Tema 7

Planificación de Tareas Periódicas

Objetivos

- Conocer y entender el funcionamiento de distintos algoritmos de planificación de sistemas con tareas periódicas e independientes
- Conocer distintos métodos para predecir si estos sistemas cumplirán con sus restricciones temporales

Índice

- 1. Planificadores basados en prioridades
- 2. Tests de planificabilidad
- 3. Test de factor de utilización y Test de factor de carga
- 4. Test basado en el cronograma
- 5. Test de tiempos de respuesta

Recordemos el concepto de scheduling

- El scheduling proporciona:
 - un PLANIFICADOR
 - algoritmo que determina el orden del uso de recursos del sistema (en particular, la CPU)
 - restringe el indeterminismo de un sistema concurrente (sistema predecible)
 - Un TEST DE PLANIFICABILIDAD
 - método para determinar si el sistema cumplirá con las restricciones temporales establecidas al usar un determinado planificador

Recordemos el concepto de planificador óptimo

- En cualquiera de las categorías de planificadores, se dice que un planificador es óptimo dentro de esa categoría cuando es capaz de encontrar una planificación factible de cualquier conjunto de tareas planificable
- Consecuencias de utilizarlo:
 - Si un conjunto de tareas no es planificable con el planificador óptimo, podemos afirmar que no es planificable, ya que no lo será con ningún otro planificador (de esa misma categoría)
 - Si un conjunto de tareas no es planificable con un planificador no óptimo, no podemos garantizar que no sea planificable

Planificadores con prioridades

- En los sistemas de tiempo real la prioridad de un proceso se deriva de sus requerimientos temporales
- De todos los procesos listos para ejecución, se ejecuta el de mayor prioridad
- En un esquema expulsivo (preemptive), hay un cambio inmediato al proceso de mayor prioridad
- En un esquema no expulsivo (non-preemptive), el proceso de baja prioridad podrá continuar hasta que acabe
- Los esquemas expulsivos permiten a los procesos de mayor prioridad ser más reactivos y, por lo tanto, son los más adecuados

Planificadores Óptimos

Planificadores de prioridad fija (FPS)

- Cada proceso tiene una prioridad fija (estática)
 - Se basa en parámetros fijos de la tarea
 - Se establece antes de su ejecución
- Ejemplos:
 - Rate Monotonic (RM)
 - Deadline Monotonic (**DM**)

Planificadores RM y DM

RM: Rate Monotonic

- \square Se supone que $D_i = T_i$
- La prioridad se asigna en función del PERIODO
- A menor periodo ⇒ mayor prioridad

$$T_i < T_j \implies P_i > P_j$$

DM: Deadline Monotonic

- ☐ Se supone que $D_i \le T_i$
- La prioridad se asigna en función del **DEADLINE**
- A menor deadline ⇒ mayor prioridad

$$D_i < D_j \quad \Rightarrow \quad P_i > P_j$$

Asignación de prioridades

RM			
Tarea	Т	Р	
a	25	5	
b	60	3	
С	42	4	
d	105	1	
е	75	2	

DM		
Т	D	Р
20	5	4
15	7	3
10	10	2
20	20	1
	T 20 15 10	T D 20 5 15 7 10 10

Cronograma utilizando RM

Tarea	С	T=D	
а	2	6	
b	2	8	
С	2	12	

Planificadores dinámicos

- Cada proceso tiene una prioridad dinámica
 - Se basa en parámetros dinámicos de la tarea
 - Cambia durante su ejecución
- Se obtienen secuenciaciones más flexibles
- Ejemplos:
 - Earliest Deadline First (EDF)
 - Least Slack Time First (**LSTF**)

Planificador EDF

- Selecciona la siguiente tarea a ejecutar dependiendo de su deadline absoluto
 - Se elige la tarea con deadline absoluto más cercano
- La decisión se realiza en tiempo de ejecución

Cronograma utilizando EDF

EDF vs FPS

- EDF permite mayores utilizaciones que FPS
- EDF es más complejo de implementar y es ejecutado on-line
- En situaciones de sobrecarga, EDF es impredecible mientras que FPS es más predecible

Planificador EDF en ADA: Política de dispatching

pragma Task_Dispatching_Policy(policy_identifier)

pragma Priority_Specific_Dispatching (policy, firts_priority,last_priority)

- Utilizar el identificador EDF_Across_Priorities
 - Se elige la tarea con menor deadline absoluto
- y en la especificación de las tareas el pragma:

pragma Relative_Deadline(plazo_ejecucion)

Paquete Ada.Dispatching.EDF

```
with Ada.Real_Time;
with Ada. Task_Identification;
package Ada. Dispatching. EDF is
 subtype Deadline is Ada.Real_Time.Time;
 Default_Deadline: constant Deadline:= Ada.Real_Time.Time_Last;
 procedure Set_Deadline (D : in Deadline;
                          T: in Ada.Task_Identification.Task_Id :=
                                      Ada.Task_Identification.Current_Task);
 procedure Delay_Until_And_Set_Deadline (
                          Delay_Until_Time: in Ada.Real_Time.Time;
                          Deadline_Offset: in Ada.Real_Time.Time_Span);
 function Get_Deadline (T: Ada.Task_Identification.Task_Id:=
                     Ada.Task_Identification.Current_Task) return Deadline;
end Ada.Dispatching.EDF;
```


Índice

- 1. Planificadores basados en prioridades
- 2. Tests de planificabilidad
- 3. Test de factor de utilización y Test de factor de carga
- 4. Test basado en el cronograma
- 5. Test de tiempos de respuesta

2. Tests de planificabilidad

Tipos de tests de planificabilidad

- Test basado en factores de utilización
- Test basado en factores de carga
- Test basado en el cronograma (diagrama de tiempo)
- Test basado en tiempos de respuesta

2. Tests de planificabilidad

Tests suficientes y/o necesarios

- Si un test de planificabilidad es suficiente, un resultado positivo del test garantiza que todos los deadlines siempre se cumplen
- Si un test de planificabilidad es necesario, un resultado negativo del test implica que algún deadline será incumplido

Índice

- 1. Planificadores basados en prioridades
- 2. Tests de planificabilidad
- 3. Test de factor de utilización y Test de factor de carga
- 4. Test basado en el cronograma
- 5. Test de tiempos de respuesta

Recuerda que ...

El factor de utilización de una tarea es el porcentaje de uso de procesador que requiere una tarea para su ejecución

u =
$$\frac{C}{T}$$

y es diferente del factor de carga:

$$ch = \frac{C}{D}$$

Test de factores de utilización

 \square Se puede utilizar sólo cuando $T_i = D_i$

$$U = \sum_{i=1}^{N} \frac{C_i}{T_i} \le L_U$$

El **límite de planificabilidad** L_U es el valor máximo de U que puede alcanzar un conjunto de tareas garantizándose el cumplimiento de sus deadlines

Test de factores de utilización con RM

Dado un conjunto Γ de N tareas periódicas secuenciadas según RM, Γ será planificable SI:

$$\sum_{i=1}^{N} \frac{C_i}{T_i} \le N(2^{\frac{1}{N}} - 1) = L_U(N)$$

N	$L_U(N)$
1	100 %
2	82,8 %
3	77,9 %
4	75,7 %
•••	•••
∞	69,3%

Se trata de una condición **SUFICIENTE**

Condición suficiente

Condición no necesaria

Tarea	С	T=D	Р	U
a	40	80	1	0,50
b	10	40	2	0,25
С	5	20	3	0,25

RM

$$\sum_{i=1}^{N} C_i / T_i = 1 \le / L_U(3) = 0.779$$

Test de factores de utilización con EDF

Dado un conjunto Γ de N tareas periódicas secuenciadas según **EDF**, con $T_i = D_i$, Γ será planificable **SI Y SOLO SI**:

$$\sum_{i=1}^{N} \frac{C_i}{T_i} \le 1$$

Se trata de una condición **NECESARIA** y **SUFICIENTE**

Test de factores de carga con DM

Dado un conjunto Γ de N tareas periódicas secuenciadas según **DM**, Γ será planificable **SI**:

$$\sum_{i=1}^{N} \frac{C_i}{D_i} \le N(2^{\frac{1}{N}} - 1)$$

Se trata de una condición **SUFICIENTE**

Test de factores de carga con EDF

Dado un conjunto Γ de N tareas periódicas secuenciadas según **EDF**, con $\mathbf{D_i} < \mathbf{T_i}$, Γ será planificable **SI**:

$$\sum_{i=1}^{N} \frac{C_i}{D_i} \le 1$$

Se trata de una condición SUFICIENTE

Índice

- 1. Planificadores basados en prioridades
- 2. Tests de planificabilidad
- 3. Test de factor de utilización y Test de factor de carga
- 4. Test basado en el cronograma
- 5. Test de tiempos de respuesta

4. Test basado en el cronograma

Conceptos a tener en cuenta

- Se trata de obtener el peor tiempo de respuesta de cada tarea observando el cronograma
- Instante crítico: máxima carga del procesador
- Hiperperiodo: mínimo común múltiplo de los periodos de activación de todas las tareas

Tarea	С	T=D
$\overline{}_{1}$	2	10
$ au_{ exttt{2}}$	4	15
$ au_3$	10	30

4. Test basado en el cronograma

Test basado en cronograma con prioridades fijas

Tarea	С	T=D	P
а	10	50	1
b	10	25	2
С	5	20	3

RM

4. Test basado en el cronograma

Test basado en cronograma con prioridades dinámicas

Tarea	С	T=D	
а	15	50	
b	5	25	
С	10	20	

EDF

Índice

- 1. Planificadores basados en prioridades
- 2. Tests de planificabilidad
- 3. Test de factor de utilización y Test de factor de carga
- 4. Test basado en el cronograma
- 5. Test de tiempos de respuesta

5. Test de tiempos de respuesta

Test de tiempos de respuesta

Dado un conjunto Γ de N tareas periódicas planificadas según **RM** o **DM**, Γ será planificable **SI Y SOLO SI**:

$$R_i \leq D_i$$
, $\forall i = 1...N$

Donde R_i denota el peor tiempo de respuesta de la tarea i

Se trata de una condición **NECESARIA y SUFICIENTE**

Peor tiempo de respuesta

- Instante crítico de una tarea τ_i : es el instante de activación de la tarea que da lugar a un tiempo de respuesta máximo para τ_i
- El peor tiempo de respuesta R_i para una tarea periódica τ_i es su tiempo máximo de respuesta y se calcula, en su instante crítico, como:

$$R_i = C_i + I_i$$

Donde I es la interferencia de tareas de mayor prioridad

Cálculo de interferencias

Durante R_i , cada proceso τ_j (de mayor prioridad que τ_i) se activará un cierto número de veces:

Número de activaciones_j =
$$\frac{R_i}{T_j}$$

La función techo de devuelve el menor entero mayor o igual que el número real sobre el que actúa

 \blacksquare Cada activación del proceso τ_{j} ocasionará una interferencia de C_{j} y por lo tanto:

Interferencia de
$$\tau_j$$
 sobre $\tau_i = \left| \frac{R_i}{T_j} \right| C_j$

Cálculo de R_i

Cada proceso de mayor prioridad que τ_i interferirá con dicho proceso y por lo tanto:

$$I_{i} = \sum_{j \in hp(i)} \left[\frac{R_{i}}{T_{j}} \right] C_{j}$$

hp(i) es el conjunto de procesos con mayor prioridad que τ_i

$$R_i = C_i + I_i \longrightarrow R_i = C_i + \sum_{\substack{j \in \text{hp(i)}}} \left[\frac{R_i}{T_j} \right] C_j$$

Resolución mediante relación de recurrencia

 \blacksquare La solución a la ecuación $R_i = C_i + \sum_{j \in \mathrm{hp(i)}} \left| \frac{R_i}{T_j} \right| C_j \quad \text{no es sencilla}$

La forma más fácil de resolverla es mediante la siguiente relación de recurrencia:

$$R_i^{k+1} = C_i + \sum_{j \in hp(i)} \left[\frac{R_i^k}{T_j} \right] \cdot C_j$$

- □k indica el número de iteración
- \blacksquare El conjunto $\{R_i^0, R_i^1, ..., R_i^k, ...\}$ es monotónicamente no decreciente
- \square Cuando $R_i^k = R_i^{k+1}$, entonces se ha encontrado la solución

Ejemplo de cálculo de R_i

	Tarea	С	T=D	P
RM	а	40	80	1
	b	10	40	2
	С	5	20	3

Tarea c

$$R_{c}^{0} = 5$$

$$R_c^1 = 5$$

 $R_c^0 = R_c^1 = 5 \le 20$

Ejemplo de cálculo de Ri

RM

rarea	C	ם=ו	P
a	40	80	1
b	10	40	2
C	5	20	3

Tarea **b**

$$R_b^0 = 10$$

$$R_b^1 = 10 + 5 \cdot \left[\frac{10}{20} \right] = 10 + 5 = 15$$

$$R_b^2 = 10 + 5 \cdot \left[\frac{15}{20} \right] = 10 + 5 = 15$$

$$R_b^1 = R_b^2 = 15 \le 40$$

Ejemplo de cálculo de R_i

	Tarea	C	T=D	P
	a	40	80	1
RM	b	10	40	2
	C	5	20	3

Tarea a

$$R_a^0 = 40$$

$$R_a^1 = 40 + 10 \cdot \left[\frac{40}{40} \right] + 5 \cdot \left[\frac{40}{20} \right] = 40 + 10 + 10 = 60$$

$$R_a^2 = 40 + 10 \cdot \left[\frac{60}{40} \right] + 5 \cdot \left[\frac{60}{20} \right] = 40 + 20 + 15 = 75$$

$$R_a^3 = 40 + 10 \cdot \left[\frac{75}{40} \right] + 5 \cdot \left[\frac{75}{20} \right] = 40 + 20 + 20 = 80$$

$$R_a^4 = 40 + 10 \cdot \left[\frac{80}{40} \right] + 5 \cdot \left[\frac{80}{20} \right] = 40 + 20 + 20 = 80$$

Test de tiempos de respuesta con EDF

- El instante crítico de cada tarea no se produce cuando todos las tareas se activan al mismo tiempo
- Determinar el tiempo de respuesta es mucho más complejo
 - Ejemplo: en un sistema pequeño de sólo 4 procesos, pero con periodos 24, 50, 73 y 101, habría que analizar todas las **activaciones** en las 4.423.800 primeras u.t. (mientras que con FPS sólo en las 101 primeras u.t.)

Resumen Tests de Planificabilidad

	Prioridades Fijas		Prioridades Dinámicas	
	$RM (D_i = T_i)$	$DM (D_i \leq T_i)$	EDF $(D_i = T_i)$	EDF ($D_i \leq T_i$)
Factores de utilización	Suficiente		Necesario y suficiente	
Factores de carga		Suficiente		Suficiente
Cronograma	Necesario y suficiente	Necesario y suficiente	Necesario y suficiente	Necesario y suficiente
Tiempos de respuesta	Necesario y suficiente	Necesario y suficiente		

Conclusiones

- Cuando una aplicación de control se compone de varias tareas periódicas concurrentes con restricciones de tiempo individuales, se debe garantizar que se activan regularmente con su apropiado periodo y se completan dentro de su deadline
- Los planificadores más utilizados son los basados en prioridad
- Los tests de planificabilidad se utilizan para determinar si el sistema cumplirá con las restricciones establecidas

Bibliografía Recomendada

Sistemas de tiempo real y lenguajes de programación (3º edición)

Alan Burns and Andy Wellings

Addison Wesley (2002)

Capítulo 13 (Apartados: del 13.3 al 13.6; y 13.9)

Hard real-time computing systems (Second edition)

Giorgio C. Buttazzo

Kluwer Academic Publishers (2004)

Capítulo 4

Scheduling in real-time systems Cottet Francis and others. Wiley (2002)

Capítulo 2 (Apartado 2.1)

Otras fuentes de información

Manual de Referencia de Ada2005

? Anexos: D.2.6

