Contents

1	Эле		3
	1.1	Теорема Гаусса	3
			4
		1.1.2 Дифференциальный вид	4
	1.2		4
	1.3	Электрический диполь	4
		1.3.1 Потенциал поля диполя	5
		1.3.2 Напряженность поля диполя	5
		1.3.3 Сила действующая на диполь	5
		1.3.4 Момент сил действующих на диполь	5
		1.3.5 Энергия диполя в поле	5
2	Про	оводник в электростатическом поле	5
	2.1^{-2}		5
	2.2		5
	2.3	· · · · · · · · · · · · · · · · · · ·	6
	2.4		6
	2.5	· ·	6
			6
3	Эле	ектрическое поле в веществе	6
	3.1		6
			7
			7
	3.2	Вектор D	7
			7
	3.3	Условия на границе	7
			7
		3.3.2 Проводник - диэлектрик	7
	3.4	Поле в однородном диэлектрике	7
4	Энє	ергия электрического поля	7
	4.1	Электрическая энергия системы зарядов	7
	4.2		8
	4.3		8
			8
5	Пос	стоянный электрический ток	8
	5.1	-	8
	5.2		G
			G
	5.3		G
	5.4		g
	5.5		g

		5.5.1 Разрядка конденсатора
		5.5.2 Зарядка кондесатора
6		тнитное поле
	6.1	Сила Лоренца
	6.2	Закон Био-Савара
	6.3	Теорема Гаусса
	6.4	Теорема о циркуляции В
		6.4.1 Частные случаи
		6.4.2 Дифференциальный вид
	6.5	Сила Ампера
		6.5.1 Частные случаи
		6.5.2 Работа при перемещении контура
	6.6	Элементарный контур (магнитный диполь)
		6.6.1 Сила действующая на контур
		6.6.2 Момент сил
7	Mar	тнитное поле в веществе 12
	7.1	Намагниченность J
		7.1.1 Циркуляция
		7.1.2 Когда j'=0
	7.2	Вектор Н
		7.2.1 Связь Ј и Н
		7.2.2 Связь В и Н
	7.3	Граничные условия В и Н
		7.3.1 Преломление линий В (Н)
0	0	осительность полей 13
8		
	8.1	Простые следствия
	8.2	Инварианты
9	Эле	ктромагнитная индукция 13
	9.1	Правило Ленца
	9.2	Закон Фарадея
	9.3	Самоиндукция
		9.3.1 Исчезновение тока при размыкании цепи
		9.3.2 Установление тока при замыкании цепи
	9.4	Взаимная индукция
	9.5	Энергия магнитного поля
	9.6	Магнитная энергия двух контуров
	9.7	Энергия и силы в магнитном поле
	9.1	Oneprina in children in maintain in more
10	Упа	внения Максвелла 15
	_	Ток смещения
		Система уравнений Максвелла
		Вектор Пойнтинга. Энергия и её поток

10.3.1 Теорема Пойнтинга	16			
10.4 Импульс электромагнитного поля	16			
10.4.1 Давление электромагнитной волны	16			
10.4.2 Импульс электромагнитного поля	17			
11 Электрические колебания	17			
11.1 Уравнение колебательного контура	17			
11.1.1 Условие квазистационарности.	17			
11.1.2 Колебательный контур	17			
11.2 Свободные электрические колебания	17			
11.2.1 Свободные незатухающие колебания	17			
11.2.2 Свободные затухающие колебания	17			
11.3 Величины характеризующие затухание	18			
11.3.1 Коэффицент затухания и время релаксации	18			
11.3.2 Логарифмический декремент затухания	18			
11.3.3 Добротность	18			
11.4 Вынужденные электрические колебания	18			
11.4.1 Векторная диаграмма	19			
11.4.2 Резонансные кривые	19			
11.4.3 Резонансные кривые и добротность	19			
11.5 Переменный ток	19			
11.5.1 Полное сопротивление (импенданс)	19			
11.5.2 Мощность, выделяемая в цепи переменного тока	19			
12 Скин эффект	20			
13 Разложение Фурье				

1 Электрическое поле

$$ec{E}=krac{q}{r^3}ec{r}$$
, где $k=rac{1}{4\piarepsilon_0}=9\cdot 10^9\,{
m m}/\Phi,\; arepsilon_0=8,85\cdot 10^{-12}\,{
m m}/\Phi$

В случае непрерывного распределения заряда:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho \vec{r} dV}{r^3}$$

1.1 Теорема Гаусса

$$\Phi = \int\limits_{S} \vec{E} \vec{dS}$$

$$\oint \vec{E} \vec{dS} = \frac{1}{\varepsilon_0} q_{\text{внутр}}$$

1.1.1 Частные случаи

- Плоскость: $E = \frac{\sigma}{2\varepsilon_0\varepsilon}$
- Стена ширины d: $E = \begin{cases} \frac{\rho x}{\varepsilon_0} &, x < \frac{d}{2} \\ \frac{\rho d}{2\varepsilon_0} &, x \geq \frac{d}{2} \end{cases}$
- Цилиндр: $E = egin{cases} rac{
 ho r}{2arepsilon_0} &, r < R \\ rac{\sigma R}{arepsilon_0 r} &, r > R \end{cases}$
- IIIap: $E = \begin{cases} \frac{Qr}{4\pi\varepsilon_0 R^3} &, r < R \\ \frac{Q}{4\pi\varepsilon_0 r^2} &, r > R \end{cases}$

1.1.2 Дифференциальный вид

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

1.2 Потенциал

Теорема о циркуляции вектора Е:

$$\oint_{1}^{2} \vec{E} d\vec{l} = 0$$

Электростатическое поле является потенциальным.

$$\varphi_1 - \varphi_2 = \int_1^2 \vec{E} d\vec{l}$$

Потенциал - величина, численно равная потенциальной энергии единичного положительного заряда в данной точке.

$$-d\varphi = \vec{E}\vec{dl} \qquad \varphi = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$$

Потенциал на бесконечности $(r \to \inf)$ полагаем равным 0.

$$\vec{E} = -\nabla \varphi$$

1.3 Электрический диполь

Момент диполя:

$$\vec{p} = q\vec{l}$$

где \vec{l} направлен от - к +, q - положительный заряд

1.3.1 Потенциал поля диполя

$$\varphi = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r_+} - \frac{q}{r_-} \right) = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{r^2}$$

где θ - угол между р и г

1.3.2 Напряженность поля диполя

$$E_r = -\frac{\partial \varphi}{\partial r} = \frac{1}{4\pi\varepsilon_0} \frac{2p\cos\theta}{r^3} \qquad E_\theta = -\frac{\partial \varphi}{r\partial\theta} = \frac{1}{4\pi\varepsilon_0} \frac{p\sin\theta}{r^3}$$
$$E = \sqrt{E_r^2 + E_\theta^2} = \frac{1}{4\pi\varepsilon_0} \frac{p}{r^3} \sqrt{1 + 3\cos^2\theta}$$

В частности при $\theta=0$ и $\theta=\frac{\pi}{2}$

$$E_{\parallel} = rac{1}{4\piarepsilon_0}rac{2p}{r^3} \qquad E_{\perp} = rac{1}{4\piarepsilon_0}rac{p}{r^3}$$

1.3.3 Сила действующая на диполь

$$\vec{F} = p \frac{\partial \vec{E}}{\partial \vec{l}}$$

1.3.4 Момент сил действующих на диполь

$$M = qEl\sin\alpha = pE\sin\alpha$$
$$\vec{M} = [\vec{p} \times \vec{E}]$$

1.3.5 Энергия диполя в поле

$$W = q(\varphi_{+} - \varphi_{-}) = q \frac{\partial \varphi}{\partial l} l = -q E_{l} l = -\vec{p} \vec{E}$$

2 Проводник в электростатическом поле

2.1 Поле внутри проводника

Внутри проводника:

$$\vec{E} = 0$$
 $\rho_{\text{внутр}} = 0$ $\varphi = const$

Поверхность проводника эквипотенциальна!

2.2 Поле у поверхности проводника

$$E_n = \frac{\sigma}{\varepsilon_0}$$

где σ - локальная плотность заряда.

2.3 Силы, действующие на поверхность проводника

$$\Delta \vec{F} = \sigma \Delta S \vec{E}_0$$

где $\sigma \Delta S$ - заряд элемента, \vec{E}_0 - напряженность, создаваемая остальными зарядами.

$$E_{\sigma}=E_{0}$$
 $\vec{E}_{0}=rac{\vec{E}}{2}$ $\Delta \vec{F}=rac{\sigma \Delta S \vec{E}}{2}$ $\vec{F}_{\mathrm{e,g}}=rac{\sigma \vec{E}}{2}=rac{\sigma^{2} \vec{n}}{2 arepsilon_{0}}=rac{arepsilon_{0} E^{2} \vec{n}}{2}$

2.4 Замкнутая оболочка

Замкнутая проводящая оболочка разделяет все пространство на внешнюю и внутреннюю части, в электрическом отношении совершенно не зависящие друг от друга

2.5 Конденсатор

Для изолированного проводника:

$$C = \frac{q}{\varphi}$$

Для кондесатора:

$$C = \frac{q}{U}$$

2.5.1 Частные случаи ёмкостей

• Плоский: $C = \frac{\varepsilon_0 S}{h}$

• Сферический: $C=4\pi\varepsilon_0 \frac{ab}{a-b}$

ullet Цилиндрический: $C=rac{2\piarepsilon_0 l}{\ln(b/a)}$

3 Электрическое поле в веществе

Свзянные заряды и их поле помечаются штрихом $(q', \rho', \sigma', \vec{E}')$, сторонне поле обозначено как \vec{E}_0 .

3.1 Поляризованность Р

- дипольный момент объёма вещества

$$\vec{P} = \frac{1}{\Delta V} \sum \vec{p_i} \qquad \vec{P} = \eta \langle \vec{p} \rangle$$

Для изотропного диэлектрика:

 $ec{P}=\kappa arepsilon_0 ec{E},$ где $\kappa=arepsilon-1\,$ - диэлектрическая восприимчивость

3.1.1 Теорема Гаусса

$$\oint \vec{P} \vec{dS} = -q'_{\text{внутр}}$$

3.1.2 Граничные условия

$$P_{2n} - P_{1n} = -\sigma'$$

где индекс п означает проекцию на нормаль

3.2 Вектор D

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} \qquad \vec{D} = \varepsilon \varepsilon_0 \vec{E}$$

3.2.1 Теорема Гаусса

$$\oint \vec{D} \vec{dS} = q_{\text{внутр}}^{\text{сторонние}}$$

- 3.3 Условия на границе
- 3.3.1 Два диэлектрика

$$\begin{split} \oint \vec{E} \vec{dS} &= 0 \qquad \oint \vec{D} \vec{dS} = q_{\text{внутр}} \\ E_{1\tau} &= E_{2\tau} \qquad D_{2n} - D_{1n} = \sigma = 0 \\ \frac{\tan \alpha_2}{\tan \alpha_1} &= \frac{\varepsilon_2}{\varepsilon_1} \end{split}$$

3.3.2 Проводник - диэлектрик

$$D_n = \sigma \Rightarrow \sigma' = -\frac{\varepsilon - 1}{\varepsilon}\sigma$$

3.4 Поле в однородном диэлектрике

$$ec{E} = rac{ec{E}_0}{arepsilon} \qquad ec{D} = ec{D}_0 \qquad ec{E}' = -ec{P}/arepsilon_0$$

- 4 Энергия электрического поля
- 4.1 Электрическая энергия системы зарядов

$$\delta A = -dW \qquad W = \frac{1}{2} \sum q_i \varphi_i$$

где q_i - i-й заряд системы, φ_i - потенциал, создаваемый в месте нахождения i-ro заряда всеми остальными зарядами.

$$W = \frac{1}{2} \int \rho \varphi dV$$

где φ - потенциал, создаваемый всеми зарядами системы в объеме dV.

4.2 Энергия заряженных проводников и кондесатора

Уединенный проводник:

$$W = \frac{q\varphi}{2} = \frac{C\varphi^2}{2} = \frac{q^2}{2C}$$

Конденсатор:

$$W = \frac{qU}{2} = \frac{CU^2}{2} = \frac{q^2}{2C}$$

4.3 Энергия поля

$$W = \int \frac{\varepsilon \varepsilon_0 E^2}{2} dV = \int \frac{\vec{E}\vec{D}}{2} dV$$

4.3.1 Объёмная плотность

$$w = \frac{\varepsilon \varepsilon_0 E^2}{2} = \frac{\vec{E}\vec{D}}{2}$$

5 Постоянный электрический ток

$$I = \frac{dq}{dt}$$

5.1 Плотность тока, уравнение непрерывности

$$j = \frac{dI}{dS_{\perp}} \qquad I = \int \vec{j} \vec{dS}$$

Вектор плотности тока - отношение силы тока и площадки в данной точке, перпендикулярной ему. Сонаправлен с вектором скорости положительных частиц.

$$\oint \vec{j} d\vec{S} = -\frac{dq}{dt}$$

В случае постоянного тока, распределение не изменяется:

$$\oint \vec{j}d\vec{S} = 0$$

Дифференциальная форма:

$$\nabla \cdot \vec{j} = -\frac{\partial \rho}{\partial t}$$

5.2 Закон Ома для однородного проводника

$$I = \frac{U}{R} \qquad R = \rho \frac{l}{S}$$
$$\vec{j} = \frac{1}{\rho} \vec{E} = \lambda \vec{E}$$

 λ - удельная электропроводность, сименс на метр (Cм/м)

5.2.1 Закон Ома для неоднородного участка

При наличии сторонних (некулоновских) сил (\vec{E}^*) , обобщённый закон Ома:

$$\vec{j} = \lambda(\vec{E} + \vec{E}^*)$$

$$I \int_1^2 \rho \frac{dl}{S} = \int_1^2 \frac{\vec{j} dl}{\lambda} = \int_1^2 \vec{E} dl + \int_1^2 \vec{E}^* dl$$

$$RI = \varphi_1 - \varphi_2 + \varepsilon_{12}$$

 ε_{12} - электродвижущая сила

5.3 Правила Кирхгофа

В узле алгебраическая сумма токов равна 0:

$$\sum I_k = 0$$

В замкнутом контуре:

$$\sum I_k R_k = \sum \varepsilon_k$$

5.4 Закон Ждоуля-Ленца

$$Q=RI^2$$
 $Q_{
m ygenshar}=
ho j^2=ec{j}ec{E}=\lambda E^2$

В неоднородной среде:

$$Q = \varepsilon I$$
 $Q_{\text{удельная}} = \rho j^2 = \vec{j}(\vec{E} + \vec{E}^*)$

5.5 Переходные процессы в цепи с конденсатором

5.5.1 Разрядка конденсатора

$$RI = U \qquad \frac{dq}{dt} + \frac{q}{RC} = 0$$
$$q = q_0 e^{-t/\tau} \qquad \tau = RC$$
$$I = -\frac{dq}{dt} = I_0 e^{-t/\tau} \qquad I_0 = \frac{q_0}{\tau}$$

5.5.2 Зарядка кондесатора

$$RI = \varphi_1 - \varphi_2 + \varepsilon \qquad \frac{dq}{dt} = \frac{\varepsilon - q/C}{R}$$

$$RC \ln(1 - \frac{q}{\varepsilon C}) = -t \qquad q = q_m(1 - e^{-t/\tau})$$

$$I = \frac{dq}{dt} = I_0 e^{-t/\tau} \qquad I_0 = \frac{\varepsilon}{R}$$

6 Магнитное поле

Магнитное поле равномерно движущегося заряда:

$$ec{B}=rac{\mu_0}{4\pi}rac{q[ec{v} imesec{r}]}{r^3},$$
 где $\mu_0=4\pi\cdot 10^{-7}\,\Gamma$ н/м $ec{B}=arepsilon_0\mu_0[ec{v} imesec{E}]$

6.1 Сила Лоренца

$$\vec{F}_L = [\vec{v} \times \vec{B}]q$$

6.2 Закон Био-Савара

$$\vec{dB} = \frac{\mu_0}{4\pi} \frac{I[\vec{dl} \times \vec{r}]}{r^3}$$

Магнитное поле на оси кругового тока: $B = \frac{\mu_0}{4\pi} \frac{2\pi R^2 I}{(z^2 + r^2)^{\frac{3}{2}}}$

6.3 Теорема Гаусса

$$\oint \vec{B} \vec{dS} = 0 \qquad \nabla \cdot \vec{B} = 0$$

6.4 Теорема о циркуляции В

$$\oint \vec{B}\vec{dl} = \mu_0 I$$

Циркуляция вектора \vec{B} по произвольному контуру Γ равна произведению μ_0 на алгебраическую сумму токов, охватываемых контуром Γ .

6.4.1 Частные случаи

- Прямой провод: $B = \frac{\mu_0 I}{2\pi r}, \ r \geq R$
- Внутри длинного соленоида: $B = \mu_0 \mu n I$
- Плоскость с током: $B=\frac{\mu_0 l}{2},$ где l сторона контура, параллельная плоскости

6.4.2 Дифференциальный вид

$$\lim_{S \to 0} \frac{\oint \vec{B} d\vec{l}}{S} = (rot \, \vec{B})_n$$

Правая часть - проекция ротора на нормаль площадки, полученную по правилу правого винта.

$$\nabla \times \vec{B} = \begin{vmatrix} e_x & e_y & e_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ B_x & B_y & B_z \end{vmatrix}$$

$$\nabla \times \vec{B} = \mu_0 \vec{j}$$

Где $\vec{j} = \frac{\vec{I}}{S}$ - плотность тока.

6.5 Сила Ампера

$$d\vec{F}_A = \rho[\vec{v} \times \vec{B}]dV$$
 $d\vec{F}_A = I[\vec{dl} \times \vec{B}]$ $\vec{F}_A = l[\vec{I} \times \vec{B}]$

6.5.1 Частные случаи

- Параллельные токи (на расстояние h) на единицу длины: $F = \frac{\mu_0}{4\pi} \frac{2I_1I_2}{h}$
- Контур с током при постоянном В: $\vec{F}=I\oint [\vec{dl}\times\vec{B}]=I[(\oint \vec{dl})\times\vec{B}]=I[0\times\vec{B}]=0$

6.5.2 Работа при перемещении контура

$$\delta A = Id\Phi$$

где $d\Phi$ - приращение магнитного потока сквозь контур. В случаем подвижной перемычки:

$$\delta A = Fdx = IBldx = IBdS$$

6.6 Элементарный контур (магнитный диполь)

Поведение плоского малого контура описывается магнитным моментом: $\vec{p}_m = IS\vec{n}$, где S - площать контура, \vec{n} - нормаль по правилу правого винта.

6.6.1 Сила действующая на контур

В неоднородном магнитном поле по закону ампера получаем:

$$\vec{F} = p_m \frac{\partial \vec{B}}{\partial \vec{n}}$$

где p_m - модуль момента, $\frac{\partial \vec{B}}{\partial \vec{n}}$ - производная по направлению нормали $\vec{n}.$

6.6.2 Момент сил

$$\vec{M} = [\vec{p}_m \times \vec{B}]$$

7 Магнитное поле в веществе

7.1 Намагниченность Ј

$$\vec{J} = \frac{1}{\Delta V} \sum \vec{p}_m \qquad \vec{J} = n \langle \vec{p}_m \rangle$$

7.1.1 Циркуляция

$$\oint \vec{J} \vec{dl} = I'$$
 $I' = \int \vec{j}' \vec{dS}$

где I' - алгебраическая сумма токов намагничивания в контуре, а \vec{j}' - объёмная плотность тока намагничивания, интегрирование по произвольной поверхности, натянутой на контур.

$$\nabla \times \vec{J} = \vec{i}'$$

7.1.2 Когда **j**'=0

- магнетик однородный
- внутри магнетика нет токов проводимости

7.2 Вектор Н

$$\oint \vec{B} \vec{dl} = \mu_0 (I + I')$$

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{J} \qquad \oint \vec{H} \vec{dl} = I$$

где I - алгебраическая сумма токов проводимости

$$\nabla \times \vec{H} = \vec{i}$$

где \vec{j} - плотность тока проводимости

7.2.1 Связь J и H

$$\vec{J} = \chi \vec{H}$$

χ - магнитная восприимчивость

- пармагнетики $\chi > 0, \ \vec{J} \uparrow \uparrow \vec{H}$
- диамагнетики $\chi>0,\ \vec{J}\uparrow\downarrow\vec{H}$
- $\bullet\,$ ферромагнетики, J зависит от предыистории (гистерезис)

7.2.2 Связь В и Н

$$\vec{B} = \mu \mu_0 \vec{H} \qquad \mu = 1 + \chi$$

7.3 Граничные условия В и Н

$$\oint \vec{B} \vec{dl} = 0 \qquad \oint \vec{H} \vec{dl} = I$$

$$B_{2n} \Delta S + B_{1n} \Delta S = 0 \qquad B_{2n} = B_{1n}$$

$$H_{2\tau} l + H_{2\tau} l = i_N l \qquad H_{2\tau} - H_{1\tau} = i_N$$

 $ec{N}$ - нормаль к контуру, i - плотность токов проводимости

7.3.1 Преломление линий В (Н)

$$\frac{\tan \alpha_2}{\tan \alpha_1} = \frac{\mu_2}{\mu_1}$$

8 Относительность полей

Система отсчёта K' движется относительно системы K, тогда **локально** верны следующие соотношения:

$$\vec{E}'_{\parallel} = \vec{E} \qquad \vec{B}'_{\parallel} = \vec{B}$$

$$\vec{E}'_{\perp} = rac{\vec{E}_{\perp} + [\vec{v}_0 \times \vec{B}]}{\sqrt{1 - eta^2}} \qquad \vec{B}'_{\perp} = rac{\vec{B}_{\perp} + [\vec{v}_0 \times \vec{E}]}{\sqrt{1 - eta^2}}$$

где $\beta = v_0/c$

8.1 Простые следствия

- В системе К только Е: $\vec{B}' = -[\vec{v}_0 \times \vec{E}']$
- В системе K только В: $\vec{E}' = [\vec{v}_0 \times \vec{B}']$

8.2 Инварианты

$$\vec{E}\vec{B} = inv \qquad E^2 - c^2B^2 = inv$$

9 Электромагнитная индукция

9.1 Правило Ленца

Индукционный ток направлен так, чтобы противодействовать причине, его вызывающей.

9.2 Закон Фарадея

$$\varepsilon = \oint \vec{E} \vec{dl} = -\frac{d\Phi}{dt} \qquad \nabla \times E = -\frac{\partial B}{\partial t}$$

При нескольких витках $\varepsilon = -N \frac{d\Phi}{dt}$ В полном виде:

$$\oint \vec{E} \vec{dl} = -\frac{\partial \Phi}{\partial t} + \oint [\vec{v} \times \vec{B}] \vec{dl}$$

Первое слагаемое связано с изменением магнитного поля во времени, второе - с движением контура.

9.3 Самоиндукция

$$\Phi = LI$$

L - индуктивность (e.g. соленоид $L = \mu \mu_0 n^2 V$)

$$\varepsilon_s = -\frac{\partial \Phi}{\partial t} = -\frac{d}{dt}(LI) = -L\frac{dI}{dt}$$

9.3.1 Исчезновение тока при размыкании цепи

$$RI = \varepsilon_s = -L\frac{dI}{dt}$$
 $I = I_0 e^{-t/\tau}$

где au=L/R - время релаксации.

9.3.2 Установление тока при замыкании цепи

$$RI = \varepsilon - L \frac{dI}{dt}$$
 $I = I_0 (1 - e^{-t/\tau})$

9.4 Взаимная индукция

Два неподвижных контура достаточно близких к друг другу:

$$\Phi_2 = L_{21} \cdot I_1 \qquad \Phi_1 = L_{12} \cdot I_2$$

Где $L_{12} = L_{21} = M$ - взаимная индуктивность, при отсутствии поблизости ферромагнетиков. (Может быть и отрицательна, в отличие от L.)

9.5 Энергия магнитного поля

Работа совершаемая сторонними силами против эдс самоиндукции:

$$\varepsilon_0 = RI - \varepsilon_s \mid \cdot Idt \Rightarrow \delta A_{\text{crop}} = \delta Q + Id\Phi$$

$$\delta A^{\rm gon} = Id\Phi$$

Считаем что ферромагнетиков нет:

$$d\Phi = LdI \implies A^{\text{\tiny AO\Pi}} = \frac{LI^2}{2}$$

$$W = \frac{LI^2}{2} = \frac{I\Phi}{2} = \frac{\Phi^2}{2L}$$

$$W = \int \frac{\vec{B}\vec{H}}{2}dV \qquad w = \frac{\vec{B}\vec{H}}{2} = \frac{B^2}{2\mu\mu_0}$$

$$L = \frac{1}{I^2} \int \frac{B^2}{\mu\mu_0}dV$$

9.6 Магнитная энергия двух контуров

$$W = \frac{L_1 I_1^2}{2} + \frac{L_2 I_2^2}{2} + M I_1 I_2$$

$$W = \int \frac{B_1^2}{2\mu\mu_0} dv + \int \frac{B_2^2}{2\mu\mu_0} dv + \int \frac{\vec{B}_1 \vec{B}_2}{\mu\mu_0} dv$$

$$M = \frac{1}{I_1 I_2} \int \frac{\vec{B}_1 \vec{B}_2}{\mu\mu_0} dv$$

9.7 Энергия и силы в магнитном поле

$$\delta A^* = \delta Q + dW + \delta A_{\text{Mex}}$$
 $\delta A^{\text{MOII}} = I_1 d\Phi_1 + I_2 d\Phi_2$

где A^* - работа источника тока, δQ - потери тепловыделения, $\delta A_{\rm mex}$ - работа на перемещение и деформацию контуров, ${
m d}W$ - прирост магнитной энергии.

$$I_1 d\Phi_1 + I_2 d\Phi_2 = dW + dA_{\text{mex}}$$

Следствия:

- При постоянных потоках: $\delta A_{\mathrm{mex}} = -dW\Big|_{\Phi}$
- При постоянных токах: $\delta A_{\mathrm{mex}} = -dW \Big|_{T}$

10 Уравнения Максвелла

10.1 Ток смещения

$$\begin{split} \oint \frac{\partial \vec{D}}{\partial t} \vec{dS} &= \frac{\partial q}{\partial t} \qquad \oint \vec{j} \vec{dS} = -\frac{\partial q}{\partial t} \\ \oint (\vec{j} + \frac{\partial \vec{D}}{\partial t}) \vec{dS} &= 0 \end{split}$$

 $ec{j}_{ ext{cm}}=\partialec{D}/\partial t$ - ток смещения, $ec{j}_{ ext{полн}}=ec{j}+rac{\partialec{D}}{\partial t}$ - полный ток

$$\begin{split} \oint \vec{H} \vec{dl} &= I_{\text{полн}} = \int (\vec{j} + \frac{\partial \vec{D}}{\partial t}) \vec{dS} \\ \nabla \times \vec{H} &= \vec{j} + \frac{\partial \vec{D}}{\partial t} \end{split}$$

10.2 Система уравнений Максвелла

$$\int \vec{E} d\vec{l} = -\int \frac{\partial \vec{B}}{\partial t} d\vec{S} \qquad \oint \vec{B} d\vec{S} = 0$$

$$\oint \vec{H} d\vec{l} = \int (\vec{j} + \frac{\partial \vec{D}}{\partial t}) d\vec{S} \qquad \oint \vec{D} d\vec{S} = \int \rho dV$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t} \quad \nabla \cdot \vec{D} = \rho$$

Вместе с силой Лоренца $d\vec{p}/dt=q\vec{E}+q[\vec{v}\times\vec{B}]$ составляют фундаментальную систему

10.3 Вектор Пойнтинга. Энергия и её поток

10.3.1 Теорема Пойнтинга

$$-\frac{dW}{dt} = \oint \vec{\Pi} d\vec{S} + P$$

где $W=\int w dv,\, P=\int \vec{j}\vec{E}dV$ - мощность силы прикладываемой к зарядам, $\vec{\Pi}$ - вектор Пойнтинга

$$w = \frac{\vec{E}\vec{D}}{2} + \frac{\vec{B}\vec{H}}{2} \qquad \vec{\Pi} = [\vec{E} \times \vec{H}]$$

10.4 Импульс электромагнитного поля

10.4.1 Давление электромагнитной волны

Электромагнитная волна распространяется в однородной среде, обладающей поглощением (объёмная плотность выделяемой теплоты $\rho j^2 = \lambda E^2)$

$$ec{j} = \lambda ec{E}$$
 $F_{ ext{eq}} = [ec{j} imes ec{B}] = \lambda [ec{E} imes ec{B}]$

 $F_{\rm eg}$ - сила на единицу объёма, ответсвенная за появление давления и сонаправленная с вектором скорости волны.

10.4.2 Импульс электромагнитного поля

Плотность импульса \vec{G} - импульс поля в единице объёма

$$\vec{G} = \vec{\Pi}/c^2$$

В вакууме G = w/c

11 Электрические колебания

11.1 Уравнение колебательного контура

11.1.1 Условие квазистационарности.

$$\tau = \frac{l}{c} << T$$

где T - период изменений l - длина цепи с - скорость света

11.1.2 Колебательный контур.

уравнение колебательного контура

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{c}q = \varepsilon$$

иной вид

$$\ddot{q} + 2\beta \dot{q} + \omega_0^2 q = \frac{\varepsilon}{L}$$

$$2\beta = \frac{R}{L}, \qquad \omega_0^2 = \frac{1}{LC}$$

11.2 Свободные электрические колебания

11.2.1 Свободные незатухающие колебания

$$\ddot{q} + \omega_0^2 q = 0 \qquad q = q_m \cos(\omega_0 t + \alpha)$$

Период (формула Томпсона)

$$T_0 = \frac{2\pi}{\sqrt{LC}}$$

11.2.2 Свободные затухающие колебания

$$\ddot{q} + 2\beta \dot{q} + \omega_0^2 q = 0 \qquad q = q_m e^{-\beta t} \cos(\omega t + \alpha)$$
$$\omega = \sqrt{\omega_0^2 - \beta^2} \qquad T = \frac{2\pi}{\omega}$$

Напряжение на конденсаторе и ток в контуре

$$U_C = \frac{q}{C} = \frac{q_m}{C} e^{-\beta t} cos(\omega t + \alpha)$$

$$I = \omega q_m e^{-\beta t} cos(\omega t + \alpha + \delta)$$

11.3 Величины характеризующие затухание

11.3.1 Коэффицент затухания и время релаксации

время релаксации au - время за которое амплитуда колебаний уменьшается в е раз

$$\tau = \frac{1}{\beta}$$

11.3.2 Логарифмический декремент затухания

Определяется как натуральный логарифм отношения двух значений амплитуд взятых через период колебания T

$$\lambda = \ln \frac{\alpha(t)}{\alpha(t+T)} = \beta T$$

если затухание мало

$$\lambda \approx \beta \frac{2\pi}{\omega_0} = \pi R \sqrt{\frac{C}{L}}$$

11.3.3 Добротность

- По определению: $Q = \frac{\pi}{\lambda}$
- При слабом затухании: $Q \approx \frac{1}{R} \sqrt{\frac{L}{C}}$
- Энергетический смысл: $Q \approx 2\pi \frac{W}{\delta W}$

11.4 Вынужденные электрические колебания

$$L\frac{dI}{dt} + RI + \frac{q}{C} = \varepsilon_m cos(\omega t)$$

или

$$\ddot{q} + 2\beta \dot{q} + \omega_0^2 q = \frac{\varepsilon_m}{L} cos(\omega t) \qquad q = q_m cos(\omega t - \psi)$$

где q_m - амплитуда заряда на конденсаторе

 ψ - разность фаз между колебаниями заряда и внешней э.д.с ε ток в цепи

$$I = I_m cos(\omega t - \varphi)$$

где I_m амплитуда тока φ сдвиг по фазе между током и внешней э.д.с ε

$$I_m = \omega q_m, \qquad \varphi = \psi - \frac{\pi}{2}$$

напряжения на индуктивности сопротивлении и емкости

$$U_R = RI_m cos(\omega t - \varphi)$$

$$U_C = \frac{I_m}{\omega C} cos(\omega t - \varphi - \frac{\pi}{2})$$

$$U_L = I_m \omega L cos(\omega t - \varphi + \frac{\pi}{2})$$

11.4.1 Векторная диаграмма

$$I_m = \frac{\varepsilon_m}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$
 $\tan \varphi = \frac{\omega L - \frac{1}{\omega C}}{R}$

11.4.2 Резонансные кривые

$$\omega_{Ipe3} = \omega_0 = \frac{1}{\sqrt{LC}}$$
 $\omega_{qpe3} = \sqrt{\omega_0^2 - 2\beta^2}$

резонансные частоты для:

- U_R : $\omega_{Rpe3} = \omega_0$
- U_C : $\omega_{Cpe3} = \omega_0 \sqrt{1 2(\frac{\beta}{\omega_0})^2}$
- U_L : $\omega_{Rpe3} = \frac{\omega_0}{\sqrt{1-2(\frac{\beta}{\omega_0})^2}}$

11.4.3 Резонансные кривые и добротность

если $\beta << \omega_0$

$$\frac{U_{C{\rm pes}}}{\varepsilon_m} = Q \qquad Q = \frac{\omega_0}{\delta \omega}$$

где ω_0 - резонансная частота $\delta\omega$ - ширина резонансной кривой на высоте 0.7 от максимальной

11.5 Переменный ток

11.5.1 Полное сопротивление (импенданс)

$$Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$$

при $\omega=\omega_0=\frac{1}{\sqrt{LC}}$ это сопротивление минимально и равно активному сопротивлению R. X - реактивное сопротивление

$$X = \omega L - \frac{1}{\omega C}$$

 ωL - индуктивное сопротивление $\frac{1}{\omega C}$ - емкостное сопротивление их обозначают X_L-X_C соответсвенно

11.5.2 Мощность, выделяемая в цепи переменного тока

$$P(t) = UI = U_m I_m cos(\omega t) cos(\omega t - \varphi)$$

можно представить в виде

$$P(t) = U_m I_m(\cos^2(\omega t)\cos(\varphi) + \sin(\omega t)\cos(\omega t)\sin(\varphi))$$

практический интерес имеет среднее за период колебаний значение мощности.

$$\langle P \rangle = \frac{U_m I_m}{2} cos(\varphi) = \frac{R I_m^2}{2}$$

такую же мощность развивает постоянный ток с постоянными величинами:

$$I = \frac{I_m}{\sqrt{2}}$$
 $U = \frac{U_m}{\sqrt{2}}$ $\langle P \rangle = UIcos(\varphi)$

12 Скин эффект

Толщина скин-слоя:

$$l \approx \frac{1}{\sqrt{2\mu_0 \mu \lambda \nu}}$$

13 Разложение Фурье

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\inf} (a_n \cos(n\omega t) + b_n \sin(n\omega t))$$

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) cos(n\omega t) dt \qquad b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) sin(n\omega t) dt$$

• Прямоугольник $(0 \le U \le U_0)$: $b_n = 0$ $a_n = 2U_0 \frac{2U_0}{n\pi} \sin(\frac{\tau}{T}\pi n)$