Homework 5 - Rules of Inference, Quantifiers, Proofs

CS241

February 22, 2025

Rules of Inference

Section 1.4. exercises: 5, 11, 14, 15, 22, 30, 33, 34, 35

Quantifiers

- 1. Let A, B be sets. What relation between A and B is defined by:
 - (a) $\forall x. (x \in A) \rightarrow (x \in B)$
 - (b) $[\forall x. (x \in A) \rightarrow (x \in B)] \land [\forall x. (x \in B) \rightarrow (x \in A)]$

Java assignment

2. In this assignment we compute the statements

$$\forall x. \forall y. P(x, y)$$

 $\exists x. \exists y. P(x, y)$
 $\forall x. \exists y. P(x, y)$
 $\exists x. \forall y. P(x, y)$

for a given finite domain and a given predicate P. Complete the TO DO parts in the java files attached to this assingment.

- There are 3 functions to implement.
- Currently all functions return true as a stub, change this code.
- Each of these functions should compute the statement mentioned above it.
- The fourth implementation is given as an example.
- You can use a helper function as seen in the code examples.
- Similar pseudocode can be found in examples 1.5.7, 1.6.5, 1.6.8.
- Code sould be able to work properly for all arrays A, B and function P.
- A java file that does not compile will receive no credit.
- Make your code is as readable as possible.

Proofs

- 3. Prove / disprove the statements from the previous assignment:
 - (a) in \mathbb{Z} : $\forall x. \forall y. x y = 7$
 - (b) in \mathbb{Z} : $\exists x. \exists y. \ x y = 7$
 - (c) in \mathbb{Z} : $\forall x. \exists y. x y = 7$
 - (d) in \mathbb{Z} : $\exists x. \forall y. \ x y = 7$
 - (e) in \mathbb{Z} : $\forall x. \exists y. xy = 7$
 - (f) in \mathbb{Q} : $\forall x. \exists y. xy = 7$
 - (g) in $\mathbb{Q}: \forall x. \exists y. (x \neq 0) \rightarrow (xy = 7)$
 - (h) in $\mathbb{Q} \{0\}$: $\forall x. \exists y. xy = 7$
 - (i) in \mathbb{Z} : $\forall y. \exists x. \ x > y$
 - (j) in \mathbb{Z} : $\exists y. \forall x. \ x > y$
- 4. Prove / disprove the statements in $D = \{2, 6\}$. Use the definitions of | (divides) and % (mod):
 - (a) $\forall x. 2 | x$
 - (b) $\forall x. 3 | x$
 - (c) $\exists x.5 | x$
 - (d) $\exists x. x \% 5 = 2$
- 5. Prove / disprove the statements, using the definitions of | (divides). We define the predicate DV with respect to $D = \{2,3\} \times \{6,9,11\}$: DV(a,b) is TRUE iff a|b
 - (a) $\forall x. \forall y. DV(x, y)$
 - (b) $\exists y. \forall x. DV(x, y)$
 - (c) $\exists y. \forall x. \neg DV(x, y)$