

COME AGAIN?

Deduplicating Quora Question Pairs

THE CHALLENGE

Quora is a community-based **question platform** where users can benefit from **knowledge sharing** by asking and answering each others' questions. Many questions are asked more than once, however, which poses an interesting **deduplication** challenge.

How can I be a good geologist?

What should I do to be a great geologist?

The data set for this challenge contains 323,164 annotated question pairs, of which 119,193 (36.9%) are marked as duplicates.

NETWORK ANALYSIS

Even though all question pairs are unique, many individual questions do appear more than once in both the training and testing data sets. We translated this network into a graph structure in which every node represents a question and every edge represents a question pair.

Figure 1. Nodes X and Y share 3 neighbours. This could indicate a higher duplicate probability.

Every question pair can now be assigned the following features: the **node degrees** of the constituent questions, their **intersection count** (shared neighbours) as well as mathematical **combinations** of these numbers.

LSTM ARCHITECTURE A

Our first **neural network** is trained on **word embedding** representations of the questions. It contains two **siamese LSTM** (long short-term memory) units, which receive the **unmerged** individual token embeddings, followed by different combination methods and multiple extra hidden layers. It was trained separately on both **word2vec** (Google News) as well as **GloVe** embeddings (Wikipedia).

Figure 2. A schematic representation of network architecture A, containing a siamese LSTM unit, a set of combination methods and hidden layers. Dropout is employed to combat overfitting.

LSTM ARCHITECTURE B

Our second neural network is a variation on architecture A. In this case, the two outputs of the siamese LSTM units are directly combined into a single value using a merge function. The network was trained separately using two functions: the dot product and the manhattan distance, while each time using the GloVe embeddings.

Figure 3. Network architecture B, containing a siamese LSTM unit, a merge function and a single sigmoid output node. There are no extra dense layers since the merging functions produce a single output value.

NLP FEATURES

In addition to the LSTM models and network analysis, we created 34 NLP features for each question pair, including: question length comparisons, token comparisons (some TFIDF-weighted), n-gram comparisons, several averaged embedding similarities (some TFIDF-weighted), several edit distances and full token-by-token embedding cross-correlation scores. Also, a named-entity-matching score was computed (NER model from spaCy).

ENSEMBLE MODEL

Together with the generated graph and NLP features, the **output predictions** of LSTM architectures A & B (4 in total) serve as input for our ensemble model. Our final model was generated using **parallel GBDT** (gradient boosting decision trees), implemented using **XGBoost**.

Figure 4. XGBoost generates multiple weighted decision trees based on the LSTM output predictions and the graph & NLP features, optimized based on the data set target variables and a loss function.

GBDT ensembles are very sensitive to **overfitting**. We therefore employed a **max depth** of **4** and **minimum child weight** of **10** based on cross-validation results.

RESULTS

Our **key finding** was to select sub-models not based on predictive performance but with a **validation loss comparable to the training loss**. This prevents the GDBT from **overfitting**.

The TOP 5 most informative NLP features were: BoW vectors (TFIDF weights), Levenshtein distance, embedding similarity (TFIDF weights), Jaro similarity and the embedding cross-correlations.

Ensemble Model	Accuracy
Neural net (graph & NLP features)	86.89%
Neural net (graph & NLP features + LSTM output)	87.56%
XGBoost (graph & NLP features)	86.89%
XGBoost (graph & NLP features + LSTM output)	88.75%