Example: Exponential Homomorphism

Example: Exponential Homomorphism

The exponential function provides a classic example of a Group Homomorphism between Group structures.

The Homomorphism

Consider the function:

$$\exp: (\mathbb{R}, +) \to (\mathbb{R}^+, \cdot)$$
$$\exp(x) = e^x$$

where $(\mathbb{R},+)$ is the additive group of real numbers and (\mathbb{R}^+,\cdot) is the multiplicative group of positive real numbers.

Verification

To verify this is a homomorphism, we check:

$$\exp(x+y) = e^{x+y} = e^x \cdot e^y = \exp(x) \cdot \exp(y)$$

Properties

- Injective: Yes, since $e^x = e^y$ implies x = y
- Surjective: Yes, for any $a \in \mathbb{R}^+$, we have $\exp(\ln a) = a$
- Bijective: Therefore, exp is an isomorphism

Inverse

The natural logarithm $\ln: (\mathbb{R}^+, \cdot) \to (\mathbb{R}, +)$ is the inverse isomorphism:

$$\ln(xy) = \ln(x) + \ln(y)$$

Dependency Graph

Local dependency graph