Tensor Categories, Sections 9.9–9.10

Marcelo De Martino

Ghent University

March 28, 2022

- (9.9.22) If C positive² then
 - $\exists F : C \rightarrow \text{Vec symm fiber funct}^3$
 - all symm fiber functs are isomorphic
 - given $F: \mathcal{C} \to \mathsf{Vec}$ get equiv $\tilde{F}: \mathcal{C} \to \mathsf{Rep}(G_F)^4$

- (9.9.22) If C positive² then
 - $\exists F : C \rightarrow \text{Vec symm fiber funct}^3$
 - all symm fiber functs are isomorphic
 - given $F: \mathcal{C} \to \mathsf{Vec}$ get equiv $\tilde{F}: \mathcal{C} \to \mathsf{Rep}(G_F)^4$
- (9.9.25) $\mathcal C$ is braided⁵ equiv to $\operatorname{\mathsf{Rep}}(G,z)^6$ with (G,z) uniq def by $\mathcal C$

- (9.9.22) If C positive² then
 - $\exists F : C \rightarrow \text{Vec symm fiber funct}^3$
 - all symm fiber functs are isomorphic
 - given $F: \mathcal{C} \to \mathsf{Vec}$ get equiv $\tilde{F}: \mathcal{C} \to \mathsf{Rep}(G_F)^4$
- (9.9.25) ${\mathcal C}$ is braided 5 equiv to ${\sf Rep}({\mathcal G},z)^6$ with $({\mathcal G},z)$ uniq def by ${\mathcal C}$
- (9.9.26) Have
 - $\exists F : C \to \text{sVec}^7 \text{ super fiber functor}^8$
 - all super fiber functors are isomorphic
 - given $F: \mathcal{C} \to \mathsf{sVec}$ get equiv $\tilde{F}: \mathcal{C} \to \mathsf{Rep}(G_F, z_F)$

- (9.9.22) If C positive² then
 - $\exists F : C \rightarrow \text{Vec symm fiber funct}^3$
 - all symm fiber functs are isomorphic
 - given $F: \mathcal{C} \to \mathsf{Vec}$ get equiv $\tilde{F}: \mathcal{C} \to \mathsf{Rep}(G_F)^4$
- (9.9.25) $\mathcal C$ is braided⁵ equiv to $\operatorname{\mathsf{Rep}}(G,z)^6$ with (G,z) uniq def by $\mathcal C$
- (9.9.26) Have
 - $\exists F : C \to \text{sVec}^7 \text{ super fiber functor}^8$
 - all super fiber functors are isomorphic
 - given $F: \mathcal{C} \to \mathsf{sVec}$ get equiv $\tilde{F}: \mathcal{C} \to \mathsf{Rep}(G_F, z_F)$
- (9.9.32) Let $C_1 \subseteq C$ the unique max'l Tannakian⁹ subcat
 - FPdim(\mathcal{C}) odd then $\mathcal{C} = \mathcal{C}_1$
 - either $C = C_1$ or $\mathsf{FPdim}(C_1) = \frac{1}{2}\mathsf{FPdim}(C)$

```
Let C be a symmetric<sup>1</sup> fusion cat.
```

- (9.9.22) If C positive² then
 - $\exists F : \mathcal{C} \to \text{Vec symm fiber funct}^3 \text{ (Proof in 9.10)}$
 - all symm fiber functs are isomorphic
 - given $F: \mathcal{C} \to \mathsf{Vec}$ get equiv $\tilde{F}: \mathcal{C} \to \mathsf{Rep}(G_F)^4$
- (9.9.25) ${\cal C}$ is braided 5 equiv to ${\sf Rep}({\it G},z)^6$ with $({\it G},z)$ uniq def by ${\cal C}$
- (9.9.26) Have
 - $\exists F : \mathcal{C} \to \mathsf{sVec}^7 \text{ super fiber functor}^8$
 - all super fiber functors are isomorphic
 - given $F: \mathcal{C} \to \mathsf{sVec}$ get equiv $\tilde{F}: \mathcal{C} \to \mathsf{Rep}(G_F, z_F)$
- (9.9.32) Let $C_1 \subseteq C$ the unique max'l Tannakian⁹ subcat
 - FPdim(\mathcal{C}) odd then $\mathcal{C} = \mathcal{C}_1$
 - either $C = C_1$ or $\mathsf{FPdim}(C_1) = \frac{1}{2}\mathsf{FPdim}(C)$
- Plan: 1, 2, 3, 4, 5, 6, 7, 8, 9 +sketch of proofs.

Before the fun

Last time:

 $\mathcal C$ fusion cat then $\mathcal C_{ad}$ smallest tensor Serre subcat containing $X\otimes X^*, X\in \mathcal O(\mathcal C)$.

If G finite group then $Rep(G)_{ad} = Rep(G/Z_G)$:

$$G \cap V \Rightarrow G \cap V \otimes V^* \cong End(V)$$

$$g \cdot T = g \cdot T \cdot g^{-1} , T \in End(V)$$

$$\Rightarrow G \longrightarrow A \cup H(V \otimes V^*) \quad \forall V \in O(e)$$

$$G/2$$

On symmetric fusion cats:

Recall (8.1.12): C symmetric

E.g.'s (9.9.1), (9.9.3):

• Rep(G), G finite.

• $sVec = Vec_{\mathbb{Z}/2}$.

• $\operatorname{\mathsf{Rep}}(G,z), G$ finite, $z \in Z_G, z^2 = 1$.

$$\begin{cases}
2 \times & = (-1)^{m} \times \\
2 y & = (-1)^{n} y \\
C_{xy} (x \otimes y) & = (-1)^{m} y \otimes x
\end{cases}$$

Plan: $\frac{1}{2}$, 2, $\frac{3}{2}$, 4, 5, $\frac{6}{2}$, 7, 8, $\frac{9}{2}$ + sketch of proofs.

(kek yet)

(xexcom ,yeY(o))

X&X, 4&Y

Def (9.9.5): $V \in \mathcal{C}, S_n \to \operatorname{Aut}_{\mathcal{C}}(V^{\otimes n})$

$$P_{\epsilon} = \frac{1}{n!} \sum_{\sigma \in S_n} \epsilon^{|\sigma|} \sigma \in k[S_n], \qquad \epsilon \in \{\pm 1\}$$

$$S^{n} V = P_{+}(V^{\otimes n}), \quad \wedge^{n} V = P_{-}(V^{\otimes n})$$

if
$$\times \xrightarrow{\omega} Y \xrightarrow{\sigma} Z$$

$$\delta(\pi u) = \delta(\sigma) \otimes \delta(u) :$$

$$\gamma_{\varnothing} \gamma_{\varnothing} \times \varphi \times \xrightarrow{\sigma} Z_{\varnothing} \times Y_{\varnothing} \times \varphi \times Y_{\varnothing} \times Y_{\varnothing} \times Y_{\varnothing} \times \varphi \times Y_{\varnothing} \times Y_{$$

Exer (9.9.10): If $\binom{\alpha}{n}$, $\binom{\alpha+n-1}{n}$ are alg int for all $n \in \mathbb{Z}_{\bullet} \Rightarrow \alpha \in \mathbb{Z}$.

Q=
$$x^d$$
 + ax^{a1} +... $e Z[x]$ who ply of a, $(a \le 1)$

Q=xd+axa1 +... & Z[x] mn ply ofd, (a < 0) (x)

$$\sigma(\begin{pmatrix} x \\ n \end{pmatrix}) = \begin{pmatrix} \sigma \sigma \\ n \end{pmatrix}$$
 and int. $\forall \sigma \in Gad$

 \Rightarrow $N((\overset{\alpha}{n})) = \prod_{\sigma} \sigma(\overset{\alpha}{n}) = N(\omega) N(\omega - 1) ... N(\omega - n + 1) / (n + 1) d C= \mathbb{Z}$

$$\Rightarrow Q(0) Q(1) ... Q(n-1) / (n-1)^{2} \in \mathbb{Z}_{7} N(N-\lambda) = (-1)^{2} Q(\lambda), \forall \lambda \in \mathbb{Z}_{7}$$

$$n >> 1, Q(n-1) \leq n^{2} \Rightarrow b_{n} = |Q(0) ... Q(n-1) / (n/2)^{2}$$

15 decress N>>> 1 \Rightarrow $b_n = 0$, a_n

n>>1,
$$Q(n-1) \le n^d \Rightarrow b_n = |Q(0) \dots Q(n-1)/(w_1)^d|$$

1s decreas $n>1$

$$\Rightarrow b_n = 0, \quad \exists n$$

$$\Rightarrow Q = x + d$$

→ X ∈ Z.

Cor (9.9.11): C symm fusion is integral and dim $X = \pm FP(X)$ for all X.

Def/Cor (9.9.14): C symm fusion.

- \mathcal{C} positive if dim X = FP(X) for all X.
- ullet Exists unique $\mathbb{Z}/2$ grading $\mathcal{C}=\mathcal{C}_1\oplus\mathcal{C}_{-1}$ with \mathcal{C}_1 positive
- $X \in \mathcal{C}_{(-1)^m}, Y \in \mathcal{C}_{(-1)^n} \ c_{XY}^{mod} := (-1)^{mn} c_{XY}.$

Exer (9.9.15): $\dim^{mod} X = (-1)^m \dim X \text{ if } X \in \mathcal{C}_{(-1)^m}.$

Plan: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{6}$, $\frac{6}{7}$, $\frac{7}{8}$, $\frac{9}{9}$ + sketch of proofs.

On braided functors:

Recall (8.1.7): Braided functor: $(F, J) : (\mathcal{C}^1, c^1) \to (\mathcal{C}^2, c^2)$ s.t.

Def (9.9.16): \mathcal{C} symm fusion. A symm fiber func is a braided tensor $F:\mathcal{C}\to \mathsf{Vec.}$ A super fiber func is a braided tensor $F:\mathcal{C}\to \mathsf{sVec.}$ If \mathcal{C} admits a symm fiber func it is Tannakian.

Exer (9.9.18): Tannakian cats are positive.
$$\dim(X) = \dim(F_X) \in \mathbb{Z}_{\geq 0}$$

Def/Exer (9,9.19), (9.9.20): Let $F: \mathcal{C} \to \text{Vec}$ symm fiber func. Have:

•
$$A_F = I(\mathbf{1})$$
, with I adj of F. $I(\mathbf{k}) = \underline{H}(\mathbf{k}, \mathbf{k})$ (7-9.10)

•
$$G_F := \operatorname{Aut}_{\otimes}(F)$$
. He $(x, xdx) \simeq H_v (Fxek, b)$

• A_F is a comm algebra in C and $G_F \cong \operatorname{Aut}(A_F)$. $\hookrightarrow \operatorname{He}(x, \operatorname{Hch})$

Plan: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{5}$, $\frac{6}{6}$, $\frac{7}{6}$, $\frac{9}{8}$ + sketch of proofs.

Sketches, pt. 1

Thm (9.9.22): All symm fiber funcs are iso.

Sketches, pt. 2

$$H_{A}(X\otimes A, M) \simeq H_{C}(X, K)$$

$$Thm (9.9.22): \tilde{F}: C \cong Rep(G_{F}). \qquad A = I(k)$$

$$A\otimes A \otimes_{-gen} Bim_{e}(A): H_{(A_{A})}(A\otimes A, M) \simeq H_{e}(1, M)$$

$$F(A) \simeq H_{e}(1, M) \simeq H_{e}(1, M)$$

$$H_{e}(1, M) \simeq H_{e, A}(A\otimes A, M) \simeq H_{e}(1, M) \simeq H_{e}$$

Sketches, pt. 3

Cor (9.9.25): C braided equiv to some Rep(G, z).

e has
$$\mathbb{Z}/2$$
 grading, e mod ps.

$$\Rightarrow e^{\text{mod}} \stackrel{\sim}{\sim} \text{Rep}(G) \qquad \Rightarrow G$$

$$\Rightarrow e^{\text{mod}} \stackrel{\sim}{\sim} \text{Rep}(G) \stackrel{\text{mod}}{\sim} \text{Rep}(G)$$

Sketches, pt. 4

(Exer(9.9.27): Thm 9.9.22 implies

- ullet $\exists F: \mathcal{C}
 ightarrow s Vec super fiber functor$
- all super fiber functors are isomorphic
- ullet given $F:\mathcal{C} o \mathsf{sVec}$ get equiv $ilde{F}:\mathcal{C} o \mathsf{Rep}(\mathit{G}_F,\mathit{z}_F)$