Algebraic Theory I

Thomas Fleming

May 7, 2018

Contents

1 Review of Ring Theory

3

Lecture 40: Polynomials (6)

Wed 01 Dec 2021 12:33

This was the last class.

Recall. If R was a UFD with K its quotient field, then a polynomial $f \in K[x]$ has a linear factor if and only if it has a root. Moreover, if $\deg(f) \leq 3$, then f has a linear factor if and only if it is irreducible (and has $\operatorname{Cont}(f) = 1$).

Theorem 0.1 (Eisenstein's Criterion). Suppose R is a UFD with quotient field K and $f(x) = \prod_{i=0}^{n} a_i x^i \in R[x]$ with $n = \deg(f) \ge 1$ and Cont(f) = 1. If $p \in R$ is prime with the following conditions holding

- $a_n \not\equiv 0 \mod (p)$,
- $a_i \equiv 0 \mod (p)$ for all $0 \le i < n$,
- and $a_0 \not\equiv 0 \mod (p^2)$,

then f is irreducible.

Proof. Assume by contradiction that there is a factorization f = gh with $\deg(g)$, $\deg(h) \geq 1$ and $g = \sum_{i=0}^m b_i x^i$, $h = \sum_{i=0}^d c_i x^i$. Remove any trivial terms such that $\deg(g) = m$ and $\deg(h) = d$ with both being nonzero. Additionally, we can assume all coefficients live in R.

Then, we see $a_0 = c_0 b_0 \equiv 0 \mod (p)$ but $c_0 b_0 \not\equiv 0 \mod (p^2)$. This implies exactly one of c_0, b_0 is divisible by p. WLOG, suppose $p \mid c_0$ and $p \nmid b_0$.

Next, $a_n = b_m \cdot c_d \not\equiv 0 \mod (p)$, so $p \nmid c_d$. Then, there is a minimal index r such that $p \nmid c_r$ but $p \mid c_i$ for $0 \leq i < r$.

Now, collecting coefficients yields

$$a_r = b_0 c_r + b_1 c_{r-1} + \ldots + b_{r-1} c_1 + b_r c_0.$$

By the earlier conclusion, we see $p \mid b_j c_{r-j}$ for all $j \geq 1$. That is, p divides all but the first term since $p \nmid b_0$ and $p \nmid c_r$. Since p is prime, $p \nmid b_0 c_r$, and since p divides all other terms, we find $p \nmid a_r$, hence $a_r \not\equiv 0 \mod (p)$. Hence,

the assumptions yield r = n But by an earlier assumption, we see $d \ge r$, hence d = n else a contradiction would arise. Hence since $\deg(h) = \deg(f)$, we see $\deg(g) = 0$, so g is constant. $\mfrac{t}{2}$, since we assumed g nonconstant.

Example. $f(x) = x^{72} + 40x^7 + 10x + 50 \in \mathbb{Z}[x]$. Clearly Cont (f) = 1 and deg $(f) = 72 \ge 1$. Since 2, 5 divide all the coefficients these are our choices for p. Since $5^2 \mid 50$, this one will not work, so we choose 2. $2 \nmid 1 = a_n$, $2 \mid 40, 10, 50$ respectively, and $2^2 = 4 \nmid 50$, hence eisenstein yields that f is irreducible over \mathbb{Z} (hence \mathbb{Q}).

 $g(x) = x^4 + 1$. As no primes divide 1, this seems to be a poor case for eisenstein. However, if we consider the ring isomorphism

$$h_a: R[x] \longrightarrow R[x]$$

 $f(x) \longmapsto h_a(f(x)) = f(x+a).$

We see this has inverse $f(x) \mapsto f(x-a)$. Since this is an isomorphism, we know it preserves irreducible. Hence, we need only choose a clever a, and show that $h_a(g(x))$ is irreducible.

For our a we choose 1, yielding $h_1(g) = (x+1)^4 + 1 = x^4 + 4x^3 + 6x^2 + 4x + 2$. Taking p = 2, we see the conditions of eisenstein hold hence this is irreducible. Taking the pullback h_{-1} yields $x^4 + 1 = g$ irreducible.

Taking the pullback h_{-1} yields $x^4 + 1 = g$ irreducible. As a final example, we take $\varphi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \ldots + x + 1$. Again, taking the isomorphism h_1 yields $h_1(\varphi_p) = \sum_{n=1}^p \binom{p}{n} x^{n-1}$. When n = 1, we see $p \mid \binom{p}{1} = p$ but $p^2 \nmid p$. Moreover, every other $\binom{p}{n}$ has $p \mid \binom{p}{n}$ except $p \nmid \binom{p}{p} = 1$. Hence applying eisenstein and the pullback h_{-1} yields the result.

Theorem 0.2. Suppose R and \overline{R} are both integral domains with $\alpha: R \to \overline{R}$ being a ring homomorphism. We know this extends to homomorphism

$$\overline{\alpha}: R[x] \longrightarrow \overline{R}[x]$$

$$f = \sum_{i=0}^{n} a_i x^i \longmapsto \sum_{i=0}^{n} f(a_i) x^i = \overline{f}.$$

If $f(x) \in R[x]$ with $\deg(f) = \deg(\overline{f})$ and \overline{f} being irreducible, then f has no nontrivial factorizations (no factorization f = gh with $\deg(g)$, $\deg(h) \ge 1$).

This theorem is generally used when $R = \mathbb{Z}$ and $\overline{\mathbb{R}} = \mathbb{Z}/p\mathbb{Z}$. The proof is omitted for now, so see Lang.

Example. If $f = x^5 + (2k+1) x^2 + (2\ell+1)$. Reducing mod 2 yields $\overline{f} = x^5 + x^2 + 1$. Clearly, there are no linear factors, hence as all partitions of 5 into 2 integers admit either a 1 or 2 we need only show there are no quadratic factors. Moreover, the quadratic factor must be irreducible (else it would admit a linear factor). The only four quadratic factors in $\mathbb{Z}/2\mathbb{Z}$ are $x^2, x^2 + 1, x^2 + x, x^2 + x + 1$. We know $x^2 = x \cdot x$, $x^2 + 1 = (x+1)^2$ over characteristic 2, $x^2 + x = x(x+1)$. Hence we need only see if $x^2 + x + 1$ is irreducible. This is a trivial fact to show, so we need only see if it divides the original polynomial. Performing long division yields remainder 1, so $x^2 + x + 1 \nmid x^5 + x^2 + 1$. Hence, as this

polynomial is irreducible over $\mathbb{Z}/2\mathbb{Z}$ applying the pullback yields the original family of polynomials to be irreducible. \diamond

1 Review of Ring Theory

Definition 1.1 (Rings). A Ring is a set and two operations, $+, \cdot$.

A **Unit** is an element with multiplicative inverse.

A **Field** is a commutative ring with all nonzero elements units.

An **Integral Domain** is a Ring with the zero product property.

A **Division Ring** is a noncommutative field.

A Ring Homomorphism respects + and \cdot .

An **Ideal** is a subset of R which is a subgroup under addition and has absorbtion property.

A Quotient Ring Is simply the set of additive cosets of a given ideal.

(X) is the smallest ideal containing the set X. Arbitrary elements are linear combinations of elements from X with elements from R.

A **Prime Ideal** has $xy \in P \Rightarrow x \in P$ or $y \in P$. Alternatively, R/P is an ID.

Maximal Ideals are maximal by containment. Equivalently R/I is a field $\Leftrightarrow I$ is maximal.

A **Principal Ideal** is generated by 1 element. $x \mid y$ if y = rx for $r \in R$.

Two elements are **Associate** if they are equal up to units.

A Principal Ideal Domain is an ID where all ideals are principal.

A Euclidean Domain is an ID with a norm and well defined division with remainders.

An element is **Prime** if $p \mid xy \Rightarrow p \mid x$ or $p \mid y$.

An element is **Irreducible** if $x = yz \Rightarrow y$ or z a unit.

A **Factorization** is an equivalence to a unit times a product of irreducibles.

A **UFD** is an ID with all nonzero elements having Unique factorization.

Proposition 1.1 (1st Isomorphism Theorem). A surjective homomorphism is an ideal.

Theorem 1.1. All maximal ideals are prime.

Proof. Maximal ideals induce a field, hence an integral domain, hence a prime ideal. $\hfill\Box$

Definition 1.2 (Zorn's Lemma). A non-empty partially ordered set with every totally ordered subset having an upper bound admits a maximal element.

Theorem 1.2. All proper ideals are contained in a maximal ideal.

Proof. Take set of all proper ideals containing I po'd by inclusion. It is nonempty

and the union of nested ideals is itself an ideal and it is an upper bound, hence there is a maximal element by zorn's lemma. \Box
Proposition 1.2. $x \mid y$ and $y \mid x$ iff $(x) = (y)$. If R is an integral domain, then x, y are associate.
Proposition 1.3. p prime implies (p) prime.
Theorem 1.3. If p irreducible, then (p) is maximal by inclusion among proper PI's.
<i>Proof.</i> If (p) is in a proper PI, then $p = rx$ implying r is a unit, so p, x are associate $\frac{1}{2}$.
Corollary 1. p irreducible implies (p) maximal.
Theorem 1.4. If R is an ID, then maximal among PI's implies irreducible.
<i>Proof.</i> If $p = xy$, then $p \in (x)$ and (y) , so $(y) = (p)$ or $(y) = R$. If $(y) = (p)$ then p, y are associate implying x a unit. Else $(y) = R$, so y is a unit.
Theorem 1.5. If R is an ID, prime implies irreducible.
<i>Proof.</i> If $p = xy$, then WLOG $x \in (p)$, so $x = rp$ hence $p = rpy$ implying y a unit.
Theorem 1.6. In a UFD, prime iff irreducible.
<i>Proof.</i> Let p be irreducible with $p \mid xy$. then $xy = rp$, so setting up factorization yields $r \operatorname{Fac}(x) \operatorname{Fac}(y) = rp$. Since its an ID, $p \in \operatorname{Fac}(x) \operatorname{WLOG}$, hence $p \mid x$ so p prime.