

Acta Crystallographica Section E

#### **Structure Reports**

#### **Online**

ISSN 1600-5368

# (7-Chloro-2-oxo-2*H*-chromen-4-yl)-methyl pyrrolidine-1-carbodithioate

O. Kotresh,<sup>a</sup> H. C. Devarajegowda,<sup>b\*</sup> Arunkumar Shirahatti,<sup>a</sup> K. Mahesh Kumar<sup>a</sup> and N. M. Mahabhaleshwaraiah<sup>a</sup>

<sup>a</sup>Department of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India, and <sup>b</sup>Department of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India Correspondence e-mail: devarajegowda@yahoo.com

Received 7 August 2013; accepted 13 October 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma(C-C) = 0.002$  Å; disorder in main residue; R factor = 0.031; wR factor = 0.102; data-to-parameter ratio = 17.0

In the title compound,  $C_{15}H_{14}CINO_2S_2$ , the 2H-chromene ring system is essentially planar, with a maximum deviation of 0.0133 (10) Å. Three C atoms and their attached H atoms of the pyrrolidine ring are disordered [occupany ratio 0.874 (7):0.126 (7)] with both disorder components adopting a twisted conformation. The dihedral angle between the 2H-chromene ring system and the major occupancy component of the pyrrolidine ring is 89.45 (7)°. In the crystal, inversion dimers linked by pairs of  $C-H\cdots S$  and  $C-H\cdots O$  interactions generate  $R^2_2(24)$  and  $R^2_2(10)$  loops, respectively. Further  $C-H\cdots O$  hydrogen bonds link the dimers into [100] chains.  $C-H\cdots \pi$  interactions also occur and there is very weak  $\pi$ - $\pi$  stacking [interplanar spacing = 3.650 (5) Å; centroid-centroid distance = 4.095 (7) Å] between inversion-related chlorobenzene rings.

#### Related literature

For biological applications of coumarins and dithiocarbamates, see: Brillon (1992); Burns *et al.* (2010); Kawaii *et al.* (2001); Khan *et al.* (2004); Yu *et al.* (2003). For details of the synthesis and a related structure with comparison bond lengths, see: Mahabaleshwaraiah *et al.* (2012).

#### **Experimental**

Crystal data

 $\begin{array}{lll} C_{15}H_{14}CINO_2S_2 & \gamma = 72.437 \ (1)^\circ \\ M_r = 339.84 & V = 749.52 \ (3) \ \mathring{A}^3 \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 7.9073 \ (2) \ \mathring{A} & \text{Mo } K\alpha \ \text{radiation} \\ b = 9.2891 \ (2) \ \mathring{A} & \mu = 0.54 \ \text{mm}^{-1} \\ c = 10.8865 \ (2) \ \mathring{A} & T = 296 \ \text{K} \\ \alpha = 84.474 \ (1)^\circ & 0.22 \times 0.18 \times 0.12 \ \text{mm} \\ \beta = 79.798 \ (1)^\circ \end{array}$ 

Data collection

Bruker SMART CCD area-detector diffractometer 3417 independent reflections 3417 independent reflections 3136 reflections with  $I > 2\sigma(I)$   $T_{\min} = 0.770, T_{\max} = 1.000$ 

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.031 & 6 \text{ restraints} \\ wR(F^2)=0.102 & \text{H-atom parameters constrained} \\ S=1.18 & \Delta\rho_{\max}=0.28 \text{ e Å}^{-3} \\ 3417 \text{ reflections} & \Delta\rho_{\min}=-0.31 \text{ e Å}^{-3} \\ 201 \text{ parameters} & \end{array}$ 

Table 1 Hydrogen-bond geometry (Å,  $^{\circ}).$ 

Cg4 is the centroid of the C7-C12 ring.

 $D-\mathbf{H}\cdot\cdot\cdot A$ D-H $H \cdot \cdot \cdot A$  $D \cdot \cdot \cdot A$  $D-H\cdots A$ C9-H9···S3i 3.7910 (16) 0.93 2.87 170 C21-H21B···O5ii 0.97 2.60 3.3434 (19) 134 C16-H16 $B \cdot \cdot \cdot Cg4^{ii}$ 0.97 2.93 144 3.761(1)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for CCD X-ray facilities, single-crystal X-ray diffractometer, GCMS, IR, CHNS and NMR data. NMM is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities. He is also thankful to P. C. Jabin Science College, Hubli and UGC for permission to do research under FIP.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2494).

#### References

Brillon, D. (1992). Sulfur Rep. 12, 297-332.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Burns, M., Lloyd-Jones, G. C., Moseley, J. D. & Renny, J. S. (2010). J. Org. Chem. 75, 6347–6353.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M. & Yoshizawa, Y. (2001). Anticancer Res. 21, 917–923.

### organic compounds

Khan, K. M., Saify, Z. S., Khan, M. Z., Zia-Ullah, Choudhary, M. I., Atta-Ur-Rahman, Perveen, S., Chohan, Z. H. & Supuran, C. T. (2004). *J. Enzyme Inhib. Med. Chem.* 19, 373–379.

Mahabaleshwaraiah, N. M., Kumar, K. M., Kotresh, O., Al-eryani, W. F. A. & Devarajegowda, H. C. (2012). *Acta Cryst.* E**68**, o1566.

Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322–345.

Acta Cryst. (2013). E69, o1684-o1685 [doi:10.1107/S1600536813028080]

### (7-Chloro-2-oxo-2*H*-chromen-4-yl)methyl pyrrolidine-1-carbodithioate

# O. Kotresh, H. C. Devarajegowda, Arunkumar Shirahatti, K. Mahesh Kumar and N. M. Mahabhaleshwaraiah

#### 1. Comment

Coumarin derivatives are an interesting class of heterocyclic systems, since the coumarin ring is an essential core moiety for a variety of natural and synthetic biologically active compounds. The biological activities include anticoagulation, antibiotic, antifungal, antipsoriasis, antitumor, anti-HIV, anti-inflammatory properties (Khan *et al.*, 2004; Kawaii *et al.*, 2001; Yu *et al.*, 2003). For a number of years, due to their important biological, biomedical and laser dye properties, coumarins have been the subject of a number of investigations, particularly on their photophysical characteristics, solvent effects on electronic absorption, structural properties and fluorescence spectra. The molecular manipulation of promising lead compounds is still a major line of approach to develop new drugs. It involves an effort to combine the separate pharmacophoric groups of similar activity into one compound, thereby affecting biological activity. The functionalization of the carbamate moiety is an effective technique for preparation of derivatives, which may have important therapeutic and biological properties (Brillon, 1992). In this regard, the introduction of new strategies to prepare dithiocarbamate derivatives with different substitution patterns at the thiol group has become a field of increasing interest in synthetic organic chemistry. There are several publications illustrating intramolecular or intermolecular oxygen sulfur exchange (Burns *et al.*, 2010).

The asymmetric unit of (7-chloro-2-oxo-2*H*-chromen-4-yl)methyl pyrrolidine-1-carbodithioate is shown in Fig. 1. The 2*H*- chromene (O4/C7–C15) ring system is planar, with a maximum deviation of 0.0133 (10) Å for atom C10, and the pyrrolidine ring adopts a twisted conformation. The dihedral angle between the 2*H*-chromene ring (O4/C7–C15) and the pyrrolidine ring (N6/C18–C21) is 89.45 (7)°. In the crystal, inversion dimers linked by pairs of C13—H13···S2 and C9—H9···O5 interactions generate  $R^2_2$ (24) and  $R^2_2$ (10) loops, respectively. Further C9—H9···O5 hydrogen bonds link the dimers into [100] chains. C16—H16B··· $\pi$  Cg4(C7–C12) (Table 1) interactions also occur and there is  $\pi$ - $\pi$  Cg4 (C7–C12) stacking of inversion-related molecules, with interplanar spacings of 3.650 (5) Å and chlorobenzene ring centroid—centroid distances of 4.095 (7) Å. The packing of the molecules is depicted in Fig. 2. Disorder is observed at the pyrrolidine flap carbon (C20, C20') atom [occupancy ratio 0.876 (5):0.124 (5)].

#### 2. Experimental

All the chemicals used were of analytical reagent grade and were used directly without further purification. The title compound was synthesized according to the reported method (Mahabaleshwaraiah *et al.*, 2012). The compound is recrystallized by ethanol-chloroform mixture. Colourless needles of the title compound were grown from a mixed solution of Ethanol/Chloroform (V/V = 2/1) by slow evaporation at room temperature. Yield = 74%, m.p. 445–447 K.

#### **Computing details**

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).



Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Only the major conformation of disorder at atom C20 is shown.



Figure 2
A packing diagram of the title compound.

#### (7-Chloro-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate

Crystal data

 $\begin{array}{lll} \text{C}_{15}\text{H}_{14}\text{CINO}_2\text{S}_2 & a = 7.9073 \text{ (2) Å} \\ M_r = 339.84 & b = 9.2891 \text{ (2) Å} \\ \text{Triclinic, } P\overline{1} & c = 10.8865 \text{ (2) Å} \\ \text{Hall symbol: -P 1} & \alpha = 84.474 \text{ (1)}^{\circ} \end{array}$ 

 $\beta$  = 79.798 (1)°  $\gamma$  = 72.437 (1)° V = 749.52 (3) Å<sup>3</sup> Z = 2 F(000) = 352  $D_x$  = 1.506 Mg m<sup>-3</sup> Melting point: 447 K

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\omega$  and  $\varphi$  scans Absorption correction: multi-scan (SADABS; Sheldrick, 2007)  $T_{min} = 0.770$ ,  $T_{max} = 1.000$ 

Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.031$   $wR(F^2) = 0.102$  S = 1.183417 reflections 201 parameters 6 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Mo  $K\alpha$  radiation,  $\lambda=0.71073$  Å Cell parameters from 3417 reflections  $\theta=1.9-27.5^{\circ}$   $\mu=0.54~{\rm mm}^{-1}$   $T=296~{\rm K}$  Plate, colourless  $0.22\times0.18\times0.12~{\rm mm}$ 

16446 measured reflections 3417 independent reflections 3136 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.023$  $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$  $h = -10 \rightarrow 10$  $k = -12 \rightarrow 12$  $l = -14 \rightarrow 14$ 

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w=1/[\sigma^2(F_{\rm o}^2)+(0.0617P)^2+0.0857P]$  where  $P=(F_{\rm o}^2+2F_{\rm c}^2)/3$   $(\Delta/\sigma)_{\rm max}=0.004$   $\Delta\rho_{\rm max}=0.28$  e Å<sup>-3</sup>  $\Delta\rho_{\rm min}=-0.31$  e Å<sup>-3</sup> Extinction correction: SHELXL97 (Sheldrick, 2008), Fc\*=kFc[1+0.001xFc² $\lambda^3$ /sin(2 $\theta$ )]-1/4 Extinction coefficient: 0.049 (5)

Special details

**Experimental.** IR (KBr, cm $^{-1}$ ): 1731 (C=O), 1374 (C=S), 866(C—N). GCMS: m/e:339.  $^{1}$ H NMR (400 MHz, CDCl $_{3}$ , \?, p.p.m): 1.89 (m, 2H, CH $_{2}$ ), 2.00 (m, 2H, CH $_{2}$ ), 3.63(m, 2H, N—CH $_{2}$ ), 3.77 (m, 2H, N—CH $_{2}$ ), 4.81 (s,2H, C4—CH $_{2}$ ),6.60 (s,1H, C3—H, Ar—H), 7.46 (m, H, Ar—H), 7.62 (m, 1H, Ar—H), 7.91 (s, 1H, Ar—H). Mol. Formula: C $_{15}$ H $_{14}$ Cl N O $_{2}$ S $_{2}$ . Elemental analysis: C, 53.01; H, 4.15; N, 4.12 (calculated); C, 52.98; H, 4.10; N, 4.09 (found).

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|     | X             | y            | Z           | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|---------------|--------------|-------------|-----------------------------|-----------|
| C11 | -0.28700 (7)  | 1.07931 (5)  | -0.14180(5) | 0.06885 (16)                |           |
| S2  | 0.38730 (4)   | 0.30580 (4)  | 0.21169 (3) | 0.04235 (13)                |           |
| S3  | 0.54060 (5)   | 0.56231 (4)  | 0.24009 (4) | 0.04455 (13)                |           |
| O4  | -0.19899 (13) | 0.79324 (11) | 0.26803 (9) | 0.0409(2)                   |           |
| O5  | -0.17968 (15) | 0.68451 (13) | 0.45600 (9) | 0.0526(3)                   |           |

| N6   | 0.61026 (14)  | 0.29726 (11) | 0.36235 (10)  | 0.0338 (2) |           |
|------|---------------|--------------|---------------|------------|-----------|
| C7   | -0.1734 (2)   | 0.92725 (17) | -0.05374(14)  | 0.0459 (3) |           |
| C8   | -0.0243 (2)   | 0.8208 (2)   | -0.11117(14)  | 0.0520 (4) |           |
| H8   | 0.0130        | 0.8294       | -0.1968       | 0.062*     |           |
| C9   | 0.06851 (19)  | 0.70194 (18) | -0.04044 (13) | 0.0461 (3) |           |
| Н9   | 0.1686        | 0.6303       | -0.0791       | 0.055*     |           |
| C10  | 0.01464 (16)  | 0.68708 (14) | 0.08890 (11)  | 0.0334(3)  |           |
| C11  | -0.13752 (16) | 0.79680 (14) | 0.14228 (12)  | 0.0345 (3) |           |
| C12  | -0.23300 (19) | 0.91664 (16) | 0.07278 (14)  | 0.0427 (3) |           |
| H12  | -0.3345       | 0.9880       | 0.1103        | 0.051*     |           |
| C13  | 0.10823 (15)  | 0.56837 (14) | 0.17036 (11)  | 0.0324(2)  |           |
| C14  | 0.04298 (16)  | 0.56563 (14) | 0.29272 (12)  | 0.0354(3)  |           |
| H14  | 0.1019        | 0.4881       | 0.3444        | 0.043*     |           |
| C15  | -0.11598(17)  | 0.67905 (15) | 0.34721 (12)  | 0.0370(3)  |           |
| C16  | 0.27739 (18)  | 0.45665 (17) | 0.11144 (13)  | 0.0425 (3) |           |
| H16A | 0.3621        | 0.5117       | 0.0751        | 0.051*     |           |
| H16B | 0.2488        | 0.4124       | 0.0435        | 0.051*     |           |
| C17  | 0.52248 (15)  | 0.38901 (13) | 0.27966 (11)  | 0.0327 (2) |           |
| C18  | 0.73425 (19)  | 0.33810 (16) | 0.42944 (14)  | 0.0418 (3) |           |
| H18A | 0.6702        | 0.4194       | 0.4850        | 0.050*     |           |
| H18B | 0.8263        | 0.3692       | 0.3714        | 0.050*     |           |
| C19  | 0.8152 (2)    | 0.1946 (2)   | 0.50227 (18)  | 0.0558 (4) | 0.874 (7) |
| H19A | 0.8384        | 0.2173       | 0.5817        | 0.067*     | 0.874 (7) |
| H19B | 0.9270        | 0.1359       | 0.4555        | 0.067*     | 0.874 (7) |
| C20  | 0.6762 (3)    | 0.1094(2)    | 0.5219 (2)    | 0.0480 (6) | 0.874 (7) |
| H20A | 0.7317        | 0.0016       | 0.5335        | 0.058*     | 0.874 (7) |
| H20B | 0.5860        | 0.1442       | 0.5941        | 0.058*     | 0.874 (7) |
| C21  | 0.59481 (19)  | 0.14500 (14) | 0.40330 (14)  | 0.0413 (3) | 0.874 (7) |
| H21A | 0.6606        | 0.0722       | 0.3409        | 0.050*     | 0.874 (7) |
| H21B | 0.4702        | 0.1451       | 0.4192        | 0.050*     | 0.874 (7) |
| C19' | 0.8152(2)     | 0.1946 (2)   | 0.50227 (18)  | 0.0558 (4) | 0.126 (7) |
| H19C | 0.9449        | 0.1723       | 0.4892        | 0.067*     | 0.126 (7) |
| H19D | 0.7715        | 0.2069       | 0.5908        | 0.067*     | 0.126 (7) |
| C20' | 0.765 (2)     | 0.0709 (13)  | 0.4603 (17)   | 0.052 (4)  | 0.126 (7) |
| H20C | 0.7430        | 0.0024       | 0.5301        | 0.062*     | 0.126 (7) |
| H20D | 0.8604        | 0.0147       | 0.3986        | 0.062*     | 0.126 (7) |
| C21' | 0.59481 (19)  | 0.14500 (14) | 0.40330 (14)  | 0.0413 (3) | 0.126 (7) |
| H21C | 0.5907        | 0.0899       | 0.3331        | 0.050*     | 0.126 (7) |
| H21D | 0.4883        | 0.1506       | 0.4648        | 0.050*     | 0.126 (7) |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$   | $U^{22}$     | $U^{33}$   | $U^{12}$      | $U^{13}$      | $U^{23}$     |
|-----|------------|--------------|------------|---------------|---------------|--------------|
| Cl1 | 0.0754(3)  | 0.0589(3)    | 0.0702(3)  | -0.0126 (2)   | -0.0342 (2)   | 0.0265 (2)   |
| S2  | 0.0401(2)  | 0.0358(2)    | 0.0502(2)  | -0.00229(14)  | -0.01778 (15) | -0.00600(14) |
| S3  | 0.0498(2)  | 0.03124 (19) | 0.0489(2)  | -0.00884 (14) | -0.00686 (15) | 0.00535 (14) |
| O4  | 0.0416 (5) | 0.0369 (5)   | 0.0365 (5) | -0.0022(4)    | -0.0011 (4)   | -0.0042(4)   |
| O5  | 0.0544 (6) | 0.0595 (7)   | 0.0336 (5) | -0.0059(5)    | 0.0024 (4)    | -0.0043(5)   |
| N6  | 0.0334 (5) | 0.0290 (5)   | 0.0396 (5) | -0.0082 (4)   | -0.0089(4)    | -0.0002(4)   |

| C7   | 0.0503 (8)  | 0.0430 (7)  | 0.0463 (8)  | -0.0135 (6) | -0.0197(6)   | 0.0118 (6) |
|------|-------------|-------------|-------------|-------------|--------------|------------|
| C8   | 0.0541 (8)  | 0.0620 (10) | 0.0353 (7)  | -0.0124 (7) | -0.0084(6)   | 0.0084 (6) |
| C9   | 0.0411 (7)  | 0.0555 (8)  | 0.0344 (7)  | -0.0050(6)  | -0.0044(5)   | 0.0005 (6) |
| C10  | 0.0314 (6)  | 0.0366 (6)  | 0.0319 (6)  | -0.0091(5)  | -0.0064(4)   | -0.0009(5) |
| C11  | 0.0342 (6)  | 0.0342 (6)  | 0.0348 (6)  | -0.0092(5)  | -0.0062(5)   | -0.0012(5) |
| C12  | 0.0413 (7)  | 0.0355 (6)  | 0.0483 (8)  | -0.0050(5)  | -0.0109 (6)  | 0.0000 (5) |
| C13  | 0.0281 (5)  | 0.0350(6)   | 0.0337 (6)  | -0.0069(4)  | -0.0074(4)   | -0.0023(5) |
| C14  | 0.0336 (6)  | 0.0368 (6)  | 0.0343 (6)  | -0.0070(5)  | -0.0074(5)   | -0.0001(5) |
| C15  | 0.0373 (6)  | 0.0393 (6)  | 0.0329 (6)  | -0.0100(5)  | -0.0036(5)   | -0.0027(5) |
| C16  | 0.0351 (6)  | 0.0494 (8)  | 0.0343 (6)  | 0.0026 (5)  | -0.0071(5)   | -0.0051(5) |
| C17  | 0.0295 (5)  | 0.0298 (6)  | 0.0342 (6)  | -0.0028(4)  | -0.0015 (4)  | -0.0042(4) |
| C18  | 0.0424 (7)  | 0.0397 (7)  | 0.0484 (7)  | -0.0152 (5) | -0.0158(6)   | 0.0004 (6) |
| C19  | 0.0535 (9)  | 0.0533 (9)  | 0.0678 (10) | -0.0193 (7) | -0.0311(8)   | 0.0153 (8) |
| C20  | 0.0510 (12) | 0.0429 (10) | 0.0519 (12) | -0.0158 (9) | -0.0173 (10) | 0.0130 (8) |
| C21  | 0.0450 (7)  | 0.0286 (6)  | 0.0521 (8)  | -0.0107(5)  | -0.0153 (6)  | 0.0037 (5) |
| C19′ | 0.0535 (9)  | 0.0533 (9)  | 0.0678 (10) | -0.0193 (7) | -0.0311(8)   | 0.0153 (8) |
| C20′ | 0.045 (8)   | 0.042 (6)   | 0.062 (10)  | -0.002(5)   | -0.018 (7)   | 0.011 (6)  |
| C21' | 0.0450 (7)  | 0.0286 (6)  | 0.0521 (8)  | -0.0107 (5) | -0.0153 (6)  | 0.0037 (5) |

### Geometric parameters (Å, °)

| Geometrie parameters (21, | /           |               |             |
|---------------------------|-------------|---------------|-------------|
| Cl1—C7                    | 1.7320 (14) | C13—C14       | 1.3413 (17) |
| S2—C17                    | 1.7822 (13) | C13—C16       | 1.5047 (17) |
| S2—C16                    | 1.7934 (14) | C14—C15       | 1.4487 (17) |
| S3—C17                    | 1.6678 (12) | C14—H14       | 0.9300      |
| O4—C11                    | 1.3699 (15) | C16—H16A      | 0.9700      |
| O4—C15                    | 1.3796 (16) | C16—H16B      | 0.9700      |
| O5—C15                    | 1.2015 (16) | C18—C19       | 1.509 (2)   |
| N6—C17                    | 1.3172 (16) | C18—H18A      | 0.9700      |
| N6—C18                    | 1.4731 (16) | C18—H18B      | 0.9700      |
| N6—C21                    | 1.4757 (16) | C19—C20       | 1.513 (2)   |
| C7—C12                    | 1.379 (2)   | C19—H19A      | 0.9700      |
| C7—C8                     | 1.383 (2)   | C19—H19B      | 0.9700      |
| C8—C9                     | 1.377 (2)   | C20—C21       | 1.508 (2)   |
| C8—H8                     | 0.9300      | C20—H20A      | 0.9700      |
| C9—C10                    | 1.4031 (18) | C20—H20B      | 0.9700      |
| С9—Н9                     | 0.9300      | C21—H21A      | 0.9700      |
| C10—C11                   | 1.3966 (17) | C21—H21B      | 0.9700      |
| C10—C13                   | 1.4498 (16) | C20′—H20C     | 0.9700      |
| C11—C12                   | 1.3837 (18) | C20′—H20D     | 0.9700      |
| C12—H12                   | 0.9300      |               |             |
| C17—S2—C16                | 102.76 (7)  | C13—C16—H16A  | 108.1       |
| C11—O4—C15                | 121.50 (10) | S2—C16—H16A   | 108.1       |
| C17—N6—C18                | 123.15 (11) | C13—C16—H16B  | 108.1       |
| C17—N6—C21                | 125.66 (11) | S2—C16—H16B   | 108.1       |
| C18—N6—C21                | 111.16 (10) | H16A—C16—H16B | 107.3       |
| C12—C7—C8                 | 121.59 (13) | N6—C17—S3     | 123.58 (10) |
| C12—C7—C11                | 118.87 (12) | N6—C17—S2     | 112.65 (9)  |
| C8—C7—C11                 | 119.53 (12) | S3—C17—S2     | 123.75 (7)  |
|                           |             |               |             |

| C9—C8—C7        | 119.44 (13)  | N6—C18—C19      | 103.94 (11)                |
|-----------------|--------------|-----------------|----------------------------|
| C9—C8—H8        | 120.3        | N6—C18—H18A     | 111.0                      |
| C7—C8—H8        | 120.3        | C19—C18—H18A    | 111.0                      |
| C8—C9—C10       | 121.17 (14)  | N6—C18—H18B     | 111.0                      |
| C8—C9—H9        | 119.4        | C19—C18—H18B    | 111.0                      |
| C10—C9—H9       | 119.4        | H18A—C18—H18B   | 109.0                      |
| C11—C10—C9      |              | C18—C19—C20     |                            |
|                 | 117.20 (12)  |                 | 105.04 (12)                |
| C11—C10—C13     | 118.25 (11)  | C18—C19—H19A    | 110.7                      |
| C9—C10—C13      | 124.53 (12)  | C20—C19—H19A    | 110.7                      |
| O4—C11—C12      | 115.98 (11)  | C18—C19—H19B    | 110.7                      |
| O4—C11—C10      | 121.51 (11)  | C20—C19—H19B    | 110.7                      |
| C12—C11—C10     | 122.50 (12)  | H19A—C19—H19B   | 108.8                      |
| C7—C12—C11      | 118.08 (13)  | C21—C20—C19     | 103.84 (14)                |
| C7—C12—H12      | 121.0        | C21—C20—H20A    | 111.0                      |
| C11—C12—H12     | 121.0        | C19—C20—H20A    | 111.0                      |
| C14—C13—C10     | 119.02 (11)  | C21—C20—H20B    | 111.0                      |
| C14—C13—C16     | 123.85 (11)  | C19—C20—H20B    | 111.0                      |
|                 | ` '          |                 |                            |
| C10—C13—C16     | 117.11 (11)  | H20A—C20—H20B   | 109.0                      |
| C13—C14—C15     | 122.38 (12)  | N6—C21—C20      | 103.91 (11)                |
| C13—C14—H14     | 118.8        | N6—C21—H21A     | 111.0                      |
| C15—C14—H14     | 118.8        | C20—C21—H21A    | 111.0                      |
| O5—C15—O4       | 116.97 (12)  | N6—C21—H21B     | 111.0                      |
| O5—C15—C14      | 125.72 (13)  | C20—C21—H21B    | 111.0                      |
| O4—C15—C14      | 117.28 (11)  | H21A—C21—H21B   | 109.0                      |
| C13—C16—S2      | 116.78 (9)   | H20C—C20′—H20D  | 108.7                      |
|                 | (>)          |                 |                            |
| C12—C7—C8—C9    | -0.7 (2)     | C11—O4—C15—O5   | -179.57 (12)               |
|                 | ` '          |                 | ` '                        |
| C11—C7—C8—C9    | 178.41 (13)  | C11—O4—C15—C14  | 2.14 (17)                  |
| C7—C8—C9—C10    | -0.1 (3)     | C13—C14—C15—O5  | -178.77 (14)               |
| C8—C9—C10—C11   | 0.6 (2)      | C13—C14—C15—O4  | -0.64(19)                  |
| C8—C9—C10—C13   | -177.89(13)  | C14—C13—C16—S2  | 3.91 (18)                  |
| C15—O4—C11—C12  | 179.60 (12)  | C10—C13—C16—S2  | -177.56(9)                 |
| C15—O4—C11—C10  | -1.62(18)    | C17—S2—C16—C13  | -84.97 (11)                |
| C9—C10—C11—O4   | -179.01(12)  | C18—N6—C17—S3   | 0.16 (17)                  |
| C13—C10—C11—O4  | -0.43 (18)   | C21—N6—C17—S3   | 178.05 (10)                |
| C9—C10—C11—C12  | -0.31 (19)   | C18—N6—C17—S2   | 178.53 (10)                |
| C13—C10—C11—C12 | 178.27 (12)  | C21—N6—C17—S2   | -3.57 (16)                 |
| C8—C7—C12—C11   | 1.0 (2)      | C16—S2—C17—N6   | 177.14 (9)                 |
|                 | * *          |                 | ` ′                        |
| Cl1—C7—Cl2—Cl1  | -178.15 (10) | C16—S2—C17—S3   | -4.49 (9)                  |
| O4—C11—C12—C7   | 178.31 (12)  | C17—N6—C18—C19  | -174.43 (12)               |
| C10—C11—C12—C7  | -0.5(2)      | C21—N6—C18—C19  | 7.40 (16)                  |
| C11—C10—C13—C14 | 1.87 (18)    | N6—C18—C19—C20  | -26.24 (19)                |
| C9—C10—C13—C14  | -179.66 (13) | C18—C19—C20—C21 | 35.3 (2)                   |
| C11—C10—C13—C16 | -176.73 (11) | C17—N6—C21—C20  | -163.79(15)                |
| C9—C10—C13—C16  | 1.74 (19)    | C18—N6—C21—C20  | 14.32 (17)                 |
| C10—C13—C14—C15 | -1.34 (18)   | C19—C20—C21—N6  | -30.1 (2)                  |
| C16—C13—C14—C15 | 177.16 (12)  |                 | - · · · · ( <del>-</del> ) |
|                 | 1//.10 (12)  |                 |                            |

### Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C7–C12 ring.

| <i>D</i> —H··· <i>A</i>                        | <i>D</i> —H | $H\cdots A$ | D··· $A$    | <i>D</i> —H··· <i>A</i> |
|------------------------------------------------|-------------|-------------|-------------|-------------------------|
| C9—H9···S3 <sup>i</sup>                        | 0.93        | 2.87        | 3.7910 (16) | 170                     |
| C21—H21 <i>B</i> ···O5 <sup>ii</sup>           | 0.97        | 2.60        | 3.3434 (19) | 134                     |
| C16—H16 <i>B</i> ··· <i>Cg</i> 4 <sup>ii</sup> | 0.97        | 2.93        | 3.761 (1)   | 144                     |

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1.