OSSA – Lec 5 – CPU Scheduling.

Learning Topics

- 1. Basic Concepts
- 2. Scheduling Criteria
- 3. Scheduling Algorithms
- 4. Algorithm Evaluation

1. Basic Concepts

CPU-I/O Burst Cycle

- CPU Burst followed by I/O Burst
- Process execution consist of a Cycle of CPU execution and I/O wait

- Mainly CPU scheduler is involving in allocating the processes to the CPU. (also called as Short-Term-Scheduler).
- STS is accessing the ready queue → ready queue put the processes into CPU.
- STS selects processes to run in the CPU in different situations.
 - 1. When a Process is Terminated.
 - 2. When a Process want to Start a I/O Operations.
 - 3. Due to an Interrupt the running Process has to waiting in the ready queue.

2 Types of Scheduling

1. Preemptive Scheduling

 When a process is running in the CPU, process can be suspended at any time to start a new process.

2. Non - preemptive Scheduling

 Process not suspending in the middle of the execution, after running process over CPU gets new process to execute.

Dispatcher Module

- Dispatcher Stops one Process and Start another Process. ← Purpose
- Dispatcher Latency is the Time takes to the Dispatcher Process.
- Dispatcher Tasks,
 - 1. Context Switch Time.
 - 2. Switching to User Mode.
 - 3. Jump in to the proper location of the user program to restart it.

2. Scheduling Criteria

CPU Utilization

- Keep the CPU busy as Possible.
- Higher Utilization is the Best.

Throughput

- No of Processes that are completing during some time period.
- Higher throughput is good because no of processes that are executes per time is high.

Turnaround Time

- Total time period a process takes to complete their execution.
- Including waiting time, running time.
- Lower Turnaround time is the best.

Waiting Time

- Total time a process is waiting in the ready queue.
- Lower waiting time is best.

Response Time

- Amount of time a process takes to response a request.
- Lower response time is best.

3. Scheduling Algorithms

First-Come First-Served (FCFS)

- Only consider about Arrival Order of the Processes.
- Doesn't consider about Shorter and Longer Process.
- Shorter process behind the longer process called Convoy Effect.

Shortest-Job-First (SJF)

- SJF is Non-Preemptive.
- Consider the Shortest burst time (execution time) only.

Shortest-Remaining-Time-First (SRTF)

- Combination of (SJF + Preemptive).
- **Depend on burst time** the process get priortized.

During the execution, if a process with a minimum burst time arrives, the current
 one will be suspended immediately, and the next process will receive priority.

Priority Number

- Smaller integer has the highest priority.
- Lower priortize processes waiting called as **Starvation.** \leftarrow **Problem**
- With the time increase the priority of a process is called as **Aging. Colution**

Round Robin

- Using a special parameter called Time Quantum.
- Time Quantum refers to the maximum amount of time a process can execute
 before the CPU is forcibly taken away and given to another process.
- Each process is allocated a **fixed time slice**, also known as a time quantum.
- Quantum Time getting lower No of Context Switches getting higher.

Multilevel Queue

- Ready queue can partitioned into 2 separate queues,
 - 1. Foreground queue
 - 2. Background queue
- Each queue has its own scheduling algorithms.
- Also using Fixed Priority Scheduling, Time Slice.

Multilevel Feedback Queue

- Selecting the process for different queues they are using some parameters,
 - No of queues available.
 - Scheduling algorithms of the queue.
 - What time the processes have to upgrade.
 - What time the processes have to demote.
 - Select which queue the process will enter when it need service.

4. Algorithm Evaluation

Evaluation of algorithms its using 4 different approaches.

Deterministic Modeling

• Find the best algorithm by using a paper work.

Queueing Models

• Looking at different parameters like queue length, waiting time and arrival rate.

Little's Formula

n = no of processes can keep inside the queue
 W = average waiting time
 λ = average arrival rate

 $n = \lambda \times W$

Simulations

- Develop S/W applications for different algorithms and implement them inside
 the computer, as input data sets (processes, arrival time, waiting time) can be
 given.
- It is more accurate.

Implementation

- Implement new scheduler and test in real systems.
- High cost and High risk.
- Environment vary. (Situation change according to the computer environment changes).
- It is the most accurate and complex.