ECE 414/517 Reinforcement Learning

LECTURE 10: MONTE CARLO METHODS

SEP. 27 2022

Generalized Policy Iteration

- Policy iteration
 - Full policy evaluation (up until convergence)
 - Policy improvement
- 2. Value Iteration
 - One iteration of policy evaluations
 - Policy Improvement
- 3. Asynchronous Dynamic Programming
 - Policy evaluation/policy improvement even further interleaved.
 - For example, updating only a single step before performing policy improvement
 - Can be done stochastically, as long as all states are visited.

Monte Carlo Policy Evaluation

- 1. We still need to estimate $V_{\pi}(s)$. Estimate from experience:
 - Average all returns observed after visiting a given state.
 - Each occurrence of state s in an episode is called a visit to s
- 2. Generate an episode following π :

$$S_0, a_0, r_1, S_1, a_1, r_2, \dots, S_{T-1}, a_{T-1}, r_T,$$

- 3. First visit MC:
 - Method averages just the returns following first visits to s
 - Easier to show convergence. Why?
- 4. Every Visit MC:
 - Method averages the returns following all the visits to s

Monte Carlo Policy Evaluation

First-visit MC prediction, for estimating $V \approx v_{\pi}$

```
Input: a policy \pi to be evaluated
Initialize:
     V(s) \in \mathbb{R}, arbitrarily, for all s \in \mathbb{S}
     Returns(s) \leftarrow \text{an empty list, for all } s \in S
Loop forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
          Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:
              Append G to Returns(S_t)
              V(S_t) \leftarrow \text{average}(Returns(S_t))
```

First Visit Vs. Every Visit

Assume we have three state *X,Y,T* for a non-discounted episodic MDP

We produce the following episodes:

After all episodes have ran what will the return arrays look like for first visit/every visit? What will be V(s)?

s_0	a_0	r_1	s_1	a_1	r_2	s_2	a_2	r_3	s_3
X		1	Υ		3	Υ		2	T
X		0	X		2	Υ		0	T
Y		2	X		2	X		1	T
Y		1	Y		4	X		0	Т

Blackjack - MDP

- 1. EpisodicStates?
 - $N_{usable} = \pm 1$
 - $N_{Dealer\ card} = 1 \dots 10$
 - $N_{agent_sum} = (12 ... 21)$
 - $N_{usable} \times N_{Dealer_card} \times N_{agent_sum} = 2 \times 10 \times 10 = 200 \text{ (+1)}$
- 2. Actions?
 - {hit, stand}
- 3. Reward?
 - *win*: +1
 - *lose*: −1
- 4. State value function: array shape?

Policy Evaluation Example

Consider a policy that only stands if the player's sum is 20 or 21.

Consider the following cases:

player cards:[11, 8] dealer shows:

10

player hits:6

player hits:6

player holds

dealer sum: 17

reward: 1

What values will change and to what?

Policy Evaluation Example

Consider a policy that only stands if the player's sum is 20 or 21.

Use first visit or every visit?

Consider the following cases:

player cards:[11, 8] dealer shows: 10 player hits:6 player hits:9 bust!

What values will change and to what?

Blackjack – Use DP?

- 1. Although we have complete knowledge of the environment, it would not be easy to apply DP policy evaluation.
- 2. Hard to calculate p(s', r|s, a)
 - e.g. player's sum is 14 and dealer's displayed card is jack what is the expected reward?
- 3. Since all of these calculations must be done prior to running DP it is often an impractical approach
- 4. In contrast, generating sample games (for MC) is much easier to do
- 5. Surprising insight: even if the environment's dynamics are known, MC is often a more efficient method to apply
 - Estimating values are independent (no "bootstrapping") why helpful?
 - Optimal policy trajectory corresponds to a small state subset

Monte Carlo Vs. Dynamic Programming

- 1. Can the backup diagram be applied to MC methods?
 - Recall that backup diagrams show top node to be updated and below all the transitions and leaf nodes that contribute to the update
- 2. For MC the root is a state node and below are all the nodes visited until terminal node is reached.
 - Shows only transitions sampled on one episode.
- 3. DP focuses on one-step transitions, whereas MC goes all the way to the end of the episode.
- 4. Updating Values for states is independent in MC.
 - computational complexity of updating one node is independent of |s|
 - An attractive feature since one can estimate only a subset of the node values (not have to do all)

Now what?

- 1. We described a way to find $V^{\pi}(s)$. Now what?
- 2. Since we do not have model, cannot easily do policy improvement: find the new greedy π $\pi'(s) = \arg\max_{a} \sum_{s', s'} p(s', r \mid s, a) [r + \alpha V^{\pi}(s')]$
- 3. Instead we should estimate $Q^{\pi}(s, a)$.

$$\pi(s) = \operatorname*{argmax}_{a} Q(s, a)$$

- 4. Use the same MC approach. The agent records the rewards received after taking action α at state s
 - Problem?
- 5. Need to force exploration or some actions will never be chosen.
 - How?
- 6. One way: **exploring starts**. Each state-action pair at the beginning of an episode has a non zero probability.
 - Will consider the general stochastic approach later.

Monte Carlo Control

How do we use the policy evaluation step to find the optimal policy?

- 1. Policy Evaluation
 - Achieved by averaging returns over many outcomes
- 2. Policy improvement
 - Policy improvement is done by selecting greedy actions, i.e.: $\pi(s) = \operatorname{argmax} Q(s, a)$

$$\pi_0 \overset{E}{\to} Q_{\pi_0} \overset{I}{\to} \pi_1 \overset{E}{\to} Q_{\pi_1} \overset{I}{\to} \pi_2 \overset{E}{\to} \dots \overset{I}{\to} \pi_* \overset{E}{\to} Q_{\pi_*}$$

Monte Carlo Control

1. The policy improvement theorem holds since for all s:

$$Q^{\pi_k}(s, \pi_{k+1}(s)) = Q^{\pi_k}(s, argmax Q^{\pi_k}(s, a))$$

$$= \max_{a} Q^{\pi_k}(s, a)$$

$$\geq Q^{\pi_k}(s, \pi_k(s))$$

$$= V^{\pi_k}(s)$$

- 2. If the two policies are equal, they are both optimal
 - This way MC can lead to optimal policies with no model
- 3. Assumes exploring starts and infinite number of episodes for MC policy evaluation
- 4. Latter not really needed (similar to DP):
 - Update only to a given level of performance
 - Don't solve for Q^{π_k} but move towards it
 - Alternate between evaluation and improvement per episode.

Monte Carlo (Exploring Starts)

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$ Initialize: $\pi(s) \in \mathcal{A}(s)$ (arbitrarily), for all $s \in \mathcal{S}$ $Q(s,a) \in \mathbb{R}$ (arbitrarily), for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$ $Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)$ Loop forever (for each episode): Choose $S_0 \in \mathcal{S}$ and $A_0 \in \mathcal{A}(S_0)$ such that all pairs have probability > 0Generate an episode from S_0, A_0 , following π : $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ Loop for each step of episode, $t = T-1, T-2, \ldots, 0$: $G \leftarrow \gamma G + R_{t+1}$ Unless the pair S_t , A_t appears in S_0 , A_0 , S_1 , A_1 , ..., S_{t-1} , A_{t-1} : Append G to $Returns(S_t, A_t)$ $Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$ $\pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$

Blackjack - MDP

- 1. EpisodicStates?
 - $N_{usable} = \pm 1$
 - $N_{Dealer\ card} = 1 \dots 10$
 - $N_{agent_sum} = (12 ... 21)$
 - $N_{usable} \times N_{Dealer_card} \times N_{agent_sum} = 2 \times 10 \times 10 = 200 \text{ (+1)}$
- 2. Actions?
 - {*hit*, *stand*}
- 3. Reward?
 - *win*: +1
 - *lose*: −1
- 4. Acttion value function: array shape?

Exploring Starts Example

Consider the following cases:

```
player cards:[5, 3] dealer shows: 4
player hits:10
player hits:1
player hits:9
bust!
```

What values will change and to what?

No Exploring Starts

- Exploring starts not always possible.
 - Why?
- 2. On the other hand can't simply follow greedy approach no exploration.
- 3. We can employ an ϵ -greedy policy instead, where $\pi(s,a) > 0 \ \forall \ s,a$:
 - With probability 1ϵ choose the greedy action
 - With probability ϵ explore uniformly
- 4. Probabilities of actions:
 - For non max actions: $\frac{\epsilon}{|\mathcal{A}(s)|}$
 - For max action: $1 \epsilon + \frac{\epsilon}{|\mathcal{A}(s)|}$

Policy Improvement under ϵ -greedy

Show that the policy improvement theory holds.

$$Q^{\pi_{k}}(s, \pi_{k+1}(s)) = \sum_{a} \pi_{k+1}(a|s) Q^{\pi_{k}}(s, a)$$

$$= \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi_{k}}(s, a) + (1 - \epsilon) \max_{a} Q^{\pi_{k}}(s, a)$$

$$\geq \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi_{k}}(s, a) + (1 - \epsilon) \sum_{a} \frac{\pi_{k}(a|s) - \frac{\epsilon}{|\mathcal{A}(s)|}}{1 - \epsilon} Q^{\pi_{k}}(s, a)$$

$$= \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi_{k}}(s, a) - \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi_{k}}(s, a) + \pi_{k}(a|s) Q^{\pi_{k}}(s, a)$$

$$= V^{\pi_{k}}(s)$$

On policy Monte Carlo

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
    Q(s,a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in A(s)
    Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)
Repeat forever (for each episode):
    Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T - 1, T - 2, \dots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
             Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
                                                                                    (with ties broken arbitrarily)
              A^* \leftarrow \operatorname{argmax}_a Q(S_t, a)
              For all a \in \mathcal{A}(S_t):
                      \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```

On-policy Vs. Off-policy

- So far all the methods we discussed are on-policy methods, where you evaluate and improve
 the policy that is used to create the episodes.
 - To ensure all actions are selected we need to employ an ϵ -soft policy
- 2. Instead we can use **off-Policy methods.** In this case the policy we use to generate the episodes is different than the behavior we are trying to evaluate and improve.
 - Behavior policy b(a|s) The policy used to generate episodes
 - Estimation policy $\pi(a|s)$ The policy being evaluated and improved.
- 3. This has some advantages:
 - Include On-policy as special case $(b(a|s) = \pi(a|s))$
 - Estimation policy can be deterministic (e.g. greedy) and therefore optimal vs near optimal (ϵ -soft).
 - Can learn from observing the behavior of other non-learning agents (such as humans)
- 4. Disadvantages:
 - More complex and slower to converge.