

OptiTrack 运动捕捉系统

使用说明(上)

Version 2.0.1 October 2017

目录

2 Getting Started		1
2.1 硬件设置		1
2.1.1 场地准备	·	1
2.1.2 相机安装		1
2.1.3 线缆连接		2
2.14 相机角度、	. 对焦	3
2.2 软件安装		3
2.2.1 硬件需求		3
2.2.2 软件安装		4
2.2.3 软件注册		4
2.3 采集设置		5
2.3.1 相机设置		5
2.3.2 相机标定		5
2.3.3 Marker 放	放置	5
2.3.4 创建资产		6
2.3.5 数据采集		6
2.4 数据处理		6

2.4.1 数据编辑	6
2.4.2 数据导出	7
2.4.3 数据传输	8

2 Getting Started

本文介绍快速安装、使用 OptiTrack 运动捕捉系统。系统使用上的关键部分在本文中都有介绍,以便熟悉系统。如想要了解更详细功能,请查看第三章之后内容。

2.1 硬件设置

硬件设置主要包含:场地准备,相机安装,线缆连接,相机角度调节,相机对焦等部分

2.1.1 场地准备

为获得最佳捕捉效果,在安装系统之前需要准备、清理捕捉空间。尽可能减少相机视角中的遮挡物;遮挡住窗户,放置阳光干扰;去除或遮盖场地内反光物体。

- 减少捕捉空间中红外光源。
- 去除相机视角内遮挡物。
- 去除、遮盖反光物体。

2.1.2 相机安装

要计算 3D 标记点的位置,被跟踪标记点在捕捉系统中必须要同时至少有两台相机(或者多台,取决于 "Reconstruction Settings")捕获到。为获得最佳的捕捉效果,在捕捉区域四周环绕放置相机。同时将相机安装在稳定的结构上,以便在捕捉过程中相机系统不会产生位移。请参考以下图像安装相机、调整相机角度。

2.1.3 线缆连接

1) 网口相机

- 相机通过网线链接到网络交换机上。
- 网络交换机连接到主机。
- 交换机供电。
- 网线采用六类网线, 支持 POE 和网络通讯。

2) USB 相机

- 相机通过 USB2.0 线缆 (B to Mini B) 连接到 OptiHub, 线缆长度极限为 5m。
- OptiHub 通过 USB A to B 线缆连接到电脑, 线缆可延长。
- OptiHub 供电。

3) Duo/Trio

Duo/Trio 使用 I/O-X USB Hub 为设备供电,连接到计算机,与外部设备同步。

2.14 相机角度、对焦

所有 OptiTrack 相机都可以在捕捉范围内的任何距离处调节相机镜头焦距,优化图像。相机模式改为原始灰度图像(Raw Grayscale),调节相机参数:提高曝光(EXP) LED 亮度(LED),放大图像到 Marker 点充满视场,查看图像清晰度,然后调节相机镜头焦距,使标记点清晰成像。

2.2 软件安装

请从以下网址下载 Motive 最新安装包: http://url.cn/41oD6Z6。

注意:Motive:Body 和 Motive: Tracker 公用同一个软件安装包,仅 License 权限不同。

2.2.1 硬件需求

建议	最低要求
OS: Windows 7, 8, 10 (64-	OS: Windows 7, 8, 10 (64-
bit)	bit)
■ Direct X9	Direct X9

CPU: 3.0 GHz i7 processor
 CPU: 3.0 GHz i5 processor

RAM: 16GB of memory

RAM: 4GB of memory

2.2.2 软件安装

1) 运行安装包

2) 安装 USB 驱动

第一次安装 Motive 时,会提示安装 OptiTrack USB 驱动(例如: OptiTrack USB Driver x64)。安装此驱动程序,所有的 OptiTrack USB 设备都需要 安装此驱动程序(包括 Hardware Key)。驱动安装完成之后,继续安装 Motive。

3) 按照安装提示安装 Motive 软件,建议在默认目录中安装 Motive 软件。C:\Program File\OptiTrack\Motive

4) 安装完成

注意:电脑是否缺少必要的可再发行组件(.NET framework, Direct X, VC runtime), 安装 Motive 时会提示是否安装,请务必安装这些。在安装 Motive 时联网,软件会自动下 载;或者可以下载完安装包自行安装。

2.2.3 软件注册

- 在开始菜单 OptiTrack->License Tool, 单击打开 License Tool。
- 然后按照提供的 License 信息填写, 你需要填写订单发货中的 License Serial Number / License Hash 以及 Hardware Key Serial Number。(必须联网注册激活,注册完成 后可以离线使用)
- 点击激活。

2.3 采集设置

2.3.1 相机设置

对与光学运动捕捉系统,所有计算结果的基础是图像,只有保证图像能够清晰的捕捉到每个 Marker 点,且无太多干扰,才能保证重建结果的准确性。在进行相机标定之前,需要对每个相机的图像进行观察,确保相机图像中没有过多的干扰点,相机图像对焦清晰。设置相机帧率、曝光、LED、Gain等参数。

2.3.2 相机标定

光学运动捕捉系统首先要进行标定才能够使用。在标定过程中,系统通过捕获的图像计算每个相机的位置、角度、以及畸变。通过标定, Motive 构建 3D 捕获空间。

- 准备、优化捕获设置;
- 在相机预览窗口(Camera Preview)中,点击 I 清除现有的 Mask 区域:
- 打开标定窗口,使用 Mask Visible 去除场地中不能移除的反光物体;
- 将标定杆放入捕捉空间,挥动标定杆,采集标定采样点(Wanding);
- 计算、检查标定结果;
- 设置地面,标定杆场边对应 Z 轴正向,短边对应 X 轴正向。

2.3.3 Marker 放置

在光学运动捕捉系统中,对于 Asset 的定位的基础是 Marker 点,合适的 Marker 点设置对跟踪质量和捕获数据的可靠性有很大影响。Marker 点安装的数目和规格(尺寸、圆度、

反射率)也会影响跟踪质量。

对于 Rigid Body 跟踪,所有标记点必须牢固的固定在被捕捉物的表面,不要有任何变形,Marker 点数量需要多余 3 个;对于 Skeleton 跟踪,打开 Skeleton 窗口,选择合适的Markerset,按照图示放置 Marker 点,衣服最好贴紧身体。

2.3.4 创建资产

创建刚体:将固定好 Marker 点物体放置再标定好的捕捉空间中,框选住物体上所有Marker 点,点击右键,选择 Rigid Body->Create Rigid Body。

创建 Skeleton:选择相应的 Markerset,放置对应的 Marker点,演员站在捕获场地中,做 T-Pose,框选住所有 Marker点,然后点击 Create。

2.3.5 数据采集

点击控制面板底部的红色按钮,开始录制数据,再次点击红色按钮会停止记录数据,运动捕捉数据会以 Take 文件形式录制。保存的数据文件可以进行编辑、导出,以在其他软件中应用。

2.4 数据处理

2.4.1 数据编辑

捕获完成的数据可以通过 Edit 工具进行后处理, 在 Edit Tool 窗口, 可以对数据曲线进

行删除、平滑、填充、交换等处理工作。处理流程如下:

- 1) 首先对整个 Take 数据中所有帧进行浏览,找到需要处理帧数据和标记点。
- 2) 查看标签窗口,并检查每个标签的空缺的百分比。
- 3) 选择之前确定要修复的标记点,可以从之前经常被遮挡的标记点入手。
- 4) 查看时间轴窗口(Timeline)中的编辑器(Editor),检查轨迹中的缺失。
- 5) 在每个缺失的标记点查看 3D 视图中附近是否有未标记的标记点,如果有与轨迹匹配的未标记的标记点,在 Timeline 窗口将两个标记点数据交换。如果未找到相应未标记的标记点,将使用填充功能。
- 6) 对于轨迹缺失的标记点,切未找到符合其轨迹的未标记的标记点,首先使用使用 Trim Tails 功能,修剪标记点轨迹空缺的两端,去除可能存在跟踪错误的几帧数据,虽然无 法判断去除的帧数据是否一定错误,但不能保证其数据一定正确,所以再填补空缺之前一定 要使用 Trim Tials 功能。
- 7) 确定需要填补的空缺,使用 Fill Gaps 功能,由于是模拟出来的运动轨迹,可能会与实际运动轨迹有一定偏差。
 - 8) 根据自己判断使用 Smooth 功能。

2.4.2 数据导出

Motive 支持导出多种不同格式的 3D 数据,导出的数据文件可以使用其它应用程序打开,进一步应用捕捉到的运动数据,Data Export 支持导出 CSV、C3D、FBX、BVH、TRC等格式。在 Data 窗口右键点击 Take 数据,选择 Export Tracking Data,弹出数据导出窗口。选择要导出的数据格式,点击 Export。

2.4.3 数据传输

Motive 可以通过多种方式,将跟踪的数据试试传输到其他程序。Autodesk MotionBuilder、Visual3D、Unreal Engine 4、3ds Max、Maya (VCS)、VRPN、Trackd。
Natnet SDK 支持用户创建自定义客户端用来接收数据,数据流选项不需要单独的许可证。
常见的运动捕捉应用依赖于实时跟踪,OptiTrack 系统旨在提供低延时的数据,Streaming 窗口中配置选定的服务器通过网络广播数据。

通过 Streaming 窗口设置数据传输选项,通过 SDK 或 Plugin 获得数据。

- 1) 在 Motive 中打开 Streaming 窗口。
- 2) 选择数据流传输的网络接口地址 (Local Interface)。
- 3) 选择要传输的数据选项。
- 4) 传输 Skeleton 的时候,需要根据客户端程序选择合适骨骼命名方式(Bone Naming Convention)。
- 5) 在 Edit 模式下回放数据或在 Live 模式下创建 Asset
- 6) 将 Broadcast Frame Data 设置为 True。