Exercise 1

Show that if S is an open set, its complement S^c is closed, and viceversa.

Exercise 2

If S_1 , S_2 are convex subsets, prove that the following are also convex sets:

$$S_1 \cap S_2 = \{x : x \in S_1 \text{ and } x \in S_2\}$$

 $S_1 + S_2 = \{x + x' : x \in S_1, x' \in S_2\}$
 $S_1 - S_2 = \{x - x' : x \in S_1, x0 \in S_2\}$

Exercise 3

If $f : S \to \mathbb{R}$ is a convex function on the convex set S, the set $\{x : x \text{ is a minimum of } f\}$ is a convex set.

Exercise 4

Given a quadratic form $q(w) = w^T Q w + b w + c$, with Q a symmetric $d \times d$ matrix, w, b being $d \times 1$ vectors and c a real number, derive its gradient and Hessian

$$\nabla q(w) = Qw + b$$
, $Hq(w) = Q$

Hint: expand $q(w) = \sum_{i=1}^{d} \sum_{j=1}^{d} Q_{ij} w_i w_j + \sum_{i=1}^{d} b_i w_i + c$ and take the partials $\frac{\partial q}{\partial w_i}$ and $\frac{\partial^2 q}{\partial w_i \partial w_i}$.

Exercise 5

If $(p_1, ..., p_n)$ is a probability distribution, prove that its entropy $H(p_1, ..., p_n) = -\sum_{i=1}^n p_i \log p_i$ is a concave function. Show also that its maximum is $\log n$, attained when $p_i = \frac{1}{n}$ for all i.

Exercise 6

We want to solve the following constrained restriction problem:

min
$$x^2 + 2y^2 + 4xy$$

s.t $x + y = 1$
 $x, y \ge 0$.

- 1. Write its Lagrangian with α , β the multipliers of the inequality constraints.
- 2. Write the KKT conditions.
- 3. Use them to solve the problem. For this consider separately the $(\alpha = \beta = 0)$, $(\alpha > 0, \beta = 0)$, $(\alpha = 0, \beta > 0)$, $(\alpha > 0, \beta > 0)$ cases.

Exercise 11

If Q is a symmetric, positive definite $d \times d$ matrix, show that $f(x) = x^T Q x$, $x \in \mathbb{R}^d$, is a convex function.

Exercise 12

Let $f : \mathbb{R}^d \to \mathbb{R}$ be a function and assume that $epi(f) \subset \mathbb{R}^d \times \mathbb{R}$ is convex. Prove that then f is convex.

Exercise 13

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex function. Prove that $\operatorname{epi}(f)$ is a closed set and that $(x, f(x)) \in \partial \operatorname{epi}(f)$.

Exercise 14

Prove that if *f* is strictly convex, it has a unique global minimum.

Exercise 15

Let $f,g:S\subset\mathbb{R}^d\to\mathbb{R}$ be two convex functions on the convex set S. Prove that, as subsets, $\partial(f+g)(x)\subset\partial f(x)+\partial g(x)$ for any $x\in S$.

Exercise 16

Compute the proximal of f(x) = 0 and of $g(x) = \frac{1}{2}||x||^2$.

Exercise 17

Assume that *f* is convex. Prove that for any $\lambda > 0$, $\partial(\lambda f)(x) = \lambda \partial f(x)$ as subsets.

Exercise 19

Compute the proximals of the hinge $f(x) = max\{0, -x\}$ and the ϵ -insensitive $g(x) = max\{0, |x| - \epsilon\}$ loss functions.