University of Illinois at Urbana-Champaign

NeuroNet: Linking Model Parameters to Experimental Quantities

Graduate Assistant: Sahand Hariri

1 Neuron Types

- Excitatory (glutamatergic)
 - **p2/3** Pyramidal neurons in L2/3
 - ss4(L4) Spiny stellate neurons in L4 that project to L4
 - SS4(L2/3) Spiny stellate neurons in L4 that project to L2/3
 - **p4** Pyramidal neurons in L4
 - p5(L2/3) Pyramidal neurons in L5 that project to L2/3
 - p5(L5/6) Pyramidal neurons in L5 that project to L5/6
 - **p6(L4)** Pyramidal neurons in L6 that project to L4
 - p6(L5/6) Pyramidal neurons in L6 that project to L5/6
- Inhibitory (GABAergic)
 - **b** Basket interneuron, all layers
 - **nb** Non-basket interneuron, all layers

2 Types of Synapses

- Local excitatory
- Local inhibitory
- Global cortical
- Cortico-thalamic
- Thalamo-cortical
- Sensory input
- Brainstem Modulation
- Gap junction

3 Individual Neuron Dynamics

$$C\dot{v} = k(v - v_r)(v - v_t) - u + I \tag{1}$$

$$\dot{u} = a \left\{ b(v - v_r) - u \right\} \tag{2}$$

- \bullet C Membrane Capacitance
- v Membrane potential (in mV)
- v_r Resting potential
- v_t instantaneous threshold
- u Recovery variable (The different of all inward and outward voltage-gated currents)
- I Dendritic and synaptic current in (pA)

$$I(t) = -I_{dendr} - I_{sun}$$

4 Short-term Synaptic Plasticity

$$\dot{x} = (1 - x)/\tau_x$$
 If presynaptic spike, then $x \leftarrow px$. (3)

- ullet x Scaler factor for synapse strength
- τ_x Time constant with which x recovers back to 1.
- p The parameter p ? 1 decreases x and results in short-termsynaptic depression, whereas p?1 results in short-term synaptic facilitation.

5 Long-term change in Synaptic Weight

6 Axonal Conductance Delay

Following are for corticocortical connections:

- Myelinated fibers: 1 m/s
- \bullet Non-myelinated fibers: 0.1 m/s

References