Cairo University FCI

Context Free Grammar (CFG)

Manar Elkady, Ph.D.

Regular Languages and nonregular languages

Language	Language Defined by	Corresponding Accepting Machine
Regular Languages (Type3 languages)	RE	Finite automaton, transition graph
Context-free Lang (Type2 languages)	Context-free grammar	Deterministic Pushdown automaton
Type 0 language (Recursively enumerable) And Type1 (context sensitive lang)	Type 0 grammar (Recursively enumerable) And Type1 (context sensitive grammar)	Turing machines

CFG

- A *context-free grammar* is a notation for defining context free languages.
- It is more powerful than finite automata or RE's, but still cannot define all possible languages.
- Useful for nested structures, e.g., parentheses in programming languages.
- Basic idea is to use "variables" to stand for sets of strings.
- These variables are defined recursively, in terms of one another.

CFG formal definition

- $C = (V, \Sigma, R, S)$
- V: is a finite set of <u>variables</u>.
- Σ : symbols called <u>terminals</u> of the alphabet of the language being defined.
- $S \in V$: a special start symbol.
- R: is a finite set of production rules of the form $A \rightarrow \alpha$ where $A \in V$, $\alpha \in V \cup \Sigma$

CFG -1

- Define the language $\{a^nb^n \mid n \ge 1\}$.
- Terminals/symbols = {a, b}.
- Variables = $\{S\}$.
- Start symbol = S.
- Productions ={

$$S \rightarrow ab$$
,

$$S \rightarrow aSb$$

Summary

$$S \rightarrow ab$$

$$S \rightarrow aSb$$

Derivation

- Derivation example for "aabb"
- Using $S \rightarrow aSb$
 - → generates uncompleted string that still has a nonterminal S.
- Then using $S \rightarrow$ ab to replace the inner S
 - →Generates "aabb"
- →S →aSb →aabb[Successful derivation of aabb]

Derivations - Intuition

- We *derive* strings in the language of a CFG by starting with the start symbol, and repeatedly replacing some variable A by the right side of one of its productions.
 - That is, the "productions for A" are those that have A on the left side of the .

Derivations – Formalism

- We say $\alpha A\beta \rightarrow \alpha \gamma \beta$ if $A \rightarrow \gamma$ is a production.
- Example: $S \rightarrow 01$; $S \rightarrow 0S1$.
- S => 0S1 => 00S11 => 000111.

Balanced-parentheses

```
Prod1 S \rightarrow (S)
Prod2 S \rightarrow ()
```

• Derive the string ((())).

```
S \rightarrow (S) .....[by prod1]

\rightarrow ((S)) .....[by prod1]

\rightarrow ((())) .....[by prod2]
```

Palindrome

- Describe palindrome of a's and b's using CGF
- 1] $S \rightarrow aSa$

 $2] S \rightarrow bSb$

• $3] S \rightarrow b$

 $4]S \rightarrow a$

- 5] $S \rightarrow \Lambda$
- Derive "baab" from the above grammar.
- S \rightarrow bSb

[by 2]

 \rightarrow baSab

[by 1]

→ baab

[by 5]

CFG - 2.1

Describe anything (a+b)* using CGF

1]
$$S \rightarrow \Lambda$$

$$2] S \rightarrow Y$$

$$3] Y \rightarrow aY$$

4]
$$Y \rightarrow bY$$
 5] $Y \rightarrow a$

$$6] Y \rightarrow b$$

Derive "aab" from the above grammar.

• S
$$\rightarrow \underline{Y}$$

$$S \rightarrow \underline{aY}$$

$$Y \rightarrow a\underline{aY}$$

$$Y \rightarrow aa\underline{b}$$

CFG - 2.2

1]
$$S \rightarrow \Lambda$$

$$2] S \rightarrow Y$$

$$3] Y \rightarrow aY$$

$$4] Y \rightarrow bY$$

$$6] Y \rightarrow b$$

Derive "aa" from the above grammar.

$$\bullet$$
 S \rightarrow Y

$$\rightarrow Y$$

$$Y \rightarrow \underline{aY}$$

$$Y \rightarrow a\underline{a}$$

Remember CFG is about categorizing the grammar of a language

CFG – 3

- Describe anything (a+b)* using CGF
- 1] $S \rightarrow aS$ 2] $S \rightarrow bS$ 3] $S \rightarrow \Lambda$
- Derive "aab" from the above grammar.
- S $\rightarrow \underline{aS}$

[by 1]

 $S \rightarrow aaS$

[by 1]

 $S \rightarrow aa\underline{bS}$

[by 2]

 $S \rightarrow aab\Lambda$

- [by 3] \rightarrow aab

CFG – 4 Anything aa Anything

Describe anything (a+b)*aa(a+b)* using CGF

1]
$$S \rightarrow XaaX$$

$$2] X \rightarrow aX$$

$$3] X \rightarrow bX$$

$$4] X \rightarrow \Lambda$$

Note: rules 2, 3, 4 represents anything (a+b)*

Derive "baabaab" from the above grammar.

•
$$S \rightarrow \underline{XaaX}$$

$$X \rightarrow b \underline{\Lambda} aaX$$

$$X \rightarrow baabaX$$

$$X \rightarrow baabaa\underline{bX}$$

$$X \rightarrow \underline{bX}$$
aaX [by 3]

$$X \rightarrow baa\underline{bX}$$
 [by 3]

$$X \rightarrow baabaaX$$
 [by 2]

$$X \rightarrow baabaab \Lambda$$
 [by 4]

CFG – 5 Even-Even grammar

Describe a language that has even number of a's and even number of b's using CGF.

i.e. aababbab, aaabaababb

1]
$$S \rightarrow SS$$

$$3] S \rightarrow bb$$

$$2] S \rightarrow aa$$

$$4]S \rightarrow \Lambda$$

- 5] S → UNBALANCED S UNBALANCED
- 6] UNBALANCED → ab
- 7] UNBALANCED \rightarrow ba

CFG – 5 Even-Even grammar

- Derive "aababbab" from the above grammar.
- \bullet S \rightarrow SS
- → aa UNBALANCED S UNBALANCED
- → aa UNBALANCED S UNBALANCED
- → aa ba'S UNBALANCED
- → aa ba bb UNBALANCED
- \rightarrow aa ba bb ab

CFG – 6 Balanced a-b grammar

- i.e. {Λ, ab, aaabbb,...}
- $S \rightarrow aSb \mid \Lambda$
- Derive "aaaabbbb"
- S →aSb→aSb→aaSbb →aaaSbbb
 →aaaaSbbbb →aaaabbbb

CFG – 7 Even-Plaindrome grammar

- i.e. {Λ, ab, abbaabba,...}
- $S \rightarrow aSa \mid bSb \mid \Lambda$
- Derive "abbaabba" "abba abba"
- → abbaabba

CFG – 8 Plaindrome grammar

- i.e. {Λ, abb, ababa,...}
- $S \rightarrow aSa \mid bSb \mid a \mid b \mid \Lambda$
- Derive "ababa" "ab a ba"
- S →aSa→abSba→abSba→abSba→ababa
- Note: a^nba^n can be represented by $S \rightarrow aSa \mid b$
- But aⁿbaⁿ bⁿ⁺¹ can not be represented by CFG!

CFG – 9 Even-Plaindrome grammar

- i.e. $\{\Lambda, ab, abbaabba, \dots \}$
- $S \rightarrow aSa \mid bSb \mid \Lambda$

Derive abaaba

CFG - 10

- Deduce CFG of addition and parse the following expression 2+3+5
- 1] $S \rightarrow S + S \mid N$
- 2] $N\rightarrow 1$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | NN

CFG - 11.1

- Deduce CFG of a addition/multiplication and parse the following expression 2+3*5
- 1] $S \rightarrow S + S \mid S \cdot S \mid N$
- 2] N→1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N0

CFG -11.2 without ambiguity

- Deduce CFG of a addition/multiplication and parse the following expression 2*3+5
- 1] $S \rightarrow Term \mid Term + S$
- 2] Term \rightarrow N | N * Term
- 3] $N \rightarrow 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0$ N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N0

CFL Pumping Lemma

- Recall the pumping lemma for regular languages.
- It told us that if there was a string long enough to cause a cycle in the DFA for the language, then we could "pump" the cycle and discover an infinite sequence of strings that had to be in the language.

CFL Pumping Lemma (2)

- For CFL's the situation is a little more complicated.
- We can always find two pieces of any sufficiently long string to "pump" in tandem.
 - That is: if we repeat each of the two pieces the same number of times, we get another string in the language.

Pump Zero Times

Pump Twice

Pump Thrice

Etc., Etc.

Pumping Lemma (For Context Free Languages)

Pumping Lemma (for CFL) is used to prove that a language is NOT Context Free

If A is a Context Free Language, then, A has a Pumping Length 'P' such that any string 'S', where $|S| \gg P$ may be divided into 5 pieces S = uvxyz such that the following conditions must be true:

- (1) $u v^i x y^i z$ is in A for every $i \ge 0$
- (2) |vy| > 0
- $(3) |v \times y| \leqslant P$

To prove that a Language is Not Context Free using Pumping Lemma (for CFL) follow the steps given below: (We prove using CONTRADICTION)

- -> Assume that A is Context Free
- -> It has to have a Pumping Length (say P)
- -> All strings longer than P can be pumped $|S| \ge P$
- -> Now find a string 'S' in A such that $|S| \ge P$
- -> Divide S into uvxyz
- -> Show that u vix yiz ∉ A for some i
- -> Then consider the ways that S can be divided into uvxyz
- -> Show that none of these can satisfy all the 3 pumping conditions at the same time
- -> S cannot be pumped == CONTRADICTION

Pumping Lemma (for Context Free Languages) - Example (Part-1)

Show that $L = \{a^N b^N c^N | N \ge 0 \}$ is Not Context Free

- -> Assume that L is Context Free
- -> L must have a pumping length (say P)
- -> Now we take a string S such that $S = a^p b^p c^p$
- -> We divide S into parts uvxyz

Pumping Lemma (For Context Free Languages)

Pumping Lemma (for CFL) is used to prove that a language is NOT Context Free

If A is a Context Free Language, then, A has a Pumping Length 'P' such that any string 'S', where $|S| \gg P$ may be divided into 5 pieces S = uvxyz such that the following conditions must be true:

- (1) u vix yiz is in A for every i≥0
- (2) |vy| > 0
- (3) $|v \times y| \leqslant P$

<u>Pumping Lemma (for Context Free Languages) - Example (Part-1)</u>

Show that $L = \{a^Nb^Nc^N | N \ge 0\}$ is Not Context Free

- -> Assume that L is Context Free
- -> L must have a pumping length (say P)
- -> Now we take a string S such that S = apbpcp
- -> We divide S into parts uvxyz

Eg.
$$P = 4$$
 So, $S = a^4b^4c^4$

Case I: v and y each contain only one type of symbol

Case I: v and y each contain only one type of symbol

Case II: Either v or y has more than one kind of symbols

Pumping Lemma (for Context Free Languages) - Example (Part-2)

Show that L = $\{ ww \mid w \in \{0,1\}^* \}$ is NOT Context Free

- -> Assume that L is Context Free
- -> L must have a pumping length (say P)
- -> Now we take a string S such that $S = 0^P 1^P 0^P 1^P$
- -> We divide S into parts uvxyz

Pumping Lemma (For Context Free Languages)

Pumping Lemma (for CFL) is used to prove that a language is NOT Context Free

If A is a Context Free Language, then, A has a Pumping Length 'P' such that any string 'S', where $|S| \gg P$ may be divided into 5 pieces S = uvxyz such that the following conditions must be true:

- (1) u vix yiz is in A for every i≥0
- (2) |vy| > 0
- (3) $|v \times y| \leq P$

Pumping Lemma (for Context Free Languages) - Example (Part-2)

Show that L = { ww | $w \in \{0,1\}^*$ } is NOT Context Free

- -> Assume that L is Context Free
- -> L must have a pumping length (say P)
- -> Now we take a string S such that S = 0 P1 OP1P
- -> We divide S into parts uvxyz

Case 1: vxy does not straddle a boundary

000001111110000011111

Case 3: vxy straddles the midpoint

$$V^2 \times \gamma^2 Z$$

000001111110000000011111

L is not context Free