Coupling Retrieval and Meta-learning for Context-dependent Semantic Parsing

Daya Guo¹, Duyu Tang², Nan Duan², Ming Zhou² and Jian Yin¹
¹Sun Yat-sen University ²Microsoft Research

Task definition

- Context-Dependent Semantic Parsing
 - Input: a natural language with context
 - Output: a structural logical form

Task definition

Context-Dependent Semantic Parsing

- Input: a natural language with context
- Output: a structural logical form

Task I: Conversational Question Answering over KB

Conversational history (Context):

Q1: Where was the president of the United States born?

A1: New York City

Current Question:

Q2: Where did he graduate from?

Output:

find(find(United States, isPresidentof), graduateFrom)
| Executed on KB

A2: University of Pennsylvanian

Task definition

Context-Dependent Semantic Parsing

- Input: a natural language with context
- Output: a structural logical form

Task I: Conversational Question Answering over KB

Conversational history (Context):

Q1: Where was the president of the United States born?

A1: New York City

Current Question:

Q2: Where did he graduate from?

Output:

find(find(United States, isPresidentof), graduateFrom)
| Executed on KB

A2: University of Pennsylvanian

Task II: Code Generation

Class Environment:

Variables: [Type, Name]

double[] vecElements
double[] weights

Methods: [Return Type, Name]

void add(double)

Natural Language Query:

Increment this vector in this place

Source Code:

public void inc() { this.add(1);}

Related works

- Standard methods
 - Sequence-to-Sequence approaches: translate a sentence to a logical form [Dong and Lapata, 2016; Jia and Liang, 2016; Ling et al., 2016; Xiao et al., 2016]
 - Sequence-to-Action approaches: generate an action sequence that can construct logical forms [Yin and Neubig, 2017; Krish-namurthy et al., 2017; lyyer et al., 2017; Chen et al., 2018]

Related works

Standard methods

- Sequence-to-Sequence approaches: translate a sentence to a logical form [Dong and Lapata, 2016; Jia and Liang, 2016; Ling et al., 2016; Xiao et al., 2016]
- Sequence-to-Action approaches: generate an action sequence that can construct logical forms [Yin and Neubig, 2017; Krish-namurthy et al., 2017; lyyer et al., 2017; Chen et al., 2018]

Retrieve-and-Edit based methods

- Increase the probability of actions that can derive the retrieved subtrees [Hayati et al., 2018]
- Treat each example with retrieved datapoints as a new task [Huang et al., 2018a]
- Encoder-decoder based retrieval model [Hashimoto et al., 2018]

Motivation

- Programmers usually leverage similar examples as a guidance
- The pattern of a structural output may come from multiple examples

Motivation

- Programmers usually leverage similar examples as a guidance
- The pattern of a structural output may come from multiple examples

- How to automatically retrieve similar examples?
- How to use them as the supporting evidence to improve semantic parsing?

Overview

Standard prediction

Overview

Standard prediction

• Fine-tune semantic parser before prediction

Overview

Standard prediction

• Fine-tune semantic parser before prediction

Framework

• Fine-tune semantic parser

Framework

• Calculate the loss function $\mathcal{L}(d; \boldsymbol{\theta}, \boldsymbol{R})$

Framework

Update semantic parser and retriever by meta-learning

- The retrieval model is based on variational autoencoder framework
- Train the model using semantic parsing supervised dataset

Encode a natural language with the context environment into hidden states

• Our choice of encoder noise: the von-Mises Fisher (vMF) distribution

$$p(z_{x}|x) = vMF(z_{x}; \mu_{x}, k) = Z_{k}^{-1}e^{(\kappa\mu_{k}^{T}z_{x})}$$

• The decoder predicts logical form from the latent variable z

How to retrieve similar examples?

KL-divergence between latent variables z as distance

$$distance = KL(p(z|x,c)||p(z|x',c')) = C_k(||\mu_x - \mu_{x'}||_2^2 + ||\mu_c - \mu_{c'}||_2^2)$$

- Definition of grammar
 - A set of actions that can construct logical forms

- Definition of grammar
 - A set of actions that can construct logical forms

Gra	Grammar I: Conversational Question Answering over KB						
Action	Operation	Description					
A1-A3	S—>Set Num Bool	S is start symbol					
A4	Set—>Find(R, E)	Set of entities with a r edge to e					
A5	Num—>Count(Set)	Total number of set					
A6	Bool—>(∈, E, Set)	Whether E∈Set					
A7	Set—>Set ∪ Set	Union of Sets					
A8	Set—>Set ∩ Set	Intersection of Sets					
А9	Set—>Set —Set	Difference of Sets					
A10	Set->larger(set, r, num)	Entity from set linking to more than num entities with relation r					
A11	Set->less(set, r, num)	Entity from set linking to less than num entities with relation r					
A12	Set->equal(set, r, num)	Entity from set linking to num entities with relation r					
A13	Set->arxmax(set, r, num)	Entity from set linking to most entities with relation r					
A14	Set->argmin(set, r, num)	Entity from set linking to least entities with relation r					
A15	Set->{e}						
A16-A18	e r num -> constant	instantiation for entity e, predicate r or number num					
A19-A21	Set Num Bool ->action(i-1)	Replicate previous operation sequence					

- Definition of grammar
 - A set of actions that can construct logical forms

Gra	Grammar I: Conversational Question Answering over KB					
Action	Operation	Description				
A1-A3	S—>Set Num Bool	S is start symbol				
A4	Set—>Find(R, E)	Set of entities with a r edge to e				
A5	Num—>Count(Set)	Total number of set				
A6	Bool—>(∈, E, Set)	Whether E∈Set				
A7	Set—>Set ∪ Set	Union of Sets				
A8	Set—>Set ∩ Set	Intersection of Sets				
A9	Set—>Set —Set	Difference of Sets				
A10	Set->larger(set, r, num)	Entity from set linking to more than num entities with relation r				
A11	Set->less(set, r, num)	Entity from set linking to less than num entities with relation r				
A12	Set->equal(set, r, num)	Entity from set linking to num entities with relation r				
A13	Set->arxmax(set, r, num)	Entity from set linking to most entities with relation r				
A14	Set->argmin(set, r, num)	Entity from set linking to least entities with relation r				
A15	Set->{e}					
A16-A18	e r num -> constant	instantiation for entity e, predicate r or number num				
A19-A21	Set Num Bool ->action(i-1)	Replicate previous operation sequence				

	Grammar II: Code Generation					
Action	Production rule	Description				
A1	MemberDeclaration→MethodDeclaration	Declaration of member				
A2	TypeTypeOrVoid→void	Type of function				
А3	IdentifierNT→ClassMethod	Identifier comes from member methods				
A4	ldentifierNT→ClassVariable	Identifier comes from member variables				
A5	ClassMethod→Constant	Instantiation for the member method or variables				
A6	ClassVariable→Constant	Instantiation for the member variable				

Current Question

Previous Question

Dialog Memory				
Entity {United States, tag=utterance} {New York City, tag=answer}				
Predicate {isPresidentOf} {placeOfBirth}				
Action Subsequence	$set \rightarrow A4 A15 e_{US} r_{pres}$ $set \rightarrow A4 A15$ $set \rightarrow A4 A4 A15 e_{US} r_{pres} r_{bth}$ $set \rightarrow A4 A4 A15$			

Previous Answer

A1: $S \rightarrow set$

A4: $set \rightarrow find(set, r1)$

A4: $set \rightarrow find(set, r2)$

A15: $set \rightarrow \{e\}$

A16: $e \rightarrow United States$

A17: $r2 \rightarrow isPresidentOf$

A17: $r1 \rightarrow graduateFrom$

Class Environment:

Variables: [Type, Name]

double[] vecElements

double[] weights

Methods: [Return Type, Name]

void add(double)

NL Query: Increment this vector in this place

Source Code:

public void inc() { this.add(1);}

Action Sequence:

MemberDeclaration → MethodDeclaration

MethodDeclaration→TypeTypeOrVoid IdentifierNT FormalParameters MethodBody

TypeTypeOrVoid→void

• • •

Primary→**IdentifierNT**

IdentifierNT→1

Dataset

- Conversational Question answering
 - CSQA dataset [Saha et al., 2018]
 - Created based on Wikidata with 12.8M entities, including 200k dialogs
 - Contain conversational history and current questions with the answer.
- Code Generation
 - CONCODE dataset [lyer et al., 2018]
 - Built from about 33,000 public Java projects on Github
 - Contain natural description and codes together with class environment information

Methods		Dev		Test	
		BLEU	Exact	BLEU	
Retrieval ONLY					
TFIDF	1.25	17.78	1.50	19.73	
Context-independent Retrieval	0.85	19.63	0.80	21.98	
Context-dependent Retrieval	1.30	21.21	1.00	24.94	
Parsing-based methods without retrieved	example	es			
Seq2Seq	2.90	21.00	3.20	23.51	
Seq2Prod (Yin and Neubig, 2017)	5.55	21.00	6.65	21.29	
Iyer et al. (2018)	7.05	21.28	8.60	22.11	
Seq2Action	7.75	22.47	9.15	23.34	
Parsing-based methods with retrieved e	xamples				
Seq2Action+Edit vector (Context-independent Retrieval)	6.6	21.27	7.90	22.51	
Seq2Action+Edit vector (Context-aware Retrieval)	7.75	20.69	9.20	22.68	
Seq2Action+Retrieve-and-edit (Context-independent Retrieval)	5.55	21.27	7.05	22.74	
Seq2Action+Retrieve-and-edit (Context-aware Retrieval)		22.20	9.30	23.95	
Seq2Action+MAML (Context-independent Retrieval)		21.48	9.85	23.22	
Seq2Action+MAML (Context-aware Retrieval, w/o finetune)		21.27	10.30	24.12	
Seq2Action+MAML (Context-aware Retrieval)	8.45	21.32	10.50	24.40	

Table 1: Performance of different approaches on the CONCODE dataset.

Methods		Dev		Test	
		BLEU	Exact	BLEU	
Retrieval ONLY					
TFIDF	1.25	17.78	1.50	19.73	
Context-independent Retrieval	0.85	19.63	0.80	21.98	
Context-dependent Retrieval	1.30	21.21	1.00	24.94	
Parsing-based methods without retrieved	example	es			
Seq2Seq	2.90	21.00	3.20	23.51	
Seq2Prod (Yin and Neubig, 2017)	5.55	21.00	6.65	21.29	
Iyer et al. (2018)	7.05	21.28	8.60	22.11	
Seq2Action	7.75	22.47	9.15	23.34	
Parsing-based methods with retrieved e	xamples				
Seq2Action+Edit vector (Context-independent Retrieval)	6.6	21.27	7.90	22.51	
Seq2Action+Edit vector (Context-aware Retrieval)	7.75	20.69	9.20	22.68	
Seq2Action+Retrieve-and-edit (Context-independent Retrieval)	5.55	21.27	7.05	22.74	
Seq2Action+Retrieve-and-edit (Context-aware Retrieval)	7.55	22.20	9.30	23.95	
Seq2Action+MAML (Context-independent Retrieval)	9.15	21.48	9.85	23.22	
Seq2Action+MAML (Context-aware Retrieval, w/o finetune)	8.30	21.27	10.30	24.12	
Seq2Action+MAML (Context-aware Retrieval)	8.45	21.32	10.50	24.40	

Table 1: Performance of different approaches on the CONCODE dataset.

Methods		ev	Test	
		BLEU	Exact	BLEU
Retrieval ONLY				
TFIDF	1.25	17.78	1.50	19.73
Context-independent Retrieval	0.85	19.63	0.80	21.98
Context-dependent Retrieval	1.30	21.21	1.00	24.94
Parsing-based methods without retrieved	example	es		
Seq2Seq	2.90	21.00	3.20	23.51
Seq2Prod (Yin and Neubig, 2017)	5.55	21.00	6.65	21.29
Iyer et al. (2018)	7.05	21.28	8.60	22.11
Seq2Action	7.75	22.47	9.15	23.34
Parsing-based methods with retrieved e	xamples			
Seq2Action+Edit vector (Context-independent Retrieval)	6.6	21.27	7.90	22.51
Seq2Action+Edit vector (Context-aware Retrieval)	7.75	20.69	9.20	22.68
Seq2Action+Retrieve-and-edit (Context-independent Retrieval)	5.55	21.27	7.05	22.74
Seq2Action+Retrieve-and-edit (Context-aware Retrieval)	7.55	22.20	9.30	23.95
Seq2Action+MAML (Context-independent Retrieval)	9.15	21.48	9.85	23.22
Seq2Action+MAML (Context-aware Retrieval, w/o finetune)	8.30	21.27	10.30	24.12
Seq2Action+MAML (Context-aware Retrieval)	8.45	21.32	10.50	24.40

Table 1: Performance of different approaches on the CONCODE dataset.

Methods		Dev		est
		BLEU	Exact	BLEU
Retrieval ONLY				
TFIDF	1.25	17.78	1.50	19.73
Context-independent Retrieval	0.85	19.63	0.80	21.98
Context-dependent Retrieval	1.30	21.21	1.00	24.94
Parsing-based methods without retrieved	example	es		
Seq2Seq	2.90	21.00	3.20	23.51
Seq2Prod (Yin and Neubig, 2017)	5.55	21.00	6.65	21.29
Iyer et al. (2018)	7.05	21.28	8.60	22.11
Seq2Action	7.75	22.47	9.15	23.34
Parsing-based methods with retrieved e	xamples			
Seq2Action+Edit vector (Context-independent Retrieval)		21.27	7.90	22.51
Seq2Action+Edit vector (Context-aware Retrieval)	7.75	20.69	9.20	22.68
Seq2Action+Retrieve-and-edit (Context-independent Retrieval)		21.27	7.05	22.74
Seq2Action+Retrieve-and-edit (Context-aware Retrieval)		22.20	9.30	23.95
Seq2Action+MAML (Context-independent Retrieval)		21.48	9.85	23.22
Seq2Action+MAML (Context-aware Retrieval, w/o finetune)		21.27	10.30	24.12
Seq2Action+MAML (Context-aware Retrieval)	8.45	21.32	10.50	24.40

Retrieve-and-Edit

Retrieve-and-MAML

Table 1: Performance of different approaches on the CONCODE dataset.

Methods	HRED	D2A	S2A	S2A	S2A	S2A
Methods	+KVmem	D2A	32A	+EditVec	+RAndE	+MAML
Question Type				F1		
Simple Question (Direct)	13.64%	91.41%	92.01%	91.95%	92.08%	92.66%
Simple Question (Co-referenced)	7.26%	69.83%	71.40%	72.94%	73.19%	71.18%
Simple Question (Ellipsis)	9.95%	81.98%	81.75%	83.31%	84.61%	82.21%
Logical Reasoning (All)	8.33%	43.62%	42.00%	43.85%	41.83%	44.34%
Quantitative Reasoning (All)	0.96%	50.25%	45.37%	46.93%	42.64%	50.30%
Comparative Reasoning (All)	2.96%	44.20%	41.51%	43.96%	44.46%	48.13%
Clarification	16.35%	18.31%	18.9%	18.42%	18.70%	19.12%
Question Type			Acc	uracy		
Verification (Boolean)	21.04%	45.05%	51.17%	47.81%	55.00%	50.16%
Quantitative Reasoning (Count)	12.13%	40.94%	46.01%	44.67%	43.07%	46.43%
Comparative Reasoning (Count)	5.67%	17.78%	16.52%	17.52%	16.43%	18.91%

Table 2: Performance of different approaches on the CSQA dataset.

Figure 4: Comparison between S2A and S2A+MAML with different portions of supervised data.

Figure 4: S2A+MAML with different number of retrieved examples on the CONCODE devset.

Input	Context-Aware Retriever	Context-Independent Retriever
Class environment: HashMap <lalr_item, lalr_item=""> _all; NL: Does the set contain a particular item Code: boolean function(lalr_item arg0){ return _all.constainsKey(arg0); }</lalr_item,>	Class environment: Map <point, railwaynode=""> _nodeMap; NL: Check if a node at a specific position exits. Code: boolean function(Point arg0){ return _nodeMap.constainsKey(arg0);}</point,>	Class environment: Node root; Node get(Node x, String key, int d); NL: Does the set contain the given key Code: boolean function(String arg0){ Node loc0==get(root,arg0,0); if (loc0==null) return false; return loc0.isString; }
Q1: who is the dad of jorgen ottesen brahe? A1: otte brahe Q2: who is the spouse of that one?	Q1: whose child are gio batta bellotti? A1: matteo bellotti, paola cresipi guzzo Q2: which person is married to that one?	Q1: which abstract beings have marge simpson as an offspring? A1: clancy bouvier, jacqueline bouvier Q2: who is the spouse of that one?

Input	Context-Aware Retriever	Context-Independent Retriever
Class environment: HashMap <lalr_item, lalr_item=""> _all; NL: Does the set contain a particular item Code: boolean function(lalr_item arg0){ return _all.constainsKey(arg0); }</lalr_item,>	Class environment: Map <point, railwaynode=""> _nodeMap; NL: Check if a node at a specific position exits. Code: boolean function(Point arg0){ return _nodeMap.constainsKey(arg0);}</point,>	Class environment: Node root; Node get(Node x, String key, int d); NL: Does the set contain the given key Code: boolean function(String arg0){ Node loc0==get(root,arg0,0); if (loc0==null) return false; return loc0.isString; }
Q1: who is the dad of jorgen ottesen brahe?A1: otte braheQ2: who is the spouse of that one?	Q1: whose child are gio batta bellotti? A1: matteo bellotti, paola cresipi guzzo Q2: which person is married to that one?	Q1: which abstract beings have marge simpson as an offspring?A1: clancy bouvier, jacqueline bouvierQ2: who is the spouse of that one?

Input	Context-Aware Retriever	Context-Independent Retriever
Class environment: HashMap <lalr_item, lalr_item=""> _all; NL: Does the set contain a particular item Code: boolean function(lalr_item arg0){ return _all.constainsKey(arg0); }</lalr_item,>	Class environment: Map <point, railwaynode=""> _nodeMap; NL: Check if a node at a specific position exits. Code: boolean function(Point arg0){ return _nodeMap.constainsKey(arg0);}</point,>	Class environment: Node root; Node get(Node x, String key, int d); NL: Does the set contain the given key Code: boolean function(String arg0){ Node loc0==get(root,arg0,0); if (loc0==null) return false; return loc0.isString; }
Q1: who is the dad of jorgen ottesen brahe?A1: otte braheQ2: who is the spouse of that one?	Q1: whose child are gio batta bellotti? A1: matteo bellotti, paola cresipi guzzo Q2: which person is married to that one?	Q1: which abstract beings have marge simpson as an offspring?A1: clancy bouvier, jacqueline bouvierQ2: who is the spouse of that one?

Input	Context-Aware Retriever	Context-Independent Retriever
Class environment: HashMap <lalr_item, lalr_item=""> _all; NL: Does the set contain a particular item Code: boolean function(lalr_item arg0){ return _all.constainsKey(arg0); }</lalr_item,>	Class environment: Map <point, railwaynode=""> _nodeMap; NL: Check if a node at a specific position exits. Code: boolean function(Point arg0){ return _nodeMap.constainsKey(arg0);}</point,>	Class environment: Node root; Node get(Node x, String key, int d); NL: Does the set contain the given key Code: boolean function(String arg0){ Node loc0==get(root,arg0,0); if (loc0==null) return false; return loc0.isString; }
Q1: who is the dad of jorgen ottesen brahe?A1: otte braheQ2: who is the spouse of that one?	Q1: whose child are gio batta bellotti? A1: matteo bellotti, paola cresipi guzzo Q2: which person is married to that one?	Q1: which abstract beings have marge simpson as an offspring? A1: clancy bouvier, jacqueline bouvier Q2: who is the spouse of that one?

Conclusion

- We present an approach to couple retrieval and meta-learning to improve context-dependent semantic parsing
- In conversational question answering and code generation tasks, our approach achieves state-of-the-art performances on CSQA and CONCODE datasets.

Thanks

Learning Method

Basic idea to learn models by jointly learning

$$p(y|x,c) = \sum_{S} p_{edit}(y|x,c,S) p_{ret}(S|x,c)$$

• Assuming that an oracle semantic parser p_{edit}^{st} provides the true conditional distribution

$$\log p(y|x,c) \geq \underbrace{E_{z \sim p_{encoder}(z|x,c)}logp_{decoder}(y|z)}_{\text{Reconstruction term}} - \underbrace{E_{\{(x',c')\} \sim p_{ret}}KL(p_{encoder}(z|x,c)||p_{encoder}(z|x',c'))}_{\text{KL-divergence}}$$

We can maximize the worst-case lower bound

$$distance = KL(p_{encoder}(z|x,c)||p_{encoder}(z|x',c')) = C_k(||\mu_x - \mu_{x'}||_2^2 + ||\mu_c - \mu_{c'}||_2^2) \le 8C_k$$

$$\log p(y|x,c) \ge E_{z \sim p_{encoder}(z|x,c)}logp_{decoder}(y|z) - distance \ge E_{z \sim p_{encoder}(z|x,c)}logp_{decoder}(y|z) - 8C_k$$

Reconstruction term