Jean-Marie Dufour Janvier 2002

Compilé: 19 janvier 2002

THÉORIE ÉCONOMÉTRIQUE AVANCÉE EXERCICES 4

GÉNÉRALITÉS SUR L'ESTIMATION

- 1. Soient le modèle paramétrique $(\mathcal{Y}, \mathcal{P})$, où $\mathcal{P} = \{P_{\theta} : \theta \in \Theta \subseteq \mathbb{R}^p\}$, et $m_y(d)$ un estimateur mixte de $g(\theta)$. Soit $L(d, \theta)$ une fonction de perte convexe en $d \in g(\Theta)$.
 - (a) Montrez qu'il existe un estimateur pur $\delta(y)$, où $y \in \mathcal{Y}$, qui est préférable à $m_y(d)$.
 - (b) Soit S(y) une statistique exhaustive pour θ . Montrez que l'estimateur $\delta(y)$ peut être amélioré par un estimateur qui est une fonction de S(y) seulement.
- 2. Soient $g(\theta)$ un paramètre dans \mathbb{R}^{q} et d(y) un estimateur (pur) de $g(\theta)$.
 - (a) Définissez la fonction de risque quadratique matricielle pour l'estimation de $g\left(\theta\right)$ par $d\left(y\right)$.
 - (b) Montrez qu'un estimateur optimal au sens du risque quadratique matriciel minimise aussi le risque scalaire

$$L_{c}\left(d,\theta\right)=\left(c'\left[d-g\left(\theta\right)\right]\right)^{2} \text{ pour tout } c\in\mathbb{R}^{q}.$$

3. Soient Y_1 et Y_2 deux observations indépendantes provenant chacune d'une loi de Poisson $P(\lambda)$. Considérez les deux estimateurs

$$\delta_1(Y) = (Y_1 + Y_2) / 2,$$

 $\delta_2(Y) = [Y_1 - \delta_1(Y)]^2 + [Y_2 - \delta_1(Y)]^2,$

où
$$Y = (Y_1, Y_2)'$$
.

- (a) i. L'estimateur $\delta_1(Y)$ est-il sans biais ? Justifiez votre réponse.
 - ii. L'estimateur $\delta_{2}\left(Y\right)$ est-il sans biais ? Justifiez votre réponse.
- (b) Montrez que $\delta_1\left(Y\right)$ est préférable à $\delta_2\left(Y\right)$ au sens du risque quadratique.
- 4. Définissez les quatre concepts suivants :
 - (a) estimateur asymptotiquement sans biais;

- (b) estimateur faiblement convergent;
- (c) estimateur convergent en moyenne quadratique;
- (d) estimateur fortement convergent.
- 5. Montrez qu'un estimateur convergent en moyenne quadratique est
 - (a) asymptotiquement sans biais;
 - (b) faiblement convergent.
- 6. Exercice 5.1 dans Gouriéroux and Monfort (1989, chap. V, page 129).
- 7. Exercice 5.3 dans Gouriéroux and Monfort (1989, chap. V, page 130).
- 8. Exercice 5.6 dans Gouriéroux and Monfort (1989, chap. V, page 130).

Références

GOURIÉROUX, C., AND A. MONFORT (1989): Statistique et modèles économétriques, Volumes 1 et 2. Economica, Paris.