

Jun 30, 2025

Polyethylene terephthalic acid deconstruction product analysis by UHPLC-DAD

DOI

dx.doi.org/10.17504/protocols.io.kqdg3xeb7g25/v1

Hannah M. Alt¹, Kelsey J. Ramirez¹, Stefan J. Haugen¹, William E. Michener^{2,3}, Gregg T. Beckham^{2,3}

¹Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA;

²Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory;

³BOTTLE Consortium, Golden CO, USA

NREL

Tech. support email: ftlb_analysis@nrel.gov

Hannah M. Alt

Renewable Resources and Enabling Sciences Center, National R...

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.kqdg3xeb7g25/v1

Protocol Citation: Hannah M. Alt, Kelsey J. Ramirez, Stefan J. Haugen, William E. Michener, Gregg T. Beckham 2025. Polyethylene terephthalic acid deconstruction product analysis by UHPLC-DAD. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.kqdg3xeb7g25/v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: June 12, 2023

Last Modified: June 30, 2025

Protocol Integer ID: 83268

Keywords: polyethylene, BOTTLE, diode array detection, TPA, MHET, BHET, UHPLC

Funders Acknowledgements:

This work was authored in part by the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08G028308. This work was performed as part of the BOTTLE™ Consortium and was supported by Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (BETO), and Advanced Materials and Manufacturing Technologies Office (AMMTO).

Grant ID: DE-AC36-08G028308

Disclaimer

This protocol is for research purposes only.

Abstract

This analytical procedure outlines a rapid and accurate method for the quantification of three key PET deconstruction products, namely terephthalic acid (TPA), 2-hydroxyethyl terephthalic acid (MHET), and bis(2-hydroxyethyl) terephthalic acid (BHET), using an ultra high performance liquid chromatography with diode array detection (UHPLC-DAD) system. This method combines the advantages of UHPLC for improved resolution and separation efficiency with the sensitivity of DAD for accurate and reliable quantification.

Guidelines

This protocol utilizes an ultra high performance liquid chromatography diode array detector (HPLC-DAD) system manufactured by Agilent Technologies as referenced in 'Materials'. A similar UHPLC-DAD system can be utilized however, some parameter nomenclature may deviate depending on the manufacturer.

Materials

Standard Materials

- Terephthalic Acid Merck MilliporeSigma (Sigma-Aldrich) Catalog #185361
- 2-Hydroxyethyl Terephthalic Acid Toronto Research Chemicals Inc Catalog #H942275
- Bis(2-Hydroxyethyl) Terephthalic Acid Merck MilliporeSigma (Sigma-Aldrich) Catalog #465151

Standard Reagents

- Potassium phosphate monobasic Merck MilliporeSigma (Sigma-Aldrich) Catalog #P5655
- Potassium phosphate dibasic Merck MilliporeSigma (Sigma-Aldrich) Catalog #P3786
- Tetrahydrofuran Merck MilliporeSigma (Sigma-Aldrich) Catalog #401757

Mobile Phase Reagents

- Phosphoric Acid ACS 85 wt. % in Water Merck MilliporeSigma (Sigma-Aldrich) Catalog #695017
- Methanol Optima Fisher Scientific Catalog # A454SK

Guard Column

Equipment		
Zorbax Eclipse Plus C18	NAME	
Guard Column	ТҮРЕ	
Agilent	BRAND	
821725-901	SKU	
https://www.agilent.com/store/productDetail.jsp?catalogId=821725-901 ^{LINK}		
2.1 × 5 mm 1.8 μm	SPECIFICATIONS	

Analytical Column

Equipment		
Zorbax Eclipse plus C18 Rapid Resolution HD	NAME	
analytical separation column	TYPE	
Agilent	BRAND	
959757-902	SKU	
https://www.agilent.com/store/en_US/Prod-959757-902/959757-902 LINK		
2.1 × 50 mm, 1.8 μm	SPECIFICATIONS	

Instrumentation:

1290 Infinity UHPLCUltra-high performance liquid chromatography systemTYPEAgilent TechnologiesBRAND1290 Infinity UHPLCSKUhttps://www.agilent.com/en/product/liquid-chromatography/hplc-systems/analytical-hplc-systemsLINK	Equipment		
Agilent Technologies 1290 Infinity UHPLC BRAND SKU	1290 Infinity UHPLC	NAME	
1290 Infinity UHPLC SKU	Ultra-high performance liquid chromatography system	TYPE	
1290 Infinity OHPEC	Agilent Technologies	BRAND	
https://www.agilent.com/en/product/liquid-chromatography/hplc-systems/analytical-hplc-systems	1290 Infinity UHPLC	SKU	
	https://www.agilent.com/en/product/liquid-chromatography/hplc-systems/analytical-hplc-systems ^{LINK}		

Safety warnings

• All chemicals used for this procedure are hazardous. Read the Safety Data Sheet (SDS) for all chemicals and follow all applicable chemical handling and waste disposal procedures. Manufacturer specific SDS information can be found by following the CAS numbers of compounds in 'Materials' list.

Before start

All solvents and chemicals used are listed in the 'Materials' section. These are excluded from in-line references to maintain clarity and keep the steps concise.

Preparation of Standards

1 Terephthalic acid (TPA) preparation

Prepare a buffer solution for the TPA standard

- 1. Prepare a 1M potassium phosphate dibasic (K_2HPO_4) buffer solution by weighing 87 g of K_2HPO_4 into 500 mL of 18.2M Ω ·cm ultrapure water (UPW).
- 2. Prepare a 1M potassium phosphate monobasic (KH_2PO_4) buffer solution by weighing 68 g of KH_2PO_4 into 500 mL of UPW.
- 3. Prepare a 1M phosphate buffer solution by combining 94 mL of K_2HPO_4 (dibasic) buffer and 6 mL of KH_2PO_4 (monobasic) buffer.
- 4. Check that the pH of the buffer solution is 8.0 ± 0.1 pH units (7.9-8.1). Adjust pH with 10N NaOH or concentrated phosphoric acid if necessary.

Prepare the TPA standard

- 1. Weigh out dry TPA standard and create 1000 μ g/mL TPA stock standard using the phosphate buffer solution created in the previous step as the stock standard diluent. Example: Weighed 9,800 μ g (9.8 mg) of powdered TPA and add 9.8 mL of phosphate buffer solution.
- 2. Create a 250 μ g/mL TPA working standard using the 1000 μ g/mL TPA stock standard and UPW as the diluent. Example: Pipetted 2.5 mL of 1000 μ g/mL TPA stock standard and add 7.5 mL of UPW.
- 3. Create the following calibration standards using the 250 μ g/mL TPA standard working solution and UPW as the diluent.

		alibration Curve Preparation	1	
Calibration Level	Concentration (µg/mL) (ppm)	μL of TPA Standard	μL of 18.2M Ω Water	Total Volume (μL)
1	1	100 of 10 μg/mL	900	1000
2	5	100 of 50 μg/mL	900	1000
3	10	100 of 100 μg/mL	900	1000
4	25	100 of 250 μg/mL	900	1000
5	50	200 of 250 μg/mL	800	1000
6	75	300 of 250 μg/mL	700	1000
7	100	400 of 250 μg/mL	600	1000
8	150	600 of 250 μg/mL	400	1000
9	250	1000 of 250 μg/mL	0	1000

Example calibration curve preparation for TPA (Click to enlarge)

2 2-Hydroxyethyl terephthalic acid (MHET) preparation

- 1. Prepare a 1:1 solution of UPW and tetrahydrofuran (THF)
- 2. Weigh out neat MHET standard and create a 1000 μ g/mL MHET stock standard using the 1:1 solution of ultrapure water (18.2M Ω ·cm) and THF created in the step 2.1. Example: weigh 8,700 μ g (8.7 mg) of powdered MHET and added 8.7 mL of 1:1 UPW and THF.
- 3. Create a 250 μ g/mL MHET working standard using the 1000 μ g/mL MHET stock standard and the 1:1 solution of UPW and THF. Example: Pipetted 2.5 mL of 1000 μ g/mL MHET stock standard and 7.5 mL of 1:1 UPW and THF solution.
- 4. Create the following calibration standards using the 250 $\mu g/mL$ MHET standard working solution and UPW as the diluent.

(Calibration Curve Preparation	n	
Concentration (µg/mL) (ppm)	μL of MHET Standard	μL of 18.2M Ω Water	Total Volume (μL)
1	100 of 10 μg/mL	900	1000
5	100 of 50 μg/mL	900	1000
10	100 of 100 μg/mL	900	1000
25	100 of 250 μg/mL	900	1000
50	200 of 250 μg/mL	800	1000
75	300 of 250 μg/mL	700	1000
100	400 of 250 μg/mL	600	1000
150	600 of 250 μg/mL	400	1000
250	1000 of 250 μg/mL	0	1000
	Concentration (µg/mL) (ppm) 1 5 10 25 50 75 100 150	Concentration (μg/mL) (ppm) μL of MHET Standard 1 100 of 10 μg/mL 5 100 of 50 μg/mL 10 100 of 100 μg/mL 25 100 of 250 μg/mL 50 200 of 250 μg/mL 75 300 of 250 μg/mL 100 400 of 250 μg/mL 150 600 of 250 μg/mL	(μg/mL) (ppm) μL of MHET Standard μL of 18.2MΩ Water

Example calibration curve preparation for MHET (Click to enlarge)

3 Bis(2-hydroxyethyl) terephthalic acid (BHET) preparation

- 1. Weigh out neat BHET standard and create a 1000 μ g/mL BHET stock standard using tetrahydrofuran (THF). Example: Weighed 9,500 μ g (9.5 mg) of powdered BHET and added 9.5 mL of THF.
- 2. Create a 250 μ g/mL BHET working standard using the 1000 μ g/mL stock standard and THF. Example: Pipetted 2.5 mL of 1000 μ g/mL stock standard and 7.5 mL of THF.
- 3. Create the following calibration standards using the 250 μ g/mL BHET standard working solution and THF as the diluent.

		Calibration Curve Preparation		
Calibration Level	Concentration (µg/mL) (ppm)	μL of BHET Standard	μL of THF	Total Volume (μL
1	1	100 of 10 μg/mL	900	1000
2	5	100 of 50 μg/mL	900	1000
3	10	100 of 100 µg/mL	900	1000
4	25	100 of 250 μg/mL	900	1000
5	50	200 of 250 μg/mL	800	1000
6	75	300 of 250 μg/mL	700	1000
7	100	400 of 250 μg/mL	600	1000
8	150	600 of 250 μg/mL	400	1000
9	250	1000 of 250 μg/mL	0	1000

Example calibration curve preparation for BHET (Click to enlarge)

Sample Preparation

- Samples must be filtered through a 0.2 μm or smaller filter prior to injection on the UHPLC
 - Samples expected to be over the linear range of the instrument should be diluted to ensure accurate analysis and avoid carryover.

Mobile Phase Preparation

- 5 Mobile Phase A:
 - a solution of 20 mM phosphoric acid in UPW using the ratio of 1.34 mL of 85% phosphoric acid per 1 L of UPW. Ensure sufficient volume for analysis of all samples and standards.

Mobile Phase B:

Methanol

UHPLC-DAD Parameters

6

Binary pump configuration

Flow rate	0.7 mL / min
Maximum pressure	1300 bar
Mobile phase A	20mM phosphoric acid (v/v)
Mobile phase B	methanol (v/v)

Gradient configuration

Time (min)	Composition A (%)	Composition B (%)
0.00	80.00	20.00
2.00	35.00	65.00
2.01	80.00	20.00
3.00	80.00	20.00

Column compartment parameters

Temperature 40 °C

Multisampler parameters

Injection volume	0.25 µL
Draw speed	100 μL/min
Eject speed	400 μL/min
Wait time after draw	2 sec
Bottom sensing	enabled

Diode array configuration

Wavelength:bandwidth (reference) 240:4 (360:100) Peakwidth >0.013 min (20Hz) store all Spectra

Analytical Quality Control

7 Calibrations

All compounds must have a correlation coefficient (r^2) of greater than or equal to 0.995 using a linear fit. It is recommended to weight the calibration with a 1/x weighting.

Calibration verification standards

A calibration verification standard (CVS) is a standard from the calibration that is reanalyzed every 20 or fewer samples to ensure instrument drift remains within the determined acceptable criteria. Acceptable recoveries for this analysis are ±10% of the expected value. All reported data was bracketed by acceptable CVS recoveries. Acceptance criteria may differ between instruments and should be determined experimentally.

Example Chromatogram

8

Example chromatogram

Protocol references

Erickson, E., Gado, J.E., Avilán, L. et al. Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity. *Nat Commun* **13**, 7850 (2022). https://doi.org/10.1038/s41467-022-35237-x