

3. Diziler

- ✓ Aynı isim altında, aynı türde birden fazla değer tutmak için kullanılan veri yapılarıdır.
- ✓ *Dizi* bir kümedir; aynı türde verilere tek bir isimle erişmek için kullanılır.
- ✓ Bir dizinin bütün elemanları bellekte ardışık olarak saklanır.
- ✓ Dizi elemanlarını birbirlerinden ayırt etmek için, dizi içindeki pozisyonları numaralandırılmıştır.
- ✓ Diziler bir veya daha çok boyutlu olabilirler.

3

3

3.1 Tek Boyutlu Diziler

- ✓ Bir grup sayısal değer ya da karakter veriyi içeren diziler tek boyutlu diziler olarak tanımlanır.
- ✓ Tek boyutlu diziler, tür dizi_adı [boyut], biçiminde tanımlanır.
 - *tür* Dizinin içerdiği değerlerin veri türü. Aynen değişken türlerinin tanımlandığı biçimde kullanılır.
 - dizi_adı Dizinin mutlaka bir adı olmalıdır. Program içinde dizinin tüm elemanları bu ortak isim ile temsil edilir.
 - boyut Dizinin elemenları için bellekte ayrılacak yeri belirler. Ayrılan yerin tümüyle dolması gerekmez. Örneğin 10 elemanlık bir boyuta sahip dizinin 3 elemanı olabilir.

4

Δ

3.1 Tek Boyutlu Diziler

Tek Boyutlu Dizilere Değer Atanması

✓ Bir dizi doğal olarak bazı veriler içerecektir.

✓ Bu değerler çoğunlukla program içinde belirli hesaplamalar sonucunda elde edilir.

✓ Bazı durumlarda atama yoluyla dizinin içi doldurulur.

Bazı durumlarda atama yoluyla dizinin içi doldurulur.

Jekil 3.2: Dizinin içi başlangıç değerler ile dolduruluyor.

8

Sekil 3.2: Dizinin içi başlangıç değerler ile dolduruluyor.

3.1 Tek Boyutlu Diziler

Tek Boyutlu Dizilere Değer Atanması

- ✓ Bir diziye başlangıç değeri vermek için, ilgili değişkene o değer doğrudan atanır.
- ✓ a[0]=2;
 - >dizinin 0 no'lu (ilk) elemanına 2 değerini ata.
- \checkmark a[2]=a[4]+3;
 - dizinin 2 nolu elemanına 4 nolu elemanının 3 fazlasını ata.
- ✓ for(i=0;i<6;i++)</pre>
 - a[i] = 0;
 - >0'dan 6'ya kadar dizinin elemanına 0 değerini ata.

9

9

3.1 Tek Boyutlu Diziler

Tek Boyutlu Dizilere Değer Atanması

DİKKAT

Aşağıdaki iki ifade birbirine eşit değildir.

a[i] +1 ve **a[i+1]**

Dizinin i no'lu indisindeki elemanın bir fazlası anlamına gelir.

Dizinin i'nin bir fazlası indisindeki elemanı anlamına gelir.

10

3.1 Tek Boyutlu Diziler

Tek Boyutlu Dizilere Değer Atanması

- ✓ Diziye aynı anda birden fazla değer atanabilir.
- ✓ Bunun için söz konusu değerler { } işaretleri arasında yazılır doğal olarak bazı veriler içerecektir.
 - a[5]={2,7,0,3,9}
- ✓ Küme işaretleri içerisine dizinin eleman sayısından daha fazla eleman yazıldığında bir <u>yazım hatası ortaya</u> çıkar.
- ✓ Eleman sayısından daha az eleman yazıldığında ise, diğer elemanlar otomatik olarak <u>sıfır</u> değerini alır.

11

11

3.1 Tek Boyutlu Diziler

Tek Boyutlu Dizilere Değer Atanması

- ✓ İlk değer ataması yapılmayan dizilerin elemanları hafızadaki rasgele değerlerden oluşur.
- √ İlk değer ataması yapıldığında eleman sayısını yazma zorunluluğu yoktur. Ne kadar eleman yazılmışsa, eleman sayısı o kadar olur.

int a	[5]={4,5};	int a	[5]={0	}; int a	int a[]={4,5,3};			
	a		a		a	a		
a[0]	4	a[0]	0	a[0]	Rastgele	a[0]	4	
a[1]	5	a[1]	0	a[1]	Rastgele	a[1]	5	
a[2]	0	a[2]	0	a[2]	Rastgele	a[2]	3	
a[3]	0	a[3]	0	a[3]	Rastgele			
a[4]	0	a[4]	0	a[4]	Rastgele	14.79	0.50	

12

BTEP 102 – Veri Y

	3.1 Tek Boy Örnek	yutlu Diziler	
	KOD 3.5 Klavyeden girilen 5 adet tamsayıyı, giriş sırasının tersinden ekrana yazan C programı	Sonuç	
	#include <stdio.h></stdio.h>	5 adet sayı giriniz:	
	int main()	7	
	{	16	
па	int n[5], i;	3	
mlan	printf("5 adet sayı giriniz\n");	6	
ogra	for (i=0; i<5; i++)	5	
ve Pi	scanf("%d", &n[i]);	Girilen sayılar (sondan başa):	
ıları	printf("Girirlen sayılar (sondan başa): \n");	5	
BTEP 102 – Veri Yapıları ve Programlama	for (i=4; i>=0; i)	6	
-Ver	printf("%d\n", n[i]);	3	
102	return 0;	16	
3TEP	}	7	
-			16

3.1 Tek Boyutlu Diziler

Tek Boyutlu Dizilere Değer Atanması

ÖRNEK: Klavyeden girilen 10 adet tamsayı sınav notuna göre, ortalamanın üstünde olanları ekrana yazan C programı...

- ✓ Bu problem çözülürken öncelikle ortalamanın bulunması gereklidir.
- ✓ Ortalamanın bulunabilmesi için bütün notların toplamı alınacak ve not adedine bölünecektir.
- ✓ Bu noktadan sonra daha önceden girilmiş notların her biri sıra ile ortalamayla karşılaştırılacak büyük olanlar ekrana yazdırılacaktır.
- ✓ Çözümde dizi kullanılmayacak olsaydı, 20 ayrı değişkene ihtiyaç duyulacaktı.
- ✓ Çünkü, girilen her bir değere klavyeden girme işlemi bittikten sonra tekrar ulaşmak gerekecektir.

18

18

BTEP 102 – Veri Yapıları ve Programl

3.2 Çok Boyutlu Diziler

- ✓ Birden fazla indeks numarası ile elemanlarına ulaşılan dizilere çok boyutlu diziler denir.
- ✓ C dilindeki dizilerin boyutları ikiden de fazla olabilir. Bir sınır olmamakla beraber en az 12 boyuta kadar destekler.
- ✓ Çok boyutlu bir dizi şu şekilde tanımlanmaktadır;
 - Tür dizi_adı [boyut1] [boyut2]..

20


```
#Include <stdio.h>

Char a[3] [3] = {1,2,3,4,5,6,7,8,9}; int i,j;

main() {
    for (j=0; j<3; j++) {
        printf(" %d", a[i] [j] );
        }
    printf("\n");
    }

printf("\n");
    }
}
```



```
3.2 Çok Boyutlu Diziler
            KOD 3.10 İki Boyutlu Dizinin Oluşturulması ve Görüntülenmesi
                                                                                    Sonuç
            #include <stdio.h>
                                                                                       0 0 0
            char katar [4] [3];
            int i,j;
            main()
BTEP 102 – Veri Yapıları ve Programli
               for (i=0; i<3; i++) /* Katarın içi dolduruluyor */
                   for (j=0; j<4; j++)
                      katar[i] [j]=i*j;
                  for (i=0; i<3; i++) /* Katar Yazdırılıyor */
                     for (j=0; j<4; j++)
                         printf(" %d", katar[i] [j] );
                         printf("\n");
                                                                                                                24
```


- ✓ Karakterlerin gruplanması ile oluşturulmuş veri yapılarına katar (string) adı verilir.
- ✓ C dilinde karakterler tek tırnak arasına alınmış ifadelerdir.
 - 'r'
 - **-** 's
- ✓ Karakter serileri, rakamları, harfleri, özel karakterleri içerebilir.
- ✓ C dilinde katar (string) ifadeleri çift tırnak (" ") arasında gösterilirler.

• "Raygan Kansoy" (ad soyad)

• "BTEP102" (ders kodu)

• "0533 333 33 33" (telefon numarası)

25

25

3.3 Katar Dizileri

- ✓ Katarlar, karakterlerden oluşan normal bir boyutlu dizi olarak değerlendirilir.
- ✓ Bir katar, boşluk (NULL) ile veya bir başka deyişle '\0' karakteri ile son bulan bir karakter dizisi olarak kabul edilir.
- ✓ Hafızada tutulan bir katara ilk karakterinin adresi ile erişilir.
- √ Başlangıç adresinden '\0' karakterine kadar olan bölgede, katarın kendisi vardır.

26

- ✓ C dilinde katar dizileri şu şekilde tanımlanır;
 - char <u>katar_adı</u> [<u>katarın_boyutu</u>];
- ✓ Herzaman katarın en son karakteri NULL olacağından, n boyutlu bir katara n+1 boyutluk yer ayırtmak gerekir.
- ✓ Örnek;
 - char isim[14]=('r', 'a', 'y', 'g', 'a', 'n', ' ', 'k', 'a', 'n', 's', 'o', 'y', '\0');
 - char isim[14]="raygan kansoy";

													14
ʻr'	'a'	ʻy'	ʻg'	'a'	ʻn'	"	'k'	'a'	ʻn'	's'	ʻo'	'y'	' \0'

27

27

BTEP 102 – Veri Yapıları ve Programl

3.3 Katar Dizileri

- ✓ Elemanları katar olan diziler tanımlamak mümkündür.
 - char dizininadı[eleman_sayısı][katar_uzunluğu];
- ✓ Örneğin en uzunu 7 karakter olan 5 farklı isim bir çatı altında şöyle toplanabilir:
 - char isim[5][8] = { "Semra", "Mustafa", "Ceyhun", "Asli", "Leyla" };

	S0	S 1	S2	S 3	S4	S5	S6	S7
S0	'S'	'E'	'M'	'R'	'A'	' \0'		
S 1	'M'	'U'	'S'	'T'	'A'	'F'	'A'	' \0'
S2	'C'	'E'	'Y'	'H'	'U'	'N'	' \0'	
s3	'A'	'S'	'Ľ'	T'	' \0'			
S4	'L'	'E'	'Y'	'L'	'A'	' \0'		

28

EP 102 - Veri Yapıları ve Pro

3.3.1 Katarlar Üzerinde İşlem Yapan G/Ç Fonksiyonları

- √ Standart Giriş Çıkış Fonksiyonları
 - printf() ve scanf()
- √ Formatsız Giriş ve Çıkış Fonksiyonları
 - gets(); klavyeden girilen bir stringi bir değişkene aktarır.
 - puts(); bir stringi ekrana yazar.
 - getchar (); klavyeden bir karakter okur ve enter tuşuna basılmasını bekler.
 - putchar(); ekrana bir karakter yazar.

29

29

3.3 Katar Dizileri

printf() ve scanf()

- ✓ printf() ve scanf() fonksiyonlar diğer tiplerde olduğu gibi formatlı okuma/yazma amaçlı kullanılır.
- √ String formati %s dir.
- ✓ Katarlara değer atarken ya da katarlardan değer okurken, sadece katar adını yazmak yeterlidir. Yani **scanf()** fonksiyonu içersine & işareti koymak gerekmez.
- √ scanf(), katarın ilk adresinden başlayarak aşağıya doğru harfleri tek tek ataması gerektiğini bilir.
- ✓ Katar girilirken, scanf fonksiyonu, boşluk, tab, enter karakterlerini dizgi sonu olarak algılar.

30

3.3 Katar Dizileri

puts() ve gets()

- ✓ gets() fonksiyonu bir katara değer atamak için kullanılır.
- ✓ puts() fonksiyonu ise, bir katarın içeriğini ekrana yazdırmaya yarar.
- ✓ gets() atayacağı değerin ayrımını yapabilmek için '\n' aramaktadır. Yani klavyeden Enter'a basılana kadar girilen her şeyi, tek bir katara atayacaktır.
- ✓ puts() fonksiyonuysa, printf() ile benzer çalışır. Boş karakter (NULL Character) yani '\0' ulaşana kadar katarı yazdırır; printf() fonksiyonundan farklı olarak sonuna '\n' koyarak bir alt satıra geçer.
- ✓ Birden fazla kelimeden oluşan ve boşluk içeren cümleler için gets() ve puts() fonksiyonları kullanılmaktadır.

34

34

BTEP 102 – Veri Yapıları ve Programl


```
#Include<stdio.h>

main()

char ad[10],soyad[20];

printf("ADI:");

gets(ad);

printf("SOYADI:");

gets(soyad);

printf("%c. %s",ad[0],soyad);

}

3.3 Katar Dizileri

puts() ve gets()

KOD 3.16 Bir Katarın İlk Karakterini Yazdırma

#include<stdio.h>

main()

char ad[10],soyad[20];

printf("SOYADI:");

gets(soyad);

printf("%c. %s",ad[0],soyad);

}
```


3.3 Katar Dizileri

3.3.2 Bazı Katar Fonksiyonları

- ✓ Bu fonksiyonlar standart C'de iki katarı karşılaştırmak, bir katarın içeriğini diğerine kopyalamak, katarın uzunluğunu bulmak vb işlemler için tanımlı fonksiyonlardır.
- ✓ Bu fonkisyonlar, string kütüphanesinde bulunmaktadır. Bu yüzden, bu fonksiyonların kullanılacağı programların başına, #include<string.h> eklenmesi gerekir.

38

Katar Kopyalama: strcpy()

- ✓ Bir dizgi içine C programı içinde belirli bir katar yerleştirilmesi işlemi geleneksel yollarla yapılamaz.
- ✓ Örneğin, aşağıdaki şekilde bir tanım hatalıdır. Çünkü bu atama göstergeye yapılan atamadır. (Göstergelerin ne olduğu bir sonraki bölümde ayrıntılı olarak ele alınacaktır)
 - char katar[50]; katar="abcde";
- Atamanın bir katara yapılabilmesi için, C'nin standart strcpy() fonksiyonu kullanılır.
- ✓ Bu fonksiyon şu şekilde tanımlanmaktadır;
 - strcpy(katar, "karakter ifade");
- ✓ strcpy() fonksiyonu, program içinde tırnak işaretleri arasında tanımlanmış katarın herbir karakterini, bir dizinin hücreleri içine tek tek yerleştirir.

39

39

```
3.3 Katar Dizileri
                   Katar Kopyalama: strcpy()
                                                                                   Sonuç:
       KOD 3.18 Katar Kopyalama İşlemi
       #include<stdio.h>
       #include<string.h>
                                                                                   a
       main()
                                                                                   z
                                                                                   a
           char katar[50];
          int i;
BTEP 102 – Veri Yapıları ve Program
          strcpy(katar, "Kazakistan");
          for(i=0; katar[i]; i++); \ /* \ kosul \ katar[i]!=\0' \ anlamindadir*/printf(" \ %c \ n", \ katar[i]);
                                                                                                 40
```


- ✓ İki katarın birleştirilerek tek bir katar haline dönüştürülmesi söz konusu ise C'nin **strcat()** fonksiyonu kullanılır.
- ✓ Bu fonksiyon şu şekilde tanımlanmaktadır;
 - strcat(<u>katar1</u>, <u>katar2</u>);
- ✓ Bu fonksiyon, var olan bir katarın sonuna bir başka katarı ekleyecektir.
- ✓ Yukarıdaki tanıma göre, katar1'in sonuna eklenecektir.
- ✓ Örneğin "abc" katarının sonuna "def" katarı strcat() fonksiyonu kullanılarak eklenebilir.

41

**Strcmp()* **Atarların Karşılaştırılması: strcmp() **Iki katarın birbirleriyle karşılaştırılarak, içerdiği karakterlerin aynı olup olmadıkları strcmp() fonksiyonu ile test edilir. **Bu fonksiyon şu şekilde tanımlanmaktadır; **strcmp(katar1, katar2); **Bu karşılaştırma sonucunda; **her iki katar birbirinin aynı ise, geriye "0", **ilk katar alfabetik olarak ikinciden büyükse, geriye pozitif, **ikinci katar birinciden büyükse, geriye negatif değer döner. **44

Strlen() fonksiyonu bir katarın uzunluğunu, yani kaç karakter içerdiğini elde etmek için kullanılır. ✓ Bu fonksiyon şu şekilde tanımlanmaktadır; • strlen(katar); ✓ Katarın uzunluğu bulunurken, içerdiği en son karakter olan NULL karakteri göz özüne alınmaz. ✓ Örneğin, katar "abc" değerlerini içeriyorsa, strlen() fonksiyonu bu katar için "3" değerini döndürür.


```
3.3 Katar Dizileri

Katarların Uzunluğunu Bulmak: strlen()

KOD 3.24 Klavyeden Girilen Katarın Uzunluğunun Bulunması

# include <stdio.h>
# include <string.h>

main()
{
    char ktr[100];
    puts("Birseyler yazin:");
    gets(ktr);
    printf("%s %d karakterden oluşmuştur.",ktr,strlen(ktr));
}

50
```



```
# include <stdio.h>
# include <string.h>

int main()
{
    char ad[30], soyad[20];
    char isim_soyad[50];
    printf( "Ad ve soyadınızı giriniz> " );
    scanf( "%s%s", ad, soyad );
    strcat( isim_soyad, ad );
    strcat( isim_soyad, " " );
    strcat( isim_soyad, soyad );
    printf( "Tam İsim: %s\n", isim_soyad );

return 0;
}
```

