Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(1+3i)^2 - 6i = 1+6i+9i^2 - 6i =$	3p
	=1-9=-8	2p
2.	$f(x) = g(x) \Leftrightarrow x + 1 = 3x - 7$	3 p
	Coordonatele punctului de intersecție sunt $x = 4$ și $y = 5$	2p
3.	$1 J = \lambda = J\lambda \longrightarrow J\lambda \pm \lambda = J = 0$	3p
	$x = -1$, care nu convine; $x = \frac{3}{4}$, care convine	2p
4.	Numărul de submulțimi cu două elemente ale mulțimii A este egal cu $C_5^2 = \frac{5!}{3! \cdot 2!} = 10$	2p
	Numărul de submulțimi cu trei elemente ale mulțimii A este egal cu $C_5^3 = \frac{5!}{2! \cdot 3!} = 10$, deci numărul de submulțimi cu două elemente ale mulțimii A este egal cu numărul de submulțimi cu trei elemente ale mulțimii A	3 p
5.	$m_{AB} = 1$, $m_{AC} = -a + 2$, unde a este număr real	2p
	$m_{AB} = m_{AC}$, de unde obţinem $a = 1$	3p
6.	$\sin\frac{\pi}{6} = \frac{1}{2}$, deci $\cos x + \frac{1}{2} = 1 \Rightarrow \cos x = \frac{1}{2}$	2p
	$\sin^2 x + \frac{1}{4} = 1 \Leftrightarrow \sin^2 x = \frac{3}{4}$ şi, cum $x \in \left(0, \frac{\pi}{2}\right)$, obţinem că $\sin x = \frac{\sqrt{3}}{2}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 2 & 4 \\ -1 & -2 \end{vmatrix} = 2 \cdot (-2) - 4 \cdot (-1) =$	3 p
	=-4+4=0	2p
b)	$M(1) = \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix} \text{ si } M(x) = \begin{pmatrix} 2-2x & 4-6x \\ -1+x & -2+3x \end{pmatrix}, \text{ pentru orice număr real } x$	2p
	$M(x) \cdot M(1) = \begin{pmatrix} 0 & -2x \\ 0 & x \end{pmatrix} = x \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix} = xM(1), \text{ pentru orice număr real } x$	3 p
c)	$M(4) \cdot M(3) \cdot (M(2) \cdot M(1)) = M(4) \cdot M(3) \cdot (2M(1)) = 2M(4) \cdot (M(3) \cdot M(1)) = 2 \cdot 3 \cdot 4M(1)$	3 p
	Cum $2 \cdot 3 \cdot 4M(1) = nM(1)$, obţinem $n = 24$	2p
2.a)	$1*2=1+2+1^2\cdot 2^2=$	3 p
	=1+2+4=7	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

b)	x*0=x+0+0=x, pentru orice număr real x	2p
	0*x=0+x+0=x, pentru orice număr real x , deci $e=0$ este elementul neutru al legii de compoziție "*"	3p
c)	$-2 + x + 4x^2 \le 3$, deci $4x^2 + x - 5 \le 0$	2p
	$x \in \left[-\frac{5}{4}, 1\right]$ şi, cum x este număr întreg, obținem $x = -1$ sau $x = 0$ sau $x = 1$	3 p

(30 de puncte) **SUBIECTUL al III-lea**

	` .	
1.a)	$f'(x) = (e^x)' + (x^4)' - (2x)' + (2)' =$	2p
	$=e^{x}+4x^{3}-2+0=e^{x}+4x^{3}-2, x \in \mathbb{R}$	3 p
b)		2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = -x + 3$	3p
c)	$f''(x) = e^x + 12x^2, \ x \in \mathbb{R}$	3p
	$f''(x) \ge 0$, pentru orice număr real x , deci funcția f este convexă	2p
2.a)	$\int_{1}^{3} f(x)dx = \int_{1}^{3} \left(x - \frac{1}{x} + \frac{1}{x}\right) dx = \int_{1}^{3} x dx = \frac{x^{2}}{2} \Big _{1}^{3} =$	3 p
	$=\frac{9}{2}-\frac{1}{2}=4$	2p
b)	$\int_{1}^{2} \left(f(x) + \frac{1}{x} \right) \ln x dx = \int_{1}^{2} x \ln x dx = \int_{1}^{2} \left(\frac{x^{2}}{2} \right)' \ln x dx = \frac{x^{2}}{2} \ln x \bigg _{1}^{2} - \int_{1}^{2} \frac{x^{2}}{2} \cdot \frac{1}{x} dx =$	3 p
	$= \frac{4}{2} \ln 2 - \frac{1}{2} \ln 1 - \frac{x^2}{4} \bigg _{1}^{2} = 2 \ln 2 - \frac{3}{4}$	2p
c)	$\int_{1}^{\sqrt{2}} x^{n+1} f^{n}(x) dx = \int_{1}^{\sqrt{2}} x (x^{2} - 1)^{n} dx = \frac{1}{2} \int_{1}^{\sqrt{2}} (x^{2} - 1)^{n} (x^{2} - 1)^{n} dx = \frac{(x^{2} - 1)^{n+1}}{2(n+1)} \Big _{1}^{\sqrt{2}} = \frac{1}{2(n+1)}$	3 p
	Cum $2(n+1) \le 2021 \Leftrightarrow n \le \frac{2019}{2}$, obținem că 1009 este cel mai mare număr natural nenul pentru care $\int_{1}^{\sqrt{2}} x^{n+1} f^n(x) dx \ge \frac{1}{2021}$	2p