Propriétés de \mathbb{R} Corrigé

DARVOUX Théo

Septembre 2023

Exercices.	
négalités.	1
Exercice 2.1	2
Exercice 2.2	3
Exercice 2.3	3
Exercice 2.4	4
aleurs absolues.	4
Exercice 2.5	4
Exercice 2.6	5
ntiers, rationnels.	5
Exercice 2.7	5

Exercice 2.1 $[\Diamond \Diamond \Diamond]$

Soient a et b deux nombres réels strictement positifs. Démontrer l'inégalité

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

On a :

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

$$\iff \frac{a^3 - a^2b + b^3 - ab^2}{ab} \ge 0$$

$$\iff \frac{a^2(a-b) + b^2(b-a)}{ab} \ge 0$$

$$\iff \frac{(a-b)(a^2 - b^2)}{ab} \ge 0$$

$$\iff \frac{(a-b)^2(a+b)}{ab} \ge 0$$

Or $(a-b)^2 \ge 0$, $(a+b) \ge 0$ et $ab \ge 0$.

Ainsi, cette inégalité est vraie pour tout $(a, b) \in \mathbb{R}_+^*$.

Exercice 2.2 $[\Diamond \Diamond \Diamond]$

1. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2 \sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$. Soit $(a,b) \in (\mathbb{R}_+)^2$.

$$\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$$

$$\iff a+b \le a + 2\sqrt{ab} + b$$

$$\iff 2\sqrt{ab} \ge 0$$

$$\iff \sqrt{ab} \ge 0$$

$$\iff ab > 0$$

Ainsi, $\forall (a,b) \in (\mathbb{R}_+)^2 \sqrt{a+b} \le \sqrt{a} + \sqrt{b}$.

2. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2 |\sqrt{a} - \sqrt{b}| \leq \sqrt{|a-b|}$. Soit $(a,b) \in (\mathbb{R}_+)^2$.

Considérons $a \ge b$, alors |a - b| = a - b.

$$\begin{split} |\sqrt{a} - \sqrt{b}| &\leq \sqrt{a - b} \\ \iff a - 2\sqrt{ab} + b \leq a - b \\ \iff 2b \leq 2\sqrt{ab} \\ \iff b^2 \leq ab \\ \iff b \leq a \end{split}$$

Le raisonnement est symétrique lorsque $b \ge a$. Ainsi, $\forall (a,b) \in (\mathbb{R}_+)^2 | \sqrt{a} - \sqrt{b} | \le \sqrt{|a-b|}$.

Exercice 2.3 $[\blacklozenge \lozenge \lozenge]$ Manipuler la notion de distance

En utilisant la notion de distance sur \mathbb{R} , écrire comme réunion d'intervalles l'ensemble

$$E = \{x \in \mathbb{R} \mid |x+3| \le 6 \text{ et } |x^2-1| > 3\}$$

On a:

$$x \in [-9, 3] \text{ et } x \in]-\infty, -2[\cup]2, +\infty[$$

Donc:

$$x \in [-9, -2] \cup [2, 3]$$

Exercice 2.4 $[\blacklozenge \blacklozenge \lozenge]$ Plusieurs façons de définir une moyenne

Soient a et b deux réels tels que $0 < a \le b$. On définit les nombres m, g, h par

$$m = \frac{a+b}{2},$$
 $g = \sqrt{ab},$ $\frac{1}{h} = \frac{1}{2}\left(\frac{1}{a} + \frac{1}{b}\right).$

Et on les appelle respectivement moyenne arithmétique, géométrique et harmonique de a et b.

Démontrer l'encadrement

$$a \le h \le g \le m \le b$$

Montrons les inégalités une par une :

- $m \le b \iff \frac{a+b}{2} b \le 0 \iff \frac{a-b}{2} \le 0 \iff a-b \le 0 \iff a \le b$.
- $\bullet \ g \leq m \iff \sqrt{ab} \leq \tfrac{a+b}{2} \iff \tfrac{a-2\sqrt{ab}+b}{2} \geq 0 \iff \tfrac{(\sqrt{a}-\sqrt{b})^2}{2} \geq 0.$
- $\bullet \ h \le g \iff \frac{1}{h} \ge \frac{1}{g} \iff \frac{1}{2a} + \frac{1}{2b} \frac{1}{\sqrt{ab}} \ge 0 \iff \frac{a 2\sqrt{ab} + b}{2ab} \ge 0 \iff \frac{(\sqrt{a} \sqrt{b})^2}{2ab} \ge 0.$
- $a \le h \iff \frac{1}{a} \ge \frac{1}{h} \iff \frac{1}{a} \frac{1}{2a} \frac{1}{2b} \ge 0 \iff \frac{b-a}{2ab} \ge 0 \iff b-a \ge 0 \iff a < b$

Ainsi, toutes les inégalités sont vraies et $a \le h \le g \le m \le b$.

Exercice 2.5 $[\Diamond \Diamond \Diamond]$

Résoudre l'équation

$$\ln|x| + \ln|x+1| = 0$$

Soit $x \in \mathbb{R}_+^*$.

$$\ln|x| + \ln|x + 1| = 0$$

$$\iff \ln(|x(x+1)| = 0)$$

$$\iff |x(x+1)| = 1$$

$$\iff x(x+1) = 1$$

$$\iff x^2 + x - 1 = 0$$

$$\iff x = \frac{1 \pm \sqrt{5}}{2}$$

L'ensemble des solutions de l'équation est : $\{\frac{1-\sqrt{5}}{2},\frac{1+\sqrt{5}}{2}\}$

Exercice 2.6 $[\diamondsuit \lozenge \lozenge]$

Résoudre l'équation

$$|x-2| = 6 - 2x$$

Soit $x \in \mathbb{R}$.

Considérons $x \geq 2$

$$|x - 2| = 6 - 2x$$

$$\iff x - 2 = 6 - 2x$$

$$\iff x = \frac{8}{3}$$

Considérons $x \leq 2$

$$|x - 2| = 6 - 2x$$

$$\iff 2 - x = 6 - 2x$$

$$\iff x = 4$$

Seul la solution $x = \frac{8}{3}$ convient. Ainsi, l'unique solution à l'équation est $\frac{8}{3}$.

Exercice 2.7 $[\spadesuit \spadesuit \spadesuit]$

Démontrer l'égalité $\lfloor \frac{\lfloor nx \rfloor}{n} \rfloor = \lfloor x \rfloor$ pour tout entier $n \in \mathbb{N}^*$ et tout réel x.

Soient $(x, n) \in \mathbb{R} \times \mathbb{N}^*$.

Notons r la partie décimale de x, ainsi x = |x| + r.

On a alors $nx = n\lfloor x \rfloor + nr$ et $\lfloor nx \rfloor = \lfloor n\lfloor x \rfloor + nr \rfloor = n\lfloor x \rfloor + \lfloor nr \rfloor$. Conséquemment, $\frac{\lfloor nx \rfloor}{n} = \lfloor x \rfloor + \frac{\lfloor nr \rfloor}{n}$.

Or, $0 \le \frac{\lfloor nr \rfloor}{n} < 1$ car $0 \le r < 1$, donc $\lfloor x \rfloor \le \lfloor x \rfloor + \frac{\lfloor nr \rfloor}{n} < \lfloor x \rfloor + 1$.

Ainsi, $\lfloor x \rfloor \le \lfloor \frac{\lfloor nx \rfloor}{n} \rfloor < \lfloor x + 1 \rfloor$. Par conséquent, $\lfloor \frac{\lfloor nx \rfloor}{n} \rfloor = \lfloor x \rfloor$.