SYNTHESIS OF PITCH ATTITUDE CONTROL SYSTEM FOR AIRCRAFT USING MODEL REFERENCE SELF ADAPTIVE APPROACH

By AMIT

TH AE/1974/M Am468

TH 629.134 Am 46

DEPARTMENT OF AERONAUTICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR OCTOBER, 1974

SYNTHESIS OF PITCH ATTITUDE CONTROL SYSTEM FOR AIRCRAFT USING MODEL REFERENCE SELF ADAPTIVE APPROACH

A Thesis Submitted
In Partial Fulfilment of the Requirements
for the Degree of
MASTER OF TECHNOLOGY

By AMIT

to the

DEPARTMENT OF AERONAUTICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
OCTOBER, 1974

CHRTIFICATE

Certified that this work entitled 'SYNTHESIS OF PITCH ATTITUDE CONTROL SYSTEM FOR AIRCRAFT USING MODEL REFERENCE SELF ADAPTIVE APPROACH' has been carried out under my supervision and that this has not been submitted elsewhere for a degree.

I.I.T. I / NEUR
CENTRAL LIBRARY
Acc. No. A 31.6.9.6

2 7 NOV 1974

JUNE'76

(Krishna Kumar)

Assistant Professor
Department of Aeronautical Engineering
Indian Institute of Technology, Kanpur

TABLE OF CONTENTS

Chap	ter	Page
	LIST OF TABLES	iv
	LIST OF TABLES	V
	SYNOPSIS	vi
	VCKNOMTEDGENENA	vii
1.	INTRODUCTION	1
	1.1 Preliminary Remarks	1
	1.2 Historical Development	3
	1.3 Purpose and Scope of Investigat	ion 5
2.	PORMULATION OF PROBLEM	7
	2.1 Approximation in Equation of Motion	9
3.	SYNTHESIS OF PITCH ATTITUDE CONTROL SYSTEM USING MODEL REFERENCE SELF ADAPTIVE APPROACH	42
	3.1 Synthesis of Control System	14
	3.2 Illustration	17
4.	CONCLUDING REMARKS	23
	REFERENCE	25
	APPENDIX 'A' - Estimation of Drag Polar	29
	APPENDIX 'B' - Estimation of Aerodyn mic Stability Derivat for Longitudinal Moti	170s
	APPENDIX 'C' - Determination of Matrix P	•

LIST OF TABLES

Table							Page
1.	Dimensions	aml	General	. Date	of A	irplane	20
2.	Airplane's	Stab	ility l	lectve.	tives	During	
	Approach a	nl IL	are				21

list of vigures

Figure			Page
1.	Vertical Plane	Guidençe Syst	tem 2
2.	Control System	for Approach	10
5.	Block Diagrams	for Different	Self
	Adaptive Contro	l Sehenes	13
4.	The Aircraft		19

SIMOPSIS

SYNTHESIS OF PITCH ATTITUTE CONTROL SYSTEM FOR AIRCRAFT USING MODEL REFERENCE SELF ADAPTIVE APPROACH

by

AMIT

DEPARTMENT OF AERONAUTICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, KANPUR October 1974

This work is concerned with the problem of variation of aircraft parameters in low level approach and landing caused by ground effects, changing aircraft configuration and gravitational components, etc. Attempt has been made to compensate for these undesirable effects through variable feedback gains using model reference selfadaptive approach Lyapunov's second method has been used to insure the system stability. The stability derivatives have been estimated to illustrate the application of the above approach in determining the appropriate control laws.

ACKNOWLEDGEMENT

The author wishes to express his profound sense of gratitude to Dr. Krishna Kumar for guidance given throughout the preparation of the thesis. His help and encouragement have been invaluable.

The author is thankful to Dr. Duane McRuer, President and Technical Director, System Technology Inc., Hawthrone, Prof. Edward Seckel, Princeton University for providing valuable advice and relevant technical literature.

The author is grateful to Professor C.S. Moorthy, H.A.L. Lucknow Division for introducing him to the field of flight control system engineering.

Thanks are also due to Professor C.V.R. Murti for many useful discussions throughout the work.

I. INTRODUCTION

1.1. Preliminary Remarks

The flight envelope of a typical aircraft consists of essentially three phases - take-off, cruise, approach and landing. Of these, most crucial from the point of view of comfort and safety is approach and landing. The performance of an overall low approach system which guides the aircraft during this final phase of the flight depends upon the complex interactions among its various components that include the pilot, various ground based landing aids, the airborne guidance equipment, communication, navigational and guidance channels, the aircraft and the flight control system.

The low approach system may further be divided into two principal functional parts - the measuring subsystem and the control subsystem (Fig. 1, Ref. 1, 2). The measuring subsystem performs both sensing and guidance functions as needed to determine the course to be followed by the aircraft. For this, it measures position, velocity, altitude, flight path angle, etc. using various ground based and airborne landing aids. The control system utilizes this guidance information to determine, develop and apply appropriate forces and moments to the airframe to execute the guidance command. To accomplish this successfully it must compute the control laws taking the guidance command, the aircraft dynamics and the actuator

SUB SYSTEM

MEASURING SUB SYSTEM

CONTROL

FIG.1 VERTICAL PLANE GUIDANCE SYSTEM

dynamics into account and feed them to the actuator which in turn controls the course to be followed. So far as the aircraft dynamics is concerned it varies not only with the aircraft type but also with whole range of deterministic and random factors the effect of which must be taken into consideration in the development of the appropriate control laws (Ref.1). Some of these factors on which the aircraft dynamics depends are:

- (i) Load and load pattern distribution
- (ii) Variation in the configuration of the aircraft
- (iii) Changes in the environment and the ground effects
 - (iv) Emergency conditions like engine shutdown or damaged airplane etc.

1.2 Historical Development

automatic landing systems were made in late nineteen forties both at the Wright field in the U.S.A. and at the Mind Landing Experimental Unit of the Royal Aircraft Establishment in the U.K. (Ref. 3,4). These two independent efforts assumed an exponential path for flare to develop differential equations describing the pitching motion. Since the control theory was still in it's infancy, this work heavily depended upon analog simulation studies and flight test data. In 1962, P.J. Ellert of General Electric (USA) reported the development of an automatic landing scheme (Ref. 5) which made it possible to generate the control laws during flare through parametric

optimisation using on board analog computer. He also suggested
the need to perform senstivity study for the variation of
parameters. In sixtles Schoemman of Boeing Company and Doniger
of Bendix Corporation (Ref. 6) pointed out the need for
compensating the aircraft's dynamic parameter variations during
landing and used high gain adaption technique for the purpose.
This approach was helpful in making the aircraft's response
quite insensitive to the changing dynamic parameters. This
method, however, suffered from a major dynamic parameters. This
adversely affected the stability characteristics of aircraft
but also required a considerable amount of prior information
about system dynamics.

In mid-sixties, the use of digitial computer paved the way for the application of optimal control theory in solving the problem of automatic landing. Different optimal control techniques were employed in conjustion with various performance creteria to generate optimal control laws (Ref. 7, 8, 9). But these methods could not be implemented due to the lack of large, high speed airborne digital computers. In 1971, J.D. Buell (Ref. 10) while investigating the problem of automatic landing found that the results obtained by a simple feedback controller generating an exponential flare path are quite similar to those obtained by solving two point boundary problem of optimal control. This diminated the need of high speed on board

digital computers for optimal control problem. This study however had only limited objectives and did not account for the variations of aircraft parameters, unpredictable changes in environmental conditions, etc., which must be considered in the design of automatic landing system.

1.3 Purpose and Scope of Investigation.

A brief review of the literature pertinent to the design of automatic landing system reveals that the problem of aircraft parameter variations and it's influence on pitch attitude control has received relatively little attention in the past. Earlier attempts to design automatic landing system, were confined to using higher gains for adaption. This, however, could not account for unforseen changes which aften lead to the loss of control. Here, an attempt has been made to synthesize a model reference selfadaptive controller for longitudinal attitude control of the aircraft. Variable feedback gains have been used to adapt to the changes in basic aircraft dynamics, while the variation in control derivatives have to be compensated by changing the effectiveness of control surfaces. Lyapunov's direct method has been used to ensure stability of the aircraft.

Chapter 2 presents the mathematical formulation of the pitching motion using stability axes as the reference frame. A discussion on self adaptive control techniques, presented in Chapter 3 leads to the logical development, using

model reference approach in the synthesis of pitch attitude control system. A suitable Lyapunov's function has been constructed to determine the appropriate control laws for self-adaption.

Finally, to illustrate the application of these results, stability derivatives have been estimated using empirical relations, for a typical 4 engine jet transport aircraft chosen for the purpose.

II. FORMULATION OF THE PROBLEM

The purpose of the low approach system is to regulate the motion of the aircraft during flame. In general this motion can be described by a set of 6 honlinear coupled differential equations obtained using Newton's laws of motion. Under the simplifying assumptions of linearity, these equations can be decoupled into two separate sets governing the longitudinal and lateral modes of the aircraft motion. With stability axes as the reference frame, the equations of longitudinal motion can be written as (Ref. 53):

$$(\frac{m}{3q} \hat{u} - G_{m_1} u) + (-\frac{g}{20} G_{m_2} \hat{u} - G_{m_1} u) + (-\frac{g}{20} G_{m_2} \hat{u} - G_{m_1} (cos e) e)$$

$$= [G_{m_2}]$$

$$- c_{\alpha_{1}} u + ((\frac{nU}{2Q} - \frac{2}{2U} c_{\alpha_{0}^{2}}) \dot{a} - c_{\alpha_{0}} a) + ((-\frac{nU}{2Q} + \frac{2}{2U} c_{\alpha_{0}^{2}}) \dot{a}$$

$$- c_{\alpha_{1}} (\sin \theta) \theta) = [c_{\beta_{0}^{2}}]$$

$$- c_{\alpha_{1}} u + (-\frac{2}{2U} c_{\alpha_{0}^{2}} \dot{a} - c_{\alpha_{0}^{2}} a) + (\frac{1}{2U} \dot{a}^{2} \dot{a}^{2} - \frac{2}{2U} c_{\alpha_{0}^{2}} \dot{a}^{2}) = [c_{\alpha_{0}^{2}}]$$

where, m = Total mass of sireraft

U = Forward velocity of the sirerest in steady flight

8 = Wing area

q - Dynamic pressure, 1 Pu2

u = Perturbation in U

C = Mean aerodynamic chord of the wing

a = Angle of attack

0 - Pitch engle

8 = Pitch rate

$$G_{x_n} = \frac{y}{SQ} \frac{\partial Y_x}{\partial u}$$

. Variation of drag and thrust with u

$$Q_{x_{qt}} = \frac{1}{5q} \cdot \frac{\partial P_{x}}{\partial \theta}$$

: Variation of lift and drag along x-exis

$$G_{x_{2}} = \frac{1}{8q} (\frac{2U}{0}) \frac{\partial P_{x}}{\partial w}$$

: Downwash leg on drag

$$q_{x_h} = \frac{1}{8q} (\frac{26}{6}) \frac{\partial F_x}{\partial \theta}$$

: Effect of pitch rate on drag

* Component of gravity

$$G_{S_{M}} = \frac{U}{S_{Q}} \frac{\partial P_{Z}}{\partial u}$$

s Variation of normal force with u

$$G_{2\alpha} = \frac{1}{50} \frac{\partial \mathcal{F}_{\alpha}}{\partial \alpha}$$

: Slope of normal force curve

$$G_{2g} = \frac{1}{Sq} \left(\frac{2U}{Q}\right) \frac{\partial F_{g}}{\partial \hat{a}}$$

Effect of downwash lag on lift of tail

$$G_{a_0^*} = \frac{1}{5q} \left(\frac{2U}{G} \right) \frac{\partial F_a}{\partial \hat{b}}$$

s Effect of pitch rate on lift

* Variation of thrust, slipstream and flexibi-

lity with u

: Static longitudinal stability

$$q_{m_{c}^{+}} = \frac{1}{SqG}(\frac{2U}{G}) \frac{\partial M}{\partial \alpha}$$

: Effect of downwach lag on moment

t Damping in pitch

Z . Z = Rotal force components in the Z and s directions respectively

M - Pitching moment

and subscript a refers to the applied forces or moments

The basic non-dimensional stability derivatives

used in the design stage can be obtained from various theoritical
concepts (Ref. 11 to 19), wind turnel data, and flight test
data. They change continuously as the cruising aircraft makes

a landing approach and fleres before touchdown .

2.1 Approximation in Equations of Motion

The mathematical model of the aircraft motion are further modified depending upon the piloting technique used in landing. In one of the piloting techniques, the pitch attitude is mantained constant by proper trimming of the sireraft, while the spend is being suitably varied to control the altitude during landing (Fig. 2). However this method is not suitable for jet aircraft due to aluggish response of the engines to the throttle control. Another technique aims at mantaining a predetermined constant speed using throttle and flaps while the pitch is being continuously varied using elevator to control the altitude (Fig. 2). If being easier to achieve constant speeds, this method has found greater acceptance. Here, in view of the forward speed being mantained constant, the velocity perturbations in U can be equated to sero. Further the first equation governing the force equilibrium in X - direction can be neglected as it essentially governs the speed control only. Thus our problem reduces to synthesis of the pitch altitude control only (Ref. 20). With these assumptions, we need consider only short period dynamics of the circust and the equations describing the motion of aircraft in short period mode are (體 = -02) a (a)+(+體 = + ((sta 0)) (a)=2, 6,(a) chere

FIG. 2 CONTROL SYSTEM FOR APPROACH

C = Elevator effectiveness

X_H = Distance between aircraft c.g. to the horizontal tail a.c.

ô = Elevator deflection

The above modifications in the mathematical model leads to some complications in the design of pitch attitude control system. The operation of the speed control system results in the variation of parameters for pitch attitude control system due to additional deflection of the flaps (Fig. 2). This together with changing aircraft mass and mass centre, ground effects, etc., are responsible for large aircraft parameter variations which must be taken into account in the synthesis of pitch attitude control system.

III. SYNTHESIS OF PITCH ATTITUDE CONTROL SYSTEM USING MODEL REFERENCE SELF ADAPTIVE APPROACH

System sensitivity to the parameteric variations as discussed in chapter 1 and 2, can be reduced through a feedback control system. However, when the variations are large and a precise control is required, various self adaptive control techniques may be useful for satisfactory response. The different self adaptive control techniques may be divided into three broad classes (Ref. 21):

- 1. High Gain Adaption
- 2. Optimal Adaptive Method
- 3. Model Reference Method

High gain adaption involves the use of high gains for adaptive action in an attempt to match the prespecified system characteristics. Having the advantage of simplicity, it suffers from a major disadvantage that a considerable amount of prior information about the system dynamics is required and any unformation changes in the aircraft dynamics may induce system instability due to the high gains (Fig. 3, Ref. 21, 22, 23).

On the other hand, in optimal adaptive control schemes (Ref. 21), the adaptive action is determined with a view to optimize a suitably chosen performance index. In order to solve this optimization problem it is necessary to estimate the states and identify the parameters by studying the instantaneous response of the aircraft under the influence of additional known signals called "test inputs" (Fig. 3). Since the flare is a precise

(a) BLOCK DIAGRAM FOR BASIC HIGH GAIN ADAPTIVE

TRANSFER FUNCTON FROM \$ TO C

C (A) * KG + (A)

S (A) I + KG + (A)

FOR HIGH GAIN, I KG + (A) | 5 F 1

C (A)

SO, THE TRANSFER FUNCTION

FROM THE ACTUAL INPUT R

THE PLANT OUT PUT C 15

C (A)

R (A) = G + (A)

(b) BLOCK DIAGRAM FOR BASIC OPTIMAL ADAPTIVE CONTROL SCHEME

) BLOCK DIAGRAM OF BASIC MODEL REFERENCE ADAPTIVE CONTROL SCHEME

IG 3 BLOCK DIAGRAM FOR DIFFERENT SELF ADAPTIVE CONTROL SCHEMES.

maneuver, such additional inputs disturbing the aircraft may not be desirable.

This calls for the model reference self adaptive schemes where adaption is based on normal operating inputs to the system and so the additional inputs disturbing the aircraft are not given. In model reference system concept, the changing dynamics of the system is evaluated by comparing the response, with the response of a reference model, (Ref. 21, 24, 25). The reference model is so designed that it is output when excited by the same input command as to the aircraft with varying dynamics provides the desired response. The response error is evaluated by comparing the response of the model and that of the aircraft. This error is the input to the adaptive mechanism that determines the adaption necessary so that the aircraft response closely approximates that of the model (Fig. 3).

3.1 Synthesis of Control System

Considerable amount of information exists concerning the synthesis of model reference self adaptive system. One of the important aspects in the design of such systems is to guarantee stability. Of the various methods, which have been employed to insure stability, Lyapumov's second method has found greater acceptance (Ref. 26 to 32). However, its application in the design of flight control system did not enjoy the same degree of acceptance due to the following reasons:

(1) It requires information about the rate of

change of the aircraft dynamic parameters which can not always be predicted .

(ii) It also requires variations in the basic aircraft dynamic parameters in order to accomplish adaption which in turn may require the use of separate surface flight control system normally not available on the existing aircrafts.

Here, the controller has been synthesized using variable feedback gains for the adaption to the changing basic dynamic parameters of the aircraft of the aerodynamic control surfaces.

3.1.1 Development of Control Laws

The equations of motion for the aircraft with varying parameters and that for the reference model can be written in state variable form as

$$\dot{\bar{\mathbf{x}}}_{\mathbf{p}} = \mathbf{A}_{\mathbf{p}} \mathbf{X}_{\mathbf{p}} + \mathbf{B}_{\mathbf{p}} \mathbf{U}
\dot{\bar{\mathbf{x}}}_{\mathbf{m}} = \mathbf{A}_{\mathbf{m}} \mathbf{X}_{\mathbf{m}} + \mathbf{B}_{\mathbf{m}} \mathbf{U}$$
(3.1)

where

X_p = n x 1, State vector for aircraft with varying parameters.

Ap = n x n System matrix of aircraft whose elements are changing due to the parameter variations.

B = n x * Control matrix for aircraft whose
elements are changing due to the
variation of control deplyatives UR

M No A 31696

U = r x i reference command to be followed,

 $x_m = n \times 1$ state vector for reference model.

 $A_m = n \times n$ system matrix for reference model

B = n x r control matrix for reference model.

In this study, the attention would be confined to the special case of parameter variations in A_p matrix only. The variations in the control matrix B_p have been purposely ignored as they may be adapted by directly regulating the controller effectiveness. With this simplification, B_m can be assumed to be equal to B_p simplifying the state equations to

Incorporating a feedback in the plant, the equations are modified to

$$\hat{X}_{m} = A_{m} X_{m} + BU$$

$$\hat{X}_{p} = (A_{p} + BF) X_{p} + BU$$

$$+ \cdots (5.5)$$

where

F = rx n feedback matrix

For the error vector e defined as

For adaption to the variation of elements of matrix A, the feedback gains have to be continuously adjusted such that

where F_t represents the variable feedback gain matrix at instant t. Equation (3.5) then takes the form

$$e = A_m e + BP_e X_p \qquad \qquad \bullet \bullet \bullet \bullet (3.7)$$

where

$$P_{\alpha} = P_{\alpha} - P = \ell_{13}$$

Constructing the Lyapunov's function V, as

$$V = \frac{1}{2} \left\{ e^{2} P e + \sum_{i=1}^{n} S_{i,j}^{2} \right\} \dots (5.8)$$

where P and Q are symmetric positive definite matrices satisfying the criteria for Lyapunov - stability, $A_m^2 P + P A_m = -Q$

Differentiating Equation (3.8) with respect to time leads to

$$\ddot{V} = -\frac{1}{2} e^2 Q e + x_p^2 F_e^2 F^2 P e + \sum_{i,j} f_{i,j} f_{i,j} ... (3.9)$$

Thus for insuring stability, the problem reduces to investigating the condition for which \hat{V} becomes negative definite. Since $-\frac{1}{2} e^{\hat{T}} Q$ e is already negative definite the stability would be guaranteed provided

$$x_p^2 \ x_0^2 \ x_0^2 \ x_1^2 \ x_2^2 \ x_3^2 = 0 \dots (5.10)$$

which leads to

$$\hat{y} = x_{11}^2 \cdot y + x_{21}^2 \cdot \dots \cdot (3.11)$$

3.2 Illustration

To investigate the problems of parameter variations associated with low level, low speed flying and study the feedback considerations for approach and landing, a 4 - engined jet transport aircraft belonging to the class of Boeing 707, DC - 8 or GV - 990 was selected. For the given configuration of the

airplane (Pig. 4, Table 1) various stability derivatives were estimated using the method given in Appendix A and Appendix B. It was observed that the principal cause of variation of the derivatives from approach to flare was variation of lift curve slope for wing and horizontal tail. The expressions for elements in, matrix A are indicated below

$$a_{11} = \frac{C_{2\alpha}}{mU/Sq}$$

$$a_{12} = \frac{C_w}{mU/Sq}$$

$$a_{13} = 1$$

$$a_{21} = 0$$

$$a_{22} = 0$$

$$a_{23} = 1$$

$$a_{31} = \frac{s^2 q^2 G^2 G_{m\hat{\alpha}} G_{Z\alpha} + 2m U^2 SqC G_{m\alpha}}{2 m U^2 I_y}$$

$$a_{32} = \frac{s^2 q^2 G^2}{2m U^2 I_y} G_{m\hat{\alpha}} G_w$$

$$a_{33} = \frac{s q G^2 G_{m\hat{\alpha}} + G q G_{m\hat{\alpha}}}{2 I_y U}$$

$$b_{11} = \frac{G_{Z\delta e}}{mU/Sq}$$

$$b_{21} = 0$$

$$b_{31} = \frac{s^2 q^2 G^2 G_{m\hat{\alpha}} G_{Z\delta e} + 2m U^2 SqC G_{m\hat{\delta}}}{2 m U^2 I_y}$$

Substituting the estimated values of the stability derivatives the A_{m} and B matrices can be written as:

FIG4 THE AIRCRAFT

PARLE 1

Dimensions and General Data of Airplane

Area	2433 ft ²	Mean a erodynamic chord	20.214
Sweep (25)	35°	Ehedral	7.00
Aspect ratio	7.04	Incidence	2.00
Taper ratio	0,342	Airfoil-root, tip	IMC 313
Horisontal tail			
Area	500 ft ²	Taper ratio	0.447
Sweep (25)	35°	Airfoil	BAC 317
Aspect ratio	3.2		
Vertical tail	Planton Varanta Pantani Pa Bandoni da Tapate		
Area	337 ft ²	Saper ratio	0.355
Sweep	31°	Airfoil	BAC 279
Aspect ratio	1.8		
Power plants			
4 JT30-12 turbojet S.L. Thrust, take- Control surfaces	engines: off, each 12	,300 lb(statie)	
4 JT30-12 turbojet S.L. Thrust, take-	off, each 12	,300 lb(static) Beflection (deg)	c _f /c
4 JT30-12 turbojet S.L. Thrust, take- Gontrol surfaces Surface	Area (12 ²) 455.85	Deflection (deg)	0, 269
4 JT30-12 turbojet S.L. Thrust, take- Control surfaces Surface Plap(s)&t) Stabilizer	Area (2t ²) 455.85	Deflection (deg) 50 +0.5(up) to-14 (down)	0.269
4 JT30-12 turbojet S.L. Thrust, take- Gontrol surfaces Surface	Area (12 ²) 455.85	Deflection (deg) 50 +0.5(up) to-14(down) +15(down) to-25 (up) 0(flaps up) +20(flaps 30)	0, 269
4 JT30-12 turbojet S.L. Thrust, take- Control surfaces Surface Plap(shit) Stabilizer Blevator	Area (ft ²) 455.85 500 120,4	Beflection (deg) 50 +0.5(up) to-14(down) +15(down) to-25 (up) 0(flaps up) +20(flaps 30) +20(flaps 50) +18.5(flaps up) +15.7(flaps 50)	0.269 1.00 0.25
4 JT30-12 turbojet S.L. Thrust, take- Gontrol surfaces Surface Flap(s &t) Stabilizer Elevator Outboard aileron	Area (2t ²) 455.85 500 120.4 80.4	Beflection (deg) 50 +0.5(up) to-14(down) +15(down) to-25 (up) 0(flaps up) +20(flaps 30) +20(flaps 50) +18.5(flaps up)	0.269 1.00 0.25 0.103
4 JT30-12 turbojet S.L. Thrust, take- Control surfaces Surface Flap(s)&t) Stabilizer Elevator Outboard aileron Inboard aileron	Area (ft ²) 455.85 500 120.4 80.4 38.8	Deflection (deg) 50 +0.5(up) to-14 (down) +15 (down) to-25 (up) 0(flaps up) +20(flaps 30) +20(flaps 50) +18.5 (flaps up) +15.7 (flaps 50) -17.5 (flaps 50)	0.269 1.00 0.25 0.103 0.145 0.145
4 JT30-12 turbojet S.L. Thrust, take- Control surfaces Surface Plap(sktt) Stabilizer Elevator Outboard aileron Inboard aileron	Area (ft ²) 455.85 500 120.4 80.4 38.8 102.8 oteristics Operating Maximum	Deflection (deg) 50 +0.5(up) to-14 (down) +15 (down) to-25 (up) 0(flaps up) +20(flaps 50) +20(flaps 50) +18.5(flaps up) +15.7(flaps 50) +17.5(flaps 50) +25 weight empty 106.000 lb ending weight 175.000 lb	0.269 1.00 0.25 0.103 0.145 0.145
4 JT30-12 turbojet S.L. Thrust, take- Control surfaces Surface Flap(s &t) Stabilizer Elevator Outboard aileron Inboard aileron Rudder Typical mass chara	Area (ft ²) 455.85 500 120.4 80.4 38.8 102.8 oteristics Operating Haximum Haximum 15-51	Deflection (deg) 50 +0.5(up) to-14 (down) +15 (down) to-25 (up) 0(flaps up) +20(flaps 30) +20(flaps 50) +18.5(flaps up) +15.7(flaps 50) +17.5(flaps 50) +25 weight empty 106,000 lb	0.269 1.00 0.25 0.103 0.145 0.145

TABLE 2
Airplane's Stability Derivatives During Approach and Flare

Sta	bility Derivatives	Airing approach	During flare just before touchdown
1.	<u>s - Derivatives</u>		
	o _{La}	4.19	5.0
	GDa	0,30	0.50
	%	-1.05	-1.25
2.	0 - Derivatives		
	C.	6.44	8.5
	o _{Di}	Negligible	Regligible
	Gmg	-12.5	-16.4
 5.	å - Derivatives		
	O. d	-3.0	-5.6
	o _{ng}	Negligible	Negligible
	4	-6.5	

4-u-Derivatives, being small for subsonic speeds, have been neglected.

The unit of angle in these estimations have been taken to be radian.

$$A_{m} = \begin{bmatrix} -0.76 & 0.11 & 1.0 \\ 0.0 & 0.0 & 1.0 \\ -0.65 & -0.0366 & -0.845 \end{bmatrix}$$

$$B = \begin{bmatrix} -0.036 \\ 0 \\ -0.91 \end{bmatrix}$$

Selecting a positive definite matrix P as

The control law obtained by a substitution of the above matrices in Equation (3.11) can be written as

$$\begin{array}{lll}
\dot{z}_{11} & = & (2.5 & 0.1 + 2.4 & 0.2 + 1.4 & 0.3 & 0.3 & 0.3 \\
\dot{z}_{12} & = & (2.5 & 0.1 + 2.4 & 0.2 + 1.4 & 0.3 & 0.3 & 0.3 \\
\dot{z}_{13} & = & (2.5 & 0.1 + 2.4 & 0.2 + 1.4 & 0.3 & 0.3 & 0.3 \\
\end{array}$$

This offers a rule to determine the variation of the individual elements of the feedback matrix. Needless to say that the Equations (5,12) would have to be integrated using on board analog or digitial computer for supplying the value of matrix I from instant to instant.

IV CONCLUDING REMARKS

In this study, attempt has been made to identify the problem of aircraft parameter variations and emphasise its effect on the pitch altitude control during the crucial phase of approach and flare in landing maneuver. The comparative evaluation of model reference self-adaptive control technique with other control methods like high gain adaption and optimal adaptive technique was undertaken and the advantages of model reference self adaptive systems were emphasized. This model reference approach was used in conjuction with Lyapunov's Second method to synthesize the feed back controller. It enables the designer to incorporate engineering specifications directly into the reference model during the initial design stage while the existence of the Lyapunov's function gaurantees the stability of the system. Towards the end, the approach has been illustrated by applying it to the typical transport jet aircraft. Although the synthesis has been carried out with the specific object of control during the approach and flare the same technique can be used for other phases of flight, particularly during the critical maneuvers encountered in military operations.

However, it may be pointed out that in view of severe noise effects near ground, the instrumentation techniques for measuring the state variables in low level, low speed aircraft operations need modifications to achieve the required precision.

In the above study, variations in control derivatives characterizing matrix B have not been considered. The difficulty

for taking them into account lies not so much in synthesis but in physical realization. So some alternative approach should be adopted for the purpose. Finally it would be worth while to investigate hybridization of this model reference approach with optimal adaption.

REPERENCE

- 1. Personal communications from Duane McRuer, System Technology Inc., dated 6 March 1974 and 30 May 1974.
- 2. Grahm, D., et. al., 'Investigation of Measuring System Requirements for Instrument Low Visibility Approach,'

 Zech. Rept. AFFDL-TR-70-102. Bright Patterson Airforce
 Base. Peb. 1971.
- 7. Porter, R.F., 'Analog Computer Study of the Automatic Place Out Landing of a G-45 Alcoraft with an E4 Automatic Pilot, 'Tech. Note W.G.T. 52 53. WABC, Dec. 1953.
- 4. Prescott, T.W., 'Automatic Control Technique used in B.L.E.U. Lending System,' Reprint Proc. 1st Am. Inst. Aviation Res. and Dev. Symp., April 10-14, 1961.
- 5. Herrium, C.W., and P.J. Ellert, 'Automatic Landing of Aircraft, ' 2nd I.P.A.G., Applications and Components.
 pp. 504 511, 1965.
- 6. Schoenman, R.L. and J. Donigor 'The Beeing/Bendix Automatic Landing System for the 707 Aircraft'.
- 7. Dubec, Corl H., 'Derivation of the Optimal Control for an All Weather Airplane Landing, 'Thesis Haual Post Graduate School, Calif., June 1969
- 8. Tanaka, A. and H. Haeda, "Studies on the Time to Go Indexing Control Scheme for an Automotic Aircraft
 Landing System, "Trans. Japan Soc. Aero. Space Sci. .
 Yol. 16. No. 51. 1973.

- 9. Mae Kinnon, 'Automatic Landing 'M.I.T., Cambridge (USA)

 Instrumentation Lab. Rept. R-651, Nov. 1969.
- of Aircraft Maneuvers associated with Approach and Landing, 'Univ. of California. Los Angeles Rept UCLA-ENG-7126, June 1971
- 11. Ann, <u>USAF Stability and Control Dateom</u>. *Air Force Flight Dynamics Lab., Wright Patterson Air Force Base, Oct. 1960.
- 12. Roskan, J., <u>Methods for Computing Drag Polars for</u>

 <u>Subsonic Airplanes</u>, Published by the author, Kansas, 1971.
- 13. Lawry, John G. and Ed. C. Polhamus, 'A Method for Predicting Lift Increment due to Flap Deflection at Low Angle of Attack in Incompressible Flow, 'NACA. Technical Note 3911. January 1957.
- 14. Toll, Thomas A. and M.J. Queijo, 'Approximate Relations and Charts for Low Speed Stability Derivatives of a Swept Wing, ' NACA Technical Note 1581, May 1948.
- 15. Rodden, W.P. and W.P. Glesing, 'Application of Oscillatory Aerodynamic Theory for Estimation of Dynamic Stability Derivatives, 'Journal of Aircraft Vol. 7. No. 3, May-June 1970, pp. 272-275.
- 16. Pisher, L.R., 'Approximate Corrections for the Effects of Compressibility on Subsonic Stability Derivatives of Swept Wings, 'NAGA Technical Note 1854, April 1949.

- 17. Pitts, William C., Rielsen, Jack N., and Keatteri,
 George E., Lift and Centre of Pressure of Wing Body Tail
 Combination at Subsonic, Transonic and Supersonic Speeds,

 NAGA Rept. 1307, 1957.
- 18. Sacks, Alvin H., 'Aerodynamic Forces, Moments, and Stability Derivatives for Slender Bodies of General Cross Section, 'NACA TH 3283, 1954.
- 19. Goranson, R.F. 'A Method for Predicting Elevator

 Deflection Required to Land, *NACA Wartime Rept. L-95, 1944.
- 20. Personal Communication from Prof. E. Seckel, Princeton University, dated 11 January 1974.
- 21. Boland, J.S., 'Time Domain and Frequency Domain Design
 Techniques for Model Reference Adaptive Control Systems,'

 NASA CR 121051, October 1971.
- 22. *A Study to Determine an Automatic Flight Control
 Configuration to Provide a Stability Augmentation
 Capability for High Performance Supersonic Aircraft,

 *Minneapolia Honeywell Regulator Company, Aeronautical
 Division, WADC TR 57 349, Nay 1958,
- 23. Proceeding of the Self Adaptive Flight Control System

 Symposium. WADO TR 59 49, March 1959.
- 24. Whiteker, R.P., J. Karmon and A. Keser, Design of Model
 Reference Adaptive Control Systems for Aircraft, W.I.T.
 Cambridge (USA), Instrumentation Lab., Rept. R-164
 Sept. 1958.
- 25. Osburn, P.V., 'Investigation of a Nethod of Adaptive Control, ' Sc. D. Thesis, M.I.T., Cambridge (USA) Sept. 1961.

- 26. Gryson, L.P., 'Design Via Lyapunov's Second Method,'

 Proc. 4th J.A.C.C. 1963, pp. 589 595.
- 27. Parks, P.C., 'Lyapunov Redesign of Model Reference
 Adaptive Control Systems, 'Trans. I.E.E.E., AG 11

 1968, pp. 362 367.
- 28. Butchart, R.L. and B. Shackcloth, 'Synthesis of Model
 Reference Adaptive Systems by Lyapunov's Second Method,

 'I.F.A.C. Conf. on Theory of Self Adaptive Control Systems,
 London, 1965.
- 29. Monopoli, R.V. 'Lypunov's Nethod for Design of Self
 Adaptive Control Systems, 'Ph.D. Thesis also NASA -CR 651 .
- 30. Winsor, G.A. and R.J. Roy, 'Design of Model Reference
 Adaptive Control Systems by Lyapunov's Second Method,'
 Trans I.E.R.E. AG 13. No.2, pp. 204, 1968.
- 71. Narendra, K.S., S.S. Tripathi, G. Luders and P. Kudva
 'Adaptive Control Using Lyapunov's Direct Method, '
 Tech. Rept. No. CF 43. Tale University, 1971.
- 32. Lindorff, D.P. and R.L. Carroll, 'Survey of Adaptive Control Using Egapunov Design, 'International Journal of Control. Vol. 18. No. 5, pp. 897 914, Dec. 1975.
- 33. Blakelock <u>Automatic Control of Aircreft and Missiles</u>
 John Wiley, 1965.

APPENDIX A

ESTIMATION OF DRAG POLAR

The evaluation of various stability derivatives associated with the longitudinal motion of the aircraft requires a functional relationship between the lift and drag coefficients called 'drag polar'. The main contributors to the total drag include:

- (i) Parasite drag due to skin friction effects.
- (ii) Induced drag due to lift.
- (iii) Brag due to flaps.

The effect of spoilers, landing gears and control surface deflections has not been considered.

A - 1 Determination of Paragite Brag :

The parasite drag originates from the skin friction of the aircraft surfaces and using empirical relations in conjunction with component build up method, the expression, for this drag coefficient can be written as (Ref. 12)

where

 $S_{\rm REF} = 3000$ sq. ft. for the aircraft under consideration and the values of $G_{\rm D_g}$ and $A_{\rm R}$ can be obtained from the following table

TABLE

Component	CD _M	4,,
Wing	.007	2 S
Fuselage	-0024	0.75md 1g
Nacelles	.006	n d _n l _n
Tailplane	.0025	2 (S _H + S _V)

Here

S = Wing Area

df = Diameter of fuselage

lf = Length of fuselage

dn = Diameter of nacelles

ln = Length of nacelles

SH = Horizontal tail area

Sy = Vertical tail area

It may be noted that the subscripts f, n, H and V are used to denote the parameters for fuselage, nacelles, horizontal and vertical tails, respectively.

A - 2 Determination of Induced Drag

The induced drag arises due to the domiwash associated with the generation of lift, the empirical relation for it's determination being a2

where

On = induced drag

A = aspect ratio of the surface

e = oswald's efficiency factor

C_{v.} = lift coefficient

APPENDIX B

ESTIMATION OF ABRODUSABLE STABILITY DERIVATIVES FOR LONGITUDINAL MOTION

In longitudinal mode of aircraft motion, the aerodynamic forces and moments of interest include lift L, drag D and pitching moment N which vary with changes in angle of attack α , velocity perturbation u, pitch rate 0 and vertical acceleration given by α . It is therefore required to estimate partial derivatives of G_L , G_D , G_m with respect to α , u, θ and α .

B - 1 α - Derivatives

These derivatives represent the changes in forces and moments due to the change in the angle of attack.

B = 1.1. $G_{L_{\alpha}}$, Varietion of Mast Coefficient with α

lift curve slope for the sixfoil section, $C_{R_{\rm g}}$ has strong dependence on the thickness ratio (t/e) as indicated by

 $G_{L_{cc}} = 6.28 + 4.7 (t/o) (t+0.00375 0to) /red.$

where

the affect of wing, body and tail, the total C₁ for

the aircraft can be estimated uning

where

(CL_) ws = lift curve slope of the wing body combination = K_WB (C_L,)

KwB - correction factor due to flow interference $= 1 + 0.25 (a/b)^2 + 0.025 (a/b)$

$$(Q_{L_{C}})_{W \text{ or } H} = \frac{Q_{L_{C}} A}{\frac{Q_{L_{C}}}{\pi} + \sqrt{(\frac{Q_{L_{C}}}{\pi})^{2} + (\frac{A}{300 \Lambda^{6/2}})^{2}}} \xrightarrow{\frac{1}{52.5}} \text{ per red.}$$

0.9 during approach and flare

- down wash gradient at low speed

= 4.44 (E_A E_{H} $\sqrt{\cos \Lambda_{\phi/4}}$)1.19 c/4 = sweep angle at quester chert line

m height of tail's root chord plane above wing's root chord plans

a distance between wing's tip serodynamic centre and the tall's sandynamic centre.

1.2 Cp . Veriation of Drag Coefficient with a The drag of the aircraft is given by

$$c_{D} = c_{D_{0}} + \frac{c_{L}^{2}}{\pi \Delta c}$$

giving

$$c_{D_{\alpha}} = \frac{\partial}{\partial \alpha} \frac{\sigma_{D_{\theta}}}{\alpha} + \frac{\alpha \lambda_{\theta}}{\alpha \lambda_{\theta}} c_{L_{\alpha}}$$

where

 $\frac{\partial}{\partial \alpha}$ = variation of profile drag with α , which being small has been neglected.

B - 1.3 Cmg . Variation of Fitching Moment with a

$$q_{n_{\alpha}} = (\frac{d}{d} \frac{q_{n}}{q_{n}}) q_{n_{\alpha}}$$

where

 $\frac{d}{d}\frac{d}{d}$ = distance between the c.g. and a.c., estimated using the method given in Ref. 11.

B - 2 u - Derivatives

This derivative represents the effect on the forces and moments due to the change in the forward speed while the angle of attack, the elevator angle and the throttle position remain fixed. During the low speed flights such as that during approach and landing, these derivatives can be neglected.

B + 5 0 - Derivatives

These derivatives denote the serodynamic effects that accompany the rotation of the simplere about a spanwise axis through the e.g. while a remains zero. Remarks that is the main contributor although both wing and tail are affected by

the rotation

B = 3.1 $C_{L_0^2}$, Variation of Lift Coefficient with Pitch Rate.

This derivative may be estimated as the sum of wing and tail contributions if small fuselage and nacelles effects are ignored (Ref. 14). Hence

$$a^{\Gamma^0} = (a^{\Gamma^0})^A + (a^{\Gamma^0})^H$$

wh ere

 $(C_{L_0})_W$ = wing contribution to C_{L_0} in low speed flight = $(\frac{1}{2} + \frac{2 X_W}{C}) (C_{L_0})_W$ per red.

rearward distance from airplane's c.g. to wing's a.c.

 $(c_{L_0^*})_H$ = tail contribution to $c_{L_0^*}$ = 2 $(c_{L_0})_H$ \mathcal{N}_H V_H per rad.

VH = horizontal tail volume coefficient

- TH SH

In - distance between aircraft e.g. to the horizontal tail a.c.

B - 3.2 Cp. Variation of Drug Coefficient with Pitch Rate
This derivative can be neglected in the low speed
subsconic regime of flight.

B + 3.3. Q , Veriation of Ditching Noment Goefficient with Pitch Rate.

This derivative is contributed by the wing, fuselage and tail, although the fuselage contribution is negligible. So, the expression for $G_{\rm Rg}$ can be written as

whore

$$(q_{m_0^2})_W$$
 = wing contribution to $q_{m_0^2}$

$$= (q_{m_0^2})_W \text{ cos } c/4$$

$$+ \frac{1}{24} \frac{A^2 + \frac{1}{2} \cos^2 c/4}{A + \frac{1}{2} \cos^2 c/4} + \frac{1}{8} \text{ per red.}$$

$$(q_{m_0^2})_H = \text{horizontal tail contribution to } q_{m_0^2}$$

$$= -2 \ q_{m_0^2} \quad \text{if } V_H \stackrel{\text{diff}}{=} \text{ per red.}$$

B - 4 & - Derivatives

These derivatives arise from the fact that the pressure distribution on the accodynamic surface does not adjust instantaneously to its equilibrium value when there is a sudden change in the angle of attack.

B - 4.1 C_{la} . Variation in Lift Coefficient with Vertical Acceleration

The wing, fuselage, nacelles and the horizontal tail contribute to the lift due to vertical acceleration, & , and it can be expressed as (Ref. 15);

wh area

(C) wing contribution to C, and is relatively mall enough for conventional aircrafts to be neglected.

$$(C_{L_{\alpha}})_{\mathcal{I}}$$
 = fuselage contribution to the $C_{L_{\alpha}}$
= 2 $(C_{L_{\alpha}})_{\mathcal{I}}$ = $\frac{1}{c}$
 $(C_{L_{\alpha}})_{\mathcal{I}}$ = lift curve slope for fuselage

$$(G_{L_{\alpha}^{*}})_{n}$$
 = nacelle contribution to the $G_{L_{\alpha}^{*}}$
= $2(G_{L_{\alpha}^{*}})_{n}$ $\frac{1}{a}$

(C_{L_a})_H = horizontal tail contribution to C_{L_a}
= 2 (C_{L_a})_H
$$n_H v_H$$
 $n_H v_H$

For the conventional sizerafts, it has been found that the combined contribution of fuselage and massles is about 30% of the contribution by the tail.

B - 4.2 CD . Variation of Reag Coefficient with Vertical Acceleration.

In the low speed subsonic range, associated with approach and flare being considered here, Cp does not vary appreciably with å . Cp can therefore be assumed to be negligible.

B - 4.3 Q , Variation of Pitching moment due to Vertical Acceleration.

The principal contributor to this derivative is the horizontal tail,

qma = (qma)H , neglecting the relatively small contribution of wing, fuselnge and nacelles

where $(C_{m_{\alpha}^*})_H$ = horizontal tail contribution to the $C_{m_{\alpha}^*}$

B - 5 Variations in Stability Derivatives

The sircraft's stability derivatives change continuously during landing maneuver due to the changing sircraft configuration, ground effects etc. These effects would now be discussed briefly.

B - 5.1 Effects of Variation in Configuration.

The change in aircraft configuration is caused by flap deflections, operations of landing gears, spoilers, etc. Here, only the effect of flap deflection has been considered. The flap deflection leads to changing aerodynamic characteristics of the wing. An estimate of the resulting change in the lift coefficient is given by (Ref. 15).

$$G_{L} = G_{L_{\alpha}} (a_{\delta})_{G_{L}} \delta K_{b}$$

where

C_L = the increment in lift coefficient due to flap deflection

 $G_{L_{pg}}$ = the lift curve slope, per deg.

(a))C = the three dimensional flap effectiveness parameter at constant lift

& . the flaps deflection, deg.

Eh = the flap span fastor

The change in drag coefficient due to the deflection of flaps can be estimated using (Ref. 12).

$$(c^{D})^{h} = (c^{D^{O}})^{h} + (c^{D^{I}})^{h} + c^{D^{I}U^{I}}$$

where

(3p)p = additional drag force due to the flaps deflection

 $(c_{D_0})_p$ = the increase in the parasite drag = $(c_{d_0})_p$ $(\frac{S_p}{S})$

 $(O_{D_A})_{jj}$ = the increase in induced drag = $K^2 O_D^2$

= the interference drag factor = -0.15 (Cp) r

G = the two dimensional skin friction drag

E = a constant, 0.21 for the sirerest under consideration.

It should however be noted that the operation of spoilers tends to meantralize the increase in lift due to further deflection of flaps and also regult in the increase in drag.

B - 5.2 Ground Effects

The principal ground effects on the simplene are increase in the lift, change in the downwash at the tail and the increase in the lift ourse slope which result in significant variations in the stability derivatives.

40

B - 5.3 Effect of Change in Pitch Attitude.

The changing orientation of the aircraft leads to changes in gravitational force component which in turn affects the eircraft dynamics.

61

DETERMINATION OF MATRIX P

The matrix P appearing in the Lyapunov's function is a num-constant real symmetric and its proper determination is very important from the design point of view. Mathematically matrix P can be determined by solving the following matrix equation:

where Q is also a nun constant real symmetric positive definite matrix. So, the determination of matrix P in turn depends upon the proper selection of matrix Q and solution of the above matrix equation.

C - 1 Selection of Matrix Q

The choice of matrix Q depends upon the following performance index to be minimized in this design procedure

An acceptable design from a physical view point will be produced by the Lyapunov's design method if and only if matrix Q has been assigned suitable value. Unfortunately, little theory exist on the problem of performance index selection and invariably some trial and error is required.

Considering the system described by a state variable representation

This can be diagonalized, by means of a linear transformation i.e.

where coloums of M are eigenventors of matrix Am to a transformed equation

The matrix is a diagonal matrix having eigenvalues as the diagonal elements, or closed loop poles of the system. As long as M is monsingular both setof equations describing the system are completely equivalent. The performance index corresponding to our transformed system of equations is

where * is used to denote the complex conjugate of the transpose.

In terms of this performance index the designer has the option of specifying q. Consideringthe autonomies system

Because is a diagonal matrix, any given y element has no effect on other y elements, i.e., $y_i(t)$ will be of the form

 $y_1(t) = e^{-\lambda i t} y_1(t=0)$, i=1,2,...,n where denote i^{th} eigenvalue. Because of the absence of coupling there is no reason to choose Q_y to be other than the diagonal matrix. For selection of the diagonal elements of Q_y , equalder two uncoupled state variables y_1 and y_3 .

where $|\text{Real }(\lambda_i)| \gg |\text{Real }(\lambda_j)|$. The time constant of y_i will be much smaller than that of y_i in such a case and consquently the contribution of y_i to J(y) will be negligible compared to that of y_i . As a result the intution says that the weighting applied to y_i in the performance index should be much larger than the weighting applied to y_i .

C-2 Solution of Metrix Equation A_i $P + PA_i = -Q$

This matrix equation can be solved by using well established analytic or numerical techniques (Ref. 34).