# Simulation of the IDEA Drift Chamber at the FCC-ee

N. Alipour Tehrani (CERN), B. Hegner, F. Grancagnolo, P. Janot, A. M. Kolano, G. F. Tassielli, G. Voutsinas

2018 IEEE Nuclear Science Symposium and Medical Imaging Conference

10 - 17 November 2018, International Convention Center Sydney, Australia





#### The Future Circular Collider Experiment (FCC)

- A possibility for the post-LHC era at CERN
  - First step: FCC-ee (electron positron)
  - Ultimate goal: FCC-hh (proton proton)
  - Optional: FCC-eh (electron proton)
- $\sim$ 100 km tunnel in Geneva area
- FCC-ee collider parameters:

| Stages                                 | Z    | WW  | H (ZH) | tŧ   |
|----------------------------------------|------|-----|--------|------|
| Center of mass energy $\sqrt{s}$ [GeV] | 91.2 | 160 | 240    | 365  |
| Average bunch spacing [ns]             | 19.6 | 163 | 994    | 3396 |
|                                        |      |     | 1      |      |



#### FCCSW: simulation software for FCC

- Common Geant4-based software for all FCC experiments (ee, hh & eh) [1]
- Detector and physics studies
  - Fast & full simulations
- One software stack from event generation to physics analysis

The IDEA detector as currently simulated with FCCSW

- Collaborative approach with other CERN experiments
  - Gaudi from LHC [2]  $\Rightarrow$  software architecture
  - DD4hep [3] from CLIC & LHCb ⇒ detector description
  - New solutions where needed
- The simulation pipeline

|   | Geometry<br>DDhep | <b></b> | Segmentation | <u></u> | GEANT4<br>simulation |   | Digitization |  |
|---|-------------------|---------|--------------|---------|----------------------|---|--------------|--|
| l |                   | ١       |              |         |                      | J |              |  |

#### The IDEA detector concept for FCC-ee

- The IDEA detector is one of the two detector concepts for the FCC-ee
- Main features of the IDEA concept
  - Vertex detector: MAPS
  - Ultra-light drift chamber with particle identification
  - Dual-readout calorimetry
  - Aditional silicon disk layers placed in the space between the drift chamber and the dual readout calorimeter to serve as a precise tracking layer and a pre showering device
  - 2 T axial magnetic field
  - Instrumented return yoke



**Tungsten Shielding Drift Chamber** Solenoid Shielding **Beam Pipe** 

## **Luminosity Calorimeter**

#### The IDEA drift chamber

- The gas volume is divided into a set of hyperboloid layers.
- Each layer contains single sense wire cells.
- Field wires surround the sense wires to provide homogeneous electric field for each cell.
- The wires are rotated with an average stereo angle of 0.1 radians to improve the longitudinal resolution along them.
- The parameters of the drift chamber

90 % Helium & Gas 10 % isobutane  $(C_4H_{10})$ Length 4000 mm Inner radius 345 mm Outer radius 2000 mm Nb. layer Cell size 12 mm - 14.7 mm Number of sensitive wires 56448 Transverse resolution 0.1 mm Longitudinal resolution 1 mm



Three main sources of beam-induced backgrounds at FCC-ee

Beam-induced backgrounds and the impact on the drift chamber

- **Incoherent**  $e^+e^-$  **pairs** due to bremstrahlung photons  $\Rightarrow$  highest source of background
- $\gamma\gamma \rightarrow$  hadrons  $\Rightarrow$  Expected to have a very low impact
- **Synchrotron radiation (SR)**  $\Rightarrow$  Dictates the design of the interaction region (IR)
  - Defines the beampipe radius, the design of the shielding (in Tungesten)
- Mostly stopped by the shielding, few SR photons can hit the detector
- The trajectory of the  $e^+e$  pairs in a 2 T magnetic field (using helix extrapolation).
- Simulation of the hits produced in the drift chamber due to incoherent  $e^+e^$ pairs (using FCCSW)





#### The simulation of the drift chamber with FCCSW

- The sensitive wires as simulated in the first layer of the drift chamber with FCCSW.
- The DD4hep segmentation (DDSegmentation) is responsible to associate a hit to the wire it drifts to
  - Reduces the running time by avoiding to place each wire individually



**Vertex Detector** 

- The coverage of the drift chamber as a function of the polar angle  $\theta$  is investigated using FCCSW.
- High coverage in the barrel region by  $\sim$  112 wires in average.
- In the forward region, silicon disks are foreseen to improve the track angle coverage.



### Conclusions

• Summary of the occupancy of the drift chamber due to the beam-induced backgrounds

| Background                        | Average occupancy           |                            |  |  |
|-----------------------------------|-----------------------------|----------------------------|--|--|
|                                   | $E_{cm} = 91.2 \text{ GeV}$ | $E_{cm} = 365 \text{ GeV}$ |  |  |
| $e^+e^-$ pair background          | 1.1%                        | 2.9%                       |  |  |
| $\gamma\gamma  ightarrow hadrons$ | 0.001%                      | 0.035%                     |  |  |
| Synchrotron radiation             | _                           | 0.2%                       |  |  |

 The overall impact remains low and the results are promising for the track reconstruction with this detector.

#### References

- URL: http://fccsw.web.cern.ch/fccsw.
- G. Barrand et al. "GAUDI A software architecture and framework for building HEP data processing applications". In: Comput. Phys. Commun. (2001).
- M. Frank et al. "DD4hep: A Detector Description Toolkit for High Energy Physics Experiments". In: J. Phys.: Conf. Ser. (2013).