Name:	MatrNr.:
$\begin{array}{c} \text{Multiple-Choice-Test zu Berechenbarkeit und} \\ \text{TU Berlin, } 05.12.2023 \\ \text{(Weller/Froese/Kellerhals/Kunz/Peters, Wintersemester)} \end{array}$	-
Arbeitszeit: 45 Minuten, Gesamtpunktzahl: Hinweis: Je Aufgabe ist mindestens eine Antwortmögli Wenn eine falsche Antwortmöglichkeit angekreuzt wurde, so gibt es Null Pun Jede Aufgabe ist annotiert mit der Anzahl erreichbar	chkeit korrekt. kte für die betroffene (Teil-)Aufgabe.
Wir erinnern an folgende Definitionen aus der Vorlesung:	
• Die Null ist eine natürliche Zahl.	
\bullet Binärdarstellungen von Zahlen enthalten im Folgenden \mathbf{keine} führenden Nulle	n.
\bullet Die Komposition zweier Funktionen $f \colon A \to B$ und $g \colon C \to A$ ist definiert als	$f \circ g : C \to B \text{ mit } (f \circ g)(x) \coloneqq f(g(x)).$
• Eine Turing-Maschine $M=(Z,\Sigma,\Gamma,\delta,z_0,\square,E)$ berechnet eine Funktion $f\colon \Sigma^*$	$f \to \Pi^*$, falls für alle $x \in \Sigma^*$, $y \in \Pi^*$ gilt:
$f(x) = y \iff \exists_{z \in E} \ z_0 x \vdash_M^* zy.$	
• Die charakteristische Funktion $\chi_L \colon \Sigma^* \to \{0,1\}$ einer Sprache $L \subseteq \Sigma^*$ ist defin	iert als $\chi_L(w) := \begin{cases} 1, & w \in L \\ 0, & w \notin L \end{cases}$
• Die halbe charakteristische Funktion $\chi_L'\colon \Sigma^* \to \{1\}$ einer Sprache $L\subseteq \Sigma^*$ ist o	definiert als $\chi'_L(w) \coloneqq \begin{cases} 1, & w \in L \\ \perp, & w \notin L \end{cases}$.
• Die Ackermannfunktion ack ist wie folgt definiert: $ack(0,y) := y+1$, $ack(x,0)$ $ack(x,y) := ack(x-1,ack(x,y-1))$.	$:= \operatorname{ack}(x-1,1)$ und
Aufgabe 1: LOOP, WHILE und GOTO Welche der folgenden Aussagen sind korrekt?	(2 Punkte)
X Alle LOOP-berechenbaren Funktionen sind total.	
Es gibt nur endlich viele LOOP-berechenbare Funktionen.	
X Es gibt mindestens so viele WHILE-berechenbare Funktionen, wie LOOP	-berechenbare Funktionen.
Alle GOTO-berechenbaren Funktionen sind total.	
Aufgabe 2: Ackermannfunktion Welche der folgenden Aussagen über die Ackermannfunktion ack sind korrekt?	(3 Punkte)
Die Funktion $f \colon \mathbb{N} \to \mathbb{N}$ mit $f(n) \coloneqq \operatorname{ack}(n,0)$ ist LOOP-berechenbar.	
$\boxed{\mathbf{X}}$ ack ist WHILE-berechenbar, aber nicht LOOP-berechenbar.	
X Die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit $f(n) \coloneqq \operatorname{ack}(0, n)$ ist LOOP-berechenbar.	
Die Funktion $f \colon \mathbb{N}^2 \to \mathbb{N}$ mit $f(x,y) \coloneqq \left\lceil \sqrt{\operatorname{ack}(x,y)} \right\rceil$ ist LOOP-berechen	bar.

Aufgabe 3: Turing-Berechenbarkeit

(4 Punkte)

Welche der folgenden Aussagen sind korrekt?

Es gibt	Funktionen,	die nur	von	einer	Mehrband	-Turing-Maschin	e, und	nicht	von	einer	Einband-	Turing-N	Iaschine
berechne	et werden kö	nnen.											

- X Jede Turing-Maschine, die eine totale Funktion berechnet, hält auf jeder Eingabe.
- Jede Turing-berechenbare Funktion ist total.
- | X | Jede Turing-Maschine berechnet eine Funktion.

Aufgabe 4: Primzahlen

(3 Punkte)

Eine Primzahl p besitzt einen Primzahlzwilling, falls p+2 ebenfalls eine Primzahl ist.

Sei $f \colon \mathbb{N} \to \mathbb{N}$ definiert durch $n \mapsto \begin{cases} n, \text{ falls die } (n+1)\text{-te Primzahl einen Primzahlzwilling besitzt} \\ \bot, \text{ sonst.} \end{cases}$

Die Primzahlen sind hierbei nach Größe geordnet. Welche der folgenden Aussagen sind korrekt?

Die Funktion f ist primitiv-rekursiv.

X Die Funktion f ist berechenbar.

Es ist möglich, dass die Funktion f nicht berechenbar ist.

Aufgabe 5: Turing-Maschinen

(2+4 Punkte)

Betrachten Sie die Turing-Maschine $M=(\{z_0,z_1,z_2,z_e\},\{0,1\},\{0,1,\square\},\delta,z_0,\square,\{z_e\}),$ wobei δ die folgende graphische Darstellung hat:

(a) Auf welchen der folgenden Wörtern hält M?

X 11110

000

X 111

11101

(b) Sei $L := \{1^n0 \mid n \in \mathbb{N}\}$. Welche Aussagen über M sind korrekt?

X M berechnet die Funktion χ'_L .

M akzeptiert jedes Wort, das auf 0 endet.

M akzeptiert keine Sprache, da M eine Funktion berechnet.

|X|M akzeptiert die Sprache L.

Aufgabe 6: Berechenbarkeit

(3 Punkte)

Welche der folgenden Aussagen sind korrekt?

- Es existieren berechenbare Funktionen f und g, sodass $f \circ g$ unberechenbar ist.
- X Wenn f eine totale, injektive und berechenbare Funktion ist, dann ist f^{-1} berechenbar.
- X Jede Funktion mit endlichem Definitionsbereich ist berechenbar.
- X Es existieren unberechenbare Funktionen f und g, sodass $f \circ g$ berechenbar ist.
- Jede Funktion mit endlichem Wertebereich ist berechenbar.

Aufgabe 7: Berechenbarkeit und Entscheidbarkeit

(4 Punkte)

Sei $f: \{a,b\}^* \to \{a,b\}^*$ eine totale Funktion. Welche der folgenden Aussagen sind korrekt?

- X Wenn f Turing-berechenbar ist, dann ist die Sprache $\{w \# f(w) \mid w \in \{a,b\}^*\}$ entscheidbar.
- X Es ist möglich, dass die Sprache $\{f(w) \mid w \in \{a,b\}^*\}$ entscheidbar, aber f nicht Turing-berechenbar ist.
- X Wenn f Turing-berechenbar ist, dann ist die Sprache $\{f(w) \mid w \in \{a,b\}^*\}$ semi-entscheidbar.
- X Wenn die Sprache $\{w \# f(w) \mid w \in \{a,b\}^*\}$ entscheidbar ist, dann ist f Turing-berechenbar.