Universidad Nacional Autónoma de México Facultad de Ciencias

Álgebra Superior II

2^{do} Parcial Tarea 1 Kevin Ariel Merino Peña 317031326 12 de marzo de 2020

2. Sea X un conjunto y sea $\mathcal{A} = \mathcal{P}(X)$ su conjunto potencia. Definimos las operaciones $+ y \cdot \text{en } \mathcal{A}$ como

$$B + C = B \triangle C$$
 y $B \cdot C = B \cap C$

Demuestra que $(A, +, \cdot)$ es un anillo conmutativo (Puedes utilizar, sin demostrarlo que la diferencia simétrica \triangle es asociativa) **Definición 1.** $(A, +, \cdot)$ es un anillo si cumple

1. Asociatividad para la suma

$$\forall a, b, c \in \mathcal{A}$$
 $a + (b + c) = (a + b) + c$

2. Conmutatividad para la suma

$$\forall a, b \in \mathcal{A}$$
 $a+b=b+a$

3. Existencia del neutro aditivo

$$\exists \hat{0} \in \mathcal{A} \quad \cdot \ni \cdot \quad \forall a \in \mathcal{A} \quad a + \hat{0} = a$$

4. Existencia de inversos aditivos

$$\forall a \in A \quad \exists \hat{a} \quad \cdot \ni \cdot \quad a + \hat{a} = \hat{0}$$

5. Asociatividad para el producto

$$\forall a, b, c \in \mathcal{A} \quad a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

6. Existencia del neutro multiplicativo

$$\exists \hat{1} \in \mathcal{A} \quad \cdot \ni \cdot \quad \forall a \in \mathcal{A} \quad a \cdot \hat{1} = a = \hat{1} \cdot a$$

7. Distributividad por la izquierda

$$\forall a, b, c \in \mathcal{A} \quad a \cdot (b+c) = a \cdot b + a \cdot c$$

8. Distributividad por la derecha

$$\forall x, y, z \in \mathcal{A} \quad (x+y) \cdot z = x \cdot z + y \cdot z$$

Sean $A, B, C \in \mathcal{A}$

$$A + (B + C)$$

P.d
$$A + (B + C) = (A + B) + C$$

$$A + (B + C) = A + (B \triangle C)$$

$$A + (B \triangle C) = A \triangle (B \triangle C)$$

$$A \triangle (B \triangle C) = (A \triangle B) \triangle C$$

$$(A \triangle B) \triangle C = (A + B) + C$$

Por definición de + en \mathcal{A}

Esto sginifica +

Porque \triangle es asociativa

Por definición de +, de nuevo

 \therefore + es asociativa en \mathcal{A}

Sean $A, B \in \mathcal{A}$

$$A + B$$

$$P.d A + B = B + A$$

$$A + B = A \triangle B$$

$$A \triangle B = (A - B) \cup (B - A)$$

$$(A - B) \cup (B - A) = (B - A) \cup (A - B)$$

$$(B - A) \cup (A - B) = B \triangle A$$

$$B \triangle A = B + A$$

Por definición de
$$+$$
 en A
Por definición de \triangle
Porque \cup es conmitativa
Por definición de \triangle
Por definición de $+$

 \therefore + es conmutativa en \mathcal{A}

Proponemos $\hat{0} = \emptyset$, entonces Sea $A \in \mathcal{A}$, Pd. $A + \emptyset = A$

$$A+\varnothing=A\bigtriangleup\varnothing$$
 Por definición de +
$$A\bigtriangleup\varnothing=(A-\varnothing)\cup(\varnothing-A)$$
 Por definición de \bigtriangleup
$$(A-\varnothing)\cup(\varnothing-A)=A\cup\varnothing$$
 Obs. $A-\varnothing=A, \ \varnothing-A=\varnothing$ Por propiedades del vacío

 $\therefore \varnothing$ es el neutro aditivo en \mathcal{A}

Sea $A \in A$ Pd. $A + \hat{A} = \emptyset$ Proponemos $\hat{A} = A$

$$A+A=A\mathrel{\triangle}A$$
 Definición de + en $\mathcal A$
$$A\mathrel{\triangle}A=(A-A)\cup(A-A)$$
 Definición de $\mathrel{\triangle}$ (A-A) \cup (A-A) = \varnothing Por propiedades de $\mathrel{\triangle}$

 $\therefore A$ es el inverso aditivo de A en \mathcal{A}

Definición 2. En $(A, +, \cdot)$ un anillo, si \cdot es asociativo entonces decimos que es anillo conmutativo

3. Demuestra que el conjunto de matrices de 3 x 3 con coeficientes en \mathbb{Z} (denotado M_{3x3})