Математическая статистика

9 октября 2023

1 задача:

Пусть случайная величина $\xi \in N(a, \sigma^2)$.

При обработке выборки объёма n=17 получили S=1,5.

Найти доверительный интервал для параметра σ надёжности $\gamma=0,9.$

Доверительный интервал в этом случае (III случай):

$$(\frac{(n-1)S^2}{\chi_2^2};\frac{(n-1)S^2}{\chi_1^2})$$
 , где χ_1^2 и χ_2^2 – квантили уровней $\frac{1-\gamma}{2}$ и $\frac{1+\gamma}{2}$

$$\begin{aligned} \frac{1-\gamma}{2} &= 0,05\\ \frac{1+\gamma}{2} &= 0,95\\ \chi_1^2 &= 7,96\\ \chi_2^2 &= 26,3\\ 1,37 &< \sigma^2 < 4,5\\ 1,17 &< \sigma < 2,12 \text{ с вероятностью } \gamma = 0,9 \end{aligned}$$

Работа с выборкой

Найти доверительные интервалы для прибыли, считая её распределение нормальным.

$$n = 50$$

 $\overline{x} = 97, 27$
 $S^2 = 59, 08$
 $S = 7,686$

1) Найти доверительный интервал для параметра a надёжности $\gamma=0,9,$ если параметр $\sigma=7,7.$

Доверительный интервал в этом случае (І случай):

$$(\overline{x}-\frac{\sigma}{\sqrt{n}}t_{\gamma};\overline{x}+\frac{\sigma}{\sqrt{n}}t_{\gamma})$$
, где t_{γ} – квантиль уровня $\frac{1+\gamma}{2}$ распределения N.

$$t_{\gamma}={
m HOPM.CT.O5P}(rac{\gamma}{2}+0,5)=1,64$$
 95,48 < a < 99,07 с вероятностью $\gamma=0,9$

2) Найти доверительный интервал параметра a надёжности $\gamma = 0,9$ при

Доверительный интервал в этом случае (II случай):

$$(\overline{x}-rac{S}{\sqrt{n}}t_{\gamma};\overline{x}+rac{S}{\sqrt{n}}t_{\gamma})$$
, где t_{γ} – квантиль уровня $rac{1+\gamma}{2}$ распределения T_{n-1}

$$t_{\gamma}=\text{СТЬЮДЕНТ.ОБР}(\frac{1+\gamma}{2};n-1)=$$
 = СТЬЮДЕНТ.ОБР.2X $(1-\gamma;n-1)=1,677$ 92,618 < $a<101,931$ с вероятностью $\gamma=0,9$

- 3) Найти доверительный интервал для параметра σ , считая неизвестным параметр a, надёжности $\gamma = 0, 9$.

Доверительный интервал в этом случае (III случай):

доверительный интервал в этом случае (ПП случаи):
$$(\frac{(n-1)S^2}{\chi_2^2};\frac{(n-1)S^2}{\chi_1^2}), \ \text{где}\ \chi_1^2\ \text{и}\ \chi_2^2\ -\ \text{квантили уровней}\ \frac{1-\gamma}{2}\ \text{и}\ \frac{1+\gamma}{2}$$
 распределения H_{n-1} .

$$\chi_1^2 = \text{XM2.OBP}(\frac{1-\gamma}{2}; n-1) = 33,93$$

$$\chi_2^2 = \text{XH2.OBP}(\frac{1+\gamma}{2}; n-1) = 66,34$$

$$43,64 < \sigma^2 < 85,32$$

$$43,64 < \sigma^2 < 85,32$$
 $6,6 < \sigma < 9,23$ с вероятностью $\gamma = 0,9$

4) Найти доверительный интервал для параметра σ надёжности $\gamma = 0, 9,$ если параметр a = 97, 5.

Доверительный интервал в этом случае (IV случай):

$$(\frac{n\sigma^{2*}}{\chi_2^2};\frac{n\sigma^{2*}}{\chi_1^2})$$
, где χ_1^2 и χ_2^2 – квантили уровней $\frac{1-\gamma}{2}$ и $\frac{1+\gamma}{2}$ распределения H_n .

ния
$$H_n$$
.
$$n\sigma^{2*} = \sum_{i=1}^n (x_i - a)^2 = \sum_{i=1}^n (c_i - a)^2 n_i = 2897,469$$

$$\chi_1^2 = XII2.OBP(\frac{1-\gamma}{2}; n) = 34,76$$

$$\chi_2^2 = \text{XH2.OBP}(\frac{1+\gamma}{2}; n) = 67, 5$$

$$42,92 < \sigma^2 < 83,35$$

$$6,55<\sigma<9,13$$
с вероятностью $\gamma=0,9$