Тема 1.2 Комплексні числа

1.2.1. Перехід від алгебраїчної форми комплексного числа до тригонометричної.

1.2.2. Дії над комплексними числами, заданими в різних формах.

1.2.1. Перехід від алгебраїчної форми комплексного числа до тригонометричної.

Використовуючи зв'язок декартових і полярних координат (Рис. 1.2.1)

$$a = r\cos\varphi$$
, $b = r\sin\varphi$,

комплексне число z = a + bi можна подати у вигляді

$$z = a + bi = r \cos \varphi + ir \sin \varphi = r(\cos \varphi + i \sin \varphi)$$
.

Вираз $z = r(\cos \phi + i \sin \phi)$ називається **тригонометричною формою** комплексного числа.

Перехід від алгебраїчної до тригонометричної форми задається співвідношеннями:

$$r = \sqrt{a^2 + b^2}$$
; $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$; $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$.

Якщо звернутись до *основної формули Ейлера*

$$e^{i\varphi} = \cos\varphi + i\sin\varphi,$$

то від тригонометричної форми можна перейти до *показникової форми* комплексного числа

$$z = re^{i\varphi}$$

Алгоритм переходу від алгебраїчної до тригонометричної форми запису комплексного числа

- 1. Знайти модуль комплексного числа $r=|z|=|a+bi|=\sqrt{a^2+b^2}$ -
- 2. Знайти допоміжний аргумент φ_1 з формули $\operatorname{tg}\varphi_1 = \frac{b}{a}$. Тоді сам кут

$$\varphi_1 = arctg \frac{b}{a}$$

- 3. Зобразити комплексне число на координатній площині і визначити, в якій чверті знаходиться кут φ .
 - 4. Якщо у I чверті, то $\varphi = \varphi_1$;

Якщо у II чверті, то $\varphi = \pi - \varphi_1$;

Якщо у III чверті, то $\varphi = \pi + \varphi_1$;

Якщо у IV чверті, то $\varphi = 2\pi - \varphi_1$;

Приклад 1.2.1: Записати комплексне число $z = -1 - \sqrt{3} \, \hat{\iota}$ в тригонометричній формі.

Маємо:
$$r = \sqrt{(-1)^2 + (-\sqrt{3})^2} = 2$$
; tg $\alpha = \sqrt{3}$; $\alpha = 4\pi/3 + \pi n$, n \in Z.

Через те, що радіус — вектор, який зображує число z = a + bí, розміщений у ІІІ чверті комплексної площини, то за аргумент беремо $\alpha = 4\pi \ 3 + \pi n$.

Отже,
$$-1-\sqrt{3}\,\mathfrak{i}=2(\cos 4\pi\backslash 3+\mathfrak{i}\,\sin 4\pi\backslash 3).$$

1.2.2. Дії над комплексними числами, заданими в різних формах.

Операції додавання, віднімання, множення, ділення і піднесення до натурального степеня здійснюються за правилами дій над многочленами з врахуванням умови $i^2 = -1$ і зведенням подібних.

Зокрема, додавання і віднімання комплексних чисел $z_1 = x_1 + iy_1$ і $z_2 = x_2 + iy_2$ здійснюються покомпонентно:

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2); \quad z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2).$$

Множення комплексних чисел $z_1 = x_1 + iy_1$ і $z_2 = x_2 + iy_2$ здійснюється за правилом множення двочленів з урахуванням умови $i^2 = -1$ і зведенням подібних:

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$
.

Зауваження 1. Для множення комплексного числа z = x + iy на дійсне число a досить кожну його компоненту помножити на це число a: az = ax + iay.

<u>Зауваження 2</u>. Знайдемо натуральні степені уявної одиниці: $i^2 = -1$, $i^3 = i^2 \cdot i = -i$, $i^4 = i^3 \cdot i = -i^2 = 1$. Отже

$$i^{4k} = 1$$
, $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -i$.

<u>Зауваження 3</u>. При піднесенні комплексного числа до натурального степеня можна застосовувати відомі з елементарної математики формули скороченого множення.

Зауваження 4. Сума і добуток двох комплексно спряжених чисел z = x + iy і $\bar{z} = x - iy$ є дійсним числом:

$$z + \overline{z} = 2x$$
; $z \cdot \overline{z} = x^2 + y^2$.

Зауваження 5. Дійсну і уявну частини комплексного числа z = x + iy можна виразити через саме число та йому спряжене $\bar{z} = x - iy$:

$$x = (z + \bar{z})/2$$
; $y = (z - \bar{z})/(2i)$.

Ділення комплексних чисел $z_1 = x_1 + iy_1$ і $z_2 = x_2 + iy_2$, $z_2 \neq 0$ виконується так: 1) треба чисельник і знаменник дробу z_1/z_2 домножити на число \bar{z}_2 , спряжене до знаменника z_2 ; 2) врахувати, що $i^2 = -1$, і звести подібні; 3) почленно розділити чисельник на знаменник і одержати частку в алгебраїчній формі.

$$z_1: z_2 = \frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z}_2}{z_2 \cdot \overline{z}_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}.$$

<u>Зауваження 6</u>. Основні властивості розглянутих арифметичних операцій над комплексними числами співпадають з відповідними властивостями

аналогічних операцій над дійсними числами. Тому для комплексних чисел залишаються справедливими всі теореми, правила, формули, що виведені для дійсних чисел на підставі цих властивостей.

Приклади. Виконати дії над комплексними числами в алгебраїчній формі:

1.2.2.
$$(3+2i) + (-1-5i) = (3-1) + (2-5)i = 2-3i$$

1.2.3.
$$(0.3+2.5i) - (-0.75+1.5i) = (0.3+0.75i) + (2.5-1.5i) = 1.05+i$$
;

1.2.4.
$$(1-2i)\cdot(3+2i)=(1\cdot3-(-2)\cdot2)+(1\cdot2+(-2)\cdot3)i=(3+4)+(2-6)i=7-4i$$
.

Тригонометрична форма запису комплексних чисел виявляється дуже зручною під час множення і ділення чисел. Нехай $Z_1=r_1(\cos\alpha_1+i\sin\alpha_1)$, $Z_2=r_2(\cos\alpha_2+i\sin\alpha_2)$ — два числа, що записані в тригонометричній формі. Тоді

Z1 Z2= r1r2(cos α1 cos α2 - sin α1 sin α2 + $\hat{\imath}$ sin α1cos α2 + $\hat{\imath}$ sin α2 cos α1), αδο

Z₁ Z₂= r₁r₂(
$$\cos (\alpha_1 + \alpha_2) + i \sin (\alpha_1 + \alpha_2)$$
).

Отже, справедливим ϵ твердження: під час множення комплексних чисел у тригонометричній формі модулі їх перемножуються, а аргументи додаються.

Для знаходження частки множимо чисельник і знаменник на число, спряжене до знаменника:

 $Z_1 \setminus Z_2 = r_1(\cos \alpha_1 + i \sin \alpha_1)(\cos \alpha_2 - i \sin \alpha_2) \setminus r_2(\cos \alpha_2 + i \sin \alpha_2)(\cos \alpha_2 - i \sin \alpha_2)$ $= r_1 \setminus r_2 \times (\cos (\alpha_1 - \alpha_2) + i \sin (\alpha_1 - \alpha_2)) \setminus (\cos^2 \alpha_2 + i \sin^2 \alpha_2) = r_1(\cos (\alpha_1 - \alpha_2) + i \sin (\alpha_1 - \alpha_2)) \setminus r_2.$

Отже, під час ділення комплексних чисел їх модулі діляться, а аргументи віднімаються.

Правила піднесення до степеня комплексного числа, записаного в тригонометричній формі.

При будь – якому натуральному п

$$(\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n\alpha.$$

Це твердження називається формулою Муавра.

Приклад 1.2.5. Обчислити корені четвертого степеня з числа -1.

Розв'язання. Число –1 у тригонометричній формі можна записати так:

$$-1 = l(\cos \pi + i \sin \pi)$$
.

Корені четвертого степеня з числа -1 - це комплексні числа

$$\sqrt[4]{-1} = \sqrt[4]{1}(\cos(\pi + 2\pi k)/4 + i\sin(\pi + 2\pi k)/4),$$

де k = 0,1,2,3, тобто комплексні числа:

$$z_{1} = \cos(\pi/4) + i\sin(\pi/4) = \sqrt{2}/2(1+i);$$

$$z_{2} = \cos(3\pi/4) + i\sin(3\pi/4) = \sqrt{2}/2(-1+i);$$

$$z_{3} = \cos(5\pi/4) + i\sin(5\pi/4) = \sqrt{2}/2(-1-i);$$

$$z_{4} = \cos(7\pi/4) + i\sin(7\pi/4) = \sqrt{2}/2(1-i).$$

Корені четвертого степеня з числа —1 геометрично можна зобразити точками на одиничному колі, які є вершинами квадрата (Рис. 1.2.2)

Рис. 1.2.2

Аналогічно у множині комплексних чисел можна обчислити корінь n-го степеня з будь-якого дійсного числа. При цьому хоча б один корінь з додатного дійсного числа буде дійсним.

Дії над комплексними числами, заданими в показниковій формі, виконуються за правилами дій над степенями.

$$\mathbf{z}_{1}\mathbf{z}_{2} = (r_{1}e^{i\varphi_{1}})(r_{2}e^{i\varphi_{2}}) = r_{1}r_{2}e^{i(\varphi_{1}+\varphi_{2})};$$

$$\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{2}} = \frac{r_{1}e^{i\varphi_{1}}}{r_{2}e^{i\varphi_{2}}} = \frac{r_{1}}{r_{2}}e^{i(\varphi_{1}-\varphi_{2})};$$

$$\mathbf{Z}^{n} = (re^{i\varphi})^{n} = r^{n}e^{in\varphi}.$$

Коренем n-го степеня з комплексного числа \mathbf{z} називається таке число, n-ий степінь якого дорівнює \mathbf{z} . Обчислення кореня виконується за формулою

$$\sqrt[n]{z} = \sqrt[n]{r} \cdot e^{i\frac{\varphi + 2\pi k}{n}} = \sqrt[n]{r} \left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n} \right)$$

$$k=0,1,\ldots n-1 \quad ,$$

тобто корінь n-го степеня має n значень.

Контрольні запитання

- 1. Які форми запису комплексних чисел ви знаєте?
- 2. Як записати комплексне число в тригонометричній формі?
- 3. Як виконуються дії над комплексними числами?
- 4. В якій формі комплексні числа краще зручніше додавати і віднімати?
- 5. В якій формі комплексні числа зручніше множити, ділити, підносити до степеня, знаходити корені?
- 6. Які дії можна виконувати над комплексними числами, заданими в різних формах?