

Leaders in parallel software development tools

Allinea Unified environment

More time computing, less time in tools

Agenda

14:30 – 14:45 : Introduction to Allinea tools in University of Luxembourg

14:45 – 15:45 : Getting started with Allinea DDT (hands-on)

15:45 – 16:30 : Getting started with Allinea MAP (hands-on)

16:30 – 17:30 : Allinea open discussion and day 2 closing.

Discover the new tool "Allinea Performance Reports"!

Try Allinea tools with your own codes!

And now...

Let's talk about us!

New technologies, more parallelism

Need to dive into the code?

- A modern integrated environment for HPC developers
- Supporting the lifecycle of application development and improvement
 - Allinea DDT: Productively debug code
 - Allinea MAP: Enhance application performance
- Designed for productivity
 - Consistent easy to use tools
 - Fewer failed jobs
- Available at University of Luxembourg
 - Allinea Unified Supercomputing on 64 procs with accelerator support

Trivial 16k processes wave equation code running on Titan

Generates...
1 TB of data in 60 seconds

Which is...
133 Gbit/s

This means...
6 days to transfer data from a 12 hour run

graduate's optic nerve

Attacking Visual Scalability

Common horizontal axis

Aggregate across all processes

Highlight imbalance visually

Always refer to source code

Statistic sampling or tracing? Complementary approaches

Optimize with Allinea MAP

- Characterize performance at-scale with a lightweight tool
- See which lines of code are hotspots
- Identify common problems at once

Prepare strategy with Allinea MAP

- Pass more obscure problems to an expert
- Identify loop(s) to instrument
- Identify performance counter(s) to record

Record traces

- Retrieve low level details
 - without generating huge traces
 - without huge overheads

Integrated with Allinea DDT

Use Allinea MAP to find a bottleneck

Flick to Allinea DDT to understand it

Compare variables, expressions, call paths

High memory usage? Use Allinea DDT!

Common interface and settings files

Debugging in practice The usual method

Allinea DDT helps to understand

Who had a rogue behavior ?

Merges stacks from processes and threads

Where did it happen?

Allinea DDT leaps to source automatically

How did it happen?

- Detailed error message given to the user
- Some faults evident instantly from source

Why did it happen?

- Unique "Smart Highlighting"
 - Coloring differences and changes
- Sparklines comparing data across processes

Summary

- To "make" science quickly, all HPC aspects need to be accessible
 - Tools need to be usable to avoid wasting time
 - Provided information needs to be adequate
- Allinea DDT and Allinea MAP: 2 sides of the same coin
 - Unified profiling and debugging to fix or optimize code
 - Integrates new features to help reduce your time developing code

- BONUS: Allinea Performance Reports for the HPC users
 - New product released a few weeks ago will be available soon at Uni Luxembourg!
 - Understand application behaviour quickly

Leaders in parallel software development tools

Hands-on workshop

In the beginning was the Word

1- Connect to the front-end node:

```
$ ssh -Y -p 8022 <username>@access-gaia.uni.lu
```

2- Get the training package

```
$ cp /path/to/archive/allinea_wshop.tar.gz $WORK/
```

3- Connect on a compute nodeSetup the environment

```
$ oarsub -I
```

4- Setup the environment

```
$ cd $WORK
```

\$ tar xvfz \$WORK/allinea_wshop.tar.gz

\$ module load OpenMPI/1.6.5-GCC-4.7.2 DDT

NOTE: in order to use GCC-4.8.3 (relies on DWARF4), Allinea tools version 4.2 or later is required!

5- Read instructions

\$ evince allinea_wshop/exercise1/handout_ex1.pdf

Leaders in parallel software development tools

Thank you

Your contacts:

Technical Support team :

- Sales team:

support@allinea.com

sales@allinea.com

www.allinea.com

Understand cluster usage efficiency

- Monitors application behavior to provide answers:
- Are the applications running on the cluster efficient?
- Are there software or hardware bottlenecks affecting performance?
- Is the combination of application parameters optimal?
- What cluster/scale should the user choose for his job?
- Effortless one-touch reports:

mpirun -n 42 ./my_executable argument1

becomes

perf-report mpirun -n 42 ./my_executable argument1

Fully supported in x86_64 environments

Better performance quickly and easily

effective transfer rate. This may be caused by contention for the flexystem or inefficient access patterns. Use an I/O profile to investigate which write calls are affected. No instrumentation needed No need for recompilation or source code Perfect for ISV applications Less than 5% runtime overhead Fully scalable Run regularly – or in regression tests Explicit and usable output with hints

