杭州电子科技大学学生考试卷(A)卷

考试课程	数字信号处理	考试日	期	2023	年 月	日		成 绩			
课程号	A0802040	教师号			任课教师姓名		í				
考生姓名		学号 (8 位)			年级		4	∮业			

	古 グマ 5所	(每空2分,	# 20 4
`	基工形		77 20 71

1.	己知复指数序列 x(n	$)=e^{j(n/7+\pi)},$	则该序列		(是,	不是)	周期序列。
----	-------------	---------------------	------	--	-----	-----	-------

2. 已知系统 $y(n) = x^2(n^2)$,则该系统______(是,不是)线性系统。

3. 假设序列 x(n) 的 z 变换为 X(z),则 x(3-n) 的 z 变换为_____。

4. 假设 N 点序列 x(n) 的 DTFT 变换为 $X(e^{jw})$, 则该序列的 N 点离散傅里叶变换 DFT 可表示

为_____。

5. 已知序列 $x(n) = \{2,1,0,-1,2,-5,6,n=0,1,2,3,4,5,6\}$,则该序列圆周左移 2 位后得到的序列可表示

为_____。

8. 冲激响应不变法设计滤波器时,数字角频率 w 和模拟角频率 Ω 对应转换关系为_____。

9. 已知系统的单位冲激响应为 $h(n) = \frac{1}{2}\delta(n) - \frac{1}{2}\delta(n-2)$,则该系统能设计_____型幅度响应滤波器。

10. 在数字系统中,主要有三种与字长密切相关的误差因素,即 A/D 转换的有限字长、运算过程中的有

限字长以及。

二. (10 分) 一个线性时不变系统,其差分方程表示为: $y(n) = \frac{5}{2}y(n-1) - y(n-2) - \frac{3}{2}x(n-1)$

求: (1) 求该系统的系统函数;

(2) 若系统是稳定的,求此时的收敛域以及单位冲激响应 h(n)。

三. (14) 已知序列 x(n)为 N 点序列,n=0,1,...,N-1,而 N 为偶数,其 DFT 为 X(k)。

(1) 令
$$y(n) = \begin{cases} x\left(\frac{n}{2}\right), & n$$
为偶数
,所以 $y(n)$ 为 $2N$ 点序列,试用 $X(k)$ 表示 $Y(k)$;
0 , n 为奇数

(2) 简要阐述使用 DFT 进行谱分析时产生的栅栏效应的影响及改善措施。

四. (12 分)已知一个离散时间系统的单位冲激响应为 $h(n)=R_4(n)$ 。

求: (1) 系统 h(n)的频率响应;

- (2) 该系统是否具有线性相位?如果是,求其群时延。
- (3) 若有序列 x(n)={2, 1, 3,-1; n=0, 1, 2, 3}, 计算 x(n) 和 h(n) 的 4 点圆周卷积。

五.(10 分)有一数字滤波器的系统函数为 $H(z) = \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$,	六. (10分)(1) 试画出基 2 时间抽取法 FFT 的基本蝶形运算流图;				
$1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}$	(2) 试写出时间抽取法和频率抽取法的两个主要相同点;				
(1) 试写出上述系统函数的差分方程形式;	(3) 试画出 4点频率抽取法的蝶形运算流图。				
(2) 试画出直接 I 型和并联型结构信号流图。					

七、(12 分)已知巴特沃思模拟系统函数 $H_a(s) = \frac{3}{\left(s/\Omega_c\right)^2 + 4\left(s/\Omega_c\right) + 3}$,

- (1) 试用双线性变换法设计一个二阶巴特沃思数字低通滤波器,采样频率为 $f_s = 4$ kHz, 其 3dB 截止频率为 $f_c = 1$ kHz, 求该数字滤波器的系统函数;
- (2) 试简要阐述双线性变换法的优缺点。

八.(12 分)用窗函数法设计一个线性相位低通 FIR 滤波器,要求通带截止频率为 $0.25~\pi$,过渡带宽度为 $8\pi/51~\mathrm{rad}$,阻带最小衰减为 $45~\mathrm{dB}$ 。选择合适的窗函数及其长度 N,求出 h(n)的表达式。可能用到的参数如下表:

窗函数	旁瓣峰值幅度/dB	过渡带宽 $\Delta\omega/(2\pi/N)$	阻带最小衰减/dB
矩形窗	-13	0.9	-21
汉宁窗	-31	3.1	-44
海明窗	-41	3.3	-53
布拉克曼窗	-57	5.5	-74