Examen de mi-parcours - Arithmétique

18/03/2024 - Durée : 2h15

Documents interdits, Calculatrice interdite

La qualité de la présentation et le soin apporté à la rédaction seront pris en compte dans la notation. Il est demandé d'encadrer vos résultats à la fin de chaque question (en-dehors des questions de cours).

Exercice n°1: (Questions de cours)

1. Soit $n \in \mathbb{N}$. Soient a et b deux entiers relatifs. Que signifie :

$$a \equiv b [n]$$

(a est congru à b modulo n)?

Donner une définition mathématique précise.

- 2. Soient a et b deux entiers relatifs. Que signifie : "a et b sont premiers entre eux "?
- 3. Énoncer le théorème de Bézout.
- 4. Énoncer le théorème de Gauss.
- 5. Énoncer le petit théorème de Fermat.

Exercice n°2: (Équation diophantienne)

Résoudre l'équation (E) dans \mathbb{Z}^2 :

(E)
$$4x - 3y = 1$$

Exercice n°3: (Raisonnement)

Soit p un nombre premier tel que $p \neq 2$.

Démontrer que p+3 n'est pas un nombre premier.

Exercice n°4: (Problème)

Bob choisit les paramètres suivants : N=91 et e=5. Il déclare que tout le monde peut lui envoyer des messages chiffrés à l'aide de la fonction de chiffrement :

$$f: x \longmapsto y$$

où y est le reste de la division euclidienne de x^e par N. On a donc : $y \equiv x^e$ [N], c'est-à-dire que $y \equiv x^5$ [91].

Alice souhaite envoyer un message à Bob. Pour cela, elle choisit un message x et elle envoie y sur le réseau.

Vous êtes Charlie et vous interceptez le message chiffré y sur le réseau. Vous voyez que y=2. Vous souhaitez décrypter y.

- 1. Écrire la décomposition en facteurs premiers de N=91, sous la forme $N=p\times q$, avec p et q deux nombres premiers tels que p< q.
- 2. On note désormais n = (p-1)(q-1). Calculer n.

3. Justifier qu'il existe $(u, v) \in \mathbb{Z}^2$ tel que :

$$5u + nv = 1$$

- 4. À l'aide de l'algorithme d'Euclide étendu, déterminer la valeur de u et de v, puis en déduire l'inverse modulaire de 5 modulo n, noté d (vérifier que : $1 \le d \le 90$).
- 5. On admet que la fonction de déchiffrement est :

$$f^{-1}: y \longmapsto z$$

où z est le reste de la division euclidienne de y^d modulo N. Autrement dit, $z \equiv y^d$ [N], c'est-à-dire que $z \equiv 2^d$ [91].

Comme $x = f^{-1}(y)$, on peut donc écrire que : $x \equiv 2^d[91]$.

a) Donner l'écriture de d en base binaire.

(Exemples d'écriture en base binaire :

- $23 = 2^4 + 2^2 + 2^1 + 2^0$, que l'on peut aussi écrire 23 = 16 + 4 + 2 + 1;
- $35 = 2^5 + 2^1 + 2^0$, que l'on peut aussi écrire 35 = 32 + 2 + 1)
- b) La table de congruences suivante a été pré-calculée.

Puissance	Calcul modulo 91
0	$2^0 \equiv 1 [91]$
1	$2^1 \equiv 2 [91]$
2	$2^2 \equiv 4 [91]$
4	$2^4 \equiv 16 \ [91]$
8	$2^8 \equiv 74 \ [91]$
16	$2^{16} \equiv 16 [91]$
32	$2^{32} \equiv 74 \ [91]$
64	$2^{64} \equiv 16 [91]$

En utilisant l'écriture de d en base binaire obtenue dans la question a), déchiffrer le message envoyé par Alice (c'est-à-dire : retrouver la valeur de x).

Aide au calcul:

$$16\times74\equiv1\;[91]$$