

Predicting Well Failure Can Save Lives

Non-Functional wells that support over 1,000 citizens

- Tanzania has almost 60,000 water wells in dataset with 45% not functional, leaving almost 7M people without a reliable water source
- Humans can only live up to 3 days without water
- Ability to predict water well failures and respond quickly can be the difference between life and death

Data Quality a Potential Issue

- Almost 18,000 water wells with zeros for population, head, well elevation and construction year
- Recommendation: Improving data quality can drastically improve modeling performance

- Utilized random imputation to convert zeros to non-zero values
- Outliers and improbable values in the head that can skew results

Analysis Overview

Random Forrest

- Equated wells functioning at a reduced capacity as not functioning
- Prioritized finding all well failures, therefore accepting some false positives
- Focused on models with high interpretability to understand what drives well failures

Best Classification Modeling of Well Status

Random Forest Performance

Random Forest Feature Importances

- Best model was a Random Forrest that could detect failures 77% of the time with an overall accuracy of 82%
- Location, well age and head are important for the model

Location Affects Reliability

Distribution Percentage Non-Functional by Region

Sized by population

- High variability in well function across regions
- Many Regions with high failure percentage and high population
- Recommendation: Focus on regions which have historically high failure percentage

Well Age Negatively Affects Reliability

Percentage Non-Functional by Age

- As well ages increase, the percentage of non-functional wells increases
- If a well is over age 24-25, it is more likely that well will be nonfunctional rather than functional
- 2.5M people are supported by older wells (>24 years old)
- Recommendation: Focus maintenance on older wells to maintain supply of water

You Get What You Pay For

- While not specifically important for the random forest model, there is a clear trend between showing that if you pay for the water, the wells reliability is higher
- Recommendation: Focus on supporting the populations which cannot afford to pay for water

Recommendations & Next Steps

Recommendations

- Keep an eye on older wells as the likelihood of failure increases with age
- Develop support model for population areas that do not pay for water since analysis shows paying for water brings better reliability
- Utilize business insights tools to keep stakeholders up to date with key performance metrics
- Improve data governance to ensure better data quality and better predictions

Next Steps

Use more sophisticated algorithms that may perform better at finding well failures but does not tell you why they are failing

Screenshot of BI Dashboard

Thank you

Questions?

Lower Static Head Indicates Failure

Amount of Static Head by Water Quantity

- As well ages increase, the amount of static head on the well will decrease, lowering water quantity
- This can be artificially improved by technology such as a pump
- Recommendation: Keep a close eye on static head as it directly correlates with water quantity

Most Important Features from Model

Random Forest Feature Importances

- Location (longitude and latitude) is the most important feature for predicting well function
- Well age directly affects reliability
- Well Elevation and Population are important features for prediction, although analysis did not highlight specific relationships

Lower Static Head Indicates Failure

- As well ages increase, the amount of static head on the well will decrease, lowering water quantity
- This can be artificially improved by technology such as a pump
- Recommendation: Keep a close eye on static head as it directly correlates with well function

Analysis Overview

- Focused on wells not functioning or functioning at a reduced capacity (functional needs repair)
- Created well_age feature
- 20,000 wells with unknown construction_year. Filled values keeping identical distribution
- Classification modeling to use well features to predict non-functional water wells can save lives by increasing reliability and maintenance response time

Non-Functional wells that support over 1,000 citizens (sized by population)

Tanzania

Most Important Model Features

Percentage of Non-Functional Wells by Region

Distribution Percentage Non-Functional by Region

Sized by population

Amount of Static Head by Well Status

Amount of Static Head by Water Quantity

Percent Non-Functional by Well Age

Random Forest Model Results

Classificatio	n Reports				
	precision	recall	fl-score	support	
0	0.82	0.86	0.84	9408	
1	0.82	0.77	0.80	7866	
accuracy			0.82	17274	
macro avg	0.82	0.82	0.82	17274	
weighted avg	0.82	0.82	0.82	17274	

Test Graphs-----

