Dr. W. Spann F. Hänle, M. Oelker

Lineare Algebra für Informatiker und Statistiker

Aufgabe 25 (4 Punkte)

Gegeben sei die reelle Matrix

$$A := \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right)$$

Zeigen Sie, dass A invertierbar ist und bestimmen Sie A^{-1} .

Aufgabe 26 (4 Punkte)

Sei K ein Körper, $m, n, r \in \mathbb{N}$.

Für $l \in \mathbb{N}$ und $M = (m_{ij})_{\substack{i=1,\dots,l\\j=1,\dots,l}} \in K^{l\times l}$ sei spur $(M) := \sum_{i=1}^{l} m_{ii}$ ("Spur der Matrix M"). Zeigen Sie:

- (a) $A \in K^{m \times n}, B \in K^{n \times m} \Rightarrow \operatorname{spur}(AB) = \operatorname{spur}(BA)$
- (b) $A \in K^{m \times n}, B \in K^{n \times r}, C \in K^{r \times m} \Rightarrow \operatorname{spur}(ABC) = \operatorname{spur}(BCA) = \operatorname{spur}(CAB)$
- (c) Es gibt keine $A, B \in K^{n \times n}$ mit $AB BA = E_n$.
- (d) Für $a,b \in K^n$, $A := (a_i a_j)_{i,j=1,\dots n} \in K^{n \times n}$ und $B := (b_i b_j)_{i,j=1,\dots n} \in K^{n \times n}$ gilt:

$$spur(AB) = \left(\sum_{i=1}^{n} a_i b_i\right)^2$$

Aufgabe 27 (4 Punkte)

Sei K ein Körper, $n \in \mathbb{N}$ und $U_Q := \{A \in K^{n \times n} : A^\top Q A = Q\}$ für $Q \in K^{n \times n}$.

Zeigen Sie:

Für alle $M, S \in GL(n, K)$ und $N := S^{\top}MS$ ist die Abbildung

$$\phi: U_M \to U_N, \, \phi(A) = S^{-1}AS$$

wohldefiniert und ein Gruppenisomorphismus zwischen den Untergruppen U_M und U_N von GL(n, K).

Bitte wenden!

Aufgabe 28 (4 Punkte)

Sei K ein Körper, $n \in \mathbb{N}$ mit $n \ge 2$, $a, b \in K^n \setminus \{0\}$ und $R := \{\gamma E_n + \delta ab^\top : \ \gamma, \delta \in K\}$.

- (a) Zeigen Sie: $(R,+,\cdot)$ versehen mit der Matrizenaddition und -multiplikation ist ein kommutativer Ring mit Einselement. (Hinweis: Überlegen Sie genau, welchen Aussagen bereits aus $R \subset K^{n \times n}$ folgen und beziehen Sie sich gegebenenfalls darauf.)
- (b) Seien $\gamma, \delta \in K$, $\gamma \neq 0$ und $\gamma + \delta b^{\top} a \neq 0$. Zeigen Sie, dass $M := \gamma E_n + \delta a b^{\top}$ invertierbar ist und geben Sie M^{-1} an.
- (c) Sei (R^*,\cdot) die Einheitengruppe des Rings $(R,+,\cdot)$. Zeigen Sie: $R^*=R\cap GL(n,K)$.

Abgabe einzeln, zu zweit oder zu dritt: Dienstag, 19.12.2017 bis 10^{15} Uhr, Übungskasten vor der Bibliothek im 1. Stock