max
$$\{J(\omega) = \frac{\omega^{T} S_{B}(\omega)}{\omega^{T} S_{W}(\omega)}\}$$

where $S_{B} = (m_{b} - m_{1})(m_{2} - m_{1})^{T}$
 $S_{W} = \sum_{n \in C} (X_{n} - m_{1})(X_{n} - m_{1})^{T}$
 $+ \sum_{n \in C} (X_{n} - m_{2})(X_{n} - m_{2})^{T}$

Let's prove by constraint optimization.

 $m_{cc} \{\omega^{T} S_{B} \omega^{2}\} \cdots Cl\}$

Time we are only interested in obvection, largeth is not important.

Therefore, $(\omega^{T} S_{W}(\omega) = 1 - - - c_{2})$
 $m_{cc} \{\omega^{T} S_{B}(\omega)\}$ i.t. $\omega^{T} S_{W}(\omega) = 1 (\cdots (l), (2))$
 $(\omega; M) = (\omega^{T} S_{B}(\omega) - M(\omega^{T} S_{W}(\omega) - 1)$

 $\frac{\partial}{\partial w} \left((\omega ; \mu) = 2 \int_{\mathcal{B}} (\omega - 2\mu) \int_{\mathcal{W}} (\omega - 2\mu) d\omega d\omega \right)$

