ACM41020 Assignment 3

Optimisation

DUE: 10AM FRIDAY 8TH NOVEMBER 2024

At several points in this assignment we will consider the particular case where

$$S = \begin{bmatrix} 5 & -3 \\ -3 & 5 \end{bmatrix}, \qquad A = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

1. Constrained Optimisation

We wish to minimise the quadratic function $F(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T S \mathbf{x}$ subject to $A^T \mathbf{x} = b$.

- a) What is the Lagrangian $L(\mathbf{x}, \lambda)$ for this problem?
- b) What are the equations "derivative of L = zero"?
- c) Solve those equations to find the location $\mathbf{x}^* = (x_1^*, x_2^*)$ of the minimum $F_{\min} = F(\mathbf{x}^*)$. Solve also for the multiplier λ^* .
- d) Draw or plot the constraint line $A^T\mathbf{x} = b$ tangent to the ellipse $F(\mathbf{x}) = F_{\min}$.
- e) Verify that the derivative of the minimum cost is $\frac{\partial F_{\min}}{\partial b} = \lambda^*$.

2. Unconstrained Optimisation Using Gradient Descent

- a) Derive an expression in terms of S and \mathbf{x} for the optimal step size for gradient descent applied to find the unconstrained minimum of a quadratic function $F(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T S \mathbf{x}$ with a generic symmetric and positive-definite matrix S.
- b) By considering the worst case scenario (worst \mathbf{x}_i) for the decrease in the error $e_k = ||\mathbf{x}_k \mathbf{x}^*||$ from one step to the next, derive an expression for the optimal step size in that case in terms of the eigenvalues of S.
- c) What condition must \mathbf{x}_i satisfy to be in this worst-case scenario?
- d) Working with the specific matrix S above and starting from $\mathbf{x}_0 = (3,5)$ compute six steps using gradient descent with the optimal step size.
- e) Sketch/plot the contours defined by the ellipses $F(\mathbf{x}) = F(\mathbf{x}_i)$ for i = 0, 1, ..., 6. On the same plot indicate the points \mathbf{x}_0 , \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_4 , \mathbf{x}_5 , \mathbf{x}_6 obtained in part (d) and the lines defined by the set of worst-case points identified in part (c).
- f) Compute the error e_k in each step. By considering how the error decreases over 3 steps verify that the iteration is converging linearly to the solution \mathbf{x}^* .

3. Gradient Descent with Momentum

- a) Working with the matrix S above and starting from $\mathbf{x}_0 = (3,5)$ compute six steps using gradient descent with momentum. Use the values for the optimal step size α and momentum parameter β in terms of the eigenvalues of S as given in the lectures.
- b) Sketch/plot the contours defined by the ellipses $F(\mathbf{x}) = F(\mathbf{x}_i)$ for i = 0, 1, ..., 6. On the same plot indicate the points \mathbf{x}_0 , \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_4 , \mathbf{x}_5 , \mathbf{x}_6 .
- c) Compute the error $\boldsymbol{e}_{\boldsymbol{k}}$ in each step.
- d) Briefly (1-2 sentence) compare and contrast the results with and without momentum.

Note: The questions in this assignment can be completed with by-hand calculations, but if you wish you may use a computer to help with any number-crunching.