INDIAN INSTITUTE OF TECHNOLOGY INDORE

MA 203 Complex Analysis and Differential Equations-II
Autumn Semester
Assignment – CA 5

- 1. Find the zeros and their orders for the following functions:
 - (a) $z^2(e^{z^2}-1)$

Ans: z = 0, order 4

(b) $z^2 + 9$

Ans: $z = \pm 3i$ are zeros of order 1

(c) $\frac{z^2+9}{z^4}$

Ans: $z = \pm 3i$ are zeros of order 1

(d) $z \sin z$

z=0 (order 2), $z=k\pi$ (order 1)

- 2. Let f(z) be analytic function on $N(0;1) = \{z \in \mathbb{C} : |z| < 1\}$ and f(x) = 0 for all $x \in (0,1)$. Then show that f(z) = 0 for all $z \in N(0;1)$.
- 3. Show that there does not exists any analytic function f(z) on N(0;1) such that $f(x) = |x|^3$ for $x \in (-1,1)$.
- 4. Let D be a bounded domain that is enclosed by the closed contour C. Let f be analytic in D and continuous on C. Let U = Re f. Then show that U cannot attain its maximum value in D, unless f is a constant function.
- 5. Show that a function u which is harmonic function in a simply connected bounded domain cannot have a maximum in the domain.
- 6. At what point in the region $|z-z_0| \le 1$ does $|e^z|$ attain its maximum value? Find this maximum value. Ans: At $z=z_0+1$, maximum value $=e^{Re(z_0)+1}$
- 7. Let f(z) be analytic at z_0 and $f(z_0) \neq 0$. Then show that

$$g(z) = \frac{f(z)}{(z - z_0)^m}$$

has a pole of order m at z_0 .

8. Let z_0 be a pole of order m. Then

$$\lim_{z \to z_0} (z - z_0)^k f(z) = \begin{cases} l, & k = m, \\ 0, & k > m, \\ \infty, & k < m. \end{cases}$$

for some $l \neq 0$.

- 9. Which of the following singularities are removable/pole.
 - (a) $\frac{\sin z}{z^2 \pi^2}$, $z = \pi$
 - (b) $\frac{\sin z}{(z-\pi)^2}$, $z = \pi$
- 10. Discuss the singularity of the functions $\frac{1}{\sin z}$ and $\frac{1}{\sin \frac{1}{z}}$ at z=0.
- 11. Discuss the singularities of the following functions:
 - $(a) \ \frac{1}{z-z^3}$

Ans: $z = 0, \pm 1$, poles of order 1

(b) $\frac{z^4}{1+z^4}$

Ans: $z = \frac{1 \pm i}{\sqrt{2}}, \frac{-1 \pm i}{\sqrt{2}}$, poles of order 1

(c) $\frac{1}{(1-c)^2}$	Ans: $z = 1$, poles of order 2
(d) $\frac{e}{1+}$	Ans: $z = i, -1$, poles of order 1
(e) e ⁻	Ans: $z = 0$, essential
$(f) \frac{\cos z}{z}$	z = 0 pole of order 2
$(g) \frac{\sin z}{z^2}$	z = 0 pole of order 1
(h) $\frac{\sin z}{z}$	z = 0, removal
(i) tai	$z = (2k+1)\pi/2$, pole of order 1
(j) sin	$\frac{1}{z}$ $z = 1$, essential

- 12. Prove that if the function f has zero of order $k, k \geq 2$ at $z = z_0$, then f' has zero of the order k-1 at $z=z_0$.
- 13. Let D_1 and D_2 be two domains such that $D_1 \subseteq D_2$. Let f be an analytic function on D_2 such that f(z) = K for all $z \in D_1$. Then show that f(z) = K for all $z \in D_2$.
- 14. Let f be a non-constant analytic function in |z| < R and $M(r) = \max_{|z|=r} |f(z)|$. Then show that M(r) is a strictly increasing function of r in [0, R].
- 15. Let D be a bounded domain that is enclosed by the closed contour C. Let f be a nonconstant analytic function in D and continuous on C. Suppose |f(z)| = constant on C. Then f has at least one zero in D.
- 16. Is there a polynomial P(z) such that $P(z)e^{\frac{1}{z}}$ is an entire function? Justify your answer!
- 17. Prove that if the function f has pole of the order k at $z=z_0$, then f' has pole of the order k + 1 at $z = z_0$.

- × --