

LAPSE

Laboratorio de Procesamiento de Señales Av. Vélez Sarsfield 1611 - Ciudad Universitaria – Córdoba República Argentina +54 351 434 4982

Curso Procesamiento de Imágenes en Python

Dra. Valeria S. Rulloni - Dra. Laura M. Vargas

Congreso- Escuela en Estadística Espacial 23,24 y 25 de septiembre

Jornada I: IMÁGENES

2019

LAPSE

Laboratorio de Procesamiento de Señales Av. Vélez Sarsfield 1611 - Ciudad Universitaria – Córdoba República Argentina +54 351 434 4982

Imagen digital

x e y coordenadas espaciales (2D)

LAPSE

Laboratorio de Procesamiento de Señales Av. Vélez Sarsfield 1611 - Ciudad Universitaria – Córdoba República Argentina +54 351 434 4982

Imagen digital

x e y coordenadas espaciales (2D)

$$f(x,y) = 0.1789$$

LAPSE

Laboratorio de Procesamiento de Señales Av. Vélez Sarsfield 1611 - Ciudad Universitaria – Córdoba República Argentina +54 351 434 4982

Formalización: Imagen ↔ matriz 2D (o 3D)

- Imagen: matriz o función 2D f=[f(i,j)]_{i,j}
- Valores Posibles: f(i,j) ∈ E
- E puede ser:

 $E \cong [0,1]$ tipo double;

 $E = \{0,1\}$ tipo uint8/logical/double/etc.

 $E = \{0,1,..., 255\}$ tipo uint8 (28 valores posibles: byte)

LAPSE

Laboratorio de Procesamiento de Señales Av. Vélez Sarsfield 1611 - Ciudad Universitaria – Córdoba República Argentina +54 351 434 4982

Imagen Monocroma

100	200	80	150				255
150	255	140	180				
1	60	125	60				
150	255	125	150				
				1			0

$$f(1,3) = 80$$

LAPSE

Laboratorio de Procesamiento de Señales Av. Vélez Sarsfield 1611 - Ciudad Universitaria – Córdoba República Argentina +54 351 434 4982

Formalización: Imagen ↔ matriz 2D o 3D f(i,j,k)

R G B

$$f(i,j,k)$$
 3D o $f(i,j)=(r_{i,j,},g_{i,j},b_{i,j})$

$$f(1,2)=(60, 200,44)$$
 ó $f(1,2,1)=60=r(1,2)=r_{1,2}$; $f(1,2,2)=200=g(1,2)$

LAPSE

Laboratorio de Procesamiento de Señales Av. Vélez Sarsfield 1611 - Ciudad Universitaria – Córdoba República Argentina +54 351 434 4982

Más ejemplos

$$E = \{0, 1, ..., 255\} \quad z = \begin{bmatrix} 0 & 1 & \cdots & 254 & 255 \\ 0 & 1 & & 254 & 255 \\ \vdots & & \ddots & & \\ 0 & 1 & & 254 & 255 \\ 0 & 1 & & 254 & 255 \end{bmatrix}$$

$$E = \{0, ..., 255\}^3 \quad z = \begin{bmatrix} (255, 0, 0) & \cdots & (0, 0, 255) \\ (255, 0, 0) & & (0, 0, 255) \\ \vdots & & \ddots & \\ (0, 255, 0) & & (255, 255, 0) \\ (0, 255, 0) & & (255, 255, 0) \end{bmatrix}$$

LAPSE

Laboratorio de Procesamiento de Señales Av. Vélez Sarsfield 1611 - Ciudad Universitaria – Córdoba República Argentina +54 351 434 4982

Imagen Binaria: $E = \{0,1\}$

$$\begin{bmatrix} 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & & 1 & 1 \\ \vdots & & \ddots & & \vdots \\ 1 & 1 & & 0 & 0 \\ 1 & 1 & \cdots & 0 & 0 \end{bmatrix}$$

 $\mathsf{BLANCO} \leftrightarrow 1 \leftrightarrow \mathsf{``presencia``}$

NEGRO \leftrightarrow 0 \leftrightarrow «ausencia»

LAPSE

Laboratorio de Procesamiento de Señales Av. Vélez Sarsfield 1611 - Ciudad Universitaria – Córdoba República Argentina +54 351 434 4982

Imagen Binaria

