Théorie des Langages et Compilation : Analyse Syntaxique

Didier LIME

École Centrale de Nantes - LS2N

Année 2019 - 2020

Plan

Introduction

Grammaires hors contexte

Analyse descendante

Analyse ascendante

Yacc

Conclusion

Rôle de l'analyseur syntaxique

- L'analyseur syntaxique récupère les mots (tokens) isolés par l'analyseur lexical;
- Il vérifie leur bon agencement;
- ▶ Il produit une **représentation abstraite** de l'entrée pour les phases suivantes (*Abstract Syntax Tree* (AST))

En pratique, on réalise certaines phases de l'analyse sémantique (voire de la génération de code) en même temps que l'analyse syntaxique.

Insuffisance des langages réguliers

Définition (partielle) de la syntaxe d'un langage de programmation :

Alphabet associé :

$$\Sigma = \{i, t, e, E, p, c\}$$

Langage associé :

$$L = \{pc, iEtpce, iEtiEtpcee, \dots, (iEt)^k pce^k, \dots\}$$

L n'est pas régulier

Grammaires formelles

- On a besoin d'un formalisme plus puissant que les expressions régulières;
- On définit des grammaires formelles :

Définition

Une grammaire formelle est un quadruplet (N, Σ, P, S) où :

- N est un ensemble fini de (symboles) non terminaux;
- Σ est un ensemble fini de (symboles) terminaux ;
- P est un ensemble fini de règles de production de la forme :

$$(\Sigma \cup N)^*N(\Sigma \cup N)^* \rightarrow (\Sigma \cup N)^*$$

S est un élément de N appelé axiome.

Grammaires formelles

Exemple

 $S \rightarrow AbB$

A o aA

 $A \rightarrow b$

 $aAb \rightarrow B$

 $BB \rightarrow A$

 $B o \epsilon$

Dérivations et langage

Soient $x, y \in (\Sigma \cup N)$ et $G = (N, \Sigma, P, S)$ une grammaire.

v dérive de x (en un pas), noté $x \Rightarrow y$ si :

$$\exists u, v, p, q \in (\Sigma \cup N)^*$$
 t.q. $x = upv, y = uqv$ et $p \rightarrow q \in P$

- On peut généraliser la relation en en prenant la fermeture réflexive transitive ⇒*.
- ▶ Une **proto-phrase** (*sentential form*) de G est un mot W de $(N \cup \Sigma)^*$ tel que $S \Rightarrow^* W$;
- ► Une phrase (sentence) de G est une proto-phrase ne contenant que des terminaux :
- Le langage de G est l'ensemble de ses phrases.

Dérivations et langage

Exemple

 $S \rightarrow AbB$ $A \rightarrow aA$ $A \rightarrow b$ $aAb \rightarrow B$ $BB \rightarrow A$ $B \rightarrow \epsilon$

Graphe de dérivation de $b \in L$:

$$L = a^*(\epsilon|b|bb)$$
 régulier!

Exemple

$$S \rightarrow aSb|c$$

Didier Lime (ECN – LS2N)

$$L = \{a^n cb^n | n \in \mathbb{N}\}$$

Dérivations : Exercices

Exercice

Donnez l'arbre de dérivation du mot w = abaacbbab dans la grammaire suivante :

 $S \rightarrow ACB$ $A \rightarrow aA|b$

 $B \rightarrow Bb|a$

 $B \to BB|a$

C o aBcAb

Exercice

Donnez l'arbre de dérivation du mot w = acbbcacbb dans la grammaire suivante :

$$S \rightarrow ACcaB$$

$$A
ightarrow aB|\epsilon$$

$$B \rightarrow Bb|c$$

$$C \rightarrow bAb|a$$

Hiérarchie de Chomsky

Type 0	Grammaires générales		$\mathit{UAV} o \mathit{W}$
Type 1	Grammaires contextuelles		UAV o UWV
Type 2	Grammaires	hors	$A \rightarrow W$
	contexte Grammaires	hors	
	contexte		
Type 3	Grammaires régulières		A ightarrow aB a
			extstyle A o Ba $ $ a

$$a \in \Sigma$$
, $A, B \in N$ et $W \in (\Sigma \cup N)^*$ et $U, V, W \in (\Sigma \cup N)^*$

Grammaires hors contexte

- Les grammaires hors contexte (non contextuelles) offrent :
 - un bon compromis efficacité / pouvoir d'expression;
 - une bonne lisibilité.
- Elles sont de la forme :

$$A \rightarrow W, W \in (\Sigma \cup N)^*$$

Exemple

$$S \rightarrow SAS|(S)|a$$

 $A \rightarrow +|-|*|/$

$$\Sigma = \{a, +, -, *, /, (,)\}, N = \{S, A\}$$

Ce qu'on peut faire : les grammaires régulières

Théorème

Tout langage régulier est le langage d'une grammaire hors contexte

- Un non terminal par état de l'automate fini;
- ▶ Une production $A \rightarrow aB$ par **transition** étiquetée a entre A et B;
- ▶ Une production $F \rightarrow \epsilon$ pour tout état accepteur F;
- L'axiome est l'état initial.

Exercice

Écrire une grammaire hors contexte reconnaissant a^*b^* .

Ce qu'on peut faire : des grammaires non régulières

Exemple

 $S o aSb|\epsilon$

Exemple

 $S \rightarrow (S)S|\epsilon$

Exemple

 $S \rightarrow iE : Se|wE : Se|x := n|px$

 $E \rightarrow xAn|EoE|EaE|cE$

 $A \rightarrow = |<|>$

Exercice

Écrire une grammaire hors contexte qui engendre $L = \{wcw^R | w \in \{a, b\}^*\}$ avec w^R l'inverse de w (si $w = abb, w^R = bba...)$

Ce qu'on ne peut PAS faire : des grammaires contextuelles

_	
Exem	nlo
	שוע

 $\{wcw | w \in \{a, b\}^*\}$

Prédéclaration des variables

Exemple

 $\{a^nb^mc^nd^m|m,n\in\mathbb{N}\setminus\{0\}\}$

Vérification nombre d'arguments de deux fonctions (déclarations puis utilisations)

Exemple

 $\{a^nb^nc^n|n\in\mathbb{N}\}$

Comparaison de la longueur de trois

chaînes

Propriétés de fermeture

Si L et L' sont deux langages hors contexte :

- ▶ Leur union $L \cup L'$ est un langage hors contexte;
- ► Leur concaténation L.L' est un langage hors contexte;
- Leurs inverses sont des langages hors contexte;

Mais, en général :

- Leur intersection $L \cap L'$ n'est pas un langage hors contexte Mais si L' est régulier, $L \cap L'$ est hors contexte;
- Leurs complémentaires \overline{L} et $\overline{L'}$ ne sont pas des langages hors contexte.

Arbres syntaxiques

Pour une grammaire hors contexte, le **graphe de dérivation** d'une chaîne de terminaux est un **arbre**

arbre de dérivation = arbre d'analyse = arbre syntaxique

Exemple

Arbre de dérivation de aabb :

$$S o aSb|\epsilon$$

Dérivations gauche et droite

► En remplaçant toujours le non-terminal le plus à gauche, on obtient une dérivation gauche notée \Rightarrow_g^* :

Exemple

$$S o ABC$$

 $A o Aa|a$
 $B o a|b$
 $C o c$
 $S \Rightarrow_g ABC \Rightarrow_g AaBC \Rightarrow_g aaBC \Rightarrow_g aabC \Rightarrow_g aabC$

▶ Idem à droite (\Rightarrow_d^*) :

Exemple

$$S \Rightarrow_d ABC \Rightarrow_d ABc \Rightarrow_d Abc \Rightarrow_d Aabc \Rightarrow_d aabc$$

Pour une grammaire hors contexte, l'ensemble des phrases obtenues uniquement par dérivation gauche (ou uniquement droite) est exactement son langage.

Grammaire ambiguë

L'arbre de dérivation d'une chaîne ne dépend pas de l'ordre des dérivations;

Exercice

Construire l'arbre de dérivation commun à :

- $S\Rightarrow_{\mathsf{g}}\mathsf{ABC}\Rightarrow_{\mathsf{g}}\mathsf{AaBC}\Rightarrow_{\mathsf{g}}\mathsf{aaBC}\Rightarrow_{\mathsf{g}}\mathsf{aabC}\Rightarrow_{\mathsf{g}}\mathsf{aabc}$
- $S \Rightarrow_d ABC \Rightarrow_d ABc \Rightarrow_d Abc \Rightarrow_d Aabc \Rightarrow_d aabc$
 - On peut donc ne considérer que des dérivations gauches (ou que des droites);
 - Pour tout arbre de dérivation, il existe une dérivation gauche unique (idem à droite);
 - Mais pour une phrase donnée, il peut y avoir plusieurs arbres de dérivation correspondant
 - Et donc plusieurs dérivations gauche ou droite différentes.

Grammaire ambiguë

Exemple

Dérivations de n + n * n:

$$S \Rightarrow_{g} S + S \Rightarrow_{g} n + S \Rightarrow_{g} n + S * S \Rightarrow_{g} n + n * S \Rightarrow_{g} n + n * n$$

$$S \Rightarrow_{g} S * S \Rightarrow_{g} S + S * S \Rightarrow_{g} n + S * S \Rightarrow_{g} n + n * S \Rightarrow_{g} n + n * n$$

$$S \to S + S$$

$$S \to S * S$$

$$S \to n$$

Une telle grammaire est dite ambiguë.

Reconnaître des grammaires hors contexte

	Langage	Reconnaisseur
Type 0	Récursivement énumérable	Indécidable
	Récursif	Machine de Turing <i>totale</i>
Type 1	Contextuel	MT linéairement bornée
Type 2	Hors contexte	Automate à pile
Type 3	Régulier	Automate fini

Automate à pile

Définition (Automate à pile)

Un automate à pile (Pushdown automaton) est un 6-uplet $(Q, \Sigma, \Gamma, \delta, q_0, F)$, avec :

- Q est un ensemble fini d'états;
- Σ est l'alphabet d'entrée;
- Γ est l'alphabet de pile ;
- ▶ $\delta: Q \times \Sigma \cup \{\epsilon\} \times \Gamma \cup \{\epsilon\} \rightarrow 2^{Q \times \Gamma \cup \{\epsilon\}}$ est la fonction de transition;
- $ightharpoonup q_0 \in Q$ est l'état initial;
- F ⊆ Q est l'ensemble des états accepteurs.

Automate à pile : configurations

- ▶ Une configuration d'un automate à pile $(Q, \Sigma, \Gamma, \delta, q_0, F)$ est un couple (q, s) où :
 - $ightharpoonup q \in Q$ est un état de l'automate;
 - ▶ $s \in \Gamma^*$ est le contenu de la pile.
- La configuration **initiale** est (q_0, ϵ) ;
- Sur lecture de $a \in \Sigma$, l'automate passe de la configuration $(q, s\alpha)$ à la configuration $(q', s\beta)$, noté $(q, s\alpha) \xrightarrow{a} (q', s\beta)$ si :
 - \land $\alpha, \beta \in \Gamma$:
 - \triangleright $(q', \beta) \in \delta(q, a, \alpha).$
- ▶ $w \in \Sigma^*$ est accepté par l'automate si $(q_0, \epsilon) \xrightarrow{w}^* (q, s)$ avec $q \in F$ \to^* =Image par la fermeture réflexive transitive de \to On peut aussi se passer de F et accepter quand la pile est vide

Automate à pile : exemples

Exemple

Exemple

Exercice

Donner un automate à pile qui reconnaît $L = \{wcw^R | w \in \{a, b\}^*\}.$

Automate (à pile) : transitions sans consommation

- On peut étendre facilement les automates (à pile ou non) pour prendre en compte des transitions qui **lisent** la lettre courante sans la consommer. On notera $q \xrightarrow{\epsilon(a),W \to W'} q'$ une telle transition;
- L'implémentation de cette extension est triviale;
- Cela ne change pas l'expressivité du modèle en termes de langage (dans le cas non-déterministe)
 - Pour retrouver un automate sans transitions de lecture on duplique tous les états pour chaque lettre de l'alphabet (plus ϵ) s_a est l'état s avec la prochaine lettre à lire a (ϵ signifie qu'il n'y a plus rien à lire)
 - Les transitions (de lecture ou non) sont possibles seulement depuis la version de l'état correspondant à la lettre lue (aucune transition n'est possible depuis les états correspondant à ϵ);
 - Les lectures mènent à l'état cible avec le même indice que la source;
 - Les consommations mènent à toutes les versions de l'état cible;
 - ▶ Un état s_{ϵ} est accepteur ssi s est accepteur;
 - Les états initiaux sont les différentes versions dupliquées des états initiaux d'origine.

Automate (à pile) : transitions sans consommation

Construction d'un analyseur

- ► Pour construire **automatiquement** un automate à pile reconnaissant une grammaire donnée :
 - méthode descendante : on part de l'axiome et on dérive jusqu'à trouver la chaîne;
 - méthode ascendante : on part de la chaîne et on remonte les dérivations possibles jusqu'à trouver l'axiome;

Construction d'un analyseur déterministe

- Simuler un automate à pile non déterministe est trop coûteux.
- ▶ On veut un automate **déterministe** : pour tous q, a, W : $\delta(q, \epsilon, W) = \emptyset$ et $\{(q', W'), (q'', W'')\} \subseteq \delta(q, a, W) \Rightarrow (q', W') = (q'', W'')$ Idem pour les transitions sans consommation
- mais :

Théorème

Les langages reconnus par les automates à pile déterministes forment un sous-ensemble strict des langages hors contexte.

- p.ex. le langage $\{ww^R|w\in\{a,b\}^*\}$ ne peut pas être reconnu par un automate à pile déterministe
- On propose des constructions d'automates déterministes pour des sous-ensembles des langages hors contexte déterministes.
 Mais qui permettent de reconnaître la très grande majorité des langages intéressants en pratique.

Automate à pile non déterministe descendant

On construit toutes les dérivations gauche possibles de l'axiome :

- ► Trois états : $\{\mathcal{I}, \mathcal{C}, \mathcal{F}\}$;
- ▶ L'état initial est I, l'état accepteur F;
- Pour toute règle A → W de la grammaire, on ajoute une transition : En étendant la définition des automates pour pouvoir empiler des mots : empiler ABC c'est empiler C, puis B, puis A

$$\delta(\mathcal{C}, \epsilon, A) = \{(\mathcal{C}, W)\}\$$

Pour tout terminal a, on ajoute une transition :

$$\delta(\mathcal{C}, \mathsf{a}, \mathsf{a}) = \{(\mathcal{C}, \epsilon)\}$$

On ajoute la transition d'initialisation :

$$\delta(\mathcal{I}, \epsilon, \epsilon) = \{(\mathcal{C}, \$S)\}$$

On ajoute la transition d'acceptation : On suppose la chaîne à lire terminée par un \$.

$$\delta(\mathcal{C},\$,\$) = \{(\mathcal{F},\epsilon)\}$$

Automate à pile non déterministe descendant

Exemple

Exemple d'exécution de l'automate sur abcba\$:

$$(\mathcal{I}, \epsilon) \xrightarrow{\epsilon} (\mathcal{C}, \$S) \xrightarrow{\epsilon} (\mathcal{C}, \$aSa) \xrightarrow{a} (\mathcal{C}, \$aS) \xrightarrow{\epsilon} (\mathcal{C}, \$abSb) \xrightarrow{b} (\mathcal{C}, \$abS) \xrightarrow{\epsilon} (\mathcal{C}, \$abc)$$

$$\xrightarrow{c} (\mathcal{C}, \$ab) \xrightarrow{b} (\mathcal{C}, \$a) \xrightarrow{a} (\mathcal{C}, \$) \xrightarrow{\$} (\mathcal{F}, \epsilon)$$

Ensembles PREMIER et SUIVANT

- La construction précédente n'a (quasiment) aucune chance de donner un automate déterministe;
- On va raffiner et restreignant les règles qui peuvent s'appliquer en fonction du prochain caractère à lire;
- On construit pour cela deux ensembles :
 - ▶ PREMIER(W) est l'ensemble des **terminaux** qui commencent les chaînes dérivées de $W \in (\Sigma \cup N)^*$;
 - ► SUIVANT(A) est l'ensemble des **terminaux** qui peuvent apparaître à droite du non-terminal $A \in N$

Calcul de PREMIER

PREMIER(W) est l'ensemble des terminaux qui commencent les chaînes dérivées de $W \in (\Sigma \cup N)^*$:

$$a \in \mathsf{PREMIER}(W) \mathsf{ssi} \ \exists U \in (\Sigma \cup N)^* \mathsf{t.q.} \ W \Rightarrow_g^* aU$$

- Algorithme :
 - 1. Si X est un terminal, PREMIER(X) = $\{X\}$;
 - 2. Si $X \to \epsilon$ est une production, $\epsilon \in \mathsf{PREMIER}(X)$;
 - 3. Si X est un non-terminal et $X \to W$ est une production alors $PREMIER(W) \subset PREMIER(X)$
 - 4. $a \in PREMIER(Y_1 Y_2 ... Y_k)$ s'il existe $i \leq k$ t.q. $a \in PREMIER(Y_i)$ et pour tout $j < i, \epsilon \in \mathsf{PREMIER}(Y_i)$.

Exemple

```
S \rightarrow TS'
                           PREMIER(S) = PREMIER(T) = \{(, n\} \} \Sigma = \{n, +, *, (, )\}
S' \rightarrow +TS'|\epsilon
                           PREMIER(S') = \{+, \epsilon\}
T \rightarrow FT'
                           PREMIER(T) = PREMIER(F) = \{(, n)\}
                                                                                     \epsilon \notin \mathsf{PREMIER}(F)
T' \to *FT' | \epsilon
                           PREMIER(T') = \{*, \epsilon\}
F \rightarrow (S)|n
                           PREMIER(F) = \{(, n)\}
                                                                                                          34 / 68
```

Calcul de SUIVANT

▶ SUIVANT(A) est l'ensemble des **terminaux** qui peuvent apparaître à droite du non-terminal $A \in N$:

$$a \in \mathsf{SUIVANT}(A)$$
 ssi $\exists U, V \in (\Sigma \cup N)^*$ t.q. $S \Rightarrow_{\sigma}^* UAaV$

- ► Algorithme :
 - 1. On ajoute un \$ à la fin de la chaîne à reconnaître et à SUIVANT(S) (S est l'axiome).
 - 2. Si $A \to UBV$ est une production, PREMIER(V) \ $\{\epsilon\}$ est inclus dans SUIVANT(B)
 - 3. Si $A \to UB$ ou $A \to UBV$ et $\epsilon \in \mathsf{PREMIER}(V)$, alors $\mathsf{SUIVANT}(A)$ est inclus dans $\mathsf{SUIVANT}(B)$.

Exemple

S o TS'	$SUIVANT(S) = \{\$, 0\}$	(1), (2)
$S' o + TS' \epsilon$	$SUIVANT(S') = \{\$, 0\}$	(3)
$T \rightarrow FT'$	$SUIVANT(T) = \{+, \$, \}$	$(2),(3\epsilon)$
$T' o *FT' \epsilon$	$SUIVANT(T') = \{+,\$,)\}$	(3)
$F \rightarrow (S) n$	$SUIVANT(F) = \{*,+,\$,)\}$	$(2),(3\epsilon)$

PREMIER et SUIVANT : Exercice

Exercice

Calculer les ensembles PREMIER et SUIVANT des grammaires suivantes :

$$G_1 = \left\{ egin{array}{ll} S
ightarrow ibtSE|a \ E
ightarrow eS|\epsilon \end{array}
ight. G_2 = \left\{ egin{array}{ll} S
ightarrow ACB \ A
ightarrow aA|b \ B
ightarrow Bb|a \ C
ightarrow aBcAb \end{array}
ight. G_3 = \left\{ egin{array}{ll} S
ightarrow ACcaB \ A
ightarrow aB|\epsilon \ B
ightarrow Bb|c \ C
ightarrow bAb|a \end{array}
ight.$$

Analyseur prédictif

On construit l'automate en restreignant les substitutions :

- **États** : \mathcal{I} (initial), \mathcal{F} (final), \mathcal{E} , \mathcal{C} ;
- ▶ Pour $A \to W$ et $a \in \Sigma$, si $a \in \mathsf{PREMIER}(W)$, ou $a \in \mathsf{SUIVANT}(A)$ et $\epsilon \in \mathsf{PREMIER}(W)$, on ajoute une transition :

$$\delta(\mathcal{C}, \epsilon(\mathbf{a}), A) = \{(\mathcal{C}, W)\}$$

▶ Pour tout $a \in \Sigma \cup \{\$\}, b \in \Sigma$, on ajoute la transition :

$$\delta(\mathcal{C}, \mathsf{a}, \mathsf{a}) = \{(\mathcal{C}, \epsilon)\}$$

► Initialisation (quelle que soit la première lettre) et acceptation (on suppose la chaîne à lire terminée par \$) :

$$\delta(\mathcal{I}, \epsilon(\Sigma), \epsilon) = \{(\mathcal{C}, S)\} \text{ et } \delta(\mathcal{C}, S, S) = \{(\mathcal{F}, \epsilon)\}$$

▶ On complète δ avec les transitions d'erreur : pour tout B t.q. $AB \rightarrow W$ t.q. $A \in PREMIER(W)$,

$$\delta(\mathcal{C}, \epsilon(\mathsf{a}), B) = \{(\mathcal{E}, \epsilon)\}\$$

Analyseur prédictif

Exemple

$$\Sigma = \{a, b, c, \mathbf{d}\}$$

 $S \rightarrow aSa$
 $S \rightarrow bSb$
 $S \rightarrow c$
PREMIER $(aSa) = \{a\}$
PREMIER $(bSb) = \{b\}$
PREMIER $(c) = \{c\}$

Exemple d'exécution de l'automate sur abcba\$:

$$(\mathcal{I}, \epsilon) \xrightarrow{\epsilon(a)} (\mathcal{C}, \$S) \xrightarrow{\epsilon(a)} (\mathcal{C}, \$aSa) \xrightarrow{a} (\mathcal{C}, \$aS) \xrightarrow{\epsilon(b)} (\mathcal{C}, \$abSb) \xrightarrow{b} (\mathcal{C}, \$abS)$$

$$\xrightarrow{\epsilon(c)} (\mathcal{C}, \$abc) \xrightarrow{c} (\mathcal{C}, \$ab) \xrightarrow{b} (\mathcal{C}, \$ab) \xrightarrow{a} (\mathcal{C}, \$) \xrightarrow{a} (\mathcal{C}, \$)$$

Grammaires LL(1)

- Si l'automate obtenu est déterministe, on dit que la grammaire est LL(1) et l'analyse a réussi;
- Sinon, deux types de conflits entre les règles sont possibles :
 - PREMIER/PREMIER : $A \rightarrow U|V$ avec PREMIER(U) ∩ PREMIER(V) $\neq \emptyset$;
 - ▶ PREMIER/SUIVANT : $A \rightarrow U|V$ avec $\epsilon \in \mathsf{PREMIER}(V)$ et $\mathsf{PREMIER}(U) \cap \mathsf{SUIVANT}(A) \neq \emptyset$;
- Ces conflits peuvent avoir différentes causes, en particulier :
 - ► Le langage n'est pas LL(1);
 - La grammaire est ambiguë;
 - ou récursive à gauche.
- ▶ Dans les deux derniers cas, on peut essayer de transformer la grammaire pour la rendre analysable par cette méthode.

Transformations : ambiguités

- On peut parfois supprimer les ambiguités dans une grammaire;
- ▶ Il faut imposer un unique arbre de dérivation pour chaque phrase :

$$S \to S + S$$

$$S \to S * S$$

$$S \to (S)|n$$

$$S \rightarrow S + S$$

$$S \rightarrow E$$

$$E \rightarrow E * E$$

$$E \rightarrow (S)|n$$

Transformations: Grammaires propres

production $A \rightarrow \epsilon$:

ightharpoonup Une grammaire (qui ne génère pas ϵ) est propre si elle n'a pas de

- \triangleright On peut toujours rendre une grammaire (qui ne génère pas ϵ) propre ;
- Pour toute règle $A \to \epsilon$ et toute occurence de A dans une règle $B \to UAV$, on duplique cette dernière règle en remplaçant A par ϵ $(B \rightarrow UV)$:

On fait toutes les possibilités

S o aEcEb	
$E o d \epsilon$	
– , u c	

$S \rightarrow aEcEb$	
$S ightarrow a\epsilon cEb$	
$\mathcal{S} ightarrow aEc\epsilon b$	
Syrech	

$$S \to aEc\epsilon b$$

$$S \to a\epsilon c\epsilon b$$

$$E \to d$$

$$S \rightarrow acb$$

$$E \rightarrow d$$

Transformations : Récursivité à gauche

- ▶ Une grammaire est **récursive** à gauche si elle a une production $A \rightarrow AU$;
- ▶ L'analyseur prédictif ne peut pas fonctionner avec une telle grammaire : Conflits PREMIER/PREMIER : p.ex. $A \rightarrow Aa|b$
- On peut **toujours** rendre une grammaire propre et sans cycle $(A \rightarrow^+ A)$ non récursive à gauche :
 - 1. On remplace chaque règle $A \to BW$ par $A \to XW$ pour toute règle $B \to X$;
 - 2. On remplace chaque règle $A \to AU|V$ par $A \to VA'$ et $A' \to UA'|\epsilon$;
 - 3. On recommence jusqu'au point fixe.

Analyse ascendante

- L'analyse descendante est limitée en pratique (pour générer des automates déterministes)
- L'analyse ascendante permet de générer des analyseurs déterministes pour un plus grand nombre de grammaires.
- ► Elle se base sur le principe « décalage réduction » (shift / reduce)
- Cela consiste à remonter, à partir de la chaîne d'entrée, le long d'une dérivation droite possible.

Automate à pile non déterministe ascendant

On construit **toutes** les dérivations droite inverses possibles de la chaîne d'entrée :

- ▶ Les états : I,C,B,F;
- L'état initial est \(\mathcal{I} \), l'état accepteur \(\mathcal{F} \);
- Pour toute règle $R_i: A \to B_1 \dots B_k$, on ajoute (reduce): En étendant l'automate pour dépiler plusieurs symboles successivement sur une transition

$$\delta(\mathcal{C}, \epsilon, B_1 \dots B_k) = \{(\mathcal{C}, A)\}\$$

Pour tout terminal a, on ajoute une transition (shift) :

$$\delta(\mathcal{C}, \mathsf{a}, \epsilon) = \{(\mathcal{C}, \mathsf{a})\}\$$

On ajoute la transition d'initialisation :

$$\delta(\mathcal{I}, \epsilon, \epsilon) = \{(\mathcal{C}, \$)\}$$

On ajoute les transitions d'acceptation :

$$\delta(\mathcal{C}, \epsilon, \mathcal{S}) = \{(\mathcal{B}, \epsilon)\}\$$
et $\delta(\mathcal{B}, \$, \$) = \{(\mathcal{F}, \epsilon)\}$

Automate à pile non déterministe ascendant

Exemple

Exemple d'exécution de l'automate sur abcba\$:

$$\begin{array}{c} (\mathcal{I}, \epsilon) \xrightarrow{\epsilon} (\mathcal{C}, \$) \xrightarrow{a} (\mathcal{C}, \$a) \xrightarrow{b} (\mathcal{C}, \$ab) \xrightarrow{c} (\mathcal{C}, \$abc) \xrightarrow{\epsilon} (\mathcal{C}, \$abS) \\ \xrightarrow{b} (\mathcal{C}, \$abSb) \xrightarrow{\epsilon} (\mathcal{C}, \$aS) \xrightarrow{a} (\mathcal{C}, \$aSa) \xrightarrow{\epsilon} (\mathcal{C}, \$S) \xrightarrow{\epsilon} (\mathcal{B}, \$) \xrightarrow{\$} (\mathcal{F}, \epsilon) \end{array}$$

Déterminisation : conflits

déterministe ;

Comme précédemment, l'automate a peu de chance d'être

- Deux types de choix non déterministes (conflits) peuvent survenir :
 - 1. décalage réduction (shift-reduce);
 - 2. réduction réduction (reduce-reduce);

Conflit décalage - réduction

Il a un conflit décalage - réduction quand on peut aussi bien :

- décaler sur la pile le symbole lu;
- ou réduire le haut de la pile par une règle (inverse) de la grammaire.

Exemple

```
R_1: S \to \mathbf{si} E \mathbf{alors} S État de l'automate : Entrée : R_2: S \to \mathbf{si} E \mathbf{alors} S \mathbf{sinon} S (\mathcal{C}, \$ \dots \mathbf{si} E \mathbf{alors} S) sinon . . . $
```

. . .

Réduire par R_1 ou décaler puis réduire par R_2 ?

Conflit réduction - réduction

Il a un conflit réduction - réduction quand on peut aussi bien :

- réduire le haut de la pile par une règle R_1 .
- ou réduire le haut de la pile par une règle $R_2 \neq R_1$.

Exemple

```
R_1: Instr 	o \mathbf{nom}(Expr, Expr) État de l'automate : Entrée : R_2: Expr 	o \mathbf{nom}(Expr, Expr) (\mathcal{C}, \$ \dots \mathbf{nom}(Expr, Expr)) ... $ ...
```

Réduire par R_1 (appel de fonction) ou réduire par R_2 (accès à un tableau)?

Analyse SLR

- On veut constuire un automate déterministe basé sur la méthode décalage - réduction;
- On va constuire un automate fini supplémentaire qui nous donnera l'ensemble des préfixes possibles vers lesquels les lettres déjà lues peuvent être réduites.
- On gardera trace de l'état de cet automate grâce à la pile de l'analyseur.
- C'est la méthode SLR(1) pour Simple LR avec connaissance d'un token à l'avance.

Items canoniques LR(0)

▶ Un item LR(0) est une règle de production de la grammaire avec un point repérant une position dans sa partie droite;

Exemple

Items de $A \rightarrow BCD$:

$$A \rightarrow \bullet BCD$$

$$A \rightarrow B \bullet CD$$

$$A \rightarrow BC \bullet D$$

$$A \rightarrow BCD \bullet$$

- ▶ Une règle $A \rightarrow \epsilon$ n'engendre que l'item $A \rightarrow \bullet$;
- La **fermeture** FI(I) d'un ensemble d'items I est définie par :
 - 1. $I \subseteq FI(I)$;
 - 2. si $A \to U \bullet BV$ est dans FI(I) et $B \to W$ est une règle de la grammaire, alors $B \to \bullet W$ est dans FI(I).
 - 3. si $A \to U \bullet BV$ est dans FI(I) et $B \to \epsilon$ est une règle de la grammaire, alors $B \to \bullet$ est dans FI(I).

Automate des items LR(0)

- ▶ On ajoute une règle $S' \rightarrow S$ à la grammaire;
- On définit l'automate des items $\mathcal{A}_I=(\mathcal{I},\mathit{I}_0,\to)$ sur l'alphabet $(\Sigma\cup \mathit{N})$ par :
 - \(\mathcal{I} \) est l'ensemble des ensembles d'items engendrés par la grammaire;
 \(\)
 - ▶ I_0 est la fermeture de $\{S' \rightarrow \bullet S\}$;
 - ▶ $I \xrightarrow{A} J$ ssi J est la fermeture de l'ensemble I' tel que $B \to U \bullet AV$ est dans I ssi $B \to UA \bullet V$ est dans I':
 - pas d'état accepteur (pas utile pour ce qu'on va en faire).
- ▶ C'est équivalent à définir les états comme les items et des ϵ -transitions entre les items $A \to U \bullet BV$ et $B \to \bullet W$ puis à déterminiser.

Automate des items LR(0): Exemple

$$S' \rightarrow S$$

$$S \rightarrow T|S + T$$

$$T \rightarrow F|T * F$$

$$F \rightarrow (S)|n$$

$$I_{0} = \begin{cases} S' \to \bullet S \\ S \to \bullet T \\ S \to \bullet S + T \\ T \to \bullet F \\ T \to \bullet T * F \\ F \to \bullet (S) \\ F \to \bullet n \end{cases}$$

$$= \{ T \to F \bullet \}$$

$$S = \{ F \to n \bullet \}$$

Transitions possibles:

$$I_0 \xrightarrow{S} I_1$$

 $I_0 \xrightarrow{T} I_2$
 $I_0 \xrightarrow{F} I_3$
 $I_0 \xrightarrow{0} I_4$
 $I_0 \xrightarrow{n} I_5$

$$I_{1} = \begin{cases} S' \to S \bullet \\ S \to S \bullet + T \end{cases} \qquad I_{3} = \{ T \to F \bullet \}$$

$$I_{2} = \begin{cases} S \to T \bullet \\ T \to T \bullet *F \end{cases} \qquad I_{5} = \{ F \to n \bullet \}$$

$$I_{4} = \begin{cases} F \to (\bullet S) \\ S \to \bullet T \\ S \to \bullet S + T \\ T \to \bullet F \\ T \to \bullet T * F \\ F \to \bullet (S) \\ F \to \bullet n \end{cases}$$

Automate des items LR(0) : Exercice

Exercice

Calculez l'automate des items LR(0) pour la grammaire suivante :

S
ightarrow ACcaB $A
ightarrow aB|\epsilon$ B
ightarrow Bb|cC
ightarrow bAb|a

Analyseur SLR(1)

- On va utiliser la pile de l'analyseur pour mémoriser l'exécution courante de l'automate des items;
- ▶ Une telle exécution a la forme :

$$I_0 \xrightarrow{a_0} I_1 \xrightarrow{a_1} \cdots \xrightarrow{a_{n-1}} I_n$$

Comme l'automate des items est déterministe, il suffit de mémoriser la suite des états :

$$I_0, I_1, \ldots, I_n$$

- \triangleright Si I_n est sur le dessus de la pile,
 - ▶ **décaler** $a \in \Sigma$, c'est **empiler** I_{n+1} tel que $I_n \stackrel{a}{\rightarrow} I_{n+1}$;
 - ▶ réduire par $A \to B_1 \dots B_k$ c'est dépiler les k derniers états et empiler I' tel que $I_{n-k-1} \xrightarrow{A} I'$.

Analyseur SLR(1): automate à pile

- ightharpoonup États : ${\cal I}$ (initial), ${\cal F}$ (accepteur) et ${\cal C}$
- ▶ Pour toute règle $A \to B_1 \dots B_k$, $A \neq S'$, pour tout $a \in \mathsf{SUIVANT}(A)$ et tout état I de \mathcal{A}_I tel que $A \to B_1 \dots B_k \bullet \in I$, si I' est le k+1-ème état dans la pile et $I' \xrightarrow{A} I''$,

En étendant l'automate pour dépiler k symboles quelconques en une transition

$$\delta(\mathcal{C}, \epsilon(\mathsf{a}), *^{\mathsf{k}}) = \{(\mathcal{C}, \mathsf{I}'')\}$$

▶ Pour tout terminal a et tous les états I, I' de A_I tels que $I \stackrel{a}{\rightarrow} I'$,

$$\delta(\mathcal{C}, \mathsf{a}, \mathsf{I}) = \{(\mathcal{C}, \mathsf{II}')\}$$

Initialisation :

$$\delta(\mathcal{I}, \epsilon(\Sigma), \epsilon) = \{(\mathcal{C}, I_0)\}$$

▶ Acceptation : pour tout I tel que $S' \rightarrow S \bullet \in I$:

$$\delta(\mathcal{C}, \$, I) = \{(\mathcal{F}, \epsilon)\}$$

Analyseur SLR(1)

Exemple

Exemple d'exécution de l'automate à pile sur aaacbbb\$:

$$\begin{array}{c} (\mathcal{I}, \epsilon) \xrightarrow{\epsilon(\Sigma)} (\mathcal{C}, 1) \xrightarrow{s} (\mathcal{C}, 12) \xrightarrow{s} (\mathcal{C}, 122) \xrightarrow{s} (\mathcal{C}, 1222) \xrightarrow{c} (\mathcal{C}, 12225) \\ \xrightarrow{\epsilon(b)} (\mathcal{C}, 12223) \xrightarrow{b} (\mathcal{C}, 122234) \xrightarrow{\epsilon(b)} (\mathcal{C}, 1223) \xrightarrow{b} (\mathcal{C}, 12234) \\ \xrightarrow{\epsilon(b)} (\mathcal{C}, 123) \xrightarrow{b} (\mathcal{C}, 1234) \xrightarrow{\epsilon(\$)} (\mathcal{C}, 16) \xrightarrow{\$} (\mathcal{F}, \epsilon) \end{array}$$

Analyseur SLR(1)

- Si l'automate à pile obtenu est déterministe alors l'analyse SLR a réussi;
- On dit alors que la grammaire est SLR(1);
- ► Sinon, il faut une technique plus puissante : l'analyse LR.

Analyseur LR(1)

- ▶ Dans l'analyse SLR, on réduit par $A \rightarrow W$ quand :
 - 1. $A \rightarrow W \bullet$ est dans l'état au sommet de la pile;
 - 2. et la prochaine lettre a est dans SUIVANT(A).
- ► Mais rien ne dit que pour le préfixe actuel, A puisse vraiment être suivi de a:
- On va raffiner la notion d'item.

Items canoniques LR(1)

- ▶ Un item LR(1) est un item plus un terminal : $(A \rightarrow U \bullet W, a)$;
- ▶ On redéfinit la **fermeture** FI(I) pour un ensemble I d'items LR(1) :
 - 1. $I \subseteq FI(I)$;
 - 2. si $(A \to U \bullet BV, a)$ est dans FI(I) et $B \to W$ est une règle de la grammaire, alors pour tout terminal b dans PREMIER(Va), $(B \to \bullet W, b)$ est dans FI(I).
- On définit alors l'automate des items LR(1) comme précédemment avec l'état initial :

$$I_0 = FI(\{(S' \rightarrow \bullet S, \$)\})$$

Automate des items LR(1): Exemple

$$S' \rightarrow S$$

 $S \rightarrow CC$
 $C \rightarrow cC|d$

$$I_1 = \{ (S' \rightarrow S \bullet, \$) \}$$

$$I_2 = \left\{ egin{array}{ll} (S
ightarrow C ullet C,\$) \ (C
ightarrow ullet cC,\$) \ (C
ightarrow ullet d,\$) \end{array}
ight.$$

$$I_0 =$$

$$I_{1} = \{ (S' \rightarrow S \bullet, \$)$$

$$I_{2} = \begin{cases} (S \rightarrow C \bullet C, \$) \\ (C \rightarrow \bullet cC, \$) \\ (C \rightarrow \bullet cC, \$) \\ (C \rightarrow \bullet d, \$) \end{cases}$$

$$I_{3} = \begin{cases} (C \rightarrow c \bullet C, c) \\ (C \rightarrow c \bullet C, c) \\ (C \rightarrow \bullet cC, c) \\ (C \rightarrow \bullet d, c) \\ (C \rightarrow \bullet d, c) \\ (C \rightarrow \bullet d, d) \end{cases}$$

$$I_{0} = \begin{cases} (S' \to \bullet S, \$) & \text{Transitions possibles :} \\ (S \to \bullet CC, \$) & I_{0} \xrightarrow{S} I_{1} \\ (C \to \bullet cC, c) & I_{0} \xrightarrow{C} I_{2} \\ (C \to \bullet cC, d) & I_{0} \xrightarrow{c} I_{3} \\ (C \to \bullet d, c) & I_{0} \xrightarrow{d} I_{4} \end{cases}$$

$$I_4 = \left\{ \begin{array}{l} (C \rightarrow d \bullet, c) \\ (C \rightarrow d \bullet, d) \end{array} \right.$$

Automate des items LR(1) : Exercice

Exercice

Calculez l'automate des items LR(1) pour la grammaire suivante :

 $S \rightarrow ACB$ $A \rightarrow aA|b$ $B \rightarrow Bb|a$

 $C \rightarrow aBcAb$

Analyseur LR(1)

- L'analyseur LR(1) est fait avec presque le même automate à pile que l'analyseur SLR(1);
- La seule différence est qu'on ne réduit par A → W que, si la prochaine lettre du mot à lire est a, lorsque l'item LR(1) (A → W•, a) est dans l'état du sommet de la pile;
- Si l'automate obtenu est déterministe alors on dit que la grammaire est LR(1);
- Sinon, on peut essayer de résoudre les conflits en introduisant dans la grammaire :
 - des priorités;
 - et ou de l'associativité;
- L'automate des items et l'analyseur LR(1) sont considérablement plus gros que dans le cas SLR;
- On peut fusionner les items LR(1) qui partagent la même partie LR(0) pour réduire cette taille : c'est l'analyse LALR (Lookahead LR). Bon compromis entre LR et SLR

Un constructeur d'analyseur syntaxique : Yacc

- YACC est un constructeur d'analyseur syntaxique pour Unix;
- Il génère un analyseur LALR;
- Un outil ayant ses fonctionalités fait partie du standard POSIX;
- ► En pratique, on en utilise souvent une implémentation du projet GNU : Bison.

Définitions

%%

Syntaxe du fichier de définition : Règles de la grammaire

%%

Code C

```
Yacc – Exemple : eval.y
 %{
 #include "..."
 %}
 %token
                   nombre
 %start
                   EXPRCALCS
 %%
 EXPRCALCS:
                   EXPRCALC
                     EXPRCALCS EXPRCALC
                                           {printf ("%d\ n", $1);
 EXPRCALC:
                   EXPR '='
 EXPR.:
                   FACTEUR.
                     EXPR '+' FACTEUR
                                           \{\$\$ = \$1 + \$3;\}
 FACTEUR:
                                           \{\$\$ = \$1;\}
                   nombre
```

Didier Lime (ECN – LS2N)

Conclusion

- Pour l'analyse syntaxique, il faut un formalisme plus puissant que les expressions régulières;
- Les grammaires hors contexte sont un outil adapté à cette tâche;
- On peut générer automatiquement des analyseurs pour des sous-ensembles suffisamment expressifs de ces grammaires;
- Ces analyseurs sont des automates à pile déterministes;
- Les automates à piles s'implémentent facilement et systématiquement;
- Il existe des outils pour créer ces analyseurs lexicaux;
- Un certain nombre de contraintes ne sont pas exprimables avec les grammaires hors contexte;
- On prendra en compte ces contraintes via la phase d'analyse sémantique notamment.