PLANCK CLUSTER PAPER

SB¹, JPH¹, FM, PD¹ Draft Version May 14, 2018

ABSTRACT

We propose to continue our program of optical imaging to unveil all of the most massive clusters in the observable Universe. We start from the all-sky Planck Sunyaev-Zeldovich (SZ) catalogs, which contain several hundred high significance (signal-to-noise ratio, SNR > 5) unconfirmed cluster candidates. Since SZ selection favors high mass clusters and the Planck confirmation process favored low redshift systems, the highest significance unconfirmed candidates are, therefore, likely massive clusters ($M_{500} > 5 \times 10^{14} \ \mathrm{M}_{\odot}$) at relatively high redshift (z > 0.5). Our proposed observations, using MOSAIC-3 on Mayall, are designed to confirm the presence of a brightest cluster galaxy (to $z \sim 1$) and red sequence of accompanying cluster members (to $z \sim 0.7$). Preliminary results from our observations over the past two years have validated our approach by the detection of optical clusters in a number of Planck candidates, including the discovery of rich systems at z = 0.553 and z = 0.830 that rival the most massive clusters known. The proposed observations represent the first step required to provide a complete all-sky census throughout the observable Universe of the most massive, high redshift clusters. Their expected high redshift and high mass make the unconfirmed Planck clusters, arguably, the most important available sample for probing deviations from Λ CDM and defining the high-mass end of the cluster mass function.

Subject headings:

1. INTRODUCTION

this section has not been edited and is just a bunch of stuff copy and pasted. I did update some of the references.

Massive clusters of galaxies are the extraordinary objects which hold important clues to the evolution of structure in the universe. The widely accepted ΛCDM model of cosmology makes specific predictions about the mass distribution of galaxy clusters in the universe. The number of galaxy clusters, especially at high redshifts, can help constrain structure formation models (e.g., Mortonson et al. 2011; Harrison & Coles 2012; Harrison & Hotchkiss 2012; Waizmann et al. 2012; Zitrin et al. 2009). Galaxy clusters also harbor a significant fraction of the visible baryons in the Universe, in the form of a hot intracluster medium that leaves an imprint on the Cosmic Microwave Background (CMB) though the Sunyaev-Zel'dovich effect (SZ; Sunyaev & Zeldovich 1972 effect.

Using the SZ effect to discover clusters of galaxies has the distinct advantage that the surface brightness of the SZ effect does not dim with increasing redshift. This allows homogeneous samples of massive clusters to be detected out to arbitrary distances. Ground based, large area-sky surveys such as those with the Atacama Cosmology Telescope (ACT; Swetz et al. 2011) and the South Pole Telescope (SPT: Carlstrom et al. 2011 have produced catalogs of hundreds of massive clusters below $z\sim1.4$ (e.g., Hasselfield et al. 2013; Reichardt et al. 2013). Now, Planck (Tauber et al. 2010; Planck Collaboration et al. 2011) has released an all-sky SZ sample (PSZ; Planck Collaboration et al. 2014, 2015) that contains 861 confirmed clusters (of which most [683] were known previously) and another 366 unconfirmed cluster candidates.

Clusters were initially confirmed by cross correlating with previous catalogs (see Section 4; Planck Collaboration et al. 2014). More recently, dedicated follow up of still-unconfirmed clusters has begun in earnest (e.g., Liu et al. 2015; Planck Collaboration et al. 2015, 2016; Burenin 2017; Barrena et al. 2018; Amodeo et al. 2018; Streblyanska et al. 2018).

This paper is organized as follows: sections 2 through 4 describe the design, observations, data reduction and calibration, and creation of derived data products. In Section 5, we present the main results of our observations, and discuss the results in Section 6. In Section 7, we summarize the key results and conclude.

Unless otherwise noted, throughout this paper, we use a concordance cosmological model ($\Omega_{\Lambda} = 0.7$, $\Omega_{m} = 0.3$, and $H_{0} = 70 \text{ km s}^{-1}\text{Mpc}^{-1}$), assume a Chabrier initial mass function (Chabrier 2003), and use AB magnitudes (Oke 1974).

2. DESIGN

Among the recently released, second, all-sky PSZ catalog² (hereafter PSZ2; Planck Collaboration et al. 2015) there are 450 unconfirmed SZ detections with S/N > 4.5. The vast majority of these must lie at high-z because the Planck confirmation process (Planck Collaboration et al. 2014) mostly relied on existing catalogs with a preference for low-z clusters. Furthermore, the confirmed sample has a small fraction (3%) of z > 0.6 clusters compared to that expected ($\sim 20\%$) based on the theoretical halo mass function (e.g., Jenkins et al. 2001; Tinker et al. 2008). If other clusters like "El Gordo" exist, they are hiding as high-significance candidates within the objects in this catalog. The design of the observations is to use optical imaging to confirm the SZ detections as real clus-

¹ Rutgers;boada@physics.rutgers.edu

² http://szcluster-db.ias.u-psud.fr/sitools/client-user/SZCLUSTE

BOADA ET AL.

ters and provide photometric redshifts using the multicolor information.

We design the observations based on the previous success with the ACT cluster confirmation process using 4-m class telescopes. Our strategy is to use the Kitt Peak National Observatory (KPNO) Mayall-4m telescope imaging as the first and fundamental step to confirm the highest significance detections in the PSZ2 catalog that are visible across the entire northern sky. Following closely the procedure used for ACT follow-up citation?, targets are prioritized by SZ signal-to-noise (S/N). We choose to initially report on targets with PSZ2 S/N > 5 as the statistical reliability of PSZ2 cluster candidates is quite high: according to the *Planck* team $\sim 90\%$ of candidates at S/N > 5 turn out to be "real" clusters (citation? maybe show the figure from the proposal).

Optical imaging will be sufficient to confirm nearly all of the candidates, but for the highest redshift ones, NIR data will be necessary. Again following the procedure for ACT cluster follow-up: those candidates with some evidence for a high-z brightest cluster galaxy (BCG; note that we can detect BCGs to $z \sim 1.5$) will be targeted with NIR observations to confirm the presence of a BCG and detect the red sequence of cluster members. Observational priority again is given to higher S/N candidates.

2.1. Observations

All observations were conducted with the KPNO Mayall telescope. The optical observations were made with the MOSAIC camera mounted at the prime focus. Two detector packages were used for the observations. The earlier MOSAIC1.1 instrument consisted of eight 2048 \times 4096 SITe CCDs, arranged 2 \times 4, separated by a \sim 50 pixels gap with a pixel scale of 0″.26 pixel $^{-1}$. MOSAIC1.1 was replaced with Mosaic3, in year?, and consists of four new 4k×4k, 15 micron pixel, 500-micron thick LBNL deep-depletion CCDs. Because the only change from MOSAIC1.1 to MOSAIC3 are the CCDs and controllers both versions have a 36′ \times 36′ field-of-view.

need to talk about the dithering

The optical observing strategy consists of targeted griz observations of individual candidates with exposure times of 350 s, 350 s, 1100 s and 1100 s (assuming dark conditions) to provide 5σ detections limits of g=??, r=24.5, i=24.5, z=24.2 ensuring the unambiguous detection of the faint (i.e., $0.4\text{L}\star$) galaxies in the red cluster sequence up to $z\sim1.0$ (citation?) and of brightest cluster galaxies (BCGs) to higher redshifts. The choice of filters in our program is driven by the need to segregate early-type galaxies in the cluster through their colors (or photometric redshifts) by sampling blueward and red-ward of the 4000Å break. Our depths are quite a bit different that the designed depths. Should we mention that here, or wait till later on when we are discussing how we actually did?

TABLE 1 Basic properties of the galaxy clusters candidates targeted for observation with the MOSAIC and NEWFIRM instruments: Column 1: Cluster name; Column 2: The right ascension of the cluster; Column 3: The declination of the cluster; Column 4: the PSZ1 catalog S/N ratio; Column 5: the PSZ2 catalog S/N ratio; Column 6: The date of MOSAIC observations

Cluster	RA (J2000)	DEC (J2000)	PSZ1 SNR	PSZ2 SNR	MOSAIC Obs.
(1)	(2)	(3)	(4)	(5)	(6)
PSZ1 G031.91+67.94	14:29:02	+24:37:33.38	5.23	nan	Feb, 2014
PSZ1 G055.83-41.64	21:57:14	-2:31:51	5.72	nan	Oct, 2014
PSZ1 G084.62-15.86	21:49:44	+33:10:23.81	6.01	nan	Oct, 2014
PSZ1 G096.44-10.40	22:19:35	+44:31:05.27	6.55	nan	Oct, 2014
PSZ1 G102.86-31.07	23:33:08	+28:43:51.60	6.12	nan	Oct, 2014
PSZ1 G102.97-04.77	22:34:47	+52:43:13.90	5.64	nan	Oct, 2014
PSZ1 G105.91-38.39	23:53:54	+22:34:21.09	7.16	nan	Oct, 2014
PSZ1 G108.90-52.04	0:16:38	+09:52:49.98	6.89	nan	Jun, 2017
PSZ1 G118.06+31.10	15:54:34	+84:10:37.49	6.00	nan	Feb, 2014
PSZ1 G127.55+20.84	3:10:51	+82:25:43.91	5.91	nan	Oct, 2014
PSZ1 G138.60-10.85	2:27:02	+49:04:54.07	8.26	nan	Oct, 2014
PSZ1 G142.17+37.28	9:18:56	+70:52:01.14	5.79	nan	Feb, 2014
PSZ1 G142.38+22.82	6:13:40	+71:52:21.02	5.82	nan	Feb, 2014
PSZ1 G146.00-49.42	1:51:35	+10:44:02.79	6.62	nan	Oct, 2014
PSZ1 G148.20+23.49	6:37:46	+66:54:24.40	8.40	nan	Feb, 2014
PSZ1 G153.41+36.58	8:42:40	+62:34:31.61	6.85	nan	Feb, 2014
PSZ1 G153.56+36.23	8:39:31	+62:31:30.58	5.96	nan	Feb, 2014
PSZ1 G162.30-26.92	3:24:26	+24:00:44.46	6.56	nan	Oct, 2014
PSZ1 G169.80+26.10	7:30:08	+48:20:02.06	5.32	nan	Oct, 2014
PSZ1 G183.26+12.25	6:42:56	+31:49:07.58	5.43	nan	Oct, 2014
PSZ1 G185.93-31.21	4:11:39	+06:16:00.67	5.90	nan	Jan, 2014
PSZ1 G206.45+13.89	7:29:59	+11:56:22.64	5.90	nan	Feb, 2014
PSZ1 G224.82+13.62	8:01:42	-4:03:54	5.51	nan	Jan, 2014
PSZ1 G249.01+73.75	11:56:46	+16:55:43.68	7.14	nan	Feb, 2014
PSZ1 G286.25+62.68	12:21:10	+00:47:34.05	5.52	nan	Feb, 2014
PSZ1 G341.69+50.66	14:25:20	-4:59:54	5.48	nan	Feb, 2014
PSZ2 G022.03+17.75	17:28:37	-1:13:03	5.64	6.20	Jun, 2017
PSZ2 G023.05+20.52	17:20:47	+00:58:06.58	nan	5.57	Jun, 2017
PSZ2 G024.46-18.08	19:42:23	-15:26:09	nan	6.98	Jun, 2017
PSZ2 G027.77+10.88	18:03:22	+00:25:57.59	nan	6.42	Jun, 2016
PSZ2 G028.15-08.62	19:13:41	-8:08:26	5.07	7.67	Jun, 2017
PSZ2 G029.66-47.63	21:45:44	-21:46:49	nan	5.74	Nov, 2016
PSZ2 G029.80-17.40	19:48:32	-10:31:40	6.59	9.01	Jun, 2016
PSZ2 G031.41-19.16	19:57:41	-9:53:56	4.60	5.69	Jun, 2017

TA	BI	E	1	Continue

Cluster (1) (2) (3) (4) (5) (5) (6) (6) (9) PSZZ G032.12-14.96	TABLE 1 Continued					
PSZ2 G032.12-14.96	Cluster	RA (J2000)	DEC (J2000)	PSZ1 SNR	PSZ2 SNR	MOSAIC Obs.
PSZ2 G033.27-17.54	(1)	(2)	(3)	(4)	(5)	(6)
PSZ2 G033.27-17.54	PSZ2 G032.12-14.96	19:43:34	-7:27:45	8.21	9.12	Jun. 2017
PSZ2 G036.69-15.67						
PSZ2 G044.83+10.02						
PSZ2 G044.83+10.02	PSZ2 G043.44-41.27	21:36:44	-10:17:48	nan	5.55	Jun, 2017
PSZ2 G047.53+08.55		18:36:39				
PSZ2 G048.47+34.86	PSZ2 G045.50-08.62	19:45:25	+07:04:29.08	4.57	5.63	Jun, 2017
PSZ2 G065.35-08.01 20:26:04 +24:08:06.72 nan 5.83 Jun, 2016 PSZ2 G075.08+19.83 18:46:48 +45:46:33.27 nan 5.74 Jun, 2016 PSZ2 G089.06-11.79 21:52:53 +39:03:52.50 nan 5.74 Jun, 2016 PSZ2 G092.11-33.73 23:01:37 +22:28:59.71 nan 5.81 Nov, 2016 PSZ2 G092.46-35.22 23:05:50 +21:19:27.96 5.47 6.73 Oct. 2014 PSZ2 G093.04-32.38 23:01:43 +24:02:24.90 5.69 6.03 Oct. 2014 PSZ2 G096.43-20.89 22:48:09 +35:33:21.47 nan 5.81 Jun, 2016 PSZ2 G098.38+77.22 13:18:25 +38:35:06.94 4.71 5.51 Jun, 2017 PSZ2 G100.22+33.81 17:13:41 +69:22:24.33 nan 5.69 Jun, 2017 PSZ2 G100.45+16.79 20:18:34 +66:47:07.85 nan 11.79 Oct. 20:15 PSZ2 G100.45+16.79 20:18:34 +66:47:07.85 nan 11.79 Oct. 20:15 PSZ2 G104.15-38.85 23:48:48 +21:43:24:60 nan 6.41 Jun, 20:16 PSZ2 G107.44-09:57 23:13:47 +50:19:32.01 nan 10:69 Jun, 20:17 PSZ2 G107.64-44.14 13:12:39 +22:144:45.50 nan 7.09 Nov. 20:16 PSZ2 G120.76+44.14 13:12:39 +22:144:45.50 nan 7.09 Nov. 20:16 PSZ2 G123.35+25.39 14:120 +88:13:14.57 5.90 nan 5.72 Nov. 20:16 PSZ2 G123.84+25.75 25:53:00 +88:24:01.91 5.04 5.81 Nov. 20:16 PSZ2 G123.84+25.75 25:53:00 +88:24:01.91 5.04 5.81 Nov. 20:16 PSZ2 G127.35+0.69 1:19:42 +51:56:15.39 5.58 6.94 Oct. 20:14 PSZ2 G136.31+34.67 11:47:50 +60:45:56.07 nan 6.92 Jun, 20:17 PSZ2 G135.35+38 11:39:27 +61:09:01.04 5.73 8.18 Feb. 20:14 PSZ2 G145.35+0.84 10:53:26 +60:51:42 4.19 nan 5.07 Nov. 20:16 PSZ2 G165.39+09.22 54:75:9 +60:03:56.30 nan 5.77 Nov. 20:16 PSZ2 G166.27-25.02 34:144 42:31:10.04 nan 5.98 Nov. 20:16 PSZ2 G166.27-25.02 34:144 42:31:10.04 nan 5.99 Nov. 20:16 PSZ2 G166.27-25.02 34:144 42:31:10.04 nan 5.99 Nov. 20:16 PSZ2 G166.27-25.02 34:144 42:31:10.04 nan 5.59 Nov. 20:16 PSZ2 G166.27-25.02 34:144 42:31:10.04 nan 9.58 Nov. 20:16 PSZ2 G194.	PSZ2 G047.53+08.55	18:46:59	+16:50:35.39	5.82	6.55	Jun, 2016
PSZ2 G075,08+19,83 18:46:48 +454:66:33:27 nan 5.72 Nov, 2016 PSZ2 G089.06-11.79 21:52:53 +39:03:52:50 nan 5.72 Nov, 2016 PSZ2 G092.46-35:22 23:05:50 +21:19:27:96 5.47 6.73 Oct, 2014 PSZ2 G093.04-32:38 23:01:33 -24:02:24.90 5.69 6.03 Oct, 2014 PSZ2 G096.43-20.89 22:48:09 +35:33:21.47 nan 5.81 Nov, 2016 PSZ2 G096.43-20.89 22:48:09 +35:33:21.47 nan 5.81 Dun, 2016 PSZ2 G098.38+77.22 13:18:25 +38:35:06.94 4.71 5.51 Jun, 2017 PSZ2 G100.22+33.81 17:13:41 +66:22:24.33 nan 5.69 Dun, 2017 PSZ2 G100.45+16.79 20:18:34 +66:47:07.85 nan 11.79 Oct, 2015 PSZ2 G106.11+24.11 19:21:24 +74:33:21.87 nan 5.70 Dun, 2017 PSZ2 G107.41-09.57 23:13:47 +50:19:32.01 nan 10.69 Jun, 2017 PSZ2 G107.43-09.57 PSZ2 G107.44-09.57 PSZ2 G107.44-09.57 PSZ2 G107.45 -05.73 +16:07:51.05 nan 10.69 Jun, 2017 PSZ2 G112.07-39.86 01:530 +22:14:43.50 nan 5.72 Nov, 2016 PSZ2 G120.76-44.14 13:12:39 +72:53:23:47 nan 5.72 Nov, 2016 PSZ2 G123.35+25.39 1:41:20 +88:13:14.57 5.90 10.86 Oct, 2014 PSZ2 G123.64 PSZ2 G123.64 -67:11:47:50 +88:24:01.91 -68:22 -68:23 -68:24 -68:24 -69:24 -68:24 -69:25 -69:26 -69:26 -69:27 -78:22 -78:25 -78	PSZ2 G048.47+34.86	17:02:08	+27:08:48.05	nan	5.74	Jun, 2016
PSZ2 G075.08+19.83		20:26:04	+24:08:06.72	nan	5.83	Jun, 2016
PSZ2 G099.11-33.73		22:30:54	+05:42:05.22	8.82		
PSZ2 G092.14-33.73 23:01:37 +22:28:59.71 nan 5.81 Nov, 2016 PSZ2 G093.04-32.38 23:01:43 +24:02:24.90 5.69 6.03 Oct, 2014 PSZ2 G093.04-32.38 23:01:43 +24:02:24.90 5.69 6.03 Oct, 2014 PSZ2 G096.43-20.89 22:48:09 +35:33:21.47 nan 5.81 Jun, 2016 PSZ2 G098.38+77.22 13:18:25 +38:35:60.94 4.71 5.51 Jun, 2017 PSZ2 G100.22+33.81 17:13:41 +69:22:24.33 nan 5.69 Jun, 2017 PSZ2 G100.45-16.79 20:18:34 +66:47:07.85 nan 11.79 Oct, 2015 PSZ2 G100.45-16.79 20:18:34 +66:47:07.85 nan 11.79 Oct, 2015 PSZ2 G104.15-38.85 23:48:48 +21:43:24.60 nan 6.41 Jun, 2016 PSZ2 G106.11+24.11 19:21:24 +74:33:21.87 nan 5.70 Jun, 2017 PSZ2 G107.41-09.57 23:13:47 +50:1932.01 nan 10.69 Jun, 2016 PSZ2 G107.83-45.45 0:07:35 +16:07:51.05 nan 7.09 Nov, 2016 PSZ2 G102.76-44.14 13:12:39 +72:53:23.47 nan 5.72 Nov, 2016 PSZ2 G123.84+25.75 2:55:30 +88:24:01.91 5.04 5.81 Nov, 2016 PSZ2 G123.84+25.75 2:55:30 +88:24:01.91 5.04 5.81 Nov, 2016 PSZ2 G123.84+25.75 2:55:30 +88:24:01.91 5.04 5.81 Nov, 2016 PSZ2 G137.35-10.69 1:19:42 +51:56:15.39 5.58 6.94 Nov, 2016 PSZ2 G137.24+53.93 11:41:07 +61:11:39.02 nan 6.49 Nov, 2016 PSZ2 G137.24+53.93 11:41:07 +61:11:39.02 nan 6.92 Jun, 2017 PSZ2 G137.58+53.88 11:39:27 +61:09:01.04 5.73 8.18 Feb, 2014 PSZ2 G135.56+50.84 10:53:26 +60:51:43:24 nan 5.98 Jun, 2017 PSZ2 G153.56+50.84 10:53:26 +60:51:43:24 nan 5.98 Jun, 2017 PSZ2 G163.22-26.48 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZ2 G163.22-26.48 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZ2 G163.22-26.48 3:28:29 +23:50:15.15 nan 5.00 Nov, 2016 PSZ2 G163.22-64 3:38:40 +42:23:11:00.45 nan 5.98 Jun, 2017 PSZ2 G163.22-664 3:38:37 +61:09:01.04 5.73 nan 5.00 Nov, 2016 PSZ2 G163.22-664 3:38:37 +62:24:41.99 nan 5.00 Nov, 2016 PSZ2 G163.22-648 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZ2 G163.22-648 3:28:29 +23:50:15.15 nan 5.00 Nov, 2016 PSZ2 G163.22-648 3:28:29 +23:50:15.15 nan 5.00 Nov, 2016 PSZ2 G163.22-644 3:88:37 +04:42:29.60 nan 5.80 Nov, 2016 PSZ2 G163.22-644 3:88:37 +04:42:29.60 nan 5.80 Nov, 2016 PSZ2 G194.68-49.76 3:25:22 -94:050 5.00 5.71 Nov, 2016 PSZ2 G194.68-49.76 3:25:22			•	nan		
PSZ2 G093.04-32.38 23:01-43 +24:02:24.90 5.69 6.03 Oct, 2014 PSZ2 G096.43-20.89 22:48:09 +35:33:21.47 nan 5.81 Jun, 2016 PSZ2 G096.38-877.22 13:18:25 +38:35:06.94 4.71 5.51 Jun, 2017 PSZ2 G100.22+33.81 17:13:41 +69:22:24.33 nan 5.69 Jun, 2017 PSZ2 G100.45+16.79 20:18:34 +66:47:07.85 nan 11.79 Oct, 2015 PSZ2 G104.15-38.85 23:48:48 +21:43:24.60 nan 6.41 Jun, 2016 PSZ2 G106.11+24.11 19:21:24 +74:33:21.87 nan 5.70 Jun, 2017 PSZ2 G107.41-09.57 23:13:47 +50:19:32.01 nan 10.69 Jun, 2016 PSZ2 G107.41-09.57 23:13:47 +50:19:32.01 nan 10.69 Jun, 2016 PSZ2 G107.63-44.14 13:12:39 +72:53:23.47 nan 5.72 Nov, 2016 PSZ2 G102.76-44.14 13:12:39 +72:53:23.47 nan 5.72 Nov, 2016 PSZ2 G120.76-44.14 13:12:39 +72:53:23.47 nan 5.72 Nov, 2016 PSZ2 G123.35+25.39 1:41:20 +88:13:14.57 5.90 10.86 Oct, 2014 PSZ2 G123.54-25.72 11:25:35 +88:24:01.91 5.04 5.81 Nov, 2016 PSZ2 G123.55+32.72 11:25:35 +88:24:01.91 5.04 5.81 Nov, 2016 PSZ2 G136.31+54.67 11:47:50 +66:45:56.07 nan 6.92 Jun, 2017 PSZ2 G137.58+53.88 11:39:27 +61:09:01.04 5.73 8.18 Feb, 2014 PSZ2 G135.56+33.88 11:39:27 +61:09:01.04 5.73 8.18 Feb, 2014 PSZ2 G155.56+33.89 1:19:42 +51:56:15.39 nan 5.98 Jun, 2017 PSZ2 G153.68+36.96 8:45:33 +62:24:41.96 nan 5.99 Jun, 2017 PSZ2 G153.68+36.96 8:45:33 +62:17:12.13 nan 5.07 Nov, 2016 PSZ2 G166.27-22.648 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZ2 G166.39+09.22 5:47:59 +46:08:39.24 nan 5.80 Nov, 2016 PSZ2 G166.44-38.66 3:09:12 +12:37:11.49 nan 5.84 Nov, 2016 PSZ2 G19.46-84 9:6 3:25:22 9:40:50 -17:45:23 nan 7.03 Nov, 2016 PSZ2				nan		
PSZ2 G093.04-32.38						
PSZ2 G096 43-20.89						
PSZ2 G100.22+33.81			•			
PSZ2 G100.22+33.81 17:13:41 +69:22:24.33 nan 5.69 Jun, 2017 PSZ2 G100.45+16.79 20:18:34 +66:47:07.85 nan 11.79 Oct, 2015 PSZ2 G104.15-38.85 23:48:48 +21:43:24.60 nan 6.41 Jun, 2016 PSZ2 G106.11+24.11 19:21:24 +74:33:21.87 nan 5.70 Jun, 2017 PSZ2 G107.41-09.57 23:13:47 +50:19:32.01 nan 10.69 Jun, 2016 PSZ2 G107.83-45.45 0:07:35 +16:07:51.05 nan 7.09 Nov, 2016 PSZ2 G107.63-44.14 13:12:39 +72:53:23.47 nan 5.72 Nov, 2016 PSZ2 G120.76+44.14 13:12:39 +72:53:23.47 nan 5.72 Nov, 2016 PSZ2 G123.35+25.39 1:41:20 +88:13:14.57 5.90 10.86 Oct, 2014 PSZ2 G123.84+25.75 2:55:30 +88:24:01.91 5.04 5.81 Nov, 2016 PSZ2 G125.55+32.72 11:25:35 +88:57:29.12 nan 6.49 Nov, 2016 PSZ2 G125.55+32.72 11:25:35 +88:57:29.12 nan 6.49 Nov, 2016 PSZ2 G137.35+10.69 1:19:42 +51:56:15.39 5.58 6.94 Oct, 2014 PSZ2 G137.35+53.88 11:39:27 +61:09:01.04 5.73 8.18 Feb, 2014 PSZ2 G137.54+53.93 11:41:07 +61:11:39.02 nan 7.87 Nov, 2016 PSZ2 G137.58+53.88 11:39:27 +61:09:01.04 5.73 8.18 Feb, 2014 PSZ2 G146.88+17.13 5:34:10 +65:43:14.28 nan 6.13 Nov, 2016 PSZ2 G153.66+36.96 84:33 +62:17:12.13 nan 5.07 Nov, 2016 PSZ2 G163.36+36.96 84:33 +62:17:12.13 nan 5.07 Nov, 2016 PSZ2 G165.39+09.22 5:47:59 +46:08:39.24 nan 5.60 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 5.80 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 5.80 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 5.80 Nov, 2016 PSZ2 G168.89-09.22 15:45:59 44:08:39.24 nan 5.80 Nov, 2016 PSZ2 G168.89-09.22 15:45:59 44:09:09.14 Nov, 2016 PSZ2 G169.48-09.22 15:45:59 14:40:09.10 nan 5.80 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 5.80 Nov, 2016 PSZ2 G169.48-49.76 3:25:22 -9:40:50 5.00 5.71 Nov, 2016 PSZ2 G191.88-30.77 4:04:21 +09:16:14.87 nan 5.57 Jun, 2017 PSZ2 G210.71+63.08 10:51:42 +24:58:0						
PSZ2 G100.45+16.79						*
PSZZ G104.15-38.85						
PSZZ G106.11+24.11 19:21:24 +74:33:21.87 nan 5.70 Jun, 2016 PSZZ G107.41-09.57 23:13:47 +50:19:32.01 nan 10.69 Jun, 2016 PSZZ G112.07-83-86 0:15:30 +22:14:43.50 nan 5.72 Nov, 2016 PSZZ G112.07-39.86 0:15:30 +22:14:43.50 nan 5.72 Nov, 2016 PSZZ G123.35+25:39 1.41:20 +88:13:14.57 5.90 10.86 Oct, 2014 PSZZ G123.35+25.39 1.41:20 +88:13:14.57 5.90 10.86 Oct, 2014 PSZZ G123.84+25.75 2:55:30 +88:24:01.91 5.04 5.81 Nov, 2016 PSZZ G125.55+32.72 11:25:35 +83:57:29.12 nan 6.49 Nov, 2016 PSZZ G127.35-10.69 1:19:42 +51:56:15.39 5.58 6.94 Oct, 2014 PSZZ G136.31+54.67 11:47:50 +60:45:56.07 nan 6.92 Jun, 2017 PSZZ G137.24+53.93 11:41:07 +61:11:39.02 nan 7.87 Nov, 2016 PSZZ G137.58+53.88 11:39:27 +61:09:01.04 5.73 8.18 Feb, 2014 PSZZ G137.58+53.88 11:39:27 +66:09:01.04 5.73 8.18 Feb, 2014 PSZZ G145.25+50.84 10:53:26 +60:51:43.24 nan 5.98 Jun, 2017 PSZZ G153.56+36.82 8.44:32 +62:24:41.96 nan 15.90 Nov, 2016 PSZZ G153.68+36.96 8.45:33 +62:17:12.13 nan 5.07 Nov, 2016 PSZZ G166.27-24.71 3:42:39 +23:50:15.15 nan 6.35 Nov, 2016 PSZZ G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZZ G167.44-38.06 3:09:12 +12:37:11.49 6.11 7.66 Oct, 2014 PSZZ G171.79-42.08 3:08:40 +07:24:32.96 nan 5.80 Nov, 2016 PSZZ G181.88-30.77 4:04:21 +09:16:14.87 nan 9.29 Nov, 2016 PSZZ G192.40-67.89 2:18:20 -17:45:23 nan 6.32 Nov, 2016 PSZZ G192.40-67.89 2:18:20 -17:45:23 nan 6.32 Nov, 2016 PSZZ G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZZ G194.68-49.76 3:25:22 -9:40:50 5.00 5.71 Nov, 2016 PSZZ G201.77-63.08 10:51:42 +24:58:09.19 nan 7.37 Jun, 2017 PSZZ G305.76+44.79 12:59:54 -14:02:58 nan 6.32 Nov, 2016 PSZZ G305.76+44.79 12:59:54 -14:02:58 nan 5.57 Jun, 2017 PSZZ G305.76+44.79 12:59:54 -14:02:56 nan 5.80 Nov, 2016 PSZZ G300.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016						
PSZZ G107.41-09.57						
PSZZ G107.83-45.45						
PSZ2 G112.07-39.86						
PSZZ G120.76+44.14 13:12:39 +72:53:23.47 nan 5.59 Jun, 2017 PSZZ G123.35+25.39 1:41:20 +88:13:14.57 5.90 10.86 Oct, 2014 PSZZ G123.84+25.75 2:55:30 +88:24:01.91 5.04 5.81 Nov, 2016 PSZZ G125.55+32.72 11:25:35 +83:57:29.12 nan 6.49 Nov, 2016 PSZZ G127.35-10.69 1:19:42 +51:56:15.39 5.58 6.94 Oct, 2014 PSZZ G136.31+54.67 11:47:50 +60:45:56.07 nan 6.92 Jun, 2017 PSZZ G137.24+53.93 11:41:07 +61:11:39.02 nan 7.87 Nov, 2016 PSZZ G137.58+53.88 11:39:27 +61:09:01.04 5.73 8.18 Feb, 2014 PSZZ G137.58+53.88 11:39:27 +61:09:01.04 5.73 8.18 Feb, 2014 PSZZ G145.25+50.84 10:53:26 +60:51:43.24 nan 5.98 Jun, 2017 PSZZ G164.58+50.84 10:53:26 +60:51:43.24 nan 5.98 Jun, 2017 PSZZ G153.56+36.82 8:44:32 +62:24:41.96 nan 15.90 Nov, 2016 PSZZ G153.56+36.82 8:44:32 +62:24:41.96 nan 5.07 Nov, 2016 PSZZ G153.36+36.96 8:45:33 +62:17:12.13 nan 5.07 Nov, 2016 PSZZ G163.29-26.48 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZZ G163.29-26.48 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZZ G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZZ G166.27-25.02 3:41:44 +23:11:00.45 nan 8.09 Nov, 2016 PSZZ G167.44-38.06 3:09:12 +12:37:11.49 6.11 7.66 Oct, 2014 PSZZ G171.79-42.08 3:08:40 +07:24:32.96 nan 5.84 Nov, 2016 PSZZ G173.76+22.92 7:17:28 +44:03:27.62 nan 5.80 Nov, 2016 PSZZ G191.82-26.64 4:38:37 +00:42:20:44 7 nan 9.29 Nov, 2016 PSZZ G191.82-6.64 4:38:37 +00:47:24:32 nan 7.03 Nov, 2016 PSZZ G191.82-6.64 4:38:37 +00:47:24:32 nan 7.03 Nov, 2016 PSZZ G191.82-6.64 4:38:37 +00:47:24:32 nan 7.03 Nov, 2016 PSZZ G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZZ G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZZ G210.77+63.08 10:51:42 +24:58:09.19 nan 7.37 Jun, 2017 PSZZ G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZZ G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZZ G305.76+44.79 12:58:33 +21:08:11.93 6.93 9.40 Feb. 2014 PSZZ G320.94+83.69 12:58:33 +21:08:11.93 6.93 9.40 Feb. 2014 PSZZ G320.94+83.69 12:58:33 +21:08:11.93 6.93 9.40 Feb. 2014 PSZZ G320.94+83.69 12:58:33 +21:08:11.93 6.93 9.40 Feb. 2014						
PSZ2 G123.35+25.39 1:41:20 +88:13:14.57 5.90 10.86 Oct, 2014 PSZ2 G123.84+25.75 2:55:30 +88:24:01.91 5.04 5.81 Nov, 2016 PSZ2 G125.55+32.72 11:25:35 +83:57:29.12 nan 6.49 Nov, 2016 PSZ2 G127.35-10.69 1:19:42 +51:56:15.39 5.58 6.94 Oct, 2014 PSZ2 G136.31+54.67 11:47:50 +60:45:56.07 nan 6.92 Jun, 2017 PSZ2 G137.24+53.93 11:41:07 +61:11:39.02 nan 7.87 Nov, 2016 PSZ2 G137.58+53.88 11:39:27 +61:09:01.04 5.73 8.18 Feb, 2014 PSZ2 G135.56+53.84 10:53:26 +60:51:43.24 nan 5.98 Jun, 2017 PSZ2 G145.25+50.84 10:53:26 +60:51:43.24 nan 5.98 Jun, 2017 PSZ2 G153.56+36.82 8:44:32 +62:24:41.96 nan 15.90 Nov, 2016 PSZ2 G153.68+36.96 8:45:33 +62:17:12.13 nan 5.07 Nov, 2016 PSZ2 G163.22-26.48 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZ2 G163.39+09.22 5:47:59 +46:08:39.24 nan 5.60 Nov, 2016 PSZ2 G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZ2 G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZ2 G167.44-38.06 3:09:12 +12:37:11.49 6.11 7.66 Oct, 2014 PSZ2 G173.76+22.92 7:17:28 +44:03:27.62 nan 5.80 Nov, 2016 PSZ2 G181.88-30.77 4:04:21 +09:16:14.87 nan 9.29 Nov, 2016 PSZ2 G199.24-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZ2 G191.82-26.64 4:38:37 +04:42:02.64 4.76 6.17 Nov, 2016 PSZ2 G191.87-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G2 G252.45-73.44 11:58:35 +16:00:18.38 nan 5.57 Jun, 2017 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G318.46+83.79 12:58:34 +21:08:11.93 nan 5.57 Jun, 2017 PSZ2 G318.46+83.79 12:58:34 +21:08:11.93 nan 7.32 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:06:56:63 nan 7.32 Jun, 2017 PSZ2 G300.94+83.69 12:58:34 +21:08:11.93 nan 7.32 Jun, 2017						
PSZ2 G123.84+25.75			•			
PSZ2 G125.55+32.72						
PSZ2 G127.35-10.69 1:19:42 +51:56:15.39 5.58 6.94 Oct, 2014 PSZ2 G136.31+54.67 11:47:50 +60:45:56.07 nan 6.92 Jun, 2017 PSZ2 G137.24+53.93 11:41:07 +61:11:39.02 nan 7.87 Nov, 2016 PSZ2 G137.58+53.88 11:39:27 +61:09:01.04 5.73 8.18 Feb, 2014 PSZ2 G145.25+50.84 10:53:26 +60:51:43.24 nan 5.98 Jun, 2017 PSZ2 G146.88+17.13 5:34:10 +65:43:14.28 nan 6.13 Nov, 2016 PSZ2 G153.56+36.82 8:44:32 +62:24:41.96 nan 15.90 Nov, 2016 PSZ2 G153.56+36.82 8:44:33 +62:17:12.13 nan 5.07 Nov, 2016 PSZ2 G153.68+36.96 8:45:33 +62:17:12.13 nan 5.07 Nov, 2016 PSZ2 G163.22-26.48 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZ2 G165.39+09.22 5:47:59 +46:08:39.24 nan 5.60 Nov, 2016 PSZ2 G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 8.09 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 8.09 Nov, 2016 PSZ2 G167.44-38.06 3:09:12 +12:37:11.49 6.11 7.66 Oct, 2014 PSZ2 G173.76+22.92 7:17:28 +44:03:27.62 nan 5.80 Nov, 2016 PSZ2 G188.88-30.77 4:04:21 +09:16:14.87 nan 9.29 Nov, 2016 PSZ2 G189.79-37.25 3:59:37 +00:07:54.80 6.99 7.28 Oct, 2014 PSZ2 G191.82-26.64 4:38:37 +04:42:02.64 4.76 6.17 Nov, 2016 PSZ2 G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZ2 G194.68-49.76 3:25:22 -9:40:50 5.00 5.71 Nov, 2016 PSZ2 G210.37-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G210.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G210.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G318.46+83.79 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:55:47 +21:06:56.63 nan 7.32 Jun, 2017			•			
PSZ2 G136.31+54.67 11:47:50 +60:45:56.07 nan 6.92 Jun, 2017 PSZ2 G137.24+53.93 11:41:07 +61:11:39.02 nan 7.87 Nov, 2016 PSZ2 G137.58+53.88 11:39:27 +61:09:01.04 5.73 8.18 Feb, 2014 PSZ2 G145.25+50.84 10:53:26 +60:51:43.24 nan 5.98 Jun, 2017 PSZ2 G146.88+17.13 5:34:10 +65:43:14.28 nan 6.13 Nov, 2016 PSZ2 G153.56+36.82 8:44:32 +62:24:41.96 nan 15.90 Nov, 2016 PSZ2 G153.68+36.96 8:45:33 +62:17:12.13 nan 5.07 Nov, 2016 PSZ2 G163.22-26.48 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZ2 G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZ2 G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 8.09 Nov, 2016 PSZ2 G167.44-38.06 3:09:12 +12:37:11.49 6.11 7.66 Oct, 2014 PSZ2 G171.79-42.08 3:08:40 +07:24:32.96 nan 5.84 Nov, 2016 PSZ2 G181.88-30.77 4:04:21 +09:16:14.87 nan 9.29 Nov, 2016 PSZ2 G181.88-30.77 4:04:21 +09:16:14.87 nan 9.29 Nov, 2016 PSZ2 G191.82-26.64 4:38:37 +00:42:02.64 4.76 6.17 Nov, 2016 PSZ2 G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZ2 G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZ2 G201.07-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G210.71-63.08 10:51:42 +24:58:09.19 nan 7.37 Jun, 2017 PSZ2 G210.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G318.46+83.79 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G300.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017						
PSZ2 G137.24+53.93						
PSZ2 G137.58+53.88						
PSZ2 G145.25+50.84 10:53:26 +60:51:43.24 nan 5.98 Jun, 2017 PSZ2 G146.88+17.13 5:34:10 +65:43:14.28 nan 6.13 Nov, 2016 PSZ2 G153.56+36.82 8:44:32 +62:24:41.96 nan 15.90 Nov, 2016 PSZ2 G153.68+36.96 8:45:33 +62:17:12.13 nan 5.07 Nov, 2016 PSZ2 G163.22-26.48 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZ2 G165.39+09.22 5:47:59 +46:08:39.24 nan 5.60 Nov, 2016 PSZ2 G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 8.09 Nov, 2016 PSZ2 G167.44-38.06 3:09:12 +12:37:11.49 6.11 7.66 Oct, 2014 PSZ2 G171.79-42.08 3:08:40 +07:24:32.96 nan 5.84 Nov, 2016 PSZ2 G173.76+22.92 7:17:28 +44:03:27.62 nan 5.80 Nov, 2016 PSZ2 G181.88-30.77 4:04:21 +09:16:14.87 nan 9.29 Nov, 2016 PSZ2 G189.79-37.25 3:59:37 +00:07:54.80 6.99 7.28 Oct, 2014 PSZ2 G191.82-26.64 4:38:37 +04:42:02.64 4.76 6.17 Nov, 2016 PSZ2 G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov 2016 PSZ2 G194.68-49.76 3:25:22 -9:40:50 5.00 5.71 Nov, 2016 PSZ2 G2010.37-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G2010.71+63.08 10:51:42 +24:58:09.19 nan 7.37 Jun, 2017 PSZ2 G2010.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017	PSZ2 G137.58+53.88	11:39:27	+61:09:01.04	5.73	8.18	
PSZ2 G153.56+36.82 8:44:32 +62:24:41.96 nan 15.90 Nov, 2016 PSZ2 G153.68+36.96 8:45:33 +62:17:12.13 nan 5.07 Nov, 2016 PSZ2 G163.22-26.48 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZ2 G165.39+09.22 5:47:59 +46:08:39.24 nan 5.60 Nov, 2016 PSZ2 G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 8.09 Nov, 2016 PSZ2 G167.44-38.06 3:09:12 +12:37:11.49 6.11 7.66 Oct, 2014 PSZ2 G173.76+22.92 7:17:28 +44:03:27.62 nan 5.80 Nov, 2016 PSZ2 G181.88-30.77 4:04:21 +09:16:14.87 nan 9.29 Nov, 2016 PSZ2 G189.79-37.25 3:59:37 +00:07:54.80 6.99 7.28 Oct, 2014 PSZ2 G191.82-26.64 4:38:37 +04:42:02.64 4.76 6.17 Nov, 2016 PSZ2 G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZ2 G210.37-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G210.37-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G210.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017		10:53:26	+60:51:43.24	nan	5.98	Jun, 2017
PSZ2 G153.68+36.96 8:45:33 +62:17:12.13 nan 5.07 Nov, 2016 PSZ2 G163.22-26.48 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZ2 G165.39+09.22 5:47:59 +46:08:39.24 nan 5.60 Nov, 2016 PSZ2 G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 8.09 Nov, 2016 PSZ2 G167.44-38.06 3:09:12 +12:37:11.49 6.11 7.66 Oct, 2014 PSZ2 G171.79-42.08 3:08:40 +07:24:32.96 nan 5.84 Nov, 2016 PSZ2 G173.76+22.92 7:17:28 +44:03:27.62 nan 5.80 Nov, 2016 PSZ2 G181.88-30.77 4:04:21 +09:16:14.87 nan 9.29 Nov, 2016 PSZ2 G189.79-37.25 3:59:37 +00:07:54.80 6.99 7.28 Oct, 2014 PSZ2 G191.82-26.64 4:38:37 +04:42:02.64 4.76 6.17 Nov, 2016 PSZ2 G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZ2 G194.68-49.76 3:25:22 -9:40:50 5.00 5.71 Nov, 2016 PSZ2 G210.37-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G210.71+63.08 10:51:42 +24:58:09.19 nan 7.37 Jun, 2017 PSZ2 G210.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017	PSZ2 G146.88+17.13	5:34:10	+65:43:14.28	nan	6.13	Nov, 2016
PSZ2 G163.22-26.48 3:28:29 +23:50:15.15 nan 6.35 Nov, 2016 PSZ2 G165.39+09.22 5:47:59 +46:08:39.24 nan 5.60 Nov, 2016 PSZ2 G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 8.09 Nov, 2016 PSZ2 G167.44-38.06 3:09:12 +12:37:11.49 6.11 7.66 Oct, 2014 PSZ2 G171.79-42.08 3:08:40 +07:24:32.96 nan 5.84 Nov, 2016 PSZ2 G173.76+22.92 7:17:28 +44:03:27.62 nan 5.80 Nov, 2016 PSZ2 G181.88-30.77 4:04:21 +09:16:14.87 nan 9.29 Nov, 2016 PSZ2 G189.79-37.25 3:59:37 +00:07:54.80 6.99 7.28 Oct, 2014 PSZ2 G191.82-26.64 4:38:37 +04:42:02.64 4.76 6.17 Nov, 2016 PSZ2 G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZ2 G210.37-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G210.37-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G210.77+63.08 10:51:42 +24:58:09.19 nan 7.37 Jun, 2017 PSZ2 G201.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017	PSZ2 G153.56+36.82	8:44:32	+62:24:41.96	nan	15.90	
PSZ2 G165.39+09.22 5:47:59 +46:08:39.24 nan 5.60 Nov, 2016 PSZ2 G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 8.09 Nov, 2016 PSZ2 G167.44-38.06 3:09:12 +12:37:11.49 6.11 7.66 Oct, 2014 PSZ2 G171.79-42.08 3:08:40 +07:24:32.96 nan 5.84 Nov, 2016 PSZ2 G173.76+22.92 7:17:28 +44:03:27.62 nan 5.80 Nov, 2016 PSZ2 G181.88-30.77 4:04:21 +09:16:14.87 nan 9.29 Nov, 2016 PSZ2 G189.79-37.25 3:59:37 +00:07:54.80 6.99 7.28 Oct, 2014 PSZ2 G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZ2 G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZ2 G194.68-49.76 3:25:22 -9:40:50 5.00 5.71 Nov, 2016 PSZ2 G210.37-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G210.71+63.08 10:51:42 +24:58:09.19 nan 7.37 Jun, 2017 PSZ2 G252.45+73.44 11:58:35 +16:00:18.38 nan 5.57 Jun, 2017 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G318.46+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017		8:45:33	+62:17:12.13	nan	5.07	Nov, 2016
PSZ2 G166.27-24.71 3:42:39 +23:24:41.39 nan 9.58 Nov, 2016 PSZ2 G166.27-25.02 3:41:44 +23:11:00.45 nan 8.09 Nov, 2016 PSZ2 G167.44-38.06 3:09:12 +12:37:11.49 6.11 7.66 Oct, 2014 PSZ2 G171.79-42.08 3:08:40 +07:24:32.96 nan 5.84 Nov, 2016 PSZ2 G173.76+22.92 7:17:28 +44:03:27.62 nan 5.80 Nov, 2016 PSZ2 G181.88-30.77 4:04:21 +09:16:14.87 nan 9.29 Nov, 2016 PSZ2 G189.79-37.25 3:59:37 +00:07:54.80 6.99 7.28 Oct, 2014 PSZ2 G191.82-26.64 4:38:37 +04:42:02.64 4.76 6.17 Nov, 2016 PSZ2 G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZ2 G194.68-49.76 3:25:22 -9:40:50 5.00 5.71 Nov, 2016 PSZ2 G210.37-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G210.71+63.08 10:51:42 +24:58:09.19 nan 7.37 Jun, 2017 PSZ2 G210.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017			+23:50:15.15	nan		
PSZ2 G166.27-25.02				nan		
PSZ2 G167.44-38.06 3:09:12 +12:37:11.49 6.11 7.66 Oct, 2014 PSZ2 G171.79-42.08 3:08:40 +07:24:32.96 nan 5.84 Nov, 2016 PSZ2 G173.76+22.92 7:17:28 +44:03:27.62 nan 5.80 Nov, 2016 PSZ2 G181.88-30.77 4:04:21 +09:16:14.87 nan 9.29 Nov, 2016 PSZ2 G189.79-37.25 3:59:37 +00:07:54.80 6.99 7.28 Oct, 2014 PSZ2 G191.82-26.64 4:38:37 +04:42:02.64 4.76 6.17 Nov, 2016 PSZ2 G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZ2 G194.68-49.76 3:25:22 -9:40:50 5.00 5.71 Nov, 2016 PSZ2 G210.37-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G210.71+63.08 10:51:42 +24:58:09.19 nan 7.37 Jun, 2017 PSZ2 G210.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G252.45+73.44 11:58:35 +16:00:18.38 nan 5.57 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						Oct, 2014
PSZ2 G181.88-30.77						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
PSZ2 G191.82-26.64 4:38:37 +04:42:02.64 4.76 6.17 Nov, 2016 PSZ2 G192.40-67.89 2:18:20 -17:45:23 nan 7.03 Nov, 2016 PSZ2 G194.68-49.76 3:25:22 -9:40:50 5.00 5.71 Nov, 2016 PSZ2 G210.37-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G210.71+63.08 10:51:42 +24:58:09.19 nan 7.37 Jun, 2017 PSZ2 G210.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G252.45+73.44 11:58:35 +16:00:18.38 nan 5.57 Jun, 2017 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
PSZ2 G210.37-37.00 4:32:44 -14:03:01 nan 9.84 Nov, 2016 PSZ2 G210.71+63.08 10:51:42 +24:58:09.19 nan 7.37 Jun, 2017 PSZ2 G210.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G252.45+73.44 11:58:35 +16:00:18.38 nan 5.57 Jun, 2017 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017						
PSZ2 G210.71+63.08 10:51:42 +24:58:09.19 nan 7.37 Jun, 2017 PSZ2 G210.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G252.45+73.44 11:58:35 +16:00:18.38 nan 5.57 Jun, 2017 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017						
PSZ2 G210.78-36.25 4:36:07 -14:02:58 nan 6.32 Nov, 2016 PSZ2 G252.45+73.44 11:58:35 +16:00:18.38 nan 5.57 Jun, 2017 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017						
PSZ2 G252.45+73.44 11:58:35 +16:00:18.38 nan 5.57 Jun, 2017 PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017						
PSZ2 G305.76+44.79 12:59:54 -18:01:59 4.72 5.72 Jun, 2017 PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017						
PSZ2 G310.81+83.91 12:55:01 +21:05:41.16 nan 8.29 Nov, 2016 PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017						
PSZ2 G318.46+83.79 12:58:33 +21:08:11.93 6.93 9.40 Feb, 2014 PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017						
PSZ2 G320.94+83.69 12:59:47 +21:06:56.63 nan 7.32 Jun, 2017						

A summary of our observations is given in Table 1.

3. DATA REDUCTION AND CALIBRATION

Standard image reductions including subtraction of dark frames, flat fielding, sky-subtraction, and bad pixel masking was performed by the NOAO virtual observatory using the MOSAIC (Valdes & Swaters 2007) science pipelines. The resultant FITS files consist of fully reduced images with either all single exposure CCDs mosaicked into a single image extension (as in the case of Mosaic1.1) or as a multi-extension FITS file with each single exposure CCD occupying a separate extension.

We then mosaic each separate exposure into a master mosaic as described in the following section.

3.1. Mosaicking

Combined mosaics are created with SWARP (Bertin et al. 2002). We create three distinct types of mosaics. The individual dither frames are stacked and then median combined to produce the final completed science mosaic. A "detection" is created by combining select science mosaics into a chi2 image using either the i- and z-band when both are available and of sufficient quality. Finally we create a set of mosaics use to produce the three color image used for cluster finding. We median combine the griz science mosaics into a "blue" (g-band), "green" (r-band), and "red" (iz-band) mosaic. All final mosaics have a pixelscale of 0."25/pix. The final expo-

4 BOADA ET AL.

sure time is calculated as the median exposure time of the combined images, and similarly the final airmass is median of the individual air masses. need to talk about the weight images

Finally, a smaller-sized ($\sim 20'$ on a side) image is cropped from the full science mosaics. This small image serves as the actual science frame. The smaller size significantly decreases the number of sources recovered which reduces the time required to produce derived quantities (photometric redshifts, etc.).

The full parameter file used while creating the mosaics is given in Appendix ??.

3.2. Astrometric Calibration

Each of the final science mosaics produced in the previous section are first astrometrically aligned with *Gaia* (Gaia Collaboration et al. 2016a) Data Release 1 (Gaia Collaboration et al. 2016b) using SCAMP (Bertin 2006) as a part of PHOTOMETRYPIPELINE³ (PP; Mommert & M. 2017).

Sources are extracted from the mosaics with a signal-to-noise ratio (SNR) of at least ten and with a minimum area of at least 12 pixels. The extracted sources are then matched to the *Gaia* data and a new astrometric solution is calculated. Because the initial astrometric solution from the VO is quite accurate, the resultant corrections are much less than 1".

3.3. Photometric Calibration

After the mosaics have been astrometrically aligned, we use PP to produce a photometric solution. PP calculates a photometric zero-point in each of our observed bands by comparing field stars located throughout the mosaic to known photometry from large-area sky surveys. Because our sources are spread across the entire northern sky, and because we prefer to minimize the number of differences between photometric solutions we are limited to two optical surveys. For the optical data, we first seek photometric data from the Sloan Digital Sky Survey (SDSS; York et al. 2000) Data Release 13 (Alam et al. 2015) get a new citation for dr13 this is for dr12. When our target does not lie within the SDSS footprint we utilize the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS; Chambers et al. 2016) Data Release 1 (hereafter PS1; Flewelling et al. 2016). Both surveys provide accurate griz magnitudes and large on-line queriable databases for rapid automated calibra-

Sources are extracted from the combined mosaics with either a 3" or 8" diameter aperture for optical sources respectively; sources with a SNR \geq 10 are matched to a survey catalog and a photometric zero-point is determined. We use half of the available stars (with accurate catalog photometry) to derive the zero-point resulting in zero-points calculated from approximately 10-500 stars and with typical uncertainties of give zp errors in the different bands.

Should we talk about the difference between us and SDSS? If so, how should we "sum up" the differences in a simple way?

4. ANALYSIS

Lorem ipsum dolor amet swag copper mug meh tilde, put a bird on it live-edge tattooed kinfolk before they sold out locavore selvage leggings raclette literally bicycle rights. Hot chicken kickstarter mustache vinyl roof party. Wayfarers brooklyn truffaut twee umami, venmo irony. Typewriter viral pop-up, listicle vaporware organic af salvia keytar twee chillwave austin +1 offal blog. La croix dreamcatcher snackwave, try-hard intelligentsia taxidermy messenger bag air plant godard mustache celiac glossier echo park. Photo booth readymade authentic glossier biodiesel snackwave beard hammock sriracha before they sold out edison bulb fixie PBR&B. Man bun pabst kogi, crucifix subway tile af tacos cray tumeric lyft cronut lomo tattooed.

4.1. Source Extraction and Photometry

For source extraction and photometry estimation we use Source Extractor (hereafter SExtractor; version 2.19.5; Bertin & Arnouts 1996) run dual image mode with the CHI2 detection image as the detection image. See Section 3.1. See Appendix ?? for a complete parameter listing.

4.2. Photometric Redshifts

We determine photometric redshifts (photo-z) from the five-band optical images using Bayesian Photometric Redshifts (BPZ; Benitez 2000; Coe et al. 2006) following the same procedure as in Menanteau et al. (2009).

We assess the effectiveness of our photo-z estimates by comparing with the available spectroscopic redshifts (spec-z) from the SDSS. We use three diagnostics to gauge photo-z accuracy. First, we report the full scatter between the photo-z and spec-z, defined as:

$$\sigma_f = \text{RMS}[\delta z / (1 + z_{spec})]$$
 (1)

where $\delta z = z_{spec} - z_{phot}$. Second, we report the normalized median absolute deviation (NMAD; Ilbert et al. 2009; Dahlen et al. 2013; Molino et al. 2017), given as

$$\sigma_{NMAD} = 1.48 \times \text{median}\left(\frac{|\delta z|}{1 + z_{spec}}\right).$$
 (2)

which provides an estimate of the scatter resistant to catastrophic outliers. Finally, the catastrophic outlier fraction (OLF) where we define a catastrophic outlier (following Molino et al. 2017) as,

$$\eta = \frac{|\delta z|}{(1 + z_{spec})} > 5 \times \sigma_{NMAD}.$$
(3)

Figure 1 shows the photometric redshift performance as a function of the true spectroscopic redshift. For the full sample of galaxies we calculate $\sigma_f = XX\%$, $\sigma_{NMAD} = XX\%$, and an outlier fraction, $\eta = XX\%$. When considering the performance of only the galaxies BPZ classified as E and E/S0 type, we find the following results; $\sigma_f = 10.4\%$, $\sigma_{NMAD} = 5.43\%$, and an outlier fraction, $\eta = 2.97\%$.

4.3. Cluster Finding

In this section, we briefly describe the algorithms and methods use to select the galaxy clusters from the multiwavelength optical imaging. We follow the methods described in detail in Menanteau et al. (2009, 2010a). We

³ https://github.com/mommermi/photometrypipeline

FIG. 1.— Comparison between photometric and spectroscopic redshifts for 2253 galaxies which have spectroscopic redshifts from the SDSS. The photometric redshifts in the top panel use a Bayesian approach with a custom empirical prior on galaxy brightness for the photometric redshifts. The bottom panel shows the difference between the spectroscopic and photometric redshift.

direct the reader there for an in depth description and discussion of the methods.

We first create a three-color image using STIFF (Bertin & Emmanuel 2011). The red, green, and blue channels are given by the corresponding combined mosaics described in Section 3.1. We then visually inspect an area of roughly $8' \times 8'$ centered on the position of each unconfirmed cluster; see Table 1. Potential brightest cluster galaxies (BCGs) are identified by first calculating the absolute limiting magnitude needs details.

Once a potential BCG is selected, the algorithm selects nearby galaxies, within $|z_{BCG}-z|<0.05$ and 0.5 Mpc projected radius, which BPZ has classified as either E or E/S0 galaxies. These photo-z's of the galaxies are combined using a 3σ median sigma-clipping algorithm to estimate the cluster's mean redshift, z_c . We use this mean cluster redshift measurement and the member selection criteria given previously to estimate the number of cluster members within 1 Mpc, $N_{1\mathrm{Mpc}}$, which we define as the richness of the cluster, N_{qal} .

We correct the N_{gal} estimate by subtracting a statistical background of galaxies. We first estimate the number of background ellipticals by selecting galaxies within an annulus ($R_{200} < r < 2R_{200}$) around each cluster's position. We include galaxies with $\delta z = 0.05$ and similar colors as those galaxies assumed to belong to the cluster. These galaxies are subtracted from the cluster's population which provides an corrected N_{gal} , N_{galc} , which we then use to compute other important quantities. In practice the corrected number of galaxies is between 15% and 20% lower than the uncorrected number (Menanteau et al. 2010a). We report N_{galc} for the remainder of this work.

4.4. Recovery of the Brightest Cluster Galaxies

We have designed our observations to detect BCGs to $z \sim 1.5$. To quantify the actual depth of our images, we perform a Monte Carlo simulation by injecting artificial sources and computing their recovery fraction. We create the artificial sources with the MODELING package, part of ASTROPY (The Astropy Collaboration et al. 2013).

Following the procedure given in Menanteau et al. (2010b), the synthetic galaxies are created to have de Vaucouleurs (de Vaucouleurs 1948) profiles and surface brightnesses corresponding to their magnitude and assumed sizes. We inject the artificial galaxies into our science images with similar noise characteristics as their real counterparts.

We generate four rounds of one hundred elliptical galaxies spread uniformly across our science imaging. Each round of galaxies are place at different random positions to suppress abnormally boosted recovery fractions due to source confusion. The artificial galaxies have total fluxes corresponding to apparent magnitudes between 19 mag < i < 27 mag with 0.1 mag spacing.

This is almost directly taken from FM2010 – edit. We use the individual field's completion limit to estimate the redshift to which we can reliably detect massive clusters. For this, we compare the completeness limits of our observations to the expected and observed (i.e., known) apparent magnitudes of galaxies in clusters as a function of redshift. We estimated the expected apparent galaxy *i*-band magnitude as a function of redshift using L_{\star} as defined for the population of red galaxies by Blanton et al. (2003) at z=0.1 and allowing passive evolution according to a solar metallicity (Bruzual & Charlot 2003) $\tau=1.0$ Gyr burst model formed at zf=5. We show this in Figure 2 for a range of luminosities (L_{\star} , 0.4 L_{\star} , and 4 L_{\star}) aimed at representing the cluster members from the faint ones to the BCG.

5. RESULTS

In this section we give the results of our visual cluster finding. During the inspection of each field, we classify each into four possible catalogs: High confidence, medium confidence, low confidence, and no detection. A high confidence result consists of a clear BCG and many accompanying satellite galaxies (see Figure ??). A low confidence result is an ambiguous system where there is no clear BCG present but there appears to be a grouping of galaxies at a similar redshift. The medium confidence results fall in between the high and low confidence regimes where there appears to be a BCG but few satellite galaxies are observed. We fail to observe a cluster

Fig. 2.— Left: Histogram of the *i*-band magnitude corresponding to 80% completeness in galaxy recovery. When 80% completeness is not achieved we show the limiting magnitude with the highest completeness. Right: Observed *i*-band magnitudes of L_{\star} , 0.4 L_{\star} , and 4 L_{\star} (BCG) early-type galaxies as a function of redshift. We define an L_{\star} galaxy following Blanton et al. (2003) as a population of red galaxies at z=0.1 and allow it to evolve passively. The left and right panels can be combined to estimate the limiting redshift to which we could identify galaxy clusters.

TABLE	2
CARTIO	N.T

Name	RA PSZ	DEC PSZ	RA	DEC	Dist	\mathbf{z}	Mag Lim	RA EX	DEC EX	Dist EX	z EX	Flag	Ref
PSZ1_G031.91+67.94	14:29:02	+24:37:33.38	NaN	NaN	NaN	0.70	23.20	14:30:23.299	+24:39:06.19	18.54	0.13	NaN	50.0
PSZ1_G055.83-41.64	21:57:14	-2:31:51	NaN	$_{\rm NaN}$	NaN	NaN	23.44	21:56:41.02	-02:32:20.87	8.25	0.63	3	-1.0
PSZ1_G084.62-15.86	21:49:44	+33:10:23.81	NaN	$_{\rm NaN}$	NaN	0.30	22.93	21:49:40.599	+33:10:34.59	0.73	0.37	NaN	50.0
PSZ1_G096.44-10.40	22:19:35	+44:31:05.27	NaN	$_{\rm NaN}$	NaN	NaN	22.80	22:20:12.95	+44:26:16.27	8.31	0.20	ND	-1.0
PSZ1_G102.86-31.07	23:33:08	+28:43:51.60	NaN	$_{\rm NaN}$	NaN	0.49	23.58	23:33:24.699	+28:43:19.89	3.70	0.59	NaN	50.0
PSZ1_G102.97-04.77	22:34:47	+52:43:13.90	NaN	$_{\rm NaN}$	NaN	NaN	21.56	22:34:47.08	+52:42:55.56	0.31	0.52	2	-1.0
PSZ1_G108.90-52.04	0:16:38	+09:52:49.98	NaN	$_{\rm NaN}$	NaN	NaN	23.48	00:16:26.74	+09:53:53.60	2.97	0.46	2	-1.0
PSZ1_G118.06+31.10	15:54:34	+84:10:37.49	NaN	$_{\rm NaN}$	NaN	0.41	22.69	15:54:38.699	+84:10:28.39	0.19	0.19	NaN	50.0
PSZ1_G138.60-10.85	2:27:02	+49:04:54.07	NaN	$_{\rm NaN}$	NaN	0.64	23.43	02:27:06.699	+49:00:29.29	4.48	0.70	NaN	50.0
PSZ1_G142.17+37.28	9:18:56	+70:52:01.14	NaN	$_{\rm NaN}$	NaN	0.24	23.30	09:19:05.16	+70:55:11.40	3.26	0.28	1	10.0
PSZ1_G142.38+22.82	6:13:40	+71:52:21.02	NaN	$_{\rm NaN}$	NaN	NaN	22.95	06:13:49.84	+71:52:54.78	0.95	0.39	2	-1.0
PSZ1_G146.00-49.42	1:51:35	+10:44:02.79	NaN	$_{\rm NaN}$	NaN	NaN	23.56	01:51:19.799	+10:47:29.99	5.09	0.10	NaN	50.0
PSZ1_G148.20+23.49	6:37:46	+66:54:24.40	NaN	$_{\rm NaN}$	NaN	NaN	23.21	06:37:54.60	+66:51:06.20	3.41	0.11	2	10.0
PSZ1_G153.41+36.58	8:42:40	+62:34:31.61	NaN	$_{\rm NaN}$	NaN	0.64	23.35	08:42:42.899	+62:30:21.59	4.18	0.65	NaN	50.0
PSZ1_G153.56+36.23	8:39:31	+62:31:30.58	NaN	$_{\rm NaN}$	NaN	0.31	23.27	08:39:33.399	+62:26:12.09	5.32	0.13	NaN	50.0
PSZ1_G162.30-26.92	3:24:26	+24:00:44.46	NaN	$_{\rm NaN}$	NaN	NaN	23.32	03:24:19.02	+23:57:49.82	3.32	0.39	2	-1.0
PSZ1_G169.80+26.10	7:30:08	+48:20:02.06	NaN	$_{\rm NaN}$	NaN	0.62	23.35	07:30:32.02	+48:17:39.05	4.65	0.73	2	-1.0
PSZ1_G183.26+12.25	6:42:56	+31:49:07.58	NaN	$_{\rm NaN}$	NaN	NaN	20.77	06:43:09.84	+31:50:55.47	3.45	0.85	2	500.0
PSZ1_G185.93-31.21	4:11:39	+06:16:00.67	NaN	$_{\rm NaN}$	NaN	NaN	22.71	04:11:52.31	+06:17:11.80	3.51	0.09	2	-1.0
PSZ1_G206.45+13.89	7:29:59	+11:56:22.64	NaN	$_{\rm NaN}$	NaN	0.41	20.00	07:29:51.23	+11:56:30.89	1.91	0.38	1	10.0
PSZ1_G224.82+13.62	8:01:42	-4:03:54	NaN	$_{\rm NaN}$	NaN	0.16	22.91	08:01:41.61	-04:03:46.23	0.16	0.29	1	10.0
PSZ1_G249.01+73.75	11:56:46	+16:55:43.68	NaN	$_{\rm NaN}$	NaN	NaN	23.08	11:57:05.599	+16:57:35.39	5.04	0.16	NaN	50.0
PSZ1_G286.25+62.68	12:21:10	+00:47:34.05	NaN	$_{\rm NaN}$	$_{\rm NaN}$	0.46	23.35	12:21:05.35	+00:48:22.29	1.41	0.21	3	-1.0
PSZ1_G341.69+50.66	14:25:20	-4:59:54	NaN	$_{\rm NaN}$	NaN	0.28	22.25	14:25:12.29	-04:56:34.19	3.84	0.30	1	10.0
PSZ2_G022.03+17.75	17:28:37	-1:13:03	NaN	$_{\rm NaN}$	NaN	0.27	23.17	17:28:16.01	-01:22:58.04	11.22	0.65	1	-1.0
PSZ2_G032.12-14.96	19:43:34	-7:27:45	NaN	$_{\rm NaN}$	NaN	NaN	22.51	19:43:11.20	-07:24:56.25	6.31	0.38	3	-1.0
PSZ2_G033.27-17.54	19:54:52	-7:36:11	NaN	$_{\rm NaN}$	NaN	NaN	22.64	19:54:59.67	-07:30:34.70	5.92	0.33	2	-1.0
PSZ2_G071.67-42.76	22:30:54	+05:42:05.22	NaN	$_{\rm NaN}$	$_{\rm NaN}$	0.73	23.56	22:30:50.00	+05:39:16.72	2.98	0.69	ND	-1.0
PSZ2_G093.04-32.38	23:01:43	+24:02:24.90	NaN	$_{\rm NaN}$	$_{\rm NaN}$	NaN	22.46	23:02:15.07	+24:03:50.50	7.46	0.51	3	-1.0
PSZ2_G310.81+83.91	12:55:01	+21:05:41.16	NaN	NaN	NaN	NaN	21.23	NaN	NaN	NaN	0.45	NaN	2.0

when there is no clear BCG candidate or clear group of galaxies at similar redshifts.

For the 112 fields observed with MOSAIC, we observe twelve high confidence clusters, twenty two both medium and low confidence clusters, and we observe no discernible cluster in sixty fields. In the following subsections we present on each of the eight high confidence observations individually, and group the medium and low

confidence observations together.

5.1. Observations of Known Clusters

During the course of our observation campaign thirty clusters were confirmed through either dedicated follow up from the *Planck* team (e.g., Planck Collaboration et al. 2015, 2016) or through independent programs (e.g., Liu et al. 2015; van der Burg et al. 2016; Burenin 2017;

Burenin et al. 2018; Amodeo et al. 2018; Barrena et al. 2018; Streblyanska et al. 2018). We can use this opportunity to validate our cluster detection method against known clusters. The thirty clusters are indicated in Table 2.

We successfully recovery ten clusters. For the previously confirmed clusters which we cannot independently confirm, we discuss the potential reasons below.

5.1.1. PSZ1 G031.91+67.94

The position of the cluster reported in Planck Collaboration et al. (2016) is ~ 18.5 from the reported PSZ1 position. We do not confirm a cluster within the 5' search radius used in our study.

5.1.2. PSZ1 G084.62-15.86

We recover a cluster at $z_{cl} = 0.271 \pm 0.099$ with 18 members. This is a system with at least three possible BCGs.

5.1.3. PSZ1 G102.86-31.07

We recover a cluster at $z_{cl} = 0.497 \pm 0.136$ with 13 possible members.

5.1.4. PSZ1 G102.97-04.77

Low galactic latitude make recovering any previously known cluster very difficult.

5.1.5. PSZ1 G183.26+12.25

Due to poor observing conditions, this field has a significantly lower limiting redshift give number. We are unable to confirm this cluster with z=0.85.

5.1.6. PSZ1 G206.45+13.89

We find a cluster at $z_{cl} = 0.399 \pm 0.05$. We detect 73 potential cluster members, although a bright star (V = 4.5 mag; Høg et al. 2000) only ~ 4.9 away from the reported BCG. The contaminating star prevents an accurate photo-z estimate for many cluster cluster members.

5.1.7. *PSZ1_G224.82+13.62*

previously confirmed

5.1.8. PSZ2 G022.03+17.75

PSZ2 G022.03+17.75 is previously reported as PSZ1 G021.88+17.75 in Planck Collaboration et al. (2014). The position in the PSZ1 catalog differs significantly, give numbers from the position in the PSZ2 catalog. The position reported by Barrena et al. (2018) corresponds to the PSZ1 position. Because our study assumes the PSZ2 catalog replaces the corresponding entries in PSZ1 catalog, we cannot confirm a cluster within the search radius around the PSZ2 position.

5.1.9. PSZ2 G033.27-17.54

it looks like this BCG falls into the chipgap due to the observation strategy. I don't think we found this cluster because the BCG wasn't observed.

5.2. Newly Discovered Clusters

Lorem ipsum dolor amet swag copper mug meh tilde, put a bird on it live-edge tattooed kinfolk before they sold out locavore selvage leggings raclette literally bicycle rights. Hot chicken kickstarter mustache vinyl roof party. Wayfarers brooklyn truffaut twee umami, venmo irony. Typewriter viral pop-up, listicle vaporware organic af salvia keytar twee chillwave austin +1 offal blog. La croix dreamcatcher snackwave, try-hard intelligentsia taxidermy messenger bag air plant godard mustache celiac glossier echo park. Photo booth readymade authentic glossier biodiesel snackwave beard hammock sriracha before they sold out edison bulb fixie PBR&B. Man bun pabst kogi, crucifix subway tile af tacos cray tumeric lyft cronut lomo tattooed.

- 5.2.1. PSZ2 G029.66-47.63
- 5.2.2. PSZ2 G043.44-41.27
- 5.2.3. PSZ2 G096.43-20.89
- 5.2.4. PSZ2 G125.55+32.72
- 5.2.5. PSZ2 G173.76+22.92
- 5.2.6. PSZ2 G305.76+44.79

5.3. Redshift Limits in Other Fields

Lorem ipsum dolor amet swag copper mug meh tilde, put a bird on it live-edge tattooed kinfolk before they sold out locavore selvage leggings raclette literally bicycle rights. Hot chicken kickstarter mustache vinyl roof party. Wayfarers brooklyn truffaut twee umami, venmo irony. Typewriter viral pop-up, listicle vaporware organic af salvia keytar twee chillwave austin +1 offal blog. La croix dreamcatcher snackwave, try-hard intelligentsia taxidermy messenger bag air plant godard mustache celiac glossier echo park. Photo booth readymade authentic glossier biodiesel snackwave beard hammock sriracha before they sold out edison bulb fixie PBR&B. Man bun pabst kogi, crucifix subway tile af tacos cray tumeric lyft cronut lomo tattooed.

6. DISCUSSION

Lorem ipsum dolor amet swag copper mug meh tilde, put a bird on it live-edge tattooed kinfolk before they sold out locavore selvage leggings raclette literally bicycle rights. Hot chicken kickstarter mustache vinyl roof party. Wayfarers brooklyn truffaut twee umami, venmo irony. Typewriter viral pop-up, listicle vaporware organic af salvia keytar twee chillwave austin +1 offal blog. La croix dreamcatcher snackwave, try-hard intelligentsia taxidermy messenger bag air plant godard mustache celiac glossier echo park. Photo booth readymade authentic glossier biodiesel snackwave beard hammock sriracha before they sold out edison bulb fixie PBR&B. Man bun pabst kogi, crucifix subway tile af tacos cray tumeric lyft cronut lomo tattooed.

7. SUMMARY

Lorem ipsum dolor amet swag copper mug meh tilde, put a bird on it live-edge tattooed kinfolk before they sold out locavore selvage leggings raclette literally bicycle rights. Hot chicken kickstarter mustache vinyl roof party. Wayfarers brooklyn truffaut twee umami, venmo 8 BOADA ET AL.

irony. Typewriter viral pop-up, listicle vaporware organic af salvia keytar twee chillwave austin +1 offal blog. La croix dreamcatcher snackwave, try-hard intelligentsia taxidermy messenger bag air plant godard mustache celiac glossier echo park. Photo booth readymade authentic glossier biodiesel snackwave beard hammock sriracha before they sold out edison bulb fixie PBR&B. Man bun pabst kogi, crucifix subway tile af tacos cray tumeric lyft cronut lomo tattooed.

ACKNOWLEDGEMENTS

This research made use of several open source packages: APLPY, an open-source plotting package for Python hosted at http://aplpy.github.com; the IPYTHON package (Perez & Granger 2007); MAT-PLOTLIB, a Python library for publication quality graphics (Hunter 2007) and Astropy, a community developed core Python package for Astronomy (The Astropy Collaboration et al. 2013). IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy under cooperative agreement with the National Science Foundation (Tody 1993). PYRAF is a product of the Space Telescope Science Institute, which

is operated by AURA for NASA. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/ gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. The original description of the VizieR service was published in Ochsenbein et al. (2000). This research has made use of the SVO Filter Profile Service (http://svo2.cab. inta-csic.es/theory/fps/) supported from the Spanish MINECO through grant AyA2014-55216.

REFERENCES

Alam, S., Albareti, F. D., Prieto, C. A., et al. 2015, The Astrophysical Journal Supplement Series, 219, 12
Amodeo, S., Mei, S., Stanford, S. A., et al. 2018, The Astrophysical Journal, 853, 36
Barrena, R., Streblyanska, A., Ferragamo, A., et al. 2018, eprint arXiv:1803.05764, arXiv:1803.05764
Benitez, N. 2000, The Astrophysical Journal, 536, 571
Bertin, E. 2006, in Astronomical Society of the Pacific Conference Series, Vol. 351, Astronomical Data Analysis Software and Systems XV, ed. C. Gabriel, C. Arviset, D. Ponz, & S. Enrique, 112

Bertin, E., & Arnouts, S. 1996, Astronomy and Astrophysics Supplement Series, 117, 393
Bertin, E., & Emmanuel. 2011, Astrophysics Source Code

Supplement Series, 117, 393
Bertin, E., & Emmanuel. 2011, Astrophysics Source Code
Library, record ascl:1110.006
Bertin, E., Mellier, Y., Radovich, M., et al. 2002, in Astronomical
Society of the Pacific Conference Series, Vol. 281, Astronomical
Data Analysis Software and Systems XI, ed. D. Bohlender,
D. Durand, & T. Handley, 228
Blanton, M. R., Hogg, D. W., Bahcall, N. A., et al. 2003, The
Astrophysical Journal, 592, 819
Bruzual, G., & Charlot, S. 2003, Monthly Notices of the Royal
Astronomical Society, 344, 1000
Burenin, R. A. 2017, Astronomy Letters, 43, 507
Burenin, R. A., Bikmaev, I. F., Khamitov, I. M., et al. 2018,
eprint arXiv:1801.04464, arXiv:1801.04464
Carlstrom, J. E., Ade, P. A. R., Aird, K. A., et al. 2011,
Publications of the Astronomical Society of the Pacific, 123, 568
Chabrier, G. 2003, Publications of the Astronomical Society of
the Pacific, 115, 763
Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, eprint
arXiv:1612.05560, arXiv:1612.05560
Coe, D., Benitez, N., Sanchez, S. F., et al. 2006, The
Astronomical Journal, 132, 926
Dahlen, T., Mobasher, B., Faber, S. M., et al. 2013, The
Astrophysical Journal, 775, 93
de Vaucouleurs, G. 1948, Annales d'Astrophysique, 11, 247
Flewelling, H. A., Magnier, E. A., Chambers, K. C., et al. 2016,
eprint arXiv:1612.05243, arXiv:1612.05243
Gaia Collaboration, G., Brown, A. G. A., Vallenari, A., et al.
2016a, Astronomy & Astrophysics, Volume 595, id.A2, 23 pp.,
595, arXiv:1609.04172
Gaia Collaboration, G., Prusti, T., de Bruijne, J. H. J., et al.

Gaia Collaboration, G., Prusti, T., de Bruijne, J. H. J., et al. 2016b, Astronomy & Astrophysics, Volume 595, id.A1, 36 pp., 595, arXiv:1609.04153

Hasselfield, M., Hilton, M., Marriage, T. A., et al. 2013, Journal of Cosmology and Astroparticle Physics, 2013, 008
Høg, E., Fabricius, C., Makarov, V. V., et al. 2000, Astronomy and Astrophysics, 355, L27
Hunter, J. D. 2007, Computing in Science & Engineering, 9, 90

Ilbert, O., Capak, P., Salvato, M., et al. 2009, The Astrophysical Journal, 690, 1236

Jenkins, A., Frenk, C. S., White, S. D. M., et al. 2001, Monthly

Notices of the Royal Astronomical Society, 321, 372

Liu, J., Hennig, C., Desai, S., et al. 2015, Monthly Notices of the Royal Astronomical Society, 449, 3370

Menanteau, F., Hughes, J. P., Jimenez, R., et al. 2009, The Astrophysical Journal, 698, 1221

Menanteau, F., Hughes, J. P., Barrientos, L. F., et al. 2010a, The Astrophysical Journal Supplement Series, 191, 340

Menanteau, F., González, I. Liu, L.B., et al. 2010b, The

Menanteau, F., González, J., Juin, J.-B., et al. 2010b, The Astrophysical Journal, 723, 1523 Molino, A., Benítez, N., Ascaso, B., et al. 2017, Monthly Notices

Molino, A., Bentiez, N., Ascaso, B., et al. 2017, Monthly Notice of the Royal Astronomical Society, 470, 95
Mommert, M., & M. 2017, Astronomy and Computing, 18, 47
Ochsenbein, F., Bauer, P., & Marcout, J. 2000, Astronomy and Astrophysics Supplement Series, 143, 23
Oke, J. B. 1974, The Astrophysical Journal Supplement Series, 27, 21

Perez, F., & Granger, B. E. 2007, Computing in Science & Engineering, 9, 21

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011, Astronomy & Astrophysics, 536, A1

— 2014, Astronomy & Astrophysics, 571, A29

— 2015, Astronomy & Astrophysics, 582, A29

—. 2016, Astronomy & Astrophysics, 586, A139 Reichardt, C. L., Stalder, B., Bleem, L. E., et al. 2013, The Astrophysical Journal, 763, 127

Astrophysical Journal, 763, 127
Streblyanska, A., Barrena, R., Rubino-Martin, J. A., et al. 2018, eprint arXiv:1804.01356, arXiv:1804.01356
Sunyaev, R. A., & Zeldovich, Y. B. 1972, Comments on Astrophysics and Space Physics, 4
Swetz, D. S., Ade, P. A. R., Amiri, M., et al. 2011, The Astrophysical Journal Supplement Series, 194, 41
Tauber, J. A., Mandolesi, N., Puget, J.-L., et al. 2010, Astronomy and Astrophysics, 520, A1
The Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, Astronomy & Astrophysics, 558, A33
Tinker, J., Kravtsov, A. V., Klypin, A., et al. 2008, The Astrophysical Journal, 688, 709
Tody, D. 1993, Astronomical Data Analysis Software and Systems II, 52
Valdes, F. G., & Swaters, R. A. 2007, in Astronomical Society of

Valdes, F. G., & Swaters, R. A. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis Software and Systems XVI, ed. R. Shaw, F. Hill, &

van der Burg, R. F. J., Aussel, H., Pratt, G. W., et al. 2016,

Astronomy & Astrophysics, 587, A23 York, D. G., Adelman, J., Anderson, John E., J., et al. 2000, The Astronomical Journal, 120, 1579