STRATEGIC BEHAVIOUR IN WORK ABSENCE: A DYNAMIC VIEW

Yuhao Li

ENTER Seminar Universität Mannheim

MOTIVATION

Work absenteeism is not uncommon and is costly for both workers and companies

- Approximately 3.3% of the U.S workforce do not report to work at any given day (Bureau of Labour Statistics data (2005)). Even higher in some developing countries (Duflo et al. (2012)).
- Absence replacement rates are usually less than 100%.
- Absenteeism costs account as high as 14.3% total payroll (Fister-Gale (2003)).

Worker's absence behaviours may be strategic:

- Define strategic: Preferences or constraints to future choices are altered by past experiences; State-dependent.
- Source of strategic behaviour: Company's absence regulation, absence scores

 → benefits.

Questions

- ullet Do individuals respond to the absence scores? \longrightarrow Estimate a 'deep' parameter.
- Do individuals respond differently towards different absence events? Short-term, long-term; ask for leaves, return to works
- How individuals make absence decisions? Economic Models

In the Literature

- History information (e.g, absence scores) is not considered in most empirical models. Fail to address the strategic absence behaviours: Delgado and Kniesner (1997), Barmby et al.(1991), Markussen et al.(2011) and Fevang et al.(2014).
- Use conventional tools: count data regressions, duration analysis, etc that hard to model state-dependent structure.

MOTIVATION

In this paper

- Use self-exciting processes to model events (ask for leaves, return to work).
 - Self-exciting process is state-dependent
 - include past experiences
- Build econometric models that are depended on history: take absence scores into consideration.
- Main results:
 - Short-term absence events: respond to the absence scores
 - Long-term absence events: insensitive
- Inspired by the empirical results, construct a simple economic model.
- Compare new method with conventional count data regression and duration models.

OUTLINE

- Data, Preliminary Results and the Nature of Problem
- 2 The Econometric Models for Absenteeism
- 3 The Results
- 4 ECONOMIC MODELS
- **DISCUSSION**
- 6 CONCLUSION

DATA

- A firm-level administrative data. The firm is UK based, produces homogeneous product.
- Has an experience rated work absence benefit scheme: lower absence scores correspond to a better financial benefit; renew every two years.
- Workers are categorised (with decreasing order) as class A, B and C based on previous two years' absence scores. The criteria scores are 21 and 41 respectively.
- All workers can receive UK statutory sick pay (SSP). To be eligible to receive SSP, workers should be absent from work for more than 3 consecutive days.
- Use data from calendar year 1987 to 1988. In total, 878 workers with 5718 absence records.
- Other literatures use this data: Barmby et al. (1991,1995), etc.

Data

FIGURE: Most frequent absence durations

YUHAO LI (UC3M)

Preliminary Results

Conventional Methods

- Count Data Regressions
 - Poisson
 - Negative Binomial
 - Hurdle Model (Zero part: binomial, count part: truncated negative binomial)
 - Zero-inflation Model (Zero part: binomial, count part:negative binomial)
- Duration Models: Study the duration before the initial absence
 - Standard: the hazard function is constant, no individual heterogeneity is concerned.
 - Include individual heterogeneity, use Heckman and Singer's NPMLE.

PRELIMINARY RESULTS

Count Data Regressions

		Dependent	variable:		
	count88				
	Poisson	negative binomial	hurdle count part	zero-inflated count part	
	(1)	(2)	(3)	(4)	
age	-0.005	-0.006	-0.017	-0.005	
	(0.011)	(0.016)	(0.012)	(0.012)	
age2	0.007	0.008	0.015	0.0002	
	(0.014)	(0.019)	(0.014)	(0.016)	
sex	-0.249***	-0.224***	-0.230***	-0.236***	
	(0.045)	(0.065)	(0.046)	(0.048)	
full	0.104**	0.115	0.094*	0.115**	
	(0.049)	(0.074)	(0.050)	(0.052)	
marriage	-0.066	-0.076	0.002	-0.011	
	(0.052)	(0.075)	(0.056)	(0.059)	
count87	0.131***	0.156***	0.086***	0.101***	
	(0.005)	(0.008)	(0.006)	(0.006)	
Constant	0.944***	0.866***	1.565***	1.234***	
	(0.193)	(0.284)	(0.205)	(0.220)	
Observations Log Likelihood θ Akaike Inf. Crit.	874 -1,991.314 3,996.627	874 -1,878.365 3.445*** (0.383) 3.770.731	874 -1,965.877	874 -1,940.922	

PRELIMINARY RESULTS

THE DURATION MODEL

For standard duration model, the hazard rate for individual *i*:

$$h_i = \exp(X_i'\beta)$$

$$H_i(T) = \int_0^T h_i(t) dt$$

 X_i is a vector of covariates. The likelihood function:

$$L = \prod_{i=1}^{N} L_{i} = \prod_{i=1}^{N} \exp(-H_{i}(t))[h_{i}(t)]^{y_{i}}$$

 y_i is the censoring indicator.

Include individual heterogeneity, the hazard rate:

$$h_i(t) = \exp(X_i'\beta + \nu_i)$$

Use Heckman and Singer's NPMLE: Approximate the distribution of ν_i using discrete mass points.

PRELIMINARY RESULTS

DURATION MODEL RESULTS

	Dependent variable:		
	duration		
	Standard	Heckman & Singer	
age	-0.028***	-0.068***	
	(0.006)	(0.026)	
age2	0.047***	0.094***	
	(0.010)	(0.032)	
sex	-0.115	-0.133	
	(0.093)	(0.113)	
full	0.163	0.147	
	(0.105)	(0.133)	
marriage	0.076	0.119	
-	(0.099)	(0.127)	
count87	0.254***	0.264***	
	(0.010)	(0.013)	
Observations	878	878	
Log Likelihood	-248.668	-224.8397	
χ^2	576.961*** (df = 5)		
Number of Mass Points		2	
Note:		*p<0.1; **p<0.05; ***p<0.01	

0.1; **p≤0.05; ***p<0.01

NATURE OF THE PROBLEM

Conventional methods can not model the strategic absence behaviours:

- Count Data Regressions aggregate information.
- Duration models have to maintain the i.i.d assumption among absences.
 - Multiple-spell models that allow lagged duration dependence
 - Estimate the joint duration likelihood function: must be a panel data setting.

We need to model the **State Dependent Structure** among absences.

- s, S are starting dates and r, R are ending dates for short and long-term absences.
 - State Dependence means past experiences have effects on future ones.
 - Larger absence scores should discourage further absence behaviours.

NATURE OF THE PROBLEM

STATE DEPENDENCE TEST

Following Heckman (1981), construct a weekly panel data to test the state dependent structure. For each individual *i*, write the regression:

$$d(i,t) = \nu_i + \delta \sum_{t' < t} d(i,t') + U(i,t), t+1, \cdots, T$$

d(i,t) is dichotomous choice, $\mathbb{E}(d(i,t)=1)=\Pr(\text{ask for a leave})$. ν_i is individual specific term, U(i,t) satisfy usual fixed effect model assumptions.

 $\hat{\delta}=-0.033316$ with a standard deviation of 0.00033: favours the existence of state-dependence in incidence data.

OUTLINE

- Data, Preliminary Results and the Nature of Problem
- 2 The Econometric Models for Absenteeism
- 3 The Results
- 4 Economic Models
- **5** DISCUSSION
- 6 Conclusion

Intro to the Self-Exciting Process

The self-exciting process is a special counting process.

Counting process:

$$N(t) = \sum_{i} \mathbb{I}(t_i \leq t)$$

Doob-Meyer Decomposition:

$$N(dt) = \Lambda(dt) + M(dt)$$

 $\Lambda(t)$: predictable compensator, M(t): local martingale.

The compensator may be conditioned on a filtration $\mathcal{F}(t)$. If $\mathcal{F}(t)$ includes

 $\sigma(N(s):s\leq t)$, we call the associated counting process a **self-exciting process**.

The self-exciting process is by design **state dependent**.

Study N(t) via $\Lambda(t)$ or the intensity $\lambda(t) = \Lambda(dt)/dt$

Setup (1/2)

- 'decompose' an absence into two events:
 - Incidence event: ask for a leave
 - Recovery event: return to work
- distinguish short and long-term absence:
 - use the duration of absences as criteria
 - the cut-off is 3 days: based on the UK's SSP regulation.
- have four counting processes.

Setup (2/2)

Define 3 states that one individual can occupy:

- attendance: k = 1
- short-term absence: k = 2
- long-term absence: k = 3

 $\lambda_{1k}(t)$: Short (Long) term incidence intensity, k = 2, 3;

 $\lambda_{k1}(t)$: Short (Long) term recovery intensity, k = 2, 3;

The period between previous return date and the start date of next absence is called **attendance period**; the period between the start date and return date of same absence is called the **absence period**.

Let t denotes the starting dates and τ denotes the return dates. The duration of i^{th} absence is then $d_i = \tau_i - t_i$.

Incidence Intensity (1/2)

If individual *i* has no previous absence records, instead of intensity, we will study her hazard rate for the duration until first absence:

$$h_i = \exp(\nu_i) \exp(\mathbf{X}_i' \boldsymbol{\gamma}_{1k})$$

where ν_i is individual's random effect, \mathbf{X}_i is a vector of covariates.

Two kinds of individuals fit into this situation:

- Never have absence before and not have absence in the study period (1987-1988): Censoring
- Never have absence before but have absence records in the study period.

Procedures:

- Construct a sub-dataset, using only initial absences
- Study the duration before the initial absence
- The hazard rate has the same interpretation as the intensity for the first event.
- Use Heckman and Singer's NPMLE to approximate the distribution of random effect term.

Incidence Intensity (2/2)

The overall incidence intensity for individual i, who has previous absence records would be:

$$\lambda_{i,1k}(t) = \left\{ \begin{array}{l} \lambda_{1,k}(\mathbf{X}_i) \lambda_{2,k}(t) \Big(\lambda_{3,k}(t) + \lambda_{4,k}(t) \Big), t \in \text{attendance period} \\ 0, t \in \text{absence period} \end{array} \right.$$

where

- $\lambda_{1,k}(\mathbf{X}_i) = exp(\mathbf{X}_i'\gamma_{1k}); k = 2,3$ contains all the time-invariant covariates
- $\lambda_{2,k}(t) = exp(\beta_{1k}H_i(t)); k = 2,3$ governs the response of one worker to her own cumulative absence time $H_i(t)$.
- $\lambda_{3,k}(t) = 1 + |\alpha_{1k}| exp(\alpha_{1k}(t \tau_{N_i^1(t-)})); k = 2, 3$ measures the time dependence since previous recovery date.
- $\lambda_{4,k}(t) = a_{1k}(1 + sin(b + c_{1k}t))$; k = 2,3 measures the individual's response to Mondays and Fridays. We set c = 327.6 such that the distance between two peaks in the sine function is equal to 7/365 years, or one week's time.

Recovery Intensity

The intensity for recovery process (return to work) has three parts:

$$\begin{split} &\lambda_{5,k}(\pmb{X}_i) = exp(\pmb{X}_i' \pmb{\gamma}_{k1}) \\ &\lambda_{6,k}(\tau) = |\beta_{k1}| exp(\beta_{k1} H_i(\tau)) \\ &\lambda_{7}(\tau) = 1 + |\beta_{k2}| exp(\beta_{k2}(\tau - t_{N_{i,13}^1(\tau-)})); k = 2, 3 \end{split}$$

The overall intensity for recovery process:

$$\lambda_{i,k1}(\tau) = \left\{ \begin{array}{l} \lambda_{5,k}(\boldsymbol{X}_i)(\lambda_{6,k}(\tau) + \lambda_7(\tau)), \tau \in \text{absence period} \\ 0, \tau \in \text{attendance period} \end{array} \right.$$

Heterogeneity (1/4)

We try to use history information to approximate the unobserved heterogeneity:

- In incidence process, the primary unobserved heterogeneity is the individual's working attitude.
- It can be approximated by an individual's average attendance duration.
- In recovery process, the primary unobserved heterogeneity is the individual's recovery ability.
- It can be approximated by an individual's average recovery time.

Heterogeneity (2/4)

The (moving) average attendance duration $\tilde{d}(t)$ is defined as:

$$\tilde{d}(t) = \frac{\sum_{i:r_i \leq t} s_i - r_{i-1}}{\#\{i: s_i \leq t\}}$$

We assume it has the following structure:

$$\log(\tilde{d}(t)) = I(t) + \log(1 + H(t)) + \epsilon$$

with $\mathbb{E}(\epsilon) = 0$.

We approximate I(t) by $\tilde{I}(t)$:

$$\tilde{I}(t) = \log(\tilde{d}(t)) - \log(1 + H(t)) = I(t) + \epsilon$$

We modify the $\lambda_{1,k}$ as:

$$\lambda_{1,k} = \exp(\mathbf{X}_i' \boldsymbol{\gamma}_{1k}) \exp(\boldsymbol{\gamma}^{'} \tilde{\mathbf{I}}(t))$$

the structural of the overall incidence intensity remains the same.

Heterogeneity (3/4)

Similarly, the (moving) average recovery time $\tilde{c}(t)$ is defined as:

$$\tilde{c}(t) = \frac{\sum_{i:r_i \leq t} r_i - s_i}{\#\{i: r_i \leq t\}}$$

and it has the following structure:

$$\log(\tilde{d}(t)) = R(t) - \log(1 + H(t)) + \epsilon$$

with $\mathbb{E}(\epsilon) = 0$.

We approximate R(t) by $\tilde{R}(t)$:

$$\tilde{R}(t) = \log(\tilde{c}(t)) - \log(1 + H(t)) = R(t) + \epsilon$$

We modify $\lambda_{5,k}$ as:

$$\lambda_{5,k} = exp(\boldsymbol{X}_{i}'\boldsymbol{\gamma}_{k1})exp(\gamma^{'}\tilde{R}(t))$$

Heterogeneity (4/4)

Alternatively, instead of assuming individual heterogeneity, we may assume group heterogeneity and use finite mixture Poisson model to 'reveal' the group affiliation.

Intuition: hard-working individuals tend to (on average) have fewer absences.

Assume *k* groups, the numbers of absences $\mathbf{y} = (y_1, \dots, y_N)'$ follows:

$$\rho(\mathbf{y}|\Theta) = w_1 f_1(\mathbf{y}|\Theta_1) + w_2 f_2(\mathbf{y}|\Theta_2) + \cdots + w_k f_k(\mathbf{y}|\Theta_k)$$

 Θ_k : vector of parameters for group k, w_k : weight and $f_k(\cdot|\Theta_k)$: Poisson density.

Calculate the posteriors and assign group affiliation:

$$p(l_{i} = k | y_{i}, \Theta_{k}) = \frac{p(y_{i} | l_{i} = k, \Theta_{k}) * p(l_{i} = k)}{p(y_{i} | \Theta_{k})}$$

$$= \frac{p(y_{i} | l_{i} = k, \Theta_{k}) * w_{k}}{\sum_{k=1}^{K} p(y_{i} | l_{i} = k, \Theta_{k}) * w_{k}}$$

HOW TO ESTIMATE THE MODELS

One result of the Doob-Meyer Decomposition:

$$\mathbb{E}N(t) = \mathbb{E}\Lambda(t)$$

Kopperschmidt and Stute (2013) propose a minimum distance estimation method to overcome the mentioned difficulty.

$$u_n = arg\inf_{
u \in \Theta} ||ar{N}_K - ar{\Lambda}_{
u,K}||_{ar{N}_K}$$

where $||f||_{\mu} = \left[\int f^2 d\mu\right]^{1/2}$, with μ being a measure.

 $\bar{N}_K = \frac{1}{K} \sum_{i=1}^K N_i, \bar{\Lambda}_{\nu,K} = \frac{1}{K} \sum_{i=1}^K \Lambda_{\nu,i}$ are the averaged counting process and compensator respectively.

The estimator is found to be consistent and asymptotically normal as long as all the observations are i.i.d.

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ りゅ

25 / 57

How to Estimate the Models

The usual way to estimate a self-exciting intensity is the maximum likelihood based technique:

- require the intensity be predictable with respect to its filtration.
- often fails in complicated economic models as the existence of external shocks.
- the intensity should be predictable with respect to the self-exciting filtration as well as shocks.

In our application:

- The four counting processes are external shocks to each other
- The switches between attendance period and absence period are external shocks.

OUTLINE

- Data, Preliminary Results and the Nature of Problem
- 2 The Econometric Models for Absenteeism
- 3 The Results
- 4 Economic Models
- **1** DISCUSSION
- 6 Conclusion

Incidence Process (1/3)

No previous absence records: study the duration before initial absence. Those who have no absence records throughout the whole study period are treated as censoring. Usual censoring assumptions applied.

	short term,k=2	short term,k=2	long term,k=3	long term,k=3
age	(1)	(2)	(3)	(4)
	-0.0392***	-0.0696*	-0.0654***	-0.1000*
	(0.0138)	(0.0402)	(0.0195)	(0.0529)
age2	0.0464**	0.0402)	0.0841***	0.1240**
4g02	(0.0203)	(0.0484)	(0.0280)	(0.0633)
male	0.0834	0.0356	0.3175	0.1184
	(0.2253)	(0.2302)	(0.3461)	(0.3416)
full time	0.0703	-0.0039	0.4345	0.3861
	(0.2402)	(0.2561)	(0.3563)	(0.3602)
married	0.0357	0.0873	0.0894	0.1391
	(0.2015)	(0.2128)	(0.2570)	(0.2679)
Log Likelihood	-257.0000	-256.6635	-174.5000	-174.2110
Number of Mass Points	1	2	1	2

Note: Absence duration less or equal to 3 days are categorized as short term, others are long term. $age2 = age^2/100. *p<0.1; **p<0.05; ***p<0.01$

Incidence Process (2/3)

Incidence intensity estimation results, both short and long-term absences:

	Approx. Heterogeneity		Group Heterogeneity	
	short term	long term	short term	long term
	(1)	(2)	(3)	(4)
β_{1k}	-0.05734195***	0.002551	-0.03207249***	-0.02183574
	(0.007313)	(0.0108902)	(0.0072219)	(0.0139920)
α_{1k}	-35.32423495**	-5.02947189	-36.90188525*	-4.92911781
	(17.09965)	(6.4427670)	(21.600208)	(7.2625815)
age	0.31746598***	-0.42761261***	0.24439097**	-0.37079208**
	(0.0639588)	(0.1598638)	(0.1135570)	(0.1448501)
age2	-1.17953689***	0.96998791***	-1.53408411**	0.86544108***
	(0.3328688)	(0.3161102)	(0.6521555)	(0.2636461)
male	-2.02277622	-0.34993766	-4.62557647	-0.39203022
	(1.512623)	(1.0142152)	(12.506801)	(1.0577588)
full time	1.2947023***	1.22844682	0.7890032***	1.33575203
	(0.438272)	(1.2074113)	(0.1905531)	(1.2328672)
married	-1.03290089***	1.33187185*	-1.50756787**	1.32788344*
	(0.350615)	(0.7269884)	(0.6975158)	(0.6999908)
Mon/Fri	2.01429447*	0.15542535	5.00469984*	0.1711705
	(1.142056)	(2.6100053)	(2.6209058)	(2.9969653)
D	2.57708555***	2.69547261	2.58967502***	2.71009241
	(0.547747)	(7.8254215)	(0.2458489)	(8.4098623)
Group 2	Ξ	Ξ	1.01837705** (0.4682334)	-
I(t)	-0.42075577*** (0.095787)	0.03062177 (0.1093162)	_	-
Distance	0.128602	0.028854	0.146190	0.0295902

Note: Absence duration less or equal to 3 days are categorized as short term, others are long term. β_{1k} are the coefficients of the absence score, α_{1k} are the coefficients of time dependent structure. "p<0.1: **p<0.05: ***p<0.01

Incidence Process (3/3)

- Cumulative absence time suppresses further 'ask for leaves' in both short and long-term cases.
- When making 'ask for leaves' decisions, individual face incomplete information set: how serious is the accident may not be clear.
- The decision making process between short and long-term absences are quite different:
 - Especially at age, marriage status, time dependence, Monday/Friday
 - Short term absences are more likely to be 'voluntary': maximise the individual utility
 - Long term absences tend to be 'involuntary': triggered by external shocks like illness.

Recovery Process (1/4)

Recovery intensities estimation results.

	short term,k=2	short term,k=2	long term,k=3	long term,k=3
	original	holiday	original	holiday
	(1)	(2)	(3)	(4)
β_{k1}	0.0001905^{***} $(7.4389542*10^{-5})$	0.0008113*** (0.0002250)	1.4540654 * 10 ⁻⁵ (0.0003066)	9.0460202 * 10 ⁻⁶ (0.0002337)
β_{k2}	-0.2974196***	-5.4340119***	-2.6893905***	-1.2034950***
	(0.0401992)	(0.5001305)	(1.0069173)	(0.3709412)
R(t)	-0.0192418	-0.0247104	-0.4945683***	-0.6644247**
	(0.0321509)	(0.0283878)	(0.0943706)	(0.2661450)
age	0.3777196***	0.1760568*	0.1905671***	0.1039532***
	(0.1333167)	(0.0968915)	(0.0476012)	(0.0227340)
age2	-0.8573565***	-0.3947298**	-0.5215264***	-0.1656411***
	(0.2791424)	(0.1820732)	(0.1408734)	(0.0444712)
male	-0.5670663***	-1.2714456**	4.1771252***	4.6870273***
	(0.2009157)	(0.5571283)	(0.3325700)	(0.3821019)
full time	-2.2429315***	-1.0772366***	-0.2411186	-1.7283286*
	(0.5311679)	(0.2800427)	(0.3252895)	(0.9810031)
married	3.6464467**	4.0556782***	-1.5417979***	-2.1603153***
	(1.5006498)	(1.2085741)	(0.2369997)	(0.2075685)
Distance	0.100605	0.094431	0.061892	0.044357

Note: Absence duration less or equal to 3 days are categorized as short term, others are long term. $age2 = age^2/100.$ p_{k1} are the coefficients of simple coefficients of the coeffi

Yuhao Li (UC3M) Work Absence

Recovery Process (2/4)

- Scheduled absences: e.g., absence related to holidays, information set is complete when making the absence decision; when asking for leave, the duration of that absence has already been known.
- The estimation results are biased; delete absences during the Christmas season to reduce the bias.
- Only short term recoveries respond to the cumulative absence time
- Long term recoveries are independent to the cumulative absence time
- Average recovery time is significant, but can not be interpreted as causal; rather it approximates (unobserved) recovery ability.
- Better to use conventional duration model to analysis long term recoveries.

Recovery Process (3/4)

For each individual *i*, the hazard rate is:

$$h_{i} = exp(X_{i}eta^{'} +
u_{i})$$
 $H_{i}(T) = \int_{0}^{T} h_{i}(t)dt$

the likelihood contribution is:

$$L_i(\nu_i) = \prod_{j \in S_i} exp(-H_i(t_j))h_i(t_j)$$

 S_i : the set of observed long term durations for individual i. Use Heckman and Singer's NPMLE to estimate

Recovery Process (4/4)

Duration analysis for long term absences

	long term,k=3	
	holiday	
age	0.07259135***	
	(0.0128741)	
age2	-0.12391056***	
	(0.0237107)	
male	0.04056263	
	(0.0761176)	
full time	-0.09775137	
	(0.0969011)	
married	-0.26665599**	
	(0.0963911)	
log-likelihood	3390.528	
Number of Mass Points	2	

Note: $age2 = age^2/100$. b is the coefficient of duration dependence. *p<0.1; **p<0.05; ***p<0.01

イロナ イ御 とくき とくき とっ

Goodness-of-Fit

Overall our models fit the data well.

Deeper into the Strategic Behaviour Effect (1/4)

Question: does individual's attitude towards the cumulative absence time changes as seniority grows?

Modify:

$$\lambda_{2,2}^*(t) = \exp(\theta(age)H(t))$$

where $\theta(age) = \beta_0 + \beta_1 age + \beta_2 age^2/100$

Other components and the structural of both incidence and recovery intensities remain unchanged.

Deeper into the Strategic Behaviour Effect (2/4)

	Incidence Intensity	
	short term	
	k=2	
β_0	-0.34215516°	
	(0.1904758)	
β_1	0.03407675	
	(0.0280976)	
βρ	-0.08642652	
	(0.0960550)	
α_{1k}	-39.37455248**	
	(18.741119)	
ь	2.61810899***	
	(0.3692254)	
age	0.2953078***	
	(0.0991777)	
age2	-1.1536771**	
	(0.5079094)	
male	-2.0585887	
	(1.7245835)	
full time	1.31545004***	
	(0.5182786)	
married	-1.02333993**	
	(0.4207051)	
Mon/Fri	2.35010473**	
	(1.1141944)	
I(t)	0.28212665***	
	(0.0913577)	
Distance	0.107879	

Note: Absence duration less or equal to 3 days are categorized as short term, others are long term. age2 = age2/100. We delete absences during the Christmas seasons. "p<0.1; ""p<0.05" = ""p<0.05" = "".

Deeper into the Strategic Behaviour Effect (3/4)

Wald Test:

- Test 1: do individuals respond to the cumulative absence time
 - $H_0: \beta_1 = \beta_1 = \beta_2 = 0$
 - $H_1: \beta_1 \neq 0, \beta_1 \neq 0, \beta_2 \neq 0$
- Test 2: do individuals' attitudes about the cumulative absence time varies as working age changes
 - $H_0: \beta_1 = \beta_2 = 0$
 - $H_1: \beta_1 \neq 0, \beta_2 \neq 0$

Statistics for the Wald tests are 22334.637 and 355.045 respectively.

Deeper into the Strategic Behaviour Effect (4/4)

FIGURE: $\theta(age)$ in Short term incidence

The Cut-off between Short and Long-terms (1/2)

- So far, we select the cut-off based on the UK's SSP Regulation: three days of absence
- Redefine the short and long-term absence by individual's response to the cumulative absence time:
 - short-term: individuals respond to the cumulative absence time.
 - long-term: no responses to the cumulative absence time.
- The coefficients of cumulative absence time satisfy:
 - the short term coefficient β_{12} and β_{21} are significant away from zero
 - the long term coefficient β_{13} and β_{31} are insignificant

The Cut-off between Short and Long-terms (2/2)

Cut-off	Incidence Intensities			Recovery Intensities	
	short term		long term	short term	long term
	Mon/Fri	β_{12}	β_{13}	β_{21}	β_{31}
c = 2	1.59447952** (0.5741051)	-0.1094399*** (0.0289985)	-0.05018605** (0.0214045)	0.0006166*** (0.0001899)	0.00030766 (0.0009172)
<i>c</i> = 3	2.01429447* (1.142056)	-0.05734195*** (0.007313)	0.002551 (0.0283703)	0.0008113*** (0.0002250)	9.046*10 ⁻⁶ (0.0002337)
c = 4	1.08155452 (0.7767747)	-0.0466356*** (0.0119311)	0.00378901 (0.0110785)	0.0003203 (0.0002460)	6.802*10 ⁻⁶ (0.0002879)
<i>c</i> = 5	0.54790203 (0.3641992)	-0.05774703*** (0.0121355)	-0.00752412 (0.0484371)	0.0000130 (0.0004401)	9.353*10 ⁻⁶ (0.0004270)

Note: *p<0.1; **p<0.05; ***p<0.01

- The proper cut-off under new definition is still three days
- Importance of Social Security Regulation!

OUTLINE

- Data, Preliminary Results and the Nature of Problem
- 2 The Econometric Models for Absenteeism
- 3 The Results
- 4 Economic Models
- DISCUSSION
- 6 Conclusion

Ask for Leaves (1/2)

Ask for Leaves

- Accident, represented by a random variable $e \in [0, \infty)$
- The size of an accident is not revealed at the first place.
- Duration of an absence is determined by the accident: a(e)
- Individual Utility is determined by personal reputation, well-beings, and consumption

The decision to ask for a leave is governed by:

$$D = \mathbb{I}\{U(R(A + a(\mathbb{E}(e))), \omega' - \mathbb{E}(e) + g(a(\mathbb{E}(e))), C_1) + \epsilon_1 > U(R(A), \omega' - \mathbb{E}(e), C_2) + \epsilon_1 \}$$

$$= \mathbb{I}\{U^1 + \epsilon_1 > U^0 + \epsilon_2\}$$

 $R(\cdot)$: reputation, determined by the cumulative absence time A, in addition, $R^{'}(\cdot) < 0$, $R^{''}(\cdot) < 0$; ω : a stock of well-beings, $g(\cdot)$: well-being generating function with $g^{'}(\cdot) > 0$; C: consumption. ϵ :unobserved factors.

Utility function satisfies: U_R , U_ω , $U_C > 0$, partial derivatives are positive.

←ロト→団ト→ミト→ミ りゅぐ

Ask for Leaves (2/2)

Notice:

$$Pr(D = 1) = Pr(\epsilon_2 - \epsilon_1 < U^1 - U^0)$$
$$= F_{\epsilon}(U^1 - U^0)$$

where $\epsilon = \epsilon_2 - \epsilon_1$.

Since $F'(\cdot) > 0$, $U_R > 0$ and $R'(\cdot) < 0$. We have:

$$\frac{\partial \textit{Pr}(\textit{D}=1)}{\partial \textit{A}} < 0$$

RETURN TO WORK: SHORT-TERM (1/2)

Return to Work:

- Strategic behaviours only exist in the short-term recovery processes
- A threshold of the size of an accident: e* (with its corresponding absence duration a(e*))
- Within this threshold, individuals consider reputation; above this threshold, reputation is out of equation.

If $e \in [0, e^*]$ (short-term absences), the worker's problem is

$$\max_{a} U(R(A+a), \omega - e + g(a), C)$$
s.t

$$I+w(t^c-a)+R(A+a)-C=0$$

I: non-labour income, w: wage, t^c contractual working time.

◆ロ → ◆団 → ◆ 差 → ◆ 差 ・ 夕久で

RETURN TO WORK: SHORT-TERM (2/2)

First Order Conditions:

$$U_R R^{'} + U_{\omega} g^{'} - U_C (w - R^{'}) = 0$$
 $(w - R^{'}) = \frac{U_R R^{'} + U_{\omega} g^{'}}{U_C} > 0$
 $\frac{\partial a}{\partial A} < 0, \frac{\partial a}{\partial B} > 0$

and

Return to Work: Long-term (1/3)

If $e \in [e^*, \infty)$ (long-term absences), for individual i in j^{th} long-term recovery period:

- Has a positive utility flow: $K_{ij}Z_1(t)\phi_1(X_i)$, K_{ij} is a positive random variable, may represent initial health status; $Z_1(\cdot)$, $\phi_1(\cdot)$: functions of time and individual covariates respectively.
- If choose to return to work: receive an utility flow $Z_2(t)\phi_2(X_i)$.

Assume an exponential discount rate ρ , worker's problem:

$$\max_{t_{ij}} \int_{0}^{t_{ij}} K_{ij} Z_{1}(s) \phi_{1}(X_{i}) e^{-\rho s} ds + \int_{t_{ij}}^{\mathbb{E}(T)} Z_{2}(s) \phi_{2}(X_{i}) e^{-\rho s} ds$$

 $\mathbb{E}(T)$: expecting beginning time of a next long-term absence.

This model is essentially a simplified version of Honor and De Paula (2010).

Return to Work: Long-term (2/3)

First Order Condition:

$$\begin{aligned} & \mathcal{K}_{ij} Z_1(t_{ij}^*) \phi_1(X_i) e^{-\rho t_{ij}^*} - Z_2(t_{ij}^*) \phi_2(X_i) e^{-\rho t_{ij}^*} = 0 \\ & \mathcal{K}_{ij} - Z(t_{ij}^*) \phi(X_i) = 0 \\ & t_{ij}^* = Z^{-1}(\mathcal{K}_{ij}/\phi(X_i)) \end{aligned}$$

where
$$Z(\cdot)\phi(X_i) = Z_2(\cdot)\phi_2(X_i)/(Z_1(\cdot)\phi_1(X_i))$$
.

Notice:

$$\ln Z(t_{ij}^*) = -\ln \phi(X_i) + \epsilon$$

where $\epsilon = \ln K_{ij}$.

- Assume Z(t) = t, $\phi(X_i) = e^{-X_i^T \beta}$ and $K_{ij} \sim \exp(1)$
- Is the accelerated failure time (AFT) model
- The corresponding hazard rate: $h_{t_i^*}(t) = \exp(-X_i^T \beta)$

Return to Work: Long-term (3/3)

We can estimate this model:

	Dependent variable:		
	duration		
age	-0.26440***		
	(0.00685)		
age2	0.44302***		
J	(0.01569)		
male	-0.58349***		
	(0.07593)		
full time	-0.09395		
	(0.08192)		
married	0.14154*		
	(0.08066)		
Observations	1,204		
Log Likelihood	2,971.49500		
χ^2	-362.47690 (df = 4)		
Note:	*p<0.1; **p<0.05; ***p<0.01		

□ > < □ > < □ > < □ > < □ >

OUTLINE

- Data, Preliminary Results and the Nature of Problem
- 2 The Econometric Models for Absenteeism
- 3 The Results
- 4 Economic Models
- **5** Discussion
- 6 Conclusion

Compare to the Count Data Regression (1/2)

- Poisson is the basic model of count data regression
 - require the equidispersion: the mean and variance should be equal
 - can not fit excess-zeros data
- Usual way to deal with the excess-zeros data: zeros and positives come from two data generating processes
 - Hurdle model
 - Zero-inflation model

• Simulation intensity function:
$$\lambda(t|\mathcal{F}_{t-}) = \mu + \sum_{i:t_i < t} e^{\alpha x_i} \left(1 + \frac{t - t_i}{c}\right)^{-\rho}$$

- Generate data that
 - exhibits over-dispersion and
 - excess of zeros

Compare to the Count Data Regression (2/2)

mean: 3.27

variance: 108.54

FIGURE: Result of Self-Exciting Process Simulation

Compare to Duration Model (1/2)

- Duration model deals with the duration of a single event
- Self-exciting processes deals with recurrent events
- When describes a single event, the hazard rate and the intensity have the same interpretation
- Self-exciting may generate enough heterogeneity even without the unobserved heterogeneity.

Yuhao Li

(UC3M)

Compare to Duration Model (1/2)

Using the same data generating process as before:

Work Absence

54 / 57

OUTLINE

- Data, Preliminary Results and the Nature of Problem
- 2 The Econometric Models for Absenteeism
- 3 The Results
- 4 ECONOMIC MODELS
- **5** DISCUSSION
- 6 CONCLUSION

CONCLUSION

In this paper, we

- provide substantial evidence on the existence of strategic absence behaviour
 - this is done by using the self-exciting process
 - study both ask for leaves and return to work decisions
 - distinguish short and long-term absences
- Only in the short-term events, individual cares about the cumulative absence time
 - can be used as one criteria to separate short and long-term absences
- build economic models to explain the empirical findings
- discuss self-exciting process as a complementary tool to conventional methods

Thank You!

