Module 07: Finding eigenvalues and eigenvectors

Starting Monday, March 24

Eigenvalues and Eigenvectors: Basic terminology

- A is a nxn matrix
- Suppose A v = λ v, for some nonzero vector v, then
 - $-\lambda$ is called an eigenvalue of A
 - v is called the associated eigenvector.
- Rewriting gives: $(A-\lambda I) v = 0$
- If $(A-\lambda I)^{-1}$ exists, then x = 0 is the only solution
 - \rightarrow Find λ such that det(A- λ I) = 0
 - → Called "characteristic equation"

Example

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & 1 \end{bmatrix}$$

Some properties of eigenvalues and eigenvectors

- det(A-λI) = 0 is a polynomial of degree n
- If λ_1 , λ_2 , ..., λ_k are distinct eigenvalues of A, then the corresponding eigenvectors $v^{(1)}$, $v^{(2)}$, ..., $v^{(k)}$ are linearly independent.
- A is positive definite \longleftrightarrow all $\lambda_i > 0$.
- A and A^T have the same eigenvalues
- If A⁻¹ exists, its eigenvalues are $1/\lambda_i$
- Eigenvalues of A^p are λ_i^p
- If λ is an eigenvalue and v is an associated eigenvalue, then αv is also an eigenvalue, for all $\alpha \neq 0$

24/03/2014

Finding eigenvalues and eigenvectors

We will introduce the following techniques:

- Power method
 - Deflation techniques
- Householder transformations
 - QR Algorithm
- Singular Value Decomposition (SVD)

Power Method

- Approximates the eigenvalue with the largest absolute value (dominant eigenvalue)
- Also approximates associated eigenvalue
- Assume A satisfies the following:
 - n eigenvalues satisfy
 - $\lambda_1 > \lambda_2 \ge \lambda_2 \ge ... \ge \lambda_k$
 - n linearly independent eigenvectors
 - v⁽¹⁾, v⁽²⁾, ..., v⁽ⁿ⁾