WHAT IS CLAIMED IS:

- 1. An electrochemical cell having a controlled electrode surface, comprising:
- a first electrode and a second electrode wherein at least one of the first and second electrodes has a carbonaceous surface;
 - an electrolyte containing at least one solvent;
- an additive associated with the carbonaceous surface of at least one of the first and second electrodes, wherein the additive comprises a compound having a molecular weight of not less than 105 and represented by the formula:

- wherein A is a group represented by:

R_c N R_b O R_b

- wherein X is a group represented by the formula:

or linear or branched alkyl group containing 1 to 12 carbons,

- wherein n is 0, 1, 2, or 3; and
- wherein R_a , R_b , R_c , R^1 , R^2 , R^3 and R^4 are independently hydrogen or a linear or branched alkyl group containing 1 to 12 carbons.
- 2. The electrochemical cell according to claim 1, further comprising means associated with the additive for substantially precluding gas formation within the electrochemical cell as a result of decomposition of the additive during cell cycling and storage.
- 3. The electrochemical cell according to claim 1, further comprising means for increasing first cycle coulombic efficiency of the electrochemical cell relative to an electrochemical cell without the additive.
- 4. The electrochemical cell according to claim 3, wherein the efficiency increasing means comprises the additive.
- 5. The electrochemical cell according to claim 1, wherein the additive is substantially soluble in the solvent of the electrolyte at ambient temperature.
- 6. The electrochemical cell according to claim 1, wherein the additive is substantially insoluble in the solvent of the electrolyte at ambient temperature.

- 7. An electrochemical cell having a controlled electrode surface, comprising:
- a first electrode and a second electrode wherein at least one of the first and second electrodes has a carbonaceous surface;
 - an electrolyte containing at least one solvent;
- an additive associated with the carbonaceous surface of at least one of the first and second electrodes, wherein the additive comprises a compound having a molecular weight of not less than 105 and represented by the formula:

- wherein A is a group represented by:

R_c N_{mm} N_{mm} N_{mm} Or N_{mm}

- wherein X is a group represented by the formula:

or a linear or branched alkyl group containing 1 to 12 carbons,

- wherein n is 0, 1, 2, or 3; and
- wherein B is a group represented by:

or

- wherein ${\bf R}^1$, ${\bf R}^2$, ${\bf R}_{\rm a}$, ${\bf R}_{\rm b}$, ${\bf R}_{\rm c}$, ${\bf R}^{11}$, ${\bf R}^{12}$, ${\bf R}^{13}$, ${\bf R}^{14}$, ${\bf R}^{15}$, ${\bf R}^{16}$,

 ${\bf R}^{17}$ and ${\bf R}^{18}$ are independently hydrogen or a linear or branched alkyl group containing 1 to 12 carbons.

- 8. The electrochemical cell according to claim 7, further comprising means associated with the additive for substantially precluding gas formation within the electrochemical cell as a result of decomposition of the additive during cell cycling and storage.
- 9. The electrochemical cell according to claim 7, further comprising means for increasing first cycle coulombic efficiency of the electrochemical cell relative to an electrochemical cell without the additive.
- 10. The electrochemical cell according to claim 9, wherein the efficiency increasing means comprises the additive.
- 11. The electrochemical cell according to claim 7, wherein the additive is substantially soluble in the solvent of the electrolyte at ambient temperature.
- 12. The electrochemical cell according to claim 7, wherein the additive is substantially insoluble in the solvent of the electrolyte at ambient temperature.
- 13. An electrochemical cell having a controlled electrode surface, comprising:

- a first electrode and a second electrode wherein at least one of the first and second electrodes has a carbonaceous surface;
 - an electrolyte containing at least one solvent;
- an additive associated with the carbonaceous surface of at least one of the first and second electrodes, wherein the additive comprises a compound having a molecular weight of not less than 105 and represented by the formula:

- wherein A is a group represented by:

wherein X is a group represented by the formula:

or a linear or branched alkyl group containing 1 to 12 carbons,

- wherein n is 0, 1, 2, or 3;
- wherein ${\rm B}^1$ and ${\rm B}^2$ are independently hydrogen, a linear or branched alkyl group containing 1 to 12 carbons or a group represented by:

- wherein R, ${\bf R}^1$, ${\bf R}^2$, ${\bf R}_{\rm a}$, ${\bf R}_{\rm b}$, and ${\bf R}_{\rm c}$ are independently hydrogen or a linear or branched alkyl group containing 1 to 12 carbons.
- 14. The electrochemical cell according to claim 13, further comprising means associated with the additive for substantially precluding gas formation within the electrochemical cell as a result of decomposition of the additive during cell cycling and storage.
- 15. The electrochemical cell according to claim 13, further comprising means for increasing first cycle coulombic efficiency of the electrochemical cell relative to an electrochemical cell without the additive.

- 16. The electrochemical cell according to claim 15, wherein the efficiency increasing means comprises the additive.
- 17. The electrochemical cell according to claim 13, wherein the additive is substantially soluble in the solvent of the electrolyte at ambient temperature.
- 18. The electrochemical cell according to claim 13, wherein the additive is substantially insoluble in the solvent of the electrolyte at ambient temperature.