Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 9 Martie 2013

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a X-a

Problema 1. Fie $a, b \in \mathbb{R}$ şi $z \in \mathbb{C} \setminus \mathbb{R}$ astfel încât |a - b| = |a + b - 2z|.

- a) Să se arate că ecuația $|z-a|^x+|\overline{z}-b|^x=|a-b|^x$, cu necunoscuta $x\in\mathbb{R}$, are soluție unică.
- b) Să se rezolve inecuația $|z-a|^x+|\overline{z}-b|^x\leq |a-b|^x$, cu necunoscuta $x\in\mathbb{R}.$

Soluție. a) Fie u=z-a, v=z-b. Avem |v-u|=|u+v| și $u,v,u+v\in\mathbb{C}\backslash\mathbb{R},$ deci $u,v,u+v\neq 0.$

Relaţia |u+v| = |v-u| implică $|u+v|^2 = |u|^2 + |v|^2 \dots (2p)$ Deoarece $|v| = |\overline{v}|$, ecuaţia devine $|u|^x + |v|^x = \left(\sqrt{|u|^2 + |v|^2}\right)^x$, sau

$$\left(\frac{|u|}{\sqrt{|u|^2 + |v|^2}}\right)^x + \left(\frac{|v|}{\sqrt{|u|^2 + |v|^2}}\right)^x = 1.$$

Se observă soluția x=2... (2p) Cum funcția $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \left(\frac{|u|}{\sqrt{|u|^2 + |v|^2}}\right)^x + \left(\frac{|v|}{\sqrt{|u|^2 + |v|^2}}\right)^x$$

este strict descrescătoare, soluția este unică.....(1p)

Problema 2. Fie $a, b \in \mathbb{C}$. Să se arate că $|az + b\overline{z}| \leq 1$, pentru orice $z \in \mathbb{C}$, cu |z| = 1, dacă și numai dacă $|a| + |b| \leq 1$.

Soluție. Să presupunem $|a|+|b|\leq 1$, și fie $z\in\mathbb{C},$ cu |z|=1. Atunci

$$|az + b\overline{z}| \le |az| + |b\overline{z}| = |a| + |b| \le 1.$$

Reciproc, dacă a=0 sau b=0, implicația e evidentă. Dacă $a,b\neq 0$, scriem $\frac{b}{a}=r\left(\cos\alpha+i\sin\alpha\right)$. Pentru $z=\cos\frac{\alpha}{2}+i\sin\frac{\alpha}{2}$, avem

$$1 \ge |az + b\overline{z}| = |a| |\overline{z}| \left| z^2 + \frac{b}{a} \right|$$
$$= |a| |(1+r) (\cos \alpha + i \sin \alpha)|$$
$$= |a| (1+r) = |a| \left(1 + \left| \frac{b}{a} \right| \right)$$
$$= |a| + |b|.$$

 $\ldots \ldots (5p)$

Problema 3. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} ax, & x \in \mathbb{Q} \\ bx, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases},$$

unde a și b sunt două numere reale nenule.

Să se arate că f este injectivă dacă şi numai dacă f este surjectivă.

Soluţie. Vom arăta că f este injectivă $\iff \frac{a}{b} \in \mathbb{Q}$.

Să presupunem că f este injectivă. Dacă $\frac{a}{b} \in \mathbb{R} \setminus \mathbb{Q}$, $f\left(\frac{a}{b}\right) = a = f(1)$, contradicție.....(2p)

Vom arăta că f este surjectivă $\iff \frac{a}{b} \in \mathbb{Q}$.

Să presupunem că f este surjectivă. Atunci există x real astfel ca f(x) = b. Dacă $x \in \mathbb{R} \setminus \mathbb{Q}$ atunci obținem bx = b, deci x = 1, contradicție. Deducem că x e rațional și atunci avem ax = b, deci $\frac{a}{b} = \frac{1}{x} \in \mathbb{Q}$(2p)

Reciproc, fie $\frac{a}{b} \in \mathbb{Q}$ şi $y \in \mathbb{R}$, arbitrar. Nu putem avea simultan $\frac{y}{a} \in \mathbb{R} \setminus \mathbb{Q}$ şi $\frac{y}{b} \in \mathbb{Q}$, deci $f\left(\frac{y}{a}\right) = y$ sau $f\left(\frac{y}{b}\right) = y$. Rezultă că f este surjectivă....(2p)

Problema 4. Fie $n \in \mathbb{N}^*$. Să se arate că numărul

$$2\sqrt{2^n}\cos\left(n\arccos\frac{\sqrt{2}}{4}\right)$$

este număr întreg impar.

Soluţie. Fie $\alpha = \arccos \frac{\sqrt{2}}{4}$ şi $z = \cos \alpha + i \sin \alpha$. Cum $\cos n\alpha = \frac{1}{2}(z^n + \overline{z}^n)$, avem

$$2\sqrt{2^n}\cos n\alpha = \sqrt{2^n}(z^n + \bar{z}^n) = S_n.$$

$$z^{n} + \overline{z}^{n} = (z + \overline{z}) \left(z^{n-1} + \overline{z}^{n-1} \right) - z\overline{z} \left(z^{n-2} + \overline{z}^{n-2} \right),$$

deducem

$$S_n = S_{n-1} - 2S_{n-2},$$

pentru
$$n \geq 3.....(2p)$$

Deoarece $S_1 = 1$ şi $S_2 = -3$, rezultă inductiv că S_n este număr întreg impar.....(2p)