

EECS 410

Final Project Proposal

Epileptic Seizure Detection using EEG Signals

Group 13 Fei Guo (fxg104) Xuhui Chen (xxc296)

Rubric

- Data preprocessing: segment all the records into segments and preprocess the segments (de-noising, normalization or other process if needed). (5%)
- Implement an appropriate active learning scheme for Epileptic Seizure detection. (10%)
- Write code implementing the active learning scheme using TensorFlow or Torch. (10%)
- Write code for the comparison scheme (randomly selecting samples for querying, the baseline scheme), including classifier training and testing. (5%)
- Compare and evaluate the results utilizing confusion metrics. (5%)
- Develop an Android app that implements the trained network to test any given segments of EEG signal (randomly select from database). (5%)

Motivation

Authors	Features	Classification Method	Accuracy
Polat K et al.[4]	Spectral analysis of EEG signals and Welch (FFT) method	Artificial Immune Recognition System (AIRS)	100%
U. Rajendra Acharya <i>et al</i> . [5]	Recurrence quantification analysis	SVM	95.6%
Oran et al. [6]	DWT	ANN	96.67%
Ghosh-Dastidar et al. [7]	Mixed-band features space	Back Propagation Neural Network(BPNN)	96.7%
V. Srinivasan et al. [8]	Time and frequency domain features	Recurrent Neural Network	99.6%
K. Polat et al. [9]	Fast Fourier Transform	Decision Tree	98.7%

Dataset Description

Department of Epileptology, University of Bonn.[1]

Dataset	Testers	Settings	State
Α	5 healthy volunteers	Standardized international 10-20 electrode placement scheme	Eye open
В	5 healthy volunteers	Standardized international 10-20 electrode placement scheme.	Eye closed
С	5 epilepsy patients	Depth Intracranial electrodes implanted (non epileptogenic zone)	Seizure free interval
D	5 epilepsy patients	Depth Intracranial electrodes implanted (epileptogenic zone)	Seizure free interval
E	5 epilepsy patients	Depth Intracranial electrodes implanted	Only seizure activity

Each dataset has 100 records, and each record contains 23.6-second single channel EEG signals.

Data Preprocessing

C: Seizure Free Interval

E: Seizure Activity Only

Data Preprocessing

Figure 1. Active learning framework

Method

The training process: we divide the training dataset into two parts, L and P, and treat them as "labeled training set" and "Unlabeled pool", respectively.

- Initialization training set L (minority)
- Sample pool P (majority)

Algorithm 1 Active learning framework

Given:

L: Set of labeled examples

P: Set of unlabeled pool

B: number of examples to be selected in each iteration

 U_M : utility function

Algorithm:

loop until stopping criterion is met

- 1. train the LSTM model M using dataset L
- 2. for all $p_i \in P : u_{p_i} \leftarrow U_M(p_i)$
- 3. Active learning scheme: select B examples $p_i \in P$ with highest utility u_{p_i} .

(Comparison scheme: randomly select B samples u_{p_i} .)

- 4. retrieve the selected samples with their labels (p_i, y_{p_i})
- 5. move the selected examples from P to L

Return: Trained LSTM model M

Selected active learning scheme: Uncertainty sampling

Comparison scheme: Randomly sampling

Code for Uncertainty Sampling


```
for _ in range(int(quota/query sample num)): # the total number of iterations
146 ▼
             unlabeled entry ids, x pool = zip(*trn ds11.get unlabeled entries())
148
             X pool = np.array(x pool)
150
             dvalue = model1.predict(X pool, batch size=1)
             score_uncer = np.zeros((len(dvalue),2))
             for j in range(len(dvalue)):
153 ▼
154
                 score uncer[j][0] = unlabeled entry ids[j]
                 score uncer[j][1] = abs(dvalue[j]-0.5) # calculate the uncertainty for each unlabeled sample
             score uncer arg = np.argsort(score uncer[:,1])# sort the score on second column
             score uncer = score uncer[score uncer arg]
160 ▼
             for i in range(query sample num): # "query sample num" number of samples in each iteration
                 ask id = int(score uncer[i][0])
                 X, _ = zip(*trn ds11.data)
                 lb = lbr.label(X[ask id]) # Oracl: returns the label of the queried sample
                 trn ds11.update(ask id, lb) #updates the unlabeled sample with queried label.
             trn ds feature, trn ds label = zip(*trn ds11.get labeled entries())
             trn ds feature np = np.array(trn ds feature)
             trn ds label np = np.array(trn ds label)
170
             print('Train a new LSTM1...')
             print('number of training samples: ', len(trn ds label np))
             model1 = Sequential()
             model1.add(LSTM(256, input shape=(1, 347)))
             model1.add(Dense(1, activation='sigmoid'))
176 ▼
             model1.compile(loss='binary crossentropy',
                         optimizer='adam',
                         metrics=['accuracy'])
             model1.fit(trn ds feature np, trn ds label np, batch size=batch size, epochs=10) # train a new LSTM
```

Code for Uncertainty Sampling


```
# Test the current LSTM network

predict_prob2 = model1.predict(X_test, batch_size=1)# the predicted probability of testing data

true_positive_rate, true_negative_rate, precision, F1, acc = metric_test(predict_prob2,y_test)

TPR1 = np.append(TPR1, true_positive_rate)

TNR1 = np.append(TNR1, true_negative_rate)

Preci1 = np.append(Preci1, precision)

F1_Total1 = np.append(F1_Total1, F1)

ACC_Total1 = np.append(ACC_Total1, acc)

print('TPR:', TPR1)

print('TNR:', TNR1)

print('Precision:', Preci1)

print('F1:', F1_Total1)

print('Acc:', ACC_Total1)
```

Code for Random Sampling


```
for in range(int(quota/query sample num)): # the total number of iterations
204
          for i in range(query sample num):
              ask id = qs.make query() #returns the index of the sample that the active learning algorithm wants to query
              X, = zip(*trn ds2.data)
              lb = lbr.label(X[ask id]) #returns the label of the given sample answered by oracle.
              trn ds2.update(ask id, lb) #updates the unlabeled sample with queried label.
          trn ds feature, trn ds label = zip(*trn ds2.get labeled entries())
          trn ds feature np = np.array(trn ds feature)
          trn ds label np = np.array(trn ds label)
          print('Train a new LSTM1...')
          model = Sequential()
          model.add(LSTM(256, input shape=(1,347)))
          model.add(Dense(1, activation = 'sigmoid'))
          model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
          print('Train...')
          model.fit(trn ds feature np, trn ds_label_np, batch_size=batch_size, epochs=10)
228
            predict prob2 = model.predict(X test, batch size=1) # the predicted probability of testing data
229
230
            true positive rate, true negative rate, precision, F1, acc = metric test(predict prob2,y test)
            TPR2 = np.append(TPR2, true_positive_rate)
            TNR2 = np.append(TNR2, true negative rate)
234
            Preci2 = np.append(Preci2, precision)
            F1_Total2 = np.append(F1 Total2, F1)
235
            ACC Total2 = np.append(ACC Total2, acc)
236
            print('TPR:', TPR2)
238
            print('TNR:', TNR2)
            print('Precision:', Preci2)
            print('F1:', F1 Total2)
            print('Acc:', ACC Total2)
241
 UNIVERSIT
```

Evaluation – Active learning

Evaluation – LSTM performance


```
kf = KFold(n_splits = 5, shuffle=False)
     acc total = 0
75
     for train index,test index in kf.split(X):
         x train, x test = X[train index], X[test index]
78
         y train, y test = Y[train index], Y[test index]
         print('train samples: ', len(x train))
         print( 'test samples: ', len(x test))
         print('Build model...')
         model = Sequential()
         model.add(LSTM(256, input shape=(1, 347)))
         model.add(Dense(1, activation='sigmoid'))
         model.compile(loss='binary_crossentropy',
                          optimizer='adam',
                          metrics=['accuracy'])
         model.fit(X train, y train,
                      batch size=batch size,
                      epochs=10)
         predict probability = model.predict(X test)
         predict result = copy.deepcopy(predict probability)
108
         predict result[predict probability >= 0.5] = 1
110
         predict result[predict probability < 0.5] = 0</pre>
111
112
         print (confusion matrix(y test, predict result))
113
         score, acc = model.evaluate(X test, y test,
114
                                      batch size=batch_size)
115
         acc total = acc total + acc
         print('Test accuracy:', acc)
116
117
     print('Averaged testing accuracy: ', acc total/5.0)
```


Evaluation

MATLAB classifiers

Last change: Coarse Gaussian SVM	347/347 features
1.13 🖒 KNN Last change: Fine KNN	Accuracy: 89,4% 347/347 features
1.14 🏠 KNN Lastchange: Medium KNN	Accuracy: 76,2% 347/347 features
1.15 😭 KNN Last change: Coarse KNN	Accuracy: 67,0% 347/347 features
1.16 😭 KNN Last change: Cosine KNN	Accuracy: 85,0% 347/347 features
1.17 🏠 KNN Last change: Cubic KNN	Accuracy: 76.2% 347/347 features
1.18 😭 KNN Last change: Weighted KNN	Accuracy: 79,3% 347/347 features
1.19 😭 Ensemble Last change: Boosted Trees	Accuracy: 94,5% 347/347 features
1.20 🏠 Ensemble Last change: Bagged Trees	Accuracy: 95.9% 347/347 features
1.21 🏠 Ensemble Last change: Subspace Discriminant	Accuracy: 73.9% 347/347 features
1.22 🏠 Ensemble Last change: Subspace KNN	Accuracy: 89,6% 347/347 features
1.23 🏠 Ensemble Last change: RUSBoosted Trees	Accuracy: 92,1% 347/347 features

Ensemble Bagged Trees: 95.9%

	True class		
Predicted class		1	0
	1	1029	63
	0	71	2137

Precision = 94.23% Recall = 93.55%

LSTM: 96.3%

	True class		
Predicted class		1	0
	1	1001	23
	0	99	2177

Precision = 97.75% Recall = 91%

Android app

Implement TensorFlow on Android.

GraphView - Plot/Display
Signals

Buttons - Load/Detect/Clear/ Next

TextView - Classification Results

Extra

Except the tasks described in the rubrics, we are also trying to implement the training process on the smart phone, but we are still debugging the code. Since we could not find an appropriate library to directly be used for LSTM training on Android, we write the training code by ourselves. We haven't got any results, so we didn't put the performance in the slides.

reference

- [1] Andrzejak RG, Lehnertz K, Rieke C, Mormann F, David P, Elger CE (2001) Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys. Rev. E, 64, 061907
- [4] Polat, K. and Güneş, S., 2008. Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals. *Expert Systems with Applications*, *34*(3), pp.2039-2048.
- [5] U.R. Acharya, S.V. Sree, S. Chattopadhyay, W. Yu, A.P.C. Alvin, Application of recurrence quantification analysis for the automated identification of epileptic EEG signals, Int. J. Neural Syst. 21 (3) (2011) 199–211.
- [6] U. Orhan, M. Hekim, M. Ozer, EEG signals classification using the K-meansclustering and a multilayer perceptron neural network model, Expert Syst.Appl. 38 (10) (2011) 13475–13481.

- [7] S. Ghosh-Dastidar, H. Adeli, N. Dadmehr, Mixed-band wavelet-chaos-neuralnetwork methodology for epilepsy and epileptic seizure detection, IEEE Trans.Biomed. Eng. 54 (9) (2007) 1545–1551.
- [8] V. Srinivasan, C. Eswaran, N. Sriraam, Artificial neural network based epileptic detection using time-domain and frequency domain features, Journal of Medical Systems 29 (6) (2005) 647–660.
- [9] K. Polat, S. Guenes, Classification of epileptiform EEG using a hybrid systems based on decision tree classifier and fast Fourier transform, Applied Mathematics and Computation 32 (2) (2007) 625–631.

THANK YOU!

Q & A