Análisis Matemático

Clase 1

¿Por qué estudiar Análisis Matemático?

A medida que Machine Learning se vuelve más común, y los paquetes de software se vuelven más simples de usar, uno se abstrae cada vez más de los detalles técnicos que hay detrás. Modelo de caja negra.

Esto trae el **peligro** de desconocer las decisiones de diseño y las limitaciones de cada algoritmo.

"Mathematics for Machine Learning", Deisenroth, Faisal, Ong

Cronograma de la materia

Clase 1	Espacios VectorialesOperaciones matricialesOrtogonalidad
Clase 2	ProyeccionesAutovalores y autovectoresSVD
Clase 3	Aplicaciones:
Clase 4	Cálculo multivariadoGradiente
Clase 5	 Optimización
Clase 6	Aplicaciones Gradiente descendente SVM
Clase 8	Evaluación

Bibliografía troncal

Vamos a seguir principalmente este libro, pero para algunos temas particulares iremos agregando otra bibliografía

Está disponible gratis en https://mml-book.github.io/

Espacios vectoriales

Una que sepamos todos

Consideremos los vectores en \mathbb{R}^3 . Qué pasa cuando operamos sobre este espacio?

- $oldsymbol{1}, \quad oldsymbol{x} \in \mathbb{R}^3, \; oldsymbol{y} \in \mathbb{R}^3
 ightarrow oldsymbol{x} + oldsymbol{y}$
- $oldsymbol{x} \in \mathbb{R}^3, k \in \mathbb{R} \; o \; k oldsymbol{x}$

Algunas definiciones previas

Sea $oldsymbol{V}$ un conjunto no vacío

Def : Una operación es una función +: V imes V o V

Algunas propiedades deseables de + :

- 1. Es asociativa si $(a+b)+c=a+(b+c),\ a,b,c\in V$
- 2. Tiene elemento neutro si $\exists e \in V \text{ tq } e + a = a + e = a$
- 3. Si + tiene elemento neutro e, todo elemento tiene inverso si $\forall v \in V, \ \exists \ v' \in V \ \text{tq} \ v + v' = v' + v = e$
- 4. Es conmutativa si $a+b=b+a, \forall a,b\in V$

Algunas definiciones previas

SeanK y V dos conjuntos

Def: Una $\operatorname{acci\'on} \operatorname{de} K\operatorname{en} V$ es una funci $\operatorname{\acute{o}n} \cdot : K imes V o V$

Espacio Vectorial: definición

Def: Diremos que $\mathcal{V} = (V, +, K, \cdot)$ es un espacio vectorial si K y V son conjuntos no vacios y la operación + en V, y la acción + de K en V satisfacen:

- 1. + es asociativa
- 2. + tiene elemento neutro
- 3. + tiene elemento inverso
- 4. + es conmutativa

Grupo

Grupo

conmutativo

5. $\alpha \cdot (v+w) = \alpha \cdot v + \alpha \cdot w, \ orall \alpha \in K, orall v, w \in V$

- 6. $(\alpha+eta)\cdot v=lpha\cdot v+eta\cdot v, \ \ lpha,eta\in K,v\in V$
- 7. $1 \cdot v = v \ \forall v \in V$ (existe el elemento neutro)
- 8. $\alpha \cdot (\beta \cdot v) = (\alpha \beta) \cdot v \ \forall \alpha, \beta, \in K, \ \forall v \in V (ullet$ es conmutativa)

Algunas definiciones más

Sea $\mathcal{V}=(V,+,K,\cdot)$ un EV, diremos que V es un Kespacio vectorial

A Kse lo conoce como cuerpo de escalares y a la acción • se la llama producto por escalar

Si (V, +) cumple con las propiedades 1-3, se dice que es un grupo. Si además cumple con 4. Se dice un grupo conmutativo.

Subespacios vectoriales

Definición

Definición

Def: Sea V un K-espacio vectorial. Un subconjunto $S \subseteq V$ no vacío se dice un subespacio de V si la suma y el producto por escalares (de V) son una operación y una acción en S que lo convierten en un K-espacio vectorial

Prop: S es un SEV de V sii:

1
$$S
eq \emptyset$$
 $0 \in S$

$$2. \ x, \ y \in S \Rightarrow x + y \in S$$

$$\beta. \ \alpha \in K, v \in S \Rightarrow \alpha \cdot v \in S$$

Algunas propiedades

Sean $X,T\subseteq V$ dos subespacios de V

- 1. $X \cap T = \{v \in V | v \in X \text{ y } v \in T\} \subseteq V$ es un SEV
- 2. $X+T=\{v\in V|x=x+t,\;x\in X,\;t\in T\}\subseteq V\;\;$ es un SEV
- 3. $X \cup T = \{v \in V | v \in X \text{ o } v \in T\}$ ¿Es un SEV? [Ejercicio]

Representación de subespacios

Sistemas generadores

Def: Sea V un K-EV, y sea $G=\{v_1,\ldots,v_r\}\subseteq V$. Una combinación lineal de G es un elemento $v\in V$ tal que $v=\sum_{i=1}^r \alpha_i\cdot v_i,\ \alpha_i\in K$ para cada $1\leq i\leq r$.

Def: Sea V un K-EV y sea $G \subseteq V$. Se dice que G es un sistema de generadores de V si todo elemento de V es una combinación lineal de G.

Noación: < G > = V

Independencia lineal

Interesa buscar, dentro de los conjuntos generadores, aquellos que sean mínimos (menor cantidad de elementos)

Sea V un K -EV, S un SEV de V ,

- ullet y sea $\{v_1,\ldots,v_n\}\subseteq V$. Entonces $< v_1,\ldots,v_n>\subseteq S\Leftrightarrow v_i\in S\ orall\ 1\leq i\leq n$.
- y sea $\{v_1,\ldots,v_n,v_{n+1}\}\subseteq V$. Entonces: $< v_1,\ldots,v_n,v_{n+1}>=< v_1,\ldots,v_n>\Leftrightarrow v_{n+1}\in < v_1,\ldots,v_n>$

Def: Sea V un K-EV, y sea $\{v_{\alpha}\}_{{\alpha}\in I}$ una familia de vectores de V. Se dice que $\{v_{\alpha}\}_{{\alpha}\in I}$ es linealmente independiente (l.i.) si

$$\sum_{lpha \in I} k_lpha v_lpha = 0 \Rightarrow k_lpha = 0 \ orall \ lpha \in I$$

Bases y dimensión

Def: Sea Vun K-EV. Un conjunto $\{v_{\alpha}\}_{\alpha \in I}$ se llama una base del EV V si $\{v_{\alpha}\}_{\alpha \in I}$ es un conjunto l.i. De V que satisface $< v_{\alpha}>_{\alpha \in I} = V$

Def: Sea Vun K-EV, y $B = \{v_1, \ldots, v_n\}$ una base de V. Diremos que n es la dimensión de V. En este caso, diremos que Ves un K-EV de dimensión finita. (hay casos donde la dimensión de V es infinita)

Variedad lineal

Def: Sea V un K-espacio vectorial. Una variedad lineal $M \subseteq V$ es un conjunto de la forma $M = \{s + p | s \in S\}$, donde S es un subespacio de V y $p \in V$

$$Ax = 0$$

Ax = b

Observación: Se pueden modificar las operaciones + y . para que M sea en SEV.

Espacios con producto interno

Producto interno

Def: Sea V un \mathbb{R} (\mathbb{C})-EV. Un producto interno sobre V es una función $\Phi: V \times V \to \mathbb{R}(\mathbb{C})$ que satisface:

- 1. Para cada $\alpha \in \mathbb{R}\left(\mathbb{C}\right), \ \mathrm{y}\ v, w, z \in V$
 - $ullet \Phi(v+w,z) = \Phi(v,z) + \Phi(w,z)$
 - $\Phi(\alpha \cdot v, z) = \alpha \Phi(v, z)$
- $\Phi(v,w) = \overline{\Phi(w,v)}$
- 3. $\Phi(v,v) \geq 0$, y $\Phi(v,v) = 0 \Leftrightarrow v = 0$

Notacón: $\Phi(v,w) = \langle v,w \rangle$

EV con producto interno

Def: A un espacio vectorial real (complejo) provisto de un producto interno se lo llama un espacio euclídeo (espacio unitario)

Obs: El p.i. Es una generalización del producto escalar en $\mathbb{R}^n(\mathbb{C}^n)$

Norma

Es la generalización de la longitud de un vector en $\mathbb{R}^n(\mathbb{C}^n)$

Def: Sea $(V,\langle\cdot,\cdot\rangle)$ un EV real (complejo) con p.i. Y sea $v\in V$. Se define la norma de v asociada a $\langle\cdot,\cdot\rangle$

Notación: $\|v\| = \langle v,v
angle^{rac{1}{2}}$

Norma - Propiedades

- 1. Para todo $v \in V, \; \|v\| \geq 0, y\|v\| = 0 \; sii \; v = 0$
- 2. Sean $\alpha \in \mathbb{R}\left(\mathbb{C}\right)$ y $c \in V$. $\|\alpha \cdot v\| = |\alpha| \|v\|$
- 3. Designaldad de Cauchy Schwartz. Si $v,w\in V$, entonces

$$|\langle v,w\rangle| \leq \|v\| \|w\|$$

4. Designaldad triangular. Si $v,w\in V$ entonces $\|v+w\|\leq \|v\|+\|w\|$

Ortogonalidad

Def: Sea $(V, \langle \cdot, \cdot \rangle)$ un \mathbb{R} -EV (\mathbb{C} -EV) con p.i. Dos vectores $v, w \in V$ se dicen ortogonales si $\langle v, w \rangle = 0$.

Obs (Teorema de Pitágoras) : Si $v, w \in V$ son vectores ortogonales, $\|v+w\|^2 = \|v\|^2 + \|w\|^2$

Def: Sea $(V, \langle \cdot, \cdot \rangle)$ un EV con p.i. Se dice que $\{v_1, \dots, v_r\} \subseteq V$ es un conjunto ortogonal si $\langle v_i, v_j \rangle = 0 \ \forall i \neq j$.

Distancia

A partir de la definición de norma se puede definir la distancia entre vectores.

Def: Sea V un EV real (complejo) con p.i. $\langle \cdot, \cdot \rangle$ se define la distancia $d: V \times V \to \mathbb{R}$ como $d(v,w) = \|v-w\|$

Propiedades:

- $\exists \quad d(v,w) \geq 0 \ orall v,w, \in V$
- $2. \quad d(v,w) = 0 \Leftrightarrow v = w$
- $\exists. \quad d(v,w) = d(w,v) \ orall \ v,w \in V$
- $4. \quad d(v,z) \leq d(v,w) + d(w,z) \ orall \ v,w,z \in V$

Obs: Existen distancias que no están asociadas a ninguna norma

Operaciones matriciales

Operaciones básicas

• Suma
$$(+)$$
: $A+B=\begin{bmatrix} a_{11}+b_{11}&\ldots&a_{1m}+b_{1m} \ \vdots&\ddots&\vdots \ a_{n1}+b_{n1}&\ldots&a_{nm}b_{nm} \end{bmatrix}$

- Producto por escalar (•): $\lambda A = \begin{bmatrix} \lambda a_{11} & \dots & \lambda a_{1m} \\ \vdots & \ddots & \vdots \\ \lambda a_{n1} & \dots & \lambda a_{nm} \end{bmatrix}$
- Producto entre matrices: $(AB)_{ij} = \sum_{k=1}^m A_{ik} B_{kj}$ ("sumo fila i por columna j")

Propiedades:

- Asociativa
 $AB \neq BA$ $I_n A = AI_m,$ $I_n = diag(1, \ldots, 1) \in \mathbb{R}^{n \times n}$

$$A,B\in\mathbb{R}^{n imes m}, \ A=egin{bmatrix} a_{11} & \dots & a_{1m} \ dots & \ddots & dots \ a_{n1} & \dots & a_{nm} \end{bmatrix} \ B=egin{bmatrix} b_{11} & \dots & b_{1m} \ dots & \ddots & dots \ b_{n1} & \dots & b_{nm} \end{bmatrix}$$

Algunas matrices especiales

1. Matrices cuadradas: $A \in \mathbb{R}^{n imes n}$

Operaciones especiales:

- Determinante: $det(A) = \sum_{i=1}^n (-1)^{i+1} a_{1i} det(A(1|i))$, donde a_{1i} es el elemento (1,i) de A yA(1|i) es la matriz A quitando la fila 1 y la columna i
- ullet Traza $Tr(A) = \sum_{i=1}^n a_{ii}$

Casos particulares

- Simétricas: $A^T = A$ (o hermíticas si la $A \in \mathbb{C}^{n \times n}$: $A^H = A$)
- Inversibles: $\exists A^{-1} (\overrightarrow{si} \ det(A) \neq 0)$

Bibliografía extra

- 1. Álgebra Lineal, Departamento de Matemática, FCEyN, UBA
- 2. <u>The Matrix Cookbook</u>, buen resumen de operaciones matriciales y sus propiedades