# Melhorando o desempenho da cache

**Marcos Monteiro Junior** 

#### Medindo o desempenho da cache

- O tempo de CPU pode ser dividido entre os ciclos de clock que a CPU gasta executando o programa e os ciclos de clock que gasta esperando o sistema de memória:
  - Tempo de cpu = (ciclos de clock de execução da CPU + ciclos de clock de stall de memória) x (tempo de ciclo de clock)
  - Stalls de memória tem origem nas falhas de cache
  - Ciclos de clock de stall de memória = ciclos de stall de leitura + ciclos de stall de escrita
  - Ciclos de stall de leitura podem ser definidos em função do número de acesso de leitura por programa, a penalidade de falha nos ciclos de clock e a taxa de falhas de leitura:
  - Ciclos de stall de leitura = leituras/programa x (taxa de falhas de leitura) x (penalidade de falha de leitura)
  - As escritas são mais complicadas, pois temos duas origens de stalls: as falhas de escrita, que exigem a busca do bloco antes de continuar a escrita e os stalls do buffer de escrita, que ocorrem quando o buffer de escrita está chejo:
  - Ciclos de stall de escrita = (escritas/programa) x (taxa de falhas de escrita) x (penalidade de falha de escrita) + (stalls do buffer de escrita)

### Medindo o desempenho da cache

- Na maioria das organizações write-back as penalidades de falha de leitura e escrita são iguais (equivalentes ao tempo para buscar o bloco da memória)
  - Considerando que os stalls no buffer de escrita insignificantes:
    - Ciclos de clock de stall de memória = acessos a memória/programa x taxa de falhas x penalidade de falha
    - Ciclos de clock de stall de memória = instruções /programa x falhas/instrução x penalidade de falha

### Medindo o desempenho da cache

#### Exemplo

- Suponha que uma taxa de falhas de cache de instruções para um programa seja de 2% e que uma taxa de falhas de cache de dados seja de 4%. Se um processador tem um CPI igual a 2 sem qualquer stall de memória e a penalidade de falha é de 100 ciclos para todas as falhas, determine o quanto mais rápido um processador executaria com uma cache perfeita que nunca falhasse (utilizando as frequências de instruções do SPECint2000: 36% load/store)
  - Ciclos de falha de instruções = I x 2% x 100 = 2,00 x I
  - Ciclos de falha de dados = I x 36% x 4%x 100 = 1,44 x I
  - Número total de stalls de memória: 2,00 + 1,44 = 3,44 I
  - Cpi com stalls de memória: 2,00 + 3,44 = 5,44
  - Cpi sem stalls de memória: 2,00
  - O desempenho da cache perfeira: 5,44 / 2 = 2,72

# Reduzindo as falhas de cache com um posicionamento de blocos mais flexível

- No mapeamento direto, existe apenas uma posição onde o bloco pode ser encontrado na cache.
- No outro extremo, está um esquema onde um bloco pode ocupar qualquer lugar na cache: totalmente associativo
  - Todas a entradas devem ser pesquisadas, o que torna o hardware mais caro: viável apenas para caches com pequenos números de blocos
- Faixa intermediária: mapeamento por conjunto
  - Existe um número fixo de locais onde cada bloco pode ser colocado
  - Uma cache associativa por conjuntos com n locais para um bloco é chamada de cache associativa por conjunto de n vias
  - Uma cache associativa por conjunto de **n** vias consiste em diversos conjuntos, cada um consistindo em **n** blocos
  - Cada bloco é mapeado para um conjunto único na cache, determinado pelo campo índice, e um bloco pode ser colocado em qualquer elemento deste conjunto
  - O posicionamento associativo por conjunto combina o mapeamento direto com o mapeamento totalmente associativo, de forma que um bloco é diretamente mapeado para um conjunto e, então, uma correspondência é pesquisada em todos os blocos dos conjuntos

## Reduzindo as falhas de cache com um posicionamento de blocos mais flexível

- Forma de mapeamento
  - Mapeamento direto
    - (número do bloco) módulo (número de blocos na cache)
  - Mapeamento associativo por conjunto
    - (número do bloco) módulo (número de conjuntos na cache)
  - Como o bloco pode ser posicionado em qualquer elemento do conjunto, todas as tags de todos os elementos do conjunto devem ser pesquisadas
  - A vantagem de aumentar a associatividade é diminuir a taxa de falhas
  - A desvantagem é a redução do tempo de acerto



## Falhas e associatividade nas caches

- Considere três caches pequenas, cada uma consistindo em quatro blocos de 1 word cada
  - Uma cache totalmente associativa
  - Uma cache associativa por conjunto de 2 vias
  - Uma diretamente mapeada
  - Encontre o número de falhas para cada organização de cache, dada a seguinte sequência de endereços de bloco: 0, 8, 0, 6, 8

• Diretamente mapeado:

| Endereço do bloco | Bloco de cache   |
|-------------------|------------------|
| 0                 | (0 módulo 4) = 0 |
| 6                 | (6 módulo 4) = 2 |
| 8                 | (8 módulo 4) = 0 |

# Falhas e associatividade nas caches

• Diretamente mapeada gera cinco falhas para cinco acessos:

| Endereço do bloco de<br>memória associado |                 | Conteúdo dos blocos de cache após referê |   |            |   |  |
|-------------------------------------------|-----------------|------------------------------------------|---|------------|---|--|
|                                           | Acerto ou falha | 0                                        | 1 | 2          | 3 |  |
| 0                                         | falha           | Memória[0]                               |   |            |   |  |
| 8                                         | falha           | Memória[8]                               |   |            |   |  |
| 0                                         | falha           | Memória[0]                               |   |            |   |  |
| 6                                         | falha           | Memória[0]                               |   | Memória[6] |   |  |
| 8                                         | falha           | Memória[8]                               |   | Memória[6] |   |  |

Cache associativa por conjunto tem dois conjuntos, com índices de 0 e
1, com dois elementos por conjunto:

| Endereço do bloco | Bloco de cache   |
|-------------------|------------------|
| 0                 | (0 módulo 2) = 0 |
| 6                 | (6 módulo 2) = 0 |
| 8                 | (8 módulo 2) = 0 |

# Falhas e associatividade nas caches

- Já que existe a possibilidade de escolha entre qual bloco será substituído, uma regra deve ser utilizada
  - Bloco menos recentemente usado: o bloco usado a mais tempo será substituído

| Endereço do bloco de |                 | Conteú     | do dos blocos de | cache após refe | rência     |
|----------------------|-----------------|------------|------------------|-----------------|------------|
| memória associado    | Acerto ou falha | Conjunto 0 | Conjunto 0       | Conjunto 1      | Conjunto 1 |
| 0                    | falha           | Memória[0] |                  |                 |            |
| 8                    | falha           | Memória[0] | Memória[8]       |                 |            |
| 0                    | acerto          | Memória[0] | Memória[8]       |                 |            |
| 6                    | falha           | Memória[0] | Memória[6]       |                 |            |
| 8                    | falha           | Memória[8] | Memória[6]       |                 |            |

Apresenta 4 falhas

#### Falhas e associatividade na cache

- A cache totalmente associativa tem 4 blocos na cache, em um único conjunto
  - Apresenta o melhor desempenho, com 3 falhas:

| Endereço do bloco de<br>memória associado |                 | Conteúdo dos blocos de cache apó |            |            |         |
|-------------------------------------------|-----------------|----------------------------------|------------|------------|---------|
|                                           | Acerto ou falha | Bloco 0                          | Bloco 1    | Bloco 2    | Bloco 3 |
| 0                                         | falha           | Memória[0]                       |            |            |         |
| 8                                         | falha           | Memória[0]                       | Memória[8] |            |         |
| 0                                         | acerto          | Memória[0]                       | Memória[8] |            |         |
| 6                                         | falha           | Memória[0]                       | Memória[8] | Memória[6] |         |
| 8                                         | acerto          | Memória[0]                       | Memória[8] |            |         |

Quanta redução na taxa de falhas é obtida pela associatividade?
Considerando o SPEC2000 pra uma cache de dados de 64K com um bloco de 16 words e mostra a associatividade mudando do mapeamento direto

para oito vias:

| Associatividade | Taxa de falhas de dados |
|-----------------|-------------------------|
| 1               | 10,3%                   |
| 2               | 8,6%                    |
| 4               | 8,3%                    |
| 8               | 8,1%                    |

#### Localizando um bloco no cache

 Cada bloco em um cache associativa por conjunto tem um campo tag que fornece o endereço do bloco

• Tal valor é comparado com o endereço de origem contido em uma requisição do

processad<u>or</u>

