A Practical Adaptive Key Recovery Attack on the LGM (GSW-like) Cryptosystem

Prastudy Fauzi¹, Martha Norberg Hovd^{1,2} and Håvard Raddum¹

Simula UiB¹, Bergen, Norway University of Bergen², Norway

PQCrypto 2021

Introduction: Background

LGM is an *LHE* scheme based on the *FHE* scheme GSW, designed to achieve *IND-CCA1* security.

- LHE: Limited evaluation of ciphertexts.
- FHE: Unlimited evaluation of ciphertexts.
- IND-CCA1: An adversary with limited access to a decryption oracle cannot distinguish between two encrypted messages.

LGM only concrete scheme believed to be IND-CCA1 secure.

LGM: Secret Key Generation

$$\begin{aligned} \mathbf{For} \ i \in [1,t] : \mathbf{e}_i \leftarrow \chi^m \\ \mathbf{s}_i = (\mathbf{r}_i \parallel -\mathbf{e}_i^T)^T = \underbrace{(0,\ldots,1,\ldots,0}_{\text{length t},1 \text{ in pos. i}},\underbrace{-\mathbf{e}_i^T}_{\text{length m}})^T \end{aligned}$$

Secret key:
$$\mathbf{s} = (\mathbf{s}_1, \dots, \mathbf{s}_t)$$

LGM: Decryption

$$\mathbf{C} \in \mathbb{Z}_q^{(t+m)\times N}, j \text{ such that } 2^{j-1} \in (q/4, q/2]$$

$$\operatorname{Sample}\left(\lambda_1, \dots, \lambda_t\right) \in \mathbb{Z}_q^t \setminus \{0\}^t$$

$$\mathbf{s}' = \sum_{i=1}^t \lambda_i \mathbf{s}_i = (\lambda_1, \dots, \lambda_t, \sum_{i=1}^t \lambda_i e_{i,1}, \dots, \sum_{i=1}^t \lambda_i e_{i,m})$$

$$\operatorname{Choose index} i \text{ such that } \lambda_i \neq 0 \text{ and calculate } I(i)$$

$$\operatorname{Compute} u = \langle \mathbf{C}_I, \mathbf{s}' \rangle \mod q \text{ and return } ||u/2^{j-1}|| \in \{0, 1\}$$

LGM: Parameters and assumptions

Parameter	Value
Secret keys, t	190 or 400
Length of \mathbf{e}_i, m	525
Standard deviation of discrete Gaussian (χ), σ	25
Modulus, q	94980001

Table: Parameter choices for 120-bit security.

We assume a uniform and binary $\lambda\text{-distribution}$

Attack: Procedure

- Each ciphertext is queried T times
- Estimate $\frac{1}{2} \sum_{i=1}^{t} e_{i,1}$
- Estimate $e_{i,1} + \frac{1}{2} \sum_{k \neq i}^t e_{k,1}$
- Estimate $e_{i,1}$

Attack: Estimation of the Baseline

$$D_{\alpha} = \begin{bmatrix} \alpha & 0 & \cdots & 0 \\ 0 & \alpha & \cdots & 0 \\ 0 & 0 & \cdots & \alpha \\ 1 & 1 & \cdots & 1 \\ & \mathbf{0}_{(m-1) \times t} \end{bmatrix}$$

$$u(D_{\alpha}) = \alpha + \sum_{i=1}^{t} \lambda_i e_{i,1}$$

$$\alpha_{est} + 1/2 \sum_{i=1}^{t} e_{i,1} = 2^{j-2} + \epsilon$$

Attack: Estimation of a Specific Element

$$R_{a,i} = \begin{bmatrix} \mathbf{0}_{(i-1)\times t} \\ a \ a & \cdots & a \\ \mathbf{0}_{(t-i)\times t} \\ 1 \ 1 & \cdots & 1 \\ \mathbf{0}_{(m-1)\times t} \end{bmatrix}$$

$$u(R_{a,i}) = \lambda_i a + \lambda_i e_{i,1} + \sum_{k \neq i} \lambda_k e_{k,1}$$

$$a_{est} + e_{i,1} + 1/2 \sum_{k \neq i} e_{k,1} = 2^{j-2} + \epsilon_i$$

Attack: Recovering $e_{i,1}$

$$\alpha_{est} + 1/2 \sum_{i=1}^{t} e_{i,1} = 2^{j-2} + \epsilon$$

$$a_{est} + e_{i,1} + 1/2 \sum_{k \neq i} e_{k,1} = 2^{j-2} + \epsilon_i$$

$$e_{i,1} = \lfloor 2(\alpha_{est} - a_{est}) + 2(\epsilon_i - \epsilon) \rceil$$

Attack: Results

Secret keys	Sample size	Time	Correctly recovered elements
t = 190	T = 95,000,000	12 hours	516/525
t = 400	T = 200,000,000	48 hours	525/525

Table: The attacks were performed on a server with 75 CPUs running in parallel.

Possible countermeasures?

- Fix $(\lambda_1, \ldots, \lambda_t)$ for a given ciphertext matrix **C**.
 - Can make small changes to both D_{α} and $R_{a,i}$ without affecting the attack.
- Decrypt a ciphertext multiple times and return a value only if the decryptions are consistent.
 - The attack is the same, only with three return values: $(0, 1, \bot)$.
- Add a ciphertext check during decryption.
 - Not clear how to achieve this.

LGM is not IND-CCA1 secure No concrete HE scheme is IND-CCA1 secure

Full version: ePrint 2021/658