Theoretical Computer Science

Winter semester 21/22 Prof. Dr. Georg Schied

Assignment 7

Deadline: Wednesday, 24 November 2021

10 out of 20 points have to be achieved in order to pass.

Exercise 7.1

Convert the following ε -NFA into a DFA using the Rabin-Scott subset construction (Definition 8.13).

Exercise 7.2

The following ε -NEA with alphabet $\Sigma = \{a, b\}$ is given:

Convert the automaton to an equivalent deterministic finite automaton (DFA) using the improved subset construction (Algorithm 8.19).

Exercise 7.3 - obligatory (7 points)

Let the following ε -NFA be given:

- a) If you would use the Rabin-Scott *subset construction* from Definition 8.13 to convert this ε -NFA into an DFA, how many states would the resulting DFA have?
- b) Use the improved subset construction (Algorithm 8.19) to convert this ϵ -NFA into an equivalent DFA.

Exercise 7.4 - obligatory (6 points)

A set S of specific arithmetic expressions is inductively defined in the following way:

- (1) The numbers 6, 15 and 33 are contained in S.
- (2) If expressions s_1 and s_2 are contained in S, then also the following expressions are contained in S:

$$(s_1 + s_2)$$

 $(s_1 \cdot s_2)$
 s_1^2

An example of such an expression is ($(33 + (15 \cdot 6)^2) \cdot 33^2$).

Prove by *structural induction* that evaluation of each expression $s \in S$ produces a value that is divisible by 3.

Exercise 7.5

Systematically build an ε -NFA (using procedure 9.1) that accepts the language of the following regular expression:

Exercise 7.6 - obligatory (7 points)

Let the following regular expression be given:

- a) Describe the syntactic structure of the regular expression as an abstract syntax tree.
- b) Use the inductive method presented in procedure 9.1 to build an ϵ -NFA that accepts the language of regular expression.