Plan d'étude et représentation graphique de $y = f(x) = \sqrt{x}$

www.cafeplanck.com info@cafeplanck.com

Le domaine de définition de f

$$y = f(x) = \sqrt{x} \Rightarrow D_f = [0, +\infty)$$

Etudier la fonction au bornes de D_f

A la borne gauche

$$x = 0 \Rightarrow y = 0 \Rightarrow \begin{vmatrix} 0 \\ 0 \end{vmatrix}$$

Alors le point $\begin{vmatrix} 0 \\ 0 \end{vmatrix}$ est un point d'arrêt.

A la borne droite

$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \sqrt{x} = +\infty$$

Alors la courbe de f tend vers un infini au long de la droite Y = ax + b. On cherche a et b:

1

$$a = \lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \frac{\sqrt{x}}{x} = 0$$

$$b = \lim_{x \to +\infty} (y - ax) = \lim_{x \to +\infty} \sqrt{x} = +\infty$$

Alors la courbe de f a une branche parabolique au long de l'axe $O\!x$.

Le sens de variation de f

$$y' = f'(x) = \frac{1}{2\sqrt{x}}$$

$$2\sqrt{x} = 0 \Rightarrow x = 0 \Rightarrow y = 0 \Rightarrow \begin{vmatrix} 0 \\ 0 \end{vmatrix}$$

$$m_{x \to 0^+} = \lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{(0+\varepsilon)}} = \frac{1}{2\sqrt{+\varepsilon}} = +\infty$$

Convexité de f

$$y'' = f''(x) = \frac{-1}{4x\sqrt{x}}$$

$$4x\sqrt{x} = 0 \Rightarrow x = 0 \Rightarrow y = 0 \Rightarrow \begin{vmatrix} 0 \\ 0 \end{vmatrix}$$

Le tableau de variation

x	0		+∞
<i>y'</i>		+	
У"		-	
У	0		+∞

La courbe

