In [123]: import pandas as pd
import numpy as np
In [124]: data= pd.read_csv('/home/placement/Desktop/fiat500.csv')

In [125]: data

Out[125]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

In [126]: data.describe()

Out[126]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [127]: datal=data.drop(columns=["ID","lat","lon"])

In [128]: data1

Out[128]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	рор	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	рор	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	рор	51	1766	54276	1	7900

1538 rows × 6 columns

getting dummies to the data

In [129]: data2=pd.get_dummies(data1)

In [130]:	data2
-----------	-------

Out[130]:		engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
	0	51	882	25000	1	8900	1	0	0
	1	51	1186	32500	1	8800	0	1	0
	2	74	4658	142228	1	4200	0	0	1
	3	51	2739	160000	1	6000	1	0	0
	4	73	3074	106880	1	5700	0	1	0
			•••				•••		
	1533	51	3712	115280	1	5200	0	0	1
	1534	74	3835	112000	1	4600	1	0	0
	1535	51	2223	60457	1	7500	0	1	0
	1536	51	2557	80750	1	5990	1	0	0
	1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [131]: data2.shape
```

Out[131]: (1538, 8)

removed the unwanted data from the data frame

```
In [132]: y=data2['price']
x=data2.drop('price',axis=1) #unwanted columns removed
```

In [133]: X

\sim			J .	
(1)	17		≺ ≺	
U	ис	1 4 4	رر	
	-			•

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
0	51	882	25000	1	1	0	0
1	51	1186	32500	1	0	1	0
2	74	4658	142228	1	0	0	1
3	51	2739	160000	1	1	0	0
4	73	3074	106880	1	0	1	0
1533	51	3712	115280	1	0	0	1
1534	74	3835	112000	1	1	0	0
1535	51	2223	60457	1	0	1	0
1536	51	2557	80750	1	1	0	0
1537	51	1766	54276	1	0	1	0

1538 rows × 7 columns

```
In [134]: y
```

```
Out[134]: 0
```

```
8900
        8800
2
        4200
3
        6000
4
        5700
        . . .
1533
        5200
1534
        4600
1535
        7500
        5990
1536
1537
        7900
```

Name: price, Length: 1538, dtype: int64

```
In [135]: | ## !pip instal scikit-learn
```

splitting the data into testing set and training set

In [136]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test =train_test_split(x,y,test_size=0.33,random_state=42) #66 & 33

In [137]: x_test

Out[137]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
481	51	3197	120000	2	0	1	0
76	62	2101	103000	1	0	1	0
1502	51	670	32473	1	1	0	0
669	51	913	29000	1	1	0	0
1409	51	762	18800	1	1	0	0
291	51	701	22000	1	1	0	0
596	51	3347	85500	1	0	1	0
1489	51	366	22148	1	0	1	0
1436	51	1797	61000	1	1	0	0
575	51	366	19112	1	1	0	0

508 rows × 7 columns

In [13	38]:	X_	_tr	ain
--------	------	----	-----	-----

Out[138]:		engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
	527	51	425	13111	1	1	0	0
	129	51	1127	21400	1	1	0	0
	602	51	2039	57039	1	0	1	0
	331	51	1155	40700	1	1	0	0
	323	51	425	16783	1	1	0	0
		•••	•••					
	1130	51	1127	24000	1	1	0	0
	1294	51	852	30000	1	1	0	0
	860	51	3409	118000	1	0	1	0
	1459	51	762	16700	1	1	0	0
	1126	51	701	39207	1	1	0	0

1030 rows × 7 columns

```
In [139]: y_test
Out[139]: 481
                   7900
                   7900
          76
          1502
                   9400
                   8500
          669
          1409
                   9700
                   . . .
          291
                  10900
          596
                   5699
          1489
                   9500
          1436
                   6990
          575
                  10900
          Name: price, Length: 508, dtype: int64
```

```
In [140]: y_train
Out[140]: 527
                   9990
                   9500
          129
          602
                   7590
          331
                   8750
          323
                   9100
                   . . .
          1130
                  10990
          1294
                   9800
          860
                   5500
          1459
                   9990
          1126
                   8900
          Name: price, Length: 1030, dtype: int64
In [141]: | from sklearn.linear_model import LinearRegression
          reg=LinearRegression() ## creating object of linear regression
          reg.fit(x train,y train) ## training and fitting LR data using training data
Out[141]: LinearRegression()
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [142]: | ypred=reg.predict(x test)
          ypred
Out[142]: array([ 5867.6503378 ,
                                  7133.70142341.
                                                  9866.35776216.
                                                                  9723.28874535.
                 10039.59101162,
                                  9654.07582608,
                                                  9673.14563045, 10118.70728123,
                                  9351.55828437, 10434.34963575, 7732.26255693,
                  9903.85952664,
                  7698.67240131.
                                  6565.95240435.
                                                  9662.90103518, 10373.20344286.
                  9599.94844451,
                                  7699.34400418,
                                                  4941.33017994, 10455.2719478 ,
                 10370.51555682, 10391.60424404,
                                                  7529.06622456,
                                                                  9952.37340054,
                  7006.13845729,
                                  9000.1780961 ,
                                                  4798.36770637,
                                                                  6953.10376491,
                  7810.39767825.
                                  9623.80497535,
                                                                  5229.18705519,
                                                  7333.52158317,
                  5398.21541073,
                                  5157.65652129,
                                                  8948.63632836,
                                                                  5666.62365159,
                  9822.1231461 ,
                                  8258.46551788,
                                                  6279.2040404 ,
                                                                  8457.38443276,
                                                  9182.99904787, 10210.05195479,
                  9773.86444066, 6767.04074749,
                  8694.90545226, 10328.43369248,
                                                  9069.05761443, 8866.7826029,
                  7058.39787506, 9073.33877162,
                                                  9412.68162121, 10293.69451263,
                 10072.49011135, 6748.5794244,
                                                                  9354.09969973,
                                                  9785.95841801,
                  9507.9444386 , 10443.01608254,
                                                                  7197.84932877,
                                                  9795.31884316,
                 10108.31707235, 7009.6597206,
                                                  9853.90699412,
                                                                  7146.87414965,
                  6417.69133992,
                                  9996.97382441,
                                                  9781.18795953,
                                                                  8515.83255277,
                                  6499.76668237,
                                                  7768.57829985,
                                                                  6832.86406122,
                  8456.30006203,
                  8347.96113362, 10439.02404036,
                                                  7356.43463051,
                                                                  8562.56562053,
                                                   7270 77100022
In [143]: from sklearn.metrics import r2 score
                                                  # to know the effency b/w the predicted price and actual price
                                                      # y test is the actual price and ypred is the predicted price
          r2 score(y test,ypred)
Out[143]: 0.8415526986865394
In [147]: from sklearn.metrics import mean squared error #calculating Mean Square Error (MSR)
          mean squared error(y test,ypred)
Out[147]: 581887.727391353
In [161]: | import math
          a=581887.727391353
          print(math.sqrt(a))
          762.8156575420782
```

```
In [167]: y test.head(10)
Out[167]: 481
                    7900
                    7900
           76
          1502
                    9400
          669
                    8500
                    9700
          1409
          1414
                    9900
          1089
                    9900
          1507
                    9950
          970
                   10700
          1198
                    8999
          Name: price, dtype: int64
In [168]: ypred
Out[168]: array([ 5867.6503378 ,
                                   7133.70142341,
                                                    9866.35776216,
                                                                     9723.28874535,
                                   9654.07582608,
                  10039.59101162,
                                                    9673.14563045, 10118.70728123,
                   9903.85952664,
                                   9351.55828437, 10434.34963575, 7732.26255693,
                                                    9662.90103518, 10373.20344286,
                   7698.67240131,
                                   6565.95240435,
                   9599.94844451,
                                   7699.34400418,
                                                    4941.33017994, 10455.2719478,
                  10370.51555682, 10391.60424404,
                                                    7529.06622456,
                                                                     9952.37340054,
                   7006.13845729,
                                   9000.1780961 ,
                                                    4798.36770637,
                                                                     6953.10376491,
                   7810.39767825,
                                   9623.80497535,
                                                    7333.52158317,
                                                                     5229.18705519,
                   5398.21541073,
                                   5157.65652129,
                                                    8948.63632836,
                                                                     5666.62365159,
                   9822.1231461 .
                                   8258.46551788,
                                                    6279.2040404 ,
                                                                     8457.38443276.
                                   6767.04074749,
                   9773.86444066,
                                                    9182.99904787, 10210.05195479,
                   8694.90545226, 10328.43369248,
                                                    9069.05761443,
                                                                     8866.7826029 ,
                   7058.39787506,
                                   9073.33877162,
                                                    9412.68162121, 10293.69451263,
                  10072.49011135,
                                   6748.5794244
                                                    9785.95841801,
                                                                     9354.09969973,
                   9507.9444386 , 10443.01608254,
                                                    9795.31884316,
                                                                     7197.84932877,
                                                    9853.90699412,
                  10108.31707235,
                                   7009.6597206 ,
                                                                     7146.87414965,
                   6417.69133992,
                                   9996.97382441,
                                                    9781.18795953,
                                                                     8515.83255277,
                   8456.30006203,
                                   6499.76668237,
                                                    7768.57829985,
                                                                     6832.86406122,
                   8347.96113362.
                                  10439.02404036
                                                    7356.43463051.
                                                                     8562.56562053.
                   0020 70555100
                                  10025 02571520
                                                    7270 77100022
                                                                     0411 45004006
```

```
In [172]: Results=pd.DataFrame(columns=['Price', 'Predicted'])
Results['Price']=y_test
Results['Predicted']=ypred
```

In [173]: Results

Out[173]:

	Price	Predicted
481	7900	5867.650338
76	7900	7133.701423
1502	9400	9866.357762
669	8500	9723.288745
1409	9700	10039.591012
291	10900	10032.665135
596	5699	6281.536277
1489	9500	9986.327508
1436	6990	8381.517020
575	10900	10371.142553

508 rows × 2 columns

In [174]: Results['Difference']=Results.apply(lambda row:row.Price-row.Predicted ,axis=1)

In [175]: Results

Out[175]:

	Price	Predicted	Difference
481	7900	5867.650338	2032.349662
76	7900	7133.701423	766.298577
1502	9400	9866.357762	-466.357762
669	8500	9723.288745	-1223.288745
1409	9700	10039.591012	-339.591012
291	10900	10032.665135	867.334865
596	5699	6281.536277	-582.536277
1489	9500	9986.327508	-486.327508
1436	6990	8381.517020	-1391.517020
575	10900	10371.142553	528.857447

508 rows × 3 columns