TRIGONOMETRY

Chapter 01

SISTEMAS DE MEDICIÓN ANGULAR I

HELICO - MOTIVACIÓN

TRIGONOMETRÍA

¿ QUÉ ES EL ÁNGULO TRIGONOMÉTRICO?

Es aquel ángulo generado en un plano mediante la rotación de un radio vector alrededor de un punto fijo llamado vértice, desde una posición inicial hasta una posición final.

REPRESENTACIÓN GRÁFICA

Tipos de giro:

 \bigcirc Horario: $\theta < 0$

Antihorario : $\theta > 0$

I) <u>SISTEMA SEXAGESIMAL</u> (Inglés)

<u>Unidad Angular</u>:

Grado Sexagesimal: 1°

Subunidades:

Minuto Sexagesimal: 1'

Segundo Sexagesimal: 1["]

Equivalencias:

m∢ 1 vuelta = 360°

Recordar:

$$a^{\circ}b'c'' = a^{\circ} + b' + c''$$
; donde $b < 60$, $c < 60$

II) SISTEMA CENTESIMAL (Francés)

Unidad Angular:

Grado Centesimal: 1g

Subunidades:

Minuto Centesimal: 1^m

Segundo Centesimal: 1^s

Equivalencias:

 $1^{g} \iff 100^{m} \iff 10000^{s}$

1^m <> 100^s

Recordar:

 $a^{g} b^{m} c^{s} = a^{g} + b^{m} + c^{s}$; donde b < 100, c < 100

 $m \le 1$ vuelta = 400^g

III) SISTEMA RADIAL (Internacional)

Unidad Angular:

Radián: 1 rad

Equivalencias entre sistemas:

Sabemos que:

m < 1 vuelta < > 360° < > 400 g < > 2π rad

Luego: $180^{\circ} < > 200^{g} < > \pi \text{ rad}$

Además: 9°< >10g

1) Efectúe M =
$$\frac{10^{\circ} 40'}{32'}$$

Resolución

Conviene convertir todo a minutos sexagesimales

$$M = \frac{10(60') + 40'}{32'}$$

$$M = \frac{640^4}{32^7}$$

2) Efectúe A =
$$\frac{8^g 20^m}{10^m}$$

Resolución

Conviene convertir todo a minutos centesimales

$$A = \frac{8 (100^{m}) + 20^{m}}{10^{m}}$$

$$A = \frac{820^{m}}{10^{m}}$$

3) Convierta los siguientes ángulos al sistema sexagesimal.

Resolución

a)
$$\frac{\pi}{4}$$
 rad $<>\frac{180^{\circ}}{4}$ = 45°

b)
$$\frac{2\pi}{3}$$
 rad $<>\frac{2(180^\circ)}{3}$ = 120°

c)
$$\frac{3\pi}{5}$$
 rad < > $\frac{3(180^\circ)}{5}$ = 108°

d)
$$\frac{\pi}{6}$$
 rad $<>\frac{180^{\circ}}{6}$ = 30°

4) Convierta los siguientes ángulos al sistema sexagesimal.

Resolución

a)
$$20^g <> 20^g \left(\frac{9^\circ}{10^g}\right) = 18^\circ$$

b)
$$60^g <> 60^g \left(\frac{9^\circ}{10^g}\right) = 54^\circ$$

c)
$$80^g <> 80^g \left(\frac{9^\circ}{10^g}\right) = 72^\circ$$

d)
$$120^g <> 120^g \left(\frac{9^\circ}{10^g}\right) = 108^\circ$$

5) Calcule
$$\frac{x}{y}$$
 si se cumple:
$$\begin{cases} x + y = 50^{s} \\ x - y = \frac{\pi}{6} \text{ rad } + 5^{o} \end{cases}$$

Resolución

$$x + y = 50^{9} \left(\frac{9^{\circ}}{18^{9}} \right) = 45^{\circ}$$

$$x - y = \frac{180^{\circ}}{6} + 5^{\circ} = 35^{\circ}$$

$$x + y = 45^{\circ}$$

$$x - y = 35^{\circ}$$

$$2x = 80^{\circ}$$

$$x = 40^{\circ}$$

$$y = 5^{\circ}$$

Luego:

$$\frac{x}{y} = \frac{40^{\circ}}{5^{\circ}} = 8$$

- 6) Abel, Beto y Carlos se propusieron comparar las medidas angulares que formaban al unir dos lápices, teniendo como punto en común su borrador, tal como muestra la figura.
- ¿Cuál de los tres ha formado el mayor ángulo en el sistema sexagesimal ?

Resolución

Para realizar una comparación fácil, debemos medir cada ángulo en el sistema sexagesimal.

$$\frac{2\pi}{5}$$
 rad $<>\frac{2(180^\circ)}{5}$ = 72° (Abel)

$$60^g < > 60^g \left(\frac{9^\circ}{10^g}\right) = 54^\circ \text{ (Carlos)}$$

Abel ha formado el mayor ángulo.

7) Efraín construyó un jardín en forma triangular, tal como se muestra en la figura. - Halle el valor de x.

Resolución

$$(5x)^{\circ} + \frac{2\pi \operatorname{rad}}{9} = 90^{\circ}$$

$$(5x)^{\circ} + \frac{2(180^{\circ})}{9} = 90^{\circ}$$

$$(5x)^{\circ} + 40^{\circ} = 90^{\circ}$$

$$(5x)^{\phi} = 50^{\phi}$$

$$x = 10$$

