Лабораторная работа №3 «Умножение матрицы на матрицу в MPI 2D решетка»

Описание алгоритма

Вычисляется произведение $C = A \times B$, где A — матрица размера $n_1 \times n_2$ и B —матрица $n_2 \times n_3$. Матрица результатов C имеет размер $n_1 \times n_3$. Исходные матрицы первоначально доступны на нулевом процессе, и матрица результатов возвращена в нулевой процесс.

Параллельное выполнение алгоритма осуществляется на двумерной (2D) решетке компьютеров размером $p_1 \times p_2$. Матрицы разрезаны, как показано на Рис. 1: матрица A разрезана на p_1 горизонтальных полос, матрица B разрезана на p_2 вертикальных полос, и матрица результата C разрезана на $p_1 \times p_2$ подматрицы (или субматрицы).

Рис. 1. Разрезание данных для параллельного алгоритма произведения двух матриц при вычислении в 2D решетке компьютеров. Выделенные данные расположены в одном компьютере

Каждый компьютер (i,j) вычисляет произведение i-й горизонтальной полосы матрицы A и j-й вертикальной полосы матрицы B, произведение получено в подматрице (i,j) матрицы C.

Последовательные стадии вычисления иллюстрируются на Рис. 2:

- 1. Матрица А распределяется по горизонтальным полосам вдоль координаты (х, 0).
- 2. Матрица В распределяется по вертикальным полосам вдоль координаты (0, у).
- 3. Полосы А распространяются в измерении у.
- 4. Полосы В распространяются в измерении х.
- 5. Каждый процесс вычисляет одну подматрицу произведения.
- 6. Матрица С собирается из (х, у) плоскости.

Осуществлять пересылки между компьютерами во время вычислений не нужно, т. к. все полосы матрицы ${\tt B}$ в памяти компьютеров системы.

Рис. 2 Стадии вычисления произведения матриц в 2D параллельном алгоритме

Задание к лабораторной работе №3

- 1. Реализовать параллельный алгоритм умножения матрицы на матрицу при 2D решетке.
- 2. Исследовать производительность параллельной программы в зависимости от размера матрицы и размера решетки.
- 3. Выполнить профилирование программы с помощью МРЕ при использовании 16-и ядер.