One-deterministic-counter automata

▶ https://arxiv.org/abs/2301.13456

Prince Mathew

*School of Mathematics & Computer Science Indian Institute of Technology Goa, India prince@iitgoa.ac.in¹

Joint work with Dr. Prakash Saivasan, Dr. Sreejith A.V., and Dr. Vincent Penelle

One-deterministic-counter automata (ODCA)

Semantic definition

An OCA where all runs of a word lead to the same counter value.

One-deterministic-counter automata (ODCA)

Semantic definition

An OCA where all runs of a word lead to the same counter value.

Syntactic definition

Figure: One-deterministic-counter automata

Example - Weighted ODCA (visibly)

Example

$$\texttt{equalPrefix}(w) = \begin{cases} \mathbf{2} \cdot \mathbf{k}, \text{where } k \text{ is the } \# \text{proper prefixes of } w \text{ with} \\ \# a \text{'s} = \# b \text{'s, if } \# a \text{'s} \geq \# b \text{'s for all prefixes.} \\ \mathbf{0}, \text{ otherwise} \end{cases}$$

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} \\ p_0 \\ \\ \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Counter

Initial vector

Finite state machine

$$(\{a\}, \{0, +\}, +1)$$

$$(\{b\}, \{+\}, -1)$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} \\ p_0 \\ \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Finite state machine

$$(\{a\}, \{0, +\}, +1)$$

$$(\{b\}, \{+\}, -1)$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} \\ p_0 \\ \\ \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Finite state machine

$$(\{a\}, \{0, +\}, +1)$$

$$(\{b\}, \{+\}, -1)$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} \\ p_0 \\ \\ \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \bigcirc \\ p_0 \\ (\{b\},\{+\},-1)$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} \\ p_0 \\ \\ \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Finite state machine

$$(\{a\}, \{0, +\}, +1)$$

$$(\{b\}, \{+\}, -1)$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} \\ p_0 \\ \\ \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \bigcirc \\ p_0 \\ (\{b\},\{+\},-1)$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} \\ p_0 \\ \\ \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} \\ p_0 \\ \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} \\ p_0 \\ \\ \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Finite state machine

$$(\{a\},\{0,+\},+1) \\ \longrightarrow \begin{matrix} \\ p_0 \\ \\ \\ (\{b\},\{+\},-1) \end{matrix}$$

Input tape

Motivation

- Decidability of equivalence of pPDA is an open problem (Forejt et al., 2014).
- Equivalence of probabilistic OCA is also not known.
- Probabilistic odca is a class of probabilistic oca for which equivalence is decidable.
- This is a strict super class of visibly probabilistic OCA.

Our result

Theorem

Equivalence of weighted odcas (weights from a field) is in P.

Reachability problem

Reachability

co-VS Reachability problem

INPUT:

- ullet A weighted visibly OCA ${\mathcal A}$ over a field,
- an initial configuration c,
- ullet a vector space \mathcal{V} , and
- counter value m.

Reachability

co-VS Reachability problem

INPUT:

- ullet A weighted visibly OCA ${\mathcal A}$ over a field,
- an initial configuration c,
- ullet a vector space \mathcal{V} , and
- counter value m.

OUTPUT:

- Yes, if there exists a run $c \stackrel{*}{\to} \overline{\mathcal{V}} \times \{m\}$ in \mathcal{A} , and
- No, otherwise.

Reachability

co-VS Reachability problem

INPUT:

- A weighted visibly OCA \mathcal{A} over a field,
- an initial configuration c,
- ullet a vector space \mathcal{V} , and
- counter value m.

OUTPUT:

- Yes, if there exists a run $c \stackrel{*}{\to} \overline{\mathcal{V}} \times \{m\}$ in \mathcal{A} , and
- No, otherwise.
- $z \in \Sigma^*$ is a reachability witness for $(c, \overline{\mathcal{V}}, m)$ if $c \stackrel{z}{\to} \overline{\mathcal{V}} \times \{m\}$.

イロト (倒) (注) (注) (注) かく()

co-VS reachability

Theorem - co-VS reachability

co-VS reachability is decidable in polynomial time.

• We prove this by showing a pseudo-pumping lemma.

Pseudo-pumping lemma (pumping down)

Pseudo-pumping lemma (pumping down)

Special word Lemma

Lemma-Special word

The lexicographically minimal reachability witness z, if it exists, satisfies the following conditions:

- \bullet $z=uy_1^{r_1}w_1y_2^{r_2}w_2$ such that $|uy_1w_1y_2w_2|$ is polynomially bounded in input size, and
- ② r_1 and r_2 are polynomially bounded in input size and the input counter values.

Equivalence

Equivalence

Lemma - Witness bound

If two weighted ODCAs A_1 and A_2 are not equivalent, then there exists a distinguishing word z such that the counter values encountered during the run of z are less than a polynomial in the input size.

Equivalence

Lemma - Witness bound

If two weighted odcas A_1 and A_2 are not equivalent, then there exists a distinguishing word z such that the counter values encountered during the run of z are less than a polynomial in the input size.

Theorem - Equivalence

There is a polynomial time algorithm to check the equivalence of two weighted ODCAs (weights from a field).

Other results

Theorem - Regularity

Given a weighted odca (weights from a field), determining whether there exists a weighted automata recognising the same function is in P.

Summary

- Equivalence of weighted odcas is in P.
- Regularity of weighted odcas is in P.

References

Valiant and Paterson.

Deterministic one-counter automata.

JCSS: Journal of Computer and System Sciences, 10, 1975.

Stanislav Böhm and Stefan Göller.

Language equivalence of deterministic real-time one-counter automata is NL-Complete.

In MFCS, Lecture Notes in Computer Science, pages 194–205. Springer, 2011. ISBN 978-3-642-22992-3.

Vojtech Forejt, Petr Jancar, Stefan Kiefer, and James Worrell.

Language equivalence of probabilistic pushdown automata.

Inf. Comput, 237:1-11, 2014.

Thank You!