Planare Graphen - Coloring

Manuel Frohn

RWTH Aachen University, Aachen, Germany

7

Inhaltsverzeichnis

Relevanz

Planare Graphen

Einführung

Exkurs: Minore

Wichtige Sätze

Relevanz

- 1. Real auftretene Klasse
- 2. Wichtig für Chip Design
- 3. Bedingung für Algorithmen und Sätze
- 4. Zuweisungsprobleme als Coloring

Planare Graphen

Definition (Planarität)

Ein Graph G heißt planar, wenn man in der Lage ist, den Graphen so auf eine Ebene zu zeichnen, dass sich seine Kanten nicht schneiden.

Planare Graphen Beispiel

Minor

Definition

 $\mbox{\bf M}$ heißt Minor von $\mbox{\bf G}$ wenn $\mbox{\bf M}$ aus einem Teilgarphen von $\mbox{\bf G},$ durch Kantenkontaktion hervorgeht.

Kantenkontraktion

Definition (Kantenkontraktion)

Gegeben ein Graph G=(V,E) und eine Kante $e=v,w\in E$, ist das Resultat der Kontraktion von e, der Graph G'=(V',E') mit $V'=(V\setminus e)\cup\{n\}$ und $E'=(E\setminus\{v\in e\vee w\in e\mid e\in E\})\cup\{\{n,z\}\mid z,v\in e\in E\vee z,w\in e\in E\}$

Eulerscher Polyedersatz

Satz

Gegeben ein planarer Graph G=(V,E) und die Anzahl seiner Gebiete |G| gilt: |V|-|E|+|G|=2

Eulerscher Polyedersatz

Satz

Gegeben ein planarer Graph G=(V,E) und die Anzahl seiner Gebiete |G| gilt: |V|-|E|+|G|=2

Satz

G Planar
$$\Leftrightarrow |E| \le 3|V| - 6 \land |G| \le 2|V| - 4$$

Gebiete

Satz von Kuratowski

Satz

Ein Graph ist genau dann planar, wenn er weder den K3,3 noch den K_5 als Minor enthält

