FERTILIZER RECOMENTATION SYSTEM FOR DISEASE PREDICTION

TEAM ID: PNT2022TMID41513

TEAM LEADER

S.KRISHNAPRIYA - 621119104010

TEAM MEMBERS

S.ABINAYA - 621119104001

A.ANCY- 621119104003

A.SOWMIYA - 621119104019

Bachelor of Engineering

In

Computer Science & Engineering

IDHAYA ENGINEERING COLLEGE FOR WOMEN

TABLE OF CONTENT:

INTRODUCTION	2
1.1 Project Overview	2
1.2 Purpose	2
LITERATURE SURVEY	5
2.1 Existing Problem	5
2.2 Problem Definition	5
2.3 References	9
IDEATION AND PROPOSED SOLUTION	11
3.1 Empathy Map	11
3.2 Ideation and Brainstorming	12
3.3 Proposed Solution	15
3.4 Problem Solution Fit	15
REQUIREMENT ANALYSIS	18
4.1 Functional Requirements	18
4.2 Non-Functional Requirements	18
PROJECT DESIGN	19
5.1 Dataflow Diagram	20
5.2 Technical Architecture	21
5.3 User Stories	24
PROJECT PLANNING AND SCHEDULING	25
6.1 Sprint Planning & Estimation	25
6.2 Sprint Delivery Schedule	28
6.3 Reports for JIRA	29
CODING AND SOLUTION	30
TESTING	31
8.1 Test Cases	32
8.2 User Acceptance Testing	32
RESULTS	34
9.1 Performance Metrics	34
PROS AND CONS	38
CONCLUSION	40
FUTURE WORKS	41
APPENDIX	41
Source Code	41

PROJECT REPORT

TEAM ID	PNT2022TMID41513
PROJECT NAME	Fertilizer Recomentation System for Disease Prediction.

TEAM MEMBERS:

Team leader : KRISHNAPRIYA S

Team member 1 : ABINAYA S

Team member 2 : ANCY A

Team member 3 : SOWMIYA S

Fertilizer Recomentation System for Disease Prediction.

1.INTRODUCTION

1.1 Project Overview

Nowadays, artificial intelligence and sensor technology play a vital role in the agriculture field. The use of excess insecticides and fertilizers in farming poses a risk to human health. It is necessary to control them to ensure healthy crop production. Many techniques are used to identify the pest, suggest medications, and do soil nutrient analysis techniques separately. This paper applies the dual operator, Transition Probability Function (TPF), and Convolution Neural Network (CNN) to process the pest's image discretely and continuously for applying the recommended insecticide. The mathematical model with the objective function is derived in this paper. The soil nutrient analysis uses a soil NPK sensor with the recommendation of fertilizers according to the obtained nutrient values. On-spot results are obtained, and the time required for insecticide recommendation is within 10 s, and for fertilizer recommendation, it is within 80 s. Successful identification of five pests, namely aphids, bollworms, leaf folder, leaf miner, and green stink bug, was done with more than 90% accuracy.

The proposed approach is also compared with the other intelligent approaches, such as Artificial Neural Network (ANN), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM), and it is observed that the proposed TPF-CNN approach gives higher accuracy in the shortest time.

1.2 Purpose

The proposed method uses SVM to classify tree leaves, identify the disease and suggest the fertilizer. The proposed method is compared with the existing CNN based leaf disease prediction. The proposed SVM technique gives a better result when compared to existing CNN.

2.LITERATURE SURVEY

2.1 Existing Problem

[1] The proposed method uses SVM to classify tree leaves, identify the disease and suggest the fertilizer. The proposed method is compared with the existing CNN based leaf disease prediction. The proposed SVM technique gives a better result when compared to existing CNN. For the same set of images, F-Measure for CNN is 0.7 and 0.8 for SVM, the accuracyof identification of leaf disease of CNN is 0.6 and SVM is 0.8.

Advantages:

The prediction and diagnosing of leaf diseases are depending on the segmentation such as segmenting the healthy tissues from diseased tissues of leaves.

Disadvantages:

This further research is implementing the proposed algorithm with the existing public datasets. Also, various segmentation algorithms can be implemented to improve accuracy. The proposed algorithm can be modified further to identify the disease that affects the various plant organs such as stems and fruits.

[2] Detection of Leaf Diseases and Classification using Digital Image Processing International Conference on Innovations in Information, Embedded and Communication Systems(ICIIECS), IEEE, 2017.

Advantages:

The system detects the diseases on citrus leaves with 90% accuracy.

Disadvantages:

System only able to detect the disease from citrus leaves. 1 2 The main objective of this paper is image analysis & classification techniques for detection of leaf diseases and classification. The leaf image is firstly preprocessed and then does the further work. K-Means Clustering used for image segmentation and then system extract the GLCM features from disease detected images. The disease

classification done through the SVM classifier. Algorithm used: Gray-Level Co-Occurrence Matrix (GLCM) features, SVM, K-Means Clustering .

[3] Semi-automatic leaf disease detection and classification system for soybean culture IET Image Processing, 2018.

Advantages:

The system helps to compute the disease severity.

Disadvantages:

The system uses leaf images taken from an online dataset, so cannot implement in real time. This paper mainly focuses on the detecting and classifying the leaf disease of soybean plant. Using SVM the proposed system classifies the leaf disease in 3 classes like i.e. downy mildew, frog eye, and septoria leaf blight etc. The proposed system gives maximum average classification accuracy reported is ~90% using a big dataset of 4775 images. Algorithm used: SVM.

[4] Cloud Based Automated Irrigation And Plant Leaf Disease Detection System Using An Android Application. International Conference on Electronics, Communication and Aerospace Technology, ICECA 2017.

Advantages:

It is simple and cost effective system for plant leaf disease detection.

Disadvantages:

Any H/w failures may affect the system

performance. The current paper proposesan android application for irrigation and plant leaf disease detection with cloud and IoT. For monitoring irrigation system they use soil moisture and temperature sensor and sensor data send to the cloud. The user can also detect the plant leaf disease. K-means clustering used for feature extraction. Algorithm used: K-means clustering, Other than this there are some other levels which can be used for sentimental analysis these are-document level, sentence level, entity and aspect.

[6] The current work examines and describes image processing strategies for identifying plant diseases in numerous plant species. BPNN, SVM, K-means clustering, and SGDM are the most common approaches used to identify plant diseases. Disadvantages: Some of the issues in these approaches include the impact of background data on the final picture, optimization of the methodology for a specific plant leaf disease, and automation of the technique for continuous

automated monitoring of plant leaf diseasesin real-world field circumstances.

[7] The proposed method uses SVM to classify tree leaves, identify the disease and suggest the fertilizer. The proposed method is compared with the existing CNN based leaf disease prediction. The proposed SVM technique gives a better result when compared to existing CNN. For the same set of images, F-Measure for CNN is 0.7and

0.8 for SVM, the accuracyof identification of leaf disease of CNN is 0.6 and SVM is 0.8. Advantages: The prediction and diagnosing of leaf diseases are depending on the segmentation such as segmenting the healthy tissues from diseased tissues of leaves. Disadvantages: This further research is implementing the proposed algorithm with the existing public datasets. Also, various segmentation algorithms can be implemented to improve accuracy. The proposed algorithm can be modified further to identify the disease that affects the various plant organs such as stems and fruits.

[8]In this paper, we propose a user-friendly web application system based on machine learning and web-scraping calledthe 'Farmer's Assistant'. With our system, we are successfully able to provide several features - crop recommendation using Random Forest algorithm, fertilizer recommendation using arule based classification system, and crop disease detection using EfficientNet model on leaf images. The user can provide the input using forms on our user interface and quickly gettheir results.

In addition, we also use the LIME interpretability method to explain our predictions on the disease detectionimage, which can potentially help understand why our modelpredicts what it predicts, and improve the datasets and models using this information. Advantages: For crop recommendation and fertilizer recommendation, we can provide the availability of the same on the popular shopping websites, and possibly allow users to buy the crops and fertilizers directly from our application. Disadvantages: To provide fine-grained segmentations of the diseased portion of the dataset, this is not possible

due to lack of such data. However, in our application, we can integrate a segmentation annotation tool where theusers might be able to help us with the lack. Also, we can usesome unsupervised

oming work.		

2.2.References

- [1] Semi-automatic leaf disease detection and classification system for soybean culture IET Image Processing, 2018
- [2] Cloud Based Automated Irrigation And Plant Leaf Disease Detection System Using An Android Application. International Conference on Electronics, Communication and Aerospace Technology, ICECA 2017.
- [3] Ms. Kiran R. Gavhale, Ujwalla Gawande, Plant Leaves Disease detection using Image Processing Techniques, January 2014.
- [4] Duan Yan-e, Design of Intelligent Agriculture Management Information System Based on IOTI, IEEE,4th, Fourth International reference on Intelligent Computation Technology and Automation, 2011
- [5] R. Neela, P. Fertilizers Recommendation System For Disease Prediction In Tree Leave International journal of scientific & technology research volume 8, issue 11, november 2019
- [6] Swapnil Jori1, Rutuja Bhalshankar2, Dipali Dhamale3, Sulochana Sonkamble, Healthy Farm: Leaf Disease Estimation and Fertilizer Recommendation System using Machine Learning, International Journal of All Research Education and Scientific Methods (IJARESM), ISSN: 2455-6211
- [7] Detection of Leaf Diseases and Classification using Digital Image Processing International Conference on Innovations in Information, Embedded and Communication Systems(ICIIECS), IEEE, 2017.
- [8] Shloka Gupta ,Nishit Jain ,Akshay Chopade, Farmer's Assistant: A Machine Learning BasedApplication for Agricultural Solutions.

2.2. Problem Statement Definition

Mr.Munusamy is a 65 years old man. He had a own farming land and do Agriculture for past 30 Years, In this 30 Years he Faced a problem in Choosing Fertilizers and Controlling of Plant Disease. Mr.Munusamy wants to know the better recommendation for fertilizers for plants with the disease. He has faced huge losses for a long time. This problem is usually faced by most farmers. Mr.Munusamy needs to know the result immediately.

3.IDEATION & PROPOSED SOLUTION

3.1.Empathy Map Canvas:

3.2.Ideation & Brainstroming

3.3. Proposed Solution

IBM FERTILIZER RECOMMENTATION USING DISEASE PREDICTON

★ VALUE FOR SOCIETY

Consumers Farming is one of the major sectors that influences a country's economic growth. In country like India, majority of the population is dependent on agriculture for their livelihood. Many new technologies, such as Machine Learning and Deep Learning, are being implemented into agriculture so that it is easier for farmers to grow and maximize their yield.

VALUE FOR ENVIRONMENT

- In the crop recommendation application, the user can provide the soil data from their side and the application will predict which crop should the user grow.
- 8 For the fertilizer recommendation application, the user can input the soil data and the type of crop they are growing, and the application will predict what the soil lacks or has excess of and will recommend improvements.
- For the last application, that is the plant disease prediction application, the user can input an image of a diseased plant leaf, and the application will predict what disease it is and will also give a little background about the disease and suggestions to cure it. These all are to improve the Agriculture, that's slightly reduces the poverty, climatic condition, soil erosion etc ...

* VALUE FOR BUSINESS

Predicting the fertilizers, Analyzing the disease in a tap makes the lifeof farmers easy with minimal subscriptions would provide an acceptable return for the organization. This action adds a lot of value to the company and the business in society.

* FORM FACTORS

Our Fertilizer Recommentation system for disease Prediction is in theform of web application to provide this valuable service to the environment and society.

★ IT IS AN OPPOURTUNITY? (By public review)

IBM FERTILIZER RECOMMENTATION USING DISEASE PREDICTION

★ INTRODUCTION

Fertilizer Recommentation system for disease Prediction is a simple ML and DL based website which recommends the best crop to grow, fertilizers to use and the diseases caught by your crops.

★ PROBLEM STATEMENT

In India, the agriculture industry is extremely vital and crucial for economic and social development and jobs. In India, the agricultural sector provides a living for almost 48% of the population. As per the 2019-2020 economic survey, an Indian farmer's median wage in 16 states is Rupees 2500. Most of the Indian population depends on agriculture for their livelihood. Agriculture gives an opportunity of employment to the village people to develop a country like India on large scale and give a push in the economic sector. The majority of farmers face the problem of planting an inappropriate crop for their land based on a conventional or non-scientific approach. This is a challenging task for a country like India, where agriculture feeds approximately 42% of the population. And the outcomes for the farmer of choosing the wrong crop for land is moving towards metro city for livelihoods, suicide, quitting the agriculture and give land on lease to industrialist or use for the non-agriculture purpose. The outcome of wrong crop selection is less yield and less profit.

★ PROBLEM SOLUTION

The solution to the problem is Machine learning, which is one of the applications of Artificial Intelligence, is being used to implement the proposed system. Crop recommendation is going to recommend you the best crop you can grow in your land as per the soil nutrition value and along with as per the climate in that region. And recommending the best fertilizer for every particular crop is also a challenging task. And the other and most important issue is when a plant gets caught by heterogeneous diseases that effect on less amount of agriculture production and compromises with quality as well. To overcome all these issues this recommendation has been proposed. Nowadays a lot of research and work is being implemented in the smart and modern agriculture domain. Crop recommendation is characterized by a soil database comprised of Nitrogen, Phosphorus, potassium. The ensembles technique is used to build a recommendation model that combines the prediction of multiple machine learning. Models to recommend the right crop based on soil value and the best fertilizer to use.

* THE BENIFICIAL USERS

- * Farmer
- * Common People
- * Seller
- Buyer
- * Employees
- * Industrial People

3.4 .Problem Solution fit.

Project Title : Fertilizers Recommendation System For Disease Prediction Project Design Phase-I-Solution Fit Team Id:PNT2022TMID41513

4.REQUIREMENT ANALYSIS

4.1.Functional Requirement:

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form
FR-2	User Confirmation	Confirmation via Email
FR-3	User Profile	Filling the profile page after logging in
FR-4	Uploading Dataset (Leaf)	Images of the leaves are to be uploaded
FR-5	Requesting solution	Uploaded images is compared with the pre-defined Model and solution is generated
FR-6	Downloading Solution	The Solution in pdf format which contains the recommendations of fertilizers and the possible diseases.

4.2.Non-Functional Requirement

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The system allows the user to perform the tasks easily and efficiently and effectively.
NFR-2	Security	Assuring all data inside the system or its part will be protected against malware attacks or unauthorized access.
NFR-3	Reliability	The website does not recover from failure quickly ,it takes time as the application is running in single server
NFR-4	Performance	Response Time and Net Processing Time is Fast
NFR-5	Availability	The system will be available up to 95% of the time
NFR-6	Scalability	The website is scalable

5.PROJECT DESIGN

5.2.Data Flow Diagram

DFD LEVEL - 0

DFD LEVEL - 1

5.2.Solution & Techinical Architecture

5.3.Techinical Architecture

Table-1: Components & Technologies

S.N o	Component	Description	Technology
1.	UserInterface	How the user interacts with the application .To depict the human-computer interaction and communication.	HTML, CSS,JSP
2.	Application Logic-1	A pageto upload imagesas input	Python
3.	Application Logic-2	To use the Machine Learning model and predicting the result	Python
4.	Database	Structured data-images	MySal
5.	Cloud Database	Database that typically runs on a cloud computing platform and access to the database is provided as-a-service	IBM Cloud Databases for MySQL
6.	File Storage	To store data in a hierarchicalstructure	Local File system
7.	Machine Learning Model	Here, we use a Support Vector Machine Algorithm that is used widely in Classification and Regression problems.	Random Forest ,XG Boost

Table-2: Application Characteristics:

S.N o	Characteristics	Description	Technology
1.	Open-Source Frameworks	Flaskmicro web framework	Written in Python.lt is classified as a micro frame work because it does not requireparticular tools or libraries. It has nodatabase abstraction layer, form validation, or any other components where preexisting third-party libraries provide commonfunctions.
2.	Security Implementations	With all aspects of the job including detecting malicious attacks, analyzing the network endpoint protection and vulnerability assessment, Sign inencryption	IBM CloudApp ID Services
3.	Availability	Available for all data size	-
4.	Performance	Can extend the storage according to our needs	Python,AngularJS

6.User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story/ Task	Acceptanc e criteria	Priority	Release
Customer (Mobile user)	Registration	US N-1	As a user, I can register for the application by entering my email, password, and confirming my password.	l can access my account / dashboard	High	Sprint-1
		US N-2	As a user, I will receive confirmation email once I have Registered for the application	I can receive confirmatio n email & click confirm	High	Sprint-1
		US N-3	As a user, I can register for the application through 6 mail	I can receive confirmatio n Gmail & click confirm	Medium	Sprint-1
	Login	US N-4	As a user, I can login to the application by entering email & password		High	Sprint-1
	Dashboard	US N-5	As a user, I can view all the plans and methods in dashboard		High	Sprint-1
Customer (Web user)	Insurance claim	US N-6	As a user, I can register for claim my insurance	I can receive confirmation Email & claim my Insurance	High	Sprint-2

Customer Care Executive	Q/A services	US N-7	As a user, I can make a call to Support line to get help with a product or service.	Phone call, messages and Email	High	Sprint-3
Administrator	Insurance	US N-8	As a user, I can claim my insurance After getting confirmation from the administrator.	I can accept the insurance After verified the documents	High	Sprint-3

7.PROJECT PLANNING & SCHEDULING

7.1.Sprint Planning & Estimation:

Sprint	Functional Requireme nt(Epic)	User Story Number	User Story / Task	Story Points (Total)
Sprint-1	Model Creation and Training (Fruits)		Create a model whichcan classify diseased fruit plants from given images.I also need to test the modeland deploy it on IBM Cloud	8
	Model Creation and Training (Vegetables)		Create a model which can classify diseased regetableplants from givenimages	2

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points (Total)
Sprint-2	Model Creationand Training (Vegetables)		Create a model which can classify diseased vegetable plantsfrom given images and train onIBMCloud	6
	Registration	USN-1	As a user, I can register by entering my email, password, and confirming my password or via OAuth API	3
	Upload page	USN-2	As a user, I will be redirected to a pagewhere Icanupload my pictures of crops	4
	Suggestion results	USN-3	Asa user, I can view the results and then obtainthesuggestions provided by the ML model	4
	Base Flask App		A base Flask web app must be createdas aninterface for the ML model	2
Sprint-3	Login	USN-4	As a user/admin/shopkeeper, I can log into theapplication by entering email & password	2
	User Dashboard	USN-5	As a user,I can view the previous results andhistory	3
	Integration		Integrate Flask,CNN model with Cloudant DB	5
	Containerization		Containerize Flask app using Docker	2

Sprint	Functional Requireme nt(Epic)	User Story Number	User Story / Task	Story Points (Total)
Sprint-4	Dashboard(Admin)	USN-6	As an admin, I can view other user details anduploads for other purposes	2
	Dashboard (Shopkeeper)	USN-7	Asa shopkeeper, I can enter fertilizer products and then update the details if any	2
	Containerization		Create and deploy Helm charts using DockerImagemade before	2

7.2.Sprint Delivery Schedule

Sprint	Total StoryPoin ts	Duration	Sprint Start Date	Sprint End Date (Planne d)	Story Points Complet edkas on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	10	6 Days	24 Oct	29 Oct	10	30 Oct
			2022	2022		2022
Sprint-2	15	6 Days	31 Oct	05 Nov	15	06 Nov
			2022	2022		2022
Sprint-3	15	6 Days	07 Nov	12 Nov	15	13 Nov
			2022	2022		2022
Sprint-4	12	6 Days	14 Nov	19 Nov	10	20 Nov
			2022	2022		2022

8. Reports from JIRA

Screenshots:

9.CODING &SOLUTIONING

9.1.Features:

Feature 1: Registration

Feature 2: Login

Feature 3: User interfaceFeature 4:

Store database

Feature 5: Send Alert Emailsto us.

10.TESTING

10.1.TEST CASE

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [Fertilizer Recommendation system for plant disease prediction] projectat the time of the release to User Acceptance Testing (UAT).

2.Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how theywere resolved.

Sprint	Total StoryPoin ts	Duration	Sprint Start Date	Sprint End Date (Planne d)	Story Points Complet ed(as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	10	6 Days	24 Oct	29 Oct	10	30 Oct
			2022	2022		2022
Sprint-2	15	6 Days	31 Oct	05 Nov	15	06 Nov
			2022	2022		2022
Sprint-3	15	6 Days	07 Nov	12 Nov	15	13 Nov
			2022	2022		2022
Sprint-4	12	6 Days	14 Nov	19 Nov	10	20 Nov
			2022	2022		2022

Ь

10.2.Test Case Analysis

Blights

This report shows the number of test cases that have passed, failed and untested

Section	Total Cases	Not Tested	Fail	Pass
Leaf spots	17	0	0	17
Mosaic leaf	51	0	0	51
pattern				
Misshapen	20	0	0	20
1eaves				
Yellow leaves	7	0	0	7
Fruit rots	9	0	0	9
Fruit spots	4	0	0	4

11.RESULT

11.1.Performance Metrics

Figure.6.2 Test the Fruit dataset

Figure.6.1. Fit a model for Fruit dataset

Figure.6.3. Train the Vegetable dataset

Figure.6.4. Test the Vegetable dataset

Train and Test Vegetable dataset IBM Cloud

Due to CUH limit exceeds, I have downloaded the notebooks and opened in Jupyter notebook

Figure.6.6. Training Vegetable Dataset in IBM Cloud

OUTPUT:

11.ADVANTAGES & DISADVANTAGES

ADVANTAGES

Fertilizers have all nutrients required for plants growth.

It is soluble and easily absorbed by plants.

It enhances the metabolism of plants.

It is easily available in the market.

Highly needed for large production

DISADVANTAGE:

- Fertilizers are more expensive than manure.
- · Over fertilization can damage the plants.
- It is toxic and can harm humans.
- It affected the environment and echo system.
- Long term use reduce soil quality.

12.CONCLUSION

The core strategy of this project is to predict the cropbased on the soil nutrient content and the locationwhere the crop is growing. This system will help hefarmers to choose the right crop for their land and togive the suitable amount of fertilizer to produce themaximum yield. The Support Vector Machine algorithmhelps to predict the crop the precisely based on thepre- processed crop data. This system will also help thenew comers to choose the crop which will grow intheir area and produce them a good profit.

A decentamount of profit will attract more people towards theagriculture. Also, the crop growth is based on theclimate conditions in the particular area and theseasonal monsoons happens now are unpredictable, hence it is easy for the farmers when the predictionresult is also based on the climatic conditions. Liveweather prediction will also help the users to predict crop water needs and also it will help the farmers to decrease the crop damage due to the rain ordrought.

The prediction of crop yield based on soil data and proper implementation of algorithms have proved that a higher crop yield can be achieved.

From crop recommendation system provides 82% of accuracy. the above work, we conclude that for soil classification Random Forest is a suitable algorithm with an accuracy of 99.09% compare to Gaussian Naive Bayes. The work can be extended further to add the following functionality. Building a Website can be built to help farmers by uploading an image of farms. Crop diseases detection uses image processing in which users get pesticides based on disease images and Fertilizer prediction based on soil condition.

By categorizing the soil samples according to the soil type, land type and macro nutrients Nitrogen (N), Phosphorus (P) and Potassium (K) present in the soil the suitable crop along with its appropriate fertilizer is suggested to the agricultural stakeholder. The month in which the yield will be high is also suggested to the user. The yield calculation is also provided for the crop selected by the farmer.

13.FUTURE SCOPE

The future work is to implement Machine Learning Algorithms like Ensemble Classifiers to predict the crop yield and recommend the crop with appropriate fertilizer. In the existing system only soil characteristics were considered to provide crop recommendations. In the future work the climatic parameters will also be taken into account to provide crop recommendations. Also the method can be extended to include diverse varieties of crop to be cultivated and to analyse it's performance.

This further research is implementing the proposed algorithm with the existing public datasets. Also, various segmentation algorithms can be implemented to improve accuracy. The proposed algorithm can be modified further to identify the disease that affects the various plant organs such asstems and fruits.

AP	PENDIX
Sou	urceCode
https	s://github.com/IBM-EPBL/IBM-Project-48224-1660805745/tree/main/Application%20Building
	tHub & Project Demo Link ps://github.com/IBM-EPBL/IBM-Project-21216-1659775253