An Open-source Noise Dosimeter for Evaluating Exposure Metrics

Christopher Smalt, Chip Audette, Aaron Rodriguez Bioengineering Systems and Technologies

8 June, 2021

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. DCN # 43-3935-18

This research is sponsored by ONR under United States Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government or the Department of the Navy.

Disclaimer

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. DCN # 43-3935-18.

This material is based upon work supported by the Department of the Navy under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Navy.

© 2018 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Industrial Noise Types and Measurement Considerations

Continuous

Continuous engine or machine noise

Peak Levels ~ 120-130 dB Frequency Range ~ 4 kHz

Impulse

Industrial Impact Noise

Peak Levels ~ 150 dB SPL Max Frequency: 50+ kHz

Complex Mixture of Impulse and Continuous Noise

Levels: 90 – 130 dB SPL Frequency Range: 50+ kHz

Equal-Energy Hypothesis (LAeq8hr) may be under-predict damage from complex, nonGuassian noise (Hamernik et al., 2003)

Military Noise Types and Measurement Considerations

Continuous Continuous engine or machine noise

Level ~ 88dBA at 55 MPH Frequency Range ~ 4 kHz

Impulse Small weapons fire

Peak Levels ~ 160 dB SPL Max Frequency: 50+ kHz

Blast Grenades, TNT, large-caliber weapons

Peak Levels ~ 185+ dB SPL Frequency Range: 50+ kHz

Noise environments can vary widely, creating challenging measurement requirements with extreme sound pressure levels

Noise Dosimetry Spectrum

Sound Pressure Level (dB)

Up to 140 130-185 >185

- Continuous Noise
 - Large selection of wearable COTS devices available

- Impulse Noise
 - Few COTS options, typically large, stationary systems

Stationary recording systems

SPL Meter with high SPL 1/4" microphone

MIT LL Augmented COTS Recorder

- Blast
 - Wearable COTS exist
 - Only sensitive to large blasts
 - Does not capture impulses

Low-Cost Open-Source Noise Dosimeter

- 2-channel audio
- Teensy 3.6 processor
- 96 kHz sample rate
- MicroSD card
- Battery life ~ 8h
- Cost: ~\$150 ea

Smartphone App

Low-cost, flexible solution for noise dosimetry in continuous and complex noise environments where peak noise is are below 130 dBSPL

Tympan RevC Open-Source Audio Platform

- Tympan is a powerful open-source audio development platform
 - 2017 release, designed by Creare
 - Teensy 3.6 processor
- Well-suited for wearable applications
- Supports real-time extraction of standard or custom noise exposure metrics
- Limited capability for military impulse noise
 - Lacks circuitry to power high-SPL external microphones

Compatible with 1/8" external microphones

Microphones used in Evaluation of Smartphone SPL Meter Apps (Kardous and Shaw, 2016)

Device Comparison	Tympan RevC	Tascam DR-100mklll
Maximum Sample Rate	96 kHz	192 kHz
Programmable On-Board Processing	Yes	No
Approximate Cost	\$150	\$400
Num. Audio Channels	2	2
Phantom Power	No	Yes
Remote Data Retrieval	Bluetooth	No
Approximate Size	~5 in ³	~27 in ³

Noise Dosimetry Data Processing

Goal is to retain information necessary for noise exposure research

U.S. Patent No. 9,478,229, 10,074,397

Noise Dosimetry Data Processing

Basic Noise Exposure Metrics

Noise exposure logged to disk for off-line analysis and available for real-time monitoring via Bluetooth

Laboratory Validation

Measured noise levels for three co-located dosimeters

Tympan exposure levels are within 2 dB of other dosimetry systems. Fast data logging allows dynamic noise exposure to be captured.

Noise Dosimeter App

Stereo System

Background Level

Chris's Trumpet at 1m

Chris's Trumpet across the room

mNOISE Dosimeter Prototype

- Concept: Modify Tympan to support military impulse noise research
- Augment with dual-channel high-SPL microphones
 - Circuit modifications required to power mics
- Leverage existing MIT LL custom assemblies for in-ear and on-body measurements
- COTS microphone cost: ~\$3500 / pair

Smartphone App

etc.

Fort Bragg

M777 Charge 3&4 Rolling Thunder, Fort Bragg

181 dBP, ~3PSI, LAeq8hr = 113.6

Pros and Cons for Tympan-Based Noise Dosimetry

Pros

- Open source
 - Low cost
 - Customize processing on Arduino
 - Easy to program; Large body of open-source libraries and code
 - Supports research: record raw audio or non-standard metrics
- Wireless retrieval
 - Real-time monitoring or alerts
- Supports up to 2 external microphones
 - Simultaneous in-ear and onbody could enable hearing protection fit estimates

Cons

- Lacks circuitry to power high-SPL microphones
- Limited memory and processing
- Not ruggedized for outdoor use
 - Vulnerable to dust, rain, impact, etc

Summary

- Tympan supports comparable audio and offers the flexibility of on-board, real-time processing
 - Open-source dosimetry Arduino and Android app developed to monitor conventional noise metrics: LAeq, number of impulses, peak SPL
- New customized version developed (phantom power shield for additional microphone types)

https://github.com/Tympan/Tympan_Library/tree/master/examples/02-Utility/SDWriting_02_RemoteControlled

https://github.com/Tympan/Tympan_Library/tree/master/examples/02-Utility/SoundLevelMeter_2Chan

Acknowledgements

• MIT LL

- Paula Collins
- Shakti Davis
- Nick Malyska
- Thomas Quatieri
- Aaron Rodriguez
- Chris Smalt
- Lawrence Thul

Sponsors

- Office of Naval Research (ONR)
- U.S. Military Operational Medicine Research Program (MOMRP)
- Marine Expeditionary Rifle Squad (MERS)
- U.S. Army Research Institute of Environmental Medicine (USARIEM)
- U.S. Army Natick Soldier Research, Development and Engineering Center (NSRDEC)

Collaborators

- DoD Hearing Center of Excellence
- Walter Reed National Military Medical Center (Doug Brungart)
- National Institute for Occupational Safety and Health (NIOSH) - Bill Murphy and Chucri Kardous
- Creare LLC Chip Audette, Eric Yuan, Odile Clavier