安徽大学 2021 - 2022 学年第 - 学期

《 复变函数与数理方程 》期中考试试卷 (闭卷 时间 120 分钟)

考场登记表序号_____

歴 号	_	=	Ξ	四	总分
得 分					
问卷人					
、单选题	(每小题2分	, 共30分)			得分
下列命题	正确的是()			
A. 0 的辐	角为 0; B.)-	$\frac{1}{i}\overline{z}=\overline{jz}$; C.	仅有一个数 z ,	使 $z=-\frac{1}{z}$;	D. $ z_1 + z_2 = z_1 $
. 下列等式	成立的是()			
$\boxed{A.} -1 = e$, B. 1	$=e^{-j\pi}$;	C. $1 = e^{j\pi}$;	D	$-1=e^{j\frac{\pi}{2}}.$
. 设 $z=\sqrt{3}$	$+j$, $w=z^2$,	则 ()			
A. arg w	$=\frac{\pi}{3}$; B. ar	$\operatorname{g} w = \frac{\pi}{6};$	C. $arg w = -$	$\frac{\pi}{6}$; D. a	$\operatorname{rg} w = -\frac{\pi}{3} .$
. 下列点集	不是实轴的是	()			
A. Im z =	=0; B. z	$-\overline{z}=0$;	C. $ z-j = $	z+j ; D. z	$z + \overline{z} = 0$.
5. $2\sin j =$	()				
A. (e ⁻¹ -	e) j : B. (e	$e^{-1}+e)j$;	C. $(e-e^{-1})j$; D. e	$+e^{-1}$.
$\ln(2j) =$	()				
A. ln 2;	B. Ir	$12+\frac{\pi}{2}j$:	C. $\ln 2 - \frac{\pi}{2} j$; D. li	n 2 + j Arg(2j) •
7. 下列说法	不正确的是	()			
A. e ^z ≠ ($(\forall z \in C)$:	B. $e^{t_1} \cdot e^{t_2}$	$=e^{z_1+z_2} (\forall z_1,z_2)$	∈ C);	
C. lime	不存在:	D. e' 是以	L2kπ 为周期的	周期函数(A	为非零整数)。
8. 下列说法	正确的是()			
A. Lnz ²			[点和负实轴,	Lnz 在每邓丽	ich からかんない。
C. sin z		D. cosh(j		Line [11.交] [II	IF 1 XC XC MP DI I
9. 希级数 2	2" Z" A	的收敛半径为	()		

C. 4:

D. +00

A. 1;

B. 2:

10.	函数 f(z)= z ² 在复平面上()	
	A. 处处不连续;	B. 处处连续, 处	处不可导:
	C. 处处连续,仅在点 z=0 可导;	D. 处处连续, 仅	生点 z=0 解析。
11.	设 C 为正向圆周 $ z =1$, $f(z)$ 是解	析函数, $g(z) = \oint_C \frac{\zeta}{\zeta}$	$\frac{f(\zeta)}{z-z} d\zeta$, $\mathfrak{N} g'(0) = ($
	A. $-2j\pi f'(0)$: B. $-2j\pi f(0)$:	(C) $2j\pi f(0)$;	D. $2j\pi f'(0)$.
12.	设C是正向圆周 z =1,则∮ _c e ⁻ dz	= ()	
	A: 0; B. 1;	C. 2π ;	D. $2\pi j$.
13.	以z=0为本性奇点的函数是(
	A. $\frac{\sin z}{z}$; B. $\frac{1}{\sin z}$; Sim $\frac{1}{3}$	C. $\frac{1-\cos z}{z}$;	D. $\frac{1}{z(z-1)}$.
14.	$z=2\pi j$ 是函数 $\frac{z}{e^z+e^{-z}-2}$ 的极点,	其阶数为 ()	
	A. 一阶极点; B. 二阶极点;	C. 三阶极点:	D. 四阶极点。
15.	$\operatorname{Res}\left[\frac{e^{jz}}{1+z^2}, j\right] = ($		
	A. $-\frac{je}{2}$; B. $-\frac{j}{2e}$;	C. $\frac{j}{2e}$:	D. $\frac{je}{2}$.
	计算题 (每小题 10 分,共 50 分)		得分
16.	求√-8。 1+3√3, -2,	٦- قارد−ا	
17.	求(1+j)'的所有值,并指出其主值	i. e-4 (cosh	J2 + jsimhJ2)
18.	将函数 $f(z) = \frac{1}{(z-4)(z-3)}$ 在坐标 将函数 $f(z) = \frac{1}{(z-2)(z-3)}$ 在2 < :	原点处展开成泰勒级	数,并求其收敛域。 ~
19.	将函数 $f(z) = \frac{1}{(z-2)(z-3)}$ 在 $2 < z $ 设 C 为正向圆周 $ z-2 =1$,求 \oint_C	: <3展开成罗朗级数 	1=0 3nH 4nH 18 1815
20.	设 C 为正向圆周 $ z-2 =1$,求 \oint_C	$\frac{e^z}{z(z-2)^2} dz.$	=0(3) - 3 2 (3)
_	、证明题 (10分)	$\frac{e^{2}}{2}\pi$	得 分
		there is a new part of the second	電運用 ((*) 基常數。
21.	设 $f(z) = u(x,y) + jv(x,y)$ 在区域 [THE PROPERTY OF THE PROPERTY O	
	、综合題 (10分)		(4)分
22	(1) 求 $f(z) = \frac{e^{t}}{z^2 + 4z + 5}$ 在上半 ³ (2) 求 $f(z)$ 在以上各孤立奇点的	P面的所有孤立奇点:	-2+j
	(2) 求 f(z)在以上各孤立奇点的	们数: zje (c/32 -	Jsm2)
	(3) 利用以上结果计算积分1= 5	$\frac{\sin x}{x^2 + 4x + 5} dx = -$	E Sm2