Vertiefung Analysis Hausaufgabenblatt Nr. 7

Jun Wei Tan* and Lucas Wollmann

Julius-Maximilians-Universität Würzburg

(Dated: December 9, 2023)

Problem 1. Seien $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ und (Z, \mathcal{C}, η) σ -endliche Maßraume. Definiere $A \otimes B \otimes C := \mathcal{A}_{\sigma}(\mathcal{A} \boxtimes \mathcal{B} \boxtimes \mathcal{C})$. Zeigen Sie:

(a) Es gilt $(A \otimes B) \otimes C = A \otimes B \otimes C = C \otimes (B \otimes C)$.

Hinweis: Betrachten Sie $\Pi_*(\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C})$ mit

$$\Pi: X \times Y \times Z \to X \times Y, \ \Pi(x,y,z) := (x,y).$$

(b) Es gilt $(\mu \otimes \nu) \otimes \eta = \mu \otimes (\nu \otimes \eta)$ auf $\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C}$.

Problem 2. Sei $x_0 \in \mathbb{R}^2$, $a < b \in \mathbb{R}$, $r : [a, b] \to [0, \infty)$ eine stetige Funktion und

$$A := \left\{ (x,y,z) \in \mathbb{R}^3 | x^2 + y^2 < r(z)^2, z \in [a,b] \right\}.$$

- (a) Bestimmen Sie $\lambda_2(B_R(x_0))$ für R>0 mittels dem Satz von Fubini.
- (b) Zeigen Sie:

$$\lambda_3(A) = \pi \int_a^b r(z)^2 \, \mathrm{d}z.$$

Proof. (a) Aus Bewegungsinvarianz der Lebesgue-Maß genügt es, $B_R(0)$ zu betrachten. Per Definition ist es definiert durch

$$x^2 + y^2 < R^2.$$

Insbesondere ist, für jedes $x \in [-1, 1]$,

$${y|(x,y) \in B_R(0)} = [-\sqrt{R^2 - x^2}, \sqrt{R^2 - x^2}]$$

Aus Satz 2.81 folgt

$$\lambda_2(B_R(0)) = \int_{-R}^R \lambda_1([-\sqrt{R^2 - x^2}, \sqrt{R^2 - x^2}]) dx$$
$$= \int_{-R}^R 2\sqrt{R^2 - x^2} dx$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Die Funktion ist Riemann-integrierbar, also wir dürfen Sätze vom Riemann-Integral verwenden. Hier integrieren wir es per Substitution. Sei $x = R \sin \theta$, $dx = R \cos \theta d\theta$. Wenn x = -R, ist $\theta = -\pi/2$ und wenn x = R ist $\theta = \pi/2$.

$$\lambda_2(B_R(0)) = \int_{-\pi/2}^{\pi/2} 2R\sqrt{1 - \sin^2\theta} R \cos\theta \, d\theta$$

$$= \int_{-\pi/2}^{\pi/2} 2R^2 \cos^2\theta \, d\theta$$

$$= 2R^2 \int_{-\pi/2}^{\pi/2} \frac{\cos 2\theta + 1}{2} \, d\theta$$

$$= 2R^2 \left[\frac{\sin 2\theta}{4} + \frac{\theta}{2} \right]_{-\pi/2}^{\pi/2}$$

$$= 2R^2 \left[\sin \pi - \sin 0 + \frac{\pi}{2} \right]$$

$$= \pi R^2$$

$$= \lambda_2(B_R(x_0))$$

(b) Wir vorher ist $(\mathbb{R}, \mathcal{L}(1), \lambda_1)$ σ -endlich. Wir können daher das Maß als Integral schreiben:

$$\lambda_3(A) = \int_{[a,b]} A_z \, d\lambda_1$$

$$= \int_{[a,b]} \pi r(z)^2 \, d\lambda_1$$

$$= \pi \int_a^b r(z)^2 \, dz \, .$$

Problem 3. Seien $a, b, c \in \mathbb{R}$ mit $c \ge |a| + |b|$. Definiere

$$E := \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 < 1, 0 \le z \le ax + by + c \}.$$

Bestimmen Sie $\lambda_3(E)$.

Problem 4. Seien $B_1 := B_1(0,0,0) \subseteq \mathbb{R}^3$ und $B_2 := B_1(0,0,1) \subseteq \mathbb{R}^3$ die offenen Kugeln mit Radius 1 um die Punkte (0,0,0) und (0,0,1). Bestimmen Sie $\lambda_3(B_1 \cap B_2)$.