Solving L₀-Problems via Mixed-Integer Optimization

Théo Guyard

Inria, Centre de l'Univsersité de Rennes, France Insa Rennes, IRMAR CNRS UMR 6625, France

LS2N seminar 7th of March, 2024 Nantes, France

Sparse Optimization

Two goals, one problem

Sparse optimization Minimize a function **Sparse solution** Machine learning Signal processing

High-dim. statistics

And many others

Signal processing

Compressive sensing

Signal processing

Compressive sensing

Find x such that $y \simeq Ax$

 $m \ll n$: no unique solution

Signal processing

Compressive sensing

Find x sparse such that $y \simeq Ax$

 $m \ll n$: no unique solution

High-dimensional statistics

High-dimensional statistics

Sparse GLM

Features
$$A \in \mathbb{R}^{m \times n}$$

Targets $y \in \mathbb{R}^m$

 $max_x \mathcal{L}(Ax, y)$

No unique solution when $m \ll n$

 $max_{x} \mathcal{L}(Ax, y)$ with x sparse

Sparse PCA

Features
$$A \in R^{m \times n}$$

Covariance $\Sigma = A^T A$

$$\text{max}_{\|\textbf{x}\|_{\textbf{2}}=1} \ \textbf{x}^T \boldsymbol{\Sigma} \textbf{x}$$

Not relevant when $m \ll n$

 $\text{max}_{\|\mathbf{x}\|_2=1} \ \mathbf{x}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{x}$ with \mathbf{x} sparse

Heart disease dataset (LIBSVM)

Age	Sex	Cholesterol	Blood pressure	 Disease
31	М	50.3 mg/dl	95 mm/hg	 No
35	F	54.9 mg/dl	98 mm/hg	 Yes
42	F	49.8 mg/dl	92 mm/hg	 Yes
37	М	59.1 mg/dl	89 mm/hg	 No

Heart disease dataset (LIBSVM)

Age	Sex	Cholesterol	Blood pressure	 Disease
31	М	50.3 mg/dl	95 mm/hg	 No
35	F	54.9 mg/dl	98 mm/hg	 Yes
42	F	49.8 mg/dl	92 mm/hg	 Yes
37	М	59.1 mg/dl	89 mm/hg	 No

Heart disease dataset (LIBSVM)

Age	Sex	Cholesterol	Blood pressure	 Disease
31	М	50.3 mg/dl	95 mm/hg	 No
35	F	54.9 mg/dl	98 mm/hg	 Yes
42	F	49.8 mg/dl	92 mm/hg	 Yes
37	М	59.1 mg/dl	89 mm/hg	 No

Heart disease dataset (LIBSVM)

Age	Sex	Cholesterol	Blood pressure	 Disease
31	М	50.3 mg/dl	95 mm/hg	 No
35	F	54.9 mg/dl	98 mm/hg	 Yes
42	F	49.8 mg/dl	92 mm/hg	 Yes
37	М	59.1 mg/dl	89 mm/hg	 No

Objective, constraint or both?

Objective, constraint or both?

Constrainted version

$$\begin{cases} \min_{\mathbf{x}} & F(\mathbf{x}) \\ \text{s.t.} & \|\mathbf{x}\|_0 \le s \end{cases}$$

Minimized version

$$\begin{cases} \min_{\mathbf{x}} & \|\mathbf{x}\|_{0} \\ \text{s.t.} & F(\mathbf{x}) \leq \epsilon \end{cases}$$

Penalized version

$$\min_{\mathbf{x}} F(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0}$$

Mixed-Integer Optimization

Handeling the L0-norm with MIO tools

Handeling the L0-norm with MIO tools

Handeling the L0-norm with MIO tools

The ℓ_0 -norm counts the number of non-zeros in vector x

It sums the entries of the binary vector z satisfying some logical relation with x

We have tools to deal with such binary vectors in MIO!

Linearizing the ℓ_0 -norm

Real vector $\mathbf{x} \in \mathbb{R}^n$ and binary vector $\mathbf{z} \in \mathbb{B}^n$:

$$\|x\|_0 = 1^{\mathrm{T}}z \quad \text{ if } \quad x\odot (1-z) = 0$$

Linearizing the ℓ_0 -norm

Real vector $\mathbf{x} \in \mathbb{R}^n$ and binary vector $\mathbf{z} \in \mathbb{B}^n$:

$$\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$$
 if $\mathbf{x} \odot (\mathbf{1} - \mathbf{z}) = \mathbf{0}$

$$\min_{\mathbf{x}} F(\mathbf{x}) + \lambda \|\mathbf{x}\|_{\mathbf{0}}$$

Linearizing the ℓ_0 -norm

Real vector $x \in \mathbb{R}^n$ and binary vector $z \in \mathbb{B}^n$:

$$\|x\|_0 = \mathbf{1}^{\mathrm{T}}z \quad \text{ if } \quad x\odot(1-z) = 0$$

Linearizing the ℓ_0 -norm

Real vector $\mathbf{x} \in \mathbb{R}^n$ and binary vector $\mathbf{z} \in \mathbb{B}^n$:

$$\|x\|_0 = \mathbf{1}^{\mathrm{T}}z \quad \text{ if } \quad x\odot(1-z) = 0$$

Linearizing the ℓ_0 -norm

Real vector $\mathbf{x} \in \mathbb{R}^n$ and binary vector $\mathbf{z} \in \mathbb{B}^n$:

$$\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$$
 if $\mathbf{x} \odot (\mathbf{1} - \mathbf{z}) = \mathbf{0}$

$$\begin{aligned} \min_{\mathbf{x}} F(\mathbf{x}) + \lambda \|\mathbf{x}\|_{\mathbf{0}} \\ & \lim_{\mathbf{x},\mathbf{z}} F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} + H(\mathbf{x},\mathbf{z}) \\ & \lim_{\mathbf{x},\mathbf{z}} F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} \\ & \text{s.t.} \quad -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \end{aligned}$$

Generic MIO solvers (Cplex, Gurobi, ...)

X Slow ✓ Generic w.r.t F/H

Specialized solvers (BnB, CP, ...)

✓ Fast

✓ Resticted to some F/H

Specialized Solution Methods

Branch-and-Bound algorithms

Branch-and-Bound

"Enumerate all candidate solutions and discard sub-optimal ones."

Main principles

Branching: Divide the search space

Bounding: Test whether a region can contain optimal solutions

Pruning: Discard regions without optimal solutions

Observation

Observation

Observation

Observation

Observation

If support of x is fixed, then $\min_{\mathbf{x}} F(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + H(\mathbf{x})$ is easy to solve.

Node problem

The problem at node $\nu = (S_0, S_1)$ where S_0 and S_1 are the indices of x fixed to zero and non-zero reads

$$\rho^{\nu} = \begin{cases} \min_{\mathbf{x}} & F(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + H(\mathbf{x}) \\ \text{s.t.} & \times_{\mathcal{S}_{0}} = 0, \times_{\mathcal{S}_{1}} \neq 0 \end{cases}$$

Node problem

The problem at node $\nu = (S_0, S_1)$ where S_0 and S_1 are the indices of x fixed to zero and non-zero reads

$$\rho^{\nu} = \begin{cases} \min_{\mathbf{x}} & F(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + H(\mathbf{x}) \\ \text{s.t.} & \mathbf{x}_{\mathcal{S}_{0}} = \mathbf{0}, \ \mathbf{x}_{\mathcal{S}_{1}} \neq \mathbf{0} \end{cases}$$

Task: Find lower and upper bounds on p^{ν} that are **tight** and **tractable to compute**

Node problem

The problem at node $\nu = (S_0, S_1)$ where S_0 and S_1 are the indices of x fixed to zero and non-zero reads

$$p^{\nu} = \begin{cases} \min_{\mathbf{x}} & F(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + H(\mathbf{x}) \\ \text{s.t.} & \mathbf{x}_{\mathcal{S}_{0}} = \mathbf{0}, \ \mathbf{x}_{\mathcal{S}_{1}} \neq \mathbf{0} \end{cases}$$

Task: Find lower and upper bounds on p^{ν} that are **tight** and **tractable to compute**

Upper bounding

- We just need a feasible solution
- Fix entries of x that are still free to zero
- Optimize the resulting problem

Node problem

The problem at node $\nu = (S_0, S_1)$ where S_0 and S_1 are the indices of x fixed to zero and non-zero reads

$$p^{\nu} = \begin{cases} \min_{\mathbf{x}} & F(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + H(\mathbf{x}) \\ \text{s.t.} & \mathbf{x}_{\mathcal{S}_{\mathbf{0}}} = \mathbf{0}, \ \mathbf{x}_{\mathcal{S}_{\mathbf{1}}} \neq \mathbf{0} \end{cases}$$

Task: Find lower and upper bounds on p^{ν} that are tight and tractable to compute

Upper bounding

- We just need a feasible solution
- Fix entries of x that are still free to zero
- Optimize the resulting problem

Upper-bounding problem $\min_{\mathbf{x}} F(\mathbf{x}_{S_1}) + \lambda |S_1| + H(\mathbf{x}_{S_1})$

Lower bounding

Idea: Convexify a part of the objective function

Node problem

$$\rho^{\nu} = \begin{cases} \min_{\mathbf{x}} & F(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + H(\mathbf{x}) \\ \text{s.t.} & \times_{\mathcal{S}_{0}} = 0, \ \times_{\mathcal{S}_{1}} \neq 0 \end{cases}$$

Lower bounding

Idea: Convexify a part of the objective function

Lower bounding

Idea: Convexify a part of the objective function

continuous at its minimum

Graphical intuition

Bi-conjugate closed-form

$$G^{\star\star}(x) = \begin{cases} \tau | x | & \text{if } |x| \leq \mu \\ G(x) & \text{otherwise} \end{cases}$$

Let's sum up!

$$\ell_0$$
-penalized problem $\min_{\mathbf{x}} F(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + H(\mathbf{x})$

- ▶ MIP formalism
 - ullet Linearize the ℓ_0 -norm with a binary variable
 - Big-M strategy
- ▶ Generic solvers
 - Easy solution to implement
 - Unable to exploit sparsity
 - Numerically inefficient
- ► Specialized Branch-and-Bound
 - Tree exploration
 - Branch by fixing support of x
 - Compute upper and lower bounds at each node
 - Leverage bi-conjugacy to compute lower bounds

Overview of Numerical

Performances

Overview of numerical performances

Dataset : Sparse regression $F(\cdot)$: Least-squares loss $H(\cdot)$: Big-M constraints λ : Set statistically

Overview of numerical performances

 $\min_{\mathbf{x}} F(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + H(\mathbf{x})$

Dataset: Sparse regression

 $F(\cdot)$: Least-squares loss

 $H(\cdot)$: L2-norm

 λ : Set statistically

Overview of numerical performances

 $\min_{\mathbf{x}} F(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + H(\mathbf{x})$

Dataset: Sparse classification

 $F(\cdot)$: Logistic loss

 $H(\cdot)$: L1-norm

 $oldsymbol{\lambda}$: Set statistically

Ongoing Research Directions

Contributors and research works

Take-home message

- In some cases, solving ℓ_0 -norm problems exactly worths-it
- There exists Mixed-Integer Optimization tools to do so
- Structure exploitation is the key to achieve competitive performances
- Active research area
 - → Theoretical results
 - → Efficiency, flexibility and accessibility of solution methods
 - → Software development
 - → Diffusion to other communities

Question time

Supplementary Slides

Why solving L0 problems?

Sparse regression $y = Ax^{\dagger} + \epsilon$ 2.000 features 10 non-zeros in x^{\dagger} 20dB noise