

QUARZE

CRYSTALS
QUARTZ

KVG NORTH AMERICA INC.
2240 WOOLBRIGHT ROAD, SUITE 320
BOYNTON BEACH, FL 33426-6325
TEL: (407) 734-9007 FAX: (407) 734-9008

Vertretungen

Representatives

Représentations

Inhalt

Contents

Sommaire

BERLIN
Verkaufsbüro Berlin
 Hans-Loch-Str. 94
 D-1136 Berlin
 Telefon 5111466

GREAT BRITAIN
Eardley Electronics
 182/4 Campden Hill Road
 GB-London W8 7AS/
 Kensington
 Telex 05123894
 Telefax +4471 7279556
 Phone +4471 7270711

SCHWEIZ
Grandjean
 Industrievertreten
 Postfach 105,
 CH-4153 Reinach BL
 Telex 045 967009
 Telefax +41 617110411
 Telefon +41 617110202

DENMARK
Greve Agentur APS
 Vibeholms Allé 11-15
 DK-2505 Brondby
 Telefax +43447877
 Phone +43445844

NETHERLANDS
Hestel Electronica bv
 Postbus 289,
 NL-3730 Ha De Bilt
 Telefax +31 30202110
 Phone +31 30202180

FRANCE
LUXEMBOURG
K.V.G. France
 3, Rue Choron
 F-75009 Paris
 Telex 042 660243
 Telefax +33 142812104
 Phone +33 142803161

FINLAND, SOUTH AFRICA
SWEDEN, LUXEMBOURG

KVG GmbH
 Waibstädter Str. 2-4
 D-6924 Neckarbischofsheim.
 Telex 726312 = KVG

Telex 7 82335
 Phone +34 97263 6196

Phone +49 7263 648-0

USA
KVG North America Inc.

Suite 320
 2240 Woolbright Road,
 Boynton Beach

Fl. 33426-6325
 Telefax +1 4077349008
 Phone +1 4077349007

NORWAY

Nordlie & Co
 Postboks 48, Rislokka,
 N-Oslo 5
 Telex 056 72506
 Telefax +47 2630738
 Phone +47 2645200

TURKIE, ROUMANIA

BULGARIA, HUNGARIA
Semtronics
 F.-Bergiusstr./Eingang 5,
 6200 Wiesbaden
 Telex 4186701
 Telefax +49 611 261584
 Phone +49 611 29112

ITALY

Sintel S.R.L.
 Via Giorgio Morandi, 199
 I-00155 Roma
 Telex 043 621219
 Telefax +39 62285214
 Phone +39 62280151

Sintel S.R.L.

Via S. Anatalone, 15,
 I-20147 Milano
 Telex 043 350383
 Telefax +39 248301149
 Phone +39 24154908

SPAIN

Juan Staib S.A.

Pje. Dos De Mayo, 3, Bajos
 E-08026 Barcelona 26
 Telex 052 52395
 Telefax +34 34330580
 Phone +34 32564500

ÖSTERREICH

Wolfgang Knap

Industrieelektronik

GmbH + Co. KG

Ottakringer Str. 61

A-1160 Wien

Telex 135926

Telefax +43222/4087213

Telefon +43222/4030812

BELGIUM

ECO

Boerenkrijglaan 40

B-2260 Westerlo

Telex 72470

Telefax +3214/547862

Phone +3214/547863

ISRAEL

Polaris Electronics Ltd.

Kal Vahomer House

138 Weismanstr.

IL-44100 Kfar Saba

P.B. 107 Kfar Saba

Telex 9725952879

Phone +97252953171-2

Einführung

KVG, ein Profil

Technische

Einführung

Steckfassungen

für Quarze

Datenblatt für

Schwingquarze

Gehäuse

SMD-Gehäuse

XIII

Schwingquarze

HC-52/U

1.2

HC-35/U

1.4

HC-49/U

1.6

HC-50/U

1.8

HC-26/U

1.10

HC-51/U

1.12

HC-48/U

1.14

HC-27/U

1.16

Spezialquarze

Schwingquarze

mit großen

Toleranzen

2.2

Präzisions-

Schwingquarze

2.4

Quarzwandler

2.6

Monitorquarze

2.7

Temperatur-

Meßquarze

2.8

2.2

2.4

2.6

2.7

2.8

Introduction

KVG – The profile

II

Technical

introduction

IV

Crystal sockets

VIII

Data sheet for

crystal units

X

Crystal

enclosures

XII

SMD enclosures

XIII

Boîtiers de

quartz

XI

Boîtiers

CMS

XIII

Introduction

KVG – Le profile

II

Introduction

technique

IV

Embases pour

quartz

VIII

Spécification

quartz

XI

Boîtiers de

quartz

XII

Boîtiers CMS

XIII

Seite:

KVG – Ein Profil	II
Technische Einführung	IV
Steckfassungen für Quarze	VIII
Datenblatt für Schwingquarze	IX
Schwingquarz-Gehäuse	XII
SMD-Gehäuse	XIII

Page:

KVG – The profile	II
Technical introduction	IV
Crystal sockets	VIII
Data sheet for crystal units	X
Crystal enclosures	XII
SMD enclosures	XIII

Page:

KVG – Le profile	II
Introduction technique	IV
Embases pour quartz	VIII
Spécification quartz	XI
Boîtiers de quartz	XII
Boîtiers CMS	XIII

KVG. QUARTZ AT ITS BEST

Wenn Sie heute mit Telekommunikation, Meß- oder Fernwirktechnik zu tun haben, ist für Sie die Qualität eines Quarzes das Maß aller Dinge. Erfolg, Funktion und Sicherheit Ihrer Produkte, hängen von der Perfektion eines kleinen Bauteils ab. Machen Sie keine Kompromisse: Quarze der KVG zählen weltweit zur absoluten Spitzenklasse. Aus gutem Grund.

Zum Beispiel: An uns und unsere Produkte stellen wir zu jeder Zeit einen bedingungslosen Qualitätsanspruch. Das fängt bei der Entwicklung eines Produktes an und hört bei der Qualitätskontrolle noch lange nicht auf.

KVG. INNOVATIONS IN QUARTZ

Forschung und Entwicklung haben bei der KVG schon seit jeher einen hohen Stellenwert. Im Bereich der Quarzmeßtechnik haben wir Standards gesetzt, an denen sich unsere Mitbewerber orientieren – weltweit. Wenn nötig, entwickeln, konstruieren und produzieren wir das maßgeschneiderte Produkt für Ihren Anwendungsbereich – individuell für Sie.

KVG. WORKING TOGETHER FOR SUCCESS

Ganz gleich, ob Sie sich mit der Entwicklung eines Funkgerätes, eines Wettersatelliten oder

einer Raketensteuerung befassen – schon während der Entwicklungs- und Konstruktionsphase sind Sie bei uns an der richtigen Adresse. Sprechen Sie mit den Spezialisten der KVG – je eher, desto besser. Denn nur vereinte Kräfte erzielen das beste Ergebnis!

KVG. SELECTED TO BE THE BEST

Wenn Quarz ein Thema für Sie ist; wenn die Qualität eines Quarzes für Sie das Maß aller Dinge ist; wenn Sie die konstruktive Zusammenarbeit mit einem leistungsfähigen Partner schätzen; wenn Sie Wert auf individuelle Lösung ihrer Quarz-Probleme legen; wenn Sie morgen noch erfolgreicher sein wollen – dann sind wir Ihr Partner. KVG – von Anfang an.

KVG. QUARTZ AT ITS BEST

If you have to rely on telecommunication, measurement or telecontrol engineering in your every day life, then the quality of a crystal will be of immense importance. Function, safety and success of your products depend on the absolute perfection of one tiny component. So don't compromise: KVG crystals are the best of their kind - worldwide. And that has good reasons:

We are forever aiming at unconditional quality standards for ourselves and our products. It begins with the development of a product and goes on through to the end inspection; carried out by an independent quality control section. But it doesn't end there.

KVG. INNOVATIONS IN QUARTZ

Research and development have always been rated highly at KVG. This reflects in the standards we have set in crystal measuring techniques, which are used by our competitors and customers all over the world. If necessary, we will construct, test and produce your product according to your individual needs.

KVG. WORKING TOGETHER FOR SUCCESS

Whether you're concerned with the development of a radio, a weather satellite or even rocket control steering - KVG is the right address for you. Talk with the experts from KVG - the sooner the better - because only joined forces gain optimal results!

KVG. SELECTED TO BE THE BEST

If crystal products are something that interest you; whenever the quality of a crystal is of immense importance; if ever you appreciate the intensive and constructive cooperation with a powerful partner; whenever you value an individual answer to your crystal problems; and whenever you want to be even more successful tomorrow than today - then we're your partner. KVG - right from the start.

Technische Einführung

zum Katalog

KVG fertigt Schwingquarze (AT-Schnitt) im Bereich von 800 kHz bis 300 MHz. Diese werden in einer Vielzahl von Gehäusetypen geliefert.

Eine Übersicht der verschiedenen Gehäusetypen und Frequenzbereiche ist auf Seite XII dargestellt.

Der Frequenzbereich pro Gehäusetyp ist unterteilt in gleiche Fertigungsstufen und zusätzlich in Untergruppen mit verschiedenen Toleranzen von Abgleich und Temperaturgang. Jede Type ist mit XS und einer vierstelligen Nummer codiert.

Von den MIL-Gehäusen (z. B. HC-49/U) abweichen-de Sonderformen (dritter geerdeter Anschlußdraht, geänderte Kappenhöhe oder shock- und vibrations-festere Ausführungen – soweit möglich) werden mit dem entsprechenden Zusatz (–3–11 MM–S) bezeichnet.

Technical Introduction

How to use the catalogue

We manufacture AT-cut crystals in the range of 800 kHz to 300 MHz. These crystals can be supplied in several different case styles.

A survey on the different enclosure types and frequency ranges can be found on page XII.
The frequency range is divided into groups of similar fabrication severity and additionally into subgroups with different calibration and temperature tolerances. Each type is designated by XS and a 4-digit number.

Special enclosures which differ from the MIL-enclosures (e. g. HC 49/U with a third grounded wire, different height or with increased shock/vibration resistance – as far as possible) are designated by the corresponding addition (–3–11 MM–S).

Introduction technique

Concernant ce catalogue

Nous produisons des quartz en coupe AT dans une gamme s'étendant de 800 kHz à 300 MHz. Ils peuvent être livrés dans plusieurs différents boîtiers. Vous pouvez trouver également un aperçu de nos différents boîtiers et gammes de fréquences sur la page XII.

L'ensemble du spectre est divisé en groupes de fréquences qui correspondent à un processus de fabrication déterminé. Chaque groupe se sépare lui-même en sous-groupes qui se rapportent à des tolérances de calage et à des stabilités thermiques différentes. Ils reçoivent un code composé de XS suivi de 4 chiffres. Les boîtiers dérivés des types MIL (HC 49/U par exemple) reçoivent un code supplémentaire distinctif de leur particularité (même fil à la masse, hauteur de capot différente, contraintes mécaniques renforcées) –3–11 MM–S.

Quarze mit anderen abweichenden oder zusätzlichen Daten (Ersatzdaten, Temperaturgang, Lastkapazität oder Abgleichtoleranz) werden mit XSA und entsprechender Nummer bezeichnet.

Bei wiederkehrendem Bedarf nichtkatalogisierter Quarztypen wird empfohlen, eine eigene Spezifikation nach dem Muster von Seite IX zu erstellen oder von KVG eine XA-Spezifikation erstellen zu lassen.

Bei Bestellungen nach Katalog müssen folgende Daten angegeben werden:

- 1) XS... (Typenbezeichnung)
- 2) Quarzfrequenz in kHz oder MHz
- 3) Resonanzart: Serienresonanz oder Lastresonanz mit $C_L = \dots \pm 0,5 \text{ pF}$

Neben den Tabellenwerten können nachstehend beschriebene Angaben zu einem besseren Verständnis zwischen Hersteller und Anwender verhelfen.

Quarze nach MIL-Norm:

KVG liefert auch Quarze nach MIL-Norm.

Wir empfehlen, die vollständigen Datenblätter bei U.S. Army EC anzufordern.

Crystal units with different or additional data (motional parameters, temperature characteristics, load capacitance or calibration tolerance) are designated by XSA and the equivalent number.

Where the multiple use of non-standard crystal units is required we recommend to set up a separate specification according to the example of page X or KVG will set up an XA-specification.

When ordering crystal units please specify:

- 1) XS... (type designation)
- 2) Crystal frequency in kHz or MHz
- 3) Resonance mode: series resonance or load resonance with $C_L = \dots \pm 0,5 \text{ pF}$

Besides the tabulated technical data the following optional demands may become important for a full correlation between KVG and the customer.

Crystals according to MIL-specifications:

We also supply MIL-crystals and recommend to ask for complete data sheets at the U.S. Army EC.

Les quartz dont certaines caractéristiques (paramètres électriques, dérive thermique, capacité de charge ou tolérance de calage) diffèrent de celles des types XS sont dénommés XSA suivi de 4 chiffres.

Lorsque vous prévoyez de nous passer des commandes répétées d'un matériel non catalogué, nous vous recommandons d'établir votre propre spécification selon le modèle de la page XI ou de nous en confier la rédaction. Dans ce dernier cas, la référence du quartz sera XA....

Lorsque vous rédigez une commande de produit catalogue, n'oubliez pas que les indications suivantes nous sont indispensables:

- 1) XS... (désignation du type)
- 2) Fréquence du quartz en kHz ou MHz
- 3) Mode de résonance: série ou avec capacité de charge $C_L = \dots \pm 0,5 \text{ pF}$

Pour une meilleure compréhension, nous permettons de rappeler ci-dessous les définitions des principaux termes utilisés dans le domaine de la piezo-électricité.

Quartz selon caractéristiques normalisées:

Nous fournissons aussi des quartz selon normes MIL. Nous vous conseillons de vous reporter aux feuilles particulières des normes disponibles auprès de U.A. Army EC.

Belastung

In Anlehnung an Transistoroszillatoren werden Kata-logtypen mit 0,1 mW gemessen.

Ersatzdaten

Entsprechend der Zweipol-Ersatzschaltung eines Quarzes sind die Ersatzdaten:

- C₁ Dynamische Kapazität
- L₁ Dynamische Induktivität
- R₁ Dynamischer Verlustwiderstand
- C₀ Statische Kapazität
- Q Güte

Diese Daten haben einen relativ großen Streubereich und sind abhängig von der Frequenz, dem Oberton, dem Gehäuse sowie der Fertigungstechnologie.

Typische Daten und Grenzwerte sind bei den Kata-logtypen angegeben.

Level of drive

With reference to transistor oscillators the measurements are performed with 0,1 mW.

Equivalent parameters

Regarding the equivalent 2-port circuit the equivalent parameters of a crystal are:

- C₁ Motional Capacitance
- L₁ Motional Inductance
- R₁ Motional Resistance
- C₀ Static Capacitance
- Q Quality Factor

These figures vary widely with respect to frequency, overtone, enclosure and with respect to fabrication technology. Typical data and limits are specified for each catalogue type.

Niveau d'excitation

Comme le requiert la technologie des oscillateurs à transistors, nous mesurons les quartz XS... avec 0,1 mW.

Paramètres équivalents

Les paramètres du bipôle équivalent sont définis comme suit:

- C₁ Capacité dynamique
- L₁ Inductance dynamique
- R₁ Résistance dynamique
- C₀ Capacité statique
- Q Facteur de qualité

La tolérance sur ces paramètres est relativement grande, car ils dépendent de la fréquence, du mode partiel, du boîtier et de la technologie de fabrication. Les valeurs limites et typiques sont indiquées pour chaque type.

Temperaturgang der Frequenz

Der Temperaturgang von AT-Quarzen wird durch eine Parabel dritter Ordnung beschrieben, deren Wendepunkt zwischen + 25 °C und + 35 °C liegt. Durch Wahl des Schnittwinkels können die beiden Umkehrpunkte der Parabel so gelegt werden, daß sich eine minimale Frequenzabweichung über dem vorgegebenen Arbeitstemperaturbereich ergibt. Für genauere Untersuchungen stehen Grafiken zur Verfügung. Temperatur-Meßquarze haben im allgemeinen eine lineare Charakteristik (siehe Erläuterungen auf Seite 2.8).

Nebenresonanzen

Im allgemeinen wird das Verhältnis der Resonanzwiderstände von Neben- u. Hauptresonanz spezifiziert. Erwünscht sind Angaben über die verwendete Meßschaltung (z. B. PI-Netzwerk oder Meßbrücke) sowie über den Frequenzbereich der Nebenwellenforderung.

Alterung

Generell ist die Alterung der Quarzfrequenz eine logarithmische Funktion der Zeit. Zusätzlich sind Alterungsseinflüsse durch die Herstellungstechnologie und die Betriebsbedingungen gegeben. Typische Werte: Verschweißtes Quarzgehäuse 2,0-5 ppm/1. Jahr Glasgehäuse 0,5-2 ppm/1. Jahr

Schock und Vibration für AT-Quarze

Schock: Standard 100 g / 6 ms
Vibration: 10 – 500 Hz 1,5 mm ss, 10 g ss
 $\Delta F/F < 5 \text{ ppm}$, $\Delta R/R < 20\%$

Meßverfahren

Für sämtliche Messungen verwendet KVG die Meßmethode nach IEC 444 mit einem PI-Netzwerk. Das Meßverfahren ist in der «Technischen Information Schwingquarze» kurz beschrieben.

Bei nicht ausreichender Korrelation zu den genannten Meßverfahren kann der Abgleich und die Prüfung der Quarze mit Musteroszillatoren erfolgen, die der jeweiligen Anwendung entsprechen sollen.

Technische Information Schwingquarze

Entwurf von Quarzoszillatoren

Detaillierte Informationen für die Auswahl von Schwingquarzen und die Anwendung in Oszillatoren stellen wir Ihnen mit beiden KVG-Publikationen gerne zur Verfügung.

Frequency-temperature characteristic

The temperature characteristics of AT-cut crystals are determined by a 3rd order parabola. Their turning point is situated between + 25 °C and + 35 °C. By proper choice of the angle of cut the 2 turning points of the parabola can be determined in order to obtain a minimum total deviation of the crystal frequency over the specified temperature range. For a more detailed analysis special graphs are available. Crystal temperature sensors usually have a linear frequency-temperature characteristic (see page 2.8 for details).

Spurious response

Spurious response is generally specified as the ratio of resonance resistances of the spurious modes to the main mode. KVG must have detailed information about the test circuit (e.g. pi-network or measurement bridge) and about the frequency range of the spurious modes.

Aging

Generally the frequency aging characteristic of a quartz crystal is a logarithmic function of time. Moreover, the aging performance is affected by the fabrication technology and the environmental conditions. Typical values:

Welded crystal enclosures	2,0-5 ppm/1st year
Glass enclosures	0,5-2 ppm/1st year

Shock and vibration for AT-crystals

Shock: Standard 100 g / 6 ms
Vibration: 10 – 500 Hz 1,5 mm pp, 10 g pp
 $\Delta F/F < 5 \text{ ppm}$, $\Delta R/R < 20\%$

Measurement methods

For all measurements KVG uses the passive method according to IEC 444 with a pi-network. This method is briefly described in our «Technical Information Quartz Crystals».

If the correlation of the measurements is not proved, calibration and testing of the crystals can be carried out by means of reference oscillators which should correspond to the application.

Technical Information

Quartz Crystals

Design of Crystal Oscillators

More detailed information about the selection of crystals and their application in crystal oscillators is available upon request.

Relation fréquence/température

Les quartz en coupe AT possèdent une courbe qui est une parabole du 3ème degré dont le point d'inflexion se situe entre + 25 °C et + 35 °C. Le choix de l'angle de coupe permet de fixer la position des points d'inversion de manière à optimiser la dérive de fréquence sur la plage de température de service. Sur demande, nous pouvons vous fournir les graphiques correspondants.

Les capteurs de température possèdent généralement une courbe fréquence-température linéaire (voir page 2.8).

Résonances parasites

On spécifie en général le rapport des résistances de résonances de la raie principale et de la raie parasite sur une plage d'exploration donnée et dans un montage de mesure déterminé (à préciser). Il nous suffit de connaître la méthode de mesure (p.ex. banc de mesure en pi ou pont de mesure) ainsi que la gamme des résonances parasites.

Vieillissement

Le vieillissement de la fréquence d'un quartz est généralement une fonction logarithmique du temps. De plus, il dépend de la technologie de fabrication et des conditions d'emploi. Valeurs typiques:
boîtier soudure électrique 2,0-5 ppm la 1ère année
boîtier verre 0,5-2 ppm la 1ère année

Choc et vibration pour quartz AT

Choc: Standard 100 g / 6 ms
Vibration: 10 – 500 Hz 1,5 mm cc, 10 g cc
 $\Delta F/F < 5 \text{ ppm}$, $\Delta R/R < 20\%$

Méthodes de mesure

Pour toutes les mesures nous utilisons la méthode CEI 444 avec un banc de mesure en pi. La méthode de mesure est brièvement décrite dans notre publication «Information Technique Quartz». Pour le contrôle final des quartz on peut aussi utiliser des oscillateurs fournis par le client qui doivent correspondre à l'application réelle.

Information technique quartz

Information technique oscillateurs à quartz

Avec ces deux publications, nous mettons à votre disposition des informations précises permettant de choisir et d'employer au mieux les quartz qui vous sont nécessaires.

Steckfassungen für Quarze / Crystal sockets / Embases pour quartz

F01 (HC-48/U, HC-36/U, HC-6/U)

F02 (HC-48/U, HC-36/U, HC-6/U)

F05 (HC-50/U, HC-42/U, HC-25/U)

F06 (HC-50/U, HC-42/U, HC-25/U)

F08 (HC-48/U, HC-36/U, HC-6/U, HC-13/U)

F09 (HC-50/U, HC-42/U, HC-25/U)

Maße in mm (U.S.A.-Projektion)

Erdungsklemme

F10: HC-48/U, HC-36/U, HC-6/U, HC-13/U

Isolierplättchen

I 52-2, I 52-3, I 48-2, I 49-2, I 49-3, I 50-2, I 51-2

Dimensions in mm (U.S.A.-projection)

Grounding spring

F10: HC-48/U, HC-36/U, HC-6/U, HC-13/U

Insulating pads

I 52-2, I 52-3, I 48-2, I 49-2, I 49-3, I 50-2, I 51-2

Cotes en mm (projection U.S.A.)

Pince de masse

F10: HC-48/U, HC-36/U, HC-6/U, HC-13/U

Isolants pour quartz

Schwingquarz-Gehäuse / Crystal enclosures / Boîtiers de quartz

HC-52/U
5–300 MHz
Seite, page 1.2

HC-52-8 MM
5–300 MHz
Seite, page 1.2

HC-52-6 MM
15–300 MHz
Seite, page 1.2

HC-35/U
5–300 MHz
Seite, page 1.4

HC-35-5,5 MM
5–300 MHz
Seite, page 1.4

HC-49/U
2,4–300 MHz
Seite, page 1.6

HC-49-11 MM
2,4–300 MHz
Seite, page 1.6

HC-49-9 MM
5,2–300 MHz
Seite, page 1.6

HC-50/U
2,4–300 MHz
Seite, page 1.8

HC-50-11 MM
2,4–300 MHz
Seite, page 1.8

HC-26/U
3–300 MHz
Seite, page 1.10

HC-51/U
0,8–300 MHz
Seite, page 1.12

HC-48/U
0,8–300 MHz
Seite, page 1.14

HC-27/U
1–300 MHz
Seite, page 1.16

Darstellungen in natürlicher Größe (Europäische Projektion)

Enclosures in natural size (European projection)

Dessins à l'échelle 1/1 (projection européenne)

Entsprechende DIN-, IEC, NFC-Bezeichnungen, Sonderformen und Toleranzen auf entsprechender Seite.

Corresponding IEC, NFC-, DIN-designations, special enclosures and dimensions at corresponding pages.

Les désignation selon NFC, DIN, CEI ainsi que les variantes, les cotes et leurs tolérances figurent sur les pages de caractéristiques.

SMD-Gehäuse / SMD Enclosures / Boîtiers CMS

Quarzgehäuse
Crystal enclosure
Boîtier

HC-52-SMD

	a	b
HC-52-SMD	12,5 ± 0,2	8,7 ± 0,1
HC-52-8 MM-SMD	11,7 ± 0,2	7,9 ± 0,1
HC-52-6 MM-SMD	9,7 ± 0,2	5,9 ± 0,1

Anschlußbild für
Contact pads for
Branchement

HC-52-SMD

x
11,2
10,4
8,4

Quarzgehäuse
Crystal enclosure
Boîtier

HC-49-SMD

	a	b
HC-49-SMD	17,8 ± 0,2	13,1 ± 0,1
HC-49-11 MM-SMD	15,9 ± 0,2	11,2 ± 0,1
HC-49-9 MM-SMD	14,4 ± 0,2	9,5 ± 0,1

Anschlußbild für
Contact pads for
Branchement

HC-49-SMD

x
16,8
14,9
13,2

Alle Angaben in mm / All dimensions in mm / Toutes dimensions en mm

Quarzanschlüsse
Pins
Fils

Masseanschluß
Ground
Mise de la masse

Quarzanschlüsse
Pins
Fils

Masseanschluß
Ground
Mise de la masse

Seite:

Schwingquarze

Gehäuse	Andere Bezeichnungen	
HC-52 / U	HC-45 / U	1.2
HC-35 / U	TO-5	1.4
HC-49 / U	HC-18 / U, HC-43 / U	1.6
HC-50 / U	HC-25 / U, HC-42 / U	1.8
HC-26 / U	—	1.10
HC-51 / U	HC-33 / U, HC-47 / U	1.12
HC-48 / U	HC-6 / U, HC-36 / U	1.14
HC-27 / U	—	1.16

Page:

Quartz crystal units

Enclosures	Other nomenclatures	
HC-52 / U	HC-45 / U	1.2
HC-35 / U	TO-5	1.4
HC-49 / U	HC-18 / U, HC-43 / U	1.6
HC-50 / U	HC-25 / U, HC-42 / U	1.8
HC-26 / U	—	1.10
HC-51 / U	HC-33 / U, HC-47 / U	1.12
HC-48 / U	HC-6 / U, HC-36 / U	1.14
HC-27 / U	—	1.16

Page:

Quartz

Boîtiers	Autres dénominations	
HC-52 / U	HC-45 / U	1.2
HC-35 / U	TO-5	1.4
HC-49 / U	HC-18 / U, HC-43 / U	1.6
HC-50 / U	HC-25 / U, HC-42 / U	1.8
HC-26 / U	—	1.10
HC-51 / U	HC-33 / U, HC-47 / U	1.12
HC-48 / U	HC-6 / U, HC-36 / U	1.14
HC-27 / U	—	1.16

HC- 52/U

SCHWINGQUARZE
QUARTZ CRYSTAL UNITS
QUARTZ

AT-Schnitt
AT-Cut
Coupe AT

5-300 MHz
5-300 MHz
5-300 MHz

M 1 : 1

M 3 : 2

	min. (mm)	nom. (mm)	max. (mm)
A	—	—	8,26
B	—	—	3,70
C HC-52/U	—	—	8,90
C HC-52-8 MM	—	—	8,00
C HC-52-6 MM	—	—	6,00
H	3,60	3,75	3,90
K	0,40	—	0,48
L	12,70	—	—

DIN 45110 : N4

IEC 122 - 3: EB

NFC 93 - 601: n° 17

MIL-H-10056: HC-52/U

Verschweißtes Metallgehäuse mit Schutzgasfüllung und Anschlußdrähten.

Welded metal enclosure (inert atmosphere) with wire leads.

Boîtier métallique rempli de gaz inert, soudé, sortie par fils.

Oberton	Frequenzbereich	Temperaturgang der Frequenz $\Delta f/f_0$ im Bereich	Abgleich-toleranz	Type	Höhe 8 mm	Höhe 6 mm
Overtone	Frequency range	Temperature stability $\Delta f/f_0$ Temp. range	Calibration tolerance	Type	Height 8 mm	Height 6 mm
Partiel	Gamme de fréquence	Variation de fréquence $\Delta f/f_0$	Tolérance de calage Gamme de temp.	Type	Hauteur 8 mm	Hauteur 6 mm
		$\pm 50 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7101	XS 7101A
		$\pm 25 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7102	XS 7102A
		$\pm 20 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7103	XS 7103A
1	5...10 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7104	XS 7104A
		$\pm 7 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7106	XS 7106A
		$\pm 2 \times 10^{-6}$	Norm.Temp. $\pm 5^\circ\text{C}$)	$\pm 10 \times 10^{-6}$	XS 7105	XS 7105A
		$\pm 50 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7101	XS 7101B ²⁾
		$\pm 25 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7102	XS 7102B ²⁾
		$\pm 20 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7103	XS 7103B ²⁾
1	10...35 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7104	XS 7104B ²⁾
		$\pm 7 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7106	XS 7106B ²⁾
		$\pm 5 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7107	XS 7107B ²⁾
		$\pm 2 \times 10^{-6}$	Norm.Temp. $\pm 5^\circ\text{C}$)	$\pm 10 \times 10^{-6}$	XS 7105	XS 7105B ²⁾
		$\pm 50 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7111	XS 7111A
		$\pm 25 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7112	XS 7112A
		$\pm 20 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7113	XS 7113A
3	25...100 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7114	XS 7114A
		$\pm 7 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7116	XS 7116A
		$\pm 5 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7117	XS 7117A
		$\pm 2 \times 10^{-6}$	Norm.Temp. $\pm 5^\circ\text{C}$)	$\pm 10 \times 10^{-6}$	XS 7115	XS 7115A
		$\pm 50 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7121	XS 7121A
		$\pm 25 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7122	XS 7122A
		$\pm 20 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7123	XS 7123A
5	60...160 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7124	XS 7124A
		$\pm 7 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7126	XS 7126A
		$\pm 5 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7127	XS 7127A
		$\pm 2 \times 10^{-6}$	Norm.Temp. $\pm 5^\circ\text{C}$)	$\pm 10 \times 10^{-6}$	XS 7125	XS 7125A
		$\pm 50 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7131	XS 7131A
		$\pm 25 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7132	XS 7132A
		$\pm 20 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7133	XS 7133A
7	110...210 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7134	XS 7134A
		$\pm 7 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7136	XS 7136A
		$\pm 5 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7137	XS 7137A
		$\pm 2 \times 10^{-6}$	Norm.Temp. $\pm 5^\circ\text{C}$)	$\pm 10 \times 10^{-6}$	XS 7135	XS 7135A
		$\pm 50 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7141	XS 7141A
		$\pm 25 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7142	XS 7142A
		$\pm 20 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7143	XS 7143A
9	150...300 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7144	XS 7144A
		$\pm 7 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7146	XS 7146A
		$\pm 5 \times 10^{-6}$	$-20^\circ\text{...}+70^\circ\text{C}$	$\pm 10 \times 10^{-6}$	XS 7147	XS 7147A
		$\pm 2 \times 10^{-6}$	Norm.Temp. $\pm 5^\circ\text{C}$)	$\pm 10 \times 10^{-6}$	XS 7145	XS 7145A

¹⁾ Nom. Temp. = Nenntemperatur für Thermostatbetrieb nach Auftrag.

²⁾ HC-52-6 MM: erst ab 15 MHz.

¹⁾ Nom. Temp. = Nominal temperature for oven application to be given with the order.

²⁾ HC-52-6 MM: starting with 15 MHz.

¹⁾ Nom. Temp. = Température nominale pour fonctionnement en enceinte thermostatée avec la commande.

²⁾ HC-52-6 MM: à partir de 15 MHz.

Standard-Resonanz für:	Grundton-Quarze:	Lastresonanz mit $C_1 = 30 \pm 0,5 \text{ pF}$	Oberton-Quarze: Serienresonanz
Standard resonance for:	Fundamental crystals:	load resonance with $C_1 = 30 \pm 0,5 \text{ pF}$	Overtone crystals: series mode
Résonance standard pour:	Quartz fondamental:	résonance avec capacité de charge de $C_1 = 30 \pm 0,5 \text{ pF}$	Quartz partiel: résonance série

RESONANZWIDERSTAND

MOTIONAL RESISTANCE

RÉSISTANCE À LA RÉSONANCE:

DYNAMISCHE KAPAZITÄT

MOTIONAL CAPACITY

CAPACITÉ DYNAMIQUE

STATISCHE KAPAZITÄT / STATIC CAPACITY / CAPACITÉ STATIQUE

5...10 MHz: $C_0 = 2,2 \pm 0,8 \text{ pF}$ 10...300 MHz: $C_0 = 3,0 \pm 1,0 \text{ pF}$

ANMERKUNGEN

REMARKS

REMARMES

Quarze mit anderen Toleranzen auf Anfrage. Weitere Daten siehe Technische Information oder auf Anfrage.

Modifikationen:

HC-52-3, HC-52-8 MM-3, HC-52-6 MM-3: 3. Anschlußdraht, geerdet.

HC-52-S, HC-52-8 MM-S: 3-Punkt-Montage für extreme Schock- und Vibrationsfestigkeit.

HC-52-3-S, HC-52-8 MM-3-S: 3-Punkt-Montage für extreme Schock- und Vibrationsfestigkeit, 3. Anschlußdraht geerdet.

SMD-Ausführungen: Seite XIII

Crystal units with different tolerances upon request. Further data upon request or see technical information.

Modifications:

HC-52-3, HC-52-8 MM-3, HC-52-6 MM-3: 3rd wire (ground).

HC-52-S, HC-52-8 MM-S: 3-point-mounting for exposure to extreme accelerations (shock and vibration).

HC-52-3-S, HC-52-8 MM-3-S: 3-point-mounting for exposure to extreme accelerations (shock and vibration),

3rd wire (ground).

SMD-Versions: Page XIII

Quartz à tolérance différentes sur demande. Autres caractéristiques sur demande ou en vous reportant à notre fascicule «Informations Techniques».

Variantes:

HC-52-3, HC-52-8 MM-3, HC-52-6 MM-3: fil central à la masse.

HC-52-S, HC-52-8 MM-S: Montage renforcé (3 points) pour sévérité mécanique élevée.

HC-52-3-S, HC-52-8 MM-3-S: Montage renforcé (3 points) pour sévérité mécanique élevée. Fil central à la masse.

Variantes SMD: Page XIII

HC-35/U

SCHWINGQUARZE
QUARTZ CRYSTAL UNITS
QUARTZ

AT-Schnitt

5-300 MHz

AT-Cut

5-300 MHz

Coupe AT

5-300 MHz

M 1 : 1

	min. (mm)	nom. (mm)	max. (mm)
A	—	—	10,70
C HC-35/U	—	—	6,70
C HC-35-5,5 MM	—	—	5,50
H	4,83	5,08	5,33
K	0,40	—	0,48
L	12,70	—	—

DIN 45110 : T1A

IEC 122 – 3: CK

NFC 93 – 601: n° 12A

MIL-H-10056: HC-35/U

Verschweißtes Metallgehäuse mit Schutzgasfüllung und Anschlußdrähten.

Welded metal enclosure (inert atmosphere) with wire leads.

Boîtier métallique rempli de gaz inerte, soudé, sortie par fils.

Oberton	Frequenzbereich	Temperaturgang der Frequenz $\Delta f/f_0$ im Bereich	Abgleich-toleranz	Type	Höhe 5,5 mm
Overtone	Frequency range	Temperature stability $\Delta f/f_0$ Temp. range	Calibration tolerance	Type	Height 5,5 mm
Partiel	Gamme de fréquence	Variation de fréquence $\Delta f/f_0$ Gamme de temp.	Tolérance de calage	Type	Hauteur 5,5 mm
1	5...10 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	T0 7101 T0 7102 T0 7103A T0 7104A T0 7106A T0 7105A	T0 7101A T0 7102A T0 7103A T0 7104A T0 7106A T0 7105A
1	10...30 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	T0 7101 T0 7102 T0 7103A T0 7104A T0 7106A T0 7107A T0 7105	T0 7101A T0 7102A T0 7103A T0 7104A T0 7106A T0 7107A T0 7105A
3	25...90 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	T0 7111 T0 7112 T0 7113A T0 7114A T0 7116A T0 7117A T0 7115A	T0 7111A T0 7112A T0 7113A T0 7114A T0 7116A T0 7117A T0 7115A
5	60...150 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	T0 7121 T0 7122 T0 7123A T0 7124A T0 7126A T0 7127A T0 7125	T0 7121A T0 7122A T0 7123A T0 7124A T0 7126A T0 7127A T0 7125A
7	110...210 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	T0 7131 T0 7132 T0 7133A T0 7134A T0 7136A T0 7137A T0 7135	T0 7131A T0 7132A T0 7133A T0 7134A T0 7136A T0 7137A T0 7135A
9	150...300 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	T0 7141 T0 7142 T0 7143 T0 7144A T0 7146 T0 7147 T0 7145	T0 7141A T0 7142A T0 7143A T0 7144A T0 7146A T0 7147A T0 7145A

¹⁾ Nom. Temp. = Nenntemperatur für Thermostatbetrieb nach Auftrag.

¹⁾ Nom. Temp. = Nominal temperature for oven application to be given with the order.

¹⁾ Nom. Temp. = Température nominale pour fonctionnement en enceinte thermostatée avec la commande.

Standard-Resonanz für: Grundton-Quarze: Lastresonanz mit $C_L = 30 \pm 0,5 \text{ pF}$
 Standard resonance for: Fundamental crystals: load resonance with $C_L = 30 \pm 0,5 \text{ pF}$
 Résonance standard pour: Quartz fondamental: résonance avec capacité de charge de $C_L = 30 \pm 0,5 \text{ pF}$

Oberton-Quarze: Serienresonanz
 Overtone crystals: series mode
 Quartz partiell: résonance série

RESONANZWIDERSTAND

MOTIONAL RESISTANCE

RÉSISTANCE À LA RÉSONANCE:

$R_1 [\Omega] \text{ max.}$

DYNAMISCHE KAPAZITÄT

MOTIONAL CAPACITY

CAPACITÉ DYNAMIQUE

$C_1 [fF] \text{ typ.}$

STATISCHE KAPAZITÄT / STATIC CAPACITY / CAPACITÉ STATIQUE

5...10 MHz: $C_0 = 2,2 \pm 0,8 \text{ pF}$ 10...300 MHz: $C_0 = 3,0 \pm 1,0 \text{ pF}$

ANMERKUNGEN

REMARKS

REMARQUES

Quarze mit anderen Toleranzen auf Anfrage. Weitere Daten siehe Technische Information oder auf Anfrage.

Crystal units with different tolerances upon request. Further data upon request or see technical information.

Quartz à tolérances différentes sur demande. Autres caractéristiques sur demande ou en vous reportant à notre fascicule «Informations Techniques».

H C - 49/U

SCHWINGQUARZE
QUARTZ CRYSTAL UNITS
QUARTZ

AT-Schnitt **2,4-300 MHz**
AT-Cut **2,4-300 MHz**
Coupe AT **2,4-300 MHz**

M 1 : 1

M 1 : 1

	min. (mm)	nom. (mm)	max. (mm)
A	—	—	11,20
B	—	—	5,00
C HC-49/U	—	—	13,60
C HC-49.11 MM	—	—	11,50
C HC-49.9 MM	—	—	9,70
H	4,67	4,90	5,08
K	0,40	—	0,48
L	12,70	—	—

DIN 45110: M4

IEC 122 - 3: DP

NFC 93 - 601: n° 5

MIL-H-10056: HC-49/U

Verschweißtes Metallgehäuse mit Schutzgasfüllung und Anschlußdrähten.

Welded metal enclosure (inert atmosphere) with wire leads.

Boîtier métallique rempli de gaz inerte, soudé, sortie par fils.

Oberton	Frequenzbereich	Temperaturgang der Frequenz $\Delta f/f_0$ im Bereich	Abgleich-toleranz	Type	Höhe 11 mm	Höhe 9 mm
Overtone	Frequency range	Temperature stability $\Delta f/f_0$ Temp. range	Calibration tolerance	Type	Height 11 mm	Height 9 mm
Partiel	Gamme de fréquence	Variation de fréquence $\Delta f/f_0$	Tolérance de calage Gamme de temp.	Type	Hauteur 11 mm	Hauteur 9 mm
		$\pm 50 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2701A	XS 2701B
		$\pm 25 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2702A	XS 2702B
		$\pm 20 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2703A	XS 2703B
1	2,4...5,2 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2704A	XS 2704B
		$\pm 7 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2706A	XS 2706B
		$\pm 2 \times 10^{-6}$	Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$	XS 2705A	XS 2705B
		$\pm 50 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2701	XS 2701B
		$\pm 25 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2702	XS 2702C
		$\pm 20 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2703	XS 2703C
1	5,2...10 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2704	XS 2704B
		$\pm 7 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2706	XS 2706B
		$\pm 5 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2707	XS 2707B
		$\pm 2 \times 10^{-6}$	Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$	XS 2705	XS 2705B
		$\pm 50 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2801	XS 2801B
		$\pm 25 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2802	XS 2802B
		$\pm 20 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2803	XS 2803C
1	10...30 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2804	XS 2804B
		$\pm 7 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2806	XS 2806B
		$\pm 5 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2807	XS 2807B
		$\pm 2 \times 10^{-6}$	Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$	XS 2805	XS 2805B
		$\pm 50 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2811	XS 2811B
		$\pm 25 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2812	XS 2812B
		$\pm 20 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2813	XS 2813C
3	20...100 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2814	XS 2814B
		$\pm 7 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2816	XS 2816B
		$\pm 5 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2817	XS 2817B
		$\pm 2 \times 10^{-6}$	Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$	XS 2815	XS 2815B
		$\pm 50 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2901	XS 2901B
		$\pm 25 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2902	XS 2902B
		$\pm 20 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2903	XS 2903C
5	50...160 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2904	XS 2904B
		$\pm 7 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2906	XS 2906B
		$\pm 5 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2907	XS 2907B
		$\pm 2 \times 10^{-6}$	Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$	XS 2905	XS 2905B
		$\pm 50 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 3001	XS 3001B
		$\pm 25 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 3002	XS 3002B
		$\pm 20 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 3003	XS 3003C
7	110...210 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 3004	XS 3004B
		$\pm 7 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 3006	XS 3006B
		$\pm 5 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 3007	XS 3007B
		$\pm 2 \times 10^{-6}$	Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$	XS 3005	XS 3005B
		$\pm 50 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 3101	XS 3101B
		$\pm 25 \times 10^{-6}$	$-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 3102	XS 3102B
		$\pm 20 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 3103	XS 3103C
9	150...300 MHz	$\pm 10 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 3104	XS 3104B
		$\pm 7 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 3106	XS 3106B
		$\pm 5 \times 10^{-6}$	$-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 3107	XS 3107B
		$\pm 2 \times 10^{-6}$	Nom.Temp. $\pm 5^\circ \text{C}^{\dagger}$	$\pm 10 \times 10^{-6}$	XS 3105	XS 3105B

¹⁾ Nom. Temp. = Nenntemperatur für Thermostatbetrieb nach Auftrag.

¹⁾ Nom. Temp. = Nominal temperature for oven application to be given with the order.

¹⁾ Nom. Temp. = Température nominale pour fonctionnement en enceinte thermostatée avec la commande.

Standard-Resonanz für: Grundton-Quarze:	Lastresonanz mit $C_L = 30 \pm 0,5 \text{ pF}$	Oberton-Quarze: Serienresonanz
Standard resonance for: Fundamental crystals:	load resonance with $C_L = 30 \pm 0,5 \text{ pF}$	Overtone crystals: series mode
Résonance standard pour: Quartz fondamental:	résonance avec capacité de charge de $C_L = 30 \pm 0,5 \text{ pF}$	Quartz partiel: résonance série

RESONANZWIDERSTAND

MOTIONAL RESISTANCE

RÉSISTANCE À LA RÉSONANCE:

$R_1 [\Omega]$ max.

DYNAMICHE KAPAZITÄT

MOTIONAL CAPACITY

CAPACITÉ DYNAMIQUE

$C_1 [fF]$ typ.

STATISCHE KAPAZITÄT / STATIC CAPACITY / CAPACITÉ STATIQUE

$C_0 = 7 \text{ pF}$ max.

ANMERKUNGEN

REMARKS

REMARMES

Quarze mit anderen Toleranzen auf Anfrage. Weitere Daten siehe Technische Information oder auf Anfrage.

Sondergehäuse:

HC-49-3, HC-49-11 MM-3, HC-49-9 MM-3: 3. Anschlußdraht, geerdet.

HC-49-S, HC-49-11 MM-S: 3-Punkt-Montage für extreme Schock- und Vibrationsfestigkeit.

HC-49-3-S, HC-49-11 MM-3 S: 3-Punkt-Montage für extreme Schock- und Vibrationsfestigkeit, 3. Anschlußdraht, geerdet.

SMD-Ausführungen: Seite XIII

Crystal units with different tolerances upon request. Further data upon request or see technical information.

Special Enclosures:

HC-49-3, HC-49-11 MM-3, HC-49-9 MM-3: 3rd wire (ground).

HC-49-S, HC-49-11 MM-S: 3-point-mounting for exposure to extreme accelerations (shock and vibration).

HC-49-3-S, HC-49-11 MM-3 S: 3-point-mounting for exposure to extreme accelerations (shock and vibration),

3rd wire (ground).

SMD-Versions: Page XIII

Quartz à tolérances différentes sur demande. Autres caractéristiques sur demande ou en vous reportant à notre fascicule «Informations Techniques».

Boîtiers spéciaux:

HC-49-3, HC-49-11 MM-3, HC-49-9 MM-3: Fil central à la masse.

HC-49-S, HC-49-11 MM-S: Montage renforcé (3 points) pour sévérité mécanique élevée.

HC-49-3-S, HC-49-11 MM-3 S: Montage renforcé (3 points) pour sévérité mécanique élevée, fil central à la masse.

Variétés SMD: Page XIII

HC- 50/U		SCHWINGQUARZE QUARTZ CRYSTAL UNITS QUARTZ	AT-Schnitt AT-Cut	2,4-300 MHz 2,4-300 MHz Coupe AT	2,4-300 MHz 2,4-300 MHz 2,4-300 MHz
Oberton	Frequenzbereich	Temperaturgang der Frequenz $\Delta f/f_0$ im Bereich	Abgleich-toleranz	Type	Höhe 11 mm
Overtone	Frequency range	Temperature stability $\Delta f/f_0$ Temp. range	Calibration tolerance	Type	Height 11 mm
Partiel	Gamme de fréquence	Variation de fréquence $\Delta f/f_0$ Gamme de temp.	Tolérance de calage	Type	Hauteur 11 mm
		$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2201	XS 2201A
		$\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2202	XS 2202A
		$\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2203	XS 2203A
1	2,4...5,2 MHz	$\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2204	XS 2204A
		$\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2206	XS 2206A
		$\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$	XS 2205	XS 2205A
		$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2211	XS 2211A
		$\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2212	XS 2212A
		$\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2213	XS 2213A
1	5,2...10 MHz	$\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2214	XS 2214A
		$\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2216	XS 2216A
		$\pm 5 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2217	XS 2217A
		$\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$	XS 2215	XS 2215A
		$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2301	XS 2301A
		$\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2302	XS 2302A
		$\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2303	XS 2303A
1	10...35 MHz	$\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2304	XS 2304A
		$\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2306	XS 2306A
		$\pm 5 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2307	XS 2307A
		$\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$	XS 2305	XS 2305A
		$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2401	XS 2401A
		$\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2402	XS 2402A
		$\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2403	XS 2403A
3	20...100 MHz	$\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2404	XS 2404A
		$\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2406	XS 2406A
		$\pm 5 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2407	XS 2407A
		$\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$	XS 2405	XS 2405A
		$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2501	XS 2501A
		$\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2502	XS 2502A
		$\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2503	XS 2503A
5	50...160 MHz	$\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2504	XS 2504A
		$\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2506	XS 2506A
		$\pm 5 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2507	XS 2507A
		$\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$	XS 2505	XS 2505A
		$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2601	XS 2601A
		$\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2602	XS 2602A
		$\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2603	XS 2603A
7	110...210 MHz	$\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2604	XS 2604A
		$\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2606	XS 2606A
		$\pm 5 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2607	XS 2607A
		$\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$	XS 2605	XS 2605A
		$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2601	XS 2601A
		$\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2602	XS 2602A
		$\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2603	XS 2603A
		$\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2604	XS 2604A
		$\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2606	XS 2606A
		$\pm 5 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2607	XS 2607A
		$\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$	XS 2605	XS 2605A
		$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2611	XS 2611A
		$\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2612	XS 2612A
		$\pm 20 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2613	XS 2613A
9	150...300 MHz	$\pm 10 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2614	XS 2614A
		$\pm 7 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2616	XS 2616A
		$\pm 5 \times 10^{-6}$ $-20^\circ \dots +70^\circ \text{C}$	$\pm 10 \times 10^{-6}$	XS 2617	XS 2617A
		$\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$	XS 2615	XS 2615A

⁽¹⁾) Nom. Temp. = Nenntemperatur für Thermostatbetrieb nach Auftrag.

⁽¹⁾) Nom. Temp. = Nominal temperature for oven application to be given with the order.

⁽¹⁾) Nom. Temp. = Température nominale pour fonctionnement en enceinte thermostatée avec la commande.

	min. (mm)	nom. (mm)	max. (mm)
A	—	—	11,20
B	—	—	5,00
C HC-50/U	—	—	13,60
C HC-50-11 MM	—	—	11,50
H	4,67	4,90	5,08
K	0,95	—	1,07
L	5,67	—	—

DIN 45110: M3

IEC 122 - 3: DQ

NFC 93 - 601: n° 9

MIL-H-10056: HC-50/U

Verschweißtes Metallgehäuse mit Schutzgasfüllung und Anschlußstiften.

Steckfassungen F05, F06, F09 (Seite VIII).

Welded metal enclosure (inert atmosphere) with pins.

Crystal sockets F05, F06, F09 (Page VIII).

Boîtier métallique rempli de gaz inerte, soudé, sorties par broches.

Conviene aux embases F05, F06, F09 (Page VIII).

Standard-Resonanz für: Grundton-Quarze: Lastresonanz mit $C_L = 30 \pm 0,5 \text{ pF}$

Oberton-Quarze: Serienresonanz

Standard resonance for: Fundamental crystals: load resonance with $C_L = 30 \pm 0,5 \text{ pF}$

Overtone crystals: series mode

Résonance standard pour: Quartz fondamental: résonance avec capacité de charge de $C_L = 30 \pm 0,5 \text{ pF}$

Quartz partiel: résonance série

RESONANZWIDERSTAND

MOTIONAL RESISTANCE

RÉSISTANCE À LA RÉSONANCE:

$R_1 [\Omega] \text{ max.}$

DYNAMISCHE KAPAZITÄT

MOTIONAL CAPACITY

CAPACITÉ DYNAMIQUE

$C_1 [fF] \text{ typ.}$

STATISCHE KAPAZITÄT / STATIC CAPACITY / CAPACITÉ STATIQUE

$C_0 = 7 \text{ pF} \text{ max.}$

ANMERKUNGEN

REMARKS

REMARMES

Quarze mit anderen Toleranzen auf Anfrage. Weitere Daten siehe Technische Information oder auf Anfrage.

Sondergehäuse:

HC-50-S, HC-50-11 MM-S: 3-Punkt-Montage für extreme Schock- und Vibrationsfestigkeit.

Crystal units with different tolerances upon request. Further data upon request or see technical information.

Special Enclosures:

HC-50-S, HC-50-11 MM-S: 3-point-mounting for exposure to extreme accelerations (shock and vibration).

Quartz à tolérances différentes sur demande. Autres caractéristiques sur demande ou en vous reportant à notre fascicule «Informations Techniques».

Boîtiers spéciaux:

HC-50-S, HC-50-11 MM-S: Montage renforcé (3 point) pour sévérité mécanique élevée.

SCHWINGQUARZE
QUARTZ CRYSTAL UNITS
QUARTZ

AT-Schnitt **3-300 MHz**
AT-Cut **3-300 MHz**
Coupe AT **3-300 MHz**

M 1 : 1

M 1 : 1

	min. (mm)	nom. (mm)	max. (mm)
A	—	—	11,05
B	—	—	4,70
C	—	—	13,46
H	4,67	4,90	5,08
K	0,40	—	0,48
L	12,70	—	—

DIN 45110: R2A

IEC 122 - 3: CY

NFC 93 - 601: n° 10

MIL-H-10056: HC-26/U

Evakuiertes Glasgehäuse mit Anschlußdrähten.
Schwingquarze mit Alterung $\pm 1 \times 10^{-6}$ /Jahr.

Vacuum-sealed glass enclosure with wire leads.
Quartz crystal units with aging $\pm 1 \times 10^{-6}$ /year.

Quartz sous vide boîtier verre, sortie par fils.
Quartz avec vieillissement $\pm 1 \times 10^{-6}$ /an.

Oberton	Frequenzbereich	Temperaturgang der Frequenz $\Delta f/f_0$	im Bereich	Abgleich-toleranz	Type
Overtone	Frequency range	Temperature stability $\Delta f/f_0$	Temp. range	Calibration tolerance	Type
Partiel	Gamme de fréquence	Variation de fréquence $\Delta f/f_0$	Gamma de temp.	Tolérance de calage	Type
1	3...5,2 MHz	$\pm 50 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3501C
		$\pm 25 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3502C
		$\pm 20 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3503C
		$\pm 10 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3504C
		$\pm 7 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3506C
		$\pm 2 \times 10^{-6}$	Nom.Temp. ± 5 °C ¹⁾	$\pm 10 \times 10^{-6}$	XS 3505C
		$\pm 50 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3511C
		$\pm 25 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3512C
		$\pm 20 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3513C
1	5,2...10 MHz	$\pm 10 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3514C
		$\pm 7 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3516C
		$\pm 5 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3517C
		$\pm 2 \times 10^{-6}$	Nom.Temp. ± 5 °C ¹⁾	$\pm 10 \times 10^{-6}$	XS 3515C
		$\pm 50 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3601C
		$\pm 25 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3602C
		$\pm 20 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3603C
1	10...35 MHz	$\pm 10 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3604C
		$\pm 7 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3606C
		$\pm 5 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3607C
		$\pm 2 \times 10^{-6}$	Nom.Temp. ± 5 °C ¹⁾	$\pm 10 \times 10^{-6}$	XS 3605C
		$\pm 50 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3701C
		$\pm 25 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3702C
		$\pm 20 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3703C
3	20...100 MHz	$\pm 10 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3704C
		$\pm 7 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3706C
		$\pm 5 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3707C
		$\pm 2 \times 10^{-6}$	Nom.Temp. ± 5 °C ¹⁾	$\pm 10 \times 10^{-6}$	XS 3705C
		$\pm 50 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3801C
		$\pm 25 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3802C
		$\pm 20 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3803C
5	50...160 MHz	$\pm 10 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3804C
		$\pm 7 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3806C
		$\pm 5 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3807C
		$\pm 2 \times 10^{-6}$	Nom.Temp. ± 5 °C ¹⁾	$\pm 10 \times 10^{-6}$	XS 3805C
		$\pm 50 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3901C
		$\pm 25 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3902C
		$\pm 20 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3903C
7	110...210 MHz	$\pm 10 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3904C
		$\pm 7 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3906C
		$\pm 5 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3907C
		$\pm 2 \times 10^{-6}$	Nom.Temp. ± 5 °C ¹⁾	$\pm 10 \times 10^{-6}$	XS 3905C
		$\pm 50 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3911C
		$\pm 25 \times 10^{-6}$	-55°...+105 °C	$\pm 10 \times 10^{-6}$	XS 3912C
		$\pm 20 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3913C
9	150...300 MHz	$\pm 10 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3914C
		$\pm 7 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3916C
		$\pm 5 \times 10^{-6}$	-20°...+ 70 °C	$\pm 10 \times 10^{-6}$	XS 3917C
		$\pm 2 \times 10^{-6}$	Nom.Temp. ± 5 °C ¹⁾	$\pm 10 \times 10^{-6}$	XS 3915C

¹⁾) Nom. Temp. = Nenntemperatur für Thermostatbetrieb nach Auftrag.

¹⁾) Nom. Temp. = Nominal temperature for oven application to be given with the order.

¹⁾) Nom. Temp. = Température nominale pour fonctionnement en enceinte thermostatée avec la commande.

Standard-Resonanz für: Grundton-Quarze: Lastresonanz mit $C_L = 30 \pm 0,5 \text{ pF}$
 Standard resonance for: Fundamental crystals: load resonance with $C_L = 30 \pm 0,5 \text{ pF}$
 Résonance standard pour: Quartz fondamental: résonance avec capacité de charge de $C_L = 30 \pm 0,5 \text{ pF}$

Oberton-Quarze: Serienresonanz
 Overtone crystals: series mode
 Quartz partiell: résonance série

RESONANZWIDERSTAND

MOTIONAL RESISTANCE

RÉSISTANCE À LA RÉSONNANCE:

DYNAMISCHE KAPAZITÄT

MOTIONAL CAPACITY

CAPACITÉ DYNAMIQUE

STATISCHE KAPAZITÄT / STATIC CAPACITY / CAPACITÉ STATIQUE

$C_0 = 7 \text{ pF max.}$

ANMERKUNGEN

REMARKS

REMARMES

Quarze mit anderen Toleranzen auf Anfrage. Weitere Daten siehe Technische Information oder auf Anfrage.

Crystal units with different tolerances upon request. Further data upon request or see technical information.

Quartz à tolérances différentes sur demande. Autres caractéristiques sur demande ou en vous reportant à notre fascicule «Informations Techniques».

**HC-
51/U** SCHWINGQUARZE
QUARTZ CRYSTAL UNITS
QUARTZ

AT-Schnitt 0,8-300 MHz
AT-Cut 0,8-300 MHz
Coupe AT 0,8-300 MHz

	min. (mm)	nom. (mm)	max. (mm)
A	-	-	19,60
B	-	-	9,30
C	-	-	19,80
H	12,14	12,35	12,55
K	0,70	-	0,90
L	12,70	-	-

DIN 45110: K6B

IEC 122 - 3: DZ

NFC 93 - 601: n° 2A

MIL-H-10056: HC-51/U

Verschweißtes Metallgehäuse mit Schutzgasfüllung und Anschlußdrähten.

Welded metal enclosure (inert atmosphere) with wire leads.

Boîtier métallique empli de gaz inerte, soudé, sorti par fils.

Oberton	Frequenzbereich	Temperaturlang der Frequenz $\Delta f/f_0$ im Bereich	Abgleich-toleranz	Type
Overtone	Frequency range	Temperature stability $\Delta f/f_0$ Temp. range	Calibration tolerance	Type
Partiel	Gamme de fréquence	Variation de fréquence $\Delta f/f_0$ Gamme de temp.	Tolérance de calage	Type
1	0,8...3 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ\text{C}$ ¹⁾	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 1701 XS 1703 XS 1705
1	3...8 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ\text{C}$ ¹⁾	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 1801 XS 1802 XS 1803 XS 1804 XS 1806 XS 1805
1	8...30 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ\text{C}$ ¹⁾	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 1901 XS 1902 XS 1903 XS 1904 XS 1906 XS 1905
3	15...90 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ\text{C}$ ¹⁾	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 2001 XS 2002 XS 2003 XS 2004 XS 2006 XS 2007 XS 2005
5	40...150 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ\text{C}$ ¹⁾	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 2101 XS 2102 XS 2103 XS 2104 XS 2106 XS 2107 XS 2105
7	100...210 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ\text{C}$ ¹⁾	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 2101A XS 2102A XS 2103A XS 2104A XS 2106A XS 2107A XS 2105A
9	150...300 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ\text{...}+105^\circ\text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ\text{...}+70^\circ\text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ\text{C}$ ¹⁾	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 2101B XS 2102B XS 2103B XS 2104B XS 2106B XS 2107B XS 2105B

¹⁾) Nom. Temp. = Nenntemperatur für Thermostatbetrieb nach Auftrag.

¹⁾) Nom. Temp. = Nominal temperature for oven application to be given with the order.

¹⁾) Nom. Temp. = Température nominale pour fonctionnement en enceinte thermostatée avec la commande.

Standard-Resonanz für: Grundton-Quarze: Lastresonanz mit $C_L = 30 \pm 0,5 \text{ pF}$
 Standard resonance for: Fundamental crystals: load resonance with $C_L = 30 \pm 0,5 \text{ pF}$
 Résonance standard pour: Quartz fondamental: résonance avec capacité de charge de $C_L = 30 \pm 0,5 \text{ pF}$

Oberton-Quarze: Serienresonanz
 Overtone crystals: series mode
 Quartz partiell: résonance série

RESONANZWIDERSTAND

MOTIONAL RESISTANCE

RÉSISTANCE À LA RÉSONANCE:

$R_1 [\Omega] \text{ max.}$

DYNAMISCHE KAPAZITÄT

MOTIONAL CAPACITY

CAPACITÉ DYNAMIQUE

$C_1 [fF] \text{ typ.}$

STATISCHE KAPAZITÄT / STATIC CAPACITY / CAPACITÉ STATIQUE

$C_0 = 7 \text{ pF} \text{ max.}$

ANMERKUNGEN

REMARKS

REMARMES

Quarze mit anderen Toleranzen auf Anfrage. Weitere Daten siehe Technische Information oder auf Anfrage.

Sondergehäuse:

HC-51-S; 0,8 – 1,5 MHz: 6-Punkt-Montage für extreme Schock- und Vibrationsfestigkeit.

Crystal units with different tolerances upon request. Further data upon request or see technical information.

Special Enclosures:

HC-51-S; 0,8 – 1,5 MHz: 6-point-mounting for exposure to extreme accelerations.

Quartz à tolérances différentes sur demande. Autres caractéristiques sur demande ou en vous reportant à notre fascicule «Informations Techniques».

Boîtiers spéciaux:

HC-51-S; 0,8 – 1,5 MHz: La lamelle est fixée en 6 points et répond ainsi aux normes de chocs et de vibrations les plus sévères.

HC- 48/U

SCHWINGQUARZE
QUARTZ CRYSTAL UNITS
QUARTZ

AT-Schnitt
AT-Cut
Coupe AT

0,8-300 MHz
0,8-300 MHz
0,8-300 MHz

	min. (mm)	nom. (mm)	max. (mm)
A	—	—	19,50
B	—	—	9,30
C	—	—	19,80
H	12,14	12,35	12,55
K	1,22	—	1,32
L	5,67	—	6,30

DIN 45110: K3A

IEC 122 - 3: DN

NFC 93 - 601: n° 3A

MIL-H-10056: HC-48/U

Verschweißtes Metallgehäuse mit Schutzgasfüllung und Anschlußstiften.

Steckfassungen: F01, F02, F08.

Welded metal enclosure (inert atmosphere) with pins.

Crystal sockets: F01, F02, F08.

Boîtier métallique rempli de gaz inert, soudé, sorte par broches.

Conviene aux embases F01, F02, F08.

Oberton	Frequenzbereich	Temperaturgang der Frequenz $\Delta f/f_0$ im Bereich	Abgleich-toleranz	Type
Overtone	Frequency range	Temperature stability $\Delta f/f_0$ Temp. range	Calibration tolerance	Type
Partiel	Gamme de fréquence	Variation de fréquence $\Delta f/f_0$ Gamme de temp.	Tolérance de calage	Type
		$\pm 50 \times 10^{-6}$ $\pm 20 \times 10^{-6}$ $\pm 2 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ Nom.Temp. $\pm 5^\circ\text{C}^{\text{(1)}}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$
1	0,8...3 MHz	$\pm 50 \times 10^{-6}$ $\pm 25 \times 10^{-6}$ $\pm 20 \times 10^{-6}$ $\pm 10 \times 10^{-6}$ $\pm 7 \times 10^{-6}$ $\pm 2 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$ $-55^\circ\text{...}+105^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ Nom.Temp. $\pm 5^\circ\text{C}^{\text{(1)}}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$
1	3...8 MHz	$\pm 50 \times 10^{-6}$ $\pm 25 \times 10^{-6}$ $\pm 20 \times 10^{-6}$ $\pm 10 \times 10^{-6}$ $\pm 7 \times 10^{-6}$ $\pm 2 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$ $-55^\circ\text{...}+105^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ Nom.Temp. $\pm 5^\circ\text{C}^{\text{(1)}}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$
1	8...30 MHz	$\pm 50 \times 10^{-6}$ $\pm 25 \times 10^{-6}$ $\pm 20 \times 10^{-6}$ $\pm 10 \times 10^{-6}$ $\pm 7 \times 10^{-6}$ $\pm 5 \times 10^{-6}$ $\pm 2 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$ $-55^\circ\text{...}+105^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ Nom.Temp. $\pm 5^\circ\text{C}^{\text{(1)}}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$
3	15...90 MHz	$\pm 50 \times 10^{-6}$ $\pm 25 \times 10^{-6}$ $\pm 20 \times 10^{-6}$ $\pm 10 \times 10^{-6}$ $\pm 7 \times 10^{-6}$ $\pm 5 \times 10^{-6}$ $\pm 2 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$ $-55^\circ\text{...}+105^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ Nom.Temp. $\pm 5^\circ\text{C}^{\text{(1)}}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$
5	40...150 MHz	$\pm 50 \times 10^{-6}$ $\pm 25 \times 10^{-6}$ $\pm 20 \times 10^{-6}$ $\pm 10 \times 10^{-6}$ $\pm 7 \times 10^{-6}$ $\pm 5 \times 10^{-6}$ $\pm 2 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$ $-55^\circ\text{...}+105^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ Nom.Temp. $\pm 5^\circ\text{C}^{\text{(1)}}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$
7	100...210 MHz	$\pm 50 \times 10^{-6}$ $\pm 25 \times 10^{-6}$ $\pm 20 \times 10^{-6}$ $\pm 10 \times 10^{-6}$ $\pm 7 \times 10^{-6}$ $\pm 5 \times 10^{-6}$ $\pm 2 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$ $-55^\circ\text{...}+105^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ Nom.Temp. $\pm 5^\circ\text{C}^{\text{(1)}}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$
9	150...300 MHz	$\pm 50 \times 10^{-6}$ $\pm 25 \times 10^{-6}$ $\pm 20 \times 10^{-6}$ $\pm 10 \times 10^{-6}$ $\pm 7 \times 10^{-6}$ $\pm 5 \times 10^{-6}$ $\pm 2 \times 10^{-6}$	$-55^\circ\text{...}+105^\circ\text{C}$ $-55^\circ\text{...}+105^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ $-20^\circ\text{...}+70^\circ\text{C}$ Nom.Temp. $\pm 5^\circ\text{C}^{\text{(1)}}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$

¹⁾ Nom. Temp. = Nenntemperatur für Thermostatbetrieb nach Auftrag.

²⁾ Nom. Temp. = Nominal temperature for oven application to be given with the order.

³⁾ Nom. Temp. = Température nominale pour fonctionnement en enceinte thermostatée avec la commande.

Standard-Resonanz für: Grundton-Quarze: Lastresonanz mit $C_1 = 30 \pm 0,5 \text{ pF}$
 Standard resonance for: Fundamental crystals: load resonance with $C_1 = 30 \pm 0,5 \text{ pF}$
 Résonance standard pour: Quartz fondamental: résonance avec capacité de charge de $C_1 = 30 \pm 0,5 \text{ pF}$

Oberton-Quarze: Serienresonanz
 Overtone crystals: series mode
 Quartz partiell: résonance série

RESONANZWIDERSTAND

MOTIONAL RESISTANCE

RÉSISTANCE À LA RÉSONANCE:

$R_1 [\Omega] \text{ max.}$

DYNAMISCHE KAPAZITÄT

MOTIONAL CAPACITY

CAPACITÉ DYNAMIQUE

$C_1 [fF] \text{ typ.}$

STATISCHE KAPAZITÄT / STATIC CAPACITY / CAPACITÉ STATIQUE

$C_0 = 7 \text{ pF} \text{ max.}$

ANMERKUNGEN

REMARKS

REMARMES

Quarze mit anderen Toleranzen auf Anfrage. Weitere Daten siehe Technische Information oder auf Anfrage.

Sondergehäuse:

HC-48-S; 0,8 – 1,5 MHz: 6-Punkt-Montage für extreme Schock- und Vibrationsfestigkeit.

Crystal units with different tolerances upon request. Further data upon request or see technical information.

Special enclosures:

HC-48-S; 0,8 – 1,5 MHz: 6-point-mounting for exposure to extreme accelerations.

Quartz à tolérances différentes sur demande. Autres caractéristiques sur demande ou en vous reportant à notre fascicule «Informations Techniques».

Boîtier spécial:

HC-48-S; 0,8 – 1,5 MHz: La lamelle est fixée en 6 points et répond ainsi aux normes de chocs et de vibrations les plus sévères.

HC- 27/U

SCHWINGQUARZE
QUARTZ CRYSTAL UNITS
QUARTZ

AT-Schnitt
AT-Cut
Coupe AT

1-300 MHz
1-300 MHz
1-300 MHz

	min. (mm)	nom. (mm)	max. (mm)
A	—	—	19,23
B	—	—	8,94
C	—	—	19,70
H	12,14	12,35	12,55
K	1,22	—	1,32
L	5,67	—	6,30

DIN 45110: Q1A

IEC 122 - 3: DA

NFC 93 - 601: n° 8

MIL-H-10056: HC-27/U

Evakuiertes Glasgehäuse.

Steckfassungen: F01, F02, F08.

Schwingquarze mit Alterung $\pm 1 \times 10^{-6}$ /Jahr.

Vacuum-sealed glass enclosure.

Crystal sockets: F01, F02, F08.

Quartz crystal units with aging $\pm 1 \times 10^{-6}$ /year.

Quartz sous vide, boîtier verre.

Embases: F01, F02, F08.

Quartz avec vieillissement $\pm 1 \times 10^{-6}$ /an.

Oberton	Frequenzbereich	Temperaturgang der Frequenz $\Delta f/f_0$ im Bereich	Abgleich-toleranz	Type
Overtone	Frequency range	Temperature stability $\Delta f/f_0$ Temp. range	Calibration tolerance	Type
Partiel	Gamme de fréquence	Variation de fréquence $\Delta f/f_0$ Gamme de temp.	Tolérance de calage	Type
1	1...3 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 3501 XS 3503 XS 3505
1	3...8 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 3511 XS 3512 XS 3513 XS 3514 XS 3516 XS 3515
1	8...30 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 3601 XS 3602 XS 3603 XS 3604 XS 3606 XS 3607 XS 3605
3	15...90 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 3701 XS 3702 XS 3703 XS 3704 XS 3706 XS 3707 XS 3705
5	40...150 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 3801 XS 3802 XS 3803 XS 3804 XS 3806 XS 3807 XS 3805
7	110...210 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 3901 XS 3902 XS 3903 XS 3904 XS 3906 XS 3907 XS 3905
9	150...300 MHz	$\pm 50 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 25 \times 10^{-6}$ $-55^\circ \dots +105^\circ \text{C}$ $\pm 20 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 10 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 7 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 5 \times 10^{-6}$ $-20^\circ \dots + 70^\circ \text{C}$ $\pm 2 \times 10^{-6}$ Nom.Temp. $\pm 5^\circ \text{C}^{(1)}$	$\pm 10 \times 10^{-6}$ $\pm 10 \times 10^{-6}$	XS 3911 XS 3912 XS 3913 XS 3914 XS 3916 XS 3917 XS 3915

⁽¹⁾) Nom. Temp. = Nenntemperatur für Thermostatbetrieb nach Auftrag.

⁽¹⁾) Nom. Temp. = Nominal temperature for oven application to be given with the order.

⁽¹⁾) Nom. Temp. = Température nominale pour fonctionnement en enceinte thermostatée avec la commande.

Standard-Resonanz für: Grundton-Quarze: Lastresonanz mit $C_L = 30 \pm 0,5 \text{ pF}$
 Standard resonance for: Fundamental crystals: load resonance with $C_L = 30 \pm 0,5 \text{ pF}$
 Résonance standard pour: Quartz fondamental: résonance avec capacité de charge de $C_L = 30 \pm 0,5 \text{ pF}$

Oberton-Quarze: Serienresonanz
 Overtone crystals: series mode
 Quartz partiell: résonance série

RESONANZWIDERSTAND

MOTIONAL RESISTANCE

RÉSISTANCE À LA RÉSONANCE:

$R_1 [\Omega] \text{ max.}$

DYNAMISCHE KAPAZITÄT

MOTIONAL CAPACITY

CAPACITÉ DYNAMIQUE

$C_1 [fF] \text{ typ.}$

STATISCHE KAPAZITÄT / STATIC CAPACITY / CAPACITÉ STATIQUE

$C_0 = 7 \text{ pF} \text{ max.}$

ANMERKUNGEN

REMARKS

REMARMES

Quarze mit anderen Toleranzen auf Anfrage. Weitere Daten siehe Technische Information oder auf Anfrage.

Crystal units with different tolerances upon request. Further data upon request or see technical information.

Quartz à tolérances différentes sur demande. Autres caractéristiques sur demande ou en vous reportant à notre fascicule «Informations Techniques».

Seite:

Spezialquarze

Schwingquarze mit großen Toleranzen	2.2
Präzisions-Schwingquarze	2.4
Quarzwandler	2.6
Monitorquarze	2.7
Temperatur-Meßquarze	2.8

Page:

Special quartz crystal units

Crystal units with extended tolerances	2.2
Precision quartz crystal units	2.4
Quartz transducers	2.6
Monitor quartz crystals	2.7
Quartz temperature sensors	2.8

Page:

Quartz spéciaux

Quartz à larges tolérances	2.2
Quartz de précision	2.4
Quartz transducteurs	2.6
Quartz moniteurs	2.7
Quartz capteurs de température	2.8

SCHWINGQUARZE MIT GROSSEN TOLERANZEN
QUARTZ CRYSTAL UNITS WITH EXTENDED TOLERANCES
QUARTZ À LARGES TOLÉRANCES

Frequenzbereich	Oberton Lastkapazität	Temperaturgang der Frequenz $\Delta f/f_0$ im Bereich	Abgleich- toleranz
Frequency range	Overtone Load capacity	Temperature stability $\Delta f/f_0$ Temperature range	Calibration tolerance
Gamme de fréquence	Partiel Cap. de charge	Variation de fréquence $\Delta f/f_0$ Gamme de temp.	Tolérance de calage
6...8 MHz	1 $30 \pm 0,5 \text{ pF}$	$\pm 30 \times 10^{-6}$ $\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$ $-10^\circ \dots +60^\circ \text{C}$
8...12 MHz		$\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$
12...25 MHz		$\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$
25...80 MHz	3 —	$\pm 30 \times 10^{-6}$ $\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$ $-10^\circ \dots +60^\circ \text{C}$
60...130 MHz	5 —	$\pm 30 \times 10^{-6}$ $\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$ $-10^\circ \dots +60^\circ \text{C}$
2,4...3 MHz	1 $30 \pm 0,5 \text{ pF}$	$\pm 30 \times 10^{-6}$ $\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$ $-10^\circ \dots +60^\circ \text{C}$
3...5,2 MHz		$\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$
5,2...8 MHz		$\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$
8...25 MHz		$\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$
15...75 MHz	3 —	$\pm 30 \times 10^{-6}$ $\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$ $-10^\circ \dots +60^\circ \text{C}$
50...120 MHz	5 —	$\pm 30 \times 10^{-6}$ $\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$ $-10^\circ \dots +60^\circ \text{C}$
1...2 MHz	1 $30 \pm 0,5 \text{ pF}$	$\pm 30 \times 10^{-6}$ $\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$ $-10^\circ \dots +60^\circ \text{C}$
2...4 MHz		$\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$
4...8 MHz		$\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$
8...25 MHz		$\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$
15...75 MHz	3 —	$\pm 30 \times 10^{-6}$ $\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$ $-10^\circ \dots +60^\circ \text{C}$
50...120 MHz	5 —	$\pm 30 \times 10^{-6}$ $\pm 30 \times 10^{-6}$	$-10^\circ \dots +60^\circ \text{C}$ $-10^\circ \dots +60^\circ \text{C}$

für die Anwendung mit Mikroprozessoren, Clock-Oszillatoren, Fernsteuerung, Amateurfunk.

for application with microprocessors, clock-oscillators, radio control, amateur radio.

pour microprocesseurs, oscillateurs d'horloge, télécommande, radio-amateurs.

R _i max.	Gehäuse	Type
R _i max.	Enclosure	Type
R _i max.	Boîtier	Type
120 Ω	HC-52/U	XS 7201
120 Ω	HC-35/U	TO 7201
80 Ω	HC-52/U	XS 7202
80 Ω	HC-35/U	TO 7202
50 Ω	HC-52/U	XS 7203
50 Ω	HC-35/U	TO 7203
100 Ω	HC-52/U	XS 7204
100 Ω	HC-35/U	TO 7204
150 Ω	HC-52/U	XS 7205
150 Ω	HC-35/U	TO 7205
250 Ω	HC-49/U	XS 6103L
250 Ω	HC-50/U	XS 6103
120 Ω	HC-49/U	XS 6103L
120 Ω	HC-50/U	XS 6103
80 Ω	HC-49/U	XS 6103L
80 Ω	HC-50/U	XS 6103
50 Ω	HC-49/U	XS 6104L
50 Ω	HC-50/U	XS 6104
50 Ω	HC-49/U	XS 6105L
50 Ω	HC-50/U	XS 6105
80 Ω	HC-49/U	XS 6106L
80 Ω	HC-50/U	XS 6106
500 Ω	HC-51/U	XS 6003L
500 Ω	HC-48/U	XS 6003
200 Ω	HC-51/U	XS 6003L
200 Ω	HC-48/U	XS 6003
100 Ω	HC-51/U	XS 6003L
100 Ω	HC-48/U	XS 6003
50 Ω	HC-51/U	XS 6004L
50 Ω	HC-48/U	XS 6004
50 Ω	HC-51/U	XS 6005L
50 Ω	HC-48/U	XS 6005
80 Ω	HC-51/U	XS 6006L
80 Ω	HC-48/U	XS 6006

Standardfrequenzen:

Handelsware mit KVG-Qualitätssicherung siehe Katalog "Economy line/Golden line".
Niederfrequenzschwingquarze < 1 MHz auf Anfrage.

Standard Frequencies:

Resale crystals with KVG quality assurance see catalogue "Economy line/Golden line".
Low-frequency crystals (< 1 MHz) upon request.

Fréquences standard:

Quartz grand public avec assurance qualité "Economy line / Golden line".
Quartz de basse fréquence (<1 MHz) sur demande.

PRÄZISIONS-SCHWINGQUARZE 1 MHz
PRECISION QUARTZ CRYSTAL UNITS 1 MHz
QUARTZ DE PRÉCISION 1 MHz

Bezeichnung	Nenntemperatur	Resonanz	Abgleichtoleranz	Temperaturlang
Designation	Nominal temp.	Resonance	Calibration	Temp. stability
Désignation	Température	Résonance	Calage	Dérive thermique
XA 111-60	60 °C	Lastresonanz mit $C_L = 30 \pm 0,5 \text{ pF}$	$\pm 5 \times 10^{-6}$ bei Nenntemperatur	$\pm 1 \times 10^{-6}$ bei $\pm 5^\circ\text{C}$ zur Nenntemperatur
XA 111-75	75 °C	<i>Load resonance with</i> $C_L = 30 \pm 0,5 \text{ pF}$ Avec capacité de charge $C_L = 30 \pm 0,5 \text{ pF}$	$\pm 5 \times 10^{-6}$ at nominal temperature $\pm 5 \times 10^{-6}$ à la température nominale	$\pm 1 \times 10^{-6}$ at $\pm 5^\circ\text{C}$ from nom. temp. $\pm 1 \times 10^{-6}$ sur $\pm 5^\circ\text{C}$ de la température nominale

PRÄZISIONS-SCHWINGQUARZE 10 MHz
PRECISION QUARTZ CRYSTAL UNITS 10 MHz
QUARTZ DE PRÉCISION 10 MHz

XA 111
XA 311
HC-48/U

XA 311 G
HC-27/U

Bezeichnung	Nenntemperatur	Resonanz	Abgleichtoleranz	Temperaturlang
Designation	Nominal temp.	Resonance	Calibration	Temp. stability
Désignation	Température	Résonance	Calage	Dérive thermique
XA 311-60	60 °C	Lastresonanz mit $C_L = 30 \pm 0,5 \text{ pF}$	$\pm 5 \times 10^{-6}$ bei Nenntemperatur	$\pm 1 \times 10^{-6}$ bei $\pm 5^\circ\text{C}$ zur Nenntemperatur
XA 311 G-60			$\pm 5 \times 10^{-6}$ at nominal temperature	$\pm 1 \times 10^{-6}$ at $\pm 5^\circ\text{C}$ from nom. temp.
XA 311-75	75 °C	<i>Load resonance with</i> $C_L = 30 \pm 0,5 \text{ pF}$ Avec capacité de charge $C_L = 30 \pm 0,5 \text{ pF}$	$\pm 5 \times 10^{-6}$ at nominal temperature $\pm 5 \times 10^{-6}$ à la température nominale	$\pm 1 \times 10^{-6}$ at $\pm 5^\circ\text{C}$ from nom. temp. $\pm 1 \times 10^{-6}$ sur $\pm 5^\circ\text{C}$ de la température nominale
XA 311 G-75				

Andere Frequenzen und Daten auf Anfrage.
 Other frequencies and data upon request.
 Autres fréquences et caractéristiques différentes sur demande.

Grundton, für Thermostatbetrieb

Fundamental mode, for use in crystal oven

Mode fondamental, pour fonctionnement en enceinte thermostatée

Umkehrpunkt Turnover point Point d'inversion	Quarzbelastung Level of drive Niveau d'excitation	Meßverfahren Measurement system Méthode de mesure	Ersatzdaten Equivalent parameters Paramètres	Alterung Jahr Monat Tag		
				year	Aging month	day
					an	Vieillissement mois
-5 °C zur Nenntemperatur <i>-5 °C from nom. temperature</i> <i>-5 °C de la tempé- ature nominale</i>	0,1 mW	passiv nach DIN 45105 <i>IEC 444, transmission line method</i> passive, selon NFC 93-611	C ₀ : max. 5 pF C ₁ : 8 fF ± 20% R ₁ : max. 150 Ohm	±1 x 10 ⁻⁶	±5 x 10 ⁻⁷	±2 x 10 ⁻⁸

3. Oberton, für Thermostatbetrieb

3rd overtone, for use in crystal oven

Partiel 3, pour fonctionnement en enceinte thermostatée

Umkehrpunkt Turnover point Point d'inversion	Quarzbelastung Level of drive Niveau d'excitation	Meßverfahren Measurement system Méthode de mesure	Ersatzdaten Equivalent parameters Paramètres	Alterung Jahr Monat Tag		
				year	Aging month	day
					an	Vieillissement mois
-5 °C zur Nenntemperatur <i>-5 °C from nom. temperature</i> <i>-5 °C de la tempé- ature nominale</i>	0,1 mW	passiv nach DIN 45105 <i>IEC 444, transmission line method</i> passive, selon NFC 93-611	C ₀ : max. 6 pF C ₁ : 2 fF ± 20% XA 311: max. 40 Ohm XA 311G: max. 30 Ohm	±1 x 10 ⁻⁶	XA 311 ±5 x 10 ⁻⁷	±2 x 10 ⁻⁸
				±5 x 10 ⁻⁷	XA 311 G ±2 x 10 ⁻⁷	±1 x 10 ⁻⁸

QUARZWANDLER QUARTZ TRANSDUCERS QUARTZ TRANDUCTEURS

D	Außendurchmesser
D _e	Elektrodendurchmesser
D _f	Durchmesser der Facette
h	Höhe der Facette
d	Dicke
D	Outside diameter
D _e	Diameter of the electrodes
D _f	Diameter of the bevels
h	Height of the bevels
d	Thickness
D	Diamètre extérieur
D _e	Diamètre des électrodes
D _f	Diamètre de bisautage
h	Hauteur de bisautage
d	Épaisseur

QUARZWANDLER/ ULTRASCHALLWANDLER

Betrachten Sie bitte die in der Tabelle angeführten Ultraschallquarze nur als Übersichtsbispiele der herstellbaren Dimensionen. Von unserer optischen Abteilung können praktisch alle vorkommenden Sonderausführungen hinsichtlich der mechanischen Abmessungen, der Oberflächengüte und Elektrodenanordnung gefertigt werden.

DRUCKWANDLER

Mit diesen Quarzen wird Druck bzw. Kraft in elektrische Ladung umgewandelt (piezoelektrischer Effekt). Die KVG hat ein breites, auf die Kundenspezifikation zugeschnittenes Programm dieser speziellen Quarztypen.

Technische Information

Auf Wunsch stellen wir Ihnen weitere Unterlagen über Quarzwandler zur Verfügung.

Frequenz Frequency Fréquence	Dicke Thickness Epaisseur	Schnitt Cut Coupe	Außendurchmesser Outside diameter Diamètre extérieur	
MHz ($\pm 1\%$)	mm		3-5	10
2,0	1,440	X	—	—
4,0	0,720	X	—	UX 1004
7,0	0,411	X	UX 0505	UX 1005
10,0	0,288	X	UX 0506	UX 1006
15,0	0,192	X	UX 0507	UX 1007
20,0	0,144	X	UX 0508	UX 1008
30,0	0,096	X	UX 0509	UX 1009
2,0	0,990	Y	—	—
4,0	0,495	Y	—	UY 1005
7,0	0,283	Y	UY 0506	UY 1006
10,0	0,198	Y	UY 0507	UY 1007
15,0	0,132	Y	UY 0508	UY 1008
20,0	0,099	Y	UY 0509	UY 1009

QUARTZ TRANSDUCERS/ ULTRASONIC TRANSDUCERS

The tabulated figures should be considered as a general survey. Special designs with respect to crystal orientation, frequency, mechanical outlines, surface finish, and electrode deposition can be fabricated as specified by the customer.

QUARTZ ELEMENTS FOR PRESSURE- AND FORCE-TRANSDUCERS

With these elements the direct piezoelectric effect of energy conversion from mechanical displacement to generated surface charges is applied to measure mechanical force or pressure electrically. KVG fabricates a variety of these quartz crystal elements in accordance with customers specification.

Technical Information

Upon request KVG will assist with more detailed information.

MONITORQUARZE

MONITOR QUARTZ CRYSTALS

QUARTZ MONITEURS

... mm	... mm
up to ... mm	
usqu'à ... mm	
15	20
—	UX 2003
UX 1504	UX 2004
UX 1505	UX 2005
UX 1506	UX 2006
UX 1507	UX 2007
UX 1508	UX 2008
UX 1509	UX 2009
—	UY 2004
UY 1505	UY 2005
UY 1506	UY 2006
UY 1507	UY 2007
UY 1508	UY 2008
UY 1509	UY 2009

QUARTZ TRANSDUCTEURS / TRANSDUCTEURS POUR ULTRA-SONS

Les types mentionnés dans le tableau ci-dessous ne sont que des exemples de réalisations. Notre division «optique» peut fabriquer toute version spéciale quant aux dimensions, à l'état de surface et à la disposition des électrodes.

TRANSDUCTEURS DE PRESSION

Ces quartz convertissent une pression ou une force en charge électrique (effet piézo-électrique). Nos possibilités de fabrications sont très étendues et s'adaptent aux cahiers de charges de nos clients.

Informations techniques

Nous tenons à votre disposition une documentation spécifique concernant les quartz transducteurs.

MONITORQUARZE

- Frequenzbereich: 4 – 10 MHz, AT-Schnitt
- Quarzformen: Plan, Facette, Plankonvex.
- Durchmesser: 12 – 15 mm
- Elektrode: Silber/Gold
- Verschiedene Elektrodenformen
- Recycling der benutzten Monitorquarze
- Weitere Informationen auf Anfrage erhältlich

MONITOR QUARTZ CRYSTALS

- Frequency range: 4 – 10 MHz, AT-cut
- Crystal shapes: face, facet, plano-convex
- Diameter: 12 – 15 mm
- Electrodes: silver/gold
- Different electrodes
- Recycling of used monitor crystals
- Further information upon request

QUARTZ MONITEURS

- Gamme de fréquence: 4 – 10 MHz, en coupe AT
- Différents aspects: plan, facettes, planconvexe
- Diamètre: 12 à 15 mm
- Electrodes: en argent ou en or
- Electrodes différentes
- Recyclage des quartz moniteurs utilisés
- Informations sur demande

TEMPERATUR-MESSQUARZE QUARTZ TEMPERATURE SENSORS QUARTZ CAPTEURS DE TEMPÉRATURE

Die Quarz-Temperatursensoren von KVG sind Schwingquarze mit einer sehr starken Temperaturabhängigkeit der Frequenz. Die Steigung der Frequenz-Temperatur (F/T)-Kennlinie sowie deren Linearität sind abhängig von der Orientierung der Quarzscheibe bezüglich der Kristallachsen und daher in gewissen Grenzen variiertbar. Die Grundtonfrequenzen liegen je nach Gehäusetyp zwischen 2 MHz und 30 MHz. Für höhere Frequenzen wird der Quarz im 3. oder 5. Overtone betrieben.

Es werden zwei Grundtypen mit vielen Variationsmöglichkeiten angeboten:

1) XA 979:

Dieser Typ hat die höchste Linearität der F/T-Kennlinie. Die Herstellung ist jedoch aufwendiger und die Fertigungstoleranzen größer als beim zweiten Typ.

2) XA 1024:

Bei diesem Typ ist die Linearität der F/T-Kennlinie etwas schlechter aber der Fertigungsstreubereich der thermischen Daten geringer als beim Typ XA 979.

Sondertypen nach Kundenspezifikation auf Anfrage.

KVG's temperature sensors are crystals with a very high dependence of the frequency from the temperature. The gradient of the frequency-temperature (f/t) characteristic as well as its linearity depend on the orientation of the crystal blank with respect to the crystal axes and therefore they can be varied within certain limits. The fundamental frequencies range between 2 and 30 MHz depending on the enclosure. For higher frequencies the crystals operate in the 3rd or 5th overtone.

There are two basic types with many possible variations:

1) XA 979:

This type has the highest linearity of the f/t-characteristic. Its production is however more complicated and the fabrication spread is larger than that of the second type.

2) XA 1024:

In comparison with sensors of type XA 979 the f/t-characteristic is less linear but the fabrication spread of the thermal data is smaller.

Special types according to customer specification upon demand.

Technische Daten:

1) Elektrische Daten:

Die Werte für C_1 , L_1 , R_1 und C_0 sind abhängig von der Quarzfrequenz, vom Overtone und vom Gehäusetyp. Die Resonatorgütekoeffizienten liegen im allgemeinen über 50000.

2) Thermische Daten:

a) Steigung der Kennlinie:

XA 979: 37 ppm/K $\pm 1,5\%$

XA 1024: abhängig von der Orientierung.

30 ppm/K bis 94 ppm/K $\pm 0,5\%$

b) Abweichung von der Linearität:

XA 979: $<0,1\text{ K}$ von 0° bis 100°C

XA 1024: abhängig von der Orientierung.

c) Abgleich bei 25°C : $\pm 500\text{ ppm}$

d) Zeitkonstante: abhängig von Quarzgehäuse

z. B. für HC-52/U ca. 3 sek.

e) Alterung (1. Jahr): $\leq 5\text{ ppm}$ (auf Wunsch besser)

Technical data:

1) Electrical data:

The values of C_1 , L_1 , R_1 and C_0 depend on the crystal frequency, the overtone and the enclosure. Generally the quality factor is higher than 50000.

2) Thermal data:

a) Gradient of the f/t-characteristic:

XA 979: 37 ppm/K $\pm 1,5\%$

XA 1024: depending on the orientation.

30 ppm/K to 94 ppm/K $\pm 0,5\%$

b) Deviation from linearity:

XA 979: $<0,1\text{ K}$ von 0° bis 100°C

XA 1024: depending on the orientation.

c) Calibration at 25°C : $\pm 500\text{ ppm}$

d) Time constant: depending on the crystal enclosure

e.g. for HC-52/U approx. 3 sec.

e) Aging (1st year): $\leq 5\text{ ppm}$ (better if required)

Les capteurs de température de KVG sont des quartz dont la dérive en fréquence dépend essentiellement de la température. La pente de la courbe fréquence-température (f/t) ainsi que sa linéarité dépendent de l'orientation du quartz par rapport aux axes du cristal. Pour cette raison on peut varier la pente et la linéarité dans certaines limites. La gamme de fréquence des quartz fondamentaux s'étend de 2 à 30 MHz selon le boîtier. Pour les fréquences plus élevées on choisira le partieil 3 ou 5.

Notre programme comprend deux principaux types avec diverses variations possibles:

1) XA 979:

La courbe f/t de ce type est un peu moins linéaire. Sa production est plus sophistiquée que celle du type mentionné ci-dessous et la dispersion est plus importante.

2) XA 1024:

La courbe f/t de ce type est un peu moins linéaire que celle du premier, mais la dispersion des caractéristiques thermiques est plus respectée que pour le XA 979.

Autres types selon spécifications particulières sur demande.

Caractéristiques techniques:

1) Caractéristiques électriques:

Les valeurs de C_1 , L_1 , R_1 et C_0 dépendent de la fréquence du quartz, du partieil et du boîtier. Généralement le facteur de qualité est supérieur à 50000.

2) Caractéristiques thermiques:

a) Pente de la courbe:

XA 979: 37 ppm/K $\pm 1,5\%$

XA 1024: selon l'orientation 30 ppm/K à 94 ppm/K $\pm 0,5\%$

b) Défaut de linéarité:

XA 979: $<0,1$ K de 0 °C bis 100 °C

XA 1024: selon l'orientation.

c) Calage à 25 °C: ± 500 ppm

d) Constante de temps: selon le boîtier p. ex. pour le HC-52/U environ 3 secondes.

e) Vieillissement (1ère année): ≤ 5 ppm (ou meilleur sur demande)

FREQUENZ-TEMPERATUR-KENNLINIE TEMPERATURE CHARACTERISTIC OF THE FREQUENCY COURBE FRÉQUENCE-TEMPÉRATURE

HC-52/U 13,56 MHz

Selected to be the best.

K V G - G M B H POSTFACH 61
D-6924 NECKARBISCHOFSEIM
TELEFON 07263/6480 FAX 07263/6196
TELEX KVG 782335 TELETEX KVG 726312