MAT0122 ÁLGEBRA LINEAR I FOLHA DE SOLUÇÃO

Nome:Beatriz Viana Costa Número USP: 13673214

Assinatura

Beatriz Viana Costa

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: E63 Data: 10/11/2022

SOLUÇÃO

Vamos definir:

- $V^* = \text{Im } F$, $\{v_1, ..., v_r\}$ uma base de V^* ; $\{u_1, ..., u_r\}$ tal que $f(u_k) = v_k$; - $U = \text{Span}(\{u_1, ..., u_r\})$.

Dessa forma, garantimos que a f* definida anteriormente é inversível.

• Iremos supor $U = U^{**} \oplus Ker f$, e então, iremos verificar se é possível que dim $U^* \neq \dim U^{**}$. Utilizando o lema que dim $(A \oplus B) = \dim A + \dim B$, temos então que:

$$\dim U = \dim U^* \oplus \dim \operatorname{Ker} f = \dim U^{**} + \operatorname{Ker} f$$

 $\dim U^* = \dim U^{**}$

Portanto não é possível que dim U^* seja diferente de U^{**} .

• Partindo da informação de que dim $U^* = \dim U^{**}$, temos então que:

$$U^* = Span \ (B), \ onde \ B = \{u_1^*, ..., u_r^*\}$$

$$U^{**} = Span \ (\{u_1^{**}, ..., u_r^{**}\}), \ ode \ B' = \{u_1^{**}, ..., u_r^{**}\}$$

$$u = u^* + w = u^{**} + \overline{w}$$

$$w, \ \overline{w} \in Ker \ f$$

Temos que mostrar que não há nenhum elemento em U^* que não esteja também em U^{**} , ou seja, as bases geradas pelas combinações lineares são equivalentes.

Tiramos de nossa informação incial, que se as dimensões de U^* e U^{**} são iguais, então há um mapeamento linear e bijetivo entre os elementos dos dois espaços vetoriais.

Seja B uma base de U^* , então existe uma base B' de U^{**} , tal que $B \subset B$ '. Assim dim $U^* = |B| \le |B'| = \dim U^{**}$, e como temos que dim $U^* = \dim V^*$, então encontramos que dim $U^* = |B| = |B'| = \dim U^{**}$, ou seja, Span(B) = Span(B').