Probability

Calibration

Сортируем предсказания модели бинарной классификации и делим на бины

Калибровка = в бине, где средний скор 0.85 должны быть 85% True Positive

ось X: mean(predict_proba) в бине «предсказанная вероятность единичек в бине»

ось Y: доля TP в бине «настоящая вероятность единичек в бине»

Диагональная пунктирная линия = идеальная калибровка <u>График</u> на самом деле квадратный, просто ось X растянута Различия хорошо видны на гистограммах скоров

Как происходит калибровка

• Обучаем дополнительную модель (regressor), которая пытается при данной predict_proba предсказать вероятность

$$P(y = 1 | predict_proba)$$

• Для этого придется выделить дополнительный набор данных (X_calibrate, y_calibrate)

isotonic regression

calibration

Строим ступенчатую неубывающую функцию *m*

$$\widehat{m} = argmin \sum_{i} w_i (y_i - \widehat{y}_i)^2$$

 \hat{y}_i - ответ алгоритма, по которому минимизируем ф-ию

 y_i - таргет

 W_i - Beca

Isotonic regression

IsotonicRegression produces a series of predictions \hat{y}_i for the training data which are the closest to the targets y in terms of mean squared error. These predictions are interpolated for predicting to unseen data. The predictions of **IsotonicRegression** thus form a function that is piecewise linear:

sigmoid

calibration

Считаем сигмоиду над Af + B

$$P(y = 1|f) = \frac{1}{1 + exp(Af + B)}$$

f – ответ обученного алгоритма

where the parameters A and B are £tted using maximum likelihood estimation from a £tting training set (f_i, y_i) . Gradient descent is used to £nd A and B such that they are the solution to:

$$\underset{A,B}{argmin} \{ -\sum_{i} y_{i} log(p_{i}) + (1 - y_{i}) log(1 - p_{i}) \}, (2)$$

where

$$p_i = \frac{1}{1 + exp(Af_i + B)}$$
(3)

Статья

Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005

Brier score loss

Definition [edit]

The most common formulation of the Brier score is

$$BS = rac{1}{N}\sum_{t=1}^N (f_t - o_t)^2$$

in which f_t is the probability that was forecast, o_t the actual outcome of the event at instance t (0 if it does not happen and 1 if it does happen)

- <u>Лежит</u> в [0, 1]
- Чем меньше, тем лучше

sklearn.metrics.brier_score_loss

sklearn.metrics.brier_score_loss(y_true, y_prob, *, sample_weight=None, pos_label=None) [source]

Compute the Brier score.