👺 Grafos na Ciência da Computação — Teoria Formal

Definição Formal

Na matemática e ciência da computação, um **grafo** é definido como:

```
$
G = (V, E)
$
```

Onde:

- \$V\$ é um conjunto finito de **vértices** (ou *nós*).
- \$E \subseteq V \times V\$ é um conjunto de **arestas** (ou *ligações*), que conectam pares de vértices.

Tipos de Grafos

1. Grafo não direcionado (ou simples)

As arestas não têm direção:

```
$
E = { {u, v} \mid u, v \in V }
$
```

2. Grafo direcionado (ou dígrafo)

Cada aresta aponta de um vértice para outro:

```
$
E = { (u, v) \mid u, v \in V }
$
```

3. Multigrafo

Permite múltiplas arestas entre o mesmo par de vértices.

4. Grafo ponderado

Cada aresta tem um peso $w(u, v) \in \mathbb{R}$, comum em problemas como caminhos mínimos (e.g., Dijkstra).

Propriedades Importantes

Conceito Descrição

Conceito	Descrição
Grau do vértice	Número de arestas conectadas a ele. Em grafos direcionados: grau de entrada/saída.
Caminho	Sequência de vértices conectados por arestas.
Ciclo	Caminho que começa e termina no mesmo vértice.
Conectividade	Grafo é conectado se existe um caminho entre qualquer par de vértices.
Árvore	Grafo acíclico e conectado.
Grafo bipartido	Os vértices podem ser divididos em dois conjuntos disjuntos com arestas só entre conjuntos.
Subgrafo	Um grafo formado a partir de subconjuntos de vértices e arestas do grafo original.

Representações em Computação

1. Matriz de Adjacência

- Tamanho \$|V| \times |V|\$
- Útil para grafos densos.
- Teste de adjacência é \$O(1)\$.

2. Lista de Adjacência

- Lista onde cada vértice aponta para seus vizinhos.
- Eficiência espacial \$O(|V| + |E|)\$
- o Ideal para grafos esparsos.

3. Lista de Arestas

- Lista de pares \$(u, v)\$ ou trios \$(u, v, w)\$ se ponderado.
- o Boa para algoritmos de ordenação de arestas (e.g., Kruskal).

Algoritmos Fundamentais

Algoritmo	Aplicação	Complexidade
BFS (Busca em Largura)	Conectividade, caminhos mínimos em grafos não ponderados	\$O(V + E)\$
DFS (Busca em Profundidade)	Ciclos, componentes, ordenação topológica	\$O(V + E)\$
Dijkstra	Caminho mínimo com pesos positivos	\$O((V + E) \log V)\$
Bellman-Ford	Caminho mínimo com pesos negativos	\$O(VE)\$

Algoritmo	Aplicação	Complexidade	
Floyd-Warshall	loyd-Warshall Todos os caminhos mínimos		
Kruskal / Prim	Árvore Geradora Mínima (MST)	\$O(E \log V)\$	
Kosaraju / Tarjan	Componentes fortemente conexos	\$O(V + E)\$	

- Sistemas Operacionais: Deadlock (grafo de espera por recursos)
- Redes: Roteamento de pacotes, conectividade de redes
- Compiladores: Dependência entre tarefas (grafo de dependência)
- Teoria dos Jogos: Representação de estratégias e estados
- Inteligência Artificial: Busca em grafos para planejamento
- Web: PageRank (grafo de links), recomendação

Classificação dos Grafos por Complexidade

Tipo de grafo	Denso	Esparso	Cíclico	Acíclico
Exemplo	Rede social	Árvore	Roteamento de redes	DAG (dependências de build)

Resumo Visual

