CIS 450 – Computer Organization and Architecture Homework #6 (25 points)

Due: Mon., Apr. 23, 2018 by 11:59 pm.

1. Consider the Simple Memory System given in Lecture 20 with 14-bit virtual addresses, 12-bit physical addresses, and a page size of $2^6 = 64$ bytes:

Use the Simple Memory System above to complete the following address translation problems to convert the given Virtual Address to the corresponding Physical Address. Note that all table values are given in hexadecimal format. Complete the virtual address and other fields.

- 2. Once the physical address is resolved, use the Data Cache shown below to determine if the data can be obtained from the cache, or if access to memory is required (just write MEM for your answer). You may assume that:
 - The memory is byte addressable. Memory accesses are to 1-byte words, not 4-byte words.
 - Physical addresses are 12 bits wide.
 - The cache is a direct mapped cache with a 4-byte block size and 16 lines total as shown below. Note that all numbers are given in hexadecimal format.

idx	Tog	Valid	BO	BI	B2	83	1dx	Tog	Volid	80	81	B2	83
0	19	1	99	11	23	11	8	24	1	3A	00	51	89
1	15	0	-	-	-	-	9	2D	0	-	-		-
2	18	1	00	02	04	08	A	2D	1	93	15	DA	3B
3	36	0	10-11	-	-	-	В	OB	0				-
4	32	1	43	6D	8F	09	C	12	0	-	-	-	
5	OD	1	36	72	FO	1D	D	16	1	04	96	34	15
6	31	0	- 0		-	-	E	13	1	83	77	1B	D3
7	16	1	11	C2	DF	03	F	14	0	- 16		-	

(a) For each physical address given below, if a cache hit occurs, indicate the cache entry accessed and the cache byte value returned in hex. If a cache miss occurs, just write 'N' next to "Cache Hit?" and just write "MEM" for the cache byte returned to indicate that the reference must be resolve by going out to main memory.

ysic	al	Add	lres	:s:	0×0	5B7	ic	de	<		A Street
11	10	19	8	4	6	5	4	3	2	11	offict o
0	1	0	4	1	0	1	1	0	1	1	1
	37		-		1	3		-	7		

Ph

Parameter	Value			
Cache Byte Offset	0x 3			
Cache Index	0x D			
Cache Tag	0x16			
Cache Hit (Y/N)?	Yes			
If Hit, Cache Byte Returned	0x15			