```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
        import seaborn as sn
        import random
        import math
In [2]: df=pd.read csv('./Advertising.csv')
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 5 columns):
         #
             Column
                         Non-Null Count
                                         Dtype
        - - -
             Unnamed: 0 200 non-null
                                         int64
         0
         1
             ΤV
                         200 non-null
                                         float64
         2
             radio
                         200 non-null
                                         float64
         3
             newspaper
                         200 non-null
                                         float64
         4
             sales
                         200 non-null
                                         float64
        dtypes: float64(4), int64(1)
        memory usage: 7.9 KB
```

X would represent TV, Radio and Newspaper while Y would represent our sales. As all these sales might be on different scales, we then normalise our X & Y variables.

```
In [3]: X=df[['TV','radio','newspaper']]
    Y=df['sales']
    Y=np.array((Y-Y.mean())/Y.std())
    X=X.apply(lambda rec:(rec-rec.mean())/rec.std(),axis=0)
```

To implement a gradient descent algorithm we need to follow 4 steps:

- 1)Randomly initialize the bias and the weight theta
- 2)Calculate predicted value of y that is Y given the bias and the weight
- 3) Calculate the cost function from predicted and actual values of Y
- 4)Calculate gradient and the weights

```
In [4]: def initialize(dim):
    b=random.random()
    theta=np.random.rand(dim)
    return b, theta
    b, theta=initialize(3)
    print("Bias: ",b,"Weights: ",theta)

Bias: 0.5283414452076892 Weights: [0.05177122 0.19233261 0.1127032 4]
```

```
In [5]: def predict Y(b,theta,X):
            return b + np.dot(X,theta)
        Y hat=predict Y(b,theta,X)
        Y hat[0:10]
Out[5]: array([0.9667235 , 0.74951975, 0.94379078, 0.90929539, 0.5313347
               1.0070258 , 0.56137594, 0.3666039 , 0.0177499 , 0.24405717])
In [6]: def get cost(Y,Y hat):
            Y resd=Y-Y hat
            return np.sum(np.dot(Y resd.T,Y resd))/len(Y-Y resd)
        get cost(Y,Y hat)
Out[6]: 0.990939665283301
In [7]: def update theta(x,y,y hat,b 0,theta 0,learning rate):
            db=(np.sum(y hat-y)*2)/len(y)
            dw=(np.dot((y hat-y),x)*2)/len(y)
            b 1=b 0-learning rate*db
            theta 1=theta 0-learning rate*dw
            return b 1,theta 1
        print("After initialization :- Bias: ",b,"theta: ",theta)
        Y hat=predict Y(b,theta,X)
        b, theta=update theta(X,Y,Y hat,b,theta,0.001)
        print("After first update :- Bias: ",b,"theta: ",theta)
        get cost(Y,Y hat)
        After initialization :- Bias: 0.5283414452076892 theta: [0.0517712
        2 0.19233261 0.112703241
        After first update :- Bias: 0.5272847623172738 theta: [0.05319113
        0.19301149 0.11279191]
```

Out[7]: 0.990939665283301

```
In [8]: def gradient descent(X,Y,alpha,num iterations):
            b,theta=initialize(X.shape[1])
            iter num=0
            gd iterations df=pd.DataFrame(columns=['iteration','cost'])
            result idx=0
            for each iter in range(num iterations):
                Y hat=predict Y(b,theta,X)
                this cost=get cost(Y,Y hat)
                prev_b=b
                prev theta=theta
                b, theta=update theta(X,Y,Y hat,prev b,prev theta,alpha)
                if(iter num%10==0):
                    gd iterations_df.loc[result_idx]=[iter_num,this_cost]
                result idx +=1
                iter num +=1
            print("Final Estimate of b and theta : ",b,theta)
            return qd iterations df,b,theta
        gd iterations df,b,theta=gradient descent(X,Y,alpha=0.001,num iterati
        ons=2000)
        Final Estimate of b and theta: 0.004252215719740022 [ 0.74798846
        0.54105806 -0.00515033]
In [9]: gd iterations df[0:10]
```

Out[9]:

	iteration	cost
0	0.0	0.414257
10	10.0	0.399586
20	20.0	0.385622
30	30.0	0.372328
40	40.0	0.359674
50	50.0	0.347627
60	60.0	0.336158
70	70.0	0.325237
80	80.0	0.314840
90	90.0	0.304939

Therefore if we print the cost function for each iteration we can see the decrease in the cost function.

```
In [10]:
         alpha values = [0.001, 0.005, 0.01, 0.05, 0.1]
         num iterations = 2000
         for alpha in alpha values:
             alpha df,b,theta = gradient descent(X, Y, alpha, num_iterations)
             plt.plot(alpha df['iteration'], alpha df['cost'], label=f'alpha =
         {alpha}')
         plt.xlabel('Number of iterations')
         plt.ylabel('Cost')
         plt.title('Gradient Descent - Cost vs Iterations')
         plt.legend()
         plt.show()
         Final Estimate of b and theta:
                                           0.003652856139686653 [0.75078897 0.
         53044134 0.00519106]
         Final Estimate of b and theta:
                                           1.837706544668351e-09 [ 0.75306591
         0.53648114 -0.004330271
```

Final Estimate of b and theta: -5.101298377136599e-17 [0.75306591 0.53648155 -0.00433069]

Final Estimate of b and theta: -4.121159063147589e-17 [0.75306591

0.53648155 -0.004330691

Final Estimate of b and theta: -4.022116668705733e-17 [0.75306591

0.53648155 -0.004330691

Gradient Descent - Cost vs Iterations

