Topological Ramsey Theory: Ellentuck's Theorem Math 191 - Winter 2022

Young He

Department of Mathematics University of California, Los Angeles

March 10, 2022

- 1 Introduction and Motivation
- 2 Notations and Definitions
 - Basic Notations
 - Essential Definitions
- 3 Ellentuck's Theorem
 - Statement of the Theorem
 - Proof of Ellentuck's Theorem ("only if")
 - Helpful Lemmas
 - Proof of Ellentuck's Theorem ("if")
- 4 Citations

- 1 Introduction and Motivation
- 2 Notations and Definitions
 - Basic Notations
 - Essential Definitions
- 3 Ellentuck's Theorem
 - Statement of the Theorem
 - Proof of Ellentuck's Theorem ("only if")
 - Helpful Lemmas
 - Proof of Ellentuck's Theorem ("if")
- 4 Citations

Introduction

Recall the classical formulation to Ramsey's Theorem:

Theorem (Ramsey)

For any $k, n, r \in \mathbb{Z}^+$, there exists an N such that $N \to (k)_r^n$.

This can be easily generalized to the case when our set is infinite. In fact, this is the original formulation that Ramsey came up with¹:

Theorem (Ramsey)

Let χ be a finite coloring on $[\omega]^k$ for some $k \in \mathbb{Z}^+$. Then, there exists an infinite $W \subseteq \omega$ such that $\chi|_{[W]^k}$ is constant.

Can this result be generalized further?

¹A little caveat: Ramsey actually proved something a little bit stronger, as he showed the same result for arbitrary infinite sets.

Motivation

What if we consider arbitrary collections of subsets on ω ?

■ Unfortunately, no. As an example, $[\omega]^{<\omega}$ doesn't works:

Counterexample

For any $a \in [\omega]^{<\omega}$, let $\chi(a) = |a| \mod 2$. In other words, color a red if |a| is even, and color it blue otherwise.

■ Clearly, no subset of $[\omega]^{<\omega}$ cannot be homogeneous in χ .

Ellentuck's work gave a topological characterization for which subsets of $[\omega]^{\omega}$ can have "Ramsey like" properties.

- 1 Introduction and Motivation
- 2 Notations and Definitions
 - Basic Notations
 - Essential Definitions
- 3 Ellentuck's Theorem
 - Statement of the Theorem
 - Proof of Ellentuck's Theorem ("only if")
 - Helpful Lemmas
 - Proof of Ellentuck's Theorem ("if")
- 4 Citations

Notational Conventions

The following notation will be used throughout the presentation:

- $a, b, x \dots$ are finite subsets of ω , i.e. $a \in [\omega]^{<\omega}$
- $A, B, X \dots$ are infinite subsets of ω , i.e. $A \in [\omega]^{\omega}$
- - $A_{>a} = \{ n \in A \mid \forall m \in a, n > m \}$
- Symmetric difference: $A \triangle B = (A B) \cup (B A)$

 $^{^2\}mathrm{To}$ amuse you, sets of this form are called donuts. The motivation behind this name is quite clear.

The Ramsey Property

The following properties on collections of infinite subsets in ω determine whether they behave like "colorings" or not.

Definition (Ramsey property)

Given a set $W \subseteq [\omega]^{\omega}$, we say that W is Ramsey if there is some $a \in [\omega]^{\omega}$, such that either $[a]^{\omega} \subseteq W$ or $[a]^{\omega} \cap W = \emptyset$.

A stronger (and more useful) condition is:

Definition (complete Ramsey property)

Given a set $W \subseteq [\omega]^{\omega}$, we say that W is completely Ramsey if for each a and A, either $[a, A]^{\omega} \subseteq W$ or $[a, A]^{\omega} \cap W = \emptyset$.

The Baire Property

- Essential Definitions

We need a few basic topology concepts for our characterization.

Definition (topology terms)

Let X be a topological space, then:

- $A \subseteq X$ is dense if $X \cap O$ is nonempty for any open set O.
- $B \subseteq X$ is nowhere dense if \overline{X} contains a dense open set.
- A countable union of nowhere dense sets is meager.

Now, we can define the Baire property:

Definition (Baire property)

A is Baire if there is some open set O such that $A\triangle O$ is meager.

The Ellentuck Topology

Ellentuck defined³the following topology on $[\omega]^{\omega}$:

Definition (Ellentuck topology)

Denote $\mathcal{O} = \{\emptyset\} \cup \{[a,A]^{\omega}\}$. Then, $([\omega]^{\omega},\mathcal{O})$ is a topological space and \mathcal{O} is called the Ellentuck topology.

We will not prove them here, but $\mathcal O$ intuitively satisfies the three topology axioms. Notably, $\mathcal O$ also has the following property:

- $[a, A]^{\omega} \cap [b, B]^{\omega}$ is either empty or $[a \cup b, A \cap B]^{\omega}$.
- Singleton sets are nowhere dense, countable sets are meager.
- Open sets are completely Ramsey.

³Ellentuck himself, in fact, did not name it after himself. He simply referred to this construction as the "classical" topology.

- 1 Introduction and Motivation
- 2 Notations and Definitions
 - Basic Notations
 - Essential Definitions
- 3 Ellentuck's Theorem
 - Statement of the Theorem
 - Proof of Ellentuck's Theorem ("only if")
 - Helpful Lemmas
 - Proof of Ellentuck's Theorem ("if")
- 4 Citations

Topological Ramsey Theory: Ellentuck's Theorem

Ellentuck's Theorem

Statement of the Theorem

Ellentuck's Theorem

Ellentuck, in his 1974 paper, showed the following fact about collections of infinite subsets in ω :

Theorem (Ellentuck, 1974)

Let $W \subseteq [\omega]^{\omega}$. Then, W is completely Ramsey if and only if W is Baire in the Ellentuck Topology.

We now give an outline to the proof of Ellentuck's theorem.

- His original proof used the Galvin-Prikry theorem, a result that formulates a similar characterization for Borel sets.
- It generalizes a theorem of Silver about analytic (Σ_1^1) sets.
- However, we will follow the modified approach published by Matet in 2001 that simplifies the argument.

Proving Ellentuck's Theorem

We first show the forward direction of Ellentuck's theorem.

■ Let $W \subseteq [\omega]^{\omega}$ be completely Ramsey. Then, define:

$$O_W = \bigcup \{ [a, A]^\omega \mid [a, A]^\omega \subseteq W \}$$

- Since any open set in the Ellentuck topology has the form $S=[a,A]^\omega$, any such S must either be in O_W or $O_{\overline{W}}$. Thus, $O_W\cup O_{\overline{W}}$ is dense.
- Clearly, $O_W \subseteq W$ and $O_{\overline{W}} \subseteq W$. Thus, O_W and $O_{\overline{W}}$ both have trivial intersections with $W O_W$; that is, $(W O_W) \cap (O_W \cup O_{\overline{W}}) = \emptyset$. So $W O_W$ is nowhere dense.
- Now $W \triangle O_W = W O_W$ is meager, i.e. W is Baire.

```
Topological Ramsey Theory: Ellentuck's Theorem
LEllentuck's Theorem
LHelpful Lemmas
```

Lemmas

The backwards direction of Ellentuck's theorem is more involved. We need a few lemmas which will not be proved here.

Lemma 1

Define the set \mathcal{N} to be the collection of all W such that:

■ For all a, A, there exists b, B with $[b, B]^{\omega} \subseteq [a, A]^{\omega} - W$.

Then, the following fact holds about \mathcal{N} .

Lemma

 $\mathcal N$ is closed under countable unions.

This is a consequence of a lemma due to Matet based on an argument of Mathias.

Lemma (Matet)

Let $W_i \subseteq [\omega]^\omega$ such that $[a, B]^\omega \notin \bigcap W_i$ for each $B \in [A]^\omega$. Then, there exists c, C such that for some W_i , $[d, D]^\omega \nsubseteq W_i$ for every $[d, D]^\omega \subseteq [c, C]^\omega$.

Lemma 2

Similarly, we define the set C to be all W such that:

■ there exists b, B with $[b, B]^{\omega} \subseteq [a, A]^{\omega}$, and either $[b, B]^{\omega} \subseteq W$ or $[b, B]^{\omega} \cap W = \emptyset$.

Then, the following fact holds about C.

Lemma

Every member of C is completely Ramsey.

This can also be derived from Matet's lemma from above.⁴

⁴In fact, this lemma is the key concept that allowed Matet to achieve a short proof. The conventional proof of the theorem follows the same "track", but relied on a different (more stringent) construction to $\mathcal N$ and $\mathcal C$: replacing $[a,B]^\omega$ instead of $[b,B]^\omega$ in each construction.

Proving Ellentuck's Theorem

Now, we proceed with the backwards direction of the theorem:

■ Let W have the Baire property. Then, $W \triangle O$ is meager for some open set O.

We first show that $W \triangle O \in \mathcal{N}$.

- As $W \triangle O$ is meager, $W \triangle O = \bigcup S_i$ with S_i nowhere dense. There exists \tilde{S}_i disjoint from S_i that is dense; i.e. $\tilde{S}_i \subseteq \overline{S}_i$.
- Then since each $[a, A]^{\omega}$ is open, we have:

$$[a,A]^{\omega}-S_i=[a,A]^{\omega}\cap\overline{S_i}\supseteq[a,A]^{\omega}\cap\widetilde{S}_i=[\widetilde{a},\widetilde{A}]^{\omega}$$

Since \tilde{S}_i is dense and $[a, A]^{\omega} \cap \tilde{S}_i$ is open.

■ Thus $S_i \in \mathcal{N}$, and by Lemma 1 $W \triangle O \in \mathcal{N}$ holds as well.

Proving Ellentuck's Theorem

We then show that $W \in \mathcal{C}$.

Let a, A be arbitrary. Then by above, there are b, B such that:

$$[b,B]^{\omega}\subseteq [a,A]^{\omega}-(W\triangle O)\subseteq (W\cap O)\cup (\overline{W\cup O})$$

- $[b,B]^{\omega} \subseteq [a,A]^{\omega}$ is clear. By above, if it falls into the first half of the union, then clearly $[b,B]^{\omega} \subseteq W$; otherwise, it is also evident that $[b,B]^{\omega} \cap W = \emptyset$.
- By construction, we have $W \in C$.

Now by Lemma 2, we have that W is completely Ramsey.

- 1 Introduction and Motivation
- 2 Notations and Definitions
 - Basic Notations
 - Essential Definitions
- 3 Ellentuck's Theorem
 - Statement of the Theorem
 - Proof of Ellentuck's Theorem ("only if")
 - Helpful Lemmas
 - Proof of Ellentuck's Theorem ("if")
- 4 Citations

Bibliography

- Combinatorial Set Theory, With a Gentle Introduction to Forcing - by L. Halbeisen
- Introduction to Ramsey Spaces by S. Todorcevic
- Happy Families by A. Mathias
- A Short Proof of Ellentuck's Theorem by P. Matet
- Infinite Ramsey Theory by A. Miller