String Matching

Module 3

AoA-Even 2021-22

Introduction

- Naïve String Matching Algorithm
- String Matching with Finite Automata
- Knuth Morris Pratt Algorithm

Naïve String Matching Algorithm

- String matching or pattern recognition is a problem for searching a pattern to be searched within a text under certain conditions and find out all occurrences of it.
- Pattern and text will be in form of an array of characters drawn from finite alphabet Σ .
- Pattern is denoted as P[1...m] and Text as T[1...n] where m and n are their respective length such that $n \ge m \ge 1$.
- If pattern P occurs in Text after s shifts then P[1...m] = T[s+1...s+m] where $n-m \ge s \ge 0$.
- If P occurs after finite shift **s** in T, then we can say **s** is a valid shift, otherwise invalid shift

Naïve String Matching Algorithm

$$m = 5$$

Naïve String Matching Algorithm

```
NAIVE-STRING-MATCHER (T, P)

1  n = T.length

2  m = P.length

3  \mathbf{for} \ s = 0 \ \mathbf{to} \ n - m

4  \mathbf{if} \ P[1 ...m] == T[s+1 ...s+m]

5  print "Pattern occurs with shift" s
```

String Matching Algorithm

Algorithm	Preprocessing time	Matching time
Naive	0	O((n-m+1)m)
Rabin-Karp	$\Theta(m)$	O((n-m+1)m)
Finite automaton	$O(m \Sigma)$	$\Theta(n)$
Knuth-Morris-Pratt	$\Theta(m)$	$\Theta(n)$

String-matching algorithms, their preprocessing and matching times

Finite Automata

A finite automaton **M** is a 5-tuple (Q, Σ , δ , s, F):

Q: the finite set of states

Σ: the finite input alphabet

 δ : the "transition function of **M**" from $Q \times \Sigma$ to Q

 $s \in Q$: the start state

 $\mathbf{F} \subset \mathbf{Q}$: the set of final (accepting) states

How it works

A finite automaton accepts strings in a specific language. It begins in state q_0 and reads characters one at a time from the input string. It makes transitions from state q to $\delta(q a)$ based on these characters, and if when it reaches the end of the tape it is in one of the accept states, that string is accepted by the language.

How it works

- A finite automaton M induces a function ϕ , called **the final-state function**, from Σ^* to Q such that $\phi(w)$ is the state M ends up in after scanning the string w.
- Thus, M accepts a string w if and only if $\phi(w)\epsilon A$.
- We define the function ϕ recursively, using the transition function:

$$\phi(\varepsilon) = q_{0},$$

$$\phi(wa) = \delta(\phi(w), a) \text{ for } w \in \Sigma^*, a \in \Sigma$$

The Suffix Function

In order to properly search for the string, the program must define a **suffix function** (σ) which checks to see how much of what it is reading matches the search string at any given moment.

$$\sigma(x) = \max \{k : P_k \sqsupset x\}$$
 $P = abaabc$
 $P_1 = a$
 $P_2 = ab$
 $P_3 = aba$
 $P_4 = abaa$
 $\sigma(abbaba) = aba$

String-Matching Automata

- For a given pattern P, we construct a string-matching automaton in a preprocessing step before using it to search the text string.
- In order to specify the string-matching automaton corresponding to a given pattern P [1...m], we first define an auxiliary function σ , called **the suffix function** corresponding to P.
- A suffix function w.r.t. pattern P[1..m], s , is a mapping from Σ^* to $\{0,1,...,m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is a suffix of x: $\sigma(x)=\max\{k\colon P_k\sqsupset x\}$.

String-Matching Automata

- A suffix function is well defined since the empty string P_0 = ϵ is a suffix of every string.
- For example, P=ab, $P_0 = \varepsilon$, $\sigma(\varepsilon)=0$, $\sigma(ccaca)=1$, $\sigma(ccab)=2$.
- For P[1..m], $\sigma(x)$ =m if and only if P $\supset x$ (* a valid shift *). The whole pattern is the suffix of x.

String-Matching Automata

• For any pattern P of length m, we can define its string-matching automata:

$$Q = \{0,...,m\} \text{ (states)}$$

$$q_0 = 0 \text{ (start state)}$$

$$F = \{m\} \text{ (accepting state)}$$

• The transition function δ is defined by the following equation, for any state q and character a:

$$\delta(q,a) = \sigma(P_q a)$$

• We define $\delta(q,a) = \sigma(P_q a)$ because we want to keep track of longest prefix of the pattern P that has matched the string T so far.

String-Matching Automata

- We consider the most recently read characters of T.
- In order, for a substring of T (let's say the substring ending at T[i]) to match some prefix P_j of P, this prefix P_j must be a suffix of T_i .
- Suppose that $q = \phi(T_i)$, so that after reading T_i , the automaton is in state q.
- We design the transition function δ so that this state number, q, tells us the length of the longest prefix of P that matches a suffix of T_i . That is, in state q, $P_q \supset T_i$ and $q = \sigma(T_i)$.
- Whenever q=m, all m characters of P match a suffix of Ti, and so we have found a match.
- Thus, since ϕ (Ti) and σ (Ti) both equal q, we shall see that the automaton maintains the following invariant:

$$\phi$$
 (Ti) and σ (Ti)

Finite-Automaton-Matcher

The simple loop structure implies a running time for a string of length n is O(n).

However: this is only the running time for the actual string matching. It does not include the time it takes to compute the transition function.

```
FINITE-AUTOMATON-MATCHER(T, \delta, m)

1 n \leftarrow \operatorname{length}[T]

2 q \leftarrow 0

3 for i \leftarrow 1 to n

4 do q \leftarrow \delta(q, T[i])

5 if q = m

6 then s \leftarrow i - m

7 print "Pattern occurs at shift" s
```

Computing the Transition Function

```
Compute-Transition-Function (P,\Sigma)
      m \leftarrow length[P]
2
      For q \leftarrow 0 to m
4
            do for each character a \in \Sigma
                   do k \leftarrow \min(m+1, q+2)
                                repeat k \leftarrow k-1
                                             until P_k \supset P_q a
                                \delta(q,a) \leftarrow k
      return \delta
9
```

This procedure computes $\delta(q,a)$ according to its definition. The loop on line 2 cycles through all the states, while the nested loop on line 3 cycles through the alphabet. Thus, all state-character combinations are accounted for. Lines 4-7 set $\delta(q,a)$ to be the largest k such that $P_k \supset P_q a$.

Example:

- P= a b a b a c a
- q= 3 (implies text is :a b a) (step 2)
- $a \leftarrow \Sigma$ (step 3)
 - k = min(7+1, 3+2)=5, k-1=4, (steps 4,5)
 - $p_4 \supset p_3.a$? No. $k \leftarrow k-1=3$ (step 5)
 - $p_3 \supset p_2.a ? Yes; \delta(2,a) \leftarrow 3 \quad (steps 6,7)$
- $b \leftarrow \Sigma$ (step 3)
 - k = min(7+1, 3+2)=5, k-1=4, (steps 4,5)
 - $p_4 = p_3.b ? Yes; \delta(3,b) = 4$ (steps 6,7)
- Similarly for $c \leftarrow \Sigma$; $\delta(3,c) = 0$

Compute-Transition-Function (P,Σ) $m \leftarrow length[P]$ For $q \leftarrow 0$ to mdo for each character $a \in \Sigma$ do $k \leftarrow \min(m+1, q+2)$ repeat $k \leftarrow k-1$ until $P_k \supset P_q a$ $\delta(q,a) \leftarrow k$ return δ

1

3

4

5

6

7

2

9

- This procedure builds $\delta(q,a)$ is a straight-forward way by definition. It considers all states q and all characters in Σ .
- For each combination, to find the the largest k such that $P_k \supset P_q a$. The worst case time complexity is $O(m^3|\Sigma|)$

```
Compute-Transition-Function (P,\Sigma)
m \leftarrow length[P]
For q \leftarrow 0 to m
       do for each character a \in \Sigma
             do k \leftarrow \min(m+1, q+2)
                          repeat k \leftarrow k-1
                                       until P_k \supset P_q a
                          \delta(q,a) \leftarrow k
return \delta
```

KMP Algorithm

- KMP is the first linear time algorithm for string matching.
- Prevents re examination of previously matched characters.
- This algorithm avoids computing the transition function δ altogether, and its matching time is $\theta(n)$ using just an auxiliary function π .
- $\pi[q]$ (Prefix Table ot LPS Table) stores information that is needed to compute transition function $\delta(q,a)$ but that does not depend on a.
- array $\pi[q]$ has only m entries, whereas δ has $\theta(m | \Sigma|)$.

KMP Algorithm

```
KMP-MATCHER(T, P)
 1 \quad n = T.length
 2 m = P.length
   \pi = \text{Compute-Prefix-Function}(P)
                                              // number of characters matched
 4 \quad q = 0
    for i = 1 to n
                                              // scan the text from left to right
         while q > 0 and P[q + 1] \neq T[i]
 6
                                              // next character does not match
             q = \pi[q]
 8
         if P[q + 1] == T[i]
             q = q + 1
                                              // next character matches
10
         if q == m
                                              // is all of P matched?
11
             print "Pattern occurs with shift" i - m
             q = \pi[q]
12
                                              // look for the next match
```

KMP Algorithm

```
COMPUTE-PREFIX-FUNCTION (P)
```

```
1 \quad m = P.length
2 let \pi[1..m] be a new array
3 \quad \pi[1] = 0
4 k = 0
    for q = 2 to m
        while k > 0 and P[k+1] \neq P[q]
 6
            k = \pi[k]
   if P[k+1] == P[q]
            k = k + 1
        \pi[q] = k
10
11
    return \pi
```

The running time of COMPUTE-PREFIX-FUNCTION is $\Theta(m)$