CSE2023 Discrete Computational Structures

Lecture 2

1.3 Propositional equivalences

- Replace a statement with another statement with the same truth value
- For efficiency (speed-up) or implementation purpose (e.g., circuit design)

Tautology and contradiction

© The McGraw-Hill Companies, Inc. all rights reserved.

p	$\neg p$	$p \lor \neg p$	$p \wedge \neg p$
T	F	Т	F
F	Т	Т	F

- A compound proposition:
 - Tautology: always true
 - Contradiction: always false
 - Contingency: neither a tautology nor a contradiction

Logical equivalence

- p ≡ q (p⇔q): the compound propositions p and q are logically equivalent if p ↔ q is a tautology
- Can use truth table to determine whether two propositions are equivalent or not

• Show that $_{7}(p \vee q)$ and $_{7}p \wedge _{7}q$ are equivalent

© The McGraw-Hill Companies, Inc. all rights reserved.

TABI	LE 3 T	Fruth Tables for $\neg (p \lor q)$ and $\neg p \land \neg q$.				
p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
T	T	T	F	F	F	F
T	F	T	F	F	Т	F
F	T	T	F	Т	F	F
F	F	F	T	T	T	T

p	\rightarrow	q	\equiv	$\neg p$	V	q

p	q	p→q	$p^{v}q_{ \Gamma}$
Т	T	Т	Т
Т	F	F	F
F	T	Т	Т
F	F	Т	Т

Example

$$\neg (p \lor q) \qquad \neg p \land \neg q$$

$$p \to q \qquad \neg p \vee q$$

$$p \vee (q \wedge r) \qquad (p \vee q) \wedge (p \vee r)$$

Example

© The McGraw-Hill Companies, Inc. all rights reserved

P	q	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \lor r$	$(p \lor q) \land (p \lor r)$
Т	Т	T	Т	Т	T	T	T
T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

Permission regard by reproduction or t

De Morgan's laws

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 2 De Morgan's Laws.

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Example

- Express the negation of "Heather will go to the concert or Steve will go to the concert"
- Negation:

Heather will not go to the concert AND Steve will not go to the concert.

De Morgan's law: general form

 The first example above is known as the De Morgan's law

$$\neg (p_1 \lor p_2 \lor \dots \lor p_n) \equiv (\neg p_1 \land \neg p_2 \land \dots \land \neg p_n)$$

$$\neg (p_1 \land p_2 \land \dots \land p_n) \equiv (\neg p_1 \lor \neg p_2 \lor \dots \lor \neg p_n)$$

Logical equivalences

© The MvGraw Hill Companies, Inc. all rights reserve

Equivalence	Name
$p \wedge T = p$ $p \vee F = p$	Identity laws
$p \lor T = T$ $p \land F = F$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg \rho) \equiv \rho$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q = q \land p$	Commutative laws
$(p \lor q) \lor r = p \lor (q \lor r)$ $(p \land q) \land r = p \land (q \land r)$	Associative laws
$p \lor (q \land r) = (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg(p \land q) \equiv \neg p \lor \neg q$ $\neg(p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) = p$	Absorption laws
$\rho \lor \neg \rho = T$ $\rho \land \neg \rho = F$	Negation laws

11

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

 $\ensuremath{\texttt{©}}$ The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 8 Logical Equivalences Involving Biconditionals.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$
$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$
$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$
$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Constructing new logical equivalences

• Show₁
$$(p \rightarrow q) \equiv p \land_1 q$$

 $\uparrow (p \rightarrow q) \equiv \uparrow (\uparrow p \lor q)$
 $\equiv \uparrow (\uparrow p) \land_1 q$
 $\equiv p \land_1 q$

Constructing new logical equivalences

5

Limitations of proposition logic

- Proposition logic cannot adequately express the meaning of statements
- · Suppose we know
 - "<u>Every</u> computer connected to the university network is functioning property"
- No rules of propositional logic allow us to conclude

"MATH3 is functioning property"
where MATH3 is one of the computers connected to
the university network

Example

Cannot use the rules of propositional logic to conclude from

"CS2 is under attack by an intruder" where CS2 is a computer on the university network

to conclude the truth

"There is a computer on the university network that is under attack by an intruder"

18

1.4 Predicate and quantifiers

- Can be used to express the meaning of a wide range of statements
- Allow us to reason and explore relationship between objects
- Predicates: statements involving variables, e.g., "x > 3", "x=y+3", "x+y=z", "computer x is under attack by an intruder", "computer x is functioning property"

Example: x > 3

- The variable x is the subject of the statement
- **Predicate** "is greater than 3" refers to a property that the subject of the statement can have
- Can denote the statement by p(x) where p denotes the predicate "is greater than 3" and x is the variable
- p(x): also called the value of the propositional function p at x
- Once a value is assigned to the variable x, p(x) becomes a proposition and has a truth value

- Let p(x) denote the statement "x > 3"
 - p(4): setting x=4, thus p(4) is true
 - p(2): setting x=2, thus p(2) is false
- Let a(x) denote the statement "computer x is under attack by an intruder". Suppose that only CS2 and MATH1 are currently under attack
 - a(CS1)?: false
 - a(CS2)?: true
 - a(MATH1)?: true

N-ary Predicate

- A statement involving n variables, x₁, x₂, ..., x_n, can be denoted by p(x₁, x₂, ..., x_n)
- p(x₁, x₂, ..., x_n) is the value of the propositional function p at the n-tuple (x₁, x₂, ..., x_n)
- p is also called n-ary predicate

Quantifiers

- Express the extent to which a predicate is true
- In English, all, some, many, none, few
- · Focus on two types:
 - Universal: a predicate is true for every element under consideration
 - Existential: a predicate is true for there is one or more elements under consideration
- Predicate calculus: the area of logic that deals with predicates and quantifiers

Universal quantifier \forall

- "p(x) for all values of x in the domain"
 ∀x p(x)
- Read it as "for all x p(x)" or "for every x p(x)"
- A statement ∀x p(x) is false if and only if p(x) is not always true
- An element for which p(x) is false is called a counterexample of ∀x p(x)
- A single counterexample is all we need to establish that ∀x p(x) is not true

- Let p(x) be the statement "x+1>x". What is the truth value of ∀x p(x)?
 - Implicitly assume the domain of a predicate is not empty
 - Best to avoid "for any x" as it is ambiguous to whether it means "every" or "some"
- Let q(x) be the statement "x<2". What is the truth value of ∀x q(x) where the domain consists of all real numbers?

Example

- Let p(x) be "x²>0". To show that the statement
 ∀x p(x) is false where the domain consists of all integers
 - Show a counterexample with x=0
- When all the elements can be listed, e.g., x₁, x₂, ..., x_n, it follows that the universal quantification ∀x p(x) is the same as the conjunction p(x₁) ^p(x₂) ^...^ p(x_n)

Example

What is the truth value of ∀x p(x) where p(x) is the statement "x² < 10" and the domain consists of positive integers not exceeding 4?
 ∀x p(x) is the same as p(1)^p(2)^p(3)^p(4)

Existential quantification ∃

- "There exists an element x in the domain such that p(x) (is true)"
- Denote that as $\exists x \ p(x)$ where \exists is the existential quantifier
- In English, "for some", "for at least one", or "there is"
- Read as "There is an x such that p(x)", "There
 is at least one x such that p(x)", or "For some
 x, p(x)"

28

- Let p(x) be the statement "x>3". Is $\exists x \ p(x)$ true for the domain of all real numbers?
- Let q(x) be the statement "x=x+1". Is $\exists x \ p(x)$ true for the domain of all real numbers?
- When all elements of the domain can be listed, , e.g., x₁, x₂, ..., x_n, it follows that the existential quantification is the same as disjunction p(x₁) \(^{\mu}p(x₂) \(^{\mu} \)... \(^{\mu}p(x_n)\)

Example

• What is the truth value of $\exists x \quad p(x)$ where p(x) is the statement " $x^2 > 10$ " and the domain consists of positive integers not exceeding 4? $\exists x \quad p(x)$ is the same as $p(1) \lor p(2) \lor p(3) \lor p(4)$

Uniqueness quantifier ∃! ∃₁

- There exists a unique x such that p(x) is true
 ∃! p(x)
- "There is exactly one", "There is one and only one"

Quantifiers with restricted domains

 What do the following statements mean for the domain of real numbers?

$$\forall x < 0, x^2 > 0$$
 same as $\forall x (x < 0 \rightarrow x^2 > 0)$
 $\forall y \neq 0, y^3 \neq 0$ same as $\forall y (y \neq 0 \rightarrow y^3 \neq 0)$
 $\exists z > 0, z^2 = 2$ same as $\exists z (z > 0 \land z^2 = 2)$

Be careful about → and ^ in these statements

Precedence of quantifiers

• ∀ and ∃ have higher precedence than all logical operators from propositional calculus

 $\forall x \ p(x) \lor q(x) \equiv (\forall x \ p(x)) \lor q(x) \text{ rather than } \forall x \ (p(x) \lor q(x))$

Binding variables

- When a quantifier is used on the variable x, this occurrence of variable is **bound**
- If a variable is not bound, then it is free
- All variables occur in propositional function of predicate calculus must be bound or set to a particular value to turn it into a proposition
- The part of a logical expression to which a quantifier is applied is the **scope** of this quantifier

Example

What are the scope of these expressions? Are all the variables bound?

$$\exists x(x+y=1)$$

$$\exists x(p(x) \land q(x)) \lor \forall xR(x)$$

$$\exists x(p(x) \land q(x)) \lor \forall yR(y)$$

The same letter is often used to represent variables bound by different quantifiers with scopes that do not overlap

34