12 Слабка топологія і слабка збіжність

Ми розглянули поняття сильної топології і сильної збіжності в нормованому просторі E, а також сильної топології і сильної збіжності в спряженому просторі E^* . Ці топології та поняття збіжності спиралися на поняття норми.

Розглянемо відповідні поняття слабкої топології і слабкої збіжності в нормованих просторах E і E^{\star} .

§12.1 Слабка топологія

Означення 12.1. Слабкою топологією в просторі E^* називається топологія, визначена локальною базою нуля, тобто сукупністю множин

$$U_{f_1,f_2,...,f_n;\varepsilon} = \{x \in L : |f_i(x)| < \varepsilon, i = 1, 2, ..., n\},\$$

де f_1, f_2, \ldots, f_n — скінченна сукупність неперервних функціоналів, а ε — довільне додатне число.

Лема 12.1

Слабка топологія слабкіша за вихідну топологію простору L.

Доведення. Розглянемо скінчену сукупність неперервних функціоналів f_1, f_2, \dots, f_n і довільне додатне число ε .

Тоді внаслідок неперервності функціоналів f_1, f_2, \ldots, f_n множина $U_{f_1, f_2, \ldots, f_n; \varepsilon}$ є відкритою в вихідній топології простору L, оскільки прообразом відкритої множини при неперервному відображенні є відкрита множина, і містить нуль, тобто є околом нуля, оскільки ці функціонали є лінійними.

Перетин двох таких околів сам містить множину точок, в яких скінченна кількість функціоналів за модулем менше ε , отже, виконується критерій локальної бази.

Оскільки нова топологія ϵ лише частиною локальною бази нуля в вихідній топології, вона ϵ слабкішою.

Зауваження 12.1 — Слабка топологія є найменшою з усіх топологій, в яких є неперервними всі лінійні функціонали, неперервні у природній топології простору.

Зауваження 12.2 — У нормованому просторі слабка топологія задовольняє аксіому T_2 , але може не задовольняти першу аксіому зліченності, отже, вона не описується за допомогою збіжних послідовностей.

§12.2 Слабка збіжність

Означення 12.2. Послідовність називається **слабко збіжною**, якщо вона є збіжною в слабкій топології.

Лема 12.2

Послідовність $\{x_n\}_{n=1}^{\infty}$ елементів лінійного топологічного простору L є слабко збіжною до $x_0 \in L$ тоді і лише тоді, коли для будь-якого неперервного лінійного функціонала f на L числова послідовність $f(x_n)$ збігається до $f(x_0)$.

Доведення. Необхідність. Без обмеження загальності, розглянемо випадок $x_0 = 0$. Якщо для будь-якого околу $U_{f_1,\dots,f_k;\varepsilon}$ в слабкій топології існує таке число N, що $x_n \in U_{f_1,\dots,f_k;\varepsilon}$ для всіх $n \geq N$, то ця умова виконується і для околу $U_{f;\varepsilon}$, де $f \in L^*$ — довільний фіксований функціонал, а це означає, що $f(x_n) \to 0$ при $n \to \infty$.

Достатність. Припустимо, що $f(x_n) \to 0$ для будь-якого $f \in L^*$. Тоді ця умова виконується і для всіх функціоналів $f_i \in L^*$, $i = 1, 2, \ldots, k$, що визначають довільний окіл в слабкій топології:

$$U_{f_1, f_2, \dots, f_k : \varepsilon} = \{x \in L : |f_i(x)| < \varepsilon, i = 1, 2, \dots, k\}.$$

Виберемо числа N_i так, щоб $|f_i(x_n)| < \varepsilon$ при $n \ge N_i$ і покладемо $N = \max_{i=1,\dots,k} N_i$. Отже, при всіх $n \ge N$ виконується умова $x_n \in U$. Це означає, що послідовність $\{x_n\}_{n=1}^{\infty}$ збігається в слабкій топології.

Лема 12.3

Будь-яка сильно збіжна послідовність є слабко збіжною, але не навпаки.

Доведення. Відповідно до леми 12.1, слабка топологія слабкіша за вихідну топологію лінійного топологічного простору, тому будь-яка послідовність, що збігається в сильній топології, буде збігатися і в слабкій.

Обернене твердження є невірним, тому що, наприклад, в просторі ℓ_2 послідовність ортів $e_n = (0, 0, \dots, 0, 1, 0, \dots)$ слабко збігається до нуля, але не збігається до нуля сильно.

Розглянемо поняття слабкої збіжності в нормованому просторі E.

Теорема 12.1

Якщо послідовність $\{x_n\}_{n=1}^{\infty}$ слабко збігається в нормованому просторі E, то існує така константа C, що

$$||x_n|| \le C$$

тобто будь-яка слабко збіжна послідовність в нормованому просторі ϵ обмеженою.

Доведення. Розглянемо в просторі E^* множини

$$A_{k,n} = \{ f \in E^* : |f(x_n)| \le k \}, \quad k, n = 1, 2, \dots$$

Оскільки при фіксованому x_n функціонали $\varphi_{x_n}(f) = f(x_n)$ є неперервними (лема 11.2), множини $A_{k,n}$ є замкненими.

Дійсно,

$$f_m \to f, f_m \in A_{k,n} \implies \varphi_{x_n}(f_m) = f_m(x_n) \le k \implies f(x_n) \le k.$$

Отже, множина

$$A_k = \bigcap_{n=1}^{\infty} A_{k,n}$$

є замкненою.

Оскільки послідовність $\{x_n\}_{n=1}^{\infty}$ збігається слабко, послідовність $\varphi_{x_n}(f)$ є обмеженою для кожного $f \in E^*$.

Дійсно,

$$x_n \to x \implies \varphi_{x_n}(f) = f(x_n) \to f(x) \implies \exists k > 0 : |f(x_n)| \le k.$$

Отже, будь-який функціонал $f \in E^*$ належить деякій множині A_k , тобто

$$E^{\star} = \bigcup_{k=1}^{\infty} A_k.$$

Оскільки простір E^* є повним (теорема 11.3), то за теоремою Бера хоча б одна з множин A_k , наприклад, A_{k_0} повинна буди щільною в деякій кулі $S(f_0, \varepsilon)$. Оскільки множина A_{k_0} замкненою, це означає, що

$$S(f_0,\varepsilon)\subset \overline{A}_{k_0}=A_{k_0}.$$

Звідси випливає, що послідовність $\{\varphi_{x_n}(f)\}_{n=1}^{\infty}$ є обмеженою на кулі $S(f_0,\varepsilon)$, а значить, на будь-якій кулі в просторі E^{\star} , оскільки E^{\star} є лінійним топологічним простором. Зокрема, це стосується одиничної кулі. Таким чином, послідовність $\{x_n\}_{n=1}^{\infty}$ є обмеженою як послідовність елементів з $E^{\star\star}$ Оскільки природне відображення $\pi: E \to E^{\star\star}$ є ізометричним, це означає обмеженість послідовності $\{x_n\}_{n=1}^{\infty}$ в просторі E.

Теорема 12.2

Послідовність $\{x_n\}_{n=1}^\infty$ елементів нормованого простору E слабко збігається до $x\in E,$ якщо

- 1. значення $||x_n||$ є обмеженими в сукупності деякою константою M;
- 2. $f(x_n) \to f(x)$ для будь-яких функціоналів f, що належать множині, лінійні комбінації елементів якого скрізь щільними в E^* .

Доведення. Із умови 2) і властивостей операцій над лінійними функціоналами випливає, що якщо φ — лінійна комбінація функціоналів f, то

$$\varphi(x_n) \to \varphi(x)$$
.

Нехай φ — довільний елемент з E^* і $\{\varphi_k\}_{k=1}^\infty$ — сильно збіжна до φ послідовність лінійних комбінацій із функціоналів f, тобто $\|\varphi_k - \varphi\| \to 0$ (вона завжди існує внаслідок щільності). Покажемо, що $\varphi(x_n) \to \varphi(x)$.

Нехай M задовольняє умову

$$||x_n|| \le M$$
, $n = 1, 2, \dots, n, \dots$, $||x|| \le M$.

Оскільки $\varphi_k \to \varphi$, то

$$\forall \varepsilon > 0 \exists K \in \mathbb{N} : \forall k \geq K : \|\varphi - \varphi_k\| < \varepsilon.$$

З цього випливає, що

$$|\varphi(x_n) - \varphi(x)| \le |\varphi(x_n) - \varphi_k(x_n) + |\varphi_k(x_n) - \varphi_k(x)| + |\varphi_k(x) - \varphi(x)| \le \|\varphi - \varphi_k\|M + |\varphi_k(x_n) - \varphi_k(x)| + \|\varphi - \varphi_k\|M \le \varepsilon M + |\varphi_k(x_n) - \varphi_k(x)| + \varepsilon M.$$

За умовою теореми, $\varphi_k(x_n) \to \varphi_k(x)$ при $n \to \infty$. Отже,

$$\varphi(x_n) - \varphi(x) \to 0, \quad n \to \infty, \quad \forall \varphi \in E^*.$$

§12.3 Види топології у спряженому просторі

Розглянемо поняття слабкої топології в спряженому просторі E^* . Спочатку згадаємо, що із означення 11.3 сильної топології в спряженому просторі випливає, що цю топологію можна задати за допомогою локальної бази нуля. Наведемо її еквівалентие формулювання.

Означення 12.3. Сильною топологією в спряженому просторі E^* називається топологія, визначена локальною базою нуля, тобто сукупністю множин

$$B_{\varepsilon,A} = \{ f \in E^* : |f(x)| < \varepsilon, x \in A \subset E \},$$

де A — довільна обмежена множина в E, а ε — довільне додатне число.

Зауваження 12.3 — Оскільки будь-яка скінченна множина є обмеженою, то слабка топологія в E^* є слабкішою, ніж сильна топологія цього простору.

Означення 12.4. Послідовність $\{f_n\}_{n=1}^{\infty}$ називається **слабко збіжною**, якщо вона є збіжною в слабкій топології E^* , інакше кажучи, $f_n(x) \to f(x)$ для кожного $x \in E$.

Зауваження 12.4 — В спряженому просторі сильно збіжна послідовність є одночасно слабко збіжною, але не навпаки.

В спряженому просторі мають місце теореми, аналогічні теоремам 12.1 і 12.2.

Теорема 12.3

Якщо послідовність лінійних функціоналів $\{f_n\}_{n=1}^{\infty}$ слабко збігається на банаховому просторі E, то існує така константа C, що

$$||f_n|| \leq C$$
,

тобто будь-яка слабко збіжна послідовність простору, спряженого до банахова простору, ϵ обмеженою.

Теорема 12.4

Послідовність лінійних функціоналів $\{f_n\}_{n=1}^{\infty}$ елементів спряженого простору E^{\star} слабко збігається до $f \in E$, якщо

1. послідовність $||f_n||$ є обмеженою, тобто

$$\exists C \in \mathbb{R} : ||f_n|| \leq C, \quad n = 1, 2, \ldots;$$

2. $\varphi_x(f_n) \to \varphi_x(f)$ для будь-яких елементів x, що належать множині, лінійні комбінації елементів якої скрізь щільними в E.

Зауваження 12.5 — Простір E^* лінійних неперервних функціоналів, заданих на просторі E, можна тлумачити і як простір, спряжений до простору E, і як основний простір, спряженим до якого є простір E^{**} . Відповідно, слабку топологію в просторі E^* можна ввести або за означенням 12.4 (через скінченні множини елементів простору E), або як в основному просторі відповідно до означення 12.1 (через функціонали із простору E^{**}). Для рефлексивних просторів це одне й теж, а для нерефлексивних просторів ми таким чином отримуємо різні слабкі топології.

Означення 12.5. Топологія в спряженому просторі E^* , що вводиться за допомогою простору $E^{\star\star}$ (як в означенні 12.1), називається **слабкою** і позначається як $\sigma(E^{\star}, E^{\star\star})$.

Означення 12.6. Топологія в спряженому просторі E^* , що вводиться за допомогою простору E (як в означенні 12.4), називається *-слабкою і позначається як $\sigma(E^*, E)$.

Зауваження 12.6 — Очевидно, що \star -слабка топологія в E^{\star} є більш слабкою, ніж слабка топологія простору E, тобто в слабкій топології не менше відкритих множин, ніж в \star -слабкій топології.

§12.4 Література

- [1] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 114–117).
- [2] Колмогоров А. Н. Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 192–202).