Trabalho Final

Gustavo Vieira, Marcus Vinicius, Thais Matos, Rafael Castro 04 de maio de 2016

1. Introdução

Um pesquisador está interessado em investigar o efeito de diferentes operadores de recombinação no desempenho do algoritmo de evolução diferencial para uma dada classe de problemas. Dessa forma, o fator de impacto é o operador utilizado e o efeito a ser observado é o desempenho.

Considerando quatro operadores de recombinação para o experimento (problema de quatro tratamentos), torna-se necessário utilizar a análise de variância ANOVA para comparação das médias em um único problema de teste.

Após a análise do experimento, responderemos perguntas como: Há alguma diferença no desempenho médio do algoritmo quando equipado com estes diferentes operadores, para o problema de teste utilizado? Caso haja, qual o melhor operador em termos de desempenho médio, e qual a magnitude das diferenças encontradas? Há algum operador que deva ser recomendado em relação aos demais?

2. Formulação das hipóteses de teste

Através da modelagem de efeitos fixos podemos estimar os efeitos dos operadores no algoritmo de evolução diferencial. Os efeitos dos operadores τ_i , que representam desvios da média global μ , são variáveis aleatórias. Como os conhecimentos acerca dos tratamentos particulares investigados não são relativamente importantes, testaremos as hipóteses sobre a variabilidade de τ_i e tentaremos estimar essa variabilidade.

Estamos interessados em testar a igualdade das médias dos quatro tratamentos, μ_1 , μ_2 , μ_3 , μ_4 . Logo, as hipóteses são:

```
    H<sub>0</sub>: τ<sub>i</sub> = 0
    H<sub>1</sub>: τ<sub>i</sub> ≠ 0 (para pelo menos um i)
```

Se a hipótese nula for verdadeira, significa que a mudança dos operadores de recombinação não tem efeito no desempenho médio do algoritmo evolutivo.

3. Cálculo do tamanho amostral

O problema nos fornece os dados necessários para o cálculo do tamanho da amostra. É desejado um poder de 0.85 (1 – β = 0.85; β = 0.15) para uma mínima diferença de importância prática $d^* = \delta^*/\sigma = 0.25$ e um nível de significância α = 0.05.

```
alpha <- 0.05;
beta <- 0.15;
d <- 0.25;
a <- 4;

#Calculando o tamanho amostral (suficiente)
library(pwr);
n <- round(pwr.anova.test(k = a,f = d, sig.level = alpha, power = 1-beta)$n)</pre>
```

Dessa forma, encontramos um tamanho amostral suficiente para os parâmetros desejados de n = 50.

4. Coleta e tabulação dos dados

Realizaremos a comparação dos seguintes operadores de recombinação:

```
library(ExpDE);
selpars <- list(name = "selection_standard");</pre>
stopcrit <- list(names = "stop_maxeval", maxevals = 60000, maxiter = 1000);</pre>
probpars <- list(name = "sphere", xmin = -seq(1,20), xmax = 20 + 5 * seq(5, 24));
# Grupo C (Operadores para comparação)
recpars1 <- list(name = "recombination_blxAlphaBeta", alpha = 0, beta = 0)
mutpars1 <- list(name = "mutation_rand", f = 4)</pre>
popsize1 <- 200
recpars2 <- list(name = "recombination_linear")</pre>
mutpars2 <- list(name = "mutation rand", f = 1.5)</pre>
popsize2 <- 250
recpars3 <- list(name = "recombination mmax", lambda = 0.25)
mutpars3 <- list(name = "mutation_best", f = 4)</pre>
popsize3 <- 375
recpars4 <- list(name = "recombination_npoint", N = 17)</pre>
mutpars4 <- list(name = "mutation_rand", f = 2.2)</pre>
popsize4 <- 225
```

Coletamos n observações para cada operador de forma não sequencial, pois buscamos intercalar as observações entre os operadores com o objetivo de evitar o efeito de qualquer variável de ruído que possa influenciar o desempenho do algoritmo.

```
#Gerando n observações para cada operador
fbest1 \leftarrow c(0);
fbest2 <- c(0);
fbest3 \leftarrow c(0);
fbest4 <- c(0);
for (i in seq(1:n)){
  out1 <- ExpDE(popsize1, mutpars1, recpars1, selpars, stopcrit, probpars);</pre>
  fbest1[i] <- out1$Fbest;</pre>
  out2 <- ExpDE(popsize2, mutpars2, recpars2, selpars, stopcrit, probpars);</pre>
  fbest2[i] <- out2$Fbest;</pre>
  out3 <- ExpDE(popsize3, mutpars3, recpars3, selpars, stopcrit, probpars);</pre>
  fbest3[i] <- out3$Fbest;</pre>
  out4 <- ExpDE(popsize4, mutpars4, recpars4, selpars, stopcrit, probpars);</pre>
  fbest4[i] <- out4$Fbest;</pre>
}
algoritmo <- c(rep("A",n), rep("B",n), rep("C",n), rep("D",n));</pre>
fbest <- c(fbest1, fbest2, fbest3, fbest4);</pre>
dadosColetados <- data.frame(algoritmo, fbest);</pre>
summary(dadosColetados);
```

```
## algoritmo fbest
## A:50 Min. :16.42
## B:50 1st Qu.:23.61
```

```
## C:50 Median:30.14
## D:50 Mean:39.45
## 3rd Qu::51.26
## Max: :82.40
```

A distribuição dos dados coletados está representada no gráfico abaixo, o qual mostra evidências de que há diferença no desempenho do algoritmo de acordo com o operador de recombinação utilizado.

FBest dos Algoritmos Medidos

5. Teste das hipóteses

Utilizando o teste ANOVA, obtemos o seguinte resultado:

```
# Teste da hipótese
model <- aov(fbest~algoritmo, data = dadosColetados);
summary.aov(model);</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## algoritmo    3 64542 21514 781.7 <2e-16 ***
## Residuals 196 5394 28
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

Analisando o teste de hipótese podemos ver que o valor p é bastante inferior ao nível de significância α . Dessa forma, podemos rejeitar a hipótese nula, em favor da alternativa, com 95% de confiança. Esse resultado indica uma diferença entre o desempenho dos operadores de recombinação.

O ANOVA não identifica quais médias são diferentes, portanto precisamos utilizar métodos de comparações múltiplas para este fim. Basicamente, faremos uma série de t-testes para saber como cada um dor operadores difere dos demais.

All vs. All - Tukey's Honest Significant Difference

C - B == 0 43.8922

```
# All vs. all
library(multcomp);
## Loading required package: mvtnorm
## Loading required package: survival
## Loading required package: TH.data
## Loading required package: MASS
##
## Attaching package: 'TH.data'
## The following object is masked from 'package:MASS':
##
##
       geyser
tukey <- glht(model, linfct = mcp(algoritmo = "Tukey"));</pre>
tukey_CI <- confint(tukey, level = 0.95);</pre>
summary(tukey_CI);
##
##
     Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: aov(formula = fbest ~ algoritmo, data = dadosColetados)
##
## Linear Hypotheses:
##
              Estimate Std. Error t value Pr(>|t|)
## B - A == 0 -20.7437
                       1.0492 -19.771 <1e-05 ***
## C - A == 0 23.1485
                           1.0492 22.063
                                            <1e-05 ***
## D - A == 0 -20.0669
                           1.0492 -19.126
                                             <1e-05 ***
```

<1e-05 ***

1.0492 41.833

```
## D - B == 0  0.6768   1.0492  0.645  0.917
## D - C == 0 -43.2154   1.0492 -41.188  <1e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

plot(tukey_CI);</pre>
```

95% family-wise confidence level

All vs. One - Dunnett's test

```
# All vs. one
dadosColetados$algoritmo <- relevel(dadosColetados$algoritmo, ref = "B");
model2 <- aov(fbest~algoritmo, data = dadosColetados);
dunnet <- glht(model2, linfct = mcp(algoritmo = "Dunnet"));
dunnet_CI <- confint(dunnet, level = 0.95);
summary(dunnet_CI);</pre>
```

```
## Linear Hypotheses:
##
             Estimate Std. Error t value Pr(>|t|)
## A - B == 0 20.7437
                      1.0492 19.771
                                          <1e-05 ***
## C - B == 0 43.8922
                         1.0492 41.833
## D - B == 0
              0.6768
                         1.0492
                                  0.645
                                           0.856
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
plot(dunnet_CI);
```

95% family-wise confidence level

6. Verificação das premissas dos testes

As premissas dos teste: normalidade, homogeneidade e independência podem ser validadas nos seguintes gráficos:

```
# Verificando normalidade
library(car);
residuals1 <- fbest1 - mean(fbest1);
residuals2 <- fbest2 - mean(fbest2);
residuals3 <- fbest3 - mean(fbest3);
residuals4 <- fbest4 - mean(fbest4);
qqPlot(residuals1, pch=16, cex=1.0, las=1, main="Normalidade dos resíduos - Algoritmo A");</pre>
```

Normalidade dos resíduos - Algoritmo A

qqPlot(residuals2, pch=16, cex=1.0, las=1, main="Normalidade dos resíduos - Algoritmo B");

Normalidade dos resíduos - Algoritmo B

qqPlot(residuals3, pch=16, cex=1.0, las=1, main="Normalidade dos resíduos - Algoritmo C");

Normalidade dos resíduos - Algoritmo C

qqPlot(residuals4, pch=16, cex=1.0, las=1, main="Normalidade dos resíduos - Algoritmo D");

Normalidade dos resíduos - Algoritmo D


```
# Verificando homogeneidade
fligner.test(fbest~algoritmo, data = dadosColetados)
##
##
   Fligner-Killeen test of homogeneity of variances
##
## data: fbest by algoritmo
## Fligner-Killeen:med chi-squared = 70.412, df = 3, p-value =
## 3.483e-15
# Verificando independência
durbinWatsonTest(model)
##
   lag Autocorrelation D-W Statistic p-value
             -0.1374133
                             2.274323
                                        0.088
##
   Alternative hypothesis: rho != 0
```

- A normalidade dos dados pode ser assumida, visto que ocorreram poucase pequenas violações do limite, de acordo com o gráfico de simulação.
- A homogeneidade pode ser comprovada dado que o valor p encontrado pelo teste é inferior ao nível de significância desejado.
- O teste de independência não é muito conclusivo, porém a independência dos dados é garantida na aleatoriedade da coleta de dados inicial.

7. Conclusão

Conforme os resultados do experimento, podemos concluir que existe uma diferença entre o desempenho médio dos quatro operadores de recombinação. Em termos de desempenho médio, o operador B seria o mais recomendado dentre os operadores testados.

A partir dos resultados do teste de Tukey (all vs. all), pode-se ver as diferenças de magnitude existentes entre os operadores de recombinação, exceto se B (recombination_linear) e D (recombination_npoint) forem comparados entre si, quando a diferença é menos perceptível. Pelo teste de Dunnet(all vs. one), colocando o operador B como referência (controle), podemos concluir que este é mais eficiente que A (recombination_blxAlphaBeta) e C (recombination_mmax), mas possui eficiência bem semelhante ao algoritmo D. Assim, pelos nossos testes, não podemos inferir uma diferença significativa entre os algoritmos B e D, mas podemos concluir que ambos são mais eficientes que A e C. Para melhorar o experimento, poderia ser considerado um tamanho de amostras n limite, ao invés de suficiente.

8. Referências

- [1] https://github.com/fcampelo/Design-and-Analysis-of-Experiments
- [2] Estatística Aplicada e Probabilidade para Engenheiros (4a edição) Montgomery
- [3] A Estatística Básica e Sua Prática (6a edição) David S. Moore, William I. Nortz, Michael A. Fligner
- $[4] \ http://support.minitab.com/pt-br/minitab/17/topic-library/basic-statistics-and-graphs/hypothesis-tests/tests-of-means/why-use-paired-t/$
- [5] http://www.statmethods.net/stats/power.html
- [6] http://docslide.com.br/documents/anova-com-r.html