Fast, uniform scalar multiplication for genus 2 Jacobians with fast Kummers

Ping Ngai (Brian) Chung Craig Costello Benjamin Smith

University of Chicago

Microsoft Research

INRIA + Laboratoire d'Informatique de l'École polytechnique (LIX)

SAC 2016 St. John's, Canada, 11/08/2016 We want to implement basic cryptosystems based on the hardness of the Discrete Logarithm and Diffie–Hellman problems in some group \mathcal{G} .

Especially: Diffie-Hellman Key exchange, Schnorr and (EC)DSA Signatures, ...

Work to be done

Group operation in \mathcal{G} : \oplus . Inverse: \ominus .

We occasionally need to compute isolated $\oplus es$.

We mostly need to compute scalar multiplications:

$$(m, P) \longmapsto [m]P := \underbrace{P \oplus \cdots \oplus P}_{m \text{ times}}$$

for P in \mathcal{G} and m in \mathbb{Z} (with $[-m]P = [m](\ominus P)$).

Side channel safety \implies scalar multiplication must be *uniform* and *constant-time* when the scalar m is secret.

...So you want to instantiate a DLP/DHP-based protocol

Smallest key size for a given security level: use an *elliptic curve* or a *genus 2 Jacobian*.

For signatures and encryption:

Elliptic: Edwards curves (eg. Ed25519), NIST curves, etc.

Genus 2: Jacobian surfaces.

Scalar mult: *Uniform* genus 2 is much slower than elliptic curves.

For Diffie-Hellman:

Elliptic: x-lines of Montgomery curves (eg. Curve25519)

Genus 2: Kummer surfaces (Jacobians modulo ± 1).

Scalar mult: *Uniform* genus 2 can be faster than elliptic curves.

E.g.: Bos-Costello-Hisil-Lauter (2012)

Bernstein-Chuengsatiansup-Lange-Schwabe (2014)

Our aim: bring Diffie-Hellman performance to signatures in genus 2.

Genus 2 curves

 $\mathcal{C}: y^2 = f(x)$ with $f \in \mathbb{F}_p[x]$ degree 5 or 6 and squarefree Unlike elliptic curves, the points do not form a group.

Making groups from genus 2 curves

```
Jacobian: algebraic group \mathcal{J}_{\mathcal{C}} \sim \mathcal{C}^{(2)}:
               Elements are pairs of points on C,
   with all pairs \{(x,y),(x,-y)\} "blown down" to 0.
Negation \ominus: \{(x_1, y_1), (x_2, y_2)\} \mapsto \{(x_1, -y_1), (x_2, -y_2)\}
                  Group law on \mathcal{J}_{\mathcal{C}} induced by
             {P_1, P_2} \oplus {Q_1, Q_2} \oplus {R_1, R_2} = 0
              whenever P_1, P_2, Q_1, Q_2, R_1, R_2 are
     the intersection of \mathcal{C} with some cubic y = g(x).
```

Why? Any 4 points in the plane determine a cubic y = g(x), which must intersect $C: y^2 = f(x)$ in 6 points because $g(x)^2 = f(x)$ has 6 solutions.

Genus 2 group law: $\{P_1, P_2\} \oplus \{Q_1, Q_2\} = \ominus \{R_1, R_2\} = \{S_1, S_2\}$

Algorithmically: we use the Mumford representation and Cantor's algorithm.

Why is uniform genus 2 tricky?

Elements $\{P_1, P_2\}$: separate, *incompatible* representations for cases where one or both of the P_i are at infinity.

Group law $\{P_1, P_2\} \oplus \{Q_1, Q_2\} = \{S_1, S_2\}$: branch-tacular, separate special cases for P_i , Q_i at infinity, for $P_i = P_j$, for $P_i = Q_j$, for $\{P_1, P_2\} = \{Q_1, Q_2\}$, ...

These special cases are never implemented in "record-breaking" genus 2 implementations, but they're easy to attack in practice.

For elliptic curves, we can always sweep the special cases under a convenient line to get a uniform group law, but in genus 2 this is much harder; *protection kills performance*.

Why is Diffie-Hellman different?

Now you know why genus 2 Jacobians are painful candidates for cryptographic groups.

So why is genus 2 fast and safe for Diffie-Hellman?

Because DH *doesn't need a group law*, just scalar multiplication.

So we can "drop signs" and work modulo \ominus , on the Kummer surface

$$\mathcal{K}_{\mathcal{C}} := \mathcal{J}_{\mathcal{C}}/\langle \pm 1 \rangle$$
.

Elliptic curve equivalent: work on x-line \mathbb{P}^1 , eg. Curve25519 (Bernstein 2006).

What a Kummer surface looks like

Moving from $\mathcal{J}_{\mathcal{C}}$ to the Kummer $\mathcal{K}_{\mathcal{C}}$

Quotient map
$$x: \mathcal{J}_{\mathcal{C}} \longrightarrow \mathcal{K}_{\mathcal{C}}$$
 (ie $x(P) = \pm P$)

No group law on $\mathcal{K}_{\mathcal{C}}$: x(P) and x(Q) determines $x(P \oplus Q)$ and $x(P \ominus Q)$, but we can't tell which is which.

Still, $\ominus[m](P) = [m](\ominus P)$ for any $m \in \mathbb{Z}$ and $P \in \mathcal{J}_{\mathcal{C}}$, so we do have a "scalar multiplication" on $\mathcal{K}_{\mathcal{C}}$:

$$[m]: x(P) \longmapsto x([m]P)$$
.

Problem: How do we compute [m] efficiently, without \oplus ?

Any 3 of x(P), x(Q), $x(P \ominus Q)$, and $x(P \oplus Q)$ determines the 4th, so we can define

$$xADD: (x(P), x(Q), x(P \ominus Q)) \longmapsto x(P \oplus Q)$$

pseudo-doubling

$$xDBL : x(P) \longmapsto x([2]P)$$

Bonus: easier to hide/avoid special cases in xADD than \oplus .

⇒ Evaluate [m] by combining xADDs and xDBLs using differential addition chains

(ie. every \oplus has summands with known difference).

Classic example: the Montgomery ladder.

Algorithm 1 The Montgomery ladder

```
1: function LADDER(m = \sum_{i=0}^{\beta-1} m_i 2^i, P)
2: (R_0, R_1) \leftarrow (0, P)
3: for i := \beta - 1 down to 0 do
4: (R_{m_i}, R_{\neg m_i}) \leftarrow ([2]R_{m_i}, R_{m_i} \oplus R_{\neg m_i})
5: end for \triangleright invariant: (R_0, R_1) = ([\lfloor m/2^i \rfloor]P, [\lfloor m/2^i \rfloor + 1]P)
6: return R_0 \triangleright R_0 = [m]P, R_1 = [m]P \oplus P
7: end function
```

For each group operation $R_0 \oplus R_1$, the difference $R_0 \ominus R_1$ is *fixed* \implies trivial adaptation from $\mathcal{J}_{\mathcal{C}}$ to $\mathcal{K}_{\mathcal{C}}$

Algorithm 2 The Montgomery ladder on the Kummer

```
1: function LADDER(m = \sum_{i=0}^{\beta-1} m_i 2^i, \pm P)
2: (x_0, x_1) \leftarrow (x(0), x(P))
3: for i := \beta - 1 down to 0 do
4: (x_{m_i}, x_{\neg m_i}) \leftarrow (\text{xDBL}(x_{m_i}), \text{xADD}(x_0, x_1, x(P))
5: end for \triangleright invariant: x_0 = x([\lfloor m/2^i \rfloor]P, x_1 = x([\lfloor m/2^i \rfloor + 1]P)
6: return x_0 = (x([m]P))
7: end function
```

```
High symmetry of \mathcal{K}_{\mathcal{C}} \Longrightarrow fast, vectorizable xADD and xDBL (Gaudry) \Longrightarrow very fast Kummer-based Diffie–Hellman implementations Eg. Bos–Costello–Hisil–Lauter (2013), Bernstein–Chuengsatiansup–Lange–Schwabe (2014).
```

Pulling a y-rabbit out of an x-hat

Kummer multiplication computes x([m]P) from x(P)—but we need [m]P for signatures...

Mathematically, we threw away the sign: you can't deduce [m]P from P and x([m]P).

But there's a trick: if you computed x([m]P) using the Montgomery ladder, then you can!

At the end of the loop, $x_0 = x([m]P)$ and $x_1 = x([m]P \oplus P)$; and P, x(Q), and $x(Q \oplus P)$ uniquely determines Q (for any Q).

Our paper: efficiently computing this in genus 2, with 1D (Montgomery) and 2D (Bernstein) SM algorithms.

P, x(Q), and $x(P \oplus Q)$ determine Q

This is an old trick for elliptic curves: cf. López–Dahab (CHES 99), Okeya–Sakurai (CHES 01), Brier–Joye (PKC 02).

Genus 2 group law: $\{P_1, P_2\} \oplus \{Q_1, Q_2\} = \{S_1, S_2\}$

Choosing $\{T_1, T_2\}$ as (the wrong) preimage of $x(\{Q_1, Q_2\})$ yields a cubic incompatible with $x(\{S_1, S_2\})$.

So: your fast Kummer implementations can now be easily upgraded to full Jacobian group implementations.

Fast Diffie-Hellman code now yields efficient signatures.

$\textbf{Algorithm 3} \ \, \textbf{Montgomery} / \textbf{Kummer-based multiplication on the Jacobian}$

```
1: function SCALARMULTIPLY (m = \sum_{i=0}^{\beta-1} m_i 2^i, P)

2: (x_0, x_1) \leftarrow (x(0), x(P))

3: for i := \beta - 1 down to 0 do \triangleright Montgomery ladder

4: (x_{m_i}, x_{\neg m_i}) \leftarrow (\text{xDBL}(x_{m_i}), \text{xADD}(x_0, x_1, x(P))

5: end for \triangleright invariant: x_0 = x([\lfloor m/2^i \rfloor]P), x_1 = x([\lfloor m/2^i \rfloor + 1]P)

6: Q \leftarrow \text{Recover}(P, x_0, x_1) \triangleright Q = [m]P

7: return Q
```

8: end function

Gratuitous cross-promotion

...this isn't just wishful theory.

Our technique was used in μ Kummer: efficient Diffie-Hellman and Schnorr signatures for microcontrollers (Renes-Schwabe-S.-Batina, CHES 2016)

Comparison for 8-bit architecture (AVR ATmega):

Protocol	Object	kCycles	Stack bytes
Diffie–Hellman	Curve25519	13900	494
	μ Kummer	9513 (68%)	99 (20%)
Schnorr signing	Ed25519	19048	1473
	μ Kummer	10404 (55%)	926 (63%)
Schnorr verifying	Ed25519	30777	1226
	μ Kummer	16241 (53%)	992 (75%)

(vs. Curve25519: Düll-Haase-Hinterwälder-Hutter-Paar-Sánchez-Schwabe, Ed25519: Nascimento-López-Dahab)

Comparison for 32-bit architecture (ARM Cortex M0):

Multiplication for	Object	kCycles	Stack bytes
Diffie–Hellman	Curve25519	3590	548
	μ Kummer	2634 (73%)	248 (45%)
Schnorr	NIST-P256	10730	540
	μ Kummer	2709 (25%)	968 (179%)

(vs. Curve25519: Düll-Haase-Hinterwälder-Hutter-Paar-Sánchez-Schwabe, NIST-P256: Wenger-Unterluggauer-Werner)