2ª serie Tipo M-2 - 09/2017

GABARITO

01.	Α	11. E	21. A	31. A	41. C
02.	D	12. B	22. D	32. B	42. B
03.	Α	13. D	23. B	33. A	43. C
04.	В	14. C	24. A	34. E	44. C
05.	С	15. D	25. C	35. E	45. E
06.	Α	16. A	26. B	36. A	46. A
07.	Ε	17. A	27. C	37. C	47. A
08.	D	18. B	28. C	38. E	48. E
09.	Α	19. A	29. B	39. D	49. D
10.	С	20. B	30. A	40. E	50. D

PROVA GERAL

P-6 – Ensino Médio Regular 2ª série

RESOLUÇÕES E RESPOSTAS

QUÍMICA

QUESTÃO 1: Resposta A

Para o etanol:

$$C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O$$

1 mol de etanol forma 2 mols de CO_2 se:

2 mol de CO₂ ——libera 1370 kJ

1 mol de CO₂ ——libera x

 $x = -685kJ/mol de CO_2$

Para a gasolina:

$$C_8H_{18} + \frac{25}{2}O_2 \rightarrow 8 CO_2 + 9 H_2O$$

1 mol de gasolina forma 8 mols de CO₂ se:

8 mol de CO₂ ——libera 5464 kJ

1 mol de CO₂ ——libera x

 $x = -683 \text{ kJ/mol de } CO_2$

Assim, a alternativa **A** que completa a frase corretamente.

Semana: 12 Habilidade: 24

QUESTÃO 2: Resposta D

$$C_6H_4(OH)_{2(aq)} \rightarrow C_6H_4O_{2(aq)} + \underbrace{H_{2(g)}}_{2(aq)} \qquad \Delta H = +177 \; kJ \cdot mol^{-1}$$

$$H_2O_{2(aq)} \to H_2O_{(\ell)} + \frac{1}{2}O_{2(g)}$$
 $\Delta H = -95 \text{ kJ} \cdot \text{mol}^{-1} \text{ (inverter)}$

$$\frac{1}{2}O_{2(g)}^{\prime} + H_{2(g)} \rightarrow H_2O_{(\ell)} \qquad \qquad \Delta H = -286 \text{ kJ} \cdot \text{mol}^{-1} \text{ (inverter)}$$

$$C_6 H_4 (O\,H)_{2(aq)} + H_2 O_{2(aq)} \to C_6 H_4 O_{2(aq)} + 2\,H_2 O_{(\ell)}$$

$$\Delta H = +177 - 95 - 286 = -204 \ kJ \cdot mol^{-1}$$

Semana: 13 Habilidade: 17

QUESTÃO 3: Resposta A

$$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4 CO_2 + 5 H_2O$$

Proporção entre butano e dióxido de carbono é de 1:4, ou seja, a cada 0,1 mol de butano decomposto forma-se 0,4 mol de CO₂.

1 mol de
$$CO_2$$
 — 44 g
0,4 mol — x
 $x = 17,6 g$
17,6 g — 1 min
 $y g$ — 60 min
 $y = 1056 g$

Semana: 15 Habilidade: 24

QUESTÃO 4: Resposta B

A energia de ativação do processo corresponde à diferença de energia entre o complexo ativado e o reagente. Logo: $E_{at} = 60 \text{ kJ} - 30 \text{ kJ} = 30 \text{ kJ}$.

Semana: 15 Habilidade: 17

QUESTÃO 5: Resposta C

São fatores que aceleram a velocidade das reações químicas: o aumento da temperatura e da superfície de contato e a presença de catalisadores.

Semana: 16 **Habilidade:** 24

QUESTÃO 6: Resposta A

Semana: 11 Habilidade: 24

QUESTÃO 7: Resposta E

Na obtenção de combustíveis derivados do petróleo é utilizado o processo de separação líquido-líquido denominado destilação fracionada.

Semana: 13 Habilidade: 24

QUESTÃO 8: Resposta D

Semana: 13 Habilidade: 24

QUESTÃO 9: Resposta A

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} - \begin{array}{c} \text{C}^{2} - \text{CH}_{2} - \begin{array}{c} \text{CH} - \text{CH}_{3} \\ \text{CH}_{3} \end{array} \\ \text{CH}_{3} \end{array}$$

2,2,4-trimetilpentano

Semana: 14 Habilidade: 24

QUESTÃO 10: Resposta C

Cadeia aberta, insaturada (carbonos 2 e 6), homogênea e ramificada (carbonos 3 e 7).

Semana: 16 Habilidade: 24

BIOLOGIA

QUESTÃO 11: Resposta E

As divisões celulares mitóticas são responsáveis pelo aumento do número de células durante o crescimento vegetal. A expressão diferencial dos genes garante a especialização das células dos diversos tecidos das plantas.

Semana: 15

Habilidade: 14 e 17

QUESTÃO 12: Resposta B

O pelo absorvente é uma extensão, prolongamento, de uma célula epidérmica de raiz, cuja função é favorecer a absorção de água e nutrientes minerais do solo ou do meio aquático.

Semana: 16

Habilidade: 14 e 17

QUESTÃO 13: Resposta D

Parênquima é um tecido constituído de células vivas que atuam no preenchimento de espaços. Nas folhas e nos caules verdes, essas células possuem cloroplastos e atuam no processo de fotossíntese.

Semana: 13

Habilidade: 14 e 17

QUESTÃO 14: Resposta C

As gimnospermas inauguraram algumas características adaptativas ao meio terrestre, como o crescimento em espessura de caule e raiz, pinhas, sementes, tubo polínico e a independência da água para o encontro dos gametas.

Semana: 12 Habilidade: 28

QUESTÃO 15: Resposta D

A ilustração apresenta planta com dois cotilédones e folhas com nervuras reticuladas, o que a caracteriza como eudicotiledônea e, portanto, deve apresentar também raiz axial e flores tetrâmeras ou pentâmeras.

Semana: 12 Habilidade: 17

QUESTÃO 16: Resposta A

Artérias são vasos sanguíneos que levam sangue do coração para qualquer parte do corpo. Possuem paredes musculares espessas para suportar a pressão sanguínea no seu interior. Diferente das veias, não possuem válvulas e são mais profundas.

Semana: 11 Habilidade: 14

QUESTÃO 17: Resposta A

A fumaça do cigarro, tragado com a boca, não precisa passar pelas narinas e fossas nasais para chegar aos pulmões. O caminho completo percorrido por ela até o local de troca de substâncias com o sangue (alvéolo) é: não há "boca" nem "laringe" na alternativa "A", traqueia, brônquios, bronquíolos e alvéolos.

Semana: 15 Habilidade: 14

QUESTÃO 18: Resposta B

Anfíbios são ectotérmicos, com circulação fechada, dupla e incompleta. As aves são endotérmicas e possuem circulação completa (sem mistura de sangue arterial e venoso). Os mamíferos possuem circulação dupla e não simples. Os peixes apresentam respiração branquial e não cutânea.

Semana: 14 Habilidade: 16

QUESTÃO 19: Resposta A

Nos peixes o coração é bicavitário (um átrio e um ventrículo) e só passa sangue venoso (pobre em oxigênio) na direção do corpo para as brânquias. Das brânquias, o sangue arterial (rico em oxigênio) segue diretamente para as várias partes do corpo. Portanto, nesses animais, não há mistura de sangue venoso e arterial.

Semana: 12

Habilidade: 14 e 17

QUESTÃO 20: Resposta B

De acordo com os resultados obtidos a partir do hemograma não é possível concluir que o quadro descrito no enunciado seja consequência de alergia ou intoxicação. Não há evidência de infecção pois o número de leucócitos (glóbulos brancos) encontra-se dentro dos valores normais. Embora a queda no número de hemácias (glóbulos vermelhos ou eritrócitos) isoladamente pudesse justificar um diagnóstico de anemia, não poderia ser a causa do sangramento. O sangramento, porém, pode ser explicado pelo baixo número de plaquetas o que também justificaria a queda do número de eritrócitos e dos valores de hemoglobina, devido à perda sanguínea.

Semana: 13 Habilidade: 14 e 17

FÍSICA

QUESTÃO 21: Resposta A

Dados: $V_1 = V = 4 \text{ mm/s}$; $D_1 = D = 4 \text{ mm}$; $D_2 = d = 500 \,\mu\text{m} = 0.5 \,\text{mm}$.

Pela equação da continuidade:

$$v_1 A_1 = v_2 A_2 \ \Rightarrow \ v_1 \frac{\pi D_1^2}{4} = v_2 \frac{\pi D_2^2}{4} \ \Rightarrow \ v_1 D_1^2 = v_2 D_2^2 \ \Rightarrow \ v_2 = \frac{v_1 D_1^2}{D_2^2} \ \Rightarrow$$

$$v_2 = \frac{4 \cdot 4^2}{0.5^2} = \frac{64}{0.25} \implies v = v_2 = 256,0 \text{ mm/s}.$$

Semana: 10 Habilidade: 20

QUESTÃO 22: Resposta D

A figura mostra as forças agindo na gangorra na situação inicial de equilíbrio.

A condição de equilíbrio de rotação exige que, na gangorra, o somatório dos momentos horários seja igual ao somatório dos momentos anti-horários.

Assim, adotando o ponto O como polo, têm-se:

$$\textstyle \sum^{O} M_{hor} = \textstyle \sum^{O} M_{anti-hor} \ \Rightarrow \ M \, \text{g} \, \left(1,2 \right) + 48 \, \text{g} \, \left(2 \right) = 48 \, \text{g} \, \left(3 \right) \ \Rightarrow \ M = \frac{48}{1.2} \quad \therefore \quad M = 40 \, \text{kg}.$$

Semana: 11 e 12 Habilidade: 20

QUESTÃO 23: Resposta B

Pelo enunciado da questão, pode-se identificar que a esfera 3 está eletrizada **negativamente**. A primeira figura permite concluir que a esfera 1 é repelida pela 3. Sendo assim, a esfera 1 está também eletrizada negativamente. Como nas outras figuras a esfera 2 é atraída pelas outras duas, ou ela está eletrizada **positivamente**, ou está **neutra**.

Semana: 15 Habilidade: 21

QUESTÃO 24: Resposta A

A situação proposta pode ser representada pelo esquema a seguir:

Dessa maneira, como as forças possuem a mesma intensidade (mesmas cargas em módulo e mesmas distâncias), pode-se concluir que a resultante das forças elétricas possui direção horizontal e sentido para a direita.

Semana: 16 Habilidade: 21

QUESTÃO 25: Resposta C

De acordo com o enunciado, os grãos são atritados com a esteira de borracha e, portanto, são eletrizados por atrito. Nesse mecanismo de eletrização, os grãos ficam eletrizados com cargas opostas em relação à correia transportadora.

Semana: 15 Habilidade: 21

QUESTÃO 26: Resposta B

Uma expansão gasosa provoca perda de energia mecânica por parte do gás. Como ela ocorre de forma rápida, ela pode ser considerada adiabática. Nesse sentido, como o gás, durante o acionamento da válvula, somente perde energia, ele e seu entorno (o recipiente) tendem a se esfriar.

Semana: 14 Habilidade: 18

QUESTÃO 27: Resposta C

Quando é produzida a centelha, o gás explode, sofrendo violento aumento de pressão a volume constante. Isso ocorre no ponto C.

Semana: 15 Habilidade: 18

QUESTÃO 28: Resposta C

Na transformação cíclica, $\Delta U = 0 \Rightarrow Q_{ciclo} = W_{ciclo}$

 $\begin{aligned} &Q_{rec}-Q_{ced}=W_{ciclo}\\ &2500-Q_{ced}=875\\ &\therefore &Q_{ced}=1625\ J \end{aligned}$

Semana: 15 Habilidade: 18

QUESTÃO 29: Resposta B

O período é calculado com a expressão: $T=2\pi\sqrt{\frac{m}{k}} \Rightarrow T=2\pi\sqrt{\frac{0,1kg}{0,4\pi^2\frac{N}{m}}} \therefore T=1s$

Semana: 16 Habilidade: 18

QUESTÃO 30: Resposta A

O módulo da aceleração é máximo nos pontos onde a força elástica tem intensidade máxima, ou seja, onde a mola apresenta deformação máxima, o que corresponde aos pontos A e E.

O módulo da velocidade é máximo no ponto central C, onde toda energia potencial elástica transforma-se em energia cinética.

Semana: 16 Habilidade: 18

MATEMÁTICA

QUESTÃO 31: Resposta A

O determinante do sistema é dado por D = $\begin{bmatrix} 1 & 1 & 4 \\ 1 & 2 & 7 \\ 3 & 1 & a \end{bmatrix}$.

Segue que D = a - 6.

O sistema é indeterminado (SPI) ou é impossível (SI) \Leftrightarrow D = 0

Com D = 0, temos a = 6 e o sistema
$$\begin{cases} x + y + 4z = 2 \\ x + 2y + 7z = 3 \text{ e as matrizes:} \\ 3x + y + 6z = b \end{cases}$$

–
$$L_1+L_2 \rightarrow L_2$$
 e –3 · $L_1+L_3 \rightarrow L_3$:

$$\begin{bmatrix} 1 & 1 & 4 & 2 \\ 0 & 1 & 3 & 1 \\ 0 & -2 & -6 & b-6 \end{bmatrix}$$

$$2L_2 + L_3 \rightarrow L_3$$

Com a = 6 e b = 4, o sistema é possível e indeterminado.

Com a = 6 e b \neq 4, o sistema é impossível.

Semana: 12 Habilidade: 21

QUESTÃO 32: Resposta B

Da equação matricial dada, resulta o sistema
$$\begin{cases} 3tg\alpha + 6\cos\beta = 0 \\ 6tg\alpha + 8\cos\beta = -2\sqrt{3} \end{cases}$$

$$equivalente \ a \ \begin{cases} 3tg\alpha + 6cos\beta = 0 \\ 3tg\alpha + 4cos\beta = -\sqrt{3} \end{cases}$$

Subtraindo membro a membro, resulta
$$2\cos\beta = \sqrt{3}$$
, ou seja, $\cos\beta = \frac{\sqrt{3}}{2}$.

De
$$\cos\beta = \frac{\sqrt{3}}{2}$$
 e 0 < β < π , temos $\beta = \frac{\pi}{6}$.

De
$$\cos\beta = \frac{\sqrt{3}}{2}$$
 e $3\text{tg}\alpha + 6\cos\beta = 0$, temos:

$$3tg\alpha + 3\sqrt{3} = 0$$

$$tg\alpha = -\sqrt{3}$$

De
$$tg\alpha = -\sqrt{3} e^{-\frac{\pi}{2}} < \alpha < \frac{\pi}{2}$$
, resulta $\alpha = -\frac{\pi}{3}$.

Sendo
$$\alpha = -\frac{\pi}{3}$$
 e $\beta = \frac{\pi}{6}$, temos $\alpha + \beta = -\frac{\pi}{6}$

Semana: 9 Habilidade: 21

QUESTÃO 33: Resposta A

Considere-se que a cor da lista e a da lateral precisam ser diferentes para que haja a lista. Nessa condição, temse que a lista só precisa ser de uma cor distinta da cor da lateral, assim:

Tampa: 5 opções Lista: 4 opções Lateral: 5 opções

Pelo princípio fundamental da contagem, tem-se: $5 \cdot 4 \cdot 5 = 100$ maneiras.

Semana: 13 Habilidade: 3

QUESTÃO 34: Resposta E

O número de combinações de 15 elementos tomados 3 a 3 é dado por $C_{15,3} = \frac{15!}{3!(15-3)!} = 455.$

Semana: 16 **Habilidade:** 4

QUESTÃO 35: Resposta E

Existem $9 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 90000$ números de cinco algarismos. Desses, temos $9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 = 59049$ números que não possuem dígitos consecutivos iguais. Logo, o total de números de cinco algarismos que possuem pelo menos dois dígitos consecutivos iguais é dado por 90000 - 59049 = 30951.

Semana: 13 Habilidade: 4

QUESTÃO 36: Resposta A

De $X = A^{-1} \cdot B$, temos:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 3 & -2 & 3 \\ 5 & 5 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 10 \end{bmatrix}$$

Portanto, x + y + z = 5 + 1 + 10 = 16.

Semana: 12 Habilidade: 21

QUESTÃO 37: Resposta C

Sendo a₁, a₂, a₃, a₄ e a₅ os cinco amigos e supondo que apenas a₁ e a₂ têm condições de tomar o lugar do motorista, temos:

- com a₁ no lugar do motorista, há 4!, isto é, 24 maneiras de acomodar os demais amigos;
- com a₂ no lugar do motorista, há 4!, isto é, 24 maneiras de acomodar os demais amigos.

Logo, há exatamente 48 maneiras.

Semana: 14 Habilidade: 3

QUESTÃO 38: Resposta E

Para escolher o rapaz que sentará na poltrona da ponta esquerda, há 6 opções. Para cada uma dessas 6 opções, existem 5 opções para escolher o rapaz que sentará na poltrona da ponta direita. Portanto há $30 (= 6 \cdot 5)$ maneiras de escolher os rapazes que sentarão nas poltronas das pontas da fileira.

Para cada uma dessas 30 maneiras, existem 8! de maneiras diferentes para escolher as poltronas para as 8 pessoas restantes.

Logo, o número total de maneiras de acomodar as 10 pessoas nas condições dadas é 30 · 8!.

Semana: 15 Habilidade: 4

QUESTÃO 39: Resposta D

1º possibilidade: 5 selos para Davi (os outros 7 selos vão para Theo)

Número de maneiras: $C_{12, 5} = \frac{12!}{5! \cdot 7!} = 792$

2ª possibilidade: 5 selos para Theo (os outros 7 selos vão para Davi)

Número de maneiras: $C_{12, 5} = 792$

O número total de maneiras é dado por 2 · 792 = 1584.

Semana: 16 Habilidade: 3

QUESTÃO 40: Resposta E

Há exatamente 36 pontos (n = 36). O número de triângulos determinados por 36 pontos, em que não há 3 na mesma reta, é dado pelo número de combinações de 36 elementos tomados 3 a 3, $C_{36,3} = \frac{36!}{3! \cdot 33!}$

Semana: 16 Habilidade: 4

QUESTÃO 41: Resposta C

Da figura do enunciado, temos que CD = DE = 4, ou seja, o triângulo CDE é retângulo e isósceles. Logo, as medidas dos ângulos DĈE e DÊC são iguais a 45° e, assim, o triângulo ABE também é retângulo e isósceles, com EÂB também medindo 45°.

Como a medida de EÂB é igual a 45° , sendo F o ponto onde o gráfico de f intersecta o eixo x, temos que o triângulo ADF também é isósceles, com AD = DF = 8. O mesmo vale para o triângulo retângulo CBF, em que BC = BF = x. A figura ao lado resume o que foi dito anteriormente.

Aplicando o teorema de Pitágoras no triângulo CBF, temos $x^2 + x^2 = 4^2$, ou seja, $x^2 = 8$. A área do polígono ABCD pode ser obtida fazendo-se a área do triângulo ADF menos a área do triângulo CBF, ou seja:

$$A = \frac{8 \cdot 8}{2} - \frac{x \cdot x}{2}$$
 :: $A = 32 - \frac{x^2}{2}$:: $A = 32 - \frac{8}{2}$:: $A = 28$

Semana: 11 Habilidade: 22

QUESTÃO 42: Resposta B

Tomando a equação da circunferência, vem:

$$x^{2} + y^{2} - 8x + 8 = 0$$

 $x^{2} - 8x + 16 + y^{2} = 8$
 $(x - 4)^{2} + y^{2} = 8$

Centro (4, 0) e raio $2\sqrt{2}$.

As equações das retas r e s são da forma y = mx, ou seja, mx - y = 0

Como as retas são tangentes, devemos ter:

$$\begin{split} \frac{\left| m \cdot 4 - 0 \right|}{\sqrt{m^2 + (-1)^2}} &= 2\sqrt{2} \ \ \therefore \ \left| 4m \right| = 2\sqrt{2} \cdot \sqrt{m^2 + 1} \ \ \therefore \\ \therefore \ 16m^2 &= 8m^2 + 8 \ \ \therefore \ \ m^2 = 1 \ \ \therefore \ \ m = \pm 1 \end{split}$$

Semana: 12 Habilidade: 22

QUESTÃO 43: Resposta C

Como as circunferências têm centros no primeiro quadrante e são tangentes aos eixos, seus centros são da forma (r, r), em que r é a medida do raio da circunferência. Logo, tem-se:

- Sendo λ_1 a circunferência de centro (1, 1) e raio 1, sua equação é dada por $(x-1)^2 + (y-1)^2 = 1$, ou seja, $x^2 + y^2 2x 2y + 1 = 0$;
- Sendo λ_2 a circunferência de centro (2, 2) e raio 2, sua equação é dada por $(x-2)^2 + (y-2)^2 = 4$, ou seja, $x^2 + y^2 4x 4y + 4 = 0$;

Os pontos (x_1, y_1) e (x_2, y_2) são soluções do sistema:

$$\begin{cases} x^2 + y^2 - 2x - 2y + 1 = 0 \\ x^2 + y^2 - 4x - 4y + 4 = 0 \end{cases}$$

Subtraindo as equações, tem-se 2x + 2y - 3 = 0, ou seja, $x + y = \frac{3}{2}$. Logo, $x_1 + y_1 = \frac{3}{2}$ e $x_2 + y_2 = \frac{3}{2}$.

Assim, o valor de $(x_1 + y_1)^2 + (x_2 + y_2)^2$ é dado por $\left(\frac{3}{2}\right)^2 + \left(\frac{3}{2}\right)^2$, ou seja, $\frac{9}{2}$.

Semana: 10 Habilidade: 21

QUESTÃO 44: Resposta C

A área do triângulo pedido é dada por $A = \frac{1}{2}|D|$.

Em que D =
$$\begin{vmatrix} 3 & 4 & 1 \\ 5 & 1 & 1 \\ 30 & 16 & 1 \end{vmatrix}$$
 = 105

Assim $A = 52,50 \text{ cm}^2$

Semana: 10 Habilidade: 21

QUESTÃO 45: Resposta E

Como o retângulo ABCD está contido no plano que passa pelos pontos A, B e C, então a projeção do segmento \overline{AB} será o próprio segmento \overline{AB} ; além disso, como o prisma que representa a barraca é um prisma reto, o triângulo BEC está contido em um plano perpendicular ao plano que passa por A, B e C e, assim, a união das projeções dos segmentos \overline{BE} e EC é dada pelo segmento \overline{BC} .

Como \overline{AB} e \overline{BC} são perpendiculares, pois são lados de um retângulo, temos que a figura que melhor representa esses dois segmentos é dada por

Semana: 15 Habilidade: 6

QUESTÃO 46: Resposta A

Note inicialmente que a circunferência que representa a região iluminada tem centro (0, 0) e raio 5.

Calculando a distância de (0, 0) à reta de equação 4x - 3y + 15 = 0, obtemos: $\frac{\left|4 \cdot 0 - 3 \cdot 0 + 15\right|}{\sqrt{4^2 + \left(-3\right)^2}} = 3$

Assim, temos o seguinte esquema em que 2x representa a medida do comprimento do trecho iluminado.

Aplicando o teorema de Pitágoras, obtém-se x = 4.

Logo o trecho iluminado mede 80 m.

Semana: 11 Habilidade: 13

QUESTÃO 47: Resposta A

Observando a figura, pode-se notar que todas as faces são triangulares e que o número de faces é maior que 8. A única figura que atende essas características é a da alternativa A.

Semana: 15 Habilidade: 7

QUESTÃO 48: Resposta E

- I. Verdadeira. De fato, observando a imagem, a reta que representa a chaminé é vertical ao plano que representa o chão da cabana e secante a todos os planos que contêm os telhados.
- II. Falsa. Os planos são secantes, mas não perpendiculares.
- III. Verdadeira. A planos que representam os telhados interceptam o plano que representa o chão da cabana, apesar de os telhados não tocarem o chão.

Semana: 14 Habilidade: 9

QUESTÃO 49: Resposta D

O toldo representado forma um prisma reto em que as bases são triângulos isósceles de base 4 cm altura x cm.

Assim,

$$tg60^{\circ} = \frac{2}{x}$$
 \therefore $\sqrt{3} = \frac{2}{x}$ \therefore $x = \frac{2}{\sqrt{3}}$

A área A de uma base do prisma é

$$A = \frac{1}{2} \cdot 4 \cdot \frac{2}{\sqrt{3}} = \frac{4}{\sqrt{3}}$$

Sendo h cm a medida da altura do prisma, temos:

$$\frac{4}{\sqrt{3}} \cdot h = \frac{20\sqrt{3}}{3} \quad \therefore \quad h = 5$$

Desse modo, a área total A_T do toldo, em cm^2 , será dada por:

$$A_T = 2 \cdot \frac{4}{\sqrt{3}} \, + 2 \cdot \frac{4}{\sqrt{3}} \, \cdot 5 = 16\sqrt{3}$$

Semana: 16 Habilidade: 14

QUESTÃO 50: Resposta D

Sendo x o número de faces, pela relação de Euler, temos:

$$x - 12 + x = 2$$
$$2x = 14$$

x = 7

Semana: 15 Habilidade: 7