Année universitaire 2021/2022 Master I: Math.Appli & Stat Module : Analyse de données

Hom work 02 - Corrigé Exo 02

Exercice 01:

On désire effectuer l'AFC du tableau K suivant

	$I \backslash J$							
; :	$egin{array}{c} lpha \ eta \end{array}$	1	0	0	0	1	1	1
	β	0	1	0	1	0	1	1
	γ	0	0	1	1	1	0	

- 1. Calculer les poids associés aux profils des lignes α , β et γ , ainsi que le carré de la distance (du Khi-deux) entre α et β , β et γ , α et γ .
- 2. En déduire que les deux valeurs propres non triviales λ_1 et λ_2 issues de l'AFC de K, ont la même valeur que l'on notera par la suite λ .
- 3. En déduire que le centre de gravité g_J , que l'on précisera, est à égale distance des profils de α , β et γ .
- 4. Calculer la valeur de l'inertie totale I_T et en déduire la valeur de λ .
- 5. Calculer les poids des sept éléments de J, ainsi que le carré de la distance (du Khi-deux) entre A et B, B et C, C et A.
- 6. Montrer que le centre de gravité du nuage N(J) est égal au profil de la colonne G.
- 7. Représentation du nuage N (J):
 - 1. En considérant le plan engendré par les trois points A, B, C, placer les trois points A, B, C, puis situer les quatre autres points D, E, F et G par rapport à A, B, C.
 - 2. Placer sur le graphique le point α centre de gravité des quatre points A, E, F, G affectés tous les quatre de la masse 1.
 - 3.Donner la valeur numérique du rapport $\frac{d(G,\alpha)}{d(G,A)}$, où $d(G,\alpha)$ (resp. d(G,A)) désigne la distance du Khi-deux entre G et α (resp. G et A).

Exercice 02: On considere le tableau K suivant où a est un entier non nul:

I/J	j_1	j_2	j_3	j_4	j_5
i_1	a	a	a	0	0
i_2	a	a	0	a	0
i_3	0	a	0	a	a

On pose $I = \{i_1, i_2, i_3\}etJ = \{j_1, j_2, j_3, j_4, j_5\}$:

On effectue l'analyse factorielle des correspondances (AFC) de K.

- 1. Determiner les centres de gravité des nuages N(I) et N(J). On obtient $g(I) = (1/3 \ 1/3 \ 1/3)'$ et $g(J) = \frac{1}{0}(2 \ 3 \ 1 \ 2 \ 1)'$
- 2. Determiner la matrice des profils colonnes F_1 ainsi que la matrice des profils lignes F_2 de K.

$$F_{1} = \frac{1}{6} \begin{pmatrix} 3 & 2 & 6 & 0 & 0 \\ 3 & 2 & 0 & 3 & 0 \\ 0 & 2 & 0 & 3 & 6 \end{pmatrix} et F_{2} == \frac{1}{3} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

3. calculer le produit F_1F_2

$$F_1 F_2 = \frac{1}{18} \left(\begin{array}{ccc} 11 & 5 & 2 \\ 5 & 8 & 5 \\ 2 & 5 & 11 \end{array} \right)$$

- 4. Quel est l'influence du reel a sur l'AFC de ce tableau ?

 Aucune puisque les individus des nuages ne dependent pas de à ainsi que les poids et les metriques.
- 5. Quel est l'axe factoriel trivial, a quelle valeur propre est-il associé? u(I) est le vecteur propre de F1F2 associe à la valeur propre triviale 1.
- 6. Quelle est l'inertie du nuage N(J) ? L'inertie du nuage N(J) est la trace de F_1F_2 moins 1 donc 30/18 - 1 = 2/3.
- 7. On pose

$$w_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $w_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ Montrer que w_1 et w_2 sont des vecteurs propres de F_1F_2 ,

en deduire les axes factoriels t'non triviaux u_1 et u_2 ainsi que les valeurs propres associees. On choisira u_1 de maniere 'que la premiere coordonnée soit positive, de meme pour u_2 .

On verifie que $F_1F_2w_1 = \frac{1}{2}w_1$ et $F_1F_2w_2 = \frac{1}{6}w_2$. Or la norme de w_1 pour la metrique $D_r^{-1} = (f_i(i))^{-1} = 3I_3$ est donc le premier axe factoriel u_1 associe à la valeur propre $\lambda_1 = 1/2$ est $u_1 = \frac{1}{\sqrt{6}}w_1$ et le deuxieme axe factoriel u_2 associe a la valeur propre $\lambda_2 = 1/6$ est $u_2 = \frac{1}{3\sqrt{2}}w_2$.

8. On note $\varphi_{\alpha}(i)$ l'abscisse de la projection du profil de la ligne i sur le α eme axe factoriel.

	I/J	φ_1	φ_2	φ_3
' Remplir le tableau suivant avec la contrainte $\varphi_{\alpha}(i) \geq 0$	i_1			
Temphi ie tableau survani avec la contramic $\varphi_{\alpha}(t) \geq 0$	i_2			
	i_3			

 φ_{α} est une composante principale du nuage N(I) donc à est un vecteur propre de F2'F1'. Or on remarque que la matrice F_1F_2 est symetrique donc $F2'F1'=F_1F_2$, on a les meme

2

vecteurs propres w_1 et w_2 que l'on normalise avec la metrique $D_r^{-1} = (f_i)^{-1} = 1/3I_3$.

Donc
$$\varphi_1 = \frac{\sqrt{3}}{2}w_1$$
 et $\varphi_2 = \frac{\sqrt{3}}{6}w_2$.
$$\begin{vmatrix} I/J & \varphi_1 & \varphi_2 & \varphi_3 \\ i_1 & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{6} & 0 \\ i_2 & 0 & \frac{-2\sqrt{3}}{6} & 0 \\ i_3 & \frac{-\sqrt{3}}{2} & \frac{\sqrt{3}}{6} & 0 \end{vmatrix}$$

9. On note ψ_{α}^{j} l'abscisse de la projection du profil de la colonne j sur le α eme axe factoriel. 'En utilisant les formules de transition, completer le tableau suivant

I/J	j_1	j_2	j_3	j_4	j_5
ψ_1	$\frac{\sqrt{6}}{4}$	0	$\frac{2\sqrt{6}}{4}$	$\frac{-\sqrt{6}}{4}$	$\frac{-2\sqrt{6}}{4}$
ψ_2	$\frac{-\sqrt{2}}{4}$	0	$\frac{2\sqrt{2}}{4}$	$\frac{-\sqrt{2}}{4}$	$\frac{2\sqrt{2}}{4}$

Avec les formules de transition on a $\psi_1 = \sqrt{2}F_1'\varphi_1$ et $\psi_2 = \sqrt{6}F_1'\varphi_2$.

- 10. Representer les deux nuages N(I) et N(J) simultanement dans le plan factoriel 1-2.
- 11. Calculer la contribution de i_1 a chacun des axes factoriels non triviaux ainsi que la qualité de representation de i_1 dans le plan factoriel 1-2 c'est-a-dire $COR_1(i_1) + COR_2(i_1)$.

On a $CTR_1(i_1)=\frac{1}{3}\frac{3/4}{1/2}=1/2$ et $CTR_2(i_1)=\frac{1}{3}\frac{3/36}{1/6}=1/6$. Comme il n'y a que deux axes non triviaux , la qualite de representation de i_1 dans le plan factoriel 1-2 est 1.

Exercice 03: