5.319 peak

DESCRIPTION LINKS AUTOMATON

Origin Derived from inflexion.

Arguments N : dvar

VARIABLES : collection(var-dvar)

Restrictions $N \ge 0$

```
2 * N \le \max(|VARIABLES| - 1, 0)
required(VARIABLES, var)
```

Purpose

A variable V_k (1 < k < m) of the sequence of variables VARIABLES $= V_1, \ldots, V_m$ is a peak if and only if there exists an i (with $1 < i \le k$) such that $V_{i-1} < V_i$ and $V_i = V_{i+1} = \cdots = V_k$ and $V_k > V_{k+1}$. N is the total number of peaks of the sequence of variables VARIABLES.

Example

```
\begin{array}{l} (2, \langle 1, 1, 4, 8, 6, 2, 7, 1 \rangle) \\ (0, \langle 1, 1, 4, 4, 4, 6, 7, 7 \rangle) \\ (4, \langle 1, 5, 4, 9, 4, 6, 2, 7, 6 \rangle) \end{array}
```

The first peak constraint holds since the sequence $1\ 1\ 4\ 8\ 6\ 2\ 7\ 1$ contains two peaks that respectively correspond to the variables that are assigned to values 8 and 7.

Figure 5.662: Illustration of the first example of the **Example** slot: a sequence of eight variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 respectively fixed to values 1, 1, 4, 8, 6, 2, 7, 1 and its corresponding two peaks ($\mathbb{N}=2$)

All solutions

Figure 5.663 gives all solutions to the following non ground instance of the peak constraint: $\mathbb{N} \in [1,2], \ \mathbb{V}_1 \in [1,2], \ \mathbb{V}_2 = 2, \ \mathbb{V}_3 \in [1,2], \ \mathbb{V}_4 \in [1,2], \ \mathbb{V}_5 \in [2,3], \ \mathbb{P}_{2} = \mathbb{P}_{2} = \mathbb{P}_{3} =$

```
 \begin{array}{c} \textcircled{1}, \langle 1, 2, 1, 1, 2 \rangle) \\ \textcircled{2}, (1, \langle 1, 2, 1, 1, 3 \rangle) \\ \textcircled{3}, (1, \langle 1, 2, 1, 2, 2 \rangle) \\ \textcircled{4}, (1, \langle 1, 2, 1, 2, 3 \rangle) \\ \textcircled{5}, (1, \langle 1, 2, 2, 1, 2 \rangle) \\ \textcircled{6}, (1, \langle 1, 2, 2, 1, 3 \rangle) \\ \end{array}
```

Figure 5.663: All solutions corresponding to the non ground example of the peak constraint of the **All solutions** slot where each peak is coloured in orange

Typical

```
\begin{array}{l} |{\tt VARIABLES}| > 2 \\ {\tt range}({\tt VARIABLES.var}) > 1 \end{array}
```

Symmetries

- Items of VARIABLES can be reversed.
- One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

- Functional dependency: N determined by VARIABLES.
- Contractible wrt. VARIABLES when N = 0.

Usage

Useful for constraining the number of peaks of a sequence of domain variables.

Remark

Since the arity of the arc constraint is not fixed, the peak constraint cannot be currently described with the graph-based representation. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Number of solutions for peak: domains 0..n

Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
	0	9	50	295	1792	11088	69498	439791
Parameter value	1	-	14	330	5313	73528	944430	11654622
	2	-	-	-	671	33033	1010922	24895038
	3	-	-	-	-	-	72302	6057270

Solution count for peak: domains 0..n

Solution density for peak

Parameter value as fraction of length

See also

common keyword: highest_peak, inflexion, min_dist_between_inflexion,
min_width_peak(sequence).

comparison swapped: valley.

generalisation: big_peak (a tolerance parameter is added for counting only big peaks).

related: all_equal_peak, all_equal_peak_max, decreasing_peak, increasing_peak, no_valley.

specialisation: no_peak (the variable counting the number of peaks is set to 0 and removed).

Keywords

characteristic of a constraint: automaton, automaton with counters, automaton with same input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

filtering: glue matrix.

modelling: functional dependency.

Cond. implications

 $\begin{array}{c} \bullet \; \mathrm{peak}(\mathtt{N}, \mathtt{VARIABLES}) \\ \mathrm{with} \; \; \mathtt{N} > 0 \end{array}$

 $\begin{array}{ll} \textbf{implies atleast_nvalue}(\texttt{NVAL}, \texttt{VARIABLES}) \\ \text{when } \texttt{NVAL} = 2. \end{array}$

• peak(N, VARIABLES)

implies inflexion(N, VARIABLES)
 when N = peak(VARIABLES.var)+valley(VARIABLES.var).

Automaton

Figure 5.664 depicts the automaton associated with the peak constraint. To each pair of consecutive variables (VAR $_i$, VAR $_{i+1}$) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR $_i$, VAR $_{i+1}$ and S_i : (VAR $_i$ < VAR $_{i+1} \Leftrightarrow S_i = 0$) \wedge (VAR $_i$ = VAR $_{i+1} \Leftrightarrow S_i = 1$) \wedge (VAR $_i$ > VAR $_{i+1} \Leftrightarrow S_i = 2$).

STATES SEMANTICS $s : \text{stationary/decreasing mode} \qquad (\{> | = \}^*) \\ u : \text{increasing mode} \qquad (\{< | = \}^*)$ $(< \{< | = \}^*)$ $\forall \mathsf{AR}_i = \mathsf{VAR}_{i+1}$ $\forall \mathsf{VAR}_i < \mathsf{VAR}_{i+1}$ $\forall \mathsf{VAR}_i < \mathsf{VAR}_{i+1}$ $\forall \mathsf{VAR}_i > \mathsf{VAR}_{i+1}$ $\forall \mathsf{VAR}_i > \mathsf{VAR}_{i+1}$ $\forall \mathsf{VAR}_i < \mathsf{VAR}_{i+1}$ $\forall \mathsf{VAR}_i < \mathsf{VAR}_{i+1}$

Figure 5.664: Automaton of the peak constraint

Figure 5.665: Hypergraph of the reformulation corresponding to the automaton of the peak constraint (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})

Glue matrix where \overrightarrow{C} and \overleftarrow{C} resp. represent the counter value C at the end of a prefix and at the end of the corresponding reverse suffix that partitions the sequence VARIABLES.

Figure 5.666: Glue matrix of the peak constraint

glue matrix entry associated with the state pair $(u, \frac{u}{u})$: $\mathbb{N} = \overrightarrow{\mathsf{C}_3} + 1 + \overleftarrow{\mathsf{C}_4} = 0 + 1 + 1 = 2$

Figure 5.667: Illustrating the use of the state pair (u,u) of the glue matrix for linking N with the counters variables obtained after reading the prefix 1,1,4,8 and corresponding suffix 8,6,2,7,1 of the sequence 1,1,4,8,6,2,7,1; note that the suffix 8,6,2,7,1 (in pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for i=0) and the evolution (for i>0) of the state of the automaton and of its counter C upon reading the prefix 1,1,4,8 (resp. the suffix 1,7,2,6,8).