Dummy title

- ₂ Narek Bojikian ⊠®
- 3 Humboldt University of Berlin, Germany

Abstract

- In this article, we describe 'HALG2PACE', a solver for the one-sided crossing minimization problem on graphs given together with a low-cutwidth linear arrangement. This solver was developed as part of the PACE challenge 2024 parameterized track. The solver is based on a dynamic programming scheme over the given linear arrangement, and admits FPT running time with single-exponential dependence on the cutwidth of the given linear arrangement. The solver is implemented in C++ and meets the requirements presented by PACE challenge. The solver was submitted on optil.io under the user name 'narekb95' and is available on github at https://github.com/narekb95/ocr-ctw
- 2012 ACM Subject Classification Replace ccsdesc macro with valid one
- 13 Keywords and phrases PACE Challenge, cutwidth
- Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23
- 15 Acknowledgements [TODO]

1 Preliminaries

20

21

22

24

27

29

33

34

For $n \in \mathbb{N}$, we denote by [n] the set $\{1, \ldots, n\}$. A Permutation π of a set S is a bijective mapping from S to [|S|]. For $i \in [|S|]$ we denote by π_i the element $\pi^-1(i)$ of S. Each permutation π of a set corresponds (bijectively) to a linear ordering \leq_{π} , where for $u, v \in S$ it holds that $u \leq_{\pi} v$ if $\pi(u) \leq \pi(v)$. We will use these two terms interchangeably. In particular, we will call π an ordering, when we mean the ordering \leq_{π} underlying the permutation π .

A two-layered drawing of a bipartite graph G = (A, B, E) is a drawing that maps its vertices into two different horizontal lines, such that the vertices of V^1 are mapped to one line, and the vertices of V^2 are mapped to the other. Edges are drawn as straight-line segments between the points corresponding to their endpoints. A two-layered is given as a mapping $\mu \colon V \to \mathbb{N}^2$. Implicitly, μ maps each edge $\{u,v\} \in E$ to the line segment between $\mu(u)$ and $\mu(v)$. For $i \in [2]$, V^1 , given an ordering π over V_i , a two-layered drawing of G respects π if the order of the points corresponding to the images of the vertices of V_i on the underlying horizontal line matches the order of the vertices themselves given by π .

In a two-layered drawing μ , and for two edges $e_1, e_2 \in E$, we say that e_1 and e_2 cross in μ , if $\mu(e_1)$ and μe_2 intersect in a point that is not an endpoint of either line segments. The *number of crossings* of μ is the number of unordered pairs of edges $\{e_1, e_2\} \in {E \choose 2}$ such that e_1 and e_2 cross in μ . The following observations are Folklore. We refer to [2] for more information.

- Lemma 1. Given a bipartite graph $G = (V^1, V^2, E)$, together with two orderings π_1, π_2 over V^1 and V^2 respectively, the number of crossings of any two-layered drawing of G that respects π_1 and π_2 is invariant of the drawing itself, and determined solely by π_1 and π_2 . We call this number of crossings of any such map as the crossings number of (π_1, pi_2) .
- Definition 2. The one-sided crossing minimization problem is defined as follows: Given a bipartite graph $G = (V^1, V^2, E)$ together with a fixed ordering π_1 over V^1 , asked is a permutation π_2 over V^2 that minimizes the crossing number of (π_1, π_2) .
- A linear arrangement of a graph G = (V, E) is linear ordering $\ell = v_1 \le \cdots \le v_n$ over the vertices of the graph. Let $V_i = \{v_1, \dots v_i\}$. For $v_i \in V$, we define the cut of ℓ at v_i as the set

of edges having one endpoint in V_i and the other in $V \setminus V_i$, and call it the *i*th cut of ℓ . The cut-graph $H_i = (L_i, R_i, E_i)$ is given by the edges of the *i*th cut together with their endpoints, where $L_i \subseteq V_i$ are the endpoints in V_i , and $R_i \subseteq V \setminus V_i$ are the other endpoints.

The algorithm

Finally, we introduce some notation for our algorithm. Along this work, we assume G= (V^1,V^2,E) is the input graph, and ℓ a linear arrangement of G. Let k be the largest size of a cut of ℓ . Let n=|V| and m=|E|. Let π_1 be the give fixed ordering over V^1 , and π_2 be the asked ordering. Finally, for two different vertices $v_1,v_2\in V^2$, we define $c(v_1,v_2)$ as

$$c(v_1, v_2) = |\{(w_2, w_1) \in N(v_2) \times N(v_1) \colon w_2 <_{\pi_1} w_1\}|.$$

For two disjoint sets of vertices $X, X' \subseteq V_2$, we define

$$c(X, X') = \sum_{(v_1, v_2) \in X \times X'} c(v_1, v_2).$$

Moreover, for a set $X \subseteq V^2$ we define c(X) as the minimum crossing number of (π_1, π') of $G[V_1, X]$ over all orderings π' of X.

Algorithm 1. We start a subroutine to compute c(X) for a small set X in time 2^n poly(n).

The algorithm follows a similar approach to the well-known dynamic programming algorithm for the Hamiltonian Cycle given by Held and Karp [3] and independently by Bellman [1]. The subroutine iterates over all subsets of X in increasing order (given by the subset relation), and computes an optimal ordering induced by each subset, by the recusive formula

$$c(X) = \min\{c(X \setminus \{v\}) + c(X \setminus \{v\}, v) \colon v \in X\}./$$

▶ Definition 3. Given a bipartite graph $G = (V_1, V_2, E)$ together with a permutation π_1 over V_1 , a pair of vertices $(v_1, v_2) \in V_2^2$ is called suited (in respect to π_1), if $w_1 \leq_{pi_1} w_2$ for each $w_1 \in N_G(v_1)$ and $w_2 \in N_G(v_2)$.

We call a pair of vertices v_1, v_2 suited, if $c(v_1, v_2) \cdot c(v_2, v_1) = 0$. Our algorithm is based on the following lemma:

Lemma 4 ([2, Fact 5]). Let $u, v ∈ V^2$ be two suited vertices. In any optimal solution $π_2$, it holds that if $u ≤_{π_2} v$ then c(u, v) = 0.

Our algorithm follows a dynamic programming approach over the cuts of the linear arrangement ℓ . For $i \in [n]$, we define the set $S_i = V^2 \cap V(H_i)$ as the set of vertices of V^2 that are incident to edges of the ith cut. The dynamic programming tables are indexed by subsets of S_i . Formally, for $i \in [n]$ let $S_i = \mathcal{P}(S_i)$ the power-set of S_i . we define the dynamic programming tables as vectors $T_i \in \mathbb{N}^{S_i}$, where for $X \subseteq S_i$ we define $T_i[X]$ as follows:

$$T_i[X] = c(V_i \cup X) + c(V_i, V \setminus (V_i \cup X)). \tag{1}$$

At each cut i our algorithm proceeds as follows: Let $S_i' = S_{i-1} \cup S_i$, and $F = S_{i-1} \setminus S_i$.

We call F_i the set of forget vertices at the ith cut. The algorithm first computes both S' and F. Then for each subset $X \subseteq S_i'$ that is a super set of $X \supseteq F_i$, let $X' = X \setminus F_i$. The algorithm computes $T_i[X']$ as follows:

$$T_i[X'] = \min_{Y \subseteq X} c_1 + c_2 + c_3,$$
 (2)

81 where

80

N. Bojikian 23:3

```
 c_1 = T_{i-1}(Y), 
 c_2 = c(X \setminus Y), 
 c_3 = c(Y, X), 
 and c_4 = c(F, S_i \setminus X'). 
Intuitively, the algorithm fixes consider orderings with V_{i-1} \cup Y as a prefix, and append X \setminus Y to this prefix (using the best ordering for X \setminus Y). Now we explain each summand in the states sum:
 c_1 \text{ is the number of crossings induced by the prefix } V_{i-1} \cup Y. 
 c_2 \text{ is the number of crossings in induced by } X \setminus Y \text{ and is computing using Algorithm 1.} 
 c_3 \text{ is the number of crossings introduced by appending } X \text{ to the prefix ordering (edges between } V_{i-1} \text{ and } X \text{ are accounted for in } c_1). 
 c_4 \text{ is the number of edges between } F \text{ and } V \setminus V_i, \text{ since } F = V_i \setminus V_{i-1}.
```

3 Implementation details

We use bit-masks to represent sets. To iterate over all supersets of F that are subsets of S' with constant time steps, we compute $S'_i \setminus F_i$, iterate over all its subsets X' and compute $X = X' \cup F$ as the sets we are looking for.

In order to output the ordering we keep track of all sets S_i , and for each subset $X \subset S_i$ we keep track of the set $X \setminus Y$ that was appended to $V_i \cup Y$ to compute an optimal ordering at X. We use backtracking to generate each suffix at each step, and for each such suffix we use an additional call to Algorithm 1 to output an optimal ordering for this set.

4 Sketch of Correctness

102

105

106

108

109

110

111

112

113 114 It follows from Lemma 4 that an optimal ordering has all vertices of V_i ordered before $V \setminus (V_i \cup S_i)$. Hence, the correctness and the optimality of the algorithm follow by induction over T_i where we show that the recursive formula Equation (2) computes exactly the number of edges presented in the definition of T_i Equation (1).

Since each cut-edge has at most one endpoint in V_1 , ist holds that $|S_i| \leq k$. The running time of the algorithm can be bounded by $3^k \operatorname{poly}(k)n$, since we iterate over all cuts i, and for each we iterate over all subsets of S_i , and over each subset of these subsets. We spend polynomial time at each such subset of a subset, so the running time can be bounded in

$$\sum_{i=1}^{n} \sum_{S \subset S_i} \sum_{X \subset S} \operatorname{poly}(k) = n3^k \operatorname{poly}(k).$$

References

- 1 Richard Bellman. Combinatorial processes and dynamic programming. Rand Corporation, 1958.
- Vida Dujmovic and Sue Whitesides. An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. *Algorithmica*, 40(1):15-31, 2004. URL: https://doi.org/10.1007/s00453-004-1093-2, doi:10.1007/s00453-004-1093-2.
- Michael Held and Richard M. Karp. A dynamic programming approach to sequencing problems.
 In Thomas C. Rowan, editor, *Proceedings of the 16th ACM national meeting, ACM 1961, USA*,
 page 71. ACM, 1961. doi:10.1145/800029.808532.