

Case study

Pancreatic cancer cell line AsPC has a knockout of gene X. Assess the effect of a gene X KO on a tumor formation and growth.

Choice of markers

- DAPI to segment nuclei
- Epithelial cells (Pan-cytokeratin)
- Immune population (CD4, CD8 etc)
- Proliferating cells (Ki67)
- Apoptotic cells (Cleaved Caspase 3)

Case study

Reviewer: Assess the correlation between proliferation and distance from the stromal edge within the tumor.

Choice of markers

- DAPI to segment nuclei
- Epithelial cells (Pan-cytokeratin)
- Proliferating cells (Ki67)
- Stroma (Fibronectin)

By the end of this course:

you will be able to classify proliferating (Ki67) cancer cells and analyze their spatial distribution to regions with high-fibronectin content

Few ideas before we move forward

The idea behind image analysis in QuPath is very similar to the concept of 'gating' used in flow cytometry.

Key concept: QuPath project

Projects are the way to organize your work in QuPath

- In other words, they are folders
 - Group together images
 - Organize data, scripts, classifiers, etc
 - They only save data, not the original images
- Allow you to share your work with other QuPath users
 - Always send the images along!

How to create a project?

Create project button

or

• File > Project... > Create project

- ! Make sure to create an **empty** folder for your project
 - Sometimes, you have to do this twice in the empty folder

Anatomy of a QuPath project

After a bit of time working on it...

Add an image to your project

- Check your emails! Download the whole-slide image from the workshop website
- 2. Add an image
 - Add images button
 - Select the .vsi file

Add an image to your project

3. Select the .vsi image using *Choose files* or drag-and-drop

4. Use default settings

5. Click import

Set image type

Other image types are supported: Brightfield H&E, H-DAB, other brightfield

Yay! We have a QuPath project with an image

→ Double-click an image to open it in the viewer

QuPath works on copies of your original files

- QuPath access the image pixels and metadata via an image server
 - Akin to a copy of the original file
- Manipulating files within a QuPath project will never modify the original files or pixels
 - Deleting, duplicating, processing, etc will not be reflected in your original files

QuPath projects are portable

- Sharing a project:
 - Zip up the entire project directory
 - Email it to your collaborators

The project folder only contains QuPath objects and data, unless you had placed them there. Ensure that they can access the actual image files.

QuPath projects are portable

- Receiving a project:
 - The project still contains image paths specific to the local machine of the sender
 - If you move the image, you will be prompted to update the file path

Graphic User Interface (GUI)

Analysis Panel

- Project tab > right-click on an image
 - Open, remove, rename and duplicate images
 - Edit metadata

Analysis Panel

- Image tab
 - Name and image file path
 - Magnification: 20x
 - Pixel type, width and height are crucial for scale calibration
 - Dimensions: 4 channels + 2D
 - Pyramid: level of downsampling in the viewer
 - Image type: previously set to fluorescence

Project Image Annotation	ns Hierarchy Workflow
Name	Value
Name	example_image.vsi - 20x_DAPI, FI
URI	file:/Users/nina/Muranen Lab Drop
Pixel type	uint16
Magnification	20.0
Width	27818 px (9041.53 μm)
Height	19169 px (6230.50 μm)
Dimensions (CZT)	4 x 1 x 1
Pixel width	0.3250 μm
Pixel height	0.3250 μm
Uncompressed size	4 GB
Server type	Bio-Formats
Pyramid	1 2 4 8 16 32 64
Metadata changed	No
Image type	Fluorescence

QuPath viewer

Multi-viewer

- Allows to view
 multiple images, or
 can be used to view
 each channel of a
 single image at the
 same time
- To do so, you actually need to import the image 4 times
- View > Multi-view > Set grid size > Grid 2x2

Multi-viewer

Brightness and contrast

 Select a channel for each viewer

- Control/Right + click in one of the viewer > Synchronize viewers
- Make sure images are aligned

Graphic User Interface (GUI)

Example when my cursor is on the paint brush tool

Annotation tools are also accessible in the Tools menu

QuPath pro-tip: command list

Command/Control + L

Opens a dialogue to search for any command using keyword

For example, search for 'brightness'

Practice time

Exercises 1: QuPath projects and GUI

Key concept: QuPath objects

- Objects are a 'thing' in an image which encapsulates not only its shape but also some properties about it
 - Annotations: Objects that you usually create yourself, by drawing on the image
 - They are flexible, up to ~100 per image
 - Can be edited
 - Often used to define regions
 - Detections: Objects that QuPath usually creates for you
 - They are efficient, up to ~millions per image
 - Can be deleted but not edited
 - Often used to define cells

Analysis Panel

- Annotations tab
 - Annotation list lets you select, delete
 - Right-click to **lock** or edit properties (name, color)
 - Shift or Command/Control to multi-select

How to create manual annotations?

Select one of the annotation tools from the toolbar then scribble on the image!

Annotation tools

- M key: move tool
- R key: draw a rectangle annotation
- **O** key: draw an ellipse annotation
- **B** key: paint with a brush
- W key: draw with a wand tool
- And many more!

Remember to always lock your annotation to prevent accidental editing!

Practice time

Exercises 2: QuPath manual annotations

Recreate these annotations

Decide on which annotations tool from the toolbar is best to do so

Image Analysis Collaboratory - QuPath workshop

Create a region of interest with the annotation tools

In the TRITC channel (fibronectin), create a region of interest that enclose high-fibronectin content regions

Once you have finished your annotation, **lock** it:

Right-click in the viewer > Annotations > Lock

or

Right-click on the annotation in the analysis panel > Lock