

Hasta ahora el estudio de los circuitos abarcó el estado permanente o régimen permanente

Pero ¿qué pasa entre el instante en que **accionamos una llave** y el momento en que alcanzamos dicho estado permanente?

DEFINICIONES

Régimen permanente Es un estado de equilibrio en el cual, no habiendo cambios de los

valores de la fuente ni de los elementos del circuito, las funciones que

representan tensiones y corrientes en el circuito se mantienen

inalterables

Régimen transitorio Es la transición entre dos estados permanentes diferentes, luego de

que una fuente o algún elemento del circuito cambia algunos de sus parámetros, produciéndose una perturbación en las respuestas, hasta

que finalmente se alcanza un nuevo estado de equilibrio

Respuesta forzada o permanente

Corresponde a la señal que aparece en el circuito en las condiciones de régimen permanente, es decir, es *forzada* por efecto de la fuente

Respuesta natural o libre

Se asocia con la **forma** de la evolución del régimen transitorio y

depende de los elementos pasivos del circuito (R, L y/o C)

Respuesta completa

Es la suma de la respuesta natural o libre más la respuesta forzada o permanente

¿Cómo se asocian estos fenómenos con la matemática que representa a dichos fenómenos?

SOLUCIÓN DE LA ECUACIÓN DIFERENCIAL DEL CIRCUITO

Las leyes de Ohm y Kirchhoff siguen valiendo para todo t

$$u_f(t) = u_R(t) + u_L(t) + u_C(t)$$

Utilizando las ecuaciones constitutivas en función de la corriente

$$u_f(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt} + \frac{1}{C} \int i(t) \cdot dt$$

Derivando ambos miembros

Ecuación diferencial general que

Matemáticamente, esta ecuación diferencial tiene una solución i(t), la cual es suma de la solución homogénea más una solución particular

Físicamente, la corriente i(t) del circuito (respuesta total o completa), es la suma de dos componentes: $i_n(t)$ debida a los elementos del circuito (*respuesta natural*) e $i_p(t)$ debida a la fuente (respuesta permanente o forzada)

"REGLAS DE ORO" DE LY C

Surgen a partir de las ecuaciones constitutivas

En un inductor no pueden existir variaciones instantáneas de corriente

$$u_L(t) = L \frac{di(t)}{dt} \neq \infty$$

En un capacitor no pueden existir variaciones instantáneas de tensión

$$i_C(t) = C \frac{du(t)}{dt} \neq \infty$$

INTRODUCCIÓN A LA SOLUCIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO

Independientemente de si la fuente que excita al circuito es *continua* o *alterna*, o si se trata de una fuente de tensión o de corriente, los conceptos y las expresiones matemáticas generales que describen el fenómeno son las mismas.

Por ejemplo

En este caso general, $u_{t}(t)$ es una expresión genérica de la tensión de la fuente, que puede ser continua o alterna.

$$u_f(t) = R \cdot i(t) + \frac{1}{C} \int_{-\infty}^{t} i(t) \cdot dt$$

o, derivando,
$$\Rightarrow \frac{du_f}{dt} = R\frac{di}{dt} + \frac{1}{C}i$$

Sabiendo que una ecuación diferencial tiene dos soluciones, una *particular* y otra homogénea, y teniendo en cuenta que esta última es siempre una exponencial decreciente que depende de los coeficientes de la ecuación diferencial (respuesta natural o libre), sólo la solución particular dependerá de la función que representa a la fuente (respuesta forzada o permanente).

Condiciones iniciales nulas ($U_{C0}=0$)

$$u_f(t) = U_f$$

$$u_f(t) = R \cdot i(t) + \frac{1}{C} \int_{-\infty}^{t} i(t) \cdot dt$$

Derivando ambos miembros

$$\frac{du_f}{dt} = R\frac{di}{dt} + \frac{1}{C}i \qquad 0 = R\frac{di}{dt} + \frac{1}{C}i \qquad \text{pues } u_f(t) \text{ es constante}$$

La solución de esta ecuación diferencial es

$$i(t) = k \cdot e^{-\tau}$$

donde $\tau = RC$, constante de tiempo del circuito

¿Cómo se determina k?

Hay que tener en cuenta las condiciones de borde del sistema

$$i(t) = I_0 \cdot e^{\frac{-t}{RC}}$$

Además
$$i_t(t) = i_n(t) + i_p(t)$$

Con
$$i_n(t) = I_0 \cdot e^{\frac{-t}{RC}}$$
 e $i_p(t) = 0$

$$i_p(t) = 0$$

CIRCUITO SERIE RC CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales nulas ($U_{C0}=0$)

GRÁFICAS

CONSTANTE DE TIEMPO

¿Cuándo termina el transitorio?

¿Cuánto vale el error en 5τ?

CIRCUITO SERIE RC CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales nulas ($U_{C0}=0$)

¿Cómo es la tensión en R y en C?

Debe observarse que aquí también

$$u_{tC}(t) = u_{nC}(t) + u_{pC}(t)$$
 $u_{tR}(t) = u_{nR}(t) + u_{pR}(t)$

$$u_{tR}(t) = u_{nR}(t) + u_{pR}(t)$$

GRÁFICAS

¿Cómo son sus expresiones?

 $u_{C}(t)$ se puede determinar utilizando la ecuación constitutiva

$$\frac{1}{C}\int i(t)\cdot dt$$

o mediante la diferencia entre $u_{t}(t)$ y $u_{R}(t)$, pues

$$u_R(t) = i(t) \cdot R$$

Debe recordarse que siempre, para todo t,

$$u_f(t) = u_R(t) + u_C(t)$$

CIRCUITO SERIE RC CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales nulas (U_{C0} =0)

CONSTANTE DE TIEMPO

¿Cuándo termina el transitorio?

¿Cuánto vale el error en 5τ?

CIRCUITO SERIE RC CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales NO nulas ($U_{C0}\neq 0$)

$$u_f(t) = U_f$$

$$u_f(t) = R \cdot i(t) + \frac{1}{C} \int_{-\infty}^{t} i(t) \cdot dt$$

Se repite el razonamiento anterior, teniendo en cuenta que el capacitor está cargado

$$i_n(t) = k_0 \cdot e^{\frac{-t}{RC}}$$
 $k_0 = I_0 = \frac{U_f - U_{C0}}{R}$

CIRCUITO SERIE RC SIN FUENTE Y CON $U_{co} \neq 0$

Se supone que las *condiciones iniciales* son *no nulas* ($U_{C0}\neq 0$)

Se supone que las *condiciones iniciales* son *no ni*

$$U_{CO} = Ri(t) + \frac{1}{C} \int_{-\infty}^{t} i(t) dt$$

$$0 = R \frac{di}{dt} + \frac{1}{C} i$$

Se repite el razonamiento anterior, teniendo en cuenta que el capacitor está inicialmente cargado y no hay fuente

GRÁFICAS

Ejercicio:

Escribir las ecuaciones que describen el comportamiento y explicar

EN - CIRCUITO SERIE RC

$$u_{tC} = u_{nC} + u_{pC}$$

En el resistor
$$u_{tR} = u_{nR} + u_{pR}$$

Además, por ley de Kirchhoff: $u_f = u_C + u_R = U_f$

$$i_n = I_0 \cdot e^{\frac{-t}{\tau}} = \frac{U_f}{R} \cdot e^{\frac{-t}{RC}} \quad e \quad i_p = 0 \qquad \qquad i_t = \frac{U_f}{R} \cdot e^{\frac{-t}{RC}}$$

$$i_t = \frac{U_f}{R} \cdot e^{\frac{-t}{RC}}$$

$$u_{nR} = i_n R = I_0 \cdot e^{\frac{-t}{\tau}} \cdot R = U_f \cdot e^{\frac{-t}{RC}} \quad \text{e} \quad u_{pR} = 0 \quad u_{tR} = U_f \cdot e^{\frac{-t}{RC}}$$

$$u_{pR} = 0$$

$$u_{tC} = \frac{1}{C} \int i \cdot dt \quad \text{o} \quad u_{tC} = u_f - u_{tR} = U_f - u_{tR}$$

$$u_{tC} = U_f - U_f \cdot e^{\frac{-t}{RC}}$$

$$u_{tC} = U_f - U_f \cdot e^{\frac{-t}{RC}}$$

OTROS CIRCUITOS RC

Condiciones iniciales nulas $(I_{L0}=0)$

$$u_f(t) = U_f$$

$$u_f(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt}$$

Se sabe que

$$i_{t}\left(t\right) = i_{n}\left(t\right) + i_{p}\left(t\right)$$

Con
$$i_p(t) = \frac{U_f}{R}$$
 e $i_n(t) = k \cdot e^{\frac{-t}{\tau}}$

$$e i_n(t) = k \cdot e^{\frac{-\tau}{\tau}}$$

¿Cómo se determinan k y τ ?

Al igual que antes, de la solución de la homogénea, resulta:

$$\tau = \frac{L}{R}$$

De
$$i_t(t) = i_n(t) + i_p(t)$$
 $i_t(t) = k \cdot e^{\frac{-t}{L/R}} + \frac{U_f}{R}$ Y en $t = 0$

$$k = -\frac{U_f}{R}$$

Finalmente resulta

$$i_{t}(t) = \left(-\frac{U_{f}}{R} \cdot e^{\frac{-t}{L/R}}\right) + \left(\frac{U_{f}}{R}\right) = \frac{U_{f}}{R} \left(1 - e^{\frac{-t}{L/R}}\right)$$

¿Por qué?

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales nulas $(I_{L0}=0)$

GRÁFICAS

CONSTANTE DE TIEMPO

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales nulas ($I_{L0}=0$)

¿Cómo es la tensión en $\it R$ y en $\it L$?

Debe observarse que aquí también

$$u_{tL}(t) = u_{nL}(t) + u_{pL}(t)$$
 $u_{tR}(t) = u_{nR}(t) + u_{pR}(t)$

GRÁFICAS

¿Cómo son sus expresiones?

 $u_L(t)$ se puede determinar utilizando la ecuación constitutiva di

$$u_L = L \cdot \frac{di}{dt}$$

o mediante la diferencia entre $u_f(t)$ y $u_R(t)$

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales NO nulas $(I_{L0}\neq 0)$

Otra vez tenemos como soluciones

$$u_f(t) = U_f$$

$$u_f(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt}$$

 $i_n(t)$ homogénea => natural

 $i_p(t)$ particular => forzada o permanente

Se repite el razonamiento ya visto, teniendo en cuenta que el inductor está "cargado"

$$i_{t}(t) = i_{n}(t) + i_{p}(t)$$
 en $t=0$
$$i_{t}(t=0) = Io$$

$$k = Io - \frac{U_{f}}{R}$$
 ¿Por qué?

Finalmente resulta

$$i_t(t) = \left(Io - \frac{U_f}{R}\right) e^{\frac{-t}{L/R}} + \frac{U_f}{R}$$

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales no nulas $(I_{I_0}\neq 0)$

La corriente del circuito

$$i_t(t) = \left(Io - \frac{U_f}{R}\right) \cdot e^{\frac{-t}{L/R}} + \frac{U_f}{R}$$

Las tensiones en L y R

$$u_{R}(t) = \left(Io \cdot R - U_{f}\right) e^{\frac{-t}{L/R}} + U_{f} \qquad u_{L}(t) = \left(U_{f} - Io \cdot R\right) e^{\frac{-t}{L/R}}$$

$$u_L(t) = \left(U_f - Io \cdot R\right) e^{\frac{-t}{L/R}}$$

GRÁFICAS

Para pensar: a) Resolver el caso con condiciones iniciales no nulas y sin fuente (el circuito RL se cierra mediante un corto). b) Otras combinaciones RL con fuentes de tensión y corriente

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN SENOIDAL

Se supone que las *condiciones iniciales* son *nulas* $(I_{L_0}=0)$

Se supone que las *condiciones iniciales* son *nulas*
$$(I_{L0} = t)$$

$$u_f(t) = U_f \cdot sen(\omega t)$$

$$u_f(t) = Ri(t) + L \cdot \frac{di(t)}{dt}$$

Se sabe que
$$i_t(t) = i_n(t) + i_p(t)$$
 Con $i_n(t) = k \cdot e^{\frac{-t}{\tau}}$

$$i_n(t) = k \cdot e^{\frac{-t}{\tau}}$$

$$y \quad i_p(t) = I_p \cdot sen(\omega t - \theta) = \frac{U_f}{\sqrt{R^2 + (\omega L)^2}} \cdot sen(\omega t - \theta) \qquad \text{Con} \quad \theta = arctg\left(\frac{\omega L}{R}\right)$$

¿Cómo se determinan k y au?

De la solución de la homogénea

$$\tau = \frac{L}{R}$$

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN SENOIDAL

Condiciones iniciales nulas $(I_{L0}=0)$

De
$$i_t(t) = i_n(t) + i_p(t)$$

De
$$i_t(t) = i_n(t) + i_p(t)$$

$$i_t(t) = k \cdot e^{\frac{-t}{L/R}} + I_p \cdot sen(\omega t - \theta)$$

Y en
$$t=0$$

$$k = I_p \cdot sen\theta = \frac{U_f}{\sqrt{R^2 + (\omega L)^2}} \cdot sen\theta$$
 ¿Por qué?

Finalmente resulta

$$i_{t}(t) = \frac{U_{f}}{\sqrt{R^{2} + (\omega L)^{2}}} \cdot sen\theta \cdot e^{\frac{-t}{L/R}} + \frac{U_{f}}{\sqrt{R^{2} + (\omega L)^{2}}} \cdot sen(\omega t - \theta)$$

Gráficamente

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN SENOIDAL

Condiciones iniciales nulas $(I_{L0}=0)$

EJERCICIO: Plantear y resolver el mismo circuito, pero suponiendo condiciones iniciales NO nulas