

_

Control charts for variables

Quality characteristic:

$$X \stackrel{iid}{\sim} N(\mu_0, \sigma_0^2)$$

Changes of process mean / dispersion may increase the expected value of non-conformings items

Quality Data Analysis- BM Colosimo

Control charts for variables

 μ σ

Chart (n>1) (n=1)

we use, as variable V, respectively:

$$\overline{X} = \frac{1}{n} \sum_{j=1,\dots,n} X_j$$

$$S = \sqrt{\sum_{j=1,\dots,n} (X_j - \overline{X})^2 / (n-1)}, \qquad \overline{X} - S$$

$$\overline{X} - R$$

Remarks:

- $\overline{X} R$ chart: easy to compute, with similar performances to $\overline{X} S$ chart if $n \le 6$ and n is constant
- For individuals: I-MR chart

Quality Data Analysis- BM Colosimo

1

Xbar-R Control charts

$$UCL = \mu_V + K\sigma_V$$

Shewhart's scheme

$$CL = \mu_V$$

$$LCL = \mu_V - K\sigma_V$$

1. Control chart for process mean: X Control Chart

$$V = \frac{1}{n} \sum_{j=1,\dots,n} X_j = \overline{X}$$

$$VCL = \mu + K \frac{\sigma}{\sqrt{n}} = \mu + A(n)\sigma$$

$$CL = \mu$$

$$LCL = \mu - K \frac{\sigma}{\sqrt{n}} = \mu - A(n)\sigma$$

Quality Data Analysis

Xbar-R Control chart

2. Control chart to detect a change of process dispersion: Carta R

$$V = R = \max_{j} x_{j} - \min_{j} x_{j}$$

$$X_j \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2) \Rightarrow W \text{ relative range}$$

$$W = \frac{R}{\sigma}$$

$$E(W) = d_2(n) = \frac{E(R)}{\sigma} \Rightarrow \mu_R = d_2(n)\sigma$$

$$Var(W) = \left[d_3(n)\right]^2 = \frac{Var(R)}{\sigma^2} \Rightarrow \sigma_R = d_3(n)\sigma$$

$$K=3$$

$$UCL = \mu_R + K\sigma_R \stackrel{\checkmark}{=} d_2(n)\sigma + 3d_3(n)\sigma = D_2(n)\sigma$$

$$CL = \mu_R = d_2(n)\sigma$$

$$LCL = \mu_R - K\sigma_R = d_2(n)\sigma - 3d_3(n)\sigma = D_1(n)\sigma$$

Quality Data Analysis

6

6

Xbar-R Control chart

If process mean and variance are unknown- Phase 1 of control charting:

- 1. Pick up m (m=20-25) samples of size n from the process under stable (a regime) conditions;
- 2. Estimate unknown parameters and design the control chart;
- 3. Plot the control chart (<u>retrospective</u> usage or <u>Phase 1</u> or <u>design phase</u>) control limits vs. data used to estimate those limits;
- 4. If an out-of-control is signalled, look for assignable causes:
 - a) If assignable cause is found, remove the observation and go back to step 2
 - b) If no assignable cause is found (Alwan): if observation is far beyond the limits it will strongly influence the limit computation itself (and assumption checking) it may be cautious to remove the observation anyway
- 5. Assumption checking (why now, after step 4a?)

Quality Data Analysis

Xbar-R Control chart

Parameter estimation:

$$\hat{\mu} = \overline{\overline{x}} = \frac{\sum_{i=1,\dots,m} \overline{x}_i}{m} \qquad \hat{\sigma} ?$$

$$X_j \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2) \Rightarrow W = \frac{R}{\sigma} \text{ relative range}$$

$$E(W) = d_2(n) = \frac{E(R)}{\sigma} \Rightarrow \sigma = \frac{E(R)}{d_2(n)} \Rightarrow \hat{\sigma} = \frac{\overline{R}}{d_2(n)}$$

Xbar Chart

$$UCL = \hat{\mu} + K \frac{K=3}{\sqrt{n}} = \overline{x} + 3 \frac{1}{d_2 \sqrt{n}} \overline{R} = \overline{x} + A_2(n) \overline{R}$$

$$CL = \hat{\mu} = \overline{\overline{x}}$$

$$LCL = \hat{\mu} - K \frac{\hat{\sigma}}{\sqrt{n}} = \overline{\overline{x}} - 3 \frac{1}{d_2 \sqrt{n}} \overline{R} = \overline{\overline{x}} - A_2(n) \overline{R}$$

Quality Data Analysis

8

Xbar-R Control charts

R Chart

$$K=3 \qquad \hat{\sigma} = \frac{\overline{R}}{d_2(n)}$$

UCL =
$$d_2(n)\hat{\sigma} + 3d_3(n)\hat{\sigma} = \overline{R} + 3\frac{d_3(n)}{d_2(n)}\overline{R} = D_4(n)\overline{R}$$

$$CL = d_2(n)\hat{\sigma} = \overline{R}$$

$$LCL = d_2(n)\hat{\sigma} - 3d_3(n)\hat{\sigma} = \overline{R} - 3\frac{d_3(n)}{d_2(n)}\overline{R} = D_3(n)\overline{R}$$

Note 1:

Sequential design of the two charts is advocated (R before and then X)

Note 2:
$$D_4(2) = 1 + 3/2\sqrt{2\pi - 4} \cong 3.266$$
 Minitab: 3.267 $D_3(2) = \max(0.1 - 3/2\sqrt{2\pi - 4}) = 0$ Montgomery: 3.269

Quality Data Analysis

Appendice A.6 Factors to design control charts for variables

	Carta x						Carta S				Carta R						
				Fattor	i per il					Fatto	ri per il						
Campione	Fatte	ori per i li	miti	cen	tro	Fattori per i limiti			ce	ntro	Fattori per i limiti						
n	A	A_2	A_3	c_4	$1/c_{4}$	B_3	B_4	B_5	B ₆	d_2	$1/d_2$	d_3	D_1	D_2	D_3	D_4	
2	2.121	1.881	2.659	0.7979	1.2533	0	3.267	0	2.606	1.128	0.8865	0.853	0	3.687	0	3.269	
3	1.732	1.023	1.954	0.8862	1.1284	0	2.568	0	2.276	1.693	0.5907	0.888	0	4.357	0	2.574	
4	1.5	0.729	1.628	0.9213	1.0854	0	2.266	0	2.088	2.059	0.4857	0.88	0	4.699	0	2.282	
5	1.342	0.577	1.427	0.94	1.0638	0	2.089	0	1.964	2.326	0.4299	0.864	0	4.918	ō	2.114	
6	1.225	0.483	1.287	0.9515	1.0509	0.03	1.97	0.029	1.874	2.534	0.3946	0.848	0	5.078	0	2.004	
7.	1.134	0.419	1.182	0.9594	1.0424	0.118	1.882	0.113	1.806	2.704	0.3698	0.833	0.205	5.203	0.076	1.924	
8	1.061	0.373	1.099	0.965	1.0362	0.185	1.815	0.179	1.751	2.847	0.3512	0.82	0.387	5.307	0.136	1.864	
9	1	0.337	1.032	0.9693	1.0317	0.239	1.761	0.232	1.707	2.97	0.3367	0.808	0.546	5.394	0.184	1.816	
10	0.949	0.308	0.975	0.9727	1.0281	0.284	1.716	0.276	1.669	3.078	0.3249	0.797	0.687	5.469	0.223	1.777	
11	0.905	0.285	0.927	0.9754	1.0253	0.321	1.679	0.313	1.637	3.173	0.3152	0.787	0.812	5.534	0.256	1.744	
12	0.866	0.266	0.886	0.9776	1.023	0.354	1.646	0.346	1.61	3.258	0.3069	0.778	0.924	5.592	0.284	1.716	
13	0.832	0.249	0.85	0.9794	1.021	0.382	1.618	0.374	1.585	3.336	0.2998	0.77	1.026	5.646	0.308	1.692	
14	0.802	0.235	0.817	0.981	1.0194	0.406	1.594	0.399	1.563	3.407	0.2935	0.762	1.121	5.693	0.329	1.671	
15	0.775	0.223	0.789	0.9823	1.018	0.428	1.572	0.421	1.544	3.472	0.288	0.755	1.207	5.737	0.348	1.652	
16	0.75	0.212	0.763	0.9835	1.0168	0.448	1.552	0.44	1.526	3.532	0.2831	0.749	1.285	5.779	0.364	1.636	
17	0.728	0.203	0.739	0.9845	1.0157	0.466	1.534	0.458	1.511	3.588	0.2787	0.743	1.359	5.817	0.379	1.621	
18	0.707	0.194	0.718	0.9854	1.0148	0.482	1.518	0.475	1.496	3.64	0.2747	0.738	1.426	5.854	0.392	1.608	
19	0.688	0.187	0.698	0.9862	1.014	0.497	1.503	0.49	1.483	3.689	0.2711	0.733	1.49	5.888	0.404	1.596	
20	0.671	0.18	0.68	0.9869	1.0132	0.51	1.49	0.504	1.47	3.735	0.2677	0.729	1.548	5.922	0.414	1.586	
21	0.655	0.173	0.663	0.9876	1.0126	0.523	1.477	0.516	1.459	3.778	0.2647	0.724	1.606	5.95	0.425	1.575	
22	0.64	0.167	0.647	0.9882	1.012	0.534	1.466	0.528	1.448	3.819	0.2618	0.72	1.659	5.979	0.434	1.566	
23	0.626	0.162	0.633	0.9887	1.0114	0.545	1.455	0.539	1.438	3.858	0.2592	0.716	1.71	6.006	0.443	1.557	
24	0.612	0.157	0.619	0.9892	1.0109	0.555	1.445	0.549	1.429	3.895	0.2567	0.712	1.759	6.031	0.452	1.548	
25	0.6	0.153	0.606	0.9896	1.0105	0.565	1.435	0.559	1.42	3.931	0.2544	0.709	1.804	6.058	0.459	1.541	
Per $n \geq 25$:	$A = \frac{3}{1}$	A 2 = -	3	$\frac{4(n-1)}{I}$	32 = 1	3	$B_{4} = 1$	+ 3	Be =	= C1	3 R.	- c. + -	3				
	\sqrt{n}	· · · · · · · · · · · · · · · · · · ·	\sqrt{n} , c4 —	4n-3	$c_i = 1$	$4\sqrt{2(n-1)}$, - 4	$c_4\sqrt{2(n)}$	~1), 25 ~	- C4 - \sqrt{2}	$\frac{1}{2(n-1)}$, B6		$\sqrt{2(n-1)}$.				

Quality Data Analysis

10 L

10

Design (Phase 1):

If out-of-control with assignable cause -> remove -> re-design -> \dots

More than 1 or 2 iteractions are uncommon (pay attention to the assumptions)

Use (Phase 2):

How long will control limits be applicable? How often is a revision required?

- Change of sample size
- Change of process conditions
- Periodic revision is often foreseen (e.g., every week, month, 100 samples or new production / product)

Xbar-R control chart if:

- n small (<=10)</p>
- n constant

Recall: estimate of σ

$$\hat{\sigma} = \frac{R}{d_2(n)}$$

Quality Data Analysis

R Chart

$$\bar{R} = \frac{\sum_{i=1}^{25} R_i}{25} = 1.775$$

UCL =
$$D_4 \bar{R} = 2.114(1.775) = 3.752$$

LCL = $D_3 \bar{R} = 0(1.775) = 0$

R Chart for C7

Assignable cause identified:

Remove the 22nd sample and redesign the chart

Quality Data Analysis

14

$$UCL = D_4 \overline{R} = 2.114(1.673) = 3.537$$

$$LCL = D_3 \bar{R} = 0(1.673) = 0$$

Design of R chart is over: now, design the chart for process mean

$$\bar{x} = \frac{\sum_{i \neq 22} \bar{x}_i}{24} = \frac{24,000.378}{24} = 1000.016$$

UCL =
$$\bar{x} + A_2 \bar{R} = 1000.016 + 0.577(1.673) = 1000.981$$

LCL =
$$\bar{x} - A_2 \bar{R} = 1000.016 - 0.577(1.673) = 999.051$$

Quality Data Analysis

Average Run Length – Average Time to Signal

Example:

Data from in-control process with $\mu = 100$ $\sigma = 5$

Quality assurance manager says that a mean shift to $107.5 (1.5\sigma, \delta=1.5)$ is not accepted. Process monitored via control chart with n=4 (one sample per hour)

$$\beta = P(Z \le 3 - 1.5\sqrt{4}) - P(Z \le -3 - 1.5\sqrt{4})$$

$$= P(Z \le 0) - P(Z \le -5)$$

$$\uparrow \qquad \uparrow$$

$$0.5 \qquad \approx 0.000$$

$$ARL_1 = \frac{1}{1 - 0.50} = 2$$

$$ATS = 1(2) = 2 h$$

Figure 6.7 ARL curves for \bar{x} chart with 3σ limits.

Quality Data Analysis

20

Average Run Length - Average Time to Signal

Resulting ATS is deemed too large:

How can we reduce the ATS?

- Alternative control scheme (for small shifts: CUSUM-EWMA)
- More frequent samples

$$ATS = (\frac{1}{2})2 = 1 h.$$

Example: one sample (n=4) per ½ hour

$$n = 10.$$
 $\beta = 0.0406$
 $ARL_1 = \frac{1}{1 - 0.0406} = 1.04$

ATS=1.04 h

21

 μ

 σ

IF, in order to keep under control: we use, as variable V, respectively:

$$\overline{X} = \frac{1}{n} \sum_{j=1,\dots,n} X_j$$

$$R = \max_j X_j - \min_j X_j$$

$$S = \sqrt{\sum_{j=1,\dots,n} (X_j - \overline{X})^2 / (n-1)}, \quad \overline{X} - S$$

Chart Chart (n>1)(n=1)

$$\overline{X} - R$$
 $I - MR$ $(X - MR)$

$$\overline{X}$$
 – S

Remarks:

- \overline{X} R chart: easy to compute, with similar performances to \overline{X} S chart if $n \le 6$ and n is constant
- For individuals: I-MR chart

Quality Data Analysis

22

Control charts for individuals (X or I control chart)

Process with low throughput

Chemical processes

Overall company performance indicators: turnover, amount of provisions, customer satisfaction, ...

$$X \sim N(\mu, \sigma^2)$$
 $(x_1, x_2, ..., x_n)$

 $X Control \ chart (V = X)$

With known parameters $CL = \mu_V$

$$UCL = \mu_V + K\sigma_V$$

$$LCL = \mu_V - K\sigma_V$$

Quality Data Analysis

With unknown parameters

$$UCL = \mu + K\sigma$$

$$CL = \mu$$

$$LCL = \mu - K\sigma$$

$$\hat{\mu} = \bar{x}$$

$$\hat{\mu} = \overline{x} \qquad \qquad \hat{\sigma} = \overline{MR} / d_2(2)$$

2. Parameter estimation (collect *n* observations from the process)

with
$$MR_i = |x_i - x_{i-1}|$$
 $i = 2,..., n$

$$d_2(2) = 1.128 \overline{MR} = \frac{1}{n-1} \sum_{i=2,...,n} MR_i$$

$$\overline{MR} = \frac{1}{n-1} \sum_{i=2}^{n} MR_{i}$$

I Control Chart:
$$\overline{x} \pm 3 \left(\frac{\overline{MR}}{d_2} \right) \stackrel{\downarrow}{=} \overline{x} \pm 2.66 \overline{MR}$$

Quality Data Analysis

Control charts for variables a)

24

MR Control chart

$$UCL = D_4(n)\overline{R}$$

$$CL = \overline{R}$$

$$LCL$$

$$LCL = D_3(n)\overline{R}$$

$$UCL = D_4(2) \overline{MR} = (3.267) \overline{MR}$$

$$LCL = D_3(2) \ \overline{MR} = (0) \ \overline{MR} = 0$$

- Remarks:
 - $-MR_i$ are autocorrelated ($\rho_1 = 0.22$): pay attention to run-rules
 - $-MR_i$ are not normally distributed (asymmetric and non-negative distribution):

 $-\alpha = 0.00915$ vs. 0.0027

Quality Data Analysis

Example

Data from a vehicle assembly process: the main vehicle body (not yet painted) passes through an optical control station equipped with 48 laser sensors. 95 dimensional measurements are acquired. In particular, the data in the table refer to the shift (in mm) from the nominal position (along y direction) of a hole for component coupling (very important for vehicle stability).

(vehicle1.dat)

Runs Test: vehicle 1

The observed number of runs = 29
The expected number of runs = 29.1379
24 Observations above K 34 below
The test is significant at 0.9699
Cannot reject at alpha = 0.05

Quality Data Analysis

Can the out-of-control obs. be related to problems affecting the use of these limits (as no assignable cause was found)?

Quality Data Analysis

Remarks:

- $\overline{X} R$ chart: easy to compute, with similar performances to $\overline{X} S$ chart if $n \le 6$ and n is constant
- For individuals: I-MR chart

Quality Data Analysis

Xbar-S Control charts

$$\mu_S ? \sigma_S ?$$

With unknown parameters (with m samples of size n)

$$\frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} \qquad Y = \sqrt{\frac{(n-1)S^{2}}{\sigma^{2}}} = \frac{S\sqrt{(n-1)}}{\sigma}$$

$$E(Y) = \sqrt{2} \frac{\Gamma(n/2)}{\Gamma[(n-1)/2]} \Rightarrow E(S) = \sqrt{\frac{2}{n-1}} \frac{\Gamma(n/2)}{\Gamma[(n-1)/2]} \sigma = c_{4}(n)\sigma$$

Being
$$E(S^2) = \frac{\sigma^2}{\sigma^2}$$

$$\hat{\sigma} = \frac{\overline{S}}{c_4(n)}$$

 $\Rightarrow \operatorname{Var}(S) = E(S^{2}) - [E(S)]^{2} = \sigma^{2} - (c_{4}(n)\sigma)^{2} = [1 - c_{4}(n)^{2}]\sigma^{2}$

$$\sigma_S = \sigma \sqrt{1 - c_4(n)^2}$$

Quality Data Analysis

34

Xbar-S Control charts

Xbar chart (in Xbar-S)

When Xbar-S)
$$K=3$$
 UCL $= \hat{\mu} + K \frac{\hat{\sigma}}{\sqrt{n}} = \overline{x} + 3 \frac{1}{c_4 \sqrt{n}} \overline{s} = \overline{x} + A_3(n) \overline{s}$

$$CL = \hat{\mu} = \overline{\overline{x}}$$

LCL =
$$\hat{\mu}$$
 - K $\frac{\hat{\sigma}}{\sqrt{n}}$ = \overline{x} - $3\frac{1}{c_4\sqrt{n}}\overline{s}$ = \overline{x} - $A_3(n)\overline{s}$

Analogously: S chart

parameters

known unknown

$$UCL = B_6(n)\sigma$$

$$CL = c_4(n)\sigma$$

$$LCL = B_5(n)\sigma$$

$$UCL = B_4(n)\overline{s}$$

$$CL = \overline{s}$$

$$LCL = B_3(n)\overline{s}$$

- 1. Exercise: find the expression of B_3 , B_4 , B_5 , B_6 constants
- 2. With regard to the same chart, find relations between B_3 and B_5 , and B_4 and B_6 .

Quality Data Analysis

<u>35</u>

X-S Control charts

Solution:

S chart
$$UCL = \mu_{S} + K \sigma_{S} = c_{4}\sigma + 3\sqrt{1 - c_{4}^{2}}\sigma = B_{6}\sigma \Rightarrow B_{6} = c_{4} + 3\sqrt{1 - c_{4}^{2}}$$

Known
$$CL = \mu_S = c_4 \sigma$$

parameters LCL =
$$\mu_s$$
 - K σ_s = $c_4 \sigma$ - $3\sqrt{1 - c_4^2} \sigma$ = $B_5 \sigma \Rightarrow B_5 = c_4 - 3\sqrt{1 - c_4^2}$

UCL =
$$c_4 \hat{\sigma} + 3\sqrt{1 - c_4^2} \hat{\sigma} = \overline{s} + 3\frac{\sqrt{1 - c_4^2}}{c_4} \overline{s} = B_4 \overline{s} \Rightarrow B_4 = 1 + 3\frac{\sqrt{1 - c_4^2}}{c_4}$$

Unknown $CL = c_4 \hat{\sigma} = \overline{s}$

LCL =
$$c_4 \hat{\sigma} - 3\sqrt{1 - c_4^2} \hat{\sigma} = \overline{s} - 3\frac{\sqrt{1 - c_4^2}}{c_4} \overline{s} = B_3 \overline{s} \Rightarrow B_3 = 1 - 3\frac{\sqrt{1 - c_4^2}}{c_4}$$

2. Solution:

parameters

$$B_6 \sigma = B_6 \frac{\overline{s}}{c_4} = B_4 \overline{s} \Rightarrow B_6 = B_4 c_4$$

analogousl y
$$\Rightarrow B_5 = B_3 c_4$$

Quality Data Analysis

36

Xbar-S control charts with variable sample size

$$\frac{\overline{\overline{x}}}{\overline{x}} = \frac{\sum_{i=1}^{m} n_i \overline{x}_i}{\sum_{i=1}^{m} n_i} = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}}{\sum_{i=1}^{m} n_i} \qquad s_p = \sqrt{\frac{\sum_{i=1}^{m} (n_i - 1) s_i^2}{\sum_{i=1}^{m} (n_i - 1)}}$$

$$d = \sum_{i=1}^{m} n_i - m + 1$$

$$\Rightarrow \hat{\sigma} = \frac{s_p}{c_4(d)}$$

 \overline{X} Chart

$$UCL_{i} = \overline{x} + \frac{3}{\sqrt{n_{i}}} \hat{\sigma}$$

$$CL_{i} = \overline{x}$$

$$LCL_{i} = \overline{x} - \frac{3}{\sqrt{n_{i}}} \hat{\sigma}$$

$$CL_i = \overline{\overline{x}}$$

$$LCL_i = \overline{\overline{x}} - \frac{3}{\sqrt{n_i}} \hat{\sigma}$$

S Chart or, analogously

$$UCL_{i} = B_{6}(n_{i})\hat{\sigma}$$

$$CL_{i} = c_{4}(n_{i})\hat{\sigma}$$

$$LCL_{i} = B_{5}(n_{i})\hat{\sigma}$$

$$UCL_{i} = \frac{c_{4}(n_{i})}{c_{4}(d)} B_{4}(n_{i}) s_{p}$$

$$CL_{i} = \frac{c_{4}(n_{i})}{c_{4}(n_{i})} s_{p}$$

$$CL_i = \frac{c_4(n_i)}{c_4(d)} s_p$$

$$LCL_i = \frac{c_4(n_i)}{c_4(d)} B_3(n_i) s_p$$

Quality Data Analysis

Example

Precise Tech Inc.:

- Produces valves for motorbike engines via hot forging.
- Before chip removal processes (milling and grinding), the operator randomly collects a subgroup of valves produced in 1 hour and measures the diameters (in cm)
- New input batch : sample of 10 valves produced in 1 hour
- If 5 consecutive subgroups exhibit an in-control pattern: sample of 5 valves produced in 1 hour

Quality Data Analysis

38

38

1 4.92 4.96 5.00 4.82 5.11 2 4.91 5.02 5.05 4.96 4.90 3 5.17 4.82 4.81 5.15 4.92 4 4.87 5.11 5.06 5.04 4.98 5 4.93 4.98 4.94 5.09 4.99 6 4.91 4.86 5.08 5.20 4.96 7 5.04 4.98 4.96 5.12 5.16 8 4.88 4.99 5.19 5.09 4.88 9 4.98 4.88 5.03 4.98 4.94 10 5.00 4.84 4.79 4.98 5.15 11 5.08 4.99 5.06 5.01 4.92 12 4.95 5.08 4.88 5.00 13 4.90 4.99 4.90 4.92 5.01 14 5.07 4.93 5.21 4.99 4.98 15 4.98 5.02 5.14 4.93 4.89	Subgroup Number	Observations										\bar{x}_i	s_i	
3 5.17 4.82 4.81 5.15 4.92 4 4.87 5.11 5.06 5.04 4.98 5 4.93 4.98 4.94 5.09 4.96 6 4.91 4.86 5.08 5.20 4.96 7 5.04 4.98 4.96 5.12 5.16 8 4.88 4.99 5.19 5.09 4.88 9 4.98 4.88 5.03 4.98 4.94 10 5.00 4.84 4.79 4.98 5.15 11 5.08 4.99 5.06 5.01 4.92 12 4.95 5.08 4.88 4.88 5.00 13 4.90 4.99 4.99 4.98 15 4.98 5.02 5.14 4.93 5.17 16 4.96 4.86 4.87 4.93 4.89 18 4.99 5.08 4.94 5.12 5.05 <th>1</th> <th>4.92</th> <th>4.96</th> <th>5.00</th> <th>4.82</th> <th>5.11</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>4.962</th> <th>0.10639</th>	1	4.92	4.96	5.00	4.82	5.11						4.962	0.10639	
4 4.87 5.11 5.06 5.04 4.98 5 4.93 4.98 4.94 5.09 4.99 6 4.91 4.86 5.08 5.20 4.96 7 5.04 4.98 4.96 5.12 5.16 8 4.88 4.99 5.19 5.09 4.88 9 4.98 4.88 5.03 4.98 4.94 10 5.00 4.84 4.79 4.98 5.15 11 5.08 4.99 5.06 5.01 4.92 12 4.95 5.08 4.88 5.00 13 4.90 4.99 4.90 4.92 5.01 14 5.07 4.93 5.21 4.99 4.98 15 4.98 5.11 5.03 5.11 4.98 17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 4.99 4.87 5.04 5.00<	2	4.91	5.02	5.05	4.96	4.90						4.968	0.06610	
5 4.93 4.98 4.94 5.09 4.99 6 4.91 4.86 5.08 5.20 4.96 7 5.04 4.98 4.96 5.12 5.16 8 4.88 4.99 5.19 5.09 4.88 9 4.98 4.88 5.03 4.98 4.94 10 5.00 4.84 4.79 4.98 5.15 11 5.08 4.99 5.06 5.01 4.92 12 4.95 5.08 4.88 5.00 13 4.90 4.99 4.99 4.98 14 5.07 4.93 5.21 4.99 4.98 15 4.98 5.02 5.14 4.93 5.17 16 4.96 4.86 4.87 4.93 4.89 17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 <tr< td=""><td>3</td><td>5.17</td><td>4.82</td><td>4.81</td><td>5.15</td><td>4.92</td><td></td><td></td><td></td><td></td><td></td><td>4.974</td><td>0.17530</td></tr<>	3	5.17	4.82	4.81	5.15	4.92						4.974	0.17530	
6 4.91 4.86 5.08 5.20 4.96 7 5.04 4.98 4.96 5.12 5.16 8 4.88 4.99 5.19 5.09 4.88 9 4.98 4.88 5.03 4.98 4.94 10 5.00 4.84 4.79 4.98 5.15 11 5.08 4.99 5.06 5.01 4.92 12 4.95 5.08 4.88 4.88 5.00 13 4.90 4.99 4.99 4.98 5.17 14 5.07 4.93 5.21 4.99 4.98 15 4.98 5.02 5.14 4.93 5.17 16 4.96 4.86 4.87 4.93 4.89 17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 4.99 4.87	4	4.87	5.11	5.06	5.04	4.98						5.012	0.09203	
7 5.04 4.98 4.96 5.12 5.16 8 4.88 4.99 5.19 5.09 4.88 9 4.98 4.88 5.03 4.98 4.94 10 5.00 4.84 4.79 4.98 5.15 11 5.08 4.99 5.06 5.01 4.92 12 4.95 5.08 4.88 4.88 5.00 13 4.90 4.99 4.90 4.92 5.01 14 5.07 4.93 5.21 4.99 4.98 15 4.98 5.02 5.14 4.93 5.17 16 4.96 4.86 4.87 4.93 4.89 17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 5.08 5.00 5.03 5.13 5.04 20 4.95 4.8	5	4.93	4.98	4.94	5.09	4.99						4.986	0.06348	
8 4.88 4.99 5.19 5.09 4.88 9 4.98 4.88 5.03 4.98 4.94 10 5.00 4.84 4.79 4.98 5.15 11 5.08 4.99 5.06 5.01 4.92 12 4.95 5.08 4.88 4.88 5.00 13 4.90 4.99 4.90 4.92 5.01 14 5.07 4.93 5.21 4.99 4.98 15 4.98 5.02 5.14 4.93 4.89 17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 4.99 4.87 5.04 5.00 4.89 5.04 5.05 20 4.95 4.89 5.08 4.79 4.85 5.09 5.03 5.13 5.04 21 5.09 4.96 4.97 5.03 5.05 4.98 4.94 5.12 4.96 5.04	6	4.91	4.86	5.08	5.20	4.96						5.002	0.13755	
9 4.98 4.88 5.03 4.98 4.94 10 5.00 4.84 4.79 4.98 5.15 11 5.08 4.99 5.06 5.01 4.92 12 4.95 5.08 4.88 4.88 5.00 13 4.90 4.99 4.90 4.92 5.01 14 5.07 4.93 5.21 4.99 4.98 15 4.98 5.02 5.14 4.93 5.17 16 4.96 4.86 4.87 4.93 4.89 17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 4.99 4.87 5.04 5.00 4.89 5.04 5.05 20 4.95 4.89 5.08 4.79 4.85 5.09 5.03 5.13 5.04 21 5.09 4.96 4.97 5.03 4.98 5.12 4.96 5.04 5.11 22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83 24 4.83 5.11 4.98 4.89 4.96 25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92	7	5.04	4.98	4.96	5.12	5.16						5.052	0.08671	
10	8	4.88	4.99	5.19	5.09	4.88						5.006	0.13501	
11 5.08 4.99 5.06 5.01 4.92 12 4.95 5.08 4.88 4.88 5.00 13 4.90 4.99 4.90 4.92 5.01 14 5.07 4.93 5.21 4.99 4.98 15 4.98 5.02 5.14 4.93 5.17 16 4.96 4.86 4.87 4.93 4.89 17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 4.99 4.87 5.04 5.00 4.89 5.04 5.05 20 4.95 4.89 5.08 4.79 4.85 5.09 5.03 5.13 5.04 21 5.09 4.96 4.97 5.03 4.98 5.12 4.96 5.04 5.11 22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97	9	4.98	4.88	5.03	4.98	4.94						4.962	0.05585	
12 4.95 5.08 4.88 4.88 5.00 13 4.90 4.99 4.90 4.92 5.01 14 5.07 4.93 5.21 4.99 4.98 15 4.98 5.02 5.14 4.93 5.17 16 4.96 4.86 4.87 4.93 4.89 17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 4.99 4.87 5.04 5.00 4.89 5.04 5.05 20 4.95 4.89 5.08 4.79 4.85 5.09 5.03 5.13 5.04 21 5.09 4.96 4.97 5.03 4.98 5.12 4.96 5.04 5.11 22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83	10	5.00	4.84	4.79	4.98	5.15						4.952	0.14237	
13 4.90 4.99 4.90 4.92 5.01 14 5.07 4.93 5.21 4.99 4.98 15 4.98 5.02 5.14 4.93 5.17 16 4.96 4.86 4.87 4.93 4.89 17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 4.99 4.87 5.04 5.00 4.89 5.04 5.05 20 4.95 4.89 5.08 4.79 4.85 5.09 5.03 5.13 5.04 21 5.09 4.96 4.97 5.03 4.98 5.12 4.96 5.04 5.11 22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83 24 4.83 5.11 4.98 4.89 4.96 25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92 <td>11</td> <td>5.08</td> <td>4.99</td> <td>5.06</td> <td>5.01</td> <td>4.92</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.012</td> <td>0.06300</td>	11	5.08	4.99	5.06	5.01	4.92						5.012	0.06300	
14 5.07 4.93 5.21 4.99 4.98 15 4.98 5.02 5.14 4.93 5.17 16 4.96 4.86 4.87 4.93 4.89 17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 4.99 4.87 5.04 5.00 4.89 5.04 5.05 20 4.95 4.89 5.08 4.79 4.85 5.09 5.03 5.13 5.04 21 5.09 4.96 4.97 5.03 4.98 5.12 4.96 5.04 5.11 22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83 24 4.83 5.11 4.98 4.89 4.96 25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92	12	4.95	5.08	4.88	4.88	5.00						4.958	0.08497	
15 4.98 5.02 5.14 4.93 5.17 16 4.96 4.86 4.87 4.93 4.89 17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 4.99 4.87 5.04 5.00 4.89 5.04 5.05 20 4.95 4.89 5.08 4.79 4.85 5.09 5.03 5.13 5.04 21 5.09 4.96 4.97 5.03 4.98 5.12 4.96 5.04 5.11 22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83 24 4.83 5.11 4.98 4.89 4.96 5.01 4.83 5.21 4.83 25 <td>13</td> <td>4.90</td> <td>4.99</td> <td>4.90</td> <td>4.92</td> <td>5.01</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.944</td> <td>0.05224</td>	13	4.90	4.99	4.90	4.92	5.01						4.944	0.05224	
16 4.96 4.86 4.87 4.93 4.89 17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 4.99 4.87 5.04 5.00 4.89 5.04 5.05 20 4.95 4.89 5.08 4.79 4.85 5.09 5.03 5.13 5.04 21 5.09 4.96 4.97 5.03 4.98 5.12 4.96 5.04 5.11 22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83 24 4.83 5.11 4.98 4.89 4.96 5.04 5.27 25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92	14	5.07	4.93	5.21	4.99	4.98						5.036	0.10945	
17 4.88 5.11 5.03 5.11 4.98 18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 4.99 4.87 5.04 5.00 4.89 5.04 5.05 20 4.95 4.89 5.08 4.79 4.85 5.09 5.03 5.13 5.04 21 5.09 4.96 4.97 5.03 4.98 5.12 4.96 5.04 5.11 22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83 24 4.83 5.11 4.98 4.89 4.96 25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92	15	4.98	5.02	5.14	4.93	5.17						5.048	0.10329	
18 4.99 5.08 4.94 5.12 5.05 19 5.20 4.98 4.99 4.87 5.04 5.00 4.89 5.04 5.05 20 4.95 4.89 5.08 4.79 4.85 5.09 5.03 5.13 5.04 21 5.09 4.96 4.97 5.03 4.98 5.12 4.96 5.04 5.11 22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83 24 4.83 5.11 4.98 4.89 4.96 25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92	16	4.96	4.86	4.87	4.93	4.89						4.902	0.04207	
19 5.20 4.98 4.99 4.87 5.04 5.00 4.89 5.04 5.05 20 4.95 4.89 5.08 4.79 4.85 5.09 5.03 5.13 5.04 21 5.09 4.96 4.97 5.03 4.98 5.12 4.96 5.04 5.11 22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83 24 4.83 5.11 4.98 4.89 4.96 25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92	17	4.88	5.11	5.03	5.11	4.98						5.022	0.09679	
20 4.95 4.89 5.08 4.79 4.85 5.09 5.03 5.13 5.04 21 5.09 4.96 4.97 5.03 4.98 5.12 4.96 5.04 5.11 22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83 24 4.83 5.11 4.98 4.89 4.96 25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92	18	4.99	5.08	4.94	5.12	5.05						5.036	0.07162	
21 5.09 4.96 4.97 5.03 4.98 5.12 4.96 5.04 5.11 22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83 24 4.83 5.11 4.98 4.89 4.96 25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92	19	5.20	4.98	4.99	4.87	5.04	5.00	4.89	5.04	5.05	4.80	4.986	0.11217	
22 5.14 4.99 4.90 5.03 5.05 4.78 4.95 4.84 4.94 23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83 24 4.83 5.11 4.98 4.89 4.96 25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92	20	4.95	4.89	5.08	4.79	4.85	5.09	5.03	5.13	5.04	5.04	4.989	0.113279	
23 5.04 4.97 5.10 4.92 4.95 5.01 4.83 5.21 4.83 24 4.83 5.11 4.98 4.89 4.96 25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92	21	5.09	4.96	4.97	5.03	4.98	5.12	4.96	5.04	5.11	4.98	5.024	0.063456	
24 4.83 5.11 4.98 4.89 4.96 25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92	22	5.14	4.99	4.90	5.03	5.05	4.78	4.95	4.84	4.94	5.01	4.963	0.105204	
25 5.06 5.00 4.89 5.04 5.27 26 4.93 5.01 4.96 5.18 4.92	23	5.04	4.97	5.10	4.92	4.95	5.01	4.83	5.21	4.83	5.06	4.992	0.11849	
26 4.93 5.01 4.96 5.18 4.92	24	4.83	5.11	4.98	4.89	4.96						4.954	0.105499	
	25	5.06	5.00	4.89	5.04	5.27						5.052	0.138456	
27 5.02 4.96 4.99 4.82 4.89	26	4.93	5.01	4.96	5.18	4.92						5.000	0.106536	
	27	5.02	4.96	4.99	4.82	4.89						4.936	0.080808	
28 4.94 5.20 5.12 5.03 4.89	28	4.94	5.20	5.12	5.03	4.89						5.036	0.127004	
29 5.22 5.04 5.01 5.08 4.92	29	5.22	5.04	5.01	5.08							5.054	0.109909	
30 5.05 4.90 5.06 4.99 4.76	30	5.05	4.90	5.06	4.99	4.76						4.952	0.124780	

$$\overline{\overline{x}} = \frac{\sum_{i=1}^{m} n_i \overline{x}_i}{\sum_{i=1}^{m} n_i} = \frac{5(4.952) + \dots + 10(4.986) + \dots + 10(4.992) + \dots + 5(4.952)}{5 + \dots + 10 + \dots + 10 + \dots + 5} = \frac{873.63}{175} = 4.992$$

$$\overline{y} = \sqrt{\frac{\sum_{i=1}^{m} (n_i - 1)s_i^2}{\sum_{i=1}^{m} (n_i - 1)}} = \sqrt{\frac{4(0.106395)^2 + \dots + 9(0.112171)^2 + \dots + 9(0.118491)^2 + \dots + 4(0.12780)^2}{4 + \dots + 9 + \dots + 9 + \dots + 4}} = \sqrt{\frac{1.5781}{145}} = 0.10432$$

$$\overline{d} = \sum_{i=1}^{30} n_i - 30 + 1 = 175 - 30 + 1 = 146$$

$$\overline{c_4(146)} = \frac{4(146) - 4}{4(146) - 3} = 0.9983$$

$$\overline{Quality Data Analysis}$$

		Carta x				Cart	a <i>S</i>						Carta R			
Campione	Fattori per il Fattori per i limiti centro Fattori per i limiti					Fattori per il centro Fattori per i limiti										
n	A	A2	A3		$\frac{1/c_4}{}$	B ₃	B_4	B ₅	B ₆	$\frac{cc}{d_2}$	$\frac{1/d_2}{}$	$-d_3$	D_1	D_2	D_3	D_4
2	2.121	1.881	2.659	0.7979	1.2533	0	3.267	0	2.606	1.128	0.8865	0.853	0	3.687	0	3.269
3	1.732	1.023	1.954	0.8862	1.1284	ŏ	2.568	ŏ	2.276	1.693	0.5907	0.888	0	4.357	ő	2.574
4	1.5	0.729	1.628	0.9213	1.0854	ŏ	2.266	_0	2.088	2.059	0.4857	0.88	ő	4.699	ő	2.282
→ 5	1.342	0.577	1.427	0.94	1.0638	0	2.089	o	1.964	2.326	0.4299	0.864	Ö	4.918	ŏ	2.114
6	1.225	0.483	1.287	0.9515	1.0509	0.03	1.97	0.029	1.874	2.534	0.3946	0.848	0	5.078	ō	2.004
7.	1.134	0.419	1.182	0.9594	1.0424	0.118	1.882	0.113	1.806	2.704	0.3698	0.833	0.205	5.203	0.076	1.924
8	1.061	0.373	1.099	0.965	1.0362	0.185	1.815	0.179	1.751	2.847	0.3512	0.82	0.387	5.307	0.136	1.864
9	1	0.337	1.032	0.9693	1.0317	0.239	1.761	0.232	1.707	2.97	0.3367	0.808	0.546	5.394	0.184	1.816
→10	0.949	0.308	0.975	0.9727	1.0281	0.284	1.716	0.276	1.669	3.078	0.3249	0.797	0.687	5.469	0.223	1.777
11	0.905	0.285	0.927	0.9754	1.0253	0.321	1.679	0.313	1.637	3.173	0.3152	0.787	0.812	5.534	0.256	1.744
12	0.866	0.266	0.886	0.9776	1.023	0.354	1.646	0.346	1.61	3.258	0.3069	0.778	0.924	5.592	0.284	1.71ϵ
13	0.832	0.249	0.85	0.9794	1.021	0.382	1.618	0.374	1.585	3.336	0.2998	0.77	1.026	5.646	0.308	1.692
14 15	0.802 0.775	0.235 0.223	0.817	0.981	1.0194	0.406	1.594	0.399	1.563	3.407	0.2935	0.762	1.121	5.693	0.329	1.671
16	0.775	0.223	0.789 0.763	0.9823 0.9835	1.018 1.0168	0.428 0.448	1.572 1.552	0.421 0.44	1.544 1.526	3.472 3.532	0.288	0.755	1.207	5.737	0.348	1.652
17	0.73	0.212	0.739	0.9835	1.0158	0.446	1.534	0.44	1.526	3.532	0.2831	0.749	1.285	5.779	0.364	1.636
18	0.728	0.194	0.739	0.9854	1.0137	0.482	1.518	0.438	1.311	3.588	0.2787 0.2747	0.743	1.359	5.817	0.379	1.621
19	0.688	0.187	0.698	0.9862	1.0146	0.497	1.503	0.49	1.483	3.689	0.2747	0.738 0.733	1.426 1.49	5.854 5.888	0.392 0.404	1.608
20	0.671	0.18	0.68	0.9869	1.0132	0.51	1.49	0.504	1.47	3.735	0.2677	0.733	1.548	5.922	0.404	1.596
21	0.655	0.173	0.663	0.9876	1.0126	0.523	1.477	0.516	1.459	3.778	0.2647	0.724	1.606	5.922	0.414	1.575
22	0.64	0.167	0.647	0.9882	1.012	0.534	1.466	0.528	1.448	3.819	0.2618	0.724	1.659	5.979	0.423	1.566
23	0.626	0.162	0.633	0.9887	1.0114	0.545	1.455	0.539	1.438	3.858	0.2592	0.716	1.71	6.006	0.434	1.557
24	0.612	0.157	0.619	0.9892	1.0109	0.555	1.445	0.549	1.429	3.895	0.2567	0.712	1.759	6.031	0.452	1.548
	0.6	0.153	0.606	0.9896	1.0105	0.565	1.435	0.559	1.42	3.931	0.2544	0.709	1.804	6.058	0.459	1.541
25																

	n=5	n=10
c4	0.9400	0.9727
64 B3	0	0.284
B4	2.089	1.716
B5	0	0.276
B6	1.964	1.669

$$\hat{\sigma} = \frac{0.10432}{0.9983} = 0.104498$$

X Chart

UCL =
$$4.992 + \frac{3}{\sqrt{5}}0.104498 = 5.132$$

CL = 4.992
LCL = $4.992 - \frac{3}{\sqrt{5}}0.104498 = 4.852$
S Chart

UCL =
$$B_6(5)\hat{\sigma}$$
 = (1.964)(0.104498) = 0.2052
CL = $c_4(5)\hat{\sigma}$ = (0.940)(0.104498) = 0.0982
LCL = $B_5(5)\hat{\sigma}$ = (0)(0.104498) = 0

UCL = $4.992 + \frac{3}{\sqrt{10}} \cdot 0.104498 = 5.091$ CL = 4.992LCL = $4.992 - \frac{3}{\sqrt{10}} \cdot 0.104498 = 4.893$

UCL =
$$B_6(10)\hat{\sigma}$$
 = (1.669)(0.104498) = 0.1744
CL = $c_4(10)\hat{\sigma}$ = (0.9727)(0.104498) = 0.1016
LCL = $B_5(10)\hat{\sigma}$ = (0.276)(0.104498) = 0.0288

Quality Data Analysis

42

42

Figure 6.10 \bar{x} and s Control chart for valve data with variable subgroup size.

No out of controls. If out of controls were observed: look for assignable causes. If assignable causes were found: remove the observation/the sample and re-design the chart. The process ends when no more assignable causes are found or no new out of controls are observed.

Quality Data Analysis

S² Control Chart

To monitor the process variance

For a probabilistic control chart (strong asymmetry of the distribution)

$$\frac{(n-1)S}{\sigma^2} \sim \chi_{n-1}^2$$

$$\Pr\left(\chi_{1-\alpha/2,n-1}^2 \le (n-1)\frac{S^2}{\sigma^2} \le \chi_{\alpha/2,n-1}^2\right) = 1-\alpha$$

$$UCL = \frac{\sigma^2}{n-1} \chi^2_{\alpha/2,n-1}$$

$$CL = \sigma^2$$

$$LCL = \frac{\sigma^2}{n-1} \chi^2_{1-\alpha/2,n-1}$$

$$UCL = \frac{\sigma^2}{n-1} \chi_{\alpha/2,n-1}^2$$

$$CL = \sigma^2$$

$$LCL = \frac{\sigma^2}{n-1} \chi_{1-\alpha/2,n-1}^2$$
where $\hat{\sigma}^2 = \begin{cases} \overline{s^2} = \frac{1}{m} \sum_{i=1,\dots,m} s_i^2 & \text{if n is constant} \\ s_p^2 = \frac{\sum_{i=1}^m (n_i - 1) s_i^2}{\sum_{i=1}^m (n_i - 1)} & \text{if n is not constant} \end{cases}$

Quality Data Analysis

44

Operating characteristic curve for the S control chart

$$H_0: \sigma = \sigma_0$$

$$H_1: \sigma = \sigma_1 = \lambda \sigma_0$$

UCL =
$$\sigma_0 \sqrt{\frac{\chi_{\alpha/2,n-1}^2}{n-1}}$$

$$H_0: \sigma = \sigma_0$$

$$H_1: \sigma = \sigma_1 = \lambda \sigma_0$$

$$UCL = \sigma_0 \sqrt{\frac{\chi^2_{\alpha/2, n-1}}{n-1}}$$

$$L CL = \sigma_0 \sqrt{\frac{\chi^2_{1-\alpha/2, n-1}}{n-1}}$$

$$\lambda = \frac{\sigma_1}{\sigma_0}$$

$$\beta(\lambda) = \Pr\left(S \in [LCL, UCL] \middle| \frac{(n-1)S^2}{\sigma_1^2} \sim \chi_{n-1}^2 \right) = \Pr\left(S \leq UCL \middle| *\right) - \Pr\left(S < LCL \middle| *\right)$$

$$\Pr\left(S \le UCL \mid *\right) = \Pr\left(S^{2} \le UCL^{2} \mid *\right) = \Pr\left(\frac{(n-1)S^{2}}{\sigma_{1}^{2}} \le \frac{(n-1)UCL^{2}}{\sigma_{1}^{2}} \mid *\right) =$$

$$= \Pr\left(\chi_{n-1}^{2} \le \frac{(n-1)\sigma_{0}^{2}\chi_{\alpha/2,n-1}^{2}}{\sigma_{1}^{2}(n-1)}\right) = \Pr\left(\chi_{n-1}^{2} \le \frac{\chi_{\alpha/2,n-1}^{2}}{\lambda^{2}}\right)$$

Quality Data Analysis

$$\Pr\left(S \leq UCL \mid *\right) = \Pr\left(\chi_{n-1}^{2} \leq \frac{\chi_{\alpha/2, n-1}^{2}}{\lambda^{2}}\right) = 1 - \gamma_{1}$$

$$\Pr\left(S < LCL \mid *\right) = \Pr\left(S^{2} \leq LCL^{2} \mid *\right) = \gamma_{2}$$

$$= \Pr\left(\frac{(n-1)S^{2}}{\sigma_{1}^{2}} \leq \frac{(n-1)LCL^{2}}{\sigma_{1}^{2}} \mid *\right) = \gamma_{2}$$

$$= \Pr\left(\chi_{n-1}^{2} \leq \frac{\chi_{1-\alpha/2, n-1}^{2}}{\lambda^{2}}\right) = \gamma_{2}$$

$$= \Pr\left(\chi_{n-1}^{2} \leq \frac{\chi_{1-\alpha/2, n-1}^{2}}{\lambda^{2}}\right) = \gamma_{2}$$

$$\beta(\lambda) = \Pr\left(\chi_{n-1}^2 \le \frac{\chi_{\alpha/2, n-1}^2}{\lambda^2}\right) - \Pr\left(\chi_{n-1}^2 \le \frac{\chi_{1-\alpha/2, n-1}^2}{\lambda^2}\right) = 1 - \gamma_1 - \gamma_2$$

Analogously: $ARL(\lambda) = \frac{1}{1 - \beta(\lambda)} = \frac{1}{\gamma_1 + \gamma_2}$

Quality Data Analysis

46

46

We know that:

$$\hat{\sigma} = \frac{\overline{S}}{c_4(n)}$$

Thus, a further possible approach to design control charts for individuals:

individuals:
$$\hat{\mu} \pm 3\hat{\sigma} = \overline{x} \pm 3\left(\frac{s}{c_4}\right)$$
 where $s = \sqrt{\sum_{j=1,\dots,n} (x_j - \overline{x})^2 / (n-1)}$,

 $c_4(n)$ in table for $2 \le n \le 24$; for $n \ge 25$: $c_4(n) \cong \frac{4n-4}{4n-3}$

Two options are available:

$$\overline{x} \pm 3 \left(\frac{s}{c_4} \right)$$
 $\overline{x} \pm 3 \left(\frac{\overline{MR}}{d_2} \right) = \overline{x} \pm 2.66 \overline{MR}$

Quality Data Analysis

Previous example

 $\frac{UCL}{LCL} = \overline{x} \pm 3 \left(\frac{s}{c_4(58)} \right) = 0.4886 \pm 3 \left(\frac{0.6611}{0.9956} \right) = \frac{2.481}{-1.503}$ (vehicle1.dat)

I Chart for vehicle

NID process: two exchangeable approaches. Otherwise:

- -Estimator based on MR is less efficient (larger variance) is process is IID- (Cryer and Ryan, 1990)
- -Some authors advocate using the method based on MR because it is more robust (no bias) to Phase I analysis in the presence of out-of-control conditions (Rigdon, Cruthis Champ, 1994)

Quality Data Analysis 48

48

Probabilistic control chart

$$\Pr\left(LCL \le V \le UCL\right) = 1 - \alpha$$
 by using the distribution of V $\Pr\left(V \le LCL\right) = \alpha / 2$ $\Pr\left(V > UCL\right) = \alpha / 2$

Xbar Chart
$$X \sim N(\mu, \sigma^2) \Rightarrow \overline{X} \sim N(\mu, \sigma^2/n)$$
 approx if X non-normal (central limit theorem)

$$UCL = \hat{\mu} + K \frac{\hat{\sigma}}{\sqrt{n}} = \overline{x} + z_{\alpha/2} \frac{1}{d_2 \sqrt{n}} \overline{R}$$

$$CL = \hat{\mu} = \overline{x}$$

$$LCL = \hat{\mu} - K \frac{\hat{\sigma}}{\sqrt{n}} = \overline{x} - z_{\alpha/2} \frac{1}{d_2 \sqrt{n}} \overline{R}$$

Quality Data Analysis

50

$$\alpha = 0.002$$
 \Rightarrow $z_{0.002/2} = z_{0.001} \Rightarrow$ $z_{0.001} = 3.09$. In the example:

UCL =
$$\overline{x} + z_{\alpha/2} \frac{1}{d_2 \sqrt{n}} \overline{R} = 1000 .016 + 3.09 \left(\frac{1.673}{2.326 \sqrt{5}} \right) = 1001 .010$$

$$CL = \overline{\overline{x}} = 1000.016$$

LCL =
$$\overline{x} - z_{\alpha/2} \frac{1}{d_2 \sqrt{n}} \overline{R} = 1000 .016 - 3.09 \left(\frac{1.673}{2.326 \sqrt{5}} \right) = 999 .022$$

Quality Data Analysis

Probabilistic limits for R control chart

Control chart with normality approximation:

- LCL=0 for n≤6: we cannot detect variability reductions!
- $\alpha_{\rm real}$ different from $\alpha_{\rm design}$ (2 or 3 times $\alpha_{\rm design}$ =0.0027)

$$UCL = D_{1-\alpha/2} \frac{\overline{R}}{d_2} \qquad LCL = D_{\alpha/2} \frac{\overline{R}}{d_2}$$

Harter (1960)

 D_{α}

 $D_{1-\alpha/2} = \sqrt{2} z_{\alpha/4}$ $D_{\alpha/2} = \sqrt{2} z_{1/2-\alpha/4}$

5 0.37 0.55 0.85 4.20 4.89 5.48 6 0.53 0.75 1.07 4.36 5.03 5.62 7 0.69 0.92 1.25 4.49 5.15 5.73 8 0.83 1.08 1.41 4.60 5.25 5.82

α=0.001 0.005 0.025 0.975 0.995 0.999 0.06 0.13 0.30 3.68 4.42 5.06 0.20 0.34 0.59 3.98 4.69 5.31

9 0.97 1.21 1.55 4.70 5.34 5.90 10 1.08 1.33 1.67 4.78 5.42 5.97

Quality Data Analysis

For n = 2

52

 $\alpha = 0.002$ In the example:

n	<i>α</i> =0.001	0.005	0.025	0.975	0.995	0.999
3	0.06	0.13	0.30	3.68	4.42	5.06
4	0.20	0.34	0.59	3.98	4.69	5.31
5	0.37	0.55	0.85	4.20	4.89	5.48
6	0.53	0.75	1.07	4.36	5.03	5.62
7	0.69	0.92	1.25	4.49	5.15	5.73
8	0.83	1.08	1.41	4.60	5.25	5.82
9	0.97	1.21	1.55	4.70	5.34	5.90
10	1.08	1.33	1.6] D $_{lpha}$	4.78	5.42	5.97

UCL =
$$D_{0.999} \left(\frac{\overline{R}}{d_2} \right) = 5.48 \left(\frac{1.775}{2.326} \right) = 4.182$$

LCL =
$$D_{0.001} \left(\frac{\overline{R}}{d_2} \right) = 0.37 \left(\frac{1.775}{2.326} \right) = 0.282$$

Quality Data Analysis

Method 1: control chart with probabilistic limits MR

1. Use the true distribution: Half-Normal (if original data were normal)

$$UCL_{HN} = \sqrt{2} z_{\alpha/4} \sigma = \sqrt{2} z_{\alpha/4} \overline{MR} / d_{2}(2)$$

$$LCL_{HN} = \sqrt{2} z_{1/2-\alpha/4} \sigma = \sqrt{2} z_{1/2-\alpha/4} \overline{MR} / d_{2}(2)$$

In the example:

$$UCL_{HN} = \frac{\sqrt{2}(2.835)(0.7426)}{1.128} = 2.639$$

$$LCL_{HN} = \frac{\sqrt{2}(0.00573)(0.7426)}{1.128} = 0.0053$$

Quality Data Analysis

54

54

Method 2: directly consider the MR time series: transformation

2. Transform MR_i data to have normality:

We know the real distribution (half-normal) and hence the "true" transformation exponent (Alwan and Radson, 1993, via simulation) is:

 $\lambda = 0.4$

Apply the power transformation to the MR; values in the example (vehicle1.dat):

 $\lambda = 0.4$

Appendice A.6 Factors for the design of control charts for variables

		Carta x		Carta S							Carta R							
Campione	Fattori per i limiti			Fattor cen	i per il tro		Fattori per i limiti			Fattori per il centro		Fattori per i limiti						
n	A	A_2	A_3	c ₄	$1/c_{4}$	B_3	B_4	B ₅	B ₆	d_2	$1/d_2$	d_3	D_1	D_2	D_3	D_4		
2	2.121	1.881	2.659	0.7979	1.2533	0	3.267	0	2.606	1.128	0.8865	0.853	0	3.687	0	3.269		
3	1.732	1.023	1.954	0.8862	1.1284	0	2.568	0	2.276	1.693	0.5907	0.888	O	4.357	ŏ	2.574		
4	1.5	0.729	1.628	0.9213	1.0854	0	2.266	0	2.088	2.059	0.4857	0.88	Ō	4.699	Õ	2.282		
5	1.342	0.577	1.427	0.94	1.0638	o	2.089	o	1.964	2.326	0.4299	0.864	0	4.918	ō	2.114		
6	1.225	0.483	1.287	0.9515	1.0509	0.03	1.97	0.029	1.874	2.534	0.3946	0.848	0	5.078	0	2.004		
7.	1.134	0.419	1.182	0.9594	1.0424	0.118	1.882	0.113	1.806	2.704	0.3698	0.833	0.205	5.203	0.076	1.924		
8	1.061	0.373	1.099	0.965	1.0362	0.185	1.815	0.179	1.751	2.847	0.3512	0.82	0.387	5.307	0.136	1.864		
9	1	0.337	1.032	0.9693	1.0317	0.239	1.761	0.232	1.707	2.97	0.3367	0.808	0.546	5.394	0.184	1.816		
10	0.949	0.308	0.975	0.9727	1.0281	0.284	1.716	0.276	1.669	3.078	0.3249	0.797	0.687	5.469	0.223	1.777		
11	0.905	0.285	0.927	0.9754	1.0253	0.321	1.679	0.313	1.637	3.173	0.3152	0.787	0.812	5.534	0.256	1.744		
12	0.866	0.266	0.886	0.9776	1.023	0.354	1.646	0.346	1.61	3.258	0.3069	0.778	0.924	5.592	0.284	1.716		
13	0.832	0.249	0.85	0.9794	1.021	0.382	1.618	0.374	1.585	3.336	0.2998	0.77	1.026	5.646	0.308	1.692		
14	0.802	0.235	0.817	0.981	1.0194	0.406	1.594	0.399	1.563	3.407	0.2935	0.762	1.121	5.693	0.329	1.671		
15	0.775	0.223	0.789	0.9823	1.018	0.428	1.572	0.421	1.544	3.472	0.288	0.755	1.207	5.737	0.348	1.652		
16	0.75	0.212	0.763	0.9835	1.0168	0.448	1.552	0.44	1.526	3.532	0.2831	0.749	1.285	5.779	0.364	1.636		
17	0.728	0.203	0.739	0.9845	1.0157	0.466	1.534	0.458	1.511	3.588	0.2787	0.743	1.359	5.817	0.379	1.621		
18	0.707	0.194	0.718	0.9854	1.0148	0.482	1.518	0.475	1.496	3.64	0.2747	0.738	1.426	5.854	0.392	1.608		
19	0.688	0.187	0.698	0.9862	1.014	0.497	1.503	0.49	1.483	3.689	0.2711	0.733	1.49	5.888	0.404	1.596		
20	0.671	0.18	0.68	0.9869	1.0132	0.51	1.49	0.504	1.47	3.735	0.2677	0.729	1.548	5.922	0.414	1.586		
21	0.655	0.173	0.663	0.9876	1.0126	0.523	1.477	0.516	1.459	3.778	0.2647	0.724	1.606	5.95	0.425	1.575		
22	0.64	0.167	0.647	0.9882	1.012	0.534	1.466	0.528	1.448	3.819	0.2618	0.72	1.659	5.979	0.434	1.566		
23	0.626	0.162	0.633	0.9887	1.0114	0.545	1.455	0.539	1.438	3.858	0.2592	0.716	1.71	6.006	0.443	1.557		
24	0.612	0.157	0.619	0.9892	1.0109	0.555	1.445	0.549	1.429	3.895	0.2567	0.712	1.759	6.031	0.452	1.548		
25	0.6	0.153	0.606	0.9896	1.0105	0.565	1.435	0.559	1.42	3.931	0.2544	0.709	1.804	6.058	0.459	1.541		

 $\operatorname{Per} n \geq 25 \colon A = \frac{3}{\sqrt{n}}, A_3 = \frac{3}{c_4\sqrt{n}}, c_4 = \frac{4(n-1)}{4n-3}, B_3 = 1 - \frac{3}{c_4\sqrt{2(n-1)}}, B_4 = 1 + \frac{3}{c_4\sqrt{2(n-1)}}, B_5 = c_4 - \frac{3}{\sqrt{2(n-1)}}, B_6 = c_4 + \frac{3}{\sqrt{2(n-1)}}$

Quality Data Analysis

60

60

Rational subgroups

Samples of size n are collected at regular intervals; sample statistics are computed (either to control the process mean or dispersion) and compared (plot) against control limits

How to manage the sampling operation?

- 1.Sampling strategy
- 2.Sample size
- 3.Time interval between samples

Shewhart: "rational subgroups"

Subgroups must be chosen such that the observations within the sample represent measurements made in the same conditions

- Reduced time between observations within-the-sample (AT&T Statistical Quality Handbook: consecutive measurements): attention to be paid to AUTOCORRELATION
- If time between observations within-the-sample is large: sampling from a mixture of:
 - Process in the presence of assignable causes and process in stable conditions;
 - Process in different conditions that are 'masked' within the sample.

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

Sample size

n ranging between 2 and 25 (in most applications, n between 2 and 6)

- 1. Process condition / measuring system (e.g., process having a low throughput: n=1)
- 2. Computational effort
- 3. Size of the shift to be detected by using the control chart: being equal a, n shall increase to detect small shifts (OC or ARL curve)
- 4. Statistical properties (central limit theorem for sample mean)

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

62

62

Sampling frequency

- 1. Process dynamics (autocorrelation)
- 2. Frequent samples: frequent check of system conditions

Size vs. sampling frequency:

Sampling costs:

- Variable costs;
- Fixed costs;
- Loss due to delayed detection of an out-of-control event

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863