ИЗУЧЕНИЕ ДИНАМИЧЕСКОЙ ПЕТЛИ МАГНИТНОГО ГИСТЕРЕЗИСА МАТЕРИАЛОВ

1. Введение

Большое разнообразие свойств магнитных материалов обусловило их широкое распространение в технике. Знание параметров магнитных свойств материалов, получаемых на основе изучения кривых их намагничивания, используются в промышленности для контроля технологических процессов изготовления различных ферритов с заранее заданными свойствами, для контроля качества получения железа, для разработки мощным электромагнитных полей с одновременным уменьшением их размера, для разработки новых магнитострикционных материалов, используемых в различных датчиках, резонаторах, стабилизаторах, реле, фильтрах, преобразователях звуковых и ультразвуковых частот и т.п. Центральное место в изучении свойств магнитных материалов занимает метод, основанный на изучении динамической петли гистерезиса.

Цель работы — изучение динамической петли магнитного гистерезиса для исследования основных магнитных свойств по кривой намагничивания.

2. Краткая теория

Вещества, способные намагничиваться BO внешнем магнитном поле. магнитными. По величине магнитной восприимчивости, называются зависимости от напряженности магнитного поля, температуры и других факторов выделяют пять видов магнитных веществ: диамагнетики, парамагнетики и антиферромагнетики образуют группу слабомагнитных веществ; ферромагнетики и ферримагнетики относятся к группе сильномагнитных веществ.

Ферро- и ферримагнетики обладают рядом особенностей, отличающих их от диа- и парамагнетиков. К ним относятся зависимость намагниченности и магнитной восприимчивости от напряженности внешнего магнитного поля и от предшествующего магнитного состояния (гистерезис); достижение магнитного насыщения в сильных магнитных полях; наличие областей самопроизвольного намагничивания (доменов), имеющих собственную намагниченность почти в насыщении даже при отсутствии внешнего магнитного поля; зависимость магнитных свойств от температуры и существование особого значения температуры (точки Кюри), выше которой вещество теряет выше перечисленные особенности и становится парамагнетиком.

Возникновение магнитных свойств у ферромагнетиков связано с существованием у них доменной микроструктуры. Домены, в которых магнитные моменты атомов ориентированы параллельно, возникают даже в отсутствие внешнего магнитного поля. Главную роль в возникновении ферромагнетизма отводят силам обменного взаимодействия между атомами, возникающим за счёт нескомпенсированных спинов электронов.

Кристаллическая структура ферромагнетиков представлена в основном тремя типами кристаллической решётки: кубической гранецентрированной, кубической объёмноцентрированной и гексагональной. Характер зависимости индукции B магнитного поля в материале от напряженности H внешнего магнитного поля показывает, что они по своим свойствам являются магнитноанизотропными.

Намагниченность ферромагнетика во внешнем магнитном поле происходит за счёт изменения формы и ориентации доменов. В слабых полях наблюдается обратимый процесс смещения доменных границ. Увеличение магнитного поля приводит к необратимым изменениям в расположении доменных границ. В области сильных полей намагниченность выходит на насыщение, когда возникает параллельная ориентация магнитных моментов доменных областей.

При последующем уменьшении напряжённости магнитного поля изменение намагниченности происходит уже по другой кривой. При H = 0 из-за необратимого смещения границ доменных областей сохраняется некоторая намагниченность, характеризуемая индукцией магнитного поля $B_{\rm oct}$, и называемая **остаточной** намагниченностью. При увеличении значений размагничивающего поля (поля, направленного в противоположную сторону) образец постепенно размагничивается и его намагниченность становится равной нулю при некотором значении напряженности $-H_c$, которая называется **коэрцитивной силой**. Т.е. коэрцитивная это такая напряжённость размагничивающего поля, при намагниченность образца снимается полностью. При дальнейшем увеличении напряженности размагничивающего поля образец начинает намагничиваться в противоположном направлении вплоть до насыщения. Затем, последующее размагничивание происходит по кривой, симметричной предыдущей. Полный цикл перемагничивания при изменении напряженности внешнего магнитного поля от $-H_{\text{макс}}$ до $H_{\text{макс}}$ описывается **петлёй гистерезиса**. При проведении неполного (частичного) цикла намагничивания до некоторых значений $H < H_{\text{макс}}$ получают частную петлю гистерезиса (кривая 3 на рисунке 1). При проведении же полного цикла намагничивания при $H = H_{\text{макс}}$ получают так называемую **статическую петлю** гистерезиса (кривая 2 на рисунке 1). Важное значение имеет основная кривая намагничивания (кривая 1 на рисунке 1), представляющая собой геометрическое место вершин частных петель гистерезиса, полученных при циклическом перемагничивании, И отражает изменение индукции Bпри изменении напряженности H.

По кривой гистерезиса определяются следующие величины:

- остаточная намагниченность $B_{\rm oct}$;

- коэрцитивная сила $H_{\rm c}$ (соответствует напряженности внешнего поля при B=0);
- индукция насыщения (соответствует максимальному значению индукции $B_{\mbox{\tiny MAKC}}$);
- дифференциальная магнитная проницаемость (угол наклона в каждой точке петли гистерезиса) $\mu_{\rm J} = \mu_0 \, \frac{dB}{dH}$;
 - максимальная удельная магнитная энергия $\omega_{\text{макс}} = \frac{1}{2} (B_{\text{макс}} H_{\text{макс}})$.

Рисунок 1 – Петля магнитного гистерезиса

(1 – основная кривая намагничивания, 2 – статическая петля гистерезиса, 3 – частные петли гистерезиса)

Различают магнитомягкие и магнитотвёрдые материалы. Магнитомягкие материалы способны намагничиваться до насыщения в слабых внешних полях, обладают высокой магнитной проницаемостью, малыми потерями на перемагничивание и малой коэрцитивной силой. Условно к магнитномягким относятся материалы с $H_{\rm c} < 4~{\rm A/m}$. Магнитотвёрдые материалы обладают большой удельной магнитной энергией и повышенным значением коэрцитивной силы (до $10^5~{\rm A/m}$). Намагничивание магнитомягких материалов происходит в основном за счёт смещения доменных границ, а магнитотвёрдых — за счёт вращения вектора намагниченности.

3. Практическая часть

- 3.1 Порядок выполнения работы.
- 3.1.1 Получить у преподавателя вариант задания в соответствии с пунктом 3.2.
- 3.1.2 На полученном графике построить основную кривую намагничивания.
- 3.1.3 Определить с использованием петли магнитного гистерезиса остаточную намагниченность, коэрцитивную силу и индукцию насыщения.
- 3.1.4 Вычислить максимальную удельную магнитную энергию.
- 3.1.5 Построить график зависимости дифференциальной магнитной проницаемости от напряженности внешнего магнитного поля. Определить максимальную дифференциальную магнитную проницаемость.
- 3.1.6 По найденным параметрам определить, к какому типу относится предложенный магнитный материал.

3.2 Варианты заданий.

Задания представлены в виде графиков, на которых показаны петли магнитного гистерезиса некоторого материала.

Требования к оформлению отчёта

Результаты выполнения студентом лабораторной работы представляются преподавателю в виде письменного отчёта, выполненного на листе формата А4 или близкого к нему формата. В отчёте обязательно указываются фамилия и инициалы студента, выполнившего работу, дата выполнения работы, номер лабораторной работы, её название, цель, а также к работе прилагается распечатанный график петли гистерезиса, на котором отмечаются все необходимые параметры. Отчёт о лабораторной работе обязательно завершается выводом, который делается на основании полученных студентом результатов.

Отчёт сдаётся преподавателю для проверки, и может быть не принят и отправлен на доработку в случае наличия ошибок, неполноты представленных промежуточных вычислений и т.п. После принятия отчёта преподавателем студент обязан пройти процедуру защиты выполненной им лабораторной работы, для того, чтобы она считалась зачтённой. По итогам проверки отчёта и защиты работы преподавателем выставляется оценка по работе, которая будет учитываться при вычислении итоговой оценки по данному спецкурсу.

2016	_	(Ф.И.О.)
	Лабораторная работа №	(,
	(название работы)	
Цель:		
Вариант №		
Результат		
$B_{\text{OCT}} = \dots$ $H_{\text{C}} = \dots$ $B_{\text{MAKC}} = \dots$ $\omega_{\text{MAKC}} = \dots$ $\mu_{\mathcal{A}}^{\text{MAKC}} = \dots$		
Вывод		

Пример оформления отчёта