Concavity

MTH 201 - Module 3B

Retrieval practice

The graph of a function f(x) is shown. The *derivative* of f(x) (that is, f'(x)) is positive on the interval

f'(x) > 0 means f(x) is increasing f'(x) < 0 means f(x) is decreasing f'(x) = 0 means... we'll discuss later

The graph of a function f(x) is shown. The function is $\it concave\ up$ on the interval

$$(1,\infty)$$

$$(-0.8,\infty)$$

$$(0.5,\infty)$$

$$(-\infty,0)\cup(1,\infty)$$

None of the above

What is concavity?

In both cases: Tangent line slopes are increasing

In both cases: Tangent line slopes are decreasing

Activity: Sorting out f, f', and f" → Desmos

"The function
is increasing
because it's
positive"...
"It's negative,
so it's concave down"

"The function
is increasing because
its derivative is positive"...
"The second derivative
f"(x) is negative,
so f(x) is concave down"

Feedback:

http://gvsu.edu/s/1zJ