1007ICT / 1807ICT / 7611ICT Compater Systems & Metworks

https://eduassistpro.github.io/

3A. Digitald Logichanedu_assist Circuits

Dr. Sven Venema

Dr. Vallipuram Muthukkumarasamy

Last Section: Data Representation

Topics Covered:

- Representing phinary integrees am Help
- Conversion https://eduassistpro.github.io/
- Hexadecimal and octal r tions
 Add WeChat edu_assist_pro
 Binary number operatio
- One's complement and two's complement
- Representing characters, images and audio

Lecture Content

- Learning objectives
- Digital logic, Basic logic gates, Boolean algebra
- Combinatorial logic gates

Assignment Project Exam Help

https://eduassistpro.github.io/

Learning Objectives

At the end of this lecture you will have:

- Gained an understanding of basic logic gates
- Learnt the truth tables associated with the basic logic gates
- Gained an understanding of combinatorial legic gates
- Learnt the truth tables associated with combinatorial logic gates

https://eduassistpro.github.io/

Digital Logic (Section 2.2)

- All digital computers are built from a set of low level digital logic switches or Logic Gates.
- Gates operate on binary signals that only have one of two values:

 • Signals from 0 to 2 volts is used to represent a binary 0 (OFF)

 - Signals f https://eduassistpro.github.io/ ent an invalid state
- Three basical orgin cfun edu_assist can be applied to binary signals:
 - AND: output true if ALL inputs are true
 - OR: output true if ANY input is true
 - NOT: output is the inverse of the input
- More complex functions can be built from these three basic gates

Basic Logic Gates (Section 2.4)

Name AND NOT OR | AND)— X ignment Project Exam Help Symbol https://eduassistpro.github.io/ Boolean $\chi =$ expression Add WeChat edu assist Truth Table Α В В Α 00 0 0 0 0 $\mathbf{0}$

Boolean Algebra

 There is a basic set of rules about combining simple binary functions.

Assignment Project Exam Relp

- X OR https://eduassistpredigithue.io/0

- $x \circ x = 1$

•
$$x \text{ AND } \overline{x} = 0$$

Combinatorial Logic Gates

Name Symbol Equivalent Boolean expression Truth Table

A	В	X
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Boolean Algebra - 2

This second set of rules are more powerful.

OR - form **AND** - form

$$(x \cap Ay)ignxnent_Pyoject Example Ip) = x \cap y$$

https://eduassistpro.github.io/

The eXclusive-OR Gate (XOR)

 Looking at the truth table we see that the XOR function can be described as:

 Thi https://eduassistpro.github.io/ ilt in 3 ways:

Add WeChat edu_assistmorpon's Theorem

Assignment Project Exam Help

https://eduassistpro.github.io/

Logic Unit

 Let's try to create a "programmable" logic unit that permits us to apply a predefined logic function to a given set of inputs.

We need a function that lets us select what operation to perform

Summary

Have considered:

- Operation of basic logic gates
- Combinatorial logic gates, Truth tables

Assignment Project Exam Help

https://eduassistpro.github.io/

Next....

- Logic driff Selection Logic https://eduassistpro.github.io/
- Multiplexingdam@cda edu_assistingo