Spirent Communications, Inc.

TEST REPORT FOR

Call Performance and Voice Quality Testing Equipment Model: Nomad UX

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s) 15.207 & 15.249

Report No.: 96898-11

Date of issue: November 10, 2015

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 76 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	
Report Authorization	
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	
Modifications During Testing	
Conditions During Testing	
Equipment Under Test	
FCC Part 15 Subpart C	
15.207 AC Conducted Emissions	
15.215(c) Occupied Bandwidth	21
15.249(a) Field Strength of Fundamental	31
15.249(a)&(d) Radiated Spurious Emissions / Band Edge	39
Supplemental Information	75
Fmissions Test Details	75

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Spirent Communications, Inc.

5280 Corporate Drive, Suite A100

Frederick, MD 21703

CKC Laboratories, Inc.

5046 Sierra Pines Drive

Mariposa, CA 95338

REPRESENTATIVE: Ryan Beach Project Number: 96898

Customer Reference Number: 19894

DATE OF EQUIPMENT RECEIPT: August 19, 2015

DATE(S) OF TESTING: August 19 – September 1, 2015

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve 7 Be

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 76 Report No.: 96898-11

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.02.00
EMITest Immunity	5.02.00

Site Registration & Accreditation Information

Location	CB#	CB # TAIWAN CANADA		FCC	JAPAN	
Bothell	US0081	SL2-IN-E-1145R	3082C-1	318736	A-0148	

Page 4 of 76 Report No.: 96898-11

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

Test Procedure	Description	Modifications	Results
15.207	AC Conducted Emissions	NA	Pass
15.215(c)	Occupied Bandwidth	NA	Pass
15.249(a)	Field Strength of Fundamental	NA	Pass
15.249(a)&(d)	Field Strength of Spurious Emissions and Band Edge	NA	Pass

NA = Not applicable.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary	of	Cond	litions
---------	----	------	---------

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions
None
110110

Page 5 of 76 Report No.: 96898-11

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

zquipilient resteut			
Device	Manufacturer	Model #	S/N
Call Performance and Voice	Spirent Communications, Inc.	Nomad UX	100000E
Quality testing equipment			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Switching Power Supply	Phihong	PSC12R-120	P31704886A1	
Computer	Dell	E5430	6FF1NX1	
Power Supply	Dell	AA90PM111	CN-0MV2MM-70163-15-	
			02NI-A01	
USB2.0 Hub to Fiber Bit-	S.I. Tech	2173	079536	
Driver				
AC Adapter	S.I. Tech	2164	079530	
USB2.0 to Fiber Bit-Driver	S.I. Tech	2172	079535	
AC Adapter	S.I. Tech	2164	079538	
Nomad GPS	Spirent Communications, Inc.	53-004937	NA	

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
Call Performance and Voice	Spirent Communications, Inc.	Nomad UX	100000E
Quality testing equipment			

Support Equipment:

Device	Manufacturer	Model #	S/N
Switching Power Supply	Phihong	PSC12R-120	P31704886A1
Computer	Dell	E5430	6FF1NX1
Nomad GPS	Spirent Communications, Inc.	53-004937	NA

Page 6 of 76 Report No.: 96898-11

FCC PART 15 SUBPART C

15.207 AC Conducted Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)

Customer: Spirent Communications, Inc. Specification: 15.207 AC Mains - Average

Work Order #: 96898 Date: 8/27/2015
Test Type: Conducted Emissions Time: 15:54:22
Tested By: Michael Atkinson Sequence#: 40

Software: EMITest 5.02.00 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.

The EUT is supported on an 80cm table with connections to peripheral devices typical for normal installation. Cables are attached to the 6 audio ports with no termination.

Preliminary testing determined the configuration utilized is representative of worst case.

The laptop computer is located inside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:

Max DC power.

All Radios powered on, radio 1 through 6 transmitting.

Investigated only Radio 1 transmitting.

Revision 1.2 board

Temperature: 23° C Relative Humidity: 35%

Atmospheric Pressure: 102.1kPa

Frequency Range Investigated: 0.15-30MHz Test Procedure: ANSI C63.10 (2013)

> Page 7 of 76 Report No.: 96898-11

Spirent Communications, Inc. WO#: 96898 Sequence#: 40 Date: 8/27/2015 15.207 AC Mains - Average Test Lead: 115V 60Hz Line

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	4/23/2014	4/23/2016
T2	ANP05305	Cable	ETSI-50T	2/20/2014	2/20/2016
T3	ANP06540	Cable	Heliax	11/5/2013	11/5/2015
	AN02872	Spectrum Analyzer	E4440A	11/13/2013	11/13/2015
T4	AN02611	High Pass Filter	HE9615-150K-	3/26/2014	3/26/2016
			50-720B		
	AN01311	50uH LISN-Line1	3816/2	3/4/2014	3/4/2016
		(N)			
T5	AN01311	50uH LISN-Line2 (L)	3816/2	3/4/2014	3/4/2016

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	T5 dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	15.500M	36.8	+10.0	+0.2	+0.0	+0.2	+0.0	47.3	50.0	-2.7	Line
1	13.3001	30.0	+0.1	10.2	10.0	10.2	10.0	T 1.3	30.0	-2.7	Line
2	205.470k	36.8	+10.3 +0.1	+0.0	+0.0	+0.2	+0.0	47.4	53.4	-6.0	Line
3	1.400M	28.6	+10.1	+0.1	+0.0	+0.2	+0.0	39.1	46.0	-6.9	Line
	Ave		+0.1								-
^	1.400M	43.9	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	54.4	46.0	+8.4	Line
5	1.299M Ave	28.4	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	38.9	46.0	-7.1	Line
^	1.299M	44.0	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	54.5	46.0	+8.5	Line
7	403.795k Ave	29.1	+10.3 +0.1	+0.0	+0.0	+0.1	+0.0	39.6	47.8	-8.2	Line
^	403.794k	42.7	+10.3 +0.1	+0.0	+0.0	+0.1	+0.0	53.2	47.8	+5.4	Line
9	1.033M Ave	26.2	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	36.6	46.0	-9.4	Line
^	1.033M	42.6	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	53.0	46.0	+7.0	Line
^	1.035M	42.3	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	52.7	46.0	+6.7	Line
12	596.504k Ave	24.2	+10.3 +0.1	+0.0	+0.0	+0.2	+0.0	34.8	46.0	-11.2	Line
^	596.504k	42.3	+10.3 +0.1	+0.0	+0.0	+0.2	+0.0	52.9	46.0	+6.9	Line
14	3.101M Ave	23.9	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	34.5	46.0	-11.5	Line
^	3.101M	39.2	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	49.8	46.0	+3.8	Line
16	2.101M Ave	23.9	+10.2 +0.1	+0.1	+0.0	+0.1	+0.0	34.4	46.0	-11.6	Line
^	2.101M	40.0	+10.2 +0.1	+0.1	+0.0	+0.1	+0.0	50.5	46.0	+4.5	Line

Page 9 of 76 Report No.: 96898-11

18	2.003M Ave	23.8	+10.2 +0.1	+0.1	+0.0	+0.1	+0.0	34.3	46.0	-11.7	Line
^	2.003M	40.6	+10.2	+0.1	+0.0	+0.1	+0.0	51.1	46.0	+5.1	Line
20	1.203M	23.8	+0.1	+0.1	+0.0	+0.2	+0.0	34.2	46.0	-11.8	Line
	Ave		+0.1								
^	1.203M	40.8	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	51.2	46.0	+5.2	Line
22		23.4	+10.3 +0.1	+0.0	+0.0	+0.2	+0.0	34.0	46.0	-12.0	Line
^	Ave 499.058k	34.5	+10.3	+0.0	+0.0	+0.2	+0.0	45.1	46.0	-0.9	Line
24		23.3	+0.1	+0.1	+0.0	+0.1	+0.0	33.9	46.0	-12.1	Line
	Ave		+0.1								
^	4.900M	34.9	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	45.5	46.0	-0.5	Line
26	2.902M Ave	22.7	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	33.3	46.0	-12.7	Line
٨		39.8	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	50.4	46.0	+4.4	Line
28		22.8	+10.0	+0.1	+0.0	+0.2	+0.0	33.2	46.0	-12.8	Line
٨	1.001M	41.7	+0.1	+0.1	+0.0	+0.2	+0.0	52.1	46.0	+6.1	Line
			+0.1								
30	667.043k Ave	22.4	+10.2 +0.1	+0.0	+0.0	+0.2	+0.0	32.9	46.0	-13.1	Line
^		39.6	+10.2 +0.1	+0.0	+0.0	+0.2	+0.0	50.1	46.0	+4.1	Line
32		22.0	+10.2	+0.1	+0.0	+0.1	+0.0	32.5	46.0	-13.5	Line
^	Ave	20.6	+0.1	10.1	10.0	10.1	10.0	50 1	46.0	₁ A 1	т:
	1.938M	39.6	+10.2 +0.1	+0.1	+0.0	+0.1	+0.0	50.1	46.0	+4.1	Line
34	1.991M Ave	21.7	+10.2 +0.1	+0.1	+0.0	+0.1	+0.0	32.2	46.0	-13.8	Line
٨	1.991M	39.7	+10.2 +0.1	+0.1	+0.0	+0.1	+0.0	50.2	46.0	+4.2	Line
36	1.702M Ave	21.5	+10.2 +0.1	+0.1	+0.0	+0.1	+0.0	32.0	46.0	-14.0	Line
٨	1.702M	41.9	+10.2	+0.1	+0.0	+0.1	+0.0	52.4	46.0	+6.4	Line
38	549.963k	21.4	+0.1 +10.3	+0.0	+0.0	+0.2	+0.0	32.0	46.0	-14.0	Line
^	Ave 549.963k	37.2	+0.1	+0.0	+0.0	+0.2	+0.0	47.8	46.0	+1.8	Line
40		24.8	+0.1	+0.0	+0.0	+0.1	+0.0	35.3	49.4	-14.1	Line
-		24.0	+10.3	±0.0	±0.0	±0.1	±0.0	33.3	47.4	-14.1	Line
٨	Ave 333.255k	37.8	+10.3	+0.0	+0.0	+0.1	+0.0	48.3	49.4	-1.1	Line
42		21.3	+0.1	+0.1	+0.0	+0.1	+0.0	31.9	46.0	-14.1	Line
^	Ave 2.805M	39.8	+0.1 +10.3	+0.1	+0.0	+0.1	+0.0	50.4	46.0	+4.4	Line
			+0.1								

Page 10 of 76 Report No.: 96898-11

44	2.704M Ave	21.1	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	31.7	46.0	-14.3	Line
^	2.704M	39.8	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	50.4	46.0	+4.4	Line
46	9.301M Ave	24.9	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	35.5	50.0	-14.5	Line
٨	9.301M	39.7	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	50.3	50.0	+0.3	Line
48	952.100k Ave	20.8	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	31.2	46.0	-14.8	Line
^	752.100K	40.2	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	50.6	46.0	+4.6	Line
50	735.401k Ave	20.2	+10.2 +0.1	+0.1	+0.0	+0.2	+0.0	30.8	46.0	-15.2	Line
^	735.400k	37.9	+10.2 +0.1	+0.1	+0.0	+0.2	+0.0	48.5	46.0	+2.5	Line
52	1.471M Ave	20.4	+10.1 +0.1	+0.1	+0.0	+0.1	+0.0	30.8	46.0	-15.2	Line
^	1.471M	40.1	+10.1 +0.1	+0.1	+0.0	+0.1	+0.0	50.5	46.0	+4.5	Line
	Ave	20.3	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	30.8	46.0	-15.2	Line
	875.024k	38.3	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	48.8	46.0	+2.8	Line
	1.077M Ave	20.3	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	30.7	46.0	-15.3	Line
^	1.077M	40.7	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	51.1	46.0	+5.1	Line
	900.800k Ave	20.3	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	30.7	46.0	-15.3	Line
^	900.800k	39.6	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	50.0	46.0	+4.0	Line
60	2.605M Ave	20.0	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	30.6	46.0	-15.4	Line
^	2.605M	38.5	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	49.1	46.0	+3.1	Line
	7.499M Ave	23.9	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	34.5	50.0	-15.5	Line
^	7.499M	38.6	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	49.2	50.0	-0.8	Line
64	8.499M Ave	23.7	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	34.3	50.0	-15.7	Line
^	8.499M	38.3	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	48.9	50.0	-1.1	Line

66 830.6	665k 19.7	+10.1	+0.1	+0.0	+0.2	+0.0	30.2	46.0	-15.8	Line
Ave	(6.41 20.1	+0.1	.0.1		.0.2	. 0. 0	40.6	46.0	10.6	T ·
^ 830.6	664k 38.1	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	48.6	46.0	+2.6	Line
^ 831.3	00k 37.8	+10.1	+0.1	+0.0	+0.2	+0.0	48.3	46.0	+2.3	Line
		+0.1								
)3M 23.5	+10.3	+0.1	+0.0	+0.1	+0.0	34.2	50.0	-15.8	Line
Ave	93M 39.2	+0.2	+0.1	+0.0	+0.1	+0.0	49.9	50.0	-0.1	Line
9.10	J31VI 39.2	+0.2	10.1	10.0	10.1	10.0	47.7	30.0	-0.1	Line
71 2.64	15M 19.3	+10.3	+0.1	+0.0	+0.1	+0.0	29.9	46.0	-16.1	Line
Ave		+0.1								
^ 2.64	15M 38.6	+10.3	+0.1	+0.0	+0.1	+0.0	49.2	46.0	+3.2	Line
		+0.1								
73 861.9	000k 18.8	+10.1	+0.1	+0.0	+0.2	+0.0	29.3	46.0	-16.7	Line
^ 861.9	000k 37.7	+0.1	+0.1	+0.0	+0.2	+0.0	48.2	46.0	+2.2	Line
801.9	700K 3/./	+10.1 +0.1	⊤ 0.1	±0.0	±0.∠	±0.0	40.2	40.0	<i>⊤</i> ∠.∠	Line
75 4.60	03M 18.7	+10.3	+0.1	+0.0	+0.1	+0.0	29.3	46.0	-16.7	Line
Ave	70.7	+0.1	0.1	0.0	0.1	0.0	->.5		10.,	2
^ 4.60	33.9	+10.3	+0.1	+0.0	+0.1	+0.0	44.5	46.0	-1.5	Line
		+0.1								
	20M 22.1	+10.3	+0.1	+0.0	+0.1	+0.0	32.7	50.0	-17.3	Line
Ave	20.4	+0.1	+0.1	+0.0	+0.1	+0.0	40.0	70.0	1.0	т.
^ 8.22	20M 38.4	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	49.0	50.0	-1.0	Line
79 7.88	37M 22.0	+10.3	+0.1	+0.0	+0.1	+0.0	32.6	50.0	-17.4	Line
Ave	22.0	+0.1	. 0.1	. 0.0	. 0.1	. 0.0	32.0	20.0	17.1	Line
	38.6	+10.3	+0.1	+0.0	+0.1	+0.0	49.2	50.0	-0.8	Line
		+0.1								
	56M 21.9	+10.3	+0.1	+0.0	+0.1	+0.0	32.5	50.0	-17.5	Line
Ave	20.1	+0.1	.0.1		. 0.1	. 0. 0	40.7	50.0	1.0	т.
^ 8.25	38.1	+10.3	+0.1	+0.0	+0.1	+0.0	48.7	50.0	-1.3	Line
83 2.15	53M 18.0	+0.1	+0.1	+0.0	+0.1	+0.0	28.5	46.0	-17.5	Line
Ave	, J. 10.U	+0.1	0.1	10.0	0.1	10.0	20.3	₹0.0	-17.3	LIIIC
	53M 37.7	+10.2	+0.1	+0.0	+0.1	+0.0	48.2	46.0	+2.2	Line
		+0.1								
85 14.70	00M 21.9	+10.0	+0.2	+0.0	+0.2	+0.0	32.4	50.0	-17.6	Line
Ave		+0.1								
^ 14.70	00M 38.4	+10.0	+0.2	+0.0	+0.2	+0.0	48.9	50.0	-1.1	Line
97 966	07M 21.7	+0.1	±∩ 1	+0.0	+0.1		22.2	50.0	177	Lina
87 8.60 Ave	07M 21.7	+10.3 +0.1	+0.1	±0.0	±0.1	+0.0	32.3	50.0	-17.7	Line
	07M 39.2	+10.3	+0.1	+0.0	+0.1	+0.0	49.8	50.0	-0.2	Line
3.00		+0.1	0.1	0.0	V.1	3.0	.,.0	20.0	v. =	

Line
Line

Page 13 of 76 Report No.: 96898-11

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)

Customer: Spirent Communications, Inc. Specification: 15,207 AC Mains - Average

Work Order #: 96898 Date: 8/27/2015
Test Type: Conducted Emissions Time: 15:30:23
Tested By: Michael Atkinson Sequence#: 39

Software: EMITest 5.02.00 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.

The EUT is supported on an 80cm table with connections to peripheral devices typical for normal installation. Cables are attached to the 6 audio ports with no termination.

Preliminary testing determined the configuration utilized is representative of worst case.

The laptop computer is located inside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:

Max DC power.

All Radios powered on, radio 1 through 6 transmitting.

Investigated only Radio 1 transmitting.

Revision 1.2 board

Temperature: 23° C Relative Humidity: 35%

Atmospheric Pressure: 102.1kPa

Frequency Range Investigated: 0.15-30MHz Test Procedure: ANSI C63.10 (2013)

> Page 14 of 76 Report No.: 96898-11

Spirent Communications, Inc. WO#: 96898 Sequence#: 39 Date: 8/27/2015 15.207 AC Mains - Average Test Lead: 115V 60Hz Neutral

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	4/23/2014	4/23/2016
T2	ANP05305	Cable	ETSI-50T	2/20/2014	2/20/2016
T3	ANP06540	Cable	Heliax	11/5/2013	11/5/2015
	AN02872	Spectrum Analyzer	E4440A	11/13/2013	11/13/2015
T4	AN02611	High Pass Filter	HE9615-150K-	3/26/2014	3/26/2016
			50-720B		
T5	AN01311	50uH LISN-Line1	3816/2	3/4/2014	3/4/2016
		(N)			
	AN01311	50uH LISN-Line2 (L)	3816/2	3/4/2014	3/4/2016

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	$dB\mu V$	dB	Ant
1	278.280k	37.0	+10.3 +0.1	+0.0	+0.0	+0.2	+0.0	47.6	50.9	-3.3	Neutr
2	207.860k	36.1	+10.3 +0.1	+0.0	+0.0	+0.2	+0.0	46.7	53.3	-6.6	Neutr
3	1.301M Ave	19.3	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	29.8	46.0	-16.2	Neutr
٨	1.296M	40.2	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	50.7	46.0	+4.7	Neutr
^	1.307M	39.7	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	50.2	46.0	+4.2	Neutr
6	15.496M Ave	21.7	+10.0 +0.2	+0.2	+0.0	+0.2	+0.0	32.3	50.0	-17.7	Neutr
٨	15.496M	41.1	+10.0 +0.2	+0.2	+0.0	+0.2	+0.0	51.7	50.0	+1.7	Neutr
٨	15.490M	39.3	+10.0 +0.2	+0.2	+0.0	+0.2	+0.0	49.9	50.0	-0.1	Neutr
9	598.686k Ave	17.0	+10.3 +0.1	+0.0	+0.0	+0.2	+0.0	27.6	46.0	-18.4	Neutr
٨	598.686k	39.2	+10.3 +0.1	+0.0	+0.0	+0.2	+0.0	49.8	46.0	+3.8	Neutr
11	1.405M Ave	15.6	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	26.1	46.0	-19.9	Neutr
٨	1.405M	40.6	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	51.1	46.0	+5.1	Neutr
13	334.710k Ave	18.1	+10.3 +0.1	+0.0	+0.0	+0.1	+0.0	28.6	49.3	-20.7	Neutr
^	334.710k	38.1	+10.3 +0.1	+0.0	+0.0	+0.1	+0.0	48.6	49.3	-0.7	Neutr

Page 16 of 76 Report No.: 96898-11

15	2.004M Ave	14.2	+10.2 +0.1	+0.1	+0.0	+0.1	+0.0	24.7	46.0	-21.3	Neutr
^	2.004M	37.3	+10.2	+0.1	+0.0	+0.1	+0.0	47.8	46.0	+1.8	Neutr
17	13.905M	18.0	$+0.1 \\ +10.0$	+0.1	+0.0	+0.2	+0.0	28.4	50.0	-21.6	Neutr
	Ave		+0.1								
^	13.905M	39.3	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	49.7	50.0	-0.3	Neutr
19	14.463M	17.6	+10.0	+0.2	+0.0	+0.2	+0.0	28.1	50.0	-21.9	Neutr
^	Ave 14.463M	38.5	+0.1	+0.2	+0.0	+0.2	+0.0	49.0	50.0	-1.0	Neutr
21	14.905M	16.9	+0.1	+0.2	+0.0	+0.2	+0.0	27.4	50.0	-22.6	Neutr
	Ave		+0.1								
^	14.905M	38.5	+10.0 +0.1	+0.2	+0.0	+0.2	+0.0	49.0	50.0	-1.0	Neutr
23	416.885k Ave	14.3	+10.3 +0.1	+0.0	+0.0	+0.2	+0.0	24.9	47.5	-22.6	Neutr
^	416.884k	38.3	+10.3	+0.0	+0.0	+0.2	+0.0	48.9	47.5	+1.4	Neutr
			+0.1								
25	1.009M Ave	12.8	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	23.2	46.0	-22.8	Neutr
^	1.009M	38.5	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	48.9	46.0	+2.9	Neutr
27	1.672M	12.6	+10.2	+0.1	+0.0	+0.1	+0.0	23.1	46.0	-22.9	Neutr
	Ave	• • • •	+0.1	0.4	0.0	0.4		10.1	15.0		
^	1.672M	38.9	+10.2 +0.1	+0.1	+0.0	+0.1	+0.0	49.4	46.0	+3.4	Neutr
29	14.706M Ave	16.5	+10.0 +0.1	+0.2	+0.0	+0.2	+0.0	27.0	50.0	-23.0	Neutr
^	14.706M	39.0	+10.0	+0.2	+0.0	+0.2	+0.0	49.5	50.0	-0.5	Neutr
	1 100 =		+0.1				. 0. 0	22.2	46.0	22.0	3.7
31	1.196M	12.6	+10.0	+0.1	+0.0	+0.2	+0.0	23.0	46.0	-23.0	Neutr
—	Ave	26.5	+0.1	. 0. 1	100		10.0	46.0	46.0		NT ·
^	1.196M	36.5	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	46.9	46.0	+0.9	Neutr
33	9.752M Ave	16.0	+10.1 +0.2	+0.1	+0.0	+0.1	+0.0	26.5	50.0	-23.5	Neutr
^	9.752M	38.6	+10.1	+0.1	+0.0	+0.1	+0.0	49.1	50.0	-0.9	Neutr
2.5	2 (0.43 /	11.6	+0.2	10.1	10.0	10.1	10.0	22.2	46.0	22.0	3 T /
35	2.604M Ave	11.6	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	22.2	46.0	-23.8	Neutr
^	2.604M	36.6	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	47.2	46.0	+1.2	Neutr
37		11.6	+10.2	+0.1	+0.0	+0.1	+0.0	22.1	46.0	-23.9	Neutr
^	Ave 2.196M	34.5	+0.1	+0.1	+0.0	+0.1	+0.0	45.0	46.0	-1.0	Neutr
			+0.1								
39	894.216k Ave	11.7	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	22.1	46.0	-23.9	Neutr
^	894.215k	37.3	+10.0	+0.1	+0.0	+0.2	+0.0	47.7	46.0	+1.7	Neutr
			+0.1								

Page 17 of 76 Report No.: 96898-11

41	2.740M Ave	11.3	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	21.9	46.0	-24.1	Neutr
^	2.740M	37.9	+10.3 +0.1	+0.1	+0.0	+0.1	+0.0	48.5	46.0	+2.5	Neutr
43	1.604M Ave	11.5	+10.1 +0.1	+0.1	+0.0	+0.1	+0.0	21.9	46.0	-24.1	Neutr
^		38.7	+10.1 +0.1	+0.1	+0.0	+0.1	+0.0	49.1	46.0	+3.1	Neutr
45	531.056k Ave	11.2	+10.3 +0.1	+0.0	+0.0	+0.2	+0.0	21.8	46.0	-24.2	Neutr
^		37.0	+10.3 +0.1	+0.0	+0.0	+0.2	+0.0	47.6	46.0	+1.6	Neutr
47	928.238k Ave	11.3	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	21.7	46.0	-24.3	Neutr
^	928.237k	38.1	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	48.5	46.0	+2.5	Neutr
49	1.064M Ave	11.3	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	21.7	46.0	-24.3	Neutr
^	1.064M	37.0	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	47.4	46.0	+1.4	Neutr
51	13.706M Ave	15.3	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	25.7	50.0	-24.3	Neutr
^	13.706M	39.1	+10.0 +0.1	+0.1	+0.0	+0.2	+0.0	49.5	50.0	-0.5	Neutr
53	Ave	11.1	+10.2 +0.1	+0.0	+0.0	+0.2	+0.0	21.6	46.0	-24.4	Neutr
^	002.000H	36.4	+10.2 +0.1	+0.0	+0.0	+0.2	+0.0	46.9	46.0	+0.9	Neutr
55	1.898M Ave	11.1	+10.2 +0.1	+0.1	+0.0	+0.1	+0.0	21.6	46.0	-24.4	Neutr
^	1.070141	35.9	+10.2 +0.1	+0.1	+0.0	+0.1	+0.0	46.4	46.0	+0.4	Neutr
57	8.328M Ave	14.8	+10.3 +0.2	+0.1	+0.0	+0.1	+0.0	25.5	50.0	-24.5	Neutr
^	8.328M	38.8	+10.3 +0.2	+0.1	+0.0	+0.1	+0.0	49.5	50.0	-0.5	Neutr
59	862.662k Ave	10.4	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	20.9	46.0	-25.1	Neutr
^	862.661k	37.0	+10.1 +0.1	+0.1	+0.0	+0.2	+0.0	47.5	46.0	+1.5	Neutr

61	831.392k	10.1	+10.1	+0.1	+0.0	+0.2	+0.0	20.6	46.0	-25.4	Neutr
A	Ave		+0.1								
^	831.392k	36.6	+10.1	+0.1	+0.0	+0.2	+0.0	47.1	46.0	+1.1	Neutr
			+0.1								
63	464.153k	10.0	+10.3	+0.0	+0.0	+0.2	+0.0	20.6	46.6	-26.0	Neutr
A	Ave		+0.1								
^	464.152k	35.5	+10.3	+0.0	+0.0	+0.2	+0.0	46.1	46.6	-0.5	Neutr
			+0.1								
65	14.508M	12.4	+10.0	+0.2	+0.0	+0.2	+0.0	22.9	50.0	-27.1	Neutr
A	Ave		+0.1								
^	14.508M	38.9	+10.0	+0.2	+0.0	+0.2	+0.0	49.4	50.0	-0.6	Neutr
			+0.1								
67	12.797M	12.0	+10.0	+0.1	+0.0	+0.1	+0.0	22.4	50.0	-27.6	Neutr
A	Ave		+0.2								
^	12.797M	38.6	+10.0	+0.1	+0.0	+0.1	+0.0	49.0	50.0	-1.0	Neutr
			+0.2								

Page 19 of 76 Report No.: 96898-11

Test Setup Photo

Page 20 of 76 Report No.: 96898-11

15.215(c) Occupied Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)

Customer: Spirent Communications, Inc.

Specification: Vork Order #: 96898 Date: 8/19/2015
Test Type: Maximized Emissions (2400-2483.5 MHz Transmitter)
Tested By: Sequence#: 30

Software: EMITest 5.02.00

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N

Test Conditions / Notes:

The EUT Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.

The EUT is supported on a 1.5m table with connections to peripheral devices typical for normal installation. Cables are attached to the 6 audio ports with no termination.

Preliminary testing determined the configuration utilized is representative of worst case.

The laptop computer is located outside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:

Max DC power.

All Radios powered on. Radio 1 transmitting continuously at TX power = 30 with modulation enabled.

Revision 1.2 board

Temperature: 24°C Relative Humidity: 40%

Atmospheric Pressure: 101.7 kPa

Frequency Range Investigated: Fundamental

Test Procedure: ANSI C63.10 (2013)

Page 21 of 76 Report No.: 96898-11

Spirent Communications, Inc. WO#: 96898 Sequence#: 30 Date: 8/19/2015
15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Vertical

- --- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.02.00

1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/13/2013	11/13/2015
	AN03209	Preamp	83051A	3/20/2015	3/20/2017
	AN01467	Horn Antenna-	3115	9/16/2013	9/16/2015
		ANSI C63.5			
		Calibration			
	AN03227	Cable	32026-29080-	5/13/2014	5/13/2016
			29080-84		
	ANP05305	Cable	ETSI-50T	2/20/2014	2/20/2016

	Test Data Summary								
Frequency (MHz)	Modulation	Antenna Type / Gain	Measured 20dB BW (kHz)						
2402	GFSK	Radio 1, Integral	929.6						
2402	Pi/4 DQPSK	Radio 1, Integral	1308						
2402	8 DPSK	Radio 1, Integral	1309						
2442	GFSK	Radio 1, Integral	927.5						
2442	Pi/4 DQPSK	Radio 1, Integral	1337						
2442	8 DPSK	Radio 1, Integral	1310						
2480	GFSK	Radio 1, Integral	930.5						
2480	Pi/4 DQPSK	Radio 1, Integral	1304						
2480	8 DPSK	Radio 1, Integral	1309						

Page 23 of 76 Report No.: 96898-11

Plots

Low Channel, GFSK

Middle Channel, GFSK

High Channel, GFSK

Low Channel, 8DPSK

Middle Channel, 8DPSK

High Channel, 8DPSK

Low Channel, Pi4DQPSK

Middle Channel, Pi4DQPSK

High Channel, Pi4DQPSK

Test Setup Photo

1 -18GHz

15.249(a) Field Strength of Fundamental

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)

Customer: Spirent Communications, Inc.

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)
Work Order #: 96898 Date: 8/26/2015
Test Type: Maximized Emissions Time: 11:14:26
Tested By: Randal Clark Sequence#: 32

Software: EMITest 5.02.00

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.

The EUT is supported on a 1.5m table with connections to peripheral devices typical for normal installation. Cables are attached to the 6 audio ports with no termination.

Preliminary testing determined the configuration utilized is representative of worst case.

The laptop computer is located outside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:

Max DC power.

All Radios powered on. Radio 1 transmitting continuously at TX power = 30 with modulation enabled.

Revision 1.2 board

Temperature: 24°C Relative Humidity: 40%

Atmospheric Pressure: 101.7 kPa

Frequency Range Investigated: Fundamental

Test Procedure: ANSI C63.10 (2013)

Page 31 of 76 Report No.: 96898-11

Spirent Communications, Inc. WO#: 96898 Sequence#: 32 Date: 8/26/2015 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Vertical

- --- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.02.00

1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02870	Spectrum Analyzer	E4440A	1/6/2014	1/6/2016
T2	AN03209	Preamp	83051A	3/20/2015	3/20/2017
Т3	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	9/16/2013	9/16/2015
T4	AN03227	Cable	32026-29080- 29080-84	5/13/2014	5/13/2016
T5	ANP05305	Cable	ETSI-50T	2/20/2014	2/20/2016
Т6	ANP06540	Cable	Heliax	11/5/2013	11/5/2015

Measurement Data:		Reading listed by margin.				Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MII	ID. W	T5	T6	JD.	1D	T.1.1.	1D . 11/	1D . V/	.tn	A 4
1	MHz	dBμV	dB	dB	dB	dB	Table		dBμV/m	dB	Ant
1	2441.850M	81.4	+0.0	-28.2	+28.0	+0.0	+0.0	84.4	94.0	-9.6	Horiz
			+2.7	+0.5			247		Mid Chann		160
	2470.05014	01.0	10.0	20.2	127.0	100	100	02.0	1 thru 6 GI		V
2	2479.950M	81.0	+0.0	-28.2	+27.9	+0.0	+0.0	83.9	94.0	-10.1	Verti
			+2.7	+0.5			360		High Chan Radio 1 thr		150
									GFSK	u o	
3	2480.050M	80.9	+0.0	-28.2	+27.9	+0.0	+0.0	83.8	94.0	-10.2	Horiz
	2400.030W	60.9	+2.7	+0.5	121.9	10.0	95	65.6	High Chan		167
			. 2. /	. 0.5			75		Radio 1 thr		107
									GFSK	u o	
4	2441.667M	80.1	+0.0	-28.2	+28.0	+0.0	+0.0	83.1	94.0	-10.9	Verti
			+2.7	+0.5			359		Mid Chann		145
									1 thru 6 8D	PSK	
5	2442.200M	80.0	+0.0	-28.2	+28.0	+0.0	+0.0	83.0	94.0	-11.0	Horiz
			+2.7	+0.5			360		Mid Chann	el Radio	141
									1 thru 6		
									Pi/4DQPSK		
6	2401.800M	80.0	+0.0	-28.2	+28.0	+0.0	+0.0	83.0	94.0	-11.0	Horiz
			+2.7	+0.5					Low Chann	nel Radio	153
									1 thru 6 GI		
7	2479.950M	80.0	+0.0	-28.2	+27.9	+0.0	+0.0	82.9	94.0	-11.1	Horiz
			+2.7	+0.5			317		High Chan		145
									Radio 1 thr		
									Pi/4DQPSI		
8	2441.800M	79.8	+0.0	-28.2	+28.0	+0.0	+0.0	82.8	94.0	-11.2	Horiz
			+2.7	+0.5			316		Mid Chann		175
								0- :	1 thru 6 8D		
9	2479.933M	79.5	+0.0	-28.2	+27.9	+0.0	+0.0	82.4	94.0	-11.6	Horiz
			+2.7	+0.5			145		High Chan		143
									Radio 1 thr	u 6	
									8DPSK		

Page 33 of 76 Report No.: 96898-11

10	2401.983M	79.0	+0.0	-28.2	+28.0	+0.0	+0.0	82.0	94.0 -12.0	Horiz
			+2.7	+0.5			138		Low Channel Radio 1 thru 6 8DPSK	162
11	2480.000M	78.8	+0.0	-28.2	+27.9	+0.0	+0.0	81.7	94.0 -12.3	Verti
			+2.7	+0.5			5		High Channel	164
									Radio 1 thru 6 8DPSK	
12	2402.117M	78.7	+0.0	-28.2	+28.0	+0.0	+0.0	81.7	94.0 -12.3	Horiz
			+2.7	+0.5					Low Channel Radio	147
									1 thru 6 Pi/4DQPSK	
13	2441.800M	78.6	+0.0	-28.2	+28.0	+0.0	+0.0	81.6	94.0 -12.4	Verti
			+2.7	+0.5			344		Mid Channel Radio	128
1.4	2441.917M	78.5	+0.0	-28.2	+28.0	+0.0	+0.0	81.5	1 thru 6 GFSK 94.0 -12.5	Verti
14	2441.91/W	76.3	+2.7	+0.5	⊤ 28.0	+0.0	+0.0	61.3	Mid Channel Radio	151
			12.7	10.5					1 thru 6	131
									Pi/4DQPSK	
15	2480.000M	77.7	+0.0	-28.2	+27.9	+0.0	+0.0	80.6	94.0 -13.4	Verti
			+2.7	+0.5			360		High Channel	129
									Radio 1 thru 6	
1.6	2402.183M	77.1	10.0	-28.2	+28.0	+0.0	10.0	90.1	Pi/4DQPSK	Vanti
10	2402.183M	77.1	+0.0 +2.7	-28.2 +0.5	+28.0	+0.0	+0.0 1	80.1	94.0 -13.9 Low Channel Radio	Verti 171
			12.7	10.5			1		1 thru 6 8DPSK	1/1
17	2401.933M	77.0	+0.0	-28.2	+28.0	+0.0	+0.0	80.0	94.0 -14.0	Verti
			+2.7	+0.5			360		Low Channel Radio	171
									1 thru 6 GFSK	
18	2402.050M	76.9	+0.0	-28.2	+28.0	+0.0	+0.0	79.9	94.0 -14.1	Verti
			+2.7	+0.5			360		Low Channel Radio	139
									1 thru 6	
10	2442.035M	72.5	+0.0	-28.2	+28.0	+1.4	+0.0	76.4	Pi/4DQPSK 94.0 -17.6	Horiz
17	2442.0331 v I	12.3	+2.7	+0.0	120.0	11.4	171	70.4	Mid Channel Radio	132
				0.0			1,1		1 8DPSK	152
20	2442.130M	72.0	+0.0	-28.2	+28.0	+1.4	+0.0	75.9	94.0 -18.1	Horiz
			+2.7	+0.0			168		Mid Channel Radio	150
				• • •					1 Pi/4DQPSK	
21	2480.020M	71.7	+0.0	-28.2	+27.9	+1.5	+0.0	75.6	94.0 -18.4	Horiz
			+2.7	+0.0			151		High Channel Radio 1 8DPSK	154
22	2479.840M	71.6	+0.0	-28.2	+27.9	+1.5	+0.0	75.5	94.0 -18.5	Horiz
			+2.7	+0.0			151		High Channel	160
									Radio 1	
									Pi/4DQPSK	
23	2479.830M	71.6	+0.0	-28.2	+27.9	+1.5	+0.0	75.5	94.0 -18.5	Horiz
			+2.7	+0.0			152		High Channel Radio 1 GFSK	155
24	2441.820M	71.5	+0.0	-28.2	+28.0	+1.4	+0.0	75.4	94.0 -18.6	Horiz
24	2771.02UIVI	11.3	+2.7	+0.0	- 20.0	1.4	+0.0 171	13.4	Mid Channel Radio	135
			- .,	0.0			- / -		1 GFSK	155

25 2402.210M	70.3	+0.0	-28.2	+28.0	+1.4	+0.0	74.2	94.0 -19.8	Horiz
		+2.7	+0.0			172		Low Channel Radio	139
								1 Pi/4DQPSK	
26 2402.205M	70.1	+0.0	-28.2	+28.0	+1.4	+0.0	74.0	94.0 -20.0	Horiz
		+2.7	+0.0			171		Low Channel Radio	138
								1 GFSK	
27 2401.995M	69.8	+0.0	-28.2	+28.0	+0.0	+0.0	73.7	94.0 -20.3	Horiz
		+2.7	+0.0			171		Low Channel Radio	138
								1 8DPSK	
28 2480.020M	69.6	+0.0	-28.2	+27.9	+1.5	+0.0	73.5	94.0 -20.5	Verti
		+2.7	+0.0			172		High Channel	181
								Radio 1 8DPSK	
29 2479.825M	69.5	+0.0	-28.2	+27.9	+1.5	+0.0	73.4	94.0 -20.6	Verti
		+2.7	+0.0			172		High Channel	179
								Radio 1 GFSK	
30 2479.865M	69.4	+0.0	-28.2	+27.9	+1.5	+0.0	73.3	94.0 -20.7	Verti
		+2.7	+0.0			175		High Channel	182
								Radio 1	
								Pi/4DQPSK	
31 2442.140M	68.8	+0.0	-28.2	+28.0	+1.4	+0.0	72.7	94.0 -21.3	Verti
		+2.7	+0.0			176		Mid Channel Radio	183
								1 Pi/4DQPSK	
32 2442.085M	68.7	+0.0	-28.2	+28.0	+1.4	+0.0	72.6	94.0 -21.4	Verti
		+2.7	+0.0			174		Mid Channel Radio	181
								1 GFSK	
33 2441.920M	68.6	+0.0	-28.2	+28.0	+1.4	+0.0	72.5	94.0 -21.5	Verti
		+2.7	+0.0			176		Mid Channel Radio	196
								1 8DPSK	
34 2401.995M	66.8	+0.0	-28.2	+28.0	+1.4	+0.0	70.7	94.0 -23.3	Verti
		+2.7	+0.0			175		Low Channel Radio	196
								1 8DPSK	
35 2402.200M	66.7	+0.0	-28.2	+28.0	+1.4	+0.0	70.6	94.0 -23.4	Verti
		+2.7	+0.0			175		Low Channel Radio	196
								1 Pi/4DQPSK	
36 2402.165M	66.4	+0.0	-28.2	+28.0	+1.4	+0.0	70.3	94.0 -23.7	Verti
		+2.7	+0.0			180		Low Channel Radio	196
								1 GFSK	

Test Data

Middle Channel, GFSK

Middle Channel, 8DPSK

	Test Equipment – Voltage Variations												
Asset #	t# Description Model Manufacturer Cal Date Ca												
2872	Spectrum Analyzer	Agilent	E4440A	11/13/2013	11/13/2015								
3209	Preamp	Agilent	83051A	3/20/2015	3/20/2017								
3227	Cable	Astrolab	32026-29080-29080-84	5/13/2014	5/13/2016								
P06540	Cable	Andrews	Heliax	11/5/2013	11/5/2015								
1467	Horn Antenna	EMCO	3115	9/16/2013	9/16/2015								
P06655	DC Power Supply	Maxtra	MA-305D	4/17/2014	4/17/2016								
3514	Multimeter	Fluke	87	11/25/2014	11/25/2016								

	Test	Data Summa	ry - Voltage Va	riations	
Frequency (MHz)	Modulation	V _{Minimum} (dBuV/m @3m)	V _{Nominal} (dBuV/m @3m)	V _{Maximum} (dBuV/m @3m)	Max Deviation from V _{Nominal} (dB)
Single Transm	nitter				
2402	GFSK	74.0	74.0	73.9	0.1
2402	Pi/4 DQPSK	74.2	74.2	74.3	0.1
2402	8 DPSK	73.7	73.7	73.7	0
2442	GFSK	75.2	75.4	75.2	0.2
2442	Pi/4 DQPSK	75.8	75.9	75.8	0.1
2442	8 DPSK	76.6	76.4	76.4	0.2
2480	GFSK	75.6	75.5	75.5	0.1
2480	Pi/4 DQPSK	75.7	75.5	75.8	0.3
2480	8 DPSK	75.7	75.6	75.5	0.1
Multi-Transı	mitter				
2402	GFSK	79.7	80.0	80.0	0.3
2402	Pi/4 DQPSK	81.6	81.7	81.4	0.3
2402	8 DPSK	81.7	82.0	81.8	0.3
2442	GFSK	85.2	84.4	85.1	0.8
2442	Pi/4 DQPSK	82.9	83.0	83.0	0.1
2442	8 DPSK	83.4	83.1	83.3	0.3
2480	GFSK	84.6	83.9	84.5	0.7
2480	Pi/4 DQPSK	82.9	82.9	83.2	0.3
2480	8 DPSK	81.6	82.4	81.7	0.8

Measurements performed at input voltage Vnominal \pm 15%.

V _{Nominal} :	12 VDC
V _{Minimum} :	10.2
V _{Maximum} :	13.8

Page 37 of 76 Report No.: 96898-11

Test Setup Photo

1 -18GHz

15.249(a)&(d) Radiated Spurious Emissions / Band Edge

Test Conditions / Setup / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)

Customer: Spirent Communications, Inc.

Specification: Work Order #: 96898 Date: 8/28/2015
Test Type: Maximized Emissions Date: Michael Atkinson Sequence#: 47

Software: EMITest 5.02.00

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.

The EUT is supported on an 80cm table with connections to peripheral devices typical for normal installation. Cables are attached to the 6 audio ports with no termination.

Preliminary testing determined the configuration utilized is representative of worst case.

The laptop computer is located outside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:

Max DC power.

All Radios powered on. Radio 1 transmitting continuously at TX power = 30 with modulation enabled. Investigated Radio 1-6 transmitting.

Revision 1.2 board

Temperature: 24°C Relative Humidity: 36% Atmospheric Pressure: 102.1kPa

Frequency Range Investigated: 9kHz - 30MHz

Test Procedure: ANSI C63.10 (2013)

No emissions observed within 20dB of the limit.

Page 39 of 76 Report No.: 96898-11

Spirent Communications, Inc. WO#: 96898 Sequence#: 47 Date: 8/28/2015
15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Vertical

- --- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.02.00

1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00052	Loop Antenna	6502	5/20/2014	5/20/2016
T2	ANP05305	Cable	ETSI-50T	2/20/2014	2/20/2016
T3	ANP06540	Cable	Heliax	11/5/2013	11/5/2015
	AN02872	Spectrum Analyzer	E4440A	11/13/2013	11/13/2015

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Т	est Distance	e: 3 Meters	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar				
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m \\$	dB	Ant				
1	12.702M	26.1	+8.7	+0.1	+0.0		-40.0	-5.1	29.5	-34.6	Vert				
(QP										99				
2	12.702M	26.1	+8.7	+0.1	+0.0		-40.0	-5.1	29.5	-34.6	Vert				
(QP						359				99				
^	12.700M	28.2	+8.7	+0.1	+0.0		-40.0	-3.0	29.5	-32.5	Vert				
											99				
4	2.784M	23.4	+9.5	+0.1	+0.0		-40.0	-7.0	29.5	-36.5	Vert				
											99				
5	4.790M	19.3	+9.5	+0.1	+0.0		-40.0	-11.1	29.5	-40.6	Vert				
											99				
6	303.000k	47.1	+9.5	+0.0	+0.0		-80.0	-23.4	18.0	-41.4	Vert				
							4				99				
7	18.600M	19.4	+7.9	+0.2	+0.0		-40.0	-12.5	29.5	-42.0	Vert				
											99				
8	5.525M	17.8	+9.5	+0.1	+0.0		-40.0	-12.6	29.5	-42.1	Vert				
							358				99				
9	20.100M	17.4	+7.6	+0.2	+0.0		-40.0	-14.8	29.5	-44.3	Vert				
											99				
10	12.600M	14.1	+8.7	+0.1	+0.0		-40.0	-17.1	29.5	-46.6	Vert				
							360				99				
11	19.475M	14.5	+7.8	+0.2	+0.0		-40.0	-17.5	29.5	-47.0	Vert				
							360				99				
12	24.000k	59.8	+12.5	+0.0	+0.0		-80.0	-7.7	40.0	-47.7	Vert				
							68				99				

Page 41 of 76 Report No.: 96898-11

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)

Customer: Spirent Communications, Inc.

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)
Work Order #: Date: 8/24/2015

Test Type: Maximized Emissions Time: 15:35:17
Tested By: Michael Atkinson Sequence#: 34

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.

The EUT is supported on an 80cm table with connections to peripheral devices typical for normal installation. Cables are attached to the 6 audio ports with no termination.

Preliminary testing determined the configuration utilized is representative of worst case.

The laptop computer is located outside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:

Max DC power.

All Radios powered on. Radio 1 transmitting continuously at TX power = 30 with modulation enabled. Investigated Radio 1-6 transmitting continuously at TX power = 30.

Revision 1.2 board

Temperature: 24°C Relative Humidity: 36%

Atmospheric Pressure: 102.1kPa

Frequency Range Investigated: 30-1000MHz Test Procedure: ANSI C63.10 (2013)

> Page 42 of 76 Report No.: 96898-11

Spirent Communications, Inc. WO#: 96898 Sequence#: 34 Date: 8/24/2015
15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Vertical

- --- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- Ambient

Software Version: 5.02.00

1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02307	Preamp	8447D	3/14/2014	3/14/2016
T2	AN01996	Biconilog Antenna	CBL6111C	7/16/2014	7/16/2016
T3	AN03227	Cable	32026-29080-	5/13/2014	5/13/2016
			29080-84		
T4	ANP05360	Cable	RG214	12/1/2014	12/1/2016
T5	ANP05963	Cable	RG-214	2/21/2014	2/21/2016
Т6	AN02872	Spectrum Analyzer	E4440A	11/13/2013	11/13/2015

Measu	rement Data:	Re	eading lis	ted by ma	argin.						
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table		$dB\mu V/m$	dB	Ant
1	87.931M	55.1	-27.8	+8.8	+0.4	+0.5	+0.0	37.4	40.0	-2.6	Vert
	QP		+0.4	+0.0			15				99
^	87.931M	52.8	-27.8	+8.8	+0.4	+0.5	+0.0	35.1	40.0	-4.9	Vert
			+0.4	+0.0			360				175
3		49.7	-28.0	+17.9	+0.6	+1.4	+0.0	42.7	46.0	-3.3	Vert
	QP		+1.1	+0.0			351				100
^	479.940M	57.0	-28.0	+17.9	+0.6	+1.4	+0.0	50.0	46.0	+4.0	Vert
			+1.1	+0.0			77				200
5		56.5	-27.8	+9.1	+0.4	+0.5	+0.0	39.1	43.5	-4.4	Vert
	QP		+0.4	+0.0			355				99
^	89.675M	60.2	-27.8	+9.1	+0.4	+0.5	+0.0	42.8	43.5	-0.7	Vert
			+0.4	+0.0			227				99
7		48.9	-28.0	+13.5	+0.3	+0.3	+0.0	35.3	40.0	-4.7	Vert
	QP		+0.3	+0.0							101
^	40.836M	53.1	-28.0	+13.5	+0.3	+0.3	+0.0	39.5	40.0	-0.5	Vert
			+0.3	+0.0			359				99
9		54.0	-27.9	+7.9	+0.3	+0.5	+0.0	35.2	40.0	-4.8	Vert
	QP		+0.4	+0.0							99
^	81.090M	56.8	-27.9	+7.9	+0.3	+0.5	+0.0	38.0	40.0	-2.0	Vert
			+0.4	+0.0							99
11	479.971M	47.9	-28.0	+17.9	+0.6	+1.4	+0.0	40.9	46.0	-5.1	Horiz
	QP		+1.1	+0.0			122				159
^	479.971M	65.7	-28.0	+17.9	+0.6	+1.4	+0.0	58.7	46.0	+12.7	Horiz
			+1.1	+0.0			267				150
13		49.4	-28.0	+11.2	+0.3	+0.3	+0.0	33.5	40.0	-6.5	Vert
	QP		+0.3	+0.0							99
^	45.129M	53.5	-28.0	+11.2	+0.3	+0.3	+0.0	37.6	40.0	-2.4	Vert
			+0.3	+0.0			359				99
15		53.2	-27.8	+9.9	+0.4	+0.6	+0.0	36.7	43.5	-6.8	Vert
	QP		+0.4	+0.0			55				99
^	98.361M	54.8	-27.8	+9.9	+0.4	+0.6	+0.0	38.3	43.5	-5.2	Vert
			+0.4	+0.0							99

Page 44 of 76 Report No.: 96898-11

17	479.656M	46.1	-28.0	+17.9	+0.6	+1.4	+0.0	39.1	46.0	-6.9	Vert
			+1.1	+0.0			19				99
18	35.418M	43.7	-28.0	+16.5	+0.3	+0.3	+0.0	33.1	40.0	-6.9	Vert
	QP		+0.3	+0.0			359				99
^	35.418M	47.8	-28.0	+16.5	+0.3	+0.3	+0.0	37.2	40.0	-2.8	Vert
			+0.3	+0.0			359				99
20	602.300M	43.3	-28.3	+20.3	+0.7	+1.6	+0.0	38.8	46.0	-7.2	Horiz
			+1.2	+0.0			198				144
21	191.950M	52.3	-27.4	+9.3	+0.5	+0.8	+0.0	36.1	43.5	-7.4	Vert
			+0.6	+0.0			360				175
22	107.715M	51.6	-27.8	+10.8	+0.4	+0.6	+0.0	36.1	43.5	-7.4	Vert
	QP		+0.5	+0.0			335				99
^	107.754M	53.2	-27.8	+10.8	+0.4	+0.6	+0.0	37.7	43.5	-5.8	Vert
			+0.5	+0.0							99
24	602.296M	43.0	-28.3	+20.3	+0.7	+1.6	+0.0	38.5	46.0	-7.5	Vert
			+1.2	+0.0			255				200
25		49.6	-27.7	+11.9	+0.4	+0.6	+0.0	35.3	43.5	-8.2	Vert
	QP		+0.5	+0.0			360				99
^	130.277M	53.4	-27.7	+11.9	+0.4	+0.6	+0.0	39.1	43.5	-4.4	Vert
			+0.5	+0.0							99
27	98.260M	51.5	-27.8	+9.9	+0.4	+0.6	+0.0	35.0	43.5	-8.5	Horiz
			+0.4	+0.0			3				201
28	103.714M	51.0	-27.8	+10.4	+0.4	+0.6	+0.0	35.0	43.5	-8.5	Vert
			+0.4	+0.0							99
29	236.180M	50.1	-27.2	+11.8	+0.5	+0.9	+0.0	36.8	46.0	-9.2	Horiz
			+0.7	+0.0			183				124
30	154.618M	48.8	-27.5	+11.2	+0.4	+0.7	+0.0	34.2	43.5	-9.3	Vert
			+0.6	+0.0							99
31	140.380M	48.3	-27.6	+11.8	+0.4	+0.7	+0.0	34.1	43.5	-9.4	Horiz
	QP		+0.5	+0.0			39				259
^	140.380M	52.2	-27.6	+11.8	+0.4	+0.7	+0.0	38.0	43.5	-5.5	Horiz
	0.45.000.5		+0.5	+0.0			77	2	46.0		201
33	946.300M	35.6	-27.3	+23.8	+0.9	+2.1	+0.0	36.6	46.0	-9.4	Horiz
	120 01 63 5		+1.5	+0.0			359	2	460		144
34	430.016M	44.1	-27.8	+17.1	+0.6	+1.3	+0.0	36.3	46.0	-9.7	Vert
2.5	55400035	41.6	+1.0	+0.0	10.7	, 1.7	359	26.1	46.0	0.0	150
35	554.992M	41.6	-28.3	+19.4	+0.7	+1.5	+0.0	36.1	46.0	-9.9	Vert
26	244.0703.5	45.7	+1.2	+0.0	10.6	, 1 1	169	26.1	46.0	0.0	200
36	344.070M	45.7	-27.2	+15.0	+0.6	+1.1	+0.0	36.1	46.0	-9.9	Horiz
27	225 21015	40.2	+0.9	+0.0	10.5	100	359	260	46.0	10.0	124
37	235.210M	49.3	-27.2	+11.8	+0.5	+0.9	+0.0	36.0	46.0	-10.0	Vert
20	270 44014	17.7	+0.7	+0.0	10.5	+1.Ω	360	25.0	46.0	10.1	175
38	270.440M	47.7	-27.1 +0.7	+13.1	+0.5	+1.0	+0.0 80	35.9	46.0	-10.1	Horiz
L			⊤ U. /	+0.0			00				124

39	267.790M	47.4	-27.1 +0.7	+13.1 +0.0	+0.5	+1.0	+0.0	35.6	46.0	-10.4	Horiz 103
40	61.542M	49.8	-27.9 +0.3	+6.6 +0.0	+0.3	+0.4	+0.0 359	29.5	40.0	-10.5	Vert 99
41	94.020M	49.8	-27.8 +0.4	+9.5 +0.0	+0.4	+0.6	+0.0	32.9	43.5	-10.6	Horiz 201
42	774.000M	36.8	-27.7 +1.4	+22.1 +0.0	+0.8	+1.8	+0.0 343	35.2	46.0	-10.8	Horiz 144
43	344.070M	44.1	-27.2 +0.9	+15.0 +0.0	+0.6	+1.1	+0.0 360	34.5	46.0	-11.5	Vert 175
44	214.310M	46.7	-27.2 +0.6	+10.4 +0.0	+0.5	+0.9	+0.0 360	31.9	43.5	-11.6	Vert 175
45	430.000M	42.1	-27.8 +1.0	+17.1 +0.0	+0.6	+1.3	+0.0 261	34.3	46.0	-11.7	Horiz 144
46	116.339M	46.2	-27.7 +0.5	+11.4 +0.0	+0.4	+0.6	+0.0	31.4	43.5	-12.1	Vert 99
47	331.920M	43.4	-27.1 +0.9	+14.7 +0.0	+0.6	+1.1	+0.0 360	33.6	46.0	-12.4	Vert 175
48	960.001M QP	40.2	-27.3 +1.6	+23.9 +0.0	+0.9	+2.1	+0.0 229	41.4	54.0	-12.6	Horiz 130
^	960.001M	50.7	-27.3 +1.6	+23.9 +0.0	+0.9	+2.1	+0.0 142	51.9	54.0	-2.1	Horiz 152
50	960.288M	40.1	-27.3 +1.6	+23.9 +0.0	+0.9	+2.1	+0.0	41.3	54.0	-12.7	Vert 200
51	510.024M	39.6	-28.1 +1.1	+18.4 +0.0	+0.7	+1.4	+0.0 137	33.1	46.0	-12.9	Vert 200
52	265.100M	44.3	-27.1 +0.7	+13.0 +0.0	+0.5	+1.0	+0.0	32.4	46.0	-13.6	Vert 175
	945.035M QP	30.8	-27.3 +1.5	+23.8 +0.0	+0.9	+2.1	+0.0 360	31.8	46.0	-14.2	Vert 150
^	945.104M	44.3	-27.3 +1.5	+23.8 +0.0	+0.9	+2.1	+0.0	45.3	46.0	-0.7	Vert
							327				200
55	368.620M	40.5	-27.4 +0.9	+15.7 +0.0	+0.6	+1.2	+0.0 360	31.5	46.0	-14.5	Vert 175
56	404.820M	39.7	-27.6 +1.0	+16.6 +0.0	+0.6	+1.2	+0.0 360	31.5	46.0	-14.5	Vert 175

57	80.990M	44.3	-27.9	+7.8	+0.3	+0.5	+0.0	25.4	40.0	-14.6	Horiz
			+0.4	+0.0							201
58	266.310M	43.0	-27.1	+13.0	+0.5	+1.0	+0.0	31.1	46.0	-14.9	Horiz
	QP		+0.7	+0.0							103
^	266.310M	51.7	-27.1	+13.0	+0.5	+1.0	+0.0	39.8	46.0	-6.2	Horiz
			+0.7	+0.0			351				124
60	192.930M	44.7	-27.4	+9.3	+0.5	+0.8	+0.0	28.5	43.5	-15.0	Horiz
			+0.6	+0.0			274				124
61	35.250M	34.2	-28.0	+16.6	+0.3	+0.3	+0.0	23.7	40.0	-16.3	Horiz
			+0.3	+0.0			30				200
62	40.878M	36.1	-28.0	+13.5	+0.3	+0.3	+0.0	22.5	40.0	-17.5	Horiz
			+0.3	+0.0			-8				200
63	42.474M	36.1	-28.0	+12.6	+0.3	+0.3	+0.0	21.6	40.0	-18.4	Horiz
			+0.3	+0.0			-8				200
64	69.144M	37.8	-27.8	+6.4	+0.3	+0.4	+0.0	17.5	40.0	-22.5	Horiz
			+0.4	+0.0			-8				200
65	61.752M	35.3	-27.9	+6.6	+0.3	+0.4	+0.0	15.0	40.0	-25.0	Horiz
			+0.3	+0.0			-8				200

Page 47 of 76 Report No.: 96898-11

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)

Customer: Spirent Communications, Inc.

Specification: Use 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)
Work Order #: 96898 Date: 8/28/2015
Test Type: Maximized Emissions Time: 14:42:27

Tested By: Michael Atkinson Sequence#: 33

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device Manufacturer	Model #	S/N	
---------------------	---------	-----	--

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.

The EUT is supported on a 1.5m table with connections to peripheral devices typical for normal installation. Cables are attached to the 6 audio ports with no termination.

Preliminary testing determined the configuration utilized is representative of worst case.

The laptop computer is located outside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:

Max DC power.

All Radios powered on. Radio 1 transmitting continuously at TX power = 30 with modulation enabled.

Investigated Radio 1-6 transmitting continuously at TX power = 30, as well as intermodulation effects between 2 radios near the same frequency.

Revision 1.2 board

Temperature: 24°C Relative Humidity: 40%

Atmospheric Pressure: 101.7 kPa

Frequency Range Investigated: 1-26 GHz Test Procedure: ANSI C63.10 (2013)

> Page 48 of 76 Report No.: 96898-11

Spirent Communications, Inc. WO#: 96898 Sequence#: 33 Date: 8/28/2015
15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Vertical

- --- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- Ambient

Software Version: 5.02.00

- 1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/13/2013	11/13/2015
T2	AN03227	Cable	32026-29080-	5/13/2014	5/13/2016
			29080-84		
T3	AN03209	Preamp	83051A	3/20/2015	3/20/2017
T4	AN01467	Horn Antenna-	3115	9/16/2013	9/16/2015
		ANSI C63.5			
		Calibration			
T5	ANP05305	Cable	ETSI-50T	2/20/2014	2/20/2016
T6	AN03122	Cable	32026-2-29801-	5/13/2014	5/13/2016
			36		
T7	AN02763-69	Waveguide	Multiple	5/21/2014	5/21/2016
T8	ANP06678	Cable	32026-29801-	9/18/2014	9/18/2016
			29801-144		
Т9	AN02742	Active Horn	AMFW-5F-	1/14/2015	1/14/2017
		Antenna	18002650-20-		
			10P		

Measu	rement Data:		eading list	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9								
	MHz	dΒμV	dB	dB	dB	dB	Table		dBμV/m	dB	Ant
1	4879.818M	41.7	+0.0	+0.0	+0.0	+0.0	+0.0	46.1	54.0	-7.9	Vert
			+0.0	+1.1	+0.0	+3.3			M (rad 1-6)	150
			+0.0								
2	12210.000	23.7	+0.0	+3.8	-27.6	+38.3	+0.0	45.2	54.0	-8.8	Horiz
	M		+7.0	+0.0	+0.0	+0.0					
	Ave		+0.0						Mid Ambi		170
^	12210.000	27.8	+0.0	+3.8	-27.6	+38.3	+0.0	49.3	54.0	-4.7	Horiz
	M		+7.0	+0.0	+0.0	+0.0					
			+0.0				374		Mid Ambi		170
4	12210.000	23.7	+0.0	+3.8	-27.6	+38.3	+0.0	45.2	54.0	-8.8	Vert
	M		+7.0	+0.0	+0.0	+0.0					
	Ave		+0.0				250		Mid Ambi	ent	155
^	12210.000	19.1	+0.0	+3.8	-27.6	+38.3	+0.0	40.6	54.0	-13.4	Vert
	M		+7.0	+0.0	+0.0	+0.0					
			+0.0						Mid Ambi		155
6	12400.000	23.6	+0.0	+3.8	-27.8	+38.3	+0.0	45.0	54.0	-9.0	Horiz
	M		+7.1	+0.0	+0.0	+0.0					
	Ave		+0.0				261		High Amb		151
^	12400.000	27.6	+0.0	+3.8	-27.8	+38.3	+0.0	49.0	54.0	-5.0	Horiz
	M		+7.1	+0.0	+0.0	+0.0					
			+0.0				359		High Amb		134
8	12400.000	23.6	+0.0	+3.8	-27.8	+38.3	+0.0	45.0	54.0	-9.0	Vert
	M		+7.1	+0.0	+0.0	+0.0					
	Ave		+0.0				42		High Amb	ient	150
^	12400.000	28.7	+0.0	+3.8	-27.8	+38.3	+0.0	50.1	54.0	-3.9	Vert
	M		+7.1	+0.0	+0.0	+0.0					
			+0.0				265		High Amb	ient	150

Page 50 of 76 Report No.: 96898-11

+0.0 +1.0 +0.0 +3.2 L (rad 1-6) +0.0	Vert 150
+0.0 11 4959.748M 39.1 +0.0 +0.0 +0.0 +0.0 +0.0 43.5 54.0 -10.5 V +0.0 +1.1 +0.0 +3.3 360 H rad (1-6) +0.0	150
11 4959.748M 39.1 +0.0 +0.0 +0.0 +0.0 +0.0 43.5 54.0 -10.5 V +0.0 +1.1 +0.0 +3.3 360 H rad (1-6) +0.0	
+0.0 +1.1 +0.0 +3.3 360 H rad (1-6) +0.0	
+0.0	/ert
	148
12 4803,790M 39.0 +0.0 +0.0 +0.0 +0.0 +0.0 43.2 54.0 -10.8 H	
	oriz
+0.0 +1.0 +0.0 +3.2 360 L (rad 1-6)	155
+0.0	
13 4804.010M 31.5 +0.0 +2.2 -29.2 +32.1 +0.0 40.4 54.0 -13.6 V	/ert
Ave +3.8 +0.0 +0.0 +0.0 360 Low	179
+0.0	
^ 4804.000M	/ert
	129
+0.0	
15 4804.000M 30.6 +0.0 +2.2 -29.2 +32.1 +0.0 39.5 54.0 -14.5 H	oriz
	152
+0.0	
	oriz
	184
+0.0	
	oriz
	194
+0.0	
	/ert
	169
+0.0	10)
	/ert
	178
+0.0	1,0
	/ert
M +0.0 +1.9 +0.0 +5.9	CIT
	147
	/ert
	154
+0.0	10.
	/ert
	155
+0.0	
	/ert
	175
+0.0	113
	oriz
M +0.0 +1.8 +0.0 +5.6	ULIZ
	139
	/ert
M +0.0 +1.9 +0.0 +5.7	CIL
	136
26 1799.954M 36.7 +0.0 +1.3 -28.8 +27.0 +0.0 38.4 54.0 -15.6 V	Vert
	167

Page 51 of 76 Report No.: 96898-11

27 1000 0001	26.6	+0.0	.1.2	20.0	127.0	100	20.2	54.0	1.7.7	37 4
27 1800.000M	36.6	+0.0	+1.3	-28.8	+27.0	+0.0		54.0	-15.7	Vert
Ave		+2.2	+0.0	+0.0	+0.0	359		High		173
• • • • • • • • • • • • • • • • • • • •	20.5	+0.0					20.1		1.50	
28 13928.000	30.6	+0.0	+0.0	+0.0	+0.0	+0.0	38.1	54.0	-15.9	Horiz
M		+0.0	+1.8	+0.0	+5.7	- 4		14 (11 6)		1.50
20 15052 000	20.1	+0.0	. 0. 0	. 0. 0	. 0. 0	54		M (rad 1-6)		153
29 15072.000	30.1	+0.0	+0.0	+0.0	+0.0	+0.0	38.0	54.0	-16.0	Horiz
M		+0.0	+1.9	+0.0	+6.0			T (110)		120
20 14440 000	20.2	+0.0	+0.0	١٠٠٠		+0.0	27.0	L (rad 1-6) 54.0	16.1	139
30 14440.000	30.2	+0.0	+0.0	+0.0	+0.0	+0.0	37.9	54.0	-16.1	Horiz
M		+0.0	+1.9	+0.0	+5.8	250		II (11 ()		1.47
21 1700 07214	25.6	+0.0	.1.2	20.0	107.0	359	27.2	H (rad 1-6)	167	147
31 1799.962M	35.6	+0.0	+1.3	-28.8	+27.0	+0.0	3/.3	54.0	-16.7	
Ave		+2.2	+0.0	+0.0	+0.0			Mid		143
A 1000 000M	25.0	+0.0	.1.2	20.0	107.0		27.6	7.4.0	16.4	3 7 4
^ 1800.000M	35.9	+0.0	+1.3	-28.8	+27.0	+0.0	3/.6	54.0	-16.4	Vert
		+2.2	+0.0	+0.0	+0.0	360		High		137
22 4055 97014	22.0	+0.0	100	100	100	100	27.2	540	1.6.0	3 74
33 4955.879M	32.8	+0.0	+0.0	+0.0	+0.0	+0.0	31.2	54.0	-16.8	Vert
		+0.0	+1.1	+0.0	+3.3	360		imod H		175
24 4002 54014	22.7	+0.0	100	100	100	100	27.1	540	160	3 74
34 4883.540M	32.7	+0.0	+0.0	+0.0	+0.0	+0.0	37.1		-16.9	Vert
		+0.0	+1.1	+0.0	+3.3	283		imod M		188
25 4004 16214	22.2	+0.0	100	100	100	100	267	540	17.2	TT'-
35 4884.163M	32.3	+0.0	+0.0	+0.0	+0.0	+0.0	36.7	54.0	-17.3	Horiz
		+0.0	+1.1	+0.0	+3.3	219		imod M		153
26 4907 62014	22.5	+0.0	+0.0	+0.0	ΙΛΛ	+0.0	267	54.0	17.2	II amin
36 4807.630M	32.5	+0.0 +0.0	+0.0 +1.0	+0.0 +0.0	+0.0 +3.2	+0.0 189	30.7	imod L	-17.3	Horiz 141
		+0.0	⊤1.0	±0.0	⊤3. ∠	109		illiou L		141
37 1799.700M	35.0	+0.0	+1.3	-28.8	+27.0	+0.0	267	54.0	-17.3	Vert
3/ 1/99./00W	33.0	+2.2	$^{+1.5}$	+0.0	+27.0 +0.0	±0.0 27	30.7	Mid	-17.3	178
		+0.0	10.0	10.0	10.0	21		IVIIU		1/0
38 4807.820M	32.3	+0.0	+0.0	+0.0	+0.0	+0.0	26.5	54.0	-17.5	Vert
38 4807.820W	32.3	+0.0 +0.0	+0.0 +1.0	+0.0 +0.0	+3.2	+0.0 193	30.3	imod L	-17.3	141
		+0.0	11.0	10.0	13.2	173		iiiou L		141
39 1800.500M	34.6	+0.0	+1.3	-28.8	+27.0	+0.0	26.2	54.0	-17.7	Vert
39 1000.300IVI	34.0	+0.0 +2.2						54.0 Low	-1/./	186
		+0.0	10.0	10.0	10.0			LUW		100
40 4804.230M	31.8	+0.0	+0.0	+0.0	+0.0	+0.0	36.0	54.0	-18.0	Horiz
70 7004.230IVI	31.0	+0.0	+1.0	+0.0 +0.0	+3.2	+0.0 111	30.0	imod L	-10.0	141
		+0.0	1.0	10.0	1 3.4	111		mod L		171
41 4883.966M	26.3	+0.0	+2.3	-29.2	+32.3	+0.0	35.6	54.0	-18.4	Horiz
Ave	20.5	+3.9	+0.0	+0.0	+0.0	78	55.0	Mid	10.7	199
11,0		+0.0	. 0.0	. 0.0	. 0.0	, 5		.,,,,		1//
42 4883.966M	26.3	+0.0	+2.3	-29.2	+32.3	+0.0	35.6	54.0	-18.4	Horiz
Ave	20.5	+3.9	+0.0	+0.0	+0.0	78	55.0	Mid	10.7	242
11,0		+0.0	. 0.0	. 0.0	. 0.0	, 5		.,,,,		- 12
^ 4883.902M	39.6	+0.0	+0.0	+0.0	+0.0	+0.0	44.0	54.0	-10.0	Horiz
1303.702111	57.0	+0.0	+1.1	+0.0	+3.3	. 0.0		M (rad 1-6)	10.0	129
		+0.0	1.1	. 0.0	. 5.5			(144 1 0)		127
L		3.0								

Page 52 of 76 Report No.: 96898-11

44 1109.800M	37.2	+0.0	+1.0	-28.8	+24.3	+0.0	35.5	54.0	-18.5	Vert
		+1.8	+0.0	+0.0	+0.0			Low		186
		+0.0								
45 1439.400M	33.1	+0.0	+0.0	+0.0	+0.0	+0.0	35.4	54.0	-18.6	Horiz
		+0.0	+0.6	+0.0	+1.7	91		L (rad 1-6)		159
		+0.0								
46 4960.000M	25.9	+0.0	+2.2	-29.2	+32.5	+0.0	35.4	54.0	-18.6	Horiz
Ave		+4.0	+0.0	+0.0	+0.0	7		High		286
		+0.0								
^ 4960.000M	37.9	+0.0	+0.0	+0.0	+0.0	+0.0	42.3	54.0	-11.7	Horiz
		+0.0	+1.1	+0.0	+3.3			H (rad 1-6)		129
		+0.0						, , , , , ,		
^ 4960.000M	27.7	+0.0	+2.2	-29.2	+32.5	+0.0	37.2	54.0	-16.8	Horiz
		+4.0	+0.0	+0.0	+0.0	359		High		133
		+0.0						J		
49 12010.000	13.8	+0.0	+3.8	-27.4	+38.3	+0.0	35.3	54.0	-18.7	Horiz
M		+6.8	+0.0	+0.0	+0.0					
Ave		+0.0				209		Low (ambie	nt)	155
^ 12010.000	19.1	+0.0	+3.8	-27.4	+38.3	+0.0	40.6			Horiz
M	17.1	+6.8	+0.0	+0.0	+0.0	. 0.0	10.0	21.0	15.1	HOHE
112		+0.0	0.0	0.0	0.0	31		Low (ambie	nt)	158
51 12010.000	13.8	+0.0	+3.8	-27.4	+38.3	+0.0	35.3			Vert
M	13.0	+6.8	+0.0	+0.0	+0.0	. 0.0	33.3	51.0	10.7	V 011
Ave		+0.0	. 0.0	. 0.0	. 0.0	267		Low (ambie	nt)	138
^ 12009.960	17.9	+0.0	+3.8	-27.4	+38.3	+0.0	39.4			Vert
M	17.7	+6.8	+0.0	+0.0	+0.0	10.0	37.4	54.0	-14.0	VCIT
171		+0.0	. 0.0	. 0.0	. 0.0	91		Low (ambie	nt)	138
53 4955.872M	30.8	+0.0	+0.0	+0.0	+0.0	+0.0	35.2	54.0	-18.8	Horiz
33 4733.072W	30.0	+0.0	+1.1	+0.0	+3.3	284	33.2	imod H	-10.0	135
		+0.0	. 1.1	. 0.0	. 5.5	201		mod II		133
54 4880.138M	30.6	+0.0	+0.0	+0.0	+0.0	+0.0	35.0	54.0	-19.0	Vert
34 4000.130WI	30.0	+0.0	+1.1	+0.0	+3.3	174	33.0	imod M	-19.0	188
		+0.0	' 1.1	10.0	13.3	1/4		iiiod ivi		100
55 1200.500M	36.4	+0.0	+1.1	-28.8	+24.4	+0.0	35.0	54.0	-19.0	Vert
33 1200.300M	30.4	+0.0 +1.9	$^{+1.1}$	-28.8 +0.0	+24.4 +0.0	+0.0	33.0	Low	-19.0	186
			+0.0	±0.0	±0.0			LOW		100
5.6 4000 000M	20.2	+0.0	+0.0	+0.0	ΙΛΛ	+0.0	247	540	-19.3	II a mi-
56 4880.089M	30.3	+0.0	+0.0	+0.0	+0.0 +3.3	+0.0			-19.3	Horiz
		+0.0	+1.1	+0.0	⊤3.3	110		imod M		153
57 4004 257N f	20.4	+0.0	100	100	100	100	24.6	540	10.4	1 74
57 4804.257M	30.4	+0.0	+0.0	+0.0	+0.0	+0.0	34.6	54.0	-19.4	Vert
		+0.0	+1.0	+0.0	+3.2	341		imod L		141
50 4050 5513.5	20.0	+0.0	100	100		10.0	24.4	54.0	10.6	
58 4959.771M	30.0	+0.0	+0.0	+0.0	+0.0	+0.0	34.4	54.0	-19.6	Horiz
		+0.0	+1.1	+0.0	+3.3	190		imod H		135
50 50000000	26.0	+0.0				. 0. 0	2		16.	** '
59 7238.000M	29.0	+0.0	+0.0	+0.0	+0.0	+0.0	34.3	54.0	-19.7	Horiz
		+0.0	+1.3	+0.0	+4.0			H (rad 1-6)		147
		+0.0								
60 7290.000M	29.0	+0.0	+0.0	+0.0	+0.0	+0.0	34.3	54.0	-19.7	Vert
		+0.0	+1.3	+0.0	+4.0	360		M (rad 1-6)		136
		+0.0								

(1 1100 000) (25.0		. 1. 0	20.0	. 2.4.2	. 0. 0	242	540	10.0	T 7 .
61 1109.900M	35.9	+0.0	+1.0	-28.8	+24.3	+0.0		54.0	-19.8	Vert
		+1.8	+0.0	+0.0	+0.0	342		High		137
(2 11202 000	27.4	+0.0	. 0. 0		. 0. 0	. 0. 0	242	7.4.0	10.0	X7 /
62 11392.000	27.4	+0.0	+0.0	+0.0	+0.0	+0.0	34.2	54.0	-19.8	Vert
M		+0.0	+1.7	+0.0	+5.1			II (11 C)		1.47
(2 1700 000) (22.2	+0.0	.1.2	20.0	107.0		240	H (rad 1-6)	20.0	147
63 1799.990M	32.3	+0.0	+1.3	-28.8	+27.0	+0.0	34.0		-20.0	Horiz
Ave		+2.2	+0.0	+0.0	+0.0	359		Low		200
↑ 1000 000M	22.2	+0.0	+1.2	20.0	127.0	+0.0	25.0	54.0	10.0	II a mi —
^ 1800.000M	33.3	+0.0	+1.3	-28.8	+27.0	+0.0	33.0		-19.0	Horiz
		+2.2	+0.0	+0.0	+0.0			Low		204
(5, 7122,000M	20.5	+0.0	100	100	100	100	22.0	540	20.2	IIi.
65 7133.000M	28.5	+0.0	+0.0	+0.0	+0.0	+0.0	33.8	54.0	-20.2	Horiz
		+0.0	+1.3	+0.0	+4.0	131		L (rad 1-6)		138
((1110 000M	25.4	+0.0	+1.0	20.0	1242	100	22.7	540	20.2	IIi.
66 1110.000M	35.4	+0.0 +1.8	+1.0 +0.0	-28.8 +0.0	+24.3 +0.0	+0.0 81	33.7	54.0 Low	-20.3	Horiz 204
		$^{+1.8}_{+0.0}$	+0.0	+0.0	+0.0	81		LOW		204
(7 24(4 000M	20.0	+0.0	+0.0	+0.0	ΙΛΛ	+0.0	33.7	54.0	-20.3	II a mi —
67 3464.000M	30.0	+0.0 +0.0	+0.0	+0.0 +0.0	+0.0 +2.8	+0.0	33.7	54.0 L (rad 1-6)	-20.3	Horiz 153
		+0.0 +0.0	±0.9	±0.0	⊤ 2.8			L (1au 1-0)		133
68 1200.300M	35.0	+0.0	+1.1	-28.8	+24.4	+0.0	22.6	54.0	-20.4	Vert
08 1200.300M	33.0	+0.0 +1.9	$^{+1.1}$	-28.8 +0.0	+0.0	+0.0	33.0	Mid	-20.4	178
		+0.0	10.0	10.0	10.0			MIG		1/0
69 3090.000M	30.1	+0.0	+0.0	+0.0	+0.0	+0.0	33.5	54.0	-20.5	Vert
09 3090.000M	30.1	+0.0	+0.0	+0.0 +0.0	+2.6	326	33.3	L (rad 1-6)	-20.3	154
		+0.0	10.8	10.0	12.0	320		L (1au 1-0)		134
70 1289.700M	31.1	+0.0	+0.0	+0.0	+0.0	+0.0	33.3	54.0	-20.7	Horiz
70 1269.700W	31.1	+0.0	+0.6	+0.0	+1.6	136	33.3	L (rad 1-6)	-20.7	159
		+0.0	10.0	10.0	11.0	150		E (lua 1-0)		137
71 8630.000M	27.3	+0.0	+0.0	+0.0	+0.0	+0.0	33.2	54.0	-20.8	Vert
71 0030.000141	21.3	+0.0	+1.4	+0.0	+4.5	360	33.2	L (rad 1-6)	20.0	154
		+0.0		. 0.0	1.0	500		E (lua l' 0)		10 1
72 7221.000M	27.9	+0.0	+0.0	+0.0	+0.0	+0.0	33.2	54.0	-20.8	Horiz
72 7221.000141	21.5	+0.0	+1.3	+0.0	+4.0	209	33.2	M (rad 1-6)		153
		+0.0	1.0	0.0				111 (144 1 0)		100
73 3068.000M	29.6	+0.0	+0.0	+0.0	+0.0	+0 0	33.0	54.0	-21.0	Horiz
, 5 5 5 5 5 5 5 5 7 7 1		+0.0	+0.8		+2.6			H (rad 1-6)	_1.0	147
		+0.0	,					()		
74 1439.900M	30.3	+0.0	+0.0	+0.0	+0.0	+0.0	32.6	54.0	-21.4	Vert
		+0.0	+0.6	+0.0	+1.7	220		L (rad 1-6)		176
		+0.0						()		
75 5359.000M	27.8	+0.0	+0.0	+0.0	+0.0	+0.0	32.4	54.0	-21.6	Vert
	-	+0.0	+1.1	+0.0	+3.5	360	-	H (rad 1-6)		147
		+0.0						` ,		
76 1439.600M	30.1	+0.0	+0.0	+0.0	+0.0	+0.0	32.4	54.0	-21.6	Vert
	•	+0.0	+0.6	+0.0	+1.7	166	-	H (rad 1-6)		147
		+0.0						, ,		
77 1109.400M	34.0	+0.0	+1.0	-28.8	+24.3	+0.0	32.3	54.0	-21.7	Vert
		+1.8	+0.0	+0.0	+0.0			Mid		178
		+0.0								
L										

78	1199.300M	33.5	+0.0	+1.1	-28.8	+24.4	+0.0		54.0	-21.9	Vert
			+1.9	+0.0	+0.0	+0.0	360		High		137
			+0.0								
79	2130.000M	28.3	+0.0	+1.3	-28.4	+28.3	+0.0	32.0	54.0	-22.0	Horiz
			+2.5	+0.0	+0.0	+0.0	359		Low		99
			+0.0								
80	2189.600M	28.1	+0.0	+1.4	-28.3	+28.2	+0.0	32.0	54.0	-22.0	Horiz
			+2.6	+0.0	+0.0	+0.0	359		Low		99
			+0.0								
81	3948.000M	28.1	+0.0	+0.0	+0.0	+0.0	+0.0	31.9		-22.1	Vert
			+0.0	+0.9	+0.0	+2.9	360		M (rad 1-6)		136
			+0.0								
82	1799.400M	30.1	+0.0	+1.3	-28.8	+27.0	+0.0	31.8	54.0	-22.2	Horiz
			+2.2	+0.0	+0.0	+0.0	23		Mid		133
			+0.0								
83	1109.520M	33.4	+0.0	+1.0	-28.8	+24.3	+0.0	31.7	54.0	-22.3	Horiz
			+1.8	+0.0	+0.0	+0.0	359		High		180
			+0.0								
84	1800.680M	29.9	+0.0	+1.3	-28.8	+27.0	+0.0	31.6	54.0	-22.4	Horiz
			+2.2	+0.0	+0.0	+0.0	359		High		180
			+0.0								
85	2160.000M	27.8	+0.0	+1.3	-28.3	+28.2	+0.0	31.5	54.0	-22.5	Horiz
			+2.5	+0.0	+0.0	+0.0	359		Low		99
			+0.0								
86	2108.800M	28.6	+0.0	+0.0	+0.0	+0.0	+0.0	31.4	54.0	-22.6	
			+0.0	+0.7	+0.0	+2.1	310		M (rad 1-6)		153
			+0.0								
87	1614.600M	29.0	+0.0	+0.0	+0.0	+0.0	+0.0	31.4		-22.6	Vert
			+0.0	+0.6	+0.0	+1.8			M (rad 1-6)		136
	1200 0003 5	20.1	+0.0	. 0. 0	. 0 0	. 0. 0	. 0. 0	21.2	7.1.0		
88	1289.800M	29.1	+0.0	+0.0	+0.0	+0.0	+0.0	31.3		-22.7	Horiz
			+0.0	+0.6	+0.0	+1.6	359		H (rad 1-6)		147
00	1740 1003 6	20.0	+0.0	. 1 . 1	20.0	1266	. 0. 0	21.2	54.0	22.0	T.7
89	1740.100M	29.8	+0.0	+1.4	-28.8	+26.6	+0.0	31.2	54.0	-22.8	Vert
			+2.2	+0.0	+0.0	+0.0			Low		186
00	1200 000 4	22.5	+0.0	1 1	20.0	1244	+0.0	21.1	<i>510</i>	22.0	II.a'-
90	1200.000M	32.5	+0.0	+1.1 +0.0	-28.8	+24.4 +0.0	+0.0		54.0 Low	-22.9	Horiz 204
			+1.9 +0.0	±0.0	+0.0	±0.0			LOW		∠04
01	1995.400M	20.1	+0.0	±0.0	+0.0	±0.0	+0.0	30.9	54.0	-23.1	Vert
91	1773.4UUWI	28.1	+0.0 +0.0	+0.0 +0.7	+0.0 +0.0	+0.0 +2.1	⊤ 0.0	30.9	54.0 M (rad 1-6)	-23.1	136
			+0.0 +0.0	10.7	10.0	· Z.1			1VI (1au 1-0)		130
02	1140.100M	32.5	+0.0	+1.0	-28.8	+24.3	+0.0	30.8	54.0	-23.2	Vert
72	1140.100W	34.3	+1.8	+0.0	+0.0	+24.3 +0.0	10.0	50.0	Low	-23.2	186
			+0.0	. 0.0	.0.0	.0.0			LOW		100
03	1439.560M	31.8	+0.0	+1.2	-29.0	+24.6	+0.0	30.7	54.0	-23.3	Horiz
93	1737.3001VI	51.0	+2.1	+0.0	+0.0	+0.0	359	50.1	High	-43.3	180
			+0.0	. 0.0	. 0.0	. 0.0	557		111511		100
9.4	1049.700M	32.5	+0.0	+1.0	-28.8	+24.2	+0.0	30.6	54.0	-23.4	Vert
)4	1077./00111	34.3	+1.7	+0.0	+0.0	+0.0	. 0.0	50.0	Mid	<i>23.</i> ⊤	178
			+0.0	. 0.0	. 0.0	. 0.0			17114		1/0
			. 0.0								

Page 55 of 76 Report No.: 96898-11

95 2340.100M	26.8	+0.0	+1.4	-28.2	+28.0	+0.0	30.6	54.0	-23.4	Vert
		+2.6	+0.0	+0.0	+0.0			Low		186
		+0.0								
96 1049.400M	32.0	+0.0	+1.0	-28.8	+24.2	+0.0	30.1	54.0	-23.9	Vert
		+1.7	+0.0	+0.0	+0.0			Low		186
		+0.0								
97 2339.600M	26.3	+0.0	+1.4	-28.2	+28.0	+0.0	30.1	54.0	-23.9	Horiz
		+2.6	+0.0	+0.0	+0.0	293		Low		99
		+0.0								
98 3599.500M	23.9	+0.0	+1.8	-28.5	+29.7	+0.0	30.1	54.0	-23.9	Vert
		+3.2	+0.0	+0.0	+0.0			Low		125
		+0.0								
99 2070.000M	26.4	+0.0	+1.3	-28.5	+28.3	+0.0	30.0	54.0	-24.0	Horiz
		+2.5	+0.0	+0.0	+0.0	359		Low		99
		+0.0								
100 1079.600M	31.4	+0.0	+1.0	-28.8	+24.3	+0.0	29.7	54.0	-24.3	Vert
		+1.8	+0.0	+0.0	+0.0			Low		186
		+0.0								
101 2040.000M	25.8	+0.0	+1.3	-28.5	+28.4	+0.0	29.4	54.0	-24.6	Horiz
		+2.4	+0.0	+0.0	+0.0	359		Low		99
		+0.0								
102 1140.000M	30.8	+0.0	+1.0	-28.8	+24.3	+0.0	29.1	54.0	-24.9	Horiz
		+1.8	+0.0	+0.0	+0.0			Low		204
		+0.0								
103 1290.000M	30.4	+0.0	+1.2	-28.9	+24.5	+0.0	29.1	54.0	-24.9	Horiz
		+1.9	+0.0	+0.0	+0.0			Low		204
		+0.0								
104 2280.000M	25.1	+0.0	+1.4	-28.2	+28.1	+0.0	29.0	54.0	-25.0	Horiz
		+2.6	+0.0	+0.0	+0.0	357		Low		99
		+0.0								
105 1109.967M	30.3	+0.0	+1.0	-28.8	+24.3	+0.0	28.6	54.0	-25.4	Horiz
Ave		+1.8	+0.0	+0.0	+0.0	25		High		99
		+0.0						C		
^ 1109.900M	33.8	+0.0	+1.0	-28.8	+24.3	+0.0	32.1	54.0	-21.9	Horiz
		+1.8	+0.0		+0.0	184		Mid		133
		+0.0								
107 2010.000M	24.8	+0.0	+1.3	-28.5	+28.4	+0.0	28.4	54.0	-25.6	Horiz
		+2.4				359		Low		99
		+0.0								
108 2100.000M	24.6	+0.0	+1.3	-28.4	+28.3	+0.0	28.3	54.0	-25.7	Horiz
		+2.5	+0.0	+0.0	+0.0	359		Low		99
		+0.0								
109 1080.000M	29.7	+0.0	+1.0	-28.8	+24.3	+0.0	28.0	54.0	-26.0	Horiz
		+1.8	+0.0	+0.0	+0.0			Low		204
		+0.0								
110 1439.400M	29.0	+0.0	+1.2	-29.0	+24.6	+0.0	27.9	54.0	-26.1	Vert
		+2.1	+0.0	+0.0	+0.0			Low		186
		+0.0								
111 1050.000M	29.6	+0.0	+1.0	-28.8	+24.2	+0.0	27.7	54.0	-26.3	Horiz
		+1.7	+0.0	+0.0	+0.0			Low		204
		+0.0								-
L										

Page 56 of 76 Report No.: 96898-11

110 1000 5000	• • • •			• • • •		0.0			2	
112 1259.500M	29.1	+0.0	+1.2	-28.9	+24.4	+0.0	27.7		-26.3	Vert
		+1.9	+0.0	+0.0	+0.0			Low		186
112 1700 1007		+0.0		• • • •						
113 1590.400M	27.6	+0.0	+1.3	-28.9	+25.4	+0.0	27.5	54.0	-26.5	Vert
		+2.1	+0.0	+0.0	+0.0			Low		186
		+0.0								
114 1260.000M	28.4	+0.0	+1.2	-28.9	+24.4	+0.0	27.0		-27.0	Horiz
		+1.9	+0.0	+0.0	+0.0			Low		204
115 22 10 6 000	20.2	+0.0	. 0. 0	. 0. 0	. 0. 0	. 0. 0	26.5	5.4.0	25.5	
115 22496.000	30.2	+0.0	+0.0	+0.0	+0.0	+0.0	26.5	54.0	-27.5	Horiz
M		+0.0	+2.5	+3.2	+7.4	256		36:14 1:		1.4.4
Ave		-16.8				356		Mid Ambie		144
^ 22496.000	34.2	+0.0	+0.0	+0.0	+0.0	+0.0	30.5	54.0	-23.5	Horiz
M		+0.0	+2.5	+3.2	+7.4					
		-16.8						Mid Ambie		144
117 22584.000	30.2	+0.0	+0.0	+0.0	+0.0	+0.0	26.5	54.0	-27.5	Vert
M		+0.0	+2.5	+3.1	+7.4	2.6				
Ave		-16.7				36		Low Ambi		147
^ 22584.000	34.2	+0.0	+0.0	+0.0	+0.0	+0.0	30.5	54.0	-23.5	Vert
M		+0.0	+2.5	+3.1	+7.4					
		-16.7				221		Low Ambi		147
119 22488.000	30.1	+0.0	+0.0	+0.0	+0.0	+0.0	26.4	54.0	-27.6	Vert
M		+0.0	+2.5	+3.2	+7.4			3 61 1 1 1 1 1		
Ave		-16.8						Mid Ambie		147
^ 22488.000	34.0	+0.0	+0.0	+0.0	+0.0	+0.0	30.3	54.0	-23.7	Vert
M		+0.0	+2.5	+3.2	+7.4					
		-16.8				222		36:14 1:		1.45
						323		Mid Ambie	ent	147
121 2221 222										
121 22504.000	30.1	+0.0	+0.0	+0.0	+0.0	+0.0	26.4	54.0	-27.6	Horiz
M		+0.0	+2.5	+3.2	+7.4	0.0		TT: 1 A 1:		
Ave	212	-16.8				80	20	High Ambi		144
^ 22504.000	34.3	+0.0	+0.0	+0.0	+0.0	+0.0	30.6	54.0	-23.4	Horiz
M		+0.0	+2.5	+3.2	+7.4			TT: 1 A 13	4	1 4 1
100 0000000	20.1	-16.8					26.4	High Ambi		141
123 22600.000	30.1	+0.0	+0.0	+0.0	+0.0	+0.0	26.4	54.0	-27.6	Horiz
M		+0.0	+2.5	+3.1	+7.4	126		т 4 1.	4	1 4 4
Ave	22.0	-16.7	100	10.0				Low Ambi		144
^ 22600.000	33.9	+0.0	+0.0	+0.0	+0.0	+0.0	30.2	54.0	-23.8	Horiz
M		+0.0	+2.5	+3.1	+7.4	250		т 4 1.	4	1 4 4
105 00056 000	20.0	-16.7				359	262	Low Ambi		144
125 22056.000	29.8	+0.0	+0.0	+0.0	+0.0	+0.0	26.2	54.0	-27.8	Vert
M		+0.0	+2.4	+3.2	+7.4	260		TT: .1. A 1.3	4	1 47
Ave	22.6	-16.6	100	10.0		360	20.0	High Ambi		147
^ 22056.000	33.6	+0.0	+0.0	+0.0	+0.0	+0.0	30.0	54.0	-24.0	Vert
M		+0.0	+2.4	+3.2	+7.4	20		TT' 1 A 1 '	. ,	1.47
107 1441 0003 5	261	-16.6		20.0	1016	28	25.0	High Ambi		147
127 1441.000M	26.1	+0.0	+1.2	-29.0	+24.6	+0.0	25.0	54.0	-29.0	Horiz
		+2.1	+0.0	+0.0	+0.0			Low		204
I		+0.0								

Page 57 of 76 Report No.: 96898-11

Band Edge

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)

Customer: Spirent Communications, Inc.

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Work Order #: 96898 Date: 9/1/2015
Test Type: Maximized Emissions Time: 10:53:13
Tested By: Randal Clark Sequence#: 31

Software: EMITest 5.02.00

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.

The EUT is supported on a 1.5m table with connections to peripheral devices typical for normal installation. Cables are attached to the 6 audio ports with no termination.

Preliminary testing determined the configuration utilized is representative of worst case.

The laptop computer is located outside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:

Max DC power.

All Radios powered on.

Radio 1 transmitting continuously at TX power = 30 with modulation enabled.

Revision 1.2 board

Temperature: 24° C Relative Humidity: 40%

Atmospheric Pressure: 101.7 kPa

Frequency Range Investigated: Band Edge Test Procedure: ANSI C63.10 (2013)

Worst case polarity recorded.

Page 58 of 76 Report No.: 96898-11

Spirent Communications, Inc. WO#: 96898 Sequence#: 31 Date: 9/1/2015 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Vertical

- --- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.02.00

- 1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/13/2013	11/13/2015
T2	AN03209	Preamp	83051A	3/20/2015	3/20/2017
Т3	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	9/16/2013	9/16/2015
T4	AN03227	Cable	32026-29080- 29080-84	5/13/2014	5/13/2016
T5	ANP05305	Cable	ETSI-50T	2/20/2014	2/20/2016

Measurement Data:		<u> </u>			Test Distance: 3 Meters						
# F	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
N	ЛHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m$	dB	Ant
1 240	0.000M	35.2	+0.0	-28.2	+28.0	+1.4	+0.0	39.1	54.0	-14.9	Horiz
Ave			+2.7						Radio 1-6	TX on	
									same chann	nel -	
									8DSPK		
	0.000M	33.7	+0.0	-28.2	+28.0	+1.4	+0.0	37.6	54.0	-16.4	Horiz
Ave			+2.7						Radio 1-6		
									same chann	nel - Pi/4	
									DQPSK		
^ 240	0.000M	51.7	+0.0	-28.2	+28.0	+1.4	+0.0	55.6	54.0	+1.6	Horiz
			+2.7						Radio 1-6		
									same chann	nel -	
A 240	0.00014	50.7		20.2	120.0	. 1 . 4		716	8DPSK	10.6	
^ 240	0.000M	50.7	+0.0	-28.2	+28.0	+1.4	+0.0	54.6	54.0	+0.6	Horiz
			+2.7						Radio 1-6 same chann		
									DQPSK	lei - Pi/4	
A 240	0.000M	40.8	+0.0	-28.2	+28.0	+1.4	+0.0	44.7	54.0	-9.3	Horiz
240	U.UUUIVI	40.8	+0.0	-20.2	±28.0	⊤1. 4	+0.0	44./	Radio 1&2		пони
			12.7						8DPSK	IMOD	
^ 240	0.000M	40.6	+0.0	-28.2	+28.0	+1.4	+0.0	44.5	54.0	-9.5	Horiz
240	0.0001	40.0	+2.7	20.2	120.0	. 1,4	10.0	77.5	Radio 1-6		110112
			2.,						same chani		
									GFSK		
^ 240	0.000M	40.6	+0.0	-28.2	+28.0	+1.4	+0.0	44.5	54.0	-9.5	Horiz
			+2.7						Radio 1&2	IMOD	-
									Pi/4 DQPS	K	
^ 240	0.000M	40.1	+0.0	-28.2	+28.0	+1.4	+0.0	44.0	54.0	-10.0	Horiz
			+2.7						Radio 1 8D	PSK	
^ 240	0.000M	39.5	+0.0	-28.2	+28.0	+1.4	+0.0	43.4	54.0	-10.6	Horiz
			+2.7						Radio 1 Pi	/4	
									DQPSK		
^ 240	0.000M	34.8	+0.0	-28.2	+28.0	+1.4	+0.0	38.7	54.0	-15.3	Horiz
			+2.7						Radio 1 GI		
^ 240	0.000M	34.4	+0.0	-28.2	+28.0	+1.4	+0.0	38.3	54.0	-15.7	Horiz
			+2.7						Radio 1&2	IMOD	
									GFSK		

12 2483.	500M 32.	3 +0.0	-28.2	+27.9	+1.5	+0.0	36.2	54.0	-17.8	Horiz
		+2.7		_,,,				Radio 1-6	TX on	
								same channel -		
								GFSK		
13 2483.	500M 31.	3 +0.0	-28.2	+27.9	+1.5	+0.0	35.2	54.0	-18.8	Horiz
		+2.7						Radio 1-6	TX on	
								same chann	iel -	
								8DPSK		
14 2483.	500M 30.	9 +0.0	-28.2	+27.9	+1.5	+0.0	34.8	54.0	-19.2	Horiz
		+2.7						Radio 1-6	TX on	
								same chann	el - Pi/4	
								DQPSK		
15 2483.	500M 30.	1 +0.0	-28.2	+27.9	+1.5	+0.0	34.0	54.0	-20.0	Horiz
		+2.7						Radio 1 8DPSK		
16 2483.	500M 28.	8 +0.0	-28.2	+27.9	+1.5	+0.0	32.7	54.0	-21.3	Horiz
		+2.7						Radio 1&2 IMOD		
								GFSK		
17 2483.	500M 28.		-28.2	+27.9	+1.5	+0.0	32.3	54.0	-21.7	Horiz
		+2.7						Radio 1&2 IMOD		
								8DPSK		
18 2483.	500M 28.		-28.2	+27.9	+1.5	+0.0	32.0	54.0	-22.0	Horiz
		+2.7						Radio 1&2 Pi/4		
								DQPSK		
19 2483.	500M 23.		-28.2	+27.9	+1.5	+0.0	27.8	54.0	-26.2	Horiz
		+2.7						Radio 1 Pi/4		
								DQPSK		
20 2483.	500M 22.		-28.2	+27.9	+1.5	+0.0	26.7	54.0	-27.3	Horiz
		+2.7						Radio 1 GFSK		

Plots

GFSK

8DPSK

Pi4DQPSK

Test Setup Photos

9kHz – 30MHz

30MHz **–** 1GHz

1 – 18GHz

18 -26GHz

SUPPLEMENTAL INFORMATION

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 75 of 76 Report No.: 96898-11

SAMPLE CALCULATIONS							
	Meter reading (dBμV)						
+	Antenna Factor	(dB)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBμV/m)					

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz					
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz					

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 76 of 76 Report No.: 96898-11