12 janvier 2017 Semestre d'automne ID: -999

Cours de mathématiques spéciales (CMS)

(écrire lisiblement s.v.p)
Nom:
Prénom :
Groupe:

Question	Barème	Points
1	21/2	
2	31/2	
3	5	
4	5	
5	4	
Total	20	

Indications

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

Question 1 (à $2\frac{1}{2}$ points)

Points obtenus: (laisser vide)

Déterminer, si elle existe, la limite suivante :

$$\lim_{x \to -\infty} \frac{x \sin x}{(\cos x - 2) \left(x + \sqrt{x^4 + x^2}\right)}.$$

Justifier rigoureusement votre réponse. Rép. : 0

Réponse à la question 1:

laisser la marge vide

Question 2 (à $3\frac{1}{2}$ points)

Points obtenus: (laisser vide)

La fonction f définie par

$$f(x) = \frac{\cos^2(x) - 2\cos(x) - 3}{\cos^2(\frac{x}{2})}$$

est-elle prolongeable par continuité en $\ x_0=\pi$? Rép. : oui, $\tilde{f}(\pi)=-8$

Réponse à la question 2:

laisser la marge vide

ID: -999

laisser la marge vide

Points obtenus: (laisser vide)

On considère la fonction $\ g$ définie par

$$g(x)=\frac{\sqrt{x^2+1}-2x-1}{x}\quad\text{si}\quad x\neq 0\qquad\text{et}\qquad g(0)=-2\,.$$
 (a) Montrer que la fonction g est dérivable en $x_0=0$. Rép. : oui, $g'(0)=\frac{1}{2}$

- (b) La fonction dérivée de g est-elle continue en $x_0 = 0$? Rép. : oui

laisser la marge vide

ID: -999

laisser la marge vide

Points obtenus: (laisser vide)

On considère la parabole Γ d'équation

$$\Gamma: y = x^2$$

et le point P de Γ d'abscisse $x_P = -\frac{3}{2}$.

Déterminer les équations cartésiennes de toutes les normales à Γ passant par P.

Rép. : $y = -\frac{x}{2} + \frac{3}{2}$ et $y = -x + \frac{3}{4}$

Réponse à la question 4:

laisser la marge vide

ID: -999

Question 5 (à 4 points)

Points obtenus: (laisser vide)

On considère la courbe Γ donnée implicitement par

$$\Gamma: \quad -x^2y + \sqrt{\frac{2y^3}{x} - 1} = 0$$

ainsi que le point T de Γ d'abscisse $x_0 = 1$.

Donner l'approximation linéaire en T de l'ordonnée du point P de Γ d'abscisse $x_P=0.98$.

Rép. : 0.97

Réponse à la question 5:

laisser la marge vide

laisser la marge vide

ID: -999

laisser la marge vide

