## The Macroeconomic Consequences of Subsistence Self-Employment

Juan Herreño<sup>†</sup> Sergio Ocampo<sup>‡</sup>

<sup>†</sup>UC San Diego

<sup>‡</sup>University of Western Ontario

## Self-employment in developing countries

- ► High self-employment rates in developing countries (Poshke, 2019)
- ▶ High prevalence of *subsistence entrepreneurship* (Schoar, 2010)

## Self-employment in developing countries

- ► High self-employment rates in developing countries (Poshke, 2019)
- ► High prevalence of *subsistence entrepreneurship* (Schoar, 2010)

Self-employment concentrated among the rich and the poor

(Data from 9 developing countries)



## Self-employment in developing countries

- ► High self-employment rates in developing countries (Poshke, 2019)
- ► High prevalence of *subsistence entrepreneurship* (Schoar, 2010)

Self-employment concentrated among the rich and the poor

(Data from 9 developing countries)



## Policies aimed at the self-employed

- Grants, loans, transfers (varied designs and generosity)
- ▶ Policies meant to spur firm creation/growth but target the self-employed in practice
- Evidence of small effects on individual outcomes (income, firm creation, consumption)

(Angelucci, Karlan, & Zinman, 2015; Banerjee, Duflo, Glennerster, & Kinnan, 2015; Maeger, 2019)

## Policies aimed at the self-employed

- Grants, loans, transfers (varied designs and generosity)
- ▶ Policies meant to spur firm creation/growth but target the self-employed in practice
- ▶ Evidence of small effects on individual outcomes (income, firm creation, consumption)

```
(Angelucci, Karlan, & Zinman, 2015; Banerjee, Duflo, Glennerster, & Kinnan, 2015; Maeger, 2019)
```

#### Effects of these policies (micro & macro) depend on many factors:

- ► Financial frictions affect occupational sorting (Buera, Kaboski, & Shin, 2015; Midrigan & Xu, 2014)
  - Self-employed choose worse technologies/smaller scale
- ► Subsistence concerns (Poshke, 2013; Breza, Kaur & Shamdashani, 2021)
  - Reflect labor rationing

#### What we do

- 1. Study the effects of development policies when subsistence entrepreneurship is prevalent
  - ▶ Heterogeneous agents macro-development model
  - Financial and subsistence concerns (labor market frictions) driving occupational choices

#### What we do

- 1. Study the effects of development policies when subsistence entrepreneurship is prevalent
  - ► Heterogeneous agents macro-development model
  - Financial and subsistence concerns (labor market frictions) driving occupational choices
- 2. Use a set of cross-sectional moments to evaluate importance of subsistence concerns
  - Joint distribution of occupations and income
  - Labor market response to labor demand shocks

#### What we do

- 1. Study the effects of development policies when subsistence entrepreneurship is prevalent
  - ► Heterogeneous agents macro-development model
  - Financial and subsistence concerns (labor market frictions) driving occupational choices
- 2. Use a set of cross-sectional moments to evaluate importance of subsistence concerns
  - Joint distribution of occupations and income
  - Labor market response to labor demand shocks
- 3. Evaluate macro-effects of policies
  - 3.1 Micro loans and grants to the self-employed  $\longrightarrow$  loosen financial frictions
  - 3.2 Targeted transfers to the unemployed  $\longrightarrow$  insure labor risk

- 1. Model consistent with joint distribution of occupations and income + labor market slack
  - Labor frictions are key to match data by generating subsistence concerns

- 1. Model consistent with joint distribution of occupations and income + labor market slack
  - Labor frictions are key to match data by generating subsistence concerns
- 2. Model consistent with small micro effects of credit interventions
  - ▶ Hard to reject null effects with micro data (occ. choices, income, consumption)

- 1. Model consistent with joint distribution of occupations and income + labor market slack
  - Labor frictions are key to match data by generating subsistence concerns
- 2. Model consistent with small micro effects of credit interventions
  - Hard to reject null effects with micro data (occ. choices, income, consumption)
- 3. The (macro) elasticity of aggregate output to lending is proportional to the (micro) elasticity of individual self-employment income
  - ► The key is the muted response of wages to the reform (slack!)
  - ▶ TFP increases (loans improves selection into self-employment, only productive benefit)
  - Without subsistence concerns model overestimates responses

- 1. Model consistent with joint distribution of occupations and income + labor market slack
  - ▶ Labor frictions are key to match data by generating subsistence concerns
- 2. Model consistent with small micro effects of credit interventions
  - Hard to reject null effects with micro data (occ. choices, income, consumption)
- 3. The (macro) elasticity of aggregate output to lending is proportional to the (micro) elasticity of individual self-employment income
  - ► The key is the muted response of wages to the reform (slack!)
  - ▶ TFP increases (loans improves selection into self-employment, only productive benefit)
  - Without subsistence concerns model overestimates responses
- 4. Other Policies: Generosity of the safety net to the unemployed is TFP enhancing (improves selection into self-employment if well targeted)

# Model

- ► Heterogeneous agents:
  - Agents can be Employed, Unemployed or Self-Employed
  - ▶ Agents differ in Assets (a), Idiosyncratic Productivity (z)

- Heterogeneous agents:
  - Agents can be Employed, Unemployed or Self-Employed
  - ▶ Agents differ in Assets (a), Idiosyncratic Productivity (z)
- Financial frictions:
  - Self-employed subject to collateral constraints
  - Employed and unemployed subject to borrowing constraints

- Heterogeneous agents:
  - Agents can be Employed, Unemployed or Self-Employed
  - Agents differ in Assets (a), Idiosyncratic Productivity (z)
- Financial frictions:
  - Self-employed subject to collateral constraints
  - Employed and unemployed subject to borrowing constraints
- Labor market frictions:
  - Unemployed and Self-Employed have to wait for an offer to become Employed
  - ▶ Any agent can become Unemployed or Self-Employed at any time

Similar structure adopted in Alves & Violante (2023) to study het. effects of monetary policy

- Heterogeneous agents:
  - Agents can be Employed, Unemployed or Self-Employed
  - Agents differ in Assets (a), Idiosyncratic Productivity (z)
- Financial frictions:
  - Self-employed subject to collateral constraints
  - Employed and unemployed subject to borrowing constraints
- Labor market frictions:
  - Unemployed and Self-Employed have to wait for an offer to become Employed
  - ▶ Any agent can become Unemployed or Self-Employed at any time

Similar structure adopted in Alves & Violante (2023) to study het. effects of monetary policy

## Agents' problems

- Income of agents depends on occupation (wages, benefits, profits)
- ► Shocks also depend on occupations: Job offers to U and SE and job separations to E
  - ► All agents receive productivity shocks (z)

## Agents' problems

- Income of agents depends on occupation (wages, benefits, profits)
- ► Shocks also depend on occupations: Job offers to U and SE and job separations to E
  - ▶ All agents receive productivity shocks (z)

| Occupation    | Flow Income (y)                   | Occupational Choice | Shocks                    | •                               |
|---------------|-----------------------------------|---------------------|---------------------------|---------------------------------|
| Employed      | $r \cdot a + w \cdot \epsilon(z)$ | U or S              | $\gamma^z$ , $\gamma^E$   | $\longleftarrow$ Job separation |
| Unemployed    | $r \cdot a + b$                   | S                   | $\gamma^z$ , $\gamma^{U}$ | $\longleftarrow$ Job offer      |
| Self-employed | $r \cdot a + \pi (a, z)$          | U                   | $\gamma^z$ , $\gamma^s$   | ← Job offer                     |
|               | $\hat{y}^{o}(a,z)$                |                     | ↑<br>Prod.                |                                 |

#### Profits and value functions

#### **Self-employed profits:**

$$\pi(a,z) = \max_{\substack{k < \lambda \cdot a, n}} f(z,k,n) - (r+\delta) \cdot k - w \cdot n$$

▶ Collateral constraints depend on assets:  $k \leq \lambda \cdot a$ 

#### Profits and value functions

#### **Self-employed profits:**

$$\pi(a,z) = \max_{k \leq \lambda \cdot a, n} f(z,k,n) - (r+\delta) \cdot k - w \cdot n$$

▶ Collateral constraints depend on assets:  $k \leq \lambda \cdot a$ 

#### Value function for occupation $o \in \{E, U, S\}$ :

$$\rho V^{o}(a,z) = \max_{\text{s.t. } a \geq \underline{a}} u(c) + V_{a}^{o} \cdot (\underline{y^{o}(a,z) - c}) + \frac{E[dV^{o}]}{dt}$$

- Standard Hamilton- Jacobi-Bellman formulation
- ▶ Change in value depends on savings:  $\dot{a} = y^o(a, z) c$
- ▶ Last term captures productivity and occupational shocks

details

## Optimal choices

Savings Choice,  $o \in \{E, U, S\}$ :

$$c^{o}(a,z) = u^{'-1}(V_{a}^{o}(a,z))$$

## Optimal choices

#### Savings Choice, $o \in \{E, U, S\}$ :

$$c^{o}(a,z) = u^{'-1}(V_{a}^{o}(a,z))$$

#### **Occupational Choice:**

Agents can move freely to unemployment or self-employment so

$$V^{E}\left(a,z\right) \geq \max\left\{V^{U}\left(a,z\right),V^{S}\left(a,z\right)\right\}$$
 $V^{U}\left(a,z\right) \geq V^{S}\left(a,z\right)$ 
 $V^{S}\left(a,z\right) \geq V^{U}\left(a,z\right)$ 

## Optimal choices

#### Savings Choice, $o \in \{E, U, S\}$ :

$$c^{o}(a,z) = u^{'-1}(V_{a}^{o}(a,z))$$

#### **Occupational Choice:**

Agents can move freely to unemployment or self-employment so

$$V^{E}\left(a,z\right) \geq \max\left\{V^{U}\left(a,z\right),V^{S}\left(a,z\right)\right\}$$
 $V^{U}\left(a,z\right) \geq V^{S}\left(a,z\right)$ 
 $V^{S}\left(a,z\right) \geq V^{U}\left(a,z\right)$ 

▶ Occ. choice defines regions  $\Omega^o \in \mathcal{S} \equiv [\underline{a}, \infty) \times \mathbb{R}_+$  where occupation 'o' prevails

Example: 
$$\Omega^{U} = \left\{ (a, z) \in \mathcal{S} \mid V^{U}(a, z) > V^{S}(a, z) \right\}$$

## (Stationary) Equilibrium

- Solve agents' problems given prices
  - Value functions solved as HJB variational inequalities.
- ▶ Small open economy:  $r = r^*$
- ▶ Wage (w) clears labor market:
  - Labor demand firms of the self-employed:  $N^d = \int n^*(a,z)dG^S$
  - ▶ Labor supply from the employed:  $N^s = \int \epsilon(z) dG^E$
- Stationary distribution of agents: G<sup>E</sup>, G<sup>U</sup>, G<sup>S</sup>

details

- Solve system of Kolmogorov-Forward-Equations
- ▶ Reflects both exogenous shocks and endogenous occ. choice

### Main mechanism: Occupational choice





- ▶ (Min) Productivity threshold for self-employment
- lacktriangle Subsistence concerns: Low threshold for poor agents  $\longrightarrow$  Unproductive self-employed

## Calibration and Model Performance

#### Parametrization

- ▶ Interest rate:  $r^* = 3\%$
- ► Collateral constraint:  $\lambda = 1.42$  to match debt-to-asset ratio of large Mexican firms
- ▶ Utility and production function:  $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$  and  $f(z,k,n) = z(k^{\alpha}n^{1-\alpha})^{\nu}$

$$\sigma = 2$$
  $\alpha = 0.3$   $\nu = 0.85$ 

#### Parametrization

- ▶ Interest rate:  $r^* = 3\%$
- ▶ Collateral constraint:  $\lambda = 1.42$  to match debt-to-asset ratio of large Mexican firms
- ▶ Utility and production function:  $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$  and  $f(z, k, n) = z(k^{\alpha}n^{1-\alpha})^{\nu}$

$$\sigma = 2$$
  $\alpha = 0.3$   $\nu = 0.85$ 

#### Internally calibrated parameters:

- Labor income is a function of productivity:  $\epsilon(z) = z^{\eta}$
- ▶ Shocks follow Poisson processes with arrival rates:  $\gamma^z$ ,  $\gamma^E$ ,  $\gamma^U$ ,  $\gamma^S$
- ightharpoonup z discretized with transition matrix  $Pr^z(z'|z)$ 
  - ▶ Discretization from AR(1) process Rowenhurst (1995) method

## Model performance: Targeted moments

| Data | Model       | In                              |
|------|-------------|---------------------------------|
| 4.4  | 4.1         | st                              |
| 26.7 | 26.2        | st                              |
| 69.1 | 69.7        | cc                              |
|      |             | cc                              |
|      | 4.4<br>26.7 | 4.4     4.1       26.7     26.2 |

| Income Moments                          | Data | Model |
|-----------------------------------------|------|-------|
| $std(y_t^S)$                            | 0.86 | 0.86  |
| $std(y_t^E)$                            | 0.54 | 0.58  |
| $\operatorname{corr}(y_t^S, y_{t+1}^S)$ | 0.59 | 0.59  |
| $corr(y_t^E, y_{t+1}^E)$                | 0.60 | 0.58  |

## Model performance: Targeted moments

| Occupational Rates | Data | Model |
|--------------------|------|-------|
| Unemployment       | 4.4  | 4.1   |
| Self-employment    | 26.7 | 26.2  |
| Employment         | 69.1 | 69.7  |
|                    |      |       |

| Income Moments                                   | Data | Model |
|--------------------------------------------------|------|-------|
| $std(y_t^{\mathcal{S}})$                         | 0.86 | 0.86  |
| $std(y_t^E)$                                     | 0.54 | 0.58  |
| $corr(y_t^{\mathcal{S}}, y_{t+1}^{\mathcal{S}})$ | 0.59 | 0.59  |
| $\operatorname{corr}(y_t^E, y_{t+1}^E)$          | 0.60 | 0.58  |

#### **Data from ENOE:**

sample details more moments

- Household Survey Quarterly rotating panel (up to 5 quarters)
- ▶ Information on labor status, search activities, transitions, and earnings
- ▶ Key: Observe transitions and earnings dynamics

## Model performance: Untargeted moments

#### 1. Model matches joint distribution of occupations and income

- ▶ Key: Subsistence concerns of the unemployed → Occupational Choice
- Model with only financial frictions fails in doing so (more on this later)





## Model performance: Untargeted moments

#### 1. Model matches joint distribution of occupations and income

- ► Key: Subsistence concerns of the unemployed Occupational Choice
- Model with only financial frictions fails in doing so (more on this later)



#### 2. Model matches reaction after labor demand shocks

- Development Literature on response of local labor market to labor demand shocks
  - Imbert and Papp (2015), Breza, Kaur & Shamdasani (2021) and Muralidharan, Niehaus & Sukhtankar (2017)
- ▶ Low elasticity of wages to labor demand  $\left(\frac{\Delta \log w}{\Delta \log N} < 1\right)$ : self-employment "hides" slack
- ► Model elasticity  $\frac{\Delta \log w}{\Delta \log N} = 0.16$  (vs 1.6 with only financial frictions)
  - **Key:** Occupational transitions  $SE \rightarrow U$  rather than  $SE \rightarrow E$
  - Model also matches partial crowd-out of private labor demand from job-guarantee programs

# Credit Expansions Under

Subsistence Self-Employment

## The effects of credit expansions

We increase access to credit by modifying borrowing constraint

$$k \leq \lambda \cdot a + \phi$$

 $\phi pprox \$540 rac{ ext{USD}}{ ext{Q}}$  as in RCT loans from Compartamos Banco (Angelucci, Karlan, Zinman, 2015)

- 1. Contrast micro effects of loans on earnings with RCT evidence + Role of GE
- 2. Obtain macro effect on output and productivity by aggregating
- 3. Contrast effects with/without subsistence self-employment

#### 1.1 Earnings effects of credit expansions

- ightharpoonup Credit  $\uparrow$  20% and SE-earnings  $\uparrow$  0.95% in equilibrium  $\longrightarrow$  (micro) elasticity of 0.048
  - Earnings up  $41\frac{\text{USD}}{\text{Q}}$ , comparable with RCT result of  $55\frac{\text{USD}}{\text{Q}}$  increase in business earnings
  - ▶ Level change "small" throughout the distribution but impacts occupational choice



## 1.2 General equilibrium effects of credit expansions

- ▶ **Key:** Muted response of wages, up only 0.06% (consistent with wage elasticity)
- ▶ Labor earnings increase 0.04 (composition effect from SE)
- ▶ Re-composition of labor force out of self-employment

| Moment                |      | Moment                   |       |  |
|-----------------------|------|--------------------------|-------|--|
| % Δ Wage              | 0.06 | $\Delta$ Employment      | 0.08  |  |
| $\% \Delta Income(E)$ | 0.04 | $\Delta$ Unemployment    | 0.16  |  |
| % Δ Income (S)        | 0.95 | $\Delta$ Self-employment | -0.24 |  |

## 2. Aggregate effects of credit expansions

|     | Output | TFP  | Assets | Consumption |  |
|-----|--------|------|--------|-------------|--|
| % Δ | 0.20   | 0.15 | -0.40  | 0.02        |  |

▶ (Macro) elasticity of output is proportional (micro) elasticity of income

$$arepsilon_{Y}^{\mathsf{macro}} = 0.011 = \mathcal{S} imes arepsilon_{y}^{\mathsf{micro}}$$

- ▶ TFP increases due to selection out of self-employment
- Insurance from loans changes consumption/savings choices
  - Crowd-out private assets
  - ▶ Increase consumption... of the unemployed!  $\%\Delta(C^U) = 1.25$

#### 3. The role of subsistence self-employment

Two economies without subsistence self-employment:

- 1. No unemployment risk:  $\gamma^E = 0$  and  $\gamma^U, \gamma^S \to \infty$ 
  - Without unemployment risk occupational choice reflects productivity
- 2. No labor-income risk:  $\gamma^z = 0$ 
  - Without labor-income risk savings reflect presence of collateral constraint
- Recalibrate to match the same targets (when possible)
- ► Comparable to standard macro-development framework (e.g., Buera, Kaboski, Shin, 2020)

#### Without unemployment risk self-employment concentrated at the top



ightharpoonup No subsistence-concerns  $\longrightarrow$  self-employment selection based on a/z

## Aggregate effects of credit without subsistence self-employment

| 0                        |          |                | . 3                |  |
|--------------------------|----------|----------------|--------------------|--|
|                          | Baseline | No Unemp. Risk | No Labor Inc. Risk |  |
| Elasticities             |          |                |                    |  |
| Output to credit supply  | 0.011    | 0.091          | 0.065              |  |
| Wage to labor demand     | 0.16     | 0.36           | 2.32               |  |
| Change in Variables (pp) |          |                |                    |  |
| Output                   | 0.20     | 0.37           | 0.47               |  |
| TFP                      | 0.15     | 0.42           | 0.10               |  |
| Wage                     | 0.06     | 0.54           | 0.53               |  |
| Self-employment          | -0.24    | 0.07           | 0.05               |  |
| Income (SE)              | 0.95     | -0.38          | -0.10              |  |
| Assets                   | -0.40    | -2.45          | -2.14              |  |
| Lending                  | 20.00    | 4.03           | 7.27               |  |

# Policy Design and

Subsistence Self-Employment

## The self-employed are sensitive to policy design

#### Three examples

- 1. Micro grants: Subsidized version of loans above (common in practice; Meager, 2019)
- Transfers to the unemployed: Common in many countries, can improve search (Acemoglu & Shimer, 1999, 2000; Chetty, 2008)
- Transfers to the non-employed: Reflects limited implementation capacity (intuition extends to universal transfers)

#### Micro grants - Negative selection

- ▶ Relaxation of collateral constraint  $k \le \lambda a + \phi$  + Recipients pay 0 to rent capital
- φ: Ave. loan size of micro-credit interventions in Mexico Angelucci, Karlan, Zinman (2015)

#### Micro grants - Negative selection

- ▶ Relaxation of collateral constraint  $k \le \lambda a + \phi$  + Recipients pay 0 to rent capital
- φ: Ave. loan size of micro-credit interventions in Mexico Angelucci, Karlan, Zinman (2015)

#### **Policy effects:**

| Moment                   |       |
|--------------------------|-------|
| $\Delta$ Employment      | -0.24 |
| $\Delta$ Unemployment    | -0.72 |
| $\Delta$ Self-employment | 0.96  |
| $\%$ $\Delta$ Wage       | 0.32  |
| $\% \Delta Income(E)$    | 0.50  |
| $\%$ $\Delta$ Income (S) | -2.40 |
| % Δ TFP                  | -0.45 |



occ. choice SE inc

#### Transfers to the unemployed - Subsistence concerns

The policy grants \$20 USD (10% of min wage) to the unemployed

$$y^U = r \cdot a + b + \frac{b_{UB}}{}$$

#### Transfers to the unemployed - Subsistence concerns

The policy grants \$20 USD ( 10% of min wage) to the unemployed

$$y^U = r \cdot a + b + \frac{b_{UB}}{a}$$

#### **Policy effects:**

| Moment                   |       |
|--------------------------|-------|
| $\Delta$ Employment      | 0.06  |
| $\Delta$ Unemployment    | 0.85  |
| $\Delta$ Self-employment | -0.90 |
| % Δ Wage                 | -0.16 |
| $\% \Delta Income(E)$    | -0.40 |
| $\% \Delta$ Income (S)   | 3.70  |
| % Δ TFP                  | 0.42  |



occ. choice SE inc. SE prod.

Increase in productivity selection

#### Transfers to the non-employed - Back to negative selection

Hard to effectively target transfers to the unemployed

Likely that transfers go to low-earning self-employed too

The policy grants \$20 USD to the unemployed + self-employed (income below minimum wage)

$$y^U = r \cdot a + b + b_{UB}$$
  $y^S = r \cdot a + \pi + b_{UB}$ 

#### Transfers to the non-employed - Back to negative selection

Hard to effectively target transfers to the unemployed

Likely that transfers go to low-earning self-employed too

The policy grants \$20 USD to the unemployed + self-employed (income below minimum wage)

$$y^U = r \cdot a + b + \frac{b_{UB}}{b_{UB}}$$
  $y^S = r \cdot a + \pi + \frac{b_{UB}}{b_{UB}}$ 

| Output |       | TFP   | Assets | Consumption |  |
|--------|-------|-------|--------|-------------|--|
| % Δ    | -0.04 | -0.32 | -1.90  | -0.61       |  |

#### Transfers to the non-employed - Back to negative selection

Hard to effectively target transfers to the unemployed

▶ Likely that transfers go to low-earning self-employed too

The policy grants \$20 USD to the unemployed + self-employed (income below minimum wage)

$$y^U = r \cdot a + b + b_{UB}$$
  $y^S = r \cdot a + \pi + b_{UB}$ 

|     | Output | TFP   | Assets | Consumption |  |  |
|-----|--------|-------|--------|-------------|--|--|
| % Δ | -0.04  | -0.32 | -1.90  | -0.61       |  |  |

- Transfers affect asset accumulation
- ▶ Occ. Choice: More self-employment

Small micro effects on income distribution





# Conclusions

- ▶ High SE among the poor in developing economies
- ▶ Subsistence self-employment shapes economies response to shocks and policy
- ▶ Policies that alleviate subsistence concerns improve productivity
- Policies that target the self-employed can backfire

# Thank You

Please send your questions to juanherreno@ucsd.edu or socampod@uwo.ca

# **Appendix**

**Data Appendix** 

#### Mexican sample details

back

- Our Sample: 1995Q1 2015Q4.
  - ▶ Males, Head of households, Prime age workers (23 to 65)
  - Ten largest municipalities
  - Unbalanced panel for 250 thousand individuals ( 1m obs.)

- Labor Status (Self-Reported)
  - Employed: Has a job, has a supervisor
  - Unemployed: Does not have a job, is looking for one
  - ▶ Self-Employed: Has a job, reports to be his own employer

#### Workforce composition in Mexico: Time series





#### Self-employment across countries





## Self-employment and earnings distribution: Details



▶ Run a regression of the form:

$$\log(w_{i,t}) = \alpha + \gamma_t + \beta X_{i,t} + \eta_{i,t}$$

- ▶ Rank  $\eta_{i,t}$  and classify them in bins of 3% of the sample
- Compute the statistics for each bin
- Results are robust to direct earnings comparison



## Self-employment and earnings distribution: Raw data





# Model Appendix

#### Agent's problem: Value functions



Employed agents:

$$\rho V^{E}(a,z) = \max_{c} u(c) + V_{a}^{E}(a,z) \dot{a} + \gamma^{E} \left( V^{U}(a,z) - V^{E}(a,z) \right)$$

$$+ \gamma^{z} \int \left( V^{E}(a,z') - V^{E}(a,z) \right) d \mathsf{Pr}^{z} \left( z'|z \right)$$
s.t. 
$$\dot{a} = w \epsilon(z) + ra - c, \quad a \ge \underline{a}.$$

Unemployed and Self-employed agents,  $o \in \{U, S\}$ :

$$\rho V^{o}(a,z) = \max_{c} u(c) + V_{a}^{o}(a,z) \dot{a} + \gamma^{o} \max \left\{ V^{E}(a,z,\epsilon) - V^{o}(a,z), 0 \right\}$$
$$+ \gamma^{z} \int \left( V^{o}(a,z') - V^{o}(a,z) \right) d \operatorname{Pr}^{z}(z'|z)$$
s.t. 
$$\dot{a} = b \mathbb{1}_{o=U} + \pi(a,z) \mathbb{1}_{o=S} + ra - c, \quad a \ge \underline{a}.$$

#### Agent's distribution: Kolmogorov Forward Equations



lacktriangle Characterize stationary distributions  $\{G^o\}_{o\in\{E,U,S\}}$  by their densities  $\{g^o\}_{o\in\{E,U,S\}}$ 

$$\begin{split} 0 &= -\frac{\partial}{\partial a} \left[ \dot{a} g^E \left( a, z \right) \right] - \left( \gamma^E + \gamma^z \right) g^E \left( a, z \right) & \longleftarrow \text{Holds for } \left( a, z \right) \in \Omega^E \\ &+ \gamma^z \int \Pr^z \left( z | z' \right) g^E \left( a, z' \right) dz' + \gamma^U g^U \left( a, z \right) + \gamma^S g^S \left( a, z \right) \mathbbm{1}_{\left\{ (a, z) \in \Omega^E \right\}} \\ 0 &= -\frac{\partial}{\partial a} \left[ \dot{a} g^U \left( a, z \right) \right] - \left( \gamma^U + \gamma^z \right) g^U \left( a, z \right) & \longleftarrow \text{Holds for } \left( a, z \right) \in \Omega^U \\ &+ \gamma^z \int \Pr^z \left( z | z' \right) g^U \left( a, z' \right) dz' + \gamma^E g^E \left( a, z \right), \\ 0 &= -\frac{\partial}{\partial a} \left[ \dot{a} g^S \left( a, z \right) \right] - \left( \gamma^S \mathbbm{1}_{\left\{ (a, z) \in \Omega^E \right\}} + \gamma^z \right) g^S \left( a, z \right) & \longleftarrow \text{Holds for } \left( a, z \right) \notin \Omega^U \\ &+ \gamma^z \int \Pr^z \left( z | z' \right) g^S \left( a, z' \right) dz' + \gamma^E g^E \left( a, z \right) \mathbbm{1}_{\left\{ (a, z) \notin \Omega^U \right\}}, \end{split}$$

## Model performance: Untargeted moments



| Occupational Transition Rates |             |                  |      |                   |      |                      |                   |       |       |
|-------------------------------|-------------|------------------|------|-------------------|------|----------------------|-------------------|-------|-------|
|                               | Data        | Model            |      |                   | Data | Model                |                   | Data  | Model |
| $U \rightarrow U$             | 27.4        | 29.3             |      | $S \rightarrow U$ | 1.9  | 4.6                  | $E \rightarrow U$ | 3.1   | 2.5   |
| U 	o S                        | 14.6        | 23.6             |      | $S \rightarrow S$ | 76.8 | 62.2                 | $E \rightarrow S$ | 8.1   | 12.8  |
| $U \rightarrow E$             | 58.0        | 47.1             |      | $S \rightarrow E$ | 21.3 | 33.1                 | $E \rightarrow E$ | 88.8  | 84.7  |
| Income Moments                |             |                  |      |                   |      |                      |                   |       |       |
|                               |             |                  | Data | Model             |      |                      | Data              | Model |       |
|                               | $corr(y_t)$ | $(x, y_{t+1}^S)$ | 0.43 | 0.39              | cori | $(y_t^S, y_{t+1}^E)$ | 0.43              | 0.34  |       |

#### Model Performance: The role of labor vs financial frictions





- Model without labor frictions misses
   Self-employment out-of-necessity
- ► There is also no unemployment risk for employed agents
- Self-employment is only taken by agents who can generate higher profits than wages

**Toy Model Appendix** 

#### Selection into self-employment



**Static Model** Continuum of unemployed (*U*) agents

- ▶ Choose to stay unemployed (U) or become self-employed (SE)
- ightharpoonup Heterogeneity: Assets (a) and productivity (z)
- ► CRRA utility:  $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$

#### Selection into self-employment



**Static Model** Continuum of unemployed (*U*) agents

- ► Choose to stay unemployed (*U*) or become self-employed (*SE*)
- ightharpoonup Heterogeneity: Assets (a) and productivity (z)
- ► CRRA utility:  $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$

#### Unemployment

- ightharpoonup U get a job with probability p
- ▶ If employed, consume: a + w
- ▶ If not, consume: a + b

#### **Self-Employment**

- ► SE produce using own assets
- **Consume:**  $a + za^{\alpha}$

Mechanisms behind policies depend on selection into self-employment

## Self-employment as an outside option to employment





High unemployment benefits (b) or no unemployment (p=1)

- "Positive" selection to SE
- Productive/Wealthy agents
- No low-earning SE

#### Self-employment as an outside option to unemployment





Selection breaks for resource constrained agents:

- ► Poor + Unemployed
- → Unproductive SE
- → Low-earning SE
- Large share of SE if lots of poor/constrained agents

# **Policy Appendix**

## Micro Transfers - Occupational Choices





Gov. Transfer Share of Self-Employed Agents Earnings Deciles

Some changes in thresholds

Small effects across distribution of income

### Micro Transfers - Self-Employment Income







Small profit gains to poor & productive

Negligible effects in the distribution

### Unemployment benefits - Occupational Choices





Raseline Model Unemployment Benefits Share of Self-Employed Agents Earnings Deciles

Increase in productivity selection

Lower mass of low-earning SE

### Unemployment benefits - Self-Employment Income







Productive SE take advantage of  $w \downarrow$ 

Noticeable effects on earnings

### Unemployment benefits - Productivity Distribution





 $Change \ in \ selection \ improves \ productivity$ 

# Unemployment Benefits: Self-employment ↓ among the poor





Baseline Model Unemployment Benefits Share of Self-Employed Agents 40 Earnings Deciles

Productivity distribution improves (FOSD)

In GE self-employment ↓ among poor (↓ wages benefit high-productivity)

# Unemployment benefits: productivity ↑, unemployment ↑



| GE   | Moment                   | GE                                                                    |
|------|--------------------------|-----------------------------------------------------------------------|
| -2.0 | $\Delta$ Employment      | 0.46                                                                  |
| -2.3 | $\Delta$ Self-employment | -5.8                                                                  |
| 2.9  | $\Delta$ Unemployment    | 5.1                                                                   |
|      | -2.0<br>-2.3             | <ul> <li>-2.0 Δ Employment</li> <li>-2.3 Δ Self-employment</li> </ul> |

# Credit Deepening: Relaxing Collateral Constraints

- Financial frictions prevent self-employed to produce at optimal scale
- ► Capture financial reform as credit deepening

$$k \leq (\lambda + \lambda_{CD}) \cdot a$$

#### Two exercises:

- 1. Relaxed collateral constraint:  $\lambda_{CD} > 0$  (In paper)
- 2. No collateral constraint:  $\lambda_{CD} \rightarrow \infty$

#### Elimination of Collateral Constraints: $\lambda_{CD} \rightarrow \infty$



Productivity distribution improves  $\mathsf{TFP} \uparrow 11\%$ 



# Credit Deepening: $\lambda_{CD} > 0$





Productivity distribution improves



 $SE \downarrow$  because wages  $\uparrow$  (subsistence SE persists)

#### Elimination of Collateral Constraints





Does not solve occupational choices at the bottom

#### Transfers to the self-employed

Transfers of 17% of labor incomes to the lowest 10% Banerjee, Niehaus, and Suri (2019)

$$y^S = r \cdot a + \pi(a, z) + b_{MG} \mathbb{1}_{MG}$$

#### Transfers to the self-employed

Transfers of 17% of labor incomes to the lowest 10% Banerjee, Niehaus, and Suri (2019)

$$y^S = r \cdot a + \pi(a, z) + b_{MG} \mathbb{1}_{MG}$$



Productivity distribution worsens (FOSD)



Self-employment \( \ \) among the poor (productive SE do not benefit)

#### Transfers to the self-employed

| Moment               | GE   | Moment                   | GE   |
|----------------------|------|--------------------------|------|
| % Δ Wage             | 1.0  | $\Delta$ Employment      | -2.5 |
| $\%$ $\Delta$ Output | -2.4 | $\Delta$ Self-employment | 6.6  |
| % Δ TFP              | -2.5 | Δ Unemployment           | -4.1 |

- ► Transfers heavily influence occupational choice
- Unemployed agents prefer self-employment regardless of productivity
- Aggregate producitivity decreases as a result

# Transfers to the non-employed: Occupational choice



#### **Policy effects:**

| Moment                   |       |
|--------------------------|-------|
| $\Delta$ Employment      | -0.22 |
| $\Delta$ Unemployment    | -0.14 |
| $\Delta$ Self-employment | 0.36  |
| $\%$ $\Delta$ Wage       | -0.04 |
| $\% \Delta Income(E)$    | -0.22 |
| $\%$ $\Delta$ Income (S) | -1.40 |



Increase in productivity selection

### Transfers to the non-employed: Self-employed income





Increase in productivity selection



Increase in productivity selection