

Année universitaire 2019-2020

Filières SMI-S4 TD Electromagnétisme dans le vide, série n°3, Corrections <u>Prof L. ELMAIMOUNI</u>

Questions de Cours

1.

- **1.a.** Oui, le Contour C est orienté ce qui définit sa normale $\vec{n}.C = \pm \mu_0 I$ selon le sens du courant I correspondant à $\pm \vec{n}$.
- **1.b.** Oui, puisqu'en régime permanent, l'intensité I est concervative et ne dépend pas de la surface.
- **1.c.** Oui, puisque aucun courant n'est enlacé. $C = \oint \vec{B} \cdot d\vec{l} = 0$.
- **1.d.** oui, il suffit d'appliquer le théorème d'ampère à un contour rectangulaire de longueur parallèle aux lignes de champ.

$$C = \oint \vec{B} \cdot d\vec{l} = 0 = B_1 l - B_2 l \implies B_1 = B_2$$

2. Loi de Biot et Savart :

Loi Locale:

Soit $d\vec{B}_{(M)}$ le champ magnétique produit au point M par l'élément de courant I $d\vec{l}$ au voisinage de d'un point P. Si

on pose
$$\overrightarrow{PM} = r \vec{u}$$
, On aura : $d\vec{B}_{(M)} = \frac{\mu_0}{4\pi} \frac{I \ d\vec{l} \wedge \vec{u}}{r^2}$.

Avec μ_0 la perméabilité magnétique du vide.

Loi intégrale :

Seul $\vec{B}_{(M)}$ a un sens physique : on somme sur toute la distribution de courants (D) :

$$\vec{B}_{(M)} = \int_{(D)} d\vec{B}_{(M)} = \int_{(D)} \frac{\mu_0}{4\pi} \frac{I \ d\vec{l} \wedge \vec{u}}{r^2}$$

Dans le vide, la circulation du champ magnétique le long d'un contour fermé C est égale à la somme des intensités algébriques des courants enlacés par C, multipliée par la constante μ_0 :

$$C = \oint_C \vec{B} \cdot d\vec{l} = \mu_0 \sum_k \varepsilon_k I_k \text{ avec } \varepsilon_k = \pm 1 \text{ selon que } I_k \text{ est suivant } \pm \vec{n}$$
.

4. Théorème de Boucherot.

Dans un circuit comportant plusieurs éléments passifs, la puissance active est égale à la somme des puissances actives dans chaque élément et la puissance réactive est égale à la somme des puissances réactives dans chaque élément.

On écrit :

$$\overline{P} = \overline{P}_a + j\overline{P}_r \text{ avec } \overline{P}_a = \sum_{n=1}^N \overline{P}_{an} \text{ et } \overline{P}_r = \sum_{n=1}^N \overline{P}_{rn},$$

Exercice 2

1. Ce système est à symétrie de révolution d'axe Oz. Le champ magnétique \vec{B} est orthogonal en tout point de l'espace tel que $\overrightarrow{HM} = r \ \vec{u}_r$. On applique donc le théorème d'ampère à un cercle de rayon r, d'axe Oz et passant par M, où $\vec{B}(M) = \vec{B}(r) \vec{u}_{\theta}$.

ightharpoonup Pour $r \ge R_3$:

$$B(r) 2\pi r = \mu_0(+I - I) = 0$$
 (1)

La somme algébrique des courants enlacés est nulle. Le champ magnétique est donc nul en tout point extérieur au câble coaxial.

♦ **Pour** $R_2 \le r \le R_3$:

$$B(r) 2\pi r = \mu_0(+I - I_r) = 0$$
(2)

Il nous faut exprimer le seul courant intérieur enlacé :

$$I = j_{2,3} S_{2,3} = J_{2,3} \pi (R_3^2 - R_2^2)$$
 et $I_r = J_{2,3} \pi (r^2 - R_2^2)$

soit la densité volumique de courant étant uniforme :

$$I_r = I \frac{r^2 - R_2^2}{R_3^2 - R_2^2}$$

Il en résulte :

$$B(r) = \frac{\mu_0 I}{2\pi r} \left(1 - \frac{r^2 - R_2^2}{R_3^2 - R_2^2} \right) \implies B(r) = \frac{\mu_0 I}{2\pi r} \frac{R_3^2 - r^2}{R_3^2 - R_2^2}$$

Finalement:

$$B(r) = \frac{\mu_0 I}{2\pi r} \frac{R_3^2 - r^2}{R_3^2 - R_2^2}$$
 (3)

On remarque que $B(R_3) = 0$ et on note la continuité de \vec{B} pour une discontinuité de courants volumiques.

\bullet **Pour** $R_1 \le r \le R_2$:

$$B(r) 2\pi r = \mu_0 I \implies B(r) = \frac{\mu_0 I}{2\pi r}.$$

Donc:

$$B(r) = \frac{\mu_0 I}{2\pi r} \tag{4}$$

♦ **Pour** $r \le R_1$:

On cherche à nouveau le seul courant intérieur enlacé.

$$I = j_1 S_2 = J_1 \pi R_1^2 \text{ et } I_r = J_1 \pi r^2$$

$$B(r) 2\pi r = \mu_0 I_r$$

Finalement:

$$B(r) = \frac{\mu_0 I}{2\pi} \frac{r}{R_1^2} \tag{5}$$

2. Allure du champ magnétique $\vec{B}(r)$ pour les différents cas.

On peut tracer l'allure $\vec{B}(r)$ en utilisant le logiciel Matlab

```
R1=30.3e-3; r4=R3:0.0001:0.1;

R2=50.2e-3; Br4=0.00;

R3=70.2e-3; plot(r4,Br4);

mu0=4*pi*1.00e-7;

I=2;

const=mu0*I/(2*pi);
```

```
r1=0:0.0001:R1;
Br1=const*r1/R1^2;
plot(r1,Br1);
hold on
r2=R1:0.0001:R2;
Br2=const./r2;
plot(r2,Br2);
hold on
r3=R2:0.0001:R3;
A1=(R3^2-r3.^2)./(R3^2-R2^2);
Br3=const*(1./r3).*A1;
plot(r3,Br3);
hold on
```


Exercice 3

a) Nous choisissons zz' selon la direction A_1A_2 et nous appelons O la projection de M sur A_1A_2 (OM=r).

Soit un élément de courant $Id\vec{l}$ au point P de coté OP=z.

La distribution de $Id\vec{l}$ au champ magnétique crée au point M est donnée par la loi de Biot et Savart :

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{l} \wedge \vec{u}}{PM^2}$$
, avec $d\vec{l} \wedge \vec{u} = dz \ \vec{u}_z \wedge \vec{u}$ et r=PM cos α .

Comme
$$\|\vec{u}_z \wedge \vec{u}\| = \sin(\vec{u}_z, \vec{u}) = \sin\beta = \cos\alpha$$
, avec $\beta + \alpha + \frac{\pi}{2} = \pi \implies \beta = \frac{\pi}{2} - \alpha$

Il vient:

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{dz \cdot \cos\alpha \,\vec{u}_\theta}{\left(r/\cos\alpha\right)^2} \tag{6}$$

Comme
$$tg\alpha = \frac{z}{r}$$
 \Rightarrow $z = r.tg\alpha$ \Rightarrow $zd = \frac{r}{\cos^2 \alpha}.d\alpha$

$$d\vec{B} = \frac{\mu_0 I}{4\pi^*} \cos \alpha . d\alpha . \vec{u}_\theta$$
 (7)

Ici, il suffit d'intégrer entre les angle $(\alpha_1 = (\overrightarrow{MO}, \overrightarrow{MA}_1))$ et $(\alpha_2 = (\overrightarrow{MO}, \overrightarrow{MA}_2))$

$$|\vec{B} = \frac{\mu_0 I}{4\pi r} (\sin \alpha_2 - \sin \alpha_1) \vec{u}_\theta|$$
 (8)

b) Si r → 0, le point M se retrouve à l'extrême voisinage de 0 et le fil lui apparaît infini.

$$\alpha_1 \rightarrow -\frac{\pi}{2}$$
 et $\alpha_2 \rightarrow \frac{\pi}{2}$,

soit:

$$\left| \vec{B} = \frac{\mu_0 I}{2\pi r} \vec{u}_\theta \right| \tag{9}$$

Exercice 4

$$\frac{ightharpoonup ightharpoonup i$$

Dans le vide (à l'extérieur de la lame), le vecteur excitation magnétique \vec{H}_0 est donnée par :

$$\left| \vec{H}_0 = \frac{\vec{B}_0}{\mu_0} \right| \tag{13}$$

Puisque le champ magnétique est normal aux faces de la lame, il y a donc continuité de \vec{B} à la traversée de ces faces (car la composante normale de \vec{B} est égale à \vec{B}). Donc, le champ magnétique à l'intérieur de la lame est :

$$\vec{B} = \vec{B}_0 = \mu_0 \vec{H}_0 \tag{14}$$

Or:

$$\vec{B} = \mu_0(\vec{H} + \vec{M}) = \mu_0(\frac{\vec{M}}{\chi_m} + \vec{M}) = \mu_0(\frac{1}{\chi_m} + 1)\vec{M}$$

donc:

$$\vec{M} = \frac{\chi_m}{\chi_m + 1} \vec{H}_0 \tag{15}$$

Exercice 5

1. En utilisant la loi intégrale de Biot et Savart, Le champ magnétique est donné par :

$$\vec{B}(M) = \frac{\mu_0 I}{4\pi} \oint_C \frac{d\vec{l} \wedge \overrightarrow{PM}}{\left\| \overrightarrow{PM} \right\|^2}$$

soit:

$$\vec{B}(M) = \frac{\mu_0 I}{4\pi \left\| \overrightarrow{PM} \right\|^2} \oint_C d\vec{l} \wedge \overrightarrow{PM}$$
(26)

D'après le schéma, nous avons :

$$\sin \alpha = \frac{R}{PM}, PM^2 = R^2 + z^2 \implies PM = (R^2 + z^2)^{\frac{1}{2}}$$

Il vient:

$$\vec{B}(M) = \frac{\mu_0 I}{4\pi R^3} \sin^3 \alpha \oint_C d\vec{l} \wedge \overrightarrow{PM}$$
 (27)

Deux éléments de la spire en P et P', symétriques par rapport à son centre O, ont des contributions en M symétriques par rapport à Oz, $\vec{B}(M)$ est donc porté par Oz.

$$\vec{B}(M) = B_z \ \vec{e}_z \ \text{avec} \ B_z = \frac{\mu_0 I}{4\pi R^3} \sin^3 \alpha \left(\oint_C d\vec{l} \wedge \overrightarrow{PM} \right) \vec{e}_z$$

$$(d\vec{l} \wedge \overrightarrow{PM})\vec{e}_z = -(\vec{e}_z \wedge \overrightarrow{PM})d\vec{l} = PM.dl.\sin\alpha$$
 \Rightarrow $\oint_C d\vec{l} = 2\pi R$

Donc:
$$B_z = \frac{\mu_0 I}{4\pi R^3} \sin^3 \alpha . PM . \sin \alpha . 2 . \pi . R . \vec{e}_z$$
, avec $PM = \frac{R}{\sin \alpha}$

$$\vec{B}(M) = \frac{\mu_0 I}{2R} \sin^3 \alpha \, \vec{e}_z$$
 (28)

2. Montrons que:
$$\vec{B}(M) = \vec{B}(0) \left[1 + \left(\frac{z}{R} \right)^2 \right]^{\frac{3}{2}}$$
.

Faisant $\alpha = \frac{\pi}{2}$, on obtient, le champ magnétique au centre O de la spire :

$$\vec{B}(O) = \frac{\mu_0 I}{2R} \cdot \vec{e}_z \tag{29}$$

Comme
$$\sin \alpha = \frac{R}{PM} = \frac{R}{\left(R^2 + z^2\right)^{\frac{1}{2}}} \implies \sin^3 \alpha = \frac{R}{PM} = \frac{1}{\left(1^2 + \left(\frac{z}{R}\right)^2\right)^{-\frac{3}{2}}}$$

Il vient donc:

$$\vec{B}(M) = \vec{B}(0) \left[1 + \left(\frac{z}{R} \right)^2 \right]^{-\frac{3}{2}}$$
(30)

3. Allure de \vec{B} en fonction de z/R.

4. Le système est de symétrie de révolution autour de l'axe Oz. Le champ au point O sera porté par Oz et de sens de \vec{u}_z (associé au choix du sens de I).

D'après la question 1, le champ crée par une spire de courant de rayon r est donné par :

$$\vec{B}(M) = \frac{\mu_0 I}{2r} \sin^3 \alpha \cdot \vec{e}_z \tag{31}$$

Cherchons le nombre élémentaire de spires vues du point O sous l'angle $d\alpha$.

1 spire → épaisseur e

dN spires \rightarrow portion curviligne R $d\alpha$

soit:

$$dN = \frac{Rd\alpha}{e} \tag{32}$$

Donc:

$$d\vec{B}(0) = \frac{\mu_0 I}{2r} . dN . \sin^3 \alpha . \vec{e}_z = \frac{\mu_0 I}{2R \sin \alpha} . \frac{R d\alpha}{e} . \sin^3 \alpha . \vec{e}_z$$

Il en résulte :

$$\vec{B}(0) = \frac{\mu_0 I}{2e} \cdot \int_0^{\pi} \sin^2 \alpha \, d\alpha \cdot \vec{e}_z. \tag{33}$$

Comme $\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$, il vient :

$$\vec{B}(0) = \frac{\mu_0 I}{4e} \left[\alpha - \frac{\cos 2\alpha}{2} \right]_0^{\pi} \vec{e}_z \tag{34}$$

Finalement:

$$\vec{B}(0) = \frac{\mu_0 \pi I}{4e} .. \vec{e}_z$$
 (35)

Exerxice 6

A) Champ magnétique créé par une bobine plate.

1. Tout plan contenant l'axe OM de la spire est un plan d'antisymétrie de la distribution de courant. Le champ magnétique en M appartient donc à chacun de ces plans et par conséquent à leur intersection. Le champ magnétique $\vec{B}(M)$ est donc colinéaire à \vec{e}_x vecteur unitaire de l'axe 0x:

$$\vec{B}(M) = B(M)\vec{e}_{x} \tag{36}$$

La loi de Biot et Savart ou la règle de « tire bouchon » ou celle du « bonhomme d'ampère » qui en découle, montre que le champ magnétique en M est orienté de O vers M. En aucun cas, les propriétés de symétrie de la distribution de courant ne peuvent donner le sens du champ magnétique.

2. La loi de Biot et Savart permet de calculer le champ magnétique élémentaire $d\vec{B}$ crée en un point M par élément de circuit $d\vec{l}$ placé au point P et parcouru par un courant d'intensité I :

$$d\vec{B} = \mu_0 \frac{Id\vec{l} \wedge \overrightarrow{PM}}{PM^3} \tag{37}$$

Ici, le point P décrit la spire circulaire S de rayon R. On a donc :

$$\vec{B}(M) = \oint_{S} \frac{\mu_0}{4\pi} \frac{Id\vec{l} \wedge \overrightarrow{PM}}{PM^3}$$
 (38)

Ou encore

$$\vec{B}(M) = \frac{\mu_0 I}{2\pi R^3} \sin^3 \alpha \oint_S d\vec{l} \wedge \overrightarrow{PM}$$
 (39)

Puisque, en tout point P de la spire, $PM = R/\sin \alpha$

L'intégrale intervenant dans l'expression précédente du champ magnétique s'écrit :

$$\oint_{S} d\vec{l} \wedge \overrightarrow{PM} = \oint_{S} d\vec{l} \wedge \overrightarrow{PO} + \left(\oint_{S} d\vec{l} \right) \wedge \overrightarrow{OM}$$

La spire S étant une courbe fermée, $\left(\oint_{S} d\vec{l}\right) = \vec{0}$

D'autre part,

$$d\vec{l} \wedge \overrightarrow{PO} = dl \, \vec{e}_{\theta} \wedge (-R\vec{e}_{r}) = Rdl \vec{e}_{r}$$

En utilisant le trièdre des coordonnées cylindriques, $(\vec{e}_{\theta}, \vec{e}_r, \vec{e}_x)$ lié au point P. On en déduit :

$$\oint_{S} d\vec{l} \wedge \overrightarrow{PM} = R \left(\oint_{S} dl \right) \vec{e}_{x} = 2\pi R^{2} \vec{e}_{x}$$

Si bien que le champ magnétique s'écrit :

$$\vec{B}(M) = \frac{\mu_0 I}{2R} \sin^3 \alpha \ \vec{e}_x$$
 (40)

3. En remarquant que :

$$\sin \alpha = \frac{R}{\sqrt{R^2 + x^2}}$$

On obtient:

$$\vec{B}(M) = \frac{B_0 R^3}{\left(R^2 + x^2\right)^{3/2}} \vec{e}_x \tag{41}$$

Si on pose:

$$B_0 = \frac{\mu_0 I}{2R}$$

Remarquons qu'en un point M' symétrique de M par rapport au plan (Π) de la spire (plan de symétrie de la distribution de courant), le champ magnétique est l'opposé du symétrie du champ magnétique en M.

$$\vec{B}(M') = -S_{\Pi}(\vec{B}(M)) \tag{42}$$

Puisque $\vec{B}(M)$ est colinéaire à l'axe de la spire, on en déduit :

$$\vec{B}(M') = \vec{B}(M) \tag{43}$$

Remarquons qu'il aurait été plus simple de travailler avec l'abscisse x de M sur l'axe Ox et de constater, qu'étant données les propriétés de symétries du champ magnétique, celuici ne dépend que de |x|.

B) Champ créé par un solénoïde.

1. dN = ndx spires placées à l'abscisse x par rapport à M, créent, en ce point un champ magnétique :

$$d\vec{B}(M) = \frac{\mu_0 dN I}{2R} \sin^3 \alpha \ \vec{e}_x \tag{44}$$

où α est l'angle sous lequel on voit les spires depuis M. En différentiant $\tan \alpha = R/x$, on obtient $dx = -\frac{R}{\sin^2 \alpha} d\alpha$

Le champ magnétique élémentaire s'écrit donc :

$$d\vec{B}(M) = \frac{-\mu_0 n I}{2} \sin \alpha \ d\alpha \ \vec{e}_x \tag{45}$$

L'intégration de cette expression entre les deux extrémités du solénoïde, α_1 et α_2 , conduit alors à :

$$d\vec{B}(M) = \frac{\mu_0 n I}{2} \left(\cos \alpha_2 - \cos \alpha_1\right) \vec{e}_x \tag{46}$$

dans le cas d'un solénoïde infini, c'est-à-dire en pratique si le point M est à l'intérieur du solénoïde et à grande distance des extrémités (par rapport au rayon R), on $\alpha_1 = 0$ et $\alpha_2 = \pi$

Si bien que:

$$\vec{B}(M) = \mu_0 n I \vec{e}_x \tag{47}$$

- 2. Champ magnétique hors de l'axe
- a) Tout plan perpendiculaire à l'axe est un plan de symétrie de la distribution de courant du solénoïde infiniment long. En un point M quelconque de ce plan, le champ magnétique lui donc perpendiculaire, que M soit placé à l'intérieur ou à l'extérieur du solénoïde. Le champ magnétique est par conséquent colinéaire à l'axe du solénoïde.

D'autre part, la distribution de courant étant invariante par translation parallèlement à l'axe du solénoïde et par rotation autour de cet axe, le champ magnétique ne dépend que de la distance r du point M à l'axe. On a donc :

$$\vec{B}(M) = B(r)\vec{e}_{r} \tag{48}$$

b) D'après le théorème d'Ampère, la circulation du champ magnétique le long d'un contour C fermé est égale à l'intensité du courant qui passe à travers toute surface s'appuyant sur le contour multiplié par μ_0 , la perméabilité du vide.

Pour un solénoïde infiniment long, on choisit un contour rectangulaire comme indiqué sur la figure ci-dessus. Le coté M_3M_4 est porté par l'axe du solénoïde alors que M_1M_2 lui est parallèle et passe par le point M où l'on souhaite calculer \vec{B} . Ces deux cotés ont même longueur L choisie arbitrairement. D'après les remarques faites à la question précédente, on a :

$$\vec{B}(M) = \mu_0 n I \vec{e}_x \tag{49}$$

Le long de M_3M_4 :

$$\vec{B}(M) = B(r)\vec{e}_{x} \tag{50}$$

Le long de M_1M_2 , si r est la distance de ce coté à l'axe. Les cotés M_1M_2 et M_3M_4 sont perpendiculaires à l'axe et donc à \vec{B} . Le contour est orienté selon les flèches visibles sur la figure.

La circulation de \vec{B} le long de C s'écrit donc :

$$\oint_C \vec{B}d\vec{l} = (B(r) - \mu_0 nI)L \tag{51}$$

Pour un point M situé à l'intérieur du solénoïde, r < R, aucun courant ne passe à travers la surface plane s'appuyant sur le contour choisi. Le théorème d'Ampère s'écrit donc :

$$\oint_C \vec{B} d\vec{l} = 0 \tag{52}$$

Soit:

$$B(r) = \mu_0 nI \tag{53}$$

Le champ magnétique est donc uniforme à l'intérieur du solénoïde et vaut :

$$\vec{B}(r) = \mu_0 n I \ \vec{e}_x \tag{54}$$

Pour un point à l'extérieur du sloénoîde, r > R, le courant qui passe à travers la surface plane s'appuyant sur le contour est :

$$I_{total} = -NI$$
 avec $N = nL$

La surface et le contour sont orientés de façon corrélée selon la règle du « tire bouchon » où celle du « bonhomme d'ampère ». Le théorème d'ampère s'écrit donc :

$$\oint_C \vec{B} d\vec{l} = -\mu_0 nIL$$

Soit:

$$B(r) = 0 \tag{55}$$

Le champ magnétique est donc nul à l'extérieur du solénoïde.