

FULLY PROTECTED HIGH SIDE POWER MOSFET SWITCH

Features

- Over temperature protection (with auto-restart)
- Short-circuit protection (current limit)
- Active clamp
- E.S.D protection
- · Status feedback
- · Open load detection
- · Logic ground isolated from power ground

Description

The IPS511/IPS511S are fully protected five terminal high side switches with built in short circuit, over-temperature, ESD protection, inductive load capability and diagnostic feedback. The output current is controlled when it reaches I_{lim} value. The current limitation is activated until the thermal protection acts. The over-temperature protection turns off the high side switch if the junction temperature exceeds Tshutdown. It will automatically restart after the junction has cooled 7°C below Tshutdown. A diagnostic pin is provided for status feedback of short-circuit, over-temperature and open load detection. The double level shifter circuitry allows large offsets between the logic ground and the load ground.

Product Summary

R _{ds(on)}	135mΩ (max)
V _{clamp}	50V
l Limit	5A
V open load	3V

Truth Table

Op. Conditions	In	Out	Dg
Normal	Н	Н	Н
Normal	L	L	L
Open load	Н	Н	Н
Open load	L	Н	Н
Over current	Н	L (limiting)	L
Over current	L	L	L
Over-temperature	Н	L (cycling)	Ĺ
Over-temperature	L	L	L

Typical Connection

Packages

International IOR Rectifier

Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to GROUND lead. ($T_j = 25^{\circ}$ C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units	Test Conditions
V _{out}	Maximum output voltage	V _{cc} -50	V _{CC} +0.3		
Voffset	Maximum logic ground to load ground offset	V _{cc} -50	V _{cc} +0.3		
V _{in}	Maximum Input voltage	-0.3	5.5	V	
V _{cc max}	Maximum Vcc voltage	_	50		
lin, max.	Maximum IN current	-5	10	mA	
V _{dg}	Maximum diagnostic output voltage	-0.3	5.5	V	
I _{dg, max}	Maximum diagnostic output current	-1	10	mA	
Isd cont.	Diode max. permanent current (1)	_	2.2		
Isd pulsed	Diode max. pulsed current (1)	_	10	Α	
ESD1	Electrostatic discharge voltage (Human Body)	_	4		C=100pF, R=1500Ω,
ESD2	Electrostatic discharge voltage (Machine Model)	_	0.5	kV	C=200pF, R=0Ω, L=10μH
Pd	Maximum power dissipation ⁽¹⁾				
	(TC=25°C) IPS511	_	25	W	
	(rth=80°C/W) IPS511S	_	1.56		
T _j max.	Max. storage & operating junction temp.	-40	+150	· °C	
T _{lead}	Lead temperature (soldering 10 seconds)	_	300		

Thermal Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rth 1	Thermal resistance junction to case	_	5	_		TO-220
Rth 2	Thermal resistance junction to ambient	_	60	_	°C/W	10-220
Rth 1	Thermal resistance with standard footprint	_	60	_		D ² PAK (SMD220)
Rth 2	Thermal resistance with 1" square footprint	_	40	_		
R _{th} 3	Thermal resistance junction to case	_	5	_		

⁽¹⁾ Limited by junction temperature (pulsed current limited also by internal wiring)

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Continuous V _{CC} voltage	5.5	35	
VIH	High level input voltage	4	5.5	V
VIL	Low level input voltage	-0.3	0.9	
lout	Continuous output current			
Tamb=85°C	(TAmbient = 85°C, Tj = 125°C, R _{th} < 60°C/W) IPS511	_	1.7	Α
	(TAmbient = 85°C, Tj = 125°C, Rth = 80°C/W) IPS511	_	1.5	•
Rin	Recommended resistor in series with IN pin	4	6	l.o
R _{dg}	Recommended resistor in series with DG pin	10	20	kΩ

Static Electrical Characteristics

 $(T_j = 25^{\circ}C, V_{CC} = 14V \text{ unless otherwise specified.})$

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{ds(on)} @Tj=25°C	ON state resistance T _j = 25°C	_	110	135		V _{in} = 5V, I _{out} = 2.5A
R _{ds(on)} (V _{cc} =6V)	ON state resistance @ V _{CC} = 6V	_	110	135	mΩ	$V_{in} = 5V$, $I_{out} = 1A$
Rds(on) @Tj=150°C	ON state resistance Tj = 150°C	_	200	_		$V_{in} = 5V$, $I_{out} = 2.5A$
V _{cc oper.}	Operating voltage range	5.5	_	35		
V clamp 1	Vcc to OUT clamp voltage 1	50	56	_	[,, [Id = 10mA (see Fig.1 & 2)
V clamp 2	V _{CC} to OUT clamp voltage 2	_	58	65	V	$I_d = I_{Sd}$ (see Fig.1 & 2)
Vf	Body diode forward voltage	_	0.9	1.2		I _d = 2.5A, V _{in} = 0V
Icc off	Supply current when OFF	_	16	50	μΑ	$V_{in} = 0V, V_{out} = 0V$
Icc on	Supply current when ON	_	0.7	2	mA	Vin = 5V
Icc ac	Ripple current when ON (AC RMS)	_	20	_	μΑ	$V_{in} = 5V$
Vdgl	Low level diagnostic output voltage	_	0.15	0.4	V	ldg = 1.6 mA
loh	Output leakage current	_	60	110		$V_{out} = 6V$
lol	Output leakage current	0	_	25	μΑ	$V_{out} = 0V$
ldg					μΑ	
leakage	Diagnostic output leakage current	_	_	10		$V_{dg} = 5.5V$
Vih	IN high threshold voltage	_	2.3	3	V	
Vil	IN low threshold voltage	1	1.95	_	, v	
lin, on	On state IN positive current	_	70	200	μΑ	V _{in} = 5V
In hyst.	Input hysteresis	0.1	0.25	0.5	V	

Switching Electrical Characteristics V_{CC} = 14V, Resistive Load = 5.6Ω , T_j = $25^{\circ}C$, (unless otherwise specified).

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
T _{don}	Turn-on delay time	_	7	50		
T _{r1}	Rise time to $V_{out} = V_{CC} - 5V$	_	10	50	μs	
T _{r2}	Rise time V_{CC} - 5V to V_{Out} = 90% of V_{CC}	_	45	100	,	See figure 3
dV/dt (on)	Turn ON dV/dt		1.3	4	V/µs	
Eon	Turn ON energy	_	400	_	μJ	
T _{doff}	Turn-off delay time	_	15	50		
Tf	Fall time to V _{out} = 10% of V _{CC}	_	10	50	μs	See figure 4
dV/dt (off)	Turn OFF d _{V/dt}	_	2	6	V/µs	
Eoff	Turn OFF energy	_	80	_	μJ	
T _{diag}	Vout to Vdiag propagation delay	_	5	15	μs	See figure 6

Protection Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
llim	Internal current limit	3	5	7	Α	$V_{out} = 0V$
T _{sd+}	Over-temp. positive going threshold	_	165	_	°C	See fig. 2
T _{sd} -	Over-temp. negative going threshold		158	_	°C	See fig. 2
V _{sc}	Short-circuit detection voltage (3)	2	3	4	V	See fig. 2
Vopen load	Open load detection threshold	2	3	4	V	

⁽³⁾ Referenced to $V_{\mbox{\footnotesize CC}}$

Lead Assignments

Functional Block Diagram

All values are typical

Figure 1 - Active clamp waveforms

Figure 2 - Protection timing diagram

Figure 3 - Switching times definition (turn-on)

Turn on energy with a resistive or an inductive load

Figure 4 - Switching times definition (turn-off)

Figure 5 - Active clamp test circuit

Figure 6 - Diagnostic delay definitions

Figure 7 - $R_{ds(on)}$ (m Ω) Vs V_{cc} (V)

Figure 8 - Normalized Rds(on) (%) Vs Tj (°C)

Figure 9 - Rds(on) (m Ω) Vs I $_{\mbox{out}}$ (A)

Figure 10 - Max. I_{Out} (A) Vs Load Inductance (uH)

Figure 11a - Max load current (A) Vs Tamb (°C) IPS511

Figure 11b - Max load current (A) Vs Tamb (°C) IPS511S

Figure 12 - Transient Thermal Impedance (°C/W) Vs Time (S)

Figure 13 - I_{lim} (A) Vs T_j (°C)

Figure 14 - E_{On} , E_{Off} (μJ) (A) Vs I_{Out} (A)

Figure 15 - E_On (μJ) Vs Load Inductance (μH) (see Fig. 3)

Figure 16 - Diag Blanking time (μ S) Vs I_{Out} (A) (resistive load - see Fig. 6)

Figure 17 - I_{CC} (mA) Vs V_{CC} (V)

International

TOR Rectifier

Figure 18 - I_{in} @ V_{in} = 5V (μ A) Vs T_i ($^{\circ}$ C)

Case Outline 5 Lead - TO220

Case Outline 5 Lead - D²PAK (SMD220)

5 Lead - D²PAK (SMD220) Tape & Reel

International

IOR Rectifier

www.irf.com

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd., Whyteleafe, Surrey CR3 0BL, United Kingdom Tel: ++ 44 (0) 20 8645 8000

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 8133 983 0086 IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon Hong Kong Tel: (852) 2803-7380

Data and specifications subject to change without notice.