Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

PATIENT				
Name: 劉昱德	Patient ID: 45874917			
Date of Birth: Dec 11, 1963		Gender: Male		
Diagnosis: Hepatocellular carcinoma	1			
ORDERING PHYSICIAN				
Name: 陳三奇醫師	Tel: 886-228712121			
Facility: 臺北榮總				
Address: 臺北市北投區石牌路二段 201 號				
SPECIMEN				
Specimen ID: S10932822A	Type: FFPE tissue			
Date received: Jun 10, 2022	D/ID: NA			

ABOUT ACTORCO®4

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS

VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in F	Probable Sensitive in Other		
Alterations/Biomarkers	Sensitive	Cancer Types		
Not detected				

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
RB1 Homozygous deletion	-	Abemaciclib, Palbociclib, Ribociclib

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 1 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency	
TP53	C238R	82.4%	

- Copy Number Alterations

Chromosome	Chromosome Gene		Copy Number
Chr13	RB1	Homozygous deletion	0
Chr13	BRCA2	Heterozygous deletion	1
Chr17	FLCN, TP53	Heterozygous deletion	1
Chr5	TERT	Amplification	9

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results	
Tumor Mutational Burden (TMB)	3.2 muts/Mb	
Microsatellite Instability (MSI)	Microsatellite stable (MSS)	

Note:

- Variant(s) enlisted in the SNV table may currently exhibit no relevance to treatment response prediction. Please refer to INTERPRETATION for more biological information and/or potential clinical impacts of the variants.
- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 61% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **2** of **24**

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect	
Level 4			
RB1 Homozygous deletion	Abemaciclib, Palbociclib, Ribociclib	resistant	

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
ЗА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 3 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
	Cisplatin	Sensitive	Clinical	Bladder carcinoma
RB1	FAC			
Homozygous deletion	T/FAC	Sensitive	Clinical	Breast cancer
	taxane/doxorubicin			

HORMONAL THERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
RB1	Tamoxifen	Resistant	Clinical	Breast cancer
Homozygous deletion	Tallioxileli	Resistant	Cillical	Dieast Caricer

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 4 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

VARIANT INTERPRETATION

TP53 C238R, Heterozygous deletion

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis^[1]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation^[2].

TP53 C238R mutation lies in the DNA-binding domain (DBD) of the p53 protein (UniProtKB). This mutation has not been characterized in scientific literature; therefore, its effect on the p53 protein function remains unknown. This mutation has been reported in the sequencing studies of ovarian cancer and Wilms tumor^{[3][4]}.

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)^[5].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[6]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[7].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53^{[8][9][10]}. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)^[11]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy^{[12][13]}. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53^[14].

BRCA2 Heterozygous deletion

Biological Impact

The BRCA2 gene encodes a tumor suppressor involved in the homologous recombination pathway for double-strand DNA repair^[15]. BRCA2 has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[16]. BRCA2 germline mutations confer an increased lifetime risk of developing breast, ovarian, prostate and pancreatic cancer, limited reports of related gastric cancer, and Fanconi anemia subtype D1-associated risk of brain cancer, medulloblastoma, pharyngeal cancer, chronic lymphocytic leukemia and acute myeloid leukemia^[17]. Somatic mutations in BRCA2 are highest in colorectal, non-small cell lung cancer (NSCLC), and ovarian cancers^[18].

Therapeutic and prognostic relevance

The U.S. FDA has approved olaparib in advanced ovarian cancer under several settings including (1) first-line maintenance treatment for patients with deleterious or suspected deleterious germline or somatic BRCA mutation who are in complete or partial response to first-line platinum-based chemotherapy^[19]; (2) in combination with bevacizumab as first-line maintenance treatment for patients with homologous recombination deficiency (HRD)-positive status^[20]; (3) maintenance treatment for patients with germline BRCA-mutated recurrent ovarian cancer who are in complete or partial response to platinum-based chemotherapy^{[21][22]}; (4) treatment for patients with germline BRCA-mutated

AG4-QP4001-02(06)

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

Project ID: C22-M001-01742 Report No.: AA-22-03085 ONC

Date Reported: Jun 23, 2022

ACTOnco® + Report

advanced ovarian cancer who have been treated with three or more prior lines of chemotherapy[23]. In addition, olaparib has also been approved in patients with deleterious or suspected deleterious germline BRCA-mutated, HER2-negative metastatic breast cancer who have been treated with chemotherapy in either neoadjuvant, adjuvant, or metastatic setting^[24]and germline BRCA-mutated metastatic pancreatic cancer^[25]. Of note, in May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[26].

Rucaparib has been approved for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy and patients with BRCA-mutated epithelial ovarian, fallopian tube, or primary peritoneal cancer, who have been treated with two or more chemotherapies[27][28]. In May 2020, the U.S. FDA also approved rucaparib to treat adult patients with a deleterious BRCA mutation-associated metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor-directed therapy and a taxane-based chemotherapy (TRITON2, NCT02952534).

The U.S. FDA also approved niraparib for the maintenance treatment of patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in response to platinum-based chemotherapy and patients who have been treated with three or more prior lines of chemotherapy and associated with HRD positive status^{[29][30][31]}. In addition, talazoparib for patients with deleterious or suspected deleterious germline BRCA-mutated, HER2 negative locally advanced or metastatic breast cancer^[32].

FLCN Heterozygous deletion

Biological Impact

The FLCN gene encodes the tumor suppressor, Folliculin, a GTPase activating protein (GAP) for RagC/D GTPase proteins involved in amino acid sensing and signaling to mTORC1[33]. FLCN has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions[34][35]. Inactivation of the FLCN gene by mutation or deletion results in the activation of the mTOR pathway and AKT signaling^{[36][37]}. Germline mutation of the FLCN gene causes the Birt-Hogg-Dubé syndrome, a rare disorder that is characterized by benign hamartomatous skin lesions and an increased risk of pneumothorax and renal tumors[38].

Therapeutic and prognostic relevance

In a prospective Phase 2 study, four anaplastic thyroid cancer (ATC)/ poorly differentiated thyroid cancer (PDTC) patients who had PI3K/mTOR/AKT alterations, including TSC2, FLCN or NF1, showed impressive progression-free survival (PFS) of 15.2 months after receiving everolimus[39]. mTOR inhibition via rapamycin also demonstrated potential in inhibiting the growth of renal cells deficient in FLCN in the preclinical setting^[40].

RB1 Homozygous deletion

Biological Impact

The Retinoblastoma (RB1) gene encodes a tumor suppressor that negatively regulates the cell cycle, cell division, and DNA replication^[41]. Loss-of-function RB1 could lead to unregulated cell division and growth, abrogation of multiple mechanisms that safeguard against cellular transformation, and tumorigenesis[42]. RB1 has also been implicated as a haploinsufficient tumor suppressor with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[43][44][45]}. Deletion or inactivating mutation of RB1 is found in a number of tumors, including lung, prostate, bladder, breast cancers and sarcomas. RB1 mutations are found in approximately half of all retinoblastoma cases[46].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 6 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

Therapeutic and prognostic relevance

A deleterious mutation in one or more of the three DNA repair genes ATM, RB1, and FANCC predicted pathologic response and better overall survival to cisplatin-based chemotherapy for muscle-invasive bladder cancer patients^[47]. High RB loss was found to be associated with improved pathologic clinical response in breast cancer patients treated with 5-fluorouracil/adriamycin/cytoxan (FAC), T/FAC, and Taxane/Adriamycin neoadjuvant therapy^[48].

Clinical and experimental data suggested that a non-functional retinoblastoma pathway is associated with resistance to tamoxifen in breast cancer^{[49][50]}.

Acquired RB1 mutations were found in hormone receptor positive breast cancer patients who developed resistance to palbociclib or ribociclib treatment^[51]. Preclinical data also showed that knockdown of RB1 would impair antitumor activity of CDK4/6 inhibitor, abemaciclib^[52].

Two large-scale genome-sequencing projects have identified a high prevalence of mutations in TP53 and RB1 in small cell lung cancer (SCLC)^{[53][54]}. Analyses of repeat biopsy samples from patients with EGFR-mutant adenocarcinoma that had transformed to the SCLC subtype have revealed that 100% of these patients have loss of RB1 and may be the alteration that induces this non-small-cell to small-cell transformation^{[50][55]}.

TERT Amplification

Biological Impact

The TERT gene encodes the catalytic subunit of telomerase, an enzyme that maintains telomere length and genomic integrity^[56]. Upregulation of TERT promotes cancer development and progression via modulation of Wnt-catenin and nuclear factor kappa B signaling^{[57][58]}, and mitochondrial RNA processing^[59]. Activating mutations in the TERT promoter have been identified in a number of cancer types including melanoma, hepatocellular carcinoma, urothelial carcinoma, medulloblastoma, and glioma whereas TERT gene amplification is implicated in lung cancer, cervical cancer, breast cancer, Merkel cell carcinoma, neuroblastoma and adrenocortical carcinoma^{[60][61][62][63][64]}.

Therapeutic and prognostic relevance

Imetelstat (GRN163L), a telomere inhibitor which has been shown to inhibit cell proliferation in various cancer cell lines and tumor xenografts is currently in clinical trials^[56].

TERT gene amplification is an independent poor prognostic marker for disease-free survival in non-small cell lung cancer (NSCLC) and breast cancer [65][66][67].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **7** of **24**

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

- FDA Approval Summary of Everolimus (AFINITOR)

RADIANT-4 ^[68]	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)
NCT01524783	
NC101324763	Everolimus vs. Placebo [PFS(M): 11 vs. 3.9]
BOLERO-2 ^[69]	Breast cancer (Approved on 2012/07/20)
NCT00863655	ER+/HER2-
NC100603033	Everolimus + exemestane vs. Placebo + exemestane [PFS(M): 7.8 vs. 3.2]
EXIST-2	Tuberous sclerosis complex (tsc)-associated renal angiomyolipoma (Approved on 2012/04/26)
NCT00790400	
	Everolimus vs. Placebo [ORR(%): 41.8 vs. 0]
DADIANT O[70]	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
RADIANT-3 ^[70]	-
NCT00510068	Everolimus vs. Placebo [PFS(M): 11 vs. 4.6]
EXIST-1 ^[71]	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
NCT00789828	-
NC100709020	Everolimus vs. Placebo [ORR(%): 35.0]
DECORD 4[72]	Renal cell carcinoma (Approved on 2009/05/30)
RECORD-1 ^[72]	-
NCT00410124	Everolimus vs. Placebo [PFS(M): 4.9 vs. 1.9]

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

PRIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)
NCT02655016	
NC102033010	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2019/10/23)
QUADRA ^[31] NCT02354586	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation, and/or genomic instability)
	Niraparib [ORR(%): 24.0, DOR(M): 8.3]
NOVA ^[30]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
NCT01847274	- ()
NG101047274	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 8 of 24

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

OlympiA	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)			
NCT02032823	gBRCA			
100102032023	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]			
	Prostate cancer (Approved on 2020/05/19)			
PROfound ^[26] NCT02987543	ATMm, BRCA1m, BRCA2m, BARD1m, BRIP1m, CDK12m, CHEK1m, CHEK2m, FANCLm PALB2m, RAD51Bm, RAD51Cm, RAD51Dm, RAD54Lm			
	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]			
	Ovarian cancer (Approved on 2020/05/08)			
PAOLA-1 ^[20] NCT02477644	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation and/or genomic instability)			
	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]			
POLO ^[25]	Pancreatic adenocarcinoma (Approved on 2019/12/27)			
NCT02184195	Germline BRCA mutation (deleterious/suspected deleterious)			
NC102104195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]			
SOLO-1 ^[19]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)			
NCT01844986	Germline or somatic BRCA-mutated (gBRCAm or sBRCAm)			
110101044900	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]			
OlympiAD ^[24]	Breast cancer (Approved on 2018/02/06)			
NCT02000622	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative			
110102000022	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]			
SOLO-2/ENGOT-Ov21 ^[73]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)			
NCT01874353	gBRCA+			
110101074555	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]			
Study19 ^[74]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)			
NCT00753545	-			
110100733343	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]			
Study 42 ^[75]	Ovarian cancer (Approved on 2014/12/19)			
NCT01078662	Germline BRCA mutation (deleterious/suspected deleterious)			
140101070002	Olaparib [ORR(%): 34.0, DOR(M): 7.9]			

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITONIO	Prostate cancer (Approved on 2020/05/15)	
TRITON2	gBRCA+, sBRCA	
NCT02952534	Rucaparib [ORR(%): 44.0, DOR(M): NE]	

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 9 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3[27]	All HRD tBRCA
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS
	(tBRCA)(M): 16.6 vs. 5.4]
ARIEL2 ^[76]	Ovarian cancer (Approved on 2016/12/19)
NCT01482715,	Germline and/or somatic BRCA mutation
NCT01891344	Rucaparib [ORR(%): 54.0]

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBD 4 0 4[32]	Breast cancer (Approved on 2018/10/16)
EMBRACA ^[32]	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative
NCT01945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

- FDA Approval Summary of Temsirolimus (TORISEL)

[77]	Renal cell carcinoma (Approved on 2007/05/30)
NCT00065468	-
NC10005466	Temsirolimus vs. Ifn-α [OS(M): 10.9 vs. 7.3]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 10 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **11** of **24**

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
TP53	C238R	7	c.712T>C	NM_000546	COSM44321	82.4%	849

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

AA-22-03085

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4001-02(06) page **12** of **24**

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Exon		cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
CALR	K368del	9	c.1102_1104del	NM_004343	COSM4765003	52.6%	251
GATA1	S412R	6	c.1236C>A	NM_002049	-	96.3%	246
GNAQ	D130N	3	c.388G>A	NM_002072	-	50.3%	1900
IL7R	Splice region	-	c.876+3G>A	NM_002185	-	41.2%	2116
LRP1B	A1912T	35	c.5734G>A	NM_018557	COSM5776518	43.0%	1433
MUC4	A896D	2	c.2687C>A	NM_018406	-	31.9%	2259
MUC6	T1381K	31	c.4142C>A	NM_005961	-	49.1%	401
MYC	D205N	2	c.613G>A	NM_002467	-	36.7%	510
PAX5	Splice region	-	c.604+8A>G	NM_016734	-	35.8%	95
PDCD1LG2 (PD-L2)	I207T	4	c.620T>C	NM_025239	-	49.7%	1094
PDIA3	V125I	4	c.373G>A	NM_005313	-	30.3%	1678
POLD1	D644E	16	c.1932C>G	NM_001256849	-	54.8%	445
RPTOR	V1147I	29	c.3439G>A	NM_020761	COSM6769672	25.8%	1010
SPEN	R3136C	11	c.9406C>T	NM_015001	-	50.5%	608
STAT3	A766T	24	c.2296G>A	NM_139276	-	35.7%	2649
SYNE1	R7412H	122	c.22235G>A	NM_182961	-	47.0%	2817

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **13** of **24**

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Sep 2020Facility retrieved: 臺北榮總

H&E-stained section No.: S10932822A

Collection site: Liver

Examined by: Dr. Chien-Ta Chiang

1. The percentage of viable tumor cells in total cells in the whole slide (%): 25%

- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 60%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

Mean Depth: 1639x

- Target Base Coverage at 100x: 95%

RNA test

Average unique RNA Start Sites per control GSP2: 15

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-503

AG4-QP4001-02(06) page **14** of **24**

Project ID: C22-M001-01742 Report No.: AA-22-03085 ONC

Date Reported: Jun 23, 2022

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 25, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 15 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫藥資訊研究員 楊杭哲 博士 Hang-Che Yang Ph.D. hay

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號 yehr_

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 16 of 24

ACTOnco® + Report

GENE LIST SNV & CNV

ADAMTS9 ARAF AXL BIRC3 CALR CCND2 CDH1
AXL BIRC3 CALR CCND2
BIRC3 CALR CCND2
CALR CCND2
CCND2
CDH1
CDKN2A
CTLA4
CYP3A5*
EPCAM
ERCC4
FANCE
FGF23
FLT4
GREM1
HSP90AA1
IKZF1
KAT6A
LIG1
МАРК3
MRE11
MYD88
<i>NOTCH3</i>
PAX5
PIK3C3
POLD1
PRKN
RAC1
RECQL4
SDHA
SLCO1B1*
SPOP
TBX3
TP53
VDR*

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 17 of 24

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

	Gene	Therapies	Possible effect
	FLCN	Everolimus, Temsirolimus	sensitive
BRCA2		Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Everolimus, Temsirolimus

1: Olaparib, Niraparib, Rucaparib, Talazoparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 18 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 19 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

REFERENCE

- PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70
 Unravelling mechanisms of p53-mediated tumour suppression.
- 2. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- 3. PMID: 16322298; 2005, Clin Cancer Res;11(23):8372-83
 Clinical relevance of dominant-negative p73 isoforms for responsiveness to chemotherapy and survival in ovarian cancer: evidence for a crucial p53-p73 cross-talk in vivo.
- 4. PMID: 29085664; 2017, J Pathol Clin Res;3(4):234-248 TP53 alterations in Wilms tumour represent progression events with strong intratumour heterogeneity that are closely linked but not limited to anaplasia.
- PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361
 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- PMID: 26646755; 2016, Ann Oncol;27(3):539-43
 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- PMID: 25669829; 2015, Ann Oncol;26(5):1012-8
 Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.
- PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485
 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- PMID: 23670029; 2013, Oncotarget;4(5):705-14
 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.
- PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14
 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- PMID: 21399868; 2011, Int J Oncol;38(5):1445-52
 p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- PMID: 20549698; 2011, Int J Cancer;128(8):1813-21
 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- PMID: 10786679; 2000, Cancer Res;60(8):2155-62
 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.
- 14. PMID: 25672981; 2015, Cancer Res;75(7):1187-90
 VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.
- 15. PMID: 11239455; 2001, Mol Cell;7(2):263-72
 BRCA2 is required for homology-directed repair of chromosomal breaks.
- PMID: 17597348; 2007, Ann Surg Oncol;14(9):2510-8
 Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis.
- 17. PMID: 22193408; 2011, Nat Rev Cancer;12(1):68-78
 BRCA1 and BRCA2: different roles in a common pathway of genome protection.
- 18. PMID: 27283171; 2016, J Natl Compr Canc Netw;14(6):795-806

ACCREDITED COLLEGE of AMERICAN PATHOLOGISTS

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 20 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

The Relevance of Hereditary Cancer Risks to Precision Oncology: What Should Providers Consider When Conducting Tumor Genomic Profiling?

- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- PMID: 28884698; 2017, Lancet Oncol;18(9):e510
 Correction to Lancet Oncol 2017; 18: 1274-84.
- PMID: 22452356; 2012, N Engl J Med;366(15):1382-92
 Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer.
- 23. PMID: 26187614; 2015, Clin Cancer Res;21(19):4257-61
 FDA Approval Summary: Olaparib Monotherapy in Patients with Deleterious Germline BRCA-Mutated Advanced Ovarian Cancer Treated with Three or More Lines of Chemotherapy.
- PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 28. PMID: 28882436; 2017, Gynecol Oncol;147(2):267-275

 Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: Integrated analysis of data from Study 10 and ARIEL2.
- PMID: 31562799; 2019, N Engl J Med;381(25):2391-2402
 Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- 31. PMID: 30948273; 2019, Lancet Oncol;20(5):636-648

 Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.
- PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
- 33. PMID: 24095279; 2013, Mol Cell;52(4):495-505
 The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.
- PMID: 26342594; 2016, Fam Cancer;15(1):127-32
 Birt-Hogg-Dubé syndrome: novel FLCN frameshift deletion in daughter and father with renal cell carcinomas.
- PMID: 23223565; 2013, J Clin Pathol;66(3):178-86
 Birt-Hogg-Dube syndrome: clinicopathological features of the lung.
- PMID: 19850877; 2009, Proc Natl Acad Sci U S A;106(44):18722-7
 Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2.

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 21 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

- PMID: 24908670; 2014, Hum Mol Genet;23(21):5706-19
 Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation.
- PMID: 15956655; 2005, J Natl Cancer Inst;97(12):931-5
 High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dubé-associated renal tumors.
- PMID: 29301825; 2018, Clin Cancer Res;24(7):1546-1553
 Genomic Correlates of Response to Everolimus in Aggressive Radioiodine-refractory Thyroid Cancer: A Phase II Study.
- PMID: 26418749; 2015, Oncotarget;6(32):32761-73
 Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression.
- PMID: 22293180; 2012, J Clin Invest; 122(2):425-34
 Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma.
- 42. PMID: 6320372; 1984, Science;223(4640):1028-33 Retinoblastoma: clues to human oncogenesis.
- PMID: 27308386; 2015, Mol Cell Oncol;2(1):e968069
 Conditional haploinsufficiency of the retinoblastoma tumor suppressor gene.
- PMID: 23687339; 2013, Cancer Res;73(14):4247-55
 Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability.
- PMID: 28169375; 2017, Sci Rep;7():42056
 The Rb1 tumour suppressor gene modifies telomeric chromatin architecture by regulating TERRA expression.
- 46. PMID: 15884040; 2005, Hum Mutat;25(6):566-74
 Sensitive multistep clinical molecular screening of 180 unrelated individuals with retinoblastoma detects 36 novel mutations in the RB1 gene.
- PMID: 26238431; 2015, Eur Urol;68(6):959-67
 Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer.
- PMID: 22811582; 2012, Clin Cancer Res;18(18):5110-22
 RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer.
- 49. PMID: 21358261; 2011, Cell Cycle;10(6):956-62 A non-functional retinoblastoma tumor suppressor (RB) pathway in premenopausal breast cancer is associated with resistance to tamoxifen.
- PMID: 17160137; 2007, J Clin Invest;117(1):218-28
 The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer.
- 51. PMID: 29236940; 2018, Ann Oncol;29(3):640-645
 Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer.
- PMID: 29483214; 2018, Mol Cancer Ther;17(5):897-907
 Preclinical Activity of Abemaciclib Alone or in Combination with Antimitotic and Targeted Therapies in Breast Cancer.
- PMID: 22941188; 2012, Nat Genet;44(10):1104-10
 Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer.
- PMID: 22941189; 2012, Nat Genet;44(10):1111-6
 Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer.
- 55. PMID: 25846096; 2015, Lancet Oncol;16(4):e165-72
 Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.
- PMID: 21332640; 2011, J Cell Mol Med;15(7):1433-42
 Targeting telomerase-expressing cancer cells.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 22 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACTOnco® + Report

- 57. PMID: 19571879; 2009, Nature;460(7251):66-72
 Telomerase modulates Wnt signalling by association with target gene chromatin.
- 58. PMID: 23159929; 2012, Nat Cell Biol;14(12):1270-81 Telomerase directly regulates NF-кВ-dependent transcription.
- PMID: 19701182; 2009, Nature;461(7261):230-5
 An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA.
- PMID: 23348506; 2013, Science; 339(6122):957-9
 Highly recurrent TERT promoter mutations in human melanoma.
- 61. PMID: 23530248; 2013, Proc Natl Acad Sci U S A;110(15):6021-6
 TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal.
- 62. PMID: 11103775; 2000, Cancer Res;60(22):6230-5
 Frequent amplification of the telomerase reverse transcriptase gene in human tumors.
- PMID: 12007187; 2002, Genes Chromosomes Cancer;34(3):269-75
 Amplification of the telomerase reverse transcriptase (hTERT) gene in cervical carcinomas.
- 64. PMID: 25301727; 2014, Oncotarget;5(20):10048-57 TERT promoter mutations and gene amplification: promoting TERT expression in Merkel cell carcinoma.
- PMID: 16641908; 2006, Br J Cancer;94(10):1452-9
 Amplification of telomerase (hTERT) gene is a poor prognostic marker in non-small-cell lung cancer.
- 66. PMID: 27982019; 2017, Cancer Gene Ther;24(1):20-27
 The associations of TERT-CLPTM1L variants and TERT mRNA expression with the prognosis of early stage non-small cell lung cancer.
- 67. PMID: 29100407; 2017, Oncotarget;8(44):77540-77551
 TERT promoter status and gene copy number gains: effect on TERT expression and association with prognosis in breast cancer.
- 68. PMID: 26703889; 2016, Lancet;387(10022):968-977

 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
- PMID: 22149876; 2012, N Engl J Med;366(6):520-9
 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- 70. PMID: 21306238; 2011, N Engl J Med;364(6):514-23 Everolimus for advanced pancreatic neuroendocrine tumors.
- 71. PMID: 23158522; 2013, Lancet;381(9861):125-32
 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.
- 72. PMID: 18653228; 2008, Lancet; 372(9637):449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 73. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 74. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- 75. PMID: 25366685; 2015, J Clin Oncol;33(3):244-50
 Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 23 of 24

Project ID: C22-M001-01742 Report No.: AA-22-03085_ONC Date Reported: Jun 23, 2022

ACT Onco® + Report

- 76. PMID: 27908594; 2017, Lancet Oncol;18(1):75-87
 Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial.
- PMID: 17538086; 2007, N Engl J Med;356(22):2271-81
 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **24** of **24**