Deep Learning Workshop

Convolutional Neural Networks

Instructor: Aaron Low

HELP University, Faculty of Computing and Digital Technology

Computer Vision

Image Representation

Image Representation

Convolution Operation

Convolutional Layer GIF from https://blog.usejournal.com/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9?gi=3faa9b8cfe4c

Convolution Operation: Edge Detection

Filter of Kerner															
10	10	10	0	0	0										
10	10	10	0	0	0			♦		Ī	0	30	30	0	
10	10	10	0	0	0		1	0	-1		0	30	30	0	
10	10	10	0	0	0	*		0	-1	=	0	30	30	0	
10	10	10	0	0	0			0	-1		0	30	30	0	
10	10	10	0	0	0										
						•	L								

Filter or Kernel

Convolution Operation: Edge Detection

Feature Learning

Deep Learning is Representation/Feature Learning

Convolutional Neural Network: Convolutional Layer

• No need to hand choose filters just learn the correct weights

Convolutional Neural Networks: Max Pool

Max Pool layer from https://developers.google.com/machine-learning/practica/image-classification/convolutional-neural-networks

Convolutional Neural Networks: Padding

Padding gif from http://deeplearning.net/software/theano/tutorial/conv arithmetic.html

Convolutional Neural Networks: Strided Convolution

Strided convolution gif from http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

Convolutional Neural Networks: Dilated Convolution

Dilated convolution gif from http://deeplearning.net/software/theano/tutorial/conv arithmetic.html

Convolution Output

$$H_{out} = \frac{H_{in} + 2 \text{ x padding}[0] - \text{kernel_size}[0]}{stride[0]} + 1$$

$$W_{out} = \frac{W_{in} + 2 \text{ x padding}[1] - \text{kernel_size}[1]}{stride[1]} + 1$$

Convolution Output

- H_{out} and W_{out} given by the previous formula
- depth given by number of filters (can be any number decided by user)

Receptive Field

Receptive Field

- The key parameter to associate an output feature to an input region is the of the convolutional network
- The size of the region in the input that produces the feature

Convolutional Neural Networks: Putting it all together

Convolutional Network from https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Transfer Learning

Multitask Learning

Popular Conv Net: AlexNet

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.

Popular Conv Net: VGG

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

Popular Conv Net: ResNet

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Popular Conv Net: Inception Net

Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Comparison of Networks on ImageNet Classification

Computer Vision Tasks: Image Classification

- ImageNet is a popular dataset
- 1.2 million training images
- 100 thousand testing images
- 1000 classes

Computer Vision Tasks: Object Detection

- Detect one or multiple object bounding boxes in an image
- Typically multi-tasked with image classification

Object Detection Methods: YOLO (You Only Look Once)

• Single-stage detector

Object Detection Methods: Faster R-CNN

Multi-stage detector

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.

Computer Vision Tasks: Segmentation

Computer Vision Tasks: Segmentation

- Semantic Segmentation: Detects each pixel and overall object category
- Instance Segmentation: Detects each pixel and identifies individual instances of the object

Semantic Segmentation

Instance Segmentation

Instance Segmentation Methods: Mask R-CNN

The Mask R-CNN framework for instance segmentation

He, Kaiming, et al. "Mask r-cnn." Proceedings of the IEEE international conference on computer vision. 2017.

Computer Vision Tasks: Pose Estimation

Pose Estimation Methods: OpenPose

Cao, Zhe, et al. "OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields." arXiv preprint arXiv:1812.08008 (2018).

Computer Vision Tasks: Style Transfer

1: Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arXiv preprint arXiv:1508.06576 (2015).

Computer Vision Tasks: Image Generation

Popular Networks: Generative Adversarial Networks

Discriminator tries to distinguish real from fake

Generator tries to fool the **Discriminator**

^{1:} Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

Evaluation Metrics: Intersection over Union

Evaluation Metrics: Precision and Recall

Evaluation Metrics: Precision and Recall

• Plot for varying positive prediction thresholds

Evaluation Metrics: F1 Score

- Single metric considering both precision and recall
- Good for single metric evaluation
- Gives equal importance to precision and recall (this may cause issues when you regard precision more over recall or vice versa)

$$F1 = 2 \left(\frac{precision \ x \ recall}{precision + recall} \right)$$

Questions?