國立成功大學

工程科學系

112 學年度第二學期 電子學實驗課程

第六實驗報告

工程科學系 2年級

E94114073 張哲維

繳交日期: 2020/4/16

一、 實驗目的

本實驗的目的在瞭解電晶體放大電路的基本特性,學習電晶體工作點的調設及輸入阻抗、輸出阻抗與放大倍率的量測。

二、 實驗步驟

1. CE 放大電路:

- A. 接好電路,調整可變電阻使 V_{CE}=5V。
- B. $\Diamond V_S$ 頻率為 1KZ,且調整電壓使 V_O 達最大不失真波形。
- C. 量測 R_{in}、R_{out}、A_V 並與理論值比較
- D. 接上 AB 兩點使 R_E 短路,重複上述動作

2. CC 放大電路:

- A. 接好電路,調整可變電阻使 $V_{CE}=5V$ 。
- B. 令 V_S 頻率為 1KZ,且調整電壓使 V_O 達最大不失真波形。
- C. 量測 R_{in}、R_{out}、A_V 並與理論值比較

3. CB 放大電路:

- A. 令 V_S 頻率為 1KZ,電壓為 0.2V_{P-P}。
- B. 量測 R_{in}、R_{out}、A_V 並與理論值比較

三、 實驗結果

1. CE 放大電路 (with R_E)

I_{BQ}	I_{CQ}	I _{EQ}	gm	β	rπ	r _o	r _e
3.63	0.8463	0.7771	0.0338	233.14	6.887	118.16	29.414
μΑ	mA	mA			$\mathbf{k}\Omega$	$K\Omega$	Ω

	R_B	R_{IN}	R_{OUT}	A_V
IDEAL		13.866 ΚΩ	4.994K Ω	5
EXP.	14.712 ΚΩ	13.68 1."	04904"	4.964
ERROR		1.33%	1.80%	0.72%

2. CE 放大電路 (without R_E)

	R_B	R_{IN}	R_{OUT}	A_V
IDEAL		4.691K Ω	5.292K Ω	169.26
EXP.	14.712ΚΩ	05281."	04848	140
ERROR		12.58%	8.37%	17.29%

3. CC 放大電路

I_{BQ}	I_{CQ}	I _{EQ}	gm	β	rπ	r _o	r _e
3.63	0.8463	0.7771	0.0338	233.14	6.887	118.16	29.414
μΑ	mA	mA			$\mathbf{k}\Omega$	$K\Omega$	Ω

	R_B	R_{IN}	R_{OUT}	A_V
IDEAL		13.866 Ω	84.457 Ω	1
EXP.	14.712 ΚΩ	13708."	05457."	0.9941
ERROR		1.14%	546%	0.59%

4. CB 放大電路:

I_{BQ}	I_{CQ}	I _{EQ}	gm	β	rπ	r _O	r_e
4.23	0.9512	0.9452	0.0380	224.87	5.910	105.13	26.166
μΑ	mA	mA			$\mathbf{k}\Omega$	$K\Omega$	Ω

	R_{IN}	R_{OUT}	A_V
IDEAL	26.097 Ω	9.131 Ω	338.52
EXP.	39.632Ω	9.565 Ω	112
ERROR	34.15%	4.75%	66.91%

四、 問題與討論

- 1. 測量 R_{in}、R_{out}能使用兩種方法: 一種為在電路上加入可變電阻,當測量電壓為輸入或輸出的一半時即為此電路的 R_{in}、R_{out}。另一種則是直接測量輸入輸出的電壓和電流,相除即為 R_{in}、R_{out}的值,在實作上發現第一種方式的誤差相對比較小,推測是第二種方式的因素有兩個。
- 2. 實驗中通常數值小的數據容易有較大的誤差,因為需要更穩定 的電路及更精細的儀器和元件去測量。
- 3. 在 CB 放大電路中發現放大倍率立論值和實際值差距非常大(3 倍),尚未找到原因。
- 4. 示波器上面的 CH1 峰對峰值與波行產生器的電壓有些許差異,可能是因為這次實驗所使用的電壓較小,所以叫有些微的誤差,如果想要使用大一點的電壓,要將 CH2 的波形縮小 10 倍,以方便在示波器上好觀察。

五、 心得

這次實驗室由第五次的偏壓電路去做延伸,了結電晶體的放大原理,所需記錄和計算的數據非常的多,而其電路上面雖然簡單,但為了要測量輸入輸出電阻,因而需要額外接上一個可變電阻,這讓我額外花費許多時間。其中也因為誤差太大,重複做了好幾次,不過最後也是達到了較為接近的數據。這次實驗的困難度我覺得偏難,也可能是因為先倍知識不足,導致實驗的流暢度不好。