Preamble

[1 | 2 cells hidder

Data

Diffusion Coefficient

```
1 #data_list = list(zip())
2
3 fig, (ax1, ax2) = plt.subplots(2, figsize = (12, 8), sharex=False, sharey=True, layout='constrained')
4
4
5 ## List of tracks sorted by size. Length of list determines the readability of the plots
6 ######## Slice the list length by changing the integer i; here [0:i] and here [0:i]
7 zipped_list = zip(np.arange(tracks_by_size.shape[0], dtype='int')[0:5], tracks_by_size.astype('int')[0:5])
8
9
10 # plotting loop
11 for i,j in zipped_list: # np.arange(tracks_by_size.shape[0]) # np.arange(0, 5)
12 t = np.arange(1, data_links['DISPLACEMENT'].loc[data_links['TRACK_ID'] == tracks_by_size[i]].shape[0]+1)*0.05
13 d = np.array(data_links['DISPLACEMENT'].loc[data_links['TRACK_ID'] == tracks_by_size[i]])*6.25*1e-4
14
15 ax1.plot(t, d, label=j)
16 ax2.stackplot(t, d)
17
18 # combining all plots from the loop
19 ax1.legend(loc='upper center', bbox_to_anchor=(1.025, 1.1), ncol=1, fancybox=True, shadow=True, title='Tracks (ID)')
20 fig.supxlabel(r'Track length, $t$ [s]');
21 fig.supxlabel(r'Track length, $t$ [s]');
22 fig.supxlabel(r'Particle Displacement Versus Time')
23 plt.ticklabel_format(style='scientific', axis='y', scilimits=(0,0), useMathText=False)
24 plt.show()
```



```
1 # units are wrong; need to be corrected in ImageJ before analysis.
2 # Good guide from JMU: https://www.jmu.edu/microscopy/resources/basic-image-processing-imagej.pdf
3 # Also read best practices for data analysis and presentation!
4
5 tracks_units
6 #file_tracks.sort_values(by=['TRACK_DURATION'], ascending=False)
```

N splits

N merges

N complex

Lgst gap

Duration

Min spee

	TRACK_ID	TRACK_DURATION	TRACK_DISPLACEMENT		
3	0.0	0.05	0.000040	1.637996e-09	8.189981e-09
4	1.0	0.10	0.000005	2.503631e-11	6.259077e-11
5	2.0	0.05	0.000029	8.307299e-10	4.153649e-09
6	3.0	0.10	0.000044	1.964109e-09	4.910273e-09
7	4.0	0.05	0.000064	4.106850e-09	2.053425e-08
11282	11279.0	0.05	0.000063	4.000436e-09	2.000218e-08
11283					
11284	11281.0	0.05	0.000076	5.753501e-09	2.876751e-08
11285	11282.0	0.05	0.000056	3.157387e-09	1.578693e-08
11286	11283.0	0.05	0.000012	1.392466e-10	6.962329e-10

1 Label

Index

ID

N spots

N gaps

1 # histogram using Seaborn + matplotlib
2
3 plot = sns.displot(data=df, x="D", kind="hist", kde=False, bins = 75, aspect = 1.5, legend=True)
4 plot.figure.subplots_adjust(top=0.9);
5 plt.xlim(-0.le-6, None)
6 plot.figure.suptitle("Histogram of Diffusion Constants");
7 plot.set(xlabel=r'Diffusion Coefficient, \$D\$ \$\left[\mathrm{cm}{^2}/\mathrm{s}{} \right]\$', ylabel='Absolute Frequency', xlim=(None, 2.5e-6));


```
1 # histogram + kernel density estimate (KDE) plot
2
3 plot = sns.displot(data=df, x="D", kind="hist", kde=True, bins = 75, aspect = 1.5)
4 plot.figure.subplots_adjust(top=0.9);
5 plot.figure.suptitle("Histogram of Diffusion Constants With KDE Plot");
6 plt.xlim(-0.1e-6, None)
7 plot.set(xlabel=r'Diffusion Coefficient, $D$ $\left[ \mathrm{cm}{^2}/\mathrm{s}{} \right]$', ylabel='Absolute Frequency', xlim=(None, 2.5e-6));
8 plt.legend(labels=["KDE","Histogram"]); # kernel density estimate (KDE) plot
```

