Университет ИТМО

Факультет программной инженерии и компьютерной техники

Теория надежности

Лабораторная работа №2 Марковские модели надежности

> Лабушев Тимофей Нестеров Дали Группа Р3402

Санкт-Петербург 2020

Вариант 8

- Число параллельно соединенных одинаковых элементов: 5
- Интенсивность отказов: 0,0002
- Интенсивность восстановлений: 0.3
- Число отказов, после которого начинается восстановление: 1

После любого восстановления сразу запускается в работу, при этом отказы возможны.

Задание

- 1. Построить граф марковской модели
- 2. Составить алгебраические уравнения
- 3. Определить стационарный коэффициент готовности
- 4. Составить дифференциальные уравнения
- 5. Построить график зависимости нестационарного коэффициента готовности от времени

Построение графа марковской модели

При построении графа следует стремиться к минимизации числа состояний. В рассматриваемом случае это возможно из-за симметричности системы, т.е. наличия идентичных параллельно соединенных элементов. Выделим следующие состояния:

- 1. все элементы работоспособны;
- 2. один элемент отказал и восстанавливается (восстановление начинается после первого отказа);
- 3. два элемента отказали, происходит восстановление;
- 4. три элемента отказали, происходит восстановление;
- 5. четыре элемента отказали, происходит восстановление;
- 6. все элементы отказали, происходит восстановление.

Построим граф, обозначив интенсивность отказов как λ , а восстановлений — как μ :

Рисунок 1. Граф марковской модели

Составление алгебраических уравнений и определение стационарного коэффициента готовности

Составим матрицу интенсивности переходов по графу:

```
lambda <- 0.0002
mu < -0.3
states <- c("1", "2", "3", "4", "5", "6")
transition_rate_M <- matrix(</pre>
  data = c(
    0, 5*lambda, 0, 0, 0, 0,
   mu, 0, 4*lambda, 0, 0, 0,
   0, mu, 0, 3*lambda, 0, 0,
    0, 0, mu, 0, 2*lambda, 0,
   0, 0, 0, mu, 0, lambda,
   0, 0, 0, 0, mu, 0
  ),
  byrow = T, ncol = 6, dimnames = list(states, states))
diag(transition rate M) <- -rowSums(transition rate M)</pre>
transition rate M
##
         1
                  2
                                          5
## 1 -0.001 0.0010 0.0000 0.0000
                                    0.0000 0.0000
## 2 0.300 -0.3008 0.0008 0.0000
                                    0.0000 0.0000
## 3 0.000 0.3000 -0.3006 0.0006 0.0000 0.0000
## 4 0.000 0.0000 0.3000 -0.3004
                                   0.0004 0.0000
## 5 0.000 0.0000 0.0000 0.3000 -0.3002 0.0002
## 6 0.000 0.0000 0.0000 0.0000
                                   0.3000 -0.3000
```

Произведем расчет стационарных вероятностей:

Видим, что наиболее вероятно первое состояние системы, что объясняется значительно большей интенсивностью восстановлений, чем отказов.

Определение стационарного коэффициента готовности

Готовность системы определяется как сумма ее работоспособных состояний. Для определения стационарного коэффициента готовности просуммируем стационарные вероятности состояний p_1 - p_5 :

```
sum(steady_ps[1:5])
## [1] 1
```

$$K_r = p_1 + p_2 + p_3 + p_4 + p_5 = 1$$

Составление дифференциальных уравнений

Составим для каждого состояния уравнения, руководствуясь следующими правилами:

- в левой части записывается производная по времени t;
- в правой части записывается сумма произведений:
 - интенсивности перехода из рассматриваемого состояния с отрицательным знаком на его вероятность,
 - интенсивности перехода в рассматриваемое состояние с положительным знаком на вероятность исходного состояния.

$$\frac{d}{dt}P_1(t) = -5\lambda P_1(t) + \mu P_2(t),$$

$$\frac{d}{dt}P_2(t) = -(4\lambda + \mu)P_2(t) + \mu P_3(t) + 5\lambda P_1(t),$$

$$\frac{d}{dt}P_3(t) = -(3\lambda + \mu)P_3(t) + \mu P_4(t) + 4\lambda P_2(t),$$

$$\frac{d}{dt}P_4(t) = -(2\lambda + \mu)P_4(t) + \mu P_5(t) + 3\lambda P_3(t),$$

$$\frac{d}{dt}P_5(t) = -(\lambda + \mu)P_5(t) + \mu P_6(t) + 2\lambda P_4(t),$$

$$\frac{d}{dt}P_6(t) = -\mu P_6(t) + \lambda P_5(t)$$

Построение графика зависимости нестационарного коэффициента готовности от времени

Нестационарный коэффициент готовности для рассматриваемой системы равен $K_r = p_1 + p_2 + p_3 + p_4 + p_5$.

Для решения дифферециальных уравнений найдем экспоненту матрицы интенсивностей переходов, умноженную на время *t*:

```
initial_state <- 1
p <- function(t, i) expm(t*transition_rate_M)[initial_state, i]
k_r <- function(t) p(t, 1) + p(t, 2) + p(t, 3) + p(t, 4) + p(t, 5)</pre>
```

Построим график зависимости:

```
t <- seq(0, 100, 0.2)

par(mar = c(4, 9, 2, 2))
plot(t, sapply(t, k_r), type="l", axes = F, xlab="Время", ylab="Коэффициент
готовности", ylim=c(0.9999999999999, 1.0000000000000001))

axis(1, at=c(0, 100))
axis(2, at=c(0.9999999999999, 1.00000000000), labels=c(0.999999999999, 1.000000000000), las = 2)
```


Время Рисунок 2. График зависимости нестационарного коэффициента готовности от времени

С течением времени коэффициент готовности снижается, но остается в пределах 1.

Вывод

В ходе выполнения работы произведен расчет стационарного коэффициента готовности системы и построена зависимость нестационарного коэффициента готовности от времени путем представления системы как марковского процесса.