Ejercicios de la sección 4.1 Definición y propiedades básicas de los determinantes

(Para hacer en clase: 2, 10, 17, 19, 21, 25, 35.) (Con solución o indicaciones: 1, 9, 16, 18, 20, 22, 36.)

Halla los determinantes de los ejercicios 1 a 8 mediante \bullet 16. $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} c \\ a \end{pmatrix}$ un desarrollo por cofactores en la fila o columna según te parezca mejor. Indica claramente cuál es la fila o columna utilizada.

▶1.
$$\begin{vmatrix} 3 & 0 & 4 \\ 2 & 3 & 2 \\ 0 & 5 & -1 \end{vmatrix}$$

▶2.
$$\begin{vmatrix} 0 & 5 & 1 \\ 4 & -3 & 0 \\ 2 & 4 & 1 \end{vmatrix}$$

3.
$$\begin{vmatrix} 2 & -4 & 3 \\ 3 & 1 & 2 \\ 1 & 4 & -1 \end{vmatrix}$$

4.
$$\begin{vmatrix} 1 & 3 & 5 \\ 2 & 1 & 1 \\ 3 & 4 & 2 \end{vmatrix}$$

5.
$$\begin{vmatrix} 2 & 3 & -4 \\ 4 & 0 & 5 \\ 5 & 1 & 6 \end{vmatrix}$$

$$\mathbf{6.} \begin{vmatrix} 5 & -2 & 4 \\ 0 & 3 & -5 \\ 2 & -4 & 7 \end{vmatrix}$$

7.
$$\begin{vmatrix} 4 & 3 & 0 \\ 6 & 5 & 2 \\ 9 & 7 & 3 \end{vmatrix}$$

8.
$$\begin{vmatrix} 8 & 1 & 6 \\ 4 & 0 & 3 \\ 3 & -2 & 5 \end{vmatrix}$$

Halla los determinantes de los ejercicios 9 a 11 mediante un desarrollo por cofactores eligiendo en cada paso una fila o columna que implique realizar el menor número posible de operaciones.

▶10.
$$\begin{pmatrix} 1 & -2 & 5 & 2 \\ 0 & 0 & 3 & 0 \\ 2 & -6 & -7 & 5 \\ 5 & 0 & 4 & 4 \end{pmatrix}$$

11.
$$\begin{pmatrix} 3 & 5 & -8 & 4 \\ 0 & -2 & 3 & -7 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

En los ejercicios 12 a 15 usa la regla de Sarrus para calcular los determinantes indicados. Atención: Esta regla sólo es válida para matrices 3×3 y no tiene ninguna generalización razonable para matrices 4×4 o mayores.

12.
$$\begin{vmatrix} 3 & 0 & 4 \\ 2 & 3 & 2 \\ 0 & 5 & -1 \end{vmatrix}$$

$$\begin{array}{c|cccc}
\mathbf{13.} & 0 & 5 & 1 \\
4 & -3 & 0 \\
2 & 4 & 1
\end{array}$$

$$\begin{array}{c|cccc}
\mathbf{14.} & 2 & -4 & 3 \\
3 & 1 & 2 \\
1 & 4 & -1
\end{array}$$

15.
$$\begin{vmatrix} 1 & 3 & 5 \\ 2 & 1 & 1 \\ 3 & 4 & 2 \end{vmatrix}$$

En los ejercicios 16 a 21 investiga el efecto de una operación elemental de filas sobre el valor del determinante de una matriz. En cada caso, indica la operación elemental realizada y explica cómo afecta al determinante.

▶16.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} c & d \\ a & b \end{pmatrix}$$

▶17.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ kc & kd \end{pmatrix}$$

▶18.
$$\begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix}$$
 \mapsto $\begin{pmatrix} 3 & 4 \\ 5+3k & 6+4k \end{pmatrix}$

▶19.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a+kc & b+kd \\ c & d \end{pmatrix}$$

▶20.
$$\begin{pmatrix} 1 & 1 & 1 \\ -3 & 8 & -4 \\ 2 & -3 & 2 \end{pmatrix} \mapsto \begin{pmatrix} k & k & k \\ -3 & 8 & -4 \\ 2 & -3 & 2 \end{pmatrix}$$

▶21.
$$\begin{pmatrix} a & b & c \\ 3 & 2 & 2 \\ 6 & 5 & 6 \end{pmatrix}$$
 \mapsto $\begin{pmatrix} 3 & 2 & 2 \\ a & b & c \\ 6 & 5 & 6 \end{pmatrix}$

Halla los determinantes de las matrices elementales dadas en los ejercicios 22 a 27.

▶22.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{pmatrix}$$
. 23. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{pmatrix}$. 24. $\begin{pmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

▶25.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. 26. $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. 27. $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

Usa los ejercicios 22 a 27 para contestar razonadamente las preguntas de los ejercicios 28 y 29.

28. ¿Cuál es el determinante de una matriz elemental de reemplazo de filas?

29. ¿Cuál es el determinante de una matriz elemental de reescalado que tiene el número k en la diagonal?

En los ejercicios 30 a 33, comprueba que det(EA) = $(\det E)(\det A)$, donde E es la matriz elemental que se muestra y $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

30.
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

31.
$$\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$$
.

32.
$$\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$$
.

33.
$$\begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}$$

34. Sea
$$A = \begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix}$$
. Calcula $5A$. ¿Es $\det(5A) = 5 \det A$?

▶35. Sean $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ y k un número. Halla una fórmula que relacione det(kA) con k y det A.

- ▶36. Sea A una matriz $n \times n$. Para cada una de las siguientes afirmaciones indica si es verdadera o falsa. Justifica tus respuestas.
 - (a) Un determinante de una matriz $n \times n$ puede calcularse usando determinantes de submatrices de orden $(n-1) \times (n-1)$.
 - (b) El cofactor (i, j) de una matriz A es la matriz A_{ij} que se obtiene al eliminar de A su i-ésima fila y su j-ésima columna.
 - (c) El desarrollo por cofactores de A bajando por una columna da un resultado opuesto al que se obtiene mediante el desarrollo por cofactores a lo largo de una fila.
- (d) El determinante de una matriz triangular es la suma de los elementos de su diagonal principal.
- **37.** Sean $\mathbf{u} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ y $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Calcula el área del paralelogramo cuyos vértices son $\mathbf{0}$, \mathbf{u} , \mathbf{v} , y $\mathbf{u} + \mathbf{v}$. Halla el determinante de la matriz $[\mathbf{u} \ \mathbf{v}] = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$. ¿Qué diferencia hay entre los dos resultados? Reemplaza el primer elemento de \mathbf{v} por un número indeterminado x, y repite el problema. Haz un dibujo que explique tus resultados.
- **38.** Sean $\mathbf{u} = \begin{pmatrix} a \\ b \end{pmatrix}$ y $\mathbf{v} = \begin{pmatrix} c \\ 0 \end{pmatrix}$ donde a, b y c son positivos (por simplificar). Calcula el área del paralelogramo cuyos vértices son \mathbf{u} , \mathbf{v} , $\mathbf{u} + \mathbf{v}$, y **0**. Halla los determinantes de las matrices [\mathbf{u} v] y [\mathbf{v} u]. Haz un dibujo que explique tus

Pistas y soluciones de ejercicios seleccionados de la sección 4.1

1. 1.

9. 10.

16. $\det \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) = ad - bc$, $\det \left(\begin{smallmatrix} c & d \\ a & b \end{smallmatrix} \right) = cb - ad = -\det \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right)$. Un intercambio de filas cambia el signo del determinante.

18. $\det \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix} = -2$, $\det \begin{pmatrix} 3 & 4 \\ 5 & 3k & 6+4k \end{pmatrix} = 18 + 12k - (20 + 12k) = -2$. Una operación elemental de reemplazo no cambia el valor de un determinante.

20. $\det\begin{pmatrix} 1 & 1 & 1 \\ -3 & 8 & -4 \\ 2 & -3 & 2 \end{pmatrix} = -5$, $\det\begin{pmatrix} k & k & k \\ -3 & 8 & -4 \\ 2 & -3 & 2 \end{pmatrix} = -5k$. Multiplicar una fila por un número multiplica el determinante por ese número.

22. 1.

36. (a) Esto es lo que ocurre en el desarrollo de un determinante por cofactores de una fila o columna, (b) Esa matriz A_{ij} es el menor del elemento en posición (i,j). El cofactor es el determinante de esa matriz multiplicado por ± 1 según el caso), (c) Da el mismo resultado porque el determinante de una matriz es igual al de su traspuesta, (d) Es el producto, no la suma.