REAL VARIABLES I

THOMAS C. HAGEN

1. Basics

We assume throughout that the natural numbers \mathbb{N} , the integers \mathbb{Z} and the rational numbers \mathbb{Q} are known. X and Y will denote any sets.

A *function* (*map* or *mapping*) f from a set X to a set Y is a rule that assigns to each $x \in X$ a unique element $f(x) \in Y$. For such a function we often write $f: X \to Y$ or $x \mapsto f(x)$. The set X is the *domain* of f. The set Y is the *codomain* of f. The set $f(X) = \{f(x) \in Y \mid x \in X\}$ is the *range* of f. For $f(X) = \{f(x) \in Y \mid x \in X\}$ is the *image* under $f(X) \in Y \mid x \in X\}$ is the *image* under $f(X) \in Y \mid x \in X\}$ is called the *preimage* of $f(X) \in Y \mid x \in X\}$. For $f(X) \in Y \mid x \in X\}$ is the function $f(X) \in Y \mid x \in X\}$ are two functions, then their *composition*, denoted by $f(X) \in Y \in X$, is the function from $f(X) \in Y \in X$, is the function from $f(X) \in Y \in X$, given by $f(X) \in Y \in X$.

Definition 1.1.

- (1) A function $f: X \to Y$ is called *onto* (or *surjective*) if f(X) = Y.
- (2) A function $f: X \to Y$ is called *one-to-one* (or *injective*) if the equality f(u) = f(v) for $u, v \in X$ implies u = v.

The function $id_X : X \to X$, $x \mapsto id_X(x) = x$ is called the *identity* on X. A function $f : X \to Y$ that is both one-to-one and onto is also called *bijective*. If $f : X \to Y$ is one-to-one, there is a unique function $g : f(X) \to X$ such $g \circ f = id_X$ and $f \circ g = id_{f(X)}$. The function g is called the *inverse* of f, denoted by f^{-1} .

Definition 1.2.

- (1) For $n \in \mathbb{N}$ a function $f : \{k \in \mathbb{N} \mid k \le n\} \to X$ is called a *finite sequence* of length n, denoted by $(x_k)_{1 \le k \le n}$ or $(x_k)_{k=1}^n$ with $x_k = f(k)$.
- (2) A function $f: \mathbb{N} \to X$ is called an *(infinite) sequence*, denoted by (x_k) or $(x_k)_{k=1}^{\infty}$ with $x_k = f(k)$.
- (3) A *family* or *collection* \mathscr{C} of subsets of X is a subset of the power set $\mathscr{P}(X) = \{A \mid A \subset X\}$ of X. A collection \mathscr{C}' of subsets of X is a *subcollection* of the collection \mathscr{C} if $\mathscr{C}' \subset \mathscr{C}$.
- (4) A function f from a set Λ to the power set $\mathcal{P}(X)$ of X is called a *collection* of subsets of X for the *index set* Λ or an *indexed collection* of subsets of X, denoted by $\{A_{\lambda} \mid \lambda \in \Lambda\}$ (or $\{A_{\lambda}\}$ if Λ is clear) where $A_{\lambda} = f(\lambda)$.

Instead of $(x_k)_{1 \le k \le n}$ we will also write $(x_1, ..., x_n)$. The notions of finite and infinite sequences can, of course, be generalized. If $m, n \in \mathbb{Z}$, $m \le n$, we may write $(x_k)_{m \le k \le n}$ or $(x_k)_{k=m}^n$ or $(x_m, ..., x_n)$ and $(x_k)_{k=m}^\infty$, respectively.

For A, $B \subset X$ we define the *intersection* $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$, the *union* $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$, the *difference* $A \setminus B = \{x \in X \mid x \in A \text{ and } x \notin B\}$, the *symmetric difference* $A \triangle B = (A \setminus B) \cup (B \setminus A)$, and the *complement* $A^c = X \setminus A$. If $A \cap B = \emptyset$, A and B are *disjoint*. A collection $\mathscr C$ of subsets of X is a *disjoint collection* if for any A, $B \in \mathscr C$, $A \cap B = \emptyset$. For a collection $\mathscr C$ of subsets of X we also define the *intersection*

$$\bigcap_{A \in \mathscr{C}} A = \left\{ x \in X \mid x \in A \text{ for all } A \in \mathscr{C} \right\}$$

and the union

$$\bigcup_{A \in \mathscr{C}} A = \left\{ x \in X \mid x \in A \text{ for some } A \in \mathscr{C} \right\}.$$

In the special case that $\mathscr{C} = \{A_k \mid 1 \le k \le n\}$ or $\mathscr{C} = \{A_k \mid k \in \mathbb{N}\}$, we will also write

$$\bigcap_{k=1}^{n} A_k$$
 or $\bigcap_{k=1}^{\infty} A_k$, respectively,

instead of $\bigcap_{A \in \mathscr{C}} A$, and

$$\bigcup_{k=1}^{n} A_k \quad \text{or} \quad \bigcup_{k=1}^{\infty} A_k, \quad \text{respectively,}$$

instead of $\bigcup_{A \in \mathscr{C}} A$. Of course, we can (and shall) generalize this notation further.

Proposition 1.3. De Morgan's Laws

 $For \mathscr{C} \subset \mathscr{P}(X)$

$$\left(\bigcup_{A\in\mathscr{C}}A\right)^c=\bigcap_{A\in\mathscr{C}}A^c\quad and\quad \left(\bigcap_{A\in\mathscr{C}}A\right)^c=\bigcup_{A\in\mathscr{C}}A^c.$$

Proposition 1.4. Distributive Laws

For $\mathscr{C} \subset \mathscr{P}(X)$, $B \subset X$

$$B \cap \left(\bigcup_{A \in \mathscr{C}} A\right) = \bigcup_{A \in \mathscr{C}} (A \cap B) \quad and \quad B \cup \left(\bigcap_{A \in \mathscr{C}} A\right) = \bigcap_{A \in \mathscr{C}} (A \cup B).$$

Proposition 1.5. For $\mathscr{C} \subset \mathscr{P}(X)$, $\mathscr{C}' \subset \mathscr{P}(Y)$, $A \subset X$, $B \subset Y$ and $f : X \to Y$ the following holds true:

(1)
$$f\left(\bigcup_{A\in\mathscr{C}}A\right) = \bigcup_{A\in\mathscr{C}}f(A)$$
 and $f\left(\bigcap_{A\in\mathscr{C}}A\right) \subset \bigcap_{A\in\mathscr{C}}f(A)$,

(2)
$$f^{-1}\left(\bigcup_{B\in\mathscr{C}'}B\right) = \bigcup_{B\in\mathscr{C}'}f^{-1}(B)$$
 and $f^{-1}\left(\bigcap_{B\in\mathscr{C}'}B\right) = \bigcap_{B\in\mathscr{C}'}f^{-1}(B)$,

(3)
$$f^{-1}(B^c) = (f^{-1}(B))^c$$
,

(4)
$$f(f^{-1}(B)) \subset B$$
 and $A \subset f^{-1}(f(A))$.

Definition 1.6.

- (1) A set *X* is called *finite* if it is empty or if there is a number $n \in \mathbb{N}$ and a bijective map $f: X \to \{k \in \mathbb{N} \mid 1 \le k \le n\}$. A set that is not finite is called *infinite*.
- (2) A set *X* is called *countably infinite* if there is a bijective map $f: X \to \mathbb{N}$.
- (3) A set *X* is called *countable* if it is finite or countably infinite.
- (4) A set *X* is called *uncountable* if it is not countable.

Proposition 1.7. \mathbb{N} , \mathbb{Z} and \mathbb{Q} are countable.

Proposition 1.8.

- (1) Every subset of a countable set is countable.
- (2) The set of all finite sequences from a countable set is countable.
- (3) The union of a countable collection of countable sets is countable.

Definition 1.9.

- (1) A collection \mathscr{A} of subsets of X is called an *algebra* if $X \in \mathscr{A}$, $A^c \in \mathscr{A}$ for every $A \in \mathscr{A}$, and $A \cup B \in \mathscr{A}$ for every $A, B \in \mathscr{A}$.
- (2) A collection \mathscr{A} of subsets of X is called a σ -algebra if $X \in \mathscr{A}$, $A^c \in \mathscr{A}$ for every $A \in \mathscr{A}$, and $\bigcup_{k=1}^{\infty} A_k \in \mathscr{A}$ for every (countable) collection $\{A_k \mid k \in \mathbb{N}\}$ of subset of X with $A_k \in \mathscr{A}$ for every k.

Proposition 1.10.

- (1) For every collection $\mathscr C$ of subsets of X there is a smallest algebra $\mathscr A$ containing $\mathscr C$ in the sense that any other algebra containing $\mathscr C$ also contains $\mathscr A$.
- (2) For every collection $\mathscr C$ of subsets of X there is a smallest σ -algebra $\mathscr A$ containing $\mathscr C$ in the sense that any other σ -algebra containing $\mathscr C$ also contains $\mathscr A$.

Proof. Let \mathscr{F} be the collection of all algebras/ σ -algebras containing \mathscr{C} . \mathscr{F} is nonempty since it contains $\mathscr{P}(X)$. Let $\mathscr{A} = \bigcap_{\mathscr{B} \in \mathscr{F}} \mathscr{B}$. Then \mathscr{C} is a subcollection of \mathscr{A} . Also, $X \in \mathscr{A}$ since $X \in \mathscr{B}$ for each $\mathscr{B} \in \mathscr{F}$. Similarly, if $A \in \mathscr{A}$, then A, $A^c \in \mathscr{B}$ for each $\mathscr{B} \in \mathscr{F}$, hence $A^c \in \mathscr{A}$. Finally, if $\{A_k\}$ is a finite/countable collection with $A_k \in \mathscr{A}$ for every k, then

each set A_k belongs to \mathscr{B} for each $\mathscr{B} \in \mathscr{F}$, hence the union of the sets A_k does as well. Consequently, this union also belongs to \mathscr{A} .

A *choice function* on a collection \mathscr{F} of nonempty sets is a map $f:\mathscr{F}\to\bigcup_{F\in\mathscr{F}}F$ such that $f(F)\in F$ for every $F\in\mathscr{F}$.

Axiom 1.11. Zermelo's Axiom of Choice

Every collection of nonempty sets has a choice function.

The Axiom of Choice is needed to define the *Cartesian product* of a collection $\{X_{\lambda}\}$ of (nonempty) sets indexed by an arbitrary (nonempty) index set Λ :

$$\prod_{\lambda \in \Lambda} X_{\lambda} = \left\{ f : \Lambda \to \bigcup_{\lambda \in \Lambda} X_{\lambda} \,\middle|\, f(\lambda) \in X_{\lambda} \text{ for each } \lambda \in \Lambda \right\}$$

If Λ is the finite index set $\{k \in \mathbb{N} \mid 1 \le k \le n\}$, we often write $X_1 \times \cdots \times X_n$ for the Cartesian product and identify its elements with the finite sequences $(x_k)_{k=1}^n$, $x_k \in X_k$. In the special case where $X_k = X$ for all k, it is customary to write X^n instead of $X \times \cdots \times X$. If Λ is countably infinite, we identify the elements of the Cartesian product $\prod_{k \in \mathbb{N}} X_k$ with the infinite sequences (x_k) , $x_k \in X_k$.

Given a nonempty set X, we call a subset R of $X \times X$ a *relation* on X and write x R y if $(x, y) \in R$. A relation is *reflexive* if x R x for all $x \in X$, *symmetric* if x R y implies y R x, and *transitive* if x R y and y R z imply x R z.

Definition 1.12. A reflexive, symmetric, transitive relation R on a nonempty set X is called an *equivalence relation*.

Equivalence relations are often denoted by \sim instead of R.

An equivalence relation \sim on X gives rise to equivalence classes, defined for $x \in X$ by

$$[x] = \{ y \in X \mid x \sim y \}$$

The set of all equivalence classes $\{[x] \mid x \in X\}$ is denoted by X/\sim and is called the *quotient set* of the relation \sim . Elements of an equivalence class are called *representatives* of the equivalence class.

Definition 1.13.

- (1) A reflexive, transitive relation R on a nonempty set X is called a *partial ordering* if x R y and y R x imply x = y.
- (2) A partial ordering R on a nonempty set X is called a *total ordering* if for all $x, y \in X$, x R y or y R x holds true. In this case X is called (*totally*) ordered.
- (3) For a nonempty set X with partial ordering R we call $z \in X$ an *upper bound* of a subset $A \subset X$ if for all $x \in A$, x R z holds true.
- (4) For a nonempty set X with partial ordering R we call $z \in X$ a *maximal element* if z R x implies z = x.

Lemma 1.14. Zorn's Lemma

Let X be a nonempty set with a partial ordering. If every totally ordered subset of X has an upper bound, then X has a maximal element.

Zorn's Lemma is a variant of the Axiom of Choice (i.e. it implies and is implied by the Axiom of Choice). Another variant is the *Hausdorff Maximality Theorem*.