VARIABLES ALÉATOIRES CONTINUES

INTRODUCTION

Il arrive qu'une variable aléatoire puisse prendre n'importe quelle valeur sur \mathbb{R} ou sur un intervalle I de \mathbb{R} . On parle alors de **variable aléatoire continue**.

Pour une telle variable, les événements qui vont nous intéresser ne sont plus (X = 5), (X = 20), etc..., mais $(X \le 5)$, $(5 \le X \le 20)$, etc...

1. GÉNÉRALITÉS

DÉFINITION

Soit f une fonction **continue** et **positive** sur un intervalle I = [a; b] telle que

$$\int_{a}^{b} f(x) dx = 1.$$

On dit que X est une **variable aléatoire réelle continue de densité** f si et seulement si pour tout $x_1 \in I$ et tout $x_2 \in I$ $(x_1 \le x_2)$:

$$p(x_1 \leqslant X \leqslant x_2) = \int_{x_1}^{x_2} f(x) dx$$

EXEMPLE

La fonction f définie sur I = [0;2] par $f(x) = \frac{x}{2}$ est une fonction continue et positive sur I.

La fonction $F: x \longmapsto \frac{x^2}{4}$ est une primitive de f sur I, par conséquent :

$$\int_0^2 f(x) \, dx = \left[\frac{x^2}{4} \right]_0^2 = 1.$$

f est donc une **densité de probabilité**.

Soit X une variable aléatoire réelle à valeurs dans I de densité f, on a alors, par exemple :

$$P(1 \le X \le 1,5) = \int_{1}^{1,5} f(x) dx.$$

 $P(1 \le X \le 1,5)$ est donc l'aire (en u.a.) colorée ci-dessous :

Un calcul simple montre que $P(1 \le X \le 1, 5) = \left[\frac{x^2}{4}\right]_{1}^{1,5} = 0,3125.$

REMARQUES

- On peut étendre cette définition aux cas où l'une ou les deux bornes a et b sont infinies.

 Dans ce cas, on remplace la condition $\int_a^b f(x) dx = 1$ par une condition portant sur une limite; par exemple si b vaut $+\infty$, la condition $\int_a^b f(x) dx = 1$ deviendra $\lim_{y \to +\infty} \int_a^y f(x) dx = 1$
- Comme indiqué en introduction, les événements du type (X = k) ne sont pas intéressants car pour tout k appartenant à I, $p(X = k) = \int_{k}^{k} f(x) dx = 0$.
- On peut employer indifféremment des inégalités larges ou strictes :

$$p(x_1 < X < x_2) = p(x_1 \le X \le x_2).$$

DÉFINITION

L'espérance mathématique d'une variable aléatoire X qui suit une loi de densité f sur [a;b] est le réel noté E(X) défini par :

$$E(X) = \int_{a}^{b} x f(x) dx.$$

EXEMPLE

Si l'on reprend l'exemple de la fonction f définie sur I = [0;2] par $f(x) = \frac{x}{2}$, l'espérance mathématique est :

$$E(X) = \int_0^2 x f(x) dx = \int_0^2 \frac{x^2}{2} dx = \left[\frac{x^3}{6}\right]_0^2 = \frac{8}{6} = \frac{4}{3}.$$

2. LOI UNIFORME SUR UN INTERVALLE

DÉFINITION

On dit qu'une variable aléatoire X suit la **loi uniforme** sur l'intervalle [a; b] si sa densité de probabilité f est constante sur [a; b].

Cette densité vaut alors, pour tout réel $x \in [a; b]$:

$$f(x) = \frac{1}{b-a}.$$

EXEMPLE

La densité de la loi uniforme sur l'intervalle [0,2] est représentée ci-dessous :

Densité de la loi uniforme sur l'intervalle [0,2]

REMARQUE

Une primitive de la fonction $x \mapsto \frac{1}{b-a} \operatorname{sur} [a; b] \operatorname{est} x \mapsto \frac{x}{b-a}$.

On vérifie alors que : $\int_{a}^{b} \frac{1}{b-a} dx = \left[\frac{x}{b-a} \right]_{a}^{b} = 1.$

PROPRIÉTÉ

Si X suit une **loi uniforme** sur [a;b], alors pour tous réels c et d compris entre a et b avec c < d:

$$p(c \leqslant X \leqslant d) = \frac{d-c}{b-a}.$$

DÉMONSTRATION

En effet, si $a \le c < d \le b$ alors :

$$p(c \leqslant X \leqslant d) = \int_{c}^{d} \frac{1}{b-a} dx = \frac{d-c}{b-a}$$

THÉORÈME

L'espérance mathématique d'une variable aléatoire X qui suit une **loi uniforme** sur [a;b] est :

$$E(X) = \frac{a+b}{2}.$$

DÉMONSTRATION

La fonction $x \mapsto \frac{x^2}{2(b-a)}$ est une primitive de la fonction $x \mapsto \frac{x}{b-a}$ sur [a;b]; par conséquent :

$$E(X) = \int_{a}^{b} \frac{x}{b-a} dx$$

$$= \left[\frac{x^{2}}{2(b-a)} \right]_{a}^{b}$$

$$= \frac{b^{2} - a^{2}}{2(b-a)}$$

$$= \frac{(b-a)(b+a)}{2(b-a)}$$

$$= \frac{a+b}{2}.$$

3. LOI EXPONENTIELLE DE PARAMÈTRE LAMBDA

DÉFINITION

On dit qu'une variable aléatoire X suit une **loi exponentielle de paramètre** $\lambda > 0$ sur $[0; +\infty[$ si sa densité de probabilité f est définie sur $[0; +\infty[$ par :

$$f(x) = \lambda e^{-\lambda x}.$$

EXEMPLE

La densité de la loi exponentielle de paramètre $\lambda = 1,5$ est la fonction f définie sur $[0;+\infty[$ par $f(x) = 1,5e^{-1,5x}$.

Cette fonction est représentée ci-dessous :

REMARQUE

La fonction $x \mapsto -e^{-\lambda x}$ est une primitive de la fonction $x \mapsto \lambda e^{-\lambda x}$.

On vérifie alors que :

$$\int_0^{+\infty} \lambda e^{-\lambda x} dx = \lim_{t \to +\infty} \int_0^t \lambda e^{-\lambda x} dx$$
$$= \lim_{t \to +\infty} \left[-e^{-\lambda x} \right]_0^t$$
$$= \lim_{t \to +\infty} -e^{-\lambda t} + 1 = 1.$$

PROPRIÉTÉ

Si X suit une exponentielle de paramètre λ sur $[0; +\infty[$, alors pour tous réels positifs x_1 et x_2 :

•
$$p(x_1 \le X \le x_2) = e^{-\lambda x_1} - e^{-\lambda x_2}$$

• $p(X \ge x_1) = e^{-\lambda x_1}$.

DÉMONSTRATION

$$p(x_1 \leqslant X \leqslant x_2) = \int_{x_1}^{x_2} \lambda e^{-\lambda x} dx$$
$$= \left[-e^{-\lambda x} \right]_{x_1}^{x_2}$$
$$= e^{-\lambda x_1} - e^{-\lambda x_2}$$

La seconde égalité s'obtient alors en faisant tendre x_2 vers $+\infty$.

THÉORÈME

L'espérance mathématique d'une variable aléatoire X qui suit une **loi exponentielle** de paramètre λ est :

$$E(X) = \frac{1}{\lambda}$$

DÉMONSTRATION

Voir exercice: [ROC] Espérance mathématique d'une loi exponentielle &.

PROPRIÉTÉ

Soient X une variable aléatoire qui suit une exponentielle de paramètre λ et x et x_0 deux réels, alors :

$$p(X > x) = p_{(X > x_0)}(X > x + x_0)$$

On dit qu'une loi exponentielle est « sans vieillissement ».

COMMENTAIRE

Tout d'abord, rappelons que la notation $p_{(X>x_0)}(X>x+x_0)$ indique la probabilité (conditionnelle) de l'événement $(X>x+x_0)$ sachant que l'événement $(X>x_0)$ est réalisé.

Supposons que *X* modélise la durée de vie d'une machine.

- p(X > x) correspond à la probabilité qu'une machine « neuve » fonctionne pendant une durée supérieure ou égale à x;
- $p_{(X>x_0)}(X>x+x_0)$ est la probabilité qu'une machine, qui a déjà fonctionné pendant une durée x_0 , fonctionne encore pendant une durée supérieure ou égale à x.

Dans le cadre d'une loi exponentielle, ces probabilités sont égales ce qui explique l'expression « sans vieillissement ».

DÉMONSTRATION

Voir exercice : Loi exponentielle - Bac S Métropole 2008 $\ensuremath{\varnothing}$.