Introduction to Machine Learning

Maximum Likelihood Estimation vs. Empirical Risk Minimization

Learning goals

- Understand the connection between maximum likelihood and risk minimization
- Learn the correspondence between a Gaussian error distribution and the L2 loss

MAXIMUM LIKELIHOOD

Let's consider regression from a maximum likelihood perspective. Assume:

$$y \mid \mathbf{x} \sim p(y \mid \mathbf{x}, \boldsymbol{\theta})$$

Common case: true underlying relationship f_{true} with additive noise:

$$y=f_{ ext{true}}(\mathbf{x})+\epsilon$$

where f_{true} has params θ and ϵ a RV that follows some distribution \mathbb{P}_{ϵ} , with $\mathbb{E}[\epsilon] = 0$. Also, assume $\epsilon \perp \!\!\! \perp \mathbf{x}$.

MAXIMUM LIKELIHOOD

From a statistics / maximum-likelihood perspective, we assume (or we pretend) we know the underlying distribution $p(y \mid \mathbf{x}, \theta)$.

• Then, given i.i.d data $\mathcal{D} = ((\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)}))$ from \mathbb{P}_{xy} the maximum-likelihood principle is to maximize the **likelihood**

$$\mathcal{L}(\boldsymbol{ heta}) = \prod_{i=1}^n \rho\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{ heta}\right)$$

or equivalently to minimize the negative log-likelihood

$$-\ell(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)$$

MAXIMUM LIKELIHOOD

From an ML perspective we assume our hypothesis space corresponds to the space of the (parameterized) f_{true} .

Simply define neg. log-likelihood as loss function

$$L(y, f(\mathbf{x} \mid \boldsymbol{\theta})) := -\log p(y \mid \mathbf{x}, \boldsymbol{\theta})$$

• Then, maximum-likelihood = ERM

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid oldsymbol{ heta}
ight)
ight)$$

- NB: When we are only interested in the minimizer, we can ignore multiplicative or additive constants.
- \bullet We use \propto as "proportional up to multiplicative and additive constants"

GAUSSIAN ERRORS - L2-LOSS

Assume $y = f_{\text{true}}(\mathbf{x}) + \epsilon$ with additive Gaussian errors, i.e. $\epsilon^{(i)} \sim \mathcal{N}(\mathbf{0}, \sigma^2)$. Then

$$y \mid \mathbf{x} \sim N\left(f_{\mathsf{true}}(\mathbf{x}), \sigma^2\right)$$

The likelihood is then

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{n} \rho \left(y^{(i)} \mid f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right), \sigma^{2} \right)$$

$$\propto \prod_{i=1}^{n} \exp \left(-\frac{1}{2\sigma^{2}} \left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right) \right)^{2} \right)$$

GAUSSIAN ERRORS - L2-LOSS

Easy to see: minimizing neg. negative log-likelihood with Gaussian errors is the same as ERM with *L2*-loss:

$$-\ell(\boldsymbol{\theta}) = -\log\left(\mathcal{L}(\boldsymbol{\theta})\right)$$

$$= -\log\left(\prod_{i=1}^{n} \exp\left(-\frac{1}{2\sigma^{2}}\left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)^{2}\right)\right)$$

$$\propto \sum_{i=1}^{n} \left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)^{2}$$

GAUSSIAN ERRORS - L2-LOSS

- We simulate data $y \mid \mathbf{x} \sim \mathcal{N}\left(f_{\text{true}}(\mathbf{x}), 1\right)$ with $f_{\text{true}} = 0.2 \cdot \mathbf{x}$
- Let's plot empirical errors as histogram, after fitting our model with L2-loss
- Q-Q-plot compares empirical residuals vs. theoretical quantiles of Gaussian

DISTRIBUTIONS AND LOSSES

ullet For every error distribution \mathbb{P}_ϵ we can derive an equivalent loss function, which leads to the same point estimator for the parameter vector $oldsymbol{ heta}$ as maximum-likelihood. Formally,

$$\bullet \ \hat{\theta} \in \operatorname{arg\,max}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) \implies \hat{\theta} \in \operatorname{arg\,min}_{\boldsymbol{\theta}} - \log(\mathcal{L}(\boldsymbol{\theta}))$$

 But: The other way around does not always work: We cannot derive a corresponding pdf or error distribution for every loss function – the Hinge loss is one prominent example, for which some probabilistic interpretation is still possible however, see
 Sollich, 1999

DISTRIBUTIONS AND LOSSES

When does the reverse direction hold?

- If we can write the loss as $L(y, f(\mathbf{x})) = L(y f(\mathbf{x})) = L(r)$ for $r \in \mathbb{R}$, then minimizing $L(y f(\mathbf{x}))$ is equivalent to maximizing a conditional log-likelihood $\log(p(y f(\mathbf{x}|\theta)))$ if
 - $\log(p(r))$ is affine trafo of L (undoing the ∞):

$$\log(p(r)) = a - bL(r), \ a \in \mathbb{R}, b > 0$$

• p is a pdf (non-negative and integrates to one)

Thus, a loss L corresponds to MLE under *some* distribution if there exist $a \in \mathbb{R}, \ b > 0$ such that

$$\int_{\mathbb{R}} \exp(a - bL(r)) dr = 1$$

