Multivariate probabilty and statistics

Jussi Martin

Date of Presentation

Overview

This presentation is \dots

Random variables

Random variable is...

Random vectors

Random vector is...

Probability density

(Function, Examples)

Marginal and joint probabilities

(Definition, examples)

Conditional probabilities

(continuous case, discrete case)

Independence

definition

Expectation

(continuous, discrete (maybe otherway around would be more intuitive?))

Variance and covariance

(dim = 1, covariance matrix)

Independence and covariance

the relation

Bayesian inference

Baye's rule

Non informative priors

definition

Bayesian inference as a incremental learning process

Explanation

(statistical model, estimation, ilkelihood & log-lkelihood)

Maximum likelihood and maximum posteriori

(definition, definition)

Examples from the template on the next slides:

Tables and Figures

- Use tabular for basic tables see Table 1, for example.
- You can upload a figure (JPEG, PNG or PDF) using the files menu.
- ▶ To include it in your document, use the includegraphics command (see the comment below in the source code).

Item	Quantity
Widgets	42
Gadgets	13

Table 1: An example table.

Readable Mathematics

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed random variables with $\mathsf{E}[X_i] = \mu$ and $\mathsf{Var}[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$.