n-ビンゴの臨界盤面数問題

以下, $\mathbb{B} := \{0,1\}$ は通常のブール代数としての構造を持つものとする.また行ベクトルと列ベクトルは自然に同一視し,特に断りのない限り行ベクトルで表現する.

定義 1.0 でない自然数 n に対して、n-ビンゴ (n-Bingo) とは以下に定義されるような対象の総称である.

- (1) n-ビンゴ盤 (n-Bingo board) ないし単に盤面 (board) とは、 \mathbb{B} 上の $n \times n$ 行列のことである。n-ビンゴ盤の全体がなす集合を $\mathcal{B}_n := \mathbb{B}^{n \times n}$ とも表す。
- (2) 盤面 $B = [b_{i,i}] \in \mathcal{B}_n$ と自然数 $i \ (1 \le i \le n)$ に対して、
 - B の第 i ヨコ列 (horizontal) $R_i(B)$ とはいわゆる第 i 行,すなわちベクトル $(b_{i,1},\ldots,b_{i,n}) \in \mathbb{B}^n$ のことである.
 - B の第 i タテ列 (vertical) $C_i(B)$ とはいわゆる第 i 列,すなわちベクトル $(b_{1,i},\ldots,b_{n,i}) \in \mathbb{B}^n$ のことである.
 - B の左ナナメ列(left-diagnal)とは $D_l(B):=(b_{1,1},\ldots,b_{i,i},\ldots,b_{n,n})$ で表されるベクトル $D_l(B)\in\mathbb{B}^n$ のことである.
 - B の右ナナメ列 (right-diagnal) とは $D_r(B):=(b_{1,n},\ldots,b_{i,n-i+1},\ldots,b_{n,1})$ で表されるベクトル $D_r(B)\in\mathbb{B}^n$ のことである.
 - B の各ヨコ列, タテ列, 左右ナナメ列を総じて B の列 (line) といい, その集合を L(B) で表す.
- (3) 盤面 $B \in \mathcal{B}_n$ について、ある列 $l \in L(B)$ が存在して l = (1, ..., 1) が成り立つとき、またそのときに限り、B はビンゴ (bingo) であるという.

記法 1. 盤面 $B \in \mathcal{B}_n$ の (r,c) 成分を $a \in \mathbb{B}$ に置き換えた盤面を $B_{[(r,c)\mapsto a]}$ で表す. すなわち $B=[b_{i,j}]$ とすれば、

$$B_{[(r,c)\mapsto a]} = [a_{i,j}], \quad a_{i,j} = \left\{ \begin{array}{ll} a & \text{if } (i,j) = (r,c) \\ b_{i,j} & \text{otherwise} \end{array} \right.$$

と書くことができる.

定義 2. 盤面 $B = [b_{i,j}] \in \mathcal{B}_n$ が臨界 (critical) であるとは、B が次の条件をどちらも満たすことをいう.

- B はビンゴでない.
- $b_{i,j}=0$ であるような任意の i,j $(1\leq i,j\leq n)$ に対して, $B_{[(i,j)\mapsto 1]}$ がビンゴになる

このとき、次のような問題を考えることができる.

問題 1 (Kuwada, 2024). n-ビンゴの臨界盤面はいくつあるか.

なお問題 1 (臨界盤面数問題) は未解決である.

定義 3. 各 0 でない自然数 n に対して, \mathcal{B}_n 上の順序 \preceq を次で定義する.

 $A,B\in\mathcal{B}_n$ に対して 0 個以上の組 $(i_1,j_1),\dots,(i_m,j_m)$ が存在(ただし各 $1\leq k\leq m$ について $1\leq i_k,j_k\leq n$)して