DECISION MAKING AND SCENARIOS MODULE 2.3 – Evaluating Projects

Analyzing the Incremental After-Tax Cash Flows

— Terminal Phase

Professor Robert Holthausen Professor Richard Lambert

Incremental After-Tax Cash Flows – Terminal Phase

Terminal or Salvage Value in Last Year

Terminal Value - Cash Flow Perpetuity Model

If you believe a project will be infinitely long lived, then
use a cash flow perpetuity model to value the project,
once you have forecasted out to a low or zero constant
rate of growth in cash flows. Terminal value at year n,
TV_n:

$$TV_n = \frac{NCF_{n+1}}{r - g}$$
 Where : r = discount rate
$$g = constant percentage growth rate for future periods$$

Present value of an infinite stream of payments

Terminal Value - Cash Flow Perpetuity Model

- How would you use this? Suppose you forecasted cash flows for a new product for 10 years during which time the growth of the new product rose, but by the end of year 10 the growth rate was close to inflation, say 3%.
- Take the year 11 cash flow and apply the perpetuity model which gives you the value of the cash flow from year 11 to infinity at year 10

$$TV_{10} = \begin{array}{c} F_{\underline{11}} \\ r - g \end{array}$$
 Where: $r = discount rate$
 $g = constant percentage$
 $g = constant percentage$
 $g = constant percentage$

- You now add TV_{10} / $(1+r)^{10}$ (which discounts the TV back to time 0) to the present value of the first ten years of cash flows
- Do not assume that all projects have an infinite life rare

Net Present Value

- NPV = initial investment (discounted over time if multiple years)
 - + discounted value of cash flows during the operating phase
 - + discounted value of terminal value

If NPV > 0 accept project

If NPV < 0 reject project

ONLINE