MatGeo Assignment 4.13.76

1

AI25BTECH11007

Question:

Two lines

$$L_1: \frac{x}{5} = \frac{y}{3-\alpha} = \frac{z}{-2}$$

$$L_2: \frac{x}{\alpha} = \frac{y}{-1} = \frac{z}{2-\alpha}$$

are coplanar. Then the value(s) of α

Solution:

$$L_1: \frac{x}{5} = \frac{y}{3-\alpha} = \frac{z}{-2}, \qquad L_2: \frac{x}{\alpha} = \frac{y}{-1} = \frac{z}{2-\alpha}.$$

Direction vectors are :
$$\mathbf{n}_1 = \begin{pmatrix} 5 \\ 3 - \alpha \\ -2 \end{pmatrix}$$
, $\mathbf{n}_2 = \begin{pmatrix} \alpha \\ -1 \\ 2 - \alpha \end{pmatrix}$.

Choose points on each line, as both lines pass through the origin, so, $\mathbf{p}_1 = \mathbf{p}_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Two lines are coplanar iff

rank
$$(\begin{pmatrix} \mathbf{n}_1 & \mathbf{n}_2 & \mathbf{p}_2 - \mathbf{p}_1 \end{pmatrix}) \leq 2.$$

Here $\mathbf{p}_2 - \mathbf{p}_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, so the matrix becomes

$$\begin{pmatrix}
5 & \alpha & 0 \\
3 - \alpha & -1 & 0 \\
-2 & 2 - \alpha & 0
\end{pmatrix},$$

whose rank is at most 2 for every α . Hence the two lines are coplanar for all real α .

$$\alpha \in \mathbb{R}$$

Fig. 0.1: Image