

THE TOPOLOGICAL CENTERS OF MODULE ACTIONS

KAZEM HAGHNEJAD AZAR AND ABDOLHAMID RIAZI

ABSTRACT. In this paper, we will study the topological centers of n -th dual of Banach A -module and we extend some propositions from Lau and *Ülger* into n -th dual of Banach A -modules. Let B be a Banach A -bimodule. By using some new conditions, we show that $Z_{A(n)}^\ell(B^{(n)}) = B^{(n)}$ and $Z_{B(n)}^\ell(A^{(n)}) = A^{(n)}$. We also have some conclusions in dual groups.

1. Preliminaries and Introduction

Throughout this paper, A is a Banach algebra and A^* , A^{**} , respectively, are the first and second dual of A . Recall that a left approximate identity ($= LAI$) [resp. right approximate identity ($= RAI$)] in Banach algebra A is a net $(e_\alpha)_{\alpha \in I}$ in A such that $e_\alpha a \rightarrow a$ [resp. $a e_\alpha \rightarrow a$]. We say that a net $(e_\alpha)_{\alpha \in I} \subseteq A$ is a approximate identity ($= AI$) for A if it is LAI and RAI for A . If $(e_\alpha)_{\alpha \in I}$ in A is bounded and AI for A , then we say that $(e_\alpha)_{\alpha \in I}$ is a bounded approximate identity ($= BAI$) for A . For $a \in A$ and $a' \in A^*$, we denote by $a'a$ and aa' respectively, the functionals on A^* defined by $\langle a'a, b \rangle = \langle a', ab \rangle = a'(ab)$ and $\langle aa', b \rangle = \langle a', ba \rangle = a'(ba)$ for all $b \in A$. The Banach algebra A is embedded in its second dual via the identification $\langle a, a' \rangle = \langle a', a \rangle$ for every $a \in A$ and $a' \in A^*$. We denote the set $\{a'a : a \in A \text{ and } a' \in A^*\}$ and $\{aa' : a \in A \text{ and } a' \in A^*\}$ by A^*A and AA^* , respectively, clearly these two sets are subsets of A^{**} .

Let A have a BAI . If the equality $A^*A = A^*$, $(AA^* = A^*)$ holds, then we say that A^* factors on the left (right). If both equalities $A^*A = AA^* = A^*$ hold, then we say that A^* factors on both sides.

The extension of bilinear maps on normed space and the concept of regularity of bilinear maps were studied by [1, 2, 3, 6, 8, 14]. We start by recalling these definitions as follows.

Let X, Y, Z be normed spaces and $m : X \times Y \rightarrow Z$ be a bounded bilinear mapping. Arens in [1] offers two natural extensions m^{***} and m^{****} of m from $X^{**} \times Y^{**}$ into Z^{**} as following

1. $m^* : Z^* \times X \rightarrow Y^*$, given by $\langle m^*(z', x), y \rangle = \langle z', m(x, y) \rangle$ where $x \in X$, $y \in Y$, $z' \in Z^*$,
2. $m^{**} : Y^{**} \times Z^* \rightarrow X^*$, given by $\langle m^{**}(y'', z'), x \rangle = \langle y'', m^*(z', x) \rangle$ where $x \in X$, $y'' \in Y^{**}$, $z' \in Z^*$,
3. $m^{***} : X^{**} \times Y^{**} \rightarrow Z^{**}$, given by $\langle m^{***}(x'', y''), z' \rangle = \langle x'', m^{**}(y'', z') \rangle$ where $x'' \in X^{**}$, $y'' \in Y^{**}$, $z' \in Z^*$.

The mapping m^{***} is the unique extension of m such that $x'' \rightarrow m^{***}(x'', y'')$ from

2000 *Mathematics Subject Classification.* 46L06; 46L07; 46L10; 47L25.

Key words and phrases. Arens regularity, bilinear mappings, Topological center, n-th dual, Module action.

X^{**} into Z^{**} is $weak^* - weak^*$ continuous for every $y'' \in Y^{**}$, but the mapping $y'' \rightarrow m^{***}(x'', y'')$ is not in general $weak^* - weak^*$ continuous from Y^{**} into Z^{**} unless $x'' \in X$. Hence the first topological center of m may be defined as following

$$Z_1(m) = \{x'' \in X^{**} : y'' \rightarrow m^{***}(x'', y'') \text{ is } weak^* - weak^* \text{ continuous}\}.$$

Let now $m^t : Y \times X \rightarrow Z$ be the transpose of m defined by $m^t(y, x) = m(x, y)$ for every $x \in X$ and $y \in Y$. Then m^t is a continuous bilinear map from $Y \times X$ to Z , and so it may be extended as above to $m^{t***} : Y^{**} \times X^{**} \rightarrow Z^{**}$. The mapping $m^{t***t} : X^{**} \times Y^{**} \rightarrow Z^{**}$ in general is not equal to m^{***} , see [1], if $m^{***} = m^{t***t}$, then m is called Arens regular. The mapping $y'' \rightarrow m^{t***t}(x'', y'')$ is $weak^* - weak^*$ continuous for every $y'' \in Y^{**}$, but the mapping $x'' \rightarrow m^{t***t}(x'', y'')$ from X^{**} into Z^{**} is not in general $weak^* - weak^*$ continuous for every $y'' \in Y^{**}$. So we define the second topological center of m as

$$Z_2(m) = \{y'' \in Y^{**} : x'' \rightarrow m^{t***t}(x'', y'') \text{ is } weak^* - weak^* \text{ continuous}\}.$$

It is clear that m is Arens regular if and only if $Z_1(m) = X^{**}$ or $Z_2(m) = Y^{**}$. Arens regularity of m is equivalent to the following

$$\lim_i \lim_j <z', m(x_i, y_j)> = \lim_j \lim_i <z', m(x_i, y_j)>,$$

whenever both limits exist for all bounded sequences $(x_i)_i \subseteq X$, $(y_i)_i \subseteq Y$ and $z' \in Z^*$, see [18].

The mapping m is left strongly Arens irregular if $Z_1(m) = X$ and m is right strongly Arens irregular if $Z_2(m) = Y$.

Let now B be a Banach $A - bimodule$, and let

$$\pi_\ell : A \times B \rightarrow B \text{ and } \pi_r : B \times A \rightarrow B.$$

be the left and right module actions of A on B , respectively. Then B^{**} is a Banach $A^{**} - bimodule$ with module actions

$$\pi_\ell^{***} : A^{**} \times B^{**} \rightarrow B^{**} \text{ and } \pi_r^{***} : B^{**} \times A^{**} \rightarrow B^{**}.$$

Similarly, B^{**} is a Banach $A^{**} - bimodule$ with module actions

$$\pi_\ell^{t***t} : A^{**} \times B^{**} \rightarrow B^{**} \text{ and } \pi_r^{t***t} : B^{**} \times A^{**} \rightarrow B^{**}.$$

We may therefore define the topological centers of the left and right module actions of A on B as follows:

$$Z_{B^{**}}(A^{**}) = Z(\pi_\ell) = \{a'' \in A^{**} : \text{the map } b'' \rightarrow \pi_\ell^{***}(a'', b'') : B^{**} \rightarrow B^{**} \text{ is } weak^* - weak^* \text{ continuous}\}$$

$$Z_{B^{**}}^t(A^{**}) = Z(\pi_r^t) = \{a'' \in A^{**} : \text{the map } b'' \rightarrow \pi_r^{t***}(a'', b'') : B^{**} \rightarrow B^{**} \text{ is } weak^* - weak^* \text{ continuous}\}$$

$$Z_{A^{**}}(B^{**}) = Z(\pi_r) = \{b'' \in B^{**} : \text{the map } a'' \rightarrow \pi_r^{***}(b'', a'') : A^{**} \rightarrow B^{**} \text{ is } weak^* - weak^* \text{ continuous}\}$$

$$Z_{A^{**}}^t(B^{**}) = Z(\pi_\ell^t) = \{b'' \in B^{**} : \text{the map } a'' \rightarrow \pi_\ell^{t***}(b'', a'') : A^{**} \rightarrow B^{**} \text{ is } weak^* - weak^* \text{ continuous}\}$$

We note also that if B is a left(resp. right) Banach A – module and $\pi_\ell : A \times B \rightarrow B$ (resp. $\pi_r : B \times A \rightarrow B$) is left (resp. right) module action of A on B , then B^* is a right (resp. left) Banach A – module.

We write $ab = \pi_\ell(a, b)$, $ba = \pi_r(b, a)$, $\pi_\ell(a_1 a_2, b) = \pi_\ell(a_1, a_2 b)$,
 $\pi_r(b, a_1 a_2) = \pi_r(b a_1, a_2)$, $\pi_\ell^*(a_1 b', a_2) = \pi_\ell^*(b', a_2 a_1)$, $\pi_r^*(b' a, b) = \pi_r^*(b', a b)$,
for all $a_1, a_2, a \in A$, $b \in B$ and $b' \in B^*$ when there is no confusion.

Regarding A as a Banach A – bimodule, the operation $\pi : A \times A \rightarrow A$ extends to π^{***} and π^{t***t} defined on $A^{**} \times A^{**}$. These extensions are known, respectively, as the first(left) and the second (right) Arens products, and with each of them, the second dual space A^{**} becomes a Banach algebra. In this situation, we shall also simplify our notations. So the first (left) Arens product of $a'', b'' \in A^{**}$ shall be simply indicated by $a''b''$ and defined by the three steps:

$$\begin{aligned} & < a'a, b > = < a', ab >, \\ & < a''a', a > = < a'', a'a >, \\ & < a''b'', a' > = < a'', b''a' >. \end{aligned}$$

for every $a, b \in A$ and $a' \in A^*$. Similarly, the second (right) Arens product of $a'', b'' \in A^{**}$ shall be indicated by $a''ob''$ and defined by :

$$\begin{aligned} & < aoa', b > = < a', ba >, \\ & < a'oa'', a > = < a'', aoa' >, \\ & < a''ob'', a' > = < b'', a'ob'' >. \end{aligned}$$

for all $a, b \in A$ and $a' \in A^*$.

The regularity of a normed algebra A is defined to be the regularity of its algebra multiplication when considered as a bilinear mapping. Let a'' and b'' be elements of A^{**} , the second dual of A . By Goldstine's Theorem [4, P.424-425], there are nets $(a_\alpha)_\alpha$ and $(b_\beta)_\beta$ in A such that $a'' = \text{weak}^* - \lim_\alpha a_\alpha$ and $b'' = \text{weak}^* - \lim_\beta b_\beta$. So it is easy to see that for all $a' \in A^*$,

$$\lim_{\alpha} \lim_{\beta} < a', \pi(a_\alpha, b_\beta) > = < a''b'', a' >$$

and

$$\lim_{\beta} \lim_{\alpha} < a', \pi(a_\alpha, b_\beta) > = < a''ob'', a' >,$$

where $a''b''$ and $a''ob''$ are the first and second Arens products of A^{**} , respectively, see [14, 18].

We find the usual first and second topological center of A^{**} , which are

$$\begin{aligned} Z_{A^{**}}(A^{**}) = Z(\pi) &= \{a'' \in A^{**} : b'' \rightarrow a''b'' \text{ is weak}^* - \text{weak}^* \\ &\quad \text{continuous}\}, \\ Z_{A^{**}}^t(A^{**}) = Z(\pi^t) &= \{a'' \in A^{**} : a'' \rightarrow a''ob'' \text{ is weak}^* - \text{weak}^* \\ &\quad \text{continuous}\}. \end{aligned}$$

An element e'' of A^{**} is said to be a mixed unit if e'' is a right unit for the first Arens multiplication and a left unit for the second Arens multiplication. That is, e'' is a mixed unit if and only if, for each $a'' \in A^{**}$, $a''e'' = e''a'' = a''$. By [4, p.146], an element e'' of A^{**} is mixed unit if and only if it is a weak^* cluster point of some BAI $(e_\alpha)_{\alpha \in I}$ in A .

A functional a' in A^* is said to be *wap* (weakly almost periodic) on A if the mapping $a \rightarrow a'a$ from A into A^* is weakly compact. Pym in [18] showed that this definition is equivalent to the following condition

For any two net $(a_\alpha)_\alpha$ and $(b_\beta)_\beta$ in $\{a \in A : \|a\| \leq 1\}$, we have

$$\lim_{\alpha} \lim_{\beta} \langle a', a_\alpha b_\beta \rangle = \lim_{\beta} \lim_{\alpha} \langle a', a_\alpha b_\beta \rangle,$$

whenever both iterated limits exist. The collection of all *wap* functionals on A is denoted by $wap(A)$. Also we have $a' \in wap(A)$ if and only if $\langle a''b'', a' \rangle = \langle a''ob'', a' \rangle$ for every $a'', b'' \in A^{**}$.

This paper is organized as follows:

a) Let B be a left Banach A -bimodule and $\phi \in ((A^{(n-r)}A^{(r)})^{(r)})$ where $0 \leq r \leq n$. Then $\phi \in Z_{B^{(n)}}^\ell((A^{(n-r)}A^{(r)})^{(r)})$ if and only if $b^{(n-1)}\phi \in B^{(n-1)}$ for all $b^{(n-1)} \in B^{(n-1)}$.

b) Let B be a Banach A -bimodule. Then we have the following assertions.

- (1) $b^{(n)} \in Z_{A^{(n)}}^\ell(B^{(n)})$ if and only if $b^{(n-1)}b^{(n)} \in A^{(n-1)}$ for all $b^{(n-1)} \in B^{(n-1)}$.
- (2) If $b^{(n-1)}b^{(n)} \in A^{(n-1)}A^*$ for each $b^{(n-1)} \in B^{(n-1)}$, then we have $b^{(n)} \in Z_{A^{(n-1)}A^*}^\ell(B^{(n)})$.
- (3) If $\phi \in Z_{B^{(n)}}^\ell((A^{(n-r)}A^{(r)})^{(r)})$, then $a^{(n-1)}\phi \in Z_{B^{(n)}}^\ell(A^{(n)})$ for all $a^{(n-1)} \in A^{(n-1)}$.

c) Let B be a Banach space such that $B^{(n)}$ is weakly compact. Then for Banach A -bimodule B , we have the following assertions.

- (1) Suppose that $(e_\alpha^{(n)})_\alpha \subseteq A^{(n)}$ is a BLAI for $B^{(n)}$ such that $e_\alpha^{(n)}B^{(n+2)} \subseteq B^{(n)}$ for every α . Then B is reflexive.
- (2) Suppose that $(e_\alpha^{(n)})_\alpha \subseteq A^{(n)}$ is a BRAI for $B^{(n)}$ and $Z_{e^{(n+2)}}^\ell(B^{(n+2)}) = B^{(n+2)}$ where $e_\alpha^{(n)} \xrightarrow{w^*} e^{(n+2)}$ on $A^{(n)}$. If $B^{(n+2)}e_\alpha^{(n)} \subseteq B^{(n)}$ for every α , then $Z_{A^{(n+2)}}^\ell(B^{(n+2)}) = B^{(n+2)}$.

d) Assume that B is a Banach A -bimodule. Then we have the following assertions.

- (1) $B^{(n+1)}A^{(n)} \subseteq wap_\ell(B^{(n)})$ if and only if $A^{(n)}A^{(n+2)} \subseteq Z_{B^{(n+2)}}^\ell(A^{(n+2)})$.
- (2) If $A^{(n)}A^{(n+2)} \subseteq A^{(n)}Z_{B^{(n+2)}}^\ell(A^{(n+2)})$, then

$$A^{(n)}A^{(n+2)} \subseteq Z_{B^{(n+2)}}^\ell(A^{(n+2)}).$$

e) Let B be a left Banach A -bimodule and $n \geq 0$ be even. Suppose that $b_0^{(n+1)} \in B^{(n+1)}$. Then $b_0^{(n+1)} \in wap_\ell(B^{(n)})$ if and only if the mapping $T : b^{(n+2)} \rightarrow b^{(n+2)}b_0^{(n+1)}$ from $B^{(n+2)}$ into $A^{(n+1)}$ is *weak*-to-weak* continuous.

f) Let B be a left Banach A -bimodule. Then for $n \geq 2$, we have the following assertions.

- (1) If $A^{(n)} = a_0^{(n-2)}A^{(n)}$ [resp. $A^{(n)} = A^{(n)}a_0^{(n-2)}$] for some $a_0^{(n-2)} \in A^{(n-2)}$ and $a_0^{(n-2)}$ has *Rw*w-* property [resp. *Lw*w-* property] with respect to $B^{(n)}$, then $Z_{B^{(n)}}(A^{(n)}) = A^{(n)}$.
- (2) If $B^{(n)} = a_0^{(n-2)}B^{(n)}$ [resp. $B^{(n)} = B^{(n)}a_0^{(n-2)}$] for some $a_0^{(n-2)} \in A^{(n-2)}$ and $a_0^{(n-2)}$ has *Rw*w-* property [resp. *Lw*w-* property] with respect to $B^{(n)}$, then $Z_{A^{(n)}}(B^{(n)}) = B^{(n)}$.

2. Topological centers of module actions

Suppose that A is a Banach algebra and B is a Banach $A - \text{bimodule}$. According to [5, pp.27 and 28], B^{**} is a Banach $A^{**} - \text{bimodule}$, where A^{**} is equipped with the first Arens product. So we recalled the topological centers of module actions as in the following.

$$\begin{aligned} Z_{A^{**}}^\ell(B^{**}) &= \{b'' \in B^{**} : \text{the map } a'' \rightarrow b''a'' : A^{**} \rightarrow B^{**} \\ &\quad \text{is weak* - weak* continuous}\} \\ Z_{B^{**}}^\ell(A^{**}) &= \{a'' \in A^{**} : \text{the map } b'' \rightarrow a''b'' : B^{**} \rightarrow B^{**} \\ &\quad \text{is weak* - weak* continuous}\}. \end{aligned}$$

Let $A^{(n)}$ and $B^{(n)}$ be $n - \text{th dual}$ of B and A , respectively. By [24], $B^{(n)}$ is a Banach $A^{(n)} - \text{bimodule}$ and we define $B^{(n)}B^{(n-1)}$ as a subspace of $A^{(n)}$, that is, for all $b^{(n)} \in B^{(n)}$ and $b^{(n-1)} \in B^{(n-1)}$, we define

$$\langle b^{(n)}b^{(n-1)}, a^{(n-1)} \rangle = \langle b^{(n)}, b^{(n-1)}a^{(n-1)} \rangle;$$

and if $n = 0$, we take $A^{(0)} = A$ and $B^{(0)} = B$.

Theorem 2-1. Let B be a left Banach $A - \text{bimodule}$ and $\phi \in (A^{(n-r)}A^{(r)})^{(r)}$ where $0 \leq r \leq n$. Then $\phi \in Z_{B^{(n)}}^\ell((A^{(n-r)}A^{(r)})^{(r)})$ if and only if $b^{(n-1)}\phi \in B^{(n-1)}$ for all $b^{(n-1)} \in B^{(n-1)}$.

Proof. Let $\phi \in Z_{B^{(n)}}^\ell((A^{(n-r)}A^{(r)})^{(r)})$. Suppose that $(b_\alpha^{(n)})_\alpha \subseteq B^{(n)}$ such that $b_\alpha^{(n)} \xrightarrow{w^*} b^{(n)}$ on $B^{(n)}$. Then, for every $b^{(n-1)} \in B^{(n-1)}$, we have

$$\begin{aligned} \langle b^{(n-1)}\phi, b_\alpha^{(n)} \rangle &= \langle b^{(n-1)}, \phi b_\alpha^{(n)} \rangle = \langle \phi b_\alpha^{(n)}, b^{(n-1)} \rangle \rightarrow \langle \phi b^{(n)}, b^{(n-1)} \rangle \\ &= \langle b^{(n-1)}\phi, b^{(n)} \rangle. \end{aligned}$$

It follows that $b^{(n-1)}\phi \in (B^{(n+1)}, \text{weak*})^* = B^{(n-1)}$.

Conversely, let $b^{(n-1)}\phi \in B^{(n-1)}$ for every $b^{(n-1)} \in B^{(n-1)}$ and suppose that $(b_\alpha^{(n)})_\alpha \subseteq B^{(n)}$ such that $b_\alpha^{(n)} \xrightarrow{w^*} b^{(n)}$ on $B^{(n)}$. Then

$$\begin{aligned} \langle \phi b_\alpha^{(n)}, b^{(n-1)} \rangle &= \langle \phi, b_\alpha^{(n)}b^{(n-1)} \rangle = \langle b_\alpha^{(n)}b^{(n-1)}, \phi \rangle = \langle b_\alpha^{(n)}, b^{(n-1)}\phi \rangle \\ &\rightarrow \langle b^{(n)}, b^{(n-1)}\phi \rangle = \langle \phi b^{(n)}, b^{(n-1)} \rangle. \end{aligned}$$

It follows that $\langle \phi b_\alpha^{(n)}, b^{(n-1)} \rangle \xrightarrow{w^*} \langle \phi b^{(n)}, b^{(n-1)} \rangle$, and so $\phi \in Z_{B^{(n)}}^\ell((A^{(n-r)}A^{(r)})^{(r)})$. \square

Let B be a left Banach $A - \text{bimodule}$ and $\phi \in (A^{(n-r)}A^{(r)})^{(n-r)}$ where $0 \leq r \leq n$. Then $\phi \in Z_{B^{(n)}}^\ell((A^{(n-r)}A^{(r)})^{(n-r)})$ if and only if $b^{(n-1)}\phi \in B^{(n-1)}$ for every $b^{(n-1)} \in B^{(n-1)}$. The proof of the proceeding assertion is the similar to Theorem 2-1, and if we take $B = A$, $n = 1$ and $r = 0$, we obtain Lemma 3.1 (b) from [14].

Theorem 2-2. Let B be a Banach $A - \text{bimodule}$. Then we have the following assertions.

- (1) $b^{(n)} \in Z_{A^{(n)}}^\ell(B^{(n)})$ if and only if $b^{(n-1)}b^{(n)} \in A^{(n-1)}$ for all $b^{(n-1)} \in B^{(n-1)}$.

- (2) If $b^{(n-1)}b^{(n)} \in A^{(n-1)}A^*$ for each $b^{(n-1)} \in B^{(n-1)}$, then we have $b^{(n)} \in Z_{A^{(n-1)}A^*}^\ell(B^{(n)})$.
- (3) If $\phi \in Z_{B^{(n)}}^\ell((A^{(n-r)}A^{(r)})^{(r)})$, then $a^{(n-1)}\phi \in Z_{B^{(n)}}^\ell(A^{(n)})$ for all $a^{(n-1)} \in A^{(n-1)}$.

Proof. (1) Let $b^{(n)} \in Z_{A^{(n)}}^\ell(B^{(n)})$. We show that $b^{(n-1)}b^{(n)} \in A^{(n-1)}$ where $b^{(n-1)} \in B^{(n-1)}$. Suppose that $(a_\alpha^{(n)})_\alpha \subseteq A^{(n)}$ and $a_\alpha^{(n)} \xrightarrow{w^*} a^{(n)}$ on $A^{(n)}$. Then we have

$$\begin{aligned} & \langle b^{(n-1)}b^{(n)}, a_\alpha^{(n)} \rangle = \langle b^{(n-1)}, b^{(n)}a_\alpha^{(n)} \rangle = \langle b^{(n)}a_\alpha^{(n)}, b^{(n-1)} \rangle \\ & \quad \rightarrow \langle b^{(n)}a^{(n)}, b^{(n-1)} \rangle = \langle b^{(n-1)}b^{(n)}, a^{(n)} \rangle. \end{aligned}$$

Consequently $b^{(n-1)}b^{(n)} \in (A^{(n+1)}, \text{weak}^*)^* = A^{(n-1)}$. It follows that $b^{(n-1)}b^{(n)} \in A^{(n-1)}$.

Conversely, let $b^{(n-1)}b^{(n)} \in A^{(n-1)}$ for each $b^{(n-1)} \in B^{(n-1)}$. Suppose that $(a_\alpha^{(n)})_\alpha \subseteq A^{(n)}$ and $a_\alpha^{(n)} \xrightarrow{w^*} a^{(n)}$ on $A^{(n)}$. Then we have

$$\begin{aligned} & \langle b^{(n)}a_\alpha^{(n)}, b^{(n-1)} \rangle = \langle b^{(n)}, a_\alpha^{(n)}b^{(n-1)} \rangle = \langle a_\alpha^{(n)}b^{(n-1)}, b^{(n)} \rangle \\ & = \langle a_\alpha^{(n)}, b^{(n-1)}b^{(n)} \rangle \rightarrow \langle a^{(n)}, b^{(n-1)}b^{(n)} \rangle = \langle b^{(n)}a^{(n)}, b^{(n-1)} \rangle. \end{aligned}$$

It follows that $b^{(n)}a_\alpha^{(n)} \xrightarrow{w^*} b^{(n)}a^{(n)}$, and so $b^{(n)} \in Z_{A^{(n)}}^\ell(B^{(n)})$.

- (2) Proof is similar to (1).

- (3) Let $\phi \in Z_{B^{(n)}}^\ell((A^{(n-r)}A^{(r)})^{(r)})$ and $a^{(n-1)} \in A^{(n-1)}$. Assume that $(b_\alpha^{(n)})_\alpha \subseteq B^{(n)}$ and $b_\alpha^{(n)} \xrightarrow{w^*} b^{(n)}$ on $B^{(n)}$. Then for all $b^{(n-1)} \in B^{(n-1)}$, we have

$$\begin{aligned} & \langle (a^{(n-1)}\phi)b_\alpha^{(n)}, b^{(n-1)} \rangle = \langle \phi b_\alpha^{(n)}, b^{(n-1)}a^{(n-1)} \rangle \rightarrow \langle \phi b^{(n)}, b^{(n-1)}a^{(n-1)} \rangle \\ & = \langle (a^{(n-1)}\phi)b^{(n)}, b^{(n-1)} \rangle. \end{aligned}$$

It follows that $(a^{(n-1)}\phi)b_\alpha^{(n)} \xrightarrow{w^*} (a^{(n-1)}\phi)b^{(n)}$, and so $a^{(n-1)}\phi \in Z_{B^{(n)}}^\ell(A^{(n)})$.

□

In the proceeding theorem, part (1), if we take $B = A$ and $n = 2$, we conclude Lemma 3.1 (a) from [14]. We change part (3) of Theorem 2-2 with the following statement, that is, if $\phi \in Z_{B^{(n)}}^\ell((A^{(n-r)}A^{(r)})^{(n-r)})$, then $a^{(n-1)}\phi \in Z_{B^{(n)}}^\ell(A^{(n)})$ for all $a^{(n-1)} \in A^{(n-1)}$. Proof of this claim is similar to proceeding theorem and if we take $B = A$, $n = 1$ and $r = 0$, we obtain Lemma 3.1 (c) from [14].

Definition 2-3. Let B be a Banach A -bimodule and suppose that $a'' \in A^{**}$. We say that $a'' \rightarrow b''a''$ is weak* - to - weak* point continuous, if for every net $(a_\alpha'')_\alpha \subseteq A^{**}$ such that $a_\alpha'' \xrightarrow{w^*} a''$, it follows that $a_\alpha''b'' \xrightarrow{w^*} a''b''$.

Suppose that B is a Banach A -bimodule. Assume that $a'' \in A^{**}$. Then we define the locally topological center of a'' on B^{**} as follows

$$Z_{a''}^\ell(B^{**}) = \{b'' \in B^{**} : a'' \rightarrow b''a'' \text{ is weak* - to - weak* point continuous}\},$$

The definition of $Z_{b''}^\ell(A^{**})$ where $b'' \in B^{**}$ are similar.

It is clear that

$$\bigcap_{a'' \in A^{**}} Z_{a''}^\ell(B^{**}) = Z_{A^{**}}^\ell(B^{**}),$$

$$\bigcap_{b'' \in B^{**}} Z_{b''}^\ell(A^{**}) = Z_{B^{**}}^\ell(A^{**}).$$

Theorem 2-4. Let B be a Banach space such that $B^{(n)}$ is weakly compact. Then for Banach $A - \text{bimodule}$ B , we have the following assertions.

- (1) Suppose that $(e_\alpha^{(n)})_\alpha \subseteq A^{(n)}$ is a BLAI for $B^{(n)}$ such that $e_\alpha^{(n)} B^{(n+2)} \subseteq B^{(n)}$ for every α . Then B is reflexive.
- (2) Suppose that $(e_\alpha^{(n)})_\alpha \subseteq A^{(n)}$ is a BRAI for $B^{(n)}$ and $Z_{e^{(n+2)}}^\ell(B^{(n+2)}) = B^{(n+2)}$ where $e_\alpha^{(n)} \xrightarrow{w^*} e^{(n+2)}$ on $A^{(n)}$. If $B^{(n+2)} e_\alpha^{(n)} \subseteq B^{(n)}$ for every α , then $Z_{A^{(n+2)}}^\ell(B^{(n+2)}) = B^{(n+2)}$.

Proof. (1) Let $b^{n+2} \in B^{n+2}$. Since $(e_\alpha^{(n)})_\alpha$ is a BLAI for $B^{(n)}$, there is left unit as $e^{(n+2)} \in A^{n+2}$ for B^{n+2} , see [10]. Then we have $e_\alpha^{(n)} b^{(n+2)} \xrightarrow{w^*} b^{(n+2)}$ on $B^{(n+2)}$. Since $e_\alpha^{(n)} b^{(n+2)} \in B^{(n)}$, we have $e_\alpha^{(n)} b^{(n+2)} \xrightarrow{w} b^{(n+2)}$ on $B^{(n)}$. We conclude that $b^{n+2} \in B^n$ of course B^n is weakly compact.

- (2) Suppose that $b^{(n+2)} \in Z_{A^{(n+2)}}^\ell(B^{(n+2)})$ and $e_\alpha^{(n)} \xrightarrow{w^*} e^{(n+2)}$ on $A^{(n)}$ such that $e^{(n+2)}$ is right unit for $B^{(n+2)}$, see [10]. Then we have $b^{(n+2)} e_\alpha^{(n)} \xrightarrow{w^*} b^{(n+2)}$ on $B^{(n+2)}$. Since $B^{(n+2)} e_\alpha^{(n)} \subseteq B^{(n)}$ for every α , $b^{(n+2)} e_\alpha^{(n)} \xrightarrow{w} b^{(n+2)}$ on $B^{(n)}$ and since $B^{(n)}$ is weakly compact, $b^{(n+2)} \in B^{(n)}$. It follows that $Z_{A^{(n+2)}}^\ell(B^{(n+2)}) = B^{(n+2)}$.

□

Definition 2-5. Let B be a Banach $A - \text{bimodule}$. Then $b^{n+1} \in B^{n+1}$ is said to be weakly left almost periodic functional if the set

$$\{b^{(n+1)} a^{(n)} : a^{(n)} \in A^{(n)}, \|a^{(n)}\| \leq 1\},$$

is relatively weakly compact, and $b^{n+1} \in B^{n+1}$ is said to be weakly right almost periodic functional if the set

$$\{a^{(n)} b^{(n+1)} : a^{(n)} \in A^{(n)}, \|a^{(n)}\| \leq 1\},$$

is relatively weakly compact. We denote by $wap_\ell(B^{(n)})$ [resp. $wap_r(B^{(n)})$] the closed subspace of $B^{(n+1)}$ consisting of all the weakly left [resp. right] almost periodic functionals in $B^{(n+1)}$. By [6, 14, 18], the definition of $wap_\ell(B^{(n)})$ and $wap_r(B^{(n)})$, respectively, are equivalent to the following

$$wap_\ell(B^{(n)}) = \{b^{(n+1)} \in B^{(n+1)} : \langle b^{(n+2)} a_\alpha^{(n+2)}, b^{(n+1)} \rangle \rightarrow \langle b^{(n+2)} a^{(n+2)}, b^{(n+1)} \rangle \text{ where } a_\alpha^{(n+2)} \xrightarrow{w^*} a^{(n+2)}\}.$$

and

$$wap_r(B^{(n)}) = \{b^{(n+1)} \in B^{(n+1)} : \langle a^{(n+2)} b_\alpha^{(n+2)}, b^{(n+1)} \rangle \rightarrow \langle a^{(n+2)} b^{(n+2)}, b^{(n+1)} \rangle \text{ where } b_\alpha^{(n+2)} \xrightarrow{w^*} b^{(n+2)}\}.$$

If we take $A = B$ and $n = 0$, then $wap_\ell(A) = wap_r(A) = wap(A)$.

Theorem 2-6. Assume that B is a Banach A -bimodule. Then we have the following assertions.

- (1) $B^{(n+1)}A^{(n)} \subseteq wap_\ell(B^{(n)})$ if and only if $A^{(n)}A^{(n+2)} \subseteq Z_{B^{(n+2)}}^\ell(A^{(n+2)})$.
- (2) If $A^{(n)}A^{(n+2)} \subseteq A^{(n)}Z_{B^{(n+2)}}^\ell(A^{(n+2)})$, then

$$A^{(n)}A^{(n+2)} \subseteq Z_{B^{(n+2)}}^\ell(A^{(n+2)}).$$

Proof. (1) Suppose that $B^{(n+1)}A^{(n)} \subseteq wap_\ell(B^{(n)})$. Let $a^{(n)} \in A^{(n)}$, $a^{(n+2)} \in A^{(n+2)}$ and let $(b_\alpha^{(n+2)})_\alpha \subseteq B^{(n+2)}$ such that $b_\alpha^{(n+2)} \xrightarrow{w^*} b^{(n+2)}$. Then for every $b^{(n+1)} \in B^{(n+1)}$, we have

$$\begin{aligned} & \langle (a^{(n)}a^{(n+2)})b_\alpha^{(n+2)}, b^{(n+1)} \rangle = \langle a^{(n+2)}b_\alpha^{(n+2)}, b^{(n+1)}a^{(n)} \rangle \\ & \rightarrow \langle a^{(n+2)}b^{(n+2)}, b^{(n+1)}a^{(n)} \rangle = \langle (a^{(n)}a^{(n+2)})b^{(n+2)}, b^{(n+1)} \rangle. \end{aligned}$$

It follows that $a^{(n)}a^{(n+2)} \in Z_{B^{(n+2)}}^\ell(A^{(n+2)})$.

Conversely, let $a^{(n)}a^{(n+2)} \in Z_{B^{(n+2)}}^\ell(A^{(n+2)})$ for every $a^{(n)} \in A^{(n)}$, $a^{(n+2)} \in A^{(n+2)}$ and suppose that $(b_\alpha^{(n+2)})_\alpha \subseteq B^{(n+2)}$ such that $b_\alpha^{(n+2)} \xrightarrow{w^*} b^{(n+2)}$. Then for every $b^{(n+1)} \in B^{(n+1)}$, we have

$$\begin{aligned} & \langle a^{(n+2)}b_\alpha^{(n+2)}, b^{(n+1)}a^{(n)} \rangle = \langle (a^{(n)}a^{(n+2)})b_\alpha^{(n+2)}, b^{(n+1)} \rangle \\ & \rightarrow \langle (a^{(n)}a^{(n+2)})b^{(n+2)}, b^{(n+1)} \rangle = \langle a^{(n+2)}b_\alpha^{(n+2)}, b^{(n+1)}a^{(n)} \rangle. \end{aligned}$$

It follows that $B^{(n+1)}A^{(n)} \subseteq wap_\ell(B^{(n)})$.

- (2) Since $A^{(n)}A^{(n+2)} \subseteq A^{(n)}Z_{B^{(n)}}^\ell((A^{(n+2)}))$, for every $a^{(n)} \in A^{(n)}$ and $a^{(n+2)} \in A^{(n+2)}$, we have $a^{(n)}a^{(n+2)} \in A^{(n)}Z_{B^{(n+2)}}^\ell(A^{(n+2)})$.

Then there are $x^{(n)} \in A^{(n)}$ and $\phi \in Z_{B^{(n+2)}}^\ell(A^{(n+2)})$ such that $a^{(n)}a^{(n+2)} = x^{(n)}\phi$. Suppose that $(b_\alpha^{(n+2)})_\alpha \subseteq B^{(n+2)}$ such that

$b_\alpha^{(n+2)} \xrightarrow{w^*} b^{(n+2)}$. Then for every $b^{(n+1)} \in B^{(n+1)}$, we have

$$\begin{aligned} & \langle (a^{(n)}a^{(n+2)})b_\alpha^{(n+2)}, b^{(n+1)} \rangle = \langle (x^{(n)}\phi)b_\alpha^{(n+2)}, b^{(n+1)} \rangle \\ & = \langle \phi b_\alpha^{(n+2)}, b^{(n+1)}x^{(n)} \rangle \rightarrow \langle \phi b^{(n+2)}, b^{(n+1)}x^{(n)} \rangle \\ & = \langle (a^{(n)}a^{(n+2)})b^{(n+2)}, b^{(n+1)} \rangle. \end{aligned}$$

□

If we take $B = A$ and $n = 0$, we conclude Theorem 3.6 (a) from [14].

Theorem 2-7. Assume that B is a Banach A -bimodule. If $A^{(n)}$ is a left ideal in $A^{(n+2)}$, then $B^{(n+1)}A^{(n)} \subseteq wap_\ell(B^{(n)})$.

Theorem 2-8. Let B be a left Banach A -bimodule and $n \geq 0$ be a even. Suppose that $b_0^{(n+1)} \in B^{(n+1)}$. Then $b_0^{(n+1)} \in wap_\ell(B^{(n)})$ if and only if the mapping $T : b^{(n+2)} \rightarrow b^{(n+2)}b_0^{(n+1)}$ form $B^{(n+2)}$ into $A^{(n+1)}$ is weak* - to - weak continuous.

Proof. Let $b_0^{(n+1)} \in B^{(n+1)}$ and suppose that $b_\alpha^{(n+2)} \xrightarrow{w^*} b^{(n+2)}$ on $B^{(n+2)}$. Then for every $a^{(n+2)} \in A^{(n+2)}$, we have

$$\langle a^{(n+2)}, b_\alpha^{(n+2)}b_0^{(n+1)} \rangle = \langle a^{(n+2)}b_\alpha^{(n+2)}, b_0^{(n+1)} \rangle \rightarrow \langle a^{(n+2)}b^{(n+2)}, b_0^{(n+1)} \rangle$$

$$= \langle a^{(n+2)}, b^{(n+2)} b_0^{(n+1)} \rangle.$$

It follows that $b_\alpha^{(n+2)} b_0^{(n+1)} \xrightarrow{w} b^{(n+2)} b_0^{(n+1)}$ on $A^{(n+1)}$.

The proof of the converse is similar of proceeding proof. \square

Corollary 2-9. Assume that B is a Banach A -bimodule. Then $Z_{A^{(n+2)}}^\ell(B^{(n+2)}) = B^{(n+2)}$ if and only if the mapping $T : b^{(n+2)} \rightarrow b^{(n+2)} b_0^{(n+1)}$ form $B^{(n+2)}$ into $A^{(n+1)}$ is weak*-to-weak continuous for every $b_0^{(n+1)} \in B^{(n+1)}$.

Corollary 2-10. Let A be a Banach algebra. Assume that $a' \in A^*$ and $T_{a'}$ is the linear operator from A into A^* defined by $T_{a'} a = a' a$. Then, $a' \in wap(A)$ if and only if the adjoint of $T_{a'}$ is weak*-to-weak continuous. So A is Arens regular if and only if the adjoint of the mapping $T_{a'} a = a' a$ is weak*-to-weak continuous for every $a' \in A^*$.

Definition 2-11. Let B be a left Banach A -bimodule. We say that $a^{(n)} \in A^{(n)}$ has Left-weak*-weak property ($= Lw^*w-$ property) with respect to $B^{(n)}$, if for every $(b_\alpha^{(n+1)})_\alpha \subseteq B^{(n+1)}$, $a^{(n)} b_\alpha^{(n+1)} \xrightarrow{w^*} 0$ implies $a^{(n)} b_\alpha^{(n+1)} \xrightarrow{w} 0$. If every $a^{(n)} \in A$ has Lw^*w- property with respect to $B^{(n)}$, then we say that $A^{(n)}$ has Lw^*w- property with respect to $B^{(n)}$. The definition of the Right-weak*-weak property ($= Rw^*w-$ property) is the same.

We say that $a^{(n)} \in A^{(n)}$ has weak*-weak property ($= w^*w-$ property) with respect to $B^{(n)}$ if it has Lw^*w- property and Rw^*w- property with respect to $B^{(n)}$.

If $a^{(n)} \in A^{(n)}$ has Lw^*w- property with respect to itself, then we say that $a^{(n)} \in A^{(n)}$ has Lw^*w- property.

Example 2-12.

- (1) If B is Banach A -bimodule and reflexive, then A has w^*w- property with respect to B .
- (2) $L^1(G)$, $M(G)$ and $A(G)$ have w^*w- property when G is finite.
- (3) Let G be locally compact group. $L^1(G)$ [resp. $M(G)$] has w^*w- property [resp. Lw^*w- property] with respect to $L^p(G)$ whenever $p > 1$.
- (4) Suppose that B is a left Banach A -module and e is left unit element of A such that $eb = b$ for all $b \in B$. If e has Lw^*w- property, then B is reflexive.
- (5) If S is a compact semigroup, then $C^+(S) = \{f \in C(S) : f > 0\}$ has w^*w- property.

Theorem 2-13. Let B be a left Banach A -bimodule. Then for $n \geq 2$, we have the following assertions.

- (1) If $A^{(n)} = a_0^{(n-2)} A^{(n)}$ [resp. $A^{(n)} = A^{(n)} a_0^{(n-2)}$] for some $a_0^{(n-2)} \in A^{(n-2)}$ and $a_0^{(n-2)}$ has Rw^*w- property [resp. Lw^*w- property] with respect to $B^{(n)}$, then $Z_{B^{(n)}}(A^{(n)}) = A^{(n)}$.

- (2) If $B^{(n)} = a_0^{(n-2)}B^{(n)}$ [resp. $B^{(n)} = B^{(n)}a_0^{(n-2)}$] for some $a_0^{(n-2)} \in A^{(n-2)}$ and $a_0^{(n-2)}$ has Rw^*w- property [resp. Lw^*w- property] with respect to $B^{(n)}$, then $Z_{A^{(n)}}(B^{(n)}) = B^{(n)}$.

Proof. (1) Suppose that $A^{(n)} = a_0^{(n-2)}A^{(n)}$ for some $a_0^{(n-2)} \in A$ and $a_0^{(n-2)}$ has Rw^*w- property. Let $(b_\alpha^{(n)})_\alpha \subseteq B^{(n)}$ such that $b_\alpha^{(n)} \xrightarrow{w^*} b^{(n)}$. Then for every $a^{(n-2)} \in A^{(n-2)}$ and $b^{(n-1)} \in B^{(n-1)}$, we have

$$\begin{aligned} < b_\alpha^{(n)}b^{(n-1)}, a^{(n-2)} > &= < b_\alpha^{(n)}, b^{(n-1)}a^{(n-2)} > \rightarrow < b^{(n)}, b^{(n-1)}a^{(n-2)} > \\ &= < b^{(n)}b^{(n-1)}, a^{(n-2)} >. \end{aligned}$$

It follows that $b_\alpha^{(n)}b^{(n-1)} \xrightarrow{w^*} b^{(n)}b^{(n-1)}$. Also it is clear that $(b_\alpha^{(n)}b^{(n-1)})a_0^{(n-2)} \xrightarrow{w^*} (b^{(n)}b^{(n-1)})a_0^{(n-2)}$. Since $a_0^{(n-2)}$ has Rw^*w- property, $(b_\alpha^{(n)}b^{(n-1)})a_0^{(n-2)} \xrightarrow{w} (b^{(n)}b^{(n-1)})a_0^{(n-2)}$. Now, let $a^{(n)} \in A^{(n)}$. Since $A^{(n)} = a_0^{(n-2)}A^{(n)}$, there is $x^{(n)} \in A^{(n)}$ such that $a^{(n)} = a_0^{(n-2)}x^{(n)}$. Thus we have

$$\begin{aligned} < a^{(n)}b_\alpha^{(n)}, b^{(n-1)} > &= < a^{(n)}, b_\alpha^{(n)}b^{(n-1)} > = < a_0^{(n-2)}x^{(n)}, b_\alpha^{(n)}b^{(n-1)} > \\ &= < x^{(n)}, (b_\alpha^{(n)}b^{(n-1)})a_0^{(n-2)} > \rightarrow < x^{(n)}, (b^{(n)}b^{(n-1)})a_0^{(n-2)} > \\ &= < a^{(n)}b, b^{(n-1)} >. \end{aligned}$$

It follows that $a^{(n)} \in Z_{A^{(n)}}(B^{(n)})$.

Proof of the next part is similar to proceeding proof.

- (2) Let $B^{(n)} = a_0^{(n-2)}B^{(n)}$ for some $a_0^{(n-2)} \in A$ and $a_0^{(n-2)}$ has Rw^*w- property with respect to $B^{(n)}$. Assume that $(a_\alpha^{(n)})_\alpha \subseteq A^{(n)}$ such that $a_\alpha^{(n)} \xrightarrow{w^*} a^{(n)}$. Then for every $b^{(n-1)} \in B^{(n-1)}$, we have

$$\begin{aligned} < a_\alpha^{(n)}b^{(n-1)}, b^{(n-2)} > &= < a_\alpha^{(n)}, b^{(n-1)}b^{(n-2)} > \rightarrow < a^{(n)}, b^{(n-1)}b^{(n-2)} > \\ &= < a^{(n)}b^{(n-1)}, b^{(n-2)} > \end{aligned}$$

We conclude that $a_\alpha^{(n)}b^{(n-1)} \xrightarrow{w^*} a^{(n)}b^{(n-1)}$. It is clear that $(a_\alpha^{(n)}b^{(n-1)})a_0^{(n-2)} \xrightarrow{w^*} (a^{(n)}b^{(n-1)})a_0^{(n-2)}$. Since $a_0^{(n-2)}$ has Rw^*w- property, $(a_\alpha^{(n)}b^{(n-1)})a_0^{(n-2)} \xrightarrow{w} (a^{(n)}b^{(n-1)})a_0^{(n-2)}$.

Suppose that $b^{(n)} \in B^{(n)}$. Since $B^{(n)} = a_0^{(n-2)}B^{(n)}$, there is $y^{(n)} \in B^{(n)}$ such that $b^{(n)} = a_0^{(n-2)}y^{(n)}$. Consequently, we have

$$\begin{aligned} < b^{(n)}a_\alpha^{(n)}, b^{(n-1)} > &= < b^{(n)}, a_\alpha^{(n)}b^{(n-1)} > = < a_0^{(n-2)}y^{(n)}, a_\alpha^{(n)}b^{(n-1)} > \\ &= < y^{(n)}, (a_\alpha^{(n)}b^{(n-1)})a_0^{(n-2)} > \rightarrow < y^{(n)}, (a^{(n)}b^{(n-1)})a_0^{(n-2)} > \\ &= < a_0^{(n-2)}y^{(n)}, (a^{(n)}b^{(n-1)}) > = < b^{(n)}a^{(n)}, b^{(n-1)} >. \end{aligned}$$

Thus $b^{(n)}a_\alpha^{(n)} \xrightarrow{w} b^{(n)}a^{(n)}$. It follows that $b^{(n)} \in Z_{A^{(n)}}(B^{(n)})$.

The next part similar to the proceeding proof. □

Example 2-14. Let G be a locally compact group. Since $M(G)$ is a Banach $L^1(G)$ -bimodule and the unit element of $M(G)^{(n)}$ has not Lw^*w- property or Rw^*w- property, by Theorem 2-13, $Z_{L^1(G)^{(n)}}(M(G)^{(n)}) \neq M(G)^{(n)}$.

ii) If G is finite, then by Theorem 2-13, we have $Z_{M(G)^{(n)}}(L^1(G)^{(n)}) = L^1(G)^{(n)}$ and $Z_{L^1(G)^{(n)}}(M(G)^{(n)}) = M(G)^{(n)}$.

REFERENCES

1. R. E. Arens, *The adjoint of a bilinear operation*, Proc. Amer. Math. Soc. **2** (1951), 839-848.
2. N. Arikan, *A simple condition ensuring the Arens regularity of bilinear mappings*, Proc. Amer. Math. Soc. **84** (4) (1982), 525-532.
3. J. Baker, A.T. Lau, J.S. Pym *Module homomorphism and topological centers associated with weakly sequentially compact Banach algebras*, Journal of Functional Analysis. **158** (1998), 186-208.
4. F. F. Bonsall, J. Duncan, *Complete normed algebras*, Springer-Verlag, Berlin 1973.
5. H. G. Dales, A. Rodrigues-Palacios, M.V. Velasco, *The second transpose of a derivation*, J. London. Math. Soc. **2** 64 (2001) 707-721.
6. H. G. Dales, *Banach algebra and automatic continuity*, Oxford 2000.
7. N. Dunford, J. T. Schwartz, *Linear operators.I*, Wiley, New York 1958.
8. M. Eshaghi Gordji, M. Filali, *Arens regularity of module actions*, Studia Math. **181** 3 (2007), 237-254.
9. M. Eshaghi Gordji, M. Filali, *Weak amenability of the second dual of a Banach algebra*, Studia Math. **182** 3 (2007), 205-213.
10. K. Haghnejad Azar, A. Riazi, *Arens regularity of bilinear forms and unital Banach module space*, (Submitted).
11. E. Hewitt, K. A. Ross, *Abstract harmonic analysis*, Springer, Berlin, Vol I 1963.
12. E. Hewitt, K. A. Ross, *Abstract harmonic analysis*, Springer, Berlin, Vol II 1970.
13. A. T. Lau, V. Losert, *On the second Conjugate Algebra of locally compact groups*, J. London Math. Soc. **37** (2)(1988), 464-480.
14. A. T. Lau, A. Ulger, *Topological center of certain dual algebras*, Trans. Amer. Math. Soc. **348** (1996), 1191-1212.
15. S. Mohamadzadih, H. R. E. Vishki, *Arens regularity of module actions and the second adjoint of a derivation*, Bulletin of the Australian Mathematical Society **77** (2008), 465-476.
16. M. Neufang, *Solution to a conjecture by Hofmeier-Wittstock*, Journal of Functional Analysis. **217** (2004), 171-180.
17. M. Neufang, *On a conjecture by Ghahramani-Lau and related problem concerning topological center*, Journal of Functional Analysis. **224** (2005), 217-229.
18. J. S. Pym, *The convolution of functionals on spaces of bounded functions*, Proc. London Math Soc. **15** (1965), 84-104.
19. A. Ülger, *Arens regularity sometimes implies the RNP*, Pacific Journal of Math. **143** (1990), 377-399.
20. A. Ülger, *Some stability properties of Arens regular bilinear operators*, Proc. Amer. Math. Soc. (1991) **34**, 443-454.
21. A. Ülger, *Arens regularity of weakly sequentially compact Banach algebras*, Proc. Amer. Math. Soc. **127** (11) (1999), 3221-3227.
22. A. Ülger, *Arens regularity of the algebra $A \hat{\otimes} B$* , Trans. Amer. Math. Soc. **305** (2) (1988) 623-639.
23. P. K. Wong, *The second conjugate algebras of Banach algebras*, J. Math. Sci. **17** (1) (1994), 15-18.
24. N. J. Young *Theirregularity of multiplication in group algebra* Quart. J. Math. Soc., **24** (2) (1973), 59-62.
25. Y. Zhing, *Weak amenability of module extentions of Banach algebras* Trans. Amer. Math. Soc. **354** (10) (2002), 4131-4151.

*Department of Mathematics, Amirkabir University of Technology, Tehran, Iran
Email address: haghnejad@aut.ac.ir*

*Department of Mathematics, Amirkabir University of Technology, Tehran, Iran
Email address: riazi@aut.ac.ir*