11th i-CoMSE Workshop: Mesoscale Particle-Based Modeling

Mississippi State University July 21-25, 2025

Topic: Polymer Solutions with MPCD

Why?

Hydrodynamics are important and interesting!

- Impact equilibrium transport properties, diffusion coefficients, etc.
- very important for nonequilibrium processes, flow, shear, etc.

Dilute Polymer solutions:

- Explicit solvent full hydrodynamic interactions, etc. but very expensive
- **Implicit** solvent (Langevin, Brownian) only indirect solvent effects, no hydrodynamic interactions, very cheap
- MPCD some hydrodynamic interactions, only ~20% more expensive than Langevin!

Howard, Michael P., Athanassios Z. Panagiotopoulos, and Arash Nikoubashman. "Efficient mesoscale hydrodynamics: Multiparticle collision dynamics with massively parallel GPU acceleration." Computer Physics Communications 230 (2018): 10-20.

Flow through various geometries

Howard, Nikoubashman, Palmer "Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics." Current Opinion in Chemical Engineering 23 (2019): 34-43. DOI:10.1016/j.coche.2019.02.007

Complex systems

Chen, Renjie, et al. "Influence of polymer flexibility on nanoparticle dynamics in semidilute solutions." Soft Matter 15.6 (2019): 1260-1268.

Kotkar, Shivraj B., et al. "Dynamics of Nanoparticles in Solutions of Semiflexible Ring Polymers." The Journal of Physical Chemistry B 128.50 (2024): 12586-12596.

Peltomäki, Matti, and Gerhard Gompper. "Sedimentation of single red blood cells." Soft Matter 9.34 (2013): 8346-8358.

Coupling

Coupling

Exercise

Objective:

- Perform simple polymer solution simulation with MPCD
- Calculate the diffusion coefficient and compare to theory and Langevin simulation

Limitations of MPCD as polymer solvent

- No solvent phase coexistence:
 - No multiphase flow
 - No liquid interfaces
 - No explicit evaporation simulations
- Hydrodynamic interactions only on the scale of the grid