

Modeling cognitive deficits and enhancements in adversity-exposed youth using Drift Diffusion Modeling

Stefan Vermeent

CogSci 2024 Workshop on Psychometrics July 24, 2024

Developmental Science

REGISTERED REPORT 🙃 Open Access 🚾 💽

Cognitive deficits and enhancements in youth from adverse conditions: An integrative assessment using Drift Diffusion Modeling in the ABCD study

Stefan Vermeent X, Ethan S. Young, Meriah L. DeJoseph, Anna-Lena Schubert, Willem E. Frankenhuis

First published: 06 February 2024 | https://doi.org/10.1111/desc.13478

Cognitive deficits

Cognitive adaptations

Why is this important?

Theory development

Interventions

Drift Diffusion Model

Drift Diffusion Model

Drift rateInformation processing

Boundary separationResponse caution

Non-decision time encoding/ response execution

Implementation

More trials needed / Less susceptible to outliers

Option 1. Fit to individual participants

Maximum likelihood

Kolmogorov-Smirnov

Chi-square

Option 2. Account for group-level effects

Hierarchical Bayesian

Software/packages

Fast-dm

Software/packages

HDDM (python module)
hBayesDM (R package)
runjags (R package; with wiener module)

Lower rate of evidence accumulation

Drift rate: $\underline{2}$ Boundary separation:1Non-decision time:0.3Bias:0.5

Drift rate:Boundary separation: 1

Non-decision time: 0.3

Bias: 0.5

Increased response caution

Drift rate:2Boundary separation:1Non-decision time:0.3Bias:0.5

Drift rate: 2
Boundary separation: 1.5
Non-decision time: 0.3
Bias: 0.5

Cognitive adaptations

Task-general factors

ABCD data

N = 10,563 US children aged 9-10

"We fight a lot in our family"

Material deprivation (7 items)

"Needed food but couldn't afford to buy it or couldn't afford to go out to get it"

Visual processing

Inhibition / cognitive control

Attention Shifting

Mental Rotation Task

Visual-spatial processing

Structural Equation Modeling

Structural Equation Modeling

^{*} Not shown: covariances between task-general factors and task-specific factors within tasks

Lowered performance due to task-general speed of processing

HIGHER task-general response caution, But LOWER response caution for the shifting task

Conclusions

Drift Diffusion Modeling increases our understanding of how adversity shapes cognitive abilities

With implications for theory and interventions

Open question: what does the task-general drift rate factor represent, and why is it lowered in children from adverse conditions?

References

- Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual Review of Psychology, 67(1), 641–666. https://doi.org/10.1146/annurev-psych-122414-033645
- Ellis, B. J., Abrams, L., Masten, A., Sternberg, R., Tottenham, N., & Frankenhuis, W. (2022). Hidden talents in harsh environments. *Development and Psychopathology*, 95–113. https://doi.org/10.1017/S0954579420000887
- Frankenhuis, W. E., Young, E. S., & Ellis, B. J. (2020). The Hidden Talents approach: Theoretical and methodological challenges. *Trends in Cognitive Sciences*, 24(7), 569–581. https://doi.org/10.1016/j.tics.2020.03.007
- Lerche, V., Voss, A., & Nagler, M. (2017). How many trials are required for parameter estimation in diffusion modeling? A comparison of different optimization criteria. *Behavior Research Methods*, *49*(2), 513–537. https://doi.org/10.3758/s13428-016-0740-2
- Löffler, C., Frischkorn, G. T., Hagemann, D., Sadus, K., & Schubert, A.-L. (2024). The common factor of executive functions measures nothing but speed of information uptake. Psychological Research. https://doi.org/10.1007/s00426-023-01924-7
- Ratcliff, R., & Childers, R. (2015). Individual Differences and Fitting Methods for the Two-Choice Diffusion Model of Decision Making. *Decision*, 2(4), 237-279. https://doi.org/10.1037/dec0000030
- Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. *Neural Computation*, 20(4), 873–922. https://doi.org/10.1162/neco.2008.12-06-420
- Vermeent, S., Young E.S., DeJoseph, M.L., Schubert, A.-L., & Frankenhuis, W.E. (2024). Cognitive deficits and enhancements in youth from adverse conditions:

 An integrative assessment using Drift Diffusion Modeling in the ABCD study. *Developmental Science*, 27(4), e13478.

 https://doi.org/10.1111/desc.13478
- Weigard, A., & Sripada, C. (2021). Task-General Efficiency of Evidence Accumulation as a Computationally Defined Neurocognitive Trait: Implications for Clinical Neuroscience. *Biological Psychiatry Global Open Science*, 1(1), 5–15. https://doi.org/10.1016/j.bpsgos.2021.02.001

Thank you!

Collaborators:

Ethan Young

Meriah DeJoseph

Anna-Lena Schubert

Willem Frankenhuis