3. Übung

Timo Bergerbusch 344408 & Marc Burian 344300

2. November 2017

1 Aufgabe

1.1 a)

i	1	2	3	4	5	6	7		i	2	3	4	7	6	1	5
$\overline{p_i}$	3		7					$rac{1}{\text{sort wrt } \frac{p_i}{w_i}}$	p_i	4	7	6	8	1	3	2
w_i	4	2	4	4	3	1	5	Soft wit $\frac{1}{w_i}$	w_i	2	4	4	5	1	4	3
$\frac{p_i}{w_i}$	0.75	2	1.75	1.5	$\frac{2}{3}$	1	1.6	SORT WIT $\frac{v_i}{w_i}$	$\frac{p_i}{w_i}$	2	1.75	1.5	1.6	1	0.75	$\frac{2}{3}$
	Sei $C = 15$ dann folgt:															

Iteration	nächster Gegenstand	passt?	add. Wert	∑Wert	$C - \sum w$
0	-	-	-	0	15
1	2	Ja	4	4	13
2	3	Ja	7	11	9
3	4	Ja	6	17	5
4	7	Ja	8	25	0
5	6	Nein	0	25	0
6	1	Nein	0	25	0
7	5	Nein	0	25	0

 $[\]Rightarrow$ Die Lösung ist die Menge der Gegenstände $M=\{2,3,4,7\}$ mit einem Wert von v=25 und einer Restkapazität von $C_{Rest}=0$. Somit ist die Performance $R_H(P)=\frac{25}{25}=1$

1.2 b)

Ja die Lösung ist optimal. Durch die vorherige Sortierung nach dem relativen Wert im Verhältnis zum Gewicht und da kein Spezialfall vorliegt lässt sich die Optimalität leicht erkennen.

1.3 c)

			3					l	3			
$\overline{p_i}$	6	60	9	7	8	$\overrightarrow{\text{sort wrt } \frac{p_i}{w_i}}$	p_i	6	9	8	7	60
w_i	1	20	2	2	2	Soft wit $\frac{w_i}{w_i}$	w_i	1	2	2	2	20
$\frac{p_i}{w_i}$	6	3	4.5	3.5	4				4.5			

Iteration	nächster Gegenstand	passt?	add. Wert	\sum Wert	$C - \sum w$
0	-	-	-	0	20
1	1	Ja	6	6	19
2	3	Ja	9	17	17
3	5	Ja	8	25	15
4	4	Ja	7	32	13
5	2	Nein	-	32	13

 \Rightarrow Die Lösung ist die Menge der Gegenstände $M=\{1,3,4,5\}$ mit einem Wert von v=32 und einer Restkapazität von $C_{Rest}=13$. Somit ist die Performance $R_H(P)=\frac{32}{83}=0.3855$. $z_{opt}=83$ erhalten wir mit der Menge $M_{opt}=\{1,2,3,5\}$

1.4 d)

Das Ergebnis des Algorithmus bleibt das selbe, allerdings verändert sich der Optimale Wert auf $z_{opt} = 84$ durch $M_{opt} = \{2, 3, 4, 5\}$. Somit wird das Performance-Verhältnis noch schlechter.

1.5 e)

Für Greedy-Algorithmen können Szenarien konstruiert werden, in welchen sie relativ schlecht abschneiden. Solche Sonderfälle müssen dann zusätzlich abgefangen werden um die Performance zu verbessern. Insgesamt sind Greedy-Algorithmen im allgemeinen nicht optimal.

1.6 f)

Durch den Extended-Greedy-Algorithmus, in welchem am Ende nochmal geschaut wird für jeden <u>nicht</u> mitgenommenen Gegenstand ob dieser, falls er alleine in den Rucksack passt, mehr Profit bringt wird der gesamte Inhalt durch eben jenen Gegenstand ausgetauscht.

Somit würde der Extended-Greedy-Algorithmus an dieser Stelle für sowohl C=25 als auch für C=26 den Gegenstand 2 statt aller anderen in den Rucksack packen um auf einen Funktionswert von 60 zu kommen, welcher dann ein Performance-Verhältnis von $R_H(P_1)=\frac{60}{83}=0.7229$, bzw $R_H(P_2)=\frac{60}{84}=0.7143$ besitzt.

2 Aufgabe

2.1 a)

			$i \mid 1$	2 3	4 5	6 7	8			
			w_i 7	4 3	6 1 :	5 4	2			
bin/it.	1		. 2	2	3			4		5
	M_1	Rest	M_2	Rest	M_3	Rest	M_4	Rest	M_5	Rest
0	Ø	8	Ø	8	Ø	8	Ø	8	Ø	8
1	{1}	1								
2 3			{2}	4						
3			$\{2\}$ $\{2,3\}$	1						
4					{4}	2				
4 5 6	$\{1, 5\}$	0								
6							{6 }	3		
7					${4,8}$	0			{7}	4
8										
\sum	$\{1,5\}$	0	$\{2,3\}$	1	{4,8}	0	{6}	3	{7}	4

2.2 b)

Nachdem sortieren sieht die Tabelle wie folgt aus:

		$i \mid 1$	4 6	2 7	3 8	5		
	•	$w_i \mid 7$	7 6 5	4 4	3 2	1		
bin/it.	1	·	2		3		4	
	M_1	Rest	M_2	Rest	M_3	Rest	M_4	Rest
0	Ø	8	Ø	8	Ø	8	Ø	8
1	{1}	1						
2			$\{4\}$	2				
3					{6}	3		
4							{2}	4
5							$\{2\}$ $\{2,7\}$	0
6					$\{6, 3\}$	0		
7			$\{4, 8\}$	0				
8	$\{1, 5\}$	0						
\sum	{1,5}	0	$\{4, 8\}$	0	$\{6,3\}$	0	$\{2,7\}$	0

Somit ergibt sich die min. Anzahl der Bins für die Best-Fit-Decreasing-Heuristik bei 4.