30 of 49 DOCUMENTS

COPYRIGHT: 1987, JPO & Japio

PATENT ABSTRACTS OF JAPAN

62020081

January 28, 1987

METHOD AND DEVICE FOR COLLATING INDIVIDUAL

INVENTOR: EGUCHI SHIN; IGAKI SEIGO; YAMAGISHI FUMIO; IKEDA HIROYUKI; INAGAKI

YUSHI

APPL-NO: 60159821

FILED-DATE: July 19, 1985

ASSIGNEE-AT-ISSUE: FUJITSU LTD

PUB-TYPE: January 28, 1987 - Un-examined patent application (A)

PUB-COUNTRY: Japan (JP)

IPC-MAIN-CL: G 06K009#0

IPC ADDL CL: G 06K009#32

CORE TERMS: pickup, collating, photographs, detector, finger

ENGLISH-ABST:

PURPOSE: To improve the resolution of an image pickup, to shorten the collation processing time and to obtain an individual collating device having a high performance, by moving an image pickup element for detecting a pattern, so as to be opposed to pattern information from an object to be inspected.

CONSTITUTION: When an illuminating light 8 is irradiated and a finger 6 is made to abut on a detector 21 by a suitable pressing force, an image pickup element 9' photographs the reduced image of the detector 21. Next, a CPU 25 calculates the abutting position of the finger 6 in the reduced image, moves a stage 11 so that the image pickup element 9' is opposed to the calculated position, that is to say, an image pickup element 9 is positioned on the same axis as a scattered light 8a. As a result, the image pickup element 9 photographs the fingerprint pattern of an unmagnification image and a collating circuit 3 which has collated an image pickup pattern and a pattern registered in a collating dictionary forms collating information.

の日本国特許庁(JP)

① 特許出願公開

⑫公開特許公報(A)

昭62 - 20081

Mint Cl.4

識別記号

庁内整理番号

倒公開 昭和62年(1987)1月28日

9/00 G 06 K

9/32

A-8320-5B 8419-5B

審査請求 未請求 発明の数 2 (全5頁)

個人照合方法およびその装置 60発明の名称

> 创特 爾 昭60-159821

願 昭60(1985)7月19日 四出

伸 者 π. の発 明 井 垣 誠 吾 70発明 者 文 雄 @発 明 者 山 岸 Ż 70発 明 者 池 田 弘 雄 史 70発明 者 稲垣 富士通株式会社 ⑪出 願 人

川崎市中原区上小田中1015番地 富士通株式会社内 川崎市中原区上小田中1015番地 富士通株式会社内 川崎市中原区上小田中1015番地 富士通株式会社内

川崎市中原区上小田中1015番地 富士通株式会社内

川崎市中原区上小田中1015番地 富士通株式会社内

川崎市中原区上小田中1015番地

弁理士 井桁 貞一

1. 発明の名称

の代 理

個人照合方法およびその装置

2.特許請求の範囲

(1) 凹凸(6a,6b) パターンを検出する検出器(1) に当接された被検体(6) の当接位置を検出し、

該位置情報によって該パターンの攝像器子(9) を移動させ該検出器(1) に対向させることを特徴 とする個人照合方法。

- (2) 前記位置情報が前記被検体(6) を含む縮小像 から検出することを特徴とする、前記特許請求の 範囲第1項記載の個人照合方法。
- (3) 前記位置情報が前記被検体(6) の投影像から 検出することを特徴とする、前記特許請求の範囲 第1項記載の個人照合方法。
- (4) 当接された被検体(6) の凹凸(6a,6b) パター ンを検出する検出器(1)と、

該検出器(1) にほぼ平行する面内で移動可能な ステージ(11)と、

該ステージ(11)に搭載し該検出器(1)の検出パ ターンを撮像する撮像素子(9)と、

該当接の位置を検出する位置検出手段(12)と、 該位置検出手段(12)からの情報により該ステー ジ(11)を移動させる制御回路(13)とを具えてなる ことを特徴とする個人照合装置。

(5) 一方の面に前記被検体(6) が当接されるガラ ス基板(22)の他方の面に、前記凹凸(6a,6b) パタ - ンを検出する第1のホログラム(23)と、該第1 のホログラム(23)とは異なる回折角度で前配当接 の位置を検出する第2のホログラム(24)を積層形 成し、

前記検出器(1)と前記位置検出手段(12)とが一 体に形成されてなることを特徴とする、前記特許 請求の範囲第4項記載の個人照合装置。

(6) 前記位置検出手段(12)が、前記被検体(6)の 投影像を検出する投影像位置摄像素子(31)である ことを特徴とする、前配特許請求の範囲第4項記 報の個人照合装置。

・ 3.発明の詳細な説明

(概要)

個人を指紋等で照合・織別する方法および装置において、

被検体と撥像素子との位置合わせを行うことにより、

撮像パターンの分解能を改善し装置を高性能化、 および照合時間を短縮させたものである。

(産業上の利用分野)

本発明は個人照合システム、特に指紋や掌等の 凹凸パクーンを検出する個人照合の方法と、その 装置の改善に関する。

情報化社会の進展に伴い情報処理システムの機 密保持に関する諸技術が発達している。例えば、コンピュータルームへの入室管理に紛失や盗難の可能性の多い従来のIDカードに変わって、各個人の指紋等を予め登録しておき、入室時に照合する個人照合システムが導入され始めているが、特に重要な設備を対象としているため、より一層の

第6図において、指紋検出器1はガラス4とホログラム5からなり、ホログラム5が接する空気層7aからの入射光8は、ホログラム5に形成した回折格子縞5aで回折しガラス4に入射する。そして、ガラス4に入射した光の入射角度は格子縞5aの傾斜角度によるが、ガラス4と空気層7bとの界面にガラス4の該入射光が入射する角度θが臨界角度を越えると、ガラス4と空気層7bとの界面で全反射が起こる。

そこで、ガラス 4 の前記界面に凹凸のある物体 (例えば指)を当接させると、入射光 8 は該凹凸 の凹部で全反射する反面、 該物体の凸部では光の 散乱が起こるため、それらは光学稿として観察す ることができる。

第7図は指紋検出器1に指を当接した一部分の 拡大図であり、検出器1のガラス4に指6を当接 したとき、指紋による凹部6bでは前記全反射条件 が保たれる反面、凸部6aでは光の散乱が起こる。 そこで、摄像素子を用いれば指6の凹凸、即ち指 紋像が得られる。 高性能化が望まれている。

〔従来の技術〕

第5図は従来の個人照合装置を示すプロック図である。

第5図において、個人情報として指紋を取り入れた従来の個人照合装置は、個人情報入力手段として指紋検出器が用いられており、指紋検出器1と情報照合用辞書2と情報照合回路3により構成されている。カード等の情報照合用辞書2には、指紋検出器1を介して予め登録された指紋が記憶されている。

個人の照合に際し指紋検出器1から指紋を入力すると、入力された指紋と既登録の指紋とを情報 照合回路3により比較照合し、該照合者が登録された者であるか否かが判定される。

なお、光の回折素子であるホログラムは、入射 光を或る角度だけ回折させ出射させるものであり、 第6図は全反射型ホログラムによる指紋検出器の 原理図である。

〔発明が解決しようとする問題点〕

前述の個人照合方法およびその装置は、指紋パターン等を検出しそれを登録パターンと照合することで、被検者が登録した本人か否かを判定する手段に使用されている。

かかる用途に対し、指紋等の被検部は数 *** 角程 度の広さがあれば十分であるが、従来のパターン 検出器(指紋検出器等)は、被検体の大きさだ対 する許容度や当接位置のずれ等を考慮し、被検部 の当接面が該所要広さよりも十分に広く、例えば 数 10 *** 角程度の大きさであり、その画像処理は前 記当接面の全域に渡り実施している。

そのため、 微細なパターンを前記広領域に付いて 識別しようとすると装置が高価格になったり、 微細パターンの分解能の確保が困難となり、その 改善が強く望まれていた。

(問題点を解決するための手段)

第1図は前述の指紋照合装置に本発明を適用し、 その基本構成と該構成間の接続関係を示すブロッ ク図である。

上記問題点は、凹凸6a,6b パターンを検出する 検出器 1 に当接された被検体 6 の当接位置を検出 し、

該位置情報によって該パターンの損像素子9を 移動させ検出器1に対向させることを特徴とし、

さらに前記位置情報が被検体 6 の反射像から検 出すること、

または前記位置情報が被検体6の投影像から検出することを特徴とする個人照合方法、

および、 当接された被検体 6 の凹凸6a,6b パ クーンを検出する検出器 1 と、

検出器 1 にほぼ平行する面内で移動可能なステージ11と、

ステージ11に搭載し検出器1の検出パターンを 撮像する撮像紫子9と、

該当接の位置を検出する位置検出手段12と、 位置検出手段12からの情報によりステージ11を移動させる制御回路13とを具えてなることを特徴と し、

(実施例)

以下に、図面を用いて本発明方法およびその装置の実施例につき説明する。

第2図は本発明方法および本発明装置の一実施例に係わる主要構成を示すブロック図、第3図は本発明方法および本発明装置の他の実施例に係わる主要構成を示すブロック図、第4図は前記他の実施例における被検体の投影像を示す図であり、各図において前出図と共通部分には同一符号を使用している。

第2図において、21は指紋パクーンおよび指紋 当接位置の検出機能を具えた検出器、25はCPU であり、指紋パターンを撮像する位置の撮像素子 9は実線で示すと共に、予め決めた位置、または 任意の位置にあって被検体(指)6の当接位置を にある撮像素子9 1 は点線で図示してある。

検出器21は、照明光8の進行方向に対し異なる 選択性を有する第1のホログラム23と第2のホロ グラム24とを、ガラス基板22の下面に積層形成し てなる。ホログラム23と24は、例えば図中に一点 さらに一方の面に被検体 6 が当接されるガラス 基板 (22) の他方の面に、凹凸6a,6b パターンを検 出する第 1 のホログラム (23) と、第 1 のホログラム (23) とは異なる回折角度で前記当接の位置を検 出する第 2 のホログラム (24) を積層形成し、

検出器 1 と位置検出手段12とが一体に形成されてなること、

または位置検出手段12が、被検体6の投影像を 検出する投影像位置摄像素子(31)であることを特 徴とする、個人照合装置により解決される。

(作用)

上記手段によれば、攝像素子9は被検体6からの検出情報出射位置に移動したのち、被検体6の照合パターンを撮像する。従って、必要とする撮像する。従って、必要とする撮像する。後の対しても、該当接面の全面に渡り撮像せず、必要とする限定領域につき撮像すればよいため、摄像の分解能を向上させることが可能となる。

鎖線で示す如く、指6のほぼ真下に回折しないで出射する第1の散乱光8aによる等倍像と、ホログラム24により回折して側方へずれた位置に出射する第2の散乱光8bによる縮小像とを形成する回折格子がそれぞれに形成されている。

そこで照明光 8 は、ホログラム24に回折されず ホログラム23に回折され、基板22の上面のガラス /空気界面で臨界角度以上になるように照明光 8 を入射される。

すると、指6の指紋情報を提供する散乱光の一部8bは、ホログラム23に回折されず、ホログラム24に回折されず、ホログラム24に回折されず指紋センサ21から出射し、散乱光8aによる指紋パターンを含む縮小像と、散乱光8bにより指紋パターンを含む縮小像とが形成される。

かかる照合装置において、照明光 8 を照射し検出器21に指 6 を適宜の押圧力で当接すると、摄像 紫子 9 ′ は検出器21の縮小像を撮影し、CP U25 は該縮小像内における指 6 の当接位置を算出し、

該算出位置に摄像素子 9 ′ が対向するようにステージ11を移動、即ち散乱光8aと同軸に摄像素子 9

が位置決めされる。

すると、擬像素子 9 が等倍像の指紋パターンを 撮影し、該擬像パターンと照合用辞書に登録され たパターンとを照合した照合回路 3 が、照合情報 を提供することになる。

次いで、第3図を用いて本発明の他の実施例に、 なる個人照合装置を説明する。

第3図において、31は指紋検出器1に当接された指6の投影像を検出する摄像素子、32はフレームメモリ、33は指6の当接中心決定回路であり、X-Yステージ11は当接中心決定回路32の情報に基づき、該当接中心に摄像素子9が対向するように、制御回路社会のし移動する。

即ち、照明光 8 はホログラムにより、検出器 1 の上面で全反射を起こすが、一部の照明光はホログラム素通りして検出器 1 から抜け出し、指 6 を照明し得られる指 6 の投影像が撮像案子31に入射すると、フレームメモリ32を介し該投影像の入力

せるため、該撮像素子は必要とする限定領域につき撮像すればよいため、撮像の分解能が向上し照合処理時間が短縮し、個人照合装置の高性能化を 実現した効果が顕著である。

4. 図面の簡単な説明

第1図は本発明の基本構成を示すブロック図、

第2図は本発明方法に係わり木発明装置の一実 施例に係わる主要構成を示すプロック図、

第3図は本発明方法に係わり本発明装置の他の、 実施例に係わる主要構成を示すプロック図、

第4図は前記他の実施例における被検体の投影 像を示す図、

第5図は従来の個人照合装置を示すプロック図、

第6図は全反射ホログラムによる指紋検出器 の原理図、

第7図は第6図の指紋検出器に指を当接した一 部分の拡大図、

である。

図中において、

された当接中心決定回路32は、第4図に示す如く、 投影像34の幅wの中心線と、投影像34の先端から 予め設定された距離 y との交点35を算出し、交点 35の位置座標を C P U 25に出力する。

するとCPU25は、X-Yステージ制御回路接からの情報による攝像素子9の現位置と、前記交点35の位置との座標差を算出してステージ11を移動させ、指紋センサ1から出射する指6の反射光と対向する位置に、摄像素子9を移動させる。

その結果、摄像素子9は指6のパターンを検出する所要領域に対する分解能を具えておれば十分であり、かつ照合回路3は該所要領域に付いて辞書2と照合すればよいことになる。

ため、従来装置に較べ摄像素子9の分解能の向上、 および照合処理の高速化が実現される。

(発明の効果)

以上説明した如く本発明方法および本発明装置 によれば、被検体からのパターン情報と対向刷る ように、そのパターン検出用の摄像素子を移動さ

1.21はパターン (指紋) 検出器、

4,22はガラス基板、

5,23,24 はホログラム、

6は被検体(指)、

6a,6b は凹凸、

9 は摄像素子、

11はステージ、

12は位置検出手段、

13は制御回路、

31は投影像用摄像素子、

34は投影像、

を示す。

代理人 弁理士 井 桁 貞 一 🥢

本発明の他の実施例における投影図 第4図

個人照合装置のブロッ2図 第5 図

全反射ポログラムによる指数検出器の原理図 第6図

第6図の指数検出器に当接Lた指の拡大図 第7図