TP 2 Tendance et saisonnalités

IS 2A5

Concentration données volcan Mauna Loa

1. repéresntation graphique La série comporte une éventuelle tendance et saisonalité, et n'est de ce fait pas stationnaire.

```
manau <- read.table("../TP2 - Tendance et saisonnalité/Data/maunaloa2Co2.txt", header = TRUE)</pre>
vmanau \leftarrow as.vector(t(manau[-c(1,14,15)]))
ts_manau <- ts(vmanau, start=c(1958,1), end=c(2003,12), frequency=12)
autoplot(ts_manau) +
  ggtitle("Données concentration CO2") +
  xlab("année") +
  ylab("concentration")
```

Données concentration CO2

2. Estimation de la tendance

```
is.na(vmanau) = (vmanau < 0)</pre>
ts_manau_1 <- ts(vmanau, start=c(1958,1), end=c(2003,12), frequency=12)</pre>
ts_manau_1 <- tsclean(ts_manau_1)</pre>
t <-seq(length(ts_manau_1))
```

```
reg <- lm(as.numeric(ts_manau_1) ~ t)
xtable(summary(reg))</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	309.861028	0.2440996	1269.4039	0
t	0.112922	0.0007649	147.6316	0

l'éequation: y=0.112922x+309.8610281 confirme l'existence de liaison entre nos données et le mois d'observation.

Ce qui vient confirmer l'existence d'une tendance linéaire dans notre jeu de données.

```
3. suppression tendance
#1c:Estimation prevision et residus
xnum=as.numeric(ts_manau_1)
a <-coef(reg)[[2]]
b <-coef(reg)[[1]]</pre>
tendance=a*t+ b
residus=xnum-tendance # s'obtient aussi directement par reg$residuals
Box.test(residus, lag = 20)
##
##
   Box-Pierce test
##
## data: residus
## X-squared = 2679.3, df = 20, p-value < 2.2e-16
plot(t,xnum,type='1')
lines(t,tendance,type='l',col='red')
          370
    350
    330
```

```
0 100 200 300 400 500
t
plot(t,residus,'l')
```


 $\mu_{residus} = -1.6012573 \times 10^{-13}$

La moyenne des résidus est très faible et peut être considérée comme nulle.

1970

2. méthode des différences

1960

1980

Time

1990

2000

acf(x1,na.action = na.pass)

Series x1

Series x1

La série résultante semble saisonniaire, elle n'est de ce fait pas stationnaire

3. méthodes des moyennes mobiles

La série obtenue n'est pas stationnaire, et ne peut de ce fait pas être modélisée par un bruit blanc (cf. résultats test Box + courbe pacf/acf)

```
x_dec=decompose(ts_manau_1,type=c("multiplicative"))
plot(x_dec)
```

Decomposition of multiplicative time series

plot.ts(x_dec\$random)


```
xrw=window(x_dec$random,c(1949,7),c(1960,6))
```

Warning in window.default(x, ...): 'start' value not changed
Box.test(x_dec\$random,lag=20)

##
Box-Pierce test
##
data: x_dec\$random

```
## X-squared = 298.5, df = 20, p-value < 2.2e-16
autoco=ggAcf(x_dec$random,lag.max=40,type=c("correlation"),na.action=na.pass)
autoco</pre>
```

Series: x_dec\$random

