

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- $\bullet \hspace{0.5cm} 80V,\!80A,\!R_{DS(on).max}\!\!=\!\!8.5m\Omega@V_{GS}\!\!=\!\!10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 80V \\ R_{DS(on).max} @ V_{GS} {=} 10V & 8.5 m\Omega \\ I_D & 80A \end{array}$

Pin Configuration

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	80	V
Continuous drain current (Tc = 25°C)¹)		80	А
Continuous drain current (Tc = 100°C)¹)	─ I _D	53	А
Pulsed drain current ²⁾	I _{DM}	320	Α
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ³⁾	E _{AS}	306	mJ
Power Dissipation (T _C = 25 ^{COO}) C C TO-220/TO-263	Б	147	W
Power Dissipation (T _C = 25000) C C TO-220F	P _D	49	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Oase C C TO-220/TO-263	В	0.85	°C/W
Thermal Resistance, Junction-to-Oase C C TO-220F	Rejc	2.55	°C/W
Thermal Resistance, Junction-to-Amb@ct C C TO-220/TO-263	Б	62	°C/W
Thermal Resistance, Junction-to-Amb@at C C TO-220F	R _{0JA}	80	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM80N08-T3	TO-263	VSM80N08-T3
VSM80N08-TF	TO-220F	VSM80N08-TF
VSM80N08-TC	TO-220C	VSM80N08-TC

Electrical Characteristics T_J = 25°C unless otherwise noted

Electrical Characteristics	T _J = 25°C unless otherwise noted					11.24
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	80			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.0	1.6	2.5	V
Drain-source leakage current		V _{DS} =80V, V _{GS} =0V, T _J = 25°C			1	μA
	I _{DSS}	V _{DS} =64V, V _{GS} =0V, T _J = 125°C			30	μА
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance	D	V _{GS} =10 V, I _D = 20 A		6.5	8.5	mΩ
	R _{DS(on)}	V _{GS} =4.5 V, I _D =10 A		7.8	11	mΩ
Forward transconductance	g fs	V _{DS} =10V , I _D =20A		50		S
Dynamic characteristics						
Input capacitance	C _{iss}			6141		pF
Output capacitance	Coss	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V},$		256		
Reverse transfer capacitance	Crss	- F = 1MHz		189		
Turn-on delay time	t _{d(on)}			20		ns
Rise time	t _r	$V_{DD} = 50V, V_{GS} = 10V, I_{D} = 20A$		56		
Turn-off delay time	t _{d(off)}	VDD - 30V, VGS-10V, ID - 20A		75		
Fall time	t _f			36		
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, F=1MHz		2.1		Ω
Gate charge characteristics						
Gate to source charge	Q _{gs}			18		nC
Gate to drain charge	Q _{gd}	V _{DS} =50 V, I _D =20A, V _{GS} = 10 V		30		
Gate charge tota	Qg			127		
Drain-Source diode characteristi	cs and Maxi	mum Ratings				•
Diode Forward Voltage ⁴⁾	V _{SD}	V _{GS} =0V, I _S =20A, T _J =25°C			1.3	V
Reverse Recovery Time	t _{rr}	I _S =20A, di/dt=100A/us,		160		ns
Reverse Recovery Charge	Q _{rr}			136		nC

Notes:

- 1: The maximum junction current rating is package limited.
- 2: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3: V_{DD} =50V, V_{GS} =10V, L=0.5mH, I_{AS} =35A, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 4: Pulse Test: Pulse Width $\leq 300 \, \mu \, s$, Duty Cycle $\leq \! 2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 3. Capacitance Characteristics

Figure 5. Body-Diode Characteristics

Figure 2. Transfer Characteristics

Figure 4. Gate Charge Waveform

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature(°C)

Figure 8. Maximum Safe Operating Area

Figure 6. Normalized Maximum Transient Thermal Impedance (RthJC)

Figure 7. Normalized Maximum Transient Thermal Impedance (RthJA)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

