SENSOR AND INSTRUMENTATION

Pre-requisites of course: Basic Electrical Engineering

Course	e Outcomes:	Knowledge Level, KL
Upon the completion of the course, the student will be able to:		
CO 1	Apply the use of sensors for measurement of displacement, force and pressure.	K ₃
CO2	Employ commonly used sensors in industry for measurement of temperature, position, accelerometer, vibration sensor, flow and level.	K ₃
CO3	Demonstrate the use of virtual instrumentation in automation industries.	K ₂
CO4	Identify and use data acquisition methods.	K ₃
CO5	Comprehend intelligent instrumentation in industrial automation.	K ₂

Detailed Syllabus:

Unit- I:

Sensors & Transducer: Definition, Classification & selection of sensors, Measurement of displacement using Potentiometer, LVDT & Optical Encoder, Measurement of force using strain gauge, Measurement of pressure using LVDT based diaphragm & piezoelectric sensor.

Unit-II:

Measurement of temperature using Thermistor, Thermocouple & RTD, Concept of thermal imaging, Measurement of position using Hall effect sensors, Proximity sensors: Inductive & Capacitive, Use of proximity sensor as accelerometer and vibration sensor, Flow Sensors: Ultrasonic & Laser, Level Sensors: Ultrasonic & Capacitive.

Unit -III:

Virtual Instrumentation: Graphical programming techniques, Data types, Advantage of Virtual Instrumentation techniques, Concept of WHILE & FOR loops, Arrays, Clusters & graphs, Structures: Case, Sequence & Formula nodes, Need of software based instruments for industrial

Unit-IV:

automation.

Data Acquisition Methods: Basic block diagram, Analog and Digital IO, Counters, Timers, Types of ADC: successive approximation and sigma-delta, Types of DAC: Weighted Resistor and R-2R Ladder type, Use of Data Sockets for Networked Communication.

Unit V:

Intelligent Sensors: General Structure of smart sensors & its components, Characteristic of smart sensors: Self calibration, Self-testing & self-communicating, Application of smart sensors: Automatic robot control & automobile engine control.