CAMPO MAGNÉTICO (PARTE I)

- 1. Calcule a força magnética que actua sobre um protão que se move com a velocidade $4.46 \times 10^6 \, \text{m/s}$ no sentido positivo do eixo xx', numa região em que existe um campo magnético de $1.5 \, \text{T}$, no sentido positivo do eixo zz'. ($\vec{\mathsf{F}} = (-1.1 \times 10^{-12} \, \hat{\mathsf{j}}) \, \text{N}$)
- 2. Numa câmara existe um campo magnético uniforme, \vec{B} , com intensidade $1.2 \mathrm{mT}$, orientado verticalmente de baixo para cima. Um protão ($m_p = 1.67 \mathrm{x} 10^{-27} \mathrm{~kg}$) com energia cinética de $5,3 \mathrm{MeV}$ entra na câmara, movendo-se de sul para norte, com velocidade horizontal. (i) Calcule a força magnética que actua no protão. (ii) calcule a aceleração a que o protão fica sujeito. [(i) F=6.1×10⁻¹⁵ N (W-E); ii) a=3.7×10¹² ms⁻² (W-E);]
- 3. A figura mostra quatro direcções possíveis para a velocidade \vec{v} de uma partícula carregada que se move através de uma campo eléctrico, \vec{E} , (direccionado para fora da página ver figura) e um campo magnético \vec{B} .

- a) Ordene as quatro situações por ordem crescente da intensidade da força resultante que actua na partícula.
 (F₁=qE; F₂=qE+qvB; F₃=qE; F₄=qE-qvB)
- b) Em qual (ou quais) das situações a força resultante pode ser nula? (situação 4)
- 4. J. J. Thomson, em 1887, mostrou que os raios de um tubo de raios catódicos podiam ser deflectidos por campos eléctricos e magnéticos, o que indicava que seriam electricamente carregados. Tinha sido descoberto o electrão. Electrões passam, sem ser deflectidos, entre as
 - placas de um tubo de Thomson (ver figura), quando existe um campo eléctrico de 3000 V/m e um campo magnético, perpendicular ao campo eléctrico, com a intensidade de 1.40×10⁻⁴ T. Se as placas tiverem um comprimento de 4 cm, e se a sua extremidade estiver a 30 cm do ecrã, calcule a deflexão detectada no ecrã quando o campo magnético é desligado. (y=14.7mm)

DFUM 2011/2012 1

 A figura mostra a trajectória de duas partículas que se movem com a mesma velocidade num campo magnético B, perpendicular à folha e que aponta para dentro. Uma das partículas é um protão, a outra é um electrão.

- a) Qual das partículas segue a trajectória de menor raio? (rprotão>relectrão)
- b) Qual o sentido do movimento de cada uma das partículas? (protão: anti-horário; electrão: horário)
- 6. Um electrão acelerado desde o repouso por um potencial $V_1{=}1.00~kV$, entra na região entre duas placas paralelas separadas por $d{=}20.0~mm$. A diferença de potencial entre as placas é de $V_2{=}100V$ (ver figura).

Assumindo que a velocidade do electrão é perpendicular ao campo eléctrico entre as placas, determine o campo magnético que deve ser aplicado para que o electrão siga uma trajectória rectilínea, paralela às placas. (B=0.27 mT)

- 7. Um electrão com velocidade $\vec{v}=(2\hat{i}-3\hat{j})\times 10^6 \, m/s$) move-se num campo magnético $\vec{B}=(0.8\hat{i}+0.6\hat{j}-0.4\hat{k})T \,. \qquad \text{Calcule} \qquad \text{a} \qquad \text{força} \qquad \text{que} \qquad \text{actua} \qquad \text{no} \qquad \text{electrão}.$ $(\vec{F}=(-1.92\hat{i}-1.28\hat{j}-5.76\hat{k})\times 10^{-13} (\text{N}))$
- 8. Um protão move-se numa órbita circular de raio $65~\mathrm{cm}$ perpendicular a um campo magnético uniforme de intensidade $0.75\mathrm{T}$
 - a) Calcule a velocidade do protão. $(v=4.67x10^7 \text{m/s})$
 - b) Calcule a força que actua no protão. (F=5.6x10⁻¹²N)
 - c) Qual é o período do movimento? (T=87.4×10-9 s)
 - d) Calcule a energia cinética do protão. (E_c=1.82x10⁻¹²J)
- 9. Uma partícula alfa (carga +2e) percorre uma trajectória circular de 0.5m de raio, num campo magnético de 1.1T. Calcule:
 - a) o período do movimento. (T=1.19x10⁻⁷s)
 - b) a velocidade da partícula. (v=2.65x10⁷m/s)
 - c) a energia cinética da partícula. (admita que a massa da partícula alfa é m_{α} =6.65x10⁻²⁷kg). (E_c=2.32x10⁻¹²J)
- 10. Um condutor rectilíneo de 2m de comprimento faz um ângulo de 30º com a direcção de um campo magnético uniforme de 0.37 T. Calcule a força magnética que actua no fio quando este é atravessado por um a corrente de 2.6A. (F=0.96 N)

DFUM 2011/2012 2

11. Um condutor semi-circular de raio R (ver figura) está no plano xy, numa região em que existe um campo magnético uniforme $\vec{B} = B\hat{k}$. Mostre que a força que actua no condutor é $\vec{F} = 2IRB \hat{i}$.

- 12. Qual é o momento máximo (torque) que pode actuar numa bobine de 400 espiras circulares de raio 0.75cm que transporta uma corrente de 1.6mA, instalada num campo magnético uniforme de 0.25T? ($\tau^{Max} = 28.3 \times 10^{-6} \text{ Nm}$)
- 13. Um fio condutor de comprimento L = 3 mm é percorrido por uma corrente eléctrica I = 3 A, com o sentido positivo do eixo dos x (de acordo com a figura). O fio encontra-se sob o efeito de um campo magnético de intensidade 2×10^{-2} T, paralelo ao plano xy, e fazendo um ângulo de θ = 30° com o eixo dos x (ver figura). Qual a magnitude, a direcção e o sentido da força magnética exercida no condutor? $(\vec{F} = 90 \times 10^{-6} \hat{k} (N))$

14. Um cabo de m=13.0 g e comprimento L=62.0 cm é suspenso, por um par de molas flexíveis, numa região onde existe um campo magnético uniforme de magnitude 0.440 T (ver figura). Qual a magnitude e o sentido da corrente eléctrica que deveria ser aplicada, para remover as forças que as molas exercem na barra? (I=0.467 A, (da esquerda para a direita))

- 15. Um espira circular com 160 voltas tem um raio de 1.90 cm.
 - a) Qual a corrente que deve circular na espira para que a magnitude do momento dipolar magnético seja igual a 2.30 Am². (I=12.675 A)
 - b) Qual a magnitude máxima do momento da força magnética a que a espira fica sujeita num campo magnético uniforme de magnitude 35.0 mT (τ=8.05x10⁻²N.m)
- 16. Duas espiras circulares concentricas de raios r_1 =20.0 cm e r_2 = 30.0 cm, estão localizadas no plano xy; cada espira é percorrida por uma corrente de intensidade I=7.0 A (ver figura). Qual a magnitude do momento dipolar magnético resultante do sistema? ($\vec{\mu} = (-2.86 \,\hat{k}) A \cdot m^2$)

3