Discrete Mathematics

recurrence relation

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 13

THEOREM: $S_2(n,j) = \frac{1}{i!} \sum_{i=0}^{j-1} (-1)^i \binom{j}{i} (j-i)^n$ when $n \ge j \ge 1$.

Partition of Integers $p_j(n)$; the number of ways of writing n as the sum of j positive integers $p_j(n)$ and $p_j(n) = 1$ solution to the type 4 problem $= \sum_{j=1}^k p_j(n)$ and $p_j(n) = 1$

THEOREM: For $n \in \mathbb{Z}^+$, $j \in [n]$, $p_j(n+j) = \sum_{k=1}^j p_k(n)$ **Principle of Inclusion-Exclusion:**

$$\begin{aligned} | \bigcup_{i=1}^{n} A_{i} | &= \sum_{t=1}^{n} (-1)^{t-1} \sum_{1 \le i_{1} < \dots < i_{t} \le n} |A_{i_{1}} \cap \dots \cap A_{i_{t}}| \\ | \bigcap_{i=1}^{n} A_{i} | &= \sum_{t=1}^{n} (-1)^{t-1} \sum_{1 \le i_{1} < \dots < i_{t} \le n} |A_{i_{1}} \cup \dots \cup A_{i_{t}}| \end{aligned}$$

Pigeonhole Principle (general form): $\{A_1, A_2, ..., A_n\}$ is a cover

of
$$A$$
 and $|A| \ge N \Rightarrow \exists k \in [n], |A_k| \ge \lceil N/n \rceil$. I with $A \subseteq V \land A \subseteq V \land A$

Pigeonhole Principle

EXAMPLE: Connect 15 workstations W_1, \dots, W_{15} to 10 servers $S_1, ..., S_{10}$ such that any ≥ 10 workstations have access to all servers. How many cables are needed?

- **Solution 2**: S_i is connected to W_i for every $i \in [10]$; and each of $W_{11}, W_{12}, W_{13}, W_{14}, W_{15}$ is connected to all servers. // 60 lines, optimal?

V . \mathcal{V}

- Consider an optimal scheme Π. ∠ ħο?.
 Let A = {(W_i, S_j): i ∈ [15], j ∈ [10], W_i is not connected to S_j} in Π
 - $A_t = \{(W_i, S_j) \in A: j = t\} \text{ for } t = 1, 2, ..., 10$ $\{A_1, A_2, ..., A_{10}\} \text{ is a cover of } A$
- If there are < 60 lines in Π , then |A| > 150 60 = 90. $\exists k \in [10]$ such that $|A_k| \ge \lceil 91/10 \rceil = 10$
 - - There are 10 workstations not connected to S_k , contradict!

男子を大子

Recurrence Relation (RR)

Fibonacci Sequence: The solution is a sequence $\{f_n\}_{n\geq 0}$ such that $f_0=1, f_1=1, f_n=f_{n-1}+f_{n-2}$ for every $n\geq 2$

The Tower of Hanoi:

- Every time move only 1 disk from one peg to another peg
- Always place a smaller disk on top of a larger disk
- Move all the disks from peg 1 to peg 2.
 - H_n : the smallest number of moves (n disks).
 - $H_1 = 1, H_2 = 3, H_n = 2H_{n-1} + 1 \text{ for } n \ge 2$

QUESTION: $f_n = ?$ Find explicit formulas.

Linear Homogeneous RR

DEFINITION: A linear homogeneous RR (LHRR) of

degree k with constant coefficients is an RR of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$
, where $n \ge k$, $\{c_i\}_{i=1}^k$ are constant real numbers, and $c_k \ne 0$.

- degree k: every term depends on k terms preceding it
- **constant coefficients:** $c_1, ..., c_k$ are independent of n
- **linear:** the right-hand side is a linear combination of $a_1, a_2, ..., a_{n-1}$.
- **homogeneous:** every term is a multiple of some a_i .
 - $f_n = f_{n-1} + f_{n-2}, n \ge 2$ LHRR of degree 2 with constant coefficients
 - $H_n = 2H_{n-1}(4, n) \ge 2$ not homomogenous
- $\{x_n\}_{n\geq 0}$ is a **solution** if $x_n = \sum_{i=1}^k c_i x_{n-i}$ for all $n \geq k$ Sequence

 Non - home

+ n2

Existence and Uniqueness

前人项确定, 关上确定, 解序到存在所选一

THEOREM: For any $a_0, a_1, ..., a_{k-1}, a_n = \sum_{i=1}^k c_i a_{n-i}$ has a unique solution $\{x_n\}_{n\geq 0}$ such that $x_i = a_i$ for every $0 \leq i < k$.

- Existence:
 - $x_n = a_n \text{ for all } 0 \le n < k$
 - $x_n = c_1 x_{n-1} + c_2 x_{n-2} + \dots + c_k x_{n-k}$ for all $n \ge k$
- Uniqueness:
 - a) $x'_n = a_n$ for all $0 \le n < k$
 - b) $x'_n = c_1 x'_{n-1} + c_2 x'_{n-2} + \dots + c_k x'_{n-k} \ (n \ge k)$
 - c) $x_n = a_n$ for all $0 \le n < k$
 - d) $x_n = c_1 x_{n-1} + c_2 x_{n-2} + \dots + c_k x_{n-k} \ (n \ge k)$
 - a) + c) $\Rightarrow x'_n = x_n \text{ for all } 0 \le n < k$
 - b) + d) $\Rightarrow x'_n = x_n \text{ for all } n \ge k$

Characteristic Roots

为 齐次美子的 特征方位

THEOREM: $\{r^n\}_{n\geq 0}$ is a solution of the LHRR $a_n = \sum_{i=1}^k c_i a_{n-i}$ if and only if $r^n = c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k}$.

- characteristic equation: $r^k c_1 r^{k-1} c_2 r^{k-2} \cdots c_k = 0$
- **characteristic roots:** solutions of the characteristic equation.

EXAMPLE: Solve the LHRR $f_n = f_{n-1} + f_{n-2}$, $n \ge 2$.

- characteristic equation: $r^2 r 1 = 0$ characteristic roots: $r_1 = \frac{1+\sqrt{5}}{2}$, $r_2 = \frac{1-\sqrt{5}}{2}$
 - $\{r_1^n\}_{n>0}, \{r_2^n\}_{n>0}$ are solutions

4364, (127m2 & 51) Rights

$$f_0 = | f_1 = |$$

If $f_n = r^n$ (45 & 572)

LHRR (no multiple roots)

THEOREM: If
$$a_n = \sum_{i=1}^k c_i a_{n-i}$$
 has k distinct characteristic roots $r_1, r_2, ..., r_k$, then $\{x_n\}_{n\geq 0}$ is a solution of the LHRR iff

$$x_n = \sum_{j=1}^k \alpha_j r_j^n$$
 for some constants $\alpha_1, ..., \alpha_k \in \mathbb{R}$

$$x_n = \sum_{j=1}^k \alpha_j r_j^n$$
 for some constants $\alpha_1, \dots, \alpha_k \in \mathbb{R}$

EXAMPLE: Solve
$$f_n = f_{n-1} + f_{n-2}$$
 with $f_0 = f_1 = 1$.

• Characteristic equation: $r^2 - r - 1 = 0$

• Characteristic equation:
$$r^2 - r - 1 = 0$$

• Characteristic roots: $r_1 = \frac{1+\sqrt{5}}{2}$, $r_2 = \frac{1-\sqrt{5}}{2}$

•
$$f_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$
 of the same to the same of the sa

•
$$f_0 = 1 \Rightarrow \alpha_1 * r_1^0 + \alpha_2 * r_2^0 = 1$$

•
$$f_1 = 1 \Rightarrow \alpha_1 * r_1^1 + \alpha_2 * r_2^1 = 1$$

•
$$f_1 = 1 \Rightarrow \alpha_1 * r_1^1 + \alpha_2 * r_2^1 = 1$$

• $\alpha_1 = \frac{1}{\sqrt{5}} \cdot \frac{1 + \sqrt{5}}{2}$, $\alpha_2 = -\frac{1}{\sqrt{5}} \cdot \frac{1 - \sqrt{5}}{2}$

•
$$f_n = \frac{1}{\sqrt{5}} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \frac{1}{\sqrt{5}} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} \quad (n \ge 0)$$

ef.
$$(r-1)^2(r-2)=0$$

LHRR (multiple roots)

7910012 14 270

THEOREM: If $a_n = \sum_{i=1}^k c_i a_{n-i}$ has distinct characteristic roots r_1, r_2, \dots, r_t with multiplicities m_1, m_2, \dots, m_t , then $\{x_n\}_{n\geq 0}$ is a

solution of the LHRR iff
$$x_n = \sum_{j=1}^t \left(\sum_{\ell=0}^{m_j-1} \alpha_{j,\ell} n^\ell\right) r_j^n$$
 for some

constants
$$\{\alpha_{j,\ell}: j \in [t], 0 \le \ell < m_j\}$$
.

EXAMPLE: Solve $a_n = 6a_{n-1} - 9a_{n-2}$ with $a_0 = 1$, $a_1 = 6$.

Characteristic equation: $r^2 - 6r + 9 = 0$ mit manty = K

Characteristic roots: $r_1 = 3$ M=2

M14 $a_n = \alpha_{1,0} 3^n + \alpha_{1,1} n 3^n$ $a_0 = 1 \Rightarrow \alpha_{1,0} * 3^0 + \alpha_{1,1} * 0 * 3^0 = 1$ $a_1 = 6 \Rightarrow \alpha_{1,0} * 3^1 + \alpha_{1,1} * 1 * 3^1 = 6$ 大小型 (d110---) rin • $\alpha_{1,0} = 1, \alpha_{1,1} = 1$

 $a_n = 3^n + n3^n = 3^n(n+1)$

(7/10+7/11-1 Mm-1) Mm3 t2 N-对所加分任知值一 不以得到人人。

Linear Nonhomogeneous RR

DEFINITION: A linear nonhomogeneous RR (LNRR) of degree *k* with constant coefficients is an RR of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n) \text{ where } c_1, c_2, \dots, c_k$$
 are constants, $c_k \neq 0$, and $F(n) \neq 0$.

Associated LHRR: $a_n = \sum_{i=1}^k c_i a_{n-i}$ (Figure 1)

• $\{x_n\}_{n\geq 0}$ is a **solution** if $x_n = \sum_{i=1}^k c_i x_{n-i} + F(n)$ for all $n \geq k$.

EXAMPLE:
$$a_n = a_{n-1} + a_{n-2} + n^2 + n + 1$$

- $c_1 = 1, c_2 = 1, F(n) = n^2 + n + 1$
- LNRR of degree 2 with constant coefficients
- associated LHRR: $a_n = a_{n-1} + a_{n-2}$

Existence and Uniqueness

THEOREM: For any $a_0, a_1, ..., a_{k-1}, a_n = \sum_{i=1}^k c_i a_{n-i} + F(n)$ has a unique solution $\{x_n\}_{n\geq 0}$ such that $x_n = a_n$ for all $0 \leq n < k$.

- Existence:
 - $x_n = a_n$ for all $0 \le n < k$
 - $x_n = c_1 x_{n-1} + c_2 x_{n-2} + \dots + c_k x_{n-k} + F(n)$ for all $n \ge k$
- Uniqueness:
 - a) $x'_n = a_n$ for all $0 \le n < k$
 - b) $x'_n = c_1 x'_{n-1} + c_2 x'_{n-2} + \dots + c_k x'_{n-k} + F(n) \quad (n \ge k)$
 - c) $x_n = a_n$ for all $0 \le n < k$
 - d) $x_n = c_1 x_{n-1} + c_2 x_{n-2} + \dots + c_k x_{n-k} + F(n) \quad (n \ge k)$
 - a) + c) $\Rightarrow x'_n = x_n$ for all $0 \le n < k$
 - b) + d) $\Rightarrow x'_n = x_n \text{ for all } n \ge k$

General Solutions

THEOREM: If
$$\{x_n\}$$
 is a solution of $a_n = \sum_{i=1}^k c_i a_{n-i} + F(n)$, then $\{z_n\}$ is a solution iff $z_n = x_n + y_n$ for some solution $\{y_n\}$ of the associated LHRR $a_n = \sum_{i=1}^k c_i a_{n-i}$.

- \Leftarrow : we prove that $z_n = x_n + y_n$ is a solution of the LNRR
 - $x_n = c_1 x_{n-1} + \dots + c_k x_{n-k} + F(n)$
 - $y_n = c_1 y_{n-1} + \dots + c_k y_{n-k}$
 - $x_n + y_n = c_1(\underline{x_{n-1} + y_{n-1}}) + \dots + c_k(x_{n-k} + y_{n-k}) + F(n)$
 - $\{x_n + y_n\}$ is a solution of the LNRR
- \Rightarrow : we prove that a solution $\{z_n\}$ of the LNRR has the form $z_n = x_n + y_n$
 - $x_n = c_1 x_{n-1} + \dots + c_k x_{n-k} + F(n)$
 - $z_n = c_1 z_{n-1} + \dots + c_k z_{n-k} + F(n)$
 - Let $y_n = z_n x_n$. Then $y_n = c_1 y_{n-1} + \dots + c_k y_{n-k}$
 - $\{y_n\}$ is a solution of the associated LHRR

Particular Solutions

机物等件有能

THEOREM: Let $a_n = \sum_{i=1}^k c_i a_{n-i} + F(n)$ be an LNRR with

$$F(n) = (f_l n^l + \dots + f_1 n + f_0) \underline{s}^n = f(n) \underline{s}^n, \text{ where } c_i, f_j \in \mathbb{R}.$$

Suppose that s is a root of $(r^k - c_1 r^{k-1} - \cdots - c_k)$ with multiplicity m, then the LNRR has a particular solution of the form $x_n = (p_l n^l + \cdots + (p_1 n + p_0) s^n n^m)$ where $\{p_j\}$ are

undetermined coefficients. The solution for
$$a_n = 4a_{n-1} - 4a_{n-2} + n2^n$$
.

- Characteristic equation of the associated LHRR: $r^2 4r + 4 = 0$
- Characteristic roots: $r_1 = 2$ (with multiplicity $m_1 = 2$)
 - Particular solution: $x_n = (p_1)n + (p_0)2^n n^2$

Solving LNRR

EXAMPLE: Solve
$$a_n = 4a_{n-1} - 4a_{n-2} + n2^n$$
 with $a_0 = 1$, $a_1 = 4$.

- Particular solution of the LNRR: $x_n = (p_1 n + p_0)2^n n^2$
- General solution of the associated LHRR: $y_n = (\alpha_{1,0} + \alpha_{1,1}n)2^n$
- General solution of the LNRR:
 - $z_n = x_n + y_n = (\alpha_{1,0} + \alpha_{1,1}n + p_0n^2 + p_1n^3)2^n$
 - Initial conditions give an equation system:

•
$$a_0 = 1$$
: $(\alpha_{1,0} + \alpha_{1,1} \cdot 0 + p_0 \cdot 0^2 + p_1 \cdot 0^3)2^0 = 1$

•
$$a_1 = 4$$
: $(\alpha_{1,0} + \alpha_{1,1} \cdot 1 + p_0 \cdot 1^2 + p_1 \cdot 1^3)2^1 = 4$

•
$$a_2 = 20$$
: $(\alpha_{1,0} + \alpha_{1,1} \cdot 2 + p_0 \cdot 2^2 + p_1 \cdot 2^3)2^2 = 20$

•
$$a_3 = 88: (\alpha_{1,0} + \alpha_{1,1} \cdot 3 + p_0 \cdot 3^2 + p_1 \cdot 3^3)2^3 = 88$$

$$\begin{cases} \alpha_{1,0} & = 1 \\ \alpha_{1,0} + \alpha_{1,1} + p_1 + p_0 = 2 \\ \alpha_{1,0} + 2\alpha_{1,1} + 4p_1 + 8p_0 = 5 \\ \alpha_{1,0} + 3\alpha_{1,1} + 9p_1 + 27p_0 = 11 \end{cases} \qquad \begin{cases} \alpha_{1,0} & = \frac{1}{3} \\ \alpha_{1,1} & = \frac{1}{3} \\ p_0 = \frac{1}{6} \end{cases}$$

$$\begin{cases} \alpha_{1,0} & = 1 \\ \alpha_{1,1} + p_1 + p_0 = 1 \\ 2\alpha_{1,1} + 4p_1 + 8p_0 = 4 \\ 3\alpha_{1,1} + 9p_1 + 27p_0 = 10 \end{cases} \qquad \begin{cases} \alpha_{1,0} & = 1 \\ \alpha_{1,1} + p_1 & = \frac{5}{6} \\ p_0 = \frac{1}{6} \end{cases}$$

$$\begin{cases} \alpha_{1,0} & = 1 \\ \alpha_{1,1} + p_1 + p_0 = 1 \\ 2p_1 + 6p_0 = 2 \\ 6p_1 + 24p_0 = 7 \end{cases} \qquad \begin{cases} \alpha_{1,0} & = 1 \\ \alpha_{1,1} + p_1 + p_0 = 1 \\ 2p_1 + 6p_0 = 2 \\ 6p_0 = 1 \end{cases}$$

$$\begin{cases} \alpha_{1,0} & = 1 \\ \alpha_{1,1} + p_1 + p_0 = 1 \\ 2p_1 + 6p_0 = 2 \\ 6p_0 = 1 \end{cases} \qquad \begin{cases} \alpha_{1,0} & = 1 \\ \alpha_{1,1} + p_1 + p_0 = 1 \\ 2p_1 + 6p_0 = 2 \\ p_0 = \frac{1}{6} \end{cases}$$

The solution
$$(\alpha_{1,0}, \alpha_{1,1}, p_0, p_1) = (1, \frac{1}{3}, \frac{1}{2}, \frac{1}{6})$$
 gives
$$a_n = (1 + \frac{1}{3}n + \frac{1}{2}n^2 + \frac{1}{6}n^3)2^n$$