# ECON3113 Microeconomic Theory I

Online Assignment #5 Solution

#### Question 1

2 pts

#### Consider the lotteries below:

|       | $X_1=100$ | $X_2=10$ | $X_3 = -10$ |
|-------|-----------|----------|-------------|
| $L_1$ | 0         | 0.9      | 0.1         |
| $L_2$ | 0.2       | 0        | 0.8         |
| $L_3$ | 0         | 0.675    | 0.325       |
| $L_4$ | 0.15      | 0        | 0.85        |
| $L_5$ | 0         | 0        | 1           |

Which of the following pairs of preferences violates the independence axiom?

A: 
$$L_1 \succ L_2$$
,  $L_3 \succ L_4$ 

B: 
$$L_1 \succ L_5$$
,  $L_2 \succ L_5$ 

C: 
$$L_2 \succ L_1$$
,  $L_4 \succ L_3$ 

D: 
$$L_1 \succ L_2, \ L_4 \succ L_3$$

A

B

C

D

#### Definition

Preference  $\succeq$  over lotteries satisfies the **independence axiom** if for any three lotteries L, L', and L'', and any  $\alpha \in [0,1]$ ,

$$L \succeq L' \Rightarrow \alpha L + (1 - \alpha) L'' \succeq \alpha L' + (1 - \alpha) L''$$

- Note that  $L_3$  is a compound lottery of  $L_1$  and  $L_5$  with  $\alpha=0.75$  and  $L_4$  is a compound lottery of  $L2_1$  and  $L_5$  with  $\alpha=0.75$ . Therefore, the independence axiom requires that if  $L_1 > L_2$  then  $L_3 > L_4$ . Therefore, A is not a violation of the independence axiom, but D is.
- Regarding the other answers, there is no  $\alpha \in [0,1]$  such that  $L_5$  is a compound lottery of itself and  $L_2$  is a compound lottery of  $L_1$ , so answer B cannot be a violation.
- Similarly, there is no  $\alpha \in [0,1]$  such that  $L_5$  is a compound lottery of itself and  $L_1$  is a compound lottery of  $L_2$ , so answer C cannot be a violation.



Correct answer as shown

#### Question 3 2 pts

Assume that we can model an individual's preferences by a Von Neumann Morgernstern utility function. If the individual prefers lottery  $L_1$  to lottery  $L_2$  below, what can we conclude about the individual's preferences?

| $L_1$       | 400  | 100  |
|-------------|------|------|
| Probability | 0.25 | 0.75 |

| $L_2$       | 200  | 150  |
|-------------|------|------|
| Probability | 0.50 | 0.50 |

- Risk loving
- Risk neutral
- Risk averse

• See the diagram below:



 Since the expected values of the lotteries is the same and the individual prefers the riskier one, we may conclude that the individual is a risk lover

Tutorial - ECON 3113 Microeconomic Theory I

#### Question 4

2 pts

Suppose that we are in the world of the asset investment model from the lectures. Assume that we have the following values for the model's variables and parameters:

starting wealth = \$100,000

price of the asset per unit = \$1

probability of good state = 0.4

pay-out by the asset in the good state (per unit owned) = \$2.5

pay-out by the asset in the bad state = \$0

According to the model, how much of this asset would you buy/short sell?

- Short sell 60,000 units
- Neither buy nor short sell any of the asset
- Buy 16,667 units of the asset
- Buy 33,333 of the asset

- A conclusion of the model is that when the price of an asset is actuarially fair, then its expected return is zero and none of it is bought
- The price of an asset is actuarially fair when its
  price is given by the probability of the good state
  x its return in the good state, that is when:
  - $\pi = (1 p)R$
- In this case, we have  $\pi=1, p=0.6$  and R=2.5
- Therefore,  $\pi=(1-p)R$  and we conclude that the asset's price is actuarially fair and that none of it is bought

## Tutorial - ECON 3113 Microeconomic Theory I

## Question 5 2 pts

Assume a Von Neumann Morgernstern utility function over income of  $U(W) = W^{\frac{1}{3}}$ . Suppose that during the next year, we could take a job as a trader in an investment bank. The amount that you can earn and probability of each are given below:

| Income      | \$1,728,000 | \$64,000 |
|-------------|-------------|----------|
| Probability | 0.10        | 0.90     |

Instead, we could take a job as an accountant that pays a certain income. How much would the accountant job have to pay to make us indifferent between being a trader or accountant?

- \$230,400
- \$110,592
- \$140,608
- \$46,656

- Expected utility from working as a trader is given by:
  - $E(U) = 0.10 \times 1,728,000^{1/3} + 0.90 \times 64,000^{1/3}$ = 12 + 36 = 48
- Therefore, we need to find W such that  $W^{1/3} = 48$
- This gives  $W = 48^3 = 110,592$  which is the correct answer

### Tutorial - ECON 3113 Microeconomic Theory I

#### Question 6

2 pts

Consider the lotteries below:

|       | $x_1=+10$ | $x_2=-5$ |
|-------|-----------|----------|
| $L_1$ | 0.1       | 0.9      |
| $L_2$ | 0.7       | 0.3      |
| $L_3$ | 0.2       | 0.8      |
| $L_4$ | 0.3       | 0.7      |

For which values of  $a,b\in[0,1]$  are  $L_3$  and  $L_4$  compound lotteries of  $L_1$  and  $L_2$  such that  $L_3=aL_1+(1-a)\,L_2$  and  $L_4=bL_1+(1-b)\,L_2$ ?

- a=5/6, b=7/8
- a=1/2, b=2/3
- a=5/6, b=2/3
- No such values are possible

- First, regarding  $L_3$ :
  - We want to find a such that  $0.2 = a \times 0.1 + (1 a) \times 0.7 \Rightarrow a = 5/6$
- Next, regarding  $L_4$ :
  - We want to find b such that 0.3 = $b \times 0.1 + (1 - b) \times 0.7 \Rightarrow b = 2/3$