15.095: Machine Learning under a Modern Optimization Lens

Lecture 3: Robust Linear Regression

Outline

- Robust Linear Regression
- Examples of Uncertainty Sets
- Sequivalence of Robustness and Regularization
- Solving Problems
- 5 Experimental Evidence
- Classification
- Summary

Robustness View of Regression

• In reality, data is uncertain — **X** and **y** are not known exactly.

We will focus on X.

e.g.
$$\mathbf{X} = \begin{pmatrix} 1.33 & -83.5 \\ -10.1 & 0.7 \\ 2.2 & 12.4 \end{pmatrix} \iff \widetilde{\mathbf{X}} = \begin{pmatrix} 1.2 & -83.5 \\ 10.1 & 1.7 \\ 2.0 & 12.3 \end{pmatrix}$$

Why Does Robustness Matter?

Let's go back to the diabetes example from previous lecture:

n = 350 patients and p = 55:

- 10 baseline variables x_i (age, sex, cholesterol levels, etc.)
- Second-order interactions $x_i \cdot x_j$ for i < j
- Predicting hemoglobin measure in one year

Using ordinary least squares, the linear model coefficients are

	Age	Sex	LDL	HDL	
Original data	0.05	-0.20	2.91	-2.75	
Perturbed data	0.05	-0.20	-2.62	2.18	

If you randomly perturb the 10 baseline measurements by just 1%, the coefficients can change dramatically.

Robustness View of Linear Regression

Account for uncertainty by considering $\mathbf{X} + \mathbf{\Delta}$ for all $\mathbf{\Delta} \in \mathcal{U} \subseteq \mathbb{R}^{n \times p}$

The set $\mathcal U$ is an **uncertainty set** which captures our belief about the noise in the data $\mathbf X$.

Objective:

$$\begin{split} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_q & \longrightarrow & \min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_q \\ & & & & \\ & & & \\ \max_{\boldsymbol{\Delta} \in \mathcal{U}} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}\|_q & \longrightarrow & \min_{\boldsymbol{\beta}} \max_{\boldsymbol{\Delta} \in \mathcal{U}} \|(\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta})\|_q \end{split}$$

where $\|\beta\|_q := (\sum_i |\beta_i|^q)^{1/q}$ for $q \in [1, \infty]$.

Regularization View of Linear Regression

For
$$q, r \in \{1, 2\}$$
:

$$\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_q + \lambda \|\boldsymbol{\beta}\|_r$$

Examples:

- q = r = 2: regularized least squares (ridge regression)
- q = 2, r = 1: Lasso

Uncertainty sets

Some examples of possible uncertainty sets:

1. Frobenius norm sets:

$$\mathcal{U}_{F(q)} = \{ \mathbf{\Delta} \in \mathbb{R}^{p \times n} \mid \|\mathbf{\Delta}\|_{q-F} \le \lambda \},$$

where
$$\|\mathbf{\Delta}\|_{q-F} := \left(\sum_{ij} |\Delta_{ij}|^q\right)^{1/q}$$
.

2. **Induced** norm sets:

$$\mathcal{U}_{I(r,q)} = \{ \mathbf{\Delta} \in \mathbb{R}^{p \times n} \mid \|\mathbf{\Delta}\|_{r,q} \leq \lambda \},$$

where
$$\|\mathbf{\Delta}\|_{r,q} := \max_{\mathbf{x}} \frac{\|\mathbf{\Delta}\mathbf{x}\|_q}{\|\mathbf{x}\|_r}$$
.

Example of Robust Problem

An example of robust linear regression problem:

$$\mathcal{U} = \mathcal{U}_{F(2)} = \{ \boldsymbol{\Delta} \in \mathbb{R}^{n \times p} \mid \|\boldsymbol{\Delta}\|_{2-F} \leq \lambda \}$$

$$\min_{\boldsymbol{\beta}} \max_{\boldsymbol{\Delta} \in \mathcal{U}} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}\|_q = \min_{\boldsymbol{\beta}} \max_{\substack{\widetilde{\mathbf{X}}:\\ \|\widetilde{\mathbf{X}} - \mathbf{X}\|_{2-F} \leq \lambda}} \|\mathbf{y} - \widetilde{\mathbf{X}}\boldsymbol{\beta}\|_q$$

Perturbations Δ constrained to have $\sum_{ij} \Delta_{ij}^2 \leq \lambda^2$.

Example of Robust Problem

Another example of robust linear regression problem:

$$\mathcal{U} = \mathcal{U}_{I(1,2)} = \{ \boldsymbol{\Delta} \in \mathbb{R}^{n \times p} \mid \|\boldsymbol{\Delta}\|_{1,2} \leq \lambda \} = \{ \boldsymbol{\Delta} \mid \|\boldsymbol{\Delta}\mathbf{x}\|_2 \leq \lambda \|\mathbf{x}\|_1 \text{ for all } \mathbf{x} \}$$

Can show that

$$\mathcal{U} = \{ \mathbf{\Delta} \mid \text{every column } \mathbf{\Delta}_i \text{ has } \|\mathbf{\Delta}_i\|_2 \leq \lambda \}$$

Therefore,

$$\min_{\boldsymbol{\beta}} \max_{\boldsymbol{\Delta} \in \mathcal{U}} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}\|_{q}$$

allows for **feature-wise** perturbations Δ (in contrast with $\mathcal{U}_{F(2)}$).

Equivalence of robustness and regularization

Theorem

1. For
$$\mathcal{U}_{F(q)} = \{ \mathbf{\Delta} \in \mathbb{R}^{n \times p} \mid \|\mathbf{\Delta}\|_{q-F} \leq \lambda \}$$
,

$$\min_{\pmb{\beta}} \max_{\pmb{\Delta} \in \mathcal{U}_{F(q)}} \| \mathbf{y} - (\mathbf{X} + \pmb{\Delta}) \pmb{\beta} \|_q = \min_{\pmb{\beta}} \| \mathbf{y} - \mathbf{X} \pmb{\beta} \|_q + \lambda \| \pmb{\beta} \|_{q^*},$$

where
$$\frac{1}{q} + \frac{1}{q^*} = 1$$
.

2. For
$$\mathcal{U}_{I(r,q)} = \{ \mathbf{\Delta} \in \mathbb{R}^{n \times p} \mid \|\mathbf{\Delta}\|_{r,q} \leq \lambda \}$$
,

$$\min_{\boldsymbol{\beta}} \max_{\boldsymbol{\Delta} \in \mathcal{U}_{l(r,q)}} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}\|_q = \min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_q + \lambda \|\boldsymbol{\beta}\|_r$$

Examples of Equivalence

Theorem

For
$$\mathcal{U}_{F(q)} = \{ \mathbf{\Delta} \in \mathbb{R}^{n \times p} \mid \|\mathbf{\Delta}\|_{q-F} \leq \lambda \},$$

$$\min_{\mathbf{\beta}} \max_{\mathbf{\Delta} \in \mathcal{U}_{F(q)}} \|\mathbf{y} - (\mathbf{X} + \mathbf{\Delta})\mathbf{\beta}\|_{q} = \min_{\mathbf{\beta}} \|\mathbf{y} - \mathbf{X}\mathbf{\beta}\|_{q} + \lambda \|\mathbf{\beta}\|_{q^{*}},$$

where
$$1/q + 1/q^* = 1$$
.

An example of equivalence:

$$\mathcal{U} = \mathcal{U}_{F(2)} = \{ \mathbf{\Delta} \in \mathbb{R}^{n \times p} \mid \|\mathbf{\Delta}\|_{2-F} \le \lambda \}$$

Using the theorem (with q = 2, so $q^* = 2$),

$$\min_{\boldsymbol{\beta}} \max_{\boldsymbol{\Delta} \in \mathcal{U}} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}\|_2 = \min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2 + \lambda \|\boldsymbol{\beta}\|_2.$$

Gives interpretation of ridge regression as protecting against **global** perturbations Δ with $\left(\sum_{ij} \Delta_{ij}^2\right)^{1/2} \leq \lambda$.

Examples of Equivalence

Theorem

$$\begin{aligned} \textit{For } \mathcal{U}_{\textit{I}(r,q)} &= \{ \boldsymbol{\Delta} \in \mathbb{R}^{n \times p} \mid \|\boldsymbol{\Delta}\|_{r,q} \leq \lambda \}, \\ & \min_{\boldsymbol{\beta}} \max_{\boldsymbol{\Delta} \in \mathcal{U}_{\textit{I}(r,q)}} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}\|_{q} = \min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{q} + \lambda \|\boldsymbol{\beta}\|_{r} \end{aligned}$$

Another example of equivalence:

$$\mathcal{U} = \mathcal{U}_{I(1,2)} = \{ \mathbf{\Delta} \in \mathbb{R}^{n \times p} \mid \|\mathbf{\Delta}\|_{1,2} \le \lambda \}$$

Using the theorem (with q = 2 and r = 1),

$$\min_{\boldsymbol{\beta}} \max_{\boldsymbol{\Delta} \in \mathcal{U}} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}\|_2 = \min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2 + \lambda \|\boldsymbol{\beta}\|_1.$$

Gives interpretation of Lasso as protecting against **feature-wise** perturbations Δ .

Proof Idea

Focusing on case when $\mathcal{U} = \mathcal{U}_{I(r,q)}$ and loss function is ℓ_q .

Using the norm properties, we have that

$$\|\mathbf{y} - (\mathbf{X} + \mathbf{\Delta})\boldsymbol{\beta}\|_q \le \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_q + \|\mathbf{\Delta}\boldsymbol{\beta}\|_q.$$

• Since $\|\Delta \beta\|_q \le \|\Delta\|_{r,q} \|\beta\|_r$ and for $\|\Delta\|_{r,q} \le \lambda$

$$\|\Delta\beta\|_q \leq \lambda \|\beta\|_r$$
.

Thus,

$$\|\mathbf{y} - (\mathbf{X} + \mathbf{\Delta})\boldsymbol{\beta}\|_q \le \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_q + \lambda \|\boldsymbol{\beta}\|_r.$$

ullet We can select a $oldsymbol{\Delta}^0 \in \mathcal{U}$ such that

$$\|\mathbf{y} - (\mathbf{X} + \mathbf{\Delta}^0)\boldsymbol{\beta}\|_q = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_q + \lambda \|\boldsymbol{\beta}\|_r.$$

(Check for yourself!)

Leads to

$$\max_{oldsymbol{\Delta} \in \mathcal{U}} \| \mathbf{y} - (\mathbf{X} + oldsymbol{\Delta}) oldsymbol{eta} \|_q = \| \mathbf{y} - \mathbf{X} oldsymbol{eta} \|_q + \lambda \| oldsymbol{eta} \|_r.$$

How do we solve the robust problems?

$$\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2 + \lambda \|\boldsymbol{\beta}\|_1$$

Rewrite as

$$\begin{aligned} & \min & & t + \lambda \|\boldsymbol{\beta}\|_1 \\ & \text{subject to} & & \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2 \leq t \end{aligned}$$

 $\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2 \le t$ is a quadratic constraint

 $\|\beta\|_1 = |\beta_1| + \ldots + |\beta_p|$ can be expressed with linear constraints using auxiliary variables **a**:

$$\beta_j \le a_j$$
 and $-\beta_j \le a_j$.

Specialized R codes available as well.

A Cutting Plane Approach

We can use the equivalence theorem to instead solve robust problems using cutting planes.

$$\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2 + \lambda \|\boldsymbol{\beta}\|_1 = \min_{\boldsymbol{\beta}} \max_{\boldsymbol{\Delta} \in \mathcal{U}_{l(1,2)}} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}\|_2$$

- **1.** Pick some $\Delta_1 \in \mathcal{U}$ and set $\mathcal{U}_1 = {\Delta_1}$.
- **2.** For t > 1, solve

$$\min_{\boldsymbol{\beta}} \max_{\boldsymbol{\Delta} \in \mathcal{U}_t} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}\|_2.$$

3. If solution β_t^* to Step 2 has

and go back to Step 2.

$$\max_{\boldsymbol{\Delta} \in \mathcal{U}_t} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}_t^*\|_2 < \max_{\boldsymbol{\Delta} \in \mathcal{U}} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}_t^*\|_2,$$

then set $\mathcal{U}_{t+1} := \mathcal{U}_t \cup \{\boldsymbol{\Delta}_t^*\}$, where $\boldsymbol{\Delta}_t^* \in \operatorname*{argmax} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}_t^*\|_2$

Real world data sets

- UCI Machine Learning Repository
- Data sizes:

Data set	n	p
Abalone	4177	9
Auto MPG	392	8
Comp Hard	209	7
Concrete	1030	8
Housing	506	13
Space shuttle	23	4
WPBC	46	32

Evaluation procedure

• Testing "Rob q-r" for $q, r \in \{1, 2\}$:

$$\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_q + \lambda \|\boldsymbol{\beta}\|_r$$

- Training, Validation, testing sets: 50%, 25%, 25%.
- ullet λ was chosen as the value giving the best mean squared prediction error on the validation set.

Effect of Robustness

Average out-of-sample mean squared error:

	Regular OLS	Rob 1-1	Rob 1-2	Rob 2-1 Lasso	Rob 2-2 Ridge
Abalone	5.74	5.67	5.65	5.63	5.53
Auto MPG	18.79	18.72	18.70	18.69	18.58
Comp Hard	2026.00	2014.32	1978.12	1965.75	1925.13
Concrete	132.47	131.46	131.32	131.08	129.31
Forest Fires	5526.00	5312.18	5229.14	4994.81	5266.40
Housing	39.80	39.54	39.49	39.42	39.07
Space shuttle	0.53	0.52	0.51	0.52	0.52
WPBC	4723.07	4676.20	4657.98	4630.19	4489.20

Robust Classification

Similar modifications can be made to create **robust** classification algorithms—address uncertainties in both features and labels.

- Binary classification problems:
 - Given data (\mathbf{x}_i, y_i) , i = 1, ... n, with features $\mathbf{x}_i \in \mathbb{R}^p$ and labels $y_i \in \{-1, +1\}$;
 - find a function $f: \mathbb{R}^p \to \{-1, +1\}$ to classify new data points.
- Maximum Likelihood Estimator with logistic loss function

$$\max_{\boldsymbol{\beta}, \beta_0} \sum_{i=1}^n -\log(1 + e^{-y_i(\boldsymbol{\beta}^T \mathbf{x}_i + \beta_0)}) \tag{1}$$

Summary

- Robustness improves regression.
- Robustness can be accomplished by adding regularization.
- The computational cost of achieving robustness is small.
- Regularized problems easily solvable in Jump.
- Can incorporate both sparsity and robustness into regression models (using techniques here and from Lecture 2).

