Mesures produit

Exercice 1. Soit f la fonction définie sur l'espace produit $\mathbb{R}_+ \times [0,1]$ par $f(x,y) = 2e^{-2xy} - e^{-xy}$.

- 1. Montrer que f est $\mathcal{B}(\mathbb{R}_+) \otimes \mathcal{B}([0,1])$ -mesurable.
- 2. Calculer $\int_{[0,1]} \left(\int_{\mathbb{R}_+} f(x,y) \, dx \right) dy$ et $\int_{\mathbb{R}_+} \left(\int_{[0,1]} f(x,y) \, dy \right) dx$. Conclure.
- **Exercice 2.** 1. Montrer que l'intégrale $I = \int_0^{+\infty} \frac{\ln x}{x^2 1} dx$ est bien définie et qu'elle vaut encore

$$I = -2 \int_0^1 \frac{\ln x}{1 - x^2} \, dx.$$

- 2. Calculer de deux façons différentes l'intégrale $\int_{\mathbb{R}^2} \frac{dx \, dy}{(1+y)(1+x^2y)}$ et en déduire la valeur de I.
- 3. Déduire de la question précédente et d'un développement en série entière de $1/(1-x^2)$ les égalités

$$\sum_{n\geqslant 0} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}, \quad \text{puis} \quad \sum_{n\geqslant 1} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Exercice 3. Soit (E, \mathcal{A}, μ) un espace mesuré. Soit f et g deux fonctions mesurables positives sur (E, \mathcal{A}) .

- 1. Montrer que $A = \{(x,t) \in E \times \mathbb{R}_+ ; f(x) \geqslant t\} \in \mathcal{A} \otimes \mathcal{B}(\mathbb{R}_+).$
- 2. Montrer que $\int_E f \, d\mu = \int_{\mathbb{R}_+} \mu(\{f \geqslant t\}) \lambda(dt)$.
- 3. En déduire que, pour tout $p\geqslant 1$, $\int_E g^p\,d\mu=\int_{\mathbb{R}_+} pt^{p-1}\mu(\{g\geqslant t\})\lambda(dt).$
- 4. Que dire de $\int_E \varphi \circ f \, d\mu$ si φ est une fonction croissante de classe \mathcal{C}^1 sur \mathbb{R}_+ nulle en 0?
- 5. En considérant l'application de $E \times \mathbb{R}_+ \times \mathbb{R}_+$ dans \mathbb{R}_+ , $F:(x,s,t)\mapsto \mathbf{1}_{[s,+\infty[}(f(x))\mathbf{1}_{[t,+\infty[}(g(x)), montrer que$

$$\int_{E} fg \, d\mu = \int_{\mathbb{R}^{2}_{+}} \mu(\{f \geqslant s\} \cap \{g \geqslant t\}) \lambda(ds) \lambda(dt).$$

Exercice 4. Soit f une fonction de \mathbb{R}^2 dans \mathbb{R} . Soit I un intervalle de \mathbb{R} . Dans chacun des cas suivants, déterminer si f est L.I. sur \mathbb{R}^2 et calculer, si elles existent les intégrales itérées $\int_I \int_I f(x,y) \lambda(dx) \, \lambda(dy)$ et $\int_I \int_I f(x,y) \lambda(dy) \, \lambda(dx)$.

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2} \quad \text{avec} \quad I = [0,1] \quad \text{et} \quad f(x,y) = \begin{cases} -1 & \text{si } x > 0 \text{ et } 0 < y - x \leqslant 1, \\ 2 & \text{si } x > 0 \text{ et } 1 < y - x \leqslant 2, \\ -1 & \text{si } x > 0 \text{ et } 2 < y - x \leqslant 3, \\ 0 & \text{sinon.} \end{cases} \quad \text{avec} \quad I = \mathbb{R}.$$

Exercice 5. Soit f et g les fonctions définies sur \mathbb{R}_+ par

$$f(t) = \int_0^{+\infty} \frac{\sin x}{x} e^{-tx} dx \quad \text{et} \quad g(t) = \int_0^{+\infty} \left(\frac{\sin x}{x}\right)^2 e^{-tx} dx.$$

- 1. Montrer que f est continue sur \mathbb{R}_+^* et g sur \mathbb{R}_+ .
- 2. Calculer f(t) pour tout t > 0 en partant de l'égalité $\frac{\sin x}{x} = \int_0^1 \cos(xy) \, dy$.
- 3. Calculer g(t) pour tout t > 0 en partant de l'égalité $\left(\frac{\sin x}{x}\right)^2 = \int_0^1 \frac{\sin(2xy)}{x} \, dy$.
- 4. En déduire la valeur de g(0).

Exercice 6. Une formule d'intégration par parties généralisée

1. Soit μ et ν des mesures finies sur $\mathcal{B}(\mathbb{R})$. On désigne par F et G leurs fonctions de répartition respectives ; c'est-à-dire que

$$\forall x \in \mathbb{R}, \quad F(x) = \mu(]-\infty, x]) \quad \text{et} \quad G(x) = \nu(]-\infty, x]).$$

Pour des réels fixés a et b, avec a < b, on définit $A = \{(x, y) \in \mathbb{R}^2 : a < y \leqslant x \leqslant b\}$. En calculant de deux façons différentes $\mu \otimes \nu(A)$, montrer que

$$\int_{]a,b]} F(t^{-}) \nu(dt) + \int_{]a,b]} G(t) \mu(dt) = F(b)G(b) - F(a)G(a).$$

2. Soit f et g sont des fonctions positives, λ -intégrables sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, \quad F(x) = \int_{-\infty}^{x} f \, d\lambda, \quad \text{et} \quad G(x) = \int_{-\infty}^{x} g \, d\lambda.$$

Montrer que F et G sont les fonctions de répartition de deux mesures finies sur $\mathcal{B}(\mathbb{R})$. En déduire que

$$\forall a, b \in \mathbb{R}, \ a < b, \quad \int_{[a,b]} F(x)g(x)\,\lambda(dx) + \int_{[a,b]} f(x)G(x)\,\lambda(dx) = F(b)G(b) - F(a)G(a).$$

Exercice 7. Soient f et g deux fonctions de $\mathcal{L}^1_{\mathbb{R}}(\lambda)$, g étant bornée. On définit le produit de convolution de f et g notée f * g sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad (f * g)(x) = \int_{\mathbb{R}} f(x - y)g(y) \, dy.$$

- 1. Montrer que f * g est bien définie et que f * g = g * f. Montrer que f * g est bornée et intégrable.
- 2. Montrer que si f et g sont positives et d'intégrale 1 (pour λ), il en est de même pour f * g.
- 3. Montrer que, pour tout $t \in \mathbb{R}$

$$\int_{\mathbb{R}} e^{itx} (f * g)(x) dx = \int_{\mathbb{R}} e^{itx} f(x) dx \int_{\mathbb{R}} e^{itx} g(x) dx.$$

4. On ne suppose plus que g est bornée (f et g sont intégrables). Montrer que $(x,y) \mapsto f(x-y)g(y)$ est intégrable sur \mathbb{R}^2 . En déduire que f * g est définie presque partout et intégrable.

2