10.1 The voltage across a $15-\mu F$ capacitor as a function of time is shown below. Sketch the corresponding current waveform.

- 10.2 At t=0, the voltage across a 480 μ F capacitor is 5 V, and a current of **30t** μ A flows through it. Calculate the voltage across the capacitor when t = 800 ms.
- 10.3 Determine the equivalent capacitance for each of the circuits

10.4 Find the equivalent capacitance between terminals a and b in the circuit. All capacitances are in μ F.

10.5 The current through a 40-mH inductor is 0 for t < 0 and $te^{-2t} A$ for t > 0 Find the voltage v(t).

10.6. The current through a 2.0 mH inductor is shown.

Determine the voltage across the inductor at t=1, 3, 5, and 7 ms.

10.8 Find L_{eq} at the terminals of the circuit.

10.9 Find the voltage v_a in the circuit.

