Отображения в линейных пространствах

Данный раздел посвящен рассмотрению отображений в линейных пространствах. Ранее в курсе мы уже затрагивали тему отображений в линейных пространствах, рассматривая изоморфные линейные пространства. В этом разделе мы увидим, что существует еще несколько типов отображений, обладающих свойствами линейности или схожими с ними. Одной из основных целей является выявление общих подходов к рассмотрению любых отображений такого рода.

Содержание

§1	Введение	2
§2	Сопряженное пространство	3
§3	Изоморфизмы сопряженных пространств	6

Литература:

- Винберг Э. Б. Курс алгебры. М.: МЦНМО, 2013.
- Кострикин А. И. Введение в алгебру. Часть II. Линейная алгебра. М.: Физико-математическая литература, 2000.
- Фаддеев Д. К. Лекции по алгебре. М.: «Наука», 1984.
- Гайфуллин А. А., Пенской А. В., Смирнов С. В. Задачи по линейной алгебре и геометрии. М.: МЦНМО, 2014. (Содержит подробные решения)
- Ершов А.В. Лекции по линейной алгебре. Москва, 2022

Лекция I. Линейные формы

§1. Введение

Пусть V – линейное пространство над полем \mathbb{K} .

Определение 1.1. Линейной формой на пространстве V называется такая функция $f:V \to \mathbb{K}$, что $\forall v, v_1, v_2 \in V, \ \forall \lambda \in \mathbb{K}$ выполняется:

- (a) Аддитивность: $f(v_1 + v_2) = f(v_1) + f(v_2)$.
- (б) Однородность: $f(\lambda v) = \lambda f(v)$.

Замечание 1.1. Для любого линейного отображения $f:V\to U$ справедливо, что образом линейной комбинации произвольных векторов $v_i\in V$ будет линейная комбинация образов этих векторов:

$$f\left(\sum_{i} \alpha_{i} v_{i}\right) = \sum_{i} \alpha_{i} f(v_{i})$$

Пример 1.1. Пусть E – пространство геометрических векторов (на плоскости или в пространстве) с введенным скалярным произведением $\langle x,y \rangle$. Линейную форму f(v) можно задать как

$$f(v) = \langle a, v \rangle,$$

где $a \in E$ – фиксированный вектор.

Пример 1.2. Пусть $V=M_n(\mathbb{K})$ – пространство квадратных матриц n-го порядка с коэффициентами из поля \mathbb{K} . Линейную форму можно задать как

$$f(A) = \operatorname{tr} A, \qquad A \in M_n(\mathbb{K})$$

Пример 1.3. Пусть $V = \mathbb{R}^{\leqslant n}[x]$ – пространство полиномов степени не выше n. Линейную форму можно задать как

$$f(p) = p(x) \Big|_{x = x_0}$$

Пример 1.4. Пусть $V = \mathbb{K}^n$ – арифметическое пространство элементов $v = (v_1, v_2, \dots, v_n)$. Линейную форму можно задать как

$$f(v) = \sum_{i=1}^{n} \alpha_i v_i$$

Замечание 1.2. Последний пример примечателен тем, что любую линейную форму можно представить в таком виде.

Предположим, что V – конечномерное линейное пространство. Зафиксируем в V базис $\{e_i\}_{i=1}^n$, где $n=\dim V$.

Определение 1.2. Коэффициентами φ_i линейной формы f называются значения этой линейной формы на базисных векторах пространства.

$$f(e_i) = \varphi_i$$

Теорема 1.1. Задание линейной формы эквивалентно заданию ее значений на базисных формах, т.е. заданию ее коэффициентов.

Доказательство. Пусть в выбранном базисе $\{e_i\}_{i=1}^n$ линейного пространства V линейная форма f задана набором коэффициентов $\{\varphi_i\}_{i=1}^n$. Тогда $\forall v = \sum_{i=1}^n v^i e_i \in V$:

$$f(v) = f\left(\sum_{i=1}^{n} v^{i} e_{i}\right) = \sum_{i=1}^{n} f(v^{i} e_{i}) = \sum_{i=1}^{n} v^{i} f(e_{i}) = \sum_{i=1}^{n} v^{i} \varphi_{i}$$

Таким образом получаем, что образ любого вектора однозначно определен координатами этого векторами и коэффициентами линейной формы, где оба набора чисел найдены ϵ одном u том эке базисе.

§2. Сопряженное пространство

Рассмотрим множество линейных форм, заданных в линейном пространстве V.

Определение 2.1. Линейные формы f и g будем называть **равными**, если

$$f = g$$
 \Leftrightarrow $f(v) = g(v), \forall v \in V$

Определение 2.2. Линейная форма θ называется нулевой (нуль-формой), если

$$\theta(v) = 0, \qquad \forall v \in V$$

Очевидно, что мы можем определить действия на множестве форм.

Определение 2.3. Суммой линейных форм f и g называется отображение h=f+g, для которого справедливо

$$h(v) = f(v) + g(v), \quad \forall v \in V$$

Лемма 2.1. Отображение h является линейной формой.

Доказательство. Покажем справедливость свойства аддитивности:

$$h(v_1 + v_2) = f(v_1 + v_2) + g(v_1 + v_2) = f(v_1) + f(v_2) + g(v_1) + g(v_2) =$$

= $(f(v_1) + g(v_1)) + (f(v_2) + g(v_2)) = h(v_1) + h(v_2)$

Выполнение свойства однородности показывается аналогично.

Определение 2.4. Произведением линейной формы f на число $\alpha \in \mathbb{K}$ называется отображение $l=\alpha f$ такое, что

$$l(v) = \alpha \cdot f(v), \quad \forall v \in V$$

Доказательство. Аналогично лемме о сумме линейных форм.

Из приведенных выше определений и лемм следует справедливость следующего утверждения.

Теорема 2.1. Множество линейных форм V^* , заданных на линейном пространстве V образует линейное (сопряженное) пространство.

Рассмотрим некоторый базис $\{e_i\}_{i=1}^n$ в пространстве V. Введем набор линейных форм $\{f^j\}_{i=1}^n$ следующим образом:

$$f^j(v) = v_j,$$

которая возвращает j-ю координату вектора $v \in V$ в базисе $\{e_i\}_{i=1}^n$. Очевидно, что для линейных форм из этого набора справедливо

$$f^j(e_i) = \delta_i^j = \begin{cases} 1, & \text{если} \quad i = j, \\ 0, & \text{если} \quad i \neq j \end{cases}$$

Лемма 2.2. Набор линейных форм $\{f^j\}_{j=1}^n$ является базисом в сопряженном пространстве V^* .

Доказательство. Чтобы показать справедливость утверждения, необходимо доказать полноту и линейную независимость этого набора. Покажем сначала полноту:

$$f(v) = \sum_{i=1}^{n} \varphi_i v^i = \sum_{i=1}^{n} \varphi_i f^i(v) = \left(\sum_{i=1}^{n} \varphi_i f^i\right)(v)$$

Аналогично с линейной независимостью. Предположим, что линейная комбинация форм с некоторыми коэффициентами α_i равна нуль-форме.

$$\sum_{i=1}^{n} \alpha_i f^i = \theta$$

Применяя эту нуль-форму к произвольному базисному вектору, получим

$$\left(\sum_{i=1}^{n} \alpha_i f^i\right)(e_k) = \theta(e_k) = 0$$

Учитывая также свойства линейности и их определение

$$\sum_{i=1}^{n} \alpha_i f^i(e_k) = 0 \qquad \Rightarrow \qquad \alpha_k f^k(e_k) = 0 \qquad \Rightarrow \qquad \alpha_k = 0$$

Замечание 2.1. Каждому базису в пространстве V может быть найден и притом единственный сопряженный базис, связанный с ним соотношением, которое указано выше.

Посмотрим теперь как преобразуется сопряженный базис при преобразовании базиса пространства X.

Теорема 2.2. Пусть $\{f^i\}_{i=1}^n$ и $\{\widetilde{f}^l\}_{l=1}^n$ – базисы V^* , сопряженные соответственно базисам $\{e^j\}_{j=1}^n$ и $\{\widetilde{e}^k\}_{k=1}^n$. Тогда

$$\widetilde{f}^l = \sum_{i=1}^n \sigma_i^l f^i$$

где $(\sigma_i^l)=S$ — элементы обратной матрицы перехода, полагая $(\tau_k^j)=T$ — матрица перехода из $\{e^j\}_{j=1}^n$ в $\{\widehat{e}^k\}_{k=1}^n$.

Доказательство. По определению сопряженных базисов имеем

$$\begin{split} \widetilde{f}^l(\widetilde{e}_k) &= \sum_{i=1}^n \sigma_i^l f^i \left(\sum_{i=1}^n \tau_k^j e_j \right) = \sum_{i=1}^n \sum_{j=1}^n \sigma_i^l \tau_k^j f^i(e_j) = \\ &= \sum_{i=1}^n \sum_{j=1}^n \sigma_i^l \tau_k^j \delta_j^i = \sum_{i=1}^n \sum_{j=1}^n \sigma_i^l \tau_k^i = \delta_k^l \end{split}$$

Откуда следует, что произведение матрицы, составленной из σ_i^l , на матрицу перехода с элементами τ_k^i должно быть равно единичной матрице. А это есть не что иное как определение обратной матрицы.

Теорема 2.3. Преобразование координат формы в V^* при переходе от базиса $\{f^i\}_{i=1}^n$ к базису $\{\widetilde{f}\}_{l=1}^n$ имеет вид

$$\widetilde{\eta}_l = \sum_{i=1}^n \tau_l^i \eta_i \qquad (\widetilde{\eta}^1, \widetilde{\eta}^2, \dots, \widetilde{\eta}^n) = (\eta^1, \eta^2, \dots, \eta^n) \cdot T$$

Доказательство.

$$\widetilde{\eta}_l = f(\widetilde{e}_l) = \sum_{i=1}^n \eta_i f^i \left(\sum_{j=1}^n \tau_l^j e_j \right) = \sum_{i=1}^n \sum_{j=1}^n \eta_i \tau_l^j f^i(e_j) =$$

$$= \sum_{i=1}^n \sum_{j=1}^n \eta_i \tau_l^j \delta_j^i = \sum_{i=1}^n \tau_l^i \eta_i$$

Замечание 2.2. Координаты линейной формы преобразуются точно по такому же закону, что и сам базис пространства V. По этой причине их также называют ковекторами.

§3. Изоморфизмы сопряженных пространств

В силу доказанного утверждения о базисе сопряженного пространства справедливо следующее утверждение.

Лемма 3.1. Пространство V и сопряженное пространство V^* изоморфны.

Доказательство. Справедливость утверждения следует из того, что $\dim V = \dim V^*$ (мощности базисов равны), а следовательно

$$V \simeq \mathbb{K}^n \simeq V^*$$

Изоморфизм устанавливается введенным соответствием между базисами пространств V и $V^{*}.$

Отметим, что операцию нахождения сопряженного пространства можно применять итеративно.

Определение 3.1. Вторым сопряженным пространством называют $V^{**} = (V^*)^*$.

Элементами второго сопряженного пространства являются функции, также обладающие линейностью, от линейных форм.

Теорема 3.1. Между пространствами V и V^{**} можно установить изоморфизм без использования базиса (канонический изоморфизм).

Доказательство. Рассмотрим элементы второго сопряженного пространства $\widehat{v}, \widehat{u} \in V^{**}$:

$$\widehat{v}: V^* \to \mathbb{K}, \qquad \widehat{v}(f) \in \mathbb{K}$$

$$\widehat{v}(f+g) = \widehat{v}(f) + \widehat{v}(g), \qquad \widehat{v}(\alpha f) = \alpha \widehat{v}(f)$$

$$(\widehat{v} + \widehat{u})(f) = \widehat{v}(f) + \widehat{u}(f), \qquad (\alpha \widehat{v})(f) = \alpha \widehat{v}(f)$$

Канонический изоморфизм устанавливается отношением

$$\widehat{x} \leftrightarrow x: \qquad \widehat{v}(f) = f(v) \qquad \forall f \in V^*$$

Замечание 3.1. Данное утверждение имеет ряд важных следствий для тензорного анализа, который будет обсуждаться позднее.