Logiques et Prédicats

Table des matières

1		cul des prédicats
	1.1	Définition - Exemples
	1.2	Quantificateurs universels et existentiels
		1.2.1 Quantificateur universel
		1.2.2 Quantificateur existentiel
2	\mathbf{Pro}	ppriétés
	2.1	Succession de quantificateurs
	2.2	Négation

1 Calcul des prédicats

1.1 Définition - Exemples

Définition:

Un prédicat est une proposition dont la valeur de vérité dépend d'une ou plusieurs variables.

 ${\bf Rappel:} Proposition$ - Énoncé mathématique complet qui est soit vrai soit faut.

Exemple 1:

On note "P(x) : x < 4"

- P(1) est vraie.
- P(7) est fausse.

Exemple 2:

Soit le prédicat "Q(x, y) : x < y"

- Q(4,5) est vraie.
- Q(5,4) est fausse.

1.2 Quantificateurs universels et existentiels

Quantificateur universel:

 \forall Pour tout / quel que soit.

Quantificateurs existentiels:

- ∃ Il existe.
- \exists ! Il existe un et un seul.
- ∄ Il n'existe pas.

1.2.1 Quantificateur universel

Définition:

Si pour tout x, P(x) est vraie, alors on écrit :

$$\forall x, \ P(x)$$

Remarque:

En général x est un element d'un ensemble E

$$\forall x \in E, \ P(x)$$

Exemple 3:

• $\forall n \in \mathbb{N}, \ n \geqslant 0$

$$\forall n \in \mathbb{N}, \ P(n) = \text{Vraie}$$

• $\forall n \in \mathbb{Z}, \ n \leqslant 0$

$$\forall n \in \mathbb{Z}, \ Q(n) = \text{Fausse}$$

• $\forall x \in \mathbb{R}, x > 0$

$$\forall x \in \mathbb{R}, \ R(x) = \text{Fausse}$$

• $\forall n \in \{2, 3, 5, 7, 11\}, n \text{ est premier}$

$$\forall n \in E, \ S(n) = Vraie$$

$$\mathbb{N} = \{0,1,2,3\dots\}$$
 Ensemble des entiers naturels (nombres positifs).

 $\mathbb{Z} = \{\dots -1, -2, -1, 0, 1, 2, 3 \dots\}$

Ensemble des entiers relatifs (nombres positifs et négatifs).

Exemple 4:

$$P(x,y): \quad x \leqslant y$$

$$\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ P(x,y) = \text{Vraie}$$

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ P(x,y) = \text{Fausse}$$

Exemple 5:

$$\forall x \in \mathbb{R}, \ \underbrace{(x+1)^2 = x^2 + 2x + 1}_{P(x)} = \text{Vraie}$$

1.2.2 Quantificateur existentiel

Définition:

S'il existe une variable x telle que P(x) est vraie, alors on écrit :

$$\exists x, \ P(x)$$

P(x) est un prédicat.

Exemple 6:

$$\bullet \ \exists x, \ \underbrace{2x+1=13}_{P(x)}$$

$$\exists x, P(x) = Vraie$$

•
$$\exists n \in \mathbb{N}, \ 2n+1=12$$

$$\exists n \in \mathbb{N}, \ 2n+1=12=\text{Fausse}$$

Méthode:

- Pour démontrer qu'une proposition telle que $\exists x \in E$, P(x) est vraie, il suffit de trouver $x \in E$ tel que P(x) soit vraie.
- Pour démontrer qu'une proposition telle que $\exists x \in E$, P(x) est fausse, il faut montrer que P(x) est fausse pour tout $x \in E$.

Exemple 7:

- a) $P(x): x^2 = 9$
 - $\exists x \in \mathbb{R}, \ P(x) = \text{est vraie}$
- b) $P(x): x^2 = 9$
 - $\exists n \in \mathbb{N}, P(n) = \text{est fausse}$

Exercice 1:

On considère les prédicats suivants :

- $x^2 = 16$ P(x)
- $x^2 \leqslant 16$ Q(x)
- $x^2 \leqslant -16$ R(x)
- $x^2 = 16$ S(x)

Donner la valeur de vérités des propositions suivantes :

- a) $\exists x \in \mathbb{R}, P(x) = \text{Vraie}$
- b) $\exists x \in \mathbb{R}, \ Q(x) = \text{Vraie}$
- c) $\forall x \in \mathbb{R}, \ Q(x) = \text{Fausse}$
- d) $\exists x \in \mathbb{R}, \ R(x) = \text{Fausse}$
- e) $\forall x \in \mathbb{R}, \ \neg S(x) = \text{Vraie}$

Remarque:

$$S(x): x^2 = -16$$

 $S(x): x^2 \neq -16$

Exercice 2:

Nier les propositions suivantes :

- $\forall x \in E, P(x)$ l'inverse = $\exists x \in E, \neg P(x)$
- $\exists x \in E, P(x)$ l'inverse = $\forall x \in E, \neg P(x)$

2 Propriétés

2.1 Succession de quantificateurs

Commençons par un exemple :

Exemple 8:

 $\exists x \ , \ \forall y \ , \ P(x,y)$

- $\exists x \in \mathbb{N}$, $\forall y \in \mathbb{N}$, $x \leqslant y$ = Vraie Il existe un nombre qui est inférieur à tout les entiers.
- $\forall y \in \mathbb{N}$, $\exists x \in \mathbb{N}$, $x \leq y$ = Vraie Pout tout les nombres entiers, il existe un nombre inférieur.
- $\forall y \in \mathbb{R}$, $\exists x \in \mathbb{R}$, $x^2 = y$ = Fausse

Proposition:

$$[\forall x, \forall y, P(x,y)] \Leftrightarrow [\forall y, \forall x, P(x,y)]$$
$$[\exists x, \exists y, P(x,y)] \Leftrightarrow [\exists y, \exists x, P(x,y)]$$

Remarque:

 $\forall x$, $\exists y$, P(x,y) n'est pas équivalent à $\exists x$, $\forall y$, P(x,y)

Exemple 9:

$$\forall x\in\mathbb{R}\ ,\ \exists y\in\mathbb{R}\ ,\ y-2=x = \text{Vraie}$$

$$\exists y\in\mathbb{R}\ ,\ \forall x\in\mathbb{R}\ ,\ y-2=x = \text{Fausse}$$

2.2 Négation

$$\neg (\forall x \in E, P(x)) \Leftrightarrow (\exists x \in E, \neg P(x))$$
$$\neg (\exists x \in E, P(x)) \Leftrightarrow (\forall x \in E, \neg P(x))$$

Exemple 10:

$$\forall x \in \mathbb{N} \;,\; x \leqslant -x = \text{Fausse}$$

 $\exists x \in \mathbb{N} \;,\; x > -x = \text{Vraie}$

$$\begin{array}{ll} a \leqslant b & a > b \\ a < b & a \geqslant b \end{array}$$

$$\neg (\forall x \in E, \exists y \in E, P(x,y)) \Leftrightarrow (\exists x \in E, \forall y \in E, \neg P(x,y))$$
$$\neg (\forall x \in E, \forall y \in E, P(x,y)) \Leftrightarrow (\exists x \in E, \exists y \in E, \neg P(x,y))$$

Exercice 3:

Déterminer la négation de chacune des propositions suivantes et donner sa valeur de vérité :

a)
$$\forall x \in \mathbb{N}$$
, $x^2 \le 9$ = Fausse
$$\neg (\forall x \in \mathbb{N}, x^2 \le 9) \Leftrightarrow \exists x \in \mathbb{N}, x^2 > 9$$
 = Vraie

b)
$$\forall x \in \mathbb{N}$$
, $\exists y \in \mathbb{N}$, $x = y^2$ = Fausse

¬ (
$$\forall x \in \mathbb{N}$$
 , $\exists y \in \mathbb{N}$, $x = y^2$) $\Leftrightarrow \exists x \in \mathbb{N}$, $\forall y \in \mathbb{N}$, $x \neq y^2$ = Vraie

- c) $\exists x \in \mathbb{N}$, $\forall y \in \mathbb{N}$, x < y = Fausse $\neg (\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, x < y) \Leftrightarrow \forall x \in \mathbb{N}, \exists y \in \mathbb{N}, x \geqslant y$ = Vraie
- d) $\exists x \in \mathbb{N}$, $\forall y \in \mathbb{N}$, $x \neq y$ = Fausse $\neg (\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, x \neq y) \Leftrightarrow \forall x \in \mathbb{N}, \exists y \in \mathbb{N}, x = y = \text{Vraie}$