Analyse properties of conserved moieties

tutorial_initConservedMoietyPaths

```
modelName =
'DAS'
projectDir =
'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties'
 '/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/data/models/'
softwareDir =
 \verb|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conserved/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conserved/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/software/|'/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/software/|'/home/rf
visDataDir =
 '/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/data/visualisation/
resultsDir =
 '/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/results/DAS_ConservedMo
rxnfileDir =
 '/home/rfleming/work/sbgCloud/code/fork-COBRA.tutorials/analysis/conservedMoieties/data/mini-ctf/rxns/atom
if ~recompute
                  load([resultsDir modelName '_ConservedMoietiesAnalysis.mat'])
                  return
end
```

Load the atomically resolved models derived from identifyConservedMoieties.m

```
load([resultsDir modelName '_arm.mat'])
```

Basic properties of atomically resolved models

```
disp(arm)
```

```
MRH: [1×1 struct]
dATM: [1x1 digraph]
M2Ai: [11×170 double]
Ti2R: [176×4 double]
Ti2I: [176×6 double]
ATG: [1x1 graph]
 M2A: [11×170 double]
 A2R: [114\times4 \text{ double}]
A2Ti: [114×176 double]
 I2A: [6×170 double]
 A2I: [114×6 double]
 I2C: [6×56 double]
 C2A: [56×170 double]
 A2C: [114×56 double]
 MTG: [1×1 graph]
 I2M: [6×26 double]
 M2I: [20×6 double]
 M2M: [11×26 double]
 M2R: [20×4 double]
  L: [6×11 double]
```

Load the model, unless it is also saved with the results.

```
if 0
   load([dataDir modelName '.mat'])
   model = iDopaNeuro;
```

```
else
   model=arm.MRH;
end
```

Identify the stoichiometrically consistent subset of the model

```
massBalanceCheck=0;
printLevel=1;
[SConsistentMetBool, SConsistentRxnBool, SInConsistentMetBool, SInConsistentRxnBool, a
    = findStoichConsistentSubset(model,massBalanceCheck,printLevel);
--- findStoichConsistentSubset START ----
--- Summary of stoichiometric consistency ----
   11
           11
                  totals.
    0
            7
                  heuristically external.
            4 heuristically internal:
   11
            4
   11
                  ... of which are stoichiometrically consistent.
            0
                  ... of which are stoichiometrically inconsistent.
    0
            0
                   ... of which are of unknown consistency.
    0
                 Confirmed stoichiometrically consistent by leak/siphon testing.
             4
   11
--- findStoichConsistentSubset END ----
Warning: Model did not contain a genes field. Building it along with the rules field
Warning: This function can be only be used on a model that has grRules field!\n
```

Remove non-atom mapped part of the model, but keep the external reactions

```
keepRxnBool = getCorrespondingCols(arm.MRH.S, arm.MRH.metAtomMappedBool, true(size(arm.keepRxnBool = keepRxnBool & ~SConsistentRxnBool1;
removeRxnBool = ~(arm.MRH.rxnAtomMappedBool | keepRxnBool);
model = removeRxns(arm.MRH, arm.MRH.rxns(removeRxnBool));
```

Identify the stoichiometrically consistent subset of the model

```
massBalanceCheck=1;
printLevel=1;
[SConsistentMetBool, SConsistentRxnBool2, SInConsistentMetBool, SInConsistentRxnBool, u
    = findStoichConsistentSubset(model,massBalanceCheck,printLevel);
--- findStoichConsistentSubset START ----
--- Summary of stoichiometric consistency ----
   11 totals.
             7
    0
                  heuristically external.
   11
            4
                 heuristically internal:
   11
                 ... of which are stoichiometrically consistent.
            4
    0
            0
                  ... of which are stoichiometrically inconsistent.
    0
            0
                  ... of which are of unknown consistency.
    0
                  heuristically internal and stoichiometrically inconsistent or unknown consistency.
                  ... of which are elementally imbalanced (inclusively involved metabolite).
    0
                   ... of which are elementally imbalanced (exclusively involved metabolite).
    0
             0
                   Confirmed stoichiometrically consistent by leak/siphon testing.
   11
--- findStoichConsistentSubset END ----
Warning: Model did not contain a genes field. Building it along with the rules field
```

Table of model properties

Warning: This function can be only be used on a model that has grRules field!\n

```
rankN=getRankLUSOL(arm.MRH.S(arm.MRH.metAtomMappedBool,arm.MRH.rxnAtomMappedBool));
Warning: There was an error loading the library "/home/rfleming/work/sbgCloud/code/fork-
cobratoolbox/external/base/solvers/lusol/src/libclusol.so"
Unrecognized function or variable 'libclusol_proto_glnxa64'.
Caught error using lusol interface. Proceeding with matlab LU implementation (slower)
rankL=getRankLUSOL(arm.L);
Warning: There was an error loading the library "/home/rfleming/work/sbgCloud/code/fork-
cobratoolbox/external/base/solvers/lusol/src/libclusol.so"
Unrecognized function or variable 'libclusol_proto_glnxa64'.
Caught error using lusol interface. Proceeding with matlab LU implementation (slower)
rankdATM=getRankLUSOL(incidence(arm.dATM));
Warning: There was an error loading the library "/home/rfleming/work/sbgCloud/code/fork-
cobratoolbox/external/base/solvers/lusol/src/libclusol.so"
Unrecognized function or variable 'libclusol_proto_glnxa64'.
Caught error using lusol interface. Proceeding with matlab LU implementation (slower)
rankATG=getRankLUSOL(incidence(arm.ATG));
Warning: There was an error loading the library "/home/rfleming/work/sbgCloud/code/fork-
cobratoolbox/external/base/solvers/lusol/src/libclusol.so"
Unrecognized function or variable 'libclusol_proto_glnxa64'.
Caught error using lusol interface. Proceeding with matlab LU implementation (slower)
rankMTG=getRankLUSOL(incidence(arm.MTG));
Warning: There was an error loading the library "/home/rfleming/work/sbgCloud/code/fork-
cobratoolbox/external/base/solvers/lusol/src/libclusol.so"
Unrecognized function or variable 'libclusol_proto_glnxa64'.
Caught error using lusol interface. Proceeding with matlab LU implementation (slower)
TT={'Model', 'm+' , 'Metabolites', size(arm.MRH.S,1);
                , 'm' , 'Mapped metabolites', nnz(arm.MRH.metAtomMappedBool);
           , 'n+' , 'Reactions', size(arm.MRH.S,2);
             1.1
                       'Internal reactions', nnz(SConsistentRxnBool1);
             1.1
                       'External reactions', nnz(~SConsistentRxnBool1);
   1.1
                    , 'Mapped reactions', nnz(arm.MRH.rxnAtomMappedBool);
             'n'
   'Mapped model'
                       , 'm' , 'size(model.S,1)', rankN;
           , 'n+k'
                     , 'size(model.S,2)', size(model.S,2);
                       'Internal reactions', nnz(SConsistentRxnBool2);
             1.1
   1.1
                       'External reactions', nnz(~SConsistentRxnBool2);
             'r'
                      'Rank(N)', rankN;
   1.1
             'm-r'
                    , 'Row rank deficiency(N)', nnz(arm.MRH.metAtomMappedBool) - rankN;
   1.1
             1.1
                        'Isomorphism classes', size(arm.L,1);
   1.1
             1.1
                       'Independent isomorphism classes', rankL;
             1.1
                        'Moieties', size(arm.I2M,2);
   'MTG'
             1.1
   1.1
                       'Moiety transitions', size(arm.M2I,1);
   1.1
             1.1
                       'Rank(M)', rankMTG;
             1.1
  'ATG'
                       'Atoms', size(arm.I2A,2);
             1.1
   1.1
                       'Atom transitions', size(arm.A2I,1);
             \mathbf{1}\cdot\mathbf{1}
                       'Rank(A)', rankATG;
                       'Row rank deficiency(A)', size(arm.I2A,2) - rankATG;
```

'Components', size(arm.C2A,1);

```
{'Model'
                                   { 'm+'
                                                           {'Metabolites'
                                                                                                                               {[ 11]}
                                   { 'm'
\{0\times0\ \text{char}
                                                           {'Mapped metabolites'
                                                                                                                               {[ 11]}
                                   { 'n+'
\{0 \times 0 \text{ char}
                                                           {'Reactions'
                                                                                                                               {[ 11]}
{0×0 char
                                   \{0 \times 0 \text{ char}\}
                                                           {'Internal reactions'
                                                                                                                               {[
                                                                                                                                    4]}
{0×0 char
                                  \{0\times0\ \text{char}\}
                                                          {'External reactions'
                                                                                                                              [
                                                                                                                                     7]}
{0×0 char
                                  {'n'
                                                          {'Mapped reactions'
                                                                                                                              {[4]}
{'Mapped model'}
                                  { 'm'
                                                          { 'size(model.S,1) '
                                                                                                                              {[4]}
                                                          {'size(model.S,2)'
                                   { 'n+k '
{0×0 char
                                                                                                                              {[ 11]}
{0×0 char
                                   \{0 \times 0 \text{ char}\}
                                                          {'Internal reactions'
                                                                                                                              {[4]}
{0×0 char
                                                                                                                             {[7]}
                                 \{0\times0\ \text{char}\}
                                                          {'External reactions'
                                {'r' }
                                                          { 'Rank(N) '
\{0\times0\ \text{char}
                                                                                                                              {[ 4]}
                              {'m-r' } {'Row rank deficiency(N)' }
{0×0 char} {'Isomorphism classes' }
{0×0 char} {'Independent isomorphism clas...'}
{0×0 char} {'Moieties' }
{0×0 char} {'Moiety transitions' }
{0×0 char} {'Rank(M)' }
{0×0 char} {'Atoms' }
{0×0 char} {'Atom transitions' }
{0×0 char} {'Rank(A)' }
{0×0 char} {'Row rank deficiency(A)' }
{0×0 char} {'Components' }
{0×0 char} {'Atoms' }
{0×0 char} {'Rank(ATM)' }
{0×0 char} {'Rank(ATM)' }
{0×0 char} {'Row rank deficiency(ATM)' }
}
                                {'m-r'
                                                                                                                             {[7]}
{0×0 char
                                                  { 'Row rank deficiency(N) '
\{0\times0\ \text{char}
                                                                                                                            {[ 6]}
\{0\times0\ \text{char}
                                                                                                                        {[ 6]}
{ 'MTG '
                                                                                                                             {[ 26]}
{0×0 char
                                                                                                                              {[ 20]}
\{0\times0\ \text{char}
                                                                                                                              {[ 20]}
{'ATG'
                                                                                                                              {[170]}
{0×0 char
                                                                                                                              {[114]}
{0×0 char
                                                                                                                              {[114]}
\{0\times0\ \text{char}
                                                                                                                              {[56]}
\{0\times0\ \text{char}
                                                                                                                              {[ 56]}
'dATM'
                                                                                                                              {[170]}
\{0\times0 char
                                                                                                                             {[176]}
\{0\times0\ \text{char}
                                                                                                                              {[114]}
                                \{0 \times 0 \text{ char}\}
{0×0 char
                                                        {'Row rank deficiency(dATM)'
                                                                                                                              {[62]}
\{0\times0\ \text{char}
                                \{0\times 0 \text{ char}\} \{0\times 0 \text{ char}\}
                                                                                                                              {[NaN]}
```

Properties of conserved moieties

[moietyMasses, knownmoietyMasses, unknownElements, Ematrix, elements] = getMolecularMass [metMasses, knownmetMasses, unknownElements, Ematrix, elements] = getMolecularMass (modes)

Compare the distributions of the molecular moietyMasses

```
figure
hold on
h = histogram(moietyMasses);
xlabel('mass (AMU)')
ylabel('conserved moiety abundance')
title('Molecular mass of conserved moieties in iDopa model')
```



```
%h2.BinWidth = 0.25;
figure
moietyIncidence = sum(arm.L~=0,2);
loglog(moietyMasses,moietyIncidence,'.')
title('Conserved moiety mass vs incidence')
xlabel('mass (AMU)')
ylabel('metabolite incidence')
```


The metabolite mass vs mass weighted incidence of moieties in each metabolite should be a straight line trough the origin if all of the moieties that make up a metabolite are present and the formula for the metabolite

is correct. Sometimes the metabolite formula is ambiguous, e.g., FULLR in the formula, so the mass will be incorrect.

```
figure
approxMetMasses = arm.L'*moietyMasses;
plot(metMasses,approxMetMasses,'.')
xlabel('Metabolite mass')
ylabel('Mass weighted incidence of moieties in each metabolite')
```


Metabolites with mass most similar to the mass of the moiety they contain

```
[minimalMassMetabolite, minimalMassFraction, numMinimalMassMetabolites] = representative
if ~isfield(model,'metNames')
    model.metNames = model.mets;
end
```

High molecular weight moieties that are present in many metabolites.

```
massWeightedIncidence=diag(moietyMasses)*arm.L*ones(size(arm.L,2),1);
[massWeightedIncidenceSorted, xi] = sort(massWeightedIncidence,'descend');
bool=false(size(arm.L,1),1);
bool(xi(1:min(length(xi),30)))=1;
C = cell(nnz(bool), 9);
n=1;
for i=1:size(arm.L,1)
    if bool(i)
        ind = find(strcmp(minimalMassMetabolite{i}, model.mets));
        C(n,1:9) = \{i,nnz(arm.L(i,:)),nnz(model.S((arm.L(i,:) \sim= 0)',:) \sim= 0),moietyFormula \}
    end
end
C=sortrows(C,5,'descend');
T=cell2table(C);
T.Properties.VariableNames={'index','metabolites','rxns','moietyformula','mass','Minima
size(T,1)
ans = 6
```

index	metabolites	rxns	moietyformula	mass	Minimalmassmetabolite	Name	Fo
3	2	6	{ 'C9H13N5O3 ' }	239.1	{ 'dhbpt ' }	{ 'dhbpt ' }	{ ' C9H
1	4	8	('C8H11N')	121.09	{'dopa' }	{ 'dopa ' }	`'C8H
2	5	11	{'CO2' }	43.99	{'co2' }	{'co2' }	; co2
6	5	12	{'0' }	15.995	('h2o')	{'h2o' }	(≀н20
4	4	11	('H')	1.0078	('h')	{'h' }	`H'
5	3	8	('H')	1.0078	('h2o')	{'h2o' }	('H2C

Moieties that are present in a near maximal number of metabolites.

```
bool=moietyIncidence>=100;
C = cell(nnz(bool),9);
n=1;
for i=1:size(arm.L,1)
    if bool(i)
        ind = find(strcmp(minimalMassMetabolite{i}, model.mets));
        C(n,1:9) = {i,nnz(arm.L(i,:)),nnz(model.S((arm.L(i,:)~=0)',:)~=0),moietyFormulant n=n+1;
    end
end

C=sortrows(C,2,'descend');
T=cell2table(C);
T.Properties.VariableNames={'index','metabolites','rxns','moietyformula','mass','Minimasize(T,1)
```

ans = 0

disp(T)

```
disp(T)
```

Moieties that are present in a moderate number of metabolites.

```
bool= moietyIncidence>=10 & moietyIncidence<=100;</pre>
C = cell(nnz(bool), 9);
n=1;
for i=1:size(arm.L,1)
    if bool(i)
        ind = find(strcmp(minimalMassMetabolite{i}, model.mets));
        C(n,1:9) = \{i,nnz(arm.L(i,:)),nnz(model.S((arm.L(i,:)\sim=0)',:)\sim=0),moietyFormula
        n=n+1;
    end
end
C=sortrows(C,9,'descend');
T=cell2table(C);
T.Properties.VariableNames={'index','metabolites','rxns','moietyformula','mass','Minima
size(T,1)
ans = 0
disp(T)
```

Moieties that are present in a small number of metabolites.

```
bool= moietyIncidence>2 & moietyIncidence<=10;
C = cell(nnz(bool),9);
n=1;
for i=1:size(arm.L,1)
    if bool(i)
        ind = find(strcmp(minimalMassMetabolite{i}, model.mets));
        C(n,1:9) = {i,nnz(arm.L(i,:)),nnz(model.S((arm.L(i,:)~=0)',:)~=0),moietyFormulantent
        n=n+1;
    end
end

C=sortrows(C,5,'descend');
T=cell2table(C);
T.Properties.VariableNames={'index','metabolites','rxns','moietyformula','mass','Minimasize(T,1)</pre>
```

```
ans = 5
disp(T)
```

metabolites	rxns	moietyformula	mass	Minimalmassmetabolite	Name	Form
4	8	{'C8H11N'}	121.09	{'dopa'}	{'dopa'}	{'C8H1
5	11	{'CO2' }	43.99	{'co2' }	{'co2' }	{ 'CO2 '
5	12	{'0' }	15.995	{'h2o' }	{'h2o' }	('H2O'
4	11	{'H' }	1.0078	{ 'h' }	{'h' }	{'H'
3	8	{'H' }	1.0078	{'h2o' }	{'h2o' }	{'H2O'
	4 5 5	4 8 5 11 5 12 4 11	4 8 {'C8H11N'} 5 11 {'C02'} 5 12 {'O'} 4 11 {'H'}	4 8 {'C8H11N'} 121.09 5 11 {'C02'} 43.99 5 12 {'O'} 15.995 4 11 {'H'} 1.0078	4 8 {'C8H11N'} 121.09 {'dopa'} 5 11 {'C02' } 43.99 {'co2' } 5 12 {'O' } 15.995 {'h2o' } 4 11 {'H' } 1.0078 {'h' }	4 8 {'C8H11N'} 121.09 {'dopa'} {'dopa'} 5 11 {'C02' } 43.99 {'co2' } {'co2' } 5 12 {'O' } 15.995 {'h2o' } {'h2o' } 4 11 {'H' } 1.0078 {'h' }

Moieties that are present in a minimal number of metabolites.

```
bool=moietyIncidence==2;
C = cell(nnz(bool), 11);
n=1;
for i=1:size(arm.L,1)
    if bool(i)
        ind = find(arm.L(i,:)\sim=0);
        C(n,1:11) = {i,moietyFormulae{i},moietyMasses(i),model.mets{ind(1)},model.metNa
        n=n+1;
    end
end
C=sortrows(C,3,'descend');
T=cell2table(C);
T.Properties.VariableNames={'index','moietyformula','mass','met1','name1','formula1','r
size(T,1)
ans = 1
disp(T)
```

index	moietyformula	mass	met1	name1	formula1	met2	name2
							
3	{'C9H13N5O3'}	239.1	{ 'thbpt ' }	{	{ 'C9H15N5O3 ' }	{ 'dhbpt ' }	{ 'dhbpt ' }

Classification of conserved moieties

```
moietyTypes = classifyMoieties(arm.L, model.S);
```

An 'Internal' moiety is one that either does not participate in any exchange reaction or is conserved by all exchange reactions

```
isInternalMoiety = strcmp('Internal', moietyTypes);
bool = isInternalMoiety;
C = cell(nnz(bool), 8);
n=1;
for i=1:size(arm.L,1)
    if bool(i)
        ind = find(arm.L(i,:)\sim=0);
        C(n,1:8) = \{i,nnz(arm.L(i,:)),nnz(model.S((arm.L(i,:)\sim=0)',:)\sim=0),moietyFormula
        n=n+1;
    end
end
C=sortrows(C,5,'descend');
T=cell2table(C);
T.Properties.VariableNames={'index','metabolites','rxns','moietyformula','mass','Example
size(T,1)
ans = 1
disp(T)
```

index	metabolites	rxns	moietyformula	mass	Examplemet	Examplename	Exampleformula
3	2	6	{ 'C9H13N5O3 ' }	239.1	{'thbpt'}	{'thbpt'}	{'C9H15N5O3'}

A 'Transitive' moiety is one that is only found in primary metabolites

```
isTransititiveMoiety= strcmp('Transitive', moietyTypes);
bool = isTransititiveMoiety;
C = cell(nnz(bool), 9);
n=1;
for i=1:size(arm.L,1)
    if bool(i)
        ind = find(strcmp(minimalMassMetabolite{i}, model.mets));
        C(n,1:9) = \{i,nnz(arm.L(i,:)),nnz(model.S((arm.L(i,:)\sim=0)',:)\sim=0),moietyFormula
    end
end
C=sortrows(C,9,'descend');
T=cell2table(C);
T.Properties.VariableNames={ 'index', 'metabolites', 'rxns', 'moietyformula', 'mass', 'Minima
size(T,1)
ans = 3
```

disp(T)

metabolites	rxns	moietyformula	mass	Minimalmassmetabolite	Name	Form
5	11	{'CO2'}	43.99	{'co2' }	{'co2'}	{ 'CO2 '
5	12	{'O' }	15.995	{'h2o' }	{'h2o' }	{'H2O'
4	8	{'C8H11N'}	121.09	{ 'dopa ' }	{ 'dopa ' }	{ 'C8H1
	metabolites 5 5 4	5 11 5 12	5 11 {'CO2' } 5 12 {'O' }	5 11 {'CO2' } 43.99 5 12 {'O' } 15.995	5 11 {'CO2' } 43.99 {'CO2' } 5 12 {'O' } 15.995 {'h2o' }	5 11 {'CO2' } 43.99 {'CO2' } {'CO2' } 5 12 {'O' } 15.995 {'h2O' } {'h2O' }

An 'Integrative' moiety is one that is not conserved in the open network and found in both primary and secondary metabolites.

```
bool= strcmp('Integrative', moietyTypes);
C = cell(nnz(bool), 8);
n=1;
for i=1:size(arm.L,1)
    if bool(i)
        ind = find(arm.L(i,:)\sim=0);
        C(n,1:8) = \{i,nnz(arm.L(i,:)),nnz(model.S((arm.L(i,:)\sim=0)',:)\sim=0),moietyFormula
        n=n+1;
    end
end
C=sortrows(C,5,'descend');
T=cell2table(C);
T.Properties.VariableNames={'index','metabolites','rxns','moietyformula','mass','Example
size(T,1)
```

ans = 2

disp(T)

index	metabolites	rxns	moietyformula	mass	Examplemet	Examplename	Exampleformul
4	4	11	{'H'}	1.0078	{	{	{ 'C9H15N5O3 ' }
5	3	8	{ 'H'}	1.0078	{'thbpt'}	{ 'thbpt ' }	{'C9H15N5O3'}

Mitochondrially localised moieties

```
[compartments, uniqueCompartments] = getCompartment(model.mets);
isMitochondrial=strcmp('m',compartments);
nnz(isMitochondrial)
```

ans = 0

```
isCompletelyMitochondrialMoiety = ~any(arm.L(:,~isMitochondrial),2);
nnz(isCompletelyMitochondrialMoiety)
```

```
ans = 6
```

```
mitochondrialMoietyFraction = sum(arm.L(:,isMitochondrial),2)./sum(arm.L,2);
figure;
title('Fraction of moiety incidence that is mitochondrial')
hist(mitochondrialMoietyFraction)
```



```
bool= mitochondrialMoietyFraction==1;
C = cell(nnz(bool),8);
n=1;
for i=1:size(arm.L,1)
    if bool(i)
        ind = find(arm.L(i,:)~=0);
        C(n,1:8) = {i,nnz(arm.L(i,:)),nnz(model.S((arm.L(i,:)~=0)',:)~=0),moietyFormula n=n+1;
    end
```

```
end

C=sortrows(C,5,'descend');
T=cell2table(C);
T.Properties.VariableNames={'index','metabolites','rxns','moietyformula','mass','Example size(T,1)

ans = 0

disp(T)
```

Transitive moiety, of sufficient mass, with moderate incidence

```
isTransititiveMoiety= strcmp('Transitive', moietyTypes);
isModerateIncidence = moietyIncidence>=7 & moietyIncidence<=100;
isSufficientMass = moietyMasses > 2;
isSufficientMinimalMassFraction = minimalMassFraction > 0.1;
bool = isTransititiveMoiety & isModerateIncidence & isSufficientMass & isSufficientMin
C = cell(nnz(bool), 9);
n=1;
for i=1:size(arm.L,1)
    if bool(i)
        ind = find(strcmp(minimalMassMetabolite{i}, model.mets));
        C(n,1:9) = \{i,nnz(arm.L(i,:)),nnz(model.S((arm.L(i,:)\sim=0)',:)\sim=0),moietyFormulation \}
        n=n+1;
    end
end
C=sortrows(C,9,'descend');
T=cell2table(C);
T.Properties.VariableNames={'index','metabolites','rxns','moietyformula','mass','Minima
size(T,1)
ans = 0
disp(T)
```

Individual moiety subnetwork

Examine the metabolites and reactions in an individual moiety subnetwork.

```
ind = min(size(arm.L,1),32);% anth moiety
mBool=arm.L(ind,:)~=0;
nnz(mBool)

ans = 5

rBool = getCorrespondingCols(model.S, mBool, true(size(model.S,2),1), 'inclusive');
nnz(rBool)

ans = 6
```

Metabolites

```
bool=mBool;
C = cell(nnz(bool),5);
n=1;
for i=1:size(model.S,1)
    if bool(i)
        C(n,1:5) = {i,model.mets{i},model.metNames{i},model.metFormulas{i},metMasses(i), n=n+1;
    end
end
C=sortrows(C,5,'descend');
T=cell2table(C);
T.Properties.VariableNames={'index','met','name','formula','mass'};
disp(T)
```

index	met	name	formula	mass
7	{ '34dhphe ' }	{ '34dhphe ' }	{'C9H11NO4'}	197.07
4	{'tyr_L' }	{'tyr_L' }	{'C9H11NO3'}	181.07
9	{ 'dopa ' }	{ 'dopa ' }	{ 'C8H12NO2 ' }	154.09
3	{'02'}	{'02' }	{'02'}	31.99
6	{'h2o' }	{'h2o' }	{'H2O' }	18.011

Reactions

```
formulas = printRxnFormula(model, model.rxns(rBool));
R1
     phe_L + thbpt + o2
                               tyr_L + dhbpt + h2o
                          ->
R2
     thbpt + o2 + tyr_L
                          ->
                               dhbpt + h2o + 34dhphe
     34dhphe + h
                 ->
                         dopa + co2
R3
EX_02
       02
              <=>
EX_h2o
       h2o
EX_dopa
         dopa
return
```

Another Individual moiety subnetwork

Specify the index of a particular moiety

```
ind = min(size(arm.L,1),215);% Nicotinate moiety in iDopaNeuro1.
mBool=arm.L(ind,:)~=0;
nnz(mBool)
rBool = getCorrespondingCols(model.S, mBool, true(size(model.S,2),1), 'inclusive');
nnz(rBool)
```

Metabolites

```
bool=mBool;
C = cell(nnz(bool),5);
n=1;
for i=1:size(model.S,1)
    if bool(i)
        C(n,1:5) = {i,model.mets{i},model.metNames{i},model.metFormulas{i},metMasses(i), n=n+1;
    end
```

```
end
C=sortrows(C,5,'descend');
T=cell2table(C);
T.Properties.VariableNames={'index','met','name','formula','mass'};
disp(T)
```

Reactions

```
formulas = printRxnFormula(model, model.rxns(rBool));
```

Save analysis results

```
save([resultsDir modelName '_ConservedMoietiesAnalysis.mat'])
```