Unendliche Reihen

For eine folge (a_n) wird $a_n + a_2 + a_3 + a_4 = s_n = \sum_{n=0}^{\infty} a_n$ als eine unendliche Reihe bezeichnet

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \left(|x| < 1 \right)$$

$$\sum_{n=0}^{\infty} \frac{1}{n!} = e$$

Exponentialreihe

 $E(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+2}}{n}$$
 ist leanversent

Monotonie kriterium

Sind alle and o und ish (sn) beschänlet, so ist on le on veget

Cauchy laiterium

 $\sum_{n=n}^{\infty} a_n \quad isl \; lcon \; versent$ $(=) \; \forall \; E > 0 \; \exists \; n_0 \in \mathbb{N} \; \forall \; m > n \geq n_0 : \; \left| \sum_{k=n+1}^{\infty} a_k \right| < \mathcal{E}$

 $|s| \sum_{n=1}^{\infty} a_n |c_n versel| = |\alpha_n - |0| (n-\infty)$

Analy: Gill $a_n \rightarrow 0$ $(n-\infty) = \sum_{n=0}^{\infty} a_n$ divergent

Leibnizkriteium

 (b_n) sei eine Folge mit $-(b_n)$ ist monoton fellend $b_n \rightarrow 0 \ (n \rightarrow \infty)$

Dann: \(\frac{\infty}{\infty} \left(-1)^{n+1} \dots \) ist konversent

Majoranten kriteium

Gilt la, 1 & b, ffa. n & M und ist \(\subsection b, loonversant \)

Minoranten kiterium

Gilt an 2 b 20 ffa. nENV und ist 20 bn diverent

=) I an diverset

Wursellerite ium

Definiere: cn = "Tan"

1st (cn) unberchränkt => 2 an ist diverant

[Ist (Cn) beschränkt, definice d:= Lim Sup (n

Falls: $a < 1 \Rightarrow \sum_{n \ge 1} \alpha_n$ is a choolat leonvegent $a > 1 \Rightarrow \sum_{n \ge 1} \alpha_n$ is divergent

(x = 1 =) ??)

Quotientenkriterium Es se: a, 7 0 ffa nEN.

Definite $C_n := \frac{\alpha_{n+1}}{\alpha_n}$ The standard of the standa

(Cn) beschränkt &:= (im sup Cn, B:= lim int (n.

 $- |st \propto 21 \implies \sum_{n=1}^{\infty} \alpha_n |st| |absolut| |source_sent|$ $|st| |\beta| > 1 \implies \sum_{n=1}^{\infty} \alpha_n |st| |divesent|$

=) Es sei $\alpha_n \neq 0$ ffa. $n \in \mathbb{N}$, $C_n := \left| \frac{\alpha_{n+1}}{\alpha_n} \right|$, C_n sei konvegent, $\alpha := \lim_{n\to\infty} C_n$

Ocnn: 2 an ist diversent, falls & 17

Ocnn: Pan ist diversent, Falls & 71

Cleine Ausseye > falls d = 1

Termino Logic ∑an ist absolut konvegent (=) ∑ |an ist konvegent (stirle cls nor konvegent) in dieser Fell: $\frac{\infty}{\sum_{n=1}^{\infty} a_n} |a_n| \le \sum_{n=1}^{\infty} |a_n|$ φ: N -> N so eine Bijektion Mit bn := dy(n) ist (bn) non eine Um orchnung von (an)