1. Mi az alapfogalom?

Alapfogalom: olyan fogalom, amit ismertnek fogadunk el, nem tudunk más fogalmak segítségével meghatározni, legfeljebb szemléletesen körülírjuk. Minden tudomány ilyen alapfogalmakra épül fel.

2. A geometria alapfogalmai

A geometria alapfogalmai: pont, vonal, egyenes, sík, tér.

Pont: Két egymást metsző vonallal jelöljük. Az ábécé nagybetűivel nevezzük el.

3. Az egyenes. (Elnevezése, hossza)

Egyenes: A geometria egyik alapfogalma. Végtelen hosszú. Mindkét irányban a végtelenbe tart. Az ábécé kisbetűivel nevezzük el.

4. A félegyenes meghatározása. (Elnevezése, hossza)

Félegyenes: Az egyenest bármely pontja két félegyenesre bontja. A félegyenest az ábécé kisbetűivel nevezzük el.

B kezdőpontú e félegyenes, és B kezdőpontú f félegyenes.

A félegyenes végtelen hosszú, de csak egy irányban tart a végtelenbe.

5. A szakasz meghatározása. (Elnevezése, hossza)

Térelemek: pont, vonal, sík

6. Két pont kölcsönös helyzete:

1. Két pont illeszkedik egymásra:

$$^{A} \times _{B}$$

2. Két pont nem illeszkedik egymásra:

$$\times$$
 D

$$\mathbf{x}^{\mathbf{E}}$$

7. Pont és egyenes kölcsönös helyzete:

1. A B pont illeszkedik az e egyenesre:

2. A D pont nem illeszkedik az f egyenesre:

f

8. Egy ponton át, hány egyenes húzható?

Egy adott ponton keresztül végtelen sok egyenes húzható. Egy pont nem határoz meg egy egyenest.

9. Legkevesebb hány pont határoz meg egy egyenest?

Két adott ponton keresztül pontosan egy egyenes húzható. Két pont meghatároz egy egyenest.

10. Pont és sík kölcsönös helyzete:

1. A B pont illeszkedik az α síkra:

2. A D pont nem illeszkedik az α síkra:

11. Metsző egyenesek fogalma.

Két egyenes metsző, ha pontosan egy közös pontjuk van.

Két metsző egyenes a síkot mindig négy részre osztja. A két-két szemközti síkrész mindig egybevágó. (Két síkrész – *síkidom* – **egybevágó**, ha egymásra borítva kölcsönösen fedik egymást.)

12. Merőleges egyenesek fogalma, jelölése.

A merőleges egyenesek olyan metsző egyenesek, amelyek a síkot négy egybevágó részre osztják.

Így jelöljük, hogy \mathbf{a} és \mathbf{b} egyenesek merőlegesek egymásra: $\mathbf{a} \perp \mathbf{b}$

13. Párhuzamos egyenesek fogalma, jelölése.

Két egyenes párhuzamos, ha egy síkban vannak és nincs közös pontjuk, illetve, ha minden pontjuk közös, azaz illeszkednek. A két párhuzamos egyenes bármely pontja azonos távolságra van a másik egyenestől.

Így jelöljük, hogy **a** és **b** egyenesek párhuzamosak: **a** | | **b**

Két nem illeszkedő párhuzamos egyenes a síkot mindig három részre osztja.

14,Kitérő egyenesek fogalma.

A két egyenes kitérő ha nem egy síkban vannak. Két kitérő egyenesnek nincs közös pontja.

15. Egyenes és sík kölcsönös helyzete.

1. Az egyenes illeszkedik a síkra:

Az egyenes minden pontja illeszkedik a síkra. Az egyenes a síkot két részre, két félsíkra osztja.

2. Az egyenes döfi a síkot:

Az egyenesnek és a síknak pontosan egy közös pontja van.

3. Az egyenes párhuzamos a síkkal:

Az egyenesnek és a síknak nincs közös pontja.

16. Két sík kölcsönös helyzete:

1. Két sík illeszkedik egymásra, ha minden pontjuk közös

2. Két sík metszi egymást, közös pontjaik egy egyenest alkotnak.

3. Két sík párhuzamos, ha nincs közös pontjuk.

17. Két pont távolsága

Két pont távolsága a két pontot összekötő egyenes szakasz hossza.

A két pontot összekötő vonalak közül az egyenes a legrövidebb. *(Két pont között a legrövidebb út mindig az egyenes.)* Két pont között mindig csak egy egyenes szakasz húzható.

18. Két (több elemű) ponthalmaz távolsága

19. Pont és egyenes távolsága

A pontból az egyenesre állított merőleges szakasz hossza. (A két ponthalmaz pontjait összekötő szakaszok közül ez a legrövidebb.)

20. Két metsző egyenes távolsága

Két metsző egyenes távolsága mindig 0.

(Az **a** és **b** egyenesek két legközelebbi pontja a metszéspont.)

21. Két párhuzamos egyenes távolsága

Két párhuzamos egyenes távolsága: A két párhuzamos egyenest összekötő merőleges szakasz hossza.

(A két ponthalmaz pontjait összekötő szakaszok közül ez a legrövidebb.)

22. Pont és sík távolsága

23. Sík és vele párhuzamos egyenes távolsága

e Az egyenesről a síkra állított merőleges szakasz hossza. α

24. Két párhuzamos sík távolsága

25. A szög fogalma, részei

Két szög keletkezett. A szögcsúcs és a szögszárak mindkét szöghöz hozzátartoznak!!

26. Néhány görög betű

A szögeket a görög ábécé betűivel nevezzük el:

 α — alfa

β — béta

γ — gamma

δ — delta

 ϵ — epszilon

ω — omega

27. Szögmérés

A szöget szögfokkal (°), vagy a szöghöz tartozó körív hosszával mérjük. A szögek nagyságát területükkel nem tudjuk mérni, hisz minden szögtartomány végtelen nagy területet jelent.

Ha az egyik szögszárat rögzítettnek tekintjük, a másik szögszárat, pedig a szögcsúcs körül elforgatjuk, a mozgó szögszár minden pontja egy kört ír le, míg a szögszár visszatér kiindulási helyére. Kiválasztunk egy kört, a körvonalat felosztjuk 360 egyenlő szakaszra. Egy beosztás lesz 1° (1 fok).

(A gyakorlatban ezt a kört a szögmérő helyettesíti.) A szög nagyságát azzal jellemezzük, hogy a mozgó szögszár melyik beosztásnál metszi a körívet, ha a rögzített szár a 0°-ra mutat.

Ez a mozgó szögszár most körülbelül a 35-ös beosztásra mutat. A β szög megközelítőleg 35°.

A β szög ismeretében α mérés nélkül meghatározható. Az egész köríven 360 beosztás van. A β-ra ebből 35 jut, akkor az $\alpha = 360^{\circ} - 35^{\circ}$.

 $\alpha = 325^{\circ}$

A szögek nagyságát a hozzá tartozó körív hossza is jellemzi. Ez is mérhető. Mi most csak összehasonlítjuk a két körívet. Így ránézésre az α -hoz tartozó körív körülbelül kilencszer hosszabb, mint a β -hoz tartozó.

28. Nullszög fogalma

A nullszög pontosan 0°. (Nem tartozik hozzá körív.)

29. Hegyesszög fogalma

Hegyesszög: 0°-nál nagyobb, de 90-nál kisebb. (A hozzá tartozó körív negyed körnél kisebb.)

30. Derékszög fogalma

Derékszög: Pontosan 90°. (Negyed körív tartozik hozzá.)

31. Tompaszög fogalma

Tompaszög: 90°-nál nagyobb, de 180°-nál kisebb. (Negyed körnél nagyobb, de félkörnél kisebb körív tartozik hozzá.)

32. Egyenesszög fogalma

Egyenesszög: Pontosan 180°. (Félkörív tartozik hozzá.)

33. Homorú szög fogalma

Homorú szög: 180°-nál nagyobb, de 360°-nál kisebb. (Félkörnél nagyobb, de teljes körnél kisebb körív tartozik hozzá.)

34. Teljes szög fogalma

Teljes szög: Pontosan 360°. (Teljes kör tartozik hozzá.)

35. 36. Konvex szög, nem konvex szög fogalma

Konvex szögek: A 180°-nál nem nagyobb szögek.

Konkáv (nem konvex) szögek: A 180°-nál nagyobb szögek.

37. Párhuzamos szárú szögpárok

A párhuzamos szárú szögpárok olyan szögpárok, amelyek szárai páronként párhuzamosak.

38. Egyállású szögek

Egyállású szögek: olyan párhuzamos szárú szögpárok, amelyeknél a párhuzamos szárak iránya megegyezik.

 $\alpha = \beta$

39. Fordított állású szögek (váltószögek)

Fordított állású szögek (váltószögek): olyan párhuzamos szárú szögpárok, amelyeknél a párhuzamos szárak iránya ellentétes.

Két fordított állású szög mindig egyenlő nagyságú.

40. Csúcsszögek

Csúcsszögek: olyan fordított állású szögek, amelyeknek közös a csúcsuk, és amelyek szárai páronként egy egyenesen vannak.

Két csúcsszög mindig egyenlő nagyságú.

41. Kiegészítő szögek

Kiegészítő szögek: olyan szögpárok, amelyek egymást 180-ra egészítik ki. Például a társszögek, mellékszögek kiegészítő szögek.

42. Társszögek

Társszögek: olyan párhuzamos szárú szögpárok, amelyeknél egy-egy szár iránya megegyező, egy-egy szár iránya ellentétes.

Két társszög összege mindig 180°.

43. Mellékszögek

Olyan párhuzamos szárú szögpárok,, amelyeknek egy-egy száruk azonos egyenesen van, és egy száruk közös.

Két mellékszög összege mindig 180°.

44. Merőleges szárú szögpárok

Olyan szögpárok, amelyek szárai páronként merőlegesek.

45. Merőleges szárú szögpárok típusai

1. Az azonos szögtípusba tartozó merőleges szárú szögek mindig egyenlő nagyságúak.

 α és β is hegyesszög.

2. Ha a két merőleges szárú szög közül az egyik hegyesszög, a másik tompaszög, akkor a két szög összege mindig 180°.

46. Pótszögek

47. 48. 49. 50.

Adott ponttól (középponttól) egyenlő távolságra lévő pontok halmaza (mértani helye) a síkon a kör (körvonal).

Adott ponttól (középponttól) egyenlő távolságra lévő pontok halmaza a térben a gömb (gömbfelület).

Sugár: A kör középpontját a körvonal egy pontjával összekötő egyenes szakasz. Jele: r

Húr: A körvonal két tetszőleges pontját összekötő egyenes szakasz.

Átmérő: A kör középpontján áthaladó, a körvonal két pontját összekötő egyenes szakasz. Az átmérő a

leghosszabb húr. Jele: d

Körív: A körvonal tetszőleges hosszúságú szakasza.

Körszelet: Olyan síkidom, amit egy körív és egy húr határol.

Körcikk: Olyan síkidom, amit egy körív és két sugár határol.

Körlap: Adott ponttól (középponttól) sugárhossznál nem nagyobb távolságra lévő pontok

halmaza a síkon.

(A rajzon a körvonal, és a szürkével kitöltött terület együtt.)

Körgyűrű: két, azonos középpontú körvonal határolja.

51. 52.

a egyenes: Nincs közös pontja a körrel.

b egyenes: Érintő egyenes: A körnek és az egyenesnek pontosan egy közös pontja van. Ez

a pont az érintési pont. (P)

Az érintési pontba húzott sugár (r)mindig merőleges az érintő egyenesre.

Belátható, hogy a **b** egyenes pontjai közül a **P** pont van a legközelebb az **O** ponthoz, mivel rajta van a körvonalon, míg az egyenes többi pontja a körvonalon kívül helyezkedik el. Az **O** pontból a **b** egyenes pontjaihoz húzott szakaszok közül az **OP** a legrövidebb. Adott külső pontból az egyenes pontjaihoz húzott szakaszok közül a legrövidebb mindig merőleges az egyenesre.

c egyenes: Szelő egyenes: A körnek és az egyenesnek pontosan két közös pontja van.

53. A szakaszfelező merőleges egyenes meghatározása

Két ponttól egyenlő távolságra lévő pontok halmaza (mértani helye) a síkon, a két pontot összekötő szakasz szakaszfelező merőleges egyenese.

54. A szakaszfelező merőleges egyenes tulajdonságai

- 1. Felezi a szakaszt.
- 2. Merőleges a szakaszra.
- 3. Minden pontja egyenlő távolságra van a szakasz két végpontjától.
- 4. Minden olyan pontot tartalmaz, amelyek egyenlő távolságra vannak a szakasz két végpontjától.

55. Egy egyenestől egyenlő távolságra lévő pontok mértani helye a síkon. (Térben)

Adott egyenestől egyenlő távolságra lévő pontok halmaza (mértani helye) a síkon, két párhuzamos egyenes. *Adott egyenestől egyenlő távolságra lévő pontok halmaza a térben, egy hengerfelület. (Egy cső.)*

Az **e** és **f** egyenesek minden pontja **d** távolságra van az **a** egyenestől. Minden olyan pont, amely az **a** egyenestől **d** távolságra van a síkon az **e** és **f** egyeneseken van.

56. Két párhuzamos egyenestől egyenlő távolságra lévő pontok mértani helye a síkon

Két párhuzamos egyenestől egyenlő távolságra lévő pontok halmaza (mértani helye) a síkon, a két egyenest összekötő merőleges szakasz szakaszfelező merőleges egyenese. (Ez a két párhuzamos egyenes középegyenese.)

57. Két metsző egyenestől egyenlő távolságra lévő pontok mértani helye a síkon

Két metsző egyenestől egyenlő távolságra lévő pontok halmaza (mértani helye) a síkon, a két egyenes által bezárt szögek szögfelező egyenesei. $\frac{\beta_2}{\frac{\alpha_2}{2}} \qquad \frac{\beta_2}{\frac{\alpha_2}{2}} \qquad \frac{\beta_2}{\frac{\alpha_2}{2}} \qquad \frac{\beta_2}{\frac{\beta_2}{2}} \qquad \frac{$

58. A szögfelező egyenes tulajdonságai

- Felezi a szöget.
- Minden pontja egyenlő távolságra van a két szögszár egyenesétől.
- Minden olyan pontot tartalmaz, amelyek egyenlő távolságra vannak a két szögszár egyenesétől.

59. A két metsző egyenes által bezárt szögek szögfelezői merőlegesek egymásra

<u>TÉTEL: (Állítás):</u> Két metsző egyenes által bezárt szögek szögfelezői merőlegesek egymásra.

Ez az állítás nem olyan magától értetődő. Ha akarom, hiszem, ha nem akarom, nem hiszem. Ebben az esetben a meggyőzés eszköze a BIZONYÍTÁS.

A bizonyítás azt jelenti, hogy felsorakoztatjuk azokat a már bizonyított tényeket, amelyek együttesen igazolják az állításunkat.

Első lépésként mindig célszerű tömören megfogalmazni, hogy mit is akarunk bizonyítani.

Használjuk az ábrát!

Azt állítjuk, hogy $\mathbf{f_1}$ és $\mathbf{f_2}$ egyenesek által bezárt szög, - ami az ábra szerint $\frac{\alpha}{2}$ és $\frac{\beta}{2}$ összege - pontosan 90°.

Bizonyítandó tehát:
$$\frac{\alpha}{2} + \frac{\beta}{2} = 90^{\circ}$$

Bizonyítás:

Két metsző egyenes a síkot négy szögre osztja. A szemközti szögek egyenlők, így van 2 darab α és 2 darab β szögünk. A két szögfelező egyenes ezeket felezi.

Keletkezik 4 darab $\frac{\alpha}{2}$ és 4 darab $\frac{\beta}{2}$ szögünk. Alkossunk belőlük $(\frac{\alpha}{2} + \frac{\beta}{2})$ párokat!

Négy ilyen párt alakíthatunk ki. A szögek együtt teljes szöget alkotnak. Az ábrán látható az ehhez tartozó teljes kör. Ebből következik:

$$4*(\frac{\alpha}{2}+\frac{\beta}{2})=360^{\circ}$$
 //: 4

Mindkét oldalt 4-gyel osztva pontosan a bizonyítani kívánt állítást kapjuk.

$$\frac{\alpha}{2} + \frac{\beta}{2} = 90^{\circ}$$

Minden lépés, amit a bizonyítás közben megtettünk helyes, igazolható volt, így jutottunk el az utolsó állításhoz.

Így ez az állítás is igaz.

$$\frac{\alpha}{2} + \frac{\beta}{2} = 90^{\circ}$$

Az állítást tehát bebizonyítottuk.

60. Szakaszfelező merőleges egyenes szerkesztése

Szerkesszük meg az AB szakasz szakaszfelező merőleges egyenesét!

1. lépés:

Kinyitjuk a körzőt a szakasz felénél nagyobb távolságra, és ezzel a körzőnyílással körívet rajzolunk az **A** pont köré.

2. lépés:

Ugyanezzel a körzőnyílással körívet rajzolunk az **B** pont köré.

3. lépés:

A két metszéspontot összekötve kapjuk a szakaszfelező merőleges egyenest.

61. Merőleges szerkesztése adott egyenes adott pontjába

Állítsunk merőleges egyenest az **e** egyenes **B** pontjába!

1. lépés:

Vegyünk fel körző segítségével az ${\bf e}$ egyenesen a ${\bf B}$ ponttól egyenlő távolságra két

pontot!

2. lépés:

Szerkesszük meg az így kapott, B felezőpontú szakasznak a szakaszfelező merőlegesét.

62. Érintő egyenes szerkesztése, kör adott pontjára

Szerkesszük meg az O középpontú kört a P pontban érintő e egyenest!

1. lépés:

Vegyük fel az **OO'** szakaszt úgy, hogy a **P** pont a szakasz felezőpontja legyen!

2. lépés:

Szerkesszük meg az **OO'** szakasz szakaszfelező merőlegesét!

63. Merőleges egyenes szerkesztése adott egyenesre adott külső pontból

Állítsunk merőleges egyenest az e egyenesre a B pontból!
× ^B
e
1. lépés:
Rajzoljunk egy B középpontú, az e egyenest metsző körívet!
R
× ^B
e
2. lépés: Szerkesszük meg a metszéspontok által meghatározott szakasz szakaszfelező merőleges egyenesét!
D D
/ * *
e
'

64. Adott egyenessel párhuzamos egyenes szerkesztése

Szerkesszünk egy párhuzamos egyenest **d** távolságra az **e** egyenestől! e 1. lépés: Vegyünk fel három pontot az e egyenesen! 2. lépés: Szerkesszük meg az így kapott két szakasz szakaszfelező merőlegesét! 3. lépés:

Vegyünk fel a szakaszfelező merőlegeseken az **e** egyenestől **d** távolságra egy-egy pontot, majd kössük össze ezeket!

64. Adott egyenessel párhuzamos egyenes szerkesztése (másképp)

Szerkesszünk egy párhuzamos egyenest **d** távolságra az **e** egyenestől!

1. lépés: Vegyünk fel két pontot az **e** egyenesen!

2. lépés: Szerkesszük meg az így kapott szakasz szakaszfelező merőlegesét!

3. lépés: Vegyünk fel a szakaszfelező merőlegesen az **e** egyenestől **d** távolságra egy pontot, ezt most a szemléletesség miatt nevezzük el **B**-nek!

4. lépés: Vegyünk fel a szakaszfelező merőlegesen egy olyan szakaszt, amelynek a **B** pont a felező pontja, majd szerkesszük meg ennek a szakasznak a szakaszfelező merőlegesét!

65. Szögmásolás

1. lépés:

A szög két mindkét szárát metsszük el egy olyan körívvel, amelynek a szög csúcsa a középpontja!

2. lépés:

Vegyünk fel egy félegyenest, és az előbbi körívet most a félegyenes kezdőpontja körül rajzoljuk meg, <u>ugyanazzal</u> a körzőnyílással!

3. lépés:

Vegyük körzőnyílásba a β szög szárain keletkezett metszéspontok távolságát, és ezzel a sugárral rajzoljunk körívet a félegyenesen lévő metszéspont köré!

66. Szögfelezés

Felezzük meg a β szöget! β

1. lépés:

Å szög két mindkét szárát metsszük el egy olyan körívvel, amelynek a szög csúcsa a középpontja!

2. lépés:

Szerkesszük meg a két metszéspont által meghatározott szakasz szakaszfelező merőlegesének egy pontját, majd ezt a pontot kössük össze a szög csúcsával!

67. 60°-os szög szerkesztése

1. lépés: Vegyünk fel egy félegyenest, és kezdőpontja köré rajzolt körívvel metsszük el a félegyenest!

2. lépés: Ugyanezzel a körzőnyílással a metszéspont köré is rajzoljunk körívet, majd a két körív metszéspontját kössük össze a félegyenes kezdőpontjával!

68. Adott szög szerkesztése: 75°-os (Másképpen is lehet.)

1. lépés: Szerkesszünk két 60°-os szöget úgy, hogy az egyik szögszáruk közös legyen!

2. lépés: Kétszeri szögfelezés után kapjuk a 75°-os szöget.

69. A síkidom keletkezése, a síkidom fogalma

A sík feldarabolásával síkidomokat kapunk.

Ezek mind síkdarabok, síkidomok. Van köztük véges, van köztük végtelen. Van olyan, amit több vonal határol, van, amit csak egy.

A következőkben, síkidomon a síknak egyetlen, önmagát nem metsző zárt vonallal határolt részét értjük.

A határoló vonal állhat:

Csak görbe vonalból.

Görbe és egyenes szakaszokból.

Csak egyenes szakaszokból.

70. Konvex, konkáv síkidom

Konvex síkidom: Olyan síkidom, amely bármely két pontját összekötő egyenes szakasz minden pontját tartalmazza. (*Az ilyen udvarban nem lehet elbújni.*)

Ezek konvex síkidomok. Bármely két pontjukat összekötjük egy egyenessel, az egyenes minden pontja a síkidomnak is pontja.

Konkáv síkidom: (Nem konvex) Olyan síkidom, amelynek van legalább két olyan pontja, amelyeket összekötő egyenes szakasz legalább egy pontja a síkidomon kívül van.

(Az ilyen udvarban el lehet elbújni.)

Ezek nem konvex (konkáv) síkidomok. Találtunk olyan pontokat, amelyeket ha összekötünk egy egyenessel, az egyenesnek van olyan pontja, amely a síkidomon kívül van.

71. A sokszög fogalma, a sokszög oldala, csúcsa, a sokszög átlója

Sokszög: Olyan síkidom, amit csak egyenes szakaszok határolnak.

A sokszögeket a szögeik számáról nevezzük el. (Ötszög, nyolcszög, stb.) A sokszögben az oldalak, a szögek és a csúcsok száma megegyezik.

Oldal: A sokszög határoló szakaszai a sokszög oldalai.

Csúcs: Az oldalak végpontjai a sokszög csúcsai.

Átló: A sokszög átlója két, nem szomszédos csúcsot összekötő egyenes szakasz.

(A háromszög kivételével minden sokszögnek van átlója.)

72. Konvex, konkáv sokszög, szabályos sokszög

Konvex sokszög: Olyan sokszög, amelynek nincs 180°-nál nagyobb szöge.

Konkáv – nem konvex – sokszög: Olyan sokszög, amelynek van 180°-nál nagyobb szöge. **Szabályos sokszög:** Olyan sokszög, amelynek minden oldala és minden szöge egyenlő.

73. Húrsokszög, érintősokszög

Érintősokszög:

Olyan konvex sokszög, amelynek minden oldala ugyanannak a körnek az érintője. Minden szabályos sokszög érintő sokszög.

74. A háromszög meghatározása, a háromszög magasságvonala, magassága,

magasságegyenese

A háromszög olyan sokszög, amelynek három oldala, három csúcsa és három szöge van.

Az α, β, γ szögek a háromszög belső szögei (röviden: szögei). A háromszög belső szögeinek az összege mindig 180°.

$$\alpha + \beta + \gamma = 180^{\circ}$$

(Ezt később bebizonyítjuk, most csak megjegyezzük, mint hasznos tudnivalót.)

A háromszög magasságvonala: A csúcsból a szemközti oldal egyenesére állított merőleges szakasz. A háromszög **magassága** a magasságvonal hossza.

A tompaszögű háromszög két magasságvonala a háromszögön kívül van.

A hegyesszögű háromszög magasságvonalai a háromszögön belül vannak

A derékszögű háromszög két magasságvonala a háromszög két oldala (befogója).

Minden háromszögnek három magassága van.

A háromszög magasságegyenese: a magasságvonalat tartalmazó egyenes

75. A háromszögek csoportosítása szögeik szerint

1. Hegyesszögű háromszög: minden szöge hegyesszög.

2. Derékszögű háromszög: van egy derékszöge. Másik két szöge hegyesszög.

A derékszögű háromszög egymásra merőleges oldalainak a neve: befogó. A két befogó megegyezik a derékszögű háromszög két magasságával.

A harmadik oldal neve: átfogó.

3. Tompaszögű háromszög: van egy tompaszöge. Másik két szöge hegyesszög.

76. A háromszögek csoportosítása oldalaik szerint

1. Általános háromszög: Minden oldala különböző hosszú.

(Tükrös háromszög)

- **2. Egyenlő szárú háromszög:** Van legalább két egyenlő oldala.
 - Az alapon fekvő szögei egyenlők.
 - Az alaphoz tartozó magasság felezi az alapot, és a szárak által bezárt szöget.
 - Az alaphoz tartozó magasság tükörtengely.

Tükrösnek nevezzük azokat a síkidomokat, amelyek egy egyenes (tükörtengely) mentén kettéhajthatók úgy, hogy a két rész kölcsönösen fedi egymást. (Lásd: tengelyes tükrözés)

A két egyenlő oldal neve: szár, a harmadik oldal neve: alap.

3. Egyenlő oldalú háromszög:

(Szabályos háromszög)

- Minden oldala egyenlő
- Minden szöge egyenlő, 60°-os.
- Mindhárom magassága felezi az oldalt és a szöget.
- Mindhárom magassága tükörtengely.

77. A négyszög meghatározása, a trapéz fogalma

Négyszög: Olyan sokszög, amelynek négy oldala, négy csúcsa és négy szöge van.

A négyszögek belső szögeinek összege 360°.

$$\alpha + \beta + \gamma + \delta = 360^{\circ}$$

A továbbiakban megismerkedünk néhány speciális négyszöggel.

Trapéz: Olyan négyszög, amelynek van párhuzamos oldalpárja. A párhuzamos oldalak a trapéz alapjai, a másik két oldal a trapéz szára.

78. A trapéz magassága, a trapéz középvonala

A trapéz magassága: Két párhuzamos oldal egyenesét összekötő merőleges szakasz.

A trapéz középvonala: A két szár felezőpontját összekötő egyenes szakasz.

79. Derékszögű trapéz, húrtrapéz

Húrtrapéz (Tükrös trapéz):

A húrtrapéz szárai egyenlő hosszúak.

A húrtrapéz azonos alapon fekvő szögei egyenlők.

A húrtrapéznak van tükörtengelye.

A tükörtengely a párhuzamos oldalak oldalfelező merőlegese.

A húrtrapéz átlói egyenlő hosszúak, és a tükörtengelyen metszik egymást.

<u>Derékszögű trapéz</u> (Merőleges szárú trapéz): Olyan trapéz, amelynek van derékszöge.

80. A paralelogramma meghatározása, tulajdonságai

Paralelogramma: Olyan trapéz, amelynek két párhuzamos oldalpárja van.

A paralelogramma olyan trapéz, amelynek

- két-két szemközti oldala párhuzamos.
- két-két szemközti oldala egyenlő.
- két-két szemközti szöge egyenlő.
- átlói felezik egymást.
- bármely két szomszédos szögének összege 180°.

(A paralelogrammának két magassága van. A két-két párhuzamos oldal egyeneseit összekötő merőleges szakaszok: m_a , m_b)

81. A téglalap meghatározása, tulajdonságai

Téglalap: Olyan paralelogramma, amelynek

(A téglalap paralelogramma, ezért rendelkezik minden paralelogrammákra jellemző tulajdonsággal, de ezen túl még igazak rá a következők is.)

- minden szöge derékszög.
- az átlói egyenlő hosszúak.
- oldalfelező merőlegesei tükörtengelyek.

82. A rombusz meghatározása, tulajdonságai

Rombusz: Olyan paralelogramma, amelynek

— minden oldala egyenlő.

- mindkét átlója tükörtengely.
- átlói merőlegesen felezik egymást.

83. A négyzet meghatározása, tulajdonságai

Négyzet:

Olyan rombusz, amelynek

- minden szöge egyenlő (90°).
- oldalfelező merőlegesei tükörtengelyek. (A négyzet szabályos négyszög.)

84. A deltoid meghatározása, tulajdonságai

Deltoid:

Olyan <u>négyszög</u>, amelynek

- van két két szomszédos egyenlő oldala.
- legalább egyik átlója tükörtengely, és ez az átló (vagy az átló egyenese) merőlegesen felezi a másik

átlót.

85. A síkidom kerülete, sokszög kerülete

A síkidom kerülete:

A síkidomot határoló vonal hossza.

A sokszög kerülete:

Az oldalak hosszának összege.

$$K = a + b + c + d + e$$

86. A síkidom területe

A síkidom területe:

A határolt síkrész nagyságát jellemzi.

A terület mérésére használjunk négyzetet! Ennek a területe legyen az egység!

87. A téglalap kerülete, területe

Amikor ennek a téglalapnak a területét kiszámoljuk, akkor valójában arra a kérdésre keressük a választ, hogy hány, egységnyi területű négyzettel tudjuk kitapétázni a téglalapunkat? Ennek kiderítésére egyik lehetőség az, hogy megszámoljuk a négyzeteket.

Egyszerűbb azonban, ha csak az egy sorban lévő négyzetek számát határozzuk meg. Az a oldal hossza 24 hosszúságegység.

Ezért egy sorban 24 négyzet van.

Nézzük meg, hány sor fér el a téglalapban! A **b** oldal hossza 18 hosszúságegység. A téglalapban 18 sor van.

A négyzetek száma soronként: a = 24 Sorok száma: b = 18

Négyzetek száma összesen:

a * b = 24 * 18 = 432

A téglalap területe 432 terület egység.

88. A paralelogramma kerülete, területe

$$K = (a + b) * 2$$
 $T = a * m_a$ $T = b * m_b$

A paralelogrammát négyzetekkel kitapétázni, elég reménytelen feladatnak tűnik. Nem is ezzel próbálkozunk, hanem a paralelogrammából átdarabolással egy vele azonos területű téglalapot készítünk, amelynek egyik oldala \mathbf{a} , a paralelogramma oldala, a másik oldala a paralelogrammának az \mathbf{a} oldalhoz tartozó magassága: $\mathbf{m}_{\mathbf{a}}$. A téglalap, és így a paralelogramma területe: $\mathbf{T} = \mathbf{a} * \mathbf{m}_{\mathbf{a}}$.

Az átdarabolás a b oldal és az m_b magasság segítségével is elvégezhető.

89. A trapéz kerülete, területe

$$K = a + b + c + d$$
 $T = \frac{(a+c)*m}{2}$

Ha a trapézt, és a 180°-kal elforgatott képét az ábrán látható módon egymás mellé helyezzük, akkor egy $\mathbf{a} + \mathbf{c}$ oldalú (\mathbf{a} , \mathbf{c} a trapéz alapjai), \mathbf{m} magasságú (\mathbf{m} a trapéz magassága) paralelogrammát kapunk, amelynek területe: $\mathbf{T} = (\mathbf{a} + \mathbf{c}) * \mathbf{m}$.

Ez a trapéz területének a kétszerese.

A trapéz területe tehát a paralelogramma területének a fele:

$$T = \frac{(a+c)*m}{2}$$

90. A háromszög kerülete, területe

$$K = a + b + c$$
 $T = \frac{a * m_a}{2}$ $T = \frac{b * m_b}{2}$ $T = \frac{c * m_c}{2}$

Ha a háromszöget, és a 180°-kal elforgatott képét az ábrán látható módon egymás mellé helyezzük, akkor egy **a, b** oldalú (**a, b** *a háromszög oldala*), **m**_a magasságú (**m**_a, *a háromszög magassága*) paralelogrammát kapunk, amelynek területe: T = a * m_a. Ez a háromszög területének a kétszerese. A háromszög területe tehát a

paralelogramma területének a fele:
$$T = \frac{a * m_a}{2}$$

(A másik két területképlet hasonló módon igazolható.)

91. A deltoid kerülete, területe

$$\mathbf{K} = (\mathbf{a} + \mathbf{b}) * \mathbf{2}$$

$$T = \frac{e * f}{2}$$

A deltoid kiegészíthető egy **e**, **f** oldalú téglalappá (**e** és **f** a deltoid átlója), melynek területe:

$$T = e * f$$

Ennek a téglalapnak a területe kétszerese a deltoid területének.

A deltoid területe:
$$T = \frac{e * f}{2}$$

A rombusz paralelogramma: $T = a * m_a$.

A rombusz deltoid:
$$T = \frac{e * f}{2}$$

93. A négyzet kerülete, területe

$$\mathbf{K} = \mathbf{a} * \mathbf{4}$$

A négyzet egy egyenlő oldalú téglalap: $\mathbf{T} = \mathbf{a} * \mathbf{a} = \mathbf{a}^2$

A négyzet olyan deltoid, amelynek egyenlők az átlói:

$$T = \frac{e * e}{2} = \frac{e^2}{2}$$

94. A kör kerülete, területe

$$K = 2r \pi$$

$$\mathbf{T} = \mathbf{r} * \mathbf{r} * \boldsymbol{\pi} = \mathbf{r}^2 \boldsymbol{\pi}$$

$$\pi = 3,14$$

95. A körcikk kerülete, területe

$$i = \frac{2r\pi}{360} * \alpha = \frac{r\pi}{180} * \alpha$$

$$K = 2r + i$$

$$T = \frac{r * i}{2}$$

$$T = \frac{r^2\pi}{360} * \alpha$$

TESTEK Ha testről beszélünk, akkor a térnek felületekkel körülhatárolt részére gondolunk. Matematikában úgy képzeljük el, hogy ezeknek a határoló felületeknek nincs vastagságuk.

Vannak testek, amelyeket
— csak síklapok határolnak.

- síklapok és görbe felületek határolnak.
- csak görbe felületek határolnak.

A testet határoló síklapok a test **lap**jai. A síklapok találkozását **él**nek, az élek találkozását **csúcs**nak nevezzük. A geometriában a testeknek csak a méretüket és az alakjukat vizsgáljuk.

96. A test felszíne, térfogata, szabályos test fogalma

A test felszíne: a test határoló felületének a területe.

A felszín jele a képletekben: A

A felszín mérésekor területet mérünk.

A test térfogata:: a körülhatárolt térrész nagyságát jellemzi...

A térfogat jele a képletekben: V

Szabályos test: olyan, sokszöglapokkal határolt konvex test, amelynek élei, élszögei és lapszögei egyenlők.

(Ötféle szabályos test létezik.)

97. Hengerfelület származtatása, vezérvonal, alkotó, a henger, a henger palástja, felszíne, térfogata képlettel

Ha egy zárt síkidom határoló vonalának minden pontján át párhuzamost húzunk egy adott egyenessel — amely nem párhuzamos a síkidom síkjával — akkor a végtelenbe nyúló **hengerfelület**et kapunk. A síkidomot a felület **vezérvonal**ának nevezzük. Ha a végtelen hengerfelületet két párhuzamos síkkal elmetsszük, akkor a két párhuzamos síkidom, és a hengerfelület által határolt térrészt **henger**nek nevezzük. (Vegyük észre, hogy a hasábfelület, *(hasáb)*, olyan speciális hengerfelület, *(henger)*, amelynek a vezérvonala sokszöget határol!)

A párhuzamos síkidomok a **henger alapjai**. Ezek egybevágók. A hengerfelületnek a hengert határoló része a **henger palástja**. A hengerfelületet alkotó egyeneseknek a palásthoz tartozó szakaszai a **henger alkotói**. Az alaplapok síkjainak távolsága a **henger magassága**. Ha az alkotók merőlegesek az alaplapra, akkor **egyenes henger**ről, egyébként **ferde henger**ről beszélünk. A henger felszíne: $\mathbf{A} = 2\mathbf{T}_a + \mathbf{T}_p$ A henger térfogata: $\mathbf{V} = \mathbf{T}_a * \mathbf{m}$

98. Az egyenes körhenger (Forgáshenger)

Az egyenes körhenger alapja két egybevágó, párhuzamos körlap.

99. Az egyenes hasáb, az egyenes hasáb magassága, lapátlója, testátlója, palástja, hálója, felszíne, térfogata képlettel

A hasáb olyan henger, amelynek alaplapja sokszög. Az egyenes hasáb: olyan test, amelyet két párhuzamos, egybevágó sokszöglap és annyi téglalap határol, ahány oldala van a sokszögnek. A két párhuzamos, egybevágó sokszög a hasáb alaplapja. A többi lap a hasáb oldallapja. Az oldallapok együtt a hasáb palástját alkotják. Az egyenes hasáb oldalélei merőlegesek az alapra.

Lapátló: két, egy lapon lévő, nem szomszédos csúcsot összekötő egyenes szakasz.

Testátló: két, nem egy lapon lévő csúcsot összekötő egyenes szakasz.

Magasság: A két alaplap síkjának távolsága az egyenes hasáb magassága. A magasság megegyezik az oldalél hosszával.

A hasáb felszíne a határoló lapok területének, azaz az alaplapok területének (T_a) és a palást területének (T_p) az összege: $A = 2T_a + T_p$

A hasáb **háló**ját kapjuk, ha a hasábot határoló felületet a síkban kiterítjük. Ennek területe egyenlő a hasáb felszínével.

A hasáb térfogata: alaplap területe * testmagasság: $V = T_a * m$

100. A téglatest fogalma, hálója, felszíne, térfogata

TÉGLATEST: Olyan egyenes hasáb, amelynek alapja téglalap. (Minden lapja téglalap.)

A téglatest egy lehetséges hálója.

101. A kocka fogalma, hálója, felszíne, térfogata

102. A négyzetes oszlop fogalma, hálója, felszíne, térfogata

NÉGYZET ALAPÚ HASÁB (négyzetes oszlop):_Olyan téglatest, amelynek az alapja négyzet.

103. A kúpfelület származtatása, a kúp

Ha egy zárt síkidom határoló vonalának (vezérvonal) minden pontján át a síkidom síkján kívül fekvő P pontból félegyeneseket húzunk, akkor egy (végtelenbe nyúló) **kúpfelület**et kapunk. Az adott síkidom és a kúpfelület által határolt térrészt **kúp**nak nevezzük. (Vegyük észre, hogy a gúlafelület, (gúla), olyan speciális kúpfelület, (kúp), amelynek a vezérvonala sokszöget határol!) Az adott P pontot a kúp **csúcs**ának, az adott síkidomot a kúp **alaplap**jának, a kúpfelületnek a kúpot határoló részét a kúp **palást**jának, a kúp csúcsát az alaplap határoló pontjaival összekötő szakaszokat a kúp **alkotó**inak nevezzük. A kúp csúcspontjának az alaplap síkjától mért távolsága a **kúp magassága**. A **kúp felszíne** az alaplap területének (T_a) és a palást területének (T_p) az összege: $A = T_a + T_p$. A **kúp térfogata** az alaplapjával és a testmagasságával megegyező alaplapú és magasságú henger térfogatának a harmada:

104. Egyenes körkúp (Forgáskúp)

Az egyenes körkúp alaplapja kör. Az egyenes körkúp magassága a csúcsból az alaplap középpontjába állított merőleges szakasz. A forgáskúp alkotói egyenlő hosszúak.

105. A gúla, a gúla magassága, szabályos gúla, tetraéder

A gúla egy olyan kúp, amelynek alaplapja sokszög. A gúlát egy sokszög, és annyi háromszög határolja, ahány oldalú a sokszög. A sokszög a gúla **alaplap**ja, a háromszögek a gúla oldallapjai. Az alaplapot határoló élek az **alapél**ek. Az oldallapok az **oldalél**ekben találkoznak. Az oldalélek egy pontban, a **gúla csúcspontjában** futnak össze. Az oldallapok együtt a gúla **palást**ját alkotják. A **gúla magassága** a gúla csúcsa és az alaplap síkjának a távolsága, vagyis a csúcsból az alaplap síkjára állított merőleges szakasz hossza.

Ha a gúla alaplapja szabályos sokszög, és a magasságának talppontja az alaplap középpontjában van, akkor **szabályos gúlának** nevezzük. A háromszög alapú gúla neve: **tetraéder**. A szabályos tetraéder olyan gúla, amelynek minden lapja szabályos háromszög.

A gúla felszíne az alaplap területének (T_a) és az oldallapok területének, vagyis a palást területének (T_p) az összege: $\mathbf{A} = \mathbf{T_a} + \mathbf{T_p}$. A gúla térfogata az alaplapjával és a testmagasságával megegyező alaplapú és magasságú hasáb térfogatának a harmada:

$$V = \frac{T_a * M}{3}$$

Ötszög alapú szabályos gúla

A gúla hálója egy sokszögből, és annyi háromszögből áll, ahány oldalú a gúla.

106. A geometriai transzformáció fogalma

Geometriai transzformáció Olyan függvény, amelynek az értelmezési tartománya, és értékkészlete is ponthalmaz. Az értelmezési tartomány elemei a *tárgypontok*, az értékkészlet elemei a *képpontok*. A tárgypontokat általában az ábécé nagybetűivel, a képpontokat vesszővel ellátott nagybetűkkel jelöljük. (**B**', **C**' ejtsd: B vessző, C vessző)

107. Egybevágósági transzformáció fogalma

Az egybevágósági transzformáció olyan geometriai transzformáció, amely:

— Távolságtartó — Bármely **A** és **B** pont távolsága megegyezik a képeik,

A' és B' pontok távolságával.

— Szakasztartó — Bármely szakasz képe is szakasz.

Szögtartó — Bármely szög képe vele megegyező nagyságú szög.

Egyenestartó — Bármely egyenes képe egyenes

— Párhuzamosságtartó — Bármely, két párhuzamos egyenes képe is két

párhuzamos egyenes.

108. A tengelyes tükrözés meghatározása, tulajdonságai

<u>Tengelyes tükrözés:</u> A sík **t** egyenesére vonatkozó tengelyes tükrözés olyan geometriai transzformáció, amely a sík bármely, az egyenesre nem illeszkedő **A** pontjához hozzárendeli az **A'** pontot úgy, hogy az **AA'** szakasz szakaszfelező merőleges egyenese a **t** egyenes legyen. A tengelyes tükrözés a **t** tengely bármely pontjához önmagát rendeli.

A tengelyes tükrözés tulajdonságai:

1. A tengelyes tükrözés a körüljárás irányát megváltoztatja.

Az óramutató járásával ellentétes körüljárási irány: pozitív irány. Az óramutató járásával megegyező körüljárási irány: negatív irány.

- 2. A tengely minden pontja fix pont. (A fix pont képe önmaga.) A tengely pontonként fix egyenes.
- 3. A tengelyre merőleges egyenes képe önmaga. (Nem pontonként fix e egyenes.)

4. A tengellyel párhuzamos egyenes képe is párhuzamos a tengellyel. (A tengely a középegyenes.)

5. A tengellyel nem párhuzamos egyenes és képe a tengelyen metszi egymást. Az egyenes és képe a tengellyel ugyanakkora szöget zár be.

109. Tengelyesen tükrös síkidom fogalma, néhány tengelyesen tükrös síkidom

Tengelyesen tükrös a síkidom, ha van olyan **t** tengely (tükörtengely), amelyre tükrözve a síkidomot, az önmagába megy át.

(Van olyan egyenes, amely mentén összehajtva a síkidomot, a két rész fedi egymást.)

Néhány tengelyesen tükrös síkidom: Egyenlő szárú háromszög Legalább 1 tükörtengely. Egyenlő oldalú háromszög 3 tükörtengely Téglalap Legalább 2 tükörtengely. Négyzet 4 tükörtengely Legalább 1 tükörtengely. Húrtrapéz (tükrös trapéz) Deltoid Legalább 1 tükörtengely. Rombusz Legalább 2 tükörtengely. n-oldalú szabályos sokszög n darab tükörtengely. Kör Végtelen sok tükörtengely.

110. A középpontos tükrözés meghatározása, a középpontos tükrözés tulajdonságai

Középpontos tükrözés: Az O pontra vonatkozó középpontos tükrözés olyan geometriai transzformáció, amely a sík bármely O-tól különböző A pontjához hozzárendeli az A' pontot úgy, hogy az AA' szakasz felező pontja az O pont legyen. A középpontos tükrözés az O ponthoz önmagát rendeli.

A középpontos tükrözés tulajdonságai:

1. A középpontos tükrözés a körüljárás irányát nem változtatja meg.

- 2. Az O pont az egyetlen fix pont.
- 3. Az O ponton áthaladó egyenes képe önmaga. (Nem pontonként fix egyenes.)

4. Az egyenes és képe mindig párhuzamos.

111. Középpontosan tükrös síkidom fogalma, néhány középpontosan tükrös síkidom

Középpontosan tükrös (szimmetrikus) a síkidom, ha van olyan **O** pont (szimmetria középpont), amelyre tükrözve a síkidomot, az önmagába megy át.

<u>Néhány középpontosan tükrös síkidom:</u> A sokszögek közül csak a páros oldalszámúak között találhatunk középpontosan tükrös síkidomot.

Paralelogramma		Az átlók metszéspontja a szimmetriaközéppont.
Páros oldalszámú szabályos sokszögek	0	Az oldalfelező merőlegesek metszéspontja a szimmetriaközéppont.
Kör	(x ^o)	A kör középpontja a szimmetriaközéppont

112. Szabályos sokszögek szimmetriája:

Tengelyes szimmetria:

Minden szabályos sokszög tengelyesen tükrös. Minden n oldalú szabályos sokszögnek n darab tükörtengelye van.

A páratlan oldalszámú szabályos sokszögek tükörtengelyei az oldalfelező merőleges egyenesek (n darab).

A páros oldalszámú szabályos sokszögek tükörtengelyei az oldalfelező merőleges egyenesek (n/2 darab, mert a párhuzamos oldalak oldalfelező merőlegesei egy egyenesre esnek.), és a szögfelező egyenesek (n/2 darab, mert a szemközti szögek szögfelezői egy egyenesre esnek.).

Középpontos szimmetria:

A szabályos sokszögek közül csak a páros oldalszámúak középpontosan szimmetrikusak. Az oldalfelező merőleges egyenesek metszéspontja a szimmetriaközéppont.

113. A pont körüli elforgatás fogalma, a pont körüli elforgatás tulajdonságai

<u>Pont körüli elforgatás:</u> Adott **O** pont körüli, adott **β** irányszögű elforgatás olyan geometriai transzformáció, amely a sík bármely **O**-tól különböző **A** pontjához hozzárendeli az **A'** pontot úgy, hogy az **OA** szakasz hossza megegyezik az **OA'** szakasz hosszával és az **AOA'** szög nagysága és iránya megegyezik a **\beta** szöggel. Az **O** pont körüli elforgatás az **O** ponthoz önmagát rendeli.

A pont körüli elforgatás tulajdonságai:

1. A pont körüli elforgatás a körüljárás irányát nem változtatja meg.

- 2. Az O pont az egyetlen fix pont.
- 3. Az O pont körüli 180°-os elforgatás egyenértékű az O pontra vonatkozó középpontos tükrözéssel.

114. Forgásszimmetrikus síkidom fogalma, néhány forgásszimmetrikus síkidom

Forgásszimmetrikus a síkidom, ha van olyan **O** pont, amely körüli 0°-nál nagyobb, de 360°-nál kisebb irányszögű elforgatás a síkidomot önmagába viszi át. Néhány forgásszimmetrikus síkidom:

Paralelogramma		Az átlók metszéspontja körüli 180°-kal való elforgatás.
Szabályos sokszögek	0	Az oldalfelező merőlegesek metszéspontja körül, az oldalszámtól függő irányszöggel.
Kör	x ^o	A kör középpontja körüli tetszőleges irányszögű elforgatás.
Egyenlő oldalú háromszög		A magasságpont körüli 120° többszöröseivel való elforgatás.
Négyzet	0	Az oldalfelező merőlegesek metszéspontja körül, 90° többszöröseivel való elforgatás.

115. A vektor fogalma, egyenlő vektorok, ellentett- és nullvektorok

Vektor: Irányított szakasz. Az elmozdulás irányát és nagyságát határozza meg.

Két vektor egyenlő, ha irányuk és nagyságuk megegyezik.

Két vektor **ellentett**je egymásnak, ha nagyságuk megegyezik, de irányuk ellentétes.

Nullvektor: Nulla hosszúságú, tetszőleges irányú vektor.

116. Az eltolás meghatározása, az eltolás tulajdonságai

<u>Eltolás:</u> Adott **BD** vektorral való eltolás olyan geometriai transzformáció, amely a sík bármely **A** pontjához hozzárendeli az **A'** pontot úgy, hogy **AA'** vektor iránya és nagysága megegyezzen a **BD** vektoréval.

Az eltolás tulajdonságai:

1. Az eltolás a körüljárás irányát nem változtatja meg.

- 2. Az eltolásnál nincs fix pont.
- 3. Az eltolásnál egyenes és képe mindig párhuzamos..

117. Hasonlósági transzformáció fogalma

A hasonlósági transzformáció olyan geometriai transzformáció, amely:

— Aránytartó — Bármely két szakasz hosszának aránya megegyezik

képeik hosszának arányával. (Bármely AB és CD

szakaszok esetén, AB : CD = A'B' : C'D'.)

— Szakasztartó — Bármely szakasz képe is szakasz.

— Szögtartó — Bármely szög képe vele megegyező nagyságú szög.

— Egyenestartó — Bármely egyenes képe egyenes

— Párhuzamosságtartó — Bármely, két párhuzamos egyenes képe is két

párhuzamos egyenes.

118. Középpontos hasonlóság meghatározása, tulajdonságai

Középpontos hasonlóság: Az O középpontú λ (lambda) arányszámú hasonlóság a sík bármely O-tól különböző **A** pontjához hozzárendeli az **A'** pontot úgy, hogy $\frac{\mathbf{A'O}}{\mathbf{AO}} = \lambda$, és az **A'** pont az **A** pontot tartalmazó O kezdőpontú félegyenesen legyen. A középpontos hasonlóság az O ponthoz önmagát rendeli.

$$\frac{\mathbf{OA'}}{\mathbf{OA}} = \lambda$$

$$\frac{\mathbf{OB'}}{\mathbf{OB}} = \lambda$$

$$\frac{\mathbf{AB'}}{\mathbf{AB}} = \lambda$$

 $\lambda > 1 \implies \text{nagyitás}$

 $\lambda = 1 \implies \text{helyben hagyás}$

 $0 < \lambda < 1 \Rightarrow$ kicsinyítés

A középpontos hasonlóság tulajdonságai:

- 1. Az O pont az egyetlen fix pont.
- 2. Az egyenes és képe mindig párhuzamos.

119. Az egybevágóság fogalma, a hasonlóság fogalma

Az **egybevágóság** fogalma: Két alakzat egybevágó, ha van olyan egybevágósági transzformáció, amely a két alakzatot egymásba viszi át.

Egybevágósági transzformációk egymásutánja (szorzata) is egybevágósági transzformáció.

Jelölése: ≅

A **hasonlóság** fogalma: Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely a két alakzatot egymásba viszi át. Hasonlósági transzformációk egymásutánja (szorzata) is hasonlósági transzformáció. Hasonlósági- és egybevágósági transzformációk egymásutánja (szorzata) is hasonlósági transzformáció.

Jelölése: ~

120. Két hasonló síkidom kerületének aránya

Két hasonló síkidom kerületének aránya megegyezik a hasonlóság arányszámával. $\frac{\mathbf{K'}}{\mathbf{K}} = \lambda$

Igazoljuk az állítást két hasonló háromszög esetén:

ABC_Δ ~ A'B'C'_Δ, a hasonlóság arányszáma λ. Ez azt jelenti, hogy az A'B'C' háromszög minden szakasza λ–szorosa az ABC háromszög megfelelő szakaszainak.

Az ABC háromszög kerülete:

K = a + b + c

Az **A'B'C'** háromszög kerülete:

$$K' = a' + b' + c'$$

$$K' = \lambda^* a + \lambda^* b + \lambda^* c$$

$$K' = \lambda (a + b + c)$$

$$K' = \lambda K // : K$$

$$\frac{K'}{K} = \lambda$$

121. Két hasonló síkidom területének aránya

Két hasonló síkidom területének aránya megegyezik a hasonlóság arányszámának a négyzetével.

$$\frac{T'}{T} = \lambda^2$$

Igazoljuk az állítást két hasonló háromszög esetén:

ABC_Δ ~ A'B'C'_Δ, a hasonlóság arányszáma λ. Ez azt jelenti, hogy az A'B'C' háromszög minden szakasza λ-szorosa az ABC háromszög megfelelő szakaszainak.

$$a' = \lambda * a$$
 a, a', m_a , m_a'
 $m_a' = \lambda * m_a$ a háromszögek megfelelő oldalai, illetve magasságai

Az ABC háromszög területe:

$$T = \frac{am_a}{2}$$

Az **A'B'C'** háromszög területe:

$$T' = \frac{a' m_{a'}}{2}$$

$$T' = \frac{\lambda^* a^* \lambda^* m_{a}}{2}$$

$$T' = \frac{\lambda^* \lambda^* a^* m_{a}}{2}$$

$$T' = \frac{\lambda^2 * a^* m_{a}}{2}$$

$$T' = \lambda^2 * \frac{a m_{a}}{2}$$

$$T' = \lambda^2 * T //: T$$

$$\frac{T'}{T} = \lambda^2$$

122. Két hasonló test térfogatának aránya

Két hasonló test térfogatának aránya megegyezik a hasonlóság arányszámának a köbével.

$$\frac{V'}{V} = \lambda^3$$

Igazoljuk az állítást két hasonló téglatest esetén:

ABCDEFGH téglatest ~ A'B'C'D'E'F'G'H' téglatest, a hasonlóság arányszáma λ. Ez azt jelenti, hogy az A'B'C'D'E'F'G'H' téglatest minden szakasza λ–szorosa az ABCDEFGH téglatest megfelelő szakaszainak.

$$a' = \lambda * a$$

 $b' = \lambda * b$
 $c' = \lambda * c$
a, b, c, a', b', c'
a téglatestek
megfelelő élei

Az ABCDEFGH téglatest térfogata:

$$V = a * b * c$$

A'B'C'D'E'F'G'H' téglatest térfogata:

$$V' = a' * b' * c'$$

$$V' = \lambda a * \lambda b * \lambda c$$

$$V' = \lambda * \lambda * \lambda * a * b * c$$

$$V' = \lambda^3 a * b * c$$

$$V' = \lambda^3 V // : V$$

$$\frac{\mathbf{V'}}{\mathbf{V}} = \lambda^3$$

123. A háromszögek egybevágóságának alapesetei

Két háromszög egybevágó, ha

1. Oldalaik páronként egyenlők	******************************	***************************************
2. Két-két oldaluk és az általuk közbezárt szög egyenlő.		************
3. Két-két oldaluk és a nagyobbikkal szemközti szögük egyenlő.		
4. Egy-egy oldaluk és a rajta fekvő két-két szögük egyenlő.		

124. A háromszögek hasonlóságának alapesetei Két háromszög hasonló, ha

Oldalaik aránya páronként egyenlő.	**************************************	*******************************
2. Két-két oldaluk aránya és az általuk közbezárt szög egyenlő.		
3. Két-két oldaluk aránya és a nagyobbikkal szemközti szögük egyenlő.		
4. Két-két szögük páronként egyenlő.		

125. Az n oldalú sokszög egy csúcsából húzható átlók száma

Az n oldalú sokszög egy csúcsából húzható átlók száma n-3.

Az **n** oldalú sokszögnek **n** darab csúcsa van. Válasszunk ki közülük egyet, amelyből kiinduló átlókat akarjuk megszámolni, majd keressük meg azokat a csúcsokat, amelyekbe húzható átló. A kiválasztott csúcs kiesik, mivel önmagába nem vezet átló, és a fennmaradó **n-1** csúcs közül kettő a kiválasztott csúcs szomszédja, így hozzájuk sem húzható átló. Marad **n-3** csúcs. Ezek mindegyikébe egy átló húzható.

126. Az n oldalú sokszög átlóinak a száma

Az n oldalú sokszög átlóinak a száma $\frac{(n-3)*n}{2}$.

Nézzünk egy példát!

Mennyi átlója van egy ötszögnek?

Számoljuk meg!

A sokszögnek **n** darab (esetünkben 5) csúcsa van. Látható, hogy minden csúcsból **n-3** (ez most 2) átló húzható.

(**n-3**)***n** — *most 2* * *5* = *10* — átlónak kellene lennie az okoskodásunk szerint. Igen ám, de csak 5 van. A hibát ott követtük el, hogy minden átlót kétszer, mindkét végpontjánál számoltuk. Ezért az (**n-3**)***n** szorzatot 2-vel osztva kapjuk a helyes eredményt.

Az ötszög átlóinak száma:

$$\frac{(n-3)*n}{2} = \frac{(5-3)*5}{2} = \underline{5}$$

127. Az n oldalú sokszög belső szögeinek összege

Az n oldalú konvex sokszöget az egy csúcsából kiinduló átlók n-2 háromszögre osztják.

Az n oldalú konvex sokszög belső szögeinek összege (n-2)*180.

Határozzuk meg rajz segítségével egy konvex hétszög belső szögeinek az összegét! Osszuk fel a hétszöget egy csúcsából húzott átlókkal háromszögekre! Bármelyik csúcsot választhatjuk.

 $\mathbf{n} - \mathbf{2}$, ebben az esetben 7 - 2 = 5 háromszöget kaptunk. Megfigyelhető, hogy a háromszögek belső szögeinek az összege pontosan a hétszög belső szögeinek összegét adja. Egy háromszög belső szögeinek összege 180° . Öt háromszögünk van. A hétszög belső szögeinek összege:

$$(n-2)*180^\circ = (7-2)*180^\circ = 900^\circ$$

128. Az n oldalú szabályos sokszög egy belső szögének a nagysága

Az n oldalú <u>szabályos</u> sokszög egy belső szögének nagysága: $\frac{(n-2)*180}{n}$

Felhasználtuk, hogy a szabályos sokszög minden belső szöge egyenlő.

Számítsuk ki a szabályos tízszög egy szögének a nagyságát!

$$\frac{(n-2)*180}{n} = \frac{(10-2)*180}{10} = \underline{144^{\circ}}$$

129. Középponti szög fogalma, tulajdonságok

Középponti szög: Olyan szög, amelynek a csúcsa a kör középpontjában van..

A körnek azt az ívét, amely a szög belsejébe esik, a középponti szöghöz tartozó körívnek nevezzük.

Egy körben, vagy egyenlő sugarú körökben

- egyenlő középponti szögekhez, egyenlő körívek tartoznak.
- egyenlő körívekhez, egyenlő középponti szögek tartoznak.

130. Kerületi szög fogalma, tulajdonságok

Kerületi szög: Olyan konvex szög, amelynek a csúcsa a kör kerületén van, szárai a kör húrjai, vagy az egyik szára húr, a másik érintő.

Egy körben, vagy egyenlő sugarú körökben

- egyenlő kerületi szögekhez, egyenlő körívek tartoznak.
- egyenlő körívekhez, egyenlő kerületi szögek tartoznak.

Ha egy konvex szög csúcsa a körön belül van, akkor a szög nagyobb az ugyanahhoz a körívhez tartozó kerületi szögnél.

Ha egy konvex szög csúcsa a körön kívül van, akkor a szög kisebb az ugyanahhoz a körívhez tartozó kerületi szögnél.

131. Összefüggés az ugyanahhoz a körívhez tartozó középponti és kerületi szög között

TÉTEL: (Állítás):

A kör bármely középponti szöge kétszerese az ugyanahhoz az ívhez tartozó kerületi szögnek. Az állítást négy különböző esetre bizonyítjuk.

Bizonyítás:

1. A középponti szög csúcsa a kerületi szög szögtartományába esik.

Bizonyítandó:

$$\beta = \frac{\alpha}{2}$$

Az **OAC** és az **OBC** háromszögek egyenlő szárú háromszögek, mert két-két oldaluk sugár. Ezért az alapon fekvő szögeik egyenlők.

A β szöget az OC szakasz két részre , β_1 és β_2 szögekre osztja.

Belátható, hogy

$$\alpha + (180^{\circ} - 2\beta_{1}) + (180^{\circ} - 2\beta_{2}) = 360^{\circ}$$

$$\alpha + 360^{\circ} - 2\beta_{1} - 2\beta_{2} = 360^{\circ} // - 360^{\circ}$$

$$\alpha - 2(\beta_{1} + \beta_{2}) = 0$$

$$\alpha - 2\beta = 0 // + 2\beta$$

$$\alpha = 2\beta // : 2$$

$$\alpha = \frac{\beta}{2}$$

2. A középponti szög csúcsa a kerületi szög szárára esik.

Bizonyítandó:

$$\alpha + (180^{\circ} - 2\beta) = 180^{\circ}$$

$$\alpha + 180^{\circ} - 2\beta = 180^{\circ} // -180^{\circ}$$

$$\alpha - 2\beta = 0 // + 2\beta$$

$$\alpha = 2\beta$$

$$\frac{\alpha}{2} = \beta$$

Az állítást bebizonyítottuk.

3. A középponti szög csúcsa a kerületi szög szögtartományán kívülre esik.

Bizonyítandó:

$$\beta = \frac{\alpha}{2}$$

Az **OBC** háromszög egyenlő szárú, ezért az alapon fekvő szögei egyenlők. Az **AOC** háromszög egyenlő szárú, ezért az alapon fekvő szögei egyenlők.

Az AOC háromszögben:

$$\begin{array}{c} 2\;\beta_{1} + & [180^{\circ} - 2(\beta + \beta_{1})] + \alpha = 180^{\circ} \\ 2\;\beta_{1} + & [180^{\circ} - 2\beta - 2\beta_{1} + \alpha = 180^{\circ} \ // - 180^{\circ} \\ \alpha - & [2\beta = 0 \ // + 2\beta \ \alpha = 2\beta \ // : 2 \\ & \frac{\alpha}{2} = \beta \end{array}$$

Az állítást bebizonyítottuk.

4. A kerületi szög érintőszárú.

Az **AOB** háromszög egyenlő szárú, ezért az alapon fekvő szögei egyenlők. A bizonyításnál felhasználjuk, hogy az érintési pontba húzott sugár mindig merőleges az érintőre.

$$\alpha + 2(90^{\circ} - \beta) = 180^{\circ}$$

$$\alpha + 180^{\circ} - 2\beta = 180^{\circ} \qquad // - 180^{\circ}$$

$$\alpha - 2\beta = 0 \qquad // + 2\beta$$

$$\alpha = 2\beta$$

$$\frac{\alpha}{2} = \beta$$

132. Thalesz tétele

1.TÉTEL: (Állítás):

Egy AB szakasz, mint átmérő fölé rajzolt körvonal A, B pontoktól különböző C pontját összekötve a szakasz végpontjaival, derékszögű háromszöget kapunk. A derékszögű csúcs mindig a C csúcs. A kört az AB szakasz Thalesz körének nevezzük.

Bizonyítás:

Bizonyítandó:

$$\alpha + \beta = 90^{\circ}$$

Az **AOC** háromszög egyenlőszárú háromszög, ezért az alapon fekvő szögei egyenlők. A **BCO** háromszög egyenlőszárú háromszög, ezért az alapon fekvő szögei egyenlők.

$$\alpha + \beta + (\alpha + \beta) = 180^{\circ}$$
$$2\alpha + 2\beta = 180^{\circ}$$
$$2(\alpha + \beta) = 180^{\circ} //: 2$$

$$\alpha + \beta = 90^{\circ}$$

2.TÉTEL: (Állítás):

Az ABC derékszögű háromszög köré rajzolható kör középpontja az átfogó felező pontja.

Bizonyítás:

Vegyük fel az ABC derékszögű háromszöget!

Bizonyítandó:

az A, B, C pontok egyenlő távolságra vannak az AB szakasz felezőpontjától (F).

Tükrözzük az ABC háromszöget az F pontra!

A középpontos tükrözésnél szakasz és képe mindig párhuzamos és egyenlő, ezért belátható, hogy az **ACBC'** négyszög paralelogramma.

Az ACBC' paralelogramma C csúcsánál lévő szöge derékszög, ezért az ACBC' paralelogramma téglalap. A téglalap átlói egyenlő hosszúak, és felezik egymást \Rightarrow F pont egyenlő távolságra van az A, B, C, C' csúcsoktól \Rightarrow F pont az ABC háromszög köré rajzolható kör középpontja.

Az 1. és 2. állítás következménye:

<u>Thalesz tétele:</u> A sík azon pontjainak halmaza, mértani helye a síkon, ahonnan egy adott **AB** szakasz derékszögben látszik, az **AB** szakasz Thalesz köre.

133. Érintő egyenes szerkesztése körhöz, adott külső pontból.

Szerkesszük meg az O középpontú kör A pontra illeszkedő érintő egyeneseit!

1. lépés:

Szerkesszük meg az **OP** szakasz Thalesz-körét! (Ehhez az **OP** szakasz **F** felezőponját kell megszerkesztenünk.)

2. lépés:

 \vec{A} P_1 , P_2 metszéspontok a keresett érintési pontok. Rajzoljuk meg az \vec{A} kezdőpontú P_1 , P_2 pontokat tartalmazó félegyeneseket!

134. Húrnégyszög

TÉTEL: (Állítás): Egy négyszög akkor és csak akkor húrnégyszög, ha szemközti szögeinek összege 180°.

1. Ha egy négyszög húrnégyszög, akkor szemközti szögeinek összege 180°. Bizonvítás:

Az **ABCD** húrnégyszög két tetszőleges szemközti szöge α és γ . Bizonyítandó: $\alpha + \gamma = 180^{\circ}$

α: Az **A** pontot tartalmazó, **BD** körívhez tartozó kerületi szög. Ehhez a körívhez tartozó középponti szög **2**α. (Az ugyanahhoz a körívhez tartozó kerületi- és középponti szögek közötti összefüggés alapján.) γ: A **C** pontot tartalmazó, **BD** körívhez tartozó kerületi szög. Ehhez a körívhez tartozó középponti szög 2γ. (Az ugyanahhoz a körívhez tartozó kerületi- és középponti szögek közötti összefüggés alapján.)

$$2\alpha + 2\gamma = 360^{\circ} // : 2$$
$$\alpha + \gamma = 180^{\circ}$$

2. Ha egy négyszög szemközti szögeinek összege 180°, akkor a négyszög húrnégyszög. Bizonyítás:

Azt kell bizonyítanunk, hogy ha az **ABCD** négyszög két tetszőleges szemközti szögének összege 180°, akkor ebből következik, hogy az **ABCD** négyszög húrnégyszög. A bizonyításnál felhasználjuk, hogy minden háromszög köré rajzolható a csúcsokat tartalmazó kör.

Az **ABCD** négyszög csúcsai közül válasszuk ki az **A**, **B**, **D** csúcsokat. (Bármelyik másik hármat is választhatnánk.) Van olyan körvonal, amely az **ABD** háromszög mindhárom csúcsán átmegy.

Bizonyítandó: A C csúcs is rajta van ezen a körön.

A bizonyítást indirekt módon végezzük: Tegyük fel, hogy a C pont nincs rajta a körön.

Az ábrán látható, hogy feltevésünk szerint C pont nincs rajta az A, B, D pontokat tartalmazó körön.

Vegyünk fel a **B**, **D** végpontú **A**-t <u>nem</u> tartalmazó köríven egy **C**' pontot. Az **ABC'D** négyszög húrnégyszög, hiszen mind a négy csúcsa illeszkedik a körvonalra. A húrnégyszög szemközti szögeinek összege 180°, tehát:

$$\alpha + \gamma$$
 ' = 180°

A kiindulási feltételből következik, hogy

$$\alpha + \gamma = 180^{\circ}$$

Ekkor azonban:

$$\gamma = \gamma$$

ami lehetetlen, mert ha egy konvex szög csúcsa a körön belül (kívül) van, akkor a szög nagyobb (kisebb) az ugyanahhoz a körívhez tartozó kerületi szögnél.

Az az állításunk, hogy a **C** pont nincs rajta az **A**, **B**, **D** pontokra illeszkedő körvonalon, ellentmondáshoz vezetett. Ebből következik, hogy a

a **C** pont nincs rajta az **A**, **B**, **D** pontokra illeszkedő körvonalon állítás **hamis**. Akkor az ellentettjének igaznak kell lennie.

A C pont rajta van A, B, D pontokra illeszkedő körvonalon.

Ekkor azonban az A, B, C, D négyszög húrnégyszög.

Állításunkat bebizonyítottuk.

135. Érintőnégyszög:

<u>TETEL: (Allítás):</u>

Egy négyszög akkor és csak akkor érintőnégyszög, ha két- két szemközti oldalának összege egyenlő.

1. Ha egy négyszög érintőnégyszög, akkor két-két szemközti oldalának összege egyenlő. Bizonyítás:

A bizonyításnál felhasználjuk, hogy adott külső pontból adott körhöz húzott két érintőszakasz egyenlő hosszú.

Bizonyítandó: AB + CD = AD + BC

A rajzon egyforma vonallal és azonos betűvel jelöltük a közös külső pontból kiinduló érintőszakaszokat. Ezek a szakaszok egyenlő hosszúak.

$$AB + CD = (a + b) + (c + d) = a + b + c + d$$

$$AD + BC = (a + d) + (b + c) = a + d + b + c$$

Az összeadásnál a zárójel elhagyható. A két összeg csak a tagok sorrendjében különbözik egymástól. Összeadásnál a tagok sorrendje tetszés szerint felcserélhető, az összeg nem változik.

Ezt felhasználva:

$$AB + CD = AD + BC$$

Állításunkat bebizonyítottuk.

2. Ha egy négyszög két-két szemközti oldalának összege egyenlő. akkor a négyszög érintőnégyszög. Ezt az állítást higgyük el egyelőre bizonyítás nélkül!

136. Háromszög egyenlőtlenség

TÉTEL: (Állítás):

A háromszög bármely két oldalának az összege nagyobb, mint a harmadik oldal.

Az **A**, **B**, **C** városokat az **a**, **b**, **c** utak kötik össze, az ábrán látható módon. A **B** városból akarok eljutni az **A** városba. Ezt két úton tehetem. Mehetek a **C** városon keresztül, ekkor a megtett út $\mathbf{a} + \mathbf{b}$, és mehetek a **c** úton. Mivel tudjuk, hogy két pont között a legrövidebb út az egyenes, könnyen belátható, hogy:

$$a + b > c$$
.

A másik két egyenlőtlenség igazsága is hasonló módon igazolható. Három szakaszból csak akkor szerkeszthető háromszög, ha teljesül rájuk a háromszög egyenlőtlenség. A szerkesztés megkezdése előtt erről illik meggyőződni.

137. A háromszög belső szögeinek az összege

1. TÉTEL: (Állítás): A háromszög belső szögeinek összege mindig 180°.

Az A csúcson áthaladó e egyenes párhuzamos az a oldallal.

- 1. $\beta = \beta^{9}$ mert fordított állású szögek
- 2. $\gamma = \gamma^{9}$ mert fordított állású szögek
- 3. $\alpha + \beta^{9} + \gamma^{9} = 180^{\circ}$ mert egyenesszöget alkotnak

 β helyére a vele egyenlő β -t, γ helyére a vele egyenlő γ -t írva a 3. egyenletbe:

$$\alpha + \beta + \gamma = 180^{\circ}$$

Az állítást bebizonyítottuk.

138. A háromszög külső szöge, összefüggés a háromszög belső szöge és a mellette fekvő külső szög között

2. <u>TÉTEL: (Állítás):</u> A háromszög bármely belső, és a mellette fekvő külső szögének összege mindig 180°.

Külső szög: A háromszög bármely oldalának meghosszabbításakor keletkező mellékszöget nevezzük külső szögnek

139. Összefüggés a háromszög külső szöge és a nem mellette fekvő belső szögek között 3. TÉTEL: A háromszög bármely külső szöge egyenlő a nem mellette fekvő belső szögek összegével.

A két egyenlet jobb oldala megegyezik, akkor bal oldalaik is egyenlők.

$$\alpha + \alpha' = \alpha + \beta + \gamma // - \alpha$$

$$\alpha' = \beta + \gamma$$
Az állítást bebizonyítottuk.

140. A háromszög külső szögeinek az összege

<u>TÉTEL: (Állítás):</u> A háromszög külső szögeinek összege 360°.

Zárójelbontás, és újra csoportosítás után:

$$(\alpha + \beta + \gamma) + (\alpha^{9} + \beta^{9} + \gamma^{9}) = 540^{\circ}$$
180°

$$180^{\circ} + (\alpha^{?} + \beta^{?} + \gamma^{?}) = 540^{\circ} // - 180^{\circ}$$

$$\alpha^{?} + \beta^{?} + \gamma^{?} = 360^{\circ}$$

Az állítást bebizonyítottuk.

141. Összefüggés a háromszög oldalai és szögei között

1.TÉTEL: (Állítás): Egy adott háromszögben egyenlő oldalakkal szemben egyenlő szögek, egyenlő szögekkel szemben egyenlő oldalak vannak.

Az egyenlő szárú háromszög tulajdonságainak ismeretében állításunk belátható.

2. TÉTEL: (Állítás): Egy adott háromszögben nagyobb oldallal szemben nagyobb szög van.

Az ábrán lévő háromszögben b > c

Bizonyítandó:

$$\beta > \gamma$$

Felveszünk a **b** oldalon egy **D** pontot úgy, hogy AB = AD.

Így az **ABD** háromszög egyenlő szárú háromszög, amelynek alapja a **BD** szakasz.

A **BD** szakasz a β szöget két részre osztja: $\beta = \beta_1 + \beta_2$ Belátható, hogy $\beta > \beta_1$ és $\beta > \beta_2$.

Az **ABD** háromszög alapon fekvő szögei egyenlők ezért $\beta_1 = \delta$.

A **BCD** háromszögnek külső szöge δ, ezért igaz a következő:

$$\beta_1 = \delta = \beta_2 + \gamma$$
Helyettesítsük be a
$$\beta = \beta_1 + \beta_2 \text{ egyenletbe!}$$

$$\beta = (\beta_2 + \gamma) + \beta_2$$

$$\beta = 2\beta_2 + \gamma // - \gamma$$

$$\beta - \gamma = 2\beta_2$$

 $2\beta_2 > 0$, hiszen β_2 csak pozitív lehet.

A $\beta - \gamma$ különbség pozitív voltából következik:

$$\beta > \gamma$$

3. TÉTEL: (Állítás):

Egy adott háromszögben nagyobb szöggel szemben nagyobb oldal van.

Bizonyítás:

Az ábrán lévő háromszögben

 $\alpha > \gamma$

Bizonyítandó:

a > c

Indirekt módon bizonyítunk.

Tegyük fel, hogy $\alpha > \gamma$ esetén **nem igaz**, hogy a > c.

Ekkor két eset lehetséges:

1. eset:

 $\mathbf{a} = \mathbf{c}$

ekkor azonban az 1. tétel miatt $\alpha = \gamma$, ami ellentmond annak a kiindulási feltevésünknek, hogy $\alpha > \gamma$.

2. eset:

a < c

ekkor azonban a 2. tétel miatt $\alpha < \gamma$, ami ellentmond annak a kiindulási feltevésünknek, hogy $\alpha > \gamma$.

Az a feltevésünk, hogy $\alpha > \gamma$ esetén **nem igaz**, hogy a > c ellentmondáshoz vezetett, ebből következik, hogy $\alpha > \gamma$ esetén az a > c

 $\alpha > \gamma$ esetén az a > 0 állítás igaz.

142. A háromszög köré írható kör középpontja

TÉTEL: (Állítás):

A háromszög oldalfelező merőlegesei egy pontban metszik egymást. Ez a pont a háromszög köré írható kör középpontja.

(Minden háromszög köré írható olyan kör, amely átmegy a háromszög csúcsain.)

Bizonyítás:

Vegyük fel az \mathbf{a} és \mathbf{b} oldal felezőmerőlegeseit! $\mathbf{f}_{\mathbf{a}}$ és $\mathbf{f}_{\mathbf{b}}$ csak akkor lehetnének párhuzamosak, ha a hozzájuk tartozó oldalak is párhuzamosak lennének egymással, ami háromszög esetén lehetetlen. Tehát $\mathbf{f}_{\mathbf{a}}$ és $\mathbf{f}_{\mathbf{b}}$ metszők, a metszéspont \mathbf{O} .

Bizonyítandó:

 $\mathbf{f_c}$ is átmegy az \mathbf{O} ponton.

A bizonyításnál felhasználjuk a szakaszfelező merőleges egyenesnek azt a tulajdonságát, hogy minden pontja egyenlő távolságra van a szakasz végpontjaitól, és hogy minden olyan pontot tartalmaz, amely egyenlő távolságra van a szakasz végpontjaitól..

Az O pont illeszkedik az f_a oldalfelezőre, ezért

OB = OC

Az \mathbf{O} pont illeszkedik az \mathbf{f}_h oldalfelezőre, ezért

OA = OC

A két egyenlet jobb oldala megegyezik, ezért a bal oldalak is egyenlők.

OB = OA

Ami azt jelenti, hogy az \mathbf{O} pont egyenlő távolságra van a \mathbf{c} oldal \mathbf{A} és \mathbf{B} végpontjától, vagyis rajta van a \mathbf{c} oldal oldalfelező merőlegesén, $\mathbf{f}_{\mathbf{c}}$ -n.

Bebizonyítottuk, hogy mindhárom oldalfelező merőleges egyenes közös metszéspontja az **O** pont.

$$OB = OA = OC$$

Az **O** pont a háromszög mindhárom csúcsától egyenlő távolságra van, ezért az **O** pont az **ABC** háromszög csúcsaira illeszkedő kör középpontja.

143. A háromszögbe írható kör középpontja

TÉTEL: (Állítás):

A háromszög belső szögeinek szögfelező egyenesei egy pontban metszik egymást. Ez a pont a háromszögbe írható, a háromszög oldalait belülről érintő kör középpontja.

(Minden háromszögbe írható olyan kör, amely belülről érinti a háromszög oldalait.)

Bizonyítás:

Vegyük fel az α és β szögek szögfelező egyeneseit! Belátható, hogy f_{α} és f_{β} metszők, a metszéspont O. Bizonyítandó:

 $\mathbf{f}_{\mathbf{v}}$ is átmegy az **O** ponton.

A bizonyításnál felhasználjuk a szögfelező egyenesnek azt a tulajdonságát, hogy minden pontja egyenlő távolságra van a szög száraitól, és hogy minden olyan pontot tartalmaz, amely egyenlő távolságra van a szög száraitól.

A T_a , T_b és T_c pontok az O pontból az oldalegyenesekre állított merőleges szakaszok — ezek az O pontnak az oldalegyenesektől való távolságai — talppontjai.

Az O pont illeszkedik az f_{α} szögfelezőre, ezért

$$OT_b = OT_c$$

Az O pont illeszkedik az f_{β} szögfelezőre, ezért

$$OT_a = OT_c$$

A két egyenlet jobb oldala megegyezik, ezért a bal oldalak is egyenlők.

$$OT_a = OT_b$$

Ami azt jelenti, hogy az \mathbf{O} pont egyenlő távolságra van az a és b oldalegyenesektől, vagyis rajta van a γ szög \mathbf{f}_{γ} szögfelező egyenesén.

Bebizonyítottuk, hogy mindhárom szögfelező egyenes közös metszéspontja az **O** pont.

$$OT_a = OT_b = OT_c$$

Az **O** pont a háromszög mindhárom oldalegyenesétől egyenlő távolságra van, ezért az **O** pont az **ABC** háromszögbe írható, az oldalakat belülről érintő kör középpontja.

144. Magasságpont

<u>TÉTEL: (Állítás):</u> A háromszög magasságegyenesei egy pontban, a magasságpontban metszik egymást.

Bebizonyítjuk, hogy az **ABC** háromszög magasságegyenesei az **A'B'C'** háromszögnek oldalfelező merőleges egyenesei, amelyek — az 1. tétel szerint — egy pontban metszik egymást.

A középpontos tükrözés tulajdonságainak felhasználásával belátható, hogy

— az **A'C** és **B'** pontok egy egyenesen vannak

Az ABC háromszöget az F_a , majd az F_b felezőpontra tükrözve, a keletkezett $A^{\prime}C$ és CB^{\prime} szakaszok párhuzamosak az AB szakasszal, így egymással is. Mivel van egy közös pontjuk, a két szakasz egy egyenesen van.

Ugyanígy bizonyítható, hogy

- a C'A és B pontok egy egyenesen vannak
- a C'B és A' pontok egy egyenesen vannak

Ezt azért volt fontos tisztázni, hogy belássuk: az A, A', B, B', és C, C' pontokat tartalmazó sokszög háromszög.

A középpontos tükrözés egybevágósági transzformáció, ezért az **A'C** és **CB'** szakaszok amelyek az **AB** szakasz képei egyenlő hosszúak az **AB** szakasszal, így egymással is. Ebből következik, hogy a **C** pont az **A'B'** szakasz felezőpontja.

Mivel a C pont az ABC háromszög csúcsa is, ezért illeszkedik az ABC háromszög m_c magasságegyenesére.

Az m_c tehát átmegy a C ponton, és így felezi az A'B'C' háromszög A'B' oldalát. Most azt kell igazolni, hogy merőleges erre az oldalra.

Az AB szakasz a tükrözés miatt párhuzamos az A'C és a CA' szakaszokkal, így az A'B' oldallal is.

Az m_c mint az ABC háromszög magasságegyenese merőleges az AB oldalra és a vele párhuzamos A'B' oldalra is.

Bebizonyítottuk, hogy merőleges az A'B' oldalra és felezi azt, tehát az A'B' oldal oldalfelező merőlegese.

Ugyanígy bizonyítható, hogy $\mathbf{m_a}$ és $\mathbf{m_b}$ is az A'B'C' háromszög oldalfelező merőleges egyenesei. Az 1. tétel szerint az oldalfelező merőleges egyenesek egy pontban metszik egymást.

Az $\mathbf{m_a}$, $\mathbf{m_b}$, $\mathbf{m_c}$ egyenesek tehát egy pontban metszik egymást. Ezt akartuk bizonyítani.

A háromszög magasságegyenesei metszéspontja a háromszög magasságpontja (M).

A hegyes szögű háromszög magasságpontja mindig a háromszög belsejében van.

A derékszögű háromszög magasságpontja mindig a derékszög csúcsa.

A tompaszögű háromszög magasságpontja mindig a háromszögön kívül van.

145. A háromszög középvonala

TÉTEL: (Állítás): A háromszög középvonala fele a szemközti oldalnak és párhuzamos vele.

A háromszög középvonala: A háromszög két oldalának felezőpontját összekötő egyenes szakasz.

Az F_a , F_b , F_c pontok felező pontok az F_aF_b , F_aF_c , és az F_bF_c szakaszok az **ABC** háromszög középvonalai.

Bizonyítás:

Bizonyítandó: $\mathbf{F_a} \mathbf{F_b}$ szakasz hossza fele az \mathbf{AB} szakaszénak.

$$F_a F_b C_\Delta \sim ABC_\Delta$$

mert

 $C F_a : BC = C F_b : CA$ és a közbezárt BCA szög közös

Mivel F_a a BC szakasz felezőpontja, a hasonlóság aránya 1:2, és így

$$F_a F_b : AB = 1 : 2$$

Az $\mathbf{F_a} \mathbf{F_b}$ középvonal valóban fele a vele szemközti \mathbf{AB} oldalnak. Az állítás a másik két középvonalra is hasonló módon igazolható.

Bizonyítandó:

$$\mathbf{F_a} \mathbf{F_b} \parallel \mathbf{AB}$$

Mivel a háromszög középvonala fele a szemközti oldalnak:

$$\mathbf{F_aF_b} = \mathbf{BF_c}, \quad \mathbf{F_cF_b} = \mathbf{BF_a}$$

A $BF_aF_bF_c$ négyszög szemközti oldalai egyenlő hosszúak, tehát a négyszög paralelogramma. A paralelogramma szemközti oldalai párhuzamosak, ezért

$F_a F_b \parallel AB$

Ami pontosan a bizonyítandó állítás.

146. A háromszög súlyvonala, a súlypont fogalma, a súlypont a súlyvonalat 2:1 arányban osztja

<u>TÉTEL: (Állítás):</u> A háromszög súlyvonalai egy pontban, a súlypontban (S) metszik egymást. A súlypont a súlyvonalat 2:1 arányban osztja úgy, hogy a csúcs felé esik a 2 rész.

Súlyvonal: A háromszög csúcsát a szemközti oldal felezőpontjával összekötő egyenes szakasz.

Bizonyítás:

Belátható, hogy sa és sh súlyvonalak metszik egymást.

Bizonyítandó:

A harmadik súlyvonal, s_c is illeszkedik az s_a és s_b metszéspontjára.

Az 1. ábrán az **ABC** háromszög $\mathbf{s_a}$ és $\mathbf{s_b}$ súlyvonalait, míg a 2. ábrán ugyanennek a háromszögnek az $\mathbf{s_a}$ és $\mathbf{s_c}$ súlyvonalait jelöltük. Az $\mathbf{s_a}$ és $\mathbf{s_b}$ metszéspontját $\mathbf{S_1}$ -gyel, az $\mathbf{s_a}$ és $\mathbf{s_c}$ metszéspontját $\mathbf{S_2}$ -vel jelöltük. A cél annak a bizonyítása, hogy az $\mathbf{S_1}$ és $\mathbf{S_2}$ pontok illeszkednek egymásra.

$$ABS_{1\Delta} \sim F_a F_b S_{1\Delta}$$

Az $\mathbf{F_aF_b}$ szakasz az \mathbf{ABC} háromszög középvonala, ezért párhuzamos az \mathbf{AB} oldallal, így az 1. ábrán azonos betűvel jelölt szögek váltószögek, tehát egyenlők.

 $Az F_a F_b$ szakasz, mivel az ABC háromszög középvonala, fele az AB oldalnak.

Az $ABS_{1\Delta}$ és az $F_aF_bS_{1\Delta}$ hasonlóságának aránya 2:1. Bebizonyítottuk, hogy az S_1 pont az s_a súlyvonalat 2:1 arányban osztja.

$ACS_{2\Delta} \sim F_a F_c S_{2\Delta}$

Az $\mathbf{F_aF_c}$ szakasz az \mathbf{ABC} háromszög középvonala, ezért párhuzamos az \mathbf{AC} oldallal, így a 2. ábrán azonos betűvel jelölt szögek váltószögek, tehát egyenlők.

Az $\mathbf{F_aF_c}$ szakasz, mivel az **ABC** háromszög középvonala, fele az **AC** oldalnak.

Az $ACS_{2\Delta}$ és az $F_aF_cS_{2\Delta}$ hasonlóságának aránya 2:1. Bebizonyítottuk, hogy az S_2 pont az s_a súlyvonalat 2:1 arányban osztja.

Az S_1 pont az s_a súlyvonalat 2:1 arányban osztja. Az S_2 pont az s_a súlyvonalat ugyancsak 2:1 arányban osztja. Az S_1 és S_2 pontok az AF_2 szakaszon az A ponttól egyenlő távolságra helyezkednek el. Ez csak úgy lehet, ha az S_1 és S_2 pontok illeszkednek egymásra, vagyis ugyanarról a pontról van szó. Jelöljük ezt a pontot S-sel.

Az ábrákon látható, hogy az $\mathbf{s_a}$, $\mathbf{s_b}$ és $\mathbf{s_c}$ súlyvonalak is illeszkednek az \mathbf{S} pontra. Az $\mathbf{s_a}$, $\mathbf{s_b}$ és $\mathbf{s_c}$ súlyvonalak egy pontban metszik egymást.

Ezt akartuk bizonyítani.

147. A trapéz középvonala számtani közepe az alapoknak

<u>TÉTEL: (Állítás):</u> A trapéz középvonala számtani közepe (átlaga) az alapoknak.

Bizonyítás:

Az **ABCD** trapézt középpontosan tükröztük a **CD** szár **F**₂ felezőpontjára.

 $\mathbf{BF_1} = \mathbf{F_1}\mathbf{A}$ mert $\mathbf{F_1}$ felezőpont.

A középpontos tükrözés tulajdonságaiból következik, hogy az $\mathbf{F_1}$ $\mathbf{F_2}$ és az $\mathbf{F_2}$ ' $\mathbf{F_1}$ ' szakaszok egy egyenesbe esnek, és az $\mathbf{F_1}$ $\mathbf{F_1}$ ' hossza $2\mathbf{k}$.

Ugyancsak a középpontos tükrözés tulajdonságaiból következik, hogy a **BF**₁ **F**₁ '**A**' négyszög paralelogramma. A paralelogramma szemközti oldalai egyenlők:

$$2k = a + c$$
 //: 2

$$k = \frac{a+c}{2}$$

148. Pitagorasz-tétel

A derékszögű háromszög befogóira emelt négyzetek területének összege egyenlő az átfogóra emelt

négyzet területével.

II. ábra

Az **a+b** oldalú négyzet területe:

$$\mathbf{T}_{\square} = (\mathbf{a} + \mathbf{b})^2$$

Az \mathbf{a},\mathbf{b} befogójú derékszögű $_{\Delta}$ területe:

$$T_{\Delta} = \frac{a*b}{2}$$

A c oldalú rombusz területe: $T \diamondsuit = T \square - 4T_{\Delta}$

Az I. ábrán az **ABC**_△ befogói: **a**, **b**.

A II. ábrán az **a+b** oldalú négyzetet felosztottuk négy, az **ABC**_Δ -gel egybevágó háromszögre, (A két befogó és a közbezárt szög megegyezik.) és egy **c** oldalú rombuszra.

Belátható:

$$(\alpha + \beta) + \gamma = 180^{\circ}$$

Felhasználva, hogy a derékszögű háromszög hegyesszögeinek összege 90°:

$$90^{\circ} + \gamma = 180^{\circ}$$
 // - 90°
 $\gamma = 90^{\circ}$

A c oldalú rombusz szögei 90°-osak. A rombusz tehát négyzet, ezért területe:

$$T = c^{2}$$

$$T \Leftrightarrow T$$

$$T_{\square} - 4T_{\Delta} = c^{2}$$

$$(a+b)^{2} - 4*\frac{\mathbf{a}*\mathbf{b}}{2} = c^{2}$$

$$a^{2} + 2ab + b^{2} - 2ab = c^{2}$$

$$\mathbf{a}^{2} + \mathbf{b}^{2} = \mathbf{c}^{2}$$

149. A Pitagorasz-tétel megfordítása

Érvényes a Pitagorasz-tétel megfordítása is: Ha egy háromszögben két oldal négyzetösszege egyenlő a harmadik oldal négyzetével, akkor a háromszög derékszögű.

Ha egy háromszög leghosszabb oldalának (c) a négyzete kisebb, mint a másik két oldal (a, b) négyzetének az összege,

 $a^2 + b^2 < c^2$ akkor <u>a háromszög hegyesszögű.</u>

Ha egy háromszög leghosszabb oldalának (c) a négyzete nagyobb, mint a másik két oldal (a, b) négyzetének az összege,

 $\mathbf{a}^2 + \mathbf{b}^2 > \mathbf{c}^2$

akkor <u>a háromszög tompaszögű.</u>

Ha az \mathbf{a} , \mathbf{b} , \mathbf{c} számok pozitív egészek, és $\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$, akkor az \mathbf{a} , \mathbf{b} , \mathbf{c} számok pitagoraszi számhármast alkotnak.. Pl.:

3; 4; 5

6; 8; 10

5; 12; 13

A Pitagorasz-tétel alkalmazása:

Példa:

1.

Egy derékszögű háromszög befogói: a = 8 cm, b = 10 cm. Számítsuk ki az átfogót!

$$\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$$

$$8^2 + 10^2 = c^2$$

$$64 + 100 = c^2$$

$$164 = c^2$$

$$\sqrt{164}=c^2$$

 $\underline{12,8} \approx c$

2.

Egy derékszögű háromszög befogója: a = 7cm, átfogója c = 13 cm. Számítsuk ki az ismeretlen befogót!

$$\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$$

$$7^2 + b^2 = 13^2$$

$$b^2 = 13^2 - 7^2$$

$$b^2 = 169 - 49$$

$$b^2 = 120$$

$$b = \sqrt{120}$$

b ≈ 10,96