L2 Foundation of Physics 2B Optics 2019-20

Solutions to O.WP.3

February 13, 2020

The field on-axis at a distance z downstream of a circularly symmetric aperture is given by

$$E^{(z)} = \frac{E_0 e^{ikz}}{i\lambda z} \int_0^\infty f(\rho') e^{ik\rho'^2/(2\pi)} 2\pi \rho' d\rho' ,$$

where $f(\rho')$ is the aperture function. Let the aperture function $f(\rho')$ be a uniformly illuminated circular annulus with inner and outer radii ρ'_1 and ρ'_2 respectively.

(a) Sketch the aperture function in the z=0 plane labelling ρ'_1 and ρ'_2 .

$$f(\rho') = 1$$
 if $\rho'_1 < \rho < \rho'_1$
= 0 otherwise

[1 mark sketch, 1 mark labels]

(b) Derive an expression for the field on-axis in the plane z=z downstream of the annular aperture.

$$E^{(z)} = \frac{E_0 \mathrm{e}^{ikz}}{i\lambda z} \int_{\rho_1'}^{\rho_2'} \mathrm{e}^{ik\rho'^2/(2\pi)} 2\pi \rho' \mathrm{d}\rho' \ . \ [\mathbf{1} \ \mathrm{mark}]$$
 Let $\xi^2 = k\rho'^2/(2z)$ then $2\xi \frac{\mathrm{d}\xi}{\mathrm{d}\rho'} = \frac{2k}{2z}\rho' \qquad \therefore 2\pi\rho' \mathrm{d}\rho' = 2\lambda z \xi \mathrm{d}\xi \ . \ [\mathbf{2} \ \mathrm{marks}]$ So $E^{(z)} = E_0 \mathrm{e}^{ikz} \frac{\lambda z}{i\lambda z} \int_{\xi_1}^{\xi_2} \mathrm{e}^{i\xi^2} 2\xi \mathrm{d}\xi = -E_0 \mathrm{e}^{ikz} \left(\mathrm{e}^{i\xi_2^2} - \mathrm{e}^{i\xi_1^2} \right)$ using the hint $[\mathbf{2} \ \mathrm{marks}]$.

(c) Any aperture function with circular symmetry can be considered to be made up of a series of Fresnel zones. Write an expression for the electric field $E_2^{(z)}$ produced by the second Fresnel zone only in terms of E_0 .

Boundary of the m^{th} Fresnel zone is $\rho' = \sqrt{\lambda mz}$, so the second zone lies between $\rho'_1 = \sqrt{\lambda z}$ and $\rho'_2 = \sqrt{2\lambda z}$. [2 marks] Thus

$$E_2^{(z)} = -E_0 e^{ikz} \left(e^{i2\pi} - e^{i\pi} \right) = -E_0 e^{ikz} \left(1 + 1 \right) = -2E_0 e^{ikz}.$$
 [1 mark]

1

(d) Rewrite $E_2^{(z)}$ in terms of the electric field from the first Fresnel zone $E_1^{(z)}$.

For the 1st zone $\rho_1' = 0$ and $\rho_2' = \sqrt{\lambda z}$. So

$$E_1^{(z)} = -E_0 e^{ikz} (e^{i\pi} - 1) = -E_0 e^{ikz} (-1 - 1) = 2E_0 e^{ikz}$$
. [2 marks]

The contributions to the field from the first and second Fresnel zones are equal but out of phase $E_2^{(z)}=-E_1^{(z)}$.