PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-223617

(43) Date of publication of application: 26.08.1997

(51)Int.Cl.

H01F 1/08 C22C 33/02 C22C 38/00 C22C 38/00 H01F 1/053

(21)Application number: 08-336990 (71)Applicant: MITSUBISHI MATERIALS

CORP

(22)Date of filing:

17.12.1996

(72)Inventor: WATANABE MUNEAKI

TAKESHITA TAKUO

(54) RARE EARTH-B-FE SINTERED MAGNET SUPERIOR IN CORROSION RESISTANCE AND MAGNETIC CHARACTERISTIC AND MANUFACTURING METHOD THEREOF

(57)Abstract:

PROBLEM TO BE SOLVED: To improve the corrosion resistance and magnetic characteristic.

SOLUTION: This magnet has a compsn. composed of an R2Fe14B phase (R is at least one of rare earth elements, including Y) and grain boundary phase existing round that phase. The grain boundary phase contains at least one of Ni, Co, Mn, Cr, Ti, V, Al, Ga, In, Zr, Hf, Ta, Nb, Mo, Si, Re and W 20-90atom.%.

LEGAL STATUS

Date of request for examination

17.12.1996

Date of sending the examiner's decision

of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

2891215

[Date of registration]

26.02.1999

[Number of appeal against examiner's

decision of rejection]

Date of requesting appeal against

		•

examiner's decision of rejection]
[Date of extinction of right]

		1 °C

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-223617

(43)公開日 平成9年(1997)8月26日

(51) Int.Cl. 8	識別記号	庁内整理番号	FΙ			技術表示箇所		
H01F 1/08			H01F	1/08]	В		
C 2 2 C 33/02			C 2 2 C	33/02	I	H		
38/00	303			38/00	3031	D		
	304				304			
H01F 1/053			H01F	1/04	I	H		
			審查部	京 有	請求項の数 2	OL (全 4 頁)		
(21)出願番号 特膜平8-336990			(71)出職人 000006264					
(62)分割の表示 特願平1-119991の分割			三菱マ	テリアル株式会社	£			
(22)出顧日	平成1年(1989)5月1	2日		東京都	千代田区大手町:	1丁目5番1号		
			(72)発明者	渡辺	宗明			
				埼玉県	大宮市北袋町1-	-297 三菱マテリ		
				アル株	式会社総合研究所	所内		
			(72)発明者	武下	拓夫			
				埼玉県	大宮市北袋町1-	-297 三菱マテリ		
				アル株	式会社総合研究所	所内		
			(74)代理人	、 弁理士	富田 和夫	(外1名)		

(54) 【発明の名称】 耐食性および磁気特性に優れた希土類-B-Fe系焼結磁石およびその製造方法

(57)【要約】

【課題】 耐食性および磁気特性にすぐれた希土類-B-Fe系焼結磁石およびその製造方法を提供する。

【解決手段】 R、Fe1.B相(RはYを含む希土類元素のうち1種または2種以上)および上記R、Fe1.B相のまわりに存在する粒界相からなる組織を有するR-B-Fe系焼結磁石であって、上記粒界相は、Ni, Co, Mn, Cr, Ti, V, Al, Ga, In, Zr, Hf, Ta, Nb, Mo, Si, ReおよびWのうち少なくとも1種: $20\sim90$ 原子%を含むことを特徴とする。

【特許請求の範囲】

【請求項1】 R₂ Fe₁, B相(Rは、Yを含む希土類 元素のうち1種または2種以上)および上記R、Fei B相のまわりに存在する粒界相とからなる組織を有する R-B-Fe系焼結磁石であって、

1

上記粒界相は、Ni, Co, Mn, Cr, Ti, V, A I, Ga, In, Zr, Hf, Ta, Nb, Mo, S i, ReおよびWのうち少なくとも1種(以下、Mとい う):20~90原子%を含む粒界相であることを特徴 とする耐食性および磁気特性に優れた希土類-B-Fe 10 系燒結磁石。

【請求項2】 R-B-Fe系合金粉末と、M粉末また はMの水素化物粉末を配合し、混合して混合粉末とし、 これら混合粉末を成形して成形体を作製し、これら成形 体を焼結することを特徴とする請求項1記載の耐食性お よび磁気特性に優れた希土類-B-Fe系焼結磁石の製 造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、耐食性および磁 20 気特性にすぐれた希土類-B-Fe系焼結磁石に関する ものである。

[0002]

【従来の技術】近年、従来のSm-Co系磁石に比べ て、より高い磁気特性を有し、かつ資源的にも高価なS mやCoを必ずしも含まない、Yを含む希土類元素のう ち少なくとも1種(以上、Rで示す)、BおよびFeを 必須成分とするR-B-Fe系永久磁石が発明された。 このR-B-Fe系永久磁石は、その優れた磁気特性を 有する一方で、非常に腐食され易く、それに伴う磁気特 30 性の劣化が著しいという欠点を合わせ持っている。

【0003】このR-B-Fe系永久磁石は、所定のR -B-Fe系合金粉末を圧縮成形し、焼結することによ り製造されるものであるが、このR-B-Fe系永久磁 石の組成は、図1に示されているように、R₂Fe₁,B 相:a、上記R、Fe, B相の粒界部分に存在するRリ ッチ相(R,sFes相、RrsFezs相などから構成され ていると言われている): b、およびRFe, B, 相か らなるBリッチ相: cから主として構成されており、上 記腐食の原因は、主として粒界部分に存在するRリッチ 40 相:bが腐食されやすい相であるために、Rリッチ相: bを介して粒界腐食が内部に進行することによるものと 言われている。

【0004】これらの対策として、特開昭61-185 910号公報では、R-B-Fe系永久磁石の表面にZ nの薄膜を拡散形成する方法、特開昭61-27030 8号公報では、R-B-Fe系永久磁石の表面層を除去 したのち、A1の薄膜を被着させる方法、さらに特開昭 63-77104号公報では、R-B-Fe系永久磁石

ド樹脂、メラミン樹脂、シリコン樹脂等の塗装用合成樹 脂等の耐酸化性樹脂を塗布する方法が開示されている。 [0005]

【発明が解決しようとする課題】ところが、上記従来の 技術で述べられているR-B-Fe系永久磁石の防食方 法は、いずれも上記永久磁石の表面にZn,A1、また は合成樹脂等の耐食性のある保護膜を被着させるもの で、磁石の製造工程とは別の工程が必要となり、工程が 複雑化する上にコスト高となり、さらに、上記合成樹脂 保護膜は厚さがあるために特に小型磁石製品の寸法精度 を悪くする。いずれにしても上記防食方法は上記永久磁 石の外部を腐食等に対して保護するにすぎず、上記保護 膜がはく離したりまたは亀裂が生じたりした場合には、 それらの個所から内部に腐食が浸透し、内部的な腐食は 防止できず、それに伴って磁気特性も劣化するという問 題点があった。

[0006]

【課題を解決するための手段】そこで、本発明者等は、 耐食性にすぐれ、かつ磁気特性にもすぐれたR-B-F e系焼結磁石を製造すべく研究を行った結果、R, Fe 1.B相(以下、主相という)と上記主相のまわりに存在 する粒界相とからなる組織を有するR-B-Fe系焼結 磁石であって、粒界相に、Ni, Co, Mn, Cr, T i, V, Al, Ga, In, Zr, Hf, Ta, Nb, Mo, Si, ReおよびWのうち少なくとも1種(以 下、Mという)が20~90原子%を含有した粒界相を 有するR-B-Fe系焼結磁石は、すぐれた耐食性を有 する、という知見を得たのである。

【0007】この発明は、かかる知見にもとづいてなさ れたものであって、(1) 主相と粒界相からなるR-B-Fe系焼結磁石において、上記粒界相は、

M:20~90原子%

を含む粒界相である耐食性および磁気特性にすぐれた希 土類-B-Fe系焼結磁石、に特徴を有するものであ る。

【0008】上記Mが粒界相に20原子%未満含まれて いても十分な耐食性が得られず、一方、粒界相にMが9 0原子%を越えて含有させようとすると、製造中に上記 Mは主相にも拡散侵入するために耐食性は向上するが磁 気特性が大幅に低下するので好ましくない。

【0009】上記Mを含有した粒界相は図1に示される Rリッチ相よりも腐食しにくい相であり、この腐食しに くい粒界相は焼結過程での結晶粒の成長を抑制し高密度 化させる作用を有するために耐食性および磁気特性が共 に優れたR-B-Fe系焼結磁石が得られるものと考え

【0010】この発明の粒界相にM:20~90原子% を含む希土類-B-Fe系焼結磁石は、所定の組成を有 するR-B-Fe系合金粉末にMの超微粉末またはMの の表面にエボキシ樹脂、熱硬化型アクリル樹脂、アルキ 50 水素化物粉末を0.0005~3重量%配合し、混合し 3

て得られた混合粉末を、成形し、非酸化性雰囲気中、温度:900~1200℃で焼結することにより製造される。上記R-B-Fe系合金粉末に混合する粉末は、Mの超微粉末よりもMの水素化物粉末の方が好ましい。Mの超微粉末は焼結中にR、Fe14B相に拡散する量が少なく、焼結中にMの水素化物の水素は放出され、Mのみが粒界相に残留する。

【0011】このようにして製造された希土類-B-F e系焼結磁石は、必要に応じて非酸化性雰囲気中、温 度:400~700℃で熱処理してもよい。 【0012】

【発明の実施の形態】

実施例1~7および従来例

まず、15%Nd-8%B-残Fe(但し%は原子%)となるように溶解し、合金インゴットを作製した。この合金インゴットをアルゴン雰囲気中で温度:1050 ℃、20時間保持の熱処理を行ったあと、粉砕し、平均粒径:35μmのR-B-Fe系合金粉末を用意した。【0013】さらに添加粉末として、ZrH、粉末(平 20均粒径:1.3μm)、TaH、粉末(平均粒径:1.5μm)、TiH、粉末(平均粒径:1.3μm)、NbH、粉末(平均粒径:1.3μm)、VH粉末(平均粒径:1.5μm)およびHfH、粉末(平均粒径1.3μm)を用意し、これら粉末を上記15%Nd-8%*

* B - 残F e (但し、%は、原子%)のR - B - F e 系合金粉末と0.0005~3重量%の範囲内の所定割合となるように配合し、混合して混合粉末とし、これら混合粉末を成形圧:2 t / cm² で磁場中(14 K O e)にて成形し、たて:20mm×横:20mm×高さ:15mmの成形体を作製した。これら成形体を真空中(10⁻⁵Torr)で10℃/minの昇温速度にて加熱し、温度:1080℃、2時間保持の条件で焼結し、100℃/minの冷却速度で冷却した。

.0 【0014】この焼結体を加熱速度:100℃/min で加熱し、温度:620℃、2時間保持したのち、100℃/min の冷却速度で冷却し熱処理した。

【0015】この熱処理した焼結体の組織を調べたところ、R、FeiB相および粒界相からなり、図1とほぼ同一の組織を有しており、上記粒界相の組成を、STEMにより測定してその結果を表1に示した。さらに、上記焼結体の磁気特性を測定し、この焼結体を温度:60℃、湿度:90%の大気中に1000時間放置して耐食試験を行なった後、再度、磁気特性を測定するとともに錆の発生状況を目視により観察し、これらの結果を表1に示した。表1において、耐食試験前に測定した磁気特性の測定値を「耐食試験前」の欄に、耐食試験後に測定した磁気特性の測定値を「耐食試験後」の欄に示した。【0016】

【表1】

		粒界相の成分組成	(原子%)			ı	5 5	特	性	
種別		分 鱼 真 元 素	NdUッチ相	日後による着の状況	岩食試験前			對食試験後		
					Br (KG)	i H s (K O e)	BHmax (MGOe)	Br (KG)	ìHc (KOe)	BHmax (MGO e)
	1	Zr:32	践	雑なし	12.6	13.6	38. 0	12. 4	13. 2	37. 0
実	2	Ta:45	器	誰なし	12.5	13. 5	37. 8	12. 3	13. 2	36. 2
*	3	Ti:85	丑	着なし	12.5	14. 5	38. 3	12. 4	14. 1	37. 6
篇	4	Nb:59	莀	錆なし	12. 5	14. 3	38. 2	12. 4	13.9	37. 5
3 1	5	V :88	推	着なし	12.4	14.5	37.8	12.4	14. 1	37. 6
	6	Hf:52	燕	着なし	12.5	13.9	3 8 . 0	12.4	13. 6	37. 4
	7	Nb:21 Hf:23	费	第なし	12.5	13.6	37. 8	12. 3	13.3	36. 3
従	来	-	100	著しい	12. 5	1 2. 5	3 6. 8	11. 2	7. 5	22. 0

表1の結果から、粒界相に金属元素の存在しない従来例と比べて、粒界相に金属元素が存在しているこの発明の 希土類-B-Fe系焼結磁石は磁気特性に優れていると ともに耐食性にもすぐれていることがわかる。

[0017]

【発明の効果】この発明のR-B-Fe系焼結磁石には 表面処理する必要がなく、また焼結磁石の磁気特性の劣 化が少ないので、この磁石を組み込んだ装置の性能の低 下が防止されるという産業上すぐれた効果を奏するもの

【図面の簡単な説明】

5

* *【図1】R-B-Fe系焼結磁石の組織図である。

【図1】

a: Ra Fei Bi相

b: Rリッチ相

c: R Fe → B → 相 (Bリッチ相)