```
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2008; month=11; day=21; hr=15; min=10; sec=50; ms=125;]
```

Validated By CRFValidator v 1.0.3

Application No: 10576995 Version No: 1.0

Input Set:

Output Set:

Started: 2008-10-29 16:17:57.183 **Finished:** 2008-10-29 16:17:57.842

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 659 ms

Total Warnings: 7

Total Errors: 0

No. of SeqIDs Defined: 8

Actual SeqID Count: 8

Error code		Error Description										
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)	

SEQUENCE LISTING

<110> HUI, MIZHOU		
<120> A NOVEL CHIMERIC POLYPEPTIDE AND USE THEREOF		
<130> 50001-003US1		
<140> 10576995 <141> 2008-10-29		
<150> PCT/US2004/027655 <151> 2004-08-25		
<150> 60/497,988 <151> 2003-08-26		
<160> 8		
<170> PatentIn version 3.5		
<210> 1 <211> 1923 <212> DNA <213> Artificial Sequence		
<220> <223> Description of Artificial Sequence: Synthetic construct		
<400> 1 atggcgcccg tcgccgtctg ggccgcgctg gccgtcggac tggagctctg	ggctgcggcg	60
cacgcettge cegeceaggt ggeatttaca eectaegeee eggageeegg	gagcacatgc	120
cggctcagag aatactatga ccagacagct cagatgtgct gcagcaaatg	ctcgccgggc	180
caacatgcaa aagtettetg taccaagace teggacaceg tgtgtgacte	ctgtgaggac	240
agcacataca cccagctctg gaactgggtt cccgagtgct tgagctgtgg	ctcccgctgt	300
agetetgace aggtggaaac teaageetge aetegggaae agaacegeat	ctgcacctgc	360
aggcccggct ggtactgcgc gctgagcaag caggaggggt gccggctgtg	cgcgccgctg	420
cgcaagtgcc gcccgggctt cggcgtggcc agaccaggaa ctgaaacatc	agacgtggtg	480
tgcaagccct gtgccccggg gacgttctcc aacacgactt catccacgga	tatttgcagg	540
ccccaccaga tetgtaacgt ggtggccate cetgggaatg caagcatgga	tgcagtctgc	600
acgtccacgt cccccacccg gagtatggcc ccaggggcag tacacttacc	ccagccagtg	660
tccacacgat cccaacacac gcagccaact ccagaaccca gcactgctcc	aagcacctcc	720

ttcctgctcc caatgggccc cagcccccca gctgaaggga gcactggcga cgagcccaaa

780

tcttgtgaca	aaactcacac	atgcccaccg	tgcccagcac	ctgaactcct	ggggggaccg	840
tcagtcttcc	tcttccccc	aaaacccaag	gacaccctca	tgatctcccg	gacccctgag	900
gtcacatgcg	tggtggtgga	cgtgagccac	gaagaccctg	aggtcaagtt	caactggtac	960
gtggacggcg	tggaggtgca	taatgccaag	acaaagccgc	gggaggagca	gtacaacagc	1020
acgtaccgtg	tggtcagcgt	cctcaccgtc	ctgcaccagg	actggctgaa	tggcaaggag	1080
tacaagtgca	aggtctccaa	caaagccctc	ccagccccca	tcgagaaaac	catctccaaa	1140
gccaaagggc	agccccgaga	accacaggtg	tacaccctgc	ccccatcccg	ggatgagctg	1200
accaagaacc	aggtcagcct	gacctgcctg	gtcaaaggct	tctatcccag	cgacatcgcc	1260
gtggagtggg	agagcaatgg	gcagccggag	aacaactaca	agaccacgcc	tecegtgetg	1320
gactccgacg	gctccttctt	cctctacagc	aagctcaccg	tggacaagag	caggtggcag	1380
caggggaacg	tcttctcatg	ctccgtgatg	catgaggctc	tgcacaacca	ctacacgcag	1440
aagagcctct	ccctgtctcc	gggtaaacga	ccctctggga	gaaaatccag	caagatgcaa	1500
gccttcagaa	tctgggatgt	taaccagaag	accttctatc	tgaggaacaa	ccaactagtt	1560
gctggatact	tgcaaggacc	aaatgtcaat	ttaaaagaaa	agatagatgt	ggtacccatt	1620
gagcctcatg	ctctgttctt	gggaatccat	ggagggaaga	tgtgcctgtc	ctgtgtcaag	1680
tctggtgatg	agaccagact	ccagctggag	gcagttaaca	tcactgacct	gagcgagaac	1740
agaaagcagg	acaagcgctt	cgccttcatc	cgctcagaca	gtggccccac	caccagtttt	1800
gagtctgccg	cctgccccgg	ttggttcctc	tgcacagcga	tggaagctga	ccagcccgtc	1860
agcctcacca	atatgcctga	cgaaggcgtc	atggtcacca	aattctactt	ccaggaggac	1920
gag						1923

<210> 2

<211> 619

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic construct

<400> 2

Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser
1 5 10 15

20 25 30

Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr 35 40 45

Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu 50 60

Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser 65 70 75 80

Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys 85 90 95

Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys 100 105 110

Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala 115 120 125

Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro 130 $$135\$

Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala 165 170 175

Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val 180 185 190

His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr 195 200 205

Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly 210 215 220

Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Glu Pro Lys Ser Cys 225 235 235 240

Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 245 250 255

Gly	Pro	Ser	Val 260	Phe	Leu	Phe	Pro	Pro 265	Lys	Pro	Lys	Asp	Thr 270	Leu	Met
Ile	Ser	Arg 275	Thr	Pro	Glu	Val	Thr 280	Суз	Val	Val	Val	Asp 285	Val	Ser	His
Glu	Asp 290	Pro	Glu	Val	Lys	Phe 295	Asn	Trp	Tyr	Val	Asp 300	Gly	Val	Glu	Val
His 305	Asn	Ala	Lys	Thr	Lys 310	Pro	Arg	Glu	Glu	Gln 315	Tyr	Asn	Ser	Thr	Tyr 320
Arg	Val	Val	Ser	Val 325	Leu	Thr	Val	Leu	His 330	Gln	Asp	Trp	Leu	Asn 335	Gly
Lys	Glu	Tyr	Lys 340	Cys	Lys	Val	Ser	Asn 345	Lys	Ala	Leu	Pro	Ala 350	Pro	Ile
Glu	Lys	Thr 355	Ile	Ser	Lys	Ala	Lys 360	Gly	Gln	Pro	Arg	Glu 365	Pro	Gln	Val
Tyr	Thr 370	Leu	Pro	Pro	Ser	Arg 375	Asp	Glu	Leu	Thr	Lys 380	Asn	Gln	Val	Ser
Leu 385	Thr	Суз	Leu	Val	Lys 390	Gly	Phe	Tyr	Pro	Ser 395	Asp	Ile	Ala	Val	Glu 400
Trp	Glu	Ser	Asn	Gly 405	Gln	Pro	Glu	Asn	Asn 410	Tyr	Lys	Thr	Thr	Pro 415	Pro
Val	Leu	Asp	Ser 420	Asp	Gly	Ser	Phe	Phe 425	Leu	Tyr	Ser	Lys	Leu 430	Thr	Val
Asp	Lys	Ser 435	Arg	Trp	Gln	Gln	Gly 440	Asn	Val	Phe	Ser	Cys 445	Ser	Val	Met
His	Glu 450	Ala	Leu	His	Asn	His 455	Tyr	Thr	Gln	Lys	Ser 460	Leu	Ser	Leu	Ser
Pro 465	Gly	Lys	Arg	Pro	Ser 470	Gly	Arg	Lys	Ser	Ser 475	Lys	Met	Gln	Ala	Phe 480

Arg Ile Trp Asp Val Asn Gln Lys Thr Phe Tyr Leu Arg Asn Asn Gln 485 Leu Val Ala Gly Tyr Leu Gln Gly Pro Asn Val Asn Leu Lys Glu Lys 500 505 Ile Asp Val Val Pro Ile Glu Pro His Ala Leu Phe Leu Gly Ile His 515 520 525 Gly Gly Lys Met Cys Leu Ser Cys Val Lys Ser Gly Asp Glu Thr Arg 530 535 Leu Gln Leu Glu Ala Val Asn Ile Thr Asp Leu Ser Glu Asn Arg Lys 550 555 Gln Asp Lys Arg Phe Ala Phe Ile Arg Ser Asp Ser Gly Pro Thr Thr 565 570 575 Ser Phe Glu Ser Ala Ala Cys Pro Gly Trp Phe Leu Cys Thr Ala Met 585 580 Glu Ala Asp Gln Pro Val Ser Leu Thr Asn Met Pro Asp Glu Gly Val 595 600 605 Met Val Thr Lys Phe Tyr Phe Gln Glu Asp Glu 610 615 <210> 3 <211> 235 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic construct Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser 1 5 10 15 Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys 25 20

Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr

45

40

35

Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu 50 55 60

Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser 65 70 75 80

Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys 85 90 95

Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys 100 105 110

Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala 115 120 125

Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro 130 $$135\$

Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala 165 170 175

Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val 180 185 190

His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr
195 200 205

Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly 210 215 220

Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp 225 230 235

<210> 4

<211> 231

<212> PRT

<213> Homo sapiens

<400> 4

Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

5 10 15

Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 20 25 30

Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 35 40 45

Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val
50 55 60

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 65 70 75 80

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln \$85\$ 90 95

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 100 105 110

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 115 120 125

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr $130\,$ $135\,$ $140\,$

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 165 170 175

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 180 185 190

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 195 200 205

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 210 215 220

Ser Leu Ser Leu Ser Pro Gly 225 230

```
<210> 5
<211> 152
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
<400> 5
Arg Pro Ser Gly Arg Lys Ser Ser Lys Met Gln Ala Phe Arg Ile Trp
                       10
Asp Val Asn Gln Lys Thr Phe Tyr Leu Arg Asn Asn Gln Leu Val Ala
       20 25
Gly Tyr Leu Gln Gly Pro Asn Val Asn Leu Lys Glu Lys Ile Asp Val
                 40
      35
Val Pro Ile Glu Pro His Ala Leu Phe Leu Gly Ile His Gly Gly Lys
   50 55 60
```

45

90 95

125

Met Cys Leu Ser Cys Val Lys Ser Gly Asp Glu Thr Arg Leu Gln Leu

Glu Ala Val Asn Ile Thr Asp Leu Ser Glu Asn Arg Lys Gln Asp Lys

Arg Phe Ala Phe Ile Arg Ser Asp Ser Gly Pro Thr Thr Ser Phe Glu 100 105 110

Ser Ala Ala Cys Pro Gly Trp Phe Leu Cys Thr Ala Met Glu Ala Asp

Gln Pro Val Ser Leu Thr Asn Met Pro Asp Glu Gly Val Met Val Thr

120

130 135 140

70 75

85

115

Lys Phe Tyr Phe Gln Glu Asp Glu

145 150

<213> Artificial Sequence

<210> 6 <211> 1467 <212> DNA

<400> 6 atggegeeeg tegeegtetg ggeegegetg geegteggae tggagetetg ggetgeggeg 60 cacgccttgc ccgcccaggt ggcatttaca ccctacgccc cggagcccgg gagcacatgc 120 cggctcagag aatactatga ccagacagct cagatgtgct gcagcaaatg ctcgccgggc 180 caacatgcaa aagtcttctg taccaagacc tcggacaccg tgtgtgactc ctgtgaggac 240 agcacataca cccagctctg gaactgggtt cccgagtgct tgagctgtgg ctcccgctgt 300 agetetgace aggtggaaac teaageetge actegggaac agaacegeat etgeacetge 360 420 aggcccggct ggtactgcgc gctgagcaag caggaggggt gccggctgtg cgcgccgctg 480 cgcaagtgcc gcccgggctt cggcgtggcc agaccaggaa ctgaaacatc agacgtggtg tgcaagccct gtgccccggg gacgttctcc aacacgactt catccacgga tatttgcagg 540 ccccaccaga tctgtaacgt ggtggccatc cctgggaatg caagcatgga tgcagtctgc 600 acgtccacgt ccccacccg gagtatggcc ccaggggcag tacacttacc ccagccagtg 660 720 tccacacgat cccaacacac gcagccaact ccagaaccca gcactgctcc aagcacctcc ttcctgctcc caatgggccc cagcccccca gctgaaggga gcactggcga cgagcccaaa 780 tettgtgaca aaacteacae atgeeeaceg tgeeeageae etgaaeteet ggggggaeeg 840 900 tcagtcttcc tcttcccccc aaaacccaag gacaccttca tgatctcccg gacccctgag gtcacatgcg tggtggtgga cgtgagccac gaagaccctg aggtcaagtt caactggtac 960 1020 gtggacggcg tggaggtgca taatgccaag acaaagccgc gggaggagca gtacaacagc acgtaccgtg tggtcagcgt cctcaccgtc ctgcaccagg actggctgaa tggcaaggag 1080 tacaagtgca aggtctccaa caaagccctc ccagccccca tcgagaaaac catctccaaa 1140 1200 gccaaagggc agccccgaga accacaggtg tacaccctgc ccccatcccg ggatgagctg accaagaacc aggtcagcct gacctgcctg gtcaaaggct tctatcccag cgacatcgcc 1260 gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacgcc tcccgtgctg 1320 gactccgacg gctccttctt cctctacagc aagctcaccg tggacaagag caggtggcag 1380 caggggaacg tcttctcatg ctccgtgatg catgaggctc tgcacaacca ctacacgcag 1440 1467 aagagcctct ccctgtctcc gggtaaa

```
<211> 467
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
    construct
<400> 7
Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser
                10 15
Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys
             25
        20
Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr
               40
Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu
          55 60
   50
Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser
              70
                             75
65
Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys
           85 90 95
Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys
      100 105 110
Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala
     115 120
Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro
   130
          135
Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His
```

Gln Ile Cys Asn Val Val Ala Ile Pro Gly

145

150

155

160