# Case 4

Group 8: Caitlyn Blair, Shruti Hardasani, Rainna Sena 5 November 2024

# **Boston Housing Data**

n = 455

```
node), split, n, deviance, yval
      * denotes terminal node
 1) root 455 38564.5500 22.41582
  2) lstat>=9.725 266 6486.3510 17.26429
    4) lstat>=15 146 2606.5860 14.36644
      8) crim>=5.76921 75 1040.8830 12.13200 *
      9) crim< 5.76921 71 795.6992 16.72676 *
    5) lstat< 15 120 1162.0480 20.79000 *
   3) lstat< 9.725 189 15083.8200 29.66614
    6) rm< 7.445 163 6836.9830 27.18712
     12) rm< 6.6385 101 3004.9980 24.39604
       24) age< 88.8 94 885.3631 23.47766 *
       25) age>=88.8 7 975.7143 36.72857 *
     13) rm>=6.6385 62 1763.4590 31.73387
       26) lstat>=5.495 30 488.6680 28.98000 *
       27) lstat< 5.495 32 833.9822 34.31562 *
    7) rm>=7.445 26 965.0785 45.20769 *
```

- Using Boston Housing data, we randomly sampled 90% of the data as the training set and the remaining 10% as the test set
- This shows the outcome of running a regression tree on the data
- Hard to interpret

### **Regression Tree Model**



The regression tree visualization is much easier to interpret and given the values, we can have a predicted value for any given input.

In Sample MSE

> MSE.tree
[1] 15.70865

Out of Sample MSE

> MSPE.tree [1] 15.92386

### **Linear Regression Model**

#### Coefficients:

```
(Intercept)
                                        chas
                 crim
                              zn
                                                    nox
                                                                 rm
 39.559371
            -0.114504
                         0.044809
                                     3.132874
                                              -19.657220
                                                           3.524630
      dis
                                     ptratio
                                                  black
                                                              lstat
                  rad
                             tax
 -1.539422 0.287534
                        -0.009829
                                    -0.963041
                                                0.008518
                                                           -0.539330
```

```
In Sample MSE > mean((pi - boston_train$medv)^2)
[1] 22.64818
```

```
Out of Sample MSE > mean((pi2 - boston_test$medv)^2)
[1] 15.91855
```

## Comparison of CART to Linear Regression Model

**CART** 

In-Sample MSE: 15.71

Out-of-Sample MSE: 15.92

**Linear Regression** 

In-Sample MSE: 22.65

Out-of-Sample MSE: 15.92

While the out-of-sample MSE values were almost identical before rounding, we can conclude that the CART model is a better fit than the linear regression model because the MSE values are overall smaller.

#### German Data set

This is our classification tree. We did a random sample of 80% for our training set and used the other 20% as the test set.

```
n = 800
node), split, n, loss, yval, (yprob)
     * denotes terminal node
  1) root 800 241 0 (0.69875000 0.30125000)
    2) chk_acct=A13,A14 360 44 0 (0.87777778 0.12222222) *
    3) chk_acct=A11,A12 440 197 0 (0.55227273 0.44772727)
      6) duration< 22.5 249 85 0 (0.65863454 0.34136546)
       12) credit_his=A32,A33,A34 228 69 0 (0.69736842 0.30263158)
         24) purpose=A41,A410,A43,A45,A49 96 19 0 (0.80208333 0.19791667) *
         25) purpose=A40,A42,A44,A46,A48 132 50 0 (0.62121212 0.37878788)
          50) other_install=A142,A143 118 40 0 (0.66101695 0.33898305)
           100) credit_his=A34 40 7 0 (0.82500000 0.17500000) *
           101) credit_his=A32,A33 78 33 0 (0.57692308 0.42307692)
             202) amount>=1485.5 40 10 0 (0.75000000 0.25000000) *
             203) amount< 1485.5 38 15 1 (0.39473684 0.60526316)
               406) sex=A93,A94 17 6 0 (0.64705882 0.35294118) *
               407) sex=A91,A92 21 4 1 (0.19047619 0.80952381) *
          51) other_install=A141 14   4 1 (0.28571429 0.71428571) *
       13) credit_his=A30,A31 21 5 1 (0.23809524 0.76190476) *
      7) duration>=22.5 191 79 1 (0.41361257 0.58638743)
       14) saving_acct=A64.A65 31 10 0 (0.67741935 0.32258065)
        15) saving_acct=A61,A62,A63 160 58 1 (0.36250000 0.63750000)
         30) duration< 47.5 131 55 1 (0.41984733 0.58015267)
          60) amount>=1549.5 120 55 1 (0.45833333 0.54166667)
           120) purpose=A41 18 5 0 (0.72222222 0.27777778) *
           121) purpose=A40,A410,A42,A43,A45,A46,A49 102 42 1 (0.41176471 0.58823529)
             243) other_debtor=A101,A102 94 36 1 (0.38297872 0.61702128)
               486) amount< 4231 64 29 1 (0.45312500 0.54687500)
                972) amount>=2313 43 20 0 (0.53488372 0.46511628)
                 1944) sex=A93,A94 28 10 0 (0.64285714 0.35714286) *
                 1945) sex=A91,A92 15 5 1 (0.33333333 0.66666667) *
                973) amount< 2313 21 6 1 (0.28571429 0.71428571) *
               487) amount>=4231 30 7 1 (0.23333333 0.76666667) *
          61) amount< 1549.5 11 0 1 (0.00000000 1.00000000) *
```

#### **Classification Tree**

This image is easier to interpret for our classification tree. To the left shows the criteria is true while going to the right shows the criteria is false.



#### In Sample Misclassification Table

Our misclassification rate is computed by (196+11) / (363+196+11+230) =0.259 25.9% of our predictions are incorrect

Predicted Truth 0 1 0 363 196 1 11 230

#### **Out of Sample Misclassification Table**

Our misclassification rate is computed by (68+14) / (73+68+14+45)=0.41 41% of our predictions are incorrect

Predicted Truth 0 1 0 73 68 1 14 45

# In Sample Misclassification Cost (Asymmetric)

This model incurs a cost of 0.506 per instance, which is still a high number.

# Out of Sample Misclassification Cost (Asymmetric)

There is a higher cost on the testing data set, indicating that there are more errors on this model.

[1] 0.50625

[1] 0.6975

### **ROC Curve**

Out of Sample AUC

[1] 0.682534

We can evaluate the model's performance in context of ROC curve. It is an adequate model but can be better.



# Thank you