Algoritmul A*

- 1. Creează un graf de căutare G, constând numai din nodul inițial n_0 . Plasează n_0 într-o listă numită OPEN.
 - 2. Creează o listă numită CLOSED, care inițial este vidă.
 - 3. Dacă lista OPEN este vidă, EXIT cu eșec.
- 4. Selectează primul nod din lista OPEN, înlătură-l din OPEN și plasează-l în lista CLOSED. Numește acest nod *n*.
- 5. Dacă n este un nod scop, oprește execuția cu succes. Returnează soluția obținută urmând un drum de-a lungul pointerilor de la n la n_0 în G. (Pointerii definesc un arbore de căutare și sunt stabiliți la pasul 7).
- 6. Extinde nodul n, generând o mulțime, M, de succesori ai lui care nu sunt deja strămoși ai lui n în G. Instalează acești membri ai lui M ca succesori ai lui n în G.
- 7. Stabileşte un pointer către *n* de la fiecare dintre membrii lui *M* care nu se găseau deja în G (adică nu se aflau deja nici în OPEN, nici în CLOSED). Adaugă acești membri ai lui *M* listei OPEN. Pentru fiecare membru, *m*, al lui *M*, care se afla deja în OPEN sau în CLOSED, redirecționează pointerul său către *n*, dacă cel mai bun drum la *m* găsit până în acel moment trece prin *n*. Pentru fiecare membru al lui *M* care se

află deja în lista CLOSED, redirecționează pointerii fiecăruia dintre descendenții săi din G astfel încât aceștia să țintească înapoi de-a lungul celor mai bune drumuri până la acești descendenți, găsite până în acel moment.

- 8. Reordonează lista OPEN în ordinea valorilor crescătoare ale funcției \hat{f} . (Eventuale legături între valori minimale ale lui \hat{f} sunt rezolvate în favoarea nodului din arborele de căutare aflat la cea mai mare adâncime).
 - 9. Mergi la pasul 3.