# Time Response Analysis

- Time Response
- Input Supplied System
- Steady State Response and Error
- Time Response specification
- Limitations

### Time Response of Control Systems

Time Response of a system is defined as the output of a system when subjected to an input which is a function of time
 Control systems generate an output or response for a given input



- The time response of any system has two components
  - Transient response
  - Steady-state response.

#### Time Response of Control Systems

- When the response of the system is changed from equilibrium it takes some time to settle down.
- This is called transient response.

 The response of the system after the transient response is called steady state response.



#### **IMPULSE INPUT**

•It is sudden change input. An impulse is infinite at t=0 and everywhere else.

• 
$$r(t)=\delta(t)=1$$
  $t=0$   
=  $0$   $t\neq 0$ 

In laplase domain we have,

L[r(t)]= 1



#### STEP INPUT

 It represents a constant command such as position. Like elevator is a step input.

$$\bullet r(t)=u(t)=A$$
  $t \ge 0$   
= 0 otherwise  
 $L[r(t)]=A/s$ 



#### RAMP INPUT

 this represents a linearly increasing input command.

•r(t) = At 
$$t \ge 0$$
, Aslope  
= 0  $t < 0$   
 $L[r(t)] = A/s^2$   
A= 1 then unit ramp



#### PARABOLIC INPUT

 Rate of change of velocity is acceleration. Acceleration is a parabolic function.

• 
$$r(t)$$
 = At  $^2/2$   $t \ge 0$   
=  $0$   $t < 0$   
 $L[r(t)] = A/s^3$ 



• 
$$r(t) = A \sin(wt)$$
  $t \ge 0$ 





# Classification of Control Systems

 Control systems may be classified according to their ability to follow step inputs, ramp inputs, parabolic inputs, and so on.

# Classification of Control Systems

 Consider the unity-feedback control system with the following open-loop transfer function

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1)\cdots(T_m s + 1)}{s^N(T_1 s + 1)(T_2 s + 1)\cdots(T_p s + 1)}$$

- It involves the term s<sup>N</sup> in the denominator, representing N poles at the origin.
- A system is called type 0, type 1, type 2, ..., if N=0, N=1, N=2, ..., respectively.

# Classification of Control Systems

As the type number is increased, accuracy is improved.

However, increasing the type number aggravates the stability problem.

 A compromise between steady-state accuracy and relative stability is always necessary.

#### Steady State Error of Unity Feedback Systems

Consider the system shown in following figure.



The closed-loop transfer function is

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)} \qquad G(s) = \frac{K(T_a s + 1)(T_b s + 1) \cdots (T_m s + 1)}{s^N(T_1 s + 1)(T_2 s + 1) \cdots (T_p s + 1)}$$

#### Steady State Error of Unity Feedback Systems

 Steady state error is defined as the error between the input signal and the output signal when t → ∞.

- The transfer function between the error signal E(s) and the input signal R(s) is  $\frac{E(s)}{R(s)} = \frac{1}{1 + G(s)}$
- The final-value theorem provides a convenient way to find the steady-state performance of a stable system.
- Since E(s) is  $E(s) = \frac{1}{1 + G(s)} R(s)$
- The steady state error is

### Static Position Error Constant (Kp)

The steady-state error of the system for a unit-step input is

$$e_{ss} = \lim_{s \to 0} \frac{s}{1 + G(s)} \frac{1}{s}$$

$$= \frac{1}{1 + G(0)}$$

The static position error constant K<sub>p</sub> is defined by

$$K_p = \lim_{s \to 0} G(s) = G(0)$$

 Thus, the steady-state error in terms of the static position error constant K<sub>p</sub> is given by

$$e_{\rm ss} = \frac{1}{1 + K_p}$$

### Static Position Error Constant (Kp)

For a Type 0 system

$$K_p = \lim_{s \to 0} \frac{K(T_a s + 1)(T_b s + 1) \cdots}{(T_1 s + 1)(T_2 s + 1) \cdots} = K$$

For Type 1 or higher order systems

$$K_p = \lim_{s \to 0} \frac{K(T_a s + 1)(T_b s + 1)\cdots}{s^N(T_1 s + 1)(T_2 s + 1)\cdots} = \infty, \quad \text{for } N \ge 1$$

For a unit step input the steady state error ess is

$$e_{\rm ss} = \frac{1}{1+K}$$
, for type 0 systems  
 $e_{\rm ss} = 0$ , for type 1 or higher systems

### Static Velocity Error Constant (K,)

The steady-state error of the system for a unit-ramp input is

$$e_{ss} = \lim_{s \to 0} \frac{s}{1 + G(s)} \frac{1}{s^2}$$
$$= \lim_{s \to 0} \frac{1}{sG(s)}$$

The static velocity error constant K is defined by

$$K_v = \lim_{s \to 0} sG(s)$$

 Thus, the steady-state error in terms of the static velocity error constant K is given by

$$e_{\rm ss} = \frac{1}{K_v}$$

### Static Velocity Error Constant (K,)

For a Type 0 system

$$K_v = \lim_{s \to 0} \frac{sK(T_a s + 1)(T_b s + 1)\cdots}{(T_1 s + 1)(T_2 s + 1)\cdots} = 0$$

For Type 1 systems

$$K_v = \lim_{s \to 0} \frac{sK(T_a s + 1)(T_b s + 1)\cdots}{s(T_1 s + 1)(T_2 s + 1)\cdots} = K$$

For type 2 or higher order systems

$$K_v = \lim_{s \to 0} \frac{sK(T_a s + 1)(T_b s + 1)\cdots}{s^N(T_1 s + 1)(T_2 s + 1)\cdots} = \infty, \quad \text{for } N \ge 2$$

# Static Velocity Error Constant (K,)

For a ramp input the steady state error ess is

$$e_{\rm ss} = \frac{1}{K_{\rm ss}} = \infty$$
, for type 0 systems

$$e_{\rm ss} = \frac{1}{K_v} = \frac{1}{K}$$
, for type 1 systems

$$e_{\rm ss} = \frac{1}{K} = 0$$
, for type 2 or higher systems

#### Static Acceleration Error Constant (Ka)

The steady-state error of the system for parabolic input is

$$e_{ss} = \lim_{s \to 0} \frac{s}{1 + G(s)} \frac{1}{s^3}$$
$$= \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

The static acceleration error constant K<sub>a</sub> is defined by

$$K_a = \lim_{s \to 0} s^2 G(s)$$

 Thus, the steady-state error in terms of the static acceleration error constant K<sub>a</sub> is given by

$$e_{\rm ss} = \frac{1}{K_a}$$

#### Static Acceleration Error Constant (Ka)

For a Type 0 system

$$K_a = \lim_{s \to 0} \frac{s^2 K (T_a s + 1) (T_b s + 1) \cdots}{(T_1 s + 1) (T_2 s + 1) \cdots} = 0$$

For Type 1 systems

$$K_a = \lim_{s \to 0} \frac{s^2 K (T_a s + 1) (T_b s + 1) \cdots}{s (T_1 s + 1) (T_2 s + 1) \cdots} = 0$$

For type 2 systems

$$K_a = \lim_{s \to 0} \frac{s^2 K (T_a s + 1) (T_b s + 1) \cdots}{s^2 (T_1 s + 1) (T_2 s + 1) \cdots} = K$$

For type 3 or higher order systems

$$K_a = \lim_{s \to 0} \frac{s^2 K (T_a s + 1) (T_b s + 1) \cdots}{s^N (T_1 s + 1) (T_2 s + 1) \cdots} = \infty, \quad \text{for } N \ge 3$$

# Static Acceleration Error Constant (K<sub>a</sub>)

For a parabolic input the steady state error ess is

$$e_{\rm ss}=\infty$$
, for type 0 and type 1 systems

$$e_{\rm ss} = \frac{1}{K}$$
, for type 2 systems

$$e_{\rm ss} = 0$$
, for type 3 or higher systems

# Summary

Step Input Acceleration Input Ramp Input  $r(t) = \frac{1}{2}t^2$ r(t) = 1r(t) = tType 0 system  $\infty$  $\infty$ 1 + KType 1 system 0  $\infty$ Type 2 system 0 0