SARDAR VALLABHBHAI PATEL INSTITUTE OF TECHNOLOGY VASAD

B. E. Second Semester (All Branch)

Subject: Vector Calculus and Linear Algebra (2110015)

Year 2016-2017 Tutorial: 01

1 Which of the following matrices are in row echelon form?

Γ1	0	01	[1	2	01	[1 0 0]	Γ0	٥	01
1.	•	~	1*	_	٧I	1 0 0	ľ		~
[1 0 0	1	0	0			$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 0 \end{bmatrix}$	[0 1 0	0	0
Lo	0	1]	Lo	0	OΙ	LO 2 0J	Lo	1	0]

2 (a) Which of the following matrices are in reduced row echelon form?

[0	1	0]	[0 0 0]	1	0 1 0	1]
0 0 0	0	1	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	0	1	1
Lo	0	οJ	lo o ol lo	0	0	οJ

(b) Reduce to echelon form

$$\begin{bmatrix}
2 & 1 & 3 \\
0 & -2 & -29 \\
3 & 4 & 5
\end{bmatrix}$$
(2)
$$\begin{bmatrix}
2 & 1 & -1 \\
1 & -1 & 2 \\
-1 & 2 & -1
\end{bmatrix}$$

3 Solve each of the following systems by Gaussian elimination.

(1)
$$2\sin x - \cos y + 3\tan z = 3$$
 (2) $x_1 + x_2 + x_3 = 9$ (3) $\frac{-1}{x} + \frac{3}{y} + \frac{4}{z} = 30$
 $4\sin x + 2\cos y - 2\tan z = 2$ $2x_1 + 4x_2 - 3x_3 = 1$ $3x_1 + 6x_2 - 5x_3 = 0$ $\frac{3}{x} + \frac{2}{y} - \frac{1}{z} = 9$
 $and 0 \le z < \pi$ $\frac{2}{x} - \frac{1}{y} + \frac{2}{z} = 10$

4 Solve each of the following systems by Gauss-Jordan elimination.

(1)
$$w + 2x - y = 4$$

 $x - y = 3$
 $w + 3x - 2y = 7$
 $2u + 4v + w + 7x = 7$
(2) $x_1 + 3x_2 - 2x_3 + 2x_5 = 0$
 $2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = 1$
 $5x_3 + 10x_4 + 15x_6 = 5$
 $2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 6$

(3)
$$x_1 - 2x_2 + x_3 - 4x_4 = 1$$
 (4) $-2b + 3c = 1$ $x_1 + 3x_2 + 7x_3 + 2x_4 = 2$ $3a + 6b - 3c = -2$ $x_1 - 12x_2 - 11x_3 - 16x_4 = 5$ $6a + 6b + 3c = 5$

5 Solve the following homogeneous systems of linear equations by any method.

(1)
$$2x - y - 3z = 0$$
 (2) $2x_1 + x_2 + 3x_3 = 0$ (3) $q + r + s = 0$
 $-x + 2y - 3z = 0$ $x_1 + 2x_2 = 0$ $-m - p + 2q - 3r + s = 0$
 $x + y + 4z = 0$ $x_2 + x_3 = 0$ $m + p - 2q - s = 0$
 $2m + 2p - q + s = 0$

SARDAR VALLABHBHAI PATEL INSTITUTE OF TECHNOLOGY VASAD

B. E. Second Semester (All Branch)

Subject: Vector Calculus and Linear Algebra (2110015)

Year 2016-2017

For which values of *a* will the following system have no solutions? Exactly one solution? Infinitely many solutions?

$$x + 2y - 3z = 4$$

$$3x - y + 5z = 2$$

$$4x + y + (a^{2} - 14)z = a + 2$$

7 For which value(s) of λ does the system of equations

$$(\lambda - 3)x + y = 0$$
$$x + (\lambda - 3)y = 0$$

have nontrivial solutions?