Problem Set 4 - Points at ∞

Corrected Theorem 4.1 from PSet 02:

Theorem 0.1. Let f be a non-constant holomorphic function defined near $z_0 \in \mathbb{C}$. Suppose the Taylor series of f near z_0 has the form

$$f(z) - f(z_0) = a_k(z - z_0)^k + a_{k+1}(z - z_0)^{k+1} + a_{k+2}(z - z_0)^{k+2} + \dots$$

with $a_k \neq 0$. Then there exists biholomorphic functions $\psi(z)$, $\phi(z)$ (with appropriate domains) such that

$$\psi \circ f \circ \phi(z) = z^k$$

1 Complex projective space

Projectivization provides a technique for compactifying non-compact surfaces. However, as we will see tomorrow, this technique sometimes creates singularities so should be used with caution.

Definition 1.1. The complex projective space of dimension n is the set

$$\mathbb{P}^n := \{(z_0, z_1, \dots, z_n) \mid z_i \in \mathbb{C} \text{ and not all } z_i \text{ are zero}\} / \sim$$

where the equivalence \sim is defined as

$$(z_0, z_1, \ldots, z_n) \sim (\lambda z_0, \lambda z_1, \ldots, \lambda z_n)$$
 for $\lambda \neq 0 \in \mathbb{C}$

The elements of \mathbb{P}^n are written as $[z_0:z_1:\cdots:z_n]$ and the z_i 's are called homogeneous coordinates.

Q. 1. Convince yourself that \mathbb{P}^n is the space of complex lines passing through the origin in \mathbb{C}^{n+1} . (Such spaces are called Grassmannians.)

There is a natural embedding of \mathbb{C}^n in \mathbb{P}^n given by

$$(z_0, z_1, \dots, z_{n-1}) \longmapsto [z_0 : z_1 : \dots : z_{n-1} : 1]$$

It is easy to see that this map is injective. So we can think of \mathbb{C}^n as a subset of \mathbb{P}^n . Any element in \mathbb{P}^n of the form $[z_0:z_1:\cdots:z_{n-1}:z_n]$ with $z_n\neq 1$ is in the image of the above embedding, hence

$$\mathbb{P}^n \setminus \mathbb{C}^n = \{ [z_0 : z_1 : \dots : z_{n-1} : 0] \mid z_i \in \mathbb{C} \}$$

$$\cong \mathbb{P}^{n-1}$$

We think of the points in $\mathbb{P}^n \setminus \mathbb{C}^n$ as the "points at ∞ ". So \mathbb{P}^n has " \mathbb{P}^{n-1} many" points at ∞ .

We are mainly interested in the space \mathbb{P}^2 . We will use the notation

$$\mathbb{P}^2 = \{ [z:w:t] \}.$$

The points at ∞ are then the points with t = 0 i.e. $\{[z : w : 0]\}$.

2 Homogenization

Let p(z, w) be a polynomial in two variables with complex coefficients. And let

$$S_p = \{(z, w) \mid p(z, w) = 0\} \subseteq \mathbb{C}^2$$

Definition 2.1. A polynomial is *homogeneous* if every monomial term in it has the same total degree.

Homogenization turns p into a homogeneous polynomial $\overline{p}(z, w, t)$ in three variables, where we add powers of t as needed to make each term of the same degree.

Example 2.2. If $p(z, w) = z^2 - w^3 - w$ then $\overline{p}(z, w, t) = z^2 t - w^3 - wt^2$. If $p(z, w) = z^2 - w^2 - w$ then $\overline{p}(z, w, t) = z^2 - w^2 - wt$.

Q. 2. Let $\overline{p}(z, w, t)$ is a homogeneous polynomial. Prove that (a, b, c) is a root of \overline{p} if and only if $(\lambda a, \lambda b, \lambda c)$ is a root of \overline{p} for $\lambda \neq 0 \in \mathbb{C}$.

Hence, we can ask for solutions of the homogeneous polynomial p(z, w, t) in the projective space \mathbb{P}^2 .

If S_p is the set $\{(z, w) \mid p(z, w) = 0\} \subseteq \mathbb{C}^2$ then denote

$$\overline{S_p}:=\{[z:w:t]\mid p(z,w,t)=0\}\subseteq \mathbb{P}^2.$$

Definition 2.3. $\overline{S_p}$ is called the *projectivization* of S_p .

There is a natural embedding $S_p \to \overline{S_p}$ which sends a solution (z, w) of p to the solution [z:w:1] of \overline{p} . The points in $\overline{S_p} \setminus S_p$ are called the points at ∞ .

For any homogeneous polynomial \overline{p} the space $\overline{S_p}$ is compact. The proof of this is essentially the fact that closed subsets of compact sets are compact and zero sets of polynomials are closed. But because of the points at ∞ the argument is a bit more intricate, we won't go over the details.

Q. 3. Let q(w) be a complex polynomial and let $p(z, w) = z^2 - q(w)$. Find the number of points at ∞ for $\overline{S_p}$ for the following polynomials

- 1. q(w) = w + b, where $b \in \mathbb{C}$.
- 2. $q(w) = w^2 + bw + c$, where $b, c \in \mathbb{C}$.
- 3. $q(w) = w^n + a_{n-1}w^{n-1} + \dots + a_1w + a_0$, where $a_i \in \mathbb{C}$ and $n \ge 3$.

Q. 4. Let p(z,w) be an arbitrary polynomial with homogenization $\overline{p}(z,w,t)$. What can you say about the number of points at ∞ for $\overline{S_p}$? Can you interpret this result in terms of limits $\lim_{z\to\infty} z/w$?

Fact: when q(w) is a non-constant polynomial of degree ≤ 3 with distinct roots and $p(z,w)=z^2-q(w)$ the space $\overline{S_p}$ is a Riemann surface and the projection map

$$\pi: \overline{S_p} \longrightarrow \mathbb{P}^1$$
$$[z:w:1] \longmapsto w$$
$$[z:w:0] \longmapsto \infty$$

is a complex differentiable map.

Q. 5. Using the Riemann–Hurwitz formula for the projection π , find the genus of the curves $\overline{S_p}$ when $p(z,w)=z^2-q(w)$ and q is a non-constant polynomial of degree ≤ 3 with distinct roots.

3 Fermat's conjecture for function fields

Theorem 3.1. The are no non-constant complex coefficient polynomial solutions to the equation

$$(x(t))^d + (y(t))^d = (z(t))^d$$

if d > 2, with gcd(x(t), y(t), z(t)) = 1.

Proof. Consider the polynomial $p(z,w)=z^d+w^d-1$ with homogenization $p(z,w,t)=z^d+w^d-t^d$. $\overline{S_p}$ has exactly d points at ∞ given by $z^d+w^d=0$, namely

$$[\zeta_1:1:0]$$
, $[\zeta_2:1:0]$,..., $[\zeta_d:1:0]$ where $\zeta_i^d=-1$

One can show that the projection map

$$\pi: \overline{S_p} \longrightarrow \mathbb{P}^1$$
$$[z:w:1] \longmapsto w$$
$$[z:w:0] \longmapsto \infty$$

is a complex differentiable map, and hence a ramified covering.

Consider a point $w \in \mathbb{C}$. The points in $\pi^{-1}(w)$ are the elements [z:w:1] such that $z^d = 1 - w^d$. Hence,

- 1. $\pi^{-1}(w)$ has size d if $1 w^d \neq 0$,
- 2. $\pi^{-1}(w)$ has size 1 if $w^d = 0$,
- 3. $\pi^{-1}(\infty)$ has size d.

This tells us that there are d branch points given by the d^{th} roots of unity, call them τ_1, \ldots, τ_d , and the fiber over each branch point is single element $[0:\tau_i:1]$.

Plugging this in the Riemann–Hurwitz formula we get

$$\chi(\overline{S_p}) = d \cdot \chi(\mathbb{P}^1) - \sum_{d} (d-1)$$
$$= 3d - d^2$$

Hence if d>2, $\chi(\overline{S_p})<2$ and hence genus of $\overline{S_p}>0$. Hence if d>2, there are no non-constant complex differentiable maps

$$\mathbb{P}^1 \longrightarrow \overline{S_p}$$

But a solution (x(s), y(s), z(s)) to the equation $x^d + y^d = z^d$ defines a complex differentiable map

$$\mathbb{P}^1 \longrightarrow \overline{S_p}$$
$$s \longmapsto [x(s) : y(s) : z(s)]$$

extended to ∞ by taking the limit. This map would be non-constant if $\gcd(x,y,z)=1$. But no such map exists.