Universidad Tecnológica Nacional-Facultad Regional General Pacheco-Técnico Universitario en Programación

Matemática 1-Unidad 4- RELACIONES

- 1) Siendo A= $\{a, b, c\}$ y B= $\{m, p\}$ Halla:
 - a) AxB
 - b) B²
 - c) BxA
- 2) La relación R definida en los \mathbb{Z} , $xRy \Leftrightarrow x$ "es el opuesto del quíntuple de" y ¿Cuáles de los siguientes pares $(x, y) \in \mathbb{R}$? (15,3) (10,2) (-20,4) (0,0) (-1, $\frac{1}{5}$) (-100,20) (1,-5) (-5,1) (1000, -200)
- 3) Dadas las relaciones en lenguaje coloquial, escribe 2 pares ordenados que pertenezcan a cada una de ellas:
 - a) R1: "es la tercera parte de "(definida en Z)
 - b) R2: "es capital de "(ciudades- países)
 - c) R3: "es sinónimo de "(palabras)
 - d) R4:" es el cubo de "(definida en Z)
 - 4) Dado $M = \{x \in \mathbb{N} \land x \le 5\}$ y la relación $R \subseteq M^2$ tal que $R = \{(x, y) / x + y \le 4\}$
 - a) Halla R por extensión
 - b) Halla dominio y conjunto imagen
 - 5) Sea A = {a, b, c, d} y la relación R \subseteq A² tal que M $A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ matriz de adyacencia de

R

- a) Escribe por extensión la relación R.
- b) Dibuja el dígrafo correspondiente.
- c) Indica las propiedades que verifica R. Justifica.
- 6) Dados los conjuntos $A = \{1, 2, 3, 4\}$ y $B = \{2, 3, 5, 6\}$ y las relaciones:

R1: B
$$\rightarrow$$
 B / R1 = {(2; 3), (3; 2), (6,6)}

R2: B
$$\rightarrow$$
 A / R2 = {(6, 3), (2, 1)}

R3: A
$$\rightarrow$$
 A / R3 = {(3, 3), (2, 2), (1, 1), (4, 4)}

R4: A
$$\rightarrow$$
 B / R1 = {(2, 3), (3, 2), (1, 2) (4, 6)}

- a) Determine el dominio e imagen de cada relación.
- b) Cuando sea posible graficar el dígrafo y determine la matriz de adyacencia.
- c) Analiza si R₄ y R₂ cumplen la condición de ser funciones, justifica.
- 7) Escribe una relación R binaria homogénea por extensión definida en P= {p, r, t, q} que cumpla las propiedades reflexiva, simétrica y transitiva.
- 8) Analice las propiedades de la relación R en cada uno de los siguientes casos:
 - a) a R b \Leftrightarrow b = a^2 en el conjunto **Z** de los números enteros.

- b) a R b \Leftrightarrow a + b = 0 en el conjunto **Z** de los números enteros.
- c) a R b \Leftrightarrow a b = 3 en el conjunto **Z** de los números enteros
- d) a R b \Leftrightarrow b³+a=0 en el conjunto **Z** de los números enteros
- 9) Dado el dígrafo, escribe R por extensión, analiza cuáles de las propiedades vistas verifica

- 10) Calcula cuántos caminos de longitud 2 hay en la relación R del punto 9)
- 11) Escribe R como matriz de adyacencia. Escribe todos los caminos de longitud 2

12) Responde Verdadero o Falso

- a) Las relaciones binarias homogéneas siempre son funciones
- b) Si el #(R)=1 en una Relación binaria homogénea, entonces esa relación cumple la propiedad antisimétrica.
- c) Si el #(R)=1 en una Relación binaria homogénea, entonces esa relación cumple la reflexiva
- d) El #(R) coincide con el número de caminos de longitud de la relación.
- e) El producto cartesiano de AxA cumple la propiedad transitiva
- f) La relación R en los números enteros $x \le y$ cumple la propiedad transitiva