Problem 1. The random vector $(X, Y, Z)^T$ has distribution $\mathcal{N}\left(\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2&-2&0\\-2&3&0\\0&0&4 \end{pmatrix}\right)$. Are there constants a, b, c such that the random variable X+Y+aZ+3 is independent of the random vector $(X+2Z+4, X-bY+Z+c)^T$? If so, determine these constants.

Problem 2. The random vector (X,Y) has the normal disribution with the parameters EX=0=EY=0, $D^2X=D^2Y=1$ and $Cov(X,Y)=\rho\in[-1,1]$. Calculate $D^2(XY)$ and $Cov(X^2,Y^2)$.

Problem 3. Let $(X_1, X_2, ..., X_{16})$ and $(Y_1, Y_2, ..., Y_{25})$ be two independent simple samples from the same normal distribution with the unknown expectation μ and the known variance σ^2 Separately, based on random samples $X_1, X_2, ..., X_{16}$ and $Y_1, Y_2, ..., Y_{25}$, two confidence intervals were built for the expected value μ , each at the confidence level of 0.8. Calculate the probability that the intervals constructed in this way turn out to be disjoint.

Problem 4. We have two independent observations X_1 and X_2 from the normal distribution. One of them has the distribution with the parameters (μ, σ^2) , and the other one with the parameters $(2\mu, 2\sigma^2)$. Unfortunately, we have lost information about which observation comes from which distribution. Parameters are unknown. In this situation we consider the following estimator $\hat{\sigma}^2$ of the parameter σ^2 :

 $\hat{\sigma}^2 = a(X_1 - X_2)^2 + b(X_1 + X_2)^2$, where a and b are real numbers. Find a and b if the estimator $\hat{\sigma}^2$ is unbiased.

Problem 5. We assume that (X_1, X_2, \dots, X_n) is a simple sample from the normal distribution $\mathcal{N}(\mu, \gamma^2 \mu^2)$, where $\gamma^2 > 0$ is known and $\mu \in \mathbb{R}$ is unknown. Find an estimator of μ of the form $\hat{\mu} = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$ that would have the smallest mean squared error $E(\hat{\mu} - \mu)^2$ among such estimators.

Problem 1. The random vector $(X, Y, Z)^T$ has distribution $\mathcal{N}\left(\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2&-2&0\\-2&3&0\\0&0&4 \end{pmatrix}\right)$. Are there constants a, b, c such that the random variable X+Y+aZ+3 is independent of the random vector $(X+2Z+4, X-bY+Z+c)^T$? If so, determine these constants.

$$\begin{pmatrix} k^{3} \\ k^{3} \end{pmatrix} = \begin{pmatrix} v & 0 & 5 \\ v & v & 0 \end{pmatrix} \begin{pmatrix} f \\ f \\ \chi \end{pmatrix} + \begin{pmatrix} f \\ J \end{pmatrix} & m > M$$

$$K = \begin{pmatrix} k^{3} \\ k^{5} \end{pmatrix} = \begin{pmatrix} E - p + f + 5 + C \\ \chi + 5 + \mu \end{pmatrix}$$

$$\text{ret} \quad k^{4} = \chi + f + 0.5 + 3 + 2 + \mu$$

\$1 ind. from K (₹2) = COV (\$1, ₹2) = 0

=
$$AOUCKI + COA(X'X) + 50 + AOUCSJ = 5 - 5 + 80 = 0 => 0 = 0$$

 $COA(X'X) + 5COA(X'S) + COA(X'X) + 5COA(X'S) + 0COA(S'X) + 50COA(S'S)$
 $COA((X'X') = COA(X'X + 40S + 3) \times 45S + A) = 0$

$$AACEJ+(1-p)(OA(X'E)-PAACEJ+VAOR(SJ=5-5(N-P)-3P=$$

Problem 2. The random vector (X,Y) has the normal disribution with the parameters EX = 0 = EY = 0, $D^2X = D^2Y = 1$ and $Cov(X,Y) = \rho \in [-1,1]$. Calculate $D^2(XY)$ and $Cov(X^2,Y^2)$.

$$\text{ (et } S = \begin{pmatrix} X \\ X \end{pmatrix} \text{ min } \mathcal{N} \left(h = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ A = \begin{pmatrix} 1 & b \\ b & 1 \end{pmatrix} \right)$$

ME know NOW (X3 = ECX3 - ECX3 , ON (X1X) = ECX47 - ECX3 ECX3

** For ECXIT?], 164,2 Storgarise

We know 2m3)(h,A) => Z= LK+ h, where A=LLT, Km>)(0,I)

$$\Gamma\Gamma = \begin{pmatrix} \sigma & \rho \\ c & \rho \end{pmatrix} \begin{pmatrix} \sigma & c \\ \rho & \rho \end{pmatrix} = \begin{pmatrix} \sigma_1 + \rho_2 & \sigma_2 + \rho_3 \\ \sigma_2 + \rho_3 & \sigma_3 + \rho_4 \end{pmatrix} = \begin{pmatrix} \sigma_1 & \rho \\ \rho_1 & \rho \end{pmatrix} \Rightarrow \rho$$

$$7 = \begin{pmatrix} X \\ T \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ P & \sqrt{1 - P^2} \end{pmatrix} \begin{pmatrix} 1 \\ V \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ PU + \sqrt{1 - P^2} & V \end{pmatrix}$$

ECX, I,] = ECO, (b0 + 1/2 1)] = E(bn, + (1-b,) n, + 1/2 = -b, 3b+1

$$E \left[\int_{0.5}^{1.5} \int_{0.5}^{1.5} = E\left[\int_{0.5}^{1.5} \right] E\left[\int_{0.5}^{1.5} \left[\int_{0.5}^{1.5} \int_{0.5}^{1.5} \right] = 1$$

$$E \left[\int_{0.5}^{1.5} \int_{0.5}^{1.5} = \frac{1}{4 \cdot 3 \cdot 5} \right] = \frac{1}{4 \cdot 3 \cdot 5} = 3$$

$$E \left[\int_{0.5}^{1.5} \int_{0.5}^{1.5} \left[\int_{0.5}^{1.5} \int_{0.5}^{1$$

$$E(f_{-0})_{3} = E(f_{-0})_{3} = E(f_{-\mu^{2}})_{3} = A(f_{-\mu^{2}})_{3} = A(f_{-\mu^{2}})_{4} = A(f_{-\mu^{2}}$$

Problem 3. Let $(X_1, X_2, \ldots, X_{16})$ and $(Y_1, Y_2, \ldots, Y_{25})$ be two independent simple samples from the same normal distribution with the unknown expectation μ and the known variance σ^2 Separately, based on random samples X_1, X_2, \ldots, X_{16} and Y_1, Y_2, \ldots, Y_{25} , two confidence intervals were built for the expected value μ , each at the confidence level of 0.8. Calculate the probability that the intervals constructed in this way turn out to be disjoint.

We know
$$\mathbb{R}_{1} \cdot \mathbb{R}_{10} \cdot \mathbb{R}_{10} \cdot \mathbb{R}_{10} \cdot \mathbb{R}_{10} \cdot \mathbb{R}_{10} \cdot \mathbb{R}_{10} = 0$$

Considence revel = $0.8 = 1 - 1 \Rightarrow 0 = 0.2$

We are take the symmetric antiplance intervals for $\mathbb{R}_{10} = \mathbb{R}_{10} = \mathbb{R}_$

Problem 4. We have two independent observations X_1 and X_2 from the normal distribution. One of them has the distribution with the parameters (μ, σ^2) , and the other one with the parameters $(2\mu, 2\sigma^2)$. Unfortunately, we have lost information about which observation comes from which distribution. Parameters are unknown. In this situation we consider the following estimator $\hat{\sigma}^2$ of the parameter σ^2 :

 $\hat{\sigma}^2 = a(X_1 - X_2)^2 + b(X_1 + X_2)^2$, where a and b are real numbers. Find a and b if the estimator $\hat{\sigma}^2$ is unbiased.

Problem 5. We assume that (X_1, X_2, \dots, X_n) is a simple sample from the normal distribution $\mathcal{N}(\mu, \gamma^2 \mu^2)$, where $\gamma^2 > 0$ is known and $\mu \in \mathbb{R}$ is unknown. Find an estimator of μ of the form $\hat{\mu} = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$ that would have the smallest mean squared error $E(\hat{\mu} - \mu)^2$ among such estimators.

$$E[(\mu^{2}-\mu)^{2}] = \text{Ray } [\mu^{2}+1] + E[\mu^{2}] = \frac{1}{2} \frac{$$