Plants versus CO₂

Does the vegetation of a specific region suffice to compensate the CO₂ emissions of this exact region?

Seminar: GIS Analyses using FOSSGIS Lecturer: Christina Ludwig Presented by: Niko Kolaxidis & Tobias Romes University of Heidelberg

Introduction

Does the vegetation of a specific region

suffice to compensate the

CO₂ emissions of this exact region?

- 2. Calculation of CO₂ sequestration ability in considered area
- 3. Comparison of CO₂ emissions and sequestration ability

NDVI

- Normalized Difference Vegetation Index
- Unique spectral reflection of vegetation
- Calculate photosynthetic activity, vitality and density through formula:

$$ext{NDVI} = rac{ ext{(NIR} - ext{Red)}}{ ext{(NIR} + ext{Red)}}$$

NDVI

$$\mathrm{NDVI} = \frac{(\mathrm{NIR} - \mathrm{Red})}{(\mathrm{NIR} + \mathrm{Red})}$$

Areas	Value
No Vegetation	-1 – 0.2
Low level of vegetation (shrub/grass)	0.2 - 0.4
Medium level of vegetation (crops)	0.4 - 0.6
High level of vegetation (forest)	0.6 - 1

Workflow

Requirement s

Data:

- Multispectral raster data
- Vector data (city outlines)
- CO₂ emission data
- Annual amount of CO₂ fixed by vegetation

Software:

- NDVI calculation tool
- Classification tool
- Spreadsheet (Excel)

$$ext{NDVI} = rac{ ext{(NIR} - ext{Red)}}{ ext{(NIR} + ext{Red)}}$$

Raster data from Sentinel 2

Source: Copernicus.eu

	Spectral Band	Centre Wavelength (nm)	Band Width (nm)	Spatial Resolution (nm)
B1	Coastal aerosol	443	20	60
B2	Blue (B)	490	65	10
B3	Green (G) 1	560	35	10
B4	Red (R) ¹	665	30	10
B5	Red-edge 1 (Re1) ¹	705	15	20
B6	Red-edge 2 (Re2) 1	740	15	20
B7	Red-edge 3 (Re3) 1	783	20	20
B8	Near infrared (NIR) 1	842	115	10
B8a	Near infrared narrow (NIRn) 1	865	20	20
B9	Water vapor	945	20	60
B10	Shortwave infrared/Cirrus	1380	30	60
B11	Shortwave infrared 1 (SWIR1)	1910	90	20
B12	Shortwave infrared 2 (SWIR2)	2190	180	20

Source: Zheng et. al (2018)

CO₂ emission data

- OpenGHGmap.net
- Available free for Europe
- Output: one value (e.g. Heidelberg: 472,689 t CO₂/year)
- Administrative level up to small towns
- Con: Data only for year 2018

Vector data

- gadm.org
- Vector data available for whole world
- Administrative level up to small towns
- Current data
- Output: Geopackage or shapefile

Source: OpenGHGMap.net

Extracting the region of interest (roi)


```
echo Enter the region of interest (roi): set /p roi= e.g. Heidelberg
```

```
ogr2ogr -f "ESRI Shapefile" ./data/Heidelberg.shp -lco ENCODING=UTF-8 -t_srs EPSG:25832 -sql "SELECT * FROM gadm36_DEU_3 WHERE NAME_3= 'Heidelberg' " ./data/gadm36_DEU.gpkg
```


Automation: QGIS model

Comparison: Raster Calculator

Raster Calculator: QGIS

- + fast (2 sec for Heidelberg)
- + easy to use
- -- needs to output into a file, therefore difficult to implement into Graphic Modeler
- \circ slightly less values (pixels) \rightarrow ?

Raster Calculator: SAGA

- slow (40 sec for Heidelberg)
- + easy to use
- ++ easy to implement into Graphic Modeler

 \circ slightly more values (pixels) \rightarrow different values

Comparison: Raster Calculator

Calculated with values from QGIS

Total area of specified classes of your roi						
HERE (m²)	ha (m² / 10.000)					
2400,234122	0,240					
14610025,08	1.461,00					
15451907,2	1.545,19 1.337,88					
13378804,98						
65599798,68	6.559,98					

Emissi	on value (t CO2	/ year)							
472.689									
Total sequestation ability of roi (t CO2 / year)									
min mean max									
52.933,98 100.202,64 147.471,30									
Balance (e	mission +> seq	uestation)							
419.755,02 372.486,36 325.217,70									
		Carrage array figures							

Source: own figure

12

Calculated with values from SAGA

Total area of specified classes of your roi							
ha (m² / 10.000)							
0,250							
1.331,35							
1.644,24							
1.505,41							
6.521,55							

Emissi	on value (t CO2	/ year)							
	472.689								
Total sequesta	tion ability of ro	oi (t CO2 / year)							
min mean max									
53.616,05	102.291,46	150.966,87							
Balance (e	mission ↔ seq	uestation)							
419.072,95 370.397,54 321.722,13									

Total: 11.002,29 ha

Total: 10.904,29 ha

02.02.2022 Source: own figure

Comparison: Raster Calculator

NDVI calculated with QGIS

NDVI calculated with SAGA

Source: own figure

Source: own figure

Calculations in Excel

		Total area of specific	ed classes of your roi	Sequestration ability (t CO2 / ha / year) Total sequestration ability (t CO2 / year)				Emission value (t CO2 / year)					
Class	Level of vegetation	HERE (m²)	ha (m² / 10.000)	min	mean	max	min	mean	max				
-1	No data value (ignore)		0,000	/	1	1	1	1	1	Total sequestra	Total sequestration ability of roi (t CO2 / year		
1	no vegetation (-1 - 0.2)		0,00	0,00	1,00	2,00	0,00	0,00	0,00	min	mean	max	
2	shrub/grass (0.2 - 0.4)		0,00	3,50	6,00	8,50	0,00	0,00	0,00	0,00	0,00	0,00	
3	crops (0.4 - 0.6)		0,00	3,50	12,25	21,00	0,00	0,00	0,00	Balance (emission ↔ sequestration)			
4	forest (0.6 - 1)		0,00	6,53	11,14	15,75	0,00	0,00	0,00	0,00 0,00		0,00	
										Green means the vegetation is able to compensate all CO2 emissions of your roi. Red means the vegetation does not compensate all CO2 emissions of your roi.			

Source: own figure

Results

		Total area of specified classes of your roi			Sequestration ability (t CO2 / ha / year)			tration ability	(t CO2 / year)	Emission value (t CO2 / year)		
Class	Level of vegetation	HERE (m ²)	ha (m² / 10.000)	min	mean	max	min	mean	max	472.689		
-1	No data value (ignore)	2498,660627	0,250	/	/	/	1	1	/	Total sequestr	ation ability of r	oi (t CO2 / year)
1	no vegetation (-1 - 0.2)	13313463,5	1.331,35	0,00	1,00	2,00	0,00	1.331,35	2.662,69	min	mean	max
2	shrub/grass (0.2 - 0.4)	16442386,28	1.644,24	3,50	6,00	8,50	5.754,84	9.865,43	13. 76,03	53.616,05	102.291,46	150.966,87
3	crops (0.4 - 0.6)	15054130,44	1.505,41	3,50	12,25	21,00	5.268,95	18.441,31	24 13, 7	Balance (emission ↔ sequestration)		
4	forest (0.6 - 1)	65215542,08	6.521,55	6,53	11,14	15,75	42.592,27	72.653,3	102.714,48	419.072,95	370.397,54	321.722,13
								_				
										all C Red means th	he vegetation is able CO2 emissions of you e vegetation does no CO2 emissions of you	r roi. ot compensate

Source: own figure

Discussion: problems/limitations

- All values are estimated and not to be taken as scientifically proven
- Data for sequestration not adequate for empirical statements difficult to aquire data in the first place
- No up-to-date data for CO₂ emissions (other sources needed)

BUT:

- Model is applicable with other data → more accurate data leads to better results
- Good tool for getting a first impression of the imbalance between emission and sequestration in a city's extent

Outlook

Further compare the Raster Calculators (other GIS?)

Look for better data sources for sequestration and emission

Implement of roi_extractor.bat into the QGIS model

Automatically import results from model into the Excelsheet

Repository is finished, just needs updating if new implementations work

List of sources

- Candiago, S. & Remondino, F. & De Giglio, M. & Dubbini. M. & Gattelli, M. (2015): Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. - In: Remote Sensing, 7, pp. 4026 - 4047.
- Deutsches Zentrum für Luft- und Raumfahrt e.V. (2022): Die Sentinel-Satellitenfamilie. URL: https://www.d-copernicus.de/daten/satelliten/daten-sentinels/ [as of: 30.01.2022].
- Matese, A. & Di Gennaro, S.F. (2018): Practical Applications of a Multisensor UAV Platform Based on Multispectral, Thermal
 and RGB High Resolution Images in Precision Viticulture. In: Agriculture, 8(7):166.
- Mkansi, R. (2017): Spectral reflectance of soil, vegetation and water. URL https://mkansireminder.wordpress.com/2017/04/24/spectral-reflectance-of-soil-vegetation-water/ [as of: 30.01.2022].
- Norwegian University of Science and Technology (2018): OpenGHGmap. URL: https://openghgmap.net/#Heidelberg,%20Baden-Württemberg,%20Deutschland [as of: 30.01.2022].
- Zheng, Q. & Huang, W. & Cui, X. & Shi, Y. & Liu, L. (2018): New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery. In: Sensors, 18, p. 868.

Thank you very much for your attention!

