BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning

Han Zhong*1, Yutong Yin*2, Shenao Zhang*2, Xiaojun Xu*3, Yuanxin Liu*2, Yifei Zuo*2, Zhihan Liu*2, Boyi Liu³, Sirui Zheng², Hongyi Guo², Liwei Wang¹, Mingyi Hong⁴, Zhaoran Wang²

¹Peking University, ²Northwestern University, ³ByteDance, ⁴University of Minnesota

Reasoning as a Graphical Model

Q: What is reasoning in large language models? A: Okay, so I need to figure out what reasoning is in large language models (LLMs) is. Let me start by breaking down the question. The user is asking about reasoning ... Reasoning in large language models (LLMs) refers to their ability to generate responses that mimic structuredlogical thought processes to solve problems or answer questions

$$\mathbb{P}(y, o \mid x, \theta) = \mathbb{P}(z \mid x, \theta) \cdot \mathbb{P}(y \mid x, z, \theta) \cdot \mathbb{P}(o \mid x, z, \theta)$$

Bootstrap Reinforced Thinking Process

$$\begin{split} \mathcal{L}(\theta) &= \log \sum_{(z,y,o) \in \mathcal{I} \times \mathcal{Y} \times \mathcal{O}} \mathbb{P}(z,y,o \,|\, x,\theta) \\ &= \max_{\mathbb{Q} \in \Delta} \left\{ \sum_{(z,y,o)} \log \mathbb{P}(z,y,o \,|\, x,\theta) \mathbb{Q}(z,y,o \,|\, x,\psi) - \sum_{(z,y,o)} \log \mathbb{Q}(z,y,o \,|\, x,\psi) \mathbb{Q}(z,y,o \,|\, x,\psi) \right\} \\ &= \mathcal{L}_{\psi}(\theta) \end{split}$$

Maximize $\mathcal{L}(\theta)$ (difficult) \Longrightarrow Maximize evidence lower bound $\mathcal{L}_{w}(\theta)$ (easy)

BRiTE — An EM-type Algorithm

Assumptions: $f_{\theta} \in \mathcal{H}$ for a certain RKHS; $\mathbb{P}(z, y | x, \theta) \propto \exp(f_{\theta}(x, z, y))$

Theorem: convergence to optima

$$\min_{1 \leq t \leq T} \left\{ \log \frac{\mathbb{P}(x \in \mathcal{X}, y \in \mathcal{Y}, o \in \mathcal{O} \mid x, \theta^*)}{\mathbb{P}(x \in \mathcal{X}, y \in \mathcal{Y}, o \in \mathcal{O} \mid x, \theta_t)} \right\} \leq \frac{\mathbb{D}_{\mathsf{KL}} \left(\mathbb{P}(\cdot \mid x, \theta_1) || \mathbb{P}(\cdot \mid x, \theta^*) \right)}{T}$$

Concrete Examples of BRiTE

Scope: $\mathbb{P}(o=1 \mid x, z, y) := \exp(R(x, z, y)/\beta)$ $o \in \{0,1\}, \mathcal{O} = \{1\}$ $\mathbb{P}(z, y, o = 1 \mid x, \theta) = \mathbb{P}(z, y \mid x, \theta) \mathbb{P}(o = 1 \mid x, z, y)$ \mathcal{Y} is the response space $\mathbb{Q}(z, y \mid x, \psi) := \mathbb{Q}(z, y, o = 1 \mid x, \psi)$ ${\mathscr Z}$ is the latent space $\mathcal{L}_{\psi}(\theta) = \sum_{(z,y)} \log \mathbb{P}(z, y, o = 1 \mid x, \theta) \mathbb{Q}(z, y \mid x, \psi)$ $-\sum_{(z,y)} \log \mathbb{Q}(z,y|x,\psi) \mathbb{Q}(z,y|x,\psi)$ Example (PPO) $= \mathbb{E}_{(z,y)\sim\mathbb{Q}} \left[R(x,z,y)/\beta - \log \frac{\mathbb{Q}(z,y\,|\,x,\psi)}{\mathbb{P}(z,y\,|\,x,\theta)} \right]$

- $\mathbb{P}(o = 1 \mid x, z, y) := \mathbb{I}(y \text{ is correct for } x) \text{ or } \exp(R(x, y)/\beta)$ $o \in \{0,1\}, \mathcal{O} = \{1\}$
 - $\mathbb{P}(z, y, o = 1 \mid x, \theta) = \mathbb{P}(z, y \mid x, \theta) \mathbb{P}(o = 1 \mid x, z, y)$
- \mathcal{Y} is the response space $\mathbb{Q}(z, y \mid x, \psi) := \mathbb{Q}(z, y, o = 1 \mid x, \psi)$ \mathcal{Z} is the latent space \bullet

$$\max_{\mathbb{P}} \left\{ \mathbb{E}_{(z,y) \sim \mathbb{P}(\cdot,\cdot|x,\theta_t)} \left[\log \mathbb{P}(z,y \mid x,\theta) \cdot \mathbb{I}(y \text{ is correct for } x) \right] \right\}$$

$$\max_{\mathbb{P}} \left\{ \mathbb{E}_{(z,y) \sim \mathbb{P}(\cdot,\cdot|x,\theta_t)} \left[\log \mathbb{P}(z,y \mid x,\theta) \cdot \exp(R(x,y)/\beta) \right] \right\}$$

If $\mathcal{Z} = \emptyset$, then it recovers STaR and Reject Sampling Finetuning or RestEM

Learning Intractable Posterior via RL

$$\mathbb{Q}(z, y, o \mid x, \psi) \leftarrow \operatorname{argmax}_{\mathbb{Q}} \mathcal{L}_{\psi}(\theta) = \frac{\mathbb{P}(z, y, o \mid x, \theta)}{\sum_{(z, y, o)} \mathbb{P}(z, y, o \mid x, \theta)}$$

Lemma: the optimal policy for an entropy-regularized token-level MDP

$$\pi^*(a_h \cup \{(s_i, a_i)\}_{i=h+1}^H | s_h) \propto \exp\left(\frac{1}{\beta} \sum_{i=h}^H r(s_i, a_i)\right)$$

Set
$$\frac{1}{\beta} \sum_{i=0}^{H} r(s_i, a_i) = \log \mathbb{P}(z, y, o \mid x, \theta)$$
! Then $\pi^{\star}(s_H \mid s_0) = \mathbb{Q}(z, y, o \mid x, \psi)$

Experiments

- 1. BRiTE Significantly Improves Existing Rejection Sampling Algorithms.
- 2. BRiTE ≥ SFT with Human-Annotated Thinking Process.

Algorithm	Mistral-7B-Instruct-v0.2		Gemma-1.1-7B-it		Gemma-2-9B-it		Llama-3-8B-Instruct	
	GSM8K	MATH	GSM8K	MATH	GSM8K	MATH	GSM8K	MATH
	41.8	9.8	49.0	18.8	81.3	37.3	79.2	28.3
SFT	52.8	13.6	57.5	19.6	80.1	41.5	72.6	27.1
RS	47.7	10.3	58.4	18.7	87.6	47.5	79.5	28.9
BRiTE	52.2	11.2	59.2	23.7	89.7	50.5	81.0	30.0

3. BRiTE Enhances the Reasoning Capacity in RLHF Stage.

4. BRiTE Improves Code Generation Ability.

	Algorithm	Huma	nEval	BCB (Instruct)		
		Basic (%)	Plus (%)	Hard (%)	Full (%)	
		78.0	70.7	10.1	35.5	
	SFT	78.0	67.7	11.5	37.2	
	RS	79.3	73.2	11.5	35.6	
	BRiTE	81.7	72.6	15.5	36.3	

5. BRiTE Generates High Quality Trajectories for Distillation.

Scan to read our paper!