MACS205: Méthode de Monte-Carlo

1 Introduction

Soit (S, S, μ) un espace mesuré où μ est une mesure positive. Soit $\varphi \colon S \to \mathbf{R}$ une fonction intégrable. On cherche à approcher $I(\varphi) = \int \varphi \, d\mu = \mathbf{E}_{\mu}(\varphi)$. Deux cas de figure :

- φ est une fonction continue avec une expression analytique et on arrive à calculer son intégrale,
- l'intégrale de φ est incalculable.

Les méthodes de type Monte-Carlo considérées sont de la forme suivante :

- 1. tirer aléatoirement des points $X_1,...,X_n$ sur S,
- 2. calculer $\varphi(X_1), \ldots, \varphi(X_n)$,
- 3. trouver une transformation de $(X_1, \varphi(X_1)), \dots, (X_n, \varphi(X_n))$ qui approche $I(\varphi)$.

2 La méthode de Monte-Carlo

Algorithme 1: Monte-Carlo

Générer $X_1,...,X_n$ de façon indépendante sous μ ;

Calculer $\varphi(X_1), \ldots, \varphi(X_n)$;

Sorties: $\hat{I}_n(\varphi) = \hat{I}_n^{(mc)}(\varphi) = \frac{1}{n} \sum_i \varphi(X_i)$

Prop. Si $\int |\varphi| d\mu < \infty$, $\hat{I}_n(\varphi)$ est non-biaisée et fortement consistante. Si de plus $\int |\varphi|^2 d\mu < \infty$ alors $Var(\hat{I}_n(\varphi)) = \frac{1}{n} Var(\varphi(X_1)) = \frac{1}{n} \sigma^2$ et $\sqrt{n} (\hat{I}_n(\varphi) - I(\varphi)) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2)$.

Estimation de l'erreur

On estime σ^2 par $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n \left(\varphi(X_i) - \hat{I}_n(\varphi) \right)^2$.

Prop. Si $\int |\varphi|^2 d\mu < \infty$ alors $\hat{\sigma}^2$ est sans biais et fortement consistant et $\frac{\sqrt{n}}{\hat{\sigma}} (\hat{I}_n(\varphi) - I(\varphi)) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$.

Intervalle de confiance : $\mathbf{P}(I(\varphi) \in \hat{C}(\alpha)) \stackrel{n \to \infty}{\longrightarrow} 1 - \alpha \text{ avec } \forall \alpha \in]0; 1[, \hat{C}(\alpha) = \left[\hat{I}_n(\varphi) - \frac{\hat{\sigma}^2}{\sqrt{n}}\Phi^-\left(1 - \frac{\alpha}{2}\right), \hat{I}_n(\varphi) - \frac{\hat{\sigma}^2}{\sqrt{n}}\Phi^-\left(\frac{\alpha}{2}\right)\right].$

Inégalités de concentrations

Th (Inégalité de Hoeffding). Soit $X_1, ..., X_n$ i.i.d telles que $\forall i \in [[1;n]], a \leq X_i \leq b$ p.s. Alors

$$\mathbf{P}\left(\left|\sum_{i=1}^{n} (X_i - \mathbf{E}(X_i))\right| > \varepsilon\right) \leqslant 2 \cdot \exp\left(-\frac{2\varepsilon^2}{n(b-a)^2}\right).$$

Déterministe vs aléatoire en "grande" dimension

Méthode déterministe des sommes de Riemann : soit $\varphi : [0;1]^d \longrightarrow \mathbf{R}$, on se donne n^d points équidistants $x_\alpha = \left(\frac{i_1}{n}, \dots, \frac{i_d}{n}\right)$ où $(i_1, \dots, i_d) \in [[1;n]]^d$. On calcule $I_n^{(rs)}(\varphi) = \frac{1}{n^d} \sum \varphi(x_\alpha)$.

Prop. Si $\varphi : [0;1]^d \longrightarrow \mathbf{R}$ est *L*-lipschitzienne alors $\left|I_n^{(rs)}(\varphi) - I(\varphi)\right| \leqslant L\frac{\sqrt{d}}{n}$.

Avec Monte-Carlo la méthode de même ordre se fait avec évaluation en n^d v.a tirées selon $\mathcal{U}([0;1]^d)$ et l'on a $\operatorname{Var}(\hat{I}_{n^d}(\varphi)) = \frac{1}{n^d}\sigma^2$ et $\operatorname{E}\left[\left|\hat{I}_{n^d}(\varphi) - I(\varphi)\right|\right] \leqslant \frac{\sigma}{n^{d/2}}$.

Méthode des variables antithétiques

Soit $Z \sim \mu$ v.a telle que $\mathbf{E}[\varphi(Z)^2] < \infty$ et $\{Z_k, k \ge 0\}$ i.i.d selon μ . On a $\hat{I}_n^{(av)}(\varphi) = \frac{1}{2n} \sum_{i=1}^n (\varphi(Z_i) + \varphi(L(Z_i)))$.

Ex. $U_1, \ldots, U_n \sim \mathcal{U}([a;b])$ et L(u) := a+b-u, ou si $Z \sim \mathcal{N}(\mu,1)$ alors $2\mu - Z \sim \mathcal{N}(\mu,1)$.

Prop. Si $\mathbf{E}|\varphi(Z)|^2 < \infty$ alors :

- $\operatorname{Var}(\hat{I}_{2n}(\varphi)) \geqslant \operatorname{Var}(\hat{I}_n^{(av)}) \iff \operatorname{Cov}(\varphi(Z), \varphi(L(Z))) \leqslant 0$,
- si φ est réelle croissante et $\varphi \circ L$ décroissante (ou inversement) alors $\mathrm{Cov}(\varphi(Z), \varphi(L(Z))) \leqslant 0$.

Lem. Soit Z une v.a réelle, $g: \mathbb{R} \to \mathbb{R}$ croissante avec $\mathbb{E}[g(Z)^2] < \infty$ et $\tilde{g}: \mathbb{R} \to \mathbb{R}$ décroissante avec $\mathbb{E}[\tilde{g}(Z)^2] < \infty$. Alors $Cov(g(Z), \tilde{g}(Z)) \leq 0$.

3 Méthode des variables de contrôle

Le contexte est comme Monte-Carlo avec une variable observée en plus : $((X_1, Z_1), ..., (X_n, Z_n))$ i.i.d dans $S \times \mathbf{R}$, $X_1 \sim \mu$ et $\mathbf{E}[Z_1]$ est connu. Soit $\varphi \colon S \to \mathbf{R}$ tel que $\mathbf{E}[\varphi(X_1)] < \infty$, on cherche $I_{\mu} = \mathbf{E}[\varphi(X_1)]$.

On peut se ramener à $\mathbf{E}Z_1 = 0$, et on pose $\hat{I}_n^{(cv)} = \frac{1}{n} \sum_{i=1}^n (\varphi(X_i) - Z_i)$.

Prop. Si $\mathbf{E}|\varphi(X_1)| < \infty$ et $\mathbf{E}|Z_1| < \infty$, $\hat{I}_n^{(cv)}$ est sans biais et fortement consistant. Si de plus $\mathbf{E}[|\varphi(X_1)|^2] < \infty$ et $\mathbf{E}[|Z_1|^2] < \infty$ alors :

- $\operatorname{Var}\left(\hat{I}_{n}^{(cv)}\right) = \frac{1}{n}\operatorname{Var}(\varphi(X_{1}) Z_{1})$ et $\hat{I}_{n}^{(cv)}$ est asymptotiquement normal avec variance $\sigma^{2} = \operatorname{Var}(\varphi(X_{1}) Z_{1})$, i.e $\sqrt{n}\left(\hat{I}_{n}^{(cv)} I\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^{2})$,
- un estimateur consistant de σ^2 est $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n \left((\varphi(X_i) Z_i) \hat{I}_n^{(cv)} \right)^2$.

Rem. Cela comprend Monte-Carlo : $Z_1 = 0$, et les variables antithétiques : $Z_1 = \frac{1}{2}(\varphi(X_1) - (\varphi \circ L)(X_1))$.

Rem. VC est plus performante que MC si $Var(\varphi(X_1) - Z_1) \leq Var(\varphi(X_1))$.

Pour prévenir d'une mauvaise variable de contrôle, on définit l'estimateur $\frac{1}{n}\sum_{i=1}^{n}(\varphi(X_i)-\beta Z_i)$, à utiliser si $\text{Var}(\varphi(X_1)-\beta Z_1) \leqslant \text{Var}(\varphi(X_1))$. C'est vérifié avec $\beta^* = \arg\min_{\beta} \text{Var}(\varphi(X_1)-\beta Y_1) = \mathbf{E}[\varphi(X_1)Z_1]/\mathbf{E}[Z_1^2]$.

Propriétés asymptotiques, cas $Z_1 \in \mathbf{R}^m$

On définit l'estimateur de $\mathbf{E}[\varphi(X_1)]$ par $\forall \beta \in \mathbf{R}^m$, $\hat{\mu}_n(\beta) = \frac{1}{n} \sum_{i=1}^n (\varphi(X_i) - \beta^\mathsf{T} Y_i)$.

Comme dans l'intro, on suppose $\mathbf{E}Y_1 = \begin{pmatrix} \mathbf{E}[Y_{1,1}] \\ \vdots \\ \mathbf{E}[Y_{1,m}] \end{pmatrix} = 0.$

 $\{\mu_n(\beta), \beta \in \mathbb{R}^m\}$ est une collection d'estimateurs sans biais. Trouvons l'élément de variance minimale :

$$\beta^* = \arg\min_{\beta} \frac{1}{n} \operatorname{Var} \left(\varphi - \beta^{\mathsf{T}} T \right)$$

$$= \arg\min_{\beta} \operatorname{Var} \left(\varphi - \beta^{\mathsf{T}} T \right)$$

$$= \arg\min_{\beta} \operatorname{E} \left[(\varphi - \beta^{\mathsf{T}} Y)^2 \right] - \operatorname{E} [\varphi]^2$$

$$= \arg\min_{\beta} \operatorname{E} \left[(\varphi - \beta^{\mathsf{T}} Y)^2 \right]$$

Si $\mathbf{E}[Y_1Y_1^\mathsf{T}]$ est inversible, les équations normales / du premier ordre admettent une unique solution :

$$\beta^* = \mathbf{E}[Y_1 Y_1^\mathsf{T}]^{-1} \mathbf{E}[Y_1 \varphi(X_1)]$$

Il faut utiliser $\hat{\mu}_n(\beta^*)$, mais β^* est inconnue.

Notons

Idée : estimer β^* sur les données $\to \hat{\beta}$, et utiliser $\hat{\mu}_n(\hat{\beta})$, qui a la même variance asymptotique que $\hat{\mu}_n(\beta^*)$. Si $\frac{1}{n}\sum_{i=1}^n Y_i Y_i^{\mathsf{T}}$ est inversible :

$$\hat{\beta} = \arg\min_{\beta \in \mathbf{R}^m} \frac{1}{n} \sum_{i=1}^n \left(\left[\varphi(X_i) - \beta^{\mathsf{T}} Y_i \right] - \hat{\mu}_n(\beta) \right)^2$$

estimateur classique de la covariance

Ce choix ne va pas entrainer de changement à l'asymptotique mais pratique il procure de meilleurs performance. Donc $\hat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left((\varphi(X_i) - \bar{\varphi}) - \beta^{\mathsf{T}} (Y_i - \bar{Y}) \right)^2$.

$$Z_{n,m} = \begin{pmatrix} Y_{11} - \bar{Y}_1 & \cdots & Y_{1m} - \bar{Y}_m \\ \vdots & & \vdots \\ Y_{n1} - \bar{Y}_1 & \cdots & Y_{nm} - \bar{Y}_m \end{pmatrix} \in \mathbf{R}^{n \times m}, \qquad Y_i = \begin{pmatrix} Y_{i1} \\ \vdots \\ Y_{im} \end{pmatrix} \in \mathbf{R}^m$$

 $(Y_i \text{ est la covariable du problème de régression}). On a <math>\bar{Y}_k = \frac{1}{n} \sum_{i=1}^n Y_{ik}$.

Notons également
$$\Psi_n = \begin{pmatrix} \varphi(X_1) - \bar{\varphi} \\ \vdots \\ \varphi(X_n) - \bar{\varphi} \end{pmatrix}$$
. Alors $\hat{\beta} = \arg\min_{\beta} \|\Psi_n - Z_{n,m}\beta\|^2$.

Le théorème de projection nous donne une unique solution qui, si $Z_{n,m}^{\mathsf{T}} Z_{n,m}$ est inversible, vérifie :

$$(Z_{n,m}^{\mathsf{T}} Z_{n,m}) \beta = Z_{n,m}^{\mathsf{T}} \Psi_n$$

 $\hat{\beta} = (Z_{n,m}^{\mathsf{T}} Z_{n,m})^{-1} Z_{n,m}^{\mathsf{T}} \Psi_n$

Prop (asymptotique de $\hat{\mu}_n(\beta)$). Supposons que $\mathbf{E}[\varphi(X_1)] < \infty$, $\forall k \in [[1:m]]$, $\mathbf{E}[\varphi(X_1)Y_{1k}] < \infty$ et $\mathbf{E}[Y_1Y_1^T]$ existe et est inversible. Alors $\hat{\mu}_n(\hat{\beta}) \xrightarrow{\mathrm{p.s.}} \mathbf{E}[\varphi(X_1)]$. Si de plus $\mathbf{E}[\varphi(X_1)]^2 < \infty$, alors $\sqrt{n} \left(\hat{\mu}_n(\hat{\beta} - \mathbf{E}[\varphi(X_1)] \right) \longrightarrow \mathcal{N}(0, \sigma_m^2)$ avec $\sigma_m^2 = \mathrm{Var} \left(\varphi(X_1) - \beta^{*T} Y_1 \right)$.

Rem. $\hat{\beta}$ n'a pas d'effet en l'asymptotique (c'est comme si on connnaissait β^*).

Rem. D'autres estimateurs de β^* peuvent être légitimes sous condition d'inversibilité :

$$\hat{\beta} = \begin{cases} \left(\frac{1}{n} \sum Y_i Y_i^\mathsf{T}\right)^{-1} \frac{1}{n} \sum Y_i \varphi(X_i) \\ \left(\frac{1}{n} \sum (Y_i - \bar{Y})(Y_i - \bar{Y})^\mathsf{T}\right)^{-1} \frac{1}{n} \sum Y_i \varphi(X_i) \end{cases}$$

Lorsque $\mathbf{E}[Y_1Y_1^{\mathsf{T}}]$ est connu, $\hat{\beta} = \mathbf{E}[Y_1Y_1^{\mathsf{T}}]^{-1} \frac{1}{n} \sum_{i=1}^n (Y_i(\varphi(X_i) - \bar{\varphi})).$

Temps de calcul

Soit *F* une c.d.f sur **R** et φ : **R** \rightarrow **R**. On veut calculer $\mathbf{E}_F[\varphi]$.

Le nombre d'échantillons n'est pas fixé par le problème initial. Il est donc à déterminer par rapport à la précision souhaitée et le temps de calcul dont on dispose.

Données massives → la problématique du temps de calcul est redevenue essentielle aujourd'hui.

Mesure du temps \rightarrow par simulation, en terme d'opérations élémentaires.

Règles du temps de calcul (peuvent changer selon le problème) :

- générer $X_1 \rightarrow 1$ opération élémentaire,
- générer $Y_{1,k}$ pour chaque $k \to 1$ opération élémentaire,
- évaluer $\varphi(X_1) \to 1$ opération élémentaire.

MC	nombre d'opérations élémentaires
X_1,\ldots,X_n	n
$\varphi(X_1),\ldots,\varphi(X_n)$	n
$\frac{1}{n}\sum_{i=1}^{n}\varphi(X_i)$	~ n
	O(n)
VC	nombre d'opérations élémentaires
X_1,\ldots,X_n	п
$\varphi(X_1),\ldots,\varphi(X_n)$) n
Y_1, \ldots, Y_n	mn
$\frac{1}{n}\sum_{i=1}^{n}(\varphi(X_i)-\beta^{T})$	(Y_i) mn
"	O(mn)
\hat{eta} nombre d'opérations élémentaires	
O	$(m^3 + m^2 n)$

4 Échantillonage d'importance

Présentation

On se place dans le cadre de l'approximation de $I(\varphi) = \int \varphi(x) dx$, où φ est intégrable.

Def. Si $g: \mathbb{R}^d \to \mathbb{R}$, on définit son support comme l'ensemble fermé

$$S_g = \overline{\{x \in \mathbf{R}^d \mid g(x) \neq 0\}}$$

L'échantillonage d'importance se base sur la formule suivante : pour toute densité f telle que $S_f \supset S_{\varphi}$,

$$\int \varphi(x) dx = \int_{S_{\varphi}} \varphi(x) dx = \int_{S_{f}} \varphi(x) dx = \int_{S_{f}} \frac{\varphi(x)}{f(x)} f(x) dx = \mathbf{E}_{X \sim f} \left[\frac{\varphi(X)}{f(X)} \right]$$

L'échantillonage d'importance "naïf" consiste à :

- générer $X_1, \dots, X_n \sim f$ i.i.d
- faire du MC : $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \frac{\varphi(X_i)}{f(X_i)}$

Prop. Si $\int |\varphi| < \infty$, $\hat{\mu}_n$ est sans biais, $\hat{\mu}_n \xrightarrow{\text{p.s.}} \int \varphi$. Si $\int \frac{\varphi^2}{f} < \infty$, $\sqrt{n} \left(\hat{\mu}_n - \int \varphi \right) \longrightarrow \mathcal{N}(0, \sigma^2)$, $\sigma^2 = \text{Var} \left(\frac{\varphi}{f} \right)$. On a également $\frac{\sqrt{n}}{\hat{\sigma}_n} \left(\hat{\mu}_n - \int \varphi \right) \longrightarrow \mathcal{N}(0, 1)$, avec $\hat{\sigma}_n = \frac{1}{n} \sum_{i=1}^n \left(\frac{\varphi(X_i)}{f(X_i)} - \hat{\mu}_n \right)^2$.

Cette méthode est naïve car f n'est pas choisie par rapport à φ .

Ex. Soit φ la densité d'une gaussienne centrée réduite et $f \sim \mathcal{N}(\theta, 1)$. Ici $I(\varphi) = 1$,

$$\sigma^{2} + 1 = \int \frac{\varphi^{2}}{f^{2}} f \, d\lambda = \int \frac{\varphi^{2}}{f} \, d\lambda = \frac{1}{\sqrt{2\pi}} \int e^{-x^{2} + (x - \theta)^{2}/2} \, dx = e^{\theta^{2}} \underbrace{\frac{1}{\sqrt{2\pi}} \int e^{-(x + \theta)^{2}} \, dx}_{=1}$$

Deux cas de figure sont possibles :

- $\theta = 0$, d'où $\sigma^2 = 0$. Plus généralement, si φ n'est pas nécessairement une densité, alors le choix $f \propto \varphi$ (mais positif, e.g $f = \frac{\varphi}{\int \varphi}$) est optimal. Ce choix dépend de la solution à notre problème de départ, donc il est impossible à réaliser.
- $\theta \gg 1$, d'où $\sigma^2 \gg 1$.

La question est : commment choisir f en pratique?

Rem. f est appelée la distribution d'échantillonage, ou bien l'échantilloneur.

Rem. Si le but est d'estimer une espérance par rapport à g, alors prendre $\varphi \cdot g$ à la place de φ .

Par ailleurs il existe deux méthodes de réduction de la variance :

- variable de contrôle : approcher φ dans une certaine base \rightarrow pas de choix d'échantilloneur.
- changer la mesure d'échantillonage.

Dans les deux cas on s'adapte à φ .

Réduction de la variance

On caractérise ici l'échantilloneur optimal.

On fait la remarque suivante :

$$\operatorname{Var}(\hat{\mu}_n) = 0 \iff \int \left(\frac{\varphi}{f} - I(\varphi)\right)^2 f \, d\lambda = 0 \iff \frac{\varphi}{f} = I(\varphi) \text{ p.p}$$

Si φ change de signe sur des ensembles de mesures non-nulles, alors prendre $\frac{\varphi}{f} = I(\varphi)$ p.p est impossible car est une densité, donc positive. Obtenir $\sigma^2 = 0$ est alors impossible.

Si φ est de signe constant alors $f = \frac{|\varphi|}{\int |\varphi|}$ donne une variance nulle. En fait, ce $f = \frac{|\varphi|}{\int |\varphi|}$ est optimal dans tous les cas.

Th. Parmi les densités f tq $\int \frac{\varphi^2}{f} d\lambda < \infty$, le minimiseur de $Var\left(\frac{\varphi}{f}\right) = \int \left(\frac{\varphi}{f} - I(\varphi)\right)^2 f d\lambda$ est $f^* = \frac{|\varphi|}{|\varphi|}$ et

$$\sigma^{*2} = \operatorname{Var}_{X \sim f^*} \left(\frac{\varphi(X)}{f^*(X)} \right) = \int \left(\frac{\varphi}{f^*} - I(\varphi) \right)^2 d \, d\lambda$$

Échantillonage d'importance paramétrique

En pratique et en dimension 1 ou 2, on peut représenter $|\varphi|$ et en déduire un f "proche" (visuellement) de $|\varphi|$. On se donne une famille de lois par rapport auxquelles on sait générer des v.a :

$$\mathcal{P} = \{ f_{\Theta}, \theta \in \Theta \}$$

où $\Theta \subset \mathbb{R}^q$, $q \geqslant 1$, ce qui fait de \mathcal{P} une famille paramétrique.

On aimerait calculer $\theta^* \in \operatorname{arg\,min}_{\theta \in \Theta} \operatorname{Var}_{X \sim f_{\theta}} \left(\frac{\varphi(X)}{f_{\theta}(X)} \right)$ mais $\theta \mapsto \operatorname{Var}_{X \sim f_{\theta}} \left(\frac{\varphi}{f_{\theta}} \right)$ est inconnue.

Donc on cherche à estimer par simulation cette variance.

Soit f_0 l'échantillon initial.

a) Générer $Z_1, ..., Z_{n_1} \sim f_0$ i.i.d

$$\hat{\mu}_{f_0} = \frac{1}{n} \sum_{i=1}^n \frac{\varphi(Z_i)}{f_0(Z_i)}, \qquad \hat{\sigma}_{\theta} = \frac{1}{n} \sum_{i=1}^n \frac{\varphi(Z_i)^2}{f_{\theta}(Z_i) f_0(Z_i)}, \qquad \mathbf{E}\left[\frac{\varphi^2}{f_{\theta} f_0}\right] = \int \frac{\varphi^2}{f_{\theta}} \, \mathrm{d}\lambda$$

b) $\hat{\theta}_n = \arg\min_{\theta \in \Theta} \hat{\sigma}_{\theta}^2$

c)
$$X_1, ..., X_n \sim f_{\hat{\theta}_n}$$
 i.i.d, $\hat{\mu}(\hat{\theta}) = \frac{1}{n} \sum_{i=1}^n \frac{\varphi(X_i)}{f_{\hat{\theta}_n}(X_i)}$