Layer-skipping connections facilitate training of layered networks using equilibrium propagation.

Jimmy Gammell Sae Woo Nam Adam N. McCaughan

July 28, 2020

Motivation

Seek to implement deep learning in neuromorphic analog hardware

Motivation

- Seek to implement deep learning in neuromorphic analog hardware
- ► Want learning framework requiring simple hardware

Motivation

- Seek to implement deep learning in neuromorphic analog hardware
- Want learning framework requiring simple hardware
 - ▶ Neurons and connections perform few distinct tasks

 Equilibrium propagation: a biologically motivated learning framework

- Equilibrium propagation: a biologically motivated learning framework
 - Gradient descent on cost function (alternative to backpropagation)

- Equilibrium propagation: a biologically motivated learning framework
 - Gradient descent on cost function (alternative to backpropagation)
 - Energy-based networks, e.g. continuous Hopfield network

- Equilibrium propagation: a biologically motivated learning framework
 - Gradient descent on cost function (alternative to backpropagation)
 - Energy-based networks, e.g. continuous Hopfield network
- First phase of training: free phase

- Equilibrium propagation: a biologically motivated learning framework
 - Gradient descent on cost function (alternative to backpropagation)
 - Energy-based networks, e.g. continuous Hopfield network
- First phase of training: free phase
 - Evolve to equilibrium for input

- Equilibrium propagation: a biologically motivated learning framework
 - Gradient descent on cost function (alternative to backpropagation)
 - Energy-based networks, e.g. continuous Hopfield network
- First phase of training: free phase
 - Evolve to equilibrium for input
 - Prediction: output activations at equilibrium

Second phase of training: weakly-clamped phase

- Second phase of training: weakly-clamped phase
 - Perturb output activations towards target output

- Second phase of training: weakly-clamped phase
 - Perturb output activations towards target output
 - ► Evolve to equilibrium

- Second phase of training: weakly-clamped phase
 - Perturb output activations towards target output
 - Evolve to equilibrium
- Differences between equilibrium states can be used to compute gradient

► Advantageous due to simplicity of neurons and connections

- ► Advantageous due to simplicity of neurons and connections
 - One computation in both phases of training

- Advantageous due to simplicity of neurons and connections
 - One computation in both phases of training
 - One type of information to transmit in both phases of training

- Advantageous due to simplicity of neurons and connections
 - One computation in both phases of training
 - One type of information to transmit in both phases of training
 - Biologically-plausible (relative to backpropagation)

- Advantageous due to simplicity of neurons and connections
 - One computation in both phases of training
 - ▶ One type of information to transmit in both phases of training
 - ▶ Biologically-plausible (relative to backpropagation)
 - Implementable in neuromorphic analog hardware

Problem: vanishing gradients in layered networks

- Problem: vanishing gradients in layered networks
 - Slow training

- Problem: vanishing gradients in layered networks
 - Slow training
 - Bit-depth issues

- Problem: vanishing gradients in layered networks
 - Slow training
 - Bit-depth issues
- Need to solve deep networks better than shallow networks

- Problem: vanishing gradients in layered networks
 - Slow training
 - Bit-depth issues
- Need to solve deep networks better than shallow networks
- Not yet solved in simple, biologically-plausible manner

Original paper: independent learning rates for each layer

- Original paper: independent learning rates for each layer
 - Increase with depth to compensate

- Original paper: independent learning rates for each layer
 - Increase with depth to compensate
- Unappealing for following reasons:

- Original paper: independent learning rates for each layer
 - Increase with depth to compensate
- Unappealing for following reasons:
 - 1. More hyperparameters to tune

- Original paper: independent learning rates for each layer
 - Increase with depth to compensate
- Unappealing for following reasons:
 - 1. More hyperparameters to tune
 - Inconvenient in neuromorphic hardware

- Original paper: independent learning rates for each layer
 - Increase with depth to compensate
- Unappealing for following reasons:
 - 1. More hyperparameters to tune
 - Inconvenient in neuromorphic hardware
 - Seems unlikely in biological systems

- Original paper: independent learning rates for each layer
 - Increase with depth to compensate
- Unappealing for following reasons:
 - 1. More hyperparameters to tune
 - 2. Inconvenient in neuromorphic hardware
 - 3. Seems unlikely in biological systems
- Problem can be mitigated by instead using topological modification based on layer-skipping connections

Our solution: layer-skipping connections

► Vanishing gradient problem can be mitigated with layer-skipping connections

Our solution: layer-skipping connections

- Vanishing gradient problem can be mitigated with layer-skipping connections
- Topology inspired by small-world networks

Original layered topology

► From original paper

Original layered topology

- ► From original paper
- Per-layer learning rates

Our topological modifications

Starting point: original topology

- Starting point: original topology
- One learning rate for all layers

Hidden layers fully connected

Consider each connection

- Consider each connection
- Remove with probability p

 For each removed connection, randomly connect a different pair

- For each removed connection, randomly connect a different pair
- No connections within input or output layers

Results: training error of layered network with per-layer learning rates

Baseline performance: network from original paper

Results: training error of layered network with per-layer learning rates

- Baseline performance: network from original paper
- Per-layer learning rates

Results: training error of layered network with single global learning rate

Network with one global learning rate

Results: training error of layered network with single global learning rate

- Network with one global learning rate
- ► Training slows down

Results: training error of network with our topology

 Network with our topology (still one global learning rate)

Results: training error of network with our topology

- Network with our topology (still one global learning rate)
- Trains significantly faster than layered network

Results: training error of network with our topology

- Network with our topology (still one global learning rate)
- Trains significantly faster than layered network
- Performance similar to original network

Results: vanishing gradient in layered network with single global learning rate

 Vanishing gradient problem when one learning rate is used

Results: vanishing gradient in layered network with our topology

 Our topology mitigates vanishing gradient problem

Results: vanishing gradient in layered network with our topology

- Our topology mitigates vanishing gradient problem
- ➤ Shallowest weights train faster due to lack of layer-skipping connections to target

Our topology mitigates vanishing gradient problem

- Our topology mitigates vanishing gradient problem
- Avoids issues with per-layer rates

- Our topology mitigates vanishing gradient problem
- Avoids issues with per-layer rates
 - 1. Only two new hyperparameters; constant with depth

- Our topology mitigates vanishing gradient problem
- Avoids issues with per-layer rates
 - 1. Only two new hyperparameters; constant with depth
 - 2. Small-world networks have been observed in biological brains

- Our topology mitigates vanishing gradient problem
- Avoids issues with per-layer rates
 - 1. Only two new hyperparameters; constant with depth
 - 2. Small-world networks have been observed in biological brains
 - 3. Easy to implement in networks with configurable connectivity

- Our topology mitigates vanishing gradient problem
- Avoids issues with per-layer rates
 - 1. Only two new hyperparameters; constant with depth
 - 2. Small-world networks have been observed in biological brains
 - 3. Easy to implement in networks with configurable connectivity
- Good solution where simplicity, biological plausibility important

► Try on harder datasets (e.g. CIFAR, ImageNet) where depth is very important

- ► Try on harder datasets (e.g. CIFAR, ImageNet) where depth is very important
- Effect of p on test error

- ► Try on harder datasets (e.g. CIFAR, ImageNet) where depth is very important
- Effect of p on test error
- Effectiveness on deeper networks

- ► Try on harder datasets (e.g. CIFAR, ImageNet) where depth is very important
- ► Effect of *p* on test error
- Effectiveness on deeper networks
- ► Try training a network with added layer-skipping connections, then removing them afterwards

Acknowledgments

- Sonia Buckley
- Zach Grey
- Adam N. McCaughan
- Sae Woo Nam
- Alex Tait

