- 1. Tres cargas se colocan como se ilustra en la figura. La magnitud de q_1 es 2.00μ C, pero no se conoce su signo. Tampoco sabemos la información de la carga q_2 . La carga q_3 es de $+4.00\mu$ C, y la fuerza neta sobre q_3 está por completo en la dirección negativa del eje x (flecha en rojo en la figura).
 - (a) Considere los diferentes signos posibles de q_1 y q_2 . Hay cuatro posibles diagramas de fuerza que representan las fuerzas que ellas ejercen sobre q_3 . Haga un esquema cualitativo de cada una de esas cuatro configuraciones de fuerza posibles.
 - (b) Con el empleo de los diagramas del inciso anterior y la dirección de la fuerza neta sobre q_3 deduzca los signos de las cargas q_1 y q_2 .
 - (c) Calcule la magnitud de q_2 .
 - (d) Determine F, la magnitud de la fuerza neta sobre q_3 .
 - (e) Calcule la energía potencial eléctrica de la carga q_3 por estar en presencia de las otras dos cargas.

Ayuda: Note que la figura muestra un triángulo rectángulo de la forma (3,4,5). Con esa información puede averiguar los ángulos interiores.

2. Considere el circuito que se muestra en la figura. Las características de los elementos del circuito son $R_1 = 30\Omega$, $R_2 = 20\Omega$, $C_1 = 4\mu F$, $C_2 = 8\mu F$, fem = 12V. Inicialmente la llave está levantada, se sabe que el capacitor C_1 tiene una $Q_1 = 15\mu C$ y que no circula corriente por R_2 .

Hallar:

- (a) Las caídas de potencial eléctrico sobre cada uno de los elementos del circuito antes de cerrar la llave.
- (b) El valor de la carga Q_2 en esa situación.

- (c) Las corrientes que circulan sobre cada uno de los elementos eléctricos para el instante inmediatamente posterior al cierre de la llave.
- (d) Las caídas de tensión sobre cada uno de los elementos eléctricos y las cargas sobre ambos capacitores para un tiempo muy posterior al cerrado de la llave.
- **3.** En el interior de dos alambres A1 y A2 paralelos e infinitos, separados una distancia d y de una pulgada de diámetro cada uno, circulan corrientes i_1 e i_2 , respectivamente. Conociendo que el campo \vec{B} generado por ellos se anula a una distancia d/3 respecto de A1 en la región externa a los dos alambres, determine:
 - (a) la relación entre i_1 e i_2 y su sentido relativo de circulación;
 - (b) el campo magnético a una distancia h sobre el conductor A1 en función de i_1 ;
 - (c) la fuerza que se ejercen los conductores por unidad de longitud suponiendo que la corriente $i_2 = 2A$.