1D FEM CODE TO SOLVE GOVERNING EQUATION OF A BEAM SUBJECTED TO VARIOUS LOADS.

A project report submitted in the fulfillment of the requirement for the course.

AE675 INTRODUCTION TO FINITE ELEMENT METHODS

Professor

DR. P M MOHITE

Department of Aerospace Engineering

Submitted by

Suresh Ragireddy 231010079

Bala Bhanu Prakash G 231010027

First Year Postgraduates

Department of Aerospace Engineering, IIT Kanpur

Write a one-dimensional finite element code using Hermite cubic shape functions with the following details for the beam bending problem.

1. Uniform cross section: 1 cmX1 cm

2. Length of the beam: 10 cm

3. E = 200GPa

- 4. The code should be capable of handling the transverse loads of the type.
 - a. Concentrated/point load.
 - b. Uniformly distributed load
 - c. Point moments at the center of the beam length only
- 5. Further, it should be capable of applying the appropriate combination of boundary conditions at either of the ends as:
 - a. Specified transverse displacement.
 - b. Specified slope of the transverse displacement.
 - c. Shear force
 - d. Bending moment

Now, take appropriate values of loads as mentioned in Point # 4 above and perform the following finite element analysis using your code for 1, 4, 10, 50 and 100 elements.

- 1. Give continuous variation of transverse displacement and its slope.
- 2. Give continuous variation of shear force and bending moment.
- 3. Bending stress on the topmost line of beam along its entire length.

Discuss your results and verify those using Euler Bernoulli beam theory closed form solutions.

Test Case -1

- Cantilever beam of 10 cm length width $1\ cm^2$ cross-section, fixed at one end.
- End point load P = 3 kN applied at the free end.
- . Material's Young's modulus $E=200~{\rm GPa}$.

FEM Solution

x = 0 mm

x = 100 mm

Deflection

Bending Moment Diagram

Original Values Table (N, N-mm, mm):

	Nodal_Location_mm	Value	Direction
Max Deflection (mm)	100	0.006	{'Downward' }
Min Deflection (mm)	0	0	{'Downward' }
Max Bending Moment (N-mm)	0	300	{'Tension top'}
Min Bending Moment (N-mm)	100	0	{'Tension top'}
Max Shear Force (N)	18	3	{'Left' }
Min Shear Force (N)	96	3	{'Left' }

FEM Solution

Test Case -2

• Prismatic beam with a 1cm² cross-section and 10cm length, fixed at one end.

Beam Length (m)

- Material property: Young's modulus(*E*) of 200 GPa.
- Subject to a uniform load of 2 KN/m along its entire length.

Deflection

-20µ

-40u

-100µ

 -120μ

-140µ

Deflection (m)

Original Values Table (N, N-mm, mm):

	Nodal_Location_mm	Value	Direction
Max Deflection (mm)	100	0.14993	{'Downward' }
Min Deflection (mm)	0	0	{'Downward' }
Max Bending Moment (N-mm)	0	9996.7	{'Tension top'}
Min Bending Moment (N-mm)	100	0	{'Tension top'}
Max Shear Force (N)	0	199.97	{'Left' }
Min Shear Force (N)	100	0.033333	{'Left' }

Test Case -3

- Fixed beam with a $1\cos^2$ cross-section and $10\mathrm{cm}$ length, experiencing a uniform load q=2 KN/m.
- An additional point load P = 3 kN is applied at 20 mm from the fixed end.
- The beam's material has a Young's modulus (E) of 200 GPa.

Original Values Table (N, N-mm, mm):

Nodal_Location_mm	Value	Direction
100	4.3739	{'Downward' }
0	0	{'Downward' }
0	2.5e+05	{'Tension top'}
100	1.5e-06	{'Tension top'}
0	3200	{'Left' }
100	0.033329	{'Left' }
	100 0 0 100 0	100 4.3739 0 0 0 2.5e+05 100 1.5e-06 0 3200

Test Case -4

- Simply supported beam of length 10 cm with a cross-section of 1 cm²
- Point load P = 3 KN applied at the midpoint of the beam.
- Material property: Elastic modulus E = 200 GPa.

FEM Solution

Original Values Table (N, N-mm, mm):

	Nodal_Location_mm	Value	Direction
Max Deflection (mm)	50	9.37e-05	{'Downward' }
Min Deflection (mm)	100	0	{'Downward' }
Max Bending Moment (N-mm)	0	37.5	{'Tension top'}
Min Bending Moment (N-mm)	75	0	{'Tension top'}
Max Shear Force (N)	37	1.5	{'Left' }
Min Shear Force (N)	50	0	{'Left' }

Test Case -5

- Simply supported beam with a $1 \, \mathrm{cm}^2$ cross-section, 10cm in length, under a uniform distributed load (UDL) of $q=2 \, \mathrm{kN/m}$.
- A point load P = 3 kN is applied 30 mm from the right support.
- The beam material's Young's modulus is E = 200 GPa.

FEM Solution

Bending Moment Diagram

>riginal Values Table (N, N-mm, mm):

	Nodal_Location_mm	Value	Direction
Max Deflection (mm)	58	0.067273	{'Downward' }
Min Deflection (mm)	100	0	{'Downward' }
Max Bending Moment (N-mm)	100	45767	{'Tension top'}
Min Bending Moment (N-mm)	29	284	{'Tension top'}
Max Shear Force (N)	100	2452	{'Right' }
Min Shear Force (N)	69	610	{'Right' }

Test Case -6

- Cantilever beam of 10 cm length and 1 cm² cross-section, fixed at one end.
- Point load P = 3 kN applied 30 mm from the free end .
- Beam material has an elastic modulus E=200 GPa.

FEM Solution

Original Values Table (N, N-mm, mm):

	Nodal_Location_mm	Value	Direction	
Max Deflection (mm)	63	0.0001602	{'Downward' }	
Min Deflection (mm)	100	0	{'Downward' }	
Max Bending Moment (N-mm)	70	49.965	{'Compression top'}	
Min Bending Moment (N-mm)	100	0	{'Compression top'}	
Max Shear Force (N)	97	1.6905	{'Right' }	
Min Shear Force (N)	70	0.1905	{'Right' }	

Test Case -7

- Cantilever beam with a 1cm² cross-section and 10cm length, experiencing a 2kN/m uniform distributed load.
- A 3 KN point load is applied at a distance of 70 mm from the fixed support.
- Material property: Young's modulus E of 200 GPa

FEM Solution

Original Values Table (N, N-mm, mm):

	Nodal_Location_mm	Value	Direction
Max Deflection (mm)	62	0.16657	{'Downward' }
Min Deflection (mm)	100	0	{'Downward' }
Max Bending Moment (N-mm)	70	51315	{'Compression top'}
Min Bending Moment (N-mm)	100	0	{'Compression top'}
Max Shear Force (N)	100	1765.5	{'Right' }
Min Shear Force (N)	70	205.5	{'Right' }

Test Case -8

- Simply supported beam with a 1cm² cross-section and 10cm length, subjected to a 2 kN/m uniform distributed load.
- A point load of 3 kN is applied 20 mm from the right support.
- The beam material's Young's modulus is E = 200 GPa.

x = 0 mm

x = 100 mm

Original Values Table (N, N-mm, mm):

	Nodal_Location_mm	Value	Direction
Max Deflection (mm)	56	0.23255	{'Downward' }
Min Deflection (mm)	100	0	{'Downward' }
Max Bending Moment (N-mm)	79	49059	{'Compression top'}
Min Bending Moment (N-mm)	100	0	{'Compression top'}
Max Shear Force (N)	100	2500	{'Right' }
Min Shear Force (N)	79	542	{'Right' }

Test Case -9

- Simply supported beam of 10 cm length and 1 cm^2 cross-section \cdot
- Uniformly distributed load q = 2 kN/m across the entire span.
- Beam material has an elastic modulus E=200 GPa.

FEM Solution

Original Values Table (N, N-mm, mm):

	Nodal_Location_mm	Value	Direction
Max Deflection (mm)	50	0.015625	{'Downward' }
Min Deflection (mm)	100	0	{'Downward' }
Max Bending Moment (N-mm)	50	2499.7	{'Compression top'}
Min Bending Moment (N-mm)	100	0	{'Compression top'}
Max Shear Force (N)	0	100	{'Left' }
Min Shear Force (N)	50	0	{'Left' }