$$max = 4x_1 + 3x_2 - x_3$$
 $x_1 + 3x_2 > 10$
 $x_1 - x_2 + 4x_3 > 8$

$$x^{4} = \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix} \qquad x^{2} \begin{bmatrix} 12 \\ 0 \\ 2 \end{bmatrix} \qquad x^{3} = \begin{bmatrix} 13 \\ -1 \\ 0 \end{bmatrix} \qquad x^{4} = \begin{bmatrix} 14 \\ -1 \\ 2 \end{bmatrix}$$

SBA: A. AMMISIBILITÀ

2. BASE

$$X = \begin{bmatrix} 10 \\ 0 \\ \times 2 \\ 0 \end{bmatrix} \times 10 = 10 \text{ V}$$

$$10 = 10 \text{ V}$$

$$10 = 7 \text{ R} \text{ V}$$

4 -1 237.0

$$\widehat{\chi}_2 = -\chi_2 70$$

$$x_{1} - 3x_{2} - S_{1} = 10$$

 $x_{1} + x_{2} + 4x_{3} - S_{2} = 8$

$$X = \begin{pmatrix} 10 \\ 0 \end{pmatrix}$$

$$X = \begin{pmatrix} 10 \\ 0 \end{pmatrix}$$

$$S_{2} = 2$$

$$S_{3} = 2$$

$$S_{4} = 2$$

$$S_{5} = 2$$

$$x^{2} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 2$$

$$x^{3} = \begin{pmatrix} 13 \\ -1 \\ 0 \end{pmatrix} / S_{1} = 6$$

$$S_{1} = 4$$

$$4 \times 3 = 8 - \frac{10}{3} - \times \times_3 = \frac{14}{3} \cdot \frac{1}{4} = \frac{14}{3} \cdot \frac{7}{4} = \frac{14}{3} \cdot \frac{7}{4}$$

SBA con
$$X_2, X_3$$
 in base \hat{e} $\begin{pmatrix} 0 \\ 10/3 \\ 7/6 \\ 8 \end{pmatrix}$

SBA con Kn in base è del tipo

$$\begin{pmatrix} 70 \\ 70 \\ 0 \\ 0 \end{pmatrix} \circ \begin{pmatrix} 70 \\ 0 \\ 0 \\ 0 \end{pmatrix} \circ \begin{pmatrix} 70 \\ 0 \\ 0 \\ 0 \end{pmatrix} \circ \begin{pmatrix} 70 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \circ \begin{pmatrix} 70 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\times \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \circ \begin{pmatrix} 70 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$K_{0}^{1} = \begin{cases} X_{1} - 3\overline{X_{2}} = 10 \\ X_{1} + \overline{X_{2}} = 8 \end{cases} \longrightarrow \begin{cases} X_{2} = 10 + 3\overline{X_{2}} \\ 10 + 3\overline{X_{2}} + \overline{X_{2}} = 10 \end{cases}$$

$$\Rightarrow \begin{cases} x_A = \frac{47}{2} \\ \overline{x}_2 = -\frac{1}{2} \end{cases} \Rightarrow x_2 = \frac{1}{2}$$

$$\Rightarrow x_3 = \begin{cases} 17/2 \\ 1/2 \\ 0 \\ 0 \end{cases}$$

$$\times_{\Lambda}, \overline{\times_{1}}, \times_{3}, S_{\Lambda}, S_{1} \otimes 0$$

41,42 € R

$$\langle S_d, x \rangle = 0$$
 $x = \begin{pmatrix} 7^0 \\ 2^0 \\ 3^1 \\ 4^2 \\ 5^1 \\$

$$-3+34_{1}-42=0$$

$$\begin{vmatrix} 9_1 = -4 - 9_2 \\ -3_{-12} - 34_2 - 4_2 = \end{vmatrix}$$

$$\begin{cases} y_{4} = -\frac{1}{4} \\ y_{2} = -\frac{15}{4} \end{cases}$$

parre in forma canonica

s.t.

$$A \times > b$$

 $A \times > 0$

MIIIN
$$3X_1 + 4X_2 - 2X_3$$
S.t. $x_4 + 2x_2 - x_3 > 5$

$$2x_4 + 4X_3 = 12$$

$$x_4 + 4X_3 = 12$$

$$x_4 + 4X_2 + 4X_3 = 12$$

$$x_4 + 4X_2 + 4X_3 = 12$$

$$(x_1, x_2 \ge 0) \quad x_3 \in \mathbb{R}, \quad x_3 = x_3 = x_3 \ge 0$$
 $(x_1, x_2 \ge 0) \quad x_3 \ne 0$

min
$$3x_{1} + 4x_{2} - 2x_{3}$$

$$\frac{x_{1} + 2x_{2} - x_{3}^{+} + x_{3}^{-}}{2x_{3}} + 5$$

$$\frac{2x_{3}}{4x_{3}^{+} - 4x_{3}^{+}} = 4x_{3}^{-} = 7$$

$$-2x_{3} - 4x_{3}^{+} + 4x_{3}^{-} = 7$$

$$-2x_{4} - x_{2}^{-} - x_{3}^{+} + 4x_{3}^{-} = 7$$

$$-x_{1} - x_{2}^{-} - x_{3}^{+} + x_{3}^{-} = 7$$

Max
$$4x_1 - x_2$$
 $x_1 + x_2 - x_3 = 8$
 $3x_1 + x_3 \in 7$
 $x_1 > 0$
 $x_2 \in \mathbb{R}$
 $x_3 < 0$

$$x_2 = x_2^{+} - x_2^{-} > 0$$
 $x_2^{+} > 0$ $x_2^{-} > 0$ $x_2^{-} > 0$

$$\times_3 \quad \overline{\times}_3 = -\times_3 \approx 0$$

- Mulh
$$-4x_1 + x_2 - x_2$$

$$-x_1 + x_2 - x_2 + x_3 \ge 8$$

$$-x_1 - x_2 + x_3 = x_3 \ge 8$$

$$\times_{\Lambda}$$
, \times_2 70 \times_3 50

$$X_4$$
 $-\overline{X_3}$ $\overline{5}$ 4

$$-\frac{\kappa_{2}}{2}$$
 $-\frac{\kappa_{3}}{2}$ $-\frac{3}{2}$

$$-X_1+X_2$$
 $7-2$

$$xuax \quad 4X_1 - X_2$$

$$X_1 + 2X_2 \leq 2$$

$$2X_{4} + 7X_{2} = 8$$

-
$$\lambda u = -4 \times_A + \times_2$$

$$x_{1}-x_{2} \cdots \leq 2$$

$$Ax = b$$

$$X^{2}, 0$$

-
$$\frac{1}{4}$$
 - $\frac{1}{4}$ - $\frac{1}{2}$ - $\frac{$

MIN
$$3X_{\lambda} + X_{2} - 2X_{3} - X_{4}$$
 $2X_{\lambda} + X_{2} - X_{3} + 3X_{4} \leq 8$
 $-X_{\lambda} + 2X_{2} - 2X_{3} + 2X_{1} \leq 4$
 $X_{\lambda} + X_{3} - 2X_{3} + 2X_{1} \leq 4$

MIN $3X_{\lambda} + X_{2} - 2X_{3} - X_{4} + 5Z_{4} + 5Z_{5}$
 $2X_{\lambda} + 2Z_{2} - 2X_{3} + 2X_{1} + 5X_{4} = 8$
 $-X_{\lambda} + 2Z_{2} - 2X_{3} + 2X_{1} + 5X_{4} = 8$
 $-X_{\lambda} + 2Z_{2} - 2X_{3} + 2X_{1} + 5X_{4} = 8$
 $-X_{\lambda} + 2Z_{2} - 2X_{3} + 2X_{1} + 5X_{2} = 40$
 $-X_{\lambda} + 2Z_{\lambda} + 2X_{1} + 2X_{1} + 5X_{2} = 40$
 $-X_{\lambda} + 2Z_{\lambda} + 2Z$

Mum
$$6x_1 + x_2 + 3x_3$$
 $10x_1 - 2x_2 + 5x_3 - 5_1 + 0_1 = 1.5$
 $x_1 - x_2 + 3x_3 - 5_2 + 0_1 = 6$

Mum $0_1 + 0_2$
 $10x_1 - 2x_2 + 5x_3 - 5_1 + 0_1 = 1.5$
 $x_1 - x_2 + 3x_3 - 5_2 + 0_2 = 6$
 $x_1 - x_2 + 3x_3 - 5_2 + 0_2 = 6$
 $x_1 - x_2 + 3x_3 - 5_2 + 0_2 = 6$
 $x_1 - x_2 + 3x_3 - 5_2 + 0_2 = 6$
 $x_1 - x_2 + 3x_3 - 5_2 + 0_2 = 6$
 $x_1 - x_2 + 3x_3 - 5_2 + 0_2 = 6$
 $x_1 - x_2 - x_3 - x_3 - x_3 - x_2 = 6$
 $x_1 - x_2 - x_3 - x_3 - x_3 - x_3 = 6$
 $x_1 - x_2 - x_3 - x_3 - x_3 = 6$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - 5_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - x_3 = 2$
 $x_1 - x_2 + 3x_3 - x_3 = 2$
 $x_2 - x_3 + x_3 + x_3 = 2$
 $x_1 - x_2 + x_3 + x_3 + x_3 = 2$
 $x_1 - x_2 + x_3 + x_3 + x_3 = 2$
 $x_1 - x_2 + x_3 + x_3 + x_3 = 2$
 $x_1 - x_2 + x_3 + x_3 + x_3 = 2$
 $x_1 - x_2 + x_3 + x_3 + x_3 = 2$
 $x_1 - x_2 + x_3 + x_3 + x_3 = 2$
 $x_1 - x_2 + x_3 + x_3 + x_3 + x_3 = 2$
 $x_2 - x_3 + x_3 + x_3 +$

$$R_0 \rightarrow R_0 - R_1$$

$$R_0 \rightarrow R_0 - R_2$$

$$\frac{4}{25} \cdot \frac{5}{26} = \frac{1}{25}$$

•			•			1	a	
								C
								X ₄
								A A
		(2
		1						>
)						4 3)
								×
								4
								S
								2
								_
								4
		>						4
		(3	×Λ	SL	S _L			
					1			
					12			
						٩		

$$\frac{2}{2} = \frac{3}{3}$$

MIAX
$$7x_1 + x_2$$
 $4x_1 - 2x_2 + 2x_3 \le 4$
 $2x_1 + x_2 + x_3 \le 4$
 $x_1, x_2, x_3 \ge 4$

V STANDARS.

MAX $7x_1 + x_2 + 2x_3 + 5x_3 = 4$
 $7x_1 + x_2 + 2x_3 + 5x_3 = 4$
 $7x_1 + x_2 + 2x_3 + 5x_3 = 4$

MIN $4y_1 + y_2 \le 7$

Avale

 $4y_1 + 4y_2 \le 7$
 $2y_1 + y_2 \le 4$
 $2y_1 + y_2 \le 6$
 $y_1 + y_2 \le 6$
 $y_1 + y_2 \le 6$
 $y_2 + y_3 \le 6$
 $y_3 + y_4 \le 6$
 $y_4 \in 6$

$$\begin{cases}
A+2y_{A}-y_{2}=0 & \Rightarrow & \begin{cases}
y_{A}=0 \\
y_{A}=0
\end{cases}
\end{cases}$$

$$\begin{cases}
y_{A}=0 & \Rightarrow \\
y_{A}=0
\end{cases}$$

$$\begin{cases}
y_{A}=0 & \Rightarrow \\
y_{A}=0
\end{cases}
\end{cases}$$

$$\begin{cases}
y_{A}=0 & \Rightarrow \\$$

L. max
$$y_1 + 2y_2 + y_3$$

diale

 $-y_1 + 2y_2 + y_3 \le 1$
 $y_1 + 2y_2 \le 2$
 $-y_2 + y_3 \le -1$
 $y_1 \le 0$
 $y_2 \le 0$
 $y_3 \le 0$
 $x^* = \begin{pmatrix} 0 & 0 & 0 \\ 7 & 0 & 0 \\ 7 & 0 & 0 \end{pmatrix}$
 $\begin{cases} 2 - y_1 + 2y_2 = 0 \\ -1 + y_2 - y_3 = 0 \end{cases}$
 $\begin{cases} y_1 = 2 & 0 \\ y_2 = 0 & 0 \\ y_3 = -1 \end{cases}$

Ann è chima

Min
$$5x_1 + 3x_2 - 2x_3 - x_4$$
 $2x_1 + x_2 - x_3 + 3x_4 \le 8$
 $-x_1 + 2x_1 - 2x_3 + 2x_4 \le 4$
 $x_1 + x_3 = x_0$

Stol

Min $2x_1 + 3x_2 - 2x_3 - x_4$
 $2x_1 + x_2 - x_3 + 3x_4 + 5x_1 = 8$
 $-x_1 + 2x_2 - 2x_3 + 2x_4 + 5x_2 = 4$
 $x_1 + x_3 + 5x_3 = 10$

J duale

Max $8y_1 + 4y_2 + 10y_3$
 $2y_1 - y_2 + y_3 \le 5$
 $y_1 + 2y_2 \le 3$
 $2x_1 + 2y_2 \le 3$

$$\begin{cases} -2 + 4 + 24 - 4 = 0 \\ -1 - 34 - 24 = 0 \\ 4 = 0 \end{cases}$$

$$91^{2}$$
 92^{2}
 $-2-\frac{1}{3}=93=\frac{7}{3}$

verifico auminiss

$$-\frac{2}{3} - \frac{7}{3} = -\frac{7}{3}^{3} = -3 = 5 \text{ OK}$$

$$x_{1} > 0 \rightarrow sd_{1} = 0$$
 $y_{2} > 0 \rightarrow sd_{2} = 0$

$$y_{3} - 2y_{2} + 2y_{3} = b$$

$$\begin{cases} y_{4} = a + y_{2} + 4y_{3} \\ 3a + 3y_{2} + 3y_{3} - 2y_{2} + 2y_{3} = b \end{cases}$$

$$\begin{cases} y_{4} = a + y_{2} + 4y_{3} \\ 3a + 3y_{2} + 3y_{3} - 2y_{2} + 2y_{3} = b \end{cases}$$

$$\begin{cases} y_{4} = b - 3a - 5y_{3} = 0 \\ -2a + b - 4y_{3} \leq 0 \end{cases}$$

$$\begin{cases} y_{4} = b - 3a - 5y_{3} \leq 0 \\ -2a + b \leq y_{3} \leq 0 \end{cases}$$

$$\begin{cases} -2a + b \leq y_{3} \leq 0 \\ -3a + b \leq y_{3} \leq 0 \end{cases}$$

$$\begin{cases} -3a + b \leq y_{3} \leq 0 \\ -3a + b \leq y_{3} \leq 0 \end{cases}$$

$$\begin{cases} -3a + b \leq y_{3} \leq 0 \\ -3a + b \leq y_{3} \leq 0 \end{cases}$$

$$\begin{cases} -3a + b \leq y_{3} \leq 0 \\ -3a + b \leq y_{3} \leq 0 \end{cases}$$

fissare un valore per a eb nel range trovato e trovare la soluzione ottima del problema duale corrispondente potizziamo a e b>a b=2a soddisfalto per a=b=1 | prob diventa

MIN $-X_1 + X_2$ $-X_1 + 3X_2 \le 2$ $x_1 - 2x_2 \le 2$ $X_1 + 2x_2 \le 4$ $X_1 + 2x_2 \le 4$ MIN $-X_1 + x_2$ $-X_1 + 3x_2 + S_1 = 3$ $X_1 - 2X_2 + S_2 = 3$

per trovare soi duale possiamo leggere il tableau utilizzando metodo del simplesso primale

$$R_0 \rightarrow R_2 + R_0$$

 $R_1 \rightarrow R_2 + R_1$
 $R_3 \rightarrow R_2 + R_3$

$$R_0 \rightarrow R_3 + R_0$$

$$R_1 \rightarrow -R_3 + R_1$$

$$R_2 \rightarrow 2R_3 + R_2$$

$$R_2 \rightarrow 2R_3 + R_2$$

$$\begin{cases} 34 & + 42 = 1 \\ -44 & - 42 = 6 \end{cases}$$

$$\begin{cases} 43 & + 42 = 5 \\ 43 & + 42 = 5 \end{cases}$$

$$\begin{cases} 41 & + 42 = 5 \\ 42 & + 42 = 6 \end{cases}$$

$$\begin{cases} 41 & + 42 = 5 \\ 42 & + 42 = 6 \end{cases}$$

$$\begin{cases} 41 & + 42 = 6 \\ 42 & + 42 = 6 \end{cases}$$

$$\begin{cases} 41 & + 42 = 6 \\ 42 & + 42 = 6 \end{cases}$$

$$\begin{cases} 41 & + 42 = 6 \\ 65 & + 42 = 6 \end{cases}$$

$$\begin{cases} 341 & = \frac{1}{3} \\ 34 & = \frac{1}{3} \end{cases}$$

$$\Rightarrow \text{ Standardize} \qquad \qquad \times_{\Lambda} = \times_{\Lambda}^{+} - \times_{\Lambda}^{-} \ge 0$$
with $2 \times_{\Lambda}^{+} - 2 \times_{\Lambda}^{-} + \times_{2}^{-} - \times_{3}^{-}$

$$x_1$$
, x_2 , x_3 , x_4 , x_5 , x_7 , x_1 , x_2 , x_3 , x_4 , x_5 , x_7 , x_8 ,

$$\begin{cases} x_{1}^{+} + 3x_{2}^{-} = 8 \\ 2x_{1}^{+} - x_{1}^{-} = 6 \end{cases} \begin{cases} x_{1}^{+} + 6x_{1}^{+} - 18 = 8 \\ x_{1}^{+} + 2x_{2}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 6 \\ x_{2}^{+} + 2x_{2}^{+} = 6 \end{cases} \begin{cases} x_{1}^{+} + 6x_{1}^{+} - 18 = 8 \\ x_{2}^{+} + 2x_{2}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 6 \\ x_{2}^{+} + 2x_{2}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 6 \\ x_{2}^{+} + 2x_{2}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} - 2x_{1}^{+} + 2x_{2}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} + 2x_{3}^{+} = 6 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \\ x_{2}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{2}^{+} + 2x_{3}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{2}^{+} + 2x_{3}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{2}^{+} + 2x_{3}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{2}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{2}^{+} + 2x_{3}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{3}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{2}^{+} + 2x_{3}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{3}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{2}^{+} + 2x_{3}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{3}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{2}^{+} + 2x_{3}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{1}^{+} + 2x_{3}^{+} = 8 \end{cases}$$

$$\begin{cases} x_{2$$

Auth
$$X_{A} - X_{2}$$
 $Y_{A} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $2X_{A} - X_{1} = 66$
 $X_{A} + X_{2} = X_{1}$
 $X_{1} = 0$
 $X_{1} = 0$
 $X_{2} = 0$
 $X_{3} = 0$
 $X_{4} = 0$
 $X_{1} = 0$
 $X_{2} = 0$
 $X_{3} = 0$
 $X_{4} = 0$
 X_{4

Aun
$$a_{1}$$
 = 6 0 0 0 1
 -51 +0 a_{1} 1 0 a_{2}
 -6 1 0 0
 -51 +Ro -6 1 0 a_{2}
 -6 1 0 a_{3}
Stop -8 f.o. a_{1} 0 cerco altra sol.
 -8 4 a_{2} a_{3} a_{4} a_{2} a_{3} a_{4} a_{3} a_{4} a_{4}

Max
$$-4x_1 + 3x_2 - x_3$$
 $x_1 + 3x_2$
 $x_2 + 4x_3 - x_3$
 $x_3 > 0$
 $x_4 - x_2 + 4x_3 - x_3$
 $x_1 > 0$
 $x_2 - x_3 > 0$
 $x_4 + 3x_2 + x_3$
 $x_4 + x_2 + 4x_3 - x_3 = 0$
 $x_4 + x_2 + 4x_3 - x_3 = 0$
 $x_4 + x_2 + 4x_3 - x_3 = 0$
 $x_4 + x_2 + 4x_3 - x_3 = 0$
 $x_4 + x_2 + 4x_3 - x_3 = 0$
 $x_4 + x_2 + 4x_3 - x_3 = 0$
 $x_4 + x_2 + 4x_3 - x_3 = 0$
 $x_4 + x_2 + 4x_3 - x_3 = 0$
 $x_4 + x_2 + x_3 = 0$
 $x_4 + x_2 + x_3 = 0$
 $x_4 + x_2 + x_3 = 0$
 $x_4 + x_4 = 0$
 $x_4 +$

$$\frac{1}{3} \cdot \left(\frac{1}{14}\right) = \frac{1}{4} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

MADX
$$3x, -2x_{2} + x_{3}$$
 $5x_{4} + x_{2} + 2x_{3} = 2$
 $-x_{4} + x_{2} + x_{3} + x_{3} + x_{4} = -x_{4} + 2x_{3} + 2x_{3} + 2x_{4} = 2$
 $-x_{4} - x_{4} - x_{4} + 2x_{3} + 2x_{3} + 5x_{4} = -x_{4} + 2x_{3} + 2x_{3} = -x_{4} + 2x_{3} + 2x_{4} = 2$
 $-x_{4} - x_{4} + 2x_{4} + 2x_{3} + 2x_{4} = -x_{4} = -x_{4} + 2x_{4} = -x_{4} = -x_{4}$

She sq.
$$-9$$
, -2

