Chapitre 3 : Elimination des parties cachées

Modélisation 3D et Synthèse

Fabrice Aubert fabrice.aubert@lifl.fr

IEEA - Master Info - Parcours IVI

2012-2013

1 Introduction

But

- ▶ Voir uniquement ce qui doit être vu...
- Exemple : un cube représenté par Brep :

Abordé dans ce chapitre...

- Technique du « peintre » : tout afficher en affichant les points les plus éloignés d'abord (les points proches recouvrent alors les points éloignés).
 - cas particulier : scènes par facettes et tri par BSP.
- Technique du « depth buffer » : mémoriser en chacun des pixels de l'écran la profondeur du point actuellement affiché.
- Optimisation : élimination des faces arrières.
- ► Remarque : pour le lancer de rayon, l'élimination est intrinsèque à la méthode (trouver le point le plus proche de l'observateur suivant un rayon) ⇒ voir chapitre « lancer de rayon » .
- Autres techniques non vues : élimination arêtes, scan-line, ...

2 Eléments fondamentaux

Droite

- ▶ M décrit la droite D = (A, u) si $\overrightarrow{AM} = \lambda u$ ($\lambda \in \mathbb{R}$).
- ► Comme $\overrightarrow{AM} = M A$ on a $M \in D \Leftrightarrow M = A + \lambda u$

avec M = (x, y, z), $A = (A_x, A_y, A_z)$ et $u = (u_x, u_y, u_z)$:

$$M = \begin{cases} x = A_x + \lambda u_x \\ y = A_y + \lambda u_y \\ z = A_z + \lambda u_z \end{cases}$$

Segment

$$M \in [AB] \Leftrightarrow \overrightarrow{AM} = \lambda \overrightarrow{AB} \Leftrightarrow \boxed{M = (1 - \lambda)A + \lambda B}$$
 (avec $\lambda \in [0, 1]$)

Remarques:

- ▶ pour λ donné, M est le barycentre de $(A, 1 \lambda)$ et (B, λ) .

Interpolation linéaire

$$M = (1 - \lambda)A + \lambda B$$
 (avec $\lambda \in [0, 1]$)

Soit f un attribut défini en A et en B. Interpoler linéairement f entre A et B signifie qu'on considère que f varie linéairement entre A et B (i.e. la représentation de f en fonction de λ est une droite).

$$\Rightarrow f(M) = (1 - \lambda)f(A) + \lambda f(B)$$

8 / 50

Interpolation bilinéaire

- Interpolation linéaire sur [AB] : $M_1 = (1 \lambda_1)A + \lambda_1 B \Rightarrow f(M_1) = (1 \lambda_1)f(A) + \lambda_1 f(B)$
- Interpolation linéaire sur [AC] : $M_2 = (1 \lambda_2)A + \lambda_2 C \Rightarrow f(M_2) = (1 \lambda_2)f(A) + \lambda_2 f(C)$
- Interpolation linéaire sur $[M_1, M_2]$: $M = (1 - \lambda)M_1 + \lambda M_2 \Rightarrow f(M) = (1 - \lambda)f(M_1) + \lambda f(M_2)$

Remarques:

- \triangleright « en dessous »de B, il faut calculer M_1 avec les sommets B et C.
 - Remarque : $\lambda_1 = \frac{AM_1}{AB} = \frac{y_{M_1} y_A}{y_B y_A}$, ...

Interpolation bilinéaire : exemple

f(M) est une couleur avec les composantes rouge, vert, bleu $f(M) = (f_r(M), f_v(M), f_b(M))$ et on connait la couleur aux sommets A, B et C. On interpole linéairement f (i.e. on interpole f_r , f_v et f_b):

⇒ L'interpolation bi-linéaire appliquée aux couleurs est appelée interpolation de Gouraud

10 / 50

Plan

- ▶ M décrit le plan P = (A, n) (n=normale donnée au plan) si $\overrightarrow{AM} \cdot n = 0$ (\overrightarrow{AM} est orthogonal à n).
- $M \in P \Leftrightarrow M \cdot n A \cdot n = 0$

En développant si M=(x,y,z), n=(a,b,c) et $A=(A_x,A_y,A_z)$:

$$ax + by + cz + d = 0$$
 avec $d = -A \cdot n = -(aA_x + bA_y + cA_z)$

Plan (2)

- ► M décrit le plan P = (A, u, v) (u et v appartiennent au plan et sont non colinéaires) si $\overrightarrow{AM} = \alpha u + \beta v$ avec $(\alpha, \beta) \in \mathbb{R}^2$
- $M \in P \Leftrightarrow M = A + \alpha u + \beta v$

Si
$$M = (x, y, z)$$
, $A = (A_x, A_y, A_z)$, $u = (u_x, u_y, u_z)$ et $v = (v_x, v_y, v_z)$

$$M = \begin{cases} x = A_x + \alpha u_x + \beta v_x \\ y = A_y + \alpha u_y + \beta v_y \\ z = A_z + \alpha u_z + \beta v_z \end{cases}$$

Exercices

- ▶ Intersection d'une droite (A, u) avec un plan (P, n)?
- Distance d'un point M à un plan (P, n)?
- Distance d'un point M à une droite (A, u)?
- ▶ Distance d'un point M à un segment (A, B)? (étude de cas).

3 Algorithme du « peintre » (newell)

Principe

- ▶ Il « suffit » de tracer les points du plus éloigné au plus proche (par rapport à l'observateur).
- Si la scène est constituée de polygones :
 - Trier les facettes de la plus éloignée vers la plus proche.
 - Afficher les facettes selon cet ordre (recouvrement des parties cachées par les polygones plus proches).

Principal problème

- Il faut trouver un critère pour comparer 2 facettes entre elles (pour pouvoir les trier).
- Remarque : à priori cela est impossible sans décomposer (i.e. couper) les polygones :

Première approche

- En oubliant le cas particulier précédent :
 - Considérer le barycentre des facettes : principe faux et facile à mettre en défaut (pourrait être envisagé pour des scènes particulières et en toute première approximation).
 - Considérer tous les sommets (exercice le faire en 2D pour comparer deux arêtes : principe du scan-line).
- Quelque soit l'approche ⇒ tous les cas mènent à la nécessité de couper les faces.

4 Arbre BSP (Binary Spatial Partition)

Espaces positif et négatif

Soit un polygone (ou facette) f et une normale arbitraire n. Le plan porteur du polygone partage l'espace en deux sous espaces : le « coté » de la normale est appelé sous espace positif (l'autre est le sous espace négatif).

Points positif et négatif

- Un point P est dit positif par rapport à f s'il est dans le demi-espace positif de f.
- remarque : Si f est définie par sa normale n et un point A alors P = (X, Y, Z) est positif ssi $AP \cdot n > 0$ (négatif sinon).
- remarque : le cas où P appartient au plan est inclus dans le cas positif.

Localisation d'une facette

- Soit 2 facettes f₁ et f₂. f₂ est dite positive par rapport à f₁ si tous les points de f₂ sont positifs (si tous les points sont négatifs, elle est dite négative).
- ▶ Remarque : il suffit de considérer le signe des sommets de f_2 par rapport à f_1 .
- Remarque : f₂ peut être ni positive, ni négative par rapport à f₁.

Propriété pour l'élimination

- On suppose que f_2 est soit positive, soit négative par rapport à f_1 (plus tard on traitera le cas contraire en coupant f_2 par le plan de f_1).
- Propriété :
 - Si l'observateur et f₂ sont de mêmes signes (par rapport à f₁) alors f₁ ne peut pas occulter f₂ (i.e. f₂ se trouve « devant » f₁ et donc f₁ doit être tracée <u>avant</u> f₂ pour l'algo du peintre).
 - Si l'observateur et f₂ sont de signes contraires alors f₂ ne peut pas occulter f₁ (i.e. f₂ se trouve « derriere » f₁ et donc f₂ doit être tracée après f₁).

Arbre BSP

- Chaque noeud est identifié à une facette f.
- Chaque noeud f possède au plus deux sous-arbres (arbre binaire) :
 - Un sous arbre positif dont tous les noeuds (i.e. toutes les facettes) sont positifs par rapport à f.
 - Un sous arbre négatif dont tous les noeuds sont négatifs par rapport à f.

Algo du peintre suivant le BSP

Il suffit de faire un parcours infixe de l'arbre : soit B = (f, negatif, positif) un arbre BSP alors :

```
Afficher(B) {
Si B non vide alors
Si f(Observateur)<0 alors
   Afficher(Positif); Afficher(f); Afficher(Negatif);
Sinon
   Afficher(Negatif); Afficher(f); Afficher(Positif);
Fin Si
}</pre>
```

Construction

Soit une scène constituée d'une liste L de facettes.

- Prendre une facette f arbitraire de L.
- Construire la liste L+ des facettes positives à f et construire la liste L- des facettes négatives.
- ▶ Construre le BSP B+ de L+ et le BSP B- de L- (récursivement).
- ▶ Le BSP de L est (f, B-, B+).

Remarques :

- Pour toute facette f_i ni positive, ni négative : il faut couper f_i par le plan porteur de f. On obtient alors des f_i + (à inclure dans L+) et des f_i (à inclure dans L-).
- ▶ ⇒ Voir pseudo-code complet en TD.

Remarques sur les BSP

- On peut faire l'analogie avec le tri par quick sort (pivot f, couper en deux listes « plus petit », « plus grand »), mais, ici, on garde explicitement tout l'arbre de construction (la notion d'ordre change à chaque noeud).
- Le choix du pivot peut être plus judicieux pour « tenter » d'obtenir l'arbre équilibré.
- L'arbre est indépendant de la position de l'observateur (pas de reconstruction à faire lorsque l'observateur se déplace dans une scène statique).
- <u>Par contre</u>: si des objets sont en mouvement il faut refaire l'arbre (ou « tenter » de traiter à part les objets mobiles et immobiles).
- Les BSP (ou raisonnement similaires) peuvent être utilisés pour d'autres objectifs que pour le peintre (optimisation pour la collision, optimisation d'occlusion,...).

Avantage-Inconvénient du peintre

- Il faut tout afficher, même ce qui ne sera pas vu.
- Le tri (par BSP par exemple) peut s'avérer lourd lors d'animations (scène avec objets mobiles).
- Principe du peintre obsolète... mais pas les raisonnements de tris, de localisation basés sur les BSP.

5 Depth Buffer

Introduction - Principe

- Algorithme du Depth-buffer = algorithme du « tampon de profondeur » . Appelé aussi Z-Buffer.
- Le raisonnement se fait sur l'écran en 2D (i.e. dans l'espace des pixels dit « espace image »). A opposer au peintre qui se fait dans l'espace 3D (dit « espace objets »).
- A chaque pixel de l'écran est affecté une valeur de profondeur :
 - représente la profondeur du point qui est projeté actuellement en ce pixel.
 - si un nouveau point se trouve projeté sur le même pixel : on compare sa profondeur avec la profondeur actuelle du pixel ⇒ visible ou non visible.
- ▶ ⇒ Dédié au rendu projectif.
- Appliqué par les cartes 3D actuelles.

Principe sur exemple

Fragments

- Chaque pixel peut être affecté, ou influencé, par des attributs : couleur, valeur de profondeur,...
- L'ensemble de ces attributs est appelé fragment.
- On différencie :
 - Le fragment destination : est celui qui est affecté au pixel (i.e. la valeur courante).
 - Le fragment <u>source</u> : est celui qui est en train d'être tracé (i.e. la valeur qui
 - « arrive »), et qui est donc susceptible de mettre à jour le pixel.

Algorithme du Depth Buffer

```
Effacer Ecran (initialiser couleur de fond et valeurs de depth à +infini pour chaque pixel)

Pour tout point P à tracer (source) faire Déterminer les coordonnées du pixel (xi,yi) Calculer le depth du fragment source (depth de P) Calculer la couleur du fragment source

-- pipeline pixel :
Si depth(source) < depth(destination) Alors depth(destination) <-- depth(source) couleur(destination) <-- couleur(source) Fin Si
--
```

Remarques

- Inutile de trier : les pixels peuvent être affichés dans n'importe quel ordre.
- ▶ Pour la profondeur il suffit de comparer selon les coordonnées -Z des points dans le repère Eye (d'où le nom de Z-Buffer).
- ▶ Comme pour le peintre : des points peuvent être affichés inutilement.
- Contrairement au peintre : des points peuvent être éliminés par le test, ce qui évite leur l'affichage.
- Extrêmement simple (cablé sur les cartes graphique) et efficace.
- Il faut savoir traduire le « pour tout point P à tracer... » : les polygones sont bien adaptés (remplissage et calcul incrémental du depth et couleur).
- Historiquement : la technique ne s'est pas imposée immédiatement (pour le rendu projectif) pour des raisons de coût mémoire.

6 Depth buffer en rendu projectif

Contexte

On considère le contexte suivant (contexte d'OpenGL) :

- La scène à visualiser est constituée de triangles 3D.
- Pour un triangle $(A_{eye}, B_{eye}, C_{eye})$ donné son affichage consiste à :
 - Projeter le triangle $(A_{eye}, B_{eye}, C_{eye})$ sur l'écran pour obtenir (A_p, B_p, C_p) (triangle 2D)
 - Puis remplir pixel par pixel le triangle (A_p, B_p, C_p) (balayage du triangle 2D).

2012-2013

Elimination des parties cachées en OpenGL

L'élimination des parties cachées est assurée pour chaque pixel tracé par :

```
Si depth(source)<depth(destination) alors
depth(destination) <- depth(source) (Mise à jour de la profondeur).
color(destination) <- color(source) (Mise à jour de la couleur).
Fin Si
```


Autre ordre

Comment est calculée la profondeur de chaque pixel tracé (i.e. depth (source))?

Projection

- L'élimination par depth se fait en coordonnées écran. Comment passer de P_{eye} à P_{screen} ?
- Spécification en OpenGL du passage en coordonnées écran :

```
void initGL() {
    // definition de la matrice de projection (projection perspective ici)
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-1,1,-1,1,0.1,100);

// definition de la matrice de transformation (identité = repère courant sur Eye).
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

glViewport(0,0,width,height); // fen\^etre graphique d'OpenGL
...
}
```

Projection orthogonale et depth

Exercice : quelle est la matrice homogène pour passer de P_{eye} à P_{screen} sachant que l'écran est à une distance near de eye ?

- Ne suffit pas :
 - Comment en déduire des coordonnées écran (tenir compte de ses dimensions) ?
 - Absence de l'information de profondeur pour les points projetés (P_{screen} = d pour tout point).

Projection orthogonale et depth

- Solution adoptée pour calculer la projection :
 - Rester en coordonnées homogènes pour le calcul du projeté des sommets sonserve l'information de profondeur.
 - Diviser par w pour passer en coordonnées 3D (x et y correspondent aux coordonnées sur le plan de l'écran, et z à la profondeur).
 - S'assurer que toutes les coordonnées (incluant la profondeur) sont dans l'intervalle [-1,1] (coordonnées dites normalisées).
 - \Rightarrow définir un volume de visualisation :

Projection orthogonale et depth

$$P_p = M_{PROJECTION} P_{Eye}$$

avec

$$\textit{MPROJECTION} = \begin{pmatrix} \frac{2}{\textit{right-left}} & 0 & 0 & -\frac{\textit{right-left}}{\textit{sight-left}} \\ 0 & \frac{2}{\textit{top-bottom}} & 0 & -\frac{\textit{top-bottom}}{\textit{top-bottom}} \\ 0 & 0 & -\frac{2}{\textit{tar-near}} & \frac{\textit{liar-heal}}{\textit{lar-near}} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- c'est la matrice calculée par glortho (left, right, bottom, top, near, far).
- résulte de l'application d'une rêgle de 3 : passer de $x_{eve} \in [left, right]$ à $x_p \in [-1, 1]$.

Calcul du depth pour chaque pixel

- Phase géométrique :
 - Tout sommet subit $P_p = M_{PROJECTION} M_{MODELVIEW} P_{Local}$
 - Les coordonnées normalisées sont obtenues en divisant P_p par sa coordonnée homogène.
 - On obtient les coordonnées entières à l'écran de P_p en appliquant un viewport (définition de la fenêtre graphique) :
 - Exemple :

glViewport(100,250,256,150)

glViewport(x_min,y_min,width,height)

$$\Rightarrow \begin{cases} x_{ecran} = (x+1)\frac{width}{2} + x_{min} \\ y_{ecran} = (y+1)\frac{height}{2} + y_{min} \end{cases}$$

- Rasterization :
 - remplissage pixel par pixel en interpolant linéairement la profondeur des sommets a c

Projection perspective et depth

Exercice : quelle est la matrice de passage $M_{Screen \rightarrow Eye}$?

Projection Perspective et depth

Définition d'un volume de visualisation pour normaliser (en OpenGL : glFrustum(left, right, bottom, top, near, far)).

- Tracer selon le même schéma (phase géométrique, rasterization avec interpolation bilinéaire et test du depth).
- ▶ ⇒ Problème :

ightharpoonup \Rightarrow la profondeur z_0 n'est pas linéaire (i.e. interpoler donne une approximation), et cette \sim 0.

Projection Perspective et depth

On peut montrer par contre que $\frac{1}{z}$ est linéaire.

 \Rightarrow lorsqu'on projette les sommets, on ne conserve donc pas z pour l'élimination des parties cachées mais $\frac{1}{z}$: $P_p = M_{PROJECTION}P_{Eye}$ avec

$$M_{\mbox{\footnotesize{PROJECTION}}} = \left(\begin{array}{cccc} 2 \frac{near}{right-left} & 0 & \frac{right+left}{right-left} & 0 \\ 0 & 2 \frac{near}{top-bottom} & \frac{top-bottom}{top-bottom} & 0 \\ 0 & 0 & -\frac{far+near}{tar-near} & -2 \frac{far+near}{far-near} \\ 0 & 0 & -1 & 0 \end{array} \right)$$

Pour interpoler $\frac{1}{z_{eve}}$ il suffit d'interpoler $\frac{z_p}{w_p}$.

Exercice : retrouver cette matrice (on part de $z \in [near, far]$, donc $\frac{1}{z} \in [\frac{1}{lar}, \frac{1}{near}]$ et on reporte dans l'intervalle [-1, 1]).

7 Une optimisation : Elimination des parties arrières

Facettes frontales/arrières

- On raisonne dans le cadre d'une scène polygonale visualisée par projection.
- Une facette est dite <u>frontale</u> si son polygone projecté sur l'écran est orienté direct (elle est dite <u>arrière</u> sinon).
- Autrement dit : la facette est frontale si, à l'écran, on « voit » sa face directe.

Remarques

- Pour les facettes convexes (V₁, V₂, V₃,...), le signe de V₁_{proj} V₂_{proj} ∧ V₂_{proj} V₃_{proj} (= déterminant) suffit pour déterminer si la facette est frontale ou non.
- ▶ Un point *P* est dit frontal s'il est élément d'une facette frontale.
- ▶ Si N est la normale directe (appliquée en P), alors P est frontal ssi V.N > 0.
- (⇒ on peut appliquer la notion frontal/arrière à des objets non décrits par polygones).

Propriété

- Pour une <u>surface close</u> (frontière entre l'intérieur et l'extérieur d'un volume) <u>bien orientée</u> (faces directes vers l'extérieur) et pour un observateur placé à l'extérieur du volume :
 - une facette arrière correspond à la face intérieure au volume (i.e. le coté du polygone qui fait face à l'observateur est intérieur au volume).
 - ⇒ les facettes arrières sont donc nécessairement occultées (i.e. l'observateur ne voit pas l'intérieur).
 - ... donc inutile de les tracer ⇒ élimination des faces arrières ou « back face culling ».

Remarques

- Il s'agit d'une optimisation : l'élimination des faces arrières ne suffit pas pour l'élimination des parties cachées.
- A appliquer uniquement aux volumes bien orientés...
- En OpenGL :
 - glCullFace (GL_BACK) ou glCullFace (GL_FRONT) pour indiquer les faces à éliminer
 - glEnable (GL_CULL_FACE) pour activer l'élimination (les sommets sont toujours projetés, mais les faces éliminées ne subissent pas la phase de rasterization).