# Лабораторна робота №1

# Варіант 2

Моделювання зграйної поведінки та лісової пожежі

Виконав студент групи КА-03мп Сидорський Володимир

## Лісова Пожежа Опис моделі

### Код

https://github.com/VSydorskyy/iasa\_multiagent/blob/main/matk/models/tree\_burn.pv

Приклад застосування

https://github.com/VSydorskyy/iasa\_multiagent/blob/main/notebooks/tree\_burn.ipvnb

## Опис параметрів:

- field\_size 2 цілих числа задають розмір поля
- forest\_density густина лісу
- slow\_tree\_density відсоток повільно горючих дерев
- slow\_tree\_burn\_prob ймовірність сгорання повільно горючих дерев
- activate\_wind чи необхідно активувати вітер
- horizontal\_wind сила горизонтального вітру в межах (-25, 25).
   -25 максимальний вітер назад, 25 максимальний вперед
- vertical\_wind- сила вертикального вітру в межах (-25, 25). -25 максимальний вітер вниз, 25 максимальний догори
- n\_lakes кількість озер
- lake\_area довжина стороны квадрата озера в межах (1, розмір поля \* 0.5)
- n\_grasses кількість галявин
- grass\_area довжина стороны квадрата галявини в межах (1, розмір поля \* 0.5)

## Логіка повільних дерев:

- Горять 5 тіків. Також за тік враховуються перекидання вогню з іншого дерева
- Після цього згоряють або не згорають з певною ймовірністю. Якщо не згоріли один раз, більше не запалюється
- Темно-синій колір

### Логіка озер:

- По ним не проходить вогонь
- Голубий колір

#### Логіка галявин:

- Згорають за один тік
- Темно-зелений колір

# Приклад роботи

## Початковий стан



# Проміжковий стан



# Фінальний стан



## Експерименти

#### Код

Результати пошуку

https://github.com/VSydorskyy/iasa\_multiagent/blob/main/labs/exp\_grass\_wind.npz

https://github.com/VSydorskyy/iasa\_multiagent/blob/main/labs/result\_ex p\_slow\_tree.npz

## Перший

Конфігурація эксперимента: field\_size=(256,256), activate\_wind=False, Простір пошуку: forest\_density - np.linspace(0.001, 1, num=10) Результат:



Критична точка згоряння майже всього лісу наступає приблизно при forest density = 0.6

## Другий

Конфігурація эксперимента: field\_size=(256,256), activate\_wind=False, Простір пошуку: forest\_density - np.linspace(0.001, 1, num=20)

slow\_tree\_density - np.linspace(0.001, 1, num=10) slow\_tree\_burn\_prob - np.linspace(0.001, 1, num=10) Результат:



Як видно з результатів відсоток повільно горючих дерев майже не впливає на тенденцію горіння звичайних дерев. Проте чим менше самих повільно горючих дерев, тим менше їх згорить в разі густого лісу (forest\_density (inital density) > 0.6)



Як видно з результатів ймовірність сгоряння повільно горючих дерев майже не впливає на тенденцію горіння звичайних дерев. Проте чим менше ймовірність сгорання повільно горючих дерев, тим менше їх згорить в разі густого лісу (forest\_density (inital density) > 0.6)

## Третій

Конфігурація эксперимента: field\_size=(256,256), activate\_wind=True, n\_grasses=3, Простір пошуку: forest\_density - np.linspace(0.001, 1, num=10) vertical\_wind - list(range(10, 100, 10)) wind\_space - np.linspace(-24, 24, num=10) Кількість експериментів для кожного набору - 5 Результат:

Тут Prob - ймовірність проходження вогню від лівого до правого краю



Як видно вертикальний вітер не сильно впливає на загальну тенденцію. Проте в разі помірного вітру перехід від 0 до 1 відбувається відразу, в той час як, коли присутній сильний вітер вниз чи догори присутній проміжковий стан.

Prob of going from left to right. If wind\_power-2.666666666666643



Галявини в свою чергу ніяк не впливають на загальну тенденцію. Адже просто заповнюють невеликий відсоток територію, навіть при великій площі самої галявини.

# Зграйна поведінка Опис моделі

#### Код

https://github.com/VSydorskyy/iasa\_multiagent/blob/main/matk/models/flocking.py

Приклад роботи

https://github.com/VSydorskyy/iasa\_multiagent/blob/main/notebooks/flocking.ipynb

### Опис параметрів:

- n\_points кількість птахів
- field size 2 цілих числа задають розмір поля
- step\_size розмір кроку пташки
- cohere\_speed амплітуда злітання
- align speed амплітуда змінна свого кута на кут зграї
- separate\_speed амплітуда відлітання
- vision радіус знаходження зграї
- minimum\_separation радіус небезпеки зіткнення
- n\_eagles кількість соколів
- eagles speed іннерція сокола
- eagles\_step\_size швидкість сокола
- eagles\_attack\_radius радіус атаки сокола

#### Логіка сокола:

- Переміщення з своєю швидкістю
- Зміна направлення до найближчої пташки з урахуванням інерції
- Знищення всіх птахів в радіусі знищення

## Приклад роботи

```
model = FlockingModel(
    n_points=200,
    field_size=(128,128),
    step_size=5,
    n_eagles=5,
    eagles_step_size=7.5,
    eagles_attack_radius=2
)
model.run n steps(1000)
```

# Початковий стан



# Проміжний стан



# Кінцевий стан



## Експерименти

#### Код

## Результати пошуку

https://github.com/VSydorskyy/iasa\_multiagent/blob/main/labs/eagles\_a nd\_birds.npz

```
Конфігурація эксперимента:
n points=200,
field size=(128,128),
step_size=5,
cohere speed=0.075,
align speed=0.125,
separate_speed=0.0375,
vision=10,
minimum separation=2,
eagles_attack_radius=3,
Простір пошуку:
eagles speed - np.linspace(0.125, 0.25, num=8)
eagles_step_size - list(range(1, 8))
n_eagles - list(range(1, 8))
Кількість експериментів для кожного набору - 8
Результат:
Усі значення - усереднення по 8 экспериментам
```



Як бачимо с графіків чим більше інерція (множник нормалізованого вектора напряму) тим гладша крива. А тривалість виживання пташок зменшується зі зростанням кількості соколів.



Як бачимо швидкість (довжина кроку соколу) має не лінійну тенденцію зсуву графіків. Най не оптимальніше коли крок соколу дорівнює кроку пташки. Під час цього відбувається ситуація коли соколи просто наздоганяють 1-2 останні пташки. Коли ж соколи

швидше пташок, вони їх знищують помітно швидше. Коли повільніше, то повне знищення все таки відбувається.



3 графіків залежності інерції видно, що вона не має вагомий вплив на знищення всіх пташок



На цих же графіках явно відслідковується не оптимальність довжини кроку 5 (яка співпадає з кроком пташки). А найбільш вбивчі - найшвидші соколи

Отже оптимальными параметрами соколів для знищення птахів є такі:

eagles\_speed (іннерція) - максимальна. Має малий вплив n\_eagles - максимальна кількість eagles\_step\_size - максимальна швидкість. Якщо цей параметр співпадає з step\_size - сильно підвищується шанс виживання пташок