Barème projet DYNA, Conception de méca	anismes II	, printemps 2	2023
N° du groupe :			
Etudiant 1:			
Etudiant 2:			
Etudiant 3:			
Etudiant 4:			
Etudiant 5:			
Assistant principal:			
Assistant en plus présent à la soutenance:			
Assistant en plus présent à la soutenance: Assistant en plus présent à la soutenance:			
Critères	Doints	Points max	Domorauos
Criteres	Points	Points max	Remarques
Présentation orale et réponse aux questions			
- Clarté, pertinence et concision de la présentation			
- Connaissance générale du problème		1.5	
- Réponse aux questions			
- Bonne coordination du groupe			
Maquettes explicatives et animations (bonus)		1.5 (extra)	
Rapport: Principe de fonctionnement			
- Architecture générale du capteur			
- Principe de compensation de rigidité			
- Principe de l'équilibrage (force, moment, inertie)			
- Principe de r'églage du zéro			
- Schéma cinématique du corps d'épreuve représenté avec des articulations idéales		1.8	
		1.6	
- Calcul de la mobilité selon la méthode de Grübler et discussion des éventuels			
hyperstatismes			
- Implémentation de la cinématique en guidages flexibles			
- Discussion qualitative du fonctionnement et de la performance sensibilité max.			
- Mise en évidence des concepts originaux et explications spécifiques à la solution retenue			
1. Réglage de la rigidité : determiner qp, dp, Rαp, Rp ;			
2. Réglage du zéro : qz, dz, Rαz, Rz et la résolution en force au point A : RFz [N];			
3. Calculer les débattements de toutes les articulations flexibles en fonction de x, p et z ;			
4. Vérifier que pour toutes les articulation flexibles les contraintes maximales ne dépassent			
pas les contraintes admissibles sur tout la plage de fonctionnement ;			
5. Calculer les couples moteur Mp et Mz maximaux requis pour couvrir toutes les plages de			
réglage ;			
6. Calculer $E(x) = E1(x) + E2(x) + + En(x)$ et tracer un graphique montrant chaque terme			
ainsi			
que la somme E(x) en fonction de x pour les réglages extrêmes pmin et pmax ; .			
7. Calculer numériquement la dérivée F(x) = dE(x)/dx pour pmin et pmax ;			
8. Determiner numériquement les coefficients k1 et k3 des polynômes approximant F(x)			
pour pmin et pmax ;		3.6	
9. Determiner la plage de réglage de rigidité de votre mécanisme keq,min ☐ keq ☐ keq,max			
correspon- dants aux réglages pmax , respectivement pmin (note : vérifier bien que keq,min			
> 0) ;			
10. Calculer la non-linéarité relative μr pour pmin et pmax ;			
11. Tracer sur un même graphique les fonctions F(x), Fpoly3(x) et Flin(x) afin de visualiser			
la non-			
linéarité pour pmin et pmax ;			
12. Calculer la masse équivalente du corps d'épreuve meq ; 13. Calculer les fréquences propres fmin et fmax du corps d'épreuve ;			
14. Calculer la résolution de mesure RF de votre capteur pour pmin et pmax ;			
15. Calculer la plus grande force que peut mesurer votre capteur Fmax pour pmin et pmax;			
16. Calculer la gamme dynamique virtuelle de votre capteur DFv ;		1	
Performance de la solution développée et discussion			
Explication de la séquence de réglage utilisée pour obtenir la meilleure gamme dynamique,		0.8	
discussion de la performance (résolution en force, gamme dynamique, etc.), des non-		٥.٥	
conformités et des effets des tolérances de fabrication			
Dessin de construction			
Le dessin de construction de l'ensemble du mécanisme avec les cotes fonctionnelles, les			
cotes d'encombrement, les ajustements, le cartouche complet avec la liste des toutes les		1.8	
pièces et leurs matériaux indiqués selon ISO. Faire toutes les coupes et vues nécessaires à			
la compréhension et au contrôle du fonctionnement du mécanisme. L'échelle des dessins			
(normalisée) sera choisie en conséquence; les ajustements et tolérances seront explicités.			
Dessin de détail		0 -	
Dessin de détail prêt pour l'envoi à l'atelier de fabrication de la vis.		0.5	
Originalité (bonus)			
Idées originales intéressantes ou/et résolution particulièrement élégante ou/et		1.5 (extra)	
dimensionnement particulièrement poussé		1.5 (CALID)	
	_		
Note du projet sur 10	0	10	