Pandas: Heroes Of Pymoli - Analysis Report

- Observed Trend 1: Mourning Blade is the most profitable item for file 2, Retribution Axe is the most profitable item for file 1
- Observed Trend 2: most people only buy 1 item and male is the main buyer for both file 1 & 2
- Observed Trend 3: age group(20-24) consumed the most items for file 1 & 2

```
In [3]:
        import pandas as pd
```

```
In [4]: # Read the JSON file
        fpath = input("Please choice file (1) or file (2)?")
        if (fpath == "1"):
            JS = pd.read_json("purchase_data.json")
        elif (fpath == "2"):
            JS = pd.read_json("purchase_data2.json")
        else:
            print("no such file")
        JS.head()
        ee =JS.to_excel("test"+fpath+".xlsx","Sheet1")
```

Please choice file (1) or file (2)?1

Player Count

```
In [5]: # Total Number of Players
        Player Count = pd.DataFrame([{"Total Players":JS["SN"].nunique()}])
        Player_Count
```

Out[5]:

```
Total Players
0
             573
```

Purchasing Analysis (Total)

```
In [6]: | #Number of Unique Items
        UItem = JS["Item ID"].nunique()
        #Average Purchase Price
        AvePur = JS["Price"].mean()
        #Total Number of Purchases
        NPur = JS["Price"].count()
        #Total Revenue
        TRev = JS["Price"].sum()
        PurAnsys = pd.DataFrame([{"Number of Unique Items":UItem, "Average Price":"$"+str
        PurAnsys = PurAnsys[["Number of Unique Items", "Average Price", "Number of Purchase
        PurAnsys
```

Out[6]:

	Number of Unique Items	Average Price	Number of Purchases	Total Revenue
0	183	\$2.93	780	\$2286,33

Gender Demographics

```
In [7]: TotalC = JS["Gender"].count()
        MaleC =JS["Gender"].value counts()
        MaleP =round(MaleC / TotalC*100,2)
        # Creating a new DataFrame using both duration and count
        GenderDemo = pd.DataFrame({"Percentage of players":MaleP, "Total Count":MaleC})
        GenderDemo
        #Alternative Method
            #TotalC = JS["Gender"].count()
            #MaleC =pd.DataFrame(JS["Gender"].value_counts())
            #MaleP =pd.DataFrame(round(MaleC / TotalC*100,2))
            #MaleC = MaleC.reset_index().rename(columns={'index':'Gender','Gender':'Total
            #MaleP = MaleP.reset index().rename(columns={'index':'Gender','Gender':'Percel
            #GenderDemo = pd.merge(MaleP, MaleC, how='left', on='Gender')
            #GenderDemo
```

Out[7]:

	Percentage of players	Total Count
Male	81.15	633
Female	17.44	136
Other / Non-Disclosed	1.41	11

Purchasing Analysis (Gender)

The below each broken by gender

```
In [8]: #different method of normalization
        #JSMax = JS['Price'].max()
        #JSMin = JS['Price'].min()
        #JSMean = JS['Price'].mean()
        #JSStd = JS['Price'].std()
        #JSN = (JS['Price'] - JSMin)/(JSMax-JSMin)
        #JS['JSNor']=JSN
        #JS.head()
```

```
In [10]:
         JSGroup = JS.groupby(['Gender'])
         #Purchase Count
         PCbyG = JSGroup['Price'].count()
         #Average Purchase Price
         APbyG = round(JSGroup['Price'].mean(),2)
         #Total Purchase Value
         TPbyG = JSGroup['Price'].sum()
         #Normalized Totals
         # diff Method TPbyGN = JSGroup['JSNor'].sum()
         TPbyGN = round(TPbyG / PCbyG, 2)
         PAbyG = pd.DataFrame({"Purchase Count":PCbyG, "Average Purchase Price":APbyG, "Tota
         PAbyG = PAbyG[["Purchase Count", "Average Purchase Price", "Total Purchase Value", "
         PAbyG
```

Out[10]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Normalized Totals
Gender				
Female	136	2.82	382.91	2.82
Male	633	2.95	1867.68	2.95
Other / Non- Disclosed	11	3.25	35.74	3.25

Age Demographics

The below each broken into bins of 4 years (i.e. <10, 10-14, 15-19, etc.)

```
In [12]: # Create the bins in which Data will be held
         JS["Age"]=pd.to_numeric(JS['Age'])
         bins = [0,9,14,19,24,29,34,39,40]
         group_names = ['<10','10-14','15-19','20-24','25-29','30-34','35-39','40+']
         JS["Age Group"] = pd.cut(JS["Age"],bins,labels=group_names)
         JSgrAge = JS.groupby(['Age Group'])
         TCbyA = JS["Age Group"].count()
         VCbyA =JS["Age Group"].value_counts()
         PCbyA =round(VCbyA / TCbyA*100,2)
         # Creating a new DataFrame using both duration and count
         AgeDemo = pd.DataFrame({"Percentage of players":PCbyA,"Total Count":VCbyA})
         AgeDemo = AgeDemo.sort_index()
         AgeDemo
```

Out[12]:

	Percentage of players	Total Count
<10	3.60	28
10-14	4.50	35
15-19	17.12	133
20-24	43.24	336
25-29	16.09	125
30-34	8.24	64
35-39	5.41	42
40+	1.80	14

```
In [13]: | JSgrAge = JS.groupby(['Age Group'])
         #Purchase Count
         PCbyA =JSgrAge['Price'].count()
         #Average Purchase Price
         APbyA =round(JSgrAge['Price'].mean(),2)
         #Total Purchase Value
         TPbyA =JSgrAge['Price'].sum()
         #Normalized Totals
         #MaxbyA = JSgrAge['Price'].max() (diff way of Calc)
         #MinbyA = JSgrAge['Price'].min() (diff Way of Calc)
         #TPbyAN = round((TPbyA-APbyA) / (MaxbyA-MinbyA),2)
         TPbyAN = round(TPbyA / PCbyA, 2)
         ADbyG = pd.DataFrame({"Purchase Count":PCbyA, "Average Purchase Price":APbyA, "Tota
         ADbyG = ADbyG[["Purchase Count", "Average Purchase Price", "Total Purchase Value", "
         ADbyG
```

Out[13]:

Age Group					
<10	28	2.98	83.46	2.98	
10-14	35	2.77	96.95	2.77	
15-19	133	2.91	386.42	2.91	
20-24	336	2.91	978.77	2.91	
25-29	125	2.96	370.33	2.96	
30-34	64	3.08	197.25	3.08	
35-39	42	2.84	119.40	2.84	

3.22

45.11

3.22

Purchase Count Average Purchase Price Total Purchase Value Normalized Totals

Top Spenders

40+

14

Identify the the top 5 spenders in the game by total purchase value, then list (in a table):

```
In [14]:
         #SN
         GroupbySN = JS.groupby(['SN'])
         #Total Purchase Value by SN
         TPbyS =GroupbySN['Price'].sum()
         #TPbyS = TPbyA.sort_values('Price', ascending=False)
         #Purchase Count
         PCbyS =GroupbySN['Price'].count()
         #Average Purchase Price
         APbyS =GroupbySN['Price'].mean()
         TopS = pd.DataFrame({"Purchase Count":PCbyS,"Average Purchase Price":round(APbyS,
         TopS = TopS[["Purchase Count", "Average Purchase Price", "Total Purchase Value"]]
         TopS = TopS.sort_values('Total Purchase Value',ascending=False)
         TopS.head(5)
```

Purchase Count Average Purchase Price Total Purchase Value

Out[14]:

	Purchase Count	Average Purchase Price	iotai Purchase value
SN			
Undirrala66	5	3.41	17.06
Saedue76	4	3.39	13.56
Mindimnya67	4	3.18	12.74
Haellysu29	3	4.24	12.73
Eoda93	3	3.86	11.58

Most Popular Items

Identify the 5 most popular items by purchase count, then list (in a table):

```
In [15]:
         #Item ID
         GroupbyID = JS.groupby(['Item ID','Item Name'])
         #Total Purchase Value by ITem
         TPbyI =GroupbyID['Price'].sum()
         #TPbyS = TPbyA.sort_values('Price', ascending=False)
         #Purchase Count
         PCbyI =GroupbyID['Price'].count()
         #Average Purchase Price
         APbyI =GroupbyID['Price'].mean()
         #Item Price
         IPbyI =GroupbyID['Price']
         TopI = pd.DataFrame({"Purchase Count":PCbyI,"Item Price":APbyI,"Total Purchase Va
         TopI = TopI[["Purchase Count","Item Price","Total Purchase Value"]]
         TopI = TopI.sort_values('Purchase Count',ascending=False)
         TopI.head()
```

Out[15]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
39	Betrayal, Whisper of Grieving Widows	11	2.35	25.85
84	Arcane Gem	11	2.23	24.53
31	Trickster	9	2.07	18.63
175	Woeful Adamantite Claymore	9	1.24	11.16
13	Serenity	9	1.49	13.41

Most Profitable Items

Identify the 5 most profitable items by total purchase value, then list (in a table):

```
In [16]:
         #Item ID
         GroupbyID = JS.groupby(['Item ID','Item Name'])
         #Total Purchase Value by ITem
         TPbyI =GroupbyID['Price'].sum()
         #TPbyS = TPbyA.sort_values('Price', ascending=False)
         #Purchase Count
         PCbyI =GroupbyID['Price'].count()
         #Average Purchase Price
         APbyI =GroupbyID['Price'].mean()
         #Item Price
         IPbyI =GroupbyID['Price']
         TopI = pd.DataFrame({"Purchase Count":PCbyI,"Item Price":APbyI,"Total Purchase Va
         TopI = TopI[["Purchase Count","Item Price","Total Purchase Value"]]
         TopI = TopI.sort_values('Total Purchase Value',ascending=False)
         TopI.head()
```

Out[16]:

Item ID	Item Name			
34	Retribution Axe	9	4.14	37.26
115	Spectral Diamond Doomblade	7	4.25	29.75
32	Orenmir	6	4.95	29.70
103	Singed Scalpel	6	4.87	29.22
107	Splitter, Foe Of Subtlety	8	3.61	28.88

Purchase Count Item Price Total Purchase Value