

Matched Molecular Series Measuring SAR transferability

Emanuel Ehmki & Christian Kramer

What's next?

Target: MAP Kinase p38 alpha (ChEMBL260)

- 8 compounds with measured activity. How to decide what to try next?
 - Randomly select chemical groups (blind guessing)
 - Ask an experienced medicinal chemist
 - Model using 3D structural information
 - Try groups that worked before in similar situations

Typical MedChem Situation

- Trying things that worked before in a similar situation requires being able to measure similarity
 - → What is SAR similarity?
 - → How do experienced chemists strategize?
- Noel presented on that topic before at the 2014 UGM

- MedChem Intuition aka "I have seen this before"
 - → Matched Series

Matched Molecular Pairs (MMP) vs Matched Molecular Series (MMS)

Molecular Matched Pair

Molecular Series

Matched Molecular Series

What is SAR similarity?

What is SAR Similarity?

Comparing SAR similarity metrics - Concept

Basic Idea

A good metric is the metric that ranks <u>similar</u> series first.

What are similar series?

Series with SAR transferability.

How to measure SAR transferability?

SAR is transferable if next fragment's activity can be predicted based on Δp = distance to series mean.

The Δp value

Query Series

Reference Series

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.2

Mean = 7.5

$$\Delta p = 9.2 - 7.5 = 1.7$$

$$\Delta\Delta p = 1.7 - 1.7 = 0.0$$
 \rightarrow SAR is transferable

^{*} artificial example

When is SAR parallel?

Roche

How to measure activity profile similarity?

- Two series with common fragments
- Both series within a similar range of potency
- Both series display a similar potency progression
- Similarity Metrics
 - Pearson correlation
 - Spearman correlation
 - Euclidian distance
 - Manhattan distance (RMSD)
 - centered RMSD (cRMSD)

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$d = \left(\sum_{i=1}^{n} |x_i - y_i|^k\right)^{1/k}$$

$$cRMSD = \sqrt{\frac{1}{n} \sum_{i=1}^{n} ((x_i - \bar{x}) - (y_i - \bar{y}))^2}$$

5.46	5.47	5.31	5.45	5.32	5.34	5.35	5.37
CI			CI			F	F

 $\Delta\Delta p$, Δp database and Δp query

How to measure SAR transferrability?

 $\Delta\Delta p$ vs Similarity is too scattered \rightarrow Expanding sigma method

MMS Implementation

Implementation using:

- RDKit
- Pandas
- MySQL
- ChEMBL21 & inhouse DB

Fragmentation using inhouse Modification of RDKit Hussain MMP Implementation

Index Series and write to DB

Query:

- Single Fragment Substituents
- Other substituents within same series
- Series with similar SAR

DB Schema

Fragments

SMILES	ID	Series ID

Series

Series ID	SMILES	Values	Other annotation

Results with single query series

Query Series: All DB series with [*]-H, [*]-C, [*]-Cl, [*]-CN, [*]-NO₂ substituents, predicting [*]-OC (53 series)

Comparing different similarity metrics on single query series

Query Series: All DB series with [*]-H, [*]-C, [*]-Cl, [*]-CN, [*]-NO₂ substituents, predicting [*]-OC (53 series)

Single query is not representative

- selection of 108 test series

Substituent 1	Substituent 2	Substituent 3	Substituent 4	Substituent 5	Substituent 6	DB Count
*	\	/	\ \\\		\\\\	113
X	\	\ \\\			/	11
Y	\	\		*		52
₹N.	¥ N	✓ N	, X	₩ N	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8
V N	∠ N O			NH	NH	8
V N O	√ N O N N	√N N	¥ N	NH	NH NH	8
F	CI	CI	F	CI	F	132
CI		CI	0	CI	0	122
CI		CI	Cl	CF ₃	N	41

Substituent 1	Substituent 2	Substituent 3	Substituent 4	Substituent 5	Substituent 6	DB Count
N	N	S	0	S	0	32
N	N	N	S	S	S	10
N	N	N	S	S	0	10
	Y	\		\	<u> </u>	32
	Y	\	CI	<u> </u>		17
	H	*	\		F	14
H	*	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CI	F	Br	235
H	~	O	CI	N	O	53
¥ H	~	Y o	N	√NH ₂	NH ₂	11

Results: Test on 108 query series

→ cRMSD performs best on 81 out of 108 test series (p-value 1.34e-34)

Why does cRMSD work best?

$$cRMSD = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left((x_i - \bar{x}) - (y_i - \bar{y}) \right)^2}$$

- cRMSD centers values removes effect of remaining scaffold
- cRMSD evaluates absolute differences, assuming additivity
- Other metrics do not represent activity cliffs/ shifts, scrambling due to experimental uncertainty

In Practice: How to set the cRMSD threshold?

- Data has experimental uncertainty
- Uncertainty model: isotropic Normal Distribution, σ = 0.2 log units
- Simulated lower uncertainty threshold: cRMSD ~0.25
- → Below cRMSD = 0.25, cRMSD is likely entirely explained by experimental uncertainty

Simulating Matched Series use in real life application

Query Series: p38 Kinase inhibitors

Core	Substituent	IC ₅₀ [nM]	pIC ₅₀ [logM]
	F	56	7.25
NN	Y ⁰	53	7.46
NH	F	33	7.48
CI NH	H	30	7.52
CI	VNH ₂	13	7.89
	0 + N+ 0-	11	7.96

Dumas, J.; Hatoum-Mokdad, H.; Sibley, R.; Riedl, B.; Scott, W. J.; Monahan, M. K.; Lowinger, T. B.; Brennan, C.; Natero, R.; Turner, T.; Johnson, J. S.; Schoenleber, R.; Bhargava, A.; Wilhelm, S. M.; Housley, T. J.; Ranges, G. E.; Shrikhande, A. 1-Phenyl-5-Pyrazolyl Ureas: Potent and Selective p38 Kinase Inhibitors. *Bioorg. Med. Chem. Lett.* **2000**, *10* (18), 2051–2054.

Suggested Fragments

Substituent	Frequency	cRMSD	$\Delta\Delta p$
O H	2	0.33	1.06
ОН	1	0.33	1.0
N	14	0.33	0.74
Cl	27	0.23	0.15
0 	9	0.29	-0.64
HNO	1	0.58	-3.07

This compound has been made and it is inactive (> 500 nM)

Summary & Outlook

- cRMSD clearly outperforms all other metrics tested for predicting SAR similarity.
- MMS implementation based on RDKit, Python, Pandas, MySQL, & ChEMBL21 is possible with query times ~5 s.
- SAR Similarity threshold for cRMSD below 0.25 does not make sense due to experimental uncertainty.

- MMS analysis could be used as a lightweight baseline model for MM-GBSA/FEP approaches.
- MMS can be the starting point to decipher MedChem Intuition.

Doing now what patients need next