1. 求下列矩阵的 OR 分解:

$$(1) \mathbf{A} = \begin{pmatrix} 2 & -1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix}; (2) \mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & -2 \\ 0 & -1 & 2 \end{pmatrix}; (3) \mathbf{A} = \begin{pmatrix} 0 & 1 & -2 \\ 4 & 0 & 1 \\ -1 & 3 & 2 \end{pmatrix}.$$

2. 求出正交矩阵 P, 使得 P'AP 为对角阵:

(i)
$$\mathbf{A} = \begin{pmatrix} 11 & 2 & -8 \\ 2 & 2 & 10 \\ -8 & 10 & 5 \end{pmatrix}$$
; (ii) $\mathbf{A} = \begin{pmatrix} 17 & -8 & 4 \\ -8 & 17 & -4 \\ 4 & -4 & 11 \end{pmatrix}$.

- 3. 设 V 是 n 维欧氏空间, $\varepsilon_1, \dots, \varepsilon_n$ 是标准正交基, 证明 $\alpha_1, \dots, \alpha_m$ 是正交向量组的充要条件是对任意 $1 \le i \ne j \le m$ 有 $\sum_{t=1}^n \langle \alpha_i, \varepsilon_t \rangle \langle \alpha_j, \varepsilon_t \rangle = 0$.
 - 4. 设 T 为欧氏空间 V^n 的反对称变换, 即

$$(Tx, y) = -(x, Ty) \quad (x, y \in V^n).$$

证明: T 是反对称变换的充要条件是 T 在 V^n 的任一组标准正交基下的表示矩阵为反对称阵.

- 5. 设欧氏空间 V^n 的正交变换 T 的特征值都是实数, 证明: 存在 V^n 的标准正交基, 使得 T 在该基下的矩阵为对角阵.
- 6. 设欧氏空间 V^n 的基 $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n$ 的度量矩阵为 \mathbf{G} , 设线性变换 T 在这组基下的表示矩阵为 \mathbf{A} , 求 T 是正交变换的充要条件.
 - 7. 设 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ 是欧氏空间 V 中的向量, 其 Gram 矩阵为 G = A'A, 其中

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & -2 & 2 \\ 3 & 3 & 6 & 6 \\ -2 & -3 & 2 & -5 \\ 2 & 0 & 3 & 2 \end{pmatrix}.$$

试求 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ 的一组极大无关组,以及由这一极大无关组通过 Gram-Schmidt 方法得到的标准正交向量组.

- 8. 设 \mathbf{A} 为 n 阶正交阵,求证: \mathbf{A} 中不存在元素皆为 $\frac{1}{2\sqrt{2}}$ 的三阶子矩阵.
- 9. 设欧氏空间 V^n 的两个标准正交基为

(I):
$$x_1, x_2, \dots, x_n$$
; (II) : y_1, y_2, \dots, y_n .

正交变换 T 满足 $Tx_1 = y_1$, 证明:

$$L(Tx_2, \cdots, Tx_n) = L(y_2, \cdots, y_n).$$