Sparse Principal Component Analysis for Frequency Data

Tobias Bork

Institute for Numerical Simulation

December 9, 2019

Sparse Principal Component Analysis

Tobias Bork

ntroduction

. ..

Idea

Theorems

imits of Usability

pplication

undamentais

regression

parsity inducing Norms

DCA

Sparse PCA

Mathematical Formulation

Adjusted Varia

Application

Dimensionality Reduction

Sparse Principal Component Analysis

Tobias Bork

Introduction

PCA

Idea

Mathematic

Theorems

imits of Usabil

pplication

undamentals

Sparsity inducing Norm

parse PCA

Mathematical Formulation

Application

pplication

References

Appendx

Problems in high dimensions:

- Time and storage space
- Multi-collinearity
- Visualizing data set
- Curse of dimensionality
- ▶ **Idea:** Reduce the number of variables while preserving structure in the data
- Approach: Feature selection methods
- ► **Approach:** Feature extraction methods

Central Idea

- Reduce dimensionality while retaining as much information as possible
- ► Sequentially identify principal axis of greatest variability
- Represent data set regarding identified principal axis
- Linearly project the data to a space of fewer dimensions
- ▶ Yields natural order on principal components

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PC/

Idea

Mathematical Formulati

Limits of Usability

ındamentals

gression

Sparsity inducing Norms

arse PCA

lathomatical Form

Numerical Solution

application

eferences

Kererences

data set

(a) Finding principal axis on a (b) Linear projection of data to first principal axis

Sparse Principal Component Analysis

Tobias Bork

Idea

Mathematical Formulation

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be a centered data matrix with n samples and p variables. We find the first principal axis by

$$v_1 = \underset{\|v\|_2=1}{\operatorname{arg max}} \operatorname{Var}[\mathbf{X}v] = \underset{\|v\|_2=1}{\operatorname{arg max}} v^T \mathbf{\Sigma} v$$

where $\Sigma = \frac{\mathbf{X}^T \mathbf{X}}{n}$ is the sample covariance matrix. We compute the following principal axis successively

$$v_{k+1} = rg \max_{\|v\|=1} v^T \mathbf{\Sigma} v$$

subject to
$$v_{k+1}^T v_l = 0 \quad \forall 1 \le l \le k$$

The new principal components are defined by $Z_i = \mathbf{X}v_i$

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

Idea

Mathematical Formulations

Theorems Limits of Usabi

ındamentals

Regression Sparsity inducing Norms

arse PCA

lathematical Formulation umerical Solution djusted Variances

Application

The principal axis can also be computed via the eigendecomposition of Σ .

$$\pmb{\Sigma} = \pmb{\mathsf{VLV}}^{\mathsf{T}}$$

where **L** is a diagonal matrix with eigenvalues λ_i and **V** is the matrix of eigenvectors. Closely related is the Singular Value Decomposition (SVD)

$$X = UDV^T$$

where **D** is a diagonal matrix with singular values d_1, \ldots, d_p , **U** a $n \times p$ and **V** a $p \times p$ orthogonal matrix.

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

Idoa

Mathematical Formulations

Limits of Usabi

undamentals

Sparsity inducing Norms

arse PCA

Mathematical Formulation

Numerical Solution

Adjusted Variances

Application

11010101000

PCA as a regression problem

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

1444

Mathematical Formulations

Theorems

Application

undamentals

Regression

Sparsity inducing No

parse PCA

Mathematical Formulation Numerical Solution

Adjusted v
Application

References

PCA as a regression problem

Suppose we want to extract the first k principal axis. Let x_i be the *i*th row of X.

$$\hat{\mathbf{V}}_k = \arg\min_{\mathbf{V}_k} \sum_{i=1}^n \left\| x_i - \mathbf{V}_k \mathbf{V}_k^T x_i \right\|^2 + \lambda \sum_{j=1}^k \|\beta_j\|^2$$
subject to $\mathbf{V}_k^T \mathbf{V}_k = \mathbf{I}_{k \times k}$

Sparse Principal Component Analysis

Tobias Bork

Mathematical Formulations

Theorems

Succes of PCA is due to the following two important optimal properties

- Principal Components sequentially capture the maximum variability (among the columns of X, thus guaranteeing minimal information loss)
- Principal Components are uncorrelated, (so we can talk about one principal component without referring to others)
- ► Eckart-Young-Mirsky-Theorem
- ▶ PCA is inconsistent for $p \gg n$.

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

ldea

Mathematical Formu

Theorems

pplication

undamentals

Sparsity inducing Norms

parse PCA

lathematical Formulat

ljusted Variance

plication

References

Limits of Usability

- Linear Relationship between variables
- Correlation of variables
- Completeness of data set
- Outliers
- ▶ Inconsistency theorem in $p \gg n$ case
- ► Interpreation of principal axis

Sparse Principal Component Analysis

Tobias Bork

Introduction

PC

Idea

Mathematical Formulation

Theorems

Limits of Usability

Application

. .

parsity inducing Norr

....... D.C.A

Mathematical Formulation

Numerical Solution

Application

References

Application to handwritten digits

Data Set Characteristics:

Number of Instances: 1797

► Number of Attributes: 64

Attribute Information: 8×8 image of integer pixels

(a) Handwritten digit 1

(b) Handwritten digit 5

Sparse Principal Component Analysis

Tobias Bork

Introduction

PCA

Idea

1000

Mathematical

heorems

Application

ndamentals

parsity inducing Norm

parse PCA

lathematical Formulatio

Adjusted Vari Application

Application to handwritten digits

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PC

. .

luca

Theorems

Theorems

Application

undamentals

amentais

Sparsity inducing Norms

arse PCA

Mathematical Formulation

Adjusted Vari Application

References

Δ .

centered.

The linear regression model has the form

$$f(\mathbf{X}) = \beta_0 + \sum_{i=1}^p X_i \beta_i$$

where the β_i 's are unknown coefficients. We define the residual sum of squares

$$RSS(\beta) = \sum_{i=1}^{n} (y_i - f(x_i))^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 = \|Y - \mathbf{X}\beta\|_2^{2_{\text{pendx}}}$$

$$\hat{eta} = rg \min_{eta} \mathit{RSS}(eta)$$

Sparse Principal Component Analysis

Tobias Bork

Regression

Ridge Regression

$\hat{\beta}^{\textit{lasso}} = \mathop{\arg\min}_{\beta} \|Y - \mathbf{X}\beta\|_2^2 + \lambda \|\beta\|_2^2 = \sum_{i=1} (y_i - \beta_0 - \sum_{i=1}^i x_{ij}\beta_j)^2$

subject to $\|\beta\|_2^2 < t$

or equivalently in Lagrangian Form

$$\hat{\beta}^{lasso} = \arg\min_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \|\beta\|_2^2 \right\}$$

Sparse Principal Component Analysis

Tobias Bork

Regression

LASSO Regression

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PC

Ide

Mathematical Formulation

Theorems

Application

Fundamentals

Regression

Sparsity inducing Norms

C...... D.C.A

Mathematical Formulation Numerical Solution

Application

кетеrences

Elastic Net

Sparse Principal Component Analysis

Tobias Bork

Introduction

PC.

Ide

Mathematical Formulation

Theorems

Application

Fundamentals

Regression

Sparsity inducing Norms

Sparce PCA

Mathematical Formulation
Numerical Solution

Adjusted Va Application

References

Sparse PCA

Problem: Principal Components are hard to interpret **Approach:** Require sparse loadings when performing PCA

$$\max v^T \Sigma v$$

subject to
$$\|v\|_2 = 1$$
, $\|v\|_0 \le k$

Relaxation:

- a regression framework
- a convex semidefinite programming framework
- ▶ a generalized power method framework
- ▶ an alternating maximization framework
- forward-backward greedy search and exact methods using branch-and-bound techniques
- ► Bayesian formulation framework

Sparse Principal Component Analysis

Tobias Bork

ntroduction

1 0/1

Idea

Matho

Mathemat

I heorems

Application

Sparsity inducing Norm

Sparse PCA

Mathematical Formulation

Adjusted Varia

pplication

References

Mathematical Formulation

Sparse Principal Component Analysis

Tobias Bork

We will use a regression framework to derive sparse PCA. We add a LASSO penalty to ensure sparse loadings:

$$(\hat{\mathbf{A}}, \hat{\mathbf{B}}) = \arg\min_{\hat{\mathbf{A}}, \hat{\mathbf{B}}} \sum_{i=1}^{n} \left\| x_{i} - \mathbf{A} \mathbf{B}^{T} x_{i} \right\|^{2} + \lambda \sum_{j=1}^{k} \|\beta_{j}\|^{2} + \sum_{j=1}^{k} \lambda_{1, j} \|\beta_{j}\|_{1}^{2}$$

subject to
$$\mathbf{A}^T \mathbf{A} = I_{k \times k}$$

Then **B** represents the newly found sparse principal axis. (Theorem)

Mathematical Formulation

Numerical Solution

Let $\mathbf{A}_{p \times k} = [\alpha_1, \dots, \alpha_k]$ and $\mathbf{B}_{p \times k} = [\beta_1, \dots, \beta_k]$. Since \mathbf{A} is orthonomal, let \mathbf{A}_\perp be any orthonormal matrix such that $[\mathbf{A}; \mathbf{A}_\perp]$ is $p \times p$ orthonormal. Then we ran reformulate the problem

$$\sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{A}\mathbf{B}^{T}\mathbf{x}_{i}\|^{2} = \|\mathbf{X} - \mathbf{X}\mathbf{B}\mathbf{A}^{T}\|_{F}^{2}$$

$$= \|\mathbf{X}\mathbf{A}_{\perp}\|_{F}^{2} + \|\mathbf{X}\mathbf{A} - \mathbf{X}\mathbf{B}\|_{F}^{2}$$

$$= \|\mathbf{X}\mathbf{A}_{\perp}\|_{F}^{2} + \sum_{j=1}^{k} \|\mathbf{X}\alpha_{j} - \mathbf{X}\beta_{j}\|^{2}$$

How can we minimize the SPCA criterion?

Sparse Principal Component Analysis

Tobias Bork

ntroduction

FCA

Idea

Mathematic

Theorems

pplication

ndamentals

Regression

arse PCA

Mathematical Formulation

Adjusted Variances

Application

Reference

▶ **B given A:** For each j, let $Y^* = \mathbf{X}\alpha_j$. By the previous analysis we compute $\hat{\mathbf{B}} = \left[\hat{\beta}_1, \dots, \hat{\beta}_k\right]$ by solving k elastic net problems:

$$\hat{\beta}_{j} = \operatorname*{arg\,min}_{\beta_{j}} \left\| \boldsymbol{Y}^{*} - \boldsymbol{\mathsf{X}} \beta_{j} \right\|^{2} + \lambda \left\| \beta_{j} \right\|^{2} + \lambda_{1,j} \left\| \beta_{j} \right\|_{1}$$

► A given B: On the other hand, if B is fixed, then we can ignore the penalty part and only try to minimize

$$\sum_{i=1}^{n} \left\| x_i - \mathbf{A} \mathbf{B}^T x_i \right\|^2 = \left\| \mathbf{X} - \mathbf{X} \mathbf{B} \mathbf{A}^T \right\|_F^2$$

subject to
$$\mathbf{A}^T \mathbf{A} = I_{k \times k}$$

The solution is obtained by computing the SVD

$$(\mathbf{X}^T\mathbf{X})\mathbf{B} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

4 ロ ト 4 倒 ト 4 亘 ト 亘 め 9 0 0

and set $\hat{\mathbf{A}} = \mathbf{U}\mathbf{V}^T$

Sparse Principal Component Analysis

Tobias Bork

Introduction

PCA

ldea

Mathematical Formulati

Limits of Usability

undamentals

Regression

arse PCA

Mathematical Formulation

Numerical Solution

Application

References

Theorem (Reduced Rank Procrustes Rotation)

Let $\mathbf{M} \in \mathbb{R}^{n \times p}$ and $\mathbf{N} \in \mathbb{R}^{n \times k}$ be two matrices. Consider the constrained minimization problem

$$\hat{\mathbf{A}} = \underset{\mathbf{A}}{\operatorname{arg \, min}} \left\| \mathbf{M} - \mathbf{N} \mathbf{A}^T \right\|_F^2 \quad \text{subject to } \mathbf{A}^T \mathbf{A} = I_{k \times k}$$

Suppose the SVD of $\mathbf{M}^T\mathbf{N}$ is \mathbf{UDV}^T , then $\hat{\mathbf{A}} = \mathbf{UV}^T$

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

Idea

Markey

Mathematical Formi

imits of Usability

pplication

ndamentals

egression

DCA

arse PCA

Mathematical Formulation Numerical Solution

Adjusted Variances

Application

References

Algorithm 1 General SPCA Algorithm

- 1: procedure SPCA(A, B)
- 2: $\mathbf{A} \leftarrow \mathbf{V}[1: k]$, the loadings of the first k ordinary principal components
- 3: while not converged do
- 4: Given a fixed $\mathbf{A} = [\alpha_1, \dots, \alpha_k]$, solve the elastic net problem

$$\beta_{j} = \mathop{\arg\min}_{\beta} \left\| \mathbf{X} \alpha_{j} - \mathbf{X} \beta \right\|^{2} + \lambda \left\| \beta \right\|^{2} + \lambda_{1,j} \left\| \beta \right\|_{1}$$

5: For a fixed $\mathbf{B} = [\beta_1, \dots, \beta_k]$, compute the SVD of

$$\mathbf{X}^T \mathbf{X} \mathbf{B} = \mathbf{U} \mathbf{D} \mathbf{V}^T$$

- 6: $\mathbf{A} \leftarrow \mathbf{U}\mathbf{V}^T$
- 7: end while
- 8: $\hat{V}_j = \frac{\beta_j}{\|\beta_i\|}$ for $j = 1, \dots, k$
- 9: end procedure

Sparse Principal Component Analysis

Tobias Bork

troduction

C, t

Idea

ca

heorems .

imits of Usability

plication

undamentals

Regression

arse PCA

Numerical Solution

djusted Varian

Application

References

The sparse principal components don't have to be orthogonal. Hence, we need to compute the adjusted variances in a different way. p ¿¿ n case?

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PC/

lde:

Mathematical Formulation

Theorems

Application

Fundamentals

Regression

Sparsicy madeling reori

parse PCA

Mathematical Formulation
Numerical Solution

Adjusted Variances

pplication

References

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PC

Ide

Mathematical Formulatio

Limits of Heal

Application

Fundamental

Regression

Sparsity inducing Norm

Casas DCA

Mathematical Formulation

Adjusted Varian

Application

References

References

- Beamer Paket http://latex-beamer.sourceforge.net/
- User's Guide to the Beamer
- DANTE e.V. http://www.dante.de

Sparse Principal Component Analysis

Tobias Bork

References

Theorem (Eckart-Young-Mirsky-Theorem)

Let $\widehat{\mathbf{A}}^* = \mathbf{U}_1 \mathbf{D}_1 \mathbf{V}_1^{\top}$ be the truncated singular value decomposition. Then $\widehat{\mathbf{A}}^*$ solves the matrix rank approximation problem

$$\min_{\mathrm{rank}(\widehat{\mathbf{A}}) \leq r} \|\mathbf{A} - \widehat{\mathbf{A}}\|_F = \|\mathbf{A} - \widehat{\mathbf{A}}^*\|_F = \sqrt{\sigma_{r+1}^2 + \dots + \sigma_m^2}$$

where σ_i are the singular values of **A**.

Sparse Principal Component Analysis

Tobias Bork

ntroduction

1 0/

Idea

Mathematical Formulatio

Theorems

Limits of Usability Application

undamentals

egression

parsity inducing Norms

rse PCA

Mathematical Formulation lumerical Solution diusted Variances

Application

References