Task 4

Task 4: Use 5-fold cross-validation to select the best λ . Compare the prediction performance between the "optimal" model and "full" model.

5-fold CV

We write an R function cv.logit.lasso to conduct 5-fold cross-validation to select the best λ .

```
cv.logit.lasso <- function(x, y, nfolds = 5, lambda) {</pre>
  auc <- data.frame(matrix(ncol = 3, nrow = 0))</pre>
  folds <- createFolds(y, k = nfolds)</pre>
  for (i in 1:nfolds) {
    valid_index <- folds[[i]]</pre>
    x_training <- x[-valid_index, ]</pre>
    y_training <- y[-valid_index]</pre>
    training_dat <- data.frame(cbind(y_training, x_training))</pre>
    x_valid <- cbind(rep(1, length(valid_index)), x[valid_index, ])</pre>
    y_valid <- y[valid_index]</pre>
    res <- LogisticLASSO(dat = training_dat, start = rep(0, ncol(training_dat)), lambda = lambda)
    for (k in 1:nrow(res)) {
      betavec <- res[k, 2:ncol(res)]</pre>
      u_valid <- x_valid %*% betavec
      phat_valid <- sigmoid(u_valid)[, 1]</pre>
      roc <- roc(response = y_valid, predictor = phat_valid)</pre>
      auc <- rbind(auc, c(lambda[k], i, roc$auc[1]))</pre>
    }
  }
  colnames(auc) <- c("lambda", "fold", "auc")</pre>
  cv_res <- auc %>%
    group_by(lambda) %>%
    summarize(auc mean = mean(auc)) %>%
    mutate(auc_ranking = min_rank(desc(auc_mean)))
  bestlambda <- min(cv_res$lambda[cv_res$auc_ranking == 1])</pre>
  return(cv_res)
```

Compare the results of cross-validation using glmnet and using our algorithm.

1. Our function cv.logit.lasso:

```
lambda_max <- max(abs(t(x) %*% (y - mean(y)))) / floor(length(y) * 4/5) # cv trains model on 4/5 of the
lambdas <- exp(seq(log(lambda_max), log(lambda_max) - 8, length = 30))
set.seed(1)
res_cv = cv.logit.lasso(x, y, nfolds = 5, lambda = lambdas)
as.matrix(res_cv %>% arrange(-lambda))
```

```
##
               lambda auc_mean auc_ranking
## [1,] 0.4950042193 0.5000000
## [2,] 0.3756674150 0.9701369
                                          29
## [3,] 0.2851006137 0.9789711
                                          28
## [4,] 0.2163678740 0.9817904
                                          27
## [5,] 0.1642053881 0.9834819
                                          26
## [6,] 0.1246183593 0.9848048
                                          21
## [7,] 0.0945750664 0.9862041
                                          18
## [8,] 0.0717746826 0.9875328
                                          15
## [9,] 0.0544710700 0.9892431
                                          10
## [10,] 0.0413390538 0.9894404
                                          8
                                          7
## [11,] 0.0313729356 0.9899379
## [12,] 0.0238094730 0.9901358
                                           6
## [13,] 0.0180694282 0.9903346
                                           4
## [14,] 0.0137132071 0.9903339
                                           5
## [15,] 0.0104071942 0.9905325
                                           1
## [16,] 0.0078982029 0.9905317
                                           2
## [17,] 0.0059940852 0.9904323
                                          3
                                          9
## [18,] 0.0045490168 0.9894383
## [19,] 0.0034523289 0.9887423
                                          11
## [20,] 0.0026200332 0.9880455
                                          12
## [21,] 0.0019883893 0.9878508
                                          13
## [22,] 0.0015090236 0.9875498
                                          14
## [23,] 0.0011452246 0.9864511
                                          16
## [24,] 0.0008691311 0.9862492
                                          17
## [25,] 0.0006595989 0.9857439
                                          19
## [26,] 0.0005005812 0.9848421
                                          20
## [27,] 0.0003798999 0.9844401
                                          22
## [28,] 0.0002883127 0.9837394
                                          25
## [29,] 0.0002188056 0.9837398
                                          24
## [30,] 0.0001660554 0.9841404
                                          23
# best lambda
best_lambda <- max(res_cv$lambda[res_cv$auc_ranking == 1])</pre>
best_lambda
```

[1] 0.01040719

```
plot(log(res_cv$lambda),
    res_cv$auc_mean,
    pch = 16,
    xlab = "log lambda",
    ylab = "AUC",
    col = "red")
abline(v = log(res_cv$lambda[which((res_cv$auc_ranking == 1))]), col = "gray", lty = 3)
```



```
# coefficients of the best model
res_coef <- LogisticLASSO(dat = Training, start = rep(0, ncol(Training)),</pre>
                          lambda = lambdas) %>% as.data.frame
res_coef[res_coef$lambda == best_lambda, -1]
##
      (Intercept) radius_mean texture_mean perimeter_mean area_mean
## 15 -0.6314292
                           0
                                 0.3808524
      smoothness_mean compactness_mean concavity_mean concave.points_mean
##
## 15
                                    0
      symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
##
## 15
                                        0 0.6822552
      area_se smoothness_se compactness_se concavity_se concave.points_se
##
## 15
                          0
                                         0
##
      symmetry_se fractal_dimension_se radius_worst texture_worst perimeter_worst
## 15
                            -0.0145589
                                           2.534049
                                                         0.4297598
      area_worst smoothness_worst compactness_worst concavity_worst
##
                         0.474963
## 15
                                                           0.1166963
##
      concave.points_worst symmetry_worst fractal_dimension_worst
## 15
                  1.000594
                                0.3539412
  2. glmnet from \mathbf{R} package caret
set.seed(1)
```

nfolds = 5, alpha = 1,

fit.logit.lasso <- cv.glmnet(x, y,</pre>

[1] 0.01040719

plot(fit.logit.lasso)


```
# coefficients of the best model
coef(fit.logit.lasso, fit.logit.lasso$lambda.min)
```

```
## 31 x 1 sparse Matrix of class "dgCMatrix"
##
                                   s1
## (Intercept)
                           -0.6155278
## radius_mean
## texture_mean
                            0.3680397
## perimeter_mean
## area_mean
## smoothness_mean
## compactness_mean
## concavity_mean
## concave.points_mean
                            0.4396486
## symmetry_mean
```

```
## fractal_dimension_mean .
                 0.7840213
## radius_se
## texture_se
## perimeter_se
## area_se
## smoothness_se
## compactness_se
## concavity_se
## concave.points_se
## symmetry_se
## fractal_dimension_se -0.0167962
## radius_worst 2.5469005
## texture_worst 0.4561346
## perimeter_worst .
## area_worst
## smoothness_worst 0.4813888
## compactness_worst
## concavity_worst 0.1024629
## concave.points_worst 1.0701080
## symmetry_worst 0.3587025
## fractal_dimension_worst .
```

The results are slightly different (mean AUC values).

```
tibble(
  lambda = lambdas,
  ours_AUC = res_cv %>% arrange(-lambda) %>% .$auc_mean,
  cv.glmnet_AUC = fit.logit.lasso$cvm
) %>%
  knitr::kable()
```

lambda	ours_AUC	${\rm cv.glmnet_AUC}$
0.4950042	0.5000000	0.5000000
0.3756674	0.9701369	0.9718839
0.2851006	0.9789711	0.9778577
0.2163679	0.9817904	0.9817045
0.1642054	0.9834819	0.9840974
0.1246184	0.9848048	0.9849193
0.0945751	0.9862041	0.9860165
0.0717747	0.9875328	0.9877492
0.0544711	0.9892431	0.9890586
0.0413391	0.9894404	0.9895565
0.0313729	0.9899379	0.9898538
0.0238095	0.9901358	0.9900528
0.0180694	0.9903346	0.9903509
0.0137132	0.9903339	0.9905500
0.0104072	0.9905325	0.9906491
0.0078982	0.9905317	0.9904501
0.0059941	0.9904323	0.9905479
0.0045490	0.9894383	0.9894559
0.0034523	0.9887423	0.9887615
0.0026200	0.9880455	0.9881670

lambda	ours_AUC	cv.glmnet_AUC
0.0019884	0.9878508	0.9877718
0.0015090	0.9875498	0.9874650
0.0011452	0.9864511	0.9865655
0.0008691	0.9862492	0.9865631
0.0006596	0.9857439	0.9856522
0.0005006	0.9848421	0.9848468
0.0003799	0.9844401	0.9840349
0.0002883	0.9837394	0.9839369
0.0002188	0.9837398	0.9837380
0.0001661	0.9841404	0.9842386

The best λ 's are the same, and the coefficients are very similar.

```
# our best lambda
best_lambda
```

[1] 0.01040719

```
# cv.glmnet's best lambda
fit.logit.lasso$lambda.min
```

[1] 0.01040719

```
tibble(
  predictor = c("(Intercept)", names(Training)[-1]),
  ours_coef = res_coef[res_coef$lambda == best_lambda, -1] %>% as.vector %>% as.numeric,
  cv.glmnet_coef = coef(fit.logit.lasso, fit.logit.lasso$lambda.min) %>% as.vector
) %>%
  knitr::kable()
```

predictor	ours_coef	$cv.glmnet_coef$
(Intercept)	-0.6314292	-0.6155278
radius_mean	0.0000000	0.0000000
texture_mean	0.3808524	0.3680397
perimeter_mean	0.0000000	0.0000000
area_mean	0.0000000	0.0000000
smoothness_mean	0.0000000	0.0000000
compactness_mean	0.0000000	0.0000000
concavity_mean	0.0000000	0.0000000
concave.points_mean	0.4863225	0.4396486
symmetry_mean	0.0000000	0.0000000
fractal_dimension_mean	0.0000000	0.0000000
radius_se	0.6822552	0.7840213
texture_se	0.0000000	0.0000000
perimeter_se	0.0000000	0.0000000
area_se	0.0000000	0.0000000
smoothness_se	0.0000000	0.0000000
compactness_se	0.0000000	0.0000000

·		
predictor	$ours_coef$	$cv.glmnet_coef$
concavity_se	0.0000000	0.0000000
concave.points_se	0.0000000	0.0000000
symmetry_se	0.0000000	0.0000000
fractal_dimension_se	-0.0145589	-0.0167962
radius_worst	2.5340492	2.5469005
texture_worst	0.4297598	0.4561346
perimeter_worst	0.0000000	0.0000000
area_worst	0.0000000	0.0000000
$smoothness_worst$	0.4749630	0.4813888
compactness_worst	0.0000000	0.0000000
concavity_worst	0.1166963	0.1024629
concave.points_worst	1.0005941	1.0701080
symmetry_worst	0.3539412	0.3587025
$fractal_dimension_worst$	0.0000000	0.0000000

Prediction performance comparison

Below is the prediction performance on the test data.

```
# test data
X_test <- cbind(rep(1, nrow(Test)), model.matrix(diagnosis ~ ., Test)[, -1])</pre>
y test <- Test$diagnosis
# logistic model
res_logit <- NewtonRaphson(dat = Training, func = logisticstuff, start = rep(0, ncol(Training)))
## Warning in NewtonRaphson(dat = Training, func = logisticstuff, start = rep(0, :
## Complete separation occurs. Algorithm does not converge.
betavec_logit <- res_logit[nrow(res_logit), 3:ncol(res_logit)]</pre>
u <- X_test %*% betavec_logit
phat <- sigmoid(u)[, 1]</pre>
roc.logit <- roc(response = y_test, predictor = phat)</pre>
# logistic LASSO model
betavec_logit.lasso <- res_coef[res_coef$lambda == best_lambda, -c(1, 2)]
col_nonzero <- names(betavec_logit.lasso)[betavec_logit.lasso != 0]</pre>
df_nonzero <- Training[c("diagnosis", col_nonzero)]</pre>
refit_logit <- NewtonRaphson(dat = df_nonzero, func = logisticstuff, start = rep(0, ncol(df_nonzero)))
betavec_lasso.refit <- refit_logit[nrow(refit_logit), 3:ncol(refit_logit)]</pre>
betavec_lasso.refit <- bind_rows(betavec_logit.lasso, betavec_lasso.refit)[2,] %>% select("(Intercept)"
betavec_lasso.refit[is.na(betavec_lasso.refit)] <- 0</pre>
betavec_lasso.refit <- as.numeric(betavec_lasso.refit)</pre>
u <- X_test %*% betavec_lasso.refit
phat <- sigmoid(u)[, 1]</pre>
roc.logitlasso <- roc(response = y_test, predictor = phat)</pre>
# logistic LASSO model (cv.glmnet)
betavec_logit.lasso.glm_temp <- coef(fit.logit.lasso, fit.logit.lasso$lambda.min)
betavec_logit.lasso.glm <- betavec_logit.lasso.glm_temp %>% as.vector
```

```
names(betavec_logit.lasso.glm) <- betavec_logit.lasso.glm_temp@Dimnames[[1]]
col_nonzero <- names(betavec_logit.lasso.glm)[betavec_logit.lasso.glm != 0][-1]
df_nonzero <- Training[c("diagnosis", col_nonzero)]
refit_logit.glm <- NewtonRaphson(dat = df_nonzero, func = logisticstuff, start = rep(0, ncol(df_nonzero))
betavec_lasso.refit.glm <- refit_logit.glm[nrow(refit_logit.glm), 3:ncol(refit_logit.glm)]
betavec_lasso.refit.glm <- bind_rows(betavec_logit.lasso, betavec_lasso.refit.glm)[2,] %>% select("(Int betavec_lasso.refit.glm[is.na(betavec_lasso.refit.glm)] <- 0
betavec_lasso.refit.glm <- as.numeric(betavec_lasso.refit.glm)
u <- X_test %*% betavec_lasso.refit.glm
phat <- sigmoid(u)[, 1]
roc.logitlasso.glm <- roc(response = y_test, predictor = phat)

# draw rocs
auc <- c(roc.logit$auc[1], roc.logitlasso$auc[1], roc.logitlasso.glm$auc[1])
auc</pre>
```

[1] 0.9661130 0.9983389 0.9983389

```
plot(roc.logit, legacy.axes = TRUE)
plot(roc.logitlasso, col = 2, add = TRUE)
plot(roc.logitlasso.glm, col = 3, add = TRUE)
modelNames <- c("logistic", "logistic LASSO", "logistic LASSO (cv.glmnet)")
legend("bottomright", legend = pasteO(modelNames, ": ", round(auc, 3)),
col = 1:3, lwd = 2)</pre>
```


Correlation Plot

LASSO model coefficients

Re-fit the logistic regression with the predictors selected by LASSO.

refit_logit[nrow(refit_logit), 3:ncol(refit_logit)]

```
(Intercept)
##
                                 texture_mean
                                                concave.points_mean
##
            -0.09092737
                                   0.94392378
                                                         0.84754704
##
              radius_se fractal_dimension_se
                                                       radius_worst
##
             3.77040802
                                  -1.12476354
                                                         6.01510669
##
          texture_worst
                             smoothness_worst
                                                    concavity_worst
             1.23805580
                                   1.67539455
                                                         1.19425400
##
## concave.points_worst
                               symmetry_worst
##
             1.87249528
                                   0.69899461
```