3 מבוא ללמידה חישובית | סיכום הרצאה (20942)

מנחה: שי מימון סמסטר: 2022א' נכתב על ידי: מתן כהן

Linear Regression - רגרטיה לינארית

 ${f x}$ ההנחה הכללית שחוזרת – הלייבל y (פלט) מתנהג בצורה לינארית כפונקציה של המאפיינים הנחה נוספת – y הוא משתנה רציף (בעית רגרסיה)

The Loss Function - פונקצית המחיר

כאשר נדבר על בעית רגרסיה, בדומה לכל בעית למידה אחרת – נרצה להגדיר את ה-Loss Function שלה (פונקציית המחיר). בבעיית סיווג – הדבר פשוט, כיוון ששם חוזים ערך מסוים ונותנים לו תווית (כמו עם הפרספטרון שעבר לערכים ב $\{1,-1\}$). אם סיווגנו נכון – השגיאה היא אפס ואין צורך **לשלם שום מחיר** על הסיווג, אם הסיווג שגוי – המחיר גבוה יותר.

עם זאת, בבעיית רגרסיה המתודולוגיה שונה – יש צורך לכמת את המרחק בין החיזוי של האלגוריתם לבין הערך האמיתי בעזרת פונקציית המחיר

האינטואיציה: כיצד אנחנו "מענישים" את עצמינו על חיזוי שגוי בהתאם ל**מרחק** בין החיזוי לבין הערך האמיתי

פונקציות מחיר מוכרות

• פונקציה ריבועית:

$$e(h(\mathbf{x}), y) = (h(\mathbf{x}) - y)^2$$

שמגדילה את השגיאה באופן ריבועי

• פונקציה של ערך מוחלט:

$$e(h(\mathbf{x}), y) = |y - h(\mathbf{x})|$$

יש צורך להבחין בעובדה שהפונקציה הריבועית "מענישה מאוד" על שגיאות גדולות לעומת הערך המוחלט, ולכן במצבים בהם יש outliers הפונקציה הריבועית יכולה לפגום בטיב האלגוריתם.

Squared Loss Function - פונקצית המחיר הריבועית 1.2

כאשר נדבר על הפונקציה הנ"ל נרצה תמיד למצוא פתרון לבעיית האופטימיזציה שמביאה למינימום את התוחלת של פונקצית :השגיאה הריבועית

$$E_{out}(h) = \mathbb{E}\left[\left(h(\mathbf{x}) - y\right)^2\right]$$

אך לנו לא נתון הפילוג של סט הדוגמאות! לכן נרצה להתמודד עם השגיאה הריבועית הממוצעת מתוך סט האימון שלנו כאשר $:E_{in}$ גרצה להביא למינימום את

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} \underbrace{\left(h(\mathbf{x}_n) - y_n\right)^2}_{squared-function}$$

הציפייה שלנו היא שהמינימום שנמצא יניב לנו חזאי מספיק טוב.

Least-Squares Derivation - פיתוח הפונקציה 1.2.1

in עבור דוגמה כלשהי
$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}_n$$
 ועבור היפותזה $\mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{pmatrix}$ ומשקלים $\mathbf{x}_n = \begin{pmatrix} x_{n_0} \\ x_{n_1} \\ \vdots \\ x_{n_d} \end{pmatrix} = \begin{pmatrix} 1 \\ x_{n_1} \\ \vdots \\ x_{n_d} \end{pmatrix}$ עבור דוגמה כלשהי $\mathbf{x}_n = \begin{pmatrix} x_{n_0} \\ x_{n_1} \\ \vdots \\ x_{n_d} \end{pmatrix}$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \mathbf{w}^T \mathbf{x}_n)^2$$

ינרצה להביא למינימום את על מנת למצוא על מנת למצוא את אופטימלים $\hat{\mathbf{w}}$ האופטימלי:

$$\min_{\hat{\mathbf{w}} \in \mathbb{R}^{d+1}} E_{in}(\hat{\mathbf{x}})$$

לשם כך נגדיר מטריצה חדשה ששורותיה יהיו הוקטורים שמייצגים את הפיצ'רים:

$$X_{N\times(d+1)} = \begin{pmatrix} - & \mathbf{x}_1^T & - \\ - & \mathbf{x}_2^T & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{x}_N^T & - \end{pmatrix}$$

 $(1,1,..,1) \in \mathbb{R}^{d+1}$ היא עמודה במטריצה במטריצה הראשונה ננבחין כי העמודה הראשונה במטריצה איז ונבחין כי ה

בצורה דומה נגדיר וקטור
$$\mathbf{y}_{N imes 1} = egin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$
וכעת נרצה להתבונן בעיקרון הריבועים הפחותים על ידי כתיב מטריציאלי, לשם $\mathbf{y}_{N imes 1} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$ ר נרשום את E_{in} בצורה נוחה יותר:

$$E_{in}(\hat{\mathbf{w}}) = \frac{1}{N} \|\mathbf{y} - X\hat{\mathbf{w}}\|^2 = \frac{1}{N} \cdot \left[\|\mathbf{y}\|^2 + \hat{\mathbf{w}}^T X^T X \hat{\mathbf{w}} - 2 \cdot \left(\mathbf{y}^T \cdot X \hat{\mathbf{w}} \right) \right]$$

 $\mathbf{x}_k^T \cdot \hat{\mathbf{w}}$ נבחין כי $\mathbf{x}^T \cdot \hat{\mathbf{w}}$ הוא וקטור שכל איבר -k בו הוא הוא וקטור שכל איבר איבר מהכפל

כעת נרצה למצוא נקודה סטציונרית (חשודה לקיצון) ולשם כך נשתמש בגרדיאנט ונשווה לאפס:

$$\nabla_{\hat{\mathbf{w}}} E_{in}(\hat{\mathbf{w}}) = \frac{1}{N} \left[\underbrace{2X^T X \hat{\mathbf{w}}}_{(1)} - 2 \cdot X^T \mathbf{y} \right] = \frac{2}{N} \cdot X^T (X \hat{\mathbf{w}} - \mathbf{y}) = \mathbf{0}$$

$$\iff X^T (X \hat{\mathbf{w}} - \mathbf{y}) = \mathbf{0} \setminus normal - equations$$

$$\iff X^T X \hat{\mathbf{w}} = X^T \mathbf{y}$$

$$abla_{\hat{\mathbf{w}}}(\hat{\mathbf{w}}^TA\hat{\mathbf{w}}) = (\underbrace{A + A^T}_{X^TX + XX^T = 2X^TX})\hat{\mathbf{w}} = 2X^TX\hat{\mathbf{w}}$$
 או (1) אי $\mathbf{x}^TX = A$ נעמן (2) - (2) נעמן (3) או (4) $\mathbf{b} = -2 \cdot \mathbf{y}^T \cdot X$ נעמן (4) - (2)

לפני שנמשיך למציאת הנקודה, נתבונן בנגזרת השנייה (הסיין):

$$\nabla_{\hat{\mathbf{w}}}^2 E_{in}(\hat{\mathbf{w}}) = \frac{2}{N} X^T X$$

:כעת נראה שהביטוי X^TX מתאר מטריצה אי-שלילית, לשם כך נשתמש בהגדרה ונגדיר וקטור כלשהוא

$$\mathbf{a}^T X^T X \mathbf{a} = (X \mathbf{a})^T (X \mathbf{a}) = \|X \mathbf{a}\|^2 \ge 0$$

לכן הנגזרת השנייה היא **אי-שלילית** ולכן הנקודות שייקימו את השוויון מעלה הן נקודות מינימום **גלובליות** וכמו-כן מדובר בפונקציה קונבקסית.

נמשיך בפתרון המשוואה: $\hat{\mathbf{x}}^T X \hat{\mathbf{w}} = X^T X$. נניח כי $X^T X \hat{\mathbf{w}} = X^T \mathbf{y}$ הפיכה ונכפיל את הביטוי משמאל בהפכית:

$$X^T X \hat{\mathbf{w}} = X^T \mathbf{y} \overset{\backslash (X^T X)^{-1}}{\Longleftrightarrow} \boxed{\hat{\mathbf{w}} = (X^T X)^{-1} (X^T \mathbf{y})}$$

קיבלנו פתרון יחיד!

הערה: ההנחה ש X^TX הפיכה נובעת מכך שהמטריצה X תהיה מדרגה מלאה – דבר שלא יכול לקרות במידה וקיימת קורלציה מלאה בין הפי'צרים או לחלופין שמספר הדוגמאות קטן ממספר הפי'צרים - אלו יניבו לנו דרגה נמוכה.

- דוגמה למספר דוגמאות קטן ממספר פי'צרים למידה מתמונות שכל פיקסל הוא פי'צר
 - ניתן להתמודד עם מצב שכזה עם צמצום של הפיצ'רים על ידי טרנספורמציות וכד'

כעת, נחזור קצת אחורה ונתבונן בביטוי $X^T X \hat{\mathbf{w}} = X^T \mathbf{v}$ ונוכיח טענה:

טענה: X בעלת דרגה מלאה X^T הפיכה

הוכחה. נניח כי X בעלת דרגה מלאה

- נניח בשלילה כי X^TX סינגולרית (לא הפיכה)
 - :כך ש: $\mathbf{c} \neq \mathbf{0}$ כך ש \circ

$$(X^TX)\mathbf{c} = \mathbf{0}$$

∘ לכן:

$$(X^{T}X)\mathbf{c} = \mathbf{0}$$

$$\stackrel{\backslash \mathbf{c}^{T}}{\Longleftrightarrow} \mathbf{c}^{T}X^{T}(X\mathbf{c}) = 0$$

$$\Rightarrow ||X\mathbf{c}||^{2} = 0$$

$$\Rightarrow X\mathbf{c} = 0$$

- לאה מלאה דרגה לפיכך X לא בעלת לפיכך \circ
- הפיכה X^TX הכרח ולכן בהכרח הפיכה סתירה להנחה ולכן ה

 $X^TX \succ 0$ מסקנה: לאחר שהוכחנו ש X^TX הפיכה – בהכרח אין לה ע"ע ולכן בהכרח איז אחר מסקנה:

1.3 קצת אינטואיציה

 $X^T\cdot(y-X\hat{\mathbf{w}})=0$ נתבונן לרגע במשוואה $E_{in}(\hat{\mathbf{w}})=rac{1}{N}\,\|\mathbf{y}-X\hat{\mathbf{w}}\|^2$ ובמשוואה הנורמלית $\hat{y}=X\hat{\mathbf{w}}$: כידוע, \hat{x} זה בעצם התוצאה שהניב לנו המודל על סט הדוגמאות, לשם נוחות נסמן: \hat{x} שאלה: מה נוכל להסיק על הקשר בין \hat{y} לבין הפיצ'רים ב-X?

תשובה: נוכל להסיק ש- \hat{y} הוא בעצם קומבינציה לינארית של עמודות X – או במילים אחרות שייך למרחב שנפרש הוא לידי עמודות המטריצה \hat{y} !

כמו-כן יש לשים לב שהפתרון שקיבלנו בסופו של דבר **קיים את המשוואות הנורמליות** - ואכן על מנת לקיים:

$$X^T \cdot (y - \hat{y}) = 0$$

 $(y-\hat{y})$ -יש צורך בכך ש X^T יהיה אורתוגונלי

במילים אחרות: אנחנו רוצים למצוא \hat{y} שתלוי במרחב העמודות של X שיהיה הכי קרוב ל-y מבחינת שגיאה ריבועית על ידי פתרון המשוואות הנורמליות. נעשה זאת על ידי בחירת \hat{y} כך שהשגיאה בינו לבין y תהיה אורתוגונלית לעמודות

 $\hat{\mathbf{w}} = (X^T X)^{-1} (X^T \mathbf{y})$ נוכל כעת לחבר את מטריצת ההיטל בכך ש $\hat{\mathbf{w}} = (X^T X)^{-1} (X^T \mathbf{y})$

$$\hat{\mathbf{y}} = X\hat{\mathbf{w}} = \underbrace{X(X^TX)^{-1}X^T}_{H} \cdot \mathbf{y}$$

:כאשר לHיש 2 מאפיינים חשובים

$$H^T=H$$
 - סימטרית H (1)

$$H^2 = H$$
 (2)

:כעת, נוכל להתבונן בנורמה בריבוע של המרחק בין $\hat{\mathbf{y}}$ ל- $\hat{\mathbf{y}}$ ולקבל ביטוי דומה למשפט פיתגורס

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 = \|\mathbf{y} - X\hat{\mathbf{w}}\|^2$$

$$= (\mathbf{y} - X\hat{\mathbf{w}})^T (\mathbf{y} - X\hat{\mathbf{w}})$$

$$X^T \cdot (y - \hat{y}) = 0 = \mathbf{y}^T \cdot (\mathbf{y} - X\hat{\mathbf{w}})$$

$$= \|\mathbf{y}\|^2 - \mathbf{y}^T X \hat{\mathbf{w}}$$

$$\mathbf{y}^T X = \|\mathbf{y}\|^2 - \hat{\mathbf{w}}^T X^T X = \|\mathbf{y}\|^2 - \hat{\mathbf{w}}^T X^T X \hat{\mathbf{w}}$$

$$= \|\mathbf{y}\|^2 - \|\hat{\mathbf{y}}\|^2$$

?האה קורה אם X לא בעלת דרגה מלאה 1.4

כפי שהזכרנו יכול לקרות מצב כזה, וכאשר ננסה לפתור את המשוואות הנורמליות לא נוכל להשתמש בהנחה ש X^TX הפיכה $\hat{\mathbf{w}}$ -ולכן נסיק שישנן אינסוף פתרונות ל

X עם זאת, הוקטור $\hat{\mathbf{y}} = X\hat{\mathbf{w}}$ הוא יחיד כיוון שהוא מייצג את ההיטל של

 $\hat{\mathbf{y}}$ את שיש יותר מוקטור $\hat{\mathbf{w}}$ יחיד שמספק את

in ארכה: אמנם יש הרבה פתרונות, אך הם לא שונים – ולכן אין שוני בין פתרון אחד לשני מבחינת קריטריון השגיאה שבחרנו sample error