OOI - Zadaća 3

Student: Daris Mujkić 19413

Zadatak: Farma planira posaditi <u>pšenicu</u>, <u>ječam</u> i <u>raž</u> na svojoj zemlji. Prodajna cijena pšenice je <u>502 KM</u> po hektaru, cijena ječma je <u>503 KM</u> po hektaru, a cijena raža je <u>501 KM</u> po hektaru. Za proizvodnju jednog hektara pčenice potrebno je <u>2004 kg đubriva</u>, za proizvodnju jednog hektara ječma potrebno je <u>2008 kg đubriva</u>, a za proizvodnju jednog hektara raža potrebno je <u>2006 kg đubriva</u>. Farma raspolaže sa <u>ukupno 49 tona đubriva</u>. Farma ima <u>ukupno 52.55 hektara zemljišta</u>, a želi maksimizirati svoju zaradu.

Potrebno je odrediti koliko hektara pšenice, ječma i raža treba posaditi kako bi se postigla maksimalna zarada, uz poštivanje ograničenja zemljišta i resursa.

- a. Riješite postavljeni problem uz pomoć simpleks metoda. Sve podatke koji se ne mogu tačno izraziti kao cijeli brojevi ili decimalni brojevi sa konačno mnogo i relativno malo decimala vodite u simpleks tabelama kao razlomke. Obavezno prodiskutirajte ne samo koliko treba hektara žitarica proizvesti, nego i koliko iznose "rezerve", odnosno koliko još zaliha đubriva ostaje na raspolaganju i da li je iskorišten sav zemljišni prostor. Također istaknite koja su ograničenja "uska grla" koja sprečavaju da se postigne veća zarada farme od dobijene optimalne vrijednosti. Problem riješite na dva načina: koristeći Dantzigovo pravilo pivotiranja, te koristeći pravilo maksimalnog prirasta funkcije cilja.
- Rješenje dobijeno pod a. provjerite uz pomoć odgovarajućih funkcija za rješavanje problema linearnog programiranja u Juliji (potrebno je navesti šta su bili ulazni podaci i šta je dobijeno kao izlaz).

Izrada:

arg max
$$Z(x) = 502x_1 + 503x_2 + 501x_3$$

p.o.

$$2004x_1 + 2008x_2 + 2006x_3 \le 49000$$

$$x_1 + x_2 + x_3 \le 52.55$$

$$x_1, x_2, x_3 \ge 0$$

Uvedimo dopunska ograničenja:

arg max
$$Z(x) = 502x_1 + 503x_2 + 501x_3$$

p.o.

$$2004x_1 + 2008x_2 + 2006x_3 + x_4 = 49000$$

$$x_1 + x_2 + x_3 + x_5 = 52.55$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Konstruišimo simpleks tabelu:

В	bi	X 1	X 2	X 3	X 4	X 5	t _{max}
X 4	49000	2004	2008	2006	1	0	6125
							251
X 5	1051	1	1	1	0	1	1051
	20						20
	0	502	503	501	0	0	

Za ulazak u bazu biramo x₂ jer uz njega stoji najveći koeficijent. Iz baze će izaći x4 jer je tu t_{max} najmanji.

В	bi	X 1	X 2	X 3	X 4	X 5	t _{max}
X 2	6125	501	1	1003	1	0	12250
	251	502		1004	2008		501
X 5	141301	1	0	1	1	1	141301
	5020	502		$\overline{1004}$	$-{2008}$		10
	3080875	1	0	1505	503	0	
	251	502		$-\frac{1004}{1004}$	$-{2008}$		

Za ulazak u bazu biramo x₁ jer uz njega stoji najveći koeficijent (jedini pozitivan). Iz baze će izaći x₂ jer je tu t_{max} najmanji.

В	bi	X 1	X 2	X 3	X 4	X 5
X 1	12250	1	502	1003	1	0
	501		501	1002	2004	
X 5	281551	0	1	1	1	1
	10020		$-{501}$	$-\frac{1002}{1002}$	$-{2004}$	
	6149500	0	1	752	251	0
	501		$-{501}$	$-{501}$	$-\frac{1002}{1002}$	

Algoritam terminira jer su svi koeficijenti u posljednjem redu <=0.
Rješenje:
$$\mathbf{X} = (\frac{12250}{501}, \, 0, \, 0, \, 0, \, \frac{281551}{10020})$$
 $Z = \frac{6149500}{501}$

Maksimizirani prirast funkcije:

В	bi	X 1	X 2	X 3	X 4	X 5	t _{max1}	t _{max2}	t _{max3}
X 4	49000	2004	2008	2006	1	0	12250	6125	24500
							501	251	1003
X 5	1051	1	1	1	0	1	1051	1051	1051
	20						20	20	20
	0	502	503	501	0	0			

Za svaki x1,x2 i x3 sada računamo c*tmax pri čemu je tmax=tmin{t1,t2}

Za x1 c=502, tmax = $12250/501 \rightarrow c*tmax = 6149500/501$

Za x2 c=503, tmax = $6125/251 \rightarrow c*tmax = 3080875/251$

Za x3 c=501, tmax = $24500/1003 \rightarrow c*tmax = 12274500/1003$

Najveći od ovih je prirast od x1, dakle on ulazi u bazu, a izlazi x4.

В	bi	X 1	X 2	X 3	X 4	X 5
X 1	12250	1	502	1003	1	0
	501		501	1002	2004	
X 5	281551	0	1	1	1	1
	10020		$-{501}$	$-\frac{1002}{1002}$	$-{2004}$	
	6149500	0	1	752	251	0
	501		$-{501}$	$-{501}$	$-\frac{1002}{1002}$	

Vidimo da algoritam terminira nakon prve iteracije jer jer su svi koeficijenti u posljednjem redu <=0.

Rješenje:
$$X = (\frac{12250}{501}, 0, 0, 0, \frac{281551}{10020})$$
 $Z = \frac{6149500}{501}$

```
model=Model(HiGHS.Optimizer)
188
189
      @variable(model,x1>=0)
      @variable(model,x2>=0)
190
      @variable(model,x3>=0)
191
      @objective(model, Max, 502x1+503x2+501x3)
192
      @constraint(model,c1,x1+x2+x3<=52.55)
193
      @constraint(model,c2,2004x1+2008x2+2006x3<=49000)
194
      print(model)
195
196
197
      optimize!(model)
      termination status(model)
198
      primal status(model)
199
      println("Rjesenje je ",objective value(model))
200
      println("x1 = ",value(x1))
      println("x2 = ",value(x2))
202
      println("x3 = ",value(x3))
      println("x4= ",52.55-value(c1))
204
      205
PROBLEMS
         OUTPUT
                 DEBUG CONSOLE
                                TERMINAL
                                         PORTS
                                                COMMENTS
Objective value : 1.2274451098e+04
HiGHS run time
                            0.04
Rjesenje je 12274.45109780439
x1 = 24.451097804391217
x2 = 0.0
x3 = 0.0
x4= 28.09890219560878
x5 = 0.0
```

(Na slici su zamijenjeni x4 i x5 zbog drugog redoslijeda za constrainte.)