9

9.1

We prove that if $M \leq N_1 \omega_1 N_2 ... N_{n-1} \omega_{n-1} N_n$ then $TS(M) \leq TS(N_1) \wr ... \wr TS(N_n)$. By 4.10

$$TS(M) \le TS(N_1\omega_1 N_2 ... N_{n-1}\omega_{n-1} N_n)$$

holds true. By 6.22 the cascade product is covered by the wreath product which results in

$$TS(N_1\omega_1N_2...N_{n-1}\omega_{n-1}N_n) \leq TS(N_1 \wr ... \wr N_n)$$

. This concludes the proof.

9.2

We show $A \leq A/\pi \times A/\tau$. Notice, with $S', S'' \subseteq S$:

$$A = (Q, S)$$

$$A/\pi \times A/\tau = (\pi, S') \times (\tau, S'') \to (\pi \times \tau, S' \times S'');$$

$$(q', s') \times (q'', s'') \mapsto (q's', q''s'')$$

We define $\eta:(\pi \times \tau) \to Q;(g,h) \mapsto g \cap h$ which is surjective partial and results into one singleton of Q or is the emptyset due to the orthogonal property.

$$\pi \cap \tau = id_Q$$

Finally, we show $\eta((g,h))s \subseteq \eta((g,h)(s',s''))$ with $g \in \pi, h \in \tau, s' \in S_{\sim_{\pi}}, s'' \in S_{\sim_{\tau}}$.

$$\eta((g,h))s = qs$$

$$= q'$$

$$\subseteq \eta((g',h'))$$

$$= \eta((gs',hs''))$$

$$= \eta((g,h)(s',s''))$$
(2)

(1) By definition of η there exists for each $q \in Q$ one block of each partition that maps

to q or is empty which is still valid.

(2) By definition of admissible partitions for any $g' \in H$ there exists an $s' \in S/\sim$ and a partition $g \in H$ with g' = gs'.

9.3

Let $M=(Q,\Sigma,\delta)$ be a reset machine with at least two states. The claim is that then for all $q_1,q_2 \in Q$, the partition $\pi=\{\{q_1,q_2\},Q\setminus\{q_1,q_2\}\}$ is admissible and orthogonal. Using Lemma 7.13 we can skip the proof that π is an admissible partition, and we only need to show that it is orthogonal. To show this we need to find another admissible partition τ of M s.t. $\pi \cap \tau = id_Q$.

Lets look at the characteristics that τ needs to have in order for the intersection to yield only id_Q . For this, there can not exist q_1 and q_2 can not be together in one block of the partition, since its intersection would yield q_1 and q_2 as a result. Therefore, we take the partition WLOG. $\tau = \{\{q_1, q_3\}, \{q_2\}, \{q_i\}_{i \in (|Q|-3)\setminus\{1,2,3\}}\}$, if we intersect τ with π , we will only get singleton blocks as a result because:

$$\{q_1, q_2\} \cap \{q_1, q_3\} = \{q_1\}$$

$$\{q_1, q_2\} \cap \{q_2\} = \{q_2\}$$

$$\{Q \setminus \{q_1, q_2\}\} \cap \{q_1, q_3\} = \{q_3\}$$

$$\{q_1, q_2\} \cap \{q_i\}_{i \in (|Q|-3) \setminus \{1, 2, 3\}} = \{\}$$

$$\{q_i\}_{i \in (|Q|-3) \setminus \{1, 2, 3\}} \cap \{Q \setminus \{q_1, q_2\}\} = \{q_i\}_{i \in (|Q|-3) \setminus \{1, 2, 3\}}$$

$$\bigcup \pi \cap \tau = Q$$

And since M is a reset machine, all partitions of it are admissible and therefore, also τ . This concludes the proof.

9.4

We use the partition $\pi = \{\{q_0, q_2, q_4\}, \{q_1, q_3\}\}$ and $\tau = \{\{q_0, q_1\}, \{q_2, q_3\}, \{q_4\}\}$. First we show that both π and τ are admissible partitions and after that we show that they are orthogonal.

$$\{q_0, q_2, q_4\} \delta_a = \{q_0, q_2, q_4\}$$

$$\{q_0, q_2, q_4\} \delta_b = \{q_1, q_3\}$$

$$\{q_1, q_3\} \delta_a = \{q_1, q_3\}$$

$$\{q_1, q_3\} \delta_b = \{q_1, q_3\}$$

$$\{q_0, q_1\} \delta_a = \{q_2, q_3\}$$

$$\{q_0, q_1\} \delta_b = \{q_0, q_1\}$$

$$\{q_2, q_3\} \delta_a = \{q_4\}$$

$$\{q_2, q_3\} \delta_b = \{q_0, q_1\}$$

$$\{q_4\} \delta_b = \{q_2, q_3\}$$

Next we show that $\pi \cap \tau = id_Q$:

$$\{q_0, q_2, q_4\} \cap \{q_0, q_1\}$$

$$\{q_0, q_2, q_4\} \cap \{q_2, q_3\}$$

$$\{q_0, q_2, q_4\} \cap \{q_4\}$$

$$\{q_1, q_3\} \cap \{q_0, q_1\}$$

$$\{q_1, q_3\} \cap \{q_2, q_3\}$$

$$\{q_1, q_3\} \cap \{q_4\}$$

$$= \{q_3\}$$

$$\{q_1, q_3\} \cap \{q_4\}$$

$$= \{\}$$

This concludes the proof.