

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU FOR STANDARD STANDARD

EFFECT OF ELECTROLYTE WATER CONTENT ON THE ANODIC PASSIVATION OF LITHIUM IN 1M LiC10₄-PROPYLENE CARBONATE

BY S. D. JAMES, A. R. NAGAO

RESEARCH AND TECHNOLOGY DEPARTMENT

JUNE 1982

Approved for public release, distribution unlimited.

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910

82 12 07 002

の対対がこと日

UNCLASSIFIED.
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. RESIPIENT'S CATALOS NUMBER
NSWC TR 82-318 • \ \(\begin{align*} A / 3 \text{, 2 8 3} \\ A \text{, 2 8 3 3} \\ A \text{, 2 8 3 3} \\ A , 2 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<u> </u>
effect of electrolyte water content on the anodi passivation of Lithium in 1m Lic104-propylene	S. TYPE OF REPORT & PERIOD COVERED
CARBONATE	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(4)
S. D. James and A. R. Nagao	
PERFORMING ORGANIZATION NAME AND ACCRESS Naval Surface Weapons Center	TO PROGRAM ELEMENT, PROJECT TASK AREA & HORK UNIT NUMBERS
White Oak Laboratory Silver Spring, MD 20910	62765N;SF65-571-692
11. CONTROLLING OFFICE NAME AND ADDRESS	June 1982
	13. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS, (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION: DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	······································
Approved for public release; distribution unlimi	ted.
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if difference	en Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS /Continue on reverse side it necessary and identity by block number; Lithium batteries Anodes Passivation	
This work deals with the effect of aqueous consistent of the carbona passivation of Li in lM LiClO4-propylene carbona readily with increasing electrolyte water contensuggests that anodic passivation may be due to a precipitation of LiClO4 in the superficial anoly	te. Passivation occurs more t. Preliminary evidence nodic enrichment and eventual

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
	·
·	
0102- LF- 014- 6601	

FOREWORD

This report describes the effect of aqueous contamination on the anodic passivation of lithium electrodes in lM LiClO₄ - propylene carbonate. This work relates to safety problems that have been experienced with anode-limited lithium batteries. We acknowledge the financial support of the Independent Research Program of the Naval Surface Weapons Center in conjunction with the Electrochemistry Technology Block Program.

Approved by:

Jack R. Diford JACK R. DIXON, Head Materials Division

Accession for

Note to the property of the pro

CONTENTS

Chapter		Page
1	INTRODUCTION	5
2	EXPERIMENTAL	7
3	RESULTS AND DISCUSSION	11

ILLUSTRATIONS

Figure	·	Page
1	DISCHARGE CELL	8
2	ANODIC PASSIVATION OF LITHIUM AT CONSTANT CURRENT	12
3	ANODIC PASSIVATION TIME VERSUS ELECTROLYTE WATER CONTENT	
	FOR Li IN UNSTIRRED IMLICIO - PC AT 23°C.	
	X: ELECTROLYTE SUBJECT TO PREELECTROLYSIS	14

CHAPTER 1

INTRODUCTION

Safety problems in both the Li-SO₂ and the Li-SOCl₂ batteries have delayed their introduction into advanced weapons systems. The present work seeks to elucidate hazards originating at the anode (Li) side of the battery. It has been reported that anode-limited Li-SO₂ ¹ and Li-SOCl₂ ² cells can vent or explode when driven into voltage reversal, especially if metallic Li remains at the failed anode. We have recently shown ³ that above a certain controlled current density a Li anode suffers eventual anodic passivation. This terminates the anode's useful life and forces its voltage to high positive values where anode substrate or anolyte species are oxidized. Since unconsumed metallic Li remains at the anode after anodic passivation, this event brings about the hazardous conditions mentioned above and thus merits detailed examination. The present report recounts the role of water contamination on the anodic passivation of Li in IM LiClO₄ propylene carbonate (PC).

Dey, A. N., "Safety Studies in Li/SO₂ Cells," <u>J. Electrochem. Soc.</u>, 127, 1980, p. 1886.

Abraham, K. M., Holleck, G. L., and Brummer, S. B., "Studies of Explosion Hazards of Li/SOC1₂ Cells on Forced Overdischarge," <u>Battery Design and Optimization</u>, S. Gross, ed. (Princeton, New Jersey: The Electrochemical Society Softbound Proceeding Series, 1979), p. 356.

James, S. D., "The Anodic Passivation of Lithium," submitted to J. Electrochem. Soc.

CHAPTER 2

EXPERIMENTAL

1. Test Cell And Discharge Procedure

The electrochemical test cell is made of Pyrex glass and contains about 100 ml of electrolyte under a cover gas of dried argon. Two sizes of test electrode were used: an $8~\rm cm^2$ film of Li smeared over a Stainless Steel (SS) 304 disc and a 0.08 cm² surface Li electrode formed by tamping Li into a 1/8" hole in a SS block. The higher area test electrode is illustrated in Figure 1. Both electrodes faced upwards toward a SS or Al disc counter electrode about 15 mm above. Lithium, plastered over the threaded tip of a 3 mm SS rod, served as reference electrode. Discharge curves were recorded at constant current, anodic to the test electrode at 23 + 1°C.

2. Desiccant Activation And Electrolyte Desiccation

Two types of solid desiccant were employed to dehydrate solutions. Linde Type X Molecular Sieve was obtained in the lithium form (LiX). It was activated by a series of progressive temperature elevations of roughly 100°C (from room temperature to 500°C) with continuous pumping over a period of five days. Alcoa F-1 alumina was activated by continuous pumping and heating at 270°C for a period of seven days. Electrolytes were desiccated by percolation through an 8" x 18 mm column of desiccant containing Molecular Sieve, alumina or a combination of both. Percolation rates depended on the level of desiccation desired (usually 5-10 seconds/drop corresponding to 20-40 ml/hour). Both column and receiver were of Pyrex glass and their atmospheres were closed and looped together via Viton tubing to exclude the lab atmosphere during these protracted percolations. Percolation was done in the Dry Room or in the Helium glovebox.

3. Determination Of Electrolyte Water Content

This was done using Metrohm's Karl Fischer automatic titrator obtained from Brinkmann Instruments, Cantiague, NY. We used the model E547 Titrator with the EA 875-5 Titration Vessel and the E535 or E415 Dosimats. Working under a positive pressure of slowly flowing dried Ar in the Titration Vessel we were able to reproduce water standards in PC to + 20 and + 7% at the one and five ppm water levels respectively. However, we found that in this low water content region the apparent water equivalence of the Karl Fischer Reagent was smaller at the lower ppm due to water ingress from the "dry" Ar cover gas. Thus in view of our particular interest in this low ppm region we transferred all our operations (electrolyte desiccation, water titration and passivation studies) to a Vacuum Atmospheres Co, Helium atmosphere glovebox, model # HE-553-2 (water below 0.5ppm). Under these conditions the reproducibility of water titers of our electrolytes was + 20% at the 10 ppm level. This was much inferior to that of the water standards for reasons presently obscure to us.

FIGURE 1. DISCHARGE CELL

4. Attempts To Lower Electrolyte Water Content Below 1ppm

(a) By percolation through desiccant columns

It was earlier believed that properly activated desiccants (Molecular Sieve or alumina) would be able to dry electrolytes to below one ppm. However, in LiClO4-PC, it was found that a water level of only around five ppm could be reached by this method. In spite of cutting the percolation rate to one drop in twenty-five seconds (about four ml per hour) and multiple passes through the column, water content never fell below about five ppm.

(b) By using a drier salt at lower concentration (0.1M LiAsF₆)

We obtained a very dry grade of LiAsF₆ (Electrochemical Grade from US Steel Corporation). It was nominally 50-100 ppm in water but our analysis showed it to be actually only eight ppm. Thus, 0.1M and 1.0M solutions of this salt in a dry solvent should have only 0.14 and 1.4 ppm water respectively. However, we found that our usual 0.16A (about 2 min passivation time) passivation runs were not feasible in the 0.1M electrolyte. The higher resistance of this less conductive electrolyte generated IR drops causing the steel substrate of the Li anode to anodically dissolve, contaminating the solution with Fe, Cr or Ni ions. So we abandoned this approach. In the future it might be useful to use the more conductive 1.0M solution in runs at 1.4 ppm.

(c) By preelectrolysis

We tried to dry electrolytes by preelectrolysis in the same electrochemical cell used for passivation studies. Current was passed to anodically dissolve the 8 cm² lithium test electrode and plate dendritic lithium on the steel counter electrode. We hoped that the active lithium dendrites (high area, free lithium formed by the reduction of lithium ions at the steel cathode surface) would be able to desiccate the electrolyte:

2 Li + $H_{2}O \longrightarrow Li_{2}O + H_{2}$ (1) Preelectrolysis was found to be effective in reducing the water ppm of 1.0M LiClO₄-PC from 105 to 11 after 45 hours of electrolysis at 1 mA/cm² (8mA). Electrolysis was done in the helium glovebox with continuous stirring of the electrolyte to maximize contact between dendrites and solution. So we next predried another batch of this electrolyte by percolation through LiX and then subjected it to exhaustive electrolysis to hopefully finish the job. However, in spite of varying conditions of current density and electrolysis time, we were unable to reduce the water content below five ppm. It is possible that this apparent residual water might be due to the inefficient exclusion of lithium dendrites from the electrolyte aliquot pipetted into KF Titration vessel. Some tiny dendrites may have passed the two layers of predried paper tissue wrapped around the plastic tip of the Oxford automatic macropipet.

Due to the frustration of our efforts to dry electrolytes below 1 ppm, we were forced to alter our plan so that, for the time being at least, we would study lithium passivation in the region upwards of 5 ppm water content.

Dendrite Control

During passivation runs (as during preelectrolysis) Li dendrites form at the SS counter electrode (cathode) and become suspended in the electrolyte. This became a major problem because firstly the electrolyte's water content will change with time if these active dendrites are continuously being formed and reacting as in equation (1); some method must be devised to contain them. Secondly, the dendrites consume Karl Fischer reagent so that titration gives an exaggerated value for the electrolyte's water content. This problem was solved by using a modified Oxford pipet tip fitted with a porous filter to withdraw the sample from the electrochemical cell. Samples of electrolyte were then presumably filtered dendrite-free.

To circumvent the first problem, enclosure of the counter electrode by a porous separator was necessary. We first tried enclosing the counter electrode in a Pyrex tube terminating in a 20 mm coarse Pyrex frit but unfortunately, its resistance to current flow was too high for our 40 volt power source to compensate for. We then enclosed the counter electrode in a similar Pyrex tube where the frit was replaced by wrapping the end of the tube in 2 layers of predried paper tissue. This worked at first but soon the dendrites started to clog the tissue and the resistance increased to an unacceptable level. The situation is aggravated by lithium's proclivity for growing towards the anode under the influence of the IR drop in the electrolyte (see below). The problem of Li dendrites originating at the counter electrode was eventually solved by:

(a) Using an aluminum instead of a steel disc as counter electrode. At low cathodic current densities, aluminum absorbs deposited lithium as a solid, non-dendritic Li/Al alloy. (b) Drastically reducing (by x 100) the area of the lithium test electrode. This proportionately cuts the current needed to characterize lithium passivation and lowers cathodic current density to values where only solid Li/Al forms at the counter electrode. A new design of test electrode was built to accomplish this. Raising the aluminum counter electrode out of the electrolyte between passivation runs minimizes Li/Al's reaction with water and change of its ppm.

A second source of dendrites took us by surprise. After carefully eliminating the counter-electrode's dendrites we still saw dendrites swirling round the stirred electrolyte after a period of electrolysis. We traced these to a "beard" of dendritic lithium growing on the tip of the lithium reference electrode. Even though this lithium is electrically isolated from the current-carrying circuit it can apparently undergo local cell action whereby its top anodically dissolves, and an equal mass of lithium plates dendritically onto its tip. This is powered by the electric field of the IR drop in the adjacent electrolyte. We solved this one by wrapping the lithium reference in four layers of predried paper tissue and raising it to the top of the electrolyte out of most of the IR drop between test and counter electrodes.

CHAPTER 3

RESULTS AND DISCUSSION

(a) Anodic Passivation Curve

Figure 2 shows a typical example of the anodic passivation of Li at constant comment. The first curve in a series of runs sometimes contains the peak labeled "anodic activation" where anodic current is disrupting a passivating film of Li salt responsible for the well known "voltage-delay" effect. Then after a plateau at the Li voltage, anodic passivation occurs and anode voltage rises to a second plateau where the steel substrate and/or anolyte species are oxidized. This voltage transition is not due to the complete consumption of Li because a few minutes wait at open-circuit suffices to depassivate the surface and the process can then be repeated as in Figure 1 to give a fairly reproducible T.

The product of the current density $(A \cdot cm^{-2})$ and the transition time τ (sec) gives the passivation charge Q ($C \cdot cm^{-2}$) necessary to passivate the Li anode. In unstirred IM LiClO₄-PC at room temperature, Li does not passivate below about $lm A \cdot cm^{-2}$, i.e., Q is infinite. Q falls with rising current density leveling off at about $2 C \cdot cm^{-2}$ at $100 \text{ mA} \cdot cm^{-2}$. Thus in this region, τ varies inversely with current as though a discrete film were forming on the Li surface.

(b) Effect Of Electrolyte Water Content On Anodic Passivation

Other known examples of anodic passivation are thought to involve the presence of water which allows films of metal oride or hydroxide to cover the surface of the anodizing metal. In fact iron does not passivate in non-aqueous solution unless traces of water are added (4). The passivating effect of these films may be exerted in two ways: (a) directly by impeding the flow of electrons and ions across the metal-solution interface and (b) by providing a porous, superficial film of oxide/hydroxide in the pores of which the anodically generated, electrolyte-salt (in our case LiClO₄) can accumulate until it precipitates out as an impervious layer. The first question is: does water content play a role in Li's anodic passivation in our system?

Sato, N. and Okamoto, G., "Electrochemical Passivation of Metals,"

<u>Comprehensive Treatise of Electrochemistry</u>, B. E. Conway, ed., Vol. 4

(New York: Plenum, 1981), p. 193.

FIGURE 2. ANODIC PASSIVATION OF LITHIUM AT CONSTANT CURRENT

Figure 3 answers a guarded yes to that question. It shows transition time τ for Li passivation versus electrolyte water content. Each τ is the average of three to five determinations. Curve B was actually obtained first. It resulted from a series of experiments over a period of about two months with a number of different 8 cm^2 Li electrodes and different electrolyte samples under flowing predried argon gas. Despite the large scatter in this data it is reasonable to draw curve B showing a general downward trend, i.e., Li is more easily passivated in the moister solutions. The two crosses in curve B refer to solutions that had been subjected to protracted preelectrolysis. While the intent of this treatment was dehydration, another effect would be to remove heavy metal ions from solution. Since these points lie on the same curve as the others, we can exclude heavy metal ion contamination as being an important factor in the anodic passivation. Curve A, on the other hand, was obtained in the same cell over a period of two hours using a small (0.08 cm^2) Li electrode and working in the He glovebox. The electrolyte was first desiccated to 15 ppm by percolation through LiX and the average t was measured. Then successive water additions were made via a microsyringe, water content checked by Karl Fischer titration and average t redetermined. Again, there is a clear fall in t with increasing water content though small relative to that in curve B. The reason for this smaller effect is not clear to us. It remains possible that a very much larger t/ppm effect occurs below 5 ppm, a region inaccessible to our limited desiccating ability.

An apparent anomaly in Figure 3 is the fact that the r's of curve A, at 35 mA·cm⁻² substantially exceed those of curve B at 20mA·cm⁻² whereas the reverse would be expected. This is because both the 8 cm² and the 0.08 cm² electrodes were unshielded, i.e., the Li was not recessed to enforce perpendicular diffusion to the Li surface. Thus edge diffusion occurred at both electrodes and was much more significant at the smaller electrode due to its ten times higher edge/surface ratio. This is an indication of the importance of mass transport in the anodic passivation process.

(c) Effect of Chloride Ion on Lithium Passivation

Both chemical and anodic passivation are well-known with metals like Fe, Cr and Ni and various steels. Chloride ion is very effective in breaking down passivity and promoting the corrosion of such metals due probably to its strong specific adsorption on their surfaces. We wished to compare its behavior in the case of lithium. So we first measured Q (anodic charge needed to passivate lithium) in 1.0M LiClO₄-PC at 20 mA/cm² as 3.92 ± 0.12 coul/cm². Then we saturated this solution with LiCl by stirring about 0.2g of LiCl into the 80 ml of cell solution. Redetermination of Q gave a value of 3.86 ± 0.30 , i.e., passivation was unaffected by the presence of chloride ion. The striking difference between the two systems may be linked with lithium's much more negative electrode potential (by perhaps 2 volts). This would electrically repel the negative chloride ion, preventing its absorption and disabling it for any depassivation effect.

FIGURE 3. ANODIC PASSIVATION TIME VERSUS ELECTROLYTE WATER CONTENT FOR Li IN UNSTIRRED 1MLiC10 $_4$ – PC AT 23 $^\circ$ C. X: ELECTROLYTE SUBJECT TO PREELECTROLYSIS

(d) Conclusions and Future Work

Despite Figure 3's conflicting evidence as to the size of the effect, the data does clearly indicate that water has a role in the anodic passivation of Li in LiClO4-propylene carbonate. The fairly rapid (several minutes) depassivation of the anode at open-circuit shows that the passivating film, whatever its nature, must leave the Li surface rather quickly by mechanical breakdown or by physical/chemical dissolution. The pronounced edge-effect, indicating the role of mass-transport in the passivation process suggests that the precipitation of anodically generated LiClO4 may cause passivation. Water may cooperate by filming the Li with a porous layer of lithium oxide/hydroxide which retains LiClO4 close to the Li surface.

Future work should employ improved drying techniques to explore the region below 5 ppm water content. Also we should evaluate the effect of different anions and solvents in the electrolyte under controlled conditions of water content. Review of this data should then allow more definitive conclusions as to the nature of the passivation process and recommendations for avoiding this event in lithium battery use.

DISTRIBUTION

<u>c</u>	opies	<u>c</u>	Copies
Defense Technical Information Center		Naval Electronic Systems Command Attn: A. H. Sobel	
Cameron Station		(Code PME 124-31)	1
Alexandria, VA 22314	12	Washington, DC 20360	
Defense Nuclear Agency		Naval Sea Systems Command	
Attn: Library	2	Attn: F. Romano (Code 63R3)	1
Washington, DC 20301		(Code 5433)	1
		E. Daugherty (Code 06H3)	1
Institute for Defense Analyses		Washington, DC 20362	
R&E Support Division		•	
400 Army-Navy Drive		Strategic Systems Project Office	
Arlington, VA 22202	1	Attn: K. N. Boley (Code NSP 2721)	1
	•	M. Meserole (Code NSP 2722)	
Naval Asserial Command		Department of the Navy	•
Attn: Code 08T223	1	Washington, DC 20360	
	1	washington, be 70000	
Washington, DC 20360		Namel Aim Davelement Contac	
0551 CN 1 D		Naval Air Development Center	•
Office of Naval Research		Attn: J. Segrest (Code 6012)	1
Attn: G. Neece (Code ONR 413)	1	R. Schwartz (Code 30412)	1
800 N. Quincy Street		Warminster, PA 18974	
Arlington, VA 22217			
		Naval Civil Engineering	
Naval Research Laboratory		Laboratory	
Attn: Dr. Fred Saalfeld		Attn: Dr. W. S. Haynes	•
(Code NRL 6100)	1	(Code L-52)	1
A. Simon (Code NRL 6130)	1	F. Rosell	1
4555 Overlook Avenue, S.W.		Port Hueneme, CA 93040	
Chemistry Division			
Washington, DC 20375		Naval Intelligence Support Center	
		Attn: Dr. H. Ruskie (Code 362)	1
Naval Postgraduate School		Washington, DC 20390	
Attn: Dr. William M. Tolles		•	
(Code 612)	1	Naval Ocean Systems Center	
Dr. Oscar Biblarz	ī	Attn: Dr. Szpak Code 6343(B)	1
Monterey, CA 93940	-	Dr. S. D. Yamomoto	ī
Monterey, on 73740		(Code 513)	•
Naval Air Systems Command		San Diego, CA 92152	
Attn: Dr. H. Rosenwasser			
(Code NAVAIR 3010)	1	Naval Electronic Systems Command	
E. Nebus (Code NAVAIR 5332)	_	Attn: T. Sliwa (Code NAVALEX-01K)	1
	•	Washington, DC 20360	•
Washington, DC 20361		Hastington, Do 20300	

<u>c</u>	opies		Copies
Naval Weapons Center Attn: Dr. E. Royce (Code 38) Dr. A. Fletcher (Code 3852) R. Dettling (Code 4575) China Lake, CA 93555	1 1 1	Frank J. Seiler Research Laboratory, AFSC Attn: LT. COL. Lowell A. King (Code FJSRL/NC) USAF Academy, CO 80840	1
Naval Weapons Support Center Attn: D. G. Miley (Code 305) Electrochemical Power Sources Division Crane, IN 47522	1	Air Force Materials Laboratory Attn: Major J. K. Erbacher Wright-Patterson AFB Dayton, OH 45433	1
Naval Coastal Systems Center Attn: Library Panama City, FL 32407	1	Air Force Aero Propulsion Laboratory Attn: W. S. Bishop (Code AFAPL/POE-1) J. Lander	1
Naval Underwater Systems Center Attn: T. Black (Code 3642) J. Moden (Code SB332) Newport, RI 02840	1	(Code AFAPL/POE-1) Wright-Patterson AFB, OH 45433 Air Force Rocket Propulsion Laboratory	1
David W. Taylor Naval Ship R & D Center Attn: A. B. Neild (Code 2723)	1	Attn: LT. D. Ferguson (Code MKP/ Edwards Air Force Base, CA 93523	
W. J. Levendahl (Code 2703) J. Woerner (Code 2724) H. R. Urbach (Code 2724) Annapolis Laboratory Annapolis, MD 21402		Headquarters, Air Force Special Communications Center Attn: Library USAFSS San Antonio, TX 78243	1
Scientific Advisor Attn: Code AX Commandant of the Marine Corps Washington, DC 20380 Air Force of Scientific Research Directorate of Chemical Science 1400 Wilson Boulevard	1	Office of Chief of Research and Development Department of the Army Attn: Dr. S. J. Magram Energy Conversion Branch Room 410, Highland Building Washington, DC 20315	1
Arlington, VA 22209	1	U. S. Army Research Office Attn: B. F. Spielvogel P.O. Box 12211 Research Triangle Park, NC 2776	1

	Copies		Copies
U. S. Development and Readiness Command Attn: J. W. Crellin (Code DRCDE-L) 5001 Eisenhower Avenue Alexandria, VA 22333	1	Harry Diamond Laboratory Attn: W. Kuper (Code DRDXO-RDD) J. T. Nelson (Code DRKDO-RDD) C. Campanguolo Department of Army Material Chief, Power Supply Branch	1 1 1
U. S. Army Electronics Command Attn: A. J. Legath		2800 Powder Mill Road Adelphi, MD 20783	
(Code DRSEL-TL-P)	1		
E. Brooks		Department of Energy	
(Code DRSEL-TL-PD)	1	Attn: L. J. Rogers (Code 2102)	1
G. DiMasi	1	Division of Electric Energy System	ems
Dr. W. K. Behl	1	Washington, DC 20545	
Fort Monmouth, NJ 07703		B	
Amer Mahandal and Monkoudenl		Department of Energy	
Army Material and Mechanical Research Center		Attn: Dr. A. Landgrebe	•
Attn: J. J. DeMarco	1	(Code MS E-463)	1
Watertown, MA 02172	T	Energy Research and Development	
watertown, rk 021/2		Agency	
USA Mobility Equipment R and D Command		Division of Applied Technology Washington, DC 20545	
Attn: J. Sullivan (Code DRXFB)	1	Headquarters, Department of	
Code DRME-EC	1	Transportation	
Electrochemical Division		Attn: R. Potter (Code GEOE-3/61) 1
Fort Belvoir, VA 22060		U. S. Coast Guard, Ocean Engineering Division	
Edgewood Arsenal		Washington, DC 20590	
Attn: Library	1		
Aberdeen Proving Ground		NASA Headquarters	
Aberdeen, MD 21010		Attn: Dr. J. H. Ambrus Code RTS-6	1
Picatinny Arsenal		Washington, DC 20546	
Attn: M. Merriman			
(Code SARPA-FR-S-P)	1	NASA Goddard Space Flight Center	
Dr. B. Werbel		Attn: G. Halpert (Code 711)	1
(Code SARPA-FR-L-C)	1	T. Hennigan (Code 716.2)	
A. E. Magistro		Greenbelt, MD 20771	
(Code SARPA-ND-D-B)	1		
U. S. Army			
Dover, NJ 07801			

Cc	pies		Copies
NASA Lewis Research Center		Oak Ridge National Laboratory	
Attn: J. S. Fordyce		Attn: K. Braunstein	1
(Code MS 309-1)	1	Oak Ridge, TN 37830	
H. J. Schwartz			
(Code MS 309-1)	1	Sandia Laboratories	
2100 Brookpark Road		Attn: R. D. Wehrle (Code 2522)	1
Cleveland, OH 44135		B. H. Van Domelan	
•		(Code 2523)	1
NASA Scientific and Technical		Dr. S. Levy	1
Information Facility		Albuquerque, NM 87115	
Attn: Library	1		
P.O. Box 33		Catholic University	
College Park, MD 20740		Attn: Dr. C. T. Moynihan	
		(Physics)	1
National Bureau of Standards		Chemical Engineering Department	_
Metallurgy division		Washington, DC 20064	
Inorganic Materials Division		washington, so tooo.	
Washington, DC 20234	2	University of Tennessee	
washington, be recov	-	Attn: G. Mamantov	1
Battelle Memorial Institute		Department of Chemistry	•
Defense Metals & Ceramics		Knoxville, TN 37916	
Information Center		RHOXVIIIE, IN 37710	
505 King Avenue		University of Florida	
Columbus, OH 43201	1	Attn: R. D. Walker	1
Columbus, On 43201	1	Department of Chemical	L
Bell Laboratories		<u>.</u>	
Attn: Dr. J. J. Auborn	1	Engineering	
	1	Gainsville, FL 32611	
600 Mountain Avenue		Amplical Descends Takamatanu	
Murray Hill, NJ 07974		Applied Research Laboratory	,
		Attn: Library	1
California Institute of Technology		Penn State University	
Attn: Library	1	University Park, PA 16802	
Jet Propulsion Laboratory			
4800 Oak Grove Drive		Catalyst Research Corporation	_
Pasadena, CA 91103		Attn: G. Bowser	1
		N. Issacs	1
Argonne National Laboratory	_	F. Tepper	ì
Attn: H. Shimotake	1	1421 Clarkview Road	
R. K. Steunenberg	1	Baltimore, MD 21209	
L. Burris	1		
9700 South Cass Avenue			
Argonne, IL 60439			
	,	11	

	Copies		Copies
ESB Research Center		General Electric Company	
Attn: Library	1	Attn: R. D. Walton	1
19 W. College Avenue		R. Szwarc	1
Yardley, PA 19067		Neutron Devices Department	
		P.O. Box 11508	
EIC Corporation		St. Petersburg, FL 33733	
Attn: S. B. Brummer	1	.	
G. L. Holleck	1	Gould, Inc.	
2 Chapel Street		Attn: S. S. Nielsen	1
Newton, MA 02158		G. R. Ault	1
		40 Gould Center	
Eagle-Picher Industries, Inc.		Rolling Meadows, IL 60008	
Attn: D. R. Cottingham	1	,	
J. Dines	1	GT & E Laboratory	
D. L. Smith	1	Attn: Dr. C. R. Schlaikjer	1
J. Wilson	1	40 Sylvan Road	
Electronics Division, Couples		Waltham, MA 02154	
Department		·	
P.O. Box 47		Honeywell, Inc.	
Joplin, MO 64801		Attn: Library	1
•		D. Chua	1
Eagle-Picher Industries, Inc.		W. Ebner	1
Attn: P. E. Grayson	1	Defense Systems Division	
Miami Research Laboratories		Power Sources Center	
200 Ninth Avenue, N.E.		104 Rock Road	
Miami, OK 74354		Horsham, PA 19044	
Electrochimica Corporation		Hughes Aircraft Company	
2485 Charleston Road		Attn: Library	1
Mountain View, CA 94040		Dr. L. H. Fentnor	1
		Aerospace Groups	
Eureka Advance Science Division		Missile Systems Group	
Attn: D. Ryan	1	Tucson Engineering Laboratory	
L. Raper	1	Tucson, AZ 85734	
P.O. Box 1547		•	
Bloomington, IL 61701		KDI Score, Inc.	
-		Attn: L. A. Stein	1
Foote Mineral Company		F. DeMarco	1
Attn: H. R. Grady	1	K. K. Press	
Exton, PA 19341		200 Wight Avenue	
		Cockeysville, MD 21030	

	Copies		Copies
Lockheed Missiles and Space		Callery Chemical Company	
Company, Inc.		Attn: Library	1
Attn: Library	1	Callery, PA 16024	
Lockheed Palo Alto Research			
Laboratory		Kawecki Berylco Industries, Inc.	
3251 Hanover Street		Attn: J. E. Eorgan	1
Palo Alto, CA 94304		R. C. Miller	1
		Boyertown, PA 19512	
Duracell Int., Inc			
Attn: G. F. Cruze	1	Rockwell International	
B. McDonald	1	Attn: Dr. Samuel J. Yosim	1
D. Linden	1	Atomics International Division	
Battery Division		8900 DeSoto Avenue	
South Broadway		Canoga Park, CA 91304	
Tarrytown, NY 10591			
		Union Carbide	
Duracell Int., Inc.	_	Attn: Library	1
Attn: Library	1	Nuclepore Corporation	
Dr. A. N. Dey	1	7035 Commercial Circle	
Dr. H. Taylor	1	Pleasantown, CA 94556	
Laboratory for Physical Science		C. C. 1 W. 1	
Burlington, MA 01803		Stanford University	
Danier Granier Torr		Attn: C. John Wen	1
Power Conversion, Inc.		Center for Materials Research	
70 MacQuesten Parkway S. Mount Vernon, NY 10550	1	Room 249, McCullough Building	
Mount Vernon, NI 10330	1	Stanford, CA 94305	
Union Carbide Battery Products		EDO Corporation	
Division		Attn: E. P. DiGiannantonio	1
Attn: R. A. Powers	1	Government Products Division	
P.O. Box 6116		2001 Jefferson Davis Highway	
Cleveland, CH 44101		Arlington, VA 22202	
Wilson Greatbatch LTD.		Perry International, Inc.	
Attn: Library	1	Attn: R. A. Webster	1
1000 Wehrle Drive		117 South 17th Street	
Clarence, NY 14030		Philadelphia, PA 19103	
Yardney Electric Corporation			
Attn: Library	1		
A. Beachielli	1		
82 Mechanic Street			
Pawcatuck, CT 02891	(1	6)	

	Copies		Copies
Ford Aerospace and Communications Corporation	5	Battery Engineering Attn: Dr. N. Marincic	1
Attn: R. A. Harlow	1	Newton, MA 02164	
M. L. McClanahan	1		
Metallurgical Processes		RAY-O-VAC	
Advanced Development-Aeronutronic	2	Attn: R. Foster Udell	1
Division		101 East Washington Avenue	
Ford Road		Madison, WI 53703	
Newport Beach, CA 92663			
		Brookhaven Nat. Lab.	
Globe Union Inc.		Attn: Dr. J. W. Sutherland	1
Attn: Dr. R. A. Rizzo	1	Upton, NY 11973	
5757 N. Green Bay Avenue			
Milwaukee, WI 53201		Capt. A. S. Alanis BMO/ENBE	
University of Missouri, Rolla		Norton AFB	
Attn: Dr. J. M. Marchello 210 Parker Hall	1	San Bernardine, CA 92409	1
Rolla, MO 65401		Norton AFB Code AFISC/SES	
		San Bernardino, CA 92409	1
		Internal Distribution:	
		R33 (C. Mueller)	1
		R33	20
		E35 (GIDEP)	
		E431	1 9 3
		E432	3

ATE LMEI