리산종점경기에서 평형상대의 존재성에 대한 연구

김 병 수

론문에서는 리산종점경기에서 국부유한인 경우에 ε -평형상태의 존재성과 그 일련의 성질들을 연구하였다.

선행연구[1-3]에서는 리산종점경기에서 풀이의 존재성과 특성들을 론의하였다. 리산종점경기 $\Gamma = (P, \nu, H, n)$ 에 대하여 $G = (P, \nu)$ 가 다음의 조건을 만족시킬 때

G를 Γ 의 위치그라프라고 부른다. 즉

- ① P: 정점모임
- ② $p,\ p'\in P$ 에 대하여 호 $(p,\ p')$ 가 G에 있기 위해서는 $p'\in v_p$ 일것이 필요하고 충분하다.

이때 위치그라프 G에서 다음과 같은 조건을 만족시킨다.

 \neg) $p \in P_0$ 이면 $|v_p| = \emptyset$

다음과 같은 기호를 도입한다.

- (1) $s_i(p) = u = (p, p'), p' \in V_p, p \in P_i$
- ② $s_i = s_i(p_i) = \{u = (p, p'), p' \in V_p \mid p \in P_i\}$
- ③ $s = (s_1(p_1), s_2(p_2), \dots, s_n(p_n)), p_i \in P_i$

정의 1 리산종점경기 $\Gamma = (P, v, H, n)$ 이 주어졌을 때 그에 대응하는 위치그라프 G = (P, v) 에 대하여 매 정점 $p \in P$ 에는 $h_i^-(p, s), h_i^+(p, s)$ 가 대응되고 $p \in P_0$ 에는

$$H(p) = (H_1(p), H_2(p), \dots, H_n(p))$$

가 대응되여있을 때 $G=(P, \nu)$ 를 경기그라프라고 부른다.

방향그라프라는 의미에서 $G=(P, \nu)$ 를 $G=(X, \nu)$ 로 표시하자.

경기자들의 모임을 $N=\{1,2,\cdots,n\}$ 이라고 하고 $N^+,N^-\subset N$ 을 생각하자. 여기서 N^+ 는 경기에서 자기의 소득을 최대로 하기 위하여 노력하는 경기자들의 모임이고 N^- 는 경기에서 자기의 손실을 최소로 되게 하기 위하여 노력하는 경기자들의 모임이다.

리산소득을 가지는 경기에서 $i \in N^+$ 이고 시작위치가 x, 초기상태를 s라고 하면

$$f_i^+(X(x, s)) = \sup_{x \in X(x, s)} f_i(x)$$

를 경기자 i의 소득이라고 부른다.

경기자 i의 목적은 보다 큰 소득을 얻는것이다.

만일 $f_i^+(x)$ 가 부수라면 경기자 $i \vdash |f_i^+(x)|$ 만큼 손실을 보는것으로 된다.

 $i \in N^-$ 이면 경기자 i의 손실은

$$f_i^-(X(x, s)) = \inf_{x \in X(x, s)} f(x)$$

로 표시한다.

정의 2 위치 x와 상태 $S=(s_1, \dots, s_n)$ 에서 시작되는 경기조에서 경기자들의 소득이 $f_i(x,s)$ 로 표시된다고 하면 부등식

$$f_i(x, S_{N-i}, \tau_i) \le f_i(x, s), i \in N, \tau \in S$$

가 성립될 때 S를 위치 x에 관한 평형점이라고 부른다.

만일 우의 부등식이 모든 x에 관하여 성립한다면 S를 절대평형점 혹은 간단히 평형점이라고 부른다.

정리 1 리산소득경기에서 경기렬의 길이가 자연수 m을 넘지 않는다면 그때 경기는 절대평형점을 가진다.

[다름 리산소득을 가진 경기에서 경기렬의 길이가 어떤 유한인수 m을 넘지 않는다면 조건

$$f_i(x, s_{N-i}, \tau_i) \le f_i(x, s) + \varepsilon, i \in \mathbb{N}, x \in \mathbb{X}, \tau \in \mathbb{S}$$

을 만족시키는 *ε*-평형상태가 존재한다.

우에서 지적한 사실로부터 2인경기에 대하여 다음과 같이 표시할수 있다.

$$f_1(x) = f(x), f_2(x) = -f(x)$$

초기위치 x를 고정시키면 두 경기자의 소득은 각각

$$f_1(\tau) = f(\tau), \ f_2(\tau) = -f(\tau)$$

이다. 만일 (s_1, s_2) 가 경기의 arepsilon - 평형점이라면

$$f(\tau_1, s_2) \le f(s_1, s_2) + \varepsilon, \ \tau_1 \in S$$

 $-f(\tau_1, s_2) \le -f(s_1, s_2) + \varepsilon, \ \tau_1 \in S$

이다. 여기로부터

$$f(\tau, s_1) - \varepsilon \le f(s_1, s_2) \le f(s_1, s_2) + \varepsilon, \tau \in S$$

이 성립한다.

정리 2 리산소득을 가진 2인종점경기에서 다음과 같은 동등한 관계들이 성립한다.

- ① 어떤 수 γ 와 충분히 작은 정수 ε 에 대하여 경기자 1에게 $\gamma-\varepsilon$ 만 한 소득이 담보되는 경기자 1의 방략 s_1^0 이 존재하고 경기자 2에게 $\gamma+\varepsilon$ 을 넘지 않는 소득이 담보되는 경기자 2의 방략 s_2^0 이 존재한다.
- ② 임의의 정수 ε 과 임의의 경기자 1과 2에 대하여 다음식을 만족시키는 방략 s_1^0 과 s_2^0 이 존재한다.

$$f(s_1, s_2^0) - \varepsilon \le f(s_1^0, s_2^0) \le f(s_1^0, s_2) + \varepsilon, \ s \in S$$

③ $\nu = \sup_{s_1} \inf_{s_2} f(s_1, s_2), \ w = \inf_{s_2} \sup_{s_1} f(s_1, s_2)$ 가 존재하고 같다.

증명 (1)이 성립한다는것을 증명하자.

정수 ε 이 주어지고 x_0 을 초기위치라고 하자. 이때

$$r = \sup\{\lambda \mid x_0 \in G_\lambda\}, \ \Delta r = \{x \mid f_1(x) \ge r\}$$

이다. 여기서 G_{λ} 는 경기자 1이 적어도 λ 만 한 소득을 담보하는 초기위치들의 모임이다.

 $x_0\in G_{r-\varepsilon}$ 이므로 경기자 1은 모임 $\Delta_{r-\varepsilon}=\{x\,|\,f(x)\geq r-\varepsilon\}$ 에 경기위치가 놓이도록 자기의 방략을 취할수 있다.

한편 경기자 2는 경기의 위치가 그 어느때도 모임 $\Delta_{\varepsilon+r}$ 에 놓이지 않도록 할수 있다. $x_0 \in X_1$ 이면

$$x_0 \in G_{r+\varepsilon} = (1 \bigcup v_{B_1}^+ \bigcup v_{B_2}^-) G_{r+\varepsilon}$$

이다. 여기서 $v_B^+=\{x\,|\,v_x\subset B,\;v_x\neq\varnothing\},\;v_B^-=\{x\,|\,v_x\cap B\neq\varnothing\}$ 이다. 여기로부터

$$x_0 \in v_{B_2}G_{r+\varepsilon}, \ x_0 \in \Delta_{r+\varepsilon}$$

이다. 만일 $v_{x_0} = \emptyset$ 이면 정리는 증명된다.

 $v_{x_0} \neq \varnothing$ 이면 그때 $v_{x_0} \cap G_{r+\varepsilon} = \varnothing$ 이고 경기자 1이 선택하는 위치는

$$x_0\not\in G_{r+\varepsilon}=(1\bigcup v_{B_1}^+\bigcup v_{B_2}^-)G_{r+\varepsilon}$$

이 프로 $x_1 \in V_{B_1}^+ G_{r+\varepsilon}, x_0 \notin \Delta_{r+\varepsilon}$ 이다.

만일 $\nu_{x_1} = \emptyset$ 이면 정리는 증명된다.

 $v_{x_1} \neq \emptyset$ 이면 그때 $v_{x_1} \subset G_{r+\varepsilon}$ 이다.

경기자 2가 모임 $G_{r+\varepsilon}$ 에 놓이지 않도록 x_2 를 선택한다면 우에서와 같이 $x_2 \neq G_{r+\varepsilon}$ 이다. 이런 과정을 유한번 반복하면 정리는 증명된다.

동등성에 관한 증명

 $(1) \Rightarrow (2)$

 $\varepsilon > 0$ 이라면 ①이 성립한다는데로부터

$$r - \frac{\varepsilon}{2} \le f(s_1^0, s_2), s_2 \in S_2$$

 $r + \frac{\varepsilon}{2} \ge f(s_1, s_2^0), s_1 \in S_1$

을 만족시키는 방략 s^0 이 존재한다. 특히

$$r - \frac{\varepsilon}{2} \le f(s_1^0, s_2^0) \le r + \frac{\varepsilon}{2}$$

이므로

$$f(s_1^0, s_2^0) \le r + \frac{\varepsilon}{2} = r - \frac{\varepsilon}{2} + \varepsilon \le f(s_1^0, s_2) + \varepsilon$$
$$f(s_1^0, s_2^0) \ge r - \frac{\varepsilon}{2} = r + \frac{\varepsilon}{2} - \varepsilon \ge f(s_1, s_2^0) - \varepsilon$$

이며 따라서 ②가 성립한다.

 $2 \Rightarrow 3$

②에 의하여

$$\sup_{s_1} f(s_1, s_2^0) \le f(s_1^0, s_2^0) + \varepsilon$$

$$\inf_{s_2} f(s_1^0, s_2) \ge f(s_1^0, s_2^0) - \varepsilon$$

이므로

$$w \le f(s_1^0, s_2^0) + \varepsilon \le \inf_{s_2} f(s_1^0, s_2) \le v + 2\varepsilon$$

이다. 다른 한편 F(x, y)가 두변수함수이면

$$\sup_{x} \inf_{y} F(x, y) \le \inf_{y} \sup_{x} F(x, y)$$

 $\sup_x\inf_y F(x,\ y) \leq \inf_y\sup_x F(x,\ y)$ 가 성립한다. 이 사실을 고려하면 우의 사실로부터 $\nu \leq w$ 이다. 여기로부터

$$0 \le w - v \le 2\varepsilon$$

이다. ε 이 충분히 작으므로 w=v이다.

$$(3) \Rightarrow (1)$$

r=v=w로 놓고 $\varepsilon>0$ 이라고 하자.

경기자 1은 다음조건을 만족시키는 방략을 가진다. 즉

$$\inf_{s_2} f(s_1^0, s_2) \ge \sup_{s_1} \inf_{s_2} f(s_1, s_2) - \varepsilon = r - \varepsilon$$

경기자 2는 다음조건을 만족시키는 방략을 가진다. 즉

$$\sup f(s_1, s_2^0) \le \inf_{s_2} \sup_{s_1} f(s_1, s_2) + \varepsilon = r + \varepsilon$$

이다. 따라서 (1)이 성립한다는것이 나온다.(증명끝)

참 고 문 헌

- [1] А. Н. Катлев и др.; Исследование операций, 320, М. Мир. $5\sim320$, 2008.
- [2] S. D. Andres.; Discrete Applied Mathematics, 157, 80, 2009.
- [3] R. M. Fedovor.; Discrete Applied Mathematics, 178, 135, 2011.

주체107(2018)년 3월 10일 원고접수

Existence of Equilibrium in Discrete Endpoint Game

Kim Pyong Su

We studied on the existence of equilibrium in local limited discrete endpoint game.

Key words: discrete endpoint game, discrete set, graph