

SUN WATCHER

SAVE THE EARTH FROM ANOTHER CARRINGTON EVENT!

Demo for the 2022 edition of the Space Apps Challenge

SOLAR*CODERS

Romain Garrigou Armand Garrigou Maha Belrhazi Jeanne Bourgeois Olivier Laurent

CHALLENGE

SAVING THE EARTH FROM ANOTHER CARRINGTON EVENT

Mission: process WIND and DSCOVER satelites datas, find correspondences and to create an AI tha would predict WIND datas and to make them easily readable and accessible to everyone!

PROCESSING DATA

TRANSFORMING RAW MEASUREMENTS INTO USABLE DATA

- 1. Collect data from the NASA website
- 2. Preprocess magnetic data: track down error values and adjust measurement frequencies through interpolation
- 3. Use Dynamic Time Warping on magnetic series

```
import matplotlib.pyplot as plt
10 def preprocess():
        mag_path = "C:\\Users\\garri\\Desktop\\programming\\spaceapp-challenge\\mag\\"
        mag_data_files = os.listdir(mag_path)
        mag data = []
        mag_time = []
        for file_path in mag_data_files:
            file_path = mag_path + file_path
            with open(file_path, 'rb') as f:
                mag = xarray.Dataset(pickle.load(f))
                time = mag["B1GSE"]["Epoch1"].data
                BGSE = mag["B1GSE"].data
                mag_data.append(BGSE)
                mag_time.append(time)
        mag_data = np.stack(mag_data).reshape(-1, 3)
        mag_data = np.where(mag_data > -1e5, mag_data, np.nan)
        mag_time = np.stack(mag_time).flatten()
        mfi_path = "C:\\Users\\garri\\Desktop\\programming\\spaceapp-challenge\\mfi\\"
        mfi_data_files = os.listdir(mfi_path)
        mfi_data = []
        mfi_time = []
        for file_path in mfi_data_files:
            file_path = mfi_path + file_path
            with open(file_path, 'rb') as f:
                mfi = xarray.Dataset(pickle.load(f))
                time = xarray.core.utils.Frozen(mfi["BGSE"].indexes.variables).mapping.mapping["Epoch"].data
                BGSE = mfi["BGSE"].data
                mfi_data.append(BGSE)
                mfi_time.append(time)
        mfi_data = np.concatenate(mfi_data, axis=0).reshape(-1, 3)
        mfi_data = np.where(mfi_data > -1e5, mfi_data, np.nan)
        mfi time = np.concatenate(mfi time, axis=0).flatten()
```

MACHINE LEARNING

TRAINING AN AITO PREDICT WIND'S DATA FROM DSCOVER'S

A pytorch neural network

- Inputs from DSCOVR, targets from WIND
- Determine mesures quality and uncertainty using expected quantiles
- If necessary, use deep ensembles

```
import torch.nn as nn
import torch.nn.functional as F

class STD(nn.Module):
    def __init__(self, n_features: int, hidden_units: int, distributional: bool):
        super(STD, self).__init__()
        self.n_features = n_features
        self.hidden_units = hidden_units

        self.input_layer = nn.Linear(n_features, hidden_units)

    # predict value and variance
        self.hidden_layer = nn.Linear(hidden_units, 2 if distributional else 0)

    def forward(self, x):
        out = F.relu(self.input_layer(x))
        return self.hidden_layer(out)

def MLP_STD(n_features: int, hidden_units: int):
        return STD(n_features=n_features, hidden_units=hidden_units)
```

WEBSITE

MAKING DATA AVAILABLE TO THE PUBLIC

Front page

- A description of our tool
- An interface to get computed data easily

WEBSITE

MAKING DATA AVAILABLE TO THE PUBLIC

A request example:

- See easily what's computed
- An attractive way to show our results to the public

THANKYOU

FOR LETTING US HAVING THAT AMAZING EXPERIENCE AS NASA SCIENTISTS!!