РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1____

дисциплина: Информационная безопасность

Студент: Тозе Виктор Ф

Группа: НФИбд-02-21

МОСКВА

2024 г.

Цель работы

Цель работы Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки ми нимально необходимых для дальнейшей работы сервисов.

Техническое обеспечение

Лабораторная работа подразумевает установку на виртуальную машину VirtualBox (https://www.virtualbox.org/) операционной системы Linux (дистрибутив Rocky (https://rockylinux.org/) или CentOS (https://www.centos.org/)).

Выполнение работы возможно как в дисплейном классе факультета физико-математических и естественных наук РУДН, так и дома. Описание выполнения работы приведено для дисплейного класса со следующими ха рактеристиками:

- Intel Core i3-550 3.2 GHz, 4 GB оперативной памяти, 20 GB свободного места на жёстком диске;
- OC Linux Gentoo (http://www.gentoo.ru/);
- VirtualBox верс. 6.1 или старше;
- каталог с образами ОС для работающих в дисплейном классе: /afs/dk.sci.pfu.edu.ru/common/files/iso/.

Окно «Имя машины и тип ОС»

Окно настройки установки образа ОС

Запуск образа диска дополнений гостевой ОС

Дождитесь загрузки графического окружения и откройте терминал. В окне терминала проанализируйте последовательность загрузки системы, выполнив команду dmesg. Можно просто просмотреть вывод этой команды:

dmesg | less

```
Terminal

Sep 7 16:55

| Activities | Terminal | Terminal | Sep 7 16:55

| Activities | Terminal | Termin
```

Можно использовать поиск с помощью grep: dmesg | grep -i "то, что ищем" Получите следующую информацию.

1. Версия ядра Linux (Linux version).

```
vftoze@vftoze:~

[vftoze@vftoze ~]$ dmesg | grep -i "linux version"

[ 0.000000] Linux version 5.14.0-427.13.1.el9_4.x86_64 (mockbuild@iad1-prod-build001.bld.equ.rockylinux.org) (gcc (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3), GNU ld version 2.35.2-43.el9) #1 SMP PREEMPT_DYNAMIC Wed May 1 19:11:28 UTC 2024

[vftoze@vftoze ~]$
```

2. Частота процессора (Detected Mhz processor)

```
[vftoze@vftoze ~]$ dmesg | grep -i "processor"

[ 0.000014] tsc: Detected 2304.004 MHz processor

[ 0.240505] smpboot: Total of 1 processors activated (4608.00 BogoMIPS)

[ 0.333036] ACPI: Added _OSI(Processor Device)

[ 0.333037] ACPI: Added _OSI(Processor Aggregator Device)

[vftoze@vftoze ~]$
```

3. Модель процессора (СРИ0).

```
[vftoze@vftoze ~]$ dmesg | grep -i "CPU0" [ 0.240467] smpboot: CPU0: Intel(R) Pentium(R) CPU 5405U @ 2.30GHz (family: 0x6, model: 0x8e, stepping: 0xc) [vftoze@vftoze ~]$
```

4. Объем доступной оперативной памяти (Memory available)

```
vftoze@vftoze ~]$ dmesg | grep -i "memory"
                                                                             memory at [mem 0x7fff00f0-0x7fff01e3]
memory at [mem 0x7fff0470-0x7fff2794]
         0.004200] ACPI: Reserving FACP table
         0.004203] ACPI: Reserving DSDT table
         0.004205] ACPI: Reserving FACS table
                                                                                        at [mem 0x7fff0200-0x7fff023f]
                                                                                        at [mem 0x7fff0200-0x7fff023f]
         0.004207] ACPI: Reserving FACS table
        0.004208] ACPI: Reserving APIC table memory at [mem 0x7fff0240-0x7fff0293]
0.004210] ACPI: Reserving SSDT table memory at [mem 0x7fff0240-0x7fff0293]
0.005112] Reserving 192MB of memory at 1840MB for crashkernel (System RAM: 2047MB)
0.005150] Early memory node ranges
        0.013808] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000fff]
0.013811] PM: hibernation: Registered nosave memory: [mem 0x0009f000-0x0009ffff]
0.013813] PM: hibernation: Registered nosave memory: [mem 0x000a0000-0x000effff]
0.013814] PM: hibernation: Registered nosave memory: [mem 0x000f0000-0x000fffff]
         0.042713]
                                  ry: 260860K/2096696K available (16384K kernel code, 5626K rwdata, 11748K rodata, 3892K init,
5956K bss, 342000K reserved, 0K cma-reserved)
        0.138054] Freeing SMP alternatives memory:
0.269548] x86/mm: Memory block size: 128MB
0.840964] Non-volatile memory driver v1.3
                                                                                   /: 36K
        0.840964] Non-volatile memory driver v1.3
1.934958] Freeing initrd memory: 57160K
        2.341763] Freeing unused decrypted me
        2.341763] Freeing unused decrypted memory: 2028K
2.342716] Freeing unused kernel image (initmem) memory: 3892K
2.343812] Freeing unused kernel image (rodata/data gap) memory: 540K
4.7702271 vmwafy 0000:00:02.0: [drm] Legacy memory limits: VRAM = 16384 kB, FIFO = 2048 kB, surface = 50790
4 kB
        4.779344] vmwgfx 0000:00:02.0: [drm] Maximum display memory size is 16384 kiB
[vftoze@vftoze ~]$
```

5. Тип обнаруженного гипервизора (Hypervisor detected).

```
[vftoze@vftoze ~]$ dmesg | grep -i "hypervisor"
[    0.000000] Hypervisor detected: KVM
[    0.110163] SRBDS: Unknown: Dependent on hypervisor status
```

6. Тип файловой системы корневого раздела.

```
[vftoze@vftoze ~]$ dmesg | grep -i "VFS: Mounted root"
[vftoze@vftoze ~]$ df -T
Filesystem
                           1K-blocks
                                       Used Available Use% Mounted on
                  Type
                  devtmpfs
devtmpfs
                              4096
                                               4096 0% /dev
tmpfs
                  tmpfs
                              909176
                                               909176
                                                       0% /dev/shm
tmpfs
                   tmpfs
                              363672
                                       5680
                                               357992
                                                       2% /run
/dev/mapper/rl-root xfs
                            38678528 5696688 32981840 15% /
                                               672612 32% /boot
/dev/sdal
                 xfs
                            983040 310428
tmpfs
                  tmpfs
                             181832
                                         96
                                               181736 1% /run/user/1000
                             60096
                  iso9660
                                               0 100% /run/media/vftoze/VBox_GAs_6.1.34
/dev/srl
                                      60096
                              60096
/dev/sr0
                   iso9660
                                      60096
                                                    341_3 100% /run/media/vftoze/VBox_GAs_4.1
[vftoze@vftoze ~]$
```

Ответы:

- 1. Учётная запись пользователя содержит следующую информацию: имя пользователя (логин), идентификатор пользователя (UID), идентификатор группы (GID), домашний каталог и команду оболочки, которая будет запускаться после входа в систему.
- 2. Команды терминала:
 - Для получения справки по команде: 'man <имя команды>' (например, 'man ls').
 - Для перемещения по файловой системе: `cd <путь>` (например, `cd /var/tmp`).
 - Для просмотра содержимого каталога: 'ls <путь>' (например, 'ls /var/tmp').
 - Для определения объёма каталога: `du -sh <путь>` (например, `du -sh /var/tmp`).
- Для создания каталогов: `mkdir <имя каталога>` (например, `mkdir /var/tmp/new_folder`).
- Для удаления каталогов: `rmdir <имя каталога>` (например, `rmdir /var/tmp/new_folder`).
 - Для создания файлов: `touch <имя файла>` (например, `touch /var/tmp/new_file`). Для удаления файлов: `rm <имя файла>` (например, `rm /var/tmp/new_file`).
- Для задания прав на файл или каталог: `chmod <права> <файл/каталог>` (например, `chmod 755 /var/tmp/new_file`).
 - Для просмотра истории команд: 'history'.
- 3. Файловая система это способ организации данных на носителе информации, такой как жёсткий диск или SSD. Примеры:
- **ext4**: файловая система, часто используемая в Linux, поддерживает большие файлы и надёжна.
- **NTFS**: основная файловая система Windows, поддерживающая большие файлы и тома, с функциями восстановления.
- **FAT32**: устаревшая файловая система, используется для флеш-накопителей и съёмных дисков, ограничение на размер файлов 4 Γ Б.
- 4. Чтобы посмотреть, какие файловые системы подмонтированы в ОС, используется команда: `df -h`.
- 5. Для удаления зависшего процесса используется команда: 'kill <PID>' (например, 'kill 1234'), где 'PID' идентификатор процесса.