Анализ остатков

Грауэр Л.В.

Основные предположения

об ошибках наблюдений ε_i

- статистически независимы
- имеют нулевые мат.ожидания
- имеют одинаковые дисперсии
- нормально распределены
- отсутствие выбросов

о спецификации модели

▶ выбрана верно

$\hat{y}(x) = 6 + 0.5x$

Последствия отклонений от предположений

- \triangleright $\hat{\beta}_0, \dots, \hat{\beta}_k$ смещенные
- lacktriangle оценки дисперсий оценок $\hat{eta}_0,\ldots,\hat{eta}_k$ смещенные
- ▶ доверительные интервалы для β_0, \dots, β_k не соответствуют заявленным уровням значимости
- ошибочные статистические выводы о значимости модели или отдельных парамтеров
- ▶ прогнозы смещенные

Виды остатков

$$e_i = y_i - \hat{y}_i$$
 $D(e_i) = \sigma^2 (1 - h_{ii}), \ i = 1, \dots, n$, где $h_{ii} = [A(A^TA)^{-1}A^T]_{ii}$ $rac{e_i}{\sqrt{D(e_i)}} = rac{e_i}{\sigma \sqrt{1 - h_{ii}}}, \quad i = 1, \dots, n.$

стандартизованные остатки:

$$d_i = \frac{e_i}{S\sqrt{1-h_{ii}}}, \quad i = 1, \dots, n, \quad S^2 = \frac{RSS}{n-k-1}.$$

Графические методы анализа

▶ График зависимости отстатков d_i от оцененных значений $\hat{y}_i = A\hat{\beta}$ позволяет выявить:

- ightharpoonup График зависимости d_i от значений объясняющих переменных x_{ii}
- График зависимости остатков от номера наблюдений

 ► Графические методы проверки предположения о нормальности распределения случайных составляющих (диаграмма "кантиль-квантиль")

Критерии для проверки предположений

Нормальность

- критерий Шапиро-Уилка
- критерий Андерсона-Дарлинга

$$E\varepsilon_i=0$$

 параметрический или непараметрический критерий о равенстве мат.ожидания 0

Гомоскедастичность

Критерий Голдфелда-Квандта

Независимость

▶ критерий Дарбина-Ватсона

Провека функциональной формы модели

Критерий Рэмси

Критерий Дарбина-Ватсона

 H_0 : отсутствует автокорреляция

 H_1 : имеет место автокорреляция

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

- $lackbox{D} D > D_1(lpha)$ или $D > 4 D_1(lpha) \;\; \Rightarrow \;\; H_1$
- $\triangleright D_2(\alpha) < D < 4 D_2(\alpha) \Rightarrow H_0$
- ▶ $D_2(\alpha) > D > D_1(\alpha)$ \Rightarrow нет решения
- ▶ $4 D_1(\alpha) > D > 4 D_2(\alpha)$ \Rightarrow нет решения

Критерий Голдфелда-Квандта

$$H_0: D(\varepsilon_1) = \ldots = D(\varepsilon_n) = \sigma^2$$

$$H_1: D(\varepsilon_I) \neq D(\varepsilon_p)$$

- ▶ Упорядочим данные по возрастанию дисперсий ошибок
- ▶ Исключим r средних наблюдений
- ▶ Построим 2 модели: по первым (n-r)/2 наблюдениям и по последним (n-r)/2 наблюдениям
- ightharpoonup Вычислим остаточные суммы квадратов RSS_1 и RSS_2

$$F = \frac{RSS_2}{RSS_1} \sim F\left(\frac{n-r}{2} - k - 1, \frac{n-r}{2} - k - 1\right)$$

$$V_k = \{F > F_{1-\alpha}((n-r)/2 - k - 1, (n-r)/2 - k - 1)\}$$

Критерий Рэмси, RESET

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \alpha_2 \hat{y}_i^2 + \ldots + \alpha_m \hat{y}_i^m + \eta_i,$$

где \hat{y}_i — предсказанные значения в соответствии с исходной моделью.

$$H_0: \alpha_2 = \ldots = \alpha_m = 0$$

$$H_1: \exists \alpha_p \neq 0$$

Проверяется с помощью F-теста