Chi-Squared Distribution, t-distribution, CI for means

3.2, 5.5, 7.1

Today's topics

Review: Point estimators, Sample Variance

New terminology: Indicator functions, Order Statistics

New topics:

- Chi-squared Distribution
 - Degrees of freedom
 - Overview, relation to Normal distribution
 - Pdf and relation to Gamma distribution
- t-distribution
 - Definition
 - Uses in statistics
- Confidence Interval for means
 - Example: calculating s² and creating a CI for the mean

Review

- MLE
- MOM
- Bias
- Sample mean and Sample Variance

Sample variance, s²

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\chi_{i} - \overline{\chi})^{2}$$

Suppose we draw n iid observations from a distribution with mean μ and variance σ^2 .

Ideally, we would estimate σ^2 with $\frac{1}{n}\sum (x_i - \mu)^2$.

Problem: μ is usually unknown!

We can try replacing μ with the \bar{x} , giving $\frac{1}{n}\sum (x_i - \bar{\chi})^2$.

Unfortunately, this tends to underestimate σ^2 .

To compensate, we divide by n-1 instead.

Degrees of Freedom

- The degrees of freedom is the number of values in the final calculation of a statistic or parameter that are free to vary.
- In other words: the number of observations that contain new information.

DF for calculating sample mean

Suppose we have the following sample: 10, 20, 30, 40

We want to calculate the average.

All four numbers are free to vary, so df = 4

$$\bar{x} = 25$$

don't overthink this !

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\chi_{i} - \overline{\chi})^{2}$$

DF for calculating sample variance:

In the sum, we have $(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2 + (x_4 - \bar{x})^2$.

If I am going to rely on the sample average to calculate the sample variance, it is going to "cost me" one degree of freedom.

Using the same sample: 10, 20, 30, 40 $\bar{\chi} = 25$

Remember:
$$(x_1 - \bar{x}) + (x_2 - \bar{x}) + (x_3 - \bar{x}) + (x_4 - \bar{x}) = 0$$
using $\bar{x} = 2^5$, $0,20,30$ 40
not free

Chi-squared distribution, χ^2 (overview)

The Chi-squared distribution is an important distribution that is frequently used in statistical inference.

Comes from summing the squares of Standard Normal RVs.

- If Z ~ N(0,1), then Z² follows a Chi-Squared distribution with one degree of freedom. $Z^2 \sim \chi^2_{(1)}$
- If Z_1 , Z_2 ,... Z_k , $\sim N(0,1)$, then $Z_1^2 + Z_2^2 + ... + Z_k^2 \sim \chi^2_{(k)}$

Chi-squared distribution $X \sim \chi$

f(x) =
$$\frac{1}{\Gamma(\frac{r}{2})2^{r/2}}x^{\frac{r}{2}-1}e^{-x/2}$$
, 0 < x < ∞

We can see from this pdf that X also follows another distribution! $X \sim (\alpha = 0.01)$

$$M_x = A\theta = \left(\frac{r}{2}\right) \cdot \lambda = r$$

$$M_{\chi} = A\Theta = \left(\frac{r}{2}\right) \lambda = r$$

$$O_{\chi} = A\Theta = \left(\frac{r}{2}\right)^{2} = 2r$$

Gamma and Chi-Squared

The Chi-Squared distribution is also a special case of the Gamma distribution where $\theta = 2$.

If
$$X \sim Gamma(\alpha, 2)$$
, $X \sim \chi^2_{2\alpha}$

Example:

X
$$\sim \chi_r^2$$
 \sim Gamma($\alpha = r/2, \ \theta = 2$)

χ^2 Table

Let $X \sim \chi^2_{(6)}$

Find P[X < 14.45]. *Ans. 0.975*

Find P[X < 11]. (give a range) Ans. 0.9 < p < 0.95

χ^2 Table

 $X \sim \chi^2_{(5)}$, find two constants, a and b, such that P[a < X < b] = 0.95.

Ans. a=0.831, b=12.83 Or a=0, b = 11.07 Or a = , b =

	$P(X \le x)$							
	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990
r	$\chi^2_{0.99}(r)$	$\chi^2_{0.975}(r)$	$\chi^2_{0.95}(r)$	$\chi^2_{0.90}(r)$	$\chi^2_{0.10}(r)$	$\chi^2_{0.05}(r)$	$\chi^2_{0.025}(r)$	$\chi^2_{0.01}(r)$
1	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34
4	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28
5	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09
6	0.872	1.237	1.635	2.204	10.64	12.59	14.45	16.81
7	1.239	1.690	2.167	2.833	12.02	14.07	16.01	18.48
8	1.646	2.180	2.733	3.490	13.36	15.51	17.54	20.09
9	2.088	2.700	3.325	4.168	14.68	16.92	19.02	21.67
10	2.558	3.247	3.940	4.865	15.99	18.31	20.48	23.21

t distribution: When do we need it?

If σ is known:

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

If σ is unknown: Use \boldsymbol{s} instead of σ

$$T = \frac{\bar{X} - \mu}{s / \sqrt{n}} \sim t_{n-1}$$

t distribution

Theorem 5.5-3

(Student's t distribution) Let

$$T = \frac{Z}{\sqrt{U/r}},$$

where Z is a random variable that is N(0,1), U is a random variable that is $\chi^2(r)$, and Z and U are independent. Then T has a t distribution with pdf

$$f(t) = \frac{\Gamma((r+1)/2)}{\sqrt{\pi r} \, \Gamma(r/2)} \frac{1}{(1+t^2/r)^{(r+1)/2}}, \qquad -\infty < t < \infty.$$

Calculating t and χ^2 properties using R

Find probability to the left:

T distribution: pt(x, df)

Chi Squared: pchisq(x, df)

Finding critical value given a probability:

T distribution: qt(p, df)

Chi Squared: qchisq(p, df)

Confidence Intervals

A $100(1-\alpha)\%$ confidence interval is a range of numbers believed to include an unknown population parameter.

- α refers to the likelihood that the true population parameter lies outside the **confidence interval**.
- Its complement, $(1-\alpha)$, is called the **confidence coefficient**.
 - It is a measure of the confidence we have that the interval contains the parameter of interest.

A 100(1- α)% CI for μ when σ is known

$$\left(\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

A 100(1- α)% CI for μ when σ is known (derivation)

$$P\left(-z_{\alpha/2} \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha/2}\right) = 1 - \alpha.$$

$$-z_{\alpha/2} \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha/2},$$

$$-z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right) \leq \overline{X} - \mu \leq z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right),$$

$$-\overline{X} - z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right) \leq -\mu \leq -\overline{X} + z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right),$$

$$\overline{X} + z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right) \geq \mu \geq \overline{X} - z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right).$$

CI example, σ known

$$\left(\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

Example 7.1-2

Let \bar{x} be the observed sample mean of five observations of a random sample from the normal distribution $N(\mu, 16)$. A 90% confidence interval for the unknown mean μ is

$$\bar{x} - 1.645\sqrt{\frac{16}{5}}, \bar{x} + 1.645\sqrt{\frac{16}{5}}$$
.

A 100(1- α)% CI for μ when σ is unknown (use s)

$$\overline{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$
.

• where the distribution, t, has df = n - 1

Example: Confidence Interval

Given the following sample: {16, 12, 18, 13, 21, 15, 8, 17}

Construct a 92% confidence interval for the true mean.

$$\bar{x} = 15$$
, $s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1} = \frac{112}{7} = 16$, $s = 4$

$$\alpha = 0.08, \alpha/2 = 0.04$$

df = n -1 = 7,
$$t_{7,0.04} = 2.046$$

CI: **15**
$$\pm$$
 2.046 $\cdot \frac{4}{\sqrt{8}}$ = (12.107, 17.893)

$\overline{x} \pm t_{\alpha/2}$	$\cdot \frac{S}{\sqrt{n}}$.
---------------------------------	------------------------------

x	$x-\overline{x}$	$(x-\overline{x})^2$
16	1	1
12	-3	9
18	3	9
13	-2	4
21	6	36
15	0	0
8	-7	49
17	2	4
	0	112