Question 1. (7 marks)

Consider the following input array:

$$x = (1, 0, 2, -3, 2, -1, -4, 5, 7, 9).$$

(a) (2 marks) Apply the kernel $\mathbf{w} = (\frac{1}{2}, 1, -\frac{1}{2})$ to \mathbf{x} using a bias of 1 and relu activation function, and then apply max-pooling using a pooling window of size 2 and with a stride of 2.

(b) (3 marks) What are the advantages of using a convolutional layer in a neural network?

(c) (2 marks) If a kernel $\mathbf{w} = (w_1, \dots, w_k)$ is applied to an input vector $\mathbf{x} = (x_1, \dots, x_m)$ using stride s, and no padding is used, give the length of the output vector.

Question 2. (4 marks)

Consider a recurrent neural network with structure as shown in the diagram below, that has 3 input nodes, 3 nodes in the hidden layer and one output node.

Let the weight matrices and biases be as follows:

$$W_X = \begin{bmatrix} -1 & 2 & -3 \\ -2 & -4 & 2 \\ 3 & 0 & -1 \end{bmatrix}, \quad W_H = \begin{bmatrix} 2 & 0 & -3 \\ -1 & 2 & 1 \\ 0 & -4 & 3 \end{bmatrix}, \quad W_O = \begin{bmatrix} 0.3 \\ -0.2 \\ 0.1 \end{bmatrix}$$
$$\boldsymbol{b}_H = (3, 1, 2), \quad \boldsymbol{b}_O = (0.5).$$

The hidden layer uses relu activation function and the output layer uses sigmoid activation function.

Compute the outputs of the network if the sequence x is input, with x(1) = (2, 1, 1), x(2) = (-1, 1, 2).

1

Question 3. (4 marks)

Give pseudocode for the k-means Algorithm, as applied to a dataset S of points in \mathbb{R}^m .

Question 4. (5 marks)

- (a) (4 marks) Use Hierarchical clustering with the **centroid linkage** on the following dataset.
- (b) (1 mark) Draw the dendrogram for the clustering obtained.

	x_1	x_2
A	-2	-2
В	-1	-1
C	0	4
D	1	0
E	2	2
F	2	3

Question 5. (4 marks)

- (a) (2 marks) With the aid of a diagram, describe the structure of an undercomplete autoencoder.
- (b) (1 marks) Give the loss function that would typically be used to train an autoencoder.
- (c) (1 marks) Give the loss function that would be used to train a denoising autoencoder.

Question 6. (6 marks)

- (a) (2 marks) Give a diagram illustrating the structure of a generative adversarial network.
- (b) A generative adversarial network is to be trained using the following minimax loss function:

$$\mathbb{E}_{\boldsymbol{x}}[\log(D(\boldsymbol{x}))] + \mathbb{E}_{\boldsymbol{z}}[\log(1 - D(G(\boldsymbol{z})))].$$

- (i) (2 marks) Describe the process of discriminator training.
- (ii) (2 marks) Describe the process of generator training.

Question 7. (4 marks)

Give pseudocode for the algorithm SARSA, as applied to an MDP with set S of states and set A of actions. Include a description of the ϵ -greedy policy in your answer.

Question 8. (6 marks)

Consider the MDP illustrated in the diagram below.

The set of states is $S = \{s_0, s_1, s_2, s_3, s_4\}$ and the set of actions available at each state is $A = \{\ell, r\}$. The action ℓ moves the agent one state to the left with probability 0.2 and leaves the agent in the current state with probability 0.8. The action r moves the agent one state to the right with probability 0.6 and leaves the agent in the current state with probability 0.4. The states s_0 and s_4 are both goal states and any action that results in getting to either goal state gives a reward of 10 and ends the episode. An action that does not move the agent into a goal state gives a reward of -1.

For example,
$$P(s_1, \ell, s_0) = 0.2$$
 and $P(s_1, \ell, s_1) = 0.8$, and $R(s_1, \ell, s_0) = 10$ and $R(s_1, \ell, s_1) = -1$.

The Value Iteration Algorithm is being used to find the optimal policy for the above MDP. After 2 iterations, the values for V are:

- (a) (4 marks) Perform one more iteration of the Value Iteration Algorithm using $\gamma = 1$. Show all your working.
- (b) (2 marks) Calculate the action to take in state s_1 determined by the V table obtained in (a). Show all your working.