投稿類別:工程技術類

篇名: DIY-低週波電療器

作者:

王冠淮。國立彰化師大附工附設進修學校。電機科三年忠班 楊凱米。國立彰化師大附工附設進修學校。電機科三年忠班 陳俊維。國立彰化師大附工附設進修學校。電機科三年忠班

> 指導老師: 鄭旺泉 老師 陳怡誠 老師

壹●前言

一、研究動機

因爲一場工安意外事件,導致直屬學長的手臂神經受傷,必須每星期去做低 週波電療復健,雖然在現代生活中,低週波電療醫療設備已經逐漸普及化,不過 一台小型的低週波電療器價格卻不便宜,且設計上對人體會產生電解效應的缺點,因此嘗試以『容易取得』和『價格便宜』的零件,並改善電解效應的電路設計一台小型低週波電療器。

二、實作流程

- (一)材料及設備
- (二)原理
- (三)理論數據
- (四)實作測試
- (五)對照理論數據與實際量測

貳●正文

一、材料及設備

(一)實驗設備

編號	名稱	單位	數量	備註
1	示波器	台	1	含引線
2	積體電路燒錄器	台	1	
3	電源供應器	台	1	含引線
4	麵包板	個	1	
5	剝線鉗	支	1	電子用
6	尖嘴鉗	支	1	電子用
7	斜口鉗	支	1	電子用

(二)實驗材料

編號	名稱	單位	數量	備註		
1	微電腦單晶片	個	1	AT89C2051		
2	按鍵開關	個	3			
3	電阻形電感	個	1	1mH		
4	NPN 電晶體	個	3	2N5551		
5	PNP 電晶體	個	2	2N5401		
6	二極體	個	3	1N4148		
7	電解質電容	個	1	10uF		
8	電解質電容	個	1	100uF		
9	陶瓷電容	個	2	20pF		
10	陶瓷電容	個	1	0.1uF		
11	石英晶體	個	1	12MHz		
12	高壓電容	個	1	250V — 0.1uF		
13	電阻器	個	1	$1/4W-220\Omega$		
14	電阻器	個	2	$1/4W-470\Omega$		
15	電阻器	個	1	$1/4W-1k\Omega$		
16	電阻器	個	1	$1/4W-2.2k\Omega$		
17	電阻器	個	5	$1/4W-10k\Omega$		

二、原理

(一)電療

人體會產生一種電流,稱爲生物電流,來使人體細胞維持正常工作,當人體有受傷、疾病、勞累,電流就會產生異變,使細胞受損。所以我們將產生一個與人體細胞,相接近的生物電流,對細胞起著針對性的刺激作用,治療肌肉性等疾病。

(二)製作概要

利用電感特性,儲存電流,再將其電流導入人體穴道進而刺激穴道,而電壓大小的調整由充電的次數來控制,並由外接按鍵選擇強度。波形週期的各種模式透過程式設計由外接按鍵控制。此外一般市售的電療儀有「低頻電極下容易產生電解作用,容易引起組織的灼傷,患者比較不能做長期、高劑量之治療。」的缺點(高里企業有限公司產品資料),因此在電路設計中,特別針對此一缺點做了改善,將電流方向不斷換向,免除電解作用。

(三)產生高壓

我們以電感來產生高壓,當U1輸出 High,Q1電晶體導通,電感便開始儲存 電能,等到U1輸出LOW,Q1電晶體開 路,電流無法往下流,此時 D1二極體 因順向而導通,電感電流向電容充電, 得到所需要之高壓。利用電感電流導通 時間即可控制在電感上之電流大小。其 公式如下:

「電感儲能公式: $I(t) = \frac{E}{R}(1 - e^{\frac{-t}{L/R}})$ 」

(李文源、盧正川、旗立理工研究室,2006)

利用電感儲能公式及電容儲能公式,可以求出所產生的高壓值爲何,其轉換公式如下:

「電能轉移公式: $\frac{1}{2} \times C \times V^2 = \frac{1}{2} \times L \times I^2$ 」(李文源、盧正川、旗立理工研究室,2006)

不過以市售之電感器儲能,電感之繞線電阻將形成最大電流的限制,因 而阻礙電容充電最高電壓,所以我們採用堆疊充電的方式如圖(2),分多次小 電流充電的方式將電感上的電能轉移到電容上,使電容上的電壓不斷升高, 電容上的電壓如圖(2)所示,堆疊至足夠電壓以後,再導入人體穴道。

(四)克服電解作用

爲了改進高里企業有限公司產品說明文件裏「**低頻電極下容易產生電解** 作用,容易引起組織的灼傷,患者比較不能做長期、高劑量之治療」的缺點, 我們設計如圖(3)的電壓換向控制電路。

圖(3)中,在AB端利用單晶片程式來控制,A與B同一時間只有一方導通,經由此方法來控制電流流向,並且得到輸出波形如圖(4)所示。

三、理論數據

下表是以『歐姆定律公式』、『電感儲能公式』和『電能轉移公式』、計算出電容上堆疊的電壓。

表格(一)電壓大小計算數據(充電電壓 V=4.5V)							
電感値(L)	電感內阻 (RL)	電容値(C)	脈衝時間 τ	L/R 時間常 數	最大電流 (Imax)		
1mH	14Ω	0.1uF	40us	71.429uS	321.43mA		
堆疊次數	τ 時後電 感的電流	電容最高 峰値電壓	堆疊次數	τ 時後電 感的電流	電容最高峰 値電壓		
1次	0.13783 A	14 V	26次	0.13783 A	70 V		
2次	0.13783 A	19 V	27 次	0.13783 A	72 V		
3次	0.13783 A	24 V	28 次	0.13783 A	73 V		
4次	0.13783 A	28 V	29 次	0.13783 A	74 V		
5次	0.13783 A	31 V	30次	0.13783 A	75 V		
6次	0.13783 A	34 V	31 次	0.13783 A	77 V		
7次	0.13783 A	36 V	32次	0.13783 A	78 V		
8次	0.13783 A	39 V	33 次	0.13783 A	79 V		
9次	0.13783 A	41 V	34 次	0.13783 A	80 V		
10次	0.13783 A	44 V	35 次	0.13783 A	82 V		
11 次	0.13783 A	46 V	36次	0.13783 A	83 V		
12次	0.13783 A	48 V	37次	0.13783 A	84 V		
13 次	0.13783 A	50 V	38次	0.13783 A	85 V		
14 次	0.13783 A	52 V	39次	0.13783 A	86 V		
15 次	0.13783 A	53 V	40次	0.13783 A	87 V		
16次	0.13783 A	55 V	41 次	0.13783 A	88 V		
17次	0.13783 A	57 V	42 次	0.13783 A	89 V		
18次	0.13783 A	58 V	43 次	0.13783 A	90 V		
19次	0.13783 A	60 V	44 次	0.13783 A	91 V		
20次	0.13783 A	62 V	45 次	0.13783 A	92 V		
21 次	0.13783 A	63 V	46 次	0.13783 A	93 V		
22次	0.13783 A	65 V	47 次	0.13783 A	94 V		
23 次	0.13783 A	66 V	48 次	0.13783 A	95 V		
24 次	0.13783 A	68 V	49 次	0.13783 A	96 V		
25 次	0.13783 A	69 V	50次	0.13783 A	97 V		

四、實作測試

在第一次抉擇電感,一開始分別使用工形電感和電阻形電感來量測阻抗,可得知工形電感的品質因素較好(品質因素:電感值越高,內阻值越小),越接近理想的電阻,因爲工形電感得訂製,不容易取得,且即使工形電感阻抗較小,但要一次就充足夠的電壓必需在電感上產生較大的電流,所以必須使用功率型電晶體才行,如此不僅效率不高,成本也將提昇,所以我們還是決定以電阻形電感來完成,並以多次小電流堆疊充電的方式來得到足夠的電壓。

表格(二)品質因素					
電感値	電感內阻				
100mH	0.1				
(工形電感)	84				
50mH	150				
(電阻形電感)	150				
10mH	42				
(電阻形電感)	42				
1mH	14				
(電阻形電感)	14				

```
單晶片堆疊程式
void pulse()
   unsigned char pulse count, delay n 12us;
   for(pulse_count=0;pulse_count<rstrength[strength];pulse_count++)</pre>
      delay_n_12us=0;
      pulse out=1;
                              //輸出送出Hi延遲40us
      while (delay_n_12us<12)
          delay_n_12us++;
      delay_n_12us=0;
      pulse_out=0;
                              //輸出送出Lo延遲40us
      while (delay_n_12us<10)
          delay_n_12us++;
//將所得到的高壓輸出至正確的換相電晶體
   if(phase_control==0)
      phase0=1;
      //延遲一段時間後,將換電晶體關掉,因爲此時delay_n_12us=100,所以約爲220uS
      delay_n_12us=100;
      while (delay_n_12us>0)
          delay_n_12us--;
      phase0=0;
      phase_control=1; //改變換相值,以利下次正確換相
   else
      phasel=1;
      //延遲一段時間後,將換電晶體關掉,因爲此時delay_n_12us=100,所以約爲220uS
      delay_n_12us=100;
      while(delay_n_12us>0)
          delay_n_12us--;
      phasel=0;
      phase_control=0; //改變換相值,以利下次正確換相
   }
```

DIY-低週波電療器

我們依市售常見的模式決定5種輸出模式的波形,其示意圖如下。

DIY-低週波電療器

在實際實驗中,我們因爲有電流換向電路,所以產生的不是單一方向的電流,而是電流方向每次更替的換向電流,與市售產品輸出波形比較如下。

圖(5)市面上的電療器波形(未換向) 資料來源:高里企業有限公司產品資料

圖(6)自製的電療器波形(有換向)

五、對照理論數據與實際量測

表格(三)理論數據比照實際量測								
堆疊	理論	實際量測	堆疊	理論	實際量測	堆疊	理論	實際量測
次數	値	值(V)	次數	値	值(V)	次數	値	值(V)
1	14	14.4	18	58	50	35	82	64.5
2	19	19	19	60	51	36	83	65
3	24	23	20	62	52	37	84	66
4	28	26	21	63	53	38	85	66.5
5	31	28.5	22	65	54	39	86	67
6	34	31	23	66	55	40	87	67.5
7	36	33	24	68	56	41	88	68
8	39	35	25	69	57	42	89	69
9	41	37	26	70	58	43	90	69.5
10	44	38.5	27	72	59	44	91	70
11	46	40	28	73	60	45	92	70.5
12	48	42	29	74	60.5	46	93	71
13	50	43.5	30	75	61	47	94	72
14	52	45	31	77	62	48	95	72.5
15	53	46	32	78	62.5	49	96	73
16	55	47	33	79	63	50	97	73.5
17	57	48.5	34	80	63.5			

參●結論

- 一、電解作用:以本電路所使用的方法成功地製做出電流換向方式的低週波電療器,可以改善市售電療器單一電流方向對人體產生電解效應的缺點。
- 二、理論數據與實際數據:在對照實際值與計算值後,發現到計算值與實際值剛開始誤差不大,在堆疊次數提高,誤差值也跟著變大,到50次時差值高達23.5 伏特,所以我們推論應該是在電感上的內阻與二極體上消耗掉。
- 三、單晶片:單晶片是個好用的零件,如果不使用單晶片的話,不知道要多大的 電路,才能完成這些動作,而且要增加模式和增加強度,只需要更改程式就 可以了,方便性與『價格便宜』,都達到了我們想要的成果。

肆●引註資料

- 一、李文源、盧正川、旗立理工研究室編著(2006)。基本電學I。台北市: 旗立資 訊股份有限公司
- 二、李文源、盧正川、旗立理工研究室編著(2006)。基本電學II。台北市: 旗立 資訊股份有限公司
- 三、高里企業有限公司產品資料。2010年11月3日,取自 http://www.supermt.com.tw/store image/TENS/tens application.pdf