

학습목표

- 1. 확률변수의 기댓값을 계산할 수 있다.
- 2. 확률변수의 분산과 표준편차를 계산할 수 있다.

들어가기

6강 확률분포와 기댓값 2

확률변수의 기댓값

파스칼의 의사결정

◆ 팡세(Pensées, 명상록)

복권의기댓값

복권의 기대 당첨금은?

등수	상금	확률
1등	1,000	1/10,000
2등	50	1/1,000
3등	10	1/100
4등	5	1/50
5등	1	1/10

성적표의 평점

학점	Α	В	С	D	
학생수	20%	30%	40%	10%	

1.확률변수의 기댓깂

기댓값

- ◆ 기댓값은 확률분포의 중심
 - 확률변수의 기댓값 μ 로 표시

기댓값

X	x_1	x_2	 X_i	 \mathcal{X}_n	합
P(X)	p_1	p_2	 p_{i}	 p_n	1

$$E(X) = x_1 p_1 + x_2 p_2 \cdots + x_i p_i + \cdots + x_n p_n$$
$$= \sum_{i=1}^{n} x_i p_i$$

확률분포와기댓값의예

주사위의 눈금(X)의 기댓값은?

연속형 확률변수의 기댓값

$$\bullet E(X) = \sum_{k=1}^{n} x_k P(X = x_k)$$

연속형 확률변수의 기댓값

$$\bullet E(X) = \sum_{k=1}^{n} x_k P(X = x_k)$$

연속형 확률변수의 기댓값

$$\bullet E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

연속형 확률변수 기댓값의 예

X 의 확률밀도함수가 다음과 같을 때 X의 기댓값은?

$$f(x) = \begin{cases} 2x, & 0 \le x \le 1 일 \text{ 때} \\ 0, & x < 0 \text{ 혹은 } x > 1 일 \text{ 때} \end{cases}$$

$$\bullet$$
 $E(a) = a$

$$\bullet E(aX + b) = aE(X) + b$$

$$\bullet E(aX + bY) = aE(X) + bE(Y)$$

$$\bullet E(aX + bY) = aE(X) + bE(Y)$$

1.확률변수의기댓깂

기댓값의주요특성의예

주사위 눈금 X, Z=10X-35의 기댓값은?

6강 확률분포와 기댓값 2

확률변수의 분산과 표준편차

확률변수의분산

◆ 분산 (Variance) : 확률변수 값이 기댓값을 중심으로 흩어져 있는 정도, σ^2 으로 표현

$$Var(X) = E(X - \mu)^2$$

확률변수의분산

•
$$Var(X) = E(X - \mu)^2 = E(X^2) - \mu^2$$

확률변수의분산

- 이산형 확률변수의 분산

$$Var(X) = \sum_{i=1}^{n} (x_i - \mu)^2 f(x_i)$$

확률변수의분산

• 연속형 확률변수의 분산

$$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

확률변수의 표준편차

◆ 표준편차는 분산을 제곱근하여 구함

$$\sigma = \sqrt{Var(X)}$$

2. 확률변수의 분산과 표준편차

이산형확률변수의분산예

동전 한번 던져서 앞면이 나오는 수의 분산과 표준편차는?

2. 확률변수의 분산과 표준편차

이산형확률변수의분산예

동전 한번 던져서 앞면이 나오는 수의 분산과 표준편차는?

2. 확률변수의 분산과 표준편차

이산형확률변수의분산예

주사위의 눈금 변수의 분산과 표준편차는?

연속형확률변수의분산예

예

X의 분산과 표준편차는?

$$f(x) = \begin{cases} 2x, & 0 \le x \le 1 일 \text{ 때} \\ 0, & x < 0 \text{ 혹은 } x > 1 일 \text{ 때} \end{cases}$$

연속형확률변수의분산예

예

X의 분산과 표준편차는?

$$f(x) = \begin{cases} 2x, & 0 \le x \le 1 일 \text{ 때} \\ 0, & x < 0 \text{ 혹은 } x > 1 일 \text{ 때} \end{cases}$$

분산의주요특성

$$\bullet$$
 Var $(a) = 0$

분산의주요특성

$$\bullet Var(aX + b) = a^2 Var(X)$$

분산의주요특성

$$\bullet \ \sigma(aX + b) = |a|\sigma(X)$$

분산의연산예

주사위 눈금 변수 X, Y=2X+1의 분산은?

분산의연산예

예
$$Y = \frac{X-\mu}{\sigma}$$
의 기댓값과 분산은?

학습정리

• 확률변수의 기댓값은 다음과 같이 구한다.

$$E(X) = \begin{cases} \sum_{k=1}^{n} x_k f(x_k), & X: \text{ 이산형 확률변수} \\ \int_{-\infty}^{\infty} x f(x) dx, & X: \text{ 연속형 확률변수} \end{cases}$$

학습정리

 확률변수의 변동성을 나타내는 분산과 표준편차는 다음 과 같이 구한다.

$$Var(X) = E([X - E(X)])^{2}$$

$$\sigma = \sqrt{Var(X)}$$

수고하셨습니다.

06 확률분포와 기댓값 2

이산형확률분포1