Generating Bulbasaurs using DDPM Project 4 - Statistical deep learning MT7042

Florence Hugh & August Jonasson

2025-01-17

Introduction

Exploratory analysis

- $\bullet~\approx 200$ images of varying resolution and #channels
- pre-processing required
- data augumentation

Decay of the forward process

Transition density of the forward process

$$q(x_t|x_0) := \mathcal{N}(x_t; \sqrt{\overline{\alpha}_t}x_0, \sqrt{1-\overline{\alpha}_t} \mathbf{I}),$$

where x_t is the image at timestep t, x_0 is the starting image, and

$$\overline{\alpha}_t = \prod_{i=1}^t \alpha_i.$$

- What we need: $q(x_T|x_0) \to \mathcal{N}(x_T; 0, I)$, as $T \to \infty$
- Crucial to control the decay of $\sqrt{\overline{\alpha}_t}$
 - by choosing $\{\alpha_t\}$ and T

Decay of the forward process

With linearly decaying $\{\alpha_t\}$, the decay of $\sqrt{\overline{\alpha}_t}$ for different T

Forward noising process applied to a pre-processed image

Architecture

- U-Net
 - Capable of handling image segmentation

Optimization problem

- Equivalent to a least-squares regression problem
 - ightharpoonup Response: Random generated noise ϵ
 - Predictor: Time-step t & image x_t
- Hence, minimization of

$$||\epsilon - \epsilon_{\theta}(\sqrt{\overline{\alpha}_t}x_0 + \sqrt{1 - \overline{\alpha}_t}\epsilon, t)||_2^2, \quad \forall t \in \{1, \dots, T\}.$$

Generating images

• 2000 epochs with Adam optimizer and MSE loss function

Generating images

• 2000 epochs with Adam optimizer and MSE loss function

Examining the training

- 80/20 split, different from the model that generated images
- What do we expect a healthy training to look like?

Alternative methods of validation

- Plausible vs novelty
- Quality of generated images

Fréchet inception distance

$$d_F(\mathcal{N}(\mu,\Sigma),\mathcal{N}(\mu',\Sigma'))^2 = ||\mu-\mu'||_2^2 + \operatorname{tr}\left(\Sigma + \Sigma' - 2(\Sigma\Sigma')^{\frac{1}{2}}\right),$$

Where $\mathcal{N}(\mu, \Sigma)$ is the distribution of the original image set and $\mathcal{N}(\mu', \Sigma')$ of the generated images.

Possible improvements

- Monitoring the training
 - ▶ 90/10 split
 - Leave-one-out cross-validation
- How to handle overfitting
 - Add data augumentation
 - Dropout
 - $ightharpoonup L_1$ (Lasso) and L_2 (Ridge) penalty