CQS Summer Institute: Machine Learning and Statistics in R

Matthew S. Shotwell, Ph.D.

Department of Biostatistics Vanderbilt University Medical Center Nashville, TN, USA

August 14, 2018

Course Overview

- ► Syllabus and R code:
- ► https://github.com/biostatmatt/cqs-ml-stat-r
- Monday: Intro and Data Management
- ► Tuesday: Supervised Learning Part 1
- ► Wednesday: Supervised Learning Part 2
- ▶ Thursday: Unsupervised Learning
- ► Friday: Statistical Inference

Machine learning

source: https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications

Supervised learning

- ► Have input ('features') AND output ('target')
- Create a model ('learner') using observed inputs and outputs
- ► Goal is to predict outputs from new inputs
- ► "Supervised" because both inputs and outputs to guide model
 - Supervised Learning Workflow

source: https://www.quora.com/What-is-pattern-recognition

Definitions: variable types

- quantitative e.g. blood pressure
- qualitative e.g. gender, a.k.a. categorical, discrete, factor, numeric codes for qualitative variables called 'targets'
- ▶ ordered e.g. numerical pain scale (0-10)

Definitions: supervised learning tasks

- ► regression model to predict quantitative output
- classification model to predict qualitative output
- ► regression or classification ordered output

Definitions: notation

► inputs - X

$$X = \left[\begin{array}{ccc} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{array} \right]$$

lacktriangle quantitative outputs - Y

$$Y = \left[\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \right]$$

- ▶ qualitative outputs G
- ightharpoonup transpose X^T
- ightharpoonup prediction \hat{Y}

Regression

▶ Find function f to predict Y: $\hat{Y} = \hat{f}(X)$

Regression

- ► To find f in $\hat{Y} = \hat{f}(X)$, need an **objective function**:
- ▶ Least squared error: minimize $1/n \sum_{i=1}^{n} (y_i f(x_i))^2$
- Least absolute error: minimize $1/n\sum_{i=1}^{n}|y_i-f(x_i)|$
- ▶ and need to select a class of models f(X):
- ▶ linear models:

$$f(X) = X\beta$$

k-nearest neighbor:

$$f(X) = \frac{1}{k} \sum_{x_i \in N_k(X)} y_i$$

Linear regression (LS)

▶ Given $n \times p$ matrix X, predict Y ($n \times 1$ matrix) as follows:

$$\hat{Y} = \hat{f}(X) = X\hat{\beta}$$

where $\hat{\beta}$ is the value that minimizes the sum of squared error in the training data residual mean of squared errors:

$$1/n\sum_{i=1}^{n}(y_i-x_i\beta)^2$$

▶ The R function 'lm' will estimate β in this way

k-nearest neighbor regression (kNN)

▶ Predict \hat{Y} corresponding to X by averaging the Y values of the k nearest neighbors to X:

$$\hat{Y}(X) = \frac{1}{k} \sum_{x_i \in N_k(X)} y_i$$

▶ $N_k(X)$ is set of k points nearest X, as determined by a distance metric, e.g., the Euclidean distance:

$$d(X, X') = \sqrt{(X - X')^T (X - X')}$$

- ► k parameters is a 'smoothing parameter' or 'tuning parameter'
- ► 'caret::knnreg' implements kNN regression with Euclidean dist.

LS vs. NN method: flexibility, bias-variance

- ► LS is a parametric method; limited flexibility
- \blacktriangleright NN is a semiparametric method; very flexible, tunable using k
- ► LS cannot automatically discover complex associations
- ► NN can automatically discover complex associations (given enough data)
- ► However, LS can be made more flexible by making the linear predictor more flexible, using 1) more predictors, 2) predictor interactions, and 3) nonlinear transformations of predictors (e.g., splines)
- ▶ more flexibility results in less bias, more variance in estimator

R Code for LS and kNN

Classification (binary case)

- lacktriangle Think of \hat{Y} as the probability of a '1' outcome
- ▶ The predicted class \hat{G} is '1' if $\hat{Y} > 0.5$ and '0' otherwise
- ► Can often estimate \hat{Y} in a manner similar to regression (e.g., LS and NN).

Classification example

- ► Y- qualitative (binary) outcome (orange 1, blue 0)
- $ightharpoonup X_1$ quantitative predictor
- $ightharpoonup X_2$ quantitative predictor
- lacktriangle classification rule: $\hat{G}=$ orange if $\hat{Y}>0.5$ else blue

Linear classification

Elements of Statistical Learning (2nd Ed.) © Hastie, Tibshirani & Friedman 2009 Chap 2

Linear Regression of 0/1 Response

FIGURE 2.1. A classification example in two dimensions. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression. The line is the decision boundary defined by $x^T \hat{\beta} = 0.5$. The orange shaded region denotes that part of input space classified as ORANGE, while the blue region is classified as BLUE.

k-nearest neighbor classification

Elements of Statistical Learning (2nd Ed.) @Hastie, Tibshirani & Friedman 2009 Chap 2

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two dimensions as in Figure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence chosen by majority vote amongst the 15-nearest neighbors.

1-Nearest Neighbor Classifier

FIGURE 2.3. The same classification example in two dimensions as in Figure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then predicted by 1-nearest-neighbor classification.

Evaluating the model and 'optimism'

- ► Need a mechanism to evaluate predictive quality of model and thus tune the model.
- ▶ The **prediction error** of a model is evaluated using the same objective function for estimation (e.g., mean of squared errors: $1/n\sum_{i=1}^{n}(y_i-x_i\beta)^2$). However, this can be an *optimistic* estimate if computed using the training data.
- ► The **training error** is computed on the training data
- ► The **test error** is computed on new data
- ► The **optimism** is the difference in training and test error
- ▶ Training error is optimistic, especially when the model is overfitted. It should not be used to select tuning parameters: for k-NN, k=1 results in zero training error; the model is "overfitted"
- ▶ Need an estimate of test error to select tuning parameters

FIGURE 2.4. Misclassification curves for the simulation example used in Figures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test sample of size 10,000. The orange curves are test and the blue are training error for k-nearest-neighbor classification. The results for linear regression are the bigger orange and blue squares at three degrees of freedom. The purple line is the optimal Bayes error rate.

FIGURE 2.11. Test and training error as a function of model complexity.

Estimating test error: testing/training split

- Split data into training and testing data
- ► Use training data to build models
- ► Use testing data to evaluate models
- ► Simple, but not most efficient use of data

Estimating test error: k-fold cross validation

- ► Split data into k subsets or 'folds'
- ▶ Use k-1 subsets to build model
- ► Use holdout subset to evaluate model
- Repeat for all k permutations
- ▶ Results in k estimates of test error; use mean and sd
- More complicated, but also more efficient use of data

Estimating test error: combined CV and train/test

Supervised learning workflow can involves both train/test and CV:

Many model-building functions do cross-validation automatically.

Estimating test error: k-fold CV one-SD rule

- ► k-fold CV generates k estimates
- ► Can use their SD to gauge uncertainty
- ► When tuning a model, use the one-SD rule for parsimony
- Select least complex model whose CV error is within one SD of the best model

R Code for kNN 5-fold CV

Classification and regression trees (CART)

- trees partition feature space into a set of rectangles
- ▶ fit simple model in each partition (e.g., constant)
- ► for regression, mean within each partition
- for binary classification, compute probability within each partition
- trees are flexible like kNN, can automatically discover complexity

- top-left: partitions can't be described by tree
- top-right: partitions are recursive, can be described by tree
- bottom-left: tree describing top-right partitions
- bottom-right: regression surface for top-right partitions
- trees have (root, internal, and terminal) nodes and branches
- terminal nodes also called leaf node

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a two-dimensional feature space by recursive binary splitting, as used in CART, applied to some fake data. Top left panel shows a general partition that cannot be obtained from recursive binary splitting. Bottom left panel shows the tree corresponding to the partition in the top right panel, and a perspective plot of the prediction surface appears in the bottom right panel.

Tree-growing and tuning parameter

- ▶ step 1. find optimal split (on all possible variables)
- ▶ step 2. within each resulting partition find next optimal split
- ► repeat steps 1 and 2 until stopping criterion met
- ► tree complexity is a tuning parameter
- ightharpoonup one approach: grow a large tree, stopping only when minimum node size (i.e., minimum number of $x_i \in R_m$) is reached, then "prune" tree back using a "cost-complexity" criterion

Pros and cons of (single) trees

Pros:

- ▶ interpretable (nice tree structure)
- ► flexible
- ► easily handle quant. and qual. data
- ▶ simple to implement

Cons:

- instability; sample variability in tree structure
- ► lack of smoothness of prediction surface in feature space
- categorical features difficult to split

R Code for CART: 'rpart'

- ► Random forests fits many trees to the same dataset and aggregates predictions across trees. Each tree is fit to a slightly modified version of the dataset, which is generated by resampling (bootstrap). This is generically called 'bagging' or 'bootstrap aggregation'.
- ► regression: average predictions
- ► classification: avarage probs. or "committee vote"
- reduces variance of estimated predictor

- resamples are not independent samples
- bagged trees are correlated
- ▶ weakens the "wisdom of crowds"
- ► random forests generates *de-correlated* trees
- ► performance similar to boosting for many problems

- ▶ in bagging, trees are identically distributed (i.d.)
- lacktriangleright ightarrow bias of bagged trees is same as individual tree
- ightharpoonup ightharpoonup can only hope to improve variance
- ▶ in boosting, trees are adaptive, not i.d.

▶ variance of the average of B i.d. random variables with variance σ^2 and pairwise correlation ρ :

$$\rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$$

- \blacktriangleright as B grows, second term vanishes
- ightharpoonup can only reduce first term by reducing ho
- ▶ random forests: reduce ρ without increasing σ^2 too much

- ► random forests modified the tree-growing procedure
- \blacktriangleright before each split, select $m \leq p$ input variables at random as candidates for splitting
- typically $m = \lfloor \sqrt{p} \rfloor$ for regression
- typically $m=\lfloor p/3 \rfloor$ for classification
- ► random forest predictor after B trees grown is

$$hat f_{\rm rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T(x; \Theta_b)$$

Resampling (bootstrap)

source: https://slideplayer.com/slide/8340508/

Random forests tree building

- ▶ before each tree grown, resample is split into training (in bag) and testing (out of bag; OOB); built-in CV
- ► random forests modifies the tree-growing procedure
- ightharpoonup before each split, select $m \leq p$ input variables at random as candidates for splitting

Random forest

Pros and cons of random forest

Pros:

- more stable (less variance) than single trees
- ► better predictive performance
- ► flexible
- ► easily handle quant. and qual. data

Cons:

- ► complex to implement
- ▶ less interpretable (cannot represent as tree)
- ► lack of smoothness of prediction surface in feature space
- ► categorical features difficult to split

R Code for random forest: randomForest