# Lab Cycle 3

# Mathplotlib

Demonstrate creating various types of charts and plots using functions in mathplotlib library

1. Sarah bought a new car in 2001 for \$24,000. The dollar value of her car changed each year as shown in the table below.

#### Value of Sarah's Car

Year Value

2001 \$24,000

2002 \$22,500

2003 \$19,700

2004 \$17,500

2005 \$14,500

2006 \$10,000

2007 \$ 5,800

Represent the following information using a line graph with following style properties

- X- axis Year
  - Y -axis Car Value
- title -Value Depreciation (left Aligned)
- Line Style dashdot and Line-color should be red
- point using \* symbol with green color and size 20

Subplot() provides multiple plots in one figure.

## Code

```
import matplotlib.pyplot as plt import numpy as np
```

```
x = np.array([2001,2002,2003,2004,2005,2006,2007])

y = np.array([24000,22500,19700,17500,14500,10000,5800])
```

```
plt.plot(x, y ,'-.',color='r',marker='*',ms='20',mec='g',mfc='g')
plt.title("Value Depreciation " ,loc='left')
plt.xlabel("Year")
```

plt.ylabel("Car Value")

plt.show()

# output



2. Following table gives the daily sales of the following items in a shop

| Day    | Mon | Tues | Wed | Thurs | Fri |  |  |
|--------|-----|------|-----|-------|-----|--|--|
| Drinks | 300 | 450  | 150 | 400   | 650 |  |  |
| Food   | 400 | 500  | 350 | 300   | 500 |  |  |

Use subplot function to draw the line graphs with **grids(color as blue** and line style dotted) for the above information as 2 separate graphs in two rows

- a) Properties for the Graph 1:
  - X label- Days of week
  - Y label-Sale of Drinks
  - Title-Sales Data1 (right aligned)
  - Line -dotted with cyan color
  - Points- hexagon shape with color magenta and outline black
- b) Properties for the Graph 2:
  - X label- Days of Week
  - Y label-Sale of Food
  - Title-Sales Data2 (center aligned)
  - Line -dashed with yellow color
  - · Points- diamond shape with color green and outline red

```
code
import matplotlib.pyplot as plt
import numpy as np
#plot 1:
x = np.array(['mon', 'tue', 'wed', 'thur', 'fri'])
y = np.array([300, 450, 150, 400, 65])
plt.subplot(1, 2, 1)
plt.title("Sales Data1")
plt.xlabel("Days of week")
plt.ylabel("Sale of Drinks")
plt.plot(x,y,':c')
plt.plot(x,y,'Hm',mec = 'k')
plt.grid(color = 'blue', linestyle = 'dotted')
#plot 2:
c = np.array(['mon', 'tue', 'wed', 'thur', 'fri'])
v = np.array([400, 500, 350, 300, 500])
plt.subplot(1, 2, 2)
plt.title("Sales Data2")
plt.xlabel("Days of Week")
plt.ylabel("Sale of Food")
plt.plot(c,v,'--y')
plt.plot(c,v,'Dg',mec = 'r')
plt.grid(color = 'blue', linestyle = 'dotted')
```

### output

plt.show()



# 3.Create scatter plot for the below data: (use Scatter function)

| Product              | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Affordable Segment   | 173 | 153 | 195 | 147 | 120 | 144 | 148 | 109 | 174 | 130 | 172 | 131 |
| Luxury Segment       | 189 | 189 | 105 | 112 | 173 | 109 | 151 | 197 | 174 | 145 | 177 | 161 |
| Super Luxury Segment | 185 | 185 | 126 | 134 | 196 | 153 | 112 | 133 | 200 | 145 | 167 | 110 |

Create scatter plot for each Segment with following properties within one graph

- X Label- Months of Year with font size 18
- Y-Label- Sales of Segments
- Title -Sales Data
- Color for Affordable segment- pink
- Color for Luxury Segment- Yellow
- Color for Super luxury segment-blue

```
code
    plt.title("Sales Data")
    plt.xlabel("Months of Year")
    plt.ylabel("Sale of Food")
    x =
        np.array(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'])
y1 = np.array([173,153,195,147,120,144,148,109,174,130,172,131])
    plt.scatter(x,y1, color = 'hotpink')
y2 = np.array([185,185,126,134,196,153,112,133,200,145,167,110])
    plt.scatter(x, y2, color = 'yellow')
y3 = np.array([189,189,105,112,173,109,151,197,174,145,177,161])
    plt.scatter(x, y3, color = 'blue')
    plt.show()
```

output



- 4.Display the above data using multiline plot(3 different lines in same graph)
- Display the description of the graph in upper right corner(use legend())
- Use different colors and line styles for 3 different lines

#### code

```
import matplotlib.pyplot as plt
import numpy as np
```

```
 \begin{aligned} x &= \text{np.array}(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'])} \\ y1 &= \text{np.array}([173,153,195,147,120,144,148,109,174,130,172,131])} \\ y2 &= \text{np.array}([189,189,105,112,173,109,151,197,174,145,177,161])} \\ y3 &= \text{np.array}([185,185,126,134,196,153,112,133,200,145,167,110])} \end{aligned}
```

```
plt.plot(x,y1,label = "Affordable Segment",ls=':')
plt.plot(x,y2,label = "Luxuary Segment",ls="-")
plt.plot(x,y3,label = "Super Luxuary Segment",ls="-.")
plt.legend()
plt.show()
output
```



5.100 students were asked what their primary mode of transport for getting to school was. The results of this survey are recorded in the table below. Construct a bar graph representing this information.

Create a bar graph with

- X axis -mode of Transport and Y axis 'frequency'
- Provide appropriate labels and title
- Width .1, color green

### code

import matplotlib.pyplot as plt import numpy as np

```
plt.title("Students transportation")
plt.xlabel("Mode of Transport")
plt.ylabel("Frequency")
```

```
 x = \text{np.array}(["walking","cycling","car","bus","train"]) \\ y = \text{np.array}([29,15,35,18,3])   \text{plt.bar}(x, y, \text{color} = "#4CAF50", width = 0.1) \\ \text{plt.show}()
```

output



6.We are provided with the height of 30 cherry trees.

The height of the trees (in inches): 61, 63, 64, 66, 68, 69, 71, 71.5, 72, 72.5, 73, 73.5, 74, 74.5, 76, 76.2, 76.5, 77, 77.5, 78, 78.5, 79, 79.2, 80, 81, 82, 83, 84, 85, 87. Create a histogram with a bin size of 5 code

import matplotlib.pyplot as plt

height = [61,63,64,66,68,69,

1,71.5,72,72.5,73,73.5,74,74.5,76,76.2,76.5,77,77.5,78,78.5,79,79.2,80,81,82,83,84,85,87

plt.hist(height, edgecolor="red", bins=5)
plt.show()

output

