MATHEMATICS-II (MATH F112)

Dr. Krishnendra Shekhawat

BITS PILANI
Department of Mathematics

Section 4.6

$Constructing\ Special\ Bases$

A subset B of a vector space V is said to be a basis of V if

A subset B of a vector space V is said to be a basis of V if

•
$$\operatorname{span}(B) = V$$
,

A subset B of a vector space V is said to be a basis of V if

• $\operatorname{span}(B) = V$, i.e., $B \operatorname{spans} V$ and

A subset B of a vector space V is said to be a basis of V if

- $\operatorname{span}(B) = V$, i.e., $B \operatorname{spans} V$ and
- *B* is LI.

A subset B of a vector space V is said to be a basis of V if

- $\operatorname{span}(B) = V$, i.e., $B \operatorname{spans} V$ and
- *B* is LI.

The dimension of a vector space V

A subset B of a vector space V is said to be a basis of V if

- $\operatorname{span}(B) = V$, i.e., $B \operatorname{spans} V$ and
- *B* is LI.

The dimension of a vector space V is the number of vectors in a basis of V

A subset B of a vector space V is said to be a basis of V if

- $\operatorname{span}(B) = V$, i.e., $B \operatorname{spans} V$ and
- *B* is LI.

The dimension of a vector space V is the number of vectors in a basis of V and it is denoted by $\dim(V)$.

The subset $B = \{[1,0],[0,1]\}$ is a basis of \mathbb{R}^2

The subset $B = \{[1,0], [0,1]\}$ is a basis of \mathbb{R}^2 as $\operatorname{span}(B) = \mathbb{R}^2$ and

The subset $B = \{[1,0], [0,1]\}$ is a basis of \mathbb{R}^2 as $\operatorname{span}(B) = \mathbb{R}^2$ and B is LI.

The subset $B = \{[1,0], [0,1]\}$ is a basis of \mathbb{R}^2 as $\operatorname{span}(B) = \mathbb{R}^2$ and B is LI .The subset B is called the **standard basis** of \mathbb{R}^2 .

The subset $B = \{[1,0], [0,1]\}$ is a basis of \mathbb{R}^2 as $\operatorname{span}(B) = \mathbb{R}^2$ and B is LI .The subset B is called the **standard basis** of \mathbb{R}^2 . Here, $\dim(\mathbb{R}^2) = 2$.

The subset $B = \{[1,0], [0,1]\}$ is a basis of \mathbb{R}^2 as $\operatorname{span}(B) = \mathbb{R}^2$ and B is LI .The subset B is called the **standard basis** of \mathbb{R}^2 . Here, $\dim(\mathbb{R}^2) = 2$.

The subset $B = \{1, x, x^2, \dots, x^n\}$ is a basis of P_n

The subset $B = \{[1,0],[0,1]\}$ is a basis of \mathbb{R}^2 as $\operatorname{span}(B) = \mathbb{R}^2$ and B is LI .The subset B is called the **standard basis** of \mathbb{R}^2 . Here, $\dim(\mathbb{R}^2) = 2$.

The subset $B = \{1, x, x^2, \dots, x^n\}$ is a basis of P_n as B is LI (why)

The subset $B = \{[1,0], [0,1]\}$ is a basis of \mathbb{R}^2 as $\operatorname{span}(B) = \mathbb{R}^2$ and B is LI .The subset B is called the **standard basis** of \mathbb{R}^2 . Here, $\dim(\mathbb{R}^2) = 2$.

The subset $B = \{1, x, x^2, \dots, x^n\}$ is a basis of P_n as B is LI (why) and span $(B) = P_n$ (why).

The subset $B = \{[1,0], [0,1]\}$ is a basis of \mathbb{R}^2 as $\operatorname{span}(B) = \mathbb{R}^2$ and B is LI .The subset B is called the **standard basis** of \mathbb{R}^2 . Here, $\dim(\mathbb{R}^2) = 2$.

The subset $B = \{1, x, x^2, \dots, x^n\}$ is a basis of P_n as B is LI (why) and span $(B) = P_n$ (why). Here, $\dim(P_n) = n + 1$.

$$W = \{ p \in P_5 | p(2) = p(3) = 0 \}.$$

$$W = \{ p \in P_5 | p(2) = p(3) = 0 \}.$$

$$W = \{ p \in P_5 | p(2) = p(3) = 0 \}.$$

$$W = \{(x-2)(x-3)(ax^3 + bx^2 + cx + d)|a,b,c,d \in \mathbb{R}\} \implies$$

$$W = \{ p \in P_5 | p(2) = p(3) = 0 \}.$$

$$W = \{(x-2)(x-3)(ax^3 + bx^2 + cx + d)|a,b,c,d \in \mathbb{R}\} \implies$$

$$2)(x-3)$$

$$W = \{ p \in P_5 | p(2) = p(3) = 0 \}.$$

Sol. Here W can be expressed as

$$W = \{(x-2)(x-3)(ax^3 + bx^2 + cx + d)|a,b,c,d \in \mathbb{R}\} \implies$$

(x-3) spans W.

$$W = \{ p \in P_5 | p(2) = p(3) = 0 \}.$$

$$W = \{(x-2)(x-3)(ax^3 + bx^2 + cx + d)|a,b,c,d \in \mathbb{R}\} \implies$$

$$2)(x-3)$$
 spans W. Also B is LI

$$W = \{ p \in P_5 | p(2) = p(3) = 0 \}.$$

Sol. Here W can be expressed as

$$W = \{(x-2)(x-3)(ax^3 + bx^2 + cx + d)|a,b,c,d \in \mathbb{R}\} \implies$$

2)(x-3) spans W. Also B is LI (why).

$$W = \{ p \in P_5 | p(2) = p(3) = 0 \}.$$

Sol. Here W can be expressed as

$$W = \{(x-2)(x-3)(ax^3 + bx^2 + cx + d)|a,b,c,d \in \mathbb{R}\} \implies$$

$$(x-3)$$
 spans W . Also B is LI (why).

Hence, B is a basis for W

$$W = \{ p \in P_5 | p(2) = p(3) = 0 \}.$$

Sol. Here W can be expressed as

$$W = \{(x-2)(x-3)(ax^3 + bx^2 + cx + d)|a,b,c,d \in \mathbb{R}\} \implies$$

$$(2)(x-3)$$
 spans W . Also B is LI (why).

Hence, B is a basis for W and dim(B) = 4.

Q:. Let
$$W = \{X \in \mathbb{R}^5 : AX = 0\},$$

Q:. Let $W = \{X \in \mathbb{R}^5 : AX = 0\}$, where

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 & -1 \\ 2 & -1 & 0 & 1 & 3 \\ 1 & -3 & -1 & 1 & 4 \\ 2 & 9 & 4 & -1 & -7 \end{bmatrix}$$

Find a basis for W.

Q:. Let $W = \{X \in \mathbb{R}^5 : AX = 0\}$, where

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 & -1 \\ 2 & -1 & 0 & 1 & 3 \\ 1 & -3 & -1 & 1 & 4 \\ 2 & 9 & 4 & -1 & -7 \end{bmatrix}$$

Find a basis for W.

Sol.

$$\{[-1/5, -2/5, 1, 0, 0]^T, [-2/5, 1/5, 0, 1, 0]^T, [-1, 1, 0, 0, 1]^T\}$$

Q:. Let $S = \{[1,2],[3,0],[0,2]\} \subseteq \mathbb{R}^2$.

Q:. Let $S = \{[1,2],[3,0],[0,2]\} \subseteq \mathbb{R}^2$. Find a basis for span(S).

Q:. Let $S = \{[1,2],[3,0],[0,2]\} \subseteq \mathbb{R}^2$. Find a basis for span(S).

Sol. span(S) =
$$\{x[1,2] + y[3,0] + z[0,2] | x, y, z \in \mathbb{R}\} \implies$$

Sol. span(S) =
$$\{x[1,2] + y[3,0] + z[0,2] | x, y, z \in \mathbb{R}\} \implies$$

span(S) = $\{[x + 3y, 2x + 2z] | x, y, z \in \mathbb{R}\} \implies$

Sol. span(S) =
$$\{x[1,2] + y[3,0] + z[0,2] | x, y, z \in \mathbb{R}\} \implies$$

span(S) = $\{[x+3y,2x+2z] | x,y,z \in \mathbb{R}\} \implies$
span(S) = $\{(x+3y)[1,0] + (x+z)[0,2] | x,y,z \in \mathbb{R}\} \implies$

Sol. span(S) =
$$\{x[1,2] + y[3,0] + z[0,2] | x, y, z \in \mathbb{R}\} \implies$$

span(S) = $\{[x+3y,2x+2z] | x,y,z \in \mathbb{R}\} \implies$
span(S) = $\{(x+3y)[1,0] + (x+z)[0,2] | x,y,z \in \mathbb{R}\} \implies$
span(S) = span([1,0],[0,2]) = span(B).

Sol. span(S) =
$$\{x[1,2] + y[3,0] + z[0,2] | x,y,z \in \mathbb{R}\} \implies$$

span(S) = $\{[x + 3y, 2x + 2z] | x,y,z \in \mathbb{R}\} \implies$
span(S) = $\{(x + 3y)[1,0] + (x + z)[0,2] | x,y,z \in \mathbb{R}\} \implies$
span(S) = span([1,0],[0,2]) = span(B).
Since, B is LI,

Sol. span(
$$S$$
) = { $x[1,2] + y[3,0] + z[0,2] | x,y,z \in \mathbb{R}$ } \Longrightarrow span(S) = { $[x + 3y, 2x + 2z] | x,y,z \in \mathbb{R}$ } \Longrightarrow span(S) = { $(x + 3y)[1,0] + (x + z)[0,2] | x,y,z \in \mathbb{R}$ } \Longrightarrow span(S) = span($[1,0],[0,2]$) = span($[3,0],[0,2]$) = span($[3,0],[0,2]$). Since, $[3,0]$ is LI, $[3,0]$ forms a basis for span($[3,0]$).

In order to find a basis for span(S), we need a subset B of span(S) such that

• $\operatorname{span}(S) = \operatorname{span}(B)$;

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- *B* is LI.

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- *B* is LI.

Since
$$[1,2] = \frac{1}{3}[3,0] + [0,2]$$

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- *B* is LI.

Since
$$[1,2] = \frac{1}{3}[3,0] + [0,2]$$
 implies span $(S) = \text{span}(B)$

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- *B* is LI.

Since
$$[1,2] = \frac{1}{3}[3,0] + [0,2]$$
 implies span $(S) = \text{span}(B)$ (why)

In order to find a basis for span(S), we need a subset B of span(S) such that

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- *B* is LI.

Since $[1,2] = \frac{1}{3}[3,0] + [0,2]$ implies span(S) = span(B) (why) where $B = \{[3,0],[0,2]\}.$

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- *B* is LI.

Since
$$[1,2] = \frac{1}{3}[3,0] + [0,2]$$
 implies span $(S) = \text{span}(B)$ (why) where $B = \{[3,0],[0,2]\}$. Also, B is LI

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- *B* is LI.

Since
$$[1,2] = \frac{1}{3}[3,0] + [0,2]$$
 implies span $(S) = \text{span}(B)$ (why) where $B = \{[3,0],[0,2]\}$. Also, B is LI (why).

In order to find a basis for span(S), we need a subset B of span(S) such that

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- *B* is LI.

Since $[1,2] = \frac{1}{3}[3,0] + [0,2]$ implies span(S) = span(B) (why) where $B = \{[3,0],[0,2]\}$. Also, B is LI (why). Hence, B is a basis of span(S).

In order to find a basis for span(S), we need a subset B of span(S) such that

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- *B* is LI.

Since $[1,2] = \frac{1}{3}[3,0] + [0,2]$ implies span(S) = span(B) (why) where $B = \{[3,0],[0,2]\}$. Also, B is LI (why). Hence, B is a basis of span(S).

Q:. Does there always exists a basis for span(S).

Theorem: Let V be a finite dimensional vector space such that $\dim(V) = n$.

Theorem: Let V be a finite dimensional vector space such that $\dim(V) = n$. Suppose S is a finite subset of V that spans V. Then $|S| \ge n$.

Theorem: Let V be a finite dimensional vector space such that $\dim(V) = n$. Suppose S is a finite subset of V that spans V. Then $|S| \ge n$. Moreover, |S| = n if and only if S is a basis of V.

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

• Construct a matrix A of order $k \times n$ by using vectors of S

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

• Construct a matrix A of order $k \times n$ by using vectors of S as rows of A.

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

- Construct a matrix A of order $k \times n$ by using vectors of S as rows of A.
- Compute C = RREF(A).

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

- Construct a matrix A of order $k \times n$ by using vectors of S as rows of A.
- Compute C = RREF(A).
- Non-zero rows of C forms a basis for span(S).

Q:. Let
$$S = \{[1,2,3,-1,0],[3,6,8,-2,0],$$

[-1,-1,-3,1,1],[-2,-3,-5,1,1]} be a subset of \mathbb{R}^5 .

Q:. Let $S = \{[1,2,3,-1,0],[3,6,8,-2,0],$ [-1,-1,-3,1,1],[-2,-3,-5,1,1]} be a subset of \mathbb{R}^5 . Find a basis for span(S).

Q:. Let $S = \{[1,2,3,-1,0],[3,6,8,-2,0],$ [-1,-1,-3,1,1],[-2,-3,-5,1,1]} be a subset of \mathbb{R}^5 . Find a basis for span(S).

Sol. Step 1.

Q:. Let $S = \{[1,2,3,-1,0],[3,6,8,-2,0],$ [-1,-1,-3,1,1],[-2,-3,-5,1,1]} be a subset of \mathbb{R}^5 . Find a basis for span(S).

Sol. Step 1.

$$A = \begin{bmatrix} 1 & 2 & 3 & -1 & 0 \\ 3 & 6 & 8 & -2 & 0 \\ -1 & -1 & -3 & 1 & 1 \\ -2 & -3 & -5 & 1 & 1 \end{bmatrix}$$

$$C = RREF(A) = \begin{bmatrix} \boxed{1} & 0 & 0 & 2 & -2 \\ 0 & \boxed{1} & 0 & 0 & 1 \\ 0 & 0 & \boxed{1} & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C = RREF(A) = \begin{bmatrix} \boxed{1} & 0 & 0 & 2 & -2 \\ 0 & \boxed{1} & 0 & 0 & 1 \\ 0 & 0 & \boxed{1} & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Step 3.

$$C = RREF(A) = \begin{bmatrix} \boxed{1} & 0 & 0 & 2 & -2 \\ 0 & \boxed{1} & 0 & 0 & 1 \\ 0 & 0 & \boxed{1} & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Step 3.

Corresponding to non-zero rows,

$$C = RREF(A) = \begin{bmatrix} \boxed{1} & 0 & 0 & 2 & -2 \\ 0 & \boxed{1} & 0 & 0 & 1 \\ 0 & 0 & \boxed{1} & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Step 3.

Corresponding to non-zero rows,

$$B = \{[1,0,0,2,-2], [0,1,0,0,1], [0,0,1,-1,0]\}$$

$$C = RREF(A) = \begin{bmatrix} \boxed{1} & 0 & 0 & 2 & -2 \\ 0 & \boxed{1} & 0 & 0 & 1 \\ 0 & 0 & \boxed{1} & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Step 3.

Corresponding to non-zero rows,

$$B = \{[1,0,0,2,-2],[0,1,0,0,1],[0,0,1,-1,0]\}$$
 is a basis for span (S) .

Q:. Let

$$S = \{x^3 - 3x^2 + 2, 2x^3 - 7x^2 + x - 3, 4x^3 - 13x^2 + x + 5\}$$
 be a subset of P_3 . Use Simplified Span Method to find a basis for span (S) .

Q:. Let

$$S = \{x^3 - 3x^2 + 2, 2x^3 - 7x^2 + x - 3, 4x^3 - 13x^2 + x + 5\}$$
 be a subset of P_3 . Use Simplified Span Method to find a basis for span (S) .

Sol.
$$B = \{x^3 - 3x, x^2 - x, 1\}$$

Next is to reduce a spanning set to a basis

Next is to reduce a spanning set to a basis by eliminating redundant vectors

Next is to reduce a spanning set to a basis by eliminating redundant vectors without changing the form of the original vectors.

Next is to reduce a spanning set to a basis by eliminating redundant vectors without changing the form of the original vectors. How?

Next is to reduce a spanning set to a basis by eliminating redundant vectors without changing the form of the original vectors. How?

Theorem: If S is a spanning set for a finite dimensional vector space V, then there is a set $B \subseteq S$ that is a basis for V.

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

• Construct a matrix A of order $n \times k$ by using vectors of S

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

• Construct a matrix A of order $n \times k$ by using vectors of S as columns of A.

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

- Construct a matrix A of order $n \times k$ by using vectors of S as columns of A.
- Compute C = RREF(A).

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

- Construct a matrix A of order $n \times k$ by using vectors of S as columns of A.
- Compute C = RREF(A).
- Vectors corresponding to pivot columns of C forms a basis for span(S).

Q:. Let $S = \{[1,2,-2,1], [-3,0,-4,3], [2,1,1,-1], [-3,3,-9,6], [9,3,7,-6]\}$ be a subset of \mathbb{R}^4 .

Q:. Let $S = \{[1,2,-2,1], [-3,0,-4,3], [2,1,1,-1], [-3,3,-9,6], [9,3,7,-6]\}$ be a subset of \mathbb{R}^4 . Find a basis for span(S).

Q:. Let $S = \{[1,2,-2,1], [-3,0,-4,3], [2,1,1,-1], [-3,3,-9,6], [9,3,7,-6]\}$ be a subset of \mathbb{R}^4 . Find a basis for span(S).

Sol. Step 1.

Q:. Let $S = \{[1,2,-2,1], [-3,0,-4,3], [2,1,1,-1], [-3,3,-9,6], [9,3,7,-6]\}$ be a subset of \mathbb{R}^4 . Find a basis for span(S).

Sol. Step 1.

$$A = \begin{bmatrix} 1 & -3 & 2 & -3 & 9 \\ 2 & 0 & 1 & 3 & 3 \\ -2 & -4 & 1 & -9 & 7 \\ 1 & 3 & -1 & 6 & -6 \end{bmatrix}$$

Step 3.

Step 3.

Corresponding to pivot columns,

Step 3.

Corresponding to pivot columns,

$$B = \{[1, 2, -2, 1], [-3, 0, -4, 3]\}$$
 forms a basis for span (S) .

Q:. Let $S = \{x^3 - 3x^2 + 1, 2x^2 + x, 2x^3 + 3x + 2, 4x - 5\}$ be a subset of P_3 . Use Independence Test Method to find a basis for span(S).

Q:. Let $S = \{x^3 - 3x^2 + 1, 2x^2 + x, 2x^3 + 3x + 2, 4x - 5\}$ be a subset of P_3 . Use Independence Test Method to find a basis for span(S).

Sol.
$$B = \{x^3 - 3x^2 + 1, 2x^2 + x, 4x - 5\}$$

Q: Let $S = \{x^3 - 3x^2 + 1, 2x^2 + x, 2x^3 + 3x + 2, 4x - 5\}$ be a subset of P_3 . Use Independence Test Method to find a basis for span(S).

Sol.
$$B = \{x^3 - 3x^2 + 1, 2x^2 + x, 4x - 5\}$$

Q:. Does Simplified Span Method give a basis B for span(S) such that $B \subset S$.

Q: Let $S = \{x^3 - 3x^2 + 1, 2x^2 + x, 2x^3 + 3x + 2, 4x - 5\}$ be a subset of P_3 . Use Independence Test Method to find a basis for span(S).

Sol.
$$B = \{x^3 - 3x^2 + 1, 2x^2 + x, 4x - 5\}$$

Q:. Does Simplified Span Method give a basis B for span(S) such that $B \subset S$.

Sol. No. Counterexample

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Q: Let $S = \{x^3 - 3x^2 + 1, 2x^2 + x, 2x^3 + 3x + 2, 4x - 5\}$ be a subset of P_3 . Use Independence Test Method to find a basis for span(S).

Sol.
$$B = \{x^3 - 3x^2 + 1, 2x^2 + x, 4x - 5\}$$

Q:. Does Simplified Span Method give a basis B for span(S) such that $B \subset S$.

Sol. No. Counterexample

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Q:. Let $T = \{[1,0,1,0], [-1,1,-1,0]\}$ be a LI subset of \mathbb{R}^4 .

Q:. Let $T = \{[1,0,1,0], [-1,1,-1,0]\}$ be a LI subset of \mathbb{R}^4 . Extend T to form a basis for \mathbb{R}^4 .

Q: Let $T = \{[1,0,1,0],[-1,1,-1,0]\}$ be a LI subset of \mathbb{R}^4 Extend T to form a basis for \mathbb{R}^4

Why T is not a basis for \mathbb{R}^4 .

Q:. Let $T = \{[1,0,1,0],[-1,1,-1,0]\}$ be a LI subset of \mathbb{R}^4 . Extend T to form a basis for \mathbb{R}^4 .

Why T is not a basis for \mathbb{R}^4 . How can we extend T to form a basis for \mathbb{R}^4 .

Q:. Let $T = \{[1,0,1,0],[-1,1,-1,0]\}$ be a LI subset of \mathbb{R}^4 . Extend T to form a basis for \mathbb{R}^4 .

Why T is not a basis for \mathbb{R}^4 . How can we extend T to form a basis for \mathbb{R}^4 .

Sol. span(T) =
$$\{a[1,0,1,0] + b[-1,1,-1,0] | a,b \in \mathbb{R}\} \implies$$

Q:. Let $T = \{[1,0,1,0],[-1,1,-1,0]\}$ be a LI subset of \mathbb{R}^4 . Extend T to form a basis for \mathbb{R}^4 .

Why T is not a basis for \mathbb{R}^4 . How can we extend T to form a basis for \mathbb{R}^4 .

Sol. span(
$$T$$
) = { $a[1,0,1,0] + b[-1,1,-1,0] | a,b \in \mathbb{R}$ } \Longrightarrow span(T) = { $[a-b,b,a-b,0] | a,b \in \mathbb{R}$ }.

Q:. Let $T = \{[1,0,1,0],[-1,1,-1,0]\}$ be a LI subset of \mathbb{R}^4 . Extend T to form a basis for \mathbb{R}^4 .

Why T is not a basis for \mathbb{R}^4 . How can we extend T to form a basis for \mathbb{R}^4 .

Sol. span(T) = {
$$a[1,0,1,0] + b[-1,1,-1,0] | a,b \in \mathbb{R}$$
} \Longrightarrow span(T) = { $[a-b,b,a-b,0] | a,b \in \mathbb{R}$ }.

Now $[0,0,0,1] \notin \operatorname{span}(T) \Longrightarrow$

Q:. Let $T = \{[1,0,1,0],[-1,1,-1,0]\}$ be a LI subset of \mathbb{R}^4 . Extend T to form a basis for \mathbb{R}^4 .

Why T is not a basis for \mathbb{R}^4 . How can we extend T to form a basis for \mathbb{R}^4 .

Sol. span(
$$T$$
) = { $a[1,0,1,0] + b[-1,1,-1,0] | a,b \in \mathbb{R}$ } \Longrightarrow span(T) = { $[a-b,b,a-b,0] | a,b \in \mathbb{R}$ }.

Now $[0,0,0,1] \notin \operatorname{span}(T) \Longrightarrow$

 $S = \{[1,0,1,0],[-1,1,-1,0],[0,0,0,1]\}$ is a LI a subset of \mathbb{R}^4 .

Similarly, we can verify that $[0,0,1,0] \notin \text{span}(S) \Longrightarrow$

Hence, B is a basis of \mathbb{R}^4 containing T.

Hence, B is a basis of \mathbb{R}^4 containing T.

Another approach

Hence, B is a basis of \mathbb{R}^4 containing T.

Another approach

Sol. Let
$$T = \{v_1, v_2\}$$
.

Hence, B is a basis of \mathbb{R}^4 containing T.

Another approach

Sol. Let $T = \{v_1, v_2\}$. We know that $A = \{e_1, e_2, e_3, e_4\}$ is a standard basis for \mathbb{R}^4 .

Hence, B is a basis of \mathbb{R}^4 containing T.

Another approach

Sol. Let $T = \{v_1, v_2\}$. We know that $A = \{e_1, e_2, e_3, e_4\}$ is a standard basis for \mathbb{R}^4 . Let $S = \{v_1, v_2, e_1, e_2, e_3, e_4\}$.

Hence, B is a basis of \mathbb{R}^4 containing T.

Another approach

Sol. Let $T = \{v_1, v_2\}$. We know that $A = \{e_1, e_2, e_3, e_4\}$ is a standard basis for \mathbb{R}^4 . Let $S = \{v_1, v_2, e_1, e_2, e_3, e_4\}$.

Now A spans $\mathbb{R}^4 \Longrightarrow$

Hence, B is a basis of \mathbb{R}^4 containing T.

Another approach

Sol. Let $T = \{v_1, v_2\}$. We know that $A = \{e_1, e_2, e_3, e_4\}$ is a standard basis for \mathbb{R}^4 . Let $S = \{v_1, v_2, e_1, e_2, e_3, e_4\}$.

Now A spans $\mathbb{R}^4 \implies S$ spans \mathbb{R}^4 , i.e., $\mathbb{R}^4 = \text{span}(S)$.

$$C = \begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \Longrightarrow$$

$$C = \begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \Longrightarrow$$

$$RREF(C) = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \Longrightarrow$$

$$C = \begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \Longrightarrow$$

$$RREF(C) = \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 1 & 0 \\ 0 & \boxed{1} & 0 & 1 & 0 & 0 \\ 0 & 0 & \boxed{1} & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \boxed{1} \end{bmatrix} \Longrightarrow$$

 $B = \{v_1, v_2, e_1, e_4\}$ is a basis of \mathbb{R}^4 containing T.

Recall

Recall

Theorem: Let V be a finite dimensional vector space such that dim(V) = n.

Recall

Theorem: Let V be a finite dimensional vector space such that $\dim(V) = n$. Suppose T is a linearly independent subset of V. Then T is finite and $|T| \leq n$.

Recall

Theorem: Let V be a finite dimensional vector space such that $\dim(V) = n$. Suppose T is a linearly independent subset of V. Then T is finite and $|T| \le n$. Moreover, |T| = n if and only if T is a basis for V.

Recall

Theorem: Let V be a finite dimensional vector space such that $\dim(V) = n$. Suppose T is a linearly independent subset of V. Then T is finite and $|T| \leq n$. Moreover, |T| = n if and only if T is a basis for V.

Theorem: Let W be a subspace of a finite dimensional vector space V.

Recall

Theorem: Let V be a finite dimensional vector space such that $\dim(V) = n$. Suppose T is a linearly independent subset of V. Then T is finite and $|T| \le n$. Moreover, |T| = n if and only if T is a basis for V.

Theorem: Let W be a subspace of a finite dimensional vector space V. Then W is also finite dimensional and $\dim(W) \leq \dim(V)$.

Recall

Theorem: Let V be a finite dimensional vector space such that $\dim(V) = n$. Suppose T is a linearly independent subset of V. Then T is finite and $|T| \leq n$. Moreover, |T| = n if and only if T is a basis for V.

Theorem: Let W be a subspace of a finite dimensional vector space V. Then W is also finite dimensional and $\dim(W) \leq \dim(V)$. $\dim(W) = \dim(V)$ if and only if W = V.

Let $T = \{t_1, ..., t_k\}$ be a LI subset of a finite dimensional vector space V.

Let $T = \{t_1, ..., t_k\}$ be a LI subset of a finite dimensional vector space V.

• Find a spanning set $A = \{a_1, \dots, a_n\}$ for V.

Let $T = \{t_1, ..., t_k\}$ be a LI subset of a finite dimensional vector space V.

- Find a spanning set $A = \{a_1, \dots, a_n\}$ for V.
- Form the <u>ordered</u> spanning set

Let $T = \{t_1, \ldots, t_k\}$ be a LI subset of a finite dimensional vector space V.

- Find a spanning set $A = \{a_1, \dots, a_n\}$ for V.
- Form the ordered spanning set $S = \{t_1, \dots, t_k, a_1, \dots, a_n\}$ for V.

Let $T = \{t_1, ..., t_k\}$ be a LI subset of a finite dimensional vector space V.

- Find a spanning set $A = \{a_1, \dots, a_n\}$ for V.
- Form the <u>ordered</u> spanning set $S = \{t_1, \dots, t_k, a_1, \dots, a_n\}$ for V.
- Use Independence Test Method to produce a subset B of S.

Let $T = \{t_1, ..., t_k\}$ be a LI subset of a finite dimensional vector space V.

- Find a spanning set $A = \{a_1, \dots, a_n\}$ for V.
- Form the <u>ordered</u> spanning set $S = \{t_1, \dots, t_k, a_1, \dots, a_n\}$ for V.
- Use Independence Test Method to produce a subset B of S. Then B is a basis for V containing T.

Q:. Let $T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$ be a LI subset of P_4 .

Q:. Let $T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$ be a LI subset of P_4 . Extend T to form a basis for P_4 .

Q: Let $T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$ be a LI subset of P_4 . Extend T to form a basis for P_4 .

Sol. We first convert polynomials in T to vectors in \mathbb{R}^5 ,

Q: Let $T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$ be a LI subset of P_4 . Extend T to form a basis for P_4 .

Sol. We first convert polynomials in T to vectors in \mathbb{R}^5 , i.e., $T = \{[0, 1, -1, 0, 0], [1, -3, 5, -1, 0]\}.$

Q: Let $T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$ be a LI subset of P_4 . Extend T to form a basis for P_4 .

Sol. We first convert polynomials in T to vectors in \mathbb{R}^5 , i.e., $T = \{[0, 1, -1, 0, 0], [1, -3, 5, -1, 0]\}$. Let $T = \{v_1, v_2\}$.

Q: Let $T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$ be a LI subset of P_4 . Extend T to form a basis for P_4 .

Sol. We first convert polynomials in T to vectors in \mathbb{R}^5 , i.e., $T = \{[0,1,-1,0,0],[1,-3,5,-1,0]\}$. Let $T = \{v_1,v_2\}$. **Step 1.**

Q: Let $T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$ be a LI subset of P_4 . Extend T to form a basis for P_4 .

Sol. We first convert polynomials in T to vectors in \mathbb{R}^5 , i.e., $T = \{[0,1,-1,0,0],[1,-3,5,-1,0]\}$. Let $T = \{v_1,v_2\}$. **Step 1.** $A = \{e_1,e_2,e_3,e_4,e_5\}$ is a standard basis for \mathbb{R}^5 ,

Q:. Let $T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$ be a LI subset of P_4 . Extend T to form a basis for P_4 .

Sol. We first convert polynomials in T to vectors in \mathbb{R}^5 , i.e., $T = \{[0,1,-1,0,0],[1,-3,5,-1,0]\}$. Let $T = \{v_1,v_2\}$.

Step 1. $A = \{e_1, e_2, e_3, e_4, e_5\}$ is a standard basis for \mathbb{R}^5 , hence it is a spanning set for \mathbb{R}^5 .

Example

Q: Let $T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$ be a LI subset of P_4 . Extend T to form a basis for P_4 .

Sol. We first convert polynomials in T to vectors in \mathbb{R}^5 , i.e., $T = \{[0, 1, -1, 0, 0], [1, -3, 5, -1, 0]\}$. Let $T = \{v_1, v_2\}$.

Step 1. $A = \{e_1, e_2, e_3, e_4, e_5\}$ is a standard basis for \mathbb{R}^5 , hence it is a spanning set for \mathbb{R}^5 .

Step 2.

Example

Q: Let $T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$ be a LI subset of P_4 . Extend T to form a basis for P_4 .

Sol. We first convert polynomials in T to vectors in \mathbb{R}^5 , i.e., $T = \{[0, 1, -1, 0, 0], [1, -3, 5, -1, 0]\}$. Let $T = \{v_1, v_2\}$.

Step 1. $A = \{e_1, e_2, e_3, e_4, e_5\}$ is a standard basis for \mathbb{R}^5 , hence it is a spanning set for \mathbb{R}^5 .

Step 2. The ordered spanning set is

Example

Q: Let $T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$ be a LI subset of P_4 . Extend T to form a basis for P_4 .

Sol. We first convert polynomials in T to vectors in \mathbb{R}^5 , i.e., $T = \{[0, 1, -1, 0, 0], [1, -3, 5, -1, 0]\}$. Let $T = \{v_1, v_2\}$.

Step 1. $A = \{e_1, e_2, e_3, e_4, e_5\}$ is a standard basis for \mathbb{R}^5 , hence it is a spanning set for \mathbb{R}^5 .

Step 2. The ordered spanning set is $S = \{v_1, v_2, e_1, e_2, e_3, e_4, e_5\}.$

Step 3.

$$C = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -3 & 0 & 1 & 0 & 0 & 0 \\ -1 & 5 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -3 & 0 & 1 & 0 & 0 & 0 \\ -1 & 5 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 4.

$$C = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -3 & 0 & 1 & 0 & 0 & 0 \\ -1 & 5 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 4. RREF(C) =
$$\begin{bmatrix} 1 & 0 & 0 & 0 & -1 & -5 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 5.

Step 5. Since columns I, II, III, IV and VII are pivot columns,

Step 5. Since columns I, II, III, IV and VII are pivot columns, by independent test method, the set $B = \{v_1, v_2, e_1, e_2, e_5\}$ is the basis of \mathbb{R}^5 ,

Step 5. Since columns I, II, III, IV and VII are pivot columns, by independent test method, the set $B = \{v_1, v_2, e_1, e_2, e_5\}$ is the basis of \mathbb{R}^5 ,

i.e.,
$$B = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x, x^4, x^3, 1\}$$
 is the basis of P_4 containing T .

Exercise

Q:. Let
$$T = \left\{ \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ -1 & 1 \end{bmatrix} \right\}$$
 be a LI subset of M_{32} .

Exercise

Q:. Let
$$T = \left\{ \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ -1 & 1 \end{bmatrix} \right\}$$
 be a LI subset of

 M_{32} . Extend T to form a basis for M_{32} .

Exercise

Q:. Let
$$T = \left\{ \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ -1 & 1 \end{bmatrix} \right\}$$
 be a LI subset of

 M_{32} . Extend T to form a basis for M_{32} .

Sol.

$$B = \left\{ \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$$

