Proof for uniqueness of the choice of A

Proposition 1:

Suppose $\Sigma \in \mathbb{R}^{n \times n}$ has n different eigenvalues, $\lambda_1 > \cdots > \lambda_n$, and $v_1, \dots, v_n \in \mathbb{R}^{n \times 1}$ are the corresponding eigenvectors that form an orthonormal basis of \mathbb{R}^n .

Suppose $A \in \mathbb{R}^{r \times n}$ is a semi-orthogonal matrix that satisfies $AA^T = I_{r,r} \leq n$.

Then we have the following statements:

a) if
$$A\Sigma A^T = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_r \end{pmatrix}$$
, then we have $A = \begin{pmatrix} \pm v_1^T \\ \pm v_2^T \\ \vdots \\ \pm v_r^T \end{pmatrix}$. The choice of A is unique up to a sign

of \pm .

b) if
$$A\Sigma A^T$$
's eigenvalues are $\lambda_1, \dots, \lambda_r$, then we have $A = O\begin{pmatrix} \pm v_1^T \\ \pm v_2^T \\ \vdots \\ \pm v_r^T \end{pmatrix}$, $O \in \mathbb{R}^{r \times r}$ is an orthogonal

matrix.

To conclude, if $A\Sigma A^T$'s eigenvalues, $\lambda_1, ..., \lambda_r$, are exactly the *r largest eigenvalues* of Σ , and Σ 's eigenvalues $\lambda_1, ..., \lambda_n$ are different from each other, then the choice of semi-orthogonal matrix $A \in \mathbb{R}^{r \times n}$ is unique up to an orthogonal transformation $0 \in \mathbb{R}^{r \times r}$.

Proof: We use mathematical induction to prove this.

1) If r = 1, then $A \in \mathbb{R}^{1 \times n}$. As $v_1, ..., v_n \in \mathbb{R}^{n \times 1}$ form an orthonormal basis of \mathbb{R}^n , we assume $A = \alpha_1 v_1^T + \cdots + \alpha_n v_n^T$. Since A is semi-orthogonal, $AA^T = I_r = 1$, we have $\alpha_1^2 + \cdots + \alpha_n^2 = 1$. Now suppose a) $A\Sigma A^T = \lambda_1, \lambda_1 > \cdots > \lambda_n$.

By eigenvalue decomposition we have:

$$\Sigma = \sum_{i=1}^{n} \lambda_i v_i^T v_i$$

So we have:

$$A\Sigma A^T = \sum_{i=1}^n \alpha_i^2 \lambda_i = \lambda_1$$

Since $\alpha_1^2 + \dots + \alpha_n^2 = 1$ and $\lambda_1 > \dots > \lambda_n$, we have $\alpha_1^2 = 1$ and $\alpha_2^2 = \dots = \alpha_n^2 = 0$. So we have:

$$A = +\nu_1^T$$

which proves that statement a) is correct when r = 1.

If r = 1, then statement a) is equivalent to statement b). Hence, we proved that statement a), b) are correct when r = 1.

2) Suppose statement a) b) are correct for all $r \le k < n$, now we prove that statement a) b) are

correct when $r = k + 1 \le n$.

For statement a), suppose $A = \begin{pmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_{k+1}^T \end{pmatrix}$ and $A\Sigma A^T = \begin{pmatrix} \lambda_1 \\ & \ddots \\ & & \lambda_{k+1} \end{pmatrix}$. Then we have:

$$\begin{pmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_k^T \end{pmatrix} \Sigma(u_1 \quad u_2 \quad \cdots \quad u_k) = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{pmatrix}$$

and $u_{k+1}^T \Sigma u_{k+1} = \lambda_{k+1}$.

Since statement a) is true when r = k, we deduce that the choice of $\begin{pmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_k^T \end{pmatrix}$ is unique up to a sign

±:

$$\begin{pmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_k^T \end{pmatrix} = \begin{pmatrix} \pm v_1^T \\ \pm v_2^T \\ \vdots \\ \pm v_k^T \end{pmatrix}$$

Since A is semi-orthogonal, we have $u_{k+1}^Tu_1=\cdots=u_{k+1}^Tu_k=0$ and $u_{k+1}^Tu_{k+1}=1$. So $u_{k+1}\in span(v_{k+1},\ldots,v_n)$. Assume $u_{k+1}^T=\alpha_{k+1}v_{k+1}^T+\cdots+\alpha_nv_n^T$, then we have $\alpha_{k+1}^2+\cdots+\alpha_n^2=1$.

By eigenvalue decomposition we have $\Sigma = \sum_{i=1}^n \lambda_i v_i^T v_i$ and $u_{k+1}^T \Sigma u_{k+1} = \sum_{i=k+1}^n \alpha_i^2 \lambda_i = \lambda_{k+1}$, so we have $\alpha_{k+1}^2 = 1$ and $\alpha_{k+2}^2 = \cdots = \alpha_n^2 = 0$ and $u_{k+1}^T = \pm v_{k+1}^T$.

Hence, we proved that the choice of $\begin{pmatrix} u_1^t \\ u_2^T \\ \vdots \\ u_{k+1}^T \end{pmatrix}$ is unique up to a sign \pm , which means that the

statement a) is true when r = k + 1.

For statement b): if $A\Sigma A^T$'s eigenvalues are $\lambda_1, ..., \lambda_{k+1}$, then we have:

$$A\Sigma A^T = O\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_{k+1} \end{pmatrix} O^T$$

where $0 \in \mathbb{R}^{(k+1)\times(k+1)}$ is an orthogonal matrix. So we have:

$$O^T A \Sigma A^T O = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_{k+1} \end{pmatrix}$$

According to statement a), we deduce that $O^T A$ is unique up to a sign \pm :

$$O^T A = \begin{pmatrix} \pm v_1^T \\ \pm v_2^T \\ \vdots \\ \pm v_{k+1}^T \end{pmatrix}$$

So we proved that
$$A = O\begin{pmatrix} \pm v_1^T \\ \pm v_2^T \\ \vdots \\ \pm v_{k+1}^T \end{pmatrix}$$
, $O \in \mathbb{R}^{(k+1)\times(k+1)}$ is an orthogonal matrix. Hence, we

completed the proof for statement b).

Putting the deductions in 1) and 2) together, we conclude that the choice of semi-orthogonal matrix $A \in \mathbb{R}^{r \times n}$ is unique up to an orthogonal transformation $O \in \mathbb{R}^{r \times r}$, if $A \Sigma A^T$'s eigenvalues, $\lambda_1, \dots, \lambda_r$, are exactly the *r largest eigenvalues* of Σ .

Similar to proposition 1, we can prove that $A \in \mathbb{R}^{r \times n}$ is unique up to an orthogonal transformation $0 \in \mathbb{R}^{r \times r}$, if $A\Sigma A^T$'s eigenvalues, $\lambda_{n-r+1}, ..., \lambda_n$, are exactly the *r smallest eigenvalues* of Σ and Σ 's eigenvalues $\lambda_1, ..., \lambda_n$ are different from each other.

Proposition 2:

Suppose $\Sigma \in \mathbb{R}^{n \times n}$ has *n* different eigenvalues, $\lambda_1 > \cdots > \lambda_n$, and $v_1, \dots, v_n \in \mathbb{R}^{n \times 1}$ are the corresponding eigenvectors that form an orthonormal basis of \mathbb{R}^n .

Suppose $A \in \mathbb{R}^{r \times n}$ is a semi-orthogonal matrix that satisfies $AA^T = I_{r,r} \leq n$.

Then we have the following statements:

a) if
$$A\Sigma A^T = \begin{pmatrix} \lambda_{n-r+1} & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
, then we have $A = \begin{pmatrix} \pm v_{n-r+1}^T \\ \pm v_{n-r+2}^T \\ \vdots \\ \pm v_n^T \end{pmatrix}$. The choice of A is unique up

to a sign of \pm .

b) if
$$A\Sigma A^T$$
's eigenvalues are $\lambda_{n-r+1}, \dots, \lambda_n$, then we have $A = O\begin{pmatrix} \pm v_{n-r+1}^T \\ \pm v_{n-r+2}^T \\ \vdots \\ + v_n^T \end{pmatrix}$, $0 \in \mathbb{R}^{r \times r}$ is an

orthogonal matrix.

Sketch of the Proof: The proof of proposition 2 is quite similar to the proof of proposition 1. First, we can verify that if r=1, then the only choice of A is $A=\pm v_n^T$. Then we assume that for any $r\leq k < n$, statement a) b) are correct. Following the very same deduction for proposition 1, we can confirm that statement a) b) are correct when $r=k+1\leq n$. This suffice to prove that proposition 2 is correct.

Then, we can prove that, if $A\Sigma A^T$'s r eigenvalues are composed of r_1 largest eigenvalues of Σ and r_2 smallest eigenvalues of Σ , $r_1 + r_2 = r$ and Σ 's eigenvalues $\lambda_1, ..., \lambda_n$ are different from each other, then the choice of A is also unique up to an orthogonal transformation $0 \in \mathbb{R}^{r \times r}$.

Proposition 3:

Suppose $\Sigma \in \mathbb{R}^{n \times n}$ has n different eigenvalues, $\lambda_1 > \dots > \lambda_n$, and $v_1, \dots, v_n \in \mathbb{R}^{n \times 1}$ are the corresponding eigenvectors that form an orthonormal basis of \mathbb{R}^n .

Suppose $A \in \mathbb{R}^{r \times n}$ is a semi-orthogonal matrix that satisfies $AA^T = I_r, r \leq n$.

Then we have the following statements:

a) if
$$A\Sigma A^T = \begin{pmatrix} \lambda_1 & & & & & \\ & \ddots & & & & \\ & & \lambda_{r_1} & & & \\ & & & \lambda_{n-r+r_1+1} & & \\ & & & & \ddots & \\ & & & & \lambda_n \end{pmatrix}$$
, then we have $A = \begin{pmatrix} \pm v_1^T \\ \vdots \\ \pm v_{r_1}^T \\ \pm v_{n-r+r_1+1}^T \\ \vdots \\ \pm v_n^T \end{pmatrix}$. The

choice of A is unique up to a sign of \pm .

b) if
$$A\Sigma A^T$$
's eigenvalues are $\lambda_1, \dots, \lambda_{r_1}, \lambda_{n-r+r_1+1}, \dots, \lambda_n$, then we have $A = 0$

$$\begin{pmatrix} \pm v_1' \\ \vdots \\ \pm v_{r_1}^T \\ \pm v_{n-r+r_1+1}^T \end{pmatrix},$$

$$\pm v_1^T$$

 $0 \in \mathbb{R}^{r \times r}$ is an orthogonal matrix.

Proof: For statement a), suppose $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$, $A_1 \in \mathbb{R}^{r_1 \times n}$, $A_2 \in \mathbb{R}^{(r-r_1) \times n}$. Since $A \Sigma A^T = A \Sigma A^T = A \Sigma A^T = A \Sigma A^T$

$$\begin{pmatrix} \lambda_1 & & & & & \\ & \ddots & & & & & \\ & & \lambda_{r_1} & & & & \\ & & & \lambda_{n-r+r_1+1} & & & \\ & & & & \lambda_n \end{pmatrix}, \text{ we have } A_1 \Sigma A_1^T = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & & \lambda_{r_1} \end{pmatrix} \text{ and } A_2 \Sigma A_2^T = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & & \lambda_n \end{pmatrix}$$

$$\begin{pmatrix} \lambda_{n-r+r_1+1} & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}. \text{ From proposition 1 we have } \mathbf{A}_1 = \begin{pmatrix} \pm v_1^T \\ \vdots \\ \pm v_{r_1}^T \end{pmatrix} \text{ is unique and from }$$

proposition 2 we have
$$A_2 = \begin{pmatrix} \pm v_{n-r+r_1+1}^T \\ \vdots \\ \pm v_n^T \end{pmatrix}$$
 is unique, so $A = \begin{pmatrix} \pm v_1^T \\ \vdots \\ \pm v_{r_1}^T \\ \pm v_{n-r+r_1+1}^T \\ \vdots \\ \pm v_n^T \end{pmatrix}$ is unique up to a

sign of ±.

For statement b): if $A\Sigma A^T$'s eigenvalues are $\lambda_1, \dots, \lambda_{r_1}, \lambda_{n-r+r_1+1}, \dots, \lambda_n$, then we have:

$$A\Sigma A^T = Oegin{pmatrix} \lambda_1 & & & & & & & \\ & \ddots & & & & & & & \\ & & \lambda_{r_1} & & & & & \\ & & & \lambda_{n-r+r_1+1} & & & \\ & & & & & \lambda_n \end{pmatrix} O^T$$

where $0 \in \mathbb{R}^{r \times r}$ is an orthogonal matrix. So we can deduce that $0^T A$ is unique up to a sign \pm :

$$O^T A = \begin{pmatrix} \pm v_1^T \\ \vdots \\ \pm v_{r_1}^T \\ \pm v_{n-r+r_1+1}^T \\ \vdots \\ \pm v_n^T \end{pmatrix}$$

So we proved that
$$A = O\begin{pmatrix} \pm v_1^T \\ \vdots \\ \pm v_{r_1}^T \\ \pm v_{n-r+r_1+1}^T \\ \vdots \\ + v_n^T \end{pmatrix}$$
, $O \in \mathbb{R}^{r \times r}$ is an orthogonal matrix. Hence, we

completed the proof for statement b).

We have proved that to maximize each f-divergence is to extract some of the largest eigenvalues and some of the smallest eigenvalues of Σ , so according to proposition 3, we have the following:

Proposition 4:

If $\Sigma \in \mathbb{R}^{n \times n}$ has n different eigenvalues, $\lambda_1 > \cdots > \lambda_n$, and the evaluation function $g(\lambda)$ attains n different values $g(\lambda_i)$ at $\lambda = \lambda_i$, then to maximize each f-divergence, the optimal choice of the semi-orthogonal matrix $A \in \mathbb{R}^{t \times n}$ is unique up to an orthogonal transformation $O \in \mathbb{R}^{r \times r}$.