

Sistema de Detección de Emociones en Tiempo Real con Redes Neuronales

Ca<mark>mpu</mark>s Ciudad de México Escuela de Diseño, Ingeniería y Arquitectura Departamento de Mecatrónica IMT, Alejandro Salinas Medina A01338998 // IMT, Humberto Poblano Rosas A01338988

ASESORES:
Ing. Luis Alberto Curiel

Ing. Javier Izquierdo
Dr. Rogelio Bustamante Bello

Noviembre 15, 2018

INTRODUCCIÓN

Lo que se busca es mejorar la calidad de vida del usuario mediante el diagnóstico y la terapia no invasiva. El estado de ánimo impacta en el deterioro de la salud y la calidad de vida; de igual modo se plantea su integración para detección de las emociones en los auto inteligentes, como una variable a considerar en los sistemas de seguridad de este.

OBJETIVOS

Diseñar y desarrollar un sistema de inteligencia artificial capaz de det<mark>ermi</mark>nar el porcentaje de las 5 emociones básicas qu<mark>e un u</mark>suario presenta ante una cámara frontal.

OBJETIVOS ESPECÍFICOS

- Generar una data set de entrenamiento y de pruebas con los datos que nos proporcione el software de iMotion®
- Diseñar la arquitectura de red neuronal capaz de determinar las emociones de un sujeto.
- Determinar el porcentaje que presente el usuario de cada una de las 5 emociones básicas.

DESARROLLO

Balanceo de Datos

Procesamiento

Entrenamiento

RESULTADOS

0 10	20 30 40 50 60 70 80		
Sentimiento	Accuracy	Tiempo de entrenamiento	Error en prueba
		[min]	aleatoria
Joy	.9124	25	4.71%
Anger	.9047	30	10.8%
Sadness	.9050	34	6.74%
Surprise	.9140	37	2.01%
Fear	.9024	32	8.76%

CONCLUSIONES

Deep Learning en conjunto con los diseños mecatrónicos pueden ser la solución a muchos problemas contemporáneos y clave para la creación de nuevos sistemas híbridos inteligentes, capaces de interactuar con el humano en cualquier tipo de ambiente.

TRABAJO A FUTURO

- Aumentar los datos de entrenamiento
- Seguir robusteciendo la CNN
- Aplicaciones de domótica emocional e instrumentación de vehículos

Real Time Emotion Detector System with Neural Networks

Ca<mark>mpu</mark>s Ciudad de México Escuela de Diseño, Ingeniería y Arquitectura Departamento de Mecatrónica IMT, Alejandro Salinas Medina A01338998 // IMT Humberto Poblano Rosas A01338988

ADVISER: Ing. Luis Alberto Curiel Ing. Javier Izquierdo Dr. Rogelio Bustamante Bello

Noviembre 15, 2018

INTRODUCTION

What we are looking for is to improve the user's life quality by the diagnosis and a non-invasive therapy.

The mood has an impact in the health's deterioration and life quality, in the same way its integration is proposed to detect emotions in smart cars, as a variable to be considered in the security systems of this.

OBJECTIVES

Design and develop an artificial intelligence system which will be able to determine the percentage of the 5 main emotions that the user has in front of a camara.

SPECIFIC OBJECTIVES

- Generate a training data-set with the data obtain in the iMotion® software.
- Design the architecture of a neural network capable of determine the emotions in a subject.
- Determine the percentage for each of the 5 main emotions that the user may present.

DEVELOPMENT

Preprocessing

Data Balance

Training

RESULTS

Emotion	Accuracy	Training Time	Error in random
		[min]	test
Joy	.9124	25	4.71%
Anger	.9047	30	10.8%
Sadness	.9050	34	6.74%
Surprise	.9140	37	2.01%
Fear	.9024	32	8.76%

CONCLUSIONS

Deep learning with mechatronic design can be the solution for contemporary problems and may be the key for the develop of hibrid-smart system capable to interact with human being in several environments.

FUTURE WORK

- Increase our training data-set
- keep developing our CNN
- Apliances in emotional domotics and automotive instrumentation

