Optimization

Qingfu Zhang

Dept of CS, CityU

2025

Overview

Course info

Vector Space and Euclidean Space

Convex Sets and Some Examples

Operations that preserve convexity

Generalized inequalities

Separating & supporting hyperplanes

Summary

Table of Contents

Course info

Vector Space and Euclidean Space

Convex Sets and Some Examples

Operations that preserve convexity

Generalized inequalities

Separating & supporting hyperplanes

Summary

Topics in This Course

- Widely used computational problem solving methodoloy.
- ► Fundamental techniques in Al and Computer Science.

- Traditional Opt (8 weeks)
- ▶ Opt Algorithms for Machine Learning (1-2 weeks)
- ► Heuristics and Multiobjective Opt (1-2 weeks)

Pre-requisites: basic calculus and linear algebra.

Ref Books and Resources

- Convex Optimization, Stephen Boyd and Lieven Vandenberghe, Cambridge University Press.
- Convex Optimization: Algorithms and Complexity, Sébastien Bubeck.
- Convex Analysis and Nonlinear Optimization, Theory and Examples, Jonathan Borwein , Adrian Lewis.
- ► Handbook of Metaheuristics (International Series in Operations Research & Management Science) 2nd ed. 2010, Michel Gendreau (Editor), Jean-Yves Potvin (Editor).
- Papers et al.

Acknowledgment: Thanks to Prof. S Boyd for course materials in this course. Most materials from week 1 to 8 are from his slides for convex opt.

Assessment

- ► Course work: 40%
 - ► Tutorial exercises and take-home assignments 20%
 - ► Midterm 20%
- Examination: 60%

How to study

- Read notes before lecture and take notes during lecture.
- ▶ Be active. Ask questions if you have.
- Do some mini-research on optimization.

An optimization problem can be written as

$$\min f(x)
s.t. x \in \Omega$$
(1)

where $f: \Omega \to R$ is the objective function.

- ▶ globally optimal solution x^* : $f(x^*) \le f(x)$ for any $x \in \Omega$
- ▶ local optimal solution x^* : there exists $N(x^*)$, a neighborhood of x^* , such that $f(x^*) \le f(x)$ for any $x \in \Omega \cap N(x^*)$.
- Discrete opt, continuous opt. multi-objective opt

An example:

Table of Contents

Vector Space and Euclidean Space

Vector Space

A vector space is a nonempty set V of objects (called vectors) with two operations: addition (+) and multiplication by real numbers (*), subject to the following properties for any $u, v, w \in V$ and $a, b \in R$:

- 1. $u + v \in V$, $a * u \in V$.
- 2. u + v = v + u
- 3. u + (v + w) = (u + v) + w
- 4. There exists a zero vector $\mathbf{0}$ such that $u + \mathbf{0} = u$.
- 5. For each $u \in V$, there exists $-u \in V$ such that $u + (-u) = \mathbf{0}$
- 6. a(u + v) = au + av, (a + b)u = au + bu
- 7. 1u = u,
- 8. (ab)u = a(bu)

Q: Is zero vector unique? Why

- ► Finite dimensional vector space
- Examples: R^n (n-D real vector space), S^n

Finite-Dimensional Euclidean Space

Let V be a vector space, an inner product $\langle \cdot, \cdot \rangle$ is a mapping:

 $V \times V \rightarrow R$ such that, for any $u, v, w \in V$ and $a \in R$

- \triangleright $\langle v, v \rangle \ge 0$; "=" iff v = 0,

Norm induced by the inner product:

$$\|v\| = \sqrt{\langle v, v \rangle}$$

We can prove:

$$|\langle v, u \rangle| \leq ||v|| * ||u||$$

Finite-dimensional Euclidean space E: a finite-dimensional vector space with an inner product $\langle \cdot, \cdot \rangle$.

Two Examples:

- $ightharpoonup R^n = ? \langle x, y \rangle = x^T y = \sum x_i y_i.$
- ▶ S^n =the set of all the $n \times n$ symmetric matrices.

$$\langle A, B \rangle = tr(AB).$$

Table of Contents

Convex Sets and Some Examples

Convex sets

Line segment between x_1 **and** x_2 : the set of all points of form

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 < \theta < 1$.

Convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C$$
, $0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$

examples: (one convex, two nonconvex sets)

Convex combination and convex hull

Convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with $\theta_1 + \cdots + \theta_k = 1, \theta_i \geq 0$.

Convex hull: conv(S)=set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 **and** x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \geq 0, \theta_2 \geq 0$

Convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$, with $a \neq 0$. **halfspace**: set of the form $\{x \mid a^T x \leq b\}$, with $a \neq 0$

- a is the normal vector
- hyperplanes are convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \leq 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

another representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies:

- ▶ $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- $ightharpoonup ||tx|| = |t||x|| \text{ for } t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm

- ▶ norm ball with center x_c and radius $r : \{x \mid ||x x_c|| \le r\}$
- ▶ norm cone: $\{(x, t) | ||x|| \le t\}$
- norm balls and cones are convex

Euclidean norm cone

$$\{(x,t) \mid ||x||_2 \le t\} \subset \mathbf{R}^{n+1}$$

is called second-order cone

Polyhedra

polyhedron is solution set of finitely many linear inequalities and equalities

$$\{x \mid Ax \leq b, Cx = d\}$$

($A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \leq$ is componentwise inequality)

- intersection of finite number of halfspaces and hyperplanes
- \triangleright example with no equality constraints; a_i^T are rows of A

Positive semidefinite cone

- ▶ S^n is set of symmetric $n \times n$ matrices
- ▶ $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \geq 0\}$: positive semidefinite (symmetric) $n \times n$ matrices. $X \in \mathbf{S}_{+}^{n} \iff z^{T}Xz \geq 0$ for all z
- $ightharpoonup S_+^n$ is a convex cone, the positive semidefinite cone
- ▶ $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X > 0\}$: positive definite (symmetric) $n \times n$ matrices

Example:

$$\left[\begin{array}{cc} x & y \\ y & z \end{array}\right] \in \mathbf{S}_+^2$$

Table of Contents

Operations that preserve convexity

Showing a set is convex

methods for establishing convexity of a set C

1. apply definition: show

$$x_1, x_2 \in C, 0 \le \theta \le 1 \Longrightarrow \theta x_1 + (1 - \theta)x_2 \in C$$

- recommended only for very simple sets
- 2. use convex functions (next lecture)
- show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity
 - intersection
 - affine mapping
 - perspective mapping
 - linear-fractional mapping

you'll mostly use methods 2 and 3

Intersection

- the intersection of (any number of) convex sets is convex
- example:
 - ► $S = \{x \in \mathbf{R}^m | |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$ with $p(t) = x_1 \cos t + \dots + x_m \cos mt$
 - write $S = \bigcap_{|t| \le \pi/3} \{x || p(t) | \le 1\}$, i.e., an intersection of (convex) slabs
- ightharpoonup picture for m=2:

Affine mappings

suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine, i.e., f(x) = Ax + b with $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$

▶ the image of a convex set under *f* is convex

$$S \subseteq \mathbf{R}^n$$
 convex $\Longrightarrow f(S) = \{f(x) \mid x \in S\}$ convex

▶ the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m$$
 convex $\Longrightarrow f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ convex

Examples

- ▶ scaling, translation: $aS + b = \{ax + b \mid x \in S\}, a, b \in \mathbb{R}$
- ▶ projection onto some coordinates: $\{x \mid (x, y) \in S\}$
- ▶ if $S \subseteq \mathbf{R}^n$ is convex and $c \in \mathbf{R}^n, c^T S = \{c^T x \mid x \in S\}$ is an interval
- ▶ solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ with $A_i, B \in \mathbf{S}^p$
- ▶ hyperbolic cone $\left\{x \mid x^T P x \leq \left(c^T x\right)^2, c^T x \geq 0\right\}$ with $P \in \mathbf{S}_+^n$

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x, t) = x/t$$
, dom $P = \{(x, t) | t > 0\}$

(it is better to write it as?)

- images and inverse images of convex sets under perspective are convex
- ▶ linear-fractional function $f: \mathbf{R}^n \to \mathbf{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d}$$
, $\operatorname{dom} f = \left\{ x \mid c^T x + d > 0 \right\}$

 images and inverse images of convex sets under linear-fractional functions are convex

Linear-fractional function example

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

Table of Contents

Course info

Vector Space and Euclidean Space

Convex Sets and Some Examples

Operations that preserve convexity

Generalized inequalities

Separating & supporting hyperplanes

Summary

Proper cones

a convex cone $K \subseteq \mathbf{R}^n$ is a proper cone if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x_{i} \geq 0, i = 1, \dots, n\}$
- **p** positive semidefinite cone $K = \mathbf{S}_{+}^{n}$
- nonnegative polynomials on [0, 1]:

$$K = \left\{ x \in \mathbf{R}^n \mid x_1 + x_2 t + x_3 t^2 + \dots + x_n t^{n-1} \ge 0 \text{ for } t \in [0, 1] \right\}$$

Generalized inequality

(nonstrict and strict) generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \quad x <_K y \iff y - x \in \text{int } K$$

- examples
 - componentwise inequality $(K = \mathbf{R}_{+}^{n}) : x \leq_{\mathbf{R}_{+}^{n}} y \iff x_{i} \leq y_{i}, \quad i = 1, \dots, n$
 - ▶ matrix inequality $(K = \mathbf{S}_{+}^{n}) : X \leq_{\mathbf{S}_{+}^{n}} Y \iff Y X$ positive semidefinite

these two types are so common that we drop the subscript in $\leq_{\mathcal{K}}$

▶ many properties of $\leq_{\mathcal{K}}$ are similar to \leq on \mathbf{R} , e.g.,

$$x \leq_{\kappa} y$$
, $u \leq_{\kappa} v \implies x + u \leq_{\kappa} y + v$

Table of Contents

Separating & supporting hyperplanes

Separating hyperplane theorem

Theorem: if C and D are nonempty disjoint (i.e., $C \cap D = \emptyset$) convex sets, there exist $a \neq 0$, b s.t.

$$a^T x \le b$$
 for $x \in C$, $a^T x \ge b$ for $x \in D$

- ▶ the hyperplane $\{x \mid a^T x = b\}$ separates C and D
- ▶ strict separation ("≤" and "≥" are replaced by "<" and ">", respectively.) requires additional assumptions (e.g., C is closed, D is a singleton)

Outline of Proof

Case 1: D has only one element d and dist(C, d) > 0 (i.e. $d \notin Bd(C)$

Let cl(C) be the smallest closed set including C, i.e.

$$cl(C) = C \cup bd(C)$$

- ▶ cl(C) is convex, dist(cl(C), d) = dist(C, d), and $C \subset cl(C)$
- ▶ without of loss of generality, we assume *C* is closed.
- 1. There exists a unique $c \in C$ such that dist(c,d) = dist(C,d) > 0 (why)
- 2. Let $a = d c \neq 0$, $x_0 = \frac{d+c}{2}$. Consider $f(x) = \frac{a^T}{\|a\|}(x x_0)$.
- 3. f(d) < 0
- 4. for any $x \in C$, f(x) > 0 (How to prove? by contradiction) strict separation!

Outline of Proof

Case 2: D has only one element d and dist(C, d) = 0 (i.e. $d \in bd(C)$.)

- ► For any integer m, there exists $d_m \notin cl(C)$ and $dist(d_m, d) < \frac{1}{m}$.
- ▶ By Case 1, there exists affine function $f_m(x) = \frac{a_m^T}{\|a_m\|}(x x_m)$ such that

$$f_m(d_m) < 0$$
, and $f_m(x) > 0$ for all $x \in C$.

▶ There exists a sub-sequence $m_1 < m_2 < ... < m_k...$ such that

$$\frac{a_m^T}{\|a_m\|} o a$$
, and $x_m o x_0$

ightharpoonup Let $f(x) = a^T(x - x_0)$, then

$$f(d) \ge 0$$
, and $f(x) \le 0$ for all $x \in C$.

Outline of Proof

Case 3: $D \cap C = \emptyset$ (general case).

- ▶ Let $F = D C = \{x y | x \in D \text{ and } y \in C\}$ (F is convex)
- 0 ∉ F
- ▶ there exists $a^T x = b$ separating 0 and F. i.e.

$$f(0) = -b < 0$$
, and $f(x - y) > b$ for any $x \in D, y \in C$

- $ightharpoonup a^T x \ge a^t y$ for any $x \in D, y \in C$
- ▶ Let $\alpha = \inf\{a^T x | x \in D\}$, then $a^T x = \alpha$ is an separating plane for D and C.

Supporting hyperplane theorem

- ▶ suppose x_0 is a boundary point of set $C \subset \mathbf{R}^n$
- ▶ supporting hyperplane to C at x_0 has form $\{x \mid a^T x = a^T x_0\}$, where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

Theorem: supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C Pf: Noting in the proof of case 2, we only require that

$$d \in Bd(C)$$
.

Theorem of Alternative

Gordan Theorem: For any $a^1, \ldots, a^m \in \mathbb{R}^n$, exactly one of the following systems has a solution:

(1):
$$\sum_{i=1}^{m} \lambda_i a^i = 0, \sum_{i=1}^{m} \lambda_i = 1, 0 \le \lambda_1, \dots, \lambda_m \in R$$

(2):
$$a^{iT}x < 0$$
 for $i = 1, ..., m, x \in R^n$

Outline of Pf: Noting that

- ▶ system (1) has a solution $\Leftrightarrow 0 \in conv(a^1, ..., a^m)$.
- ▶ system (2) has a solution \Leftrightarrow there is an separating plane btw 0 and $conv(a^1, \ldots, a^m)$.

Farkas Lemma

Theorem: For any a^1, \ldots, a^m and $c \in \mathbb{R}^n$, exactly one of the following systems has a solution:

$$(1): \sum_{i=1}^{m} \lambda_i a^i = c, 0 \leq \lambda_1, \dots, \lambda_m \in R$$

(2):
$$(a^i)^T x \le 0$$
 for $i = 1, ..., m, c^T x > 0, x \in \mathbb{R}^n$

Outline of Pf: Noting that

- ▶ system (1) has a solution $\Leftrightarrow 0 \in conichull(a^1, ..., a^m)$.
- ▶ system (2) has a solution \Leftrightarrow there is an separating plane btw c and $conichull(a^1, \ldots, a^m)$.

Table of Contents

Course info

Vector Space and Euclidean Space

Convex Sets and Some Examples

Operations that preserve convexity

Generalized inequalities

Separating & supporting hyperplanes

Summary

What we learned today

- Finite-D Euclidean space: \mathbb{R}^n and \mathbb{S}^n .
- Convex set
- How to prove a set is convex
- Separating and supporting hyperplanes
- Sperarting plane and Farkas Lemma.