Straddle screening tool

Bassam Rizk - YU id 303525

Research Question

What is the highest reachable consistency in screening stocks that will exhibit abnormal price volatility at a foreseeable market or stock event (dividends announcement...)?

Candidate stocks should have their at-the-money options tree premiums exhibiting high correlation (positive for calls and/or negative for puts) with their underlying stocks' prices.

Data sources

- S&P 100 list of symbols Wikipedia
- S&P 100 Stock historical (12 years) API from Quantmod; QuantTools
- S&P 100 stock historical events API from Quantmod
- Option Tree historical data (call on select stocks in sprint 2) Quantmod;
 QuantTools
- Greeks historical data (call on select stocks in sprint 2) API from fOptions

Update summary

To make sure I can meet all deadlines – I have taken the path of leveraging Rattle package in R Studio for clustering, modeling...

Rattle is a popup interface that calls upon 100s of other packages in the background. It offers all phases of modeling from exploration/transformation/clustering/modeling/testing/validating.

For my data to be ready for raddle and to avoid transformation within Rattle, I went back and added a key field – HLPPC – High Low Percentage Change - that measures the percentage price gap within each day's high and low price points.

Below is a bird eye view of what was done in Sprint 2:

- ✓ Pre-raddle transformation adding HLPPC
- ✓ Principal component review of the aggregated data set S&P100Full
- ✓ Splitting the data into training, validation & testing.
- ✓ Clustering the data set S&P100Full (K means, EWKM...)
- ✓ Modeling the data for HLPPC (using decision tree, neural network & linear)
- ✓ Validating & testing all 3 models.

R Studio Libraries

```
library(quandl)
library(QuantTools)
library(quantmod)
library(derivmkts)
library(RND)
setDefaults(getSymbols.av, api.key="V7YC53BOMBUB28FJ")
library(rattle)
```

Pre-Rattle Transformation

Comment: I noticed that I will need percent price change as a variable in any of my clustering & models - adding that to the merged full SnP100 file might be tricky

I added % closing price change column to the consolidated data frame

SnP100full\$PerChange <- c(-diff(SnP100full\$Close)/SnP100full\$Close[-1]*100,0)

Challenges

Did a dry run on a test sample and have 2 challenges in running Clustering functions:

- 1. there are still NAs in relatively newer stocks (e.g. Netflix...) that were not existent throughout the 2007-2019 sample period.
- 2. Preset library functions for measuring percentage price change (Overnight & intra-day) do not seem to be compatible with various clustering functions.

Solutions

Go back to the individual stock data frames and do couple of clean-ups:

- 1. Transform all remaining NAs in individual data sets into nill value
- 2. add overnight and same day percentage price change
- 3. remerge the individual 100 stock data frames into a new large data frame

Transform all remaining NAs in individual data sets into nil value

AAPLfull[is.na(AAPLfull)] <-0

ABBVfull[is.na(ABBVfull)] <-0

... replicate for all stocks

Add overnight and same day percentage price change

start with overnight (difference between close of the day and the previous day)

AAPLfull\$ON_PPC<- c(-diff(AAPLfull\$Close)/AAPLfull\$Close[-1]*100,0)

```
ABBVfull$ON PPC<- c(-diff(ABBVfull$Close)/ABBVfull$Close[-1]*100,0)
```

... replicate for all 100 stocks

```
Measure percent change between a day's high & low
```

AAPLfull\$HLppc<- c((AAPLfull\$High - AAPLfull\$Low)/AAPLfull\$Low*100)

ABBVfull\$HLppc<- c((ABBVfull\$High - ABBVfull\$Low)/ABBVfull\$Low*100)

... replicate for all 100 stocks

Removing NAs

There seems to be few NAs in few stocks - this applies to period where a stock was not yet listed

Clean-up - another round of cleaning NAs in the percentage change fields

AAPLfull[is.na(AAPLfull)] <-0

ABBVfull[is.na(ABBVfull)] <-0

... replicate for all 100 stocks

Re-merging all 100 files after adding overnight and high/close percentage change

SnP100full<- rbind(AAPLfull, ABBVfull, ABTfull, ACNfull, ADBEfull, AGNfull, AIGfull, ALLfull, AMGNfull, AMZNfull, AXPfull, BAfull, BACfull, BIIBfull, BKfull, BKNGfull, BLKfull, BMYfull, Cfull, CATfull, CELGfull, CHTRfull, CLfull, CMCSAfull, COPfull, COSTfull, CSCOfull, CVSfull, CVXfull, DDfull, DHRfull, DISfull, DOWfull, DUKfull, EMRfull, EXCfull, Ffull, FBfull, FDXfull, GDfull, GEfull, GILDfull, GMfull, GOOGfull, GOOGLfull, GSfull, HDfull, HONfull, IBMfull, INTCfull, JNJfull, JPMfull, KHCfull, KMIfull, KOfull, LLYfull, LMTfull, LOWfull, MAfull, MCDfull, MDLZfull, MDTfull, METfull, MMMfull, MOfull, MRKfull, MSfull, MSFTfull, NEEfull, NFLXfull, NKEfull, NVDAfull, ORCLfull, OXYfull, PEPfull, PFEfull, PGfull, PMfull, PYPLfull, QCOMfull, RTNfull, SBUXfull, SLBfull, SOfull, SPGfull, Tfull, TGTfull, TXNfull, UNHfull, UNPfull, UPSfull, USBfull, UTXfull, Vfull, VZfull, WBAfull, WFCfull, WMTfull, XOMfull)

Explore % change by stock vs stock volatility (outside Rattle)

<u>Comment</u>: Obviously new stocks like Netflix and stocks that witnessed turmoil during the 2008 global economic crisis (e.g. AIG) top the list when sorted by average daily percentage price change.

I wanted to explore a summarized table by stock of key metrics

```
max_on_ppc = max(ON_PPC),
avg_HL_ppc = mean(HLppc),
min_HL_ppc = min(HLppc),
max_HL_ppc = max(HLppc))
```


Rattle

```
INSTALL.PACKAGES("RATTLE")
INSTALL.PACKAGES("RATTLE", DEPENDENCIES=C("Depends", "Suggests"))
LIBRARY(RATTLE)
RATTLE()
```

https://cran.r-project.org/src/contrib/Archive/RGtk2/RGtk2 2.20.35.tar.gz

Select in case of a difficulty to open .rattle file in RGtk2 – please use the above link to download the earlier 2.20.35 version of RGtk2 library – that should solve the issue

Re-Explore data within Rattle

Select file SnP100full with High Low percentage change as a target variable.

Below is a description of the dataset.

The data is limited to the training dataset.

crs\$dataset[crs\$train, c(crs\$input, crs\$risk, crs\$target)]

11 Variables 212352 Observations

The data was few pages and couldn't clearly move it from text to clean tables – I summarized in the table below

Rattle timestamp: 2019-08-09 09:33:06 bassa

Basic statistics for key numeric variable of the dataset.

metric	\$Volatility	\$ON_PPC	\$HLppc	\$Dividends
nobs	212352	212352	212352	212352
NAs	0	0	0	0

Minimum	0	-100	0	0
Maximum	7.079582	155.04203	309.6	0.77
1 Quartile	0.140928	-0.845982	1.203861	0
3 Quartile	0.29334	0.761575	2.55102	0
Mean	0.250731	-0.012775	2.207995	0.005104
Median	0.200953	-0.046004	1.712853	0
Sum	53243.1645	-2712.801	468872.2	1083.78137
SE Mean	0.00044	0.004421	0.004533	0.000116
LCL Mean	0.249868	-0.02144	2.199111	0.004876
UCL Mean	0.251593	-0.00411	2.216879	0.005332
Variance	0.041118	4.150226	4.362836	0.002871
Stdev	0.202775	2.03721	2.08874	0.053586
Skewness	5.600613	1.686744	23.2184	10.91106
Kurtosis	79.753947	287.57577	2484.471	121.978523

Kurtosis for each numeric variable of the dataset.

Larger values mean sharper peaks and flatter tails.

Positive values indicate an acute peak around the mean.

Negative values indicate a smaller peak around the mean.

(Open	High	Low	Close	Volume	Adjusted	Volatility	ON_PPC	HLppc	Dividends
Ç	55.91057	55.84031	55.97522	55.86483	140.44138	57.52392	79.75395	287.57577	2484.47069	55.91057

Skewness for each numeric variable of the dataset.

Positive means the right tail is longer.

Open	High	Low	Close	Volume	Adjusted	Volatility	ON_PPC	HLppc	Dividends
6.709407	6.706561	6.712658	6.707722	8.901054	6.784499	5.600613	1.686744	23.218403	10.911060

Rattle timestamp: 2019-08-09 09:33:09 bassa

Explore Correlation Between Key Variables

<u>Take away</u>: Its very obvious that HLPPC High low percentage price change per day has a high correlation with stock volatility at 67%

Also a significant variable with high correlation to High/Low ppc is the traded volume at 26%

Variable Correlation Clusters SnP100full using Pearson

Principal component

Take-away: PC 1 and 2 provide the most significant results – interestingly:

- PC1 is driven relatively more by other variables than volatility and HLPPC.
- PC2 is mostly driven by volatility and HLPPC

Principal Components Importance SnP100full

Rattle 2019-Aug-09 10:09:18 bassa

Clustering

In clustering we used 2 methods Kmeans and EWKM

K means

<u>Take-away</u>: Very obvious from the data means that volatility & ON_PPC (overnight volatility) have the highest "Data means" vs our target variable HLPPC.

<u>Limitation</u>: It was challenging to map more than 5 variables in a clustering chart – the key variables (volatility & ON_PPC) could not be captured in the chart below – which made the chart plot less useful.

Within cluster sum of squares:

 $\hbox{\tt [1]}\ 46.34335\ 70.02040\ 23.55418\ 62.58690\ 40.09805\ 29.81370\ 25.71628$

[8] 30.84591 50.33915 29.06806

EWKM

<u>Take-away</u>: Because of the limitations in charting Kmeans cluster – I tried using the EWKM - Entropy Weighted K-Means which is more useful for high dimensional data.

Below is summarized version of the findings.

4 clusters, 1 iterations, 0 restarts, 2 total iterations.

Cluster sizes:

[1] "27464 122157 34997 27734"

Data means:

open	High	Low
0.043698124	0.043764123	0.043987077
Close	Volume	Adjusted
0.043792787	0.011390931	0.040135184
Volatility	Dividends	ON_PPC
0.035416030	0.006628185	<mark>0.392042150</mark>

Cluster centers:

	open	High	Low
1 0.	022540517	0.022620328	0.022644125
2 0.	064403462	0.064470034	0.064862211
3 0.	009875018	0.009922726	0.009907357

4 0.016131883	0.016204758	0.016180303
Close	Volume	Adjusted
1 0.022589408	0.009935015	0.019211047
2 0.064544478	0.004567639	0.060118188
3 0.009897513	0.031075741	0.008027256
4 0.016158773	0.018046617	0.013354978
Volatility	Dividends	ON_PPC
1 0.03710539	0.00798676223	0.3924519
2 0.03002261	0.00844149761	0.3919591
3 0.04609568	0.00444670015	0.3917770
4 0.04402251	0.00004870013	<mark>0.3923368</mark>

Cluster weights:

open	High	Low	Close	Volume	e Adjusted
1 0.18	0.18	0.19	0.19	0.05	0.18
2 0.00	0.00	0.00	0.00	0.77	0.00
3 0.19	0.19	0.19	0.19	0.00	0.21
4 0.18	0.18	0.18	0.18	0.00	0.18

Volatility Dividends ON_PPC

1	0	0.0	0.02
2	0	0.0	0.23
3	0	0.0	0.03
4	0	0.1	0.00

Within cluster sum of squares:

[1]0000

Comments: ONPPC – Overnight percentage price change seem to be the most determinant in the EWKM clustering – on the other hand Volatility seems to be at par with other variables.

Modeling

Testing & Training

Take-aways:

- Data was split in a 70% training, 15% validation & 15% testing format.
- We are trying to predict a stock's percentage change to screen the highest for a straddle strategy.
- 3 models were compatible with the nature our data frame.
 - 1. Decision trees
 - 2. Neural Networks
 - 3. Linear regression
- Testing and validation came back with very similar results so only one was reported to save on real estate.
- Also to save on real estate the bulk of coefficient tables, nodes tables were removed.
- Predict & Observe method was used to compare prediction capability of all 3 models with Pseudo R-Square score used as a benchmark.

Decision trees

Take-away: Driven by volatility & volume variables – decision tree were able to predict at 0.476 R-square.

Summary of the Decision Tree model for Classification (built using 'rpart'):

n= 212352 node), split, n, deviance, yval

- * denotes terminal node
- 1) root 212352 926452.60 2.207995
- 2) Volatility< 0.6044209 203429 322549.00 1.990545
- 4) Volatility< 0.2761405 152209 103667.00 1.637718
- 8) Volatility< 0.1741081 83749 31857.02 1.366199 *
- 9) Volatility>=0.1741081 68460 58082.70 1.969875 *

- 5) Volatility>=0.2761405 51220 143626.70 3.039031
- 10) Volatility< 0.4033684 34670 66522.50 2.708230 *
- 11) Volatility>=0.4033684 16550 65362.53 3.732015 *
- 3) Volatility>=0.6044209 8923 374988.00 7.165469
- 6) Volatility< 1.378729 7962 120587.00 6.334969
- 12) Volatility< 0.9283672 5801 54583.42 5.541613 *
- 13) Volatility>=0.9283672 2161 52551.00 8.464659 *
- 7) Volatility>=1.378729 961 203410.40 14.046260
- 14) ON_PPC< 44.62153 957 115484.80 13.704970

28)

Symbol=ALL,AMZN,AXP,BAC,BIIB,BK,BKNG,BLK,CMCSA,COP,CVX,DD,FB,GS,JPM,KHC,MDLZ,MO,NEE,NFLX,NVDA,OXY,SLB,SPG,UNH,USB,WFC,XOM 562 22652.93 10.935450 *

- 29) Symbol=AIG,C,COF,F,GE,MET,MS 395 82388.08 17.645390
- 58) Volume< 1.019247e+08 366 32205.36 15.597690 *
- 59) Volume>=1.019247e+08 29 29279.57 43.488750 *
- 15) ON PPC>=44.62153 4 61144.00 95.701280 *

Regression tree:

Test – validation test came back with very similar results

Neural Networks

Take-away: Neural Network was able to predict at 0.36 R-square (vs. 0.47 for decision trees)

Summary of the Neural Net model (built using nnet):

A 108-10-1 network with 1209 weights.

Inputs: open, High, Low, Close, Volume, Adjusted, Volatility, SymbolABBV, SymbolABT, SymbolACN, SymbolADBE, SymbolAGN, SymbolAIG, SymbolALL, SymbolAMGN, SymbolAMZN, SymbolAXP, SymbolBA, SymbolBAC, SymbolBIB, SymbolBK, SymbolBKNG, SymbolBLK, SymbolBMY, SymbolC, SymbolCAT, SymbolCELG, SymbolCHTR, SymbolCL, SymbolCMCSA, SymbolCOF, SymbolCOP, SymbolCOST, SymbolCSCO, SymbolCVS, SymbolCVX, SymbolDD, SymbolDHR, SymbolDIS, SymbolDOW, SymbolDUK, SymbolEMR, SymbolEXC, SymbolF, SymbolFB, SymbolFDX, SymbolGD, SymbolGE, SymbolGILD, SymbolGM, SymbolGOOG, SymbolGOOGL, SymbolGS, SymbolHD, SymbolHON, SymbolIBM, SymbolINTC, SymbolJNJ, SymbolJPM, SymbolKHC, SymbolKMI, SymbolKO, SymbolLLY, SymbolLMT, SymbolLOW, SymbolMA, SymbolMCD, SymbolMDTZ, SymbolMDT, SymbolMET, SymbolMMM, SymbolMO, SymbolMRK, SymbolMSFT, SymbolNEE, SymbolNFLX, SymbolNKE, SymbolNVDA, SymbolORCL, SymbolOXY, SymbolSEP, SymbolPFE, SymbolPG, SymbolPM, SymbolPYPL, SymbolCOM, SymbolRTN, SymbolSBUX, SymbolSLB, SymbolSO, SymbolSPG, SymbolT, SymbolTGT, SymbolTXN, SymbolUNH, SymbolUNP, SymbolUPS, SymbolUSB, SymbolUTX, SymbolV, SymbolVZ, SymbolWBA, SymbolWFC, SymbolWMT, SymbolXOM, Dividends, ON_PPC.

Output: HLppc.

Sum of Squares Residuals: 22887008171185948.0000.

Neural Network build options: skip-layer connections; linear output units.

Linear

Take-away: Compared with decision trees and neural network, Linear regression was able to produce the highest R-square of 0.58.

Linear model also produced a clear list of predicted percentage change:

	Estimate	Std. Error	t value
SymbolABBV	1.734e+00	5.441e-02	31.869
SymbolABT	1.573e+00	4.605e-02	34.162

Summary of the Linear Regression model (built using lm):

Call:

 $Im(formula = HLppc \sim ., data = crs$dataset[crs$train, c(crs$input, crs$target)])$

Residuals:

Min 1Q Median 3Q Max

-35.298 -0.478 -0.089 0.336 260.503

Test

