P425/1

PURE MATHEMATICS

PAPER 1 2024

MEBU EXAMINATIONS CONSULT

UGANDA ADVANCED CERTIFICATE OF EDUCATION

END OF TERM 1 EXAMINATIONS 2024

PURE MATHEMATICS

PAPER 1

3 HOURS

INSTRUCTIONS.

- \checkmark Answer all the **eight** questions in section **A** and any **five** from section **B**.
- ✓ Any additional questions answered will not be marked.
- ✓ All working must be shown clearly.
- ✓ Begin each answered on a fresh sheet of paper.
- ✓ A graph paper is provided
- ✓ Silent non programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A: (40 MARKS)

Attempt all questions in this section.

- 1. Solve the equation $\tan \theta \cos \theta = 3$ for θ in the range $0^{\circ} \le \theta \le 360^{\circ}$. (5 marks)
- 2. Differentiate with respect to x; $\frac{x^2-1}{(x+2)^2}$. (5 marks)
- 3. Two vectors are such that |a| = 3, |b| = 7 and that $a \cdot b = 3$. Find the value of |a + b| (5 marks)
- 4. Without using a calculator, find the exact value $\sqrt{(7-4\sqrt{3})}$ (5 marks)
- 5. A variable point P(x, y) moves such that the sum of the squares of its distances from the points A(2,0) and B(-2,0) is 9 units. Find the equation of the locus and describe it completely. (5 marks)
- 6. Evaluate $\int_{0}^{2} (x+2)^4 (x-3)^2 dx$ (5 marks)
- 7. How many arrangements can be made from the letters of the word OSMOSIS if the letters
- (i) Are taken one at a time. (2 marks)
- (ii) *M* And *I* must be separate. (3 marks)
- 8. An inverted right circular cone of vertical angle 60° is being filled with water at a constant rate of 3π cm³/min. Find how long it takes to fill the cone if the height of the cone is 12cm. (5 marks)

SECTION B (60 MARKS)

Attempt only five questions in this section

9. (a) Solve the equations :
$$\frac{2x+y}{2} = \frac{y+2z}{6} = \frac{x+z}{3}$$
 (6 marks)

$$3x + 2y + 3z = 22$$

(b) When the polynomial is divided by x-3, the remainder is -6, and when divided by x-1 the remainder is 2. Find the remainder when the polynomial is divided by x^2-4x+3 .

(6 marks)

10. (a) If $z_1 = 2 + i$ and $z_2 = 3 + 2i$. Find the $arg(z_2 - z_1)$

(4 marks)

(b) The complex number z lies on the complex plane and is such

that |z - 6i| = 2|z - 3|.

(i) Find the equation of locus of the complex number.

(4 marks) (2 marks)

(ii) Represent the locus on the complex plane.

(iii) Calculate the greatest value of |z|.

(2 marks)

11 (a) On the same axes sketch the curves $f(x) = x^2 - 6x + 5$ and $y = \frac{1}{f(x)}$, clearly

indicating the asymptotes.

(12 marks)

- 12 A, B and C are vertices of a triangle., Q(2,0) and R(-1,-4) are midpoints of AB, BC and AC respectively. Find the
- (i) Equation of the line AB.

(4 marks)

(ii) Coordinates of the points A.

(8 marks)

- 13 (a) Evaluate $\int_{0}^{\frac{\pi}{3}} \tan x \sin^2 x dx$ (5 marks)
- (b)Differentiate 2^x with respect to x, Hence $\int_0^2 2^x + e^x + x^2 dx$ (7 marks)
- 14 The lines l_1 and l_2 given by the Cartesian equations

 $\frac{x+4}{3} = \frac{y-2}{2} = \frac{z+3}{2}$ and $\frac{x-1}{2} = \frac{y-2}{p} = \frac{z+5}{4}$ intersect. Find the

(i) Coordinates of the point of intersection.

(5 marks)

(ii) Value of p.

(3 marks)

(iii) Angle between the two lines l_1 and l_2 .

(4 marks)

- 15. (a) Solve the equation: $\tan^{-1} \frac{x}{2} + \tan^{-1} \frac{x}{3} = \frac{\pi}{4}$ (6 marks)
- (b) Express $\cos(\theta + 60^{\circ}) \cos\theta$ in the form $R\sin(\theta + \alpha)$, Determine the greatest value of the expression $f(\theta) = 1 + \cos(\theta + 60^{\circ}) \cos\theta$ Hence find the value of θ for which the maximum occurs in the range $0^{\circ} \le \theta \le 360^{\circ}$. (6 marks)
- 16. (a) Use maclaurin's theorem to expand e^{2x} in ascending powers of x up to the term containing x^3 . (6 marks)
 - (b) Given that $t = x + \frac{1}{x}$, $y = t \frac{1}{t}$. Find $\frac{dy}{dx}$ when x = 1 (6 marks)

END