

Uniwersytet Jana Kochanowskiego w Kielcach INSTYTUT FIZYKI

Pracownia Podstaw Elektrotechniki i Elektroniki

Elementy RLC. Badanie rezonansu napięć

1. Wiadomości teoretyczne.

Rola poszczególnych elementów w obwodzie RLC, prądy, spadki napięć, przesunięcie fazowe prądu względem napięcia, rezonans napięć, obwód RLC jako układ drgający, częstotliwość rezonansowa.

2. Schemat badanego obwodu.

Rys. 1 Układ pomiarowy dla rezonansu napięć.

3. Przebieg pomiarów.

- I) Wyznaczyć za pomocą omomierza opór R_L cewki. Pamiętać, że miernik oznaczony na rysunku jako V_{L,R_L} mierzy faktycznie napięcie na cewce rzeczywistej, która posiada swój opór R_L . Napięcie to oznaczamy jako U_{L,R_L} .
- II) Zmieniając częstotliwość f generatora w zakresie podanym przez prowadzącego notować wskazania mierników w tabeli.

Lp.	f[Hz]	I[mA]	U[V]	U_R [V]	U_{L,R_L} [V]	U_{C} [V]

4. Zestawienie wyników pomiarów

I) Wyznaczyć impedancję cewki $Z_L = \frac{U_{L,R_L}}{I}$, reaktancję indukcyjną cewki $X_L = \sqrt{Z_L^2 - R_L^2}$, napięcie $U_L = I X_L$ oraz napięcie $U_{R_L} = I R_L$

Lp.	f[Hz]	ω[rad/s]	Z_L [Ω]	X_L [Ω]	U_L [V]	U_{R_L} [V]

II) W oparciu o tabelę 3II wyznaczyć opór R, indukcyjność cewki L reaktancję pojemnościową X_c , pojemność kondensatora C oraz całkowitą impedancję Z. Wyniki zapisać w poniższej tabeli

Lp.	f[Hz]	ω[rad/s]	R	$[\Omega]$	$R+R_L$ [Ω]	X_L [Ω]	L [H]	X_{C} [Ω]	C [μF]	Z [Ω]
wartości średnie R, L, C										

III) W oparciu o tabelę 4I narysować wykres $Z(\omega)$.

IV) W oparciu o tabelę z pkt. 4I oraz tabelę pomiarów 3II wyznaczyć wielkości: $U_N = \frac{U}{U_{li}}$, $U_{NR} = \frac{U_R + U_{R_L}}{U_{li}}$, $U_{NL} = \frac{U_L}{U_{li}}$, $U_{NC} = \frac{U_C}{U_{li}}$, $I_N = \frac{I}{I_{li}}$, gdzie U_{li} to liczbowa wartość napięcia U; - jest to normalizacja do stałego U = 1V. Obliczenia zanotować je w poniższej tabeli.

L	f[Hz]	ω[rad/s]	I_N	$U_{\it NR}$	$U_{\scriptscriptstyle N\!L}$	U_{NC}
p.						

- V) W oparciu o tabelę 4IV narysować
 - a) wykres $I_N(\omega)$
- b) wykres przedstawiający trzy krzywe $U_{\it NR}(\omega)$, $U_{\it NL}(\omega)$, $U_{\it NC}(\omega)$ i odczytać z wykresu częstość rezonansową ω_r .

5. Wnioski

Opisać otrzymane wyniki. Porównać wyznaczone parametry elementów RLC z rzeczywistymi.

6. Literatura

- 1. Bolkowski S. Elektrotechnika, WSiP 1993
- 2. Pilawski M., Winek T. Pracownia elektryczna, WSiP 2005
- 3. Gierczak E., Ciosk K., Włodarczyk M. Laboratorium elektrotechniki dla wydziałów nieelektrycznych, Politechnika Świętokrzyska skrypt nr 330.