ECE 111 Winter 2022 HW3 Hao Le A15547504

Johnson Counter

Code

```
Johnson Counter RTL Model
 23456
     ⊟module johnson_counter (
          input logic clk, clear, preset,
input logic[3:0] load_cnt,
          output logic[3:0] count
 7
     ⊟ always@(posedge clk or negedge clear) begin
 8
           if(!clear)
 9
10
               count <= 4'b0000;
11
           else if(!preset)
12
               count <= load_cnt;
13
14
           else begin
15
     Ė
               count[3] <= !count[0];
count[2] <= count[3];</pre>
16
17
               count[1] <= count[2];
18
               count [0] <= count [1];
19
20
           end
21
22
        end
       endmodule: johnson_counter
23
24
```

RTL netlist

Resource usage

		Resource	Usage
1	~	Estimated ALUTs Used	113
1		Combinational ALUTs	113
2		Memory ALUTs	0
3		LUT_REGs	0
2		Dedicated logic registers	8
3			
4	~	Estimated ALUTs Unavailable	9
1		Due to unpartnered combinational logic	9
2		Due to Memory ALUTs	0
5			
6		Total combinational functions	113
7	~	Combinational ALUT usage by number of inputs	
1		7 input functions	3
2		6 input functions	6
3		5 input functions	21
4		4 input functions	31
5		<=3 input functions	52
8			
9	~	Combinational ALUTs by mode	
1		normal mode	54
2		extended LUT mode	3
3		arithmetic mode	33
4		shared arithmetic mode	23
10			
11		Estimated ALUT/register pairs used	122
12			
13	~	Total registers	8
1		Dedicated logic registers	8
2		I/O registers	0
3		LUT_REGs	0
14			
15			
16		I/O pins	22
17			
18		DSP block 18-bit elements	0
19			

Testbench simulation waveform

Upon review of the simulation waveform, the module works as a Johnson Counter by observations:

- At 45ns, when present goes low, this sets the shift register values to load_cnt, which is 4'b0000.
- Then on every positive edge of clk, we see 1's start to shift left from the right as a result of the initial 0's being negated and wrapped around
- After the shift register is filled with 1's, we see 0's start to shift left from the right by the same logic
- In total, there are 8 different states count can have, which is 2N where N = the 4 bits of the shift register
- We also see that upon clear going low, count goes and stays at 4'b0000 even at the positive edge of clk.
- When present goes low again, this time with load_cnt at a different value of 4'b1000, that get's loaded into the shift register

Universal Shift Register

Code

```
// RTL model of Universal Shift Register
Dmodule universal_shift_register (
   input logic clk, reset, load, sin,
   input logic [2:0] shift_mode,
   input logic [3:0] dout,
   output logic [3:0] dout,
   output logic sout
// local variable for 4-bit shift register
logic[3:0] shift_reg;
                                    // Combinational Logic to generate output dout
// Note: In this combinational always block only blocking assignment statements used
always@(shift_mode, load, reset, shift_reg)
begin
if((load == 1) || (reset == 1)) begin
dout = 4'b000;
end
else begin
case(shift_mode)
3'b000 : dout = Shift_reg; // PIPO mode parallel out is generated on dout output port
3'b001 : dout = Shift_reg; // SIPO-L mode parallel out is generated on dout output port
default: dout = Shift_reg; // SIPO-R mode parallel out is generated on dout output port
default: dout = 4'b0000; // In all other mode such as PISO-L, PISO-R, SISO-L, SISO-R output is
end
end
                  endmodule
```

RTL netlist

Resource usage

	Resource	Usage
1	✓ Estimated ALUTs Used	11
1	Combinational ALUTs	11
2	Memory ALUTs	0
3	LUT_REGs	0
2	Dedicated logic registers	5
3		
4	▼ Estimated ALUTs Unavailable	7
1	Due to unpartnered combinational logic	7
2	Due to Memory ALUTs	0
5		
6	Total combinational functions	11
7	 Combinational ALUT usage by number of input 	ts
1	7 input functions	3
2	6 input functions	4
3	5 input functions	2
4	4 input functions	1
5	<=3 input functions	1
8		
9	✓ Combinational ALUTs by mode	
1	normal mode	8
2	extended LUT mode	3
3	arithmetic mode	0
4	shared arithmetic mode	0
10		
11	Estimated ALUT/register pairs used	18
12		
13	▼ Total registers	5
1	Dedicated logic registers	5
2	I/O registers	0
3	LUT_REGs	0
14		
15		
16	I/O pins	16
17		
18	DSP block 18-bit elements	0

Testbench simulation waveform

Checking shift modes:

- 0000 (PIPO) works because when din is 1001, so is dout.
- 0001 (SIPO-L) works because from an initial shift register state of 1001, upon positive edge of clk, and sin being high, we see a 1 inserted from the right, and shift_reg turns to 0011. Next shift also has sin as high, so another 1 is insert to make shift_reg 0111. However, next positive edge of clk has low sin, so now a 0 is inserted to make 1110. While these shifts are happening, dout reflects the values of shift_reg in parallel
- 0010 (SIPO-R) works similarly to 0001, but now new values from sin are inserted from the right.

- 0011 (PISO-L) works because upon load being high, din with 1000 is loaded into register. Then upon positive edge of clk, it is shifted left, and a 0 bit is inserted to the rightmost register and the leftmost bit is moved to sout which is both 1's for the next two clocks, but 0 for the third. Also, dout is 0 since this is a serial out shift mode.
- 0100 (PISO-R) works similar to 0011 but bits in shift_register are shifted to the right, the 0 bit is inserted to the leftmost register, and the rightmost bit goes to sout.
- 0101 (SISO-L) works because upon each positive edge of clk, the value of sin is loaded into the rightmost register and the leftmost register of shift_register is loaded into sout.
 Dout stays 0000 because this shift operation is serial.

- 0110 (SISO-R) works similar to 0110 but sin is loaded into the leftmost register, and the rightmost register's value is fed into sout.
- For all shifting operations, when reset is high, sout and dout is always low which is expected

_