# Data Integration for Split Questionnaire

Jongho Im, Sanghyo Kim and Inho Park

2021 춘계통계학회

May 28, 2021

### **Outline**

- 1. Introduction
- 2. Fractional Imputation
- 3. Simulation Study
- 4. Real data analysis
- 5. Concluding Remarks

### Introduction: motivation

Korea Rural Economic Institute (KREI) has been conducted two annual surveys from 2018:

- 1. Consumer Behavior Survey for Foods (CBSF).
- 2. Consumer Attitude Survey for Processed Foods (CASPF).

Long-term goal: Split questionnaire survey

Short-term goal: Analysis combining two surveys in micro-level.

For example, interested in  $Y \mid Z$ :

- (CBSF) Y: Changes in HMR consumption relative to last year.
- (CASPF) Z
  - frequency of dining-out.
  - evaluation on food safety of HMRs (Home Meal Replacements).



### Introduction: data structure



Data structure

- X are commonly observed on both A and B.



### Introduction: goals

Under our basic setup, interested in

$$(Y_i, X_i) \longrightarrow (Y_i, X_i, Z_i^*) \ i \in A,$$

Suffices to know the distribution of Z conditional on Y and X,

$$f(Z \mid Y, X) \propto f_1(Y \mid X, Z) f_2(Z \mid X)$$

Or, to know the conditional distribution of  $f_1$  when  $f_2$  can be correctly estimated from Data B.

### Introduction: some poplar methods

#### Conditional independent assumption

$$f(Z \mid Y, X) = f_2^*(Z \mid X)$$

- f<sub>2</sub>\* can be estimated from Data B.
- Weired if we are interested in a regression of Y | X, Z.

#### 2. Record Linkage

- Often there exists common units between two data sets.
- Require key variables in X such as identification variables or demographic variables.

#### 3. Nearest Neighbor Imputation

- Find donors using commonly observed X values.
- Hard to represent the relationship between Y and Z given X.

### Fractional Imputation: short review

- Initially proposed by Kalton and Kish (1984) and extensively discussed in Fay (1996).
- Kim and Fuller (2004) and Fuller and Kim (2005) proposed fractional hot deck imputation (FHDI) as a repeated imputation.
- Kim (2011) proposed a parametric fractional as a general tool for missing data analysis. (MCEM)
- Im, Kim, Fuller (2015) investigated a multivariate version of FHDI and the R package 'FHDI' was developed by Im, Cho and Kim (2018).

### Fractional Imputation: basic idea

-  $E(y_{i,mis} | y_{i,obs})$  is approximated by

$$E(y_{i,mis} \mid y_{i,obs}) \cong \sum_{j=1}^{M} w_{ij}^* y_i^{*(j)},$$

- $(y_{i,mis}, y_{i,obs})$  is the (observed, missing) part of  $y_i$ .
- M: a size of imputed values on the unit i
- $y_i^{*(j)}$ : j-th imputed value for  $y_{i,mis}$ ,  $j=1,\ldots,M$ .
- w<sub>ij</sub><sup>\*</sup>: fractional weight assigned to the j-th imputed value (vector) of unit i.
- Split the record with missing item into M(>1) imputed values.
- Assign fractional weights on imputed values.
- The final product is a single data file with size  $\leq nM$ .
- For variance estimation, the fractional weights are replicated.

### Fully Nonparametric FHDI

- 1. Both  $f_1$  and  $f_2$  are estimated non-parametrically.
- 2. Relatively easy to extend for multivariate variables.

### Assumption

- All variables are categorical. (Note: can apply categorization for interval data in practice).
- Some of X are instrumental variables for Z.

(Step 1) Estimate joint cell probabilities P(X, Z) and  $P(X_2, Z)$  from data B, where  $X = (X_1, X_2)$ .

(Step 2) Impute all possible Z values for each observation in data A.

Table: An illustrative example with binary responses

| ID | Υ | <i>X</i> <sub>1</sub> | $X_2$ | $Z^*$ |
|----|---|-----------------------|-------|-------|
| 1  | 1 | 1                     | 1     | 1*    |
| 1  | 1 | 1                     | 1     | 2*    |
| 2  | 2 | 2                     | 1     | 1*    |
| 2  | 2 | 2                     | 2     | 2*    |

(Step 3) Compute fractional weights  $w_{ij}^*$ .

### E-step

$$w_{ij}^{*} \propto P(Y \mid X, Z^{*})P(Z^{*} \mid X)$$

$$\propto \frac{P(Y, X, Z^{*})}{P(Z^{*}, X)}P(Z^{*}, X)$$

$$= \frac{P(Y, X_{2}, Z^{*})}{P(Z^{*}, X_{2})}P(Z^{*}, X) \text{ (Asumption)}$$

- ▶  $P(Z^*, X)$  and  $P(Z^*, X_2)$  were estimated on data B (Step 1).
- $ightharpoonup P(Y, X_2, Z^*)$  is estimated on imputed data A (M-step).
- $ightharpoonup X_1$  in  $X=(X_1,X_2)$  plays a role of instrumental variable for identification.
- $w_{ij}^*$  are normalized so that  $\sum_j w_{ij}^* = 1$  for all i's.

(Step 3) Compute fractional weights  $w_{ij}^*$ .

M-step: update joint cell probabilities of  $P(Y, X, Z^*)$ 

$$P(Y = y, X = x, Z^* = z) = \frac{\sum_{i,j} w_i w_{ij}^* I(Y_i = y, X_i = x, Z_i^{*(j)} = z)}{\sum_{i,j} w_i w_{ij}^*}.$$

(Step 4) Select M imputed values for each recipient  $i \in A$  with the probability proportional to  $w_{ij}^*$ .

Note that the current algorithm allows missing values on both data A and data B.

# Simulation Study 1

-  $X_1$ ,  $X_2$  and Z are separately generated from Bernoulli distribution (p = 0.5), but linked through a Gaussian copula with the correlation matrix.

$$\left(\begin{array}{cccc}
1 & 0.3 & 0.5 \\
0.3 & 1 & 0.5 \\
0.5 & 0.5 & 1
\end{array}\right)$$

Y is generated from a logit model

$$P(Y = 1 \mid X_1, X_2, Z) = \{1 + \exp(-\beta_0 - \beta_1 X_2 - \beta_2 Z)\}^{-1},$$

where  $\beta_0 = 0$ ,  $\beta_1 = 0.5$  and  $\beta_2 = 1$ .

- n = 2,000 samples with  $n_A = 1,000$  and  $n_B = 1,000$ :  $(Y, X_1, X_2)$  in data A and  $(X_1, X_2, Z)$  for data B.
- Working model:  $Y \mid (X_2, Z)$ .



# Simulation Study 2

Table: MC results for simulation study 1

|           | Full |      | NNI   |      | FHDI |      |      |
|-----------|------|------|-------|------|------|------|------|
|           | EST  | SE   | EST   | SE   | EST  | SE   | SE2  |
| $eta_{1}$ | 0.50 | 0.16 | 0.87  | 0.16 | 0.50 | 0.28 | 0.16 |
| $\beta_2$ | 1.01 | 0.18 | -0.01 | 0.17 | 1.00 | 0.45 | 0.18 |

- Nearest neighbor was found in comparison  $X_1$  and  $X_2$ .
- Single value M = 1 is generated for each  $Z_i$ .
- EST denotes point estimates.
- SE denotes MC variance and SE2 denotes the estimated SE as if the imputed values were originally observed.

## Real Data analysis 1

- 2019년 '식품소비 행태조사'와 '가공식품 소비자 태도조사'의 연계분석 가능성을 검정하기 위하여 총 1,519 가구에 대하여 추가 조사가 이뤄졌음.
- 2. 성별, 연령대, 식품첨가물 인식, MSG 인식, 간편식 이용 여부가 모두 관측되는 validation sample이 존재.

| 변수 구분    | 변수명                   | 내용                   |
|----------|-----------------------|----------------------|
| 공통변수     | <i>X</i> <sub>1</sub> | 성별(남성/여성)            |
|          | $X_2$                 | 연령대(20-30/40-50/60+) |
| 가공식품     | <i>Y</i> <sub>1</sub> | 식품첨가물인식 (상관없음/먹지않음)  |
| 소비자태도조사  | $Y_2$                 | MSG인식(상관없음/먹지않음)     |
| 식품소비행태조사 | Z                     | 간편식이용 여부 (예/아니오)     |
| •        |                       |                      |

### Real Data analysis 2

| $(X_2, Y_1, Y_2, Z)$ | Full  | CI    | NNI   | FHDI  |
|----------------------|-------|-------|-------|-------|
| (1,1,1,1)            | 0.053 | 0.048 | 0.049 | 0.049 |
| (1,1,1,2)            | 0.007 | 0.048 | 0.011 | 0.011 |
| (1,1,2,1)            | 0.026 | 0.026 | 0.025 | 0.026 |
| :                    | ÷     | ÷     | ÷     | ÷     |
| (3,2,1,2)            | 0.030 | 0.027 | 0.27  | 0.023 |
| (3,2,2,1)            | 0.027 | 0.040 | 0.38  | 0.035 |
| (3,2,2,2)            | 0.049 | 0.040 | 0.38  | 0.041 |
|                      |       |       |       |       |

- Full-validation sample; CI-Conditional Independence;
   NNI-Nearest Neighbor imputation; FI-fractional hot deck imputation
- RMSE: CI-0.0233, NNI:0.0031, FHDI:0.0021.
- FHDI additionally represents the relationship between Y and Z.

### **Concluding Remarks**

- FHDI can be used to handle split questionnaires (intended non-response).
- When the items are not so large, the proposed method works well.
- For the large items, we need more entity observations. It would be appropriate for big data analysis.
- For non-survey data, we first need to adjust selection bias if we have benchmark information.

$$\sum_{i \in A} w_i x_i = X$$

$$\sum_{j \in B} w_j x_j = X$$

 Identification issue is under development as the future study.

