(2.5) $\lim_{t\to\infty} T(t)f = 0$ for every $f \in im(Id - T(1))$.

That is, $\operatorname{im}(\operatorname{Id} - \operatorname{T}(1)) \subset F$. Since $\ker A = \bigcap_{t \ge 0} \ker(\operatorname{Id} - \operatorname{T}(t)) = \ker(\operatorname{Id} - \operatorname{T}(1))$ (cf. A-III,Cor.6.4) we have $\operatorname{im}(\operatorname{Id} - \operatorname{T}(1)) + \ker(\operatorname{Id} - \operatorname{T}(1)) \subset F$.

Since power bounded operators on a reflexive Banach space are mean ergodic (e.g., see Krengel (1985), Chap.2, Thm.1.2) we obtain that im(Id - T(1)) + ker(Id - T(1)) is dense in E , hence F = E.

Strong convergence of the semigroup $T = (T(t))_{t \geq 0}$ implies strong convergence of the Césaro means $C(t)f := \frac{1}{t} \cdot \int_0^t T(s)f \, ds$, $f \in E$ which (by definition) is mean ergodicity of the semigroup T (see Davies (1980), Chap.5.1). On the other hand an inspection of the proof of Thm.2.5 shows that reflexivity of the underlying space can be replaced by the assumption that T is a mean ergodic semigroup.

This remark also shows where to look for examples of semigroups not converging as t + ∞ : Consider the positive contraction R defined by (Rf)(x) := f(x+1) on E = L¹(R)). Then T(t) := e^{t(R-Id)} defines a positive norm-continuous semigroup on E . Since $\ker(R-Id) = \operatorname{Fix} R = \{0\}$ but $\|T(t)f\| = e^{-t}\sum_{n=0}^{\infty} \|R^nf\|t^n/n! = \|f\| > 0$ for every $0 < f \in E$ we see that $\lim_{t \to \infty} T(t)$ does not exist for the strong operator topology.

Finally we remark that in Thm.2.5 'eventual norm-continuity' is crucial as well. This can be seen by considering the translation (semi-) groups on $L^p(\mathbb{R})$.

In the next few results we study semigroups which are not necessarily eventually norm-continuous, but restrict our attention to positive semigroups on L^p -spaces (1 \leq p $< \infty$). The essential tool will be the following '0-2 law' which we quote from Greiner (1982), Thm.3.7.

If (X, Σ, μ) is a measure space and $(T(t))_{t \ge 0}$ is a positive semigroup on $L^D(\mu)$ then we call a subset $C \in \Sigma$ (T(t))- invariant if the principal ideal generated by the characteristic function 1C is (T(t))-invariant in the usual sense.

Theorem 2.6. Let $(T(t))_{t \geq 0}$ be a positive contraction semigroup on $L^p(\mu)$, $1 \leq p < \infty$, and assume that there exists a strictly positive fixed function $e \in \ker A$. Then the following holds:

(a) For every $\tau > 0$ there exists a disjoint decomposition $X = X_0 \cup X_2$ into (T(t))-invariant measurable subsets such that