1. Let $\{x_k\}$ be a convergent sequence in \mathbb{R} . Show that the set $\{x_1, x_2, \dots\}$ has zero content.

Defn. A set $Z \subset \mathbb{R}$ has zero content if for any $\epsilon > 0$ there is a finite collection of intervals $\{I_1, \ldots, I_N\}$ such that

- (a) $Z \subset \bigcup_{n=1}^{N} I_n$, and
- (b) the sum of the lengths of the I_n 's is less than ϵ .

Proof. Let $\epsilon > 0$ be given. Since $x_k \to L$ for some $L \in \mathbb{R}$, there exists a $K \in \mathbb{N}$ such that for all k > K $|x_k - L| < \epsilon/6$. Let

$$I_{K+1} = (L - \frac{\epsilon}{6}, L + \frac{\epsilon}{6}) \quad \text{and} \quad I_k = (x_k - \frac{\epsilon}{4K}, x_k + \frac{\epsilon}{4K}) \text{ for all } k \leq K.$$

Note that we have K many intervals of length $|I_k| = \epsilon/2K$ and one interval of length $|I_{K+1}| = \epsilon/3$. We get

$$|I_1| + \dots + |I_K| + |I_{K+1}| = K \frac{\epsilon}{2K} + \frac{\epsilon}{3} = \frac{5}{6} \epsilon < \epsilon,$$

thus the set $\{x_1, x_2, \dots\}$ has zero content.

- 2. Suppose that $f: S \to \mathbb{R}$ and $g: S \to \mathbb{R}$ are both uniformly continuous on S. Show that f+g is uniformly continuous on S. (Exercise. Try to do it under 4 minutes!)
- 3. A function g on \mathbb{R} to \mathbb{R}^q is periodic if there exists a positive number p such that g(x+p)=g(x) for every $x \in \mathbb{R}$. Show that a continuous periodic function is bounded and uniformly continuous on all of \mathbb{R} .

Proof: Let g be continuous and periodic on \mathbb{R} , so that g(x+p)=g(x) for every $x\in\mathbb{R}$. Fix $x_0\in\mathbb{R}$, and consider the interval $I = [x_0 - p, x_0 + p]$.

g is bounded on \mathbb{R} : Since I is compact g is bounded on I, so there exists $M \in \mathbb{R}$ such that

$$|g(x)| \leq M$$
 for every $x \in I$.

Let $y \in \mathbb{R}$, then there exists $k \in \mathbb{Z}$ such that $y + kp \in I$. \square So we have

$$|g(y)| = |g(y + kp)| \le M,$$

therefore q is a bounded function on \mathbb{R} .

g is uniformly continuous on \mathbb{R} : Since I is compact g is uniformly continuous on I. Let $\epsilon > 0$, then there exists $\delta > 0$ such that

$$|g(x) - g(y)| \le \epsilon$$
 whenever $|x - y| \le \delta$ and $x, y \in I$.

Take $\tilde{\delta} = \min\{\delta, p\}$. Let $x_1, x_2 \in \mathbb{R}$ with $x_1 \leq x_2$ wlog and $|x_1 - x_2| = x_2 - x_1 \leq \tilde{\delta}$.

There exists $y_1, y_2 \in I$ such that $g(x_1) = g(y_1)$ and $g(x_2) = g(y_2)$ with $|y_1 - y_2| = y_2 - y_1 \le \tilde{\delta}$.

Then

$$|g(x_1) - g(x_2)| = |g(y_1) - g(y_2)| \le \epsilon,$$

therefore g is a uniformly continuous function on \mathbb{R} .

Take $k = \frac{\lfloor x_0 - y \rfloor}{p}$, so that $x_0 - p \le y + kp \le x_0$; or $k = \frac{\lceil x_0 - y \rceil}{p}$, so that $x_0 \le y + kp \le x_0 + p$. Take $k = \frac{\lfloor x_0 - x_1 \rfloor}{p}$, so that $x_0 - p \le y_1 \le y_2 \le x_0 + p$ where $y_1 = x_1 + kp$ and $y_2 = x_2 + kp$