Some Lemmas

David R. MacIver

The following lemma comes up when defining topological entropy.

Lemma 1.

Let a_n be a sequence of non-negative real numbers such that

$$\forall m, n \ a_{m+n} \leq a_m + a_n$$

Then

$$\frac{a_n}{n} \to \inf_{n \ge 1} \frac{a_n}{n}$$

Proof. Let $I = \inf_{n \ge 1} \frac{a_n}{n}$.

Note that $\frac{a_{kn}}{kn} \leq \frac{a_n}{n}$. So, suppose $\frac{a_n}{n} \leq I + \epsilon$. Then whenever n|m we have $\frac{a_m}{m} \leq I + \epsilon$.

So, suppose $\epsilon > 0$. We can find N such that $\frac{a_N}{N} \leq I + \frac{1}{2}\epsilon$, and thus for all n such that N|n we have $\frac{a_n}{n} < I + \frac{1}{2}\epsilon$.

Let $n \ge N$. We may write n = kN + r, where $0 \le r < N - 1$. So

$$\frac{a_n}{n} \le \frac{a_{kN}}{n} + \frac{a_r}{n}$$
$$\le \frac{a_{kN}}{kN} + \frac{Na_1}{n}$$
$$< \frac{1}{2}\epsilon + \frac{Na_1}{n}$$

Thus picking N' big enough such that when $n \geq N'$ we have $\frac{Na_1}{n} < \frac{1}{2}\epsilon$, whenever $n \geq \max\{N, N'\}$, we have $I \leq \frac{a_n}{n} \leq I + \epsilon$ and so $|I - \frac{a_n}{n}| < \epsilon$.

Hence $\frac{a_n}{n} \to I$.

The following is a slight generalisation of the well known Cesaro summation method. The normal version is simply the case $b_n = n$.

Lemma 2 (Cesaro's Lemma). Let b_n be a monotonic increasing sequence of positive real numbers such that $b_n \to \infty$. Let $x_n \to x$. Then,

$$\frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) x_k \to x \quad as \ n \to \infty$$

Proof. Let $\epsilon > 0$. Pick N such that whenever $n \geq N$ we have $x_n \geq x - \epsilon$. So for $n \geq N$ we have

$$\frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) x_k = \frac{1}{b_n} \sum_{k=1}^N (b_k - b_{k-1}) x_k + \frac{1}{b_n} \sum_{k=N+1}^n (b_k - b_{k-1}) x_k
\ge \frac{1}{b_n} \sum_{k=1}^N (b_k - b_{k-1}) x_k + \frac{1}{b_n} \sum_{k=N+1}^n (b_k - b_{k-1}) (x - \epsilon)
= \frac{1}{b_n} \sum_{k=1}^N (b_k - b_{k-1}) x_k + \frac{1}{b_n} (b_n - b_N) (x - \epsilon)$$

Hence we have

$$\lim \inf_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) x_k \ge \frac{1}{b_n} \sum_{k=1}^N (b_k - b_{k-1}) x_k + \frac{1}{b_n} (b_n - b_N) (x - \epsilon)$$

$$= 0 + x - \epsilon$$

$$= x - \epsilon$$

So

$$\lim \inf_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) x_k \ge x$$

But similarly we have

$$\lim \sup_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) x_k \le x$$

So

$$x \le \lim \inf_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) x_k \le \lim \sup_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) x_k \le x$$

Thus

$$\lim \inf_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) x_k = \lim \sup_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) x_k = x$$

So

$$\frac{1}{b_n} \sum_{k=1}^{n} (b_k - b_{k-1}) x_k \to x$$

Lemma 3 (The Dini Lemma). Let X be a compact topological space and $f_n: X \to \mathbb{R}$ be a monotonic decreasing sequence of non-negative continuous functions such that $f_n \to f$ pointwise. Then

$$\sup_{x \in X} f_n(x) \to \sup_{x \in X} f(x)$$

(Note that continuity of f is not assumed).

Proof.

Note that

$$\sup_{x \in X} f_n(x)$$

is monotone decreasing and bounded below, so it converges. Say

$$\sup_{x \in X} f_n(x) \to M$$

Suppose t < M.

Let
$$L_n = \{x \in X : f_n(x) \ge t\}.$$

Then L_n is closed. It is non-empty because $\sup_{x \in X} f_n(x) \ge M > t$. Because the sequence f_n is monotone decreasing we have L_n is as well (with respect to \subseteq). Thus by compactness $\bigcap L_n \ne \emptyset$. Let $x \in \bigcap L_n$. Then $\forall n \ f_n(x) \ge t$. Thus $f_n(x) \ge t$.

Hence

$$\forall t < M, \ \sup_{x \in X} f(x) \ge t$$

Thus

$$\sup_{x \in X} f(x) \ge M$$

But

$$\forall x \ f(x) \le f_n(x)$$

Hence

$$\sup_{x \in X} f(x) \le \sup_{x \in X} f_n(x) \to M$$

Thus

$$\sup_{x \in X} f(x) = M$$

and so

$$\sup_{x \in X} f_n(x) \to \sup_{x \in X} f(x)$$

Corollary 3.1 (Dini's Theorem). Let X be a compact topological space and $f_n: X \to \mathbb{R}$ be a monotonic decreasing sequence of non-negative continuous functions such that $f_n \to f$ pointwise with f continuous. Then $f_n \to f$ uniformly.

Proof.

Apply the lemma to $f_n - f$.

Lemma 4 (Abel's Theorem). If $\sum a_n = l$ then $\sum a_n t^n \to l$ as $t \to 1^-$.

Proof. Define $x_n = \sum_{k=0}^n$. Then, taking $x_{-1} = 0$, we have:

$$f(t) = \sum a_n t^n$$

$$= \sum (x_n - x_{n-1}) t^n$$

$$= \sum x_n t^n - \sum x_{n-1} t^n$$

$$= (1 - t) \sum x_n$$

Define $\alpha = \sum a_n$ and $r_n = \sum_{k \geq n} a_n$.

Note that $(1-t)\sum t^n=1$.

We have

$$\alpha - f(t) = (1 - t) \sum_{n=0}^{\infty} (\alpha - x_n) t^n$$

$$= (1 - t) \sum_{n=0}^{\infty} r_n t^n$$

$$|\alpha - f(t)| \le (1 - t) \sum_{n=0}^{\infty} |r_n| t^n + (1 - t) \sum_{n=N+1}^{\infty} |r_n| t^n$$

Fix $\epsilon > 0$. Now choose N such that $r_{N+1} < \frac{1}{2}\epsilon$. We thus have that

$$|\alpha - f(t)| \le (1 - t) \sum_{n=0}^{N} |r_n| t^n + \frac{1}{2} \epsilon$$

$$\le (1 - t)M + \frac{1}{2} \epsilon$$

Thus for $t > \frac{1}{2M}\epsilon$ we have $|\alpha - f(t)| < \epsilon$.

Hence $f(t) \to \alpha$ as desired.

Corollary 4.1. Let f be an analytic function with a taylor series of about zero of $\sum a_n z^n$, with radius of convergence R. Suppose |z| = R and $\sum a_n z^n$ converges. Then $\sum a_n z^n = f(z)$.

Proof. Apply Abel's theorem and note that $\sum a_n z^n t^n = f(tz)$. By continuity $f(tz) \to f(z)$ as $t \to 1^-$.