

MÉTODOS DE MACHINE LEARNING PARA RECONCILIAÇÃO ÓTIMA DE SÉRIES TEMPORAIS HIERÁRQUICAS E AGRUPADAS DE INSTITUIÇÕES FINANCEIRAS

DEFESA DE DISSERTAÇÃO DE MESTRADO

Alberson Miranda, PPGEco/UFES

Fevereiro de 2024

SUMÁRIO 1 CONTEXTUALIZAÇÃO DA PESQUISA

- ► CONTEXTUALIZAÇÃO DA PESQUISA
- ▶ RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS
- **▶** OBJETIVOS
- ► METODOLOGIA
- ► RESULTADOS
- **▶** CONCLUSÃO
- ► APÊNDICE

ANÁLISE DE SÉRIES TEMPORAIS EM ECONOMIA BANCÁRIA

1 CONTEXTUALIZAÇÃO DA PESQUISA

- Problemas populares na literatura: risco de crédito, detecção de anomalias (fraude), preços de ativos, alocação ótima de numerários (SEZER; GUDELEK; OZBAYOGLU, 2019)
- Pouco sobre projeção de saldos e rendas (guidance, budgeting)
- Previsões equivocadas = percepção de incompetência, redução de reputação e receitas (BECCALLI et al., 2015)
- Orçamentação em empresas de muitas filiais: alta dimensionalidade e dúvidas $\,$

ANÁLISE DE SÉRIES TEMPORAIS EM ECONOMIA BANCÁRIA

1 CONTEXTUALIZAÇÃO DA PESQUISA

- Banestes: 134 agências, 78 municípios do ES, 13 microrregiões, 4 mesorregiões
- · Qual a melhor forma de realizar projeções?
 - Individualmente por agência?
 - Apenas o total e distribuir proporcionalmente?
 - As informações por mesorregião ou microrregião são importantes?
 - Como usar toda a informação?

SÉRIES TEMPORAIS HIERÁRQUICAS E AGRUPADAS 1 CONTEXTUALIZAÇÃO DA PESOUISA

Séries temporais hierárquicas são aquelas que podem ser agregadas ou desagregadas naturalmente em uma estrutura aninhada (HYNDMAN; ATHANASOPOULOS, 2021).

SÉRIES TEMPORAIS HIERÁRQUICAS E AGRUPADAS

1 CONTEXTUALIZAÇÃO DA PESQUISA

SÉRIES TEMPORAIS HIERÁRQUICAS E AGRUPADAS 1 CONTEXTUALIZAÇÃO DA PESOUISA

Séries temporais agrupadas são aquelas que não impõem uma única estrutura hierárquica.

SÉRIES TEMPORAIS HIERÁRQUICAS E AGRUPADAS

1 CONTEXTUALIZAÇÃO DA PESQUISA

- Coerência: cada nó da hierarquia deve totalizar os nós filhos
- · Não há razão para que as previsões individuais (e.g., Arima, ETS) sejam coerentes

RECONCILIAÇÃO ÓTIMA

Reescrever as previsões de forma que elas sejam coerentes, utilizando toda a informação disponível na estrutura hierárquica, ao mesmo tempo em que minimiza a variância do erro de previsão.

SUMÁRIO

2 RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS

- ▶ CONTEXTUALIZAÇÃO DA PESQUISA
- ▶ RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS
- **▶** OBJETIVOS
- ► METODOLOGIA
- ► RESULTADOS
- **▶** CONCLUSÃO
- ► APÊNDICE

Uma estrutura hierárquica coerente pode ser representada algebricamente por

$$y_t = Sb_t \tag{1}$$

Em que

- $\cdot \ y_t$ é o vetor com todas as séries da hierarquia
- \cdot S é a matriz de soma
- b_t é o vetor de observações no nível mais desagregado

$$\tilde{y}_t = SG\hat{y}_t \tag{2}$$

Em que

- \cdot $ilde{y}_t$ é o vetor de previsões reconciliadas
- $oldsymbol{\cdot}$ G é a matriz de reconciliação
- $\cdot \; \hat{y}_t$ é o vetor de previsões base
- A multiplicação $G\hat{y}_t$ forma um vetor de previsões reconciliadas no nível mais desagregado

MATRIZ DE RECONCILIAÇÃO

2 RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS

PROBLEMA DE REGRESSÃO

• Minimização do traço da matriz de covariância dos erros das previsões reconciliadas ($MinT^a$):

$$\min_{\tilde{z}} y_{T+h} - \tilde{y}_{T+h} \tag{3}$$

· Mínimos Quadrados Generalizados (MQG):

$$G = (S'W_h^{\dagger}S)^{-1}S'W_h^{\dagger} \tag{4}$$

Substituindo G na Equação 2, temos:

$$\tilde{\mathbf{y}} = \mathbf{S}(\mathbf{S}' \mathbf{W}_h^{\dagger} \mathbf{S})^{-1} \mathbf{S}' \mathbf{W}_h^{\dagger} \hat{\mathbf{y}}_h \tag{5}$$

^a(WICKRAMASURIYA; ATHANASOPOULOS; HYNDMAN, 2019).

PROBLEMA DE REGERSSÃO

2 RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS

- 1 $^{\mathrm{a}}$ abordagem (HYNDMAN; AHMED et al., 2011): $oldsymbol{W}_{h}=k_{h}I$
 - Mínimos Quadrados Ordinários (MQO)
 - Não há qualquer razão ou justificativa para supor homoscedasticidade
 - Erros descorrelacionados e equivariantes não fazem sentido em séries hierárquicas

PROBLEMA DE REGERSSÃO

2 RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS

• 2ª abordagem (HYNDMAN; LEE; WANG, 2016):

$$oldsymbol{W}_h = k_h \mathrm{diag}(\hat{W_1}) \mid \hat{W_1} = rac{1}{T} \sum_{t=1}^T \hat{e}_{T+1} \hat{e}_{T+1}'$$

- Mínimos Quadrados Ponderados (MQP)
- $\hat{m{e}}_{T+1} = m{y}_{T+1} \hat{m{y}}_{T+1}$
- Erros descorrelacionados e ponderados pela variância do erro das previsões base

PROBLEMA DE REGERSSÃO

2 RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS

• 3ª abordagem (WICKRAMASURIYA; ATHANASOPOULOS; HYNDMAN, 2019):

$$\boldsymbol{W}_h = k_h \hat{\boldsymbol{W}}_1$$

- MQG irrestrito
- Quando $m \geq T$, pode-se usar estimador de encolhimento
- Leva em consideração correlação e variância ao longo de toda estrutura

RECONCILIAÇÃO POR MACHINE LEARNING

2 RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS

METODOLOGIA ML VERSUS MINT

As principais diferenças entre os ambas metodologias são:

- A utilização de algoritmos de ML ao invés de MQG (permitindo combinações não lineares)
- · A não atribuição de peso de forma obrigatória para todos os nós da hierarquia
- O ajuste de um modelo individual para cada série do nível mais desagregado, permitindo maior especialização e sendo capaz de se adaptar melhor aos diferentes padrões de cada série (SPILIOTIS et al., 2021)

RECONCILIAÇÃO POR MACHINE LEARNING

2 RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁROUICAS

Figure 1: Abordagem de reconciliação ótima por ML. Fonte: Spiliotis et al. (2021)

- ► CONTEXTUALIZAÇÃO DA PESQUISA
- ▶ RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS
- **▶** OBJETIVOS
- ► METODOLOGIA
- ► RESULTADOS
- **▶** CONCLUSÃO
- ► APÊNDICI

Estudar o problema da reconciliação ótima de previsões pontuais a partir de métodos de *machine learning* em séries temporais hierárquicas e agrupadas do Banco do Estado do Espírito Santo.

- 1. Estender a abordagem de Spiliotis et al. (2021) para a reconciliação ótima de séries temporais hierárquicas *e agrupadas*;
- 2. Avaliar a efetividade de mais 4 implementaçãoes de métodos de ML (*lasso*, *ridge*, *elastic net*, *Support Vector Machines* (SVM) e *lightGBM*), além dos 2 propostos no trabalho original (*XGBoost* e *random forest*);
- 3. Propor duas variações metodológicas para obtenção da amostra de treino dos modelos de ML (fitted base e reduced fitted base);
- 4. Obter ganhos de performance no contexto de séries temporais financeiras.

SUMÁRIO 4 METODOLOGIA

- ▶ CONTEXTUALIZAÇÃO DA PESQUISA
- ▶ RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS
- ▶ OBJETIVOS
- ► METODOLOGIA
- ► RESULTADOS
- ► CONCLUSÃO
- ► APÊNDICI

- 1. Métodos de ML: lasso, ridge, elastic net, SVM e lightGBM;
- 2. Treino: reduced fitted base e fitted base.

- 1. Métodos analíticos: *bottom-up* e MinT *Shrink* (WICKRAMASURIYA; ATHANASOPOULOS; HYNDMAN, 2019);
- 2. Métodos de ML (SPILIOTIS et al., 2021): XGBoost e random forest;
- Treino: *rolling forecast*.

- Estatística Bancária Mensal e por Município (Bacen)
- Municípios (IBGE)
- · Saldos de crédito dos verbetes empréstimos e financiamentos
- · CNPJ Banestes mas expansível para todo SFN
- 01/2003 12/2022
- 37.920 observações (114.480 com nós de agregação)

- · Estrutura hierárquica
 - total
 - 4 mesorregiões
 - 13 microrregiões
 - 79 agências
- · Estrutura agrupada
 - 2 modalidades de crédito (empréstimos e financiamentos)

- Previsões para fora da amostra a serem reconciliadas
- ETS (podem ser obtidas por qualquer método, incluindo ML)
- Treino: 01/2003 12/2021
- Horizonte de previsão (*h*): 01/2022 12/2022, fora da amostra

Figure 2: Previsões base

Dado um conjunto de previsões base, o quanto mais precisas elas se tornam ao se aplicar um determinado método de reconciliação?

- Métodos de reconciliação:
 - Analíticos: Bottom-up e MinT Shrink
 - Regressão regularizada: Elastic Net (lasso, ridge e CV)
 - Árvores: Random forest, XGBoost e LightGBM
 - Support Vector Machines (SVM)
- Estratégias para obtenção das previsões in-sample:
 - Rolling forecast
 - Reduced fitted base
 - Fitted base

4 METODOLOGIA

ESTRATÉGIA ROLLING FORECAST

Figure 3: Estratégia Rolling Forecast

ESTRATÉGIA FITTED BASE

4 METODOLOGIA

- Desvantagem do Rolling Forecast: a cada h, um novo modelo é ajustado, totalizando $m \times p = 17064$ modelos
- Proposta: Fitted base. Utiliza-se os valores ajustados dos modelos de previsão base obtidos ao longo de todo o período q=1,2,3,...,Q+p (todo conjunto de treinamento)
- O custo computacional é menor, uma vez que são usados os modelos já estimados para as previsões base

Figure 4: Estratégia fitted base

4 METODOLOGIA

ESTRATÉGIA REDUCED FITTED BASE

- Séries temporais dessa natureza podem ter seu padrão alterado ao longo do tempo. Nesses casos, pode ser útil abrir mão das observações mais antigas
- Proposta: Reduced fitted base. Ajusta-se apenas m modelos, com dados até Q e então reestima-se esses modelos (coeficientes) passando-se o restante do conjunto de treinamento (Q+p), conservando os hiperparâmetros originais. Os valores ajustados dos modelos reestimados são utilizados para treinar os modelos de ML

Figure 5: Estratégia reduced fitted base

- · Calibragem dos modelos de ML
- Bischl et al. (2021)
- ullet m modelos calibrados individualmente
- Busca em grade para *elastic net* e otimização bayesiana para os demais métodos
- Resampling: CV-10, RMSE

- ▶ CONTEXTUALIZAÇÃO DA PESQUISA
- ▶ RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS
- **▶** OBJETIVOS
- ▶ METODOLOGIA
- ► RESULTADOS
- ► CONCLUSÃO
- ► APÊNDICI

.model	agregado	mesorregiao	microrregiao	municipio	agencia	verbete	bottom	hierarquia
RMSSE								
base	0.197	0.690	0.846	0.671	0.717	0.183	0.656	0.657
bu	0.196	0.561	0.706	0.710	0.739	0.185	0.656	0.663
mint	0.172	0.619	0.722	0.689	0.712	0.140	0.634	0.641
MASE								
base	0.278	0.818	0.998	0.790	0.886	0.250	0.883	0.847
bu	0.240	0.572	0.771	0.820	0.895	0.221	0.883	0.844
mint	0.224	0.692	0.865	0.830	0.891	0.164	0.864	0.837

5 RESULTADOS

ESTBAN - ML - ROLLING FORECAST

modelo	agregado	mesorregiao	microrregiao	municipio	agencia	verbete	bottom	hierarquia
RMSSE								
elastic net	0.280	0.763	1.178	1.211	1.251	0.770	1.062	1.094
lasso	0.196	0.726	1.054	0.995	1.043	0.501	0.839	0.882
lightgbm	1.407	1.628	1.530	1.294	1.322	0.883	0.972	1.095
random forest	1.227	1.397	1.303	1.118	1.171	0.725	0.858	0.949
ridge	0.416	0.776	1.131	1.511	1.535	0.919	1.357	1.368
svm	0.262	0.745	0.858	0.853	0.911	0.234	0.847	0.838
xgb	1.186	1.405	1.296	1.096	1.139	0.700	0.830	0.924
MASE								
elastic net	0.234	0.726	1.406	1.491	1.582	0.949	1.439	1.428
lasso	0.166	0.714	1.250	1.193	1.298	0.641	1.142	1.147
lightgbm	1.890	1.896	1.874	1.600	1.654	1.234	1.390	1.478
random forest	1.615	1.560	1.501	1.332	1.423	0.996	1.097	1.177
ridge	0.402	0.757	1.315	1.800	1.881	1.090	1.790	1.738
svm	0.306	0.684	0.862	0.991	1.108	0.290	1.251	1.143
xgb	1.542	1.564	1.479	1.297	1.373	0.948	1.022	1.115

ESTBAN - ML - FITTED BASE

5 RESULTADOS

modelo	agregado	mesorregiao	microrregiao	municipio	agencia	verbete	bottom	hierarquia
RMSSE								
elastic net	0.777	0.986	1.086	1.038	1.149	0.579	0.924	0.961
lasso	0.661	0.955	1.074	0.909	1.008	0.530	0.826	0.862
lightgbm	1.495	1.649	1.557	1.300	1.342	0.923	0.999	1.116
random forest	1.204	1.397	1.294	1.098	1.150	0.694	0.839	0.930
ridge	1.001	1.146	1.247	1.208	1.327	0.689	1.125	1.147
svm	0.395	0.929	0.928	0.934	0.961	0.319	0.905	0.898
xgb	1.196	1.373	1.282	1.084	1.133	0.699	0.824	0.916
MASE								
elastic net	1.049	1.143	1.317	1.268	1.451	0.795	1.290	1.284
lasso	0.894	1.087	1.319	1.114	1.276	0.728	1.167	1.162
lightgbm	2.027	1.931	1.906	1.610	1.683	1.302	1.433	1.512
random forest	1.576	1.557	1.488	1.311	1.397	0.947	1.043	1.132
ridge	1.338	1.350	1.549	1.501	1.696	0.935	1.584	1.551
svm	0.445	0.947	1.080	1.163	1.226	0.341	1.282	1.217
xgb	1.545	1.509	1.476	1.293	1.375	0.942	1.017	1.109

ESTBAN - ML - REDUCED FITTED BASE

5 RESULTADOS

modelo	agregado	mesorregiao	microrregiao	municipio	agencia	verbete	bottom	hierarquia
RMSSE								
elastic net	0.090	0.582	0.730	0.819	0.838	0.164	0.730	0.736
lasso	0.132	0.523	0.766	0.757	0.774	0.187	0.681	0.693
lightgbm	1.406	1.588	1.520	1.281	1.323	0.889	0.971	1.091
random forest	1.248	1.409	1.319	1.119	1.167	0.692	0.857	0.949
ridge	0.141	0.635	0.784	0.902	0.922	0.207	0.841	0.829
svm	0.187	0.743	0.767	0.792	0.834	0.295	0.807	0.792
xgb	1.218	1.347	1.253	1.084	1.140	0.708	0.844	0.927
MASE								
elastic net	0.086	0.584	0.834	0.973	1.008	0.208	0.944	0.922
lasso	0.138	0.520	0.883	0.907	0.933	0.216	0.891	0.878
lightgbm	1.879	1.831	1.832	1.580	1.652	1.236	1.388	1.470
random forest	1.636	1.576	1.526	1.333	1.418	0.947	1.065	1.155
ridge	0.159	0.630	0.894	1.047	1.087	0.231	1.073	1.021
svm	0.225	0.764	0.850	0.949	1.022	0.395	1.176	1.083
xgb	1.593	1.491	1.427	1.293	1.380	0.965	1.064	1.137

ESTBAN - ML - TEMPO DE PROCESSAMENTO 5 RESULTADOS

	xgb	random forest	elastic net	lasso	ridge	svm	lightgbm
reduced fitted base	19.235	5.483	1.428	0.879	0.993	1.279	3.290
fitted base	21.758	5.521	1.363	0.829	0.924	1.273	3.341
rolling forecast	20.908	5.429	1.345	0.838	0.929	1.285	3.377

- Os métodos baseados em árvore, além de requererem maior tempo de processamento devido a sua complexidade no espaço de hiperparâmetros, também tenderam a perder qualidade de performance nos níveis superiores da hierarquia
- Os métodos de regressão regularizada e o SVM se mostraram mais robustos à agregação
- Nenhum combinação de método/estratégia é consistentemente melhor ao longo de todos os níveis de agregação

- Para o nível agregado, o elastic net na estratégia reduced fitted base foi 91% melhor que o MinT
- Para as mesorregiões, o Lasso superou o BU em 7%
- · Nos demais níveis hierárquicos, os métodos analíticos superaram os de ML

SUMÁRIO 6 CONCLUSÃO

- ▶ CONTEXTUALIZAÇÃO DA PESQUISA
- ▶ RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS
- ▶ OBJETIVOS
- **▶** METODOLOGIA
- ► RESULTADOS
- **▶** CONCLUSÃO
- ► APÊNDICI

- Os métodos de ML podem trazer ganhos de performance substanciais em relação aos analíticos
- A metodologia de reconciliação ótima desenvolvida neste trabalho pode ser estendida para todo o SFN e para outros problemas de previsão de séries temporais

- · A escolha do método dependerá do objetivo do pesquisador:
 - Para elaboração de metas individuais, os métodos analíticos se mostraram preferíveis
 - Para previsão dos níveis mais agregados, os métodos lineares de ML obtiveram melhor performance
 - Os métodos baseados em árvore de decisão não foram capazes de superar os analíticos em nenhum nível de agregação

- Não houve uma combinação de método e estratégia que obtivesse melhor performance de maneira consistente ao longo de todos os níveis hierárquicos
- A performance da reconciliação ótima é sensível à estratégia de geração de previsões para dentro da amostra

- ► CONTEXTUALIZAÇÃO DA PESQUISA
- ▶ RECONCILIAÇÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS
- ▶ OBJETIVOS
- ► METODOLOGIA
- ► RESULTADOS
- **▶** CONCLUSÃO
- ► APÊNDICE

- Hyndman e Athanasopoulos (2021) (cap. 11.4):
 - Métodos analíticos: bottom-up e MinT Shrink
- Spiliotis et al. (2021):
 - Métodos de ML: XGBoost e random forest

TOURISM - ANALÍTICOS 7 APÊNDICE

.model	agregado	state	region	purpose	bottom	hierarquia
RMSSE						
base	1.446	1.260	1.068	1.265	0.925	0.976
bu	2.580	1.634	1.113	2.004	0.925	1.011
mint	1.813	1.296	0.978	1.420	0.876	0.923
MASE						
base	1.533	1.399	1.132	1.330	0.979	1.036
bu	3.164	1.877	1.176	2.323	0.979	1.078
mint	2.086	1.449	1.021	1.512	0.937	0.984

TOURISM - ML - ROLLING FORECAST

modelo	agregado	State	Region	Purpose	bottom	hierarquia
RMSSE						
elastic net	1.990	1.386	1.086	1.541	0.988	1.041
lasso	1.929	1.373	1.100	1.523	1.026	1.069
lightgbm	4.330	2.762	1.651	3.456	1.141	1.354
random forest	2.135	1.365	1.033	1.709	0.908	0.966
ridge	1.256	1.185	1.013	1.202	0.919	0.959
svm	0.940	1.010	1.076	1.011	1.100	1.097
xgb	2.340	1.451	1.114	1.892	0.964	1.031
MASE						
elastic net	2.360	1.572	1.145	1.653	1.058	1.115
lasso	2.264	1.557	1.168	1.593	1.110	1.155
lightgbm	5.505	3.214	1.763	4.060	1.200	1.448
random forest	2.579	1.528	1.073	1.816	0.961	1.020
ridge	1.343	1.309	1.058	1.192	0.981	1.020
svm	1.070	1.096	1.140	1.033	1.178	1.174
xgb	2.888	1.650	1.162	2.118	1.013	1.087

TOURISM - ML - FITTED BASE

7 APÊNDICE

modelo	agregado	State	Region	Purpose	bottom	hierarquia
RMSSE						
elastic net	2.17	1.40	1.10	1.77	0.97	1.03
lasso	1.90	1.45	1.09	1.61	0.97	1.03
lightgbm	4.33	2.76	1.65	3.46	1.14	1.35
random forest	2.12	1.36	1.03	1.72	0.91	0.96
ridge	1.57	1.16	0.97	1.29	0.90	0.93
svm	1.50	1.19	1.05	1.38	1.04	1.05
xgb	2.27	1.42	1.10	1.83	0.96	1.02
MASE						
elastic net	2.59	1.57	1.16	1.95	1.04	1.10
lasso	2.21	1.67	1.16	1.73	1.04	1.11
lightgbm	5.50	3.21	1.76	4.06	1.20	1.45
random forest	2.54	1.54	1.07	1.84	0.97	1.02
ridge	1.77	1.29	1.01	1.31	0.96	0.99
svm	1.75	1.30	1.09	1.36	1.10	1.11
xgb	2.79	1.62	1.15	2.04	1.01	1.08

TOURISM - ML - REDUCED FITTED BASE 7 APÊNDICE

modelo	agregado	State	Region	Purpose	bottom	hierarquia
RMSSE						
lightgbm	4.33	2.76	1.65	3.46	1.14	1.35
random forest	2.58	1.55	1.11	2.01	0.92	1.01
xgb	3.14	1.93	1.28	2.44	1.02	1.14
MASE						
lightgbm	5.50	3.21	1.76	4.06	1.20	1.45
random forest	3.18	1.76	1.17	2.24	0.98	1.07
xgb	3.93	2.27	1.38	2.86	1.07	1.21

TOURISM - ML - TEMPO DE PROCESSAMENTO 7 APÊNDICE

	xgb	random forest	elastic net	lasso	ridge	svm	lightgbm
fitted base	15.767	3.687	1.540	1.282	1.371	1.977	3.535
rolling forecast	12.087	2.987	0.957	0.796	1.073	2.035	3.596
reduced fitted base	24.627	15.386	6.006	4.968	5.323	10.474	19.362

- Assim como na base de dados Estban, os métodos de ML tiveram melhor performance nos níveis mais agregados, enquanto os analíticos superaram os de ML nos níveis mais desagregados
- A estratégia *fitted base* mostrou bom desempenho no nível intermediário, enquanto o *rolling forecast* foi mais eficaz nos níveis mais agregados
- Os métodos baseados em árvore de decisão não foram capazes de superar os analíticos em nenhum nível de agregação
- Os métodos SVM e ridge obtiveram as melhores performances dentre os métodos de ML

- BECCALLI, E. et al. Earnings management, forecast guidance and the banking crisis. The European Journal of Finance, v. 21, n. 3, p. 242–268, fev. 2015. ISSN 1351-847X. DOI: 10.1080/1351847X.2013.809548. Disponível em: https://doi.org/10.1080/1351847X.2013.809548>. Acesso em: 7 mai. 2023. Citado na p. 3.
- BISCHL, B. et al. Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. [S.l.]: arXiv, nov. 2021. arXiv:2107.05847 [cs, stat]. DOI: 10.48550/arXiv.2107.05847. Disponível em: http://arxiv.org/abs/2107.05847. Acesso em: 4 set. 2023. Citado na p. 33.
- HYNDMAN, R.; ATHANASOPOULOS, G. Forecasting: principles and practice. 3. ed. Melbourne, Austrália: OTexts, 2021. Disponível em: https://otexts.com/fpp3/. Citado nas pp. 5, 47.

- HYNDMAN, R. J.; AHMED, R. A. et al. Optimal combination forecasts for hierarchical time series. en. **Computational Statistics & Data Analysis**, v. 55, n. 9, p. 2579–2589, set. 2011. ISSN 0167-9473. DOI: 10.1016/j.csda.2011.03.006. Disponível em: https://www.sciencedirect.com/science/article/pii/S0167947311000971. Acesso em: 11 jan. 2023. Citado na p. 14.
- HYNDMAN, R. J.; LEE, A. J.; WANG, E. Fast computation of reconciled forecasts for hierarchical and grouped time series. en. **Computational Statistics & Data Analysis**, v. 97, p. 16–32, mai. 2016. ISSN 0167-9473. DOI: 10.1016/j.csda.2015.11.007. Disponível em: https://www.sciencedirect.com/science/article/pii/S016794731500290X. Acesso em: 11 jan. 2023. Citado na p. 15.

- SEZER, O. B.; GUDELEK, M. U.; OZBAYOGLU, A. M. Financial Time Series Forecasting with Deep Learning: A Systematic Literature Review: 2005-2019. Turquia: arXiv, nov. 2019. arXiv:1911.13288 [cs, q-fin, stat]. Disponível em: http://arxiv.org/abs/1911.13288>. Acesso em: 7 mar. 2023. Citado na p. 3.
- SPILIOTIS, E. et al. Hierarchical forecast reconciliation with machine learning. en. Applied Soft Computing, v. 112, p. 107756, nov. 2021. ISSN 1568-4946. DOI: 10.1016/j. asoc.2021.107756. Disponível em: https://www.sciencedirect.com/science/article/pii/S1568494621006773. Acesso em: 11 jan. 2023. Citado nas pp. 17, 18, 21, 24, 47.

WICKRAMASURIYA, S. L.; ATHANASOPOULOS, G.; HYNDMAN, R. J. Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization. en. **Journal of the American Statistical Association**, v. 114, n. 526, p. 804–819, abr. 2019. ISSN 0162-1459, 1537-274X. DOI: 10.1080/01621459.2018.1448825. Disponível em: https://www.tandfonline.com/doi/full/10.1080/01621459.2018.1448825>. Acesso em: 18 jun. 2023. Citado nas pp. 13, 16, 24.

MÉTODOS DE MACHINE LEARNING PARA RECONCILIAÇÃO ÓTIMA DE SÉRIES TEMPORAIS HIERÁRQUICAS E AGRUPADAS DE INSTITUIÇÕES FINANCEIRAS

DEFESA DE DISSERTAÇÃO DE MESTRADO

Alberson Miranda, PPGEco/UFES

Fevereiro de 2024