note: the problem actually asks for the number of "matching" pairs of substrings from s and t (as shown in Example 2).

- 1. enumerate the different character in both s and t, then compute LCP on the left and right in O(1) time. $O(n^2)$.
- 2. We call $s[i..i + \ell 1]$ and $t[j..j + \ell 1]$ a maximally matched pair iff $s[i..i + \ell 1] = t[j..j + \ell 1]$, $s[i-1] \neq t[j-1]$ and $s[i+\ell] \neq s[j+\ell]$. For a pair of substrings in s and t that differs by a single character, the different character must be the left (symmetrically, right) endpoint of a maximally matched pair (i.e. at index i-1). The right endpoint of the substring must lie in the maximally matched pair.
- Let L be a parameter to be set later. We can find all maximally matched pairs with length $\geq L$ in $O(\frac{n^2}{L})$ time: for each fixed $\delta = i j$, we repeatedly use LCP in O(1) time to find the next maximally matched pair with length $\geq L$, and this requires $O(\frac{n}{L})$ steps for each δ . Then we can compute the number of solutions adjacent to at least one maximally matched pair with length $\geq L$.

The remaining case is solutions with the different character adjacent to two maximally matched pair with length < L, and this implies the total length of the matched substring is O(L). Use hashing to count the number of solutions for each substring with length < 2L (there are O(nL) of them), enumerate the position of the different character in O(L) time for each substring, and we can solve this case in $O(nL^2)$ time. (easy to prevent double counting in the first case.)

Set $L = O(n^{1/3})$, the total running time is $O(n^{5/3})$.