Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Кафедра автоматизации обработки информации (АОИ)

ИЗМЕРЕНИЕ СВОЙСТВ СИСТЕМЫ

Отчет по практической работе №4 по дисциплине «Теория систем и системный анализ»

Выполнил:	
Студент гр. 422-3	
	К. Л. Захаров
«»	2014 г.
Проверил:	
1 1	
преподаватель	
B. l	Н. Щербаков
«»	2014 г.
1 1 1	OH
профессор каф. А	ОИ, д.т.н.
	М. П. Силич
<i>"</i> "	2014 г

Измерение свойств системы

Описание

Цель работы Получить практические навыки в измерении свойств системы с помощью различных типов шкал, а также в интеграции измерений.

Формируемые компетенции

- владение культурой мышления
- способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей её достижения (ОК-1).

Самостоятельная работа Изучение типов шкал, методов нормирования измерений, методов свертки (аддитивной, мультипликативной), метода идеальной точки.

Ход работы

Выбор системы Ноутбук

Измерение свойств с помощью номинальной шкалы Выберем объекты для измерений

 o_1 - [Office] Ноутбук DNS (0802884)

o₂ - [Home] Ноутбук DNS (0802881) (HD+)

o₃ - [Gamer] Ноутбук DNS (0802723)

o₄ - [Extreme] Hоутбук DNS (0802876) (FHD)

Выберем некоторые свойства объектов

Таблица 1. Измерение свойств ноутбуков с помощью номинальной шкалы

Объект	Диагональ	Процессор	OC	Граф. ускоритель
o_1	15.6	Intel Celeron	Windows 8.1	встроенный
02	17.3	Intel Core i3	Ubuntu	дискр. и встроенный
03	15.6	Intel Core i5	Windows 8.1	дискр. и встроенный
04	17.3	Intel Core i7	нет	дискр. и встроенный

Для данных объектов опишем отношение эквивалентости по каждому из выбранных свойств.

Таблица 2. Сравнение совпадения свойств ноутбуков

Свойство		Символ Кронекера						
CBONCIBO	δ_{12}	δ_{13}	δ_{14}	δ_{23}	δ_{24}	δ_{34}		
Диагональ	0	1	0	0	1	0		
Процессор	0	0	0	0	0	0		
OC		1	0	0	0	0		
Графический ускоритель	0	0	0	1	1	1		

Для каждого свойства определим частоты и моду.

$$*15.6$$
» $p_1 = \frac{1}{2}$

$$*17.3$$
 $p_2 = \frac{1}{2}$

Процессор, мода - Ø

«Intel Celeron»
$$p_1 = \frac{1}{4}$$

«Intel Core i3»
$$p_2 = \frac{1}{4}$$

«Intel Core i5»
$$p_3 = \frac{1}{4}$$

«Intel Core i7»
$$p_4 = \frac{1}{4}$$

«Windows 8.1»
$$p_1 = \frac{1}{2}$$

«Ubuntu»
$$p_2 = \frac{1}{4}$$

«нет»
$$p_3 = \frac{1}{4}$$

Граф. ускоритель, мода «дискретный и встроенный»

«встроенный»
$$p_1 = \frac{1}{4}$$

ный»
$$p_2 = \frac{3}{4}$$

Измерение свойств с помощью ранговой шкалы По некоторым свойствам объектов сделаем оценки больше/меньше и проранжируем объекты по этому признаку. Результат покажет предпочтения большинства покупателей.

Таблица 3. Измерение свойств ноутбуков с помощью ранговой шкалы

Свойство	o_1	o_2	o_3	o_4
Портативность,%	1	2	4	3
Plug-n-play,%	1	3	2	4
Популярность, %	1	2	3	4
Функциональность, %	4	3	2	1

Измерение свойств с помощью шкалы интервалов и отношений Для измеримых свойств объектов укажем шкальные значения.

Таблица 4. Измерение свойств ноутбуков с помощью шкалы интервалов и отношений

Свойство	o_1	o_2	o_3	o_4
Цена, руб.	19390	30490	41890	57890
Ядра * Частота ЦП, МГц	4320	4800	5000	9600
Размер ОЗУ, Гб	2	4	8	8

Определим, на или во сколько раз один объект лучше другого по каждому свойству.

«Цена»

 o_1 лучше o_2 на 11100, o_3 на 22500, o_4 на 38500

 o_2 лучше o_3 на 11400, o_4 на 27400

 o_3 лучше o_4 на 16000

«Ядра * Частота ЦП»

 o_1 хуже o_2 на 480, o_3 на 680, o_4 на 5280

 o_2 хуже o_3 на 200, o_4 на 4800

 o_3 хуже o_4 на 4600

«Размер ОЗУ»

 o_1 хуже o_2 в 2, o_3 в 4, o_4 в 4 раза

 o_2 хуже o_3 в 2, o_4 в 2 раза

 o_3 pabeh o_4

Интеграция измерений

Выбор частных критериев, определение их важности, измерение объектов по критериям Для каждого критерия укажем веса от 1 до 10, максимальные/минимальные возможные значения для объектов генеральной совокупности, запишем значения. Веса выберем, руководствуюясь соображениями студента-программиста, ему нужно, чтобы ресурсоемкие приложения работали хорошо, но денег у него нет.

Критерий	Bec	Абс. значения				Мин.	Макс.
търитории	Dec	o_1	o_2	03	o_4	TATALLI.	TVICING.
Цена	10	19390	30490	41890	57890	11000	200000
Ядра*Част. ЦП	6	4320	4800	5000	9600	2500	10000
Разм. ОЗУ	8	2	4	8	8	0.5	32

Таблица 5. Значения по частным критериям

Нормировка весов и значений критериев Нормируем веса W = w_i , получим

 $V = \{\frac{w_1}{S}, \frac{w_2}{S}, \frac{w_3}{S}\}$, где $S = w_1 + w_2 + w_3$ (сумма изначальных весов). Нормируем значения критериев X, при нарушении порядка возрастания предпочтительности - инвертируем относительно диапазона [0; 1] (в данном случае - цена), получим

случае - цена), получим
$$Q_{ij} = \frac{X_{ij} - MIN_i}{\Delta_i}$$
, где $\Delta_i = MAX_i - MIN_i, i = \overline{1,3}, j = \overline{1,4}$.

Таблица 6. Результаты нормировки критериев

Критерий	Bec	Н	орм. з	рм. значения		
тритерии	Dec	o_1	o_2	03	O_4	
Цена	0.42	0.96	0.9	0.84	0.75	
Ядра*Част. ЦП	0.25	0.21	0.27	0.29	0.84	
Разм. ОЗУ	0.33	0.05	0.11	0.24	0.24	

Интегральная оценка Для принятия решений найдем интегральные оценки объектов.

Аддитивная свертка
$$\tilde{Q_j} = \sum\limits_{i=1}^3 v_i * Q_{ij},$$
 Мультипликативная светрка $\tilde{Q_j} = \prod\limits_{i=1}^3 Q_{ij}{}^{v_i},$ Метод идеальной точки $\tilde{Q_j} = \sqrt{\sum\limits_{i=1}^3 v_i * (1-Q_{ij})^2}$, где $j=\overline{1,4}$

Таблица 7. Результаты оценки по множеству критериев

Метод	Инт	егралы	ные оце	Лучший объект	
Wiciog	o_1	o_2	03	O_4	ory immir cobert
Аддитивная свертка	0.472	0.482	0.505	0.604	o_4
Мультипликативная свертка	0.25	0.333	0.429	0.53	o_4
Идеальная точка	0.67	0.632	0.572	0.473	01