Apollo Future红绿灯方案设计

目录

- 一、方案设计思路
- 1. 短期方案:
- 2. 中期方案:
- 3. 长期方案:
- 二、方案详细设计
- 1. 短期方案:
- 1.1 框架流程图:
- 数据流
- 1.2 流程图说明:
- 1.3 数据需求:
- 1.4排期RoadMap:
- 1.5 预期性能变化:
- 2. 中期方案:
- 2.1 框架流程图:
- 2.2 流程图说明:
- 2.3 数据需求:
- 2.4排期RoadMap:
- 3. 长期方案:
- 3.1 框架流程图:
- 3.2 可尝试方案:
- 三、benchmark指标

一、方案设计思路

1. 短期方案:

1. 功能: 交付探路者全功能, 并新增支持地图降级(去高程)

2. 框架: 重构框架, 适配新计算框架, 并减少不合理冗余逻辑

3. 输出: 统一红绿灯输出方式,虚拟表达,全虚拟灯输出

4. 目标: 7月底上车测试, Q3实现打平探路者效果

2. 中期方案:

1. learning化:在短期方案基础上,使用端到端的大模型,减少冗余后处理策略,整体提升红绿灯感知效果

2. 目标: 争取实现12月上车测试, 2023Q1打平探路者效果

3. 长期方案:

1. 思路:长期探索,测试验证新方案,结合时序和端到端learning化进一步提升红绿灯感知效果

二、方案详细设计

1. 短期方案:

1.1 框架流程图:

Obstacle

Car status

数据流

1.2 流程图说明:

1. 检测:

- a. 包含全图检测和局部ROI检测两种方式。
 - i. 全图检测可实现对无地图标注红绿灯和有地图标注但无准确3D信息的红绿灯进行检测,并修正更精确的3D位置和类别信息。
 - ii. 局部ROI检测实现在获得较为精确3D位置的红绿灯后,投影使用更大分辨率的图像进行局部检测,以提升检测精度,同时能够避免所有图进行 全图检测,减少资源消耗。
- b. 其中全图选图和全图检测模块为新增模块。
 - i. 全图选图模块实现选择合适合理的图进行全图检测;
 - ii. 全图检测模块为全图检测的具体过程,使用全图检测模型,支持红绿灯、倒计时、移动灯检测(合并三个模型),输出红绿灯包含2D、3D、类别、属性等信息。
- c. 预期效果:在弱地图信息或无标注的情况下,实现较精准的红绿灯检测,输出红绿灯2D、3D、类别、属性等信息.

2. 跟踪:

- a. 主要包含匹配跟踪、时序平滑、去重三个模块。
 - i. 匹配跟踪:实现对已跟踪的红绿灯tracker和当前帧的检测结果objects进行匹配关联;
 - ii. 时序平滑:对已关联上的红绿灯tracker进行3D信息平滑和激活,同时未关联上的tracker和objects进行更新、删除和新增tracker的操作。
 - iii. 去重:最后在进行识别前,对全图跟踪器tracker结果,和ROI匹配结果进行相同灯去重,避免影响后处理,及误判现实变更。
- b. 与探路者差异:
 - i. 探路者全基于高精地图标注红绿灯,已经有较为准确的3D标注,对应id、形状语义等信息,因此只需要做简单的红绿灯与当前帧检测结果的匹配关联。
 - ii. Future无准确的红绿灯信息,且需要支持无地图标注红绿灯的报出,因此对红绿灯除全图检测结果以外,还需要进行时序的跟踪平滑,一方面 稳定给出红绿灯的id,另一方面便于基于时序平滑模型误检、漏检以及位置、形状语义和颜色信息。因此需要升级匹配跟踪算法,并对不同图 像和不同检测方式的检测红绿灯目标进行去重复,以实现稳定报出效果。
- c. 预期效果: 输入当前帧模型所有检测框, 输出所有真实红绿灯的当前帧的观测

3. 后处理:

- a. 主要包含: Revise、路口绑定和虚拟表达三个模块
 - i. 虚拟灯说明:任何路口无论真实红绿灯的数量和形状如何,都可以表达为左转、直行、右转、掉头四个方向,通过四个方向的红绿灯颜色表达 当前各方向的可通行状态,既能有效与不同路口的红绿灯物理状态解绑,又能有效指导主车行驶。

- ii. Revise:对红绿灯进行时序的形状和颜色跟踪,一方面平滑模型输出抖动,另一方面判断故障、闪烁状态。
- iii. 绑定路口:基于红绿灯的3D位置、和高精度图标注的路口信息、将无地图标注红绿灯绑定对应路口id。
- b. 与探路者差异:
 - i. 探路者报出为真实灯和虚拟灯并行报出方案, 现实变更目的是扩充能力边界, 要求低误报
 - ii. Future,对两种报出方式进行统一为虚拟灯形式,要求及时、准确
- 4. 推理链路:
 - a. 使用路口所有社会车行驶信息和行驶意图、辅助灯(辅路灯、行人灯、非机动车灯)、主车行驶状态综合推理
 - b. 与探路者差异:
 - i. 探路者:真实灯存在lane绑定信息,可利用绑定信息推理对应灯,如路口圆饼灯同时绑定了左转、掉头和直行车道,如社会车正在掉头,可推 理当前圆饼灯颜色。
 - ii. Future:对无lane绑定的红绿灯,社会车在掉头车道行驶时,只能用于推理掉头方向的颜色。

1.3 数据需求:

- 1. 全图模型3D:
 - a. 基于现有3D标注自动标注生成基础3D红绿灯数据>30W帧(已交付)
 - b. 7月增加大路口、侧向灯数据>2W帧(2d送标@挖掘,3D自动标注@石庭敏)

1.4排期RoadMap:

- 1. 打平探路者标准:
 - a. 基于所有探路者base和专项端到端测试集测试效果对比,无不合理恶化
- 2. 时间节点、功能效果和对应验收标准:

时间节点	7月8	7月15	7月28	7月29	8月	9月	Q4
功能效果	1. 主链路端到端线下跑通	1. 新推理链路线 下跑通	1.效果优化达到 上车状态	1. 上车路测	1. 地图去高适配 2. 合并检测模型 和适配 3. 夜间效果适配	1. 迭代优化	1. 继续基于路测 问题迭代优化
验收标准	1. 自测,端到端 正常输出红绿灯 颜色,基本效果 符合预期	1.自测,常用推 理功能跑通,效 果符合预期	 常规测试集 效果基本符 合预期 代码合入 master 	1. 打包上车,常 规路口正常通过	 常规测试集 效果基本符 合预期 代码合入并 上车 	1.效果打平探路 者	

3. 具体模块排期

- a. 主链路端到端跑通【~7.8】:
 - i. 基础框架+选图逻辑 ~6.27
 - ii. 全图模型2D+3D~6.30
 - iii. 跟踪pipeline~7.5
 - iv. 跟踪后处理~7.5
 - v. 联调跑通~7.8
- b. 新框架推理功能【~7.15】:
 - i. 推理链路逻辑开发~7.11
 - ii. 虚拟灯颜色融合逻辑开发 ~7.15
- c. 单测、评测与整体效果优化:~7.28
- d. 上车路测:【7.29】
- e. 补充地图去高适配:【~8.31】(需求地图提前提供地图7月)
 - i. 投影去高逻辑

- ii. 3D信息融合
- iii. 各模块效果适配调优
- f. 检测(红绿灯、移动灯、倒计时)模型合并:【~8.31】
 - i. 模型指标效果打平
 - ii. 后处理策略适配
- g. 夜间模型效果适配:【~8.31】
- h. 迭代优化打平探路者效果:【~9.30】

1.5 预期性能变化:

- 1. 7月29上车后,因新增全图检测模型,预期增加平均时延12ms,GPU显存2G左右
- 2. 8月模型合并后, 预期时延降低大于10ms, GPU显存减少>? (待评估补充)

2. 中期方案:

2.1 框架流程图:

2.2 流程图说明:

- 1. 检测:
 - a. 大检测模型:输入多张图像,输出红绿灯(包含3Dbbox、图像2Dbbox和遮挡属性)
 - b. 优势:
 - i. 多模型合并,优化性能(短期方案分全图和ROI检测模型及2D和3D分模型输出,中期方案为1个模型)
 - ii. 全视野检测,端到端输出结果,无选图、匹配等冗余后处理

- iii. 多图视野融合, 信息互相校验, 提升2D和3D精度
- c. 模型方案流程图:

2. 识别:

- a. 大识别模型:输入2d框,输出灯属性(灯头box,颜色,形状,数字)
- b. 优势:
 - i. 多模型合并,优化性能(识别、灯头、倒计时合并)
 - ii. 融合位置信息,灯头颜色更准

- iii. 全learning化,无冗余后处理策略
- c. 模型方案流程图:

- 3. 后处理:
 - a. 与短期方案差异:
 - i. 新增位置匹配跟踪
 - ii. 无多图融合
- 4. 推理链路: 与短期方案相同

2.3 数据需求:

- 1. 数据标注形式: 前向六幅图联合标注红绿灯, 并输出3D gt
- 2. 数据量需求:达到上线标准预计总共60W帧(6幅图标注算一帧)
- 3. 数据标注要求:
 - a. 6幅图全部完全标注数据>20W帧, 其中常规数据>10W帧, 大路口/左转待转场景>10W帧
 - i. 2D:
 - 1. 基于近期旧数据补充缺失相机图像补标
 - 2. 近期数据新送标

- 3. 需同ID属性(自动标注生成)
- ii. 3D: 基于地图投影自动化标注
- b. 其他部分标注数据>40W帧
 - i. 2D:
 - 1. 可由现有标注数据中找到前向6相机同步帧,无同步帧数据,用黑图补充
 - 2. 需同ID属性(自动标注生成)
 - ii. 3D: 基于地图投影自动化标注
- 4. 数据需求排期:
 - a. 7月: 部分标注数据10W帧,全标注数据4W帧(常规2W,大路口2W)
 - b. 8月: 部分标注30W帧,全标注数据8W帧(常规4W,大路口4W)
 - c. 9月:全标注数据8W帧(常规4W,大路口4W)

2.4排期RoadMap:

- 1. 打平短期方案标准:
 - a. 基于所有短期方案base和专项端到端测试集测试效果对比,无不合理恶化
- 2. 时间节点、功能效果和对应验收标准:

时间节点	7月	8月	9月	10月	11月	12月	2023Q1
功能效果	1.数据标注规则 确定 2. 返回第一批标 注数据	1.走通第一版模 型训练baseline	1.模型效果优化, 打平模型效果指 标	1.线下跑通端到 端效果输出端到 端指标	1. 各模块迭代优化	1.上车路测	1. 迭代优化
验收标准	1. 数据验收通过	1. 模型训练走 通 2. 确定模型指 标baseline	1. 模型在评测 集中打平短 期方案指标	1. 自测,端到端 正常输出红绿灯 颜色,基本效果 符合预期	1. 常规测试集 效果基本符 合预期	 常规测试集 效果进一步 优化 代码合入 master 	1. 效果打平短期 方案

3. 具体模块排期

框架:

• 框架~8月12

数据:

• 明确标注规则及标注方案确认

发起标注需求及相应批次排期 @祁旭翔 @石庭敏 7月12

• 第一批数据返回 @石庭敏7月

模型:

检测:

新模型方案适配红绿灯特性,走通模型训练

7月29日

初步调优效果,并搭建评测体系,跑出第一版指标baseline

8月26日

• 线上推理部署跑通

9月30日

• 效果进一步调优,提升模型效果,达到上车状态

11月25日

识别:

大识别模型走通第一版模型训练

8月26日

• 线上推理部署跑通

9月30日

• 效果进一步调优,提升模型效果,达到上车状态 11月25日

后处理:

时序跟踪重构与开发

8月26日

7月8

端到端跑通联调及评测体系构建

10月28日

迭代优化准备上车

11月25日

3. 长期方案:

3.1 框架流程图:

3.2 可尝试方案:

1. 方案1: 增加LSTM时序特征,并尝试合并检测识别(前后帧特征隐式对齐)

2. 方案2: 类似BEVDET4D (前后帧特征显式对齐)

2025/7/23 15:27 Apollo Future红绿灯方案设计

三、benchmark指标

1. 各模型离散帧评测集+端到端评测集,用于后续对比评测新方案与探路者效果差异

2. 模型评测集: 各模型维护的base评测集+专项评测集

3. 端到端评测集:

a. 依赖: Gt处理, 转成虚拟灯

b. 具体端到端测试集合

1	序 号	评测场景类型	评测标准	评测版本	评测指标
2	1	白天normal	case通过率、灯色acc	3.6.5.1	699/700
3	2	红黄误识别	case通过率、灯色acc	3.6.5.1	57/61
4	3	误报现实变更	case通过率	3.6.5.1	186/194
5	4	现实变更	case通过率	3.6.5.1	76% (38/50)
6	5	黑灯误识别	case通过率、灯色acc	3.6.5.1	3/17
7	6	横灯专项	case通过率、灯色acc	3.6.1.3	48/61
8	7	上海双联竖灯	case通过率、灯色acc	3.6.1.3	12/31
9	8	移动灯	case通过率	2.5.148.1	170/171
10	9	遮挡推理	case通过率	2.5.155.1	68/69
11	10	逆反光	case通过率	2.5.155.1	141/202
12	11	灯头专项	case通过率	3.6.1.3	147/154
13	12	夜间normal	case通过率、灯色acc	3.6.1.3	136/161
14	13	亦庄环岛	case通过率	2.5.142.1	87/87
15	14	云代驾事件	case通过率	3.6.1.3	5/5

4. 新增新方案能优化case: **三**新框架方案能解决问题 (持续补充)