

Collaborative lifelong learning for MR image segmentation with Dafne: a reproducible research project

Santini F, Wasserthal J, Agosti A, Pichiecchio A

Muscle segmentation

- Quantitative methods rely on segmentation
- Time consuming to do manually
- Complex to automate
 - Deformable geometry
 - Different appearance
 - Rare diseases
 - Multiple contrasts/parameters
- Deep learning is the current standard

Typical segmentation workflow

Incremental learning

Here comes Dafne **

- Dafne is free software for muscle segmentation based on continuous collaborative learning.
 - Thigh and Leg models included
 - Federated learning
 - It collects improvements from all users
 - It preserves data privacy!
 - Continuous incremental learning
 - It learns from your own expertise, even from few examples!
- It has an easy user interface
 - You always check the segmentation before exporting.

Get it at https://dafne.network/

* Dafne is the Greek name for bay leaf

Dafne Workflow

Does it work?

We validated it on

- 38 local datasets, and
 - T1-w images of the calf
- 18 months of usage statistics!
 - Dice scores collected for thigh and calf

Jun 2021

1

Dec 2022

31

- 25 datasets used for incremental learning
 - Adaptation to the contrast
- Significant linear increase
 - 0.009 dice points/epoch
 - p < 0.001
 - LMM, random slope

- 13 datasets used for validation
 - Tested on the model versions from the previous group
- Significant linear increase
 - 0.007 dice points/epoch
 - p < 0.001
 - LMM, random slope

Real-world data

Reproducibility

- All development was made public since the beginning
 - Client (GPL): https://github.com/dafne-imaging/dafne
 - Server (GPL): https://github.com/dafne-imaging/dafne-server
 - Models (GPL): https://github.com/dafne-imaging/dafne-models
 - Model interface/common tools (LGPL): https://github.com/dafne-imaging/dafne-dl
- All analysis to generate the figures available at public since the beginning
 - https://github.com/dafne-imaging/dafne-evaluation
- Dafne available at
 - https://dafne.network/
 - Multiplatform distributions

Evaluation

- Jupyter notebook that produces the images and the statistics
 - Includes data
 - Timestamped (Zenodo)
- Paper on arXiv: https://arxiv.org/abs/2302.06352

Evaluation repository for the Dafne project

- Generic model trainer
- Testing it of kidney images
- Much room for improvement
 - Transfer learning
 - New architectures
 - Transformer (Kanishka)
 - 3D models

Acknowledgment

Our collaborators:

Policlinico Gemelli - Rome

- Giorgio Tasca
- Mauro Monforte
- Enzo Ricci

Fondazione Mondino – Pavia

- Anna Pichiecchio
- Francesca Solazzo
- Matteo Paoletti

Stanford

Arjun Desai

Peking Union Medical College Beijing

Fengdan Wang

Siemens China

Jinxia Zhu

The BAMM Group:

- Xeni Deligianni
- Jakob Wasserthal
- Claudia Weidensteiner
- Tugba Akinci D'Antonoli

Active users who helped improving the model during the Segmenta-thon:

Hermien Kan, Kevin Keene, Christoph Stuprich, Claudia Weidensteiner, Giulia Manco, Valentina Mazzoli, Arjun Desai

Department of Biomedical Engineering