TP Pattern Matching

10) $\Sigma = \{a,b\}$, Est Aceptable = A = len("aabab") = 5

Estado	a	b
0	1	0
1	2	0
2	2	3
3	4	0
4	2	5
5	1	0

i	_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
T[i]	1	а	а	а	b	а	b	a	a	b	a	a	b	a	b	а	а	b
Estado	0	1	2	2	3	4	5	1	2	3	4	2	3	4	5	1	2	3

11) Se usa un algoritmo de AEF, se arma la función a través de el patrón P, y se empieza a recorrer la cadena T normalmente. Mientras recorremos T, iremos guardando la posición de T donde se llega al mayor estado. Para al final devolver (mayorPosicion - estado(mayorPosicion))

```
Renzo Davila
```

```
12) \label{eq:defAEFMatrix} \begin{split} \text{def AEFMatrix}(P, \Sigma) \colon & \\ & \text{for q in range}(\text{len}(P)) \colon \\ & \text{for e in } \Sigma \colon \\ & \delta(q, e) = \sigma(Pq \; e) \\ & \text{return } \delta \end{split} \label{eq:defAEF} \\ \text{def AEF}(T, P) \colon & \\ & f = \text{AEF}(P, T, \Sigma) \\ & \text{for i in range}(\text{len}(T)) \colon \\ & q = f(q, T[i]) \end{split}
```

if q == len(P):

return "Se encontro patron en " i-len(P)