Equilibrium States are (at least somewhat) Gibbs Some new results on equilibrium states for amenable group subshifts.

C. Evans Hedges

Carolina Dynamics Symposium: 13 April 2024

Presentation Outline

- ▶ Introduction to Thermodynamic Formalism in Z Subshifts
 - Entropy
 - Pressure
 - Equilibrium States
- ► A jump to the amenable G subshift setting
- Overview of results.

\mathbb{Z} -Subshifts

- Finite set A called the alphabet.
- ▶ The **left shift map** $\sigma: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is defined by

$$\sigma(x)_n = x_{n+1}.$$

- ▶ We call a closed, σ -invariant $X \subset \mathcal{A}^{\mathbb{Z}}$ a **subshift**.
- Let $L_n(X)$ denote the *n*-language of X. I.e. the words of length n that appear in X.
- For a given word $w \in L_n(X)$, we define the **cylinder set**

$$[w] = \{x \in X : x_{[0:n-1]} = w\}.$$

Golden Mean Subshift

Example:

- $X = \{x \in \{0,1\}^{\mathbb{Z}} : \forall i \in \mathbb{Z}, \ x_{i,i+1} \neq 11\}.$
- ► ... $100.010... = x \in X$.
- $\sigma(x) = \dots 1000.10\dots$
- $L_3(X) = \{000, 001, 010, 100, 101\}.$

Invariant Measures

For a subshift X, let $M_{\sigma}(X)$ be the collection of all σ -invariant Borel probability measures on X.

• $\mu(A) = \mu(\sigma^{-1}A)$ for all measurable $A \subset X$.

In the subshift setting, cylinder sets generate the Borel σ -algebra so we can restrict ourselves computing $\mu([w])$ for $w \in L(X)$.

Measure Theoretic Entropy

▶ For each $\mu \in M_{\sigma}(X)$ we can compute the Kolmogorov-Sinai entropy of μ by

$$h(\mu) = \lim_{n \to \infty} \frac{1}{n} \sum_{w \in L_n(X)} -\mu([w]) \log \mu([w]).$$

Measures of Maximal Entropy

We define topological entropy by:

$$h_{top}(X) = \sup_{\mu \in M_{\sigma}(X)} h(\mu).$$

For $\mu \in M_{\sigma}(X)$, if $h(\mu) = h_{top}(X)$, then μ is a Measure of Maximal Entropy.

By w^* upper semicontinuity of the entropy map $h: M_{\sigma}(X) \to \mathbb{R}$, we are guaranteed existence of such a measure.

Entropy for Subshifts

Example on $X = \{0, 1\}^{\mathbb{Z}}$:

▶ Let ν be Bernoulli assigning (1/3,2/3) to [0] and [1] respectively. Then

$$h(\nu) = -\frac{1}{3}\log\frac{1}{3} - \frac{2}{3}\log\frac{2}{3} < \log 2 = h_{top}(X).$$

Let μ be Bernoulli assigning (1/2,1/2) to [0] and [1] respectively. Then

$$h(\mu) = -\log \frac{1}{2} = \log 2 = h_{top}(X)$$

Potentials

- ▶ Given a subshift X, a continuous, real valued $\phi \in C(X)$ is called a **potential**.
- Potentials assign energy to points in x.
- By additionally considering the energy of points, we can construct a generalization of topological entropy: topological pressure.

Pressure and Equilibrium States

We define **topological pressure** of a potential ϕ to be:

$$P_{top}(\phi) = \sup\{h(\mu) + \int \phi d\mu : \mu \in M_{\sigma}(X)\}.$$

We say μ is an **equilibrium state** for ϕ if

$$h(\mu) + \int \phi d\mu = P_{top}(\phi).$$

Existence of at least one equilibrium state is guaranteed in the subshift setting.

Equilibrium State Example

Example:

- ▶ Let $X = \{0, 1\}^{\mathbb{Z}}$,
- Define $\phi([0]) = 0$, $\phi([1]) = 1$.
- ▶ Find μ that maximizes $h(\mu) + \int \phi d\mu$.
- Balance the entropy and average energy.

Equilibrium State Example

- Let's look at μ_p Bernoulli (p, 1-p)
- $\blacktriangleright h(\mu_p) + \int \phi d\mu_p$.

$$h(\mu_p) = -p \log p - (1-p) \log(1-p),$$

$$\int \phi d\mu_p = 0 \cdot p + 1 \cdot (1-p) = 1-p.$$

- ... some calculus later...
- Maximized at $p = \frac{1}{1+e}$.

Equilibrium State Example

- ▶ For $X = \{0, 1\}^{\mathbb{Z}}$,
- $\phi([0]) = 0, \ \phi([1]) = 1,$
- ▶ μ Bernoulli $(\frac{1}{1+e}, \frac{e}{1+e})$,

 μ satisfies the following equation for any $w \in L_n(X)$, $x \in [w]$:

$$\mu([w]) = \frac{\exp(\phi_n(x))}{\sum_{v \in L_n(X)} \exp(\phi_n(y))} \tag{1}$$

where $\phi_n(x) = \sum_{i=0}^{n-1} \phi(\sigma^i(x))$.

In general, (1) will not hold for an equilibrium state μ , and μ may not even be unique.

Uniqueness of Equilibrium States in ${\mathbb Z}$

Fact: Given a mixing SFT $X \subset \{0,1\}^{\mathbb{Z}}$ and a Hölder continuous potential $\phi \in C(X)$, there exists a unique equilibrium state $\mu_{\phi} \in M_{\sigma}(X)$ and μ_{ϕ} is Gibbs for ϕ .

 μ_{ϕ} being Gibbs for ϕ means (1) holds up to a multiplicative constant.

But, for general ϕ , general subshift, or general G, this does not necessarily hold.

Extended DLR Theorems

For nice subshifts $X \subset \mathcal{A}^{\mathcal{G}}$, and sufficiently regular potentials $\phi \in \mathcal{C}(X)$, the following are equivalent:

- $\blacktriangleright \mu$ is an equilibrium state for ϕ
- $\blacktriangleright \mu$ is a σ -invariant Gibbs measure for ϕ .

Outside of \mathbb{Z} , uniqueness is out the window (see Ising model in \mathbb{Z}^2).

What about when X isn't a nice subshift?

\mathbb{Z}^d Measures of Maximal Entropy

For words $v, w \in L_F(X)$, we denote $v \to w$ to mean v can be replaced by w.

▶ Garcia-Ramos and Pavlov, 2019: Let $X \subset \mathcal{A}^{\mathbb{Z}^d}$ be any subshift, $w, v \in L_F(X)$, and μ be any m.m.e.. If $v \to w$, then

$$\mu([v]) \leq \mu([w]).$$

An equivalent way to express this would be for μ -a.e. $x \in [w]$,

$$\frac{d(\mu \circ \xi_{v,w})}{d\mu}(x) \leq 1.$$

G Equilibrium States

Let G is a countable, amenable group, $X \subset \mathcal{A}^G$ be a subshift, and $\phi \in C(X)$ have summable variation, and μ_{ϕ} an equilibrium state for ϕ .

▶ **H., 2024**: If $v, w \in L_F(X)$ such that $v \to w$, then

$$\mu_{\phi}([v]) \leq \mu_{\phi}([w]) \cdot \sup_{x \in [v]} \exp \left(\sum_{g \in G} \phi(\sigma_{g}(x)) - \phi(\sigma_{g}(\xi_{v,w}(x))) \right).$$

G Measures of Maximal Entropy

As an immediate corollary when $\phi=0$, we extend the results of Garcia-Ramos and Pavlov to the amenable group G subshift setting:

▶ **H., 2024**: Let $X \subset \mathcal{A}^G$ be any subshift, $w, v \in L_F(X)$, and μ be any m.m.e.. If $v \to w$, then

$$\mu([v]) \le \mu([w]).$$

\mathbb{Z}^d Bounds when $v \leftrightarrow w$

Let $X \subset \mathcal{A}^{\mathbb{Z}^d}$ be a subshift, $\phi \in C(X)$ be a potential with d-summable variation, and $\mu \in M_{\sigma}(X)$ an equilibrium state for ϕ .

▶ Meyerovitch, 2013: For any $v, w \in L_F(X)$ such that $v \leftrightarrow w$,

$$\frac{d(\mu \circ \xi_{v,w})}{d\mu}(x) = \exp\left(\sum_{n \in \mathbb{Z}^d} \phi(\sigma_n(\xi_{v,w}(x))) - \phi(\sigma_n(x))\right).$$

G Bounds when $v \rightarrow w$

Let G is a countable, amenable group, $X \subset \mathcal{A}^G$ be a subshift, and $\phi \in C(X)$ have summable variation, and μ_{ϕ} an equilibrium state for ϕ .

▶ **H., 2024**: If $v, w \in L_F(X)$ such that $v \to w$, then for μ_{ϕ} -a.e. $x \in [w]$:

$$\frac{d(\mu \circ \xi_{v,w})}{d\mu}(x) \leq exp\left(\sum_{g \in G} \phi(\sigma_g(\xi_{v,w}(x))) - \phi(\sigma_g(x))\right).$$

G Bounds when $v \leftrightarrow w$

As a corollary we extend the results of Meyerovitch to the amenable group subshift setting:

▶ **H., 2024**: Let $X \subset \mathcal{A}^G$ be any subshift, let $\phi \in C(X)$ have summable variation, and let μ_{ϕ} be an equilibrium state for ϕ . Then μ_{ϕ} is topologically Gibbs.

Thank you!

Questions?