MODELI RAČUNARSTVA - JEZIČNI PROCESORI 1 Siniša Srbljić, Sveučilište u Zagrebu

- 1. UVOD
- 2. REGULARNI JEZICI
- 3. KONTEKSTNO NEOVISNI JEZICI
- 4. REKURZIVNO PREBROJIVI JEZICI
- 5. KONTEKSTNO OVISNI JEZICI
- 6. RAZREDBA (TAKSONOMIJA) JEZIKA, AUTOMATA I GRAMATIKA

5. KONTEKSTNO OVISNI JEZICI

5.1. KONTEKSTNO OVISNA GRAMATIKA

5.2. LINEARNO OGRANIČEN AUTOMAT LOA, LBA

4.3. SVOJSTVA KONTEKSTNO OVISNIH JEZIKA

5. KONTEKSTNO OVISNI JEZICI

DEFINICIJA

- zasniva se na konteksto ovisnoj gramatici:
 - jezik **jest** kontekstno ovisan
 - ako i samo ako postoji kontekstno ovisna gramatika koja ga generira
- time je definirana istovjetnost KOJ i KOG:
 - za bilo koji kontekstno ovisni jezik
 - moguće je izgraditi kontekstno ovisnu gramatiku koja ga generira
 - i obrnuto!

KONTEKSTNO OVISNI JEZICI

KLASA

- Klasa KOJ je pravi podskup RekJ
- većina jezika su zapravo KOJ i teško je naći RekJ
 - npr. univerzalni jezik L_u i dijagonalni jezik L_d
 - pokazan je RekJ koji nije KOJ

5.1. Kontekstno ovisna gramatika

DEFINICIJA KOG

- -G = (V, T, P, S) ima oblik produkcija $\alpha \rightarrow \beta$ ograničenih:
 - broj znakova s desne strane je veći ili jednak broju znakova s lijeve strane
 - niz α mora biti neprazan niz
- tada je G kontekstno ovisna gramatika
- naziv dolazi zbog oblika produkcija: $\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$, β neprazan
- zamjena A moguća je samo ako je ispunjen "kontekst" α_1/α_2

Kontekstno ovisna gramatika

PRIMJER KOG

5.2. Linearno ograničeni automat LOA

5.2.1. Konstrukcija LOA za jezik zadan KOG

5.2.2. Konstrukcija KOG za jezik zadan LOA

5.2. Linearno ograničeni automat LOA

DEFINICIJA LOA (LBA)

- posebnim znakovima€ i \$ ograničava se traka
- zabranjuje se pomak glave izvan označenog dijela
- to je nedeterministički TS koji koristi samo dio trake s nizom w

Linearno ograničeni automat LOA

FORMALNA DEFINICIJA LOA

- zadaje se osmorkom: LOA = $(Q, \Sigma, \Gamma, \delta, q_0, \in, \$, F)$
- LOA M prihvaća jezik L(M)

$$L(M) = \left\{ w \middle| w \in (\Sigma \setminus \{ \in , \$ \}) * i q_0 \in w \$ \underset{M}{\overset{*}{\succ}} \alpha q \beta ; q \in F \right\}$$

- zahtjeva se da LOA stane kad prihvati w (slično TS)
- € i \$ nisu dio ulaznog niza
- ako je moguće izgraditi deterministički LOA, DLOA kaže se da je L deterministički kontekstno ovisni jezik
- pod LOA podrazumijeva se nedeterministički LOA

Linearno ograničeni automat LOA

NAZIV LOA

- nastao na osnovi svojstva:
 - ako je duljina radne trake TS M ograničena
 - za bilo koji w linearnom funkcijom f(w)
- moguće je izgraditi istovjetni TS M'
 - koji koristi samo onaj dio trake na koji je napisan w
- vrijedi svojstvo sažimanja radne trake TS za konstantni faktor

5.2.1.Konstrukcija LOA za jezik zadan KOG

KONSTRUKCIJA LOA IZ KOG

- ako KOG G = (V, T, P, S) generira KOJ L(G), $\varepsilon \notin L$
- moguće je izgraditi LOA M: L(M) = L(G)
- postupak je sličan gradnji TS za GNP
 - LOA M koristi dva traga ulazne trake
 - u gornji trag LOA napiše se niz €w\$
 - na početak drugog traga LOA M zapiše početni nezavršni znak S
 - za prazni niz ε LOA stane i ne prihvati niz

Konstrukcija LOA za jezik zadan KOG

KONSTRUKCIJA LOA IZ KOG

- za neprazni w LOA simulira gramatiku G
 - na donjem tragu ispisuje nizove gramatike G
 - uspoređuje generirani niz sa zadanim nizom w
- obzirom da su produkcije iz KOG
 - s lijevom stranom kraćom od desne
- LOA nikad neće koristiti dio trake duži od |w|
- ako se generira niz |w|<|α|, rad LOA se priekida jer se sigurno ne može dobiti traženi niz w

5.2.2. Konstrukcija KOG za jezik zadan LOA

KONSTRUKCIJA KOG IZ LOA

- ako LOA M prihvaća KOJ L(M)
- postoji KOG G = (V, T, P, S)
 koja generira KOJ L(G), ε∉L: L(M) = L(G)
- postupak je sličan gradnji GNP za zadani TS

5.3. Svojstva kontekstno ovisnih jezika

5.3.1. Unija, nadovezivanje i Kleene

5.3.2. Presjek i komplement

5.3.3. Odlučivost kontekstno ovisnih jezika

5.3.4. Primjer RekJ koji nije KOJ

UNIJA

- unija KOJ jest KOJ
- neka KOG $G_1 = (V_1, T_1, P_1, S_1)$ i $G_2 = (V_2, T_2, P_2, S_2)$ generiraju KOJ $L(G_1)$ i $L(G_2)$, $V_1 \cap V_2 = \emptyset$
- gradimo $G_3 = (V_3, T_3, P_3, S_3)$ koja generira $L(G_3) = L(G_1) \cup L(G_2)$
 - $V_3 = V_1 \cup V_2 \cup \{S_3\}; S_3 \notin V_1 \cup V_2$
 - $T_3 = T_1 \cup T_2$
 - $P_3 = P_1 \cup P_2 \cup \{S_3 \to S_1 | S_2\}$
- postupak je sličan gradnji KNG za uniju:
 - nakon prelaza u S₁ |S₂
 - dalji rad primjenjuje produkcije samo jedne gramatike

NADOVEZIVANJE

- nadovezivanje KOJ jest KOJ
- neka KOG $G_1 = (V_1, T_1, P_1, S_1)$ i $G_2 = (V_2, T_2, P_2, S_2)$ generiraju KOJ $L(G_1)$ i $L(G_2)$, $V_1 \cap V_2 = \emptyset$
- gradimo $G_4 = (V_4, T_4, P_4, S_4)$ koja generira $L(G_4) = L(G_1)L(G_2)$
 - $V_3 = V_1 \cup V_2 \cup \{S_3\}; S_3 \notin V_1 \cup V_2$
 - $T_3 = T_1 \cup T_2$
 - $P_3 = P_1 \cup P_2 \cup \{S_3 \rightarrow S_1S_2\}$
- postupak je sličan gradnji KNG za nadovezivanje:
 - nakon prelaza u S₁S₂
 - po dijelovima se primjenjuju produkcije samo jedne gramatike

NADOVEZIVANJE

– problem: $T_1 \cap T_2 \neq \emptyset$ pa u nizu:

$$S_4 \underset{G_4}{\Longrightarrow} S_1 S_2 \underset{G_1}{\Longrightarrow} \gamma S_2 \underset{G_2}{\Longrightarrow} \gamma \delta$$

postoji mogućnost da je

- sufiks od $\gamma \alpha_1$ i
- prefiks od δ Aα₂
- te da postoji produkcija $\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$
- primjenom te produkcije dobije se niz koji **nije** član jezika L(G₄)

NADOVEZIVANJE

- uvodimo ograničenje:
 - na lijevoj strani produkcija su isključivo nezavršni znakovi
- produkcije preuredimo na zahtjevani oblik
- dobije se gramatika G'
 - dodaju se nezavršni znakovi A_a
 - dodaju se produkcije $A_a \rightarrow a$
 - dodaju se produkcije α' → β'
 na osnovu α → β zamjenom a sa A_a
- sa lijeve strane su samo nezavršni znakovi i V_1 ∩ V_2 = \emptyset
- slijedi da spajanjem međunizova ne može nastati lijeva strana neke od produkcija

• KLEENE L+

- KOJ su zatvoreni obzirom na Kleene L⁺
- neka KOG $G_1 = (V_1, T_1, P_1, S_1)$ generira KOJ $L(G_1)$
- gradimo $G_5 = (V_5, T_5, P_5, S_5)$ koja generira $L(G_5) = L(G_1)^+$
- konstuiramo pomoćnu gramatiku G' $V_1 \cap V' = \emptyset$ zamjenom nezavršnih znakova gramatike G_1
- slijedi
 - $V_5 = V_1 \cup V' \cup \{S_5, S'_5\}; S_5, S'_5 \notin V_1; S_5, S'_5 \notin V'$
 - $T_5 = T_1$
 - $P_5 = P_1 \cup P' \cup \{S_5 \to S_1S'_5 | S, S'_5 \to S'S_5 | S'\}$

5.3.2. Presjek i komplement

PRESJEK

presjek KOJ jest KOJ

KOMPLEMENT

komplement deterterminističkog KOJ jest deterministički KOJ

5.3.3. Odlučivost KOJ

- ODLUČIVOST
 - bilo koji KOJ jest RekJ

5.3.4. Primjer RekJ koji nije KOJ

PODSKUP

klasa KOJ jest pravi podskup RekJ