Discrete mathematics - long question A

Recall the Fibonacci numbers defined by:

- $f_0 = 0$
- $f_1 = 1$
- $f_n = f_{n-1} + f_{n-2}$ for n > 1

Using induction, or otherwise, show that $f_{m+n} = f_{m+1} f_n + f_m f_{n+1}$. [4 marks]

Deduce that $\forall m, n > 0$. $m \mid n \Rightarrow f_m \mid f_n$.

[4 marks]

Deduce further that $\forall n > 4$. f_n prime $\Rightarrow n$ prime.

[2 marks]

Given $n \in \mathbb{N}$, let $g_i = f_i \mod n$, and consider the pairs (g_1, g_2) , (g_2, g_3) , ..., (g_i, g_{i+1}) , Show that there must be a repetition in the first n^2+1 pairs. Let r < s be the least values with $(g_r, g_{r+1}) = (g_s, g_{s+1})$. Show that $g_{r-1} = g_{s-1}$, and deduce that r = 1. Calculate g_1 and g_2 , and deduce that $g_{s-1} = 0$. Hence show that one of the first n^2 Fibonacci numbers is divisible by n.

[10 marks]

Solution

base case	[1]
inductive step	[2]
Use induction on i to show that f_{mi} is divisible by f_m	[1+1+2]
$n > 4$ composite $\Rightarrow n = rs$ with $s > 2$. Now $f_s > 1$ and $f_s \mid f_n$, so f_n is composite	[1+1]
Follow the instructions: only n values for g_i so only n^2 values for pair so repetition by counting	[1] [1] [1]
Suppose $r > 1$ use inductive definition of Fibonacci numbers observe r not minimal	[1] [1] [1]
$f_1 = f_2 = 1$, so $g_1 = g_2 = 1$ use inductive definition of Fibonacci numbers again	[1] [1]
$s > r = 1$ and $g_{s-1} = 0$, so f_{s-1} is divisible by n	[2]