[1장 연습문제]

01. 비선형 구조와 선형	구조를 바르게 짝지은 것은?
가. 스택 나. 큐 다. 트리 라. 연결 리스트 마. 그래프	
② 비선형 자료구조 : 다,③ 비선형 자료구조 : 가,	나, 마 / 선형 자료구조 : 다, 라 마 / 선형 자료구조 : 가, 나, 라 나, 다 / 선형 자료구조 : 라, 마 / 선형 자료구조 : 가, 나, 라, 마
02. 서로 다른 정보가 19 가 필요한가?	개 있을 경우, 이 중에서 하나를 선택하려면 최소 몇 비!
① 19비트 ③ 5비트	② 18비트 ④ 4비트
03. 0~(64 ¹⁰ -1)에 해당하 는?	- 정수를 2진 코드로 표현하기 위해 필요한 최소 비트 =
① 16비트 ③ 63비트	② 60비트 ④ 64비트

04. 다음은 팩 형식의 10진수를 16진수로 나타낸 것이다. A와 B를 덧셈 연산한 결

과는?

Α	00	04	09	5C
---	----	----	----	----

В	00	03	84	0D

|--|

3	00	00	FF	FC

2	00	07	93	5D

4 00	00	25	5C

05. 다음 팩 형식으로 표현 가능한 값은?

d d	d	S
-----	---	---

① 23

② 23.1

③ -234

④ 1234

06. 10진수 -456을 팩 형식으로 표현한 것은?

① 45 6D

2 -4 56

③ 45 6F

④ F4 56

07. 1의 보수 표현 방식에 의해 8비트로 표현된 9+(-24)를 연산 수행한 결과는?

① 0100 1111

2 1111 0000

③ 1000 1111

④ 0111 0000

08. 8비트 메모리 워드에서 비트 패턴 (1110 1101)2은 '(가) 부호와 절댓값 형식,

(나) 1의 보수 형식, (다) 2의 보수 형식'으로 해석될 수 있다. 각각에 대응되는 10진수를 순서대로 나타낸 것은?

- ① (가) -109, (나) -19, (다) -18 ② (가) -109, (나) -18, (다) -19
- ③ (가) 237, (나) -19, (다) -18 ④ (가) 237, (나) -18, (다) -19

09. 2의 보수를 사용해 음수를 표현할 때 바르게 설명한 것은?

- ① 0은 두 가지로 표현된다.
- ② 보수를 구하기가 쉽다.
- ③ 보수를 이용한 연산 과정 중 end around carry 과정이 있다.
- ④ 음수의 최대 절대치가 양수의 최대 절대치보다 1만큼 크다.

10. 정수 n비트를 사용해 1의 보수로 표현했을 때 그 값의 범위는?

- (1) $-(2^{n-1}-1)$ ~ $2^{n-1}-1$
- (2) $-2^{n}-1 \sim 2^{n}-1-1$

 $(3) -2^n \sim 2^{n-1}$

(4) -2^{n-1} ~ 2^{n-1} -1

11. 같은 크기의 비트 수를 사용해 정수를 표현할 때, 표현 범위가 가장 넓은 것은?

① 2의 보수 방법

② 부호와 절댓값 방법

③ 팩 형식

④ 존 형식

12. 2의 보수 표현 방법에서 8비트의 기억 공간에 정수를 표현할 때 표현 범위는?

 $\bigcirc 1 -2^7 \sim +2^7$

② $-2^8 \sim +2^8$

 $3 -2^7 \sim +2^7 -1$

 $(4) -2^8 \sim +2^8-1$

③ 보수 변환이 더 편리하다. ④ 표현할 수 있는 수의 개수가 하나 [더 많다.
14. 다음은 8비트에 부호 있는 2의 보 하는 10진 정수는?	수 표현법으로 작성한 2진수이다. 이에 해당
10111100	
① -60	② -68
3 94	4 188
15. 다음 중 오버플로가 생기는 경우는 ① 010010 +) 000111 ③ 110010 +) 111001	 (단, 최상위 비트는 부호 비트임) ② 010010 +) 001111 ④ 010010 +) 001011
	점으로 표현하려고 한다. 지수부에 들어갈 알 는 011111112로 나타내며 IEEE754 표준을 따
① 011111002	② 011111012
3 011111102	4 1000000 ₂

13. 2의 보수 표현이 1의 보수 표현보다 더 널리 사용되는 주요한 이유는?

① 음수 표현이 가능하다.

② 10진수 변환이 더 용이하다.

은?	
① 지수부는 8비트이다. ③ 가수는 23비트이다.	 ② 바이어스는 127이다. ④ 표현 영역은 10⁻³⁰⁸ ~ 10³⁰⁸이다.
	현된 두 수를 덧셈하는 과정이다. 그 순서가 화, B : 지수의 비교, C : 가수의 정렬, D : 가
 B-C-D-A A-C-B-D 	② C-B-D-A④ A-B-C-D
19. BCD 코드를 사용하는 이유로 옳은	· 거우?
17. 마다 포트를 제공하는 이유로 많는	XC:
 산술 연산이 쉽다. 한글을 표현할 수 있다. 	② 10진수 입출력이 쉽다.④ 10진수 실수를 표현한다.
20. 4비트로 데이터를 표시할 때 2진호 수 있는가?	화 16진수는 BCD에 비해 몇 개를 더 표시할
① 0	② 2
3 4	46
21. 데이터에 관한 설명 중 옳은 것은?	

17. IEEE 754의 부동소수점 표현 방식에서 단정도 형식에 관한 설명으로 틀린 것

① EBCDIC 코드는 데이터 통신용으로 널리 쓰이며, 특히 소형 컴퓨터용으로 쓰인

다.

- ② ASCII 코드는 IBM에서 개발한 것으로 대형 컴퓨터용으로 쓰인다.
- ③ 데이터의 가장 작은 단위를 비트(Bit)라 하며, Bit는 Binary Digit의 약자이다.
- ④ 부동소수점 방식은 작은 비트를 차지하지만 정밀도가 낮다.
- 22. 알고리즘이 갖춰야 할 조건으로 옳지 않은 것은?
- ① 적어도 하나 이상의 출력 결과를 생성해야 한다.
- ② 각 명령어는 모호하지 않고 명확해야 한다.
- ③ 어떤 경우에도 유한 번의 수행 단계 후에는 반드시 종료해야 한다.
- ④ 직접 수행 가능한 컴퓨터 프로그래밍 언어로만 작성되어야 한다.
- 23. 어떤 문제를 해결하기 위한 알고리즘 A, B, C, D의 시간 복잡도를 구했더니 다음과 같았다. 알고리즘 성능이 좋은 것부터 순서대로 고른 것은?

 $A:O(n^2) \hspace{1cm} B:O(1) \hspace{1cm} C:O(nlogn) \hspace{1cm} D:O(2^n)$

① A, B, C, D

② B, C, D, A

③ B, C, A, D

- 4 D, A, C, B
- 24. 알고리즘 시간 복잡도 O(1)이 의미하는 것은?
- ① 컴퓨터 처리가 불가능하다.
- ② 알고리즘 입력 데이터 수가 한 개이다.
- ③ 알고리즘 수행 시간이 입력 데이터 수와 관계없이 일정하다.
- ④ 알고리즘 길이가 입력 데이터보다 작다.
- 25. 점근적 표기법에 관한 사칙연산으로 옳지 않은 것은?

①
$$O(n)+O(n)=O(n)$$

② $O(n^2)+O(nlogn)=O(n^2)$

$$\bigcirc$$
 O(n²)+O(n)=O(n²)

26. 다음은 1부터 200까지에 있는 완전수를 출력하고 출력한 완전수의 개수를 최종적으로 출력하는 알고리즘 순서도이다. 순서도의 빈 칸 ①~⑤에 들어갈 답 항을 선택하라. 단, /는 나누기 연산자로 나누어진 값에서 소수점 이하는 자동으로 절삭하며, MOD는 나머지 값을 구하는 연산자이다. 알고리즘에 사용된 변수는다음과 같다.

• SU: 1에서 200까지 자연수

• K, J: 제어 변수

• REM : 나머지 값

• SUM : 약수 합계

• CNT : 완전수 개수로 완전수는 자신의 약수 중 자신을 제외한 약수를 더하면 자신이 나오는 수를 의미한다. 예를 들어 6의 약수 1, 2, 3, 6에서 1+2+3=6이 된다. 이때 6을 완전수라고 한다.

27. 다음은 ARRAY(10) 배열에 양의 정수 열 개를 입력 받고, 입력 받은 값 중 최솟 값을 제외한 나머지 정수 아홉 개의 평균을 구해 출력하는 알고리즘의 순서도 이다. 순서도 빈 칸 ①~⑤에 들어갈 답 항을 선택하라. 알고리즘에 사용된 변수는 다음과 같다.

28. 배열 A에 n개 원소가 있다고 가정할 때 다음 의사코드에 대한 설명으로 가장 옳지 않은 것은?

- ① 제일 큰 원소를 끝자리로 옮기는 작업을 반복한다.
- ② 선택 정렬을 설명하는 의사코드이다.
- ③ O(n²)의 수행 시간을 가진다.
- ④ 두 번째 for 문의 역할은 가장 큰 원소를 맨 오른쪽으로 보내는 것이다.

29. 다음 코드의 시간 복잡도를 바르게 나타낸 것은?

```
for (i = 1; i < n; i++)

for (j = 1; j <= n; j = j + 1)

for (k = 1; k <= n; k++)

x = x + k + 1;
```

① $\Theta(n^2)$

② Θ(n²logn)

 \Im $\Theta(n^3)$

 $\Theta(n^3 \log n)$

30. 다음 알고리즘의 시간 복잡도를 빅-오(O) 표기법으로 바르게 표현한 것은?

① O(logn)

② O(n)

③ O(n²)

(4) O(n³)

- 40. 알고리즘의 성능 분석 방법인 시간 복잡도와 공간 복잡도에 대해 설명하시오.
- 41. 문제 39번 알고리즘의 시간 복잡도를 빅-오 표기법으로 표현하시오.
- 42. 실행 빈도 함수가 2logn + 3n³ + 9999n² + 15일 때, 시간 복잡도를 빅-오 표 기법으로 표현하시오.