### Лабораторная работа №2.

Задание о погоне

Александр Андреевич Шуплецов

## Содержание

| 1                 | Цель работы       | 5  |
|-------------------|-------------------|----|
| 2                 | Выполнение работы | 6  |
| 3                 | Выводы            | 12 |
| Список литературы |                   | 13 |

# Список иллюстраций

| 2.1 | импорт библиотек                         | 6  |
|-----|------------------------------------------|----|
| 2.2 | траектория движения катера               | 9  |
| 2.3 | траектория движения лодки                | 10 |
| 2.4 | траектория движения катера второй случай | 10 |
| 2.5 | траектория движения лодки второй случай  | 11 |

### Список таблиц

# 1 Цель работы

Приобретение навыков программирования на языке Julia.

### 2 Выполнение работы

1. Импортируем нужные нам для работы библиотеки.



Рис. 2.1: импорт библиотек

2. Напишем код для решения задачи.

using DifferentialEquations, Plots

# расстояние от лодки до катера

k = 16.5

# начальные условия для 1 и 2 случаев

$$r0 = k/5.1$$
  
 $r0_2 = k/3.1$   
theta0 = (0.0, 2\*pi)  
theta0\_2 = (-pi, pi)

# данные для движения лодки браконьеров

$$fi = 3*pi/4;$$
  
 $t = (0, 50);$ 

# функция, описывающая движение лодки браконьеров

$$x(t) = tan(fi)*t;$$

# функция, описывающая движение катера береговой охраны

$$f(r, p, t) = r/sqrt(15.81)$$

# постановка проблемы и решение ДУ для 1 случая

# отрисовка траектории движения катера

plot(sol.t, sol.u, proj=:polar, lims=(0, 15), label = "Траекория движения катера'

```
## необходимые действия для построения траектории движения лодки
ugol = [fi for i in range(0,15)]
x_{lims} = [x(i) \text{ for } i \text{ in } range(0,15)]
# отрисовка траектории движения лодки вместе с катером
plot!(ugol, x_lims, proj=:polar, lims=(0, 15), label = "Траекория движения лодки'
# точное решение ДУ, описывающего движение катера береговой охраны
y(x)=(1140*exp(10*x)/(sqrt(1581)))/(509)
# подставим в точное решение угол, под которым движется лодка браконьеров для нах
y(fi)
# постановка проблемы и решение ДУ для 2 случая
prob_2 = ODEProblem(f, r0_2, theta0_2)
sol_2 = solve(prob_2, saveat = 0.01)
# отрисовка траектории движения катера
```

plot(sol\_2.t, sol\_2.u, proj=:polar, lims=(0,15), label = "Траекория движения кате

# отрисовка траектории движения лодки вместе с катером

plot!(ugol, x\_lims, proj=:polar, lims=(0, 15), label = "Траекория движения лодки'
# точное решение ДУ, описывающего движение катера береговой охраны для 2 случая

y2(x)=(114\*exp((10\*x/sqrt(1581))+(10\*pi/sqrt(1581))))/(31)

# подставим в точное решение угол, под которым движется лодка браконьеров для нах

#### 3. Получим траекторию движения катера

y2(fi-pi)



Рис. 2.2: траектория движения катера

#### 4. Получим траекторию движения лодки



Рис. 2.3: траектория движения лодки

#### 5. Получим траекторию движения катера второй случай



Рис. 2.4: траектория движения катера второй случай

#### 6. Получим траекторию движения лодки второй случай



Рис. 2.5: траектория движения лодки второй случай

# 3 Выводы

Я приобрел навыки программирования задачи о погоне на языке Julia.

### Список литературы

Королькова А. В., Кулябов Д.С. "Материалы к лабораторным работам"