MA 102 (Mathematics II)

Department of Mathematics, IIT Guwahati

Tutorial Sheet No. 4

(1) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f(0,0) = 0 and

$$f(x,y) = (x^2 + y^2) \sin \frac{1}{x^2 + y^2}$$
 for $(x,y) \neq (0,0)$.

- (a) Find f_x and f_y at every $(x, y) \in \mathbb{R}^2$.
- (b) Show that the partial derivatives of f are not bounded in any disc (howsoever small) around (0,0).
- (c) Examine the differentiability at every point (x, y).
- (2) Examine the differentiability of the following function at (0,0):

$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

- (3) Let $f: \mathbb{R}^2 \to \mathbb{R}$. If $f_x(x,y) = 0 = f_y(x,y)$ for all $(x,y) \in \mathbb{R}^2$ then show that f is a constant function.
- (4) Let $g: \mathbb{R}^2 \to \mathbb{R}$ be given by g(0,0) = 0 and, for $(x,y) \neq (0,0)$,

$$g(x,y) = \frac{\sin^2(x+y)}{|x| + |y|}.$$

Examine the existence of partial and directional derivatives of g at (0,0).

Also, examine the differentiability of g at (0,0).

- (5) Find the directional derivative of $f(x,y) = y^3 2x^2 + 3$ at the point (1,2) in the direction of $U := \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. Also, find the directional derivative of $f(x,y) = \log(x^2 + y^2)$ at (1,-3) in the direction of V := (2,-3).
- (6) Find the directional derivative of $f(x, y) = x^2 3xy$ along the parabola $y = x^2 x + 2$ (That is, in the parametric form x(t) = t and $y(t) = t^2 t + 2$) at the point (1, 2). (Note: When a direction is given in terms of a curve, then one must take the direction as the (unit) tangent vector to the curve at that point).
- (7) Discuss the differentiability of the following functions at (0,0).

$$(a)f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & x^2 + y^2 \neq 0, \\ 0 & x = y = 0 \end{cases}$$
 (b) $g(x,y) = \begin{cases} \frac{x^6 - 2y^4}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x = 0, y = 0 \end{cases}$

**** End ****