EQN 8.56

EQN 8.58

Given & Find

8.10 A retaining wall with geotextile reinforcement is 6-m high. For the granular backfill, $\gamma_1 = 15.9 \text{ kN/m}^3$ and $\phi'_1 = 30^\circ$. For the geotextile, $T_{\text{all}} = 16 \text{ kN/m}$. For the design of the wall, determine S_V , L, and l_l . Use $FS_{(B)} = FS_{(P)} = 1.5$.

FSb := 1.5
FSp := 1.5
Tall :=
$$16 \frac{kN}{m}$$
 ϕ' 1 := $30 \text{deg} = 0.524$ γ 1 := $15.9 \frac{kN}{m}$ $z := H = 1 \text{ H}$
 γ 5 := γ 6 := γ 1 : γ 7 := γ 8 : γ 9 := γ 1 : γ 9 : γ 9 := γ 1 : γ 9 :

- METHOD 1. Calculate Ka
 - 2. Determine Sv
 - 3. Find L

Ka :=
$$\tan\left(45 \text{deg} - \frac{\phi'1}{2}\right)^2 = 0.333$$
 $\sigma'a := \text{Ka} \cdot \sigma'o = 5.3 \times 10^3 \text{ T}^2$ EQN 8.55

 $\phi'f := \frac{2}{3} \cdot \phi'1 = 0.349$ friction angle at geotextile soil interface

RFid :=
$$\frac{1.1 + 2.0}{2}$$
 = 1.55 RFcr := $\frac{2 + 4}{2}$ = 3 RFcbd := $\frac{1 + 1.15}{2}$ = 1.075

Tult := Tall·(RFid·RFcr·RFcbd) = $7.998 \times 10^4 \frac{\text{kg}}{\text{s}^2}$

$$Sv := \frac{\text{Tall}}{\sigma' \text{a-FSb}} = 2.013 \frac{\text{A}^2 \cdot \text{s}^2}{\text{kg}}$$

$$Sv := \frac{1}{3} \text{m} = 0.333 \text{ m}$$
EQN 8.57

 $\underline{z} := 5m$ $\underline{z} := 4m$ $\underline{z} := 3m$ $\underline{z} := 2m$ $\underline{z} := 1m$ $\underline{z} := .5m$ max when z small Z trials:

$$Lr := \frac{H - z}{\tan\left(45\deg + \frac{\phi'1}{2}\right)} = 3.175 \,\mathrm{m}$$

Le := $\frac{\text{Sv} \cdot \sigma' \text{a} \cdot \text{FSp}}{2 \cdot \sigma' \text{o} \cdot \tan(\phi' \text{f})} = 0.229 \,\text{m}$

EQN 8.59
$$L := 1.404 \, \text{m}$$

use length of 3.5m

8.11 With the S_V , L, and l_I determined in Problem 8.10, check the overall stability Given & (i.e., factor of safety against overturning, sliding, and bearing capacity failure) of the wall. For the in situ soil, $\gamma_2 = 16.8 \text{ kN/m}^3$, $\phi_2' = 20^\circ$, and $c_2' =$ 55 kN/m2.

W1 := H·L·
$$\gamma$$
1 = 3.248 × 10⁵ $\frac{\text{kg}}{s^2}$ x1 := $\frac{L}{2}$ = 1.702 m c'2 := 55 $\frac{\text{kN}}{\text{m}^2}$ ϕ '2 := 20deg γ 2 := 16.8 $\frac{\text{kN}}{\text{m}^3}$

Pa :=
$$.5 \cdot \gamma 1 \cdot H^2 \cdot Ka = 9.54 \times 10^4 \frac{\text{kg}}{\text{c}^2}$$

FSoverturning :=
$$\frac{W1 \cdot x1}{Pa \cdot \frac{H}{2}} = 2.897$$
 if (FSoverturning > 3, "OK", "modify") = "modify" EQN 8.50

FSsliding :=
$$\frac{W1 \cdot tan(\phi'f)}{Pa} = 1.239$$

if (FSsliding > 1.5, "OK", "modify") = "modify"

EQN 8.51

$$Nc := 14.83$$
 $Nq := 6.40$ $N\gamma := 5.39$

table 3.3
$$qu := c'2 \cdot Nc + .5 \cdot \gamma 2 \cdot x \cdot 1 \cdot N\gamma = 8.927 \times 10^5 \text{ Pa}$$

$$\sigma'_{o} := \gamma 1 \cdot H = 9.54 \times 10^4 \text{ Pa}$$

FSbearing :=
$$\frac{qu}{\sigma'o} = 9.358$$

EQN 8.54