About Ethernet

- Ethernet ကို၁၉၇၂ မှာ Robert Metcalf & David Boggs ဆိုသူတို့က Xerox မှာရှိတဲ့ Palo Alto
 Research Center(PARC) မှာကနဦး ထုတ်ခဲ့ကြပါတယ်။သို့သောအသုံးမပြုသေးပါ။
- ၁၉၇၅ မှာတော့ PARC ဟာပထမဦးဆုံး တရားဝင် Ethernet ကိုထုတ်ခဲ့ကြပါတယ်။၎င်း Version မှာ Ethernet ရဲ့ Data Transfer နှုန်းမှာ 3Mbps ပဲ transmit လုပ်နိုင်ပါတယ်။
- 🌣 ထို့နောက် Xerox က Intel Corporation နှင့် Digital Equipment Corporation တို့နှင့်ပူးပေါင်း ပြီး DIX လို့နာမည်ပေးပြီး Ethernet Speed ကို 3Mbps ကနေ 10Mbps ထိတို့းမြှင့်ခဲ့ပါတယ်။
- Network တွေတည်ဆောက်တဲ့နေရာမှာ Token Ring,Apple Talk,Ethernet ဆိုပြီး Access Method သုံးခုရှိတဲ့အထဲမှ Network ခေတ်ဦးမှယနေ့တိုင်အောင် Ethernet ကိုပဲတွင်တွင် ကျယ် ကျယ် အသုံးခဲ့တာပဲဖြစ်ပါတယ်။
- ထို့နောက် ၁၉၈၀ မှာထိုကုမ္ပဏီသုံးခုမှ Create လုပ်ခဲ့ကြတဲ့ Ethernet နှင့်ပတ်သတ်သောနည်း ပညာများကို IEEE ထံသို့လွှဲပြောင်းပေးခဲ့ပြီး Ethernet အား 802.3 standard ဟုတ်သတ်မှတ် ခဲ့ပါ သည်။
- ၁၉၉၀ ခုနှစ်မှာတော့ ၎င်း Ethernet ကို IEEE အဖွဲ့ရဲ့ 802.3 Specification တွေအပေါ် အခြေခံပြီး OSI Model နဲ့ Physical Layer & Data Link Layer တို့မှာအလုပ်လုပ်ရန် သတ်မှတ်ခဲ့ကြပါတယ်။
- ယနေ့ခေတ်အသုံးပြုနေတဲ့ LAN တိုင်းဟာ Ethernet အမျိုးအစားဖြစ်တာကြောင့်အသုံးများပါ တယ်။
- Data Link Layer မှာ LLC & MAC ဆိုပြီးနှစ်ပိုင်းခွဲထားပြီး LLC ကတော့ Layer 3 နဲ့ transition ပိုင်းတွက် တာဝန်ယူရပြီး MAC ကတော့ Physical Layer နဲ့ transition ကိစ္စမှာ ပါဝင်ဆောင် ရွက်ရပါတယ်။
- Physical Layer မှာအလုပ်လုပ်တယ်လို့ ဆိုထားသောကြောင့် Layer 1 Process တွေဖြစ်တဲ့ Network Cable Standard, Network Interface Card (NIC) တို့သည်လဲ Ethernet Standard များဖြစ်ပါတယ်။
- Ethernet မှာအသုံးပြုတဲ့ Address ကတော့ MAC address ကိုအသုံးပြုပါတယ်။

❖ As the use of LANs increased, standards were needed to define consistency and compatibility between vendors. The IEEE began a project in February 1980, known as Project 802 for the year and month it began. IEEE 802 is a set of standards given to the various LAN architectures such as Ethernet, Token Ring, and ArcNet by the LAN standards committee.

IEEE Project Standard	Description			
802.3	Ethernet (CSMA/CD)			
802.3u	Fast Ethernet (100 Mbps)			
802.3z	Gigabit Ethernet over fiber-optic cabling or coaxial cabling			
802.3ab	Gigabit Ethernet over twisted-pair cabling			
802.3ae	10-Gigabit Ethernet			

Project	Description			
802.1	Internetworking			
802.2	Logical link control			
802.3	Ethernet CSMA/CD , Bus Topology			
802.4	Token bus			
802.5	Token Ring			
802.6	Metropolitan area network (MAN)			
802.7	Broadband technology			
802.8	Fiber-optic technology			
802.9	Voice and data integration			
802.10	Network security			
802.11	Wireless networking			
802.12	Demand priority networking			

Data Transfer Type

Siplex

Half-Duplex
Duplex
Full-Duplex

Collision Domain

The term *collision domain* is an Ethernet term that refers to a particular network scenario wherein one device sends a packet out on a network segment and thereby forces every other device on that same physical network segment to pay attention to it. This is bad because if two devices on one physical segment transmit at the same time, a *collision event*—a situation where each device's digital signals interfere with another on the wire—occurs and forces the devices to retransmit later.

Collisions have a dramatically negative effect on network performance, so they're definitely something we want to avoid! The situation I just described is typically found in a hub environment where each host segment connects to a hub that represents only one collision domain and one broadcast domain. This begs the question, What's a broadcast domain?

- Hub or Traditional Ethernet Enviroment အတွင်းမှာ တစ်ကြိမ်လျှင် NIC တစ်ခုသာ Frame တစ်ခုကို အောင်မြင်စွာ Send လုပ်နိုင်ပါတယ်။သို့ပေးမဲ့ Wire ပေါ် က Information ကို NICs အား လုံးက တပြိုင်နက် Listen လုပ်နိုင်ပါတယ်။
- Éthernet NIC တစ်ခုသည် Frame ကို Wire ပေါ်သို့မပို့လွှတ်မှီ Wire ပေါ်မှာ အခြား Frame တစ်ခု ခုရှိ နေလား ဆိုတာကိုသေချစေဖို့အတွက် Wire ကို Sense လုပ်တယ်။အကယ်၍ Wire သည် Copper ဖြစ်တယ်ဆိုရင် NIC သည် Wire ပေါ်က Voltage level ကိုစစ်ဆေးခြင်းဖြင့် Sense လုပ် နိုင်တယ်။
- Cable သည် fiber ဖြစ်တယ်ဆိုရင် NIC သည် Wire ပေါ် က Light frequencies ကိုစစ်ဆေး ခြင်း
 ဖြင့် Sense လုပ် နိုင်ပါတယ်။
- Ethernet Medium သည် Multiple Access ကို Support လုပ်တာမို့ အခြား NICs ရဲ့ frame တစ် ခုမက ရှိနေနိုင်ပါတယ်၊ဒါကြောင့် NIC သည် အရင်ဆုံး Sensing Process မလုပ်မှီ Wire ပေါ် မှာ Frame ရှိ/မရှိကို သေခြာအောင်စစ်ဆေးပြီးမှသူ့ရဲ့ ကိုယ်ပိုင် frame ကို transmit လုပ်ပါမယ်။

CSMA/CD

Ethernet networking uses *Carrier Sense Multiple Access with Collision Detection (CSMA/CD)*, a media access control method that helps devices share the bandwidth evenly without having two devices transmit at the same time on the network medium. CSMA/CD was created to overcome the problem of those collisions that occur when packets are transmitted simultaneously from different hosts. And trust me—good collision management is crucial because when a host transmits in a CSMA/CD network, all the other hosts on the network receive and examine that transmission. Only bridges, switches, and routers, but not hubs, can effectively prevent a transmission from propagating throughout the entire network

- LAN မှာရှိတဲ့ Hosts တွေက Wire ပေါ်သို့ frame တွေသွားနေလား ဆိုတာကိုအရင်ဆုံး Sense or Listen လုပ်ကြပါတယ် Wire ပေါ် မှာ Silent အနေအထားဖြစ်နေတယ်ဆိုရင် Hosts အသီးသီးက သူတို့ရဲ့ ကိုယ်ပိုင် frame တွေကို Wire ပေါ်သို့ ပို့လွှတ်ကြပါတယ်။
- ထိုသို့ပို့လွှတ်လိုက်လျှင်ပဲ Wire ပေါ် or voltage levels သော်၎င်း fiber wire ပေါ် or light frequencies တို့သည် Frame တွေအများကြီးသွားလာနေကြမယ်ပြီးတော့ Medium မှာ Frame တွေတစ်ခုနဲ့တစ်ခု တိုက်မိပြီး Collision ဖြစ်စေနိုင်ပါတယ်။
- Frame တွေဟာ Collision ဖြစ်သွားတာနဲ့ NIC သည် ၎င်း Frame များကို Resend ထပ်လုပ် ပါ တယ်၊Collisionဖြစ်တဲ့အချိန်မှာ Frame ကို Transmitting လုပ်နေတဲ့ NIC အသီးသီးသည် Jam Signal လို့ခေါ်တဲ့ Special Signal တစ်ခုကို Wire ပေါ်မှာ create လုပ်တယ် ပြီးတော့ small random time period တစ်ခုကိုစောင့်ဆိုင်းပြီး Sense လုပ်တယ်။NIC ကိုစောင့်ဆိုင်းရတဲ့ time period ကို microseconds နဲ့တိုင်းတာတယ်။
- Ethernet Segment တစ်ခုပေါ်မှာ Hosts တွေပိုမို များပြားလာလေလေ Collision ဖြစ်ဖို့အလား လာ ပိုများလေးပဲဖြစ်တယ်၊Collision သည် Total traffic ရဲ့ 1% အောက်နည်းတယ်ဆိုရင်တော့ ပြဿနာမရှိပါဘူး။
- Ethernet,Fast Ethernet,Gigabit Ethernet တို့သည် Collision မဖြစ်အောင် CSMA/CD ကိုအသုံးပြုပါတယ်။Summary အရပြောမယ်ဆိုရင် Wire ပေါ်မှာ access & transmit လုပ်ဖို့ devices အားလုံးမှာ equal priority ရှိ တယ် transmit မလုပ်မှီ device သည် wire ကို sense လုပ်မယ်၊silent ဖြစ်နေရင် devices 2 ခုက တစ်ပြိုင်နက်ထဲ transmit လုပ်မိမယ် collision ဖြစ် မယ်၊Collision ဖြစ်ရင် Jam Signal တစ်ခုစီ create လုပ်ပီး random –Period time တစ်ခုအထိ စောင့်နေကြမယ်၊ပြီးမှ frame ကို retransmit ပြန်လုပ်ကြမယ်။

Broadcast Domain

A **broadcast domain** is a logical division of a computer network, in which all nodes can reach each other by broadcast at the data link layer. A broadcast domain can be within the same LAN segment or it can be bridged to other LAN segments. In terms of current popular technologies, any computer connected to the same Ethernet repeater or switch is a member of the same broadcast domain. Further, any computer connected to the same set of inter-connected switches/repeaters is a member of the same broadcast domain. Routers and other higher-layer devices form boundaries between broadcast domains.

Ethernet Address

- Ethernet Address ဟာ Physical Address လို့ခေါ် တဲ့ MAC address ပဲဖြစ်ပါတယ်။၎င်းကို
 Network Interface Card (NIC) တိုင်းမှာ တစ်ခုစီပါဝင်ပါတယ်။
- NIC တိုင်းမှာ တခြား မည်သည့် NIC တွေနဲ့မတူတဲ့ Ethernet Address တစ်ခုစီရှိပါတယ် ၎င်းကို NIC ထုတ်လုပ်စဉ်ကတည်းက အသေထည့်သွင်း သတ်မှတ်ပြီးသားပါ။
- MAC Address ဟာ 48 bit ရှိပြီး ပထမ 24bit က OUI (Organization Unique Identifier)ဖြစ်ပြီး၊ကျန် 24bit ကတော့ Vednor Assign အတွက်ဖြစ်ပါတယ်။
- 💠 MAC Address ကို Hexadecimal Numbering System နဲ့ဖော်ပြပါတယ်။ 0 to 9 A to F ဆိုပြီး ၁၆ လုံးရှိပါတယ်။Example of Hex 18-1D-EA-73-93-3F

Hex-to-binary-to-decimal chart

Decimal (Base 10)	Binary (Base 2)	Hexadecimal (Base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Network တစ်ခု Setup လုပ်တဲ့နေရာမှာ Ethernet ဟာတခြား Access method တွေဖြစ်တဲ့ Token Ring , Apple Talk တို့ထက်အများကြီး ပိုမြန်ပါတယ်။Ethernet ရဲ့ မူလ Version မှာတော့ Network Speed ဟာ 10Mbps ပဲရှိတာဖြစ်ပြီး နောက်ပိုင်းမှာတော့ ပိုမိုမြန်ဆန်အောင်လုပ် Network Speed တွေထပ်တိုးမြှင့်လာကြပါပြီး Orginal Ethernet ကိုအခြေ ခံပြီး Version အသစ်မှားထွက်ရှိခဲ့ပါတယ်။

Common Name	mon Name IEEE Standard		Type of Cabling		
Ethernet	802.3	10 Mbps	Both		
Fast Ethernet	802.3u	100 Mbps	Both		
Gigabit Ehternet	802.3z	1 Gbps	Optical		
Gigabit Ethernet	802.3ab	1 Gbps	Copper		
10 Gigabit Ethernet	802.3ae	10 Gbps	Optical		

Commom Ethernet Cable Types

EThernet Name	Cable Type	Max; Speed (Mbps)	Max; Transmission Distance(Segment/m)	Note		
10Base5	Coax	10	500	Uses vampire taps to connet devices to cable		
10Base2	Coax	10	185	Also called Thinnet, a very popular implementation of Ethetnet over coax		
10BaseT	UTP	10	100			
100BaseT	UTP	100	100			
100BaseVG	UTP	213(Cat 5) 100(Cat 3)				
100BaseT4	UTP	100	100	Required 4 pairs of Cat 3,4,or 5 UTP cable		
100BaseTX	UTP STP	100	100	2 pairs of Cat 5 UTP or STP		
10BaseF	Fiber	10	Varies(ranges from 500 to 2000m)	Ethernet over fiber-optic implementation		
100BaseFX	Fiber	100	2000	100Mbps Ethernet over fiber- optic implementation		

Ethernet Connection

- ・ Host တစ်ခုကရှိတဲ့ NIC သည် interrupt request line(IRQ),input/output(I/O) address in memory ,Driver (software that interfaces with the NIC) and MAC address တို့ပါဝင်ပါ တယ်။
- MAC address ကို NIC မှာပါတဲ့ read-only memory (ROM)ထဲမှာ brun လုပ်ထားပါတယ် သူ့ကို burned-in Address(BIA) လို့ခေါ် ပါတယ်။၎င်း MAC address ကို RAM ထဲသို့ copy ကူးပြီး Driver software ကအသုံးပြုပါ တယ်။ Driver copy ကူးထားတဲ့ RAM ပေါ် မှာရှိတဲ့ MAC address ကိုအပြောင်းအလဲလုပ်ပိုင်ခွင့်ရှီပါတယ်။(BIA ကို ROM ထဲမှာ burn လုပ်ထားတာမို့ အပြောင်းအလဲ မပြုလုပ်နိုင်ပါ)

10Base5

• 10Base5 ကို Thicknet လို့လဲခေါ် ပါတယ် သူ့ကို Ethernet ခေတ်ဦးမှာအသုံးပြုခဲ့ပြီး Coaxial Cable အမျိုးအစားဖြစ်ပါတယ် သူ့ကို Maximum Distance မိတာ ၅၀၀ အထိပဲရနိုင်ပါတယ် ကြား ထဲမှာ Repeater တွေသုံးပြီးချိတ်ဆက်မယ်ဆိုရင် စုစုပေါင်း မိတာ ၂၅၀၀ အထိရရှိနိုင် ပါတယ်။ RG-8 Cable အမျိုးအစားဖြစ်တယ် သူ့ရဲ့ Speed က 10 Mbps ပဲဖြစ်ပါတယ်။ signal type က Baseband အမျိုးစားဖြစ်တယ်။

Category	Specification
IEEE Specification	802.3
Advantages	Long maximun cable length
Disadvantage	Difficult to install: cost
Topology	Linear bus
Cable Type	50-ohm thicknet
Channel access method	CSMA/CD
Transceiver location	Connected to cable at vampire tap
Maximum cable segment length	500 meters (1640 feet)
Maximum total network length	2500 meters (8200 feet)
Maximum drop cable length	50 meters (164 feet)
Maximum distance between transceivers	2.5 meters (8 feet)
Maximum number of segment	5 connected by 4 repeaters
Maximum number of populated segments	3
Maximum devices per segment	100
Maximum devices per network	1024
Transmission speed	10 Mbps

10Base2

• 10base2 ကို Thinnet လို့လဲခေါ် ပါတယ် သူ့ရဲ့ maximum distance မိတာ ၂၀၀ ထိပဲရှိပါတယ်။ အဲ့ဒါကြောင့်သူ့ကို 10base2 လို့ခေါ် တာဖြစ်တယ်၊တကယ်တန်းမှာတော့ သူရဲ့ segment ဟာ ၁၈၅ မိတာထိပဲရပါတယ်။RG-58 Cable type ဖြစ်ပါတယ်။သူ့ရဲ့ Resistance က 50 Ohm ဖြစ်ပြီး သူ့ရဲ့ Speed ဟာလဲ 10Mbps ပဲဖြစ်ပါတယ်။

Category	Specification
IEEE Specification	802.3
Advantages	Inexpensive: easy to install and configure
Disadvantage	Difficult to troubleshoot
Topology	Linear bus
Cable Type	50-ohm thinnet-RG-58A/U or RG-58C/U
Channel access method	CSMA/CD
Transceiver location	On NIC
Maximum cable segment length	185 meters (670 feet)
Maximum total network length, end to end	925 meters (3035 feet)
Maximum distance between devices	5 meters (20 Inches)
Maximum number of segment	5 connected by 4 repeaters
Maximum number of populated segments	3
Maximum devices per segment	30
Maximum devices per network	1024
Transmission speed	10 Mbps

10BaseT

- 10BaseT မှာတော့ Coaxial Cable ကိုမသုံးတော့ပဲ twisted pair ဖြစ်တဲ့ UTP ကိုစတင်အသုံး ပြုလာပါတယ်။10 က 10Mbps ဖြစ်ပြီး base ကတော့ baseband , T က Twisted pair cable ကိုရည်ညွှန်းပါတယ်။
- 10base510base2 တို့ထက်ပိုအသုံးများပြီး Topology မှာလဲ BUS ကိုမသုံးတော့ပဲ Star Topology ကိုစတင်အသုံးပြုလာပါတယ် Connector ကိုလဲ RJ-45 ဖြင့်အစားထိုးလာခဲ့ပါတယ် ယနေ့တိုင် အ သုံးပြုနေပါတယ်။

Category	Specification
IEEE Specification	802.3
Advantages	inexpensive: easy to install & troubleshoot
Disadvantage	Small Maximum cable segment length
Topology	Star
Cable Type	Category 3,4, or 5 UTP
Channel access method	CSMA/CD
Transceiver location	On NIC
Maximum cable segment length	100 meters (328 feet)
Maximum distance between devices	N/A
Maximum number of segment	1024
Maximum devices per segment	2
Maximum devices per Network	1024
Transmission speed	10 Mbps

Twisted-pair Cable

- 💠 Twiste-pair cable မှာအမျိုးအစား ၂ မျိုးရှိပါတယ် Unshielded Twisted Pair(UTP)(10BaseT) နှင့် Shielded Twisted Pair (STP) တို့ဖြစ်ပါတယ်။
- UTP များသည် EIA/TIA 568 (Electronic Industries Association and the Telecommunication Industries Association) ကို စံထားပြီး ထုတ်လုပ်ထားပါ တယ်။ သူ့ကို Category များခွဲထားပါတယ်။

- > Category-1 တယ်လီဖုန်းလိုင်းများမှာသုံးတဲ့ Cable ဖြစ်ပြီး voice သာအသုံးပြုနိုင်ပါတယ် (RJ-11)
- 🕨 Category-2 4Mbps သုံးနိုင်တယ် 4Twisted Pairs ဖြစ်တယ်၊Data & Voice ရောအသုံးပြုနိုင်သည်။
- 🗲 Category-3 10Mbps သုံးနိုင်သည် 4Twisted Pairs ဖြစ်တယ်၊Data & Voice ရောအသုံးပြုနိုင်သည်။
- 🕨 Category-4 16Mbps သုံးနိုင်သည် 4Twisted Pairs ဖြစ်တယ်၊Data & Voice ရောအသုံးပြုနိုင်သည်။
- ≽ Category-5 up to 100Mbps သုံးနိုင်သည် 4 Twisted Pairs of copper wire ဖြစ်သည် သူ့မှာ Cat 5,Cat 5E ဆိုပြီးရှိသည်။
- 🕨 Category-6 1000Mbps သုံးနိုင်သည် 8 Twisted Pairs of copper wire ဖြစ်သည်။

ယခုအခါ Network ချိတ်ဆက်မှုတွင် Cat5E & Cat6 များသာအသုံးပြုကြသည်။

UTP Cable

10BaseF

- 10baseF ဆိုတာ Fiber Optic Cable ကိုအသုံးပြုထားတဲ့ Ethernet ပဲဖြစ်ပါတယ်၊Fiber Optic Technology က Network တွေမှာပုံမှန် သုံးနေကျ Copper Wire(UTP,STP,Coaxial)တို့နဲ့မတူပဲ Data ကိုelectric signal မဟုတ် ပဲ light ကိုအသုံးပြုပြီး Data Transmit လုပ်သောကြောင့်ဖြစ် တယ်။
- Data ကို Light နဲ့သယ်တာဖြစ်တဲ့တွက် On/Off အဖြစ်ပြောင်းလဲပြီး 1 0 ဖြစ်တဲ့ Binary တွေကို တယ် Laser or Led ကိုအသုံးပြုပြီး ပေးပို့တာဖြစ်တယ်။
- Source ကနေ transmit လုပ်လိုက်တဲ့ 0 1 Binary တွေကို Laser or Led ကို On/Off လုပ်ပြီး
 Fiber Cable အတွင်းမှဖြတ်၍ Destination ဆီသို့ပေးပို့တာဖြစ်တယ် Fiber cable ရဲ့တဖက်မှာ
 Sensor သည်အလင်းကို လက်ခံရရှိ/မရှိပေါ် မူတည်ပြီး 0 1 တွေကိုလက်ခံတာဖြစ်တယ်။

Fiber Optic Cable

၎င်းကို အခြေခံအားဖြင့်(၃)မျိုးခွဲခြားထားပါတယ်-

10BaseFL → LAN တွေမှာအဓိကသုံးပါတယ် သူရဲ့အားသာချက်က Segment တစ်ခုမှာ ကီလိုမီတာနဲ့ချီသောအကွာအဝေးထိအသုံးပြုနိုင်တာပဲဖြစ်တယ်။Baseband အမျိုးအစားဖြစ်တယ်။

10BaseFP→ Switch, Hub, Bridge တို့ကိုတစ်လုံးမကချိတ်ဆက်ရာမှာအသုံးပြုပါတယ်၊ Cable Segment အများမိတာ ၅၀၀အထိ Support လုပ်ပါတယ်။

10BaseFB→သူ့ကို Backbone ဧရိယာမှာ အသုံးပြုပါတယ်

Category	Specification
IEEE Specification	802.3
Advantages	Long distance
Disadvantage	High cost; difficult installation
Topology	Star
Cable Type	fiber-optic
Channel access method	CSMA/CD
Transceiver location	On NIC
Maximum cable segment length	200 meters (6561 feet), except for 10BaseFP at 500 meters (1635 feet)
Maximum number of segment	1023
Maximum devices per segment	2
Maximum devices per Network	1024
Transmission speed	10 Mbps

Fast Ethernet (802.3u)

- 100BaseT လို့လဲခေါ် ပါတယ် 10BaseT အောင်မြင်ခဲ့ပြီး အသုံးများခဲ့တာကြောင့် သူ့ကို Speed ထပ်တိုးခဲ့ပါတယ်
- UTP ရော Fiber ရောနှစ်မျိုးစလုံးနဲ့လာပါတယ် Network Card , Switch တွေကလဲ သူနဲ့ချိတ် ဆက်သုံးဖို့အတွက် 100Mbps speed အတိုင်းထုတ်လုပ်လာကြပါတယ်။
- 10BaseT မှပစ္စည်းများကို 100BaseT Network မှာအသုံးပြုနိုင်ပါတယ် သို့သော် 10Mbps ဖြင့်သာ အလုပ်လုပ်မှာ ဖြစ်ပါတယ်။Fast Ethernet ကို CAT5,CAT5e,CAT6 Cable တွေနဲ့လာ ပါတယ်။

Category	Specification
IEEE Specification	802.3
Advantages	Fast, easy to configure and troubleshoot;
Disadvantage	High cost; limited distance
Topology	Star
Cable Type	Category 3 or higher UTP -100BaseT4;
	Category 5 UTP-100BaseTX
	Fiber-optic-100BaseFX
Channel access method	CSMA/CD
Transceiver location	On NIC
Maximum cable segment length	100 meters (328 feet) 100BaseT4
	2000 meters (6561 feet)-100BaseFX
Maximum number of segment	1023
Maximum devices per segment	1
Maximum devices per network	1024
Transmission speed	100 Mbps

Gigabit Ethernet

• IEEE ဟာ 1000Mbps ထိမြန်နှုင်းမြင့် Gigabit Ethernet ကို Create လုပ်ခဲ့ပါတယ် သူ့မှာ UTP Cable ကိုအသုံးပြုတဲ့ 802.3ae(1000BaseT)နှင့် Fiber cable ကိုအသုံးပြုတဲ့ 802.3Z (1000BaseSX & 1000BaseLX) ဆိုပြီးနှစ်မျိုးရှိပါတယ် UTP type မှာတော့ Cat5e & Cat6 တို့ကို အသုံးပြုပါတယ်။

100BaseSX & 1000BaseLX

	<mark>Speed</mark>	Max Length	Topology	Cable Type
1000BaseSX	1000Mbps	550 Meters	Star	Fiber-Optic(MMF)
1000BaseLX	1000Mbps	5000Meters	Star	Fiber-Optic(SMF)

Signal Mode Fiber(SMF)

- Signal mode fiber တွင်ပါရှိသော Cole သည် သေးငယ်သည့်အတွက် အလင်းတန်းတခု သာ ဖြတ်သန်းသွားနိုင်ပါတယ်။အများအားဖြင့် Core ၏အချင်းသည် 8micron မှ 10micron အတွင်း ဖြစ်သည်။
- SMF ရဲ့ Cole ဟာလူဆံပင်တစ်ချောင်းထက်ပင်သေးငယ်ပါတယ်။အလင်းတန်းတစ်ကြောင်း သာ ဖြတ်သန်းသွားနိုင်သည့် SMF သည်နေရာဝေးဝေးသို့Data rate ပိုမိုမြင့်သော နှုံးဖြင့် transmit လုပ် နိုင်ပါတယ်။ထို့ကြောင့် ၎င်းကို Backbone တွေမှာသုံးကြပါတယ်။

Multimode Fiber (MMF)

Multimode Fiber မှာပါတဲ့ Core သည် SMF တို့နှင့်ယှဉ်လျှင် အရွယ်အစားပိုကြီးသည့်အတွက် အလင်းတန်းများ သည် Angle အမျိုးမျိုးတို့ဖြင့် ဖြတ်သန်းသွားလာနိုင်ကြသည်။MMF ရဲ့ Core ၏အချင်းသည် 50 to 155micron အတွင်းရှိ ပြီး 62.5micron (or) 0.002 လက်မခန့်ရှိပါတယ် သူရဲ့အကွာအဝေးဟာ SMF လောက်မများပါဘူး ဈေးနှုန်းသက်သာသည့်LED ကိုလက်ခံ အသုံးပြု နိုင်ခြင်းနှင့် Core အရွယ်အစားကြီးမားသည့်အတွက် အသုံးများပါတယ်။

Ethernet Frame

Sequence S	Bit Sequence 1010101								Inter Frame Gap		
Preamble	SFD	Dest. Addr.	Source Addr.	Tag	Length	DSAP	SSAP	Control	Data	FCS	
8 E	ytes	6 Bytes	6 Bytes	4 Bytes	2 Bytes	1 Byte	1 Byte	1 Byte	42 - 1497 Bytes	4 Bytes	9.6 µs

- Layer 2 မှာအလုပ်လုပ်တဲ့ Diagram အမျိုးအစားကို Frame လို့ခေါ်ပါတယ် သူ့မှာ Header , Payload(Data)Trailer ဆိုပြီးအပိုင်းသုံးပိုင်းပါဝင်ပြီး Version 4 မျိုးခွဲထားပါတယ်။
 - ➤ Ethernet 802.3 (Novell Netware 2.X/3.X Network used IPX/SPX)
 - Ethernet 802.2 (Data Link Layer ခွဲဖြစ်တဲ့ LLC မှာသုံးတဲ့ Frame အမျိုးအစားဖြစ်ပြီး 802.3 မှာ ပါတဲ့ fields အားလုံးပါတဲ့အပြင် LLC အတွက် fields သုံးခုပိုပါလာပါတယ်။)
 - 🗲 Ethernet 802.2 SNAP (Sub Network Address Protocol လို့ခေါ်ပြီး Apple Talk Phase 2 မှာသုံးခဲ့ပါတယ် 802.2 ကို Enhance လုပ်ထားတာဖြစ်ပါတယ်။
 - > Ethernet 802.3(Version 2) (Ethernet II ကို TCP/IP သုံး Network တွေမှာအသုံး ပြုပါ တယ်ယနေ့ခေတ်အသုံးအများဆုံးက Ethernet Version 2 ဖြစ်ပါတယ်။

Ethernet Frame Version 1 & 2

Ethernet Frame Version 1 မှာက Preamble Field ကို 7Byte ရှိပြီး SFD (Start Frame Delimiter) 1Byte နေ ရာယူထားပါတယ် Payload ကတော့ 64Bytes ကနေ 1518Bytes အထိအပြောင်းလဲရှိပါတယ် နောက်ဆုံးမှာက CRC(Cylical Redundancy Check) က 4Bytes ရှိပြီးသူ့ကို Error Checking အတွက်ထည့်ပေးပါတယ်။

Ethernet_II

	Preamble 7	SOF 1	Destination 6	Source 6	Type 2	Data and Pad 46 – 1500	FCS 4	
--	---------------	----------	------------------	-------------	-----------	---------------------------	----------	--

Ethernet Frame Version 2 ကတော့ TCP/IP သုံး Network တွေမှာအသုံးပြုပြီး Version 1 နဲ့ မတူတဲ့အချက်ကပထမ Preamble Field 7 Bytes နဲ့ SFD Field 1 Byte တိုကိုပေါင်းပြီး 8Byte ဖြစ်သွားပါတယ် SFD Fieldကိုဖြုတ်လိုက်ပါတယ် နောက်ပြီး Length Field အစား Type Field

ဆိုပြီးပြောင်းသွားပြီး Frame ရဲ့ Data Section ဟာမည်သည့် Network Protocol ကိုသုံးထားလဲ ဆိုတာကို ဖော်ပြပေးပါတယ်။

802.3_Ethernet						
Preamble	SOF	Destination	Source	Length	Data and Pad	FCS
7	1	6	6	2	46 – 1500	4

ield Length, in Bytes			Ether			
8		6 6		2	46-1500	4
Preamble		Destination Address	Source Address	Туре	Data	FCS
eld Lengt in Bytes	h,		IEEE 8	302.3		
	h, 1	6	IEEE 8	302.3 2	46-1500	4

Preamble An alternating 1,0 pattern provides a clock at the start of each packet, which allows the receiving devices to lock the incoming bit stream.

Preamble field က Ethernet Frame မှ Header တစ်ခုအစ မလာခင်မှာ အသုံးပြုပါတယ်၊Version 1 မှာ 56bits(7Bytes) ရှိပြီး Version 2 မှာတော့ 64bits(8Bytes) နေရာယူပါတယ် သူရဲ့ bit stream တွေက 10101010 တွေပဲဖြစ်ပါတယ် Frame တစ်ခုပိုပြီး နောက် Frame တစ်ခုမလာခင်မှာ Preamble field အရင်လာပါတယ်။

Start of Frame Delimiter (SOF)/Synch The preamble is seven octets, and the start of a frame (SOF) is one octet (synch). The SOF is 10101011, where the last pair of 1s allows the receiver to come into the alternating 1,0 pattern somewhere in the middle and still synch up and detect the beginning of the data.

SOF ကတော့ 1bytes သာနေရာယူပြီး နောက်ဆုံး Bit နှစ်ခုက 11 နဲ့အဆုံးသတ်ပါတယ် Frame တစ်ခုရဲ့ အစဖြစ်ကြောင်းကိုဖော်ပြဖို့သက်သက်ပဲဖြစ်ပါတယ်။

Destination Address (DA) This transmits a 48-bit value using the least significant bit (LSB) first. The DA is used by receiving stations to determine whether an incoming packet is addressed to a particular host and can be an individual address or a broadcast or multicast MAC address. Remember that a broadcast is all 1s (or *F*s in hex) and is sent to all devices, but a multicast is sent only to a similar subset of hosts on a network.

Destination Address Field ကတော့ Frame ကိုလက်ခံရယူမဲ့ Computer မှ NIC ၏ MAC address ပါရှိတဲ့ field ဖြစ်ပါ တယ်သူက 6bytes(48bits) ရှိပါတယ်။

Source Address (SA) The SA is a 48-bit MAC address used to identify the transmitting device, and it uses the LSB first. Broadcast and multicast address formats are illegal within the SA field.Source Address ကတော့ Frame ပေးပို့မဲ့ Computer မှ NIC ၏ MAC address ပဲဖြစ်ပါတယ် သူ ကလဲ DA လိုပဲ 6bytes(48bits) ရှိပါတယ်။

Length or Type 802.3 uses a Length field, but the Ethernet frame uses a Type field to identify the Network layer protocol. 802.3 by itself cannot identify the upper-layer routed protocol and must be used with a proprietary LAN protocol—Internetwork Packet Exchange (IPX), for example.

Length or Type Field ကတော့ လက်ရှိသုံးနေတဲ့ Frame မှာ ဘယ် Network Protocol ကိုသုံးထားတာ လဲဆိုတာကိုဖော် ပြပေးပါတယ် (ဥပမာ-IP,IPX,Apple Talk,....) 16bits(2Byte) နေရာယူထားပါတယ်။

Ether Type	Protocol
0x0800	Internet Protocol, Version 4 (IPv4)
0x0806	Address Resolution Protocol (ARP)
0x8035	Reverse Address Resolution Protocol (RARP)
0x8100	VLAN-tagged frame (IEEE 802.1Q)
0x814C	Simple Network Management Protocol (SNMP)
0x86DD	Internet Protocol, Version 6 (IPv6)
0x8847	MPLS unicast
0x8848	MPLS multicast
0x8870	Jumbo Frames
Ox888E	EAP over LAN (IEEE 802.1X)
0x88E5	MAC security (IEEE 802.1AE)
0x88F7	Precision Time Protocol (IEEE 1588)

Vlan Tag Field ကတော့ Vlan Information ဖော်ပြတဲ့ Field ပဲဖြစ်ပါတယ် သူကအမြဲမပါဝင်ပါဘူး လက်ရှိသုံးနေတဲ့ Network မှာ Virtual Lan(Vlan) ကိုသုံးမယ်ဆိုရင်တော့ ၎င်း Network ထဲမှာပိုမဲ့ Frame သည်ဘယ် vlan ဆီကိုပို့ရမလဲဆိုတာကို ၎င်း field ကိုကြည့်ပြီးဆုံးဖြတ်ပါတယ် သူမှာ 4Byte ပါဝင်ပြီး TPID(2Byte) နဲ့ TCI(2Byte) တို့ဖြစ်ကြပါတယ်။

Data This is a packet sent down to the Data Link layer from the Network layer. The size can vary from 64 to 1,500 bytes.Data ကိုနောက်တစ်မျိုး Payload လို့လဲခေါ် ပါတယ် သူ့ထဲမှာ User Data အပြင် IP Header,Destination IP ,Source IP Destination TCP port,Source TCP port,TCP Header , TCP/IP CRC value များပါဝင်ပါတယ်။

Frame Check Sequence (FCS) FCS is a field that is at the end of the frame and is used to store the CRC.

Ethernet Frame

- A Ethernet Frame is a physical layer communications transmission, comprised of 6 fields which are assembled to transmit any higher layer protocol over an Ethernet fabric.
- A IP Packet is a formatted unit of data which can be transmitted across numerous physical topologies including Ethernet, Serial, SONET and ATM.
- The important thing to understand is that a frame always refers to the physical medium.
 References to enhancements in the physical medium like larger than standard Ethernet frames are called "Jumbo Frames", not "Jumbo Packets"

A IEEE 802.3 Ethernet Frame is composed of 6 segments which are described in detail below.

Preamble:

The 802.3 specification divides the preamble into two sections. The first section is a 56 bit (7 byte) field plus a 1 byte field called the starting frame delimiter (SFD). The preamble is not typically used in modern Ethernet networks as its function is to provide signal start-up time for 10Mbps Ethernet signals. Modern 100Mbps, 1000Mbps or 10Gbps Ethernet use constant signalling, which avoids the need for the preamble.

The preamble is preserved for today's Ethernet transmissions speeds to avoid making any changes to the Ethernet frame format. The preamble, while listed as a part of the actual Ethernet frame is technically not part of the frame as it is added to the front of the frame by the NIC just before the frame is put on the wire. The start of frame delimiter is a 1 byte field that serves as a signal to the NIC that the data immediately following the SFD is the beginning of the actual frame.

Destination and Source Address:

These two sections of the frame are likely the most commonly understood in that they contain the MAC address for the source "transmitting system" and the destination "target system".

Type / Length

The type / length field is used to identify what higher-level network protocol is being carried in the frame (example: TCP/IP)

Data / Payload

The data / payload field is what we typically consider most important as it is the data in which we are transmitting. The diagram specifies a range between a minimum of 46 bytes and maximum of 1500 bytes. A standard Ethernet frame has a maximum payload of 1500 bytes, frames over 1500 bytes are considered Jumbo Frames.

Frame Check Sequence (CRC)

The end of the frame contains a 32 bit field which is a Cyclic Redundancy Checksum (CRC). This is a mechanism to check the integrity of a frame upon arrival at it's destination. The CRC is generated by applying a polynomial to bits which make up the frame at transmission. This same polynomial is used at the receiving station to verify the contents of the frame have not changed in

transmission

Introduction of the 802.1q VLAN tag

VLAN tagging has traditionally been used to interconnect infrastructure routers and switches. Through these VLAN tagged connections multiple VLANs can be transported across a single logical or physical link. In recent years it has become very popular to connect end-points using VLAN trunking and have a endpoint exist in multiple VLANs. An example of this includes using a NetApp FAS controller directly connected to a Ethernet switch, using VLAN tagging to isolate different protocols or users to specific VLANs. When VLAN tagging is introduced the size of the Ethernet frame expands to accommodate the VLAN tag. The following diagram depicts our Ethernet frame used in the previous example, except that it now depicts the presence of a VLAN tag.

MTU Capture:

```
Frame 14: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits)

Arrival Time: Apr 22, 2013 12:20:33.876320000 India Standard Time

Epoch Time: 1366613433.876320000 seconds

[Time delta from previous captured frame: 0.078096000 seconds]

[Time delta from previous displayed frame: 0.000000000 seconds]

[Time since reference or first frame: 0.677834000 seconds]

Frame Number: 14

Frame Length: 1514 bytes (12112 bits)

Capture Length: 1514 bytes (12112 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ip:icmp:data]

[Coloring Rule Name: ICMP]

[Coloring Rule String: icmp || icmpv6]
```

Jumbo Frames:

"With Jumbo Frames you must standardize everything to the same frame size"

Diagram depicting Jumbo Frame, without VLAN tagging

Diagram of a Jumbo Frame with VLAN tagging

9022 byte maximum Jumbo frame size with 802.1q VLAN Tag 8 bytes 6 bytes 6 bytes 4 bytes 2 bytes 9000 bytes 4 bytes Frame Check Destination VEAN Source Type / Proamble Sequence Address Address TAG Length (CRC) I byte start frame delimeter TPID TCI

The following diagram illustrates the configuration requirements for a network infrastructure which has enabled Jumbo Frames for two server VLANs, while still supporting standard frames for a legacy server VLAN and connecting a NetApp FAS controller via a VLAN Trunk.

The 802.1q VLAN tag introduces a 4 byte tag which follows the source address field in the frame. This tag is separated into two, 2 byte segments. The first 2 byte segment is the Tag Protocol Identifier (TPID). The value in the 2 byte field is always 0x8100 which simply identifies the frame as a IEEE 802.1q tagged frame. The second 2 byte segment is the Tag Control Information (TCI). The tag control information field is further segmented by the first 3 bits being used to carry priority information based on the values defined in the 802.1p standard. This field ensures that 802.1p priorities can be extended to VLANs by providing space within the tag to indicate traffic priorities. The remaining bits in the TCI contain the VLAN identifier (VID) which provides the means to uniquely identify the VLAN to which the frame is a member of.

Introducing the VLAN tag expands the maximum standard frame size to 1522 bytes.

MTU or Maximum Transmission Unit size

Windows:

```
C:>> C:>> C:>> netsh interface ipu4 show subinterfaces

HTU MediaSenseState Bytes In Bytes Out Interface

4294969295 1 0 37989 Loopback Pseudo-Interface 1 1500 1 2678506286 541840015 Local Area Connection
```

Linux:

