

332:494:01/599:02 – Smart Grid – Spring 2021 Homework Assignment – Set 4

General guidelines for homework assignments: Homework should be submitted online (via Canvas)

Question 1:

For the power system given in figure 1 bus 1 is a slack bus with $V_1 = 1 \angle 0^\circ pu$, bus 2 is a load bus (PQ) with S2 = 300MW + j1270MVAr and S3 = 400MW + j220MVAr. The line impedances are Z12 = 0.01 + j0.03 pu and are Z13 = 0.02 + j0.04 pu. The base power is 100MVA.

(a) Use the Gauss-Seidel method to write the expression to calculate $V_2^{(k+1)}$ and $V_3^{(k+1)}$ as a function of $V_2^{(k)}$, $V_3^{(k)}$

(b) If after several iterations the voltages at buses B2 and B3 converge to $V_2 = 0.9046 - j0.073$ and $V_3 = 0.7618 - j0.116$ determine the following:

- 1. Power flowing from bus 1 out to bus 2: $S_{12} =$
- 2. Power flowing from bus 1 to bus 3: $S_{13} =$
- 3. Power generated by the source: $S_1 = S_{GEN} =$
- 4. Line losses for the line connecting bus 1 to bus 2: $S_{loss,12} =$
- 5. Line losses for the line connecting bus 1 to bus 3: $S_{loss,13} =$

Question 2:

For the power system given in figure 2 bus 1 is a slack bus with $V_1 = 1 \angle 0^\circ pu$ and bus 2 is a load bus (PQ) with S2 = 280MW + j60Mvar. The line impedance is 0.02 + j0.04 pu and the base power is 100MVA

a) Use the Gauss-Seidel method to write the expression to calculate $V_2^{(k+1)}$ as a function of $V_2^{(k)}$ and solve for $V_2^{(1)}$ if $V_2^{(0)} = 1 \angle 0^\circ$ pu

Figure 2

- b) If after several iterations the voltage at bus 2 converges to $V_2 = 0.9 j0.1$ determine the poser S_I
- c) For part (b) determine the line losses for the line connecting bus 1 and bus 2

Question 3:

For the power system in figure 3, assume a base power of 100MVA

- (a) Find the admittance matrix Y
- (b) Write the equations for the Gauss-Seidel iteration: $V_2^{(k+1)}$, $V_3^{(k+1)}$ and $V_4^{(k+1)}$ and given an initial estimate that $V_2^{(0)} = V_3^{(0)} = V_4^{(0)} = 1 \angle 0^\circ$ pu find $V_2^{(1)}$, $V_3^{(1)}$, and $V_4^{(1)}$

Figure 3

332:494/599– HW Set 4