

(11) Publication number:

11096585 A

Generated Document

PATENT ABSTRACTS OF JAPAN

(21) Application number:

09286954

(51) Intl. Cl.: G11B 7/135

(22) Application date:

20,10.97

(30) Priority:

23.10.9626.02.9723.07.97

JPJPJP 0828075009

4222209197076

(43) Date of application

publication:

09.04.99

(84) Designated contracting

states:

(71) Applicant: KONICA CORP

ARAJ NORIKAZU (72) Inventor:

YAMAZAKI NORIYUKI SAITO SHINICHIRO

(74) Representative:

(54) RECORDING/REPRODUCING METHOD OF OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL PICKUP DEVICE, CONDENSER OPTICAL SYSTEM, OBJECTIVE LENS AND METHOD FOR DESIGNING **OBJECTIVE LENS**

(57) Abstract:

PROBLEM TO BE SOLVED: To reproduce plural optical disks with one condenser optical system, to embody the reproduction at a low cost without complication and to deal with the optical disk of high NA as well.

SOLUTION: The refraction surface S1 on the light source side of the objective lens 16 of the optical pickup device is provided with three splitting surfaces Sd1 to Sd3. The luminous fluxes passing the first splitting surface Sd1 and the third splitting surface Sd3 are utilized at the time of reproducing the first optical disk of t1 in the thickness of a transparent substrate and the luminous fluxes passing the first splitting surface Sd1 and the second splitting surface Sd2 are utilized at the time of reproducing the second optical disk of t2 (t2≠t1) in the thickness of the transparent substrate.

COPYRIGHT: (C)1999,JPO

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-96585

(43)公開日 平成11年(1999)4月9日

(51) Int.Cl.⁶
G 1 1 B 7/135

識別記号

FI G11B 7/135

Α

審査請求 未請求 請求項の数24 OL (全 63 頁)

(21)出願番号	特願平9-286954
(22)出願日	平成9年(1997)10月20日
(31) 優先権主張番号	特顯平8-280750
(32)優先日	平 8 (1996)10月23日
(33)優先権主張国	日本(JP)
(31) 優先権主張番号	特願平9-42222
(32) 優先日	平 9 (1997) 2 月26日
(33)優先権主張国	日本(JP)
(31)優先権主張番号	特願平9-197076
(32) 優先日	平 9 (1997) 7 月23日
(33) 優先権主張国	日本(JP)

(71)出願人 000001270 コニカ株式会社 東京都新宿区西新宿1丁目26番2号 (72)発明者 荒井 則一 東京都八王子市石川町2970番地コニカ株式 会社内 (72)発明者 山崎 敬之 東京都八王子市石川町2970番地コニカ株式 会社内 (72)発明者 斉藤 真一郎

東京都八王子市石川町2970番地コニカ株式 会社内

(54) 【発明の名称】 光情報記録媒体の記録/再生方法、光ピックアップ装置、集光光学系、対物レンズ及び対物レンズの設計方法

(57)【要約】

【課題】 1つの集光光学系で複数の光ディスクを再生でき、低コストかつ複雑化しないで実現でき、さらに、高NAの光ディスクにも対応できることを目的とする。 【解決手段】 光ピックアップ装置10の対物レンズ16の光源側の屈折面S1に3つの分割面Sd1~Sd3を設け、透明基板の厚さがt1の第1光ディスク再生の際には第1分割面Sd1及び第3分割面Sd3を通過する光束を利用し、透明基板の厚さがt2(t2≠t1)の第2光ディスクの再生の際には第1分割面Sd1及び第2分割面Sd2を通過する光束を利用する。

【特許請求の範囲】

【請求項1】 透明基板の厚さが t 1 の第1 光情報記録 媒体と透明基板の厚さが t 2 (ただし、t 2 ≠ t 1) の 第2 光情報記録媒体とに対して、光源から出射した光束 を1 つの集光光学系で透明基板を介して情報記録面に集 光させ、情報記録面上に情報を記録又は情報記録面上の 情報を再生する光情報記録媒体の記録/再生方法におい て

光軸近傍の第1光東は第1光情報記録媒体の記録又は再生及び第2光情報記録媒体の記録又は再生に利用すると ともに

前記第1光東より外側の第2光東は主に第2光情報記録 媒体の記録又は再生に利用し、

前記第2光東より外側の第3光東は主に第1光情報記録 媒体の記録又は再生に利用することを特徴とする光情報 記録媒体の記録/再生方法。

【請求項2】 透明基板の厚さが t 1 の第1 光情報記録 媒体と透明基板の厚さが t 2 (ただし、t 2 ≠ t 1) の 第2 光情報記録媒体とに対して、光源から出射した光束 を1 つの集光光学系で透明基板を介して情報記録面に集 20 光させ、情報記録面上に情報を記録又は情報記録面上の 情報を再生する光ピックアップ装置において、 前記集光光学系は、

光軸近傍の第1光束を第1光情報記録媒体の記録又は再 生及び第2光情報記録媒体の記録又は再生に利用し、

前記第1光束より外側の第2光束を主に第2光情報記録 媒体再生に利用し、

前記第2光東より外側の第3光東を主に第1光情報記録 媒体の記録又は再生に利用するような機能を有すること を特徴とする光ピックアップ装置。

【請求項3】 光源からの光束を光情報記録媒体の情報 記録面上に集光させ、情報記録面上に情報を記録する又 は情報記録面上に記録された情報を再生する光ピックア ップ装置において、

集光光学系を構成する少なくとも1つの光学面を、光軸 近傍の前記光学面の中央に位置する第1分割面と、前記 第1分割面との間に第2分割面を挟んで位置する第3分 割面とに分割された光学面で構成し、

透明基板の厚さが t 1 の第1光情報記録媒体の記録又は 再生する際は、主に、前記第1分割面及び第3分割面を 通過した光束により、ビームスポットを形成し、

透明基板の厚さが t 2 (ただし、t 2 ≠ t 1) の第2光情報記録媒体の記録又は再生する際は、主に、前記第1分割面及び第2分割面を通過した光束により、ビームスポットを形成することを特徴とする光ピックアップ装置

【請求項4】 少なくとも一方の面を光軸と同心状に複数に分割された複数の分割面を有するとともに、光軸近傍の第1分割面と前記第1分割面より外側の第3分割面を通過する光東がほぼ同一の第1結像位置に結像するよ

うに測定したとき、前記第1結像位置と、前記第1分割面と第3分割面との間の第2分割面を通過する光束が結像する第2結像位置との間の距離の絶対値が、4μm以上40μm以下であることを特徴とする対物レンズ。

【請求項5】 少なくとも一方の面を光軸と同心状に複数に分割された複数の分割面を有するとともに、光軸近傍の第1分割面と前記第1分割面より外側の第3分割面を通過する光束がほぼ同一の第1結像位置に結像するように測定したとき、前記第1分割面と第3分割面との間の第2分割面を通過する光束が結像する第2結像位置の方が、第1結像位置より対物レンズに近いことを特徴とする対物レンズ。

【請求項6】 前記第 1 位置と前記第 2 位置との距離は、 -40μ m以上 -4μ m以下であることを特徴とする請求項 5 に記載の対物レンズ。

【請求項7】 少なくとも一方の面を光軸と同心状に複数に分割された複数の分割面を有するとともに、

所定の入射光束で所定の厚さの透明基板を介したとき、 光軸を含む第1分割面を通過する光束のうち、光軸近傍 を通過する光線が光軸と交わる位置と、光軸と直交する 方向で前記第1分割面の端部を通過する光線が光軸と交 わる位置との間に、前記第1分割面より外側の第2分割 面を通過する光線が光軸と交わるとともに、

前記第2分割面より外側の第3分割面を通過する光線は、光軸近傍を通過する光線が光軸と交わる位置に対して、前記第1分割面の端部を通過する光線が光軸と交わる位置よりも離れた位置で、光軸と交わることを特徴とする対物レンズ。

【請求項8】 光源から出射した光束を集光光学系で光 (ク) 情報記録媒体の透明基板を介して光情報記録媒体の情報 記録面上に光スポットとして集光させ、情報記録面上に 情報を記録する又は情報記録面上に記録された情報を再 生する光ピックアップ装置において、

透明基板の厚さが t 1 の第1 光情報記録媒体の記録又は 再生するために必要な前記集光光学系の光情報記録媒体 側の必要開口数をNA1

透明基板の厚さが t 2(ただし、 t 2 \neq t 1)の第2光情報記録媒体の記録又は再生するために必要な前記集光光学系の光情報記録媒体側の必要開口数をNA2(ただし、NA2 < NA1)、としたとき、

前記集光光学系は、開口数がNA2近傍の少なくとも2つの開口位置で、球面収差が不連続に変化する機能を有することを特徴とする光ピックアップ装置。

【請求項9】 光情報記録媒体の情報記録面上に光源からの光束を光情報記録媒体の透明基板を介して光スポットとして集光させ、光情報記録媒体上に情報を記録するまたは光情報記録媒体上に記録された情報を再生するピックアップ装置の対物レンズにおいて、

光源の波長をλ、

40

50 透明基板の厚さがt1の第1光情報記録媒体の記録又は

再生するために必要な前記対物レンズの光情報記録媒体側の必要開口数をNA1、

透明基板の厚さが t 2(ただし、 t 2 \neq t 1)の第2光情報記録媒体の記録又は再生するために必要な前記対物レンズの光情報記録媒体側の必要開口数をNA2(ただし、NA2 < NA1)、としたとき、

開口数がNA2近傍の少なくとも2つの開口位置で、球面収差が不連続に変化することを特徴とする光ピックアップ装置の対物レンズ。

【請求項10】 前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとしたとき、

光軸と直交する方向で開口数NALと開口数NAHのほぼ中央位置でみたとき、開口数NALから開口数NAHまでの面の法線と光軸とのなす角度が、光軸から開口数NALまでの面及び開口数NAHから開口数NA1までの面から内挿される面の法線と光軸とのなす角度より、t2>t1のとき大となり、t2<t1のとき小となることを特徴とする請求項9に記載の光ピックアップ装置の対物レンズ。

【請求項11】 透明基板の厚さが異なる複数の光情報 記録媒体に、波長 λ の光源から出射した光束を集光させ る対物レンズの設計方法において、

透明基板の厚さが t 1 の第1 光情報記録媒体の記録又は 再生に必要な対物レンズの光情報記録媒体側の開口数N A 1 の範囲内において、厚さ t 1 の透明基板を介して第 1 光情報記録媒体に集光させた光束の最良波面収差が 0 05 2 rms以下となるように第1 非球面と共通屋

0. 05λ rms以下となるように第1非球面と共通屈 折面とを設計するとともに、

透明基板の厚さが t 2 (ただし、 t 2 ≠ t 1) の第2光 30 情報記録媒体に集光させた光束の球面収差の発生量が、第2の光情報記録媒体に第1非球面を介して集光させたときの球面収差の発生量より少なくなるように、前記共通屈折面に対する第2非球面を設計し、

これら第1非球面と第2非球面とを、前記第2光情報記録媒体の記録又は再生に必要な対物レンズの情報記録面側の開口数をNA2(ただし、NA2<NA1)としたとき、前記第1非球面の前記NA2近傍の光束が通過する部分に前記第2非球面が位置するように合成することにより、前記対物レンズの少なくとも1つの屈折面を設計することを特徴とする対物レンズの設計方法。

【請求項12】 前記第1非球面の軸上曲率半径と、前記第2非球面の軸上曲率半径とを同一で行うことを特徴とする請求項11に記載の対物レンズの設計方法。

【請求項13】 前記第1非球面は、合成する第2非球面よりも光軸側に位置する第1非球面を通過し、透明基板の厚さが t 2の第2光情報記録媒体に集光させた光束の最良波面収差が0.07 λ rms以下となるように設計することを特徴とする請求項11又は12に記載の対物レンズの設計方法。

4

【請求項14】 透明基板の厚さが異なる複数の光情報 記録媒体に、光源から出射した光束を集光させる対物レ ンズにおいて、

前記対物レンズの少なくとも1つの屈折面を、

透明基板の厚さが t 1 の第1光情報記録媒体の記録又は 再生に必要な対物レンズの光情報記録媒体側の開口数N A 1 の範囲内において、厚さ t 1 の透明基板を介して集 光させた光束の最良波面収差が 0.05 λ r m s 以下と なるような第1 非球面と、

10 透明基板の厚さが t 2 (ただし、t 2 ≠ t 1) の第2光情報記録媒体に集光させた光束の球面収差の発生量が、第2光情報記録媒体上に前記第1非球面を介して集光させたときの球面収差の発生量より、少なくなるような第2非球面とを、前記第2光情報記録媒体の記録又は再生に必要な対物レンズの情報記録面側の開口数をNA2

(ただし、NA2<NA1)としたとき、前記第1非球面の前記NA2近傍の光束が通過する部分に前記第2非球面が位置するように合成した屈折面で構成したことを特徴とする対物レンズ。

20 【請求項15】 透明基板の厚さが t 1 の第1 光情報記録媒体に対して、光源から出射した光束を集光光学系で透明基板を介して情報記録面に集光させ、情報記録面上に情報を記録又は情報記録面上の情報を再生する光ピックアップ装置において、

前記第1光情報記録媒体を記録又は再生するのに必要な 前記集光光学系の光情報記録媒体側の必要開口数をNA 1、

前記第1光情報記録媒体の透明基板の厚さ t 1とは異なる透明基板の厚さ t 2 (t2≠t1)を有する第2光情 報記録媒体を記録又は再生するのに必要な前記集光光学 系の光情報記録媒体側の必要開口数をNA2 (ただし、 NA2<NA1)とすると、

前記集光光学系に、

0. 60 (NA2) < NA3<1. 3 (NA2)

(ただし、第2光情報記録媒体を記録又は再生する際の 光源の波長が740nm \sim 870nmである場合、この 式の上限は1.1(NA2)とする)

0. 0.1 < NA4 - NA3 < 0.12

の条件を満たす前記集光光学系の光情報記録媒体側の開 40 口数NA3と開口数NA4との間を通過する光束に作用 して、該光束を主に第2光情報記録媒体の記録又は再生 に利用するための面を設けることにより、

透明基板の厚さが互いに異なる第1光情報記録媒体と第 2光情報記録媒体とに対して、同じ前記集光光学系で、 記録又は再生を行うことを特徴とする光ピックアップ装 置。

【請求項16】 前記主に第2光情報記録媒体の記録又は再生に利用するための面を通過した第2光束が結像する第2結像位置は、第2光束より内側の第1光束と第2 50 光束より外側の第3光束とがほぼ同一の第1結像位置に 結像するように測定したときに、前記第1結像位置との間の距離の絶対値が、 4μ m以上 $4 0 \mu$ m以下であることを特徴とする請求項15に記載の光ピックアップ装置。

【請求項17】 透明基板の厚さが t 1の第1光情報記録媒体と透明基板の厚さが t 2(ただし、t 2≠t1)の第2光情報記録媒体とに対して、光源から出射した光束を1つの集光光学系で透明基板を介して情報記録面に集光させ、情報記録面上に情報を記録又は情報記録面上の情報を再生する光情報記録媒体の記録/再生を行う光ピックアップ装置において、

第1光情報記録媒体を記録又は再生するのに必要な前記 集光光学系の光情報記録媒体側の必要開口数をNA1、 第2光情報記録媒体を記録又は再生するのに必要な前記 集光光学系の光情報記録媒体側の必要開口数をNA2 (ただし、NA2<NA1)とすると、

前記集光光学系は、所定の倍率で厚さ t 1 の透明基板を 介したときに、開口数NA1の範囲内において、最良波 面収差を得るようにしたとき、縦軸に波面収差、横軸に 開口数をとった波面収差曲線でみると、開口数NA2近 傍の少なくとも2カ所で波面収差が不連続となることを 特徴とする光ピックアップ装置。

【請求項18】 透明基板の厚さがt1の第1光情報記録媒体と透明基板の厚さがt2(ただし、t2≠t1)の第2光情報記録媒体とに対して、光源から出射した光束を1つの集光光学系で透明基板を介して情報記録面に集光させ、情報記録面上に情報を記録又は情報記録面上の情報を再生する光情報記録媒体の記録/再生を行う光ピックアップ装置の対物レンズにおいて、

前記対物レンズは、少なくとも1面が、光軸近傍の第1 分割面より順に第2n+1(ただし、nは自然数)分割 面まで分割されており、

前記第1分割面を通過する第1光束は、第1光情報記録 媒体の記録又は再生及び第2光情報記録媒体の記録又は 再生に利用するとともに、

偶数分割面を通過する光束は主に第2光情報記録媒体の 記録又は再生に利用し、

第1分割面を除く奇数分割面を通過する光東は主に第1 光情報記録媒体の記録又は再生に利用することを特徴と する光ピックアップ装置の対物レンズ。

【請求項19】 光源から位相の揃った波長 λ の光束を 集光光学系により光情報記録媒体の透明基板を介して情報記録面上に集光し、情報記録面上への情報の記録又は 情報記録面上に記録された情報の再生を行う光ピックア ップ装置において、

前記光源からの光東を前記集光光学系により厚さ t 1、 に複数に分割された複数の分割面を有するとともに、 屈折率 n 1 の平行平面板を介して集光し、平行平面板側 第 2 n 分割面(ただし、n は 1 以上の整数)より光軸側 の第 1 開口数の範囲内において、その波面収差が最良と の第(2 n - 1)分割面を透過して透明基板を介した光なる状態で波面収差を測定して得られる波面収差曲線 と、光軸に直交する方向において第 2 n 分割面のほぼ中が、前記集光光学系の前記平行平面板側の第 1 開口数よ 50 央位置より光軸側の第 2 n 分割面を透過して透明基板を

り小さい第2開口数の範囲内に、波面収差が不連続となる部分を有し、かつ、

該不連続となっている部分の波面収差の傾きが、該不連続となっている部分の両側の曲線の端部を結ぶ直線の傾きとは異なる傾きである波面収差曲線となるように、前記集光光学系の少なくとも1つの屈折面を光軸と同心状に複数の分割面で構成したことを特徴とする光ピックアップ装置。

【請求項20】 光情報記録媒体上に情報を記録する又は光情報記録媒体上に記録された情報を再生するために、光情報記録媒体の情報記録面上に光源からの光束を光情報記録媒体の透明基板を介して光スポットとして集光させる光ピックアップ装置の対物レンズにおいて、波長 λ 1の光源を用いて透明基板の厚さがt1の第1光情報記録媒体及び透明基板の厚さがt2(ただし、t2 $\neq t$ 1)の第2光情報記録媒体の情報記録面上に集光させることができるとともに、波長 λ 2(ただし、 λ 2 \neq λ 1)の光源を用いた場合であっても第2光情報記録媒体の情報記録す上に集光ささるためできるととも1面を複数の分割面で構成したことを特徴とする光ピックアップ装置の対物レンズ。

【請求項21】 少なくとも一方の面を光軸と同心状に複数に分割された複数の分割面を有するとともに、第2n分割面(ただし、nは1以上の整数)より光軸側の第(2n-1)分割面を透過した光と、第2n分割面より光軸側とは反対側の第(2n+1)分割面を透過した光とが、所定の厚さの透明基板を介して、ほぼ同じ位相となるようにしたとき、

前記第(2n-1)分割面を透過した光と、光軸に直交 する方向において第2n分割面のほぼ中央位置より光軸 側の第2n分割面を透過した光と、の位相差を (Δn L)π (rad) とし、

前記第(2n+1)分割面を透過した光と、前記中央位置より光軸側とは反対側の第2n分割面を透過した光と、の位相差を(Δn H) π (r a d)とすると、

 $(\Delta n H) \neq (\Delta n L)$

を満足することを特徴とする光ピックアップ装置の対物 レンズ。

【請求項22】 透明基板の厚さがt1の第1光情報記40 録媒体と透明基板の厚さがt2(ただし、t2≠t1)の第2光情報記録媒体とに対して、光源から出射した光東を1つの集光光学系で透明基板を介して情報記録面に集光させ、情報記録面上に情報を記録又は情報記録面上の情報を再生する光ピックアップ装置において、前記集光光学系の少なくとも一つの面は、光軸と同心状に複数に分割された複数の分割面を有するとともに、第2n分割面(ただし、nは1以上の整数)より光軸側の第(2n-1)分割面を透過して透明基板を介した光と、光軸に直交する方向において第2n分割面のほぼ中中位置より光軸側の第2n分割面を透過して透明基板を

7

介した光と、の位相差を(ΔnL)π(rad)とし、第2n分割面より光軸側とは反対側の第(2n+1)分割面を透過して透明基板を介した光と、前記中央位置より光軸側とは反対側の第2n分割面を透過して透明基板を介した光と、の位相差を(ΔnH)π(rad)とすると、

 $(\Delta n H) \neq (\Delta n L)$

を満足することを特徴とする光ピックアップ装置。

【請求項23】 透明基板の厚さ t 1、屈折率 n 1 の第 1光情報記録媒体と、透明基板の厚さ t 2 (ただし、t 2 ≠ t 1)、屈折率 n 2 で記録密度が第1光情報記録媒体よりも小さい第2光情報記録媒体との2種類の光情報記録媒体の記録又は再生が可能な光ピックアップ装置の 集光光学系において、

前記第1光情報記録媒体の記録又は再生用の光源からの 光束を、厚さt1、屈折率n1の透明基板を介して集光 して前記第1光情報記録媒体の記録又は再生用のビーム スポットを形成したとき、光情報記録媒体側からみて、 開口数NALから開口数NAH(ただし、NAH>NA L)の光束が前記ビームスポットの形成位置には集光せ ず、かつ、

前記第2光情報記録媒体の記録又は再生用の光源からの 光束を、厚さt2、屈折率n2の透明基板を介して集光 して前記第2光情報記録媒体の記録又は再生用のビーム スポットを形成したとき、光情報記録媒体側からみて、 光軸近傍からNAHまでの光束が前記ビームスポットの 形成位置に集光し、NAHよりも高NAの領域の光束が 前記ビームスポットの形成位置には集光しないように、 前記集光光学系の少なくとも1面が光軸と同心状の複数 の分割面で構成されていることを特徴とする光ピックア ップ装置の集光光学系。

【請求項24】 透明基板の厚さ、記録密度が異なる2 種類の光情報記録媒体の記録又は再生が可能な光ピック アップ装置の集光光学系において、

光源から出射した光束を、光軸に対して垂直方向に光軸 近傍から順に、第1光束、第2光束及び第3光束の少な くとも3つの光束に分割するように、前記集光光学系の 少なくとも1面を光軸と同心状の分割面で構成するとと もに、

記録密度の小さい光情報記録媒体の記録又は再生する際には、光源から出射した光束のうち光軸近傍の第1光束及び第2光束を該光情報記録媒体の情報記録面に集光させ、

8

記録密度の大きい光情報記録媒体の記録又は再生する際には、光源から出射した光束のうち前記第1光束及び前記第3光束を該光情報記録媒体の情報記録面に集光させることを特徴とする光ピックアップ装置の集光光学系。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光源から出射した 光束を集光光学系で情報記録面に集光させ、再生する光 情報記録媒体上に情報を記録又は情報記録面上の情報を 再生する光情報記録媒体の記録/再生方法、光ピックア ップ装置、これらに用いられる集光光学系、対物レン ズ、及び対物レンズの設計方法に関する。

[0002]

【従来の技術】近年、短波長赤色半導体レーザ実用化に 伴い、従来の光情報記録媒体(光ディスクともいう)で あるCD(コンパクトディスク)と同程度の大きさで大 容量化させた高密度の光情報記録媒体であるDVD(デ ジタルビデオディスク、あるいは、デジタルバーサタイ トディスクともいう)の開発が進んできている。このD VDでは、635nmの短波長半導体レーザを使用した ときの対物レンズの光ディスク側の開口数NAを0.6 としている。なお、DVDは、トラックピッチ0.74 μ m、最短ピット長0. 4μ mであり、CDのトラック ピッチ1. 6μm、最短ピット長0.83μmに対して 30 半分以下に高密度化されている。また、上述したCD、 DVDの他に、種々の規格の光ディスク、例えば、CD -R(追記型コンパクトディスク)、LD(レーザディ スク)、MD(ミニディスク)、MO(光磁気ディス ク) なども商品化されて普及している。表1に種々の光 ディスクの透明基板の厚さと、必要開口数を示す。

[0003]

【表1】

光ディスク	透明基板厚(mm)	必要開口数NA (光源波長λnm)
CD,CD-R(再生のみ)	1.20	$0.45(\lambda = 780)$
C D-R(記錄,再生)	1.20	$0.50(\lambda = 780)$
L D	1.25	$0.50(\lambda = 780)$
M D	1.20	$0.45(\lambda = 780)$
MO(ISO 3.51) + 230MB)	1.20	$0.55(\lambda = 780)$
MO(ISO 3.54) 640MB)	1.20	$0.55(\lambda = 680)$
DVD	0.60	$0.60(\lambda = 635)$

【0004】なお、CD-Rについては光源波長 λ = 780 (nm) である必要があるが、他の光ディスクにおいては、表 1 に記載した光源波長以外の波長の光源を使用することができ、この場合、使用する光源波長 λ に応 50

じて必要開口数NAがかわる。例えば、CDの場合は必要開口数NA= λ (μ m) \angle 1. 73、DVDの場合は必要開口数NA= λ (μ m) \angle 1. 06で近似される。

【0005】なお、本明細書でいう開口数(例えば、以

FNA1, NA2, NAL, NAH, NA3, NA4& どとして称される) は、透明基板側から見た集光光学系 の開口数のことである。

【0006】このように、市場にはサイズ、基板厚、記 録密度、使用波長などが種々異なる様々な光ディスクが 存在する時代となっており、様々な光ディスクに対応で きる光ピックアップ装置が提案されている。

【0007】その1つとして、異なる光ディスクそれぞ れに対応した集光光学系を備え、再生する光ディスクに されている。しかしながら、この光ピックアップ装置で は、集光光学系が複数必要となりコスト高を招くばかり でなく、集光光学系を切り替えるための駆動機構が必要 となり装置が複雑化し、その切り替え精度も要求され、 好ましくない。

【0008】そこで、1つの集光光学系を用いて、複数 の光ディスクを再生する光ピックアップ装置が種々提案 されている。

【0009】その1つとして、特開平7-302437 号公報には、対物レンズの屈折面をリング状の複数領域 に分割し、各々の分割面が厚さの異なる光ディスクのう ち1つにビームを結像させることにより再生する光ピッ クアップ装置が記載されている。

【0010】他に、特開平7-57271号公報には、 透明基板の厚さt1の第1光ディスクのときには、集光 されるビームの有する波面収差が0.07ん以下となる ように設計した対物レンズを用い、透明基板の厚さ t 2 の第2光ディスクのときには少しデフォーカスした状態 で集光スポットを形成する光ピックアップ装置が記載さ れている。

[0011]

【発明が解決しようとする課題】しかしながら、特開平 7-302437号公報に記載された光ピックアップ装 置においては、1つの対物レンズで同時に2つの焦点に 入射光量を分割するため、レーザ出力を大きくする必要 があり、コスト高を招く。また、特開平7-57271 号公報に記載された光ピックアップ装置では、第2光デ ィスク再生時にはサイドローブによるジッターの増加が 起こる。特に、第1の光ディスクで波面収差が0.07 λ以下とした対物レンズで、第2の光ディスクを無理矢 理再生しているために、第2の光ディスクの再生可能な 開口数には限界がある。

【0012】そこで、本発明は、1つの集光光学系で複 数の光情報記録媒体を記録又は再生でき、低コストかつ 複雑化しないで実現でき、さらに、高NAの光情報記録 媒体にも対応できることを目的とする。

【0013】また、本出願人が特願平8-156831 号や特願平8-180586号において提案している、 球面収差を調整した光ピックアップ装置を、さらに、集 光特性を良好にすることを目的とする。

[0014]

【課題を解決するための手段】上記目的は、以下の構成 により解決できる。

10

[0015](1)透明基板の厚さが t 1 の第1光情 報記録媒体と透明基板の厚さがt2(ただし、t2≠t 1) の第2光情報記録媒体とに対して、光源から出射し た光束を1つの集光光学系で透明基板を介して情報記録 面に集光させ、情報記録面上に情報を記録又は情報記録 面上の情報を再生する光情報記録媒体の記録/再生方法 より集光光学系を切り替える光ピックアップ装置が提案 10 において、光軸近傍の第1光束は第1光情報記録媒体の 記録又は再生及び第2光情報記録媒体の記録又は再生に 利用するとともに、前記第1光束より外側の第2光束は 主に第2光情報記録媒体の記録又は再生に利用し、前記 第2光束より外側の第3光束は主に第1光情報記録媒体 の記録又は再生に利用することを特徴とする光情報記録 媒体の記録/再生方法。

> 【0016】(2) 透明基板の厚さがt1の第1光情 報記録媒体と透明基板の厚さが t 2 (ただし、 t 2 ≠ t 1) の第2光情報記録媒体とに対して、光源から出射し た光束を1つの集光光学系で透明基板を介して情報記録 面に集光させ、情報記録面上に情報を記録又は情報記録 面上の情報を再生する光ピックアップ装置において、前 記集光光学系は、光軸近傍の第1光束を第1光情報記録 媒体の記録又は再生及び第2光情報記録媒体の記録又は 再生に利用し、前記第1光束より外側の第2光束を主に 第2光情報記録媒体再生に利用し、前記第2光束より外 側の第3光束を主に第1光情報記録媒体の記録又は再生 に利用するような機能を有することを特徴とする光ピッ クアップ装置。

【0017】(3) 光源からの光束を光情報記録媒体 30 の情報記録面上に集光させ、情報記録面上に情報を記録 する又は情報記録面上に記録された情報を再生する光ピ ックアップ装置において、集光光学系を構成する少なく とも1つの光学面を、光軸近傍の前記光学面の中央に位 置する第1分割面と、前記第1分割面との間に第2分割 面を挟んで位置する第3分割面とに分割された光学面で 構成し、透明基板の厚さが t 1 の第 1 光情報記録媒体の 記録又は再生する際は、主に、前記第1分割面及び第3 分割面を通過した光束により、ビームスポットを形成 し、透明基板の厚さが t 2 (ただし、 t 2 ≠ t 1) の第 40 2光情報記録媒体の記録又は再生する際は、主に、前記 第1分割面及び第2分割面を通過した光束により、ビー ムスポットを形成することを特徴とする光ピックアップ 装置。

【0018】(4) 少なくとも一方の面を光軸と同心 状に複数に分割された複数の分割面を有するとともに、 光軸近傍の第1分割面と前記第1分割面より外側の第3 分割面を通過する光束がほぼ同一の第1結像位置に結像 するように測定したとき、前記第1結像位置と、前記第 50 1分割面と第3分割面との間の第2分割面を通過する光 東が結像する第2結像位置との間の距離の絶対値が、4 μ m以上40 μ m以下であることを特徴とする対物レンズ。

【0019】(5) 少なくとも一方の面を光軸と同心 状に複数に分割された複数の分割面を有するとともに、 光軸近傍の第1分割面と前記第1分割面より外側の第3 分割面を通過する光束がほぼ同一の第1結像位置に結像 するように測定したとき、前記第1分割面と第3分割面 との間の第2分割面を通過する光束が結像する第2結像 位置の方が、第1結像位置より対物レンズに近いことを 特徴とする対物レンズ。

【0020】(6) 前記第1位置と前記第2位置との 距離は、 -40μ m以上 -4μ m以下であることを特徴 とする(5)に記載の対物レンズ。

【0021】(7) 少なくとも一方の面を光軸と同心状に複数に分割された複数の分割面を有するとともに、所定の入射光束で所定の厚さの透明基板を介したとき、光軸を含む第1分割面を通過する光束のうち、光軸近傍を通過する光線が光軸と交わる位置と、光軸と直交する方向で前記第1分割面の端部を通過する光線が光軸と交わる位置との間に、前記第1分割面より外側の第2分割面を通過する光線が光軸と交わるとともに、前記第2分割面より外側の第3分割面を通過する光線は、光軸近傍を通過する光線が光軸と交わる位置に対して、前記第1分割面の端部を通過する光線が光軸と交わる位置に対して、前記第1分割面の端部を通過する光線が光軸と交わる位置よりし離れた位置で、光軸と交わることを特徴とする対物レンズ。

【0022】さらに、光軸と直交する方向で前記第2分割面のほぼ中央位置でみたとき、前記第2分割面の法線と光軸とのなす角度と、前記第1分割面と、前記第2分割面より外側の第3分割面とから内挿される面の法線と光軸とのなす角度との差が、0.02°以上1°以下の範囲であることを特徴とする(4)~(7)のいずれか1つに記載の対物レンズ(7-1)が好ましい。

【0023】さらに、光軸近傍の前記第1分割面と前記第2分割面より外側の第3分割面を通過する光束がほぼ同一の結像位置に結像するように測定したとき、前記第1分割面と前記第3分割面とを通過する光束による最良波面収差が 0.05λ rms以下(ただし、 λ は光源の波長)であることを特徴とする(4)~(7)、(7-1)のうちいずれか1つに記載の対物レンズ(7-2)が好ましい。

【0024】さらに、所定の入射光束で所定の厚さの透明基板を介したとき、前記第1分割面を通過する光束による最良液面収差が0.07 \(\lambda\) rms以下(ただし、\(\lambda\) は光源の波長)であることを特徴とする(4)~

(7)、(7-1)、(7-2)のうちいずれか1つに記載の対物レンズ(7-3)が好ましい。

【0025】(8) 光源から出射した光束を集光光学 系で光情報記録媒体の透明基板を介して光情報記録媒体 50

の情報記録面上に光スポットとして集光させ、情報記録面上に情報を記録する又は情報記録面上に記録された情報を再生する光ピックアップ装置において、透明基板の厚さが t 1 の第1 光情報記録媒体の記録又は再生するために必要な前記集光光学系の光情報記録媒体側の必要開口数をNA1、透明基板の厚さが t 2 (ただし、t 2≠t1)の第2光情報記録媒体の記録又は再生するために必要な前記集光光学系の光情報記録媒体側の必要開口数をNA2 (ただし、NA2<NA1)、としたとき、前記集光光学系は、開口数がNA2近傍の少なくとも2つの開口位置で、球面収差が不連続に変化する機能を有することを特徴とする光ピックアップ装置。

【0026】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとしたとき、t2>t1で、小さい開口数から大きい開口数の方向へとみたとき、前記集光光学系は、開口数NALでは、球面収差が負の方向に不連続に変化し、開口数NAHでは、球面収差が正の方向に不連続に変化する機能を有することを特徴とする(8)に記載の光ピックアップ装置(8-1)が好ましい。

【0027】さらに、t2(ただし、t2>t1)の厚さの透明基板を介した際に、前記集光光学系は、開口数NALから開口数NAHの間の球面収差が正となる機能・を有することを特徴とする(8-1)に記載の光ピックアップ装置(8-2)が好ましい。

【0028】 さらに、t1=0.6mm、t2=1.2mm、610nm< λ <670nm、0.32<NA2<0.41のとき、前記集光光学系は、0.60(NA2)<NAL<1.3(NA2)であることを特徴とする (8-1) 又は (8-2) に記載の光ピックアップ装置 (8-3) が好ましい。

【0029】 さらに、t1=0.6mm、t2=1.2mm、610nm< λ <670nm、0.32<NA2<0.41のとき、前記集光光学系は、0.01<NAH-NAL<0.12であることを特徴とする(8-1)~(8-3)のいずれか1つに記載の光ピックアップ装置(8-4)が好ましい。

【0030】 さらに、t20厚さの透明基板を介した際に、前記集光光学系は、開口数NALから開口数NAHの間の球面収差が、 -2λ / (NA2) 2 以上、 5λ / (NA2) 2 以下であることを特徴とする(8-3)又は (8-4) に記載の光ピックアップ装置 (8-5) が好ましい。

【0031】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとしたとき、前記集光光学系は、t1の厚さの透明基板を介した際に、前記集光光学系の光情報記録媒体側の開口数がNA1のなかで、開口数NALから開口数NAHの間を除いた最良波面収差が0.05 λ r m s 以下(ただし、 λ は光源の波長)であることを特徴とする

(8)、(8-1) \sim (8-5) のいずれか1つに記載の光ピックアップ装置(8-6) が好ましい。

【0032】さらに、前記少なくとも2つの開口位置の- うち、最も小さい開口数をNAL、最も大きい開口数をNAHとしたとき、前記集光光学系は、t2の厚さの透明基板を介した際に、開口数NALまでの最良波面収差が0.07 \(\lambda\) rms以下(ただし、\(\lambda\) は光源の波長)であることを特徴とする(8)、(8-1)~(8-6)のいずれか1つに記載の光ピックアップ装置(8-7)が好ましい。

【0033】 さらに、前記光源は、第1 光情報記録媒体の記録又は再生するための波長 λ 1 の第1 光源と、第2 光情報記録媒体の記録又は再生するための波長 λ 2 (ただし、 λ 2 > λ 1) の第2 光源を有することを特徴とする(8)、(8-1)、(8-2) のいずれか1つに記載の光ピックアップ装置(8-8) が好ましい。

【0034】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとし、t1=0. $6 \, \text{mm}$ 、t2=1. $2 \, \text{mm}$ 、 $6 \, 10 \, \text{nm} < \lambda \, 1 < 6 \, 70 \, \text{nm}$ 、 $7 \, 40 \, \text{nm} < \lambda \, 2 < 8 \, 70 \, \text{nm}$ 、 $0.40 < \text{NA} \, 2 < 0.51 \, \text{のとき、前記集光光学系は、} 0.60 (NA2) < NAL < 1.1 (NA2) であることを特徴とする(<math>8-8$)に記載の光ピックアップ装置(8-9)が好ましい。

【0035】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとし、t1=0.6mm、t2=1.2mm、 $610nm<\lambda1<670nm$ 、 $740nm<\lambda2<870nm$ 、0.40<NA2<0.51のとき、前記集光光学系は、<math>0.01<NAH-NAL<0.12であることを特徴とする(8-8)又は(8-9)に記載の光ピックアップ装置(8-10)が好ましい。

【0036】さらに、t2の厚さの透明基板を介した際に、前記集光光学系は、開口数NALから開口数NAHの間の球面収差が、 $-2(\lambda 2)$ /(NA2)²以上、 $5(\lambda 2)$ /(NA2)²以下であることを特徴とする(8-9) 又は(8-10)のいずれか1つに記載の光ピックアップ装置(8-11)が好ましい。

【0037】さらに、前記集光光学系である正の屈折力を有する対物レンズの前記第1光源に対する近軸結像倍率と、前記第2光源に対する結像倍率とが、ほぼ0

(零) であることを特徴とする(8-8) ~ (8-1 1) のいずれか1つに記載の光ピックアップ装置(8-12) が好ましい。

【0038】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとしたとき、前記集光光学系は、t1の厚さの透明基板を介した際に、前記集光光学系の光情報記録媒体側の開口数がNA1のなかで、開口数NALから開口数NAHの間を除いた最良波面収差が0.05 λ1 rms

14

以下(ただし、 λ 1 は第1光源の波長)である機能を有することを特徴とする(8-8) \sim (8-12) のいずれか1つに記載の光ピックアップ装置(8-13)が好ましい。

【0039】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとしたとき、前記集光光学系は、t2の厚さの透明基板を介した際に、開口数NALまでの最良波面収差が0.07λ2rms以下(ただし、λ2は第2光源の10 波長)であることを特徴とする(8-8)~(8-13)のいずれか1つに記載の光ピックアップ装置(8-14)が好ましい。

【0040】 さらに、前記集光光学系は、正の屈折力の 対物レンズを有することを特徴とする(8)、(8-1)~(8-14)のいずれか1つに記載の光ピックア ップ装置(8-15)が好ましい。

【0041】(9) 光情報記録媒体の情報記録面上に 光源からの光束を光情報記録媒体の透明基板を介して光 スポットとして集光させ、光情報記録媒体上に情報を記 録するまたは光情報記録媒体上に記録された情報を再生 するピックアップ装置の対物レンズにおいて、光源の波 長をえ、透明基板の厚さがt1の第1光情報記録媒体の 記録又は再生するために必要な前記対物レンズの光情報 記録媒体側の必要開口数をNA1、透明基板の厚さがt 2(ただし、t2≠t1)の第2光情報記録媒体の記録 又は再生するために必要な前記対物レンズの光情報記録 媒体側の必要開口数をNA2(ただし、NA2<NA 1)、としたとき、開口数がNA2近傍の少なくとも2 つの開口位置で、球面収差が不連続に変化することを特 30 徴とする光ピックアップ装置の対物レンズ。

【0042】(10) 前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとしたとき、光軸と直交する方向で開口数NALと開口数NAHのほぼ中央位置でみたとき、開口数NALから開口数NAHまでの面の法線と光軸とのなす角度が、光軸から開口数NALまでの面及び開口数NAHから開口数NA1までの面から内挿される面の法線と光軸とのなす角度より、t2>t1のとき大となり、t2
<t 1のとき小となることを特徴とする(9)に記載の</p>
40 光ピックアップ装置の対物レンズ。

【0043】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとしたとき、光軸と直交する方向で開口数NALと開口数NAHのほぼ中央位置でみたとき、開口数NALから開口数NAHまでの面の法線と光軸とのなす角度と、光軸から開口数NALまでの面及の開口数NAHから開口数NA1までの面から内挿される面の法線と光軸とのなす角度との差が、0.02°以上1°以下の範囲であることを特徴とする(9)又は(10)に記載の光50 ピックアップ装置の対物レンズ(10-1)が好まし

. V.

【0044】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとし、t2>t1で、小さい開口数から大きい開口数の方向へとみたとき、開口数NALでは、球面収差が負の方向に不連続に変化し、開口数NAHでは、球面収差が正の方向に不連続に変化することを特徴とする(9)、(10)、(10-1)のいずれか1つに記載の光ピックアップ装置の対物レンズ(10-2)が好ましい。

15

【0045】 さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとしたとき、t2(ただし、t2>t1)の厚さの透明基板を介した際に、開口数NALから開口数NAHの間の球面収差が正であることを特徴とする(9)、(10)(10-1)、(10-2)のいずれか1つに記載の光ピックアップ装置の対物レンズ(10-3)が好ましい。

【0046】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとし、t1=0.6mm、t2=1.2mm、 $610nm<\lambda<670nm$ 、0.32<NA2<0.41のとき、0.60(NA2)<NAL<1.3(NA2)であることを特徴とする(9)、(10)、(10)、(10)、(10)、(10)、(10)、(10)、(10)、(10)、(10)、(10)、(10)、(10)、(10)、(10))、(10))、(10))、(10))、(10))、(10))、(10))、(10))、(10))、(10))、(10))、(10))、(10))、(10)、(10))、(10))、(10)、(10)、(10))、(10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10)(10)(10)(10)(

【0047】 さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとし、t1=0. 6 mm、t2=1. 2 mm、6 10 nm< λ <670 nm、0. 32<NA2<0. 4 1 のとき、0. 01<NAH-NAL<0. 12 であることを特徴とする(9)、(10)、(10-1)~(10-4)のいずれか1つに記載の光ピックアップ装置の対物レンズ(10-5)が好ましい。

【0048】さらに、t2の厚さの透明基板を介した際に、開口数NALから開口数NAHの間の球面収差が、 $-2\lambda/(NA2)^2$ 以上、 $5\lambda/(NA2)^2$ 以下であることを特徴とする(10-4)又は(10-5)に記載の光ピックアップ装置の対物レンズ(10-6)が好ましい。

【0049】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとしたとき、t1の厚さの透明基板を介した際に、前記対物レンズの光情報記録媒体側の開口数がNA1のなかで、開口数NALから開口数NAHの間を除いた最良波面収差が 0.05λ rms以下(ただし、 λ は光源の波長)である機能を有することを特徴とする(9)、(10)、(10-1)~(10-6)のいずれか1つに記載の光ピックアップ装置の対物レンズ(10-7)が好ましい。

【0050】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとしたとき、t2の厚さの透明基板を介した際に、開口数NALまでの最良波面収差が 0.07λ rms以下(ただし、 λ は光源の波長)であることを特徴とする(9)、(10)、(10-1)~(10-7)のいずれか1つに記載の光ピックアップ装置の対物レンズ(10-8)が好ましい。

【0051】さらに、前記少なくとも2つの開口位置の 10 うち、最も小さい開口数をNAL、最も大きい開口数をNAHとし、第1光情報記録媒体の記録又は再生するための光源の波長を λ 1、第2光情報記録媒体の記録又は再生するための光源の波長を λ 2(ただし、 λ 2> λ 1)とし、t1=0.6 mm、t2=1.2 mm、610 nm< λ 1<670 nm、 τ 40 nm< λ 2<870 nm、0.40<NA2<0.51のとき、0.60 (NA2) <NAL<1.1 (NA2) であることを特徴とする(9)、(10)、(10-1)~(10-3)のいずれか1つに記載の光ピックアップ装置の対物 τ 20 レンズ(10-9)が好ましい。

【0052】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとし、第1光情報記録媒体の記録又は再生するための光源の波長を λ 1、第2光情報記録媒体の記録又は再生するための光源の波長を λ 2(ただし、 λ 2> λ 1)とし、t1=0.6 mm、t2=1.2 mm、610 nm< λ 1<670 nm、740 nm< λ 2<870 nm、0.40<NA2<0.51のとき、0.01<NAH-NAL<0.12であることを特徴とする(9)、(10)、(10-1)~(10-3)、(10-9)のいずれか1つに記載の光ピックアップ装置の

【0053】 さらに、t2の厚さの透明基板を介した際に、前記集光光学系は、開口数NALから開口数NAHの間の球面収差が、 $-2(\lambda 2)/(NA2)^2$ 以上、 $5(\lambda 2)/(NA2)^2$ 以下となる機能を有することを特徴とする(10-9)又は(10-10)に記載の光ピックアップ装置の対物レンズ(10-11)が好ましい。

対物レンズ(10-10)が好ましい。

40 【0054】さらに、前記少なくとも2つの開口位置のうち、最も小さい開口数をNAL、最も大きい開口数をNAHとしたとき、第1光情報記録媒体の記録又は再生するための光源の波長を λ 1、第2光情報記録媒体の記録又は再生するための光源の波長を λ 2(ただし、 λ 2 $>\lambda$ 1)とし、t1の厚さの透明基板を介した際に、前記対物レンズの光情報記録媒体側の開口数がNA1のなかで、開口数NALから開口数NAHの間を除いた最良波面収差が0.05 λ rms以下(ただし、 λ は光源の波長)である機能を有することを特徴とする(9)、

 $50 \quad (10) \ , \quad (10-1) \sim (10-3) \ , \quad (10-9)$

20

18

17 ~ (10-11) のいずれか1つに記載の光ピックアップ装置の対物レンズ (10-12) が好ましい。

【0055】さらに、前記少なくとも2つの開口位置の うち、最も小さい開口数をNAL、最も大きい開口数を NAHとしたとき、第1光情報記録媒体の記録又は再生 するための光源の波長を λ 1、第2光情報記録媒体の記録又は再生するための光源の波長を λ 2(ただし、 λ 2 > λ 1)とし、t2の厚さの透明基板を介した際に、開口数NALまでの最良波面収差が 0.07λ rms以下 (ただし、 λ は光源の波長)であることを特徴とする (9)、(10)、(10-1)~(10-3)、(10-9)~(10-12)のいずれか1つに記載の光ピックアップ装置の対物レンズ(10-13)が好ましい。

【0056】(11) 透明基板の厚さが異なる複数の 光情報記録媒体に、波長λの光源から出射した光束を集 光させる対物レンズの設計方法において、透明基板の厚 さが t 1の第1光情報記録媒体の記録又は再生に必要な 対物レンズの光情報記録媒体側の開口数NA1の範囲内 において、厚さ t 1 の透明基板を介して第1光情報記録 媒体に集光させた光束の最良波面収差が O. O5λrm s以下となるように第1非球面と共通屈折面とを設計す るとともに、透明基板の厚さが t 2 (ただし、 t 2 ≠ t 1) の第2光情報記録媒体に集光させた光束の球面収差 の発生量が、第2の光情報記録媒体に第1非球面を介し て集光させたときの球面収差の発生量より少なくなるよ うに、前記共通屈折面に対する第2非球面を設計し、こ れら第1非球面と第2非球面とを、前記第2光情報記録 媒体の記録又は再生に必要な対物レンズの情報記録面側 の開口数をNA2(ただし、NA2<NA1)としたと き、前記第1非球面の前記NA2近傍の光束が通過する 部分に前記第2非球面が位置するように合成することに より、前記対物レンズの少なくとも1つの屈折面を設計 することを特徴とする対物レンズの設計方法。

【0057】(12) 前記第1 非球面の軸上曲率半径 と、前記第2 非球面の軸上曲率半径とを同一で行うことを特徴とする(11)に記載の対物レンズの設計方法。【0058】(13) 前記第1 非球面は、合成する第2 非球面よりも光軸側に位置する第1 非球面を通過し、透明基板の厚さが t 2の第2 光情報記録媒体に集光させた光束の最良波面収差が0.07 λ r m s 以下となるように設計することを特徴とする(11) 又は(12)に記載の対物レンズの設計方法。

【0059】(14) 透明基板の厚さが異なる複数の 光情報記録媒体に、光源から出射した光束を集光させる 対物レンズにおいて、前記対物レンズの少なくとも1つ の屈折面を、透明基板の厚さが t 1の第1光情報記録媒 体の記録又は再生に必要な対物レンズの光情報記録媒体 側の開口数NA1の範囲内において、厚さ t 1の透明基 板を介して集光させた光束の最良波面収差が0.05 λ rms以下となるような第1非球面と、透明基板の厚さがt2(ただし、t2≠t1)の第2光情報記録媒体に集光させた光東の球面収差の発生量が、第2光情報記録媒体上に前記第1非球面を介して集光させたときの球面収差の発生量より、少なくなるような第2非球面とを、前記第2光情報記録媒体の記録又は再生に必要な対物レンズの情報記録面側の開口数をNA2(ただし、NA2<NA1)としたとき、前記第1非球面の前記NA2近傍の光東が通過する部分に前記第2非球面が位置するように合成した屈折面で構成したことを特徴とする対物レンズ。

【0060】(15) 透明基板の厚さがt1の第1光 情報記録媒体に対して、光源から出射した光束を集光光 学系で透明基板を介して情報記録面に集光させ、情報記 録面上に情報を記録又は情報記録面上の情報を再生する 光ピックアップ装置において、前記第1光情報記録媒体 を記録又は再生するのに必要な前記集光光学系の光情報 記録媒体側の必要開口数をNA1、前記第1光情報記録 媒体の透明基板の厚さt1とは異なる透明基板の厚さt 2 (t2≠t1)を有する第2光情報記録媒体を記録又 は再生するのに必要な前記集光光学系の光情報記録媒体 側の必要開口数をNA2(ただし、NA2<NA1)と すると、前記集光光学系に、O. 60 (NA2) < NA 3<1.3(NA2) (ただし、第2光情報記録媒体を 記録又は再生する際の光源の波長が740 n m~870 nmである場合、この式の上限は1.1(NA2)とす る)、0.01<NA4-NA3<0.12の条件を満 たす前記集光光学系の光情報記録媒体側の開口数NA3 と開口数NA4との間を通過する光束に作用して、該光 束を主に第2光情報記録媒体の記録又は再生に利用する ための面を設けることにより、透明基板の厚さが互いに 異なる第1光情報記録媒体と第2光情報記録媒体とに対 して、同じ前記集光光学系で、記録又は再生を行うこと を特徴とする光ピックアップ装置。

【0061】(16) 前記主に第2光情報記録媒体の記録又は再生に利用するための面を通過した第2光束が結像する第2結像位置は、第2光束より内側の第1光束と第2光束より外側の第3光束とがほぼ同一の第1結像位置に結像するように測定したときに、前記第1結像位置との間の距離の絶対値が、 4μ m以上 40μ m以下であることを特徴とする(15)に記載の光ピックアップ装置

【0062】 さらに、前記主に第2光情報記録媒体の記録又は再生に利用するための面を、複数有することを特徴とする(15)又は(16)に記載の光ピックアップ装置(16-1)が好ましい。

【0063】さらに、第2光情報記録媒体を記録又は再生する際、前記主に第2光情報記録媒体の記録又は再生に利用するための面よりも内側の面を通過した光束による最良波面収差が0.072 rm s以下(ただし、λは

光源の波長)であることを特徴とする(15)、(1 6) 、(16-1) のいずれか1つに記載の光ピックア ップ装置(16-2)が好ましい。

19

· [0064] (17) 透明基板の厚さが t 1の第1光 情報記録媒体と透明基板の厚さが t 2 (ただし、t 2 ≠ t1)の第2光情報記録媒体とに対して、光源から出射 した光束を1つの集光光学系で透明基板を介して情報記 録面に集光させ、情報記録面上に情報を記録又は情報記 録面上の情報を再生する光情報記録媒体の記録/再生を 行う光ピックアップ装置において、第1光情報記録媒体 を記録又は再生するのに必要な前記集光光学系の光情報 記録媒体側の必要開口数をNA1、第2光情報記録媒体 を記録又は再生するのに必要な前記集光光学系の光情報 記録媒体側の必要開口数をNA2(ただし、NA2<N A1)とすると、前記集光光学系は、所定の倍率で厚さ t1の透明基板を介したときに、開口数NA1の範囲内 において、最良波面収差を得るようにしたとき、縦軸に 波面収差、横軸に開口数をとった波面収差曲線でみる と、開口数NA2近傍の少なくとも2カ所で波面収差が 不連続となることを特徴とする光ピックアップ装置。

【0065】さらに、前記開口数NA2近傍とは、0. 60 (NA2) < NA3<1.3 (ただし、第2光情報 記録媒体を記録又は再生する際の光源の波長が740n m~870nmである場合、この式の上限は1.1(N A2) とする) (NA2)、0.01<NA4-NA3 < 0. 12を満足する2つの開口数NA3とNA4との 間であることを特徴とする(17)に記載の光ピックア ップ装置(17-1)が好ましい。

【0066】さらに、前記集光光学系は、第2光情報記 録媒体を記録又は再生する際、波面収差が不連続となる 2カ所のうち最も光軸側の開口数よりも光軸側を通過し た光東による最良波面収差が0.07 l r m s 以下(た だし、λは光源の波長)であることを特徴とする(1 7) 又は(17-1)に記載の光ピックアップ装置(1 7-2) が好ましい。

[0067] (18)透明基板の厚さが t 1の第1光 情報記録媒体と透明基板の厚さがt2(ただし、t2≠ t 1) の第2光情報記録媒体とに対して、光源から出射 した光束を1つの集光光学系で透明基板を介して情報記 録面に集光させ、情報記録面上に情報を記録又は情報記 録面上の情報を再生する光情報記録媒体の記録/再生を 行う光ピックアップ装置の対物レンズにおいて、前記対 物レンズは、少なくとも1面が、光軸近傍の第1分割面 より順に第2n+1(ただし、nは自然数)分割面まで 分割されており、前記第1分割面を通過する第1光束 は、第1光情報記録媒体の記録又は再生及び第2光情報 記録媒体の記録又は再生に利用するとともに、偶数分割 面を通過する光束は主に第2光情報記録媒体の記録又は 再生に利用し、第1分割面を除く奇数分割面を通過する 光束は主に第1光情報記録媒体の記録又は再生に利用す 50 0.12を満足するNA3とNA4との間にあることを

ることを特徴とする光ピックアップ装置の対物レンズ。 【0068】さらに、第2分割面の光軸側における光情 報記録媒体側の開口数をNALとし、第2m分割面(た だし、n≥2の整数)の光軸から離れた側における光情 報記録媒体側の開口数をNAHとすると、O.8(NA 2) < NAL < 1.3 (NA2) (ただし、第2光情報 記録媒体を記録又は再生する際の光源の波長が740n m~870nmである場合、この式の上限は1.1 (N A2) とする)、0.01<NAH-NAL<0.12 を満足することを特徴とする(18)に記載の光ピック アップ装置の対物レンズ(18-1)が好ましい。

【0069】さらに、t1の厚さの透明基板を介した際 に、奇数分割面を通過する光束による最良波面収差が $0.05\lambda rms$ 以下(ただし、 λ は光源の波長)であ る機能を有することを特徴とする(18)又は(18-1) に記載の光ピックアップ装置の対物レンズ(18-2) が好ましい。

【0070】さらに、t2の厚さの透明基板を介した際 に、第1分割面を通過する光束による最良波面収差が 20 O. O 7 λ r m s 以下 (ただし、λは光源の波長) であ ることを特徴とする(18)、(18-1)、(18-2) のいずれか1つに記載の光ピックアップ装置の対物 レンズ(18-3)が好ましい。

【0071】(19) 光源から位相の揃った波長 l の 光束を集光光学系により光情報記録媒体の透明基板を介 して情報記録面上に集光し、情報記録面上への情報の記 録又は情報記録面上に記録された情報の再生を行う光ピ ックアップ装置において、前記光源からの光束を前記集 光光学系により厚さt1、屈折率n1の平行平面板を介 して集光し、平行平面板側の第1開口数の範囲内におい て、その波面収差が最良となる状態で波面収差を測定し て得られる波面収差曲線が、前記集光光学系の前記平行 平面板側の第1開口数より小さい第2開口数の範囲内 に、波面収差が不連続となる部分を有し、かつ、該不連 続となっている部分の波面収差の傾きが、該不連続とな っている部分の両側の曲線の端部を結ぶ直線の傾きとは 異なる傾きである波面収差曲線となるように、前記集光 光学系の少なくとも1つの屈折面を光軸と同心状に複数 の分割面で構成したことを特徴とする光ピックアップ装

【0072】さらに、前記所定の開口数の範囲内に、波 面収差が不連続となる部分が複数箇所あることを特徴と する(19)に記載の光ピックアップ装置(19-1) が好ましい。

【0073】さらに、前記所定の開口数は、0.60 (NA2) <NA3<1.3 (NA2) (ただし、第2 光情報記録媒体を記録又は再生する際の光源の波長が7 40nm~870nmである場合、この式の上限は1. 1 (NA2) とする)、0.01<NA4-NA3<

20

30

۷)

特徴とする(19)又は(19-1)に記載の光ピック アップ装置(19-2)が好ましい。

【0074】さらに、前記t1は0.6mmであり、前 ・ 記n1は1.58であることを特徴とする(19)、

(19-1)、(19-2) のいずれか1つに記載の光 ピックアップ装置(19-3) が好ましい。

【0075】(20) 光情報記録媒体上に情報を記録する又は光情報記録媒体上に記録された情報を再生するために、光情報記録媒体の情報記録面上に光源からの光東を光情報記録媒体の透明基板を介して光スポットとして集光させる光ピックアップ装置の対物レンズにおいて、波長 λ 1の光源を用いて透明基板の厚さがt1の第1光情報記録媒体及び透明基板の厚さがt2(ただし、t2 \neq t1)の第2光情報記録媒体の情報記録面上に集光させることができるとともに、波長 λ 2(ただし、 λ 2 \neq λ 1)の光源を用いた場合であっても第2光情報記録媒体の情報記録面上に集光することが可能なように、前記対物レンズの少なくとも1面を複数の分割面で構成したことを特徴とする光ピックアップ装置の対物レンズ。

【0076】(21) 少なくとも一方の面を光軸と同心状に複数に分割された複数の分割面を有するとともに、第2n分割面(ただし、nは1以上の整数)より光軸側の第(2n-1)分割面を透過した光と、第2n分割面より光軸側とは反対側の第(2n+1)分割面を透過した光とが、所定の厚さの透明基板を介して、ほぼ同じ位相となるようにしたとき、前記第(2n-1)分割面を透過した光と、光軸に直交する方向において第2n分割面のほぼ中央位置より光軸側の第2n分割面を透過した光と、の位相差を(Δn L) π (rad)とし、前記第(2n+1)分割面を透過した光と、前記中央位置より光軸側とは反対側の第2n分割面を透過した光と、前記中央位置より光軸側とは反対側の第2n分割面を透過した光と、の位相差を(Δn H) π (rad)とすると、(Δn H) π (π ad)とすると、(π n

【0077】(22) 透明基板の厚さがt1の第1光情報記録媒体と透明基板の厚さがt2(ただし、t2≠t1)の第2光情報記録媒体とに対して、光源から出射した光束を1つの集光光学系で透明基板を介して情報記録面に集光させ、情報記録面上に情報を記録又は情報記録面上の情報を再生する光ピックアップ装置において、前記集光光学系の少なくとも一つの面は、光軸と同心状に複数に分割された複数の分割面を有するとともに、第2n分割面(ただし、nは1以上の整数)より光軸側の第(2n-1)分割面を透過して透明基板を介した光と、光軸に直交する方向において第2n分割面のほぼ中央位置より光軸側の第2n分割面を透過して透明基板を介した光と、の位相差を(ΔnL)π(rad)とし、第2n分割面より光軸側とは反対側の第(2n+1)分割面を透過して透明基板を介した光と、前記中央位置よ50割面を透過して透明基板を介した光と、前記中央位置よ50割面を透過して透明基板を介した光と、前記中央位置よ50割面を透過して透明基板を介した光と、前記中央位置よ50割面を透過して透明基板を介した光と、前記中央位置よ50割面を透過して透明基板を介した光と、前記中央位置よ50割面を透過して透明基板を介した光と、前記中央位置よ50割面を透過して透明基板を介した光と、前記中央位置よ50割面を表面して透明基板を介した光と、前記中央位置よ50割面を表面して透明基板を介した光と、前記中央位置よ50割面を表面して透明表板を行した光と、前記中央位置よ50割面を表面して透明表板を行した光と、前記中央位置よ50割面を表面して表面となります。

り光軸側とは反対側の第2n分割面を透過して透明基板を介した光と、の位相差を(Δn H) π (r a d)とすると、(Δn H) \neq (Δn L) を満足することを特徴とする光ピックアップ装置。

【0078】(23) 透明基板の厚さt1、屈折率n 1の第1光情報記録媒体と、透明基板の厚さt2(ただ し、t2≠t1)、屈折率n2で記録密度が第1光情報 記録媒体よりも小さい第2光情報記録媒体との2種類の 光情報記録媒体の記録又は再生が可能な光ピックアップ 装置の集光光学系において、前記第1光情報記録媒体の 記録又は再生用の光源からの光束を、厚さt1、屈折率 n 1の透明基板を介して集光して前記第1光情報記録媒 体の記録又は再生用のビームスポットを形成したとき、 光情報記録媒体側からみて、開口数NALから開口数N AH(ただし、NAH>NAL)の光束が前記ビームス ポットの形成位置には集光せず、かつ、前記第2光情報 記録媒体の記録又は再生用の光源からの光束を、厚さ t 2、屈折率n2の透明基板を介して集光して前記第2光 情報記録媒体の記録又は再生用のビームスポットを形成 したとき、光情報記録媒体側からみて、光軸近傍からN AHまでの光束が前記ビームスポットの形成位置に集光 し、NAHよりも高NAの領域の光束が前記ビームスポ ットの形成位置には集光しないように、前記集光光学系 の少なくとも1面が光軸と同心状の複数の分割面で構成 されていることを特徴とする光ピックアップ装置の集光

[0079](24)透明基板の厚さ、記録密度が異 なる2種類の光情報記録媒体の記録又は再生が可能な光 ピックアップ装置の集光光学系において、光源から出射 した光束を、光軸に対して垂直方向に光軸近傍から順 に、第1光束、第2光束及び第3光束の少なくとも3つ の光束に分割するように、前記集光光学系の少なくとも 1面を光軸と同心状の分割面で構成するとともに、記録 密度の小さい光情報記録媒体の記録又は再生する際に は、光源から出射した光束のうち光軸近傍の第1光束及 び第2光束を該光情報記録媒体の情報記録面に集光さ せ、記録密度の大きい光情報記録媒体の記録又は再生す る際には、光源から出射した光束のうち前記第1光束及 び前記第3光束を該光情報記録媒体の情報記録面に集光 させることを特徴とする光ピックアップ装置の集光光学 系。

[0080]

【発明の実施の形態】以下、図面を参照して本発明を説明する。なお、同一の構成要素を用いる場合には同じ番号を付している。また、本明細書においては、透明基板の厚さt1の第1光情報記録媒体(第1光ディスクともいう)の記録又は再生に必要な集光光学系(対物レンズ)の光情報記録媒体側の開口数NA1が、透明基板の厚さt2の第2光情報記録媒体(第2光ディスクともいう)の記録又は再生に必要な集光光学系(対物レンズ)

30

の光情報記録媒体側の開口数NA2よりも大きい(NA 2<NA1)ものとして説明する。

【0081】(第1の実施の形態)まず、第1の実施の 形態を説明するに先立ち、光ピックアップ装置について 説明する。図1は光ピックアップ装置の概略構成図であ る。

【0082】光ピックアップ装置10は、光源である半 導体レーザ11(波長λ=610~670nm)、偏光 ビームスプリッタ12、コリメータレンズ13、1/4 波長板14、絞り17、対物レンズ16、非点収差を発 生する非点収差素子であるシリンドリカルレンズ18、 光検出器30、フォーカス制御及びトラッキング制御の ための2次元アクチュエータ15などからなる。

【0083】半導体レーザ11から出射した光束は、偏 光ビームスプリッタ12、コリメータレンズ13、1/ 4波長板14を透過して円偏光の平行光束となる。この 光東は、絞り17によって絞られ、対物レンズ16によ り光ディスク20の透明基板21を介して情報記録面2 2上に集光される。そして、情報記録面22で情報ピッ トにより変調されて反射した光東は、再び対物レンズ1 6、1/4波長板14、コリメータレンズ13を透過し て偏光ビームスプリッタ12に入射し、ここで反射して シリンドリカルレンズ18により非点収差が与えられ光 検出器30上へ入射し、光検出器30から出力される信 号を用いて光ディスク20に記録された情報の読み取り (再生) 信号が得られる。また、光検出器30上でのス ポットの形状変化による光量分布変化を検出して、合焦 検出やトラック検出を行う。 すなわち、光検出器30か らの出力を用いて、ここでは図示しない演算処理回路に よってフォーカスエラー信号及びトラッキングエラー信 号が生成される。このフォーカスエラー信号に基づいて 2次元アクチュエータ(フォーカス制御用) 15が半導 体レーザ11からの光を光ディスク20の情報記録面2 2上に結像するように対物レンズ16を光軸方向に移動 させ、トラッキングエラー信号に基づいて2次元アクチ ュエータ(トラッキング制御用)15が半導体レーザ1 1からの光を所定のトラックに結像するように対物レン ズ16を光軸と垂直な方向に移動させる。

【0084】このような光ピックアップ装置10におい て、透明基板の厚さが t 1の第1光ディスク、例えばD VD(t1=0.6mm)を再生する際には、ビームス ポットが最小錯乱円を形成するよう(ベストフォーカ ス) に対物レンズ16を、2次元アクチュエータ15に より駆動する。この対物レンズ16を用いて、透明基板 の厚さがt1と異なるt2(好ましくはt2>t1)で 記録密度が第1光ディスクよりも低い第2光ディスク、 例えばCD (t 2=1. 2mm) を再生する際には、透 明基板の厚さが異なる(好ましくは大きくなる)ことで 球面収差が発生し、ビームスポットが最小錯乱円となる 位置(近軸焦点位置より後方の位置)では、スポットサ 50 エネルギー比率(「遮光状態核エネルギー」/「遮光し

イズが大きく第2光ディスクのピット(情報)を読む (再生する) ことはできない。しかしながら、この最小 錯乱円となる位置より対物レンズ16に近い前側位置 (前ピン) では、スポット全体の大きさは最小錯乱円よ りも大きいが、中央部に光量が集中した核と核の周囲に 不要光であるフレアとが形成される。この核を第2光デ ィスクのピット(情報)を再生する(読む)ために利用 し、第2光ディスク再生時には、対物レンズ16をデフ ォーカス(前ピン)状態になるように2次元アクチュエ 10 ータ15を駆動する。

【0085】次に、上述したような透明基板の厚さが異 なる第1光ディスクと第2光ディスクを1つの集光光学 系で再生するために、光ピックアップ装置10の集光光 学系の1つである対物レンズ16に本発明を適用した第 1の実施の形態を説明する。図2は、対物レンズ16を 模式的に示した断面図(a)及び光源側から見た正面図 (b) である。なお、一点鎖線は光軸を示している。な お、本実施の形態では、第1光ディスクの透明基板の厚 さ t 1は、第2光ディスクの透明基板の厚さ t 2より薄 く、第1光ディスクの方が第2光ディスクよりも高密度 で情報が記録されている。

【0086】本実施の形態において、対物レンズ16 は、光源側の屈折面S1及び光ディスク20側の屈折面 S2は共に非球面形状を呈した正の屈折力を有した凸レ ンズである。また、対物レンズ16の光源側の屈折面S 1は、光軸と同心状に複数(本実施の形態では3つ)の 第1分割面Sd1~第3分割面Sd3から構成してい る。分割面Sd1~Sd3の境界は段差を設けて、それ ぞれの分割面Sd1~Sd3を形成している。この対物 レンズ16において、光軸を含む第1分割面Sd1を通 過する光束 (第1光束) は第1光ディスクに記録された 情報の再生及び第2光ディスクに記録された情報の再生 に利用し、第1分割面Sd1より外側の第2分割面Sd 2を通過する光束(第2光束)は主に第2光ディスクに 記録された情報の再生に利用し、第2分割面Sd2より 外側の第3分割面Sd3を通過する光束(第3光束)は 主に第1光ディスクに記録された情報の再生に利用する ような形状となっている。

【0087】ここで、「主に」という文言の意味は、第 2分割面Sd2を通過する光束の場合、第3分割面Sd 40 3を通過する光束を遮光しない状態においてピームスポ ットの中心強度が最大となる位置での核部分のエネルギ ーに対して、第3分割面Sd3を通過する光束を遮光し た状態においてビームスポットの中心強度が最大となる 位置での核部分のエネルギー比率(「遮光状態核エネル ギー」/「遮光しない核エネルギー」)が、60%~1 00%の範囲に入ることを指している。また、第3分割 面Sd3を通過する光束の場合も同様に、第2分割面S d 2を遮光しない状態に対する遮光した状態の核部分の

・ない核エネルギー」)が、60%~100%の範囲に入ることを指している。なお、このエネルギー比率を簡易的に測定するには、各々の場合において、ビームスポットの中心強度が最大となる位置でのピーク強度 I p と、ビーム径D p (中心強度に対して強度が e - 2 となる位置でである) を測定し、核部分のビームの形状はほぼ一定であることから、I p × D p を求め、これを比較すれば

【0088】このように、光源から出射される光束を、 集光光学系の光軸近傍の第1光束を第1光ディスクの再 生及び第2光ディスクの再生に利用し、第1光束より外 側の第2光束を主に第2光ディスクの再生に利用し、第 2光束より外側の第3光束を主に第1光ディスクの再生 に利用することにより、光源からの光を光量損失をおさ えつつ、1つの集光光学系で複数(本実施の形態では2 つ)の光ディスクの再生が可能となる。しかも、この場 合第2光ディスクの再生時には第3光束の大部分は不要 光であるが、この不要光が第2光ディスクの再生には利 用されないので、絞り17を第1光ディスクの再生に必 要な開口数にしておくだけで、絞り17の開口数を変え る手段を何ら必要とせずに再生することができる。

【0089】さらに詳述すると、本実施の形態における対物レンズ16は、第1光ディスクを再生する際には(図2(a)参照)第1分割面Sd1及び第3分割面Sd3を通過する第1光東及び第3光束(斜線で示される光束)は、ほぼ同一の第1結像位置に結像し、その波面収差(第2分割面Sd2を通過する第2光束を除いた波面収差)は、0.052rms以下となっている。ここ

で、λは光源の波長である。

よい。

【0090】また、このとき、第2分割面Sd2を通過 する第2光束(破線で示される光束)は、第1結像位置 とは異なった第2結像位置に結像する。この第2結像位 置は、第1結像位置を0(零)としてそれより対物レン ズ16側を負、その反対側を正とすると、第1結像位置 から-27μm以上-4μm以下の距離にする(第2結 像位置を第1結像位置より対物レンズに近づける)。こ れにより、主に第1光束及び第3光束で第1光ディスク の再生が行われる。なお、この下限(-27 μm)を越 えると、球面収差の補正のし過ぎとなり、第1光ディス クの再生時のスポット形状が悪くなり、また、上限(一 4 μm) を越えると、第2光ディスクの再生時のスポッ ト径・サイドローブが大きくなる。なお、本実施の形態 では、t1<t2、NA1>NA2であるので、第2結 像位置を第1結像位置から-27 μ m~-4 μ mとした が、t1>t2、NA1>NA2の場合は、第2結像位 置を第1結像位置から4μm~27μmにする。すなわ ち、第1結像位置と第2結像位置との距離の絶対値は4 μm以上27μm以下の範囲内になるようにする。

【0091】また、上述の対物レンズ16を所定の厚さ > t1、NA1>NA2であるので、第2分割面Sd2 (t2=1.2mm) の透明基板を育する第2光ディス 50 の法線と光軸とのなす角度が、第1、3分割面Sd1、

26

クの再生に使用する際には、図3に示すように、対物レンズ16に入射する所定の光東(平行光東)の場合、第1光東(右肩上がりの斜線で示す)のうち光軸近傍を通過する光線が光軸と交わる位置と、光軸と直交する方向で第1分割面Sd1の端部(第2分割面Sd2側)を通過する光線が光軸と交わる位置との間に、第2光束(左肩下がりの斜線で示す)の光線が光軸と交わる(結像する)ようになる。よって、第1光束及び第2光束は、第2光ディスクの情報記録面近傍に集光され、第2光ディスクの再生が行われる。このとき、第3光東(途中まで破線で示される)はフレアとして発生するが、第1光束及び第2光東で形成される核により第2光ディスクの再生が可能となる。

【0092】換言すると、本発明は、開口数の小さい光軸近傍を通過する第1光束を、再生できる全ての光ディスクの再生に利用し、また、第1分割面より外側を通過する光束を再生する各光ディスクに対応するように分け、分けられた各光束を各光ディスク(本実施の形態では第1、第2光ディスク)の再生に利用する。このとき、光ディスクの情報を再生するために必要な開口数が大きい方の光ディスク(本実施の形態では第1光ディスク)の再生に利用する光束は、分けられた光束のうち第1光束より離れた光束(本実施の形態では第3光束)とする。

【0093】このような集光光学系(本実施の形態おいては対物レンズ16)を用いると、透明基板の厚さが異なる複数の光ディスクを1つの集光光学系で再生することが可能となり、また、任意に面を設定できることにより、第2光ディスクの再生に必要な開口数NA2を大きくすることできる。また、光軸近傍の光束(第1光束)を複数の光ディスクの再生に利用することで、光源からの光束の光量損失が少なくなる。しかも、第2光ディスク再生時には、ビームスポットのサイドローブを減少させ、ビーム強度の強い核を形成し、正確な情報が得られる。さらに、絞り17の開口数を変更する特別な手段を必要とせずに複数の光ディスクを1つの集光光学系で再生することができる。

【0094】また、本実施の形態では、光軸と直交する方向で第2分割面Sd2中央位置(図2(a)参照)で40 みたとき、開口数NALから開口数NAHまでの面である第2分割面Sd2の法線と光軸とのなす角度が、光軸から開口数NALまでの面である第1分割面Sd1及び開口数NAHから開口数NA1までの面である第3分割面Sd3から内挿される面(後述する数1の非球面の式を用いて最小自乗法でフィッティングを行った非球面)の法線と光軸とのなす角度より大きくする。これにより第1光ディスク及び第2光ディスクの双方を良好に再生することが可能となる。なお、本実施の形態では、t2>t1、NA1>NA2であるので、第2分割面Sd2の法線と光軸とのなす角度が、第1、3分割面Sd2

Sd3から内装される面の法線と光軸とのなす角度より大としたが、t2 < t1、NA1 > NA2の場合は、小とすればよい。

・【0095】また/さらに、本実施の形態では、光軸と直交する方向で第2分割面Sd2のほぼ中央位置(図2(a)参照)でみたとき、第2分割面Sd2の法線と光軸とのなす角度と、第1分割面Sd1及び第3分割面Sd3から内挿される面(後述する数1の非球面の式を用いて最小自乗法でフィッティングを行った非球面)の法線と光軸とのなす角度との差が、0.02°以上1°以下の範囲となるように、第1分割面Sd1~第3分割面Sd3を設定することが好ましい。この下限を越すと第2光ディスクの再生時のスポット形状が悪化し、サイドローブ・スポット径が大きくなり、上限を越すと球面収差の補正し過ぎとなり第1光ディスク再生時のスポット形状が悪化する。

【0096】また、別の観点から本実施の形態を捕らえ ると、少なくとも一方の面を光軸と同心状に複数に分割 された複数の分割面(本実施の形態では3つの分割面) を有する対物レンズ16において、第2割面Sd2より 光軸側の第1分割面Sd1を透過した光と、第2分割面 Sd2より光軸側とは反対側の第3分割面Sd3を透過 した光とが、所定の厚さ(第1光ディスク)の透明基板 を介して、ほぼ同じ位相となるようにしたとき、第1分 割面Sd1を透過し透明基板を介した光と、光軸に直交 する方向において第2分割面Sd2のほぼ中央位置(図 2 (a) 参照) より光軸側の第2分割面Sd 2を透過し 透明基板を介した光と、の位相差を(Δ1L)π(ra d) とし、第3分割面Sd3を透過し透明基板を介した 光と、前記中央位置より光軸側とは反対側の第2分割面 Sd2を透過し透明基板を介した光と、の位相差を (Δ 1H) π (rad) とすると、(Δ1H) > (Δ1L) を満足する。なお、この場合、位相差の符号は、光の進 行方向 (光ディスクへ向かう方向) を正とし、第1分割 面Sd1あるいは第3分割面Sd3を透過し透明基板を 介した光に対する第2分割面Sd2を透過し透明基板を 介した光の位相差を比較する。なお、本実施の形態では $t \mid 1 < t \mid 2$, NA1>NA2であるので、($\Delta \mid 1 \mid H$)> (Δ1L) としたが、t1>t2、NA1>NA2の場 合は、(Δ1H) < (Δ1L) とする。 したがって、 $(\Delta 1 H) \neq (\Delta 1 L)$ とする。

1からの段差量より、第2分割面Sd2の第3分割面Sd3からの段差量の方が、小さくなる。さらに、光軸から所定の位置において、第1分割面Sd1と第3分割面Sd3とから内挿される面の位置と、第2分割面Sd2の位置との差が、第2分割面Sd2のほぼ中央位置を中心として非対称になっていることが好ましい。さらに、この場合、光軸から離れるに従いその差が大きくなることが好ましい。

【0098】なお、本実施の形態では、分割面Sd1~Sd3を対物レンズ16の光源側の屈折面S1に設けたが、光ディスク20側の屈折面に設けてもよく、また、他の集光光学系の光学素子(例えば、コリメータレンズ13など)の1つにこのような機能を持たせてもよく、さらに、新たにこのような機能を有する光学素子を光路上に設けてもよい。また、各分割面Sd1~Sd3の機能を異なる光学素子に分解して設けてもよい。

【0099】また、本実施の形態では、コリメータレンズ13を用いた、いわゆる無限系の対物レンズ16を用いたが、コリメータレンズ13がなく光源からの発散光 が直接又は発散光の発散度合いを減じるレンズを介した発散光が、入射するような対物レンズや、光源からの光束を収れん光に変更するカップリングレンズを用い、その収れん光が入射するような対物レンズに適用してもよい。

【0100】また、本実施の形態では、第1分割面Sd 1~第3分割面Sd3の境界に段差を設けたが、少なく とも一方の境界を段差を設けずに連続的に分割面を形成 してもよい。また、分割面と分割面との境界は、境界を 屈曲させることなく、例えば所定の曲率半径の面で接続 30 させてもよい。

【0101】また、本実施の形態では、屈折面S1を3 つの分割面Sd1~Sd3で構成したが、これに限られ ず、少なくとも3つ以上の分割面で構成すればよい。こ の場合、光軸近傍には第1光ディスク及び第2光ディス クの再生に利用する第1分割面を設け、この第1分割面 より外側(光軸から離れる方向)の分割面は、主に第2 光ディスクの再生に利用する分割面と主に第1光ディス クの再生に利用する分割面とを交互に設けることが好ま しい。また、この場合、0.60(NA2) < NA3 < $40 \ 1. \ 3 \ (NA2) \ 0. \ 01 < NA4 - NA3 < 0. \ 1$ 2の条件を満足する対物レンズ16の光ディスク側の開 口数NA3と開口数NA4の間に、主に第2光ディスク の再生に利用する分割面を設けることが好ましい。これ により、第1光ディスクに集光させる光スポットの強度 を落とすことなく、第2光ディスクとしてより大きな必 要開口数の光ディスクを再生することができる。さら に、NA3の上限はNA3<1.1 (NA2) であるこ とが実用上好ましく、またNA3の下限は0.80(N A2) <NA3が好ましく、さらに0.85 (NA2)

20

NA3の上限は、NA4-NA3<0. 1であることが好ましい。

【0102】また、本実施の形態では、1つの光源を用いて複数の光ディスクの再生を行うようにしたが、再生する光ディスク毎に複数の光源を用いてもよい。

【0103】また、本実施の形態では、光源側から対物レンズ16を見たときに、第2分割面Sd2を光軸と同心円状の環形状で設けたが、これに限られず、途切れた環状で設けてもよい。また、第2分割面Sd2をホログラムやフレネルで構成してもよい。なお、第2分割面Sd2をホログラムで構成した場合、0次光と1次光とに分けた光束の一方を第1光ディスクの再生に利用し、他方を第2光ディスクの再生に利用する。このとき、第2光ディスクの再生に利用する光束の光量の方が、第1光ディスクの再生に利用する光束の光量より大きいことが好ましい。

【0105】 (第2の実施の形態) 次に、第2の実施の 形態について、対物レンズ16の球面収差図を模式的に 示した図である図4に基づいて説明する。図4におい て、(a) は第1光ディスクを再生、すなわち、厚さ t 1の透明基板を介したときの球面収差図であり、(b) は第2光ディスクを再生、すなわち、厚さ t 2 (本実施 の形態では t 2 > t 1) の透明基板を介したときの球面 収差図である。ここで、第1光ディスクの情報を再生す るために必要な集光光学系の光ディスク側の必要開口数 をNA1、第2光ディスクの情報を再生するために必要 な集光光学系の光ディスク側の必要開口数をNA2(た だし、NA2>NA1)、対物レンズ16の分割面Sd 1とSd2との境界を通過する光束の光ディスク側の開 口数をNAL、対物レンズ16の分割面Sd1とSd2 との境界を通過する光束の光ディスク側の開口数をNA Lとする。

【0106】なお、第2の実施の形態は、上述した第1の実施の形態に記載した対物レンズ16を別の観点(球面収差、形状、波面収差など)から見たものであって、以下に記載しない箇所は第1の実施の形態と同様である。

【0107】第1の実施の形態に記載したような対物レ 50

30

ンズ16は、先ず、透明基板の厚さが t1の第1光ディスクに集光させた光束の最良波面収差が 0.05λ rm s以下となるように第1屈折面S1の第1非球面と第2屈折面S2(共通屈折面)を設計する。この設計により得られたレンズの球面収差図が図4(c)である。そして、この第1非球面を有するレンズを介して透明基板の厚さが t2($t2 \neq t1$)の第2光ディスクに集光させた時の球面収差(図4(e)この場合、t2>t1)の発生量よりも、少ない球面収差となるように第2屈折面 S2(共通屈折面)はそのままで第1屈折面の第2非球面を設計する。このとき、第2非球面の近軸曲率半径と第1非球面の近軸曲率半径とは同じにすることが、デフォーカス状態で再生を行う第2光ディスクの再生を良好に行うために好ましい。この設計により得られたレンズの第2光ディスクに集光させた時の球面収差図が図4

(f)であり、また、このレンズで第1光ディスクに集 光させたときのレンズの収差図が図4(d)である。そ して、この第1非球面の第2光ディスクの必要開口数N A 2 近傍で、第 2 非球面を合成する。ここで、第 2 非球 面を合成する必要開口数NA2近傍とは、0.60(N A2) < NA3 < 1.3 (NA2) の条件(この下限 0.60 (NA2) は実用上、0.80 (NA2) が好 ましく、さらに0.85(NA2)であることが好まし い。また、この上限1.3(NA2)は実用上1.1 (NA2) であることが好ましい) を満足するととも に、0.01<NA4-NA3<0.12 (好ましく は、0.1)の条件を満足する対物レンズ16の光ディ スク側の開口数NA3と開口数NA4の間であることが 好ましい。この合成した第2非球面(第2分割面)で光 軸に近い側を開口数NALとし、遠い側をNAH(すな わち、NAL<NAH)とする。

【0108】したがって、この対物レンズ16の屈折面 S1における面形状としては、光軸を含む第1分割面S d1と第1分割面Sd1より外側の第3分割面Sd3と は同じ非球面形状(第1非球面)となり、その第1分割 面Sd1と第3分割面Sd3との間(第2光ディスクの 再生に必要な開口数NA2近傍、すなわち、NAL~N AH)の第2分割面Sd2は、第1分割面Sd1及び第 3分割面Sd3とは異なる非球面形状(第2非球面)と 40 なる。得られたレンズが本実施の形態の対物レンズ16 となり、この対物レンズ16を用いて第1光ディスクに 集光させたときの球面収差図は図4(a)となり、第2 光ディスクに集光させたときの球面収差図は図4(b) となる。

【0109】なお、第1非球面と第2非球面を合成する場合、第2分割面Sd2を光軸方向にずらして合成して、位相差を利用することにより、第1光ディスク再生時の集光光量のアップを図ることができる。

【0110】本実施の形態において非球面の式は、

0 [0111]

【数 1 】

$$X = (H^2/r)/[1+\sqrt{1-(1+K)(H/r)^2}] + \sum_{j} AjH^{pj}$$

31

【0112】に基づくものとする。ただし、Xは光軸方向の軸、Hは光軸と垂直方向の軸、光の進行方向を正とし、rは近軸曲率半径、Kは円錐係数、A 」は非球面係数、P 」は非球面のべき数(ただし、P 」 ≥ 3)である。なお、本発明には、上式以外の他の非球面の式を用いてもよい。なお、非球面形状から非球面の式を求める際には、上式を用い、P 」 $\geq 3 \leq P$ 」 ≤ 1 0 の自然数とし、K=0 として求める。

【0113】上述したように、本実施の形態において得 られた対物レンズ16は、開口数NA2の近傍の少なく とも2つの開口位置(NALとNAH)で、透明基板の 厚さが異なる複数の光ディスクを1つの集光光学系で再 生できるように、球面収差が不連続に変化するように構 成している。このように球面収差が不連続に変化するよ うにしたので、各々の開口数の範囲(本実施の形態で は、光軸~NALの第1分割面、NALからNAHの第 20 2分割面、NAH~NA1の第3分割面)を通過する光 束(本実施の形態では第1光束~第3光束)を任意に構 成することができ、第1光束を再生する複数の光ディス ク全ての再生に利用し、第2光束及び第3光束をそれぞ れ複数の光ディスクのうち所定の光ディスクの再生に利 用することが可能となり、1つの集光光学系(本実施の 形態では対物レンズ16)で複数の光ディスクを再生で き、低コストかつ複雑化しないで実現でき、さらに、高 NAの光ディスクにも対応できる。しかも、絞り17 は、高NAであるNA1に対応するように設けるだけで よく、光ディスク再生に必要な開口数(NA1あるいは NA2に)が変化したとしても、絞り17を変化させる 手段を何ら設ける必要もない。なお、本発明でいう「球 面収差が不連続に変化する」とは、球面収差図で見たと きに急激な球面収差の変化が見られることをいう。

【0114】さらに、球面収差の不連続に変化する方向は、小さい開口数から大きい開口数へと見たときに、開口数NALでは球面収差が負の方向に、開口数NAHでは球面収差が正の方向になっている。これにより、薄い透明基板の厚さ t 1の光ディスクの再生が良好になるとともに、これより厚い透明基板の厚さ t 2の光ディスクの再生が良好に行うことができる。なお、本実施の形態では t 2> t 1、NA1>NA2であるために、上述したように球面収差は、開口数NALでは負の方向に、開口数NAHでは正の方向に不連続に変化するが、 t 2< t 1、NA1>NA2の場合は、開口数NALでは正の方向に、開口数NALでは正の方向に、開口数NAHでは正の方向に球面収差が下連続に変化することになる。

【0115】さらに、透明基板の厚さ t 2の第2光ディ りプスクを再生する際には、開口数NALから開口数NAH 50 る。

までの間の球面収差(第2分割面Sd 2を通過する光束による球面収差)が正となるようにすることにより、光ピックアップ装置10のS字特性が向上する。なお、本実施の形態ではt2>t1、NA1>NA2であるために、開口数NALから開口数NAHまでの間の球面収差が正となるようにしたが、t2<t1、NA1>NA2 の場合は、負とするとよい。

【0116】さらに、厚さ t 1 の透明基板を介した際(図4 (a) 参照)に、開口数がNA1のなかで、NAL~NAHの間を通過する光束を除いた、すなわち、光軸~NALおよびNAH~NA1を通過する光束による波面収差が0.05 λ rms以下(ただし、 λ は光源の波長)とすることにより、透明基板の厚さが t 1 の第1光ディスクの再生が良好になる。

【0117】また、t 1=0.6 mm、t 2=1.2 mm、610 nm $< \lambda < 670$ nm、0.32 < NA2 < 0.41 < したとき、0.60 (NA2) < NAL < 1.3 (NA2) の条件(この下限0.60 (NA2) は実用上、0.80 (NA2) が好ましく、さらに0.85 (NA2) であることが好ましい。また、この上限1.3 (NA2) は実用上1.1 (NA2) であることが好ましい。この下限を越すとサイドローブが大きくなり情報の正確な再生ができず、上限を越すと波長 λ とNA2において想定される回折限界スポット径以上に絞られすぎる。なお、ここでいうNALは、第2分割面 > は、大いのNALを指す。【0118】また、0.01 < NAH-NAL < 0.1 2 (この上限0.12は、実用上、0.1 であることが更に好ましい)の条件を満たすことが好ましい。この下

2(この上限0.12は、実用上、0.1であることが 更に好ましい)の条件を満たすことが好ましい。この下 限を越すと第2光ディスクの再生時のスポット形状が悪 化し、サイドローブ・スポット径が大きくなり、上限を 越すと第1光ディスクの再生時のスポット形状が乱れ、 光量低下を引き起こす。なお、ここでいうNALおよび NAHは、第2分割面Sd2上でのNALおよびNAH を指す。

【0119】また、別な観点から言うと(再述になるが)、0.60(NA2)<NA3<1.3(NA2)の条件(この下限0.60(NA2)は実用上、0.8 0(NA2)が好ましく、さらに0.85(NA2)であることが好ましく、また、この上限1.3(NA2)は実用上1.1(NA2)であることが好ましい)を満足するとともに、0.01<NA4-NA3<0.12(好ましくは、0.1)の条件を満足する対物レンズ16の光ディスク側の開口数NA3と開口数NA4の間に、前述したNALとNAHとを設ける(すなわち、主に第2光ディスクの再生に利用する分割面を設ける)。これにより、第1光ディスクに集光させる光スポットの強度をあまり落とすことなく、第2光ディスクとしてより大きな必要開口数の光ディスクを再生することができる。

【0120】また、第2光ディスクの再生時(t20厚さの透明基板を介した際)に、開口数NALから開口数NAHの間の球面収差が、 $-2\lambda/(NA2)^2$ 以上、 $5\lambda/(NA2)^2$ 以下の条件を満たすことが好ましい。さらに、この条件は、再生の場合は $3\lambda/(NA2)^2$ が以下が好ましく、あるいは、記録をも考慮すると(勿論、再生もできる)0(零)より大きいことが好ましい。この下限を越すと球面収差の補正し過ぎとなり第1光ディスク再生時のスポット形状が悪化し、上限を越すと第2光ディスクの再生時のスポット形状が悪化し、サイドローブ・スポット径が大きくなる。特に、この条件は、 $0\sim2\lambda/(NA2)^2$ の範囲を満足することが更に好ましく、この場合、フォーカスエラー信号が良好に得られる。

【0121】一方、本実施の形態では、光軸と直交する方向で第2分割面Sd2中央位置でみたとき、第2分割面Sd2の法線と光軸とのなす角度が、第1分割面Sd1及び第3分割面Sd3から内挿される面の法線と光軸とのなす角度より大きくする。これにより第1光ディスク及び第2光ディスクの双方を良好に再生することが可能となる。なお、本実施の形態では、t2>t1、NA1>NA2であるので、第2分割面Sd2の法線と光軸とのなす角度が、第1、3分割面Sd1、Sd3から内装される面の法線と光軸とのなす角度より大としたが、t2<t1、NA1>NA2の場合は、小とすればよい。

【0122】また/さらに、本実施の形態の対物レンズ16は、光軸と直交する方向で開口数NALと開口数NAH(第2分割面Sd2)のほぼ中央位置でみたとき、開口数NALから開口数NAHまでの面(第2分割面)の法線と光軸とのなす角度と、光軸から開口数NALまでの面(第1分割面)及び開口数NAHから開口数NA1までの面(第3分割面)から内挿される面(上述した数1の非球面の式を用いて最小自乗法でフィッティングを行った非球面)の法線と光軸とのなす角度との差が、0.02°以上1°以下の範囲であることが好ましい。この下限を越すと第2光ディスクの再生時のスポット形状が悪化し、サイドローブ・スポット径が大きくなり、上限を越すと球面収差の補正し過ぎとなり第1光ディスク再生時のスポット形状が悪化する。

【0123】また、特に、t2>t1、NA1>NA2で、光軸から円周方向へとみたとき、開口数NALでは、屈折面の法線と光軸との交点が、光源側の屈折面に近づく方向に不連続に変化し、開口数NAHでは、屈折面の法線と光軸との交点が、光源側の屈折面から遠のく方向に不連続に変化している。これにより、薄い透明基板の厚さt1の光ディスクの再生が良好になるとともに、これより厚い透明基板の厚さt2の光ディスクの再生が良好に行うことができる。

【0124】また、上述した第1の実施の形態と同様

34

に、別の観点から本実施の形態を捕らえると、少なくと も一方の面を光軸と同心状に複数に分割された複数の分 割面(本実施の形態では3つの分割面)を有する対物レ ンズ16において、第1分割面Sd1を透過した光と、 第3分割面Sd3を透過した光とが、所定の厚さの(第 1光ディスクの) 透明基板を介して、ほぼ同じ位相とな るようにしたとき、第1分割面Sd1を透過し透明基板 を介した光と、第2分割面Sd2のほぼ中央位置より光 軸側の第2分割面Sd2を透過し透明基板を介した光 と、の位相差を(Δ1L)π (rad) とし、第3分割 面Sd3を透過し透明基板を介した光と、前記中央位置 より光軸側とは反対側の第2分割面Sd2を透過し透明 基板を介した光と、の位相差を ($\Delta 1 H$) π (rad) とすると、 $(\Delta 1 H) > (\Delta 1 L)$ を満足する。なお、 本実施の形態では t 1 < t 2、NA1>NA 2 であるの で、 $(\Delta 1 H) > (\Delta 1 L)$ としたが、t 1 > t 2、N A1>NA2の場合は、($\Delta1H$) < ($\Delta1L$) とす る。 したがって、 $(Δ1H) \neq (Δ1L)$ とする。 【0125】これを別な観点から言えば、第2分割面S

【0125】これを別な観点から言えば、第2分割面S d 2の第1分割面S d 1からの段差量より、第2分割面 S d 2の第3分割面S d 3からの段差量の方が、大きい。この場合も上述と同様に、t 1>t 2、NA1>N A 2の場合は、第1分割面S d 1と第2分割面S d 2との境界における第1分割面S d 1からの段差量より、第3分割面S d 3と第2分割面S d 2との境界における第3分割面S d 3からの段差量の方が、小さくなる。さらに、光軸から所定の位置において、第1分割面S d 1と第3分割面S d 3とから内挿される面の位置と、第2分割面S d 2のほぼ中央位置を中心として非対称になっていることが好ましい。さらに、この場合、光軸から離れるに従いその差が大きくなることが好ましい。

【0126】また、本実施の形態の対物レンズ16の波面収差は図5の如くである。図5は縦軸に波面収差

- (A) 横軸に開口数をとった波面収差曲線であり、
- (a) は第1光ディスクの透明基板(厚さ t 1)を介したときを、(b) は第2光ディスクの透明基板(厚さ t 2)を介したときの波面収差曲線を実線で表している。なお、この波面収差曲線は、それぞれの透明基板を介し40 たときに最良の波面収差となる状態で干渉計などを用いて波面収差を測定して得る。

【0127】図から分かるように、本実施の形態の対物レンズ16は、波面収差曲線でみると、開口数NA2近傍の2カ所(具体的には、NALとNAH)で波面収差が不連続となっている。また、不連続となっている部分に発生する最大の波面収差の不連続量は、長さの単位(mm)で表すと、0.05(NA2)²(mm)以下、位相差の単位(rad)で表すと、2π {0.05(NA2)²} / λ (rad)以下(ただし、この場合 んは使用波長で単位はmm)とすることが望ましい。こ

さんくこくしき大のも量光の束光るや用体が上再の々ストデ 光 1 第 、込むの量光の束光るや用体ご生再のセストデ光 2第、きろのこ。るヤ用はご主再のセストデ光な常また め、J用はJ上再のセストデ光 I 第を式一の東光され会 コリン光次IS光次O、合製オン気熱ブムデヤロホをSb る面信代2第、さな。、いよよアン気精ブハネッて今4そ でロホタムトと面情代な策、オま 。 いよみ ブ けぽう 外界

8 m 1 ん 7 0 . 0 る & シ 界 駅 計画 公 盖 以 面 数 身 最 る よ 10 を設計する際には、前述したように厚さて1の透明基板 ペリま母

コ割る中土再をセストデボ2第41 (m n) ん、Jゴオ)

コリュニで行き情境コミュヤゴ漸を(曼西の顔光るヤ用動 恋の215早、〉なでわさるヤムイ以(曼遊の顔光るヤ 用動ご網るを主再多々ストデ光 1 電灯(mn) ん 、 しお **颪Φ&ΒΒ帽供ε業ムΙΒΖ面帽供I業考とホノ介金**

るよう区切割部間の置まて、てんぐっと光、フィレニ過消 の耐実のを第 、ゴが (潮泺の耐実のを第) 【4を10】 °Ç, きずなくこるもご科見る号割坐再々ストデ光な策、01

原光も過沢の畝実本、されたっまで 過沢の 前実 かい用き I

「原光へへ」フリムの「置装で、てんべっ光おり動派へ

I I I サーV本草半 I 第るあず 配光 I 第おに 静坐再の クストデ光 I 第 、お「ブ v&」、「調紙の試集本 【3 E I O】 す01 <u>国装てでてもで</u>3光か√用へ2を21 I , I I I

。るおが規率すなく紹光一同、ごんれるか る光東31024×トマ米ブノ介多茶学光光東のC13束 光両、ファペブ母手な鉛戸はよこるや知合きと東光され ち根出る。6211や一つ 4 真半 2 策 3 東光 3 九 5 根出る ☆1111年一7本草半1第 、約91段15年次合 、大主 。6 2 (液長み2-740 nm~870 nm)とを有している。 I I やー 4 本草半 2 第 6 本 7 承光 2 策 お に 持由土 再 の セ ス トマボ2第 , 5 (mn0 7 8 ~ mn0 1 8 = 1 5 曼 数)

ストマ光1第フツ用を長割る水され出みれり8器出謝光 、J権人一土の6器出演光水もふるが差別点非でより8 1.8に入財し、ここで見事していりといいましまします。 そんじてスムーコ光刷フリの表示をエスマッセートリロ 、41、再びは、再びは対して、9.1、スペンは対の再、お東光光し 村気アパち鴫変のよいイベン辞書で22面経に辞書、ア J今。6れる光東511221日22日間報記録前フリ介を12対基 肥素の026ストデ光「第0よぶる「スペン砂枝、水る 郊ブでよコ7 I 0兹 、約束光のこ。るなと東光刊平の光 副円ブリ過透を41対長数4/1、81次ベリセードリ こ、SIを火化スムー当光副、BI到手気合、加東光 1434世、ノ根出るムーンる。6111世ーン科学半1 第、合製る中土再多セストデ光 「第、予ま【8510】

されเ収釜、すれる果にれた。、込まも鶏で井縄家の井田心 同と雌光を262面情代2第、コきとは見を31次ペマ 付成され側原光、より了遺泺の試実本、式主【2510】

しま球はよこる中国調査和条件し並上、おらHAN5 JANOニ 、永等アントHANを竣口開いき大き吊さぐ の(置かるない詩連不ざ、蓋刈面粧)面嗜代の凌野、 されま 、JSJANを竣口開いる小き角さその(置かるなコ詩 重不心差以面积)面信代の效野、合製のこ、さま。くり ま存みろこる付続の正交ふる面信代るや用体の生再の々 ストマ光 1 第二主 3 面信代る 4 用は 1 土再の クストラ光 2票31主、お面階代の(向式る水網名×6.4輪光) 側水でよ 面階代「冪のご、打號多面階代」第6中用体式坐再のも ストマ光 2 第50 ダ クストマ光 1 第4121 新五神光、合製の

こ 、小よいは大気精了面信代の土以のもような心、下 [0131] また、本実施の形態では、屈折面51を3 れる境界のRがある)。

ち気派ブエる卡工帖を壁金、ご合農るや気派丁等々でそ スマでをる 1、スペソ砂枝、ブリ 5、砂 いなむかのようも誤 こ(間と) はまり こうなうの ままればこん 国意、 さ ま、〉もようてんむつのようけい鏡には図覧は1月のこ。、7 よみてせる誘致て以てRの気荷おえ頃、〉なくこるせ ち曲型、お界遺のと面情代と面情代、対ま 。 くれよりし **赤汗
ふ面
嗜
代
こ
じ
む
減
を
基
妥
な
現
蒙
の
式
ー
よ

と** 〉な心、され式も残多差與二棵草のEbと面嗜代E第~I

よよてし用面ゴスベイが依なぐよるす様人が光人が切 の子 ノル用ネズベンやベルででれるす更変に光んれ如ふ 東光のされ原光、今次へく砂枝ならよるも様人、込光靖 発式J1/5×ベイるJ、刺ふ合変構築の光構築が又割直さ 光婧楽のされ原光〉なな61ブンソゼートリロ がかり 用るる 1 太く 7 砂核の系列無るめなり、 かり用る 8 1 太 ベリセートリニ 、おう強派の献実本、ゴま【6210】

よる大学素子に分解して設けてもより。 数の5 b 2~1 b 2面層代各、対ま よりよりてい渡い上 路光を千葉学光を下すを追溯なるよのここり注辞、これるち 13など)の1つにこのような機能を持たせてもよく、 、さま、>もよ了い窓に面形面の側02々ストデ光、さな 式付窓312面市国の順源光の31次ベン砂校会8b2 ~Ib2面階代 、おび 激迷の 就実本 、 はな 【82 IO】

ふいっていなっき動る な異、むき)の (熟めの (g) B図) 熟曲込結を (暗談 ・vizið 鼻こり HAN S 暗獣 vizið 鼻こり AN) 暗獣の熱曲 の側両の代語をバブへなる影連不、おき剤の蓋刈面数の (間3HAN3JAN) 公陪の款重示のこ、ごろち。る な〉なきブル吸るキベラバの更越のサーノ本草半、の な〉考大や、健変の姜如面或るよい健変勇敢、おりて上くいた

02

ク20に記録された情報の読み取り(再生)信号が得ら れる。また、光検出器30上でのスポットの形状変化に よる光量分布変化を検出して、合焦検出やトラック検出 を行う。この検出に基づいて2次元アクチュエータ15 が半導体レーザ11からの光を第1光ディスク20の情 報記録面22上に結像するように対物レンズ16を移動 させるとともに、半導体レーザ11からの光を所定のト ラックに結像するように対物レンズ16を移動させる。

【0137】一方、第2光ディスクを再生する場合、第 2半導体レーザ112からビームを出射し、出射された 光束は合成手段19により光路を変更され、その後、偏 光ビームスプリッタ12、コリメータレンズ13、1/ 4波長板14、絞り17、対物レンズ16を介して第2 光ディスク20上に集光される。そして、情報記録面2 2で情報ピットにより変調されて反射した光束は、再び 対物レンズ16、1/4波長板14、コリメータレンズ 13、偏光ビームスプリッタ12、シリンドリカルレン ズ18を介して光検出器30に入射し、光検出器30か ら出力される信号を用いて第2光ディスク20に記録さ れた情報の読み取り(再生)信号が得られる。また、光 20 検出器30上でのスポットの形状変化による光量分布変 化を検出して、合焦検出やトラック検出を行う。この検 出に基づいて2次元アクチュエータ15が半導体レーザ 11からの光を第2光ディスク20の情報記録面22上 にデフォーカス状態で結像するように対物レンズ16を 移動させるとともに、半導体レーザ11からの光を所定 のトラックに結像するように対物レンズ16を移動させ

【0138】このような光ピックアップ装置10の集光 光学系の1つである対物レンズ16に、第1及び第2の 実施の形態に記載したような対物レンズ16を用いる。 すなわち、対物レンズ16は、光源側の屈折面S1及び 光ディスク20側の屈折面52はともに非球面形状を呈 した正の屈折力を有した凸レンズであり、光源側の屈折 面S1は、光軸と同心状に複数(本実施の形態では3 つ) の第1分割面Sd1~第3分割面Sd3から構成 し、分割面Sd1~Sd3の境界は段差を設ける。そし て、第1分割面5 d 1 及び第3分割面5 d 3 は、第1光 源111から出射して第1光ディスクに集光させた光束 の最良波面収差が0.05 λ r m s 以下となるような第 1非球面で形成し、また、第2分割面は、第1非球面を 有するレンズを介して第2光源112の光束を透明基板 の厚さがt2(t2≠t1)の第2光ディスクに集光さ せた時の球面収差の発生量よりも、少ない球面収差とな るように第2非球面で形成し、この第1非球面の第2光 ディスクの必要開口数NA2近傍であるNAL~NAH に、第2非球面を合成した対物レンズとする。

【0139】本実施の形態において得られた対物レンズ 16は、以下の点を除き上述した第2の実施の形態と同 光源を用いるので、複数の光ディスクを再生するに際し て自由度が大きくなる。

【0140】本実施の形態では2つの光源111,11 2を用いているので、以下の好ましい範囲が上述した第 2の実施の形態と異なる。

[0141] txb5, t1=0. 6mm, t2=1. $2 \,\mathrm{mm}, 6 \,1 \,0 \,\mathrm{nm} < \lambda \,1 < 6 \,7 \,0 \,\mathrm{nm}, 7 \,4 \,0 \,\mathrm{nm} <$ $\lambda 2 < 870$ nm、0.40<NA2<0.51とした とき、0.60 (NA2) <NAL<1.1 (NA2) 10 の条件(この下限0.60(NA2)は実用上、0.8 0 (NA2) が好ましく、さらに O. 85 (NA2) で あることが好ましい)を満たすことが好ましい。この下 限を越すとサイドローブが大きくなり情報の正確な再生 ができず、上限を越すと波長22とNA2において想定 される回折限界スポット径以上に絞られすぎる。なお、 ここでいうNALは第2光源112を用いたときの第2 分割面Sd2上でのNALを指す。

[0142] st. 0. 01<NAH-NAL<0. 1 2 (この上限0.12は、実用上、0.1であることが 更に好ましい) の条件を満たすことが好ましい。この下 限を越すと第2光ディスクの再生時のスポット形状が悪 化し、サイドローブ・スポット径が大きくなり、上限を 越すと第1光ディスクの再生時のスポット形状が乱れ、 光量低下を引き起こす。なお、ここでいうNALおよび NAHは、第2光源112を用いたときの第2分割面S d 2上でのNALおよびNAHを指す。

【0143】また、第2光ディスクの再生時(t2の厚 さの透明基板を介した際)に、開口数NALから開口数 NAHの間の球面収差が、-2(λ2)/(NA2)² 以上、(5(λ2))/(NA2)²以下の条件を満た すことが好ましい。さらに、この条件は、再生の場合は $3(\lambda 2)$ / $(NA 2)^2$ が以下が好ましく、あるい は、記録をも考慮すると(勿論、再生もできる)〇

(零) より大きいことが好ましい。この下限を越すと球 面収差の補正し過ぎとなり第1光ディスク再生時のスポ ット形状が悪化し、上限を越すと第2光ディスクの再生 時のスポット形状が悪化し、サイドローブ・スポット径 が大きくなる。特に、この条件は、0~2(λ2)/

(NA2)²の範囲を満足することが更に好ましく、こ 40 の場合、フォーカスエラー信号が良好に得られる。

【0144】また、別な観点から言うと、0.60 (N A 2) < N A 3 < 1. 1 (N A 2) の条件 (この下限 0.60 (NA2) は実用上0.80 (NA2) が好ま しく、さらにO.85 (NA2) であることが好まし い) を満足するとともに、O. O1<NA4-NA3< 0.12(好ましくは、0.1)の条件を満足する対物 レンズ16の光ディスク側の開口数NA3と開口数NA 4の間に、前述したNALとNAHとを設ける(すなわ ち、主に第2光ディスクの再生に利用する分割面を設け 様の構成・作用効果を持つことになり、さらに、2つの 50 る)ことである。これにより、第1光ディスクに集光さ

せる光スポットの強度を落とすことなく、第2光ディスクとしてより大きな必要開口数の光ディスクを再生することができる。

【0145】一方、本実施の形態では、光軸と直交する方向で第2分割面Sd2中央位置でみたとき、第2分割面Sd2の法線と光軸とのなす角度が、第1分割面Sd1及び第3分割面Sd3から内挿される面の法線と光軸とのなす角度より大きくする。これにより第1光ディスク及び第2光ディスクの双方を良好に再生することが可能となる。なお、本実施の形態では、t2>t1、NA1>NA2であるので、第2分割面Sd2の法線と光軸とのなす角度が、第1、3分割面Sd1、Sd3から内装される面の法線と光軸とのなす角度より大としたが、t2<t1、NA1>NA2のである場合は、小とすればよい。

【0146】また/さらに、実施の形態の対物レンズ16は、開口数がNA2近傍の少なくとも2つの開口位置(NALおよびNAH)に対応する対物レンズ16の屈折面S1の円周位置で、該屈折面の法線と光軸とがなす角度が0.05度以上0.50度未満に変化することが好ましい。この下限を越すと第2光ディスクの再生時のスポット形状が悪化し、サイドローブ・スポット径が大きくなり、上限を越すと球面収差の補正し過ぎとなり第1光ディスク再生時のスポット形状が悪化する。

【0147】特に、t2>t1、NA1>NA2で、光軸から円周方向へとみたとき、開口数NALでは、屈折面の法線と光軸との交点が、光源側の屈折面に近づく方向に不連続に変化し、開口数NAHでは、屈折面の法線と光軸との交点が、光源側の屈折面から遠のく方向に不連続に変化している。これにより、薄い透明基板の厚さt1の光ディスクの再生が良好になるとともに、これより厚い透明基板の厚さt2の光ディスクの再生が良好に行うことができる。

【0148】また、上述した第1、2の実施の形態と同 様に、別の観点から本実施の形態を捕らえると、少なく とも一方の面を光軸と同心状に複数に分割された複数の 分割面(本実施の形態では3つの分割面)を有する対物 レンズ16において、第1分割面Sd1を透過した光 と、第3分割面Sd3を透過した光とが、所定の厚さ (第1光ディスク) の透明基板を介して、ほぼ同じ位相 となるようにしたとき、第1分割面Sd1を透過し透明 基板を介した光と、第2分割面Sd2のほぼ中央位置よ り光軸側の第2分割面Sd2を透過し透明基板を介した 光と、の位相差を(Δ 1 L) π (rad)とし、第3分 割面Sd3を透過し透明基板を介した光と、前記中央位 置より光軸側とは反対側の第2分割面Sd2を透過し透 明基板を介した光と、の位相差を(Δ1H)π (ra d) とすると、(Δ1H) > (Δ1L) を満足する。こ の場合も上述と同様に、t1>t2、NA1>NA2の 場合は、(Δ1Η) < (Δ1L) とする。したがって、

40

 $(\Delta 1 H) \neq (\Delta 1 L)$ とする。

【0149】これを別な観点から言えば、第2分割面Sd2の第1分割面Sd1からの段差量より、第2分割面Sd2の第3分割面Sd3からの段差量の方が、大きい。この場合も上述と同様に、t1>t2、NA1>NA2の場合は、第1分割面Sd1と第2分割面Sd2との境界における第1分割面Sd1からの段差量より、第3分割面Sd3からの段差量の方が、小さくなる。さらに、光軸から所定の位置において、第1分割面Sd1と第3分割面Sd3とから内挿される面の位置と、第2分割面Sd2の位置との差が、第2分割面Sd2のほぼ中央位置を中心として非対称になっていことが好ましい。さらに、この場合、光軸から離れるに従いその差が大きくなることが好ましい。

【0150】なお、上述した第1、2の実施の形態と同様に、分割面Sd1~Sd3を対物レンズ16の屈折面S1に設けること、無限系の対物レンズを用いること、分割面に段差を設けること、分割面の数、第2分割面の面形状など、本実施の形態に記載した内容に限られるものではない。

【0151】また、本実施の形態では、第1光源111と第2光源112とを合成手段19により合成するようにしたが、これに限られず、図1に示した光ピックアップ装置において光源11を第1光源111と第2光源112とに切り替わるようにしてもよい。

【0153】なお、この実施の形態における対物レンズ 40 16においては、本出願人が誤って上述した第1 (又は 2) の実施の形態に示す光ピックアップ装置に用いたところ、第1光ディスクとしてDVDの再生は勿論のこと、驚くべきことに、同じ波長の光源で第2光ディスクとしてCDの再生もできた。すなわち、本実施の形態の対物レンズ16は、波長 λ 1の光源を用いて透明基板の厚さが t1の第1光情報記録媒体及び透明基板の厚さが t2 (ただし、t2 \neq t1) の第2光情報記録媒体の情報記録面上に集光させることができるとともに、波長 λ 2 (ただし、 λ 2 \neq λ 1) の光源を用いた場合であって t50 も第2光情報記録媒体の情報記録面上に集光することが

できるものである。このことにより、波長の異なる2つの光源を使用しDVDとCD-Rの再生をする光ピックアップ装置(DVD用に波長610nm~670nmの光源に対応)に用いる対物レンズと、1つの光源でDVDやCDの再生をする光ピックアップ装置(波長610nm~670nmの光源に対応)に用いる対物レンズとを共通化することができ、大量生産に伴う低コスト化を実現することができる。なお、このように共通化できるのは、光源の波長が λ 2から λ 1に変えたとしても、第1、2の実施の形態に記載したNALやNAHの条件を満足することが必要である。

【0154】なお、本実施の形態においては、第1光源 111と第2光源112とをほぼ同じ倍率で使用してい るので、1つの光検出器30とすることができ、構成を 簡単することができるが、各々の光源111、112に 対応させて2つの光検出器を設けてもよく、さらに倍率 を異ならせてもよい。

【0155】(第4の実施の形態)次に、第4の実施の形態について、対物レンズ16を模式的に示した図7に基づいて説明する。図7 (a) は対物レンズ16の断面図であり、(b) は光源側から見た正面図である。本実施の形態は、上述した第1~第3の実施の形態に記載した光ピックアップ装置に用いられる対物レンズ16の変形例であり、上述した第1~第3の実施の形態に記載した対物レンズ16の光源側の面を3分割の屈折面としたものであるのに対し、本実施の形態の対物レンズ16は光源側の面を5分割の屈折面としたものである。なお、本実施の形態は5分割にしたものであり、他は上述した第1~第3の実施の形態と同様であるので、説明を省略することもある。

【0156】本実施の形態において、対物レンズ16 は、光源側の屈折面S1及び光ディスク20側の屈折面 S2は共に非球面形状を呈した正の屈折力を有した凸レ ンズである。また、対物レンズ16の光源側の屈折面S 1は、光軸と同心状に5つの第1分割面Sd1~第5分 割面Sd5、すなわち、光軸を含む(光軸近傍の)第1 分割面(Sd1)より光軸から離れる方向に順に第2分 割面Sd2・・・第2n+1(ただし、nは自然数であ り、本実施の形態ではn=2である)分割面Sds2n+1面で)から構成している。分割面Sd1~Sd5の 境界は段差を設けてそれぞれの分割面Sd1~Sd5を 形成している。この対物レンズ16において、光軸を含 む第1分割面Sd1を通過する光束(第1光束)は第1 光ディスクに記録された情報の再生及び第2光ディスク に記録された情報の再生に利用し、第2n分割面Sd2 n(本実施の形態では、第2分割面Sd2と第4分割面 Sd4)を通過する光束は主に第2光ディスクに記録さ れた情報の再生に利用し、第2n+1分割面Sd2n+ 1 (本実施の形態では、第3分割面Sd3と第5分割面 50 Sd5) を通過する光束は主に第1光ディスクに記録された情報の再生に利用するような形状となっている。

【0157】このように、本実施の形態では分割面の数を増やすことにより、第2n分割面を高NA側に配置することができるため、高NAが必要な第1の光ディスクの再生のみならず、第2の光ディスクとして、上述した第1~第3の実施の形態と比べて更に高NAの光ディスクの再生を行うことができる。しかも、第2n分割面を高NA側に配置したことに伴う第1光ディスク再生時の光量低下を第2n-1分割面(ただし、第1分割面は関係ない)で補うことができ、第1光ディスクのみならず第2光ディスクも良好に再生することができる。

【0158】具体的に、この対物レンズ16は、先ず、 透明基板の厚さが t 1 の第1光ディスクに集光させた光 束の最良波面収差が0.05 lrms以下となるように 第1屈折面S1の第1非球面と第2屈折面S2(共通屈 折面)を設計する。そして、この第1非球面を有するレ ンズを介して透明基板の厚さが t 2 (t 2 ≠ t 1) の第 2光ディスクに集光させた時の球面収差の発生量より も、少ない球面収差となるように第2屈折面52(共通 屈折面) はそのままで第1屈折面の第2非球面を設計す る。このとき、第2非球面の近軸曲率半径と第1非球面 の近軸曲率半径とは同じにすることが、デフォーカス状 態で再生を行う第2光ディスクの再生を良好に行うため に好ましい。この第1非球面の第2光ディスクの必要開 口数NA2近傍の2カ所であるNAL~NAHに、第2 非球面を合成する。このようにして得られたレンズが本 実施の形態の対物レンズ16となる。

【0159】なお、合成する場合、第2分割面Sd2と 30 第4分割面Sd4とを光軸方向にずらして合成して、位相差を利用することにより、第1光ディスク再生時の集光光量のアップを図ることができる。また、第2分割面Sd2と第4分割面Sd4とを同じ第2非球面としたが、これらが互いに異なる非球面を用いてもよく、また、光軸方向にずらす量も各々変えてもよい。

【0160】ここで、第2非球面を合成するNA2近傍とは、0.60(NA2)<NA3<1.3(NA2)の条件(この下限0.60(NA2)は実用上、0.80(NA2)が好ましく、さらに0.85(NA2)であることが好ましく、また、この上限1.3(NA2)は実用上1.1(NA2)であることが好ましい。また、この上限1.3(NA2)は、第2光ディスク情報記録媒体を記録又は再生する際の光源の波長が740nm~870nmである場合、1.1(NA2)とする)を満たすとともに、0.01<NA4-NA3<0.12(この上限0.12は、実用上、0.1であることが更に好ましい)の条件を満たす、対物レンズ16の光ディスク側の開口数NA3とNA4との間であることが好ましい。

50 【0161】このような本実施の形態の場合、第1の実

施の形態と同様に、第1の光ディスクである透明基板の 厚さt1が0.6mmのDVDを再生する際には、第1 分割面Sd1及び第3分割面Sd3、第5分割面Sd5 を通過する光束は、ほぼ同一の第1結像位置に結像し、 その波面収差(第2分割面Sd2及び第4分割面Sd4 を通過する光束を除いた波面収差)は、0.05λrm s以下となっている。ここで、λは光源の波長である。 【0162】このとき、第2分割面Sd2及び第4分割 面Sd4を通過する光束は、第1結像位置とは異なった 第2結像位置に結像する。この第2結像位置は、第1結 像位置を0 (零) としてそれより対物レンズ16側を 負、その反対側を正とすると、第1結像位置から-27 μm以上-4μm以下の距離にする。なお、本実施の形 態では、t1<t2、NA1>NA2であるので、第2 結像位置を第1結像位置から-27μm~-4μmとし たが、t1>t2、NA1>NA2の場合は、第2結像 位置を第1結像位置から $4 \mu m \sim 27 \mu m$ にする。すな わち、第1結像位置と第2結像位置との距離の絶対値は 4μm以上27μm以下の範囲内になるようにする。

【0163】また、この対物レンズ16を球面収差の観 20 点から見ると、開口数NA2の近傍の4つの開口位置 で、透明基板の厚さが異なる複数の光ディスクを1つの 集光光学系で再生できるように、球面収差が不連続に変 化するように構成している。このように球面収差が不連 続に変化(変化の方向は、上述した第1~3の実施の形 態と同じである)しており、また、波面収差の観点から 見ると、開口数NA2近傍の4カ所で波面収差が不連続 となり、この不連続の各々の部分の波面収差の傾きは、 不連続となっている部分の両側の曲線の端部を結ぶ曲線 の傾きは、異なる傾きとなっている。

【0164】このような本実施の形態の対物レンズ16 では、第2光ディスクの再生時(t 2の厚さの透明基板 を介した際)に、開口数NALから開口数NAHの間の 球面収差が、 -2λ /(NA2)²以上、 5λ /(NA 2) 2以下の条件を満たすことが好ましい(ただし、こ のときのλは、第2光ディスクの再生時に使用する光源 の波長である)。さらに、この条件は、再生の場合は3 λ / (NA2) ²が以下が好ましく、あるいは、記録を も考慮すると(勿論、再生もできる) 0 (零) より大き いことが好ましい。

【0165】一方、本実施の形態では、光軸と直交する 方向で第2n分割面(第2分割面Sd2あるいは第4分 割面) 中央位置でみたとき、第2 n分割面の法線と光軸 とのなす角度が、第(2n-1)分割面(第1分割面S d 1 あるいは第3分割面Sd3)及び第(2n+1)分 割面(第3分割面Sa3あるいは第5分割面Sa5)か ら内挿される面の法線と光軸とのなす角度より大きくす る。これにより第1光ディスク及び第2光ディスクの双 方を良好に再生することが可能となる。なお、本実施の 形態では、t2>t1、NA1>NA2であるので、第 50 差量より、第2n分割面の第 (2n+1) 分割面からの

2n分割面の法線と光軸とのなす角度が、第(2n-1) 分割面及び第(2n+1)分割面から内装される面 の法線と光軸とのなす角度より大としたが、 t2< t 1、NA1>NA2の場合は、小とすればよい。

【0166】また/さらにまた、光軸と直交する方向で 第2分割面Sd2又は第4分割面Sd4である第2n分 割面(ただし、nは自然数)のほぼ中央位置でみたと き、第2n分割面の法線と光軸とのなす角度と、第(2 n-1) 分割面及び第(2n+1) 分割面から内挿され る面(数1の非球面の式を用いて最小自乗法でフィッテ ィングを行った非球面)の法線と光軸とのなす角度との 差が、0.02°以上1°以下の範囲となるように、第 1分割面Sd1~第(2n+1)分割面を設定すること が好ましい。

【0167】また、上述した各実施の形態と同様に、別 の観点から本実施の形態を捕らえると、少なくとも一方 の面を光軸と同心状に複数に分割された複数の分割面 (本実施の形態では5つの分割面)を有する対物レンズ 16において、第2n分割面(ただし、nは1以上の整 数)より光軸側の第(2n-1)分割面を透過した光 と、第2n分割面より光軸側とは反対側の第(2n+ 1) 分割面を透過した光とが、所定の厚さ(第1光ディ スク) の透明基板を介して、ほぼ同じ位相となるように したとき、第(2n-1)分割面(例えば、第1分割面 Sd1又は第3分割面Sd3)を透過し透明基板を介し た光と、第2n分割面(例えば、第2分割面Sd2又は 第4分割面Sd4)のほぼ中央位置より光軸側の第2n 分割面(例えば、第2分割面Sd2又は第4分割面Sd 4) を透過し透明基板を介した光と、の位相差を (Δn 30 L) π (例えば、 (Δ1L) π又は (Δ2L) π) (r a d) とし、第(2n+1)分割面(例えば、第3分割 面Sd3又は第5分割面Sd5)を透過し透明基板を介 した光と、前記中央位置より光軸側とは反対側の第2n 分割面(例えば、第2分割面Sd2又は第4分割面Sd 4) を透過し透明基板を介した光と、の位相差を (Δn H) π (例えば、 (Δ 1H) π 又は (Δ 2H) π) (rad) とすると、 $(\Delta n H) > (\Delta n L)$ を満足する。 この場合も上述と同様に、t1>t2、NA1>NA2 の場合は、 $(\Delta n H) < (\Delta n L)$ とする。したがっ *40* て、(ΔnH) ≠ (ΔnL) とする。

【0168】これを別な観点から言えば、第2n分割面 (例えば、第2分割面Sd2又は第4分割面Sd4)の 第(2n-1)分割面(例えば、第1分割面Sd1又は 第3分割面Sd3)からの段差量より、第2n分割面 (例えば、第2分割面Sd2又は第4分割面差Sd4) の第(2n+1)分割面(例えば、第3分割面Sd3又 は第5分割面Sd5)からの段差量の方が、大きい。こ の場合も上述と同様に、t1>t2、NA1>NA2の 場合は、第2m分割面の第(2m-1)分割面からの段 ・ 段差量の方が、小さくなる。さらに、光軸から所定の位置において、第(2n-1)分割面と第(2n+1)分割面と(例えば、第1分割面Sd1と第3分割面Sd3・ と又は第3分割面Sd3と第5分割面Sd5)から内挿される面の位置と、第2n分割面(例えば、第2分割面 Sd2又は第4分割面Sd4)の位置との差が、第2分割面(例えば、第2分割面Sd2又は第4分割面Sd4)のほぼ中央位置を中心として非対称になっていることが好ましい。さらに、この場合、光軸から離れるに従いその差が大きくなることが好ましい。

【0169】なお、本実施の形態において、対物レンズ 16の光源側の屈折面S1を5分割したが、これに限られず、他の集光光学系の光学素子(例えば、コリメータ レンズなど)に設けてもよく、あるいは、別途光学素子 を設けてもよい。

【0170】また、本実施の形態では、第1分割面Sd1~第5分割面Sd5の境界に段差を設けたが、少なくとも一つの境界を段差を設けずに連続的に分割面を形成してもよい。また、分割面と分割面との境界は、屈曲させることなく、例えば所定のRで以て接続させてもよい。このRは意図的に設けたものであってもよく、また、意図的に設けたものでなくてもよい(この意図的に設けたものではない例として、対物レンズ16をプラスチック等で形成する場合に、金型を加工する上で形成される境界のRがある)。

【0171】また、本実施の形態では、光源側から対物レンズ16を見たときに、第2分割面Sd2及び第4分割面Sd4を光軸と同心円状の環形状で設けたが、これに限られず、途切れた環状で設けてもよい。また、第2分割面Sd2及び第4分割面Sd4をホログラムやフレネルで構成してもよい。なお、第2分割面Sd2をホログラムで構成した場合、0次光と1次光とに分けた光束の一方を第1光ディスクの再生に利用し、他方を第2光ディスクの再生に利用する。このとき、第2光ディスクの再生に利用する光束の光量の方が、第1光ディスクの再生に利用する光束の光量の方が、第1光ディスクの再生に利用する光束の光量より大きいことが好ましい。

【0172】また、本実施の形態において、第1光ディスクを再生する際(すなわち、厚さ t1の透明基板を介したとき)第1分割面S d1及び第3分割面S d3を通過する光束による最良波面収差が 0.05λ rms(ただし、 λ (nm)は第1光ディスクを再生する際に使用する光源の波長)を満たすだけでなく、第2光ディスクを再生する際(すなわち、厚さ t2の透明基板を介したとき)第1分割面S d1を通過する光束による最良波面収差が回折限界である 0.07λ rms(ただし、 λ

(nm) は第2光ディスクを再生する際に使用する光源の波長) を満たすことにより、第2光ディスクの再生信号を良好にすることができる。

【0173】以上、詳述した第 $1\sim4$ の実施の形態にお 50 は、第2分割面上でのNALの値を示している)を示し

46

いて、第1分割面を光軸を含む面としたが、光軸上のごく狭い領域の面は集光にはさほど影響を及ぼさないため、そのような集光には影響を与えない光軸上のごく狭い領域の面が平坦となっていたり、突起や凹みとなっていてもよい。要は、NA2近傍に第2光ディスクの再生に利用する分割面を設ければよく、それより光軸側(すなわち光軸近傍)を第1分割面とすればよい。

【0174】また、以上の説明においては、光ディスクに記録された情報の再生のみについて説明したが、集光 10 光学系(対物レンズ)によって集光する光スポットが重要である点で光ディスクへ情報を記録する場合についても同様であり、以上の実施の形態は有効に記録にも使えることは言うまでもない。

【0175】さらに、上述した第1~第4の実施の形態においては、フォーカスエラー信号のS字特性が良好になるという効果も奏する。

[0176]

【実施例】以下の実施例においては、本発明を対物レン ズ16の光源側の屈折面に適用したものである。また、 20 第1光ディスクとしてDVD (透明基板の厚さt1= 0. 6mm、必要な開口数NA1=0. 60 (λ=63 5 nm)) を用い、第2光ディスクとしてCD (透明基 板の厚さ t 2=1. 2mm、必要な開口数NA2=0. 366 (λ =635nm) あるいはNA2=0. 45 $(\lambda = 780 nm)$) あるいはCD-R (透明基板の厚 さt2=1.2mm、必要な開口数NA2=0.50 $(\lambda = 780 nm)$ (ただし、再生のみの場合は、NA 2=0. 45 (λ=780nm)) を用いることにす る。なお、以下の対物レンズ16の例においては、コリ メータレンズ13は、設計を最適にすることにより対物 レンズ16~は略無収差の平行光束を入射させることが できるため、以下の例においては略無収差の平行光束を 出射できるコリメータレンズ13を使用することを前提 として、対物レンズ16〜光束が入射して以降の構成を 示す。また、対物レンズ16の光源側の配置される絞り を第1面として、ここから順に第i番目のレンズ面の曲 率半径をri、DVD再生時の第i番目の面と第i+1 番目の面との間の距離をdi (CD再生時は、di'に 記載がある場合はその数値に変わり、記載がない場合は diと同じである)、その間隔のレーザー光源の光束の 波長での屈折率をniで表している。また、光学面に非 球面を用いた場合は、上述した非球面の式に基づくもの とする。

【0177】また、表4、7、8、11、14、15、18、19、22、23、26、27、30、31、34、35、38、39中の記載においては次のように行っている。なお、次における「n」は自然数である。【0178】まず、NAL・NAHに続けて記載している()内の数字は、分割面(例えば、NAL(2)は、第2分割面トでのNALの値を示している)を示し

ている。

【0179】また、H2nmidは、光軸と直交する方向で光軸から第2n分割面の中央位置までの高さを示している。

【0180】また、 $\theta2n-1$, 2n+1, midは、高さH2nmidにおける第(2n-1)分割面及び第(2n+1)分割面から内挿される面の法線と光軸とのなす角度を示している。さらに、 $\theta2n-1$, 2n+1, midを詳細にいうと、第(2n-1)分割面を第2n分割面の方向に延長した面を想定し、その想定した面における光軸からの高さH2nmidにおける法線と光軸とのなす角度と、第(2n+1)分割面を第2n分割面の方向に延長した面を想定し、その想定した面における光軸からの高さH2nmidにおける法線と光軸とのなす角度との平均角度をいう。ここで、具体的に面を想定する場合には「数1」に示す非球面の式を参考にすればよい。

【0181】また、 $\theta2n$, midは、高さ<math>H2nmidにおける第2n分割面の法線と光軸とのなす角度を示している。

【0182】また、 $\Delta\theta2n$, midは、 $\theta2n$, midと $\theta2n-1$, 2n+1, midとの差を示している。

【0183】また、図9、13、18、22、27、3 2、37、42、47、52の(a)、(b)の下側に 記載した「defocus」とは、光ディスクの情報記 48

録面(所定の厚さ、屈折率の透明基板を介したとき)に 幾何学的焦点位置に合致する対物レンズ16の位置を中 心に、光源からの光束の進行方向を正とした場合におけ る、最良の波面収差を得るために光軸方向に対物レンズ 16を移動させる量(デフォーカス量)を示している。 【0184】(実施例1)実施例1は、上述した第2の 実施の形態の1光源の光ピックアップ装置10に搭載す る対物レンズ16であって、第1分割面Sd1~第3分 割面Sd3の境界に段差を設けた対物レンズ16に本発 10 明を適用した例である。

【0185】表2および表3に対物レンズの光学データを示す。

[0186]

【表2】

20

	波長入		635nm		
	焦点距	鏈	3.3	3.36mm	
	絞り往	ζ.	Φ4.0	04mm	
対	物レンズの	横倍率	0		
j	ri	d i	di' ni		
1	1 ∞ 0.000			1.0	
2	2.114	2.200		1.5383	
3	-7.963	1.757	1.377 1.0		
4	∞	0.600	1.200	1.58	

【0187】 【表3】

ATT 0	非球面データ					
第2面	第1	0 <h<1.212(第1分< td=""><td></td></h<1.212(第1分<>				
(屈折面)	非球面	1.347≦H(第3分割	面)			
		κ=-0.88658				
	:	A1=0.51091×10 ⁻²	P1=4.0			
		A2=0.27414×10 ⁻³	P2=6.0			
		A3=0.11020×10 ⁻⁴	P3=8.0			
		$A4=-0.72311\times10^{-5}$	P4=10.0			
	第2	1.212≦H<1.347(第2	分割面)			
	非球面	$\kappa = -0.94120$				
		A1=0.61109×10 ⁻²	P1=4.0			
		A2=0.30854×10 ⁻³	P2=6.0			
		A3=0.20160×10 ⁻⁴	P3=8.0			
		A4=-0.81949×10 ⁻⁵	P4=10.0			
第3	面	$\kappa = -0.24879 \times 10^2$				
(屈折面)		$A1=0.94269\times10^{-2}$	P1=4.0			
		A2=-0.32152×10 ⁻²	P2=6.0			
		A3=0.53282×10 ⁻³	P3=8.0			
		A4=-0.37853×10 ⁻⁴	P4=10.0			

【0188】なお、本実施例の対物レンズは、第1非球面が光軸と交わる位置と第2非球面が光軸と交わる位置とが同じである。

【0189】また、図8(a)に厚さt1(=0.6mm)の透明基板を介したとき(以下、DVD再生時という)の球面収差図を、図8(b)に厚さt2(=1.2mm)の透明基板を介したとき(以下、CD再生時という)の球面収差図を示している。また、図9(a)にDVD再生時の最良波面収差が得られる位置にデフォーカ

スした状態でみたときの波面収差図を、図9 (b) にC D再生時の最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図を示している。また、表4には、NALおよびNAHの開口数、球面収差の発30 生量、法線と光軸とのなす角度、法線と、各条件の値を示す。

【0190】 【表4】

51			52	
高さ	開口数	球面収差(mm)		
Н		DVD再生時	CD再生時	
1.212	NAL(1)=0.3606	-0.15363×10 ⁻⁴	0.15933×10 ⁻¹	
	NAL(2)=0.3617	-0.10720×10 ⁻¹	0.53341×10 ⁻²	
1.374	N A H(2)=0.4024	-0.13510×10 ⁻¹	0.67388×10 ⁻²	
	NAH(3)=0.4008	-0.16412×10 ⁻⁴	0.20059×10 ⁻¹	
	0.60NA2=0.60×0.36	6=0.220		
	1 2882-1 2 20 266-	-0.476		

 $1.3NA2=1.3\times0.366=0.476$ NAH-NAL=0.4024-0.3617=0.0407 $-2 \lambda / (NA2)^2 = -2 \times 635 \text{nm} / (0.366)^2 = -9.48 \,\mu\text{m}$ $5 \lambda / (NA2)^2 = 5 \times 635 \text{nm} / (0.366)^2 = 23.7 \, \mu \text{m}$ H2mid=(1.212+1.374)/2=1.280 01,3,mid=33.69622°

Θ2,mid=33.81796" Δ Θ 2 mid=33.81796-33.69622=0.12174°

【0191】また、図10にDVD再生時の最良のスポ ット形状が得られたときの集光スポットの相対強度分布 図を示し、図11にCD再生時に最良のスポット形状が 20 を設けた対物レンズ16に本発明を適用した例である。 得られたときの集光スポットの相対強度分布図を示す。 【0192】 (実施例2) 実施例2は、上述した第3の 実施の形態の2つの光源(第1光源の波長λ1=635 nm、第2光源の波長 λ 2=780 nm)を用いた光ピ

波長入

絞り径

1

2

3

4

焦点距離

ックアップ装置10に搭載する対物レンズ16であっ て、第1分割面Sd1~第3分割面Sd3の境界に段差 【0193】表5および表6に対物レンズの光学データ を示す。

[0194] 【表5】

1.0

1.58

1.0

1.58

635nm 780nm 3.36mm 3.39mm Ф4.04mm 対物レンズの検倍率 di' d i n i ni' r i 8 0.000 1.0 1.0 1.5383 2.114 2.200 1.5337

1.757 1.401

0.600 1.200

【表6】 [0195]

-7.963

0.01=89	ε-01×8	3E1S1.0-=8A		
0.8=2q	s-01×	1E331.0=ZA		
0.3=4q	1-01×9	26881.0-=PA		
0.Z=£q	1-01×	9821S.0=8A		
0.A=Sq	2-01×6	99214.0-=SA		
0.E=1q	z-01×	27781.0=1A	(<u>n</u>	面祛風)
	201×	₽1645.0-= x	面	[6震
0.01=4q	*-01×8	3££47.0-=8A		
0.8=89	z-01×	SE+01.0=2A		
0.8=49	_{l-} 01×8	E7011.0-=4A		
P3=5.0	1-01×	8363S.0=EA		
0.A=Sq	L-01×8	376£ f.0-=SA		
0.5=19	z-01×	17867.0=1A		
		S8621.0-= x	面郑非	
(面傳代	Z第)643.1>H	ゔゕゖ゚゙゚゚゚	2 譲	
0.0 r=39	_{b-} 01×1	A6=-0.43124		
P5=8.0	_{€-} 01×	84234.0=ZA		
0.8=49	2-01×	9627E.O-=4A		
P3=5.0	2-01×	11288.0=EA		
0.Þ=Sq	€-01×	8899E.0=SA		
0.6=19	E-01×	19783.0=1A		
		0776.0-= x		
l.	客代6駕)H≥64	-	面栽非	(面花園)
(面偶	公「衆)^14.「>	H>0	「譲	面2第
を一元 面 短 非				

UI X 8 2 1 2 1 . U - = 0 A

きの液面収差が多、図13(b)にCD再生時の最良液面収差が得られる位置にデフォーカスした状態でみたと面収差が得られる位置にデフォーカスした状態でみたとの液面収差の変に量、は違い、は開い数、球面収差の発に量、は違い、と際は、は強い、各条件の値を示す。

0.01=84

(8610) 【7表】

高さ	DVD再生時		C D再生時	
н	開口数	球面収差(mm)	開口數	球面収差
1.414	NAL(1)=0.4207	0.24061×10 ⁻³	NAL(1)=0.4172	0.2393×10 ⁻¹
	NAL(2)=0.4232	-0.20032×10 ⁻¹	NAL(2)=0.4197	0.37703×10 ⁻²
1.549	NAH(2)=0.4642	-0.24054×10 ⁻¹	NAH(2)=0.4604	0.52181×10 ⁻²
	NAH(3)=0.4608	0.60913×10 ⁻³	NAH(3)=0.4571	0.2965×10 ⁻¹

0.60NA2=0.60×0.45=0.270

 $1.1NA2=1.1\times0.45=0.495$

NAH-NAL=0.4604-0.4197=0.0407

 $-2(\lambda 2)/(NA2)^2 = -2 \times 780 \text{nm}/(0.45)^2 = -7.70 \,\mu\text{m}$

 $5(\lambda 2)/(NA2)^2 = 5 \times 780 \text{nm}/(0.45)^2 = 19.26 \,\mu\text{m}$

H2mid=(1.414+1.549)/2=1.482

@1.3,mid=38.62261°

02,mid=38.87220°

Δ Θ 2,mid=38.87220-38.62261=0.24959°

【0199】また、図14にDVD再生時の最良のスポット形状が得られたときの集光スポットの相対強度分布図を示し、図15にCD再生時に最良のスポット形状が 20得られたときの集光スポットの相対強度分布図を示す。 【0200】さらに、この実施の形態の対物レンズは、1つの光源(光源の波長 1 = 635 nm)を用いた光ピックアップ装置10に搭載しても、DVDのみならず 1=635 nm

CDの再生が可能であった。このときのCD再生時に最良のスポット形状が得られたときの集光スポットの相対強度分布図を図16に示す。また、この場合の、NALおよびNAHの開口数、球面収差の発生量、法線と光軸とのなす角度、法線と、各条件の値を表8に示す。

[0201]

【表8】

高さ	DVD再	生時	C D 再生時	
Н	開口数 球面収差(mm)		開口数	球面収差(mm)
1.414	NAL(1)=0.4207	0.24061×10 ⁻³	NAL(1)=0.4207	0.22575×10 ⁻¹
	NAL(2)=0.4232	-0.20032×10 ⁻¹	NAL(2)=0.4232	0.25983×10 ⁻²
1.549	N A H(2)=0.4642	-0.24054×10 ⁻¹	NAH(2)=0.4642	0.38067×10 ⁻²
	N A H(3)=0.4608	0.60913×10 ⁻³	N A H(3)=0.4608	0.28016×10 ⁻¹

0.60NA2=0.60×0.366=0.220

1.3NA2=1.3×0.366=0.476

NAH-NAL=0.4642-0.4232=0.0410

 $-2(\lambda)/(NA2)^2=-2\times635$ nm/(0.366) $^2=-9.48 \mu$ m

 $5(\lambda)/(NA2)^2 = 5 \times 635 \text{nm}/(0.366)^2 = 23.7 \,\mu\text{m}$

H2mid=(1.414+1.549)/2=1.482

91,3,mid=38.62261°

02.mid=38.87220°

Δ Θ2,mid=38.87220-38.62261=0.24959°

【0202】(実施例3)実施例3は、上述した第2の実施の形態の1光源の光ピックアップ装置10に搭載する対物レンズ16であって、第2分割面Sd2と第3分割面Sd3との境界に段差を設け、第1分割面Sd1と第2分割面Sd3との境界には段差を設けない対物レンズ16に本発明を適用した例である。

【0203】 表9および表10に対物レンズの光学デー タを示す。 【0204】 【表9】

	波長	λ	63	5nm	
	焦点距	離	3.3	3.36mm	
絞り径			Ф4.04mm		
求	物レンズの	の横倍率		0	
-	ri	dі	di'ni		
ī	1 ∞ 0.000			1.0	
2 2.114 2.2000			1.5383		
3	-7.963	1.757	1.377 1.0		
4	∞	0.600	1.200	1.58	

【0205】 【表10】

10

	非球面データ				
第2面	第1	0 <h<1.212(第1分割面)< th=""></h<1.212(第1分割面)<>			
(屈折面)	非球面	1.347≦H(第3分割	面)		
ļ		κ=-0.88658			
		A1=0.51091×10 ⁻²	P1=4.0		
		A2=0.27414×10 ⁻³	P2=6.0		
		A3=0.11020×10 ⁻⁴	P3=8.0		
		A4=-0.72311×10 ⁻⁵	P4=10.0		
	第2	1.212≦H<1.347(第25	分割面)		
		d2=2.200702			
	非球面	κ =-0.94120			
		A1=0.61109×10 ⁻²	P1=4.0		
		A2=0.30854×10 ⁻³	P2=6.0		
		A3=0.20160×10 ⁻⁴	P3=8.0		
	<u> </u>	A4=-0.81949×10 ⁻⁵	P4=10.0		
第3	面	$\kappa = -0.24879 \times 10^2$:		
(屈折菌)		A1=0.94269×10 ⁻²	P1=4.0		
		A2=-0.32152×10 ⁻²	P2=6.0		
		A3=0.53282×10 ⁻³	P3=8.0		
		A4=-0.37853×10 ⁻⁴	P4=10.0		

【0206】なお、表10中の第2非球面の「d2=2.200702」とは、第2非球面(第2分割面)の形状を非球面形状式に従って光軸まで延長したときの光軸との交点と、第3面との光軸上の間隔を表している。すなわち、この値にすることにより、第1分割面と第2分割面とが連続した面(段差を有さない)となる。

【0207】また、図17(a)にDVD再生時の球面 収差図を、図17(b)にCD再生時の球面収差図を示 している。また、図18(a)にDVD再生時の最良波 面収差が得られる位置にデフォーカスした状態でみたときの波面収差図を、図18(b)にCD再生時の最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図を示している。また、表11には、NALおよびNAHの開口数、球面収差の発生量、法線と光軸とのなす角度、法線と、各条件の値を示す。

[0208]

【表11】

59			60				
高さ	開口数	球面収差(mm)					
Н		DVD再生時	C D 再生時				
1.212	NAL(1)=0.3606	-0.15363×10 ⁻⁴	0.15933×10 ⁻¹				
	NAL(2)=0.3617	-0.11068×10 ⁻¹	0.49864×10 ⁻²				
1.374	NAH(2)=0.4024	-0.13857×10 ⁻¹	0.63914×10 ⁻²				
	N A H(3)=0.4008	-0.16412×10 ⁻⁴	0.20059×10 ⁻¹				
	0.60NA2=0.60×0.366=0.220						
	1.3NA2=1.3×0.366=0.476						

NAH-NAL=0.4024-0.3617=0.0407 $-2 \lambda/(NA2)^2 = -2 \times 635 \text{nm}/(0.366)^2 = -9.48 \mu \text{m}$ $5 \lambda / (NA2)^2 = 5 \times 635 \text{nm} / (0.366)^2 = 23.7 \mu \text{m}$ H2mid=(1.212+1.374)/2=1.280 91,3,mid=33.69622° ⊕2,mid=33.81796°

Δ Θ2,mid=33.81796-33.69622=0.12174°

【0209】また、図19にDVD再生時の最良のスポ ット形状が得られたときの集光スポットの相対強度分布 図を示し、図20にCD再生時に最良のスポット形状が 20 を設けた対物レンズ16に本発明を適用した例である。 得られたときの集光スポットの相対強度分布図を示す。 【0210】 (実施例4) 実施例4は、上述した第3の 実施の形態の2つの光源(第1光源の波長λ1=635 nm、第2光源の波長 2 = 780 nm)を用いた光ピ

ックアップ装置10に搭載する対物レンズ16であっ て、第1分割面Sd1~第3分割面Sd3の境界に段差 【0211】表12および表13に対物レンズの光学デ ータを示す。

[0212] 【表12】

波長	ξλ		635nm	780nm		
焦点	距離	_	3.36mm	3.39mm		
紋,	経		\$ 4.0	φ 4.04mm		
対物レンズの横倍率)	
i	ri	di	di	ni ni		
1	∞	0.000		1.0	1.0	
2	2.114	2.200	1.5383	1.5337		
3	-7.963	1.757	1.401	1.0	1.0	
4	∞	0.600	1.200	1.58	1.58	
5	00					

【表13】

[0213]

非球面デー	タ		
第2面	第1	0≦H<1.397	(第 1 分割面)
(屈折面)	非球面	1.532≨H	(第3分割面)
		$\kappa = -0.97700$	
		$A1 = 0.63761 \times 10^{-3}$	P1=3.0
		$A2 = 0.36688 \times 10^{-3}$	P1=4.0
		$A3 = 0.83511 \times 10^{-2}$	P1=5.0
		$A4 = -0.37296 \times 10^{-2}$	P1=6.0
		$A5 = 0.46548 \times 10^{-3}$	P1=8.0
		$A6 = -0.43124 \times 10^{-4}$	P1=10.0
	第 2	1.397≦H<1.532	(第2分割面)
	非球面	d2=2.1996	
		$\kappa = -0.11481 \times 10^{+1}$	
		$A1 = 0.70764 \times 10^{-2}$	P1=3.0
		$A2 = 0.13388 \times 10^{-1}$	P1=4.0
	1	$A3 = 0.24084 \times 10^{-1}$	P1=5.0
	<u> </u>	$A4 = -0.97636 \times 10^{-2}$	P1=6.0
	·	$A5 = 0.93136 \times 10^{-3}$	P1=8.0
		$A6 = -0.68008 \times 10^{-4}$	P1=10.0
第 3	面	$\kappa = -0.24914 \times 10^{+2}$	
(屈护	(面)	A1= 0.13775×10 ⁻²	P1=3.0
		$A2 = -0.41269 \times 10^{-2}$	P1=4.0
		$A3 = 0.21236 \times 10^{-1}$	P1=5.0
		$A4 = -0.13895 \times 10^{-1}$	P1=6.0
		$A5 = 0.16631 \times 10^{-2}$	P1=8.0
		$A6 = -0.12138 \times 10^{-3}$	P1=10.0

【0214】なお、表13中の第2非球面の「d2=2.1996」とは、第2非球面(第2分割面)の形状を非球面形状式に従って光軸まで延長したときの光軸との交点と、第3面との光軸上の間隔を表している。これは、第2分割面を光軸方向にd2だけずらすことにより位相差を設け、集光光量(ピーク強度)を上げるようにしている。また、表12のni[']は、第2光源(λ2=780nm)における屈折率を示している。

【0215】また、図21 (a) にDVD再生時の球面 収差図を、図21 (b) にCD再生時の球面収差図を示 40

している。また、図22(a)にDVD再生時の最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図を、図22(b)にCD再生時の最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図を示している。また、表14には、NALおよびNAHの開口数、球面収差の発生量、法線と光軸とのなす角度、法線と、各条件の値を示す。

[0216]

【表14】

高さ	DVD時		CD時	
н	開口数	球面収差(mm)	開口数	球面収差(mm)
1.397	NAL(1)=0.4156	0.16787×10 ⁻³	NAL(1)=0.4122	0.23237×10^{-1}
	NAL(2)=0.4176	-0.15961×10 ⁻¹	NAL(2)=0.4142	0.71899×10^{-2}
1.532	NAH(2)=0.4584	-0.19079×10 ⁻¹	NAH(2)=0.4547	0.94214×10 ⁻²
	NAH(3)=0.4558	0.59045×10 ⁻³	NAH(3)=0.4521	0.28918×10^{-1}

 $0.60NA2=0.60\times0.45=0.270$

1.1NA2=1.1×0.45=0.495

NAH-NAL=0.4547-0.4142=0.0405

 $-2(\lambda 2)/(NA2)^2 = -2 \times 780 \text{nm}/(0.45)^2 = -7.70 \ \mu \text{ m}$

 $5(\lambda 2)/(NA2)^2 = 5 \times 780 \text{ nm}/(0.45)^2 = 19.26 \ \mu \text{ m}$

H2mld=(1.397+1.532)/2=1.465

θ 1,3,mid=38.21395°

θ 2,mld=38.41159°

Δ θ 2,mid=38.41159-38.21395=0.19764°

【0217】また、図23にDVD再生時の最良のスポット形状が得られたときの集光スポットの相対強度分布図を示し、図24にCD再生時に最良のスポット形状が 20得られたときの集光スポットの相対強度分布図を示す。 【0218】さらに、この実施の形態の対物レンズは、1つの光源(光源の波長 21=635 nm)を用いた光ピックアップ装置10に搭載しても、DVDのみならず

CDの再生が可能であった。このときのCD再生時に最 良のスポット形状が得られたときの集光スポットの相対 強度分布図を図25に示す。また、この場合の、NAL およびNAHの開口数、球面収差の発生量、法線と光軸 とのなす角度、法線と、各条件の値を表15に示す。

[0219]

【表15】

高さ	DVD時		CD時	
н	開口数	球面収差(mm)	開口数	球面収差(mm)
1.397	NAL(1)=0.4156	0.16787×10 ⁻³	NAL(1)=0.4156	0.21913×10 ⁻¹
	NAL(2)=0.4176	-0.15961×10^{-1}	NAL(2)=0.4176	0.60126×10^{-2}
1.532	NAH(2)=0.4584	-0.19079×10^{-1}	NAH(2)=0.4584	0.80011×10 ⁻²
	NAH(3)=0.4558	0.59045×10 ⁻⁸	NAH(3)=0.4558	0.27319×10 ⁻¹

 $0.60NA2=0.60\times0.366=0.220$

1.3NA2=1.3×0.366=0.476

NAH-NAL=0.4584-0.4176=0.0408

 $-2(\lambda 2)/(NA2)^2 = -2 \times 635 \text{ nm}/(0.366)^2 = -9.48 \ \mu \text{ m}$

 $5(\lambda 2)/(NA2)^2 = 5 \times 635 \text{ nm}/(0.366)^2 = 23.7 \ \mu \text{ m}$

H2mid=(1.397+1.532)/2=1.465

θ 1,3,mid=38.21395°

∂ 2,mid=38.41159°

Δ θ 2,mld=38.41159-38.21395=0.19764°

【0220】(実施例5)実施例5は、上述した第3の実施の形態の2つの光源(第1光源の液長 λ 1=635 nm、第2光源の液長 λ 2=780 nm)を用いた光ピックアップ装置10に搭載する対物レンズ16であって、第1分割面Sd1~第3分割面Sd3の境界に段差を設けた対物レンズ16に本発明を適用した例である。なお、本実施例においては、第2光ディスクとしてCD

-Rを想定したものである。そのためNA2=0.5として示している。

【0221】表16および表17に対物レンズの光学データを示す。

[0222]

【表16】

CO					
波長	ξλ		635nm	780nm	
焦点	距離		3.36mm	3.39mm	
校り経				φ 4.04mm	
対物	カレンズの横	倍率		()
i	rl	di	di´	ni	ni '
1	∞	0.000		1.0	1.0
2	2.114	2.200		1.5383	1.5337
3	-7.963	1.757	1.401	1.0	1.0
4	00	0.600	1.200	1.58	1.58
_	~				

[0223]

【表17】

非球面データ					
第2面	第 1	0≦H<1.515	(第1分割面)		
(屈折面)	非球面	1.751≦H	(第3分割面)		
		$\kappa = -0.97700$			
ļ.		$A1 = 0.63761 \times 10^{-3}$	P1=3.0		
		$A2 = 0.36688 \times 10^{-3}$	P1=4.0		
		$A3 = 0.83511 \times 10^{-2}$	P1=5.0		
		$A4 = -0.37296 \times 10^{-2}$	P1=6.0		
		$A5 = 0.46548 \times 10^{-3}$	P1=8.0		
		$A6 = -0.43124 \times 10^{-4}$	P1=10.0		
	第 2	1.515≦H<1.751	(第2分割面)		
	非球面	$\kappa = -0.11481 \times 10^{+1}$			
		$A1 = 0.70764 \times 10^{-2}$	P1=3.0		
		$A2 = 0.13388 \times 10^{-1}$	P1=4.0		
		$A3 = 0.24084 \times 10^{-1}$	P1=5.0		
		$A4 = -0.97636 \times 10^{-2}$	P1=6.0		
		$A5 = 0.93136 \times 10^{-3}$	P1=8.0		
		$A6 = -0.68008 \times 10^{-4}$	P1=10.0		
第 3	面	$\kappa = -0.24914 \times 10^{+2}$			
(屈折	面)	A1= 0.13775×10 ⁻²	P1=3.0		
<u> </u>		$A2 = -0.41269 \times 10^{-2}$	P1=4.0		
		$A3 = 0.21236 \times 10^{-1}$	P1=5.0		
		$A4=-0.13895\times10^{-1}$	P1=6.0		
		A5= 0.16631×10 ⁻²	P1=8.0		
		$A6 = -0.12138 \times 10^{-3}$	P1=10.0		

【0224】なお、本実施例の対物レンズは、第1非球面が光軸と交わる位置と第2非球面が光軸と交わる位置とが同じである。また、表16のni'は、第2光源(λ2=780nm)における屈折率を示している。【0225】また、図26(a)にDVD再生時の球面収差図を示している。また、図27(a)にDVD再生時の最良波面収差が得られる位置にデフォーカスした状態でみ

たときの波面収差図を、図27 (b) にCD-R再生時 の最良波面収差が得られる位置にデフォーカスした状態 でみたときの波面収差図を示している。また、表18に は、NALおよびNAHの開口数、球面収差の発生量、 法線と光軸とのなす角度、法線と、各条件の値を示す。

[0226]

【表18】

	67			68
高さ	VQ	D 時	CD-	·A時
н	開口数	球面収差(mm)	開口数	球面収差(mm)
1.515	NAL(1)=0.4507	0.56250×10 ⁻³	NAL(1)=0.4470	0.28187×10 ⁻¹
	NAL(2)=0.4532	-0.18638×10^{-1}	NAL(2)=0.4496	0.91439×10 ⁻²
1.751	NAH(2)=0.5253	-0.26720×10 ⁻¹	NAH(2)=0.5211	0.12335×10 ⁻¹
	NAH(3)=0.5212	0.22836×10^{-3}	NAH(3)=0.5170	0.38838×10 ⁻¹

 $0.60NA2=0.60\times0.50=0.300$

 $1.1NA2=1.1\times0.50=0.550$

NAH-NAL=0.5211-0.4496=0.0715

 $-2(\lambda 2)/(NA2)^2 = -2 \times 780 \text{ nm}/(0.50)^2 = -6.24 \ \mu \text{ m}$

 $5(\lambda 2)/(NA2)^2 = 5 \times 780 \text{ nm}/(0.50)^2 = 15.6 \ \mu \text{ m}$

H2mid=(1.515+1.751)/2=1.633

θ 1,3,mid=42.17430°

θ 2,mid=42.44207°

Δ θ 2,mid=42.44207-42.17430=0.26777°

【0227】また、図28にDVD再生時の最良のスポ ット形状が得られたときの集光スポットの相対強度分布 図を示し、図29にCD-R再生時に最良のスポット形 状が得られたときの集光スポットの相対強度分布図を示 す。

【0228】さらに、この実施の形態の対物レンズは、 1つの光源(光源の波長λ1=635nm)を用いた光 ピックアップ装置10に搭載しても、DVDのみならず

CDの再生が可能であった。このときのCD再生時に最 良のスポット形状が得られたときの集光スポットの相対 強度分布図を図30に示す。また、この場合の、NAL およびNAHの開口数、球面収差の発生量、法線と光軸 とのなす角度、法線と、各条件の値を表19に示す。

[0229]

【表19】

高さ	DVD時		CD再生時	
н	開口数	球面収差(mm)	開口数	球面収差(mm)
1.515	NAL(1)=0.4507	0.56250×10 ⁻³	NAL(1)=0.4507	0.26624×10 ⁻¹
	NAL(2)=0.4532	-0.18638×10^{-1}	NAL(2)=0.4532	0.77566×10^{-2}
1.751	NAH(2)=0.5253	-0.26720×10^{-1}	NAH(2)=0.5253	0.10403×10 ⁻¹
	NAH(3)=0.5212	0.22836×10 ⁻³	NAH(3)=0.5212	0.36667×10 ⁻¹

0.60NA2=0.60×0.366=0.220

 $1.3NA2=1.3\times0.366=0.476$

NAH-NAL=0.5253-0.4532=0.0721

 $-2(\lambda 2)/(NA2)^2 = -2 \times 635 \text{ nm}/(0.366)^2 = -9.48 \ \mu \text{ m}$

 $5(\lambda 2)/(NA2)^2 = 5 \times 635 \text{ nm}/(0.366)^2 = 23.7 \ \mu \text{ m}$

H2mid=(1.515+1.751)/2=1.633

θ 1,3,mid=42.17430°

θ 2,mld=42.44207°

Δ θ 2,mid=42.44207-42.17430=0.26777°

【0230】 (実施例6) 実施例6は、上述した第3の 実施の形態の2つの光源(第1光源の波長λ1=635 nm、第2光源の波長 λ 2=780 nm)を用いた光ピ ックアップ装置10に搭載する対物レンズ16であっ て、第4の実施の形態において示した対物レンズ16、 すなわち、第1分割面Sd1~第5分割面Sd5の境界 に段差を設けた対物レンズ16を搭載した例である。な

お、本実施例においては、第2光ディスクとしてCD-Rを想定したものである。そのために、NA2=0.5 として示している。

【0231】表20および表21に対物レンズの光学デ ークを示す。

[0232]

【表20】

03					
波县	Ęλ		635nm	780nm	
焦点	距離			3.36mm	3.39mm
校上) 経		φ 4.0)4mm	
对非	カレンズの横	倍率	()	
Ĺ	ri	di	di´_	ni	ni '
1	∞	0.000		1.0	1.0
2	2.114	2.200		1.5383	1.5337
3	-7.963	1.757	1.401	1.0	1.0
4	∞	0.600	1.200	1.58	1.58
5	00				

[0233]

【表21】

非球面デー	非球面データ					
第2面	第 1	0≦H<1.481	(第1分割面)			
(屈折面)	非球面	1.549≦H<1.700	(第3分割面)			
		1.784≦H	(第 5 分割面)			
		$\kappa = -0.97700$				
		$A1 = 0.63761 \times 10^{-3}$	P1=3.0			
		$A2 = 0.36688 \times 10^{-3}$	P1=4.0			
		$A3 = 0.83511 \times 10^{-2}$	P1=5.0			
		$A4=-0.37296\times10^{-2}$	P1=6.0			
:		$A5 = 0.46548 \times 10^{-3}$	P1=8.0			
		$A6 = -0.43124 \times 10^{-4}$	P1=10.0			
	第 2	1.481≦H<1.549	(第2分割面)			
	非球面	1.700≦H<1.784	(第 4 分割面)			
		$\kappa = -0.11481 \times 10^{+1}$				
	1	$A1 = 0.70764 \times 10^{-2}$	P1=3.0			
		$A2 = 0.13388 \times 10^{-1}$	P1=4.0			
		A3= 0.24084×10 ⁻¹	P1=5.0			
		$A4=-0.97636\times10^{-2}$	P1=6.0			
		$A5 = 0.93136 \times 10^{-3}$	P1=8.0			
		$A6 = -0.68008 \times 10^{-4}$	P1=10.0			
第 3	面	$\kappa = -0.24914 \times 10^{+2}$				
(屈折	f面)	$A1 = 0.13775 \times 10^{-2}$	P1=3.0			
		$A2 = -0.41269 \times 10^{-2}$	P1=4.0			
		A3= 0.21236×10 ⁻¹	P1=5.0			
		$A4 = -0.13895 \times 10^{-1}$	P1=6.0			
		$A5 = 0.16631 \times 10^{-2}$	P1=8.0			
		$A6 = -0.12138 \times 10^{-3}$	P1=10.0			

【0234】なお、本実施例の対物レンズは、第1非球 面 (第1分割面Sd1と第3分割面Sd3と第5分割面 Sd5の面(あるいは該面を延長した面)が光軸と交わ る位置と第2分割面Sd2と第4分割面Sd4それぞれ の分割面を延長した面(共に第2非球面を合成)が光軸 と交わる位置とが同じである。また、表20のni[^] は、第2光源(λ 2=780 nm)における屈折率を示 50 の最良波面収差が得られる位置にデフォーカスした状態

している。

【0235】また、図31 (a) にDVD再生時の球面 収差図を、図31(b)にCD-R再生時の球面収差図 を示している。また、図32(a)にDVD再生時の最 良波面収差が得られる位置にデフォーカスした状態でみ たときの波面収差図を、図32(b)にCD-R再生時

でみたときの波面収差図を示している。また、表22には、NALおよびNAHの開口数、球面収差の発生量、 法線と光軸とのなす角度、法線と、各条件の値を示す。

71

【0236】 【表22】

高さ	DVD時		C D-R 時	
- н	開口数	球面収差(mm)	開口数	球面収差(mm)
1.481	NAL(1)=0.4406	0.48121×10 ⁻³	NAL(1)=0.4370	0.26737×10^{-1}
	NAL(2)=0.4430	-0.17798×10^{-1}		0.85891×10^{-2}
1.549	NAH(2)=0.4636	-0.19553×10^{-1}	NAH(2)=0.4598	0.96765×10^{-2}
	NAH(3)=0.4608	0.60932×10 ⁻³	NAH(3)=0.4571	0.29652×10^{-1}
1.700	NAL(3)=0.5059	0.39402×10^{-3}	NAL(3)=0.5018	0.36389×10^{-1}
	NAL(4)=0.5096	-0.24649×10^{-1}	NAL(4)=0.5055	0.11709×10^{-1}
1.784	NAH(4)=0.5354	-0.28119×10^{-1}		0.12767×10^{-1}
	NAH(5)=0.5310	0.13146×10 ⁻³	NAH(5)=0.5268	0.40512×10^{-1}
C	0.60NA2=0.60×0.	50=0.300		
_	.1NA2=1.1×0.50			
1	NAH(4)-NAL(2)=0	.5312-0.4393=0.0	919	
_	-2 (λ 2)/(NA2) ² =-2	\times 780nm/(0.50) ² :	=-6.24 μ m	•

 $5(\lambda 2)/(NA2)^2 = 5 \times 780 \text{nm}/(0.50)^2 = 15.6 \ \mu \text{ m}$ H2mid=(1.481+1.549)/2=1.515

⊕ 1,3,mid=39.41130°

⊕ 2,mid=39.62807°

∆ ⊖ 2,mid=⊖ 1,3,mid-⊖ 2mid=39.62807-39.41130=0.21677°

H4mid=(1.700+1.784)/2=1.742

⊕ 3,5,mid=44.62556°

⊕ 4,mid=44.94902°

Δ Θ 4,mid=Θ 3,5,mid-Θ 4mid=44.94902-44.62556=0.32346°

【0237】また、図33にDVD再生時の最良のスポット形状が得られたときの集光スポットの相対強度分布図を示し、図34にCD-R再生時に最良のスポット形状が得られたときの集光スポットの相対強度分布図を示す。

【0238】さらに、この実施の形態の対物レンズは、 1つの光源(光源の波長 λ 1 = 635 nm)を用いた光 ピックアップ装置10に搭載しても、DVDのみならず CDの再生が可能であった。このときのCD再生時に最良のスポット形状が得られたときの集光スポットの相対強度分布図を図35に示す。また、この場合の、NAL およびNAHの開口数、球面収差の発生量、法線と光軸30 とのなす角度、法線と、各条件の値を表23に示す。

[0239]

【表23】

高さ	DVD 時		CD再生時	
н	開口数	球面収差(mm)	開口数	球面収差(mm)
1.481	NAL(1)=0.4406	0.48121×10 ⁻³	NAL(1)=0.4406	0.25244×10^{-1}
	NAL(2)=0.4430	-0.17798×10^{-1}	NAL(2)=0.4430	0.72646×10^{-2}
1.549	NAH(2)=0.4636	-0.19553×10^{-1}	NAH(2)=0.4636	0.82240×10^{-2}
	NAH(3)=0.4608	0.60932×10^{-3}	NAH(3)=0.4608	0.28016×10^{-1}
1.700	NAL(3)=0.5059	0.39402×10^{-3}	NAL(3)=0.5059	0.34375×10^{-1}
	NAL(4)=0.5096	-0.24649×10^{-1}	NAL(4)=0.5096	0.99199×10^{-2}
1.784	NAH(4)=0.5354	-0.28119×10^{-1}	NAH(4)=0.5354	0.10732×10^{-1}
	NAH(5)=0.5310	0.13146×10^{-3}	NAH(5)=0.5310	0.38227×10^{-1}

0.60NA2=0.60×0.366=0.220

1.3NA2=1.3×0.366=0.476

NAH(4)-NAL(2)=0.5354-0.4430=0.0924 -2(λ 2)/(NA2)²=-2×635nm/(0.366)²=-9.48 μ m 5(λ 2)/(NA2)²=5×635nm/(0.366)²=23.7 μ m

H2mld=(1.481+1.549)/2=1.515

⊕ 1,3,mld=39.41130

⊕ 2,mld=39.62807°

Δ Θ 2,mid=Θ 1,3,mid-Θ 2mid=39.62807-39.41130=0.21677°

H4mid=(1.700+1.784)/2=1.742

⊕ 3,5,mid=44.62556°

⊕ 4,mid=44.94902°

Δ Θ 4,mid=Θ 3,5,mid-Θ 4mid=44.94902-44.62556=0.32346°

【0240】 (実施例7) 実施例7は、上述した第3の 実施の形態の2つの光源(第1光源の波長λ1=635 nm、第2光源の波長 2 = 780 nm)を用いた光ピ ックアップ装置10に搭載する対物レンズ16であっ て、第4の実施の形態において示した対物レンズ16、 すなわち、第1分割面Sd1~第5分割面Sd5の境界 に段差を設けた対物レンズ16を搭載した例である。な お、本実施例においては、第2光ディスクとしてCD-Rを想定したものである。そのために、NA2=0.5 として示している。

【0241】表24および表25に対物レンズの光学デ ータを示す。

[0242]

【表24】

	0 2 7540, 07	207 407 20		, , ,	
波長	€λ		635nm	780nm	
焦点	籍理定		3.36mm	3.39mm	
较。	ノ経		φ 4.C	4mm	
対物レンズの横倍率				()
i	ri	di	di	ni	ni
1	∞	0.000		1.0	1.0
2	2.114	2.200		1.5383	1.5337
3	-7.963	1.757	1.401	1.0	1.0
4	∞	0.600	1.200	1.58	1.58
5	00				

【表25】

[0243]

非球面デー	非球面データ					
第2面	第 1	0≦H<1.481	(第1分割面)			
(屈折面)	非球面	1.549≦H<1.700	(第3分割面)			
		1.784≦H	(第 5 分割面)			
		$\kappa = -0.97700$				
		$A1 = 0.63761 \times 10^{-3}$	P1=3.0			
		$A2 = 0.36688 \times 10^{-3}$	P1=4.0			
		A3= 0.83511×10 ⁻²	P1=5.0			
		$A4 = -0.37296 \times 10^{-2}$	P1=6.0			
		$A5 = 0.46548 \times 10^{-3}$	P1=8.0			
·		$A6 = -0.43124 \times 10^{-4}$	P1=10.0			
	第 2	1.481≦H<1.549	(第2分割面)			
	非球面	1.700≦H<1.784	(第4分割面)			
		d2=2.1996				
		d4=2.2003				
		$\kappa = -0.11481 \times 10^{+1}$				
		$A1 = 0.70764 \times 10^{-2}$	P1=3.0			
		$A2 = 0.13388 \times 10^{-1}$	P1=4.0			
!		$A3 = 0.24084 \times 10^{-1}$	P1=5.0			
	1	$A4 = -0.97636 \times 10^{-2}$	P1=6.0			
		$A5 = 0.93136 \times 10^{-3}$	P1=8.0			
		$A6 = -0.68008 \times 10^{-4}$	P1=10.0			
第 3	面	$\kappa = -0.24914 \times 10^{+2}$				
(屈折	(面)	A1= 0.13775×10 ⁻²	P1=3.0			
		$A2 = -0.41269 \times 10^{-2}$	P1=4.0			
		A3= 0.21236×10 ⁻¹	P1=5.0			
		$A4=-0.13895\times10^{-1}$	P1=6.0			
		$A5 = 0.16631 \times 10^{-2}$	P1=8.0			
		$A6 = -0.12138 \times 10^{-3}$	P1=10.0			

【0244】なお、表25中の第2非球面の「d2= 2. 1996」及び「d4=2. 2003」とは、それ ぞれ第2分割面及び第4分割面(共に第2非球面)の形 状を非球面形状式に従って光軸まで延長したときの光軸 との交点と、第3面との光軸上の間隔を表している。こ れは、第2分割面を光軸方向に d 2だけずらし、また、 第4分割面を光軸方向にd4だけずらすことにより位相 40 は、NALおよびNAHの開口数、球面収差の発生量、 差を設け、集光光量(ピーク強度)を上げるようにして いる。また、表24のn i'は、第2光源(λ2=78 Onm) における屈折率を示している。

【0245】また、図36(a)にDVD再生時の球面

収差図を、図36(b)にCD-R再生時の球面収差図 を示している。また、図37(a)にDVD再生時の最 良波面収差が得られる位置にデフォーカスした状態でみ たときの波面収差図を、図37(b)にCD-R再生時 の最良波面収差が得られる位置にデフォーカスした状態 でみたときの波面収差図を示している。また、表26に 法線と光軸とのなす角度、法線と、各条件の値を示す。

[0246] 【表26】

77

	• • • • • • • • • • • • • • • • • • • •			
高さ	DVD時		C D-	B時
н	開口数	球面収差(mm)	開口数	球面収差(mm)
1.481	NAL(1)=0.4406	0.48121×10 ⁻³	NAL(1)=0.4370	0.26737×10^{-1}
	NAL(2)=0.4430	-0.17794×10 ⁻¹	NAL(2)=0.4393	0.85936×10^{-2}
1.549	NAH(2)=0.4636	-0.19550×10^{-1}	NAH(2)=0.4598	0.96802×10^{-2}
	NAH(3)=0.4608	0.60932×10^{-3}	NAH(3)=0.4571	0.29652×10^{-1}
1.700	NAL(3)=0.5059	0.39402×10 ⁻³	NAL(3)=0.5018	0.36389×10^{-1}
	NAL(4)=0.5096	-0.24648×10^{-1}	NAL(4)=0.5055	0.11708×10 ⁻¹
1.784	NAH(4)=0.5354	-0.28114×10^{-1}	NAH(4)=0.5312	0.12771×10^{-1}
	NAH(5)=0.5310	0.13146×10 ⁻³	NAH(5)=0.5268	0.40512×10^{-1}
	CONAD-D COVO	EO-0 200		

 $0.60NA2=0.60\times0.50=0.300$

1.1NA2=1.1×0.50=0.550

NAH(4)-NAL(2)=0.5312-0.4393=0.0919

 $-2(\lambda 2)/(NA2)^2 = -2 \times 780$ nm/ $(0.50)^2 = -6.24 \mu$ m

 $5(\lambda 2)/(NA2)^2 = 5 \times 780 \text{ nm}/(0.50)^2 = 15.6 \ \mu \text{ m}$

H2mid=(1.481+1.549)/2=1.515

⊕ 2,mld=39.62807°

Δ θ 2,mid=θ 1,3,mid-θ 2mid=39.62807-39.41130=0.21677°

H4mid=(1.700+1.784)/2=1.742

⊕ 3,5,mid=44.62556°

⊕ 4,mid=44.94902°

∆ ⊖ 4,mid=⊖ 3,5,mid-⊖ 4mld=44.94902-44.62556=0.32346°

【0247】また、図38にDVD再生時の最良のスポット形状が得られたときの集光スポットの相対強度分布図を示し、図39にCD-R再生時に最良のスポット形状が得られたときの集光スポットの相対強度分布図を示す。

【0248】 さらに、この実施の形態の対物レンズは、 1つの光源(光源の波長 $\lambda 1 = 635$ nm)を用いた光 ピックアップ装置10に搭載しても、DVDのみならず 30

CDの再生が可能であった。このときのCD再生時に最良のスポット形状が得られたときの集光スポットの相対強度分布図を図40に示す。また、この場合の、NAL およびNAHの開口数、球面収差の発生量、法線と光軸とのなす角度、法線と、各条件の値を表27に示す。

[0249]

【表27】

高さ	DVD時		CD再生時	
н	開口数	球面収差(mm)	開口数	球面収差(mm)
1.481	NAL(1)=0.4406	0.48121×10 ⁻³	NAL(1)=0.4406	0.25244×10^{-1}
	NAL(2)=0.4430	-0.17794×10^{-1}	NAL(2)=0.4430	0.72688×10^{-2}
1.549	NAH(2)=0.4636	-0.19550×10^{-1}	NAH(2)=0.4636	0.82274×10^{-2}
	NAH(3)=0.4608	0.60932×10^{-3}	NAH(3)=0.4608	0.28016×10 ⁻¹
1.700	NAL(3)=0.5059	0.39402×10^{-3}	NAL(3)=0.5059	0.34375×10 ⁻¹
	NAL(4)=0.5096	-0.24648×10^{-1}	NAL(4)=0.5096	0.99201×10^{-2}
1.784	NAH(4)=0.5354		NAH(4)=0.5354	0.10737×10^{-1}
	NAH(5)=0.5310	0.13146×10^{-3}	NAH(5)=0.5310	0.38227×10^{-1}

 $0.60NA2=0.60\times0.366=0.220$

 $1.3NA2=1.3\times0.366=0.476$

NAH(4)-NAL(2)=0.5354-0.4430=0.0924

 $-2(\lambda^2)/(NA2)^2 = -2 \times 635 \text{ nm}/(0.366)^2 = -9.48 \ \mu \text{ m}$

 $5(\lambda 2)/(NA2)^2 = 5 \times 635 \text{ nm}/(0.366)^2 = 23.7 \ \mu \text{ m}$

H2mid=(1.481+1.549)/2=1.515

⊕ 1,3,mid=39.41130°

⊕ 2,mid=39.62807°

Δ Θ 2,mid=Θ 1,3,mid-Θ 2mid=39.62807-39.41130=0.21677°

H4mid=(1.700+1.784)/2=1.742

⊖ 3,5,mld=44.62556

⊕ 4,mld=44.94902°

Δ Θ 4,mid=Θ 3,5,mid-Θ 4mid=44.94902-44.62556=0.32346°

【0250】 (実施例8) 実施例8は、上述した第3の 実施の形態の2つの光源(第1光源の波長 λ 1=635 nm、第2光源の波長 λ 2=780 nm)を用いた光ピックアップ装置10に搭載する対物レンズ16であって、第1分割面5 d 1~第3分割面5 d 3の境界に段差

を設けた対物レンズ16に本発明を適用した例である。 【0251】表28および表29に対物レンズの光学データを示す。

[0252]

【表28】

波長			635nm	780nm	
_	短離		3.36mm	3.39mm	
紋り	〕経		φ 4.04mm		
対物	カレンズの横	倍率	 	()
i	ri	di	di	ni	ni´
1	∞	0.000		1.0	1.0
2	2.114	2.200		1.5383	1.5337
3	-7.963	1.757	1.401	1.0	1.0
4	00	0.600	1.200	1.58	1.58
5	∞				

【表29】

[0253]

非球面デー	タ		
第2面	第 1	0≦H<1.279	(第1分割面)
(屈折面)	非球面	1.532≦H	(第3分割面)
		$\kappa = -0.97700$	
		$A1 = 0.63761 \times 10^{-3}$	P1=3.0
		$A2 = 0.36688 \times 10^{-3}$	P1=4.0
		A3= 0.83511×10 ⁻²	P1=5.0
		$A4 = -0.37296 \times 10^{-2}$	P1=6.0
		$A5 = 0.46548 \times 10^{-3}$	P1=8.0
		A6=-0.43124×10 ⁻⁴	P1=10.0
	第 2	1.279≦H<1.532	(第2分割面)
	非球面	d2=2.19	95
		$\kappa = -0.11481 \times 10^{-1}$	
		$A1 = 0.70764 \times 10^{-2}$	P1=3.0
		$A2 = 0.13388 \times 10^{-1}$	P1=4.0
		$A3 = 0.24084 \times 10^{-1}$	P1≂5.0
		$A4=-0.97636\times10^{-2}$	P1=6.0
		$A5 = 0.93136 \times 10^{-3}$	P1=8.0
		$A6 = -0.68008 \times 10^{-4}$	P1=10.0
第 3	面	$\kappa = -0.24914 \times 10^{+2}$	
(屈折	面)	A1= 0.13775×10 ⁻²	P1=3.0
		$A2 = -0.41269 \times 10^{-2}$	P1=4.0
		$A3 = 0.21236 \times 10^{-1}$	P1=5.0
		$A4=-0.13895\times10^{-1}$	P1=6.0
		$A5 = 0.16631 \times 10^{-2}$	P1=8.0
		$A6 = -0.12138 \times 10^{-3}$	P1=10.0

【0254】なお、表29中の第2非球面の「d2=2.1995」とは、第2非球面(第2分割面)の形状を非球面形状式に従って光軸まで延長したときの光軸との交点と、第3面との光軸上の間隔を表している。また、表28のni'は、第2光源(λ2=780nm)における屈折率を示している。

【0255】また、図41 (a) にDVD再生時の球面 収差図を、図41 (b) にCD再生時の球面収差図を示 している。また、図42 (a) にDVD再生時の最良波 面収差が得られる位置にデフォーカスした状態でみたときの波面収差図を、図42(b)にCD再生時の最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図を示している。また、表30には、NALおよびNAHの開口数、球面収差の発生量、法線と光軸とのなす角度、法線と、各条件の値を示す。

[0256]

【表30】

	83			
高さ	DVD時		C D-	R時
н	開口数	球面収差(mm)	開口数	球面収差(mm)
1.279	NAL(1)=0.3806	-0.35533×10^{-3}	NAL(1)=0.3775	0.18675×10^{-1}
	NAL(2)=0.3821	-0.13685×10 ⁻¹	NAL(2)=0.3790	0.53763×10^{-2}
1.532	NAH(2)=0.4584	-0.19077×10^{-1}	NAH(2)=0.4547	0.94234×10^{-2}
·	NAH(3)=0.4558	0.59045×10^{-3}	NAH(3)=0.4521	0.28918×10 ⁻¹

 $0.60NA2=0.60\times0.45=0.270$

 $1.1NA2=1.1\times0.45=0.495$

NAH-NAL=0.4547-0.3790=0.0757

 $-2(\lambda 2)/(NA2)^2 = -2 \times 780$ nm/ $(0.45)^2 = -7.70 \mu$ m

 $5(\lambda 2)/(NA2)^2 = 5 \times 780 \text{ nm}/(0.45)^2 = 19.26 \ \mu \text{ m}$

H2mid= (1.279+1.532)/2=1.406

⊖ 1,3,mid=36.78417°

⊕ 2,mid=36.96074°

Δ Θ mid=36.96074-36.78417=0.17657°

【0257】また、図43にDVD再生時の最良のスポ ット形状が得られたときの集光スポットの相対強度分布 図を示し、図44にCD再生時に最良のスポット形状が 得られたときの集光スポットの相対強度分布図を示す。 【0258】さらに、この実施の形態の対物レンズは、 1つの光源(光源の波長λ1=635nm)を用いた光 ピックアップ装置10に搭載しても、DVDのみならず

CDの再生が可能であった。このときのCD再生時に最 良のスポット形状が得られたときの集光スポットの相対 強度分布図を図45に示す。また、この場合の、NAL およびNAHの開口数、球面収差の発生量、法線と光軸 20 とのなす角度、法線と、各条件の値を表31に示す。

[0259]

【表31】

厚10㎏	-拾載しても、DVI	JU)みならす	【衣31】		
高さ	DVD時(λ=635(nm))		C D 時 (λ=635(nm))		
н	開口数	球面収差(mm)	開口数	球面収差(mm)	
1.279	NAL(1)=0.3806	-0.35533×10^{-3}	NAL(1)=0.3806	0.17571×10^{-1}	
	NAL(2)=0.3821	-0.13685×10^{-1}	NAL(2)=0.3820	0.43934×10^{-2}	
1.532	NAH(2)=0.4584	-0.19077×10 ⁻¹	NAH(2)=0.4584	0.80030×10 ⁻²	
	NAH(3)=0.4558	0.59045×10^{-3}	NAH(3)=0.4558	0.27319×10^{-1}	
C	.60NA2=0.60×0.	366=0.220			
1	.3NA2=1.3×0.36	6=0.476			
١ ١	JAH-NAL=0.4584	-0.3820=0.0764			

 $-2(\lambda 2)/(NA2)^2 = -2 \times 635$ nm/ $(0.366)^2 = -9.48 \mu$ m

 $5(\lambda 2)/(NA2)^2 = 5 \times 635 \text{ nm}/(0.366)^2 = 23.7 \ \mu \text{ m}$

H2mid= (1.279+1.532)/2=1.406

9 1,3,mid=36.78417°

② 2, mid=36.96074[®]

Δ Θ mid=36.96074-36.78417=0.17657°

【0260】 (実施例9) 実施例9は、上述した第3の 実施の形態の2つの光源(第1光源の波長λ1=635 nm、第2光源の波長 \(\lambda\) 2 = 780 nm) を用いた光ピ 40 一タを示す。 ックアップ装置10に搭載する対物レンズ16であっ て、第1分割面Sd1~第3分割面Sd3の境界に段差

を設けた対物レンズ16に本発明を適用した例である。 【0261】表32および表33に対物レンズの光学デ

[0262]

【表32】

১১					00
波長	ŧλ			635nm	780nm
焦点	距離		3.36mm 3.39mm		
紋り	校り経 φ 4.04mm				
対物	リレンズの様	倍率)
i	ri	di	di -	ni	ni
1	8	0.0000		1.0	1.0
2	2.117	2.2000		1.5383	1.5337
3	-7.903	1.7580	1.3890	1.0	1.0
4	∞	0.6000	1.2000	1.58	1.58
_	~			1	

[0263]

【表33】

非球面データ					
第2面	第 1	0≦H<1.270	(第1分割面)		
(屈折面)	非球面	1.520≦H	(第3分割面)		
1		$\kappa = -0.97770$			
		$A1 = -0.36792 \times 10^{-2}$	P1=3.0		
			P2=4.0		
:			P3=5.0		
			P4=6.0		
			P5=7.0		
ŀ			P6=8.0		
į.		A7=-0.11776×10 ⁻³	P7=10.0		
	第 2	1.270≦H<1.520	(第2分割面)		
	非球面	d2=2.20	0		
		$\kappa = -0.96728 \times 10^{+0}$			
		$A1 = -0.44081 \times 10^{-2}$	P1=3.0		
İ		$A2 = 0.21265 \times 10^{-1}$	P2=4.0		
		$A3 = -0.24757 \times 10^{-1}$	P3=5.0		
]	$A4 = 0.24042 \times 10^{-1}$	P4=6.0		
		$A5 = -0.12826 \times 10^{-1}$	P5=7.0		
		$A6 = 0.32570 \times 10^{-2}$	P6=8.0		
	<u> </u>	$A7 = -0.11713 \times 10^{-3}$	P7=10.0		
第 3	面	$\kappa = -0.19532 \times 10^{+2}$			
(屈折	f面)	$A1 = 0.25586 \times 10^{-4}$	P1=3.0		
		$A2 = 0.22177 \times 10^{-1}$	P2=4.0		
		$A3 = -0.32988 \times 10^{-1}$	P3=5.0		
		$A4 = 0.32771 \times 10^{-1}$	P4=6.0		
		$A5 = -0.17803 \times 10^{-1}$	P5=7.0		
		$A6 = 0.40149 \times 10^{-2}$	P6=8.0		
		$A7 = -0.92804 \times 10^{-4}$	P7=10.0		

【0265】また、図46 (a) にDVD再生時の球面 収差図を、図46 (b) にCD再生時の球面収差図を示 している。また、図47 (a) にDVD再生時の最良波 *50* 面収差が得られる位置にデフォーカスした状態でみたときの波面収差図を、図47(b)にCD再生時の最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図を示している。また、表34には、NALおよびNAHの開口数、球面収差の発生量、法線と光軸とのなす角度、法線と、各条件の値を示す。

[0266]

【表34】

87					
高さ	DVD時		CD-R 時		
н	開口数	球面収差(mm)	開口数	球面収差(mm)	
1.270	NAL(1)=0.3780	-0.29200×10^{-3}	NAL(1)=0.3748	0.15633×10^{-1}	
	NAL(2)=0.3789	-0.11676×10 ⁻¹	NAL(2)=0.3758	0.68900×10^{-2}	
1.520	NAH(2)=0.4546	-0.20034×10^{-1}	NAH(2)=0.4508	0.77675×10^{-2}	
	NAH/3)-0 4523	-0.24165×10^{-2}	NAH(3)=0.4485	0.25251×10^{-1}	

 $0.60NA2=0.60\times0.45=0.270$

 $1.1NA2=1.1\times0.45=0.495$

NAH-NAL=0.4508-0.3758=0.0750

 $-2(\lambda 2)/(NA2)^2 = -2 \times 780 \text{ nm}/(0.45)^2 = -7.70 \ \mu \text{ m}$

 $5(\lambda 2)/(NA2)^2 = 5 \times 780 \text{ nm}/(0.45)^2 = 19.26 \ \mu \text{ m}$

H2mld= (1.270+1.520)/2=1.395

⊕ 1,3,mid=36.54832°

⊕ 2,mid=36.68357°

Δ Θ mld=36.68357-36.54832=0.13525°

【0267】 また、図48にDVD再生時の最良のスポ ット形状が得られたときの集光スポットの相対強度分布 図を示し、図49にCD再生時に最良のスポット形状が 得られたときの集光スポットの相対強度分布図を示す。

【0268】さらに、この実施の形態の対物レンズは、 1つの光源(光源の波長 λ 1 = 6 3 5 nm)を用いた光 ピックアップ装置10に搭載してす

CDの再生が可能であった。このときのCD再生時に最 良のスポット形状が得られたときの集光スポットの相対 強度分布図を図50に示す。また、この場合の、NAL およびNAHの開口数、球面収差の発生量、法線と光軸 20 とのなす角度、法線と、各条件の値を表35に示す。

[0269]

[表35]

置100	□搭載しても、DVI)のみならす 	【衣ろり】					
高さ	DVD時		CD時(λ635(nm))					
Н	開口数	球面収差(mm)	開口数	球面収差(mm)				
1.270	NAL(1)=0.3780	-0.29200×10^{-3}	NAL(1)=0.3780	0.14740×10 ⁻¹				
	NAL(2)=0.3789		NAL(2)=0.3789	0.60778×10^{-2}				
1.520	NAH(2)=0.4546	-0.20034×10^{-1}	NAH(2)=0.4546	0.65378×10 ⁻²				
	NAH(3)=0.4523	-0.24165×10^{-2}	NAH(3)=0.4523	0.23856×10^{-1}				
(0.60NA2=0.60×0.366=0.220							
1	1.3NA2=1.3×0.366=0.476							
1	NAH-NAL=0.4546-0.3789=0.0757							

 $-2(\lambda 2)/(NA2)^2=-2\times635$ nm/(0.366) $^2=-9.48 \mu$ m

 $5(\lambda 2)/(NA2)^2 = 5 \times 635 \text{nm}/(0.366)^2 = 23.7 \ \mu \text{ m}$

H2mid= (1.270+1.520)/2=1.395

⊕ 1,3,mid=36.54832°

9 2,mid=36.68357°

Δ Θ mid=36.68357-36.54832=0.13525°

【0270】 (実施例10) 実施例10は、上述した第 3の実施の形態の2つの光源(第1光源の波長λ1=6 35nm、第2光源の波長 \(\lambda\) 2=780nm) を用いた 40 一夕を示す。 光ピックアップ装置10に搭載する対物レンズ16であ って、第1分割面Sd1~第3分割面Sd3の境界に段 差を設けた対物レンズ16に本発明を適用した例であ

【0271】表36および表37に対物レンズの光学デ

[0272]

【表36】

波	長入		635nm	780nm		
焦,	点距離		3.36mm	3.39mm		
紋り径				φ 4.04mm		
対	物レンズの)横倍率		()	
i	ri	d١	dl'	ni ni'		
1	∞	0.000		1.0	1.0	
2	2.114	2.200		1.5383	1.5337	
3	-7.963	1.757	1.401	1.0	1.0	
4	∞	0.600	1.200	1.58	1.58	
_						

[0273]

【表37】

非球面データ					
第2面	第1	0≦H<1.111	(第1分割面)		
(屈折面)	非球面	1.481≦H	(第3分割面)		
($\kappa = -0.97700$	(33 - 33 - 33 - 34 - 34 - 34 - 34 - 34 -		
		$A1 = 0.63761 \times 10^{-3}$	P1=3.0		
		A2= 0.36688×10 ⁻³	P1=4.0		
		$A3 = 0.83511 \times 10^{-2}$	P1=5.0		
		A4=-0.37296×10 ⁻²	P1=6.0		
		A5= 0.46548×10 ⁻³	P1=8.0		
		$A6 = -0.43124 \times 10^{-4}$	P1=10.0		
1	第 2	1.111≦H<1.481	(第2分割面)		
	非球面	d2=2.1995			
		$\kappa = -0.11481 \times 10^{+1}$			
		$A1 = 0.70764 \times 10^{-2}$	P1=3.0		
		A2=-0.13388×10 ⁻¹	P1=4.0		
		$A3 = 0.24084 \times 10^{-1}$	P1=5.0		
		$A4 = -0.97636 \times 10^{-2}$	P1=6.0		
		$A5 = 0.93136 \times 10^{-3}$	P1=8.0		
		$A6 = -0.68008 \times 10^{-4}$	P1=10.0		
第 3	面	$\kappa = -0.24914 \times 10^{+2}$			
(屈折	面)	$A1 = 0.13775 \times 10^{-2}$	P1=3.0		
į		A2=-0.41269×10 ⁻²	P1=4.0		
		A3= 0.21236×10 ⁻¹	P1=5.0		
		$A4 = -0.13895 \times 10^{-1}$	P1=6.0		
		$A5 = 0.16631 \times 10^{-2}$	P1=8.0		
		$A6 = -0.12138 \times 10^{-3}$	P1=10.0		

【0274】なお、表37中の第2非球面の「d2=2.1995」とは、第2非球面(第2分割面)の形状を非球面形状式に従って光軸まで延長したときの光軸との交点と、第3面との光軸上の間隔を表している。また、表36のn i' は、第2光源(λ 2=780 n m)における屈折率を示している。

【0275】また、図51 (a) にDVD再生時の球面 収差図を、図51 (b) にCD再生時の球面収差図を示 *50*

している。また、図52(a)にDVD再生時の最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図を、図52(b)にCD再生時の最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図を示している。また、表38には、NALおよびNAHの開口数、球面収差の発生量、法線と光軸とのなす角度、法線と、各条件の値を示す。

50 [0276]

【表38】

高さ	DVD時		CD時(<i>λ</i> =780(nm))					
н	開口数	球面収差(mm)	開口数	球面収差(mm)				
1.111	NAL(1)=0.3307	-0.65069×10^{-3}	NAL(1)=0.3280	0.13417×10^{-1}				
	NAL(2)=0.3317	-0.10281×10^{-1}	NAL(2)=0.3289	0.37802×10^{-2}				
1.481	NAH(2)=0.4430	-0.17788×10^{-1}	NAH(2)=0.4393	0.86005×10^{-2}				
	NAH(3)=0.4406	0.48121×10^{-3}	NAH(3)=0.4370	0.26737×10 ⁻¹				
-	0.60NA2=0.60×0.45=0.270 1.1NA2=1.1×0.45=0.495							
NAH-NAL=0.4393-0.3289=0.1104 -2 $\lambda/(NA2)^2$ =-2×780nm/(0.45) =-7.70 μ m								
$5 \lambda/(NA2)^2 = 5 \times 780 \text{ nm}/(0.45)^2 = 19.26 \mu \text{ m}$								
H2mid= (1.111+1.481)/2=1.296								
ϵ	1,3,mid=34.0763	⊖ 1,3,mid=34.07635°						

【0277】また、図53にDVD再生時の最良のスポ ット形状が得られたときの集光スポットの相対強度分布 図を示し、図54にCD再生時に最良のスポット形状が 得られたときの集光スポットの相対強度分布図を示す。 【0278】さらに、この実施の形態の対物レンズは、 1つの光源(光源の波長 λ 1 = 6 3 5 n m)を用いた光 ピックアップ装置10に搭載しても、DVDのみならず

⊕ 2,mid=34.21711°

 $\Delta \Theta \text{ mld}=34.21711-34.07635=0.14076}$

CDの再生が可能であった。このときのCD再生時に最 良のスポット形状が得られたときの集光スポットの相対 強度分布図を図55に示す。また、この場合の、NAL 20 およびNAHの開口数、球面収差の発生量、法線と光軸 とのなす角度、法線と、各条件の値を表39に示す。

[0279]

【表39】

E10(c),4x,0 (0, D + D + D + D + D + D + D + D + D + D						
高さ	DVD時		CD時(λ =635nm))			
н	開口数	球面収差(mm)	開口数	球面収差(mm)		
1.111	NAL(1)=0.3307	-0.65069×10^{-3}	NAL(1)=0.3307	0.12601×10 ⁻¹		
	NAL(2)=0.3317	-0.10281×10^{-1}	NAL(2)=0.3317	0.30498×10^{-2}		
1.481	NAH(2)=0.4430	-0.17788×10^{-1}	NAH(2)=0.4430	0.72752×10^{-2}		
	NAH(3)=0.4406	0.48121×10^{-3}	NAH(3)=0.4406	0.25244×10 ⁻¹		
0.60NA2=0.60×0.366=0.220						
1	$.1NA2=1.1\times0.36$	6=0.476				
NAH-NAL=0.4430-0.3317=0.1113						
$-2 \lambda/(NA2)^2 = -2 \times 635 \text{nm}/(0.366)^2 = -9.48 \mu \text{ m}$						
5	$\lambda/(NA2)^2 = 5 \times 635$	5nm/(0.366) ² =23.	7 μ m			
	2mid= (1.111+1.4		•			

【0280】以上、実施例1~実施例10によると、透 明基板の厚さが異なる2つの光ディスクを、1つの集光 40 光学系 (そのうち1つの対物レンズ) 共に良好に再生す ることができた。また、記録に際しても何ら問題はな い。特に、実施例2、4~10においては、2つの光源 を用いて第1光ディスクとしてDVDの再生とともに、 第2光ディスクとしてCD-Rの再生(光源の波長が7 80 nmを必須とする)ができた。さらに、この実施例 2、4~10においては、1つの光源を用いて、DVD およびCDの再生も良好にできた。さらに、実施例5~ 7においては、第2光ディスクとして必要開口数がNA =0.5という高NAまで対応でき、CD-Rの記録に 50

⊕ 1,3,mid=34.07635 ⊕ 2,mid=34.21711

∆ ⊖ mid=34.21711-34.07635=0.14076°

も十分に使用できた。

【0281】また、実施例1~10のうち実施例1、 3、8~10においては、透明基板の厚さが1.2mm の第2光ディスクの再生信号が特に良好であった。これ は、表40に示すように、この実施例1、3、8~10 においては、第1分割面を通過した光束による最良波面 収差 (第1分割面内波面収差量という) が、回折限界性 能である0.07λを満たすためである。

[0282]

【表40】

光情報記録媒体の透明基板厚 1.2(mm) 光源波長 λ=635(nm) 実施例 No. 第1分割面内波面収差量 $0.063(\lambda rms)$ 1. 2. 0.063(\(\lambda\)rms) 3. 0.090(\(\lambda\rms\r) 4. 5. 0.126(\(\lambda\rms\r) 6. 7. 8. 0.047(λrms) 9. 0.025(λrms) 10. 光情報記録媒体の透明基板厚 1.2(mm) 光源波長 λ=780(nm) 第1分割面内波面収差量 実施例 No. 2. 0.078(λrms) 4. 5. 0.108(\(\lambda\)rms) 6. 0.108(λrms) 7. 8. 9. 0.040(\(\lambda\)rms) 0.022(λrms) 10.

【0283】なお、表40において、上段の表は光源の 被長 λ が635nmで透明基板の厚さが1.2mmの第2光ディスクを再生する場合の第1分割面内波面収差量を示しているが、実施例2、4~10においては2光源

を用いる実施例であるため、下段の表に光源の波長 2 が 7 8 0 nmで透明基板の厚さが 1.2 mmの第 2 光ディスクを再生する場合の第 1 分割面内波面収差量を示している

【0284】また、上述した実施例1~10において、 nを自然数とすると、第(2n-1)分割面(例えば、 第1分割面Sd1又は第3分割面)を透過しDVDの透 明基板を介した光と、第2n分割面(例えば、第2分割 面Sd2又は第4分割面Sd4)のほぼ中央位置より光 10 軸側の第2n分割面(例えば、第2分割面Sd2又は第 4分割面Sd4)を透過しDVDの透明基板を介した光 と、の位相差である ($\Delta n L$) π (例えば、($\Delta 1 L$) π 又は(Δ 2L) π) (rad)、及び、第(2n+ 1) 分割面(例えば、第3分割面Sd3又は第5分割面 Sd5)を透過しDVDの透明基板を介した光と、前記 中央位置より光軸側とは反対側の第2n分割面(例え ば、第2分割面Sd2又は第4分割面Sd4)を透過し DVDの透明基板を介した光と、の位相差である(Δn H) π (例えば、(Δ 1H) π 又は(Δ 2H) π) (r 20 a d) の値を、表41に示す。なお、この場合、位相差 の符号は、光の進行方向(光ディスクへ向かう方向)を 正とし、第(2n-1) 分割面あるいは第(2n+1) 分割面を透過しDVDの透明基板を介した光に対する第 2n分割面を透過しDVDの透明基板を介した光の位相 差を比較する。

【0285】 【表41】

光情報記録媒体の透明基板厚 0.6(mm)								
	光源波長 λ = 635(nm)							
実施例 No.	(Δ1H)π (rad)	(Δ1L)π (rad)	(Δ2H)π (rad)	(Δ2L)π (rad)				
1.	1.64 π	1.19 π	-	_				
2.	4.67 π	3.36 π	_	-				
3.	0.53 π	0.00 π	-	_				
4.	4.24 π	3.46 π	_	_				
5.	6.27 π	3.93 π	_	_				
6.	3.93 π	3.35 π	6.76 π	5.80 n				
7.	4.23 π	3.65 π	6.33 π	5.36 π				
8.	4.39 π	2.83 π	-	_				
9.	1.50 π	0.33 π		_				
10.	3.86 π	2.17 π		_				

【0286】この表から明らかなように、実施例 $1\sim 1$ 0の全てにおいて、 $(\Delta n H) > (\Delta n L)$ を満足す る。なお、表41における値は、各分割面 $Sd1\sim Sd$ 3(あるいはSd5)間の境界部における、各分割面に 入射する光束での位相差を示している。

[0287]

【発明の効果】以上詳述したように、本発明においては、1つの集光光学系で複数の光情報記録媒体の記録/ 50

再生ができ、低コストかつ複雑化しないで実現でき、さらに、高NAの光情報記録媒体にも対応できる。さらに、本発明では、球面収差の発生を積極的に利用し、複数の光情報記録媒体の記録/再生を1つの集光光学系で行うことができる。

【図面の簡単な説明】

【図1】 光ピックアップ装置の概略構成図である。

【図2】対物レンズを模式的に示した断面図 (a) 及び

光源側から見た正面図(b)である。

【図3】対物レンズを模式的に示した断面図である。

【図4】対物レンズの球面収差図を模式的に示した図である。

【図5】対物レンズの波面収差図を模式的に示した図である。

【図6】第3の実施の形態の光ピックアップ装置の概略構成図である。

【図7】第4の実施の形態の対物レンズを模式的に示した断面図(a)及び光源側から見た正面図(b)である。

【図8】実施例1の対物レンズの収差図である。

【図9】実施例1の対物レンズを最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図である。

【図10】実施例1の対物レンズでDVD再生時の最良のスポット形状が得られたときの集光スポットの相対強度分布図である。

【図11】実施例1のCD再生時に最良のスポット形状 が得られたときの集光スポットの相対強度分布図を示 す。

【図12】実施例2の対物レンズの収差図である。

【図13】実施例2の対物レンズを最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図である。

【図14】実施例2の対物レンズでDVD再生時の最良のスポット形状が得られたときの集光スポットの相対強度分布図である。

【図15】実施例2のCD再生時に最良のスポット形状が得られたときの集光スポットの相対強度分布図を示す。

【図16】実施例2の対物レンズで波長635nmでC D再生時に最良のスポット形状が得られたときの集光スポットの相対強度分布図を示す。

【図17】 実施例3の対物レンズの収差図である。

【図18】実施例3の対物レンズを最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差 図である。

【図19】実施例3の対物レンズでDVD再生時の最良のスポット形状が得られたときの集光スポットの相対強度分布図である。

【図20】実施例3のCD再生時に最良のスポット形状 が得られたときの集光スポットの相対強度分布図を示 す。

【図21】実施例4の対物レンズの収差図である。

【図22】実施例4の対物レンズを最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図である。

【図23】実施例4の対物レンズでDVD再生時の最良 れる位置しのスポット形状が得られたときの集光スポットの相対強 50 図である。

度分布図である。

【図24】実施例4のCD再生時に最良のスポット形状が得られたときの集光スポットの相対強度分布図を示す。

【図25】実施例4の対物レンズで波長635nmでC D再生時に最良のスポット形状が得られたときの集光スポットの相対強度分布図を示す。

【図26】実施例5の対物レンズの収差図である。

【図27】実施例5の対物レンズを最良波面収差が得ら 10 れる位置にデフォーカスした状態でみたときの波面収差 図である。

【図28】実施例5の対物レンズでDVD再生時の最良のスポット形状が得られたときの集光スポットの相対強度分布図である。

【図29】実施例5のCD-R再生時に最良のスポット 形状が得られたときの集光スポットの相対強度分布図を 示す。

【図30】実施例5の対物レンズで波長635nmでC D再生時に最良のスポット形状が得られたときの集光ス 20 ポットの相対強度分布図を示す。

【図31】実施例6の対物レンズの収差図である。

【図32】実施例6の対物レンズを最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図である。

【図33】実施例6の対物レンズでDVD再生時の最良のスポット形状が得られたときの集光スポットの相対強度分布図である。

【図34】実施例6のCD-R再生時に最良のスポット 形状が得られたときの集光スポットの相対強度分布図を 30 示す。

【図35】実施例6の対物レンズで波長635nmでC D再生時に最良のスポット形状が得られたときの集光スポットの相対強度分布図を示す。

【図36】実施例7の対物レンズの収差図である。

【図37】実施例7の対物レンズを最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図である。

【図38】実施例7の対物レンズでDVD再生時の最良のスポット形状が得られたときの集光スポットの相対強40 度分布図である。

【図39】実施例7のCD-R再生時に最良のスポット 形状が得られたときの集光スポットの相対強度分布図を 示す。

【図40】実施例7の対物レンズで波長635nmでC D再生時に最良のスポット形状が得られたときの集光スポットの相対強度分布図を示す。

【図41】実施例8の対物レンズの収差図である。

【図42】実施例8の対物レンズを最良波面収差が得られる位置にデフォーカスした状態でみたときの波面収差図である。

96

【図43】実施例8の対物レンズでDVD再生時の最良 のスポット形状が得られたときの集光スポットの相対強 度分布図である。

・【図44】実施例8のCD再生時に最良のスポット形状 が得られたときの集光スポットの相対強度分布図を示 す。

【図45】実施例8の対物レンズで波長635nmでC D再生時に最良のスポット形状が得られたときの集光ス ポットの相対強度分布図を示す。

【図46】実施例9の対物レンズの収差図である。

【図47】実施例9の対物レンズを最良波面収差が得ら れる位置にデフォーカスした状態でみたときの波面収差 図である。

【図48】実施例9の対物レンズでDVD再生時の最良 のスポット形状が得られたときの集光スポットの相対強 度分布図である。

【図49】実施例9のCD再生時に最良のスポット形状 が得られたときの集光スポットの相対強度分布図を示 す。

【図50】実施例9の対物レンズで波長635nmでC 20 22 情報記録面 D再生時に最良のスポット形状が得られたときの集光ス ポットの相対強度分布図を示す。

【図51】実施例10の対物レンズの収差図である。

【図52】実施例10の対物レンズを最良波面収差が得

られる位置にデフォーカスした状態でみたときの波面収 差図である。

【図53】実施例10の対物レンズでDVD再生時の最 良のスポット形状が得られたときの集光スポットの相対 強度分布図である。

【図54】実施例10のCD再生時に最良のスポット形 状が得られたときの集光スポットの相対強度分布図を示 す。

【図55】実施例10の対物レンズで波長635nmで 10 CD再生時に最良のスポット形状が得られたときの集光 スポットの相対強度分布図を示す。

【符号の説明】

10 光ピックアップ装置

11 半導体レーザ (光源)

13 コリメータレンズ

16 対物レンズ

17 絞り

20 光情報記録媒体(光ディスク)

21 透明基板

S1, S2 屈折面

Sd1~Sd5 分割面

111 第1光源(第1半導体レーザ)

112 第2光源(第2半導体レーザ)

[図1]

【図6】

球面収瑳

球面収差

【図18】

【図20】

【図22】

【図23】

[図25]

【図27】

【図28】

}

)

20(μm)

球面収差

20(µm)

-20

球面収差

【図34】

[図35]

【図37】

【図39】

【図41】

[図42]

【図43】

【図45】

[図48]

【図47】

【図49】

【図51】

0.2

0.1 detocus = $\pm 9.7 \, (\mu \, \text{m})$ 0.3

0.5 NA

0.6

0.4

1.0 - 0.5 - 1.0 - 2.0

0.0

半径方向 (μm)

