~ TBuMC ~

Автор: Пицик Харитон

Лекция 3 сентября 2025г.

Глава І. Условные распределения.

Повторение необходимого.

Рассматриваем (Ω, F, \mathbb{P}) — множество элементарных исходов эксперимента. Элемент $A \subset \Omega$ является *случайным событием*, $F - \sigma$ -алгебра событий:

- $\Omega \in F$;
- $A \in F \to \overline{A} \in F$;
- $\{A_i\}_{i=1}^{\infty} \in F \Rightarrow \bigcup_{i=1}^{\infty} A_i \in F$.

 $P:F\to [0,1],$ т.е. P(A) — вероятность события A. Свойства:

- $P(A) \ge 0 \forall A \in F$;
- $P(\Omega) = 1;$
- $P(\bigsqcup_{i=1}^{\inf})P(A_i) = \sum_{i=1}^{\inf}P(A_i).$

Определение. Случайная величина: $\xi:\Omega \to \mathbb{R}$, такая что

$$\forall x \in \mathbb{R} \{ \omega : \xi(\omega) < x \} \in F$$

Функция распределения вероятностей

Для случайной величины ξ функция распределения выглядит следующим образом:

$$F_{\xi}(x) = P\{\omega : \xi(\omega) < x\}$$

Случайные величины делятся на дискретные, абсолютно непрерывные.

Дискретная случайная величина: $\{x_1, x_2, ..., x_n, ...\}$, задаётся числами

$$p_i = P\{\xi = x_i\};$$

$$p_{i} > 0;$$

$$\sum_{i=1}^{\infty} p_i = 1$$

Абсолютно непрерывная случайная величина: $\xi \in \mathbb{R}$ и пусть $f(x) - \phi$ ункция плотности распределения. Важно, что f(x) почти всюду = F'(x) Наиболее важным требованием является:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

Двумерные случайные величины

Определение. Случайный вектор — это вектор $\overline{\xi}=(\xi_1,\xi_2,...,\xi_n)$, где $\xi_i,\xi=\overline{(1,n)}$ — случайные величины, ξ_i задана в (Ω_i) .

Случайный вектор $\overline{\xi}$ задаётся в (Ω,F,P) ; $\Omega=\Omega_1\times\Omega_2\times...\times\Omega_n$, где

- $F \sigma$ -алгебра,
- \mathbb{P} вероятностная мера.

Рассмотрим вектор с координатами (ξ, η) .

Определение. Функция распределения:

$$F_{\xi_n}(x,y) = P\{\omega : \xi(\omega) < x; \eta(\omega) < y\}$$

Свойства:

- 1. $\forall x, y \in \mathbb{R}0 \le F_{\xi,\eta}(x,y) \le 1;$
- 2. Если x_0,y_0 фиксированные, то $F_{\xi\eta}(x_0,y)$ неубывающая и непрерывная слева по y, а $F_{\xi\eta}(x,y)$ неубывающая и непрерывная слева по x;

3.
$$\lim_{x \to +\infty} F(\xi \eta)(x,y) = F_{\eta}(y);$$

$$\lim_{y \to +\infty} F_{\xi \eta}(x,y) = F_{\xi}(x);$$

$$\lim_{x \to +\infty, y \to +\infty} F_{\xi \eta}(x,y) = 1;$$

$$\lim_{x \to -\infty} F_{\xi \eta}(x,y) = \lim_{y \to -\infty} F_{\xi \eta}(x,y) = \lim_{x \to -\infty, y \to -\infty} F_{\xi \eta}(x,y) = 0$$

Определение. Случайный вектор называется дискретным, если ξ, η — дискретные случайные величины.

Случайные векторы (ξ,η) принимают значения (x_i,y_i) с вероятностями $p_{ij}=P\big\{\xi=x_i,\eta=y_j\big\},$ при этом

$$p_{ij} < 0$$

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$$

Определение. Частные распределения имеют следующий вид:

$$p_i = P\{\xi = x_i\} = \sum_{j=1}^\infty p_{ij}$$

$$q_j = P\{\eta = y_j\} = \sum_{i=1}^{\infty} p_{ij}$$

Независимость величин

Определение. Случайные величины ξ,η называются независимыми, если

$$P\{\xi < x, \eta < y\} = P\{\xi < x\} * P\{\eta < y\}$$
, t.e. $F_{\xi\eta}(x,y) = F_{\xi}(x) * F_{\eta}(y)$

Аналогично $P(A \cap B) = P(A) * P(B) \Rightarrow A, B$ независимы.

Рассмотрим подробнее. Для дискретных случайных величин:

$$p_{ij} = p_i p_j$$

Для абсолютно непрерывных случайных величин:

$$f_{\varepsilon_n}(x,y) = f_{\varepsilon}(x)f_n(y)$$

Определение. Случайный вектор (ξ,η) называется абсолютно непрерывным, если

$$F_{\xi\eta}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\xi\eta}(u,v) du dv$$

Определение. Частные распределения имеют следующий вид:

$$f_{\xi}(x) = \int_{-\infty}^{\infty} f_{\xi\eta}(x, y) dy;$$

$$f_{\eta}(y) = \int_{-\infty}^{\infty} f_{\xi\eta}(x, y) dx.$$

Теорема. Случайные величины ξ,η независимы тогда и только тогда, когда

$$f_{\varepsilon_n}(x,y) = f_{\varepsilon}(x)f_n(y)$$

Пусть установлено, что случайные величины — зависимы. Определение. Пусть $F_{\xi\eta}(x,y)$ — функция распределения вектора (ξ,η) , а $F_{\xi}(x)$ — функция распределения случайной величины ξ . Условным распределением случайной величины η относительно случайной величины ξ называется распределение со следующей функцией:

$$\begin{split} &F_{\eta\mid\xi}(x,y)=\frac{F_{\xi\eta}(x,y)}{F_{\xi}(x)}\text{ при }F_{\xi}(x)>0;\\ &F_{\eta\mid\xi}(x,y)=0\text{ при }F_{\xi}(x)=0. \end{split}$$

В частности, для дискретной случайной величины:

$$Pig\{\eta=y_j\mid \xi=x_iig\}=rac{P\{\xi=x_i,\eta=y_j\}}{P\{\xi=x_i\}},$$
 или $Pig\{\eta=y_j\mid \xi=x_iig\}=rac{P_{ij}}{p_i}$

А для абсолютно непрерывной случайной величины:

$$f_{\eta\mid \, \xi}(x,y)=rac{f_{\xi\eta}(x,y)}{f_\eta}(x)$$
 для $f_\xi(x)>0.$ Заметим, что $f_{\xi\eta}(x,y)=f_\xi(x)*f_{\eta\mid \, x}(x,y).$

Т.о. условное распределение является случайной величиной. Наша задача — найти следующую связь: $\eta = f(\xi)$.

Определение. Условным математическим ожиданием случайной величины η относительно случайной величины ξ называется случайная величина

$$M_{\eta \mid \xi = x_i} = \sum_{i=1}^{\infty} y_i * P\{\eta = y_i \mid \xi = x_i\}$$

с распределением $P\{\xi = x_i\}$. Построим ряд распределения:

$\boxed{ M_{\eta \mid \xi} = x_i }$	m_1	m_2		m_n
$P\{\xi=x_i\}$	p_1	p_2	•••	p_n

Определение. Условным математическим ожиданием абсолютно непрерывной случайной величины η относительно случайной величины ξ называется

$$M_{\eta \; | \; \xi} = \int_{-\infty}^{\infty} y f_{\eta \; | \; \xi}(x,y) dy$$
с функцией плотности $f_{\xi}(x).$

Покажем, что $M\!\left(M_{\eta\,|\,\xi}\right)=M\eta$. Действительно,

$$M\Big(M_{\eta\mid\xi}\Big) = \int_{-\infty}^{\infty} \Big(M_{\eta\mid\xi}\Big) f_{\xi}(x) dx = \int_{-\infty}^{\infty} \Big(\int_{-\infty}^{\infty} f_{\eta\mid\xi}(x,y) dy\Big) f_{\xi}(x) dx = \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f_{\eta\mid\xi}(x,y) = f_{\eta}(x) dx dy = f_{\eta\xi}(x,y)$$

$$=\textstyle\int_{-\infty}^{\infty}y\Bigl(\int_{-\infty}^{\infty}f_{\xi\eta}(x,y)dx\Bigr)dy=\int_{-\infty}^{\infty}yf_{\eta}(y)dy=M\eta.$$

Аналогично $Mig(M_{\eta \mid \, \xi}ig) = M\eta.$

 $(M\xi,M\eta)$ — центр распределения двумерной случайной величины $(\xi,\eta).$