

An adaptive transfer learning perspective on classification in non-stationary environments

—— Non-parametric Regression for Online Label Shift

Henry W J Reeve Lecturer in Statistical Science, University of Bristol

Presented by Yu-Yang Qian 2024.9.12

Outline

- Problem Formulation
- Background
- Method
 - > Step 1: Reduce Regret Minimization to Parameter Estimation
 - > Step 2: Parameter Estimation using Lepski method
- ☐ Theory:
 - > Dynamic Regret: Interval Regret + Number of Intervals
- Conclusion

Outline

- Problem Formulation
- Background
- Method
 - > Step 1: Reduce Regret Minimization to Parameter Estimation
 - > Step 2: Parameter Estimation using Lepski method
- ☐ Theory:
 - > Dynamic Regret: Interval Regret + Number of Intervals
- Conclusion

- ☐ Two stages: offline & online
 - Offline stage: a lot of labeled data
 - > Online stage: unlabeled data stream (one sample each round)

- Assumption 1: Online Label shift (OLS)
 - The conditional $\mathcal{D}_t(\mathbf{x} \mid y)$ is *identical* throughout the process.
 - $\mathcal{D}_0(y) > 0$ for any $y \in \mathcal{Y}$.

- ☐ Assumption 1: Online Label shift (OLS)
 - The conditional $\mathcal{D}_t(\mathbf{x} \mid y)$ is identical throughout the process.
 - $\mathcal{D}_0(y) > 0$ for any $y \in \mathcal{Y}$.
- Assumption 2: Temporal smoothness (informal)

There exists $m \in [t]$, a smooth function g and a smoothness parameter λ such that for all $\ell \in \{t-m,\ldots,t\}$,

$$|\pi_t - \pi_{t-l}| \le \lambda$$
 where $\pi_t \triangleq \Pr(y_t = 1)$.

i.e., the label prior changes **smoothly** in the interval I = [t - m, t].

Certainly holds for
$$\lambda = V_{\mathcal{I}} = \sum_{\tau=t-m}^{t} |\pi_{\tau} - \pi_{\tau-1}|$$

lacksquare Goal: learn a classifier $\widehat{h_t}: \mathcal{X} \mapsto \{0,1\}$ to minimize dynamic regret:

$$\mathbf{Reg}_{T}^{\mathbf{d}}(\{R_{t}, h_{t}^{\star}\}_{t=1}^{T}) \triangleq \sum_{t=1}^{T} R_{t}(\widehat{h}_{t}) - \sum_{t=1}^{T} R_{t}(h_{t}^{\star})$$

where
$$R_t(h) = \Pr(h(\mathbf{x}_t) \neq y_t)$$
.

Previous method for OLS

- **□** ATLAS [Bai et al., 2022]: Unbiased estimator + Online Ensemble:
 - > Construct unbiased gradient, then online gradient descent
- Restart-based [Qian et al., 2024]: Previous Online Algorithm + Explicit Partition:
 - Achieve a good regret in stationary interval, restart to find optimal partition
- □ FLH-FTL [Baby et al., 2023]: Adaptive Regret + Implicit Partition (only in analysis):
 - > Achieve a good regret in **stationary** interval, **implicitly** find optimal partition

All of them achieving *optimal* dynamic regrets of $\mathcal{O}(T^{\frac{2}{3}}V_T^{\frac{1}{3}})$.

where $V_T = \sum_{t=2}^{T} |\pi_t - \pi_{t-1}|$ is the class-prior variation.

This paper: A totally statistical way

- ☐ All three method somehow need "models" for classification.
 - ➤ Need to impose prior on model structure
 - > e.g., linear model, logistic regression, reweighting the initial model

- ☐ This paper takes a totally *different* view:
 - > Non-parametric Regression to solve Online Label Shift
 - > A totally **statistical** method

☐ In the end, we will see how this method *coincident* with adaptive reg.

Outline

- Problem Formulation
- Background
- Method
 - > Step 1: Reduce Regret Minimization to Parameter Estimation
 - > Step 2: Parameter Estimation using Lepski method
- ☐ Theory:
 - > Dynamic Regret: Interval Regret + Number of Intervals
- Conclusion

Some History Bits: Non-parametric Regression

□ Non-parametric Regression: estimating *certain parameters*

> An offline setting: observe a batch of sampled data.

Underlying (unknown) oracle labels: $\theta_i = \mathbb{E}(Y \mid X = X_i)$. For simplicity, $X_i = i$.

We can only obeserve i.i.d. samples $(X_i, Y_i) \in \mathbb{R}^d \times \mathbb{R}, i = 1, \dots, T$,

$$Y_i \sim \mathcal{D}_i, \quad i = 1, \dots, T$$

Goal: minimize ground-truth distributions' loss: $\min \sum_{i=1}^{T} \mathbb{E}_{Y \sim \mathcal{D}_i} (f(X_i) - Y)^2$

Some History Bits: Non-parametric Regression?

Underlying (unknown) oracle labels: $\theta_i = \mathbb{E}(Y \mid X = X_i)$. For simplicity, $X_i = i$.

We can only obeserve i.i.d. samples $(X_i, Y_i) \in \mathbb{R}^d \times \mathbb{R}, i = 1, \dots, T$,

$$Y_i \sim \mathcal{D}_i, \quad i = 1, \dots, T$$

Goal: minimize ground-truth distributions' loss: $\min \sum_{i=1}^{T} \mathbb{E}_{Y \sim \mathcal{D}_i} (f(X_i) - Y)^2$

- \Box f can be KNN, spline, local smoothing, historical averaging...
- Still have 'parameter' in the model, why called non-parametric?
 - > 'non-parametric' does not mean we use no parameters in prediction model
 - but mean we impose no assumption on data generation
 - \triangleright OTOH, parametric regression explicitly assume generation function on Y_i

History of Lepski method

- Lepski method is first introduced in 1997 [Lepski and Spokoiny, 1997]
- ☐ Goal: handle **non-parametric regression** tasks.
- Key steps (select the optimal trade-off between bias and variance):
 - ➤ Increasing the estimator's *scale* (e.g., use more historical data for average, more samples for KNN)
 - ➤ The selection of the *optimal scale* is by checking the error bar (e.g., check its error on current data)
 - > Once the error bar is **reached**, stop and output

History of Lepski method

- Lepski method is first introduced in 1997 [Lepski and Spokoiny, 1997]
- ☐ Goal: handle **non-parametric regression** tasks.

- ☐ It is now be applied for many areas, especially *transfer learning*
 - Mostly offline (one-stage) transfer learning
 - ➤ For example, [Cai and Wei, 2019]: weighted KNN (of increasing source data size) for transfer learning

☐ This paper seems to be the first to apply it to online learning problem.

Outline

- Problem Formulation
- Background
- Method
 - > Step 1: Reduce Regret Minimization to Parameter Estimation
 - > Step 2: Parameter Estimation using Lepski method
- ☐ Theory:
 - > Dynamic Regret: Interval Regret + Number of Intervals
- Conclusion

Method Overview

- Build entirely upon statistical method:
 - > Reduce the Regret Minimization to Parameter Estimation
 - > Estimate density ratio by non-parametric regression
 - > Prove that algorithm can perform well in any *stationary intervals*
 - > Find the optimal partition *implicitly* (only in analysis)

$$\mathbf{Reg}_T^\mathbf{d} = \sum_{i=1}^J \mathbf{Reg}_{\mathcal{I}_i}$$
 intervals: $\{\mathcal{I}_1, \mathcal{I}_2, \dots, \mathcal{I}_J\}$

Step 1: Reduce Regret Minimization to Parameter Estimation

■ Reduce the risk to:

Lemma 1. Suppose $h: \mathcal{X} \to \{0,1\}$ is a classifier. Then,

$$R_t(h) = \pi_t + \int h(1 - \pi_t - \eta) d(\nu_0 + \nu_1)$$

where $\pi_t = \Pr(y_t = 1), \nu_0 = \mathcal{D}(\mathbf{x} \mid y = 0), \nu_1 = \mathcal{D}(\mathbf{x} \mid y = 1), \eta(\mathbf{x}) = \frac{\nu_1(\mathbf{x})}{\nu_0(\mathbf{x}) + \nu_1(\mathbf{x})}$

$$h_t^*(\mathbf{x}) = 1 \{1 - \eta(\mathbf{x}) - \pi_t < 0\} = 1 \{\eta(\mathbf{x}) + \pi_t > 1\}$$

To this end, we reduce instantaneous risk into a parameter estimation problem.

Step 1: Reduce Regret Minimization to Parameter Estimation

$$R_t(h) = R_t(h_t^{\star}) + \int_{\{h \neq h_t^{\star}\}} |1 - \pi_t - \eta| \, d(\nu_0 + \nu_1)$$
 where $\pi_t = \Pr(y_t = 1), \nu_0 = \mathcal{D}(\mathbf{x} \mid y = 0), \nu_1 = \mathcal{D}(\mathbf{x} \mid y = 1), \eta(\mathbf{x}) = \frac{\nu_1(\mathbf{x})}{\nu_0(\mathbf{x}) + \nu_1(\mathbf{x})}$

Proof of Lemma 1. By decomposing $R_t(h)$, we have

$$R_t(h) = \pi_t \int (1-h)d\nu_1 + (1-\pi_t) \int hd\nu_0 = \pi_t + \int hd\left\{(1-\pi_t)\nu_0 - \pi_t\nu_1\right\}$$

$$= \pi_t + 2 \int h\left\{(1-\pi_t)(1-\eta) - \pi_t\eta\right\} d\nu_{1/2} = \pi_t + 2 \int h(1-\pi_t-\eta)d\nu_{1/2}$$
where $\left(\nu_{1/2} = \frac{\nu_1}{2(\nu_0+\nu_1)}\right)$

Thus, with $h_t^{\star}(\mathbf{x}) = \mathbb{1} \left\{ \eta(\mathbf{x}) + \pi_t > 1 \right\}$ we have

$$R_t(h) - R_t(h_t^*) = 2 \int (h - h_t^*) (1 - \pi_t - \eta) d\nu_{1/2} = 2 \int_{\{h \neq h_t^*\}} |1 - \pi_t - \eta| d\nu_{1/2} \qquad \Box$$

Step 2.1: Estimating Conditional Distribution

$$\pi_t = \Pr(y_t = 1),$$

$$\nu_0 = \mathcal{D}(\mathbf{x} \mid y = 0),$$

$$\nu_1 = \mathcal{D}(\mathbf{x} \mid y = 1),$$

$$\eta(\mathbf{x}) = \frac{\nu_1(\mathbf{x})}{\nu_0(\mathbf{x}) + \nu_1(\mathbf{x})},$$

$$h_t^{\star}(\mathbf{x}) = \mathbb{1}\left\{\eta(\mathbf{x}) + \pi_t > 1\right\}, \quad h_t(\mathbf{x}) = \mathbb{1}\left\{\widehat{\boldsymbol{\eta}}(\mathbf{x}) + \widehat{\pi}_t > 1\right\},$$

- Next, we estimate conditional distribution $\eta(\mathbf{x})$:
 - > 1. Roadmap: build a confidence interval;

$$\widehat{U}_b(q,\widetilde{\varepsilon}) \triangleq \frac{8\left(\sqrt{\widetilde{\varepsilon}\sigma^2(q) + \widetilde{\varepsilon}^2} + \{1 - 2q\}\widetilde{\varepsilon}\right)}{3(1 + 2\widetilde{\varepsilon})}$$

 \triangleright 2. Use offline data to estimate v_0 and v_1 , therefore estimate η ;

$$\widehat{\nu}_{y,\omega,\delta}(A) \triangleq \begin{cases} \widehat{\nu}_y(A) - \widehat{\mathbf{U}} \left(1 - \widehat{\nu}_y(A), n_y, \delta\right) & \text{if } \omega = -1 \\ \widehat{\nu}_y(A) + \widehat{\mathbf{U}} \left(\widehat{\nu}_y(A), n_y, \delta\right) & \text{if } \omega = 1 \end{cases} \qquad \widehat{\eta}(A) \triangleq \left(\left(\frac{\widehat{\nu}_{1,\omega,\delta}(A)}{\widehat{\nu}_{0,-\omega,\delta}(A) + \widehat{\nu}_{1,\omega,\delta}(A)}\right) \vee 0 \right) \wedge 1$$

Step 2.1: Estimating Conditional Distribution

$$\pi_t = \Pr(y_t = 1),$$

$$\nu_0 = \mathcal{D}(\mathbf{x} \mid y = 0),$$

$$\nu_1 = \mathcal{D}(\mathbf{x} \mid y = 1),$$

$$\eta(\mathbf{x}) = \frac{\nu_1(\mathbf{x})}{\nu_0(\mathbf{x}) + \nu_1(\mathbf{x})},$$

$$h_t^{\star}(\mathbf{x}) = \mathbb{1}\left\{\eta(\mathbf{x}) + \pi_t > 1\right\}, \quad h_t(\mathbf{x}) = \mathbb{1}\left\{\widehat{\eta}(\mathbf{x}) + \widehat{\pi}_t > 1\right\},$$

- \blacksquare Next, we estimate conditional distribution $\eta(\mathbf{x})$:
 - ➤ 3. Theoretical Guarantee: using *Dvoretzky-Kiefer-Wolfowitz-Massart* type concentration inequality:

Lemma 2. With probability at least $1 - \delta$, the estimated conditioal distribution $\widehat{\eta}$ has the following guarantee:

$$|\widehat{\eta}(x) - \eta(x)| \le 14 \left(\left\{ \theta^{\frac{1}{\beta}} \varepsilon_{\delta}^{\mathrm{il}}(\breve{n}) \right\}^{\frac{\beta}{2\beta + 1}} \vee \sqrt{\varepsilon_{\delta}^{\mathrm{il}}(\breve{n})} \right) = \widetilde{\mathcal{O}}(\sqrt{\frac{1}{|S_0|}})$$

Details are omitted, as Step 2.1 is a standard statistical learning.

$$\pi_t = \Pr(y_t = 1),$$

$$\nu_0 = \mathcal{D}(\mathbf{x} \mid y = 0),$$

$$\nu_1 = \mathcal{D}(\mathbf{x} \mid y = 1),$$

$$\eta(\mathbf{x}) = \frac{\nu_1(\mathbf{x})}{\nu_0(\mathbf{x}) + \nu_1(\mathbf{x})},$$

$$h_t^{\star}(\mathbf{x}) = \mathbb{1}\left\{\eta(\mathbf{x}) + \pi_t > 1\right\}, \quad h_t(\mathbf{x}) = \mathbb{1}\left\{\widehat{\eta}(\mathbf{x}) + \widehat{\pi}_t > 1\right\},$$

- Then, we estimate the label prior $\widehat{\pi}_t$:
 - ➤ Remember in ATLAS [Bai et al., 2022], BBSE is used to estimate the label prior:

$$\widehat{\pi}_t = C_0^{-1} \cdot \widehat{\pi}_{\widehat{y}_t}$$

where
$$[C_0]_{i,j} \triangleq \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_0(\mathbf{x}|y=j)} \left[\Pr\left(f_0(\mathbf{x}) = i \right) \right], \quad \left[\widehat{\pi}_{\widehat{y}_t} \right]_j = 1/n_t \cdot \sum_{\mathbf{x} \in S_t} \left[f_0(\mathbf{x}) \right]_j$$

$$f_0 : \mathcal{X} \mapsto \Delta_2 \text{ is the offline prediction model.}$$

 \triangleright However, there is no **offline model f**₀ here, we only have offline data.

$$h_t^{\star}(\mathbf{x}) = \mathbb{1} \{ \eta(\mathbf{x}) + \pi_t > 1 \}, \quad h_t(\mathbf{x}) = \mathbb{1} \{ \widehat{\eta}(\mathbf{x}) + \widehat{\pi}_t > 1 \},$$

$$\pi_t = \Pr(y_t = 1),$$

$$\nu_0 = \mathcal{D}(\mathbf{x} \mid y = 0),$$

$$\nu_1 = \mathcal{D}(\mathbf{x} \mid y = 1),$$

$$\eta(\mathbf{x}) = \frac{\nu_1(\mathbf{x})}{\nu_0(\mathbf{x}) + \nu_1(\mathbf{x})},$$

$$\mu_t = \mathcal{D}_t(\mathbf{x})$$

- Then, we estimate the label prior $\widehat{\pi}_t$:
 - \triangleright We define $\mu_t = \mathcal{D}_t(\mathbf{x})$, therefore

$$\mu_t = (1 - \pi_t)\nu_0 + \pi_t\nu_1$$

$$\Longrightarrow \quad \pi_t = \frac{\mu_t - \nu_0}{\nu_1 - \nu_0}$$

 \triangleright v_0 and v_1 has already been estimated before, therefore we **focus on** μ_t

$$\pi_t = \Pr(y_t = 1),$$

$$\nu_0 = \mathcal{D}(\mathbf{x} \mid y = 0),$$

$$\nu_1 = \mathcal{D}(\mathbf{x} \mid y = 1),$$

$$\eta(\mathbf{x}) = \frac{\nu_1(\mathbf{x})}{\nu_0(\mathbf{x}) + \nu_1(\mathbf{x})},$$

$$\mu_t = \mathcal{D}_t(\mathbf{x})$$

- \square v_0 and v_1 has already been estimated before, therefore we **focus on** μ_t
 - \triangleright We estimate μ_t through weighted combination of history:

$$\widehat{\mu}_t(\mathbf{x}) \triangleq \sum_{i=1}^q \underline{w(i,q)} \cdot \widehat{D}_{t-i}(X = \mathbf{x})$$

q: history length weight of history

history density

weight of history is defined by Legendre polynomials (i.e., predefined orthogonal bases):

$$\mathcal{L}_{k}(z) := \frac{\sqrt{2k+1}}{k!} \frac{d^{k}}{dz^{k}} \{z(z-1)\}^{k}$$

$$\pi_t = \Pr(y_t = 1),$$

$$\nu_0 = \mathcal{D}(\mathbf{x} \mid y = 0),$$

$$\nu_1 = \mathcal{D}(\mathbf{x} \mid y = 1),$$

$$\eta(\mathbf{x}) = \frac{\nu_1(\mathbf{x})}{\nu_0(\mathbf{x}) + \nu_1(\mathbf{x})},$$

$$\mu_t = \mathcal{D}_t(\mathbf{x})$$

- \square \vee_0 and \vee_1 has already been estimated before, therefore we **focus on** μ_t
 - \triangleright We estimate μ_t through weighted combination of history:

$$\widehat{\mu}_t(\mathbf{x}) \triangleq \sum_{i=1}^q \underline{w(i,q)} \cdot \widehat{D}_{t-i}(X = \mathbf{x})$$
weight of history history density

q: history length weight of history

> Key: How to determine the history length q?

Lepski-based method

 $\pi_t = \Pr(y_t = 1),$ $\nu_0 = \mathcal{D}(\mathbf{x} \mid y = 0),$ $\nu_1 = \mathcal{D}(\mathbf{x} \mid y = 1),$ $\eta(\mathbf{x}) = \frac{\nu_1(\mathbf{x})}{\nu_0(\mathbf{x}) + \nu_1(\mathbf{x})},$ $\mu_t = \mathcal{D}_t(\mathbf{x})$

> Key: How to determine the history length q?

Increase scale Lepski-based method

> We define the weight's complexity as:

$$\mathbb{S}_{n,\delta}(q) := \|w(q)\|_2 \sqrt{2\log\left(\frac{\pi^2q^2}{\delta}\right)}$$
 where $\|w(q)\|_2^2 \triangleq \sum_{i=1}^q w(i,q)^2$.

We *choose* \widehat{q} as the maximal value of $q \in \left\{8\alpha^2 \left(\alpha+1\right)^2, \ldots, n\right\}$ such that

$$|\widehat{\mu}_n^q(f) - \widehat{\mu}_n^{q_b}(f)| \le 2 \left\{ \mathbb{S}_{n,\delta}(q) + \mathbb{S}_{n,\delta}(q_b) \right\}$$

for all $q_b \in \{8\alpha^2 (\alpha + 1)^2, \dots, q - 1\}$. (where α is a constant about temporal smoothness)

 $\pi_t = \Pr(y_t = 1),$ $\nu_0 = \mathcal{D}(\mathbf{x} \mid y = 0),$ $\nu_1 = \mathcal{D}(\mathbf{x} \mid y = 1),$ $\eta(\mathbf{x}) = \frac{\nu_1(\mathbf{x})}{\nu_0(\mathbf{x}) + \nu_1(\mathbf{x})},$ $\mu_t = \mathcal{D}_t(\mathbf{x})$

We **choose** \widehat{q} as the maximal value of $q \in \left\{8\alpha^2 \left(\alpha+1\right)^2, \ldots, n\right\}$ such that

$$|\widehat{\mu}_n^q(f) - \widehat{\mu}_n^{q_b}(f)| \le 2 \left\{ \mathbb{S}_{n,\delta}(q) + \mathbb{S}_{n,\delta}(q_b) \right\}$$

for all $q_b \in \left\{8\alpha^2 (\alpha+1)^2, \ldots, q-1\right\}$. (where α is a constant about temporal smoothness)

Corollary 6. Suppose that Assumption 1 and 2 hold. For all $\delta \in (0,1)$ we have

$$\mathbb{P}\left\{\frac{\left|\widehat{\pi}_{t} - \pi_{t}\right| \left|\left(\nu_{1} - \nu_{0}\right)\right|}{\mathbb{J}_{\delta}\left(\mu_{t}\right) + 3\max_{y \in \{0,1\}}\left|\left(\widehat{\nu}_{y}^{+} - \nu_{y}\right)\right|} > 1 \middle| \mathcal{D}_{0}, \mathcal{D}_{1}\right\} \leq \frac{\delta}{3}$$

$$|\widehat{\pi}_t - \pi_t| \leq \widetilde{O}\left(\frac{1}{\sqrt{t}} + \lambda\right)$$
 for t in smooth intervals (Asp. 2)

 $\pi_t = \Pr(y_t = 1),$ $\nu_0 = \mathcal{D}(\mathbf{x} \mid y = 0),$ $\nu_1 = \mathcal{D}(\mathbf{x} \mid y = 1),$ $\eta(\mathbf{x}) = \frac{\nu_1(\mathbf{x})}{\nu_0(\mathbf{x}) + \nu_1(\mathbf{x})},$ $\mu_t = \mathcal{D}_t(\mathbf{x})$

We **choose** \widehat{q} as the maximal value of $q \in \left\{8\alpha^2 \left(\alpha+1\right)^2, \ldots, n\right\}$ such that

$$|\widehat{\mu}_n^q(f) - \widehat{\mu}_n^{q_b}(f)| \le 2 \left\{ \mathbb{S}_{n,\delta}(q) + \mathbb{S}_{n,\delta}(q_b) \right\}$$

for all $q_b \in \left\{8\alpha^2 (\alpha+1)^2, \ldots, q-1\right\}$. (where α is a constant about temporal smoothness)

Assumption 2. There exists $m \in [t]$, a smooth function g and a smoothness parameter λ such that for all $\ell \in \{t-m,\ldots,t\}$,

$$|\pi_t - \pi_{t-l}| \le \lambda$$

where
$$\pi_t \triangleq \Pr(y_t = 1)$$
.

$$|\widehat{\pi}_t - \pi_t| \leq \widetilde{O}\left(\frac{1}{\sqrt{t}} + \lambda\right)$$
 for t in smooth intervals (Asp. 2)

$$\pi_t = \Pr(y_t = 1),$$

$$\nu_0 = \mathcal{D}(\mathbf{x} \mid y = 0),$$

$$\nu_1 = \mathcal{D}(\mathbf{x} \mid y = 1),$$

$$\eta(\mathbf{x}) = \frac{\nu_1(\mathbf{x})}{\nu_0(\mathbf{x}) + \nu_1(\mathbf{x})},$$

$$\mu_t = \mathcal{D}_t(\mathbf{x})$$

Corollary 6. Suppose that Assumption 1 and 2 hold. For all $\delta \in (0,1)$ we have

$$\mathbb{P}\left\{ \left. \frac{\left|\widehat{\pi}_{t} - \pi_{t}\right| \left|\left(\nu_{1} - \nu_{0}\right)\right|}{\mathbb{J}_{\delta}\left(\mu_{t}\right) + 3\max_{y \in \{0,1\}} \left|\left(\widehat{\nu}_{y}^{+} - \nu_{y}\right)\right|} > 1 \right| \mathcal{D}_{0}, \mathcal{D}_{1} \right\} \leq \frac{\delta}{3}$$

$$|\widehat{\pi}_t - \pi_t| \leq \widetilde{O}\left(\frac{1}{\sqrt{t}} + \lambda\right)$$
 for t in smooth intervals (Asp. 2)

- (1) Decompose history distribution using a set of orthogonal Proof Sketch. bases (Legendre polynomials) using Tayler expansion
 - (2) The historical length is tunned to be **optimal** so that it achieve the minimal error (estimated bias + variance)

If interested, you can check the paper's Section 9...

Outline

- Problem Formulation
- Background
- Method
 - > Step 1: Reduce Regret Minimization to Parameter Estimation
 - > Step 2: Parameter Estimation using Lepski method
- ☐ Theory:
 - > Dynamic Regret: Interval Regret + Number of Intervals
- Conclusion

Dynamic Regret

Remember:
$$h_t^{\star}(\mathbf{x}) = \mathbb{1} \{ \eta(\mathbf{x}) + \pi_t > 1 \}, \quad h_t(\mathbf{x}) = \mathbb{1} \{ \widehat{\eta}(\mathbf{x}) + \widehat{\pi}_t > 1 \},$$

Therefore, for an interval $\mathcal{I}_i = [s, e]$ that satisfy Assumption 2 with λ :

$$\mathbf{Reg}_{\mathcal{I}_i} = \sum_{t=s}^{e} R_t(h) - \sum_{t=s}^{e} R_t(h_t^*) = \frac{|\mathcal{I}_i|}{\sqrt{|S_0|}} + \sum_{t=s}^{e} \frac{1}{\sqrt{t-s}} + \lambda |\mathcal{I}_i|$$

$$(\leq 2\sqrt{|\mathcal{I}_i|} - 1)$$

Dynamic Regret: sum of interval regret

$$\mathbf{Reg}_{\mathcal{I}_i} \leq \widetilde{\mathcal{O}}\left(rac{|\mathcal{I}_i|}{\sqrt{|S_0|}} + \lambda |\mathcal{I}_i| + \sqrt{|\mathcal{I}_i|}
ight)$$

Suppose there are J intervals: $\{\mathcal{I}_1, \mathcal{I}_2, \dots, \mathcal{I}_J\}$

$$\mathbf{Reg}_{T}^{\mathbf{d}} = \sum_{i=1}^{J} \mathbf{Reg}_{\mathcal{I}_{i}} = \frac{T}{\sqrt{|S_{0}|}} + \lambda T + \sum_{i=1}^{J} \sqrt{|\mathcal{I}_{i}|}$$

$$\leq \frac{T}{\sqrt{|S_{0}|}} + \lambda T + \sqrt{J} \left(\sum_{i=1}^{J} \left(\sqrt{|\mathcal{I}_{i}|}\right)^{2}\right)^{1/2}$$

$$= \frac{T}{\sqrt{|S_{0}|}} + \lambda T + \sqrt{JT}$$

Dynamic Regret: control number of intervals J

$$\mathbf{Reg}_T^{\mathbf{d}} = \sum_{i=1}^{J} \mathbf{Reg}_{\mathcal{I}_i} = \frac{T}{\sqrt{|S_0|}} + \lambda T + \sqrt{JT}$$

Consider the simple case of same λ in all intervals:

Assumption 2. There exists $m \in [t]$, a smooth function g and a smoothness parameter λ such that for all $\ell \in \{t-m,\ldots,t\}$,

$$|\pi_t - \pi_{t-l}| \le \lambda$$

 $|\pi_t - \pi_{t-l}| \le \lambda$ where $\pi_t \triangleq \Pr(y_t = 1)$.

Asp. 2 certainly holds for $\lambda = V_{\mathcal{I}_i} = \sum_{t=s}^e |\pi_t - \pi_{t-1}|$, therefore we choose $\lambda \leq V_{\mathcal{I}_i}$

$$\lambda J \le \sum_{j=1}^{J} V_{\mathcal{I}_j} = V_T \quad \Longrightarrow \quad J \le \frac{V_T}{\lambda}$$

Dynamic Regret: finish the proof

$$\mathbf{Reg}_T^{\mathbf{d}} = \sum_{i=1}^J \mathbf{Reg}_{\mathcal{I}_i} \leq \frac{T}{\sqrt{|S_0|}} + \lambda T + \sqrt{\frac{V_T T}{\lambda}}$$

Finally, tune λ to get the regret bound:

$$\begin{aligned} \mathbf{Reg}_{T}^{\mathbf{d}} &= \sum_{i=1}^{J} \mathbf{Reg}_{\mathcal{I}_{i}} \leq \frac{T}{\sqrt{|S_{0}|}} + \lambda T + \frac{1}{2} \sqrt{\frac{V_{T}T}{\lambda}} + \frac{1}{2} \sqrt{\frac{V_{T}T}{\lambda}} \\ &\leq \mathcal{O}\left(\frac{T}{\sqrt{|S_{0}|}} + (V_{T}T^{2})^{1/3}\right) \qquad \left(\lambda = V_{T}^{1/3}T^{-1/3}, \quad J = T^{1/3}V_{T}^{2/3}\right) \\ &\leq \mathcal{O}\left(\max\left(\frac{T}{\sqrt{|S_{0}|}} + (V_{T})^{1/3}T^{2/3}, \sqrt{T}\right)\right) \qquad (J \geq 1) \end{aligned}$$

Compared with FLH-FTL [Baby et al., 2023]:

- ☐ Get a good regret in any interval (by Lepski method)
- ☐ Implicit find the optimal partition (only in analysis)

- ☐ Get a good regret in any interval (by Strongly Adaptive Methods)
- ☐ Implicit find the optimal partition (only in analysis)

Getting the adaptive regret using non-parametric method!

If fact: if check partition in this paper:

number of intervals: $J = T^{1/3}V_T^{2/3}$

Regret in each interval: $\mathcal{O}(\sqrt{\mathcal{I}_i} + 1)$

Matches with Baby's best partition!

Lemma 5 (key partition) Initialize $Q \leftarrow \Phi$. Starting from time 1, spawn a new bin $[i_s, i_t]$ whenever $\sum_{j=i_s+1}^{i_s+1} |u_j-u_{j-1}| > B/\sqrt{n_i}$, where $n_i=i_t-i_s+2$. Add the spawned bin $[i_s,i_t]$ to Q. Consider the following post processing routine.

- 1. Initialize $\mathcal{P} \leftarrow \Phi$.
- 2. *For* $i \in [|Q|]$:
 - if $u_{i_t} = u_{i_t+1}$:
 - (a) Let p be the largest time point with $u_{p:i_t}$ being constant and let q be the smallest time point with $u_{i_t+1:q}$ being constant.
 - (b) Add bin $[i_s, p-1]$ to \mathcal{P} .
 - (c) If $(i+1)_t > q$ then add [p,q] to \mathcal{P} and set $(i+1)_s \leftarrow q+1$.
 - (d) Goto Step 2.
 - Add $[i_s, i_t]$ to \mathcal{P} . Goto Step 2.

Let $M:=|\mathcal{P}|$. We have $M=O\left(1\vee n^{1/3}C_n^{2/3}B^{-2/3}\right)$. Further for any bin $[i_s,i_t]\in\mathcal{P}$, it holds that $\sum_{j=i_s+1}^{i_t}|u_j-u_{j-1}|\leq B/\sqrt{n_i}$ where $n_i=i_t-i_s+1$.

Compared with FLH-FTL [Baby et al., 2023]:

- Pros
 - ➤ No diameter assumption

Truly non-parametric, parameter-free

- Cons
 - ➤ Very costly: computational and storage is O(T), can hardly be runnable in practice
 - ➤ Need to derive specific method for specific problem structure (可能一旦不是OLS/密度估计问题, 就很难再有良好保障)

Take home message

- A new view of handling non-stationary environments:
 - ➤ A non-parametric regression method (Lepski method) can also get an strongly adaptive regret
 - > Use *implicit partition* (only in analysis) to get the optimal dynamic regret
- May have a chance to accelerate:
 - ➤ Lazy update the summation of history margin distribution
 - > A segment tree to get the sum of history intervals
- Thanks!

May achieve O(log T) complexity each round