PC-2019/20 Course Project: 2D Pattern Recognition, CUDA and OpenMP impementations

Alberto Baldrati alberto.baldrati@stud.unifi.it

April 2020

Outline

Introduction

Algorithm
Time complexity analysis

Parallel implementations

OpenMP CUDA

Experimental results

OpenMP results
CUDA results
OpenMP and CUDA results comparison

Conclusions

Preview

- The Pattern Recognition technique consists in individuating a specific query in a data target
- We focus on 2D Pattern Recognition, our data are matrices (e.g. images)
- We have to define a matching metric, i.e. a measure that shows the similarity (closeness) between queries and targets.

$$SAD(T, Q, i, j) = \sum_{l=0}^{r} \sum_{l=0}^{c} |T_{i+k, j+l} - Q_{k, l}|$$
 (1)

PC-2019/20 Course Project: 2D Pattern Recognition, CUDA and OpenMP impementations

-Introduction └-Algorithm

Algorithm


```
- Introduction
- Algorithm
```

Algorithm

3

4 5

6

```
Algorithm 1: computeSAD
                                           Algorithm 2: PatternRecognition
Data: queryMatrix Q, targetMatrix
                                           Data: queryMatrix Q, targetMatrix
      T. startRowIndex i.
                                           Result: SADMatrix S
      startColIndex i
Result: localSadValue

    Define SADMatrix S

localSadValue = 0
                                         2 S.rows = T.rows - Q.rows + 1
                                         3 S.cols = T.cols - Q.cols + 1
for from k = 0 to Q.rows do
     for from I = 0 to Q.cols do
                                         4 for from i = 0 to S.rows do
         targetV = T[i+k][j+l]
                                                for from j = 0 to S.cols do
         queryV = Q[k][l]
                                         6
                                                    S[i][i] =
         localSadValue +=
                                                     computeSAD(P,Q,i,j)
            targetV - queryV |
                                         7 cx, cy = argmin(S)
return localSadValue
```

Time Complexity

Our algorithm has 4 nested loops: 2 in the outer cycle (*Algorithm2*) and 2 in the computation of each SAD matrix value (*Algorithm1*).

Time complexity in sequential implementation is

$$(Tr - Qr + 1) * (Tc - Qc + 1) * (Qr * Qc)$$
 (2)

Algorithm 2 is embarrassingly parallel, so if we use a number of threads equal to Nt, in an ideal situation the complexity of this parallel algorithm becomes:

$$\frac{(Tr-Qr+1)*(Tc-Qc+1)}{Nt}*(Qr*Qc)$$
 (3)

-OpenMP

OpenMP

6

```
Algorithm 2: PatternRecognition
  Data: queryMatrix Q,
        targetMatrix T
  Result: SADMatrix S

    Define SADMatrix S

2 S.rows = T.rows - Q.rows + 1
3 S.cols = T.cols - Q.cols + 1
  for from i = 0 to S.rows do
5
      for from j = 0 to S.cols do
           S[i][i] =
            computeSAD(P,Q,i,i)
7 cx, cy = argmin(S)
```

```
PatternRecognition
  Algorithm 3:
  OpenMP version
  Data: queryMatrix Q, targetMatrix
        T. numThread Nt.
  Result: SADMatrix S
1 Define SADMatrix S
2 S.rows = T.rows - Q.rows + 1
3 S.cols = T.cols - Q.cols + 1
4 #pragma omp parallel for
   num_threads(Nt) collapse(2)
   schedule(static)
5 for from i = 0 to S.rows do
      for from j = 0 to S.cols do
            computeSAD(P,Q,i,j)
8 cx, cv = argmin(S)
```

6 7 -OpenMP

OpenMP

6

```
Algorithm 2: PatternRecognition
  Data: queryMatrix Q,
        targetMatrix T
  Result: SADMatrix S
1 Define SADMatrix S
2 S.rows = T.rows - Q.rows + 1
3 S.cols = T.cols - Q.cols + 1
4 for from i = 0 to S rows do
      for from j = 0 to S.cols do
5
           S[i][i] =
            computeSAD(P,Q,i,j)
7 cx, cy = argmin(S)
```

```
Algorithm 3:
                  PatternRecognition
  OpenMP version
  Data: queryMatrix Q, targetMatrix
        T. numThread Nt
  Result: SADMatrix S
1 Define SADMatrix S
2 S.rows = T.rows - Q.rows + 1
3 S.cols = T.cols - Q.cols + 1
4 #pragma omp parallel for
   num_threads(Nt) collapse(2)
   schedule(static)
```

for from i = 0 to S.rows do for from j = 0 to S.cols do

computeSAD(P,Q,i,i)

S[i][i] =

8 cx, cv = argmin(S)

└- CUDA

CUDA

```
Algorithm 4: Kernel Launch
                                           Algorithm 5: PatternRecognitionKernel
  Data: queryMatrix Q,
                                           Data: queryMatrix Q, targetMatrix T,
        targetMatrix T,
                                                  SADMatrix S
        SADMatrix S.
                                         1 bx = blockldx.x
        TILE WIDTH
                                         2 \text{ bv} = \text{blockIdx.v}
                                         3 tx = threadIdx.x
1 DimGrid(ceil(S.rows /
                                         4 tv = threadIdx.v
   TILE_WIDTH), ceil(s.cols /
                                         5 col = bx * blockDim x + tx
   TILE_WIDTH));
                                         6 row = by * blockDim.y + ty
2 dimBlock(TILE_WIDTH,
                                         7 if row<S.rows and col<S.cols then
   TILE_WIDTH)
                                         8
                                               for from i = 0 to Q rows do
3 PatternRecognitionKernel
                                                    for from i = 0 to Q.cols do
   <<<dimGrid, dimBlock>>>(Q,T,S) 10
                                                        tV = T[i+row][i+col]
                                                        qV = Q[i][i]
                                        11
                                                        localSadValue +=
                                        12
                                                           tV - qV |
                                               S[row][col] = localSadValue
                                        13
```

CUDA points of insterest

- ▶ In Algorithm 5 we can notice that the access to the target matrix is coalesced, in fact T[i+row][j+col] is of the form T[(expression with terms independent of tx) + tx]
- ► Target Matrix and Query Matrix are not modified, so we can mark them as const and restrict, this way the compiler is sure that both matrices are read-only data and can use a cache designed for this type of data, available for devices with compute capability greater than 3.5.
- ► Tiling is useless due to the low reuse of same values within the same block

Equipment, metrics and profiling

- ► The tests have been conducted on a Ubuntu 18.04 LTS machine equipped with:
 - ► Intel Core i7-4790 3.6GHz with Turbo Boost up to 4Ghz, 4 core/8 thread processor
 - RAM 16 GB DDR4
 - NVidia GeForce 940MX 2GB (running on CUDA 10.1)
- ▶ The metrics used are execution time and SpeedUp S_P , it is calculated as

$$S_P = \frac{t_s}{t_p}$$

► The high precision C++11 library chrono has been used for measuring the execution time. Experimental results

Tests

- ► Each time has been measured running each test 5 times and taking the average as a result
- We have conducted experiments on three different combinations of query matrix and target matrix size:
 - ▶ **Test1**: target matrix with dimension 1500×1500 and query matrix with dimension 150×150
 - ► Test2: target matrix with dimension 2000 × 2000 and query matrix with dimension 200 × 200
 - ► Test3: target matrix with dimension 2500 × 2500 and query matrix with dimension 250 × 250

- Experimental results
 - OpenMP results

OpenMP Test1

Test1: target matrix with dimension 1500×1500 and query matrix with dimension 150×150

OpenMP Test1			
Num threads	Execution time	SpeedUp	
1	33,52s	1,00×	
2	16,98s	1,97×	
3	11,57s	2,90x	
4	9,11s	3,68x	
5	8,86s	3,78x	
6	7,76s	4,32x	
7	7,27s	4,61×	
8	6,79s	4,94x	
9	7,01s	4,78x	
10	7,03s	4,77x	
	1	l	

Experimental results
OpenMP results

OpenMP Test2

Test2: target matrix with dimension 2000×2000 and query matrix with dimension 200×200

OpenMP Test2				
Num threads	Execution time Speed			
1	105,68s	1,00×		
2	53,47s	1,98×		
3	36,34s	2,91x		
4	28,76s	3,67x		
5	28,04s	3,77x		
6	24,70s	4,28x		
7	22,99s	4,60×		
8	21,47s	4,92x		
9	21,61s	4,89x		
10	21,59s	4,90x		

Experimental results
OpenMP results

OpenMP Test3

Test3: target matrix with dimension 2500×2500 and query matrix with dimension 250×250

OpenMP Test3			
Execution time	SpeedUp		
254,50s	1,00×		
128,09s	1,99×		
87,53s	2,91x		
69,01s	3,69x		
68,40s	3,72x		
59,60s	4,27x		
55,16s	4,61x		
51,80s	4,91x		
51,85s	4,91×		
51,88s	4,91×		
	Execution time 254,50s 128,09s 87,53s 69,01s 68,40s 59,60s 551,6s 51,80s 51,85s		

CUDA results

In the following slides the results of our CUDA implementations are shown, in each test we have used four TILE_WIDTH dimensions and three different implementations:

- ► The implementation which uses global memory and the optimization for pointer aliasing (blue line in the graph with the name **Global1**)
- ► The implementation which uses global memory but does not use the optimization for pointer aliasing (yellow line in the graph with the name Global2)
- ► The implementation which uses shared memory (orange line in he graph with the name of **Shared**)

-Experimental results

└─CUDA results

CUDA Test1

Test1: target matrix with dimension 1500×1500 and query matrix with dimension 150×150

CUDA Test1			
TILE_WIDTH			Global2
8	1,97s	6,45s	3,76s
16	1,51s	8,19s	3,05s
24	1,58s	10,35s	3,15s
32	1,53s	10,03s	2,79s

Experimental results
CUDA results

CUDA Test2

Test2: target matrix with dimension 2000×2000 and query matrix with dimension 200×200

CUDA Test2			
TILE_WIDTH	Global1	Global2	
8	5,55s	19,38s	11,55s
16	4,73s	23,42s	9,28s
24	5,58s	28,62s	9,36s
32	4,79s	31,95s	8,32s

-Experimental results

└-CUDA results

CUDA Test3

Test3: target matrix with dimension 2500×2500 and query matrix with dimension 250×250

CUDA Test3			
TILE_WIDTH	Global1	Global2	
8	15,17s 49,26s		28,56s
16	11,62s	54,71s	23,14s
24	12,15s	64,31s	23,47s
32	11,70s	63,79s	20,84s

OpenMP and CUDA results comparison

- ▶ Both CUDA and OpenMP experiments use the same matrices, so the comparison between implementations is fair
- ► For each test has been taken the best time achieved with each different implementation.

	Sequential time	OpenMP time	OpenMP speedUp	CUDA time	CUDA SpeedUP
Test1	33.52s	6.79s	4.61x	1.51s	22.20x
Test2	105.68s	21.47s	4.92x	4.73s	22.34x
Test3	254.50s	51.80s	4.91x	11.63s	21.88x

OpenMP and CUDA results comparison

Conclusions

- ▶ 2D Pattern Recognition algorithm achieves a powerful boost if executed in a parallel implementation
- ▶ In our tests OpenMP implementations reach a 5x SpeedUP and the GPU version based on CUDA reach a 22x SpeedUP
- ► In embarrassingly parallel algorithm the use of GPUs outperforms the traditional CPU processing