# Capstone Project – Car accident severity

## Elida Axundzada

## November 14, 2020

| 2  |
|----|
|    |
| 2  |
| 2  |
| 4  |
| 5  |
| 5  |
| 5  |
| 8  |
| 8  |
| 10 |
| 10 |
| 11 |
| 11 |
| 12 |
| 12 |
|    |

## Introduction

As a driving school, we would like to create a mobile application for young drivers. The purpose of this application is to increase the safety on the road based on various criteria. The young drivers could verify the risk of accident before hitting the road. To create our application, we should develop an accurate prediction model.

We will use various variables to train our machine learning model. Indeed, we should verify the correlation between the car accident severity and the chosen variables before making our application available.

## Data acquisition

#### Data source

The city of Seattle has a dataset on all collisions collected since 2004 to present, as provided by the Seattle Police District and recorded by Traffic Records. It has 194,673 observations with 37 attributes. It has been downloaded as a csv file — DataCollisions.csv from this link: <a href="https://s3.us.cloud-object-storage.appdomain.cloud/cf-courses-data/CognitiveClass/DP0701EN/version-2/Data-Collisions.csv">https://s3.us.cloud-object-storage.appdomain.cloud/cf-courses-data/CognitiveClass/DP0701EN/version-2/Data-Collisions.csv</a>

The description of the attributes is below:

| Attribute      | Data<br>Type | Data<br>Length | Description                                                              |
|----------------|--------------|----------------|--------------------------------------------------------------------------|
| ADDRTYPE       | Text         | 12             | Collision address type: Alley, Block, Intersection                       |
| COLDETKEY      | Long         |                | Secondary key for the incident.                                          |
| COLLISIONTYPE  | Text         | 300            | Collision type.                                                          |
| CROSSWALKKEY   | Long         |                | A key for the crosswalk at which the collision occurred.                 |
| EXCEPTRSNCODE  | Text         | 10             |                                                                          |
| EXCEPTRSNDESC  | Text         | 300            |                                                                          |
| FATALITIES     | Double       |                | The number of fatalities in the collision. This is entered by the state. |
| HITPARKEDCAR   | Text         | 1              | Whether or not the collision involved hitting a parked car. (Y/N)        |
| INATTENTIONIND | Text         | 1              | Whether or not collision was due to inattention. (Y/N)                   |
| INCDATE        | Date         |                | The date of the incident.                                                |

| Attribute       | Data<br>Type | Data<br>Length | Description                                                                        |
|-----------------|--------------|----------------|------------------------------------------------------------------------------------|
| INCDTTM         | Text         | 30             | The date and time of the incident.                                                 |
| INCKEY          | Long         |                | A unique key for the incident.                                                     |
| INJURIES        | Double       |                | The number of total injuries in the collision. This is entered by the state.       |
| INTKEY          | Double       |                | Key that corresponds to the intersection associated with a collision.              |
| JUNCTIONTYPE    | Text         | 300            | Category of junction at which collision took place.                                |
| LIGHTCOND       | Text         | 300            | The light conditions during the collision.                                         |
| LOCATION        | Text         | 255            | Description of the general location of the collision.                              |
| OBJECTID        | ObjectID     |                | ESRI unique identifier.                                                            |
| PEDCOUNT        | Double       |                | The number of pedestrians involved in the collision. This is entered by the state. |
| PEDCYLCOUNT     | Double       |                | The number of bicycles involved in the collision. This is entered by the state.    |
| PEDROWNOTGRNT   | Text         | 1              | Whether or not the pedestrian right of way was not granted. (Y/N)                  |
| PERSONCOUNT     | Double       |                | The total number of people involved in the collision.                              |
| ROADCOND        | Text         | 300            | The condition of the road during the collision.                                    |
| SDOT_COLCODE    | Text         | 10             | A code given to the collision by SDOT.                                             |
| SDOT_COLDESC    | Text         | 300            | A description of the collision corresponding to the collision code.                |
| SDOTCOLNUM      | Text         | 10             | A number given to the collision by SDOT.                                           |
| SEGLANEKEY      | Long         |                | A key for the lane segment in which the collision occurred.                        |
| SERIOUSINJURIES | Double       |                | The number of serious injuries in the collision. This is entered by the state.     |

| Attribute    | Data<br>Type | Data<br>Length | Description                                                                                                                                        |
|--------------|--------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| SEVERITYCODE | Text         | 100            | A code that corresponds to the severity of the collision: [3 – fatality, 2b - serious injury, 2 – injury, 1 – prop, damage, 0 – unknown]           |
| SEVERITYDESC | Text         |                | A detailed description of the severity of the collision.                                                                                           |
| SHAPE        | Geometry     |                | ESRI geometry field.                                                                                                                               |
| SPEEDING     | Text         | 1              | Whether or not speeding was a factor in the collision. (Y/N)                                                                                       |
| ST_COLCODE   | Text         | 10             | A code provided by the state that describes the collision. For more information about these codes, please see the State Collision Code Dictionary. |
| ST_COLDESC   | Text         | 300            | A description that corresponds to the state's coding designation.                                                                                  |
| UNDERINFL    | Text         | 10             | Whether or not a driver involved was under the influence of drugs or alcohol.                                                                      |
| VEHCOUNT     | Double       |                | The number of vehicles involved in the collision. This is entered by the state.                                                                    |
| WEATHER      | Text         | 300            | A description of the weather conditions during the time of the collision.                                                                          |

## Feature selection

For our analyse, to help in predicting the possibility and severity of an accident/collision {SEVERITYCODE}, the following attributes will be used:

- {ADDRTYPE}: collision address type as source of location information
- {WEATHER}: weather during the time of collision
- {LIGHTCOND}: light conditions during the collision
- {ROADCOND}: road condition during the collision

## Methodology

## Data cleaning

For the chosen features, there are NaN values, they were dropped for better processing of sklearn. Moreover, there are unknown data on WEATHER, LIGHTCOND and ROADCOND, and these were dropped as well.

## Exploratory analysis

Separate exploratory analysis is done on the independent variables.

Severity Code and Address Type: Severity Code 1 collisions along Blocks are more than on Intersections. The collisions of Severity Code 2 are almost the same on both Blocks and Intersections.



> Severity Code and Weather: most number of collisions happen on Clear weather.



> Severity Code and Light Conditions: most number of collisions happen on daylight.



> Severity Code and Road Conditions: most number of collisions happen on dry roads.



Correlations between variables are observed.

Severity Code, Address type and weather: most number of collisions happen on blocks and on a clear weather.



> Severity Code, Address type and light conditions: most number of collisions happen daylight, mostly on blocks.



Severity Code, Address type and road conditions: most number of collisions happen on dry roads, mostly on blocks.



## Machine learning model

#### 3.3.1 One-hot encoding

All selected independent variables are transformed to the format that can be fit to the machine learning model by using one-hot encoding. Indeed, the one-hot encoding help us to convert categorial features into numerical, that works better with classification and regressions algorithms. Each independent variable is transformed to a list

One-hot encoding for each categorical feature

```
df3["ADDRTYPE"] = df3["ADDRTYPE"].astype('category')

df3["ADDRTYPE_CAT"] = df3["ADDRTYPE"].cat.codes

df3["WEATHER"] = df3["WEATHER"].astype('category')

df3["WEATHER_CAT"] = df3["WEATHER"].cat.codes

df3["LIGHTCOND"] = df3["LIGHTCOND"].astype('category')

df3["LIGHTCOND_CAT"] = df3["LIGHTCOND"].cat.codes

df3["ROADCOND"] = df3["ROADCOND"].astype('category')

df3["ROADCOND_CAT"] = df3["ROADCOND"].cat.codes

df4 = df3.drop(columns = ['ADDRTYPE', 'WEATHER', 'ROADCOND', 'LIGHTCOND'])

df4.head()
```

> Definition of the feature set (X) and the label (Y)

```
Feature = df4[['ADDRTYPE_CAT','WEATHER_CAT','LIGHTCOND_CAT','ROADCOND_CAT']]
Feature.head()
X = Feature
X[0:5]
```

```
Y = df4['SEVERITYCODE'].values
Y[0:5]
array([1, 1, 1, 1], dtype-int64)
```

Normalization of the data

#### 3.3.2 Data split

We are divided the dataset into a training set and a test set for better understanding.

```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.2, random_state=4)
print ("Train_set:", X_train.shape, Y_train.shape)
print ("Test_set:", X_test.shape, Y_test.shape)

Train_set: (89131, 4) (89131,)
Test_set: (22283, 4) (22283,)
```

#### 3.3.3 Machine Learnings

We have used K-Nearest Neighbor, Decision tree and Logistic Regression for our machine learnings to predict the severity.

#### K-Nearest Neighbor (KNN)



The best accuracy for the KNN was 0.57 with k=19 using the test data.

#### Decision tree

#### Logistic Regression

```
LOGISTICKEGRESSION(C=0.01, CIASS_WeIght=None, dual=False, fit_intercept=Irue, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)
```

#### 3.3.4 Model evaluation

We evaluate our model using test set.

```
yhat_knn = model_KNN.predict(X_test)
jaccard_knn = jaccard_similarity_score(Y_test, yhat_knn)
f1_score_knn = f1_score(Y_test, yhat_knn, average='weighted')
```

```
yhat_dt = model_DecisionTree.predict(X_test)
jaccard_dt = jaccard_similarity_score(Y_test, yhat_dt)
f1_score_dt = f1_score(Y_test, yhat_dt, average='weighted')
```

```
yhat_lg = model_LR.predict(X_test)
yhat_lg_prob = model_LR.predict_proba(X_test)
jaccard_lg = jaccard_similarity_score(Y_test, yhat_lg)
f1_score_lg = f1_score(Y_test, yhat_lg, average='weighted')
logloss_lg = log_loss(Y_test, yhat_lg_prob)
```

#### 3.3.5 Results

We have plotted the results of our model evaluation using the test data. The accuracy of the Logistic Regression is based on the Logistic Loss (0.675). The result is not good as we expected because the accuracy of the models is not very high.

| Algorithm            | Jaccard | F1-score | LogLoss |
|----------------------|---------|----------|---------|
| KNN                  | 0.5703  | 0.5635   | NA      |
| <b>Decision Tree</b> | 0.5896  | 0.5844   | NA      |
| LogisticRegression   | 0.5896  | 0.5845   | 0.675   |

## Conclusion

We are chosen the collision address type, weather condition, road condition, light condition as our independent variables to predict the severity of a collision. Our analysis shows us that most of the collisions occurs on the following conditions: clear weather, dry road and daylight.

Moreover, there are more severity code 1 collisions along Blocks than on Intersections. And, the collisions of severity code 2 is almost the same on both Block and Intersections.

## **Futures directions**

For futures research, it could be interesting to increase the accuracy of our model by considering other features for analysis.

The model accuracy could maybe be improved by grouping independent variables into groups to reduce model bias (for example: good-moderate-bad driving conditions, which is influenced by LIGHTCOND, WEATHER, ROADCOND). To have more accurate results, it is also recommended to balance data.