

## Statistics Ex 7.3 Q5

## Answer:

Let the assumed mean be A = 15 and h = 6.

| Classinterval: | $Midvalue(x_i)$ : | frequency: $(f_i)$ | $d_i = x_i - A$ $= x_i - 15$ | $u_i = \frac{1}{h}(d_i)$ | $f_i u_i$          |
|----------------|-------------------|--------------------|------------------------------|--------------------------|--------------------|
| 0-6            | 3                 | 6                  | -12                          | $=\frac{1}{6}(d_i)$ $-2$ | -12                |
| 6-12           | 9                 | 8                  | -6                           | -1                       | -8                 |
| 12-18          | 15                | 10                 | 0                            | 0                        | 0                  |
| 18 - 24        | 21                | 9                  | 6                            | 1                        | 9                  |
| 24-30          | 27                | 7                  | 12                           | 2                        | 14                 |
|                |                   | $\sum f_i = 40$    |                              |                          | $\sum f_i u_i = 3$ |

We know that mean,  $\overline{X} = A + h \left( \frac{1}{N} \sum f_i u_i \right)$ 

Now, we have  $N=\sum f_i=40, \sum f_iu_i=3, \ h=6$  and A=15.

Putting the values in the above formula, we get

$$\overline{X} = A + h \left( \frac{1}{N} \sum f_i u_i \right)$$

$$= 15 + 6 \left( \frac{1}{40} \times (3) \right)$$

$$= 15 + \frac{18}{40}$$

$$= 15 + 0.45$$

$$= 15.45$$

Hence, the mean is 15.45.

Statistics Ex 7.3 Q6

## Answer:

Let the assumed mean be A = 100 and h = 20.

| Class interval: | $Midvalue(x_i)$ : | $frequency \left( f_i \right)$ | $d_i = x_i - A$ $= x_i - 100$ | $u_i = \frac{1}{h}(d_i)$ $= \frac{1}{20}(d_i)$ | $f_i u_i$           |
|-----------------|-------------------|--------------------------------|-------------------------------|------------------------------------------------|---------------------|
| 50-70           | 60                | 18                             | -40                           | -2                                             | -36                 |
| 70-90           | 80                | 12                             | -20                           | -1                                             | -12                 |
| 90 -110         | 100               | 13                             | 0                             | 0                                              | 0                   |
| 110-130         | 120               | 27                             | 20                            | 1                                              | 27                  |
| 130-150         | 140               | 8                              | 40                            | 2                                              | 16                  |
| 150-170         | 160               | 22                             | 60                            | 3                                              | 66                  |
|                 |                   | $\sum f_i = 100$               |                               |                                                | $\sum f_i u_i = 61$ |

We know that mean 
$$\overline{X} = A + h \left( \frac{1}{N} \sum f_i u_i \right)$$

Now we have 
$$N = \sum f_i = 100$$
,  $\sum f_i u_i = 61$ ,  $h = 20$  and  $A = 100$ 

Putting the values in the above formula, we get

$$\overline{X} = A + h \left( \frac{1}{N} \sum_{i} f_{i} u_{i} \right)$$

$$= 100 + 20 \left( \frac{1}{100} \times (61) \right)$$

$$= 100 + \frac{1220}{100}$$

$$= 100 + 12.20$$

$$= 112.20$$

Hence, the mean is 112.20.

\*\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*