А. А. Горшков, С. В. Востоков, С. М. Власьев РЕГУЛЯРНЫЕ ФОРМАЛЬНЫЕ МОДУЛИ В ПОЛНЫХ МНОГОМЕРНЫХ ПОЛЯХ

1 Введение

При исследовании нормальных расширений без высшего ветвления возникла задача описания всех неразветвленных расширений локального поля, которые вместе с основным полем являются регулярными, то есть не содержащими нетривиальных р-х корней из 1 (где р — характеристика поля вычетов локального поля). Основное локальное поле при этом называется вполне регулярным. Эта задача была решена З. И. Боревичем в работе [3]. Основной результат этой работы, доказательство которого было упрощено Д. К. Фаддеевым, является следующим.

Теорема 1.1. Пусть K — регулярное локальное поле. Расширение $K(\zeta)/K$, где $\zeta^p=1,\ \zeta\neq 1$, будет неразветвленным тогда итолько тогда, когда индекс ветвления $e=e(K/\mathbb{Q}_p)$ делится на p-1.

Встает естественный вопрос — является ли ограничение на индекс ветвления исходного поля, которое не является регулярным, то есть содержит нетривиальный корень степени p из 1, достаточным для того, чтобы круговое расширение $K(\zeta_{p^n}), \ n \geqslant 2$, было бы неразветвлено. Этот вопрос решается в первой части работы.

Задача о регулярных и вполне регулярных полях возникает в арифметике формальных модулей и она решается во второй части настоящей работы.

2 Вполне разветвленное $K(\zeta_{p^2})/K$ при нерегулярном K с индексом ветвления p(p-1)

K — локальное поле (конечное расширение \mathbb{Q}_p),

 ζ_{p^m} — первообразный корень степени p^m из 1,

e - абсолютный индекс ветвления поля K,

 \mathfrak{R} — мультипликативная система Тейхмюллера в поле K,

 $\mathfrak O$ — кольцо целых подполя инерции T в $K/\mathbb Q_p,$

 $E(f(X)) = exp(1 + \frac{\Delta}{p} + \frac{\Delta^2}{p^2} + \ldots)(f(X))$, где $\Delta f(X) = f(X^p)$, для $f(X) \in \mathbb{Z}_p[[X]]X$. Считаем, что $\zeta_p \in K$ и индекс ветвления делится на p.

Докажем, что существуют поля, для которых расширение $K(\zeta_{p^2})$ будет вполне разветвленным над K.

Пусть $K_0 = \mathbb{Q}_p(\zeta_p)$ и $K = K_0(\sqrt[p]{\pi})$, где $\pi = 1 - \zeta_p$. Пусть $\Pi = \sqrt[p]{\pi}$.

Теорема 2.1. Расширение $K(\zeta_{p^2})/K$ вполне разветвлено.

Доказательство. В нашем случае $e = e(K/\mathbb{Q}_p) = p(p-1)$. Рассмотрим разложение корня ζ_p по образующим мультипликативной группы K^* . Пусть $a \in \mathbb{Z}_p$ и $\omega(a) = E(a(\underline{\zeta}^p - 1))|_{X=\Pi}$, где $\zeta(X) = (1 - X^p)^p$.

В работе [3] было доказано, что $\omega(a) - p$ -примарный элемент поля K (то есть расширение $K(\sqrt[p]{\omega(a)})/K$ неразветвлено), и при этом значение символа Гильберта в поле K, $(,)_p : K^* \times K^* \to \langle \zeta_p \rangle$ на паре Π , $\omega(a)$ равно $(\Pi, \omega(a)) = \zeta_a^a$.

Образующими K^* будут элементы $\{\Pi, \omega(a), 1-\theta\pi^b \mid \theta \in \mathfrak{R}, 1 \leqslant b < p^2, p \nmid b\}$, и корень ζ_p , тем самым, раскладывается в виде

$$\zeta_p = \omega(a)^{\beta} \prod_{\substack{p\nmid b\\1\leqslant b < p^2}} (1 - \theta \Pi^b)^{\alpha_{\theta,b}}, \tag{1}$$

где $\beta, \alpha_{\theta,b} \in \mathbb{Z}$.

Докажем сперва, что

$$\beta \equiv 0 \mod p. \tag{2}$$

Для этого подсчитаем значение символа Гильберта на паре Π, ζ_p . Нетрудно видеть, что из соотношения Стейнберга $(\alpha, 1-\alpha)=1, \ \alpha\neq 0$ для символа Гильберта следует равенство

$$(\Pi, 1 - \theta \Pi^b) = 1, p \nmid b. \tag{3}$$

(4)

Действительно, $1=(\theta\Pi^b,1-\theta\Pi^b)=(\theta,1-\theta\Pi^b)\cdot(\Pi,1-\theta\Pi^b)^b$. При этом $\theta=\theta_1^p$ при некотором $\theta_1\in\Re$, так как группа \Re p-делима. Значит, $(\Pi,1-\theta\Pi^b)^b=1$, откуда $(\Pi,1-\theta\Pi^b)=1$, так как, если $(\Pi,1-\theta\Pi^b)=\zeta^k$ при некотором $1\leqslant k\leqslant p-1$, то $\zeta^{bk}=1$, что противоречит $p\nmid bk$.

Из равенства (3) следует

$$(\Pi, \zeta_p) = (\Pi, \omega(a))^{\beta} \cdot \prod_{\substack{p \nmid b \\ 1 \leqslant b < p^2}} (1 - \theta \Pi^b)^{\alpha_{\theta,b}} =$$

$$= (\Pi, \omega(a))^{\beta} = \zeta_p^{a\beta}, \text{то есть}$$

$$(\Pi, \zeta_p) = \zeta_p^{a\beta}.$$

Подсчитаем теперь значение (Π, ζ_p) по явной формуле для символа Гильберта (см. [?, 12]). Пусть l(1 + f(X))) — обратная функция к функции Артина-Хассе E(f(X)). Она была определена в [?, §1, п. 1].: $l(1+f(X)) = (1-\frac{\Delta}{p})\log(1+f(X))$ для $f(X) \in X\mathbb{Z}_p[[X]]$ и $\Delta f(X) = f(X^p)$.

была определена в $[\cdot, \, 3]$, из $[\cdot, \, 3]$, из

$$(1 - \zeta^p)^p - 1 \equiv -\zeta^{p^2} \mod p \tag{5}$$

Кроме того, $l(\underline{\zeta}) = (1 - \frac{\Delta}{p}) \log(1 - X^p) = \sum_{p \nmid m} \frac{X^{pm}}{m} + \sum_{m \geqslant 1} \frac{X^{p^{m+1}} - X^{p^m}}{p^m} = \sum_{m \geqslant 1} \frac{X^{p^m}}{p^m} = \sum_{m \geqslant 1} \frac{X^{p^m}}{p^m} + \sum_{m \geqslant 1} \frac{X^{p^m}}{p^m} = \sum_{m \geqslant 1} \frac{X^{p^m}}{p^$

 $\sum_{p\nmid m}\frac{X^{p^m}}{m}.$ Среди степеней $X^{pm},\,p\nmid m$ нет степени $p^2,$ значит

 $(\Pi,\zeta_p)=1.$ Отсюда и из (4) следует (2). Значит $\zeta_p\equiv\prod_{\mu}(1-\theta\Pi^b)^{\alpha_{\theta,b}}\mod K^{*p}.$ Пусть степень

b — наименьшая, для которой $lpha_{ heta,b} \not\equiv 0 \mod p$. Если такой нет, то это означает, что $\zeta_p \in K^{*p}$, что невозможно. Тогда $\zeta_p = 1 - c\Pi^b$, где c — некоторая единица поля K, то есть $c = c_0 + c_1 \Pi + c_2 \Pi^2 + \dots, c_i \in \mathbb{Z}_p \text{ if } p \nmid c_0, 1 \leqslant b < \frac{pe}{p-1}, p \nmid b.$

Несложно видеть, что расширение $K(\zeta_{n^2})/K$ вполне разветвлено. Действительно, ζ_p будет корнем многочлена X+ $c\Pi^b-1$, тогда ζ_{p^2} будет корнем многочлена $X^p+c\Pi^b-1$. !!!! и что дальше??!!!!!

3 Формальные модули в многомерном поле

3.1Формулировка

Пусть K — полное многомерное поле нулевой характеристики, то есть поле, для которого имеется последовательнось полей, $K_0, K_1, \ldots, K_{n-1}, K_n = K$ таких, что K_0 — совершенное поле характеристики p, и K_{i-1} — поле вычетов для K_i , $i \leqslant i \leqslant n$.

 $(t_1, t_2, \dots, t_{n-1}, t_n = \pi)$ — система локальных параметров поля K,

 $\mathfrak O -$ кольцо целых поля K относительно n-мерного нормирования,

F(X,Y) — одномерная формальная группа над \mathfrak{O} .

Будем предполагать, что K — разнохарактеристическое полное многомерное поле, то есть charK0, $char K_{n-1} = p > 0.$

Пусть k — максимальное локальное поле в K (конечное расширение \mathbb{Q}_p), ДЛЯ которого поле $E = k\{\{t_1\}\}\cdots\{\{t_{n-1}\}\}((\pi))$ содерижится в K.

Предполагаем, что K/E — конечное расширение, и кольцо эндоморфизмов $\operatorname{End}_{\mathfrak{O}} F$ формальной группы F изоморфно кольцу целых \mathfrak{O}_0 подрасширения E_0 в E. Считаем при

этом, что K/E_0 — конечное расширение. Пусть $(t_1^{(0)},t_2^{(0)},\dots t_{n-1}^{(0)},t_n^{(0)}=\pi_0)$ — система локальных

параметров поля E_0 , $\pi \in k_0$. $E_0 = k_0\{\{t_1^{(0)}\}\}\cdots\{\{t_{n-1}^{(0)}\}\}((\pi_0))$, причем k_0 — подполе k. Пусть, далее L — расширение поля K с системой локальных параметров $(T_1, T_2, \ldots, T_{n-1}, T_n = \Pi)$, и

$$-\pi_0 = T_1^{i_1} \cdots T_{n-1}^{i_{n-1}} \Pi^{e_n} \rho u, \tag{*}$$

где ρ — представитель Тейхмюллера в L, u — главная единица поля L.

Предполагаем, что поле L — регулярно относительно формальной группы F, то есть ядро изогении $\mathrm{Ker}[\pi_0]$ не содрежится в L за исключением нуля.

h := htF — высотра формальной группы F,

 $\mathfrak{M}:=\mathfrak{M}_L$ — максимальный идеал кольца целых поля L, $F(\mathfrak{M})$ — формальный \mathfrak{O} -модуль на идеале \mathfrak{M} .

Будем называть поле L вполне регулярным относительно формальной группы F, если $\mathrm{Ker}[\pi_0]$ не содержится в любом неразветвтленном расширении M поля L.

В настоящей работе доказывается следующий результат

Теорема 3.1. Поле L является вполне регулярным относительно формальной группы F тогда и только тогда, когда система индексов $(i_1, \ldots, i_{n-1}, e_n)$ делится на $p^h - 1$, то есть $i_k : p^h - 1$, $1 \le k \le n$ (см. (*)).

3.2 Вспомогательные результаты

Пусть $\xi \in \operatorname{Ker}[\pi_0]$, $\xi \neq 0$, $\xi \in K^{alg}$ — произвольный элемент ядра изогении $[\pi_0]$. $[\pi_0](X) = \pi_0 X \varepsilon(X) + X^{p^h} \theta r(X)$, где $\varepsilon(X), r(X) \in \mathfrak{O}_0[[X]]$, при этом $\varepsilon(X) \equiv r(X) \equiv 1 \mod X$, а θ — представитель система Тейхмюллера в кольце целых поля k_0 . Ясно, что $\frac{[\pi_0](X)}{X} = \pi_0 \varepsilon_1(X)^{p^h-1} + (Xr_1(X))^{p^h-1}\theta$, где $\varepsilon_1(X)^{p^h-1} = \varepsilon(X)$, $r_1(X)^{p^h-1} = r(X)$. Поэтому элемент ξ удовлетворяет уравнению $-\pi_0 = (\xi \mathfrak{E}(\xi))^{p^h-1}\theta$, где $\mathfrak{E}(X) = \varepsilon_1(X)^{-1}r_1(X)$. Поэтому

$$L(\xi) = L(\sqrt[p^{h-1}]{-\theta^{-1}\pi_0}). \tag{1}$$

Пусть $e = e(K/\mathbb{Q}_p); 1 \leqslant b < \frac{pe}{p-1}, p \nmid b, \Pi$ — простой элемент в $K, \varepsilon = 1 + c\Pi^b, c$ — единица в K.

 Λ емма 3.2. Пусть $\zeta_p \in K$, тогда $K(\sqrt[p]{\varepsilon})/K$ вполне разветвленно.

Доказательство. Рассмотрим уравнения $X^p = \varepsilon$ и X = Y + 1, тогда

$$Y^{p} + c_{p}^{p-1}Y^{p-1} + \dots + pY = c\Pi^{b}.$$
 (*)

Пусть расширение $K(\sqrt[p]{\varepsilon})/K$ неразветвлено. Тогда, если корень уравнения (*) α — единица, то получим противоречие: $\mathfrak{v}_L(\alpha) = 0 \implies \mathfrak{v}(\alpha^p + \ldots + p\alpha) = 0$, но $\mathfrak{v}(c\Pi^b) = b \geqslant 1$. Здесь и далее $\mathfrak{v} = \mathfrak{v}_L$ — нормирование в поле $L = K(\sqrt[p]{\varepsilon})$. Если $\mathfrak{v}(\alpha) \geqslant 1$, то есть два варианта.

1. $1 \leqslant \mathfrak{v}(\alpha) \leqslant \frac{e}{p-1}$, тогда $\mathfrak{v}(\alpha^p + c_p^{p-1}\alpha^{p-1} + \cdots + p\alpha) = \mathfrak{v}(\alpha^p) = p\mathfrak{v}(\alpha)$. Но $\mathfrak{v}(c\Pi^b) = b \not\equiv 0 \mod p$ — противоречие.

2. $\mathfrak{v}(\alpha) > \frac{e}{p-1}$, тогда $\mathfrak{v}(\alpha^p + c_p^{p-1}\alpha^{p-1} + \cdots + p\alpha) \geqslant \frac{pe}{p-1}$, так как $\mathfrak{v}(\alpha^p) = p\mathfrak{v}(\alpha) \geqslant \frac{pe}{p-1}$ и $\mathfrak{v}(p\alpha) = e + \mathfrak{v}(\alpha) \geqslant \frac{pe}{p-1}$. С другой стороны, $\mathfrak{v}(c\Pi^b) = b < \frac{pe}{p-1}$.

Итак, предположение, что L/K неразветвлено приводит к противоречию.

Следствие 3.3. Расширение $K(\zeta_{p^2})/K$ вполне разветвлено.

3.3 Доказательство теоремы (3.1)

 \mathcal{A} оказательство. Пусть $\overline{e}=(e_1,\ldots,e_n)$ делится на p^h-1 . Тогда

$$-\pi_0 = (T_1^{i_1'} \cdots T_{n-1}^{i_{n-1}'} \rho_1 u_1)^{p^h - 1},$$

где $i_k'=\frac{i_k}{p^h-1},\ 1\leqslant k\leqslant n-1;\ \rho_1^{p^h-1}=\rho,\ \rho\in\Re;$ и $u_1^{p^h-1}=u,$ где u_1 — главная единица в L. Отсюда и из (*) получаем $L(\xi)=L(\sqrt[p^h-1]{\theta^{-1}})$ и, значит, расширение L/K неразветвлено.

Если же (i_1,\ldots,i_{n-1},e_n) не делится на p^h-1 , то $L(\xi)=L(\sqrt[p^h-1]{T_1^{i_1}\cdots T_{n-1}^{i_{n-1}}\Pi^{e_n}})$ и $L(\xi)/L$ поэтому разветвлено. \square

Список литературы

- [1] Fesenko I. B., Vostokov S. V, Local Fields and Their Extensions, Second edition, 2002.
- [2] Востоков С. В, Волков П. П., Пак Г. К, Символ Гильберта для многочленных формальных групп, Зап. науч. сем. ПОМИ, том 400, 2012, стр. 127-132.
- [3] Боревич З. И., *О регулярных локальных полях*, Вестник ЛГУ, 1962, стр. 142-145.
- [4] Бенуа Д. Г., Востоков С.В. Арифметика группы точек формальной группы, Зап. научн. сем. ЛОМИ, 191 (1991), стр. 9–23.
- [5] Zhukov I. B., *Higher dimensional local fields*, Invitation to higher local fields, 2000, ctp. 5-18.
- [6] Honda T., On the theory of commutative formal groups, J. Math Soc. Japan, 1970, crp. 213-246.
- [7] Hazewinkel M., Formal groups and applications, Academic Press, New York, 1978.