Data Article

Title: Vine copula modelling of extreme temperature, wind speed and relative humidity towards enhancement of renewable energy production

Authors: ¹Maashele Kholofelo Metwane, ¹Daniel Maposa, and ²Caston Sigauke **Affiliations**: ¹Department of Statistics and Operations Research, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa

²Department of Mathematical and Computational Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa. **Contact email**: caston.sigauke@univen.ac.za

Abstract

The study highlights that renewable energy, especially wind and solar, heavily depends on weather variables. However, in cases of extreme weather events, the generation of renewable energies can be disrupted. Research shows that traditional copula models fail to capture tail dependencies in multivariate weather data, but vine copulas offer greater flexibility for modelling such extremes. The research used vine copulas to analyse extreme temperature, wind speed, and humidity in South Africa's Eastern Cape province. Using partitioning around medoids (PAM), commonly known as K-Medoids, the province was clustered into five subregions based on coordinates, longitudes and latitudes. Results showed that vine copulas effectively model non-linear, tail-dependent relationships, indicating the region's high potential for renewable energy. These findings can guide policy and grid resilience strategies, emphasising the importance of risk assessment for extreme weather impacts on renewable energy production. The data are stored in an Excel file.

Specifications Table

Subject area	Renewable Energy Modelling
Specific subject area	Extreme weather events
Type of data	Excel file
How data was acquired	Provided by the South African Weather Services and from the
	internet https://open-meteo.com/en/docs/historical-weather-api
Data format	Filtered and analysed.
Data source location	South African Weather Services and Historical Weather API data
	portal webpage
Data accessibility	The data is hosted on
	https://drive.google.com/file/d/1 QUJpzOyVJEsRhRWqNIPh-
	htxEkufWlW/view?usp=sharing
Related research article	Vine copula modelling of extreme temperature, wind speed and
	relative humidity towards enhancement of renewable energy
	production

Value of the Data

The data can be used for modelling extreme temperature, wind speed, and relative humidity to improve renewable energy generation.

Data

The data used in this study is from the Historical Weather API, and it can be accessed from https://open-meteo.com/en/docs/historical-weather-api. The data comprises the following weather variables: hourly temperature, relative humidity and wind speed.

Experimental Design, Materials, and Methods

The data used in the study is from the Historical Weather API.

Acknowledgements

The authors acknowledge the South African Weather Services and Historical Weather API for providing the data.

References

Historical Weather API https://open-meteo.com/en/docs/historical-weather-api (accessed on 10 March 2025).