

강화학습을 활용한 무인전투기의 유도탄 회피 및 최단 거리 탐색 알고리즘 개발

이경택, 민병욱, 김정철, 김창욱* 연세대학교 산업공학과 {bluediary8, dmbw612, od519bo, kimco}@yonsei.ac.kr

Introduction

분석 배경 및 목적

- 최근, 국방 분야에 인공지능 기술을 활용하는 중요성이 대두됨에 따라 무인전투기에 인공지능 기술을 접목시키는 연구 또한 활발히 진행되어 오고 있음
- 강화학습 알고리즘을 활용하여 무인전투기의 유도탄 회피 및 목적지까지의 최단거 리 탐색 알고리즘을 제안

의의

- 국내외 최초로 3차원 공간상에서 무인전투기의 유도미사일 회피 및 최단거리를 위한 강화학습 알고리즘 개발
- 좌표 및 각도에 대하여 효율적으로 표현할 수 있는 방법 제안

Introduction

강화학습

 어떤 환경 안에서 정의된 에이전트가 현재의 상태를 인식하여, 선택 가능한 행동들 중 보 상을 최대화하는 행동 혹은 행동 순서를 선택하는 방법

요소	알파고	단일 무인전투기	강화학습 시 도전과제
객체(agent)	알파고	무인전투기	
환경(environment)	바둑판	전장상황	-
상태(state, s)	바둑판 위의 바둑돌 위치	무인전투기와 유도미사일의 상태 정보	차원의 저주
행동(action, a)	착수	추력과 경사각	강화학습 모델
보상(reward, r)	승리 시 + 보상 패배 시 - 보상	목표지점 근접시 큰 보상 회피 시 + 보상 격추 시 – 보상	보상 디자인

전장환경

전장환경구성

- 75 × 175 × 50km 크기의 전장 가정
 - 방공망 크기는 반경 30km 가정
 - 배치된 중첩된 4개의 방공망으로 학습(6개의 방공망으로 테스트)
- 유도미사일 가정
 - 유도미사일은 무인 전투기와 1회만 교전
 - 격추 실패 후에는 연료의 한계로 인해 기능을 상실함(목표 재지정 없음)
 - 단일 무인전투기는 동시에 최대 2개의 유도미사일과 교전 할 수 있음
- 무인전투기 가정
 - 무인전투기의 임무는 공대지 작전으로 가정
 - 무인전투기는 무장투하구역(launch available region)에 도달하는 것을 목표로 함
 - 무인전투기는 적 지대공 미사일의 발사대 위치 및 발사된 미사일 위협에 대해 실시간 탐지가 가능하다고 가정

전장환경

지대공 유도미사일 구현

- 기존 논문들에서 소개된 비례항법유도를 사용
 - 3차원에서의 비례항법유도를 풀되, xy, yz, xz면에서 각각을 푼 뒤 합치는 방법
 - 거리 (R_{TM}) 와 상대속도 (V_{TM}) 를 안다면, 미사일을 가속 (n_c) 하여 목표물을 명중할 수 있게 조종가능

 $n_{c_xy} = N' \cdot V_{c_xy} \cdot \dot{\lambda}$: Missile에 입력되는 가속도 N' : 비례상수 N' : 비례상수 N' : LOS의 변화량 N' : LOS의 변화량 N' : Missile과 target의 거리 N' : Missile과 target의 상대속도

Agent

- 무인전투기 상세 구현
- 질점으로 표현된 전투기의 운동방정식
- 기존 국내외 UAV 시뮬레이션 논문들에서 주로 사용된 운동방정식을 사용

$\dot{V} = \frac{T-D}{m} - g \sin \gamma$	x, y, z	7 : 위지
IIL	V	: 속도
$\dot{\psi} = \frac{gnsin\phi}{Vcos\gamma}$	ψ	: 방위각(heading angle)
΄ α	γ	: 상하각(path angle)
$\dot{\gamma} = \frac{g}{V(n\cos\phi - \cos\gamma)}$	T	: 추력(engine thrust)
	ϕ	: 경사각(bank angle)
$\dot{x} = V\cos\gamma\cos\psi$	D	: 항력(drag force)
$\dot{y} = V \cos \gamma \sin \psi$	n	: 하중계수(load factor)
$\dot{z} = V \sin \gamma$	m	: 무인전투기 질량(mass)

 01 ± 1

Agent

무인전투기 시뮬레이터 결과 예시

Q-learning

Q-learning은 강화학습 알고리즘의 하나로 현재 state에서 선택 가능한 action을 선택하고 그에 따른 reward를 받아서 Q-function을 최적의 값으로 갱신하여 환경을 학습하는 형태

예상되는 최종 보상
$$\widehat{Q}(s,a) = r + \gamma \max_{a'} \underbrace{Q(s',a')}_{\text{할인 누적 보상}}$$
 예상되는 최종 보상

Q-learning 알고리즘

- 1. 모든 상태(s)와 행동(a)에 대해 $\hat{Q}(s,a)$ 의 값을 0으로 설정한다. (Q(s,a): 특정 상태(s))에서 특정 행동<math>(a)을 했을 때 받을 수 있는 전체 보상)
- 2. 현재 상태 s 관측
- 3. 다음을 특정 횟수 혹은 시간 동안 반복한다.
 - (1) 행동 a를 선택하고 실행한다.
 - (2) 즉각 보상 r을 관측(없는 경우 0)한다.
 - (3) 행동 후 전이된 새로운 상태 s' 관측한다.
 - (4) $\hat{Q}(s,a)$ 을 다음의 수식을 통해 업데이트: $\hat{Q}(s,a) = r + \gamma \max_{a'} Q(s',a')$ 한다.
 - (5) *s* ← *s*′업데이트 한다.

- Deep Q-network (DQN)
 - 강화학습에 딥러닝(deep learning)을 결합한 알고리즘
 - Q-network를 통해 더 많은 상태와 행동에 대해서 강화학습이 가능하게 되었지만, 학습데이터 간의 상관성, non-stationary target문제가 있음
 - 이러한 문제점을 deep Q-network를 통해 해결함

Actor-Critic Network

- 정책을 근사하는 actor network + 가치 함수를 근사하는 critic network
- State에 대응되는 action에 따른 확률 값을 학습 (정책 자체를 학습)
- 본 연구의 actor network와 critic network에서 모두 단일 hidden layer 사용

강화학습 요소

State		Action	Reward		
	비행경로		최단 거리 달성	무장 투하 구역과의 거리	
무인전투기	상하각, 경사각 방위	추력	임무결과	무장 투하 구역 도착	
	속도				
무인전투기와	거리	フォ トレフト		임무지역 이탈, 추락	
지대공 미사일 간	상하각, 좌우각	경사각	위협회피	유도미사일 교전 결과	

- 강화학습 요소
 - State 무인전투기의 위치 표현

200x400의 전장에서 무인전투기의 위치를 표현하는 방법

방	·법	데이터 표현	표현범위	차원	학습 특징
	raw [x, y]	[1.3, 2.5]	실수	2	학습 불가능 (x, y좌표값의 상관관계 학습)
기존 방법론 one-hot encoding		$200 rows \begin{bmatrix} 0 & 0 & \vdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & 1 & \vdots \\ 0 & 0 & \vdots & 0 \end{bmatrix}$	정수	200 × 400	학습 불가능 (차원의 저주)
	제안방법1	200 rows $\begin{bmatrix} 1\\ \vdots\\ 0\\ \vdots\\ 0 \end{bmatrix} \begin{bmatrix} 0\\ 1\\ \vdots\\ 0\\ \vdots\\ 0 \end{bmatrix}$ 400 rows	정수	200 + 400	학습 가능 (정수 값을 갖는 좌표만 가능)
신규 방법론	제안방법2	200 rows $\begin{bmatrix} 0.7 \\ 0.3 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0.5 \\ 0.5 \\ \vdots \\ 0 \end{bmatrix} 400 \text{ rows}$	실수	200 + 400	학습 가능 (실수 값을 갖는 좌표 가능)
	최종 제안방법	$20 \text{rows} \begin{bmatrix} 0.13 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} 0.25 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} 40 \text{rows}$	실수	20 + 40	효율적인 학습 가능 (실수 값을 갖는 좌표 가능)

- 강화학습 요소
 - State 무인전투기의 비행경로 표현
 - 연속적인 비행경로를 표현하기 위해서 현재 t시점에서의 단일 위치 정보보다 t-4부터 현재 시점 t까지의
 - 연속된 위치정보를 표현
 - 예를 들어, 전장 크기(200, 400, 100)에서 5 steps(t-4부터 t까지)을 표현하기 위해서는 (x,y,z) 좌표로는 4.0×10^7 차원이 필요하나, 제안 방법으로는 350 차원으로 표현이 가능
 - 무인 전투기의 단일 점 위치보다 비행경로를 state에 포함하면 강화학습 효율성을 증漿》

강화학습 요소

- State 무인전투기의 각도 표현
 - 무인전투기의 상하각, 경사각, 방위의 표현
 - One-hot-encoding 방식으로 표현(방위 예시) 정수에 한해서만 표현이 가능

360 rows
$$\begin{bmatrix} 1\\0\\0\\\vdots\\0 \end{bmatrix} \qquad \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix} \qquad \dots \qquad \begin{bmatrix} 0\\0\\0\\\vdots\\1 \end{bmatrix}$$
$$\psi = 1^{\circ} \qquad \psi = 2^{\circ} \qquad \cdots \qquad \psi = 360^{\circ}$$

- One-hot-encoding 방식의 문제점
 - 방위를 실수값으로 표현하면 학습이 이루어지지 않음
 - 비행시 방위 변화가 10°에서 350°로 이루어질 때 20°의 변화만 필요하나, one-hot-encoding에서는 340°의 변화가 필 하다고

인식됨

강화학습 요소

- State 무인전투기의 각도 표현
 - One-hot-encoding 적용에 따른 문제점 해결
 - 각도를 2차원 좌표로 표현
 - 반지름이 5인 원상의 좌표로 대응시켜 각도를 표현
 - 0°~360°의 값에 대해 모두 표현 가능

10 rows x 2 columns

- 강화학습 요소
- 최종 state
 - 무인전투기 정보
 - 무인전투기의 5 steps 동안의 비행경로(350 rows)
 - 무인전투기의 2 steps 동안의 상하각, 경사각, 방위 (10 rows x 2 columns x 3 angles x 2 steps)
 - 무인전투기의 속도
 - 지대공 미사일 정보
 - 무인전투기와 지대공 미사일 간의 거리(125 rows)
 - 무인전투기와 지대공 미사일 간의 상하각과 좌우각(10 rows x 2 columns x 2)

강화학습 요소

- Action
 - 정밀한 조작을 위해 작은 변화 값을 지닌 총 9가지 행동
 - 추력
 - 증가: 무인전투기의 속도가 증가하고 상승함
 - 유지: 무인전투기의 속도 및 상하각 유지
 - 감소: 무인전투기의 속도가 감소하고 강하함
 - 경사각
 - 증가: 선회 반경 감소, 선회율 증가
 - 유지: 경사각 유지
 - 감소: 선회 반경 증가, 선회율 감소

Action		추력				
		-0.05	0	0.05		
	-2.0	1	4	7		
경사각	0	2	5	8		
	2.0	3	6	9		

- 강화학습 요소
 - reward
 - 유도미사일을 회피하여 무장 투하 구역에 도착하도록 reward 디자인
 - 기존 거리 방식의 reward 디자인은 signal이 매우 약함
 - 현재 t시점에서 t+1시점으로 이동하는데 가능한 action에 따른 reward의 편차가 매우 적음
 - Action에 따른 reward의 차이가 커지도록 하는 reward 디자인 필요

	비행 중			유도미사일 교전		
상황	무장 투하 구역 도착전	무장 투하 구역 도착	성공	실패	이탈 및 추락	
Reward	[0, 1]	+5	+3	-5	-5	
참고사항	10 steps동안 action 유지					

- 3차원 전장에서의 강화학습 실험
 - 무인전투기의 속도, 추력, 경사각/상하각/방위에 대한 입력값의 범위를 설정
 - 유도미사일은 일반적인 유도 및 비행 성능으로써 비례상수를 3으로 고정
 - 비례상수가 1이면 유도 및 비행 성능이 낮고, 6이면 유도 및 비행 성능이 높음

대상	무인전투기				유도대	비사일	
특성	속도	추력	경사각	상하각	방위	비례상수	속도
초기값	0.289	50	0	1	0	3	1.02
가용범위	0.272 ~0.323	0 ~ 80	-90 ~ 90	-90 ~ 90	0 ~ 360	고정	고정
단위	km/s	kN	각도	각도	각도	없음	km/s

3차원 전장에서의 강화학습 실험

- 학습 과정(top view)
 - 60,000번 정도 episode 시도하면 수렴
 - 6시간 정도 후에 학습 완료
 - Reward가 학습이 진행되면서 증가
 - 학습이 진행되면서 목표지점까지 최단 거리 학습
- 학습 과정의 특이 사항
 - 학습 초반에는 선회를 하면서 reward를 증가
 - 그 후 더 좋은 reward를 위해 목표지점으로의 경로를 학습하기 시작하면서 격추 확률 증가
 - 미사일을 회피하는 가장 좋은 최단 경로와
 기동을학습하기 시작

- 3차원 전장에서의 강화학습 실험
 - 테스트 환경
 - 지대공 위협의 개수를 4개(학습) → 6개(테스트) 증가
 - 1,000번 episode 수행
 - 강건성 실험
 - 지대공 위협의 위치를 임의(random)로 조정
 - 유도미사일 발사 확률 조정(지대공 위협 반경의 중심으로 갈수록 유도미사일 발사 확률 증가)
 - 1,000번 episode 수행

- 3차원 전장에서의 강화학습 실험
- 실험 결과(임무 완수율)

테스트 환경(방공망 6개)	목표지점 도달 (%)
지대공 위협 위치 조정	99.8
지대공 위협 위치 조정 유도미사일 발사 확률 조정	99.7

- 유도미사일과 교전하는 시점에 Q-value의 변동성 증가
 - 중첩된 지대공 위협은 가운데로 침투할 수 있도록 경로를 선정
 - 연료량을 고려하여 최소한의 기동 및 경로 변경을 통해 침투를 시도

결론 및 의의

- 결론 및 의의
- 국내외 최초로 3차원 공간상에서 무인전투기의 유도미사일 회피 및 최단거리를 위한 강화학습 알고리즘 개발
 - 3차원 공간상에서의 무인전투기 및 유도미사일의 효율적인 상태 표현 제안
 - 복잡한 전장 상황(무인전투기 및 유도미사일의 비행 상태)을 강화 학습이 가능하도록 저차원의 vector로 표현
 - 단일 hidden layer로도 학습이 가능
 - 학습과 다른 테스트 전장 환경에서도 사전에 학습된 모델을 이용하여 성공적인 임무 달성이 가능함을 확인

감사합니다

[감사의 글] 본 연구는 국방과학연구소 순수기초연구(UD170043JD)의 재원으로 지원을 받아 수행되었음.