MAPR1400 - Projet en cinétique appliquée

Polymérisation du méthacrylate de méthyle

Année académique 2015-2016

DISPAS David, 7189-12-00 PAQUET Arnaud, 3668-13-00

1 Applications du plexiglas dans la vie courante

Le polyméthacrylate de méthyle (PMMA) est un polymère thermoplastique transparent. Plus connu sous le nom de plexiglas,...

2 Evolution des concentrations

La réaction que nous analysons est une polymérisation radicalaire. Elle peut donc être décomposée en les étapes suivantes :

2.1 Amorçage

L'amorceur utilisé est une molécule d'azobisisobutyronitrile (AIBN).

$$AIBN \xrightarrow{k_0} N_2 + 2 A^{\bullet}$$
 (1)

La vitesse de décomposition de l'AIBN est très lente part rapport à celle de la seconde réaction. Seule une fraction f des radicaux créés est efficace pour réagir ensuite de la manière suivante :

$$\mathbf{A}^{\bullet} + \mathbf{M} \xrightarrow{k_i} \mathbf{R}_1 \tag{2}$$

où M est un monomère de MMA et Rj est une chaine en croissance composée d'un A auquel j monomères M se sont ajoutés. Nous pouvons utiliser l'hypothèse de quasi-stationnarité du radical (HQSR) $\frac{d[A^{\bullet}]}{dt} = 0$ et ainsi obtenir que $2fk_0[AIBN] = k_i[A^{\bullet}][M] = r_i$.

2.2 Propagation

Les chaînes deviennent de plus en plus grandes en annexant des monomères. Pour une chaine de longueur 1 par exemple :

$$R_1 + M \xrightarrow{k_p} R_2$$
 (3)

Nous pouvons généraliser pour une longueur arbitraire :

$$R_{i} + M \xrightarrow{k_{p}} R_{i+1} \tag{4}$$

Les k_p de toutes les réactions de propagation sont considérés égaux, ce qui n'est théoriquement valable que pour des grandes chaines. Ceci est l'hypothèse d'équiréactivité de Flory.

2.3 Terminaison

Il existe deux types de terminaisons : la recombinaison et la dismutation. Travaillant à la température de 22.5° C, nous négligerons ici la seconde qui ne se produit qu'à plus haute température. La réaction de recombinaison est la suivante :

$$R_n + R_m \xrightarrow{k_t} P_{n+m}$$
 (5)

où P_j est une molécule de PMMA de longueur j. Pour simplifier, nous ferons l'hypothèse que k_t ne dépend pas de la longueur des chaines.

2.4 Transfert

Nous disposons de plusieurs agents de transfert Tr pour lesquels nous connaissons les $C_s = \frac{k_s}{k_p}$. Ces derniers peuvent neutraliser une chaine et produire un radical qui pourra amorcer une nouvelle chaine :

$$R_j + TrH \xrightarrow{k_s} R_j H + Tr^{\bullet}$$
 (6)

$$\operatorname{Tr}^{\bullet} + \operatorname{M} \xrightarrow{k_i, tr} \operatorname{R}_1$$
 (7)

Nous faisons l'hypothèse que k_s est indépendant de la longueur des chaines.

2.5 Calcul des lois de concentrations

• Commençons par calculer la concentration en AIBN. Puisque le composé n'apparait que dans la première équation, l'expression de sa vitesse de disparition est simplement : $-\frac{d[AIBN]}{dt} = k_0[AIBN]$. On trouve aisément la solution :

$$[AIBN] = [AIBN]_{t=0}e^{-k_0t}$$

.

• La vitesse d'apparition globale des chaines R n'est autre que la somme des vitesses r_m de chaque chaine R_m . Nous pouvons trouver que :

$$r_1 = \frac{d[R_1]}{dt} = r_i + k_{i,tr}[Tr^{\bullet}][M] - k_p[R_1][M] - k_t[R_1] \sum_{j=1}^{\infty} [R_j] - k_s[R_1][TrH]$$

$$r_2 = \frac{d[R_2]}{dt} = k_p[R_1][M] - k_p[R_2][M] - k_t[R_2] \sum_{j=1}^{\infty} [R_j] - k_s[R_2][TrH]$$

$$r_m = \frac{d[R_m]}{dt} = k_p[R_{m-1}][M] - k_p[R_m][M] - k_t[R_m] \sum_{j=1}^{\infty} [R_j] - k_s[R_m][TrH]$$

Par conséquent :

$$\sum_{m=1}^{\infty} r_m = r_i + k_{i,tr}[Tr^{\bullet}][M] - k_t \sum_{m=1}^{\infty} [R_m] \sum_{j=1}^{\infty} [R_j] - k_s \sum_{m=1}^{\infty} [R_m][TrH]$$
 (8)

L'HQSR appliquée sur Tr^{\bullet} nous donne : $\frac{d[Tr^{\bullet}]}{dt} = 0 = k_{i,tr}[Tr^{\bullet}][M] - k_s \sum_{m=1}^{\infty} [R_m][TrH]$. Nous pouvons donc simplifier notre expression. De plus, $\sum_{j=1}^{\infty} [R_j] = [R]$:

$$\sum_{m=1}^{\infty} r_m = r_i - k_t [R]^2 \tag{9}$$

Finalement, l'HQSR utilisée sur les radicaux R nous permet de dire que $\sum_{m=1}^{\infty} r_m = 0$ et donc que $r_i = k_t[R]^2 = 2fk_0[AIBN]$. La concentration en R est alors :

$$[R] = (\frac{2fk_0[AIBN]}{k_t})^{\frac{1}{2}}$$

• Calculons la concentration en agent de transfert. Ce composé n'apparait que dans une réaction, donc : $r_{TrH} = -\frac{d[TrH]}{dt} = k_s[R][TrH]$. Il s'en suit que $ln([TrH]) = -k_s \int_0^t [R(t')dt']$ ce qui donne après intégration :

$$ln[TrH] = \frac{2k_s}{k_0}[R]_{t=0}(e^{-k_0t/2} - 1) = \frac{2k_s}{k_0}([R] - [R]_{t=0})$$
$$[TrH] = e^{\frac{2k_s}{k_0}([R] - [R]_{t=0})}$$

•Passons maintenant à la concentration en monomères M. La vitesse de disparition de M est $r_M = -\frac{d[M]}{dt} = r_i + k_{i,tr}[M][Tr^{\bullet}] + k_p[M][R]$. En faisant l'hypothèse des chaines longues, nous pouvons considérer que les 2 vitesses d'amorçage sont négligeables par rapport à toutes celles de propagation. On a donc que $-\frac{d[M]}{dt} \cong k_p[M][R]$ ce qui se résout exactement de la même manière que pour l'agent de transfert.

$$[M] = e^{\frac{2k_p}{k_0}([R] - [R]_{t=0})}$$

•La vitesse d'apparition de PMMA est donnée par $\frac{d[P]}{dt} = k_t[R]^2 + k_s[R][TrH]$. On obtient alors la fonction à intégrer pour trouver [P]. En développant et mettant les $[R]_{t=0}$ en évidence, on a :

$$[P] = \int_0^t R_0^2 k_t e^{-k_0 t'} + k_s R_0 e^{\frac{-k_0 t'}{2}} e^{2\frac{k_s}{k_0} R_0 (e^{-k_0 t'/2} - 1)} dt'$$

Le résultat de cette intégrale est :

$$[P] = -\frac{k_t[R]_{t=0}^2 e^{-k_0 t}}{k_0} + \frac{k_t[R]_{t=0}^2}{k_0} + k_s[R]_{t=0} e^{\frac{k_s[R]_{t=0}(e^{\frac{-k_0 t}{2}} - 1)}{k_0} - \frac{k_0 t}{2}} - k_s[R]_{t=0}$$

$$[P] = 2f[AIBN]_{t=0}(1 - e^{-k_0 t}) + k_s[R]_{t=0}(e^{\frac{k_s[R]_{t=0}(e^{\frac{-k_0 t}{2}} - 1)}{k_0} - \frac{k_0 t}{2}} - 1)$$

2.6 Degré de polymérisation

Soit α la probabilité d'allongement d'une chaine radicalaire en croissance :

$$\alpha = \frac{k_p[R][M]}{k_p[R][M] + k_s[R][TrH] + k_t[R]^2} = \frac{1}{1 + \frac{k_s}{k_p}e^{\frac{k_s}{k_p}} + \frac{k_t[R]_{t=0}(e^{\frac{-k_0t}{2}} - 1)}{k_pe^{\frac{-k_0t}{2}} + \frac{k_t[R]_{t=0}(e^{\frac{-k_0t}{2}} - 1)}{k_0}}}$$

On obtient le degré de polymérisation moyen en nombre (DPn) ou en poids (DPw) comme des fonctions dépendant du temps :

$$DPn = \frac{2}{1 - \alpha}$$

$$DPw = \frac{2+\alpha}{1-\alpha}$$

- 3 Influence des différents effets observés
- 4 Epuisement de l'amorceur
- 5 Effets de la température