

MACHINE LEARNING JOURNAL

M.Sc.(Statistics)

SHABNAM ANWAR Roll No. 927

Ramniranjan Jhunjhunwala College

Practical No:	Practical Name	Page No
1	Perform Data preprocessing and feature engineering.	2
2	Implementing Simple Linear Regression Algorithm.	6
3	3 Implementing Multiple Linear Regression Algorithm.	
4	Implementing Ridge & Lasso Regression	19
5	For a given set of data implement Logistic Regression Algorithm.	32
6	Implementing Decision Tree Algorithm	37
7	Perform Hyperparameter Tuning on Random Forest Algorithm.	39
8	Implementing K-Means Clustering Algorithm	45
9	Implementing Hierarchical Clustering Algorithm	51
10	Implementing Density Based Spatial Clustering of Application with Noise.	54
11	Apply ensemble learning Boosting Technique.	60

<u>Index</u>

<u>PRACTICAL NO: 1</u> <u>AIM: Perform Data preprocessing and feature engineering.</u>

import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns

import warnings

warnings.filterwarnings("ignore")

train = pd.read_csv("../input/titanic/train.csv")

train.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

train.shape (891, 12)

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890

Data	columns (tota	al 12 columns):	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtype	es: float64(2)), int64(5), obj	ect(5)

train.isnull().sum()/len(train)

PassengerId	0.000000
Survived	0.000000
Pclass	0.000000
Name	0.000000
Sex	0.000000
Age	0.198653
SibSp	0.000000
Parch	0.000000
Ticket	0.000000
Fare	0.000000
Cabin	0.771044
Embarked	0.002245

dtype: float64

train.boxplot()

plt.figure(figsize=(12.8,9.6))

```
ax1 = plt.subplot(2,2,1)
ax2 = plt.subplot(2,2,2)
ax3 = plt.subplot(2,2,3)
ax4 = plt.subplot(2,2,4)
```

sns.boxplot(data=train,x='Age',ax=ax1)
sns.boxplot(data=train,x='SibSp',ax=ax2)
sns.boxplot(data=train,x='Parch',ax=ax3)
sns.boxplot(data=train,x='Fare',ax=ax4);

train.Embarked.mode()

train['Age'].fillna(train.Age.mean(), inplace=True)
train['Embarked'].fillna('S',inplace=True)

train.drop(columns=['Cabin'], inplace=True, axis=1)

train['family'] = train['SibSp'] + train['Parch']
train = train.iloc[:,[2,4,5,9,10,11,1]]

train.head(2)

	Pclass	Sex	Age	Fare	Embarked	family	Survived
0	3	male	22.0	7.2500	S	1	0
1	1	female	38.0	71.2833	С	1	1

Replacing Categorical variables to numbers:

train.Sex.replace('male', 0, inplace = True)

train.Sex.replace('female', 1, inplace = True) train.Embarked.replace('S', 0, inplace = True) train.Embarked.replace('C', 1, inplace = True) train.Embarked.replace('Q', 2, inplace = True)

train_x = train.iloc[:,:-1]
train_y = train.iloc[:,-1]

from sklearn.feature_selection import SelectKBest, chi2

selector = SelectKBest(chi2, k=4)
selector.fit_transform(train_x,train_y)
cols = selector.get_support(indices=True)
train_new = train_x.iloc[:,cols]
pd.DataFrame(train_new)

	Pclass	Sex	Age	Fare
0	3	0	22.000000	7.2500
1	1	1	38.000000	71.2833
2	3	1	26.000000	7.9250
3	1	1	35.000000	53.1000
4	3	0	35.000000	8.0500
886	2	0	27.000000	13.0000
887	1	1	19.000000	30.0000
888	3	1	29.699118	23.4500
889	1	0	26.000000	30.0000
890	3	0	32.000000	7.7500

891 rows × 4 columns

PRACTICAL NO: 2

AIM: Implementing Simple Linear Regression Algorithm.

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error,r2_score,mean_absolute_error,mean_absolute_percentage_error df = pd.read_csv("placement.csv")

df

	cgpa	package
0	6.89	3.26
1	5.12	1.98
2	7.82	3.25
3	7.42	3.67
4	6.94	3.57
195	6.93	2.46
196	5.89	2.57
197	7.21	3.24
198	7.63	3.96
199	6.22	2.33

200 rows x 2 columns

df.info()

df.isnull().sum()

cgpa 0 package 0 dtype: int64

df.shape

(200, 2)

df.size

400

df.describe()

	cgpa	package
count	200.000000	200.000000
mean	6.990500	2.996050
std	1.069409	0.691644
min	4.260000	1.370000
25%	6.190000	2.487500
50%	6.965000	2.995000
75%	7.737500	3.492500
max	9.580000	4.620000

df.corr()

	cgpa	package
cgpa	1.000000	0.880692
package	0.880692	1.000000

sns.heatmap(df.corr(),annot = True)

<AxesSubplot:>


```
plt.figure(figsize=(10,10))
plt.scatter(df["cgpa"], df["package"])
plt.title("Scatter plot cgpa Vs package", size = 20, color = "Green")
plt.xlabel("cgpa", size = 15, color = "Blue")
plt.ylabel("package", size = 15, color = "Blue")
```



```
plt.figure(figsize=(10,10))
sns.regplot(x = "cgpa", y = "package", data = df )
plt.title("Scatter plot cgpa Vs package", size = 20, color = "Green")
plt.xlabel("cgpa", size = 15, color = "Blue")
plt.ylabel("package", size = 15, color = "Blue")
```


x = df.iloc[:, :-1].values

y = df.iloc[:, 1].values

X


```
array([3.26, 1.98, 3.25, 3.67, 3.57, 2.99, 2.6 , 2.48, 2.31, 3.51, 1.86,
         2.6 , 3.65, 2.89, 3.42, 3.23, 2.35, 2.09, 2.98, 2.83, 3.16, 2.93,
         2.3 , 2.48, 2.71, 3.65, 3.42, 2.16, 2.24, 3.49, 3.26, 3.89, 3.08,
         2.73, 3.42, 2.87, 2.84, 2.43, 4.36, 3.33, 4.02, 2.7, 2.54, 2.76,
         1.86, 3.58, 2.26, 3.26, 4.09, 4.62, 4.43, 3.79, 4.11, 2.61, 3.09,
         3.39, 2.74, 1.94, 3.09, 3.31, 2.19, 1.61, 2.09, 4.25, 2.92, 3.81,
         1.63, 2.89, 2.99, 2.94, 2.35, 3.34, 3.62, 4.03, 3.44, 3.28, 3.15,
         4.6 , 2.21, 3. , 3.44, 2.2 , 2.17, 3.49, 1.53, 1.48, 2.77, 3.55,
         1.48, 2.72, 2.66, 2.14, 4. , 3.08, 2.42, 2.79, 2.61, 2.84, 3.83,
         3.24, 4.14, 3.52, 1.37, 3. , 3.74, 2.82, 2.19, 2.59, 3.54, 4.06,
         3.76, 2.25, 4.1 , 2.37, 1.87, 4.21, 3.33, 2.99, 2.88, 2.65, 1.73,
         3.02, 2.01, 2.3 , 2.31, 3.16, 2.6 , 3.11, 3.34, 3.12, 2.49, 2.01,
         2.48, 2.58, 2.83, 2.6 , 2.1 , 3.13, 3.89, 2.4 , 3.15, 3.18, 3.04,
         1.54, 2.42, 2.18, 2.46, 2.21, 3.4 , 3.67, 2.73, 2.76, 3.08, 3.99,
         2.85, 3.09, 3.13, 2.7, 3.04, 4.08, 2.93, 3.33, 2.55, 3.91, 3.82,
         4.08, 3.98, 3.6 , 3.52, 4.37, 2.87, 3.76, 2.51, 2.56, 2.99, 3.5 ,
         3.23, 3.64, 3.63, 3.03, 2.72, 3.89, 2.08, 2.72, 3.14, 3.18, 3.47,
         2.44, 3.08, 4.06, 2.69, 3.48, 3.75, 1.94, 3.67, 2.46, 2.57, 3.24,
         3.96, 2.33])
x train, x test, y train, y test = train test split(x,y, test size = 0.2,random state = 0)
regressor = LinearRegression()
regressor.fit(x train,y train)
y predic = regressor.predict(x test)
y_predic
  array([2,97012606, 2,55516816, 2,61856451, 3,40237388, 3,05657563,
         2.35921582, 3.51763996, 2.4687186, 4.1227869, 3.21794814,
         2.12868365, 3.19489493, 2.53787825, 3.05081232, 3.36779405,
         2.86062328, 2.63009112, 2.82028015, 2.37074243, 2.91825632,
         3.1660784 , 2.3361626 , 3.50611335, 3.9902309 , 2.20360661,
         1.90967809, 3.08539215, 2.6070379 , 1.9212047 , 1.90391479,
         2.91249302, 3.69630239, 2.60127459, 2.09410383, 2.50906173,
         3.64443265, 3.17184171, 2.97012606, 3.83462169, 2.50329842])
```

<u>To find the coefficient of determination:</u>

r2 = r2_score(y_test, y_predic)
print("R-Square:",r2)

R-Square: 0.7297167943957027

```
meanAbErr = mean_absolute_error(y_test, y_predic)
meanSqErr = mean_squared_error(y_test, y_predic)
rootMeanSqErr = np.sqrt(mean_squared_error(y_test, y_predic))
MAPE = mean_absolute_percentage_error(y_test, y_predic)

print('Mean Absolute Error:', meanAbErr)
print('Mean Square Error:', meanSqErr)
print('Root Mean Square Error:', rootMeanSqErr)
print('Mean Absolute Percentage Error:', MAPE)
```

Mean Absolute Error: 0.2552433448620408 Mean Square Error: 0.10221131059334207 Root Mean Square Error: 0.31970503685951224

Mean Absolute Percentage Error: 0.09153058426151217

```
best_fitline = regressor.coef_*x+regressor.intercept_
plt.figure(figsize=(15,10))
plt.scatter(x, y)
plt.plot(x, best_fitline, color = 'Red')
plt.title('best fit line',size = 15,color = "Blue")
plt.xlabel("cgpa", size = 15, color = "Blue")
plt.ylabel("package", size = 15, color = "Blue")
plt.show()
```


df1 = pd.DataFrame({'Actual Revenue': y_test, 'Predicted Revenue': y_predic})
df1

	Actual Revenue	Predicted Revenue
0	2.98	2.970126
1	2.87	2.555168
2	2.59	2.618565
3	3.83	3.402374
4	3.64	3.056576
5	2.08	2.359216
6	2.99	3.517640
7	2.46	2.468719
8	3.65	4.122787
9	3.08	3.217948
10	1.61	2.128684
11	3.16	3.194895
12	2.72	2.537878
13	2.85	3.050812
14	3.44	3.367794
15	2.48	2.860623
16	2.73	2.630091
17	2.49	2.820280
18	2.43	2.370742
19	3.44	2.918256
20	2.72	3.166078
21	2.18	2.336163
22	3.58	3.506113

23	4.08	3.990231
24	2.19	2.203607
25	2.30	1.909678
26	3.03	3.085392
27	3.18	2.607038
28	2.01	1.921205
29	1.86	1.903915
30	2.35	2.912493
31	3.39	3.696302
32	2.73	2.601275
33	2.25	2.094104
34	2.30	2.509062
35	4.06	3.644433
36	3.12	3.171842
37	3.57	2.970126
38	3.49	3.834622
39	2.19	2.503298

<u>PRACTICAL NO: 3</u> <u>AIM: Implementing Multiple Linear Regression Algorithm.</u>

from sklearn.datasets import make_regression
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
import statsmodels.formula.api as sm

X,y = make_regression(n_samples=100, n_features=2, n_informative=2, n_targets=1, noise=50)

df = pd.DataFrame({'feature1':X[:,0],'feature2':X[:,1],'target':y})

	feature1	feature2	target
0	-0.074169	-1.501063	-80.823951
1	0.089819	0.868049	-32.977755
2	0.137639	0.624620	15.357429
3	1.324970	0.099879	134.225794
4	0.169854	-0.754125	-3.998324
95	-0.824139	1.549801	-93.114267
96	-1.126762	-0.331811	28.577427
97	0.153932	1.175406	-48.435920
98	-0.686613	-0.370197	-38.114909
99	-0.024599	-1.320400	-18.787095

df.shape

(100,3)

df.corr()

```
feature1 feature2 target

feature1 1.000000 -0.071088 0.687024

feature2 -0.071088 1.000000 0.071115

target 0.687024 0.071115 1.000000
```

df.head()

	feature1	feature2	target
0	-0.074169	-1.501063	-80.823951
1	0.089819	0.868049	-32.977755
2	0.137639	0.624620	15.357429
3	1.324970	0.099879	134.225794
4	0.169854	-0.754125	-3.998324

```
# model = sm.ols('target ~ feature1 + feature2 ', df).fit()
# print(model.params)
fig = px.scatter_3d(df, x='feature1', y='feature2', z='target')
fig.show()
```


from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=3)

from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train,y_train)
LinearRegression()
y_pred = lr.predict(X_test)

print("MAE",mean_absolute_error(y_test,y_pred))
print("MSE",mean_squared_error(y_test,y_pred))
print("R2 score",r2_score(y_test,y_pred))

MAE 37.34277411417523 MSE 1861.697408513403 R2 score 0.7247754218756458


```
x = np.linspace(-5, 5, 10)
y = np.linspace(-5, 5, 10)
xGrid, yGrid = np.meshgrid(y, x)
final = np.vstack((xGrid.ravel().reshape(1,100),yGrid.ravel().reshape(1,100))).T
z_final = lr.predict(final).reshape(10,10)
z = z_final
fig = px.scatter_3d(df, x='feature1', y='feature2', z='target')
fig.add_trace(go.Surface(x = x, y = y, z = z))
fig.show()
```


Ir.coef_
array([37.29151454, 71.34814438])

lr.intercept_

-2.5585253430261123

PRACTICAL NO: 4

AIM: Implementing Ridge & Lasso Regression.

PART 1(a) - Lasso-regression

```
Libraries used -
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

from sklearn.linear_model import Lasso from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split

Generate a dataset using make_regression() function and fit the linear regression model-X,y = make_regression(n_samples=100, n_features=1, n_informative=1, n_targets=1,noise=20,random_state=13)

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)

plt.scatter(X,y)

from sklearn.linear_model import LinearRegression

reg = LinearRegression()
reg.fit(X_train,y_train)
print(reg.coef_)
print(reg.intercept_)


```
[26.58287928]
-2.4682276831081924
```



```
alphas = [0,1,5,10,30]
plt.figure(figsize=(12,6))
plt.scatter(X,y)
for i in alphas:
    L = Lasso(alpha=i)
    L.fit(X_train,y_train)
    plt.plot(X_test,L.predict(X_test),label='alpha={}'.format(i))
plt.legend()
plt.show()
```


plt.scatter(x1, x2) plt.show()

from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import Ridge

```
def get_preds_lasso(x1, x2, alpha):
  model = Pipeline([
    ('poly_feats', PolynomialFeatures(degree=16)),
   ('lasso', Lasso(alpha=alpha))
  ])
  model.fit(x1, x2)
  return model.predict(x1)
alphas = [0, 0.1, 1]
cs = ['r', 'g', 'b']
plt.figure(figsize=(10, 6))
plt.plot(x1, x2, 'b+', label='Datapoints')
for alpha, c in zip(alphas, cs):
  preds = get_preds_lasso(x1, x2, alpha)
  # Plot
  plt.plot(sorted(x1[:, 0]), preds[np.argsort(x1[:, 0])], c, label='Alpha: {}'.format(alpha))
plt.legend()
```


plt.show()

PART 1 (b) - Lasso-regression-intuition

1. How are coefficients affected?

from sklearn.datasets import load_diabetes import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import Lasso from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split import warnings warnings.filterwarnings("ignore")

data = load_diabetes()

df = pd.DataFrame(data.data,columns=data.feature_names)
df['TARGET'] = data.target

df.head()

	age	sex	bmi	bp	s 1	s2	s 3	s 4	s 5	s 6	TARGET
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.043401	-0.002592	0.019907	-0.017646	151.0
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.074412	-0.039493	-0.068332	-0.092204	75.0
2	0.085299	0.050680	0.044451	-0.005670	-0.045599	-0.034194	-0.032356	-0.002592	0.002861	-0.025930	141.0
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.036038	0.034309	0.022688	-0.009362	206.0
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.008142	-0.002592	-0.031988	-0.046641	135.0

df.describe()

	age	sex	bmi	bp	s1	s2	s 3	s4	s 5	s 6	TARG
count	4.420000e+02	442.0000									
mean	-1.444295e- 18	2.543215e-18	-2.255925e- 16	-4.854086e- 17	-1.428596e- 17	3.898811e-17	-6.028360e- 18	-1.788100e- 17	9.243486e-17	1.351770e-17	152.1334
std	4.761905e-02	77.0930									
min	-1.072256e- 01	-4.464164e- 02	-9.027530e- 02	-1.123988e- 01	-1.267807e- 01	-1.156131e- 01	-1.023071e- 01	-7.639450e- 02	-1.260971e- 01	-1.377672e- 01	25.0000
25%	-3.729927e- 02	-4.464164e- 02	-3.422907e- 02	-3.665608e- 02	-3.424784e- 02	-3.035840e- 02	-3.511716e- 02	-3.949338e- 02	-3.324559e- 02	-3.317903e- 02	87.0000
50%	5.383060e-03	-4.464164e- 02	-7.283766e- 03	-5.670422e- 03	-4.320866e- 03	-3.819065e- 03	-6.584468e- 03	-2.592262e- 03	-1.947171e- 03	-1.077698e- 03	140.5000
75%	3.807591e-02	5.068012e-02	3.124802e-02	3.564379e-02	2.835801e-02	2.984439e-02	2.931150e-02	3.430886e-02	3.243232e-02	2.791705e-02	211.5000
max	1.107267e-01	5.068012e-02	1.705552e-01	1.320436e-01	1.539137e-01	1.987880e-01	1.811791e-01	1.852344e-01	1.335973e-01	1.356118e-01	346.0000

X_train,X_test,y_train,y_test = train_test_split(data.data,data.target, test_size=0.2,random_state=2)

```
coefs = []
r2_scores = []

for i in [0,0.1,1,10]:
    reg = Lasso(alpha=i)
    reg.fit(X_train,y_train)

    coefs.append(reg.coef_.tolist())
    y_pred = reg.predict(X_test)
    r2_scores.append(r2_score(y_test,y_pred))

plt.figure(figsize=(14,9))
plt.subplot(221)
plt.bar(data.feature_names,coefs[0])
plt.title('Alpha = 0 ,r2_score = {}'.format(round(r2_scores[0],2)))

plt.subplot(222)
plt.bar(data.feature_names,coefs[1])
plt.title('Alpha = 0.1 ,r2_score = {}'.format(round(r2_scores[1],2)))
```



```
plt.subplot(223)
plt.bar(data.feature_names,coefs[2])
plt.title('Alpha = 1 ,r2_score = {}'.format(round(r2_scores[2],2)))

plt.subplot(224)
plt.bar(data.feature_names,coefs[3])
plt.title('Alpha = 10 ,r2_score = {}'.format(round(r2_scores[3],2)))
```

plt.show()

2. Higher Coefficients are affected more

```
alphas = [0,0.0001,0.001,0.01,0.1,1,10,100,1000,10000]

coefs = []

for i in alphas:
    reg = Lasso(alpha=i)
    reg.fit(X_train,y_train)

    coefs.append(reg.coef_.tolist())

input_array = np.array(coefs)

coef_df = pd.DataFrame(input_array,columns=data.feature_names)
```


coef_df['alpha'] = alphas coef_df.set_index('alpha')

	age	sex	bmi	bp	s1	s2	s3	s 4	s5	s6
alpha										
0.0000	-9.158653	-205.454322	516.693745	340.619999	-895.551989	561.220669	153.893104	126.731395	861.126997	52.421122
0.0001	-9.089084	-205.329406	516.789418	340.532379	-888.660904	555.958584	150.593655	125.450143	858.645541	52.380294
0.0010	-8.262770	-204.205364	517.650073	339.743901	-826.663603	508.617395	120.908607	113.921773	836.320753	52.012849
0.0100	-1.359721	-192.937180	526.356514	332.641101	-430.226975	191.295480	-44.034913	68.988987	688.396028	47.940616
0.1000	0.000000	-113.969928	526.744396	292.628472	-82.693681	-0.000000	-152.685338	0.000000	551.080291	7.170992
1.0000	0.000000	0.000000	363.885742	27.273163	0.000000	0.000000	-0.000000	0.000000	336.137262	0.000000
10.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.000000	0.000000	0.000000	0.000000
100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.000000	0.000000	0.000000	0.000000
1000.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.000000	0.000000	0.000000	0.000000
10000.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.000000	0.000000	0.000000	0.000000

PART 2 - Ridge_Regression

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.model_selection import train_test_split, cross_val_score from statistics import mean from sklearn.metrics import accuracy_score

data = pd.read_csv('kc_house_data.csv') data.head()

	price	sqft_living	sqft_lot	floors	grade	sqft_above	sqft_basement	yr_built	zipcode	sqft_living15	sqft_lot15
0	221900.0	1180	5650	1.0	7	1180	0	1955	98178	1340	5650
1	538000.0	2570	7242	2.0	7	2170	400	1951	98125	1690	7639
2	180000.0	770	10000	1.0	6	770	0	1933	98028	2720	8062
3	604000.0	1960	5000	1.0	7	1050	910	1965	98136	1360	5000
4	510000.0	1680	8080	1.0	8	1680	0	1987	98074	1800	7503

dropColumns = ['zipcode']
data = data.drop(dropColumns, axis = 1)

y = data['price'] X = data.drop('price', axis = 1)


```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)
# Building and fitting the Linear Regression model
linearModel = LinearRegression()
linearModel.fit(X train, y train)
# Evaluating the Linear Regression model
print(linearModel.score(X_test, y_test))
         0.6158772627644511
# List to maintain the different cross-validation scores
cross_val_scores_ridge = []
# List to maintain the different values of alpha
alpha = []
# Loop to compute the different values of cross-validation scores
for i in range(1, 9):
  ridgeModel = Ridge(alpha = i * 0.25)
  ridgeModel.fit(X train, y train)
  scores = cross_val_score(ridgeModel, X, y, cv = 10)
  avg cross val score = mean(scores)*100
  cross_val_scores_ridge.append(avg_cross_val_score)
  alpha.append(i * 0.25)
# Loop to print the different values of cross-validation scores
for i in range(0, len(alpha)):
  print(str(alpha[i])+': '+str(cross val scores ridge[i]))
      0.25 : 60.26529996408061
      0.5:60.265291469441436
      0.75 : 60.26528296424786
      1.0:60.26527444850186
      1.25 : 60.26526592220542
      1.5 : 60.26525738536059
      1.75 : 60.26524883796931
      2.0:60.26524028003363
```


Building and fitting the Ridge Regression model ridgeModelChosen = Ridge(alpha = 2) ridgeModelChosen.fit(X_train, y_train)

Evaluating the Ridge Regression model
print(ridgeModelChosen.score(X_test, y_test))

0.6158752081631746

<u>PRACTICAL NO: 5</u> <u>AIM: For a given set of data implement Logistic Regression</u> <u>Algorithm.</u>

import pandas as pd
df=pd.read_excel('Insurance.xlsx')
df.head()

	Age	Claim
0	22.0	No
1	25.0	No
2	47.0	Yes
3	52.0	No
4	46.0	Yes

data=pd.get_dummies(df,columns = ['Claim']) print(data)

	Age	Claim_No	Claim_Yes
0	22.0	1	0
1	25.0	1	0
2	47.0	0	1
3	52.0	1	0
4	46.0	0	1
5	56.0	0	1
6	55.0	1	0
7	60.0	0	1
8	62.0	0	1
9	61.0	0	1
10	18.0	1	0

df['Claim'].value_counts()

No 13 Yes 13

Name: Claim, dtype: int64

data.isnull().sum()

Age 0
Claim_No 0
Claim_Yes 0
dtype: int64

 0 22.0 1 25.0 2 47.0 3 52.0 4 46.0 5 56.0 6 55.0 7 60.0 8 62.0 9 61.0 10 18.0 		Age
 2 47.0 3 52.0 4 46.0 5 56.0 6 55.0 7 60.0 8 62.0 9 61.0 	0	22.0
3 52.0 4 46.0 5 56.0 6 55.0 7 60.0 8 62.0 9 61.0	1	25.0
4 46.0 5 56.0 6 55.0 7 60.0 8 62.0 9 61.0	2	47.0
5 56.0 6 55.0 7 60.0 8 62.0 9 61.0	3	52.0
6 55.0 7 60.0 8 62.0 9 61.0	4	46.0
7 60.08 62.09 61.0	5	56.0
8 62.0 9 61.0	6	55.0
9 61.0	7	60.0
	8	62.0
10 18.0	9	61.0
	10	18.0

y=df.iloc[:,-1] print(y)

from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
df['Claim'] = label_encoder.fit_transform(df['Claim'])
df['Claim'].value_counts()


```
0
        13
        13
  1
  Name: Claim, dtype: int64
from sklearn.model_selection import train_test_split
x_train, x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42
x_train.shape
  (18, 1)
Data.shape
  (26, 3)
from sklearn.linear_model import LogisticRegression
Ir = LogisticRegression()
lr
  LogisticRegression()
Ir.fit(x_train,y_train)
  LogisticRegression()
                            y_pred=Ir.predict(x_test)
y_pred
  array([0, 1, 1, 1, 0, 1, 0, 1])
y_test
```


from sklearn.metrics import confusion_matrix confusion_matrix(y_test,y_pred)

```
array([[3, 0],
[0, 5]], dtype=int64)
```

from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_pred)

1.0

import seaborn as sns
sns.regplot(x=x,y=y,data=df,logistic=True)

<AxesSubplot:xlabel='Age ', ylabel='Claim'>

<u>PRACTICAL NO: 6</u> <u>AIM: Implementing Decision Tree Algorithm.</u>


```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn.datasets import load_iris
```

df = load_iris()

x = df.data y = df.target

CHECKING NULL VALUES (NAN)

np.isnan(y).sum()

0

np.isnan(x).sum()

0

from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt.fit(x,y)

DecisionTreeClassifier()

from sklearn import tree plt.figure(figsize = (15,10)) tree.plot_tree(dt,filled = True)

<u>PRACTICAL NO: 7</u> <u>AIM: Perform Hyperparameter Tuning on Random Forest</u> <u>Algorithm.</u>

Importing different libraries import numpy as np

import pandas as pd

import matplotlib.pyplot as plt import seaborn as sns

from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

df = pd.read_csv("heart.csv")

df.head()

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

df.shape

X = df.iloc[:,0:-1]

y = df.iloc[:,-1]

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
print(X_train.shape)
print(X_test.shape)

(242, 13) (61, 13)


```
rf = RandomForestClassifier()
gb = GradientBoostingClassifier()
svc = SVC()
Ir = LogisticRegression()
rf.fit(X_train,y_train)
y_pred = rf.predict(X_test)
accuracy_score(y_test,y_pred)
       0.8360655737704918
gb.fit(X_train,y_train)
y_pred = gb.predict(X_test)
accuracy_score(y_test,y_pred)
     0.7704918032786885
svc.fit(X_train,y_train)
y_pred = svc.predict(X_test)
accuracy_score(y_test,y_pred)
   0.7049180327868853
Ir.fit(X_train,y_train)
y_pred = Ir.predict(X_test)
accuracy_score(y_test,y_pred)
    0.8852459016393442
rf = RandomForestClassifier(max_samples=0.75,random_state=42)
rf.fit(X_train,y_train)
y_pred = rf.predict(X_test)
accuracy_score(y_test,y_pred)
```



```
0.9016393442622951
```

from sklearn.model_selection import cross_val_score np.mean(cross_val_score(RandomForestClassifier(max_samples=0.75),X,y,cv=10,scoring=' accuracy'))

```
0.8412903225806451
```

GridSearchCV #greedy method
Random serach # randomly select

Number of trees in random forest n_estimators = [20,60,100,120]

Number of features to consider at every split max_features = [0.2,0.6,1.0]

Maximum number of levels in tree max_depth = [2,8,None]

Number of samples max samples = [0.5,0.75,1.0]

108 diff random forest train

rf = RandomForestClassifier()

from sklearn.model_selection import GridSearchCV

rf_grid.best_params_

```
{'max_depth': None,
'max_features': 0.2,
'max_samples': 0.75,
'n_estimators': 20}
```

rf_grid.best_score_

```
0.8387755102040815
```

- # Number of trees in random forest n_estimators = [20,60,100,120]
- # Number of features to consider at every split max_features = [0.2,0.6,1.0]


```
# Maximum number of levels in tree
max_depth = [2,8,None]
# Number of samples
max_samples = [0.5, 0.75, 1.0]
# Bootstrap samples
bootstrap = [True,False]
# Minimum number of samples required to split a node
min_samples_split = [2, 5]
# Minimum number of samples required at each leaf node
min_samples_leaf = [1, 2]
param_grid = {'n_estimators': n_estimators,
        'max features': max features,
        'max_depth': max_depth,
       'max_samples':max_samples,
       'bootstrap':bootstrap,
       'min samples split':min samples split,
       'min_samples_leaf':min_samples_leaf
print(param_grid)
  {'n_estimators': [20, 60, 100, 120], 'max_features': [0.2, 0.6, 1.0], 'max_depth': [2, 8, None], 'max_samples': [0.5, 0.75
from sklearn.model_selection import RandomizedSearchCV
rf grid = RandomizedSearchCV(estimator = rf,
            param_distributions = param_grid,
            cv = 5,
            verbose=2,
            n jobs = -1)
rf_grid.fit(X_train,y_train)
```


rf_grid.best_params_

```
{'n_estimators': 120,
  'min_samples_split': 2,
  'min_samples_leaf': 2,
  'max_samples': 0.75,
  'max_features': 0.2,
  'max_depth': None,
  'bootstrap': True}
```

Rf_grid.best_score_

0.8178571428571428

<u>PRACTICAL NO: 8</u> <u>AIM: Implementing K-Means Clustering Algorithm.</u>

A] For cluster.csv data

import pandas as pd import numpy as np

df=pd.read_csv("cluster.csv")
df.head()

	Х	Υ
0	3.5	1.4
1	3.0	1.4
2	3.2	1.3
3	3.1	1.5
4	3.6	1.4

import matplotlib.pyplot as plt

```
plt.figure(figsize=(10,7))
plt.scatter(df['X'],df['Y'])
plt.ylabel("Y")
plt.xlabel("X")
plt.show()
```


from sklearn.cluster import KMeans #within cluster sum of squares WcSS/Elbow method WCSS=[] for i in range (1,11): km=KMeans(n_clusters=i) km.fit_predict(df) WCSS.append(km.inertia_)

WCSS


```
[491.8763333333335,
86.35692216280445,
40.80747409220729,
27.55509523809523,
23.252325396825395,
19.127455003931395,
15.94174137931034,
13.967600636910976,
12.365316017316017,
10.859924830071892]
```

plt.plot(range(1,11),WCSS)

x=df.iloc[:,:].values km = KMeans(n_clusters=2) y_means=km.fit_predict(x) y_means

```
x[y_means==3,1]
```

plt.figure(figsize=(10,7))

<u>B] For student_clustering.csv data</u>

import pandas as pd import numpy as np

df=pd.read_csv("student_clustering.csv")
df.head()

	cgpa	ML
0	5.13	88
1	5.90	113
2	8.36	93
3	8.27	97
4	5.45	110

import matplotlib.pyplot as plt

plt.figure(figsize=(10,7))


```
plt.scatter(df['cgpa'],df['ML'])
plt.ylabel("ML marks")
plt.xlabel("cgpa")
plt.legend()
plt.show()
```


from sklearn.cluster import KMeans

#within cluster sum of squares WcSS/Elbow method

```
WCSS=[]
for i in range (1,11):
    km=KMeans(n_clusters=i)
    km.fit_predict(df)
    WCSS.append(km.inertia_)
```

WCSS

```
[29957.898287999997,
4184.141269999999,
2362.7133490000015,
681.9696600000001,
523.7131894763968,
388.8524026875981,
295.4391895943191,
240.7551346189791,
203.38836189856835,
172.4919501547381]
```


plt.plot(range(1,11),WCSS)

```
[<matplotlib.lines.Line2D at 0x1915d0b8700>]
```


x=df.iloc[:,:].values

```
km = KMeans(n_clusters=4)
y_means=km.fit_predict(x)
y_means
```

```
array([0, 2, 3, 3, 2, 2, 3, 1, 2, 3, 0, 2, 3, 0, 2, 3, 2, 3, 2, 2, 3, 0, 3, 0, 0, 3, 0, 0, 1, 3, 2, 1, 2, 1, 2, 3, 3, 1, 2, 0, 2, 0, 3, 3, 0, 1, 1, 3, 2, 1, 2, 0, 0, 1, 3, 1, 2, 2, 1, 2, 1, 2, 1, 2, 3, 3, 1, 0, 1, 3, 0, 2, 3, 2, 1, 3, 0, 2, 1, 2, 1, 0, 3, 3, 1, 2, 0, 1, 0, 1, 2, 1, 2, 1, 1, 3, 0, 3, 3, 1, 3, 0, 1, 2, 0, 0, 1, 0, 0, 3, 0, 1, 1, 3, 1, 2, 2, 3, 1, 3, 2, 1, 0, 0, 2, 3, 1, 3, 0, 3, 2, 0, 3, 3, 2, 0, 0, 2, 1, 2, 0, 0, 1, 0, 1, 2, 0, 0, 1, 1, 2, 0, 1, 1, 0, 1, 2, 0, 1, 1, 2, 2, 2, 3, 0, 3, 3, 1, 2, 0, 0, 1, 1, 2, 1, 0, 0, 3, 1, 2, 0, 1, 1, 2, 2, 2, 3, 0, 3, 3, 1, 2, 3, 3, 0, 0, 3, 0, 1, 2, 2, 2, 1])
```

$x[y_means==3,1]$

```
array([ 93., 97., 98., 94., 97., 95., 91., 98., 92., 98., 94., 96., 96., 96., 96., 96., 95., 93., 95., 94., 92., 91., 92., 95., 94., 95., 92., 94., 95., 93., 97., 98., 96., 93., 100., 96., 94., 95., 93., 92., 98., 96., 93., 91., 93., 94., 96.])
```

```
plt.scatter(x[y_means==0,0],x[y_means==0,1],color="r")
plt.scatter(x[y_means==1,0],x[y_means==1,1],color="b")
plt.scatter(x[y_means==2,0],x[y_means==2,1],color="y")
plt.scatter(x[y_means==3,0],x[y_means==3,1],color="g")
plt.xlabel("cgpa")
```


plt.ylabel("ML marks")

Text(0, 0.5, 'ML marks')

<u>PRACTICAL NO: 9</u> <u>AIM: Implementing Hierarchical Clustering Algorithm.</u>

import pandas as pd import numpy as np import scipy.cluster.hierarchy as sch import matplotlib.pyplot as plt from sklearn.cluster import AgglomerativeClustering

df=pd.read_excel('segmented_customers.xlsx')
df.head()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	cluster
0	1.0	1.0	19.0	15.0	39.0	3.0
1	2.0	1.0	21.0	15.0	81.0	4.0
2	3.0	0.0	20.0	16.0	6.0	3.0
3	4.0	0.0	23.0	16.0	77.0	4.0
4	5.0	0.0	31.0	17.0	40.0	3.0

df1 = df.drop(['cluster'],axis = 1) df1.head()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1.0	1.0	19.0	15.0	39.0
1	2.0	1.0	21.0	15.0	81.0
2	3.0	0.0	20.0	16.0	6.0
3	4.0	0.0	23.0	16.0	77.0
4	5.0	0.0	31.0	17.0	40.0

x = df.iloc[:,3:5]

X

	Annual Income (k\$)	Spending Score (1-100)
0	15.0	39.0
1	15.0	81.0
2	16.0	6.0
3	16.0	77.0
4	17.0	40.0
195	120.0	79.0
196	126.0	28.0
197	126.0	74.0
198	137.0	18.0
199	137.0	83.0

200 rows × 2 columns

x=x.values

X

cluster = AgglomerativeClustering(n_clusters = 5,linkage = 'ward',affinity='euclidean')
cluster

```
AgglomerativeClustering(n_clusters=5)
```

labels = cluster.fit_predict(x) labels

```
plt.scatter(x[:,0],x[:,1],c=cluster.labels_,cmap='rainbow')
plt.title('customer segmentation')
plt.xlabel('Annual Income')
plt.ylabel('customer expenditure');
```


plt.title('customer-dendogram')
dendo = sch.dendrogram(sch.linkage(x,method='ward'))

PRACTICAL NO: 10

AIM: Implementing Density Based Spatial Clustering Of

Application with Noise.

import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('DBSCAN.csv')

df.head()

	sr.no	Α	В
0	0	484.891555	-31.006357
1	1	489.391178	21.973916
2	2	462.886575	-27.599889
3	3	517.218479	5.588090
4	4	455.669049	1.982181

plt.figure(figsize=(12,8),facecolor='white')
plt.scatter(df['A'], df['B'])

x = df.iloc[:,1:]

x.head()

	Α	В
0	484.891555	-31.006357
1	489.391178	21.973916
2	462.886575	-27.599889
3	517.218479	5.588090
4	455.669049	1.982181

Finding optimal number of clusters using the elbow method:

```
from sklearn.cluster import KMeans

wcss_list= [] #Initializing the list for the values of WCSS

Using for loop for iterations from 1 to 10:

for i in range(1, 11):

    kmeans = KMeans(n_clusters=i, init='k-means++', random_state= 42)

    kmeans.fit(x)

wcss_list.append(kmeans.inertia_)

plt.figure(figsize=(10,6),facecolor='white')

plt.plot(range(1, 11), wcss_list)

plt.title('The Elobw Method Graph')

plt.xlabel('Number of clusters(k)')

plt.ylabel('wcss_list')

plt.show() # by observing in the elbow graph we will make 4 clusters
```


X = df.iloc[:,1:].values

km = KMeans(n_clusters = 4) # No of clusters = 4

Using k-means algorithm:

y_means = km.fit_predict(X)

y_means

array([2, 2, 2, ..., 2, 0, 1])

#Feature1 = A = 0 , #Feature2 = B = 1

X[y_means == 0,1] # it will give the results for feature1 & cluster1

```
array([-550.3596874 , -523.206023 , -578.0535956 , -514.219064 , -505.8619101 , -515.6353626 , -546.3602917 , -527.8923182 , -516.2202799 , -540.3857696 , -541.3575639 , -501.5387424 , -453.0961161 , -524.3746371 , -469.7777355 , -493.7391435 , -512.2241915 , -546.5257019 , -530.0617558 , -543.5080177 , -501.1829384 , -485.4273778 , -535.4545201 , -585.5125659 , -533.0209036 , -510.2764245 , -473.3905872 , -511.3433221 ,
```

. . . .


```
-197.
                 -461.
                                  -468.
                                                   -151.
-138.
                  -98.
                                  -275.
                                                   -421.
-108.
                 -439.
                                  -137.
                                                   -387.
-468.
                 228.
                                  -519.
                                                   -420.
-377.
                 -580.
                                  -535.
```

```
plt.figure(figsize=(12,8),facecolor='white')

plt.scatter(X[y_means == 0,0],X[y_means == 0,1],color = 'blue')

plt.scatter(X[y_means == 1,0],X[y_means == 1,1],color = 'red')

plt.scatter(X[y_means == 2,0],X[y_means == 2,1],color = 'green')

plt.scatter(X[y_means == 3,0],X[y_means == 3,1],color = 'yellow')

plt.figure(figsize=(12,8),facecolor='white')

plt.show()
```


Using agglomerative clustering:

from sklearn.cluster import AgglomerativeClustering

cluster = AgglomerativeClustering(n_clusters=5,affinity='euclidean', linkage='ward')

labels_ = cluster.fit_predict(X)

labels_

plt.figure(figsize=(12,8),facecolor='white')

plt.scatter(X[:,0],X[:,1], c=cluster.labels_, cmap='rainbow')

Using DBSCAN algorithm:

from sklearn.cluster import DBSCAN

DB =DBSCAN(eps=30,min_samples=5)

DB.fit(df[['A','B']])

df['DBSCAN_labels']=DB.labels_

plt.figure(figsize=(12,8),facecolor='white')

plt.scatter(df['A'],df['B'],c=df['DBSCAN_labels'],cmap='rainbow',s=15)

plt.title('DBSCAN clustering',fontsize=20)

plt.xlabel('Feature 1',fontsize=14)

plt.ylabel('Feature 2',fontsize=14)

plt.show()

<u>PRACTICAL NO: 11</u> <u>AIM: Apply ensemble learning Boosting Technique.</u>

from sklearn.ensemble import AdaBoostClassifier from sklearn import datasets # Import train_test_split function from sklearn.model_selection import train_test_split #Import scikit-learn metrics module for accuracy calculation from sklearn import metrics

```
iris = datasets.load_iris()
x = iris.data
x
```

```
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3., 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5., 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5., 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       [4.8, 3., 1.4, 0.1],
       [4.3, 3., 1.1, 0.1],
       [5.8, 4., 1.2, 0.2],
       [5.7, 4.4, 1.5, 0.4],
       [5.4, 3.9, 1.3, 0.4],
       [5.1, 3.5, 1.4, 0.3],
       [57 3 2 1 7 0 3]
```

```
y = iris.target
y
```


#Split the dataset into a training set and test set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 70% training and
30% test

#Train Adaboost Classifer
model = abc.fit(X_train, y_train)

#Predict the response for test dataset
y_pred = model.predict(X_test)
y_pred

```
array([1, 0, 1, 1, 2, 1, 2, 0, 0, 2, 2, 0, 0, 1, 0, 1, 0, 2, 0, 2, 2, 1, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 0, 2, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0])
```

#Model Accuracy, how often is the classifier correct? print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Accuracy: 0.9333333333333333

Load libraries

from sklearn.ensemble import AdaBoostClassifier


```
# Import Support Vector Classifier
from sklearn.svm import SVC
#Import scikit-learn metrics module for accuracy calculation
from sklearn import metrics
svc=SVC(probability=True, kernel='linear')
# Create adaboost classifer object
abc =AdaBoostClassifier(n_estimators=50, base_estimator=svc,learning_rate=1)
# Train Adaboost Classifer
model = abc.fit(X_train, y_train)
#Predict the response for test dataset
y_pred = model.predict(X_test)
y_pred
```

```
array([1, 0, 2, 1, 2, 1, 2, 0, 0, 2, 2, 0, 0, 2, 0, 1, 0, 2, 0, 2, 2, 1, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 0, 2, 1, 1, 1, 1, 0, 0, 1, 0, 0, 2])
```

Model Accuracy, how often is the classifier correct?
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Accuracy: 0.977777777777777

