Machine Learning for Graphs and Sequential Data Exercise Sheet 04 Robustness of Machine Learning Models I

Problem 1: Suppose we have a trained binary logistic regression classifier with weight vector $\boldsymbol{w} \in \mathbb{R}^d$ and bias $b \in \mathbb{R}$. Given a sample $\boldsymbol{x} \in \mathbb{R}^d$ we want to construct an adversarial example via gradient descent on the binary cross entropy loss:

$$\mathcal{L}(\boldsymbol{x}, y) = -y \log(\sigma(z)) - (1 - y) \log(1 - \sigma(z)),$$

where $\sigma(z) = \frac{1}{1+e^{-z}}$ is the logistic sigmoid function, $z = \boldsymbol{w}^T \boldsymbol{x} + b$, and $y \in \{0,1\}$ is the class label of the sample at hand.

a) Derive the gradient $\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, y)$. How do you interpret the result?

Hint: You may use the relation $1 - \sigma(z) = \sigma(-z)$.

$$\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, y) = \frac{-y}{\sigma(z)} \frac{\partial \sigma(z)}{\partial z} \nabla_{\boldsymbol{x}} z - \frac{1 - y}{\sigma(-z)} \frac{\partial \sigma(-z)}{\partial z} \nabla_{\boldsymbol{x}} z$$
$$= \frac{-y}{\sigma(z)} \sigma(z) \sigma(-z) \boldsymbol{w} + \frac{1 - y}{\sigma(-z)} \sigma(-z) \sigma(z) \boldsymbol{w}$$
$$= -y \sigma(-z) \boldsymbol{w} + (1 - y) \sigma(z) \boldsymbol{w}$$

The gradient is orthogonal to the decision boundary and points in the direction of the wrong class, depending on y.

b) Provide a closed-form expression for the worst-case perturbed instance \tilde{x}^* (measured by the loss \mathcal{L}) for the perturbation set $\mathcal{P}(x) = {\{\tilde{x} : ||\tilde{x} - x||_2 \le \epsilon\}}$, i.e.

$$\tilde{\boldsymbol{x}}^* = \underset{\|\tilde{\boldsymbol{x}} - \boldsymbol{x}\|_2 \le \epsilon}{\operatorname{arg max}} \ \mathcal{L}(\tilde{\boldsymbol{x}}, y)$$

Since the loss is convex w.r.t. the data, taking a gradient step of magnitude ϵ towards the wrong class will result in the maximum increase in loss:

$$\tilde{x}^* = x - \epsilon \frac{w}{\|w\|_2} \text{ if } y = 1$$

$$\tilde{x}^* = x + \epsilon \frac{w}{\|w\|_2} \text{ if } y = 0$$

c) What is the smallest value of ϵ for which the sample \boldsymbol{x} is misclassified (assuming it was correctly classified before)?

For the sample to change classification we need to have $\sigma(z) = 0.5 \Leftrightarrow \boldsymbol{w}^T \tilde{\boldsymbol{x}} + b = 0$. Plugging in the perturbation we get for y = 1:

$$\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\epsilon \frac{\mathbf{w}}{\|\mathbf{w}\|_{2}} + b = 0$$
$$\mathbf{w}^{T}\mathbf{x} - \epsilon\|\mathbf{w}\|_{2} + b = 0$$
$$\frac{1}{\|\mathbf{w}\|_{2}}(\mathbf{w}^{T}\mathbf{x} + b) = \epsilon$$

Thus, for a misclassification we need $\epsilon > \frac{1}{\|\boldsymbol{w}\|_2} (\boldsymbol{w}^T \boldsymbol{x} + b)$.

Analogously for y = 0 we obtain $\epsilon > \frac{1}{\|\boldsymbol{w}\|_2}(-\boldsymbol{w}^T\boldsymbol{x} - b)$

d) We would now like to perform adversarial training. Provide a closed-form expression of the worst-case loss

$$\hat{\mathcal{L}}(\boldsymbol{x}, y) = \max_{\|\tilde{\boldsymbol{x}} - \boldsymbol{x}\|_2 \le \epsilon} \mathcal{L}(\tilde{\boldsymbol{x}}, y)$$

as a function of x and w. How do you interpret the results?

$$\begin{split} \hat{\mathcal{L}}(\boldsymbol{x}, y) &= \max_{\|\tilde{\boldsymbol{x}} - \boldsymbol{x}\|_2 \le \epsilon} \mathcal{L}(\tilde{\boldsymbol{x}}, y) \\ &= \mathcal{L}(\tilde{\boldsymbol{x}}^*, y) \\ &= -y \log(\sigma(\boldsymbol{w}^T \boldsymbol{x} - \epsilon \frac{\boldsymbol{w}^T \boldsymbol{w}}{\|\boldsymbol{w}\|_2} + b)) - (1 - y) \log(\sigma(-\boldsymbol{w}^T \boldsymbol{x} - \epsilon \frac{\boldsymbol{w}^T \boldsymbol{w}}{\|\boldsymbol{w}\|_2} - b)) \\ &= -y \log(\sigma(\boldsymbol{w}^T \boldsymbol{x} - \epsilon \|\boldsymbol{w}\|_2 + b)) - (1 - y) \log(\sigma(-\boldsymbol{w}^T \boldsymbol{x} - \epsilon \|\boldsymbol{w}\|_2 - b)) \end{split}$$

Consider the case y=1 (y=0 follows symmetrically). The input to the sigmoid function is shifted to the left (i.e. negative direction) by $\epsilon \| \boldsymbol{w} \|_2$, reducing the predicted probability of the sample \boldsymbol{x} belonging to class 1. Thus, only if $\boldsymbol{w}^T x + b \geq \epsilon \| \boldsymbol{w} \|_2$ the sample will be classified as belonging to class 1. We can interpret this as trying to enforce that each sample has at least a distance of $\epsilon \| \boldsymbol{w} \|_2$ to the decision boundary. Moreover, this margin is proportional to the norm of the weight vector, so simply increasing the norm of \boldsymbol{w} does not lead to the desired outcome, since we can move $\epsilon \| \boldsymbol{w} \|_2$ units towards the decision boundary for a unit norm change on the sample \boldsymbol{x} . Note that, in contrast to support vector machines (SVMs), even when the samples have a margin of at least $\epsilon \| \boldsymbol{w} \|_2$ to the decision boundary, we have non-zero loss and continue training.

Problem 2: In the lecture on exact certification of neural network robustness we have considered K-1 optimization problems (one for each incorrect class) of the form (c.f. slide 42):

$$m_t^* = \min_{\tilde{\boldsymbol{x}}, \boldsymbol{y}^{(l)}, \hat{\boldsymbol{x}}^{(l)}, \boldsymbol{a}^{(l)}} [\hat{\boldsymbol{x}}^{(L)}]_{c^*} - [\hat{\boldsymbol{x}}^{(L)}]_t$$
 subject to MILP constraints.

That is, for each class $t \neq c^*$, we optimize for the **worst-case margin** m_t^* , and conclude that the classifier is robust if and only if

$$\min_{t \neq c^*} m_t^* \ge 0.$$

However, we can equivalently solve the following single optimization problem:

$$m^* = \min_{\hat{\boldsymbol{x}}, \boldsymbol{y}^{(l)}, \hat{\boldsymbol{x}}^{(l)}, \boldsymbol{a}^{(l)}} \left([\hat{\boldsymbol{x}}^{(L)}]_{c^*} - y \right) \quad \text{subject to } y = \max_{t \neq c^*} [\hat{\boldsymbol{x}}^{(L)}]_t \land \text{MILP constraints},$$

where we have introduced a new variable y into the objective function.

Express the equality constraint

$$y = \max(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_{K-1})$$

using only linear and integer constraints. To simplify notation, here $x_k \in \mathbb{R}$ denotes the logit corresponding to the k-th incorrect class, and l_k and u_k its corresponding lower and upper bound.

Hint: You might want to introduce binary variables to indicate which logit is the maximum.

We first define $u_{max} := \max_k u_k$, i.e. the largest upper bound.

Now we introduce the following constraints:

$$y \le x_k + (1 - b_k)(u_{max} - l_k) \qquad \forall 1 \le k \le K - 1 \tag{1}$$

$$y \ge \boldsymbol{x}_i \tag{2}$$

$$\boldsymbol{b}_k \in \{0, 1\} \qquad \forall 1 \le k \le K - 1 \tag{3}$$

$$\sum_{k=1}^{K-1} \boldsymbol{b}_k = 1 \tag{4}$$

The last constraint (4) simply ensures that only one element in b is 1 and all others are zero.

The only valid assignment of \boldsymbol{b} is to have $\boldsymbol{b}_k = 1$ for the (unique) maximum value $\boldsymbol{x}_k = \max(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_{K-1})$. To see this, consider the case that $\boldsymbol{b}_k = 1$ but \boldsymbol{x}_k is not the maximum value. Then, (1) resolves to $y \leq \boldsymbol{x}_k$. However, for the maximum value $\boldsymbol{x}_{max} > \boldsymbol{x}_k$ we have from (2) $y \geq \boldsymbol{x}_{max}$, leads to a contradiction.

Consider the case $b_k = 1$ and the corresponding value x_k is indeed the (unique) maximum. (1) and (2) imply that $y = x_k$. The remaining values b_i are zero, and in this case we need to show that (1) and (2) are never binding, regardless of the values x_i . (2) is not binding since x_i is not the maximum value. (1) is not binding because we have that $x_i + u_{max} - l_i \ge u_{max} \ge y$.