DYNAMIC PROGRAMMING: 0/1 KNAPSACK

Instructor: Dr Tarunpreet Bhatia Assistant Professor, CSED TIET

Knapsack problem

There are two versions of the problem:

- (1) "0-1 knapsack problem" and
- (2) "Fractional knapsack problem"
- (1) Items are indivisible; you either take an item or not. Solved with *dynamic programming*
- (2) Items are divisible: you can take any fraction of an item. Solved with a *greedy algorithm*.

0-1 Knapsack problem

- Given a knapsack with maximum capacity *W*, and a set *S* consisting of *n* items
- Each item i has some weight w_i and benefit value b_i (all w_i , b_i and W are integer values)
- Problem: How to pack the knapsack to achieve maximum total value of packed items?

0-1 Knapsack problem: a picture

Items

This is a knapsack Max weight: W = 20

W = 20

Weight

Benefit value

 b_i

0-1 Knapsack problem

Problem, in other words, is to find

$$\max \sum_{i \in T} b_i \text{ subject to } \sum_{i \in T} w_i \leq W$$

■ The problem is called a "0-1" problem, because each item must be entirely accepted or rejected.

0-1 Knapsack problem: brute-force approach

Let's first solve this problem with a straightforward algorithm

- Since there are n items, there are 2^n possible combinations of items.
- We go through all combinations and find the one with the most total value and with total weight less or equal to *W*
- Running time will be $O(2^n)$

0-1 Knapsack problem: brute-force approach

- Can we do better?
- Yes, with an algorithm based on dynamic programming
- We need to carefully identify the subproblems

Let's try this:

If items are labeled 1..n, then a subproblem would be to find an optimal solution for $S_i = \{items\ labeled\ 1,\ 2,\ ...\ i\}$

If items are labeled 1..n, then a subproblem would be to find an optimal solution for $S_i = \{items\ labeled\ 1,\ 2,\ ...\ i\}$

- This is a valid subproblem definition.
- The question is: can we describe the final solution (S_n) in terms of subproblems (S_i) ?
- Unfortunately, we <u>can't</u> do that. Explanation follows....

$$\begin{vmatrix} w_1 = 2 \\ b_1 = 3 \end{vmatrix} \begin{vmatrix} w_2 = 4 \\ b_2 = 5 \end{vmatrix} \begin{vmatrix} w_3 = 5 \\ b_3 = 8 \end{vmatrix} \begin{vmatrix} w_4 = 3 \\ b_4 = 4 \end{vmatrix}$$

Max weight: W = 20

For S_4 :

Total weight: 14;

total benefit: 20

		$w_3 = 5$ $b_3 = 8$	
$v_1 - 3$	$0_2 - 3$	υ ₃ – ο	0 ₄ -10

For S_5 :

Total weight: 20

total benefit: 26

Solution for S_4 is not part of the solution for S_5 !!!

- As we have seen, the solution for S_4 is not part of the solution for S_5
- So our definition of a subproblem is flawed and we need another one!
- Let's add another parameter: w, which will represent the <u>exact</u> weight for each subset of items
- The subproblem then will be to compute V[i,w]

- Let's add another parameter: w, which will represent the maximum weight for each subset of items
- The subproblem then will be to compute V[i,w], i.e., to find an optimal solution for S_i = {items labeled 1, 2, .. i} in a knapsack of size w

Recursive Formula for subproblems

$$V[i, w] = \begin{cases} V[i-1, w] & \text{if } w_i > w \\ \max\{V[i-1, w], V[i-1, w-w_i] + b_i\} & \text{else} \end{cases}$$

It means, that the best subset of S_i that has total weight w is:

- 1) the best subset of S_{i-1} that has total weight $\leq w$, **or**
- 2) the best subset of S_{i-1} that has total weight $\leq w-w_i$ plus the item i

Recursive Formula for Subproblems

$$V[i, w] = \begin{cases} V[i-1, w] & \text{if } w_i > w \\ \max\{V[i-1, w], V[i-1, w-w_i] + b_i\} & \text{else} \end{cases}$$

The best subset of S_i that has the total weight $\leq w_i$ either contains item i or not.

- First case: w_i>w. Item i can't be part of the solution, since if it was, the total weight would be > w, which is unacceptable.
- Second case: $w_i \le w$. Then the item i can be in the solution, and we choose the case with greater value.

Example

n = 4 (# of elements) W = 8 (max weight) Elements (weight, benefit): (2,1), (3,2), (4,5), (5,6)

0-1 Knapsack Algorithm

```
for w = 0 to W
  V[0,w] = 0
for i = 1 to n
  V[i,0] = 0
for i = 1 to n
  for w = 0 to W
       if w_i \le w // item i can be part of the solution
               if b_i + V[i-1, w-w_i] > V[i-1, w]
                       V[i,w] = b_i + V[i-1,w-w_i]
               else
                       V[i,w] = V[i-1,w]
       else V[i,w] = V[i-1,w] // w_i > w
```

Running time

for
$$w = 0$$
 to W

$$V[0,w] = 0$$
for $i = 1$ to n

$$V[i,0] = 0$$
for $i = 1$ to n
Repeat n times
for $w = 0$ to W

$$O(W)$$

$$< \text{the rest of the code} >$$

What is the running time of this algorithm?

$$O(n*W)$$

Remember that the brute-force algorithm takes $O(2^n)$

Example

Let's run our algorithm on the following data:

n = 4 (# of elements) W = 5 (max weight) Elements (weight, benefit): (2,3), (3,4), (4,5), (5,6)

Example (2)

i∖w	0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

for
$$w = 0$$
 to W

$$V[0,w] = 0$$

Example (3)

i∖w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

for
$$i = 1$$
 to n

$$V[i,0] = 0$$

Example (4)

Items	•
	•

1	10	\sim
•		≺ \
1.	(Δ)	$\mathcal{I}_{\mathcal{I}}$

$$b_i=3$$

$$w_i=2$$

$$w=1$$

$$w-w_i = -1$$

$$\begin{split} & \text{if } w_i <= w \text{ // item i can be part of the solution} \\ & \text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ & V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ & \text{else} \\ & V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ & \text{else } V[i\text{,}w] = V[i\text{-}1\text{,}w] \text{ // } w_i > w \end{split}$$

Example (5)

Items:

1		\sim
•	()	→ 1
1.	(2)	$\mathcal{I}_{\mathcal{I}}$

$$b_i=3$$

$$w_i=2$$

$$w=2$$

$$w-w_i = 0$$

$$\begin{split} &\text{if } \textbf{w}_i <= \textbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \textbf{b}_i + \textbf{V[i-1,w-w}_i] > \textbf{V[i-1,w]} \\ &\text{V[i,w]} = \textbf{b}_i + \textbf{V[i-1,w-w}_i] \\ &\text{else} \\ &\text{V[i,w]} = \textbf{V[i-1,w]} \\ &\text{else } \textbf{V[i,w]} = \textbf{V[i-1,w]} \text{ // } \textbf{w}_i > \textbf{w} \end{split}$$

Example []	le	(6)
-------------	----	-----

1		\sim
•	(')	` ∠ \
1.	(Z,	$, \mathcal{I}_{I}$

$$b_i=3$$

$$w_i=2$$

$$w=3$$

$$w-w_i = 1$$

$$\begin{split} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \mathbf{b_i} + \mathbf{V[i\text{-}1,w\text{-}w_i]} > \mathbf{V[i\text{-}1,w]} \\ &\text{V[i,w]} = \mathbf{b_i} + \mathbf{V[i\text{-}1,w\text{-}w_i]} \\ &\text{else} \\ &\text{V[i,w]} = \mathbf{V[i\text{-}1,w]} \\ &\text{else } \mathbf{V[i,w]} = \mathbf{V[i\text{-}1,w]} \text{ // } \mathbf{w_i} > \mathbf{w} \end{split}$$

Example (7)

Items:	
101115.	

$$i=1$$
 4: (5,6)

$$b_i=3$$

$$w_i=2$$

$$w=4$$

$$w-w_i = 2$$

$$\begin{split} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \mathbf{b_i} + \mathbf{V[i\text{-}1,w\text{-}w_i]} > \mathbf{V[i\text{-}1,w]} \\ &\quad \mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i\text{-}1,w\text{-}w_i]} \\ &\text{else} \\ &\quad \mathbf{V[i,w]} = \mathbf{V[i\text{-}1,w]} \\ &\text{else } \mathbf{V[i,w]} = \mathbf{V[i\text{-}1,w]} \text{ // } \mathbf{w_i} > \mathbf{w} \end{split}$$

Example (8)

3

4

()

 \mathbf{O}

i∖w	0	1	2	3	4	5	
0	0	0	0	0 ~	0	0	
1	0	0	3	3	3	3	
2	0						

Items:

$$i=1$$
 4: (5,6)

$$b_i=3$$

$$b_i=3$$
 $w_i=2$

$$w=5$$

$$w-w_i = 3$$

$$\begin{split} &\text{if } \mathbf{w_i} \mathrel{<=} \mathbf{w} \: / / \text{ item i can be part of the solution} \\ &\text{if } \mathbf{b_i} + \mathbf{V[i\text{-}1,} \mathbf{w}\text{-}\mathbf{w_i}] > \mathbf{V[i\text{-}1,} \mathbf{w}] \\ &\quad \mathbf{V[i,} \mathbf{w}] = \mathbf{b_i} + \mathbf{V[i\text{-}1,} \mathbf{w}\text{-}\mathbf{w_i}] \\ &\text{else} \\ &\quad \mathbf{V[i,} \mathbf{w}] = \mathbf{V[i\text{-}1,} \mathbf{w}] \\ &\text{else } \mathbf{V[i,} \mathbf{w}] = \mathbf{V[i\text{-}1,} \mathbf{w}] \: / / \: \mathbf{w_i} > \mathbf{w} \end{split}$$

Exam	nĺ	ا م	(9)
	נע		(ノノ

Items:	

1		\bigcirc
•	(')	` ∡ \
1.	$(\angle,$	\mathcal{J}

$$b_i=4$$
 $w_i=3$

$$w_i = 3$$

$$w=1$$

$$w-w_i = -2$$

$$\begin{split} &if \ w_i <= w \ / \ item \ i \ can \ be \ part \ of \ the \ solution \\ &if \ b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &else \\ &V[i,w] = V[i\text{-}1,w] \\ &else \ V[i,w] = V[i\text{-}1,w] \ / / \ w_i > w \end{split}$$

Example (10)

Items:	

1		2
•		→ 1
1.	(2)	$\mathcal{I}_{\mathcal{I}}$

$$i=2$$
 4: (5,6)
 $b_i=4$
 $w_i=3$
 $w=2$

 $w-w_i = -1$

$$\begin{split} & \text{if } w_i <= w \text{ // item i can be part of the solution} \\ & \text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ & V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ & \text{else} \\ & V[i,w] = V[i\text{-}1,w] \\ & \text{else } V[i,w] = V[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

Example (11)

- 1: (2,3)
- 2: (3,4)
- 3: (4,5)

$i \setminus w$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0_	0	3	3	3	3
2	0	0	3	4		
3	0					
4	0					

$$b_i = 4$$

$$w_i = 3$$

$$w=3$$

$$w-w_i = 0$$

$$\begin{split} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \mathbf{b_i} + \mathbf{V[i\text{-}1,}\mathbf{w}\text{-}\mathbf{w_i}] > \mathbf{V[i\text{-}1,}\mathbf{w}] \\ &\text{V[i,}\mathbf{w}] = \mathbf{b_i} + \mathbf{V[i\text{-}1,}\mathbf{w}\text{-}\mathbf{w_i}] \\ &\text{else} \\ &\text{V[i,}\mathbf{w}] = \mathbf{V[i\text{-}1,}\mathbf{w}] \\ &\text{else } \mathbf{V[i,}\mathbf{w}] = \mathbf{V[i\text{-}1,}\mathbf{w}] \text{ // } \mathbf{w_i} > \mathbf{w} \end{split}$$

Example (12)

Items:

1		2)
		→ 1
⊥.	(4)	,

$$i=2$$
 4: (5,6)
 $b_i=4$
 $w_i=3$
 $w=4$

$$w-w_i = 1$$

$$\begin{split} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \mathbf{b_i} + \mathbf{V[i\text{-}1,w\text{-}w_i]} > \mathbf{V[i\text{-}1,w]} \\ &\text{V[i,w]} = \mathbf{b_i} + \mathbf{V[i\text{-}1,w\text{-}w_i]} \\ &\text{else} \\ &\text{V[i,w]} = \mathbf{V[i\text{-}1,w]} \\ &\text{else } \mathbf{V[i,w]} = \mathbf{V[i\text{-}1,w]} \text{ // } \mathbf{w_i} > \mathbf{w} \end{split}$$

Example (13)

Items	•
	•

1		2
•		→ 1
1.	(2)	$\mathcal{I}_{\mathcal{I}}$

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ &V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ &\text{else} \\ &V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ &\text{else } V[i\text{,}w] = V[i\text{-}1\text{,}w] \text{ // } w_i > w \end{split}$$

Example (14)

i∖w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	10	_3	14	4	7
3	0	0	3	4		
4	0					

$$i=3$$
 4: (5,6)

$$b_i = 5$$

$$w_i=4$$

$$w = 1..3$$

$$\begin{split} &if \ w_i <= w \ / / \ item \ i \ can \ be \ part \ of \ the \ solution \\ &if \ b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &else \\ &V[i,w] = V[i\text{-}1,w] \\ &else \ V[i,w] = V[i\text{-}1,w] \ / / \ w_i > w \end{split}$$

Example (15)

i∖w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	4	3	4	4	7
3	0	0	3	4	→ 5	
4	0					

$$b_i = 5$$

$$w_i=4$$

$$w=4$$

$$w-w_i=0$$

$$\begin{split} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \mathbf{b_i} + \mathbf{V[i\text{-}1,w\text{-}w_i]} > \mathbf{V[i\text{-}1,w]} \\ &\text{V[i,w]} = \mathbf{b_i} + \mathbf{V[i\text{-}1,w\text{-}w_i]} \\ &\text{else} \\ &\text{V[i,w]} = \mathbf{V[i\text{-}1,w]} \\ &\text{else } \mathbf{V[i,w]} = \mathbf{V[i\text{-}1,w]} \text{ // } \mathbf{w_i} > \mathbf{w} \end{split}$$

Example (16)

i\w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	→ 7
4	0					

$$b_i = 5$$

$$w_i=4$$

$$w=5$$

$$w-w_i=1$$

$$\begin{split} &\text{if } \mathbf{w_i} \mathrel{<=} \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ &V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ &\text{else} \\ &V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ &\text{else } V[i\text{,}w] = V[i\text{-}1\text{,}w] \text{ // } w_i > w \end{split}$$

Example (17)

i∖w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	10	13	14	5	7
4	0	0	⁺ 3	4	⁺ 5	

$$b_i = 6$$

$$w_i = 5$$

$$w = 1..4$$

$$\begin{split} &if \ w_i <= w \ / / \ item \ i \ can \ be \ part \ of \ the \ solution \\ &if \ b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &else \\ &V[i,w] = V[i\text{-}1,w] \\ &else \ V[i,w] = V[i\text{-}1,w] \ / / \ w_i > w \end{split}$$

Example (18)

i∖w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	\ 7

$$b_i = 6$$

$$w_i = 5$$

$$w=5$$

$$w-w_i=0$$

$$\begin{split} &\text{if } \mathbf{w_i} \mathrel{<=} \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \\ &\text{else } V[i,w] = V[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

Comments

- This algorithm only finds the max possible value that can be carried in the knapsack
 - i.e., the value in V[n,W]
- To know the items that make this maximum value, an addition to this algorithm is necessary

How to find actual Knapsack Items

- All of the information we need is in the table.
- V[n, W] is the maximal value of items that can be placed in the Knapsack.
- Let i=n and k=W while(i>0)
 if V[i,k] ≠ V[i-1,k] then mark the ith item as in the knapsack
 i = i-1, k = k-w_i
 else
 i = i-1 // Assume the ith item is not in the knapsack

Finding the Items

i\W	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

$$k=5$$

$$b_i = 6$$

$$b_i=6$$
 $w_i=5$

$$V[i,k] = 7$$

$$V[i-l,k] = T$$

while
$$i,k > 0$$

if
$$V[i,k] \neq V[i-l,k]$$
 then

mark the i^{th} item as in the knapsack

$$i = i-1, k = k-w_i$$

else

$$i = i-1$$

Finding the Items (2)

i\W	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

1: (2,3) 2: (3,4) 3: (4,5) 4: (5,6) k=5 $b_i=6$ $w_i=5$ V[i,k]=7

Items:

i=n, k=W
while i,k > 0
if
$$V[i,k] \neq V[i-1,k]$$
 then
mark the i^{th} item as in the knapsack
 $i=i-1, k=k-w_i$
else
 $i=i-1$

Finding the Items (3)

$i\backslash V$	7 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

$$k=5$$

i=3

$$b_i = 5$$

$$w_i=4$$

$$V[i,k] = 7$$

$$V[i-1,k] = 7$$

i=n, k=W
while i,k > 0
if
$$V[i,k] \neq V[i-1,k]$$
 then
mark the i^{th} item as in the knapsack
 $i = i-1, k = k-w_i$
else
 $i = i-1$

Finding the Items (4)

$i\backslash W$	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3 ←	3	3	3
2	0	0	3	4	4	\ 7/
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

$$i=2$$
 4: (5,6)

$$k=5$$

$$b_i=4$$

$$b_i=4$$
 $w_i=3$

$$V[i,k] = 7$$

$$V[i-1,k] = 3$$

$$k - w_i = 2$$

i=n, k=W
while i,k > 0
if
$$V[i,k] \neq V[i-1,k]$$
 then
mark the i^{th} item as in the knapsack
 $i=i-1, k=k-w_i$
else
 $i=i-1$

Finding the Items (5)

$i\backslash V$	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

$$k=2$$

i=1

$$b_i=3$$

$$b_i=3$$
 $w_i=2$

$$V[i,k] = 3$$

$$V[i-1,k] = 0$$

$$k - w_i = 0$$

i=n, k=W
while i,k > 0
if
$$V[i,k] \neq V[i-l,k]$$
 then
mark the i^{th} item as in the knapsack
 $i=i-l$, $k=k-w_i$
else
 $i=i-l$

Finding the Items (6)

i\W	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

```
i=n, k=W

while i,k > 0

if V[i,k] \neq V[i-1,k] then

mark the n^{\text{th}} item as in the knapsack

i=i-1, k=k-w_i

else

i=i-1
```

Items:

1: (2,3)

2: (3,4)

3: (4,5)

i=0 4: (5,6)

k=0

The optimal knapsack should contain {1, 2}

Finding the Items (7)

$i\backslash V$	7 0	1	2	3	4	5
0	0	0	$\left(\begin{array}{c} 0 \\ \end{array}\right)$	0	0	0
\bigcirc	0	0	3	3	3	3
2	0	0	3	4	$\sqrt{4}$	77
3	0	0	3	4	5	7
4	0	0	3	4	5	7

```
i=n, k=W

while i,k > 0

if V[i,k] \neq V[i-1,k] then

mark the n^{\text{th}} item as in the knapsack

i=i-1, k=k-w_i

else

i=i-1
```

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

The optimal knapsack should contain {1, 2}

Conclusion

- Dynamic programming is a useful technique of solving certain kind of problems
- When the solution can be recursively described in terms of partial solutions, we can store these partial solutions and re-use them as necessary.