A Design Example

- Requirement: To build a JFET preamplifier for a musical instrument.
- Given: Drain Resistance = $2.2 \text{ k}\Omega$
- The parameters you need to design are:
 - · DC Bias (V_{cc})
 - · Quiescent channel current
 - · Quiescent Gate voltage
 - · Cut off frequency of the preamplifier
 - Coupling capacitors

Design Choices

- 1) JFET selection: Use J113 general purpose FET
 - V_{DS} (maximum) = 35V
 - $V_{GS, (off)} = -2 V$
 - $I_{DSS} = 8.34 \text{ mA}$
 - Max Power Dissipation = 625 mW
 - Drain to Source Resistance = 100 Ω
- 2) Supply Voltage Selection:
 - Choose 9v as V_{CC}
 - Most musical instrument circuits run on 9V
- Gate-Source Voltage: Let us choose $V_{GS,Q} = 0.8 \text{ V}$

J113 JFET

Electrical Characteristics

Values are at T_A = 25°C unless otherwise noted.

Symbol	Parameter	Conditions		Min.	Max.	Unit
Off Charac	cteristics	•				
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = -1.0 \mu\text{A}, V_{DS} = 0$		-35		V
I _{GSS}	Gate Reverse Current	V _{GS} = -15 V, V _{DS} = 0			-1.0	nA
V _{GS} (off)	Gate-Source Cut-Off Voltage	V _{DS} = 15 V, I _D = 1.0 μA	111	-3.0	-10.0	V
			112	-1.0	-5.0	
			113	-0.5	-3.0	
I _D (off)	Drain Cutoff Leakage Current	V _{DS} = 5.0 V, V _{GS} = -10 V			1.0	nA
On Charac	teristics					
I _{DSS}	Zero-Gate Voltage Drain Current ⁽⁵⁾	V _{DS} = 15 V, V _{GS} = 0	111	20		mA
			112	5.0		
			113	2.0		
r _{DS} (on)	Drain-Source On Resistance	$V_{DS} \le 0.1 \text{ V, } V_{GS} = 0$	111		30	Ω
			112		50	
			113		100	
Small Sign	nal Characteristics					-
C _{dg} (on) C _{sg} (on)	Drain-Gate &Source-Gate On Capacitance	V _{DS} = 0, V _{GS} = 0, f = 1.0 MHz			28	pF
C _{dg} (off)	Drain-Gate Off Capacitance	V _{DS} = 0, V _{GS} = -10 V, f =		5.0	pF	
C _{sq} (off)	Source-Gate Off Capacitance	V _{DS} = 0, V _{GS} = -10 V, f =		5.0	pF	

5. Pulse test: pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$

Design (Cont.): Input Interface with Source

- Input Impedance
 - Too low: Loading on the source i.e Guitar pickup.
 - Too high: Circuit will be noisier due to the thermal noise of the resistor
 - 100 k Ω to 1 M Ω is OK.
 - Let us use a value of 100 k Ω for R_C

$$f_{c} = \frac{1}{2.\pi.\tau}$$

$$f_{c} = \frac{1}{2.\pi.R_{G}.C_{C}}$$

$$\tau = R_{G}.C_{C}$$

$$R_{G}$$

$$R_{G$$

Design (Cont.): Input Interface with Source

Assuming standard guitar;

We can choose the lower cutoff frequency as 82.4Hz

$$f_c = \frac{1}{2.\pi.R_G.C_C} = 82.4$$
Hz (assuming standard guitar)

$$C_C = \frac{1}{2.\pi.R_G.f_c} = \frac{1}{2.\pi.(100,000).(82.4)} = 19.1 \text{ nF}$$

$$C_C > 19.1 \, \text{nF}$$

Any higher value is OK. Therefore, we can choose a typical μF value.

Design (Cont.): Input Interface with Source

When
$$C_C = 19.1 \text{ nF};$$

$$f_c = \frac{1}{2.\pi.R_G.C_C} = 82.4$$
Hz

Use the command; .ac dec 10 0.1 2000

However,
$$X_c = \frac{1}{2.\pi.f.C_C} = \frac{1}{2.\pi.(82.4).(19.1)} \approx 100k\Omega!$$
 (too much)

For C_C any higher value is OK. Therefore, we can choose a typical μF value.

Design (Cont.): Input Interface with Source

Let us use $C_C=2.2\mu F$

$$X_{c} = \frac{1}{2.\pi.f.C_{C}}$$

$$X_{c} = \frac{1}{2.\pi.(82.4).(2.2)}M\Omega$$

$$X_c = 878\Omega$$

Design (Cont.): Output Interface with Load

- Input impedance of the next stage?
 - Let us assume a standard and quite low value, such as $10k\Omega$.
 - Always make sure this is larger than R_D.

$$C_C = \frac{1}{2.\pi.R_L.f_c} = \frac{1}{2.\pi.(10,000).(82.4)} = 194 \text{ nF}$$

$$C > 194 \, \text{nF}$$

- Any higher value is OK. Therefore, we can choose a typical μF value.
- E.g. 1µF coupling capacitor can give us a lower cut off frequency of 7 Hz.

84

AC Load Line and Gain Calculations....

- Coupling and Bypass capacitors can be considered as S/C connections for ac signals
- · Draw an ac equivalent circuit
- Using KVL for ac signals find the new gradient of the load line
- Draw ac load line with that gradient to go through the Q point.
- Then use ac load line for gain calculations

Moving on to MOSFET....

Watch: 1. https://youtu.be/Bine_PbyFSQ

2. https://youtu.be/rkbjHNEKcRw

Handle with Care

The insulating layer is extremely thin and can be easily damaged by static charges.

The workplace must be grounded safely.

Touch some earthed point just before handling static sensitive devices

Some devices have Zener diodes built in, between gate and source, for protection.

Soldering iron tips must be earthed. You must be grounded via a wriststraps

106

RF Stage of a Radio

Common Gate Amplifier

Widely used in VHF and UHF receivers

The grounded gate FET amplifer has 10 to 15dB of gain, and a low noise figure

FET Mixers in a Radio

A Mixer Down-converts RF to IF

