GEOBALISEEF-ATTENTION GRAPH CONVOIGUICN NETWORKS

CS 535

Chen Wang, Chengyuan Deng

Advisor: : Sungjin Ahn

OUTLINES

- Introduction
- Background & Related Work
- Method
- Experiments
- References

INTRODUCTION

> Topic

Leverage Global Information in selfattention Graph convolution networks

INTRODUCTION

➤ Motivation

SA-GAN(self-attention GAN)(Han Zhang et all, 2018) proposed a novel global self-attention mechanism into convolutional GANs.

The self-attention layer takes features globally from previous layer as input, and calculate attention accordingly.

BACKGROUND

- Graph Convolution Networks
- GCNs introduce a scalable approach based on approximation of spectral convolutions on graphs.
- Learn a function of features on Graph (V, E) with following inputs:
 - Feature descriptions of each node
 - Representation of graph structure (e.g. adjacency matrix)

BACKGROUND

- Graph Convolution Networks
- The network layers are connected by convolutional projection of input graph with adjacency matrix A
- The output of each layer could be regarded as a non-linear function of previous layer output and adjacency matrix

BACKGROUND

Graph Convolution Networks

https://tkipf.github.io/graph-convolutional-networks/

RELATED WORK

> Self-attention in SA-GAN

Each element in image vector has attention score at corresponding position in attention vector

The final output of self-attention layer adds back the input feature map

METHOD

- Formalization of the idea:
 - GCN layers:
 The output of each layer is:

$$egin{split} H^{(l+1)} &= f(H^{(l)},A) \ &= \sigma \left(\hat{D}^{-rac{1}{2}} \hat{A} \hat{D}^{-rac{1}{2}} H^{(l)} W^{(l)}
ight) \end{split}$$

where D serves as normalization of A and W as the weight matrix

$$D = exttt{diag}\left(\sum_{j=1}^N \hat{A}_j
ight)$$

METHOD

- Formalization of the idea:
 - self-attention layers:

The attention score is calculated by:

$$\beta_{j,i} = \mathbf{softmax}(s_{i,j}), \text{ where } s_{i,j} = (W_{1,i}X_i)^{\mathrm{T}}(W_{2,j}X_j)$$

The output of self-attention layer is:

$$o_j = W(\sum_{i=1}^N \beta_{j,i} W_h X_i)$$

The final output:

$$y_i = \gamma o_i + x_i$$

METHOD

- Semi-supervised Node Classification
 - Forward model takes the simple form:

$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$$

where $W^{(0)} \in \mathbb{R}^{C \times H}$ is input-to-hidden weight and $W^{(1)} \in \mathbb{R}^{H \times F}$ is hidden-to-output weight

Evaluate Cross-entropy Error:

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

where y_L is the set of node indices that have labels.

EXPERIMENTS

Experiments on two tasks:

- Semi-supervised Node Classification
- Supervised Graph Classification

Graph Network Setup:

- Graph Convolutional Network following the framework of (Kipf & Welling, 2016)
- Performance with/without the Global Self-attention layer

EXPERIMENTS

High-level Summary:

 Global Self-Attention GCNs outperform plain GCNs on test data in general

- Global Self-Attention GCNs perform especially well when provided reliable node features
- Global Self-Attention GCNs are significantly better on generalization

EXPERIMENTS: Node Classification

Datasets:

- > Karate:
 - 34 nodes, no given feature
 - generate 2-d feature with a 3-layer GCN
- > ENZYMES:
 - 126 nodes, 18-dim given feature
- > Protein:
 - 620 nodes, 29-dim given feature

EXPERIMENTS: Node Classification

	Performance	Karate	ENZYMES	Protein
Plain GCN	Train Accuracy	0.7500	1.0	1.0
	Test Accuracy	0.1667	0.7903	0.4061
GSA GCN	Train Accuracy	1.0000	1.0	0.5
	Test Accuracy	0.2667	0.8145	0.7087

N.B.: They are simple datasets and plain GCN sometimes can do as good as GSA-GCN -- results are produced by setting the learning rate very small.

Datasets:

- > ENZYMES:
 - 600 126-node graphs
 - 18-dim given feature
- ➤ COIL-RAG:
 - 3900 11-node graphs
 - 29-dim given feature

N.B.: Padding with 0s to keep the number of dimensions same

	Performance	ENZYMES	COIL-RAG
Plain GCN	Train Accuracy	0.625	0.8281
	Test Accuracy	0.0156	0.7032
GSA GCN	Train Accuracy	0.1875	0.8283
	Test Accuracy	0.0938	0.8435

Train & Test Accuracy (GSA-GCN)

Graph Classification: Some Discussions

- GSA-GCN generalizes significantly better, especially for the hard-to-generalize cases
- For COIL-RAG dataset, GSA-GCN consistently has test accuracy not worse than train accuracy

 If we plot the curve we can see GSA-GCN prevents overfitting

REFERENCES

- Kipf, Thomas N., and Welling, Max. "Semi-supervised classification with graph convolutional networks." *arXiv* preprint arXiv:1609.02907 (2016).
- Zhang, Han, et al. "Self-attention generative adversarial networks." arXiv preprint arXiv:1805.08318 (2018).
- Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.
- Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." arXiv preprint arXiv:1901.00596 (2019).

