Inviscid Burgers Equation Notes

Strong form:

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u^2}{\partial x} = 0$$

Space-time divergence form:

$$\nabla_{xt} \cdot \left(\begin{array}{c} \frac{1}{2}u^2 \\ u \end{array} \right) = 0$$

Integrate by Parts, then Linearize

Ultra-weak form:

$$-\left(\begin{pmatrix} \frac{1}{2}u^2 \\ u \end{pmatrix}, \nabla_{xt}v \right) + \langle \hat{t}, v \rangle = 0$$

where
$$\hat{t} = \begin{pmatrix} \frac{1}{2}u^2 \\ u \end{pmatrix} \cdot \boldsymbol{n}_{xt}$$
.

Linearized form:

$$-\left(\left(\begin{array}{c} \tilde{u}\Delta u \\ \Delta u \end{array} \right), \nabla_{xt}v \right) + \left\langle \hat{t}, v \right\rangle = \left(\left(\begin{array}{c} \frac{1}{2}\tilde{u}^2 \\ \tilde{u} \end{array} \right), \nabla_{xt}v \right)$$

I don't see a way of relating the definition of \hat{t} as a linear term of Δu . As the background flow, \tilde{u} converges to the exact solution, Δu converges to zero. Ideally, for a converged solution, $\hat{t} = \begin{pmatrix} \frac{1}{2}\tilde{u}^2 \\ \tilde{u} \end{pmatrix} \cdot \boldsymbol{n}_{xt}$, but the current LinearTerm code does not allow this possibility.

Linearize, then Integrate by Parts

Linearized form:

$$\left(\nabla_{xt} \cdot \left(\begin{array}{c} \tilde{u}\Delta u \\ \Delta u \end{array}\right), v\right) = -\left(\nabla_{xt} \cdot \left(\begin{array}{c} \frac{1}{2}\tilde{u}^2 \\ \tilde{u} \end{array}\right), v\right)$$

Ultra-weak form:

$$-\left(\begin{pmatrix}\tilde{u}\Delta u\\\Delta u\end{pmatrix},\nabla_{xt}v\right) + \left\langle\Delta\hat{t},v\right\rangle = \left(\begin{pmatrix}\frac{1}{2}\tilde{u}^2\\\tilde{u}\end{pmatrix},\nabla_{xt}v\right) - \left\langle\tilde{t},v\right\rangle$$
 where $\Delta\hat{t} = \operatorname{tr}\begin{pmatrix}\tilde{u}\Delta u\\\Delta u\end{pmatrix} \cdot \boldsymbol{n}_{xt}$ and $\tilde{t} = \operatorname{tr}\begin{pmatrix}\frac{1}{2}\tilde{u}^2\\\tilde{u}\end{pmatrix} \cdot \boldsymbol{n}_{xt}$.