Notebook

August 10, 2017

1 Evolutionary Game Theory

In the previous chapter, we considered the case of fitness being independant of the distribution of the whole population (the rates of increase of 1 type just depended on the quantity of that type). That was a specific case of Evolutionary game theory which considers **frequency dependent selection**.

1.1 Frequency dependent selection

Consider. Let $x = (x_1, x_2)$ correspond to the population sizes of both types. The fitness functions are given by:

$$f_1(x)$$
 $f_2(x)$

As before we ensure a constant population size: $x_1 + x_1 = 1$. We have:

$$\frac{dx_1}{dt} = x_1(f_1(x) - \phi)$$
 $\frac{dx_1}{dt} = x_1(f_1(x) - \phi)$

we again have:

$$\frac{dx_1}{dt} + \frac{dx_1}{dt} = x_1(f_1(x) - \phi) + x_1(f_1(x) - \phi) = 0$$

So $\phi = x_1 f_1(x) + x_2 f_2(x)$ (the average fitness).

We can substitute: $x_2 = 1 - x_1$ to obtain:

$$\frac{dx_1}{dt} = x_1(f_1(x) - x_1f_1(x) - x_2f_2(x)) = x_1((1 - x_1)f_1(x) - (1 - x_1)f_2(x))$$

$$\frac{dx_1}{dt} = x_1(1 - x_1)(f_1(x) - f_2(x))$$

We see that we have 3 equilibria:

- $x_1 = 0$
- $x_2 = 1$
- Whatever distribution of x that ensures: $f_1(x) = f_2(x)$

1.2 Evolutionary Game Theory

Now we will consider potential differences of these equilibria. First we will return to considering Normal form games:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Evolutionary Game theory assigns strategies as types in a population, and indivividuals randomly encounter other individuals and play their corresponding strategy. The matrix A corresponds to the utility of a row player in a game where the row player is a given individual and the column player is the population.

This gives:

$$f_1 = ax_1 + bx_2$$
 $f_2 = cx_1 + dx_2$

or equivalently:

$$f = Ax$$
 $\phi = fx$

thus we have the same equation as before but in matrix notation:

$$\frac{dx}{dt} = x(f - \phi)$$

In this case, the 3 stable distributions correspond to:

- An entire population playing the first strategy;
- An entire population playing the second strategy;
- A population playing a mixture of first and second (such that there is indifference between the fitness).

We now consider the utility of a stable population in a **mutated** population.

1.3 Mutated population

Give a strategy vector $x = (x_1, x_2)$, some $\epsilon > 0$ and another strategy $y = (y_1, y_1)$, the post entry population x_{ϵ} is given by:

$$x_{\epsilon} = (x_1 + \epsilon(y_1 - x_1), x_2 + \epsilon(y_2 - x_2))$$

1.4 Evolutionary Stable Strategies

Give a stable population distribution, x it represents an **Evolutionary Stable Strategy** (ESS) if and only if there exists $\bar{\epsilon} > 0$:

$$u(x, x_{\epsilon}) > u(y, x_{\epsilon})$$
 for all $0 < \epsilon < \bar{\epsilon}, y$

where u(x, y) corresponds to the fitness of strategy x in population y which is given by:

$$xAy^T$$

For the first type to be an ESS this corresponds to:

$$a(1-\epsilon) + b\epsilon > c(1-\epsilon) + d\epsilon$$

For small values of ϵ this corresponds to:

However if a = c, this corresponds to:

Thus the first strategy is an ESS (ie resists invasion) iff one of the two hold:

```
1. a > c
2. a = c and b > d

In [1]: import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline

    from scipy.integrate import odeint

    t = np.linspace(0, 10, 100) # Obtain 100 time points

    def dx(x, t, A):
        """
        Define the derivate of x.
        """
        f = np.dot(A, x)
```

phi = np.dot(f, x)
return x * (f - phi)

The case of a > c:

The case of a = c and b > d:

a = c and b < d:

a < *c*:

We see in the above case that the population seems to stabilise at a mixed strategy. This leads to the general definition of the fitness of a mixed strategy: $x = (x_1, x_2)$:

$$u(x,x) = x_1 f_1(x) + x_2 f_2(x)$$

1.5 General condition for ESS

If *x* is an ESS, then for all $y \neq x$, either:

1.
$$u(x, x) > u(y, x)$$

2.

1.6
$$u(x,x) = u(y,x)$$
 and $u(x,y) > u(y,y)$

Conversely, if either (1) or (2) holds for all $y \neq x$ then x is an ESS.

1.6.1 **Proof**