SC 617

Quiz-Week6

Gyandev Satyaram Gupta, 190100051

1. For a stable linear system $\dot{x} = Ax + \phi(t)$ where A is hurwitz and $\lim_{t\to\infty}\phi(t) = 0$, exponentially so prove that $x(t)\to 0$?

For such a given system we can write the solution as,

$$x(t) = e^{(t-t_0)A}x(t_0) + \int_{t_0}^t e^{(t-\tau)A}\phi(\tau)d\tau$$

For a linear time-invariant system and with A being hurwitz ,and using the below bound, we have

$$||e^{(t-t_0)A}|| \le ke^{-\lambda(t-t_0)}, \forall t \ge t_0 \ge 0, k, \&\lambda > 0$$

$$||x(t)|| \le ke^{-\lambda(t-t_0)} + \int_{t_0}^t ke^{-\lambda(t-\tau)} ||\phi(\tau)|| d\tau$$

$$||x(t)|| \le ke^{-\lambda(t-t_0)} + (k/\lambda) \sup_{t_0 \le \tau \le t} ||\phi(\tau)||$$

Now we know that $\phi(t)$ is exponentially stable so $||\phi(t)|| \leq \gamma e^{-\beta(t-t_0)}$

$$||x(t)|| \le \lim_{t \to \infty} ke^{-\lambda(t-t_0)} + (k/\lambda)\gamma e^{-\beta(t-t_0)}$$

Choose $\min(\lambda, \beta) = \alpha$ and combine all other coefficient as ϵ

$$||x(t)|| \le \epsilon e^{-\alpha(t-t_0)}, \implies \lim_{t \to \infty} x(t) \to 0$$

2. You have $\dot{\mathbf{e}}_1 = e_2$ and $\dot{\mathbf{e}}_2 = \theta^* f(x,t) + u - \ddot{r}$ $u = -k_1 e_1 - k_2 e_2 - \theta^* f(x,t) + \ddot{r}$ Parameter estimate, $u = -k_1 e_1 - k_2 e_2 - \hat{\theta} f(x,t) + \ddot{r}$ Use Signal chasing to prove that as $t \to \infty$, $e_1 \to 0$, and $e_2 \to \infty$

Assume $\tilde{\theta}$, α are bounded and positive

$$k_2 - \alpha > 0$$

Define an Energy Functional $V(t) = \frac{(e_2 + \alpha e_1)^2}{2} + \frac{\tilde{\theta}}{2\sigma} \geq 0$

On choosing $\hat{\theta} = \sigma(e_2 + \alpha e_1) f(x, t)$

$$\dot{V} = -(k_2 - \alpha)(e_2 + \alpha e_1)^2 \le 0$$

Lets use Barbalat's Lemma, to prove that as $t \to \infty$, $e_1 \to 0$, and, $e_2 \to 0$. Proof:

- 1. Since V (t) is lower bounded $(V \ge 0)$ and non-increasing $(\dot{V}(t) \le 0)$, implies that $V_{\infty} := \lim_{t \to \infty} V(t) < \infty$ (i.e. the limit exists).
- 2. $V(t) \leq V(0) \implies V$ is bounded and other terms are also bounded \implies

¹H. K. Khalil, Nonlinear Systems, Upper Saddle River, NJ: Prentice Hall 2002

- $(e_2 + \alpha e_1)$ are bounded $\implies (e_2 + \alpha e_1) \in L_{\infty}$. 3. $\int_0^{\infty} \frac{dV}{dt} dt = \int_0^{\infty} -(k_2 \alpha)(e_2 + \alpha e_1)^2 dt \implies V_{\infty} V(0) = \int_0^{\infty} -(k_2 \alpha)(e_2 + \alpha e_1)^2 dt \implies (e_2 + \alpha e_1) \in L_2$ which means that $e_1, e_2 \in L_2$
- 4. Since $(e_2 + \alpha e_1) = -k_1 e_1 k_2 e_2 + \tilde{\theta} f(x,t) + \alpha e_2$ and assume that $\tilde{\theta} f(x,t)$ is bounded, so all terms are bounded on rhs \implies $(e_2 + \alpha e_1)$ is bounded \implies $(e_2 + \alpha e_1) \in L_{\infty}$
- Now, $(e_2 + \alpha e_1) \in L_{\infty} \cap L_2$ and $(e_2 + \alpha e_1) \in L_{\infty} \implies (e_2 + \alpha e_1)$ is Uniformly Continuous, then, using the Corollary of Barbalat's Lemma, we can say that $(e_2 + \alpha e_1) \rightarrow 0$.
- 5. We have $(e_2 + \alpha e_1) \to 0$ as $t \to \infty \implies (e_1 + \alpha e_1) \to 0$ and now take Laplace transform and using final value theorem, $\lim_{s\to 0} sE_1(s) = \lim_{s\to 0} \frac{se(0)}{s+\alpha} = 0$, \Longrightarrow $e_1 \rightarrow 0$ and we know $(e_2 + \alpha e_1) \rightarrow 0 \implies e_2 \rightarrow 0$