Numerical Optimization, Fall 2024 Homework 3

Due 23:59 (CST), Oct. 31, 2024

Problem 1

Prove the dual of the dual of the primal problem is itself. [20pts]

Problem 2

Write the optimality conditions for the following linear programming problem. [15pts]

$$\begin{array}{ll} \min & x_1 + 2x_2 \\ \text{s.t.} & x_1 + x_2 \geq 1, \\ & 2x_1 + x_2 \geq 2, \\ & x_1, x_2 \geq 0. \end{array}$$

Problem 3

Write the dual problem for the following linear programming problem. [15pts]

min
$$10x_1 + 15x_2$$

s.t. $2x_1 + x_2 \ge 3$,
 $x_1 + 3x_2 \ge 5$,
 $x_1, x_2 \ge 0$.

Problem 4

Give an example where neither the primal problem nor the dual problem is feasible. [20pts]

Problem 5

- (1) Prove that one and only one of $(Ax \leq 0, c^Tx > 0)$ or $(A^Ty = c, y \geq 0)$ is solvable, where $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^n$. [15pts]
- (2) Prove that one and only one of $(\boldsymbol{B}\boldsymbol{y} + \boldsymbol{C}\boldsymbol{w} = \boldsymbol{g}, \boldsymbol{y} > \boldsymbol{0})$ or $(\boldsymbol{g}^T\boldsymbol{d} < 0, \boldsymbol{B}^T\boldsymbol{d} \geq \boldsymbol{0}, \boldsymbol{C}^T\boldsymbol{d} = 0)$ is solvable, where $\boldsymbol{B} \in \mathbb{R}^{n \times m}, \boldsymbol{C} \in \mathbb{R}^{n \times p}, \boldsymbol{g} \in \mathbb{R}^n$. [15pts]