

1/1

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 11088665

(43)Date of publication of application: 30.03.1999

(51)Int.CI.

HO4N 1/40 GO6T 5/00 HO4N 1/405

(21)Application number: 09239464

(22)Date of filing 04.09.1997

(71)Applicant: (72)Inventor:

MINOLTA CO LTD

HIROTA SO TADA KAORU

ISHIGURO KAZUHIRO

(54) IMAGE PROCESSOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an image processor capable of preventing stripe patterns from being generated due to multi-level error diffusing processing and hardly degrading image quality by determining a weight matrix to be added to image data of multiple values in accordance with the mode of image processing. SOLUTION: A weighted matrix switching part 42 switches weighted matrixes 43 and 44 to be inputted to a multi-level error diffusing processing part 106–08, based on an image mode signal from a image mode selecting part 41. When a mode (photograph mode) regarding a halftone image important is selected, the switching part 42 selects the weighted matrix A 43. When a mode (character mode) regarding a line image important is selected, on the other hand, the weighted matrix B 44 is selected. The weighted matrix A 43 is a matrix for generating patterns in a fixed cycle. For the weighted matrix B 44 all items are constituted of numerical values 0.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998 Japanese Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-8866 ഗ

(43)公開日 平成11年(1999)3月30日

H 0 4 N	G06T	H 0 4 N	(51) Int. C1.
1/405	5/00	1/40	
			超別記号
H 0 4 N	G06F	H 0 4 N	FΙ
1/40	15/68	1/40	
	3 1 0	103	
Ħ	J	В	

(74)代理人 弁理士 深見 久郎 (外2名)	(74)代理人	
際ピル ミノルタ株式会社内		
大阪市中央区安土町二丁目3番13号大阪国		
竹頭 档桁	(72)発明者	
際ピル ミノルタ株式会社内		
大阪市中央区安土町二丁目3番13号大阪国		
多田 漢	(72) 発明者	
際ピル ミノルタ株式会社内		
大阪市中央区安土町二丁目3番13号大阪国		
廣田 創	(72)発明者	
大阪国際ドル		
大阪府大阪市中央区安土町二丁目3番13号		(22)出頭日 平成9年(1997)9月4日
ミノルタ株式会社		
000006079	(71)出現人 000006079	(21)出類吞号 特顏平9-239464
(全8頁)	10	審査請求 未翻求 翻求項の数2

(54)【発明の名称】回復処理装置

(57) (財物)

し、かつ画質が低下することのない画像処理装置を提供 【課題】 誤差拡散処理に伴う擬似輪郭の発生を防止

擬以輪郭が防止される。 トリクス切換部42により切換えられる。 重み付けマト るモードや緑画像を重視するモード)に応じて原画像に ンが付加される。これにより、多値誤差拡散画像特有の リクス43が選択されると、原画像に一定周期のパター 加算される重み付けマトリクス43,44が皿み付けマ 【解決手段】 入力されたモード (中間調画像を取視す

【特許額求の範囲】

の画像データを多値訊差拡散処理することにより、n 【類求項1】 画像過度に応じて得られた多値 (m値) (2<n<m)値のデータを得る画像処理装置であっ

画像処理のモードを設定する設定手段と、

に加算する瓜み付けマトリクスを決定する決定手段とを 備えた、画像処理装置 **前記設定されたモードに応じて、前記多値の画像データ**

処理接置。 値に応じたレベルが設定される、韓水頂 1 に記載の画像 【請求項2】 前記重み付けマトリクスには、前記nの

[1000] 【発明の詳細な説明】

せることを図った画像処理装置に関する。 し、特に多値誤差拡散画像に発生する擬似輪郭を低減さ 【発明の属する技術分野】この発明は画像処理装置に関 [0002]

る技術が提案されている。 てその結果に対応した複数ピットの出力データを生成す **示されるように、画像データを複数のしきい値と比較し** 装置の分野では、たとえば特関平4-2271号公報に 【0003】図11は、そのような従来の多値観差拡散 【従来の技術】従来の多値誤差拡散法を用いた画像処理

に基づいた画像処理を実行する。図11に示される装備 法を用いた画像処理装置の構成を示すプロック図であ では、入力データDヒして各画採8ヒットのデータが入 【0004】この画像処理装置は、いわゆる誤差拡散法

カされる。これに対して出力データPとして、各画素 4

ピットのデータが出力される。

トリクス34と、誤差加算マトリクス34の出力を記憶 器33と、減算器33の出力Eを処理の対象となってい カD′から、階調変換器32の出力Tiを減算する減算 データPを出力する階調変換器32と、加算器31の出 力D、の値を複数のしきい値と比較することにより出力 と補正値Rとを加算する加算器31と、加算器31の出 する誤差メモリ35とから構成される。 る画素(注目画素)の周囲に分散するための誤算加算マ 【0005】画像処理装置は、入力される画像データD

ら構成される。エンコーダENCの出力が階調変換後の 所望のものを選択し出力するデータセレクタSELとか と、エンコーダENCの出力に基づいてしまい値のうち ば"1"を出力する比較器CP1~CP15と、比較器 2は、加算器31の出力D、をそれぞれ異なるしきい値 を示すブロック図である。図を参照して、階調変換器 3 4 ピットの出力データPとなり、データセレクタSEL CP1~CP15の出力を加算するエンコーダENC と比較し、加算器 3 1の出力D′がしきい値以上であれ 【0006】図12は、図11の階闢変換器32の構成

8

いるため、しきい値は15個設けられていることにな きい値は、最小のものが"16"であり、最大のものは の出力が減算器33へ入力されるデータTiとなる。し "240"である。しきい値は、16刻みで設定されて

像処理接着の具体的な動作について説明する。 【0007】次に、図11および図12を参照して、回

5 値Rと加算され、補正後のデータD、となって階間変換 て4ピットのデータPに変換される。この4ピットのデ P1~CP15の比較結果は、エンコーダENCによっ ~CP15により、補正後の回復データD/を予め定め 器32に入力される。階觸変換器32は、比較器CP1 2,208,224,240) と比較する。各比数器C られた15のしきい個(16,32,48,…,19 各画菜8ピットのデータである。画像データDは、補正 ータ P が多値誤差拡散処理後の画像データとなる。 **【0009】すなわち、階調変換器32は、入力された** 【0008】加算器31に入力される画像データDは、

음 する。また、階調変換器32は、エンコーダENCの出 データTiとして出力される。 れば、16か、補正後の画像データロ′の値が(32以 ダ(16以上32米徴の低囲内の数値である)20であ iとして出力する。たとえば、補正後のデータD′の値 のしきい値と"0."の値のうち1つを選択し、データT カPで制御されるデータセレクタSELにより、15個 8 ビットの画像データを、 4 ビットの画像データに安良 上48未満の範囲内の数値である)40であれば32が

မ **墓に基づいて検出する。具体的には、補正後のデータ** される。 D′と出力されたデータTiとの差が誤差Eとして出力 **う誤意Eを、階間変換器32の入力D′と出力T1との** 【0010】減算器33は、階間変換器32の変換に伴

図13に示す。 差Eに絡づいて、誤差の拡散値を計算する。誤差加算マ トリクス34で算出される拡散値の具体的な重み係数を 【0011】 観差加算マトリクス34は、出力された調

らの拡散値は、誤差メモリ35上の対応する画素位置 6) Eの値が、それぞれ拡散値として計算される。これ 画素の左下と右下に位置する周辺画案に対しては(1/ 置する周辺画素に対しては、(2/6)Eの値が、注目 って図13に示される例では、注目画素の右隣と下に位 れた数値が各周辺画素の重み係数を示している。したが っている画素(注目画素)を示し、その他の画素に示さ 【0012】図13において、"*"が処理の対象とな

8 を計測するアドレスカウンタ36によって指定されたア **力される画像データDの画案の走査に同期して画素位置** 値を加算しその結果が再び同じ画素位置に記憶される。 **れまでに記憶されていた値を読出し、それに新しい拡散** 【0013】誤差メモリ35に記憶されたデータは、 (アドレス) に加算する形で記憶される。すなわち、

5

は、狙み付けマトリクスB44を選択する。 が選択された場合には、狙み付けマトリクス切換部42 一方、線画像を重視するモード(たとえば文字モード) 切換部42は、凪み付けマトリクスA43を選択する。 真モード)が選択された場合には、重み付けマトリクス 【0043】中間調画像を取視するモード(たとえば写

棋)の発生が防止される。 り、多億誤惡拡散画像特有の擬似輪郭(周期的な稱模 トリクスである。このマトリクスが採用されることによ れるように、一定周期のパターンを発生させるためのマ 【0044】重み付けマトリクスA43は、図3に示さ

法の利点が損なわれることがなくなる。 も画像全体の濃度は変化しない。これにより、誤差拡筋 うにされており、これによりマトリクス加算後において けマトリクスA43内では且み係数の認知が0となるよ のいずれかの国み係数により構成される。また、国み付 【0045】 狙み付けマトリクスAは、-1,0,+1 8

に加算して処理することにより、出力される画像は網点 【0046】狙み付けマトリクスA43を原画像データ

けマトリクスB45が採用されることにより、凝点物料 の低下を防止することができ、誤差拡散法の利点を損な* の低減処理が実質的に行なわれない。これにより、画質 30 てが0の数値から構成されている。これにより、重み付 【0047】一方、皿み付けマトリクスB44は、すべ

った刺余を示している。たとえば、入力画像データI なお、式(1)においてMOD(a,b)はaをbで割 (0,0)、I(4,0)およびI(8,0)で加算さ※ W (MOD (i, 4), MOD (j, 4)) \times (m/n)

図5は、本実施の形態における効果を説明するための図

ヒが出現することだなる。 表現される領域(A)とディザ表現されない領域(B) 同様に、出力される多値誤楚拡散画像データにはディザ 択されているときには、図14に示される従来の技術と リクス切換部42により皿み付けマトリクスB44が選 するものであったと仮定する。このとき、組み付けマト 出力されるアータフベル(階間) 1 から 3 へ徐々に揺店 【0056】図を参照して、入力される原画像データが

4 2 により重み付けマトリクスA 4 3 が選択されること **により、図5の右側の円内で囲まれる成分が原画像アー** 【0057】しかしながら、四み付けマトリクス切換部 8

*わない出力画像を得ることができる。

択されたマトリクスは、重み係数変換節45および乗算 り、nは出力回復データのデータレベル数(階質数)で に含まれる係数はおよそm/n倍される。ここに、mは 器55によって整数倍される。具体的には、マトリクス 入力される画像データのデータレベル数(階間数)であ 【0048】重み付けマトリクス切換部42によって選

画像データが、多値誤差拡散処理によって4 bit (1 6階調)のデータに変換される場合には、重み係数は1 6 (m/n=256/16) となる。 【0049】たとえば、8bit (256階調)の入力

おける(B))がディザ表現されないまま出力され、綿 画像データを分配する場合に、重み付けのレベルがm/ nより小さすぎるヒディザ製現されない領域 (図14に 模様(凝似論郷)が目立ったままになってしまう。 【0051】また反対に、囲み付けのレベルがm/nょ 【0050】多値誤患拡散処理によってn値のレベルに

かえって画質が劣化してしまう。そのため質み係数変数 り大きすぎると、ディザの強度が強すぎることとなり、

以下の式(1)で示される値となる。 4によって誤差データE(i,j)に加算される値は クスのk行 1列の値をW (k, 1) とすると、加算器 5 タヒの加算処理について説明するための図である。 (i, 亅)とし、図4に示されるように重み付けマトリ (i, j)、誤患メモリに格納される誤差データをE 【0053】 座標 (i, j) の入力画像データを I

※れる国み付けの値はW (0,0)となる。 夕は、式(2)により表わされる。 【0055】すなわち、加算器54から出力されるデー

E(i, j) +W (MOD(i, 4), MOD(j, 4)) \times (m/n) ... (2)

データにレベルの変動を加えることができる。 採用されることにより、図6の(B)の領域においても イザ表現されない領域(B)とが縞模様として出現する 図6に示されるようにディザ表現される領域(A)とデ ない領域(B)においても出力される多値誤差拡散画像 夕に加算されることになる。これによりディザ表現され ことになる。これに対し、重み付けマトリクスA43か レベルの変動が発生し、出力される画像データは図7の 【0058】これを実際の画像出力の例として見てみる 重み付けマトリクスB44が採用された場合には、

トリクスA43の例として、図3に示される配列のもの 【0059】なお、本実施の形態においては重み付けマ

ように種根核のないものとなる。

部45は適切な設定が必要である。 【0052】図4は、触み付けマトリクスと原画像デー

[0054]

用し、様気精弾の発生を防ぐようにしてもよい。また、 の例であり、たとえば図8に示されるように万線パター 像となる。しかしながら、このようなマトリクスは1つ を用いているため、出力される画像は網点画像に似た画 マトリクスのパターンを変える以外に、図りに示される ンのようなマトリクスを餌み付けマトリクスAとして採

写機の構成を示す図である。 【図1】本発明の実施の形態の1つにおけるデジタル複

【図3】図2の符号化/復号化処理部106-07に含 【図2】図1の画像処理回路106の構成を示すプロッ

【図5】図1のデジタル複写機の効果を説明するための 【図4】重み付けマトリクスの構成を示す図である。

【図8】 狙み付けマトリクスAの第1の変形例を示す図 【図7】本発明の効果を説明するための図である。

【図10】図9のマトリクスの構成を示す図である。

(図)

4により出力されるデータは式 (3) に示されるものと

【図面の簡単な説明】

まれる多値誤差拡散処理部の構成を示すプロック図であ

図である。

【図6】従来技術の問題点を説明するための図である。

【図9】重み付けマトリクスAの第2の変形例を示す図

55 乗算器

お、図りにおけるマトリクスの各々が有する補正値を図 ようにマトリクスサイズを変えることとしてもよい。な

 $E(i, j) + W(MOD(i, 8), MOD(j, 8)) \times (m/n)$

示すプロック図である。

明するための図である。

【図14】従来技術における問題点を説明するための図

【体中の親毘】

41 画像モード選択部

42 重み付けマトリクス切換部

43 重み付けマトリクスA

44 重み付けマトリクスB

国の保数政政部

6

特開平11-88665

10に示されるようにW (i, j)とすると、加算器5

[0060]

【図12】図11の階調変換器32の構成を示すブロッ 【図11】従来の技術における多値調整拡散処理回路を

【図13】図11の観差加算マトリクス34の構成を説

加算器

106-08 多值調度拡散処理部

[図2]

[88]

田畑メモリ母

Day Fred CT13 H.R.W

Cra HANN

O, HEED CO PERSON #8287F e43 CO HASS

特開平11-88665

8

[図12]