

COMP3600/6466 Algorithms

Lecture 5

S2 2016

Dr. Hassan Hijazi Prof. Weifa Liang

Pseudocode Analysis

Iterative

Algorithm 1 My algorithm 1: procedure MyProcedure $stringlen \leftarrow length of string$ 3: $i \leftarrow patten$ 4: top: if i > stringlen then return false $j \leftarrow patlen$ 7: loop: if string(i) = path(j) then $j \leftarrow j - 1$. 9: $i \leftarrow i - 1$. 10: goto loop. 11: close: 12: $i \leftarrow i + \max(delta_1(string(i)), delta_2(j)).$ 13: 14: goto top.

Recursive

```
Algorithm 1 My algorithm
 1: procedure MyProcedure
        stringlen \leftarrow length of string
3:
        i \leftarrow patten
 4: top:
        if i > stringlen then return false
        j \leftarrow patlen
7: loop:
        if string(i) = path(j) then
            j \leftarrow j - 1.
9:
            i \leftarrow i - 1.
10:
            goto loop.
            close:
12:
        i \leftarrow i + \max(delta_1(string(i)), delta_2(j)).
14:
        goto top.
```

Recursive Algorithms

Total running time

=

Sum of times in each node of the recursion tree.

Can also be written as a recursion!

For example, the running time T(n) can be expressed:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \text{ is small,} \\ 2T(\lfloor \frac{n}{2} \rfloor) + \Theta(n) & \text{otherwise.} \end{cases}$$

We usually write:

 $T(n) = 2T(\lfloor \frac{n}{2} \rfloor) + \Theta(n)$ assuming that T(n) is constant for small values of n.

Asymptotic Bounds for Recursions

Substitution method:

Guess a bound and use mathematical induction to prove that the guess is correct.

Recursion-tree method:

Convert the recurrence into a tree,

Use this tree to rewrite the function as a sum,

Use techniques of bounding summations to solve the recurrence.

Substitution method

The substitution method consists of two steps:

- Step 1. Guess the form of the solution.
- Step 2. Use mathematical induction to show that the guess is correct.

It can be used to obtain either upper or lower bounds on a recurrence.

A good guess is vital when applying this method.

If the initial guess is wrong, it needs to be adjusted later.

Exercise 5.1

Using the substitution method, prove that

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n = O(n\log n)$$

Complete the proof by hand

Exercise 5.2

Give an asymptotic upper bound for

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 5$$

Complete the proof by hand

Asymptotic Bounds for Recursions

How to make a good guess?

Experience

Recursion Tree

- Also called iteration method
- Can be used to guess or find the solution
- When guessing, we can make simplifying assumptions (e.g., ignore floor and ceiling)
- The goal is to expand the recurrence and express it as a summation

Consider the recurrence

$$T(n) = 3T\left(\left\lfloor \frac{n}{4} \right\rfloor\right) + cn^2$$

Simplification: we assume that n is a power of 4.

At depth d the subproblem size is $\frac{n}{4^d}$.

We stop building the tree when we reach subproblem size 1, so when $\frac{n}{4^d} = 1$.

This gives $i = \log_4 n$. Thus, the depth of the tree is $\log_4 n$.

The number of levels is $\log_4 n + 1$.

The cost at depth d is $\left(\frac{3}{16}\right)^d cn^2$, except for the bottom level, whose cost is its number of nodes times T(1), that is, $3^{\log_4 n} \cdot T(1) = n^{\log_4 3} \cdot T(1) = \Theta(n^{\log_4 3})$.

This leads to:

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3}) = cn^2 \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i + \Theta(n^{\log_4 3}).$$

Note that
$$\sum_{i=0}^{\log_4 n-1} \left(\frac{3}{16}\right)^i = \Theta(\text{largest term}) = \Theta(1)$$
 (decreasing geometric sum).

Finally, observe that n^2 grows faster than $n^{\log_4 3}$ as its exponent is larger. Thus,

$$T(n) = \Theta(n^2)$$

$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + cn$$

Total: $O(n \lg n)$

Why is the depth of this tree $\log_{\frac{3}{2}} n$?

Do all paths from the root to tree leaves have the same length?

If all paths were equal to the longest path, what would the cost of the last level be?

Exercise 5.3

$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + cn$$

Prove that $T(n) = O(n \lg n)$ by induction.