PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07D 493/04, 417/06, 413/06, 277/24

 $\mathbf{A2}$

(11) Internationale Veröffentlichungsnummer: WO 99/65913

(43) Internationales

Veröffentlichungsdatum:

23. Dezember 1999 (23.12.99)

(21) Internationales Aktenzeichen:

PCT/EP99/04244

(22) Internationales Anmeldedatum:

18. Juni 1999 (18.06.99)

(30) Prioritätsdaten:

198 26 988.9

18. Juni 1998 (18.06.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US):
GESELLSCHAFT FÜR BIOTECHNOLOGISCHE
FORSCHUNG MBH (GBF) [DE/DE]; Mascheroder Weg
1, D-38124 Braunschweig (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): HOEFLE, Gerhard [DE/DE]; Mascheroder Weg 1, D-38124 Braunschweig (DE). REICHENBACH, Hans [DE/DE]; Mascheroder Weg 1, D-38124 Braunschweig (DE). GERTH, Klaus [DE/DE]; Mascheroder Weg 1, D-38124 Braunschweig (DE). HARDT, Ingo [DE/DE]; Mascheroder Weg 1, D-38124 Braunschweig (DE). SASSE, Florenz [DE/DE]; Mascheroder Weg 1, D-38124 Braunschweig (DE). STEINMETZ, Heinrich [DE/DE]; Mascheroder Weg 1, D-38124 Braunschweig (DE).
- (74) Anwälte: BOETERS, Hans usw.; Boeters & Bauer, Bereiteranger 15, D-81541 München (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

- (54) Title: EPOTHILONE MINOR CONSTITUENTS
- (54) Bezeichnung: EPOTHILON-NEBENKOMPONENTEN
- (57) Abstract

The invention relates to compounds which are obtained by fermenting DSM 6773, especially epothilones A1, A2, A8, A9, B10, C1, C2, C3, C4, C5, C6, C7, C8, C9, D1, D2, D5, G1, G2, H1, H2, I1, I2, I3, I4, I5, I6 and K and trans-epothilones C1 and C2.

(57) Zusammenfassung

Die Erfindung betrifft Verbindungen, die durch Fermentation von DSM 6773 erhältlich sind, insbesondere Epothilone A1, A2, A8, A9, B10, C1, C2, C3, C4, C5, C6, C7, C8, C9, D1, D2, D5, G1, G2, H1, H2, I1, I2, I3, I4, I5, I6 und K und Trans-Epothilone C1 und C2.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
$\mathbf{B}\mathbf{B}$	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
\mathbf{BF}	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
ВЈ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	$\mathbf{U}\mathbf{Z}$	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugosławien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	$\mathbf{z}\mathbf{w}$	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
$\mathbf{C}\mathbf{Z}$	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Epothilon-Nebenkomponenten

Die Erfindung betrifft Verbindungen, die im vorliegenden Zusammenhang als Epothilon-Nebenkomponenten bezeichnet werden, und zwar Verbindungen 5 bis 13 und 16 bis 39. Diese Verbindungen lassen sich durch Fermentation von DSM 6773 gemäß DE 41 38 042.8 gewinnen.

<u>Kenndaten</u> der erfindungsgemäßen Verbindungen sind im folgenden zusammengestellt.

Gewinnung: Die Aufarbeitung eines Rohepothilon-Gemischs, das durch Fermentation von DSM 6773 in einem 900 Liter-Fermentator gewonnen wurde, ist schematisch Fig. 1 bis 2 zu entnehmen.

Aktivitäten: vgl. Tab. 1

Epothilone A (1) $R^1 = H$; R = H

Epothilone B (2) $R^1 = H$; R = Me

Epothilone E (3) $R^1 = OH$; R = H

Epothilone F (4) $R^{\dagger} = OH$; R = Me

Epothilone A_1 (5) $R^1 = H$; R^2 , $R^8 = Me$

Epothilone A_2 (6) $R^2 = H$; R^1 , $R^8 = Me$

Epothilone A_8 (7) $R^8 = H$; R^1 , $R^2 = Me$

Epothilone A_9 (8) $R^1 = CH_2OH$; R^2 , $R^8 = Me$

Epothilone B₁₀ (9)

Epothilone G_1 (10) R = H

Epothilone G_2 (11) $F_1 = Me$

Epothilone H_1 (12) R = H

Epothilone H_2 (13) R = Me

Epothilone C (14) R^1 , R^2 , R^3 , R^4 = Me; R = H

Epothilone D (15) R^{1} , R^{2} , R^{3} , R^{4} , R = Me

Epothilone C_1 (16) $R^1 = H$; R^2 , R^3 , $R^4 = Me$; R = H

Epothilone D_1 (17) $R^1 = H$; R^2 , R^3 , $R^4 = Me$; R = Me

Epothilone C_2 (18) $R^2 = H$; R^1 , R^3 , $R^4 = Me$; R = H

Epothilone D_2 (19) $R^2 = H$; R^1 , R^3 , $R^4 = Me$; R = Me

Epothilone C_3 (20) $R^3 = H$; R^1 , R^2 , $R^4 = Me$; R = H

Epothilone C_4 (21) $R^4 = H$; R^1 , R^2 , $R^3 = Me$; R = H

Epothilone C_5 (22) R = H

Epothilone D_5 (23) R = Me

Epothilone C₆ (24)

Epothilone C_7 (25) $R^7 = OH$; $R^8 = Me$

Epothilone C_8 (26) R^8 , $R^7 = H$

Epothilone C_9 (27) $R^8 = CH_2OH$; $R^7 = H$

trans-Epothilone C_1 (28) $R^1 = H$; $R^2 = Me$ trans-Epothilone C_2 (29) $R^2 = H$; $R^1 = Me$

Epothilone I₁ (30) R, $R^3 = H$; R^1 , $R^2 = Me$

Epothilone l_2 (31) R = H; R^1 , R^2 , $R^3 = Me$

Epothilone l_3 (32) R^1 , R^2 , R^3 , R = Me

Epothilone I_4 (33) R^2 , R = H; R^1 , $R^3 = Me$

Epothilone I_5 (34) $R^2 = H$; R^1 , R^3 , R = Me

Epothilone I_6 (35) $R^1 = H$; R^2 , R^3 , R = Me

Epothilone K (36)

(38) R = H

(39) R = Me

Epothilone A₁ (5): colorless amorphous solid; $[\alpha]^{22}_{D}$ –69 (*c* 0.1, MeOH); UV (MeOH) λ_{max} nm (ε) 208 (19600), 247 (13600); IR (KBr) ν_{max} 3437, 2959, 2931, 2876, 1732, 1710, 1455, 1259, 978 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.95 (1H, s, H-19), 6.60 (1H, bs, H-17), 5.68 (1H, dd, J = 4.4, 4.0 Hz, H-15), 4.12 (1H, m, H-3), 3.71 (1H, m, H-7), 3.52 (1H, bs, 7-OH), 3.37 (1H, bd, J = 7.5 Hz, 3-OH), 3.21 (1H, dq, J = 7.7, 7.0 Hz, H-4), 3.02 (1H, ddd, J = 9.2, 4.5, 2.8 Hz, H-13), 2.87 (1H, ddd, J = 8.3, 4.5, 3.7 Hz, H-12), 2.78 (1H, dd, J = 16.8, 4.3 Hz, H-2a), 2.70 (3H, s, H-21), 2.66 (1H, dq, J = 3.9, 7.0 Hz, H-6), 2.65 (1H, dd, J = 16.8, 5.2 Hz, H-2b), 2.16 (1H, ddd, J = 15.4, 4.4, 2.8 Hz, H-14a), 2.12 (3H, bs, H-27), 1.91 (1H, ddd, J = 15.4, 9.2, 4.0 Hz, H-14b), 1.63 (1H, m, H-10a), 1.62 (2H, m, H-11), 1.59 (1H, m, H-9a), 1.52 (1H, m, H-10b), 1.39 (1H, m, H-8), 1.35 (1H, m, H-9b), 1.211 (3H, d, J = 7.0 Hz, H-23), 1.207 (3H, d, J = 7.0 Hz, H-24), 0.89 (3H, d, J = 6.9 Hz, H-25); EIMS m/z 479 [M]* (21), 322 (31), 306 (65), 304 (47), 168 (45), 166 (73), 164 (100), 151 (30), 140 (35); HREIMS m/z 479.2317 (calcd. for C₂₇H₄₁NO₄S, 479.2342).

Epothilone A₂ (6): colorless amorphous solid; $[\alpha]^{22}_{D}$ +12.0 (*c* 1.0, MeOH); UV (MeOH) λ_{max} nm (ϵ) 210 (15100), 248 (15500); IR (KBr) ν_{max} 3438, 2963, 2929, 2875, 1734, 1706, 1458, 1262, 981 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.98 (1H, s, H-19), 6.63 (1H, bs, H-17), 5.40 (1H, dd, J = 8.3, 3.4 Hz, H-15), 4.26 (1H, ddd, J = 8.5, 4.8, 4.7 Hz, H-3), 3.85 (1H, dd, J = 7.9,

2.6 Hz, H-7), 3.54 (1H, bs, 3-OH), 3.09 (1H, dq, J = 4.8, 7.0 Hz, H-4), 3.01 (1H, ddd, J = 8.3, 4.8, 4.6 Hz, H-13), 2.98 (1H, dq, J = 7.9, 7.0 Hz, H-6), 2.89 (1H, ddd, J = 6.7, 4.6, 4.4 Hz, H-12), 2.68 (3H, s, H-21), 2.60 (1H, dd, J = 15.1, 8.5 Hz, H-2a), 2.52 (1H, bs, 7-OH), 2.50 (1H, dd, J = 15.1, 4.7 Hz, H-2b), 2.18 (1H, ddd, J = 15.0, 4.8,3.4 Hz, H-14a), 2.11 (3H, d, J = 1.3 Hz, H-27), 1.82 (1H, ddd, J = 15.0, 8.3, 8.1 Hz, H-14b), 1.63 (1H, m, H-8), 1.61 (2H, m, H-11a and H-10a), 1.46 (1H, m, H-11b), 1.39 (2H, m, H-9), 1.31 (1H, m, H-10b), 1.22 (3H, d, J = 7.0 Hz, H-24), 1.15 (3H, d, J = 7.0 Hz, H-22), 1.01 (3H, d, J = 6.9 Hz, H-25); ¹³C NMR (CDCl₃, 100 MHz) δ 216.2 (s, C-5), 170.1 (s, C-1), 164.9 (s, C-20), 152.0 (s, C-18), 137.0 (s, C-16), 120.3 (d, C-17), 116.5 (d, C-19), 76.7 (d, C-15), 75.6 (d, C-7), 69.1 (d, C-3), 57.1 (d, C-12), 54.3 (d, C-13), 50.3 (d, C-4), 49.6 (d, C-6), 39.4 (t, C-2), 35.5 (d, C-8), 32.2 (t, C-14), 29.6 (t, C-9), 27.6 (t, C-11), 23.9 (t, C-10), 19.2 (q, C-21), 18.0 (q, C-25), 15.6 (q, C-27), 13.9 (q, C-24), 12.4 (q, C-22); EIMS m/z 479 [M]⁺ (18), 322 (38), 306 (78), 304 (59), 168 (48), 166 (96), 164 (100), 151 (33), 140 (38); HREIMS m/z 479.2318 (calcd. for C₂₇H₄₁NO₄S, 479.2342).

Epothilone A_s (7): colorless amorphous solid; $[\alpha]^{22}_{D}$ –76.2 (*c* 1.0, MeOH); UV (MeOH) λ_{max} nm (ε) 210 (15300), 248 (15500); IR (KBr) ν_{max} 3440, 2967, 2932, 2876, 1736, 1691, 1467, 1252, 979 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.95 (1H, s, H-19), 6.64 (1H, dd, J = 15.6, 0.9 Hz, H-17), 6.52 (1H, dd, J = 15.6, 6.6 Hz, H-16), 5.68 (1H, dddd, J = 7.8, 6.6, 3.2, 0.9 Hz, H-15), 4.11 (1H, ddd, J = 10.1, 6.6, 3.5 Hz, H-3), 3.78 (1H, ddd, J = 5.2, 3.2, 3.2 Hz, H-7), 3.66 (1H, d, J = 6.6 Hz, 3-OH), 3.23 (1H, dq, J = 5.2, 6.9 Hz, H-6), 3.08 (1H, ddd, J = 7.3, 5.5, 4.1 Hz, H-13), 2.90 (1H, ddd, J = 6.6, 4.6, 4.1 Hz, H-12), 2.69 (3H, s, H-21), 2.52 (1H, dd, J = 14.7, 10.1 Hz, H-2a), 2.44 (1H, bd, J = 3.2 Hz, 7-OH), 2.41 (1H, dd, J = 14.7, 3.5 Hz, H-2b), 2.10

(1H, ddd, J= 15.0, 5.5, 3.2 Hz, H-14a), 1.90 (1H, ddd, J= 15.0, 7.8, 7.3 Hz, H-14b), 1.71 (1H, m, H-8), 1.65 (1H, m, H-11a), 1.50 (1H, m, H-10a), 1.47 (1H, m, H-11b), 1.40 (2H, m, H-9), 1.39 (1H, m, H-10b), 1.33 (3H, s, H-23), 1.16 (3H, d, J= 6.9 Hz, H-24), 1.08 (3H, s, H-22), 0.98 (3H, d, J= 7.0 Hz, H-25); ¹³C NMR (CDCl₃, 75 MHz) δ 220.3 (s, C-5), 170.7 (s, C-1), 166.5 (s, C-20), 152.2 (s, C-18), 128.4 (d, C-16), 125.9 (d, C-17), 116.4 (d, C-19), 75.0 (d, C-7), 73.6 (d, C-3), 72.7 (d, C-15), 57.3 (d, C-12), 54.1 (d, C-13), 52.6 (s, C-4), 43.8 (d, C-6), 38.9 (t, C-2), 36.3 (d, C-8), 32.5 (t, C-14), 30.3 (t, C-9), 26.7 (t, C-11), 24.0 (t, C-10), 21.3 (q, C-23), 21.0 (q, C-22), 19.3 (q, C-21), 17.1 (q, C-25), 14.5 (q, C-24); EIMS m/z 479 [M]* XXX; HRDCIMS m/z 480.2401 (calcd. for C₂₅H₃₈NO₆S, 480.2401).

Epothilone A₉ (8): colorless amorphous solid; $[\alpha]^{22}_{D}$ –37.6 (*c* 0.5, MeOH); UV (MeOH) λ_{max} nm (ε) 211 (15500), 253 (14100); IR (KBr) ν_{max} 3423, 2965, 2932, 2877, 1736, 1690, 1463, 1249, 1014, 979 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.10 (1H, s, H-19), 6.72 (1H, dd, J = 10.7, 4.3 Hz, 27-OH), 6.60 (1H, bs, H-17), 5.69 (1H, dd, J = 11.6, 2.0 Hz, H-15), 5.59 (1H, d, J = 6.6 Hz, 3-OH), 4.49 (1H, ddd, J = 12.9, 4.3, 1.2 Hz, H-27a), 4.27 (1H, ddd, J = 11.6, 6.6, 2.9 Hz, H-3), 4.11 (1H, ddd, J = 12.9, 10.7, 1.0 Hz, H-27b), 3.71 (1H, ddd, J = 4.8, 3.0, 2.8 Hz, H-7), 3.17 (1H, dq, J = 3.0, 6.8 Hz, H-6), 3.04 (1H, ddd, J = 9.7, 3.6, 2.2 Hz, H-13), 2.93 (1H, bs, 7-OH), 2.91 (1H, ddd, J = 14.2, 2.9 Hz, H-12), 2.72 (3H, s, H-21), 2.48 (1H, dd, J = 14.2, 11.6 Hz, H-2a), 2.11 (1H, dd, J = 14.2, 2.9 Hz, H-2b), 2.03 (1H, ddd, J = 14.7, 2.2, 2.0 Hz, H-14a), 1.86 (1H, m, H-11a), 1.85 (1H, m, H-14b), 1.79 (1H, m, H-8), 1.52 (1H, m, H-10a), 1.37 (3H, m, H-9 and H-10b), 1.37 (3H, s, H-23), 1.36 (1H, m, H-11b), 1.19 (3H, d, J = 6.8 Hz, H-24), 1.02 (3H, d, J = 7.1 Hz, H-25), 1.00 (3H, s, H-22); ¹³C NMR (CDCl₃, 75 MHz) δ 220.5 (s, C-5).

170.2 (s, C-1), 167.5 (s, C-20), 150.7 (s, C-18), 138.9 (s, C-16), 125.2 (d, C-17), 119.5 (d, C-19), 76.7 (d, C-15), 73.4 (d, C-7), 70.4 (d, C-3), 57.7 (d, C-12), 57.2 (t, C-27), 55.3 (d, C-13), 54.2 (s, C-4), 41.3 (d, C-6), 40.7 (t, C-2), 37.5 (d, C-8), 31.8 (t, C-14), 31.2 (t, C-9), 28.0 (t, C-11), 23.7 (q, C-23), 23.2 (t, C-10), 19.2 (q, C-21), 16.8 (q, C-22), 15.8 (q, C-25), 13.5 (q, C-24); EIMS m/z 509 [M]⁺ (9), 491 (4), 322 (28), 321 (25), 180 (45), 167 (40), 166 (100), 165 (49), 154 (47), 138 (33); HREIMS m/z 509.2467 (calcd. for $C_{26}H_{39}NO_7S$, 509.2447).

Epothilone B₁₀ (9): colorless amorphous solid; $[α]_{12}^{12}$ –27 (*c* 0.15, MeOH); UV (MeOH) $λ_{max}$ nm (ε) 212 (15800), 247 (12500); IR (KBr) $ν_{max}$ 3434, 2962, 2930, 2876, 2858, 1733, 1692, 1461, 1259, 1052, 981 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ 6.99 (1H, s, H-19), 6.60 (1H, bs, H-17), 5.42 (1H, dd, J = 8.0, 3.0 Hz, H-15), 4.25 (1H, ddd, J = 9.5, 6.3, 2.8 Hz, H-3), 4.23 (1H, bs, 3-OH), 3.77 (1H, ddd, J = 4.0, 3.9, 3.8 Hz, H-7), 3.30 (1H, dq, J = 4.0, 6.9 Hz, H-6), 3.01 (2H, q, J = 7.6 Hz, H-21), 2.81 (1H, dd, J = 7.7, 4.6 Hz, H-13), 2.68 (1H, bs, 7-OH), 2.54 (1H, dd, J = 13.9, 9.5 Hz, H-2a), 2.36 (1H, dd, J = 13.9, 2.8 Hz, H-2b), 2.11 (1H, ddd, J = 15.3, 4.6, 3.0 Hz, H-14a), 2.09 (3H, s, H-27), 1.91 (1H, ddd, J = 15.3, 8.0, 7.7 Hz, H-14b), 1.74 (1H, m, H-8), 1.73 (1H, m, H-11a), 1.51 (1H, m, H-10a), 1.41 (1H, m, H-11b), 1.39 (3H, t, J = 7.6 Hz, H-28), 1.38 (3H, m, H-9 and H-10b), 1.37 (3H, s, H-23), 1.28 (3H, s, H-26), 1.17 (3H, d, J = 6.9 Hz, H-24), 1.09 (3H, s, H-22), 1.01 (3H, d, J = 7.0 Hz, H-25); EIMS m/z 521 [M]* (22), 449 (7), 350 (18), 334 (57), 248 (16), 234 (27), 196 (41), 182 (59), 180 (96), 178 (100), 166 (44), 154 (44); HREIMS m/z 521.2808 (calcd. for $C_{28}H_{41}NO_6S$, 521.2811).

Epothilone G₁ (10): colorless amorphous solid; $[\alpha]^{22}_{D}$ -39.7 (c 1.0, MeOH); UV (MeOH) λ_{max} nm (ϵ) 203 (15200), 236 (15100); IR (KBr) ν_{max} 3456, 2962, 2933, 2876, 1736,

1691, 1585, 1466, 1262, 980 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.47 (1H, s, H-19), 6.33 (1H, bs, H-17), 5.42 (1H, dd, J = 8.3, 2.9 Hz, H-15), 4.11 (1H, ddd, J = 10.1, 6.1, 3.4 Hz, H-3), 3.78 (1H, bddd, J = 5.2, 3.5, 3.5 Hz, H-7), 3.63 (1H, bd, J = 6.1 Hz, 3-OH), 3.21 (1H, dq, J = 5.2, 7.0 Hz, H-6), 3.00 (1H, ddd, J = 7.7, 4.8, 4.2 Hz, H-13), 2.88 (1H, ddd, J = 7.1, 4.2, 4.2 Hz, H-12), 2.53 (1H, dd, J = 14.8, 10.1 Hz, H-2a), 2.51 (1H, bd, J = 3.5 Hz, 7-OH), 2.43 (1H, dd, J = 3.5 Hz, J = 3.5 = 14.8, 3.4 Hz, H-2b), 2.43 (3H, s, H-21), 2.07 (1H, ddd, J = 15.1, 4.8, 2.9 Hz, H-14a), 1.99 (3H, d, J = 1.3 Hz, H-27), 1.86 (1H, ddd, J = 15.1, 8.3, 7.7 Hz, H-14b), 1.71 (1H, m, H-8), 1.69(1H, m, H-11a), 1.53 (1H, m, H-10a), 1.42 (1H, m, H-11b), 1.40 (3H, m, H-9 and H-10b), 1.34 (3H, s, H-23), 1.16 (3H, d, J = 7.0 Hz, H-24), 1.09 (3H, s, H-22), 0.99 (3H, d, J = 6.9 Hz, H-25); ¹³C NMR (CDCl₃, 100 MHz) δ 220.1 (s, C-5), 170.5 (s, C-1), 161.0 (s, C-20), 137.4 (s, C-18), 136.7 (s, C-16), 135.9 (d, C-19), 116.4 (d, C-17), 76.4 (d, C-15), 74.9 (d, C-7), 73.7 (d, C-3), 57.4 (d, C-12), 54.4 (d, C-13), 52.6 (s, C-4), 43.8 (d, C-6), 38.8 (t, C-2), 36.2 (d, C-8), 31.4 (t, C-14), 30.4 (t, C-9), 27.0 (t, C-11), 23.9 (t, C-10), 21.3 (q, C-23), 21.2 (q, C-22), 17.2 (q, C-25), 15.8 (q, C-27), 14.4 (q, C-24), 13.8 (q, C-21); EIMS m/z 477 [M]⁺ (4), 405 (7), 290 (40), 152 (39), 150 (100), 148 (23), 124 (23); HREIMS m/z 477.2684 (calcd. for $C_{26}H_{39}NO_7$, 477.2727).

Epothilone G_2 (11): colorless amorphous solid; $[\alpha]^{22}_D$ –22.6 (c 1.0, MeOH); UV (MeOH) λ_{max} nm (ϵ) 202 (21500), 236 (14800); IR (KBr) ν_{max} 3456, 2965, 2934, 2877, 1737, 1690, 1586, 1464, 1250, 980 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.48 (1H, s, H-19), 6.33 (1H, bs, H-17), 5.43 (1H, dd, J = 7.1, 3.6 Hz, H-15), 4.12 (1H, ddd, J = 9.9, 6.4, 3.4 Hz, H-3), 3.77 (1H, ddd, J = 4.7, 4.4, 4.1 Hz, H-7), 3.83 (1H, bd, J = 6.4 Hz, 3-OH), 3.30 (1H, dq, J = 4.7, 6.9

Hz, H-6), 2.78 (1H, dd, J = 7.0, 5.4 Hz, H-13), 2.54 (1H, dd, J = 14.3, 9.9 Hz, H-2a), 2.51 (1H, bd, J = 4.1 Hz, 7-OH), 2.44 (3H, s, H-21), 2.40 (1H, dd, J = 14.3, 3.4 Hz, H-2b), 2.03 (1H, ddd, J = 15.2, 5.4, 3.6 Hz, H-14a), 2.00 (3H, d, J = 1.3 Hz, H-27), 1.92 (1H, ddd, J = 15.1, 7.1, 7.0 Hz, H-14b), 1.71 (1H, m, H-8), 1.68 (1H, m, H-11a), 1.51 (1H, m, H-10a), 1.42 (1H, m, H-11b), 1.39 (3H, m, H-9 and H-10b), 1.35 (3H, s, H-23), 1.26 (3H, s, H-26), 1.16 (3H, d, J = 6.9 Hz, H-24), 1.07 (3H, s, H-22), 0.99 (3H, d, J = 7.0 Hz, H-25); ¹³C NMR (CDCl₃, 100 MHz) δ 220.7 (s, C-5), 170.5 (s, C-1), 161.0 (s, C-20), 137.4 (s, C-18), 136.5 (s, C-16), 135.9 (d, C-19), 116.3 (d, C-17), 76.6 (d, C-15), 74.6 (d, C-7), 73.5 (d, C-3), 61.3 (s, C-12), 61.1 (d, C-13), 52.7 (s, C-4), 43.4 (d, C-6), 39.0 (t, C-2), 36.5 (d, C-8), 32.0 (t, C-11), 31.8 (t, C-14), 30.8 (t, C-9), 22.8 (t, C-10), 22.9 (q, C-26), 21.0 (q, C-23), 20.8 (q, C-22), 17.2 (q, C-25), 15.9 (q, C-27), 14.1 (q, C-24), 13.8 (q, C-21); EIMS m/z 491[M]⁺ (21), 419 (6), 320 (18), 304 (39), 166 (42), 152 (57), 150 (100), 149 (44), 148 (58), 124 (35), 109 (33); HREIMS m/z 491.2878 (calcd. for C₂₇H₄₁NO₇, 491.2883).

Epothilone H₁ (12): colorless amorphous solid; $[\alpha]^{22}_{D}$ –84.2 (*c* 0.2, MeOH); UV (MeOH) λ_{max} nm (ϵ) 203 (19600), 237 (12000); IR (KBr) ν_{max} 3436, 2933, 2880, 2860, 1734, 1688, 1585, 1251, 1007 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.47 (1H, s, H-19), 6.31 (1H, bs, H-17), 5.43 (1H, ddd, J = 10.6, 10.2, 4.5 Hz, H-12), 5.36 (1H, dddd, J = 10.6, 9.6, 5.0, 1.3 Hz, H-13), 5.30 (1H, dd, J = 9.9, 2.0 Hz, H-15), 4.16 (1H, ddd, J = 11.2, 5.3, 2.8 Hz, H-3), 3.73 (1H, ddd, J = 3.9, 2.5, 2.3 Hz, H-7), 3.12 (1H, dq, J = 2.3, 6.9 Hz, H-6), 2.92 (1H, d, J = 2.5 Hz, 7-OH), 2.91 (1H, d, J = 5.3 Hz, 7-OH), 2.66 (1H, ddd, J = 15.1, 9.9, 9.6 Hz, H-14a), 2.50 (1H, dd, J = 15.4, 11.2 Hz, H-2a), 2.43 (3H, s, H-21), 2.37 (1H, dd, J = 15.4, 2.8 Hz, H-2b), 2.23

(1H, m, H-14b), 2.18 (1H, m, H-11a), 2.01 (1H, m, H-11b), 2.08 (3H, d, J = 1.3 Hz, H-27), 1.74 (1H, m, H-8), 1.65 (1H, m, H-10a), 1.33 (1H, m, H-9a), 1.31 (3H, s, H-23), 1.19 (1H, m, H-10b), 1.18 (1H, m, H-9b), 1.17 (3H, d, J = 6.9 Hz, H-24), 1.08 (3H, s, H-22), 0.99 (3H, d, J = 7.1 Hz, H-25); ¹³C NMR, see Table 1; EIMS m/z 461 [M]⁺ (6), 310 (5), 274 (10), 273 (7), 171 (63), 152 (100), 148 (18), 111 (15); HREIMS m/z 461.2743 (calcd. for $C_{26}H_{39}NO_6$, 461.2777).

Epothilone H₂ (13): colorless amorphous solid; $[\alpha]^{22}_D$ -44.4 (c 0.25, MeOH); UV (MeOH) λ_{max} nm (ϵ) 203 (14500), 236 (12200); IR (KBr) ν_{max} 3436, 2967, 2935, 2880, 1734, 1690, 1586, 1251, 1007 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.46 (1H, s, H-19), 6.30 (1H, bs, H-17), 5.23 (1H, dd, J = 9.8, 2.1 Hz, H-15), 5.12 (1H, dd, J = 10.1, 5.3 Hz, H-13), 4.20 (1H, ddd, $J = 10.8, 5.7, 2.9 \,\text{Hz}$, H-3), 3.71 (1H, ddd, $J = 3.8, 2.6, 2.6 \,\text{Hz}$, H-7), 3.14 (1H, dq, J = 2.6, 6.9 Hz, H-6), 2.93 (d, J = 5.7 Hz, 3-OH), 2.90 (1H, bd, J = 2.6 Hz, 7-OH), 2.62 (1H, ddd, J =15.1, 9.8, 9.8 Hz, H-14a), 2.46 (1H, dd, J = 15.1, 10.8 Hz, H-2a), 2.43 (3H, s, H-21), 2.32 (1H, dd, J = 15.1, 2.9 Hz, H-2b), 2.29 (1H, m, H-11a), 2.19 (1H, bd, J = 15.1 Hz, H-14b), 1.97 (3H, d, J = 1.3 Hz, H-27), 1.87 (1H, m, H-11b), 1.73 (1H, m, H-8), 1.67 (1H, m, H-10a), 1.65 (3H, bs, H-26), 1.32 (3H, s, H-23), 1.26 (2H, m, H-9), 1.24 (1H, m, H-10b), 1.18 (3H, d, J = 6.9 Hz, H-24), 1.07 (3H, s, H-22), 1.00 (3H, d, J = 7.0 Hz, H-25); ¹³C NMR (CDCl₃, 100 MHz) δ 220.6 (s, C-5), 170.3 (s, C-1), 161.0 (s, C-20), 138.6 (s, C-12), 138.4 (s, C-16), 137.5 (s, C-18), 135.6 (d, C-19), 120.8 (d, C-13), 115.8 (d, C-17), 78.9 (d, C-15), 74.3 (d, C-7), 72.7 (d, C-3), 53.3 (s, C-4), 42.0 (d, C-6), 39.6 (t, C-2), 38.6 (d, C-8), 32.4 (t, C-14), 31.9 (t, C-9), 31.6 (t, C-11), 25.6 (t, C-10), 23.0 (q, C-26), 22.8 (q, C-23), 18.8 (q, C-22), 16.1 (q, C-27), 15.9 (q, C-25), 13.8 (q, C-21), 13.6 (q, C-24); EIMS m/z 475 [M]⁺ (11), 288 (9), 287 (5), 188(7), 171 (32), 152 (100),

111 (10); HREIMS m/z 475.2913 (calcd. for $C_{27}H_{41}NO_6$, 475.2934).

PCT/EP99/04244 WO 99/65913

Epothilone C_1 (16): colorless amorphous solid; $[\alpha]_D^{22}$ -114.0 (c 10.0, MeOH); UV (MeOH) λ_{max} nm (ϵ) 211 (16500), 248 (12500); IR (KBr) ν_{max} 3440, 2933, 2877, 2858, 1730, 1708, 1457, 1244, 981 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.96 (1H, s, H-19), 6.56 (1H, bs, H-17), 5.47 (1H, dd, J = 9.2, 3.0 Hz, H-15), 5.43 (1H, m, H-12), 5.40 (1H, m, H-13), 4.40 (1H, ddd, J = 6.2, 6.1, 6.1 Hz, H-3), 3.69 (1H, dd, J = 5.7, 3.6 Hz, H-7), 3.01 (1H, dq, J = 5.7, 6.9Hz, H-6), 3.01 (1H, bs, 3-OH), 2.84 (1H, dq, J = 5.2, 7.0 Hz, H-4), 2.68 (3H, s, H-21), 2.66 (1H, ddd, J = 16.4, 9.2, 7.3 Hz, H-14a), 2.64 (1H, dd, J = 15.9, 7.1 Hz, H-2a), 2.54 (1H, dd, J = 15.9, 6.1 Hz, H-2b), 2.38 (1H, bd, J = 16.4 Hz, H-14b), 2.35 (1H, bs, 7-OH), 2.07 (3H, bs, H-27), 2.03 (2H, m, H-11), 1.62 (1H, m, H-10a), 1.53 (1H, m, H-8), 1.35 (1H, m, H-9a), 1.22 (1H, m, H-9b), 1.19 (3H, d, J = 6.9 Hz, H-24), 1.14 (3H, d, J = 6.9 Hz, H-23), 1.10 (1H, m, H-10b), 0.95 (3H, d, J = 6.9 Hz, H-25); ¹³C NMR, see Table 1; EIMS m/z 463 [M]⁺ (5), 324 (8), 290 (8), 204 (7), 168 (100), 164 (15), 139 (36); HREIMS m/z 463.2381 (calcd. for $C_{25}H_{37}NO_5S$, 463.2392).

Epothilone D₁ (17): colorless amorphous solid; $[\alpha]^{22}_D$ -118.6 (c 0.5, MeOH); UV (MeOH) λ_{max} nm (ϵ) 208 (18300), 249 (11900); IR (KBr) ν_{max} 3439, 2965, 2934, 2877, 1729, 1707, 1456, 1250, 980 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.98 (1H, s, H-19), 6.56 (1H, bs, H-17), 5.51 (1H, dd, J = 9.5, 3.4 Hz, H-15), 5.16 (1H, dd, J = 8.0, 4.2 Hz, H-13), 4.42 (1H, ddd, J = 7.1, 6.3, 5.5 Hz, H-3), 3.70 (1H, dd, J = 6.5, 2.9 Hz, H-7), 3.07 (1H, dq, J = 6.5, 6.9 Hz, H-6), 2.95 (1H, dq, J = 4.7, 7.0 Hz, H-4), 2.71 (3H, s, H-21), 2.69 (1H, dd, J = 16.0, 6.3 Hz, H-2a), 2.64 (1H, m, H-14a), 2.59 (1H, dd, J = 16.0, 7.1 Hz, H-2b), 2.46 (1H, bs, 3-OH), 2.38 (1H, bd, J = 16.0 Hz, H-14b), 2.19 (1H, ddd, J = 13.3, 8.6, 5.7 Hz, H-11a), 2.10 (3H, d, J = 1.4 Hz, H-27), 2.02 (1H, bs, 7-OH), 1.91 (1H, ddd, J = 13.3, 6.0, 6.0 Hz, H-11b), 1.68 (1H, m, H-10a), 1.66 (3H, bs, H-26), 1.53 (1H, m, H-8), 1.37 (1H, m, H-9a), 1.26 (1H, m, H-9b), 1.24 (3H, d, J = 6.9 Hz, H-24), 1.19 (1H, m, H-10b), 1.14 (3H, d. J = 7.0, H-23), 0.99 (3H, d, J = 6.9 Hz, H-25); ¹³C NMR (CDCl₃, 100 MHz) δ 217.0 (s, C-5), 169.7 (s, C-1), 165.0 (s, C-20), 152.2 (s, C-18), 138.5 (s, C-12), 137.7 (s, C-16), 120.7 (d, C-13), 120.1 (d, C-17), 116.3 (d, C-19), 78.8 (d, C-15), 77.2 (d, C-7), 67.7 (d, C-3), 52.1 (d, C-4), 46.5 (d, C-6), 40.6 (t, C-2), 37.6 (d, C-8), 32.3 (t, C-14), 31.8 (t, C-11), 29.5(t, C-9), 25.5 (t, C-10), 23.1 (q, C-26), 19.2 (q, C-21), 15.5 (q, C-27), 16.6 (q, C-25), 14.5 (q, C-24), 9.7 (q, C-23); EIMS m/z 477 [M]⁺ (13), 304 (19), 303 (31), 218 (40), 204 (41), 168 (100), 164 (45), 157 (25), 139 (18); HREIMS m/z 477.2544 (calcd. for C₂₆H₃₉NO₅S, 477.2549).

Epothilone C_2 (18): colorless amorphous solid; $[\alpha]^{22}_D$ -11.6 (c 10.0, MeOH); UV (MeOH) λ_{max} nm (ϵ) 212 (15500), 249 (12100); IR (KBr) ν_{max} 3428, 2962, 2929, 2877, 2859, 1734, 1705, 1460, 1051, 982 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.99 (111, 3, H-19), 6.66 (1H,

bs, H-17), 5.55 (1H, ddd, J = 10.4, 9.2, 6.1 Hz, H-12), 5.38 (1H, ddd, J = 10.4, 9.3, 6.2 Hz, H-13), 5.22 (1H, dd, J = 8.8, 2.8 Hz, H-15), 4.42 (1H, dddd, J = 9.4, 5.6, 4.2, 4.1 Hz, H-3), 3.93 (1H, d, J = 5.6 Hz, 3-OH), 3.86 (1H, m, H-7), 3.15 (1H, bs, 7-OH), 3.12 (1H, dq, J = 4.2, 7.0 Hz, H-4), 3.00 (1H, dq, J = 6.9, 7.0 Hz, H-6), 2.70 (3H, s, H-21), 2.62 (1H, dddd, J = 15.1, 9.3, 8.8, 0.8 Hz, H-14a), 2.58 (1H, dd, J = 15.4, 9.4 Hz, H-2a), 2.38 (1H, dd, J = 15.4, 4.1 Hz, H-2b), 2.31 (1H, ddd, J = 15.1, 6.2, 2.8 Hz, H-14b), 2.08 (3H, d, J = 1.3 Hz, H-27), 2.15 (1H, m, H-11a), 2.04 (1H, m, H-11b), 1.71 (1H, m, H-8), 1.59 (1H, m, H-10a), 1.43 (1H, m, H-9a), 1.31 (1H, m, H-9b), 1.26 (3H, d, J = 7.0 Hz, H-24), 1.15 (3H, d, J = 7.0 Hz, H-23), 1.11 (1H, m, H-10b), 1.00 (3H, d, J = 6.9 Hz, H-25); ¹³C NMR, see Table 1; EIMS m/z 463 [M]⁺ (7), 324 (7), 306 (8), 290 (17), 168 (100), 164 (14), 139 (27); HREIMS m/z 463.2392 (calcd. for C₂₅H₃₇NO₃S, 463.2392).

Epothilone D₂ (19): colorless amorphous solid; $[\alpha]^{22}_{D}$ –12.5 (*c* 1.0, MeOH); UV (MeOH) λ_{max} nm (ε) 210 (15400), 248 (11200); IR (KBr) ν_{max} 3436, 2965, 2930, 2877, 1732, 1705, 1458, 1253, 980 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.97 (1H, s, H-19), 6.56 (1H, bs, H-17), 5.18 (1H, dd, J = 7.9, 4.9 Hz, H-15), 5.18 (1H, ddd, J = 9.6, 5.4, 1.0 Hz, H-13), 4.27 (1H, m, H-3), 3.88 (1H, dd, J = 5.6, 4.6 Hz, H-7), 3.19 (1H, bs, 3-OH), 3.07 (1H, dq, J = 4.3, 7.0 Hz, H-4), 2.95 (1H, dq, J = 5.6, 7.0 Hz, H-6), 2.70 (3H, s, H-21), 2.62 (1H, dd, J = 14.9, 7.8 Hz, H-2a), 2.56 (1H, ddd, J = 14.7, 9.6, 7.9 Hz, H-14a), 2.43 (1H, dd, J = 14.9, 5.6 Hz, H-2b), 2.38 (1H, bs, 7-OH), 2.26 (1H, ddd, J = 14.5, 5.4, 4.9 Hz, H-14b), 2.19 (1H, ddd, J = 13.0, 10.4, 5.4 Hz, H-11a), 2.10 (3H, d, J = 1.4 Hz, H-27), 1.95 (1H, ddd, J = 13.0, 10.3, 5.3 Hz, H-11b), 1.72 (1H, m, H-8), 1.68 (3H, bs, H-26), 1.61 (1H, m, H-10a), 1.39 (2H, m, H-9), 1.21 (1H, m, H-10b),

1.19 (3H, d, J = 6.9 Hz, H-24), 1.17 (3H, d. J = 7.0, H-22), 1.00 (3H, d, J = 6.9 Hz, H-25); ¹³C NMR (CDCl₃, 100 MHz) δ 216.8 (s, C-5), 170.4 (s, C-1), 164.9 (s, C-20), 152.3 (s, C-18), 139.8 (s, C-12), 137.5 (s, C-16), 120.5 (d, C-17), 119.2 (d, C-13), 116.3 (d, C-19), 80.0 (d, C-15), 74.3 (d, C-7), 69.7 (d, C-3), 48.6 (d, C-4), 48.4 (d, C-6), 39.9 (t, C-2), 36.6 (d, C-8), 32.2 (t, C-14), 32.7 (t, C-11), 30.9 (t, C-9), 26.0 (t, C-10), 23.6 (q, C-26), 19.2 (q, C-21), 15.4 (q, C-27), 17.1 (q, C-25), 12.4 (q, C-24), 12.7 (q, C-23); EIMS m/z 477 [M]⁺ (22), 304 (19), 303 (17), 218 (22), 204 (25), 168 (100), 164 (28), 157 (31), 139 (21); HREIMS m/z 477.2545 (calcd. for $C_{26}H_{39}NO_5S$, 477.2549).

Epothilone C_3 (20): colorless amorphous solid; [α]²²_D –62.1 (c 5.0, MeOH); UV (MeOH) λ_{max} rm (ε) 212 (16200), 248 (12300); IR (KBr) ν_{max} 3432, 2928, 2878, 2858, 1736, 1698, 1252, 1040 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.95 (1H, s, H-19), 6.56 (1H, bs, H-17), 5.44 (1H, ddd, J = 10.9, 10.3, 5.4 Hz, H-12), 5.33 (1H, ddd, J = 10.9, 9.3, 4.6 Hz, H-13), 5.23 (1H, dd, J = 9.5, 2.2 Hz, H-15), 4.36 (1H, ddd, J = 11.3, 5.6, 2.3 Hz, H-3), 4.04 (1H, d, J = 5.6 Hz, 3-OH), 3.93 (1H, ddd, J = 9.5, 2.3, 1.4 Hz, H-7), 3.56 (1H, bd, J = 2.3 Hz, 7-OH), 2.70 (1H, dd, J = 18.0, 1.4 Hz, H-6a), 2.67 (3H, s, H-21), 2.61 (1H, ddd, J = 15.3, 9.5, 9.3 Hz, H-14a), 2.38 (1H, dd, J = 14.3, 11.3 Hz, H-2a), 2.36 (1H, dd, J = 18.0, 9.5 Hz, H-6b), 2.28 (1H, bd, J = 15.3 Hz, H-14b), 2.12 (1H, m, H-11a), 2.06 (1H, dd, J = 14.3, 2.3 Hz, H-2b), 2.03 (3H, d, J = 1.3 Hz, H-27), 1.96 (1H, m, H-11b), 1.75 (1H, m, H-8), 1.54 (1H, m, H-10a), 1.26 (1H, m, H-9a), 1.25 (3H, s, H-23), 1.17 (1H, m, H-10b), 1.15 (1H, m, H-9b), 1.03 (3H, s, H-22), 0.91 (3H, d, J = 6.8 Hz, H-25); ¹³C NMR, see Table 1; EIMS m/z 463 [M]* (28), 290 (14), 168 (100), 164 (36), 157 (44), 151 (25); HREIMS m/z 463.2379 (calcd. for C_2 , H_3 , NO₄S, 463.2392).

Epothilone C₄ (21): colorless amorphous solid; $[\alpha]^{22}_{D}$ –75.6 (*c* 1.0, MeOH); UV (MeOH) λ_{max} nm (ϵ) 212 (17200), 248 (12500); IR (KBr) ν_{max} 3434, 2974, 2932, 2859, 1735, 1686, 1252, 1046 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.96 (1H, s, H-19), 6.60 (1H, bs, H-17), 5.43 (1H, m, H-12), 5.40 (1H, m, H-13), 5.26 (1H, dd, J = 9.6, 2.3 Hz, H-15), 4.41 (1H, ddd, J = 11.4, 5.8, 2.5 Hz, H-3), 3.78 (1H, m, H-7), 3.70 (1H, bs, 3-OH), 3.46 (1H, d, J = 0.9 Hz, 7-OH), 3.01 (1H, dq, J = 0.5, 7.0 Hz, H-6), 2.69 (3H, s, H-21), 2.66 (1H, ddd, J = 15.3, 9.6, 8.8 Hz, H-14a), 2.47 (1H, dd, J = 14.5, 11.4 Hz, H-2a), 2.29 (1H, m, H-14b), 2.25 (1H, dd, J = 14.5, 2.5 Hz, H-2b), 2.24 (1H, m, H-11a), 2.07 (3H, d, J = 1.4 Hz, H-27), 1.96 (1H, m, H-11b), 1.51 (2H, m, H-8), 1.44 (2H, m, H-10), 1.37 (2H, m, H-9), 1.32 (3H, s, H-23), 1.17 (3H, d, J = 7.0 Hz, H-24), 1.07 (3H, s, H-22); ¹³C NMR, see Table 1; EIMS m/z 463 [M]⁺ (7), 276 (15), 171 (33), 168 (100), 164 (23), 151 (22), 111 (13); HREIMS m/z 463.2373 (calcd. for C₂₅H₃₇NO₅S, 463.2392).

Epothilone C_5 (22): colorless amorphous solid; $[\alpha]^{22}_D$ –158.2 (*c* 0.5, MeOH); UV (MeOH) λ_{max} nm (ε) 205 (19500), 247 (12700); IR (KBr) ν_{max} 3447, 2972, 2927, 1737, 1690, 1450, 1252, 1181, 986 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.93 (1H, s, H-19), 6.48 (1H, bs, H-17), 5.48 (1H, ddd, J = 10.7, 6.2, 6.2 Hz, H-12), 5.39 (1H, m, H-13), 5.37 (1H, m, H-9), 5.34 (1H, dd, J = 8.0, 2.3 Hz, H-15), 4.29 (1H, dd, J = 6.0, 2.6 Hz, H-7), 4.09 (1H, ddd, J = 10.8, 7.1, 2.9 Hz, H-3), 3.59 (1H, d, J = 7.1 Hz, 3-OH), 3.17 (1H, dq, J = 6.0, 6.9 Hz, H-6), 2.68 (3H, s, H-21), 2.54 (1H, ddd, J = 15.2, 8.1, 8.0 Hz, H-14a), 2.44 (1H, bs, 7-OH), 2.42 (1H, dd, J = 15.1, 2.9 Hz, H-2a), 2.41 (1H, ddd, J = 15.2, 2.3, 2.3 Hz, H-14b), 2.34 (1H, dd, J = 15.1, 10.8 Hz, H-2b), 2.20 (1H, m, H-10a), 2.18 (2H, m, H-11), 2.12 (1H, m, H-10b), 2.06 (3H, bs, H-27), 1.67 (3H, bs, H-25), 1.27 (3H, s, H-23), 1.21 (3H, d, J = 6.9 Hz, H-24), 1.15 (3H, s, H-22); ¹³C NMR,

see Table 1; EIMS m/z 475 [M]⁺ (6), 392 (7), 304 (6), 288 (33), 204 (76), 171 (19), 168 (100), 164 (12); HREIMS m/z 475.2380 (calcd. for $C_{26}H_{37}NO_5S$, 475.2392).

Epothilone D_s (23): colorless amorphous solid; $[\alpha]^{22}_{D}$ –150 (*c* 0.2, MeOH); UV (MeOH) λ_{max} nm (ε) 205 (23300), 248 (13600); IR (KBr) ν_{max} 3439, 2967, 2927, 1736, 1690, 1451, 1254, 1181, 987 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ; 6.94 (1H, s, H-19), 6.51 (1H, bs, H-17), 5.34 (1H, bs, H-9), 5.29 (1H, dd, J = 8.0, 2.4 Hz, H-15), 5.16 (1H, dd, J = 8.2, 6.2 Hz, H-13), 4.30 (1H, bd, J = 4.9 Hz, H-7), 4.19 (1H, ddd, J = 10.8, 7.6, 3.0 Hz, H-3), 3.68 (1H, d, J = 7.6 Hz, 3-OH), 3.17 (1H, dq, J = 4.9, 7.0 Hz, H-6), 2.69 (3H, s, H-21), 2.65 (1H, d, J = 2.1 Hz, 7-OH), 2.56 (1H, ddd, J = 16.2, 8.2, 8.0 Hz, H-14a), 2.40 (1H, dd, J = 15.0, 3.0 Hz, H-2a), 2.39 (1H, bd, J = 16.2 Hz, H-14b), 2.34 (1H, dd, J = 15.0, 10.8 Hz, H-2b), 2.25 (2H, m, H-10a and H-11a), 2.20 (1H, m, H-10b), 2.17 (1H, m, H-11b), 2.05 (3H, d, J = 1.0 Hz, H-27), 1.69 (3H, bs, H-25), 1.68 (3H, bs, H-26), 1.29 (3H, s, H-23), 1.23 (3H, d, J = 7.0 Hz, H-24), 1.16 (3H, s, H-22); ¹³C NMR, see Table 1; EIMS m/z 489 [M]* (4), 406 (4), 338 (7), 302 (13), 218 (35), 171 (10), 168 (100), 153 (20), 125 (10); HREIMS m/z 489.2536 (calcd. for C₂₇H₃₉NO₅S, 489.2549).

Epothilone C₆ (24): colorless amorphous solid; $[\alpha]^{22}_{D}$ –205.2 (*c* 1.0, MeOH); UV (MeOH) λ_{max} nm (ϵ) 218 (24600), 237 (28800); IR (KBr) ν_{max} 3435, 2967, 2927, 2882, 1732, 1688, 1465, 1258, 988 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.97 (1H, s, H-19), 6.58 (1H, bs, H-17), 6.43 (1H, dd, 15.5, 10.8 Hz, H-11), 6.11 (1H, dd, J = 10.8, 10.6 Hz, H-12), 5.75 (1H, ddd, J = 15.5, 8.3, 5.6 Hz, H-10), 5.34 (1H, m, H-13), 5.34 (1H, dd, J = 9.7, 2.4 Hz, H-15), 4.16 (1H, ddd, J = 9.2, 4.9, 4.3 Hz, H-3), 3.74 (1H, ddd, J = 2.2, 2.1, 1.7 Hz, H-7), 3.24 (1H, dq, J = 2.1, 6.9 Hz, H-6), 3.06 (1H, d, J = 2.2 Hz, 7-OH), 2.93 (1H, d, J = 4.9 Hz, 3-OH), 2.78 (1H, dddd,

J = 14.1, 9.9 9.7, 0.7, H-14a), 2.71 (3H, s, H-21), 2.48 (1H, m, H-9a), 2.47 (1H, dd, J = 15.5, 9.2 Hz, H-2a), 2.40 (1H, dd, J = 15.5, 4.3 Hz, H-2b), 2.38 (1H, bdd, J = 14.1, 7.8 Hz, H-14b), 2.11 (3H, d, J = 1.3 Hz, H-27), 1.96 (1H, m, H-8), 1.33 (3H, s, H-23), 1.11 (3H, d, J = 6.9 Hz, H-24), 1.06 (3H, s, H-22), 1.05 (3H, d, J = 6.8 Hz, H-25); ¹³C NMR, see Table 1; EIMS m/z 475 [M]⁺ (13), 387 (2), 316 (4), 288 (15), 230 (16), 204 (9), 171 (18), 168 (100), 164 (14), 151 (17); HREIMS m/z 475.2361 (calcd. for $C_{26}H_{37}NO_{5}S$, 475.2392).

Epothilone C_7 (25): colorless amorphous solid; $[\alpha]_D^{22}$ -XXX (c 2.0, MeOH); UV (MeOH) λ_{max} nm (ε) XXX (XXX), XXX (XXX); IR (KBr) ν_{max} XXX cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.01 (1H, s, H-19), 6.66 (1H, bs, H-17), 5.59 (1H, ddd, J = 11.1, 11.1, 3.8 Hz, H-12), 5.40 (1H, dd, J = 11.1, 9.2, H-13), 5.03 (1H, d, J = 9.3 Hz, H-15), 4.62 (1H, dd, J = 9.3, 9.2 Hz, H-14), 4.18 (1H, bd, J = 11.0 Hz, H-3), 3.72 (1H, bs, H-7), 3.20 (1H, bs, 3-OH), 3.09 (1H, dq, J = 1.9, 6.8 Hz, H-6), 3.00 (1H, bs, 7-OH), 2.69 (3H, s, H-21), 2.47 (1H, dd, J = 14.8, 11.0 Hz, H-2a), 2.32 (1H, dd, J = 14.8, 2.6 Hz, H-2b), 2.27 (1H, m, H-11a), 2.19 (3H, bs, H-27), 2.13 (1H, m, H-11b), 1.76 (1H, m, H-8), 1.70 (1H, m, H-10a), 1.35 (1H, m, H-9a), 1.32 (3H, s, H-23), 1.23 (1H, m, H-9b), 1.21 (1H, m, H-10b), 1.18 (3H, d, J = 6.8 Hz, H-24), 1.08 (3H, s, H-22), 1.00 (3H, d, J = 6.9 Hz, H-25); EIMS m/z 493 [M]⁺ XXX; HREIMS m/z 493.XXX (calcd. for $C_{26}H_{19}NO_6S$, 493.2498).

Epothilone C_8 (26): colorless amorphous solid; [α]²²_D -75.2 (c 2.5, MeOH); UV (MeOH) λ_{max} nm (ϵ) 210 (16800), 248 (17800); IR (KBr) ν_{max} 3443, 2932, 2881, 1734, 1689, 1465, 1255, 1183, 976 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.93 (1H, s, H-19), 6.62 (1H, dd, J = 15.6, 0.6 Hz, H-17), 6.49 (1H, dd, J = 15.6, 6.6 Hz, H-16), 5.52 (1H, dddd, J = 9.5, 6.6, 2.8, 0.6 Hz, H-

15), 5.42 (1H, m, H-12), 5.41 (1H, m, H-13), 4.13 (1H, ddd, J = 11.0, 5.3, 2.8 Hz, H-3), 3.69 (1H, ddd, J = 3.7, 2.8, 2.5 Hz, H-7), 3.11 (1H, dq, J = 2.5, 6.8 Hz, H-6), 2.95 (1H, d, J = 5.3 Hz, 3-OH), 2.90 (1H, d, J = 2.8 Hz, 7-OH), 2.69 (3H, s, H-21), 2.67 (1H, ddd, J = 14.9, 9.5, 8.4 Hz, H-14a), 2.48 (1H, dd, J = 15.6, 11.0 Hz, H-2a), 2.33 (1H, dd, J = 15.6, 2.8 Hz, H-2b), 2.30 (1H, bd, J = 14.9 Hz, H-14b), 2.14 (1H, m, H-11a), 2.03 (1H, m, H-11b), 1.71 (1H, m, H-8), 1.63 (1H, m, H-10a), 1.31 (1H, m, H-9a), 1.29 (3H, s, H-23), 1.17 (3H, d, J = 6.8 Hz, H-24), 1.16 (1H, m, H-10b), 1.14 (1H, m, H-9b), 1.05 (3H, s, H-22), 0.97 (3H, d, J = 7.1 Hz, H-25); ¹³C NMR, see Table 1; EIMS m/z 463 [M]⁺ (21), 310 (10), 276 (21), 171 (83), 154 (100), 150 (27), 111 (18); HREIMS m/z 463.2382 (calcd. for $C_{25}H_{37}NO_5S$, 463.2392).

Epothilone C₉ (27): colorless amorphous solid; $[α]_D^{22} - 93.4$ (*c* 1.0, MeOH); UV (MeOH) $λ_{max}$ nm (ε) 209 (15200), 254 (15700); IR (KBr) $ν_{max}$ 3416, 2966, 2932, 1736, 1689, 1463, 1249, 1011 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.06 (1H, s, H-19), 6.65 (1H, bs, H-17), 6.56 (1H, dd, J = 10.6, 4.4 Hz, 27-OH), 5.55 (1H, d, J = 6.2 Hz, 3-OH),5.52 (1H, dd, J = 11.6, 2.0 Hz, H-15), 5.44 (1H, dddd, J = 11.2, 10.7, 3.1, 1.7 Hz, H-12), 5.35 (1H, dddd, J = 11.0, 10.7, 3.9, 1.7 Hz, H-13), 4.47 (1H, ddd, J = 12.5, 4.4, 1.3 Hz, H-27a), 4.35 (1H, ddd, J = 11.7, 6.2, 2.6 Hz, H-3), 4.20 (1H, ddd, J = 12.5, 10.6, 0.9 Hz, H-27b), 3.63 (1H, ddd, J = 4.6, 1.8, 0.9 Hz, H-7), 3.24 (1H, d, J = 1.8 Hz, 7-OH), 3.13 (1H, dq, J = 0.9, 6.8 Hz, H-6), 2.80 (1H, ddd, J = 14.8, 11.6, 11.0 Hz, H-14a), 2.71 (3H, s, H-21), 2.40 (1H, dd, J = 14.4, 11.7 Hz, H-2a), 2.24 (1H, m, H-11a), 2.06 (1H, dd, J = 14.4, 2.6 Hz, H-2b), 2.01 (1H, ddd, J = 14.8, 3.9, 2.0 Hz, H-14b), 2.00 (1H, m, H-11b), 1.77 (1H, m, H-8), 1.69 (1H, m, H-10a), 1.35 (1H, m, H-9a), 1.35 (3H, s, H-23), 1.19 (1H, m, H-10b), 1.19 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d, J = 6.8 Hz, H-24), 1.18 (1H, m, H-9b), 1.01 (3H, d,

7.1 Hz, H-25), 0.98 (3H, s, H-22); 13 C NMR, see Table 1; EIMS m/z 493 [M]* (17), 306 (64), 184 (50), 171 (30), 167 (38), 166 (100), 138 (12); HREIMS m/z 493.2502 (calcd. for $C_{26}H_{39}NO_6S$, 493.2498).

trans-Epothilone C₁ (28): colorless amorphous solid; $[\alpha]^{22}_{D}$ –84 (c 0.2, MeOH); UV (MeOH) λ_{max} nm (ϵ) 211 (17400), 248 (12900); IR (KBr) ν_{max} 3433, 2961, 2933, 2879, 1730, 1708, 1457, 1251, 975 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ 7.00 (1H, s, H-19), 6.64 (1H, bs, H-17), 5.45 (1H, ddd, J = 15.2, 6.5, 6.5 Hz, H-12), 5.42 (1H, dd, J = 6.4, 3.7 Hz, H-15), 5.35 (1H, dt, J = 15.2, 7.1 Hz, H-13), 4.42 (1H, m, H-3), 3.58 (1H, ddd, J = 8.1, 7.9, 2.8 Hz, H-7), 3.24 (1H, m, H-6), 3.14 (1H, dq, J = 4.0, 6.9 Hz, H-6), 2.92 (1H, d, J = 7.9 Hz, 7-OH), 2.71 (3H, s, H-21), 2.71 (2H, m, H-2), 2.53 (2H, m, H-14), 2.17 (1H, d, J = 2.17 Hz, 3-OH), 2.11 (1H, m, H-11a), 2.06 (3H, bs, H-27), 1.93 (1H, m, H-11b), 1.68 (1H, m, H-9a), 1.65 (1H, m, H-10a), 1.33 (1H, m, H-8), 1.26 (3H, d, J = 6.8 Hz, H-24), 1.16 (1H, m, H-10b), 1.12 (3H, d, J = 6.9 Hz, H-22), 1.07 (1H, m, H-9b), 1.00 (3H, d, J = 6.8 Hz, H-25); ¹³C NMR, see Table 1; EIMS m/z 463 [M]* (6), 290 (21), 289 (20), 204 (23), 194 (19), 190 (22), 168 (100), 164 (48), 157 (14), 152 (19), 151 (17), 139 (15), 111 (18); HREIMS m/z 463.2371 (calcd. for C₂₅H₃₇NO₅S, 463.2392).

trans-Epothilone C₂ (29): colorless amorphous solid; $[\alpha]^{22}_{D}$ –3 (c 1.5, MeOH); UV (MeOH) λ_{max} nm (ϵ) 211 (15800), 248 (11900); IR (KBr) v_{max} 3435, 2963, 2931, 2878, 1731, 1706, 1457, 1273, 979 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ 6.99 (1H, s, H-19), 6.57 (1H, bs, H-17), 5.56 (1H, ddd, J = 15.1, 7.4, 7.0 Hz, H-12), 5.41 (1H, ddd, J = 15.1, 7.0, 6.9 Hz, H-13), 5.41 (1H, dd, J = 7.7, 2.8 Hz, H-15), 4.13 (1H, dddd, J = 6.7, 6.2, 5.6, 5.1 Hz, H-3), 3.78 (1H, ddd, J = 8.2, 6.5, 1.9 Hz, H-7), 3.18 (1H, d, J = 5.6 Hz, 3-OH), 3.06 (1H, dq, J = 8.2, 7.1 Hz,

H-6), 2.98 (1H, dq, J = 6.2, 7.0 Hz, H-4), 2.71 (3H, s, H-21), 2.64 (1H, dd, J = 15.1, 6.7 Hz, H-2a), 2.54 (1H, dd, J = 15.1, 5.1 Hz, H-2b), 2.44 (2H, m, H-14), 2.22 (1H, dddd, J = 13.8, 7.0, 6.2, 2.9 Hz, H-11a), 2.10 (3H, d, J = 1.1 Hz, H-27), 2.09 (1H, d, J = 6.5 Hz, 7-OH), 1.88 (1H, dddd, J = 13.8, 10.9, 7.4, 2.9 Hz, H-11b), 1.65 (1H, m, H-8), 1.63 (1H, m, H-10a), 1.56 (1H, dddd, J = 12.7, 12.7, 3.9, 3.9 Hz, H-9a), 1.20 (3H, d, J = 7.1 Hz, H-24), 1.15 (3H, d, J = 7.0 Hz, H-23), 1.13 (1H, m, H-10b), 1.04 (1H, m, H-9b), 1.01 (3H, d, J = 7.0 Hz, H-25); ¹³C NMR, see Table 1; EIMS m/z 463 [M]* (13), 290 (11), 190 (10), 168 (100), 164 (20), 157 (26), 139 (17); HREIMS m/z 463.2383 (calcd. for $C_{25}H_{37}NO_{5}S$, 463.2392).

Epothilone I₁ (30): colorless amorphous solid; $[α]_D^{22}$ –XXX (c XXX, MeOH); UV (MeOH) $λ_{max}$ nm (ε) XXX; IR (KBr) $ν_{max}$ XXX cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.96 (1H, s, H-19), 6.54 (1H, bs, H-17), 5.49 (1H, ddd, J = 10.3, 7.3, 7.3 Hz, H-12), 5.33 (1H, dd, J = 8.3, 4.4 Hz, H-15), 5.31 (1H, m, H-13), 4.15 (1H, ddd, J = 8.0, 5.0, 4.6 Hz, H-3), 3.80 (1H, m, H-7), 3.21 (1H, dq, J = 6.0, 6.9 Hz, H-6), 2.89 (1H, d, J = 5.0 Hz, 3-OH); 2.70 (3H, s, H-21), 2.65 (1H, ddd, J = 15.8, 8.5, 8.3 Hz, H-14a), 2.42 (2H, m, H-2), 2.35 (1H, m, H-14b), 2.27 (1H, bd, J = 3.3 Hz, 7-OH), 2.13 (1H, m, H-11a), 2.09 (3H, d, J = 1.2 Hz, H-27), 2.00 (1H, m, H-11b), 1.72 (1H, m, H-8), 1.40 (2H, m, H-10_β), 1.37 (1H, m, H-9_βa), 1.36 (2H, m, H-9_α), 1.32 (3H, s, H-23), 1.27 (3H, m, H-9_βb and H-10_α), 1.13 (3H, d, J = 6.9 Hz, H-24), 1.09 (3H, s, H-22), 0.94 (3H, d, J = 6.9 Hz, H-25); ¹³C NMR (CDCl₃, 75 MHz) δ 221.3 (s, C-5), 171.1 (s, C-1), 164.8 (s, C-20), 152.4 (s, C-18), 137.4 (s, C-16), 133.8 (d, C-12), 124.6 (d, C-13), 120.0 (d, C-17), 116.2 (d, C-19), 78.8 (d, C-15), 74.9 (d, C-7), 74.7 (d, C-3), 51.6 (s, C-4), 43.7 (d, C-6), 38.9 (t, C-2), 34.3 (d, C-8). 31.6 (t, C-14), 29.3 (t, C-9_α), 28.6 (t, C-10_β), 28.2 (t, C-10_α), 26.6 (t, C-2), 34.3 (d, C-8). 31.6 (t, C-14), 29.3 (t, C-9_α), 28.6 (t, C-10_β), 28.2 (t, C-10_α), 26.6 (t, C-2), 34.3 (d, C-8). 31.6 (t, C-14), 29.3 (t, C-9_α), 28.6 (t, C-10_β), 28.2 (t, C-10_α), 26.6 (t, C-2), 34.3 (d, C-8). 31.6 (t, C-14), 29.3 (t, C-9_α), 28.6 (t, C-10_β), 28.2 (t, C-10_α), 26.6 (t, C-2), 34.3 (d, C-8). 31.6 (t, C-14), 29.3 (t, C-9_α), 28.6 (t, C-10_β), 28.2 (t, C-10_α), 26.6 (t, C-2), 34.3 (d, C-8). 31.6 (t, C-14), 29.3 (t, C-9_α), 28.6 (t, C-10_β), 28.2 (t, C-10_α), 26.6 (t, C-2), 34.3 (d, C-8). 31.6 (t, C-14), 29.3 (t, C-9_α), 28.6 (t, C-10_β), 28.2 (t, C-10_α), 26.6 (t, C-1

11), 24.8 (t, C-9_{β}), 23.6 (q, C-22), 19.3 (q, C23), 19.3 (q, C-21), 16.5 (q, C-25), 15.5 (q, C-27), 13.7 (q, C-24); EIMS m/z 505 [M]⁺ XXX; HREIMS m/z 505.XXX (calcd. for C₂₈H₄₃NO₅S, 505.XXX).

Epothilone I₂ (31): colorless amorphous solid; [α]²²_D -XXX (c XXX, MeOH); UV (MeOH) λ_{max} nm (ϵ) XXX; IR (KBr) ν_{max} XXX cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.95 (1H, s, H-19), 6.53 (1H, bs, H-17), 5.40 (1H, m, H-12), 5.38 (1H, dd, J = 9.8, 3.3 Hz, H-15), 5.37 (1H, m, H-13), 4.21 (1H, ddd, J=8.6, 3.8, 3.6 Hz, H-3), 3.85 (1H, ddd, J=8.5, 5.8, 2.2 Hz, H-3)7), 3.18 (1H, dq, J = 8.5, 7.0 Hz, H-6), 2.70 (3H, s, H-21), 2.65 (1H, ddd, J = 15.2, 9.8, 9.0 Hz, H-14a), 2.51 (1H, d, J = 3.6 Hz, 3-OH), 2.37 (2H, m, H-2), 2.32 (1H, bd, J = 15.2 Hz, H-14b), 2.09 (3H, d, J = 1.3 Hz, H-27), 2.07 (2H, m, H-11), 1.78 (1H, m, H-8), 1.65 (1H, d, J = 5.8 Hz, 7-OH), 1.57 (1H, m, H-10_ga), 1.44 (1H, m, H-10_aa), 1.42 (1H, m, H-9_b), 1.32 (3H, s, H-23), 1.21 (1H, m, H- $10_{\rm g}$ b), 1.17 (3H, d, J=7.0 Hz, H-24), 1.13 (2H, m, H- 9_{α}), 1.06 (3H, s, H-22), 0.95 (3H, d, $J = 7.0 \text{ Hz,H-}25_{\alpha}$), 0.91 (3H, d, $J = 6.5 \text{ Hz, H-}25_{\beta}$), 0.68 (1H, m, H- 10_{α} b); ¹³C NMR (CDCl₃, 100 MHz) 8 220.4 (s, C-5), 171.3 (s, C-1), XXX (s, C-20), 152.4 (s, C-18), 137.6 (s, C-16), 134.5 (d, C-12), 125.3 (d, C-13), 119.6 (d, C-17), 116.2 (d, C-19), 78.6 (d, C-15), 77.2 (d, C-7), 75.0 (d, C-3), 51.0 (s, C-4), 44.6 (d, C-6), 38.2 (t, C-2), 36.9 $(t, C-9_{\alpha})$, 34.5 $(t, C-10_{\alpha})$, 32.6 (d, C-8), 32.0 (t, C-14), 30.0 (d, C-9_{β}), 27.4 (t, C-11), 26.6 (t, C-10_{β}), 25.0 (q, C-22), 21.5(q, C-25_B), 19.3 (q, C-21), 17.9 (q, C-25_a), 17.7 (q, C-23), 15.8 (q, C-24), 15.6 (q, C-27); **EIMS** m/z 519 [M]⁺ XXX; HREIMS m/z 519.XXX (calcd. for C₂₉H₄₅NO₅S, 519.XXX).

Epothilone I_3 (32): colorless amorphous solid; $[\alpha]_D^{22}$ –XXX (c XXX, MeOH); UV (MeOH) λ_{max} nm (ϵ) XXX; IR (KBr) ν_{max} XXX cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.95 (1H,

s, H-19), 6.52 (1H, bs, H-17), 5.32 (1H, dd, J = 9.1, 3.0 Hz, H-15), 5.08 (1H, dd, J = 8.5, 3.9 Hz, H-13), 4.13 (1H, ddd, J = 9.4, 4.3, 3.2 Hz, H-3), 3.81 (1H, m, H-7), 3.18 (1H, dq, J = 6.8, 7.0 Hz, H-6), 2.83 (1H, d, J = 4.3 Hz, 3-OH), 2.70 (3H, s, H-21), 2.61 (1H, ddd, J = 15.8, 9.1, 8.5 Hz, H-14a), 2.43 (1H, dd, J = 14.0, 3.2 Hz, H-2a), 2.38 (2H, dd, J = 14.0, 9.4 Hz, H-2b), 2.30 (1H, bd, J = 15.8 Hz, H-14b), 2.16 (1H, ddd, J = 14.1, 8.3, 7.4 Hz, H-11a), 2.08 (3H, d, J = 1.0 Hz, H-27), 1.99 (1H, d, J = 4.7 Hz, 7-OH), 1.92 (1H, ddd, J = 14.1, 6.3, 6.3 Hz, H-11b), 1.82 (1H, m, H-8), 1.67 (3H, s, H-26), 1.51 (1H, m, H-10_pa), 1.40 (1H, m, H-9_p), 1.33 (1H, m, H-10_pb), 1.31 (3H, s, H-23), 1.27 (1H, m, H-10_aa), 1.23 (1H, m, H-9_aa), 1.16 (3H, d, J = 7.0 Hz, H-24), 1.10 (1H, m, H-9_ab), 1.07 (3H, s, H-22), 0.95 (3H, d, J = 7.0 Hz, H-25_p), 0.75 (1H, m, H-10_ab); EIMS m/z 533 [M]⁺ XXX; HREIMS m/z 533.XXX (calcd. for $C_{30}H_{47}NO_{5}S$, 533.XXX).

Epothilone I₄ (33): colorless amorphous solid; [α]²²_D –XXX (c XXX, MeOH); UV (MeOH) λ_{max} nm (ε) XXX; IR (KBr) ν_{max} XXX cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.95 (1H, s, H-19), 6.53 (1H, bs, H-17), 5.47 (1H, dt, J=11.1, 5.8 Hz, H-12), 5.33 (1H, ddd, J=9.2, 3.9, 0.5 Hz, H-15), 5.33 (1H, m, H-13), 4.09 (1H, dddd, J=9.6, 8.1, 4.5, 3.3 Hz, H-3), 3.83 (1H, m, H-7), 3.57 (1H, bs, 3-OH), 2.89 (1H, dq, J=7.4, 7.1 Hz, H-6), 2.83 (1H, dq, J=8.1, 7.1 Hz, H-4), 2.70 (3H, s, H-21), 2.64 (1H, m, H-14a), 2.42 (1H, dd, J=14.2, 3.3 Hz, H-2a), 2.43 (1H, dd, J=14.2, 9.6 Hz, H-2b), 2.30 (1H, m, H-14b), 2.10 (3H, d, J=1.3 Hz, H-27), 2.09 (2H, m, H-11), 1.81 (1H, m, H-8), 1.74 (1H, bd, J=5.6 Hz, 7-OH), 1.53 (1H, m, H-10_βa), 1.49 (1H, m, H-9_β), 1.47 (1H, m, H-10_αa), 1.27 (1H, m, H-10_βb), 1.24 (1H, m, H-9_αa), 1.17 (3H, d, J=7.1 Hz, H-23), 1.14 (1H, m, H-9_βb), 1.08 (3H, d, J=7.1 Hz, H-24), 0.97 (3H, d, J=6.9 Hz, H-25_α),

0.91 (3H, d, J = 6.5 Hz, H-25_{β}), 0.79 (1H, m, H-10_{α}b); ¹³C NMR (CDCl₃, 100 MHz) δ 217.0 (s, C-5), 170.8 (s, C-1), 164.8 (s, C-20), 152.4 (s, C-18), 137.1 (s, C-16), 134.6 (d, C-12), 124.7 (d, C-13), 120.2 (d, C-17), 116.4 (d, C-19), 78.7 (d, C-15), 76.4 (d, C-7), 71.3 (d, C-3), 50.7 (d, C-4), 50.1 (d, C-6), 40.7 (t, C-2), 38.5 (t, C-9_{α}), 35.5 (t, C-10_{α}), 33.4 (d, C-8), 31.8 (t, C-14), 30.0 (d, C-9_{β}), 27.2 (t, C-11), 26.7 (t, C-10_{β}), 21.4 (q, C-25_{β}), 19.3 (q, C-21), 18.2 (q, C-25_{α}), 15.4 (q, C-27), 14.4 (q, C-24), 13.1 (q, C-23); EIMS m/z 505 [M]⁺ XXX; HREIMS m/z 505.XXX (calcd. for C₂₈H₄₃NO₅S, 505.XXX).

Epothilone I_s (34): colorless amorphous solid; $[α]_D^{12}$ –XXX (c XXX, MeOH); UV (MeOH) $λ_{max}$ nm (ε) XXX; IR (KBr) $ν_{max}$ XXX cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.97 (1H, s, H-19), 6.52 (1H, bs, H-17), 5.32 (1H, dd, J = 7.1, 6.2 Hz, H-15), 5.03 (1H, dd, J = 8.4, 5.0 Hz, H-13), 4.05 (1H, dddd, J = 7.5, 7.2, 5.9, 4.6 Hz, H-3), 3.91 (1H, m, H-7), 3.17 (1H, d, J = 5.9 Hz, 3-OH), 2.94 (1H, dq, J = 7.2, 7.1 Hz, H-4), 2.87 (1H, dq, J = 6.5, 6.9 Hz, H-6), 2.70 (3H, s, H-21), 2.62 (1H, dd, J = 14.6, 4.6 Hz, H-2a), 2.60 (1H, m, H-14a), 2.53 (1H, dd, J = 14.6, 7.5 Hz, H-2b), 2.31 (1H, m, H-14b), 2.10 (3H, d, J = 1.1 Hz, H-27), 2.10 (1H, m, H-11a), 2.02 (1H, m, H-11b), 1.97 (1H, bd, J = 5.6 Hz, 7-OH), 1.84 (1H, m, H-8), 1.66 (3H, s, H-26), 1.55 (1H, m, H-9_β), 1.49 (1H, m, H-10_βa), 1.39 (1H, m, H-10_βb), 1.33 (1H, m, H-10_δa), 1.31 (1H, m, H-9_αa), 1.15 (3H, d, J = 7.1 Hz, H-23), 1.12 (1H, m, H-9_αb), 1.11 (3H, d, J = 6.9 Hz, H-24), 0.97 (3H, d, J = 6.9 Hz, H-25_α), 0.94 (1H, m, H-10_αb), 0.93 (3H, d, J = 6.6 Hz, H-25_β); EIMS m/z 519 [M]* XXX; HREIMS m/z 519.XXX (calcd. for C₂₉H₄₅NO₅S, 519.XXX).

Epothilone I_{ϵ} (35): colorless amorphous solid; $[\alpha]_{D}^{22}$ –XXX (c XXX, MeOH); UV (MeOH) λ_{max} nm (ϵ) XXX; IR (KBr) ν_{max} XXX cm⁻¹; H NMR (CDCl₃, 400 MHz) δ 6.97 (1H,

s, H-19), 6.52 (1H, bs, H-17), 5.24 (1H, dd, J = 6.9, 6.9 Hz, H-15), 5.02 (1H, dd, J = 8.8, 5.2 Hz, H-13), 4.22 (1H, tdd, J = 6.1, 5.6, 4.8 Hz, H-3), 3.76 (1H, ddd, J = 6.1, 5.7, 5.6 Hz, H-7), 3.13 (1H, d, J = 5.6 Hz, 3-OH), 3.05 (1H, dq, J = 4.8, 7.0 Hz, H-4), 2.79 (1H, dq, J = 5.6, 6.9 Hz, H-6), 2.70 (3H, s, H-21), 2.62 (1H, m, H-14a), 2.57 (2H, d, J = 6.1 Hz, H-2a), 2.30 (1H, m, H-14b), 2.08 (3H, d, J = 1.0 Hz, H-27), 2.02 (2H, m, H-11), 1.73 (1H, d, J = 6.1 Hz, 7-OH), 1.69 (1H, m, H-8), 1.66 (3H, s, H-26), XXX (H-9 $_{\alpha}$, H-9 $_{\beta}$, H-10 $_{\alpha}$, H-10 $_{\beta}$), 1.21 (3H, d, J = 7.0 Hz, H-22), 1.16 (3H, d, J = 6.9 Hz, H-24), 0.94 (3H, d, J = 6.9 Hz, H-25 $_{\alpha}$), 0.91 (3H, d, J = 6.4 Hz, H-25 $_{\beta}$); EIMS m/z 519 [M] $^+$ XXX; HREIMS m/z 519.XXX (calcd. for $C_{29}H_{45}NO_{5}S$, 519.XXX).

Epothilone K (36): colorless amorphous solid; $[α]^{22}_{D} - 7$ (c 0.08, MeOH); UV (MeOH) $λ_{max}$ nm (ε) 212 (16700), 248 (12500); IR (KBr) $ν_{max}$ 3431, 2963, 2927, 2856, 1731, 1712, 1262, 1093, 1021, 802 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.95 (1H, s, H-19), 6.51 (1H, bs, H-17), 5.49 (3H, m, H-15, H-13, and H-12), 4.04 (1H, dddd, J = 7.9, 7.6, 6.9, 3.3 Hz, H-3), 3.36 (1H, dq, J = 6.9, 6.8 Hz, H-6), 2.83 (1H, d, J = 7.6 Hz, 3-OH), 2.75 (1H, ddd, J = 16.1, 6.6, 3.4 Hz, H-14a), 2.74 (1H, dd, J = 15.3, 3.3 Hz, H-2a), 2.71 (3H, s, H-21), 2.58 (2H, m, H-14b and H-8), 2.50 (1H, dd, J = 15.3, 7.9 Hz, H-2b), 2.29 (1H, m, H-11a), 2.10 (1H, m, H-11b), 2.09 (3H, d, J = 0.7 Hz, H-27), 1.78 (1H, m, H-9a), 1.65 (1H, m, H-10a), 1.48 (1H, m, H-10b), 1.18 (1H, m, H-9b), 1.15 (3H, d, J = 6.8 Hz, H-22), 1.03 (3H, d, J = 6.5 Hz, H-25); EIMS m/z 405 [M]* (38), 317 (12), 260 (9), 232 (10), 204 (14), 190 (16), 168 (100), 164 (30), 151 (28); HREIMS m/z 405.XXX (calcd. for $C_{26}H_{39}NO_{4}S$, 405.XXX).

(37): colorless amorphous solid; $[\alpha]^{22}_D$ –27.5 (c 0.4, MeOH); UV (MeOH) λ_{max} nm (ϵ)

211 (16100), 247 (12100); IR (KBr) v_{max} 3431, 2967, 2929, 2875, 1704, 1462, 1381, 1010 cm⁻¹; 1 H NMR (CDCl₃, 400 MHz) δ 6.94 (1H, s, H-19), 6.55 (1H, bs, H-17), 5.56 (1H, dtt, J = 10.8, 7.3, 1.4 Hz, H-12), 5.39 (1H, dtt, J = 10.8, 7.3, 1.4 Hz, H-13), 4.17 (1H, t, J = 6.6 Hz, H-15), 3.50 (1H, ddd, J = 8.7, 2.6, 2.6 Hz, H-7), 3.10 (1H, d, J = 2.6, 7-OH), 2.90 (1H, dq, J = 2.6, 7.2) Hz, H-6), 2.77 (1H, sep, J = 6.9 Hz, H-4), 2.70 (3H, s, H-21), 2.40 (2H, m, H-14), 2.07 (2H, m, H-11), 2.04 (3H, d, J = 1.1 Hz, H-27), 1.78 (1H, bs, 15-OH), 1.74 (1H, m, H-9a), 1.50 (1H, m, H-8), 1.46 (1H, m, H-10a), 1.27 (1H, m, H-10b), 1.11 (1H, m, H-9b), 1.094 (3H, d, J = 6.9 Hz, H-23), 1.089 (3H, d, J = 6.9 Hz, H-22), 1.08 (3H, d, J = 7.2 Hz, H-24), 0.82 (3H, d, J = 6.7 Hz, H-25); ¹³C NMR (CDCl₃, 100 MHz) δ 220.5 (s, C-5), 164.6 (s, C-20), 152.9 (s, C-18), 141.5 (s, C-16), 133.4 (d, C-12), 125.0 (d, C-13), 119.2 (d, C-17), 115.6 (d, C-19), 77.2 (d, C-15), 74.9 (d, C-7), 44.9 (d, C-6), 40.0 (d, C-4), 35.5 (d, C-8), 33.5 (t, C-14), 32.3 (t, C-9), 27.9 (t, C-11), 26.9 (t, C-10), 19.2 (q, C-21), 18.6 (q, C-23), 18.1 (q, C-22), 15.6 (q, C-25), 14.4 (q, C-27), 9.3 (q, C-24); EIMS m/z 407 [M]⁺ (0.1), 204 (0.8), 168 (100), 140 (3.4); **HREIMS** m/z 407.**XXX** (calcd. for $C_{23}H_{37}NO_3S$, 407.XXX).

(38): colorless amorphous solid; $[\alpha]^{22}_{D}$ +25.0 (c 0.5, MeOH); UV (MeOH) λ_{max} nm (ϵ) 212 (17700), 247 (13400); IR (KBr) ν_{max} 3427, 2971, 2933, 2878, 2858, 1709, 1457, 1377, 1186, 1023 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.95 (1H, s, H-19), 6.55 (1H, bs, H-17), 5.52 (1H, dtt, J = 10.9, 7.2, 1.4 Hz, H-12), 5.39 (1H, dtt, J = 10.9, 7.1, 1.2 Hz, H-13), 4.18 (1H, ddt, J = 3.4, 0.4, 6.7 Hz, H-15), 2.71 (3H, s, H-21), 2.51 (1H, bq, J = 6.8 Hz, H-8), 2.48 (1H, dq, J = 17.7, 7.4 Hz, H-6a), 2.41 (1H, dq, J = 17.7, 7.2 Hz, H-6b), 2.39 (2H, ddd, J = 7.1, 6.7, 1.4 Hz, H-14), 2.06 (2H, ddt, 7.2, 1.2, 7.0 Hz, H-11), 2.05 (3H, d, J = 1.4 Hz, H-27), 1.81 (1H, d, J = 3.4 Hz,

15-OH), 1.66 (1H, m, H-9a), 1.32 (1H, m, H-9b), 1.31 (2H, m, H-10), 1.06 (3H, d, J = 6.9 Hz, H-25), 1.04 (3H, dd, J = 7.4, 7.2 Hz, H-24); ¹³C NMR (CDCl₃, 75 MHz) δ 215.3 (s, C-7), 164.6 (s, C-20), 152.9 (s, C-18), 141.5 (s, C-16), 132.7 (d, C-12), 125.3 (d, C-13), 119.2 (d, C-17), 115.6 (d, C-19), 77.2 (d, C-15), 46.0 (d, C-8), 34.3 (t, C-14), 33.5 (t, C-6), 32.7 (t, C-9), 27.5 (t, C-11), 27.3 (t, C-10), 19.2 (q, C-21), 16.5 (q, C-25), 14.4 (q, C-27), 7.8 (q, C-24); EIMS m/z 335 [M]⁺ (2), 317 (4), 170 (27), 169 (67), 168 (100), 140 (20); HREIMS m/z 335.1912 (calcd. for C₁₀H₂₀NO₂S, 335.1919).

(39): colorless amorphous solid; $[\alpha]^{22}_{D}$ +26.4 (*c* 0.27, MeOH); UV (MeOH) λ_{max} nm (ϵ) 203 (19100), 244 (12500); IR (KBr) ν_{max} 3430, 2970, 2934, 2877, 1710, 1458, 1377, 1184 cm⁻¹, ¹H NMR (CDCl₃, 400 MHz) δ 6.94 (1H, s, H-19), 6.55 (1H, bs, H-17), 5.17 (1H, t, J= 7.3 Hz, H-13), 4.13 (1H, m, H-15), 2.70 (3H, s, H-21), 2.51 (1H, bq, J= 6.8 Hz, H-8), 2.47 (1H, dq, J= 17.7, 7.2 Hz, H-6a), 2.41 (1H, dq, J= 17.7, 7.2 Hz, H-6b), 2.33 (2H, bdd, J= 7.3, 6.8 Hz, H-14), 2.05 (3H, d, J= 1.2 Hz, H-27), 2.03 (2H, m, H-11), 1.71 (1H, d, J= 3.2 Hz, 15-OH), 1.69 (3H, d, J= 1.3 Hz, H-26), 1.62 (1H, m, H-9a), 1.32 (3H, m, H-10 and H-9b), 1.06 (3H, d, J= 6.9 Hz, H-25), 1.03 (3H, t, J= 7.2 Hz, H-24); EIMS m/z 349 [M]⁺ (0.7), 331 (1.7), 168 (100), 140 (5.1); HREIMS m/z 349.XXX (calcd. for $C_{10}H_{31}NO_2S$, 349.XXX).

Tab 1. Aktivität von Epothilonen und Verbindungen (1) bis (39) gegen Maus-Fibroblasten (L929, IC50 /ng/ml/)

Struktur-	Epothilone							
typ	A_{Y}	$\mathbf{B}_{\mathbf{Y}}$	C _Y	D _Y	trans C _Y			
Ausgangs- epothilon	(1) 4	(2) 1-2	(14) 50-100	(15) 20	•			
21-Hydroxy (E&F)	(3) 10	(4) 1.5	-	•	•,			
Oxazoles (G&H)	(10)6	(11) 1	(12) 120	(13) 11	•			
(R)-4-Desmethyl (X ₁)	(5) 20	-	(16) 200	(17) 2 0	(28) 400			
(S)-4-Desmethyl (X ₂)	(6) 7	•	(18) 25-30	(19) 12	(29) 80			
6-Desmethyl (X ₃)	, -	-	(20) 1500	•	•			
8-Desmethyl (X₄)	-	-	(21) 800	•	-			
8,9-Dehydro (X ₅)	-	-	(22) 1500	(23) 200	-			
10,11-Dehydro (X_{δ})	-	-	(24) 120	-	-			
14-Hydroxy (X ₂)	-	-	(25)	•	-			
16-Desmethyl (X ₈)	(7) 20	•	(26) 250	•	-			
27-Hydroxy (X ₉)	(8) 100	-	(27) 200	•	-			
21-Methyl (X ₁₀)	-	(9) 1.5	-	-	-			
Verbindung	-	-	(36) 180					
Verbindung	-	-	(37) 50	-	-			
Verbindung		•	(38) 2000	(39) 500	-			

Epothilon-Nebenkomponenten

Patentansprüche

1. Epothilon der Formel

$$R^8$$
 R^2
 R^1
 R^2
 R^1
 R^2
 R^3

Epothilone A_1 (5) $R^1 = H$; R^2 , $R^8 = Me$

Epothilone A_2 (6) $R^2 = H$; R^1 , $R^8 = Me$

Epothilone A_8 (7) $R^8 = H$; R^1 , $R^2 = Me$ oder

Epothilone A_9 (8) $R^1 = CH_2OH$; R^2 , $R^8 = Me$

2. Epothilon der Formel

Epothilone B₁₀ (9)

3. Epothilon der Formel

- ✓ Epothilone G_1 (10) R = H
- \vee Epothilone G_2 (11) R = Me

oder

4. Epothilon der Formel

- ν Epothilone H₁ (12) R = H
- $\sqrt{\text{Epothilone H}_2}$ (13) R = Me

oder

5. Epothilon der Formel

- ν Epothilone C₁ (16) R¹ = H; R², R³, R⁴ = Me; R = H
- ν Epothilone D₁ (17) R¹ = H; R², R³, R⁴ = Me; R = Me
- \checkmark Epothilone D₂ (19) R² = H; R¹, R³, R⁴ = Me; R = Me
- \vee Epothilone C₃ (20) $R^3 = H$; R^1 , R^2 , $R^4 = Me$; R = H oder
- \vee Epothilone C₄ (21) R⁴ = H; R¹, R², R³ = Me; R = H

6. Epothilon der Formel

Epothilone C_5 (22) R = H

Epothilone D_5 (23) R = Me

oder

7. Epothilon der Formel

- ∠ Epothilone C₆ (24)
- 8. Epothilin der Formel

- \checkmark Epothilone C₇ (25) $R^7 = OH$; $R^8 = Me$
- \checkmark Epothilone C₈ (26) R⁸, R⁷ = H
- \checkmark Epothilone C₉ (27) R⁸ = CH₂OH; R⁷ = H

oder

9. Epothilon der Formel

 \vee trans-Epothilone C₁ (28) R¹ = H; R² = Me

 \checkmark trans-Epothilone C₂ (29) R² = H; R¹ = Me

oder

10. Epothilon der Formel

Epothilone I₁ (30) R, $R^3 = H$; R^1 , $R^2 = Me$

Epothilone I_2 (31) R = H; R^1 , R^2 , $R^3 = Me$

Epothilone I_3 (32) R^1 , R^2 , R^3 , R = Me

Epothilone I_4 (33) R^2 , R = H; R^1 , $R^3 = Me$

Epothilone I_5 (34) $R^2 = H$; R^1 , R^3 , R = Me oder

Epothilone I_6 (35) $R^1 = H$; R^2 , R^3 , R = Me

11. Epothilon der Formel

∠ Epothilone K (36)

12. Verbindung der Formel

13. Verbindung der Formel

(38) R = H

oder

(39) R = Me 32

