Alimentos Autotransportados

Los científicos de un país lejano han descubierto una forma de distribuir alimentos a través de un conducto de grosor similar al de un cable. Para llevarse a cabo, se requiere de una infraestructura especial que por su elevado costo sólo está disponible en M ciudades de ese país. Los habitantes de estas M ciudades ya cuentan con el gran beneficio de recibir alimentos a través de esta red de conductos.

Debido al gran éxito de esta tecnología, una empresa decide distribuir el servicio por todo el país, es por ello que decide contratar a 2 expertos en el diseño de todo tipo de redes con el objetivo de minimizar la cantidad de conducto necesario para que las N ciudades del país cuenten con los nuevos alimentos autotransportados, de forma que todas ellas estén conectadas a alguna de las M ciudades que cuentan con la infraestructura especial.

Se les solicita que informen la cantidad mínima C de conducto necesario (expresado en kilómetros) para que las N ciudades cuenten con este nuevo servicio.

Entrada:

La primera línea contiene 3 enteros: N (número total de ciudades), M (número de ciudades con infraestructura especial) y K (número de rutas entre ciudades) $(1 \le M \le N \le 100)$.

Después N líneas con los nombres de cada una de las ciudades con longitud máxima L ($1 \le L \le 12$) las cuales son una única palabra alfanumérica con caracteres entre [0-9] y [a-z] (en minúsculas y sin tildes ni "ñ").

Luego una línea con M enteros separados por espacios, indicando los índices de las ciudades que poseen planta de extracción con valores entre 1 y N.

Finalmente, K líneas, cada una con 2 ciudades y un entero que representa la distancia en kilómetros entre ellas con el siguiente formato: ciudad1 ciudad2 distancia.

Salida:

Una línea con el valor C, cantidad mínima de conducto necesario.

Ejemplo:

IN	OUT
5 2 6	5
alpha	
beta	
gamma	
delta	
epsilon	
3 5	
alpha beta 3	
beta gamma 1	
beta delta 2	
gamma delta 3	
delta epsilon 1	
alpha epsilon 6	