Math Review-1

For ENGN8535

Math for ENGN8535

Subjects

- Linear Algebra (Matrix computation, Matrix calculus)
- Probability theory (and statistical inference)
- Numerical Optimisation
- Python programming (Numpy)
- > Example applications in Data Analysis:

 Ranking and Recommendation algorithms.

Some Calculus

Derivatives

- For a single valued function $f(x_1,...,x_n):\mathbb{R}^n \to \mathbb{R}$
 - Partial derivative of x_i : $\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x + he_i) f(x)}{h}$
 - Gradient of f is $\nabla f(x) = \begin{pmatrix} \partial f/\partial x_1 \\ \partial f/\partial x_2 \\ \vdots \\ \partial f/\partial x_n \end{pmatrix}$
 - Directional derivatives: for ||p||=1

$$D(f(x), p) = \lim_{h \to 0} \frac{f(x+hp) - f(x)}{h} = \nabla f(x)^T p.$$

Hessian

• : the second order derivative of *f*

$$\nabla^{2} f(x) = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}(x) \end{pmatrix}$$

• If f is twice continuously differentiable, Hessian is symmetric.

Taylor's theorem

• Mean value theorem: for $\alpha \in (0,1)$

$$f(x+p) = f(x) + \nabla f(x+\alpha p)^{T} p$$

• Taylor's theorem: for $\alpha \in (0,1)$

$$f(x+p) = f(x) + \nabla f(x)^T p + \frac{1}{2} p^T \nabla^2 f(x+\alpha p) p$$

Vector valued function

• For a vector valued function $r: \mathbb{R}^n \to \mathbb{R}^m$

$$r(x) = \begin{pmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_m(x_1, x_2, \dots, x_n) \end{pmatrix}$$

The Jacobian of r at x is

$$J(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_n}(x) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x) \end{pmatrix} = \begin{pmatrix} \nabla f_1(x)^T \\ \nabla f_2(x)^T \\ \vdots \\ \nabla f_m(x)^T \end{pmatrix}$$

Convex function

• A function f is convex if for $\alpha \in [0,1]$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

• A function *f* is concave if −*f* is convex

Lipschitz continuity

• A function f is said to be Lipschitz continuous on some set $\mathcal N$ if there is a constant L>0 such that

$$||f(x)-f(y)|| \le L ||x-y||$$
 for all $x,y \in \mathcal{N}$

• If function f and g are Lipschitz continuous on \mathcal{N} , f+g and fg are Lipschitz continuous on \mathcal{N} .

• ENGN8535 2021 S1: Math Review-1

Linear Algebra

Basic concepts

- Vector in Rⁿ is an ordered set of n real numbers.
 - e.g. v = (1,6,3,4) is in R^4
 - A column vector:
 - A row vector:
- m-by-n matrix is an object in (1 of R^{mxn} with m rows and n columns, each entry filled with a (typically) real number:

$$\begin{pmatrix}
1 & 2 & 8 \\
4 & 78 & 6 \\
9 & 3 & 2
\end{pmatrix}$$

Basic concepts

Vector norms: A norm of a vector ||x|| is informally a measure of the "length" of the vector.

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Common norms: L₁, L₂ (Euclidean)

$$||x||_1 = \sum_{i=1}^n |x_i| \qquad ||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

L_{infinity}

$$||x||_{\infty} = \max_i |x_i|$$

Vector

• A column vector
$$x \in \mathbb{R}^n$$
 is denoted as

• A column vector
$$x \in \mathbb{R}^n$$
 is denoted as $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$
• The transpose of x is $x^T = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}^{\binom{n}{2}} x_n$
• The inner product of $x,y \in \mathbb{R}^n$ is $x^Ty = \sum_{i=1}^n x_iy_i$
• Vector norm

- Vector norm
 - 1-norm

$$||x||_1 = \sum_{i=1}^n |x_i|$$

• 2-norm

$$||x||_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$$

• ∞-norm

$$||x||_{\infty} = \max_{i=1...n} |x_i|$$

Useful inequalities involving norms

Proposition 4.2. The following inequalities hold for all $x \in \mathbb{R}^n$ (or $x \in \mathbb{C}^n$):

$$||x||_{\infty} \le ||x||_{1} \le n||x||_{\infty},$$

$$||x||_{\infty} \le ||x||_{2} \le \sqrt{n}||x||_{\infty},$$

$$||x||_{2} \le ||x||_{1} \le \sqrt{n}||x||_{2}.$$

Matrix

• A matrix
$$A \in \mathbb{R}^{m \times n}$$
 is
$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix}$$

• The transpose of
$$A$$
 is
$$A^{T} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{m1} \\ A_{12} & A_{22} & \cdots & A_{m2} \\ \vdots & \vdots & \cdots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{mn} \end{pmatrix}$$
• Matrix A is symmetric if

- Matrix A is symmetric if
- Matrix norm: $||A||_p = \max ||Ax||_p$ for $||x||_p = 1$
- $P=1 \rightarrow L1 norm$
- P=2 → Frobenius norm
- P= infinity → L-infinity norm.

Matrix norms

Matrix norms are functions $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ that satisfy the same properties as vector norms. Let $A \in \mathbb{R}^{m \times n}$. Here are a few examples of matrix norms:

- The Frobenius norm: $||A||_F = \sqrt{\text{Tr}(A^T A)} = \sqrt{\sum_{i,j} A_{i,j}^2}$
- The sum-absolute-value norm: $||A||_{sav} = \sum_{i,j} |X_{i,j}|$
- The max-absolute-value norm: $||A||_{mav} = \max_{i,j} |A_{i,j}|$

Basic concepts

We will use lower case letters for vectors The elements are referred by x_i.

• Vector dot (inner) product:
$$x^{T}y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ x_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^{n} x_i y_i.$$

If $u \cdot v = 0$, $||u||_2! = 0$, $||v||_2! = 0 \rightarrow u$ and v are orthogonal If $u \cdot v = 0$, $||u||_2 = 1$, $||v||_2 = 1 \rightarrow u$ and v are orthonormal

Vector outer product (direct product):

$$xy^{T} \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \cdots & y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \cdots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \cdots & x_{2}y_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m}y_{1} & x_{m}y_{2} & \cdots & x_{m}y_{n} \end{bmatrix}$$

Basic concepts

We will use upper case letters for matrices. The elements are referred by Aij.

Matrix product:

$$A \in \mathbb{R}^{m \times n} \qquad B \in \mathbb{R}^{n \times p}$$

$$C = AB \in \mathbb{R}^{m \times p}$$

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

e.g.
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$
$$AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

Special matrices

$$\begin{pmatrix} a & b & 0 & 0 \\ c & d & e & 0 \\ 0 & f & g & h \\ 0 & 0 & i & i \end{pmatrix}$$
 tri-diagonal
$$\begin{pmatrix} a & 0 & 0 \\ b & c & 0 \\ d & e & f \end{pmatrix}$$
 lower-triangular

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$
 I (identity matrix)

Basic concepts

Transpose

e.g.
$$\begin{pmatrix} a \\ b \end{pmatrix}^T = \begin{pmatrix} a & b \end{pmatrix}$$

• $(A^T)^T = A$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

• $(AB)^T = B^T A^T$
• $(A + B)^T = A^T + B^T$

Linear independence

- A set of vectors is linearly independent if none of them can be written as a linear combination of the others.
- Vectors $v_1,...,v_k$ are linearly independent if $c_1v_1+...+c_kv_k=0$

implies
$$c_1 = ... = c_k = 0$$

$$\begin{pmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

e.g.
$$\begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 (u,v)=(0,0), i.e. the columns are linearly independent.

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$ $x_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$ $\mathbf{x3} = -2\mathbf{x1} + \mathbf{x2}$

Span of a vector space

- If all vectors in a vector space may be expressed as linear combinations of a set of vectors $v_1,...,v_k$, then $v_1,...,v_k$ spans the space.
- The cardinality of this set is the dimension of the vector space.

 A basis is a maximal set of linearly independent vectors and a minimal set of spanning vectors of a vector space

Rank of a Matrix

- rank(A) (the rank of a m-by-n matrix A) is
 - The maximal number of linearly independent columns
 - =The maximal number of linearly independent rows
 - =The dimension of col(A)
 - =The dimension of row(A)
- If A is n by m, then
 - rank(A)<= min(m,n)
 - If n=rank(A), then A has full row rank
 - If m=rank(A), then A has full column rank

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$$

Inverse of a matrix

- Inverse of a square matrix A, denoted by A⁻¹ is the *unique* matrix s.t.
 - AA⁻¹ = A⁻¹ A = I (identity matrix)
- If A⁻¹ and B⁻¹ exist, then
 - $(AB)^{-1} = B^{-1}A^{-1}$,
 - $(A^T)^{-1} = (A^{-1})^T$
- For orthonormal matrices
- For diagonal matrices

$$\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$$
$$\mathbf{D}^{-1} = \operatorname{diag}\{d_1^{-1}, \dots, d_n^{-1}\}$$

Matrix-vector multiplication

$$S = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 has eigenvalues 3, 2, 0 with corresponding eigenvectors

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

On each eigenvector, S acts as a multiple of the identity matrix: but as a different multiple on each.

Any vector (say $x = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$ can be viewed as a combination of the eigenvectors: $\begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$ $x = 2v_1 + 4v_2 + 6v_3$

Matrix-vector multiplication

• Thus a matrix-vector multiplication such as Sx (S, x as in the previous slide) can be rewritten in terms of the eigenvalues/vectors:

$$Sx = S(2v_1 + 4v_2 + 6v_3)$$

$$Sx = 2Sv_1 + 4Sv_2 + 6Sv_3 = 2\lambda_1 v_1 + 4\lambda_2 v_2 + 6\lambda_3 v_3$$

- Even though x is an arbitrary vector, the action of S on x is determined by the eigenvalues/vectors.
- Suggestion: the effect of "small" eigenvalues is small.

Matrix calculus

	Scalar	Vector	Matrix
Scalar	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}x} = \left[\frac{\partial y_i}{\partial x}\right]$	$\frac{\mathrm{d}\mathbf{Y}}{\mathrm{d}x} = \left[\frac{\partial y_{ij}}{\partial x}\right]$
Vector	$\frac{\mathrm{d}y}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial y}{\partial x_j}\right]$	$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial y_i}{\partial x_j}\right]$	
Matrix	$\frac{\mathrm{d}y}{\mathrm{d}\mathbf{X}} = \left[\frac{\partial y}{\partial x_{ji}}\right]$		

By Thomas Minka. Old and New Matrix Algebra Useful for Statistics

Examples

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^T$$

$$\frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{b}}{\partial \mathbf{X}} = \mathbf{b} \mathbf{a}^T$$

$$\frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{a}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^T$$

$$\frac{\partial \mathbf{x}^T \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{B} + \mathbf{B}^T) \mathbf{x}$$

http://matrixcookbook.com/

Eigenvalues & Eigenvectors

- A scalar λ is an eigenvalue of an $n \times n$ matrix A if there is a nonzero vector x such that $Ax = \lambda x$.
 - Vector x is called an eigenvector.
- Matrix A is symmetric positive definite (SPD) if $A^{T}=A$ and all its eigenvalues are positive.
- If A has n linearly independent eigenvectors, A can have the eigen-decomposition: $A = X\Lambda X^{-1}$.
 - \bullet Λ is diagonal with eigenvalues as its diagonal elements
 - Column vectors of X are corresponding eigenvectors

Eigenvalues & Eigenvectors

• **Eigenvectors** (for a square $m \times m$ matrix S)

Example

$$\begin{pmatrix} 6 & -2 \\ 4 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

How many eigenvalues are there at most?

$${f S}{f v}=\lambda{f v}\iff ({f S}-\lambda{f I})\,{f v}={f 0}$$
 only has a non-zero solution if $|{f S}-\lambda{f I}|=0$

this is a m-th order equation in λ which can have at most m distinct solutions (roots of the characteristic polynomial) - <u>can be</u> complex even though **S** is real.

Eigenvalues & Eigenvectors

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal

$$Sv_{\{1,2\}} = \lambda_{\{1,2\}}v_{\{1,2\}}$$
, and $\lambda_1 \neq \lambda_2 \implies v_1 \bullet v_2 = 0$

All eigenvalues of a real symmetric matrix are real.

for complex
$$\lambda$$
, if $|S - \lambda I| = 0$ and $S = S^T \implies \lambda \in \Re$

All eigenvalues of a positive semidefinite matrix are non-negative

$$\forall w \in \Re^n, w^T S w \ge 0$$
, then if $S v = \lambda v \Rightarrow \lambda \ge 0$

Example

• Let

$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \leftarrow \boxed{\text{Real, symmetric.}}$$

Then

$$S - \lambda I = \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \Rightarrow (2 - \lambda)^2 - 1 = 0.$$

- The eigenvalues are 1 and 3 (nonnegative, real).

Eigen/diagonal Decomposition

- Let $S \in \mathbb{R}^{m \times m}$ be a square matrix with m linearly independent eigenvectors (a "non-defective" matrix)
- Theorem: Exists an eigen decomposition
 - (cf. matrix diagonalization theorem) $\mathbf{S} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1}$ diagonal
- Columns of *U* are eigenvectors of *S*
- Diagonal elements of Λ are eigenvalues of S

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_m), \ \lambda_i \ge \lambda_{i+1}$$

Unique

for

distinct

eigen-

values

Diagonal decomposition: why/how

Let
$${m U}$$
 have the eigenvectors as columns: $U = egin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$

Then, **SU** can be written

$$SU = S \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} = \begin{bmatrix} \lambda_1 v_1 & \dots & \lambda_n v_n \end{bmatrix} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \dots & \lambda_n \end{bmatrix}$$

Thus $SU=U\Lambda$, or $U^{-1}SU=\Lambda$

And $S=U \Lambda U^{-1}$.

Diagonal decomposition - example

Recall
$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}; \lambda_1 = 1, \lambda_2 = 3.$$

The eigenvectors
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ form $U = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

Inverting, we have

$$U^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$$
 Recall UU⁻¹ =1.

Recall
$$UU^{-1} = 1$$
.

Then,
$$S=U \Lambda U^{-1} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1/2 & -1/2 \\ -1 & 1 & 0 & 3 & 1/2 & 1/2 \end{bmatrix}$$

Example continued

Let's divide \boldsymbol{U} (and multiply \boldsymbol{U}^{-1}) by $\sqrt{2}$

Then, **S=**
$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$U \qquad A \qquad U^{T}$$

Symmetric Eigen Decomposition

- If $\mathbf{S} \in \mathbb{R}^{m \times m}$ is a symmetric matrix:
- Theorem: Exists a (unique) eigen decomposition $S = Q\Lambda Q^T$
- where Q is orthogonal:
 - $Q^{-1} = Q^T$
 - Columns of Q are normalized eigenvectors
 - Columns are orthogonal.
 - (everything is real)

Spectral decomposition

- If A is real and symmetric, all its eigenvalues are real, and there are n orthogonal eigenvectors.
- The spectral decomposition of a symmetric matrix A is $A = Q \Lambda Q^{T}$.
 - Λ is diagonal with eigenvalues as its diagonal elements
 - Q is orthogonal, i.e. $Q^{T}Q = QQ^{T} = I$.
 - Column vectors of Q are corresponding eigenvectors.

Exercise

• Examine the symmetric eigen decomposition, if any, for each of the following matrices:

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \quad \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix}$$

Singular Value Decomposition (SVD)

- The singular values of an $m \times n$ A are the square roots of the eigenvalues of A^TA .
- Any matrix A can have the singular value decomposition (SVD): $A=U\sum V^{T}$.
 - Σ is diagonal with singular values as its elements.
 - U and V are orthogonal matrices.
 - The column vectors of *U* are called left singular vectors of *A*; the column vectors of *V* is called the right singular vector of *A*.

Singular Value Decomposition

For an $m \times n$ matrix \mathbf{A} of rank r there exists a factorization (Singular Value Decomposition = SVD) as follows:

The columns of U are orthogonal eigenvectors of AA^{T} .

The columns of V are orthogonal eigenvectors of A^TA .

Eigenvalues $\lambda_1 \dots \lambda_r$ of $\mathbf{A}\mathbf{A}^T$ are the eigenvalues of $\mathbf{A}^T\mathbf{A}$.

$$\sigma_{i} = \sqrt{\lambda_{i}}$$

$$\Sigma = diag(\sigma_{1}...\sigma_{r})$$
 Singular values.

Singular Value Decomposition

Illustration of SVD dimensions and sparseness

SVD example

Let
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Thus m=3, n=2. Its SVD is

$$\begin{bmatrix} 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Typically, the singular values arranged in decreasing order.

Low-rank Approximation

- SVD can be used to compute optimal low-rank approximations.
- Approximation problem: Find A_k of rank k such that

$$A_k = \min_{X: rank(X) = k} \left\| A - X \right\|_{F} \leftarrow \text{Frobenius norm}$$

$$\|\mathbf{A}\|_F \equiv \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}.$$

 A_k and X are both $m \times n$ matrices.

Typically, want $k \ll r$.

Low-rank Approximation

Solution via SVD

$$A_k = U \operatorname{diag}(\sigma_1, ..., \sigma_k, 0, ..., 0)V^T$$
 set smallest r-k singular values to zero

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^T - column notation: sum of rank 1 matrices$$

Approximation error

- How good (bad) is this approximation?
- It's the best possible, measured by the Frobenius norm of the error:

$$\min_{X:rank(X)=k} ||A - X||_F = ||A - A_k||_F = \sigma_{k+1}$$

where the σ_i are ordered such that $\sigma_i \geq \sigma_{i+1}$.

Suggests why Frobenius error drops as *k* increased.

C. Eckart, G. Young, *The approximation of a matrix by another of lower rank*. Psychometrika, 1, 211-218, 1936.

SVD Low-rank approximation

- Given a term-doc matrix A of m = 50000, n = 10 million (and rank close to 50000).
- We can construct an approximation A_{100} with rank 100.
 - Of all rank 100 matrices, it would have the lowest Frobenius error.
- Great ... but why would we??
- Answer: Latent Semantic Document Indexing, Movie Recommendation,...

Eigen Value Decomposition

- Any symmetric matrix A can be decomposed as A=UDU^T, where
 - D is diagonal, with d=rank(A) non-zero elements
 - The fist d rows of U are orthogonal basis for col(A)=row(A)

Re-interpreting Ab

- First stretch b along the direction of u₁ by d₁ times
- Then further stretch it along the direction of u₂ by d₂ times

U's column space R²

Summary of SVD

- Any general matrix A can be decomposed as A=UDV^T, where
 - D is a diagonal matrix, with d=rank(A) non-zero elements
 - The fist d rows of U are orthogonal basis for col(A)
 - The fist d rows of V are orthogonal basis for row(A)
- Applications of the SVD
 - Matrix Pseudoinverse
 - Low-rank matrix approximation

LU decomposition

- The LU decomposition with pivoting of matrix A is PA=LU
 - *P* is a permutation matrix
 - L is lower triangular; U is upper triangular.
- The linear system Ax=b can be solved by
 - 1. Perform LU decompose PA=LU
 - 2. Solve *Ly=Pb*
 - 3. Solve *Ux=y*

Cholesky decomposition

- For an SPD matrix A, there exists the Cholesky decomposition $P^{T}AP = LL^{T}$
 - *P* is a permutation matrix
 - L is a lower triangular matrix
- If A is not SPD, the LBL decomposition can be used: $P^{T}AP = LBL^{T}$
 - B is a block diagonal matrix with blocks of dimension 1 or 2.

Subspaces, QR decomposition

• The null space of an $m \times n$ matrix A is

Null(
$$A$$
)={ $w \mid Aw=0, w\neq 0$ }

- The range of A is Range(A)= $\{w \mid w=Av, \forall v\}$.
- Fundamental of linear algebra:

$$Null(A) \oplus Range(A^T) = \mathbb{R}^n$$

- Matrix A has the QR decomposition AP = QR
 - P is permutation matrix; Q is an orthogonal matrix; R is an upper triangular matrix.

Recap: linear algebra

- Vectors and matrix
- Eigenvalue and eigenvector
- Singular value decomposition
- LU decomposition and Cholesky decomposition
- Subspaces and QR decomposition

End of Math Review-1

• Read the 3 Stanford University (CS229) lecture notes provide on Wattle.

Read an old (2019) ENGN8535 lecture notes on Wattle.

Tomorrow's tutorial (zoom based, at lecture time)

Python Tutorial

Numpy

• Github and GitLab (for CLab submission).

• Please start to practice Python programming. You will need it for CLab-1.

End of today's lecture.