(2) 若 G 是 n 阶循环群,则 G 有 $\phi(n)$ 个生成元. 当 n=1 时, $G=\langle e \rangle$ 的生成元是 e, 当 n>1 时,对每一个不于等于 n 的正整数 r, a^r 是 G 的生成元当且仅当 (n,r)=1.

定理 17.13 $G = \langle a \rangle$ 是循环群,那么

- (1) G的子群也是循环群;
- (2) \overline{A} \overline{G} 是无限阶的,则 \overline{G} 的子群除 $\{e\}$ 以外仍是无限阶的;
- (3) 若 G 是 n 阶的,则 G 的子群的阶是 n 的因子,对于 n 的每个正因子 d,在 G 中有且仅有一个 d 阶子群.

定理 17.14 设 E(A) 是 A 上的全体——变换构成的集合,则 E(A) 关于变换的乘法构成一个群.

定理 17.15 设 $\sigma, \tau \in S_n$, 若 σ 与 τ 是不相交的, 则 $\sigma\tau = \tau\sigma$.

定理 17.16 任何 n 元置换都可以表成不相交的轮换之积,并且表法是惟一的.

定理 17.17 设 $\sigma=(i_1i_2\cdots i_k)$ 是 $A=\{1,2,\cdots,n\}$ 上的 k 阶轮换, k>1,则 $\sigma=(i_1i_k)(i_1i_{k-1})\cdots(i_1i_2).$

定理 17.18 $\sigma \in S_n$ 且 $\sigma(j) = i_j$, $j = 1, 2, \cdots, n$, 则在 σ 的对换表示中对换个数的奇偶性与排列 $\pi = i_1 i_2 \cdots i_n$ 中的逆序数的奇偶性一致.

定理 17.19 $G \neq n$ 元置换群.

- (1) $\sigma \in G$, $\sigma = (i_1 i_2 \cdots i_k)$, $\mathbb{N} |\sigma| = k$.
- (2) $\tau \in G$, $\tau = \tau_1 \tau_2 \cdots \tau_l$ 是不相交轮换的分解式,若 τ_i 是 k_i 阶轮换, $i = 1, 2, \cdots, l$, 则 τ 的阶 是 k_1, k_2, \cdots, k_l 的最小公倍数,即 $|\tau| = [k_1, k_2, \cdots, k_l]$.

定理 17.20 设 G 是群, H 是 G 的子群,则

(1) He = H;

(2) $\forall a \in G, a \in Ha$.

定理 17.21 设 G 是群, H 是 G 的子群, 则 $\forall a \in G, Ha \approx H$.

定理 17.22 G 是群, H 是 G 的子群, $\forall a,b \in G$ 有

$$a \in Hb \Leftrightarrow Ha = Hb \Leftrightarrow ab^{-1} \in H$$
.

定理 17.23 G 是群,H 是 G 的子群,在 G 上定义二元关系 R, $\forall a,b \in G$ 有 $aRb \Leftrightarrow ab^{-1} \in H$,

则R为 G 上的等价关系,则 $[a]_R = Ha$.

定理 17.24 G 是群, H 是 G 的子群,则

$$\forall a,b \in G, Ha \cap Hb = \varnothing \not \exists Ha = Hb, \ \bot \bigcup_{a \in G} Ha = G.$$

定理 17.25 设 G 是群,H 是 G 的子群,则

- (1) eH = H;
- (2) $\forall a \in G, a \in aH$;
- (3) $\forall a \in G, aH \approx H;$
- (4) $\forall a, b \in G, a \in bH \Leftrightarrow aH = bH \Leftrightarrow a^{-1}b \in H;$
- (5) 在 G 上定义二元关系 R, $\forall a,b \in G$, $aRb \Leftrightarrow a^{-1}b \in H$, 则 R 为 G 上的等价关系,且 $[a]_R = aH$;
- (6) $\forall a,b \in G, aH \cap bH = \varnothing \not \exists aH = bH, \ \bot \bigcup_{G \cap G} aH = G.$

定理 17.26 (Lagrange 定理) 设 G 是有限群, H 是 G 的子群,则

$$|G| = [G:H]|H|.$$

推论 $1 G \in \mathbb{R}$ 所群,则 G 中每个元素的阶是 n 的因子,且 $\forall a \in G$ 有 $a^n = e$.