Devoir Surveillé n°4 - Sujet groupes B et C

Préliminaires

- 1. (Question de cours) Si $n \ge 1$, alors $\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$ (démonstration).
- 2. (Question de cours) Définition d'un groupe, d'un groupe abélien.
- 3. Soit f:[0;1] dérivable telle que f(0)=f(1)=1. Montrer qu'il existe $x\in]0;1[$ tel que $f'(x)=2\pi\sin(2\pi x)$.

Exercice - Fonctions de Hermite

Dans tout l'exercice, on note $f: x \mapsto e^{-2\pi x^2}$. Pour tout $n \in \mathbb{N}$, on appelle *n*-ième fonction de Hermite, et on note h_n , la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \qquad h_n(x) = \frac{(-1)^n}{n!} \times e^{\pi x^2} \times f^{(n)}(x)$$

- 1. Expliciter h_0, h_1 et h_2 .
- 2. En revenant à la définition, montrer que, pour tout $n \in \mathbb{N}$ et tout réel x, $h_n'(x) 2\pi x h_n(x) = -(n+1)h_{n+1}(x)$.
- 3. Soit $n \ge 1$ et soit $x \in \mathbb{R}$.
 - (a) Soit $\varphi: x \mapsto -4\pi x e^{-2\pi x^2}$. Justifier que $\varphi^{(n)}(x) = -4\pi x f^{(n)}(x) 4n\pi f^{(n-1)}(x)$.
 - (b) En déduire que $h_n'(x) + 2\pi x h_n(x) = 4\pi h_{n-1}(x)$.

Problème - Problème de Dyer

Partie I - Préliminaires

1. (Question de cours) Soit $h:[0;1] \to [0;1]$ continue. Montrer que h admet un point fixe.

On se donne dans la suite de cette partie deux fonctions f et g continues de [0;1] dans [0;1] qui commutent, c'est-à-dire que $f \circ g = g \circ f$, et le but des questions 2 à 6 est de montrer qu'il existe $x \in [0;1]$ tel que f(x) = g(x). On effectue pour cela un raisonnement par l'absurde et on suppose donc que $f(x) \neq g(x)$ pour tout $x \in [0;1]$.

- 2. Montrer que f g est de signe constant. On suppose dans la suite (raisonnement analogue dans l'autre cas) qu'elle est strictement positive.
- 3. Montrer qu'il existe $\alpha > 0$ tel que $f(u) \ge g(u) + \alpha$ pour tout $u \in [0, 1]$.
- 4. En utilisant deux fois la question précédente, montrer que $f \circ f(x) \ge g \circ g(x) + 2\alpha$ pour tout $x \in [0;1]$. On rappelle que f et g commutent.
- 5. Si $n \ge 1$, on note f^n (respectivement g^n) la fonction $\underbrace{f \circ \cdots \circ f}_{n \text{ fois}}$ (respectivement $\underbrace{g \circ \cdots \circ g}_{n \text{ fois}}$), c'est-à-dire la fonction obtenue en composant f (respectivement g) par elle-même n fois.
 - (a) Montrer par récurrence que, pour tout $n \ge 1, f^n$ et g commutent.
 - (b) Montrer par récurrence que, pour tout $x \in [0, 1]$, $f^n(x) \ge g^n(x) + n \times \alpha$.
- 6. Conclure. On rappelle que f et g sont à valeurs dans [0;1].

Ainsi, f et g admettent au moins un point fixe, et il existe au moins un réel x tel que f(x) = g(x). On peut alors se demander si « on peut cumuler les deux » : le problème de Dyer, posé en 1954, demande si deux fonctions continues $f, g : [0;1] \to [0;1]$ qui commutent (c'est-à-dire telles que $f \circ g = g \circ f$) possèdent nécessairement un point fixe commun. En 1969, indépendamment, William M. Boyce et John Philip Huneke ont répondu négativement à ce problème, en construisant des exemples (assez compliqués) de couples (f,g) de fonctions continues commutant sans point fixe

Page 1/3 2023/2024

MP2I Lycée Faidherbe

commun. Cependant, le problème a également engendré un grand nombre de résultats positifs montrant l'existence de points fixes communs sous des hypothèses plus restrictives (le théorème de Block-Thielmann, cf. DM n° 15, permet par exemple de montrer que cette conjecture est vraie pour des fonctions polynomiales). Ce problème explore certains de ces résultats.

Dans tout le problème, les lettres f et g désigneront toujours des fonctions continues $[0;1] \to [0;1]$ qui commutent, c'est-à-dire telles que $f \circ g = g \circ f$. De plus, si h désigne une fonction continue de [0;1] dans lui-même, on note :

- pour tout $n \in \mathbb{N}$, $h^n = \underbrace{h \circ \cdots \circ h}_{::}$ de telle sorte que $h^0 = \mathrm{Id}_{[0;1]}$ et $h^1 = h$.
- Fix(h) l'ensemble des points fixes de h (et donc c'est un ensemble non vide d'après la question 1).
- Pér $(h) = \{x \in [0,1] \mid \exists n \in \mathbb{N}^*, h^n(x) = x\}$ l'ensemble des points périodiques de h.
- 7. **Lemme-clef**: Soit $x \in Fix(f)$. Montrer que $g(x) \in Fix(f)$.
- 8. Soit $h:[0;1] \rightarrow [0;1]$ continue.
 - (a) Montrer que Fix(h) admet une borne supérieure et une borne inférieure.
 - (b) Soit $(x_n)_{n\in\mathbb{N}}$ une suite à valeurs dans $\operatorname{Fix}(h)$ qui converge vers une limite notée L. Montrer que $L\in\operatorname{Fix}(h)$.
 - (c) Montrer que Fix(h) admet un maximum et un minimum.

Partie II - Cas monotone (et autres cas faciles)

- 1. On suppose dans cette question f décroissante.
 - (a) Que dire de Fix(f)?
 - (b) Montrer que, dans ce cas, f et g possèdent un point fixe commun. On pourra utiliser le lemme-clef.
- 2. On suppose dans cette question que Fix(f) est un intervalle (il est alors fermé, d'après la question 8 de la partie I). Montrer que f et g possèdent un point fixe commun. On pourra là aussi utiliser le lemme-clef.
- 3. On suppose dans cette question que f est croissante.
 - (a) Soit $x \in [0;1]$. Montrer que, si $f(x) \le x$, alors la suite $(f^n(x))_{n \in \mathbb{N}}$ est décroissante. Que dire si f(x) > x? Justifier que, dans tous les cas, cette suite converge.
 - (b) Soit $x_0 \in [0;1]$ un point fixe de g (il n'est pas demandé de prouver son existence, celle-ci ayant été prouvée à la question 1 de la partie I) et soit L la limite de la suite de terme général $f^n(x_0)$ (dont l'existence a été prouvée à la question précédente). À l'aide de la partie I, montrer que L est un point fixe de g et prouver finalement que f et g ont un point fixe commun.

Partie III - Le cas acyclique (Maxfield-Mourant et Chu-Moyer (1965-1966))

Dans toute cette partie, on se donne x_0 un point fixe de g (dont l'existence, encore une fois, a été démontrée précédemment). On suppose de plus que Pér(f) = Fix(f).

- 1. Montrer que, pour tout $x \in [0,1]$, la suite $(f^n(x))_{n \in \mathbb{N}}$ admet une sous-suite convergente.
- 2. On suppose dans cette question que la suite $(f^n(x_0))_{n\in\mathbb{N}}$ prend un nombre fini de valeurs.
 - (a) Montrer qu'il existe p < q tel que $f^p(x_0) = f^q(x_0)$.
 - (b) Montrer que $f^p(x_0)$ est un point fixe commun à f et g.

On suppose à présent que la suite $(f^n(x_0))_{n\in\mathbb{N}}$ prend un nombre infini de valeurs. On admet qu'il existe $\alpha\in[0\,;1]$ vérifiant les trois conditions suivantes :

- il existe une sous-suite de $(f^n(x_0))_{n\in\mathbb{N}}$ qui converge vers α .
- il existe également une sous-suite de $(f^n(\alpha))_{n\in\mathbb{N}}$ qui converge vers α .
- si β est une valeur d'adhérence de la suite $(f^n(\alpha))_{n\in\mathbb{N}}$ (c'est-à-dire s'il existe une suite extraite de $(f^n(\alpha))_{n\in\mathbb{N}}$ qui converge vers β), alors $\beta \geq \alpha$.

En d'autres termes, il existe $\alpha \in [0;1]$ une valeur d'adhérence (c'est-à-dire une limite d'une suite extraite) de $(f^n(x_0))_{n \in \mathbb{N}}$ tel que α soit la plus petite des valeurs d'adhérence (i.e. des limites des suites extraites) de la suite $(f^n(\alpha))_{n \in \mathbb{N}}$.

- 3. Montrer que, pour tout $k \in \mathbb{N}$, $f^k(\alpha) \geq \alpha$.
- 4. Montrer que, s'il existe $k \in \mathbb{N}^*$ tel que $f^k(\alpha) = \alpha$, alors α est un point fixe commun à f et g. On suppose dans la suite que, pour tout $k \ge 1$, $f^k(\alpha) > \alpha$.
- 5. Soit $n \geq 1$.
 - (a) Montrer qu'il existe deux entiers p et $q \in \mathbb{N}^*$ tels que $\alpha < f^{p+q}(\alpha) < f^p(\alpha) \le \alpha + 1/n$.

Page 2/3 2023/2024

MP2I Lycée Faidherbe

- (b) En appliquant (proprement) le TVI à $\varphi: x \mapsto f^q(x) x$, montrer qu'il existe $c_n \in [\alpha; f^p(\alpha)] \cap P\acute{e}r(f)$.
- (c) Montrer que $c_n \xrightarrow[n \to +\infty]{} \alpha$.
- 6. Montrer finalement que α est un point fixe commun à f et g.

Partie IV - Théorème de Cano (1984)

Un ensemble P de fonctions $[0;1] \to [0;1]$ continues est dit équicontinu en $a \in [0;1]$ si :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall p \in P, \forall x \in [0, 1], |x - a| \le \eta \Rightarrow |p(x) - p(a)| \le \varepsilon$$

En clair, une famille de fonctions est équicontinue en a lorsqu'il existe un η qui convient pour toutes les fonctions de la famille ¹.

1. Dans cette question uniquement, on note, pour tout $n \ge 1$,

$$p_n \colon \begin{cases} [0;1] \longrightarrow [0;1] \\ x \longmapsto x^n \end{cases}$$

et on note $P = \{p_n \mid n \in \mathbb{N}^*\}$. Précisons que, dans cette question uniquement, x^n désigne comme d'habitude le produit $\underbrace{x \times \cdots \times x}_{n \text{ fois}}$ (et non pas une quelconque composition comme dans le reste du devoir, d'ailleurs composer x par lui-même

n fois n'aurait aucun sens).

- (a) Montrer que P est équicontinu en 0.
- (b) Soit $\eta > 0$. Expliciter un entier n_0 tel que $(1 \eta)^{n_0} < 1/2$. En déduire que P n'est pas équicontinu en 1.

Dans la suite de cette partie, on suppose que $P = \{f^n \mid n \in \mathbb{N}\}$ des itérées de f (ici, la notation f^n désigne à nouveau la composée de f par elle-même n fois) est équicontinu en tout point de [0;1] et on cherche à prouver que $\mathrm{Fix}(f)$ est un intervalle, ce qui entraı̂nera que f et g ont un point fixe commun d'après la partie II. Pour cela, on raisonne par l'absurde et on suppose que $\mathrm{Fix}(f)$ n'est pas un intervalle.

- 2. Montrer qu'il existe a < b deux points fixes tels que $\varphi : x \mapsto f(x) x$ soit de signe constant sur a : b. On pourra « demêmiser » une certaine question de la partie I. Sans perte de généralité, on suppose dans la suite φ strictement positive sur a : b.
- 3. Justifier l'existence de $x_0 \in]a; b[$ tel que, pour tout $n \in \mathbb{N}, |f^n(x_0) a| \le (b a)/2$. En déduire que la suite de terme général $f^n(x_0)$ ne converge pas vers b.
- 4. On suppose que, pour tout $x \in]a;b[, f(x) < b$. Montrer que l'intervalle]a;b[est stable par f (attention, f n'a aucune raison d'être croissante) et en déduire que la suite $(f^n(x_0))$ est monotone. Aboutir à une contradiction : on vient donc de prouver qu'il existe $x \in]a;b[$ tel que $f(x) \geq b$.
- 5. (a) Justifier qu'il existe $z_1 \in]a; b[$ tel que $f(z_1) = b$.
 - (b) Justifier qu'il existe $z_2 \in]a; z_1[$ tel que $f(z_2) = z_1.$

On peut itérer le processus : on montrerait par une récurrence immédiate (et donc on l'admettra) qu'on peut construire une suite $(z_k)_{k\geq 1}$ strictement décroissante d'éléments de] a; b [telle que $f(z_1) = b$ et, pour tout $k \in \mathbb{N}$, $f(z_{k+1}) = z_k$.

- 6. Justifier que la suite (z_k) converge vers une limite que l'on notera L.
- 7. Prouver que L est un point fixe de f. En déduire que L=a.
- 8. Justifier l'existence de $\eta > 0$ tel que, pour tout $n \in \mathbb{N}$ et pour tout x tel que $|x-a| \le \eta$, $|f^n(x)-a| \le (b-a)/2$.
- 9. Conclure à une absurdité à l'aide de la suite $(f^k(z_k))_{k>1}$.

^{1.} Cela va sans dire mais je le dis quand même : cette notion n'a absolument rien avec la continuité uniforme, il n'y a d'ailleurs aucune continuité uniforme dans ce devoir!

Page 3/3 2023/2024