

#### **Preface**

- To my knowledge, Vintage LLMs have not been built at the scale I'm imagining in this talk.
- I'm not planning to build them myself but I want to encourage people to think about the idea.
- This is an informal talk with high-level ideas.

### Vintage LLM = LLM trained on texts (+ images) up to some date

- Date could be 2019 (easier), 1900, or 200 AD (harder).
- Need to avoid info from present leaking into old docs
- Images are things people at the time could have seen

E.g. People in 200 AD could see bees or eggs cracking (despite these not being accurately depicted in art)









# Motivation: Test LLM-agent approaches to prediction and scientific invention

How well can LLM\_2019 **forecast** up to 2024?

→ pandemic, wars, finance

Can LLM\_1989 **reinvent** ideas from last 35 years?

→ web, quantum computers, blockchain, transformer, behavioral economics

What about LLM 1600?

→ Newton's Laws, Theory of Evolution, probability theory, calculus, algebra, Turing machines

### **Motivation: Humanities questions**

- Time travel: Communicate with someone from 1700. Can you understand each other?
- Counterfactual history: Impact of adding Western texts to Chinese (or vice versa)
- How surprising were new ideas (e.g. special relativity) from the perspective of the time leading up to them?

### **Further Motivation**

**Epistemic AI** = makes accurate forecasts, literature surveys, new STEM ideas.

→ Needs gold-standard examples to train and evaluate such an Al

Sources of examples: (1) current humans, (2) algorithm, (3) historical data.

Advantages of (3) historical data:

- Rare events: pandemics, econ crises, big advances in STEM or philosophy.
- Easier to judge quality of past ideas ("stood test of time")
- Legible to outsiders: e.g. LLM\_2019 predicts Covid pandemic

# Challenges in making Vintage LLMs

### 1. Data from the past

- → Models need 50T words = 50x Library of Congress
- → Can you gather enough data + ensure no leakage?

### 2. Training cost

→ Training a SOTA model is >\$200M for compute (= 0.05% of science funding)

Also: Both increasing exponentially!



# Addressing Challenges (half baked)

#### 1. Data

- → We have the **highest quality** data for 2021 or 1950: STEM papers, key stats, Wikipedia.
- → There's fewer Reddit threads, but these can be synthetically generated
- → Progress in synthetic data should carry over from use on frontier LLMs

#### 2. Training cost

- → Idea: Chronological training with forking
- → If 2/3 data is ≤2021, increase in training cost is +33% over a single model.



## Addressing challenges: very half-baked

#### Vintage LLM outsources some functions to current LLM

We need to restrict *knowledge* of a Vintage LLM but not its use of tools/experiments.

Using Toolformer idea, train LLM\_1900 to **control** LLM\_2024 for tools + experiments.

E.g. LLM\_1900 describes test of handwashing in hospital and GPT-40 tells the likely result.

Need to avoid LLM\_2024 leaking info, but can use compartmentalized LLM.

#### **Compartmentalized LLM**

Train on all data but with date annotations before every document. Minimal performance penalty vs regular model.

Thus the LLM emulates explicit reasoning using only past facts. It's not a vintage LLM but in doing explicit reasoning it will avoid anachronism. Very useful as a too.



