# Raport 3

## Eksploracja danych

Mikołaj Langner, Marcin Kostrzewa nr albumów: 255716, 255749

#### 2021-04-19

# Spis treści

| 1 | Wstęp |                                                                     |    |  |  |  |  |  |  |  |  |
|---|-------|---------------------------------------------------------------------|----|--|--|--|--|--|--|--|--|
| 2 | Zad   | anie 1                                                              | 2  |  |  |  |  |  |  |  |  |
|   | 2.1   | 2.1 Wczytanie danych i podział na zbiór uczący i testowy            |    |  |  |  |  |  |  |  |  |
|   | 2.2   | Konstrukcja klasyfikatora i wyznaczenie prognoz                     | 2  |  |  |  |  |  |  |  |  |
|   | 2.3   | Ocena jakości klasyfikacji                                          | 4  |  |  |  |  |  |  |  |  |
|   | 2.4   | Zastosowanie regresji liniowej do modelu o rozszerzonej ilości cech | 4  |  |  |  |  |  |  |  |  |
| 3 | Zad   | anie 2                                                              | 7  |  |  |  |  |  |  |  |  |
|   | 3.1   | Wczytanie i krótka anliza danych                                    | 7  |  |  |  |  |  |  |  |  |
|   | 3.2   | Metoda k-najbliższych sąsiadów                                      | 8  |  |  |  |  |  |  |  |  |
|   | 3.3   | Drzewa klasyfikacyjne                                               | Ć  |  |  |  |  |  |  |  |  |
|   | 3.4   | Naiwny klasyfikator bayesowski                                      | 12 |  |  |  |  |  |  |  |  |

# 1 Wstęp

Raport zawiera rozwiązania listy 3.

W zadaniu pierwszym budujemy klasyfikator na bazie metody regresji liniowej i oceniamy jego skuteczność i dokładność.

W zadaniu drugim ....Porównamy ze sobą rezultaty zastosowania:

- metoda k-najblizszych sasiadów (k-Nearest Neighbors),
- drzewa klasyfikacyjne (classification trees),
- naiwny klasyfikator bayesowski (naïve Bayes classifier).

#### 2 Zadanie 1

#### 2.1 Wczytanie danych i podział na zbiór uczący i testowy

Wczytajmy dane o irysach i podzielmy je na zbiór uczący i testowy w proporcji 1 : 2.

```
data(iris)
n <- dim(iris)[1]

train.set.index <- sample(1:n, 2/3*n)
train.set <- iris %>% slice(train.set.index) %>% arrange(Species)
test.set <- iris %>% slice(-train.set.index) %>% arrange(Species)
```

### 2.2 Konstrukcja klasyfikatora i wyznaczenie prognoz

Stworzymy teraz macierze eksperymentu i wskaźnikową zarówno dla zbioru uczącego, jak i testowego. W tym celu wykorzystamy funckję dummyVars z pakietu Caret.

Wykorzystując metodę najmniejszych kwadratów, wyznaczamy przewidywane prognozy klas dla obu zbiorów.

```
Y.hat <- solve(t(train.X) %*% train.X) %*% t(train.X) %*% train.Y

train.proba <- train.X %*% Y.hat

test.proba <- test.X %*% Y.hat
```

Przedstawmy prognozy klas na wykresach.



Rysunek 1: Prognozy klas dla zbioru uczacego.



Rysunek 2: Prognozy klas dla zbioru testowego.

#### 2.3 Ocena jakości klasyfikacji

Wyznaczmy teraz macierz pomyłek dla zbioru uczącego.

|            | Species.setosa | Species.versicolor | Species.virginica |
|------------|----------------|--------------------|-------------------|
| setosa     | 27             | 1                  | 0                 |
| versicolor | 0              | 31                 | 7                 |
| virginica  | 0              | 7                  | 27                |

Tabela 1: Macierz pomylek dla zbioru uczacego.

Błąd klasyfikacji to 0.15.

|            | Species.setosa | Species.versicolor | Species.virginica |
|------------|----------------|--------------------|-------------------|
| setosa     | 22             | 0                  | 0                 |
| versicolor | 0              | 10                 | 2                 |
| virginica  | 0              | 2                  | 14                |

Tabela 2: Macierz pomylek dla zbioru testowego.

Bład klasyfikacji wynosi 0.08.

Wnioski i napomnienie o maskowaniu

# 2.4 Zastosowanie regresji liniowej do modelu o rozszerzonej ilości cech

Najpierw uzupełnijmy dane o irysach o składniki wielomianowe stopnia 2.

Podobnie jak poprzednio podzielimy dane na zbiory: uczący i testowy, a następnie utworzymy macierze: eksperymentu i indykatorów.

```
train.set.index <- sample(1:n, 2/3*n)
train.set <- iris %>% slice(train.set.index) %>% arrange(Species)
test.set <- iris %>% slice(-train.set.index) %>% arrange(Species)

dummies <- dummyVars(" ~ .", data=iris)
train.dummies <- predict(dummies, newdata = train.set)
train.X <- as.matrix(cbind(rep(1, nrow(train.dummies)), train.dummies[, -c(5:7)]))
train.Y <- train.dummies[, 5:7]</pre>
```

```
test.dummies <- predict(dummies, newdata = test.set)
test.X <- as.matrix(cbind(rep(1, nrow(test.dummies)), test.dummies[, -c(5:7)]))
test.Y <- test.dummies[, 5:7]</pre>
```

Ponownie, wyznaczymy prognozy klas i zwizualizujemy to przypisanie na wykresach.

```
Y.hat <- solve(t(train.X) %*% train.X) %*% t(train.X) %*% train.Y

train.proba <- train.X %*% Y.hat

test.proba <- test.X %*% Y.hat
```



Rysunek 3: Prognozy klas dla zbioru uczacego o rozszerzonej liczbie cech.



Rysunek 4: Prognozy klas dla zbioru uczacego o rozszerzonej liczbie cech.

Wyznaczymy także macierze pomyłek i błędy klasyfikacji.

|            | Species.setosa | Species.versicolor | Species.virginica |
|------------|----------------|--------------------|-------------------|
| setosa     | 29             | 0                  | 0                 |
| versicolor | 0              | 31                 | 1                 |
| virginica  | 0              | 1                  | 38                |

Tabela 3: Macierz pomylek dla zbioru uczacego dla przypadku o rozszerzonej liczbie cech.

Błąd klasyfkacji wynosi 0.02.

|            | Species.setosa | Species.versicolor | Species.virginica |
|------------|----------------|--------------------|-------------------|
| setosa     | 21             | 0                  | 0                 |
| versicolor | 0              | 18                 | 0                 |
| virginica  | 0              | 2                  | 9                 |

Tabela 4: Macierz pomylek dla zbioru testowego dla przypadku o rozszerzonej liczbie cech.

Błąd klasyfikacji wynosi 0.04.

Wnioski i napomnienie o maskowaniu

## 3 Zadanie 2

## 3.1 Wczytanie i krótka anliza danych

Wczytajmy i przygotujmy dane do dalszych analizy.

```
library(MASS)
data(wine)
n <- dim(wine)[1]
wine <- drop_na(wine)</pre>
```

Przyjrzyjmy się naszym danym na wykresach pudełkowych.



Page 1



Page 2

Możemy zauważyć, że zmiennymi, które dobrze odróźniają zmienne . . .

Podzielmy nasze dane na zbiór uczący i testowy w stosunku 2:1.

```
set.seed(42)
train.index <- sample(n, 2/3 * n)
train.data <- wine %>% slice(train.index)
test.data <- wine %>% slice(-train.index)
train.subset <- data.frame(train.data[, c(1, 3, 6, 10)])
test.subset <- data.frame(test.data[, c(1, 3, 6, 10)])

train.etiquettes <- train.data$Type
test.etiquettes <- test.data$Type
subset.train.etiquettes <- train.subset$Type
subset.test.etiquettes <- test.subset$Type</pre>
cv <- trainControl(method="cv", number=5)
```

# 3.2 Metoda k-najbliższych sąsiadów

```
model.knn.basic <- ipredknn(Type ~ ., data = train.data, k=5)
basic.knn.test.pred <- predict(model.knn.basic, test.data, type="class")
basic.knn.train.pred <- predict(model.knn.basic, train.data, type="class")</pre>
```

|    | 1                | 2  | 3  |  |   | 1    | 2      | 3   |
|----|------------------|----|----|--|---|------|--------|-----|
| 1  | 32               | 5  | 1  |  | 1 | 21   | 1      | 2   |
| 2  | 2                | 39 | 8  |  | 2 | 0    | 15     | 9   |
| 3  | 2                | 7  | 22 |  | 3 | 2    | 4      | 6   |
| (a | (a) Zbior uczacy |    |    |  |   | Zbio | r test | owy |

Tabela 5: Macierze pomylek dla metody KNN — wszystkie cechy.

Błędy klasyfikacji to 0.2118644 i 0.3.

```
knn.model.subset <- ipredknn(Type ~ ., data = train.subset, k=5)
subset.knn.test.pred <- predict(knn.model.subset, test.subset, type="class")
subset.knn.train.pred <- predict(knn.model.subset, train.subset, type="class")</pre>
```

|    | 1                | 2  | 3  |   |   | 1    | 2      | 3   |
|----|------------------|----|----|---|---|------|--------|-----|
| 1  | 32               | 5  | 1  | - | 1 | 21   | 1      | 2   |
| 2  | 2                | 39 | 8  |   | 2 | 0    | 15     | 9   |
| 3  | 2                | 7  | 22 |   | 3 | 2    | 4      | 6   |
| (8 | (a) Zbior uczacy |    |    |   |   | Zbio | r test | owy |

Tabela 6: Macierze pomylek dla metody KNN — wybrance cechy.

Błędy klasyfikacji to 0.2118644 i 0.3.

```
model <- train(Type ~ ., data = train.data, method = "knn", trControl = cv)
tuned.knn.test.pred <- predict(model, test.data)
tuned.knn.train.pred <- predict(model, train.data)</pre>
```

|    | 1                | 2  | 3  |  |   | 1    | 2      | 3   |
|----|------------------|----|----|--|---|------|--------|-----|
| 1  | 35               | 5  | 3  |  | 1 | 22   | 1      | 3   |
| 2  | 1                | 32 | 11 |  | 2 | 0    | 14     | 7   |
| 3  | 0                | 14 | 17 |  | 3 | 1    | 5      | 7   |
| (a | (a) Zbior uczacy |    |    |  |   | Zbio | r test | owy |

Tabela 7: Macierze pomylek dla metody KNN — stuningowany model.

Błędy klasyfikacji to 0.2881356 i 0.2833333.

## 3.3 Drzewa klasyfikacyjne



Tabela 8: Macierze pomylek dla metody drzew klasyfikacyjnych — wszystkie cechy.

Błędy klasyfikacji to 0.0254237 i 0.1333333.



|    | 1      | 2      | 3    |                   | 1  | 2  | 3  |  |
|----|--------|--------|------|-------------------|----|----|----|--|
| 1  | 27     | 3      | 3    | 1                 | 11 | 1  | 0  |  |
| 2  | 8      | 44     | 7    | 2                 | 12 | 16 | 7  |  |
| 3  | 1      | 4      | 21   | 3                 | 0  | 3  | 10 |  |
| (a | ı) Zbi | or ucz | zacy | (b) Zbior testowy |    |    |    |  |

Tabela 9: Macierze pomylek dla metody drzew klasyfikacyjnych — wybrane cechy.

Błędy klasyfikacji to 0.220339 i 0.3833333.



Tabela 10: Macierze pomylek dla metody drzew klasyfikacyjnych — stuningowany model.

Błędy klasyfikacji to 0.0254237 i 0.1333333.

## 3.4 Naiwny klasyfikator bayesowski

```
bayes.model.basic <- naiveBayes(Type ~ ., data = train.data)
basic.bayes.train.pred <- predict(bayes.model.basic, train.data)
basic.bayes.test.pred <- predict(bayes.model.basic, test.data)</pre>
```

Błędy klasyfikacji to kolejno 0.0084746 i 0.0333333.

Powtórzmy teraz powyższe dla wybranego podzbioru naszych danych.

```
bayes.model.subset <- naiveBayes(Type ~ ., data = train.subset)</pre>
```

|    | 1                | 2  | 3  |  |   | 1      | 2       | 3    |
|----|------------------|----|----|--|---|--------|---------|------|
| 1  | 36               | 0  | 0  |  | 1 | 22     | 1       | 0    |
| 2  | 0                | 50 | 1  |  | 2 | 0      | 19      | 1    |
| 3  | 0                | 0  | 31 |  | 3 | 0      | 0       | 17   |
| (a | (a) Zbior uczacy |    |    |  |   | ) Zbio | or test | towy |

Tabela 11: Macierze pomylek dla klasyfikatora bayesowskiego — wszystkie cechy.

```
basic.bayes.train.pred <- predict(bayes.model.subset, train.subset)
basic.bayes.test.pred <- predict(bayes.model.subset, test.subset)</pre>
```

|    | 1      | 2      | 3    |    |        | 1       | 2   | 3  |
|----|--------|--------|------|----|--------|---------|-----|----|
| 1  | 26     | 8      | 2    |    | 1      | 13      | 8   | 2  |
| 2  | 4      | 42     | 5    |    | 2      | 2       | 13  | 5  |
| 3  | 3      | 5      | 23   |    | 3      | 1       | 0   | 16 |
| (a | ı) Zbi | or ucz | zacy | (b | ) Zbio | or test | owy |    |

Tabela 12: Macierze pomylek dla klasyfikatora bayesowskiego — wybrane cechy.

Błędy klasyfikacji to kolejno 0.2288136 i 0.3.

Model "stunigowany"

|                  | 1  | 2  | 3  |  |    | 1      | 2       | 3   |
|------------------|----|----|----|--|----|--------|---------|-----|
| 1                | 36 | 0  | 0  |  | 1  | 22     | 1       | 0   |
| 2                | 0  | 50 | 1  |  | 2  | 0      | 19      | 1   |
| 3                | 0  | 0  | 31 |  | 3  | 0      | 0       | 17  |
| (a) Zbior uczacy |    |    |    |  | (b | ) Zbic | or test | owy |

Tabela 13: Macierze pomylek dla klasyfikatora bayesowskiego — model stuningowany.

Błędy klasyfikacji w tym przypadku to kolejno 0.0084746 i 0.0333333.

```
# my.predict <- function(model, newdata)
# { predict(model, newdata=newdata) }
#
# cv <- trainControl(method="cv", number=5)
#
# my.naiveBayes <- function(formula, data)</pre>
```