VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS INSTITUTAS INFORMATIKOS KATEDRA

Laboratorinis darbas

Lygtis su atskiriamais kintamaisiais, homogeninė diferencialinė lygtis, tiesinė diferencialinė lygtis

Atliko: 3 kurso 2 grupės studentė

Gabrielė Rinkevičiūtė

Turinys

1.	Lygtis su atskiriamais kintamaisiais	2
	1.1. Lygties sprendimas	2
	1.2. Rezultatai gauti su MATLAB	4
	1.3. Grafinis sprendinių atvaizdavimas	4
2.		
	2.1. Lygties sprendimas	7
	2.2. Rezultatai gauti su MATLAB	8
	2.3. Gautų sprendinių skirtumai	9
	2.4. Grafinis sprendinių atvaizdavimas	9
3.	Tiesinė diferencialinė lygtis	12
	3.1. Lygties sprendimas	
	3.2. Rezultatai gauti su MATLAB	13
	3.3. Grafinis sprendinio atvaizdavimas	14
4.	Priedai	15
	4.1. Failas "utils/plot_prep.m"	15
	4.2. Failas "exercise_01.m"	15
	4.3. Failas "exercise_02.m"	17
	4.4. Failas "exercise_03.m"	21

1. Lygtis su atskiriamais kintamaisiais

Išspręskite diferencialinę lygtį. Palyginkite rastą sprendinį su sprendiniu, gaunamu naudojant kompiuterinę programą. Nubraižykite keletą integralinių kreivių (ne mažiau kaip 3).

$$x\sqrt{3+y^2}dx + 2y\sqrt{1+x^2}dy = 0 (1)$$

1.1. Lygties sprendimas

Pradinę lygtį persitvarkom ir gaunam

$$x\sqrt{3+y^2}dx = -2y\sqrt{1+x^2}dy \left| \cdot \frac{1}{\sqrt{1+x^2}\sqrt{3+y^2}}, \sqrt{3+y^2} \neq 0, \sqrt{1+x^2} \neq 0 \right|$$
$$-\int \frac{2y}{\sqrt{3+y^2}}dy = \int \frac{x}{\sqrt{1+x^2}}dx$$
$$-\int \frac{d(3+y^2)}{\sqrt{3+y^2}} = \frac{1}{2}\int \frac{d(1+x^2)}{\sqrt{1+x^2}}$$

Įsivedam keitinius: $u = 3 + y^2$ ir $v = 1 + x^2$. Iš čia gaunam, kad

$$-\int \frac{du}{\sqrt{u}} = \frac{1}{2} \int \frac{dv}{\sqrt{v}}$$

Suintegrave gaunam:

$$-2\sqrt{u} = \sqrt{v}$$

Įsistatom atgal keitinius, gaunam:

$$-2\sqrt{3+y^2} = \sqrt{1+x^2} + C, C \in R$$

Pakėlę abi puses kvadratu, gauname:

$$4(3+y^2) = 2C\sqrt{1+x^2} + C^2 + 1 + x^2$$

$$y^{2} = \frac{2C\sqrt{1+x^{2}} + C^{2} + 1 + x^{2}}{4} - 3$$

Ištraukę šaknį gauname pradinės lygties bendrąjį sprendinį:

$$y = \pm \frac{\sqrt{2C\sqrt{1+x^2} + C^2 - 11 + x^2}}{2}, C \in R$$

Tačiau reikia nepamiršti patikrinti, ar $\sqrt{3+y^2}=0$, $\sqrt{1+x^2}=0$ nėra sprendiniai. Pradėkime nuo $\sqrt{1+x^2}=0$. Pakėlę kvadratu abi puses, gauname

$$x^2 = -1$$

Iš čia gaunam, kad

$$x = \sqrt{-1} = i$$

Norėdami patikrinti, ar šis reiškinys yra pradinės lygties sprendinys, turim jį įsistatyti į pradinę diferencialinę lygtį ir pažiūrėti, ar gauname tapatybę. Įsistatę gauname

$$i\sqrt{3+y^2}dx + 2y\sqrt{1+i^2}dy = 0 \cdot \frac{1}{dx}$$
$$i\sqrt{3+y^2} + 2y\sqrt{1-1}\frac{dy}{dx} = 0$$
$$i\sqrt{3+y^2} = 0$$

Taigi matome, kad gavome lygtį, ne tapatybę, o vadinasi $\sqrt{1+x^2}=0$ nėra pradinės diferencialinės lygties sprendinys.

Analogiškai patikrinkime ir $\sqrt{3+y^2}=0$, gauname, kad

$$y^{2} = -3$$
$$y = \pm \sqrt{-3}$$
$$y = \pm \sqrt{3}i$$

Įsistatę šias reikšmes į pradinę diferencialinę lygtį, gauname

$$x\sqrt{3 + (\sqrt{3}i)^2} + 2\sqrt{3}i\sqrt{1 + x^2}y' = 0$$
 (2)

$$x\sqrt{3 + (\sqrt{3}i)^2} + 2\sqrt{3}i\sqrt{1 + x^2}(\sqrt{3}i)' = 0$$
(3)

$$x\sqrt{3-3} + 2\sqrt{3}i\sqrt{1+x^2}0 = 0\tag{4}$$

$$0 \equiv 0 \tag{5}$$

Taigi matome, kad gauname tapatybę, o vadinasi $y=\sqrt{3}i$ yra atskirasis lygties sprendinys. Analogiškai darome ir gauname su $y=-\sqrt{3}i$.

Taigi apibendrinant, gauname, kad pradinės diferencialinės lygties sprendiniai yra

$$y = \pm \frac{\sqrt{2C\sqrt{1+x^2} + C^2 - 11 + x^2}}{2}, C \in R$$

$$y = \pm \sqrt{3}i$$

1.2. Rezultatai gauti su MATLAB

MATLAB pateikiami diferencialinės lygties (1.1) sprendiniai yra

$$y = \pm \frac{1}{2} \sqrt{4C_1^2 - 4C_1\sqrt{1+x^2} + x^2 - 11}$$
$$y = \pm \sqrt{3}i$$

Iš pirmo žvilgsnio gali pasirodyti, kad yra gaunamas kitoks sprendinys, tačiau ankstesnio skyrelio bendrąjį sprendinį pertvarkius ir vietoj C įsistačius $2C_1$, matome, kad gauname lygiai tą patį:

$$y = \pm \frac{\sqrt{2(2C_1)\sqrt{1+x^2} + (2C_1)^2 - 11 + x^2}}{2}, C_1 \in \mathbb{R}$$
$$y = \pm \frac{1}{2}\sqrt{4C_1\sqrt{1+x^2} + 4C_1^2 - 11 + x^2}$$
$$y = \pm \frac{1}{2}\sqrt{4C_1^2 - 4C_1\sqrt{1+x^2} + x^2 - 11}$$

Taigi gauti sprendinia tiek su MATLAB, tiek sprendžiant "ant popieriaus" yra tokie patys.

1.3. Grafinis sprendinių atvaizdavimas

Žemiau pateiktuose grafikuose yra matomi diferencialinės lygties bendrieji sprendiniai bei atskirieji sprendiniai.

1 pav. Lygties integralinės kreivės bendrajam sprendiniu
i $y=-\frac{\sqrt{2C\sqrt{1+x^2}+C^2-11+x^2}}{2}$

2 pav. Lygties integralinės kreivės bendrajam sprendiniui - $y=\frac{\sqrt{2C\sqrt{1+x^2}+C^2-11+x^2}}{2}$

3 pav. Lygties vienas iš atskirųjų sprendinių - $y=-\sqrt{3}i$

4 pav. Lygties vienas iš atskirųjų sprendinių - $y=\sqrt{3}i$

2. Homogeninė diferencialinė lygtis

Išspręskite diferencialinę lygtį. Palyginkite rastą sprendinį su sprendiniu, gaunamu naudojant kompiuterinę programą. Nubraižykite keletą integralinių kreivių (ne mažiau kaip 3).

$$xy' = y - \frac{y^3}{x^2} \tag{6}$$

2.1. Lygties sprendimas

Įvertinę tai, kad kiekviename kiekvieno nario laipsnis yra tas pat - lygus vienam, galime spręsti, jog lygtis yra homogeninė.

Homogenines lygtis pradedame spręsti nuo to, kad įsivedame keitinį u:

$$u = \frac{y}{x}$$

Iš čia gauname:

$$y = ux$$

$$y' = u'x + u$$

Įsistatę gautas reikšmes į pradinę lygtį gauname:

$$x(u'x + u) = ux - \frac{u^3x^3}{x^2}$$

Suprastinę ir sutraukę panašiuosius narius gauname:

$$xu' = -u^3$$

Gavę šią lygtį, galime ją spręsti, kaip paprastą pirmosios eilės diferencialinę lygtį:

$$x\frac{du}{dx} = -u^3 \left| \cdot \left(-\frac{dx}{xu^3} \right), x \neq 0, u \neq 0 \right|$$

$$\int u^3 du = -\int \frac{dx}{x}$$

$$-\frac{1}{2}u^{-2} = -\ln|x| + \frac{1}{2}C \left| \cdot (-2) \right|$$

$$u^{-2} = 2\ln|x| - C$$

Įsistatę $\frac{y}{x}$ vietoj keitinio u, gauname:

$$\frac{x^2}{y^2} = 2\ln|x| - C$$

Iš čia gauname, kad

$$y = \pm \frac{x}{\sqrt{2}\sqrt{\ln|x| - C}}$$

$$y=\pm\frac{x\sqrt{2}}{2}\sqrt{\frac{1}{\ln|x|-C}}$$

Ties šiuo žingsniu sprendimas nesibaigia, kadangi reikia patikrinti, ar u=0 ir x=0 tikrai nėra sprendiniai.

Jeigu u=0 yra sprendinys, tai

$$y = 0x = 0$$

taip pat turi būti sprendinys. Tai galima patikrinti y=0 įsistačius į pradinę diferencialinę lygtį (2). Gauname, kad

$$x(0)' = 0 - \frac{0^3}{x^2}$$

Iš čia gauname, kad $0 \equiv 0$, tai yra tapatybė, o tai reiškia, kad y = 0 yra šios diferencialinės lygties sprendinys. Rasti tokio C, kad gautume y = 0 nepavyksta, todėl šis sprendinys yra atskirasis.

Kalbant apie x=0, tai iš pradinės lygties iškart matosi, kad tai nėra sprendinys, kadangi dalyba iš nulio negalima.

Taigi gauname, kad

$$y = \pm \frac{x}{2} \sqrt{\frac{2}{\ln|x| - C}}, C \in R \tag{7}$$

$$y = 0 \tag{8}$$

yra šios lygties sprendiniai, kur y = 0 yra diferencialinės lygties atskirasis sprendinys.

2.2. Rezultatai gauti su MATLAB

MATLAB pateikiamas diferencialinės lygties (2) sprendimas yra

$$y = \pm \frac{x\sqrt{2}\sqrt{\frac{-1}{C_1 - \ln x}}}{2}$$

$$y = 0$$

Matome, kad MATLAB puikiai susitvarko su atskirųjų sprendinių radimu (y=0), tuo tarpu

kai bendrasis sprendinys atrodo, kiek kitaip. Tačiau pertvarkius šį reiškinį, gauname

$$y = \pm \frac{x}{2} \sqrt{\frac{2}{\ln x - C_1}} \tag{9}$$

$$y = 0 \tag{10}$$

2.3. Gautų sprendinių skirtumai

Matome, kad ir skyreliuose gauti rezultatai yra labai vienas kitam, tačiau yra keletas skirtumų:

- 1. Parinktos konstantos.
- 2. MATLAB kalba gauto bendrosios lygties logaritmo kintamasis nėra modulyje.

Pirmas punktas nėra toks svarbus, kadangi tai tiesiog kintamojo parinktas pavadinimas ir jį galima be sunkumų pakeisti į kitą.

Antras punktas yra kiek keblesnis, kadangi nuo jo priklauso, su kuriais x funkcija egzistuoja.

2.4. Grafinis sprendinių atvaizdavimas

Žemiau pateiktuose grafikuose yra pavaizduoti atskirasis diferencialinės lygties sprendinys, bendrosios funkcijos, gautos tiek sprendžiant "ant popieriaus", tiek naudojant MATLAB.

5 pav. Lygties integralinės kreivės bendrajam sprendiniui, gautam su MATLAB - $y=-\frac{x}{2}\sqrt{\frac{2}{\ln x-C_1}}$

6 pav. Lygties integralinės kreivės bendrajam sprendiniui, gautam su MATLAB - $y=\frac{x}{2}\sqrt{\frac{2}{\ln x-C_1}}$

7 pav. Lygties integralinės kreivės bendrajam sprendiniui, gautam "ant popieriaus" - $y=-\frac{x}{2}\sqrt{\frac{2}{\ln|x|-C_1}}$

8 pav. Lygties integralinės kreivės bendrajam sprendiniui, gautam "ant popieriaus" - $y=\frac{x}{2}\sqrt{\frac{2}{\ln|x|-C_1}}$

9 pav. Lygties atskirasis sprendinys - y=0

Šie grafikai vaizdžiau parodo išvadas, prieitas 2.3 skyrelyje - MATLAB praleisti modulio ženklai tarsi "nukerta" dalį gautų sprendinių apibrėžimo srities.

3. Tiesinė diferencialinė lygtis

Išspręskite Koši uždavinį. Palyginkite rastą sprendinį su sprendiniu, gaunamu naudojant kompiuterinę programą. Nubraižykite sprendinio kreivę, pažymėkite duotąjį tašką.

$$y' - \frac{y}{x} = xe^x, y(1) = 0 (11)$$

3.1. Lygties sprendimas

Matome, kad lygtis yra tiesinė, kadangi jos pavidalas atitinka

$$a(x)y' + b(x)y = c(x)$$

Čia a(x), b(x), c(x) yra funkcijos, priklausančios tik nuo x.

Tiesinės diferencialines lygtis galima spręsti dviem būdais - konstantų varijavimo metodu, Bernulio metodu. Tolimesnis sprendimas taiko konstantų varijavimo metodą.

Prilyginame lygties kairiąją pusę nuliui, gauname homogeninę lygtį

$$y' - \frac{y}{x} = 0$$

$$\frac{dy}{dx} = \frac{y}{x} \left| \cdot \frac{dx}{y}, y \neq 0 \right|$$

$$\int \frac{dy}{y} = \int \frac{dx}{x}$$

Suintegrave gauname:

$$\ln |y| = \ln |x| + \ln |C|, C \neq 0$$

$$y = Cx$$

Prieš einant toliau, vertėtų patikrinti, ar nebuvo praleistų sprendinių dalinant iš kintamųjų aukštesniuose žingsniuose.

Tai, kad x=0 nėra sprendinys galima pamatyti dar iš pradinės homogeninės lygties, kadangi dalyba iš nulio nėra galima.

Norint patikrinti, ar y=0 nėra netyčia pamestas sprendinys, reikia šią reikšmę įsistatyti į pradinę homogeninę lygtį. Tokiu atveju gauname

$$(0)' - \frac{0}{x} = 0$$

Iš čia matome, kad $0\equiv 0$. Kadangi gavome tapatybę, tai y=0 homogeninės lygties sprendinys. Kadangi ši reikšmė yra gaunama, kai C=0, vadinasi čia $C\in R$.

Vietoj C imame nežinomą funkciją C(x).

$$y = C(x)x$$

$$y' = C'(x)x + C(x)$$

Įsistatę šias reikšmes į pradinę diferencialinę lygtį (3) gauname reiškinį

$$C'(x)x + C(x) - \frac{C(x)x}{x} = xe^x$$

Suprastinę reiškinius ir sutraukę panašiuosius narius gauname, kad

$$C'(x) = e^x$$

Suintegravę šią lygtį gauname

$$C(x) = e^x + C_1, C_1 \in R$$

Įsistatę dešinėje pusėje esantį reiškinį homogeninės lygties sprendinį, gauname tiesinės diferencialinės lygties bendrąjį sprendinį

$$y = (e^x + C_1)x, C_1 \in R (12)$$

Norint surasti Koši sprendinį, reikia įsistatyti y(1) = 0 į pradinę diferencialinę lygtį (3).

$$0 = (e^1 + C_1)1$$

$$C_1 = -e$$

Iš čia gaunam, kad Koši sprendinys yra

$$y = (e^x - e)x \tag{13}$$

3.2. Rezultatai gauti su MATLAB

MATLAB pateikiamas diferencialinės lygties (3) sprendimas yra

$$y = C_1 x + x e^x$$

kas atitinka diferencialinės lygties sprendimą, gautą praeitame skyrelyje.

Koši sąlygos sprendinį MATLAB pateikia kaip

$$u = xe^x - xe$$

kas taip pat atitinka, tai, kas buvo gauta praeitame skyrelyje.

3.3. Grafinis sprendinio atvaizdavimas

Žemiau pateikiamas grafikas [10] atvaizduoja aukščiau pateiktos tiesinės diferencialinės lygties (3) Koši sprendinį.

10 pav. Tiesinės diferencialinės lygties Koši uždavinio sprendimas

4. Priedai

4.1. Failas "utils/plot_prep.m"

```
function plot_prep(x_limits, y_limits)
    axis equal; hold on;

xline(0, 'HandleVisibility', 'off'); hold on;
yline(0, 'HandleVisibility', 'off'); hold on;

xlim(x_limits);
ylim(y_limits);

xlabel('x'); hold on;
ylabel('y'); hold on;

grid on;
legend();
end
```

4.2. Failas "exercise_01.m"

```
syms_func = subs(solution(1), 'C1', C_value);
    func = matlabFunction(syms_func);
    graph = fplot(func);
    graph.Color = colors(i, :);
    graph.LineStyle = '-';
    graph.LineWidth = 1.8;
    graph.DisplayName = "y(x), C_1 = " + num2str(C_value);
end
hold off
%% plotting second solution
figure(2)
plot_prep([-25 25], [-20 20]);
hold on;
C_{values} = (-1:2);
func num = length(C values);
colors = lines(func num);
for i = (1:func num)
    C_value = C_values(i);
    syms_func = subs(solution(2), 'C1', C_value);
    func = matlabFunction(syms_func);
    graph = fplot(func);
    graph.Color = colors(i, :);
    graph.LineStyle = '-';
    graph.LineWidth = 1.8;
    graph.DisplayName = "y(x), C_1 = " + num2str(C_value);
end
hold off
%% plotting third solution
figure(3)
```

```
func = solution(3);
    real_part = real(func);
    imag_part = imag(func);
    graph = plot(real_part, imag_part);
    graph.Marker = ".";
    graph.MarkerSize = 10;
    graph.Color = "#622f75";
    graph.DisplayName = "y = -3^(1/2)*1i";
    hold off;
    \% plotting third solution
    figure(4)
    plot_prep([-2 2], [-2 2]);
    hold on;
    func = solution(4);
    real_part = real(func);
    imag_part = imag(func);
    graph = plot(real_part, imag_part);
    graph.Marker = ".";
    graph.MarkerSize = 10;
    graph.Color = "#622f75";
    graph.DisplayName = "y = 3^(1/2)*1i";
    hold off;
4.3. Failas "exercise_02.m"
    %% clearing old values, closing figures
```

clc, clear, close all

%% solving differential equation

addpath('utils');

plot_prep([-2 2], [-2 2]);

hold on;

```
syms y(x);
equation = x * diff(y, x) == y - y^3/x^2;
solution = dsolve(equation)
%% plotting first solution
figure(1)
plot prep([-25 25], [-20 20]);
hold on;
C values = (-1:2);
func_num = length(C_values);
colors = lines(func_num);
for i = (1:func_num)
    C_value = C_values(i);
    syms_func = subs(solution(1), 'C1', C_value);
    func = matlabFunction(syms_func);
    graph = fplot(func);
    graph.Color = colors(i, :);
    graph.LineStyle = '-';
    graph.LineWidth = 1.8;
    graph.DisplayName = "y(x), C_1 = " + num2str(C_value);
end
hold off
%% plotting second solution
figure(2)
plot_prep([-25 25], [-20 20]);
hold on;
C_{values} = (-1:2);
func_num = length(C_values);
colors = lines(func num);
for i = (1:func_num)
    C_value = C_values(i);
    syms_func = subs(solution(2), 'C1', C_value);
```

```
func = matlabFunction(syms_func);
    graph = fplot(func);
    graph.Color = colors(i, :);
    graph.LineStyle = '-';
    graph.LineWidth = 1.8;
    graph.DisplayName = "y(x), C 1 = " + num2str(C value);
end
hold off
%% plotting spec solution
figure(3)
plot_prep([-25 25], [-20 20]);
hold on;
graph = fplot(solution(3)); hold on;
graph.Color = [0, 0, 0];
graph.LineStyle = '-';
graph.LineWidth = 1.8;
graph.DisplayName = "y = 0";
hold off
%% plotting first func on paper
syms C;
fp1 = (2^{(1/2)}*x*(-1/(C - \log(abs(x))))^{(1/2)})/2;
fp2 = -(2^{(1/2)}*x*(-1/(C - \log(abs(x))))^{(1/2)})/2;
figure(4)
plot_prep([-25 25], [-20 20]);
hold on;
C_{values} = (-1:2);
func num = length(C values);
colors = lines(func_num);
for i = 1:func_num
    C_value = C_values(i);
```

```
syms_func = subs(fp1, C, C_value);
    func = matlabFunction(syms_func);
    graph = fplot(func);
    graph.Color = colors(i, :);
    graph.LineStyle = '-';
    graph.LineWidth = 1.8;
    graph.DisplayName = "y(x), C_1 = " + num2str(C_value);
end
hold off;
%% plotting second func on paper
figure(5)
plot_prep([-25 25], [-20 20]);
hold on;
C_{values} = (-1:2);
func_num = length(C_values);
colors = lines(func_num);
for i = 1:func num
    C_value = C_values(i);
    syms_func = subs(fp2, C, C_value);
    func = matlabFunction(syms_func);
    graph = fplot(func);
    graph.Color = colors(i, :);
    graph.LineStyle = '-';
    graph.LineWidth = 1.8;
    graph.DisplayName = "y(x), C_1 = " + num2str(C_value);
end
hold off;
```

4.4. Failas "exercise 03.m"

```
%% clearing old values, closing figures
clc; clear; close all;
%% solving the differential equation
syms y(x);
equation = diff(y, x) - y/x == x * exp(x);
solution = dsolve(equation);
% solving Cauchy condition
syms C1;
cauchy_y = 0;
cauchy_x = 1;
cauchy_condition = subs(solution, x, cauchy_x) == cauchy_y;
C1 value = solve(cauchy condition, C1);
cauchy condition func = subs(solution, "C1", C1 value);
%% plotting
f = matlabFunction(cauchy condition func);
% preparation
figure(1)
plot_prep([-1 2], [-1 2]);
% plotting graph
graph = fplot(f); hold on;
graph.LineWidth = 1.5;
graph.DisplayName = "Koši sprendinys";
% plotting Cauchy point
point = plot(cauchy_x, cauchy_y, "."); hold on;
point.MarkerSize = 10;
point.Color = "#622f75";
point.DisplayName = "Koši uždavinio taškas";
datatip(point);
```