	47	1
767	0.315	23	0

[16]: df.shape

The first value represents the number of rows in the DataFrame.

The second value represents the number of columns in the DataFrame.

[16]: (768, 9)

[19]: df.describe()

#The df.describe() method provides a quick overview of the central tendency and \rightarrow dispersion of numerical data in your DataFrame, which is helpful for \rightarrow understanding the distribution of your data.

[19]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	\
	count	768.000000	768.000000	768.000000	768.000000	768.000000	
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	
	std	3.369578	31.972618	19.355807	15.952218	115.244002	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	
	max	17.000000	199.000000	122.000000	99.000000	846.000000	

	BMI	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000
mean	31.992578	0.471876	33.240885	0.348958

```
std
               7.884160
                                         0.331329
                                                     11.760232
                                                                  0.476951
               0.000000
                                         0.078000
                                                     21.000000
                                                                  0.000000
      min
      25%
              27.300000
                                         0.243750
                                                     24.000000
                                                                  0.000000
      50%
              32.000000
                                         0.372500
                                                     29.000000
                                                                  0.000000
      75%
              36.600000
                                         0.626250
                                                     41.000000
                                                                  1.000000
     max
              67.100000
                                         2.420000
                                                     81.000000
                                                                  1.000000
[20]: df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 768 entries, 0 to 767
     Data columns (total 9 columns):
          Column
                                     Non-Null Count
                                                     Dtype
          _____
                                     _____
                                                     ____
      0
          Pregnancies
                                     768 non-null
                                                     int64
      1
          Glucose
                                     768 non-null
                                                     int64
      2
          BloodPressure
                                     768 non-null
                                                     int64
      3
          SkinThickness
                                     768 non-null
                                                     int64
      4
          Insulin
                                     768 non-null
                                                     int64
      5
                                     768 non-null
                                                     float64
          BMI
      6
          DiabetesPedigreeFunction 768 non-null
                                                     float64
                                     768 non-null
      7
                                                     int64
          Outcome
                                     768 non-null
                                                     int64
     dtypes: float64(2), int64(7)
     memory usage: 54.1 KB
[23]: df.columns
[23]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
             'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
            dtype='object')
         Checking and Cleaning Null Values if any
[24]: df.isnull()
      df.isnull().sum()
[24]: Pregnancies
                                  0
      Glucose
                                  0
      BloodPressure
                                  0
      SkinThickness
                                  0
      Insulin
                                  0
     BMI
                                  0
      DiabetesPedigreeFunction
                                  0
```

0

0

Age Outcome dtype: int64

5 Analysis starts by Plotting Graphs on different parameters.

6 Frequency Plot

7 Distribution of Pregnancies

```
[36]: for column in df.select_dtypes(include=['int64', 'float64']):
    plt.figure(figsize=(8,4))
    sns.histplot(df[column], bins =20, kde=True)
    plt.title(f'Distribution of {column}')
    plt.show()
```


8 Correlation heatmap to visualize relationships between numerical variables

```
[41]: correlation_matrix =df.corr()
  plt.figure(figsize=(8,6))
  sns.heatmap(correlation_matrix, annot =True , cmap='coolwarm' , linewidths =0.5)
  plt.title('correlation Heatmap')
  plt.show()
```


9 feature distribution by diabetes outcome

10 Pair Plot of Features with Outcome Comparison

```
[61]: sns.pairplot(df, hue='Outcome', diag_kind = 'kde')
plt.title('Pair Plot')
plt.show()
```


11~ Pair Plot of Glucose , Insulin , BMI , Age, and Outcome"

```
[67]: columns_to_include = ['Glucose', 'Insulin', 'BMI', 'Age', 'Outcome']

sns.pairplot(df[columns_to_include], hue='Outcome', markers=["o", "s"],

palette={0: 'blue', 1: 'orange'})

plt.show()
```


12 Box Plot of BloodPressure by Number of Pregnancies

```
[69]: plt.figure(figsize=(8,8))
    sns.boxplot(x='Pregnancies', y='BloodPressure', data=df)
    plt.xlabel('Pregnancies')
    plt.ylabel('BloodPressure')
    plt.title('Box plot of BloodPressure by Number of Pregnancies')
    plt.xticks(rotation = 820)
    plt.show()
```


13 Conclusion

[]: I performed a comprehensive exploratory data analysis (EDA) on a dataset userelated to diabetes patients. First,

I imported essential libraries such as Pandas for data manipulation and Seaborn usefor visualization.

After loading the dataset from a CSV file, I examined its dimensions, finding userelated and 9 columns.

Utilizing df.describe(), I obtained summary statistics for numerical columns, userelated insights into data

Pregnancies

characteristics. Moreover, I confirmed the absence of missing values with df. \rightarrow info(). The data cleaning step

in data-driven decisions and potential modeling for diabetes prediction.