

NORMAL PROCESSES

Why

Definition

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space. Let I be an index set. A normal process (or gaussian process)¹ $x : I \to (\Omega \to \mathbf{R})$ on I is a family of real-valued random variables with the property that any subset of the range of this family has a multivariate normal density.

In other words, there exists $m:I\to \mathbb{R}$ and positive definite $k:I\times I\to \mathbb{R}$ with the property that if $J\subset I, |J|=d$, then $x_J\sim \mathcal{N}(m(J),k(J\times J))$. In other words, for each $i\in I,$ $x_i:\Omega\to \mathbb{R}$ is a random variable And $x_J:\Omega\to \mathbb{R}^d$ is a Gaussian random vector. We call m is the mean function and k is the covariance function

¹The choice of "normal" is a result of the Bourbaki project's convention to eschew historical names. Though here, as in Multivariate Normals the language of the project is nonstandard.

