WHAT IS CLAIMED IS:

1. A compound having the formula (I):

$$\begin{array}{c|c}
R^7 & R^6 & R^5 \\
\hline
N & R^3 \\
R^2 & (I)
\end{array}$$

wherein:

X is NR9, O or S(O), (where t is 0 to 2);

Y is CR30 or N;

Z is CR31 or N:

 R^{30} and R^{31} are each independently selected from the group consisting of halo, hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted heteroaryl, optionally substituted cycloalkyl, optionally substituted cycloalkyl, optionally substituted substituted heterocyclylalkyl, optionally substituted aralkyl, optionally substituted heterocyclylalkyl, optionally substituted aralkyl, optionally substituted heteroaralkyl, $-OR^{32}$, $-SR^{32}$, $-N(R^{33})R^{34}$, $-N(R^{33})S(O)_2R^{23}$; $-N(R^{35})N(R^{33})R^{34}$, $-N(R^{35})N(R^{33})S(O)_2R^{23}$, $-C(O)R^{36}$, $-C(O)OR^{32}$, $-C(S)OR^{32}$, $-C(O)SR^{32}$, $-C(O)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(O)N(R^{35})N(R^{35})N(R^{35})N(R^{35})N(R^{35})$, $-C(O)N(R^{35})N(R^{35})N(R^{35})$, $-C(O)N(R^{35})N(R^{35})N(R^{35})$, $-C(O)N(R^{35})N(R^{35})$, $-C(O)N(R^{35})N(R^{$

R³⁰ and R³¹ together with the carbon atoms to which they are attached, form an optionally substituted cycloalkyl ring, optionally substituted cycloalkynyl ring, optionally substituted heterocyclyl ring, optionally substituted heterocyclyl ring, optionally substituted heterocyclyl ring, optionally substituted aryl with the exception of substituted or unsubstituted phenyl or substituted or unsubstituted naphthyl;

R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) or (b) as follows: (a) R³², R³³, R³⁴, R³⁵ and R³⁶ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclyl, or optionally substituted heterocaryl, or optionally substituted heterocaralkyl; or (b) R³³ and R³⁴, together with the nitrogen atom to which they are

attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) above,

 R^1 and R^2 are each independently selected from a group consisting of halo, hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aralkyl, optionally substituted heteroaralkyl, $-OR^{14}$, $-SR^{14}$, $-N(R^{15})R^{16}$, $-N(R^{15})S(O)_2R^{23}$; $-N(R^{17})N(R^{15})R^{16}$, $-N(R^{17})N(R^{15})S(O)_2R^{23}$, $-C(O)R^{18}$, $-C(O)OR^{14}$, $-C(S)OR^{14}$, $-C(O)SR^{14}$, $-C(O)N(R^{15})R^{16}$, $-C(O)N(R^{15})S(O)_2R^{23}$, $-C(O)N(R^{15})N=R^{16}$, $-C(O)N(R^{17})N(R^{15})R^{16}$ and $-C(O)N(R^{17})N(R^{15})S(O)_2R^{23}$;

 R^3 is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, -C(O)R^{10}, -C(O)OR^{10}, -S(O)_2R^{10}, -C(O)N(R^{11})R^{12}, -C(O)N(R^{11})S(O)_2R^{23}, -C(O)N(R^{13})N(R^{11})R^{12}, -C(O)N(R^{13})N(R^{11})S(O)_2R^{23}, -N(R^{13})C(O)R^{10}, -N(R^{13})C(O)N(R^{11})R^{12}, -N(R^{13})C(O)N(R^{11})S(O)_2R^{23}, -N(R^{10})C(O)N(R^{13})N(R^{11})R^{12}, -N(R^{10})C(O)N(R^{13})N(R^{11})S(O)_2R^{23}, -N(R^{10})C(O)OR^{10}, -P(O)OR^{10}, or -P(O)(OR^{19})OR^{12};

 R^4 , R^5 , R^6 and R^7 are each independently selected from a group consisting of hydrogen, halo, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aralkyl, optionally substituted heteroaralkyl, $-OR^{14}$, $-SR^{14}$, $-S(O)_2R^{14}$, $-N(R^{15})R^{16}$, $-N(R^{15})S(O)_2R^{23}$, $-N(R^{15})C(O)R^{23}$, $-C(O)R^{18}$, $-C(O)OR^{20}$, $-C(O)N(R^{21})R^{22}$, $-C(O)N(R^{21})S(O)_2R^{23}$; $-C(O)N(R^{24})N(R^{21})R^{22}$ and $-C(O)N(R^{24})N(R^{21})S(O)_2R^{23}$; or

 R^6 and R^7 together form an oxo, thioxo, optionally substituted imino, optionally substituted oxime or an optionally substituted hydrazone, or R^6 and R^7 , together with the carbon atom to which they are attached, form an optionally substituted exocyclic double bond, and R^4 and R^5 are as described above; or

R⁴ and R⁵ together form an oxo, thioxo, optionally substituted imino, optionally substituted oxime or an optionally substituted hydrazone, or R⁴ and R⁵, together with the carbon atom to which they are attached, form an optionally substituted exocyclic double bond, and R⁸ and R⁷ are as described above; or

R⁴ and R⁵, or R⁴ and R⁶, or R⁴ and R⁷, or R⁵ and R⁶, or R⁵ and R⁷, or R⁶ and R⁷, together with the carbon atom to which they are attached, form an optionally substituted cycloalkyl ring, optionally substituted heterocyclyl ring, an optionally substituted cycloalkenyl ring or together form a double bond, and the others of R⁴, R⁵, R⁶ and R⁷ are as described above; or R⁴ and R⁵, together with the carbon atom to which they are attached, and R⁶ and R⁷, together with the carbon atom to which they are attached, form an optionally substituted cycloalkyl ring, optionally substituted heterocyclyl ring or an optionally substituted cycloalkenyl ring.

 \mbox{R}^{9} is hydrogen, optionally substituted alkyl, -C(O)R 18 , -C(O)OR 20 or -S(O) $_{2}\mbox{R}^{23}$;

R¹⁰, R¹¹, R¹², R¹³ and R¹⁹ are selected as in (a) or (b) as follows: (a) R¹⁰, R¹¹, R¹², R¹³ and R¹⁹ each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaryl; or (b) R¹¹ and R¹² or R¹² and R¹⁹, together with the atoms to which they are attached, form an optionally substituted heterocyclyl ring or an optionally substituted heteroaryl ring; and the others of R¹⁰, R¹¹, R¹², R¹³ and R¹⁹ are selected as in (a), above;

R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are selected as in (a) or (b) as follows: (a) R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R¹⁵ and R¹⁶, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are selected as in (a) above;

 R^{20} , R^{21} , R^{22} and R^{24} are selected as in (a) or (b) as follows: (a) R^{20} , R^{21} , R^{22} and R^{24} are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R^{21} and R^{22} , together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R^{20} , R^{21} , R^{22} and R^{24} are selected as in (a) above;

R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;

each of R¹-R²⁴ and R³⁰-R³⁶, when substituted, are substituted with one or more substituents, each independently selected from Q¹;

each Q¹ is independently selected from halo, pseudohalo, oxo, thioxo, cyano, thiocyano, isocyano, nitro, azido, alkyl, haloalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing 1 to 2 triple bonds, cycloalkyl, cycloalkenyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, heteroarylalkyl, alkylidene, arylalkylidene, aryloxyarylcarbonylamino, hydroxycarbonylalkylthio, halosulfonyl, $-OR^{70}$, $-SR^{70}$, $-R^{60}$ - $C(J)R^{71}$, $-R^{60}$ - $N(R^{70})C(J)R^{71}$, $-OC(O)R^{71}$, $-R^{60}$ - $N(R^{75})(R^{76})$, $-N^+(R^{77})_3$, $-P(R^{78})_2$, $-P(O)(R^{78})_2$, $-OP(O)(R^{78})_2$, $-N(R^{70})S(O)_2R^{71}$, $-S(O)_2R^{71}$, $-S(O)R^{82}$, $-OS(O)R^{83}$, $-OS(O)_2R^{83}$ or $-Si(R^{83})_3$;

two Q^1 groups, which substitute atoms in a 1,2 or 1,3 arrangement, together with the carbon atoms to which they are attached form a cycloalkyl ring, cycloalkenyl ring, cycloalkynyl ring or heterocyclyl ring; or

each Q¹ is independently substituted or unsubstituted with one or more substituents each independently selected from Q²:

each Q^2 is independently selected from halo, pseudohalo, oxo, thioxo, cyano, thiocyano, isocyano, nitro, azido, alkyl, haloalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing 1 to 2 triple bonds, cycloalkyl, cycloalkenyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, heteroarylalkyl, alkylidene, arylalkylidene, aryloxyarylcarbonylamino, hydroxycarbonylalkylthio, halosulfonyl, $-OR^{70}$, $-SR^{70}$, $-R^{60}$ - $C(J)R^{71}$, $-R^{60}$ - $N(R^{70})C(J)R^{71}$, $-OC(O)R^{71}$, $-R^{60}$ - $N(R^{75})(R^{76})$, $-N^+(R^{77})_3$, $-P(R^{78})_2$, $-P(O)(R^{78})_2$, $-OP(O)(R^{78})_2$, $-N(R^{70})S(O)_2R^{71}$, $-S(O)_2R^{71}$, $-S(O)R^{82}$, $-OS(O)R^{83}$, $-OS(O)_2R^{83}$ or $-Si(R^{83})_3$;

two Q^2 groups, which substitute atoms in a 1,2 or 1,3 arrangement, together with the carbon atoms to which they are attached form a cycloalkyl ring, cycloalkenyl ring, cycloalkynyl ring or heterocyclyl ring;

each J is independently O, S or -NR⁷⁰;

each R⁶⁰ is independently a direct bond or alkylene;

each R⁷⁰ is independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, haloalkyl, heterocyclylalkyl or heteroaralkyl;

each R^{71} is independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, haloalkyl, heterocyclylalkyl, heteroaralkyl, $-OR^{72}$ or $-N(R^{73})R^{74}$;

R⁷², R⁷³ and R⁷⁴ are each independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl; or

R⁷³ and R⁷⁴, together with the nitrogen atom to which they are attached, form a heterocyclyl ring or heteroaryl ring;

R⁷⁵ and R⁷⁶ are each independently hydrogen, alkyl, alkenyl, alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocyclyl or heterocyclylalkyl; or

R⁷⁵ and R⁷⁶, together with the nitrogen atom to which they are attached, form a heterocyclyl ring or heteroaryl ring;

each R⁷⁷ is independently alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl;

R⁷⁸ is alkyl, heteroaryl, heterocyclyl, aryl, -OR⁷⁹ or -N(R⁸⁰)R⁸¹:

R⁷⁹ is hydrogen, alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl;

R⁸⁰ and R⁸¹ are each independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl; or

R⁸⁰ and R⁸¹, together with the nitrogen atom to which they are attached, form a heterocyclyl ring or heteroaryl ring;

 R^{82} is alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, heteroaralkyl or -OR 83 ; and

each R⁸³ is independently alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl;

as a single isomer, a mixture of isomers, or as a racemic mixture of isomers; or as a solvate or polymorph; or as a prodrug; or as a pharmaceutically acceptable salt thereof.

A compound of claim 1, wherein:

 $R^{1} \text{ is -C(O)} R^{18}, \text{-C(O)} OR^{14}, \text{-C(S)} OR^{14}, \text{-C(O)} SR^{14}, \text{-C(O)} N(R^{15}) R^{16}, \\ \text{-C(O)} N(R^{15}) S(O)_{2} R^{23}, \text{-C(O)} N(R^{15}) N = R^{16}, \text{-C(O)} N(R^{17}) N(R^{15}) R^{16} \text{ or } \\ \text{-C(O)} N(R^{17}) N(R^{15}) S(O)_{2} R^{23};$

wherein R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R²³ are described in Claim 1.

3. The compound of claim 2, wherein R^3 is -C(O) R^{10} , -C(O)O R^{10} , -S(O)₂ R^{10} or -C(O)N(R^{11}) R^{12} ;

wherein R¹⁰, R¹¹ and R¹² are described in Claim 1.

4. The compound of claim 3 wherein R² is hydrogen, halo, optionally substituted alkyl, optionally substituted alkenyl or optionally substituted alkynyl.

- 5 The compound of Claim 4 wherein R⁴, R⁵, R⁶ and R⁷ are selected from a), b), c), d), e), f), g), h) and i) below:
- a) R^4 and R^5 are each independently hydrogen or halo and R^6 and R^7 are optionally substituted alkyl;
- b) R^6 and R^7 are each independently hydrogen or halo and R^4 and R^5 are optionally substituted alkyl;
 - c) R⁴, R⁵, R⁶ and R⁷ are each optionally substituted alkyl;
- d) R⁴ and R⁵ are each independently hydrogen or halo and R⁶ and R⁷, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl or optionally substituted cycloalkenyl ring.
- e) R⁴ and R⁵ are optionally substituted alkyl and R⁶ and R⁷, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl or optionally substituted cycloalkenyl ring
- f) R⁴ and R⁵, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl or optionally substituted cycloalkenyl ring and R⁶ and R⁷ are each independently hydrogen or halo;
- g) R⁴ and R⁵, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl or optionally substituted cycloalkenyl ring and R⁶ and R⁷ are optionally substituted alkyl;
- h) R⁴ and R⁵, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl ring or optionally substituted cycloalkenyl ring and R⁶ and R⁷, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl ring or optionally substituted cycloalkenyl ring; and
 - i) R⁴, R⁵, R⁶ and R⁷ are each independently hydrogen or halo.
 - 6. The compound of claim 5 wherein: Y is CR³⁰; and

 R^{30} is halo, hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted aralkyl, optionally substituted heteroaralkyl, $-OR^{32}$, $-SR^{32}$, $-N(R^{33})R^{34}$, $-N(R^{33})S(O)_2R^{23}$; $-N(R^{35})N(R^{33})R^{34}$, $-N(R^{35})N(R^{33})S(O)_2R^{23}$, $-C(O)R^{36}$, $-C(O)OR^{32}$, $-C(S)OR^{32}$, $-C(O)SR^{32}$, $-C(O)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(O)N(R^{33})S(O)_2R^{23}$, $-C(O)N(R^{33})S(O)_2R^{23}$, $-C(O)N(R^{35})N(R^{35})N(R^{35})N(R^{35})N(R^{35})N(R^{35})$

where R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted heterocyclyl, or optionally substituted heteroaralkyl; and

where R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) or (b) as follows: (a) R³², R³³, R³⁴, R³⁵ and R³⁶ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R³³ and R³⁴, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) above.

7. A compound of claim 6 having the formula (II):

or a pharmaceutically acceptable derivative thereof, wherein:

 $R^{1} \text{ is -C(O)OR}^{14}; \text{ -C(S)OR}^{14}, \text{ -C(O)SR}^{14}, \text{ -C(O)N}(R^{15})R^{16}, \\ \text{-C(O)N}(R^{15})S(O)_{2}R^{23}, \text{ -C(O)N}(R^{15})N=R^{16}, \text{ -C(O)N}(R^{17})N(R^{15})R^{16} \text{ and} \\ \text{-C(O)N}(R^{17})N(R^{15})S(O)_{2}R^{23};$

R² is hydrogen, halo or optionally substituted alkyl; R³ is -C(O)R¹⁰;

 $\ensuremath{\mathsf{R}}^4$ and $\ensuremath{\mathsf{R}}^5$ are each independently hydrogen or halo; or

R⁴ and R⁵ are each optionally substituted alkyl;

R⁶ and R⁷ are each independently hydrogen or halo; or

R⁶ and R⁷ are each optionally substituted alkyl; or

R⁶ and R⁷ together with the carbon atom to which they are attached, form an optionally substituted cycloalkyl ring or an optionally substituted cycloalkenyl ring;

 R^9 is hydrogen, optionally substituted alkyl, $-C(O)R^{18}$, or $-S(O)_2R^{23}$; R^{10} is an optionally substituted aryl or an optionally substituted heteroaryl;

R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;

R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; and

 R^{30} is halo, hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted beterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkyl, optionally substituted heteroaralkyl, $-OR^{32}$, $-SR^{32}$, $-N(R^{33})R^{34}$, $-N(R^{33})S(O)_2R^{23}$; $-N(R^{35})N(R^{33})R^{34}$, $-N(R^{35})N(R^{33})S(O)_2R^{23}$, $-C(O)R^{36}$, $-C(O)OR^{32}$, $-C(O)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(O)N(R^{33})S(O)_2R^{23}$, $-C(O)N(R^{33})S(O)_2R^{23}$, $-C(O)N(R^{35})N(R^{35})N(R^{35})N(R^{35})N(R^{35})N(R^{35})R^{34}$ or $-C(O)N(R^{35})N(R^{35})S(O)_2R^{23}$.

8. The compound of Claim 7 wherein: R⁴, R⁵, R⁶ and R⁷ are each independently hydrogen or halo; and

 $R^{30} \ \ is \ selected \ from \ the \ group \ consisting \ of \ hydrogen, \ halo, \ -C(O)R^{36}, \ -C(O)OR^{32}, \ -C(O)SR^{32}, \ -C(O)N(R^{33})R^{34}, \ \ -C(S)N(R^{33})S(O)_2R^{23}, \ -C(O)N(R^{33})S(O)_2R^{23}, \ -C(O)N(R^{35})N(R^{33})R^{34}, \ -C(S)N(R^{35})N(R^{33})R^{34} \ and \ -C(O)N(R^{35})N(R^{33})S(O)_2R^{23};$

where R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; and

where R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) or (b) as follows: (a) R³², R³³, R³⁴, R³⁵ and R³⁶ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R³³ and R³⁴, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) above.

- 9. The compound of Claim 8 wherein said compound is 6-(4-fluoro-benzoyl)-3,6,7,8-tetrahydro-imidazo[4,5-d] azepine-4-carboxylic acid ethyl ester.
- 10. The compound of Claim 7 wherein:
 R⁴ and R⁵ are each independently hydrogen or halo; and
 R⁶ and R⁷ are optionally substituted alkyl; or
 R⁶ and R⁷, together with the carbon to which they are attached,
 independently form an optionally substituted cycloalkyl ring.
 - The compound of Claim 10 wherein
 R² is hydrogen, halo or optionally substituted alkyl; and
 R³ is hydrogen.
- 12. The compound of Claim 11 wherein R^{30} is selected from the group consisting of $-C(O)R^{36}$, $-C(O)OR^{32}$, $-C(S)OR^{32}$, $-C(O)SR^{32}$, $-C(O)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{35})N(R^{35})R^{34}$ and $-C(O)N(R^{35})N(R^{35})S(O)_2R^{23}$;

where R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted heterocyclyl, or optionally substituted heteroaralkyl; and

where R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) or (b) as follows: (a) R³², R³³, R³⁴, R³⁵ and R³⁶ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R³³ and R³⁴, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) above.

- 13. The compound of Claim 12 wherein R^1 is $-C(O)OCH_2CH_3$, $-C(O)OCH_3$, $-C(O)OCH_3$, $-C(O)OCH_4$, $-C(O)OCH_2CH_2CH_3$, $-C(O)NHCH_3$, $-C(O)NHCH_2CH_3$, $-C(O)NHCH_4$, $-C(O)NHCH_4$, $-C(O)NHCH_4$, $-C(O)NCH_4$, or $-C(O)N(CH_3)$, $-C(O)NCH_4$, or $-C(O)N(CH_3)$, $-C(O)NCH_4$, $-C(O)NCH_4$, $-C(O)N(CH_3)$, $-C(O)N(C)N(CH_3)$, -C(O)N(C)N(C), -C(O)N(C)N(C), -C(O)N(C)N(C), -C(O)N(C
 - 14. The compound of Claim 6 wherein:

Z is CR31; and

R³¹ is independently selected from a group consisting of halo, hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted heterocyclylalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, $-OR^{32}$, $-SR^{32}$, $-N(R^{33})R^{34}$, $-N(R^{33})S(O)_2R^{23}$; $-N(R^{35})N(R^{33})S(O)_2R^{23}$, $-C(O)R^{36}$, $-C(O)OR^{32}$, $-C(S)OR^{32}$, $-C(O)SR^{32}$, $-C(O)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(O)N(R^{33})S(O)_2R^{23}$, $-C(S)N(R^{33})S(O)_2R^{23}$, $-C(O)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$ and $-C(O)N(R^{35})N(R^{33})S(O)_2R^{23}$;

where R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted heterocyclyl, or optionally substituted heteroaralkyl; and

where R^{32} , R^{33} , R^{34} , R^{35} and R^{36} are selected as in (a) or (b) as follows: (a) R^{32} , R^{33} , R^{34} , R^{35} and R^{36} are each independently hydrogen, optionally substituted

alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocaryl, or optionally substituted heterocaralkyl; or (b) R³³ and R³⁴, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heterocaryl ring, and the others of R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) above.

15. The compound of Claim 14 wherein:

Z is CR³¹; and

 R^{31} is independently selected from a group consisting of optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, -C(O)R 36 , -C(O)OR 32 , -C(O)OR 32 , -C(O)SR 32 , -C(O)N(R 33)R 34 , -C(O)N(R 33)S(O)₂R 23 , -C(O)N(R 35)N(R 33)R 34 , -C(O)N(R 35)N(R 3

where R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; and

where R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) or (b) as follows: (a) R³², R³³, R³⁴, R³⁵ and R³⁶ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R³³ and R³⁴, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) above.

- 16. The compound of Claim 14 wherein X is O or $S(O)_t$ (where t is 0 to 2).
- 17. The compound of Claim 16 wherein R⁴, R⁵, R⁶ and R⁷ are each independently hydrogen or halo; and

 R^{30} is selected from the group consisting of hydrogen, halo, -C(O)R³⁶, -C(O)OR³², -C(O)SR³², -C(O)N(R³³)R³⁴, -C(S)N(R³³)R³⁴.

 $-C(O)N(R^{33})S(O)_2R^{23}, \ -C(S)N(R^{33})S(O)_2R^{23}, \ -C(O)N(R^{35})N(R^{33})R^{34}, \\ -C(S)N(R^{35})N(R^{33})R^{34} \ and \ -C(O)N(R^{35})N(R^{33})S(O)_2R^{23}; \\$

where R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; and

where R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) or (b) as follows: (a) R³², R³³, R³⁴, R³⁵ and R³⁶ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R³³ and R³⁴, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) above.

- 18. The compound of Claim 17 wherein said compound is 6-(3,4-difluoro-benzoyl)-5,6-dihydro-4H-thieno[2,3-d] azepine-8-carboxylic acid ethyl ester.
- 19. The compound of Claim 16 wherein: R⁴ and R⁵ are each independently hydrogen or halo; and R⁶ and R⁷ are optionally substituted alkyl; or R⁶ and R⁷, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl ring.
 - 20. The compound of Claim 19 wherein: R^2 is hydrogen, halo or optionally substituted alkyl; and R^9 is hydrogen.
- 21. The compound of Claim 20 wherein R^{30} is selected from the group consisting of $-C(O)R^{36}$, $-C(O)OR^{32}$, $-C(S)OR^{32}$, $-C(O)SR^{32}$, $-C(O)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{35})N(R^{33})R^{34}$ and $-C(O)N(R^{35})N(R^{35})N(R^{33})R^{34}$;

where R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted

aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; and

where R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) or (b) as follows: (a) R³², R³³, R³⁴, R³⁵ and R³⁶ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R³³ and R³⁴, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) above.

- 22. The compound of Claim 21 wherein R¹ is -C(O)OCH₂CH₃, -C(O)OCH₃, -C(O)OCH (CH₃)₂, -C(O)OH, -C(O)OCH₂CH₂CH₃, -C(O)NHCH₃, -C(O)NHCH₂CH₃, -C(O)NHCH (CH₃)₂, -C(O)NH(cyclopropyl), -C(O)NH(cyclopentyl), -C(O)NCH(CH₃)(CH₂CH₃) or -C(O)N(CH₃)(cyclopropyl); and R³ is -C(O)R¹0 wherein R¹0 is optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkyl or optionally substituted aralkyl.
- 23. The compound of Claim 22 wherein said compound is 6-(3,4-difluoro-benzoyl)-4,4-dimethyl-5,6-dihydro-4H-thieno[2,3-d]azepine-8-carboxylic acid ethyl ester; or
 - 24. The compound of Claim 14 wherein X is NR⁹;

 R^9 is hydrogen, optionally substituted alkyl, $-C(O)R^{18}$ or $-S(O)_2R^{23}$; and R^{18} and R^{23} each independently optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl.

25. The compound of Claim 24 wherein:

R⁴ and R⁵ are each independently hydrogen or halo; and

R⁶ and R⁷ are optionally substituted alkyl; or

R⁶ and R⁷, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl ring.

26. The compound of Claim 25 wherein: R² is hydrogen, halo or optionally substituted alkyl; and R³ is hydrogen.

27. The compound of Claim 26 wherein R^{30} is selected from the group consisting of $-C(O)R^{36}$, $-C(O)OR^{32}$, $-C(S)OR^{32}$, $-C(O)SR^{32}$, $-C(O)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{35})N(R^{33})R^{34}$ and $-C(O)N(R^{35})N(R^{35})N(R^{35})R^{34}$;

where R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; and

where R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) or (b) as follows: (a) R³², R³³, R³⁴, R³⁵ and R³⁶ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R³³ and R³⁴, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) above.

- 28. The compound of Claim 27 wherein R^1 is $-C(O)OCH_2CH_3$, $-C(O)OCH_3$, -C(O)OCH (CH_3)₂, -C(O)OH, $-C(O)OCH_2CH_2CH_3$, $-C(O)NHCH_3$, $-C(O)NHCH_2CH_3$, -C(O)NHCH (CH_3)₂, -C(O)NH(cyclopropyl), -C(O)NH(cyclopentyl), $-C(O)NCH(CH_3)(CH_2CH_3)$ or $-C(O)N(CH_3)(cyclopropyl)$; and R^3 is $-C(O)R^{10}$ wherein R^{10} is optionally substituted aryl, optionally
- substituted heteroaryl, optionally substituted alkyl or optionally substituted aralkyl.
- 29. The compound of Claim 28 wherein said compound is selected from the group consisting of:
- 6-(3,4-difluoro-benzoyl)-4,4-dimethyl-1,4,5,6-tetrahydro-pyrrolo[2,3-d]azepine-2,8-dicarboxylic acid diethyl ester; and
- 6-(3,4-difluoro-benzoyl)-4,4-dimethyl-1,4,5,6-tetrahydro-pyrrolo[2,3-d]azepine-2,8-dicarboxylic acid 2-ethyl ester 8-isopropyl ester.

30. The compound of Claim 29 wherein:

 R^4 , R^5 , R^6 and R^7 are each independently hydrogen or halo; and R^{30} is selected from the group consisting of hydrogen, halo, -C(O) R^{36} ,

- -C(O)OR³², -C(S)OR³², -C(O)SR³², -C(O)N(R³³)R³⁴, -C(S)N(R³³)R³⁴,
- $-C(O)N(R^{33})S(O)_2R^{23}, \ -C(S)N(R^{33})S(O)_2R^{23}, \ -C(O)N(R^{35})N(R^{33})R^{34}, \\$
- $-C(S)N(R^{35})N(R^{33})R^{34}$ and $-C(O)N(R^{35})N(R^{33})S(O)_2R^{23}$;

where R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; and

where R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) or (b) as follows: (a) R³², R³³, R³⁴, R³⁵ and R³⁶ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R³³ and R³⁴, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) above.

- 31. The compound of Claim 30 wherein said compound is 6-(3,4-difluoro-benzoyl)-1,4,4-trimethyl-1,4,5,6-tetrahydro-pyrrolo[2,3-d]azepine-2,8-dicarboxylic acid 2-ethyl ester 8-isopropyl ester.
 - 32. The compound of Claim 5 wherein:

Y is CR30:

Z is CR31; and

R³⁰ and R³¹ together with the carbon atoms to which they are attached, form an optionally substituted cycloalkyl ring, optionally substituted cycloalkenyl ring, optionally substituted cycloalkynyl ring, optionally substituted heterocyclyl ring, optionally substituted heteroaryl ring or optionally substituted aryl ring with the exception of substituted or unsubstituted phenyl and substituted or unsubstituted naphthyl.

33. The compound of claim 32 wherein said optionally substituted cycloalkyl ring is optionally substituted cyclopentyl, optionally substituted cyclohexyl, optionally substituted cycloheptyl or optionally substituted cyclooctyl.

34. A compound having the formula (V):

$$\begin{pmatrix}
Q^{1} \\
R^{5}
\end{pmatrix}$$

$$\begin{pmatrix}
R^{7} \\
R^{4}
\end{pmatrix}$$

$$R^{5}$$

$$R^{3}$$

$$R^{2}$$

$$\begin{pmatrix}
R^{9} \\
R^{1}
\end{pmatrix}$$

$$\begin{pmatrix}
Y
\end{pmatrix}$$

or a pharmaceutically acceptable derivative thereof, wherein: n is 0 to 8;

 R^1 and R^2 are each independently selected from a group consisting of halo, hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aralkyl, optionally substituted heteroaralkyl, $-OR^{14}$, $-SR^{14}$, $-N(R^{15})R^{16}$, $-N(R^{15})S(O)_2R^{23}$; $-N(R^{17})N(R^{15})R^{16}$, $-N(R^{17})N(R^{15})S(O)_2R^{23}$, $-C(O)R^{18}$, $-C(O)OR^{14}$, $-C(S)OR^{14}$, $-C(O)SR^{14}$, $-C(O)N(R^{15})R^{16}$, $-C(O)N(R^{15})S(O)_2R^{23}$, $-C(O)N(R^{15})N=R^{16}$, $-C(O)N(R^{17})N(R^{15})R^{16}$ and $-C(O)N(R^{17})N(R^{15})S(O)_2R^{23}$;

 R^3 is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heteroargly, optionally substituted heteroaralkyl, $-C(O)R^{10},$ $-C(O)OR^{10},$ $-S(O)_2R^{10},$ $-C(O)N(R^{11})R^{12},$ $-C(O)N(R^{11})S(O)_2R^{23},$ $-C(O)N(R^{13})N(R^{11})R^{12},$ $-C(O)N(R^{13})N(R^{11})S(O)_2R^{23},$ $-N(R^{13})C(O)R^{10},$ $-N(R^{13})C(O)N(R^{11})R^{12},$ $-N(R^{13})C(O)N(R^{11})S(O)_2R^{23},$ $-N(R^{10})C(O)N(R^{13})N(R^{11})R^{12},$ $-N(R^{10})C(O)N(R^{13})N(R^{11})S(O)_2R^{23},$ $-N(R^{10})C(O)N(R^{13})N(R^{11})R^{12},$ $-N(R^{10})C(O)N(R^{13})N(R^{11})S(O)_2R^{23},$ $-N(R^{10})C(O)OR^{10},$ $-P(O)OR^{10},$ or $-P(O)(OR^{19})OR^{12};$

R⁴, R⁵, R⁶ and R⁷ are each independently selected from a group consisting of hydrogen, halo, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted aralkyl, optionally substituted heteroaralkyl, -OR¹⁴, -SR¹⁴,

 $-S(O)_2R^{14}, -N(R^{15})R^{16}, -N(R^{15})S(O)_2R^{23}, -N(R^{15})C(O)R^{23}, -C(O)R^{18}, -C(O)OR^{20}, -C(O)N(R^{21})R^{22}, -C(O)N(R^{21})S(O)_2R^{23}; -C(O)N(R^{24})N(R^{21})R^{22} \ and -C(O)N(R^{24})N(R^{21})S(O)_2R^{23}; \ or$

R⁴ and R⁵, or R⁴ and R⁶, or R⁴ and R⁷, or R⁵ and R⁶, or R⁵ and R⁷, or R⁶ and R⁷, together with the carbon atom to which they are attached, form an optionally substituted cycloalkyl ring, optionally substituted heterocyclyl ring, an optionally substituted cycloalkenyl ring or together form a double bond, and the others of R⁴, R⁵, R⁶ and R⁷ are as described above; or R⁶ and R⁷ together form an oxo, thioxo, optionally substituted imino, optionally substituted oxime or an optionally substituted hydrazone, or R⁶ and R⁷, together with the carbon atom to which they are attached, form an optionally substituted exocyclic double bond, and R⁴ and R⁵ are as described above;

 R^9 is hydrogen, optionally substituted alkyl, $-C(O)R^{18}$ or $-S(O)_2R^{23}$; R^{10} , R^{11} , R^{12} , R^{13} and R^{19} are selected as in (a) or (b) as follows: (a) R^{10} , R^{11} , R^{12} , R^{13} and R^{19} each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R^{11} and R^{12} or R^{12} and R^{19} , together with the atoms to which they are attached, form an optionally substituted heterocyclyl ring or an optionally substituted heteroaryl ring; and the others of R^{10} , R^{11} , R^{12} , R^{13} and R^{19} are selected as in (a), above;

R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are selected as in (a) or (b) as follows: (a) R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R¹⁵ and R¹⁶, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are selected as in (a) above;

R²⁰, R²¹, R²² and R²⁴ are selected as in (a) or (b) as follows: (a) R²⁰, R²¹, R²² and R²⁴ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclyl, optionally substituted

heteroaralkyl; or (b) R²¹ and R²², together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R²⁰, R²¹, R²² and R²⁴ are selected as in (a) above;

R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;

each of R^1 - R^{24} , when substituted, are substituted with one or more substituents, each independently selected from Q^1 ;

each Q¹ is independently selected from halo, pseudohalo, oxo, thioxo, cyano, thiocyano, isocyano, nitro, azido, alkyl, haloalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing 1 to 2 triple bonds, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, heteroarylalkyl, alkylidene, arylalkylidene, aryloxyarylcarbonylamino, hydroxycarbonylalkylthio, halosulfonyl, $-OR^{70}$, $-SR^{70}$, $-R^{60}$ -C(J)R⁷¹, $-R^{60}$ -N(R⁷⁰)C(J)R⁷¹, $-OC(O)R^{71}$, $-R^{60}$ -N(R⁷⁵)(R⁷⁶), $-N^+(R^{77})_3$, $-P(R^{78})_2$, $-P(O)(R^{78})_2$, $-OP(O)(R^{78})_2$, $-N(R^{70})S(O)_2R^{71}$, $-S(O)_2R^{71}$, $-S(O)R^{82}$, $-OS(O)R^{83}$, $-OS(O)_2R^{83}$ or $-Si(R^{83})_3$;

two Q¹ groups, which substitute atoms in a 1,2 or 1,3 arrangement, together with the carbon atoms to which they are attached form a cycloalkyl ring, cycloalkenyl ring, cycloalkynyl ring or heterocyclyl ring; or

each Q^1 is independently substituted or unsubstituted with one or more substituents each independently selected from Q^2 ;

each Q² is independently selected from halo, pseudohalo, oxo, thioxo, cyano, thiocyano, isocyano, nitro, azido, alkyl, haloalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing 1 to 2 triple bonds, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, heteroarylalkyl, alkylidene, arylalkylidene, aryloxyarylcarbonylamino, hydroxycarbonylalkylthio, halosulfonyl, $-OR^{70}$, $-SR^{70}$, $-R^{60}$ - $C(J)R^{71}$, $-R^{60}$ - $N(R^{70})C(J)R^{71}$, $-OC(O)R^{71}$, $-R^{60}$ - $N(R^{75})(R^{76})$, $-N^{+}(R^{77})_3$, $-P(R^{78})_2$, $-P(O)(R^{78})_2$, $-OP(O)(R^{78})_2$, $-N(R^{70})S(O)_2R^{71}$, $-S(O)_2R^{71}$, $-S(O)R^{82}$, $-OS(O)R^{83}$, $-OS(O)_2R^{83}$ or $-Si(R^{83})_3$;

two Q² groups, which substitute atoms in a 1,2 or 1,3 arrangement, together with the carbon atoms to which they are attached form a cycloalkyl ring, cycloalkenyl ring, cycloalkynyl ring or heterocyclyl ring;

each J is independently O, S or -NR⁷⁰;

each R⁶⁰ is independently a direct bond or alkylene;
each R⁷⁰ is independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl,
heterocyclyl, aryl, heteroaryl, aralkyl, haloalkyl, heterocyclylalkyl or heteroaralkyl;
each R⁷¹ is independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl,

heterocyclyl, aryl, heteroaryl, aralkyl, haloalkyl, heterocyclylalkyl, heteroaralkyl, -OR⁷² or -N(R⁷³)R⁷⁴;

R⁷², R⁷³ and R⁷⁴ are each independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl; or R⁷³ and R⁷⁴, together with the nitrogen atom to which they are attached,

form a heterocyclyl ring or heteroaryl ring;

 R^{75} and R^{76} are each independently hydrogen, alkyl, alkenyl, alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocyclyl or heterocyclylalkyl; or

 R^{75} and R^{76} , together with the nitrogen atom to which they are attached, form a heterocyclyl ring or heteroaryl ring;

each R⁷⁷ is independently alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl;

R⁷⁸ is alkyl, heteroaryl, heterocyclyl, aryl, -OR⁷⁹ or -N(R⁸⁰)R⁸¹:

R⁷⁹ is hydrogen, alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl;

R⁸⁰ and R⁸¹ are each independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl; or

R⁸⁰ and R⁸¹, together with the nitrogen atom to which they are attached, form a heterocyclyl ring or heteroaryl ring;

R⁸² is alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, heteroaralkyl or -OR⁸³; and

each R^{83} is independently alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl.

35. The compound of Claim 34 wherein:

 R^3 is $-C(O)R^{10}$;

wherein R¹⁰ is optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkyl or optionally substituted aralkyl.

36. The compound of Claim 35 wherein:

 R^1 is $-C(O)R^{18}$, $-C(O)OR^{14}$ or $-C(O)N(R^{15})R^{16}$, where R^{14} and R^{15} are optionally substituted alkyl, optionally substituted cycloalkyl, or optionally substituted heterocyclyl, R^{16} is hydrogen, and R^{18} is optionally substituted alkyl.

37. The compound of Claim 36 wherein:

R² is halo, hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aralkyl or optionally substituted heteroaralkyl.

- 38. The compound of Claim 37 wherein:
- R² is hydrogen, halo or optionally substituted alkyl; and
- R⁹ is hydrogen or optionally substituted alkyl.
- 39. The compound of Claim 38 wherein R⁴, R⁵, R⁶ and R⁷ are selected from a), b), c), d), e), f), g) and h) below:
- a) R⁴ and R⁵ are each independently hydrogen or halo and R⁶ and R⁷ are optionally substituted alkyl;
- b) R⁶ and R⁷ are each independently hydrogen or halo and R⁴ and R⁵ are optionally substituted alkyl;
 - c) R⁴, R⁵, R⁶ and R⁷ are each optionally substituted alkyl;
- d) R⁴ and R⁵ are each independently hydrogen or halo and R⁶ and R⁷, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl or optionally substituted cycloalkenyl ring.
- e) R⁴ and R⁵ are optionally substituted alkyl and R⁶ and R⁷, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl or optionally substituted cycloalkenyl ring
- f) R⁴ and R⁵, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl or optionally substituted cycloalkenyl ring and R⁶ and R⁷ are each independently hydrogen or halo;
- g) R⁴ and R⁵, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl or optionally substituted cycloalkenyl ring and R⁶ and R⁷ are optionally substituted alkyl;
- h) R⁴ and R⁵, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl ring or optionally substituted

cycloalkenyl ring and R⁶ and R⁷, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl ring or optionally substituted cycloalkenyl ring; and

- i) R⁴, R⁵, R⁶ and R⁷ are each independently hydrogen or halo.
- 40. The compound of Claim 39 wherein:

 R⁴ and R⁵ are each independently hydrogen or halo; and

 R⁶ and R⁷ are optionally substituted alkyl; or

 R⁶ and R⁷, together with the carbon to which they are attached, independently form an optionally substituted cycloalkyl ring.
 - 41. The compound of Claim 40 wherein: R² is hydrogen, halo or optionally substituted alkyl; and R³ is hydrogen.
- 42. The compound of Claim 41 wherein R¹ is -C(O)OCH₂CH₃, -C(O)OCH₃, -C(O)OCH (CH₃)₂, -C(O)OH, -C(O)OCH₂CH₂CH₃, -C(O)NHCH₃, -C(O)NHCH₂CH₃, -C(O)NHCH (CH₃)₂, -C(O)NH(cyclopropyl), -C(O)NH(cyclopentyl), -C(O)NCH(CH₃)(CH₂CH₃) or -C(O)N(CH₃)(cyclopropyl); and R³ is -C(O)R¹0 wherein R¹0 is optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkyl or optionally substituted aralkyl.
- 43. The compound of Claim 42 wherein said compound is 3-(4-fluoro-benzoyl)-1,1-dimethyl-1,2,3,6,7,8,9,10-octahydro-azepino[4,5-b]indole-5-carboxylic acid ethyl ester.
- 44. The compound of Claim 39 wherein R^4 , R^5 , R^6 and R^7 are each independently hydrogen or halo.
- 45. The compound of Claim 44 wherein said compound is 3-(4-fluoro-benzoyl)-1,2,3,4,5,6,7,8,9,10-decahydro-azepino[4,5-b]indole-5-carboxylic acid ethyl ester or
- 3-(4-fluoro-benzoyl)-1,2,3,6,7,8,9,10-octahydro-azepino[4,5-b]indole-5-carboxylic acid ethyl ester.

46. A pharmaceutical composition comprising a compound having the formula (I):

$$\begin{array}{c|c}
R^7 & R^6 & R^5 \\
\hline
 & N & R^3 \\
\hline
 & R^2 & (I)
\end{array}$$

wherein:

X is NR9, O or S(O)_t (where t is 0 to 2);

Y is CR30 or N;

Z is CR31 or N;

 R^{30} and R^{31} are each independently selected from the group consisting of halo, hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted heteroaryl, optionally substituted cycloalkyl, optionally substituted cycloalkyl, optionally substituted substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted aralkyl, optionally substituted heteroaralkyl, $-OR^{32}$, $-SR^{32}$, $-N(R^{33})R^{34}$, $-N(R^{33})S(O)_2R^{23}$; $-N(R^{35})N(R^{33})R^{34}$, $-N(R^{35})N(R^{33})S(O)_2R^{23}$, $-C(O)R^{36}$, $-C(O)OR^{32}$, $-C(S)OR^{32}$, $-C(O)SR^{32}$, $-C(O)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{33})R^{34}$, $-C(S)N(R^{35})N(R^{33})R^{34}$, and $-C(O)N(R^{35})N(R^{33})S(O)_2R^{23}$; or

R³⁰ and R³¹ together with the carbon atoms to which they are attached, form an optionally substituted cycloalkyl ring, optionally substituted cycloalkynyl ring, optionally substituted heterocyclyl ring, optionally substituted heterocyclyl ring, optionally substituted heterocyclyl ring, optionally substituted aryl with the exception of substituted or unsubstituted phenyl or substituted or unsubstituted naphthyl;

R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) or (b) as follows: (a) R³², R³³, R³⁴, R³⁵ and R³⁶ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R³³ and R³⁴, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted

heteroaryl ring, and the others of R³², R³³, R³⁴, R³⁵ and R³⁶ are selected as in (a) above,

 R^1 and R^2 are each independently selected from a group consisting of halo, hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aralkyl, optionally substituted heteroaralkyl, $-OR^{14}$, $-SR^{14}$, $-N(R^{15})R^{16}$, $-N(R^{15})S(O)_2R^{23}$; $-N(R^{17})N(R^{15})R^{16}$, $-N(R^{17})N(R^{15})S(O)_2R^{23}$, $-C(O)R^{18}$, $-C(O)OR^{14}$, $-C(S)OR^{14}$, $-C(O)SR^{14}$, $-C(O)N(R^{15})R^{16}$, $-C(O)N(R^{15})S(O)_2R^{23}$, $-C(O)N(R^{15})N=R^{16}$, $-C(O)N(R^{17})N(R^{15})R^{16}$ and $-C(O)N(R^{17})N(R^{15})S(O)_2R^{23}$;

 R^3 is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, -C(O)R^{10}, -C(O)OR^{10}, -S(O)_2R^{10}, -C(O)N(R^{11})R^{12}, -C(O)N(R^{11})S(O)_2R^{23}, -C(O)N(R^{13})N(R^{11})R^{12}, -C(O)N(R^{13})N(R^{11})S(O)_2R^{23}, -N(R^{13})C(O)R^{10}, -N(R^{13})C(O)N(R^{11})R^{12}, -N(R^{13})C(O)N(R^{11})S(O)_2R^{23}, -N(R^{10})C(O)N(R^{13})N(R^{11})R^{12}, -N(R^{10})C(O)N(R^{13})N(R^{11})S(O)_2R^{23}, -N(R^{10})C(O)N(R^{13})N(R^{11})R^{12}, -N(R^{10})C(O)N(R^{13})N(R^{11})S(O)_2R^{23}, -N(R^{10})C(O)OR^{10}, -P(O)OR^{10}, or -P(O)(OR^{19})OR^{12};

 R^4 , R^5 , R^6 and R^7 are each independently selected from a group consisting of hydrogen, halo, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aralkyl, optionally substituted heteroaralkyl, $-OR^{14}$, $-SR^{14}$, $-S(O)_2R^{14}$, $-N(R^{15})R^{16}$, $-N(R^{15})S(O)_2R^{23}$, $-N(R^{15})C(O)R^{23}$, $-C(O)R^{18}$, $-C(O)OR^{20}$, $-C(O)N(R^{21})R^{22}$, $-C(O)N(R^{21})S(O)_2R^{23}$; $-C(O)N(R^{24})N(R^{21})R^{22}$ and $-C(O)N(R^{21})S(O)_2R^{23}$; or

 R^6 and R^7 together form an oxo, thioxo, optionally substituted imino, optionally substituted oxime or an optionally substituted hydrazone, or R^6 and R^7 , together with the carbon atom to which they are attached, form an optionally substituted exocyclic double bond, and R^4 and R^5 are as described above; or

 R^4 and R^5 together form an oxo, thioxo, optionally substituted imino, optionally substituted oxime or an optionally substituted hydrazone, or R^4 and R^5 , together with the carbon atom to which they are attached, form an optionally substituted exocyclic double bond, and R^6 and R^7 are as described above; or

 R^4 and R^5 , or R^4 and R^6 , or R^4 and R^7 , or R^5 and R^6 , or R^5 and R^7 , or R^6 and R^7 , together with the carbon atom to which they are attached, form an optionally

substituted cycloalkyl ring, optionally substituted heterocyclyl ring, an optionally substituted cycloalkenyl ring or together form a double bond, and the others of R^4 , R^5 , R^6 and R^7 are as described above; or R^4 and R^5 , together with the carbon atom to which they are attached, and R^6 and R^7 , together with the carbon atom to which they are attached, form an optionally substituted cycloalkyl ring, optionally substituted heterocyclyl ring or an optionally substituted cycloalkenyl ring.

 $$\rm R^9$ is hydrogen, optionally substituted alkyl, -C(O)R 18 , -C(O)OR 20 or -S(O)2 $\rm R^{23}$;

R¹⁰, R¹¹, R¹², R¹³ and R¹⁹ are selected as in (a) or (b) as follows: (a) R¹⁰, R¹¹, R¹², R¹³ and R¹⁹ each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R¹¹ and R¹² or R¹² and R¹⁹, together with the atoms to which they are attached, form an optionally substituted heterocyclyl ring or an optionally substituted heteroaryl ring; and the others of R¹⁰, R¹¹, R¹², R¹³ and R¹⁹ are selected as in (a), above;

R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are selected as in (a) or (b) as follows: (a) R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R¹⁵ and R¹⁶, together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are selected as in (a) above;

R²⁰, R²¹, R²² and R²⁴ are selected as in (a) or (b) as follows: (a) R²⁰, R²¹, R²² and R²⁴ are each independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaryl, or optionally substituted heteroaralkyl; or (b) R²¹ and R²², together with the nitrogen atom to which they are attached, form an optionally substituted heterocyclyl ring, or an optionally substituted heteroaryl ring, and the others of R²⁰, R²¹, R²² and R²⁴ are selected as in (a) above;

R²³ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted

aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;

each of R¹-R²⁴ and R³⁰-R³⁶, when substituted, are substituted with one or more substituents, each independently selected from Q¹;

each Q¹ is independently selected from halo, pseudohalo, oxo, thioxo, cyano, thiocyano, isocyano, nitro, azido, alkyl, haloalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing 1 to 2 triple bonds, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, heteroarylalkyl, alkylidene, arylalkylidene, aryloxyarylcarbonylamino, hydroxycarbonylalkylthio, halosulfonyl, $-OR^{70}$, $-SR^{70}$, $-R^{60}$ - $C(J)R^{71}$, $-R^{60}$ - $N(R^{70})C(J)R^{71}$, $-OC(O)R^{71}$, $-R^{60}$ - $N(R^{75})(R^{76})$, $-N^+(R^{77})_3$, $-P(R^{78})_2$, $-P(O)(R^{78})_2$, $-OP(O)(R^{78})_2$, $-N(R^{70})S(O)_2R^{71}$, $-S(O)_2R^{71}$, $-S(O)R^{82}$, $-OS(O)R^{83}$, $-OS(O)_2R^{83}$ or $-Si(R^{83})_3$;

two Q¹ groups, which substitute atoms in a 1,2 or 1,3 arrangement, together with the carbon atoms to which they are attached form a cycloalkyl ring, cycloalkenyl ring, cycloalkynyl ring or heterocyclyl ring; or

each Q^1 is independently substituted or unsubstituted with one or more substituents each independently selected from Q^2 :

each Q^2 is independently selected from halo, pseudohalo, oxo, thioxo, cyano, thiocyano, isocyano, nitro, azido, alkyl, haloalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing 1 to 2 triple bonds, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, heteroarylalkyl, alkylidene, arylalkylidene, aryloxyarylcarbonylamino, hydroxycarbonylalkylthio, halosulfonyl, $-OR^{70}$, $-SR^{70}$, $-R^{60}$ - $C(J)R^{71}$, $-R^{60}$ - $N(R^{70})C(J)R^{71}$, $-OC(O)R^{71}$, $-R^{60}$ - $N(R^{75})(R^{76})$, $-N^+(R^{77})_3$, $-P(R^{78})_2$, $-P(O)(R^{78})_2$, $-OP(O)(R^{78})_2$, $-N(R^{70})S(O)_2R^{71}$, $-S(O)_2R^{71}$, $-S(O)R^{82}$, $-OS(O)R^{83}$, $-OS(O)_2R^{83}$ or $-Si(R^{83})_3$;

two Q^2 groups, which substitute atoms in a 1,2 or 1,3 arrangement, together with the carbon atoms to which they are attached form a cycloalkyl ring, cycloalkenyl ring, cycloalkynyl ring or heterocyclyl ring;

each J is independently O, S or -NR⁷⁰;

each R⁶⁰ is independently a direct bond or alkylene;

each R⁷⁰ is independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, haloalkyl, heterocyclylalkyl or heteroaralkyl;

each R^{71} is independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, haloalkyl, heterocyclylalkyl, heteroaralkyl, $-OR^{72}$ or $-N(R^{73})R^{74}$;

R⁷², R⁷³ and R⁷⁴ are each independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl; or

R⁷³ and R⁷⁴, together with the nitrogen atom to which they are attached, form a heterocyclyl ring or heteroaryl ring;

R⁷⁵ and R⁷⁶ are each independently hydrogen, alkyl, alkenyl, alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocyclyl or heterocyclylalkyl; or

R⁷⁵ and R⁷⁶, together with the nitrogen atom to which they are attached, form a heterocyclyl ring or heteroaryl ring;

each R⁷⁷ is independently alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl;

R⁷⁸ is alkyl, heteroaryl, heterocyclyl, aryl, -OR⁷⁹ or -N(R⁸⁰)R⁸¹;

R⁷⁹ is hydrogen, alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl;

R⁸⁰ and R⁸¹ are each independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl; or

R⁸⁰ and R⁸¹, together with the nitrogen atom to which they are attached, form a heterocyclyl ring or heteroaryl ring;

 ${\sf R}^{82}$ is alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, heteroaralkyl or -OR 83 ; and

each R⁸³ is independently alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl;

as a single isomer, a mixture of isomers, or as a racemic mixture of isomers; or as a solvate or polymorph; or as a prodrug; or as a pharmaceutically acceptable salt thereof.

- 47. A method of treating, preventing, or ameliorating one or more symptoms of a disease or disorder in which farnesoid X receptor activity is implicated, comprising administering to a subject in need thereof an effective amount of a compound of any one claims 1-46.
- 48. The method of claim 47, wherein the disease or disorder is selected from hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, dyslipidemia, lipodystrophy, atherosclerosis, atherosclerotic disease, atherosclerotic

disease events, atherosclerotic cardiovascular disease, Syndrome X, diabetes mellitus, type II diabetes, insulin insensitivity, hyperglycemia, cholestasis and obesity.