

Europäisches Patentamt

European Patent Office

Office européen des brevets

(II) Publication number:

0 133 244

B1

Œ

EUROPEAN PATENT SPECIFICATION

(5) Date of publication of patent specification: 05.12.90

(7) Application number: 84108523.6

2 Date of filing: 19.07.84

(§) Int. Cl.⁵: A 61 K 31/47, C 07 D 215/52, C 07 D 407/04,

C 07 D 409/04, C 07 D 401/04

- Phenylquinolinecarboxylic acids and derivatives as antitumor agents.
- (#) Priority: 22.07.83 US 516319 30.04.84 US 605104
- Date of publication of application: 20.02.85 Bulletin 85/08
- (5) Publication of the grant of the patent: 05.12.90 Bulletin 90/49
- Designated Contracting States:
 AT BE CH DE FR GB IT LI LU NL SE
- S References cited:

Rad Jugosl. akad. znan. i umjet., kem., vol. 2, pages 93-101 (1983), Zagreb, YU; Yugosiav Symposium on Organic Chemistry, Febr. 17-19, 1981

Chemical and Pharmaceutical Bulletin, vol. 23, no. 1, 1975, pages 62-71, Tokyo, JP

CHEMICAL ABSTRACTS, vol. 67, 1967, page 10084, ref.nr. 107141g; Columbus, Ohio, US; K. KARZEL: "Effect of antiinflammatory agents on growth and multiplication of normal and neoplastic cells in vitro"

- (7) Proprietor: E.I. DU PONT DE NEMOURS AND COMPANY
 1007 Market Street
 Wilmington Delaware 19898 (US)
- Minventor: Hesson, David Paul 134 Delview Drive Windybush Wilmington Delaware 19810 (US)
- (A) Representative: von Kreisler, Alek, Dipl.-Chem. et al
 Deichmannhaus am Hauptbahnhof
 D-5000 Köln 1 (DE)

133 244

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Arr. 99(1) European patent convention).

Description

10

This invention relates to tumor inhibiting pharmaceutical compositions, there use for the manufacture of a medicament for inhibiting the growth of mammalian tumors, and phenylquinolinecarboxylic acids and derivatives thereof useful in such compositions and methods.

Cinchophen, 2-phenyl-4-quinoline carboxylic acid, has been known for many years and has been described as being useful as an antirheumatic and in the treatment of gout. Cinchophen has the formula:

Many cinchophen and cinchoninic acid derivatives have been prepared in investigating the Pfitzinger reaction and for use in color photographic developing.

Buu-Hoi et al. [J. Chem. Soc., 386—8 (1953)] report 2-arylcinchoninic acids, prepared by the Pfitzinger reaction, having the formula:

where

R=H, CH_2 , C_2H_3 and phenyl; Ar= fluoro-substituted phenyl; and R''=H, Br, CI or CH_3 .

No use for these compounds is described. Epling et al. [Tet. Lett., 23 (38), 3843—3846 (1982)] report

as an intermediate to a new arylmethylsulfonyl chloride convertible to sulfonamides which can be photochemically cleaved.

Starke et el. in U.S. Patent 4,009,020, issued February 22, 1977, describe plant growth regulant cinchoninic acid derivatives, including those of the formula:

where

Z is H or halogen, preferably H;

R² is, inter alia, phenyl and halo-substituted phenyl; and R⁴is CN, CO₂H and related esters and amides.

Buu-Hoi et al. [J. Org. Chem., 18, 1209-1224 (1953)] describe 2-arylcinchoninic acids of the formula:

where

10

X = H or Br;

R = H, CH_3 , C_2H_5 and other groups; and

Ar can be a variety of aromatic groups including 4-biphenylyl, 4-alkylphenyl and 4-phenoxyphenyl.

The compounds prepared were part of a program to investigate the toxicity of cinchoninic acids and quinolines, since cinchophen ("Atophan") can produce a degeneration of liver tissue of a possible precancerous nature. Some of the compounds prepared caused degenerative changes in the liver.

Buu-Hoi et al. [Rec. trav. Chim., 62 713—718 (1943)] report 2-(4-cyclohexylphenyl)cinchoninic acid and 2-(4-biphenylyl)cinchoninic acid. Hai et al. [J. Org. Chem., 23, 39—42 (1958)] describe 2-(4-cyclopentylphenyl)cinchoninic acids, including 3-methyl and 3-ethyl derivatives, and 6-bromo and 6-methyl derivatives. Buu-Hoi et al. [J. Org., Chem., 22, 668—671 (1957)] report 2-[4-(4-methoxy-3-chlorophenyl)phenyl)cinchoninic acid and its 3-methyl and 3-ethyl derivatives. Another Buu-Hoi report [idem., 24, 39—41 (1959)] describes the 2-methoxy-3-chlorophenyl isomer.

Yen et al. [J. Org. Chem., 23 1858—1861 (1958)] report 2-phenyl- and 2-(4-fluorophenyl)-6-fluorocinchoninic acids for testing as potential carcinogens.

Steinkopf et al. [Annalen, 540, 7—14 (1939); idem, 543, 119—128 (1940)] report 2-(5-methyl- and 5-phenyl-2-thienyl)cinchoninic acids. Sy et al. [J. Chem. Soc., 1975—1978 (1954)] report 2-(5-t-butyl-2-thienyl)cinchoninic acid and its 3-methyl and 6-bromo derivatives.

Buu-Hoi et al. [Rec. trav. Chim., 72, 774—780 (1953)], report 2-[4-(4-hydroxy- and 4-methoxyphenyl)phenyl)cinchoninic acids and their 3-methyl derivatives.

Boykin et al. [J. Med. Chem., 11, 273-277 (1968)] report cinchoninic acids of the formula:

where

R = H, F, CH₃ or OCH₃;

R' = H, CH_3 or CF_3 ; and

R'' = H, F, Cl, or CH_3 or OCH_3 .

Although prepared as part of an antimalarial program, it does not appear that these intermediates were tested for antimalarial activity.

Saggiomo et al. [J. Org. Chem., 11, 277—281 (1968)] report antimalarial quinoline-4-methanols derived from the corresponding acids. The latter include 6,8-dichloro-2-(3-trifluoromethylphenyl)cinchoninic acid and ethyl ester, and 2-(4-chlorophenyl)-6-fluorocinchoninic acid and ethyl ester.

Buu-Hoi et al. [Rec. trav. Chim., 70, 825—832 (1951)] report 2-(4-n-propyl-4'-biphenylyl)cinchoninic acid and 3-methyl-2-(4-ethyl-4'-biphenylyl)cinchoninic acid.

Coles, in U.S. Patent 2,579,420, issued December 18, 1951, describes the conversion of 6,8-dihalocinchoninic acids into 6-halo-8-hydroxycinchoninic acids useful as color formers. Disclosed are compounds of the formula:

where

X is Cl or Br;

R, is, inter alia, H or lower alkyl; and

R is, inter alia, aryl and heteroaryl, optionally substituted by alkyl, aryl and the like.

Tulagin et al., in Ú.S. Patent 2,524,741, issued October 3, 1950, describe the use, in color photographic developing, of 8-hydroxyquinolines of the formula:

$$\mathbb{R} \bigcirc \mathbb{Q} \mathbb{Q}_{\mathbb{N}}^{\mathbb{R}_{2}}$$

15 where

10

R is halogen, NO₂ or SO₃H;

R1 can be phenyl or phenyl substituted with CI, CH2, OCH3 or NH2; and

R₂ can be CO₂H.

French Patent 1,040,440 describes compounds similar to Tulagin et al., useful in color photographic chemistry, of the formula:

where

30

X is halogen;

R is CO₂H, CONH₂ or CONH-alkyl;

R₁ may be H or lower alkyl; and

R₂ may be aryl or a heterocyclic group.

German Patents 659,496; 668,741; and 668,742 describe 2-phenylcinchoninic acids, containing iodo groups and a free or etherified p-hydroxy substituent on the 2-phenyl group. Such compounds are stated to be useful as X-ray contrast agents.

Sakai et al., [Gann, 46, 605—616 (1955)] report that 2-phenyl-4-carboxyquinoline has no tumoricidal effect in in vitro tests using NF mouse sarcoma.

United States Patent 2,888,346 issued on May 26, 1959 to Tulagin and Hoffstadt describes compounds of the formula:

where

60

 X^1 is 6-Cl or X^1 is 6-Cl and X^2 is 8-Br, and their use to protect organic media from damage from ultraviolet radiation.

SUMMARY OF THE INVENTION

According to the present invention there is provided an antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound having the formula:

(I)

wherein

10

15

20

25

30

· 35

40

50

55

60

$$R$$
 is \mathbb{R}^{1} . \mathbb{R}^{2}

X is O, S(O)_{qr} NH or CH=N; R¹ is CH₃CH₂(CH₃)CH, alkyl of 5—12 carbon atoms, alkenyl of 5—12 carbon atoms, cycloalkyl of 3—7 carbon atoms, cycloalkylalkyl of 5—12 carbon atoms, cycloalkylalkyl of 5—12 carbon atoms.

when R is

R1 can be in addition alkyl of 3-4 carbon atoms; R² is

$$-CH_2 - CH_2 - CH_2$$

 R^3 is H, alkoxy of 1—3 carbon atoms, alkylthio of 1—3 carbon atoms or alkyl of 1—3 carbon atoms optionally substituted with one or more of F, CI, Br or $(CH_2)_pCOR^{10}$ where p is 1, 2, 3 or 4;

R⁵, R⁶, R⁷ and R⁶ are independently H, F, Cl, Br, I, CH₂, CF₃, S(O), R¹² or CH₂CH₂, at least two of R⁵, R⁶, R⁷, and R^a being H;

 R^9 and R^{9A} are independently H or alkyl of 1 to 3 carbon atoms; R^{10} is OH, OCH₃, OCH₃CH₃, NH₂, NHCH₃ or N(CH₃)₂; R^{11} is $(CH_2)_{2-4}NR^9R^{9A}$;

R¹² is alkyl of 1—5 carbon atoms optionally substituted with one or more of F, Cl and Br; W, Y and Z are independently H, F, Cl, Br, alkyl of 1—5 carbon atoms, NO₂, alkoxy of 1—5 carbon atoms, alkylthio of 1-5 carbon atoms, OH, CF3 or NH2;

m is 0 or 1;

n is 0 or 1; and

q is 0, 1 or 2;

or a pharmaceutically suitable salt thereof; with the following provisos:

1) R⁵, R⁶ and R⁷ cannot all be H;

2) when R⁴ is CO₂CH₂CH₂N(CH₃)₂, R⁵ is CH₂CH₃, or R⁷ is Cl, R ¹ cannot be cyclohexyl; and 3) when R¹ is cyclohexyl and R³ is H, R⁶ must be Cl or F, but R⁶ and R⁸ cannot both be Cl. Also provided is their use for the manufacture of medicament for inhibiting the growth of mammalian

Additionally provided are novel antitumor active phenylquinoline carboxylic acids and derivatives having the formula:

wherein

25

35

45

50

$$R$$
 is $\left\langle \begin{array}{c} Y \\ R^1 \end{array} \right\rangle$

$$S(0)_m R^1$$
. R^1

$$NR^9 - C - R^1$$

$$NR^1 - C - R^9$$

$$\bigcirc c_{\mathbb{R}^1} \qquad or \qquad \bigwedge_{\mathbb{R}^1}$$

X is O, S(O), NH or CH=N;

R¹ is CH₃CH₂(CH₃)CH, alkyl of 5—12 carbon atoms, alkenyl of 5—12 carbon atoms, cycloalkyl of 3—7 carbon atoms, cycloalkylalkyl of 5-12 carbon atoms, cycloalkenyl of 5-7 carbon atoms,

when R is

15

35

R1 can be in addition alkyl of 3—4 carbon atoms; R2 is

 R^3 is H, alkoxy of 1—3 carbon atoms, alkylthio of 1—3 carbon atoms or alkyl of 1—3 carbon atoms optionally substituted with one or more of F, Cl, Br or $(CH_2)_pCOR^{10}$ where p is 1, 2, 3 or 4;

R⁴ is CO₂H or CO₂R¹¹;

R⁵, R⁶, R⁷ and R⁸ are independently H, F, CI, Br, I, CH₃, CF₃, S(O)_nR¹² or CH₂CH₃, at least two of R⁵, R⁶, R⁷,

and R⁸ being H;
R⁹ and R^{9A} are independently H or alkyl of 1 to 3 carbon atoms;

R¹⁰ is OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ or N(CH₃)₂;

R11 is (CH2)2-4NR9R9A;

R¹² is alkyl of 1—5 carbon atoms optionally substituted with one or more of F, Cl and Br;

W, Y and Z are independently H, F, Cl, Br, alkyl of 1—5 carbon atoms, NO₂, alkoxy of 1—5 carbon atoms, alkylthio of 1—5 carbon atoms, OH, CF₃ or NH₂;

m is 0 or 1;

n is 0 or 1; and

q is 0, 1 or 2;

or a pharmaceutically suitable salt thereof; with the following provisos:

1) when R⁴ is CO₂H, R¹ is phenyl or phenoxy, and R⁵, R⁷ and R⁶ are H, R⁶ cannot be Br;

2) R5, R6 and R7 cannot all be H;

3) when R⁴ is CO₂CH₂CH₂N(CH₃)₂, R⁶ is CH₂CH₃, or R⁷ is Cl, R¹ cannot be cyclohexyl; 4) when R¹ is cyclohexyl and R³ is H, R⁶ must be Cl or F, but R⁶ and R⁶ cannot both be Cl; and Shen R¹ is 4-H₂NC₆H₄ and R³ is H, R⁶ cannot be Cl and R⁶ cannot be Br.

PREFERRED EMBODIMENTS

Preferred antitumor compounds have the formula:

$$\begin{array}{c|c}
R^5 & R^4 \\
R^7 & R^8 & R^3
\end{array}$$

R1 is cycloalkyl of 3-7 carbon atoms; phenyl; phenyl substituted with one halogen, alkyl of 1-5 carbon atoms or CF₃; phenoxy; or phenoxy substituted with one halogen or alkyl of 1—5 carbon atoms; R³ is H or alkyl of 1—3 carbon atoms;

R4 is CO₂H or a sodium or potassium salt thereof;

R⁵ and R⁶ are independently H, halogen, CH₃ of CF₃; and

R7 and R8 are independently H or halogen; or a pharmaceutically suitable salt thereof; with the proviso that:

1) R5, R6 and R7 cannot all be H; and

2) when R¹ is cyclohexyl and R³ is H, R6 must be Cl or F, but R8 and R8 cannot both be Cl. More preferred antitumor compounds are compounds which have the formula:

$$\begin{array}{c|c}
R^5 & R^4 \\
\hline
O O & R^3
\end{array}$$

(III)

wherein

10

R1 is cyclohexyl, phenyl, phenyl substituted with halogen, phenoxy, or phenoxy substituted with halogen;

R3 is H or alkyl of 1-3 carbon atoms;

R4 is CO₂H or a sodium or potassium salt thereof; and

R⁵ and R⁶ are independently H, halogen or CF₃, provided that both R⁵ and R⁶ are not H.

Especially preferred are the compounds of Formula III in which:

R¹ is phenyl, phenyl substituted with halogen, phenoxy, or phenoxy substituted with halogen;

R3 is methyl;

R⁵ is H or Cl; and

Rs is F or Cl.

Specifically preferred for their antitumor activity are:

(1) 2-(1,1'-Biphenyl-4-yl)-6-fluoro-3-methyl-4-quinolinecarboxylic acid, sodium or potassium salt.

(2) 6-Fluoro-3-methyl-2-(4-phenoxyphenyl)-4-quinolinecarboxylic acid, sodium or potassium salt.

(3) 2-(4'-Bromo-1,1'-biphenyl-4-yl)-6-fluoro-3-methyl-4-quinolinecarboxylic acid, sodium or potassium

(4) 2-(2'-Fluoro-1,1'-biphenyl-4-yl)-6-fluoro-3-methyl-4-quinolinecarboxylic acid, sodium or potassium

(5) 2-{1,1'-Biphenyi-4-yl}-5-chloro-6-fluoro-3-methyl-4-quinolinecarboxylic acid, sodium or potassium

SYNTHESIS

The compounds useful in this invention (Formulae I, II and III) are prepared generally by condensation of an appropriately substituted isatin IV and a ketone V in what is known as the Pfitzinger reaction [Buu-Hoi, N. P.; Royer, R.; Xuong, N. D.; Jucquignon, P.; J. Org. Chem., 18, 1209 (1953)] to give la; then, if desired, further conversion of functional groups on the quinoline provides further compounds of Formula I (Scheme 1). Isatins IV are prepared by the methods described by Papp and references given therein [Papp, F. D.; Adv. Heterocyclic Chem., 18, 1 (1975)]. The ketones V are prepared by Friedel-Crafts acylation as discussed by House [House, H. O.; Modern Synthetic Reactions, 2nd Ed., W. A. Benjamin, 1972, pp. 734ff].

in the following schemes, quinolines bearing up to two unspecified substituents X1 and X2 are depicted. The synthetic disclosure is general for quinolines, including all those within the scope of this invention. When certain values of R^5 , R^6 , R^7 and R^8 are desired, as will be apparent to one skilled in the art, a

protected form of the functional group will be carried through the synthesis, to be deprotected to the desired functional group at a later stage.

Scheme 1

Compounds where R⁴ is CO₂ H are prepared by reacting the appropriate substituted isatin (IV) with a substituted ketone (V) in a solvent such as ethanol with an aqueous solution of a base such as sodium hydroxide, NH₄OH or potassium hydroxide at a temperature in the range of about 25°C to the boiling point of the solvent used. Acidification of the reaction mixture with a mineral acid such as HCl or an organic acid such as acetic acid provides the quinoline carboxylic acid la. Compounds in which R is

O OCR 1

are prepared by acylation of the corresponding hydroxy compound with a carboxylic acid halide such as benzoyl chloride in an inert solvent such as chloroform or a hydrocarbon solvent (benzene) at a temperature in the range of about 0°C to the boiling point of the solvent used, optionally in the presence of a base such as pyridine.

The aforementioned hydroxy compound is prepared from an ether by a dealkylation reaction using BBr₃ or (CH₃)₃Sil in an inert solvent such as dimethylformamide, methylene chloride, or chloroform at a temperature in the range of about 0°C to the boiling point of the solvent used (Scheme 2).

Scheme 2

15

20

25

30

55

60

In Scheme 3, quinolines bearing up to two unspecified substituents X^1 and X^2 are depicted. The synthetic disclosure is general for quinolines, including all those within the scope of this invention. This method is preferred over the Pfitzinger procedure for certain substituents on the isatin (IV) such as $X^1 = 4$ -

Scheme 3

The compounds Ia of Scheme 3 are prepared by reacting the appropriate substituted isatin (IV) with a substituted ketone (V) in a solvent such as ethanol with a base such as diethylamine or triethylamine at a temperature of 25° to 50°C for 2 to 48 hours. Recrystallization of the product (VI) from a solvent is possible although decomposition often occurs. The product (VI) is dissolved in an appropriate solvent such as tetrahydrofuran containing 25—50% by volume of a mineral acid such as hydrochloric acid and heated to a temperature of 50°C to the reflux temperature of the mixture of 2 to 48 hours to provide the quinoline carboxylic acid (Ia).

Quinolinecarboxylic acids such as (VIII) where R⁶ is R¹²S(O)_n are best prepared by reacting the appropriately substituted quinolinecarboxylic acid (VII) where R⁸ is F with an appropriate thiolate R¹²S-such as MeSK in a solvent such as dimethylformamide at a temperature of 50°C to the reflux temperature of the solvent for 2 to 8 hours (Scheme 4).

it may be necessary, depending upon the reaction conditions chosen, to alkylate the thiol (IX) generated during the reaction by reacting the crude reaction product in an appropriate solvent such as acetone with an alkyl halide R¹2X such as methyl iodide with or withoiut a base such as potassium carbonate at a temperature of 25°C to the reflux temperature of the solvent for 2 to 24 hours. This gives the corresponding ester (X) which is hydrolyzed by reacting in an appropriate solvent such as ethanol with water and a base such as potassium hydroxide at reflux for 12 to 24 hours to give, after acidification of the reaction mixture with a mineral acid such as HCI, the quinolinecarboxylic acid (VIII) can be converted to the corresponding sulfoxide by reacting (VIII) in an appropriate solvent such as ethyl acetate with an oxidizing reagent such as m-chloroperoxybenzoic acid at -20° to 25°C for 6 to 24 hours.

Scheme 4

25

$$R^{6} \longrightarrow R^{3} \longrightarrow R^{12}SH \xrightarrow{Base} R^{12}S \longrightarrow R^{12}S$$

(VIII)

(VIII)

 $R^{12}SH \xrightarrow{R^{12}SH} R^{12}S \longrightarrow R^{12}S \longrightarrow$

A salt of the carboxylic acid is prepared by dissolving the acid in a protic solvent such as ethanol, and then treating with a metal oxide or hydroxide such as sodium or potassium oxide or hydroxide or an amine such as 1-amino-2-butanol or lysine at a temperature in the range of about 0°C to the boiling point of the solvent used. A salt of an amino group is prepared by dissolving the amine in a solvent such as ethyl ether and adding a mineral acid such as HCI.

(XI)

A metal salt of a compound of Formula I (e.g., R⁴ = CO₂Na) can be converted to a corresponding ester in two steps. Conversion of the salt to an acid halide is carried out first by treatment with a reagent such as SOCI₂ or oxalyl chloride in an inert solvent such as a hydrocarbon (benzene) at a temperature in the range of about 25°C to the boiling point of the solvent used. This reaction is followed by the addition of an alcohol,

R¹¹OH, in a solvent such as tetrahydrofuran at a temperature in the range of 10°C to the boiling point of the solvent used, optionally in the presence of a base such as pyridine, triethylamine, or 4-dimethylamino-

Scheme 5

The invention can be further understood by the following examples in which parts and percentages are by weight unless otherwise indicated; all temperatures are in degrees Centigrade. 30

2-(4-Cyclohexylphenyl)-6-fluoro-3-methylquinoline-4-carboxylic acid

5

10

55

5-Fluoroisatin (100 g, 0.61 mole) and 4-cyclohexylpropiophenone (131 g, 0.61 mole) were suspended in 1100 ml of ethanol and stirred mechanically as a solution of 219 g (5.5 mole) of KOH in 550 ml of water was added dropwise. After the addition was complete, the mixture was heated at reflux for 12 hours, cooled, and the ethanol evaporated under reduced pressure. The resulting solid was dissolved in water and washed with ethyl ether. The aqueous layer was acidified with HCl. The resulting precipitate was filtered and dried. Recrystallization from dimethylformamide and water gave 117 g of 2-(4-cyclohexylphenyl)-6fluoro-3-methylquinoline-4-carboxylic acid, m.p. 316-323°.

2-(4-Biphenylyl)-6-fluoro-3-methylquinoline-4-carboxylic acid

4-Phenylpropiophenone (18.9 g, 0.09 mole) and 5-fluoroisatin (20 g, 0.09 mole) were suspended in 360 ml of ethanol and stirred mechanically as a solution of 35.2 g of KOH in 100 ml water was added dropwise over 15 minutes. The reaction mixture was heated at reflux for 12 hours, cooled, and the ethanol evaporated under reduced pressure. The resulting yellow solid was dissolved in water and washed with ethyl ether. The aqueous layer was cooled to 5° and acidified with glacial acetic acid. The resulting yellow precipitate was filtered and dried. Recrystallization from 200 ml of dimethylformamide and 25 ml water provided 13.8 g of 2-(4-biphenylyl)-6-fluoro-3-methylquinoline-4-carboxylic acid as a white solid, m.p.

Example 28

2-(2'-Fluoro-1,1'-biphenyl-4-yl)-6-fluoro-3-methyl-4-quinolinecarboxylic acid

5-Fluoroisatin (72.6 g, 0.44 mole) and 4-(2-fluorophenyl) propiophenone (100 g, 0.44 mole) were suspended in 720 ml of ethanol and stirred mechanically as a solution of KOH (147.8 g, 2.64 mole) in 300 ml of water was added dropwise over 15 minutes. The reaction mixture was heated at reflux for 12 hours, cooled, and the ethanol evaporated under reduced pressure. The resulting solid was dissolved in water and washed with ethyl ether. The aqueous layer was cooled to 5° and acidified with glacial acetic acid. The resulting precipitate was filtered, washed 2 times with 300 ml of ethyl ether and dried. Recrystallization from dimethylformamide and water gave 84 g of a white 2-(2'-Fluoro-1,1'-biphenyl-4-yl)-6-fluoro-3-methyl-4-quinolinecarboxylic acid, m.p. 315-317°.

The compounds of Examples 1, 2 and 28, other compounds which have been prepared using the procedures described for the compounds of Examples 1, 2 and 28, and other compounds which may be prepared by such procedures, are listed in Table 1.

Table 1

```
\mathbb{R}^3
                                                   R7 R8 m.p.(°C)
  Ex.
         4-c-C6H11C6H4
                                   CH<sub>3</sub>
                                             F
                                                   Н
                                                       H
                                                           316-323
        4-C6H5C6H4
   2
                                   CH3
                                             F
                                                   H
                                                       H
                                                           303-306(d)
        4-c-C6H11C6H4
                                   СН
                                             Cl
                                                           320-322(d)
                                                   H
        4-c-C6H11C6H4
                                   H
                                             Cl
                                                   H
                                                       H
                                                           264-265
        4-c-C6H11C6H4
                                  H
                                             P
                                                           280-284
                                                   н
                                                       H
          -c-C6H11C6H4
                                  CH3
                                             CH,
                                                   H
                                                       H
                                                          308-312(d)
                                  CH3
          -n-C<sub>10</sub>H<sub>21</sub>C<sub>6</sub>H<sub>4</sub>
                                                   H
                                                          256-261
                                                      H
        4-n-C6H13C6H4
                                  CH3
                                            F
                                                          278-285
                                                   H
                                                      H
        4-CH3CH2 (CH3)CHC6H4
                                  CH,
                                                          290-297
 10
       4-c-C6H11C6H4
                                  CH3CH2
                                            F.
                                                  H
                                                          295-297
 11
       4-C6H5OC6H4
                                  CH3
                                                          318-320(d)
                                                  Н
                                                      H
 12
       4-(4-BrC6H4)C6H4
                                 CH3
                                                  Н
                                                          318-323(d)
 13
       4-(CH3)2CHSC6H4
                                 CH3
                                                  H
                                                          280-283
                                                      H
 14
                                .. CH3
       4-C6H5C6H4
                                           CH3
                                                  H
                                                          327-329(d)
15
       4-c-C6H11C6H4
                                 · CH, CH,
                                           CH,
                                                  H
                                                          290(d)
       4-C6H5CH2OC6H4
16
                                 CH3
                                                  Н
                                                         297-302
17
       4-CH<sub>3</sub>CH<sub>2</sub>(CH<sub>3</sub>)CHC<sub>6</sub>H<sub>4</sub>
                                 CH3CH2
                                                  H
                                                         286-291
                                                     H
18
      4-C6H5C6H4
                                 CH3CH2
                                           P:
                                                  H
                                                     H
                                                         274-279(d)
      4-C6H5C6H4
19
                                 CH
                                           Cl
                                                 H
                                                          302-305
20
      4-C6H5OC6H4
                                 CH3
                                           CI
                                                 H
                                                     H
                                                         296-301
                                CH<sub>3</sub>
21
      4-C6H5SC6H4
                                           Cl
                                                 H
                                                     H
                                                         313-316
      4-C6H5CH2C6H4
22
                                 CH3
                                           Cl
                                                 H
                                                     H
                                                         265-275
      4-(4-PC6H4)C6H4
23
                                CH3
                                           Cl
                                                 Ħ
                                                     H
                                                         319-323
                                CH<sub>3</sub>
24
      4-(4-CH3OC6H4)C6H4
                                           Cl
                                                 H
                                                     H
                                                         310-314
      4-(CH3)2CH5(0)C6H4
                                CH3
```

Table 1 (continued)

					•
Ex. R	R^3	<u>R⁶</u>	<u>R</u>	, _ 1	8 m.p.(°C)
26 4-CH5CH2SCH4	CH ₃	F	н	3	281-287
27 4-(4-Brc ₆ H ₄)C ₆ H ₄	. CH ₃	C1	н	. 1	
28 4-(2-PC ₆ H ₄)C ₆ H ₄	. CH ₃	·F	н	. н	•
29. 4-(4-C1CgH40)CgH4	CH ₃	P ·	. н	н	
30 4-(4-CH3C6H4)C6H4	CH3	F	н	н	
31 4-(4-PC6H4)C6H4	CH ³	F	H	н	
32 4-(4-CF ₃ C ₆ H ₄)C ₆ H ₄	CH ₃ C	F	H		,
33 4-C6H5C6H4	H	F	Н	Н	272-278
34 4-C6H2S(0)C6H4	CH ₃	P	Н	H	239-247
35 4-(4-FC H ₄ 0)C H ₄	CH ₃	F	H	н	
36 4-(3,4-C1 ₂ C ₆ H ₃)C ₆ H ₄	CH ₃	F	н	н	315-319
37 4-C ₆ H ₅ C ₆ H ₄	CH_O	P	н.	н	219-223
38 4-(3-C1,4-CH ₃ C ₆ H ₃)C ₆ H ₄	CH_	F	н	н	316-324
39 4-(3,4-(CH ₃) ₂ C ₆ H ₃)C ₆ H ₃	CH ₃	. F	H	н	321-324
40 4-(4-(CH3CH2)C4HA)C4HA	CH	P	н	H	309-315
41 4-(3-(CH3CH2)C6H4)C6H4	CH ₃	ŕ	н.	H	
42 4-C ₆ H ₅ -3-pyridyl	CH3	F	H	. н	
43 4-C ₆ H ₅ -2-furanyl	CH3	F	н	н	
44 4-C ₆ H ₅ -2-thienyl	CH ₃	F	Н	H-	345~350
45 4-c-C6H11C6H4	CH ₃	Br	н	H-	325-330
46 4-c-C6H11C6H4	CH,	Br	H	Br	275-280
47 4-C6H5C6H4	CH ₃	Cl	C1	н	
48 4-c-C6H11C6H4	CH ₃	CF ₃	H	н	320-325
49 4-C6H5C6H4	CH ₃	н	ci	н	315-320
50 4-(C6H50)C6H4	CH ₃	H	C1	н	315-318
51 4-C6H5C6H4	CH ₃	CH ₃ CH ₂	H	H	295-300
52 4-C6H5C6H4	CH3	Br	H	H	313-314
53 4-(C6H50)C6H4	CH ₃	Br	H	. н	273-278
54 4-(4-FC ₆ H ₄)C ₆ H ₄	CH	P	Cl	H	
55 4-C ₆ H ₅ C ₆ H ₄		H .	CH3	H	324-328
26 4-C ₆ H ₅ C ₆ H ₄	CH ₂	CF ₃	H 3	H	320-323
57 4-(C,H,O)C,H	CH ₃	CF ₃	H	H	294-298
•	.	3	• • •		

Table 1 (continued)

		•				
<u>Ex</u>	<u>. B</u>	<u>R³</u>	<u>R⁶</u>	<u>R</u> 7	R ⁸	m.p.(°C)
-58	4-C6H5C6H4	CH ₃	CH ₃	C1	н	333-336
59	4-(C6H50)C8H4	CH3	CH3	C1	H	314-318
60	4-C6H5C6H4	CH ³	Br	н	Br	270-273
61	4-C6H5C6H4	CH3	F.	C1	н	327-332
62	4-c-C3H5C6H4	. CH ₃	F	H	Н	
63	4- C-C5H9C6H4	CH3		н	н	• •
64	4-(C6H5(CH3)N)C6H4	CH ₃	F	н	н	
·65	4-(C,H,CONH)C,H,	CH ₃	F	н.	н	
		CH ₃	F	н	н	
67	5-C ₆ H ₅ -2-imidazoyl	CH ³ ,	F	н	H .	• .
68	(4-C ₆ H ₅ ,2-CH ₃)C ₆ H ₃	CH ₃	P	H	H	316-320°
.69	4-(2-FC ₆ H ₄), 3-FC ₆ H ₃	CH ₃	P .	H	н .	
70	4-(2-FC,H4)C,H4	CH ₃	Cl	H	H .	
71	4-C,H,C,H,	CH ₃	1	H	H	325-327
72	4-(4-CF ₃ C ₆ H ₄)C ₆ H ₄	CH ₃	F	H	H	323-327
73	4-(3-FC6H4)C6H4	CH ₃	F	H	H	305-310
74	4-(2,4-P2C6H3)C6H4	CH ₃	F	н	H	325-328
75	4-(4-FC ₆ H ₄ O)C ₆ H ₄	H.	P	H		
	6.4 6.4	••	•		H	310-315

cyclohexyl cyclopentyl

Example 76

2-(4-Biphenyl)-3-methyl-6-methylthio-4-quinoline carboxylic acid
The compound of Example 2, 2-(4-biphenyl)-6-fluoro-3-methyl-4-quinolinecarboxylic acid, (7.2 g, 0.02 mole) and potassium methylmercaptide (6 g) were dissolved in 100 ml of dimethylformamide and warmed at 130° for 3 hours. The mixture was cooled and the solvent evaporated under reduced pressure. The residue was dissolved in 250 ml of H₂O, filtered and the filtrate acidified to pH 2. The yellow precipitate was filtered and dried. A portion of the yellow precipitate (1.8 g, 0.005 mole) was suspended in acetone containing 5 ml of methyl iodide and 4 g of potassium carbonate and was heated to reflux for 24 hours. The reaction mixture was filtered and evaporated at reduced pressure. The residue was dissolved in ethyl ether, washed with H₂O, dried with sodium sulfate and evaporated at reduced pressure to give a solid. The solid obtained in this manner from several batches (6 g) was combined and dissolved in 70 ml of ethanol and 30 ml of H₂O containing 10 g of potassium hydroxide. The mixture was heated at reflux for 12 hours. The mixture was cooled, evaporated at reduced pressure, dissolved in 300 ml of H₂O and washed with ethyl ether. The aqueous solution was acidified to pH 2 with HCl and the precipitate collected, washed with water and hot ethanol to give 4.9 g of 2-(4-Biphenyl)-3-methyl-6-methylthio-4-quinolinecarboxylic acid, m.p.

The compound of Example 76 and other compounds which can be prepared using this procedure are listed in Table 2.

Table 2

CH,S 316-318(d) H H

CH3. CH, S H H H

4-(4-CH3C6H4)C6H4 CH3 H CH,S HH

10

15

. 20

25

Example 81

2-(4-Biphenyl)-5-chloro-6-fluoro-3-methyl-4-quinolinecarboxylic acid

4-Chloro-5-fluoroisatin (4 g, 0.02 mole), diethylamine (1.46 g, 0.02 mole) and 4-phenylpropiophenone (4.4 g, 0.021 mole) were suspended in 100 ml of ethanol and stirred for 12 hours. The precipitate was filtered, washed with cold ethanol and dried to give 2.1 g of crude adduct (m.p. 202—206°).

This was dissolved in 75 ml of tetrahydrofuran and 30 ml of concentrated HCl. The resulting solution was refluxed for 24 hours, cooled and diluted with H₂O. The tetrahydrofuran was evaporated under reduced pressure. The precipitate was filtered, washed with ether and boiled with methanol to give 0.90 g of 2-(4-biphenyl)-5-chloro-6-fluoro-3-methyl-4-quinolinecarboxylic acid as a crystalline solid, m.p.

Example 86

6-Fluoro-3-methyl-2-(4-nitrophenoxyphenyl)-4-quinolinecarboxylic acid

5-Fluoroisatin (2.0 g, 0.0104 mole), diethylamine (0.77 g, 0.0105 mole) and 4-(4-nitrophenoxy)propiophenone (2.82 g, 0.0104 mole) were suspended in 100 ml of ethanol and stirred at 25° for 12 hours. The precipitate was filtered, washed with toluene and air dried to give 3.0 g of crude adduct.

The crude product obtained from two of the above preparations (5.0 g, 0.0108 mole) was combined in 180 ml of tetrahydrofuran and 40 ml of concentrated HCl. The resulting solution was refluxed for 12 hours, cooled and the solvent was evaporated under reduced pressure. The solid residue was washed with ethyl ether and dried to give 4.37 g of 6-fluoro-3-methyl-2-(4-nitrophenoxyphenyl)-4-quinolinecarboxylic acid as a white solid, m.p. 335-337°.

The compounds of Examples 81 and 86, other compounds which have been prepared using the procedures for the compounds of Examples 81 and 86, and other compounds which may be prepared by such procedures, are listed in Table 3.

Table 3

R ⁵	CO ₂ H
R ⁶	R^3
101	OI
R	N R
R	

<u>Ex.</u> <u>R</u>	<u>R³</u>	R ⁵	R ⁶	R ⁷	R8	m.p.(°C)
80 4-C ₆ H ₅ C ₆ H ₄	CH ₃	Cl		Н	. —	295-296(d)
81 4-C ₆ H ₅ C ₆ H ₄	CH ₃	Cl	F	Н	н	-305-308(d)
82 4-C ₆ H ₅ C ₆ H ₄	CH3	Cl	н	C1	н	301-305(d)
83 4-C ₆ H ₅ C ₆ H ₄	CH3	Cl	CHa	H	н	295-298(d)
6147614	CH3	Cl	F	H	H	300-305
36747684	CH ₃	C1	F	H	H	293-296
2640)64	CH ₃	H	F	H	H	335-337
6"5"6"4	CH ₃	H	H	F	H	307-311(d)
3 6 n 1 C H	CH3CH2	C1	P	H	H	
10 05 14 000 C N 1C H	CH3	C1	F	H .	н	
90 4-(3-C1,4-CH ₃ C ₆ H ₃)C ₆ H ₄	CH ₃	Cl	H	H	H	

Example 91

Sodium 2-(4-Cyclohexylphenyl)-6-fluoro-3-methylquinoline-4-carboxylate

The compound of Example 1 (10.0 g, 0.0275 mole) was suspended in 400 ml of ethanol and treated with 1/N NaOH (27.5 ml, 0.0275 mole). The mixture was stirred until the solution was clear; the ethanol and water were evaporated at reduced pressure to give 9.95 g of the sodium salt as a white solid, m.p. 350°(d).

Example 92

Sodium 2-(4-Biphenylyl)-6-fluoro-3-methylquinoline-4-carboxylate

10

15

The compound of Example 2 (3.57 g; 0.01 mole) was dissolved in 500 ml of ethanol and treated with 1NNaOH (10 ml), and heated at reflux for 30 minutes. The ethanol and water were evaporated at reduced pressure to give 3.6 g of the sodium salt as a pale tan solid, m.p. >360°.

Example 118

Sodium 2-(2'-Fluoro-1,1'-biphenyl-4-yl)-6-fluoro-3-methylquinoline-4-carboxylate

The compound of Example 28 (37.5 g, 0.10 mole) was suspended in 1,000 ml of ethanol and treated with 1N NaOH (100 ml, 0.10 mole). The mixture was warmed and stirred until clear; the ethanol and water were evaporated at reduced pressure to give 39.6 g of the white solid sodium 2-(2'-fluoro-1,1'-biphenyl-4yl)-6-fluoro-3-methylquinoline-4-carboxylate, m.p. >360°.

Example 164

Sodium 2-(4-Biphenylyl)-5-chloro-6-fluoro-3-methylquinoline-4-carboxylate

The compound of Example 81 (7.85 g, 0.02 mole) was suspended in 150 ml of water and treated with 1/V NaOH (19.9 ml, 0.0199 mole), and 150 ml of ethanol was added. The mixture was stirred until the solution was clear and filtered to remove any insoluble material. The ethanol and water were removed at reduced pressure to give 8.1 g of the white solid sodium salt, m.p. >360°.

The compounds of Examples 91, 92, 118 and 164, other compounds which have been prepared by the procedures given above, and other compounds which can be prepared using such procedures are listed in

Table 4

	•							
Ex. R	<u>R</u> 3		5					
91 4-c-C ₆ H ₁₁ C ₆ H ₄			<u>R</u> 5	<u>R</u> 6	<u>R</u> 7	<u>R</u> 8	Y	m.p.(°C)
92 4-CHCH	CH ₃		H	F	H	н	Na	
6"5"6"4	CH	•	H.	F	н	H	Ha	300(0)
6"11"6"4	CH ₃	٠.	H	C1	H			>360
94 4-c-C6H11C6H4	H			•		H	Ba	>350
95 4-c-C6H11C6H4	H		•	21	H	H '	Na	>350
96 4-c-C6H11C6H4				•	H	H	Ne	>350
97 4-n-C_H CH	CH ₃	. 1	H C	H ₃	H	H	Na	342-351
97 4-7-C ₁₀ H ₂₁ C ₆ H ₄	CH ₃	1	H P		H	H	Na	332-335
98 4-n-C ₆ H ₃ C ₆ H ₄ 99 4-CH CH (CH) CH (CH)	CH ₃	F	i p		H	н	Na	
3012 CM3 JCHC HA	CH ₃	1	i F	•			_	
100 4-c-C6H11C6H4	CH ₃ CH ₂	H	P				Ne	340-345
101 4-C6H50C6H4	CH ₃	H	•			•	Na	>350
102 4-(4-BrC H4)C H4	3 3		7			H I	ia	>350
103 4-(CH ₃) ₂ CHSC ₆ H ₄	CH ₃	H		1	1 }	i j	la	>350
104 4-C6H5C6H4	CII3	H	F	1	1 3	1 8	la	339-343
	CH3	H	CH	, H	Н	. N	•	>350
6 11 6 4	CH ₃ CH ₂	H	СН	. H	н	N		>350
6"5"2"6"4	CH3 .	н	F	, H				
107 4-CH ₃ CH ₂ (CH ₃)CHC ₆ H ₄	CH3CH2	H	P	H		•••		350
108 4-C6H5C6H4	CH ₃ CH ₂	H			H	N	1 3	02-306
109 4-C6H5C6H4	~~3~~2		P	.Д	H	Na	د ۱۰	350
110 4-C ₆ H ₅ OC ₆ H ₄	CH ₃	H	Cl	H	H	H	>	350
6 5 6 4 111 4-C,H_SC_H	CH ₃	H	Cl	, H	·H	Na	1	70-175
0.5 6 4	CH ₃	H .	Cl	H	н	Na		19-324
6"5"2"6"4	CH ₃	H	Cl	H	H	Na		
113 4-(4-FC H ₄)C H ₄	CH ₃	H	Cl	н	H		•	05-315
114 4-(4-CH30CH3)CH2	CH ³	н				Ha		350
15 4-(CH ₃) ₂ CHS(0)C ₆ H ₄	. ~u		C1	H	H	Na	>3	160
5 6 4	CH ³	H	P	H	Ħ	Na		
	•							•

Table 4 (continued)

Ex. R	R3		R ⁵ R ⁶	R	7	R ⁸ Y	m.p.(°C)	
116 4-C H CH SC H	CH		H F	н		H M		
117 4-(4-Brc,H4)C6H4	CH	1	H C1	н	. 1	H BI	>360	
118 4-(2-FC6H4)C6H4	· CH ³	i	i P	н	ì	i Na	•	
119 4-(4-C1C,H40)C,H4	CH ³	ŀ	i F	Н	j	i Ba	>350	
120 4-(4-CH3C6H4)C6H4	CH ₃	H	F	H.	H	l Ha		
121 4-(4-FC6H4)C6H4	CH ³	H	F	H	H	Na		
122 4-(4-CF ₃ C ₆ H ₄)C ₆ H ₄	ੁcH³o	Н	F	H	H	Na	•	
123 4-C6H5C6H	, H		P .	Н	н	Na	>360	•
124 4-C6H5S(O)C6H4	CH ₃	H	F	н	H	Na	251-260	
125 4-(4-FC,H40)C,H4	CH3	H	P	ĸ	н	. Na		
126 4-(3,4-C1 ₂ C ₆ H ₃)C ₆ H ₄	CH ₃	H	F	H.	Н	Na	338-351	
127 4-C, H, C, H,	CH30	H	F	H	H	Na	345-349	
128 4-(3-C1,4-CH3C6H3)C6H4	CH	·H	. F	н	H	Na	>360	
129 4-(3,4-(CH3)2C6H3)C6H4	CH ₃	H	P	H,	H	Na	>350	
130 4-(4-(CH3CH2)C6H4)C6H4	CH ₃	H	F	H	H	Na	>360	
131 4-(3-(CH3CH2)C6H4)C6H4	CH ₃	H	F	н	H	Na	•	
132 4-C ₆ H ₅ -3-pyridyl	CH ₃	H	F	H	H	Na		
133 4-C ₆ H ₅ -2-furanyl	CH3	H	F	H '	.H	Na		
134 4-C ₆ H ₅ -2-thienyl	CH ₃	·H	F	H	H.	Na	>360	
135 4-c-C6H11C6H4	CH ₃	H	Br	H	H	Ha	>360	
136 4-c-C6H11C6H4	CH ₃	H	Br	H	Br	Na	298-300(d)	
137 4-C6H5C6H4	CH3	H	C1 ·	Cl	H	Na		
138 4-c-C6H11C6H4	CH ₃	H.	CF ₃	H	H	Na	•	
139 4-C6H5C6H4	_	H	H	. C1	H	Na '	>360	٠
140 4-(C6H50)C6H4	CH ₃	H	. H .	Cl	H	Na		
141 4-C6H5C6H4	CH ₃	H	CH ₃ CH ₂	H	H	Na	>360	
142 4-C ₆ H ₅ C ₆ H ₄	CH ₃	H	Br	H	H	Ns	>360	
143 4-(C6H50)C6H4	CH ₃	H	Br :	H	H	Na	228	
144 4-(4-FC6H4)C6H4	CH ₃	H	F .	Cl	H	Na ·		
145 4-C6H5C6H4	. 3	H	H	CH ₃	Ħ	Na	>350	
146 4-C6H5C6H4	CH ₃	H	3	.н	Ħ	Na	>360	
147 4-(C6H5D)C6H4		H	CF ₃	H .	H	Na	338-342	
• •					•			

Page 1	. 2	
Ex. R		R ⁷ R ⁸ Y m.p.(°C)
148 4-C4H5C6H4	сн ₃ н сн ₃	Cl H Na >360
149 4-(C6H50)C6H4	сн ₃ и сн ₃	C1 H Na 318-320
150 4-C ₆ H ₅ C ₆ H ₄	CH, H Br	H Br Na 340-345
151 4-C6H5C6H4	CH ₃ H P	C1 H Na >360
152 4-c-C3H5C6H4	CH ₃ H P	H H Na
153 4-c-C5H9C6H4	сн _{ан г}	н н на
154 4-(C6H5(CH3)N)C6H4	CH ₃ H F	н н на
155 4-(C6H5CONH)CH4	сн ₃ и г	н н ма
156 4-(C6H5CO2)C6H4	сн ₃ н Р	•
157 4-C ₆ H ₅ -2-imidazoyl	CH ₃ H F	
158 4-C ₆ H ₅ ,2-CH ₃ C ₆ H ₃	CH ₃ H P	
159 4-(2-FC ₆ H ₄),3-FC ₆ H ₃	CH ₃ H F	
160 4-(2-PC6H4)C6H4	СН ₃ н с1	
161 4-CHCH	CH ₃ H CH ₃ S	•
162 4-C6H5C6H4	CH3 H CH3S(O)	
163 4-CH ₅ CH ₄	CH ₃ C1 H	
164 4-C6H5C6H4	CH ₃ C1 F	
165 4-CH5CH4	CH ₃ C1 H	
166 4-C6H5C6H4	CH3 C1 CH3	
167 4-(2-FC6H4)C6H4	CH ₃ C1 P	H H Na >340
168 4-(4-CH3C6H4)C6H4	CH ₃ C1 P	H H Na 330-335(d)
169 4-c-CH11CH4	CH ₃ H F	
170 4-C ₆ H ₅ C ₆ H ₄	600	~ 330-380(8)
171 4-C6H5C6H4	A11	H H K >350
172 4-(C ₆ H ₅ O)C ₆ H ₄	A.	H H K >350
173 4-(C6H5S)C6H4	~	H H K 164-171
	CO1 **	H H K 310-325
		H H K 370
6 4 6 4		H H K >360
177 4-(4-FC ₆ H ₄)C ₆ H ₄		H H K 339-346
6"4"6"4	ж3 н Р 1	H H K 270-275

Table 4 continued

EX. B										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ex.	<u>R</u>	\mathbb{R}^3	R^5	R ⁶	R ⁷	R8	¥_	m.p.(°C)
179 4-C ₆ H ₅ C ₆ H ₄ CH ₃ H F H H 1-amino- 128-134 2-butanol 180 4-n-C ₆ H ₁₃ C ₆ H ₄ CH ₃ H F H H 1ysine 205-212 181 4-C-C ₆ H ₁₁ C ₆ H ₄ CH ₃ H F H H 1ysine 226-231 182 4-C ₆ H ₅ C ₆ H ₄ H H F H H K 326-329 183 4-(4-BrC ₆ H ₄)C ₆ H ₄ CH ₃ H F H H 1ysine 253-258 184 4-(4-No ₂ C ₆ H ₄ O)C ₆ H ₄ CH ₃ H F H H Na >360 185 4-C ₆ H ₅ C ₆ H ₄ CH ₃ H I H Na >360 186 4-C ₆ H ₅ C ₆ H ₄ CH ₃ H F H H Na 360 187 4-(4-FC ₆ H ₄ O)C ₆ H ₄ CH ₃ H F H H Na 360 188 4-(2,4-F ₂ C ₆ H ₃ O)C ₆ H ₄ CH ₃ H F H H Na 360 189 4-(2-FC ₆ H ₄ O)C ₆ H ₄ CH ₃ H F H H Na 330-335(d) 190 4-(3-FC ₆ H ₄ O)C ₆ H ₄ CH ₃ H H H H Na >360		178	4-C6H5C6H4	CH3						· · · · · · · · · · · · · · · · · · ·
181 $4 - C - C_6 H_{11} C_6 H_4$. 179	4-C6H5C6H4			F	н	Н.		128-134
182 4-C ₆ H ₅ C ₆ H ₄ H H F H H K 326-329 183 4-(4-BrC ₆ H ₄)C ₆ H ₄ CH ₃ H F H H Na 253-258 184 4-(4-N0 ₂ C ₆ H ₄ O)C ₆ H ₄ CH ₃ H F H H Na >360 185 4-C ₆ H ₅ C ₆ H ₄ CH ₃ H I H H Na >360 186 4-C ₆ H ₅ C ₆ H ₄ CH ₃ H F H Na 360 187 4-(4-FC ₆ H ₄ O)C ₆ H ₄ H H F H Na 360 188 4-(2,4-F ₂ C ₆ H ₃)C ₆ H ₄ CH ₃ H F H H Na 189 4-(2-FC ₆ H ₄)C ₆ H ₄ CH ₃ CH F H H Na 330-335(d) 190 4-(3-FC ₆ H ₄)C ₆ H ₄ CH ₃ H H H H Na >360	,	180	4-n-C6H13C6H4	CH	H	r	Н	Н	lysine	205-212
183 4-(4-BrC ₆ H ₄)C ₆ H ₄ CH ₃ H F H H 1ysine 253-258 184 4-(4-NO ₂ C ₆ H ₄ O)C ₆ H ₄ CH ₃ H F H H Na >360 185 4-C ₆ H ₅ C ₆ H ₄ CH ₃ H I H H Na >360 186 4-C ₆ H ₅ C ₆ H ₄ CH ₃ H H F H Na 360 187 4-(4-FC ₆ H ₄ O)C ₆ H ₄ H H F H H Na 360 188 4-(2,4-F ₂ C ₆ H ₃)C ₆ H ₄ CH ₃ H F H H Na 330-335(d) 189 4-(2-FC ₆ H ₄)C ₆ H ₄ CH ₃ CH F H H Na 330-335(d) 190 4-(3-FC ₆ H ₄)C ₆ H ₄ CH ₃ H H H H Na >360	•	181	4-G-C6H11C6H4	CH ₃	H	. F	H	H	lysine	226-231
184 4-(4-N0 ₂ C ₆ H ₄ O)C ₆ H ₄ CH ₃ H F H H Na >360 185 4-C ₆ H ₅ C ₆ H ₄ CH ₃ H I H H Na >360 186 4-C ₆ H ₅ C ₆ H ₄ CH ₃ H H F H Na 360 187 4-(4-FC ₆ H ₄ O)C ₆ H ₄ H H F H H Na 360 188 4-(2,4-F ₂ C ₆ H ₃)C ₆ H ₄ CH ₃ H F H H Na 330-335(d) 189 4-(2-FC ₆ H ₄)C ₆ H ₄ CH ₃ CH F H H Na 330-335(d) 190 4-(3-FC ₆ H ₄)C ₆ H ₄ CH ₃ H H H H Na >360		182	4-C6H5C6H4	н	H	F	H'	H	K	326-329
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		183	4-(4-BrC6H4)C6H4	CH ₃	H	P	H	H	lysine	253-258
185 4-C ₆ H ₅ C ₆ H ₄ CH ₃ H I H H Na >360 186 4-C ₆ H ₅ C ₆ H ₄ CH ₃ H H F H Na 360 187 4-(4-FC ₆ H ₄ O)C ₆ H ₄ H H F H H Na 188 4-(2,4-F ₂ C ₆ H ₃)C ₆ H ₄ CH ₃ H F H H Na 189 4-(2-FC ₆ H ₄)C ₆ H ₄ CH ₃ C1 F H H Na 330-335(d) 190 4-(3-FC ₆ H ₄)C ₆ H ₄ CH ₃ H H H Na >360		184	4-(4-NO2C6H40)C6H4		H,	F.	н	H	Na .	>360
187 4-(4-FC ₆ H ₄ O)C ₆ H ₄ H H F H H Na 188 4-(2,4-F ₂ C ₆ H ₃)C ₆ H ₄ CH ₃ H F H H Na 189 4-(2-FC ₆ H ₄)C ₆ H ₄ CH ₃ C1 F H H Na 330-335(d) 190 4-(3-FC ₆ H ₄)C ₆ H ₄ CH ₃ H H H Na >360		185			н	-1	H.	H	Na	>360
188 4-(2,4-F ₂ C ₆ H ₃)C ₆ H ₄ CH ₃ H F H H Na 189 4-(2-FC ₆ H ₄)C ₆ H ₄ CH ₃ Cl F H H Na 330-335(d) 190 4-(3-FC ₆ H ₄)C ₆ H ₄ CH ₃ H H H Na >360		186	4-C6H5C6H4	CH ₃	·H·	H	F	H	Na .	360
188 4-(2,4-F ₂ C ₆ H ₃)C ₆ H ₄ CH ₃ H F H H Na 189 4-(2-FC ₆ H ₄)C ₆ H ₄ CH ₃ Cl F H H Na 330-335(d) 190 4-(3-FC ₆ H ₄)C ₆ H ₄ CH ₃ H H H Na >360			4-(4-FC6H40)C6H4	H	H	F	H	H	Na	•
189 4-(2-FC ₆ H ₄)C ₆ H ₄ CH ₃ Cl F H H Na 330-335(d) 190 4-(3-FC ₆ H ₄)C ₆ H ₄ CH ₃ H H H Na >360		188	4-(2,4-F2C6H3)C6H4	CH ₃	H	F	н	н	Na	
190 4-(3-FC ₆ H ₄)C ₆ H ₄ CH ₃ H H H Na >360		189	4-(2-FC ₆ H ₄)C ₆ H ₄	CH3	C1	F	·H	н	Na	330-335(d)
191 4-(4-HOC ₆ H ₄)C ₆ H ₄ CH ₃ H F H H Hm >360		190	4-(3-FC6H4)C6H4	-	H	H	н	H	Na	. '
		191	4-(4-HOC6H4)C6H4	CH ₃	H	F	H	H	Na .	>360

10

15

20 -

25

35

50

Example 192

Example 192
6-Chloro-2-(4'-hydroxy-1,1'-biphenyl-4-yl)-3-methyl-4-quinolinecarboxylic acid
The compound of Example 24 (4.0 g, 0.01 mole) was added in portions to a solution of borontribromide
(5.7 ml, 0.06 mole) in 90 ml of chloroform at 25° under nitrogen. This maroon suspension was stirred for 1 hour then poured onto wat ice. The resulting yellow precipitate was filtered, washed with chloroform and air dried. The solid was dissolved in 1/V NaOH, washed with chloroform and then acidified with glacial acetic acid to give a yellow precipitate which was filtered and air dried to give 4.2 g of the yellow solid 6-chloro-2-(4'-hydroxy-1.1'-hiphenyl-4-yl)-3-methyl-4-quinolinecarboxylic acid. m.p. >360°.

chloro-2-(4'-hydroxy-1,1'-biphenyl-4-yl)-3-methyl-4-quinolinecarboxylic acid, m.p. >360°.

The compound of Example 192 and other compounds which can be prepared using such procedures are listed in Table 5.

Ex.	<u>R</u>	R3	R5	R 6	R7	R ⁸	m.p.(°C)
192	4-(4-HOC ₆ H ₄)C ₆ H ₄	CH ₃	H	P ·	H	H	>360
193	4-(4-HOC6H4)C6H4	CH3	H	F	H	H	
194	4-(4-HOC6H4)C6H4	CH3	Cl	7	н	H	

Utility

Results of the various biological tests described below establish that the compounds of this invention have the property of inhibiting not only the growth of transplanted mouse tumors but also the growth of

The efficacy of the compounds of this invention against the transplanted mouse tumors was evaluated in test systems currently in use at the National Cancer Institute for the detection and assessment of anticancer activity. Most clinically effective drugs exhibit activity in these tests and the tests have a good record of predicting clinical efficacy [Goldin, A., Venditti, J. M. MacDonald, J. S., Muggia, F. M., Henney, J. E. and V. T. Devita, Jr., Europ. J. Cancer, 17, 129—142, (1981); Venditti, J. M., Seminars in Oncology, 8 (4) (1981); Goldin, A. and J. M. Venditti, in Recent Results in Cancer Research, 70, S. K. Carter and Y. Sakurai,

Melanotic Melanoma B16 Test

The animals used were $B_6C_3F_1$ mice, all of one sex, weighing a minimum of 18 g for males and 17 g for females and all within a 4 g weight range at the start of the test. The test group comprised 9 or 10 mice. The tumor was implanted in each of the test mice by the subcutaneous injection of 0.5 ml of a tumor homogenate prepared by homogenizing a 1 g portion of melanotic melanoma in 10 ml of cold physiological saline. The test compounds suspended in hydroxypropylcellulose were administered intraperitoneally at various doses once daily for nine consecutive days starting on day one relative to the day of tumor inoculation (day 0). The control mice received injections of hydroxypropylcellulose vehicle only. The mice were weighed and survivors were recorded on a regular basis for 60 days. The median survival times and the ratio of the median survival times for treated (T) to control (C) mice were calculated. The median survival time of the nontreated tumored mice ranged from 15 to 17 days. Drug effectiveness was assessed on the basis of the survival time. Results were expressed as a percentage of the control survival time (Survival Time T/C × 100%). The criterion for effectiveness was determined by: T/C × 100 ≥

Results with the compound of Example 1 and cis-platin, a drug used clinically, are shown in Table 6. The data indicate that the compound of Example 1 is effective against the B16 melanoma in mice.

Table 6 Melanotic Melanoma Bl6 Test

·	Compound	Dose (mg/kg)	T/C x 100 (percent) 2 Tests
o	Example 1	400 200 100 50 25	131, 179 145, 150 145, 155 148, 138 127, 125
5	Cisplatin	2	212, 136 - , 175

Lymphoid Leukemia L1210

The animals used in this test were CD₂F₁ mice, all males weighing a minimum of 18 g and all within a 4 g weight range at the start of the test. The test group group consisted of six mice. The tumor was implanted in each of the test mice by the intraperitoneal injection of 0.1 ml of diluted ascitic fluid containing cells drawn from a mouse with L1210 leukemia. The test compounds were suspended in hydroxypropylcellulose or saline with Tween® 80 surfactant or dissolved in saline and injected intraperitoneal, at various doses, once daily for nine consecutive days starting on day one relative to the day of turnor inoculation (day 0). The control mice received injections of saline or hydroxypropylcellulose vehicle only. The mice were weighed and survivors were recorded on a regular basis for 30 days. The median survival time and the ratio of the median survival time for treated (T) and control (C) mice was calculated. The median survival time of the non-treated tumored mice ranged from 8-9 days. Drug effectiveness was assessed on the basis of the survival time. Results were expressed as a percentage of the control survival time (Median Survival Time T/C imes 100%). The criterion for effectiveness was determined

Results of tests with compounds of this invention are shown in Table 7. The data indicate that the 65 compounds of the invention are effective against the L1210 leukemia in mice.

Human Colon Tumor Test in vitro

The compounds of this invention were also tested for their ability to inhibit the growth of human colon carcinoma cells in vitro. Compounds effective in inhibiting the growth of these cells also show activity in inhibiting the L1210 leukemia in mice.

The human colon carcinoma cells, designated HCT-15, were derived from a specimen of an adenocarcinoma of human colon removed during surgery. The cells were grown in Roswell Park Medical Institute (RPMI) Medium 1640 supplemented with 10% heat inactivated fetal calf serum, penicillin (100 units/ml), streptomycin (100 μg/ml), gentamicin (20 μg/ml), fungizone (25 μg/ml), 0.075 percent sodium μΜ 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid and 10 bicarbonate, 10 tris(hydroxymethyl)methylglycine. To determine the potency of the test compounds in inhibiting the growth of the cells, the procedure was as follows: on day 0, replicate 35 mm tissue culture dishes were each inoculated with 1.5 x 10⁵ HCT-15 cells in 2 ml supplemented RPMI Medium 1640. On day 1 cells from sample dishes were harvested using trypsin (0.25%) treatment and counted with a hemocytometer to determine the number of cells per dish at the time of the addition of the compounds. Compounds of this invention were added in varying concentrations to other cultures. On day 4, treated and control cultures were harvested by trypsin treatment and the number of cells was determined. The number of doublings for the control cells was determined from the cell numbers on days 1 and 4. The ID₅₀, the concentration of compound required to inhibit by 50 percent the number of doublings, was then calculated from the doseresponse curve in which cell numbers were plotted on log-log paper against compound concentrations in micrograms per ml. Results of tests with compounds of this invention and with reference drugs used clinically are shown in Table 7. They show that the compounds are active in inhibiting the growth of the human colon tumor cells.

.

25

.

40

45

50

.

Table 7

Example No.	Ll210 Leukemia (dose in mg/kg) %T/C	in vitro HCT-15 ID50 µg/ml
1	(200) 189	0.05
2	(50) 186	0.10
3	(400) 207	0.50
4	(200) 128	0.48
5	(400) 141	0.02
6	(400) 162	0.24
7 7	(200) 136	2.30
. 8	(400) 147	0.40
9	(200) 127	0.07
10	(200) 163	0.03
11 ,	(25) 176	0.19
12	(50) 261	1.00
13	(400) 129	0.24
14	(50) 195	0.38
15	(200) 158	0.28
16	(400) 190	1.00
17	(400) 136	0.65
; 18	(100) 185	<0.50
19	(25) 234	<0.50
20	(200) 211	<0.50
21	(200) 160	<5.0 and >0.5
22	(100) 135	<5.0 and >0.5
23	(25) 159	<5.0 and >0.5
24	(400) 154	0.28
26	(300) 136	<0.50
27 . ′	(50) 155	NT
28	(18) 174	<0.50
29	(18) 194	<0.50
30	(300) 291	<0.50
31	(37.5) 218	<0.50

Example	L1210 Leukemia	in vitro HCT-15
No.	(dose in mq/kq) %T/C	ID50 µg/m1
32	(175) 153	<5.0 and >0.5
, 33	(200) 170	<0.50
34	(400) 170	NT
35	(150) 204	NT
36	(75) 185	NT
37	(50) 155	NT
38	NT	>1
39	nt	<0.1
40	NT	>1
45	(400) 160	0.13
46	NT	0.42
47	NT	3.20
48	NT	0.10
49	(200) 174	>5.00
50	(100) 131	>5.00
51.	(75) 173	<0.50
52	(75) 189	<0.50
53	(75) 136	<0.50
54	(300) 125	<0.50
55	(150) 156	<5.0 and >0.5
56	(75) 176	<0.50
. 57	(150) 197	<0.50
58 : :	(150) 141	>0.50
59	(300) 152	>5.00
60	(300) 192	<0.50
61	(75) 160	NT
68	NT	<ld><1 and >0.1</ld>
71	NT	<1.0 and >0.1
73	NT	<0.1
74	(50) 104	NT

Example	L1210 Leukemia	in vitro HCT-1		
No.	(dose in mg/kg) %T/C	ID50 µq/ml		
75	(150) 145	NT		
76	NT	<1.0 and >0.1		
80	(25) 128	<0.50		
- 81	(25) 191	<0.50		
82	NT	>1.00		
83 .	NT	>1.00		
84	NT	<0.1		
85	NT	<1 and >0.1		
86	(175) 153	<5.0 and >0.50		
87	(100) 146	<0.50		
91	(100) 103 + (40) 140=	0.04		
92	(50) 180, 176, 172	0.03		
93	(50) 101±	0.06. 0.04		
94	(100) 107#	0.65		
95	(100) 10B¢	0.04		
96	(37.5) 97#	<0.50		
97	(25) 110+	0.14		
99	(50) 101+	0.07, 0.34		
100	(50) 103 -	0.028. 0.24		
101	(50) 154, 161	0.41		
102	(12.5) 164	1.0, 1.9		
103	(200) 108-	0.17		
104	(100) 137,164	0.22		
105	(12.5) 108+	0.33		
106	(25) 1074	1.20		
107	(25) 116*	0.09		
108	(100) 166	0.10		
109	(100) 172	<0.50		
110	(25) 135	<0.50		
111	(25) 125, 135	<0.50		

Example	L1210 Le	ukemia	<u>in vitro</u> HCT-15
No.	(dose in mg/	kg) %T/C	ID50 µg/ml
	•	· ·	
112	(25)	128	<0.50
113	(25)	166, 166	<5.0 and >0.5
114	(50)	121+	1.30
116	(75).	102+	<0.50
.117	(25)]	63, 175	<5.0 and >0.5
118	(25) 1	79. 195	0.017
119	(18)	170	<0.50
120	(100)	132	<0.50
121	(18)	175	<0.50
122	(175)	153	<5.0 and >0.5
123-	(21.9)	145	<0.50
124	(360)	184	NT
125	(150)	150 .	- NT
126	(37.5)	150	NT
127	(50)	193	nt
128	NT		>1
129	NT		<0.1
134	(100)	110+	<1 and >0.1
. 135	(400)	160	0.13, 0.55
136	(25)	103+	>0.50
137	(50)	107+	>5.00
139	(100)	146	<5.00
141	(75)	139	<0.50
142	(37.5)	169	<0.50
143	(37.5) 1	132	<0.50
144	(37.5) 1	L23+	<0.50
.145	(75) 1	132	<0.50
146	(37.5) 1	164	<0.50
147	(18) 1	.32	<0.50
. 148	(37.5) 1	.02+	>5.00

		· · · · · ·
Example	L1210 Leukemia	in vitro HCT-15
No.	(dose in mg/kg) %T/C	ID50 uq/ml
149	(75) 107 ≠	>5.00
150	(37.5) 105 †	<0.50
151	(75) 144	<5.0 and >0.5
158	NT	<l and="">0.1</l>
161	(100) 148	>1.00
163	(43.8) 180	<0.50
164	(22.5) 234	<0.50
165	NT	>1.00
166	NT	<1.0 and >0.1
167	(12.5) 197	<0.1
169 .	NT	0.04
170	(25) 188	0.10
171	(100) 164	<0.50
172	(100) 151	<0.50
173	(25) 122	<0.50
174	(12.5) 156, 159	<5 and >0.5
175	(12.5), 156, 159	<5.0 and >0.5
176	(37) 175	<0.50, 0.41
177	(37.5) 172	<0.50
178	(75) 172	<0.50
179	(37.5) 166	<0.50
180	(18) 101#	<0.50
181	(37.5) 108+	<0.50
182	(46) 16B	<0.50
183	(22.5) 208	<5.0 and >0.5
184	(175) 153	<5.0 and >0.5
185	(50) 175	<1.0 and >0.1
186	(45) 123	<0.50
187	(75) 131	<0.50
188	(12.5) 187	<0.01

Table 7 continued

1 .
•
01
66
27

- * Dosing Q3DX9 instead of Q1DX9
- = Compounds dosed at non-optimal Q1DX9 instead of Q3DX9, should be active if dosed Q3DX9.

NT = not tested

The compounds of Examples 1 and 91 were also tested for effectiveness against a human colon tumor implanted in athymic mice. These mice are immunodeficient and thus do not reject implanted tumors of human origin.

Human Colon Tumor HCT-15

20

25

The animals used were Swiss NU/NU athymic mice, weighing 20—22 g each at the start of the test. The test group consisted of twelve mice, seven males and five females. The HCT—15 tumor cell line, derived from a patient with adenocarcinoma of the colon, was maintained in culture. The tumor was implanted in each of the test mice by the subcutaneous injection in the flank region of 0.2 ml of physiological saline containing 10⁷ HCT—15 cultured cells. Tumors appeared within 72 hours and treatment started one week after tumor inoculation.

Test compounds, suspended in methocel (0.5% in water) or dissolved in water, were injected intraperitoneally once dally for five consecutive days starting on day seven relative to the day of tumor inoculation (day 0). The body weight and the size of the tumor were determined daily. Tumor size was determined by two-dimensional caliper measurements. Tumor weight was estimated from the formula:

1 × w²

= mg tumor weight in which 1 = length and w = width of the tumor in mm. The net tumor weight was determined by subtracting from the actual tumor weight at the time of evaluation the initial estimated tumor weight at the time treatment was started (day 7). Drug effectiveness was assessed on the basis of inhibition of the gain in net tumor weight in the treated (T) compared to that of the control (C) mice. Percent tumor growth inhibition was calculated by the formula:

Results of a test are shown in Table 8. The data indicate that the compounds of this invention inhibited the growth of the HCT—15 human colon tumor in mice. 5-Fluorouracil used as a reference drug was toxic at the 40 mg/kg dose and ineffective at the 20 mg/kg dose. 5-Fluorouracil is sometimes used in the treatment of colon tumors in man but is not consistently effective.

Table 8

Human Colon Tumor HCT-15 In Mice

		Day 7*		Day 21		
10	<u>Compound</u>	Dose mg/kg	Average Tumor Weight (mg)	Average Tumor Weight (mg)	Net Tumor Weight gain (mg)	Tumor Growth Inhibition (Percent)
	Methocel Control	0	56.2	349.9	293.7	0
20	Example 1	200	56.8	156.3	99.4	66.2
		100 50	56.6 56.3	212.9 252.9	156.3 196.6	46.8 33.1
25	Example 91	40	56.B	256.9	200.1	32.0
٠.		20 10	56.2 56.8	245.1 322.8	188.9 266.0	35.7 10.0
0	5-Pluorouracil	40 2,0	56.7	Toxic	365	0

*Day treatment was started.

In summary, tests have shown that the compounds of this invention have antitumor activity against transplanted mouse tumors including the L1210 lymphoid leukemia and the B16 melanotic melanoma, in mice. The compounds are also active against the human colon tumor HCT—15 in tissue culture or xenografted in athymic mice.

Dosage Forms

The antitumor compounds (active ingredients) of this invention can be administered to inhibit tumors by any means that produces contact of the active ingredient with the agent's site of action in the body of a mammal. They can be administered by any conventional means available for use in conjunction with phermaceuticals; either as individual therapeutic active ingredients or in a combination of therapeutic active ingredients. They can be administered alone, but are generally administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.

The dosage administered will be a tumor-inhibiting amount of active ingredient and will, of course, vary depending upon known factors such as the pharmacodynamic characteristics of the particular active ingredient, and its mode and route of administration; age, health, and weight of the recipient; nature and extent of symptoms, kind of concurrent treatment, frequency of treatment, and the effect desired. Usually a daily dosage of active ingredient can be about 5 to 400 milligrams per kilogram of body weight. Ordinarily 10 to 200, and preferably 10 to 50 milligrams per kilogram per day given in divided doses 2 to 4 times a day or in sustained release form is effective to obtain desired results.

Dosage forms (compositions) suitable for internal administration contain from about 1.0 milligram to about 500 milligrams of active ingredient per unit. In these pharmaceutical compositions the active ingredient will ordinarily be present in an amount of about 0.5—95% by weight based on the total weight of the composition.

The active ingredient can be administered orally in solid dosage forms, such as capsules, tablets, and powders, or in liquid dosage forms, such as elixirs, syrups, and suspensions, it can also be administered parenterally, in sterile liquid dosage forms.

Gelatin capsules contain the active ingredient and powdered carriers, such as lactose, sucrose, mannitol, starch, cellulose derivatives, magnesium stearate and stearic acid. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar

coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.

Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient ceptance.

In general, water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol of polyethylene glycols are suitable carriers for parenteral solutions. Solutions for parenteral administration contain preferably a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffers substances. Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid either alone or combined are suitable stabilizing agents. Also used are citric acid and its salts and sodium EDTA. In addition parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol.

Suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences, A. Osol, a standard reference text in this field.

Useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows:

Capsules

A large number of unit capsules are prepared by filling standard two-piece hard gelatin capsules each with 100 milligrams of powdered active ingredient, 175 milligrams of lactose, 24 milligrams of talc, and 6 milligrams magnesium stearate.

A mixture of active ingredient in soybean oil is prepared and injected by means of a positive displacement pump into gelatin to form soft gelatin capsules containing 100 milligrams of the active ingredient. The capsules are washed and dried.

Tablete

A large number of tablets are prepared by conventional procedures so that the dosage unit is 100 milligrams of active ingredient, 0.2 milligrams of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 275 milligrams of microcrystalline cellulose, 11 milligrams of cornstarch and 98.8 milligrams of lactose. Appropriate coatings may be applied to increase palatability or delay absorption.

Injectable

A parenteral composition suitable for administration by injection is prepared by stirring 1.5% by weight of active ingredient in 10% by volume propylene glycol and water. The solution is made isotonic with sodium chloride and sterilized.

Suspension

An aqueous suspension is prepared for oral administration so that each 5 milliliters contain 100 milligrams of finely divided active ingredient, 200 milligrams of sodium carboxymethyl cellulose, 5 milligrams of sodium benzoate, 1.0 grams of sorbitol solution, U.S.P, and 0.025 milliliters of vanillin.

Claims for the Contracting States: BE CH DE FR GB IT LI LU NL SE

1. An antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound having the formula:

(I)

wherein

15

30

35

45

50

55

60

X is O, S(O)_q, NH or CH=N; R^1 is CH₂(CH₃)CH, alkyl of 5—12 carbon atoms, alkenyl of 5—12 carbon atoms, cycloalkyl of 5—12 carbon atoms, cycloalkylalkyl of 5—12 carbon atoms, cycloalkylalkyl of 5—12 carbon atoms, cycloalkenyl of 5—7 carbon atoms.

when R is

R1 can be in addition alkyl of 3-4 carbon atoms;

is

 R^3 is H, alkoxy of 1—3 carbon atoms, alkylthio of 1—3 carbon atoms or alkyl of 1—3 carbon atoms optionally substituted with one or more of F, Cl, Br or $(CH_2)_pCOR^{10}$ where p is 1, 2, 3 or 4;

R⁴ is CO₂H or CO₂R¹¹;
R⁵, R⁶, R⁷ and R⁸ are independently H, F, CI, Br, I, CH₃, CF₃, S(O)_nR¹² or CH₂CH₃, at least two of R⁵, R⁶, R⁷ and R⁸ being H;
R⁹ and R^{9A} are independently H or alkyl of 1 to 3 carbon atoms;
R¹⁰ is OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ or N(CH₃)₂;
R¹¹ is (CH₂)₂₋₄NR⁹R^{9A};
R¹² is alkyl or 1. Feetbranes at the second of R¹, CH₃, COCH₃ or N(CH₃)₂;
R¹² is alkyl or 1. Feetbranes at the second of R¹, CH₃, COCH₃ or N(CH₃)₂;
R¹² is alkyl or 1. Feetbranes at the second of R¹, CH₃ or N(CH₃)₂;
R¹³ is alkyl or 1. Feetbranes at the second of R¹, CH₃ or N(CH₃)₂;

R12 is alkyl or 1—5 carbon atoms optionally substituted with one or more of F, Cl and Br; 65

W, Y and Z are independently H, F, Cl, Br, alkyl of 1—5 carbon atoms, NO2, alkoxy of 1—5 carbon atoms, alkylthio of 1-5 carbon atoms, OH, CF₃ or NH₂;

m is 0 or 1;

n is 0 or 1; and

q is 0, 1 or 2;

or a pharmaceutically suitable salt thereof; with the following provisos:

1) R5, R6 and R7 cannot all be H;

2) when R4 is CO2CH2CH2N(CH3)2, R8 is CH2CH3, or R7 is CI, R1 cannot be cyclohexyl; and

3) when R1 is cyclohexyl and R3 is H, R6 must be Cl or F, but R6 and R8 cannot both be Cl.

2. An antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound having the formula:

$$\begin{array}{c|c}
R^{6} & R^{4} \\
R^{7} & R^{8}
\end{array}$$

$$\begin{array}{c}
R^{8} & R^{3} \\
R^{1}
\end{array}$$

wherein

. 20

R1 is cycloalkyl of 3-7 carbon atoms; phenyl; phenyl substituted with one halogen, alkyl of 1carbon atoms or CF₃; phenoxy; or phenoxy substituted with one halogen or alkyl of 1—5 carbon atoms;

R3 is H or alkyl of 1-3 carbon atoms;

 R^4 is CO_2H or a sodium or potassium salt thereof; R^5 and R^8 are independently H, halogen, CH_3 or CF_3 ; and

R7 and R8 are independently H or halogen;

or a pharmaceutically suitable salt thereof; provided that R5, R6 and R7 cannot all be H and that when R1 is cyclohexyl and R3 is H, R6 must all be Cl or F, but R6 and R8 cannot both be Cl.

3. An antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound of Claim 21.

4. An antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at 35 least one compound of Claim 22.

5. An antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound of Claim 23.

6. An antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at

least one compound of Claim 24. 7. An antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at

least one compound of Claim 25. 8. An antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at

least one compound of Claim 26. 9. An antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at

least one compound of Claim 27.

10. An antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound of Claim 28.

11. Use of at least one compound having the formula:

wherein

10

15

20

25

30

35

65

X is O, S(O)_q, NH or CH=N; R¹ is CH₂CH₂(CH₃)CH, alkyl of 5—12 carbon atoms, alkenyl of 5—12 carbon atoms, cycloalkyl of 3—7 carbon atoms, cycloalkylalkyl of 5—12 carbon atoms, cycloalkenyl of 5—7 carbon atoms.

40 When R is

R1 can be in addition alkyl of 3-4 carbon atoms;

R³ is H, alkoxy of 1—3 carbon atoms, alkylthio of 1—3 carbon atoms or alkyl of 1—3 carbon atoms optionally substituted with one or more of F, Cl, Br or (CH₂), COR¹0 where p is 1, 2, 3 or 4;
R⁴ is CO₂H or CO₂R¹¹;
R⁵, R⁶, Rኞ and R⁶ are independently H, F, Cl, Br, I, CH₂, CF₂, S(O), R¹² or CH₂CH₂, at least two of R⁵, R⁶, Rኞ

60 R⁹ and R^{9A} are independently H, F, CI, Br, I, CH₃, CF₃, S(O)_nR¹ and R^{9A} are independently H or alkyl of 1 to 3 carbon atoms; R¹⁰ is OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ or N(CH₃)₂; R¹¹ is (CH₂)₂₋₄NR⁹R^{9A};

R12 is alkyl or 1—5 carbon atoms optionally substituted with one or more of F, Cl and Br;

W, Y and Z are independently H, F, Cl, Br, alkyl of 1—5 carbon atoms, NO_2 , alkoxy of 1—5 carbon atoms, alkylthio of 1—5 carbon atoms, OH, CF_3 or NH_2 ;

m is 0 or 1;

n is 0 or 1; and

q is 0, 1 or 2;

or a pharmaceutically suitable salt thereof; with the following provisos:

1) R5, R6 and R7 cannot all be H;

2) when R4 is CO2CH2CH2N(CH3)2, R6 is CH2CH3, or R7 is CI, R1 cannot be cyclohexyl; and

3) when R¹ is cyclohexyl and R² is H, R⁶ must be Cl or F, but R⁶ and R⁸ cannot both be Cl in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.

12. Use of at least one compound having the formula:

$$\begin{array}{c|c}
R^{6} & R^{5} & R^{4} \\
R^{7} & R^{8} & R^{3}
\end{array}$$
(11)

wherein

25

R¹ is cycloalkyl or 3—7 carbon atoms; phenyl; phenyl substituted with one halogen, alkyl of 1—5 carbon atoms or CF₃; phenoxy; or phenoxy substituted with one halogen or alkyl of 1—5 carbon atoms;

R3 is H or alkyl of 1-3 carbon atoms;

R4 is CO₂H or a sodium or potassium salt thereof:

R⁵ and R⁶ are independently H, halogen, CH₃ or CF₃; and

R7 and R8 are independently H or halogen;

or a pharmaceutically suitable salt thereof; provided that R⁵, R⁶ and R⁷ cannot all be H and that when R¹ is cyclohexyl and R³ is H, R⁶ must be Cl or F, but R⁶ and R⁶ cannot both be Cl, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.

13. Use of at least one compound of Claim 21, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.

14. Use of at least one compound of Claim 22, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.

15. Use of at least one compound of Claim 23, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.

16. Use of at least one compound of Claim 24, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.

17. Use of at least one compound of Claim 25, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.

18. Use of at least one compound of Claim 26, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.

 Use of at least one compound of Claim 27, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.

20. Use of at least one compound of Claim 28, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.

21. A compound having the formula:

$$\begin{array}{c|c}
R^5 & R^4 \\
\hline
O O & R^3
\end{array}$$
(1)

60

5

wherein

10

20

R1 is cycloalkyl of 3-7 carbon atoms,

R3 is H or alkyl of 1-3 carbon atoms;

R⁴ is CO₂H or a sodium or potassium salt thereof;

R⁵ and R⁶ are independently H, halogen or CF₃ provided that both R⁵ and R⁶ are not hydrogen; and W and Z are independently H, halogen, alkyl of 1—5 carbon atoms or CF₃; provided that when R¹ is phenyl or phenoxy, and R⁵ is H, then R⁶ cannot be Br; and that when R¹ is cyclohexyl and R³ is H, R⁶ must be Cl or F.

22. A compound of Claim 21 wherein:

R¹ is phenyl, phenyl substituted with at least one halogen, phenoxy, or phenoxy substituted with at least one halogen;

R³ is methyl; R⁵ is H or Cl; and

R⁶ is F or Cl.

23. The compound of Claim 21 which is 2-(1,1'-biphenyl-4-yl)-6-fluoro-3-methyl-4-quinolinecarboxylic acid, sodium or potassium salt.

24. The compound of Claim 21 which is 6-fluoro-3-methyl-2-(4-phenoxyphenyl)-4-quinolinecarboxylic acid, sodium or potassium salt.

25. The compound of Claim 21 which is 2-(4'-bromo-1,1'-biphenyl-4-yl)-6-fluoro-3-methyl-4-quinolinecarboxylic acid, sodium or potassium salt.

26. The compound of Claim 21 which is 2-(2'-fluoro-1,1'-biphenyl-4-yl)-6-fluoro-3-methyl-4-quinolinecarboxylic acid, sodium or potassium salt.

27. The compound of Claim 21 which is 2-(1,1'-biphenyl-4-yl)-5-chloro-6-fluoro-3-methyl-4-quinolinecarboxylic acid, sodium or potassium salt.

28. A compound having the formula:

wherein

65

$$R ext{ is } \sqrt{\sum_{R}^{Y}} ext{ } \cdot$$

$$\bigoplus_{0}^{\text{oc-R}^1} \quad \text{or} \quad \bigwedge_{X} \bigwedge_{R^1} \quad :$$

X is O, S(O), NH or CH=N;

R¹ is CH₂(CH₃)CH, alkyl of 5—12 carbon atoms, alkenyl of 5—12 carbon atoms, cycloalkyl of 3—7 carbon atoms, cycloalkylalkyl of 5—12 carbon atoms, cycloalkenyl of 5—7 carbon atoms.

when R is

10

R1 can be in addition alkyl of 3-4 carbon atoms;

$$\mathbb{R}^2$$
 is or $-CH_2$ - \mathbb{C}^W

R3 is H, alkoxy of 1-3 carbon atoms, alkylthio of 1-3 carbon atoms or alkyl of 1-3 carbon atoms optionally substituted with one or more of F, Cl, Br or (CH₂)_pCOR¹⁰ where p is 1, 2, 3 or 4;

 R^4 is CO₂H or CO₂R¹¹; R^5 , R^5 , R^6 , R^7 and R^8 are independently H, F, CI, Br, I, CH_3 , CF_3 , $S(O)_n R^{12}$ or $CH_2 CH_3$, at least two of R^5 , R^6 , R^7 and R⁹ being H; R⁹ and R^{9A} are independently H or alkyl of 1 to 3 carbon atoms;

R¹⁰ is OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ or N(CH₃)₂;

R11 is (CH2)2-4NR9R9A;

R12 is alkyl or 1-5 carbon atoms optionally substituted with one or more of F, Cl and Br;

W, Y and Z are independently H, F, Cl, Br, alkyl of 1—5 carbon atoms, NO2, alkoxy of 1—5 carbon atoms, alkylthio of 1-5 carbon atoms, OH, CF3 or NH2;

m is 0 or 1;

n is 0 or 1; and

q is 0, 1 or 2;

or a pharmaceutically suitable salt thereof; with the following provisos:

1) when R4 is CO2H, R1 is phenyl or phenoxy, and R5, R7 and R8 are H, R6 cannot be Br;

2) Rs, Rs and R7 cannot all be H;

3) when R^4 is $CO_2CH_2CH_2N(CH_3)_2$, R^6 is CH_2CH_3 , or R^7 is Cl, R^1 cannot be cyclohexyl;

4) when R1 is cyclohexyl and R3 is H, R6 must be Cl or F, but R6 and R8 cannot both be Cl;

5) when R¹ is 4—H₂NC₆H₄ and R³ is H, R⁶ cannot be Cl and R⁸ cannot be Br; 6) when R¹ is alkyl of 6 carbons and Y is H, then R⁴ cannot be CO₂H, R⁵, R⁷ and R⁸ cannot be H, and R⁶ cannot be H. Cl. Br. I or CHs.

29. A process for preparing compounds of Claim 28 characterized by reacting a quinoline carboxylic acid of the formula:

by (a) when R is OH; acylating the hydroxy with a carboxylic halide such as benzoyl chloride in an inert solvent such as chloroform or a hydrocarbon solvent such as benzene at a temperature from 0°C to the boiling point of the solvent, optionally in the presence of a base such as pyridine, or (b) reacting the appropriately substituted quinoline carboxylic acid with an appropriate thiolate R12S such as MeSK in a solvent such as dimethylformamide at a temperature of 50°C to reflux of this solvent, or (c) dissolving the

quinoline carboxylic acid in a protic solvent such as ethanol, and then treating with a metal oxide or hydroxide such as sodium or potassium oxide or hydroxide or an amine such as 1-amino-butanol or lysine at a temperature of 0°C to the boiling point of the solvent used and optionally preparing a salt of an amine group by dissolving the amine in a solvent such as ethyl ether and adding a mineral acid such as HCl; or (d) treatment with a reagent such as SOCl₂ or oxalyl chloride in an inert solvent such as benzene at a temperature of 25°C to the boiling point of the solvent used to form an acid halide and then adding an alcohol, R¹¹OH, in a solvent such as tetrahydrofuran at a temperature of 10°C to the boiling point of the solvent used, optionally in the presence of a base such as pyridine, triethylamine, or 4-dimethylamine pyridine.

30. A process for preparing the compounds of Claim 28 consisting essentially of (1) reacting an appropriately substituted isatin (IV) with a substituted ketone (V) in a solvent such as ethanol with a base such as dimethylamine or triethylamine at a temperature of 25°C to 50°C for 2 to 48 hours, (2) dissolving the resulting intermediate (VI) in an appropriate solvent such as tetrahydrofuran containing 25-50% by volume of a mineral acid such as HCl and heating from 50°C to reflux temperature of the solvent mixture for 2 to 48 hours, and optionally the above quinoline carboxylic acid from (2) is further reacted by (a) acylating the corresponding hydroxy, where R is OH, with a carboxylic halide such as benzoyl chloride in an inert solvent such as chloroform or a hydrocarbon solvent such as benzene at a temperature from 0°C to the boiling point of the solvent, optionally in the presence of a base such as pyridine, or (b) reacting the appropriately substituted quinoline carboxylic acid with an appropriate thiolate R12S such as MeSK in a solvent such as dimethylformamide at a temperature of 50°C to reflux of the solvent, or (c) dissolving the quinoline carboxylic acid in a protic solvent such as ethanol, and then treating with a metal oxide or hydroxide such as sodium or potassium oxide or hydroxide or an amine such as 1-amino-butanol or lysine at a temperature of 0°C to the boiling point of the solvent used and optionally preparing a salt of an amine group by dissolving the amine in a solvent such as ethyl ether and adding a mineral acid such as HCl; or (d) treating the salt, (c), by treatment with a reagent such as SOCI₂ or oxalyl chloride in an inert solvent such as benzene at a temperature of 25°C to the boiling point of the solvent used to form an acid halide and then adding an alcohol, R¹¹OH, in a solvent such as tetrahydrofuran at a temperature of 10°C to the boiling point of the solvent used, optionally in the presence of a base such as pyridine, triethylamine, or 4-dimethyl-

Claims for the Contracting State: AT

1. Process for preparing an antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound having the formula:

(I)

wherein

is
$$\bigcap_{R^1}^{Y} \bigcap_{OR^2}^{R^1}$$
.

 $\bigcap_{NR^9-c-R^1}^{C-R^9} \bigcap_{O}^{NR^1-c-R^9}$
 $\bigcap_{O}^{OC-R^1} \bigcap_{O}^{C-R^1} \bigcap_{O}^{R^1} \bigcap_{O}^{C-R^1}$

X is O, S(O), NH or CH=N;

R¹ is CH₃CH₃(CH₃)CH, alkyl of 5—12 carbon atoms, alkenyl of 5—12 carbon atoms, cycloalkyl of 3—7 carbon atoms, cycloalkylalkyl of 5-12 carbon atoms, cycloalkenyl of 5-7 carbon atoms.

when R is.

15

R1 can be in addition alkyl of 3-4 carbon atoms;

$$\mathbb{R}^2$$
 is or $-CH_2 \longrightarrow \mathbb{R}^W$

R3 is H, alkoxy of 1-3 carbon atoms, alkylthio of 1-3 carbon atoms or alkyl of 1-3 carbon atoms optionally substituted with one or more of F, Cl, Br or (CH₂)_pCOR¹⁰ where p is 1, 2, 3 or 4;

R4 is CO2H or CO2R11;

R⁵, R⁶, R⁷ and R⁸ are independently H, F, Cl, Br, I, CH₃, CF₃, S(O)_nR¹² or CH₂CH₃, at least two of R⁵, R⁶, R⁷ and R⁹ being H;
R⁹ and R^{9A} are independently H or alkyl of 1 to 3 carbon atoms;
R¹⁰ is OH, OCH₃, OCH₂CH₂, NH₂, NHCH₃ or N(CH₃)₂;

R12 is alkyl or 1—5 carbon atoms optionally substituted with one or more of F, Cl and Br;

W, Y and Z are independently H, F, Cl, Br, alkyl of 1—5 carbon atoms, NO₂, alkoxy of 1—5 carbon atoms, alkylthio of 1-5 carbon atoms, OH, CF₃ or NH₂;

m is 0 or 1;

n is 0 or 1; and

q is 0, 1 or 2;

or a pharmaceutically suitable salt thereof; with the following provisos:

1) R5, R6 and R7 cannot all be H;

2) when R⁴ is CO₂CH₂CH₂N(CH₃)₂, R⁶ is CH₂CH₃, or R⁷ is CI, R¹ cannot be cyclohexyl; and 3) when R¹ is cyclohexyl and R³ is H, R⁶ must be CI or F, but R⁶ and R⁸ cannot both be CI, which comprises mixing at least one compound with a suitable pharmaceutical carrier.

2. Process for preparing an antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound having the formula:

$$\begin{array}{c|c}
R^5 & R^4 \\
R^7 & & \\
R^8 & & \\
\end{array}$$
(11)

50

55

R1 is cycloalkyl of 3-7 carbon atoms; phenyl; phenyl substituted with one halogen, alkyl of 1-5 carbon atoms or CF₃; phenoxy; or phenoxy substituted with one halogen or alkyl of 1—5 carbon atoms;

R3 is H or alkyl of 1-3 carbon atoms;

R4 is CO₂H or a sodium or potassium salt thereof;

Rs and Rs are independently H, halogen, CH3 or CF3; and

R7 and R8 are independently H or halogen;

or a pharmaceutically suitable salt thereof; provided that R⁵, R⁶ and R⁷ cannot all be H and that when R¹ is cyclohexyl and R³ is H, R⁶ must all be Cl or F, but R⁶ and R⁸ cannot both be Cl, which comprises mixing at least one compound and a suitable pharmaceutical carrier.

3. Process for preparing an antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound of Claim 21, which comprises mixing at least one compound and a suitable pharmaceutical carrier.

4. Process for preparing an antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound of Claim 22, which comprises mixing at least one compound and a suitable pharmaceutical carrier.

5. Process for preparing an antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound of Claim 23, which comprises mixing at least one compound and a suitable pharmaceutical carrier.

6. Process for preparing an antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound of Claim 24, which comprises mixing at least one compound and a suitable pharmaceutical carrier.

7. Process for preparing an antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound of Claim 25, which comprises mixing at least one compound and a suitable pharmaceutical carrier.

8. Process for preparing an antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound of Claim 26, which comprises mixing at least one compound and a suitable pharmaceutical carrier.

 Process for preparing an antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound of Claim 27, which comprises mixing at least one compound and a suitable pharmaceutical carrier.

10. Process for preparing an antitumor pharmaceutical composition consisting of a suitable pharmaceutical carrier and at least one compound of Claim 28, which comprises mixing at least one compound and a suitable pharmaceutical carrier.

11. Use of at least one compound having the formula:

30

$$\begin{array}{c|c}
R^5 & R^4 \\
R^7 & R^8 & R^4
\end{array}$$

40 wherein

R is
$$\bigcirc^{\mathbf{R}_1}$$
 $\bigcirc^{\mathbf{R}_2}$ $\bigcirc^{\mathbf{R}_2}$ $\bigcirc^{\mathbf{R}_1}$ $\bigcirc^{\mathbf{R}_2}$ $\bigcirc^{\mathbf{R}_1}$ $\bigcirc^{\mathbf{R}_2}$ $\bigcirc^{\mathbf{R}_1}$ $\bigcirc^{\mathbf{R}_2}$ $\bigcirc^{\mathbf{R}_2}$

X is O, S(O)q, NH or CH=N;

R1 is CH₃CH₂(CH₃)CH, alkyl of 5—12 carbon atoms, alkenyl of 5—12 carbon atoms, cycloalkyl of 3carbon atoms, cycloalkylalkyl of 5-12 carbon atoms, cycloalkenyl of 5-7 carbon atoms.

when R is

$$- \left(\right) s(0)_{m} R^{1}.$$

R1 can be in addition alkyl of 3-4 carbon atoms;

$$R^2$$
 is W or $-CH_2 - CH_2 - CH_2$

R3 is H, alkoxy of 1-3 carbon atoms, alkylthio of 1-3 carbon atoms or alkyl of 1-3 carbon atoms optionally substituted with one or more of F, Cl, Br or (CH₂)_pCOR¹⁰ where p is 1, 2, 3 or 4;

R4 is CO2H or CO2R11;

R⁵, R⁶, R⁷ and R⁸ are independently H, F, Cl, Br, I, CH₃, CF₃, S(O)_nR¹² or CH₂CH₃, at least two of R⁵, R⁶, R⁷ and R⁵ being H;
R⁵ and R^{5A} are independently H or alkyl of 1 to 3 carbon atoms;

R11 is (CH2)2-4NR9R9A;

R12 is alkyl or 1-5 carbon atoms optionally substituted with one or more of F, Cl and Br;

W, Y and Z are independently H, F, Cl, Br, alkyl of 1-5 carbon atoms, NO2, alkoxy of 1-5 carbon atoms, alkylthio of 1-5 carbon atoms, OH, CF₂ or NH₂;

m is 0 or 1;

n is 0 or 1; and

q is 0, 1 or 2;

or a pharmaceutically suitable salt thereof; with the following provisos:

1) R5, R6 and R7 cannot all be H;

2) when R^4 is $CO_2CH_2CH_2N(CH_3)_2$, R^6 is CH_2CH_3 , or R^7 is CI, R^1 cannot be cyclohexyl; and 3) when R^1 is cyclohexyl and R^3 is H, R^6 must be CI or F, but R^6 and R^6 cannot both be CI in a tumorinhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.

12. Use of at least one compound having the formula:

$$\begin{array}{c|c}
R^5 & R^4 \\
R^7 & R^8 & R^3
\end{array}$$
(11)

R1 is cycloalkyl or 3-7 carbon atoms; phenyl; phenyl substituted with one halogen, alkyl or 1-5 carbon atoms or CF₃; phenoxy; or phenoxy substituted with one halogen or alkyl of 1-5 carbon atoms;

R3 is H or alkyl of 1-3 carbon atoms; R4 is CO2H or a sodium or potassium salt thereof;

R5 and R6 are independently H, halogen, CH3 or CF3; and

R7 and R6 are independently H or halogen;

or a pharmaceutically suitable salt thereof; provided that R5, R6 and R7 cannot all be H and that when R1 is cyclohexyl and R3 is H, R6 must be Cl or F, but R6 and R8 cannot both be Cl, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.

- 13. Use of at least one compound of Claim 21, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.
- 14. Use of at least one compound of Claim 22, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.
- 15. Use of at least one compound of Claim 23, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.
- 16. Use of at least one compound of Claim 24, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.
- 17. Use of at least one compound of Claim 25, in a tumor-inhibiting amount for the manufacture of a 10 medicament for inhibiting the growth of mammalian tumors.
 - 18. Use of at least one compound of Claim 26, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.
 - 19. Use of at least one compound of Claim 27, in a tumor-inhibiting amount for the manufacture of a medicament for inhibiting the growth of mammalian tumors.
- 20. Use of at least one compound of Claim 28, in a tumor-inhibiting amount for the manufacture of a 15 medicament for inhibiting the growth of mammalian tumors.
 - 21. A process for preparing a compound having the formula:

$$\begin{array}{c|c}
R^5 & R^4 \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein

20

35

R1 is cycloalkyl of 3-7 carbon atoms.

$$varphi$$
 or $-0.$

R3 is H or alkyl of 1-3 carbon atoms;

R4 is CO₂H or a sodium or potassium salt thereof;

R⁵ and R⁶ are independently H, halogen or CF₃ provided that both R⁵ and R⁶ are not hydrogen; and

W and Z are independently H, halogen, alkyl of 1—5 carbon atoms or CF₃; provided that when R¹ is phenyl or phenoxy, and R⁵ is H, then R⁶ cannot be Br; and that when R¹ is cyclohexyl and R³ is H, R⁶ must be Cl or F, which comprises (1) reacting an appropriately substituted isatin (IV) with a substituted ketone (V) in a solvent such as ethanol with a base such as diethylamine or triethylamine at a temperature of 25°C to 50°C for 2 to 48 hours, (2) dissolving the resulting intermediate (VI) in an appropriate solvent such as tetrahydrofuran containing 25-50% by volume of a mineral acid such as HCl and heating from 50°C to reflux temperature of the solvent mixture for 2 to 48 hours, and optionally the above quinoline carboxylic acid from (2) is further reacted by (a) acylating the corresponding hydroxy, where R is OH, with a carboxylic halide such as benzoyl chloride in an inert solvent such as chloroform or a hydrocarbon solvent such as benzene at a temperature from 0°C to the boiling point of the solvent, optionally in the presence of a base such as pyridine, or (b) reacting the appropriately substituted quinoline carboxylic acid with an appropriate thiolate R12S such as MeSK in a solvent such as dimethylformamide at a temperature of 50°C to reflux of the solvent, or (c) dissolving the quinoline carboxylic acid in a protic solvent such as ethanol, and then treating with a metal oxide or hydroxide such as sodium or potassium oxide or hydroxide or an amine such as 1-amino-butanol or lysine at a temperature of 0°C to the boiling point of the solvent used and optionally preparing a salt of an amine group by dissolving the amine in a solvent such as ethyl ether and adding a mineral acid such as HCl; or (d) treating the salt, (c), by treatment with a reagent such as SOCl₂ or oxalyl chloride in an inert solvent such as benzene at a temperature of 25°C to the boiling point of the solvent used to form an acid halide and then adding an alcohol, R11OH, in a solvent such as tetrahydrofuran at a temperature of 10°C to the boiling point of the solvent used, optionally in the presence of a base such as pyridine, triethylamine, or 4-dimethylamine pyridine.

22. A process of Claim 21 wherein:

R1 is phenyl, phenyl substituted with at least one halogen, phenoxy, or phenoxy substituted with at least one halogen;

R³ is methyl;

R⁵ is H or Cl; and

R⁶ is F or Cl.

23. The process of Claim 21 wherein the compound prepared is 2-(1,1'-biphenyl-4-yl)-6-fluoro-3methyl-4-quinolinecarboxylic acid, sodium or potassium salt.

24. The process of Claim 21 wherein the compound prepared is 6-fluoro-3-methyl-2-(4-phenoxyphenyl)-4-quinolinecarboxylic acid, sodium or potassium salt.

25. The process of Claim 21 wherein the compound prepared is 2-(4'-bromo-1,1'-biphenyl-4-yl)-6fluoro-3-methyl-4-quinolinecarboxylic acid, sodium or potassium salt.

26. The process of Claim 21 wherein the compound prepared is 2-(2'-fluoro-1,1'-biphenyl-4-yl)-6fluoro-3-methyl-4-quinolinecarboxylic acid, sodium or potassium salt.

27. The process of Claim 21 wherein the compound prepared is 2-(1,1'-biphenyl-4-yl)-5-chloro-6-fluoro-3-methyl-4-quinolinecarboxylic acid, sodium or potassium salt.

28. Process for preparing a compound having the formula:

$$\begin{array}{c|c}
R^5 & R^4 \\
R^7 & R^8
\end{array}$$

wherein

25

R is
$$\left\langle \begin{array}{c} Y \\ R^1 \end{array} \right\rangle_{OR}^2$$

$$\bigcirc^{\operatorname{oc}_{\mathbb{R}^{1}}}_{0} \quad \text{or} \quad \bigwedge_{\mathbb{R}^{1}}_{\mathbb{R}^{1}}$$

X is O, S(0)_a, NH or CH=N; R^1 is CH₃CH₂(CH₃)CH, alkyl of 5—12 carbon atoms, alkenyl of 5—12 carbon atoms, cycloalkyl of 3 carbon atoms, cycloalkylalkyl of 5-12 carbon atoms, cycloalkenyl of 5-7 carbon atoms.

when R is

R1 can be in addition alkyl of 3-4 carbon atoms;

$$R^2$$
 is CH_2 or CH_2

R³ is H, alkoxy of 1—3 carbon atoms, alkylthio of 1—3 carbon atoms or alkyl of 1—3 carbon atoms optionally substituted with one or more of F, Cl, Br or (CH₂)₀COR¹⁰ where p is 1, 2, 3 or 4;

R4 is CO₂H or CO₃R¹¹:

 R^5 , R^5 , R^7 and R^8 are independently H, F, Cl, Br, I, CH_3 , CF_3 , $S(O)_nR^{12}$ or CH_2CH_3 , at least two of R^5 , R^6 , R^7 and R^8 being H;

R⁹ and R^{9A} are independently H or alkyl of 1 to 3 carbon atoms;

R¹⁰ is OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ or N(CH₃)₂;

R11 is (CH2)2-4NR8R9A;

R12 is alkyl or 1-5 carbon atoms optionally substituted with one or more of F, Cl and Br;

W, Y and Z are independently H, F, Cl, Br, alkyl of 1—5 carbon atoms, NO₂, alkoxy of 1—5 carbon atoms, alkylthio of 1—5 carbon atoms. OH. CF, or NH₂:

m is 0 or 1;

n is 0 or 1; and

q is 0, 1 or 2;

or a pharmaceutically suitable salt thereof; with the following provisos:

1) when R4 is CO2H, R1 is phenyl or phenoxy, and R5, R7 and R8 are H, R5 cannot be Br;

2) R5, R6 and R7 cannot all be H:

3) when R4 is CO2CH2CH2N(CH3)2, R6 is CH2CH3, or R7 is CI, R1 cannot be cyclohexyl:

4) when R1 is cyclohexyl and R3 is H, R6 must be Cl or F, but R6 and R8 cannot both be Cl;

5) when R1 is 4—H2NC6H4 and R3 is H, R5 cannot be CI and R8 cannot be Br;

6) when R¹ is alkyl of 6 carbons and Y is H, then R⁴ cannot be CO₂H, R⁵, R⁷ and R⁸ cannot be H, and R⁸ cannot be H, Cl, Br, I or CH₃, characterized by reacting a quinoline carboxylic acid of the formula:

by (a) when R is OH; acylating the hydroxy with a carboxylic halide such as benzoyl chloride in an inert solvent such as chloroform or a hydrocarbon solvent such as benzene at a temperature from 0°C to the boiling point of the solvent, optionally in the presence of a base such as pyridine, or (b) reacting the appropriately substituted quinoline carboxylic acid with an appropriate thiolate R¹2S such as MeSK in a solvent such as dimethylformamide at a temperature of 50°C to reflux of this solvent, or (c) dissolving the quinoline carboxylic acid in a protic solvent such as ethanol, and then treating with a metal oxide or hydroxide such as sodium or potassium oxide or hydroxide or an amine such as 1-amino-butanol or lysine at a temperature of 0°C to the boiling point of the solvent used and optionally preparing a salt of an amine group by dissolving the amine in a solvent such as ethyl ether and adding a mineral acid such as HCl; or (d) treating the salt, (c), by treatment with a reagent such as SOCl₂ or oxalyl chloride in an inert solvent such as benzene at a temperature of 25°C to the boiling point of the solvent used to form an acid halide and then adding an alcohol, R¹¹OH, in a solvent such as tetrahydrofuran at a temperature of 10°C to the boiling point of the solvent used, optionally in the presence of a base such as pyridine, triethylamine, or 4-dimethylamine pyridine.

29. A process for preparing the compounds of Claim 28 consisting essentially of (1) reacting an appropriately substituted isatin (IV) with a substituted ketone (V) in a solvent such as ethanol with a base such as dimethylamine or triethylamine at a temperature of 25°C to 50°C for 2 to 48 hours, (2) dissolving the resulting intermediate (VI) in an appropriate solvent such as tetrahydrofuran containing 25—50% by volume of a mineral acid such as HCl and heating from 50°C to reflux temperature of the solvent mixture for 2 to 48 hours, and optionally the above quinoline carboxylic acid from (2) is further reacted by (a) acylating the corresponding hydroxy, where R is OH, with a carboxylic halide such as benzoyl chloride in an inert solvent such as chloroform or a hydrocarbon solvent such as benzene at a temperature from 0°C to the

boiling point of the solvent, optionally in the presence of a base such as pyridine, or (b) reacting the appropriately substituted quinoline carboxylic acid with an appropriate thiolate R¹²S such as MeSK in a solvent such as dimethylformamide at a temperature of 50°C to reflux of the solvent, or (c) dissolving the quinoline carboxylic acid in a protic solvent such as ethanol, and then treating with a metal oxide or hydroxide such as sodium or potassium oxide or hydroxide or an amine such as 1-amino-butanol or lysine at a temperature of 0°C to the boiling point of the solvent used and optionally preparing a salt of an amine group by dissolving the amine in a solvent such as ethyl ether and adding a mineral acid such as HCI; or (d) treating the salt, (c), by treatment with a reagent such as SOCl₂ or oxalyl chloride in an inert solvent such as benzene at a temperature of 25°C to the boiling point of the solvent used to form an acid halide and then adding an alcohol, R¹¹OH, in a solvent such as tetrahydrofuran at a temperature of 10°C to the boiling point of the solvent used, optionally in the presence of a base such as pyridine, triethylamine, or 4-dimethylamine pyridine.

Patentansprüche für die Vertragsstaaten: BE CH DE FR GB IT LI LU NL SE

 Pharmazeutische Anti-Tumor-Zusammensetzung bestehend aus einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung der Forme!

$$\begin{array}{c|c}
R^{6} & R^{5} & R^{4} \\
R^{7} & R^{8} & R^{3}
\end{array}$$
(1)

worin

15

$$R \qquad \bigvee_{R^{1}} \qquad \bigvee_{R^{2} \text{-}OR^{2}} \qquad \bigvee_{R^{9}} \qquad \bigvee_{R^{9}} \qquad \bigvee_{R^{9}} \qquad \bigvee_{R^{1}} \qquad \bigvee_{R^{9}} \qquad \bigvee_{R^{1}} \qquad \bigvee$$

X O, S(O)_q, NH oder CH=N ist; R¹ CH₂CH₂(CH₃)CH, Alkyl mit 5—12 Kohlenstoff-Atomen, Alkenyl mit 5—12 Kohlenstoff-Atomen, Cycloalkyl mit 3—7 Kohlenstoff-Atomen, Cycloalkylalkyl mit 5—12 Kohlenstoff-Atomen, Cycloalkenyl mit 5—7 Kohlenstoff-Atomen,

ist, wenn

kann R1 zusätzlich Alkyl mit 3-4 Kohlenstoff-Atomen sein;

ist;

35

10

R3 H, Alkoxy mit 1-3 Kohlenstoff-Atomen, Alkylthio mit 1-3 Kohlenstoff-Atomen oder Alkyl mit 1-3 Kohlenstoff-Atomen ist, welches gegebenenfalls mit einem oder mehreren F, Cl, Br oder (CH₂)_pCOR¹⁰, worin p 1, 2, 3 oder 4 ist, substituiert ist;

R4 CO2H oder CO2R11 ist;

R5, R8, R7 und R8 unabhängig voneinander H, F, Cl, Br, I, CH3, CF3, S(O),R12 oder CH2CH3 sind, wobei wenigstens zwei von R5, R6, R7 und R6 H sind:

R⁹ und R^{9A} unabhängig voneinander H oder Alkyl mit 1 bis 3 Kohlenstoff-Atomen sind;

R¹⁰ OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ oder N(CH₃)₂ ist;

R11 (CH2)2-4NR9R9A ist;

R12 Alkyl mit 1—5 Kohlenstoffatomen ist, welches gegebenenfalls mit einem oder mehreren F, Cl und Br substituiert ist;

W, Y und Z unabhängig voneinander H, F, Cl, Br, Alkyl mit 1—5 Kohlenstoff-Atomen, NO₂, Alkoxy mit -5 Kohlenstoff-Atomen, Alkylthio mit 1-5 Kohlenstoff-Atomen, OH, CF₃ oder NH₂ sind;

m 0 oder 1 ist:

n oder 1 ist; und

q 0, 1 oder 2 ist;

oder einem pharmazeutisch geeigneten Salz derselben; vorausgesetzt, daß:

1) R5, R6 und R7 nicht alle H sein können;

2) wenn R⁴ CO₂CH₂CH₂N(CH₃)₂ ist, R⁶ CH₂CH₃ ist oder R⁷ Cl ist, R¹ nicht Cyclohexyl sein kann; und

3) wenn R1 Cyclohexyl ist und R3 H ist, R6 Cl oder F seln muß, aber R6 und R8 nicht beide Cl sein können.

Pharmazeutische Anti-Tumor-Zusammensetzung bestehend aus pharmazeutischen Träger und wenigstens einer Verbindung der Formel

(II)

R1 Cycloalkyl mit 3—7 Kohlenstoff-Atomen, Phenyl, mit einem Halogen, Alkyl mit 1—5 Kohlenstoff-Atomen oder CF₃ substituiertes Phenyl, Phenoxy, oder mit einem Halogen oder Alkyl mit 1—5 Kohlenstoff-Atomen substituiertes Phenoxy ist;

R³ H oder Alkyl mit 1-3 Kohlenstoff-Atomen ist;

R4 CO₂H oder dessen Natrium- oder Kaliumsalz ist;

R⁵ und R⁶ unabhängig voneinander H, Halogen, CH₃ oder CF₃ sind; und

R⁷ und R^a unabhängig vonelnander H oder Halogen sind; oder ein pharmazeutisch geeignetes Salz derselben;

vorausgesetzt, daß R5, R6 und R7 nicht alle H sein können und daß, wenn R1 Cyclohexyl ist und R3 H ist, R6 Cl oder F sein muß, aber R^s und R^s nicht beide CI sein können.

3. Pharmazeutische Anti-Tumor-Zusammensetzung einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 21.

4. Pharmazeutische Anti-Tumor-Zusammensetzung bestehend aus einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 22.

Pharmazeutische Anti-Tumor-Zusammensetzung bestehend einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 23.

Pharmazeutische Anti-Tumor-Zusammensetzung pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 24. bestehend einem geeigneten 7. Pharmazeutische Anti-Tumor-Zusammensetzung pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 25. bestehend einem geeigneten Pharmazeutische Anti-Tumor-Zusammensetzung pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 26. bestehend einem geeigneten Pharmazeutische Anti-Tumor-Zusammensetzung bestehend au pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 27. einem geeigneten 10. Pharmazeutische Anti-Tumor-Zusammensetzung bestehend 10 pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 28. aus einem geeigneten 11. Verwendung wenigstens einer Verbindung der Formel

(I)

worin

25

30

$$R \longrightarrow R^1 \longrightarrow OR^2$$

< > $s(o)_m R^1$. < $> N R^1$

X O, S(O), NH oder CH=N ist;

R¹ CH₂CH₂|CH₃|CH, Alkyl mit 5—12 Kohlenstoff-Atomen, Alkenyl 5—12 Kohlenstoff-Atomen, Alkenyl mit 5—12 Kohlenstoff-Atomen, Cycloalkyl mit 3—7 Kohlenstoff-Atomen, Cycloalkyl mit 5—12 Kohlenstoff-Atomen, Cycloalkenyl mit 5—7 Kohlenstoff-Atomen,

wenn

55

R
$$-\langle O \rangle_{m} R^{1}$$
 ist

kann R¹ zusätzlich Alkyl mit 3-4 Kohlenstoff-Atomen sein;

$$- \bigcirc \bigvee_{\mathbf{Z}}^{\mathbf{W}} \qquad \text{oder} \qquad - \mathbf{CH}_{\mathbf{Z}} - \bigcirc \bigvee_{\mathbf{Z}}^{\mathbf{W}} \qquad \text{ist};$$

R3 H, Alkoxy mit 1—3 Kohlenstoff-Atomen, Alkylthio mit 1—3 Kohlenstoff-Atomen oder Alkyl mit 1-Kohlenstoff-Atomen ist, welches gegebenenfalls mit einem oder mehreren F, CI, Br oder (CH₂)_pCOR¹⁰, worin p 1, 2, 3 oder 4 ist, substituiert ist;

R4 CO2H oder CO2R11 ist:

R⁵, R⁶, R⁷ und R⁸ unabhängig voneinander H, F, Cl, Br, I, CH₃, CF₃, S(O)_nR¹² oder CH₂CH₃ sind, wobei wenigstens zwei von R5, R6, R7 und R8 H sind;

R⁹ und R^{9A} unabhängig voneinander H oder Alkyl mit 1 bis 3 Kohlenstoff-Atomen sind; R¹⁰ OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ oder N(CH₃)₂ ist;

R11 (CH2)2-4NR9R9A ist;

R¹² Alkyl mit 1—5 Kohlenstoffatomen ist, welches gegebenenfalls mit einem oder mehreren F, Cl und Br substituiert ist;

W, Y und Z unabhängig voneinander H, F, Cl, Br, Alkyl mit 1—5 Kohlenstoff-Atomen, NO₂, Alkoxy mit -5 Kohlenstoff-Atomen, Alkylthio mit 1—5 Kohlenstoff-Atomen, OH, CF₃ oder NH₂ sind; m 0 oder 1 ist:

n 0 oder 1 ist; und

q 0, 1 oder 2 ist:

oder einem pharmazeutisch geeigneten Salz derselben; vorausgesetzt, daß:

1) R⁵, R⁶ und R⁷ nicht alle H sein können;

2) wenn R⁴ CO₂CH₂CH₂N(CH₃)₂ ist, R⁵ CH₂CH₃ ist oder R⁷ Cl ist, R¹ nicht Cyclohexyl sein kann; und 3) wenn R¹ Cyclohexyl ist und R² H ist, R⁶ Cl oder F sein muß, aber R⁵ und R⁵ nicht beide Cl sein können, in einer turnor-inhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von

12. Verwendung wenigstens einer Verbindung der Formel

$$\begin{array}{c|c}
R^{6} & R^{5} & R^{4} \\
R^{7} & R^{8} & R^{3}
\end{array}$$
(11)

60

10

R¹ Cycloalkyl mit 3—7 Kohlenstoff-Atomen, Phenyl, mit einem Halogen, Alkyl mit 1—5 Kohlenstoff-Atomen oder CF₃ substituiertes Phenyl, Phenoxy, oder mit einem Halogen oder Alkyl mit 1—5 Kohlenstoff-Atomen substituiertes Phenoxy ist;

R² H oder Alkyl mit 1-3 Kohlenstoff-Atomen ist;

R⁴ CO₂H oder dessen Natrium- oder Kaliumsalz Ist;

R⁵ und R⁶ unabhängig voneinander H, Halogen, CH₃ oder CF₃ sind; und

R⁷ und R⁸ unabhängig voneinander H oder Halogen sind; oder ein pharmazeutisch geeignetes Salz derselben; vorausgesetzt, daß R⁵; R⁶ und R⁷ nicht alle H sein können und daß, wenn R¹ Cyclohexyl ist und R³ H ist, R6 Cl oder F sein muß, aber R6 und R8 nicht beide Cl sein können, in einer tumor-inhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

13. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 21 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachsturnsinhibierung von Säugertumoren.

14. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 22 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

15. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 23 in einer tumor-Inhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

16. Verwendung wenigstens einer Verbindung der Formet des Anspruchs 24 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

17. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 25 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

18. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 26 in einer tumor-

inhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren. 19. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 27 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren. 20. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 28 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren. 21. Verbindung der Formel

(111)

10

R1 Cycloalkyl mit 3-7 Kohlenstoff-Atomen,

R3 H oder Alkyl mit 1-3 Kohlenstoff-Atomen ist;

R4 CO₂H oder dessen Natrim- oder Kaliumsalz ist;

R⁵ und R⁶ unabhāngig vonelnander H, Halogen oder CF₃ sind, vorausgesetzt, daß R⁵ und R⁶ nicht beide Wasserstoff sind; und W und Z unabhängig voneinander H, Halogen, Alkyl mit 1—5 Kohlenstoff-Atomen

vorausgesetzt, daß, wenn R¹ Phenyl oder Phenoxy ist und R⁵ H ist, R⁵ nicht Br sein kann, und daß, wenn R¹ Cyclohexyl und R³ H ist, R⁵ Cl oder F sein muß.

22. Verbindung des Anspruchs 21, worin

R¹ Phenyl, mit wenigstens einem Halogen substituiertes Phenyl, Phenoxy oder mit wenigstens einem Halogen substituiertes Phenoxy ist;

R³ Methyl ist; R⁵ H oder Cl ist; und

R⁶ F oder Cl ist.

Verbindung 23. **Anspruchs** 2-(1,1'-Biphenyl-4-yl)-6-fluor-3-methyl-4 welche · chinolincarbonsäure, -Natrium- oder -Kalium-Salz ist.

Verbindung des Anspruchs welche 6-Fluor-3-methyl-2-(4-phenoxyphenyl)-4chinolincarbonsaure, -Natrium- oder -Kalium-Salz ist.

25. Verbindung des Anspruchs 21, welche 2-(4'-Brom-1,1'-biphenyl-4-yl)-6-fluor-3-methyl-4chinolincarbonsäure, -Natrium- oder -Kalium-Salz ist.

26. Verbindung des Anspruchs 21, welche 2-(2'-Fluor-1,1'-biphenyl-4-yl)-6-fluor-3-methyl-4chinolincarbonsäure, -Natrium- oder -Kalium-Salz ist.

27. Verbindung des Anspruchs 21, welche 2-(1,1'-Biphenyl-4-yl)-5-chlor-6-fluor-3-methyl-4chinolincarbonsäure, -Natrium- oder -Kallum-Salz ist.

28. Verbindung der Formel

worin

15 20 25 oder

X O, S(O)_q, NH oder CH=N ist; R¹ CH₃CH₂(CH₃)CH, Alkyl mit 5—12 Kohlenstoff-Atomen, Alkenyl mit 5—12 Kohlenstoff-Atomen, Cycloalkyl mit 3—7 Kohlenstoff-Atomen, Cycloalkylalkyl mit 5—12 Kohlenstoff-Atomen, Cycloalkenyl mit

35

kann R1 zusätzlich Alkyl mit 3-4 Kohlenstoff-Atomen sein;

R2,

R3 H, Alkoxy mit 1-3 Kohlenstoff-Atomen, Alkylthio mit 1-3 Kohlenstoff-Atomen oder Alkyl mit 1-3 Kohlenstoff-Atomen ist, welches gegebenenfalls mit einem oder mehreren F, Cl, Br oder (CH₂)_pCOR¹⁰, worin p 1, 2, 3 oder 4 ist, substituiert ist; R⁴ CO₂H oder CO₂R¹¹ ist;

R⁵, R⁶, R⁷ und R⁸ unabhängig voneinander H, F, Cl, Br, I, CH₂, CF₃, S(O)_nR¹² oder CH₂CH₃ sind, wobei wenigstens zwei von R⁵, R⁵, R⁷ und R⁸ H sind;

R⁹ und R^{9A} unabhängig voneinander H oder Alkyl mit 1 bis 3 Kohlenstoff-Atomen sind; R¹⁰ OH, OCH₂, OCH₂CH₃, NH₂, NHCH₂ oder N(CH₃)₂ ist; R¹¹ (CH₂)₂₋₄NR⁹R^{9A} ist;

R¹² Alkyl mit 1—5 Kohlenstoffatomen ist, welches gegebenenfalls mit einem oder mehreren F, Cl und Br substituiert ist;

W, Y und Z unabhängig voneinander H, F, Cl, Br, Alkyl mit 1—5 Kohlenstoff-Atomen, NO₂, Alkoxy mit -5 Kohlenstoff-Atomen, Alkylthio mit 1—5 Kohlenstoff-Atomen, OH, CF₃ oder NH₂ sind; m 0 oder 1 ist;

n oder 1 ist: und

q 0, 1 oder 2 ist;

10

oder einem pharmazeutisch geeigneten Salz derselben; vorausgesetzt, daß:

1) wenn R⁴ CO₂H ist, R¹ Phenyl oder Phenoxy ist und R⁵, R⁷ und R⁶ H sind, R⁶ nicht Br sein kann;

2) Ro, Ro und R' nicht alle H sein können;

3) wenn R4 CO₂CH₂CH₂N(CH₃)₂ ist, R6 CH₂CH₃ ist oder R⁷ CI ist, R1 nicht Cyclohexyl sein kann;

4) wenn R¹ Cyclohexyl ist und R³ H ist, R⁶ Cl oder F sein muß, aber R⁶ und R⁸ nicht beide Cl sein können;

5) wenn R¹ 4-H₂NC₆H₄ und R³ H ist, R6 nicht Cl sein kann und R6 nicht Br sein kann;

6) wenn R¹ Alkyl mit 6 Kohlenstoffatomen ist und Y H ist, R⁴ nicht CO₂H sein kann, R⁵, R7 und R⁶ nicht H sein können und R⁶ nicht H, Cl, Br, I oder CH₃ sein kann.

29. Verfahren zur Herstellung von Verbindungen des Anspruchs 28 gekennzeichnet durch Umsetzung einer Chinolincarbonsäure der Formel

durch (a), wenn R OH ist, Acylierung der Hydroxygruppe mit einem Carboxylhalogenid wie Benzoylchlorid in einem inerten Lösungsmittel wie Chloroform oder einem Kohlenwasserstoff-Lösungsmittel wie Benzol bel einer Temperatur von 0°C bis zum Siedepunkt des Lösungsmittels, wahlweise in Gegenwart einer Base wie Pyridin, oder (b) Umsetzung der geeignet substituierten Chinolincarbonsäure mit einem geeigneten Thiolat R12S wie MeSK in einem Lösungsmittel wie Dimethylformamide bei einer Temperatur von 50°C bis zum Rückfluß des Lösungsmittels, oder (c) Lösen der Chinolincarbonsäure in einem protischen Lösungsmittel wie Ethanol und dann Behandeln mit einem Metalloxid oder -hydroxid wie Natrium- oder Kalium-oxid oder -hydroxid oder einem Amin wie 1-Aminobutanol oder Lysin bei einer Temperatur von 0°C bis zum Seidepunkt des verwendeten Lösungsmittels und wahlweise Herstellung eines Salzes einer Aminogruppe durch Lösen des Amins in einem Lösungsmittel wie Ethylether und Zugabe einer Mineralsäure wie HCl; oder (d) Behandeln des Salzes (c), durch Behandlung mit einem Reagenz wie SOCl₂ oder Oxalylchlorid in einem inerten Lösungsmittel wie Benzol bei einer Temperatur von 25°C bis zum Siedepunkt des verwendeten Lösungsmittels unter Bildung eines Säurehalogenids und dann zugabe eines Alkohols, R¹¹OH, in einem Lösungsmittel wie Tetrahydrofuran bei einer Temperatur von 10°C bis zum Siedepunkt des verwendeten Lösungsmittels, wahlweise in Gegenwart einer Base wie Pyridin,

Triethylamin oder 4-Dimethylminopyridin.

30. Verfahren zur Herstellung der Verbindungen von Anspruch 28, im wesentlichen bestehend aus (1) Umsetzung eines geeignet substituierten Isatins (IV) mit einem substituierten Keton (V) in einem Lösungsmittel wie Ethanol mit einer Base wie Diethylamin oder Triethylamin bei einer Temperatur von 25°C bis 50°C für 2 bis 48 Stunden, (2) Lösen der entstandenen Zwischenstufe (VI) in einem geeigneten Lösungsmittel wie Tetrahydrofuran, welches 25-50 Vol.-% einer Mineralsäure wie HCl enthält, und 2 bis 48 Stunden Erhitzen auf 50°C bis zur Rückflußtemperatur des Lösungsmittelgemischs, und wahlweise wird die voranstehende Chinolincarbonsäure aus (2) weiter umgesetzt durch (a) Acyllerung der entsprechenden Hydroxygruppe, in der R OH ist, mit einem Carboxylhalogenid wie Benzoylchlorid in einem inerten Lösungsmittel wie Chloroform oder einem Kohlenwasserstoff-Lösungsmittel wie Benzol bei einer Temperatur von 0°C bis zum Siedepunkt des Lösungsmittel, wahlweise in der Gegenwart einer Base wie Pyridin, oder (b) durch Umsetzung der geeignet substituierten Chinolincarbonsäure mit einem geeigneten Thiolat R12S wie MeSK in einem Lösungsmittel wie Dimethylformamid bei einer Temperatur von 50°C bis zum Rückfluß des Lösungsmittels oder (c) durch Lösen der Chinolincarbonsäure in einem protischen Lösungsmittel wie Ethanol, und dann Behandeln mit einem Metalloxid oder -hydroxid wie Natrium- oder Kaliumoxid oder -hydroxid oder einem Amin wie 1-Aminobutanol oder Lysin bei einer Temperatur von 0°C bis zum Siedepunkt des verwendeten Lösungsmittels und wahlweise Herstellen eines Salzes einer Aminogruppe durch Lösen des Amins in einem Lösungsmittel wie Ethylether und Zugabe einer Mineralsäure wie HCI, oder (d) Behandeln des Salzes, (c) durch Behandlung mit einem Reagenz wie SOCI2 oder Oxalylchlorid in einem inerten Lösungsmittel wie Benzol bei einer Temperatur von 25°C bis zum Siedepunkt des verwendeten Lösungsmittels unter Bildung eines Säurehalogenids und dann Zugabe eines Alkohols, R¹¹OH, in einem Lösungsmittel wie Tetrahydrofuran bei einer Temperatur von 10°C bis zum Siedepunkt des verwendeten Lösungsmittels, wahlweise in Gegenwart einer Base wie Pyridin, Triethylamine oder 4-Dimethylaminopyridin.

Patentansprüche für den Vertragsstaat: AT

Verfahren zur Herstellung einer pharmazeutischen Anti-Tumor-Zusammensetzung bestehend aus einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung der Forme!

$$\begin{array}{c|c}
R^{6} & R^{5} & R^{4} \\
R^{7} & R^{8} & R^{3}
\end{array}$$

worin

15

X O, S(O)_o NH oder CH=N ist; R¹ CH₂CH₂(CH₂)CH, Alkyl mit 5—12 Kohlenstoff-Atomen, Alkenyl mit 5—12 Kohlenstoff-Atomen, Cycloalkyl mit 3—7 Kohlenstoff-Atomen, Cycloalkylalkyl mit 5—12 Kohlenstoff-Atomen, Cycloalkenyl mit 5—7 Kohlenstoff-Atomen,

wenn

-50

55

65

$$R \longrightarrow S(0)_m R^1$$
 ist

kann R¹ zusätzlich Alkyl mit 3-4 Kohlenstoff-Atomen sein; R²

0 133 244 B1

R3 H, Alkoxy mit 1-3 Kohlenstoff-Atomen, Alkylthio mit 1-3 Kohlenstoff-Atomen oder Alkyl mit 1-3 Kohlenstoff-Atomen ist, welches gegebenenfalls mit einem oder mehreren F, Cl, Br oder (CH₂), COR¹o, worin p 1, 2, 3 oder 4 ist, substituiert ist;

R4 CO2H oder CO2R11 ist;

R⁵, R⁶, R⁷ und R⁸ unabhängig voneinander H, F, Cl, Br, I, CH₃, CF₃, S(O)_nR¹² oder CH₂CH₃ sind, wobei wenigstens zwei von R5, R6, R7 und R8 H sind;

R⁹ und R^{9A} unabhängig voneinander H oder Alkyl mit 1 bis 3 Kohlenstoff-Atomen sind;

R¹⁰ OH, OCH₃, OCH₂ČH₃, NH₂, NHCH₃ oder N(CH₃)₂ ist;

R11 (CH2)2-4NR9R9A ist;

R¹² Alkyl mit 1—5 Kohlenstoffatomen ist, welches gegebenenfalls mit einem oder mehreren F, Cl und Br substituiert ist:

W, Y und Z unabhängig voneinander H, F, Cl, Br, Alkyl mit 1—5 Kohlenstoff-Atomen, NO₂, Alkoxy mit 1-5 Kohlenstoff-Atomen, Alkylthio mit 1-5 Kohlenstoff-Atomen, OH, CF₃ oder NH₂ sind;

m 0 oder 1 ist;

n oder 1 ist; und q 0, 1 oder 2 ist;

oder einem pharmazeutisch geeigneten Salz derselben; vorausgesetzt, daß:

1) R⁵, R⁶ und R⁷ nicht alle H sein können; 2) wenn R⁴ CO₂CH₂CH₂N(CH₃)₂ ist, R⁶ CH₂CH₃ ist oder R⁷ Cl ist, R¹ nicht Cyclohexyl sein kann; und 3) wenn R³ Cyclohexyl ist und R³ Hist, R⁵ Cloder F sein muß, aber R³ und R³ nicht beide Cl sein können, umfassend das Vermischen mindestens einer Verbindung mit einem geeigneten Träger.

2. Verfahren zur Herstellung einer pharmazeutischen Anti-Tumor-Zusammensetzung bestehend aus einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung der Formel

R¹ Cycloalkyl mit 3—7 Kohlenstoff-Atomen, Phenyl, mit einem Halogen, Alkyl mit 1—5 Kohlenstoff-Atomen oder CF₃ substituiertes Phenyl, Phenoxy, oder mit einem Halogen oder Alkyl mit 1—5 Kohlenstoff-Atomen substituiertes Phenoxy ist;

R3 H oder Alkyl mit 1-3 Kohlenstoff-Atomen ist:

R⁴ CO₂H oder dessen Natrium- oder Kallumsalz ist;

R⁵ und R⁶ unabhängig voneinander H, Halogen, CH₃ oder CF₃ sind; und

R⁷ und R^a unabhängig voneinander H oder Halogen sind; oder ein pharmazeutisch geeignetes Salz

vorausgesetzt, daß R⁵, R⁶ und R⁷ nicht alle H sein können und daß, wenn R¹ Cyclohexyl ist und R³ H ist, R⁶ Cl 45 oder F sein muß, aber R⁶ und R⁶ nicht beide CI sein können, umfassend das Vermischen mindestens einer Verbindung mit einem geeigneten Träger.

3. Verfahren zur Herstellung einer pharmazeutischen Anti-Tumor-Zusammensetzung bestehend aus einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 21, umfassend das Vermischen mindestens einer Verbindung mit einem geeigneten Träger.

4. Verfahren zur Herstellung einer pharmazeutischen Anti-Tumor-Zusammensetzung bestehend aus einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 22, umfassend das Vermischen mindestens einer Verbindung mit einem geeigneten Träger.

5. Verfahren zur Hersteilung einer pharmazeutischen Anti-Tumor-Zusammensetzung bestehend aus einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 23, umfassend das Vermischen mindestens einer Verbindung mit einem geeigneten Träger.

6. Verfahren zur Herstellung einer pharmazeutischen Anti-Tumor-Zusammensetzung bestehend aus einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 24, umfassend das Vermischen mindestens einer Verbindung mit einem geeigneten Träger.

7. Verfahren zur Herstellung einer pharmazeutischen Anti-Tumor-Zusammensetzung bestehend aus einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 25, umfassend das Vermischen mindestens einer Verbindung mit einem geeigneten Träger.

8. Verfahren zur Herstellung einer pharmazeutischen Anti-Tumor-Zusammensetzung bestehend aus einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 26, umfassend das Vermischen mindestens einer Verbindung mit einem geeigneten Träger.

9. Verfahren zur Herstellung einer pharmazeutischen Anti-Tumor-Zusammensetzung bestehend aus einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 27, umfassend das Vermischen mindestens einer Verbindung mit einem geeigneten Träger.

10. Verfahren zur Herstellung einer pharmazeutischen Anti-Tumor-Zusammensetzung bestehend aus einem geeigneten pharmazeutischen Träger und wenigstens einer Verbindung des Anspruchs 28, umfassend das Vermischen mindestens einer Verbindung mit einem geeigneten Träger.

11. Verwendung wenigstens einer Verbindung der Formel

(I)

worin

$$\mathbb{R}$$
 \mathbb{R}^{1} \mathbb{R}^{2}

25

10

$$S(0)_{m}R^{1}$$
. R^{1}

35

55

60

X O, S(O)_o, NH oder CH=N ist; R¹ CH₃CH₂(CH₃)CH, Alkyl mit 5—12 Kohlenstoff-Atomen, Alkenyl mit 5—12 Kohlenstoff-Atomen, Cycloalkyl mit 3—7 Kohlenstoff-Atomen, Cycloalkylalkyl mit 5—12 Kohlenstoff-Atomen, Cycloalkenyl mit -7 Kohlenstoff-Atomen,

wenn

$$R \qquad - \bigcirc > S(0)_m R^1_{ist}$$

kann R1 zusätzlich Alkyl mit 3-4 Kohlenstoff-Atomen sein; 65

R²

R³ H, Alkoxy mit 1—3 Kohlenstoff-Atomen, Alkylthio mit 1—3 Kohlenstoff-Atomen oder Alkyl mit 1—3 Kohlenstoff-Atomen ist, welches gegebenenfalls mit einem oder mehreren F, Cl, Br oder (CH₂), COR¹⁰, worin p 1, 2, 3 oder 4 ist, substituiert ist;

R4 CO₂H oder CO₂R¹¹ ist:

R⁵, R⁶, R⁷ und R⁸ unabhängig voneinander H, F, Cl, Br, I, CH₃, CF₃, S(O)_nR¹² oder CH₂CH₃ sind, wobel wenigstens zwei von R⁵, R⁶ und R⁸ H sind;

R⁹ und R^{9A} unabhängig voneinander H oder Alkyl mit 1 bis 3 Kohlenstoff-Atomen sind;

R¹⁰ OH, OCH₂, OCH₂CH₃, NH₂, NHCH₃ oder N(CH₃)₂ ist;

R11 (CH₂)₂₋₄NR⁹R^{9A} ist;

R¹² Alkyl mit 1—5 Kohlenstoffatomen ist, welches gegebenenfalls mit einem oder mehreren F, Cl und Br substituiert ist;

W, Y und Z unabhängig voneinander H, F, Cl, Br, Alkyl mit 1—5 Kohlenstoff-Atomen, NO₂, Alkoxy mit 1—5 Kohlenstoff-Atomen, Alkylthio mit 1—5 Kohlenstoff-Atomen, OH, CF₃ oder NH₂ sind;

m 0 oder 1 ist:

n oder 1 ist; und

q 0, 1 oder 2 ist:

oder einem pharmazeutisch geeigneten Salz derselben; vorausgesetzt, daß:

1) R5, R6 und R7 nicht alle H sein können;

2) wenn R⁴ CO₂CH₂CH₂C(CH₃)₂ ist, R⁶ CH₂CH₃ ist oder R² Cl ist, R¹ nicht Cyclohexyl sein kann; und 3) wenn R³ Cyclohexyl ist und R² H ist, R⁶ Cl oder F sein muß, aber R⁶ und R⁶ nicht beide Cl sein können,

in einer tumor-inhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

12. Verwendung wenigstens einer Verbindung der Formel

$$\begin{array}{c|c}
R^5 & R^4 \\
R^7 & & & \\
R^8 & & & \\
\end{array}$$
(11)

worin

35

R¹ Cycloalkyl mit 3—7 Kohlenstoff-Atomen, Phenyl, mit einem Halogen, Alkyl mit 1—5 Kohlenstoff-Atomen oder CF₃ substituiertes Phenyl, Phenoxy, oder mit einem Halogen oder Alkyl mit 1—5 Kohlenstoff-Atomen substituiertes Phenoxy lst;

R² H oder Alkyl mit 1-3 Kohlenstoff-Atomen ist;

R⁴ CO₂H oder dessen Natrium- oder Kaliumsalz ist;

R5 und R6 unabhängig voneinander H, Halogen, CH2 oder CF2 sind; und

R⁷ und R⁸ unabhängig voneinander H oder Halogen sind; oder ein pharmazeutisch geeignetes Salz derselben; vorausgesetzt, daß R⁵, R⁶ und R⁷ nicht alle H sein können und daß, wenn R³ Cyclohexyl ist und R³ H ist, R⁶ Cl oder F sein muß, aber R⁶ und R⁶ nicht beide Cl sein können, in einer tumor-inhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

13. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 21 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

14. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 22 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

15. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 23 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

16. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 24 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

17. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 25 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

18. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 26 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.

19. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 27 in einer tumor-

inhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.
20. Verwendung wenigstens einer Verbindung der Formel des Anspruchs 28 in einer tumorinhibierenden Menge zur Herstellung eines Medikaments zur Wachstumsinhibierung von Säugertumoren.
21. Verbindung zur Herstellung einer Verbindung der Formel

$$\begin{array}{c|c}
R^5 & R^4 \\
\hline
R^6 & R^3 \\
\hline
R^3 & R^4
\end{array}$$
(111)

5 Worin

R1 Cycloalkyl mit 3-7 Kohlenstoff-Atomen,

R3 H oder Alkyl mit 1-3 Kohlenstoff-Atomen ist;

R4 CO₂H oder dessen Natrim- oder Kaliumsalz ist;

R⁵ und R⁶ unabhängig voneinander H, Halogen oder CF₃ sind, vorausgesetzt, daß R⁵ und R⁶ nicht beide Wasserstoff sind; und W und Z unabhängig voneinander H, Halogen, Alkyl mit 1—5 Kohlenstoff-Atomen oder CF₃ sind;

vorausgesetzt, daß, wenn R¹ Phenyl oder Phenoxy ist und R⁵ H ist, R⁶ nicht Br sein kann, und daß, wenn R¹ Cyclohexyl und R³ H ist, R⁶ Cl oder F sein muß, umfassend

(1) Umsetzung eines geeignet substituierten Isatins (IV) mit einem substituierten Keton (V) in einem Lösungsmittel wie Ethanol mit einer Base wie Diethylamin oder Triethylamin bei einer Temperatur von 25°C bis 50°C für 2 bis 48 Stunden, (2) Lösen der entstandenen Zwischenstufe (VI) in einem geeigneten Lösungsmittel wie Tetrahydrofuran, welches 25-50 Vol.-% einer Mineralsäure wie HCl enthält, und 2 bis 48 Stunden Erhitzen auf 50°C bis zur Rückflußtemperatur des Lösungsmittelgemischs, und wahlweise wird die voranstehende Chinolincarbonsäure aus (2) weiter umgesetzt durch (a) Acylierung der entsprechenden Hydroxygruppe, in der R OH ist, mit einem Carboxylhalogenid wie Benzoylchlorid in einem inerten Lösungsmittel wie Chloroform oder einem Kohlenwasserstoff-Lösungsmittel wie Benzol bei einer Temperatur von 0°C bis zum Siedepunkt des Lösungsmittel, wahlweise in der Gegenwart einer Base wie Pyridin, oder (b) durch Umsetzung der geeignet substituierten Chinolincarbonsäure mit einem geeigneten Thiolat R¹²S wie MeSK in einem Lösungsmittel wie Dimethylformamid bei einer Temperatur von 50°C bis zum Rückfluß des Lösungsmittels oder (c) durch Lösen der Chinolincarbonsäure in einem protischen Lösungsmittel wie Ethanol, und dann Behandeln mit einem Metalloxid oder -hydroxid wie Natrium- oder Kaliumoxid oder -hydroxid oder einem Amin wie 1-Aminobutanol oder Lysin bei einer Temperatur von 0°C bis zum Siedepunkt des verwendeten Lösungsmittels und wahlweise Herstellen eines Salzes einer Ainogruppe durch Lösen des Amins in einem Lösungsmittel wie Ethylether und Zugabe einer Mineralsäure wie HCl, oder (d) Behandeln des Salzes, (c) durch Behandlung mit einem Reagenz wie SOCl2 oder Oxalylchlorid in einem inerten Lösungsmittel wie Benzol bei einer Temperatur von 25°C bis zum Siedepunkt des verwendeten Lösungsmittels unter Bildung eines Säurehalogenids und dann Zugabe eines Alkohols, R¹¹OH, in einem Lösungsmittel wie Tetrahydrofuran bei einer Temperatur von 10°C bis zum Siedepunkt des verwendeten Lösungsmittels, wahlweise in Gegenwart einer Base wie Pyridin, Triethylamine oder 4-Dimethylaminopyridin.

22. Verfahren des Anspruchs 21, worin

R¹ Phenyl, mit wenigstens einem Halogen substitulertes Phenyl, Phenoxy oder mit wenigstens einem Halogen substituiertes Phenoxy ist;

R3 Methyl ist;

55

R⁵ H oder Cl ist; und

R⁶ F oder Cl ist.

23. Verfahren des Anspruchs 21, worin die hergestellte Verbindung 2-(1,1'-Biphenyl-4-yl)-6-fluor-3-methyl-4-chinolincarbonsäure, -Natrium- oder -Kalium-Salz ist.

24. Verfahren des Anspruchs 21, worin die hergestellte Verbindung 6-Fluor-3-methyl-2-(4-phenoxyphenyl)-4-chinolincarbonsäure, -Natrium- oder -Kalium-Salz ist.

25. Verfahren des Anspruchs 21, worin die hergestellte Verbindung 2-(4'-Brom-1,1'-biphenyl-4-yl)-6-fluor-3-methyl-4-chinolincarbonsäure, -Natrium- oder -Kalium-Salz ist.

26. Verfahren des Anspruchs 21, worin die hergestellte Verbindung 2-(2'-Fluor-1,1'-biphenyl-4-yl)-6-fluor-3-methyl-4-chinolincarbonsäure, -Natrium- oder -Kallum-Salz ist.

27. Verfahren des Anspruchs 21, worin die hergestellte Verbindung 2-(1,1'-Biphenyl-4-yl)-5-chlor-6-fluor-3-methyl-4-chinolincarbonsäure, -Natrium- oder -Kallium-Salz ist.
28. Verfahren zur Herstellung einer Verbindung der Formel

 $\begin{array}{c|c}
R^{6} & R^{5} & R^{4} \\
R^{7} & R^{3} & R^{3}
\end{array}$

worin

10

15

20

30

35

40

50

55

60

65

 \mathbb{R} $\left\langle \bigcirc \right\rangle_{\mathbb{R}^1}^{\mathbb{Y}}$

OR²

X O, S(O)_a, NH oder CH=N ist; R¹ CH₃CH₂(CH₃)CH, Alkyl mit 5—12 Kohlenstoff-Atomen, Alkenyl mit 5—12 Kohlenstoff-Atomen, Cycloalkyl mit 3—7 Kohlenstoff-Atomen, Cycloalkylalkyl mit 5—12 Kohlenstoff-Atomen, Cycloalkenyl mit 5—7 Kohlenstoff-Atomen,

oder -CH₂-CH₂ ist.

wenn

 $R \leftarrow S(0)_m R^1 \text{ ist;}$

kann R¹ zusätzlich Alkyl mit 3-4 Kohlenstoff-Atomen sein;

R²

oder -CH₂-CH₂ is

R³ H, Alkoxy mit 1—3 Kohlenstoff-Atomen, Alkylthio mit 1—3 Kohlenstoff-Atomen oder Alkyl mit 1-Kohlenstoff-Atomen ist, welches gegebenenfalls mit einem oder mehreren F, CI, Br oder (CH₂)_pCOR¹⁰, R4 CO2H oder CO2R11 ist;

R⁵, R⁶, R⁷ und R⁶ unabhāngig voneinander H, F, Cl, Br, I, CH₃, CF₃, S(O)_nR¹² oder CH₂CH₃ sind, wobei wenigstens zwei von R5, R6, R7 und R8 H sind;

R⁹ und R^{9A} unabhängig voneinander H oder Alkyl mit 1 bis 3 Kohlenstoff-Atomen sind; R¹⁰ OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ oder N(CH₃)₂ ist;

R11 (CH2)2-4NR9R9A ist;

R12 Alkyl mit 1—5 Kohlenstoffatomen ist, welches gegebenenfalls mit einem oder mehreren F, Cl und Br substituiert ist;

W, Y und Z unabhängig voneinander H, F, Cl, Br, Alkyl mit 1—5 Kohlenstoff-Atomen, NO2, Alkoxy mit -5 Kohlenstoff-Atomen, Alkylthio mit 1-5 Kohlenstoff-Atomen, OH, CF₃ oder NH₂ sind;

n oder 1 ist; und

q 0, 1 oder 2 ist;

oder einem pharmazeutisch geeigneten Salz derselben; vorausgesetzt, daß:

1) wenn R⁴ CO₂H ist, R¹ Phenyl oder Phenoxy ist und R⁵, R³ und Rª H sind, R⁶ nicht Br sein kann; 2) R⁵, R⁶ und R⁷ nicht alle H sein können;

3) wenn R⁴ CO₂CH₂CH₂N(CH₃)₂ ist, R⁶ CH₂CH₃ ist oder R⁷ CI ist, R¹ nicht Cyclohexyl sein kann; 4) wenn R¹ Cyclohexyl ist und R³ H ist, R⁶ CI oder F sein muß, aber R⁸ und R⁸ nicht beide CI sein können;

5) wenn R1 4-H2NC6H4 und R3 H ist, R6 nicht CI sein kann und R8 nicht Br sein kann;

6) wenn R¹ Alkyl mit 6 Kohlenstoffatomen ist und Y H ist, R⁴ nicht C O₂H sein kann, R⁵, R7 und Rª nicht H sein können und R⁶ nicht H, Cl, Br, I oder CH₃ sein kann gekennzeichnet durch Umsetzung einer Chinolincarbonsäure der Formel

35

10

durch (a), wenn R OH ist, Acylierung der Hydroxygruppe mit einem Carboxylhalogenid wie Benzoylchlorid in einem inerten Lösungsmittel wie Chloroform oder einem Kohlenwasserstoff-Lösungsmittel wie Benzol bei einer Temperatur von 0°C bis zum Siedepunkt des Lösungsmittels, wahlweise in Gegenwart einer Base wie pyridin, oder (b) Umsetzung der geeignet substituierten Chinolincarbonsäure mit einem geeigneten Thiolat R12S wie MeSK in einem Lösungsmittel wie Dimethylformamid bei einer Temperatur von 50°C bis zum Rückfluß des Lösungsmittels, oder (c) Lösen der Chinolincarbonsäure in einem protischen Lösungsmittel wie Ethanol und dann Behandeln mit einem Metalloxid oder -hydroxid wie Natrium- oder Kaliumoxid oder -hydroxid oder einem Amin wie 1-Aminobutanol oder Lysin bei einer Temperatur von 0℃ bis zum Seidepunkt des verwendeten Lösungsmittels und wahlweise Herstellung eines Salzes einer Aminogruppe durch Lösen des Amins in einem Lösungsmittel wie Ethylether und Zugabe einer Mineralsäure wie HCl, oder (d) Behandeln des Salzes (c), durch Behandlung mit einem Reagenz wie SOCl2 oder Oxalylchlorid in einem inerten Lösungsmittel wie Benzol bei einer Temperatur von 25°C bis zum Siedepunkt des verwendeten Lösungsmittels unter Bildung eines Säurehalogenids und dann zugabe eines Alkohols, R¹¹OH, in einem Lösungsmittel wie Tetrahydrofuran bei einer Temperatur von 10°C bis zum Siedepunkt des verwendeten Lösungsmittels, wahlweise in Gegenwart einer Base wie Pyridin,

29. Verfahren zur Herstellung der Verbindungen des Anspruch 28, im wesentlichen bestehend aus (1) Umsetzung eines geeignet substituierten Isatins (IV) mit einem substituierten Keton (V) in einem Lösungsmittel wie Ethanol mit einer Base wie Diethylamin oder Triethylamin bei einer Temperatur von 25°C bis 50°C für 2 bis 48 Stunden, (2) Lösen der entstandenen Zwischenstufe (VI) in einem geeigneten. Lösungsmittel wie Tetrahydrofuran, welches 25-50 Vol.-% einer Mineralsäure wie HCl enthält, und 2 bis 48 Stunden Erhitzen auf 50°C bis zur Rückflußtemperatur des Lösungsmittelgemischs, und wahlweise wird die voranstehende Chinolincarbonsäure (2) weiter umgesetzt durch (a) Acylierung der entsprechenden Hydroxygruppe, in der R OH ist, mit einem Carboxylhalogenid wie Benzoylchlorid in einem inerten Lösungsmittel wie Chloroform oder einem Kohlenwasserstoff-Lösungsmittel wie Benzol bei einer Temperatur von 0°C bis zum Siedepunkt des Lösungsmittels, wahlweise in der Gegenwart einer Base wie pyridin, oder (b) durch Umsetzung der geeignet substituierten Chinolincarbonsäure mit einem geeigneten Thiolat R12S wie MeSK in einem Lösungsmittel wie Dimethylformamid bei einer Temperatur von 50°C biszum Rückfluß des Lösungsmittels oder (c) durch Lösen der Chinolincarbonsäure in einem protischen

Lösungsmittel wie Ethanol, und dann Behandeln mit einem Metalloxid oder -hydroxid wie Natrium- oder Kaliumoxid oder -hydroxid oder einem Amin wie 1-Aminobutanol oder Lysin bei einer Temperatur von 0°C bis zum Siedepunkt des verwendeten Lösungsmittels und wahlweise Herstellen eines Salzes einer Aminogruppe durch Lösen des Amins in einem Lösungsmittel wie Ethylether und Zugabe einer Mineralsäure wie HCl, oder (d) Behandeln des Salzes, (c) durch Behandlung mit einem Reagenz wie SOCl₂ oder Oxalylchlorid in einem inerten Lösungsmittel wie Benzol bei einer Temperatur von 25°C bis zum Siedepunkt des verwendeten Lösungsmittels unter Bildung eines Säurehalogenids und dann Zugabe eines Alkohols, R¹¹OH, in einem Lösungsmittel wie Tetrahydrofuran bei einer Temperatur von 10°C bis zum Siedepunkt des verwendeten Lösungsmittels, wahlweise in Gegenwart einer Base wie Pyridin, Triethylamin oder 4-Dimethylaminopyridin.

Revendications pour les Etats contractants: BE CH DE FR GB IT LI LU NL SE

 Une composition pharmaceutique antitumorale constituée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé répondant à la formule:

dans laquelle

R est
$$\longrightarrow$$
 R¹ \longrightarrow OR² \longrightarrow S(O)_mR¹ \longrightarrow NR¹-C-R⁹ \longrightarrow OC-R¹ \longrightarrow OC-

X est O, S(O), NH ou CH=N;

65

R¹ est un groupe CH₂(CH₂(CH₂)CH, alkyle de 5 à 12 atomes de carbone, alcényle de 5 à 12 atomes de carbone, cycloalkyle de 3 à 7 atomes de carbone, cycloalkylalkyle de 5 à 12 atomes de carbone, cycloalkyle de 5 à 7 atomes de carbone,

lorsque

10

15

20

25

30

35

55

60

R est

R¹ peut être, de plus, un groupe alkyle de 3 ou 4 atomes de carbone;

R² est

R3 est H, un groupe alcoxy de 1 à 3 atomes de carbone, alkylthio de 1 à 3 atomes de carbone ou alkyle de 1 à 3 atomes de carbone facultativement substitué par un ou plusieurs de F, Cl, Br ou (CH₂)_pCOR¹⁰ où p est 1, 2, 3 ou 4;

R4 est CO2H ou CO2R11;

R⁵, R⁶, R⁷ et R⁸ sont indépendamment H, F, Cl, Br, I, CH₃, CF₃, S(O)_nR¹² ou CH₂CH₃, au moins deux de R⁵, R6, R7 et R8 étant H;

R^a et R^{aa} sont indépendamment H ou un groupe alkyle de 1 à 3 atomes de carbone;

R¹⁰ est OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ ou N(CH₃)₂;

R11 est (CH2)2-4NR9R9A;

R¹² est un groupe alkyle de 1 à 5 atomes de carbone facultativement substitué par un ou plusieurs de F,

W, Y et Z sont indépendamment H, F, CI, Br, un groupe alkyle de 1 à 5 atomes de carbone, NO2, alcoxy de 1 à 5 atomes de carbone, alkylthio de 1 à 5 atomes de carbone, OH, CF₃ ou NH₂;

m est 0 ou 1;

n est 0 ou 1: et

q est 0, 1 ou 2;

ou un sel pharmaceutiquement acceptable de ce composé; avec les conditions suivantes:

1) R5, R6 et R7 ne peuvent pas tous être H;

2) si R⁴ est CO₂CH₂CH₂N(CH₃)₂, R⁶ est CH₂CH₃ our R⁷ est Cl, R¹ ne peut pas être un groupe cyclohexyle; et

3) si R¹ est un groupe cyclohexyle et R³ est H, R⁵ doit être Cl ou F, mais R⁵ et R⁵ ne peuvent pas être tous deux Cl.

2. Une composition pharmaceutique antitumorale constituée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé répondant à la formule:

$$\begin{array}{c|c}
R^5 & R^4 \\
R^7 & R^8 & R^3
\end{array}$$

R¹ est un groupe cycloalkyle de 3 à 7 atomes de carbone; phényle; phényle substitué par un halogène, un groupe alkyle de 1 à 5 atomes de carbone ou CF3; phénoxy; ou phénoxy substitué par un halogène ou un groupe alkyle 1 à 5 atomes de carbone;

R3 est H ou un groupe alkyle de 1 à 3 atomes de carbone;

R⁴ est CO₂H ou son sel de sodium ou de potassium;

R⁵ et R⁶ sont indépendamment H, un halogène, CH₃ ou CF₃; et

R7 et R8 sont indépendamment H ou un halogène

ou un sel pharmaceutiquement acceptable de ce composé; avec la condition que R5, R6 et R7 ne peuvent pas tous être H et que si R¹ est un groupe cyclohexyle et R³ est H, R6 doit être Cl ou F, mais R6 et R8 peuvent pas être tous deux Cl.

3. Une composition pharmaceutique antitumorale constituée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 21.

4. Une composition pharmaceutique antitumorale constituée d'un support ou véhicule pharma ceutique approprié et d'au moins un composé de la revendication 22.

- 5. Une composition pharmaceutique antitumorale constituée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 23.
- 6. Une composition pharmaceutique antitumorale constituée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 24.
- 7. Une composition pharmaceutique antitumorale constituée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 25.
- 8. Une composition pharmaceutique antitumorale constituée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 26.
- 9. Une composition pharmaceutique antitumorale constituée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 27.
 - 10. Une composition pharmaceutique antitumorale constituée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 28.

(I)

11. Utilisation d'au moins un composé répondant à la formule:

$$\begin{array}{c|c}
R^{6} & R^{5} & R^{4} \\
R^{7} & R^{8} & R^{8}
\end{array}$$

dans laquelle

R est
$$\mathbb{R}^{1}$$
 , \mathbb{R}^{2}

25

$$S(0)_m R^1$$
 . R^1

40

45

$$\left(\bigcirc \right)^{\text{oc-R}^1} \quad \text{ou} \quad \left(\bigwedge_{X} \right)_{\mathbb{R}^1}$$

50

X est O, S(O), NH ou CH=N;

R¹ est un groupe CH₃CH₂(CH₃)CH, alkyle de 5 à 12 atomes de carbone, alcényle de 5 à 12 atomes de carbone, cycloalkyle de 3 à 7 atomes de carbone, cycloalkylalkyle de 5 à 12 atomes de carbone, cycloalkylalkyle de 5 à 12 atomes de carbone, cycloalkylalkyle de 5 à 7 atomes de carbone, cycloalkylalkyle de 5 à 7 atomes de carbone,

lorsque

R¹ peut être, de plus, un groupe alkyle de 3 ou 4 atomes de carbone;

R³ est H, une groupe alcoxy de 1 à 3 atomes de carbone, alkylthio de 1 à 3 atomes de carbone ou alkyle de 1 à 3 atomes de carbone facultativement substitué par un ou plusieurs de F, Cl, Br ou (CH₂)_pCOR¹⁰ où p

R4 est CO2H ou CO2R11;

10

25

30

35

45

R⁵, R⁶, R⁷ et R⁸ sont indépendamment H, F, Cl, Br, I, CH₃, CF₃, S(O), R¹² ou CH₂CH₃, au moins deux de R⁵, R⁶, R⁷ et R⁸ étant H;

R⁹ et R^{9A} sont indépendamment H ou un groupe alkyle de 1 à 3 atomes de carbone;

R¹⁰ est OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ ou N(CH₃)₂; R11 est (CH2)2-4NR9R9A

R¹² est un groupe alkyle de 1 à 5 atomes de carbone facultativement substitué par un ou plusieurs de F,

W, Y et Z sont indépendamment H, F, Cl, Br, un groupe alkyle de 1 à 5 atomes de carbone, NO2, alcoxy de 1 à 5 atomes de carbone, alkylthio de 1 à 5 atomes de carbone, OH, CF3 ou NH2; m est 0 ou 1;

n est 0 ou 1; et

q est 0, 1 ou 2;

ou un sel pharmaceutiquement acceptable de ce composé; avec les conditions suivantes:

1) R5, R6 et R7 ne peuvent pas tous être H;

2) si R⁴ est CO₂CH₂CH₂N(CH₃)₂, R⁶ est CH₂CH₃ ou R⁷ est Cl, R¹ ne peut pas être un groupe cyclohexyle; et 3) si R¹ est un groupe cyclohexyle et R³ est H, R6 doit être Cl ou F, mais R6 et R6 ne peuvent pas être tous deux CI, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

12. Utilisation d'au moins un composé répondant à la formule:

(II)

R¹ est un groupe cycloalkyle de 3 à 7 atomes de carbone; phenyle; phényle substitué par un halogène, un groupe alkyle de 1 à 5 atomes de carbone ou CF3; phénoxy; ou phénoxy substitué par un halogène ou un groupe alkyle 1 à 5 atomes de carbone;

R3 est H ou un groupe alkyle de 1 à 3 atomes de carbone;

R⁴ est CO₂H ou son sel de sodium ou de potassium;

R⁵ et R⁶ sont indépendamment H, un halogène, CH₃ ou CF₃; et

R7 et R8 sont indépendamment H ou un halogène ou un sel pharmaceutiquement acceptable de ce composé; avec la condition que R^s, R^s et R⁷ ne peuvent pas tous être H et que si R¹ est un groupe cyclohexyle et R³ est H, R6 doit être Cl ou F, mais R6 et R8 peuvent pas être tous deux CI, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

13. Utilisation d'au moins un composé de la revendication 21, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

14. Utilisation d'au moins un composé de la revendication 22, en une quantité inhibitrice de turneur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

15. Utilisation d'au moins un composé de la revendication 23, en une quantité inhibitrice de turneur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

16. Utilisation d'au moins un composé de la revendication 24, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

17. Utilisation d'au moins un composé de la revendication 25, en une quantité inhibitrice de turneur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

18. Utilisation d'au moins un composé de la revendication 26, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

19. Utilisation d'au moins un composé de la revendication 27, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

20. Utilisation d'au moins un composé de la revendication 28, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

21. Un composé répondant à la formule:

dans laquelle

15

R¹ est un groupe cycloalkyle de 3 à 7 atomes de carbone,

R3 est H ou un groupe alkyle de 1 à 3 atomes de carbone;

R4 est CO₂H ou son sel de sodium ou de potassium;

R⁵ et R⁶ sont indépendamment H, un halogène ou CF₃, avec la condition que R⁵ et R⁶ ne soient pas tous deux de l'hydrogène; et

W et Z sont indépendamment H, un halogène, un groupe alkyle de 1 à 5 atomes de carbone ou CF₃; avec la condition que si R¹ est un groupe phényle ou phénoxy et R⁵ est H, alors R⁶ ne peut pas être Br; et que si R¹ est un groupe cyclohexyle et R³ est H, R⁶ doit être Cl ou F.

22. Un composé de la revendication 21, dans lequel:

R¹ est un groupe phényle, phényle substitué par au moins un halogène ou groupe phénoxy, ou phénoxy substituté par au moins un halogène;

R³ est un groupe méthyle;

R5 est H ou Cl; et

R⁶ est F ou Cl.

23. Le composé de la revendication 21, qui est le sel de sodium ou de potassium de l'acide 2 - (1,1' diphényl - 4 - yl) - 6 - fluoro - 3 - méthyl - 4 - quinoléine-carboxylique.

24. Le composé de la revendication 21, qui est le sel de sodium ou de potassium de l'acide 6 - fluoro méthyl - 2 - (4 - phénoxyphényl) - 4 - quinoléine-carboxylique.

25. Le composé de la revendication 21, qui est le sel de sodium ou de potassium de l'acide 2 - (4' bromo - 1,1' - diphényl - 4 - yl) - 6 - fluoro - 3 - méthyl - 4 - quinoléine-carboxylique.

26. Le composé de la revendication 21, qui est le sel de sodium ou de potassium de l'acide 2 - (2' fluoro - 1,1' - diphényl - 4 - yl) - 6 - fluoro - 3 - méthyl - 4 - quinoléine-carboxylique.

27. Le composé de la revendication 21, qui est le sel de sodium ou de potassium de l'acide 2 - (1,1' diphényl - 4 - yl) - 5 - chloro - 6 - fluoro - 3 - méthyl - 4 - quinoléine-carboxylique.

28. Un composé répondant à la formule:

dans laquelle

R est
$$\mathbb{R}^{1}$$
 \mathbb{R}^{1} \mathbb{R}^{2} $\mathbb{R$

X est O, S(O)_q, NH ou CH=N;

R¹ est un groupe CH₃CH₂(CH₃)CH, alkyle de 5 à 12 atomes de carbone, alcényle de 5 à 12 atomes de carbone, cycloalkyle de 3 à 7 atomes de carbone, cycloalkylalkyle de 5 à 12 atomes de carbone, cyclo-

lorsque

35

40

50

55

60

R¹ peut être, de plus, un groupe alkyle de 3 ou 4 atomes de carbone;

R² est

R³ est H, une groupe alcoxy de 1 à 3 atomes de carbone, alkylthio de 1 à 3 atomes de carbone ou alkyle de 1 à 3 atomes de carbone facultativement substitué par un ou plusieurs de F, Cl, Br ou (CH₂)_pCOR¹⁰ où p

R4 est CO2H ou CO2R11;

R⁵, R⁶, R⁷ et R⁶ sont indépendamment H, F, Cl, Br, I, CH₃, CF₃, S(O)_nR¹² ou CH₂CH₃, au moins deux de R⁵, R⁶, R⁷ et R⁶ étant H;
R⁹ et R^{9A} sont indépendamment H ou un groupe alkyle de 1 à 3 atomes de carbone;

R¹⁰ est OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ ou N(CH₃)₂; R¹¹ est (CH₂)₂₋₄NR⁹R^{9A};

R¹² est un groupe alkyle de 1 à 5 atomes de carbone facultativement substitué par un ou plusieurs de F, Cl et Br;

W. Y et Z sont indépendamment H, F, Cl, Br, un groupe alkyle de 1 à 5 atomes de carbone, NO₂, alcoxy de 1 à 5 atomes de carbone, alkylthio de 1 à 5 atomes de carbone, OH, CF₃ ou NH₂; m est 0 ou 1;

n est 0 ou 1; et q est 0, 1 ou 2:

ou un sel pharmaceutiquement acceptable de ce composé; avec les conditions suivantes:

1) si R⁴ est CO₂H, R¹ est un groupe phényle ou phénoxy et R⁶, R⁷ et R⁸ sont H, R⁶ ne peut pas être Br;

2) R5, R6 et R7 ne peuvent pas tous être H;

3) si R⁴ est CO₂CH₂CH₂N(CH₃)₂, R⁶ est CH₂CH₃ our R⁷ est Cl, R¹ ne peut pas être un groupe cyclohexyle; 4) si R¹ est un groupe cyclohexyle et R³ est H, R⁵ doit être Cl ou F, mais R⁵ et Rª ne peuvent pas être tous

5) si R¹ est 4-H₂NC₆H₄ et R³ est H, R⁶ ne peut pas être Cl et R⁸ ne peut pas être Br;

6) si R¹ est un groupe alkyle de 6 atomes de carbone et Y est H, alors R⁴ ne peut pas être CO₂H, R⁵, R7 et R⁸ ne peuvent pas être H, et R⁶ neu peut pas être H, Cl, Br, I ou CH₂.

29. Un procédé pour préparer des composés de la revendication 28, caractérisé en ce qu'on fait réagir un acide quinoléine-carboxylique de la formule:

(a) iorsque R est OH, en acylant le groupe hydroxyle avec un halogénure carboxylique tel que le chlorure de benzoyle dans un solvant inerte tel que le chloroforme ou un solvant hydrocarboné tel que le benzène, à une température comprise entre 0°C et le point d'ébullition du solvant, facultativement en présence d'une base telle que la pyridine, ou (b) en faisant réagir l'acide quinoléine-carboxylique convenablement substitué avec un thiolate R¹²S approprié tel que MeSK dan sun solvant tel que le diméthylformamide à une température comprise entre 50°C et le point de reflux de solvant, ou (c) en dissolvant l'acide quinoléinecarboxylique dans un solvant protique tel que l'éthanol, et en traitant ensuite avec un oxyde ou hydroxyde de métal tel que l'oxyde ou l'hydroxyde de sodium ou de potassium ou une amine telle que le 1-aminobutanol ou la lysine à une température comprise entre 0°C et le point d'ébullition du solvant employé et en préparent facultativement un sel d'un groupe amino en dissolvant l'amine dans un solvant tel que l'éther d'éthyle et en ajoutant un acide minéral tel que HCl; ou (d) en traitant le sel, (c), par traitement avec un réactif tel que SOCI2 ou le chlorure d'oxalyle dans un solvant inerte tel que le benzène à une température comprise entre 25°C et le point d'ébullition du solvant employé pour former un halogénure d'acide, puis en ajoutant un alcool, R¹¹OH, dans un solvant tel que le tétrahydrofuranne à une température comprise entre 10°C et le point d'ébullition du solvant employé, facultativement en présence d'une base telle que la pyridine, la triéthylamine ou la 4-diméthylaminopyridine.

30. Un procédé pour préparer les composés de la revendication 28, consistant essentiellement (1) à faire réagir une isatine convenablement substitutée (IV) avec une cétone substitutée (V) dans un solvant tel que l'éthanol avec une base telle que la diéthylamine ou la triéthylamine à une température de 25°C à 50°C pendant 2 à 48 heures, (2) à dissoudre le composé intermédiaire (VI) résultant dans un solvant approprié tel que le tetrahydrofuranne contenant 25 à 50% en volume d'un acide minéral tel que HCl et chauffer entre 50°C et la température de reflux du mélange dissolvant pendant 2 à 48 heures, et, facultativement, à faire réagir encore l'acide quinoléine-carboxylique venant de (2) ci-dessus (a) en acylant le groupe hydroxyle correspondant, lorsque R est OH, avec un halogénure carboxylique tel que le chlorure de benzoyle dans un solvant inerte tel que le chloroforme ou un solvant hydrocarboné tel que le benzène à une température comprise entre 0°C et le point d'ébullition du solvant, facultativement en présence d'une base telle que la pyridine, ou (b) en faisant réagir l'acide quinoléine-carboxylique convenablement substitué avec un thiolate R¹²S approprié tel que MeSK dans un solvant tel que le diméthylformamide à une température comprise entre 50°C et la température de reflux du solvant, ou (c) en dissolvant l'acide quinoléinecarboxylique dans un solvant protique tel que l'éthanol, puis en traitant avec un oxyde ou hydroxyde de métal tel que l'oxyde ou l'hydroxyde de sodium ou de potassium, ou une amine telle que le 1-aminobutanol ou la lysine, à une température comprise entre 0°C et le point d'ébullition du solvant employé et en préparant facultativement un sel d'un groupe amino en dissolvant l'amine dans un solvant tel que l'éther d'éthyle et en ajoutant un acide minéral tel que HCl; ou (d) en traitant le sel, (c), par traitement avec un réactif tel que SOCI2 ou le chlorure d'oxalyle dans un solvant inerte tel que le benzène à une température comprise entre 25°C et le point d'ébullition du solvant employé pour former un halogénure d'acide, puis en ajoutant un alcool, R¹¹OH, dans un solvant tel que le tétrahydrofuranne à une température comprise entre 10°C et le point d'ébullition du solvant employé, facultativement en présence d'une base telle que la pyridine, la triéthylamine ou la 4-diméthylaminopyridine.

Revendications pour l'Etat contractant: AT

1. Procédé pour préparer une composition pharmaceutique antitumorale constitutée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé répondant à la formule:

$$\begin{array}{c|c}
R^{6} & R^{5} & R^{4} \\
R^{7} & R^{8} & R^{3}
\end{array}$$
(1)

15 dans laquelle

R est
$$\mathbb{R}^{1}$$
 \mathbb{R}^{1}

X est O, S(0)_q, NH ou CH=N; R³ est un groupe CH₂CH₂(CH₃)CH, alkyle de 5 à 12 atomes de carbone, alcényle de 5 à 12 atomes de carbone, cycloalkyle de 3 à 7 atomes de carbone, cycloalkylalkyle de 5 à 12 atomes de carbone, cycloalkyle de 5 à 7 atomes de carbone,

55 lorsque

R est
$$-\langle O \rangle_m R^1$$

60 R¹ peut êtré, de plus, un groupe alkyle de 3 ou 4 atomes de carbone;

R² est

R³ est H, un groupe alcoxy de 1 à 3 atomes de carbone, alkylthio de 1 à 3 atomes de carbone ou alkyle de 1 à 3 atomes de carbone facultativement substitué par un ou plusieurs de F, Cl, Br ou (CH₂), COR¹⁰ où p est 1, 2, 3 ou 4:

R4 est CO2H on CO2R11:

R⁵, R⁶, R⁷ et R⁶ sont indépendamment H, F, Cl, Br, I, CH₃, CF₃, S(O)_nR¹² ou CH₂CH₃, au moins deux de R⁵, R6, R7 et R8 étant H:

R° et R®A sont indépendamment H ou un groupe alkyle de 1 à 3 atomes de carbone;

R¹⁰ est OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ ou N(CH₃)₂;

R11 est (CH₂)2-4NR9R9A;

R¹² est un groupe alkyle de 1 à 5 atomes de carbone facultativement substitué par un ou plusieurs de F,

W, Y et Z sont indépendamment H, F, CI, Br, un groupe alkyle de 1 à 5 atomes de carbone, NO2, alcoxy 1 à 5 atomes de carbone, alkylthio de 1 à 5 atomes de carbone, OH, CF₃ ou NH₂;

m est 0 ou 1;

n est 0 ou 1; et

q est 0, 1 ou 2;

ou un sel pharmaceutiquement acceptable de ce composé; avec les conditions suivantes:

1) R5, R6 et R7 ne peuvent pas tous être H;

2) si R⁴ est CO₂CH₂CH₂N(CH₂)₂, R⁵ est CH₂CH₂ ou R7 est CI, R¹ ne peut pas être un groupe cyclohexyle; et 3) si R1 est un groupe cyclohexyle et R3 est H, R6 doit être Cl ou F, mais R6 et R6 ne peuvent pas être tous deux CI, qui consiste à mélanger au moins un composé avec un support pharmaceutique approprié.

2. Procédé pour préparer une composition pharmaceutique antitumorale constitutée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé répondant à la formule:

$$\begin{array}{c|c}
R^5 & R^4 \\
R^7 & R^8 & R^3
\end{array}$$
(11)

R1 est un groupe cycloalkyle de 3 à 7 atomes de carbone; phényle; phényle substitué par un halogène, un groupe alkyle de 1 à 5 atomes de carbone ou CF3; phénoxy; ou phénoxy substitué par un halogène ou un groupe alkyle de 1 à 5 atomes de carbone;

R³ est H ou un groupe alkyle de 1 à 3 atomes de carbone;

R4 est CO2H ou son sel de sodium ou de potassium;

et R⁶ sont indépendamment H, un halogène, CH₃ ou CF₃; et

R' et R' sont indépendamment H ou un halogène

ou un sel pharmaceutiquement acceptable de ce composé; avec la condition que R5, R6 et R7 ne peuvent pas tous être H et que si R1 est un groupe cyclohexyle et R2 est H, R6 doit être Cl ou F, mais R6 et R6 peuvent pas être tous deux Cl, qui consiste à mélanger au moins un composé et un support ou véhicule pharmaceutique approprié.

3. Procédé pour préparer une composition pharmaceutique antitumorale constitutée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 21, qui consiste à mélanger au moins un composé et un support ou véhicule pharmaceutique approprié.

4. Procédé pour préparer une composition pharmaceutique antitumorale constitutée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 22, qui consiste à mélanger au moins un composé et un support ou véhicule pharmaceutique approprié.

5. Procédé pour préparer une composition pharmaceutique antitumorale constitutée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 23, qui consiste à mélanger au moins un composé et un support ou véhicule pharmaceutique approprié.

6. Procédé pour préparer une composition pharmaceutique antitumorale constitutée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 24, qui consiste à mélanger au moins un composé et un support ou véhicule pharmaceutique approprié.

7. Procédé pour préparer une composition pharmaceutique antitumorale constitutée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 25, qui consiste à mélanger au moins un composé et un support ou véhicule pharmaceutique approprié.

8. Procédé pour préparer une composition pharmaceutique antitumorale constitutée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 26, qui consiste à

mélanger au moins un composé et un support ou véhicule pharmaceutique approprié. 9. Procédé pour préparer une composition pharmaceutique antitumorale constitutée d'un support ou

véhicule pharmaceutique approprié et d'au moins un composé de la revendication 27, qui consiste à mélanger au moins un composé et un support ou véhicule pharmaceutique approprié.

10. Procédé pour préparer une composition pharmaceutique antitumorale constitutée d'un support ou véhicule pharmaceutique approprié et d'au moins un composé de la revendication 28, qui consiste à mélanger au moins un composé et un support ou véhicule pharmaceutique approprié.

11. Utilisation d'au moins un composé répondant à la formule:

$$\begin{array}{c|c}
R^{6} & R^{5} & R^{4} \\
R^{7} & R^{8} & R^{3}
\end{array}$$

(I)

dans laquelle

10

15

20 .

25

R est
$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}

$$S(O)_m R^1$$
 . N_{p9}

$$- \underbrace{\bigcirc}_{NR}^{9} - C - R^{1} \qquad - \underbrace{\bigcirc}_{NR}^{1} - C - R^{9}$$

X est O, S(O), NH ou CH=N; R¹ est un groupe CH₂CH₂(CH₃)CH, alkyle de 5 à 12 atomes de carbone, alcényle de 5 à 12 atomes de carbone, cycloalkyle de 3 à 7 atomes de carbone, cycloalkylalkyle de 5 à 12 atomes de carbone, cycloalcényle de 5 à 7 atomes de carbone,

lorsque

50

R¹ peut être, de plus, un groupe alkyle de 3 ou 4 atomes de carbone;

R2 est .

 \mathbb{R}^3 est H, une groupe alcoxy de 1 à 3 atomes de carbone, alkylthio de 1 à 3 atomes de carbone ou alkylt de 1 à 3 atomes de carbone facultativement substitué par un ou plusieurs de F, Cl, Br ou (CH₂), COR¹⁰ où p

R4 est CO2H ou CO2R11;

 R^{5} , R^{6} , R^{7} et R^{6} sont indépendamment H, F, CI, Br, I, CH₃, CF₃, S(O)_n R^{12} ou CH₂CH₃, au moins deux de R^{6} , R6, R7 et R8 étant H;

R⁹ et R^{9A} sont indépendamment H ou un groupe alkyle de 1 à 3 atomes de carbone;

R¹⁰ est OH, OCH₃, OCH₂CH₃, NH₂, NHCH₃ ou N(CH₃)₂;

R11 est (CH2)2-4NR9R9A

R¹² est un groupe alkyle de 1 à 5 atomes de carbone facultativement substitué par un ou plusieurs de F,

W, Y et Z sont indépendamment H, F, Cl, Br, un groupe alkyle de 1 à 5 atomes de carbone, NO2, alcoxy de 1 à 5 atomes de carbone, alkylthio de 1 à 5 atomes de carbone, OH, CF3 ou NH2; m est 0 ou 1;

n est 0 ou 1; et

q est 0, 1 ou 2;

ou un sel pharmaceutiquement acceptable de ce composé; avec les conditions suivantes:

1) R⁵, R⁶ et R⁷ ne peuvent pas tous être H;

2) si R4 est CO2CH2CH2N(CH3)2, R6 est CH2CH3 ou R7 est Cl, R1 ne peut pas être un groupe cyclohexyle; et 3) si R¹ est un groupe cyclohexyle et R³ est H, R⁶ doit être Cl ou F, mais R⁶ et R⁶ ne peuvent pas être tous deux Cl, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de turneurs mammaires.

12. Utilisation d'au moins un composé répondant à la formule:

$$\begin{array}{c|c}
R^{6} & R^{5} & R^{4} \\
R^{7} & R^{8} & R^{3}
\end{array}$$
(11)

dans laquelle

35

. *50*

R¹ est un groupe cycloalkyle de 3 à 7 atomes de carbone; phényle; phényle substitué par un halogène, un groupe alkyle de 1 à 5 atomes de carbone ou CF3; phénoxy; ou phénoxy substitué par un halogène ou un groupe alkyle 1 à 5 atomes de carbone;

R3 est H ou un groupe alkyle de 1 à 3 atomes de carbone:

R⁴ est CO₂H ou son sel de sodium ou de potassium;

R⁵ et R⁶ sont indépendamment H, un halogène, CH₃ ou CF₃; et

R7 et R8 sont indépendamment H ou un halogène

ou un sel pharmaceutiquement acceptable de ce composé; avec la condition que R5, R6 et R7 ne peuvent pas tous être H et que si R¹ est un groupe cyclohexyle et R³ est H, R6 doit être Cl ou F, mais R6 et R6 peuvent pas être tous deux CI, en une quantité inhibitrice de turneur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

13. Utilisation d'au moins un composé de la revendication 21, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

14. Utilisation d'au moins un composé de la revendication 22, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

15. Utilisation d'au moins un composé de la revendication 23, en une quantité inhibitrice de turneur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

16. Utilisation d'au moins un composé de la revendication 24, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

17. Utilisation d'au moins un composé de la revendication 25, en une quantité inhibitrice de turneur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

18. Utilisation d'au moins un composé de la revendication 26, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

19. Utilisation d'au moins un composé de la revendication 27, en une quantité inhibitrice de tumeur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

20. Utilisation d'au moins un composé de la revendication 28, en une quantité inhibitrice de turneur pour la fabrication d'un médicament destiné à inhiber la croissance de tumeurs mammaires.

21. Un procédé pour préparer un composé répondant à la formule:

dans laquelle

R¹ est un groupe cycloalkyle de 3 à 7 atomes de carbone,

$$-\infty_z^w$$
 ou $-\infty_z^w$

R³ est H ou un groupe alkyle de 1 à 3 atomes de carbone;

R⁴ est CO₂H ou son sel de sodium ou de potassium;

R⁵ et R⁶ sont indépendamment H, un halogène ou CF₃, avec la condition que R⁵ et R⁶ ne soient pas tous deux de l'hydrogène; et

W et Z sont indépendamment H, un halogène, un groupe alkyle de 1 à 5 atomes de carbone ou CF₃; avec la condition que si R¹ est un groupe phényle ou phénoxy et R⁵ est H, alors R⁶ ne peut pas être Br; et que si R³ est un groupe cyclohexyle et R³ est H, R6 doit être Cl ou F, qui consiste (1) à faire réagir une isatine convenablement substitutée (IV) avec une cétone substitutée (V) dans un solvant tel que l'éthanol avec une base telle que la diéthylamine ou la triéthylamine à une température de 25°C à 50°C pendant 2 à 48 heures, (2) à dissoudre le composé intermédiaire (VI) résultant dans un solvant approprié tel que le tetrahydrofuranne contenant 25 à 50% en volume d'un acide minéral tel que HCl et chauffer entre 50°C et la température de reflux du mélange dissolvant pendant 2 à 48 heures, et, facultativement, à faire réagir encore l'acide quinoléine-carboxylique venant de (2) ci-dessus (a) en acylant le groupe hydroxyle correspondant, lorsque R est OH, avec un halogénure carboxylique tel que le chlorure de benzoyle dans un solvant inerte tel que le chloroforme ou un solvant hydrocarboné tel que le benzène à une temperature comprise entre 0°C et le point d'ébullition du solvant, facultativement en présence d'une base telle que la pyridine, ou (b) en faisant réagir l'acide quinoléine-carboxylique convenablement substitué avec un thiolate R¹2S approprié tel que MeSK dans un solvant tel que le diméthylformamide à une température comprise entre 50°C et la température de reflux du solvant, ou (c) en dissolvant l'acide quinoléinecarboxylique dans un solvant protique tel que l'éthanol, puis en traitant avec un oxyde ou hydroxyde de métal tel que l'oxyde ou l'hydroxyde de sodium ou de potassium, ou une amine telle que le 1-aminobutanol ou la lysine, à une température comprise entre 0°C et le point e'débullition du solvant employé et en préparant facultativement un sel d'un groupe amino en dissolvant l'amine dans un solvant tel que l'éther d'éthyle et en ajoutant un acide minéral tel que HCI; ou (d) en traitant le sel, (c), par traitement avec un réactif tel que SOCl₂ ou le chlorure d'oxalyle dans un solvant inerte tel que le benzène à une température comprise entre 25°C et le point d'ébullition du solvant employé pour former un halogénure d'acide, puis en ajoutant un alcool, R¹¹OH, dans un solvant tel que le tétrahydrofuranne à une température comprise entre 10°C et le point d'ébullition du solvant employé, facultativement en présence d'une base telle que la pyridine, la triéthylamine ou la 4-dimethylaminopyridine.

22. Un procédé de la revendication 21, dans lequel:

R¹ est un groupe phényle, phényle substitués par au moins un halogène ou groupe phénoxy, ou phénoxy substituté par au moins un halogène; R³ est un groupe méthyle;

R5 est H ou Cl; et

Re est F ou CL

23. Le procédé de la revendication 21, dans lequel le composé préparé est le sel de sodium ou de potassium de l'acide 2 - (1,1' - diphényl - 4 - yl) - 6 - fluoro - 3 - méthyl - 4 - quinoléine-carboxylique. 24. Le procédé de la revendication 21, dans lequel le composé préparé est le sel de sodium ou de potassium de l'acide 6 - fluoro - 3 - méthyl - 2 - (4 - phénoxyphényl) - 4 - quinolélne-carboxylique.

25. Le procédé de la revendication 21, dans lequel le composé préparé est le sel de sodium ou de potassium de l'acide 2 - (4' - bromo - 1,1' - diphényl - 4 - yl) - 6 - fluoro - 3 - méthyl - 4 - quinoléine-

26. Le procédé de la revendication 21, dans lequel le composé préparé est le sel de sodium ou de potassium de l'acide 2 - (2' - fluoro - 1,1' - diphényl - 4 - yl) - 6 - fluoro - 3 - méthyl - 4 - quinoléinecarboxylique.

27. Le procédé de la revendication 21, dans lequel le composé préparé est le sel de sodium ou de potassium de l'acide 2 - (1,1' - diphényl - 4 - yl) - 5 - chloro - 6 - fluoro - 3 - méthyl - 4 - quinoléinecarboxylique.

28. Procédé pour préparér un composé répondant à la formule:

$$\begin{array}{c|c}
R^{5} & R^{4} \\
R^{2} & R^{3}
\end{array}$$

dans laquelle

10

15

$$- \bigcirc NR^9 - C - R^1 \qquad - \bigcirc NR^1 - C - R^9$$

X est O, S(O)_e, NH ou CH=N; R¹ est un groupe CH₃CH₂(CH₃)CH, alkyle de 5 à 12 atomes de carbone, alcényle de 5 à 12 atomes de carbone, cycloalkyle de 3 à 7 atomes de carbone, cycloalkylalkyle de 5 à 12 atomes de carbone, cycloalcényle de 5 à 7 atomes de carbone,

60 lorsque

Rest
$$-\langle O \rangle_m R^1$$

R1 peut être, de plus, un groupe alkyle de 3 ou 4 atomes de carbone;

R2 est

R³ est H, un groupe alcoxy de 1 à 3 atomes de carbone, alkylthio de 1 à 3 atomes de carbone ou alkyle de 1 à 3 atomes de carbone facultativement substitué par un ou plusieurs de F, Cl, Br ou (CH2), COR10 où p est 1, 2, 3 ou 4;

R4 est CO2H ou CO2R11;

10

R⁵, R⁶, R⁷ et R⁶ sont indépendamment H, F, Cl, Br, I, CH₃, CF₃, S(O)_nR¹² ou CH₂CH₂, au moins deux de R⁶, R6, R7 et R8 étant H;

R⁹ et R^{9A} sont indépendamment H ou un groupe alkyle de 1 à 3 atomes de carbone;

R10 est OH, OCH3, OCH2CH3, NH2, NHCH3 ou N(CH3)2;

R11 est (CH2)2-4NR9R9A;

R¹² est un groupe alkyle de 1 à 5 atomes de carbone facultativement substitué par un ou plusieurs de F,

W, Y et Z sont indépendamment H, F, Cl, Br, un groupe alkyle de 1 à 5 atomes de carbone, NO_2 , alcoxy

de 1 à 5 atomes de carbone, alkylthio de 1 à 5 atomes de carbone, OH, CF₃ ou NH₂; m est 0 ou 1:

n est 0 ou 1; et

q est 0, 1 ou 2;

ou un sel pharmaceutiquement acceptable de ce composé; avec les conditions suivantes:

1) si R⁴ est CO₂H, R¹ est un groupe phényle ou phénoxy et R⁶, R⁷ et R⁶ sont H, R⁶ ne peut pas être Br;

2) R5, R6 et R7 ne peuvent pas tous être H;

3) si R⁴ est CO₂CH₂CH₂N(CH₃)₂, R⁸ est CH₂CH₃ ou R⁷ est Cl, R¹ ne peut pas être un groupe cyclohexyle; 4) si R1 est un groupe cyclohexyle et R3 est H, R6 doit être Cl ou F, mais R6 et R8 ne peuvent pas être tous

5) si R¹ est 4-H₂NC₀H₄ et R³ est H, R⁵ ne peut pas être Cl et R⁵ ne peut pas être Br;

6) si R¹ est un groupe alkyle de 6 atomes de carbone et Y est H, alors R⁴ ne peut pas être CO₂H, R⁵, R7 et R^a ne peuvent pas être H, et R^a neu peut pas être H, Cl, Br, I ou CH₃, caractérisé en ce qu'on fait réagir un acide quinoléine-carboxylique de la formule:

$$X^{1} \longrightarrow CO_{2^{H}} R^{3}$$

$$X_{2} \longrightarrow R$$

(a) lorsque R est OH, en acylant le groupe hydroxyle avec un halogenure carboxylique tel que le chlorure de benzoyle dans un solvent inerte tel que le chloroforme ou un solvent hydrocarboné tel que le benzène, à une température comprise entre 0°C et le point d'ébullition du solvant, facultativement en présence d'une base telle que la pyridine, ou (b) en faisant réagir l'acide quinoléine-carboxylique convenablement substitué avec un thiolate R12S approprié tel que MeSK dans un solvant tel que le diméthylformamide à une température comprise entre 50°C et le point de reflux de solvant, ou (c) en dissolvant l'acide quinoléine carboxylique dans un solvant protique tel que l'éthanol, et en traitant ensuite avec un oxyde ou hydroxyde de métal tel que l'oxyde ou l'hydroxyde de sodium ou de potassium ou une amine telle que le 1-aminobutanol ou la lysine à une température comprise entre 0°C et le point d'ébullition du solvant employé et en préparant facultativement un sel d'un groupe amino en dissolvant l'amine dans un solvant tel que l'éther d'éthyle et en ajoutant un acide minéral tel que HCl; ou (d) en traitant le sel, (c), par traitement avec un réactif tel que SOCI₂ ou le chlorure d'oxalyle dans un solvant inerte tel que le benzène à une température comprise entre 25°C et le point d'ébullition du solvant employé pour former un halogénure d'acide, puis en ajoutant un alcool, R¹¹OH, dans un solvant tel que le tétrahydrofuranne à une température comprise entre 10°C et le point d'ébullition du solvant employé, facultativement en présence d'une base telle que la pyridine, la triéthylamine ou la 4-diméthylaminopyridine.

29. Un procédé pour préparer les composés de la revendication 28, consistant essentiellement (1) à faire réagir une isatine convenablement substitutée (IV) avec une cétone substitutée (V) dans un solvant tel

que l'éthanol avec une base telle que la diéthylamine ou la triéthylamine à une température de 25°C à 50°C pendant 2 à 48 heures, (2) à dissoudre le composé intermédiaire (VI) résultant dans un solvant approprié tel que le tetrahydrofuranne contenant 25 à 50% en volume d'un acide minéral tel que HCl et chauffer entre 50°C et la température de reflux du mélange dissolvant pendant 2 à 48 heures, et, facultativement, à faire réagir encore l'acide quinoléine-carboxylique venant de (2) ci-dessus (a) en acylant le groupe hydroxyle correspondant, lorsque R est OH, avec un halogénure carboxylique tel que le chlorure de benzoyle dans un solvant inerte tel que le chloroforme ou un solvant hydrocarboné tel que le benzène à une température comprise entre 0°C et le point d'ébullition du solvant, facultativement en présence d'une base telle que la pyridine, ou (b) en falsant réagir l'acide quinoléine-carboxylique convenablement substitué avec un thiolate R12S approprié tel que MeSK dans un solvant tel que le diméthylformamide à une température comprise entre 50°C et la température de reflux du solvant, ou (c) en dissolvant l'acide quinoléinecarboxylique dans un solvant protique tel que l'éthanol, puis en traitant avec un oxyde ou hydroxyde de métal tel que l'oxyde ou l'hydroxyde de sodium ou de potassium, ou un amine telle que le 1-aminobutanol ou la lysine, à une température comprise entre 0°C et le point d'ébullition du solvant employé et en préparant facultativement un sel d'un groupe amino en dissolvant l'amine dans un solvant tel que l'éther d'éthyle et en ajoutant un acide minéral tel que HCI; ou (d) en traitant le sel, (c), par traitement avec un réactif tel que SOCI2 ou le chlorure d'oxalyle dans un solvant inerte tel que le benzène à une température comprise entre 25°C et le point d'ébullition du solvant employé pour former un halogénure d'acide, puis en ajoutant un alcool, R¹¹OH, dans un solvant tel que le tétrahydrofuranne à une température comprise entre 10°C et le point d'ébullition du solvant employé, facultativement en présence d'une base telle que la pyridine, la triéthylamine ou la 4-diméthylaminopyridine.