

Indoor Navigation
Indoor Navigation in the TU-Mensa

Lennart Oldenburg, Andreas Hechenberger, Jan Meznarič, Eridy Lukau Department of Telecommunication Systems Service-centric Networking Technische Universität Berlin

WS 2015/2016

Table of Contents

Problem scenario & questions

Technology overview

Our approach

Timeline

The mensa problem

Find friends:

1 of 6 user stories.

Result in use cases which direct development steps.

Resulting project questions

- How to get own position inside buildings?
- How to find other people inside buildings?
- Which privacy and security concern can be addressed?

Occuring problems

- ► No GPS signal inside buildings => topic **Indoor navigation**.
- ► Indoor maps are not as widely available as outdoor maps.
- Users don't want to interact with mobile device every time they go to mensa.
- Hard to determine accurate location. Is region based positioning enough?

- ► WiFi, Bluetooth, NFC, QR-Code, manual position pinning[BL09].
- todo: Add technology matrix (last meeting)

- ► With use of tubIT API.
- ► Provides building name, floor, coordinates.
- ► Problem: no coordinates in mensa and library, inaccurate coordinates elsewhere.

- ▶ Estimote beacons
- Possible positioning approaches
 - ► Indoor-Region Based Navigation
 - Live Indoor-Location Feedback Navigation
 - D2D Indoor-Navigation via Virtual Beacons
- ► Problem: possibly high battery usage

NFC

- ▶ Precondition: NFC tag on every table in mensa.
- Scenario: First group member that sits down puts phone on the table, phone reads tag and sends location to other group members.
- Cons: Requires user putting phone on table. High cost of initial NFC tags set-up. Requires NFC-enabled mobile device.

QR code

- ► Precondition: QR code on every table in mensa.
- Scenario: First group member that sits down scans QR code on the table, phone sends location to other group members.
- ► Cons: Requires user scanning codes; impractical, time-consuming.

- ► Fallback option, if no location can be received automatically.
- ► User will have option, to pin own location inside mobile application.
- Useful in cases of broken infrastructure (WiFi is down, dead batteries in Bluetooth beacons...).
- Provides alternative for users with high privacy concerns who don't want to automatically share their locations.

- ► Which localisation technique is the most precise one?
- How much will location tracking drain the battery?
- ► How can we ensure the user's privacy is not violated?
- ► How much **interaction** with mobile device are **users** willing to do?

	Accuracy	Battery Consumption	User Interaction	Platform Independency
iBeacon (Bluetooth LE)				
Bluetooth/Pairing (Device to Device)		•		
WiFi (Localization)				
NFC (Check-In)				•
QR-Code (Check-In)			7	•

todo: Add graphic - include (at least): Android app, iOS app, loca

Our approach - specifics

Location technique

- Mixture between WiFi and BLE
- ► Rough: tubIT WiFi localisation
- ► Precise: Probably estimote beacons

Backend

- ► Handles user management
- Uses tubIT federation for authentication
- Provides REST API for clients

Mobile

- Android and iOS applications
- Using vendor and probably estimote's SDKs
- ▶ Only basic design

Location technique

- ► Mixture between WiFi and BLE
- ► Rough: tubIT WiFi localisation
- ► Precise: Probably estimote beacons

Backend

- ► Handles user management
- Uses tubIT federation for authentication
- Provides REST API for clients

Mobile

- Android and iOS applications
- Using vendor and probably estimote's SDKs
- ▶ Only basic design

Location technique

- ► Mixture between WiFi and BLE
- ► Rough: tubIT WiFi localisation
- ► Precise: Probably estimote beacons

Backend

- ► Handles user management
- Uses tubIT federation for authentication
- Provides REST API for clients

Mobile

- Android and iOS applications
- Using vendor and probably estimote's SDKs
- ► Only basic design

Do you have questions?

If not - we have! :)

	Accuracy	Battery Consumption	User Interaction	Platform Independency
iBeacon (Bluetooth LE)		(
Bluetooth/Pairing (Device to Device)		•	9	
WiFi (Localization)				
NFC (Check-In)		(•
QR-Code (Check-In)	((•	•

- ► Look at the matrix above
- ➤ **Decide** which of the **properties** is the biggest disadvantage for you
- ► Vote for **2** properties

References I

Iohn Wiley & Sons, 2009.

Allan Brimicombe and Chao Li. Location-based services and geo-information engineering, volume 21

Silke Feldmann, Kyandoghere Kyamakya, Ana Zapater, and Zighuo Lue.

An indoor bluetooth-based positioning system: Concept, implementation and experimental evaluation.

In International Conference on Wireless Networks, pages 109–113, 2003