CS203 DSAA Fall 2022 Quiz2 民间版本

Bonus [20 points]: If you participate in this Quiz in class, your grade will be added 20 points. In other words, if you take part in this Quiz, the Quiz 2 score counted into the final score will be min(Quiz 2 original score + 20 points, 100 points).

Note: *This Quiz is very similar to Quiz 2 in 2021 (even exactly the same).*

Problem 1 [20 points] Time Complexity of Heap Building

The time complexity of turn sized-n array A into a binary heap on S via root-fix operator on dynamic array is O(n), where A stores the values in set S.

Problem 2 [20 points] Height of Balanced Binary Search Tree

A balanced binary search tree where n nodes has height $O(\log n)$.

Problem 3 [20 points] Huffman Encoding

Given (character, frequency) pairs as following:

Н	N	S	0	Е	Y	Т	D
14	16	8	12	30	18	43	65

- (a) Show the detail steps of building its Huffman tree, i.e. draw the Huffman tree building process step by step.
- (b) Write down the corresponding scheme of the Huffman tree you obtained in (a), you only need draw a table, which contains two columns, the left is the character, the right is its corresponding Huffman coding.

Problem 4 [10 points] Heap Sorting

Use a table to describe the process of ascending sort of array *A* using the small root heap. We assume that the array *A* is already a small root heap.

$$A = \{14, 16, 8, 12, 30, 18, 43, 65, 78, 83, 72, 6, 23\}$$

6	12	8	16	30	14	43	65	78	83	72	18	23
8	12	14	16	30	18	43	65	78	83	72	23	
												•
											•	
										•		
								1				
						l						
					ı							
				I								
			I									
		I										

Problem 5 [30 points] AVL-Tree

Let us define a binary search tree as following:

h b h+1 x C y D

Figure 1. left-left case

Figure 2. left-right case

(a) Given the imbalance node a in Fig.1, after remedied the imbalance node a,

a→leftchild =______, a→rightchild =_____

b→leftchild =_____, b→rightchild =_____

(b) Given the imbalance node a in Fig.2, after remedied the imbalance node a,

a→leftchild = ______, a→rightchild = ______

b→leftchild = _____, b→rightchild = _____

 $c \rightarrow leftchild = \underline{\hspace{1cm}}, c \rightarrow rightchild = \underline{\hspace{1cm}}$

- (c) Draw the corresponding balance ed binary search tree of Figures 1 and 2.
- (d) Given the following imbalanced BBST, please draw the balanced BBST after remedy.

