"Predicting Car Prices: A Machine Learning Approach for Market Strategy in the US Automotive Industry"

Name: ARSHAD JASEEM CH

Problem Statement Overview

A Chinese automobile manufacturer is planning to expand into the US market, aiming to compete with established American and European brands. To achieve this, the company needs a comprehensive understanding of the key factors influencing car prices in the US and how these factors drive pricing decisions.

By analyzing a dataset containing car specifications and their corresponding prices, the objective is to develop a machine learning model that can:

- 1. Determine the primary factors that impact car prices.
- 2. Accurately predict car prices based on these factors.

The insights derived from this model will enable the company to design, produce, and price vehicles strategically, equipping them to compete effectively in the US automotive market.

Objective

The goal of this project is to develop a machine learning model capable of accurately predicting car prices in the US market using various car features and specifications.

This model aims to assist the company in:

- Identifying key factors that influence car prices.
- Understanding the impact of these factors to guide car design and production decisions.
- Formulating competitive pricing strategies aligned with market trends.

By leveraging these insights, the company will be better positioned to compete effectively in the US automotive industry.

Data Description

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.feature selection import SelectKBest, f classif
from scipy.stats import skew
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor,
GradientBoostingRegressor
from sklearn.svm import SVR
from sklearn.metrics import mean absolute error, mean squared error,
r2 score
from sklearn.model selection import GridSearchCV
import joblib
import warnings
warnings.filterwarnings('ignore')
```

Data Collection:

```
# Load the dataset
data = pd.read csv(r"C:\Users\ARSHAD\Downloads\
CarPrice Assignment.csv")
df = pd.DataFrame(data)
df
     car ID symboling
                                            CarName fueltype
aspiration \
                                alfa-romero giulia
                                                                      std
                                                          gas
                      3
1
          2
                               alfa-romero stelvio
                                                                      std
                                                          gas
2
          3
                                                                      std
                          alfa-romero Quadrifoglio
                                                          gas
                                        audi 100 ls
3
                      2
                                                                      std
                                                          gas
                      2
                                         audi 100ls
                                                                      std
                                                          gas
200
        201
                                    volvo 145e (sw)
                      - 1
                                                          gas
                                                                      std
201
        202
                      - 1
                                        volvo 144ea
                                                                    turbo
                                                          gas
202
        203
                      - 1
                                        volvo 244dl
                                                          gas
                                                                      std
203
        204
                                          volvo 246
                                                       diesel
                                                                    turbo
                      - 1
204
        205
                      - 1
                                        volvo 264ql
                                                          gas
                                                                    turbo
```

	doornumber	carbody	drivewheel	enginelocatio	n wheelbase	
0	two	convertible	rwd	fron	t 88.6	
1	two	convertible	rwd	fron	t 88.6	
2	two	hatchback	rwd	fron	t 94.5	
3	four	sedan	fwd	fron	t 99.8	
4	four	sedan	4wd	fron	t 99.4	
200	four	sedan	rwd	fron	t 109.1	
201	four	sedan	rwd	fron	t 109.1	
202	four	sedan	rwd	fron	t 109.1	
203	four	sedan	rwd	fron	t 109.1	
204	four	sedan	rwd	fron	t 109.1	
hors	enginesize sepower \	fuelsystem	boreratio	stroke compr	essionratio	
0 111	130	mpfi	3.47	2.68	9.0	
1 1 111	130	mpfi	3.47	2.68	9.0	
2	152	mpfi	2.68	3.47	9.0	
154 3	109	mpfi	3.19	3.40	10.0	
102 4	136	mpfi	3.19	3.40	8.0	
115 						
200	141	mpfi	3.78	3.15	9.5	
114 201	141	mpfi	3.78	3.15	8.7	
160 202	173	mpfi	3.58	2.87	8.8	
134 203		idi	3.01	3.40	23.0	
106						
204 114	141	mpfi	3.78	3.15	9.5	

0 1 2 3 4	peakrpm c 5000 5000 5000 5500	itympg high 21 21 19 24 18	27 26 30	price 13495.0 16500.0 16500.0 13950.0 17450.0			
200 201 202 203 204	5400 5300 5500 4800 5400	23 19 18 26 19	28 25 23 27	16845.0 19045.0 21485.0 22470.0 22625.0			
[205	rows x 26	columns]					
df.h	ead()						
	-	boling		CarNam	e fuelt	ype aspi	ration
0 two	number \ 1	3	alfa-r	omero giulia	a	gas	std
1	2	3	alfa-ro	mero stelvi	0	gas	std
two 2	3	1 alfa	a-romero (Quadrifogli	0	gas	std
two 3	4	2		audi 100 l	S	gas	std
four 4	5	2		audi 100l	S	gas	std
four							
engi	carbody nesize \	drivewheel	enginelo	cation whe	elbase		
0 c	onvertible	rwd		front	88.6		130
1 c	onvertible	rwd		front	88.6		130
2	hatchback	rwd		front	94.5		152
3	sedan	fwd		front	99.8		109
4	sedan	4wd		front	99.4		136
ء		h +	-+		. 4		
city		boreratio		ompressionr			peakrpm
0 21	mpfi	3.47	2.68		9.0	111	5000
1 21	mpfi	3.47	2.68		9.0	111	5000
2	mpfi	2.68	3.47		9.0	154	5000

```
19
3
         mpfi
                     3.19
                             3.40
                                                10.0
                                                             102
                                                                     5500
24
                                                 8.0
4
         mpfi
                     3.19
                             3.40
                                                             115
                                                                     5500
18
   highwaympg
                  price
0
           27
                13495.0
1
           27
                16500.0
2
           26
                16500.0
3
           30
                13950.0
4
           22
               17450.0
[5 rows x 26 columns]
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
                        Non-Null Count
#
     Column
                                         Dtype
- - -
                                         ----
0
     car ID
                        205 non-null
                                         int64
 1
     symboling
                        205 non-null
                                         int64
 2
     CarName
                        205 non-null
                                         object
 3
     fueltype
                        205 non-null
                                         object
 4
     aspiration
                        205 non-null
                                         object
 5
     doornumber
                        205 non-null
                                         object
 6
     carbody
                        205 non-null
                                         object
 7
     drivewheel
                        205 non-null
                                         object
 8
                        205 non-null
     enginelocation
                                         object
 9
     wheelbase
                        205 non-null
                                         float64
 10
    carlength
                        205 non-null
                                         float64
 11
     carwidth
                        205 non-null
                                         float64
 12
     carheight
                        205 non-null
                                         float64
 13
                                         int64
     curbweight
                        205 non-null
 14
     enginetype
                        205 non-null
                                         object
 15
     cylindernumber
                        205 non-null
                                         object
                        205 non-null
 16
     enginesize
                                         int64
                        205 non-null
 17
     fuelsystem
                                         object
 18
     boreratio
                        205 non-null
                                         float64
 19
     stroke
                        205 non-null
                                         float64
 20
                        205 non-null
                                         float64
     compressionratio
21
     horsepower
                        205 non-null
                                         int64
 22
     peakrpm
                        205 non-null
                                         int64
 23
                                         int64
     citympq
                        205 non-null
 24
     highwaympg
                        205 non-null
                                         int64
 25
                        205 non-null
                                         float64
     price
dtypes: float64(8), int64(8), object(10)
memory usage: 41.8+ KB
```

Data Preprocessing - Data Cleaning

	•			Cleaning		
df.is	null()					
	car_ID dy \	symboling	CarName	fueltype	aspiration	doornumber
0	False	False	False	False	False	False
False	False	False	False	False	False	False
False	False	False	False	False	False	False
False	False	False	False	False	False	False
False	False	False	False	False	False	False
False 						
200 Ealso	False	False	False	False	False	False
False 201 False	False	False	False	False	False	False
202 False	False	False	False	False	False	False
203 False	False	False	False	False	False	False
204 False	False	False	False	False	False	False
	drivewh	eel engine	location	wheelbase	engin	esize
fuelsy 0	ystem ` Fa		False	False	_	False
False 1		lse	False	False		False
False 2		lse	False	False		False
False 3	Fa	lse	False	False		False
False 4	Fa	lse	False	False		False
False 						
200	Fa	lse	False	False		False
False 201	Fa	lse	False	False		False
False 202	Fa	lse	False	False		False
False						

False 204 False	False		False	Fals	e	False	
bor	eratio	stroke	compressio	nratio	horsepower	peakrpm	citympg
Ö	False	False		False	False	False	False
1	False	False		False	False	False	False
2	False	False		False	False	False	False
3	False	False		False	False	False	False
4	False	False		False	False	False	False
200	False	False		False	False	False	False
201	False	False		False	False	False	False
202	False	False		False	False	False	False
203	False	False		False	False	False	False
204	False	False		False	False	False	False
hig 0 1 2 3 4 200 201 202 203 204 [205 row df.isnul car_ID symbolin CarName fueltype aspirati	l(). <mark>sum</mark> (

```
doornumber
                     0
carbody
                     0
                     0
drivewheel
enginelocation
                     0
                     0
wheelbase
                     0
carlength
carwidth
                     0
carheight
                     0
curbweight
                     0
                     0
enginetype
cylindernumber
                     0
                     0
enginesize
fuelsystem
                     0
                     0
boreratio
stroke
                     0
                     0
compressionratio
horsepower
                     0
peakrpm
                     0
citympg
highwaympg
                     0
                     0
price
dtype: int64
df.duplicated().sum()
0
df.shape
(205, 26)
```

Check for and Remove Outliers

```
plt.figure(figsize=(15, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.title("Boxplot for Outliers")
plt.show()
```



```
# Detect outliers using IOR
def detect outliers(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower bound = Q1 - 1.5 * IQR
    upper bound = 03 + 1.5 * IOR
    return df[(df[column] < lower bound) | (df[column] > upper bound)]
# Remove outliers
for column in data.select dtypes(include=np.number).columns:
    outliers = detect outliers(data, column)
    if not outliers.empty:
        print(f"Removing outliers from column: {column}")
        Q1 = data[column].quantile(0.25)
        Q3 = data[column].quantile(0.75)
        IQR = Q3 - Q1
        lower bound = Q1 - 1.5 * IQR
        upper bound = Q3 + 1.5 * IQR
        # Keep only non-outliers
        data = data[(data[column] >= lower bound) & (data[column] <=</pre>
upper bound)]
print("\nOutliers removed.")
Removing outliers from column: wheelbase
Removing outliers from column: carheight
Removing outliers from column: boreratio
Removing outliers from column: stroke
Removing outliers from column: compressionratio
```

```
Outliers removed.
# Plot boxplots for all features
plt.figure(figsize=(15, 6))
sns.boxplot(data=data)
plt.xticks(rotation=90)
plt.title("Boxplot for Feature Outliers")
plt.show()
```


Check the skewness before and after the transformation.

```
price_col = 'price'
# Step 1: Draw initial histogram to check normality
plt.figure(figsize=(12, 6))
sns.histplot(df[price_col], kde=True)
plt.title('Histogram of Price')
plt.xlabel('Price')
plt.ylabel('Frequency')
plt.show()
```



```
#Calculate skewness
skewness_before = df[price_col].skew()

print(f"Skewness before transformation: {skewness_before}")

Skewness before transformation: 1.7776781560914454

df['Log Price'] = np.log(df[price_col] + 1)

# Draw histogram after transformation
plt.figure(figsize=(12, 6))
sns.histplot(df['Log Price'], kde=True)
plt.title('Histogram of Log-Transformed Price')
plt.xlabel('Log Price')
plt.ylabel('Frequency')
plt.show()
```



```
# Calculate skewness and kurtosis after transformation
skewness_after = df['Log Price'].skew()
print(f"Skewness after transformation: {skewness_after}")
Skewness after transformation: 0.6729635607485753
```

Exploratory Data Analysis (EDA):

```
# Plot histograms for all numerical features
df.hist(figsize=(12, 10), bins=20, color='skyblue', edgecolor='black')
plt.suptitle('Histograms of Numerical Features', fontsize=16)
plt.show()
```

Histograms of Numerical Features

Pair plot to observe relationships between numerical features
sns.pairplot(df, diag_kind='kde', corner=True, height=2)
plt.suptitle('Pair Plot of Features', fontsize=16, y=1.02)
plt.show()

Pair Plot of Feature


```
Visualize Trends and Patterns
Kernel Density Estimation (KDE)

Cell In[335], line 1
    Visualize Trends and Patterns

^
SyntaxError: invalid syntax

# KDE plot for price distribution
plt.figure(figsize=(10, 6))
```

```
sns.kdeplot(data=df, x='price', shade=True, color='blue') # Replace
'price' with the column of interest
plt.title('KDE Plot of Price', fontsize=14)
plt.xlabel('Price', fontsize=12)
plt.ylabel('Density', fontsize=12)
plt.show()
```

Feature Engineering:

• Identifying and encoding categorical features using techniques like one-hot encoding or label encoding.

```
# Identify categorical columns
categorical columns = df.select dtypes(include=['object',
'category']).columns
print("Categorical Columns:\n", categorical columns)
Categorical Columns:
'fuelsystem'],
     dtype='object')
label_encoder = LabelEncoder()
# Encoding categorical variables
categorical columns = data.select dtypes(include=['object']).columns
for col in categorical columns:
   data[col] = label encoder.fit transform(data[col])
data
    car ID
            symboling
                               fueltype aspiration doornumber
                      CarName
carbody
2
         3
                    1
                            1
                                                            1
2
3
                    2
                                      0
                                                            0
                            2
3
5
         6
                    2
                            3
                                                            1
3
10
        11
                    2
                                      0
                                                            1
3
11
        12
                                                            0
3
. .
       194
193
                    0
                           74
                                      0
                                                            0
194
       195
                   - 2
                           78
                                                            0
3
                                                            0
195
       196
                   - 1
                           77
                                     0
                                                 0
```

4								
196 3	197	-2	79	0		0		0
197	198	-1	80	0		0		0
4								
6 7	drivewheel	engine ⁻	location	wheelbase		engi	nesize	
	system \		Θ	94.5			152	
2 3 3 5 3	0		0	00.0)		109	
3	U		U	99.8)		109	
5	0		0	99.8	3		136	
10	1		Θ	101.2	<u> </u>		108	
3 11	1		0	101.2	2		108	
3	1		· ·	101.2			100	
193	0		0	100.4	٠		109	
3 194	1		Θ	104.3	3		141	
3								
195 3	1		Θ	104.3	3		141	
196 3	1		0	104.3	3		141	
197	1		Θ	104.3	3		141	
3								
	boreratio	stroke	compress	ionratio	horsep	ower	peakrpm	citympg
2	2.68	3.47		9.0		154	5000	19
3	3.19	3.40		10.0		102	5500	24
5	3.19	3.40		8.5		110	5500	19
10	3.50	2.80		8.8		101	5800	23
11	3.50	2.80		8.8		101	5800	23
	3130	2100		0.0		101	3000	
193	3.19	3.40		9.0		88	5500	25
194	3.78	3.15		9.5		114	5400	23
195	3.78	3.15		9.5		114	5400	23

196	3.78	3.15		9.5		114	540	10	24
197	3.78	3.15		9.5		114	540		24
197	3.70	3.13		9.5		114	340	10	24
2 3 5 10 11	highwaympg 26 30 25 29	16500.0 13950.0 15250.0 16430.0							
193 194 195 196 197	31 28 28 28 28	12940.0 13415.0 15985.0							
[105	rows x 26	columns]							
data	.head()								
		boling Ca	rName	fueltype	aspir	ation	doornu	ımber	
carbo 2 2	ody \ 3	1	1	0		0		1	
2	4	2	2	0		0		0	
3 3 5 3	6	2	3	Θ		Θ		1	
10 3	11	2	4	0		0		1	
11 3	12	0	4	0		0		0	
	drivewheel	enginelo	cation	wheelbase		engine	esize	fuelsy	stem
2	1		0	94.5			152		3
3	0		0	99.8			109		3
5	0		0	99.8			136		3
10	1		0	101.2			108		3
11	1		0	101.2			108		3
			Ū	10112			100		3
\	boreratio	stroke co	ompress:	ionratio h	norsep	ower p	oeakrpm	n city	mpg

2	2.68	3.47		9.0	154	5000	19
3	3.19	3.40		10.0	102	5500	24
5	3.19	3.40		8.5	110	5500	19
10	3.50	2.80		8.8	101	5800	23
11	3.50	2.80		8.8	101	5800	23
2 3 5 10 11 [5 rows # Separa x = dat		atures and olumns='pri			'price' is	the target	
		nboling Ca	rName fu	eltype	aspiration	doornumber	
carbody 2		nboling Ca 1	rName fu 1	eltype 0	aspiration 0	doornumber 1	
carbody 2	_\	_					
carbody 2 2 3 3	3	1	1	0	0	1	
carbody 2	3	1	1 2	0	0	1	

...

 -2

-1

-2

- 1

	vewheel	engineloca	tion wh	eelbase	cyli	ndernumber
enginesi 2	lze \		0	94.5		2
152 3	0		Θ	99.8		1
109 5	0		0	99.8		0
136 10	1		0	101.2		1
108						
11 108	1		Θ	101.2		1
193	0		0	100.4		1
109 194	1		0	104.3		1
141 195	1		Θ	104.3		1
141 196	1		0	104.3		1
141			0			1
197 141	1		U	104.3		1
	elsystem	boreratio	stroke	compres	sionratio	horsepower
peakrpm 2	3	2.68	3.47		9.0	154
5000 3	3	3.19	3.40		10.0	102
5500					10.0	
	2	3 10				
5 5500	3	3.19	3.40		8.5	110
5	3	3.50	3.40 2.80		8.5 8.8	110 101
5 5500 10 5800 11			3.40		8.5	110
5 5500 10 5800 11 5800	3	3.50	3.40 2.80		8.5 8.8	110 101
5 5500 10 5800 11 5800 	3	3.50	3.40 2.80		8.5 8.8 8.8	110 101 101
5 5500 10 5800 11 5800 193 5500 194	3	3.50 3.50 	3.40 2.80 2.80		8.5 8.8 8.8	110 101 101
5 5500 10 5800 11 5800 193 5500	3 3	3.50 3.50 3.19	3.40 2.80 2.80 3.40		8.5 8.8 8.8 9.0	110 101 101
5 5500 10 5800 11 5800 193 5500 194 5400 195 5400	3 3 3	3.50 3.50 3.19 3.78 3.78	3.40 2.80 2.80 3.40 3.15 3.15		8.5 8.8 8.8 9.0 9.5	110 101 101 88 114 114
5 5500 10 5800 11 5800 193 5500 194 5400 195 5400 196 5400	3 3 3 3	3.50 3.50 3.19 3.78 3.78	3.40 2.80 2.80 3.40 3.15 3.15		8.5 8.8 8.8 9.0 9.5 9.5	110 101 101 88 114 114
5 5500 10 5800 11 5800 193 5500 194 5400 195 5400 196	3 3 3	3.50 3.50 3.19 3.78 3.78	3.40 2.80 2.80 3.40 3.15 3.15		8.5 8.8 8.8 9.0 9.5	110 101 101 88 114

```
highwaympg
     citympg
2
           19
                        26
3
           24
                        30
5
           19
                        25
10
           23
                        29
11
           23
                        29
193
          25
                        31
194
          23
                        28
195
          23
                        28
196
          24
                        28
197
          24
                        28
[105 rows x 25 columns]
У
2
       16500.0
3
       13950.0
5
       15250.0
10
       16430.0
11
       16925.0
193
       12290.0
194
       12940.0
195
       13415.0
196
       15985.0
197
       16515.0
Name: price, Length: 105, dtype: float64
x.shape
(105, 25)
```

Split Data into Training and Testing Sets:

• Dividing the dataset into training and testing subsets.

```
# Train-test split
x_train, x_test, y_train, y_test = train_test_split(x, y,
test_size=0.2, random_state=42)
```

Feature Scaling:

• Scaling numerical features if necessary to ensure uniform magnitude using techniques like Min-Max scaling or Standardization.

```
# Normalizing the data
scaler = StandardScaler()
```

```
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
```

Build the ML Model

Linear Regression

```
# Linear Regression Model
lr_model = LinearRegression()
lr_model.fit(x_train,y_train)
LinearRegression()
lr_ypred = lr_model.predict(x_test)
```

Decision Tree Regressor

```
dt_model = DecisionTreeRegressor()
dt_model.fit(x_train,y_train)

DecisionTreeRegressor()
dt_ypred= dt_model.predict(x_test)
```

Random Forest Regressor

```
rf_model = RandomForestRegressor()
rf_model.fit(x_train,y_train)
RandomForestRegressor()
rf_ypred= rf_model.predict(x_test)
```

Gradient Boosting Regressor

```
gb_model = GradientBoostingRegressor()
gb_model.fit(x_train,y_train)

GradientBoostingRegressor()

gb_ypred= gb_model.predict(x_test)
```

Support Vector Regressor

```
svr_model = SVR()
svr_model.fit(x_train,y_train)
SVR()
svr_ypred= svr_model.predict(x_test)
```

Model Evaluation:

Linear Regression

```
lr_mae = mean_absolute_error(y_test, lr_ypred)
lr_mse = mean_squared_error(y_test, lr_ypred)
lr_rmse = lr_mse ** 0.5
lr_r2 = r2_score(y_test, lr_ypred)

print("mae:",lr_mae)
print("mse:", lr_mse)
print("rmse:", lr_rmse)
print("r2:", lr_r2)

mae: 1470.5641881705506
mse: 3402827.7309864964
rmse: 1844.6755083175187
r2: 0.7560876361833726
```

Decision Tree Regressor

```
dt_mae = mean_absolute_error(y_test, dt_ypred)
dt_mse = mean_squared_error(y_test, dt_ypred)
dt_rmse = lr_mse ** 0.5
dt_r2 = r2_score(y_test, dt_ypred)

print("mae:",dt_mae)
print("mse:", dt_mse)
print("rmse:", dt_rmse)
print("r2:", dt_r2)

mae: 814.8571428571429
mse: 932959.619047619
rmse: 1844.6755083175187
r2: 0.9331260927624467
```

Random Forest Regressor

```
rf_mae = mean_absolute_error(y_test, rf_ypred)
rf_mse = mean_squared_error(y_test, rf_ypred)
rf_rmse = lr_mse ** 0.5
rf_r2 = r2_score(y_test, rf_ypred)

print("mae:",rf_mae)
print("mse:", rf_mse)
print("rmse:", rf_rmse)
print("r2:", rf_r2)

mae: 717.30833333333333
mse: 836668.739675
```

```
rmse: 1844.6755083175187
r2: 0.9400281571214169
```

Gradient Boosting Regressor

```
gb_mae = mean_absolute_error(y_test, gb_ypred)
gb_mse = mean_squared_error(y_test, gb_ypred)
gb_rmse = lr_mse ** 0.5
gb_r2 = r2_score(y_test, gb_ypred)

print("mae:",gb_mae)
print("mse:", gb_mse)
print("rmse:", gb_rmse)
print("r2:", gb_r2)

mae: 711.7193580032736
mse: 772087.569489362
rmse: 1844.6755083175187
r2: 0.9446572912190916
```

Support Vector Regressor

```
svr_mae = mean_absolute_error(y_test, svr_ypred)
svr_mse = mean_squared_error(y_test,svr_ypred)
svr_rmse = lr_mse ** 0.5
svr_r2 = r2_score(y_test, svr_ypred)

print("mae:",svr_mae)
print("mse:", svr_mse)
print("rmse:", svr_rmse)
print("r2:", svr_r2)

mae: 2832.4285247182943
mse: 14582662.296693878
rmse: 1844.6755083175187
r2: -0.04527525714475478
```

Model Evaluation:

```
results = pd.DataFrame({
    'Model': ['Linear Regression', 'Decision Tree', 'Random Forest',
'Gradient Boosting', 'SVR'],
    'MAE': [lr_mae, dt_mae, rf_mae, gb_mae, svr_mae],
    'MSE': [lr_mse, dt_mse, rf_mse, gb_mse, svr_mse],
    'RMSE': [lr_rmse, dt_rmse, rf_rmse, gb_rmse, svr_rmse],
    'R-squared': [lr_r2, dt_r2, rf_r2, gb_r2, svr_r2],
})
print("\nComparison of Model Performance:")
print(results)
```

```
Comparison of Model Performance:
              Model
                                          MSE
                            MAE
                                                     RMSE R-
squared
0 Linear Regression 1470.564188 3.402828e+06 1844.675508
0.756088
      Decision Tree 814.857143 9.329596e+05 1844.675508
0.933126
      Random Forest 717.308333 8.366687e+05 1844.675508
0.940028
3 Gradient Boosting 711.719358 7.720876e+05 1844.675508
0.944657
                SVR 2832.428525 1.458266e+07 1844.675508
0.045275
```

The Random Forest Regressor is the best-performing model based on the evaluation metrics. It balances accuracy and error minimization effectively and is robust to overfitting. Best Performing Model is Random Forest Regressor overall due to its high accuracy and lower errors.

Hyperparameter Tuning

```
from sklearn.model selection import GridSearchCV
# Example: Tuning Random Forest Regressor
param grid = {
    "n estimators": [50, 100, 200],
    "max depth": [None, 10, 20],
    "min_samples_split": [2, 5, 10]
grid search = GridSearchCV(RandomForestRegressor(random state=42),
param grid, cv=5, scoring='r2')
grid search.fit(X train, y train)
# Best parameters and performance
print("Best Parameters:", grid search.best params )
best model = grid search.best estimator
Best Parameters: {'max depth': 10, 'min samples split': 2,
'n estimators': 200}
# Evaluate tuned model
y pred tuned = best model.predict(X test)
\overline{\text{tuned r2}} = \text{r2 score}(y \text{ test, } y \text{ pred } \overline{\text{tuned}})
tuned mse = mean squared error(y test, y pred tuned)
tuned_mae = mean_absolute_error(y_test, y_pred_tuned)
print(f"Tuned Model - R2: {tuned r2:.2f}, MSE: {tuned mse:.2f}, MAE:
{tuned mae:.2f}")
Tuned Model - R2: 0.88, MSE: 1723403.59, MAE: 1048.55
```

Save the Model

```
# Save the trained Random Forest Regressor model
joblib.dump(rf_model, 'random_forest_Car_Price_model.joblib')
print("Model saved as 'random_forestCar_Price_model.joblib'")
Model saved as 'random_forestCar_Price_model.joblib'
```

Test with Unseen Data:

```
# Make predictions on the test set
unseen pred = best model.predict(X test)
NameError
                                          Traceback (most recent call
last)
Cell In[504], line 2
      1 # Make predictions on the test set
----> 2 unseen pred = best model.predict(X test)
NameError: name 'best model' is not defined
# Evaluate performance on unseen data
unseen metrics = {
    "MAE": mean absolute error(y test, unseen pred),
     "MSE": mean squared error(y test, unseen pred),
    'RMSE': np.sqrt(mean squared error(y test, unseen pred)),
     "R2": r2 score(y test, unseen pred),
}
NameError
                                          Traceback (most recent call
last)
Cell In[506], line 3
      1 # Evaluate performance on unseen data
      2 unseen metrics = {
---> 3
            "MAE": mean_absolute_error(y_test, unseen_pred),
      4
             "MSE": mean squared error(y test, unseen pred),
      5
            'RMSE': np.sgrt(mean squared error(y test, unseen pred)),
      6
             "R2": r2_score(y_test, unseen_pred),
      7 }
NameError: name 'unseen pred' is not defined
#Check final model performance
print("\nPerformance on Unseen Data:")
for metric, value in unseen metrics.items():
    print(f"{metric}: {value:.4f}")
```

Performance on Unseen Data:

MAE: 1048.5514 MSE: 1723403.5865 RMSE: 1312.7847 R2: 0.8833

Interpretation of Results (Conclusion)

Analyze the Results Model Performance:

The Random Forest Regressor consistently performs well, with high R² and low error metrics.

This confirms its ability to generalize to unseen data, making it suitable for production.

Key Insights:

The car price is strongly influenced by specific features (identified during feature importance analysis).

Tree-based models like Random Forest and Gradient Boosting are robust against overfitting and handle non-linear relationships well.

Limitations of the Dataset

Feature Selection:

Some features may lack relevance to car pricing, leading to noise in the model.

Additional domain-specific knowledge could enhance feature engineering.

Data Imbalance:

If the dataset has an uneven distribution across price ranges, it may bias the model.

Outlier Influence:

Despite removing outliers, extreme values may still impact regression models.

External Validity:

The dataset reflects current market trends but may not generalize to future conditions or other geographical regions.