Práctica Circuitos Electrónicos 9 Informe Prepráctica

Ejercicio 1:

Como se puede apreciar en la imagen, conforme aumenta el voltaje de la fuente VBB, también aumentan el voltaje de la base (VB) y la intensidad de la misma.

Al sustituir la resistencia de 100Ω por la de 0.01Ω no apreciamos cambio alguno en la gráfica representada. Pensamos que esto puede deberse a que tanto el voltaje como la intensidad de la base dependen de VBB y RB, por lo que al variar el valor de RC no se produce un cambio significativo.

Ejercicio 2:

Analizando la curva obtenida, obtenemos un punto de conmutación a los 4.3V.

--- Operating Point ---

V(n002):	10	voltage
V(n001):	15	voltage
V(vb):	0.870595	voltage
V(vc):	10.8503	voltage
Ic(Q1):	0.0414976	device_current
Ib(Q1):	0.000414976	device_current
Ie(Q1):	-0.0419125	device_current
I(Rc):	0.0414973	device_current
I(Rb):	-0.000414973	device_current
I(Vcc):	-0.0414973	device_current
I(Vbb):	-0.000414973	device_current

Con los resultados obtenidos al realizar una simulación DC op, obtenemos un valor para el parámetro β = 100. En la simulación obtenemos un valor negativo, pero asumimos que se debe al sentido de las corrientes, lo que no afecta al valor de nuestro parámetro.