

A contact free, high accurate current measuring system

Features and benefits

- Ultra low noise
- **Excellent linearity**
- Low temperature drift Zero-fluxTM technology
- DC and AC measurement
- Open circuit protection

Description

The MACC 2 plus is a current measuring system especially designed for applications where high accuracy in combination with low noise and low offset is needed. The MACC 2 plus can measure DC, AC and pulsed currents and is galvanically insulated (5kV_{AC}) to the primary circuit. The primary current is transformed into a proportional output current with a fixed ratio. Also the MACC 2 plus is fit, form and pin compatible with the MACC plus making it possible to easily upgrade your application.

Functional block diagram

1 Oscillator

ZF 02.323 Rev.3.7

5 Automatic Gain Control 6 Saturation Detector

2 Peak Detector

Date: October 1, 2015

3 Integrator 7 External Burden 4 Power Amplifier

8 Jumper 1)

(Output Valid floating or non-floating)

Page 1 of 4

 I_P = primary current

 I_S = secondary current

1)
Jumper for Output Valid O.C. is standard connected to ground. If floating output is required please remove top-cover and remove jumper located on the left hand side

A contact free, high accurate current measuring system

Mechanical data

Page 2 of 4

ZF 02.323 Rev.3.7 Date: October 1, 2015

A contact free, high accurate current measuring system

Main characteristics

 $\begin{array}{lll} \text{Rated input current (I_{PN})} & \pm 600\text{A} \\ \text{Transfer ratio} & 1000:1 \\ \text{Rated output current (I_{SN})} & \pm 600\text{mA} \\ \text{Max. output current} & \pm 1.0\text{A} \\ \end{array}$

Linearity error $< 2\mu A$ Output offset error (initial) $< 3\mu A$ Offset drift (TC) $< 0.1\mu A/K$

Offset error vs. supply voltage $< 0.1\mu A /V$ Offset error vs. time $< 0.2\mu A /m$ Output error vs. ext. magn. field $< 3\mu A /mT$ Output noise (BW= 10kHz) $< 0.8\mu A_{pp}$ (of I_{SN})

Small signal bandwidth (1% of I_{PN}) DC ... 800kHz (-3dB) Step response time < 2.5 μ s Supply voltage V_C ±15V

Load resistor (burden) $0 \dots 7\Omega$ (with supply voltage ±15V @ I_{PN})

Induced into primary $<300\mu V_{pp}$

General data

 $\begin{array}{ll} \text{Current consumption I}_{\text{C}} & 90\text{mA+I}_{\text{S}} \\ \text{Power dissipation at 600A} & 9.5\text{W (R}_{\text{b}}{=}0\Omega) \\ \text{Min/Max supply voltage V}_{\text{C}} & \pm 14\text{V}_{\text{DC}}/\pm 15.5\text{V}_{\text{DC}} \end{array}$

Polarity protection No.

Output Valid indicator LED (pure green)

Output Valid contact PhotoMOS relais: $R_{ON} = 0.8\Omega$, $I_{MAX} = 200$ mA, $V_{MAX} = 40$ V_P

Dimensions (l x w x h) 110x82x43mm, incl. isolator 67mm.

Hole diameter 26mm

Material

Weight

Housing Aluminium
Primary isolator POM-C
< 450 gram

Ambient operating temperature 0 ... +40°C Relative Humidity 20 ... 80% (Non condensing)

Ambient storage temperature -40 ... +75°C

Relative Humidity 20 ... 80% (Non condensing)

Pollution degree 2

Safety

Protection class III (IEC 60 950-1, Supplied by external SELV power source)

Protection degree

Terminals IP20 (Test finger, EN 60 529) Housing IP40 (Test finger, EN 60 529)

Flammability class acc. UL94 V0

Insulation characteristics

Creepage distance 12mm (between primary busbar and housing)
Clearance distance 12mm (between primary busbar and housing)

TI 600 (primary isolator)

Test voltage (sine)

Prim. busbar to output 5kV/50Hz, 1min (IEC61010-1)

Electronics to housing 500V_{DC}/10s

Impulse voltage (surge)
Prim. busbar to output

5kV 1.2/50µs

Page 3 of 4

ZF 02.323 Rev.3.7 Date: October 1, 2015

A contact free, high accurate current measuring system

Type A (default) Interface

Sub-D 9p connector MALE

 $\begin{array}{lll} \text{Pin 1} & +15 \text{V } (\text{V}_{\text{P}}) \\ \text{Pin 2} & -15 \text{V } (\text{V}_{\text{N}}) \\ \text{Pin 3} & 0 \text{V} \\ \text{Pin 4} & \text{NC} \\ \text{Pin 5} & \text{NC} \\ \text{Pin 6} & \text{Current Output 1} \end{array}$

Pin 6 Current Output Pin 7 Output Valid

Pin 8 NC

Pin 9 Output Valid or 0V 1)

¹⁾ Jumper for Output Valid O.C. standard connected to ground. If floating output is required please remove top-cover and remove jumper located on the left hand side

Type B (on request) Interface

Sub-D 9p connector MALE

Pin 1 0V
Pin 2 NC
Pin 3 Output valid
Pin 4 0V
Pin 5 -15Vdc (Vn)
Pin 6 Output
Pin 7 NC
Pin 8 Output Valid

(1. 2. 3. 4. 5. 6. 7. 8. 9. (0)

+15Vdc (Vp)

Connection

Accessories

Mounting bracket ($l \times w \times h=105 \times 35 \times 3mm$)

Partnumber

8870.006

CE

Pin 9

Subject to change without prior notice

Page 4 of 4

ZF 02.323 Rev.3.7 Date: October 1, 2015