ОБРАБОТКА И РАСПОЗНАВАНИЕ ИЗОБРАЖЕНИЙ

Леонид Моисеевич Местецкий профессор

кафедра математических методов прогнозирования ВМК МГУ

кафедра интеллектуальных систем МФТИ

Генерация признаков на основе вейвлет-преобразования

Синусоидальная волна – основа Фурье-преобразования

Wavelet - короткая волна, волнишка, всплеск

Преобразование Хаара на основе попарного усреднения

Пример изображения из одной строки в 4 пиксела

Черный квадрат Малевича

Последовательное уменьшение разрешения

Разрешение	Средние значения	Уточняющие коэффициенты
4	9735	
2	8 4	1 -1
1	6	2

Аппроксимация сигнала кусочно-постоянными функциями

Функции одномерного базиса Хаара

$$\phi(x) = \begin{cases} 1 & 0 \le x < 1 \\ 0 &$$
в противном случае

$$\phi_i^j(x) = \phi(2^j x - i) = \phi\left(2^j \cdot \left(x - \frac{i}{2^j}\right)\right), \quad i = 0, 1, ..., 2^j - 1$$

$$\phi\left(2^{j} \cdot \left(x - \frac{i}{2^{j}}\right)\right)$$

Пространство функций

 V^{j} - пространство всех кусочно-постоянных функций

на [0,1) с интервалом постоянства $\frac{1}{2^j}$

$$\phi_i^j(x) \in V^j, i = 0, 1, ..., 2^j - 1$$

$$\phi_0^0(x) = \phi(x) \in V^0,$$

$$\phi_0^1(x) = \phi(2x)$$

$$\phi_1^1(x) = \phi(2x-1)$$

$$\phi_1^2(x) = \phi(4x)$$

$$\phi_1^2(x) = \phi(4x-1)$$

$$\phi_2^2(x) = \phi(4x-2)$$

$$\phi_2^2(x) = \phi(4x-2)$$

$$\phi_3^2(x) = \phi(4x-3)$$

$$\phi_3^2(x) = \phi(4x-3)$$

$$\phi_3^2(x) = \phi(4x-3)$$

Скалярное произведение в пространстве функций

$$f(x), g(x) \in V^{j},$$

$$(f,g) = \int_{0}^{1} f(x)g(x)dx$$

Ортогональное дополнение в пространстве функций

 V^j - пространство всех кусочно-постоянных функций на [0,1) с интервалом постоянства $\frac{1}{2^j}$ V^{j+1} - пространство всех кусочно-постоянных функций

на
$$[0,1)$$
 с интервалом постоянства $\frac{1}{2^{j+1}}$

$$V^j \subset V^{j+1}$$

 W^j — ортодополнение для V^j в V^{j+1} — это множество всех функций в V^{j+1} , ортогональных всем функциям из V^j .

Множество вейвлетов

Функции $\phi_i^j(x)$ образуют базис в пространстве V^j .

Определение. Совокупность всех линейно независимых функций $\psi_i^j(x)$, на которые натянуто W^j (базис), называется множеством вейвлетов.

Свойства.

- 1. Базисные функции ψ_i^j из W^j вместе с базисными функциями ϕ_i^j из V^j образуют базис V^{j+1}
- 2. Любая базисная функция ψ_i^j из W^j ортогональна любой базисной функции ϕ_i^j из V^j .

Базис Хаара в ортодополнении

$$\psi(x) = \begin{cases} 1 & 0 \le x < \frac{1}{2} \\ -1 & \frac{1}{2} \le x < 1 \\ 0 & \text{в противном случае} \end{cases}$$

$$\psi_i^j(x) = \psi(2^j x - i) = \psi(2^j \cdot \left(x - \frac{i}{2^j}\right)), \quad i = 0, 1, ..., 2^j - 1$$

$$\psi\left(2^j\cdot\left(x-\frac{i}{2^j}\right)\right)$$

Пример разложения Хаара

$$\tau(x) = [9 \ 7 \ 3 \ 5],$$

$$\tau(x) \in V^j, j = 2.$$

au(x) — кусочно-постоянная функция на [0,1) с интервалом постоянства $\frac{1}{4}$.

$$\begin{split} V^2 &= V^1 \oplus W^1 = (V^0 \oplus W^0) \oplus W^1 \\ \tau(x) &= c_0^2 \cdot \phi_0^2(x) + c_1^2 \cdot \phi_1^2(x) + c_2^2 \cdot \phi_2^2(x) + c_3^2 \cdot \phi_3^2(x) = \\ &= c_0^1 \cdot \phi_0^1(x) + c_1^1 \cdot \phi_1^1(x) + d_0^1 \cdot \psi_0^1(x) + d_1^1 \cdot \psi_1^1(x) = \\ &= c_0^0 \cdot \phi_0^0(x) + d_0^0 \cdot \psi_0^0(x) + d_0^1 \cdot \psi_0^1(x) + d_1^1 \cdot \psi_1^1(x) \end{split}$$

$$\phi_0^0(x), \psi_0^0(x), \psi_0^1(x), \psi_1^1(x)$$
 – базис Хаара для V^2

Пример разложения Хаара

Шаг за шагом

$$[8 \ 4 \ | 1 \ -1]$$

Ортогональность базиса Хаара

Нормирование базиса Хаара

$$\phi_i^j(x) = \sqrt{2^j} \cdot \phi(2^j x - i)$$

$$\psi_i^j(x) = \sqrt{2^j} \cdot \psi(2^j x - i)$$

Тогда

$$\left(\phi_i^j(x), \phi_i^j(x)\right) = 1$$
$$\left(\psi_i^j(x), \psi_i^j(x)\right) = 1$$

Разложение

$$[6 \ 2 \ 1 - 1]$$

превращается в

$$\begin{bmatrix} 6 & 2 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$

Матрица преобразования Хаара

Базис Хаара в пространстве V²

Двумерный базис Хаара

Стандартное разложение:

- 1. Начинается вычислением вейвлетных преобразований всех строк изображения.
- 2. После этого стандартный алгоритм производит вейвлетное преобразование каждого столбца.

Двумерный базис Хаара

Нестандартное (пирамидальное) разложение:

Пирамидальное разложение вычисляет вейвлетное преобразование, применяя итерации поочередно к строкам и столбцам.

Сжатие изображения вейвлетами Хаара

- (а) Исходное изображение
- (б) 19% вейвлет-коэффициентов, относительная погрешность 5% в норме
- (в) 3% вейвлет-коэффициентов, относительная погрешность 10% в норме
- (г) 1% вейвлет-коэффициентов, относительная погрешность 15% в норме

Формирование запросов изображений

- (a) Исходное изображение «Ирисы» Ван-Гога
- (б) Разложение на вейвлет-коэффициенты. Размер круга соответствует величине, цвет знаку коэффициента.
- (в) Усечение коэффициентов, остаются только самые большие по модулю
- (г) Квантование оставшихся коэффициентов

Сравнение изображений

