IS 808: 1989 (Reaffirmed 1999) Edition 4.1 (1992-07)

Indian Standard

DIMENSIONS FOR HOT ROLLED STEEL BEAM, COLUMN, CHANNEL AND ANGLE SECTIONS

(Third Revision)

भारतीय मानक

तप्त वेल्लित इस्पात बीम, कॉलम, चैनल तथा एंगल सैक्शनों के आयाम

(तीसरा पुनरीक्षण)

(Incorporating Amendment No. 1)

UDC 669.14-423.2-122.4:006.78

© BIS 2002

BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

FOREWORD

This Indian Standard (Third Revision) was adopted by the Bureau of Indian Standards on 6 April 1989, after the draft finalized by the Structural Sections Sectional Committee had been approved by the Structural and Metals Division Council.

Under the steel economy programme, a rational, efficient and economical series of Indian Standards on beam sections, channel sections and angle sections was evolved in 1957 and IS 808: 1957 was published covering junior, light weight, medium weight, wide flange and heavy weight beam sections; junior, light weight and medium weight channel sections and equal and unequal leg angle sections. This standard was revised in 1964.

In the second revision of this standard, parts relating to medium weight beam sections — MB series, column sections — SC series, channel sections — MC and MCP series and equal and unequal leg angles were revised and published as Parts 1, 2, 3, 5 and 6 of IS 808, respectively. Sections not covered in these parts, however continued in IS 808: 1964.

In the present revision, the Sectional Committee felt it convenient to merge all the five parts into one standard. The sections which were retained in IS 808: 1964 subsequent to its second revision in five parts are included in this standard with a view that these sections although not being rolled in the country at present may in future be rolled owing to their efficiency and resultant economy in the use of steel. However, the designers are advised to check from JPC/producers regarding availability of such sections.

Following additional modifications have been affected in this revision:

- a) Medium weight beam sections MB 100 having the flange width and web thickness of 70 mm and 4.5 mm, respectively, has been modified to 50 mm flange width and 4.7 mm web thickness;
- b) Two sections, namely, BFB 150 and RSJ 200 which are mainly used in railway electrification have been included as SC 150 and WB 200, respectively;
- c) Additional equal leg angles 60 60 \times 4, 100 100 \times 7 (in place of 100 100 \times 6.5), and 130 130 \times 9 have been included in the supplimentary list;
- d) Amendments issued so far to the various parts of the standard and to IS 808:1964 have been incorporated; and
- e) Mass, area and other sectional properties have been expressed in three significant places.

This edition 4.1 incorporates Amendment No. 1 (July 1992). Side bar indicates modification of the text as the result of incorporation of the amendment.

Indian Standard

DIMENSIONS FOR HOT ROLLED STEEL BEAM, COLUMN, CHANNEL AND ANGLE SECTIONS

(Third Revision)

1 SCOPE

This standard covers the nominal dimensions, mass and sectional properties of hot rolled sloping flange beam and column sections, sloping and parallel flange channel sections and equal and unequal leg angle sections.

2 REFERENCES

The Indian Standard IS 1852: 1985 'Rolled and cutting tolerances for hot rolled steel products (fourth revision)' is a necessary adjunct to this standard.

SECTION 1 GENERAL

3 TERMINOLOGY

3.1 *Y-Y* **Axis**

A line parallel to the axis of the web of the section (in the case of beams and channels) or parallel to the axis of the longer flange (in the case of unequal angles) or either flange (in the case of equal angles) and passing through the centre of gravity of the profile of the section.

3.2 *X-X* **Axis**

A line passing through the centre of gravity of the profile of the section, and at right angles to the *Y-Y* axis.

3.3 U-U and V-V Axes

Lines passing through the centre of gravity of the profile of the section, representing the principal axes of angle sections.

4 SYMBOLS

4.1 Letter symbols used in this standard have been indicated appropriately in Sections 2 to 6. More explicit definitions for certain symbols, used in the figures and tables of Sections 2 to 6 are given in **4.1.1** and **4.1.2**.

4.1.1 Symbols for Dimensions

A, B = the longer and the shorter leg length of angle section, respectively;

B = flange width of beam, column or channel sections;

D = depth of beam, column or channel section;

 R_1 = radius at fillet or root;

 R_2 = radius at toe;

 t = thickness of web of beam, column or channel section; thickness of leg of angle section; and

T = thickness of flange of beam, column or channel section.

4.2.2 Symbols for Sectional Properties

a = sectional area,

C (with subscripts x, y, u or v)

= distance of centre of gravity,

 $C_{\mathbf{x}} = A - e_{\mathbf{x}},$

 $C_{\rm v} = B - e_{\rm v},$

 $e_{\rm x}$ = distance of extreme fibre from X-X axis,

 e_{y} = distance of extreme fibre from Y-Y axis,

 I_{x} = moment of inertia about *X-X* axis,

 $I_{\rm v}$ = moment of inertia about *Y-Y* axis,

 $I_{\rm u}$ = moment of inertia (Max) about U-U axis.

 $I_{\rm v}$ = moment of inertia (Min) about V-V axis.

M =mass of the section per metre length,

 $Z_{x} = \frac{I_{x}}{e_{x}} = \frac{\text{modulus of section about } X-X}{\text{axis,}}$

 $Z_{\rm y} = rac{I_{
m y}}{e_{
m y}} = {
m modulus \ of \ section \ about \ \it Y-Y}$

 $r_{\rm x} = \sqrt{\frac{I_{\rm x}}{a}} = {\rm radius \ of \ gyration \ about \ } X-X$

$$r_y = \sqrt{\frac{I_y}{a}} = \text{radius of gyration about } Y-Y$$

$$r_{\rm u} = \sqrt{\frac{I_{\rm u}}{a}} = {\rm radius \ of \ gyration \ about \ } U-U$$

$$r_{\rm v} = \sqrt{\frac{I_{\rm v}}{a}} = \frac{\rm radius}{\rm axis},$$
 of gyration about $V-V$

 α = angle between U-U and X-X axes of angle section; slope of flange in the case of beam, column or channel.

5 CLASSIFICATION

5.1 Beam, column, channel and angle sections are classified as follows:

5.1.1 Beams

- a) Indian Standard junior beams (ISJB)
- b) Indian Standard light weight beams (ISLB)
- c) Indian Standard medium weight beams (ISMB)
- d) Indian Standard wide flange beams (ISWB)

5.1.2 Columns/Heavy Weight Beams

- a) Indian Standard column sections (ISSC)
- b) Indian Standard heavy weight beam (ISHB)

5.1.3 Channels

- a) Indian Standard junior channels (ISJC)
- b) Indian Standard light weight channels (ISLC)
- c) Indian Standard medium weight channels (ISMC)
- d) Indian Standard medium weight parallel flange channels (ISMCP)

5.1.4 *Angles*

- a) Indian Standard equal leg angles (ISA)
- b) Indian Standard unequal leg angles (ISA)
- **5.2** The following abbreviated reference symbols have been used in designating the

Indian Standard sections mentioned in 5.1:

Section	${\it Classification}$	Abbreviated Reference
		Symbol
Beams	ISJB	m JB
	ISLB	LB
	ISMB	MB
	ISWB	WB
Columns/heavy	ISSC	\mathbf{SC}
beams	ISHB	HB
Channels	ISJC	\mathbf{JC}
	ISLC	LC
	ISMC	MC
	ISMCP	MCP
Angles	ISA	_

6 DESIGNATION

- **6.1** Beam, columns and channel sections shall be designated by the respective abbreviated reference symbols followed by the depth of the section, for example:
 - a) MB 200 for a medium weight beam of depth 200 mm,
 - b) SC 200 for a column section of depth 200 mm,
 - c) MC 200 for medium weight channel of depth 200 mm, and
 - d) MCP 200 for a medium weight parallel flange channel of depth 200 mm.
- **6.2** Equal and unequal leg angles shall be designated by the abbreviated reference symbols (\angle) followed by the dimensions A, B and t. For example, $200\ 100 \times 10$ represents unequal leg angle of dimensions $200\ \mathrm{mm}$, $100\ \mathrm{mm}$ and thickness $10\ \mathrm{mm}$.

7 DIMENSIONS, MASS AND TOLERANCES

- **7.1** Nominal dimensions and mass of beam, column, channel and equal and unequal angles shall conform to the values given in Sections 2, 3, 4, 5 and 6, respectively of the standard.
- **7.2** Dimensional and mass tolerances of the various sections shall conform to the appropriate values stipulated in IS 1852: 1985.

8 SECTIONAL PROPERTIES

Sectional properties of the beams, columns, channel and equal and unequal leg angles are given in Sections 2 to 6 for information.

Designation	Mass M	Sectional				Dimensi	ons					Sectional	Properti	es	
	N1	Area, a	D	В	t	T	Flange Slope, Max	R_1	\overrightarrow{R}_2	$\overline{I_{\mathrm{x}}}$	$I_{ m y}$	r_{x}	$r_{ m y}$	Z_{x}	$Z_{ m y}$
	kg/m	${ m cm}^2$	mm	mm	mm	mm	α, deg	mm	mm	cm^4	cm^4	cm	cm	${ m cm}^3$	${ m cm}^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
MB 100	8.9	11.4	100	50	4.7	7.0	98.0	9.0	4.5	183	12.9	4.00	1.05	36.6	5.16
MB 125	13.3	17.0	125	70	5.0	8.0	98.0	9.0	4.5	445	38.5	5.16	1.51	71.2	11.0
MB 150	15.0	19.1	150	75	5.0	8.0	98.0	9.0	4.5	718	46.8	6.13	1.57	95.7	12.5
MB 175	19.6	25.0	175	85	5.8	9.0	98.0	10.0	5.0	$1\ 260$	76.7	7.13	1.76	144	18.0
MB 200	24.2	30.8	200	100	5.7	10.0	98.0	11.0	5.5	$2\ 120$	137	8.29	2.11	212	27.4
MB 225	31.1	39.7	225	110	6.5	11.8	98.0	12.0	6.0	3 440	218	9.31	2.34	306	39.7
MB 250	37.3	47.5	250	125	6.9	12.5	98.0	13.0	6.5	5 130	335	10.4	2.65	410	53.5
MB 300	46.0	58.6	300	140	7.7	13.1	98.0	14.0	7.0	8 990	486	12.4	2.86	599	69.5

Table 2.1 (Concluded)

Designation	Mass	Sectional				Dimensi	ons					Sectional	Propert	ies	
	M	Area, a	D	В	t	T	Flange Slope, Max	R_1	\overline{R}_2	$\overline{I_{ m x}}$	$I_{ m y}$	$r_{ m x}$	$r_{ m y}$	Z_{x}	$Z_{ m y}$
	kg/m	${ m cm}^2$	mm	mm	mm	mm	α, deg	mm	mm	cm^4	cm^4	cm	cm	${ m cm}^3$	${ m cm}^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
MB 350	52.4	66.7	350	140	8.1	14.2	98.0	14.0	7.0	13 600	538	14.3	2.84	779	76.8
MB 400	61.5	78.4	400	140	8.9	16.0	98.0	14.0	7.0	20500	622	16.2	2.82	1 020	88.9
MB 450	72.4	92.2	450	150	9.4	17.4	98.0	15.0	7.5	30 400	834	18.2	3.01	$1\ 350$	111
MB 500	86.9	111	500	180	10.2	17.2	98.0	17.0	8.5	$45\ 200$	1370	20.2	3.52	1 810	152
MB 550	104	132	550	190	11.2	19.3	98.0	18.0	9.0	64900	1 830	22.2	3.73	$2\ 360$	193
MB 600	123	156	600	210	12.0	20.3	98.0	20.0	10.0	91 800	2650	24.2	4.12	3 060	252

4

Table 2.2 Nominal Dimensions, Mass and Sectional Properties of Indian Standard Junior and Light Weight Beams

(Figure same as given in Table 2.1)

Designation	Mass M	Sectional				Dimensi	ons				5	Sectional 1	Propert	ies	
	IVI	Area, a	\overline{D}	В	t	T	Flange Slope, Max	R_1	\overrightarrow{R}_2	I_{x}	$I_{ m y}$	$r_{\rm x}$	$r_{ m y}$	$Z_{ m x}$	$\overline{Z_{ m y}}$
	kg/m	cm^2	mm	mm	mm	mm	α , deg	mm	mm	${ m cm^4}$	${ m cm^4}$	cm	cm	${ m cm}^3$	${ m cm}^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
$Junior\ Beams$															
JB 150	7.1	9.01	150	50	3.0	4.6	91.5	5.0	1.5	322	9.20	5.98	1.01	42.9	3.7
JB 175	8.1	10.3	175	50	3.2	4.8	91.5	5.0	1.5	479	9.70	6.83	0.97	54.8	3.9
JB 200	9.9	12.6	200	60	3.4	5.0	91.5	5.0	1.5	781	17.3	7.86	1.17	78.1	5.8
m JB~225	12.8	16.3	225	80	3.7	5.0	91.5	6.5	1.5	1 310	40.5	8.97	1.58	116	10.1
Light Weight B	eams														
LB 75	6.1	7.71	75	50	3.7	5.0	91.5	6.5	2.0	72.7	10.0	3.07	1.14	19.4	4.0
LB 100	8.0	10.2	100	50	4.0	6.4	91.5	7.0	3.0	168	12.7	4.06	1.12	33.6	5.1
LB(P) 100	8.6	11.0	100	50	4.3	7.0	91.5	8.0	3.0	178	13.2	4.03	1.10	35.7	5.3
LB 125	11.9	15.1	125	75	4.4	6.5	91.5	8.0	3.0	407	43.4	5.19	1.69	65.1	11.6
LB 150	14.2	18.1	150	80	4.8	6.8	91.5	9.5	3.0	690	55.2	6.17	1.75	91.8	13.8
LB 175	16.7	21.3	175	90	5.1	6.9	91.5	9.5	3.0	1 100	79.6	7.17	1.93	125	17.7
LB(P) 175	16.7	21.3	175	80	5.2	7.7	96.0	9.5	3.0	1 070	57.3	7.09	1.64	123	14.3
LB 200	19.8	25.3	200	100	5.4	7.3	91.5	9.5	3.0	1 700	115	8.19	2.13	170	23.1
LB(P) 200	21.1	26.9	200	100	5.6	8.0	96.0	9.5	3.0	1 800	113	8.20	2.05	180	22.6
$LB\ 225$	23.5	29.9	225	100	5.8	8.6	98.0	12.0	6.0	$2\ 500$	113	9.15	1.94	222	22.5
LB 250	27.9	35.5	250	125	6.1	8.2	98.0	13.0	6.5	3720	193	10.2	2.33	297	30.9
LB 275	33.0	42.0	275	140	6.4	8.8	98.0	14.0	7.0	$5\ 380$	287	11.3	2.61	392	41.0
LB 300	37.7	48.1	300	150	6.7	9.4	98.0	15.0	7.5	$7\ 330$	376	12.4	2.80	489	50.2
LB(P) 300	41.5	52.9	300	140	7.0	11.6	98.0	15.0	7.5	8 130	414	12.4	2.80	542	59.2
LB 325	43.1	54.9	325	165	7.0	9.8	98.0	16.0	8.0	9 870	511	13.4	3.05	608	61.9
LB 350	49.5	63.0	350	165	7.4	11.4	98.0	16.0	8.0	$13\ 200$	632	14.5	3.17	752	76.6
LB 400	56.9	72.4	400	165	8.0	12.5	98.0	16.0	8.0	19 300	716	16.3	3.15	965	86.8
LB 450	65.3	83.1	450	170	8.6	13.4	98.0	16.0	8.0	$27\ 500$	853	18.2	3.20	$1\ 220$	100
LB 500	75.0	95.5	500	180	9.2	4.1	98.0	17.0	8.5	38 600	1 060	20.1	3.34	1540	118
LB 550	86.3	110	550	190	9.9	15.0	98.0	18.0	9.0	$53\ 200$	1340	22.0	3.48	1930	140
LB 600	99.5	127	600	210	10.5	15.5	98.0	20.0	10.0	$72\ 800$	1820	24.0	3.79	$2\ 430$	173

NOTE — (P) Stands for provisional section.

Table 2.2 (Concluded)

Designation	Mass	Sectional				Dimensi	ons					Sectional 1	Propert	ies	
	M	Area, a	D	В	t	T	Flange Slope, Max	R_1	\overrightarrow{R}_2	$\overline{I_{ m x}}$	$I_{ m y}$	$r_{\rm x}$	$r_{ m y}$	$Z_{ m x}$	$Z_{ m y}$
	kg/m	${ m cm}^2$	mm	mm	mm	mm	α, deg	mm	mm	cm^4	cm^4	cm	cm	${ m cm}^3$	${ m cm}^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Wide Flange Be	eams														
WB 150	17.0	21.7	150	100	5.4	7.0	96.0	8.0	4.0	839	94.8	6.22	2.09	112	19.0
WB 175	22.1	28.1	175	125	5.8	7.4	96.0	8.0	4.0	1510	189	7.33	2.59	173	30.2
WB 200	28.8	36.7	200	140	6.1	9.0	96.0	9.0	4.5	$2\ 620$	329	8.46	2.99	263	47.0
WB 200*	52.0	66.5	203	152	8.9	16.5	98.0	15.5	7.6	4790	814	8.48	3.54	471	107
WB 225	33.9	43.2	225	150	6.4	9.9	96.0	9.0	4.5	3 920	449	9.52	3.22	349	59.8
WB 250	40.9	52.0	250	200	6.7	9.0	96.0	10.0	5.0	5940	858	10.7	4.06	475	85.7
WB 300	48.1	61.3	300	200	7.4	10.0	96.0	11.0	5.5	9 820	990	12.7	4.02	655	99.0
WB 350	56.9	72.5	350	200	8.0	11.4	96.0	12.0	6.0	$15\ 500$	1 180	14.6	4.03	887	118
WB 400	66.7	85.0	400	200	8.6	13.0	96.0	13.0	6.5	$23\ 400$	1 390	16.6	4.04	1 170	139
WB 450	79.4	101	450	200	9.2	15.4	96.0	15.0	7.0	$35\ 100$	1 710	18.6	4.11	1560	171
WB 500	95.2	121	500	250	9.9	14.7	96.0	15.0	7.5	$52\ 300$	2990	20.8	4.96	$2\ 080$	239
WB 550	112	143	550	250	10.5	17.6	96.0	16.0	8.0	$74\ 900$	3740	22.9	5.11	2720	299
WB 600	134	170	600	250	11.2	21.3	96.0	17.0	8.5	106 000	4 700	25.0	5.24	$3\ 540$	376
WB 600	145	185	600	250	11.8	23.6	96.0	18.0	9.0	116 000	5 300	25.0	5.35	$3\ 850$	424
WB 200* (R	SJ Section	n) is mainly use	ed for railw	ay electrif	ication.										

SECTION 3 COLUMN/HEAVY WEIGHT BEAM SECTIONS

Table 3.1 Nominal Dimensions, Mass and Sectional Properties of Indian Standard Columns and Heavy Weight Beams

Designation	Mass	Sectional				Dimensio	ons					Sectional	Propertie	es	
	M	Area, a	\overline{D}	В	t	T	Flange Slope, α	R_1	\overline{R}_2	$\overline{I_{\mathrm{x}}}$	$I_{ m y}$	r_{x}	$r_{ m y}$	Z_{x}	$\overline{Z_{ m y}}$
	kg/m	${ m cm}^2$	mm	mm	mm	mm	deg	mm	mm	cm^4	cm^4	cm	cm	${ m cm}^3$	${ m cm}^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
$Column\ Sectio$	ns														
SC 100	20.0	25.5	100	100	6.0	10.0	98.0	12	6.0	436	136	4.13	2.31	87.2	27.2
SC 120	26.2	33.4	120	120	6.5	11.0	98.0	12	6.0	842	255	5.02	2.76	140	42.6
SC 140	33.3	42.4	140	140	7.0	12.0	98.0	12	6.0	1470	438	5.89	3.21	211	62.5
SC 150*	37.1	47.4	152	152	7.9	11.9	98.0	11.7	3.0	1970	700	6.45	3.84	259	91.9
SC 160	41.9	53.4	160	160	8.0	13.0	98.0	15	7.5	$2\ 420$	695	6.74	3.61	303	86.8
SC 180	50.5	64.4	180	180	8.5	14.0	98.0	15	7.5	3 740	1 060	7.62	4.05	415	117
SC~200	60.3	76.8	200	200	9.0	15.0	98.0	18	9.0	5 530	1530	8.48	4.46	553	153
SC 220	70.4	89.8	220	220	9.5	16.0	98.0	18	9.0	7880	$2\ 160$	9.35	4.90	716	196
SC 250	85.6	109	250	250	10.0	17.0	98.0	23	11.5	$12\ 500$	$3\ 260$	10.7	5.46	997	260

SC 150* (BFB Section) is mainly used for railway electrification.

Table 3.1 (Concluded)

Designation	Mass	Sectional				Dimensio	ns					Sectional	Properti	es	
	M	Area, a	D	В	t	T	Flange Slope, α	R_1	\overrightarrow{R}_2	I_{x}	$I_{ m y}$	r_{x}	$r_{ m y}$	Z_{x}	$Z_{ m y}$
	kg/m	${ m cm}^2$	mm	mm	mm	mm	deg	mm	mm	cm^4	cm^4	cm	cm	${ m cm}^3$	${ m cm}^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Heavy Weight B	Beams/Col	lumns													
HB 150	27.1	34.5	150	150	5.4	9.0	94.0	8.0	4.0	1 460	432	6.50	3.54	194	57.6
HB 150*	30.6	39.0	150	150	8.4	9.0	94.0	8.0	4.0	1540	460	6.29	3.44	205	60.2
HB 150*	34.6	44.1	150	150	11.8	9.0	94.0	8.0	4.0	1 640	495	6.09	3.35	218	63.2
HB 200	37.3	47.5	200	200	6.1	9.0	94.0	9.0	4.5	3 600	967	8.71	4.51	361	96.7
HB 200*	40.0	50.9	200	200	7.8	9.0	94.0	9.0	4.5	3 720	995	8.55	4.42	372	98.6
HB 225	43.1	54.9	225	225	6.5	9.1	94.0	10.0	5.0	5 300	$1\ 350$	9.80	4.96	469	120
${ m HB}\ 225^*$	46.8	59.7	225	225	8.6	9.1	94.0	10.0	5.0	5 480	1 400	9.58	4.84	487	123
HB 250	51.0	65.0	250	250	6.9	9.7	94.0	10.0	5.0	7 740	1 960	10.9	5.49	619	156
HB 250*	54.7	69.7	250	250	8.8	9.7	94.0	10.0	5.0	7 980	$2\ 010$	10.7	5.37	639	160
HB 300	58.8	74.8	300	250	7.6	10.6	94.0	11.0	5.5	$12\ 600$	$2\ 200$	13.0	5.41	836	175
HB 300*	63.0	80.2	300	250	9.4	10.6	94.0	11.0	5.5	13 000	$2\ 250$	12.7	5.29	863	178
HB 350	67.4	85.9	350	250	8.3	11.6	94.0	12.0	6.0	19 200	$2\ 450$	14.9	5.34	1 090	196
HB 350*	72.4	92.2	350	250	10.1	11.6	94.0	12.0	6.0	19 800	$2\ 510$	14.7	5.22	1 130	199
HB 400	77.4	98.7	400	250	9.1	12.7	94.0	14.0	7.0	28 100	2730	16.9	5.26	1 400	218
HB 400*	82.2	105	400	250	10.6	12.7	94.0	14.0	7.0	28 800	2780	16.6	5.16	1 440	221
HB 450	87.2	111	450	250	9.8	13.7	94.0	15.0	7.5	39 200	3 000	18.8	5.18	1 740	239
HB450*	92.5	118	450	250	11.3	13.7	94.0	15.0	7.5	40 300	3 050	18.5	5.08	1 790	242

NOTE — HB sections are also used as column sections.

*These heavier sections in each size are obtained from the same set of rolls as the lighter sections by spreading of the rolls. The width of flanges of these sections gets increased by an amount equal to the difference between the thicknesses of the webs. Therefore, while ordering these heavier sections, mass should be mentioned.

Designation	Mass M	Sectional				Dimensio	ons					Section	nal Prop	erties		
	IVI	Area, a	\overline{D}	В	t	T	Flange Slope, α	R_1	\overrightarrow{R}_2	$C_{ m y}$	I_{x}	$I_{ m y}$	$r_{\rm x}$	$r_{ m y}$	Z_{x}	$\overline{Z_{ m y}}$
	kg/m	${ m cm}^2$	mm	mm	mm	mm	deg	mm	mm	mm	cm^4	cm^4	cm	cm	${ m cm}^3$	${ m cm}^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
Medium Weig	ht Chann	nels														
MC 75	7.14	9.10	75	40	4.8	7.5	96	8.5	2.4	1.32	78.5	12.9	2.94	1.19	20.9	4.81
MC 100	9.56	12.2	100	50	5.0	7.7	96	9.0	2.4	1.54	192	26.7	3.97	1.48	33.5	7.71
MC 125	13.1	16.7	125	65	5.3	8.2	96	9.5	2.4	1.95	425	61.1	5.05	1.91	68.1	13.4
MC 125*	13.7	17.5	125	66	6.0	8.1	96	9.5	2.4	1.92	435	64.4	4.98	1.92	69.6	13.8
MC 150	16.8	21.3	150	75	5.7	9.0	96	10.0	2.4	2.20	788	103	6.08	2.20	105	19.5
MC 150*	17.7	22.6	150	76	6.5	9.0	96	10.0	2.4	2.17	813	110	6.00	2.20	108	20.2
MC 175	19.6	24.9	175	75	6.0	10.2	96	10.5	3.2	2.19	$1\ 240$	122	7.04	2.21	141	23.0
MC 175*	22.7	27.6	175	76	7.5	10.2	96	10.5	3.2	2.14	1 310	136	6.89	2.22	150	24.5

*The heavier sections in each size intended for use in wagon industry are to be obtained from same set of rolls as the corresponding lightest section in that size group, by raising the rolls.

6

Designation		Sectional				Dimensio	ns					Section	nal Prop	erties		
	M	Area, a	D	В	t	T	Flange Slope, α	R_1	\overline{R}_2	$C_{ m y}$	I_{x}	$I_{ m y}$	r_{x}	$r_{ m y}$	$Z_{ m x}$	$Z_{ m y}$
	kg/m	${ m cm}^2$	mm	mm	mm	mm	deg	mm	mm	mm	cm^4	cm^4	cm	cm	${ m cm}^3$	${ m cm}^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
MC 200	22.3	28.5	200	75	6.2	11.4	96	11.0	3.2	2.20	1 830	141	8.02	2.22	181	26.4
MC 200*	24.3	31.0	200	76	7.5	11.4	96	11.0	3.2	2.12	1 910	151	7.85	2.21	191	27.5
MC 225	26.1	33.3	225	80	6.5	12.4	96	12.0	3.2	2.31	2710	188	9.02	2.37	241	33.0
MC 225*	30.7	39.0	225	82	9.0	12.4	96	12.0	3.2	2.22	2960	219	8.71	2.37	263	36.0
MC 250	30.6	39.0	250	80	7.2	14.1	96	12.0	3.2	2.30	3 880	211	9.92	2.37	307	38.5
MC 250*	34.2	43.5	250	82	9.0	14.1	96	12.0	3.2	2.23	4 080	244	9.68	2.37	326	40.9
MC 250*	38.1	48.5	250	83	11.0	14.1	96	12.0	3.2	2.19	4 340	268	9.46	2.35	347	43.2
MC 300	36.3	46.3	300	90	7.8	13.6	96	13.0	3.2	2.35	$6\ 420$	313	11.8	2.60	428	47.1
MC 300*	41.5	52.8	300	92	10.0	13.6	96	13.0	3.2	2.26	6 900	345	11.4	2.56	460	49.8
MC 300*	46.2	58.8	300	93	12.0	13.6	96	13.0	3.2	2.22	$7\ 350$	375	11.2	2.52	490	52.2
MC 350	42.7	54.4	350	100	8.3	13.5	96	14.0	4.8	2.44	10 000	434	13.6	2.82	576	57.3
MC 400	50.1	63.8	400	100	8.8	15.3	96	15.0	4.8	2.42	$15\ 200$	508	15.4	2.82	760	67.0

*The heavier sections in each size intended for use in wagon industry are to be obtained from same set of rolls as the corresponding lightest section in that size group, by raising the rolls.

Junior Chan	nels															
JC 100	5.80	7.41	100	45	3.0	5.1	91.5	6.0	2.0	1.40	124	14.9	4.09	1.42	24.8	4.80
JC 125	7.90	10.1	125	50	3.0	6.6	91.5	6.0	2.4	1.64	270	25.6	5.18	1.60	43.2	7.60
JC 150	9.90	12.7	150	55	3.6	6.9	91.5	7.0	2.4	1.67	472	37.9	6.10	1.73	62.9	9.90
JC 175	11.2	14.2	175	60	3.6	6.9	91.5	7.0	3.0	1.75	720	50.5	7.11	1.88	82.3	11.9
JC 200	14.0	17.8	200	70	4.1	7.1	91.5	8.0	3.2	1.97	1 160	84.2	8.09	2.18	116	16.7
Light Weight	Channels															
LC 75	5.7	7.26	75	40	3.7	6.0	91.5	6.0	2.0	1.35	66.1	11.5	3.02	1.26	17.6	4.3
LC 100	7.9	10.0	100	50	4.0	6.4	91.5	6.0	2.0	1.62	165	24.8	4.06	1.57	32.9	7.3
LC 125	10.7	13.7	125	65	4.4	6.6	91.5	7.0	2.4	2.04	357	57.2	5.11	2.05	57.1	12.8
LC (P) 125	11.3	14.4	125	65	4.6	7.0	96	7.0	2.4	1.87	371	51.2	5.08	1.89	59.3	11.1
LC 150	14.4	18.4	150	75	4.8	7.8	91.5	8.0	2.4	2.39	699	103	6.16	2.37	93.1	20.2
LC (P) 150	15.6	19.9	150	75	5.0	8.7	96	8.0	2.4	2.24	752	97.2	6.15	2.21	100	18.5
LC 175	17.6	22.4	175	75	5.1	9.5	91.5	8.0	3.2	2.40	1 050	126	7.16	2.37	131	24.8
LC 200	20.6	26.3	200	75	5.5	10.8	91.5	8.5	3.2	2.36	1 730	147	8.11	2.36	173	28.5
LC (P) 200	21.5	27.4	200	75	5.7	11.4	96	8.5	3.2	2.23	1 800	138	8.09	2.24	180	26.2
LC 225	24.0	30.6	225	90	5.8	10.2	96	11.0	3.2	2.47	$2\ 560$	210	9.14	2.62	227	32.1
LC 250	28.0	35.7	250	100	6.1	10.7	96	11.0	3.2	2.71	3 700	299	10.2	2.89	296	41.0
LC 300	33.1	42.2	300	100	6.7	11.6	96	12.0	3.2	2.56	6 070	347	12.0	2.87	404	46.6
LC (P) 300	33.1	42.2	300	90	7.0	12.5	96	12.0	3.2	2.32	5 930	285	11.9	2.60	395	40.7
LC 350	38.9	49.5	350	100	7.4	12.5	96	13.0	4.8	2.42	9 330	396	13.7	2.83	533	52.2
LC 400	45.8	58.3	400	100	8.0	14.0	96	14.0	4.8	2.37	$14\ 000$	462	15.5	2.81	701	60.5
NOTE — (P)	stands for p	provisional se	ection.													

7

X - X - R₂ - R

Table 4.2 Dimensions, Mass and Sectional Properties of Parallel Flange Channels

Designation	Mass	Sectional			Dime	ensions					Section	onal Prop	erties		
	M	Area, a	\overline{D}	В	t	T	R_1	$\overline{R_2}$	C_{v}	I_{x}	$I_{ m v}$	$r_{\rm x}$	$r_{ m v}$	$Z_{ m x}$	$\overline{Z_{ m v}}$
	kg/m	${ m cm}^2$	mm	mm	mm	mm	mm	mm	mm	cm^4	cm^4	cm	cm	cm^3	$ m cm^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
MCP 75	7.14	9.10	75	40	4.8	7.5	8.5	4.5	1.38	78.9	13.7	2.94	1.23	21.0	5.23
MCP 100	9.56	12.2	100	50	5.0	7.7	9.0	4.5	1.65	194	29.4	3.98	1.55	38.9	8.78
MCP 125	13.1	16.7	125	65	5.3	8.1	9.5	5.0	2.14	321	69.8	4.39	2.04	51.4	16.1
MCP~125*	13.7	17.5	125	66	6.0	8.1	9.5	5.0	2.11	437	74.1	5.00	2.05	69.9	16.5
MCP 150	16.8	21.3	150	75	5.7	9.0	10.0	5.0	2.46	794	120	6.10	2.37	106	23.8
MCP 150*	17.7	22.6	150	76	6.5	9.0	10.0	5.0	2.40	818	128	6.02	2.38	109	24.6

*The heavier sections in each size intended for use in wagon industry are to be obtained from the same set of rolls as the corresponding lightest section in that size group, by raising the rolls.

 Table 4.2 (Concluded)

Designation	Mass	Sectional			Dime	ensions					Sect	ional Prop	erties		
	M	Area, a	D	В	t	T	R_1	R_2	C_{v}	I_{x}	$I_{ m v}$	$r_{\rm x}$	$r_{ m v}$	$Z_{ m x}$	$\overline{Z_{ m y}}$
	kg/m	${ m cm}^2$	mm	mm	mm	mm	mm	mm	mm	cm^4	cm^4	cm	cm	${ m cm}^3$	${ m cm}^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
MCP 175	19.6	24.9	175	75	6.0	10.2	10.5	6.0	2.39	$1\ 240$	138	7.06	2.35	142	27.0
MCP 175*	21.7	27.6	175	77	7.5	10.2	10.5	6.0	2.32	1320	155	6.90	2.37	151	28.8
MCP 200	22.3	28.5	200	75	6.2	11.4	11.0	6.0	2.34	1 840	156	8.03	2.34	184	30.2
MCP 200*	24.3	31.0	200	76	7.5	11.4	11.0	6.5	2.26	1 920	166	7.80	2.31	192	31.1
MCP 225	26.1	33.3	225	80	6.5	12.4	12.0	6.5	2.48	2720	209	9.04	2.50	242	37.9
MCP 225*	30.7	39.0	225	83	9.0	12.4	12.0	7.0	2.37	2970	245	8.70	2.51	269	41.3
MCP 250	30.6	39.0	250	80	7.2	14.1	12.0	7.0	2.44	3 840	240	9.90	2.48	307	43.2
MCP 250*	34.2	43.5	250	82	9.0	14.1	12.0	7.0	2.36	4 080	268	9.70	2.48	326	44.0
MCP 250*	38.1	48.5	250	84	11.0	14.1	12.0	7.0	2.31	$4\ 350$	295	9.47	2.47	348	48.4
MCP 300	36.3	46.5	300	90	7.8	13.6	13.0	7.0	2.54	$6\ 430$	352	11.8	2.76	428	54.5
MCP 300*	41.5	52.8	300	92	10.0	13.6	13.0	7.0	2.42	6920	390	11.4	2.72	461	57.2
MCP 300*	46.2	58.8	300	94	12.0	13.6	13.0	7.0	2.36	$7\ 370$	424	11.2	2.68	491	60.2
MCP 350	42.7	54.4	350	100	8.3	13.5	14.0	8.0	2.65	10 100	497	13.6	3.02	577	67.6
MCP 400	50.1	63.8	400	100	8.8	15.3	15.0	8.0	2.60	$15\ 200$	572	15.4	2.99	760	77.3

*The heavier sections in each size intended for use in wagon industry are to be obtained from the same set of rolls as the corresponding lightest section in that size group, by raising the rolls.

SECTION 5 EQUAL LEG ANGLES

Table 5.1 Nominal Dimensions, Mass and Sectional Properties of Indian Standard Equal Leg Angles

	Des	ignation	Mass	Sectional]	Dimen	sions						;	Sectional I	Propert	ies				
)			M	area, a	$A \times B$	t	R_1	R_2	$C_{\rm x}$	$C_{ m y}$	I_{x}	$I_{ m y}$	I _u (Max)	I _v (Min)	r_{x}	$r_{ m y}$	r _u (Max)	$r_{\rm v}(\mathit{Min})$	$Z_{ m x}$	$\overline{Z_{ m y}}$
			Kg/m	Cm^2	$mm{\times}mm$	$\mathbf{m}\mathbf{m}$	mm	mm	cm	cm	cm^4	cm^4	cm^4	cm^4	cm	cm	cm	cm	${ m cm}^3$	${ m cm}^3$
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
	_	20 20× 3 × 4	$0.9 \\ 1.1$	$\frac{1.12}{1.45}$	20×20	$\frac{3.0}{4.0}$	4.0	A	$0.59 \\ 0.63$	$0.59 \\ 0.63$	$0.4 \\ 0.5$	$0.4 \\ 0.5$	0.6 0.8	$0.2 \\ 0.2$	$0.58 \\ 0.58$	$0.58 \\ 0.58$	$0.73 \\ 0.72$	$0.37 \\ 0.37$	$0.3 \\ 0.4$	$0.3 \\ 0.4$
	_	25 25× 3 × 4 × 5	1.1 1.4 1.8	1.41 1.84 2.25	25×25	$3.0 \\ 4.0 \\ 5.0$	4.5	re —	$0.71 \\ 0.75 \\ 0.79$	$0.71 \\ 0.75 \\ 0.79$	$0.8 \\ 1.0 \\ 1.2$	0.8 1.0 1.2	1.2 1.6 1.8	0.3 0.4 0.5	$0.73 \\ 0.73 \\ 0.72$	$0.73 \\ 0.73 \\ 0.72$	0.93 0.91 0.91	$0.47 \\ 0.47 \\ 0.47$	$0.4 \\ 0.6 \\ 0.7$	$0.4 \\ 0.6 \\ 0.7$
	_	30 30× 3 × 4 × 5	$1.4 \\ 1.8 \\ 2.2$	1.73 2.26 2.77	30×30	$3.0 \\ 4.0 \\ 5.0$	5.0	ly square	0.83 0.87 0.92	$0.83 \\ 0.87 \\ 0.92$	1.4 1.8 2.1	1.4 1.8 2.1	2.2 2.8 3.4	0.6 0.7 0.9	0.89 0.89 0.88	0.89 0.89 0.88	1.13 1.12 1.11	0.57 0.57 0.57	$0.6 \\ 0.8 \\ 1.0$	0.6 0.8 1.0
	_	35 35× 3 × 4 × 5 × 6	1.6 2.1 2.6 3.0	2.03 2.66 3.27 3.86	35×35	3.0 4.0 5.0 6.0	5.0	resonably	0.95 1.00 1.04 1.08	0.95 1.00 1.04 1.08	2.3 2.9 3.5 4.1	2.3 2.9 3.5 4.1	3.6 4.7 5.6 6.5	0.9 1.2 1.5 1.7	1.05 1.05 1.04 1.03	1.05 1.05 1.04 1.03	1.33 1.32 1.31 1.29	0.67 0.67 0.67 0.67	$0.9 \\ 1.2 \\ 1.4 \\ 1.7$	0.9 1.2 1.4 1.7
	∠	40 40× 3 × 4 × 5 × 6	1.8 2.4 3.0 3.5	2.34 3.07 3.78 4.47	40×40	3.0 4.0 5.0 6.0	5.5	Should be	1.08 1.12 1.16 1.20	1.08 1.12 1.16 1.20	3.4 4.5 5.4 6.3	3.4 4.5 5.4 6.3	5.5 7.1 8.6 10.0	1.4 1.8 2.2 2.6	1.21 1.21 1.20 1.19	1.21 1.21 1.20 1.19	1.54 1.53 1.51 1.50	0.77 0.77 0.77 0.77	1.2 1.6 1.9 2.3	1.2 1.6 1.9 2.3
	_	45 45 × 3 × 4 × 5 × 6	$2.1 \\ 2.7 \\ 3.4 \\ 4.0$	2.64 3.47 4.28 5.07	45×45	3.0 4.0 5.0 6.0	5.5		1.20 1.25 1.29 1.33	1.20 1.25 1.29 1.33	5.0 6.5 7.9 9.2	5.0 6.5 7.9 9.2	8.0 10.4 12.6 14.6	2.0 2.6 3.2 3.8	1.38 1.37 1.36 1.35	1.38 1.37 1.36 1.35	1.74 1.73 1.72 1.70	0.87 0.87 0.87 0.87	1.5 2.0 2.5 2.9	1.5 2.0 2.5 2.9

Table 5.1 (Continued)

De	signation	Mass	Sectional		Dimen	sions						;	Sectional I	Propert	ies				
		M/Kg/m	area, a	$A \times B$ mm×mm	t mm	R_1 mm	R_2	$C_{ m x}$ cm	$C_{ m y}$ cm	$I_{ m x} m cm^4$	$I_{ m y} m_{cm^4}$	I _u (Max) cm ⁴	I _v (Min) cm ⁴	$r_{ m x}$ cm	$r_{ m y}$ cm	r _u (Max)	r _v (Min)	$Z_{ m x}$ cm ³	$Z_{ m y} \ m cm^3$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
∠	50 50 × 3 × 4 × 5 × 6	2.3 3.0 3.8 4.5	2.95 3.88 4.79 5.68	50×50	3.0 4.0 5.0 6.0	6.0	A	1.32 1.37 1.41 1.45	1.32 1.37 1.41 1.45	6.9 9.1 11.0 12.9	6.9 9.1 11.0 12.9	11.1 14.5 17.6 20.6	2.8 3.6 4.5 5.3	1.53 1.53 1.52 1.51	1.53 1.53 1.52 1.51	1.94 1.93 1.92 1.90	0.97 0.97 0.97 0.96	1.9 2.5 3.1 3.6	1.9 2.5 3.1 3.6
∠	55 55 × 4 × 5 × 6 × 8	3.3 4.1 4.9 6.4	4.26 5.27 6.26 8.18	55×55	4.0 5.0 6.0 8.0	6.5		1.49 1.53 1.57 1.65	1.49 1.53 1.57 1.65	12.30 14.7 17.3 22.0	12.30 14.7 17.3 22.0	19.59 23.5 27.5 34.9	4.73 5.9 7.0 9.1	1.68 1.67 1.66 1.64	1.68 1.67 1.66 1.64	2.12 2.11 2.10 2.07	1.06 1.06 1.06 1.06	3.00 3.7 4.4 5.7	3.00 3.7 4.4 5.7
∠	60 60 × 4 × 5 × 6 × 8	3.70 4.5 5.4 7.0	4.71 5.75 6.84 8.96	60×60	4.0 5.0 6.0 8.0	8.0 6.5		1.60 1.65 1.69 1.77	1.60 1.65 1.69 1.77	15.8 19.2 22.6 29.0	15.8 19.2 22.6 29.0	25.0 30.6 36.0 46.0	6.58 7.7 9.1 11.9	1.83 1.82 1.82 1.80	1.83 1.82 1.82 1.80	2.30 2.31 2.29 2.27	1.18 1.16 1.15 1.15	3.58 4.4 5.2 6.8	3.58 4.4 5.2 6.8
_	65 65 × 4 × 5 × 6 × 8	4.0 4.9 5.8 7.7	5.04 6.25 7.44 9.76	65×65	4.0 5.0 6.0 8.0	6.5	y square	1.74 1.77 1.81 1.89	1.74 1.77 1.81 1.89	21.70 24.7 29.1 37.4	21.70 24.7 29.1 37.4	34.50 39.4 46.5 59.5	8.00 9.9 11.7 15.3	2.00 1.99 1.98 1.96	2.00 1.99 1.98 1.96	2.52 2.51 2.50 2.47	1.26 1.26 1.26 1.25	4.50 5.2 6.2 8.1	4.50 5.2 6.2 8.1
_	70 70 × 5 × 6 × 8 × 10	5.3 6.3 8.3 10.2	6.77 8.06 10.6 13.0	70×70	5.0 6.0 8.0 10.0	7.0	resonably	1.89 1.94 2.02 2.10	1.89 1.94 2.02 2.10	31.1 36.8 47.4 57.2	31.1 36.8 47.4 57.2	49.8 58.8 75.5 90.7	12.5 14.8 19.3 23.7	2.15 2.14 2.12 2.10	2.15 2.14 2.12 2.10	2.71 2.70 2.67 2.64	1.36 1.36 1.35 1.35	6.1 7.3 9.5 11.7	6.1 7.3 9.5 11.7
_	75 75 × 5 × 6 × 8 × 10	5.7 6.8 8.9 11.0	7.27 8.66 11.4 14.0	75×75	5.0 6.0 8.0 10.0	7.0	Should be	2.02 2.06 2.14 2.22	2.02 2.06 2.14 2.22	38.7 45.7 59.0 71.4	38.7 45.7 59.0 71.4	61.9 73.1 94 1 113	15.5 18.4 24.0 29.4	2.31 2.30 2.28 2.26	2.31 2.30 2.28 2.26	2.92 2.91 2.88 2.84	1.46 1.46 1.45 1.45	7.1 8.4 11.0 13.5	7.1 8.4 11.0 13.5
_	80 80 × 6 × 8 × 10 × 12	7.3 9.6 11.8 14.0	9.29 12.2 15.0 17.8	80×80	6.0 8.0 10.0 12.0	8.0		2.18 2.27 2.34 2.42	2.18 2.27 2.34 2.42	56.0 72.5 87.7 102	56.0 72.5 87.7 102	89.6 116 139 161	22.5 29.4 36.0 42.4	2.46 2.44 2.41 2.39	2.46 2.44 2.41 2.39	3.11 3.08 3.04 3.01	1.56 1.55 1.55 1.54	9.6 12.6 15.5 18.3	9.6 12.6 15.5 18.3
∠	$90\ 90 \times 6 \\ \times 8 \\ \times 10 \\ \times 12$	8.2 10.8 13.4 15.8	10.5 13.8 17.0 20.2	90×90	6.0 8.0 10.0 12.0	8.5		2.42 2.51 2.59 2.66	2.42 2.51 2.59 2.66	80.1 104 127 148	80.1 104 127 148	128 166 202 235	32.0 42.0 51.6 60.9	2.77 2.75 2.73 2.71	2.77 2.75 2.73 2.71	3.50 3.47 3.44 3.41	1.75 1.75 1.74 1.74	12.2 16.0 19.8 23.3	12.2 16.0 19.8 23.3
∠	100 100 × 6 × 8 × 10 × 12	9.2 12.1 14.9 17.7	11.7 15.4 19.0 22.6	100×100	6.0 8.0 10.0 12.0	8.5	V	2.67 2.76 2.84 2.92	2.67 2.76 2.84 2.92	111 145 177 207	111 145 177 207	178 232 282 329	44.5 58.4 71.8 84.7	3.09 3.07 3.05 3.03	3.09 3.07 3.05 3.03	3.91 3.88 3.85 3.82	1.95 1.95 1.94 1.94	15.2 20.0 24.7 29.2	15.2 20.0 24.7 29.2

Table 5.1 (Concluded)

Designation	Mass	Sectional]	Dimen	sions						:	Sectional I	Propert	ies				
	M	area, a	$A \times B$	t	R_1	R_2	C_{x}	$C_{ m y}$	I_{x}	$I_{ m y}$	I _u (Max)	I _v (Min)	r_{x}	$r_{ m y}$	r _u (Max)	r _v (Min)	$Z_{ m x}$	$\overline{Z_{ m y}}$
	Kg/m	Cm^2	$mm \times mm$	mm	mm	mm	cm	cm	cm^4	cm^4	cm^4	cm^4	cm	cm	cm	cm	${ m cm}^3$	cm^3
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
∠ 110 110 × 8	13.4	17.1	110×110	8.0	10.0	4.8	3.00	3.00	197	197	313	81.0	3.40	3.40	4.28	2.18	24.6	24.6
×10	16.6	21.1		10.0			3.09	3.09	240	240	381	98.9	3.37	3.37	4.25	2.16	30.4	30.4
$\times 12$	19.7	25.1		12.0			3.17	3.17	281	281	446	116	3.35	3.35	4.22	2.15	35.9	35.9
×16	25.7	32.8		16.0			3.32	3.32	357	357	560	150	3.30	3.30	4.15	2.14	46.5	46.5
∠ 130 130 × 8	15.9	20.3	130×130	8.0	10.0	4.8	3.50	3.50	331	331	526	136	4.04	4.04	5.10	2.59	34.9	34.9
×10	19.7	25.1		10.0			3.59	3.59	405	405	640	166	4.02	4.02	5.07	2.57	43.1	43.1
$\times 12$	23.5	29.9		12.0			3.67	3.67	476	476	757	196	3.99	3.99	5.03	2.56	51.0	51.0
×16	30.7	39.2		16.0			3.82	3.82	609	609	966	250	3.94	3.94	4.97	2.54	66.3	66.3
∠ 150 150×10	22.9	29.2	150×150	10.0	12.0	4.8	4.08	4.08	634	634	1 010	260	4.66	4.66	5.87	2.98	58.0	58.0
$\times 12$	27.3	34.8		12.0			4.16	4.16	746	746	1 190	306	4.63	4.63	5.84	2.97	68.8	68.8
×16	35.8	45.6		16.0			4.31	4.31	959	959	1520	395	4.58	4.58	5.77	2.94	89.7	89.7
×20	44.1	56.2		20.0			4.46	4.46	1 160	1 160	1830	481	4.53	4.53	5.71	2.93	110	110
∠ 200 200 × 12	36.9	46.9	200×200	12.0	15.0	4.8	5.39	5.39	1 830	1 830	2910	747	6.24	6.24	7.87	3.99	125	125
×16	48.5	61.8		16.0			5.56	5.56	$2\ 370$	$2\ 370$	3760	968	6.19	6.19	7.80	3.96	164	164
×20	60.0	76.4		20.0			5.71	5.71	2880	2880	4570	1 180	6.14	6.14	7.73	3.93	201	201
$\times 25$	73.9	94.1		25.0			5.90	5.90	3470	$3\ 470$	5 500	1 440	6.07	6.07	7.61	3.91	246	246

Table 5.2 Supplementary List of Indian Standard Equal Leg Angles — Nominal Dimensions, Mass and Sectional Properties

Designation	Mass	Sectional		Dimen	sions			•			•	Sectional l	Propert	ies	•	•	•	
	M	Area, a	$A \times B$	t	R_1	R_2	$C_{\rm x}$	$C_{ m y}$	I_{x}	$I_{ m y}$	$I_{\rm u} (Max)$	I_{v}	$r_{ m x}$	$r_{ m y}$	$r_{\rm u} (\mathit{Max})$	$r_{\mathrm{Y}} (Min)$	Z_{x}	$\overline{Z_{ m y}}$
	Kg/m	Cm^2	mm×mm	mm	mm	mm	cm	cm	${ m cm^4}$	${ m cm^4}$	cm^4	cm^4	cm	cm	cm	cm	${ m cm}^3$	${ m cm}^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
∠ 50 50 × 7	5.15	6.56	50×50	7.0	7.0	ıre	1.49	1.49	14.6	14.6	23.1	6.10	1.49	1.49	1.88	0.96	4.16	4.16
× 8	5.82	7.41		8.0		Square	1.52	1.52	16.3	16.3	25.7	6.87	1.48	1.48	1.86	0.96	4.68	4.68
∠ 55 55 × 10	7.9	10.0	55×55	10.0	6.5		1.72	1.72	26.3	26.3	41.5	11.2	1.62	1.62	2.03	1.06	7.0	7.0
∠ 60 60 × 10	8.6	11.0	60×60	10.0	6.5	reasonably	1.85	1.85	34.8	34.8	54.9	14.6	1.78	1.78	2.23	1.15	8.4	8.4
∠ 65 65 × 10	9.4	12.0	65×65	10.0	6.5	reas	1.97	1.97	45.0	45.0	71.3	18.8	1.94	1.94	2.44	1.25	9.9	9.9
∠ 70 70 × 7	7.38	9.40	70×70	7.0	9.0	pe	1.97	1.97	42.3	42.3	67.1	17.5	2.12	2.12	2.67	1.36	8.41	8.41
∠ 100 100 × 7	10.7	13.7	100×100	7.0	12.0	Should	2.69	2.69	128	128	203	53.1	3.06	3.06	3.86	1.97	17.5	17.5
×15	21.9	27.9		15.0		Shc	3.02	3.02	249	249	393	104	2.98	2.98	3.75	1.93	35.6	35.6
∠ 120 120 × 8	14.7	18.7	120×120	8.0	13.0	4.8	3.23	3.23	255	255	405	105	3.69	3.69	4.65	2.37	29.1	29.1
×10	18.2	23.2		10.0			3.31	3.31	313	313	497	129	3.67	3.67	4.63	2.36	36.0	36.0
×12	21.6	27.5		12.0			3.40	3.40	368	368	584	151	3.65	3.65	4.60	2.35	42.7	42.7
×15	26.6	33.9		15.0			3.51	3.51	445	445	705	185	3.62	3.62	4.56	2.33	52.4	52.4
∠ 130 130 × 9	17.9	22.7	130×130	9.0	13.0	4.8	3.55	3.55	368	368	582	151	4.03	4.03	5.09	2.58	39.0	39.0
∠ 150 150×15	33.8	43.0	150×150	15.0	16.0	4.8	4.25	4.25	898	898	1430	370	4.57	4.57	5.76	2.93	83.5	83.5
×18	40.1	51.0		18.0			4.37	4.37	1050	1050	1670	335	4.54	4.54	5.71	2.92	98.7	98.7
∠ 180 180×15	40.9	52.1	180×180	15.0	18.0	4.8	4.98	4.98	1590	1 590	$2\ 520$	653	5.52	5.52	5.96	3.54	122	122
×18	48.6	61.9		18.0			5.10	5.10	1870	1870	2960	768	5.49	5.49	6.92	3.52	145	145
×20	53.7	68.3		20.0			5.18	5.18	2~040	$2\ 040$	$3\ 240$	843	5.47	5.47	6.89	3.51	159	159
∠ 200 200 ×24	71.1	90.6	200×200	24.0	18.0	4.8	5.84	5.84	3 330	3 330	5 280	1 380	6.06	6.06	7.64	3.90	235	235

Table 6.1 Nominal Dimensions, Mass and Sectional Properties of Indian Standard Unequal Leg Angles

Des	Designation	Mass	Sectional	D	imens	ions							Section	nal Prop	erties					
		M	area, a	$A \times B$	t	R_1	R_2	$C_{ m x}$	$C_{ m y}$	Tan α	I_{x}	$I_{ m y}$	$I_{\rm u} (Max)$	I_{v}	r_{x}	$r_{ m y}$	$r_{\rm u} (Max)$	$r_{\text{V}} (Min)$	$Z_{ m x}$	$Z_{ m y}$
		Kg/m	cm^2	mm×mm	mm	mm	mm	cm	cm		cm^4	cm^4	cm^4	cm^4	cm	cm	cm	cm	${ m cm}^3$	${ m cm}^3$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
_	3020×3	1.1	1.41	30×20	3.0	4.5	1	0.98	0.49	0.43	1.2	0.4	1.4	0.2	0.92	0.54	0.99	0.41	0.6	0.3
	× 4	1.4	1.84		4.0		T	1.02	0.53	0.42	1.5	0.5	1.8	0.3	0.92	054	0.98	0.41	8.0	0.4
	× 5	1.8	2.25		5.0			1.06	0.57	0.41	1.9	0.6	2.1	0.4	0.91	0.53	0.97	0.41	1.0	0.4
_	40.25×3	1.5	1.88	40×25	3.0	5.0	re	1.30	0.57	0.38	3.0	0.9	3.3	0.5	1.25	0.68	1.33	0.52	1.1	0.5
	× 4	1.9	2.46		4.0		uare	1.35	0.62	0.38	3.8	1.1	4.3	0.7	1.25	0.68	1.32	0.52	1.4	0.6
	× 5	2.4	3.02		5.0		bs	1.39	0.66	0.37	4.6	1.4	5.1	0.8	1.24	0.67	1.31	0.52	1.8	0.7
	× 6	2.8	3.56		6.0		>	1.43	0.69	0.37	5.4	1.6	5.9	1.0	1.23	0.66	1.29	0.52	2.1	0.9
_	4530×3	1.7	2.18	45×30	3.0	5.0	sonably	1.42	0.69	0.44	4.4	1.5	5.0	0.9	1.42	0.84	1.52	0.63	1.4	0.7
	× 4	2.2	2.86		4.0		gon	1.47	0.73	0.43	5.7	2.0	6.5	1.1	1.41	0.84	1.51	0.63	1.9	0.9
	× 5	2.8	3.52		5.0		eas	1.51	0.77	0.43	6.9	2.4	7.9	1.4	1.40	0.83	1.50	0.63	2.3	1.1
	× 6	3.3	4.16		6.0		r	1.55	0.81	0.42	8.0	2.8	9.2	1.7	1.39	0.82	1.49	0.63	2.7	1.3
_	5030×3	1.8	2.34	50×30	3.0	5.5	be	1.63	0.66	0.36	5.9	1.6	6.5	1.0	1.59	0.83	1.67	0.65	1.7	0.7
	× 4	2.4	3.07		4.0		р	1.68	0.70	0.36	7.7	2.1	8.5	1.2	1.58	0.82	1.66	0.63	2.3	0.9
	× 5	3.0	3.78		5.0		Inc	1.72	0.74	0.35	9.3	2.5	10.3	1.5	1.57	0.81	1.65	0.63	2.8	1.1
	× 6	3.5	4.47		6.0		Should	1.76	0.78	0.35	10.9	2.9	11.9	1.8	1.56	0.80	1.64	0.63	3.4	1.3
_	$60~40\times~5$	3.7	4.76	60×40	5.0	6.0	1	1.95	0.96	0.44	16.9	6.0	19.5	3.4	1.89	1.12	2.02	0.85	4.2	2.0
	× 6	4.4	5.65		6.0			1.99	1.00	0.43	19.9	7.0	22.3	4.0	1.88	1.11	2.01	0.85	5.0	2.3
	× 8	5.8	7.37		8.0		Y	2.07	1.08	0.42	25.4	8.8	29.0	5.2	1.86	1.10	1.98	0.84	6.5	3.0

De	signation	Mass	Sectional	D	imens	ions							Section	al Prope	rties					
		M	area, <i>a</i>	$A \times B$	t	R_1	R_2	$C_{ m x}$	$C_{ m y}$	Tan α	I_{x}	$I_{ m y}$	$I_{\rm u} (\mathit{Max})$	I _y (Min)	r_{x}	$r_{ m y}$	$r_{\rm u} (\mathit{Max})$	$r_{\text{V}} (Min)$	Z_{x}	$\overline{Z_{ m y}}$
		Kg/m	${ m cm}^2$	$mm \times mm$	mm	mm	mm	cm	cm		cm^4	cm^4	cm^4	cm^4	cm	cm	cm	cm	${ m cm}^3$	${ m cm}^3$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
_	$65\ 45 \times\ 5$	4.1	5.26	65×45	5.0	6.0	A	2.07	1.08	0.47	22.1	8.6	25.9	4.8	2.05	1.28	2.22	0.96	5.0	2.5
	× 6	4.9	6.25		6.0			2.11	1.12	0.47	26.0	10.1	30.4	5.7	2.04	1.27	2.21	0.95	5.9	3.0
	× 8	6.4	8.17		8.0			2.19	1.20	0.46	33.2	12.8	38.7	7.4	2.02	1.25	2.18	0.95	7.7	3.9
_	70.45×5	4.3	5.52	70×45	5.0	6.5		2.27	1.04	0.41	27.2	8.8	30.9	5.1	2.22	1.26	2.36	0.96	5.7	2.5
	× 6	5.2	6.56		6.0			2.32	1.09	0.41	32.0	10.3	36.3	6.0	2.21	1.25	2.35	0.96	6.8	3.0
	× 8	6.7	8.58		8.0			2.40	1.16	0.40	41.0	13.1	46.3	7.8	2.19	1.24	2.32	0.95	8.9	3.9
	×10	8.3	10.5		10.0			2.48	1.24	0.39	49.3	15.6	55.4	9.5	2.16	1.22	2.29	0.95	10.9	4.8
_	7550×5	4.7	6.02	75×50	5.0	6.5		2.39	1.16	0.44	34.1	12.2	39.4	6.9	2.38	1.42	2.56	1.07	6.7	3.2
	× 6	5.6	7.16		6.0			2.44	1.20	0.44	40.3	14.3	46.4	8.2	2.37	1.41	2.55	1.07	8.0	3.8
	× 8	7.4	9.38		8.0		re.	2.52	1.28	0.42	51.8	18.3	59.4	10.6	2.85	1.40	2.52	1.06	10.4	4.9
	×10	9.0	11.5		10.0		square	2.60	1.36	0.42	62.2	21.8	71.2	12.9	2.33	1.38	2.49	1.06	12.7	6.0
_	8050×5	4.9	6.27	80×50	5.0	7.0	S	2.60	1.12	0.39	40.6	12.3	45.7	7.2	2.55	1.40	2.70	1.07	7.5	3.2
	× 6	5.9	7.46		6.0		$_{ m oly}$	2.64	1.16	0.39	48.0	14.4	53.9	8.5	2.54	1.39	2.69	1.07	9.0	3.8
	× 8	7.7	9.78		8.0		nal	2.73	1.24	0.38	61.9	18.5	69.3	11.0	2.52	1.37	2.66	1.06	11.7	4.9
	×10	9.4	12.0		10.0		reasonably	2.81	1.32	0.38	74.7	22.1	83.3	13.5	2.49	1.36	2.63	1.06	14.4	6.0
_	$90~60 \times ~6$	6.8	8.65	90×60	6.0	7.5	re	2.87	1.39	0.44	70.6	25.2	81.5	14.3	2.86	1.71	3.07	1.28	11.5	5.5
	× 8	8.9	11.4		8.0		be	2.96	1.48	0.44	91.5	32.4	105	18.6	2.84	1.69	3.04	1.28	15.1	7.2
	×10	11.0	14.0		10.0			3.04	1.55	0.43	111	39.1	127	22.8	2.81	1.67	3.01	1.27	18.6	8.8
	$\times 12$	13.0	16.6		12.0		Should	3.12	1.63	0.42	129	45.2	148	26.8	2.79	1.65	2.98	1.27	22.0	10.3
_	$100~65\times~6$	7.5	9.55	100×65	6.0	8.0	\mathbf{Sh}	3.19	1.47	0.42	96.7	32.4	111	18.6	3.18	1.84	3.40	1.39	14.2	6.4
	× 8	9.9	12.6		8.0			3.28	1.55	0.42	126	41.9	144	24.2	3.16	1.83	3.38	1.39	18.7	8.5
	×10	12.2	15.5		10.0			3.37	1.63	0.41	153	50.7	174	29.7	3.14	1.81	3.35	1.38	23.1	10.4
_	10075×6	8.0	10.1	100×75	6.0	8.5		3.01	1.78	0.55	101	48.7	124	25.6	3.15	2.19	3.50	1.59	14.4	8.5
	× 8	10.5	13.4		8.0			3.10	1.87	0.55	132	63.3	161	33.6	3.14	2.18	3.48	1.59	19.1	11.2
	×10	13.0	16.5		10.0			3.19	1.95	0.55	160	76.9	196	41.2	3.12	2.16	3.45	1.58	23.6	13.0
	$\times 12$	15.4	19.6		12.0			3.27	2.03	0.54	188	89.5	228	48.6	3.10	2.14	3.42	1.58	27.9	16.3
_	12575×6	9.2	11.7	125×75	6.0	9.0		4.05	1.59	0.37	188	51.6	209	30.5	4.01	2.10	4.23	1.62	22.2	8.7
	× 8	12.1	15.4		8.0			4.15	1.68	0.36	246	67.2	273	40.0	4.00	2.09	4.21	1.61	29.4	11.5
	×10	14.9	19.0		10.0		*	4.24	1.76	0.36	300	81.6	333	49.1	3.97	2.07	4.18	1.61	36.5	14.2

Table 6.1 (Concluded)

Designation	Mass	Sectional	D	imens	sions							Section	nal Prope	rties					
	M	area, a	$A \times B$	t	R_1	R_2	C_{x}	$C_{ m y}$	Tan α	I_{x}	$I_{ m y}$	$I_{\rm u} (Max)$	I_{v}	r_{x}	$r_{ m y}$	$r_{\rm u} (Max)$	$r_{\mathrm{v}} (Min)$	Z_{x}	$\overline{Z_{ m y}}$
	Kg/m	${ m cm}^2$	$mm{\times}mm$	mm	mm	mm	cm	cm		cm^4	cm^4	cm^4	cm^4	cm	cm	cm	cm	${ m cm}^3$	${ m cm}^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
∠ 125 95 × 6	10.1	12.9	125×95	6.0	9.0	4.8	3.72	2.24	0.57	205	103	254	55.1	3.99	2.83	4.43	2.07	23.4	14.3
× 8	13.4	17.0		8.0			3.80	2.32	0.57	268	135	331	71.7	3.97	2.81	4.41	2.05	30.9	18.8
×10	16.5	21.1		10.0			3.89	2.40	0.56	328	164	404	87.6	3.95	2.79	4.38	2.04	38.1	23.1
$\times 12$	19.7	25.0		12.0			3.97	2.48	0.56	385	192	474	103	3.92	2.77	4.35	2.03	45.1	27.3
∠ 150 75 × 8	13.7	17.5	150×75	8.0	10.0	4.8	5.24	1.54	0.26	410	71.1	436	45.7	4.88	2.02	4.99	1.62	42.0	11.9
×10	17.0	21.6		10.0			5.33	1.62	0.28	502	86.3	533	55.7	4.82	2.00	4.96	1.61	51.9	14.7
×12	20.2	25.7		12.0			5.42	1.70	0.26	590	100	625	66.4	4.79	1.98	4.93	1.60	61.6	17.3
∠ 150 115 × 8	16.3	20.7	150×115	8.0	11.0	4.8	4.48	2.76	0.58	474	244	590	129	4.78	3.45	5.33	2.50	45.1	28.0
×10	20.1	25.7		10.0			4.57	2.84	0.58	582	299	723	158	4.76	3.41	5.31	2.48	55.8	34.5
$\times 12$	24.0	30.5		12.0			4.65	2.92	0.57	685	351	849	186	4.74	3.39	5.28	2.47	66.2	40.8
×16	31.4	40.0		16.0			4.81	3.07	0.57	878	447	1 090	239	4.69	3.34	5.21	2.44	86.2	53.0
∠ 200 100 × 10	22.9	29.2	200×100	10.0	12.0	4.8	6.98	2.03	0.27	1 230	215	1 300	138	6.48	2.71	6.68	2.17	94.3	26.9
× 12	27.3	34.8		12.0			7.07	2.11	0.26	1450	251	1540	162	6.46	2.69	6.65	2.16	112	31.9
× 16	35.8	45.7		16.0			7.23	2.27	0.26	1870	320	1 980	208	6.40	2.66	6.59	2.13	147	41.3
∠ 200 150×10	26.9	34.3	200×150	10.0	13.5	4.8	6.02	3.55	0.56	1 410	689	1 730	368	6.41	4.48	7.10	3.28	101	60.2
$\times 12$	32.1	40.9		12.0			6.11	3.63	0.55	1 670	812	2 040	434	6.39	4.46	7.07	3.26	120	71.4
×16	42.2	53.7		16.0			6.27	3.79	0.55	$2\ 150$	1 040	2 640	561	6.33	4.41	7.01	3.23	157	93.2
×20	52.0	66.3		20.0			6.42	3.94	0.55	2620	$1\ 260$	3 180	683	6.28	4.36	6.94	3.21	193	114

Table 6.2 Supplementary List of Indian Standard Unequal Leg Angles — Nominal Dimensions, Mass and Sectional Properties

Des	signation	Mass	Sectional	D	imens	sions							Sectio	nal Prop	erties					
		M	Area, a	$A \times B$	t	R_1	R_2	$C_{\rm x}$	$C_{ m y}$	Tan α	I_{x}	$I_{ m y}$	$I_{\rm u} (\mathit{Max})$	I_{y} (Min)	r_{x}	$r_{ m y}$	$r_{\rm u} (\mathit{Max})$	$r_{ m v} (Min)$	$Z_{ m x}$	$Z_{ m y}$
		Kg/m	${ m cm}^2$	mm×mm	mm	mm	mm	cm	cm		cm^4	cm^4	cm^4	cm^4	cm	cm	cm	cm	${ m cm}^3$	${ m cm}^3$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
_	$40\ 20 \times 3$	1.36	1.73	40×20	3.0	4.0	4	1.42	0.44	0.257	2.80	0.47	2.96	0.31	1.27	0.52	1.31	0.42	1.09	0.30
	× 4	1.77	2.26		4.0		1	1.47	0.48	0.252	3.59	0.60	3.80	0.39	1.26	0.51	1.30	0.42	1.42	0.39
	× 5	2.17	2.77		5.0			1.51	0.52	0.245	4.32	0.71	4.55	0.48	1.25	0.51	1.28	0.42	1.73	0.48
_	$60~30 \times ~5$	3.37	4.29	60×30	5.0	6.0		2.15	0.68	0.256	15.6	2.60	16.5	1.69	1.90	0.78	1.96	0.63	4.04	1.12
	× 6	3.99	5.08		6.0			2.20	0.72	0.252	18.2	3.02	19.2	1.99	1.89	0.77	1.95	0.63	4.78	1.32
_	$60~40 \times ~7$	5.14	6.55	60×40	7.0	6.0		2.04	1.05	0.427	22.9	8.07	26.3	4.75	1.87	1.11	2.00	0.85	5.79	2.74
_	$65\ 50 \times\ 5$	4.35	5.54	65×50	5.0	6.0		1.99	1.25	0.577	23.2	11.9	28.8	6.32	2.05	1.47	2.28	1.07	5.14	2.19
	× 6	5.16	6.58		6.0			2.04	1.29	0.575	27.2	14.0	33.8	7.43	2.03	1.46	2.27	1.06	6.10	3.77
	× 7	5.96	7.60		7.0			2.08	1.33	0.572	31.1	15.9	38.5	8.51	2.02	1.45	2.25	1.06	7.03	4.34
	× 8	6.75	8.60		8.0			2.11	1.37	0.569	4.8	17.7	43.0	9.57	2.01	1.44	2.23	1.05	7.93	4.85
_	$70\ 50 \times\ 5$	4.54	5.79	70×50	5.0	6.0		2.20	1.21	0.499	28.5	12.2	33.9	6.76	2.22	1.45	2.42	1.08	5.90	3.21
	× 6	5.40	6.88		6.0		n n	2.24	1.25	0.497	33.5	14.3	39.9	7.94	2.21	1.44	2.41	1.07	7.04	3.01
	× 7	6.24	7.95		7.0		square	2.28	1.29	0.495	38.3	16.2	45.5	9.10	2.20	1.43	2.39	1.07	8.12	4.28
	× 8	7.06	9.00		8.0		adı	2.32	1.33	0.491	42.9	18.1	50.8	10.2	2.18	1.42	2.38	1.07	9.17	4.93
_	$75\ 50 \times 7$	6.53	8.31	75×50	7.0	7.0	5	2.48	1.25	0.433	46.4	16.5	53.3	9.57	2.36	1.41	2.53	1.07	9.24	4.39
_	$80 \ 40 \times 5$	4.56	5.80	80×40	5.0	7.0	reasonably	2.81	0.84	0.360	38.2	6.49	40.5	4.19	2.56	1.06	2.64	0.85	7.35	2.06
	× 6	5.41	6.89		6.0		ons	2.85	0.88	0.258	44.9	7.59	47.6	4.92	2.55	1.05	2.63	0.85	8.73	2.44
	× 7	6.25	7.96		7.0		eas	2.90	0.92	0.256	51.4	8.63	54.4	5.64	2.54	1.04	2.61	0.84	10.1	2.81
	× 8	7.07	9.01		8.0			2.94	0.96	0.253	57.6	9.61	60.9	6.33	2.53	1.03	2.60	0.84	11.4	3.15
_	80 60 × 6	6.37	8.11	80×60	6.0	8.0	pe	2.47	1.48	0.547	51.4	24.8	62.8	13.4	2.52	1.75	2.78	1.29	9.29	5.49
	× 7	$7.36 \\ 8.34$	9.38		7.0 8.0		7	$2.51 \\ 2.55$	1.52	0.546	$59.0 \\ 66.3$	$28.4 \\ 31.8$	$72.0 \\ 80.8$	$15.4 \\ 17.3$	2.51	$1.74 \\ 1.73$	$2.77 \\ 2.76$	$\frac{1.28}{1.28}$	$10.7 \\ 12.2$	6.34
,	× 8		10.6	00.05		0.0	Should		1.56	0.544					2.50					7.16
_	90.65×6 $\times 7$	$7.07 \\ 8.19$	9.01 10.4	90×65	$6.0 \\ 7.0$	8.0	$_{ m Sp}$	2.79 2.83	$1.56 \\ 1.60$	$0.510 \\ 0.509$	$73.4 \\ 84.3$	$32.3 \\ 37.0$	87.9 101	$17.8 \\ 20.4$	$2.85 \\ 2.84$	1.89 1.88	$3.12 \\ 3.11$	$\frac{1.41}{1.40}$	$11.8 \\ 13.7$	6.53 7.55
	× 1 × 8	9.29	11.8		8.0			2.88	1.60 1.64	0.509 0.507	94.9	41.5	1113	20.4 23.0	2.83	1.87	3.11 3.10	1.40 1.39	15.7 15.5	8.54
	×10	$\frac{3.23}{11.4}$	14.6		10.0			2.96	1.72	0.503		49.9	137	27.9	2.81	1.85	3.10 3.07	1.38	19.0	10.4
_	100 50 × 6	6.85	8.73	100×50	6.0	9.0		3.49	1.04	0.260	89.7	15.3	95.1	9.85	3.21	1.32	3.30	1.06	13.8	3.88
_	× 7	7.93	10.1	100,000	7.0	5.0		3.43	1.04	0.250		17.4	109	11.3	3.21	1.32 1.31	3.29	1.06	16.0	4.44
	× 8	8.99	11.4		8.0			3.59	1.12	0.257		19.5	123	12.7	3.18	1.31	3.28	1.05	18.1	5.03
	×10	11.1	14.1		10.0			3.67	1.20	0.253		23.4	149	15.4	3.16	1.29	3.25	1.05	22.2	6.17
_	100.65×7	8.77	11.2	100×65	7.0	10		3.23	1.51	0.415	113	37.6	128	22.0	3.17	1.83	3.39	1.40	16.6	7.53
_	120 80 × 8	12.2	15.5	120×80	8.0	11		3.83	1.87		226	80.8	260	46.6	3.82	2.28	4.10	1.73	27.6	13.2
_		15.0	19.1		10.0			3.92	1.95	0.435		98.1	317	56.8	3.80	2.26	4.07	1.72	34.1	16.2
	×12	17.8	22.7		12.0			4.00	2.03		323	114	371	66.6	3.77	2.24	4.04	1.71	40.4	19.1
_	125.75×12	17.8	22.7	125×75	12.0	11	٧	4.31	1.84	0.353	354	95.5	391	58.8	3.95	2.05	4.15	1.61	43.2	16.9

Table 6.2 (Concluded)

Designation	Mass	Sectional	D	imens	ions							Section	nal Prop	erties					
	M	Area, a	$A \times B$	t	R_1	R_2	$C_{\rm x}$	$C_{ m y}$	Tan α	I_{x}	$I_{ m y}$	$I_{\rm u}$ (Max)	I_{y} (Min)	r_{x}	$r_{ m y}$	$r_{\rm u} (Max)$	$r_{\text{V}} $ (Min)	$Z_{ m x}$	$Z_{ m y}$
	Kg/m	${ m cm}^2$	mm×mm	mm	mm	mm	cm	cm		cm^4	cm^4	cm^4	cm^4	cm	cm	cm	cm	${ m cm}^3$	${ m cm}^3$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
∠ 135 65 × 8		15.1	135×65	8.0	11	4.8	4.56	1.37	0.261	263	44.8	278	28.9	4.17	1.72	4.30	1.38	31.1	8.72
×1		18.6		10.0			4.65	1.45	0.258	320	54.2	339	35.2	4.15	1.71	4.27	1.37	38.4	10.7
×1:	2 17.3	22.1		12.0			4.74	1.53	0.255	375	63.0	397	41.2	4.12	1.69	4.24	1.57	45.4	12.7
∠ 150 75 × 5	15.4	19.6	150×75	9.0	11	4.8	5.27	1.57	0.264	456	78.3	484	50.0	4.83	2.00	4.98	1.60	46.9	13.2
×1	5 24.8	31.5		15.0			5.53	1.81	0.254	713	120	754	78.8	4.75	1.94	4.88	1.58	75.3	21.0
∠ 150 90×1	18.2	23.3	150×90	10.0	12	4.8	5.00	2.04	0.360	533	146	591	88.3	4.80	2.51	5.05	1.95	53.3	21.0
×1:	21.6	27.5		12.0			5.08	2.12	0.358	627	171	694	104	4.77	2.49	5.02	1.94	63.3	24.8
×1	5 26.6	33.9		15.0			5.21	2.23	0.354	761	205	841	126	4.74	2.46	4.98	1.93	77.7	30.4
∠ 200 100×1	33.7	43.0	200×100	15.0	15	4.8	7.16	2.22	0.259	1 760	299	1 860	194	6.40	2.64	6.58	2.13	137	38.4
∠ 200 150×1	39.6	50.5	200×150	15.0	15	4.8	6.21	3.73	0.550	$2\ 020$	979	$2\ 480$	527	6.33	4.40	7.00	3.23	147	86.9
×1	3 47.1	60.0		18.0			6.33	3.85	0.548	$2\ 380$	1 150	$2\ 900$	620	6.29	4.37	6.95	3.21	174	103

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc : No. SMDC 6 (3156) and amended by CED 8

Amendments Issued Since Publication

Amend No.	Date of Issue	
Amd. No. 1	July 1992	

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002. Telephones: 323 01 31, 323 33 75, 323 94 02	Telegrams: Manaksanstha (Common to all offices)
Regional Offices:	Telephone
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg NEW DELHI 110002	$\left\{\begin{array}{l} 323\ 76\ 17 \\ 323\ 38\ 41 \end{array}\right.$
Eastern : 1/14 C. I. T. Scheme VII M, V. I. P. Road, Kankurgachi KOLKATA 700054	$\left\{\begin{array}{l} 337\ 84\ 99,\ 337\ 85\ 61\\ 337\ 86\ 26,\ 337\ 91\ 20 \end{array}\right.$
Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160022	
Southern: C. I. T. Campus, IV Cross Road, CHENNAI 600113	$\left\{\begin{array}{l} 235\ 02\ 16,\ 235\ 04\ 42 \\ 235\ 15\ 19,\ 235\ 23\ 15 \end{array}\right.$
Western : Manakalaya, E9 MIDC, Marol, Andheri (East) MUMBAI 400093	$\left\{\begin{array}{l} 832\ 92\ 95,\ 832\ 78\ 58 \\ 832\ 78\ 91,\ 832\ 78\ 92 \end{array}\right.$

Branches: AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE.

FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR. NALAGARH. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM.

VISHAKHAPATNAM.