

DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter

Victor SANH, Lysandre DEBUT, Julien CHAUMOND, Thomas WOLF
Hugging Face
{victor,lysandre,julien,thomas}@huggingface.co

Presented by Xinlin Wu, Bozhou Jin, Chengyi Jiang

Paper Summary & Key Contributions

DistilBERT shrinks BERT by 40% yet preserves 97% of its accuracy and runs 60% faster by applying knowledge distillation during pre-training. A triple loss—masked-LM, soft-target distillation, and cosine alignment—lets the smaller 6-layer model inherit the teacher's linguistic knowledge, making it cheap to train and practical for on-device NLP.

Introduction / Background / Motivation

Problem Addressed

Large-scale language models such as BERT-base (≈ 110 M parameters) incur high latency and memory footprints that block real-time, on-device NLP deployment.

• Project Goal / Hypothesis

Reproduce DistilBERT using smaller training datasets, and verify that it has performance comparable to the teacher BERT model.

Target Result

Reproduce the macro GLUE score reported by Sanh et al.—DistilBERT 77.0 vs. BERT-base 79.5 (Table 1 of the paper), by evaluating with data sampled from the provided basic datasets.

Context & Motivation

If the compressed model matches within ~3% of BERT while being 40% smaller and 60% faster, practitioners gain a sustainable, edge-friendly alternative—lower energy cost, faster iteration, and wider accessibility.

Methodology

DistilBERT is trained from the BERT-base model through knowledge distillation. It retains the overall architecture of BERT-base, but reduces the number of Transformer encoder layers from 12 to 6, and removes the token-type embeddings and the pooler.

Our modification

- **Dataset**: Instead of pretraining on the full concatenation of English Wikipedia and the Toronto Book Corpus, we use a significantly smaller dataset. Specifically, we merge the training and validation sets of SST-2 from the GLUE benchmark, and split the combined data into 80% for training, 10% for validation, and 10% for testing.
- **Weight Initialization:** Unlike the original DistilBERT which initializes the student model using the teacher's weights, our student model is initialized with random weights.

Tools and Hardware: We implement our approach using the Hugging Face Transformers library and train the model on a laptop equipped with an NVIDIA RTX 4070 GPU.

Results

Conclusion

- 1. Training with only 1 epoch on SST2 is sufficient for DistilBERT to achieve high performance (~90%) on tasks within the dataset.
- 2. This is comparable with the result in the original distilBERT paper (91.3%).
- 3. Additional training is required for zero-shot performance on external datasets (especially MRPC and QQP)

References

- Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019.
 Distilbert, a distilled version of Bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
 https://arxiv.org/abs/1910.01108
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
- 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
- Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In *Proceedings of the 7th International Conference on Learning Representations (ICLR 2019)*. https://openreview.net/forum?id=rJ4km2R5t7