

Bruce M. Boghosian

Motivation

search strategy

Summai

Bayesian estimation

Bayesian search strategy

Bruce M. Boghosian

Department of Mathematics

Tufts University

1 Motivation

Bayesian search strategy

Summary

Bayesian search strategy

Bruce M. Boghosian

Motivation

Bayesiar search strategy

Summa

- Suppose we are trying to find a lost object.
- We have some ideas of regions where to search.
- There is no certainty that we will find the object, even if we search the region in which it is located.
- For example, searches of the ocean floor for lost objects.

Bayesian search strategy

Bruce M. Boghosian

Motivatio

Bayesian search strategy

Summar

- lacksquare $A_j :=$ Event missing object is in region r_j
- lacksquare $B_j :=$ Event object would be found if it was in r_j , and r_j was searched
- $P(A_j \mid B_j^C)$ is probability that the item is in r_j , given that r_j was just searched unsuccessfully.
- Start with *prior* estimates for the probabilities $\{P(A_j)\}_{j=1}^n$. These could be as simple as the uniform distribution

$$\forall j \in \{1,\ldots,n\}: P(A_j) = \frac{1}{n}.$$

■ Suppose region r_j is searched, and nothing is found there.

Updating the prior for the searched region

Bruce M. Boghosian

Motivation

Bayesian search strategy

Summ

lacksquare Apply Bayes' Theorem, and note that $P\left(B_j^{\mathcal{C}} \mid A_j^{\mathcal{C}}\right) = 1$

$$\begin{split} P\left(A_{j} \mid B_{j}^{C}\right) &= \frac{P\left(B_{j}^{C} \mid A_{j}\right) P(A_{j})}{P\left(B_{j}^{C} \mid A_{j}\right) P(A_{j}) + P\left(B_{j}^{C} \mid A_{j}^{C}\right) P(A_{j}^{C})} \\ &= \frac{\left[1 - P\left(B_{j} \mid A_{j}\right)\right] P(A_{j})}{\left[1 - P\left(B_{j} \mid A_{j}\right)\right] P(A_{j}) + \left[1 - P(A_{j})\right]} = \left[\frac{1 - P\left(B_{j} \mid A_{j}\right)}{1 - P\left(B_{j} \mid A_{j}\right) P(A_{j})}\right] P(A_{j}) \end{split}$$

■ Hence, after unsuccessful search in r_j , prior for $P(A_j)$ is updated to obtain

$$P^*(A_j) = P\left(A_j \mid B_j^C\right) = \left[\frac{1 - P\left(B_j \mid A_j\right)}{1 - P\left(B_j \mid A_j\right)P(A_j)}\right]P(A_j) < P(A_j).$$

Updating the priors for the other regions

Bruce M. Boghosian

Motivation

Bayesian search strategy

Summar

■ Rescale all the other priors, $P(A_k)$ where $k \neq j$,

$$P^*(A_k) = P\left(A_k \mid B_j^C\right) = \alpha_j P(A_k)$$

■ Demand normalization $1 = \sum_{m=1}^{n} P^*(A_m)$ to find

$$\alpha_j = \frac{1}{1 - P(B_j \mid A_j)P(A_j)}$$

So the other priors update as follows

$$P^*(A_k) = P\left(A_k \mid B_j^C\right) = \left[\frac{1}{1 - P\left(B_j \mid A_j\right)P(A_j)}\right]P(A_k) > P(A_k).$$

Bayesian search strategy algorithm

Bruce M. Boghosian

Motivation

Bayesian search strategy

Summar

- For all m = 1, ..., n:
 - Determine the probabilities that a search in r_m will find the object if it is in r_m .
 - Guess the priors $P(A_m)$.
- Now repeat until the object is found:
 - Suppose value of m for which $P(A_m)$ is highest is m = j.
 - Conduct a search in region r_j
 - If the search is unsuccessful, update the priors and repeat.

- We have studied Bayesian search strategy
- We have presented an algorithm for Bayesian search