# ANSATZ LIBRARY FOR STRUCTURE SELECTION IN GLOBAL MODELING OF SCALAR EXPERIMENTAL TIME SERIES:

#### Application To Electrocardiogram Data

#### **Erin Brown**

Salk Institute Computational Neurobiology Laboratory

2014 Northeast Conference for Women in Science January 18, 2014









# WILLEM EINTHOVEN



Photograph of a Complete Electrocardiograph, Showing the Manner in which the Electrodes are Attached to the Patient, In this Case the Hands and One Foot Being Immersed in Jars of Salt Solution

# **EKGs TODAY**



#### PROJECT OVERVIEW

#### Goal:

Reconstruct dynamical system from experimental scalar time series using *Ansatz Library* 

Develop set of ordinary differential equations that describe the underlying dynamics of electrocardiogram data

#### **Implications:**

#### Medical

- Improve understanding of underlying dynamics of heart
- Faster, more accurate diagnostic method for heart conditions

 Start with scalar time series of observed variable



#### ORIGINAL TIME SERIES

- One healthy subject
- 20 minutes
- Sampled at 50 kHz
- One electrode



#### FILTERING AND NORMALIZATION

- Downsampled to2.5 kHz
- 4<sup>th</sup> order Butterworth filter; normalized cutoff frequency of 0.016
- Normalized



- Start with scalar time series of observed variable
- What can we say about underlying dynamics?



- Start with scalar time series of observed variable
- What can we say about underlying dynamics?
- Differential embedding



- Start with scalar time series of observed variable
- What can we say about underlying dynamics?
- Differential embedding
- Functional form of differential embedding



- Start with scalar time series of observed variable
- What can we say about underlying dynamics?
- Differential embedding
- Functional form of differential embedding
- Ansatz library for structure selection of differential model



#### ANSATZ LIBRARY

Set of all analytically derivable maps  $\varphi_i$  between sets of **ordinary differential equations** of polynomial form and **differential models** expressed in terms of Lie derivatives

# Set of Polynomial ODEs

$$\dot{x} = f_1(a, x, y, z)$$

$$\dot{y} = f_2(b, x, y, z)$$

$$\dot{z} = f_3(c, x, y, z)$$



#### **Differential Models**

$$X = x$$

$$\dot{X} = Y$$

$$\dot{Y} = Z$$

$$\dot{Z} = F(\alpha, X, Y, Z)$$

#### POSSIBLE DIFFERENTIAL MODEL TERMS

$$\begin{array}{lll} \dot{X} &=& Y \\ \dot{Y} &=& Z \\ \dot{Z} &=& \alpha_{1} + \alpha_{2} \frac{1}{X^{4}} + \alpha_{3} \frac{1}{X^{3}} + \alpha_{4} \frac{1}{X^{2}} + \alpha_{5} \frac{1}{X} + \alpha_{6} X + \alpha_{7} X^{2} + \\ & \alpha_{8} X^{3} + \alpha_{9} X^{4} + \alpha_{10} X^{5} + \alpha_{11} X^{6} + \alpha_{12} X^{7} + \alpha_{13} X^{8} + \alpha_{14} \frac{1}{Y} + \\ & \alpha_{15} \frac{X}{Y} + \alpha_{16} \frac{X^{2}}{Y} + \alpha_{17} \frac{X^{3}}{Y} + \alpha_{18} \frac{X^{4}}{Y} + \alpha_{19} \frac{X^{5}}{Y} + \alpha_{20} \frac{X^{6}}{Y} + \alpha_{21} Y + \\ & \alpha_{22} \frac{Y}{X^{4}} + \alpha_{23} \frac{Y}{X^{3}} + \alpha_{24} \frac{Y}{Y^{2}} + \alpha_{25} \frac{Y}{X} + \alpha_{26} X Y + \alpha_{27} X^{2} Y + \alpha_{28} X^{3} Y + \\ & \alpha_{29} X^{4} Y + \alpha_{30} X^{5} Y + \alpha_{31} X^{6} Y + \alpha_{32} Y^{2} + \alpha_{33} \frac{Y^{2}}{X^{4}} + \alpha_{34} \frac{Y^{2}}{X^{3}} + \\ & \alpha_{35} \frac{Y^{2}}{X^{2}} + \alpha_{36} \frac{Y^{2}}{Y} + \alpha_{37} X Y^{2} + \alpha_{38} X^{2} Y^{2} + \alpha_{39} X^{3} Y^{2} + \alpha_{40} X^{4} Y^{2} + \alpha_{41} Y^{3} + \\ & \alpha_{42} \frac{Y^{3}}{X^{4}} + \alpha_{43} \frac{Y^{3}}{X^{3}} + \alpha_{44} \frac{Y^{3}}{X^{2}} + \alpha_{45} \frac{Y^{3}}{X} + \alpha_{46} X Y^{3} + \alpha_{47} X^{2} Y^{3} + \alpha_{48} Y^{4} + \\ & \alpha_{49} \frac{Y^{4}}{X^{4}} + \alpha_{50} \frac{Y^{4}}{X^{3}} + \alpha_{51} \frac{Y^{4}}{X} + \alpha_{52} Z + \alpha_{53} \frac{Z}{X^{3}} + \alpha_{54} \frac{Z}{X^{2}} + \alpha_{55} \frac{Z}{X} + \\ & \alpha_{56} X Z + \alpha_{57} X^{2} Z + \alpha_{58} X^{3} Z + \alpha_{59} X^{4} Z + \alpha_{60} \frac{Z}{Y} + \alpha_{61} \frac{XZ}{Y} + \alpha_{62} \frac{X^{2}Z}{Y} + \\ & \alpha_{63} \frac{X^{3}Z}{Y} + \alpha_{64} Y Z + \alpha_{65} \frac{YZ}{X^{3}} + \alpha_{66} \frac{YZ}{X^{2}} + \alpha_{67} \frac{YZ}{X} + \alpha_{68} X Y Z + \alpha_{69} X^{2} Y Z + \\ & \alpha_{70} Y^{2} Z + \alpha_{71} \frac{Y^{2}Z}{X^{3}} + \alpha_{72} \frac{Y^{2}Z}{X^{2}} + \alpha_{73} \frac{Y^{2}Z}{X} + \alpha_{74} Z^{2} + \\ & \alpha_{75} \frac{Z^{2}}{X^{2}} + \alpha_{76} \frac{Z^{2}}{X} + \alpha_{77} \frac{Z^{2}}{Y} \end{array}$$

C. Lainscsek, C. Letellier, I. Gorodnitsky, Phys. Lett. A 314 (2003) 409.

- 1. Compute derivatives using Taylor expansion
- 2. Determine value of  $\alpha$  coefficients for 77 term model from data over many windows and look for coefficients that are stable across windows
- 3. Keep terms with highly significant coefficients
- Look for lowest term differential model in Ansatz library containing chosen coefficients
- 5. Calculate value of  $\alpha$  coefficients for specific model chosen

## TIME SERIES DERIVATIVES



- Compute derivatives using Taylor expansion
- 2. Determine value of  $\alpha$  coefficients for 77 term model from data over many windows and look for coefficients that are stable across windows
- 3. Keep terms with highly significant coefficients
- Look for lowest term differential model in Ansatz library containing chosen coefficients
- 5. Calculate value of  $\alpha$  coefficients for specific model chosen

# STABILITY ACROSS TIME



- Compute derivatives using Taylor expansion
- 2. Determine value of  $\alpha$  coefficients for 77 term model from data over many windows and look for coefficients that are stable across windows
- 3. Keep terms with highly significant coefficients
- Look for lowest term differential model in Ansatz library containing chosen coefficients
- 5. Calculate value of  $\alpha$  coefficients for specific model chosen

- Compute derivatives using Taylor expansion
- 2. Determine value of  $\alpha$  coefficients for 77 term model from data over many windows and look for coefficients that are stable across windows
- 3. Keep terms with highly significant coefficients
- 4. Look for lowest term differential model in Ansatz library containing chosen coefficients
- 5. Calculate value of  $\alpha$  coefficients for specific model chosen

#### EKG SHORTEST DIFFERENTIAL MODEL

- $\bullet X = x$
- $\dot{X} = Y$
- $\dot{Y} = Z$
- $$\begin{split} \bullet \ \dot{Z} &= \alpha_1 X^2 + \alpha_2 X^4 + \alpha_3 X^5 + \alpha_4 X^6 + \alpha_5 X^7 + \alpha_6 X^8 + \alpha_7 Y + \\ \alpha_8 XY + \alpha_9 X^2 Y + \alpha_{10} X^3 Y + \alpha_{11} X^4 Y + \alpha_{12} X^5 Y + \alpha_{13} X^6 Y + \\ \alpha_{14} Y^2 + \alpha_{15} XY^2 + \alpha_{16} X^2 Y^2 + \alpha_{17} X^3 Y^2 + \alpha_{18} X^4 Y^2 + \\ \alpha_{19} Y^3 + \alpha_{20} XY^3 + \alpha_{21} X^2 Y^3 + \alpha_{22} Y^4 + \alpha_{23} Z + \alpha_{24} XZ + \\ \alpha_{25} X^2 Z + \alpha_{26} X^3 Z + \alpha_{27} X^4 Z + \alpha_{28} YZ + \alpha_{29} XYZ + \\ \alpha_{30} X^2 YZ + \alpha_{31} Y^2 Z + \alpha_{32} Z^2 \end{split}$$

- Compute derivatives using Taylor expansion
- 2. Determine value of  $\alpha$  coefficients for 77 term model from data over many windows and look for coefficients that are stable across windows
- 3. Keep terms with highly significant coefficients
- Look for lowest term differential model in Ansatz library containing chosen coefficients
- 5. Calculate value of  $\alpha$  coefficients for specific model chosen

- Compute derivatives using Taylor expansion
- 2. Determine value of  $\alpha$  coefficients for 77 term model from data over many windows and look for coefficients that are stable across windows
- 3. Keep terms with highly significant coefficients
- Look for lowest term differential model in Ansatz library containing chosen coefficients
- 5. Calculate value of  $\alpha$  coefficients for specific model chosen

Differential Model in Embedding Space 

✓

- Start with scalar time series of observed variable
- What can we say about underlying dynamics?
- Differential embedding
- Functional form of differential embedding
- Ansatz library for structure selection of differential model
- Ansatz library for map inversion



#### SELECTED MINIMUM MODELS

#### **Differential Model:**

- $\cdot X = x$
- $\dot{X} = Y$
- $\dot{Y} = Z$
- $$\begin{split} \cdot \ \dot{Z} &= \alpha_1 X^2 + \alpha_2 X^4 + \alpha_3 X^5 + \alpha_4 X^6 + \alpha_5 X^7 + \alpha_6 X^8 + \alpha_7 Y + \alpha_8 XY + \\ \alpha_9 X^2 Y + \alpha_{10} X^3 Y + \alpha_{11} X^4 Y + \alpha_{12} X^5 Y + \alpha_{13} X^6 Y + \alpha_{14} Y^2 + \alpha_{15} XY^2 + \\ \alpha_{16} X^2 Y^2 + \alpha_{17} X^3 Y^2 + \alpha_{18} X^4 Y^2 + \alpha_{19} Y^3 + \alpha_{20} XY^3 + \alpha_{21} X^2 Y^3 + \\ \alpha_{22} Y^4 + \alpha_{23} Z + \alpha_{24} XZ + \alpha_{25} X^2 Z + \alpha_{26} X^3 Z + \alpha_{27} X^4 Z + \alpha_{28} YZ + \\ \alpha_{29} XYZ + \alpha_{30} X^2 YZ + \alpha_{31} Y^2 Z + \alpha_{32} Z^2 \end{split}$$

#### **Dynamical Model:**

- $\cdot \dot{x} = a_2 y + a_4 x^2$
- $\dot{y} = b_2 y + b_3 z + b_5 x y + b_7 y^2$
- $\dot{z} = c_2 y + c_9 z^2$

- Start with scalar time series of observed variable
- What can we say about underlying dynamics?
- Differential embedding
- Functional form of differential embedding
- Ansatz library for structure selection of differential model
- Ansatz library for map inversion
- Genetic algorithm for coefficient mapping



- Start with scalar time series of observed variable
- What can we say about underlying dynamics?
- Differential embedding
- Functional form of differential embedding
- Ansatz library for structure selection of differential model
- Ansatz library for map inversion
- Genetic algorithm for coefficient mapping
- Integrate ODE model to reconstruct time series



# DISCUSSION

Still searching for model that is stable when integrated

#### **Future Directions:**

To obtain model –

- Better filtering
- Process automation to check more possibilities
- Incorporation of higher order nonlinearities

After model is obtained –

- More subjects
- Diverse heart conditions
- Diagnostic tool differences in coefficients, model structure, time scaling, etc. between conditions

### **ACKNOWLEDGEMENTS**

Salk Institute Computational Neurobiology Laboratory

- Dr. Terry Sejnowski
- Dr. Claudia Lainscsek

Funded by Howard Hughes Medical Institute EXROP

University of California, San Diego STARS Program

Allegheny College







