Notes for Math 566 – Algebraic Combinatorics

Yiwei Fu

WN 2022

Contents

1	Graph and Trees		1	
	1.1	Linear Algebra Preliminaries	1	
	1.2	Counting Walk	2	
	1.3	Eigenvalues of Adjacency Matrices	3	
	1.4	Inequalities for the Maximal Eigenvalue	3	
	1.5	Eigenvalue of Block Anti-diagonal Matrices	4	
	1.6	Eigenvalues of Circulant Matrices	5	
	1.7	Eigenvalues of Cartesian Products	6	
	1.8	Random Walks	8	
	Tilings, Spanning Trees, and Electric Networks		9	
	2.1	Domino Tilings ("Dimers")	9	
	2.2	Spanning Tree in Grid Graphs	13	
	2.3	Spanning Trees of Planar Graphs	14	
	2.4	The Diamond Lemma	14	
Of	Office hours: Tu, Fr 1:00 - 2:20 pm			

Chapter 1

Graph and Trees

1.1 Linear Algebra Preliminaries

Let M be a $p \times p$ matrix with entries in \mathbb{C} . The eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_p$ are defined by

$$\det(t\operatorname{id} - M) = \prod_{i=1}^{p} (t - \lambda_i).$$

Taking coefficients of t^{p-1} on both sides we obtain

$$\operatorname{tr} M = \sum_{k} \lambda_{k}. \tag{1.1.1}$$

Lemma 1.1.1. Let $f(t) \in \mathbb{C}[t]$. Then f(M) have eigenvalues $f(\lambda_1), \ldots, f(\lambda_p)$.

Proof. If M is diagonalizable, then the statement is clear: f(M) has the same eigenvectors as M, with eigenvalues $f(\lambda_k)$. Then use a continuity argument. (Diagonalizable matrices are dense.) Alternative proof: use Jordan's normal form.

Combining (1.1.1) with the lemma, we have

$$\operatorname{tr} M^{\ell} = \sum_{k} \lambda_{k}^{\ell}. \tag{1.1.2}$$

<u>PROBLEM:</u> [A solution is given in Stanley's textbook.] Let $\alpha_1, \ldots, \alpha_r$ and β_1, \ldots, β_r be

Counting Walk Yiwei Fu

nonzero complex numbers such that for *all* positive integer ℓ we have

$$\alpha_1^{\ell} + \ldots + \alpha_r^{\ell} = \beta_1^{\ell} + \ldots + \beta_r^{\ell}.$$

Show that this implies that r = s, and that α 's are a permutation of β 's.

In the majority of forthcoming applications, M is symmetric and real. Then it is diagonalizable, with real eigenvalues $\lambda_1, \ldots, \lambda_p$.

1.2 Counting Walk

Let G be a graph on the vertex set $\{1, \dots, p\}$. (We allow loops and multiple edges.) Let M = A(G) be its adjacency matrix.

OBSERVATION The number of walks of length ℓ from i to j is equal to $(M^{\ell})_{ij}$.

In general, counting walks requires knowing the matrix M (equivalently, knowing both the eigenvalues λ_k and the corresponding eigenvectors). On the other hand, some enumerative information can be extracted from the eigenvalues alone:

Proposition 1.2.1. The number of marked closed walks of length ℓ is equal to $\sum_{k=1}^{p} \lambda_k^{\ell}$.

Here "marked" means that the starting location is fixed, as is a particular instance of passing through it, in case we do it several times.

Proof. By the last observation, the number of marked closed walks of length ℓ is equal to $\operatorname{tr} M^{\ell}$, which equals to $\sum_{k=1}^{p} \lambda_{k}^{\ell}$ by (1.1.2).

Example 1.2.1. Let $G = K_p$, the complete graph on p vertices. Let J denote the $p \times p$ matrix all of whose entries are 1. Let I denote the $p \times p$ identity matrix. Then A(G) = J - I. Obviously $\operatorname{rk} J = 1$ and $\operatorname{tr} J = p$. Hence the eigenvalues of J are $0, \ldots, 0, p$, and the eigenvalues of A(G) = J - I are $-1, \ldots, -1, p - 1$.

Corollary 1.2.1. There are $(p-1)^{\ell} + (-1)^{\ell}(p-1)$ marked closed walks of length ℓ in K_p .

NOTE This is the number of $(\ell + 1)$ -letter words in a p-letter alphabet in which no two consecutive letters are identical, and which begin and end by the same letter.

<u>PROBLEM</u> Show that the number of walks of length ℓ between two distinct vertices in K_p differs by 1 from the number of closed walks of length ℓ starting at a given vertex.

1.3 Eigenvalues of Adjacency Matrices

RECALL

$$\#$$
 of marked closed walks of length $\ell = \sum_{i=1}^p \lambda_i^\ell$.

It can be used backwards: using counted walks to compute eigenvalues.

Example 1.3.1. Let $G = K_{n,m}$ a complete bipartite graph.

$$\# \text{ of marked closed works of length } \ell = \begin{cases} 0 & \ell = 2k+1 \\ 2n^{\ell/2}m^{\ell/2} & \ell = 2k \end{cases} = (\sqrt{nm})^\ell + (-\sqrt{nm})^\ell$$

 $\xrightarrow{\text{Problem}}$ eigenvalues are $\sqrt{nm}, -\sqrt{nm}, 0, \dots, 0$.

PROBLEM Prove that, for G connected, the diam(G) < # of distinct eigenvalues.

Example 1.3.2. $K_p = 1 < 2, K_{n,m} = 2 < 3.$

1.4 Inequalities for the Maximal Eigenvalue

Definition 1.4.1. Suppose G a graph with vertices $= \{1, \dots, p\}$. Let

$$\lambda_{\max} := \max_{i} |\lambda_i| = \max_{i} \lambda_i.$$

Proposition 1.4.1.

$$\lambda_{\max} \leq \max \deg(G)$$

Proof. For any vector $X = (x_k) \in \mathbb{C}^p$,

$$\max_{j} |(A(G)X)_{j}| \le \max \deg(G) \cdot \max_{k} |X_{k}|$$

Now suppose X is an eigenvector of A(G) with eigenvalue λ . Then

$$\max_{j} |(A(G)X)_{j}| = |\lambda| \max_{k} |X_{k}| \leq \max \deg(G) \cdot \max_{k} |X_{k}| \implies |\lambda| \leq \max \deg(G)$$

This holds for all eigenvalue λ_i , which proves our proposition.

<u>ALTERNATE PROOF:</u> by counting closed walks ($\leq \sum \max \deg(G)^{\ell}$.)

 $\underline{\mathsf{PROBLEM}} \text{ Prove that } \lambda_{\max} \geq \text{average degrees of the vertices of } G.$

 $\underline{\text{HINT}}$ for symmetric real matrix M we have $\lambda_{\max} = \max_{|x|=1} x^T M x$.

Corollary 1.4.1. # of closed walk of length ℓ grows exponentially in ℓ with a rate \geq average degree.

1.5 Eigenvalue of Block Anti-diagonal Matrices

$$M = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix} \in \mathbb{R}_{n+m}$$

Lemma 1.5.1. The non-zero eigenvalues (called "singular values" of B) of M are $\pm \sqrt{\mu_i}$ where μ_i are nonzero eigenvalues of B^TB with multiplicities.

Note that B^TB is positive definite.

Proof. Let $F_X(t) = \det(t \operatorname{id}_p - X)$.

$$\begin{bmatrix} t \operatorname{id}_n & -B \\ -B^T & t \operatorname{id}_m \end{bmatrix} \begin{bmatrix} \operatorname{id}_n & B \\ 0 & t \operatorname{id}_m \end{bmatrix} = \begin{bmatrix} t \operatorname{id}_n & 0 \\ -B & -B^T B + t^2 \operatorname{id}_m \end{bmatrix}$$

$$F_M(t) \cdot t^m = t^n F_{B^T B}(t^2)$$

and the claim follows

So now we are equipped to compute the eigenvalue of bipartite graphs.

Example 1.5.1. Suppose $G = K_{n,m}, B^T B$ is $m \times m$ matrix with all entries being n. So the eigenvalues of $B^T B = nm, 0, 0, \ldots$ So eigenvalues of A(G) is $\sqrt{mn}, -\sqrt{mn}, 0, 0, \ldots$

<u>PROBLEM</u> Let G to be the graph obtained by removing n disjoint edges from $K_{n,n}$. Find the eigenvalue of G.

Example 1.5.2. Let G be a 2n-cycle. $M_{2n}=A(G)=\begin{bmatrix}0&B\\B^T&0\end{bmatrix}$. The $B^TB=2I_n+M_n$ for an appropriate labeling.

So if the eigenvalue of *n*-cycle are $\lambda_1, \ldots, \lambda_n$. Then the eigenvalues of 2n-cycles are $\pm \sqrt{\lambda_i + 2}$.

1.6 Eigenvalues of Circulant Matrices

Definition 1.6.1. A circulant matrix is of the form

$$M = \begin{bmatrix} s_0 & s_1 & s_2 & \dots & s_{p-1} \\ s_{p-1} & s_0 & s_1 & \dots & s_{p-2} \\ \vdots & & & & & \\ s_1 & s_2 & s_3 & \dots & s_0 \end{bmatrix}.$$

Lemma 1.6.1. *M has eigenvalues*

$$\lambda_k = \sum_{j=0}^{p-1} s_j e^{\frac{2\pi i}{p} j k}, k = 0, 1, \dots, p-1.$$

Notice that

$$\lambda_k = \sum_{j=0}^{p-1} s_j e^{\frac{2\pi i}{p} j k} = s \left(e^{\frac{2\pi i}{p} k} \right) \quad \text{p-th root of unity}.$$

where

$$s(x) = \sum_{j=0}^{p-1} s_j x^j.$$

Proof. Let

$$T = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & & & \\ 1 & 0 & 0 & \dots & 0 \end{bmatrix}$$

We have that the eigenvalues of T and p-th roots of unity and characteristic polynomial is $t^p - 1$.

Key observation: M = s(T).

Definition 1.6.2. A graph G is circulant if A(G) is circulant, for some choice of vertex labeling.

Corollary 1.6.1. *The eigenvalue of p-cycle are*

$$2\cos\left(\frac{2\pi k}{p}\right), k = 0, 1, \dots, p - 1.$$

Proof. By Lemma 1.6.1, we have that

$$\lambda_k = e^{\frac{2\pi i}{p}k} + e^{\frac{2\pi i}{p}(p-1)k} = e^{\frac{2\pi ik}{p}} + e^{-\frac{2\pi ik}{p}} = 2\cos\left(\frac{2\pi k}{p}\right).$$

Remark. This formula is consistent with the formula linking the eigenvalues of a 2n-cycle and an n-cycle: if $2\cos\alpha = \lambda$, then $2\cos\frac{\alpha}{2} = \pm\sqrt{2+\lambda}$.

<u>Problem</u> Find the eigenvalues of the graph obtains by removing n disjoint edges from K_{2n} .

1.7 Eigenvalues of Cartesian Products

Definition 1.7.1. Suppose G, H are graphs with no loops. Define graph $G \times H$ where

$$V(G \times H) = \{(g, h) : g \in V(G), h \in V(H)\},\$$

and we have two kinds of edges:

- (g,h) (g',h) for g g'
- (g,h) (g,h') for h h'

Example 1.7.1. 1. Grid graph = path \times path

- 2. Discrete annulus (cylinder) = cycle \times path
- 3. Discrete torus = cycle \times cycle
- 4. *n*-cube graph

Proposition 1.7.1. *If* G has eigenvalues $\lambda_1, \lambda_2, ldots$, H has eigenvalues μ_1, μ_2, \ldots Then $G \times H$ has eigenvalues $\lambda_i + \mu_j$ for any pair i, j.

Proof 1. (Tensor product) V_G , V_H are vector spaces formally spanned by vertices of G, H. Take $u = \sum \alpha_g g \in V_G$, $v = \sum \beta_h h \in V_H$. We have

$$u \otimes v = \sum_{g,h} \alpha_g \beta_h(g,h) \in V_{G \times H}.$$

The

$$A(G \times H)(u \otimes v) = (A(G)u) \otimes v + u \otimes (A(h)v)$$

Suppose u, v are eigenvectors i.e. $A(G)u = \lambda u, A(H)v = \mu v$. Then we get

$$A(G \times H)(u \otimes v) = \lambda u \otimes v + u \otimes \mu v = (\lambda + \mu)(u \otimes v).$$

Proof 2. (Marked closed walk) Walk in $G \times H \stackrel{1-1}{\longleftrightarrow}$ a <u>shuffle</u> of marked closed walks in G&H.

of closed walks of length ℓ in $G \times H$

$$= \sum_{k} {\ell \choose k} \sum_{i} \lambda_{i}^{k} \sum_{j} \mu_{j}^{\ell-k}$$

$$= \sum_{i} \sum_{j} \sum_{k} {\ell \choose k} \lambda_{i}^{k} \mu_{j}^{\ell-k}$$

$$= \sum_{i} (\lambda_{i} + \mu_{j})^{\ell}$$

This set of numbers are unique by problem in lecture 1, so they must be the eigenvalues of $G \times H$.

<u>PROBLEM</u> Take a 3×3 grid, find the number of marked closed walks of length ℓ . <u>PROBLEM</u> Direct problem of 8-cycle and K_2 .

n-CUBE GRAPH:

$$(K_2)^n = \underbrace{K_2 \times K_2 \times \cdots K_2}_{n \text{ times}}.$$

Example 1.7.2. When n = 3, we have a 3-D cube:

Figure 1.1: Cube graph $K_2 \times K_2 \times K_2$

 K_2 has adjacency matrix $A(K_2)=\begin{bmatrix}0&1\\1&0\end{bmatrix}$ with eigenvalues $\pm 1\implies$ eigenvalues of $(K_2)^n$ are

$$\lambda = \underbrace{\pm 1 \pm 1 \pm \ldots \pm 1}_{n \text{ times}}.$$

Proposition 1.7.2. The eigenvalues of $(K_2)^n$ are of the form n-2k where $k=0,1,\ldots,n$, each

Random Walks Yiwei Fu

with multiplicities $\binom{n}{k}$ i.e. the number of marked closed walks of length ℓ in the n-cube graph is

$$\sum_{k=0}^{n} \binom{n}{k} (n-2k)^{\ell}$$

which is 0 when ℓ is odd.

1.8 Random Walks

Let G be a regular graph of degree d on p vertices.

Example 1.8.1. $G = (K_2)^n$ is regular with d = n.

A <u>simple random walk</u> on G originating at a vertex v is a random walk with equal probabilities for each adjacent vertices.

$$\begin{split} & \mathbb{P} \left(\text{walk is back at } v \text{ after } \ell \text{ steps} \right) \\ &= \frac{1}{d^\ell} \# \{ \text{marked closed walks of length } \ell \text{ orginiating from } v \} \\ &= d^{-\ell} p^{-1} \sum_1^p \lambda_i^\ell. \end{split}$$

assuming that Aut(G) acts transitively on vertices.

Notice that an arbitrary regular G does not necessarily have that condition, but the converse is true.

Example 1.8.2. The probability that a simple random walk on $(K_2)^n$ returns to its origin after ℓ steps is

$$\frac{1}{n^{\ell}2^n} \sum_{k=0}^n \binom{n}{k} (n-2k)^{\ell}$$

Chapter 2

Tilings, Spanning Trees, and Electric Networks

2.1 Domino Tilings ("Dimers")

Figure 2.1: An example of domino tiling and perfect matching in its dual graph

A domino tiles decompose part of grids into 1×2 rectangles.

Think of it another way: the "dual graph" where squares are vertices, and there exists an edge between two vertices iff the corresponding squares shares an edge. A tiling is a perfect matching between these vertices.

Special case: $m \times n$ rectangular boards

Without loss of generality, assume that n is even. We denote the answer as T(m, n)

The dual graph G is m-chain \times n-chain. Notice that G is bipartite.

M=A(G) has the form $\begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$ given appropriate labeling of vertices where B is a square matrix.

<u>CLAIM</u> T(m, n) = the permanent of matrix B.

Permanents do not have nice properties, thus they are hard to calculate. In order to better calculate the permanent of B, let \tilde{B} obtained from B by replacing the 1's by corresponding to <u>vertical</u> tiles by i's where $i^2 = -1$.

Proposition 2.1.1.
$$T(m,n) = per(B) = \pm \det(\tilde{B}).$$

Lemma 2.1.1 (exercise). Any two domino tilings of a rectangular board are related to each other via "flips" of the form (two horizontal \leftrightarrow two vertical)

Figure 2.2: Example of a flip

Proof of Prop. This is equivalent to all nonzero terms terms in $\det(\tilde{B})$ are equal and are ± 1 . The latter claim follows from the former, since since the all-horizontal tiling contributes ± 1 .

Then it is enough to show that the contributions of two tilings that differ by a flip are equal to each other.

It means swapping two diagonal entries, thus change the sign of permutation, but one of them is 1^2 while the other being i^2 , so the result does not change.

Now we can use some linear algebra to calculate the determinant.

Denote
$$\tilde{M}=\begin{bmatrix}0 & \tilde{B}\\ \tilde{B}^T & 0\end{bmatrix}$$
. Then $\det(\tilde{M})=\pm(\det(\tilde{B}))^2=\pm(T(m,n))^2$.

OBSERVATION We have

$$M = \mathrm{id}_m \otimes A_n + A_m \otimes \mathrm{id}_n,$$

where A_n , A_m are adjacency matrices of chain graphs. Similarly,

$$\tilde{M} = \mathrm{id}_m \otimes A_n + iA_m \otimes \mathrm{id}_n$$

since \tilde{M} obtained by vertical tile with i's. Hence the eigenvalues of \tilde{M} are $\lambda_i + i\mu_k$. Now we only need to find the eigenvalues of chain graph. For a n-chain, we have

$$A_n = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 1 & 0 & 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & 1 & \dots & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & \dots & 1 & 0 \end{bmatrix}$$

Proposition 2.1.2. The eigenvalues of A_n are

$$\lambda_k = 2\cos\left(\frac{k\pi}{n+1}\right)$$
 for $k = 1, \dots, n$.

Proof. An eigenvector $u = (u_1, \dots, u_n)^T$ of A_n associated with eigenvalue λ satisfies

$$u_{i-1} + u_{i+1} = \lambda u_i, \quad 1 \le i \le n$$

with the convention that $u_0 = u_{n+1} = 0$.

A divine revelation: recall that

$$\sin \alpha + \sin \beta = 2\cos \frac{\beta - \alpha}{2}\sin \frac{\alpha + \beta}{2}.$$

This suggest taking

$$u_j = \sin\left(\frac{\pi k j}{n+1}\right)$$
 for $j = 1, \dots, n$.

with eigenvalue

$$\lambda_k = 2\cos\left(\frac{k\pi}{n+1}\right).$$

Example 2.1.1.

$$n = 3$$
, $\det(t \operatorname{id} - A_3) = t^3 - 2t = t(t - \sqrt{2})(t + \sqrt{2}).$

So the eigenvalues are

$$\lambda_1 = \sqrt{2} = 2\cos\left(\frac{1\pi}{4}\right), \lambda_2 = 0 = 2\cos\left(\frac{2\pi}{4}\right), \lambda_2 = -\sqrt{2} = 2\cos\left(\frac{3\pi}{4}\right).$$

Now

$$\det \tilde{M} = \prod_{j=1}^{n} \prod_{k=1}^{m} \left(2\cos\frac{j\pi}{n+1} + i2\cos\frac{k\pi}{m+1} \right)$$

$$= \prod_{j=1}^{n/2} \prod_{k=1}^{m} \left(2\cos\frac{j\pi}{n+1} + i2\cos\frac{k\pi}{m+1} \right) \left(2\cos\frac{(n+1-j)\pi}{n+1} + i2\cos\frac{k\pi}{m+1} \right)$$

$$= \prod_{j=1}^{n/2} \prod_{k=1}^{m} \left(2\cos\frac{j\pi}{n+1} + i2\cos\frac{k\pi}{m+1} \right) \left(-2\cos\frac{j\pi}{n+1} + i2\cos\frac{k\pi}{m+1} \right)$$

$$= \pm \prod_{j=1}^{n/2} \prod_{k=1}^{m} \left(4\cos^2\frac{j\pi}{n+1} + 4\cos^2\frac{k\pi}{m+1} \right)$$

Theorem 2.1.1 (P.Kasteleyn, M.Fisher, H.N.V.Temperley, 1961). When m is even,

$$T(m,n) = \prod_{j=1}^{n/2} \prod_{k=1}^{m/2} \left(4\cos^2 \frac{j\pi}{n+1} + 4\cos^2 \frac{k\pi}{m+1} \right).$$

When m is odd,

$$T(m,n) = \prod_{j=1}^{n/2} 2\cos\frac{j\pi}{n+1} \prod_{k=1}^{(m-1)/2} \left(4\cos^2\frac{j\pi}{n+1} + 4\cos^2\frac{k\pi}{m+1} \right).$$

Example 2.1.2. For n = m = 8, we get $T(8,8) = 12,988,816 = 3604^2$.

<u>PROBLEM</u> For any positive integer $a \in \mathbb{Z}_{>0}$, T(4a,4a) is a perfect square, T(4a-2,4a-2) is twice a perfect square.

Asymptotics of T(n,n): reasonable to expect $T(n,n) \sim e^{cn^2}$.

We take the natural log of T(n, n):

$$\frac{\ln T(n,n)}{n^2} = \frac{1}{n^2} \sum_{k=1}^{n/2} \sum_{j=1}^{n/2} \ln \left(4\cos^2 \frac{\pi k}{n+1} + 4\cos^2 \frac{\pi j}{n+1} \right)$$
$$\sim \frac{1}{\pi^2} \sum_{k=1}^{n/2} \sum_{j=1}^{n/2} \ln \left(4\cos^2 \frac{\pi k}{n+1} + 4\cos^2 \frac{\pi j}{n+1} \right)$$

Notice that the right hand side is a Riemann sum of the function $\ln(4\cos^2 x + 4\cos^2 y)$.

So the sum approaches to

$$\frac{1}{\pi^2} \int_0^{\pi/2} \int_0^{\pi/2} \ln(4\cos^2 x + 4\cos^2 y) dx dy = \frac{K}{\pi}$$

where K is Catalan's constant. As of today, it is not known whether it is irrational, nor transcendental.

So we have $T(n, n) \approx 1.34^{n^2}$.

Another way to define Catalan's constant:

$$K = \beta(2) = \sum_{i=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \dots$$

2.2 Spanning Tree in Grid Graphs

Suppose a grid graph *G*:

We can keep some edges and discard others to obtain a connected acyclic subgraph of G (which is a spanning tree).

Theorem 2.2.1 (H.N.V. Temperley, 1974). Consider a rectangular board of odd size $(2k-1 \times 2\ell-1)$ with one corner removed. The number of domino tilings of the board is equal to the number of spanning trees in the $k \times \ell$ grid.

Proof. Find a bijection between domino tilings and spanning trees

The Diamond Lemma Yiwei Fu

PROBLEM Prove that Temperley's map produces a tree.

Now we have a formard map. We also need to obtain the inverse map from spanning trees to domino tiling.

Corollary 2.2.1.

of spanning trees in a
$$k \times \ell$$
 grid $\approx \left(e^{\frac{4K}{\pi}}\right)^{k\ell} \approx 3.21^{k\ell}$.

<u>PROBLEM</u> Prove that the number of domino tilings (if exist) of an odd-by-odd rectangle with a boundary box removed doesn't depende of which box we removed.

2.3 Spanning Trees of Planar Graphs

Suppose P is a polygon, G a polygonal subdivision of P. Define H by adding midpoints and extra vertex in each bounded face and adding edges to connect them.

<u>PROBLEM</u> Show that the number of spanning trees in G is equal to the number of perfect matchings in H with one vertex that are also in P removed.

Example 2.3.1.

The number of spanning trees = 4 + 4 + 3 = 11.

$$H - \{v\} =$$

2.4 The Diamond Lemma

Definition 2.4.1. A one-player game is define by:

- the set of positions S
- for each $s \in \mathcal{S}$ a set of positions $s' \neq s$ into which the player can from from s. Denote as $s \leadsto s'$.

If the latter set is empty, then *S* is called <u>terminal</u>.

The Diamond Lemma Yiwei Fu

A play sequence is a sequence

$$s \leadsto s' \leadsto s'' \leadsto \dots$$

A game is terminating is \nexists infinite play sequences.

A game is <u>confluent</u> is its outcome is uniquely determined by initial position.

Lemma 2.4.1 (The Diamond Lemma for terminating games). For a one-player game, assume that

- the game is terminating
- \diamond (diamond condition) $\forall s \in \mathcal{S}, \forall s \leadsto s', s \leadsto s'', \exists$ some position that can be reach from both s' and s''. (You never say goodbye forever!)

Then the game is confluent.