Algebra-Based Physics-1: Mechanics (PHYS135A): Unit 0

Jordan Hanson

August 30, 2022

Whittier College Department of Physics and Astronomy

Opening Remarks - Welcome!

Opening Remarks - Welcome!

Figure 1: The usual look from a student taking physics for the first time.

Summary

Unit 0 Summary

Physics - φυσική - "phusiké": knowledge of nature from φύσις - "phúsis": nature

- 1. Methods of approximation
 - Estimating the correct order of magnitude
 - Function approximation
 - Unit analysis
- 2. Review of geometry and trigonometry techniques
 - Similar triangles
 - Pythagorean theorem
 - Sine, cosine, tangent
- 3. Coordinates and vectors
 - Scalars and vectors
 - Cartesian (rectangular) coordinates, displacement
 - Vector addition, subtraction, and multiplication

Methods of approximation

In science and engineering, estimation is to obtain a quantity in the absence of precision, informed by rational constraints.

- 1. Define relevant scales
 - 1 AU for the solar system (distance from Sun to Earth)
 - 1 angstrom (10^{-10} meters) for cell membranes
- 2. Obtain complex quantities from simple ones
 - Obtain areas and volumes from lengths
 - Obtain rates from numerators and denominators
- 3. Constrain the unknown with upper and lower limits
 - The solar system is less than one light-year across
 - An insect is at least one millimeter long

Professor: Work several examples.

Estimate the mass of ants in an ant colony. Assume that the colony is a species known to have 10^5 ants (roughly) per colony.

- A: 0.01 kg
- B: 0.1 kg
- C: 1 kg
- D: 10 kg

An adult blue whale is about 30 meters long. What is the mass of a blue whale calf? (1 tonne = 1000 kg).

- A: 100 kg
- B: 0.5 tonnes
- C: 5 tonnes
- D: 20 tonnes

How long does it take an airliner to fly across the Atlantic ocean? Assume the velocity is 500 mph, and the radius of the Earth is 7000 km.

- A: 10 hours
- B: 15 hours
- C: 2 hours
- D: 4 hours

A flock of birds takes one minute to pass overhead, and it is about 100 meters wide, with most birds flying at roughly the same altitude. How many birds are in the flock?

- A: 100 birds
- B: 1,000 birds
- C: 10,000 birds
- D: 100,000 birds

How many M&M candies would fit in a 2.0 liter empty soda bottle?

A: 200

• B: 2,000

• C: 10,000

• D: 50,000

Given that 80 million people live in Germany, 67 million people live in France, and 60 million people live in Italy, how many people live in Europe?

A: 100 million

• B: 200 million

• C: 700 million

• D: 2 billion

		Masses in kilograms (more precise values in parentheses)		Times in seconds (more precise values in parentheses)	
10-18	Present experimental limit to smallest observable detail	10-30	Mass of an electron (9.11×10 ⁻³¹ kg)	10-23	Time for light to cross a proton
10-15	Diameter of a proton	10-27	Mass of a hydrogen atom (1.67×10 ⁻²⁷ kg)	10-22	Mean life of an extremely unstable nucleus
10-14	Diameter of a uranium nucleus	10-15	Mass of a bacterium	10-15	Time for one oscillation of visible light
10 ⁻¹⁰	Diameter of a hydrogen atom	10-5	Mass of a mosquito	10^{-13}	Time for one vibration of an atom in a solid
10 ⁻⁸	Thickness of membranes in cells of living organisms	10-2	Mass of a hummingbird	10-8	Time for one oscillation of ar FM radio wave
10 ⁻⁶	Wavelength of visible light	1	Mass of a liter of water (about a quart)	10 ⁻³	Duration of a nerve impulse
10 ⁻³	Size of a grain of sand	10 ²	Mass of a person	1	Time for one heartbeat
1	Height of a 4-year-old child	10 ³	Mass of a car	10 ⁵	One day $(8.64 \times 10^4 \text{ s})$
10 ²	Length of a football field	10 ⁸	Mass of a large ship	10 ⁷	One year (y) (3.16×10 ⁷ s)
10 ⁴	Greatest ocean depth	10 ¹²	Mass of a large iceberg	10 ⁹	About half the life expectancy of a human
10 ⁷	Diameter of the Earth	10 ¹⁵	Mass of the nucleus of a comet	1011	Recorded history
10 ¹¹	Distance from the Earth to the Sun	10 ²³	Mass of the Moon (7.35×10 ²² kg)	10 ¹⁷	Age of the Earth
10 ¹⁶	Distance traveled by light in 1 year (a light year)	10 ²⁵	Mass of the Earth (5.97×10 ²⁴ kg)	1018	Age of the universe
10 ²¹	Diameter of the Milky Way galaxy	10 ³⁰	Mass of the Sun (1.99×10 ³⁰ kg)		
10 ²²	Distance from the Earth to the nearest large galaxy (Andromeda)	10 ⁴²	Mass of the Milky Way galaxy (current upper limit)		
10 ²⁶	Distance from the Earth to the edges of the known universe	1053	Mass of the known universe (current upper limit)		

Figure 2: Table 1.3 from the text.

Physics requires units to relate ideas to the real world, and unit analysis is a powerful tool to eliminate incorrect results and to facilitate estimation.

- 1. SI units, and kilogram-meter-second unit set
 - mass: kilogram (gram = 10^{-3} kg, milligram = 10^{-6} kg)
 - length: meter (millimeter = 10^{-3} m, kilometer = 10^{3} m)
 - time: second (1 year $pprox \pi imes 10^7$ sec, 1 hour = 3600 sec)
- 2. Unit analysis
 - $\bullet\,$ If we are calculating a density, the units should work out to be kg/m^3
 - Identifying the fundamental unit in a complex calculation often simplifies it (when done properly, this reveals the beauty of physics)

Professor: Work several examples.

A millenium is 1000 years. If a glacier retreats at a pace of 10 cm per year, what is this rate in meters per millenium?

- A: 0.1 meter per millenium
- B: 1 meter per millenium
- C: 10 meters per millenium
- D: 100 meters per millenium

Ice has a density of 0.917 grams per centimeter cubed. What is this density in kilograms per meter cubed?

- A: 91.7 kg/m³
- B: 917 kg/m^3
- C: 9170 kg/m^3
- D: 9.17 kg/m^3

Sometimes, the beauty of physics arrises from choosing the right unit.

http:

//joshworth.com/dev/pixelspace/pixelspace_solarsystem.html

The Sun in this ruler is at 0 km, and Jupiter is at about 780,000,000 km (good luck finding it). Clearly, the kilometer is the wrong unit to choose for interplanetary distances. What if we defined a new unit, the astronomical unit, as the distance between the Earth and the Sun?

Planetary orbital radii in AU (geometric means):

Mercury	0.379		
Venus	0.722		
Earth	1.00		
Mars	1.52		
Jupiter	5.20		
Saturn	9.54		
Uranus	19.2		
Neptune	30.1		

Figure 3: Why such simple numbers? There is a set of simple relationships between the *orbital period* and the *orbital radius* of planets called Kepler's Laws, which led to the discovery of **Newton's Law of Gravity**.

Coordinates and Vectors

Coordinates and Vectors - Applications: displacement

Navigation in the film The Hunt for Red October: https://youtu.be/4unk6si0-tI

Physics requires mathematical objects to build equations that capture the behavior of nature. Two examples of such objects are scalar and vector quantities. Each type of object obeys similar but different rules.

- 1. Scalar quantities
 - mass: $m_1 + (m_2 + m_3) = (m_1 + m_2) + m_3$
 - speed: $v_1(v_2 + v_3) = v_1v_2 + v_1v_3$
 - charge: $q_1\left(\frac{1}{q_1}\right) = 1$, $q_1(0) = 0$
- 2. Vector quantities
 - velocity: $\vec{v}_1 + (\vec{v}_2 + \vec{v}_3) = (\vec{v}_1 + \vec{v}_2) + \vec{v}_3$
 - tension: $\vec{t}_1 \cdot (\vec{t}_2 + \vec{t}_3) = \vec{t}_1 \cdot \vec{t}_2 + \vec{t}_1 \cdot \vec{t}_3$

Professor: show how to break into components, connection to trigonometry.

A vector may be expressed as a list of scalars: $\vec{v} = (4,2)$ (a vector with two *components*), $\vec{u} = (3,4,5)$ (three *components*). Now, we know how to add and subtract scalars. How do we add and subtract vectors?

```
What is (1,3,8)+ (0,2,1)?
Answer: (1,5,9)
```

In other words, when adding vectors, we add them component by component. **Professor: work several examples.**

How do we subtract vectors? In the same fashion:

```
What is (1,3,8)- (0,2,1)?
Answer: (1,1,7)
```

In other words, when subtracting vectors, we subtract them component by component. **Professor: work several examples.**

How do we multiply vectors? In the same fashion, for one kind of multiplication:

What is

$$(1,3,8)\cdot(0,2,1)$$
?

Answer: $1 \cdot 0 + 3 \cdot 2 + 8 \cdot 1 = 14$

This kind of multiplication is known as the dot-product. There is also the *cross-product*, which we will save for later. **Professor:** work several examples.

Coordinates and Vectors - Coordinates (Chapters 2.1-2.2)

The components of a vector may describe quantities in a coordinate system, such as *Cartesian coordinates* - after René Descartes. Vectors in the 3D Cartesian coordinate system (x,y,z) may be written in the following notation:

$$\vec{v} = a\hat{i} + b\hat{j} + c\hat{k}$$

- a: The amount in the +x-direction, \hat{i} : a vector of length 1, in the +x-direction
- b: The amount in the +y-direction, \hat{j} : a vector of length 1, in the +y-direction
- c: The amount in the +z-direction, \hat{k} : a vector of length 1, in the +z-direction

Figure 4: (a) Two vectors in a two-dimensional Cartesian coordinate system: $\vec{u} = 0.5\hat{i} + 1.0\hat{j}$ and $\vec{v} = 2.0\hat{i} + 1.0\hat{j}$. (b) What is $\vec{u} + \vec{v}$? Adding components: $\vec{u} + \vec{v} = 2.5\hat{i} + 2.0\hat{j}$.

Figure 5: (a) Two vectors in a two-dimensional Cartesian coordinate system: $\vec{u} = 0.5\hat{i} + 1.0\hat{j}$ and $\vec{v} = 2.0\hat{i} + 1.0\hat{j}$. (b) What is $\vec{u} - \vec{v}$? Subtracting components: $\vec{u} - \vec{v} = 1.5\hat{i} + 0.0\hat{j}$.

Figure 6: (a) Two vectors in a two-dimensional Cartesian coordinate system: $\vec{u} = 0.5\hat{i} + 1.0\hat{j}$ and $\vec{v} = 2.0\hat{i} + 1.0\hat{j}$. (b) To compute $\vec{w} - \vec{v}$, arrange the vectors to get a sense of the result, \vec{u} .

$$ec{p}=4\hat{i}+2\hat{j}.$$
 $ec{q}=-4\hat{i}+2\hat{j}.$ Compute $ec{p}\cdot ec{q}.$

- A: 12
- B: -12
- C: 4
- D: 8

$$\vec{p} = -1\hat{i} + 6\hat{j}$$
. $\vec{q} = 3\hat{i} + 0.5\hat{j}$. Compute $\vec{p} \cdot \vec{q}$.

- A: -1
- B: 1
- C: 0
- D: 3

Why was the last answer zero? Look at it graphically:

Figure 7: Two vectors \vec{p} and \vec{q} are *orthogonal* if $\vec{p} \cdot \vec{q} = 0$.

What if the vectors are parallel? Look at it graphically:

Figure 8: Two vectors \vec{p} and \vec{q} are parallel if $\vec{p} \cdot \vec{q}$ is maximal.

Coordinates and Vectors - Dot Product (Chapters 2.1-2.2)

The *length* or *norm* of a vector $\vec{v} = a\hat{i} + b\hat{j}$ is $|\vec{v}| = \sqrt{a^2 + b^2}$.

Figure 9: Computing the norm of a vector \vec{p} .

Coordinates and Vectors - Dot Product (Chapters 2.1-2.2)

Notice that $\sqrt{\vec{p} \cdot \vec{p}} = |\vec{p}|$.

Let θ_p be the angle between \vec{p} and the x-axis.

$$p_{x} = \vec{p} \cdot \hat{i} = |\vec{p}| \cos(\theta_{p}).$$

$$p_y = \vec{p} \cdot \hat{j} = |\vec{p}| \sin(\theta_p).$$

Theorem: The dot product of two vectors \vec{p} and \vec{q} is $|u||v|\cos(\theta)$, if θ is the angle between them.

Proof:

$$\vec{p} \cdot \vec{q} = p_X q_X + p_Y q_Y = |p||q|\cos\theta_p\cos\theta_q + |p||q|\sin\theta_q\sin\theta_q$$

$$= |p||q|(\cos\theta_p\cos\theta_q + \sin\theta_p\sin\theta_q) = |p||q|\cos(\theta_p - \theta_q)$$

$$= |p||q|\cos\theta.$$

$$|\vec{p} \cdot \vec{q}| = |p||q| \cos \theta$$

Coordinates and Vectors - Dot Product (Chapters 2.1-2.2)

An object moves at 2 m/s at $\theta=60^\circ$ with respect to the x-axis. What is the velocity of the object?

• A:
$$(1\hat{i} + 1\hat{j})$$
 m/s

• B:
$$(\sqrt{3}\hat{i} + 1\hat{j})$$
 m/s

• C:
$$(\sqrt{3}\hat{i} + \sqrt{3}\hat{j})$$
 m/s

• D:
$$(1\hat{i} + \sqrt{3}\hat{j})$$
 m/s

What is the dot product of this velocity with another velocity: 5 m/s along the x-axis?

- A: $1 (m/s)^2$
- B: $5 (m/s)^2$
- C: $10 (m/s)^2$
- D: 5 (m/s)

Is it possible to multiply vectors and scalars? Of course:

$$a_1\vec{p}=a_1p_x\hat{i}+a_1p_y\hat{j}.$$

Also, multiplication properties still hold. For example:

$$(a_1 + a_2)\vec{p} = a_1\vec{p} + a_2\vec{p}.$$

A spacecraft moves at 400 m/s, at an angle of 30 degrees with respect to the x-axis. If it fires two thrusters that boost the x-component and y-component of the velocity by 25% and 50%, respectively, what is the final velocity?

- A: $(433\hat{i} + 300\hat{j})$ m/s
- B: $(300\hat{i} + 433\hat{j})$ m/s
- C: 400 m/s
- D: $(400\hat{i} + 433\hat{j})$ m/s

Coordinates and Vectors - Displacement (Chapters 2.1-2.2)

We define the *position* of an object as a vector locating it in a given coordinate system. The scalar *distance* is the norm of the position vector, that is, the distance to to the origin.

Now we can introduce the concept of **displacement**: a vector describing a movement of an object.

Coordinates and Vectors - Displacement (Chapters 2.1-2.2)

Figure 10: Suppose an object moves from position \vec{v} to \vec{w} . In this case, the displacement is \vec{u} . Thus, the final position is the initial position, plus the displacement.

Coordinates and Vectors - Displacement (Chapters 2.1-2.2)

It follows that the *displacement* is zero if the initial and final positions are the same, but the *distance travelled* is not.

Suppose a jet fighter travelling at 800 km per hour banks such that it flies in a circle of radius 0.5 km. How long does it take to complete the circle? What is the distance traveled, and what is the displacement?

- A: 2π km, 28 seconds, 2π km
- B: π km, 14 seconds, π km
- C: π km, 28 seconds, π km
- D: π km, 14 seconds, 0 km

Coordinates and Vectors - Computer demonstration

PhET simulation about vector addition:

https:

//phet.colorado.edu/en/simulation/vector-addition

Coordinates and Vectors - Simulation activity

Let the y-axis represent altitude, and the x-axis represent horizontal distance. Let the distance unit at the top right (for R_x and R_y) be 100 m. That is, 5 corresponds to 500 m.

- Using the vector tool, create a displacement vector for Jester's jet fighter.
 - 1. Jester begins the dive at 11 km altitude and ends at 6 km.
 - 2. He begins at a horizontal displacement of 0 km, and the angle of his dive is -45 degrees.
- Using the vector tool, create a displacement vector for Maverick's jet fighter.
 - 1. Maverick begins the dive at 10 km and ends at 5 km.
 - 2. He begins at a horizontal displacement of 0 km, and the angle of his dive is -45 degrees.

Coordinates and Vectors - Simulation activity

Let the y-axis represent altitude, and the x-axis represent horizontal displacement, both in kilometers.

- What is the initial displacement vector between Maverick and Jester? (Take Jester's initial position and subtract Maverick's initial position).
- What are the final positions of Jester and Maverick? Specify both the x and y coordinates.
- What distance does each jet fighter travel?
- Suppose the speed of each aircraft is 0.1 km/s. How long does the dive take?
- Given that you know how long the dive takes, what is the velocity vector of the aircraft? (It's the same for both fighters).

Coordinates and Vectors - Average Velocity (Chapter 2.3)

Average velocity is the ratio of the displacement to the elapsed time.

$$\vec{v}_{\text{avg}} = \frac{\Delta \vec{x}}{\Delta t} \tag{1}$$

The average speed is the norm of the average velocity:

$$v_{\text{avg}} = \frac{|\Delta \vec{x}|}{\Delta t} \tag{2}$$

If the motion is in one dimension, then the average speed is

$$v_{\rm avg} = \frac{x_{\rm f} - x_{\rm i}}{t_{\rm f} - t_{\rm i}} \tag{3}$$

Coordinates and Vectors - Average Velocity (Chapter 2.3)

Figure 11: A Formula-1 driver keeps his car on the track by following a path approximated by the position vectors u, v, u, and v. The dashed arrow represents the total displacement.

Coordinates and Vectors - Average Velocity (Chapter 2.3)

If $\vec{u} = (20\hat{i} + 30\hat{j})$ m, and $\vec{v} = (30\hat{i} + 20\hat{j})$ m, what is the total displacement? If the elapsed time is 10 seconds, what is the average velocity?

- A: $(50\hat{i} + 50\hat{j})$ m, 14 m/s
- B: $(80\hat{i} + 100\hat{j})$ m, 10 m/s
- C: $(100\hat{i} + 100\hat{j})$ m, 14 m/s
- D: $(50\hat{i} + 150\hat{j})$ m, 10 m/s

Figure 12: Angles of a triangle add up to π (180°).

$$\angle OCD = \pi/2 = \angle OCE + \angle DCE = \angle OCE + \alpha$$
 (4)

$$\angle OCE + \angle COE + \pi/2 = \pi = \angle OCE + \theta + \pi/2 \tag{5}$$

$$\angle OCE + \theta = \pi/2 \tag{6}$$

$$\theta = \alpha \tag{7}$$

Figure 13: Proof of Pythagorean theorem.

$$A_1 = (a+b)^2 = a^2 + b^2 + 4((1/2)ab)$$
 (8)

$$A_2 = c^2 + 4((1/2)ab) = A_1 (9)$$

$$a^2 + b^2 = c^2 (10)$$

One soccer teammate passes the ball to another. The player without the ball is 7 meters away from the player with the ball, and they are both running in the same direction. The player without the ball runs ahead by 24 meters before the pass. How far does the ball travel?

- A: 7 meters
- B: 24 meters
- C: 25 meters
- D: 17 meters

Figure 14: Memorize the properties of these special triangles.

Figure 15: Working definitions of trigonometric functions.

What is $sin(30^\circ)$?

- A: 1/2
- B: $\sqrt{3}/2$
- C: 0
- D: 1

What is $tan(45^{\circ})$?

- A: 1/2
- B: $\sqrt{3}/2$
- C: 0
- D: 1

What is $\sin(30^\circ)^2 + \cos(30^\circ)^2$?

- A: 1/2
- B: $\sqrt{3}/2$
- C: 0
- D: 1

A right-triangle has sides of length 3, 4, and a hypoteneuse of 5. What are the angles inside the triangle?

- A: arctan(5/4), arctan(4/5), $\pi/2$
- B: arctan(1), arctan(4/5), $\pi/2$
- C: arctan(4/3), arctan(3/4), $\pi/2$
- D: $\arctan(3/4)$, $\arctan(3/4)$, $\pi/2$

Conclusion

Week 1 Summary

Chapters 1, 2.

- 1. Methods of approximation
 - Estimating the correct order of magnitude
 - Function approximation
 - Unit analysis
- 2. Coordinates and vectors
 - Scalars and vectors
 - Cartesian (rectangular) coordinates, displacement
 - Vector addition, subtraction, and multiplication
- 3. Review of geometry and trigonometry techniques
 - Parallel lines, similar triangles
 - Pythagorean theorem
 - Sine, cosine, tangent ...