Thème: Ordinateur et Informatique

Comment représenter et communiquer un texte dans un ordinateur?

IN-C3

1. Objectifs

- Comprendre le principe de l'encodage
- Représenter une chaine de caractères dans le système binaire

2. Contextualisation

Envoyer un message textuel via un smartphone est une activité courante, quasi instantanée.

Le besoin de communiquer un message entre 2 personnes ou 2 entités n'est pas récent et les technologies ont beaucoup évoluées jusqu'à notre époque.

3. Le système Chappe

Le système Chappe est un moyen de communication de messages inventé par les frères Chappe en 1791, basé sur des sémaphores mécaniques.

	Sémaphore :
T-DIAMON MUNICIPALITY	Concrètement, un sémaphore du système Chappe est une tour comme représentée ci-contre (gauche).
	Chacun des bras peut prendre positions, et la barre transversale peut avoir angles différents.
	oile correspond à une lettre de l'alphabet
Les sémaphores étaient placés dans le champ de vision du pré	les uns après les autres, chacun étant cédent et du suivant. Un message était s, traduits par des formes prises par la
	5 6 7 8 9 10

Thème: Ordinateur et Informatique

Comment représenter et communiquer un texte dans un ordinateur ?

IN-C3

A Faire 1 : Répondre aux guestions suivantes :

1. À quel message correspond les différentes positions des sémaphores suivantes ?

2. Combien de positions différentes peut prendre un sémaphore ?

3. Selon vous, quels inconvénients présente le système Chappe ?

Le système de sémaphores fut remplacé à partir du milieu des années 1800 par le télégraphe électrique.

4. Le télégraphe électrique (Code Morse)

Code Morse :

Code morse international

- 1. Un tiret est égal à trois points.
- 2. L'espacement entre deux éléments d'une même lettre est égal à un point.
- 3. L'espacement entre deux lettres est égal à trois points.
- 4. L'espacement entre deux mots est égal à sept points.

Inventé en 1838 pour le télégraphe électrique par Samuel Morse, ce codage de caractères assigne à chaque lettre, chiffre et signe de ponctuation une combinaison unique de signaux intermittents (Cf table ci-contre).

Le manipulateur est un système très simple pour émettre le signal (Cf ci-dessus).

L'information est transmise sur des distances longues grâce aux lignes terrestres qui parcourent les continents, et aux câbles sous-marins qui franchissent les océans.

À Faire 2 : Répondre aux questions suivantes :

- 2. Quelle est la représentation en code morse du mot SOS ? ______

Thème: Ordinateur et Informatique Comment représenter et communiquer un

texte dans un ordinateur?

IN-C3

3. Soit le tableau de fréquence des lettres en langue anglaise (Source Wikipedia) :

Lettre	E	Т	Α	0	I	N	S	Н	R	D	L	С	U
Fréquence d'utilisation	12,70	9,10	8,20	7,50	7,00	6,70	6,30	6,10	6,00	4,30	4,00	2,80	2,80

Lettre	M	W	F	G	Υ	Р	В	V	K	J	Х	Q	Z
Fréquence d'utilisation	2,40	2,40	2,20	2,00	2,00	1,90	1,50	0,98	0,77	0,15	0,15	0,10	0,07

Quel lien pouvez-vous faire entre la fréquence d'une lettre et son nombre de signes utilisés dans le

5. L'encodage numérique (ASCII)

₩ ASCII:.	•••••	•••••	••••••	•••••••••	••••••	••••••••••
	sont codés sur 7					•

Table d'encodage ASCII

Décimal	Binaire	Caractère	Décimal	Binaire	Caractère	Décimal	Binaire	Caractère	Décimal	Binaire	Caractère
0	0000000	[Null]	32	0100000	[Space]	64	1000000	@	96	1100000	`
1	0000001	[Start of Heading]	33	0100001	!	65	1000001	Α	97	1100001	a
2	0000010	[Start of Text]	34	0100010	"	66	1000010	В	98	1100010	b
3	0000011	[End of Text]	35	0100011	#	67	1000011	С	99	1100011	С
4	0000100	[End of Transmission]	36	0100100	\$	68	1000100	D	100	1100100	d
5	0000101	[Enquiry]	37	0100101	%	69	1000101	E	101	1100101	е
6	0000110	[Acknowledge]	38	0100110	&	70	1000110	F	102	1100110	f
7	0000111	[Bell]	39	0100111		71	1000111	G	103	1100111	g
8	0001000	[Backspace]	40	0101000	(72	1001000	Н	104	1101000	h
9	0001001	[Horizontal Tab]	41	0101001)	73	1001001	I	105	1101001	i
10	0001010	[Line Feed]	42	0101010	*	74	1001010	J	106	1101010	j
11	0001011	[Vertical Tab]	43	0101011	+	75	1001011	K	107	1101011	k
12	0001100	[Form Feed]	44	0101100	,	76	1001100	L	108	1101100	l
13	0001101	[Carriage Return]	45	0101101		77	1001101	M	109	1101101	m
14	0001110	[Shift Out]	46	0101110		78	1001110	N	110	1101110	n
15	0001111	[Shift In]	47	0101111	1	79	1001111	0	111	1101111	0
16	0010000	[Data Link Escape]	48	0110000	0	80	1010000	Р	112	1110000	р
17	0010001	[Device Control 1]	49	0110001	1	81	1010001	Q	113	1110001	q
18	0010010	[Device Control 2]	50	0110010	2	82	1010010		114	1110010	
19	0010011	[Device Control 3]	51	0110011	3	83	1010011	S	115	1110011	S
20	0010100	[Device Control 4]	52	0110100	4	84	1010100	Т	116	1110100	t
21	0010101	[Negative Acknowledge]	53	0110101	5	85	1010101	U	117	1110101	u
22	0010110	[Synchronous Idle]	54	0110110	6	86	1010110	V	118	1110110	V
23	0010111	[End of Transmission Block]	55	0110111	7	87	1010111	w	119	1110111	w
24	0011000	[Cancel]	56	0111000	8	88	1011000	Х	120	1111000	х
25	0011001	[End of Medium]	57	0111001	9	89	1011001	Υ	121	1111001	у
26	0011010	[Substitute]	58	0111010	:	90	1011010	Z	122	1111010	
27	0011011	[Escape]	59	0111011	;	91	1011011	[123	1111011	{
28	0011100	[File Separator]	60	0111100	<	92	1011100	\	124	1111100	1
29	0011101	[Group Separator]	61	0111101	=	93	1011101]	125	1111101	}
30	0011110	[Record Separator]	62	0111110	>	94	1011110	^	126	1111110	_
31	0011111	[Unit Separator]	63	0111111	?	95	1011111		127	1111111	[Delete]

Thème: Ordinateur et Informatique

Comment représenter et communiquer un texte dans un ordinateur?

IN-C3

Exemples:

- Le point de code 1000000 correspond au caractère @
- Le caractère + est encodé par le point de code 0101011 en ASCII

Ø À	Faire 3 : Répondre aux questions suivantes :
1.	Quel est le point de code en ASCII du caractère #? A? 8?
2.	Quels sont les mots suivants, encodés en ASCII ?
	$mot_1 = 100111111001011 = \dots$
	$mot_2 = 1010011100111010100 = \dots$

3. Quelle est la représentation en binaire de votre prénom avec la première lettre en Majuscule (sans les accents) ? Combien de bits sont nécessaires pour coder votre prénom ?

 $mot_3 = 01110110101101010101 = \dots$

4. Quelle différence observez-vous entre les points de code d'une même lettre en majuscule et minuscule (Exemple: A et a)? En déduire, une méthode pour déterminer si une lettre est en majuscule ou minuscule en connaissant le point de code en binaire d'une lettre.

Remarque : L'encodage ASCII ne permet pas de représenter certains caractères (lettres accentuées, symbole monétaire...). D'autres normes d'encodage comme l'ISO 8859-1 ou UTF-8 pallient à cette problématique.

6. Synthèse

À Faire 4 : Compléter le texte à trous suivant

Un même caractère a un différent selon la technologie utilisée.
L'encodage est
Le système Chappe est un mécanisme de transmission Un caractère correspond à
Le code morse est utilisé par le télégraphe, mécanisme de transmission, pouvant comprendre un, un ou un
En ASCII, mécanisme de transmission bits. Le est la représentation binaire du caractère.

