

# ICM-42670-P Datasheet

# High Performance 6-Axis MotionTracking™ IMU

## **ICM-42670-P HIGHLIGHTS**

The ICM-42670-P is a high performance 6-axis MEMS MotionTracking device that combines a 3-axis gyroscope and a 3-axis accelerometer. It has a configurable host interface that supports I3C<sup>SM</sup>, I<sup>2</sup>C, and SPI serial communication, features up to 2.25 Kbytes FIFO and 2 programmable interrupts with ultra-low-power wake-on-motion support to minimize system power consumption.

The ICM-42670-P supports the lowest gyro and accel sensor noise in this IMU class, and has the highest stability against temperature, shock (up to 20,000g) or SMT/bend induced offset as well as immunity against out-of-band vibration induced noise.

Other industry-leading features include on-chip APEX Motion Processing engine for gesture recognition, and pedometer, along with programmable digital filters, and an embedded temperature sensor.

The device supports a VDD operating range of 1.71V to 3.6V, and a separate VDDIO operating range from 1.71V to 3.6V.

# **ICM-42670-P FEATURES**

- Low-Noise mode 6-axis current consumption of 0.55 mA
- Low-Power mode support for always-on experience
- Sleep Mode Current Consumption: 3.5μA
- User selectable Gyro Full-scale range (dps): ± 250/500/1000/2000
- User selectable Accelerometer Full-scale range (g): ± 2/4/8/16
- User-programmable digital filters for gyro, accel, and temp sensor
- APEX Motion Functions: Pedometer, Tilt Detection, Low-g Detection, Freefall Detection, Wake on Motion, Significant Motion Detection
- Host interface: 12.5 MHz I3C<sup>SM</sup>, 1 MHz I<sup>2</sup>C, 24 MHz SPI

### **APPLICATIONS**

- Wearables (Fitness Bands, SmartWatches, Healthcare wearables)
- Hearables (True Wireless Headsets)
- Gaming Controllers
- Smart Home Appliances
- Smart TV remotes
- Drones
- Robotics
- Augmented Reality/Virtual Reality

## **BLOCK DIAGRAM**



### **ORDERING INFORMATION**

| PART           | TEMP RANGE     | PACKAGE        |
|----------------|----------------|----------------|
| ICM-42670-P†   | -40°C to +85°C | 2.5x3mm 14-Pin |
| ICIVI-42070-P1 | -40 C t0 +65 C | LGA            |

<sup>†</sup>Denotes RoHS and Green-Compliant Package

Revision: 1.0

Rev. Date: 04/15/2021



# **TABLE OF CONTENTS**

|   | ICM-  | 42670-P Highlights                                          | 1  |
|---|-------|-------------------------------------------------------------|----|
|   | Block | c Diagram                                                   | 1  |
|   | ICM-  | 42670-P Features                                            | 1  |
|   | Appli | ications                                                    | 1  |
|   | Orde  | ring Information                                            | 1  |
| 1 | Intro | duction                                                     | 8  |
|   | 1.1   | Purpose and Scope                                           | 8  |
|   | 1.2   | Product Overview                                            | 8  |
|   | 1.3   | Applications                                                | 8  |
| 2 | Featu | ures                                                        | 9  |
|   | 2.1   | Gyroscope Features                                          | 9  |
|   | 2.2   | Accelerometer Features                                      | 9  |
|   | 2.3   | Motion Features                                             | 9  |
|   | 2.4   | Additional Features                                         | 9  |
| 3 | Elect | rical Characteristics                                       | 10 |
|   | 3.1   | Gyroscope Specifications                                    | 10 |
|   | 3.2   | Accelerometer Specifications                                | 11 |
|   | 3.3   | Electrical Specifications                                   | 12 |
|   | 3.4   | I <sup>2</sup> C Timing Characterization                    | 14 |
|   | 3.5   | SPI Timing Characterization – 4-Wire SPI Mode               | 15 |
|   | 3.6   | SPI Timing Characterization – 3-Wire SPI Mode               | 16 |
|   | 3.7   | Absolute Maximum Ratings                                    | 17 |
| 4 | Appli | ications Information                                        | 18 |
|   | 4.1   | Pin Out Diagram and Signal Description                      | 18 |
|   | 4.2   | Typical Operating Circuit                                   | 19 |
|   | 4.3   | Bill of Materials for External Components                   | 20 |
|   | 4.4   | System Block Diagram                                        | 20 |
|   | 4.5   | Overview                                                    | 20 |
|   | 4.6   | Three-Axis MEMS Gyroscope                                   | 20 |
|   | 4.7   | Three-Axis MEMS Accelerometer                               | 20 |
|   | 4.8   | I3C <sup>SM</sup> , I <sup>2</sup> C and SPI Host Interface | 21 |
|   | 4.9   | Self-Test                                                   | 21 |
|   | 4.10  | Sensor Data Registers                                       | 21 |
|   | 4.11  | Interrupts                                                  | 21 |
|   | 4.12  | Digital-Output Temperature Sensor                           | 21 |
|   | 4.13  | Bias and LDOs                                               | 21 |
|   | 4.14  | Charge Pump                                                 | 21 |
|   | 4.15  | Standard Power Modes                                        | 22 |
| 5 | Signa | al Path                                                     | 23 |



| 6  | FIFO    |                                                                | 24 |
|----|---------|----------------------------------------------------------------|----|
|    | 6.1 I   | Packet Structure                                               | 24 |
|    | 6.2 I   | FIFO Header                                                    | 26 |
|    | 6.3 I   | Maximum FIFO Storage                                           | 27 |
| 7  | Prograi | mmable Interrupts                                              | 28 |
| 8  | APEX M  | Notion Functions                                               | 29 |
| 9  | Digital | Interface                                                      | 30 |
|    | 9.1     | I3C <sup>SM</sup> , I <sup>2</sup> C and SPI Serial Interfaces | 30 |
|    | 9.2     | I3C <sup>SM</sup> Interface                                    | 30 |
|    | 9.3     | 1 <sup>2</sup> C Interface                                     | 32 |
|    | 9.4 I   | 1 <sup>2</sup> C Communications Protocol                       | 32 |
|    | 9.5 I   | l <sup>2</sup> C Terms                                         | 34 |
|    | 9.6     | SPI Interface                                                  | 35 |
| 10 | Assemb  | bly                                                            | 36 |
|    | 10.1    | Orientation of Axes                                            | 36 |
|    | 10.2    | Package Dimensions                                             | 37 |
| 11 | Part Nu | umber Package Marking                                          | 38 |
| 12 | Use No  | ites                                                           | 39 |
|    | 12.1    | Gyroscope Power On to Power Off Transition                     | 39 |
| 13 | Accessi | ing MREG1, MREG2 And MREG3 Registers                           | 40 |
| 14 | Registe | r Map                                                          | 41 |
|    | 14.1    | User Bank 0 Register Map                                       | 41 |
|    | 14.2    | User Bank MREG1 Register Map                                   | 42 |
|    | 14.3    | User Bank MREG2 Register Map                                   | 43 |
|    | 14.4    | User Bank MREG3 Register Map                                   | 43 |
| 15 | User Ba | ank 0 Register Map – Descriptions                              | 45 |
|    | 15.1    | MCLK_RDY                                                       | 45 |
|    | 15.2    | DEVICE_CONFIG                                                  | 45 |
|    | 15.3    | SIGNAL_PATH_RESET                                              | 46 |
|    | 15.4    | DRIVE_CONFIG1                                                  | 47 |
|    | 15.5    | DRIVE_CONFIG2                                                  | 48 |
|    | 15.6    | DRIVE_CONFIG3                                                  | 49 |
|    | 15.7    | INT_CONFIG                                                     | 50 |
|    | 15.8    | TEMP_DATA1                                                     | 50 |
|    | 15.9    | TEMP_DATA0                                                     | 51 |
|    | 15.10   | ACCEL_DATA_X1                                                  | 51 |
|    | 15.11   | ACCEL_DATA_X0                                                  | 51 |
|    | 15.12   | ACCEL_DATA_Y1                                                  | 51 |
|    | 15.13   | ACCEL_DATA_Y0                                                  | 52 |
|    | 15.14   | ACCEL DATA Z1                                                  | 52 |



| 15.15 | ACCEL_DATA_Z0   | 52 |
|-------|-----------------|----|
| 15.16 | GYRO_DATA_X1    | 52 |
| 15.17 | GYRO_DATA_X0    | 52 |
| 15.18 | GYRO_DATA_Y1    | 53 |
| 15.19 | GYRO_DATA_Y0    | 53 |
| 15.20 | GYRO_DATA_Z1    | 53 |
| 15.21 | GYRO_DATA_ZO    | 53 |
| 15.22 | TMST_FSYNCH     | 53 |
| 15.23 | TMST_FSYNCL     | 54 |
| 15.24 | APEX_DATA4      | 54 |
| 15.25 | APEX_DATA5      | 54 |
| 15.26 | PWR_MGMT0       | 55 |
| 15.27 | GYRO_CONFIGO    | 56 |
| 15.28 | ACCEL_CONFIG0   | 57 |
| 15.29 | TEMP_CONFIG0    | 58 |
| 15.30 | GYRO_CONFIG1    | 58 |
| 15.31 | ACCEL_CONFIG1   | 59 |
| 15.32 | APEX_CONFIG0    | 59 |
| 15.33 | APEX_CONFIG1    | 60 |
| 15.34 | WOM_CONFIG      | 61 |
| 15.35 | FIFO_CONFIG1    | 61 |
| 15.36 | FIFO_CONFIG2    | 62 |
| 15.37 | FIFO_CONFIG3    | 62 |
| 15.38 | INT_SOURCE0     | 63 |
| 15.39 | INT_SOURCE1     | 63 |
| 15.40 | INT_SOURCE3     | 64 |
| 15.41 | INT_SOURCE4     | 64 |
| 15.42 | FIFO_LOST_PKT0  | 65 |
| 15.43 | FIFO_LOST_PKT1  | 65 |
| 15.44 | APEX_DATA0      | 65 |
| 15.45 | APEX_DATA1      | 65 |
| 15.46 | APEX_DATA2      | 65 |
| 15.47 | APEX_DATA3      | 66 |
| 15.48 | INTF_CONFIGO    | 66 |
| 15.49 | INTF_CONFIG1    | 67 |
| 15.50 | INT_STATUS_DRDY | 67 |
| 15.51 | INT_STATUS      | 68 |
| 15.52 | INT_STATUS2     | 68 |
| 15.53 | INT_STATUS3     | 68 |
| 15.54 | FIFO COUNTH     | 69 |



|    | 15.55   | FIFO_COUNTL                          | 69 |
|----|---------|--------------------------------------|----|
|    | 15.56   | FIFO DATA                            |    |
|    | 15.57   | WHO AM I                             |    |
|    | 15.58   | BLK_SEL_W                            |    |
|    | 15.59   | <br>MADDR_W                          |    |
|    | 15.60   | _<br>M W                             |    |
|    | 15.61   | BLK SEL R                            |    |
|    | 15.62   | MADDR_R                              | 71 |
|    | 15.63   | M_R                                  | 71 |
| 16 | User Ba | nk MREG1 Register Map – Descriptions | 72 |
|    | 16.1    | TMST_CONFIG1                         | 72 |
|    | 16.2    | FIFO_CONFIG5                         | 73 |
|    | 16.3    | FIFO_CONFIG6                         | 74 |
|    | 16.4    | FSYNC_CONFIG                         | 75 |
|    | 16.5    | INT_CONFIGO                          | 75 |
|    | 16.6    | INT_CONFIG1                          | 76 |
|    | 16.7    | SENSOR_CONFIG3                       | 76 |
|    | 16.8    | ST_CONFIG                            | 77 |
|    | 16.9    | SELFTEST                             | 78 |
|    | 16.10   | INTF_CONFIG6                         | 78 |
|    | 16.11   | INTF_CONFIG10                        | 78 |
|    | 16.12   | INTF_CONFIG7                         | 79 |
|    | 16.13   | OTP_CONFIG                           | 79 |
|    | 16.14   | INT_SOURCE6                          | 80 |
|    | 16.15   | INT_SOURCE7                          | 80 |
|    | 16.16   | INT_SOURCE8                          | 81 |
|    | 16.17   | INT_SOURCE9                          | 81 |
|    | 16.18   | INT_SOURCE10                         | 82 |
|    | 16.19   | APEX_CONFIG2                         | 83 |
|    | 16.20   | APEX_CONFIG3                         | 84 |
|    | 16.21   | APEX_CONFIG4                         | 85 |
|    | 16.22   | APEX_CONFIG5                         | 86 |
|    | 16.23   | APEX_CONFIG9                         | 87 |
|    | 16.24   | APEX_CONFIG10                        | 88 |
|    | 16.25   | APEX_CONFIG11                        | 89 |
|    | 16.26   | ACCEL_WOM_X_THR                      | 90 |
|    | 16.27   | ACCEL_WOM_Y_THR                      | 90 |
|    | 16.28   | ACCEL_WOM_Z_THR                      | 90 |
|    | 16.29   | OFFSET_USER0                         | 90 |
|    | 16.30   | OFFSET_USER1                         | 91 |



|    | 16.31    | OFFSET_USER2                         | 91  |
|----|----------|--------------------------------------|-----|
|    | 16.32    | OFFSET_USER3                         | 91  |
|    | 16.33    | OFFSET_USER4                         | 91  |
|    | 16.34    | OFFSET_USER5                         | 92  |
|    | 16.35    | OFFSET_USER6                         | 92  |
|    | 16.36    | OFFSET_USER7                         | 92  |
|    | 16.37    | OFFSET_USER8                         | 92  |
|    | 16.38    | ST_STATUS1                           | 93  |
|    | 16.39    | ST_STATUS2                           | 93  |
|    | 16.40    | FDR_CONFIG                           | 94  |
|    | 16.41    | APEX_CONFIG12                        | 95  |
| 17 | User Ba  | nk MREG2 Register Map – Descriptions | 96  |
|    | 17.1     | OTP_CTRL7                            | 96  |
| 18 | User Ba  | nk MREG3 Register Map – Descriptions | 97  |
|    | 18.1     | XA_ST_DATA                           | 97  |
|    | 18.2     | YA_ST_DATA                           | 97  |
|    | 18.3     | ZA_ST_DATA                           | 97  |
|    | 18.4     | XG_ST_DATA                           | 97  |
|    | 18.5     | YG_ST_DATA                           | 97  |
|    | 18.6     | ZG_ST_DATA                           | 98  |
| 19 | SmartM   | lotion Product Family                | 99  |
| 20 | Referen  | ce                                   | 100 |
| 21 | Revision | n History                            | 101 |



# **TABLE OF FIGURES**

| Figure 1. I <sup>2</sup> C Bus Timing Diagram                                                        | 14 |
|------------------------------------------------------------------------------------------------------|----|
| Figure 2. 4-Wire SPI Bus Timing Diagram                                                              | 15 |
| Figure 3. 3-Wire SPI Bus Timing Diagram                                                              |    |
| Figure 4. Pin Out Diagram for ICM-42670-P 2.5x3.0x0.76 mm LGA                                        | 18 |
| Figure 5. ICM-42670-P Application Schematic (I3C <sup>SM</sup> / I <sup>2</sup> C Interface to Host) | 19 |
| Figure 6. ICM-42670-P Application Schematic (SPI Interface to Host)                                  | 19 |
| Figure 7. ICM-42670-P System Block Diagram                                                           | 20 |
| Figure 8. ICM-42670-P Signal Path                                                                    | 23 |
| Figure 9. FIFO Packet Structure                                                                      | 24 |
| Figure 10. Maximum FIFO Storage                                                                      | 27 |
| Figure 11. START and STOP Conditions                                                                 | 32 |
| Figure 12. Acknowledge on the I <sup>2</sup> C Bus                                                   | 33 |
| Figure 13. Complete I <sup>2</sup> C Data Transfer                                                   | 33 |
| Figure 14. Typical SPI Master/Slave Configuration                                                    | 35 |
| Figure 15. Orientation of Axes of Sensitivity and Polarity of Rotation                               | 36 |
|                                                                                                      |    |
| TABLE OF TABLES                                                                                      |    |
| Table 1. Gyroscope Specifications                                                                    | 10 |
| Table 2. Accelerometer Specifications                                                                |    |
| Table 3. D.C. Electrical Characteristics                                                             |    |
| Table 4. A.C. Electrical Characteristics                                                             |    |
| Table 5. I <sup>2</sup> C Timing Characteristics                                                     |    |
| Table 6. 4-Wire SPI Timing Characteristics (24-MHz Operation)                                        |    |
| Table 7. 3-Wire SPI Timing Characteristics (24-MHz Operation)                                        |    |
| Table 8. Absolute Maximum Ratings                                                                    |    |
| Table 9. Signal Descriptions                                                                         |    |
| Table 10. Bill of Materials                                                                          |    |
| Table 11. Standard Power Modes for ICM-42670-P                                                       |    |
| Table 12. I3C <sup>SM</sup> CCC Commands                                                             |    |
| Tahla 13 1 <sup>2</sup> C Tarms                                                                      |    |



# 1 INTRODUCTION

## 1.1 PURPOSE AND SCOPE

This document is a product specification, providing a description, specifications, and design related information on the ICM-42670-P Single-Interface MotionTracking device. The device is housed in a small 2.5x3x0.76 mm 14-pin LGA package.

### 1.2 PRODUCT OVERVIEW

The ICM-42670-P is a 6-axis MotionTracking device that combines a 3-axis gyroscope and a 3-axis accelerometer in a small 2.5x3x0.76 mm (14-pin LGA) package. It also features up to 2.25 Kbytes FIFO that can lower the traffic on the serial bus interface and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode. ICM-42670-P, with its 6-axis integration, enables manufacturers to eliminate the costly and complex selection, qualification, and system level integration of discrete devices, guaranteeing optimal motion performance for consumers.

The gyroscope supports four programmable full-scale range settings from  $\pm 250$  dps to  $\pm 2000$  dps and the accelerometer supports four programmable full-scale range settings from  $\pm 2g$  to  $\pm 16g$ .

Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The device features I3C<sup>SM</sup>, I<sup>2</sup>C, and SPI serial interfaces, a VDD operating range of 1.71V to 3.6V, and a separate VDDIO operating range of 1.71V to 3.6V.

The host interface can be configured to support I3C<sup>SM</sup> slave, I<sup>2</sup>C slave, or SPI slave modes. The I3C<sup>SM</sup> interface supports speeds up to 12.5 MHz (data rates up to 12.5 Mbps in SDR mode, 25 Mbps in DDR mode), the I<sup>2</sup>C interface supports speeds up to 1 MHz, and the SPI interface supports speeds up to 24 MHz.

The device provides high robustness by supporting 20,000g shock reliability.

#### 1.3 APPLICATIONS

- Wearables (Fitness Bands, SmartWatches, Healthcare wearables)
- Hearables (True Wireless Headsets)
- Gaming Controllers
- Smart Home Appliances
- Smart TV remotes
- Drones
- Robotics
- Augmented Reality/Virtual Reality



# 2 FEATURES

### 2.1 GYROSCOPE FEATURES

The triple-axis MEMS gyroscope in the ICM-42670-P includes a wide range of features:

- Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with programmable full-scale range of ±250, ±500, ±1000, and ±2000 degrees/sec
- Low Noise (LN) power mode support
- Digitally programmable low-pass filters
- Factory calibrated sensitivity scale factor
- Self-test

#### 2.2 ACCELEROMETER FEATURES

The triple-axis MEMS accelerometer in ICM-42670-P includes a wide range of features:

- Digital-output X-, Y-, and Z-axis accelerometer with programmable full-scale range of ±2g, ±4g, ±8g and ±16a
- Low Noise (LN) and Low Power (LP) power modes support
- User-programmable interrupts
- Wake-on-motion interrupt for low power operation of applications processor
- Self-test

## 2.3 MOTION FEATURES

ICM-42670-P includes the following motion features, also known as APEX (**A**dvanced **P**edometer and **E**vent Detection – ne**X**t gen)

- Pedometer: Tracks step count and issues a step detect Interrupt.
- Tilt Detection: Issues an interrupt when the Tilt angle exceeds 35 degrees for more than a programmable time.
- Low-g Detection: Triggers an interrupt when absolute value of accelerometer combined axis falls below a programmable threshold and stays below the threshold for a programmable time.
- Freefall Detection: Triggers an interrupt when device freefall is detected and outputs freefall duration.
- Wake on Motion (WoM): Detects motion when accelerometer samples exceed a programmable threshold. This motion event can be used to enable device operation from sleep mode.
- Significant Motion Detector (SMD): Detects significant motion based on accelerometer data.

## 2.4 ADDITIONAL FEATURES

ICM-42670-P includes the following additional features:

- Up to 2.25 Kbytes FIFO buffer enables the applications processor to read the data in bursts
- User-programmable digital filters for gyroscope, accelerometer, and temperature sensor
- 12.5M Hz I3C<sup>SM</sup> (data rates up to 12.5 Mbps in SDR mode, 25 Mbps in DDR mode) / 1 MHz I<sup>2</sup>C / 24 MHz SPI slave host interface
- Digital-output temperature sensor
- Smallest and thinnest LGA package for portable devices: 2.5x3x0.76 mm (14-pin LGA)
- 20,000*q* shock tolerant
- MEMS structure hermetically sealed and bonded at wafer level
- RoHS and Green compliant



# 3 ELECTRICAL CHARACTERISTICS

# 3.1 GYROSCOPE SPECIFICATIONS

Typical Operating Conditions, VDD = 1.8V, VDDIO = 1.8V, T<sub>A</sub>=25°C, unless otherwise noted.

| PARAMETER                                              | CONDITIONS                                | MIN  | TYP    | MAX  | UNITS     | NOTES |
|--------------------------------------------------------|-------------------------------------------|------|--------|------|-----------|-------|
|                                                        | GYROSCOPE SENSITIVITY                     |      |        |      |           |       |
|                                                        | GYRO_UI_FS_SEL=0                          |      | ±2000  |      | º/s       | 2     |
| Full-Scale Range                                       | GYRO_UI_FS_SEL=1                          |      | ±1000  |      | º/s       | 2     |
| Full-Scale Range                                       | GYRO_UI_FS_SEL=2                          |      | ±500   |      | º/s       | 2     |
|                                                        | GYRO_UI_FS_SEL=3                          |      | ±250   |      | º/s       | 2     |
| Gyroscope ADC Word Length                              | Output in two's complement format         |      | 16     |      | bits      | 2, 5  |
|                                                        | GYRO_UI_FS_SEL=0                          |      | 16.4   |      | LSB/(º/s) | 2     |
| Sensitivity Scale Factor                               | GYRO_UI_FS_SEL=1                          |      | 32.8   |      | LSB/(º/s) | 2     |
|                                                        | GYRO_UI_FS_SEL=2                          |      | 65.5   |      | LSB/(º/s) | 2     |
|                                                        | GYRO_UI_FS_SEL=3                          |      | 131    |      | LSB/(º/s) | 2     |
| Sensitivity Scale Factor Initial Tolerance             | 25°C                                      |      | ±1     |      | %         | 1, 7  |
| Sensitivity Scale Factor Variation Over<br>Temperature | -40°C to +85°C; Board-Level               |      | ±0.007 |      | %/°C      | 3, 6  |
| Nonlinearity                                           | Best fit straight line; 25°C; Board-Level |      | ±0.1   |      | %         | 3, 6  |
| Cross-Axis Sensitivity                                 | Board-level                               |      | ±2     |      | %         | 3, 6  |
|                                                        | ZERO-RATE OUTPUT (ZRO)                    |      |        | •    |           |       |
| Initial ZRO Tolerance                                  | 25°C                                      |      | ±1     |      | º/s       | 1, 7  |
| ZRO Variation vs. Temperature                          | -40°C to +85°C; Board-Level               |      | ±0.015 |      | º/s/ºC    | 3, 6  |
|                                                        | OTHER PARAMETERS                          |      |        | •    |           |       |
| Rate Noise Spectral Density                            | @ 10 Hz                                   |      | 0.007  |      | º/s /√Hz  | 1     |
| Total RMS Noise                                        | Bandwidth = 100 Hz                        |      | 0.07   |      | º/s-rms   | 4     |
| Gyroscope Mechanical Frequencies                       |                                           | 25   | 28     | 30   | kHz       | 1     |
| Low Pass Filter Response                               |                                           | 16   |        | 180  | Hz        | 2     |
| Gyroscope Start-Up Time                                | Time from gyro enable to gyro drive ready |      | 30     |      | ms        | 3     |
| Output Data Rate                                       |                                           | 12.5 |        | 1600 | Hz        | 2     |

**Table 1. Gyroscope Specifications** 

- 1. Tested in production at component-level.
- 2. Guaranteed by design.
- 3. Derived from validation or characterization of parts, not tested in production.
- 4. Calculated from Rate Noise Spectral Density.
- 5. 20-bits data format supported in FIFO, see section 6.1.
- 6. Board-level spec values depend on specific board design. For design information of boards used for device characterization, that forms the basis of the spec values reported here, please contact your local TDK InvenSense FAE.
- 7. Value after factory test and trim.



## 3.2 ACCELEROMETER SPECIFICATIONS

Typical Operating Conditions, VDD = 1.8V, VDDIO = 1.8V, T<sub>A</sub>=25°C, unless otherwise noted.

| PARAMETER                                     | CONDITIONS                               | MIN    | TYP    | MAX  | UNITS           | NOTES |
|-----------------------------------------------|------------------------------------------|--------|--------|------|-----------------|-------|
|                                               | ACCELEROMETER SENSITIVIT                 | Υ      |        |      |                 |       |
|                                               | ACCEL_UI_FS_SEL=0                        |        | ±16    |      | g               | 2     |
| Full Scale Bongs                              | ACCEL_UI_FS_SEL=1                        |        | ±8     |      | g               | 2     |
| Full-Scale Range                              | ACCEL_UI_FS_SEL=2                        |        | ±4     |      | g               | 2     |
|                                               | ACCEL_UI_FS_SEL=3                        |        | ±2     |      | g               | 2     |
| ADC Word Length                               | Output in two's complement format        |        | 16     |      | bits            | 2, 5  |
|                                               | ACCEL_UI_FS_SEL=0                        |        | 2,048  |      | LSB/g           | 2     |
| Constitute Code Forter                        | ACCEL_UI_FS_SEL=1                        |        | 4,096  |      | LSB/g           | 2     |
| Sensitivity Scale Factor                      | ACCEL_UI_FS_SEL=2                        |        | 8,192  |      | LSB/g           | 2     |
|                                               | ACCEL_UI_FS_SEL=3                        |        | 16,384 |      | LSB/g           | 2     |
| Sensitivity Scale Factor Initial<br>Tolerance | 25°C                                     |        | ±1     |      | %               | 1, 7  |
| Sensitivity Change vs. Temperature            | -40°C to +85°C; Board-Level              |        | ±0.01  |      | %/°C            | 3, 6  |
| Nonlinearity                                  | Best Fit Straight Line, ±2g; Board-Level |        | ±0.1   |      | %               | 3, 6  |
| Cross-Axis Sensitivity                        | Board-level                              |        | ±1     |      | %               | 3, 6  |
|                                               | ZERO-G OUTPUT                            |        |        |      |                 |       |
| Initial Tolerance                             | 25°C                                     |        | ±25    |      | m <i>g</i>      | 1, 7  |
| Zero-G Level Change vs. Temperature           | -40°C to +85°C; Board-Level              |        | ±0.15  |      | m <i>g/</i> ºC  | 3, 6  |
|                                               | OTHER PARAMETERS                         |        |        |      |                 |       |
| Power Spectral Density                        | @ 10 Hz                                  |        | 100    |      | μ <i>g</i> /√Hz | 1     |
| RMS Noise                                     | Bandwidth = 100 Hz                       |        | 1.0    |      | mg-rms          | 4     |
| Low Pass Filter Response                      |                                          | 16     |        | 180  | Hz              | 2     |
| Accelerometer Startup Time                    | From sleep mode to valid data            |        | 10     |      | ms              | 3     |
| Output Data Rate                              |                                          | 1.5625 |        | 1600 | Hz              | 2     |

**Table 2. Accelerometer Specifications** 

- 1. Tested in production at component-level.
- 2. Guaranteed by design.
- 3. Derived from validation or characterization of parts, not tested in production.
- 4. Calculated from Power Spectral Density.
- 5. 20-bits data format supported in FIFO, see section 6.1.
- 6. Board-level spec values depend on specific board design. For design information of boards used for device characterization, that forms the basis of the spec values reported here, please contact your local TDK InvenSense FAE.
- 7. Value after factory test and trim.



# 3.3 ELECTRICAL SPECIFICATIONS

# 3.3.1 D.C. Electrical Characteristics

Typical Operating Conditions, VDD = 1.8V, VDDIO = 1.8V, T<sub>A</sub>=25°C, unless otherwise noted.

| PARAMETER                   | CONDITIONS                                                                   | MIN  | ТҮР  | MAX | UNITS | NOTES |
|-----------------------------|------------------------------------------------------------------------------|------|------|-----|-------|-------|
|                             | SUPPLY VOLTAGES                                                              |      |      |     |       |       |
| VDD                         |                                                                              | 1.71 | 1.8  | 3.6 | V     | 1     |
| VDDIO                       |                                                                              | 1.71 | 1.8  | 3.6 | V     | 1     |
|                             | SUPPLY CURRENTS                                                              |      |      |     |       |       |
|                             | 6-Axis Gyroscope + Accelerometer                                             |      | 0.55 |     | mA    | 2     |
| Low-Noise Mode              | 3-Axis Accelerometer                                                         |      | 0.20 |     | mA    | 2     |
|                             | 3-Axis Gyroscope                                                             |      | 0.42 |     | mA    | 2     |
| Full-Chip Sleep Mode        | At 25ºC                                                                      |      | 3.5  |     | μΑ    | 2     |
| TEMPERATURE RANGE           |                                                                              |      |      |     |       |       |
| Specified Temperature Range | Performance parameters are not applicable beyond Specified Temperature Range | -40  |      | +85 | °C    | 1     |

**Table 3. D.C. Electrical Characteristics** 

- 1. Guaranteed by design.
- 2. Derived from validation or characterization of parts, not tested in production.



#### **A.C. Electrical Characteristics** 3.3.2

Typical Operating Conditions, VDD = 1.8V, VDDIO = 1.8V, T<sub>A</sub>=25°C, unless otherwise noted.

| PARAMETER                                                                        | CONDITIONS                                    | MIN                  | ТҮР                | MAX             | UNITS           | NOTES    |
|----------------------------------------------------------------------------------|-----------------------------------------------|----------------------|--------------------|-----------------|-----------------|----------|
|                                                                                  | SUPPLI                                        | ES                   |                    |                 |                 |          |
| Supply Ramp Time                                                                 | Valid power-on RESET                          | 0.1                  |                    | 3               | ms              | 1        |
| Power Supply Noise                                                               |                                               |                      | 10                 |                 | mV<br>peak-peak | 1        |
|                                                                                  | TEMPERATUR                                    | F SENSOR             |                    | I               | peak peak       | l        |
| Operating Range                                                                  | Ambient                                       | -40                  |                    | 85              | °C              | 1        |
| 25°C Output                                                                      | Output in two's complement format             |                      | 0                  |                 | LSB             | 3        |
| ADC Resolution                                                                   | ·                                             |                      | 16                 |                 | bits            | 2        |
| ODR                                                                              | With Filter                                   | 1.5625               |                    | 1600            | Hz              | 2, 4     |
| Room Temperature Offset                                                          | 25°C                                          | -3                   |                    | 3               | °C              | 3        |
| Stabilization Time (fixed number of clock cycles)                                |                                               |                      |                    | 0.64            | sec             | 2        |
| Sensitivity                                                                      | Trimmed                                       | 125                  | 126.9              | 129             | LSB/°C          | 1        |
| Sensitivity for FIFO data                                                        | Trimmed                                       | 1.95                 | 1.983              | 2.01            | LSB/°C          | 1        |
|                                                                                  | POWER-ON                                      | I RESET              |                    |                 |                 |          |
| Start-up time for register read/write                                            | From power-up                                 |                      |                    | 1               | ms              | 1        |
| , ,                                                                              | I <sup>2</sup> C ADDF                         | RESS                 | - I                | 1               | · ·             | l        |
| I <sup>2</sup> C ADDRESS                                                         | AP_AD0 = 0<br>AP_AD0 = 1                      |                      | 1101000<br>1101001 |                 |                 |          |
|                                                                                  | DIGITAL INPUTS (FSYI                          | NC. SCLK. SDI. CS)   |                    |                 | ľ               | l .      |
| V <sub>IH</sub> , High Level Input Voltage                                       | ,                                             | 0.7*VDDIO            |                    |                 | V               |          |
| V <sub>IL</sub> , Low Level Input Voltage                                        |                                               |                      |                    | 0.3*VDDIO       | V               | 1        |
| C <sub>I</sub> , Input Capacitance                                               |                                               |                      | <10                | 0.5 VDD10       | pF              | <u> </u> |
| c <sub>i</sub> ,pat capacitacc                                                   | <u> </u>                                      |                      | <10                |                 | ρı              |          |
| V <sub>OH</sub> , High Level Output Voltage                                      | DIGITAL OUTPUT (SI $R_{LOAD}$ =1 $M\Omega$ ;  |                      | 1                  | 1               | V               | I        |
|                                                                                  |                                               | 0.9*VDDIO            |                    | 0.440.455.40    |                 |          |
| V <sub>OL1</sub> , LOW-Level Output Voltage                                      | $R_{LOAD}=1 M\Omega;$                         |                      |                    | 0.1*VDDIO       | V               |          |
| V <sub>OL.INT</sub> , INT Low-Level Output Voltage                               | OPEN=1, 0.3 mA sink<br>Current                |                      |                    | 0.1             | V               | 1        |
| Output Leakage Current                                                           | OPEN=1                                        |                      | 100                |                 | nA              |          |
| t <sub>INT</sub> , INT Pulse Width                                               | int_tpulse_duration= 0 , 1 (100us, 8us ) ;    | 8                    |                    | 100             | μs              | 1        |
|                                                                                  | I <sup>2</sup> C I/O (SCI                     | , SDA)               | 1                  | 1               |                 | I        |
| V <sub>IL</sub> , LOW-Level Input Voltage                                        |                                               | -0.5V                |                    | 0.3*VDDIO       | V               |          |
| V <sub>IH</sub> , HIGH-Level Input Voltage                                       |                                               | 0.7*VDDIO            |                    | VDDIO +<br>0.5V | ٧               |          |
| V <sub>hvs</sub> , Hysteresis                                                    |                                               |                      | 0.1*VDDIO          | 0.5             | V               |          |
| V <sub>OL</sub> , LOW-Level Output Voltage                                       | 3 mA sink current                             | 0                    | 1                  | 0.4             | V               | 1        |
| I <sub>OL</sub> , LOW-Level Output Current                                       | V <sub>0L</sub> =0.4 V                        | <u> </u>             | 3                  | U               | mA              | i -      |
| .og == zere. output current                                                      | $V_{0L}=0.6 \text{ V}$                        |                      | 6                  |                 | mA              |          |
| Output Leakage Current                                                           | <u> </u>                                      |                      | 100                |                 | nA              | 1        |
| t <sub>of</sub> , Output Fall Time from V <sub>IHmax</sub> to V <sub>ILmax</sub> | C <sub>b</sub> bus capacitance in pf          | 20+0.1C <sub>b</sub> | 1                  | 300             | ns              | 1        |
|                                                                                  | INTERNAL CLOC                                 |                      | 1                  | 1               | ı               | ı        |
| Clock Fraguency Initial Talana                                                   | CLKSEL='2b00 or gyro inactive; 25°C           | -3                   |                    | +3              | %               | 1        |
| Clock Frequency Initial Tolerance                                                | CLKSEL=`2b01 and gyro active; 25°C            | -1                   |                    | +1              | %               | 1        |
|                                                                                  | CLKSEL='2b00 or gyro inactive; -40°C to +85°C |                      |                    | ±3              | %               | 1        |
| Frequency Variation over Temperature                                             | CLKSEL=`2b01 and gyro active; -40°C to +85°C  |                      |                    | ±1              | %               | 1        |
|                                                                                  |                                               |                      | ı                  | 1               |                 | 1        |

**Table 4. A.C. Electrical Characteristics** 

- 1. Expected results based on design, will be updated after characterization. Not tested in production.
- 2. Guaranteed by design.
- 3. Production tested.
- Temperature sensor ODR is the higher value between gyroscope and accelerometer ODR.



# 3.4 I<sup>2</sup>C TIMING CHARACTERIZATION

Typical Operating Conditions, VDD = 1.8V, VDDIO = 1.8V,  $T_A=25$ °C, unless otherwise noted. Slew Rate can be configured by the user using register DRIVE\_CONFIG2.

| PARAMETERS                                                                   | CONDITIONS                      | MIN  | TYP | MAX  | UNITS | NOTES |
|------------------------------------------------------------------------------|---------------------------------|------|-----|------|-------|-------|
| I <sup>2</sup> C TIMING                                                      | I <sup>2</sup> C FAST-MODE PLUS |      |     |      |       |       |
| f <sub>SCL</sub> , SCL Clock Frequency                                       |                                 |      |     | 1    | MHz   | 1     |
| t <sub>HD.STA</sub> , (Repeated) START Condition Hold Time                   |                                 | 0.26 |     |      | μs    | 1     |
| t <sub>LOW</sub> , SCL Low Period                                            |                                 | 0.5  |     |      | μs    | 1     |
| t <sub>ніGH</sub> , SCL High Period                                          |                                 | 0.26 |     |      | μs    | 1     |
| t <sub>SU.STA</sub> , Repeated START Condition Setup Time                    |                                 | 0.26 |     |      | μs    | 1     |
| t <sub>HD.DAT</sub> , SDA Data Hold Time                                     |                                 | 0    |     |      | μs    | 1     |
| t <sub>SU.DAT</sub> , SDA Data Setup Time                                    |                                 | 50   |     |      | ns    | 1     |
| t <sub>SU.STO</sub> , STOP Condition Setup Time                              |                                 | 0.5  |     |      | μs    | 1     |
| $t_{\mbox{\scriptsize BUF}},$ Bus Free Time Between STOP and START Condition |                                 | 0.5  |     |      | μs    | 1     |
| C <sub>b</sub> , Capacitive Load for each Bus Line                           |                                 |      |     | 550  | pF    | 1     |
| t <sub>VD.DAT</sub> , Data Valid Time                                        |                                 |      |     | 0.45 | μs    | 1     |
| t <sub>VD.ACK</sub> , Data Valid Acknowledge Time                            |                                 |      |     | 0.45 | μs    | 1     |

Table 5. I<sup>2</sup>C Timing Characteristics

#### Notes:

1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets



Figure 1. I<sup>2</sup>C Bus Timing Diagram



## 3.5 SPI TIMING CHARACTERIZATION – 4-WIRE SPI MODE

Typical Operating Conditions, VDD = 1.8V, VDDIO = 1.8V,  $T_A=25$ °C, unless otherwise noted. Slew Rate can be configured by the user using register DRIVE CONFIG3.

| PARAMETERS                                     | CONDITIONS                | MIN | TYP | MAX  | UNITS | NOTES |
|------------------------------------------------|---------------------------|-----|-----|------|-------|-------|
| SPI TIMING                                     |                           |     |     |      |       |       |
| f <sub>SPC</sub> , SCLK Clock Frequency        | Default                   |     |     | 24   | MHz   | 1     |
| t <sub>LOW</sub> , SCLK Low Period             |                           | 17  |     |      | ns    | 1     |
| t <sub>HIGH</sub> , SCLK High Period           |                           | 17  |     |      | ns    | 1     |
| t <sub>SU.CS</sub> , CS Setup Time             |                           | 17  |     |      | ns    | 1     |
| t <sub>HD.CS</sub> , CS Hold Time              |                           | 5   |     |      | ns    | 1     |
| t <sub>SU.SDI</sub> , SDI Setup Time           |                           | 13  |     |      | ns    | 1     |
| t <sub>HD.SDI</sub> , SDI Hold Time            |                           | 8   |     |      | ns    | 1     |
| t <sub>VD.SDO</sub> , SDO Valid Time           | C <sub>load</sub> = 20 pF |     |     | 18.5 | ns    | 1     |
| t <sub>HD.SDO</sub> , SDO Hold Time            | C <sub>load</sub> = 20 pF | 3.5 |     |      | ns    | 1     |
| t <sub>DIS.SDO</sub> , SDO Output Disable Time |                           |     |     | 18.5 | ns    | 1     |

Table 6. 4-Wire SPI Timing Characteristics (24-MHz Operation)

#### Notes:

1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets



Figure 2. 4-Wire SPI Bus Timing Diagram



## 3.6 SPI TIMING CHARACTERIZATION – 3-WIRE SPI MODE

Typical Operating Conditions, VDD = 1.8V, VDDIO = 1.8V,  $T_A=25$ °C, unless otherwise noted. Slew Rate can be configured by the user using register DRIVE\_CONFIG3.

| PARAMETERS                                       | CONDITIONS                | MIN | TYP | MAX  | UNITS | NOTES |
|--------------------------------------------------|---------------------------|-----|-----|------|-------|-------|
| SPI TIMING                                       |                           |     |     |      |       |       |
| f <sub>SPC</sub> , SCLK Clock Frequency          | Default                   |     |     | 24   | MHz   | 1     |
| t <sub>LOW</sub> , SCLK Low Period               |                           | 17  |     |      | ns    | 1     |
| t <sub>HIGH</sub> , SCLK High Period             |                           | 17  |     |      | ns    | 1     |
| t <sub>SU.CS</sub> , CS Setup Time               |                           | 17  |     |      | ns    | 1     |
| t <sub>HD.CS</sub> , CS Hold Time                |                           | 5   |     |      | ns    | 1     |
| t <sub>SU.SDIO</sub> , SDIO Input Setup Time     |                           | 13  |     |      | ns    | 1     |
| t <sub>HD.SDIO</sub> , SDIO Input Hold Time      |                           | 8   |     |      | ns    | 1     |
| t <sub>VD.SDIO</sub> , SDIO Output Valid Time    | C <sub>load</sub> = 20 pF |     |     | 18.5 | ns    | 1     |
| t <sub>HD.SDIO</sub> , SDIO Output Hold Time     | C <sub>load</sub> = 20 pF | 3.5 |     |      | ns    | 1     |
| t <sub>DIS.SDIO</sub> , SDIO Output Disable Time |                           |     |     | 18.5 | ns    | 1     |

Table 7. 3-Wire SPI Timing Characteristics (24-MHz Operation)

#### Notes:

1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets



Figure 3. 3-Wire SPI Bus Timing Diagram



## 3.7 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed as "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

| PARAMETER                                | RATING                              |
|------------------------------------------|-------------------------------------|
| Supply Voltage, VDD                      | -0.5V to 4V                         |
| Supply Voltage, VDDIO                    | -0.5V to 4V                         |
| Input Voltage Level (FSYNC, SCL, SDA)    | -0.5V to VDDIO + 0.5 V              |
| Acceleration (Any Axis, unpowered)       | 20,000g for 0.2 ms                  |
| Operating Temperature Range              | -40°C to +85°C                      |
| Storage Temperature Range                | -40°C to +125°C                     |
| Electrostatic Discharge (ESD) Protection | 2 kV (HBM);<br>500V (CDM)           |
| Latch-up                                 | JEDEC Class II (2),125°C<br>±100 mA |

**Table 8. Absolute Maximum Ratings** 



# **4** APPLICATIONS INFORMATION

# 4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION

| PIN NUMBER | PIN NAME                     | PIN DESCRIPTION                                                                                                                                            |  |
|------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1          | AP_SDO / AP_AD0              | AP_SDO: AP SPI serial data output (4-wire mode);<br>AP_ADO: AP I3C <sup>SM</sup> / I <sup>2</sup> C slave address LSB                                      |  |
| 2          | RESV                         | No Connect or Connect to GND or Connect to VDDIO                                                                                                           |  |
| 3          | RESV                         | No Connect or Connect to GND or Connect to VDDIO                                                                                                           |  |
| 4          | INT1 / INT                   | INT1: Interrupt 1 (Note: INT1 can be push-pull or open drain) INT: All interrupts mapped to pin 4                                                          |  |
| 5          | VDDIO                        | IO power supply voltage                                                                                                                                    |  |
| 6          | GND                          | Power supply ground                                                                                                                                        |  |
| 7          | FSYNC                        | Frame sync input; Connect to GND if FSYNC not used                                                                                                         |  |
| 8          | VDD                          | Power supply voltage                                                                                                                                       |  |
| 9          | INT2                         | INT2: Interrupt 2 (Note: INT2 can be push-pull or open drain)                                                                                              |  |
| 10         | RESV                         | No Connect or Connect to GND or Connect to VDDIO                                                                                                           |  |
| 11         | RESV                         | No Connect or Connect to GND or Connect to VDDIO                                                                                                           |  |
| 12         | AP_CS                        | AP SPI Chip select (AP SPI interface); Connect to VDDIO if using A I3C <sup>SM</sup> / I <sup>2</sup> C interface                                          |  |
| 13         | AP_SCL / AP_SCLK             | AP_SCL: AP I3C <sup>SM</sup> / I <sup>2</sup> C serial clock; AP_SCLK: AP SPI serial clock                                                                 |  |
| 14         | AP_SDA / AP_SDIO /<br>AP_SDI | AP_SDA: AP I3C <sup>SM</sup> / I <sup>2</sup> C serial data; AP_SDIO: AP SPI serial data I/O (3-wire mode); AP_SDI: AP SPI serial data input (4-wire mode) |  |

**Table 9. Signal Descriptions** 



Figure 4. Pin Out Diagram for ICM-42670-P 2.5x3.0x0.76 mm LGA



# 4.2 TYPICAL OPERATING CIRCUIT



Figure 5. ICM-42670-P Application Schematic (I3CSM / I<sup>2</sup>C Interface to Host)

Note:  $I^2C$  lines are open drain and pull-up resistors (e.g. 10  $k\Omega$ ) are required.



Figure 6. ICM-42670-P Application Schematic (SPI Interface to Host)



#### 4.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS

| COMPONENT              | LABEL | SPECIFICATION   | QUANTITY |
|------------------------|-------|-----------------|----------|
| VDD Byrnass Canaditars | C1    | X7R, 0.1μF ±10% | 1        |
| VDD Bypass Capacitors  | C2    | X7R, 2.2μF ±10% | 1        |
| VDDIO Bypass Capacitor | С3    | X7R, 10nF ±10%  | 1        |

Table 10. Bill of Materials

## 4.4 SYSTEM BLOCK DIAGRAM



Figure 7. ICM-42670-P System Block Diagram

Note: The above block diagram is an example. Please refer to the pin-out (section 4.1) for other configuration options.

#### 4.5 OVERVIEW

The ICM-42670-P is comprised of the following key blocks and functions:

- Three-axis MEMS gyroscope
- Three-axis MEMS accelerometer
- I3C<sup>SM</sup>, I<sup>2</sup>C, and SPI serial communications interfaces to Host
- Self-Test
- Sensor Data Registers
- FIFO
- Interrupts
- Digital-Output Temperature Sensor
- Bias and LDOs
- Charge Pump
- Standard Power Modes

# 4.6 THREE-AXIS MEMS GYROSCOPE

The ICM-42670-P includes a vibratory MEMS rate gyroscope, which detects rotation about the X-, Y-, and Z- Axes. When the gyroscope is rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage is digitized using on-chip Analog-to-Digital Converter (ADC) to sample each axis. The full-scale range of the gyro sensor may be digitally programmed to  $\pm 250$ ,  $\pm 500$ ,  $\pm 1000$ , and  $\pm 2000$  degrees per second (dps).

## 4.7 THREE-AXIS MEMS ACCELEROMETER

The ICM-42670-P includes a 3-Axis MEMS accelerometer. Acceleration along a particular axis induces displacement of a proof mass in the MEMS structure, and capacitive sensors detect the displacement. The ICM-42670-P architecture reduces the accelerometers' susceptibility to fabrication variations as well as to thermal drift. When the device is placed on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-axis. The accelerometers' scale factor is calibrated at the factory and is nominally independent of supply voltage. The full-scale range of the digital output can be adjusted to  $\pm 2g$ ,  $\pm 4g$ ,  $\pm 8g$  and  $\pm 16g$ .



## 4.8 I3CSM, I2C AND SPI HOST INTERFACE

The ICM-42670-P communicates to the application processor using an I3C<sup>SM</sup>, I<sup>2</sup>C, or SPI serial interface. The ICM-42670-P always acts as a slave when communicating to the application processor.

#### 4.9 SELF-TEST

Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can be activated by means of the gyroscope and accelerometer self-test registers. When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is used to observe the self-test response. The self-test response is defined as follows:

SELF-TEST RESPONSE = SENSOR OUTPUT WITH SELF-TEST ENABLED — SENSOR OUTPUT WITH SELF-TEST DISABLED

When the value of the self-test response is within the specified min/max limits, the part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test.

#### 4.10 SENSOR DATA REGISTERS

The sensor data registers contain the latest gyroscope, accelerometer, and temperature measurement data. They are read-only registers and are accessed via the serial interface. Data from these registers may be read any time.

### 4.11 INTERRUPTS

Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the interrupt pins configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an interrupt are (1) new data is available to be read (from the FIFO and Data registers); (2) accelerometer event interrupts; (3) FIFO watermark; (4) FIFO full. The interrupt status can be read from the Interrupt Status register.

#### 4.12 DIGITAL-OUTPUT TEMPERATURE SENSOR

An on-chip temperature sensor and ADC are used to measure the ICM-42670-P die temperature. The readings from the ADC can be read from the FIFO or the Sensor Data registers.

Temperature sensor ODR is the higher value between gyroscope and accelerometer ODR.

## 4.13 BIAS AND LDOS

The bias and LDO section generate the internal supply and the reference voltages and currents required by the ICM-42670-P.

### 4.14 CHARGE PUMP

An on-chip charge pump generates the high voltage required for the MEMS oscillator.



# **4.15 STANDARD POWER MODES**

The following table lists the user-accessible power modes for ICM-42670-P.

| MODE | NAME                         | GYRO     | ACCEL       |
|------|------------------------------|----------|-------------|
| 1    | Sleep Mode                   | Off      | Off         |
| 2    | Standby Mode                 | Drive On | Off         |
| 3    | Accelerometer Low-Power Mode | Off      | Duty-Cycled |
| 4    | Accelerometer Low-Noise Mode | Off      | On          |
| 5    | Gyroscope Low-Noise Mode     | On       | Off         |
| 6    | 6-Axis Low-Noise Mode        | On       | On          |

Table 11. Standard Power Modes for ICM-42670-P



# 5 SIGNAL PATH

The following figure shows a block diagram of the signal path for ICM-42670-P.



Figure 8. ICM-42670-P Signal Path

The signal path starts with ADCs for the gyroscope and accelerometer. Low-Noise Mode and Low-Power Mode options are available for the accelerometer and are selectable using register field ACCEL\_MODE. Only Low-Noise Mode is available for gyroscope.

In Low-Noise Mode, the ADC output is sent through an Anti-Alias Filter (AAF). The AAF is a filter with fixed coefficients (not user configurable), also the AAF cannot be bypassed. The AAF is followed by a 1<sup>st</sup> Order Low Pass Filter (LPF) with user selectable filter bandwidth options using register fields ACCEL\_UI\_FILT\_BW and GYRO UI FILT BW.

In Low-Power Mode, the accelerometer ADC output is sent through an Average filter, with user configurable average filter setting using register field ACCEL\_UI\_AVG.

The output of 1<sup>st</sup> Order LPF in Low-Noise Mode, or Average filter in Low-Power Mode is subject to ODR selection, with user selectable ODR using register fields GYRO\_ODR and ACCEL\_ODR. This is followed by Full Scale Range (FSR) selection based on user configurable settings for register fields GYRO\_UI\_FS\_SEL and ACCEL\_UI\_FS\_SEL.



# 6 FIFO

The ICM-42670-P contains up to 2.25Kbyte FIFO register that is accessible via the serial interface. Shared SRAM is used for FIFO and APEX features. Default configuration of the device provides 1Kbyte FIFO and rest of the SRAM is used for APEX. User may disable APEX features to extend FIFO size to 2.25 Kbytes using register field APEX DISABLE in register SENSOR CONFIG3.

User can configure the FIFO Data Rate (FDR) to control the rate at which FIFO packets are written to the FIFO. Register field FDR\_SEL in register FDR\_CONFIG (register 0x66h in Bank MREG1) provides FDR control, based on settings for FIFO packet rate decimation factor. User must disable sensors when initializing FDR\_SEL value or making changes to it.

#### **6.1 PACKET STRUCTURE**

Figure 9 shows the FIFO packet structures supported in ICM-42670-P. Base data format for gyroscope and accelerometer is 16-bits per element. 20-bits data format support is included in one of the packet structures. When 20-bits data format is used, gyroscope data consists of 19-bits of actual data and the LSB is always set to 0, accelerometer data consists of 18-bits of actual data and the two lowest order bits are always set to 0. When 20-bits data format is used, the only FSR settings that are operational are ±2000 dps for gyroscope and ±16g for accelerometer, even if the FSR selection register settings are configured for other FSR values. The corresponding sensitivity scale factor values are 131 LSB/dps for gyroscope and 8192 LSB/g for accelerometer.



Figure 9. FIFO Packet Structure

The rest of this sub-section describes how individual data is packaged in the different FIFO packet structures.



Packet 1: Individual data is packaged in Packet 1 as shown below.

| ВҮТЕ | CONTENT          |  |
|------|------------------|--|
| 0x00 | FIFO Header      |  |
| 0x01 | Accel X [15:8]   |  |
| 0x02 | Accel X [7:0]    |  |
| 0x03 | Accel Y [15:8]   |  |
| 0x04 | Accel Y [7:0]    |  |
| 0x05 | Accel Z [15:8]   |  |
| 0x06 | Accel Z [7:0]    |  |
| 0x07 | Temperature[7:0] |  |

Packet 2: Individual data is packaged in Packet 2 as shown below.

| ВҮТЕ | CONTENT          |  |
|------|------------------|--|
| 0x00 | FIFO Header      |  |
| 0x01 | Gyro X [15:8]    |  |
| 0x02 | Gyro X [7:0]     |  |
| 0x03 | Gyro Y [15:8]    |  |
| 0x04 | Gyro Y [7:0]     |  |
| 0x05 | Gyro Z [15:8]    |  |
| 0x06 | Gyro Z [7:0]     |  |
| 0x07 | Temperature[7:0] |  |

Packet 3: Individual data is packaged in Packet 3 as shown below.

| ВҮТЕ | CONTENT          |  |
|------|------------------|--|
| 0x00 | FIFO Header      |  |
| 0x01 | Accel X [15:8]   |  |
| 0x02 | Accel X [7:0]    |  |
| 0x03 | Accel Y [15:8]   |  |
| 0x04 | Accel Y [7:0]    |  |
| 0x05 | Accel Z [15:8]   |  |
| 0x06 | Accel Z [7:0]    |  |
| 0x07 | Gyro X [15:8]    |  |
| 0x08 | Gyro X [7:0]     |  |
| 0x09 | Gyro Y [15:8]    |  |
| 0x0A | Gyro Y [7:0]     |  |
| 0x0B | Gyro Z [15:8]    |  |
| 0x0C | Gyro Z [7:0]     |  |
| 0x0D | Temperature[7:0] |  |
| 0x0E | TimeStamp[15:8]  |  |
| 0x0F | TimeStamp[7:0]   |  |



Packet 4: Individual data is packaged in Packet 4 as shown below.

| ВУТЕ | CONTENT                    |           |  |
|------|----------------------------|-----------|--|
| 0x00 | FIFO Header                |           |  |
| 0x01 | Accel X [19:12]            |           |  |
| 0x02 | Accel X                    | [11:4]    |  |
| 0x03 | Accel Y                    | [19:12]   |  |
| 0x04 | Accel Y                    | [11:4]    |  |
| 0x05 | Accel Z                    | [19:12]   |  |
| 0x06 | Accel Z                    | [11:4]    |  |
| 0x07 | Gyro X                     | [19:12]   |  |
| 0x08 | Gyro X                     | [11:4]    |  |
| 0x09 | Gyro Y [19:12]             |           |  |
| 0x0A | Gyro Y [11:4]              |           |  |
| 0x0B | Gyro Z [19:12]             |           |  |
| 0x0C | Gyro Z [11:4]              |           |  |
| 0x0D | Temperat                   | ure[15:8] |  |
| 0x0E | Tempera                    | ture[7:0] |  |
| 0x0F | TimeStar                   | mp[15:8]  |  |
| 0x10 | TimeStamp[7:0]             |           |  |
| 0x11 | Accel X [3:0] Gyro X [3:0] |           |  |
| 0x12 | Accel Y [3:0] Gyro Y [3:0] |           |  |
| 0x13 | Accel Z [3:0] Gyro Z [3:0] |           |  |

# **6.2 FIFO HEADER**

The following table shows the structure of the 1byte FIFO header.

| BIT FIELD | ITEM                   | DESCRIPTION                                                                                  |
|-----------|------------------------|----------------------------------------------------------------------------------------------|
| 7         | HEADER MSG             | 1: FIFO is empty                                                                             |
| ,         | TIEADEN_WISG           | 0: Packet contains sensor data                                                               |
| 6         | HEADER ACCEL           | 1: Packet is sized so that accel data have location in the packet, FIFO_ACCEL_EN must be 1   |
| · ·       | TIEADEN_ACCEE          | 0: Packet does not contain accel sample                                                      |
| 5         | HEADER GYRO            | 1: Packet is sized so that gyro data have location in the packet, FIFO_GYRO_EN must be 1     |
| 3         | TIEADER_GTRO           | 0: Packet does not contain gyro sample                                                       |
| 4         | HEADER 20              | 1: Packet has a new and valid sample of extended 20-bit data for gyro and/or accel           |
| 4         | TILADER_20             | 0: Packet does not contain a new and valid extended 20-bit data                              |
|           |                        | 00: Packet does not contain timestamp or FSYNC time data                                     |
|           |                        | 01: Reserved                                                                                 |
| 3:2       | HEADER_TIMESTAMP_FSYNC | 10: Packet contains ODR Timestamp                                                            |
|           |                        | 11: Packet contains FSYNC time, and this packet is flagged as first ODR after FSYNC (only if |
|           |                        | FIFO_TMST_FSYNC_EN is 1)                                                                     |
|           |                        | 1: The ODR for accel is different for this accel data packet compared to the previous accel  |
| 1         | HEADER_ODR_ACCEL       | packet                                                                                       |
|           |                        | 0: The ODR for accel is the same as the previous packet with accel                           |
|           |                        | 1: The ODR for gyro is different for this gyro data packet compared to the previous gyro     |
| 0         | HEADER_ODR_GYRO        | packet                                                                                       |
|           |                        | 0: The ODR for gyro is the same as the previous packet with gyro                             |

Note at least HEADER\_ACCEL or HEADER\_GYRO must be set for a sensor data packet to be set.



#### 6.3 MAXIMUM FIFO STORAGE

The maximum number of packets that can be stored in FIFO is a variable quantity depending on the use case. As shown in Figure 10, the physical FIFO size is 1 Kbytes or 2.25 Kbytes (depending on APEX\_DISABLE setting as described above). A number of bytes equal to the packet size selected (see section 6.1) is reserved to prevent reading a packet during write operation. Additionally, a read cache 2 packets wide is available.

The total storage available is up to the maximum number of packets that can be accommodated in 1 Kbytes (or 2.25 Kbytes) plus 40 cache bytes. Note: the cache can hold 5 packets instead of 2 in the specific case when the packet size is 8bytes and the FIFO mode is Stop-on-full.



Figure 10. Maximum FIFO Storage



# 7 PROGRAMMABLE INTERRUPTS

The ICM-42670-P has a programmable interrupt system that can generate an interrupt signal on the INT pins. Status flags indicate the source of an interrupt. Interrupt sources may be enabled and disabled individually. There are two interrupt outputs. Any interrupt may be mapped to either interrupt pin as explained in the register section. The following configuration options are available for the interrupts

- INT1 and INT2 can be push-pull or open drain
- Level or pulse mode
- Active high or active low

Additionally, ICM-42670-P includes In-band Interrupt (IBI) support for the I3C<sup>SM</sup> interface.



# 8 APEX MOTION FUNCTIONS

The APEX (Advanced Pedometer and Event Detection – neXt gen) features of ICM-42670-P consist of:

- Pedometer: Tracks step count and issues a step detect Interrupt.
- Tilt Detection: Issues an interrupt when the Tilt angle exceeds 35 degrees for more than a programmable time.
- Low-g Detection: Triggers an interrupt when absolute value of accelerometer combined axis falls below a programmable threshold and stays below the threshold for a programmable time.
- Freefall Detection: Triggers an interrupt when device freefall is detected and outputs freefall duration.
- Wake on Motion (WoM): Detects motion when accelerometer samples exceed a programmable threshold. This motion event can be used to enable device operation from sleep mode.
- Significant Motion Detector (SMD): Detects significant motion based on accelerometer data.

Shared SRAM is used for FIFO and APEX features. Default configuration of the device provides 1Kbyte FIFO and rest of the SRAM is used for APEX. User may disable APEX features to extend FIFO size to 2.25 Kbytes using register field APEX\_DISABLE in register SENSOR\_CONFIG3.



## 9 DIGITAL INTERFACE

# 9.1 I3CSM, I2C AND SPI SERIAL INTERFACES

The internal registers and memory of the ICM-42670-P can be accessed using I3C<sup>SM</sup> at 12.5 MHz (data rates up to 12.5 Mbps in SDR mode, 25 Mbps in DDR mode), I<sup>2</sup>C at 1 MHz or SPI at 24 MHz. SPI operates in 3-wire or 4-wire mode. Pin assignments for serial interfaces are described in Section 4.1.

# 9.2 I3C<sup>SM</sup> INTERFACE

I3C<sup>SM</sup> is a new 2-wire digital interface comprised of the signals serial data (SDA) and serial clock (SCLK). I3C<sup>SM</sup> is intended to improve upon the I<sup>2</sup>C interface, while preserving backward compatibility. The I3C<sup>SM</sup> capability of this device is compliant with Version 1.0 of the MIPI Alliance Specification for I3C<sup>SM</sup>.

I3C<sup>SM</sup> carries the advantages of I<sup>2</sup>C in simplicity, low pin count, easy board design, and multi-drop (vs. point to point), but provides the higher data rates, simpler pads, and lower power of SPI. I3C<sup>SM</sup> adds higher throughput for a given frequency, in-band interrupts (from slave to master), dynamic addressing.

ICM-42670-P supports the following features of I3C<sup>SM</sup>:

- SDR data rate up to 12.5 Mbps
- DDR data rate up to 25 Mbps
- Dynamic address allocation
- In-band Interrupt (IBI) support
- Support for asynchronous timing control mode 0
- Error detection (CRC and/or Parity)
- Common Command Code (CCC)

The ICM-42670-P always operates as an I3C<sup>SM</sup> slave device when communicating to the system processor, which thus acts as the I3C<sup>SM</sup> master. I3C<sup>SM</sup> master controls an active pullup resistance on SDA, which it can enable and disable. The pullup resistance may be a board level resistor controlled by a pin, or it may be internal to the I3C<sup>SM</sup> master.

The following table shows I3C<sup>SM</sup> Common Command Code (CCC) commands supported by the device.

|    | CCC Description                                            | Required or<br>Optional per I3C<br>v1.0 | Supported by ICM-42670-P |
|----|------------------------------------------------------------|-----------------------------------------|--------------------------|
| 1  | ENEC, broadcast mode. (Enable Events)                      | Required                                | Yes                      |
| 2  | DISEC, broadcast mode. (Disable Events)                    | Required                                | Yes                      |
| 3  | ENTASO, broadcast mode. (Enter Activity State 0)           | Required                                | Yes                      |
| 4  | ENTAS1, broadcast mode. (Enter Activity State 1)           | Optional                                | No                       |
| 5  | ENTAS2, broadcast mode. (Enter Activity State 0)           | Optional                                | No                       |
| 6  | ENTAS3, broadcast mode. (Enter Activity State 0)           | Optional                                | No                       |
| 7  | RSTDAA, broadcast mode. (Reset dynamic address assignment) | Required                                | Yes                      |
| 8  | ENTDAA, broadcast mode. (Enter dynamic address assignment) | Required                                | Yes                      |
| 9  | DEFSLVS, broadcast mode. (Define list of slaves)           | Optional                                | No                       |
| 10 | SETMWL, broadcast mode. (Set Max Write Length)             | Required                                | Yes                      |
| 11 | SETMRL, broadcast mode. (Set Max Read Length)              | Required                                | Yes                      |
| 12 | ENTTM, broadcast mode. (Enter Test Mode)                   | Optional                                | No                       |
| 13 | ENTHDRO, broadcast mode. (Enter HDR DDR mode)              | Optional                                | Yes                      |
| 14 | ENTHDR1, broadcast mode. (Enter HDR TSP mode)              | Optional                                | No                       |
| 15 | ENTHDR2, broadcast mode. (Enter HDR TSL mode)              | Optional                                | No                       |



|    | 16.1                | IE, broadcast mode. (Exchange Timing Information)  Defining byte = 0x7F (ST) | Optional | No  |
|----|---------------------|------------------------------------------------------------------------------|----------|-----|
|    | 16.2                | Defining byte = 0xBF (DT)                                                    | Optional | No  |
|    | 16.3                | Defining byte = 0xDF (Enter Async Mode 0)                                    | Optional | Yes |
|    | 16.4                | Defining byte = 0xEF (Enter Async Mode 1)                                    | Optional | No  |
|    | 16.5                | Defining byte = 0xF7 (Enter Async Mode 2)                                    | Optional | No  |
|    | 16.6                | Defining byte = 0xFB (Enter Async Mode 3)                                    | Optional | No  |
|    | 16.7                | Defining byte = 0xFD (Async Trigger for Async Mode 3)                        | Optional | No  |
|    | 16.8                | Defining byte = 0x3F (TPH)                                                   | Optional | No  |
|    | 16.9                | Defining byte = 0x9f (TU)                                                    | Optional | No  |
|    | 16.10               | Defining byte = 0x8F (ODR)                                                   | Optional | No  |
|    | 16.11               | Defining byte = 0xff (disable all timing control function)                   | Optional | Yes |
| 17 | ENEC, di            | rect mode. (Enable Events)                                                   | Required | Yes |
| 18 | DISEC, d            | irect mode. (Disable Events)                                                 | Required | Yes |
| 19 | ENTASO,             | direct mode. (Enter Activity State 0)                                        | Required | Yes |
| 20 | ENTAS1,             | direct mode. (Enter Activity State 1)                                        | Optional | No  |
| 21 | ENTAS2,             | direct mode. (Enter Activity State 2)                                        | Optional | No  |
| 22 | ENTAS3,             | direct mode. (Enter Activity State 3)                                        | Optional | No  |
| 23 | RSTDAA              | direct mode. (Reset dynamic address assignment)                              | Required | Yes |
| 24 | SETDAS/<br>address) | A, direct mode. (Set Dynamic address from static                             | Optional | Yes |
| 25 | SETNEW              | DA, direct mode. (Set new dynamic address)                                   | Required | Yes |
| 26 | SETMWI              | ., direct mode. (Set Max Write Length)                                       | Required | Yes |
| 27 | SETMRL              | direct mode. (Set Max Read length)                                           | Required | Yes |
| 28 | GETMW               | L, direct mode. (Get Max write length)                                       | Required | Yes |
| 29 | GETMRL              | , direct mode. (Get Max Read length)                                         | Required | Yes |
| 30 | GETPID,             | direct mode. (Get provisional ID)                                            | Required | Yes |
| 31 | GETBCR,             | direct mode. (Get Bus Characteristics Register)                              | Required | Yes |
| 32 | GETDCR              | , direct mode. (Get Device Characteristics Register)                         | Required | Yes |
| 33 | GETSTAT             | TUS, direct mode. (Get Device Status)                                        | Required | Yes |
| 34 | GETACC              | MST, direct mode. (Get Accept Mastership)                                    | Optional | No  |
| 35 | SETBRG              | TGT, direct mode. (Set Bridge Targets)                                       | Optional | No  |
| 36 | GETMX               | OS, direct mod. (Get Max Data Speed)                                         | Optional | Yes |
| 37 | GETHDR              | CAP, direct mode. (Get HDR capability)                                       | Optional | Yes |
| 38 | SETXTIN             | E, direct mode. (Set Exchange Timing information)                            |          |     |
|    | 38.1                | Defining byte = 0x7F (ST)                                                    | Optional | No  |
|    | 38.2                | Defining byte = 0xBF (DT)                                                    | Optional | No  |
|    | 38.3                | Defining byte = 0xDF (Enter Async Mode 0)                                    | Optional | Yes |
|    | 38.4                | Defining byte = 0xEF (Enter Async Mode 1)                                    | Optional | No  |
|    | 38.5                | Defining byte = 0xF7 (Enter Async Mode 2)                                    | Optional | No  |
|    | 38.6                | Defining byte = 0xFB (Enter Async Mode 3)                                    | Optional | No  |
|    | 38.7                | Defining byte = 0xFD (Async Trigger for Async Mode 3)                        | Optional | No  |



|    | 38.8    | Defining byte = 0x3F (TPH)                                 | Optional | No  |
|----|---------|------------------------------------------------------------|----------|-----|
|    | 38.9    | Defining byte = 0x9f (TU)                                  | Optional | No  |
|    | 38.10   | Defining byte = 0x8F (ODR)                                 | Optional | No  |
|    | 38.11   | Defining byte = 0xff (disable all timing control function) | Optional | Yes |
| 39 | GETXTIM | E, direct mode. (Get Exchange Timing Information)          | Optional | Yes |

Table 12. I3CSM CCC Commands

#### 9.3 I<sup>2</sup>C INTERFACE

I<sup>2</sup>C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bi-directional. In a generalized I<sup>2</sup>C interface implementation, attached devices can be a master or a slave. The master device puts the slave address on the bus, and the slave device with the matching address acknowledges the master.

The ICM-42670-P always operates as a slave device when communicating to the system processor, which thus acts as the master. SDA and SCL lines typically need pull-up resistors to VDDIO. The maximum bus speed is 1 MHz.

The slave address of the ICM-42670-P is b110100X, which is 7 bits long. The LSB bit of the 7-bit address is determined by the logic level on pin AP\_AD0. This allows two ICM-42670-Ps to be connected to the same I<sup>2</sup>C bus. When used in this configuration, the address of one of the devices should be b1101000 (pin AP\_AD0 is logic low) and the address of the other should be b1101001 (pin AP AD0 is logic high).

# 9.4 I<sup>2</sup>C COMMUNICATIONS PROTOCOL

#### START (S) and STOP (P) Conditions

Communication on the I<sup>2</sup>C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see Figure 11).

Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.



Figure 11. START and STOP Conditions

## Data Format / Acknowledge

I<sup>2</sup>C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse.

If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready and releases the clock line (refer to Figure 12).



Figure 12. Acknowledge on the I<sup>2</sup>C Bus

#### **Communications**

After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8<sup>th</sup> bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, with the exception of start and stop conditions.



Figure 13. Complete I<sup>2</sup>C Data Transfer

To write the internal ICM-42670-P registers, the master transmits the start condition (S), followed by the I<sup>2</sup>C address and the write bit (0). At the 9<sup>th</sup> clock cycle (when the clock is high), the ICM-42670-P acknowledges the transfer. Then the master puts the register address (RA) on the bus. After the ICM-42670-P acknowledges the reception of the register address, the master puts the register data onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the ICM-42670-P automatically increments the register address and loads the data to the appropriate register. The following figures show single and two-byte write sequences.



## Single-Byte Write Sequence

| Master | S | AD+W |     | RA |     | DATA |     | Р |
|--------|---|------|-----|----|-----|------|-----|---|
| Slave  |   |      | ACK |    | ACK |      | ACK |   |

### Burst Write Sequence

| Master | S | AD+W |     | RA |     | DATA |     | DATA |     | Р |
|--------|---|------|-----|----|-----|------|-----|------|-----|---|
| Slave  |   |      | ACK |    | ACK |      | ACK |      | ACK |   |

To read the internal ICM-42670-P registers, the master sends a start condition, followed by the I<sup>2</sup>C address and a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the ICM-42670-P, the master transmits a start signal followed by the slave address and read bit. As a result, the ICM-42670-P sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the 9<sup>th</sup> clock cycle. The following figures show single and two-byte read sequences.

## Single-Byte Read Sequence

| Master | S | AD+W |     | RA |     | S | AD+R |     |      | NACK | Р |
|--------|---|------|-----|----|-----|---|------|-----|------|------|---|
| Slave  |   |      | ACK |    | ACK |   |      | ACK | DATA |      |   |

### **Burst Read Sequence**

| Master | S | AD+W |     | RA |     | S | AD+R |     |      | ACK |      | NACK | Р |
|--------|---|------|-----|----|-----|---|------|-----|------|-----|------|------|---|
| Slave  |   |      | ACK |    | ACK |   |      | ACK | DATA |     | DATA |      |   |

## 9.5 I<sup>2</sup>C TERMS

| SIGNAL | DESCRIPTION                                                                                |
|--------|--------------------------------------------------------------------------------------------|
| S      | Start Condition: SDA goes from high to low while SCL is high                               |
| AD     | Slave I <sup>2</sup> C address                                                             |
| W      | Write bit (0)                                                                              |
| R      | Read bit (1)                                                                               |
| ACK    | Acknowledge: SDA line is low while the SCL line is high at the 9 <sup>th</sup> clock cycle |
| NACK   | Not-Acknowledge: SDA line stays high at the 9th clock cycle                                |
| RA     | ICM-42670-P internal register address                                                      |
| DATA   | Transmit or received data                                                                  |
| Р      | Stop condition: SDA going from low to high while SCL is high                               |

Table 13. I<sup>2</sup>C Terms



#### 9.6 SPI INTERFACE

The ICM-42670-P supports 3-wire or 4-wire SPI for the host interface. The ICM-42670-P always operates as a Slave device during standard Master-Slave SPI operation.

With respect to the Master, the Serial Clock output (SCLK), the Serial Data Output (SDO), the Serial Data Input (SDI), and the Serial Data IO (SDIO) are shared among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line from the master.

CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is active at a time, ensuring that only one slave is selected at any given time. The CS lines of the non-selected slave devices are held high, causing their SDO lines to remain in a high-impedance (high-z) state so that they do not interfere with any active devices.

## SPI Operational Features

- 1. Data is delivered MSB first and LSB last
- 2. Data is latched on the rising edge of SCLK
- 3. Data should be transitioned on the falling edge of SCLK
- 4. The maximum frequency of SCLK is 24 MHz
- 5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the Register Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Read (1) operation. The following 7 bits contain the Register Address. In cases of multiple-byte Reads, data is two or more bytes:

Register Address format

| MSB |    |    |    |    |    |    | LSB |
|-----|----|----|----|----|----|----|-----|
| R/W | A6 | A5 | A4 | А3 | A2 | A1 | Α0  |

#### SPI Data format

| MSB |    |    |    |    |    |    | LSB |
|-----|----|----|----|----|----|----|-----|
| D7  | D6 | D5 | D4 | D3 | D2 | D1 | D0  |

6. Supports Single or Burst Read/Writes.



Figure 14. Typical SPI Master/Slave Configuration



# 10 ASSEMBLY

This section provides general guidelines for assembling Micro Electro-Mechanical Systems (MEMS) devices packaged in LGA package.

# **10.1 ORIENTATION OF AXES**

The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier (•) in the figure.



Figure 15. Orientation of Axes of Sensitivity and Polarity of Rotation



### **10.2 PACKAGE DIMENSIONS**

14 Lead LGA (2.5x3x0.76) mm NiAu pad finish



|                              |         | DIM   | ENSIONS IN MILLIN | METERS |  |  |
|------------------------------|---------|-------|-------------------|--------|--|--|
|                              | SYMBOLS | MIN   | NOM               | MAX    |  |  |
| Total Thickness              | Α       | 0.71  | 0.76              | 0.81   |  |  |
| Substrate Thickness          | С       |       | 0.1               | REF    |  |  |
| Mold Thickness               | А3      |       | 0.65              | REF    |  |  |
| Body Size                    | E       | 2.45  | 2.50              | 2.55   |  |  |
| Body Size                    | D       | 2.95  | 3.00              | 3.05   |  |  |
| Lead Width                   | b       | 0.20  | 0.25              | 0.30   |  |  |
| Lead Length                  | L3      | 0.425 | 0.475             | 0.525  |  |  |
| Lead Pitch                   | е       |       | 0.5               |        |  |  |
| Lead Count                   |         |       | 14                |        |  |  |
| Edge Pin Center to Center    | e*3     |       | 1.5               |        |  |  |
| Luge Fill Center to Center   | e*2     |       | 1                 |        |  |  |
| Body Center to Contact Pin   | e/2     | 0.25  |                   |        |  |  |
| Package Edge Tolerance       |         | 0.05  |                   |        |  |  |
| Pad-End to Package Tolerance |         | 0.05  | 0.1               | 0.15   |  |  |
| Mold Flatness                |         |       |                   | 0.1    |  |  |
| Coplanarity                  |         |       |                   | 0.08   |  |  |



## 11 PART NUMBER PACKAGE MARKING

The part number package marking for ICM-42670-P devices is summarized below:

| PART NUMBER | PART NUMBER PACKAGE MARKING |
|-------------|-----------------------------|
| ICM-42670-P | 1460P                       |





# 12 USE NOTES

### 12.1 GYROSCOPE POWER ON TO POWER OFF TRANSITION

After powering the gyroscope off, a period of > 20ms should be allowed to elapse before it is powered back on.



### 13 ACCESSING MREG1, MREG2 AND MREG3 REGISTERS

The following procedure must be used to access registers in user banks MREG1, MREG2, and MREG3.

MREG1, MREG2, and MREG3 registers are accessed indirectly, using the following registers in Bank 0 (\_W registers for Write, \_R registers for Read)

- BLK SEL W
- MADDR\_W
- M\_W
- BLK\_SEL\_R
- MADDR R
- M R

For MREG1 write access, BLK\_SEL\_W must be set to 0x00. For MREG2 write access, BLK\_SEL\_W must be set to 0x28. For MREG3 write access, BLK\_SEL\_W must be set to 0x50.

For MREG1 read access, BLK\_SEL\_R must be set to 0x00. For MREG2 read access, BLK\_SEL\_R must be set to 0x28. For MREG3 read access, BLK\_SEL\_R must be set to 0x50.

User must ensure BLK SEL W and BLK SEL R are set to 0x00 after completing MREG1, MREG2, or MREG3 access.

Example: To write a value to an MREG1 register at address 0x14 use the following steps:

- BLK SEL W must be set to 0
- MADDR W must be set to 0x14 (address of the MREG1 register being accessed)
- M\_W must be set to the desired value
- Wait for 10 μs

Example: To read the value of an MREG1 register at address 0x14 use the following steps:

- BLK SEL R must be set to 0
- MADDR R must be set to 0x14 (address of the MREG1 register being accessed)
- Wait for 10μs
- Read register M\_R to access the value in MREG1 register 0x14
- Wait for 10 μs

Host must not access any other register for 10 μs once MREG1, MREG2 or MREG3 access is kicked off.

Additionally, please note the following for MREG1, MREG2 or MREG3 register accesses:

- User must check that register field MCLK\_RDY is at value 1, to confirm that internal clock is running before initiating MREG register access.
- MREG1, MREG2, or MREG3 read and write operations cannot happen in all power modes. Sleep mode, and
  Accelerometer low power mode with WUOSC do not support MREG1, MREG2 or MREG3 access. When in
  sleep mode or accelerometer LP mode with WUOSC, MREG1, MREG2 or MREG3 read/write operations
  require the user to power on the RC oscillator using register field IDLE from register PWR\_MGMT0.
- It can take up to 10  $\mu$ s for MREG1, MREG2 or MREG3 read/write operations to be effective. No register access must be performed during this period
- Multiple serial protocol transactions are needed for a single data byte transfer, please refer to the examples provided.
- Data transfers through indirect access are only supported for single byte transfers and burst data transfer is not supported for read or write operations.



# 14 REGISTER MAP

This section lists the register map for the ICM-42670-P, for user banks 0, MREG1, MREG2 and MREG3.

### 14.1 USER BANK 0 REGISTER MAP

| ADDR<br>(HEX) | ADDR<br>(DEC) | REGISTER NAME     | SERIAL<br>I/F | ВІТ7                 | BIT6                               | BIT5                | BIT4                             | BIT3                  | BIT2                 | BIT1                   | BIT0                 |
|---------------|---------------|-------------------|---------------|----------------------|------------------------------------|---------------------|----------------------------------|-----------------------|----------------------|------------------------|----------------------|
| 00            | 00            | MCLK_RDY          | R             |                      |                                    | -                   |                                  | MCLK_RDY              |                      | -                      |                      |
| 01            | 01            | DEVICE_CONFIG     | R/W           |                      |                                    | -                   |                                  |                       | SPI_AP_4WIR<br>E     | -                      | SPI_MODE             |
| 02            | 02            | SIGNAL_PATH_RESET | R/W           |                      | -                                  |                     | SOFT_RESET_<br>DEVICE_CON<br>FIG | -                     | FIFO_FLUSH           |                        | -                    |
| 03            | 03            | DRIVE_CONFIG1     | R/W           |                      | -                                  | 13                  | BC_DDR_SLEW_RA                   | TE                    | 13                   | BC_SDR_SLEW_RA         | ТЕ                   |
| 04            | 04            | DRIVE_CONFIG2     | R/W           |                      | -                                  |                     | I2C_SLEW_RATE                    |                       | ALL_SLEW_RATE        |                        |                      |
| 05            | 05            | DRIVE_CONFIG3     | R/W           |                      |                                    | -                   |                                  |                       |                      | SPI_SLEW_RATE          |                      |
| 06            | 06            | INT_CONFIG        | R/W           | -                    |                                    | INT2_MODE           | INT2_DRIVE_<br>CIRCUIT           | INT2_POLARI<br>TY     | INT1_MODE            | INT1_DRIVE_<br>CIRCUIT | INT1_POLARI<br>TY    |
| 09            | 09            | TEMP_DATA1        | R             |                      | TEMP_DATA[15:8]                    |                     |                                  |                       |                      |                        |                      |
| 0A            | 10            | TEMP_DATA0        | R             |                      |                                    |                     | TEMP_D                           | ATA[7:0]              |                      |                        |                      |
| OB            | 11            | ACCEL_DATA_X1     | R             |                      |                                    |                     | ACCEL_DA                         | TA_X[15:8]            |                      |                        |                      |
| OC            | 12            | ACCEL_DATA_X0     | R             |                      |                                    |                     | ACCEL_DA                         | ATA_X[7:0]            |                      |                        |                      |
| 0D            | 13            | ACCEL_DATA_Y1     | R             |                      |                                    |                     | ACCEL_DA                         | TA_Y[15:8]            |                      |                        |                      |
| 0E            | 14            | ACCEL_DATA_Y0     | R             |                      |                                    |                     | ACCEL_DA                         | ATA_Y[7:0]            |                      |                        |                      |
| OF            | 15            | ACCEL_DATA_Z1     | R             |                      |                                    |                     | ACCEL_DA                         | TA_Z[15:8]            |                      |                        |                      |
| 10            | 16            | ACCEL_DATA_Z0     | R             |                      |                                    |                     | ACCEL _D/                        | ATA_Z[7:0]            |                      |                        |                      |
| 11            | 17            | GYRO _DATA_X1     | R             |                      |                                    |                     | GYRO _DA                         | TA_X[15:8]            |                      |                        |                      |
| 12            | 18            | GYRO _DATA_X0     | R             |                      |                                    |                     | GYRO _DA                         | ATA_X[7:0]            |                      |                        |                      |
| 13            | 19            | GYRO _DATA_Y1     | R             |                      | GYRO_DATA_Y[15:8]                  |                     |                                  |                       |                      |                        |                      |
| 14            | 20            | GYRO _DATA_Y0     | R             |                      | GYRO_DATA_Y[7:0]                   |                     |                                  |                       |                      |                        |                      |
| 15            | 21            | GYRO_DATA_Z1      | R             |                      |                                    |                     | GYRO_DA                          | TA_Z[15:8]            |                      |                        |                      |
| 16            | 22            | GYRO_DATA_Z0      | R             |                      |                                    |                     | GYRO_DA                          | ATA_Z[7:0]            |                      |                        |                      |
| 17            | 23            | TMST_FSYNCH       | R             |                      |                                    |                     | TMST_FSYNC                       | C_DATA[15:8]          |                      |                        |                      |
| 18            | 24            | TMST_FSYNCL       | R             |                      |                                    |                     | TMST_FSYN                        | C_DATA[7:0]           |                      |                        |                      |
| 1D            | 29            | APEX_DATA4        | R             |                      |                                    |                     | FF_DL                            | JR[7:0]               |                      |                        |                      |
| 1E            | 30            | APEX_DATA5        | R             |                      | 1                                  |                     | FF_DU                            | R[15:8]               |                      | I                      |                      |
| 1F            | 31            | PWR_MGMT0         | R/W           | ACCEL_LP_CL<br>K_SEL |                                    | -                   | IDLE                             | GYRO_                 | MODE                 |                        | _MODE                |
| 20            | 32            | GYRO_CONFIG0      | R/W           | -                    |                                    | II_FS_SEL           | -                                |                       |                      | _ODR                   |                      |
| 21            | 33            | ACCEL_CONFIG0     | R/W           | -                    | ACCEL_U                            | JI_FS_SEL           | -                                |                       | ACCE                 | L_ODR                  |                      |
| 22            | 34            | TEMP_CONFIG0      | R/W           | -                    |                                    | TEMP_FILT_BW        |                                  |                       | ·                    | -                      |                      |
| 23            | 35            | GYRO_CONFIG1      | R/W           |                      | ı                                  | -                   |                                  | ı                     |                      | GYRO_UI_FILT_BW        |                      |
| 24            | 36            | ACCEL_CONFIG1     | R/W           | -                    |                                    | ACCEL_UI_AVG        |                                  | -                     |                      | ACCEL_UI_FILT_BV       | 1                    |
| 25            | 37            | APEX_CONFIG0      | R/W           |                      | ı                                  | -<br>T              | T                                | DMP_POWE<br>R_SAVE_EN | DMP_INIT_E<br>N      | -                      | DMP_MEM_<br>RESET_EN |
| 26            | 38            | APEX_CONFIG1      | R/W           | -                    | SMD_ENABL<br>E                     | FF_ENABLE           | TILT_ENABLE                      | PED_ENABLE            | -                    | DMP                    | _ODR                 |
| 27            | 39            | WOM_CONFIG        | R/W           |                      | -                                  |                     | WOM_I                            | NT_DUR                | WOM_INT_<br>MODE     | WOM_MODE               | WOM_EN               |
| 28            | 40            | FIFO_CONFIG1      | R/W           |                      |                                    |                     | -                                |                       |                      | FIFO_MODE              | FIFO_BYPASS          |
| 29            | 41            | FIFO_CONFIG2      | R/W           | FIFO_WM[7:0]         |                                    |                     |                                  |                       |                      |                        |                      |
| 2A            | 42            | FIFO_CONFIG3      | R/W           | - FIFO_WM[11:8]      |                                    |                     |                                  |                       |                      |                        |                      |
| 2В            | 43            | INT_SOURCE0       | R/W           | ST_INT1_EN           | FSYNC_INT1_<br>EN                  | PLL_RDY_INT<br>1_EN | RESET_DONE<br>_INT1_EN           | DRDY_INT1_<br>EN      | FIFO_THS_IN<br>T1_EN | FIFO_FULL_I<br>NT1_EN  | AGC_RDY_IN<br>T1_EN  |
| 2C            | 44            | INT_SOURCE1       | R/W           | -                    | I3C_PROTOC<br>OL_ERROR_I<br>NT1_EN |                     | -                                | SMD_INT1_E<br>N       | WOM_Z_INT<br>1_EN    | WOM_Y_INT<br>1_EN      | WOM_X_INT<br>1_EN    |
| 2D            | 45            | INT_SOURCE3       | R/W           | ST_INT2_EN           | FSYNC_INT2_<br>EN                  | PLL_RDY_INT<br>2_EN | RESET_DONE<br>_INT2_EN           | DRDY_INT2_<br>EN      | FIFO_THS_IN<br>T2_EN | FIFO_FULL_I<br>NT2_EN  | AGC_RDY_IN<br>T2_EN  |
| 2E            | 46            | INT_SOURCE4       | R/W           | -                    | I3C_PROTOC<br>OL_ERROR_I<br>NT2_EN |                     | -                                | SMD_INT2_E<br>N       | WOM_Z_INT<br>2_EN    | WOM_Y_INT<br>2_EN      | WOM_X_INT<br>2_EN    |



| ADDR<br>(HEX) | ADDR<br>(DEC) | REGISTER NAME   | SERIAL<br>I/F | ВІТ7      | BIT6                                                          | BIT5             | BIT4                 | BIT3             | BIT2             | BIT1              | BIT0            |
|---------------|---------------|-----------------|---------------|-----------|---------------------------------------------------------------|------------------|----------------------|------------------|------------------|-------------------|-----------------|
| 2F            | 47            | FIFO_LOST_PKT0  | R             |           | FIFO_LOST_PKT_CNT[7:0]                                        |                  |                      |                  |                  |                   |                 |
| 30            | 48            | FIFO_LOST_PKT1  | R             |           |                                                               |                  | FIFO_LOST_P          | KT_CNT[15:8]     |                  |                   |                 |
| 31            | 49            | APEX_DATA0      | R             |           | STEP_CNT[7:0]                                                 |                  |                      |                  |                  |                   |                 |
| 32            | 50            | APEX_DATA1      | R             |           | STEP_CNT[15:8]                                                |                  |                      |                  |                  |                   |                 |
| 33            | 51            | APEX_DATA2      | R             |           | STEP_CADENCE                                                  |                  |                      |                  |                  |                   |                 |
| 34            | 52            | APEX_DATA3      | R             |           | - DMP_IDLE ACTIVIT                                            |                  |                      |                  |                  |                   | Y_CLASS         |
| 35            | 53            | INTF_CONFIG0    | R/W           | 1         | FIFO_COUNT FIFO_COUNT SENSOR_DAT - FORMAT _ ENDIAN A_ENDIAN - |                  |                      |                  |                  |                   |                 |
| 36            | 54            | INTF_CONFIG1    | R/W           |           | - I3C_SDR_EN I3C_DDR_EN CLKS                                  |                  |                      |                  | SEL              |                   |                 |
| 39            | 57            | INT_STATUS_DRDY | R/C           |           | -                                                             |                  |                      |                  | DATA_RDY_I<br>NT |                   |                 |
| ЗА            | 58            | INT_STATUS      | R/C           | ST_INT    | FSYNC_INT                                                     | PLL_RDY_INT      | RESET_DONE<br>_INT   | -                | FIFO_THS_IN<br>T | FIFO_FULL_I<br>NT | AGC_RDY_IN<br>T |
| 3B            | 59            | INT_STATUS2     | R/C           |           |                                                               | -                |                      | SMD_INT          | WOM_X_INT        | WOM_Y_INT         | WOM_Z_INT       |
| 3C            | 60            | INT_STATUS3     | R/C           |           | -                                                             | STEP_DET_IN<br>T | STEP_CNT_O<br>VF_INT | TILT_DET_IN<br>T | FF_DET_INT       | LOWG_DET_I<br>NT  | -               |
| 3D            | 61            | FIFO_COUNTH     | R             |           |                                                               |                  | FIFO_CO              | UNT[15:8]        |                  |                   |                 |
| 3E            | 62            | FIFO_COUNTL     | R             |           |                                                               |                  | FIFO_CC              | UNT[7:0]         |                  |                   |                 |
| 3F            | 63            | FIFO_DATA       | R             |           |                                                               |                  | FIFO                 | DATA             |                  |                   |                 |
| 75            | 117           | WHO_AM_I        | R             |           |                                                               |                  | WHO                  | DAMI             |                  |                   |                 |
| 79            | 121           | BLK_SEL_W       | R/W           |           |                                                               |                  | BLK_S                | SEL_W            |                  |                   |                 |
| 7A            | 122           | MADDR_W         | R/W           |           |                                                               |                  | MAD                  | DR_W             |                  |                   |                 |
| 7B            | 123           | M_W             | R/W           | M_W       |                                                               |                  |                      |                  |                  |                   |                 |
| 7C            | 124           | BLK_SEL_R       | R/W           | BLK_SEL_R |                                                               |                  |                      |                  |                  |                   |                 |
| 7D            | 125           | MADDR_R         | R/W           | _         | MADDR_R                                                       |                  |                      |                  |                  |                   |                 |
| 7E            | 126           | M_R             | R/W           |           |                                                               |                  | M                    | _R               | -                | -                 |                 |

### 14.2 USER BANK MREG1 REGISTER MAP

| ADDR<br>(HEX) | ADDR<br>(DEC) | REGISTER NAME  | SERIAL<br>I/F | BIT7               | BIT6                                                                        | BIT5                 | BIT4                             | BIT3                 | BIT2                   | BIT1                            | BIT0                              |  |
|---------------|---------------|----------------|---------------|--------------------|-----------------------------------------------------------------------------|----------------------|----------------------------------|----------------------|------------------------|---------------------------------|-----------------------------------|--|
| 00            | 00            | TMST_CONFIG1   | R/W           |                    | -                                                                           |                      | TMST_ON_S<br>REG_EN              | TMST_RES             | TMST_DELTA<br>_EN      | TMST_FSYNC<br>_EN               | TMST_EN                           |  |
| 01            | 01            | FIFO_CONFIG5   | R/W           |                    | -                                                                           | FIFO_WM_G<br>T_TH    | FIFO_RESUM<br>E_PARTIAL_R<br>D   | FIFO_HIRES_<br>EN    | FIFO_TMST_F<br>SYNC_EN | FIFO_GYRO_<br>EN                | FIFO_ACCEL_<br>EN                 |  |
| 02            | 02            | FIFO_CONFIG6   | R/W           |                    | -                                                                           |                      | FIFO_EMPTY<br>_INDICATOR_<br>DIS |                      | -                      |                                 | RCOSC_REQ_<br>ON_FIFO_TH<br>S_DIS |  |
| 03            | 03            | FSYNC_CONFIG   | R/W           | -                  |                                                                             | FSYNC_UI_SEL         |                                  |                      | -                      | FSYNC_UI_FL<br>AG_CLEAR_S<br>EL | FSYNC_POLA<br>RITY                |  |
| 04            | 04            | INT_CONFIG0    | R/W           |                    | - UI_DRDY_INT_CLEA                                                          |                      |                                  | FIFO_THS_            | INT_CLEAR              | FIFO_FULL_INT_CLEAR             |                                   |  |
| 05            | 05            | INT_CONFIG1    | R/W           | -                  | INT_TPULSE_ INT_ASYNC DURATION - RESET -                                    |                      |                                  |                      |                        |                                 |                                   |  |
| 06            | 06            | SENSOR_CONFIG3 | R/W           | -                  | APEX_DISABL                                                                 |                      |                                  |                      |                        |                                 |                                   |  |
| 13            | 19            | ST_CONFIG      | R/W           | -                  | ST_NUMBER<br>_SAMPLE                                                        |                      | ACCEL_ST_LIM                     |                      |                        | GYRO_ST_LIM                     |                                   |  |
| 14            | 20            | SELFTEST       | R/W           | GYRO_ST_EN         | ACCEL_ST_E<br>N                                                             |                      |                                  |                      | -                      |                                 |                                   |  |
| 23            | 35            | INTF_CONFIG6   | R/W           |                    | -                                                                           |                      | I3C_TIMEOU<br>T_EN               | I3C_IBI_BYTE<br>_EN  | I3C_IBI_EN             |                                 | -                                 |  |
| 25            | 37            | INTF_CONFIG10  | R/W           | ASYNCTIME0<br>_DIS |                                                                             |                      |                                  | -                    |                        |                                 |                                   |  |
| 28            | 40            | INTF_CONFIG7   | R/W           |                    | -                                                                           |                      |                                  | I3C_DDR_WR<br>_MODE  |                        | -                               |                                   |  |
| 2B            | 43            | OTP_CONFIG     | R/W           | -                  |                                                                             |                      |                                  | OTP_COPY_MODE -      |                        |                                 | -                                 |  |
| 2F            | 47            | INT_SOURCE6    | R/W           | FF_INT1_EN         | LOWG_INT1_ STEP_DET_IN STEP_CNT_O TILT_DET_IN TI_EN TI_EN TI_EN TI_EN TI_EN |                      |                                  |                      |                        |                                 |                                   |  |
| 30            | 48            | INT_SOURCE7    | R/W           | FF_INT2_EN         | LOWG_INT2_<br>EN                                                            | STEP_DET_IN<br>T2_EN | STEP_CNT_O<br>FL_INT2_EN         | TILT_DET_IN<br>T2_EN |                        | -                               |                                   |  |



| ADDR<br>(HEX) | ADDR<br>(DEC) | REGISTER NAME   | SERIAL<br>I/F | BIT7                              | BIT6                     | BIT5                | BIT4                    | BIT3                | BIT2                | BIT1                 | ВІТО                 |
|---------------|---------------|-----------------|---------------|-----------------------------------|--------------------------|---------------------|-------------------------|---------------------|---------------------|----------------------|----------------------|
| 31            | 49            | INT_SOURCE8     | R/W           |                                   |                          | FSYNC_IBI_E<br>N    | PLL_RDY_IBI_<br>EN      | UI_DRDY_IBI<br>_EN  | FIFO_THS_IBI<br>_EN | FIFO_FULL_IB<br>I_EN | AGC_RDY_IBI<br>_EN   |
| 32            | 50            | INT_SOURCE9     | R/W           | I3C_PROTOC<br>OL_ERROR_I<br>BI_EN | FF_IBI_EN                | LOWG_IBI_E<br>N     | SMD_IBI_EN              | WOM_Z_IBI_<br>EN    | WOM_Y_IBI_<br>EN    | WOM_X_IBI_<br>EN     | ST_DONE_IBI<br>_EN   |
| 33            | 51            | INT_SOURCE10    | R/W           |                                   |                          | STEP_DET_IB<br>I_EN | STEP_CNT_O<br>FL_IBI_EN | TILT_DET_IBI<br>_EN | -                   |                      |                      |
| 44            | 68            | APEX_CONFIG2    | R/W           |                                   | LOW_ENERGY               | _AMP_TH_SEL         |                         |                     | DMP_POWER_          | SAVE_TIME_SEL        |                      |
| 45            | 69            | APEX_CONFIG3    | R/W           |                                   | PED_AM                   | P_TH_SEL            |                         |                     | PED_STEP_0          | CNT_TH_SEL           |                      |
| 46            | 70            | APEX_CONFIG4    | R/W           | PE                                | D_STEP_DET_TH_S          | SEL                 | PE                      | D_SB_TIMER_TH_      | SEL                 | PED_HI_E             | N_TH_SEL             |
| 47            | 71            | APEX_CONFIG5    | R/W           | TILT_WAIT                         | _TIME_SEL                | LOW                 | /G_PEAK_TH_HYST         | _SEL                | HIGH                | HG_PEAK_TH_HYST      | _SEL                 |
| 48            | 72            | APEX_CONFIG9    | R/W           |                                   | FF_DEBOUNCE_DURATION_SEL |                     |                         |                     | MD_SENSITIVITY_S    | EL                   | SENSITIVITY_<br>MODE |
| 49            | 73            | APEX_CONFIG10   | R/W           | LOWG_PEAK_TH_SEL                  |                          |                     |                         |                     | L                   | OWG_TIME_TH_SE       | ïL                   |
| 4A            | 74            | APEX_CONFIG11   | R/W           | HIGHG_PEAK_TH_SEL                 |                          |                     |                         |                     | Н                   | IGHG_TIME_TH_SI      | L                    |
| 4B            | 75            | ACCEL_WOM_X_THR | R/W           | WOM_X_TH                          |                          |                     |                         |                     |                     |                      |                      |
| 4C            | 76            | ACCEL_WOM_Y_THR | R/W           |                                   |                          |                     | WOM                     | _Y_TH               |                     |                      |                      |
| 4D            | 77            | ACCEL_WOM_Z_THR | R/W           |                                   |                          |                     | WOM                     | _Z_TH               |                     |                      |                      |
| 4E            | 78            | OFFSET_USER0    | R/W           |                                   |                          |                     | GYRO_X_O                | FFUSER[7:0]         |                     |                      |                      |
| 4F            | 79            | OFFSET_USER1    | R/W           |                                   | GYRO_Y_OF                | FUSER[11:8]         |                         |                     | GYRO_X_OF           | FUSER[11:8]          |                      |
| 50            | 80            | OFFSET_USER2    | R/W           |                                   |                          |                     | GYRO_Y_O                | FFUSER[7:0]         |                     |                      |                      |
| 51            | 81            | OFFSET_USER3    | R/W           |                                   |                          |                     | GYRO_Z_O                | FFUSER[7:0]         |                     |                      |                      |
| 52            | 82            | OFFSET_USER4    | R/W           |                                   | ACCEL_X_OI               | FFUSER[11:8]        |                         |                     | GYRO_Z_OF           | FUSER[11:8]          |                      |
| 53            | 83            | OFFSET_USER5    | R/W           |                                   |                          |                     | ACCEL_X_O               | FFUSER[7:0]         |                     |                      |                      |
| 54            | 84            | OFFSET_USER6    | R/W           |                                   |                          |                     | ACCEL_Y_O               | FFUSER[7:0]         |                     |                      |                      |
| 55            | 85            | OFFSET_USER7    | R/W           |                                   | ACCEL_Z_OF               | FUSER[11:8]         |                         |                     | ACCEL_Y_OF          | FUSER[11:8]          |                      |
| 56            | 86            | OFFSET_USER8    | R/W           | ACCEL_Z_OFFUSER[7:0]              |                          |                     |                         |                     |                     |                      |                      |
| 63            | 99            | ST_STATUS1      | R             |                                   |                          | ACCEL_ST_P<br>ASS   | ACCEL_ST_D<br>ONE       | AZ_ST_PASS          | AY_ST_PASS          | AX_ST_PASS           | ē                    |
| 64            | 100           | ST_STATUS2      | R             | -                                 | ST_INCOMPL<br>ETE        | GYRO_ST_PA<br>SS    | GYRO_ST_DO<br>NE        | GZ_ST_PASS          | GY_ST_PASS          | GX_ST_PASS           | -                    |
| 66            | 102           | FDR_CONFIG      | R/W           | - FDR_SEL                         |                          |                     |                         |                     | _SEL                |                      |                      |
| 67            | 103           | APEX_CONFIG12   | R/W           |                                   | FF_MAX_DL                | JRATION_SEL         |                         |                     | FF_MIN_DU           | RATION_SEL           |                      |

#### 14.3 USER BANK MREG2 REGISTER MAP

| ADDR<br>(HEX) | ADDR<br>(DEC) | REGISTER NAME | SERIAL<br>I/F | ВІТ7 | ВІТ6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1             | віто |
|---------------|---------------|---------------|---------------|------|------|------|------|------|------|------------------|------|
| 06            | 06            | OTP_CTRL7     | R/W           |      | -    |      |      |      | -    | OTP_PWR_D<br>OWN | -    |

### 14.4 USER BANK MREG3 REGISTER MAP

| ADDR<br>(HEX) | ADDR<br>(DEC) | REGISTER NAME | SERIAL<br>I/F | BIT7       | віт6       | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------------|---------------|---------------|---------------|------------|------------|------|------|------|------|------|------|
| 00            | 00            | XA_ST_DATA    | R             | XA_ST_DATA |            |      |      |      |      |      |      |
| 01            | 01            | YA_ST_DATA    | R             |            | YA_ST_DATA |      |      |      |      |      |      |
| 02            | 02            | ZA_ST_DATA    | R             |            | ZA_ST_DATA |      |      |      |      |      |      |
| 03            | 03            | XG_ST_DATA    | R             |            | XG_ST_DATA |      |      |      |      |      |      |
| 04            | 04            | YG_ST_DATA    | R             | YG_ST_DATA |            |      |      |      |      |      |      |
| 05            | 05            | ZG_ST_DATA    | R             | ZG_ST_DATA |            |      |      |      |      |      |      |



Detailed register descriptions are provided in the sections that follow.

Register fields marked as Reserved must not be modified by the user. The Reset Value of the register can be used to determine the default value of reserved register fields, and unless otherwise noted this default value must be maintained even if the values of other register fields are modified by the user.

In the sections that follow, some register fields are described as can be changed on-the-fly even if sensor is on. These are the only register fields that can be changed on-the-fly even if sensor is on. Register fields not described as such must not be changed on-the-fly if sensor is on.



## 15 USER BANK O REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within user bank 0.

Note: The device powers up in sleep mode.

### 15.1 MCLK\_RDY

Name: MCLK\_RDY Address: 00 (00h) Serial IF: R

Reset value: 0x00 at power-up, changes to 0x01 after OTP load is completed

| BIT | NAME       | FUNCTION                                             |  |  |  |
|-----|------------|------------------------------------------------------|--|--|--|
| 7:4 | - Reserved |                                                      |  |  |  |
| 2   | MCLK RDY   | 0: Indicates internal clock is currently not running |  |  |  |
| 3   | IVICEN_RDY | 1: Indicates internal clock is currently running     |  |  |  |
| 2:0 | -          | Reserved                                             |  |  |  |

### 15.2 DEVICE\_CONFIG

Name: DEVICE\_CONFIG Address: 01 (01h) Serial IF: R/W Reset value: 0x04

| BIT | NAME         | FUNCTION                                                                                                                                                                                  |
|-----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:3 | -            | Reserved                                                                                                                                                                                  |
| 2   | SPI AP 4WIRE | 0: AP interface uses 3-wire SPI mode                                                                                                                                                      |
|     | SFI_AF_4WIKE | 1: AP interface uses 4-wire SPI mode                                                                                                                                                      |
| 1   | -            | Reserved                                                                                                                                                                                  |
| 0   | SPI_MODE     | SPI mode selection  0: Mode 0 and Mode 3  1: Mode 1 and Mode 2                                                                                                                            |
|     |              | If device is operating in non-SPI mode, user is not allowed to change the power-on default setting of this register. Change of this register setting will not take effect till AP_CS = 1. |



# 15.3 SIGNAL\_PATH\_RESET

Name: SIGNAL\_PATH\_RESET

Address: 02 (02h) Serial IF: R/W Reset value: 0x00

| BIT | NAME                         | FUNCTION                                                                                                                                                                                                                 |
|-----|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:5 | -                            | Reserved                                                                                                                                                                                                                 |
| 4   | SOFT_RESET_DEVICE_CON<br>FIG | O: Software reset not enabled 1: Software reset enabled                                                                                                                                                                  |
| 3   | -                            | Reserved                                                                                                                                                                                                                 |
| 2   | FIFO_FLUSH                   | When set to 1, FIFO will get flushed.  FIFO flush requires the following programming sequence:  Write FIFO_FLUSH =1  Wait for 1.5 µs  Read FIFO_FLUSH, it should now be 0  Host can only program this register bit to 1. |
| 1:0 | -                            | Reserved                                                                                                                                                                                                                 |



# 15.4 DRIVE\_CONFIG1

Name: DRIVE\_CONFIG1 Address: 03 (03h) Serial IF: R/W Reset value: 0x2B

| NAME              | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                 | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I3C_DDR_SLEW_RATE | Controls slew rate for output pin 14 when device is in I3C <sup>SM</sup> DDR protocol. While in I3C <sup>SM</sup> operation, the device automatically switches to use I3C_DDR_SLEW_RATE after receiving ENTHDR0 ccc command from the host. The device automatically switches back to I3C_SDR_SLEW_RATE after the host issues HDR_EXIT pattern.  000: MIN: 20 ns; TYP: 40 ns; MAX: 60 ns 001: MIN: 12 ns; TYP: 24 ns; MAX: 36 ns 010: MIN: 6 ns; TYP: 12 ns; MAX: 19 ns 011: MIN: 4 ns; TYP: 8 ns; MAX: 14 ns 100: MIN: 2 ns; TYP: 4 ns; MAX: 8 ns 101: MAX: 2 ns 110: Reserved  This register field should not be programmed in I3C/DDR mode. |
| I3C_SDR_SLEW_RATE | Controls slew rate for output pin 14 in I3C <sup>SM</sup> SDR protocol.  After device reset, I2C_SLEW_RATE is used by default. If I3C <sup>SM</sup> feature is enabled, the device automatically switches to use I3C_SDR_SLEW_RATE after receiving 0x7E+W message (an I3C <sup>SM</sup> broadcast message).  000: MIN: 20 ns; TYP: 40 ns; MAX: 60 ns 001: MIN: 12 ns; TYP: 24 ns; MAX: 36 ns 010: MIN: 6 ns; TYP: 12 ns; MAX: 19 ns 011: MIN: 4 ns; TYP: 8 ns; MAX: 14 ns 100: MIN: 2 ns; TYP: 4 ns; MAX: 8 ns 110: Reserved  This register field should not be programmed in I3C/DDR mode                                                    |
|                   | - I3C_DDR_SLEW_RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



# 15.5 DRIVE\_CONFIG2

Name: DRIVE\_CONFIG2 Address: 04 (04h) Serial IF: R/W Reset value: 0x0D

| BIT | NAME          | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 | -             | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5:3 | I2C_SLEW_RATE | Controls slew rate for output pin 14 in I <sup>2</sup> C mode.  After device reset, the I2C_SLEW_RATE is used by default. If the 1st write operation from host is an SPI transaction, the device automatically switches to SPI_SLEW_RATE. If I3C <sup>SM</sup> feature is enabled, the device automatically switches to I3C_SDR_SLEW_RATE after receiving 0x7E+W message (an I3C broadcast message).  000: MIN: 20 ns; TYP: 40 ns; MAX: 60 ns 001: MIN: 12 ns; TYP: 24 ns; MAX: 36 ns 010: MIN: 6 ns; TYP: 12 ns; MAX: 19 ns 011: MIN: 4 ns; TYP: 8 ns; MAX: 14 ns 100: MIN: 2 ns; TYP: 4 ns; MAX: 8 ns 101: MAX: 2 ns 110: Reserved  This register field should not be programmed in I3C/DDR mode |
| 2:0 | ALL_SLEW_RATE | Configure drive strength for all output pins in all modes (SPI3, SPI4, I <sup>2</sup> C, I3C <sup>SM</sup> ) excluding pin 14.  000: MIN: 20 ns; TYP: 40 ns; MAX: 60 ns 001: MIN: 12 ns; TYP: 24 ns; MAX: 36 ns 010: MIN: 6 ns; TYP: 12 ns; MAX: 19 ns 011: MIN: 4 ns; TYP: 8 ns; MAX: 14 ns 100: MIN: 2 ns; TYP: 4 ns; MAX: 8 ns 101: MAX: 2 ns 110: Reserved                                                                                                                                                                                                                                                                                                                                     |
|     |               | This register field should not be programmed in I3C/DDR mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



# 15.6 DRIVE\_CONFIG3

Name: DRIVE\_CONFIG3 Address: 05 (05h) Serial IF: R/W Reset value: 0x05

| BIT | NAME          | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:3 | -             | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2:0 | SPI_SLEW_RATE | Controls slew rate for output pin 14 in SPI 3-wire mode. In SPI 4-wire mode this register controls the slew rate of pin 1 as it is used as an output in SPI 4-wire mode only. After chip reset, the I2C_SLEW_RATE is used by default for pin 14 pin. If the 1st write operation from the host is an SPI3/4 transaction, the device automatically switches to SPI_SLEW_RATE.  000: MIN: 20 ns; TYP: 40 ns; MAX: 60 ns 001: MIN: 12 ns; TYP: 24 ns; MAX: 36 ns 010: MIN: 6 ns; TYP: 12 ns; MAX: 19 ns 011: MIN: 4 ns; TYP: 8 ns; MAX: 14 ns 100: MIN: 2 ns; TYP: 4 ns; MAX: 8 ns 101: MAX: 2 ns |
|     |               | 110: Reserved 111: Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |               | This register field should not be programmed in I3C/DDR mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



# 15.7 INT\_CONFIG

Name: INT\_CONFIG Address: 06 (06h) Serial IF: R/W Reset value: 0x00

|     | set value: 0x00    |                         |  |
|-----|--------------------|-------------------------|--|
| BIT | NAME               | FUNCTION                |  |
| 7:6 | -                  | Reserved                |  |
|     |                    | INT2 interrupt mode     |  |
| 5   | INT2_MODE          |                         |  |
| )   | INTZ_MODE          | 0: Pulsed mode          |  |
|     |                    | 1: Latched mode         |  |
|     |                    | INT2 drive circuit      |  |
| 4   | INT2_DRIVE_CIRCUIT |                         |  |
| 4   | INTZ_DRIVE_CIRCOTT | 0: Open drain           |  |
|     |                    | 1: Push pull            |  |
|     |                    | INT2 interrupt polarity |  |
| 3   | INT2_POLARITY      |                         |  |
|     | INTZ_FOLARITI      | 0: Active low           |  |
|     |                    | 1: Active high          |  |
|     |                    | INT1 interrupt mode     |  |
| 2   | INT1_MODE          |                         |  |
| _   |                    | 0: Pulsed mode          |  |
|     |                    | 1: Latched mode         |  |
|     |                    | INT1 drive circuit      |  |
| 1   | INT1_DRIVE_CIRCUIT |                         |  |
| 1 - | WIT_BRIVE_GIRCOIT  | 0: Open drain           |  |
|     |                    | 1: Push pull            |  |
|     |                    | INT1 interrupt polarity |  |
| 0   | INT1_POLARITY      |                         |  |
|     |                    | 0: Active low           |  |
|     |                    | 1: Active high          |  |

## **15.8 TEMP\_DATA1**

Name: TEMP\_DATA1 Address: 09 (09h) Serial IF: R Reset value: 0x80

| Neset value: 0x00 |                 |                                |
|-------------------|-----------------|--------------------------------|
| BIT               | NAME            | FUNCTION                       |
| 7:0               | TEMP_DATA[15:8] | Upper byte of temperature data |



#### **15.9 TEMP\_DATA0**

| Name   | Name: TEMP_DATA0  |                                |  |  |
|--------|-------------------|--------------------------------|--|--|
| Addre  | Address: 10 (OAh) |                                |  |  |
| Serial | Serial IF: R      |                                |  |  |
| Reset  | Reset value: 0x00 |                                |  |  |
| BIT    | BIT NAME FUNCTION |                                |  |  |
| 7:0    | TEMP_DATA[7:0]    | Lower byte of temperature data |  |  |

Temperature data value from the sensor data registers can be converted to degrees centigrade by using the following formula:

Temperature in Degrees Centigrade = (TEMP\_DATA / 128) + 25

Temperature data stored in FIFO can be an 8-bit or 16-bit quantity, depending on packet format. It can be converted to degrees centigrade by using the following formulas:

- 8-bit quantity: Temperature in Degrees Centigrade = (TEMP\_DATA / 2) + 25; where TEMP\_DATA refers to the 8 MSBs of the 16-bit word coming from the temperature sensor. In this mode the 8 LSBs are set to '0'.
- 16-bit quantity: Temperature in Degrees Centigrade = (TEMP DATA / 128) + 25

#### 15.10 ACCEL\_DATA\_X1

Name: ACCEL\_DATA\_X1
Address: 11 (0Bh)
Serial IF: R
Reset value: 0x80

BIT NAME FUNCTION

7:0 ACCEL\_DATA\_X[15:8] Upper byte of Accel X-axis data

#### 15.11 ACCEL\_DATA\_X0

Name: ACCEL\_DATA\_X0
Address: 12 (0Ch)
Serial IF: R
Reset value: 0x00

BIT NAME FUNCTION

7:0 ACCEL\_DATA\_X[7:0] Lower byte of Accel X-axis data

#### 15.12 ACCEL\_DATA\_Y1

Name: ACCEL\_DATA\_Y1
Address: 13 (0Dh)
Serial IF: R
Reset value: 0x80

BIT NAME FUNCTION

7:0 ACCEL\_DATA\_Y[15:8] Upper byte of Accel Y-axis data



#### 15.13 ACCEL\_DATA\_YO

 Name: ACCEL\_DATA\_Y0

 Address: 14 (0Eh)

 Serial IF: R

 Reset value: 0x00

 BIT
 NAME
 FUNCTION

 7:0
 ACCEL\_DATA\_Y[7:0]
 Lower byte of Accel Y-axis data

### **15.14 ACCEL DATA Z1**

 Name: ACCEL\_DATA\_Z1

 Address: 15 (0Fh)

 Serial IF: R

 Reset value: 0x80

 BIT
 NAME
 FUNCTION

 7:0
 ACCEL\_DATA\_Z[15:8]
 Upper byte of Accel Z-axis data

## 15.15 ACCEL\_DATA\_ZO

 Name: ACCEL\_DATA\_Z0

 Address: 16 (10h)

 Serial IF: R

 Reset value: 0x00

 BIT
 NAME

 FUNCTION

 7:0
 ACCEL\_DATA\_Z[7:0]

 Lower byte of Accel Z-axis data

#### **15.16 GYRO\_DATA\_X1**

Name: GYRO\_DATA\_X1
Address: 17 (11h)
Serial IF: R
Reset value: 0x80

BIT NAME FUNCTION

7:0 GYRO\_DATA\_X[15:8] Upper byte of Gyro X-axis data

#### 15.17 GYRO\_DATA\_X0

Name: GYRO\_DATA\_X0
Address: 18 (12h)
Serial IF: R
Reset value: 0x00

BIT NAME FUNCTION

7:0 GYRO DATA X[7:0] Lower byte of Gyro X-axis data



#### **15.18 GYRO\_DATA\_Y1**

 Name: GYRO\_DATA\_Y1

 Address: 19 (13h)

 Serial IF: R

 Reset value: 0x80

 BIT
 NAME
 FUNCTION

 7:0
 GYRO\_DATA\_Y[15:8]
 Upper byte of Gyro Y-axis data

### 15.19 GYRO\_DATA\_Y0

 Name: GYRO\_DATA\_Y0

 Address: 20 (14h)

 Serial IF: R

 Reset value: 0x00

 BIT
 NAME
 FUNCTION

 7:0
 GYRO\_DATA\_Y[7:0]
 Lower byte of Gyro Y-axis data

## 15.20 GYRO\_DATA\_Z1

 Name: GYRO\_DATA\_Z1

 Address: 21 (15h)

 Serial IF: R

 Reset value: 0x80

 BIT
 NAME

 FUNCTION

 7:0
 GYRO\_DATA\_Z[15:8]

 Upper byte of Gyro Z-axis data

#### 15.21 GYRO\_DATA\_Z0

 Name: GYRO\_DATA\_Z0

 Address: 22 (16h)

 Serial IF: R

 Reset value: 0x00

 BIT
 NAME

 7:0
 GYRO\_DATA\_Z[7:0]

 Lower byte of Gyro Z-axis data

#### 15.22 TMST\_FSYNCH

Name: TMST\_FSYNCH

Address: 23 (17h)

Serial IF: SYNCR

Reset value: 0x00

BIT NAME FUNCTION

Stores the upper byte of the time delta from the rising edge of FSYNC to the latest ODR until the UI Interface reads the FSYNC tag in the status

register



## 15.23 TMST\_FSYNCL

Name: TMST\_FSYNCL Address: 24 (18h) Serial IF: SYNCR Reset value: 0x00

| BIT | NAME                 | FUNCTION                                                                                                                                         |
|-----|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | TMST_FSYNC_DATA[7:0] | Stores the lower byte of the time delta from the rising edge of FSYNC to the latest ODR until the UI Interface reads the FSYNC tag in the status |
|     |                      | register                                                                                                                                         |

# **15.24 APEX\_DATA4**

Name: APEX\_DATA4 Address: 29 (1Dh) Serial IF: R Reset value: 0x00

| BIT | NAME        | FUNCTION                                                                                                                                                                                                           |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | FF_DUR[7:0] | Lower byte of Freefall Duration  The duration is given in number of samples and it can be converted to freefall distance in meters by applying the following formula:  FF_DISTANCE = 0.5*9.81*(FF_DUR*DMP_ODR_S)^2 |
|     |             | Note: DMP_ODR_S is the duration of DMP_ODR expressed in seconds.                                                                                                                                                   |

## **15.25 APEX\_DATA5**

Name: APEX\_DATA5 Address: 30 (1Eh) Serial IF: R Reset value: 0x00

|     | 1.0000 10.000 |                                                                                                                                                                                  |  |
|-----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BIT | NAME          | FUNCTION                                                                                                                                                                         |  |
|     |               | Upper byte of Freefall Duration                                                                                                                                                  |  |
| 7:0 | FF_DUR[15:8]  | The duration is given in number of samples and it can be converted to freefall distance in meters by applying the following formula: FF_DISTANCE = 0.5*9.81*(FF_DUR*DMP_ODR_S)^2 |  |
|     |               | Note: DMP_ODR_S is the duration of DMP_ODR expressed in seconds.                                                                                                                 |  |



# 15.26 PWR\_MGMT0

Name: PWR\_MGMT0 Address: 31 (1Fh) Serial IF: R/W Reset value: 0x00

|     | value: 0x00      | FUNCTION                                                                                    |
|-----|------------------|---------------------------------------------------------------------------------------------|
| BIT | NAME             | FUNCTION                                                                                    |
|     |                  | 0: Accelerometer LP mode uses Wake Up oscillator clock. This is the lowest                  |
| _   |                  | power consumption mode and it is the recommended setting.                                   |
| 7   | ACCEL_LP_CLK_SEL | 1: Accelerometer LP mode uses RC oscillator clock                                           |
|     |                  |                                                                                             |
|     |                  | This field can be changed on-the-fly even if accel sensor is on                             |
| 6:5 | -                | Reserved                                                                                    |
|     |                  | If this bit is set to 1, the RC oscillator is powered on even if Accel and Gyro             |
|     |                  | are powered off.                                                                            |
| 4   | IDLE             | Nominally this bit is set to 0, so when Accel and Gyro are powered off,                     |
| -   | 1022             | the chip will go to OFF state, since the RC oscillator will also be powered off             |
|     |                  |                                                                                             |
|     |                  | This field can be changed on-the-fly even if a sensor is on                                 |
|     |                  | 00: Turns gyroscope off                                                                     |
|     |                  | 01: Places gyroscope in Standby Mode                                                        |
|     |                  | 10: Reserved                                                                                |
|     |                  | 11: Places gyroscope in Low Noise (LN) Mode                                                 |
| 3:2 | GYRO_MODE        |                                                                                             |
|     | _                | Gyroscope needs to be kept ON for a minimum of 45ms. When transitioning                     |
|     |                  | from OFF to any of the other modes, do not issue any register writes for                    |
|     |                  | 200 μs.                                                                                     |
|     |                  | This field can be shanged on the fly even if gure conser is an                              |
|     |                  | This field can be changed on-the-fly even if gyro sensor is on  O0: Turns accelerometer off |
|     |                  | 01: Turns accelerometer off                                                                 |
|     |                  | 10: Places accelerometer in Low Power (LP) Mode                                             |
|     |                  | 11: Places accelerometer in Low Power (LP) Mode                                             |
|     |                  | 11. Flaces accelerofficter in Low Noise (Liv) Mode                                          |
|     |                  | When selecting LP Mode please refer to ACCEL_LP_CLK_SEL setting, bit[7] of                  |
|     |                  | this register.                                                                              |
|     |                  | tills register.                                                                             |
|     |                  | Before entering LP mode and during LP Mode the following combinations of                    |
| 1:0 | ACCEL_MODE       | ODR and averaging are not permitted:                                                        |
|     |                  | 1) ODR=1600 Hz or ODR=800 Hz: any averaging.                                                |
|     |                  | 2) ODR=400 Hz: averaging=16x, 32x or 64x.                                                   |
|     |                  | 3) ODR=200 Hz: averaging=64x.                                                               |
|     |                  | 5, 52 255 HE GEORGING 5 I/M                                                                 |
|     |                  | When transitioning from OFF to any of the other modes, do not issue any                     |
|     |                  | register writes for 200 $\mu$ s.                                                            |
|     |                  |                                                                                             |
|     |                  | This field can be changed on-the-fly even if accel sensor is on                             |
|     |                  | 1 can be changed on the hy event accerdance to on                                           |



# 15.27 GYRO\_CONFIG0

Name: GYRO\_CONFIG0 Address: 32 (20h) Serial IF: R/W Reset value: 0x06

| BIT | NAME            | FUNCTION                                                       |
|-----|-----------------|----------------------------------------------------------------|
| 7   | -               | Reserved                                                       |
|     |                 | Full scale select for gyroscope UI interface output            |
|     |                 | 00: ±2000 dps                                                  |
| 6:5 | GYRO_UI_FS_SEL  | 01: ±1000 dps                                                  |
| 0.5 | G1110_01_13_3EE | 10: ±500 dps                                                   |
|     |                 | 11: ±250 dps                                                   |
|     |                 | This field can be changed on-the-fly even if gyro sensor is on |
| 4   | -               | Reserved                                                       |
|     |                 | Gyroscope ODR selection for UI interface output                |
|     |                 |                                                                |
|     |                 | 0000: Reserved                                                 |
|     |                 | 0001: Reserved                                                 |
|     |                 | 0010: Reserved                                                 |
|     | GYRO_ODR        | 0011: Reserved                                                 |
|     |                 | 0100: Reserved                                                 |
|     |                 | 0101: 1.6k Hz                                                  |
|     |                 | 0110: 800 Hz                                                   |
| 3:0 |                 | 0111: 400 Hz                                                   |
|     |                 | 1000: 200 Hz                                                   |
|     |                 | 1001: 100 Hz                                                   |
|     |                 | 1010: 50 Hz                                                    |
|     |                 | 1011: 25 Hz                                                    |
|     |                 | 1100: 12.5 Hz                                                  |
|     |                 | 1101: Reserved                                                 |
|     |                 | 1110: Reserved                                                 |
|     |                 | 1111: Reserved                                                 |
|     |                 | This field can be changed on-the-fly even if gyro sensor is on |



# 15.28 ACCEL\_CONFIG0

Name: ACCEL\_CONFIGO Address: 33 (21h) Serial IF: R/W Reset value: 0x06

| BIT | NAME            | FUNCTION                                                        |
|-----|-----------------|-----------------------------------------------------------------|
| 7   | -               | Reserved                                                        |
|     |                 | Full scale select for accelerometer UI interface output         |
|     |                 | 00: ±16g                                                        |
| 6:5 | ACCEL_UI_FS_SEL | 01: ±8g                                                         |
| 0.5 | Acct_01_13_3tt  | 10: ±4g                                                         |
|     |                 | 11: ±2g                                                         |
|     |                 | This field can be changed on-the-fly even if accel sensor is on |
| 4   | -               | Reserved                                                        |
|     |                 | Accelerometer ODR selection for UI interface output             |
|     |                 | 0000: Reserved                                                  |
|     |                 | 0001: Reserved                                                  |
|     |                 | 0010: Reserved                                                  |
|     |                 | 0011: Reserved                                                  |
|     | ACCEL_ODR       | 0100: Reserved                                                  |
|     |                 | 0101: 1.6 kHz (LN mode)                                         |
|     |                 | 0110: 800 Hz (LN mode)                                          |
| 3:0 |                 | 0111: 400 Hz (LP or LN mode)                                    |
| 3.0 |                 | 1000: 200 Hz (LP or LN mode)                                    |
|     |                 | 1001: 100 Hz (LP or LN mode)                                    |
|     |                 | 1010: 50 Hz (LP or LN mode)                                     |
|     |                 | 1011: 25 Hz (LP or LN mode)                                     |
|     |                 | 1100: 12.5 Hz (LP or LN mode)                                   |
|     |                 | 1101: 6.25 Hz (LP mode)                                         |
|     |                 | 1110: 3.125 Hz (LP mode)                                        |
|     |                 | 1111: 1.5625 Hz (LP mode)                                       |
|     |                 | This field can be changed on-the-fly when accel sensor is on    |



# 15.29 TEMP\_CONFIG0

Name: TEMP\_CONFIGO Address: 34 (22h) Serial IF: R/W Reset value: 0x00

| BIT | NAME         | FUNCTION                                                                                                                                                                                                               |
|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | -            | Reserved                                                                                                                                                                                                               |
| 6:4 | TEMP_FILT_BW | Sets the bandwidth of the temperature signal DLPF  000: DLPF bypassed 001: DLPF BW = 180 Hz 010: DLPF BW = 72 Hz 011: DLPF BW = 34 Hz 100: DLPF BW = 16 Hz 101: DLPF BW = 8 Hz 110: DLPF BW = 4 Hz 111: DLPF BW = 4 Hz |
|     |              | This field can be changed on-the-fly even if sensor is on                                                                                                                                                              |
| 3:0 | -            | Reserved                                                                                                                                                                                                               |

# 15.30 GYRO\_CONFIG1

Name: GYRO\_CONFIG1 Address: 35 (23h) Serial IF: R/W Reset value: 0x31

|     | sset value. UASI |                                                                |
|-----|------------------|----------------------------------------------------------------|
| BIT | NAME             | FUNCTION                                                       |
| 7:3 | -                | Reserved                                                       |
|     | GYRO_UI_FILT_BW  | Selects GYRO UI low pass filter bandwidth                      |
|     |                  | 000: Low pass filter bypassed                                  |
|     |                  | 001: 180 Hz                                                    |
|     |                  | 010: 121 Hz                                                    |
| 2:0 |                  | 011: 73 Hz                                                     |
| 2.0 |                  | 100: 53 Hz                                                     |
|     |                  | 101: 34 Hz                                                     |
|     |                  | 110: 25 Hz                                                     |
|     |                  | 111: 16 Hz                                                     |
|     |                  |                                                                |
|     |                  | This field can be changed on-the-fly even if gyro sensor is on |



# 15.31 ACCEL\_CONFIG1

Name: ACCEL\_CONFIG1 Address: 36 (24h) Serial IF: R/W Reset value: 0x41

| BIT | NAME             | FUNCTION                                                                                              |
|-----|------------------|-------------------------------------------------------------------------------------------------------|
| 7   | -                | Reserved                                                                                              |
|     |                  | Selects averaging filter setting to create accelerometer output in accelerometer low power mode (LPM) |
|     |                  | 000: 2x average<br>001: 4x average                                                                    |
|     |                  | 010: 8x average                                                                                       |
| 6:4 | ACCEL UI AVG     | 011: 16x average                                                                                      |
| 0.4 | Accel_oi_Avd     | 100: 32x average                                                                                      |
|     |                  | 101: 64x average                                                                                      |
|     |                  | 110: 64x average                                                                                      |
|     |                  | 111: 64x average                                                                                      |
|     |                  |                                                                                                       |
|     |                  | This field cannot be changed when the accel sensor is in LPM                                          |
| 3   | -                | Reserved                                                                                              |
|     |                  | Selects ACCEL UI low pass filter bandwidth                                                            |
|     |                  |                                                                                                       |
|     |                  | 000: Low pass filter bypassed                                                                         |
|     |                  | 001: 180 Hz                                                                                           |
|     |                  | 010: 121 Hz                                                                                           |
| 2:0 | ACCEL_UI_FILT_BW | 011: 73 Hz                                                                                            |
|     | Accet_oi_HEI_bW  | 100: 53 Hz                                                                                            |
|     |                  | 101: 34 Hz                                                                                            |
|     |                  | 110: 25 Hz                                                                                            |
|     |                  | 111: 16 Hz                                                                                            |
|     |                  | This field can be changed on-the-fly even if accel sensor is on                                       |

## 15.32 APEX\_CONFIGO

Name: APEX\_CONFIGO Address: 37 (25h) Serial IF: R/W Reset value: 0x08

| reset | Neset value. 0x00 |                                                                                                                                                                                                                                                                    |  |
|-------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BIT   | NAME              | FUNCTION                                                                                                                                                                                                                                                           |  |
| 7:4   | -                 | Reserved                                                                                                                                                                                                                                                           |  |
| 3     | DMP_POWER_SAVE_EN | When this bit is set to 1, power saving is enabled for DMP algorithms                                                                                                                                                                                              |  |
| 2     | DMP_INIT_EN       | When this bit is set to 1, DMP runs DMP SW initialization procedure. Bit is reset by hardware when the procedure is finished. All other APEX features are ignored as long as DMP_INIT_EN is set.  This field can be changed on-the-fly even if accel sensor is on. |  |
| 1     | -                 | Reserved                                                                                                                                                                                                                                                           |  |
| 0     | DMP_MEM_RESET_EN  | When this bit is set to 1, it clears DMP SRAM for APEX operation or Self-test operation.                                                                                                                                                                           |  |



# 15.33 APEX\_CONFIG1

Name: APEX\_CONFIG1 Address: 38 (26h) Serial IF: R/W Reset value: 0x02

| BIT | NAME           | FUNCTION                                                                 |
|-----|----------------|--------------------------------------------------------------------------|
| 7   | -              | Reserved                                                                 |
|     |                | 0: Significant Motion Detection not enabled                              |
| 6   | SMD ENABLE     | 1: Significant Motion Detection enabled                                  |
|     | 3.015_E10.05EE |                                                                          |
|     |                | This field can be changed on-the-fly even if accel sensor is on          |
|     |                | 0: Freefall Detection not enabled                                        |
| 5   | FF ENABLE      | 1: Freefall Detection enabled                                            |
|     | _              | This field can be changed on-the-fly even if accel sensor is on          |
|     |                | 0: Tilt Detection not enabled                                            |
|     |                | 1: Tilt Detection not enabled                                            |
| 4   | TILT_ENABLE    | 1: The Detection enabled                                                 |
|     |                | This field can be changed on-the-fly even if accel sensor is on          |
|     |                | 0: Pedometer not enabled                                                 |
| 3   | PED ENABLE     | 1: Pedometer enabled                                                     |
| 3   | FLD_LINABLE    |                                                                          |
|     |                | This field can be changed on-the-fly even if accel sensor is on          |
| 2   | -              | Reserved                                                                 |
|     |                | 00: 25 Hz                                                                |
|     |                | 01: 400 Hz                                                               |
|     |                | 10: 50 Hz                                                                |
|     |                | 11: 100 Hz                                                               |
| 1:0 | DMP_ODR        |                                                                          |
|     |                | The ACCEL_ODR field must be configured to an ODR equal or greater to the |
|     |                | DMP_ODR field, for correct device operation.                             |
|     |                | This field can be changed on-the-fly even if accel sensor is on          |



# 15.34 WOM\_CONFIG

Name: WOM\_CONFIG Address: 39 (27h) Serial IF: R/W Reset value: 0x00

| BIT | NAME         | FUNCTION                                                                       |
|-----|--------------|--------------------------------------------------------------------------------|
| 7:5 | -            | Reserved                                                                       |
|     |              | Selects Wake on Motion interrupt assertion from among the following            |
|     |              | options                                                                        |
|     |              |                                                                                |
|     |              | 00: WoM interrupt asserted at first overthreshold event                        |
| 4:3 | WOM INT DUR  | 01: WoM interrupt asserted at second overthreshold event                       |
| 4.5 | WOW_INT_BOX  | 10: WoM interrupt asserted at third overthreshold event                        |
|     |              | 11: WoM interrupt asserted at fourth overthreshold event                       |
|     |              |                                                                                |
|     |              | This field can be changed on-the-fly even if accel sensor is on, but it cannot |
|     |              | be changed if WOM_EN is already enabled                                        |
|     |              | 0: Set WoM interrupt on the OR of all enabled accelerometer thresholds         |
|     |              | 1: Set WoM interrupt on the AND of all enabled accelerometer thresholds        |
| 2   | WOM_INT_MODE |                                                                                |
|     |              | This field can be changed on-the-fly even if accel sensor is on, but it cannot |
|     |              | be changed if WOM_EN is already enabled                                        |
|     |              | 0: Initial sample is stored. Future samples are compared to initial sample     |
|     |              | 1: Compare current sample to previous sample                                   |
| 1   | WOM_MODE     |                                                                                |
|     | _            | This field can be changed on-the-fly even if accel sensor is on, but it cannot |
|     |              | be changed if WOM_EN is already enabled                                        |
|     |              | 0: WOM disabled                                                                |
|     | MONA EN      | 1: WOM enabled                                                                 |
| 0   | WOM_EN       |                                                                                |
|     |              | This field can be changed on-the-fly even if accel sensor is on                |

# 15.35 FIFO\_CONFIG1

Name: FIFO\_CONFIG1 Address: 40 (28h) Serial IF: R/W Reset value: 0x01

| 110000 | Neset value: 0x01 |                                                                   |  |
|--------|-------------------|-------------------------------------------------------------------|--|
| BIT    | NAME              | FUNCTION                                                          |  |
| 7:2    | -                 | Reserved                                                          |  |
|        |                   | FIFO mode control                                                 |  |
| 1      | FIFO_MODE         | 0: Stream-to-FIFO Mode<br>1: STOP-on-FULL Mode                    |  |
| 0      | FIFO_BYPASS       | FIFO bypass control  0: FIFO is not bypassed  1: FIFO is bypassed |  |



# 15.36 FIFO\_CONFIG2

Name: FIFO\_CONFIG2 Address: 41 (29h) Serial IF: R/W Reset value: 0x00

| BIT | NAME         | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | FIFO_WM[7:0] | Lower bits of FIFO watermark. Generate interrupt when the FIFO reaches or exceeds FIFO_WM size in bytes or records according to FIFO_COUNT_FORMAT setting. FIFO_WM_EN must be zero before writing this register. Interrupt only fires once. This register should be set to non-zero value, before choosing this interrupt source.  This field should be changed when FIFO is empty to avoid spurious interrupts. |

## 15.37 FIFO\_CONFIG3

Name: FIFO\_CONFIG3 Address: 42 (2Ah) Serial IF: R/W Reset value: 0x00

| BIT | NAME          | FUNCTION                                                                                                                                                                                                                                                                                                                          |
|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4 | -             | Reserved                                                                                                                                                                                                                                                                                                                          |
| 3:0 | FIFO_WM[11:8] | Upper bits of FIFO watermark. Generate interrupt when the FIFO reaches or exceeds FIFO_WM size in bytes or records according to FIFO_COUNT_FORMAT setting. FIFO_WM_EN must be zero before writing this register. Interrupt only fires once. This register should be set to non-zero value, before choosing this interrupt source. |
|     |               | This field should be changed when FIFO is empty to avoid spurious interrupts.                                                                                                                                                                                                                                                     |



# **15.38 INT\_SOURCE0**

Name: INT\_SOURCEO Address: 43 (2Bh) Serial IF: R/W Reset value: 0x10

| BIT | NAME               | FUNCTION                                                                                                                                                                         |
|-----|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | ST_INT1_EN         | 0: Self-Test Done interrupt not routed to INT1 1: Self-Test Done interrupt routed to INT1                                                                                        |
| 6   | FSYNC_INT1_EN      | 0: FSYNC interrupt not routed to INT1 1: FSYNC interrupt routed to INT1                                                                                                          |
| 5   | PLL_RDY_INT1_EN    | 0: PLL ready interrupt not routed to INT1 1: PLL ready interrupt routed to INT1                                                                                                  |
| 4   | RESET_DONE_INT1_EN | 0: Reset done interrupt not routed to INT1 1: Reset done interrupt routed to INT1                                                                                                |
| 3   | DRDY_INT1_EN       | 0: Data Ready interrupt not routed to INT1 1: Data Ready interrupt routed to INT1                                                                                                |
| 2   | FIFO_THS_INT1_EN   | 0: FIFO threshold interrupt not routed to INT1 1: FIFO threshold interrupt routed to INT1                                                                                        |
| 1   | FIFO_FULL_INT1_EN  | 0: FIFO full interrupt not routed to INT1 1: FIFO full interrupt routed to INT1 To avoid FIFO FULL interrupts while reading FIFO, this bit should be disabled while reading FIFO |
| 0   | AGC_RDY_INT1_EN    | 0: UI AGC ready interrupt not routed to INT1 1: UI AGC ready interrupt routed to INT1                                                                                            |

# **15.39 INT\_SOURCE1**

Name: INT\_SOURCE1 Address: 44 (2Ch) Serial IF: R/W Reset value: 0x00

|     | teset talue. Oxoo     |                                                                  |  |
|-----|-----------------------|------------------------------------------------------------------|--|
| BIT | NAME                  | FUNCTION                                                         |  |
| 7   | -                     | Reserved                                                         |  |
| 6   | I3C_PROTOCOL_ERROR_IN | 0: I3C <sup>SM</sup> protocol error interrupt not routed to INT1 |  |
| 0   | T1_EN                 | 1: I3C <sup>SM</sup> protocol error interrupt routed to INT1     |  |
| 5:4 | -                     | Reserved                                                         |  |
| 3   | SMD_INT1_EN           | 0: SMD interrupt not routed to INT1                              |  |
| 3   |                       | 1: SMD interrupt routed to INT1                                  |  |
| 2   | WOM_Z_INT1_EN         | 0: Z-axis WOM interrupt not routed to INT1                       |  |
|     |                       | 1: Z-axis WOM interrupt routed to INT1                           |  |
| 1   | WOM_Y_INT1_EN         | 0: Y-axis WOM interrupt not routed to INT1                       |  |
| 1   |                       | 1: Y-axis WOM interrupt routed to INT1                           |  |
| 0   | WOM_X_INT1_EN         | 0: X-axis WOM interrupt not routed to INT1                       |  |
|     |                       | 1: X-axis WOM interrupt routed to INT1                           |  |



# 15.40 INT\_SOURCE3

Name: INT\_SOURCE3 Address: 45 (2Dh) Serial IF: R/W Reset value: 0x00

| BIT | NAME               | FUNCTION                                                                                  |
|-----|--------------------|-------------------------------------------------------------------------------------------|
| 7   | ST_INT2_EN         | 0: Self-Test Done interrupt not routed to INT2 1: Self-Test Done interrupt routed to INT2 |
| 6   | FSYNC_INT2_EN      | 0: FSYNC interrupt not routed to INT2<br>1: FSYNC interrupt routed to INT2                |
| 5   | PLL_RDY_INT2_EN    | 0: PLL ready interrupt not routed to INT2 1: PLL ready interrupt routed to INT2           |
| 4   | RESET_DONE_INT2_EN | 0: Reset done interrupt not routed to INT2 1: Reset done interrupt routed to INT2         |
| 3   | DRDY_INT2_EN       | 0: Data Ready interrupt not routed to INT2 1: Data Ready interrupt routed to INT2         |
| 2   | FIFO_THS_INT2_EN   | 0: FIFO threshold interrupt not routed to INT2 1: FIFO threshold interrupt routed to INT2 |
| 1   | FIFO_FULL_INT2_EN  | 0: FIFO full interrupt not routed to INT2 1: FIFO full interrupt routed to INT2           |
| 0   | AGC_RDY_INT2_EN    | 0: AGC ready interrupt not routed to INT2<br>1: AGC ready interrupt routed to INT2        |

# **15.41 INT\_SOURCE4**

Name: INT\_SOURCE4 Address: 46 (2Eh) Serial IF: R/W Reset value: 0x00

| ****** | teset value. Oxoo     |                                                                  |  |
|--------|-----------------------|------------------------------------------------------------------|--|
| BIT    | NAME                  | FUNCTION                                                         |  |
| 7      | -                     | Reserved                                                         |  |
| 6      | I3C_PROTOCOL_ERROR_IN | 0: I3C <sup>SM</sup> protocol error interrupt not routed to INT2 |  |
| 0      | T2_EN                 | 1: I3C <sup>SM</sup> protocol error interrupt routed to INT2     |  |
| 5:4    | -                     | Reserved                                                         |  |
| 3      | SMD_INT2_EN           | 0: SMD interrupt not routed to INT2                              |  |
| 3      |                       | 1: SMD interrupt routed to INT2                                  |  |
| 2      | WOM_Z_INT2_EN         | 0: Z-axis WOM interrupt not routed to INT2                       |  |
|        |                       | 1: Z-axis WOM interrupt routed to INT2                           |  |
| 1      | WOM_Y_INT2_EN         | 0: Y-axis WOM interrupt not routed to INT2                       |  |
|        |                       | 1: Y-axis WOM interrupt routed to INT2                           |  |
| 0      | WOM_X_INT2_EN         | 0: X-axis WOM interrupt not routed to INT2                       |  |
|        |                       | 1: X-axis WOM interrupt routed to INT2                           |  |



#### 15.42 FIFO\_LOST\_PKT0

 Name: FIFO\_LOST\_PKT0

 Address: 47 (2Fh)

 Serial IF: R

 Reset value: 0x00

 BIT
 NAME
 FUNCTION

 7:0
 FIFO\_LOST\_PKT\_CNT[7:0]
 Low byte, number of packets lost in the FIFO

#### 15.43 FIFO LOST PKT1

Name: FIFO\_LOST\_PKT1
Address: 48 (30h)
Serial IF: R
Reset value: 0x00

BIT NAME FUNCTION
7:0 FIFO\_LOST\_PKT\_CNT[15:8] High byte, number of packets lost in the FIFO

#### **15.44 APEX DATA0**

Name: APEX\_DATA0
Address: 49 (31h)
Serial IF: SYNCR
Reset value: 0x00

BIT NAME FUNCTION

7:0 STEP\_CNT[7:0] Pedometer Output: Lower byte of Step Count measured by pedometer

#### 15.45 APEX\_DATA1

Name: APEX\_DATA1
Address: 50 (32h)
Serial IF: SYNCR
Reset value: 0x00

BIT NAME FUNCTION

7:0 STEP\_CNT[15:8] Pedometer Output: Upper byte of Step Count measured by pedometer

#### **15.46 APEX\_DATA2**

Name: APEX\_DATA2
Address: 51 (33h)
Serial IF: R
Reset value: 0x00
BIT NAME FUNCTION

| BIT | NAME         | FUNCTION                                                                                                                                                                        |
|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | STEP_CADENCE | Pedometer Output: Walk/run cadency in number of samples. Format is u6.2. e.g. At 50 Hz ODR and 2 Hz walk frequency, the cadency is 25 samples and the register will output 100. |



# **15.47 APEX\_DATA3**

Name: APEX\_DATA3 Address: 52 (34h) Serial IF: R Reset value: 0x04

| BIT | NAME           | FUNCTION                            |
|-----|----------------|-------------------------------------|
| 7:3 | -              | Reserved                            |
| 2   | DMD IDLE       | 0: Indicates DMP is running         |
|     | DMP_IDLE       | 1: Indicates DMP is idle            |
|     | ACTIVITY_CLASS | Pedometer Output: Detected activity |
|     |                |                                     |
| 1:0 |                | 00: Unknown                         |
| 1.0 |                | 01: Walk                            |
|     |                | 10: Run                             |
|     |                | 11: Reserved                        |

# 15.48 INTF\_CONFIG0

Name: INTF\_CONFIGO Address: 53 (35h) Serial IF: R/W Reset value: 0x30

| BIT | NAME               | FUNCTION                                                                                                                                                                                                       |
|-----|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | -                  | Reserved                                                                                                                                                                                                       |
| 6   | FIFO_COUNT_FORMAT  | 0: FIFO count is reported in bytes 1: FIFO count is reported in records (1 record = 16 bytes for header + gyro + accel + temp sensor data + time stamp, or 8 bytes for header + gyro/accel + temp sensor data) |
| 5   | FIFO_COUNT_ENDIAN  | This bit applies to FIFO Count and Lost Packet Count  0: Reported in Little Endian format  1: Reported in Big Endian format                                                                                    |
| 4   | SENSOR_DATA_ENDIAN | O: Sensor data is reported in Little Endian format     Sensor data is reported in Big Endian format                                                                                                            |
| 3:0 | -                  | Reserved                                                                                                                                                                                                       |



# 15.49 INTF\_CONFIG1

Name: INTF\_CONFIG1 Address: 54 (36h) Serial IF: R/W Reset value: 0x4D

| BIT | NAME       | FUNCTION                                                                                                                                                       |
|-----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4 | -          | Reserved                                                                                                                                                       |
| 3   | I3C_SDR_EN | 0: I3C <sup>SM</sup> SDR mode not enabled 1: I3C <sup>SM</sup> SDR mode enabled  Device will be in pure I <sup>2</sup> C mode if {I3C SDR EN, I3C DDR EN} = 00 |
| 2   | I3C_DDR_EN | 0: I3C <sup>SM</sup> DDR mode not enabled 1: I3C <sup>SM</sup> DDR mode enabled This bit will not take effect unless I3C_SDR_EN = 1.                           |
| 1:0 | CLKSEL     | 00: Always select internal RC oscillator 01: Select PLL when available, else select RC oscillator (default) 10: Reserved 11: Disable all clocks                |

# 15.50 INT\_STATUS\_DRDY

Name: INT\_STATUS\_DRDY

Address: 57 (39h) Serial IF: R/C Reset value: 0x00

| BIT | NAME         | FUNCTION                                                                   |
|-----|--------------|----------------------------------------------------------------------------|
| 7:1 | -            | Reserved                                                                   |
| 0   | DATA_RDY_INT | This bit automatically sets to 1 when a Data Ready interrupt is generated. |
| 0   |              | The bit clears to 0 after the register has been read.                      |



# **15.51 INT\_STATUS**

Name: INT\_STATUS Address: 58 (3Ah) Serial IF: R/C Reset value: 0x10

| BIT | NAME           | FUNCTION                                                                                                                                 |
|-----|----------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | ST_INT         | This bit automatically sets to 1 when a Self Test done interrupt is generated. The bit clears to 0 after the register has been read.     |
| 6   | FSYNC_INT      | This bit automatically sets to 1 when an FSYNC interrupt is generated. The bit clears to 0 after the register has been read.             |
| 5   | PLL_RDY_INT    | This bit automatically sets to 1 when a PLL Ready interrupt is generated. The bit clears to 0 after the register has been read.          |
| 4   | RESET_DONE_INT | This bit automatically sets to 1 when software reset is complete. The bit clears to 0 after the register has been read.                  |
| 3   | -              | Reserved                                                                                                                                 |
| 2   | FIFO_THS_INT   | This bit automatically sets to 1 when the FIFO buffer reaches the threshold value. The bit clears to 0 after the register has been read. |
| 1   | FIFO_FULL_INT  | This bit automatically sets to 1 when the FIFO buffer is full. The bit clears to 0 after the register has been read.                     |
| 0   | AGC_RDY_INT    | This bit automatically sets to 1 when an AGC Ready interrupt is generated. The bit clears to 0 after the register has been read.         |

# **15.52 INT\_STATUS2**

Name: INT\_STATUS2 Address: 59 (3Bh) Serial IF: R/C Reset value: 0x00

| BIT | NAME      | FUNCTION                                               |
|-----|-----------|--------------------------------------------------------|
| 7:4 | -         | Reserved                                               |
| 3   | SMD_INT   | Significant Motion Detection Interrupt, clears on read |
| 2   | WOM_X_INT | Wake on Motion Interrupt on X-axis, clears on read     |
| 1   | WOM_Y_INT | Wake on Motion Interrupt on Y-axis, clears on read     |
| 0   | WOM_Z_INT | Wake on Motion Interrupt on Z-axis, clears on read     |

## **15.53 INT\_STATUS3**

Name: INT\_STATUS3 Address: 60 (3Ch) Serial IF: R/C Reset value: 0x00

| BIT | NAME             | FUNCTION                                      |
|-----|------------------|-----------------------------------------------|
| 7:6 | -                | Reserved                                      |
| 5   | STEP_DET_INT     | Step Detection Interrupt, clears on read      |
| 4   | STEP_CNT_OVF_INT | Step Count Overflow Interrupt, clears on read |
| 3   | TILT_DET_INT     | Tilt Detection Interrupt, clears on read      |
| 2   | FF_DET_INT       | Freefall Interrupt, clears on read            |
| 1   | LOWG_DET_INT     | LowG Interrupt, clears on read                |
| 0   | -                | Reserved                                      |



## 15.54 FIFO\_COUNTH

| Name   | Name: FIFO_COUNTH |                                                                                                                                                                                                          |  |
|--------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Addre  | Address: 61 (3Dh) |                                                                                                                                                                                                          |  |
| Serial | Serial IF: R      |                                                                                                                                                                                                          |  |
| Reset  | Reset value: 0x00 |                                                                                                                                                                                                          |  |
| BIT    | NAME              | FUNCTION                                                                                                                                                                                                 |  |
| 7:0    | FIFO_COUNT[15:8]  | High Bits, count indicates the number of records or bytes available in FIFO according to FIFO_COUNT_FORMAT setting.  Note: Must read FIFO_COUNTL to latch new data for both FIFO_COUNTH and FIFO_COUNTL. |  |

### 15.55 FIFO\_COUNTL

| Name   | Name: FIFO_COUNTL |                                                                                                                                                                                            |  |
|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Addre  | Address: 62 (3Eh) |                                                                                                                                                                                            |  |
| Serial | Serial IF: R      |                                                                                                                                                                                            |  |
| Reset  | Reset value: 0x00 |                                                                                                                                                                                            |  |
| BIT    | NAME              | FUNCTION                                                                                                                                                                                   |  |
| 7:0    | FIFO_COUNT[7:0]   | Low Bits, count indicates the number of records or bytes available in FIFO according to FIFO_COUNT_REC setting.  Reading this byte latches the data for both FIFO_COUNTH, and FIFO_COUNTL. |  |

### 15.56 FIFO\_DATA

| Name              | Name: FIFO_DATA   |                |  |  |
|-------------------|-------------------|----------------|--|--|
| Addre             | Address: 63 (3Fh) |                |  |  |
| Serial            | Serial IF: R      |                |  |  |
| Reset             | Reset value: 0xFF |                |  |  |
| BIT NAME FUNCTION |                   |                |  |  |
| 7:0               | FIFO_DATA         | FIFO data port |  |  |

### 15.57 WHO\_AM\_I

| Na | Name: WHO_AM_I     |        |                                                             |
|----|--------------------|--------|-------------------------------------------------------------|
| Ad | Address: 117 (75h) |        |                                                             |
| Se | Serial IF: R       |        |                                                             |
| Re | Reset value: 0x67  |        |                                                             |
| В  | IT                 | NAME   | FUNCTION                                                    |
| 7  | :0                 | WHOAMI | Register to indicate to user which device is being accessed |

#### **Description:**

This register is used to verify the identity of the device. The contents of WHOAMI is an 8-bit device ID. The default value of the register is 0x67. This is different from the I<sup>2</sup>C address of the device as seen on the slave I<sup>2</sup>C controller by the applications processor.



## 15.58 BLK\_SEL\_W

Name: BLK\_SEL\_W Address: 121 (79h) Serial IF: R/W Reset value: 0x00

| BIT | NAME      | FUNCTION                                                                               |
|-----|-----------|----------------------------------------------------------------------------------------|
| 7:0 | BLK_SEL_W | Block address for accessing MREG1 or MREG2 register space for register write operation |

## 15.59 MADDR\_W

Name: MADDR\_W Address: 122 (7Ah) Serial IF: R/W Reset value: 0x00

| BIT | NAME    | FUNCTION                                                                                                                        |
|-----|---------|---------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | MADDR_W | To write to a register in MREG1 or MREG2 space, set this register field to the address of the register in MREG1 or MREG2 space. |

### 15.60 M\_W

Name: M\_W Address: 123 (7Bh) Serial IF: R/W Reset value: 0x00

| neset value, oxog |      |                                                                                            |
|-------------------|------|--------------------------------------------------------------------------------------------|
| BIT               | NAME | FUNCTION                                                                                   |
| 7:0               | M_W  | To write a value to a register in MREG1 or MREG2 space, that value must be written to M W. |

### 15.61 BLK\_SEL\_R

Name: BLK\_SEL\_R Address: 124 (7Ch) Serial IF: R/W Reset value: 0x00

| BIT | NAME      | FUNCTION                                                               |
|-----|-----------|------------------------------------------------------------------------|
| 7:0 | BLK SEL R | Block address for accessing MREG1 or MREG2 register space for register |
| 7.0 | BLK_SLL_K | read operation                                                         |



# **15.62 MADDR\_R**

Name: MADDR\_R Address: 125 (7Dh) Serial IF: R/W Reset value: 0x00

| BIT | NAME    | FUNCTION                                                                                                                                 |
|-----|---------|------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | MADDR_R | To read the value of a register in MREG1 or MREG2 space, set this register field to the address of the register in MREG1 or MREG2 space. |

## 15.63 M\_R

Name: M\_R Address: 126 (7Eh) Serial IF: R/W Reset value: 0x00

| BIT | NAME  | FUNCTION                                                               |
|-----|-------|------------------------------------------------------------------------|
| 7:0 | M R   | To read the value of a register in MREG1 or MREG2 space, that value is |
|     | INI_K | accessed from M_R.                                                     |



# 16 USER BANK MREG1 REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within user bank MREG1. The procedure for accessing MREG1 registers is described in section 12.

# 16.1 TMST\_CONFIG1

Name: TMST\_CONFIG1 Address: 00 (00h) Serial IF: R/W Reset value: 0x02

|     | Neset value. UNUZ |                                                                                                                                                     |
|-----|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| BIT | NAME              | FUNCTION                                                                                                                                            |
| 7:5 | -                 | Reserved                                                                                                                                            |
| 4   | TMST_ON_SREG_EN   | 0: TMST_FSYNCH and TMST_FSYNCL registers report the delta time from FSYNC to next ODR                                                               |
|     |                   | 1: TMST_FSYNCH and TMST_FSYNCL registers report: absolute timestamp                                                                                 |
|     |                   | when FSYNC even is not present; delta time from FSYNC to next ODR when                                                                              |
|     |                   | FSYNC event is present                                                                                                                              |
| 3   | TMST_RES          | Time Stamp resolution: When set to 0 (default), time stamp resolution is 1                                                                          |
|     |                   | μs. When set to 1, resolution is 16 μs                                                                                                              |
| 2   | TMST_DELTA_EN     | Time Stamp delta enable: When set to 1, the time stamp field contains the                                                                           |
|     |                   | measurement of time since the last occurrence of ODR.                                                                                               |
| 1   | TMST_FSYNC_EN     | Time Stamp register FSYNC enable (default). When set to 1, the contents of the Timestamp feature of FSYNC is enabled. The user also needs to select |
|     |                   | FIFO TMST FSYNC EN in order to propagate the timestamp value to the                                                                                 |
|     |                   | FIFO.                                                                                                                                               |
| 0   | TMST_EN           | 0: Time Stamp register disable                                                                                                                      |
|     |                   | 1: Time Stamp register enable                                                                                                                       |



## 16.2 FIFO\_CONFIG5

Name: FIFO\_CONFIG5 Address: 01 (01h) Serial IF: R/W Reset value: 0x20

| BIT | NAME                   | FUNCTION                                                                                                                                                                                                                                                                                                                                                    |
|-----|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 | -                      | Reserved                                                                                                                                                                                                                                                                                                                                                    |
| 5   | FIFO_WM_GT_TH          | 0: Trigger FIFO Watermark interrupt when FIFO_COUNT = FIFO_WM 1: Trigger FIFO Watermark interrupt on every ODR if FIFO_COUNT = FIFO_WM                                                                                                                                                                                                                      |
| 4   | FIFO_RESUME_PARTIAL_RD | O: FIFO is read in packets. If a partial packet is read, then the subsequent read will start from the beginning of the un-read packet.  1: FIFO can be read partially. When read is resumed, FIFO bytes will continue from last read point. The SW driver is responsible for cascading previous read and present read and for maintaining frame boundaries. |
| 3   | FIFO_HIRES_EN          | 0: 20-bit resolution not enabled in the FIFO packet readout 1: 20-bit resolution enabled in the FIFO packet readout                                                                                                                                                                                                                                         |
| 2   | FIFO_TMST_FSYNC_EN     | 0: TMST in the FIFO cannot be replaced by the FSYNC timestamp 1: Allows the TMST in the FIFO to be replaced by the FSYNC timestamp                                                                                                                                                                                                                          |
| 1   | FIFO_GYRO_EN           | 0: Gyro packets not enabled to go to FIFO 1: Enables Gyro packets to go to FIFO                                                                                                                                                                                                                                                                             |
| 0   | FIFO_ACCEL_EN          | 0: Accel packets not enabled to go to FIFO 1: Enables Accel packets to go to FIFO                                                                                                                                                                                                                                                                           |



## 16.3 FIFO\_CONFIG6

Name: FIFO\_CONFIG6 Address: 02 (02h) Serial IF: R/W Reset value: 0x00

|     | eset value: uxuu          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-----|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BIT | NAME                      | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 7:5 | -                         | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 4   | FIFO_EMPTY_INDICATOR_DIS  | 0: 0xFF is sent out as FIFO data when FIFO is empty.  1: The last FIFO data is sent out when FIFO is empty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3:1 | -                         | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0   | RCOSC_REQ_ON_FIFO_THS_DIS | O: When the FIFO is operating in ALP+WUOSC mode and the watermark (WM) interrupt is enabled, the FIFO wakes up the system oscillator (RCOSC) as soon as the watermark level is reached. The system oscillator remains enabled until a Host FIFO read operation happens. This will temporarily cause a small increase in the power consumption due to the enabling of the system oscillator.  1: The system oscillator is not automatically woken-up by the FIFO/INT when the WM interrupt is triggered. The side effect is that the host can receive invalid packets until the system oscillator is off after it has been turned on for other reasons not related to a WM interrupt.  The recommended setting of this bit is '1' before entering and during all power modes excluding ALP with WUOSC. This is in order to avoid having to do a FIFO access/flush before entering sleep mode. During ALP with WUOSC it is recommended to set this bit to '0'. It is recommended to reset this bit back to '1' before exiting ALP+WUOSC with a wait time of 1 ODR or higher. |  |



## 16.4 FSYNC\_CONFIG

Name: FSYNC\_CONFIG Address: 03 (03h) Serial IF: R/W Reset value: 0x00

| BIT | NAME                    | FUNCTION                                                                    |
|-----|-------------------------|-----------------------------------------------------------------------------|
| 7   | -                       | Reserved                                                                    |
|     |                         | 000: Do not tag FSYNC flag                                                  |
|     |                         | 001: Tag FSYNC flag to TEMP_OUT LSB                                         |
|     |                         | 010: Tag FSYNC flag to GYRO_XOUT LSB                                        |
| 6:4 | FSYNC UI SEL            | 011: Tag FSYNC flag to GYRO_YOUT LSB                                        |
| 0.4 | FSTINC_UI_SEL           | 100: Tag FSYNC flag to GYRO_ZOUT LSB                                        |
|     |                         | 101: Tag FSYNC flag to ACCEL_XOUT LSB                                       |
|     |                         | 110: Tag FSYNC flag to ACCEL_YOUT LSB                                       |
|     |                         | 111: Tag FSYNC flag to ACCEL_ZOUT LSB                                       |
| 3:2 | -                       | Reserved                                                                    |
|     | FSYNC_UI_FLAG_CLEAR_SEL | 0: FSYNC flag is cleared when UI sensor register is updated                 |
| 1   |                         | 1: FSYNC flag is cleared when UI interface reads the sensor register LSB of |
|     |                         | FSYNC tagged axis                                                           |
| 0   | FSYNC_POLARITY          | 0: Start from Rising edge of FSYNC pulse to measure FSYNC interval          |
| U   |                         | 1: Start from Falling edge of FSYNC pulse to measure FSYNC interval         |

### 16.5 INT\_CONFIGO

Name: INT\_CONFIGO Address: 04 (04h) Serial IF: R/W Reset value: 0x00

| Reset value: 0x00 |                     |                                                          |
|-------------------|---------------------|----------------------------------------------------------|
| BIT               | NAME                | FUNCTION                                                 |
| 7:6               | -                   | Reserved                                                 |
|                   |                     | Data Ready Interrupt Clear Option (latched mode)         |
|                   |                     |                                                          |
| 5:4               | III DDDV INT CLEAD  | 00: Clear on Status Bit Read                             |
| 3.4               | UI_DRDY_INT_CLEAR   | 01: Clear on Status Bit Read                             |
|                   |                     | 10: Clear on Sensor Register Read                        |
|                   |                     | 11: Clear on Status Bit Read OR on Sensor Register read  |
|                   | FIFO_THS_INT_CLEAR  | FIFO Threshold Interrupt Clear Option (latched mode)     |
|                   |                     |                                                          |
| 3:2               |                     | 00: Clear on Status Bit Read                             |
| 3.2               |                     | 01: Clear on Status Bit Read                             |
|                   |                     | 10: Clear on FIFO data 1Byte Read                        |
|                   |                     | 11: Clear on Status Bit Read OR on FIFO data 1 byte read |
|                   |                     | FIFO Full Interrupt Clear Option (latched mode)          |
|                   | FIFO_FULL_INT_CLEAR |                                                          |
| 1:0               |                     | 00: Clear on Status Bit Read                             |
| 1.0               |                     | 01: Clear on Status Bit Read                             |
|                   |                     | 10: Clear on FIFO data 1Byte Read                        |
|                   |                     | 11: Clear on Status Bit Read OR on FIFO data 1 byte read |



### 16.6 INT\_CONFIG1

Name: INT\_CONFIG1 Address: 05 (05h) Serial IF: R/W Reset value: 0x10

| BIT | NAME                | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | -                   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6   | INT_TPULSE_DURATION | O: Interrupt pulse duration  1: Interrupt pulse duration is 8 μs                                                                                                                                                                                                                                                                                                                                                                 |
| 5   | -                   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4   | INT_ASYNC_RESET     | 0: The interrupt pulse is reset as soon as the interrupt status register is read if the pulse is still active.  1: The interrupt pulse remains high for the intended duration independent of when the interrupt status register is read. This is the default and recommended setting. In this case, when in ALP with the WUOSC clock, the clearing of the interrupt status register requires up to one ODR period after reading. |
| 3:0 | -                   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                         |

### 16.7 SENSOR\_CONFIG3

Name: SENSOR\_CONFIG3

Address: 06 (06h) Serial IF: R/W Reset value: 0x00

| BIT | NAME         | FUNCTION                                                    |
|-----|--------------|-------------------------------------------------------------|
| 7   | -            | Reserved                                                    |
| 6   | APEX_DISABLE | 1: Disable APEX features to extend FIFO size to 2.25 Kbytes |
| 5:0 | -            | Reserved                                                    |



## 16.8 ST\_CONFIG

Name: ST\_CONFIG Address: 19 (13h) Serial IF: R/W Reset value: 0x00

|     | te value. Oxoo   |                                                                                                                        |
|-----|------------------|------------------------------------------------------------------------------------------------------------------------|
| BIT | NAME             | FUNCTION                                                                                                               |
| 7   | -                | Reserved                                                                                                               |
| 6   | ST_NUMBER_SAMPLE | This bit selects the number of sensor samples that should be used to process self-test                                 |
| 0   | 31_NOWBER_SAWFEE | 0.16 camples                                                                                                           |
|     |                  | 0: 16 samples                                                                                                          |
|     |                  | 1: 200 samples                                                                                                         |
| F.2 | ACCEL CT LIM     | These bits control the tolerated ratio between self-test processed values and reference (fused) ones for accelerometer |
| 5:3 | ACCEL_ST_LIM     |                                                                                                                        |
|     |                  | 000 to 110: Reserved                                                                                                   |
|     |                  | 111: 50%                                                                                                               |
| 2.0 | CVDQ CT LIM      | These bits control the tolerated ratio between self-test processed values and reference (fused) ones for gyroscope     |
| 2:0 | GYRO_ST_LIM      |                                                                                                                        |
|     |                  | 000 to 110: Reserved                                                                                                   |
|     |                  | 111: 50%                                                                                                               |



#### 16.9 SELFTEST

Name: SELFTEST Address: 20 (14h) Serial IF: R/W Reset value: 0x00

| BIT | NAME        | FUNCTION                                                                                                                                                                                                                                        |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | GYRO_ST_EN  | 1: Enable gyro self-test operation. Host needs to program this bit to 0 to move device out of self-test mode. If host programs this bit to 0 while ST_BUSY = 1 and ST_DONE = 0, the current running self-test operation is terminated by host.  |
| 6   | ACCEL_ST_EN | 1: Enable accel self-test operation. Host needs to program this bit to 0 to move device out of self-test mode. If host programs this bit to 0 while ST_BUSY = 1 and ST_DONE = 0, the current running self-test operation is terminated by host. |
| 5:0 | -           | Reserved                                                                                                                                                                                                                                        |

### 16.10 INTF\_CONFIG6

Name: INTF\_CONFIG6 Address: 35 (23h) Serial IF: R/W Reset value: 0x7C

| BIT | NAME            | FUNCTION                                                                                                   |
|-----|-----------------|------------------------------------------------------------------------------------------------------------|
| 7:5 | -               | Reserved                                                                                                   |
| 4   | I3C_TIMEOUT_EN  | 0: I2C/I3C <sup>SM</sup> timeout function not enabled<br>1: I2C/I3C <sup>SM</sup> timeout function enabled |
| 3   | I3C_IBI_BYTE_EN | 0: I3C <sup>SM</sup> IBI payload function not enabled<br>1: I3C <sup>SM</sup> IBI payload function enabled |
| 2   | I3C_IBI_EN      | 0: I3C <sup>SM</sup> IBI function not enabled<br>1: I3C <sup>SM</sup> IBI function enabled                 |
| 1:0 | -               | Reserved                                                                                                   |

### 16.11 INTF\_CONFIG10

Name: INTF\_CONFIG10 Address: 37 (25h) Serial IF: R/W Reset value: 0x00

| BIT | NAME           | FUNCTION                                                                                                                                  |
|-----|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | ASYNCTIMEO_DIS | 0: I3C <sup>SM</sup> Asynchronous Mode 0 timing control is enabled<br>1: I3C <sup>SM</sup> Asynchronous Mode 0 timing control is disabled |
| 6:0 | -              | Reserved                                                                                                                                  |



# 16.12 INTF\_CONFIG7

Name: INTF\_CONFIG7 Address: 40 (28h) Serial IF: R/W Reset value: 0x0C

| ricset | Sec value. Over |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIT    | NAME            | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7:4    | -               | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3      | I3C_DDR_WR_MODE | This bit controls how I3C <sup>SM</sup> slave treats the 1st 2-byte data from host in a DDR write operation.  O: (a) The 1st-byte in DDR-WR configures the starting register address where the write operation should occur. (b) The 2nd-byte in DDR-WR is ignored and dropped. (c) The 3rd-byte in DDR-WR will be written into the register with address specified by the 1st-byte. Or, the next DDR-RD will be starting from the address specified by the 1st-byte of previous DDR-WR. |
|        |                 | 1: (a) The 1st-byte in DDR-WR configures the starting register address where the write operation should occur. (b) The 2nd-byte in DDR-WR will be written into the register with address specified by the 1st-byte.                                                                                                                                                                                                                                                                      |
| 2:0    | -               | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### 16.13 OTP\_CONFIG

Name: OTP\_CONFIG Address: 43 (2Bh) Serial IF: R/W Reset value: 0x06

| BIT | NAME          | FUNCTION                                                  |
|-----|---------------|-----------------------------------------------------------|
| 7:4 | -             | Reserved                                                  |
|     | OTP_COPY_MODE | 00: Reserved                                              |
| 3:2 |               | 01: Enable copying OTP block to SRAM                      |
| 3.2 |               | 10: Reserved                                              |
|     |               | 11: Enable copying self-test data from OTP memory to SRAM |
| 1:0 | -             | Reserved                                                  |



# 16.14 INT\_SOURCE6

Name: INT\_SOURCE6 Address: 47 (2Fh) Serial IF: R/W Reset value: 0x00

| BIT | NAME                 | FUNCTION                                            |
|-----|----------------------|-----------------------------------------------------|
| 7   | FF_INT1_EN           | 0: Freefall interrupt not routed to INT1            |
|     |                      | 1: Freefall interrupt routed to INT1                |
| 6   | LOWG_INT1_EN         | 0: Low-g interrupt not routed to INT1               |
| 0   |                      | 1: Low-g interrupt routed to INT1                   |
| 5   | STEP_DET_INT1_EN     | 0: Step detect interrupt not routed to INT1         |
| )   |                      | 1: Step detect interrupt routed to INT1             |
| 4   | STEP_CNT_OFL_INT1_EN | 0: Step count overflow interrupt not routed to INT1 |
| 4   |                      | 1: Step count overflow interrupt routed to INT1     |
| 2   | TILT_DET_INT1_EN     | 0: Tilt detect interrupt not routed to INT1         |
| 3   |                      | 1: Tile detect interrupt routed to INT1             |
| 2:0 | -                    | Reserved                                            |

### **16.15 INT\_SOURCE7**

Name: INT\_SOURCE7 Address: 48 (30h) Serial IF: R/W Reset value: 0x00

| BIT | NAME                 | FUNCTION                                            |
|-----|----------------------|-----------------------------------------------------|
| 7   | FF_INT2_EN           | 0: Freefall interrupt not routed to INT2            |
| _ ′ |                      | 1: Freefall interrupt routed to INT2                |
| 6   | LOWG_INT2_EN         | 0: Low-g interrupt not routed to INT2               |
|     |                      | 1: Low-g interrupt routed to INT2                   |
| 5   | STEP_DET_INT2_EN     | 0: Step detect interrupt not routed to INT2         |
| 5   |                      | 1: Step detect interrupt routed to INT2             |
| 4   | STEP_CNT_OFL_INT2_EN | 0: Step count overflow interrupt not routed to INT2 |
| 4   |                      | 1: Step count overflow interrupt routed to INT2     |
| 3   | TILT_DET_INT2_EN     | 0: Tilt detect interrupt not routed to INT2         |
| 3   |                      | 1: Tile detect interrupt routed to INT2             |
| 2:0 | -                    | Reserved                                            |



### **16.16 INT\_SOURCE8**

Name: INT\_SOURCE8 Address: 49 (31h) Serial IF: R/W Reset value: 0x00

| BIT | NAME             | FUNCTION                                      |
|-----|------------------|-----------------------------------------------|
| 7:6 | -                | Reserved                                      |
| 5   | FSYNC_IBI_EN     | 0: FSYNC interrupt not routed to IBI          |
| 3   |                  | 1: FSYNC interrupt routed to IBI              |
| 4   | PLL_RDY_IBI_EN   | 0: PLL ready interrupt not routed to IBI      |
| 4   |                  | 1: PLL ready interrupt routed to IBI          |
| 3   | UI_DRDY_IBI_EN   | 0: UI data ready interrupt not routed to IBI  |
| 3   |                  | 1: UI data ready interrupt routed to IBI      |
| 2   | FIFO_THS_IBI_EN  | 0: FIFO threshold interrupt not routed to IBI |
|     |                  | 1: FIFO threshold interrupt routed to IBI     |
| 1   | FIFO_FULL_IBI_EN | 0: FIFO full interrupt not routed to IBI      |
|     |                  | 1: FIFO full interrupt routed to IBI          |
| 0   | ACC BDV IBI EN   | 0: AGC ready interrupt not routed to IBI      |
| "   | AGC_RDY_IBI_EN   | 1: AGC ready interrupt routed to IBI          |

### **16.17 INT\_SOURCE9**

Name: INT\_SOURCE9 Address: 50 (32h) Serial IF: R/W Reset value: 0x00

| BIT | NAME                   | FUNCTION                                                                                                                     |
|-----|------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 7   | I3C_PROTOCOL_ERROR_IBI | 0: I3C <sup>SM</sup> protocol error interrupt not routed to IBI  1: I3C <sup>SM</sup> protocol error interrupt routed to IBI |
| 6   | FF_IBI_EN              | 0: Freefall interrupt not routed to IBI  1: Freefall interrupt routed to IBI                                                 |
| 5   | LOWG_IBI_EN            | 0: Low-g interrupt not routed to IBI 1: Low-g interrupt routed to IBI                                                        |
| 4   | SMD_IBI_EN             | 0: SMD interrupt not routed to IBI 1: SMD interrupt routed to IBI                                                            |
| 3   | WOM_Z_IBI_EN           | 0: Z-axis WOM interrupt not routed to IBI 1: Z-axis WOM interrupt routed to IBI                                              |
| 2   | WOM_Y_IBI_EN           | 0: Y-axis WOM interrupt not routed to IBI 1: Y-axis WOM interrupt routed to IBI                                              |
| 1   | WOM_X_IBI_EN           | 0: X-axis WOM interrupt not routed to IBI 1: X-axis WOM interrupt routed to IBI                                              |
| 0   | ST_DONE_IBI_EN         | Self-test done interrupt not routed to IBI     Self-test done interrupt routed to IBI                                        |



## **16.18 INT\_SOURCE10**

Name: INT\_SOURCE10 Address: 51 (33h) Serial IF: R/W Reset value: 0x00

| BIT | NAME                | FUNCTION                                           |
|-----|---------------------|----------------------------------------------------|
| 7:6 | -                   | Reserved                                           |
| _   | STEP_DET_IBI_EN     | 0: Step detect interrupt not routed to IBI         |
| 3   |                     | 1: Step detect interrupt routed to IBI             |
| 4   | STEP_CNT_OFL_IBI_EN | 0: Step count overflow interrupt not routed to IBI |
|     |                     | 1: Step count overflow interrupt routed to IBI     |
| 3   | TILT_DET_IBI_EN     | 0: Tilt detect interrupt not routed to IBI         |
|     |                     | 1: Tile detect interrupt routed to IBI             |
| 2:0 | -                   | Reserved                                           |



## 16.19 APEX\_CONFIG2

Name: APEX\_CONFIG2 Address: 68 (44h) Serial IF: R/W Reset value: 0xA2

| BIT | value: 0xA2<br>NAME         | FUNCTION                                                                                                                                                                                                                                                                                                                            |
|-----|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                             | Threshold to select a valid step. Used to increase step detection for slow                                                                                                                                                                                                                                                          |
| 7:4 | LOW_ENERGY_AMP_TH_S<br>EL   | walk use case.  0000: 30 mg 0001: 35 mg 0010: 40 mg 0011: 45 mg 0100: 50 mg 0101: 55 mg 0110: 60 mg 0111: 65 mg 1000: 70 mg 1001: 75 mg 1010: 80 mg (default) 1011: 85 mg 1100: 90 mg 1110: 100 mg 1111: 105 mg                                                                                                                     |
| 3:0 | DMP_POWER_SAVE_TIME<br>_SEL | Duration of the period while the DMP stays awake after receiving a WOM event.  0000: 0 seconds 0001: 4 seconds 0010: 8 seconds (default) 0011: 12 seconds 0100: 16 seconds 0110: 24 seconds 0110: 24 seconds 1010: 36 seconds 1001: 36 seconds 1011: 44 seconds 1011: 44 seconds 1100: 48 seconds 1101: 52 seconds 1111: 60 seconds |



## 16.20 APEX\_CONFIG3

Name: APEX\_CONFIG3 Address: 69 (45h) Serial IF: R/W Reset value: 0x85

| Reset | set value: 0x85     |                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIT   | NAME                | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7:4   | PED_AMP_TH_SEL      | Threshold of step detection sensitivity.  Low values increase detection sensitivity: reduce miss-detection. High values reduce detection sensitivity: reduce false-positive.  0000: 30 mg 0001: 34 mg 0010: 38 mg 0011: 42 mg 0100: 46 mg 0101: 50 mg 0111: 58 mg 1000: 62 mg (default) 1001: 66 mg 1010: 70 mg 1011: 74 mg 1100: 78 mg 1101: 82 mg 1110: 86 mg                                                           |
| 3:0   | PED_STEP_CNT_TH_SEL | Minimum number of steps that must be detected before step count is incremented.  Low values reduce latency but increase false positives. High values increase step count accuracy but increase latency.  0000: 0 steps 0001: 1 step 0010: 2 steps 0011: 3 steps 0100: 4 steps 0101: 5 steps (default) 0110: 6 steps 0111: 7 steps 1000: 8 steps 1001: 9 steps 1010: 10 steps 1110: 13 steps 1110: 14 steps 1111: 15 steps |



## 16.21 APEX\_CONFIG4

Name: APEX\_CONFIG4 Address: 70 (46h) Serial IF: R/W Reset value: 0x51

| BIT | NAME                | FUNCTION                                                                 |
|-----|---------------------|--------------------------------------------------------------------------|
|     |                     | Minimum number of steps that must be detected before step event is       |
|     |                     | signaled.                                                                |
|     |                     |                                                                          |
|     |                     | Low values reduce latency but increase false positives.                  |
|     |                     | High values increase step event validity but increase latency.           |
|     |                     | 000: 0 - t                                                               |
| 7:5 | PED_STEP_DET_TH_SEL | 000: 0 steps                                                             |
|     |                     | 001: 1 step                                                              |
|     |                     | 010: 2 steps (default) 011: 3 steps                                      |
|     |                     | 100: 4 steps                                                             |
|     |                     | 100. 4 steps                                                             |
|     |                     | 110: 6 steps                                                             |
|     |                     | 111: 7 steps                                                             |
|     |                     | Duration before algorithm considers that user has stopped taking steps.  |
|     |                     | bullation before digoritim considers that user has stopped taking steps. |
|     | PED_SB_TIMER_TH_SEL | 000: 50 samples                                                          |
|     |                     | 001: 75 sample                                                           |
|     |                     | 010: 100 samples                                                         |
| 4:2 |                     | 011: 125 samples                                                         |
|     |                     | 100: 150 samples (default)                                               |
|     |                     | 101: 175 samples                                                         |
|     |                     | 110: 200 samples                                                         |
|     |                     | 111: 225 samples                                                         |
|     |                     | Threshold to classify acceleration signal as motion not due to steps.    |
|     |                     |                                                                          |
|     |                     | High values improve vibration rejection.                                 |
|     |                     | Low values improve detection.                                            |
| 1:0 | PED_HI_EN_TH_SEL    | 00 07 00                                                                 |
|     |                     | 00: 87.89 mg                                                             |
|     |                     | 01: 104.49 mg (default)                                                  |
|     |                     | 10: 132.81 mg                                                            |
|     |                     | 11: 155.27 mg                                                            |



## 16.22 APEX\_CONFIG5

Name: APEX\_CONFIG5 Address: 71 (47h) Serial IF: R/W Reset value: 0x80

| BIT | NAME                   | FUNCTION                                                                       |
|-----|------------------------|--------------------------------------------------------------------------------|
|     |                        | Minimum duration for which the device should be tilted before signaling event. |
| 7:6 | TILT_WAIT_TIME_SEL     | 00: 0s                                                                         |
|     |                        | 01: 2s                                                                         |
|     |                        | 10: 4s (default)                                                               |
|     |                        | 11: 6s                                                                         |
|     |                        | Hysteresis value added to the low-g threshold after exceeding it.              |
|     |                        | 000: 31 mg (default)                                                           |
|     |                        | 001: 63 mg                                                                     |
| 5:3 | LOWG_PEAK_TH_HYST_SEL  | 010: 94 mg                                                                     |
| 5.3 |                        | 011: 125 mg                                                                    |
|     |                        | 100: 156 mg                                                                    |
|     |                        | 101: 188 mg                                                                    |
|     |                        | 110: 219 mg                                                                    |
|     |                        | 111: 250 mg                                                                    |
|     |                        | Hysteresis value subtracted from the high-g threshold after exceeding it.      |
|     |                        | 000: 31 mg (default)                                                           |
|     |                        | 001: 63 mg                                                                     |
| 2:0 | HIGHG_PEAK_TH_HYST_SEL | 010: 94 mg                                                                     |
| 2.0 |                        | 011: 125 mg                                                                    |
|     |                        | 100: 156 mg                                                                    |
|     |                        | 101: 188 mg                                                                    |
|     |                        | 110: 219 mg                                                                    |
|     |                        | 111: 250 mg                                                                    |



## 16.23 APEX\_CONFIG9

Name: APEX\_CONFIG9 Address: 72 (48h) Serial IF: R/W Reset value: 0x00

| BIT | NAME                         | FUNCTION                                                                                                                                                                                                                                                                                                     |
|-----|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                              | Period after a freefall is signaled during which a new freefall will not be                                                                                                                                                                                                                                  |
| 7:4 | FF_DEBOUNCE_DURATION_<br>SEL | Deriod after a freefall is signaled during which a new freefall will not be detected. Prevents false detection due to bounces.  0000: 0 ms 0001: 1250 ms 0010: 1375 ms 0011: 1500 ms 0100: 1625 ms 0110: 1875 ms 0111: 2000 ms                                                                               |
|     |                              | 1000: 2125 ms (default)<br>1001: 2250 ms<br>1010: 2375 ms<br>1011: 2500 ms<br>1100: 2625 ms<br>1101: 2750 ms<br>1110: 2875 ms<br>1111: 3000 ms                                                                                                                                                               |
| 3:1 | SMD_SENSITIVITY_SEL          | Parameter to tune SMD algorithm robustness to rejection, ranging from 0 to 4 (values higher than 4 are reserved).  Low values increase detection rate but increase false positives.  High values reduce false positives but reduce detection rate (especially for transport use cases).  Default value is 0. |
| 0   | SENSITIVITY_MODE             | Pedometer sensitivity mode 0: Normal (default) 1: Slow walk Slow walk mode improves slow walk detection (<1 Hz) but the number of false positives may increase.                                                                                                                                              |



## 16.24 APEX\_CONFIG10

Name: APEX\_CONFIG10 Address: 73 (49h) Serial IF: R/W Reset value: 0x00

| BIT   | value: 0x00<br>NAME | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 511 | IVAIVIL             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7:3   | LOWG_PEAK_TH_SEL    | Threshold for accel values below which low-g state is detected.  00000: 31 mg (default) 00001: 63 mg 00010: 94 mg 00010: 156 mg 00100: 156 mg 00101: 125 mg 00100: 219 mg 00110: 229 mg 00100: 281 mg 01001: 313 mg 01010: 344 mg 01011: 375 mg 01100: 406 mg 01101: 438 mg 01110: 469 mg 01111: 500 mg 10000: 531 mg 10001: 563 mg 10010: 656 mg 10101: 625 mg 10100: 656 mg 10110: 719 mg 10110: 719 mg 10110: 719 mg 11100: 781 mg 11001: 813 mg 11001: 813 mg 11101: 844 mg 11011: 875 mg 11100: 906 mg 11101: 938 mg 11110: 938 mg 11110: 938 mg 11110: 969 mg |
|       |                     | 11111: 1000 mg  Number of samples required to enter low-g state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2:0   | LOWG_TIME_TH_SEL    | 000: 1 sample (default) 001: 2 samples 010: 3 samples 011: 4 samples 100: 5 samples 101: 6 samples 111: 8 samples                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



## 16.25 APEX\_CONFIG11

Name: APEX\_CONFIG11 Address: 74 (4Ah) Serial IF: R/W Reset value: 0x00

| BIT | value: 0x00<br>NAME | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7:3 | HIGHG_PEAK_TH_SEL   | Threshold for accel values above which high-g state is detected.  00000: 250 mg (default) 00001: 500 mg 00010: 750 mg 00011: 1000 mg 00100: 1250 mg 00101: 1500 mg 00110: 1750 mg 00111: 2000 mg 00100: 2250 mg 01001: 2500 mg 01001: 2500 mg 01001: 3500 mg 01101: 3000 mg 01101: 3500 mg 01101: 3750 mg 01101: 3750 mg 01101: 4500 mg 10000: 4250 mg 10010: 4550 mg 10011: 5000 mg 10110: 5750 mg 10110: 5750 mg 10110: 5750 mg 10111: 6000 mg 11000: 6250 mg 11011: 7500 mg 11101: 7750 mg 11101: 7750 mg |
|     |                     | 11111: 8000 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2:0 | HIGHG_TIME_TH_SEL   | Number of samples required to enter high-g state.  000: 1 sample (default) 001: 2 samples 010: 3 samples 011: 4 samples 100: 5 samples 101: 6 samples 111: 8 samples                                                                                                                                                                                                                                                                                                                                         |



### 16.26 ACCEL\_WOM\_X\_THR

Name: ACCEL\_WOM\_X\_THR

Address: 75 (4Bh) Serial IF: R/W Reset value: 0x00

| BIT | NAME     | FUNCTION                                                                                                                                                                                   |
|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | WOM_X_TH | Threshold value for the Wake on Motion Interrupt for X-axis accelerometer WoM thresholds are expressed in fixed "mg" independent of the selected Range [0g: 1g]; Resolution 1g/256=~3.9 mg |

#### 16.27 ACCEL\_WOM\_Y\_THR

Name: ACCEL\_WOM\_Y\_THR

Address: 76 (4Ch) Serial IF: R/W Reset value: 0x00

| BIT | NAME     | FUNCTION                                                                                                                                                                                   |
|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | WOM_Y_TH | Threshold value for the Wake on Motion Interrupt for Y-axis accelerometer WoM thresholds are expressed in fixed "mg" independent of the selected Range [0g: 1g]; Resolution 1g/256=~3.9 mg |

#### 16.28 ACCEL\_WOM\_Z\_THR

Name: ACCEL\_WOM\_Z\_THR

Address: 77 (4Dh) Serial IF: R/W Reset value: 0x00

| BIT | NAME     | FUNCTION                                                                                                                                                                                   |
|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | WOM_Z_TH | Threshold value for the Wake on Motion Interrupt for Z-axis accelerometer WoM thresholds are expressed in fixed "mg" independent of the selected Range [0g: 1g]; Resolution 1g/256=~3.9 mg |

#### 16.29 OFFSET\_USER0

Name: OFFSET\_USERO Address: 78 (4Eh) Serial IF: R/W

Reset value: 0x00

| BIT | NAME                | FUNCTION                                                                                             |
|-----|---------------------|------------------------------------------------------------------------------------------------------|
| 7:0 | GYRO_X_OFFUSER[7:0] | Lower bits of X-gyro offset programmed by user. Max value is $\pm 64$ dps, resolution is $1/32$ dps. |



#### 16.30 OFFSET\_USER1

| Addre<br>Serial | Name: OFFSET_USER1 Address: 79 (4Fh) Serial IF: R/W Reset value: 0x00 |                                                                                               |
|-----------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| BIT             | NAME                                                                  | FUNCTION                                                                                      |
| 7:4             | GYRO_Y_OFFUSER[11:8]                                                  | Upper bits of Y-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps. |
|                 |                                                                       |                                                                                               |

#### 16.31 OFFSET\_USER2

| Addre<br>Serial | Name: OFFSET_USER2 Address: 80 (50h) Serial IF: R/W Reset value: 0x00 |                                                                                               |
|-----------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| BIT             | NAME                                                                  | FUNCTION                                                                                      |
| 7:0             | GYRO_Y_OFFUSER[7:0]                                                   | Lower bits of Y-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps. |

#### 16.32 OFFSET\_USER3

| Name   | Name: OFFSET_USER3 |          |  |
|--------|--------------------|----------|--|
| Addre  | Address: 81 (51h)  |          |  |
| Serial | Serial IF: R/W     |          |  |
| Reset  | Reset value: 0x00  |          |  |
| BIT    | NAME               | FUNCTION |  |
|        | INAIVIL            | FUNCTION |  |

### 16.33 OFFSET\_USER4

Name: OFFSET\_USER4 Address: 82 (52h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI **FUNCTION** BIT NAME Upper bits of X-accel offset programmed by user. Max value is ±1g, 7:4 ACCEL\_X\_OFFUSER[11:8] resolution is 0.5 mg. Upper bits of Z-gyro offset programmed by user. Max value is ±64 dps, 3:0 GYRO\_Z\_OFFUSER[11:8] resolution is 1/32 dps.



### 16.34 OFFSET\_USER5

| Name   | Name: OFFSET_USER5   |                                                                                          |
|--------|----------------------|------------------------------------------------------------------------------------------|
| Addre  | Address: 83 (53h)    |                                                                                          |
| Serial | Serial IF: R/W       |                                                                                          |
| Reset  | Reset value: 0x00    |                                                                                          |
| BIT    | NAME                 | FUNCTION                                                                                 |
| 7:0    | ACCEL_X_OFFUSER[7:0] | Lower bits of X-accel offset programmed by user. Max value is ±1g, resolution is 0.5 mg. |

### 16.35 OFFSET\_USER6

| Name   | e: OFFSET_USER6      |                                                                                          |  |
|--------|----------------------|------------------------------------------------------------------------------------------|--|
| Addre  | Address: 84 (54h)    |                                                                                          |  |
| Serial | Serial IF: R/W       |                                                                                          |  |
| Reset  | value: 0x00          |                                                                                          |  |
| BIT    | NAME                 | FUNCTION                                                                                 |  |
| 7:0    | ACCEL_Y_OFFUSER[7:0] | Lower bits of Y-accel offset programmed by user. Max value is ±1g, resolution is 0.5 mg. |  |

### 16.36 OFFSET\_USER7

| Name   | Name: OFFSET_USER7     |                                                                    |  |
|--------|------------------------|--------------------------------------------------------------------|--|
| Addre  | Address: 85 (55h)      |                                                                    |  |
| Serial | IF: R/W                |                                                                    |  |
|        | value: 0x00            |                                                                    |  |
|        | Domain: SCLK UI        |                                                                    |  |
| CIOCK  | DOINAIN. SCLK_OI       |                                                                    |  |
| BIT    | NAME                   | FUNCTION                                                           |  |
| 7.4    | ACCEL 7 OFFLICED[44 0] | Upper bits of Z-accel offset programmed by user. Max value is ±1g, |  |
| 7:4    | ACCEL_Z_OFFUSER[11:8]  | resolution is 0.5 mg.                                              |  |
|        |                        | Upper bits of Y-accel offset programmed by user. Max value is ±1g, |  |
| 3:0    | ACCEL_Y_OFFUSER[11:8]  | resolution is 0.5 mg.                                              |  |

### 16.37 OFFSET\_USER8

| Name   | Name: OFFSET_USER8   |                                                                    |  |
|--------|----------------------|--------------------------------------------------------------------|--|
| Addre  | Address: 86 (56h)    |                                                                    |  |
| Serial | Serial IF: R/W       |                                                                    |  |
| Reset  | Reset value: 0x00    |                                                                    |  |
| BIT    | NAME                 | FUNCTION                                                           |  |
| 7:0    | ACCEL Z OFFUSER[7:0] | Lower bits of Z-accel offset programmed by user. Max value is ±1g, |  |



#### 16.38 ST\_STATUS1

Name: ST\_STATUS1 Address: 99 (63h) Serial IF: R Reset value: 0x00

| BIT | NAME          | FUNCTION                                     |
|-----|---------------|----------------------------------------------|
| 7:6 | -             | Reserved                                     |
| 5   | ACCEL_ST_PASS | 1: Accel self-test passed for all the 3 axes |
| 4   | ACCEL_ST_DONE | 1: Accel self-test done for all the 3 axes   |
| 3   | AZ_ST_PASS    | 1: Accel Z-axis self-test passed             |
| 2   | AY_ST_PASS    | 1: Accel Y-axis self-test passed             |
| 1   | AX_ST_PASS    | 1: Accel X-axis self-test passed             |
| 0   | -             | Reserved                                     |

### **16.39 ST\_STATUS2**

Name: ST\_STATUS2 Address: 100 (64h) Serial IF: R Reset value: 0x00

NAME **FUNCTION** BIT 7 Reserved 1: Self-test is incomplete. This bit is set to 1 if the self-test was aborted. ST INCOMPLETE One possible cause of aborting the self-test may be the detection of 6 significant movement in the gyro when the self-test for gyro and/or accel is being executed. 1: Gyro self-test passed for all the 3 axes **GYRO ST PASS** 5 1: Gyro self-test done for all the 3 axes 4 GYRO\_ST\_DONE 3 GZ\_ST\_PASS 1: Gyro Z-axis self-test passed 2 GY\_ST\_PASS 1: Gyro Y-axis self-test passed 1: Gyro X-axis self-test passed 1 GX\_ST\_PASS 0 Reserved



## 16.40 FDR\_CONFIG

Name: FDR\_CONFIG Address: 102 (66h) Serial IF: R/W Reset value: 0x00

| Neset | sset value. Uxuu |                                                                                                                                                                                                                |  |
|-------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BIT   | NAME             | FUNCTION                                                                                                                                                                                                       |  |
| 7:4   | -                | Reserved                                                                                                                                                                                                       |  |
|       |                  | FIFO packet rate decimation factor. Sets the number of discarded FIFO packets. User must disable sensors when initializing FDR_SEL value or making changes to it.                                              |  |
| 3:0   | FDR_SEL          | 0xxx: Decimation is disabled, all packets are sent to FIFO 1000: 1 packet out of 2 is sent to FIFO 1001: 1 packet out of 4 is sent to FIFO 1010: 1 packet out of 8 is sent to FIFO                             |  |
|       |                  | 1011: 1 packet out of 16 is sent to FIFO 1100: 1 packet out of 32 is sent to FIFO 1101: 1 packet out of 64 is sent to FIFO 1110: 1 packet out of 128 is sent to FIFO 1111: 1 packet out of 256 is sent to FIFO |  |



## 16.41 APEX\_CONFIG12

Name: APEX\_CONFIG12 Address: 103 (67h) Serial IF: R/W Reset value: 0x00

| BIT | value: 0x00<br>NAME | FUNCTION                                                                                                                                                                                                                                                             |
|-----|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4 | FF_MAX_DURATION_SEL | Maximum freefall length. Longer freefalls are ignored.  0000: 102 cm (default) 0001: 120 cm 0010: 139 cm 0011: 159 cm 0100: 181 cm 0101: 204 cm 0110: 228 cm 0111: 254 cm 1000: 281 cm 1001: 310 cm 1010: 339 cm 1011: 371 cm 1100: 403 cm 1110: 473 cm 1111: 510 cm |
| 3:0 | FF_MIN_DURATION_SEL | Minimum freefall length. Shorter freefalls are ignored.  0000: 10 cm (default) 0001: 12 cm 0010: 13 cm 0011: 16 cm 0100: 18 cm 0101: 20 cm 0110: 23 cm 0111: 25 cm 1000: 28 cm 1001: 31 cm 1010: 34 cm 1011: 38 cm 1100: 41 cm 1101: 45 cm 1110: 48 cm 1111: 52 cm   |



### 17 USER BANK MREG2 REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within user bank MREG2. The procedure for accessing MREG2 registers is described in section 12.

### 17.1 OTP\_CTRL7

Name: OTP\_CTRL7 Address: 06 (06h) Serial IF: RWS

Reset value: 0x06 (initial reset value is 0x0C, it changes to 0x06 after OTP load completes)

| BIT | NAME         | FUNCTION                                                                |
|-----|--------------|-------------------------------------------------------------------------|
| 7:4 | -            | Reserved                                                                |
| 3   | OTP_RELOAD   | Setting this bit to 1 triggers OTP copy operation.                      |
| 2   | -            | Reserved                                                                |
|     |              | 0: Power up OTP to copy from OTP to SRAM                                |
| 1   | OTP_PWR_DOWN | 1: Power down OTP                                                       |
|     |              | This bit is automatically set to 1 when OTP copy operation is complete. |
| 0   | -            | Reserved                                                                |



### 18 USER BANK MREG3 REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within user bank MREG3. The procedure for accessing MREG3 registers is described in section 12.

#### 18.1 XA\_ST\_DATA

| Name   | Name: XA_ST_DATA  |                                                  |  |
|--------|-------------------|--------------------------------------------------|--|
| Addre  | Address: 00 (00h) |                                                  |  |
| Serial | Serial IF: R      |                                                  |  |
| Reset  | value: 0x00       |                                                  |  |
| BIT    | NAME              | FUNCTION                                         |  |
| 7:0    | XA_ST_DATA        | Accel X-axis factory trimmed self-test response. |  |

#### 18.2 YA\_ST\_DATA

| Name   | e: YA_ST_DATA     |                                                  |  |
|--------|-------------------|--------------------------------------------------|--|
| Addre  | Address: 01 (01h) |                                                  |  |
| Serial | Serial IF: R      |                                                  |  |
| Reset  | value: 0x00       |                                                  |  |
| BIT    | NAME              | FUNCTION                                         |  |
| 7:0    | YA_ST_DATA        | Accel Y-axis factory trimmed self-test response. |  |

#### 18.3 ZA\_ST\_DATA

|        | Name: ZA_ST_DATA  |                                                  |  |
|--------|-------------------|--------------------------------------------------|--|
| Addre  | Address: 02 (02h) |                                                  |  |
| Serial | Serial IF: R      |                                                  |  |
| Reset  | Reset value: 0x00 |                                                  |  |
| BIT    | NAME              | FUNCTION                                         |  |
| 7:0    | ZA_ST_DATA        | Accel Z-axis factory trimmed self-test response. |  |

### 18.4 XG\_ST\_DATA

| Name   | e: XG_ST_DATA     |                                                 |  |
|--------|-------------------|-------------------------------------------------|--|
| Addre  | Address: 03 (03h) |                                                 |  |
| Serial | Serial IF: R      |                                                 |  |
| Reset  | value: 0x00       |                                                 |  |
| BIT    | NAME              | FUNCTION                                        |  |
| 7:0    | XG_ST_DATA        | Gyro X-axis factory trimmed self-test response. |  |

### 18.5 YG\_ST\_DATA

| Name   | : YG_ST_DATA      |                                                 |  |
|--------|-------------------|-------------------------------------------------|--|
| Addre  | Address: 04 (04h) |                                                 |  |
| Serial | Serial IF: R      |                                                 |  |
| Reset  | value: 0x00       |                                                 |  |
| BIT    | NAME              | FUNCTION                                        |  |
| 7:0    | YG_ST_DATA        | Gyro Y-axis factory trimmed self-test response. |  |



## 18.6 ZG\_ST\_DATA

Name: ZG\_ST\_DATA
Address: 05 (05h)
Serial IF: R
Reset value: 0x00
BIT NAME FUNCTION

| BIT | NAME       | FUNCTION                                        |
|-----|------------|-------------------------------------------------|
| 7:0 | ZG_ST_DATA | Gyro Z-axis factory trimmed self-test response. |



### 19 SMARTMOTION PRODUCT FAMILY

ICM-42670-P is a member of the SmartMotion<sup>™</sup> family of MEMS motion sensors with 1-, 2-, 3-, 6-, 7-, and 9-axis IMU platforms addressing the emerging need of many mass-market consumer applications via improved performance, accuracy, and intuitive motion and gesture-based interfaces.

For more information, please visit invensense.tdk.com.



#### 20 REFERENCE

Please refer to the following application notes for additional information.

- InvenSense MEMS Handling Application Note (AN-IVS-0002A-00) for the following information:
  - Manufacturing Recommendations
    - Assembly Guidelines and Recommendations
    - PCB Design Guidelines and Recommendations
    - MEMS Handling Instructions
    - ESD Considerations
    - Reflow Specification
    - Storage Specifications
    - Package Marking Specification
    - Tape & Reel Specification
    - Reel & Pizza Box Label
    - Packaging
    - Representative Shipping Carton Label
  - Compliance
    - Environmental Compliance
    - DRC Compliance
    - Compliance Declaration Disclaimer
- Understanding IMU Sensor Offset (AN-000257)
- ICM-42607x DMP Mode Accelerometer and Gyroscope Self-Test (AN-000258)
- ICM-42607x/42670x Products PCB Board Design Guide (AN-000262)
- TDK InvenSense IMU Calibration Application Note (AN-000265)
- ICM-42607x/42670x Accelerometer Low Power Mode Implementation (AN-000266)
- ICM-42607x and ICM-42670x Errata (AN-000273)



## **21 REVISION HISTORY**

| REVISION DATE | REVISION | DESCRIPTION     |
|---------------|----------|-----------------|
| 04/15/2021    | 1.0      | Initial Release |



This information furnished by InvenSense or its affiliates ("TDK InvenSense") is believed to be accurate and reliable. However, no responsibility is assumed by TDK InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. TDK InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. TDK InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. TDK InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.

Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. TDK InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.

©2020—2021 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the respective companies with which they are associated.



©2020—2021 InvenSense. All rights reserved.