Exercises: Dimension and Riemann Roch

January 18, 2020

- 1. Let C be a non-singular projective curve and let D be a divisor on C. Choose a basis f_0, \ldots, f_n for L(D) and consider the rational map from C to $\mathbb{P}(L(D)) = \mathbb{P}^n$ given by $p \mapsto [f_0(p) : \ldots : f_n(p)]$ (not defined if $f_i(p) = \infty$ or all f_i vanish at p), and extend it to a regular map $f: C \to \mathbb{P}^n$.
 - (a) Show that the image of f is not contained in a hyperplane.
 - (b) Show that, if $H \subseteq \mathbb{P}^n$ is a hyperplane, then $f^{-1}(H)$ is a divisor equivalent to D.
 - (c) Find a bijection between the set of divisors on C with l(D) = n + 1 modulo rational equivalence, and the set of regular maps $f: C \to \mathbb{P}^n$ such that f(C) is not contained in a hyperplane, modulo the action of $PGL(n+1,\mathbb{C})$.
- 2. Let C be a non-singular projective curve, let D be a divisor on C, and let $f: C \to \mathbb{P}(L(D))$ be the map from the previous problem. Show that:
 - (a) f is one-to-one iff l(D+p+q)=l(D)+2 for all distinct points p,q.
 - (b) f is an embedding iff l(D+p+q)=l(D)+2 for all pairs of points p,q.
- 3. For i = 1, 2, assume that C_i are non-singular projective curves and $f_i : C_i \to \mathbb{P}^1$ are regular maps. Assume that the degree of f_i is two and that f_i are branched over the same set in \mathbb{P}^1 . Prove that C_1 is isomorphic to C_2 . (Hint: consider the set $X = \{(x, y) \in C_1 \times C_2 \mid f_1(x) = f_2(y)\}$).
- 4. Prove that any non-singular curve of genus 0 is isomorphic to \mathbb{P}^1 .
- 5. Prove that any non-singular curve of genus 1 is isomorphic to a planar cubic curve (i.e., the zero locus of a cubic polynomial in \mathbb{P}^2).

- 6. Prove that any non-singular curve of genus 2 is a branched double cover of \mathbb{P}^1 .
- 7. Let C be a non-singular curve of genus 2. Assume that $f: C \to \mathbb{P}^1$ is a branched double cover of \mathbb{P}^1 . Let D be the divisor attached to f, and let $B \subseteq \mathbb{P}^1$ be the set of points over which f is branched.
 - (a) Show that |B| = 6.
 - (b) Show that $D \sim K$.
 - (c) Show that B is determined by C up to the action of $PGL(3, \mathbb{C})$.

Remark 0.1. This means that the space of all non-singular curves of genus 2 is the quotient of the collection of all six-tuples of distinct points of \mathbb{P}^1 , modulo the action of $S_6 \times \operatorname{PGL}(3,\mathbb{C})$.

- 8. Let $X, Y \subset \mathbb{C}^n$ be algebraic sets.
 - (a) Prove that $\dim(X \times Y) = \dim(X) + \dim(Y)$.
 - (b) Assume that $X \cap Y \neq \emptyset$. Prove that $\dim(X \cap Y) \geq \dim(X) + \dim(Y) n$. (Hint: identify the intersection $X \cap Y$ with the intersection of $X \times Y \subset \mathbb{C}^{2n}$ and the diagonal $\{(x,y) \in \mathbb{C}^{2n} \mid x=y\} \subset \mathbb{C}^{2n}$)
- 9. Let $X,Y \subset \mathbb{P}^n$ and assume that $\dim(X) + \dim(Y) \geq n$. Prove that $X \cap Y \neq \emptyset$. (Hint: use the previous problem)