```
In [47]: from google.colab import files
         uploaded = files.upload()
         #import some necessary librairies
         import numpy as np # linear algebra
         import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
         %matplotlib inline
         import matplotlib.pyplot as plt # Matlab-style plotting
         import seaborn as sns
         color = sns.color palette()
         sns.set_style('darkgrid')
         import warnings
         def ignore_warn(*args, **kwargs):
             pass
         warnings.warn = ignore_warn #ignore annoying warning (from sklearn and seabor
         n)
         from scipy import stats
         from scipy.stats import norm, skew #for some statistics
         pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) #Limiting
          floats output to 3 decimal points
         from subprocess import check_output
         print(check_output(["ls", "."]).decode("utf8")) #check the files available in
          the directory
         sample data
         submission.csv
         test.csv
         train.csv
 In [0]: #Now let's import and put the train and test datasets in pandas dataframe
         train = pd.read_csv('./train.csv')
         test = pd.read csv('./test.csv')
```

Out[0]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Util
0	1	60	RL	65.000	8450	Pave	NaN	Reg	Lvl	Α
1	2	20	RL	80.000	9600	Pave	NaN	Reg	LvI	A
2	3	60	RL	68.000	11250	Pave	NaN	IR1	LvI	A
3	4	70	RL	60.000	9550	Pave	NaN	IR1	LvI	A
4	5	60	RL	84.000	14260	Pave	NaN	IR1	LvI	A

5 rows × 81 columns

In [4]: #display the first five rows of the test dataset.
 test.head(5)

Out[4]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	ı
0	1461	20	RH	80.000	11622	Pave	NaN	Reg	Lvl	_
1	1462	20	RL	81.000	14267	Pave	NaN	IR1	Lvl	
2	1463	60	RL	74.000	13830	Pave	NaN	IR1	Lvl	
3	1464	60	RL	78.000	9978	Pave	NaN	IR1	Lvl	
4	1465	120	RL	43.000	5005	Pave	NaN	IR1	HLS	

5 rows × 80 columns

```
In [5]: #check the numbers of samples and features
    print("The train data size before dropping Id feature is : {} ".format(train.s hape))
    print("The test data size before dropping Id feature is : {} ".format(test.sha pe))

#Save the 'Id' column
    train_ID = train['Id']
    test_ID = test['Id']

#Now drop the 'Id' colum since it's unnecessary for the prediction process.
    train.drop("Id", axis = 1, inplace = True)
    test.drop("Id", axis = 1, inplace = True)

#check again the data size after dropping the 'Id' variable
    print("\nThe train data size after dropping Id feature is : {} ".format(train.shape))
    print("The test data size after dropping Id feature is : {} ".format(test.shape))
```

The train data size before dropping Id feature is : (1460, 81) The test data size before dropping Id feature is : (1459, 80)

The train data size after dropping Id feature is: (1460, 80) The test data size after dropping Id feature is: (1459, 79)

```
In [6]: #outliers
fig, ax = plt.subplots()
    ax.scatter(x = train['GrLivArea'], y = train['SalePrice'])
    plt.ylabel('SalePrice', fontsize=13)
    plt.xlabel('GrLivArea', fontsize=13)
    plt.show()
```



```
In [7]: #Deleting outliers
    train = train.drop(train[(train['GrLivArea']>4000) & (train['SalePrice']<30000
    0)].index)

#Check the graphic again
    fig, ax = plt.subplots()
    ax.scatter(train['GrLivArea'], train['SalePrice'])
    plt.ylabel('SalePrice', fontsize=13)
    plt.xlabel('GrLivArea', fontsize=13)
    plt.show()</pre>
```


In [8]: #Target Variable sns.distplot(train['SalePrice'] , fit=norm); # Get the fitted parameters used by the function (mu, sigma) = norm.fit(train['SalePrice']) print('\n mu = {:.2f} and sigma = {:.2f}\n'.format(mu, sigma)) #Now plot the distribution plt.legend(['Normal dist. (\$\mu=\$ {:..2f} and \$\sigma=\$ {:..2f})'.format(mu, si gma)], loc='best') plt.ylabel('Frequency') plt.title('SalePrice distribution') #Get also the QQ-plot fig = plt.figure() res = stats.probplot(train['SalePrice'], plot=plt) plt.show()

mu = 180932.92 and sigma = 79467.79


```
In [9]: #Log-transformation of the target variable
        #We use the numpy fuction log1p which applies log(1+x) to all elements of the
        column
        train["SalePrice"] = np.log1p(train["SalePrice"])
        #Check the new distribution
        sns.distplot(train['SalePrice'] , fit=norm);
        # Get the fitted parameters used by the function
        (mu, sigma) = norm.fit(train['SalePrice'])
        print( '\n mu = {:.2f} and sigma = {:.2f}\n'.format(mu, sigma))
        #Now plot the distribution
        plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )'.format(mu, si
        gma)],
                    loc='best')
        plt.ylabel('Frequency')
        plt.title('SalePrice distribution')
        #Get also the QQ-plot
        fig = plt.figure()
        res = stats.probplot(train['SalePrice'], plot=plt)
        plt.show()
```

mu = 12.02 and sigma = 0.40


```
In [10]: #Features engineering

    ntrain = train.shape[0]
    ntest = test.shape[0]
    y_train = train.SalePrice.values
    all_data = pd.concat((train, test)).reset_index(drop=True)
    all_data.drop(['SalePrice'], axis=1, inplace=True)
    print("all_data size is : {}".format(all_data.shape))
```

file:///C:/Users/Nitz Mistry/Downloads/Data_Mining_House_Prices_Regression.html

all_data size is : (2917, 79)

In [11]: #Missing Data all_data_na = (all_data.isnull().sum() / len(all_data)) * 100 all_data_na = all_data_na.drop(all_data_na[all_data_na == 0].index).sort_value s(ascending=False)[:30] missing_data = pd.DataFrame({'Missing Ratio' :all_data_na}) missing_data.head(20)

Out[11]:

	Missing Ratio
PoolQC	99.691
MiscFeature	96.400
Alley	93.212
Fence	80.425
FireplaceQu	48.680
LotFrontage	16.661
GarageQual	5.451
GarageCond	5.451
GarageFinish	5.451
GarageYrBlt	5.451
GarageType	5.382
BsmtExposure	2.811
BsmtCond	2.811
BsmtQual	2.777
BsmtFinType2	2.743
BsmtFinType1	2.708
MasVnrType	0.823
MasVnrArea	0.788
MSZoning	0.137
BsmtFullBath	0.069

```
In [12]: f, ax = plt.subplots(figsize=(15, 12))
    plt.xticks(rotation='90')
    sns.barplot(x=all_data_na.index, y=all_data_na)
    plt.xlabel('Features', fontsize=15)
    plt.ylabel('Percent of missing values', fontsize=15)
    plt.title('Percent missing data by feature', fontsize=15)
```

Out[12]: Text(0.5, 1.0, 'Percent missing data by feature')

In [13]: #Data Correlation #Correlation map to see how features are correlated with SalePrice corrmat = train.corr() plt.subplots(figsize=(12,9)) sns.heatmap(corrmat, vmax=0.9, square=True)

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x7f819be34208>


```
In [0]: #Input missing values
        all data["PoolQC"] = all data["PoolQC"].fillna("None")
        all data["MiscFeature"] = all data["MiscFeature"].fillna("None")
        all_data["Alley"] = all_data["Alley"].fillna("None")
        all_data["Fence"] = all_data["Fence"].fillna("None")
        all_data["FireplaceQu"] = all_data["FireplaceQu"].fillna("None")
        #Group by neighborhood and fill in missing value by the median LotFrontage of
         all the neighborhood
        all data["LotFrontage"] = all data.groupby("Neighborhood")["LotFrontage"].tran
        sform(
            lambda x: x.fillna(x.median()))
        for col in ('GarageType', 'GarageFinish', 'GarageQual', 'GarageCond'):
            all_data[col] = all_data[col].fillna('None')
        for col in ('GarageYrBlt', 'GarageArea', 'GarageCars'):
            all_data[col] = all_data[col].fillna(0)
        for col in ('BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBa
        th', 'BsmtHalfBath'):
            all data[col] = all data[col].fillna(0)
        for col in ('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinTy
        pe2'):
            all data[col] = all data[col].fillna('None')
        all data["MasVnrType"] = all data["MasVnrType"].fillna("None")
        all data["MasVnrArea"] = all data["MasVnrArea"].fillna(0)
        all_data['MSZoning'] = all_data['MSZoning'].fillna(all_data['MSZoning'].mode()
        [0]
        all_data = all_data.drop(['Utilities'], axis=1)
        all data["Functional"] = all data["Functional"].fillna("Typ")
        all data['Electrical'] = all data['Electrical'].fillna(all data['Electrical'].
        mode()[0])
        all data['KitchenQual'] = all data['KitchenQual'].fillna(all data['KitchenQua
        1'].mode()[0])
        all data['Exterior1st'] = all data['Exterior1st'].fillna(all data['Exterior1s
        t'].mode()[0])
        all data['Exterior2nd'] = all data['Exterior2nd'].fillna(all data['Exterior2n
        d'].mode()[0])
        all_data['SaleType'] = all_data['SaleType'].fillna(all_data['SaleType'].mode()
        [0]
        all_data['MSSubClass'] = all_data['MSSubClass'].fillna("None")
```

```
In [15]: #Check remaining missing values if any
all_data_na = (all_data.isnull().sum() / len(all_data)) * 100
all_data_na = all_data_na.drop(all_data_na[all_data_na == 0].index).sort_value
s(ascending=False)
missing_data = pd.DataFrame({'Missing Ratio' :all_data_na})
missing_data.head()
```

Out[15]:

Missing Ratio

```
In [0]: #More features engeneering

#Transforming some numerical variables that are really categorical

#MSSubClass=The building class
all_data['MSSubClass'] = all_data['MSSubClass'].apply(str)

#Changing OverallCond into a categorical variable
all_data['OverallCond'] = all_data['OverallCond'].astype(str)

#Year and month sold are transformed into categorical features.
all_data['YrSold'] = all_data['YrSold'].astype(str)
all_data['MoSold'] = all_data['MoSold'].astype(str)
```

```
In [17]: #Label Encoding some categorical variables that may contain information in the
         ir ordering set
         from sklearn.preprocessing import LabelEncoder
         cols = ('FireplaceQu', 'BsmtQual', 'BsmtCond', 'GarageQual', 'GarageCond',
                  'ExterQual', 'ExterCond', 'HeatingQC', 'PoolQC', 'KitchenQual', 'BsmtFi
         nType1',
                  'BsmtFinType2', 'Functional', 'Fence', 'BsmtExposure', 'GarageFinish',
          'LandSlope',
                  'LotShape', 'PavedDrive', 'Street', 'Alley', 'CentralAir', 'MSSubClas
         s', 'OverallCond',
                  'YrSold', 'MoSold')
         # process columns, apply LabelEncoder to categorical features
         for c in cols:
             lbl = LabelEncoder()
             lbl.fit(list(all data[c].values))
             all_data[c] = lbl.transform(list(all_data[c].values))
         # shape
         print('Shape all_data: {}'.format(all_data.shape))
```

Shape all_data: (2917, 78)

```
In [19]: #Skewed features

numeric_feats = all_data.dtypes[all_data.dtypes != "object"].index

# Check the skew of all numerical features
skewed_feats = all_data[numeric_feats].apply(lambda x: skew(x.dropna())).sort_values(ascending=False)
print("\nSkew in numerical features: \n")
skewness = pd.DataFrame({'Skew' :skewed_feats})
skewness.head(10)
```

Skew in numerical features:

Out[19]:

	Skew
MiscVal	21.940
PoolArea	17.689
LotArea	13.109
LowQualFinSF	12.085
3SsnPorch	11.372
LandSlope	4.973
KitchenAbvGr	4.301
BsmtFinSF2	4.145
EnclosedPorch	4.002
ScreenPorch	3.945

```
In [20]: #Box Cox Transformation of (highly) skewed features

skewness = skewness[abs(skewness) > 0.75]
print("There are {} skewed numerical features to Box Cox transform".format(ske wness.shape[0]))

from scipy.special import boxcox1p
skewed_features = skewness.index
lam = 0.15
for feat in skewed_features:
    #all_data[feat] += 1
    all_data[feat] = boxcox1p(all_data[feat], lam)

#all data[skewed features] = np.log1p(all data[skewed features])
```

There are 59 skewed numerical features to Box Cox transform

Modelling

```
In [0]: #Validation function
    n_folds = 5

def rmsle_cv(model):
        kf = KFold(n_folds, shuffle=True, random_state=42).get_n_splits(train.values)
        rmse= np.sqrt(-cross_val_score(model, train.values, y_train, scoring="neg_mean_squared_error", cv = kf))
        return(rmse)
```

```
In [0]: lasso = make pipeline(RobustScaler(), Lasso(alpha =0.0005, random state=1))
         ENet = make_pipeline(RobustScaler(), ElasticNet(alpha=0.0005, l1_ratio=.9, ran
         dom state=3))
         KRR = KernelRidge(alpha=0.6, kernel='polynomial', degree=2, coef0=2.5)
         GBoost = GradientBoostingRegressor(n_estimators=3000, learning_rate=0.05,
                                             max_depth=4, max_features='sqrt',
                                             min_samples_leaf=15, min_samples_split=10,
                                             loss='huber', random_state =5)
         model_xgb = xgb.XGBRegressor(colsample_bytree=0.4603, gamma=0.0468,
                                       learning_rate=0.05, max_depth=3,
                                       min_child_weight=1.7817, n_estimators=2200,
                                       reg_alpha=0.4640, reg_lambda=0.8571,
                                       subsample=0.5213, silent=1,
                                       random state =7, nthread = -1)
         model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=5,
                                        learning_rate=0.05, n_estimators=720,
                                        max_bin = 55, bagging_fraction = 0.8,
                                        bagging_freq = 5, feature_fraction = 0.2319,
                                        feature_fraction_seed=9, bagging_seed=9,
                                        min_data_in_leaf =6, min_sum_hessian_in_leaf = 1
         1)
In [26]: | score = rmsle_cv(lasso)
         print("\nLasso score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()))
         Lasso score: 0.1115 (0.0074)
In [27]:
         score = rmsle_cv(ENet)
         print("ElasticNet score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()))
         ElasticNet score: 0.1116 (0.0074)
In [28]:
         score = rmsle cv(KRR)
         print("Kernel Ridge score: {:.4f} ({:.4f})\n".format(score.mean(), score.std
         ()))
         Kernel Ridge score: 0.1153 (0.0075)
In [29]: | score = rmsle_cv(GBoost)
         print("Gradient Boosting score: {:.4f} ({:.4f})\n".format(score.mean(), score.
         std()))
         Gradient Boosting score: 0.1177 (0.0080)
In [30]: | score = rmsle_cv(model_xgb)
         print("Xgboost score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()))
         Xgboost score: 0.1164 (0.0069)
```

```
In [31]: score = rmsle_cv(model_lgb)
print("LGBM score: {:.4f} ({:.4f})\n" .format(score.mean(), score.std()))

LGBM score: 0.1167 (0.0072)
```

```
In [0]: # Stacking models
        # Averaging base models
        class AveragingModels(BaseEstimator, RegressorMixin, TransformerMixin):
            def __init__(self, models):
                 self.models = models
            # we define clones of the original models to fit the data in
            def fit(self, X, y):
                self.models_ = [clone(x) for x in self.models]
                # Train cloned base models
                for model in self.models :
                    model.fit(X, y)
                return self
            #Now we do the predictions for cloned models and average them
            def predict(self, X):
                predictions = np.column_stack([
                     model.predict(X) for model in self.models_
                 ])
                 return np.mean(predictions, axis=1)
```

```
In [33]: # Averaged base models score
    averaged_models = AveragingModels(models = (ENet, GBoost, KRR, lasso))
    score = rmsle_cv(averaged_models)
    print(" Averaged base models score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()))
```

Averaged base models score: 0.1091 (0.0075)

```
In [0]: # Stacking averaged Models Class
        class StackingAveragedModels(BaseEstimator, RegressorMixin, TransformerMixin):
            def init (self, base models, meta model, n folds=5):
                self.base models = base models
                self.meta model = meta model
                self.n folds = n folds
            # We again fit the data on clones of the original models
            def fit(self, X, y):
                self.base models = [list() for x in self.base models]
                self.meta_model_ = clone(self.meta_model)
                kfold = KFold(n_splits=self.n_folds, shuffle=True, random_state=156)
                # Train cloned base models then create out-of-fold predictions
                # that are needed to train the cloned meta-model
                out of fold predictions = np.zeros((X.shape[0], len(self.base models
        )))
                for i, model in enumerate(self.base_models):
                    for train index, holdout index in kfold.split(X, y):
                        instance = clone(model)
                        self.base_models_[i].append(instance)
                        instance.fit(X[train index], y[train index])
                        y_pred = instance.predict(X[holdout_index])
                        out_of_fold_predictions[holdout_index, i] = y_pred
                # Now train the cloned meta-model using the out-of-fold predictions a
        s new feature
                self.meta model .fit(out of fold predictions, y)
                return self
            #Do the predictions of all base models on the test data and use the averag
        ed predictions as
            #meta-features for the final prediction which is done by the meta-model
            def predict(self, X):
                meta features = np.column stack([
                    np.column_stack([model.predict(X) for model in base_models]).mean(
        axis=1)
                    for base models in self.base models ])
                return self.meta_model_.predict(meta_features)
```

Stacking Averaged models score: 0.1084 (0.0074)

```
In [0]: def rmsle(y, y_pred):
    return np.sqrt(mean_squared_error(y, y_pred))
```

Final Training and Prediction

```
In [40]: # StackedRegressor
         stacked_averaged_models.fit(train.values, y_train)
         stacked_train_pred = stacked_averaged_models.predict(train.values)
         stacked pred = np.expm1(stacked averaged models.predict(test.values))
         print(rmsle(y train, stacked train pred))
         0.07814905151549066
In [41]: # XGBoost
         model_xgb.fit(train, y_train)
         xgb_train_pred = model_xgb.predict(train)
         xgb pred = np.expm1(model xgb.predict(test))
         print(rmsle(y_train, xgb_train_pred))
         0.07898668813465673
In [42]: # LightGBM
         model_lgb.fit(train, y_train)
         lgb train pred = model lgb.predict(train)
         lgb pred = np.expm1(model lgb.predict(test.values))
         print(rmsle(y_train, lgb_train_pred))
         0.07343743130986105
In [43]:
        '''RMSE on the entire Train data when averaging'''
         print('RMSLE score on train data:')
         print(rmsle(y_train,stacked_train_pred*0.70 +
                        xgb_train_pred*0.15 + lgb_train_pred*0.15 ))
         RMSLE score on train data:
         0.07548543390046325
 In [0]: # Ensemble prediction
         ensemble = stacked_pred*0.70 + xgb_pred*0.15 + lgb_pred*0.15
In [0]: # Submission
         sub = pd.DataFrame()
         sub['Id'] = test_ID
         sub['SalePrice'] = ensemble
         sub.to_csv('submission.csv',index=False)
 In [0]: # Download submission file
         files.download('submission.csv')
```