

Digital Logic

Lecture 3

2nd Stage
Computer Science Department
Faculty of Science
Soran University

Topics covered

- ♦ Signed Numbers
- ♦ Binary Subtraction

Signed Numbers

$$(-12)_{10} = (?)_2$$

Signed Numbers

Representation of Signed Numbers

- 1. Sign-Magnitude System
- 2. First Complement System
- 3. Second Complement System

- Use fixed length binary representation
- Represent the decimal number as binary
- Use left-most bit (called *most significant bit* or MSB) for sign:

0 for positive

1 for negative

Example:
$$(+18)_{10} = (00010010)_2$$

 $(-18)_{10} = (10010010)_2$

زانکوّی سـوّران SORAN UNIVERSITY

- - 1 bit for sign
 - 3 bits for magnitude

+N		-N	
0	0000	1000	
1	0001	1001	
2	0010	1010	
3	0011	1011	
4	0100	1100	
5	0101	1101	
6	0110	1110	
7	0111	1111	

زانکوی سوّران SORAN UNIVERSITY

- - 1 bit for sign
 - 3 bits for magnitude

+N	-N	
0000	1000	
0001	1001	
0010	1010	
0011	1011	
0100	1 100	
0101	1101	
0110	1110	
0111	1111	
	0000 0001 0010 0011 0100 0101 0110	

2. First Complement System

Method: Invert the ones and zeros

- $11_{10} = 00001011$
- $-11_{10} = 11110100$
- 0 in MSB implies positive
- 1 in MSB implies negative

$$+N$$
 $-N$

- 0 0000 1111
- 1 0001 1110
- 2 0010 1101
- 3 0011 1100
- 4 0100 1011
- 5 0101 1010
- 6 0110 1001
- 7 0111 1000

2. First Complement System

$$+N$$
 $-N$
 0 0000 1111
 1 0001 1110
 2 0010 1101
 3 0011 1100
 4 0100 1011
 5 0101 1010
 6 0110 1001
 7 0111 1000

3. Second Complement

• Method: Take the one's complement and add 1

11= 00001011

$$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$
 one's comp
11110100
 $_{}$ Add 1
-11= 11110101 two's comp

	+N	-N
0	0000	0000
1	0001	1111
2	0010	1110
3	0011	1101
4	0100	1100
5	0101	1011
6	0110	1010
7	0111	1001

3. Second Complement

$$5 = 00000101$$

$$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

$$11111010$$

$$-5 = 11111011$$
Complement Digits
Add 1

$$\begin{array}{rcl}
-13 & = & 11110011 \\
& \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
& & 00001100 \\
& & & +1 \\
13 & = & 00001101
\end{array}$$
Complement Digits
Add 1

		signedMag	1sComp	2sComp
N	+n	-n	-n	-n
0	0000	1000	1111	0000
1	0001	1001	1110	1111
2	0010	1010	1101	1110
3	0011	1011	1100	1101
4	0100	1100	1011	1100
5	0101	1101	1010	1011
6	0110	1110	1001	1010
7	0111	1111	1000	1001

8-bit subtraction using 2's complement

8-bit subtraction using 2's complements

8-bit subtraction using 2's complements

Classwork - 2

Perform the following operations in binary, using the 2's complement method, and show your work:

A)
$$(-9)_{10} + (-7)_{10}$$

B)
$$(-12)_{10}$$
 - $(-6)_{10}$

Exercises - 2

Perform the following operations in binary, using the first and second complement methods, and show your work:

A)
$$(-18)_{10} + (71)_{10}$$

B)
$$(-21)_{10} + (-1)_{10}$$

C)
$$(2)_{10} + (-8)_{10}$$

Deadline: October 15, 2022 @ 11:59 PM

Homework 3

Perform the following operations in binary, using the first and second complement methods, and show your work:

A)
$$(-9)_{10} + (6)_{16}$$

B)
$$(-5)_{10}$$
 _ $(16)_{8}$

C)
$$(-14)_{10} + (7)_{8}$$

Deadline: October 21, 2022 @ 11:59 PM