

VLADIMIR.ALEXIEV@ONTOTEXT.COM

DBPEDIA MEETING, 2016-09-15, LEIPZIG, GERMANY

2D presentation: O for overview, H for help.

Made in plain text with reveal.js, org-reveal, org-mode, emacs, rdfpuml.

Or use normal continuous HTML

TABLE OF CONTENTS

- FP7 Multisensor
 - Scope
 - Linguistic Linked Data
- Text Annotation (Article and ASR Transcript)
 Media Annotation: Image, Fusion to Text Annotation
 - Media Annotation: Video Frame
- Social Media: Influence
- Decision Support: Trade
 - Decision Support: Distance
- FrameNet Annotation
 - Real FN Data (Part 1)
 - Real FN Data (Part 2)
- Data Quality
 - QualityAnnotation (Right) vs QualityMeasurement (Wrong)
 - RDFUnit Validation
- Content Alignment
 - Content Translation
- rdfpuml

FP7 MULTISENSOR

Partners:

CERTH (GR)	coordinator, image/video annot
UPF (ES)	NLP, FrameNet summarization,
Barcelona Media (ES)	annotation
LinguaTec (DE)	NER, translation
EVERIS (ES)	system integration
Ontotext (BG)	semantics, storage, reasoning
Deutsche Welle Innovation (DE)	UC1 Journalism
pressrelations (DE)	UC2 Press Monitoring
PIMEC (ES)	UC3 Decision Support
PIMEC (E3)	OC3 Decision Support

Goals:

- content distillation of heterogeneous multimedia and multilingual data;
- sentiment and context analysis of content and social interactions;
- semantic integration of heterogeneous multimedia and multilingual data;
- semantic reasoning and intelligent decision support;
- multilingual and multimodal summarization and presentation of the information to the user.

SCOPE

Analyze and extract data from mass- and social media documents, including text, images and video, across several languages.

Uses a number of ontologies for representing that data:

- NIF and OLIA for linguistic info,
- ITSRDF and NERD for NER,
- DBpedia and Babelnet for entities and concepts,
- MARL for sentiment,
- OA for image, video, cross-article annotations
- FrameNet for lexical frames (embedded in NIF)

Linguistic Linked Data, Multisensor presentation, 2014-11, Bonn

• Still working on an "RDF Application Profile" for Multisensor, part of D5.4 "Final semantic infrastructure and decision support system"

LINGUISTIC LINKED DATA

Text Annotation Lexical Resources Corpora Semantic Annotation Opinion/Sentiment Analysis Working Groups: olwg OntoLex LD4LT BPMLOD Projects: MultilingualWeb LIDER FALCON Multisensor FREME XML schemas: GRAF ITS2 LAF LMF UBY Linguistic Ontologies: FISE ITS2 MARL NERD NIF NLP2RDF OLIA OntoLing OntoTag Penn Stanford FrameNet Lexical Ontologies/thesauri: LEMON LIME OntoLex GOLD ISOcat NERD Lexical resources: BabelNet FrameNet LemonUBY OmegaNet VerbNet Wiktionary2RDF WordNetRDF Corpora: Multitext MASC

TEXT ANNOTATION (ARTICLE AND ASR TRANSCRIPT)

MEDIA ANNOTATION: IMAGE, FUSION TO TEXT ANNOTATION

MEDIA ANNOTATION: VIDEO FRAME

SOCIAL MEDIA: INFLUENCE

DECISION SUPPORT: TRADE

UN ComTrade data on commercial trade volumes

DECISION SUPPORT: DISTANCE

Google data on distances and travel time (between capitals)

FRAMENET ANNOTATION

FN goes NIF: Integrating FrameNet in the NLP Interchange Format, LREC 2016

REAL FN DATA (PART 1)

REAL FN DATA (PART 2)

DATA QUALITY

W3C Data Quality Vocabulary dqv:, Linked Data Quality Dimensions 1dqd:

```
ms:accuracy a dqv:Metric;
  skos:prefLabel "Accuracy"@en;
 skos:definition "Degree to which SIMMO data correctly represents real world facts."@en;
  dqv:inDimension ldqd:semanticAccuracy;
  dqv:expectedDataType ms:Accuracy.
ms:Accuracy a owl:Class, skos:ConceptScheme;
 rdfs:label "Accuracy values"@en.
ms:accuracy-low a ms:Accuracy, skos:Concept; skos:inScheme ms:Accuracy;
  skos:prefLabel "Low accuracy"@en.
ms:accuracy-medium a ms:Accuracy, skos:Concept; skos:inScheme ms:Accuracy;
  skos:prefLabel "Medium accuracy"@en.
ms:accuracy-high a ms:Accuracy, skos:Concept; skos:inScheme ms:Accuracy;
  skos:prefLabel "High accuracy"@en.
ms:accuracy-curated a ms:Accuracy, skos:Concept; skos:inScheme ms:Accuracy;
 skos:prefLabel "Manually curated"@en;
 skos:note "Highest accuracy"@en.
```

QUALITYANNOTATION (RIGHT) VS QUALITYMEASUREMENT (WRONG)

RDFUNIT VALIDATION

CONTENT ALIGNMENT

CONTENT TRANSLATION

RDFPUML

All diagrams made with rdfpuml from actual Turtle

- "Making True RDF Diagrams with rdfpuml", Ontotext presentation (2016-05)
- "rdfpuml for True RDF Diagrams and R2RML Generation", SWIB 2016 (2016-11), upcoming

Eg this last diagram was made from Turtle, with these extra triples:

```
bibo:translationOf
                     puml:arrow puml:left.
dct:source
                     puml:arrow puml:up.
nif:sourceUrl
                     puml:arrow puml:up.
nif:referenceContext puml:arrow puml:up.
<http://babelfy.org/> a puml:Inline.
                           puml:stereotype "<<(S,green)Spanish>>".
ms-content:156e0d
                           puml:stereotype "<<(S,green)Spanish>>".
<156e0d#char=1199,1224>
                           puml:stereotype "<<(S,green)Spanish>>".
<156e0d#char=0,2131>
                           puml:stereotype "<<(E,red)English>>".
ms-content:156e0d-en
                           puml:stereotype "<<(E,red)English>>".
<156e0d-en#char=0,1800>
<156e0d-en#char=1100,1119> puml:stereotype "<<(E,red)English>>".
```