SR MPC DPP Topic:- COORDINATION COMPOUNDS

1.	Which of the following octahedral complexes the magnitude of Δ_0 will be maximum?						
	1) $\left[Co(NH_3)_6 \right]^{+3}$ 2) $\left[Co(C_2O_4)_5 \right]$	$\begin{bmatrix} -3 \end{bmatrix}$	$3) \left[CoCl_6 \right]^{-3}$	$4) \left[Co(CN)_6 \right]^{-3}$			
2.	The primary and secondary valencies	of cob	oalt in $COCl_3.3NH_3$ is				
	1) 6, 3 2) 3, 6		3) 2, 6	4) 2, 4			
3.	The IUPAC name of $[Fe(C_5H_5)_2]$ is	S					
	1) Ferrocene		2) Bis (μ^5 - cyclopen	tadienyl) Iron (0)			
	3) Bis (η^5 - cyclopentadienyl) Iron (II	I)	4) Bis (η^{10} - cycloper	tadienyl) Iron (0)			
4.	The number of bridged carbonyls in	Mn_2 ($(CO)_{10}$, $Co_2(CO)_8$ a	re respectively			
_	1) 2, 2 2) 0, 2		3) 2, 0	4) 0, 3			
5.	The cationic complex which has two			T 7+2			
	1) $\left[Co(NH_3)_5 No_2 \right]^{+2}$ 2) $\left[Co \right]$	(NH_3)	$_{4}Cl_{2}$ 3) Both 1 & 2	$4) \left[Co(NH_3)_5 Cl \right]^2$			
6.	The d-electronic configuration of [Co	$[oF_6]^{-3}$ o	octahedral crystal field	is $t2g^x eg^y$. The value of x			
	and number of unpaired electrons res	pective	•				
7.	1) 4, 2 2) 4, 4 The impressing order of intensity of a	مستوام	3) 2, 4	4) 6, 0			
7.	The increasing order of intensity of contract \mathbb{R}^{-1} \mathbb{R}^{-1} \mathbb{R}^{-1} \mathbb{R}^{-1} \mathbb{R}^{-1} \mathbb{R}^{-1} \mathbb{R}^{-1} \mathbb{R}^{-1}		•				
	1) $[Ni Cl_4]^{-2} < [Ni(H_2O)_6]^{+2} < [Ni(O)_6]^{-2}$	/					
	2) $[Ni(CN)_4]^{-2} < [Ni(H_2O)_6]^{+2} < [Ni(H_2O)_6]^{-2}$	$ViCl_4$	-2				
	3) $\left[Ni\left(H_2O_6\right)\right]^{-2} < \left[NiCl_4\right]^{+2} < \left[Ni\left(O_6\right)\right]^{-2}$	$(2N)_4$	2				
	4) $\left[Ni\left(CN\right)_{4}\right]^{-2} < \left[NiCl_{4}\right]^{+2} < \left[Ni\left(He^{-2}\right)_{4}\right]^{-2}$	$(I_2O)_6$	-2				
8.	Among the following metal carbonyle	s, the (C-O bond order is high	hest in			
	1) $\left[Mn(CO_5)\right]^{-}$ 2) $\left[Cr(CO_5)\right]^{-}$	-2	3) $\left[V(CO)_{5}\right]^{-2}$	4) $\left[V(CO)_{5}\right]^{-3}$			
9.	Among the following diamagnetic co	mplexe	es are				
	i) $K_4 \left[Fe(CN)_6 \right]$	ii) Na	$u_2 \Big[Zn \big(OH \big)_4 \Big]$	iii) $K_2[Pt(CN_4)]$			
	iv) $Na_3 \left[Co\left(C_2 O_4 \right)_3 \right]$	v) [Ni	$[(H_2O)_6]Cl_2$	vi) $[Co(H_2O)_6]Cl_3$			
	1) i, ii, iii, iv 2) ii, iii, iv, v		3) i, ii, iv, vi				
10.	On treatment of 100ml of 1M solution	n of Co	$oCl_3.6H_2O$ with excess	of $Ag NO_3$ 1.2×10 ²³ ions			
	are precipitated. The complex is						
	$1) \left[Co(H_2O)_4 Cl_2 \right] Cl.2H_2O$		2) $\lfloor Co(H_2O)_5 Cl \rfloor C$	$H_2.H_2O$			
	$3) \left[Co \left(H_2O \right)_3 Cl_3 \right] 3H_2O$		$4) \left[Co(H_2O)_6 \right] Cl_3$				
11.	Match the following set of hybrid orb		*	exes given in List-II			
		<u>List – :</u> P) <i>Fe</i> (
	, 1		` ' ' '				
	B) dsp^2	$Q) \lfloor C_i \rfloor$	$u(NH_3)_4$				

 $R) \left[Ni(CO)_4 \right]$

C) d^2sp^3

23.	Which of the following complexes are homoleptic?					
	1) $\left[Co(NH_3)_3 Cl_3 \right]$ 2) $\left[Nh(1) \right]$	$(NH_3)_4 Cl_2$ 3) $\left[Co(en)_3\right]^{+3}$ 4) $\left[Co(NH_3)_4(NO_2)_2\right]C$				
24.	Assertion: $\lceil Fe(H_2O)_5 NO \rceil$	SO_4 is paramagnetic				
	Reason: The Fe in $\int Fe(H_2O)$	$\int_{5} NO SO_{4}$ has three unpaired electrons				
25.	1) Assertion and Reason both 2) Assertion and Reason both 3) Assertion is true, Reason is 4) Assertion is false, Reason Assertion: Toxic metal ions a Reason: Chelate complexes of 1) Assertion and Reason both	are true, Reason is correct explanation of Assertion are true but Reason is not correct explanation of Assertion is false is true are removed by the chelating ligands and to be more stable are true, Reason is correct explanation of Assertion are true but Reason is not correct explanation of Assertion				
	4) Assertion is false, Reason					
26.	Assertion: $\left[Ti(H_2O)_6\right]^{+3}$ is o	coloured while $\left[Sc(H_2O)_6\right]^{+3}$ is colourless				
	Reason: d – d transition is no	t possible in $\left[Sc(H_2O)_{\epsilon}\right]^{+3}$				
27.	1) Assertion and Reason both	are true, Reason is correct explanation of Assertion are true but Reason is not correct explanation of Assertion s false is true				
		2) d – d transition				
	3) $L \rightarrow M$ charge transfer	4) $\sigma \rightarrow \sigma^*$ transition				
28.	The maximum possible denti	city of EDTA ⁻⁴ ligand given below towards a transition metal				
	ion is	2) 0				
29.	1) 4 2) 6 The colour and shape of tetra	3) 8 4) 5 mmine copper(II) sulphate is				
_,.		e, Squareplanar 3) Voilet, Octahedral 4) Green, Tetrahedral				
30.		the coordination compounds List-II				
	$\frac{\text{List} - \text{I}}{\text{A) Mg}}$	List - II P) Vitamin B_{12}				
	B) Fe	Q) Haemoglobin				
	C) Rh	R) Chlorophyll				
	D) Co	S) Wilkinson's catalyst				
	A B	C D				
	1) R Q 2) P S	S P Q R				
	3) R P	Q R S Q				
	4) P Q	R S				

KEY

1	2	3	4	5	6	7	8	9	10
4	2	2	2	3	2	2	1	1	2
11	12	13	14	15	16	17	18	19	20
1	3	3	2	4	2	4	1	4	3
21	22	23	24	25	26	27	28	29	30
3	2	3	1	1	1	3	6	2	1

HINTS

1. CF SE depends upon the filed strength of ligand. The filed strength of ligand decreases as shown

below
$$Cl^{-} < C_2O_4^{-2} < NH_3 < CN^{-}$$

2. Oxidation number of Co is +3. So primary valency is 3. It is an octahedral complex so secondary valency is 6 (coordination number) 3+6=9

3. 4.

No of bridged Co are 0 No of bridged Co are 2

5. $\left[Co(NH_3)_5 NO_2\right]^{+2}$ has two linkage isomers $\left[Co(NH_3)_4 Cl_2\right]^{+}$ has two Geometrical isomers

6.
$$CO^{+3} - 3d^6 4s^0$$
: F^- : WFL
 $x = 4$ $y = 2$ No of unpaired $e^-s = 4$
 $4+4=8$

7. The intensity of colour depends on the strength of the ligand attached withe central metal atom because more strong filed ligand more is splitting energy, less is intensity of colour. Strength of ligand is

in the order $Cl^- < H_2O < CN^-$. Splitting Energy order is

$$\left[\operatorname{Ni}\left(\operatorname{CN}\right)_{4}\right]^{-2} < \left[\operatorname{Ni}\left(\operatorname{C}_{2}O\right)_{6}\right]^{+2} < \operatorname{Nicl}_{4}^{-2}$$

8. Greater the extent of $d\pi - p\pi$ back bonding smaller will be the bond order of Co bond in metal carbonyls. As the negative charge on the coordination sphere of carbonyl complexes increases, the extent of back bonding also increases and bond order decreases

9. For diamagnetic complex, no unpaired electrons in the valence shell of central metal $K_4 \Big[Fe(CN)_6 \Big] Fe^{+2} - d^6$ Configuration - Strong filed ligand diamagnetic $Na_2 \Big[Zn(OH)_4 \Big] Zn^{+2} - d^{10}$ Weak filed ligand - Strong filed ligand diamagnetic $K_2 \Big[Pt(CN)_4 \Big] Pt^{+2} - d^8$ Strong filed ligand - Strong filed ligand diamagnetic

$$Na_3 \Big[Co(C_2O_4)_3 \Big] Co^{+3} - d^6$$
 Strong chelating ligand – diamagnetic $\Big[Ni(H_2O_6) \Big] Cl_2Ni^+ - d^8$ Weak filed ligand – paramagnetic $\Big[Co(H_2O)_6 \Big] Cl_3 Co^{3+} - d^6$ Weak filed ligand – paramagnetic

10. Numbers of moles of complex =
$$\frac{M \times V(nl)}{1000} = \frac{1 \times 100}{1000}$$

Number of
$$Cl^-$$
 ions present in complex are $=\frac{No \ of \ moles \ of \ ions \ precipitated}{No \ of \ moles \ of \ complex}=\frac{0.2}{0.1}=2$

 $\therefore 2Cl^{-1}$ are present outside the coordination sphere. Thus the complex is $\lceil Co(H_2O), Cl \rceil Cl_2H_2O$

11.
$$Fe(CO)_5$$
 - C.NO - 5 - sp^3 Hybridization
$$\left[Cu(NH_3)_4 \right]^{+2} - \text{C.NO} - 4 - dsp^2 Hybridization
$$\left[Ni(CO)_4 \right] - \text{C.NO} - 4 - d^2sp^3 \text{ Hybridization}$$

$$\left[Cr(NH_3)_6 \right] Cl_3 - \text{C.NO} - 6 - sp^3d^2 \text{ Hybridization}$$

$$\left[CoF_6 \right]^{-3} - \text{C.NO} - 6 - sp^3d \text{ Hybridization}$$$$

12.
$$\lceil (Ph_3P)_3 RhCl \rceil$$
 - Chloridotris (triphenyl phosphine) Rhodium-I

13.
$$[Ni(CO)_4] - sp^3 - \text{Tetrahedral } Ni - 0.NO - 'O'$$

$$3d^8 + 4s^2 + 4p^0$$

$$3d^{10} + 4s^0 + 4p^0$$

$$[NiCl_4]^{-2} - sp^3 - \text{Tetrahedral}$$

14. The degenerate complex five degenerate orbitals splits into
$$t_2\theta(dxy, dyz, dzx)$$
 $cg(x^2 - y^2, dz^2)$

- 15. According to specItro chemical series increasing order of field strength of ligands is $SCN^- < S^{-2} < OH^- < O^{-2} < NCS^- < NH_3 < CN^-$
- 16. Optical isomerison is exhibit ny only those complexes which lacks elements of symmetry $\left[Co(NH_3)_3 Cl_3\right]$ shows facial as well as isomerison and contains plane of symmetry. Thus this

Complex does not exhibit optical is amnion

17.
$$4Ag + 8NaCN + 2H_2O \rightarrow 4Na\left[Ag(N)_2\right] + 4NAOH$$
$$2Na\left[ag(CN)_2\right] + Zn \rightarrow Na_2\left[Zn(Cn)_4\right] + 2Ag$$

18. Primary valency is oxidation number +3
Secondary valency is coordination number + 4

19. Volatile complex is $-[Ni(CO)_4]$ Coordination number of Nickel is 4

20. In
$$Nal2[Fe(CN)_5 NO]$$
 2(+1)+x+5(-1)+1=0 x=+2
EAN = (26-2)+(6×2) = 24+12=36

21.
$$\left[Cr(NH_3)_6\right]^{+3} \quad 3d^3 \quad 4s^0 \quad 4p^0$$
 $\left[Co(H_2O)_6\right]^{+2} \quad 3d^7 \quad 4s^0 \quad 4p^0 \quad 4d^0$

Both have same number of inpaired e^-s and its magnetic is $\mu = 3.87$ B.M

22.
$$\left[Co(NH_3)_6 \right] Cl_3 \rightarrow \left[Co(NH_3)_6 \right]^{+3} + 3Cl^{-1}$$

cation anio

23. The complex in which metal is attached to same type of ligands is called homeotic complex

24.

25.26.

27. In MnO_4^- , Mn has + 7 0.5 no electron in d – orbital In CrO_7^{-2} , Cr has + 6 0.5 no electron in d – orbital. So ligand is able to donate the electron into

recant d – orbital of metal ($L \rightarrow M$ charge transfer)

28. EDTA – Ethylenedimaine + tetra acetate ion

4 0^- ; N total 6 donor atoms

29.

30. Mg is present in chlorophyll having molecular formula $C_{55} H_{70} O_6 N_4 Mg$. Rh is present in Wilkinson catalyst having M.F $[(Ph_3P)_3 RhCl]$. Fe is present in hemoglobin

Co is present in cyanocobalmim in vitamin B_{12} . Having formula $C_{63}H_{58}\overset{II}{CO}N_{14}O_{14}P$