Университет ИТМО Физико-технический мегафакультет Физический факультет

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2.02

Определение отношения теплоемкостей воздуха при постоянных давлении и объеме

Группа: N3151

Студент: Мочеков С.С

Преподаватель: Эйхвальд Т.А.

К работе допущен: Работа выполнена: Отчет принят:

I. Цели работы

- 1. Изучение процессов в идеальных газах.
- 2. Определение показателя адиабаты: $\gamma = \frac{C_P}{C_V}$

II. Задачи, решаемые при выполнении работы

- 1. Измерить значения избыточных давлений в баллоне.
- 2. Расчитать отношения теплоемкостей при постоянном давлении и постоянном объеме.

III. Объект исследования

Воздух, находящийся в эксперементальной установке

IV. Метод эксперементального исследования

- Замер разности высот в U-образной колбе после изменения давления.
- Анализ полученных данных.

V. Рабочие формулы и исходные данные

1.
$$\gamma = \frac{C_P}{C_V} = \frac{H}{H-h}$$

2.
$$\frac{\Delta \gamma}{\gamma} = \frac{H}{H-h} \sqrt{\left(\frac{\Delta H}{H}\right)^2 + \left(\frac{\Delta h}{h}\right)^2}$$

3.
$$pV = \nu RT$$

VI. Измерительные приборы

№ π/π	Наименование	Цена деления	Используемый диапазон	Погрешность прибора
1	U-образная колба	20 мл	10 мл	0.1 мл
2	Линейка	1 MM	340 мм	0.5 мм

VII. Фото экспериментальной установки

Рис. 2. Общий вид экспериментальной установки

1 – клапан для соединения с атмосферой, 2 – жидкостный манометр, 3 – ручка регулировки мощности компрессора, 4 – кнопка включения компрессора, 5 – кнопка включения "Сеть".

VIII. Результаты измерений

Nº	Н1, мм	Н2, мм	Н, мм	h1, мм	h2, мм	h, мм	γ	$\Delta \gamma/\gamma$
1	215	85	130	153	143	10	1,0833	0,00005
2	235	67	168	155	140	15	1,098	0,00004
3	216	83	133	154	141	13	1,1083	0,00004
4	216	82	134	157	138	19	1,1652	0,00003
5	219	79	140	156	138	18	1,1475	0,00003
6	220	77	143	156	137	19	1,1532	0,00003
7	218	79	139	155	138	17	1,1393	0,00003
8	219	77	142	156	138	18	1,1452	0,00003

ІХ. Итог

Результаты измерений для требуемых значений

•
$$\langle \gamma \rangle = 1,13$$

Х. Вывод

В ходе работы изучили процессы в идеальных газах. Путём эксперимента определили отношение изобарной и изохорной теплоёмкостей воздуха, $\langle \gamma \rangle = 1, 13$. Это достаточно близко к теоретическому значению $\gamma = \frac{i+2}{i} = \frac{7}{5} = 1.4.i = 5$ т.к. воздух близок к двухатомным газам по структуре(огромная доля азота и кислорода, которые являются двухатомными газами.