Supplementary Material

Development of a Hierarchical Support Vector Regression-Based *In*Silico Model for the Prediction of the Cysteine Depletion in DPRA

Ching-Feng Weng^{1,†}, Giang H. Ta^{2,†}, Max K. Leong^{2,*}

- Institute of Respiratory Disease Department of Basic Medical Science Xiamen Medical College, Xiamen 361023, Fujian, China.
- 2. Department of Chemistry, National Dong Hwa University, Shoufeng, Taiwan.
- [†] These authors contributed equally to this work.
- * Correspondence: Max K. Leong: leong@gms.ndhu.edu.tw; ORCID: 0000-0002-6927-1517

Supplementary Figure S1. Histogram representation of the distributions of various descriptors for all molecules in the training set, test set, and outlier set. (A) Hardness (η) , (B) Softness (σ) , (C) $\log P$, (D) $\log D$, (E) molecular weight (MW), and (F) % cysteine depletion (DPRA assay) in the training set, test set, and outlier set.

Table S1. A. Compound source for this study, their names, Pubchem SID/CID, CAS numbers, , SMILES strings, observed log cysteine depletion values, and predicted values by SVR A, SVR B, SVC, and HSVR, data partition, and references.

No.	Compounds	CAS No	SMILES	Obs. Cystein depletio n	Obs. log %cys	SVR A	$ \Delta $	SVR B	$ \Delta $	SVR C	$ \Delta $	HSVR	$ \Delta $	Set†
1	1-(p- Methoxyphenyl)-1- penten-3-one	104-27-8	O=C(C([H])=C([H])C1=C([H])C([H]) =C(OC([H])([H])[H])C([H])=C1[H]) C([H])([H])C([H])([H])[H]	29.90	1.48	1.36	0.12	1.99	0.52	1.45	0.02	1.59	0.12	Т
2	Methyl salicylate	119-36-8	O=C(OC([H])([H]) [H])C1=C(O[H])C ([H])=C([H])C([H]))=C1[H]	0.43	-0.37	0.64	1.01	0.19	0.56	1.00	1.37	0.40	0.77	T
3	1,2-Dibromo-2,4- dicyanobutane (Methyldibromo glutaronitrile)	35691-65- 7	[Br][C@@](C#N)(C([H])([H])C([H])([H])C#N)C([Br])([H])[H]	93.48	1.97	1.85	0.12	1.41	0.56	1.64	0.33	1.91	0.06	T
4	1,4-Dihydroquinone (1,4- Dihydroxybenzene) (Hydroquinone)	123-31-9	[H]/C1=C(\O[H])C ([H])=C([H])C(O[H])=C1[H]	87.38	1.94	1.48	0.47	1.49	0.45	0.56	1.38	0.95	0.99	Т
5	1, 4- Phenylenediamine	106-50-3	[H]/C1=C(\N([H])[H])C([H])=C([H]) C(N([H])[H])=C1[H]	89.08	1.95	2.07	0.12	1.84	0.11	1.62	0.33	1.98	0.03	Т
6	1-Bromobutane	109-65-9	[Br]C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H]	12.04	1.08	1.20	0.12	0.82	0.26	1.26	0.18	1.10	0.02	T

7	1- Bromohexadecane	112-82-3	[Br]C([H])([H])C([H])([H])([H])C([H])([H])([H])C([H])([H])([H])C([H])([H])([H])([H])([H])([H])([H])([H])	22.90	1.36	1.24	0.12	0.80	0.56	1.03	0.33	0.92	0.44	Т
8	1-Butanol	71-36-3	[H]C([H])(C([H])([H])C([H])([H])[H])C([H])([H])O[H]	0.40	-0.40	0.15	0.55	-0.22	0.17	-0.06	0.33	-0.28	0.11	T
9	1-Chloro-2,4- dinitrobenzene	97-00-7	[Cl]C=1C(N(O[H]) O[H])=C([H])C(N(O[H])O[H])=C([H])C=1[H]	99.95	2.00	1.88	0.12	1.44	0.56	1.67	0.33	1.93	0.07	Т
10	1-Chlorooctadecane	e 3386-33-2	[CI]C([H])([H])([H])C([H])([H])([H])C([H])([H])([H])C([H])([H])([H])([H])([H])([H])([H])([H])	3.80	0.58	0.70	0.12	0.88	0.30	0.91	0.33	0.57	0.01	Т
11	1-methoxy-4- methyl-2- nitrobenzene	119-10-8	[H]/C1=C(/C([H]) =C([H])C(OC([H]) ([H])[H])=C1N(O[H])O[H])C([H])([H])[H]	1.65	0.22	0.84	0.62	0.78	0.56	0.55	0.33	0.30	0.08	T

12	1-Phenyl-1,2- propanedione	579-07-7	O=C(/C1=C(\[H]) C([H])=C([H])C([H])=C1[H])C(=O) C([H])([H])[H]	53.23	1.73	1.84	0.12	1.60	0.13	0.55	1.18	1.98	0.26	T
13	2,3-Butanedione	431-03-8	O=C(C(=O)C([H]) ([H])[H])C([H])([H])[H]	80.97	1.91	2.03	0.12	1.35	0.56	2.24	0.33	2.01	0.10	Т
14	2,4,6-Trichloro- 1,3,5-triazine (cyanuric chloride)	108-77-0	[Cl]C=1/N=C(/[Cl])N=C([Cl])N=1	56.00	1.75	1.72	0.03	1.75	0.00	1.95	0.20	1.95	0.20	T
15	2,4-Heptadienal	4313-03-5	O=C([H])C([H])= C([H])C([H])=C([H])C([H])([H])C([H])([H])[H] O=C1[C@@]([H])	97.30	1.99	1.84	0.14	1.43	0.56	1.60	0.38	1.89	0.10	T
16	2- Acetylcyclohexano ne	874-23-7	(C(=O)C([H])([H]) [H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H]	15.24	1.18	1.30	0.12	1.43	0.24	0.90	0.28	1.12	0.07	T
17	2- Benzylideneheptana l (Amyl cinnamic aldehyde)	122-40-7	O=C([H])C(=C([H])C1=C([H])C([H]) =C([H])C([H])=C1 [H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])	0.60	-0.22	0.62	0.84	1.31	1.53	0.11	0.33	0.14	0.36	Т
18	Ethanol-2-butoxy-, acetate (2- Butoxyethyl Acetate)	112-07-2)([H])[H] O=C(OC([H])([H]) C([H])([H])OC([H])([H])C([H])([H]) C([H])([H])C([H])([H [H])[H])C([H])([H])[H]	13.10	1.12	1.00	0.12	1.31	0.20	0.78	0.33	0.79	0.33	Т

19	2-Ethylhexyl acrylate	103-11-7	O=C(OC([H])([H]) [C@]([H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])C([H])([H])C ([H])([H])[H])C([H])=C([H])[H]	99.40	2.00	1.97	0.03	1.44	0.56	1.86	0.13	2.01	0.01	Т
20	2-Hydroxyethyl acrylate	818-61-1	O=C(OC([H])([H]) C([H])([H])O[H]) C([H])=C([H])[H]	94.09	1.97	1.85	0.12	1.41	0.56	1.92	0.05	1.98	0.01	T
21	2-Nitro-1,4- phenylenediamine	5307-14-2	O=N(O)C=1C(N([H])[H])=C([H])C([H])=C(N([H])[H]) C=1[H] O=C([H])[C@@]([95.27	1.98	1.86	0.12	1.98	0.00	2.31	0.33	1.92	0.06	Т
22	2- Phenylpropionaldeh yde	93-53-8	H])(C1=C([H])C([H])=C([H])C([H]) =C1[H])C([H])([H])[H]	42.79	1.63	1.51	0.12	1.20	0.43	1.30	0.33	1.48	0.15	T
23	3,5,5- Trimethylhexanoyl chloride	36727-29- 4	[CI]C(=O)C([H])([H])[C@]([H])(C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])C([H])([H])[H]	29.30	1.47	1.59	0.12	2.03	0.56	1.80	0.33	1.83	0.36	T
24	3-Chloro-4- methoxybenzaldehy de (3-Chloro-p- anisaldehyde)	4903-09-7	[C1]C=1C(OC([H]) ([H])[H])=C([H])C ([H])=C(C=1[H])C (=O)[H]	6.50	0.81	1.48	0.67	0.91	0.10	1.15	0.33	1.22	0.41	T
25	3-Methylcatechol	488-17-5	[H]/C1=C(/C(O[H]))=C(O[H])C([H])= C1[H])C([H])([H]) [H]	87.20	1.94	1.29	0.65	1.38	0.56	1.52	0.42	1.54	0.40	Т

26	3- Propylidenephthalid e	17369-59-	O=C1OC(C=2/C1 =C(/[H])C([H])=C([H])C=2[H])=C([H])C([H])([H])C([H])([H])[H]	10.90	1.04	1.36	0.32	1.14	0.10	1.37	0.33	1.42	0.38	Т
27	4-Amino-2- hydroxytoluene (5- Amino-2- methylphenol)	2835-95-2	[H]C=1/C(=C(/O[H])C([H])=C(N([H])[H])C=1[H])C([H])([H])[H]	89.20	1.95	1.83	0.12	1.54	0.41	2.10	0.15	2.00	0.04	Т
28	4-Amino-3- methylphenol (4- Aminocresol)	2835-99-6	[H]C=1/C(=C(/N([H])[H])C([H])=C([H])C=10[H])C([H	67.05	1.83	1.70	0.12	1.63	0.20	2.16	0.33	1.95	0.12	T
29	(SCCP/0898/05) 4- Carboxyphenylacet ate	2345-34-8])([H])[H] O=C(O[H])C=1C([H])=C([H])C(OC(=O)C([H])([H])[H])=C([H])C=1[H]	90.60	1.96	1.51	0.45	1.45	0.51	1.51	0.45	1.69	0.27	Т
30	4-Ethoxymethylene- 2-phenyl-2-oxazolin 5-one (oxazolone)	15646-46- 5	O=C1OC(=N/C1= C(/[H])OC([H])([H])C([H])([H])[H])C 2=C([H])C([H])=C ([H])C([H])=C2[H	74.73	1.87	1.34	0.54	1.36	0.52	1.54	0.33	1.58	0.30	T
31	4-Nitrobenzyl bromide	100-11-8	 Br]C([H])([H])C= 1C([H])=C([H])C(N(=O)O)=C([H])C =1[H]	99.93	2.00	1.88	0.12	1.44	0.56	2.07	0.07	2.00	0.00	Т
32	5-Chloro-2-methyl- 4-isothiazolin-3- one (MCI/MI)	26172-55- 4	[Cl]C=1[S]N(C(= O)C=1[H])C([H])([H])[H]	94.53	1.98	1.86	0.12	1.41	0.56	1.64	0.33	1.91	0.07	Т
33	5-Methyl-2,3- hexanedione	13706-86- 0	O=C(C(=O)C([H]) ([H])[H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])[H]	25.80	1.41	1.53	0.12	1.40	0.01	1.74	0.33	1.79	0.38	Т

34	Alpha-isomethylionone	127-51-5	O=C(/C(=C(\[H])[C@@]1([H])C(=C ([H])C([H])([H])C([H])([H])C1(C([H]))([H])[H])C([H])([H])[H])C([H])([H]) [H])C([H])([H])[H])C([H])([H])[H])C([H])([H])[H]	4.95	0.69	1.15	0.45	1.26	0.56	0.90	0.20	0.95	0.26	Т
35	Aniline	62-53-3	H])C([H]) = C([H])	0.15	-0.82	1.66	2.48	-0.26	0.56	0.15	0.97	0.02	0.85	T
36	Benzoic-acid	65-85-0	C([H])=C1[H] O=C(O[H])C1=C([H])C([H])=C([H]) C([H])=C1[H] O=C(OOC(=O)C=	19.40	1.29	1.33	0.05	1.10	0.18	1.62	0.33	1.54	0.25	Т
37	Benzoyl peroxide	94-36-0	1C([H])=C([H])C([H])=C([H])C=1[H])C2=C([H])C([H]) =C([H])C([H])=C2	100.00	2.00	1.88	0.12	1.44	0.56	2.33	0.33	1.97	0.03	Т
38	Benzyl benzoate	120-51-4	[H] O=C(OC([H])([H]) C=1C([H])=C([H]) C([H])=C([H])C=1 [H])C=2C([H])=C([H])C([H])=C([H]) C=2[H] [Br]C([H])([H])C1	0.20	-0.70	1.01	1.71	1.11	1.81	1.06	1.75	0.94	1.64	Т
39	Benzyl bromide	100-39-0	=C([H])C([H])=C(99.97	2.00	1.86	0.14	1.44	0.56	1.67	0.33	1.92	0.08	T
40	beta-Propiolactone	57-57-8	[H])C([H])=C1[H] O=C1OC([H])([H]))C1([H])[H] O=C(OC([H])([H]) C([H])([H])C([H])(21.90	1.34	1.46	0.12	1.60	0.26	1.40	0.06	1.62	0.28	Т
41	Butyl acrylate	141-32-2	[H])C([H])([H])[H])C([H])=C([H])[H]	100.00	2.00	2.04	0.04	1.44	0.56	1.67	0.33	1.98	0.02	T

42	Butyl glycidyl ether	2426-08-6	[H][C@]1(OC1([H])[H])C([H])([H]) OC([H])([H])C([H])([H])C([H])([H]) C([H])([H])[H] O=[S](=O)(N([H])	64.97	1.81	1.69	0.12	1.25	0.56	1.48	0.33	1.72	0.09	Т
43	4-(N-Ethyl-N-2-methan-sulphonamido-ethyl)-2-methyl-1,4-phenylenediamine (CD3)	25646-71- 3	C([H])([H])C([H])([H])N(/C1=C(\[H]) C(=C(N([H])[H])C ([H])=C1[H])C([H])([H])[H])C([H])([H])C([H])([H])[H])C([H])([H])[H]	90.09	1.95	2.07	0.12	1.39	0.56	1.62	0.33	1.96	0.00	Т
44	Chloramine T (Tosylchloramide sodium)	127-65-1; 149358-73 -7	[CI]N[S](=O)(=O) C=1C([H])=C([H]) C(=C([H])C=1[H]) C([H])([H])[H]	100.00	2.00	2.12	0.12	1.44	0.56	2.33	0.33	2.00	0.00	Т
45	Chlorobenzene	108-90-7	[Cl]/C1=C(\[H])C([H])=C([H])C([H]) =C1[H]	0.40	-0.40	1.43	1.82	0.17	0.56	-0.06	0.33	-0.10	0.30	Т
46	Chlorothalonil	1897-45-6	[Cl]/C1=C(\C#N)C ([Cl])=C([Cl])C([C l])=C1C#N	100.00	2.00	2.12	0.12	1.55	0.45	2.33	0.33	2.01	0.01	T
47	Cinnamaldehyde (Cinnamic aldehyde)	104-55-2	O=C([H])C([H])= C([H])C1=C([H])C ([H])=C([H])C([H])=C1[H]	71.27	1.85	1.73	0.12	1.57	0.28	2.19	0.33	1.96	0.10	Т
48	cis-6-nonenal	2277-19-2	O=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])=C([H])C([H])([H])C([H])([H])[H]	8.00	0.90	1.37	0.47	1.03	0.12	1.18	0.28	1.24	0.33	Т

49	Citral	5392-40-5	O=C([H])C([H])= C(C([H])([H])C([H])([H])C([H])=C(C ([H])([H])[H])C([H H])([H])[H])C([H])([H])[H] [CI]C=1C([H])=C(83.93	1.92	1.45	0.47	1.25	0.67	1.59	0.33	1.65	0.28	Т
50	Clofibrate (Ethyl (2- (4-chlorophenoxy)- 2- methylpropanoate)	637-07-0	[H])C(OC(C(=O)O C([H])([H])C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])=C([H])C=1[H]	4.08	0.61	0.73	0.12	1.17	0.56	0.94	0.33	0.71	0.10	Т
51	Glucose (D-Glucose)	492-62-6	[H][C@]1(O[H])[C@]([H])(O[H])[C @@]([H])(O[H])[C@@]([H])(O[C@]1([H])C([H])([H]) O[H])O[H]	0.10	-1.00	-0.88	0.12	-0.44	0.56	-0.67	0.33	-0.12	0.88	Т
52	Diethyl acetaldehyde	97-96-1	O=C([H])C([H])(C ([H])([H])C([H])([H])[H])C([H])([H])C([H])([H])[H] O=[S](=O)(OC([H	54.50	1.74	1.62	0.12	1.10	0.64	1.40	0.33	1.58	0.16	Т
53	Diethyl sulfate	64-67-5])([H])C([H])([H])[H])OC([H])([H])C ([H])([H])[H]	34.07	1.53	1.41	0.12	1.80	0.26	1.29	0.24	1.55	0.01	T
54	Dimethyl sulfate	77-78-1	O=[S](=O)(OC([H])([H])[H])OC([H]	97.70	1.99	1.87	0.12	1.79	0.20	1.66	0.33	1.94	0.05	T
55	Dimethylsulfoxide	67-68-5)([H])[H] O[S](C([H])([H])[H])C([H])([H])[H] O=C1/C(=C1\C=2	0.40	-0.40	-0.28	0.12	0.09	0.49	-0.73	0.33	-0.33	0.07	Т
56	Diphenylcycloprope none	886-38-4	C([H])=C([H])C([H])=C([H])C=2[H])C=3C([H])=C([H]))C([H])=C([H])C= 3[H]	98.95	2.00	1.88	0.12	1.43	0.56	1.66	0.33	1.93	0.07	Т

57	Ethyl benzoylacetate	94-02-0	O=C(/C1=C(\[H]) C([H])=C([H])C([H])=C1[H])C([H]) ([H])C(=O)OC([H])([H])C([H])([H])[2.30	0.36	1.09	0.73	0.20	0.17	1.16	0.80	0.68	0.32	Т
58	Ethylenediamine	107-15-3	H] [H]C([H])(N([H])[H])C([H])([H])N([H])[H]	3.40	0.53	0.41	0.12	0.17	0.37	0.20	0.33	-0.19	0.72	Т
59	Ethyleneglycol dimethacrylate	97-90-5	O=C(OC([H])([H]) C([H])([H])OC(=O)C(=C([H])[H])C([H])([H])[H])C(=C([H])[H])C([H])([H])[H]	87.53	1.94	1.82	0.12	1.82	0.13	1.94	0.00	1.98	0.04	Т
60	Farnesal	502-67-0	O=C([H])C([H])= C(C([H])([H])C([H])])([H])C([H])=C(C ([H])([H])C([H])([H])C([H])([H])([H])C([H])([H])([H])([H])([H])([H])([H])([H])	21.63	1.33	1.22	0.12	1.23	0.10	1.47	0.14	1.42	0.09	Т
61	Formaldehyde	50-00-0	O=C([H])[H]	56.04	1.75	1.73	0.02	1.50	0.25	1.42	0.33	1.76	0.01	T
62	Fumaric acid	110-17-8	O=C(O[H])C([H]) =C([H])C(=O)O[H]	10.80	1.03	1.15	0.12	1.60	0.56	1.37	0.33	1.40	0.36	Т
63	Furil	492-94-4	O=C(C=1OC([H]) =C([H])C=1[H])C(=O)C=2OC([H])= C([H])C=2[H]	97.90	1.99	1.87	0.12	1.98	0.01	2.32	0.33	1.92	0.07	Т
64	Glyoxal	107-22-2	O=C([H])C(=O)[H]	59.43	1.77	1.69	0.08	2.34	0.56	1.70	0.08	1.76	0.01	T

65	Hexadecyltrimethyl ammonium bromide	57-09-0	[H]C([H])([N+](C([H])([H])[H])(C([H])([H])[H])C([H])([H])([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])([H])C([H])([H])([H])C([H])([H])([H])[H])C([H])([H])([H])([H])([H])([H])([H])([H])	2.40	0.38	0.42	0.04	-0.18	0.56	0.40	0.02	-0.09	0.47	T
66	Hexyl salicylate	6259-76-3	O=C(OC([H])([H]) C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])C=1C(O[H]) =C([H])C([H])=C([H])C=1[H] O=C([H])C([H])([1.95	0.29	0.54	0.25	0.20	0.09	0.41	0.12	-0.05	0.34	Т
67	Hydroxycitronellal	107-75-5	H])[C@]([H])(C([H])([H])C([H])([H])C([H])([H])C(O[H])(C([H])([H])[H])C([H])([H])[H])C ([H])([H])[H] O=C([H])[C@@]([18.29	1.26	1.34	0.08	1.09	0.17	1.60	0.33	1.53	0.27	Т
68	Lilial (p-tert-Butyl- .alpha methylhydrocinnam aldehyde)	80-54-6	H])(C([H])([H])C= 1C([H])=C([H])C(=C([H])C=1[H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])C([H])([H])([H])([H])([H])([H])([H])([H])	14.00	1.15	0.65	0.50	1.03	0.12	0.81	0.33	0.52	0.63	Т
69	Tartaric acid (L-tartaric acid)	87-69-4	H])[H] O=C(O[H])[C@]([H])(O[H])[C@@]([H])(O[H])C(=O)O [H]	4.73	0.68	0.79	0.12	0.65	0.03	1.01	0.33	0.60	0.07	Т

70	Lyral (3 and 4-(4- Hydroxy-4- methylpentyl)-3- cyclohexene-1- carboxaldehyde)	31906-04- 4	O=C([H])[C@]1([H])C([H])([H])C([H])([H])C(=C([H]) C1([H])[H])C([H]) ([H])C([H])([H])C([H])([H])C(O[H])(C([H])([H])[H])C([H])([H])[H]	40.50	1.61	1.49	0.12	1.05	0.56	1.27	0.33	1.39	0.22	Т
71	Maleic anhydride	108-31-6	O=C1OC(=O)C([H])=C1[H]	100.00	2.00	1.88	0.12	1.44	0.56	1.67	0.33	1.93	0.07	T
72	Methyl 2-nonynoate	111-80-8	O=C(OC([H])([H]) [H])C#CC([H])([H])])C([H])([H])C([H]) ([H])C([H])([H])C ([H])([H])C([H])([H])([H])[H]	99.93	2.00	1.63	0.37	1.44	0.56	1.67	0.33	1.83	0.17	Т
73	Methyl methanesulfonate	66-27-3	O=[S](=O)(OC([H])([H])[H])C([H])([H])[H]	93.00	1.97	1.85	0.12	1.41	0.56	1.64	0.33	1.90	0.06	Т
74	N-Ethyl-N- nitrosourea	759-73-9	O=C(N(NO)C([H]) ([H])C([H])([H])[H])N([H])[H]	42.70	1.63	1.75	0.12	1.07	0.56	1.30	0.33	1.56	0.08	Т
75	N-Methyl-P- Aminophenol Sulfate (Metol)	55-55-0	[H]/C1=C(\N([H]) C([H])([H])[H])C([H])=C([H])C(O[H]	100.00	2.00	2.12	0.12	1.67	0.33	2.33	0.33	2.01	0.01	Т
76	N,N-Diethyl-m-tolu amide	134-62-3)=C1[H] O=C(N(C([H])([H]))C([H])([H])[H])C([H])([H])C([H])([H])[H])C1=C([H]) C(=C([H])C([H])= C1[H])C([H])([H]) [H]	6.70	0.83	0.71	0.12	1.04	0.21	1.16	0.33	0.81	0.01	Т

77	Palmitoyl chloride	112-67-4	[Cl]C(=O)C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H]))([H])C([H])([H])C ([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])	25.50	1.41	1.53	0.12	1.93	0.52	1.30	0.10	1.62	0.21	Т
78	p-Aminobenzoic acid	150-13-0	HI O=C(O[H])C1=C([H])C([H])=C(N([H])[H])C([H])=C1[H]	5.90	0.77	0.89	0.12	0.29	0.48	1.10	0.33	0.59	0.18	T
79	p-Benzoquinone (1,4-Benzoquinone)	106-51-4	O=C1C([H])=C([H])C(=O)C([H])=C1 [H]	98.57	1.99	1.88	0.12	2.56	0.56	1.66	0.33	1.72	0.27	Т
80	Perillaldehyde	2111-75-3	O=C([H])C1=C([H])C([H])([H])[C@] ([H])(C(=C([H])[H])C([H])([H])[H])C ([H])([H])C1([H])[H]	31.89	1.50	1.62	0.12	1.40	0.10	1.17	0.33	1.52	0.02	Т
81	Phenylacetaldehyde	122-78-1	O=C([H])C([H])([H])C1=C([H])C([H])=C([H])C([H]) =C1[H]	55.76	1.75	1.63	0.12	1.18	0.56	1.41	0.33	1.62	0.12	T
82	Phthalic anhydride	85-44-9	O=C1OC(=O)C2= C1C([H])=C([H])C ([H])=C2[H]	0.95	-0.02	1.43	1.45	0.54	0.56	0.31	0.33	0.26	0.29	T

83	Propyl gallate	121-79-9	O=C(OC([H])([H]) C([H])([H])C([H])([H])[H])C=1C([H]))=C(O[H])C(O[H]) =C(O[H])C=1[H]	52.75	1.72	1.24	0.48	2.28	0.56	1.39	0.33	1.45	0.27	Т
84	Propyl paraben (Propyl 4- hydroxybenzoate)	94-13-3	O=C(OC([H])([H]) C([H])([H])C([H])([H])[H])C=1C([H]))=C([H])C(O[H])= C([H])C=1[H] O=C(O[H])C([H])(8.20	0.91	0.80	0.12	0.35	0.56	1.14	0.23	0.61	0.31	Т
85	Octanoic acid	124-07-2	[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H]	0.63	-0.20	0.78	0.98	0.36	0.56	0.13	0.33	-0.15	0.05	Т
86	Squaric acid	2892-51-5	O=C1C(O[H])=C(O[H])C1=O	46.90	1.67	1.55	0.12	1.11	0.56	1.64	0.03	1.68	0.01	Т
87	Squaric acid diethyl ester	5231-87-8	O=C1C(OC([H])([H])C([H])([H])[H])=C(OC([H])([H]) C([H])([H])[H])C1 =O	2.40	0.38	1.43	1.05	0.94	0.56	0.71	0.33	0.81	0.43	Т
88	Sulfanilamide	63-74-1	O=[S](=O)(N([H]) [H])C1=C([H])C([H])=C(N([H])[H]) C([H])=C1[H]	1.30	0.11	0.88	0.77	0.68	0.56	0.45	0.33	0.19	0.08	Т
89	Sulphanilic acid (Sulfanic acid)	121-57-3	O=[S](=O)(O[H]) C=1C([H])=C([H]) C(N([H])[H])=C([H])C=1[H] [S]=C([S][S]C(=[S	5.30	0.72	1.01	0.29	0.87	0.15	0.39	0.33	0.28	0.44	T
90	Tetramethylthiuram disulfide	137-26-8	[b]=C([b][b]C([H])[H])[H])C([H])([H])[H]) N(C([H])([H])[H]) C([H])([H])[H]	99.67	2.00	1.96	0.04	1.44	0.56	2.33	0.33	1.99	0.01	T

91	trans-2-Decenal	3913-71-1; 3913-81-4	O=C([H])C([H])= C([H])C([H])([H]) C([H])([H])C([H])([H])C([H])([H])C([H])([H])([H])C([H])([H])C([H])([H])C([H])([H])([H])C([H])([H])([H])C([H])([H])([H])([H])([H])([H])([H])([H])	94.90	1.98	1.50	0.48	1.47	0.50	2.31	0.33	1.84	0.14	Т
92	Undec-10-enal	112-45-8	H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H]))([H])C([H])([H])C ([H])([H])C([H])= C([H])[H]	2.70	0.43	1.14	0.71	1.07	0.64	0.77	0.33	0.76	0.32	Т
93	1-Bromohexane	111-25-1	[Br]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H]	12.05	1.08	0.88	0.20	0.81	0.27	1.14	0.06	0.82	0.26	t
94	2,5-Diaminotoluene sulfate	615-50-9	[H]C=1/C(=C(/N([H])[H])C([H])=C([H])C=1N([H])[H]) C([H])([H])[H]	85.60	1.93	2.16	0.23	1.82	0.12	1.80	0.14	2.03	0.10	t
95	2-Aminophenol	95-55-6	(H)/(H)/H) [H]C=1C(N([H])[H])=C(O[H])C([H]))=C([H])C=1[H]	92.97	1.97	1.43	0.54	1.57	0.40	2.11	0.14	1.82	0.15	t
96	4-Hydroxybenzoic acid	99-96-7	O=C(O[H])C1=C([H])C([H])=C(O[H])C([H])=C1[H]	1.18	0.07	1.08	1.01	0.55	0.48	0.90	0.83	0.61	0.54	t
97	4- Methoxyacetopheno ne (Acetanisole)	100-06-1	O=C(C=1C([H])= C([H])C(OC([H])([H])[H])=C([H])C= 1[H])C([H])([H])[H]	4.01	0.60	1.33	0.72	1.25	0.65	0.16	0.45	0.43	0.17	t
98	6-Methyl coumarin	92-48-8	O=C2OC=1/C(=C(/[H])C(=C([H])C= 1[H])C([H])([H])[H])C([H])=C2[H]	1.58	0.20	1.58	1.38	1.06	0.86	0.42	0.23	0.69	0.49	t

99	alpha-Methyl cinnamaldehyde (α- methyl-trans- cinnamaldehyde)	O=C([H])C(=C([H])C=1C([H])=C([H])C 3])C([H])=C([H])C =1[H])C([H])([H]) [H]	10.73	1.03	1.65	0.62	1.59	0.56	0.85	0.18	1.33	0.30	t
100	Benzylidene acetone (4-phenyl-3- 122-57 buten-2-one)	[H])C([H])([H])[H]	93.84	1.97	1.84	0.13	1.42	0.55	0.61	1.37	1.15	0.82	t
101	Cyclamen aldehyde 103-95	O=C([H])[C@@]([H])(C([H])([H])C1 =C([H])C([H])=C(7 C([H])=C1[H])C([H])(C([H])([H])[H])C([H])([H])[H])C ([H])([H])[H]	17.55	1.24	0.81	0.44	1.03	0.22	0.49	0.75	0.34	0.91	t
102	Diethyl maleate 141-05	O=C(OC([H])([H]) C([H])([H])[H])C([9 H])=C([H])C(=O) OC([H])([H])C([H])([H])[H]	99.93	2.00	2.29	0.29	1.85	0.15	2.04	0.04	2.03	0.03	t
103	DL-lactic acid (Lactic acid) 50-21-5	O=C(O[H])[C@]([H])(O[H])C([H])([H])[H]	1.20	0.08	0.09	0.01	0.59	0.51	1.36	1.28	0.57	0.49	t
104	Ethyl acrylate 140-88	O=C(OC([H])([H]) C([H])([H])[H])C([H])=C([H])[H]	97.30	1.99	2.36	0.37	1.44	0.55	1.73	0.26	2.02	0.03	t
105	Ethyl vanillin 121-32	O=C([H])C=1C([H])=C(OC([H])([H]) 4 C([H])([H])[H])C(O[H])=C([H])C=1[H]	1.09	0.04	1.05	1.01	-0.26	0.30	0.57	0.54	0.10	0.07	t

106	Isoeugenol	97-54-1	[H]C=1/C(=C(/[H])C([H])C=1OC([H])([H])[H])C([H])=C([H])C([H])C([H])([H])[H][H]C([H])([C@@]	83.38	1.92	1.29	0.63	1.45	0.47	1.21	0.71	1.36	0.56	t
107	Linalool	78-70-6	(O[H])(C([H])=C([H])[H])C([H])([H]))[H])C([H])([H])C([H])=C(C([H])([H]))[H])C([H])([H])[H]	0.65	-0.19	1.24	1.43	-0.56	0.37	-0.08	0.11	-0.17	0.02	t
108	Methyl acrylate	96-33-3	O=C(OC([H])([H]) [H])C([H])=C([H]) [H]	99.53	2.00	2.36	0.37	1.47	0.53	1.76	0.24	2.03	0.03	t
109	Methyl methacrylate	(80-62-6)	O=C(OC([H])([H]) [H])C(=C([H])[H]) C([H])([H])[H] O=C1OC(=O)[C@	55.30	1.74	2.10	0.35	1.37	0.37	1.68	0.07	1.98	0.24	t
110	1,2- cyclohexanedicarbo xylic anhydride	85-42-7	D=CTOC(=0)[C@]]2([H])[C@]1([H]) C([H])([H])C([H])([H])C([H])([H])C2 ([H])[H]	15.70	1.20	1.77	0.57	1.70	0.50	2.53	1.33	1.88	0.69	t
111	N-Methyl-N- nitrosourea	684-93-5	O=C(N(NO)C([H]) ([H])[H])N([H])[H	32.40	1.51	1.62	0.11	1.10	0.41	1.24	0.27	1.46	0.05	t
112	Glutaraldehyde	111-30-8	O=C([H])C([H])([H])C([H])([H])C([H])([H])C(=O)[H]	29.20	1.47	1.71	0.25	1.43	0.04	1.39	0.08	1.72	0.26	t
113	Phenyl benzoate	93-99-2	O=C(OC=1C([H]) =C([H])C([H])=C([H])C=1[H])C=2C ([H])=C([H])C([H]))=C([H])C=2[H]	45.30	1.66	1.28	0.38	0.92	0.74	1.27	0.38	1.20	0.45	t
114	trans-2-Hexenal	6728-26-4	O=C([H])C([H])= C([H])C([H])([H]) C([H])([H])C([H])([H])[H]	97.90	1.99	2.18	0.19	1.47	0.52	1.75	0.24	2.03	0.04	t

115	2,4,6- Trinitrobenzenesulf 2508-19-2 onic acid	O=[S](=O)(O[H]) C=1C(N(=O)O)=C ([H])C(N(=O)O)= C([H])C=1N(=O)O	99.70	2.00	2.04	0.04	2.48	0.49	2.34	0.34	1.94	0.06	0
116	Fluorescein-5- isothiocyanate 3326-32-7	[S]=C=NC=1C([H]) =C2/C(=C(/[H])C =1[H])[C@]3(OC2 =O)C5=C(OC4=C 3C([H])=C([H])C(O[H])=C4[H])C([H])=C(O[H])C([H]))=C5[H]	100.00	2.00	2.43	0.43	3.82	1.82	1.74	0.26	1.83	0.17	0
117	Imidazolidinyl urea 39236-46-9	O=C1N([H])C(=O) N([C@@]1([H])N([H])C(=O)N([H])C ([H])([H])N([H])C (=O)N([H])[C@]2([H])N(C(=O)N([H]))C2=O)C([H])([H]))O[H])C([H])([H])	52.90	1.72	2.75	1.03	2.57	0.85	1.71	0.01	1.91	0.19	0
118	Bandrowski's Base (1,4- 20048-27- Cyclohexadiene-1,4-6 diamine)	O[H] [H]C=3C(N/C1=C(\[H])C([H])=C(N([H])[H])C([H])=C1 [H])=C(N([H])[H]) C([H])=C(N/C2=C (\[H])C([H])=C(N([H])[H])C([H])=C 2[H])C=3N([H])[H]	87.50	1.94	2.11	0.17	2.29	0.35	1.63	0.31	1.96	0.02	0

119	Bisphenol A-diglycidyl ether	1675-54-3	[H][C@@]1(OC1([H])[H])C([H])([H])O/C2=C(\[H])C([H])=C(C([H])=C2[H])C(C=4C([H])= C([H])C(OC([H])([H])[C@]3([H])OC 3([H])[H])=C([H]) C=4[H])(C([H])([H])[H])C([H])([H])	53.27	1.73	1.32	0.40	1.29	0.43	1.41	0.32	1.37	0.36	0
120	Lauryl gallate	1166-52-5	O=C(OC([H])([H]) C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H]))([H])C([H])([H])C([H]) ([H])([H])C([H])([H])C ([H])([H])([H])[H]))C1=C([H])C(O[H]))=C(O[H])C(O[H]))=C1[H]	90.90	1.96	1.61	0.35	1.75	0.21	3.00	1.04	1.51	0.45	0
121	Abietic acid	514-10-3	O=C(O[H])[C@]3([C@@]1([H])[C@ @]([C@]2([H])C(=C([H])C1([H])[H])C([H])=C(C([H]) ([H])C2([H])[H])C ([H])(C([H])([H])[H])C([H])(([H])([H])[H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])C([H])([H])([H])[H])C([H])([H])([H])[H])([H])([H])[H])([HI)([HI])[H])([HI])([H	99.90	2.00	1.94	0.06	2.20	0.20	2.26	0.26	1.98	0.02	o

Butylbenzylphthalat 85-68-7 e	C([H])([H])C([H])([H])C([H])([H])[H])C=1/C(=C(/[H]) C([H])=C([H])C=1 [H])C(=O)OC([H]) ([H])C2=C([H])C([H])=C([H])C([H]) =C2[H]	3.60	0.56	0.33	0.22	1.27	0.72	1.07	0.52	0.61	0.05	O
-------------------------------	--	------	------	------	------	------	------	------	------	------	------	---

Table S1. B. Qualitative predictions by QSAR Toolbox 4.4 (QT), PredSkin 3.0 (PS), ToxTree online (TT), Danish (Q)SAR database, and VEGAHUB (VH)

	Compounds	CAS No	SMILES	Sensi	tizer ^{+/-*}			Qualita	ative pro	ediction			References
No.				6.38%	13.89%	$\operatorname{QT}^{\operatorname{A}}$	QT^{B}	PS	TT	Danish	VH^{C}	VH^D	
1	1-(p- Methoxyphenyl)-1- penten-3-one	104-27-8	O=C(C([H])=C([H])C1=C([H])C([H]) =C(OC([H])([H])[H])C([H])=C1[H]) C([H])([H])C([H])([H])[H]	+	+	+	+	+	+	-	+	+	Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
2	Methyl salicylate	119-36-8	O=C(OC([H])([H]) [H])C1=C(O[H])C ([H])=C([H])C([H]))=C1[H]	+	+	-	-	-	-	-	-	-	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
3	1,2-Dibromo-2,4-dicyanobutane (Methyldibromo glutaronitrile)	35691-65- 7	[Br][C@@](C#N)(C([H])([H])C([H])([H])C#N)C([Br])([H])[H]	+	+	+	-	+	+	-	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Bauch12aa;
4	1,4- Dihydroquinone (1,4- Dihydroxybenzene) (Hydroquinone)	123-31-9	[H]/C1=C(\O[H])C ([H])=C([H])C(O[H])=C1[H]	+	+	+	+	+	+	+	+	+	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab;
5	1, 4- Phenylenediamine	106-50-3	[H]/C1=C(\N([H])[H])C([H])=C([H]) C(N([H])[H])=C1[H]	+	+	+	+	+	+	+	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Bauch12aa;
6	1-Bromobutane	109-65-9	[Br]C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H]	+	+	-	-	-	+	-	-	-	Takenouchi15a; Natsch13aa; Jaworska11ab; Gerberick07a;

7	1- Bromohexadecane	112-82-3	[Br]C([H])([H])C([H])([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])C([H])([H])C([H])C([H])([H])C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])([H])C([H])([H])([H])C([H])([H])([H])C([H])([H])([H])C([H])([H])([H])C([H])([H])([H])C([H])([H])([H])([H])([H])([H])([H])([H])	+	+	+	+	-	+	-	+	+	Jaworska11ab;
8	1-Butanol	71-36-3	[H]C([H])(C([H])([H])C([H])([H])[H])C([H])([H])O[H]	+	+	-	-	-	-	-	-	-	Takenouchi15a; Natsch13aa; Jaworska11ab; Bauch12aa;
9	1-Chloro-2,4-dinitrobenzene	97-00-7	[Cl]C=1C(N(O[H]) O[H])=C([H])C(N(O[H])O[H])=C([H])C=1[H]	+	+	N/A [‡]	+	+	N/A	N/A	+	-	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Bauch12aa; Gerberick07a;
10	1- Chlorooctadecane	3386-33-2	[Cl]C([H])([H])C([H])C([H])([H])C	+	+	+	+	-	+	-	+	+	Jaworska11ab;
11	1-methoxy-4- methyl-2- nitrobenzene	119-10-8	HI)([H1)[H] [H]/C1=C(/C([H]) =C([H])C(OC([H]) ([H])[H])=C1N(O[H])O[H])C([H])([H])[H]	+	+	-	-	-	N/A	N/A	+	-	Takenouchi15a; Urbisch15aa;

12	1-Phenyl-1,2- propanedione	579-07-7	O=C(/C1=C(\[H]) C([H])=C([H])C([H])=C1[H])C(=O) C([H])([H])[H]	+	+	+	+	-	+	-	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab;
13	2,3-Butanedione	431-03-8	O=C(C(=O)C([H]) ([H])[H])C([H])([H])[H]	+	+	+	+	-	+	-	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Bauch12aa; Gerberick07a;
14	2,4,6-Trichloro- 1,3,5-triazine (cyanuric chloride)	108-77-0	[C1]C=1/N=C(/[C1])N=C([C1])N=1	+	+	+	+	-	N/A	N/A	+	-	Jaworska11ab;
15	2,4-Heptadienal	4313-03-5	O=C([H])C([H])= C([H])C([H])=C([H])C([H])([H])C([H])([H])[H]	+	+	+	+	+	N/A	-	+	+	Natsch13aa; Jaworska11ab; Gerberick07a;
16	2- Acetylcyclohexano ne	874-23-7	O=C1[C@@]([H]) (C(=O)C([H])([H]) [H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])([H])([H])([H])([H])([H])([H])	+	+	-	-	+	N/A	-	-	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Gerberick07a;
17	2- Benzylideneheptan al (Amyl cinnamic aldehyde)	122-40-7	O=C([H])C(=C([H])C1=C([H])C([H]) =C([H])C([H])=C1 [H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])	+	+	+	+	+	+	N/A	+	+	Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
18	Ethanol-2-butoxy-, acetate (2- Butoxyethyl Acetate)	112-07-2)([H])[H] O=C(OC([H])([H]) C([H])([H])OC([H])([H])C([H])([H]) C([H])([H])C([H])([H])[H])C([H])([H])[H]	+	+	-	-	-	-	-	+	-	Natsch13aa;

19	2-Ethylhexyl acrylate	103-11-7	O=C(OC([H])([H]) [C@]([H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])C([H])([H])C ([H])([H])[H])C([H])=C([H])[H]	+	+	+	+	+	+	N/A	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Urbisch15aa;
20	2-Hydroxyethyl acrylate	818-61-1	O=C(OC([H])([H]) C([H])([H])O[H]) C([H])=C([H])[H]	+	+	-	-	+	+	+	+	+	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
21	2-Nitro-1,4- phenylenediamine	5307-14-2	O=N(O)C=1C(N([H])[H])=C([H])C([H])=C(N([H])[H]) C=1[H]	+	+	+	+	N/A	+	+	+	-	Takenouchi15a; Natsch13aa; Jaworska11ab;
22	2- Phenylpropionalde hyde	93-53-8	O=C([H])[C@@]([H])(C1=C([H])C([H])=C([H])C([H]) =C1[H])C([H])([H])[H]	+	+	+	+	-	N/A	N/A	+	+	Natsch13aa; Jaworska11ab; Bauch12aa; Gerberick07a;
23	3,5,5- Trimethylhexanoyl chloride	36727-29- 4	[Cl]C(=O)C([H])([H])[C@]([H])(C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])C([H])([H])[H]	+	+	+	+	-	N/A	N/A	+	+	Jaworska11ab;
24	3-Chloro-4- methoxybenzaldeh yde (3-Chloro-p- anisaldehyde)	4903-09-7	[C1]C=1C(OC([H]) ([H])[H])=C([H])C ([H])=C(C=1[H])C (=O)[H]	+	+	+	+	-	+	-	-	-	Natsch13aa;
25	3-Methylcatechol	488-17-5	[H]/C1=C(/C(O[H])=C(O[H])C([H])= C1[H])C([H])([H]) [H]	+	+	+	+	-	+	+	+	-	Natsch13aa; Jaworska11ab;

26	3- Propylidenephthali de	17369-59- 4	O=C1OC(C=2/C1 =C(/[H])C([H])=C([H])C=2[H])=C([H])C([H])([H])C([H])([H])[H]	+	+	+	+	+	N/A	N/A	-	-	Natsch13aa; Jaworska11ab;
27	4-Amino-2- hydroxytoluene (5- Amino-2- methylphenol)	2835-95-2	[H]C=1/C(=C(/O[H])C([H])=C(N([H])[H])C=1[H])C([H])([H])[H]	+	+	+	+	+	+	+	+	+	Natsch13aa;
28	4-Amino-3- methylphenol (4- Aminocresol) (SCCP/0898/05)	2835-99-6	[H]C=1/C(=C(/N([H])[H])C([H])=C([H])C=10[H])C([H])([H])[H]	+	+	+	+	+	+	+	+	+	Natsch13aa; Jaworska11ab;
29	4- Carboxyphenylacet ate	2345-34-8	O=C(O[H])C=1C([H])=C([H])C(OC(=O)C([H])([H])[H])=C([H])C=1[H]	+	+	+	+	-	+	+	-	+	Natsch13aa; Jaworska11ab;
30	4-Ethoxymethylene- 2-phenyl-2- oxazolin-5-one (oxazolone)	15646-46-5	O=C1OC(=N/C1= C(/[H])OC([H])([H])C([H])([H])[H])C 2=C([H])C([H])=C ([H])C([H])=C2[H	+	+	+	+	+	N/A	+	+	+	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Bauch12aa; Gerberick07a;
31	4-Nitrobenzyl bromide	100-11-8	[Br]C([H])([H])C= 1C([H])=C([H])C(N(=O)O)=C([H])C =1[H]	+	+	+	+	N/A	+	N/A	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab;
32	5-Chloro-2-methyl-4-isothiazolin-3-one (MCI/MI)	26172-55- 4	[C1]C=1[S]N(C(= O)C=1[H])C([H])([H])[H]	+	+	+	+	+	+	N/A	+	+	Takenouchi15a; Natsch13aa; Bauch12aa; Gerberick07a;
33	5-Methyl-2,3- hexanedione	13706-86- 0	O=C(C(=O)C([H]) ([H])[H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])[H]	+	+	+	+	-	+	-	+	+	Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;

34	Alpha-isomethylionone	127-51-5	O=C(/C(=C(\[H])[C@@]1([H])C(=C ([H])C([H])([H])C([H])([H])C1(C([H]))([H])[H])C([H])([H])[H])C([H])([H]) [H])C([H])([H])[H]	+	+	+	+	-	N/A	-	+	+	Hoffman18aa; Urbisch15aa;
35	Aniline	62-53-3	[H]/C1=C(\N([H])[H])C([H])=C([H]) C([H])=C1[H]	+	+	-	-	+	-	+	+	+	Natsch13aa; Jaworska11ab;
36	Benzoic-acid	65-85-0	O=C(O[H])C1=C([H])C([H])=C([H]) C([H])=C1[H]	+	+	+	+	-	-	+	-	-	Natsch13aa; Jaworska11ab;
37	Benzoyl peroxide	94-36-0	O=C(OOC(=O)C= 1C([H])=C([H])C([H])=C([H])C=1[H])C2=C([H])C([H]) =C([H])C([H])=C2 [H]	+	+	+	+	+	+	N/A	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Gerberick07a;
38	Benzyl benzoate	120-51-4	O=C(OC([H])([H]) C=1C([H])=C([H]) C([H])=C([H])C=1 [H])C=2C([H])=C([H])C([H])=C([H]) C=2[H]	+	+	+	+	-	+	-	+	+	Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
39	Benzyl bromide	100-39-0	[Br]C([H])([H])C1 =C([H])C([H])=C([H])C([H])=C1[H]	+	+	+	+	+	+	-	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab;
40	beta-Propiolactone	57-57-8	O=C1OC([H])([H])C1([H])[H]	+	+	+	+	+	+	N/A	+	+	Jaworska11ab;
41	Butyl acrylate	141-32-2	O=C(OC([H])([H]) C([H])([H])C([H])([H])C([H])([H])[H])C([H])=C([H])[H	+	+	+	+	+	+	+	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Urbisch15aa;

42	Butyl glycidyl ether	2426-08-6	[H][C@]1(OC1([H])[H])C([H])([H]) OC([H])([H])C([H])([H])C([H])([H]) C([H])([H])[H] O=[S](=O)(N([H])	+	+	+	+	+	+	+	+	-	Takenouchi15a; Natsch13aa; Jaworska11ab;
43	4-(N-Ethyl-N-2-methan-sulphonamido-ethyl)-2-methyl-1,4 phenylenediamine (CD3)	25646-71- -3	C([H])([H])C([H])([H])N(/C1=C(\[H]) C(=C(N([H])[H])C ([H])=C1[H])C([H])([H])[H])C([H])([H])C([H])([H])[H])C([H])([H])[H]	+	+	+	+	+	N/A	+	+	+	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
44	Chloramine T (Tosylchloramide sodium)	127-65-1; 149358-73 -7	[C1]N[S](=O)(=O) C=1C([H])=C([H]) C(=C([H])C=1[H]) C([H])([H])[H]	+	+	N/A	N/A	+	N/A	N/A	+	-	Takenouchi15a; Urbisch15aa;
45	Chlorobenzene	108-90-7	[C1]/C1=C(\[H])C([H])=C([H])C([H]) =C1[H]	+	+	+	+	-	-	-	+	-	Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
46	Chlorothalonil	1897-45-6	[Cl]/C1=C(\C#N)C ([Cl])=C([Cl])C([C l])=C1C#N	+	+	+	+	-	+	-	+	-	Takenouchi15a; Urbisch15aa;
47	Cinnamaldehyde (Cinnamic aldehyde)	104-55-2	O=C([H])C([H])= C([H])C1=C([H])C ([H])=C([H])C([H])=C1[H]	+	+	+	+	+	+	+	+	+	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
48	cis-6-nonenal	2277-19-2	O=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])=C([H])C([H])([H])C([H])([H])[H]	+	+	+	+	+	+	-	+	+	Natsch13aa; Jaworska11ab;

49	Citral	5392-40-5	O=C([H])C([H])= C(C([H])([H])C([H])([H])C([H])=C(C ([H])([H])[H])C([H])([H])[H])C([H])([H])[H] [C1]C=1C([H])=C(+	+	+	+	+	+	N/A	+	+	Natsch13aa; Gerberick04aa; Jaworska11ab; Bauch12aa;
50	Clofibrate (Ethyl (2 (4-chlorophenoxy)- 2- methylpropanoate)		[H])C(OC(C(=O)O C([H])([H])C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])=C([H])C=1[H]	+	+	-	-	+	-	-	+	-	Natsch13aa; Jaworska11ab;
51	Glucose (D-Glucose)	492-62-6	[H][C@]1(O[H])[C@]([H])(O[H])[C @@]([H])(O[H])[C@@]([H])(O[C@]1([H])C([H])([H]) O[H])O[H]	+	+	-	-	+	-	+	+	-	Bauch12aa;
52	Diethyl acetaldehyde	97-96-1	O=C([H])C([H])(C ([H])([H])C([H])([H])[H])C([H])([H])C([H])([H])[H]	+	+	+	+	-	+	-	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab;
53	Diethyl sulfate	64-67-5	O=[S](=O)(OC([H])([H])C([H])([H])[H])OC([H])([H])C ([H])([H])[H]	+	+	+	+	-	+	N/A	+	+	Takenouchi15a; Jaworska11ab; Urbisch15aa;
54	Dimethyl sulfate	77-78-1	O=[S](=O)(OC([H])([H])[H])OC([H])([H])[H]	+	+	+	+	-	+	N/A	+	+	Jaworska11ab;
55	Dimethylsulfoxide	67-68-5	O[S](C([H])([H])[H])C([H])([H])[H] O=C1/C(=C1\C=2	+	+	-	-	-	-	-	-	+	Jaworska11ab;
56	Diphenylcycloprop enone	886-38-4	C([H])=C([H])C([H])=C([H])C=2[H])C=3C([H])=C([H]))C([H])=C([H])C= 3[H]	+	+	+	+	+	+	-	+	+	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;

57	Ethyl benzoylacetate	94-02-0	O=C(/C1=C(\[H]) C([H])=C([H])C([H])=C1[H])C([H]) ([H])C(=O)OC([H])([H])C([H])([H])[H]	+	+	-	-	-	-	-	-	-	Jaworska11ab; Gerberick07a;
58	Ethylenediamine	107-15-3	[H]C([H])(N([H])[H])C([H])([H])N([H])[H]	+	+	+	+	+	+	+	-	+	Natsch13aa; Jaworska11ab;
59	Ethyleneglycol dimethacrylate	97-90-5	O=C(OC([H])([H]) C([H])([H])OC(=O)C(=C([H])[H])C([H])([H])[H])C(=C([H])[H])C([H])([H])[H] O=C([H])C([H])=	+	+	+	+	+	+	+	+	+	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Bauch12aa; Gerberick07a;
60	Farnesal	502-67-0	C(C([H])([H])C([H])([H])C([H])=C(C ([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H])C([H])([H]) ([H])[H])C([H])([H]) H]	+	+	+	+	+	+	N/A	+	+	Natsch13aa; Jaworska11ab; Bauch12aa; Gerberick07a;
61	Formaldehyde	50-00-0	O=C([H])[H]	+	+	+	+	+	+	N/A	-	-	Takenouchi15a; Natsch13aa; Jaworska11ab; Bauch12aa; Gerberick07a;
62	Fumaric acid	110-17-8	O=C(O[H])C([H]) =C([H])C(=O)O[H	+	+	+	+	-	+	-	+	+	Bauch12aa;
63	Furil	492-94-4	O=C(C=1OC([H]) =C([H])C=1[H])C(=O)C=2OC([H])= C([H])C=2[H]	+	+	+	+	+	+	-	-	+	Jaworskallab; Urbischl5aa;
64	Glyoxal	107-22-2	O=C([H])C(=O)[H	+	+	+	+	+	-	+	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Gerberick07a;

65	Hexadecyltrimethyl ammonium bromide	57-09-0	[H]C([H])([N+](C([H])([H])[H])C([H])([H])[H])C([H]))([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H]))C([H])([H])C([H]))([H])C([H])([H])C ([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H]))C([H])([H])C([H])([H]) HI	+	+	N/A	N/A	-	N/A	-	-	-	Bauch12aa;
66	Hexyl salicylate	6259-76-3	O=C(OC([H])([H]) C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])C=1C(O[H]) =C([H])C([H])=C([H])C=1[H]	+	+	-	-	+	-	-	+	-	Takenouchi15a; Urbisch15aa;
67	Hydroxycitronellal	107-75-5	O=C([H])C([H])([H])[C@]([H])(C([H])([H])C([H])([H])])C([H])([H])C(O[H])(C([H])([H])[H])C ([H])([H])[H])C ([H])([H])[H]	+	+	+	+	+	+	N/A	+	+	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
68	Lilial (p-tert-Butyl- .alpha methylhydrocinna maldehyde)	80-54-6	O=C([H])[C@@]([H])(C([H])([H])C= 1C([H])=C([H])C(=C([H])C=1[H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])([H])[H])C([H])([H])([H])([H])([H])([H])([H])([H])	+	+	+	+	-	+	N/A	+	+	Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
69	Tartaric acid (L-tartaric acid)	87-69-4	H])[H] O=C(O[H])[C@]([H])(O[H])[C@@]([H])(O[H])C(=O)O [H]	+	+	-	-	-	-	N/A	+	+	Natsch13aa; Jaworska11ab; Bauch12aa;

70	Lyral (3 and 4-(4- Hydroxy-4- methylpentyl)-3- cyclohexene-1- carboxaldehyde)	31906-04- 4	O=C([H])[C@]1([H])C([H])([H])C([H])([H])C(=C([H]) C1([H])[H])C([H]) ([H])C([H])([H])C([H])([H])C(O[H])(C([H])([H])[H])C([H])([H])[H]	+	+	+	+	+	+	-	+	+	Natsch13aa; Jaworska11ab;
71	Maleic anhydride	108-31-6	O=C1OC(=O)C([H])=C1[H]	+	+	+	+	+	+	+	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab;
72	Methyl 2- nonynoate	111-80-8	O=C(OC([H])([H]) [H])C#CC([H])([H])C([H])([H])C([H]))([H])C([H])([H])C ([H])([H])C([H])([H])[H]	+	+	+	+	+	+	-	+	-	Takenouchi15a; Natsch13aa; Jaworska11ab; Gerberick07a;
73	Methyl methanesulfonate	66-27-3	O=[S](=O)(OC([H])([H])[H])C([H])([H])[H]	+	+	+	+	-	+	N/A	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab;
74	N-Ethyl-N- nitrosourea	759-73-9	O=C(N(NO)C([H]) ([H])C([H])([H])[H])N([H])[H]	+	+	+	+	-	+	+	+	+	Jaworska11ab;
75	N-Methyl-P- Aminophenol Sulfate (Metol)	55-55-0	[H]/C1=C(\N([H]) C([H])([H])[H])C([H])=C([H])C(O[H])=C1[H]	+	+	+	+	+	+	N/A	+	-	Natsch13aa; Jaworska11ab; Gerberick07a;
76	N,N-Diethyl-m-tol uamide	134-62-3	O=C(N(C([H])([H]))C([H])([H])[H])C([H])([H])C([H])([H])[H])C1=C([H]) C(=C([H])C([H])= C1[H])C([H])([H]) [H]	+	+	-	-	-	-	+	+	-	Urbisch15aa;

77	Palmitoyl chloride	112-67-4	[Cl]C(=O)C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H]))([H])C([H])([H])C ([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H]))([H])C([H])([H])[H]	+	+	+	+	-	+	N/A	+	+	Jaworska11ab; Gerberick07a;
78	p-Aminobenzoic acid	150-13-0	O=C(O[H])C1=C([H])C([H])=C(N([H])[H])C([H])=C1[+	+	+	+	-	-	+	-	-	Bauch12aa;
79	p-Benzoquinone (1,4-Benzoquinone)	106-51-4	H] O=C1C([H])=C([H])C(=O)C([H])=C1 [H]	+	+	+	+	+	+	+	+	+	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Bauch12aa; Gerberick07a;
80	Perillaldehyde	2111-75-3	O=C([H])C1=C([H])C([H])([H])[C@] ([H])(C(=C([H])[H])C([H])([H])[H])C ([H])([H])C1([H])[H]	+	+	+	+	+	+	-	+	+	Natsch13aa; Jaworska11ab; Gerberick07a;
81	Phenylacetaldehyd e	122-78-1	O=C([H])C([H])([H])C1=C([H])C([H])=C([H])C([H]) =C1[H]	+	+	+	+	+	+	N/A	+	+	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
82	Phthalic anhydride	85-44-9	O=C1OC(=O)C2= C1C([H])=C([H])C ([H])=C2[H]	+	+	+	+	+	+	+	-	+	Natsch13aa; Jaworska11ab;

83	Propyl gallate	121-79-9	O=C(OC([H])([H]) C([H])([H])C([H])([H])[H])C=1C([H]))=C(O[H])C(O[H]) =C(O[H])C=1[H]	+	+	+	+	+	+	+	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Bauch12aa; Gerberick07a;
84	Propyl paraben (Propyl 4- hydroxybenzoate)	94-13-3	O=C(OC([H])([H]) C([H])([H])C([H])([H])[H])C=1C([H]))=C([H])C(O[H])= C([H])C=1[H] O=C(O[H])C([H])(+	+	-	-	-	-	+	-	-	Natsch13aa; Jaworska11ab; Gerberick07a;
85	Octanoic acid	124-07-2	[H])C([H])([H])C([H])([H])C([H])([H])])C([H])([H])C([H])])([H])C([H])([H])[H]	+	+	-	-	-	-	-	+	-	Takenouchi15a; Natsch13aa; Jaworska11ab;
86	Squaric acid	2892-51-5	O=C1C(O[H])=C(O[H])C1=O	+	+	+	+	+	+	N/A	+	+	Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
87	Squaric acid diethyl ester	5231-87-8	O=C1C(OC([H])([H])C([H])([H])[H])=C(OC([H])([H]) C([H])([H])[H])C1 =O	+	+	+	+	+	N/A	N/A	+	+	Natsch13aa;
88	Sulfanilamide	63-74-1	O=[S](=O)(N([H]) [H])C1=C([H])C([H])=C(N([H])[H]) C([H])=C1[H]	+	+	-	-	+	-	+	-	-	Takenouchi15a; Natsch13aa; Jaworska11ab; Bauch12aa;
89	Sulphanilic acid (Sulfanic acid)	121-57-3	O=[S](=O)(O[H]) C=1C([H])=C([H]) C(N([H])[H])=C([H])C=1[H]	+	+	-	-	-	-	+	-	-	Takenouchi15a; Natsch13aa; Jaworska11ab; Gerberick07a;
90	Tetramethylthiura m disulfide	137-26-8	[S]=C([S][S]C(=[S])N(C([H])([H])[H])C([H])([H])[H]) N(C([H])([H])[H]) C([H])([H])[H]	+	+	-	-	+	-	+	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab;

91	trans-2-Decenal	3913-71-1; 3913-81-4	O=C([H])C([H])= C([H])C([H])([H]) C([H])([H])C([H])([H])C([H])([H])C([H])([H])([H])C([H])([H])C([H])([H])C([H])([H])([H])([H])([H])([H])([H])([H])	+	+	+	+	+	+	-	+	+	Natsch13aa; Jaworska11ab;
92	Undec-10-enal	112-45-8	O=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])])C([H])([H])C([H]) (([H])([H])C([H])= C([H])([H])	+	+	+	+	+	N/A	-	+	+	Jaworska11ab; Urbisch15aa;
93	1-Bromohexane	111-25-1	(H))(H))C([H))([H))C([H])([H])C([H])([H])C([H])([H])[H])[H])[H])	+	+	+	+	-	+	-	-	-	Takenouchi15a; Natsch13aa;
94	2,5- Diaminotoluene sulfate	615-50-9	[H]C=1/C(=C(/N([H])[H])C([H])=C([H])C=1N([H])[H]) C([H])([H])[H]	+	+	+	+	+	+	+	+	_	Takenouchi15a; Natsch13aa; Jaworska11ab;
95	2-Aminophenol	95-55-6	[H]C=1C(N([H])[H])=C(O[H])C([H]))=C([H])C=1[H]	+	+	+	+	+	+	+	+	-	Takenouchi15a; Natsch13aa; Jaworska11ab;
96	4-Hydroxybenzoic acid	99-96-7	O=C(O[H])C1=C([H])C([H])=C(O[H])C([H])=C1[H]	+	+	+	+	-	-	+	-	-	Takenouchi15a; Natsch13aa; Jaworska11ab; Bauch12aa;
97	4- Methoxyacetophen one (Acetanisole)	100-06-1	O=C(C=1C([H])= C([H])C(OC([H])([H])[H])=C([H])C= 1[H])C([H])([H])[H]	+	+	-	-	-	-	-	-	-	Takenouchi15a; Natsch13aa; Jaworska11ab; Gerberick07a;
98	6-Methyl coumarin	92-48-8	O=C2OC=1/C(=C(/[H])C(=C([H])C= 1[H])C([H])([H])[H])C([H])=C2[H]	+	+	+	+	-	+	-	-	-	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;

99	alpha-Methyl cinnamaldehyde (α- methyl-trans- cinnamaldehyde)	101-39-3	O=C([H])C(=C([H])C=1C([H])=C([H])C([H])=C([H])C =1[H])C([H])([H]) [H]	+	+	+	+	-	N/A	N/A	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab;
100	Benzylidene acetone (4-phenyl- 3-buten-2-one)	122-57-6	O=C(C([H])=C([H])C1=C([H])C([H]) =C([H])C([H])=C1 [H])C([H])([H])[H]	+	+	+	+	+	+	-	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Bauch12aa; Gerberick07a;
101	Cyclamen aldehyde	103-95-7	O=C([H])[C@@]([H])(C([H])([H])C1 =C([H])C([H])=C(C([H])=C1[H])C([H])(C([H])([H])[H])[H])C ([H])([H])[H])H])C	+	+	+	+	-	N/A	-	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Gerberick07a;
102	Diethyl maleate	141-05-9	O=C(OC([H])([H]) C([H])([H])[H])C([H])=C([H])C(=O) OC([H])([H])C([H])([H])[H]	+	+	+	+	+	+	+	+	-	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Bauch12aa; Gerberick07a;
103	DL-lactic acid (Lactic acid)	50-21-5	O=C(O[H])[C@]([H])(O[H])C([H])([H])[H]	+	+	-	-	-	-	-	-	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Bauch12aa;
104	Ethyl acrylate	140-88-5	O=C(OC([H])([H]) C([H])([H])[H])C([H])=C([H])[H]	+	+	+	+	+	+	+	+	+	Natsch13aa; Jaworska11ab; Gerberick07a; Urbisch15aa;
105	Ethyl vanillin	121-32-4	O=C([H])C=1C([H])=C(OC([H])([H]) C([H])([H])[H])C(O[H])=C([H])C=1[H]	+	+	+	+	-	+	N/A	-	+	Natsch13aa; Jaworska11ab; Gerberick07a;

106	Isoeugenol	97-54-1	[H]C=1/C(=C(/[H])C([H])=C(O[H])C =1OC([H])([H])[H])C([H])=C([H])C([H])([H])[H] [H]C([H])([C@@]	+	+	+	+	+	+	+	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Bauch12aa;
107	Linalool	78-70-6	(O[H])(C([H])=C([H])[H])C([H])([H])[H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[+	+	+	+	+	-	-	+	+	Takenouchi15a; Natsch13aa;
108	Methyl acrylate	96-33-3	H O=C(OC([H])([H]) [H])C([H])=C([H]) [H]	+	+	+	+	+	+	N/A	+	+	Natsch13aa; Jaworska11ab; Urbisch15aa;
109	Methyl methacrylate	(80-62-6)	O=C(OC([H])([H]) [H])C(=C([H])[H]) C([H])([H])[H]	+	+	-	-	+	+	+	+	+	Bauch12aa;
110	1,2- cyclohexanedicarb oxylic anhydride	85-42-7	O=C1OC(=O)[C@]2([H])[C@]1([H]) C([H])([H])C([H])([H])C([H])([H])C2 ([H])[H]	+	+	+	+	+	+	+	-	+	Natsch13aa; Jaworska11ab;
111	N-Methyl-N- nitrosourea	684-93-5	O=C(N(NO)C([H]) ([H])[H])N([H])[H	+	+	+	+	+	N/A	+	+	+	Jaworska11ab;
112	Glutaraldehyde	111-30-8	O=C([H])C([H])([H])C([H])([H])C([H])([H])C(=O)[H]	+	+	+	+	+	+	N/A	+	+	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
113	Phenyl benzoate	93-99-2	O=C(OC=1C([H]) =C([H])C([H])=C([H])C=1[H])C=2C ([H])=C([H])C([H])=C([H])C=2[H]	+	+	+	+	+	+	-	+	+	Takenouchi15a; Bauch12aa; Hoffman18aa;
114	trans-2-Hexenal	6728-26-4	O=C([H])C([H])= C([H])C([H])([H]) C([H])([H])C([H])([H])[H]	+	+	+	+	+	+	-	+	+	Natsch13aa; Jaworska11ab; Gerberick07a;

115	2,4,6- Trinitrobenzenesulf onic acid	2508-19-2	O=[S](=O)(O[H]) C=1C(N(=O)O)=C ([H])C(N(=O)O)= C([H])C=1N(=O)O	+	+	+	+	N/A	N/A	N/A	+	+	Bauch12aa;
116	Fluorescein-5-isothiocyanate	3326-32-7	[S]=C=NC=1C([H]))=C2/C(=C(/[H])C =1[H])[C@]3(OC2 =O)C5=C(OC4=C 3C([H])=C([H])C(O[H])=C4[H])C([H])=C(O[H])C([H]	+	+	+	+	+	-	N/A	+	+	Natsch13aa; Jaworska11ab; Gerberick07a;
117	Imidazolidinyl urea	39236-46- 9)=C5[H] O=C1N([H])C(=O) N([C@@]1([H])N([H])C(=O)N([H])C ([H])([H])N([H])C (=O)N([H])[C@]2([H])N(C(=O)N([H]))C2=O)C([H])([H]))O[H])C([H])([H])	+	+	+	+	+	+	+	+	+	Takenouchi15a; Jaworska11ab; Bauch12aa; Gerberick07a;
118	` '	20048-27- 6	O[H] [H]C=3C(N/C1=C(\[H])C([H])=C(N([H])[H])C([H])=C1 [H])=C(N([H])[H]) C([H])=C(N/C2=C (\[H])C([H])=C(N([H])[H])C([H])=C 2[H])C=3N([H])[H]	+	+	+	+	+	N/A	N/A	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab; Gerberick07a;

119	Bisphenol A-diglycidyl ether	1675-54-3	[H][C@@]1(OC1([H])[H])C([H])([H])O/C2=C(\[H])C([H])=C(C([H])=C2[H])C(C=4C([H])= C([H])C(OC([H])([H])[C@]3([H])OC 3([H])[H])=C([H]) C=4[H])(C([H])([H])[H])C([H])([H])	+	+	+	+	+	+	+	+	+	Takenouchi15a; Natsch13aa; Jaworska11ab;
120	Lauryl gallate	1166-52-5	O=C(OC([H])([H]) C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])])C([H])([H])C([H]) ([H])C([H])([H])C ([H])C([H])([H])([H])C([H])([H])[H])C1=C([H])C(O[H])=C1[H]	+	+	-	-	+	+	+	+	+	Takenouchi15a; Natsch13aa; Gerberick04aa; Jaworska11ab; Gerberick07a;
121	Abietic acid	514-10-3	O=C(O[H])[C@]3([C@@]1([H])[C@ @]([C@]2([H])C(=C([H])C1([H])[H])C([H])=C(C([H]) ([H])C2([H])[H])C ([H])(C([H])([H])[H])C([H])([H])(H])[H])(C([H])([H])C([H])([H])C3([H])[H]) C([H])([H])[H]) C([H])([H])[H])C([H])([H])([H])[H])C([H])([H])([H])[H])C([H])([H])([H])[H])C([H])([H])([H])[H])C([H])([H])([H])[H])C([H])([H])[H])[H])C([H])([H])[H])[H])[H])C([H])([H])[H])[H])[H])[H])C([H])([H])[H])[H])[H])[H])[H])[H])[H])[H])[H])	+	+	+	+	+	-	-	+	-	Takenouchi15a; Natsch13aa; Jaworska11ab;

O=C(OC([H])([H]) C([H])([H])C([H])([H])C([H])([H])[H])C=1/C(=C(/[H]) te

Butylbenzylphthala | 85-68-7 | C([H])C=1 + + + - - - + + Urbisch15aa; [H])C(=O)OC([H]) ([H])C2=C([H])C([H])=C([H])C([H]) =C2[H]

Gerberick04aa

Hoffman18aa

p. 344-358

A: QSAR Toolbox (automated option); B: QSAR Toolbox (standardized option); C: VEGAHUB (CAESAR 2.1.6); D: VEGAHUB (IRFMN/JRC 1.0.0)

Gerberick07a	Gerberick, G.F., et al., Quantification of chemical peptide reactivity for screening contact allergens: a classification tree model approach. Toxicol. Sci., 2007. 97 (2): p. 417-427
Jaworska11ab	Jaworska, J., et al., Integrating non-animal test information into an adaptive testing strategy - skin sensitization proof of concept case. ALTEX, 2011. 28 (3): p. 211-225
Natsch13aa	Natsch, A., et al., A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation. J. Appl. Toxicol., 2013. 33 (1099-1263 (Electronic)): p. 1337–1352
Takenouchi15a	Takenouchi, O., et al., Test battery with the human cell line activation test, direct peptide reactivity assay and DEREK based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals. J. Appl. Toxicol., 2015. 35 (11): p. 1318-1332
Urbisch15aa	Urbisch, D., et al., <i>Assessing skin sensitization hazard in mice and men using non-animal test methods.</i> Regul. Toxicol. Pharmacol., 2015. 71 (2): p. 337-351
Bauch12aa	Bauch, C., et al., <i>Putting the parts together: combining in vitro methods to test for skin sensitizing potentials.</i> Regul. Toxicol. Pharmacol., 2012. 63 (3): p. 489-504

Gerberick, G.F., et al., Development of a peptide reactivity assay for screening contact allergens. Toxicol. Sci., 2004. 81(2): p. 332-343

Hoffmann, S., et al., Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database. Crit. Rev. Toxicol., 2018. 48(5):

[†]T, t, and o stand for the traning set, test set and outlier set, respectively.

[‡]N/A: not available

^{*}defined based on 2 thresholds suggesting by OECD; +: sensitizer; -: non sensitizer

Table S2. Optimal runtime parameters for the SVR models.

Parameter	SVR A	SVR B	SVR C	HSVR
SVM type	ε-SVR	ε -SVR	ε-SVR	ε -SVR
Kernal type	Radial basis function	Radial basis function	Radial basis function	Radial basis function
γ	0.175582990397805	0.2222222222222	0.225254058837891	0.25
Cost	9.48148148148	115.330078125	76.88671875	0.32
3_	0.11865234375	0.5625	0.33333333333333	0.0125

Table S3. Confusion matrix for the qualitative predictive model

		Obser	rved
		+	_
Predicted	+	true positive (TP)	false positive (FP)
riedicted	_	false negative (FN)	true negative (TN)

Table S4. The Cooper statistics and Kubat's G-mean calculated from the confusion matrix

Parameter	Definition
Sensitivity (Se)	TP/(TP+FN)
Specificity (Sp)	TN / (FP + TN)
Accuracy (Acc)	(TP + TN) / (TP + TN + FP + FN)
Positive predictivity (PP)	TP/(TP+FP)
Negative predictivity (NP)	TN/(TN+FN)
Matthews Correlation Coefficient	$TP \times TN - FP \times FN$
(MCC)	$\sqrt{(TP+FP)\times(TP+FN)\times(TN+FP)\times(TN+FN)}$
Geometric mean (g-mean)	(Sensitivity × Specificity) ^{1/2}
Harmonic mean of sensitivity and positive predictivity (<i>F-measure</i>)	$F-measure = \frac{2}{PP^{-1} + Se^{-1}}$
Cohen's kappa	$\kappa = (Accuracy - p_e) / (1 - p_e)$
	$p_{\text{True}} = \frac{\text{TP} + \text{FN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} \cdot \frac{\text{TP} + \text{FP}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$
	$P_{\text{True}} = \frac{1}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} \cdot \frac{1}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$
	$p_{\text{False}} = \frac{\text{TN} + \text{FN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} \cdot \frac{\text{TN} + \text{FP}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$
	$P_{\text{False}} = \frac{1}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} \cdot \frac{1}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$

The proportion of chance agreement $p_e = p_{True} + p_{False}$

Table S5. Compound source for this study, their names, Pubchem SID/CID, CAS numbers, , SMILES strings, chemical structures and descriptor values

No.	Compounds	Structures	ω	$E_{ m HOMO}$.	$E_{ m LUMO}$	μ	σ	SA	Jurs_D PSA_1	$n_{ m Ar}$	НВА	HBD	Jurs_FP SA_3	$ \mu _{ m max}$
1	1-(p- Methoxyphenyl)- 1-penten-3-one		0.13	-0.22	-0.07	-0.14	13.37	204.9	174.7	1	2	0	0.03	0.18
2	Methyl salicylate	O HO	0.1	-0.23	-0.05	-0.14	10.66	154.8	108.58	1	3	1	0.06	0.37
3	1,2-Dibromo-2,4-dicyanobutane (Methyldibromo glutaronitrile)	N Br	0.15	-0.3	-0.07	-0.18	8.93	205.7	-107.1	0	2	0	0.01	0.17
4	1,4- Dihydroquinone (1,4- Dihydroxybenze ne) (Hydroquinone)	но——ОН	0.06	-0.2	-0.01	-0.11	10.17	110.6	36.9	1	2	2	0.06	0

5	1, 4- Phenylenediamin e	H ₂ N	──NH ₂	0.04	-0.18	0	-0.09	11.11	120.6	116.02	1	2	2	0.06	0
6	1-Bromobutane		`Br	0.07	-0.28	0	-0.14	7.29	114.4	104.53	0	0	0	0.02	0.47
7	1- Bromohexadecan e			0.07	-0.27	0	-0.14	7.32	306	474.64	0	0	0	0.02	0.44
8	1-Butanol		`OH	0.02	-0.26	0.09	-0.09	5.68	96.72	185.46	0	1	1	0.05	0.67
9	1-Chloro-2,4- dinitrobenzene	HO N	OH N OH	0.08	-0.23	-0.03	-0.13	9.9	180.9	-57.65	1	6	4	0.07	0.69
10	1- Chlorooctadecan	/	CI	0.06	-0.28	0.02	-0.13	6.61	327.9	553.17	0	0	0	0.02	0.3

e

11	1-methoxy-4- methyl-2- nitrobenzene	HO-N	0.06	-0.21	-0.01	-0.11	9.85	172.8	140.36	1	4	2	0.06	0.48
12	1-Phenyl-1,2- propanedione		0.18	-0.24	-0.09	-0.17	12.77	153.5	75.67	1	2	0	0.03	0.82
13	2,3-Butanedione		0.17	-0.25	-0.09	-0.17	12.56	103.5	98.91	0	2	0	0.03	0
14	2,4,6-Trichloro- 1,3,5-triazine (cyanuric chloride)	CI N CI	0.17	-0.32	-0.08	-0.2	8.53	155.9	-248.4	1	3	0	0.02	0

15	2,4-Heptadienal	0.15	-0.24	-0.07	-0.16	12.12	131.4	119.75	0	1	0	0.04	0.38
16	2- Acetylcyclohexa none	0.09	-0.25	-0.03	-0.14	9.15	148.2	165.63	0	2	0	0.02	0.89
17	2- Benzylidenehept anal (Amyl cinnamic aldehyde)	0.14	-0.23	-0.07	-0.15	12.25	220.8	226.55	1	1	0	0.03	0.51
18	Ethanol-2-butoxy, acetate (2-Butoxyethyl Acetate)	0.06	-0.26	0.01	-0.13	7.48	185.3	291.91	0	3	0	0.04	1.42
19	2-Ethylhexyl acrylate	0.12	-0.28	-0.05	-0.16	8.65	214.4	302.52	0	2	0	0.03	0.31

20	2-Hydroxyethyl acrylate	НО	0.12	-0.28	-0.05	-0.16	8.85	128.9	112.8	0	3	1	0.06	1.51
21	2-Nitro-1,4- phenylenediamin e	H_2N N^+ NH_2	0.18	-0.19	-0.08	-0.14	18.41	158.6	41.12	1	4	4	0.06	0.28
22	2- Phenylpropional dehyde		0.09	-0.25	-0.03	-0.14	9.39	143.3	116.39	1	1	0	0.04	0.32
23	3,5,5- Trimethylhexano yl chloride	CI	0.11	-0.3	-0.04	-0.17	7.87	206.4	133.67	0	1	0	0.02	0.67

24	3-Chloro-4- methoxybenzalde hyde (3-Chloro-p- anisaldehyde)	CI	0.13	-0.24	-0.06	-0.15	11.45	165.2	33.47	1	2	0	0.04	0.62
25	3-Methylcatechol	ОН	0.05	-0.21	0.01	-0.1	9.35	129.9	81.49	1	2	2	0.05	0.45
26	3- Propylidenephtha lide		0.13	-0.23	-0.07	-0.15	11.97	168.4	120.09	1	2	0	0.04	1.82
27	4-Amino-2- hydroxytoluene (5-Amino-2- methylphenol)	HONH ₂	0.04	-0.19	0.01	-0.09	9.74	135	124.86	1	2	2	0.06	0.59

28	4-Amino-3- methylphenol (4- Aminocresol) (SCCP/0898/05)	HONH ₂	0.05	-0.19	0	-0.09	10.54	135	106.31	1	2	2	0.06	0.44
29	4- Carboxyphenylac etate	OH OH	0.12	-0.26	-0.05	-0.16	9.82	177.7	60.03	1	4	1	0.05	0.77
30	4- Ethoxymethylene- 2-phenyl-2- oxazolin-5-one (oxazolone)		0.15	-0.22	-0.07	-0.15	13.53	210	141.24	1	4	0	0.04	0.29
31	4-Nitrobenzyl bromide	Br O-	0.2	-0.27	-0.1	-0.19	11.75	170.9	-84.23	1	2	2	0.03	0.23

32	5-Chloro-2- methyl-4- isothiazolin-3- one (MCI/MI)	CI	0.1	-0.23	-0.04	-0.14	10.71	134.2	-26.72	0	2	0	0.03	1.43
33	5-Methyl-2,3- hexanedione		0.17	-0.24	-0.09	-0.16	12.66	153	185.24	0	2	0	0.03	0.04
34	Alpha-isomethylionone		0.11	-0.23	-0.05	-0.14	10.96	243.5	281.52	0	1	0	0.03	0.38
35	Aniline	NH ₂	0.05	-0.2	0	-0.1	9.75	102.3	98.79	1	1	1	0.05	0
36	Benzoic-acid	HO	0.12	-0.26	-0.05	-0.16	9.5	122.3	27.63	1	2	1	0.06	0.69

37	Benzoyl peroxide		0.14	-0.27	-0.06	-0.17	9.9	223.6	48.43	2	4	0	0.04	0
38	Benzyl benzoate		0.11	-0.25	-0.05	-0.15	9.8	207.3	119.49	2	2	0	0.04	1.02
39	Benzyl bromide	Br	0.1	-0.25	-0.04	-0.15	9.59	133	23.45	1	0	0	0.03	0.21
40	beta- Propiolactone	\circ	0.07	-0.29	0	-0.14	6.91	69.9	46.79	0	2	0	0.04	0.05
41	Butyl acrylate		0.12	-0.28	-0.05	-0.16	8.65	148.9	202.8	0	2	0	0.03	0.79

42	Butyl glycidyl ether		0.02	-0.26	0.08	-0.09	5.9	145.3	254.92	0	2	0	0.04	0.79
43	4-(N-Ethyl-N-2-methan-sulphonamido-ethyl)-2-methyl-1,4-phenylenediamin e (CD3)	NH ₂	0.04	-0.18	0	-0.09	10.85	280.8	220.08	1	4	2	0.03	1.25
44	Chloramine T (Tosylchloramide sodium)	+HCI O O O O O O O O O O O O O O O O O O O	0.08	-0.19	-0.03	-0.11	12.53	181.4	-73.51	1	2	1	0.02	0.43
45	Chlorobenzene	CI	0.07	-0.25	-0.01	-0.13	8.47	107	-15.92	1	0	0	0.03	0

46	Chlorothalonil	CI CI	0.2	-0.28	-0.1	-0.19	11.19	235.3	-268.5	1	2	0	0.01	1.28
47	Cinnamaldehyde (Cinnamic aldehyde)		0.16	-0.24	-0.08	-0.16	12.4	137.6	35.55	1	1	0	0.04	0
48	cis-6-nonenal	0=	0.08	-0.24	-0.03	-0.13	9.39	167.4	242.52	0	1	0	0.03	0.14
49	Citral		0.12	-0.23	-0.06	-0.14	11.4	186.6	199.8	0	1	0	0.03	1.95

50	Clofibrate (Ethyl (2-(4- chlorophenoxy)- 2- methylpropanoat e)	CI	0.07	-0.23	-0.02	-0.12	9.59	245.6	144.19	1	3	0	0.03	1.77
51	Glucose (D-Glucose)	НО	0.03	-0.26	0.06	-0.1	6.17	174.5	86.1	0	6	5	0.09	1.55
52	Diethyl acetaldehyde	0	0.08	-0.25	-0.02	-0.14	8.65	124.9	174.28	0	1	0	0.03	1.22
53	Diethyl sulfate		0.06	-0.3	0.03	-0.14	6.06	151.1	122.43	0	4	0	0.02	0.88
54	Dimethyl sulfate		0.06	-0.31	0.02	-0.14	6.09	120.5	9.91	0	4	0	0.03	0

55	Dimethylsulfoxid e		0.03	-0.23	0.04	-0.09	7.32	76.71	98.58	0	1	2	0.07	0.09
56	Diphenylcyclopr openone		0.15	-0.23	-0.07	-0.15	12.84	191.8	48.29	2	1	0	0.04	2.29
57	Ethyl benzoylacetate		0.14	-0.26	-0.07	-0.16	10.15	198.2	135.12	1	3	0	0.04	1.06
58	Ethylenediamine	H_2N NH_2	0.02	-0.24	0.09	-0.07	6.2	86.57	165.13	0	2	2	0.07	0
59	Ethyleneglycol dimethacrylate		0.11	-0.27	-0.05	-0.16	9.03	219.9	183.97	0	4	0	0.04	1.31

60	Farnesal		0.12	-0.22	-0.06	-0.14	11.87	266.2	298.88	0	1	0	0.03	1.63
61	Formaldehyde	<u> </u>	0.1	-0.27	-0.04	-0.15	8.82	42.32	30.36	0	1	0	0.06	0.9
62	Fumaric acid	НО	0.18	-0.29	-0.09	-0.19	10	119.3	-14.82	0	4	2	0.07	0
63	Furil		0.19	-0.24	-0.09	-0.17	13.18	180.1	62.42	2	2	0	0.05	0.51
64	Glyoxal	0	0.22	-0.26	-0.11	-0.19	12.8	65.87	-15.17	0	2	0	0.06	0

65	Hexadecyltrimet hylammonium bromide	N.*.	0.05	-0.29	0.03	-0.13	6.26	354.3	651.08	0	0	1	0.03	0.35
66	Hexyl salicylate	OH OH	0.1	-0.23	-0.05	-0.14	10.65	234	264.45	1	3	1	0.04	0.6
67	Hydroxycitronell al	HO	0.09	-0.25	-0.03	-0.14	8.78	208	242.39	0	2	1	0.04	0.11
68	Lilial (p-tert- Butylalpha methylhydrocinn amaldehyde)		0.08	-0.23	-0.03	-0.13	9.71	235.8	248.24	1	1	0	0.03	1.3

69	Tartaric acid (L-tartaric acid)	но но он	0.08	-0.27	-0.02	-0.14	7.89	149.3	-46.82	0	6	4	0.08	0.81
70	Lyral (3 and 4-(4- Hydroxy-4- methylpentyl)-3- cyclohexene-1- carboxaldehyde)	но	0.08	-0.23	-0.03	-0.13	9.78	234.5	289.8	0	2	1	0.04	0.33
71	Maleic anhydride		0.22	-0.3	-0.11	-0.21	10.61	88.98	-27.05	0	3	0	0.04	1.97
72	Methyl 2- nonynoate		0.1	-0.27	-0.04	-0.16	8.69	195.8	280.3	0	2	0	0.03	1.1

73	Methyl methanesulfonate		0.05	-0.3	0.04	-0.13	5.89	108.2	27.73	0	3	0	0.02	1.45
74	N-Ethyl-N- nitrosourea	$O \longrightarrow N$ $O \longrightarrow N$ $O \longrightarrow N$	0.14	-0.25	-0.07	-0.16	11.22	133	27.47	0	3	3	0.04	1.56
75	N-Methyl-P- Aminophenol Sulfate (Metol)	HN—OH	0.05	-0.18	0	-0.09	11	131	104.84	1	2	2	0.05	0.82
76	N,N-Diethyl-m-t oluamide		0.08	-0.24	-0.02	-0.13	9.19	215.9	244.22	1	1	0	0.03	1.61
77	Palmitoyl chloride	CI CI	0.11	-0.28	-0.04	-0.16	8.15	305.5	412.19	0	1	0	0.02	1.45

78	p-Aminobenzoic acid	H_2N OH	0.09	-0.21	-0.04	-0.12	11.28	140.7	50.05	1	3	2	0.07	1.92
79	p-Benzoquinone (1,4-Benzoquino ne)	0 0	0.28	-0.27	-0.13	-0.2	14.04	106.1	-31.24	0	2	0	0.04	0
80	Perillaldehyde		0.12	-0.25	-0.05	-0.15	10.4	165.3	179.65	0	1	0	0.04	1.38
81	Phenylacetaldehy de		0.09	-0.24	-0.03	-0.14	9.55	125.9	78.67	1	1	0	0.04	0.06
82	Phthalic anhydride		0.19	-0.28	-0.09	-0.19	10.54	130.3	-39.92	1	3	0	0.04	2.28

83	Propyl gallate	ОН	0.09	-0.22	-0.04	-0.13	11.32	212.7	123.36	1	5	3	0.06	0.01
84	Propyl paraben (Propyl 4- hydroxybenzoate	ОН	0.1	-0.23	-0.04	-0.14	10.27	186.1	144.12	1	3	1	0.05	0.32
85	Octanoic acid	ОН	0.06	-0.28	0.01	-0.13	6.95	168	231.09	0	2	1	0.04	0.72
86	Squaric acid	НО ОН	0.11	-0.24	-0.05	-0.15	10.35	104.6	-78.41	0	4	2	0.07	1.82

87	Squaric acid diethyl ester		0.11	-0.24	-0.05	-0.14	10.71	173.7	134.62	0	4	0	0.04	2.37
88	Sulfanilamide	H_2N S NH_2 O S O NH_2	0.07	-0.22	-0.02	-0.12	10.19	162.1	33.82	1	3	2	0.05	0.01
89	Sulphanilic acid (Sulfanic acid)	$O \longrightarrow S \longrightarrow NH_2$	0.08	-0.22	-0.03	-0.13	10.33	156.3	-7.71	1	4	2	0.05	2.92
90	Tetramethylthiur am disulfide	S S N	0.14	-0.21	-0.07	-0.14	13.69	251.8	86.93	0	4	0	0.03	0
91	trans-2-Decenal	0	0.12	-0.25	-0.06	-0.16	10.1	183.2	266.05	0	1	0	0.03	1.84

92	Undec-10-enal		0.08	-0.25	-0.02	-0.14	8.83	197.6	287.52	0	1	0	0.03	1
93	1-Bromohexane	Br	0.07	-0.27	0	-0.14	7.3	146.3	160.08	0	0	0	0.02	0.21
94	2,5- Diaminotoluene sulfate	H_2N NH_2	0.04	-0.18	0.01	-0.09	10.92	140	146.17	1	2	2	0.06	1.11
95	2-Aminophenol	OH NH ₂	0.04	-0.2	0.01	-0.09	9.83	115.6	88.06	1	2	2	0.07	0.37
96	4- Hydroxybenzoic acid	но	0.1	-0.24	-0.04	-0.14	10.31	135.6	-2.32	1	3	2	0.07	0.01
97	4- Methoxyacetoph enone (Acetanisole)		0.11	-0.23	-0.05	-0.14	11.09	161	126.38	1	2	0	0.04	0.72

98	6-Methyl coumarin	0.14	-0.23	-0.07	-0.15	12.1	152.7	89.52	1	2	0	0.04	1.15
99	alpha-Methyl cinnamaldehyde (α-methyl-trans- cinnamaldehyde)	0.16	-0.23	-0.08	-0.15	13	157	74.01	1	1	0	0.04	0.72
100	Benzylidene acetone (4- phenyl-3-buten-2- one)	0.15	-0.24	-0.07	-0.15	12.34	156.5	78.58	1	1	0	0.03	1.27
101	Cyclamen aldehyde	0.08	-0.23	-0.03	-0.13	9.7	212.3	241.09	1	1	0	0.03	0.59
102	Diethyl maleate	0.13	-0.28	-0.06	-0.17	9.27	188.3	226.97	0	4	0	0.04	0.31

103	DL-lactic acid (Lactic acid)	ОН	0.07	-0.28	0	-0.14	7.07	101.1	49.09	0	3	2	0.07	0.08
104	Ethyl acrylate		0.12	-0.28	-0.05	-0.16	8.64	116.9	138.51	0	2	0	0.04	0.8
105	Ethyl vanillin	ОН	0.12	-0.22	-0.06	-0.14	12.37	170.7	119.3	1	3	1	0.05	1.51
106	Isoeugenol	HO	0.07	-0.2	-0.02	-0.11	11.45	177.1	156.84	1	2	1	0.05	0
107	Linalool	OH OH	0.05	-0.23	0.01	-0.11	8.24	192.2	250.98	0	1	1	0.04	0.02

108	Methyl acrylate		0.12	-0.28	-0.05	-0.16	8.59	101.7	107.28	0	2	0	0.04	0.75
109	Methyl methacrylate		0.11	-0.27	-0.04	-0.16	8.81	121.1	138.05	0	2	0	0.04	0.84
110	1,2- cyclohexanedicar boxylic anhydride		0.1	-0.29	-0.03	-0.16	7.93	139.3	76.94	0	3	0	0.03	0.14
111	N-Methyl-N- nitrosourea	H_2N N N N N	0.14	-0.25	-0.07	-0.16	11.1	117.7	2.39	0	3	3	0.05	1.89
112	Glutaraldehyde	0	0.09	-0.25	-0.03	-0.14	9.18	114	78.51	0	2	0	0.04	0

113 Phenyl benzoate	.12 -0.25 -0.05 -0.15 10.19 189.3 96.62 2 2	0 0.04 0.57
114 trans-2-Hexenal	.12 -0.26 -0.06 -0.16 10.1 119.3 146.29 0 1	0 0.04 1.89
2,4,6- 115 Trinitrobenzenes ulfonic acid	.31 -0.31 -0.14 -0.23 11.84 251.9 -254 1 9	7 0.03 0.92

Fluorescein-5isothiocyanate

N=C=S

O
O
O
OH

0.13 -0.23 -0.07 -0.15 12.36 331.5 -36.61 3 7 2 0.04 2.19

117 Imidazolidinyl urea

0.09 -0.26 -0.03 -0.14 8.67 361.4 20.24 0 8 8 0.07 1.3

118 B	Bandrowski's Base (1,4- Cyclohexadiene- ,4-diamine)	H_2N NH_2 NH_2 NH_2	0.17	-0.18	-0.08	-0.13	20.85	320.4	233.99	3	6	6	0.06	0
119 B di	Bisphenol A- iglycidyl ether		0.06	-0.21	-0.01	-0.11	9.83	332.1	311.01	2	4	0	0.04	1.15
120 L	auryl gallate	ОН	0.09	-0.22	-0.04	-0.13	11.31	356.4	406.49	1	5	3	0.05	0.01

121 Abietic acid

HO

0.06 -0.2 -0.01 -0.11 10.36 316.9 353.77 0 2 1 0.03 0.58

122 Butylbenzylphtha late

0.12 -0.25 -0.06 -0.16 10.17 312.1 246.34 2 4 0 0.04 0.64