Connectors

Arc connectors

Matching math arrows

Compare to \rightarrow , \Rightarrow \Rightarrow \rightarrow , \hookrightarrow , \mapsto .

Red is our output; cyan is reference symbol in default math font.

Double and triple lines

Diagram $A \xrightarrow{f} B$ and equation $A \to B$.

Diagram $A \stackrel{f}{\Longrightarrow} B$ and equation $A \Rightarrow B$.

Diagram $A \stackrel{f}{\Longrightarrow} B$ and equation $A \Rightarrow B$.

Arrow head shorthands

"->" =

Bending arrows

Fine mark angle corrections

Label placement

Default placement above the line.

Crossing connectors

edge() argument shorthands

Diagram-level options

CeTZ integration

Node bounds

```
0 hello \iff there
```

Corner edges

Double node strokes

Relative and absolute extrusion lengths

Custom node sizes

Make sure provided dimensions are exact, not affected by node inset.

width

height

both

Example

Make sure node or edge labels don't pick up equation numbers!

Funky axes


```
?
(size: 2, fill: true, outer-len: 4,
kind: "circle")
(
  [G].
  [ ],
 metadata(value: (kind: "edge",
options: ("r", "→", [f]))),
  [ ].
 metadata(value: (kind: "edge",
options: ("d", "*", "π"))),
  [ ],
  align-point(),
  [],
  [(
    op(text: [im], limits: false),
   lr(body: [([(], [f], [)])]),
  )],
  [ ],
  linebreak(),
  [ ],
  [G].
  [],
  [/],
  [],
  [ (
    op(text: [ker], limits: false),
   lr(body: [([(], [f], [)])]),
  )],
  [ ],
 metadata(
    value: (
      kind: "edge",
      options: ("ur", "→", accent(base:
[f], accent: "\u{303}")),
   ),
 ),
)
```