

Figure 2

CO₂Me
$$\frac{1 \cdot \text{CbzCl}}{i \cdot \text{Pr}_2 \text{NEt}}$$
 O CO₂Me $\frac{\text{CO}_2 \text{Me}}{2 \cdot \text{O}_3 \cdot \text{PPh}_3}$ H R NHCbz

$$H_2$$
, $Pd(C)$ R H_2 N

Figure 3

Figure 4

(-)-21

(a) (-)-7b, (MeO)₃CH/THF; (b) 18-c-6/KHMDS;

NHBoc NHBoc

(-)-20b

(-)-20

(-)-1

(c) (COCI)₂, DMSO, DBU; (d) (-)-20, (MeO)₃CH/THF

393 my 25

(a) Wang resin, DEAD, PPI (c) PHCH2CH2CHO CH(OMe)₃/THF two treatments (d) KDHMS; (e) O₃, PPh₃ (b) TBAF (62% overall for 4 steps; 89% per step) 0= $(+)-22 R^1 = Teoc R^2 = OH$ 24: $R^1 = H$; $R^2 = O -$ 23: $R^1 = Teoc; R^2 = O-$ (+)-22

(-)-30 (36% overall for 7 steps; 86% per step)

Wang Resin 1% DVB cross linked (-)-31

(f) (31), CH(OMe)₃/THF

two treatments;

(a) (-)-7b, $(MeO)_3CH/THF$, 2 treatments; (b) KHDMS/18-c-6; (c) DMSO, $(COc^3)_2$, DBU; (d) 31, $(MeO)_3CH/THF$ THF, 2 treatments; (e) KHMDS; (f) CsF/DMF, TBAF; (g)PhCH₂CH₂CHO, (MeO)₃CH/THF, 2 treatments