Правительство Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "Высшая школа экономики"

Московский институт электроники и математики Национального исследовательского университета "Высшая школа экономики"

Лабораторная работа по дисциплине «Теоретико-числовые методы в криптографии»

Последовательности Лукса

Студент 1: Верендеев Кирилл Дмитриевич

Студент 2: Винников Никита

Преподаватель: Нестеренко Алексей Юрьевич

Группа: СКБ181

Содержание

1	Введение					
2	Теория 2.1 Последовательности Лукаса 2.2 Псевдопростые числа	2 2 2				
3	Описание алгоритма 3.1 Метода Джона Селфриджа	3				
4	Реализация 4.1 Основные алгоритмы	3 4 5				
5	Тесты	6				
6	6 Источники					

1 Введение

Тема данной работы - реализация теста на простоту, основываясь на свойствах последовательностей Лукаса и псевдопростых числах Лукаса.

Тест на простоту Лукаса может очень эффективно находить простые числа. Он делает это без ошибок до значения $25 * 10^9$, сложность всех вычислений составляет $O(\log n)$, где n - число, проверяемое на простоту.

2 Теория

2.1 Последовательности Лукаса

Definition 2.1. Пусть D, P, Q - целые числа, такие что $D = P^2 - 4Q \neq 0, p > 0$. Пусть $U_0 = 0, U_1 = 1, V_0 = 2, V_1 = P$. Последовательность Лукаса U_k, V_k задается следующим образом для k > 2:

$$U_k = PU_{k-1} - QU_{k-2} (1)$$

$$V_k = PV_{k-1} - QV_{k-2} (2)$$

Тогда D - дискриминант характеристического многочлена $f(x) = x^2 - Px + Q$ данной рекуррентной последовательности.

Возьмем нечетное положительное n, обозначим $\sigma(n)=n-(\frac{D}{n})$, где $(\frac{D}{n})$ - символ Якоби. Тогда, если n - простое и если (n,Q)=1, тогда

$$U_{\sigma(n)} = 0 \pmod{n} \tag{3}$$

2.2 Псевдопростые числа

Definition 2.2. Число называется псевдопростым по основанию $a\ (psp(a))$, если для n, где n - нечетное, выполняется

$$a^{n-1} = 1 \pmod{n} \tag{4}$$

Definition 2.3. Число называется сильным псевдопростым по основанию $a\ (spsp(a))$, если для $n-1=d2^s$, где d - нечетное, выполняется

$$a^{d} = 1 \pmod{n} \text{ or}$$

$$a^{d2^{r}} = 1 \pmod{n}, \exists r : 0 < r < s$$

$$(5)$$

Definition 2.4. Число называется псевдопростым числом Лукаса с параметрами $P, Q \ (lpsp(P,Q)),$ если для него выполняется условие (3), но оно является составным.

Definition 2.5. Число называется сильным псевдопростым числом Лукаса с параметрами $P, Q \ (slpsp(P,Q))$ если для $n-1=d2^s$, где d - нечетное, выполняется

$$U_d = 0 \pmod{n}$$
 or $V_{d2r} = 0 \pmod{n}, \exists r : 0 < r < s$ (6)

Последовательности Лукаса обладают большим количеством свойств и еще большим количеством формул для получения параметров/коэффициентов. В этой работе будут использоваться три из них. Это рекуррентные формулы для получения значений U_n и формула для получения V_n из U_n :

$$U_{2k} = 2U_k U_{k+1} - P U_k^2$$

$$U_{2k+1} = U_{k+1}^2 - Q U_k^2$$
(7)

$$V_k = 2U_{k+1} - PU_k \tag{8}$$

Они позволяют получить значения U_n, V_n за по двоичному представлению числа n, следовательно сложность этой операции составляет $O(\log n)$.

Далее приведем несколько теорем (без доказательств), чтобы лучше понимать, что происходит:

Theorem 2.1. Пусть D - целое число, $n = \prod p_i^{\alpha_i}$ - нечетное положительное целое число, такое что (n,D)=1. Тогда число значений P по модулю n, для которых существует Q, такое что $P^2-4Q=D \pmod n$ и выполняется (3), равно

$$\prod_{i} ((\sigma(n), \sigma(p_i)) - 1) \tag{9}$$

Corollary 2.1.1. Каждое нечетное составное целое число n является lpsp(P,Q) для как минимум трех $nap\ P,Q$ c конкретными значениями P no модулю n.

3 Описание алгоритма

Описание алгоритма взято из [1]. Алгоритм заключается в том, чтобы проверить, является ли число slpsp(P,Q) со специально подобранными значениями P,Q. Для этого мы с помощью метода Джона Селфриджа подберем P,Q,D с некоторыми ограничениями, а затем проверим несколько основных свойств псевдопростых чисел Лукаса, чтобы убедиться в простоте числа.

3.1 Метода Джона Селфриджа

Нам надо выбрать P,Q для заданного числа, чтобы построить на них последовательность Лукаса и найти $U_{\sigma(n)}$. Для начала, D - не должен быть квадратом по модулю n. В таком случае $(\frac{D}{n}=1)$, $U_k=\frac{Q^{n-1}-1}{Q-1}$, тест сводится к простому тесту на простоту. Для предотвращения этого принято брать такое D, что $(\frac{D}{n})=-1$. Метод Джона Селфриджа заключается в фиксации значения P=1, и переборе возможных значений D=5, -7, 9, -11, 13, ..., пока не найдется $D:(\frac{D}{n})=-1$. После этого вычислим $Q=\frac{1-D}{4}$.

Отсюда вытекает, что n не должен быть целым квадратом, иначе $(\frac{D}{n}) > -1$ будет выполняться для всех D и подбор параметров станет бесконечным.

3.2 Алгоритм

- 1. Проверить делимость на 2;
- 2. Проверить на полный квадрат целого числа;
- 3. Опиционально. Проверить, что число делится на небольшие простые (скажем, меньше 1000);
- 4. Проверить число на spsp(2);
- 5. Выбрать P, Q, D с помощью метода Джона Селфриджа;
- 6. Проверить на slpsp(P,Q);
- 7. Проверить выполнение дополнительных условий.

4 Реализация

Все алгоритмы реализованы на языке Python с модулем gmpy2.

4.1 Основные алгоритмы

Листинг 1: Нахождение U_n, U_{n+1} по модулю с параметрами

```
def lucas_U_{seq}(P, Q, mod, n):
      f_{\text{even}} = \text{lambda} \ \text{Uk}, \ \text{Uk1}: \ ((2*\text{Uk}*\text{Uk1} - P*\text{Uk}**2) \% \ \text{mod}, \ (\text{Uk1}**2 - Q*\text{Uk}**2) \% \ \text{mod})
2
      f\_odd = \textbf{lambda} \ Uk, \ Uk1 \colon \ ((Uk1**2 \ - \ Q*Uk**2) \ \% \ mod, \ (P*Uk1**2 \ - \ 2*Q*Uk*Uk1) \ \% \ mod)
 3
      f cond = lambda Uk, Uk1, bit: (f odd(Uk, Uk1)) if bit & 1 else (f even(Uk, Uk1))
 4
      accumulator = (0, 1)
6
      U = list()
 7
      U. append (accumulator)
      for i in binary(n):
9
         accumulator = f cond(accumulator[0], accumulator[1], i)
10
         U. append (accumulator)
11
      return U
                                       Листинг 2: Нахождение V_n по U_n, U_{n+1}
    def lucas Vn(P, Q, Un, Un1, mod):
      return ((-P)*Un + 2*Un+1) \% \mod
                                           Листинг 3: Проверка на spsp(2)
    \mathbf{def} \operatorname{spsp2}(n) \longrightarrow \mathbf{bool}:
 2
      d = n - 1
 3
      s = 0
      while d \% 2 == 0:
 4
         d //= 2
5
 6
         s += 1
 7
      pow d = gmpy2.powmod(2, d, n)
       if pow d == 1:
8
         return True
9
      for r in range(s):
10
11
         if pow d * gmpy2.powmod(2, gmpy2.powmod(2, r, n), n) % n == 1:
12
            return True
13
14
      return False
```

Листинг 4: Нахождение параметров методом Джона Селфриджа

```
def guess params(n):
1
     \# select the first D= {5, 7, 9, 11, 13, 15, ...} such that (D/n)==-1
2
     \# note that if D is square then (D/n) == 1
3
4
     if squareness(n):
       raise ValueError("{}_is_square".format(n))
5
6
7
     P = 1
     D = 5
8
     sign = -1
9
     while jacobi(D, n) != -1 \text{ or } (1 - D) // 4 == -1 \text{ or } (1 - D) // 4 == 1:
10
       D = -D + sign * 2
11
12
       sign *= -1
13
     Q = (1 - D) // 4
14
15
16
     return (P, Q, D)
```

Листинг 5: Основной код алгоритма

```
def lucas pseudoprime test(n) -> bool:
    # step 1: check for divisibility of some primes
2
3
    if n = 1:
```

```
return True
4
       if first primes check:
5
6
         for prime in primes:
7
            if n \% prime == 0 and n != prime:
8
              print("{}_divides_by_{{}}".format(n, prime))
9
              return False
10
       \# step 2: spsp(2) test
11
12
       if spsp2(n):
         print("{}_is_spsp(2)".format(n))
13
         return False
14
15
       \# step 3: get params using John Selfridge method, it includes squareness check
16
17
       # we guarantee that (D/n) = -1 and Q != \{1, -1\}
18
       P, Q, D = guess\_params(n)
19
       U_list = lucas_U_seq(P, Q, n, n + 1)
       \# get Un+1 and Un+2
20
      \begin{array}{l} {
m Un1} = {
m U\_list} \, [-1][0] \\ {
m Un2} = {
m U\_list} \, [-1][1] \end{array}
21
22
       if Un1 \stackrel{-}{!}= 0:
23
         return False
24
25
       \# step 4: slpsp(P, Q)
26
27
      d = n + 1
28
       s = 0
       while d \% 2 == 0:
29
30
         \mathrm{d}\ //{=}\ 2
31
         s \ +\!= \ 1
32
       r = 1
33
       gcdd = GCD(U list[-s][0], n)
34
       if 1 < gcdd < n:
35
         \mathbf{print}("GCD(Ue, \_n) \_ <= \_1 \_ or \_GCD(Ue, \_n) \_ >= \_n")
         return False
36
37
       while r \le s:
         {\rm Ud} 2{\rm r}1 \, = \, {\rm U\_list}[-{\rm r}\,]\,[\,0\,]
38
39
         Ud2r2 = U_list[-r][1]
40
         Vd2e1 = lucas Vn(P, Q, Ud2r1, Ud2r2, n)
41
         if 1 < GCD(Vd2e1, n) < n:
42
            print ( "GCD( Vd2e1 , _n ) _<=_1 or _GCD( Vd2e1 , _n ) _>=_n " )
            return False
43
         r += 1
44
45
46
47
       \# step 5: check additional condition
48
       g2qd = GCD(n, 2*Q*D)
49
50
       \mathbf{if} 1 < \mathbf{g2qd} <= \mathbf{n}:
         return False
51
52
       \# get Vn+1
53
54
       Vn1 = lucas_Vn(P, Q, Un1, Un2, n)
       if Vn1 = \overline{2}*Q:
55
56
         return False
57
       # there n may be prime or slpsp
58
59
```

4.2 Вспомогательные алгоритмы

60

return True

Листинг 6: Проверка на полный квадрат

```
def squareness(n) -> bool:
     return gmpy2.is square(n)
                                            Листинг 7: Находжение НОК
   \mathbf{def} \ \mathrm{GCD}(\mathbf{x}, \ \mathbf{y}) \implies \mathbf{int}:
1
       return gmpy2.gcd(x, y)
                                        Листинг 8: Бинарное разложение n
   def binary(n):
1
2
     binary = []
3
      while (n > 0):
        binary.append(n%2)
        n / = 2
5
     return binary [::-1]
```

Листинг 9: Символ Якоби

```
\mathbf{def} jacobi(a, n) \rightarrow \mathbf{int}:
2
         if n \ll 0:
             raise ValueError("'n', must_be_a_positive_integer.")
3
 4
             raise ValueError("'n'_must_be_odd.")
 5
 6
        a %= n
 7
         result = 1
         while a != 0:
             while a \% 2 == 0:
9
10
                  a /= 2
11
                  n \mod 8 = n \% 8
                  if n mod 8 in (3, 5):
12
13
                       result = -result
14
             a\,,\ n\,=\,n\,,\ a
15
             if a \% 4 == 3 and n \% 4 == 3:
16
                  result = -result
17
             a %= n
18
         if n == 1:
19
             return result
20
         else:
21
             return 0
```

5 Тесты

Для тестирования было использовано несколько выборок с различными числами: числа Лукаса для некоторых параметров, числа Кармайкла, псевдопростые числа Эйлера, числа Каталана и выборки простых и составных чисел разной величины. Для выборок были построены таблицы с временем выполнения и для некоторых графики.

6 Источники

- 1. Robert Baillie; Samuel S. Wagstaff, Jr. (October 1980). "Lucas Pseudoprimes". Mathematics of Computation;
- 2. David Bressoud; Stan Wagon (2000). A Course in Computational Number Theory. New York: Key College Publishing in cooperation with Springer;

Рис. 1: Время работы на 100 000 простых чисел. Время в секундах

- $3.\ https://math.stackexchange.com/questions/1951853/bpsw-primality-test-selection-of-d-q-parameters;$
- 4. https://en.wikipedia.org/wiki/Lucas_pseudoprime.

	numbers	time						
0	3	1307.249069						
1	5	2386.093140	21	647	35.285950	41	3889	61.035156
2	7	84.161758	22	743	30.040741	42	4423	52.690506
3	17	72.479248	23	839	29.563904	43	4759	32.424927
4	31	46.491623	24	941	54.597855	44	5507	62.942505
5	37	54.359436	25	1013	62.227249	45	5783	56.028366
6	43	56.743622	26	1069	52.213669	46	6133	75.340271
7	53	52.928925	27	1123	52.690506	47	6761	55.551529
8	59	50.306320	28	1231	39.339066	48	7001	67.949295
9	61	36.001205	29	1399	30.755997	49	7757	71.763992
10	67	46.253204	30	1483	64.611435	50	7901	56.266785
11	71	57.697296	31	1559	38.623810	51	8527	56.743622
12	89	36.478043	32	1607	31.948090	52	9007	32.663345
13	97	50.783157	33	1693	55.313110	53	9901	66.280365
14	109	45.299530	34	1733	56.266785	54	9949	80.823898
15	157	40.769577	35	1801	43.630600			
16	223	39.339066	36	1867	55.074692			
17	293	51.021576	37	2029	51.498413			
18	383	35.285950	38	2281	52.213669			
19	463	31.232834	39	2539	52.928925			
20	569	61.988831	40	3499	51.975250			

Рис. 2: Числа Простые и время их обработки (мкс)

Рис. 3: Номера чисел Простых (см. таблицу выше) и время их обработки (сек)

	numbers	time
0	561	231.027603
1	41041	148.296356
2	825265	164.031982
3	321197185	234.603882
4	5394826801	213.623047
5	232250619601	267.267227
6	9746347772161	270.605087
7	1436697831295441	396.728516
8	60977817398996785	345.706940
9	7156857700403137441	475.168228
10	1791562810662585767521	502.824783
11	87674969936234821377601	494.718552
12	6553130926752006031481761	695.705414
13	1590231231043178376951698401	591.993332
14	35237869211718889547310642241	555.038452

Рис. 4: Числа Кармайкла и время их обработки (мкс)

Рис. 5: Номера чисел Кармайкла (см. таблицу выше) и время их обработки (сек)

	numbers	time
0	561	82.969666
1	1105	35.047531
2	1729	39.100647
3	1905	35.762787
4	2047	73.194504
5	2465	57.935715
6	3277	60.796738
7	4033	72.479248
8	4681	39.815903
9	6601	66.757202
10	8321	42.438507
11	8481	41.007996
12	10585	50.306320

Рис. 6: Числа Эйлера и время их обработки (мкс)

Рис. 7: Номера чисел Эйлера (см. таблицу выше) и время их обработки (сек)

	numbers	time
0	1	3.814697
1	7	2205.133438
2	16	45.061111
3	43	78.678131
4	105	62.465668
5	255	82.254410
6	646	15.020370
7	1547	61.511993
8	3605	64.373016
9	8241	54.836273
10	19279	50.067902
11	44706	6.437302
12	105212	3.576279
13	246683	55.789948

Рис. 8: Числа Майка и время их обработки (мкс)

Рис. 9: Номера чисел Майка (см. таблицу выше) и время их обработки (сек)