Discrete Mathematics for Computing

Ch 9.6 Partial Orderings

• A relation *R* on a set *S* is called a partial ordering or *partial order* if it is:

reflexive antisymmetric transitive

• A set S together with a partial ordering R is called a *partially ordered set*, or *poset*, and is denoted by (S, R).

• Let *R* be a relation on set *A*. Is *R* a partial order?

$$A = \{1, 2, 3, 4\}$$

 $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$

So, given

$$A = \{1, 2, 3, 4\}$$

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2),$$

$$(2,3), (2,4), (3,3), (3,4), (4,4)\}$$

R is a partial order, and (A, R) is a poset.

• Is the "≥" relation a partial ordering on the set of integers?

Partial Orderings

Example: Show that the divisibility relation (|) is a partial ordering on the set of integers.

Comparable / Incomparable

- In a poset the notation $a \le b$ denotes $(a, b) \in \mathbb{R}$
 - -The "less than or equal to" (≤) is just an example of partial ordering
- The elements a and b of a poset (S, \leq) are called *comparable* if either $a \leq b$ or $b \leq a$.
- The elements a and b of a poset (S, \leq) are called *incomparable* if neither $a \leq b$ nor $b \leq a$.

Comparable / Incomparable

- In the poset (**Z**⁺, |):
 - -Are 3 and 9 comparable?

-Are 5 and 7 comparable?

Total Order

- "Partial ordering" pairs of elements may be incomparable.
- If every two elements of a poset (S, \leq) are comparable, then S is called a *totally* ordered or linearly ordered set and \leq is called a *total order* or linear order.
- A totally ordered set is also called a *chain*.

Total Order

- Is the poset (\mathbf{Z} , \leq) is totally ordered? Every two elements of \mathbf{Z} are comparable; that is, $a \leq b$ or $b \leq a$ for all integers.
- Is poset (**Z**⁺, |) is totally ordered?
- It contains elements that are incomparable; for example 5 | 7.

• We say that (a_1, a_2) is *less than* (b_1, b_2) – that is, $(a_1, a_2) \odot (b_1, b_2)$ – either if:

 $a_1 \otimes b_1$, or

 $a_1 = b_1 \text{ and } a_2 \otimes b_2$

• In the poset $(\mathbf{Z} \times \mathbf{Z}, \leq)$,

is (3, 5) © (4, 8)?

is (3, 8) @ (4, 5)?

is (4, 9) @ (4, 11)?

© The McGraw-Hill Companies, Inc. all rights reserved. (1,7)(2,7)(3,7)(4,7)(5,7)(6,7)(7,7)(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(7,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(7,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(7,4)(1,3)(2,3)(3,3)(4, 3)(5, 3)(6,3)(7,3)(1, 2)(2, 2)(3, 2)(4, 2)(5, 2)(6, 2)(7,2)(1, 1)(2,1)(3,1)(4, 1)(5,1)(6, 1)(7,1)

The ordered pairs in red are all less than (3,4).

Consider the strings consisting of lowercase characters.

Let n_A be the number of characters in string A and n_B be the number of characters in string B. Let n be the smaller of the two values.

For i = 1 to n, compare character A_i with B_i :

- If A_i matches B_i , and $n_A = n_B$, then A = B.
- If A_i matches B_i , but $n_A < n_B$, then A < B.
- If A_i matches B_i , but $n_B < n_A$, then B < A.
- If, for some $i \le n$, character A_i comes before B_i in the alphabet, then A < B.

Those are the actual rules by which words are listed in order in the dictionary.

discreet © discrete, because these strings differ in the 7th position, and $e \odot t$.

discreet © discreetness, because these strings agree for the first 8 characters (the length of the shorter string), but the second string has more letters.

Finally, discrete \odot discretion, because these strings differ in the 8th position, and $e \odot i$.

Hasse Diagram

- Hasse diagram graphical representation of a poset.
- Since a poset is by definition reflexive and transitive (and antisymmetric), the graphical representation for a poset can be compacted.
- For example, why do we need to include loops at every vertex?
- Since it's a poset, it *must* have loops there.

Constructing a Hasse Diagram

- Start with the digraph of the partial order.
- Remove the loops at each vertex.
- Remove all edges that *must* be present because of the transitivity.
- Arrange each edge so that all arrows point up.
- Remove all arrowheads.

• Construct the Hasse diagram for $(\{1, 2, 3\}, \leq)$

Hasse Diagram Example

© The McGraw-Hill Companies, Inc. all rights reserved.

Steps in the construction of the Hasse diagram for $(\{1, 2, 3, 4\}, \leq)$

• Construct the Hasse diagram for ({1, 2, 3, 4}, |)

Hasse Diagram Example

Steps in the construction of the Hasse diagram for $(\{1, 2, 3, 4, 6, 8, 12\}, |)$

© The McGraw-Hill Companies, Inc. all rights reserved.

• Construct the Hasse diagram for the power set P({1, 2, 3, 4})

- Let (S, \leq) be a poset.
- a is maximal in (S, \leq) if there is no $b \in S$ such that $a \leq b$. (top of the Hasse diagram)
- a is minimal in (S, \leq) if there is no $b \in S$ such that $b \leq a$. (bottom of the Hasse diagram)

Which elements of the poset $(\{2, 4, 5, 10, 12, 20, 25\}, |)$ are maximal? Which are minimal?

- Let (S, \leq) be a poset.
- a is the greatest element of (S, \leq) if $b \leq a$ for all $b \in S$...
 - It must be unique
- a is the *least element* of (S, \leq) if $a \leq b$ for all $b \in S$.
 - It must be unique

- Let A be a subset of (S, \leq) .
- If $u \in S$ such that $a \leq u$ for all $a \in A$, then u is called an *upper bound* of A.
- If $l \in S$ such that $l \leq a$ for all $a \in A$, then l is called a *lower* bound of A.
- If x is an upper bound of A and $x \le z$ whenever z is an upper bound of A, then x is called the *least upper bound* of A.
 - It must be unique
- If y is a lower bound of A and $z \le y$ whenever z is a lower bound of A, then y is called the *greatest lower bound* of A.
 - It must be unique

Maximal:

Minimal:

Greatest element:

Least element:

Upper bound of $\{a,b,c\}$:

Least upper bound of $\{a,b,c\}$:

Lower bound of $\{a,b,c\}$:

Greatest lower bound of $\{a,b,c\}$:

Lattices

• A *lattice* is a partially ordered set in which every pair of elements has both a *least* upper bound and greatest lower bound.

Lattice example

• Are the following three posets *lattices?*

Conclusion

In this chapter we have studied:

- Relations and their properties
- How to represent relations
- Closures of relations
- Equivalence relations
- Partial orderings

