lab3.md 2024-12-29

1. Постановка задачи

Необходимо реализовать метод обратных итераций с исчерпыванием определения пары со вторым минимальным по модулю собственным значением симметричной матрицы простой структуры

Для решения линейной системы уравнений использовать метод Халецкого

2. Теоретическая часть

Данная задача преполагает использование алгоритма обратных итераций с исчерпыванием, то есть нахождение второго минимального по модулю собственного значения. Этот алгоритм использует знание, которое нужно получить с помощью обычного метода обратных итераций

Описание и формулы данных алгоритмов:

2.3. Метод обратных итераций

Если матрица A невырожденная, то наибольшее по модулю собственное значение матрицы $A^{(-1)}$ будет равно $1/\lambda_1$. Итерационная схема (2.1.2), примененная к матрице $A^{(-1)}$, имеет вид

$$\begin{cases} v^{(k)} = x^{(k)} / \|x^{(k)}\| \\ x^{(k+1)} = A^{-1} v^{(k)} \iff A x^{(k+1)} = v^{(k)}, \end{cases} k = 0, 1, 2, \dots$$
 (2.3.1)

причем $\alpha^{(k)} = v^{(k)^T} x^{(k+1)} \to 1/\lambda_1$, $v^{(k)} \to \pm x_1$ при $k \to \infty$. На каждом итерационном шаге вектор $x^{(k+1)}$ находится как решение системы линейных уравнений $Ax^{(k+1)} = v^{(k)}$.

Замечание 1. Скорость сходимости итерационного процесса (с8) зависит от отношения $\left| \frac{\lambda_1}{\lambda_2} \right|$:

$$\alpha^{(k)} = \frac{1}{\lambda_{1}} \left[1 + O\left(\left| \frac{\lambda_{1}}{\lambda_{2}} \right|^{2k} \right) \right],$$

$$v^{(k)} = \left(\frac{\lambda_{1}}{|\lambda_{1}|} \right)^{k} \frac{\xi_{1}}{|\xi_{1}|} \left[x_{1} + O\left(\left| \frac{\lambda_{1}}{\lambda_{2}} \right|^{k} \right) \right] \rightarrow \pm x_{1}.$$

$$(2.3.2)$$

2.4. Метод обратных итераций с исчерпыванием

Если пара (λ_1, x_1) найдена, то следующую пару (λ_2, x_2) можно найти, применяя итерационный процесс (2.1.2) к матрице $B = A^{-1}(E - x_1x_1^T)$:

lab3.md 2024-12-29

$$\begin{cases} v^{(k)} = x^{(k)} / \|x^{(k)}\| \\ Ax^{(k+1)} = (E - x_1 x_1^T) v^{(k)}, \end{cases} k = 0, 1, 2, \dots$$
 при этом $v^{(k)} \to \pm x_2, \ \alpha^{(k)} = v^{(k)^T} x^{(k+1)} \to 1 / \lambda_2$ при $k \to \infty$.

Замечание 3. Если для решения системы уравнений с матрицей A применяется один из методов LU-разложения матрицы A, то один раз найденное LU-разложение используется и для определения пары (λ_1, x_1) , и для определения пары (λ_2, x_2) .

Таким образом:

Для начала необходимо составить квадратную симметричную матрицу размерности N, имеющую заранее известные собственные значения, для этого можно взять матрицу

$$A = H \Lambda H^T$$
, где $H = E - 2\omega\omega^T, \ \Lambda = diag(\lambda_i),$

 ω — случайный пронормированный вектор

Далее идет основная часть алгоритма:

Находим собственную пару (λ_1, g_1) с помощью метода обратных итераций, описанного выше.

Случайно генерируем и нормализуем вектор $x^{(0)}$, после чего запускаем итерационный процесс нашего метода, с помощью которого находим

$$u^{(k)}pprox g_2, \ \sigma^{(k)}pprox \lambda_2,$$

где k — количество итераций

3. Алгоритм

- Функция TEST_generate_householder_mat() генерирует вышеупомянутую матрицу А
- Функция inverse_iteration() это реализация алгоритма обратных итераций, для нахождения первой минимальной собственной пары
- Функция inverse_iteration_with_shift_one() это реализация алгоритма обратных итераций с исчерпыванием, для нахождения второй минимальной собственной пары
- Функция TEST() нужна для тестирования случайно сгенерированных матриц и оценки погрешностей вычислений

4. Тестирование

№ теста	Размерность системы N	Диапазон значений λ	ε Точность	Ср. оценка точности собств. значений	Ср. оценка точности собств. векторов	Средняя мера точности r	Среднее число итераций
------------	--------------------------	---------------------------	---------------	--	--	----------------------------------	------------------------------

lab3.md 2024-12-29

№ теста	Размерность системы N	Диапазон значений λ	ε Точность	Ср. оценка точности собств. значений	Ср. оценка точности собств. векторов	Средняя мера точности r	Среднее число итераций
1	10	2	1e-10	4.145e-05	9.471e-02	2.168e-07	50.2
2	10	2	1e-13	5.757e-14	7.720e-07	9.982e-08	94.3
3	10	50	1e-10	5.632e-08	6.510e-05	8.566e-04	22.7
4	10	50	1e-13	3.069e-09	2.728e-05	1.091e-06	88.0
5	30	2	1e-10	1.042e-04	7.598e-02	4.715e-07	40.8
6	30	2	1e-13	2.921e-09	4.432e-04	5.491e-09	152.8
7	30	50	1e-10	6.597e-04	7.450e-02	4.891e-05	64.8
8	30	50	1e-13	7.897e-12	3.309e-06	1.262e-06	91.9
9	50	2	1e-10	2.171e-11	2.147e-05	6.566e-07	50.8
10	50	2	1e-13	7.924e-13	1.558e-06	1.888e-08	75.4
11	50	50	1e-10	2.321e-08	3.903e-04	4.606e-05	52.8
12	50	50	1e-13	1.579e-12	2.407e-06	1.085e-06	64.3