

Chapter 2: Number System and Codes (Self-study)

Chapter 3: PLC Hardware (Physical Components)

Hardware

- * Modular PLC contains several different modules that can be coupled together to build a customized controller such as electrical power regulation, microprocessor, I/O connections, ...
 - Big size (50 cm x 75 cm x 25 cm).
 - Flexible, easy to change.
 - Apply for medium to complex control system.
 - High price.
- * Compact (unitary) PLC is the more simple type of controller, and contains all of the basic system components within a single housing, or box.
 - Small size.
 - Usually have 40 I/O, can execute up to 1000 commands.
 - Apply for small control system.
 - Low price.

Hardware

Classification of PLC

Classification by application ranges:

- **❖ Micro PLCs**: up to 32 I/O devices
- ❖ Small PLCs: from 32 to 128 I/O
- **❖ Medium PLCs**: from 64 to 1024 I/O
- **Large PLCs**: from 512 to 4096 I/O
- ❖ Very large PLCs: from 2048 to 8192 I/O

Hardware – FX Family PLC (Mitsubishi)

Hardware – FX Family PLC (Mitsubishi)

Front Panel

Front Panel

When the terminal block covers are open

Interpretation of Model Names

Main unit

Interpretation of Model Names

	Number of input/output points					Connection				
Model name	Total number of points	Number of input points	Number of output points	Input type	Output type	form				
AC power supply common to 24V DC sink and source input										
FX3G-14MR/ES	14(16)*1	8	6(8)*1	24V DC(sink/source)	Relay	Terminal block				
FX3G-14MT/ES	14(16)*1	8	6(8)*1	24V DC(sink/source)	Transistor(sink)	Terminal block				
FX3G-14MT/ESS	14(16)*1	8	6(8)*1	24V DC(sink/source)	Transistor(source)	Terminal block				
FX3G-24MR/ES	24(32)*1	14(16) ^{*1}	10(16)*1	24V DC(sink/source)	Relay	Terminal block				
FX3G-24MT/ES	24(32)*1	14(16)*1	10(16)*1	24V DC(sink/source)	Transistor(sink)	Terminal block				
FX3G-24MT/ESS	24(32)*1	14(16)*1	10(16)*1	24V DC(sink/source)	Transistor(source)	Terminal block				
DC power supply common to 24V DC sink and source input										
FX3G-14MR/DS	14(16)*1	8	6(8)*1	24V DC(sink/source)	Relay	Terminal block				
FX3G-14MT/DS	14(16)*1	8	6(8)*1	24V DC(sink/source)	Transistor(sink)	Terminal block				
FX3G-14MT/DSS	14(16)*1	8	6(8)*1	24V DC(sink/source)	Transistor(source)	Terminal block				
FX3G-24MR/DS	24(32)*1	14(16)*1	10(16)*1	24V DC(sink/source)	Relay	Terminal block				
FX3G-24MT/DS	24(32)*1	14(16) ^{*1}	10(16)*1	24V DC(sink/source)	Transistor(sink)	Terminal block				
FX3G-24MT/DSS	24(32)*1	14(16)*1	10(16)*1	24V DC(sink/source)	Transistor(source)	Terminal block				

Interpretation of Model Names

External module

The input/output extension block has built-in input or output terminals to add input or output terminals. Connect the input/output extension block to the main unit or input/output powered extension unit.

FX3G-40MR/T

FX3G-40MR/T

- [1] Peripheral device connecting connector (USB)
- [2] Peripheral device connecting connector (RS-422)
- [3] RUN/STOP switch
- [4] Variable analog potentiometers
- [5] Optional equipment connector1
- [6] Optional equipment connector2 (40points, 60points type only)
- [7] Battery connector
- [8] Battery holder
- [9] Optional equipment connecting screw holes2 (2 places) (40points, 60points type only)
- [10] Optional equipment connecting screw holes1 (2 places)

PLC Mitsubishi - FX Family

Model	FX3S	FX3G	FX3GE	FX3U	FX3UC
Power Supply	100–240 VAC, 24V DC	100–240 VAC, 24V DC	100–240 VAC 24V DC	100–240 VAC, 24V DC	24V DC
Maximum I/O	30	256 (w/CC-Link)	256 (w/CC-Link)	384 (w/CC-Link)	384 (w/CC-Link)
Digital I/O	Relay/Transistor	Relay/Transistor	Relay/Transistor	Relay/Transistor/Triac	Relay/Transistor
Cycle Period/ logical instruction	0.21µs	0.21µs	0.21µs	0.065µs	0.065µs
Memory	4k steps	32k steps	32k steps	64k steps	64k steps

Cables for Program Communication

Terminal Block Layout

- Power Supply: is not only to provide internal DC voltages to the system components (i.e., processor, memory, and input/output interfaces), but also to monitor and regulate the supplied voltages and warn the CPU if something is wrong.
- System Buses: are the paths through which the digital signal flows internally of the PLC.
 - There are four system buses.
 - Data bus is used by the CPU to transfer data among different elements.
 - Control bus transfers signals related to the action that are controlled internally.
 - Address bus sends the location's addresses to access the data.
 - System bus helps the I/O port and I/O unit to communicate with each other.

Memory: is composed of two different memories

- The executive memory: is a collection of permanently stored programs.
 - Read-only memory (ROM) is designed to permanently store a fixed program that is not alterable under ordinary circumstances.
- The application memory: provides a storage area for the userprogrammed instructions that form the application program.
 - Random-access memory (RAM), often referred to as read/write memory (R/W), is designed so that information can be written into or read from the memory storage area.

PROM (Programmable ROM): non-volatility, a permanent storage backup for some type of RAM.

EPROM (Erasable PROM): special PROM, erased by an ultraviolet light source.

EEPROM (Electrically EPROM): provides permanent storage for the program and can be easily changed with the use of a programming device.

Central Processing Unit (CPU - Processor): performs mathematical operations, data handling, and diagnostic routines.

- The discrete input/output (I/O) system provides the physical connection between the central processing unit and field devices that transmit and accept digital signals.
- Digital signals are non-continuous signals that have only two states—ON and OFF.

Dislike discrete signals, analog signals have an infinite number of states.

Processor scan:

Relationship between PLC and other devices in the system

PCL-based Motion control system

Relationship between PLC and other devices in the system

PLC-based SCADA system

SCADA (supervisory control and data acquisition)

Factors affecting a controller in industrial environment

Physical factors

Temperature, moisture, vibration, dust, ...

Electrical factors

Electromagnetic waves, electric field, transmission line noise, ...

Power supply factors

Voltage drop/rise, power turn off-on suddenly

Noise reduction for analog devices:

Programming for PLC using Handheld (Mini-programmer)

Programming for PLC using PC

PLC MELSEC - AnS

List of PLC Manufacturers

AMERICAN

- 1. Allen Bradley
- 2. Gould Modicon
- 3. Texas Instruments
- 4. General Electric
- 5. Westinghouse
- 6. Cutter Hammer
- 7. Square D
- 8. Rockwell Automation

EUROPEAN 1. Siemens

- 2. Klockner & Mouller
- 3. Festo
- 4. Telemechanique

JAPANESE 1. Toshiba

- 2. Omron
- 3. Fanuc
- 4. Mitsubishi