

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Batch: B1 Roll No: 16010121045

Experiment No. 6

Title: Implement contrast stretching of a digital image.

Objective: To learn & understand contrast stretching.

Expected Outcome of Experiment:

CO	Outcome
CO4	Design & implement algorithms for digital image enhancement, segmentation & restoration.

Books/ Journals/ Websites referred:

- 1. http://www.mathworks.com/support/
- 2. www.math.mtu.edu/~msgocken/intro/intro.html.
- 3. R. C.Gonsales R.E.Woods, "Digital Image Processing", Second edition, Pearson Education
- 4. S.Jayaraman, S Esakkirajan, T Veerakumar "Digital Image Processing "Mc Graw Hill.
- 5. S.Sridhar, "Digital Image processing", oxford university press, 1st edition."

Pre Lab/Prior Concepts:

Contrast stretching (often called normalization) is a simple image enhancement technique that attempts to improve the contrast in an image by `stretching' the range of intensity values it contains to span a desired range of values, *e.g.* the the full range of pixel values that the image type concerned allows. It differs from the more sophisticated histogram equalization in that it can only apply a *linear* scaling function to the image pixel values. As a result the `enhancement' is less harsh.

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

The locations of (r_1,s_1) and (r_2,s_2) control the shape of the transformation function.

- If $r_1 = s_1$ and $r_2 = s_2$ the transformation is a linear function and produces no changes.
- If r₁=r₂, s₁=0 and s₂=L-1, the transformation becomes a thresholding function that creates a binary image.
- Intermediate values of (r₁,s₁) and (r₂,s₂) produce various degrees of spread in the gray levels of the output image, thus affecting its contrast.

Generally, $r_1 \le r_2$ and $s_1 \le s_2$ is assumed.

Implementation steps with screenshots:

```
c = imread('img.png');
c_gray = rgb2gray(c);
c_final = c_gray;
alpha = 0.4;
beta = 5.5;
gamma = 0.5;
for i = 1:length(c_gray)
  for j = 1:height(c_gray)
     if c_{gray}(j,i) < 50
        c_{final(j,i)} = c_{final(j,i)}*alpha;
     elseif 50 < c_gray(j,i) && c_gray(j,i) < 150
        c_final(j,i) = c_final(j,i)*beta;
     else
        c_{final(j,i)} = c_{final(j,i)}*gamma;
     end
  end
end
```

SOMAIYA VIDYAVIHAR UNIVERSITY K J Somaiya College of Engineering

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

subplot(2, 3, 1); imshow(c); title('Original Image'); subplot(2, 3, 2); imshow(c_gray); title('Gray Image'); subplot(2, 3, 3); imshow(c_final); title('Final Image');

Original Image

Gray Image

Conclusion:-

Implemented contrast stretching of a digital image.

Post Lab Descriptive Questions

- 1. Thresholding function in contrast stretching creates
 - a) binary image
 - b) high quality image
 - c) enhanced image
 - d) low quality image
- 2. When is the contrast stretching transformation a linear function, for r and s as grayvalue of image before and after processing respectively?
 - a) r1 = s1 and r2 = s2
 - r1 = r2, s1 = 0 and s2 = L 1, L is the max gray value allowed
 - r1 = 1 and r2 = 0c)
 - None of the mentioned d)
- 3. Which gray-level transformation increase the dynamic range of gray-level in the image?

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

- a) Power-law transformations
- b) Negative transformations
- c) Contrast stretching
- d) None of the mentioned
- 4. When is the contrast stretching transformation a thresholding function, for r and s as gray-value of image before and after processing respectively?
 - a) r1 = s1 and r2 = s2
 - b) r1 = r2, s1 = 0 and s2 = L 1, L is the max gray value allowed
 - c) r1 = 1 and r2 = 0
 - d) None of the mentioned
- 5. What condition prevents the intensity artifacts to be created while processing with contrast stretching, if r and s are gray-values of image before and after processing respectively?
 - a) r1 = s1 and r2 = s2
 - b) r1 = r2, s1 = 0 and s2 = L 1, L is the max gray value allowed
 - c) r1 = 1 and r2 = 0
 - d) $r1 \le r2$ and $s1 \le s2$