# Multi-object recognition images

Marie BRUNET CARTEAUX





### **Context**

**Images: mathematical objects** 

 $\rightarrow$  can be processed as such

Each pixel p is associated with a frequency f such that  $f \in [0; 255]$ 



Multi-object recognition: result on many mathematical operations processed on images

### **Context**

### Multi-object recognition: identify where are interesting features in images



tymonitor cell phone chair chair

Image processing-based segmentation

**Deep learning-based detection** 

### **Context**

### Multi-object recognition opens up a wide field of possibilities



Detect people and abandoned luggage in public transportation

Spot free lots in parkings

Detect free lots in warehouses

# **Design brief**

### Goal: detect people and abandoned luggage in public transportation

- → Associated constraints:
  - Light exposure, contrast & camera position
  - Execution period
  - Mandated execution latency
  - Initialization needs
  - Hardware at disposal
  - Data anonymization & user protection



### **Design brief - Constraints**

Light exposure, contrast & camera position
 Those can vary depending on the time of the day or the client

### - Execution period

The solution shall be as fast as possible

### - Mandated execution cadency

The solution shall not waste useless data & resources





# **Design brief - Constraints**

- Initialization needs

There should be none

- Hardware at disposal

No embedded CPU/GPU → remote computing

- Data anonymization & user privacy

Alignment with the GDPR requirements



# **Objective**

### 1. Overview existing techniques in both:

- Image processing
- Deep learning

### 2. Understand the need for auxiliary processing

- Before launching the algorithm
- And after, for better accuracy

### 3. Learn to measure detection accuracy

Image processing



# Introduction to image processing

Any method/algorithm aiming to using or modifying images

### Strengths of IP:

- Fast
- Easy to implement
- Low hardware requirements

# **Semantic Instance Segmentation**

IP-based techniques perform semantic segmentation



# **Semantic Instance Segmentation**

### IP-based techniques perform semantic segmentation



### State-of-the-art

### Few algorithms ready-to-use

### Two famous techniques:

- Viola-Jones  $\rightarrow$
- Saliency map ↓





# **Elementary blocks**

- Edge detection
- Noise reduction
- Morphological mathematics
- Template matching
- Hough transformation
- Histogram equalization

# **Edge detection**

$$Image: \begin{cases} Low\ frequencies: slow\ variations\ (uniform\ areas) \\ High\ frequencies: fast\ variations\ (edges, noise) \end{cases}$$

### **Contour extraction** → **high-pass filters**

# Enhance edges AND noise: must reduce noise before extracting contours

$$F(x,y) = \sum_{a,b} h(a,b) \cdot I(x+a,y+b)$$

$$h = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$



# **Edge detection – Canny**

### > 1986: multi-stage algorithm

Grayscale Input image

Remove noise

Gradient magnitude

Nonmaximum uppression

Thresholding

Binary edges map







# **Edge detection - Sobel**

> 1968: computes approximative gradient of the image intensity function

Based on derivatives: give indications about horizontal & vertical changes



# **Edge detection – Laplace**

> XVIIIth century: calculus of second derivatives

Tracks jumps in pixels intensities (⇔ zero in 2<sup>nd</sup> derivative)









# Other edge detection algorithms (less famous)

- Deriche

- Prewitt

- Robert

- ...

### **Noise reduction**

- Noise has undesired effects thereafter (e.g. false positives edges appearing)
- Many noise-reduction techniques: depend on the use-case & image characteristics
- Smoothing is widely used to reduce noise



Noise image



Edge detection

# **Noise reduction - Blurring**

### Simplest smoothing algorithm: « normalizing box »

$$h = \frac{1}{3*3} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

### Powerful noise remover but also smoothes edges





# Noise reduction - Gaussian smoothing



### Most useful but rather slow





# **Noise reduction - Median smoothing**





Replace each pixel w/ the median of its neighbours

Very powerful on « salt-n-pepper » noise





# **Noise reduction - Bilateral smoothing**

Prevents edges smoothing while reducing noise

Consider weighed neighbors (Gaussian + difference of intensity)





# **Noise reduction - Performance comparison**



| Smoothing filter | Execution time (µs) |
|------------------|---------------------|
| Blur             | 1873                |
| Gaussian         | 1508                |
| Median           | 1118                |
| Bilateral        | 251032              |

# **Morphological mathematics**

- Set of operations based on shapes
- Apply a structuring element to an input image
- Usually used to isolate elements

# **Morphological mathematics – Dilation & Erosion**

### **Dilation**



- Grow image regions based on structuring elements
- Suppress holes & gaps
- Thicken edges

### **Erosion**



- Shrinks image regions (similarly to dilation)
- Thin elements
- Remove small components & noise

# **Morphological mathematics – Opening & Closing**

**Opening: Erosion then dilation** 

**Closing: Dilation then Erosion** 

Useful for getting rid of small artefacts or open/close holes in shapes



# Morphological mathematics – Lines extraction

Use erosion & dilation operations with line-shaped structuring elements



### **Template matching**

Find areas of an image that match a template image

Needs: input image + patch

→ patch is moved on the image (sliding)

∀ location, metrics say if the patch is similar to the image area

Actual location: those with the highest matching probability



(A) Reference Image







### **Hough transformation**

Widely-used method for detecting geometrical patterns in images

Switch from Euclidian- to Polar coordinates frame

Lines correspondences appear in Polar frame

# **Hough transformation**

Every point  $(x_0,y_0)$  is expressed as  $r_\theta = x_0 cos\theta + y_0 sin\theta$   $\rightarrow$  Gives a sinusoid called family of lines

2 families of lines intersect: these 2 points belong to the same line in the Euclidian frame





# **Histogram equalization**

Histogram: graphical representation of intensity distribution in an image

**Equalization:** broaden the

histogram

**Better contrast** 



# **Open-source frameworks**









# libvips

A fast image processing library with low memory needs.

And many more ...

### In a nutshell

IP-based technique: a mix of all of the abovementioned

**Drawbacks of IP-based detection:** 

- Fine tuning of parameters is needed
- Hard to build a generic algorithm
- Difficult to qualify « good performance »

# Deep learning



# **Power of machine learning**



**Instant translation** 



Gaming IAs



Self-driven cars

# Principle of machine learning

#### 1. Feed the algo with labeled data

→ It will find a causal relationship btw input & result

#### 2. Give the algo new, unlabeled data

→ It will compute the causal relationship's result

#### Caution: avoid high bias/variance

→ It causes under/overfit of the algorithm





$$Y = f(X) + \epsilon$$

X (input) = years of higher education

Y (output) = annual income

f = function describing the relationship between X and Y

ε (epsilon) = random error term (positive or negative) with mean zero



# Introduction to deep learning



# Why deep learning?

#### Machine learning is not enough for images

- → Pixels: heavy vectors w/ huge amount of data
- → Feature recognition: abstract process

#### **Need layers of abstraction**





# **DL** models for image processing



#### 2 « dedicated » to image processing:

- CNN
- DBN

# **Convolutional Neural Networks (CNNs)**



Inspired by animal visual cortex

Early layers recognize fine features (e.g. edges)

Later layers recombine them into high-level attributes

Final step: classification



# **Deep Belief Networks (DBNs)**

Stack of RBMs

2 steps: unsupervised pretraining & supervised fine-tuning

Full net training using gradient descent/backpropagation



# **Open-source frameworks**









And many more ...

### In a nutshell

Deep learning is very powerful & fast once trained

Training requires powerful hardware (GPUs, cloud computing ...) and time

Additional image processing is needed to normalize input images

# Auxiliary processing



## **Pre- & postprocessing**

For both techniques, images shall be normalized before

**Preprocessing includes:** 

- Up/Downsampling
- Resolution change
- Noise reduction
- Light/contrast equalization

Postprocessing smoothes the obtained segmentation

#### **Performance metrics**

#### Assess the segmentation/detection accuracy

- Precision-Recall
- F-Measure (DSC)
- Receiver Operating Characteristics
- AUC
- Mean Absolute Error

Shall be combined to offer an objective accuracy measure







#### **Conclusion**

| Image processing                | Deep learning                   |
|---------------------------------|---------------------------------|
| Complex parameters tuning       | Few variables to adjust         |
| Few resources needed            | Uncertain hardware requirements |
| Varying computational time      | Ultrafast                       |
| Uncertain segmentation accuracy | Reliable object recognition     |

- Auxiliary processing is needed by both technologies
- One shall be careful when trying to assess an algorithm's performance

# Thank you

marie.brunet@orange.com



