Scretch paper

A.A. & V.V. Università di Torino February 2019

Abstract Poche idee, ben confuse.

1 Introduction

2 Preliminaries

3 Uniform samples

Fix a tuple of variables x and let $\bar{x} = \langle x_i : i < \omega \rangle$, where $|x_i| = |x|$. For $p(\bar{x}) \in S(\mathcal{U})$ and $\psi(x) \in L(\mathcal{U})$ we define (n > 1)

$$|\operatorname{Av}_{p \upharpoonright n} \psi(x)| = \frac{1}{n} \Big| \big\{ i < n : p(\bar{x}) \vdash \psi(x_i) \big\} \Big|$$

If $p(\bar{x})$ is the type containing $\bar{x} = \bar{a}$ for some $\bar{a} \in \mathcal{U}^{|x| \cdot \omega}$, we write $\operatorname{Av}_{\bar{a} \upharpoonright n} \psi(x)$.

3.1 Definition We say that $p(\bar{x}) \in S(\mathcal{U})$ is a sample if the limit below exists for every formula $\psi(x) \in L(\mathcal{U})$.

$$\operatorname{Av}_p \psi(x) = \lim_{n \to \infty} \operatorname{Av}_{p \upharpoonright n} \psi(x).$$

Let $\varphi(x,z) \in L$ be given. We say that $p(\bar{x})$ is a φ -sample if the formula $\psi(x)$ above is restricted to range over those of the form $\varphi(x,b)$ for $b \in \mathcal{U}^{|z|}$.

We say that $p(\bar{x})$ is a uniform φ -sample if it is a sample and for every $\varepsilon > 0$ there is a k such that $\operatorname{Av}_{p \mid n} \varphi(x, b)$ is within ε from $\operatorname{Av}_p \varphi(x, b)$ for all n > k and $b \in \mathcal{U}^{|z|}$.

We say that $p(\bar{x})$ is a uniform sample if it is a uniform φ -sample for all $\varphi(x,z) \in L$.

Define

$$\operatorname{Av}_{p \upharpoonright n} q(x) = \inf \left\{ \operatorname{Av}_{p \upharpoonright n} \psi(x) : \psi(x) \in q \right\}$$

Clearly the infimum above is attained.

3.2 Proposition *If* $p(\bar{x})$ *is a sample and* $q(x) \subseteq L(\mathcal{U})$ *, then*

$$\lim_{n\to\infty}\operatorname{Av}_{p\restriction n}q(x) \quad = \quad \inf\left\{\operatorname{Av}_p\varphi(x) \ : \ \varphi(x)\in q\right\}$$

Proof Fix $\varepsilon > 0$. Let $\varphi(x) \in q$ be such that $\operatorname{Av}_p \varphi(x)$ is within ε from the infimum above. Let k be such that $\operatorname{Av}_{p \upharpoonright n} \varphi(x)$ is within ε from $\operatorname{Av}_p \varphi(x)$ for every n > k. Then, for every n > k,

$$\operatorname{Av}_{p \upharpoonright n} q(x) \leq \operatorname{Av}_{p \upharpoonright n} \varphi(x)$$

$$\leq \operatorname{Av}_{p} \varphi(x) + \varepsilon$$

 $\leq \inf \left\{ \operatorname{Av}_{p} \varphi(x) : \varphi(x) \in q \right\} + 2\varepsilon$

For the converse inequality we pick a sequence of integers n_i a formula $\psi_i(x) \in q$ as follows. Start with $n_0 = 1$ and $\psi_0 = \top$. Then, inductively let n_{i+1} be such that $\operatorname{Av}_{p \upharpoonright n_{i+1}} q(x) \leq \operatorname{Av}_p \psi_i(x) + \varepsilon$. Let $\operatorname{Av}_{p \upharpoonright n_{i+1}} \psi_i(x) = \operatorname{Av}_{p \upharpoonright n_{i+1}} q(x)$.

such that $\operatorname{Av}_{p \upharpoonright n_i} \psi_i(x) = \operatorname{Av}_{p \upharpoonright n_i} q(x)$. We can also require that $\operatorname{Av}_{p \upharpoonright n_{i+1}} \psi_{i+1}(x) \le \operatorname{Av}_p \psi_i(x) + \varepsilon$. In fact, first chose n_{i+1} such that $\operatorname{Av}_{p \upharpoonright n_{i+1}} q(x) \le \operatorname{Av}_p \psi_i(x) + \varepsilon$ then

Then for all n

$$\inf \left\{ \operatorname{Av}_{p} \varphi(x) : \varphi(x) \in q \right\} \leq \inf \left\{ \operatorname{Av}_{p} \psi_{n}(x) : n < \omega \right\}$$

$$\leq \operatorname{Av}_{p \upharpoonright n} q(x) - \varepsilon \qquad \Box$$

3.3 Corollary Let $p(\bar{x})$ be a sample finitely satisfied in M. Let $q'(x) = q(x) \cup \{\varphi(x)\}$ for $q(x) \in S(M)$ and $\varphi(x) \in L(\mathcal{U})$. Then $Av_p q'(x)$ is either 0 or 1.

Proof Under the assumptions of the corollary, for every $\varepsilon > 0$ there is an n and a tuple $\bar{a} \in M^{|x| \cdot \omega}$ such that $\operatorname{Av}_{\bar{a} \upharpoonright n} q'(x)$ is within ε from $\operatorname{Av}_p q'(x)$. As $\operatorname{Av}_{\bar{a} \upharpoonright n} q'(x)$

- **3.4 Proposition** Let $\bar{x} = \langle x_i : i < \omega \rangle$ and $|x_i| = |x|$ and let $p(\bar{x}) \in S(\mathcal{U})$. Then the following are equivalent
 - 1. $p(\bar{x})$ is a uniform global sample;
 - 2. for every $\varepsilon > 0$, there is an n and a formula $\vartheta(\bar{x}) \in p$ such that $\operatorname{Av}_n(\bar{a}; \varphi(x, b))$ is within ε from $\operatorname{Av}_p \varphi(x, b)$ for all $b \in \mathbb{U}^{|z|}$ and all $\bar{a} \models \vartheta(\bar{x})$.

Vale anche/solo/nemmeno la versione non uniforme della proposizione?

Note that, if $p(\bar{x})$ is definable, say over M, then there is a formula $\psi_{m/n}(z) \in L(M)$ such that

$$\psi_{m/n}(z) \Leftrightarrow \operatorname{Av}_n(p(\bar{x}); \varphi(x,z)) = \frac{m}{n}.$$

4 References

- Pandelis Dodos and Vassilis Kanellopoulos, Ramsey theory for product spaces, Mathematical Surveys and Monographs, vol. 212, American Mathematical Society, 2016.
- [2] Domenico Zambella, *A crèche course in model theory*, AMS Open Math Notes, 2018. (The link points to the github version).