Help smitha_kannur ▼

Course <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

☆ Course / Unit 2 Nonlinear Classification, Linear regression, Collaborative Filtering (2 weeks) / Lecture 5. Linear Regression

Closed Form Solution

But we will not stop here.

We finished already the gradientbased algorithm.

Start of transcript. Skip to the end.

And now, I want to talk to you about closed form solution.

And it's actually very interesting.

Because for many, many algorithms

0:00 / 0:00

1.25x

in machine learning [INAUDIBLE] what ▼

Video Download video file **Transcripts** Download SubRip (.srt) file <u>Download Text (.txt) file</u>

Necessary and Sufficient Condition for a Solution

1/1 point (graded)

In the above video lecture, we verified the following result:

Computing the gradient of

$$R_{n}\left(heta
ight)=rac{1}{n}\sum_{t=1}^{n}rac{\left(y^{\left(t
ight)}- heta\cdot x^{\left(t
ight)}
ight)^{2}}{2},$$

we get

$$abla R_n\left(heta
ight) = A heta - b\left(=0
ight) \quad ext{where } A = rac{1}{n}\sum_{t=1}^n x^{(t)}{\left(x^{(t)}
ight)}^T, \, b = rac{1}{n}\sum_{t=1}^n y^{(t)}x^{(t)}.$$

Now, what is the necessary and sufficient condition that A heta - b = 0 has a unique solution?

 $\widehat{}$ None of A's entries is 0.

) A's dimension is the same as that of heta's

Solution:

For any square matrix A, $A\theta-b=0$ has a unique solution $\theta=A^{-1}b$ if and only if A is invertible.

Submit You have used 1 of 1 attempt

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 2 Nonlinear Classification, Linear regression, Collaborative Filtering (2 weeks):Lecture 5. Linear Regression / 6. Closed Form Solution

Add a Post

Previous	Next >

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

<u>г пуасу г опсу</u> Accessibility Policy <u>Trademark Policy</u> <u>Sitemap</u>

Connect

<u>Blog</u> Contact Us Help Center Media Kit **Donate**

© 2020 edX Inc. All rights reserved. 深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>