

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт искусственного интеллекта Кафедра проблем управления

Лабораторная работа №2

по дисциплине «Операционные системы реального времени»

Тема работы: «Исследование процесса перехода контроллера в сервисный режим и влияние параметра tolerance на выполнение задач»

Выполнил студент группы	КРБО-02-21 Набиев Р. Р.
Преподаватель:	Смирнов М.Ю.
Работа представлена к защите:	«»2023 г.

Москва, 2023 г.

Лабораторная работа №2

«Исследование процесса перехода контроллера в сервисный режим и влияние параметра tolerance на выполнение задач»

Цель работы:

Изучить, работу программ в сервисном режиме контроллера, а также влияние параметра tolerance на выполнения программ.

Задание:

- 1. В среде Automation Studio создать программу, переводящую контроллер в сервисный режим.
- 2. Определить причину перехода контроллера в сервисный режим с помощью встроенных средств диагностики.
- 3. В настройках конфигурации активировать exception task class.
- 4. Выставить нулевой допуск по времени и снять показания профилировщика.
- 5. Подобрать необходимый допуск по времени, который позволил бы программе завершиться.

Ход работы

1. В среде Automation Studio создать программу, переводящую контроллер в сервисный режим.

Для того, чтобы перевести контроллер в сервисный режим, используется программа (см. приложение А), выполнение которой займёт больше времени, чем ей выделено с учётом допуска tolerance. Программа представляет из себя обычный цикл с инкрементацией на большое число итераций и как видно на Рис. 1, контроллер входит в SERVICE mode при её выполнении.

Рис. 1 - Результат работы программы Program

2. Установить причину перехода контроллера в сервисный режим.

Из рисунка 2 видно, что Cyclic #1 предоставляет нам цикл в 10 мс и при исчерпании этого времени + tolerance, контроллер прерывает выполнение программы и переходит в сервисный режим. Докажем это утверждение с помощью встроенного профайлера.

Рис. 2 - Предоставляемое Cyclic #1 время выполнения программы и tolerance.

Рис. 3 - Прерывание выполнения программы по истечении времени цикла.

Из графика видно, что при истечении 40 мс выполнение программы полностью прекратилось.

3. В настройках программы активировать exception task class.

Включение exception task class позволяет обрабатывать исключения. Это может быть полезно для обработки нештатных ситуаций, например, чтобы сохранить важные данные в случае ошибки. Превышение допустимого времени работы вызывает исключение, которое выполняется один раз перед переходом контроллера в сервисный режим (рис. 3).

Рис. 3 - Выполнение программы класса exception после окончания времени.

4. Выставить нулевой допуск по времени и снять показания профилировщика.

Теперь установим допуск по времени tolerance равным нулю

Рис. 4 - Работа программы с временем tolerance равным 0.

Как видно из рисунка 4, при установлении значения tolerance в 0, exception срабатывает сразу после истечения времени цикла.

5. Подобрать необходимый допуск по времени, который позволил бы программе завершиться.

Теперь попробуем подобрать такое время для tolerance, при котором программе хватит времени для завершения выполнения и получится избежать перехода в SERVICE mode.

Рис. 5 - Подбор времени tolerance и вывод успешного выполнения без срабатывания exception.

Выводы

Изучены особенности перехода контроллера в сервисный режим, его причины и методы предотвращения. Исследована возможность настройки временных параметров, а также исключений и их обработки. Рассчитаны временные параметры для нормальной работы конкретной программы.

Приложение А. Исходный код программы Program.

```
#include <bur/plctypes.h>
#ifdef _DEFAULT_INCLUDES
   #include <AsDefault.h>
#endif
poid INIT ProgramInit(void)
}
void _CYCLIC ProgramCyclic(void)
    int i = 0;
    int j = 0;
    int l = 0;
   while (i < 100) {
      while (j < 100){
           while (1 < 100000000) {
               1++;
           j++;
        }
       i++;
void _EXIT ProgramExit(void)
 {
}
```