[MPSI – Mathématiques 2]

Sommaire

[MPSI – MATHEMATIQUES 2]	1
Sommaire	1
8 – FONCTIONS REELLES D'UNE VARIABLE REELLE	3
I Generalites	3
II ETUDE LOCALE	
II CONTINUITE SUR UN INTERVALLE	5
IV Monotonie	
V Branches infinies	
VI FONCTIONS PUISSANCES	
VII SUITES DEFINIES PAR UNE RELATION DE RECURRENCE	
9 – DERIVATION D'UNE FONCTION REELLE D'UNE VARIABLE REELLE	8
I Derivee et differentielle	8
II OPERATIONS SUR LES FONCTIONS DERIVEES.	8
III THEOREME DE ROLLE ET THEOREME DES ACCROISSEMENTS FINIS	9
10 - INTEGRALE DE RIEMANN	11
I FONCTIONS EN ESCALIER	
II INTEGRALE D'UNE FONCTION EN ESCALIER SUR UN SEGMENT	
III INTEGRALE D'UNE FONCTION CONTINUE PAR MORCEAUX SUR UN SEGMENT	
IV Integrales et primitives	
V FORMULES DE TAYLOR	
VI COMPLEMENTS : FONCTIONS A VALEURS COMPLEXES	
11 – FONCTIONS USUELLES	
I FONCTIONS TRIGONOMETRIQUES	
II FONCTIONS LOGARITHMES ET EXPONENTIELLES	
III FONCTIONS HYPERBOLIQUES	
12 – ETUDE PRATIQUE D'UNE FONCTION REELLE	
I COMPARAISON DE FONCTIONS AU VOISINAGE D'UN POINT	
II DEVELOPPEMENTS LIMITES	
III APPLICATIONS	
V DEVELOPPEMENTS LIMITES A CONNAITRE V DEVELOPPEMENTS ASYMPTOTIQUES	
13 - POLYNOMES	
I Definition – Structure	
II ARTHMETIQUE DE K[A]	
IV ETUDE DE $\mathbb{R}[X]$ ET DE $\mathbb{C}[X]$	
V EQUATIONS ALGEBRIQUES	
VI Fractions rationnelles	
VII COMPLEMENT: POLYNOMES D'INTERPOLATION	
14 - CALCUL DE PRIMITIVES ET D'INTEGRALES	30
I FONCTION POLYNOMIALE EN SIN(X) ET COS(X)	30
II FONCTION RATIONNELLE	30
III FONCTION RATIONNELLE DE SIN(X) ET COS(X)	
IV EDACTION DATIONNELLE EN SH(Y) ET $CH(Y)$	30

ſ	MPSI	- Ma	THFM	ATIOI	ifs 2

PRIMITIVES DU PRODUIT D'UN POLYNOME ET D'UNE EXPONENTIELLE	.31
JI Integral es arel iennes attachees a line colirre liniclirsal e	31

8 – Fonctions réelles d'une variable réelle

I Généralités

1 – Définition – Structure

Une fonction définie sur $A \subset \mathbb{R}$ à valeur dans \mathbb{R} est une application de A vers \mathbb{R} .

L'ensemble des fonctions de A à valeur dans \mathbb{R} est notée $\mathcal{F}(A, \mathbb{R})$.

Le domaine de définition d'une fonction est la plus grande partie de \mathbb{R} sur laquelle la fonction existe.

2 - Graphe - Graphique

```
Soit f \in \mathcal{F}(A, \mathbb{R}).
Le graphe de f est \{(x,f(x)), x \in A\} \subset \mathbb{R}^2
Le graphique de f est \{M(x,f(x)), x \in A\} \subset \mathcal{P}
```

3 – Fonctions et relation d'ordre

```
Soient (f, g) \in \mathcal{F}(A, \mathbb{R})^2.
|f| est définie par \forall x \in A, |f|(x) = |f(x)|. On a:-|f| \le f \le |f|
\sup(f, g) est définie par \forall x \in A, \sup(f, g)(x) = \sup(\{f(x), g(x)\})
\inf(f,g) est définie par \forall x \in A, \inf(f,g)(x) = \inf(\{f(x),g(x)\})
f^+ = \sup(f, 0) f^- = \sup(-f, 0). On a f = f^+ - f^-, et |f| = f^+ + f^-.
                                                                                                  [\sim demo]
f majorée sur A \Leftrightarrow \exists M \in \mathbb{R}, \forall x \in A, f(x) \leq M
f minorée sur A \Leftrightarrow \exists m \in \mathbb{R}, \forall x \in A, f(x) \ge m
f bornée sur A ⇔ f majorée et minorée sur A
Si f est majorée sur A, f(A) admet une borne supérieure. On la note \sup_{x \in A} f(x) = \sup_{x \in A} f(x).
Sup f(x) = M \Leftrightarrow \forall x \in A, f(x) \leq M
                                    \forall \ \epsilon \in \mathbb{R}_+, \exists \ x \in A, f(x) \ge M - \epsilon
                        et
f bornée sur A \Leftrightarrow |f| majorée sur A.
                                                            [~demo]
f admet un maximum global \Leftrightarrow \exists x_0 \in A, \forall x \in A, f(x) \leq f(x_0)
f admet en un point x_1 \in A un maximum local \iff \exists \alpha > 0, [x_1 - \alpha, x_1 + \alpha] \subset A
                                                                                     \forall \ x \in \ [x_1 - \alpha, x_1 + \alpha], \ f(x) \le f(x_0)
                                                                         et
```

Attention: un maximum global n'est pas forcément un maximum local.

4 - Parité et périodicité

```
Soit f \in \mathcal{F}(A, \mathbb{R}).

f est paire \iff \forall x \in A, -x \in A \text{ et } f(-x) = f(x)

f est impaire \iff \forall x \in A, -x \in A \text{ et } f(-x) = -f(x)

L'ensemble des fonctions paires de A à valeur dans \mathbb{R} est notée \mathbf{P}(A, \mathbb{R}).

L'ensemble des fonctions impaires de A à valeur dans \mathbb{R} est notée \mathbf{I}(A, \mathbb{R}).

L'ensemble des fonctions impaires de A à valeur dans \mathbb{R} est notée \mathbf{I}(A, \mathbb{R}).

\mathcal{F}(A, \mathbb{R}) = \mathbf{P}(A, \mathbb{R}) \oplus \mathbf{I}(A, \mathbb{R}) [ demo facile ]

f est périodique de période T \iff \forall x \in A, x+T \in A \text{ et } f(x+T) = f(x)

Soit f \in \mathcal{F}(\mathbb{R}, \mathbb{R}). L'ensemble des périodes de f est un sous-groupe additif de \mathbb{R}. [ \simdemo ]
```

II Etude locale

1 – Limite et continuité en un point

```
Soit f \in \mathscr{F}(I,\mathbb{R}), où I est un intervalle.

Une propriété locale est une propriété valide dans un intervalle.

V est un voisinage de a \Leftrightarrow V \subset \mathbb{R}, et \exists \ \alpha > 0, [a - \alpha, a + \alpha] \subset V

f admet la limite \ell lorsque x tend vers x_0 \Leftrightarrow \forall \ \epsilon > 0, \exists \ \alpha > 0, \forall \ x \in I, |x - x_0| \le \alpha \Rightarrow |f(x) - \ell| \le \epsilon

ou \ell - \epsilon \le f(x) \le \ell + \epsilon

ou f(x) \in [\ell - \epsilon, \ell + \epsilon]
```

On peut toujours se ramener à effectuer la limite en 0: $\lim_{x\to x_0} f(x) = \ell \Leftrightarrow \lim_{x\to 0} f(x+x_0) - \ell = 0$

Unicité de la limite en un point [demo : on choisit $\varepsilon \le \ell - \ell'$]

Notation:
$$f(x) \xrightarrow[x \to x_0]{} \ell$$
 ou encore $\lim_{x \to x_0} f(x) = \ell$

 $\lim_{x \to x_0} f(x) = \ell \text{ et } x_0 \in I \Rightarrow f(x_0) = \ell$ [demo rapide]

f est continue en $x_0 \in I \iff$ elle admet une limite en x_0

$$\Leftrightarrow \forall \ \epsilon > 0, \exists \ \alpha > 0, \ \forall \ x \in I, \ |x - x_0| \le \alpha \Rightarrow |f(x) - f(x_0)| \le \epsilon$$

Ex : E(x) n'est continue que sur $\mathbb{R} \setminus \mathbb{Z}$.

Soit $f \in \mathcal{F}(I, \mathbb{R})$, et a une borne de $I, a \notin I$, et $\lim_{x \to a} f(x) = \ell \in \mathbb{R}$. On définit $g \in \mathcal{F}(I \cup \{a\}, \mathbb{R})$, telle que $\forall x \in I, g(x) = f(x)$ et $g(a) = \ell$. g est le prolongement par continuité de f en g.

2 – Extension à \mathbb{R}

Soit $f \in \mathcal{F}(I, \mathbb{R})$, où I est un intervalle non majoré.

$$\begin{split} f\left(x\right) & \xrightarrow[x \to +\infty]{} \ell & \iff \forall \; \epsilon \geq 0, \exists \; A \in \mathbb{R}, \forall \; x \in I, x \geq A \Rightarrow |f(x) - \ell| \leq \epsilon \\ f\left(x\right) & \xrightarrow[x \to +\infty]{} + \infty & \iff \forall \; B \in \mathbb{R}, \exists \; A \in \mathbb{R}, \forall \; x \in I, x \geq A \Rightarrow f(x) \geq B \end{split}$$

De même pour -∞.

3 – Limite et continuité à gauche / à droite

Soit
$$f \in \mathcal{F}(I, \mathbb{R})$$
, et $a \in (I \cup \{ Inf(I) \}) \setminus \{ Sup(I) \}$. $f(x) \xrightarrow{x \to a^+} \ell$ si

$$\forall \ \epsilon > 0, \exists \ \alpha > 0, \forall \ x \in I, a < x \le a + \alpha \Rightarrow |f(x) - \ell| \le \epsilon$$

f est continue à droite si $\lim_{x \to a^+} f(x) = f(a)$.

De même à gauche.

f est continue en $a \in I \setminus \{ Sup(I), Inf(I) \} \Leftrightarrow f$ continue en a à gauche et à droite.

4 – Limites de fonctions, limites de suites

Si
$$a = Sup(I) \notin I$$
 alors $\exists (u_n) \in I^{\mathbb{N}}$, $(u_n) \to a$. [demo facile]
Soit $f \in \mathcal{F}(I, \mathbb{R})$, et $a \in I$ ou a borne de I , $f(x) \xrightarrow[x \to a]{} \ell \Leftrightarrow \forall (u_n) \in I^{\mathbb{N}}$, $(u_n) \to a \Rightarrow (f(u_n)) \to \ell$.

[demo $A \Rightarrow B$ et pas $A \Rightarrow$ pas B]

Utilisation: $x \to \sin(1/x)$ n'admet pas de limite lorsque $x \to 0$.

5 – Opérations sur les limites

Soit $I \subset \mathbb{R}$, et $a \in I$ ou a borne de I

$$\{f \in \mathcal{F}(I, \mathbb{R}), f(x) \xrightarrow[x \to a]{} 0\}$$
 est un \mathbb{R} – espace vectoriel [demo en passant par les suites]

Si $\lim_{x\to a} f(x) = 0$ et g une fonction bornée au voisinage de a, alors $\lim_{x\to a} (fg)(x) = 0$

 $\lim(f) + \lim(g) = \lim(f+g)$ $\lim(\lambda f) = \lambda \lim(f)$

 $\lim(f g) = \lim(f) \lim(g)$ Si $\lim(g) \neq 0$, $\lim(f/g) = \lim(f) / \lim(g)$

Corollaire: Si f et g sont continues en a, alors f+g, λf , f g, f/g continues en a.

Ex : toute fonction polynôme est continue sur \mathbb{R} .

6 – Composition des limites

 $f \in \mathcal{F}(I, \mathbb{R}), g \in \mathcal{F}(J, \mathbb{R}), \text{ et } f(I) \subset J, a \in I \text{ ou borne de } I.$

Si $\lim_{x\to a} f(x) = b$ et $\lim_{x\to b} g(x) = \ell$ alors $\lim_{x\to a} g\circ f(x) = \ell$. [demo bcp de notations]

Corollaire : f continue en $a \in I$ et g continue en $f(a) \in J$, alors $g \circ f$ est continue en a.

7 – Limites et relation d'ordre

$$\begin{split} &\lim_{x\to a} f(x) = \ell \quad \lim_{x\to a} g(x) = \ell' \\ &\ell < \ell' \Rightarrow \exists \; \beta > 0, \; \forall \; x \in I, \; |x-a| \leq \beta \Rightarrow f(x) < g(x) \qquad [\text{ demo : on prend } \epsilon < \ell' - \ell] \\ &\text{Corollaire : Si } \lim_{x\to a} f(x) = \ell > 0, \; \exists \; m > 0, \; \exists \; \beta > 0, \; \forall \; x \in I, \; |x-a| \leq \beta \Rightarrow f(x) > m \\ &\exists \; \beta > 0, \; \forall \; x \in I, \; |x-a| \leq \beta \Rightarrow f(x) \leq g(x) \Rightarrow \ell \leq \ell' \; (\text{ contraposée}) \\ &\text{Si } f, g, h \in \mathcal{F}(I, \mathbb{R}), \text{ et que } \lim_{x\to a} f(x) = \lim_{x\to a} h(x) = \ell, \text{ et } \exists \; \beta > 0, \; \forall \; x \in I, \; |x-a| \leq \beta \Rightarrow f(x) \leq g(x) \leq h(x) \\ &\text{ alors } \lim_{x\to a} g(x) = \ell \end{split}$$

II Continuité sur un intervalle

1 – Définition

f est continue sur I \Leftrightarrow elle est continue en tous point de I Notation : $f \in C^{\circ}(I, \mathbb{R})$ $C^{\circ}(I, \mathbb{R})$ est une \mathbb{R} – algèbre. $f \in C^{\circ}(I, \mathbb{R}), g \in C^{\circ}(J, \mathbb{R})$ et $f(I) \subset J$ alors $g \circ f \in C^{\circ}(I, \mathbb{R})$

2 – Image continue d'un intervalle.

Théorème des valeurs intermédiaires : $f \in C^0(I, \mathbb{R})$. $\forall (a, b) \in I^2, \forall \lambda \in [Inf(f(a), f(b)), Sup(f(a), f(b))], \exists x \in [a, b], f(x) = \lambda$

[DEMO : on étudie $f - \lambda$; on crée 2 suites adjacentes qui convergent vers x]

Corollaire: $\forall f \in C^0(I, \mathbb{R}), f(I)$ est un intervalle. [demo rapide]

3 – Image continue d'un segment

Segment = intervalle borné et fermé

 $\forall f \in C^0([a, b], \mathbb{R}), f([a, b])$ est aussi un segment.

[DEMO : on montre que f([a,b]) est bornée puis par des suites et BW on trouve un antécédent à M] [exemple]

4 – Continuité uniforme

Soit $f \in \mathcal{F}(I, \mathbb{R})$.

f est uniformément continue sur $I \Leftrightarrow \forall \ \epsilon > 0, \exists \ \alpha > 0, \ \forall \ (x,x') \in I^2, \ |x-x'| \le \alpha \Rightarrow |f(x)-f(x')| \le \epsilon$ Théorème de Heine: $\forall \ f \in C^0([a,b],\mathbb{R}), \ f$ est uniformément continue. [DEMO absurde puis BW]

Si \exists $((x_n), (x'_n)) \in (I^{\mathbb{N}})^2$, telles que $(x_n - x'_n) \to 0$ et $(f(x_n) - f(x'_n))$ ne converge pas vers 0 alors f n'est pas uniformément continue. [demo notations]

f est k-lipschitzienne ($k \in \mathbb{R}_+^*$) si \forall (x, x') $\in I^2$, $|f(x) - f(x')| \le k|x - x'|$

f est lipschizienne ⇒ f uniformément continue [demo rapide]

<u>Théorème du point fixe</u>: Soit $f \in \mathcal{F}([a,b],[a,b])$, f est k-lipschitzienne de rapport $k \in]0, 1[$ (c'est-à-dire f contractante) alors:

- $\exists ! c \in [a, b], f(c) = c$
- $\forall (x_n) \in [a, b]^{\mathbb{N}}, \forall n \in \mathbb{N}, x_{n+1} = f(x_n), (x_n) \to c$

[DEMO : existence de c (TVI) ; unicité de c ; suites proches à celles de Cauchy]

Extensions : le théorème est aussi valide si $f \in \mathcal{F}([a, +\infty[, [a, +\infty[) \text{ ou si } f \in \mathcal{F}(]-\infty, a],]-\infty, a])$, ou si $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$. [élements de demo] ; il n'est pas valide si f est définie sur un intervalle ouvert [contrexemple].

Si f est continue sur \mathbb{R} , et qu'elle admet des limites finies en $+\infty$ et en $-\infty$, f est uniformément continue. [EXOS 12]

5 – Approximation uniforme d'une fonction continue sur un intervalle

$$\begin{split} f \in \mathcal{F}(I,\mathbb{R}) \text{ est approchée uniformément sur } I \text{ à } \epsilon \text{ près par } \phi \in \mathcal{F}(I,\mathbb{R}) \Leftrightarrow \forall \text{ } x \in I, \text{ } |f(x) - \phi(x)| \leq \epsilon \\ \phi \in \mathcal{F}([a,b],\mathbb{R}) \text{ est en escalier } \Leftrightarrow \exists \text{ } n \in \mathbb{N}^*, \exists \text{ } (x_0,x_1,...,x_n) \in [a,b] \text{ }^{n+1}, x_0 = a \text{ et } x_n = b, \\ \forall \text{ } i \in \mathbb{N}_n, \exists \text{ } \lambda_i \in \mathbb{R}, \phi_{||x_{i-1},x_{i}|} = \lambda i \end{split}$$

 \forall f \in C⁰([a, b], \mathbb{R}), \forall ε > 0, \exists ϕ \in \mathcal{F} ([a, b], \mathbb{R}) escalier, telle que f approchée unif. sur [a, b] à ε près par ϕ [demo simple]

 $\phi \in \mathcal{F}([a,b],\mathbb{R}) \text{ est continue et affine par morceaux} \Leftrightarrow \exists \ n \in \mathbb{N}^*, \exists \ (x_0,x_1,...,x_n) \in [a,b]^{n+1}, x_0 = a \text{ et } x_n = b, \\ \forall \ i \in \mathbb{N}_n, \phi_{||x_{i-1},x_{i}|} \text{ est affine et } \phi \in C^0([a,b],\mathbb{R})$

 \forall f \in C⁰([a, b], \mathbb{R}), \forall ε > 0, \exists φ \in \mathcal{F} ([a, b], \mathbb{R}) continue et affine par morceaux, telle que f approchée uniformément sur [a, b] à ε près par φ [demo difficile]

[TD 10]

 \forall f \in C⁰([a, b], \mathbb{R}), \forall ϵ > 0, \exists B polynôme, f approchée uniformément sur [a, b] à ϵ près par B [**DEMO**]

IV Monotonie

1 – Définitions

Le taux d'accroissement (ou de variation) de f entre x_1 et x_2 est $(f(x_2) - f(x_1))/(x_2 - x_1)$.

f monotone sur $I \Leftrightarrow \forall (x_1, x_2) \in I^2, x_1 \neq x_2$, le taux d'accroissement de f garde un signe constant. f croissante sur $I \Leftrightarrow \forall (x_1, x_2) \in I^2, x_1 \neq x_2$, le taux d'accroissement de f est positif. (etc...)

f et g varient dans le même sens si elles sont monotones et si leurs taux d'accroissement ont le même signe.

f et g varient de le sens contraire si elles sont monotones et si leurs taux d'accroissement ont des signes contraires.

2 – Opérations sur les fonctions monotones

Soient f et g deux fonctions monotones sur I qui varient dans le même sens.

alors (f+g) est monotone et varie dans le même sens que f et que g. [\sim demo]

Si $\lambda > 0$, (λf) est monotone et varie dans le même sens que f.

Si $\lambda < 0$, (λf) est monotone et varie de sens contraire à f. [\sim demo]

Si f et g croissantes sur I et à valeurs positives sur I, alors (fg) est croissante sur I. [~demo]

Si $f \in \mathcal{F}(I, \mathbb{R}_+^*)$ ou $\mathcal{F}(I, \mathbb{R}_-^*)$ est monotone, alors 1/f est monotone et varie dans le sens contraire à f.

Si f et g sont monotones, $g \circ f$ l'est aussi, et $g \circ f$ est croissant $\Leftrightarrow f$ et g varient dans le même sens.

[~demo]

3 – Monotonie et limites

Soit f une fonction croissante sur I.

Si $x_0 \in I \setminus \{ \text{ Inf I, Sup I } \}$, alors f admet une limite à gauche et une limite à droite en x_0 telle que :

 $\lim_{x \to x0^{-}} f(x) \le f(x_0) \le \lim_{x \to x0^{+}} f(x)$ (le contraire si f décroissante).

[demo à droite : on prend $\ell = \text{Inf f } \{ I \cap] x_0, +\infty [\}]$

Si $x_0 = \sup I$, et $x_0 \in I$, alors f(x) a une limite à gauche en x_0 inférieure à $f(x_0)$.

Si $x_0 = \text{Sup I}$, et $x_0 \notin I$, alors

Si f(x) est majorée sur I, alors elle a une limite à gauche finie.

Si f(x) n'est pas majorée sur I, $\lim_{x\to x0^-} f(x) = +\infty$

4 – Monotonie et continuité

 $f\in \mathcal{F}(I,\mathbb{R})$ présente en $x_0\in I\setminus \{\mbox{ Inf }I,\mbox{Sup }I\ \}$ une discontinuité de $1^{\text{ère}}$ espèce si :

- $\lim_{x \to x0^-} f(x)$ existe
- $\lim_{x \to x0^+} f(x)$ existe
- $f(x) \neq \lim_{x \to x0^{-}} f(x) \qquad \text{ou} \qquad f(x) \neq \lim_{x \to x0^{+}} f(x)$

Soit f une fonction monotone.

f discontinue en $x_0 \Rightarrow f$ présente une discontinuité de 1ère espèce en x_0 .

f présente un nombre fini ou dénombrable de discontinuités. [$spé \mathbb{Q}$]

f continue sur $I \Leftrightarrow f(I)$ est un intervalle [demo \Leftarrow absurde]

Théorème des fonctions réciproques : $\forall f \in C^0(I, \mathbb{R})$ strictement monotone, f est bijection de I vers f(I); f^{-1} est

continue sur f(I), strictement monotone, et varie dans le même sens que f. [demo rapide]

Si f est continue sur un intervalle et injective sur celui-ci, f est strictement monotone. [EXOS 12]

V Branches infinies

1 – Définitions

Soit $f \in \mathcal{F}(I, \mathbb{R})$, et (C) son graphique dans un repère du plan.

- (C) admet une branche infinie si $\exists x_0 \in I \cup \{Inf I, Sup I\}, d(O,M) = \|\overrightarrow{OM}\|_{\xrightarrow{x \to x_0}} + \infty$
- (C) admet une direction asymptotique si la famille de droites (OM) a une position limite Δ lorsque $x \to x_0$, c'est-à-dire lorsque f(x)/x tend vers un élément de $\overline{\mathbb{R}}$.
- (C) admet une asymptote D si la famille de droites D_M (parallèles à Δ , passant par M) admette une position limite D lorsque $x \to x_0$.

2 - Etude pratique

$$a - x \rightarrow x_0$$
 et $f(x) \rightarrow \infty$

On a $f(x)/x \to \infty$, donc f admet une direction asymptotique: Oy, et comme asymptote la droite d'équation $x = x_0$.

$$b-x \to \infty$$
 et $f(x) \to y_0$

On a $f(x)/x \rightarrow 0$, donc f admet une direction asymptotique: Ox, et comme asymptote la droite d'équation $y = y_0$.

$c - x \rightarrow \infty$ et $f(x) \rightarrow \infty$

Si $f(x)/x \rightarrow a \in \mathbb{R}_+^*$

Direction asymptotique; $\Delta : Y = a X$

Si $f(x) - ax \rightarrow a \in \mathbb{R}_+^*$: (C) admet une asymptote d'équation : Y = aX + B

Si $f(x) - ax \rightarrow \infty$: (C) admet une branche parabolique

Si $f(x)/x \to 0$: Direction asymptotique; $\Delta = Ox$; Branche parabolique dans la direction de l'axe Ox.

Si $f(x)/x \to \infty$: Direction asymptotique; $\Delta = Oy$; Branche parabolique dans la direction de l'axe Oy.

VI Fonctions puissances

$1 - \text{Etude de } f : x \rightarrow x^n \text{ (n } \in \mathbb{N)}$

 $D_f = \mathbb{R}$; Compte tenu de la parité de f, on restreint l'étude sur \mathbb{R} +. Si n = 0, f = 1; si n = 1, $f = Id_{\mathbb{R}}$; si $n \ge 2$, f est croissante et continue, et $f(x) \to +\infty$; $f(x)/x \to +\infty$ donc branche parabolique suivant Oy.

$2 - \text{Etude de } f : x \rightarrow x^n \ (n \in \mathbb{Z}_-^*)$

 $D_f = \mathbb{R}^*$; Compte tenu de la parité de f, on restreint l'étude sur \mathbb{R}_+^* . f est continue et croissante.

3 – Etude de f: $x \rightarrow x^{1/n}$ ($n \in \mathbb{N}^*$)

On définit x^{1/n} comme l'application réciproque de xⁿ; lorsque n est impair, on peut définir f sur tout R.

$$\forall (x,y) \in \mathbb{R}_{+^{2}}, \forall (n,m) \in (\mathbb{N}^{*} \setminus \{1\})^{2}, \qquad x^{1/n} \cdot y^{1/n} = (x \cdot y)^{1/n} \\ (x^{1/n})^{1/m} = x^{1/(n \cdot m)} \\ (1/x)^{1/n} = 1/x^{1/n}$$

$4 - \text{Etude de } f: x \rightarrow x^r \ (r \in \mathbb{Q}_+^*)$

 $f: \mathbb{R}_+ \to \mathbb{R}_+$

 $x \to x^r = q\sqrt{x^p}$ où r = p/q, p > 0 et q > 0. [demo que indep des représentants] [petite étude ...] Extension à \mathbb{R}_- : Si on précise les représentants p et q, et si (p pair ou si q impair).

$5 - \text{Etude de } f: x \rightarrow x^r \ (r \in \mathbb{Q}_-^*)$

 $x^{r} = 1/x^{-r}$

Pour une extension à x^{α} avec $\alpha \in \mathbb{R}$, on peut introduire une suite (r_n) de rationnels qui tend vers α (qui existe car \mathbb{Q} dense dans \mathbb{R}), montrer qu'elle converge (suite de Cauchy), et que sa limite est indépendante du choix de (r_n) ...

VII Suites définies par une relation de récurrence

1 – Définition, limite éventuelle

Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, d'ensemble de définition D_f . On étudie la suite (u_n) , $u_0 \in D_f$, et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. (u_n) existe si $\forall n \in \mathbb{N}$, $u_n \in D_f$. Si $I \subset D_f$ est un intervalle stable par f, i.e. $f(I) \subset I$, en fixant $u_0 \in I$, la suite existe. Si $(u_n) \to \ell \in D_f$, et f continue alors $f(I) = \ell$.

2 – Monotonie et convergence

Soit $f \in C^0(I, \mathbb{R})$, I stable et $u_0 \in I$.

Si f est croissante alors (u_n) est monotone. [\sim demo]

Si f est décroissante alors (u_{2n}) et (u_{2n+1}) sont monotones et varient en sens contraire. [\sim demo]

3 - Exemples

- $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} (u_n + 1/u_n)$; alors $(u_n) \to 1$
- $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{(2 u_n)}$; alors $(u_n) \to 1$
- $\forall n \in \mathbb{N}, u_{n+1} = 1 u_n^2$
- $\forall n \in \mathbb{N}, u_{n+1} = (u_n^2 + 8) / 6$

9 – Dérivation d'une fonction réelle d'une variable réelle

I Dérivée et différentielle

1 – Fonction dérivable

Soit $f \in \mathcal{F}(I, \mathbb{R})$, et $x_0 \in I$.

Si $x_0 \neq \text{Sup I}$, f admet en x_0 une dérivée à droite $\Leftrightarrow \frac{f(x) - f(x_0)}{x - x_0}$ admet une limite finie quand $x \to x_0^+$.

Si $x_0 \neq Sup I$ et $x_0 \neq Inf I$, f est dérivable en x_0

 $\Leftrightarrow f \text{ admet une dérivée à droite et à gauche et elles sont égales} \\ \Leftrightarrow \frac{f(x)-f(x_0)}{x-x_0} \text{ admet une limite finie quand } x \to x_0.$

Elle est notée f ' (x_0) .

2 – Fonction différentiable

Soit $f \in \mathcal{F}(I, \mathbb{R})$, et $x_0 \in I$.

f est différentiable en x_0 si $\exists A \in \mathbb{R}, \exists \psi$ une fonction définie au voisinage de 0 et qui converge vers 0 en 0, telles que $\forall h, f(x_0+h) = f(x_0) + h A + h \psi(h)$.

f différentiable ⇔ f dérivable [demo rapide]

On appelle différentielle de f en x_0 l'application linéaire $h \to h$ f ' (x_0) , notée $df_{x_0} = Id$. f ' (x_0)

Cas particulier : la différentielle de Id est Id, notée dx. On a f' = df/dx

3 – Interprétations graphiques

Si f est dérivable en x_0 , la famille de droites passant par $(x_0, f(x_0))$ et $(x_0+h,f(x_0+h))$ a une position limite : c'est la tangente au graphique de la fonction ; son coefficient directeur est $f'(x_0)$.

La mesure algébrique de PN est $df_{x0}(h)$ La mesure algébrique de NM est $h \psi(h)$.

4 – Dérivabilité et continuité

Toute fonction dérivable en un point est continue sur celui—ci. [demo rapide] Réciproque fausse. Ex : valeur absolue.

5 – Dérivées successives

Définition par récurrence des dérivées $p^{ièmes}$ de $f: f^{(p)} = (f^{(p-1)})$

 $C^{\circ}(I, \mathbb{R}) = \{ f \in \mathcal{F}(I, \mathbb{R}), f \text{ continue sur } I \}$

 $C^{n}(I, \mathbb{R}) = \{ f \in \mathcal{F}(I, \mathbb{R}), f \text{ admet sur I une dérivée } n^{\text{ième}} \text{ continue } \}$

 $C^{\infty}(I, \mathbb{R}) = \{ f \in \mathcal{F}(I, \mathbb{R}), \text{ toutes les dérivées de f sont continues } \} = \bigcap C^{n}(I, \mathbb{R})$

 $C^{\infty}(I,\mathbb{R}) \subset ... \subset C^{n}(I,\mathbb{R}) \subset ... \subset C^{2}(I,\mathbb{R}) \subset C^{1}(I,\mathbb{R}) \subset C^{0}(I,\mathbb{R})$

II Opérations sur les fonctions dérivées

1 – Algèbre de fonctions dérivables

Soit I un intervalle, et $x_0 \in I$

 $A = \{ f \in \mathcal{F}(I, \mathbb{R}), f \text{ dérivable en } x_0 \}$ est une \mathbb{R} – algèbre commutative. L'application : $f \to f'(x_0)$ en est une forme linéaire. Si f et $g \in A$, $(fg) \in A$, et (fg)' = f'g' + fg' [demos sans difficultés]

$$\forall \; n \in \mathbb{N}, \; \forall \; (f_1,...,f_n) \in A^n, \; \forall \; (a_1,...,a_n) \in \mathbb{R}^n, \\ \left(\prod_{i=1}^n a_i.f_i \right)^! = \sum_{k=1}^n a_i.f'_i \\ \left(\prod_{i \in N_n - \{k\}}^n f_i \right)^! = \sum_{k=1}^n \left(f'_k.\prod_{i \in N_n - \{k\}}^n f_i \right)^!$$
 (demo par récurrence sur n)

 \forall n \in N, $C^n(I, \mathbb{R})$ est une \mathbb{R} – algèbre commutative. L'application f \rightarrow f⁽ⁿ⁾ est linéaire.

2 – Quotient de fonctions dérivables

Soient $(f, g) \in \mathcal{F}(I, \mathbb{R})^2$, dérivables en $x_0, g(x_0) \neq 0$.

Alors (f/g) est dérivable en
$$x_0$$
, et $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ [demo rapide]

Dérivées de fonctions puissances entières : \forall $n \in \mathbb{Z}^*$, $f_n : x \to x^n$, $(f_n)' = n \cdot f_{n-1}$ [\sim demo]

3 – Dérivée logarithmique

Si $f \in \mathcal{F}(I, \mathbb{R})$ est dérivable en x_0 , et que $f(x_0) \neq 0$, sa dérivée logarithmique est $f'(x_0)/f(x_0)$.

La dérivée logarithmique d'un produit est la somme des dérivées logarithmiques ; la dérivée logarithmique d'un quotient est la différence des dérivées logarithmiques.

4 – Dérivée d'une composée de 2 fonctions

Si
$$f \in \mathcal{F}(I, \mathbb{R}), g \in \mathcal{F}(J, \mathbb{R}), f(I) \subset J, x_0 \in I, f$$
 dérivable en x_0 et g dérivable en $y_0 = f(x_0)$, alors $g \circ f$ est dérivable en x_0 , et $(g \circ f)' = g' \circ f \times f'$ [demo calculs avec les differentielles] Ex: $(f^n)' = n \cdot f^{n-1} \cdot f'$ Dérivée des fonctions paires, impaires, périodiques

5 – Dérivée d'une fonction réciproque

Soit f une bijection continue d'un intervalle I sur J, telle que f⁻¹ continue de J sur I.

Soit $x_0 \in I$, telle que f dérivable en x_0 , et $y_0 = f(x_0)$.

 f^{-1} dérivable en $y_0 \Leftrightarrow f'(x_0) \neq 0$

Et dans ce cas, $(f^{-1})'(y_0) = 1/f'(x_0)$ [demo rapide]

Corollaire : $f \in C^0(I, \mathbb{R})$ strictement monotone. f est une bijection de I vers f(I) = J. Si f est dérivable sur I, f^{-1} est dérivable en tout point $y \in J$, tels que $f'(f^{-1}(y)) \neq 0$; alors, $(f^{-1})'(y_0) = 1/f'(f^{-1}(y_0))$

En particulier, si
$$\forall$$
 x \in I, f'(x) \neq 0, (f⁻¹) ' = $\frac{1}{f' \circ f^{-1}}$

Si $f \in C^n(I, \mathbb{R})$ et $\forall x \in I$, $f'(x) \neq 0$, alors $f^{-1} \in C^n(I, \mathbb{R})$. [demo avec itérations] Exemple : La dérivée de $x \to x^r$, $r \in \mathbb{Q}^*$, est $x \to r$ x^{r-1} . [demo calculs]

III Théorème de Rolle et théorème des accroissements finis

1 – Théorème de Rolle

f est croissante sur $I \Rightarrow$ sa dérivée est positive sur $I \quad [\neg demo \]$ f admet un extremum local en $x_0 \Rightarrow f'(x_0) = 0 \quad [demo \ rapide \]$ Théorème de Rolle: $f \in C^0([a,b],\mathbb{R})$, f(a) = f(b) et f dérivable sur $[a,b] \Rightarrow \exists \ c \in [a,b[,f'(c) = 0.$ [demo: on étudie Min f[a,b] et Max f[a,b]; on trouve alors un extremum local]

2 - Théorème des accroissements finis

Egalité des accroissements finis : $f \in C^{0}([a, b], \mathbb{R})$, et f dérivable sur]a, b[. Alors

$$\exists c \in]a, b[, f'(c) = (f(b)-f(a))/(b-a).$$
 [demo : on utilise Rolle avec f+k Id] ou encore :
$$f(b) - f(a) = (b-a) f'(c)$$

$$f(a+h) - f(a) = h f'(a+\theta h)$$
 où $\theta \in]0, 1[$

<u>Inégalité des accroissements finis</u> : $f \in C^0([a, b], \mathbb{R})$, et f dérivable sur [a, b].

 $\exists (A, B) \in \mathbb{R}^2, \forall x \in [a, b[, A \le f'(x) \le B \Rightarrow A(b-a) \le f(b) - f(a) \le B(b-a)$ [demo rapide]

Applications: Si f' \geq 0 sur I, f est croissante sur I, etc. [demo]

Calcul d'erreurs...

Pour f dérivable sur I, et $k \in \mathbb{R}_+^*$: f est k-lipschizienne $\Leftrightarrow \forall x \in I$, $|f'(x)| \le k$ [demo facile]

Théorème (important pour les exercices):

Si $f \in C^{\circ}([a,b],\mathbb{R})$, f dérivable sur [a,b], et $f'(x) \xrightarrow[x \to a]{} \ell \in \mathbb{R}$ alors f dérivable en a et f'(a) = ℓ [demo]

Formule des accroissements finis généralisés: Soient $(f,g) \in C^0([a,b],\mathbb{R})^2$ dérivables sur [a,b[, et $g(a) \neq g(b)$.

alors
$$\exists c \in [a, b[, \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

[demo : on utilise Rolle avec f+kg]

Corollaire : Soient $(f,g) \in C^0(I,\mathbb{R})^2$ dérivables sur I, si $f'(x)/g'(x) \to \ell \in \mathbb{R}$ quand $x \to x_0$,

alors $((f(x)-f(x_0))/(g(x)-g(x_0)) \rightarrow \ell \text{ quand } x \rightarrow x_0$. [demo rapide]

Exemple : développement limités de fonction trigonométriques.

3 - Théorème des valeurs intermédiaires pour une dérivée

f dérivable sur $I \Rightarrow f'(I)$ est un intervalle. [demo par l'étude de f+k.Id; on en cherche un extremum local]

10 – Intégrale de Riemann

I Fonctions en escalier

1 – Subdivisions d'un segment

Une subdivision σ de [a, b] est une partie finie non vide de [a, b], telle que

$$\sigma = \{ x_0, ..., x_n \}, \text{ où } a = x_0 < x_1 < ... < x_{n-1} < x_n = b.$$

On appelle module de σ le nombre $\mu(\sigma) = Max\{x_i - x_{i-1}, i \in \mathbb{N}_n\}$

Une subdivision σ ' de [a, b] est plus fine qu'une subdivision σ de [a, b] si $\sigma \subset \sigma$ '. C'est une relation d'ordre dans l'ensemble des subdivisions de [a, b], mais ce n'est qu'un ordre partiel. Sup $\{\sigma, \sigma'\} = \sigma \cup \sigma'$.

2 – Application en escalier sur un intervalle

 $f \in \mathcal{F}([a,b],\mathbb{R})$ est en escalier $\Leftrightarrow \exists \sigma = \{x_0,...,x_n\}$ subdivision de $[a,b], \forall i \in \mathbb{N}_n, \exists \lambda_i \in \mathbb{R}, f_{||x_i-1,x_i|} = \lambda i$.

Notation : $\mathcal{E}([a,b],\mathbb{R})$ est l'ensemble des fonctions en escaliers

Une subdivision de [a,b] $\sigma = \{x_0,...,x_n\}$ est adaptée à $f \in \mathcal{E}([a,b],\mathbb{R})$ si $\forall i \in \mathbb{N}_n, \exists \lambda_i \in \mathbb{R}, f_{||x_{i-1},x_{i}|} = \lambda i$.

 $f \in \mathcal{E}([a, b], \mathbb{R})$ est continue sur [a, b] sauf en un nombre fini de points, où f dispose d'une limite à droite et/ou à

 σ est adaptée à f \Rightarrow toute subdivision σ ' plus fine que σ est adaptée à f. [demo par récurrence sur # $(\sigma \setminus \sigma)$] Corollaire: Soient $f_1, f_2, ..., f_p$ p fonctions en escalier sur [a, b]. Alors il existe une subdivision adaptée à chacune.

3 – Structure de $\mathcal{E}([a,b],\mathbb{R})$

 $\mathcal{E}([a,b],\mathbb{R})$ est une \mathbb{R} – algèbre commutative. [demo rapide]

II Intégrale d'une fonction en escalier sur un segment

1 – Définition

Soit $f \in \mathcal{E}([a,b],\mathbb{R})$, et une subdivision adaptée $\sigma = \{x_0,...,x_n\}$. $\forall i \in \mathbb{N}_n, \exists \lambda_i \in \mathbb{R}, f_{\mid |x_i-1,x_i|} = \lambda i$.

Le nombre $\sum_{i=1}^{n} (x_i - x_{i-1}) \lambda_i$ est indépendant du choix de la subdivision adaptée.

[DEMO : 1) On ajoute 1 élément 2) Récurrence sur # (σ '\ σ) 3) Généralisation] On appelle intégrale de f sur [a, b] le nombre $\sum_{i=1}^{n} (x_i - x_{i-1}) \lambda_i$, notée $\int_{a}^{b} f$

2 – Relation avec la structure de $\mathcal{E}([a, b], \mathbb{R})$

L'application $\mathcal{E}([a,b],\mathbb{R}) \to \mathbb{R}$

f
$$\rightarrow \int_{a^b} f$$
 est une forme linéaire. [demo rapide]

 $\forall (f,g) \in \mathcal{E}([a,b],\mathbb{R})^2, \forall (t_1,t_2,...,t_q) \subset [a,b], \forall x \in [a,b] \setminus \{t_1,t_2,...,t_q\}, f(x) = g(x), alors \int_a^b f = \int_a^b g \ [\sim demo\]$

3 – Relation de Chasles

Soit $f \in \mathcal{E}([a,b],\mathbb{R})$ et $c \in [a,b[$. Alors $f_{|[a,c]} \in \mathcal{E}([a,c],\mathbb{R}), f_{|[c,b]} \in \mathcal{E}([c,b],\mathbb{R}),$ et $\int_{a^c} f + \int_{c^b} f = \int_{a^b} f$ [demo facile] Réciproque : \forall (a, b, c) $\in \mathbb{R}^3$, a < c < b, \forall f $\in \mathcal{E}([a, c], \mathbb{R})$, \forall g $\in \mathcal{E}([c, b], \mathbb{R})$, f(c) = g(c); alors $\exists h \in \mathcal{E}([a,b],\mathbb{R})$, $h_{|[a,c]} = f$ et $h_{|[c,b]} = g$

4 - Relation d'ordre

 $\forall f \in \mathcal{E}([a,b], \mathbb{R}_+), \int_{a^b} f \geq 0.$ $[\sim demo]$

 \forall $(f,g) \in \mathcal{E}([a,b],\mathbb{R})^2, f \leq g \Rightarrow \int_{a^b} f \leq \int_{a^b} g$ [~demo] \int peut se considérer comme croissante. Corollaires:

 $\forall f \in \mathcal{E}([a,b],\mathbb{R}), |f| \in \mathcal{E}([a,b],\mathbb{R}) \text{ et } |\int_{a^b} f| \leq \int_{a^b} |f|.$

5 - Extension

Soit $f \in \mathcal{E}([a, b], \mathbb{R})$, on convient de poser $\int_a^b f = -\int_{b^a}^a f$ par cohérence avec la relation de Chasles.

III Intégrale d'une fonction continue par morceaux sur un segment

1 - Fonctions C⁰PM

 $f \in \mathcal{F}([a, b], \mathbb{R})$ est continue par morceaux sur [a, b] si $\exists \sigma = \{x_0, ..., x_n\}$ subdivision de [a, b], $\forall i \in \mathbb{N}_n, \exists \lambda_i \in \mathbb{R}, f_{||x_i-1, x_i|}$ continue, et f admet en x_i une limite à gauche et en x_{i-1} une limite à droite. Notation : $C^{0}PM([a,b], \mathbb{R})$ $C^{\circ}PM([a, b], \mathbb{R})$ est une \mathbb{R} – algèbre commutative. [\sim demo]

2 – Approximation uniforme des fonctions C^oPM par des fonctions en escalier

Amélioration de l'approximation uniforme :

 $\forall f \in C^0([a, b], \mathbb{R}), \forall \varepsilon > 0, \exists (\phi, \psi) \in \mathcal{E}([a, b], \mathbb{R})^2$, telles que $\psi \leq f \leq \phi$ et $\phi - \psi \leq \varepsilon$. [demo] Corollaire: $\forall f \in C^{\circ}PM([a, b], \mathbb{R}), \forall \varepsilon > 0, \exists (\phi, \psi) \in \mathcal{E}([a, b], \mathbb{R})^2$, telles que $\psi \leq f \leq \phi$ et $\phi - \psi \leq \varepsilon$. [demo rapide]

3 – Définition de l'intégrale d'une fonction C^oPM

```
\forall f ∈ C°PM([a, b], \mathbb{R}), f est bornée.
                                                             [ demo facile ]
\forall f \in C^0PM([a, b], \mathbb{R}), \{\int_a^b \phi, \phi \in \mathcal{E}([a, b], \mathbb{R}), \phi \leq f\} et \{\int_a^b \psi, \psi \in \mathcal{E}([a, b], \mathbb{R}), f \leq \psi\} sont deux ensembles
adjacents. Leur borne commune est \int_a^b f.
                                                                         [ demo en utilisant la remarque et l'approximation ]
Interprétation géométrique : Si Im f \subset \mathbb{R}_+, \int_a^b f est l'aire entre la courbe et l'axe des abscisses, pour a \le x \le b.
```

4 - Linéarité

```
L'application C^{\circ}PM([a,b],\mathbb{R})
                                              \rightarrow \int_a^b f est une forme linéaire.
[ DEMO partielle : \int_a^b f + \int_a^b g = \int_a^b f + g avec des encadrements par des escaliers ]
```

5 – Relation de Chasles

```
Soit f \in C^{\circ}PM([a, b], \mathbb{R}) et c \in [a, b[.f_{[a,c]} \in C^{\circ}PM([a, c], \mathbb{R}), f_{[c,b]} \in C^{\circ}PM([c, b], \mathbb{R}), \text{ et } \int_{a^{\circ}} f + \int_{c^{\circ}} f = \int_{a^{\circ}} f + \int_{c^{\circ}} f + \int
Extension de l'intégrale : \int_a^b f = -\int_b^a f
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     [ cohérence avec la relation de Chasles ]
```

6 - Relation d'ordre

```
\forall f \in C^0PM([a, b], \mathbb{R}_+), \int_{a^b} f \geq 0.
                                                                                                        [~demo]
                             \forall (f,g) \in C^0PM([a,b], \mathbb{R})^2, f \leq g \Rightarrow \int_{a^b} f \leq \int_{a^b} g [\neg demo] \int peut se considérer comme croissante.
Corollaires:
                             \forall f \in C^{\circ}PM([a,b], \mathbb{R}), |f| \in C^{\circ}PM([a,b], \mathbb{R}) \text{ et } |\int_{a^b} f| \leq \int_{a^b} |f|.
\forall f \in C^{\circ}PM([a, b], \mathbb{R}_+), \exists c \in [a, b], f \text{ continue en } c \text{ et } f(c) > 0 \Rightarrow \int_{a^b} f > 0. [demo facile]
Corollaire: \forall f \in C^0([a, b], \mathbb{R}_+), \int_{a^b} f = 0 \Rightarrow f = 0
```

7 - Inégalité de Cauchy-Schwarz, formule de la moyenne

```
Inégalité de Cauchy-Schwarz: \forall (f,g) \in C^0PM([a,b], \mathbb{R})^2, (\int_a^b fg)^2 \leq \int_a^b f^2 \times \int_a^b g^2
           [ demo : etude de \int_{a^b} (f + \lambda g)^2 \ge 0 donc discriminant négatif ]
            ( analogies avec le produit scalaire dans le plan puis dans un espace vectoriel quelconque )
Formule de la moyenne: \forall (f, g) \in C°PM([a, b], \mathbb{R})<sup>2</sup>, g \geq 0, m = \text{Inf } f[a, b] et M = \text{Sup } f[a, b];
                        alors \exists \lambda \in [m, M], \int_{a^b} f g = \lambda \int_{a^b} g [demo facile]
```

- Conséquences:
- $\forall f \in C^0([a,b],\mathbb{R}), \forall g \in C^0PM([a,b],\mathbb{R}_+), \exists c \in [a,b], \int_{a^b} f g = f(c) \int_{a^b} g.$
- Le résultat est aussi vrai si $\forall x \in [a, b], g(x) \le 0$.
- $\forall f \in C^0$ PM([a, b], \mathbb{R}), $\exists \lambda \in [m, M]$, $\int_a^b f = \lambda (b a)$; λ est appelée la valeur moyenne de f sur [a, b] Interprétation géométrique : l'aire sous la courbe est égale à l'aire sous le rectangle de largeur λ .
- $\forall (f,g) \in C^{0}PM([a,b], \mathbb{R})^{2}, | \int_{a^{b}} f g | \leq \int_{a^{b}} |f| |g| \leq (Sup |f|[a,b]) \times \int_{a^{b}} [g]$

8 – Sommes de Riemann

Une subdivision pointée de [a, b] est un couple (σ, α) où $\sigma = \{x_0, ..., x_n\}$ est une subdivision et $\alpha = (\alpha_1, ..., \alpha_n) \in [a, b]^n$, telles que $\forall i \in \mathbb{N}_n, \alpha_i \in [x_{i-1}, x_i]$ Soit $f \in C^oPM([a, b], \mathbb{R})$, et (σ, α) une subdivision pointée de [a, b] où $\sigma = \{x_0, ..., x_n\}$ et $\alpha = (\alpha_1, ..., \alpha_n)$; la somme de Riemann (XIXème) associée à f et relative à (σ, α) est : $\sum_{i=1}^n (x_i - x_{i-1}) f(\alpha_i)$

Soit $f \in C^oPM([a,b],\mathbb{R}), \forall \ \epsilon > 0, \exists \ \beta > 0, \forall \ (\sigma,\alpha)$ subdivision pointée de $[a,b], \mu(\sigma) \leq \beta \Rightarrow \left|\int\limits_a^b f - \sum_{i=1}^n \left(x_i - x_{i-1}\right) f(\alpha_i)\right| \leq \epsilon$

[**DEMO** : on introduit un escalier ; on réécrit la valeur absolue ; on majore les 2 types d'intégrales] <u>Utilisation</u> : Soit (σ_q) une suite de subdivisions de [a, b], $(\mu(\sigma_q))_{q \in \mathbb{N}} \to 0$. Alors $(\Sigma (x_i - x_{i-1}) f(\alpha_i))_{q \in \mathbb{N}} \to \int_{a^b} f$. On peut choisir en particulier $\sigma_q = \{a, a + (b-a)/q, a + 2 (b-a)/q, ..., b \}$ et $\alpha_q = \{a, a + (b-a)/q, ..., a + (q-1)(b-a)/q \}.$ Exemple : $\int_0^1 Id$.

IV Intégrales et primitives

1 – Primitives

Soit $f \in \mathcal{F}(I, \mathbb{R})$, où I est un intervalle. $F \in \mathcal{F}(I, \mathbb{R})$ est une primitive de F si F est dérivable sur I et F' = f. Si $f \in \mathcal{F}(I, \mathbb{R})$ admet une primitive F sur I, $G \in \mathcal{F}(I, \mathbb{R})$ est une primitive de F $\Leftrightarrow \exists \lambda \in \mathbb{R}, G = F + \lambda$. [\sim demo] Si f admet une primitive F et g admet une primitive G, $\alpha F + \beta G$ est une primitive de $\alpha f + \beta g$.

2 - Intégrale fonction de sa borne d'en haut

Soit $f \in \mathcal{F}(I,\mathbb{R})$, telle que \forall $(a,b) \in I^2, a < b \Rightarrow f \in C^0PM([a,b],\mathbb{R})$. Soit $a \in I$. Soit g l'application $x \to \int_{a^X} f g$ est continue sur I. [demo en majorant |f| au voisinage de x_0] f est continue en $x_0 \Rightarrow g$ est dérivable en x_0 , et g ' $(x_0) = f(x_0)$. [demo facile] Conséquences :

- $\forall f \in C^0(I, \mathbb{R}), \forall a \in I, x \rightarrow \int_a^x f \text{ est la primitive de f sur I nulle en a.}$
- Toute fonction continue sur un intervalle admet des primitives.
- Soit $f \in C^0(I, \mathbb{R})$, et F une primitive de f sur I. Alors \forall $(a, b) \in I^2$, $\int_{a^b} f = F(b) F(a) = [F(t)]_{a^b}$. [$\sim d$] Intégrale indéfinie : $\int f$ peut désigner l'ensemble des primitives de f.

3 – Changement de variable

```
\begin{split} &f\in C^o(I,\mathbb{R}), et \ \phi \in C^1(J,I) \Rightarrow \forall \ (\alpha,\beta) \in J^2, \\ &\int_{\phi(\alpha)}^{\phi(\beta)} f = \int_{\alpha}^{\beta} (f\circ\phi) \ \phi' \quad [ \ demo \ facile \ ] \\ &\text{Exemple}: \\ &\int_{0}^{\pi/2} \sin^2 \cos = 1/3. \\ &\text{Corollaire}: \\ &f\in C^o(I,\mathbb{R}), et \ \phi \ est \ un \ C^1 - difféomorphisme \ entre \ J \ et \ I \ (ie \ \phi \in C^1(J,I),j \ bijective, \ et \ j^{-1} \in C^1(I,J) \ ) \\ &\text{alors}, \ \forall \ (a,b) \in I^2, \\ &\int_{a^b} f = \int_{\phi^{-1}(a)}^{\phi_{-1}(a)} (f\circ\phi) \ \phi' \qquad [ \ \sim demo \ ] \\ &\text{Exemple}: \\ &\int_{0}^{1} \sqrt{(1-x^2)} = \pi/4 \ ; \qquad \text{Notation}: \\ &\int_{a^b} f = \int_{a^b} f(x) \ dx \qquad \text{(cohérence avec le changement de variable)} \\ &\text{Intégrale indéfinie}: \\ &\int f(x) \ dx \ représente \ l'ensemble \ des \ primitives \ de \ f. \\ &f\in C^o(I,\mathbb{R}), \ et \ \phi \in C^1 - \ difféomorphisme \ de \ J \ vers \ I \Rightarrow \int f(x) \ dx = \int f(\phi(t)) \ \phi'(t) \ dt \qquad [ \ \sim demo \ ] \\ &\text{Remarque}: \\ &f\in C^o(I,\mathbb{R}), \ et \ v \ et \ u \in C^1(J,I); \ g = \int_{u(x)}^{v(x)} f(t) \ dt \Rightarrow g' = f\circ v \ . \ v' - f\circ u \ . \ u' \qquad [ \ \sim demo \ ] \end{aligned}
```

4 – Intégration par parties

```
 \forall \ (u,v) \in C^1(I,\mathbb{R})^2, \ \forall \ (a,b) \in I^2, \\ \int_{a^b} u'(x) \ v(x) \ dx = [\ u(x) \ v(x)]_{a^b} - \int_{a^b} u(x) \ v'(x) \ dx \\ [\ \sim demo: dériver \ u.v]  Exemple:  \int_{0}^{\pi/2} x \sin(x) \ dx = 1   \forall \ (u,v) \in C^1(I,\mathbb{R})^2, \\ \int u'(x) \ v(x) \ dx = u(x) \ v(x) - \int u(x) \ v'(x) \ dx  Exemple:  \int_{0}^{\pi/2} e^{kx} P(x) \ dx = e^{kx} Q(x) + c^{te} \ avec \ d^\circ Q = d^\circ P  [demo récurrence sur d°P] Intégrale de Wallis:  \alpha \to \int_{0}^{\pi/2} \sin^\alpha t \ dt \ est \ constante \ sur \ \mathbb{R}_+, \ et \ I_n = \int_{0}^{\pi/2} \sin^\alpha t \ dt \ \sim \sqrt{(\pi/2n)}  [EXOS 14]
```

V Formules de Taylor

1 - Formule de Taylor avec reste intégral

$$f \in \mathit{C}^{n+1}(I,\mathbb{R}). \ \forall \ (a,x) \in I^2, \ f(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + \int\limits_a^x \frac{(x-t)^n}{n!} f^{(n+l)}(t).dt \ [\ demo \ par \ r\'ecurrence \ sur \ n \]$$

☑ Il faut bien connaître cette formule. (Centrale2000)

2 - Inégalité de Taylor-Lagrange

$$f \in \mathit{C}^{n+1}(I,\mathbb{R}). \ \forall \ (a,x) \in I^2, \ \left| f(x) - \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k \right| \leq M \frac{\left| x-a \right|^{n+1}}{(n+1)!} \ \text{où M majore} \ |f^{(n+1)}| \ \text{sur} \ [a,x] \ [\sim \text{demo} \]$$

3 – Formule de Taylor–Young

Soit
$$f \in \mathcal{F}(I, \mathbb{R}), a \in I$$
. $f^{(n)}(a)$ existe $\Rightarrow \exists \ \epsilon \in \mathcal{F}(I, \mathbb{R}), \ \forall \ x \in I, \ f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + (x-a)^n . \epsilon(x)$ et $\epsilon(x) \xrightarrow[x \to a]{} 0$ [DEMO par récurrence sur n ; calcul de ϵ' ; AFG]

4 – Développement d'une fonction en série de Taylor

$$\begin{split} f \in \textit{C}^{\infty}(\mathbb{R}, \mathbb{R}). \ (\forall \ x \in \mathbb{R}, \exists \ M_x \geq 0, \forall \ n \in \mathbb{N}, \forall \ t \in [\text{Inf}\{0,\!x\}, \text{Sup}\{0,\!x\}], \ |\ f^{(n+1)}(t)\ | \leq M_x \,) \\ \Rightarrow \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} \, x^k \xrightarrow[n \to +\infty]{} f(x) \qquad [\text{ demo approx} \ ; \text{Exemples} : \text{exp}, \text{sin}, \text{cos} \] \end{split}$$

VI Compléments : fonctions à valeurs complexes

1 - Limite et continuité

Soit $f \in \mathcal{F}(I, \mathbb{C}), I \subset \mathbb{R}$. $\forall x \in I, \exists (g(x), h(x)) \in \mathbb{R}^2, f(x) = g(x) + h(x)$ f admet la limite ℓ lorsque x tend vers $x_0 \iff \forall \epsilon > 0, \exists \alpha > 0, \forall x \in I, |x - x_0| \le \alpha \Rightarrow |f(x) - \ell| \le \epsilon$ $\iff g$ converge vers $\text{Re}(\ell)$ et h vers $\text{Im}(\ell)$ quand x tend vers x_0 . Les opérations sur les limites se retrouvent... Interprétation graphique (disque)

2 - Dérivée

Soit
$$f \in \mathcal{F}(I, \mathbb{C})$$
. f dérivable en x_0 $\Leftrightarrow \frac{f(x) - f(x_0)}{x - x_0}$ admet une limite finie quand $x \to x_0$. $\Leftrightarrow g$ et h dérivables en x_0 . Alors, $f'(x_0) = g'(x_0) + h'(x_0)$. Rolle ne s'applique plus $[contrexemple : x \to e^{ix} sur 0..2\pi]$

3 - Intégration

$$f \in C^0PM(I, \mathbb{C}), f = g + i \text{ h. } \int_{a^b} f = \int_{a^b} g + i \int_{a^b} h$$
 [par définition] Les sommes de Riemann sont aussi valides. $\forall f \in C^0PM([a, b], \mathbb{C}), |\int_{a^b} f | \leq \int_{a^b} |f|$ [demo avec les sommes de Riemann]

4 – Intégration et dérivation

 $f \in C^{0}PM(I, \mathbb{C}), a \in I. \ x \in I \Rightarrow \int_{a^{x}} f \text{ est la primitive de } f \text{ sur } I \text{ qui s'annule en } a.$ Corollaire : L'inégalité des accroissements finis est valide. [demo rapide] Taylor, l'intégration par partie, le changement de variable sont également valides... $\frac{\text{Théorème du relèvement}}{\text{Théorème du relèvement}} : f \in C^{1}(I, \mathbb{U}), \text{ où } \mathbb{U} = \{ z \in \mathbb{C}, |z| = 1 \}. \text{ Alors } \exists \ \theta \in C^{1}(I, \mathbb{R}), \ \forall \ t \in I, \ f(t) = e^{\frac{i}{\theta}(t)}.$ Si $\forall \ t \in I, \ f(t) = e^{\frac{i}{\theta}(t)} = e^{\frac{i}{\theta}(t)}, \ \text{alors } \exists \ k \in \mathbb{Z}, \ \forall \ t \in I, \ \theta_{2}(t) - \theta_{1}(t) = 2k\pi.$ [**DEMO** : on détermine $\phi, \phi' = \theta'$; on étudie $g = f - \phi, \phi$ qui est constant ...]

VII Méthodes d'approximation d'intégrales

Méthode des rectangles au point médian [TD 11] : $\varepsilon \le M(b-a)^3/24n^2$ [Taylor avec r] entre a et c et b et c] Méthode des trapèzes [TD 11] : $\varepsilon \le M(b-a)^3/12n^2$ [Calcul de $\int (x-a)(x-b)f''(x)$ par IPP]

Méthode des trapèzes avec dichotomie [TD INFO 6]

Méthode de Simpson [TD INFO 6] : Approximation de la fonction par un polynôme d'ordre ≤ 2 .

11 – Fonctions usuelles

I Fonctions trigonométriques

1 - Fonctions directes

Définition de sin, cos, tan, cotan d'après des mesures algébriques sur le cercle trigonométriques. sin et cos sont 2π -périodiques ; tan et cotan sont π -périodiques. sinus, tan, cotan sont impaires ; cos est paire. [~d] trig(π -x) ; trig(π -x); trig(π /2+x) ; trig(π /2-x)... Formulaire trigonométrique... Cf Nombres complexes sin et cos sont continues [demo facile géométrie : sin est 1-lipschitzienne] sin' = cos ; cos' = -sin [demo facile avec demo que $\lim_{x\to 0} \sin(x)/x = 1$] \Rightarrow sin et cos \in C° tan' = $1 + \tan^2 = \frac{1}{\cos^2} \cot$ an' = $1 - \cot$ and $1 - \cot$

2 – Fonctions réciproques

a - Réciproques de sin et de cos

Arcsin =
$$(\sin |_{[-\pi/2,\pi/2]})^{-1}$$
 est croissante et impaire ; Arcsin' = $\frac{1}{\sqrt{1-x^2}}$ [demo rapide]
Arccos = $(\cos |_{[0,\pi]})^{-1}$ est décroissante ; Arccos' = $-\frac{1}{\sqrt{1-x^2}}$ [demo rapide]
Arcsin + Arccos = $\frac{\pi}{2}$ $\forall x \in [-1,1], \cos(Arcsin(x)) = \sin(Arccos(x)) = \sqrt{1-x^2}$ $\sin \circ Arcsin = Id$ $\cos \circ Arccos = Id$ (graphiques de Arcsin \circ sin et de Arccos \circ cos : VVV)

b - Réciproques de tan et de cotan

Arctan =
$$(\tan |_{[-\pi/2, \pi/2]})^{-1}$$
 est croissante et impaire ; Arctan' = $\frac{1}{1+x^2}$ [~demo]

Arccotan = $(\cot a |_{[0,\pi]})^{-1}$ est croissante ; Arccotan' = $-\frac{1}{1+x^2}$ [~demo]

Arctan + Arccotan = $\frac{\pi}{2}$

Arctan a + Arctan b = Arctan $\left(\frac{a+b}{1-ab}\right)$ [π] [EXOS 14]

 $\forall x \in \mathbb{R}$, cos Arctan x = sin Arccotan x = $\frac{1}{\sqrt{1+x^2}}$,

 $\forall x > 0$, Arctan(x) + Arctan $\left(\frac{1}{x}\right) = \frac{\pi}{2}$

Arctan $\left(\frac{1}{x}\right)$ = Arccotan(x) [demo...]

II Fonctions logarithmes et exponentielles

1 – Logarithme néperien

$$\begin{split} \ln x &= \int_1^x \frac{dt}{t} \text{ par d\'efinition. In est donc croissante (sa d\'eriv\'ee est positive)} \\ \forall \; (x_1,x_2) &\in \mathbb{R}_+^{*\;2}, \ln(x_1\,x_2) = \ln(x_1) + \ln(x_2) \qquad [\text{ demo : \'etude de } x \to \ln(x_1x) \text{]} \\ \lim_{x \to +\infty} \ln(x) &= +\infty \qquad [\text{ demo : utilisation des fonctions puissances]} \\ \lim_{x \to +\infty} \ln(x) &= 1 \text{ (d\'eriv\'ee en 1)} \\ \lim_{x \to +\infty} \ln(x) / x &= 0 \text{ [demo : utilisation de } \sqrt{\text{]}} \\ \lim_{x \to 0^+} x \ln(x) &= 0 \end{split}$$
 Notation : e est l'antécédent de 1. $\ln(e) = 1$.

2 - Exponentielle de base e

 $\begin{array}{ll} exp = (ln)^{-1} \ est \ croissante, \ et \in C^{\infty}. \ exp' = exp \ [\ \sim demo \] \ ; \\ Limites \ classiques: & \lim_{x \to 0} (exp(x)-1)/x = 1 \\ & \lim_{x \to +\infty} exp(x)/x = +\infty \\ & \lim_{x \to -\infty} x \ exp(x) = 0 \\ \forall \ r \in \mathbb{Q}, exp(r) = e^r. \ [\ demo \ progression \] \Rightarrow Notation: exp(x) = e^x. \end{array}$

3 – Fonctions logarithmes de base quelconque

4 – Fonctions exponentielles de base quelconque

```
 \{ \ f \in C^0(\mathbb{R},\mathbb{R}), \ \forall \ (x_1,x_2) \in \mathbb{R}^2, \ f(x_1+x_2) = f(x_1) \ . \ f(x_2) \ \} = \{ \ exp(\ln(a) \times Id), \ a \in \mathbb{R}_+^* \setminus \{1\} \} \cup \{ \ 0, \ 1 \ \}  [ demo : on se ramène aux fonctions linéaires en étudiant g = \ln \circ f ]  \forall \ a \in \mathbb{R}_+^* \setminus \{1\}, \ la \ fonction \ exponentielle \ de \ base \ a \ est \ l'application \ exp_a = e^{\ln(a) \ Id}.  On a exp_a = (log_a)^{-1}.  \forall \ r \in \mathbb{Q}, \ exp_a(r) = a^r \ [ \ \circ \ln \ ] \Rightarrow Notation : exp_a(x) = e^{x \ln(a)} = a^x
```

5 – Cas particulier du logarithme décimal

Notation: $log = log_{10}$. (utilisation pour calculer x^a . y^b / z^c avec des tables de logarithmes)

6 – Fonctions puissances

Etude de la fonction : $\mathbb{R}_+^* \to \mathbb{R}_+^*$ avec $b \in \mathbb{R}$. $x \to x^b = e^{b \ln(x)}$ ($si \ b \in \mathbb{Q}$, on a bien $x^b = e^{b \ln(x)}$) Cette fonction est de classe C^{∞} . Sa dérivée est $b.x^{b-1}$ [\sim demo] $\{ f \in C^0(\mathbb{R}, \mathbb{R}), \forall (x_1, x_2) \in \mathbb{R}^2, f(x_1. x_2) = f(x_1) . f(x_2) \} = \{ \exp(a \times \ln), a \in \mathbb{R} \} \cup \{ 0 \}$

III Fonctions hyperboliques

1 – Définition, formulaire

Sinus et cosinus hyperboliques:

$$\forall \ x \in \mathbb{R}, \qquad \text{ch } x = \frac{\exp(x) + \exp(-x)}{2} \quad [\text{ partie paire de } x \to e^x]$$

$$\text{et} \qquad \text{sh } x = \frac{\exp(x) - \exp(-x)}{2} \quad [\text{ partie impaire de } x \to e^x]$$

ch + sh = exp $ch^2 - sh^2 = 1$ [demo rapide]

ch(a+b) = ch a ch b + sh a sh b	$\sinh p + \sinh q = 2 \sinh((p+q)/2) \cosh((p-q)/2)$
ch(a-b) = ch a ch b - sh a sh b	$\sinh p - \sinh q = 2 \cosh((p+q)/2) \sinh((p-q)/2)$
sh(a+b) = sh a ch b + ch a sh b	ch p + ch q = 2 ch((p+q)/2) ch((p-q)/2)
sh(a-b) = sh a ch b - ch a sh b [demos rapide]	$ch p - ch q = +2 sh((p+q)/2) sh((p-q)/2) [\sim demo]$
$ch(2a) = ch^2a + sh^2a = 1 + 2 sh^2a = 2 ch^2a - 1$	sh(2a) = 2 sh a ch a
$ch^2a = (ch 2a + 1)/2$	$sh^2a = +(ch 2a - 1)/2$

Calcul de ch na : on écrit ch na + sh na = $\exp(na)$ = $(ch a + sha)^n$

ch na – sh na = $\exp(-na)$ = (ch a – sha)ⁿ puis on fait des combinaisons linéaires.

Linéarisation : $ch^n a = (e^x + e^{-x})^n/2^n = ...$ formule du Binôme

Définition correcte des fonctions trigonométriques (ou circulaires) :

Exponentielle complexe : [def]
$$\forall z \in \mathbb{C}$$
, $\exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$ (converge : suite de Cauchy) $\forall (z_1, z_2) \in \mathbb{C}^2$, $\exp(z_1 + z_2) = \exp(z_1) + \exp(z_2)$ [demo approx] Etude de $x \in \mathbb{R} \to \exp(ix)$. On définit $\cos x = \text{Re } \exp(ix)$ et $\sin x = \text{Im } \exp(ix)$ cos' = $-\sin$ et $\sin' = \cos$; la fonction est un morphisme de $(\mathbb{R}, +)$ vers (U, \times) [demo]

Son noyau est discret (car sinon, la fonction est nulle); de la forme a \mathbb{Z} . On pose $\pi = a/2$. [def] cos et sin sont 2π -périodiques ; reconstruction des formules usuelles de trigonométrie. Tangente et cotangente hyperboliques :

th = sh / ch; coth = ch / sh = 1 / th (non définie en 0).

th(a+b) = (th a + th b)/(1 + tha thb)

$$th(2a) = 2 th a / (1 + th^2a)$$

th(x) =
$$\frac{2t}{1+t^2} = \frac{e^{2x}-1}{e^{2x}+1}$$

$$sh(x) = \frac{2t}{1-t^2} = \frac{e^{2x}-1}{2e^x}$$

$$th(x) = \frac{2t}{1+t^2} = \frac{e^{2x}-1}{e^{2x}+1} \qquad \qquad sh(x) = \frac{2t}{1-t^2} = \frac{e^{2x}-1}{2e^x} \qquad \qquad ch(x) = \frac{1+t^2}{1-t^2} = \frac{e^{2x}+1}{2e^x}$$

où
$$t = th\left(\frac{x}{2}\right)$$

$$\tan(x) = \frac{2t}{1 - t^2}$$

$$\sin(x) = \frac{2t}{1 + t^2}$$

$$\cos(x) = \frac{1 - t^2}{1 + t^2}$$

 $\tan\left(\frac{x}{2}\right)$

2 – Etude des fonctions

sh et ch $\in C^{\infty}(\mathbb{R}, \mathbb{R})$

sh' = ch

ch' = +sh

sh < exp/2 < ch

th ' $x = 1/ch^2x = 1 - th^2x$ $\coth ' x = + 1 - \coth^2 = -1/\sinh^2$ (attention) Au voisinage de 0^+ , on a th < Id < sh.

3 - Fonctions réciproques

$$Argsh = sh^{-1}Argsh \ ' \ (x) = \frac{1}{\sqrt{x^2 + 1}} Argsh(x) = ln \big(x + \sqrt{x^2 + 1} \big)$$

Argch =
$$(ch|_{\mathbb{R}^+})^{-1}$$
Argch' (x) = $\frac{1}{\sqrt{x^2 - 1}}$ Argch(x) = $ln(x + \sqrt{x^2 - 1})$

Argth = th⁻¹Argth ' (x) =
$$\frac{1}{1 - x^2}$$
Argth(x) = $\frac{1}{2}$ ln($\frac{1 + x}{1 - x}$)

Argcoth:
$$x \to (\coth |_{\mathbb{R}^+})^{-1}(x)$$
 si $x > 1$ et $(\coth |_{\mathbb{R}^-})^{-1}(x)$ si $x < -1$.

$$Argcoth'(x) = \frac{1}{1 - x^2} Argcoth(x) = \frac{1}{2} ln(\frac{1 + x}{x - 1})$$

IV Dérivées et primitives

$$f(x) \rightarrow f'(x)$$

$$\sin(x) \Rightarrow \cos(x)$$

$$\cos(x) \Rightarrow -\sin(x)$$

$$\tan(x) \Rightarrow 1 + \tan^{2}(x) = \frac{1}{\cos^{2}(x)}$$

$$\cot(x) \Rightarrow -1 - \cot(x) = -\frac{1}{\sin^{2}(x)}$$

$$Arcsin(x) \Rightarrow \frac{1}{\sqrt{1-x^{2}}}$$

$$Arccos(x) \Rightarrow -\frac{1}{\sqrt{1-x^{2}}}$$

$$Arctan(x) \Rightarrow \frac{1}{1+x^{2}}$$

$$Arccotan(x) \Rightarrow -\frac{1}{1+x^{2}}$$

$$\ln(x) \Rightarrow \frac{1}{x}$$

$$\exp(x) \Rightarrow \exp(x)$$

$$\log_{a}(x) \Rightarrow \frac{1}{x \ln(a)}$$

$$a^{x} \Rightarrow a^{x} \cdot \ln(a)$$

$$x^{a} \Rightarrow a x^{a-1}$$

$$\sinh(x) \Rightarrow \cosh(x)$$

$$\tanh(x) \Rightarrow 1 - \cosh(x) = -\frac{1}{\sinh^{2}(x)}$$

$$\coth(x) \Rightarrow 1 - \coth(x) = -\frac{1}{\sinh^{2}(x)}$$

$$\coth(x) \Rightarrow 1 - \coth(x) = -\frac{1}{\sinh^{2}(x)}$$

$$Argch(x) = \ln(x + \sqrt{x^{2} + 1}) \Rightarrow \frac{1}{\sqrt{x^{2} + 1}}$$

$$Argch(x) = \ln(x + \sqrt{x^{2} - 1}) \Rightarrow \frac{1}{\sqrt{x^{2} - 1}}$$

$$Argth(x) \text{ ou } Argcoth(x) = \frac{1}{2} \ln\left|\frac{1+x}{1-x}\right| \Rightarrow \frac{1}{1-x^{2}}$$

$$f(x) \longrightarrow \int f(x) dx (-c^{te})$$

$$\frac{1}{a^2 + x^2} \longrightarrow \frac{1}{a} \operatorname{Arctan} \left(\frac{x}{a} \right)$$

$$\tan(x) \longrightarrow -\ln|\cos(x)|$$

$$\tan(x) \longrightarrow \ln(\cosh(x))$$

$$\ln(x) \longrightarrow x \ln x - x$$

$$\frac{1}{\sin(x)} \longrightarrow \ln\left|\tan\left(\frac{x}{2}\right)\right| = \ln\left(\frac{1}{\sin(x)} - \cot(x)\right)$$

$$\frac{1}{\cos(x)} \longrightarrow \ln\left|\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| = \ln\left(\frac{1}{\cos(x)} + \tan(x)\right)$$

12 – Etude pratique d'une fonction réelle

I Comparaison de fonctions au voisinage d'un point

Soit I un intervalle de \mathbb{R} , et $x_0 \in I \cup \{ \text{ Inf I}, \text{ Sup I} \}$ (éventuellement $\pm \infty$); $(f, g) \in \mathcal{F}(I, \mathbb{R})$

```
1 – Relation de domination
```

```
f est dominée par g en x_0 \in \mathbb{R} \Leftrightarrow \exists \ \alpha > 0, \exists \ \beta > 0, \ \forall \ x \in I, \ |x-x_0| \le \beta \Rightarrow |f(x)| \le \alpha |g(x)| f est dominée par g en +\infty \Leftrightarrow \exists \ \alpha > 0, \exists \ \beta > 0, \ \forall \ x \in I, \ x \ge \beta \Rightarrow |f(x)| \le \alpha |g(x)| Notations: f_{x_0} = O(g) f(x)_{x_0} = O(g(x)) La relation de domination est réflexive et transitive. f f_{x_0} = O(g) \Leftrightarrow \exists \ J_{intervalle} \subset I, \ x_0 \in J \cup \{Inf\ J, Sup\ J\}, \ \exists \ h \in \mathcal{F}(J, \mathbb{R}), \ \forall \ x \in J, \ f(x) = g(x) \ h(x) \ et \ h \ bornée \ [admo] Cas particulier: f_{x_0} = f_
```

2 – Relation de prépondérance

```
f est négligeable devant g en x_0 \in \mathbb{R}
                                                                        ⇔ g est prépondérante devant f en x<sub>0</sub>
                                                                        \Leftrightarrow \forall \alpha > 0, \exists \beta > 0, \forall x \in I, |x-x_0| \le \beta \Rightarrow |f(x)| \le \alpha |g(x)|
Notations : f_{x0} = o(g)
                                          f(x) = o(g(x))
La relation de prépondérance est transitive.
f_{x0} = o(g) \Leftrightarrow \exists J_{intervalle} \subset I, x_0 \in J \cup \{Inf J, Sup J\}, \exists h \in \mathcal{F}(J, \mathbb{R}), \forall x \in J, f(x) = g(x) h(x) \text{ et } \lim_{x \to x_0} h(x) = 0
              Cas particulier: Si g \in \mathcal{F}(I, \mathbb{R}^*), f_{x0} = o(g) \Leftrightarrow \lim_{x \to x0} f/g = 0
Exemples: \forall a > 1, \forall \alpha > 0, \forall \beta > 0, (\log_a(x))^{\alpha} + \infty = o(x^{\beta}) et x^{\beta} + \infty = o(a^x)
f_{x0} = o(g) et g_{x0} = O(h) \Rightarrow f_{x0} = O(h)
f_{x0} = O(g) \text{ et } g_{x0} = o(h)
                                         \Rightarrow f x0= O(h)
f_{x0} = o(h) \text{ et } g_{x0} = o(h)
                                          \Rightarrow f + g <sub>x0</sub>= o(h)
f_{x0} = o(h) \text{ et } g_{x0} = o(k)
                                        \Rightarrow f g x0= o(h k)
                                          \Rightarrow \lambda f_{x0} = o(g)
f_{x0} = o(g)
```

```
3 – Relation d'équivalence
f_{x0} \sim g \Leftrightarrow f - g_{x0} = o(g).
f_{x0} \sim g \Leftrightarrow \exists J_{intervalle} \subset I, x_0 \in J \cup \{Inf J, Sup J\}, \exists h \in \mathcal{F}(J, \mathbb{R}), \forall x \in J, f(x) = g(x) h(x) \text{ et } \lim_{x \to x_0} h(x) = 1
            Cas particulier: Si g \in \mathcal{F}(I, \mathbb{R}^*), f_{x0} = o(g) \Leftrightarrow \lim_{x \to x0} f/g = 1
C'est une relation d'équivalence. [ DEMO : f_{x0} \sim g \Rightarrow g_{x0} = O(f) puis facile ]
Si f x_0 \sim g et \lim_{x\to x_0} g(x) = \ell alors \lim_{x\to x_0} f(x) = \ell
                                                                                         [ \sim demo ]
Si f x_0 \sim h et g_{x_0} \sim k, alors:
      fg xo∼ hk
                                      [ demo rapide ]
     f/g_{x0}~ h/k si la division est possible
  f^{\lambda}_{x0} \sim h^{\lambda}
                        si f \ge 0
    Si k x_0 = o(h) alors f + g x_0 \sim h
                                                               [~demo]
    Si \exists J \text{ intervalle} \subset I, x_0 \in J \cup \{Inf J, Sup J\}, \forall x \in J, h(x) \ge 0 \text{ et } k(x) \ge 0, \text{ alors } f+g_{x0} \sim k+h
    Si \exists \alpha \in \mathbb{R}, k_{x0} \sim \alpha h, alors:
            Si \alpha \neq -1, alors f+g x_0 \sim (1+\alpha)h
            Si \alpha = -1, alors f+g x0= o(h)
                                                                                         [ demos Cf. chapitre sur les suites ]
Remarque : ça sert à rien d'écrire cos x _{0}~ 1-x^{2}/2 ...
Pour étudier la somme f_1 + f_2 + ... + f_n, on les groupe dans 2 catégories : f_{i x0} \sim \lambda_i. g et f_{j x0} = o(g). [ exemples ... ]
Si \lim_{x\to x_0} g(x) = 0 ou +\infty et f_{x_0} \sim g alors \ln f_{x_0} \sim \ln g.
                                                                                         [\sim demo]
Si \lim_{x \to x0} f(x) - g(x) = 0 et f_{x0} \sim g alors e^f_{x0} \sim e^g.
                                                                                         [\sim demo]
Formes indéterminées : 0/0
                                                 \infty/\infty
                                                               0.∞
                                                                                         (+∞)<sup>0</sup> 1<sup>∞</sup>
                                                                                                                   00.
```

4 – Intégration des relations de comparaison

 \Rightarrow

 $f \in \mathcal{F}(I, \mathbb{R}) \text{ et } g \in \mathcal{F}(I, \mathbb{R}_+). x_0 \in I.$

 $\int_{x0}^{x} f_{x0} = O(\int_{x0}^{x} g)$ $f_{x0} = O(g)$ [demo rapide] $\int_{x0}^{x} f_{x0} = o(\int_{x0}^{x} g)$ $f_{x0} = o(g)$ $f_{x0} \sim g$ $\int_{x0}^{x} f_{x0} \sim \int_{x0}^{x} g$

Mais si g n'est pas à valeurs positives, ce n'est plus vrai. [EXOS 15]

5 – Infiniment petits et infiniment grands

 $f \in \mathcal{F}(I, \mathbb{R}), x_0 \in I \cup \{ \text{ Inf } I, \text{ Sup } I \}.$

f est un infiniment petit lorsque $x \to x_0$ si $\lim_{x \to x_0} f(x) = 0$ f est un infiniment grand lorsque $x \to x_0$ si $\lim_{x \to x_0} f(x) = \pm \infty$

- Notion d'infiment petits simultanés, d'infiniment petit principal.
- Soient f et g deux infiniment petits simultanés lorsque $x \rightarrow x_0$.
- Si $\exists \lambda \in \mathbb{R}^*$, $f_{x0} \sim \lambda g$, alors f et g sont de même ordre.
- Si f $x_0 = o(g)$, f est d'ordre supérieur à g.

Si f(x) est un infiniment petit lorsque $x \to 0$ et si $\exists \lambda \in \mathbb{R}^*, \exists \alpha \in \mathbb{R}_+^*, f(x) \circ \lambda x^{\alpha}, \alpha$ est l'ordre de l'infiniment petit f(x) et λx^{α} sa partie principale.

Soient f et g deux infiniment petits simultanés lorsque $x \to 0$, avec $f(x) \circ \lambda x^{\alpha}$ et $g(x) \circ \mu x^{\beta}$.

Alors $f(x)g(x) \sim \lambda \mu x^{\alpha+\beta} et f(x)/g(x) \sim \lambda/\mu x^{\alpha-\beta}$.

Soient $f_1, f_2, ..., f_n$ n infiniment petits simultanés lorsque $x \to 0$. Si $\exists p \in \mathbb{N}, \forall i \in \{1, ..., p\}, f_i(x) \circ \lambda_i x^{\alpha}$ et $\forall i \in \{1, ..., p\}$ $\{p+1, ..., n\}$, $f_i(x) = o(x^{\alpha})$, alors : $si \Sigma \lambda_i \neq 0$, $\Sigma f_{i,0} \sim \Sigma \lambda_i x^{\alpha}$. Sinon, Σf_i est d'ordre supérieur à α .

II Développements limités

1 – Définition

 $f \in \mathcal{F}(I, \mathbb{R}), 0 \in I \cup \{ \text{ Inf } I, \text{ Sup } I \}. \text{ f admet en 0 un développement limité (dl) à l'ordre n s'il existe une fonction } I$ polynôme P de degré ≤ n, telle que $f(x) - P(x) = o(x^n)$

 $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n + o(x^n)$ c'est-à-dire c'est-à-dire $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n + x^n \varepsilon(x)$

où $\lim_{x\to 0} \varepsilon(x) = 0$

- (pour les cas où il est question de dl en x₀, il faut se ramener en 0 par un changement de variable).
- Si f admet un dl à l'ordre n, la fct. polynôme P de degré ≤ n est unique. C'est la partie régulière du dl. [~demo]
- Conséquence : Si f est impaire et admet un dl en 0, sa partie régulière sera aussi impaire.
- Si f admet en O un dl, $\lim_{x\to 0} f(x) = \ell = a_0$. [~demo]

2 – Obtention d'un développement limité

```
Utilisation de la formule de Taylor-Young.
```

 $e^{x} = 1 + x/1! + x^{2}/2! + x^{3}/3! + ...$ $\sin x = x - x^3/3! + x^5/5! - x^7/7! + ...$

sh $x = x + x^3/3! + x^5/5! + x^7/7! + ...$

 $\cos x = 1 - x^2/2! + x^4/4! - x^6/6! + ...$ ch x = $1 + x^2/2! + x^4/4! + x^6/6! + ...$

 $1/(1-x) = 1 + x + x^2 + ... + x^n + o(x^n)$

Si f a un dl en O à l'ordre n, et f définie en O, alors f continue en O. f (O) = a_0 . [~demo]

Si f a un dl en 0 à l'ordre 1, et f définie en 0, alors f dérivable en 0. f '(0) = a_1 .

Contrexemple pour l'ordre $2: x \to x^3 \sin(1/x)$

 $(1+x)^{\alpha} = 1 + \alpha x + \alpha(\alpha-1) x^2/2I + ... + \alpha(\alpha-1)...(\alpha-n+1) x^n / nI + o(x^n)$ [demo Taylor-Young]

<u>Intégration</u>: Soit $f \in \mathcal{F}(I, \mathbb{R})$, $0 \in I$, $f(x) = a_0 + a_1 x + ... + a_n x^n + o(x^n)$. $F \in \int f(x) dx$.

Alors $F(x) = F(0) + a_0 x + a_1 x^2 / 2 + ... + a_n x^{n+1} / (n+1) + o(x^{n+1})$ [demo facile] $\ln(1+x) = x - x^2/2 + x^3/3 + ... + (-1)^n x^n/n + o(x^n)$ Exemples:

Arcsin $x = x + x^3/6 + ... + (2n)! x^{2n} / (2^n n!)^2 + o(x^{2n+1})$ Arctan $x = x - x^3/3 + x^5/5 + ... + (-1)^n x^{2n} / (2n+1) + o(x^{2n+1})$

<u>Dérivation</u>: Soit $f \in \mathcal{F}(I, \mathbb{R})$, dérivable sur I, $f(x) = P(x) + o(x^n)$; $d^{\circ}P \le n$; $f'(x) = Q(x) + o(x^{n-1})$; $d^{\circ}Q \le n-1$. Alors Q = P'[demo très rapide] Exemple: $1/(1+x)^2$

3 – Opérations sur les développements limités

Soit f et $g \in \mathcal{F}(I, \mathbb{R})$, $f(x) = P(x) + o(x^n)$; $d^{\circ}P \le n$; $g(x) = Q(x) + o(x^n)$; $d^{\circ}Q \le n$. $f(x) + g(x) = P(x) + Q(x) + o(x^n)$ [~demo] Exemple: $\frac{1}{2} \ln |(1+x)/(1-x)|$ $f(x) g(x) = R(x) + o(x^n)$ où R(x) est le polynôme obtenu en ne conservant dans le produit P(x)Q(x) que des termes de degré inférieur à n. [\sim demo] Exemple : $e^x \sin x$

4 – Composition des développement limités

 $f \in \mathcal{F}(I, \mathbb{R})$ et $g \in \mathcal{F}(J, \mathbb{R})$, $g(J) \subset I$, $\lim_{x \to 0} g(x) = 0$, $f(x) = a_0 + ... + a_n x^n + o(x^n)$, $g(x) = b_1 x + ... + b_n x^n + o(x^n)$ Alors $f \circ g$ admet un développement limité en 0 à l'ordre n [~demo] Exemple : $e^{\sin x}$

Elevation à une puissance : on se ramène à $(1+u(x))^a$. Cas particulier : l'inverse d'une fonction.

Exemple: $\tan = x + x^3/3 + 2x^5/15 + o(x^5)$

 $\ln(h(x))$; $h(x) = a_0 + a_1 x + ... + a_n x^n + o(x^n), a_0 > 0$. $\ln(h(x)) = \ln(a_0) + \ln(1 + h(x))$; $e^{h(x)}$: de même

Fonction réciproque : Soit $f \in \mathcal{F}(I, J)$ ayant un dl en 0 à l'ordre n, et réalisant une bijection entre I et J. Alors f^{-1} admet un dl en 0 à l'ordre n. (on écrit $f^{-1} \circ f = x$) Exemple : $tan = Arctan^{-1}$.

III Applications

1 – Etude locale d'une fonction

A partir d'un dl de f en x_0 , on peut déterminer l'équation de la tangente à la courbe en x_0 , et sa position par rapport à la courbe de f.

2 - Partie principale d'une somme d'infiniments petits/grands

Ex: 2 (1-cos x) sin x - x³.
$$\sqrt[4]{(1-x^2)}$$
 0~ 19 x⁷/160 [calculs ordre 7]
Ex: $\sqrt[4]{(x^2 + x + 1)} - \sqrt[3]{(x^3 + px^2 + q)} + \sqrt[4]{35} / 8$ x [calculs ordre 3]

3 - Formes indéterminées

Ex:
$$\frac{\sin \frac{x}{1-x} - \frac{\sin x}{1-\sin x}}{\sin^4 x} \xrightarrow[x \to 0]{} -\frac{1}{6}$$
 [calculs ordre 4]

4 – Branches infinies

Ex: $f(x) = x^2$ Arctan (1/(1+x)) [calculs ordre 3 en $+\infty$; étude de la fonction]

IV Développements limités à connaître

Développements limités à l'ordre 6, pour $x \to 0$.

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + x^5 + O(x^6).$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6}x^3 + \frac{\alpha(\alpha-1)(\alpha-2)(\alpha-3)}{24}x^4 + O(x^5) \quad \text{avec } \alpha \in \mathbb{R} \setminus \mathbb{N}$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5 + O(x^6).$$

$$\operatorname{Arctan} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + O(x^7).$$

$$\operatorname{Arcsin} x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + O(x^7).$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 - \frac{1}{120}x^5 + O(x^6).$$

$$\sin x = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + O(x^7).$$

$$\cosh x = x + \frac{1}{6}x^3 + \frac{1}{120}x^5 + O(x^7).$$

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + O(x^6).$$

$$\cosh x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + O(x^7).$$

V Développements asymptotiques

Ex : Comportement de cotan(x). $\cot an(x) = \frac{1}{6} - \frac{x}{3} - \frac{x^3}{45} + o(x^3)$. [cos/sin] Quotient de 2 d.l. dans le cas général : factoriser ce qui gène, et poser h = 1/x pour se ramener en 0.

Branches infinies:
$$x^2$$
 Arctan $\left(\frac{1}{1+x}\right) = x - 1 + \frac{2}{3}x + o\left(\frac{1}{x}\right)$

Echelle de comparaison = famille $(\phi_k)_{k \in K}$ de fonctions définies sur I,

$$\forall \ (k, \, k') \in K^2, \quad k \neq k' \Longrightarrow \phi_k = o(\phi_k) \text{ ou } \phi_{k'} = o(\phi_k)$$
 et
$$\exists \ k " \in K, \phi_k. \ \phi_{k'} = \phi_{k"}. \qquad \text{Ex} : (Id^n)_{n \in \mathbb{Z}}.$$

 $f \in \mathcal{F}(I, \mathbb{R})$ admet un développement asymptotique dans l'échelle de comparaison $(\phi_k)_{k \in K}$ si

$$\exists (a_{k_1}, a_{k_2}, ..., a_{k_n}) \in \mathbb{R}^n, f - \sum a_{k_i} \varphi_{k_i}$$
 soit négligeable devant $\varphi_{k_1}, \varphi_{k_2}, ..., \varphi_{k_n}$

 $\exists \ (a_{k_1},a_{k_2},...,a_{k_n}) \in \mathbb{R}^n, f-\sum a_{k_j}\phi_{k_j} \ \text{soit n\'egligeable devant} \ \phi_{k_1},\phi_{k_2},...,\phi_{k_n}.$ Exemple : résolution de x sin x=1 dans \mathbb{R}_+ (dev. asym. de la suite définie comme l'ensemble des solutions)

<u>13 – Polynômes</u>

I Définition – Structure

1 - Anneau des polynômes à une indéterminée sur un corps

Soit K un corps commutatif.

Un polynôme à une indéterminée sur le corps K est une suite à éléments de K presque tous nuls. Donc $K[X] \subset K^{\mathbb{N}}$.

- Définition de l'égalité de 2 polynômes. Notation : **K**[X] est l'ensemble des polynômes à une indéterminée sur **K**.
- Addition de 2 polynômes. K[X] est un groupe additif abélien (sous-groupe de $K^{\mathbb{N}}$) [demo rapide]
- Définition de la multiplication : $\forall P = (a_i) \in \mathbf{K}[X], \forall Q = (b_i) \in \mathbf{K}[X], PQ = (c_i)$ où $c_i = \sum_{i=0}^{1} a_i b_{i-j}$
- **K**[X] est stable pour la multiplication [~demo]
- $P = (a_i) \in K[X]$ est un monôme si $\exists n \in \mathbb{N}, a_n \neq 0$ et $\forall i \in \mathbb{N} \setminus \{n\}, a_i = 0$.
- $\forall P \in K[X]$, P est une somme de monômes. [\sim d] Produit de monômes. [\sim d]
- Associativité pour les produits de monômes [~d]
- (K[X], +, ×) est un anneau commutatif intègre [demo : × commutative, distributive par rapport à +, associative, neutre, intégrité]
- Plongement de K dans K[X]: création d'un morphisme injectif d'anneau de K vers K[X].

2 – Algèbre des polynômes à une indéterminée sur un corps

```
Définition de la loi externe. On retrouve les 4 propriétés.
```

```
K[X] est une K – algèbre commutative.
```

```
On note X = (\delta_{i 1})_{i \in \mathbb{N}}. \forall n \in \mathbb{N}, X^n = (\delta_{i n})_{i \in \mathbb{N}}. [demo récurrence]
La famille (X^i)_{i \in \mathbb{N}}, est une base de K[X]. [demo rapide : génératrice, libre]
```

Notations : $P = \sum a_i X^i$; $P = \sum b_i X^i$; On a alors $PQ = \sum a_i b_i X^{i+j}$.

3 – Degré et valuation d'un polynôme

```
\begin{split} & \text{Soit } P = \Sigma \ a_i \ X^i \in \mathbf{K}[X]. & \text{Si } P \neq 0, \, d^\circ P = \text{Max} \{ \ i \in \mathbb{N}, \, a_i \neq 0 \ \} \ \text{et val}(P) = \text{Min} \{ \ i \in \mathbb{N}, \, a_i \neq 0 \ \} \\ & \text{Par convention, } d^\circ(0) = -\infty \ \text{et val}(0) = +\infty \\ & \forall \ (P, \, Q) \in \mathbf{K}[X]^2, & d^\circ(PQ) = d^\circ P + d^\circ Q & \text{val}(PQ) = \text{val}(P) + \text{val}(Q) \\ & d^\circ(P+Q) \leq \text{Max} \{ d^\circ P, \, d^\circ Q \} & d^\circ P \neq d^\circ Q \Rightarrow d^\circ(P+Q) = \text{Max} \{ d^\circ P, \, d^\circ Q \} \\ & \text{val}(P+Q) \geq \text{Min} \{ \text{val}(P), \, \text{val}(Q) \} & \text{val}(P) \neq \text{val}(Q) \Rightarrow \text{val}(P+Q) = \text{Min} \{ \text{val}(P), \, \text{val}(Q) \} \\ & [ \ demo : \ \text{Si } P \neq 0 \ \text{et } Q \neq 0, \, \text{alors } ... \ \text{pipo } ... \ ] \end{split}
```

Les éléments inversibles de K[X] sont les éléments de K^* . [demo facile] $\Rightarrow K[X]$ n'est pas un corps. Le coefficient dominant d'un polynôme P est le terme d°P de la suite P.

Etude de $\mathbf{K}_n[X] = \{ P \in \mathbf{K}[X], d^{\circ}P \leq n \}$

```
\mathbf{K}_{n}[X] est un \mathbf{K} – espace vectoriel de dimension n+1. \mathbf{K}_{n}[X] = Vect { X^{i}, 0 \le i \le n }
```

Toute famille de n+1 polynômes $(P_i)_{0 \le i \le n}$ tels que $d^{\circ}(P_i) = i$ constitue une base de $\mathbf{K}_n[X]$. [\sim demo] C'est une famille de polynômes étagée.

4 – Fonction polynôme

```
Composition des polynômes : \forall P = \Sigma a_i X^i \in \mathbf{K}[X], \forall Q \in \mathbf{K}[X], on définit
                                                                                                          P \circ Q = \sum a_i Q^i
\forall (P_1, P_2, Q) \in \mathbf{K}[X], \forall \lambda \in \mathbf{K},
                                               (P_1 + P_2) \circ Q = P_1 \circ Q + P_2 \circ Q
                                                                                                          [ demo facile ]
                                               (P_1 P_2) \circ Q = (P_1 \circ Q) (P_2 \circ Q)
                                               (\lambda P_1) \circ Q = \lambda (P_1 \circ Q)
Utilisation d'une partition de \mathbb{N}^2: (\mathbb{N}_k^2)_{k \in \mathbb{N}}, où \mathbb{N}_k^2 = \{ (i,j) \in \mathbb{N}^2, i+j=k \}
Notation: P \circ Q = P(Q); P = P \circ X = P(X)
La fonction polynôme associée à P \in K[X] est l'application K \to K, X \to P \circ X, notée \hat{P}.
L'application \Phi: \mathbf{K}[X] \to \mathbf{K}^K, P \to \hat{P} est un morphisme d'algèbre [ demo rapide ]
\Phi n'est pas toujours injective. Dans \mathbb{Z}/_{2\mathbb{Z}}, \Phi(X^2 + X) = 0 donc Ker \Phi \neq \{0\}.
Algorithme de Hörner Optimisation pour le calcul de P(x) = \sum a_i x^i
                                                                                                          [ vague demo ]
y \leftarrow a<sub>n</sub> ; pour i allant de n - 1 à 0 faire y \leftarrow a<sub>i</sub> + y x ; fin pour ; renvoyer y ;
Alors qu'à l'origine, le calcul nécessite O(n^2), ici, il ne faut que O(n).
```

II Arithmétique de K[X]

1 – Multiples et diviseurs

```
\forall \ (A,B) \in \mathbf{K}[X]^2, B \mid A \text{ signifie } \exists \ Q \in \mathbf{K}[X], A = BQ \qquad \text{C'est une relation réflexive et transitive.}
\forall \ (A,B) \in \mathbf{K}[X]^2, A \mid B \text{ et } B \mid A \Leftrightarrow \exists \ \lambda \in \mathbf{K}^*, A = \lambda \text{ B. A et B sont dits associés.} \qquad [\text{ demo facile }]
\text{Notation: } \forall \ A \in \mathbf{K}[X], \ (A) = \{\ AP, P \in \mathbf{K}[X]\ \}
\forall \ A \in \mathbf{K}[X], \ (A) \text{ est un } \underline{\text{idéal}} \text{ de } \mathbf{K}[X], \ c'\text{est-$a$-dire: } c'\text{est un groupe additif, et } \forall \ B \in \ (A), \ \forall \ C \in \mathbf{K}[X], BC \in \ (A).
\forall \ (A,B) \in \mathbf{K}[X]^2, B \mid A \Leftrightarrow (A) \subset (B) \Leftrightarrow A \in \ (B)
\forall \ (A_1,...,A_n) \in \mathbf{K}^n[X], \ \forall \ B \in \mathbf{K}[X], \ \forall \ (U_1,...,U_n) \in \mathbf{K}^n[X], \ (\forall \ i \in \mathbb{N}_n, B \mid A_i) \Rightarrow B \mid \Sigma \ U_i \ A_i. \quad [\sim d]
\forall \ (A_1,A_2,B) \in \mathbf{K}^3[X], A_1 \equiv A_2 \ [B] \ \text{ signifie } B \mid A_2 - A_1. \text{ C'est une relation d'équivalence compatible avec} \times \text{et } +.
```

2 – Division euclidienne

```
\forall \ (A,B) \in \textbf{K}[X] \times \textbf{K}[X] \setminus \{\ 0\ \}, \exists\ !\ (Q,R) \in \textbf{K}\ ^2[X], \ A = BQ + R \ \text{et}\ d^\circ R < d^\circ B. [DEMO: Existence avec algorithme pour diminuer le degré de A, Unicité ] 
Exemple: X^5 - X^3 + X - 2 = (X^2 + 1)(X^3 - 2X) + 3X + 2 R est le représentant de la classe d'équivalence de A vis-à-vis de la congruence modulo B dont le degré est minimal. \forall \ (A_1,...,A_n) \in \textbf{K}\ ^n[X], \ \forall \ (\lambda_1,...,\lambda_n) \in \textbf{K}\ ^n, \ \forall \ B \in \textbf{K}[X] \setminus \{\ 0\ \}, \ \forall \ i \in \mathbb{N}_n, \ \exists \ (Q_i,R_i) \in \textbf{K}\ ^2[X], \ A_i = BQ_i + R_i, \Sigma \ \lambda_i A_i = B \ \Sigma \ \lambda_i Q_i + \Sigma \ \lambda_i R_i, \ \text{avec}\ d^\circ (\Sigma \ \lambda_i R_i) < d^\circ B, \ \text{et} \qquad \Pi \ A_i \equiv \Pi \ R_i \ [B] Cas particulier: A = (X-a)Q + R; \widehat{A}(a) = R. On a alors X - a \mid A \Leftrightarrow \widehat{A}(a) = 0: a est une racine de A.
```

3 - PCGD

 $\forall \ (A_1,...,A_n) \in (\textbf{K}[X] \setminus \{0\})^n, \exists \ D \in \textbf{K}[X] \setminus \{0\}, \text{ tel que l'ensemble des diviseurs communs à } A_1,...,A_n \text{ soit l'ensemble des diviseurs de D. Parmi les possibles polynômes D, il n'en existe qu'un seul unitaire. C'est leur pcgd.
[DEMO: On considère <math>I = \{\Sigma \ U_iA_i, \ (U_1,...,U_n) \in \textbf{K}^n[X] \}$, et on choisit un polynôme D de degré minimal dans I; on montre que I = (D), et que tout diviseur commun à $A_1,...,A_n$ divise D; Unicité: D_1 et D_2 sont associés]

Notation: $A \land B$ Remarque: $A \land O$ est le polynôme unitaire associé à A.

4 - PPCM

 $\forall \ (A_1,...,A_n) \in (\textbf{K}[X] \setminus \{0\})^n, \exists \ M \in \textbf{K}[X] \setminus \{0\}, \text{ tel que l'ensemble des multiples communs à } A_1,...,A_n \text{ soit l'ensemble des multiples de } M. Parmi les possibles polynômes } M, il n'en existe qu'un seul unitaire. C'est leur ppcm. [<math>\sim$ demo : I = \cap (A_i) est un idéal ; on prend pour M le polynôme de I de d° min ... comme le pgcd] Notation : A \vee B

5 – Algorithme d'Euclide

```
\forall (A, B) \in K[X] \times K[X] \ { 0 }, A = BQ + R avec d°R < d°B. Alors A \wedge B = B \wedge R. [ double division ] [ demo : A = BQ<sub>0</sub> + R<sub>0</sub> ; B = R<sub>0</sub>Q<sub>1</sub> + R<sub>1</sub> ; R<sub>0</sub> = R<sub>1</sub>Q<sub>2</sub> + R<sub>2</sub> : divisions euclidiennes... ] \wedge et \vee sont des lois associatives.
```

6 – Polynômes premiers entre eux

```
 \forall \; (A_1,A_2,...,A_n) \in \textbf{K} \; ^n[X], A_1,..., A_n \; \text{sont dits premiers entre eux dans leur ensemble lorsque leurs diviseurs communs sont les éléments de \textbf{K} * (les éléments inversibles de \textbf{K}[X]). Leur pgcd est 1. \\  \text{Théorème de Bezout}: \forall \; (A_1,...,A_n) \in \textbf{K} \; ^n[X], A_1 \wedge ... \wedge A_n = 1 \Leftrightarrow \exists \; (U_1,...,U_n) \in \textbf{K} \; ^n[X], \Sigma \; U_i A_i = 1 \\  \text{Théorème de Gauss}: \forall \; (A,B,C) \in \textbf{K} \; ^3[X], (\; A \mid BC \; \text{et } A \wedge B = 1\;) \Rightarrow A \mid C \\ \forall \; (A,B) \in \textbf{K} \; ^2[X], AB \; \text{et } (A \wedge B)(A \vee B) \; \text{sont associés} \\
```

7 – Polynômes irréductibles

Utilisation pour déterminer le PCGD ou le PPCM de deux polynômes.

```
P \in \mathbf{K}[X] \setminus \mathbf{K} est irréductible si ses diviseurs sont les polynômes constants non nuls et les polynômes associés à P \in \mathbf{K}[X], d \circ P = 1 \Rightarrow P irréductible [\sim d] Si \mathbf{K} \subset \mathbf{L}, alors \mathbf{K}[X] \subset \mathbf{L}[X]. Un polynôme irréductible dans \mathbf{K}[X] n'est pas forcément irréductible dans \mathbf{L}[X]. Ex: X^2 + 1 dans \mathbb{R}[X] et \mathbb{C}[X]. Soit P \in \mathbf{K}[X] \setminus \mathbf{K}. \exists ! \lambda \in \mathbf{K}, \exists n \in \mathbb{N}, \exists (P_1, ..., P_n) \in \mathbf{K}^n[X] irréductibles, unitaires et 2 à 2 dictincts, \exists (k_1, ..., k_n) \in \mathbb{N}^{*n}, P = \lambda \prod P_j k_j, l'unicité est vraie à l'ordre près des facteurs. [DEMO : existence par récurrence forte ; unicité]
```

III Dérivation et racines

On se place dans le cas où ${\bf K}$ est un sous-corps de ${\mathbb C}$.

1 – Polynôme dérivé

 $\forall \ P \in \mathbf{K}[X], \ P = \Sigma \ a_i \ X^i, \ on \ note \ P' = \Sigma \ i \ a_i \ X^{i-1} = \Sigma \ (j+1) \ a_{j+1} \ X^j.$ $\forall \ P \in \mathbf{K}[X], \ P' = 0 \Leftrightarrow P \in \mathbf{K}.$ $\forall \ P \in \mathbf{K}[X] \setminus K, \ d^\circ P' = d^\circ P - 1 \qquad (Dans \ \mathbb{Z}/_{2\mathbb{Z}}[X], \ P = X + X^2 \ a \ pour \ dérivé \ 1)$ Définition des polynômes dérivés successifs par récurrence. $L'application \ P \to P' \ est \ linéaire. \qquad [demo \ rapide]$ $(PQ)' = P' \ Q + P \ Q'. \qquad [\sim demo \ pour \ des \ monômes \ unitaires \ puis \ généralisation]$ $(P \circ Q)' = (P' \circ Q) \ Q' \qquad [\sim demo \ pour \ des \ monômes]$ $L'application \ P \to P^{(n)} \ est \ linéaire. \qquad Fomule \ de \ Leibniz : (PQ)^{(n)} = \Sigma \ C_n^k \ P^{(k)} \ Q^{(n-k)}.$

2 – Formule de Taylor

 $\begin{aligned} &\text{Soit } P \in \mathbf{K}[X] \text{ et } a \in \mathbf{K}. \text{ $d^{\circ}P = n \geq 0$. On a} & & & & & & & & & \\ & P = \sum_{k=0}^{n} \hat{P}^{(n)}(a) \frac{(X-a)^{k}}{k!} & & & & & & & \\ & & \text{Autre version}: & & & & & \\ & P(X+a) = \sum_{k=0}^{n} \hat{P}^{(n)}(a) \frac{X^{k}}{k!} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

3 – Fonction polynôme et dérivée

Ici, le corps est \mathbb{R} . Alors $\widehat{P}' = \widehat{P}'$.

4 - Racines d'un polynôme

Soit $P \in \mathbf{K}[X]$. $a \in \mathbf{K}$ est racine de $P \Leftrightarrow \Phi(P)(a) = 0 \Leftrightarrow X - a \mid P$ $a \in \mathbf{K}$ est racine de P d'ordre de multiplicité p $\Leftrightarrow (X - a)^p \mid P$ et $\neg (X - a)^{p+1} \mid P$ $\Leftrightarrow P = (X - a)^p \mid Q$ et $\widehat{Q}(a) \neq 0$ $\Leftrightarrow \widehat{P}(a) = 0$ et a racine de a d'ordre a l [demo] $\Rightarrow \widehat{P}(a) = \dots = \widehat{P}(p-1)(a) = 0$ et $\widehat{P}(p)$ (a) $a \neq 0$

5 – Polynômes et fonctions polynômes

Si a est racine de P d'ordre p, alors $p \le d^{\circ}P$ et donc $P \ne 0$. $a \ne b \Rightarrow (X - a) \land (X - b) = 1 \qquad [\sim d]$ Un polynôme non nul ne peut avoir plus de racines que son degré. Si **K** est infini, alors Φ est injective.

IV Etude de $\mathbb{R}[X]$ et de $\mathbb{C}[X]$

1 – Corps algébriquement clos

 $P \in \mathbf{K}[X] \setminus \mathbf{K}$ est scindé sur \mathbf{K} si $\exists \lambda \in \mathbf{K}^*, \exists (a_1, ..., a_p) \in \mathbf{K}^p[X], \exists (\alpha_1, ..., \alpha_p) \in \mathbb{N}^p, P = \Pi (X - a_j)^{\alpha_j}$. Ces 3 propositions sont équivalentes :

- 1. $\forall P \in \mathbf{K}[X] \setminus \mathbf{K}$, P est scindé.
- 2. $\forall P \in \mathbf{K}[X] \setminus \mathbf{K}, \exists a \in \mathbf{K}, \hat{P}(a) = 0.$ [demo: $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$]
- 3. $\forall P \in \mathbf{K}[X] \setminus \mathbf{K}, d^{\circ}P = 1 \Leftrightarrow P \text{ est irréductible}$

Un tel corps est dit algébriquement clos.

2 – Etude de $\mathbb{C}[X]$

Théorème fondamental de l'algèbre (ou théorème de d'Alembert – Gauss) : ℂ est algébriquement clos. [TD]

3 – Etude de $\mathbb{R}[X]$

On définit l'application : $\mathbb{C}[X] \to \mathbb{C}[X]$, $A \to \bar{A}$. C'est un endomorphisme d'algèbre. [\sim demo] $\forall A \in \mathbb{C}[X]$, $A \in \mathbb{R}[X] \Leftrightarrow A = \bar{A}$. Si $a \in \mathbb{C}$ est racine de A d'ordre, \bar{a} est racine de \bar{A} d'ordre k. [\sim demo]

 \forall P \in R[X] \ R, P est scindé sur C. Si b \in C \ R est racine de P d'ordre k, alors \bar{b} l'est aussi.

Les polynômes irréductibles de $\mathbb{R}[X]$ sont donc de 2 types :

- Les polynômes de degré 1
- Les polynômes de degré 2 avec des racines complexes conjuguées

Tout polynôme de degré ≥ 2 est donc réductible.

Ex: $\dot{X}^4 + \dot{X}^2 + 1 = (\dot{X}^2 + 1)^2 - \dot{X}^2 = (\dot{X}^2 + \dot{X} + 1)(\dot{X}^2 - \dot{X} + 1)$ (+ autre méthode plus générale)

4 – Divisibilité et racines

Soient $(P, Q) \in \mathbf{K}^2[X]$. $P \mid Q \Rightarrow \forall$ a racine de P d'ordre k, a est racine de Q d'ordre \geq k. Réciproque : Fausse dans le cas général (ex : $(X^2 + 1)(X - 1)$ et $(X^2 + 2)(X - 1)$)

Si **K** est algébriquement clos, elle est vraie :

 \forall (P, Q) \in **K** 2 [X], P | Q \Leftrightarrow \forall a racine de P d'ordre k, a est racine de Q d'ordre \geq k

[EXOS 17] \forall **K** corps, \exists $\hat{\mathbf{K}}$ corps appelé clôture algébrique de **K**, $\mathbf{K} \subset \hat{\mathbf{K}}$, \forall $P \in \mathbf{K}[X]$, P est scindé dans $\hat{\mathbf{K}}[X]$. \rightarrow Nouvelle construction de \mathbb{C} . $P = X^2 + 1 \in \mathbb{R}[X]$. On note $\mathbb{C} = \mathbb{R}[X]/(P)$. $\bar{\mathbf{X}}$ est noté i.

V Equations algébriques

1 – Définition, Racines

Equation algébrique = équation de la forme $\hat{P}(x) = 0$, où $P \in \mathbb{C}[X]$ et $x \in \mathbb{C}$. Si $d^{\circ}P = n \ge 1$, P(x) = 0 (notation simplifiée) a n racines, comptées avec leurs ordres de multiplicité.

2 – Relations entre racines et coefficients d'une équation algébrique

Etude rapide des cas où $d^{\circ}P = 2$ et $d^{\circ}P = 3$.

Soient $P = a_0 + a_1X + a_2X^2 + ... + a_nX^n \in \mathbb{C}[X]$, où $d^{\circ}P = n \ge 1$, et $x_1, ..., x_n$: les n racines de P.

En notant $\sigma_k = \sum_{1 \le i_1 < ... < i_k \le n} x_{i_1} x_{i_2} ... x_{i_k}$, (appelées <u>fonctions symétriques élémentaires</u> des racines de l'équation), on $a \ \forall \ k \in \mathbb{N}_n$, $\sigma_k = (-1)^k a_{n-k} / a_n$. [DEMO par récurrence sur $n = d^\circ P$ – utilisation de D'Alembert–Gauss] $\sigma_1 = \Sigma x_i$ $\sigma_n = \Pi x_i$.

3 - Fonctions symétriques des racines d'une équation algébrique

Soit $Q(x_1,...,x_n)$ une expression polynômiale en $x_1,...,x_n$ symétrique (inchangée si on réalise une permutation de x_i avec x_j) alors il existe une autre expression polynômiale R, telle que $Q(x_1,...,x_n)=R(\sigma_1,...,\sigma_n)$

VERIFICATION:

$$\begin{array}{ll} d^oP = 2 & S_p = x_1{}^p + x_2{}^p \left[\begin{array}{ll} r\'{e}currence \end{array} \right] & x_1{}^p x_2{}^p & x_1{}^q x_2{}^p + x_1{}^p x_2{}^q \\ d^oP = 3 & S_p = x_1{}^p + x_2{}^p + x_3{}^p \left[\begin{array}{ll} r\'{e}cur. \end{array} \right] & T_p = \sum x_1{}^p x_2{}^p \left[\begin{array}{ll} S_p{}^2 = ... \end{array} \right] \\ T_{p,q} = \sum x_1{}^p x_2{}^q . \left[\begin{array}{ll} S_pS_q = ... \end{array} \right] & \sum x_1{}^p x_2{}^q x_3{}^r \left[\begin{array}{ll} factorisation \end{array} \right] \end{array}$$

Notation : Somme indéterminée Σ A = somme de tous les termes contenant A et les autres impliqués par la symétrie.

On a: $(\Sigma x_1)^2 = \Sigma x_1^2 + 2 \Sigma x_1 x_2$, $(\Sigma x_1)^3 = \Sigma x_1^3 + 3 \Sigma x_1^2 x_2 + 6 \Sigma x_1 x_2 x_3$.

Exemples: Si x_1 , x_2 , x_3 , x_4 sont les 4 racines de $X^4 - X^2 + X - 2$, calculer $S = \sum x_1^2 x_2^3 x_3$. (dur) Si x_1 , x_2 , x_3 sont les racines de $X^3 - 6X^2 + 11X + \lambda$, trouver λ pour que $x_1 - x_2 = 2$. ($\lambda = -6$) Si x_1 , x_2 , x_3 , x_4 sont les 4 racines de $X^4 - X^2 + 2X - 1$, calculer $S = \sum x_1^3 x_2^2$. (S = -2)

Applications:

- Factorisation de $x^4 + x^3 + x^2 + x + 1 = 0$ de 2 manières (Racines 5^{ièmes} de l'unité, et changement de variable y = x + 1/x), qui permet de déduire que $\cos(2\pi/5) = (\sqrt{5} 1)/4 \Rightarrow$ Construction d'un pentagone régulier.
- Résolution de l'équation de degré trois : $ax^3 + bx^2 + cx + d = 0$, $a \ne 0$. On se ramène par translation à une équation de la forme $x^3 + px + q = 0$.

En appelant x_1 , x_2 , x_3 ses racines, les nombres $\theta_1 = (x_1 + jx_2 + j^2x_3)^3$ et $\theta_2 = (x_1 + j^2x_2 + jx_3)^3$ sont tels que $\theta_1 + \theta_2$ et $\theta_1\theta_2$ sont des expressions symétriques de (x_1, x_2, x_3) . On les exprime en fonction de p et de q:

 $\theta_1\theta_2 = -27p^3 \qquad \qquad \theta_1 + \theta_2 = -27q$

 θ_1 et θ_2 sont donc les racines de $t^2 + 27qt - 27p^3 = 0 \Rightarrow$ on peut les calculer.

On détermine μ_1 et μ_2 des racines cubiques de θ_1 et de θ_2 . On a alors un système linéaire de 3 équations en x_i . D'où : $x_1 = (\mu_1 + \mu_2)/3$ $x_2 = (j^2\mu_1 + j\mu_2)/3$ $x_3 = (j^2\mu_1 + j\mu_2)/3$ (Formules de Cardan)

Pour la résolution dans $\mathbb{R}: \Delta = 4p^3 + 27q^2$.

Si $\Delta > 0$, il n'existe qu'une racine réelle : $(\sqrt[3]{\theta_1} + \sqrt[3]{\theta_2})/3$; les 2 autres sont complexes conjuguées.

Si $\Delta = 0$, il existe 3 racines réelles, dont 2 sont confondues.

Si Δ < 0, il existe 3 racines réelles. (on choisit pour μ_2 le conjugué de μ_1).

• Trisection de l'angle: $\cos(3\varphi) = 4\cos^3(\varphi) - 3\cos(\varphi)$. Pour résoudre $x^3 + px + q = 0$ où $\Delta < 0$, on se ramène par homothétie à une équation de la forme $x^3 - 3x/4 = a/4$; Si $|a| \le 1$, on écrit $a = \cos(3\varphi)$. On a donc 3 solutions, $\cos(\varphi)$, $\cos(\varphi + 2\pi/3)$, et $\cos(\varphi + 4\pi/3)$. Exemple: $x^3 - 3x + 1 = 0$.

Les solutions de $x^3 + px + q = 0$ sont donc $\left\{ \sqrt{\frac{-4p}{3}} \cos \left(\frac{1}{3} \operatorname{Arccos} \left(-4q \left(\frac{-3}{4p} \right)^{\frac{3}{2}} \right) + \frac{2k\pi}{3} \right) / k \in \{0, 1, 2\} \right\}$

VI Fractions rationnelles

K est un corps commutatif

1 – Corps des fractions à une indéterminée sur K

<u>Construction</u>: Dans $K[X] \times K^*[X]$, on définit une addition, une multiplication, une relation:

 $(A, B) \times (C, D) = (AC, BD)$

(A, B) + (C, D) = (AD + BC, BD)

 $(A, B) \Re (C, D) \Leftrightarrow AD = BC$

On démontre que \times est associative, commutative, possède un neutre (1, 1), et est distributive par rapport à +; la loi + est associative, commutative, possède un neutre (0, 1); \Re est une relation d'équivalence compatible avec + et \times . Dans $\mathbf{K}[X] \times \mathbf{K}^*[X]/\Re$, on étend l'addition et la multiplication. On crée un morphisme surjectif de $\mathbf{K}[X] \times \mathbf{K}^*[X]$ vers $\mathbf{K}[X] \times \mathbf{K}^*[X]/\Re$ (qui associe la classe d'équivalence). On définit un opposé, un inverse. $\mathbf{K}[X] \times \mathbf{K}^*[X]/\Re$ est un corps commutatif. Notation : $\mathbf{K}[X] \times \mathbf{K}^*[X]/\Re = \mathbf{K}(X)$. Plongement de $\mathbf{K}[X]$ dans $\mathbf{K}(X)$.

<u>Propriétés</u>:

 $\forall P \in \mathbf{K}(X), \exists I (A, B) \in \mathbf{K}[X] \times \mathbf{K}[X] \setminus \{0\}, A \land B = 1 \text{ et B unitaire}, F = A/B. [\sim d Gauss]$

K(X) est un K-espace vectoriel car K est un sous-corps de K(X): $K \subset K[X] \subset K(X)$.

<u>Degré</u>: Si F = A/B, $d^{\circ}F = d^{\circ}A - d^{\circ}B$ [indep représentant]; $d^{\circ}(F_1F_2) = d^{\circ}F_1 + d^{\circ}F_2$; $d^{\circ}(F_1 + F_2) \le Max \{ d^{\circ}F_1, d^{\circ}F_2 \}$ Racines et pôles: Si F = A/B, $A \land B = 1$, a est racine de F d'ordre α si a est racine de A d'ordre α .

a est pôle de F d'ordre α si a est racine de B d'ordre α . [dépend de K]

<u>Dérivation</u>: Si F = A/B, on définit F' = (A ' B − A B ')/B² [indep représentant]. L'application F → F' est linéaire. \forall (F, G) ∈ $\mathbf{K}^2(X)$, (FG) ' = F' G + F G'. Définition des dérivées successives par récurrence. Formule de Leibniz.

Rem : Soit $P \in K[X]$. Alors $\left(\frac{aP+b}{cP+d}\right)' = \frac{ad-bc}{(cP+d)^2}P'$

<u>Pôles de la dérivée</u>: a est pôle d'ordre α de $F = A/B \Rightarrow$ a est pôle de F' d'ordre $\alpha+1$; a pôle de $F' \Rightarrow$ pôle de F. [\sim d] <u>Fonction rationnelle</u>: L'application $\Phi : F \in K(X) \rightarrow \hat{F} \in \mathcal{F}(K \setminus \{pôles\}, K)$ est injective si K est infini.

2 – Décomposition d'une fraction rationnelle en éléments simples

 \forall F = A/B \in K(X) \ K[X], \exists ! (E, R) \in K²[X], F = E + R/B et d°R < d°B. E est la <u>partie entière</u> de F. [~d]

Si $F = A/B \in \mathbf{K}(X) \setminus \mathbf{K}[X]$, $d \circ F < 0$, $B = B_1 B_2$ où $B_1 \wedge B_2 = 1$, alors $\exists ! (A_1, A_2) \in \mathbf{K}^2[X]$, $F = A_1/B_1 + A_2/B_2$, où $d \circ A_1 < d \circ B_1$ et $d \circ A_2 < d \circ B_2$. [demo existence : Bezout ; unicité]

Si en plus, $A \wedge B = 1$, alors $A_1 \neq 0$, $A_2 \neq 0$, et $A_1 \wedge B_1 = A_2 \wedge B_2 = 1$.

Généralisation : Si $F = A/B = A/(B_1 B_2 \dots B_n)$ où B_1, \dots, B_n sont premiers entre eux 2 à 2 et d°F < 0, alors

 \exists ! $(a_1, ..., a_n) \in \mathbf{K}^n[X], F = \Sigma A_j / B_j \text{ et } \forall j \in \mathbb{N}_n, d^{\circ}A_j < d^{\circ}B_j.$

Si en plus, $A \wedge B = 1$, alors $\forall j \in \mathbb{N}_n$, $A_j \wedge B_j = 1$. [\sim demo par récurrence sur n]

Si $F = A/B \in \mathbf{K}(X) \setminus \mathbf{K}[X], d^{\circ}F < 0, B = C^{n} \text{ alors } \exists ! (A_{0}, ..., A_{n-1}) \in \mathbf{K}^{n}[X],$

 $F = A_{n-1}/C + ... + A_0/C^n$ où $\forall i \in \{0, ..., n-1\}, d^{\circ}A_i < d^{\circ}C$. [demo par divisions euclidiennes; unicité] Si en plus, $A \land B = 1, A_0 \neq 0$. (Analogies avec la formule de Taylor)

Résumé : [Théorie générale de la décomposition] Soit $F = A/B \in K(X) \setminus K[X]$, $A \wedge B = 1$ et B unitaire.

 $B = \Pi(C_j)^{nj}$ où $\forall j \in \mathbb{N}_p$, C_j irréductibles et 2 à 2 distincts et $n_j \in \mathbb{N}^*$.

$$\text{Alors } \exists \ (A_{j,\,k}), F = \sum_{j\,=\,1}^p \sum_{k\,=\,0}^{n_j-\,1} \frac{A_{j,\,k}}{C_j^{n_j-k}} \, \text{où} \ \forall \ j \in \mathbb{N}_p \ , \ \forall \ k \in \ \{0,...,n_j-1\} \, , \ d^\circ A_j,\,_k < d^\circ C_j.$$

3 – Décomposition d'une fraction rationnelle de $\mathbb{C}(X)$

On a ici $C_j = X - a_j$, et $A_{j,k} \in \mathbb{C}$. Si a est un pôle de $F, F = \frac{A}{(X - a^{\alpha})C} = F_a + G$. où a n'est pas pôle de G.

Fa est appelée la <u>partie polaire</u> de F par rapport au pôle a. Elle n'a que a comme pôle.

Partie polaire relative à un pôle simple : $F = \frac{A}{B} = \frac{A}{(X-a)C} = \frac{\lambda}{X-a} + G$. Alors $\lambda = \frac{A(a)}{C(a)} = \frac{A(a)}{B'(a)}$.

Exemple: $1/(X^3 - 1) = 1/3(X-1) + 1/3j^2(X-j) + 1/3j(X-j^2)$.

Partie polaire relative à un pôle multiple : Soit $H=(X-a)^{\alpha}F=A/C=\lambda_0+\lambda_1(X-a)+...+\lambda_{\alpha-1}(X-a)^{\alpha-1}+G(X-a)^{\alpha}$.

Pour trouver λ_k , on dérive H k fois et on l'applique au point a. $\lambda_k = H^{(k)}(a)/k!$

[Taylor]

Exemple: $(X^8 + X^2 + 1)/(X^3(X^2+1)) = X^3 - X + 1/X^3 + 1/2(X-i) + 1/2(X+i)$

4 – Décomposition d'une fraction rationnelle de $\mathbb{R}(X)$

 $d^{\circ}C_{j} = 1$ ou 2. Ex : $1/(X^{3} - 1)$. Notion d'élément simple de $n^{i \text{ème}}$ espèce.

Pour trouver les coefs. d'un élément de 2ème espèce, on le multiplie par F puis on remplace X par une de ses 2 racines complexes. Il vient alors une égalité de 2 complexes, qui permettent de déterminer les 2 coefficients.

Exemple: $(X^4 + 1)/X^2(X^2 - 1)(X^2 + 1)^2 = -1/X^2 - 1/4(X + 1) + 1/4(X - 1) + 1/(X^2 + 1)^2 + 1/2(X^2 + 1)$

(utilisation du fait que l'expression est paire ; développement limité et équivalent à l'infini)

VII Complément : polynômes d'interpolation

1 - Interpolation

On cherche à remplacer une fonction par une fonction polynôme sur un intervalle.

 $\forall \ (\alpha_0,...,\alpha_n) \in \mathbb{R}^{n+1}, \ \forall \ (\beta_0,...,\beta_n) \in \mathbb{R}^{n+1}, \ \exists \ I \ P \in \mathbb{R}_n[X], \ \forall \ i \in \{0,...,n\}, \ \widehat{P}(\alpha_i) = \beta_i.$

[demo : l'application $\mathbb{R}_n[X] \to \mathbb{R}^{n+1}$, $P \to (\hat{P}(\alpha_0), ..., \hat{P}(\alpha_n))$ est un isomorphisme d'espace vectoriel]

 $f_i: P \in \mathbb{R}_n[X] \to \widehat{P}(\alpha_i)$ est une forme linéaire.

 $(f_i)_{0 \le i \le n}$ est une base du dual de $\mathbb{R}_n[X]$. [demo : elle est libre].

On cherche une base de $\mathbb{R}_n[X]$ telle que $(f_i)_{0 \le i \le n}$ soit sa base duale.

On notant
$$Q_i = \frac{\displaystyle\prod_{\substack{j=0 \ j \neq i}}^n X - \alpha_j}{\displaystyle\prod_{\substack{j=0 \ j \neq i}}^n \alpha_i - \alpha_j}$$
, la famille $(Q_i)_{0 \leq i \leq n}$ est bien la base cherchée.

On a alors $P = \sum_{i=0}^{n} \beta_i Q_i$: polynôme d'interpolation de Lagrange.

2 - Evaluation de l'erreur

On étudie l'application $g_x : t \in [a, b] \to f(t) - \hat{P}(t) - \lambda \hat{N}_n(t)$ où $N_n = \Pi(X - \alpha_i)$.

et où λ est choisi tel que $g_x(x) = 0$. g_x s'annule donc en n+2 points ; $g_x^{(n+1)}$ s'annule donc en un point. Il vient :

$$|f(x) - \hat{P}(x)| \le \frac{Max |\hat{N}_n[a,b]| Max |f^{(n+1)}[a,b]|}{(n+1)!}$$

3 – Optimisation des abscisses (α_i)

Le meilleur choix des abscisses α_i est donné par les racines des polynômes de Tchebychev $T_n(x) = \cos(n \operatorname{Arccos}(x))$ [EXOS 18 + TD INFO 7]

14 – Calcul de primitives et d'intégrales

I Fonction polynômiale en sin(x) et cos(x)

 $F = \int \sin^p x \cos^q x \, dx$

<u>Si p ou q est impair</u>: Supposons $q = 2q' + 1 \rightarrow F = \int \sin^p x (\cos^2 x)^{q'} \cos x dx = \int u^p (1-u^2)^{q'} du$ où $u = \sin(u)$

Exemple: $\int \sin^2 x \cos^3 x \, dx = \sin^3 x/3 - \sin^5 x/5 + c^{te}$.

Si p et q sont pairs : p = 2p' et q = 2q'. Supposons $p' \ge q'$. $F = \int (\sin x \cos x)^{2q'} \sin^{2(p'-q)} x \, dx$; on linéarise et on se ramène au cas précédent. Exemple : $\int \sin^2 x \cos^4 x \, dx = x/16 - \sin(4x)/64 + \sin^3(2x)/48 + c^{te}$.

II Fonction rationnelle

$$\frac{\text{Eléments simples de 1 ere espèce}}{\left(1-k\right)^k}: \int \frac{dx}{\left(x-a\right)^k} = \begin{cases} \ln\left|x-a\right| + e^{te} & (k=1)\\ \frac{1}{(1-k)(x-a)^{k-1}} + e^{te} & (k>1) \end{cases}$$

<u>Eléments simples de 2ème espèce</u>: Mettre le dénominateur sous la forme canonique $((x-p)^2+q^2)^k$; faire apparaître la dérivée du dénominateur au numérateur, ce qui fait apparaître un terme facilement intégrable plus un terme de la forme $\int \frac{dx}{((x-p)^2+q^2)^k}$. Si k=1, on reconnaît la dérivée d'Arctan; sinon, on pose $x-p=qtan\phi$. Le changement de

variable permet de se ramener à calculer un terme du type∫cos^ax dx.

Ex:
$$\int \frac{x+1}{(x^2+x+1)^3} dx = \frac{-1}{4(x^2+x+1)^2} + \frac{2\sqrt{3}}{9} \arctan\left(\frac{2x+1}{\sqrt{3}}\right) + \frac{2}{9} \frac{2x+1}{x^2+x+1} - \frac{1}{12} \frac{(2x^2+2x-1)(2x+1)}{(x^2+x+1)^2} + c^{te}$$
[on se sert des formules en $\tan(t/2)$]

En posant $I_k = \int \frac{dx}{((x-n)^2+\alpha^2)^{k_2}}$ on peut établir une relation de récurrence entre I_k et I_{k-1} . (IPP)

III Fonction rationnelle de sin(x) et cos(x)

 $F = \int R(\sin x, \cos x) dx$. Problème de définition de la primitive \rightarrow choix d'un intervalle.

<u>Changement de variable</u>: $t = tan(\frac{x}{2})$; $dx = \frac{2 dt}{1 + t^2}$

$$\sin(x) = \frac{2t}{1 + t^2}\cos(x) = \frac{1 - t^2}{1 + t^2}\tan(x) = \frac{2t}{1 - t^2}$$

On se ramène à une fonction rationnell

$$\begin{split} \text{Exemple:} & \qquad \boxed{\int \frac{dx}{\sin(x)} = \ln \left| \tan \left(\frac{x}{2} \right) \right| \, + \, c^{\text{te}}} \boxed{\int \frac{dx}{\cos(x)} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| \, + \, c^{\text{te}}} \, . \\ \text{Ou encore:} & \qquad \int \frac{dx}{\sin(x)} = \ln \left| \frac{1}{\sin(x)} - \cot n(x) \right| \, + \, c^{\text{te}} \int \frac{dx}{\cos(x)} = \ln \left| \frac{1}{\cos(x)} + \tan(x) \right| \, + \, c^{\text{te}}}. \end{split}$$

Ou encore:
$$\int \frac{dx}{\sin(x)} = \ln\left|\frac{1}{\sin(x)} - \cot(x)\right| + c^{te} \int \frac{dx}{\cos(x)} = \ln\left|\frac{1}{\cos(x)} + \tan(x)\right| + c^{te}$$

 $F = \int G(\sin(x)) \cos(x) dx = \int G(u) du$ Cas particuliers: $F = \int G(\cos(x)) \sin(x) dx = -\int G(u) du$ u = cos(x)

$$F = \int G(\tan(x)) dx = \int \frac{G(u) du}{1 + u^2} \qquad u = \tan(x) \qquad x \to \pi + 2$$

Lorsque l'expression sous l'intégrale est inchangée par l'une des 3 substitutions de x (ne pas oublier dx), on pourra faire un changement de variable qui permettra de calculer l'intégrale. [ADMIS]

Exemple: $\int \sin^3 x \, dx / (1 + \cos^3 x) = \frac{1}{2} \ln(u^2 - u + 1) - \arctan((2u - 1)/\sqrt{3})/\sqrt{3} + c^{\text{te}} \circ u = \cos(x)$

IV Fraction rationnelle en sh(x) et ch(x)

1 - Polynôme en sh(x) et ch(x)

 $F = \int sh^p x ch^q x dx$

Si p ou q est impair: Supposons $q = 2q' + 1 \rightarrow F = \int sh^p x (ch^2 x)^{q'} chx dx = \int u^p (1+u^2)^{q'} du$ où u = sh(u)Si p et q sont pairs: p = 2p' et q = 2q'. Supposons $p' \ge q'$. $F = \int (shx chx)^{2q'} sh^{2(p'-q')}x dx$; on linéarise et on se ramène au cas précédent. shx chx = sh(2x)/2; $sh^2x = (ch(2x) - 1)/2$.

2 – Fraction rationnelle en sh(x) et ch(x)

 $F = \int R(shx, chx) dx$. Problème de définition de la primitive \rightarrow choix d'un intervalle.

Changement de variable: t = th(x/2); $dx = 2dt/(1 - t^2)$ $shx = \frac{2t}{1 - t^2} chx = \frac{1 + t^2}{1 - t^2} thx = \frac{2t}{1 + t^2}$ $\operatorname{Ex}: \int \frac{dx}{\sinh x} = \ln \left| \operatorname{th}\left(\frac{x}{2}\right) \right| + \operatorname{cte} \int \frac{dx}{\cosh x} = 2 \operatorname{Arctan} \operatorname{th}\left(\frac{x}{2}\right) + \operatorname{cte}$ Autre changement de variable : $u = e^x$; dx = du/u $shx = \frac{u^2 - 1}{2u}chx = \frac{u^2 + 1}{2u}thx = \frac{u^2 - 1}{u^2 + 1}$

 $\text{Exemple}: \int\!\frac{dx}{sh^3x+ch^3x-1} = -\frac{2}{3(u-1)} - \frac{4}{9} \ln\!\left|u-1\right| + \frac{2}{9} \ln(u^2+2u+3) - \frac{5\sqrt{2}}{9} \, Arc \tan\!\left(\frac{u+1}{\sqrt{2}}\right) + c^{te}$

 $F = \int G(sh(x)) ch(x) dx = \int G(u) du$ Cas particuliers: u = sh(x)

 $F = \int G(ch(x)) sh(x) dx = \int G(u) du$ u = ch(x)(pas de méthode pour $F = \int G(th(x)) dx = \int F(u) du / (1 - u^2)$ u = th(x)prévoir)

V Primitives du produit d'un polynôme et d'une exponentielle

 $\int e^{\lambda_x} P(x) dx = e^{\lambda_x} Q(x) + c^{te} ou d^{\circ} P = d^{\circ} Q$ [demo facile par récurrence] \rightarrow Pour trouver Q, il suffit de dériver e^{λ_x} Q(x) puis d'identifier. $ex: \int x^2 \sin x \, dx = -x^2 \cos x + 2 x \sin x + 2 \cos x + c^{te}.$

VI Intégrales abéliennes attachées à une courbe unicursale

1 – Courbe unicursale

<u>Courbe unicursale</u> = Courbe paramétrée : x = R(t) et y = S(t) où R et S sont des fonctions rationnelles.

2 – Intégrale abélienne

Intégrale abélienne = $\int F(x,y(x)) dx$ où (x,y(x)) sont les coordonnées d'un point qui décrit une courbe unicursale. On peut alors calculer l'intégrale : $\int F(x,y(x)) dx = \int F(R(t),S(t)) R'(t) dt$.

3 – Intégrale homographique par rapport à
$$x: \int F\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx$$

On pose $y = \sqrt[n]{\frac{ax+b}{cx+d}} \Rightarrow x = \frac{dy^n - b}{-cy^n + a}$: c'est bien une primitive abélienne.

$$\int F\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx = \int F\left(\frac{dy^n-b}{-cy^n+a}, y\right) \frac{ad-bc}{(-cy^n+a)^2} n \ y^{n-1} \ dy. \quad \text{(Ne pas oublier dx)}$$

Exemple:
$$\int \sqrt{\frac{1+x}{1-x}} \frac{dx}{x^2} = -\frac{1}{y-1} - \frac{1}{y+1} + \ln \left| \frac{y-1}{y+1} \right| + c^{\text{te}}$$

4 – Intégrale du type $\int F(x, \sqrt{ax^2 + bx + c}) dx$

On a $y^2 = ax^2 + bx + c$: équation d'une conique. $\Delta = b^2 - 4$ ac. $y^2 - a(x + b/2a)^2 = \Delta/-4a$.

$$a - 1^{er} cas : a < 0$$

Alors c'est une demi–ellipse. On choisit un paramètre θ tel que

$$x^* = \sin^2\theta$$
 et $y^* = \cos^2\theta$. $\rightarrow \int F(x, \sqrt{(ax^2 + bx + c)}) = \int G(\cos\theta, \sin\theta)$.

x et y peuvent s'exprimer rationnellement en fonction de $tan(\theta/2)$: c'est bien une primitive abélienne.

Exemple: $\int (-2x^2 + 3x + 2)^{-3/2} dx = (2/25)(4x - 3)/\sqrt{(-2x^2 + 3x + 2)} + c^{te}$.

 $\underline{\text{Si }\Delta \leq 0}$: L'intégrale ne peut être définie sur un intervalle.

$b-2^{\text{ème}}$ cas: a>0

On aboutit à l'équation d'une demi-hyperbole. Suivant le signe de Δ , on choisit un paramètre θ tel que