- Write only your student number (<u>not your name</u>) on every page you hand in, to enable anonymous grading.
- Please staple pages together.
- Please write your tutorial group letter on the first page.
- **Do not** copy homework answers from someone or something else. This homework is to be done on your own.

Advanced Logic 2025 - Homework exercise 5: Normal modal logics

Introduction

In this exercise, we introduce two new operators, ② and \diamondsuit , as well as a new model restriction, σ_2 . For a detailed description, and how to write it in LaTeX, there is an appendix at the end of the assignment, but for now, I will just give you the tableau rules. The ② and \diamondsuit operators take two steps instead of one, so they use two relations.

The tableau rules for our new operators are as follows. The rule for \diamondsuit involves two new worlds, while the rule for \boxdot involves a set of existing worlds.

Note that the rule for $\square A, i$ should be applied to all j and k such that irj and jrk appear on the branch.

Note that the rule for $\lozenge A, i$ introduces a *new* j and a *new* k such that irj and jrk are introduced on the branch.

Rule for σ_2 (two-step symmetric):

Do not confuse two-step symmetry with regular symmetry, or with transitivity!

Exercise 1

By constructing a suitable tableau, determine whether the following inferences are valid in the logic mentioned. Make sure you:

- Develop every branch until it either closes, is open and complete, or is open and infinite. If a branch is open and infinite, develop at least two full repetitions.
- Clearly mark which branches close, which branches are open and complete, and which branches are open and infinite.
- If the inference is invalid, provide a counter-model, and clearly state which branch you read your counter-model off of.
- Draw a conclusion.
- 1. $\vdash_{K_{\eta\sigma_2}} \boxdot \Box p \supset \diamondsuit \neg p$ Here we use η (extendable), and σ_2 (two-step symmetry).
- 2. $\vdash_{K_{\sigma_2}^t} (\langle F \rangle \langle F \rangle p \supset \langle P \rangle p) \land (p \lor \neg p)$ Here we use σ_2 (two-step symmetry)

Appendix

Reading this appendix is not needed for doing the assignment, but may be interesting for some students.

In this exercise, we introduce two-step relations in Kripke models. To this end, we invented some new operators, and some new model restrictions.

Our new language is as follows:

- 1. Each propositional parameter (atom) is a formula.
- 2. If A is a formula, then so are $\neg A$, $\Box A$, $\Diamond A$, $\boxdot A$, and $\Diamond A$.
- 3. If A and B are formulas, then so are $(A \wedge B)$, $(A \vee B)$, $(A \supset B)$, and $(A \equiv B)$.
- 4. Nothing is a wff unless it is generated by finitely many repeated applications of 1, 2, and 3.

Note that we have two new operators: \Diamond , a diamond with a little '2' in it, and \square , a box with a little '2' in it. These are new modal operators.

As an example, $(\neg \square \neg p \equiv \lozenge p)$ is a formula, and $((\square p \land \square (p \supset q)) \supset \square q)$ is a formula.

The valuation of our new operators is defined as follows:

```
v_w(\lozenge A) = 1 iff there is a world w' \in W such that wRw' and there is a world w'' such that w'Rw'' and v_{w''}(A) = 1
```

 $v_w(\square A)=1$ iff for every world $w'\in W$ such that wRw' and for every world w'' such that w'Rw'' it holds that $v_{w''}(A)=1$

Here is an example Kripke model:

In this example, we have that:

 $v_{w_1}(\square p) = 1$ Because p is true in w_4 and w_5 .

 $v_{w_1}(\lozenge q) = 1$ Because q is true in w_4 .

 $v_{w_1}(\Box \neg p) = 0$ Because $\neg p$ is false in w_4 , and in w_5 .

 $v_{w_1}(\square \square p) = 1$ This is vacuously true, because we cannot take three steps from w_1 .

 $v_{w_1}(\lozenge \lozenge p) = 0$ No world where p is true can be reached in three steps from w_1 .

Now we can define a *new* model restriction called 'two-step symmetry':

Restriction σ_2

R is two-step symmetric if for all $w_1, w_2, w_3 \in W$: if $w_1 R w_2$ and $w_2 R w_3$, then $w_3 R w_1$.

This is a lot like transitivity, except the new arrow is pointing backwards.

In LATEX, you need the package 'scalerel' for our new operators, so make sure you have \usepackage{scalerel} at the top of your .tex file. After the package declarations, I added

 $\label{localeobj} $$ \operatorname{localeobj}_{0.5}_{2}} \$

Then, you can use the commands \bb and \dd in math mode to get a box and diamond with a little '2' in it.