Notation

- y(t) is the output of the neuron.
- x(t) is the total excitation of the neuron (that is, the weighted sum of inputs by fixed and plastic weights), before the tanh nonlinearity $(y(t) = \tanh(x(t)))$.
- $w_{b,a}$ is the fixed/baseline weight of the connection from neuron a to neuron b.
- $alpha_{b,a}$ is the plastic weight (or plasticity coefficient) of the connection from neuron a to neuron b.
- $Hebb_{k,j}(t)$ is the Hebbian trace from neuron j to neuron k.

Note the time conventions: At any time step t, $Hebb_{k,j}(t)$ is an input to $y_k(t)$, so $Hebb_{k,j}(t)$ is computed before $y_k(t)$ for any given time step t. Meanwhile, $y_j(t)$ is an input to the computation of $Hebb_{k,j}(t+1)$.

Note that the following derivatives are all functions of each other, from one time step to the next.

Equations

• Derivative of $x_k(t)$ over $w_{b,a}$:

$$\frac{dx_k(t)}{dw_{b,a}} = \sum_{j=1}^{N} \left\{ w_{k,j} \frac{dy_j(t-1)}{dw_{b,a}} \right\} + \delta_{b=k} y_a(t-1)
+ \sum_{j=1}^{N} \alpha_{k,j} \left\{ Hebb_{k,j}(t) \frac{dy_j(t-1)}{dw_{b,a}} + y_j(t-1) \frac{dHebb_{k,j}(t)}{dw_{b,a}} \right\}$$

• Derivative of $x_k(t)$ over $\alpha_{b,a}$:

$$\begin{split} \frac{dx_k(t)}{d\alpha_{b,a}} &= \sum_{j=1}^N \left\{ w_{k,j} \frac{dy_j(t-1)}{d\alpha_{b,a}} \right\} \\ &+ \sum_{j=1}^N \alpha_{k,j} \left\{ Hebb_{k,j}(t) \frac{dy_j(t-1)}{d\alpha_{b,a}} + y_j(t-1) \frac{dHebb_{k,j}(t)}{d\alpha_{b,a}} \right\} \\ &+ \delta_{b=k} Hebb_{b,a}(t) y_a(t-1)) \end{split}$$

• Derivative of $Hebb_{k,j}(t)$ over $\alpha_{b,a}$

$$\begin{split} \frac{dHebb_{k,j}(t)}{d\alpha_{b,a}} &= \eta \frac{dHebb_{k,j}(t-1)}{d\alpha_{b,a}} \\ &+ (1-\eta) \left\{ \frac{dy_k(t-1)}{d\alpha_{b,a}} y_j(t-2) + y_k(t-1) \frac{dy_j(t-2)}{d\alpha_{b,a}} \right\} \end{split}$$

• Derivative of $Hebb_{k,j}(t)$ over $w_{b,a}$

$$\begin{split} \frac{dHebb_{k,j}(t)}{dw_{b,a}} &= \eta \frac{dHebb_{k,j}(t-1)}{dw_{b,a}} \\ &+ (1-\eta) \left\{ \frac{dy_k(t-1)}{dw_{b,a}} y_j(t-2) + y_k(t-1) \frac{dy_j(t-2)}{dw_{b,a}} \right\} \end{split}$$

• Nonlinearity $(y = \tanh(x))$: derivative of y_k over any quantity ξ , as a function of y_k and the derivative of x_k over this same quantity ξ :

$$\frac{dy_k(t)}{d\xi} = (1 - y_k(t)^2) \frac{dx_k(t)}{d\xi}$$