POLITECNICO DI MILANO

COMPUTER INFRASTRUCTURE CHEAT SHEET

Authors: FABC07

Contents

1	Per	formance evaluation 1
	1.1	General
	1.2	Utilization Law
	1.3	Little's Law
	1.4	Response Time Law
	1.5	Forced Flaw Law
	1.6	Performace Bounds (Closed Models)
	1.7	Throughput Bounds
		1.7.1 Batch
		1.7.2 Terminal
		1.7.3 Transaction
	1.8	Response Time Bounds
		1.8.1 Batch
		1.8.2 Terminal
		1.8.3 Transaction
	1.9	Performace Bounds (Open Models)
2	Vir	tualization 2
	2.1	Virtual istruction performace
3	Disl	xs 2
	3.1	Disks performance
	3.2	RAID
		3.2.1 RAID 0
		3.2.2 RAID 1
		3.2.3 RAID 1+0
		3.2.4 RAID 0+1
		3.2.5 RAID 5
		3.2.6 RAID 6
	3.3	Dependability exponential distribution
	3.4	Not repairable failure
		3.4.1 Serial components
		3.4.2 Parallel components
	3.5	Repairable failure
		3.5.1 Serial components
		3.5.2 Parallel components

1 Performance evaluation

1.1 General

- 1. $\lambda_K = \frac{A_K}{T}$, $\lambda := \operatorname{arrival} \operatorname{rate}$, $A_K := \operatorname{num} \operatorname{of} \operatorname{arrival} s$
- 2. $X_K = \frac{C_K}{T}, \ X_K := throughput, C_K := num \ of \ completions$
- 3. $U_K = \frac{B_K}{T}$, $U_K := utilization$, $B_K := busy time$
- 4. $S_K = \frac{B_K}{C_K} = \frac{U_k T}{C_K}, \ S_K := service \ requirement \ per \ visit$
- 5. $N = \frac{W}{T}, \ N := customer \ population, W := accumulated \ systime$
- 6. $R_K = \frac{W}{C_K}, \ R_K := residence time$
- 7. $V_K = \frac{C_K}{C}$, $v_K := visits$
- 8. $D_K = V_K S_K = \frac{B_K}{C}$, $D_K := demand$

1.2 Utilization Law

$$U_K = X_K S_K = X D_K$$

1.3 Little's Law

$$N = XR$$

1.4 Response Time Law

$$R = \frac{N}{X} - Z, \ Z := think \, time$$

1.5 Forced Flaw Law

$$X_K = V_K X$$

1.6 Performace Bounds (Closed Models)

- 1. $D = \sum_{k=1}^{K} D_K$
- $2. \ D_{max} = \max_K D_K$
- 3. $N^* = \frac{D+Z}{D_{max}}$

1.7 Throughput Bounds

1.7.1 Batch

$$\frac{1}{D} \le X(N) \le \min\left(\frac{N}{D}, \frac{1}{D_{max}}\right)$$

1.7.2 Terminal

$$\frac{N}{ND+Z} \le X(N) \le \min\left(\frac{N}{D+Z}, \frac{1}{D_{max}}\right)$$

1.7.3 Transaction

$$X(\lambda) \le \frac{1}{D_{max}}$$

1.8 Response Time Bounds

1.8.1 Batch

$$\max\left(D, ND_{max}\right) \le R\left(N\right) \le ND$$

1.8.2 Terminal

$$\max(D, ND_{max} - Z) \le R(N) \le ND$$

1.8.3 Transaction

$$D \le R(\lambda)$$

1.9 Performace Bounds (Open Models)

1.
$$X(\lambda) \leq \frac{1}{D_{max}}$$

2.
$$\frac{D}{1-\lambda D_{avg}} \le R(\lambda) \le \frac{D}{1-\lambda D_{max}}$$

3.
$$\lambda_{sat} = \frac{1}{D_{max}}$$

2 Virtualization

2.1 Virtual istruction performace

 $T_v = T_p(1+p_po_p), \ T_v := time\ to\ run\ in\ virtual\ env, \ T_p := time\ to\ run\ in\ physical\ env,\ p_p := privileged\ instruction,\ o_p := overhead\ execution$

3 Disks

3.1 Disks performance

- 1. $T = (1-l)(N)(T_s+T_L)+T_T+T_c$, T := service time, $T_s := seek time$, $T_L := latency time$, $T_C := controller time$, $T_T := transfer time$, N := number of blocks, l := latency
- 2. $T_T = \frac{S}{r_t}$, S := total file size, $r_t = transfer rate$
- 3. $T_L = \frac{1}{RoundPerSecond}$

3.2 RAID

3.2.1 RAID 0

Striping only, no redundancy (the more disks, the more probability to lose data, the better performaces)

$$MTTDL = \frac{MTTF}{n}$$

3.2.2 RAID 1

Mirroring, no striping (usually two disks) $MTTDL = \frac{MTTF^n}{2MTTR^{(n-1)}}$

3.2.3 RAID 1+0

Striping first, second mirroring (at least 4 disk, even number) $MTTDL = \frac{MTTF^2}{nMTTR}$

3.2.4 RAID 0+1

Mirroring first, second striping (at least 4 disk, even number) $MTTDL = \frac{2MTTF^2}{n^2MTTR}$

3.2.5 RAID 5

block interland distributed parity (support one disk fails) (at least 3 disks)

$$MTTDL = \frac{MTTF^2}{n(n-1)MTTR}$$

$$P = \sum_{i=0}^{(n-1)} D_i$$

3.2.6 RAID 6

block interland distributed parity (support two disks fail) (at least 4 disks)

$$MTTDL = \frac{2MTTF^3}{n(n-1)(n-2)MTTR^2}$$

$$P = \sum_{i=0}^{(n-1)} D_i$$

$$Q = \sum_{i=0}^{(n-1)} gD_i, \ g \neq 1$$

3.3 Dependability exponential distribution

1.
$$F(t) = 1 - e^{-\lambda t} = 1 - e^{-\frac{t}{MTTF}} := unreliability$$

2.
$$f(t) = \lambda e^{-\lambda t} = \frac{e^{-\frac{t}{MTTF}}}{MTTF} := density\ function\ of\ fails$$

3.
$$R(t) = e^{-\lambda t} = e^{-\frac{t}{MTTF}} := reliability$$

4.
$$MTTF = \mathbb{E}[X] = \frac{1}{\lambda}$$

5. if
$$t \ll MTTF \Rightarrow F(t) \approx \frac{t}{MTTF}$$

3.4 Not repairable failure

3.4.1 Serial components

1.
$$R(t) = \prod_{i=1}^{n} R_i(t)$$

2.
$$MTTF_{serie} = \frac{1}{\sum_{i=1}^{n} \frac{1}{MTTF_i}}$$

3. if
$$MTTF_1 = \ldots = MTTF_n \Rightarrow MTTF_{serie} = \frac{MTTF}{n}$$

3.4.2 Parallel components

1.
$$R(t) = 1 - \prod_{i=1}^{n} (1 - R_i(t))$$

2.
$$MTTF_{parallel} = \sum_{i=1}^{n} MTTF_i - \frac{1}{\sum_{i=1}^{n} \frac{1}{MTTF_i}} = \sum_{i=1}^{n} MTTF_i - MTTF_{serie}$$

3. if
$$MTTF_1 = \ldots = MTTF_n \implies MTTF_{parallel} = MTTF(\sum_{i=1}^n \frac{1}{i})$$

3.5 Repairable failure

$$1. \ MTBF := mid\,time\,between\,failure = MTTR + MTTF$$

2.
$$A := Availability = \frac{MTTF}{MTTR + MTTF} = \frac{MTTF}{MTBF}$$

3.5.1 Serial components

1.
$$A = \prod_{i=1}^{n} A_i$$

2.
$$A_{serie} = \prod_{i=1}^{n} \frac{MTTF_i}{MTTF_i + MTTR_i}$$

3.
$$MTTF_{serie} = \frac{1}{\sum_{i=1}^{n} \frac{1}{MTTF_i}}$$

4.
$$MTTR_{serie} = \frac{(1 - A_{serie})MTTF_{serie}}{A_{serie}}$$

3.5.2 Parallel components

1.
$$A = 1 - \prod_{i=1}^{n} (1 - A_i)$$

2.
$$A_{parallel} = 1 - \prod_{i=1}^{n} \left(1 - \frac{MTTF_i}{MTTF_i + MTTR_i}\right)$$

3.
$$MTTF_{parallel} = \frac{A_{parallel}MTTR_{parallel}}{1 - A_{parallel}}$$

4.
$$MTTR_{parallel} = \frac{1}{\sum_{i=1}^{n} \frac{1}{MTTR_i}}$$