Gift #6 – The Dot Product Due Friday, September 20

(at the start of class)

This gift covers lesson 8 (from Monday, Sept. 16). To spread out your work you should complete exercises 1-4 by Wednesday. Feel free to work with others on them, but the write-ups must be your own. As with any assignment, please document any help you receive at the top of your submission.

1. Short Answer/Computations:

- a) Compute the dot product $\vec{u} \cdot \vec{v}$ for $\vec{u} = 4\hat{i} + 10\hat{j} 3\hat{k}$ and $\vec{v} = 3\hat{i} \hat{j} 2\hat{k}$.
- b) Your answer to part a) should have been positive. What does this say about the orientation of the two vectors \vec{u} and \vec{v} ?
- c) Compute the dot product $\vec{u} \cdot \vec{v}$ given that $||\vec{u}|| = 8$, $||\vec{v}|| = 5$ and the angle between \vec{u} and \vec{v} is $\frac{\pi}{3}$.
- d) Find the angle between $\vec{u} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{v} = 2\hat{i} + \hat{j} \hat{k}$.
- 2. For each pair of vectors below, determine if the vectors are parallel, orthogonal (i.e., perpendicular) or neither. Show your work.
- a) $\vec{u} = -2\hat{i} + 3\hat{j} \hat{k}, \ \vec{v} = 2\hat{i} + \hat{j} \hat{k}$
- b) $\vec{u} = \langle 2, 2, -2 \rangle, \ \vec{u} = \langle 4, -4, -4 \rangle$
- c) $\vec{u} = \langle \cos(\theta), \sin(\theta), 1 \rangle$, $\vec{v} = \langle \sin(2\theta), 2\sin^2(\theta), 2\sin(\theta) \rangle$
- 3. Prove the property $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$. (You may assume $\vec{u} = \langle u_1, u_2, u_3 \rangle$ is a three-dimensional vector, although it's easy to see that the argument extends to vectors of any dimension.)
- 4. The proof (presented in class) of the equivalence of the analytic and geometric definitions of the dot product made good use of the property:

$$\vec{u} \cdot (\lambda \vec{v}) = \lambda (\vec{u} \cdot \vec{v})$$
 and $(\lambda \vec{u}) \cdot \vec{v} = \lambda (\vec{u} \cdot \vec{v})$ for all scalars λ .

Do parts a) and b) below to prove this property.

- a) Using the geometric definition of the dot product, show that $\vec{u} \cdot (-\vec{v}) = -(\vec{u} \cdot \vec{v})$ for all vectors \vec{u} and \vec{v} . (Hint: What happens to the angle when you multiply \vec{v} by -1?)
- b) Using the geometric definition of the dot product, show that for any positive scalar $\boldsymbol{\lambda}$

$$\vec{u} \cdot (\lambda \vec{v}) = \lambda (\vec{u} \cdot \vec{v})$$

and $(\lambda \vec{u}) \cdot \vec{v} = \lambda (\vec{u} \cdot \vec{v})$.

5. Assume $\vec{u} \cdot \vec{v} = 2$, $||\vec{u}|| = 4$, and $||\vec{v}|| = 3$. What is the value of $5\vec{u} \cdot (\vec{u} - 2\vec{v})$? (Hint: Use previous exercises and the distributive property: $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$.)

- 6. More Practice...
- a) Given nonzero vectors \vec{u} and \vec{v} , prove that $\|\vec{v}\|\vec{u} + \|\vec{u}\|\vec{v}$ is perpendicular to $\|\vec{v}\|\vec{u} \|\vec{u}\|\vec{v}$.
- b) Prove the "Cauchy-Schwarz" Inequality: $|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| ||\vec{v}||$ for any two vectors \vec{u} and \vec{v} .
- 7. **True or False (and Explain)** If the statement is true, prove it; if the statement is false, provide a counterexample.
- a) If $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$ and \vec{u} is nonzero, then $\vec{v} = \vec{w}$.
- b) If \vec{u} and \vec{v} are perpendicular to \vec{w} , then $\vec{u} + \vec{v}$ is perpendicular to \vec{w} , too.
- 8. a) Find the equation of the plane through the origin and perpendicular to the vector $\vec{v} = \hat{\imath} 2\hat{\jmath} + 4\hat{k}$.
- b) Find the equation of the plane through the point (1, 1, -3) and perpendicular to the vector $\vec{v} = \hat{i} 2\hat{j} + 4\hat{k}$.
- c) Find the equation of the plane through the point (1, 1, -3) and parallel to the plane 3x 2y + z = 6.