SEGUNDO TESTE

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria da Computação Esdras Lins Bispo Jr.

14 de dezembro de 2017

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- \bullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + EB$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- P é a pontuação obtida na prova, e
- -EB é a pontuação total dos exercícios-bônus.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (2) Modelos de Computação, e (3) Problemas Decidíveis.

TN T		
Nomo		
TNUHLE.		
I TOILLO.		

Segundo Teste

- 1. (5,0 pt) [Sipser 3.6] No Teorema 3.21, mostramos que uma linguagem é Turing-reconhecível sse algum enumerador a enumera. Por que não usamos o seguinte algoritmo mais simples para a direção de ida da prova? Tal qual anteriormente, s_1, s_2, \ldots é uma lista de todas as cadeias em Σ^* .
 - E = "Ignore a entrada.
 - (a) Repita o que se segue para i = 1, 2, 3, ...
 - (b) Rode M sobre s_i .
 - (c) Se ela aceita, imprima s_i .

Resposta: Não se pode utilizar este algoritmo porque sabe-se apenas que L(M) é Turing-reconhecível. Não se sabe se L(M) é decidível. Logo existe a possibilidade de M entrar em loop infinito de execução. Se isto ocorrer para uma dada entrada s_j , por exemplo, o passo (b) nunca encerrará a sua execução para esta cadeia. Assim, se houver alguma outra cadeia $s_k \in L(M)$ (em que k > j), então o enumerador E nunca a imprimirá. Desta forma, este enumerador deixaria de imprimir uma ou mais cadeias de L(M) (o que não contribuiria para a prova).

- 2. (5,0 pt) A partir da classe de linguagens Turing-reconhecíveis, mostre
 - (a) o fecho sob alguma operação; e

Suponha que você tenha escolhido a operação de união. A prova é apresentada a seguir.

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (Definição 3.5). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \cup B$. A descrição de M_{aux} é dada a seguir:

 M_{aux} = "Sobre a entrada ω , faça:

- i. Rode, não deterministicamente, M_A e M_B sobre a mesma cadeia ω .
- ii. Se uma das máquinas aceitar, aceite.
- iii. Se ambas as máquinas rejeitarem, rejeite".

Como é possível construir M_{aux} , então $A\cup B$ é TR (Teorema 3.16). Logo, a classe de linguagens Turing-reconhecíveis é fechada sob a operação de união \blacksquare

(b) a impossibilidade do fecho sob a operação de complemento.

Resposta: A impossibilidade do fecho sob a operação de complemento, para a classe de linguagens Turing-reconhecíveis, é devido à possibilidade de uma máquina de Turing (MT) qualquer entrar em loop infinito de execução. Se uma linguagem é Turing-reconhecível, então existe uma MT M, por exemplo, que a reconhece. Temos garantia que esta M para, se $\omega \in L(M)$. Entretanto, não há garantias de que M parará, se $\omega \not\in L(M)$. M pode ou rejeitar a cadeia, ou entrar em loop infinito. Logo, é impossível criar uma MT M, a partir da máquina M, que reconhece o complemento de L(M)