Déployez un modèle dans le cloud

Projet 8: Openclassroom

Plan de la présentation

A. Introduction

- a. Rappel de la problématique
- b. Présentation du jeu de données

B. Présentation de l'architecture AWS

- a. Préparation des données
- b. Amazon EMR
- c. Architecture adoptée
- d. Chaîne de traitement

C. Conclusion

A. Introduction

a. Rappel de la problématique

- Startup Agritech "Fruits" => application pour la sensibilisation à la biodiversité
- Objectif long terme => Robots cueilleurs intelligents
- Quelle évolution pour les données ?
- Quel environnement choisir ?

b. Présentation du jeu de données

Data Explorer

758.39 MB

- ▼ □ fruits-360
 - ▶ □ Test
 - Training
 - papers
 - test-multiple_fruits
 - LICENSE

Data Explorer

758.39 MB

- ▼ □ fruits-360
 - ▶ □ Test
- ▼ ☐ Training
 - ▶ ☐ Apple Braeburn
 - ▶ ☐ Apple Crimson Sn...
 - Apple Golden 1
 - ▶ ☐ Apple Golden 2
 - Apple Golden 3
 - ▶ ☐ Apple Granny Smith
 - ▶ □ Apple Pink Lady
 - ▶ ☐ Apple Red 1
 - Apple Red 2
 - ▶ □ Apple Red 3
 - ▶ ☐ Apple Red Delicious
 - ▶ □ Apple Red Yellow 1
 - ▶ ☐ Apple Red Yellow 2
 - ▶ □ Apricot
 - Avocado
 - Avocado ripe
 - ▶ □ Banana
 - ▶ □ Banana Lady Finger
 - ▶ □ Banana Red

b. Présentation du jeu de données

- Données d'entraînement : 67692
- Données de test : 22688
- Données avec plusieurs fruits / légumes : 103
- 131 classes de fruits / légumes
- Taille des images : 100 * 100 pixels

b. Présentation du jeu de données

B. Présentation de l'architecture AWS

- Comment utiliser les données sur internet depuis le cloud?
 - Base de données
 - Serveur sur le cloud + HDFS
 - o S3
 - Téléchargement à la demande

b. Amazon EMR

b. Amazon EMR

• Intérêts:

- o Simple
- Prix
- o Découplage calcul / stockage
- Ségrégation des serveurs
- Remplacement automatique d'instances
- S3 code propriétaire vs S3a pour EC2

Étape 1 : Logiciels et étapes Étape 2 : Matériel Étape 3 : Paramètres de cluster généraux Étape 4 : Sécurité Cor Libér Libér

Étape 1 : Logiciels et étapes Étape 2 : Matériel Étape 3 : Paramètres de cluster généraux Étape 4 : Sécurité

Configuration de sécurité

TCP personnalisé	TCP	8888	
SSH	TCP	22	

RDD 6

Transformation

Action

Spark DAG RDD 1 RDD 2 RDD 3 Stage

- Avantages Spark :
 - In memory
 - Lazy evaluation
- Inconvénients:
 - Plus cher

Initialisation Spark Context	Dataframe Spark	Extraction des features	Sauvegardes des features	
Bootstraping des installations	Chargement des données dans la	ResNet50 -> Transfert learning	Utilisation du format Parquet	
Utilisation de Jupyter comme Driver Spark	dataframe Spark Struct* -> Image Label	Dataframe avec un vector de features		

SparkContext

Dataframe d'entrée

Extraction des features

• Sauvegarde en format parquet

Conclusion

Conclusion

- Pour aller plus loin :
 - o continuez plus loin sur la modélisation
 - Activer l'auto scaling sur le cluster
 - Utiliser Hadoop au lieu de S3
 - Monitoring
 - Détecter les fruits mûrs, pourris ...
 - Politique de réduction de prix ?