

RELATIONAL DATA MODEL

- Relational model consists, collection of tables.
 Table has number of rows & columns.
- The row of table is known as record or Tuple.
- The column of table is known as attribute.
- For every attribute, there is a set of permitted values, it is called as **domain** of that attribute.

1	Ţ	176		Attribute
EMPID	EMPNAME	SALARY	[↓	Attribute
E101	Rupali	15,000	←	
E102	Rahul	20,000	4	Tuple
E103	Aniruddha	25,000	$\left \leftarrow\right $	
E104	Poonam	18,000	$\left \leftarrow \right $	
E105	Prashant	19,000		
E106	Shrikant	13,000	\Box	

What do you mean by Relational Database Design ???

- A relational database is made up of a number of relations and corresponding relational database schema.
- A relation in a relational database is based on a relation schema, which consists of a number of attributes.
- The goal of a relational database design is to generate a set of relation schema that allows us to store information without unnecessary repetition of information and also to retrieve information easily.

When the database Design Said to good Database Design ???....

- No repetition of information.
- No anomalies.
- No inability to represent information.
- No loss of information.

Introduction To Normalization.

- Normalization is a set of rules that have been established to aid the design of tables that are meant to be connected through relation ships.
- The main objective of normalization is to eliminate redundancy, insertion deletion updation anomalies.
- In normalization, database is divided into two or more tables and relationships are defined between the tables.

BENEFITS OF NORMALIZING DATABASE

- 1) Avoiding repetitive entries.
- 2) Reducing required storage space.
- Preventing the need to restructure existing, tables to accommodate new data.
- Increased Speed and flexibility of queries sorts and summaries.

PURPOSE OF NORMALIZATION

Consider the following example of bad database design.

Name	Subject	Ph. No.	Branch	Prof.	Grade
Rupali	OOP	0253-2316715	Computer	Joshi	A
Riya	Java	020-2424469	IT	Sane	В
Rupali	VB	0253-2316715	Computer	Kulkarni	A
Nidhi	Physics	020-4422009	Comp-Sci	Raje	В
Priti	Chemistry	0253-2501548	Comp-Sci	Sinha	A
Nidhi	CMF	020-4422009	Comp-Sci	Kale	С
Soham	Multimedia	020-2314151	IT	Rane	В

- The above database design is not good database design. The relation Student data can lead to several undesirable problems.
 - Redundancy
 - Update anomalies
 - Insertion anomalies
 - Deletion anomalies
- Because of these reasons normalization is needed for database design. The Normalization divides this table into
 - Student_Info (Name, Ph.No, Branch)
 - Result (Name, Subject, Grade)
 - Teacher(Subject, Prof.)

Name	Subject	Grade
Rupali	OOP	A
Riya	Java	В
Nidhi	Physics	В
Priti	Chemistry	A
Soham	Multimedia	В

Result

Teacher

Name	Ph. No	Branch
Rupali	0253-2316715	Computer
Riya	020-2424469	IT
Nidhi	020-4422009	Comp-Sci
Priti	0253-2501548	Comp-Sci
Soham	020-2314151	IT

 $Student_info$

Subjuct	Prof
OOp	Joshi
Java	Sane
Physics	Raje
Chemistry	Sinha
CmF	Kale
Multimedia	Rane
VB	Kulkarni

FUNCTIONAL DEPENDENCY.

- If there is relation R with attribute x and attribute y. We can say that there is a dependency between x & y. (x is key of relation R) if x identifies a tuple & hence a particular instance of entity.
- In other words, if x uniquely identify the attribute set y.
- Functional dependency is denoted by $x \rightarrow y$ i.e. y is functionally dependent on x.

ID	Name	Address
1	Rohan	Pune
2	Ashish	Nashik
3	Kriti	Mumbai
4	Rohan	Nagpur

 $ID \rightarrow Name$

 $ID \rightarrow Address$

NORMAL FORMS

FIRST NORMAL FORM: [1NF]

- A relation is said to be in first normal form, if the values in the domain of each attribute of relation are atomic.
- In other words, only one value is associated with each attribute & value is not a set of values or list of values.

NAME	PHNO	
YOGITA	8975679176 9270472256	

CONSIDER THE FOLLOWING EXAMPLE

Faculty Dept	Prof	Course	Course Dept.
Computer	Prof. Kulkarni	353	Computer
		379	Computer
		222	IT
Chemistry	Prof. Sathe	353	Computer
		455	E & TC
		244	Chemistry

The above relation can be converted into 1NF as -

Prof	Course	Faculty Dept	CourseDept
Prof. Kulkarni	353	Computer	Computer
Prof. Kulkarni	379	Computer	Computer
Prof. Kulkarni	222	Computer	IT
Prof. Sathe	353	Chemistry	Computer
Prof. Sathe	455	Chemistry	E & TC
Prof. Sathe	244	Chemistry	Chemistry

SECOND NORMAL FORM (2 NF)

- A Table in the 2nd normal form if:
 - i) It is in 1NF.
 - ii) It includes no partial dependencies.

The following example shows the partial dependencies.

Partial Dependency

Profile

Name	Course	Phone-no	Dept	Subject
Rahul	353	020-2317151	Computer	oop
Nidhi	352	020-454671	Mechanical	Eng. Drawing
Priya	452	022-2405061	Computer	VB
Rahul	431	022-2516171	IT	DCN

The given relation has various functional dependencies.

Name, Course \rightarrow Dept

Name, Course → Subject

Name \rightarrow Phone - No.

- ☐ The steps to convert table into 2nd Normal form.
 - 1) Find and remove field that are related to the only part of the key.
 - 2) Group the removed items in the another table.
 - 3) Assign the new table with the key i.e. part of a whole key.
 - The above relation is converted 2NF as.

ID	Name	Course	Phone No.	Oept	Subject
1	Rahul	353	020-2317151	Computer	оор
2	Nidhi	352	020-454671	Mechanical	Eng.Drawing
3	Priya	452	022-2405061	Computer	VB
4	Rahul	431	022-2516171	IT	DCN

This relation containing following functional dependency. id → Name, Course, Phone No, Dept, Subject

THIRD NORMAL FORM (3 NF)

- The relation or table is said to be in third normal form if
 - i) It is in 2nd Normal form.
 - ii) It contains no transitive dependencies.

Transitive dependency:

It just same as in mathematical form,

e.g. :
$$A = B \& B = C$$

Hence A = C.

It is known as transitive dependency.

The following example shows the transitive dependencies.

Profile

Course	Prof	Room No.	Room-Cap	Enroll-limit
Comp	Prof. Shukla	A1	40	60
IT	Prof. Sahani	A2	40	60
E & TC	Prof. Gupta	A3	40	60
Mech	Prof. Shah	A4	40	60

Here In this relation there are following functional dependencies. Course → { Prof, room, Enroll-limit }

$$\begin{array}{c} room \rightarrow room\text{-}cap \rightarrow Enroll\text{-}limit \\ OR \end{array}$$

 $room \rightarrow room\text{-}cap$ $room cap \rightarrow Enroll\text{-}limit$ $room \rightarrow Enroll\text{-}limit$

- In order to have the relation in 3rd normal form we can decompose a single relation or table into more than 1 relation or table.
- The above table is decomposed in the following tables.

Course

Course	Prof	Enroll-limit	
Comp	Prof. Shukla	60	
IT	Prof. Sahani	60	
E & TC	Prof. Gupta	40	
Mech	Prof. Shah	60	

Room

room	room-cap
A1	40
A2	40
A3	40
A4	40

Schedule

Course	room
Comp	A1
IT	A2
E & TC	A3
Mech	A4

Thank You!!!