數位系統導論實驗 LAB 0

梁郁珮

SYLLABUS

Part 1: Breadboard with logic ICs (team work 2-3 students)
Part 2: Verilog simulation (individual)

週	日期	進度				
Week I	2/14	Syllabus				
Week 2	2/21	Lab 0				
Week 3	2/28	228放假				
Week 4	3/7	Lab I				
Week 5	3/14	Lab 2				
Week 6	3/21	Lab 3				
Week 7	3/28	Lab 4				
Week 8	4/4	清明節				
Week 9	4/11	期中考週				
Week 10	4/18	Lab 5				
Week II	4/25	Lab 6				
Week I2	5/2	Lab 7				
Week 13	5/9	Lab 8				
Week 14	5/16	Lab 9				
Week I5	5/23	Lab 10				
Week 16	5/30	Project implementation				
Week I7	6/6	Project demo				
Week 18	6/13	期末考週				

SCORE AND REQUIREMENTS

- Lab I-10 (80%):
 - 2 % attendance, 2% demo, 4 % report (for each Lab)
- Final project (20%):
 - 10 % in class demo, 10 % report
- Ask for leave before class, it's ok. (got attendance 1%)
- Can't ask for leave after class.

- (I)表頭V:顯示 CHI的輸出電壓。
- (2)表頭A:顯示 CHI 的輸出電流。
- (3)表頭V:顯示 CH2 的輸出電壓。
- (4)表頭A:顯示 CH2 的輸出電流。
- (5) VOLTAGE 調節旋鈕:調整 CHI 輸出電壓。並在並聯或串聯追蹤模式時,用於 CH2 最大輸出電壓的調整
- (6) CURRENT 調節旋鈕:調整 CHI 輸出電流。並在並聯模式時,用於 CH2 最大輸出電流的調整。
- (7) VOLTAGE 調節旋鈕:用於獨立模式的 CH2 輸出電壓的調整。
- (8) CURRENT 調節旋鈕:用於 CH2 輸出電流的調整。

- (9) OVERLOAD 指示燈:當固定 5V 輸出負載 大於額定值時,此燈就會亮。
- (10) C.V.指示燈:當 CHI 輸出在定電壓狀態,或在並聯、串聯追蹤模式下的定電壓狀態時,此 燈就會亮。
- (II) C.C.指示燈:當 CHI 輸出在定電流狀態時, 此燈就會亮。
- (12) C.V.指示燈:當 CH2 輸出在定電壓狀態時, 此燈就會亮。
- (13) C.C.指示燈:當 CH2 輸出在定電流狀態時, 或在並聯追蹤模式下的定電流狀態時,此 燈就會 亮。

- (I4)(I5)TRACKING:兩個按鍵可選擇INDEP(獨立)、SERIES(串聯)或PARALLEL(並聯)的追蹤模式,
 - 當兩個按鍵都未按下時·是在 INDEP(獨立)模式·CHI和 CH2 的輸出分別獨立。
 - 只按下左鍵,不按右鍵時,是在 SERIES(串聯)追蹤模式。在此模式下,CHI 和 CH2 的 輸出最大電壓完全由 CHI 電壓控制(CH2 輸出端子的電壓追蹤 CHI 輸出端子電壓),CH2 輸出端子的正端(紅)則自動與 CHI 輸出端子負端(黑)連接,此時 CHI 和 CH2 兩個輸出端子可提供 0~2倍的額定電壓。
 - 兩個鍵同時按下時,是在 PARALLEL (並聯) 追蹤模式。在此模式下,CHI 輸出端和 CH2 輸出端會並聯起來,其最大電壓和電流由 CHI 主控電源供應器控制輸出。CHI 和 CH2 可分別輸出,或由 CHI 輸出提供 0~額定 電壓和 0~2 倍的額定電流輸出。不按左鍵,只按下右鍵時,此狀態屬於無效模式。

- (16) "+"輸出端子: CHI 正極輸出端子。
- (17)(20)GND 端子:大地和底座接地端子。
- (18) "-"輸出端子: CHI 負極輸出端子。
- (19) "+"輸出端子: CH2 正極輸出端子。
- (2I) "-"輸出端子: CH2 負極輸出端子。
- (22) POWER:電源開關。
- (29) OUTPUT 指示燈:輸出開關指示燈。
- (30) ON/OFF 控制開關:輸出接通/輸出關斷控制開關。

Constant Voltage Mode :

- "Current Control"設定之電流值 > 設定電壓下之輸出電流。
- "Current Control"所設定之電流值代表限流警告裝置,可在電路短路或不正常工作時告訴使用者注意,並避免電路或Power Supply 流過過大電流 而燒毀。
- Constant Current Mode :
 - "Current Control"設定之電流值 < 設定電壓下之輸出電流。
 - "Current Control"所設定之電流值代表限流警告裝置,可在電路短路或不正常工作時告訴使用者注意,並避免電路或Power Supply 流過過大電流 而燒毀。

Constant Voltage Mode :

- I. 打開電源後,將" Current Control"略為轉大,使 指示燈由" C.C. Indicator"轉為" C.V. Indicator"。
- 2. 轉動" Voltage Control"使" Meter Display"顯示出所需之電壓值,則此時輸 出電壓即為Display 所顯示之值。

認識數位邏輯

- 數位電路(亦可稱為邏輯電路)可分組合邏輯(Combination Logic)與順序邏輯 (Sequential Logic)。
- 二位元邏輯用來處理具有邏輯意義的變數與運算符號。這些變數只具有2個不同的值,如:真與假,是與否,0與L。
- 變數通常以字母A、B、C等來表示,每個數只有兩值。

LOGIC GATE

■ 基本邏輯閘(Logic gate):

(I) AND(及閘):運算符號為「·」或不

寫。例如A·B=AB。

(2)OR(或閘): 運算符號為「+」。

例如A+B。

LOGIC GATE

■ 基本邏輯閘(Logic gate):

(3) NOT;Inverter(反閘): 運算符號為

「一」或「'」。例如: X'

■ 真值表(Truth table)

AND		OR			NOT		
Α	В	XY	Α	В	X+Y	X	X'
0	0	0	0	0	0	0	I
0	I	0	0	ı	I	- 1	0
I	0	0	I	0	I		
I	I	1	I	I	I		

電晶體-電晶體邏輯(TRANSISTOR-TRANSISTOR LOGIC ;TTL)

- 電晶體-電晶體邏輯(Transistor-Transistor Logic ;TTL)主要是以N組<u>電阻、電晶體、三極體</u>構成的電路,此元 件為數位系統中使用最廣泛。
- TTL之編號與用途:
 - 1.54系列:使用於軍事用途。

此系列驅動電壓可從4.5V至5.5V;

工作温度 在-55°C至+125°C。

2.74系列:使用於一般商用或工業。

此系列驅動電壓可從4.75V至5.25V;

工作温度 在0°C至70°C。

TTL

■ TTL之74系列細項種類:

名 稱	縮寫	傳輸延遲 (nS)	耗電率 (mW)	速度*功率積 (μμ J)
標準TTL	. 74XX	10	10	100
低功率 TTL	74LXX	33	I	33
高速TTL	. 74HXX	6	22	132
蕭特基 TTL	74SXX	3	19	57
低功率蕭 特基TTL	' /4 \ X X	9.5	2	19

IC介紹(74LS08) 4 * TWO-INPUT AND GATE

- **7**及**14**接腳:接地及電源
- I與2;4與5;9與I0;I2與I3接腳:輸入腳位
- 3;6;8;II接腳:輸出腳位

IC介紹(74LS32) 4 *TWO-INPUT OR GATE

- 7及14接腳:接地及電源
- I與2;4與5;9與I0;I2與I3接腳:輸入腳位
- 3;6;8;II接腳:輸出腳位

IC介紹(74LS04) 6 * NOT GATE

- 7及14接腳:接地及電源
- I;3;5;9;II;I3接腳:輸入腳位
- 2;4;6;8;10;12接腳:輸出腳位

REVIEW

LAB 0 - AND GATE 測試電路

REPORT OF LABO (1%)

The report should include ...

- I. Picture of your circuit (照片)
- 2. Truth table and the state of LED (真值表以及開關/LED 狀態紀錄)
- 3. The color and value of used resistance (本次用到的電阻顏色及其值)
- 4. Discussion and experience (心得與討論)

- File type: pdf
- File name: Lab0_(student ID)_(NAME)
- Deadline: 2022/3/1 24:00