Layer 4 : Transport Layer :

OSI Model এর 4th Layer হলো Transport Layer । Transport Layer এর মধ্যে দুটি গুরুত্বপূর্ণ কাজ করে।

1. Transmission Control Protocol (TCP): এটি কাজ করে Connection Oriented Method এ। Transport Layer দুইটি Host এর মধ্যে Connection Oriented যোগাযোগ স্থাপন করে। Connection Oriented যোগাযোগ বলতে বুঝায়, কোন Data যোগাযোগের আগেই দুইটি হোস্টকে সতর্ক করা এবং প্রস্তুত করা। এজন্য Transport Layer একটি সেশন তৈরী করে এবং সে সেশনের সমস্ত যোগাযোগ কঠোরভাবে নিয়ন্ত্রন করে।

http://ccna-cme.blogspot.in

Acknowledgment – আমরা কারো কাছে কোন জিনিস পাঠানোর পর ঐ জিনিস পেয়ে প্রাপক জিনিসটি পেয়েছে এই মর্মে যে নিশ্চিতকরণ বার্তা পাঠায় তাকেই Acknowledgment বলে। নেটওয়ার্ক যোগাযোগের ক্ষেত্রে Transport Layer ঠিক এই কাজটিই করে থাকে। এতে করে গ্রাহক হোস্টের নিকট পাঠানো সেগমেন্টগুলো ঠিকভাবে পৌছালো কি পৌছালো না তা নিশ্চিত হওয়া যায়।

Reliable Delivery – যেকোন কারণেই নেটওয়ার্কের মধ্য দিয়ে প্রবাহিত ডাটা প্যাকেটগুলো গ্রাহক হোস্টে পৌছানোর আগেই পথিমধ্যে নষ্ট হয়ে যেতে পারে বা হারিয়ে যেতে পারে। এজন্য প্রেরক ও গ্রাহক এর মধ্যে যোগায়োগের ব্যাঘাত ঘটে এবং যোগাযোগের ক্ষেত্রে সময় বেশি লাগে। এসমস্য থেকে পরিত্রানের জন্য Transport Layer গ্রাহক হোস্টের নিকট কোন প্যাকেট না পৌছালে তা পুনরায় পাঠায়। এতে করে নেটওয়ার্ক যোগাযোগ অনেক Reliable হয়।

TCP এর কাজ করার প্রক্রিয়াকে আমরা চারটি Step এ ভাগ করতে পারি।

Step 01 : Connection Establish করা ।

Step 02: Data Segmentation: TCP Data কে কয়েকটি ছোট ছোট Segment এ ভাগ করে।

Segment

TCP Header: Port No: 21, 80, 443 Data

Step 03: Data Sequencing: প্রতিটি Data এ Sequence Number বসানো। Receiver ও Sender হোস্টের মধ্যে যোগায়োগের জন্য একাধিক Network Path থাকতে পারে। এক একটি পাথে সময় কম বা বেশি লাগাটাই স্বাভাবিক। এক্ষেত্রে Sender হোস্ট থেকে পাঠানো Segment গুলো ঠিক ক্রমানুসারে না আসলে Receiver হোস্টের রিএ্যাসেম্বল প্রক্রিয়া বিলম্বিত হয়। এজন্য Transport Layer প্রেরিত Segment গুলোকে একটি সংখ্যা দ্বারা সিকোয়েন্স করে যাতে যথায়থ ক্রমানুযায়ী সেগমেন্টগুলো গ্রাহক হোস্টের নিকট পৌছায়।

Step 04: Windows Size: অনেক হোস্টের বিভিন্ন সীমাবদ্ধতা থাকে যেমনঃ মেমরী কম বা ব্যান্ডউইথ কম। একারণে অনেক সময় এমন পরিষ্থিতির উদ্ভব হতে পারে, যেমনঃ প্রেরক হোস্ট যে গতিতে ডাটা পাঠাচ্ছে গ্রাহ হোস্ট সে গতিতে ডাটা গ্রহণ করতে পারছে না। এতে করে নেটওয়ার্ক যোগাযোগ বিঘ্লিত হয়। এজন্য Transport Layer হোস্টদ্বয়ের মধ্যে ডাটা প্রবাহ নিয়ন্ত্রন করে থাকে।একে Flow Control বলে। Flow Control করার জন্য Windows Size নির্ধারণ করা হয়। Windows Size দুই ধরণের হতে পারে।

a). 01:01

Cell: 01711282944

b). 01:03

2. User Datagram Protocol (UDP): এটি কাজ করে Connection Less Method এ । শুধুমাত্র Data কে Segment করেই Send করা শুরু করে। Destination Host এ Data পৌছাবে কি পৌছাবে না তা এই প্রটোকলের মাধ্যমে নিশ্চিত করা যায় না। এর হেডারে সামান্য কিছু তথ্য থাকে তাই এই প্রটোকলের মাধ্যমে যোগাযোগের গতি গতি কিছুটা দ্রুততর হয়ে থাকে।

TCP ও UDP এর মধ্যে পার্থক্য:

ТСР	UDP	
Reliable	Unreliable	
Connection-oriented	Connectionless	
Segment retransmission and flow control through windowing	No windowing or retransmission	
Segment sequencing	No sequencing	
Acknowledge segments	No acknowledgement	

Port:

Protocol গুলোকে বোঝানোর জন্য Logical Address হিসাবে Port Number ব্যবহার করা হয়। Total Port Number 65536. Range = 0 to 65535.

এদের মধ্যে Registered Port হচ্ছে 0 থেকে 1023 পর্যন্ত, । মোট 1024 টি, এদেরকে Well known বলা হয়।

এবারে আমরা দেখবো Application Layer এর Protocol গুলো Transport Layer এ এসে কোন Protocol এর Under এ কাজ করে।

S.L.	Application Layer Protocol	Transport Layer Protocol	Port Number
1	FTP	ТСР	20, 21
2	TFTP	UDP	69
3	SSH	ТСР	22
4	Telnet	TCP	23
5	SMTP	ТСР	25
6	НТТР	TCP	80
7	HTTPS	ТСР	443
8	DNS	TCP/UDP	53
9	DHCP Server	UDP	67
10	DHCP Client	UDP	68
11	LDAP	ТСР	389
12	SMB	ТСР	445
13	POP3	ТСР	110

Layer 03: Network Layer:

নেটওয়ার্ক লেয়ারের কাজ হলো Logical Addressing ও Packet Delivery। এই লেয়ারে ডাটা প্যাকেটে Source IP Address ও Destination IP Address যোগ করে Encapsulation এর মাধ্যমে। এই লেয়ারে রাউটার ব্যাবহারিত হয়ে থাকে এবং রাউটিং টেবিল তৈরি করে থাকে। Router এর যাবতীয় কাজ এই Layer এ সম্পন্ন হয়।

Packet

Source IP Destination IP Segment

Layer 02: Data Link Layer:

এটি হলো ওএসআই মডেলের ২য় লেয়ার। Data Link Layer এর দুটি Sub Layer আছে।

- a). LLC Logical Link Control : এই Layer দুটি ডিভাইসের মধ্যে Logical Link তৈরি করে।
- b). MAC Media Access Control : এই Layer MAC Address নিয়ে কাজ করে। এই লেয়ারে Network Layer থেকে প্রাপ্ত Packet এর সাথে Source MAC ও Destination MAC যোগ করে Frame এ পরির্বতন করে।

FRAME

যে সকল Device MAC Address নিয়ে কাজ করে তারা হচ্ছে Data Link Layer এর Device। যেমনঃ Switch, Bridge, Network Interface Card (NIC). Error Checking, Error Filtering, Error Correction ইত্যাদি কাজ হয় Data Link Layer এ। Ethernet Protocol, HDLC, PPP, Frame Relay, STP, VTP, PAGP, LACP ইত্যাদি Protocol গুলো হচ্ছে Data Link Layer এর Protocol।

Layer 01: Physical Layer:

OSI মডেলের সর্ব নীচের Layer হলো Physical Layer । এই Layer ঠিক করে কোন পদ্ধতিতে এক ডিভাইসের সাথে আরেক ডিভাইসে Signal Transmit হবে, Electric Signal বা Data Bit Format কি হবে ইত্যাদি। এই লেয়ারে Data Bit to Bit Transfer হয়ে থাকে। এই লেয়ারে ব্যবহিত Devic হলো হাব। Physical Layer এ Media কাজ করে। যেমনঃ Cable, WIFI, Bluetooth, Radio Link.

OSI Encapsulation:

মূল Data Application Layer এ আসার পর Application Layer Data এর সাথে নিজস্ব Header যোগ করে এবং Presentation Layer এ Forward করে। এভাবে Data Link Layer পর্যন্ত Data এর সাথে প্রতিটি Layer তার নিজস্ব Header যোগ করে। কিন্তু Physical Layer কোনো Header যোগ করে না।

Receiver End এ Data Link Layer থেকে Application Layer পর্যন্ত Layer প্রতিটি তার নিজস্ব Header Remove করে Data উপরের দিকে Send করে।

