Project: Image classification using CIFAR-10

Sascha Stelling

Object Recognition and Image understanding

Motivation

- Classify images using HoG features and SVM
- Classify again using CNN and softmax
- Classify again using CNN and SVM
- Compare results

Dataset: CIFAR-10

- Labeled subset of the 80 million tiny images dataset
- Contains 60.000 color images of size 32x32
- Images are labeled as one out of 10 classes
- Each class contains 6.000 images
- 50.000 training and 10.000 test images

Classification method

- HoG and SVM
- Compute HoG features and let SVM classify them
- SVM one vs all approach with linear kernel
- CNN with Softmax
- Let CNN learn the features by itself and use Softmax loss function for classification
- CNN with SVM
- Let CNN learn the features and use SVM for classification

Results

Classification example

Actual Class	Ship	Frog	Deer	Plane	Bird	Dog	Truck	Car	Horse Cat
Predicted class (CNN+SVM)	Car	Frog	Plane	Bird	Bird	Deer	Ship	Ship	Horse Frog
Predicted class (HOG+SVM)	Car	Frog	Bird	Plane	Bird	Cat	Truck	Dog	Horse Cat
Predicted class (HOG+Softmax)	Ship	Frog	Bird	Plane	Bird	Dog	Car	Car	Dog Cat

Accuracies

Classification	Accuracy
HOG+SVM	45%
CNN+SVM	32%
CNN+Softmax	51%

Evaluation

- CNN+Softmax was expected to get the highest accuracy since it is a commonly used approach
- CNN+SVM would be expected to get higher accuracy than HoG+SVM
- HoG features seem to be better feature descriptor than simply learning them