СОВРЕМЕННЫЕ ПРОБЛЕМЫ ИНФОРМАТИКИ

Квантовые вычисления

Практическое занятие № 3. Вычисление булевых и арифметических функций

Любая булева функция $f(x_1,...,x_n)$ может быть вычислена с помощью квантового преобразования F, которое действует по схеме

$$F|x_n \cdots x_1 y\rangle = |x_n \cdots x_1 y \oplus f(x_1, \dots, x_n)\rangle.$$

Матрица F может быть получена из таблицы истинности булевой функции. Рассмотрим, как это делается, на примере булевой функции от двух переменных. Пусть функция f задана таблицей истинности

$$\begin{array}{ccccc} x_2 & x_1 & f \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$$

Опишем отображение, которое должно выполнять преобразование F, для всех наборов входных переменных:

x_2	x_1	У		x_2	x_1	$y \oplus f$
0	0	0		0	0	1
0	0	1		0	0	0
0	1	0		0	1	1
0	1	1	\rightarrow	0	1	0
1	0	0		1	0	0
1	0	1		1	0	1
1	1	0		1	1	1
1	1	1		1	1	0

Интерпретируя каждую строку преобразования как число, записанное в двоичной системе счисления, получаем следующие переходы: $0 \to 1$, $1 \to 0$, $2 \to 3$, $3 \to 2$, $4 \to 4$, $5 \to 5$, $6 \to 7$, $7 \to 6$. Матрицу F размером 8×8 заполняем нулями, затем для каждого перехода $i \to j$ пишем единицу на пересечении i-й строки и j-го столбца (нумерация строк и столбцов с нуля). Для нашего примера получается

Как видим, получаемые таким путем матрицы – разряженные (единица появляется один раз в каждой строке), поэтому для их хранения в памяти целесообразно предусмотреть компактную структуру данных.

Теперь поговорим о вычислении арифметических функций. Они фактически отличаются от булевых тем, что результатом является число, а не просто единица или ноль. Но любое число может быть записано в двоичной системе счисления. Каждый бит этого числа может рассматриваться как булева функция. Таким образом, вычисление любой арифметической функции сводится к вычислению нескольких булевых функций. Именно так производят вычисления обычные компьютеры. Но если в обычном компьютере одну булеву переменную мы можем одновременно подать на входы нескольких логических вентилей, то в квантовом компьютере кубит не может разветвляться на несколько преобразователей, т.к. он связан с одним квантовым объектом, который не может делиться или размножаться.

Рассмотрим для примера функцию $f(x) = 3x \mod 4$, где аргумент принимает значения 0, 1, 2, 3. Ясно, что для записи значений аргумента и функции достаточно двух бит. Нарисуем таблицу значений функции в двоичной системе, обозначив отдельные биты аргумента и функции индексами:

Таким образом, задача вычисления функции f сводится к задаче вычисления двух булевых функций f_1 и f_2 для общего аргумента x. Запишем преобразование и построим матрицу в соответствии с методикой, изложенной выше (см. след. стр.):

В принципе, данную матрицу F можно было получить из матриц F_1 и F_2 , построенных независимо для булевых функций f_1 и f_2 . Эта возможность отдается на самостоятельное рассмотрение студентам.

Задание.

- 1. Построить матрицу, реализующую произвольную булеву функцию от двух переменных. Булеву функцию задавать таблицей истинности. Проверить полученную матрицу на унитарность.
- 2. Смоделировать квантовое вычисление функции $f(x) = a^x \mod m$. Разрешается использовать конкретные значения a и m, например, a = 2, 3, ..., m = 15, 21, 33, ..., но лучше написать универсальную программу.