(80200) תורת הקבוצות – 05 מטלה פתרון

2024 ביוני 8

שאלה 3

תהי $\langle A, \leq \rangle$ קבוצה סדורה חלקית.

'סעיף א

. היא חלקית חלקית סדורה היא קבוצה היא $\langle B, \leq \cap (B \times B) \rangle$ כי תנוכיח היא. $B \subseteq A$

הוכחה. נבדוק את תכונות הסדר החלקי.

- $(a,b), (b,c) \in \leq \cap B^2 \implies a \leq c \land a,c \in B \implies (a,c) \in \leq \cap B^2$ טרנזיטיביות: .1
 - $\forall b \in B: \langle b,b \rangle \in \leq \land \langle b,b \rangle \in B^2 \implies \langle b,b \rangle \in (\leq \cap B^2)$ ב. מפלקסיביות: .2
 - $\forall a,b \in B: \langle a,b \rangle, \langle b,a \rangle \in (\leq \cap B^2) \implies a=b,b \in B$.3

ומצאנו כי כל ההגדרות מתקיימות.

'סעיף ב

. נוכיה היחיד המינימלי והמינימלי אז הוא מינימום, אז מינימלי היחיד $a\in A$ הוא נוכיה נוכיה בי

 $\forall b \in A: a \leq b$ הוא מינימום ולכן $a \in A$ כי נניח הוכחה. נניח

יהי איבר a=b ולכן נובע כי a=b ולכן נסיק מהאנטי־סימטריה ולכן נובע כי $a\leq b$ איבר איבר איבר המקיים $b\in A$ המקיים

והוא איבר מינימלי איבר פי קיים איבר ,a=b כי המינימליות ולכן וובע כי הוא איבר מינימלי, ואנו יודעים כי איבר מהמינימליות מהמינימליות מונימלי איבר איבר מינימלי וודעים מונימלי הוא $a\leq b$ אשר איבר מינימלי וודעים מונימלי וודעים מונימלי. $a\leq b$

'סעיף ג

נוכיח כי הכיוון ההפוך לטענה הקודמת איננו נכון, קיום מינימלי יחיד לא גורר כי קיים מינימום.

 $.\langle 0,0\rangle$ מלבד ב־0, מדבים שמעורבים הסדורים את כל מוציאים מוציאים את כאשר מציאים את כל מבחן הוכחה. נבחן את

'סעיף ד

. המינימום אם ורק אם ורק איבר הוא איבר מלא אז איבר הוא ($A, \leq
angle$ שאם לוכיח שאם לא

סדר זה עומד בכלל ההגדרות, אין מינימום או מקסימום, ואפס הוא מינימלי.

 $. \forall b \in a : b \leq a \implies a = b$ לכן לכן מינימילי. הוא $a \in A$ כי נניח כי הוט הוכחה. כיוון ראשון: נניח כי $a \in A$

. מינימום $a \leq b$ בכל מקרה, ולכן מינימום $a \leq b$ או או $a \leq b$ או מינימום $a \leq b$ מקרה, ולכן מינימום כל איבר

 $. \forall b \in A: a \leq b$ כיוון שני: נניח כי הוא מינימום מינימו לבי נניח כי

יהי המינימלי הגדרת המינימלי וקיבלנו a=b ובפרט $a\leq b$ אז $b\in A, b\leq a$ יהי

'סעיף ה

. נוכיח מינימלי. סופית ולא ריקה אז חשבר מינימלי. מונימלי. אם א

 $. \forall a \in A \exists b \in A : b \leq a, a \neq b$ לכן מינימלי, איבר איבר א קיים שלילה כי גניח בשלילה. נניח

 $a_{k+1} \leq a_k, a_{k+1}
eq a_k$ ונבחר $a_1 = a_2 = a_1, a_1 \neq a_2$, נניח ש $a_1 \in A$ ונבחר ונבחר $a_1 \in A$ ונבחר וובחר

נבנה כך סדרה מאיבר $a_k \leq a_k, a_k \neq a_k$ ונסיק מעיקרון שובך היונים שאיבר כלשהו מופיע פעמיים בסדרה ומקיים ונסיק מעיקרון שובך היונים שאיבר כלשהו כל יאין איבר מינימלי.

שאלה 4

 $:\mathbb{N}^\mathbb{N}$ יהיו ארבעה יחסים מעל

$$R_{1} = \{ \langle f, g \rangle \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \mid \forall m : f(m) \leq g(m) \}$$

$$R_{2} = \{ \langle f, g \rangle \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \mid \exists n \forall m : m > n \implies f(m) \leq g(m) \}$$

$$R_{3} = \{ \langle f, g \rangle \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \mid \forall n \exists m, m > n \implies f(m) \leq g(m) \}$$

$$R_{4} = \{ \langle f, g \rangle \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \mid f = g \vee (\exists n : f \upharpoonright [n] = g \upharpoonright [n] \wedge f(n) < g(n)) \}$$

'סעיף א

נבדוק עבור כל יחס אם הוא רפלקסיבי, טרנזיטיבי ואנטי־סימטרי.

$:R_1$ בור

- . נשים לב כי בהינתן $f(m)=f(m)\implies f(m)\leq f(m)$ נקבל נקבל לכל $f\in\mathbb{N}^\mathbb{N}$ ולכן ולכן $f\in\mathbb{N}^\mathbb{N}$. נשים לב כי בהינתן
- . ולכן $f(m) \leq h(m)$ ולכן $f(m) \leq h(m)$ ולכן $f(m) \leq g(m)$, אז $f(m) \leq h(m)$ ולכן ויהי $f(m) \leq g(m)$, אז $f(m) \leq g(m)$ ולכן אז $f(m) \leq g(m)$ ויהי $f(m) \leq g(m)$ אז $f(m) \leq g(m)$ ויהי $f(m) \leq g(m)$ אז $f(m) \leq g(m)$ והיחס טרנזיטיבי.
- f=g הינו g(m)=g(m) אז לכל להסיק להסיק אז לכל $g(m)\leq f(m)$ וגם וגם $f(m)\leq g(m)$ אז לכל g(m)=g(m) אז לכל להסיק להטים אז לכל להטים אז לכל לידות אנטי־סימטרי.

$:R_2$ עבור

- R_1 עבור עבור רפלקסיביות התנאי של נוכל להניח התבא נוכל שכן אם מתקיימת שכן מתקיימת להניח נוכל להניח .1
- , ולכן נבחר f(m)=g(m),g(m)=h(m) מתקיים $m>n_1,n_2$ כך שבהתאמה לכל n_1,n_2 כך לכן קיימים n_1,n_2 לכן קיימים n_1,n_2 לכן קיימים n_1,n_2 לכן נבחר n_1,n_2 ולכן n_1,n_2 ולכן n_1,n_2 ולכן נבחר n_1,n_2
- m=0 אבל עבור f(m)=g(m) מקיים m>n>0 מינימלי עבורו הסימטריה להוכחת האופן דומה באופן דומה להוכחת הינחל להיות שf(m)=g(m) ולכן לא מתקיימת אנטי־סימטריה.

$:R_3$ עבור

- $g(m_2) \leq m_1$ עבורו $m_2 > g(m_1)$, וקיים גם $f(m_1) \leq g(m_1)$ כך ש־ $m_1 > n$ כך קיים $m_1 > n$ לכן קיים $m_1 > n$ פונקציות, ויהי $m_2 > n$ פונקציות, ויהי $m_2 > n$ לכן קיים $m_1 > n$ לכן קיים לכן קיים $m_1 > n$ לכן קיים m