

Test Cases

No	Problem Type	Benchmark	No. of Inputs	No. of Objectives	No. of Constraints	Budget (Func. Eval)
1	Multi-Objective, unconstrained	ZDT 1	30	2	0	250
2	Multi-Objective, unconstrained	ZDT 2	30	2	0	250
3	Multi-Objective, unconstrained	ZDT 3	30	2	0	250
4	Multi-Objective, unconstrained	ZDT 6	10	2	0	250
5	Multi-Objective, expensive constraints	OSY Exp. Cons.	6	2	6	500
6	Multi-Objective, cheap constraints	OSY Cheap Cons.	6	2	6	500
7	Multi-Objective, unconstrained	Geartrain	4 - Discrete	2	0	1000
8	Single Objective, expensive constraints	G7	10	1	8	500
9	Unimodal, unconstrained	Rosenbrock d10	10	1	0	1000
10	Unimodal, unconstrained	Rosenbrock d50	50	1	0	1000
11	Multimodal, unconstrained	Shubert d10	10	1	0	1000
12	Multimodal, unconstrained	Shubert d30	30	1	0	1000
13	Multimodal, unconstrained	Shubert d60	60	1	0	1000
14	Ill-shaped, unconstrained	Michalewicz d10	10	1	0	1000
15	Ill-shaped, unconstrained	Michalewicz d30	30	1	0	1000
16	Ill-shaped, unconstrained	Michalewicz d60	60	1	0	1000
17	Multimodal, high dimensional, highly constrained	Mopta08 - in progress	124	1	68	2000

OASIS AI - ZDT1, 250 Func. Evals., Pareto Frontiers

OSY – (constraints expensive)

OASIS AI - OSY (constraints expensive), 500 Func. Evals., Pareto Frontiers, Feasible Designs

OSY – (constraints expensive) continued

OASIS AI - OSY (constraints expensive), 500 Func. Evals.

OSY – (constraints cheap)

OASIS AI - OSY (constraints cheap), 500 Func. Evals., Pareto Frontiers, Feasible Designs

OSY – (constraints cheap) continued

OASIS AI - OSY (constraints cheap), 500 Func. Evals.

Geartrain – Inputs discrete

Geartrain, 1000 Func. Evals., Pareto Frontiers

G7 – Single objective, expensive constraints OASIS AI

Inputs

Design Variables – x1 .. x10

Ranges

x1 [-10,10]

x10 [-10,10]

Python Script

$$f(\mathbf{x}) = x_1^2 + x_2^2 + x_1 x_2 - 14x_1 - 16x_2 + (x_3 - 10)^2 + 4(x_4 - 5)^2 + (x_5 - 3)^2 + 2(x_6 - 1)^2 + 5x_7^2 + 7(x_8 - 11)^2 + 2(x_9 - 10)^2 + (x_{10} - 7)^2 + 45$$

$$g_1(\mathbf{x}) = -105 + 4x_1 + 5x_2 - 3x_7 + 9x_8 \le 0$$

$$g_2(\mathbf{x}) = 10x_1 - 8x_2 - 17x_7 + 2x_8 \le 0$$

$$g_3(\mathbf{x}) = -8x_1 + 2x_2 + 5x_9 - 2x_{10} - 12 \le 0$$

$$g_4(\mathbf{x}) = 3(x_1 - 2)^2 + 4(x_2 - 3)^2 + 2x_3^2 - 7x_4 - 120 \le 0$$

$$g_5(\mathbf{x}) = 5x_1^2 + 8x_2 + (x_3 - 6)^2 - 2x_4 - 40 \le 0$$

$$g_6(\mathbf{x}) = x_1^2 + 2(x_2 - 2)^2 - 2x_1x_2 + 14x_5 - 6x_6 \le 0$$

$$g_7(\mathbf{x}) = 0.5(x_1 - 8)^2 + 2(x_2 - 4)^2 + 3x_5^2 - x_6 - 30 \le 0$$

$$g_8(\mathbf{x}) = -3x_1 + 6x_2 + 12(x_9 - 8)^2 - 7x_{10} \le 0$$

Outputs

Objectives – minimize f(x)

Expensive Constraints

g1(x) < 0

..

g8(x) < 0

G7 – No initial designs provided

Rosenbrock – Unimodal, unconstrained

$$f(x) = \sum_{i=1}^{d} [100(x_i^2 - x_{i+1})^2 + (x_i - 1)^2]$$

-10 \le x_i \le 10, d = # of variables

Rosenbrock d10

	f
Run1	6.919334
Run2	7.398033
Run3	6.864139
Run4	9.559364
Run5	7.855866
Run6	7.954235
Run7	9.264648
Run8	7.446289
Run9	7.967622
Run10	6.666425
Average	7.789595
Std.	0.922907
Median	7.651078

Rosenbrock d50

	f
Run1	222.6451
Run2	1079.161
Run3	1003.654
Run4	519.3808
Run5	916.0565
Run6	611.9465
Run7	644.763
Run8	1810.185
Run9	1041.664
Run10	2567.793
Average	1041.725
Std.	649.9294
Median	959.8552

Shubert – Multimodal, unconstrained

$$f(x) = \prod_{i=1}^{d} \sum_{j=1}^{5} j \cos((j+1)x_i + j)$$

 $x \in [-5.12, 5.12]; d = \# variables$

Shubert d10

Shubert d30

Shubert d60

Michalewicz – III-Shaped, unconstrained

$$f(x) = -\sum_{i=1}^{d} \sin(x_i) \sin^{2m}(\frac{ix_i^2}{\pi})$$

 $m = 10; x \in [0, \pi]; d = \# of \ variables$

Michalewicz d10

f

Run1	-7.852177076
Run2	-6.228031066
Run3	-6.734286674
Run4	-6.995044189
Run5	-8.032482593
Run6	-7.249619292
Run7	-6.654006129
Run8	-6.221074724
Run9	-7.551919436
Run10	-6.300118156
Average	-6.98E+00
Std.	6.36E-01
Median	-6.86E+00

Michalewicz d30

Run1 -15.88286757 Run2 -14.93024264 Run3 -15.93429641 Run4 -18.19228998 Run5 -14.26062751 Run6 -15.17177898 Run7 -14.6420262 Run8 -14.19045725 Run9 -16.85251075 Run10 -14.61121646 Average -1.55E+01

Std. 1.21E+00

Median -1.51E+01

Michalewicz d60

Run1 -23.04826589 -20.53611678 Run2 Run3 -24.985752 Run4 -21.20113662 -22.10367199 Run5 -20.13743591 Run6 -28.56081134 Run7 Run8 -24.59575895 -23.20783415 Run9 -21.81380351 Run10 -23.01905872 Average Std. 2.390931657 Median -22.57596894

Mopta08 – High dimensional, highly constrained OASIS AI

MOPTA08, a multi disciplinary mass minimization problem from GM*

- 124 variables and 68 expensive constraints
- Variables various thicknesses from car body
- Expensive Constraints Outputs from Vehicle Simulations
 - Front side rear crash,
 - Noise vibration,
 - Durability.
- Based on a real automotive problem
- A challenging, tightly constrained problem

Mopta08 - OASIS AI Accelerator Results

Mopta08 - OASIS AI Accelerator, 5 runs, Budget 2000, Convergence Plot Feasible Designs

WIP results by OASIS AI Accelerator, a R&D project to enhance OASIS AI robustness.

Thank You!

