计 算

1. 设3阶方阵A,B,C满足方程C(2A-B)=A, 试求矩阵A, 其中

$$B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 2. 已知3阶矩阵A,B满足方程 AB = 5B 4E,其中 $B = \begin{pmatrix} 1 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,求矩阵A。
- 3. 已知A,B为3阶矩阵,且满足方程 $2A^{-1}B = B 4E$,其中 $B = \begin{pmatrix} 1 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
- 4. 设矩阵 A 的伴随矩阵 $A^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -3 & 0 & 8 \end{pmatrix}$, 且 $ABA^{-1} = BA^{-1} + 3E \circ$ 求矩阵 $B \circ$
- 5. 设矩阵 $C = A^{-1}B^{T}(B^{-1} + E)^{T} A^{-1}$, 试化简C的表达式, 并求矩阵C。其中

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 2 & 3 & 2 \end{pmatrix} , \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}.$$

- 6. 已知A, B为 3 阶方阵。 (1) 化简矩阵方程 $(A+B)^2 = A^2 + 2AB + B^2$;
 - (2) 设 $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 求满足以上方程的所有矩阵。
- 7. 已知A,B为3阶矩阵,其中 $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 。
 - (1) 化简等式 $A^*BA = BA E$; (2) 求满足 (1) 中等式的矩阵 B。

(2)

8. 已知
$$A$$
, B 为 3 阶矩阵,满足方程 $2AB=B+4E$, $B=\begin{pmatrix} 1 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 。

试求: (1) 矩阵 B-1; (2) 矩阵 A。

9. 计算行列式
$$|A|$$
, $|B|$, $\begin{vmatrix} O & A \\ B & O \end{vmatrix}$, 其中

$$A = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n+x \\ 1 & 2 & \cdots & (n-1)+x & n \\ \cdots & \cdots & \cdots & \cdots \\ 1 & 2+x & \cdots & n-1 & n \\ 1+x & 2 & \cdots & n-1 & n \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & n-1 & 0 \\ 0 & 0 & \cdots & 0 & n \end{pmatrix}$$

10. 计算
$$n$$
 阶行列式 $D = \begin{vmatrix} a_1 + 1 & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 + 2 & a_3 & \cdots & a_n \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_1 & a_2 & a_3 & \cdots & a_n + n \end{vmatrix}$

11. 求方程
$$f(x) = 0$$
 的根, 其中
$$f(x) = \begin{vmatrix} 2 & 2 & -1 & 3 \\ 4 & x^2 - 5 & -2 & 6 \\ -3 & 2 & -1 & x^2 + 1 \\ 3 & -2 & 1 & -2 \end{vmatrix};$$

计算n 阶行列式:
$$D = \begin{vmatrix} 1-x & 2 & \cdots & n-1 & n \\ 1 & 2-x & \cdots & (n-1) & n \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 2 & \cdots & (n-1)-x & n \\ 1 & 2 & \cdots & n-1 & n-x \end{vmatrix}$$

13. 设
$$n$$
 阶 行 列 式 $D_n = \begin{vmatrix} a_{n-1} & -1 & 0 & \cdots & 0 & 0 \\ a_{n-2} & x & -1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_1 & 0 & 0 & \cdots & x & -1 \\ a_0 & 0 & 0 & \cdots & 0 & x \end{vmatrix}$, 试 求 :

(1) 试推导出行列式 D_k 与 D_{k-1} , $(k=2,3,\dots,n)$ 之间的递推关系式;

(2) 试求 D_n 的值。

- 15. 设常数 $k \neq 0$,向量 $\alpha = (a_1, a_2, \dots, a_n) \neq 0$, $\beta = (1, 1, \dots, 1)$,矩阵 $A = kE + \beta^T \alpha$ 。 试求: (1) 行列式|A|; (2) 矩阵A的特征值。
- 16. 设实向量 $\alpha = (a_1, a_2, \dots, a_n)^T, n$ 阶矩阵 $A = E + \alpha \alpha^T$,行列式 $D_n = |A|$ 。
 - (1) 计算 D_3 ; (2) 证明: $D_n \ge D_{n-1}$ 。
- 17. 设矩阵 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$, 其中n维向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为

$$\alpha_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \alpha_{2} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \cdots , \quad \alpha_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 1 \end{pmatrix}, \quad \alpha_{n} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}.$$

- (1) 试求: 行列式|A|; (2) 试讨论: 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 的线性相关性。
- 18. 设矩阵 A 的伴随矩阵 $A^* = \begin{pmatrix} 4 & 3 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 3 & -6 \\ 0 & 0 & -3 & 3 \end{pmatrix}$,且 $AXA^{-1} = XA^{-1} + 8E$ 。

试求: (1) 行列式|A|; (2) 矩阵 X。

19. 线性方程组为 $\begin{cases} x_1+x_2+2x_3=0\\ 2x_1+x_2+ax_3=1\\ 3x_1+2x_2+4x_3=b \end{cases}$,问a,b 各取何值时,线性方程组无解,

有唯一解,有无穷多解?在有无穷多解时求出其通解。

$$20. \ \mbox{已知非齐次线性方程组} \ \begin{cases} x_1 + x_2 + x_3 + x_4 = -1 \\ 4x_1 + 3x_2 + 5x_3 - x_4 = -1 \\ ax_1 + x_2 + 3x_3 + bx_4 = 1 \end{cases} , \ \mbox{其系数矩阵} A 的秩$$

r(A) = 2 试求: 常数 a, b 的值, 以及该方程组的通解。

- 21. 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为 4 阶方阵,其中 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是 4 维列向量,且 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\alpha_4 = \alpha_1 + \alpha_2 + \alpha_3$ 。已知向量 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$,试求 线性方程组 $Ax = \beta$ 的通解。
- 22. 已知线性方程组 $\begin{cases} kx_1 + (k-1)x_2 + & x_3 = 1 \\ kx_1 + & kx_2 + & x_3 = 2 \\ 2kx_1 + 2(k-1)x_2 + kx_3 = 2 \end{cases}$
- (1) k取何值时,方程组无解; (2) k取何值时,方程有唯一解,并求出其解;
 - (3) k取何值时,方程有无穷多解,并求出其通解。

23. 设线性方程组为
$$\begin{cases} x_1 + x_2 + x_3 + 3x_4 = 0 \\ 2x_1 + x_2 + 3x_3 + 5x_4 = 1 \\ 3x_1 + 2x_2 + ax_3 + 7x_4 = 1 \end{cases}$$
, 问 a, b 各取何值时, 此方程
$$\begin{cases} x_1 + x_2 + x_3 + 3x_4 = 0 \\ x_1 - x_2 + 3x_3 - x_4 = b \end{cases}$$

组无解、有唯一解、有无穷多解? 在有无穷多解时求出其通解。

24. 已知线性方程组
$$\begin{cases} x_1 + x_2 &= 1 \\ x_1 & -x_3 = 1 \\ x_1 + ax_2 + x_3 = b \end{cases}$$

- (1) 试问:常数a,b取何值时,方程组有无穷多解、唯一解、无解?
- (2) 当方程组有无穷多解时,求出其通解。

25. 已知非齐次线性方程组
$$\begin{cases} x_1+x_2+x_3+x_4=-1\\ 4x_1+3x_2+5x_3-x_4=-1\\ ax_1+x_2+3x_3+bx_4=1 \end{cases}, 有解$$

 $\beta_1 = (2, -3, 0, 0)^T$, $\beta_2 = (4, -7, 1, 1)^T$ 。 试求: 常数a, b的值,以及该方程组的通解。

- (1) 试问 a_i , i = 1,2,3,4满足什么关系; (2) 试求该方程组的通解。
- 27. 已知线性方程组 $\begin{cases} 2x_1 + ax_2 x_3 = 1 \\ ax_1 x_2 + x_3 = 2 \\ 4x_1 + 5x_2 5x_3 = -1 \end{cases}$
 - (1) a取何值时,方程组无解; (2) a取何值时,方程组有唯一解;
 - (3) a取何值时,方程组有无穷多解,并求出其通解。
- 28. 已知非齐次线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = -1 \\ 4x_1 + 3x_2 + 5x_3 x_4 = -1 \end{cases}$ 有三个线性无关的解。 $2x_1 + x_2 + ax_3 + bx_4 = 1$
 - (1) 试求其系数矩阵A的秩; (2) 试求常数a,b的值,及方程组的通解。
- 29. 已知非齐次线性方程组 Ax = b 为 $\begin{cases} kx_1 + x_2 x_3 = 4 \\ x_1 + kx_2 + x_3 = 3 \\ -x_1 + x_2 + kx_3 = l \end{cases}$ 。
 - (1) 试求行列式|A|;
 - (2) 试问:常数k,l为何值时,方程组有唯一解、无解、有无穷多解。 当方程组有无穷多解时,求出其通解
- 30. 设矩阵 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$, 其中n维向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为

$$\alpha_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \alpha_{2} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \cdots , \quad \alpha_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 1 \end{pmatrix}, \quad \alpha_{n} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

(1) 试求: 行列式|A|; (2) 试讨论: 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 的线性相关性。

- 31. 已知A 为三阶实对称矩阵,秩r(A) = 2, $\alpha_1 = (0,1,0)^T$, $\alpha_2 = (-1,0,1)^T$,是A 对应特征值 $\lambda_1 = \lambda_2 = 3$ 的特征向量,试求:
 - (1) A 的另一个特征值 λ_3 及其特征向量 α_3 ; (2) 矩阵 A, 矩阵 A^n 。
- 32. 已知 3 阶方阵 A 的特征值 1, 2, 3 对应的特征向量分别为 α_1 , α_2 , α_3 。
 - (1) 将向量 β 用 α_1 , α_2 , α_3 线性表示; (2)求 $A^n\beta$, n为自然数。

其中: $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (1,2,4)^T$, $\alpha_3 = (1,3,9)^T$, $\beta = (1,1,3)^T$ 。

33. 设列向量
$$\alpha = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 是矩阵 $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$ 的对应特征值 λ 的一个特征

向量. (1) 求常数 λ, a, b ; (2) 试问: 矩阵A能否相似于对角矩阵? 为什么?

- 34. 设n维行向量 $\alpha = (1,1,\dots,1), n$ 阶矩阵 $A = E \alpha^T \alpha$ 。
 - (1) 求矩阵 A 的特征值和特征向量;
- (2) 问矩阵A是否可相似于对角阵?若能,求出可逆阵P和对角阵 Λ ,使 $P^{-1}AP=\Lambda$ 。若不能,请说明理由。
- 35. 设实向量 $\alpha = (a_1 \quad a_2 \quad a_3)^T$,其中 $a_1 \neq 0$, $\alpha^T \alpha = 3$,矩阵 $A = E \alpha \alpha^T$
 - (1) 试说明矩阵A能相似于对角阵; (2) 求可逆矩阵P,使 $P^{-1}AP$ 为对角阵, 并写出此对角阵; (3) 求行列式|A+E|。
- 36. 设矩阵 $A = \frac{1}{3} \begin{pmatrix} 5 & -4 \\ 2 & -1 \end{pmatrix}$, (1) 求可逆阵 P, 使 $P^{-1}AP$ 为对角阵;
 - (2) 求矩阵 $B = 27A^3 + 3A E$; (3) 求 $\lim_{n \to +\infty} A^n$
- 37. 设 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$, 求: (1) 可逆阵P,使 $P^{-1}AP$ 为对角阵; (2) A^{100} 。

38. 设A为三阶实对称矩阵,且满足 $A^2 + A - 2E = 0$ 已知A对应特征值 $\lambda = 1$ 的特征向量有 $\alpha_1 = (0,1,0)^T$, $\alpha_2 = (1,0,1)^T$ 。 试求: 矩阵A, A^n 。其中n为自然数。

$$39.$$
 设列向量 $\alpha = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ 是矩阵 $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$ 的对应特征值 λ 的一个特征向量。

- (1) 求常数 λ, a, b;
 (2) 试问: 矩阵 A 能否相似于对角矩阵,为什么?
 40. 设常数 k ≠ 0,向量α = (a₁, a₂, ···, a_n) ≠ 0, β = (1,1,···,1),矩阵 A = kE + β^Tα。
 试求: (1) 行列式 | A |; (2) 矩阵 A 的特征值。
- 41. 设A为n阶方阵,满足 $A^2+A-6E=0$ 。证明
 - (1) r(A+3E)+r(A-2E)=n;
 - (2) A能相似于对角阵,并求行列式 $|A^2-3E|$ 。
- 42. 已知矩阵 $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & y & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$ 有 1 个特征值为 3。(1) 试求: 常数 y ,以及矩阵

 (A^TA) 的特征值;(2)试求:可逆矩阵P,使得矩阵 $(AP)^T(AP)$ 为对角阵,并求出此对角阵。

43. 设
$$A$$
为 3 阶实对称矩阵,行列式 $|A|=0$,且 $A\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ 0 & -1 \end{pmatrix}$ 。又设 B 为对角阵、

(2) P 为可逆阵, $P^{-1}AP = B$ 。 试求: (1) 矩阵 $B \rightarrow P$; (2) 矩阵 A。