Introducción a la Lógica y la Computación — Examen Final 07/02/2024 Apellido y Nombre en todas las hojas

1. Sea L un reticulado distributivo. Probar que para todos $a,b,c\in L$,

$$a \lor b = a \lor c$$

 $a \land b = a \land c$

implican b = c.

- 2. Sea $X \subseteq D_{2^{24}}$ un subconjunto no vacío. Decidir si el poset (X, |) (con la relación de divisibilidad) es un reticulado distributivo, justificando la respuesta.
- 3. Encuentre derivaciones que justifiquen:

a)
$$\vdash \varphi \lor \psi \rightarrow \psi \lor \varphi$$
.

b)
$$\{\neg(\varphi \land \neg \psi), \varphi\} \vdash \psi$$
.

- a) Probar usando derivaciones que para todo Γ ⊆ PROP tal que Γ∪{φ₁, φ₂} ⊢ φ₃, se cumple que Γ ∪ {φ₁ ∧ φ₂ ∧ ¬φ₃} es inconsistente.
 - b) Demostrar que si un Γ que satisfaga las hipótesis del ítem anterior es consistente maximal, entonces $\varphi_1 \wedge \varphi_2 \to \varphi_3 \in \Gamma$.
- 5. Utilizar el algoritmo del teórico para determinizar el NFA cuyo alfabeto (jatención!) es $\Sigma := \{a, b, c\}$ y tiene el siguiente diagrama de transición:

- 6. Probar que el lenguaje $\{\alpha\in\{a,b\}^*\mid \exists \beta,\ \alpha=\beta\beta\}$ no es regular.
- L. Sólo para alumnxs libres:
 - a) Demostrar que el reticulado N_5 no es distributivo.
 - b) Dar un DFA sobre el alfabeto $\Sigma := \{a,b\}$ cuyo lenguaje aceptado sea el de las palabras con cantidad impar de as y cantidad par de bs.

1. Sea L un reticulado distributivo. Probar que para todos $a,b,c\in L,$

$$a \lor b = a \lor c$$

 $a \land b = a \land c$

implican b = c.

Como L es un reticulado distributivo se cumple que:

a v (b ^ c) = (a v b) ^ (a v c)

 $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$

Probamos suponiendo el antecedente:

Hipótesis:

avb = avc

 $a \wedge b = a \wedge c$

 $b = b \wedge (b \vee a)$ (absorción)

por hipótesis

 $b = b \wedge (a \vee c)$

aplicamos propiedad de distributivo

 $b = (b \land a) \lor (b \land c)$

c = c ^ (c v a)

(absorción)

por hipótesis

 $c = c \wedge (b \vee a)$

aplicamos propiedad de distributivo

 $c = (c \land b) \lor (c \land a)$

por hipótesis nuevamente

 $c = (c \land b) \lor (b \land a)$

Luego b = (b ^ a) v (b ^ c) = c => b = c

2. Sea $X \subseteq D_{2^{24}}$ un subconjunto no vacío. Decidir si el poset (X, |) (con la relación de divisibilidad) es un reticulado distributivo, justificando la respuesta.

D 24 = D 22223

Podemos formar los siguienzes subicticulados

Dz , Dzzz , Dzzzz , Dzzzzz.3

D,3, D,3.2.2

Como todos los elementos son potencias de 2, el orden por divisibilidad forma siempre una cadena. Luego cualquier subconjunto no vacío, será una cadena y por ende distributivo.

- 3. Encuentre derivaciones que justifiquen:
 - a) $\vdash \varphi \lor \psi \to \psi \lor \varphi$.
 - b) $\{\neg(\varphi \land \neg \psi), \varphi\} \vdash \psi$.

- a) Probar usando derivaciones que para todo Γ ⊆ PROP tal que Γ∪{φ₁, φ₂} ⊢ φ₃, se cumple que Γ ∪ {φ₁ ∧ φ₂ ∧ ¬φ₃} es inconsistente.
 - b) Demostrar que si un Γ que satisfaga las hipótesis del ítem anterior es consistente maximal, entonces $\varphi_1 \wedge \varphi_2 \to \varphi_3 \in \Gamma$.

$$D = \begin{cases} \rho_1 & \rho_2 \\ \rho_2 & \rho_3 \end{cases}$$

$$D' = \begin{cases} \rho_1 & \rho_2 \\ \rho_2 & \rho_3 \end{cases}$$

$$\rho_3 & \rho_3 \\ \rho_4 & \rho_3 \end{cases}$$

6)

Demostremos suponiendo el antecedente:

Γ es consistente maximal y además

Γ U {p1,p2} ⊢ p3

 $\Gamma \cup \{p1 \land p2 \land \neg p3\} \vdash \bot \text{ (es inconsistente)}$

Queremos ver que (p1 ^ p2) -> p3 $\in \Gamma$

Sabemos que los conjuntos consistentes maximales son cerrados por derivación, es decir, si $\Gamma \vdash p => p \in \Gamma$

Si la unión Γ U {p1,p2} \vdash p3 preserva la consistencia, entonces {p1,p2} no llevan a una contradicción en Γ ya que {p1,p2} \in Γ por maximal y como esto deriva a p3, p3 \in Γ . De esto fácilmente se deriva (p1 ^ p2) -> p3

Si la unión Γ U {p1,p2} \vdash p3 no preserva la consistencia, entonces trivialmente de un conjunto inconsistente se deduce (p1 ^ p2) -> p3

5. Utilizar el algoritmo del teórico para determinizar el NFA cuyo alfabeto (¡atención!) es $\Sigma := \{a, b, c\}$ y tiene el siguiente diagrama de transición:


```
Sea M = (\{a,b,c\}, Q, q0, F, \triangle)
```

$$Q = \{q0,q1,q2\}$$

$$F = \{q0\}$$

tomamos M' = ({a,b,c}, P(Q), q0', F', \triangle ^)

 $P(Q) = (\{q0\}, \{q1\}, \{q2\}, \{q0,q1\}, \{q0,q2\}, \{q1,q2\}, \{q0,q1,q2\}, \emptyset)$

 $F' = (\{q0\}, \{q0,q1\}, \{q0,q2\}, \{q0,q1,q2\})$

 $\triangle^{(q0)}$, a) = $\{q1\}$

 $\triangle^{(q0)}, b) = \emptyset$

 $\triangle^{(q0)}$, c) = Ø

 $\triangle^{(q1)}, a) = q2$

 $\triangle^{(q1)}, b) = \emptyset$ $\triangle^{(q1)}, c) = \emptyset$

 $\triangle^{(q2)}, a) = q0$

 $\triangle^{(q2)}$, b) = Ø

 $\triangle^{(q2)}, c) = \emptyset$

6. Probar que el lenguaje $\{\alpha\in\{a,b\}^*\mid \exists \beta,\ \alpha=\beta\beta\}$ no es regular.

Probar que el lenguaje L = $\{\alpha \in \{a,b\} * \mid \exists \beta, \alpha = \beta \beta\}$ no es regular.

Supongamos que L es un lenguaje regular, entonces vale el pumping lemma. Sea n la constante de bombeo y la cadena α = a^n . a^n tq α esta en L y además $|\alpha|$ = 2n > n.

Por lo tanto podemos descomponer $\alpha = \alpha 1\alpha 2\alpha 3$ tg:

 $\alpha 1 = a^r, r >= 0$

 $\alpha 2 = a^s, s >= 1$

 $\alpha 3 = a^{n} (n - (s + r))a^{n}$

Para i = 0

 $\alpha = \alpha 1(\alpha 2^0)\alpha 3 = a^r \cdot (a^s)^0 \cdot a^(n - (s + r))a^n$

= a^r . a^(n - s - r)a^n

 $= a^{n} - s)a^{n}$

Como s >= 1, ya no se cumple que α = $\beta\beta$ pues a^(n - s) no es igual a a^n, absurdo de suponer que L era un lenguaje regular.

L. Sólo para alumnxs libres:

- a) Demostrar que el reticulado N₅ no es distributivo.
- b) Dar un DFA sobre el alfabeto $\Sigma := \{a,b\}$ cuyo lenguaje aceptado sea el de las palabras con cantidad impar de as y cantidad par de bs.
- Veamos que N5 es subposet del poset de P(a,b,c) pero no es subreticulado

Tenemos que N5 es isomorfo a un subposet de partes, sin embargo, no es cerrado con supremo e infimo, pues el supremo entre a y c en N5 en 1, pero el supremo en partes nos da {a,c} el cual no esta definido en la biyeccion. No es un subreticulado.

Tampoco cumple la propiedad cancelativa

avb=avc

a ^ b = a ^ c

pero b != c

