Algorithme primitif:

- Pour chaque contrainte, nous calculons les sommes des combinaisons des coefficients de contrainte d'un objet de chaque groupe. Si la somme est inférieure ou égale à la contrainte, nous mettons les objets de cette combinaison dans une liste d'éléments de n-uplet. Le nombre de listes est donc égal au nombre de contraintes.
- 2. Nous cherchons les éléments communs dans toutes les listes.
- 3. Nous calculons les sommes du profit de tous les objets de chaque n-uplet trouvé à l'étape 2.
- 4. Nous comparons les sommes obtenues à l'étape 3. Les objets qui donnent la plus grande somme sont la solution.

Exemple pour illustrer l'explication ci-dessus :

• Considérer 3 groupes de 2 objets avec 2 contraintes (12 et 15).

Groupe 1	Coefficient de contrainte 1 Coefficient de contrainte 2		Profit
	o _{ij} (C1)	o _{ij} (C2)	o _{ij} (P)
1 ^{er} objet o ₁₁	7	5	4
2 ^e objet o ₁₂	4	7	3

Groupe 2	Coefficient de contrainte 1	Coefficient de contrainte 2	Profit
	o _{ij} (C1)	o _{ij} (C2)	o _{ij} (P)
1 ^{er} objet o ₂₁	2	4	6
2 ^e objet o ₂₂	6	2	2

Groupe 3	Coefficient de contrainte 1	Coefficient de contrainte 2	Profit
	o _{ij} (C1)	o _{ij} (C2)	o _{ij} (P)
1 ^{er} objet o ₃₁	3	6	2
2 ^e objet o ₃₂	1	5	4

• Pour la contrainte 1 (12), vérifier les sommes de toutes les combinaisons possibles :

$$\begin{split} o_{11}(C1) + o_{21}(C1) + o_{31}(C1) &= 7 + 2 + 3 = 12 \le 12 \\ o_{11}(C1) + o_{21}(C1) + o_{32}(C1) &= 7 + 2 + 1 = 10 < 12 \\ o_{11}(C1) + o_{22}(C1) + o_{31}(C1) &= 7 + 6 + 3 = 16 > 12 \\ o_{11}(C1) + o_{22}(C1) + o_{32}(C1) &= 7 + 6 + 1 = 14 > 12 \\ o_{12}(C1) + o_{21}(C1) + o_{31}(C1) &= 4 + 2 + 3 = 9 < 12 \\ o_{12}(C1) + o_{21}(C1) + o_{32}(C1) &= 4 + 2 + 1 = 7 < 12 \\ o_{12}(C1) + o_{22}(C1) + o_{31}(C1) &= 4 + 6 + 3 = 13 > 12 \\ o_{12}(C1) + o_{22}(C1) + o_{32}(C1) &= 4 + 6 + 1 = 11 < 12 \\ \end{split}$$

Ajouter les triplets dont la somme des coefficients est inférieure ou égale à 12 : (o₁₁, o₂₁, o₃₁), (o₁₁, o₂₁, o₃₂), (o₁₂, o₂₁, o₃₂), (o₁₂, o₂₂, o₃₂) dans une liste L1.

• De la même manière, nous vérifions pour la contrainte 2 (15) :

$$\begin{aligned} o_{11}(C2) + o_{21}(C2) + o_{31}(C2) &= 5 + 4 + 6 = 15 \leq 15 \\ o_{11}(C2) + o_{21}(C2) + o_{32}(C2) &= 5 + 4 + 5 = 14 < 15 \\ o_{11}(C2) + o_{22}(C2) + o_{31}(C2) &= 5 + 2 + 6 = 13 < 15 \\ o_{11}(C2) + o_{22}(C2) + o_{32}(C2) &= 7 + 2 + 5 = 14 < 15 \\ o_{12}(C2) + o_{21}(C2) + o_{31}(C2) &= 7 + 4 + 6 = 17 > 15 \\ o_{12}(C2) + o_{21}(C2) + o_{32}(C2) &= 7 + 4 + 5 = 16 > 15 \\ o_{12}(C2) + o_{22}(C2) + o_{31}(C2) &= 7 + 2 + 6 = 15 \leq 15 \\ o_{12}(C2) + o_{22}(C2) + o_{32}(C2) &= 7 + 2 + 5 = 14 < 15 \end{aligned}$$

- Ajouter les triplets dont la somme des coefficients est inférieure ou égale à 15 : (o_{11}, o_{21}, o_{31}) , (o_{11}, o_{21}, o_{32}) , (o_{11}, o_{22}, o_{31}) , (o_{12}, o_{22}, o_{32}) , (o_{12}, o_{22}, o_{31}) , (o_{12}, o_{22}, o_{32}) dans une liste L2.
- Ajouter les triplets communs de L1 et L2 dans une liste L3.

L1	L2	L3=L1∩L2
(O_{11}, O_{21}, O_{31})	(O_{11}, O_{21}, O_{31})	(O_{11}, O_{21}, O_{31})
(o_{11}, o_{21}, o_{32})	(o_{11}, o_{21}, o_{32})	(o_{11}, o_{21}, o_{32})
(o ₁₂ , o ₂₁ , o ₃₁)	(o_{11}, o_{22}, o_{31})	(o_{12}, o_{22}, o_{32})
(o ₁₂ , o ₂₁ , o ₃₂)	(o_{12}, o_{22}, o_{32})	
(o_{12}, o_{22}, o_{32})	(o_{12}, o_{22}, o_{31})	
	(o_{12}, o_{22}, o_{32})	

• Calculer les sommes des profits de chaque triplet dans L3 et trouver le triplet qui donne la plus grande valeur.

$$o_{11}(P)+o_{21}(P)+o_{31}(P)=4+2+6=12$$

 $o_{11}(P)+o_{21}(P)+o_{32}(P)=4+6+4=14$
 $o_{12}(P)+o_{22}(P)+o_{32}(P)=3+2+4=9$

• 14 est la plus grande somme des profits. La meilleure solution est donc (o₁₁, o₂₁, o₃₂).