

DSI SUDS SCHOLAR BOOTCAMP 2024 SLIDES BY NAKUL UPADHYA

PRELIMINARIES

WHAT IS MACHINE LEARNING?

Study of Algorithms that:

- Improve their performance
- At some task
- With experience

WHAT IS MACHINE LEARNING?

Study of Algorithms that:

- Improve their performance
- At some task
- With experience

DATA AKA EXPERIENCE

- Sample: A datapoint
- Feature: an attribute of the samples

ML Algorithms learn relations between **features** across many **samples** to accomplish a task.

ML TASKS

Uncover relations between the features and a **prediction target**

- Regression
- Classification

Semi-supervised Self-supervised

Unsupervised

Uncover hidden patterns within the feature matrix

- Clustering
- Dimensionality Reduction

SUPERVISED LEARNING

TERMINOLOGY

- Supervised Learning = Prediction
- Target: True Values

CLASSIFICATION VS. REGRESSION

Classification
Categorical Target

Data

6
5
4
3
2
1
0
0
1
2
3
4
5
6

Regression Numerical Target

CLASSIFICATION VS. REGRESSION

Classification

Categorical Target

Blue vs. Orange

Cancer vs. No Cancer

Cat, Dog, or Bird

Regression

Numerical Target

Age

Income

Sales

TRAINING A MODEL

- Make a prediction
- Calculate the error
- Update model based on error
- Repeat

TRAINING A MODEL

- Make a prediction
- Calculate the error
- Update model based on error
- Repeat

REGRESSION ERROR

Mean Squared Error

$$\frac{1}{n}\sum(y_i - \hat{y}_i)^2$$

Mean Absolute Error

$$\frac{1}{n}\sum |y_i - \hat{y}_i|$$

CLASSIFICATION ERROR

Misclassification

Cross-Entropy

$$-\frac{1}{n}\sum \sum y_{i,c}\log \hat{p}_{i,c}$$

Impurity

$$1 - \sum p_c (1 - p_c)$$

EXAMPLE: MULTIPLE LINEAR REGRESSION

$$\hat{y} = f(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n = \Theta \cdot x$$

Minimize
$$\frac{1}{n}\sum (y_i - \Theta \cdot x)^2$$

By Updating Θ

EXAMPLE: MULTIPLE LINEAR REGRESSION

$$\hat{y} = f(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n = \Theta \cdot x$$

$$\nabla L = \frac{\partial}{\partial \Theta} \sum (y_i - \Theta \cdot x)^2$$
 Gradient = Direction of Increase

$$\Theta = \Theta - \alpha \nabla L$$

Take steps in opposite direction

EXAMPLE: LINEAR REGRESSION

EXAMPLE: MULTIPLE LINEAR REGRESSION

EXAMPLE: DECISION TREE CLASSIFIER

EXAMPLE: DECISION TREE CLASSIFIER

EXAMPLE: DECISION TREE CLASSIFIER

EVALUATING A TRAINED MODEL

How do we accurately judge how good a model is?

Evaluating error during training is not a good judge.

EVALUATING A MODEL

- Split the data up
- Training Set: Used to develop and train model
- Test Set: Used to evaluate model

PROBLEM: HYPERPARAMETERS

Recall training Linear Regression

How large is our step?

How many steps do we take?

K-FOLD CROSS VALIDATION

Train on all folds but one

Evaluate on last fold

Repeat with a different split

SUPERVISED LEARNING PIPELINE

UNDER/OVER FITTING

BIAS-VARIANCE TRADEOFF

WORKSHOP

UNSUPERVISED LEARNING

THOUGHT EXERCISE

What is the correct grouping of these pictures?

UNSUPERVISED SETTING

There are no "targets"

Unsupervised Learning
= Finding patterns in
the features

TRAINING A MODEL

- Loss is defined only by input points and model output
- No True Labels

CLUSTERING

Find Groups in the data

Creating teams based on personality scores and skills

Identifying customer profile groups

EXAMPLE: K-MEANS CLUSTERING

Goal: Group the datapoints into K Clusters

Minimize
$$\frac{1}{n}\sum \sum w_{i,k}||x_i-z_k||^2$$

- $w_{i,k}$: is point i in cluster k
- z_k : Average of all points in cluster k (centroid)

EXAMPLE: K-MEANS CLUSTERING

EXAMPLE: K-MEANS CLUSTERING

- Test different number of clusters and plot inertia
- Find the "elbow"

DIMENSIONALITY REDUCTION

Find Groups in the data

Creating teams based on personality scores and skills

Identifying customer profile groups

EXAMPLE: PCA

- Find the "components" that capture the most variance in the data
- N_Components <= N_Features

EXAMPLE: PCA

Original data (high-dimensions)

reduction

Lower-dimensional embedding

- Principal component #1
- Maximize variance along PC1
- Minimize residuals along PC2

WORKSHOP