Complemento a la Base y Complemento a la Base menos uno

Dado un número N en base b con parte entera de n dígitos, se define el complemento a b de N como ($b^n - N$) para todo $N \neq 0$.

El complemento así definido se denomina complemento a la base o complemento verdadero.

El <u>complemento a la base menos uno</u> o <u>complemento restringido</u> se obtiene restando uno al complemento a la base.

<u>Propiedad</u>: El complemento del complemento deja al número en su valor original:

El complemento a **b** de **N** es ($\mathbf{b}^n - \mathbf{N}$), donde $\mathbf{n} = \mathbf{c}$ antidad de dígitos de N, y el complemento de ($\mathbf{b}^n - \mathbf{N}$) será: $\mathbf{b}^n - (\mathbf{b}^n - \mathbf{N}) = \mathbf{N}$.

Resta con complemento a la base:

Para restar dos números positivos (M - N), donde M = minuendo y N = sustraendo, operamos de la siguiente manera:

- 1°) Se halla el complemento a la base del sustraendo (N): N'= bⁿ N
- 2°) Se suma el minuendo (M) al complemento a la base de N (N'): P = M + N'
- 3º) Se inspecciona el resultado (P) obtenido en 2º), donde k = cantidad de dígitos de P:
 - a) Si el resultado (P) tiene un dígito más que los datos (k >n), se descarta el dígito de mayor valor relativo, y el valor que queda es el que corresponde a la resta (D):

$$D = M - N$$
.

Ejemplo:
$$M = \underbrace{1010111}_{}$$
; $N = \underbrace{1001001}_{}$; $D = M - N =$? $n = 7$

1°)
$$N' = b^7 - N = 10000000 - 1001001 = 110111$$

Como k > n (8>7), se quita el dígito de desbordamiento, por lo tanto:

$$D = 0001110$$
 o bien, $D = 1110$.

Podemos observar que, en este caso, el minuendo es mayor que el sustraendo (M > N).

b) Si el resultado (P) no tiene dígito de desbordamiento (k = n), se halla el complemento a la base de P (P'), y se agrega a ese valor el signo menos, es decir: **D = - P'.**

Ejemplo:
$$M = 10010$$
; $N = 11011$; $D = M - N = 2$?

1°)
$$N' = b^5 - N = 100000 - 11011 = 00101$$

Como k = n = 5, hallamos el complemento a la base de P:

$$P' = 100000 - 10111 = 001001$$
, entonces **D = - P' = - 001001 o bien, D =-1001**

Podemos observar que, en este caso, el minuendo es menor que el sustraendo (M < N).

Resta con complemento a la base menos uno:

Según lo definido, si $N' = b^n - N$, entonces el complemento a la base menos uno será:

$$N'' = N' - 1 = (b^n - N) - 1 = (b^n - 1) - N$$

O bien, sustituimos los ceros por uno y los unos por cero en el valor numérico del cual hallamos el complemento.

Para restar dos números positivos (M - N), donde M = minuendo y N = sustraendo, operamos de la siguiente manera:

- 1º) Se halla el complemento a la base menos uno del sustraendo (N): N'= (bⁿ- N) 1
- 2°) Se suma el minuendo (M) al complemento a la base menos uno de N (N´´): P = M + N´´
- 3º) Se inspecciona el resultado (P) obtenido en 2º), donde k = cantidad de dígitos de P:
 - a) Si el resultado (P) tiene un dígito más que los datos (k >n), es decir, tiene un dígito de desbordamiento, se descarta el dígito de mayor valor relativo, y se suma uno al valor obtenido, el resultado de esa suma es la diferencia D:

Ejemplo:
$$M = 1010111$$
, ; $N = 1001001$, ; $D = M - N =$?

Como k > n, quitamos el dígito de mayor peso relativo y lo sumamos.

Por lo tanto **D** = **0001110** o bien, **D** = **1110**.

Podemos observar que, en este caso, el minuendo es mayor que el sustraendo (M > N).

b) Si el resultado (P) no tiene dígito de desbordamiento (k = n), se halla el complemento a la base menos uno de P (P´´), y se agrega a ese valor el signo menos, es decir:

$$D = -P''$$
.

Ejemplo:
$$M = 10010$$
; $N = 11011$; $D = M - N = 2$?
$$n = 5$$

1°)
$$N'' = (b^5 - N) - 1 = (100000 - 11011) - 1 = 00100$$

2°) P = M + N"
$$\rightarrow$$

1 0 0 1 0

+ 0 0 1 0 0

1 0 1 1 0

k = 5

Como k = n = 5, hallamos el complemento a la base menos uno de P:

$$P'' = 01001$$
, entonces **D = - P'' = - 001001** o bien, **D = - 1001**

Podemos observar que, en este caso, el minuendo es menor que el sustraendo (M < N).

<u>NOTA</u>: Siempre que realicemos restas utilizando complemento a la base o complemento a la base menos uno, debemos verificar que minuendo y sustraendo tengan la misma cantidad de dígitos, si no es así, completamos con ceros a la izquierda hasta igualar la cantidad de dígitos.

Ejemplo:
$$M = \underbrace{101110}_{n=6}$$
; $N = \underbrace{10010}_{n=5}$; entonces completamos con ceros: $N = \underbrace{010010}_{n=6}$