Mobile Health Text Misinformation Detection Using Effective Information Retrieval Methods

```
warning('off','MATLAB:ClassInstanceExists')
clear classes
mod = py.importlib.import_module('LCSProjectPython');
py.importlib.reload(mod);

modLACS = py.importlib.import_module('LACSProjectPython');
py.importlib.reload(modLACS);

modPhrase = py.importlib.import_module('PhraseProjectPython');
py.importlib.reload(modPhrase);
```

Longest Common Subsequence (LCS)

Similarity = # of connections

```
py.LCSProjectPython.getResult()
T = readtable('LCSResult.csv');
T
```

$T = 6 \times 4 \text{ table}$

	Class	Total	LCSCorrectPrediction	LCSAccuracy
1	'Disinformative'	34	18	53
2	'Real'	24	9	38
3	'Fake'	52	43	83
4	'MisInformative'	35	17	49
5	'Unverified'	44	28	64
6	'Total'	189	115	61

```
T = readtable('PlotLCS.csv');
X=T{:,1};
Y=T{:,2};
savefig('LCSdata.fig');
close(gcf);
%openfig('LCSdata.fig')
plot(X,Y)
title('LCS Accuracy Percentage')
xlabel('Number Of Inputs')
ylabel('Accuracy')
```


Longest Approximate Common Subsequence (LACS)

Similarity = Weight*(# of connections) – (# of crossings)/(# of connections)

```
py.LACSProjectPython.getResult()
T = readtable('LACSResult.csv');
T
```

 $T = 6 \times 4 \text{ table}$

	Class	Total	LACSCorrectPrediction	LACSAccuracy
1	'Disinformative'	34	27	79
2	'Real'	24	10	42
3	'Fake'	52	50	96
4	'MisInformative'	35	23	66
5	'Unverified'	44	31	70
6	'Total'	189	141	75

```
T = readtable('PlotLACS.csv');
X=T{:,1};
Y=T{:,2};
savefig('LACSdata.fig');
close(gcf);
```

```
%openfig('LACSdata.fig')
plot(X,Y)
title('LACS Accuracy Percentage')
xlabel('Number Of Inputs')
ylabel('Accuracy')
```


Phrases Matched

Similarity= (# of keywords matched) + $2\times$ (# of phrases matched) + \sum (length of each phrase matched)

```
py.PhraseProjectPython.getResult()
T = readtable('PhraseResult.csv');
T
```

 $T = 6 \times 4 \text{ table}$

	Class	Total	PhraseMatchedCorrectPrediction	PhraseMatchedAccuracy
1	'Disinformative'	34	23	68
2	'Real'	24	10	42
3	'Fake'	52	46	88
4	'MisInformative'	35	20	57
5	'Unverified'	44	25	57
6	'Total'	189	124	66

```
T = readtable('PlotPhrase.csv');
X=T{:,1};
Y=T{:,2};
savefig('Phrasedata.fig');
close(gcf);
%openfig('LACSdata.fig')
plot(X,Y)
title('Phrase Accuracy Percentage')
xlabel('Number Of Inputs')
ylabel('Accuracy')
```

