- **1.2** Из-за сбоя в работе устройства, сигнал, управляющий скоростью каретки вдоль оси Y, начал поступать на $\Delta t = 1,0$ c раньше, чем предусмотрено законом, изображенном на рис. 2. Какой рисунок на бумаге получится в этом случае?
- **1.3** После исправления выявленной ошибки сигналы начали поступать как изображено на рис.2. Но при этом период сигнала, управляющий движением вдоль оси X, оказался в $\eta=1,5$ раз больше предусмотренного. Какой рисунок получится на бумаге в этом случае?
- **1.4** Постройте графики зависимостей скоростей каретки от времени $(v_x(t), v_y(t))$, чтобы графопостроитель построил чертеж, показанный на Рис. 3.

Задача 2. «Металлы тоже кипят!»

Таблицы физических характеристик различных веществ содержат много полезной информация. Значения этих характеристик, на первый взгляд, кажутся случайными и хаотичными. Однако, среди них имеются определенные закономерности (хотя и приближенные). В данной задаче вам требуется исследовать связь между температурой кипения и удельной теплотой испарения.

Часть 1. Кипение металлов.

В Таблице 1 приведены значения атомных масс A, температуры кипения $t_{\kappa un}$ и удельной теплоты испарения L (при температуре кипения) для ряда металлов.

Таблица 1.

Металл	Символ	Атомная масса А	Температура кипения, t , ${}^{\circ}C$	Удельная теплота испарения, $L, \frac{M \cancel{Д} \cancel{ж}}{\cancel{\kappa} \cancel{\epsilon}}$	
Алюминий			2056		
	Al	27,0		10,8	
Вольфрам	W	183,9	5910	4,96	
Железо	Fe	55,8	3200	6,09	
Золото	Au	197,2	2966	?	
Калий	K	39,1	760	2,05	
Магний	Mg	24,3	1107	5,26	
Медь	Cu	63,54	2600	4,8	
Олово	Sn	118,7	2270	2,28	
Платина	Pt	195,1	4530	2,41	
Ртуть	Hg	200,6	356	0,29	
Свинец	Pb	207,2	1725	0,86	
Серебро	Ag	107,9	2163	2,36	
Цинк	Zn	65,4	913	1,76	

1.1 Качественно объясните, по каким физическим причинам может существовать связь между температурой кипения и теплотой испарения. Каков должен быть характер этой зависимости?

- **1.2** Используя данные Таблицы 1 попытайтесь установить функциональную связь (хотя бы приближенную) между приведенными характеристиками металлов. Проиллюстрируйте установленную связь графически.
- 1.3 Используя полученную зависимость установите примерное значение удельной теплоты испарения золота.

Часть 2. Испарение воды.

Удельная теплота испарения любого вещества зависит от температуры, при которой происходит испарение. В Таблице 2 приведены значения удельной теплоты испарения воды L при разных температурах t° (при температурах больших $100^{\circ}C$ вода в жидком состоянии находится при повышенном давлении).

t, °C	0	50	100	150	200	250
$L, \frac{MДж}{\kappa \varepsilon}$	2,50	2,38	2,26	2,11	1,94	1,70

- 2.1 Постройте график зависимости удельной теплоты испарения воды от температуры.
- **2.2** Качественно объясните полученную зависимость. Найдите примерную формулы, описывающую зависимость теплоты испарения от температуры.

Задача 3. «Электродвигатель»

Молодой, но талантливый физик Федя, самостоятельно изготовил действующую модель электродвигателя: нашел постоянные магниты, выточил сердечник якоря, намотал обмотку, промучился со скользящими контактами ... – подключил к батарейке и... чудо – двигатель заработал.

Так как Федя не только инженер-изобретатель, но и физик, он решил провести комплексное исследование характеристик двигателя.

В школьной лаборатории Федя нашел стабилизированный источник постоянного напряжения, реостат, амперметр, вольтметр, набор грузов известной массы. Закрепил двигатель на столе, на вал намотал нитку, к ее концу привязал груз, собрал электрическую схему, показанную на рис.1 и приступил к исследованиям. Первые же результаты поразили молодого ученого — при изменении сопротивления реостата показания ни

амперметра, ни вольтметра не изменялись! Изменялась только скорость подъема груза. При изменении массы подвешенного груза сила тока в цепи изменялась, причем оказалось, что сила тока в цепи работающего двигателя прямо пропорциональна массе поднимающегося груза

$$I = km$$
,

где k - постоянный коэффициент, который Федя определил экспериментально (вы также считайте его известным).

Для объяснения полученных результатов Фединых экспериментов считайте известными:

- постоянное напряжение источника U_0 ;