Graph-based Full Event Interpretation: a graph neural network for event reconstruction in Belle II GRAFEI - CHEP 2024

Merna AbuMusabh, Jacopo Cerasoli, Giulio Dujany, Corentin Santos

Institut Pluridisciplinaire Hubert Curien University of Strasbourg

22 October 2024

Table of Contents

① Feasibility study with the search for $B^+ o K^+
u \bar{
u}$ at Belle II

Feasibility study with the search for $B^+ \to K^+ \nu \bar{\nu}$ at Belle II References

① Feasibility study with the search for $B^+ o K^+
u \bar{
u}$ at Belle II

State of the art

Figure: from arXiv:2301.06990

$$\mu = rac{\mathcal{B}\left(\mathcal{B}^{+}
ightarrow\mathcal{K}^{+}
uar{
u}|\exp
ight)}{\mathcal{B}\left(\mathcal{B}^{+}
ightarrow\mathcal{K}^{+}
uar{
u}|\mathit{SM}
ight)}$$

GTA Workflow

Let's define the GRAFEI-based Tagged Anaysis (GTA):

- **1.** Reconstruction + Preselection:
 - LCAS must contain only signal-side Kaon and B_{tag}
 - Cut on GRAFEI probability, or B probability, BGEOM, derived from cross-entropy
 - Apply other *preselection cuts* (more details in the backup)
- 2. Train classifier
- **3.** Apply *signal region cut*: BDT output > 0.8

GTA Workflow

Let's define the GRAFEI-based Tagged Anaysis (GTA):

- **1.** Reconstruction + Preselection:
 - \bullet LCAS must contain only signal-side Kaon and B_{tag}
 - Cut on GRAFEI probability, or B probability, BGEOM, derived from cross-entropy
 - Apply other preselection cuts (more details in the backup)
- 2. Train classifier
- **3.** Apply *signal region cut*: BDT output > 0.8

GTA Workflow

Let's define the GRAFEI-based Tagged Anaysis (GTA):

- **1.** Reconstruction + Preselection:
 - \bullet LCAS must contain only signal-side Kaon and B_{tag}
 - Cut on GRAFEI probability, or B probability, BGEOM, derived from cross-entropy
 - Apply other preselection cuts (more details in the backup)
- 2. Train classifier
- **3.** Apply signal region cut: BDT output > 0.8

Comparison between analyses

Signal purity:

$$\mathcal{P}^{\mathsf{sig}} = rac{\mathit{N}_{\mathsf{sig}}}{\mathit{N}_{\mathsf{bkg}} + \mathit{N}_{\mathsf{sig}}}$$

Comparing efficiencies and signal purities:

	ε [%]	$\mathcal{P}^{sig}[\%]$
HTA	0.4	3.5
ITA	8	0.8
GTA	2.7	1.3

Comparison between analyses

N.B.: No systematic uncertainties considered in this study.

[1] Belle II Collaboration, *Evidence for* $B^+ \to K^+ \nu \bar{\nu}$ *decays*, (2024), arXiv:2301.06990.