Workshop 4 Matrices and Linear Transformations

Instructions:

Get into groups and work on the following exercises. Each group is expected to turn in one neatly written copy of their solutions at the end of the class period.

Exercise 1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ be vectors in \mathbb{R}^n . Show that if $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are linearly dependent then $T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_p)$ are linearly dependent.

Exercise 2. Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ span \mathbb{R}^n , and let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Suppose that $T(\mathbf{v}_i) = \mathbf{0}$ for $i = 1, 2, \dots, p$. Show that $T(\mathbf{x}) = \mathbf{0}$ for all \mathbf{x} in \mathbb{R}^n .

Exercise 3. Let A, B and C be matrices. Assuming that the sizes of the matrices are "compatible" in each case, use the definition of matrix multiplication to prove the following:

a.
$$A(B+C) = AB + AC$$

b.
$$(A+B)C = AC + BC$$

c.
$$r(AB) = (rA)B = A(rB)$$
 for any scalar r.

Exercise 4.*

a. Let A be a 2×2 matrix. Suppose that A has the following property: AB = BA for $any \ 2 \times 2$ matrix B. What can you say about A? Hint: Try taking B to be any one of the matrices

$$\left(\begin{array}{cc}1&0\\0&0\end{array}\right)\;,\;\left(\begin{array}{cc}0&1\\0&0\end{array}\right)\;,\;\left(\begin{array}{cc}0&0\\1&0\end{array}\right)\;,\;\left(\begin{array}{cc}0&0\\0&1\end{array}\right).$$

- b. What can you say if A is a 3×3 matrix with the property that AB = BA for all 3×3 matrices B?
- c. Can you guess what happens in general? That is, what do you think is true of A if it is an $n \times n$ matrix with the property that AB = BA for all $n \times n$ matrices B?