The Weighted Median Problem

Solution to Problem 10-2 in CLR

- (a) This is trivial.
- (b) Sort the $\{x_i\}_{i=1}^n$. Suppose that this leaves them in the order $x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}$ (so π is a permutation of the numbers $\{1, 2, \ldots, n\}$). Now, traverse the numbers, left-to-right, and sum the $w_{\pi(i)}$ as you proceed. The smallest k for which $\sum_{i=1}^k w_{\pi(i)} \geq 1/2$ is the weighted median. Clearly, this procedure takes $O(n \log n)$ time using appropriate sorting algorithm.
- (c) Using the SELECT algorithm (with $i = \lfloor \frac{n+1}{2} \rfloor$ as statistic order), we can find the unweighted median of n numbers in linear time. We will now, however, solve a more general problem. For a collection $\{x_1, x_2, \ldots, x_n\}$ and positive weights $\{w_1, w_2, \ldots, w_n\}$, a δ -median is an element x_m such that

$$\sum_{x_i < x_m} w_i \le \delta \ \ \text{and} \ \ \sum_{x_i > x_m} w_i \le W - \delta$$

where $\sum_{i=1}^{n} w_i = W$. Observe that this generalizes the notion of weighted median (with the private case of $\delta = 1/2$). We present a linear time algorithm to compute the weighted median (notice that the δ -median can always be found in $O(n \log n)$ time by sorting).

WMEDIAN $(\{x_i\}_{i=1}^n, \delta)$

- 1. If n < 10 then sort the $\{x_i\}$ and return the weighted median.
- 2. Find the median x_m of the set $\{x_1, x_2, \ldots, x_n\}$.
- 3. Partition (using Partition) the set around x_m , creating two sets A_0 , consisting of all elements of $\{x_i\}$ which are smaller than or equal to x_m and A_1 , consisting of all elements which exceed x_m . Let S_0 be the sum of the weights of all elements in A_0 .
- 4. If $\delta \leq S_0$, then return WMEDIAN (A_0, δ) . Otherwise return WMEDIAN $(A_1, \delta S_0)$.

Correctness of the above algorithm follows in the same fashion as the correctness for Select. Observe that the total running time is

$$T(n) \le T(\lceil n/2 \rceil) + O(n)$$

which is, according to the Master Theorem O(n), as desired.