ГЛАВА 9. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И ЛИНЕЙНЫЕ ФУНКЦИОНАЛЫ В НОРМИРОВАННЫХ ПРОСТРАНСТВАХ

1 Линейные операторы

Пусть X, Y – линейные пространства (оба вещественные или комплексные).

Опр. Отображение $A: X \to Y$ называется линейным оператором, если справедливо равенство

$$A(\lambda x_1 + \mu x_2) = \lambda A x_1 + \mu A x_2 \quad \forall x_1, x_2 \in X, \quad \forall \lambda, \mu.$$

Образом оператора A называется множество

$$\operatorname{Im} A = \{ y = Ax \mid x \in X \},\$$

которое обозначается также через R(A).

Множество

$$Ker A = \{x \in X \mid Ax = 0\}$$

называется $sdpom\ onepamopa\ A$ и обозначается также через N(A).

Теорема 1.1. Для линейного оператора A его ядро $\operatorname{Ker} A$ и образ $\operatorname{Im} A$ являются линейными многообразиями.

Опр. Если Ax = 0 для всех $x \in X$, то оператор A называется *нулевым* оператором и обозначается через 0.

Опр. Оператор A называется *конечномерным*, если его образ $\operatorname{Im} A$ конечномерен.

Опр. Линейный оператор $A:X\to X$ называется линейным преобразованием пространства X.

Опр. Линейное преобразование A такое, что

$$Ax = x \quad \forall x \in X,$$

называется единичным или тождественным оператором и обычно обозначается через I (или E).

Примеры линейных операторов.

1. Умножение матрицы A на вектор $x \in \mathbb{R}^m$ или вектор $x \in \mathbb{C}^m$.

$$A: \mathbb{R}^m \to \mathbb{R}^n, \qquad A: \mathbb{C}^m \to \mathbb{C}^n.$$

2. Оператор дифференцирования Du(x) = u'(x).

$$D: C^{1}[a,b] \to C[a,b], \quad D: C^{n}[a,b] \to C^{n-1}[a,b].$$

3. Оператор интегрирования $Ax = \int_a^b x(s) \, ds$.

$$A: C[a,b] \to \mathbb{R}, \quad A: L_1(a,b) \to \mathbb{R}.$$

4. Оператор интегрирования с переменным верхним пределом $Ax(t) = \int_{a}^{t} x(s) \, ds$.

$$A: C[a,b] \to C^{1}[a,b], \quad A: L_{1}(a,b) \to C[a,b].$$

5. Интегральный оператор $Au(x) = \int_a^b K(x,s)u(s) \, ds$.

$$A: C[a, b] \to C[a, b], \quad A: L_2(a, b) \to L_2(a, b).$$

Опр. Пусть X, Y, Z – линейные пространства, все вещественные или все комплексные.

Пусть $A: X \to Y, B: X \to Y, C: Y \to Z$ – линейные операторы.

Сумма операторов, произведение оператора на число и произведение операторов определяются формулами

$$(A+B)x = Ax + Bx,$$

$$(\lambda A)x = \lambda(Ax),$$

$$(CA)x = C(Ax)$$

для всех $x \in X$.

Опр. Всюду далее X, Y – нормированные пространства.

Оператор $A: X \to Y$ называется *непрерывным в точке* $x_0 \in X$, если

$$x_n \to x_0 \quad \Rightarrow \quad Ax_n \to Ax_0.$$

Оператор $A:X\to Y$ называется $\mathit{непрерывным},$ если он непрерывен во всех точках $x_0\in X.$

Теорема 1.2. Линейный оператор $A: X \to Y$ непрерывен тогда и только тогда, когда он непрерывен в точке $x_0 = 0$.

Опр. Линейный оператор $A: X \to Y$ называется *ограниченным*, если он каждое ограниченное множество переводит в ограниченное множество.

Теорема 1.3. Для линейного оператора $A: X \to Y$ его ограниченность эквивалентна выполнению каждого из следующих двух свойств.

1. Справедливо неравенство

$$||Ax||_Y \leqslant c \, ||x||_X \quad \forall \, x \in X \tag{1.1}$$

c некоторой постоянной $c\geqslant 0$, не зависящей от x.

2. Оператор A переводит единичную сферу $S = \{x \in X \mid ||x||_X = 1\}$ в ограниченное множество.

Для ограниченных линейных операторов и только для них конечна величина

$$||A|| = \sup_{x \in X, \ x \neq 0} \frac{||Ax||_Y}{||x||_X} = \sup_{||x||_X = 1} ||Ax||_Y, \tag{1.2}$$

называемая нормой оператора A.

Замечание 1.2. Из определения нормы оператора следует, что

$$||Ax||_Y \le ||A|| ||x||_X \quad \forall x \in X.$$
 (1.3)

Таким образом ||A|| является минимальной из постоянных c, для которых выполнено неравенство (1.1).

Теорема 1.4. Линейный оператор $A: X \to Y$ непрерывен тогда и только тогда, когда он ограничен.

Обозначим через $\mathscr{L}(X,Y)$ множество всех ограниченных линейных операторов $A:X\to Y$. В случае X=Y положим для краткости $\mathscr{L}(X)=\mathscr{L}(X,X)$.

Утверждение 1.1. Множество $\mathcal{L}(X,Y)$ является нормированным пространством, в котором норма оператора A вводится следующим образом:

$$||A|| = \sup_{\|x\|_X = 1} ||Ax||_Y = \sup_{x \in X, \ x \neq 0} \frac{||Ax||_Y}{||x||_X}.$$

Теорема 1.5. Пусть Y – банахово пространство. Тогда $\mathcal{L}(X,Y)$ – банахово пространство.

2 Теорема Банаха-Штейнгауза

Теорема 2.1. (Теорема Банаха-Штейнгауза или принцип равномерной ограниченности)

Пусть $\{A_n\}_{n=1}^{\infty} \subset \mathcal{L}(X,Y)$, где X – банахово пространство. Если $\sup_{n\geqslant 1}\|A_nx\|_Y < \infty$ для кажедого $x\in X$, то $\sup_{n\geqslant 1}\|A_n\|<\infty$.

3 Обратный оператор

Опр. Пусть X, Y — линейные пространства. Оператор A, действующий из $D(A) \subset X$ в Y, называется *обратимым*, если для каждого $y \in \text{Im } A$ существует единственный его прообраз $x \in D(A)$ такой, что Ax = y.

Если A обратим, то оператор, ставящий в соответствие элементу $y \in \text{Im } A$ его прообраз x, называется обратным к A и обозначается через A^{-1} .

Теорема 3.1. Обратный оператор A^{-1} существует тогда и только тогда, когда $\operatorname{Ker} A = O$.

Теорема 3.2. Оператор A^{-1} , обратный к линейному оператору A, также линеен.

Теорема 3.3. Пусть X, Y – нормированные пространства. Для того, чтобы линейный оператор A, действующий из X на Y, имел непрерывный обратный, необходимо и достаточно, чтобы существовала постоянная m>0 такая, что

$$||Ax||_Y \geqslant m||x||_X \quad \forall x \in X. \tag{3.1}$$

Опр. Говорят, что линейный оператор $A: X \to Y$ непрерывно обратим, если $\operatorname{Im} A = Y$, оператор A обратим и $A^{-1} \in \mathcal{L}(Y, X)$.

Теорема 3.4. (Теорема Банаха об обратном операторе) Пусть $A \in \mathcal{L}(X,Y)$, где X,Y – банаховы пространства, причем $\operatorname{Im} A = Y$. Если оператор A обратим, то $A^{-1} \in \mathcal{L}(Y,X)$.

Теорема 3.5. Пусть $A \in \mathcal{L}(X)$, где X – банахово пространство, $u \|A\| < 1$. Тогда оператор $(I - A)^{-1}$ существует, ограничен и представляется рядом Неймана

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k.$$