Statistical Inference Course Project: Part 1

Evan Oman 02/21/2015

Overview

The Central Limit Theorem states: "that, given certain conditions, the arithmetic mean of a sufficiently large number of iterates of independent random variables, each with a well-defined expected value and well-defined variance, will be approximately normally distributed, regardless of the underlying distribution" (http://en.wikipedia.org/wiki/Central_limit_theorem). The goal of this project is to experimentally verify this special property using the exponential distribution with parameter $\lambda = 0.2$.

Simulation

In order to test the Central Limit Theorem, we will need to generate a sufficiently large number of random variables $x \sim E(.2)$ (i.e. x is exponentially distributed with $\lambda = .2$), take the mean of these random values, and then consider a large number of these means. The Central Limit Theorem says that these means should start to follow the Normal(or Gaussian) Distribution. First lets check out what a standard distribution of exponential variables looks like:

```
set.seed(42)
ExpVars <- rexp(1000, .2)
hist(ExpVars)</pre>
```

Histogram of ExpVars

To perform the actual simulation we use the following code which creates 1000 variables which are each the mean of 40 random x values such that $x \sim E(.2)$

```
mns <- NULL
for (i in 1 : 1000) mns <- c(mns, mean(rexp(40, .2)))
hist(mns)</pre>
```

Histogram of mns

It is already evident that

this distribution of variables is approximately normal based on its general shape.

Sample Mean versus Theoretical Mean

The Theoretical Sample mean is $\mu_M = \mu$, that is the sample mean should be the same as the distribution mean. For the Exponential Distribution, $E(x) = \frac{1}{\lambda} = \frac{1}{.2} = 5$. Using R to find the sample mean, we see that the Sample mean is reasonably close to the Theoretical Mean:

mean(mns)

[1] 4.9809

Looking at the histogram for mns, it is clear that the approximate normal curve is centered at about 5.

Sample Variance versus Theoretical Variance

The Theoretical Variance mean is given by $\sigma_M^2 = \frac{\sigma^2}{N-1}$ where N is the sample size. For the Exponential Distribution, $Var(x) = \frac{1}{\lambda^2} = \frac{1}{.2^2} = 25$. Thus we have a sample variance of $Var(x) = \sigma_M^2 = \frac{\sigma^2}{N-1} = \frac{25}{40-1} = .641$. Using R to find the sample variance, we again see that the sample variance is reasonably close to the Theoretical Variance:

var(mns)

[1] 0.632249

Looking at the histogram for mns, it is clear that the approximate normal curve has a variance of about .6.

Conclusion

Thus we can see that the sample is following the prescribed formulas and it is evident that the histogram of the sample is essentially a normal distribution. Thus the Central Limit Theorem is experimentally verifiy.