Tentamen eem 076 Elektriska Kretsar och Fält, D

Examinator: Ants R. Silberberg

7 april 2016 kl. 14.00-18.00 , sal: M

Förfrågningar:

Ants Silberberg, ankn. 1808

Lösningar:

Anslås på institutionens anslagstavla, plan 5.

Resultat:

Rapporteras in i Ladok

Granskning:

Måndag 25 april kl. 12.00 - 13.00 , rum 3311.

Plan 3 i ED-huset (Lunnerummet), korridor parallell med Hörsalsvägen.

Bedömning:

En korrekt och välmotiverad lösning med ett tydligt an-

givet svar ger full poäng.

Hjälpmedel

- Typgodkänd miniräknare
- Beta Mathematics Handbook
- Physics Handbook

Betygsgränser (6 uppgifter om vardera 3 poäng).

$Po\ddot{a}ng$	0-7.5	8-11	11.5-14.5	15-18
Betyg	U	3	4	5

Lycka till!

eem 076 2016-04-07

1. Moderkortet till en mikrodator kräver matningsspänningar på -12 V, +5 V och +12 V. Konstruera en enkel krets utifrån figur 1 som kan leverera dessa spänningar. Beräkna resistanserna R_1, R_2 och R_3 så att $U_1 = 12$ V, $U_2 = 5$ V och $U_3 = -12$ V när kretsen är obelastad (moderkortet ej ännu anslutet). För den obelastade kretsen skall effekten som levereras till resistanserna R_1, R_2 och R_3 vara 36 W. Spänningarna U_1, U_2 och U_3 relateras till referensnoden G. E = 24 V.

Figur 1: Krets för spänningsförsörjning

2. Beräkna strömmen $i_C(t)$ genom kapacitansen. Antag sinusformat stationärtillstånd.

Figur 2: Växelströmsnät

$$R = 500 \Omega$$
, $L = 0.50 H$, $C = 1.0 \mu F$, $i(t) = 50 \cos(2000t) \text{ mA}$

eem076 2016-04-07

3. En likströmskrets visas i figur 3. Ta fram Thevenins ekvivalenta tvåpol för kretsen med avseende på polerna a och b.

$$R_1=5.0~{\rm k}\Omega$$
 $R_2=1.0~{\rm k}\Omega$ $R_3=60~{\rm k}\Omega$ $R_4=15~{\rm k}\Omega$ $U_o=30~{\rm V}$

Figur 3: Likströmskrets som tvåpol

- 4. En elektrisk växelströmskrets visas delvis som ett blockschema i figur 4. Antag sinusformat stationärtillstånd där de angivna spänningarna U_A och U_B är $j\omega$ -transformerade.
 - (a) Beräkna den komplexa effekt som utvecklas i block A.
 - (b) Beräkna medeleffekten som utvecklas i block A.
 - (c) Ange om medeleffekt avges eller upptas i block A resp. block B.

$$U_A = 8.0 \angle 120^{\circ} \text{ V}, \quad U_B = 12.0 \angle -90^{\circ} \text{ V}, \quad \omega C = 0.10 \ \Omega^{-1}$$

Figur 4: $j\omega$ -transformerad växelströmskrets

- 5. Studera operationsförstärkarkretsen i figur 5. Antag ideal operationsförstärkare men att dess utsignal endast kan variera mellan ± 9 V. (Begränsas av matningsspänningens storlek).
 - a) Beräkna strömmen i_L för $R_L = 1.0$ k Ω .
 - b) Beräkna strömmen i_L för $R_L = 2.5$ k Ω .
 - c) Beräkna strömmen i_L för $R_L = 6.5$ k Ω .

Figur 5: Operationsförstärkarkrets

- 6. En punktladdning $+q_1$ befinner sig i en punkt i rummet som kan betecknas med \vec{r}_1 eller koordinaterna (x_1, y_1, z_1) . En annan punktladdning $+q_2$ befinner sig i \vec{r}_2 med koordinaterna (x_2, y_2, z_2) .
 - (a) Vilken kraft verkar på $+q_1$? Vad har denna kraft för storlek och riktning?
 - (b) Antag nu att $q_1 = 0.02$ C, $q_2 = 0.01$ C, $\vec{r}_1 = (x_1, y_1, z_1) = (-5, 0, 0)$ och $\vec{r}_2 = (x_2, y_2, z_2) = (3, 0, 0)$. Vad blir storleken och riktningen på kraften på laddning q_2 ? Rita även en figur där du har med koordinataxeln, laddningarna och kraften med riktning. (Längdenhet i meter).