AssaySpecificity

TaylorWilcox

October 3, 2023

Load data

Input data should have columns: Genus, Species, AP

```
data <- read.csv(file.choose())
group_by(data, Genus) %>% summarize(N = n(), MeanAP = mean(AP))
```

```
## # A tibble: 13 x 3
##
     Genus
                       N MeanAP
##
     <chr>
                   <int> <dbl>
   1 Barbicambarus
                       2 0.115
##
##
   2 Bouchardina
                       1 0.307
  3 Cambarellus
                      8 0.168
## 4 Cambarus
                      72 0.154
## 5 Creaserinus
                      1 0.07
## 6 Fallicambarus
                      6 0.252
## 7 Faxonella
                      2 0.183
## 8 Faxonius
                      70 0.160
## 9 Hobbseus
                       6 0.229
## 10 Lacunicambarus
                      6 0.062
## 11 Orconectes
                      6 0.107
## 12 Procambarus
                      70 0.256
## 13 Troglocambarus
                       1 0.299
```

Estimate beta probability density function

```
## shape1 shape2
## 3.5774506 14.8532310
## (0.2167669) (0.9494730)
```

beta

Histogram and inferred probability density function

Observed eDNAssay assignment probabilities are shown in the histogram.

Summary table

Table showing estimated probability of an unsampled confamilial exceeding an assignment probability thershold of 0.30 (first row) or 0.50 (second row) using probability density functions.

##			Estimate
##	0.30	${\tt threshold}$	0.128
##	0.50	threshold	0.003