

Relations Ex 1.2 Q13

$$S = \left\{ \left(a,b\right) : \quad \mathsf{a}^2 + b^2 = 1 \right\}$$

Now,

Reflexivity: Let
$$a = \frac{1}{2} \in \mathbb{R}$$

Then,
$$a^2 + a^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \neq 1$$

⇒ S is not reflexive

Hence, S in not an equivalenve relation on R

Relations Ex 1.2 Q14

We have, Z be set of integers and Z_0 be the set of non-zero integers. $R = \{(a,b)\{c,d\}: ad=bc\}$ be a relation on $z \times z_0$

۷ow,

Reflexivity: $(a,b) \in Z \times Z_0$

- ⇒ ab = ba
- \Rightarrow $((a,b),(a,b)) \in R$
- ⇒ R is reflexive

Symmetric: Let $((a,b),(c,d)) \in R$

- \Rightarrow ad = b
- ⇒ cd = da
- \Rightarrow $((c,d),(a,b)) \in R$
- ⇒ R is symmetric

Transitive: Let (a,b), $(c,d) \in R$ and (c,d), $(e,f) \in R$

- \Rightarrow ad = bc and cf = de
- $\Rightarrow \frac{a}{b} = \frac{c}{d} \text{ and } \frac{c}{d} = \frac{e}{f}$
- $\Rightarrow \frac{\partial}{\partial t} = \frac{\theta}{f}$
- ⇒ af = be

We have, $\,\,$ Z be set of integers and Z_{0} be the set of non-zero integers.

$$R = \{(a,b)(c,d): ad = bc\}$$
 be a relation on Z and Z_0 .

Now,

Reflexivity: $(a,b) \in Z \times Z_0$

$$\Rightarrow$$
 $((a,b),(a,b)) \in R$

⇒ R is reflexive

Symmetric: Let $((a,b),(c,d)) \in R$

$$\Rightarrow$$
 ad = bc

$$\Rightarrow$$
 $((c,d),(a,b)) \in R$

⇒ R is symmetric

Transitive: Let $(a,b),(c,d) \in R$ and $(c,d),(e,f) \in R$

$$\Rightarrow$$
 ad = bc and cf = de

$$\Rightarrow \qquad \frac{a}{b} = \frac{c}{d} \text{ and } \frac{c}{d} = \frac{e}{f}$$

$$\Rightarrow \frac{\partial}{\partial h} = \frac{\theta}{f}$$

$$\Rightarrow \qquad \big(a,b\big)\big(e,f\big)\in R$$

⇒ R is transitive

Hence, R is an equivalence relation on $Z \times Z_0$

Relations Ex 1.2 Q15

R and S are two symmetric relations on set A

(i) To prove: $R \cap S$ is symmetric Let $(a,b) \in R \cap S$

$$\Rightarrow$$
 $(a,b) \in R$ and $(a,b) \in S$

$$\Rightarrow$$
 $(b,a) \in R$ and $(b,a) \in S$ $[\because R \text{ and } S \text{ are symmetric}]$

$$\Rightarrow$$
 $(b,a) \in R \land S$

 \Rightarrow $R \cap S$ is symmetric

To prove: $R \cup S$ is symmetric. Let $\{a,b\} \in R \cup S$

$$\Rightarrow$$
 $(a,b) \in R$ or $(a,b) \in S$

$$\Rightarrow$$
 $(b,a) \in R$ or $(b,a) \in S$ $[\because R \text{ and } S \text{ are symmetric}]$

$$\Rightarrow$$
 $(b,a) \in R \cup S$

 \Rightarrow $R \cup S$ is symmetric

(ii) R and S are two relations on A such that R is reflexive.

To prove: $R \cup S$ is reflexive

Suppose $R \cup S$ is not reflexive.

This means that there is an $a \in R \cup S$ such that $(a, a) \notin R \cup S$

Since $a \in R \cup S$,

∴ a∈Rora∈S

If
$$a \in R$$
, then $(a,a) \in R$ $[\because R \text{ is reflexive}]$
 $\Rightarrow (a,a) \in R \cup S$

Hence, $R \cup S$ is reflexive

Relations Ex 1.2 Q16

We will prove this by means of an example.

Let $A = \{a, b, c\}$ be a set and

$$R = \{(a,a)(b,b)(c,c)(a,b)(b,a)\} \text{ and }$$

$$S = \{(a, a)(b, b)(c, c)(b, c)(c, b)\}$$
 are two relations on A

Clearly R and S are transitive relation on A

Now,
$$R \cup S = \{(a,a)(b,b)(c,c)(a,b)(b,a)(b,c)(c,b)\}$$

Here, $(a,b) \in R \cup S$ and $(b,c) \in R \cup S$
but $(a,c) \notin R \cup S$

 \therefore $R \cup S$ is not transitive

******* END *******