BA TEOREMA DETALES

Você já estudou os conceitos de razão e proporção. Aplicou esses conceitos, por exemplo, comparando medidas. Agora, deverá empregá-los na Geometria, por meio do Teorema de Tales.

Tales de Mileto, matemático e comerciante grego que viveu por volta de 624 a 548 a.C., aplicou os conceitos de razão e proporção à Geometria. Considerado como um dos matemáticos que deu origem à Geometria dedutiva, a vida de Tales foi constituída de várias histórias e lendas, como a predição de um eclipse solar que houve em 585 a.C. Outra dessas lendas relata que, por ser comerciante, Tales teve a oportunidade de conhecer outros povos, adquirindo novos conhecimentos e levando-os para a Grécia, dando início à Matemática dedutiva e demonstrativa.

- O SEGMENTOS PROPORCIONAIS PÁG. 72
- O FEIXE DE RETAS PARALELAS PÁG. 76
- O TEOREMA DE TALES PÁG. 77

PALAVRAS-CHAVE

As lendas relatam que, em uma viagem ao Egito, Tales foi desafiado pelo faraó a calcular a altura de uma pirâmide. Ele observou que, em um determinado instante, a razão entre a altura e o comprimento da sombra projetada por um objeto era sempre a mesma. Usando essa ideia, Tales fincou uma estaca verticalmente no solo, mediu o comprimento da sombra da estaca e a medida da sombra da pirâmide e calculou a altura desejada por meio da proporção a seguir, deixando o faraó e toda a sociedade egípcia admirados.

> Altura da estaca Altura da pirâmide Comprimento da sombra da estaca Comprimento da sombra da pirâmide

Observe que, para calcular a altura desejada, o procedimento utilizado por Tales relaciona os conceitos de razão e proporção com a Geometria. Tais conceitos foram associados a outros, o que deu origem ao teorema conhecido como **Teorema de Tales**.

Com grande aplicabilidade nas questões relacionadas à Astronomia, o Teorema de Tales, que será estudado neste capítulo, pode ser utilizado, nos dias de hoje, também na divisão de áreas residenciais e no cálculo de distâncias inacessíveis.

€ MÉDIO: PRECISEI CONSULTAR ALGUM

of dificil: PRECISEI DA AJUDA DE UM(A) COLEGA E / OU PROFESSOR(A).

PRECISO REVER OS EXERCÍCIOS:

Segmentos proporcionais

Teorema de Tales

1.1. Recordando o conceito de razão

Em nosso dia a dia, comparações entre grandezas são comuns, como a idade de duas pessoas, a distância entre dois lugares, o preco de duas mercadorias, etc. Uma maneira de fazer isso é calcular a razão entre essas grandezas. Por exemplo, supondo que um telejornal tenha dado a seguinte notícia: "Em cada 12 brasileiros, 7 são obesos". Note que podemos expressar essa informação da seguinte maneira: " $\frac{7}{12}$ dos brasileiros são obesos". O quociente utilizado para expressar a relação mostrada na notícia dada pelo jornal é a razão entre o número de brasileiros obesos e o número total de brasileiros.

> Denomina-se razão direta ou simplesmente razão entre dois números **a** e **b**, com b \neq 0, o quociente $\frac{a}{h}$.

Veja as situações seguir.

Situação 1

Para comprar um livro para seu filho, João pesquisou o preço na livraria A e na livraria B. Na livraria A, o livro custava R\$ 35,25 e, na B, R\$ 70,50. Vamos calcular, então, a razão entre os precos do livro na livraria **B** e na livraria **A**.

$$\frac{70,50}{35,25}=2$$

Podemos dizer que o preço da livraria B é o dobro do preço da livraria A ou que o preço da livraria A é metade do preço da livraria B.

Situação 2

Para atravessar uma passarela que dá acesso à escola onde estudam, Davi gastou 120 segundos e Gustavo gastou 140 segundos. A razão entre o tempo gasto por Davi e o tempo gasto por Gustavo é expressa por:

$$\frac{120}{140} = \frac{12}{14} = \frac{6}{7}$$

Essa razão nos mostra que 6 segundos gastos por Davi equivalem a 7 segundos gastos por Gustavo ou, ainda, que o tempo gasto por Davi é $\frac{6}{7}$ do tempo gasto por Gustavo.

Na Geometria, também podemos utilizar o conceito de razão quando necessitamos comparar medidas. No caso de dois segmentos, AB e CD, dizemos que a razão entre eles é, na verdade, a razão entre suas medidas expressas na mesma unidade.

Podemos dizer que o segmento \overline{AB} é 2,5 vezes maior que o segmento \overline{CD} ou, ainda, que a razão entre os segmentos \overline{AB} e \overline{CD} é de 5 para 2.

Considere agora $EF = 0.3 \text{ m e GH} = 60 \text{ cm. Vamos determinar a razão entre } \overline{EF} \text{ e } \overline{GH}$. Observe que as medidas dos segmentos estão expressas em unidades diferentes. Então, devemos, inicialmente, transformá-las na mesma unidade.

$$EF = 0.3 \text{ m} = 30 \text{ cm}$$

Assim, determinamos a razão:

$$\frac{EF}{GH} = \frac{30 \text{ cm}}{60 \text{ cm}} = \frac{1}{2} = 0,5$$

01. Determinar a razão entre os segmentos PQ = 4 dm e RS = 120 cm.

Resolução:

Observe que as unidades de medida são diferentes. Então, inicialmente, devemos transformá-las na mesma unidade:

$$PO = 4 dm = 40 cm$$

Feito isso, podemos calcular a razão:

$$\frac{PQ}{RS} = \frac{40 \, cm}{120 \, cm} = \frac{4}{12} = \frac{1}{3}$$

1.2. Definindo segmentos proporcionais

A igualdade entre razões é denominada proporção. Por exemplo, para as grandezas **a**, **b**, **c** e **d**, com b \neq 0 e d \neq 0, temos que:

$$\frac{a}{b} = \frac{c}{c}$$

Na proporção, **b** e **c** são denominados "meios", enquanto **a** e **d** são denominados "extremos". Em uma proporção, o produto dos meios é igual ao produto dos extremos.

$$\frac{a}{b} = \frac{c}{d} \Rightarrow a.d = b.c$$

Considere agora AB = 5 cm, CD = 10 cm, LM = 9 cm e NO = 18 cm.

Vamos calcular as razões $\frac{AB}{CD}$ e $\frac{LM}{NO}$.

$$\frac{AB}{CD} = \frac{5}{10} = \frac{1}{2}$$
 $\frac{LM}{NO} = \frac{9}{18} = \frac{1}{2}$

Observe que as razões calculadas são iguais. Logo, elas formam uma proporção.

$$\frac{AB}{CD} = \frac{LM}{NO} = \frac{1}{2}$$

Então, podemos dizer que os segmentos \overline{AB} e \overline{CD} são **proporcionais** aos segmentos LM e NO. De modo geral, podemos afirmar que:

Quatro segmentos, AB, CD, LM e NO, são proporcionais quando $\frac{AB}{CD} = \frac{LM}{NO}$. \overline{AB} e \overline{CD} são proporcionais a \overline{LM} e \overline{NO} .

EXERCÍCIOS RESOLVIDOS

02. Verificar se os segmentos AB e CD, EF e GH, representados a seguir, são proporcionais.

Resolução:

Primeiro, calculamos as razões entre os segmentos:

$$\frac{AB}{CD} = \frac{15 \text{ u}}{10 \text{ u}} = \frac{3}{2}$$
 $\frac{EF}{GH} = \frac{18 \text{ u}}{12 \text{ u}} = \frac{3}{2}$

Se $\frac{AB}{CD} = \frac{EF}{GH} = \frac{3}{2}$, então os segmentos são proporcionais.

03. Marcos deseja construir um galinheiro em um terreno retangular cujas medidas estão na razão de 2 : 5. O perímetro do terreno é igual a 700 m. Quais são as dimensões desse terreno?

Resolução:

Sejam x e y as dimensões do terreno. De acordo com o enunciado:

$$2x + 2y = 700 (:2) \Rightarrow x + y = 350 (I)$$

$$\frac{x}{y} = \frac{2}{5} \Rightarrow y = \frac{5x}{2}$$
 (II)

Substituindo (II) em (I), temos:

$$x + \frac{5x}{2} = 350 \Rightarrow \frac{2x + 5x}{2} = \frac{350 \cdot 2}{2} \Rightarrow 7x = 700 \Rightarrow x = 100$$

Se x = 100, então y =
$$\frac{5.100}{2}$$
 = 250.

Logo, as dimensões do terreno são 100 m e 250 m.

EXERCÍCIOS DE APRENDIZAGEM

01. Qual a razão entre os segmentos a seguir?

02. Considerando o segmento a seguir, **DETERMINE** a razão entre:

- A) $\overline{AB} \in \overline{BC}$.
- B) $\overline{CD} \in \overline{BC}$.
- C) \overline{AB} e \overline{CD} .
- D) \overline{AD} e \overline{BC} .

ENTENDI (

U

- 03. O comprimento **C** de uma circunferência de raio **r** é expresso por C = $2\pi r$, e seu diâmetro **d**, por d = 2r. Qual o valor da razão $\frac{C}{d}$?
- **04.** Os segmentos RS e TU são proporcionais aos segmentos TU e XY. **DETERMINE** a medida de $\overline{\text{TU}}$, sabendo que RS = 4 cm e XY = 9 cm.
- **05.** Os segmentos VT e GH são proporcionais aos segmentos GH e LM respectivamente. Se VT = 6 cm e LM = 8 cm, **DETERMINE** a medida de \overline{GH} .
- 06. A razão entre a base e a altura de um retângulo é $\frac{4}{3}$. Se o perímetro do retângulo é 70 cm, **CALCULE** a medida da altura do retângulo.
- **07.** A ampliação de uma foto deve ser executada de maneira precisa para que sejam obtidas imagens matematicamente proporcionais. Se uma foto 2x3 (isto é, retangular, com largura de 2 cm e altura de 3 cm) for ampliada para 7 cm de largura, qual deverá ser a nova altura?
- **08.** Os segmentos AB, CD, EF e GH formam, nessa ordem, uma proporção. **CALCULE** a medida de EF e GH, sabendo que AB = 24 cm, CD = 30 cm e EF + GH = 90 cm.

Na figura a seguir, AC = 40 cm. Sabendo que $\frac{AB}{BC} = \frac{3}{5}$, **DETERMINE** as medidas dos segmentos AB e BC.

10. No segmento EG a seguir, sabemos que $\frac{EF}{EG} = \frac{5}{8}$ e FG = 12 cm. **DETERMINE** os valores de **x** e de **y**.

01. (FUVEST-SP) Três cidades, A, B e C, situam-se ao longo de uma estrada reta; B situa-se entre A e C e a distância de B a C é igual a dois tercos da distância de A a B. Um encontro foi marcado por 3 moradores, um de cada cidade, em um ponto P da estrada, localizado entre as cidades B e C e à distância de 210 km de A. Sabendo-se que P está 20 km mais próximo de C do que de B, DETERMINE a distância que o morador de B deverá percorrer até o ponto de encontro.

2. Feixe de retas paralelas

Denomina-se feixe de retas paralelas um conjunto de três ou mais retas paralelas entre si.

A reta que corta um feixe de paralelas é denominada transversal ao feixe de paralelas.

r e t são transversais ao feixe de retas paralelas

2.1. Propriedade

Se um feixe de retas paralelas determina segmentos congruentes sobre uma transversal, então esse feixe determina segmentos congruentes sobre qualquer outra transversal. Uma forma de visualizar essa propriedade é trabalhar com congruência de triângulos. Veja o exemplo a seguir.

Considere o feixe de paralelas e as retas transversais **t** e **v**, em que $\overline{AB} = \overline{BC}$.

Queremos mostrar que $\overline{DE} = \overline{EF}$. Traçamos por \mathbf{D} e \mathbf{E} os segmentos $\overline{\mathrm{DG}}$ (paralelo a $\overline{\mathrm{AB}}$) e \overline{EH} (paralelo a \overline{BC}), conforme desenho a seguir.

Note que:

- ABGD e BCHE são paralelogramos, com AB = DG e BC = EH; então, DG = EH.
- Os ângulos Î = Î e Î = Î são correspondentes. Logo, pelo caso LAA_o, os triângulos DGE e EHF são congruentes e, consequentemente, DE = EF.

3. Teorema de Tales

STERNOUTH THE

Considerado um dos mais conhecidos teoremas da Matemática, o **Teorema de Tales** enuncia que um feixe de retas paralelas cortadas por duas transversais determina segmentos proporcionais sobre essas transversais, e isso significa que:

Para melhor entender, observe o feixe de retas paralelas cortadas por duas transversais e as definições a seguir:

- Pontos correspondentes são os pontos das transversais pertencentes a uma mesma paralela. Por exemplo: A e D; B e E; C e F.
- Segmentos correspondentes são os pares de segmentos das transversais formados por pontos correspondentes. Por exemplo: AB e DE; BC e EF; AC e DF. Então, pelo Teorema de Tales:

$$\frac{AB}{BC} = \frac{DE}{EF}$$
 ou $\frac{AB}{AC} = \frac{DE}{DF}$ ou $\frac{BC}{AC} = \frac{EF}{DF}$

Assim, podemos afirmar também que as razões entre os segmentos correspondentes são iguais, ou seja:

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = k$$

Para calcular o resultado, vamos considerar a figura a seguir, em que a // b // c e as retas **t** e **v** são transversais. Tomando **y** como unidade de medida, medimos os segmentos AB e BC e observamos que AB = 4y e BC = 5y.

$$\frac{AB}{BC} = \frac{4y}{5y} = \frac{4}{5} \quad (I)$$

Traçando, pelos pontos de divisão de \overline{AB} e \overline{BC} , retas paralelas ao feixe, dividimos \overline{DE} e \overline{EF} tomando \mathbf{v} como medida, de forma que \overline{DE} = 4v e \overline{EF} = 5v.

$$\frac{DE}{EF} = \frac{4v}{5v} = \frac{4}{5} \text{ (II)}$$

Comparando (I) e (II), temos: $\frac{AB}{BC} = \frac{DE}{EF}$

EXERCÍCIOS RESOLVIDOS

04. Três terrenos têm frentes para a Rua Pitágoras e fundos para a Rua Tales, conforme a figura. As divisas laterais são perpendiculares à Rua Tales. Qual a medida **x**, da frente de um dos terrenos para a Rua Pitágoras, sabendo-se que a frente total para essa rua é 60 m?

Resolução:

Aplicando o Teorema de Tales, temos:

$$\frac{10}{x} = \frac{20 + 15 + 10}{60} = \frac{45}{60} \Rightarrow$$

$$x \cong 13,3 \text{ m}$$

II TÁ NA MÍDIA

Para verificar as relações de proporção entre segmentos determinados sobre retas paralelas pela interseção com transversais, acesse o QR Code a seguir e comprove, interativamente, o Teorema de Tales. Basta movimentar os pontos e perceber que as razões existentes entre os segmentos são iguais. Vale a pena conferir!

REGISTRANDO

Luiz é corretor de imóveis e anunciou mais um lançamento: o Condomínio Recanto. Guilherme, interessado em comprar um lote, chegou à corretora para ter informações acerca das medidas dos lotes disponíveis para venda. O corretor abriu a planta do condomínio e percebeu que faltavam algumas medidas nas divisas de certos lotes. Para não perder o cliente, recorreu ao Teorema de Tales para descobrir as medidas e passar a informação a ele.

ELABORE um parágrafo, citando as características presentes na planta que fizeram com
que o corretor recorresse ao Teorema de Tales e informe uma situação cotidiana em que esse
teorema possa ser aplicado.
6 6
•
•
0 0 0
6
v 0 0

ENTENDI (

EXERCÍCIOS DE APRENDIZAGEM

11. CALCULE o valor de ${\bf a}$ na figura a seguir, sabendo que r // s // t.

 $\frac{12}{\text{KEXC}}$ Sendo as retas **a**, **b** e **c** paralelas, **CALCULE** o valor de **x**.

13. Se a e b são transversais em um feixe de retas paralelas, **DETERMINE** x e y.

14. Nas figuras, a // b // c. CALCULE o valor de **x**.

B) **a** 2 **>** b 7 4 **→** C

D)

E)

15. Nas figuras, a // b // c. CALCULE o valor de x.

B)

C)

16. DETERMINE $x \in y$, sendo r, s, $t \in u$ retas paralelas.

17. Sendo r // s // t // u, **CALCULE** o valor de x + y nos casos a seguir:

18. Na figura a seguir, existem dois terrenos que possuem frentes para as ruas Esperança e Otimismo.

As divisas laterais são perpendiculares à Rua Esperança. **DETERMINE** as medidas das frentes dos terrenos para a Rua Otimismo, sabendo que a quadra é formada somente pelos dois lotes e possui comprimento de 30 metros.

19. Um feixe de quatro retas paralelas determina, sobre uma transversal, três segmentos consecutivos, que medem 15 cm, 18 cm e 27 cm. **CALCULE** os comprimentos dos segmentos determinados pelo feixe em outra transversal, sabendo que o segmento desta, compreendido entre a primeira e a quarta paralela, mede 180 cm.

PARA SABER MAIS

Tales de Mileto

O início do estudo sistemático da matemática na Grécia pode ser atribuído a Tales (c. 624-546 a.C.), nascido na cidade de Mileto, na Iônia, costa ocidental da Ásia Menor. Tales uniu o estudo da astronomia ao da geometria e da teoria dos números, fundando a chamada Escola Ioniana. Dois séculos após sua morte, Tales seria qualificado pelo filósofo Aristóteles como o primeiro filósofo de tradição grega.

Mileto, no tempo de Tales, era uma importante cidade comercial, estando conectada por rotas mercantis a outros pontos do Oriente. Tales foi comerciante quando jovem e viajou bastante em razão de sua ocupação. Ao visitar o Egito e a Mesopotâmia, tomou contato com a matemática desenvolvida nesses locais, o que supostamente lhe deu uma base de conhecimentos para atuar como matemático. Tales atuou ainda como político e, em idade mais avançada, como astrônomo.

Tales é considerado o criador da geometria dedutiva, sendo a ele atribuídas as primeiras demonstrações matemáticas. São admitidos como de Tales os resultados sobre figuras planas relacionados no quadro abaixo:

- Todo círculo é dividido em duas partes iguais por seu diâmetro.
- Os ângulos da base de um triângulo isósceles são iguais.
- O ângulo inscrito em um semicírculo é reto.
- Quando duas retas se interceptam, os ângulos opostos são iguais.
- Os lados de triângulos semelhantes são proporcionais.
- Dois triângulos são congruentes se possuem dois ângulos e um lado iguais.

Todos esses resultados parecem simples e intuitivos e alguns deles já eram conhecidos pelas civilizações pré-helênicas. São, no entanto, atribuídos a Tales, assim como a ele são atribuídas tentativas de demonstrá-los. Ocorre, com Tales, uma mudança de perspectiva no estudo da geometria. A geometria e a aritmética até então praticadas na Mesopotâmia e no Egito tinham caráter prático e se limitavam a aplicar procedimentos numéricos para resolver problemas específicos, sem maiores preocupações com a estrutura intelectual ou com os princípios filosóficos da matemática envolvida. A tradição clássica atribui a Tales de Mileto a primeira ação no sentido de organizar a geometria como estudo abstrato e dedutivo.

> MOL, Rogério Santos. Introdução à História da Matemática. Disponível em: http://www.mat.ufmg.br/ead/wp-content/uploads/2016/08/introducao_a_ historia da matematica.pdf>. Acesso em: 14 ago. 2020. [Fragmento]

COTIDIANO

Atualmente, várias construções utilizam, em sua fachada, vidros temperados que são fixados em canaletas muitas vezes de alumínio. Veja a seguir o exemplo de uma fachada.

Para a sustentação dos vidros, deve--se calcular as medidas dos segmentos de sustentação em vários pontos, por exemplo, A₁A₂, A₂A₃, ..., A₈A₉. No caso de andares igualmente espaçados e paralelos, pelo Teorema de Tales, as razões entre segmentos correspondentes de

duas transversais é constante (k).

Logo,
$$\frac{A_1A_2}{B_1B_2} = \frac{A_2A_3}{B_2B_3} = \dots = \frac{A_4A_5}{B_4B_5} = k_1$$

$$e \frac{A_6A_7}{B_5B_6} = \frac{A_7A_8}{B_6B_7} = \frac{A_8A_9}{B_7B_8} = k_2.$$

Observe que a aplicação do Teorema de Tales reduz o número de medições necessárias, já que basta medir somente um dos andares.

3.1. Teorema de Tales nos triângulos

Uma das consequências do Teorema de Tales é sua utilização para demonstrar a seguinte propriedade dos triângulos:

Quando uma reta paralela a um lado de um triângulo intercepta os outros lados em dois pontos distintos, ela determina segmentos proporcionais sobre esses lados.

Observe os triângulos a seguir e a reta **r**, paralela a um de seus lados.

Considere agora ambos os casos: uma reta ${\bf t}$ passando pelo vértice ${\bf A}$ do triângulo e paralela à reta ${\bf r}$.

Nos dois casos, notamos que t // r // \overline{BC} e \overline{AB} e \overline{AC} são transversais. Então, pelo Teorema de Tales:

$$\frac{\mathsf{AD}}{\mathsf{DB}} = \frac{\mathsf{AF}}{\mathsf{FC}}$$

EXERCÍCIOS DE APRENDIZAGEN

Teorema de Tales

20. No triângulo da figura a seguir, \overline{DE} // \overline{BC} . Nessas condições, DETERMINE o perímetro do triângulo ABC.

21. Sabendo que \overline{MN} // \overline{BC} , CALCULE o valor de x, y e z indicados nos triângulos a seguir:

22. Verifique, **justificando** sua resposta, se o segmento DE das figuras a seguir é paralelo ao lado BC dos triângulos.

RESOLUÇÕES NO Bernoulli Play

- 23. Uma reta paralela ao lado \overline{BC} de um triângulo ABC determina, sobre o lado AB, segmentos de 4 cm e 16 cm. CALCULE as medidas dos segmentos que essa reta determina sobre o lado AC, cuja medida é 15 cm.
- **24.** Para ligar os topos de duas torres perpendiculares ao solo, são utilizados 10 m de um cabo de aço bem esticado, como mostra a figura a seguir. Para prender o cabo no chão, são utilizados mais 8 m. Se a distância entre o ponto onde o cabo foi preso ao solo e a torre mais próxima a ele é igual a 3,2 m, **DETERMINE** a distância entre as torres.

- 25. Uma reta paralela ao lado \overline{BC} de um triângulo ABC determina os pontos **D** em \overline{AB} e **E** em \overline{AC} . Sabendo que AD = 2x, BD = 2x + 12, AE = 6 e EC = 8, **DETER-MINE** o lado \overline{AB} do triângulo.
- 26. No triângulo ABC da figura a seguir, sabe-se que \overline{DE} // \overline{BC} . **CALCULE** as medidas dos lados \overline{AB} e \overline{AC} do triângulo.

27. Duas avenidas partem de um mesmo ponto e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados pelas ruas paralelas têm 40 m e 45 m de comprimento, respectivamente. Na segunda avenida, o menor quarteirão mede 30 m. Qual o comprimento do outro quarteirão?

3.2. Teorema da bissetriz interna

Observe o triângulo ABC, em que $\overline{\mathsf{AS}}$ é bissetriz do ângulo $\widehat{\mathsf{A}}$.

Nos triângulos, a bissetriz de um ângulo interno divide o lado oposto em segmentos proporcionais aos lados adjacentes.

Tomando os segmentos desse triângulo, temos a seguinte relação:

$$\frac{BS}{AB} = \frac{CS}{AC}$$

Essa relação é denominada **Teorema da bissetriz interna** e pode ser demonstrada, conforme faremos a seguir, utilizando-se o Teorema de Tales.

Traçamos, pelos vértices \mathbf{B} e \mathbf{C} do triângulo anterior, retas paralelas ao segmento AS. Prolongando o lado \overline{AB} , marcamos o ponto \mathbf{E} (ponto de encontro da reta com o prolongamento de \overline{AB}), como mostra a construção a seguir.

Observe que:

- \overline{AS} é bissetriz de \widehat{BAC} , portanto a \equiv b.
- Como CE // AS, a ≡ c (correspondentes) e b ≡ d (alternos internos), então, c ≡ d e AC ≡ AE (triângulo ACE isósceles de base CE).

Pelo Teorema de Tales, temos:

$$\frac{AE}{AB} = \frac{CS}{BS} \Rightarrow AE.BS = CS.BA \Rightarrow \frac{BS}{AB} = \frac{CS}{AE}$$

Como $\overline{AC} \equiv \overline{AE}$, então:

$$\frac{BS}{AB} = \frac{CS}{AC}$$
 (Teorema da bissetriz interna)

EXERCÍCIOS RESOLVIDOS

05. Considere um triângulo ABC com lados AB = 5 cm, AC = 6 cm e BC = 10 cm. Determinar o valor de \overline{BS} e \overline{SC} , sabendo que \overline{AS} é a bissetriz relativa ao vértice **A**.

Resolução:

Pelo Teorema da bissetriz interna, temos:

$$\frac{AB}{BS} = \frac{AC}{SC} \Rightarrow \frac{5}{x} = \frac{6}{10-x} \ \Rightarrow \ 6x = 50-5x \ \Rightarrow \ x = \frac{50}{11} cm$$

EXERCÍCIOS DE APRENDIZAGEM


````

ENTENDI (

28. **DETERMINE** o valor de  $\mathbf{x}$  em cada caso, sabendo que  $\overline{\mathsf{AS}}$  é uma bissetriz.

A)



B)



- 29. Considere um triângulo ABC, em que AB = 2,4 cm; AC = 3,6 cm e BC = 4 cm, e a bissetriz  $\overline{AS}$  é relativa ao ângulo Â. **DETERMINE** a medida de  $\overline{BS}$  e de  $\overline{SC}$ .
- $\overline{\text{30.}}$  Sendo  $\overline{\text{AS}}$  a bissetriz do ângulo BÂC, **CALCULE** o valor do lado  $\overline{\text{AB}}$  do triângulo ABC.









- 31. Em um triângulo ABC, os lados  $\overline{AB}$  e  $\overline{AC}$  medem  $\mathbf{x}$  e  $\mathbf{y}$  respectivamente. A bissetriz  $\overline{AD}$  relativa ao vértice  $\mathbf{A}$  divide o lado  $\overline{BC}$  em duas partes, de modo que BD = 10 e DC = 12. Sabendo que  $\mathbf{x} + \mathbf{y} = 55$ , **DETERMINE** a medida de  $\mathbf{x}$  e de  $\mathbf{y}$ .
- 32. O perímetro de um triângulo ABC é 200 cm. A bissetriz interna do ângulo  $\hat{A}$  divide o lado oposto  $\overline{BC}$  em dois segmentos, um de 32 cm e outro de 48 cm. **DETERMINE** os lados desse triângulo.

# DESAFIO 🔕

02. (FGV) Na figura, ABC é um triângulo com AC = 20 cm, AB = 15 cm e BC = 14 cm. Sendo  $\overline{AQ}$  e  $\overline{BP}$  bissetrizes interiores do triângulo ABC, o quociente  $\frac{QR}{AB}$  é igual a:



- A) 0,3
- C) 0,4
- E) 0,5

- B) 0,35
- D) 0,45

03. Aplicando o Teorema de Tales, **DEMONS- TRE** que a bissetriz externa  $\overline{AD}$  de um triângulo ABC divide o lado oposto ao ângulo em partes proporcionais aos lados adjacentes  $\left(\frac{BD}{CD} = \frac{AB}{AC}\right)$ .



# EXERCÍCIOS PROPOSTOS





**01. DETERMINE** a medida do segmento AB da figura, sabendo que  $\frac{AB}{BC} = \frac{5}{2}$  e AC = 15 cm.



- 02. O perímetro de um paralelogramo é igual a 75 m. **DETERMINE** as medidas dos lados do paralelogramo, sabendo que a razão entre eles é  $\frac{2}{3}$ .
- 03. Na figura a seguir,  ${\bf r}$  e  ${\bf s}$  são retas paralelas e cortadas pelas transversais  ${\bf m}$  e  ${\bf n}$ .



Se AB = a cm; BC = 20 cm; AY = b cm; YZ = 10 cm, com a + b = 60 cm, então a medida de  $\overline{AY}$ , em cm, é:

- A) 30
- B) 20
- C) 40
- D) 80
- E) 60



04. Na figura, a // b // c, e as retas  $\mathbf{r}$ ,  $\mathbf{s}$  e  $\mathbf{t}$  são transversais. **DETERMINE** o valor de  $\mathbf{x}$  +  $\mathbf{y}$ .



05. (Unesp) Considere 3 retas coplanares paralelas, r, s e t, cortadas por 2 outras retas, conforme a figura. DETERMINE os valores dos segmentos identificados por x e y.



**06.** Um feixe de retas paralelas foi cortado pelas retas transversais **a** e **b**, conforme a figura. **DETERMINE** a medida do segmento AE.



07. Sendo a // b // c // d, **DETERMINE p**, **q** e **r**.



**08.** Sabendo que a // b // c, **DETERMINE** o valor de **m** e de **n**.



- O9. Um feixe de 4 paralelas determina sobre uma transversal três segmentos que medem 10 cm, 12 cm e 18 cm, respectivamente. **DETERMINE** os comprimentos dos segmentos que esse mesmo feixe determina sobre uma outra transversal, sabendo que o segmento compreendido entre a primeira e a quarta paralela mede 120 cm.
- 10. Duas árvores, de alturas diferentes, são perpendiculares ao solo e estão a uma distância de 8 m uma da outra. Um fio bem esticado de 10 m liga os topos dessas árvores. Prolongando-se esse fio até prendê-lo no solo, utilizamos mais 4 m de fio. CALCULE a distância entre o ponto onde o fio foi preso ao solo e a árvore mais próxima dele.



11. (Unicamp-SP) A figura a seguir mostra um segmento AD dividido em três partes:

AB = 2 cm, BC = 3 cm e CD = 5 cm.



O segmento AD' mede 13 cm e as retas BB' e CC' são paralelas à DD'. **DETERMINE** os comprimentos dos segmentos AB', B'C' e C'D'.

12. A figura a seguir (△ ABC) representa um terreno no qual um agricultor pretende plantar hortaliças. Porém, em sua região, há muitos roedores que costumam invadir as plantações. Para evitar esse problema, o agricultor pretende cercar sua plantação com uma tela apropriada que custa R\$ 12,50 o metro linear.



De acordo com a figura, **DETERMINE**:

- A) a medida de  $\overline{AD}$  sabendo que  $\overline{DE}$  //  $\overline{BC}$ .
- B) quanto o agricultor vai gastar para cercar a plantação.
- 13. Num triângulo ABC, de perímetro igual a 66 cm, a bissetriz do ângulo determina sobre o lado BC segmentos de 12 cm e 10 cm. **CALCULE** os outros dois lados do triângulo.
- 14. Num triângulo isósceles ABC, o perímetro mede 45 cm e a base BC = 9 cm. Se BM e BN são, respectivamente, mediana e bissetriz, **DETERMINE** a medida do segmento MN.

**15.** No triângulo da figura a seguir,  $\overline{DE}$  //  $\overline{BC}$ . Nessas condições, **DETERMINE**:



- A) a medida x.
- B) o perímetro do triângulo ABC.
- 16. (UFMA) Uma determinada firma imobiliária resolveu lotear um terreno em 4 outros menores com duas frentes: uma para a Rua 1 e outra para a Rua 2, como mostra a figura a seguir. Sabendo-se que as divisões laterais são perpendiculares à Rua 1 e que a frente total para a Rua 2 é de 480 m, qual a medida da frente de cada lote, para a Rua 2, respectivamente?



17. No triângulo,  $\overline{AS}$  é bissetriz do ângulo  $\widehat{A}$ . **DETERMINE** a medida de  $\overline{AC}$ .





18. (Unicamp-SP) No triângulo a seguir, obtenha a medida de  $\overline{AB}$ .



19. A bissetriz interna do ângulo  $\hat{A}$  de um triângulo ABC divide o lado oposto em dois segmentos que medem 18 cm e 32 cm. Sabendo que  $\overline{AB}$  mede 36 cm, **DETERMINE** a medida de  $\overline{AC}$ .



- 20. A bissetriz relativa ao ângulo de um triângulo ABC determina sobre o lado  $\overline{BC}$  segmentos de 30 cm e 40 cm. Sabendo que o perímetro do triângulo ABC é 168 cm, **CALCULE** as medidas dos lados desse triângulo.
- **21.** As medidas dos lados de um triângulo CDF são CD = 15 cm,  $\overline{\text{CF}}$  = 12 cm e DF = 18 cm. **CALCULE** as medidas dos segmentos determinados no lado  $\overline{\text{DF}}$  pela bissetriz relativa ao ângulo  $\hat{\mathbb{C}}$ .





**01.** (UCSAL-BA) Na figura abaixo, as medidas assinaladas são dadas em centímetros, e  $\overline{AB}$  //  $\overline{DE}$ . Se BD = 7 cm, então x é igual a:



- A) 1,2
- B) 1,8

C) 2,1

E) 2,8

D) 2,4

**02.** (Cesgranrio) As retas  $r_1$ ,  $r_2$  e  $r_3$  são paralelas e os comprimentos dos segmentos transversais são os indicados na figura. Então,  $\mathbf{x}$  vale:



A)  $4\frac{1}{5}$ 

C) 5

E) 6

B)  $5\frac{1}{5}$ 

D)  $\frac{8}{5}$ 



03. (Mackenzie-SP) Na figura a seguir, temos a // b // c.  $^{2JDF}$ 



- O valor de **x** é:
- A)  $\frac{3}{2}$

C)  $\frac{4}{3}$ 

E) 1

B) 3

- D) 2
- **04.** (Cesgranrio) No triângulo ABC da figura,  $\overline{CD}$  é a bissetriz do ângulo interno em  $\mathbf{C}$ . Se AD = 3 cm, DB = 2 cm e AC = 4 cm, então  $\overline{BC}$  mede:



- A) 3 cm.
  - B)  $\frac{5}{2}$  cm.
  - C)  $\frac{7}{2}$  cm.
  - D)  $\frac{8}{3}$  cm.
  - E) 4 cm.

- O5. (PUC Minas) Se o ponto  $\mathbf{M}$  divide um segmento  $\overline{AB}$ , de 18 cm, na razão  $\frac{2}{7}$ , as medidas de  $\overline{AM}$  e  $\overline{MB}$  são, respectivamente, em cm:
  - A) 4 e 14.

C) 8 e 10.

E) 14 e 4.

B) 7 e 11.

D) 10 e 8.



06. (UNIRIO-RJ)



No desenho anterior apresentado, as frentes para a Rua **A** dos quarteirões I e II medem, respectivamente, 250 m e 200 m, e a frente do quarteirão I para a Rua **B** mede 40 m a mais do que a frente do quarteirão II para a mesma rua. Assim, pode-se afirmar que a medida, em metros, da frente do **MENOR** dos dois quarteirões para a Rua **B** é:

A) 160

C) 200

E) 240

B) 180

D) 220

07. (UFRJ) Pedro está construindo uma fogueira representada pela figura a seguir. Ele sabe que a soma de x com y é 42 e que as retas r, s e t são paralelas. A diferença x - y é:



- A) 2
- B) 4
- C) 6
- D) 10
- E) 12
- 08. (CEFET-MG-2017) A figura a seguir é um esquema representativo de um eclipse lunar em que a Lua, a Terra e o Sol estão representados pelas circunferências de centros C<sub>1</sub>, C<sub>2</sub> e C<sub>3</sub>, respectivamente, que se encontram alinhados. Considera-se que a distância entre os centros da Terra e do Sol é 400 vezes maior que a distância entre os centros da Terra e da Lua e que a distância do ponto T na superfície da Terra ao ponto S na superfície do Sol, como representados na figura, é de 150 milhões de quilômetros.



Sabendo-se que os segmentos de reta  $\overline{C_1L}$ ,  $\overline{C_2T}$ ,  $\overline{C_3S}$ , são paralelos, a distância do ponto L, representado na superfície da Lua, ao ponto T, na superfície da Terra, é igual a

- A) 375 000 km.
- B) 400 000 km.
- C) 37 500 000 km.
- D) 40 000 000 km.
- 09. (UFSM-RS) A crise energética tem levado as médias e grandes empresas a buscarem alternativas na geração de energia elétrica para a manutenção do maquinário. Uma alternativa encontrada por uma fábrica foi a de construir uma pequena hidrelétrica, aproveitando a correnteza de um rio que passa próximo às suas instalações. Observando a figura e admitindo que as linhas retas r, s e t sejam paralelas, pode-se afirmar que a barreira mede:



A) 33 m.

C) 43 m.

E) 53 m.

B) 38 m.

D) 48 m.



10. (PUC-Campinas-SP) Na figura a seguir, as retas  $\mathbf{r}$ ,  $\mathbf{s}$  e  $\mathbf{t}$  são paralelas entre si. Se AC = x, BC = 8, DE = 15, EF = x - 10, GI =  $y \in HI = 10$ , então  $x + y \in um$  número



- A) maior que 47.
- C) menor que 43.
- E) cubo perfeito.

- B) entre 41 e 46.
- D) quadrado perfeito.