In []: #9. Data Visualization I
#1. Use the inbuilt dataset 'titanic'. The dataset contains 891 rows and conto
#boarded the unfortunate Titanic ship. Use the Seaborn library to see if we co
#2. Writeacodetocheckhowthepriceoftheticket(columnname:'fare')foreach
#passenger is distributed by plotting a histogram.
#no datasset

In [1]: import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

In [2]: dataset = sns.load_dataset('titanic')
 dataset.head()

Out[2]: survived pclass sex age sibsp parch fare embarked class who adult_male 0 0 male 22.0 7.2500 S Third True man 1 female 38.0 0 71.2833 False 1 1 С First woman 2 3 female 26.0 False 7.9250 S Third woman female 35.0 0 53.1000 S First woman False 0 3 male 35.0 0 8.0500 Third True 0 S man

In [3]: #Step 3: Plotting different graphs

In [4]: #Distplot

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[5]: <AxesSubplot:ylabel='Density'>

Out[6]: <seaborn.axisgrid.JointGrid at 0x1faf30ddf40>

Out[8]: <seaborn.axisgrid.JointGrid at 0x1faf31cda90>


```
In [9]: sns.rugplot(dataset["fare"])
```

Out[9]: <AxesSubplot:xlabel='fare'>


```
In [10]: sns.barplot(x="sex", y="age", data=dataset)
```

Out[10]: <AxesSubplot:xlabel='sex', ylabel='age'>

In [11]: #Count Plot

```
In [12]: sns.countplot(x="sex", data=dataset)
```

Out[12]: <AxesSubplot:xlabel='sex', ylabel='count'>

In [13]: #Box Plot

In [14]: sns.boxplot(x="sex", y="age", data=dataset)

Out[14]: <AxesSubplot:xlabel='sex', ylabel='age'>


```
In [15]: sns.violinplot(x="sex", y="age", data=dataset)
```

Out[15]: <AxesSubplot:xlabel='sex', ylabel='age'>

In [16]: #Strip Plot

Out[17]: <AxesSubplot:xlabel='sex', ylabel='age'>

In [18]: #Swarm Plot

```
In [19]: sns.swarmplot(x="sex", y="age", data=dataset)
```

Out[19]: <AxesSubplot:xlabel='sex', ylabel='age'>

In [20]: #Heat Maps

In [21]: dataset = sns.load_dataset("titanic")
 dataset.head()

Out[21]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
4											•

Out[23]: <AxesSubplot:xlabel='fare', ylabel='Count'>

In []: