On the semisimplicity of braid group representations in braided tensor categories.

Daniel Copeland

University of California San Diego

October 23 2021

Introduction

Given a braided tensor category \mathcal{C} , any object X gives homomorphisms

$$\Phi_n: \mathbb{C}B_n \to \mathrm{End}_{\mathcal{C}}(X^{\otimes n}).$$

For any other object Y we get representations of B_n on $\operatorname{Hom}_{\mathcal{C}}(Y, X^{\otimes n})$.

Question. If \mathcal{C} is semisimple and \mathbb{C} -linear, are the braid group representations semisimple?

Motivation

Known cases

- ► In any unitary braided tensor category, the braid reps are semisimple.
- ▶ If the images of the braid groups in $\operatorname{End}(X^{\otimes n})$ are finite, then the braid reps are semisimple.
- ▶ If the braid elements generate $\operatorname{End}(X^{\otimes n})$, then the braid reps are semisimple. Examples: Ribbon categories with the fusion rules of
 - Examples: Ribbon categories with the fusion rules of SU(N), SO(N) or Sp(N).

Symmetric Tensor Categories.

In any semisimple \mathcal{C} -linear STC, the braid reps are semisimple (these are representations of the symmetric group.) More interesting: if X is any self-dual object, then $\operatorname{End}(X^{\otimes n})$ contains a representation of the $\operatorname{Brauer\ algebra}$. Is this representation always semisimple? For an arbitrary object X, $\operatorname{End}((X \otimes X^*)^{\otimes n})$ contains a representation of the $\operatorname{walled\ Brauer\ algebra}$. Is this rep always semisimple?

The case of B_2 .

Lemma

Suppose C is a semisimple ribbon category and X is any object. Then B_2 acts semisimply in $End(X^{\otimes 2})$.

Proof.

The full twist $c_{X,X}^2$ is a central and invertible element in $\operatorname{End}(X^{\otimes 2})$. Therefore $c_{X,X}$ is a diagonalizable element of $\operatorname{End}(X^{\otimes 2})$.

Quantum topology: algebra to topology

Quantum algebraic data provides local data for the construction of TQFTs, and in turn invariants of manifolds.

TQFT	input	dimension of invariant
Reshetikhin-Turaev (1991)	modular tensor cat	3
Turaev-Viro (1992)	spherical fusion cat	3
Crane-Yetter (1993)	ribbon cat	4
:		
Douglas-Reutter (2018)	spherical fusion 2-cat	4
Chaidez-Cotler-Cui (2020)	Hopf algebra	4

Theorem (Cobordism Hypothesis. Baez-Dolan, Lurie)

$$\left\{\begin{array}{c} \textit{fully extended} \\ (n+1) - \textit{TQFTs} \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \textit{fully dualizable objects} \\ \textit{in a symmetric } (\infty, n)\text{-}\textit{category} \end{array}\right\}$$

Using topology for algebra: the graphical calculus

In order to analyse ribbon categories we go the other way, using topology to study algebraic objects and their representations.

Example

The *n*-strand braid group B_n , defined topologically.

Generators and relations

Theorem (Artin, 1926)

 B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$, subject to the relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 for $|i - j| \ge 2$
 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ for $i = 1, 2, ..., n-1$

These are the *braid relations*. Having a short list of generators and relations helps to construct *representations* of B_n , as well as identify known objects as quotients of B_n (or its group algebra).

The full twist

On an elementary level our topological intuition can be used to study the algebraic structure of the braid group.

```
./figs/fulltwist4compareTK.pdf
                                                         10/41
```


What are the axioms of a ribbon category?

A $ribbon\ category$ is a \mathbb{C} -linear semisimple monoidal category with compatible braiding, duality and twist structures.

figs/ribbonaxioms.pdf

Blackboard framing figs/bbframe.pdf イロト (部) (注) (注) (注) 13 / 41

Where are ribbon categories?

Symmetric tensor categories are everywhere, e.g. \mathbf{Vec} , $\mathbf{Rep}\ G$, combinatorial categories.

./figs/STCs.pdf

In **Vec**, X and Y are finite dimensional \mathbb{C} -vector spaces.

14 / 41

Non-symmetric ribbon categories

./figs/nonsym.pdf

Drinfel'd-Jimbo quantum groups: $U_q\mathfrak{g}$ Hopf algebra

- For q not a root of 1: **Rep** $U_q\mathfrak{g}$ is semisimple with fusion rules of \mathfrak{g}
- ▶ For q a root of 1: **Rep** $U_q\mathfrak{g}$ is not semisimple, but we can extract a semisimple category (**Rep** $U_q\mathfrak{g}$)^{ss} using tilting modules (Andersen, '92).

Define **Rep** $SO(N)_q$ as the tensor subcategory of **Rep** $U_q\mathfrak{so}(N)$ or **Rep** $U_q\mathfrak{so}(N)^{ss}$ spanned by simples with integer highest weights (no spin reps).

The Grothendieck ring and fusion rules

The *Grothendieck ring* of a (semisimple) ribbon category \mathcal{C} is generated by simple isotypes $\lambda \in \Gamma$, with relations

$$\lambda \otimes \mu = \sum_{\nu \in \Gamma} N_{\lambda,\mu}^{\nu} \nu$$

where $N_{\lambda,\mu}^{\nu}$ is the multiplicity of ν in $\lambda \otimes \mu$. Gr(\mathcal{C}) is a \mathbb{Z} -based ring, equipped with simple elements as a \mathbb{Z} -basis.

$$\Gamma(\mathbf{Rep} \ \mathbb{Z}_2) = \{1, -1\}$$
$$\operatorname{Gr}(\mathbf{Rep} \ \mathbb{Z}_2) \cong \mathbb{Z}[\mathbb{Z}_2] \cong \mathbb{Z}[x]/(x^2 - 1).$$

Up to monoidal equivalence, there are 2 ribbon categories with $Gr(\mathcal{C}) \cong Gr(\mathbf{Rep} \mathbb{Z}_2)$. Up to ribbon equivalence, there are 8.

SO(N) fusion rules via highest weight

Finite dim irreps of SO(N) are parametrized by their highest weight $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$, which must belong to the dominant Weyl chamber:

$$\Gamma(SO(2n+1)) = \{ \lambda \mid \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n \ge 0 \}$$

$$\Gamma(SO(2n)) = \{ \lambda \mid \lambda_1 \ge \dots \ge \lambda_{n-1} \ge |\lambda_n| \ge 0 \}.$$

The fusion rules are "generalized LR coefficients" and are given by classical formulas (e.g. Steinberg's rule). They define Gr(SO(N)).

There are also \mathbb{Z} -based quotients of $\operatorname{Gr}(SO(N))$ with only finitely many simples, corresponding to highest weights properly contained in a *shifted Weyl alcove*.

./figs/BBweights.pdf 18 / 41

Fundamental fusion rule:

The rule for tensoring with $X \cong [1]$ is adding and removing a

The braid element $c_{X,X}$

SO(N)-type categories are tensor generated by a single simple $X \cong [1]$ (for $N = 3, N \ge 5$). It is self-dual and its tensor square splits into three simples:

$$X^{\otimes 2} \cong \mathbf{1} \oplus [1^2] \oplus [2].$$

Therefore $c_{X,X} \in \operatorname{End}_{\mathcal{C}}(X^{\otimes 2})$ has three eigenvalues. For a fixed category \mathcal{C} , we will always denote

figs/Xsquared.pdf

$$q := \text{eigenvalue of } c_{X,X} \text{ on } [2].$$

The classification strategy is to show that the fusion rules and q determine the category \mathcal{C} .

Theorem (Tuba-Wenzl '03, Morrison-Peters-Snyder '11)

Let X be a symmetrically self-dual simple object in a ribbon category such that $X^{\otimes 2}$ splits into three simples. Then there is $r \in \mathbb{C}^{\times}$ such that

With q as above, $c_{X,X}$ satisfies either the Dubrovnik relation:

$$\times - \times = (q - q^{-1}) \left(| - \sim \right)$$

or Kauffman relation:

Hence $c_{X,X}$ has eigenvalues $(q, -q^{-1}, r^{-1})$ or (q, q^{-1}, r^{-1}) .

Classification for Lie type categories

$$\times$$
 acts by $(q, -q^{-1})$
 $X \otimes X \cong [2] \oplus [1^2].$

Theorem (Kazhdan-Wenzl, '93)

Any tensor category with SL(N) fusion rules is a twist of $\operatorname{\mathbf{Rep}} SL(N)_q$ by a 3-cocycle of \mathbb{Z}_N . Ribbon categories with the fusion rules of SL(N) are determined by q and equivalent to $\operatorname{\mathbf{Rep}} SL(N)_q$.

$$X = X \otimes X \cong [2] \oplus [1^2] \oplus 1.$$

Theorem (Tuba-Wenzl, '03)

Ribbon categories with the fusion rules of O(N) (resp. Sp(N)) are determined by the eigenvalues of $c_{X,X}$ and are equivalent to a twist of $\mathbf{Rep}\ O(N)_q$ (resp. $\mathbf{Rep}\ Sp(N)_q$) by a 3-cocycle of \mathbb{Z}_2 .

Our main result for SO(N) categories

Let $N \geq 5$ or N = 3.

Theorem (C)

Non-symmetric ribbon categories with the fusion rules of SO(N) are determined by the eigenvalues of $c_{X,X}$. Any ribbon category with SO(2n+1) fusion rules and braid eigenvalue q is equivalent to $\mathbf{Rep}\ SO_q(2n+1)$. For SO(2n) every ribbon category is equivalent to a twist of $\mathbf{Rep}\ SO_q(2n)$ by a 3-cocycle of \mathbb{Z}_2 .

- ▶ Applies to SO(N) O(K) and SO(2n+1) Sp(K) rules
- ▶ For SO(2n+1), the braid eigenvalues must be $(q, -q^{-1}, q^{-2n})$ and two categories with q, q' are monoidally equivalent iff $q' \in \{q^{\pm 1}\}$.
- For SO(2n) there are both Dubrovnik and Kauffman cats and two Dubrovnik cats with q, q' are monoidally equivalent iff $q' \in \{\pm q^{\pm 1}\}$.

Proof of SO(2n+1) classification

Proof.

Classically $O(2n+1) \cong SO(2n+1) \times \mathbb{Z}_2$. Hence if \mathcal{C} has SO(2n+1) fusion rules, then

$\mathcal{C} \boxtimes \mathbf{Rep} \mathbb{Z}_2$

has O(2n+1) fusion rules, so by Tuba-Wenzl it is determined by the eigenvalues of the tensor generator $X \boxtimes -1$. These eigenvalues are the same as the braid eigenvalues for X. Since \mathcal{C} can be recovered from $\mathcal{C} \boxtimes \mathbf{Rep} \mathbb{Z}_2$, \mathcal{C} is also determined by the eigenvalues of X.

- ▶ The explicit form of the eigenvalues $(q, -q^{-1}, q^{-2n})$ can be deduced by looking at the q-dim and twist of $\mathbf{1} \boxtimes -1$
- ▶ Two SO(2n+1) categories with q' = -q and are not monoidally equivalent, in contrast to O(2n+1).
- ▶ There is no $\varepsilon = -1$ family of SO(2n+1) categories.

Monoidal algebras

Suppose \mathcal{C} is a semisimple tensor category. The *monoidal algebra* generated by X is the **strict** monoidal category $\langle X \rangle$ with objects

$$\mathbf{1}, X, X^{\otimes 2}, \dots$$

and hom-spaces coming from C.

Theorem (Kazhdan-Wenzl, Tuba-Wenzl)

If X is a tensor generator of C then C can be reconstructed from $\langle X \rangle$ by taking the idempotent completion and adding direct sums.

The diagonal subcategory

The diagonal of C is the monoidal subcategory $\Delta \langle X \rangle$ of $\langle X \rangle$ obtained by setting

$$\operatorname{Hom}_{\Delta\langle X\rangle}(X^{\otimes j}, X^{\otimes k}) = \begin{cases} \operatorname{End}(X^{\otimes k}) & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases}$$

Theorem (Tuba-Wenzl, C)

Suppose C and C' are \mathbb{Z}_2 -graded and tensor generated by X and Y. Then $\Delta \langle X \rangle$ is isomorphic to $\Delta \langle Y \rangle$ if and only if C' is monoidally equivalent to a twist of C by a 3-cocycle of \mathbb{Z}_2 .

Corollary

A \mathbb{Z}_2 -graded category \mathcal{C} is determined by its diagonal $\Delta \langle X \rangle$ and a sign (choice of 3-cocycle class).

The cocycle construction

Any ribbon category has a mirror (swap braid with its inverse). The mirror category has the same fusion rules.

If C is also \mathbb{Z}_2 -graded then there are several other modifications that don't change the fusion rules.

- ▶ Twist the associator by a 3-cocycle $\omega \in Z^3(\mathbb{Z}_2, \mathbb{C}^{\times})$
- Twist the braiding by an abelian cocycle given by $a: \mathbb{Z}_2 \times \mathbb{Z}_2 \to \mathbb{C}^{\times}$ compatible with ω
- ▶ Change the spherical structure with a character of \mathbb{Z}_2

Non-trivial ω switches between Dubrovnik and Kauffman categories.

For C singly-generated there is a unique spherical structure so that every self-dual object is $symmetrically\ self-dual$.

Data of the diagonal subcategory:

- ▶ The semisimple algebras $\operatorname{End}(X^{\otimes k}), k \geq 0.$
- ▶ Bilinear maps

$$\operatorname{End}_{\mathcal{C}}(X^{\otimes k}) \times \operatorname{End}_{\mathcal{C}}(X^{\otimes l}) \to \operatorname{End}_{\mathcal{C}}(X^{\otimes k+l})$$

 $(f,g) \mapsto f \otimes g$

An isomorphism of diagonals of \mathcal{C} and \mathcal{C}' is a family $\{\Phi_k\}$ of algebra isomorphisms

$$\Phi_k : \operatorname{End}_{\mathcal{C}}(X^{\otimes k}) \to \operatorname{End}_{\mathcal{C}'}(Y^{\otimes k})$$

compatible with tensor products.

Strategy for braided SO(2n) classification

Lemma

If C is additionally **braided** then the tensor product maps are determined by the braiding and the inclusions

The Bratteli diagram

The ${\it Bratteli~diagram}$ for the inclusions of semisimple algebras

$$\dots \xrightarrow{-\otimes 1} \operatorname{End}_{\mathcal{C}}(X^{\otimes k}) \xrightarrow{-\otimes 1} \operatorname{End}_{\mathcal{C}}(X^{\otimes k+1}) \xrightarrow{-\otimes 1} \dots$$

is the same as the fusion graph for tensoring with $X\cong [1].$

figs/S06bratteli4levs.pdf

Path idempotents and path bases

Since the Bratteli diagram is **multiplicity free** we can define a complete set of minimal idempotents for $\operatorname{End}(X^{\otimes k})$ indexed by paths of length k through the Bratteli diagram:

$$p_S: S = \mathbf{1} \to S(1) \to S(2) \to \cdots \to S(k)$$

- $ightharpoonup p_S$ has isotype S(k)
- ▶ They are compatible with the inclusions $\otimes 1$:

$$p_S \otimes 1 = \sum_{\lambda} p_{S \to \lambda}$$

A simple module V^{λ} for $\operatorname{End}(X^{\otimes k})$ has basis vectors

$$\{v_S: S = \mathbf{1} \to S(1) \to \cdots \to S(k-1) \to \lambda\}$$

which are uniquely defined up to scalars by

$$p_S v_T = \delta_{S,T} v_T.$$

The braid elements act locally on a path basis, i.e. if $1 \le i < k$ then $c_i \in \operatorname{End}(X^{\otimes k})$ and

 $c_i v_S \in \operatorname{span}\{v_T \mid T \text{ only differs from } S \text{ at level } i \}$

Full twists and Jucys-Murphy elements

The full twist Δ_k^2 is defined in $\operatorname{End}(X^{\otimes k})$ using the braiding. It is central in $\operatorname{End}(X^{\otimes k})$.

figs/fulltwistincat.pdf

The *Jucys-Murphy elements* are defined by

$$J_k = \Delta_k^2(\Delta_{k-1}^{-2} \otimes 1) \in \text{End}(X^{\otimes k}).$$

figs/JM4.pdf

Lemma

The Jucys-Murphy elements act diagonally in any path basis.

2-level path spaces W^{λ}_{μ}

Suppose μ and λ are two levels apart.

figs/TwoStep.pdf

Eigenvalues of JM elements

figs/AB2rel.pdf

One can write down all 1 and 2-dim diagonalizable matrices which satisfy the Dubrovnik relation, (\mathbf{AB}_2), and the fact $\Delta_k^2 = J_k J_{k-1}$ is central. (c.f. Ariki-Koike '94).

Corollary

The eigenvalues of J_k are determined by the eigenvalues of c_{k-1} and J_{k-1} .

Restriction of parameters

figs/respam.pdf

Uniqueness of braid representations

On the "new stuff" we can scale the path basis so c_{k-1} has the matrix

$$c_{k-1} \mapsto \begin{pmatrix} \frac{q^d}{[d]_q} & 1 - \frac{1}{[d]_q^2} \\ 1 & \frac{q^{-d}}{[-d]_q} \end{pmatrix}.$$

On the "old stuff", i.e. W_{λ}^{λ} , we can scale the path basis so that $e_{k-1} = 0$ has the matrix

$$e_{k-1}\mapsto rac{1}{\dim_{\mathcal{C}}\lambda} egin{pmatrix} \dim_{\mathcal{C}}
u_1 & \dots & \dim_{\mathcal{C}}
u_s \\ dots & & dots \\ \dim_{\mathcal{C}}
u_1 & \dots & \dim_{\mathcal{C}}
u_s \end{pmatrix} ext{figs/oldstuff.pdf}$$

Methods of (Leduc-Ram, '97) can be used to show the matrix entries for c_{k-1} are determined by e_{k-1} and JM eigenvalues.

Theorem

The q-dims of every simple object can be expressed as a rational function of a

Proof of SO(2n) classification theorem

Proof.

Suppose $\mathcal{C}, \mathcal{C}'$ have the same fusion rules and are both Dubrovnik with eigenvalues $(q, -q^{-1}, q^{2n-1})$. Using uniqueness of braid representations we can construct matrix units in $\operatorname{End}(X^{\otimes k})$ (resp. $\operatorname{End}(Y^{\otimes k})$) which are compatible with inclusions and so the braids have the specified matrices.

Then we get algebra isomorphisms $\operatorname{End}(X^{\otimes k}) \to \operatorname{End}(Y^{\otimes k})$ sending matrix units to matrix units. This is compatible with inclusions and braiding so is an isomorphism of diagonals.

By diagonal reconstruction, \mathcal{C} and \mathcal{C}' differ by at most a 3-cocycle twist. However they are both Dubrovnik so they are actually equivalent.

Open problems

- ightharpoonup Description of planar algebra for SO(N) type categories
- ▶ Auto-equivalences of SO(N) type categories (Edie-Michell '20)
- ▶ Other classification problems: symmetric cases, SO(4), $K \leq 2$, $\mathfrak{so}(N)$, exotic Lie groups
- Computational complexity of braid representations

Thanks for listening!

[?] [?] [?]