CAP 4630 – Logistic Regression

Instructor: Aakash Kumar

University of Central Florida

Logistic Regression

Introduction:

- Logistic regression is a supervised learning algorithm used for binary classification tasks.
- It predicts the probability of a binary outcome (0 or 1) based on input features.

Examples of Classification:

- Email: Spam / Not Spam?
- Online Transactions: Fraudulent (Yes / No)?
- Tumor: Malignant / Benign?

Binary Outcomes:

- Class 0: Negative Class (e.g., benign tumor)
- Class 1: Positive Class (e.g., malignant tumor)

Threshold for Prediction:

- Logistic regression uses a threshold (commonly 0.5):
 - If the probability >0.5, predict "1"
 - Otherwise, predict "0"

Comparison Between Linear and Logistic Regression

Linear Regression:

- Used when the dependent variable is continuous (e.g., predicting house prices or temperatures).
- Fits a straight line to the data to predict a continuous outcome.

Logistic Regression:

- Used when the dependent variable is binary (e.g., spam detection, tumor classification).
- Predicts probabilities of outcomes (0 or 1) using the logistic function.

Linear Regression

Hypothesis Function

$$y = heta_0 + heta_1 \cdot x$$

Cost Function

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight)^2$$

Optimization/Gradient Descent (values of parameters)

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta_0, heta_1)$$

Comparison Between Linear and Logistic Regression

- The threshold is set at 0.5:
 - If h(x)>0.5, predict the tumor is **malignant (1)**.
 - If h(x) < 0.5, predict the tumor is **benign (0)**.

Comparison Between Linear and Logistic Regression

- The **blue line** represents the original threshold (0.5), while the **yellow line** shows the new threshold, which is 0.2.
- To maintain accurate predictions, we had to lower the threshold.
- This demonstrates that linear regression is highly sensitive to outliers.
- ightharpoonup Now, the model predicts correctly only when h(x)>0.2.

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \ge 0.5$$
 , predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
 , predict "y = 0"

Classification: y = 0 or 1

 $h_{\theta}(x)$ can be > 1 or < 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Sigmoid Function

- The sigmoid function is a key element in logistic regression and neural networks. It transforms input values (z) into outputs that lie between 0 and 1, making it useful for binary classification tasks.
- The formula for the sigmoid function is:

$$\sigma(z) = rac{1}{1+e^{-z}}$$

Where:

- z is the input to the function, often representing a linear combination of inputs (e.g., $z=\theta^TX$ in logistic regression).
- \bullet *e* is the base of the natural logarithm.

Behavior:

- When $z \to +\infty$, $\sigma(z) \to 1$.
- When $z o -\infty$, $\sigma(z) o 0$.
- When z = 0, $\sigma(z) = 0.5$.

Hypothesis Function for Logistic Regression

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = \theta^T x$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Hypothesis Function

$$h_{ heta}(x)=rac{1}{1+e^{-(heta_0+ heta_1x)}}$$

- θ_0 is the intercept (bias term).
- θ_1 is the weight for the feature x.
- The term $\theta_0 + \theta_1 x$ is the linear combination of the parameters and the input feature.
- The sigmoid function $\frac{1}{1+e^{-z}}$, where $z=\theta_0+\theta_1x$, transforms the output of the linear function into a value between 0 and 1, which can be interpreted as a probability.

Decision Boundries

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

Non-linear Decision Boundries

Cost Function

- In linear regression, we use the Mean squared error which was the difference between y_predicted and y_actual and this is derived from the maximum likelihood estimator.
- The graph of the cost function in linear regression is like this:

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight)^2$$

Cost Function in Logistic Regression

- In logistic regression \hat{Y} is a non-linear function ($\hat{Y}=1/1+e^{-z}$).
- If we use this in the above MSE equation, then it will give a non-convex graph with many local minima as shown:

Cost Function in Logistic Regression

- The problem here is that this cost function will give results with local minima, which is a big problem because then we'll miss out on our global minima and our error will increase.
- In order to solve this problem, we derive a different cost function for logistic regression called log loss which is also derived from the maximum likelihood estimation method.

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or 1 always

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat{

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(simultaneously update all $heta_j$)

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

```
Repeat \{ \theta_j := \theta_j - \alpha \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \} (simultaneously update all \theta_j)
```

Algorithm looks identical to linear regression!

Multi-class classification:

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest):

Comparison Between Linear and Logistic Regression

Linear Regression

Predicts a **continuous** dependent variable using independent variables.

Solves regression problems.

Uses the **Least Squares** estimation method for accuracy.

Fits a **straight line** (best-fit line) to predict the output.

Requires a **linear relationship** between the dependent and independent variables.

Logistic Regression

Predicts a **categorical** (binary) dependent variable using independent variables.

Solves classification problems.

Uses the **Maximum Likelihood** estimation method for accuracy

Fits an **S-curve** (logistic function) to classify the samples.

Does **not require** a linear relationship between dependent and independent variables.

References

- https://realpython.com/logistic-regression-python/
- https://www.analyticsvidhya.com/blog/2021/08/conceptualunderstanding-of-logistic-regression-for-data-science-beginners/