Include your name, the homework number, and your complete work, including any steps used to obtain the answer. Submit a hard copy - written out legibly or printed - before class.

Section 5.1

Problems 4, 10, 18, 32, 38

Section 5.3

Problems 4, 12, 24(a and b only), 44

Template for Proofs by Mathematical Induction

- 1. Express the statement that is to be proved in the form "for all $n \ge b$, P(n)" for a fixed integer b.
- 2. Write out the words "Basis Step." Then show that P(b) is true, taking care that the correct value of b is used. This completes the first part of the proof.
- 3. Write out the words "Inductive Step."
- 4. State, and clearly identify, the inductive hypothesis, in the form "assume that P(k) is true for an arbitrary fixed integer k > b."
- 5. State what needs to be proved under the assumption that the inductive hypothesis is true. That is, write out what P(k + 1) says.
- 6. Prove the statement P(k+1) making use the assumption P(k). Be sure that your proof is valid for all integers k with $k \ge b$, taking care that the proof works for small values of k, including k = b.
- 7. Clearly identify the conclusion of the inductive step, such as by saying "this completes the inductive step."
- 8. After completing the basis step and the inductive step, state the conclusion, namely that by mathematical induction, P(n) is true for all integers n with $n \ge b$.

It is worthwhile to revisit each of the mathematical induction proofs in Examples 1–14 to see how these steps are completed. It will be helpful to follow these guidelines in the solutions of the exercises that ask for proofs by mathematical induction. The guidelines that we presented can be adapted for each of the variants of mathematical induction that we introduce in the exercises and later in this chapter.

Exercises

Section 5.1

- 1. There are infinitely many stations on a train route. Suppose that the train stops at the first station and suppose that if the train stops at a station, then it stops at the next station. Show that the train stops at all stations.
- 2. Suppose that you know that a golfer plays the first hole of a golf course with an infinite number of holes and that if this golfer plays one hole, then the golfer goes on to play the next hole. Prove that this golfer plays every hole on the course.

Use mathematical induction in Exercises 3–17 to prove summation formulae. Be sure to identify where you use the inductive hypothesis.

- 3. Let P(n) be the statement that $1^2 + 2^2 + \cdots + n^2 =$ n(n+1)(2n+1)/6 for the positive integer n.
 - a) What is the statement P(1)?
 - **b)** Show that P(1) is true, completing the basis step of the proof.
 - c) What is the inductive hypothesis?
 - **d)** What do you need to prove in the inductive step?
 - e) Complete the inductive step, identifying where you use the inductive hypothesis.

- f) Explain why these steps show that this formula is true whenever n is a positive integer.
- **4.)** Let P(n) be the statement that $1^3 + 2^3 + \cdots + n^3 =$ $(n(n+1)/2)^2$ for the positive integer n.
 - a) What is the statement P(1)?
 - **b)** Show that P(1) is true, completing the basis step of the proof.
 - c) What is the inductive hypothesis?
 - **d)** What do you need to prove in the inductive step?
 - e) Complete the inductive step, identifying where you use the inductive hypothesis.
 - f) Explain why these steps show that this formula is true whenever n is a positive integer.
 - **5.** Prove that $1^2 + 3^2 + 5^2 + \dots + (2n+1)^2 = (n+1)$ (2n+1)(2n+3)/3 whenever n is a nonnegative integer.
 - **6.** Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$ whenever n is a positive integer.
 - 7. Prove that $3+3\cdot 5+3\cdot 5^2+\cdots+3\cdot 5^n=3(5^{n+1}-1)/4$ whenever n is a nonnegative integer.
 - **8.** Prove that $2-2\cdot 7+2\cdot 7^2-\cdots+2(-7)^n=(1-1)^n$ $(-7)^{n+1}$)/4 whenever *n* is a nonnegative integer.

- **9.** a) Find a formula for the sum of the first *n* even positive integers.
 - **b)** Prove the formula that you conjectured in part (a).

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)}$$

by examining the values of this expression for small values of n.

- **b)** Prove the formula you conjectured in part (a).
- 11. a) Find a formula for

10. a) Find a formula for

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$$

by examining the values of this expression for small values of n.

- **b)** Prove the formula you conjectured in part (a).
- 12. Prove that

$$\sum_{j=0}^{n} \left(-\frac{1}{2} \right)^{j} = \frac{2^{n+1} + (-1)^{n}}{3 \cdot 2^{n}}$$

whenever n is a nonnegative integer.

- **13.** Prove that $1^2 2^2 + 3^2 \dots + (-1)^{n-1}n^2 = (-1)^{n-1}$ n(n+1)/2 whenever n is a positive integer.
- **14.** Prove that for every positive integer n, $\sum_{k=1}^{n} k2^k =$ $(n-1)2^{n+1}+2$.
- **15.** Prove that for every positive integer n,

$$1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = n(n+1)(n+2)/3.$$

16. Prove that for every positive integer n,

$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2)$$

= $n(n+1)(n+2)(n+3)/4$.

17. Prove that $\sum_{j=1}^{n} j^4 = n(n+1)(2n+1)(3n^2+3n-1)/30$ whenever *n* is a positive integer.

Use mathematical induction to prove the inequalities in Exercises 18-30.

- **18.** Let P(n) be the statement that $n! < n^n$, where n is an integer greater than 1.
 - a) What is the statement P(2)?
 - **b)** Show that P(2) is true, completing the basis step of the proof.
 - c) What is the inductive hypothesis?
 - **d)** What do you need to prove in the inductive step?
 - e) Complete the inductive step.
 - Explain why these steps show that this inequality is true whenever n is an integer greater than 1.
- **19.** Let P(n) be the statement that

$$1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n},$$

where n is an integer greater than 1.

- a) What is the statement P(2)?
- **b)** Show that P(2) is true, completing the basis step of the proof.

- c) What is the inductive hypothesis?
- **d)** What do you need to prove in the inductive step?
- e) Complete the inductive step.
- f) Explain why these steps show that this inequality is true whenever n is an integer greater than 1.
- **20.** Prove that $3^n < n!$ if n is an integer greater than 6.
- **21.** Prove that $2^n > n^2$ if *n* is an integer greater than 4.
- **22.** For which nonnegative integers *n* is $n^2 \le n!$? Prove your
- **23.** For which nonnegative integers *n* is $2n + 3 \le 2^n$? Prove your answer.
- **24.** Prove that $1/(2n) < [1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)]/(2 \cdot 4 \cdot \cdots \cdot (2n-1))$ $\cdots 2n$) whenever n is a positive integer.
- *25. Prove that if h > -1, then $1 + nh \le (1 + h)^n$ for all nonnegative integers n. This is called **Bernoulli's inequality**.
- *26. Suppose that a and b are real numbers with 0 < b < a. Prove that if n is a positive integer, then $a^n - b^n \le$ $na^{n-1}(a-b)$.
- *27. Prove that for every positive integer n,

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > 2(\sqrt{n+1} - 1).$$

28. Prove that $n^2 - 7n + 12$ is nonnegative whenever n is an integer with $n \ge 3$.

In Exercises 29 and 30, H_n denotes the nth harmonic number.

- *29. Prove that $H_{2^n} \leq 1 + n$ whenever n is a nonnegative integer.
- *30. Prove that

$$H_1 + H_2 + \cdots + H_n = (n+1)H_n - n.$$

Use mathematical induction in Exercises 31-37 to prove divisibility facts.

- **31.** Prove that 2 divides $n^2 + n$ whenever n is a positive in-
- **32.** Prove that 3 divides $n^3 + 2n$ whenever n is a positive
- 33. Prove that 5 divides $n^5 n$ whenever n is a nonnegative
- **34.** Prove that 6 divides $n^3 n$ whenever n is a nonnegative
- *35. Prove that $n^2 1$ is divisible by 8 whenever n is an odd positive integer.
- *36. Prove that 21 divides $4^{n+1} + 5^{2n-1}$ whenever n is a positive integer.
- *37. Prove that if n is a positive integer, then 133 divides $11^{n+1} + 12^{2n-1}$.

Use mathematical induction in Exercises 38-46 to prove results about sets.

38. Prove that if A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n are sets such that $A_j \subseteq B_j$ for j = 1, 2, ..., n, then

$$\bigcup_{j=1}^{n} A_j \subseteq \bigcup_{j=1}^{n} B_j.$$

EXAMPLE 13 Suppose that $a_{m,n}$ is defined recursively for $(m, n) \in \mathbb{N} \times \mathbb{N}$ by $a_{0,0} = 0$ and

$$a_{m,n} = \begin{cases} a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\ a_{m,n-1} + n & \text{if } n > 0. \end{cases}$$

Show that $a_{m,n} = m + n(n+1)/2$ for all $(m,n) \in \mathbb{N} \times \mathbb{N}$, that is, for all pairs of nonnegative integers.

Solution: We can prove that $a_{m,n} = m + n(n+1)/2$ using a generalized version of mathematical induction. The basis step requires that we show that this formula is valid when (m, n) = (0, 0). The induction step requires that we show that if the formula holds for all pairs smaller than (m, n) in the lexicographic ordering of $\mathbb{N} \times \mathbb{N}$, then it also holds for (m, n).

BASIS STEP: Let (m, n) = (0, 0). Then by the basis case of the recursive definition of $a_{m,n}$ we have $a_{0,0} = 0$. Furthermore, when m = n = 0, $m + n(n + 1)/2 = 0 + (0 \cdot 1)/2 = 0$. This completes the basis step.

INDUCTIVE STEP: Suppose that $a_{m',n'} = m' + n'(n'+1)/2$ whenever (m',n') is less than (m, n) in the lexicographic ordering of $N \times N$. By the recursive definition, if n = 0, then $a_{m,n} = a_{m-1,n} + 1$. Because (m-1,n) is smaller than (m,n), the inductive hypothesis tells us that $a_{m-1,n} = m - 1 + n(n+1)/2$, so that $a_{m,n} = m - 1 + n(n+1)/2 + 1 = n(n+1)/2$ m + n(n+1)/2, giving us the desired equality. Now suppose that n > 0, so $a_{m,n} = a_{m,n-1} + n$. Because (m, n-1) is smaller than (m, n), the inductive hypothesis tells us that $a_{m,n-1} =$ m + (n-1)n/2, so $a_{m,n} = m + (n-1)n/2 + n = m + (n^2 - n + 2n)/2 = m + n(n+1)/2$. This finishes the inductive step.

As mentioned, we will justify this proof technique in Section 9.6.

Exercises

Section 5.3

- 1. Find f(1), f(2), f(3), and f(4) if f(n) is defined recursively by f(0) = 1 and for n = 0, 1, 2, ...
 - a) f(n+1) = f(n) + 2.
 - **b**) f(n+1) = 3f(n).
 - c) $f(n+1) = 2^{f(n)}$.
 - **d)** $f(n+1) = f(n)^2 + f(n) + 1$.
- **2.** Find f(1), f(2), f(3), f(4), and f(5) if f(n) is defined recursively by f(0) = 3 and for n = 0, 1, 2, ...
 - a) f(n+1) = -2f(n).
 - **b)** f(n+1) = 3f(n) + 7.
 - c) $f(n+1) = f(n)^2 2f(n) 2$.
 - **d**) $f(n+1) = 3^{f(n)/3}$.
- **3.** Find f(2), f(3), f(4), and f(5) if f is defined recursively by f(0) = -1, f(1) = 2, and for n = 1, 2, ...
 - a) f(n+1) = f(n) + 3f(n-1).
 - **b)** $f(n+1) = f(n)^2 f(n-1)$.
 - c) $f(n+1) = 3f(n)^2 4f(n-1)^2$.
 - **d)** f(n+1) = f(n-1)/f(n).
- **4.** Find f(2), f(3), f(4), and f(5) if f is defined recursively by f(0) = f(1) = 1 and for n = 1, 2, ...
 - a) f(n+1) = f(n) f(n-1).
 - **b)** f(n+1) = f(n) f(n-1).
 - c) $f(n+1) = f(n)^2 + f(n-1)^3$.
 - **d**) f(n+1) = f(n)/f(n-1).

- 5. Determine whether each of these proposed definitions is a valid recursive definition of a function f from the set of nonnegative integers to the set of integers. If f is well defined, find a formula for f(n) when n is a nonnegative integer and prove that your formula is valid.
 - a) f(0) = 0, f(n) = 2f(n-2) for $n \ge 1$
 - **b**) f(0) = 1, f(n) = f(n-1) 1 for $n \ge 1$
 - c) f(0) = 2, f(1) = 3, f(n) = f(n-1) 1 for $n \geq 2$
 - **d)** f(0) = 1, f(1) = 2, f(n) = 2f(n-2) for $n \ge 2$
 - e) f(0) = 1, f(n) = 3f(n-1) if n is odd and $n \ge 1$ and f(n) = 9 f(n-2) if n is even and $n \ge 2$
- 6. Determine whether each of these proposed definitions is a valid recursive definition of a function f from the set of nonnegative integers to the set of integers. If f is well defined, find a formula for f(n) when n is a nonnegative integer and prove that your formula is valid.
 - a) f(0) = 1, f(n) = -f(n-1) for $n \ge 1$
 - **b)** f(0) = 1, f(1) = 0, f(2) = 2, f(n) = 2f(n-3)for $n \ge 3$
 - c) f(0) = 0, f(1) = 1, f(n) = 2f(n+1) for $n \ge 2$
 - **d**) f(0) = 0, f(1) = 1, f(n) = 2f(n-1) for $n \ge 1$
 - e) f(0) = 2, f(n) = f(n-1) if n is odd and n > 1 and f(n) = 2f(n-2) if $n \ge 2$

- 7. Give a recursive definition of the sequence $\{a_n\}$, n = $1, 2, 3, \dots$ if
 - **a**) $a_n = 6n$.
- **b**) $a_n = 2n + 1$. **d**) $a_n = 5$.
- **c**) $a_n = 10^n$.
- **8.** Give a recursive definition of the sequence $\{a_n\}$, n = $1, 2, 3, \dots$ if
 - **a**) $a_n = 4n 2$.
- **b**) $a_n = 1 + (-1)^n$. **d**) $a_n = n^2$.
- c) $a_n = n(n+1)$.
- **9.** Let F be the function such that F(n) is the sum of the first n positive integers. Give a recursive definition of F(n).
- **10.** Give a recursive definition of $S_m(n)$, the sum of the integer m and the nonnegative integer n.
- 11. Give a recursive definition of $P_m(n)$, the product of the integer m and the nonnegative integer n.
- In Exercises 12–19 f_n is the *n*th Fibonacci number.
- 12. Prove that $f_1^2 + f_2^2 + \dots + f_n^2 = f_n f_{n+1}$ when *n* is a positive integer.
- **13.** Prove that $f_1 + f_3 + \cdots + f_{2n-1} = f_{2n}$ when *n* is a positive integer.
- *14. Show that $f_{n+1}f_{n-1} f_n^2 = (-1)^n$ when n is a positive
- *15. Show that $f_0 f_1 + f_1 f_2 + \cdots + f_{2n-1} f_{2n} = f_{2n}^2$ when n is a positive integer.
- Show that $f_0 f_1 + f_2 \dots f_{2n-1} + f_{2n} = f_{2n-1} 1$ when n is a positive integer. ***16.** Show
- 17. Determine the number of divisions used by the Euclidean algorithm to find the greatest common divisor of the Fibonacci numbers f_n and f_{n+1} , where n is a nonnegative integer. Verify your answer using mathematical induction.
- **18.** Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

Show that

$$\mathbf{A}^n = \begin{bmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{bmatrix}$$

when n is a positive integer.

- 19. By taking determinants of both sides of the equation in Exercise 18, prove the identity given in Exercise 14. (Recall that the determinant of the matrix $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ is ad - bc.)
- *20. Give a recursive definition of the functions max and min so that $\max(a_1, a_2, \dots, a_n)$ and $\min(a_1, a_2, \dots, a_n)$ are the maximum and minimum of the n numbers a_1, a_2, \ldots, a_n , respectively.
- ***21.** Let $a_1, a_2, ..., a_n$, and $b_1, b_2, ..., b_n$ be real numbers. Use the recursive definitions that you gave in Exercise 20 to prove these.
 - a) $\max(-a_1, -a_2, \dots, -a_n) = -\min(a_1, a_2, \dots, a_n)$
 - **b**) $\max(a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$

$$\leq \max(a_1, a_2, \ldots, a_n) + \max(b_1, b_2, \ldots, b_n)$$

- c) $\min(a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$ $\geq \min(a_1, a_2, \dots, a_n) + \min(b_1, b_2, \dots, b_n)$
- **22.** Show that the set *S* defined by $1 \in S$ and $s + t \in S$ whenever $s \in S$ and $t \in S$ is the set of positive integers.

- 23. Give a recursive definition of the set of positive integers that are multiples of 5.
- Give a recursive definition of
 - a) the set of odd positive integers.
 - **b**) the set of positive integer powers of 3.
 - c) the set of polynomials with integer coefficients.
- **25.** Give a recursive definition of
 - a) the set of even integers.
 - **b)** the set of positive integers congruent to 2 modulo 3.
 - c) the set of positive integers not divisible by 5.
- **26.** Let S be the subset of the set of ordered pairs of integers defined recursively by

Basis step: $(0,0) \in S$.

Recursive step: If $(a, b) \in S$, then $(a + 2, b + 3) \in S$ and $(a + 3, b + 2) \in S$.

- a) List the elements of S produced by the first five applications of the recursive definition.
- b) Use strong induction on the number of applications of the recursive step of the definition to show that $5 \mid a + b \text{ when } (a, b) \in S.$
- c) Use structural induction to show that $5 \mid a + b$ when
- **27.** Let *S* be the subset of the set of ordered pairs of integers defined recursively by

Basis step: $(0,0) \in S$.

Recursive step: If $(a, b) \in S$, then $(a, b + 1) \in S$, $(a+1, b+1) \in S$, and $(a+2, b+1) \in S$.

- a) List the elements of S produced by the first four applications of the recursive definition.
- b) Use strong induction on the number of applications of the recursive step of the definition to show that $a \le 2b$ whenever $(a, b) \in S$.
- c) Use structural induction to show that $a \le 2b$ whenever $(a, b) \in S$.
- 28. Give a recursive definition of each of these sets of ordered pairs of positive integers. [Hint: Plot the points in the set in the plane and look for lines containing points in the
 - a) $S = \{(a, b) | a \in \mathbb{Z}^+, b \in \mathbb{Z}^+, \text{ and } a + b \text{ is odd}\}$
 - **b)** $S = \{(a, b) \mid a \in \mathbf{Z}^+, b \in \mathbf{Z}^+, \text{ and } a \mid b\}$
 - c) $S = \{(a, b) \mid a \in \mathbb{Z}^+, b \in \mathbb{Z}^+, \text{ and } 3 \mid a + b\}$
- 29. Give a recursive definition of each of these sets of ordered pairs of positive integers. Use structural induction to prove that the recursive definition you found is correct. [Hint: To find a recursive definition, plot the points in the set in the plane and look for patterns.]
 - a) $S = \{(a, b) | a \in \mathbb{Z}^+, b \in \mathbb{Z}^+, \text{ and } a + b \text{ is even} \}$
 - **b)** $S = \{(a, b) | a \in \mathbf{Z}^+, b \in \mathbf{Z}^+, \text{ and } a \text{ or } b \text{ is odd}\}$
 - c) $S = \{(a, b) \mid a \in \mathbb{Z}^+, b \in \mathbb{Z}^+, a + b \text{ is odd, and } 3 \mid b\}$
- 30. Prove that in a bit string, the string 01 occurs at most one more time than the string 10.
- 31. Define well-formed formulae of sets, variables representing sets, and operators from $\{-, \cup, \cap, -\}$.

- **32.** a) Give a recursive definition of the function ones(s), which counts the number of ones in a bit string s.
 - **b)** Use structural induction to prove that ones(st) =ones(s) + ones(t).
- **33.** a) Give a recursive definition of the function m(s), which equals the smallest digit in a nonempty string of decimal digits.
 - **b)** Use structural induction to prove that m(st) = $\min(m(s), m(t)).$

The **reversal** of a string is the string consisting of the symbols of the string in reverse order. The reversal of the string w is denoted by w^R .

- **34.** Find the reversal of the following bit strings.
 - a) 0101
- **b**) 1 1011
- c) 1000 1001 0111
- 35. Give a recursive definition of the reversal of a string. [Hint: First define the reversal of the empty string. Then write a string w of length n + 1 as xy, where x is a string of length n, and express the reversal of w in terms of x^{k} and v.1
- *36. Use structural induction to prove that $(w_1w_2)^R = w_2^R w_1^R$.
- **37.** Give a recursive definition of w^i , where w is a string and i is a nonnegative integer. (Here w^i represents the concatenation of i copies of the string w.)
- *38. Give a recursive definition of the set of bit strings that are palindromes.
- **39.** When does a string belong to the set A of bit strings defined recursively by

$$\lambda \in A$$
 $0x1 \in A \text{ if } x \in A,$

where λ is the empty string?

- *40. Recursively define the set of bit strings that have more zeros than ones.
- 41. Use Exercise 37 and mathematical induction to show that $l(w^i) = i \cdot l(w)$, where w is a string and i is a nonnegative
- *42. Show that $(w^R)^i = (w^i)^R$ whenever w is a string and i is a nonnegative integer; that is, show that the ith power of the reversal of a string is the reversal of the ith power of
- **43.** Use structural induction to show that $n(T) \ge 2h(T) + 1$, where T is a full binary tree, n(T) equals the number of vertices of T, and h(T) is the height of T.

The set of leaves and the set of internal vertices of a full binary tree can be defined recursively.

Basis step: The root r is a leaf of the full binary tree with exactly one vertex r. This tree has no internal vertices.

Recursive step: The set of leaves of the tree $T = T_1 \cdot T_2$ is the union of the sets of leaves of T_1 and of T_2 . The internal vertices of T are the root r of T and the union of the set of internal vertices of T_1 and the set of internal vertices of T_2 .

44. Use structural induction to show that l(T), the number of leaves of a full binary tree T, is 1 more than i(T), the number of internal vertices of T.

45. Use generalized induction as was done in Example 13 to show that if $a_{m,n}$ is defined recursively by $a_{0.0} = 0$ and

$$a_{m,n} = \begin{cases} a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\ a_{m,n-1} + 1 & \text{if } n > 0, \end{cases}$$

then $a_{m,n} = m + n$ for all $(m, n) \in \mathbb{N} \times \mathbb{N}$.

46. Use generalized induction as was done in Example 13 to show that if $a_{m,n}$ is defined recursively by $a_{1,1} = 5$ and

$$a_{m,n} = \begin{cases} a_{m-1,n} + 2 & \text{if } n = 1 \text{ and } m > 1 \\ a_{m,n-1} + 2 & \text{if } n > 1, \end{cases}$$

then $a_{m,n} = 2(m+n) + 1$ for all $(m, n) \in \mathbb{Z}^+ \times \mathbb{Z}^+$.

- *47. A partition of a positive integer n is a way to write nas a sum of positive integers where the order of terms in the sum does not matter. For instance, 7 = 3 + 2 + 1 + 1is a partition of 7. Let P_m equal the number of different partitions of m, and let $P_{m,n}$ be the number of different ways to express m as the sum of positive integers not exceeding n.
 - **a**) Show that $P_{m,m} = P_m$.
 - **b)** Show that the following recursive definition for $P_{m,n}$ is correct:

$$P_{m,n} = \begin{cases} 1 & \text{if } m = 1 \\ 1 & \text{if } n = 1 \\ P_{m,m} & \text{if } m < n \\ 1 + P_{m,m-1} & \text{if } m = n > 1 \\ P_{m,n-1} + P_{m-n,n} & \text{if } m > n > 1 \end{cases}$$

c) Find the number of partitions of 5 and of 6 using this recursive definition.

Consider an inductive definition of a version of Ackermann's function. This function was named after Wilhelm Ackermann, a German mathematician who was a student of the great mathematician David Hilbert. Ackermann's function plays an important role in the theory of recursive functions and in the study of the complexity of certain algorithms involving set unions. (There are several different variants of this function. All are called Ackermann's function and have similar properties even though their values do not always agree.)

$$A(m,n) = \begin{cases} 2n & \text{if } m = 0\\ 0 & \text{if } m \ge 1 \text{ and } n = 0\\ 2 & \text{if } m \ge 1 \text{ and } n = 1\\ A(m-1, A(m, n-1)) & \text{if } m \ge 1 \text{ and } n \ge 2 \end{cases}$$

Exercises 48-55 involve this version of Ackermann's func-

- **48.** Find these values of Ackermann's function.
 - a) A(1,0)
- **b)** A(0,1)
- c) A(1,1)
- **d)** A(2,2)
- **49.** Show that A(m, 2) = 4 whenever $m \ge 1$.
- **50.** Show that $A(1, n) = 2^n$ whenever n > 1.
- 51. Find these values of Ackermann's function.
 - **a)** A(2,3)
- ***b**) A(3,3)
- *52. Find *A*(3, 4).