Quantum Machine Learning, Homework 2

- Author: Yan-Tong Lin, 0712238, National Chiao Tung University
- Lecturer: Dr. Alexey Melnikov, Principal Investigator, Terra Quantum
- Online Version at https://hackmd.io/MkTt8-07SiWvv-p0LqR6Pw (https://hackmd.io/MkTt8-07SiWvv-p0LqR6Pw)
- Jan 3rd, 2021
- Quantum Machine Learning, Homework 2
 - o Note for Day 3 (12/4)
 - Overview
 - <u>PS (cont.)</u>
 - PS agent on Quantum System
 - Note for Day 4 (12/5)
 - Overview
 - PS code study
 - Note for Day 5 (12/11)
 - Overview
 - Quantum Speed up for PS
 - Quantum Communication Tasks with PS
 - Note for Day 6 (12/12)
 - o <u>Materials</u>
 - HW2 Problem Set
 - Q1
 - A1
 - Q2
 - <u>A2</u>
 - Q3
 - A3

Note for Day 3 (12/4)

Overview

More on PS

- analytic solution
- cost efficiency
- o meta-param net
- o applications
- PS applied in quantum labs
 - definitions
 - o the task is hard
 - o the model
 - o the results

PS (cont.)

- Analytic solution for convergence of PS agents
 - o a paper found
 - On the convergence of projective-simulation-based reinforcement learning in Markov decision processes

(https://arxiv.org/pdf/1910.11914.pdf)

- PS and its cost efficiency V.S. Q-learning and Sarsa
 - Easier to optimize
 - Fewer meta-param
- PS with meta-param controller
- PS with generalization clips

• PS and their applications

PS agent on Quantum System

RL in quantum laboratory

AAM, H. Poulsen Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel, PNAS 115, 1221 (2018)

- The task: creating photonic quantum experiment
 - o actions: state transition
 - reward: given by analyzer (human)
- The model
 - naive + clip composition and deletion
- The experimental results
 - PS is efficient compared to previous methods
 - analysis of the memory clips (with strong connectivities)
 - rediscover useful subroutines!
 - conclusion (PS help to)
 - find interesting experiments
 - find shorter implementation
 - rediscover subroutines

Note for Day 4 (12/5)

Overview

PS code study

- PS applied to Quantum (practice)
- Quantum Enhanced PS

PS code study

modularization

- 4 types of agents (categorized by clips)
 - basic (as in lecture)
 - flexible (states are unknown and can be added, indexed by hash function)
 - sparse (the sparse version of basic agent)
 - o generalization (internal clips by state properties, specified by the user)
 - there is some interesting mathematical analysis, by is not covered
 - code is too much to go through line by line in the lecture
- Environments
 - o grid world
 - o open ai (API)
- Interaction module
 - interaction
- For more information
 - projection simulation with generalization

- benchmarking PS v.s. Q-learning/SARSA
- o PS for experiment design
- ML for quantum communication
- RL for violating Bell's inequalities
- The code for the papers is the one that just covered with some twist and the papers are accepted immediately for the contributions to the community

Note for Day 5 (12/11)

Overview

- Quantum Devices to Speed-up PS (Q for ML)
- Quantum Communication Tasks with PS (ML for Q)
 - Generalized Bell Test

Quantum Speed up for PS

- Refs
 - Quantum Speedup for Active Learning Agents
 - an obvious application of Grover's Search
 - Quantum-enhanced deliberation of learning agents using trapped ions
 - Coherent controlization using superconducting qubits
- quadratic speed up for
 - \circ it takes random walk $t=rac{1}{\delta}$ to converge to the uniform distribution of all vertex
 - \circ it takes quantum walk $t=rac{1}{\sqrt{\delta}}$ to converge to uniform distribution of all vertex
 - \circ if the distribution is a uniform distribution, with ϵ prob we will find the desired state
 - this can speed up using amplitude amplification too

- Question:
 - Quantum Walk first or Projective Simulation First? (quantum motivated PS?)
- ullet Amplitude Amplification, in this case, will preserve the h value's effect so that end with a high reward is more likely to be observed
- Quantum Walk Formalism (and an example)

$$\circ~U_i|0
angle = \sum_j \sqrt{p_{ij}}|j
angle$$

1 If to go from clip 1 to rest

(clips
$$284$$
)

1 $|0\rangle = \sum_{j=1}^{4} \sqrt{p_{1j}} |c_{j}\rangle = \sqrt{p_{12}} |c_{2}\rangle + \sqrt{p_{14}} |c_{4}\rangle$

Circuit Synthesis

- Q: how to implement control-U?
- I am not of physics background, this part is not clear for me. If this will be a crucial part of my future research, I will fill it up.
- Conclusion
 - \circ Any decision making on N clips can be implemented on $\log(N)$ qubits
 - \circ We can prepare stationary distribution (Tp=p) faster (w.r.t. spectral gap δ)
 - classical: $t = \frac{1}{\delta}$
 - lacksquare quantum: $t=rac{1}{\sqrt{\delta}}$
 - We can find desired actions faster (w.r.t. the fraction of desired state ϵ)
 - lacksquare classical: $t=rac{1}{\epsilon}$
 - lacksquare quantum: $t=rac{1}{\sqrt{\epsilon}}$

Quantum Communication Tasks with PS

• bell test

generalized bell test

- o my observation: this different from previous examples, the sapce is continuous
- the framework

- simulated annealing
 - \circ to find a extreme value in a n dimensional space
 - 1. random initialization
 - 2. choose by prob which to change
 - 3. choose by prob change how much
 - \circ 4. get the new β'
 - $\beta' < \beta$, accept the change
 - lacksquare $eta' \leq eta$, accept the change with prob $e^{rac{eta'-eta}{ au}}$

Note for Day 6 (12/12)

- For (continuous-time) quantum walk, I actually did a survey for a related paper, the link is shown below
 - https://github.com/EazyReal/QCQI2020fall/blob/main/QCQI final Oral Version.pd
 f (https://github.com/EazyReal/QCQI2020fall/blob/main/QCQI final Oral Version.pdf)
- For CNNs, I have taken DNN courses so that I am quite familiar with them
- The paper tries to predict when will a quantum speedup happen (graph \rightarrow speed-up?)

Predicting quantum advantage by quantum walk with convolutional neural networks

FIG. 2. The machine learning approach that is used for predicting the quantum speedup. (a) A process of training CQCNN. (b) A process of testing CQCNN. (c) A scheme of the CQCNN architecture. The neural network takes a labeled graph in form of an adjacency matrix as an input. This input is then processed by convolutional layers with graph-specific "edge-to-edge" and "edge-to-vertex" filters (see Methods). The convolutional layers are connected with fully-connected layers that finally classify the input graph. The number of layers is the same for all graph sizes. Data and error propagation are shown with arrows.

Materials

- Quantum enhancements for deep reinforcement learning in large spaces
- On the convergence of projective-simulation-based reinforcement learning in Markov decision processes
- Predicting quantum advantage by quantum walk with convolutional neural networks

HW2 Problem Set

- For the code, please visit <u>my GitHub repo (https://github.com/EazyReal/Quantum-Machine-Learning-2020-fall)</u>
 - Grid World
 - For finding the optimal $\eta = 0.1$, visit run grid.py
 - For visualizations, visit Single Agent in Grid World.ipynb
 - Grover's Diffusion Operator Synthesis
 - For the environment implementation, visit environments/env_quantum_circuit_synthesis.py
 - For finding the optimal $\eta = 0.9$, visit run_grover.py
 - For visualizations, visit Single Agent doing Grover's Diffusion Operator.ipynb

01

Go through the material which we considered during the lectures. Think of what is not clear and ask questions.

A1

- Quantum speedup of projection simulation with quantum walk is interesting, and here is my question. Do the authors use projection simulation to make RL a random walk problem so that we can have a quantum speedup? Or the authors come up with projective simulation first and find that they are random walks?
- Advice for the code (for rl_framework.py), you may try **kwargs syntax sugar in Python to pass the configuration as parameters!

Q2

- Run the PS code from Github on your computers. Understand how to set up the code to run the Grid World environment and solve it with PS. Try three implementations: flexible, basic, sparse.
- Send me in Direct Message the outputs you obtain in running a single PS agent in the Grid World environment.
 - o Plot reward vs. trials curve.
 - Plot number of steps vs. trials curve.

A2

Test How to Run the Code and Solve GridWorld with the base agent

- Simply run run.py with a proper configuration and the results (performance for each eta average over agents, or something like this) will be stored in a results folder
 - o env name: which environment to use
 - env_config: the configuration of the environment
 - multiple_agents determines how the Env and Agent s interact (1-1 or 1-many)
 - num_agents: how many agents to take average on (in the multiple_agents = False scene), or how many agents are in the environment (in the multiple_agents = True scene)
 - agent name: choose the type of agent you want to use
 - o max num trials: how many trials do you want an agent to have
 - max_steps_per_trial: limit the number of steps in each trial (to avoid a trial that is too long or even an infinite loop)
- I improve the code with some additional features
 - o learning curves for each eta
 - run.py and rl framework.py
 - o pass wall s to GridWorld environment constructor with env config
 - run.py and env_grid_world.py
 - o apply tgdm to the loop to visualize the progress of the tasks

- There's more that can be done if have time (But I am occupied with other things)
 - o save the best agent of the best eta as an object, so that we can experiment with it

- By running the code for grid world environment (with my walls-passing code) and reading out the average_param_performance nd-array, we can see that the optimal η according to this experiment is $\in [0.1,02]$
- The sparse (sparse matrix), flexible (dictionary of states) agents differ from basic agent only in the way they store states, and the states they stored should be identical, so I think there is no reason to try the same computational consuming process to find η s from the same distribution again. However, I did test the correctness of the codes with a smaller setting. I will omit this part for the quantum circuit experiment.

Results for the GridWorld problem with a single PS agent

- I modify the simple_interaction.py and plot the resulting data
 - the code can be found in the Single Agent in Grid World.ipynb in my GitHub repo
- The configuration is as follow
 - \circ agent : basic PS agent with softmax and $\eta=0.1$ (delayed reward), w/o reflections or gamma damping (forgetting)

o environment: the figure provided in the slide

Q3

Program a toy task environment. And solve it with PS (try basic, flexible, and sparse).

- Actions Implement quantum gates on a register of two qubits.
 - o action #1: Hadamard gate on qubit 1
 - o action #2: Hadamard gate on qubit 2
 - o action #3: X gate on qubit 1
 - o action #4: X gate on qubit 2
 - o action #5: Z gate on qubit 1
 - o action #6: Z gate on qubit 2
 - o action #7: CNOT gate on qubits 1-2
- Environmental states
 - Current sequence of actions within current trial.
- Reward

- Reward of +1 is given for arriving to an environmental state that corresponds to a quantum circuit implementing Grover diffusion operator.
- In this task provide:
 - reward vs. trials curve
 - o quantum circuit length vs. trials curve
 - draw circuits to which agent converges

A3

Implementation of the environment

There are two ways I come up with that can implement the environment

- direct calculation with numpy
 - \circ np.kron(A, B) = $A \otimes B$
 - \circ A@B = AB
- "do not redo" with the existence of giskit package
 - Unitary Simulator provided in Qiskit Aer

(https://qiskit.org/documentation/stubs/qiskit.providers.aer.UnitarySimulator.html#qiskit.providers.aer.Unitary

```
backend_sim = Aer.get_backend('unitary_simulator')
job_sim = execute([qc1, qc2], backend_sim)
result_sim = job_sim.result()
unitary1 = result_sim.get_unitary(qc1)
unitary2 = result_sim.get_unitary(qc2)
np.allclose(unitary1, unitary2)
```

I chose the second one for simplicity, the "do not redo" principle and the convenience to draw a circuit. The code can be found in my Github repo.

The target circuit is represented by a common implementation below.

Solving for Optimal η with the flexible agent and plot the learning/step-trial curve

To solve for optimal η , I will use the flexible agent for the infinite possibilities of quantum circuits without giving a depth limit. Alternatively, one can try using a sparse agent with a pre-specified limit of depth.

By running the modified run.py and reading out the average_param_performance nd-array, we can see that the optimal η according to this experiment is about 0.9.

However, I do not observe an obvious "learning" (or say generalization) behavior of the agents since there is no trend of the agents becoming better over trials. I also tried many times and tried with different eta and the results are similar. I think this is because that the state ("current circuit composition") is too sparse and the agents fail to recognize some

"circuit identities" (e.g. XX = I, ZZ = I, HH = I, HZH = X, etc.), so unlike in the grid world problem, the agents are unable to tell if a state is equivelant to a state they visited before in terms of unitary.

There are three ways to improve this

- treat "equivelence class of unitaries" as states directly
 - this violate the spec of the homework
- increase the number of reflections.
 - o no direct support for number of reflections in the flexible agent
- increase the number of trials.
 - I tried number of trials = 1000, does not help

Draw circuits to which agents converge

- Despite that learning did not happened, the agent did get some circuits that is equivalent to the Grover's difussion operator.
- One can verify the circuits are equivalent to the Grover's Diffusion Operator
 - \circ with the circuit identities: HH = I, XX = I, ZZ = I, HZH = X