Data Science Perspective: Ontario Demand Forecasting

1. Introduction

This report presents a comprehensive analysis and forecasting of Ontario province's power demand using various machine learning models. The primary goal is to predict the electricity demand for the 24 hours in the month of July, utilizing historical demand data along with meteorological and temporal features. The acceptable error rate for the forecast must be less than 5%, equating to an accuracy of more than 95%.

2. Data Overview

The dataset used in this project includes historical data points for electricity demand and several influencing factors such as:

- Date
- Weekday
- Temperature
- Hourly Ontario Electricity Price (HOEP)
- Wind Speed
- Relative Humidity
- Humidex
- Dew Point
- Pressure at the Station
- Ontario Demand
- Temporal information

2.1. Data Preprocessing

- Missing Values: Analyzing the presence of any missing values.
- **Outliers**: Detected and treated outliers using appropriate statistical methods such as IQR and box plots. These are few of the observations made:
 - Since, the outliers are few and such peaks can occur in physical parameters, which are uncontrollable, they can be ignored.
 - Also, if the correlation of these Features with Target feature are insignificant, then it wouldn't have an impact on the target variable.
- **Feature Engineering**: Created new features such as <u>'is weekend, hour, day, month, year, day of the week, day of the year, week of the year'</u> to enhance the model's predictive power.

Features = ['Temperature', 'HOEP', 'Wind_Speed', 'Relative_Humidity', 'Dew_Point', 'Pressure_Station', 'Month', 'day_of_week', 'is_weekend', 'hour', 'day', 'month', 'year', 'dayofweek', 'dayofyear', 'weekofyear']

• **Normalization**: Applied Min-Max scaling to normalize the data for better model performance.

Dataset showing different columns that were added after feature engineering

Temperature	HOEP	Wind_Speed	Relative_Humidity	Dew_Point	Pressure_Station	Month	hour	minute	day	month	year	dayofweek	day_of_week	dayofyear	weekofyear
22.401485	19.880841	6.968426	24.023865	18.487223	98.646447	7.0	0	0	8	7	2022	4	4	189	27
12.863185	8.964317	32.763749	54.666157	6.774637	100.530124	7.0	1	0	8	7	2022	4	4	189	27
27.220864	16.723661	44.488284	60.570470	17.511707	100.466932	7.0	2	0	8	7	2022	4	4	189	27
31.595547	3.914337	49.109953	78.120637	19.679696	98.457850	7.0	3	0	8	7	2022	4	4	189	27
22.405966	35.626689	20.427226	33.704517	19.782843	99.535356	7.0	4	0	8	7	2022	4	4	189	27

3. Exploratory Data Analysis (EDA)

Performed EDA to understand the underlying patterns and relationships between different variables:

- Trend Analysis: Observed the overall trend in electricity demand over time.
 - o The demand keeps on fluctuating, but follows are straight path over the years.
- Seasonality: Analyzed seasonal patterns and their impact on demand.
- Correlation Analysis: Identified correlations between demand and other features.
 - HOEP Column in highly correlated with Ontario_Demand.
 - Reviewing the other features correlated with eachother to remove Multicollinearity.
- Stationary Analysis: Verifying the stationary nature of the dataset.
 - ADF and KPSS analysis showed that the timeseries data is nonstationary based on the p-value and null hypothesis.

Ontario Demand Distribution and Box Plot

Seasonal Decomposition (Additive Model)

- If we analyze the demand with respect to temperature, it is noticed that as the temperature goes up, the demand also increases owing to the more usage of air conditioning and other electrical equipment.
- Humidex and Temperature follows same trend over different seasons.
- Pressure and wind speed keeps on fluctuating erratically.

Ontario demand during different time of the day

	Max_Demand	Min_Demand	Mean_Demand
time_of_day			
midnight	19991	10609	14237.0
late night	17641	10016	13231.0
morning	22055	9831	14522.0
noon	23735	10683	16077.0
evening	24281	11184	16785.0

Ontario Demand on different days

	Max_Demand	Min_Demand	Mean_Demand
Weekday			
Friday	23735	10554	15597.0
Monday	23909	9831	15577.0
Saturday	21828	10460	14714.0
Sunday	22777	10262	14544.0
Thursday	23179	10630	15764.0
Tuesday	24281	10175	15758.0
Wednesday	23724	10629	15777.0

Ontario demand on Weekend

	Max_Demand	Min_Demand	Mean_Demand
is_weekend			
0	24281	9831	15695.0
1	22777	10262	14630.0

• Demand is high during evening, and on weekdays.

4. Model Selection

Different regression models were evaluated for forecasting based on the non-stationary nature of the dataset. Best performing parameters based on Grid Search:

• Random Forest Regressor

Parameters: ('RandomForest': RandomForestRegressor(max_depth=7, min_samples_leaf=2, n estimators=50)

XGBoost Regressor

Parameters: ['XGB': XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.8, gamma=0, gpu_id=-1, importance_type='gain', interaction_constraints='', learning_rate=0.1, max_delta_step=0, max_depth=5, min_child_weight=1, missing=nan, monotone_constraints='()', n_estimators=200, n_jobs=4, num_parallel_tree=1, random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=0.8, tree_method='exact', validate_parameters=1, verbosity=None)]

• Support Vector Regression (SVR)

Parameters: ('SVR': SVR(C=0.1, kernel='linear'))

4.1. Model Evaluation

Each model was evaluated using the following metrics:

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error (MAPE)
- Accuracy

Model	MAE	MSE	RMSE	MAPE	Accuracy
XGB	634.013674	6.519130e+05	807.411324	4.405092	0.957496
RandomForest	908.705235	1.372262e+06	1171.435902	6.354442	0.939081
SVR	1337.905747	2.877244e+06	1696.244068	8.966923	0.910308

5. Results

5.1. Best Model

The XGBoost Regressor was identified as the best-performing model with an accuracy of 95.55% and an RMSE of 866.92MW. However, some predictions exceeded the acceptable error rate of 500 MW.

5.2. Error Analysis

MAE: 663.21 MW

MSE: 751543.43 MW^2
RMSE: 866.92 MW
MAPE: 4.56%
Accuracy: 95.55%

Despite a high overall accuracy, individual prediction errors occasionally surpassed the 500 MW threshold, indicating areas for further model refinement.

6. Forecasting 24 hours Demand in the Month of July

The sample dataset for July 2021, 2022, 2023 was generated by isolating the historical July data, and using the Random max and min values.

• The graph above shows the July 2020's historical Demand, while the graph below displays the predicted demand in coming years for the month of July.

Conclusion

This project successfully demonstrated the application of various machine learning models for electricity demand forecasting by implementing it on Ontario Demand dataset. The XGBoost Regressor provided the most accurate predictions, though there is room for improvement to consistently maintain errors within the acceptable range.

Instructions to Run the Project

1. Environment Setup:

- o Install necessary packages using pip install -r requirements.txt.
- o Ensure the dataset is placed in the correct directory.

2. Running the Code:

o Execute the notebook

3. **Documentation**:

- o Detailed comments and documentation are provided within the code files.
- o Refer to the README file for a comprehensive guide.