A Terrace for \mathbb{R}

Definition. Let G be a group of order 2^{\aleph_0} that has no involutions and identity element e. For a bijection $\mathbf{a}: \mathbb{R} \longrightarrow G$ define a function $\mathbf{a}_{(d)}: \mathbb{R} \longrightarrow G \setminus \{e\}$ for each $d \in \mathbb{R}^+$ by

$$\mathbf{a}_{(d)}(i) = \mathbf{a}(i)^{-1}\mathbf{a}(i+d).$$

If each $\mathbf{a}_{(d)}$ is a bijection then \mathbf{a} is a directed T_{∞} -terrace for G.

If instead we have that $A \subseteq \mathbb{R}$ is countable, and $\mathbf{a}: A \longrightarrow G$ and $\mathbf{a}_{(d)}: A_{(d)} \longrightarrow G$ are injections for each $d \in \mathbb{R}^+$, where $A_{(d)} = \{a \in A \mid a+d \in A\}$, we say that \mathbf{a} a countable partial directed T_{∞} -terrace on G and we call each $\mathbf{a}_{(d)}$ the partial $T_{(d)}$ -sequencing corresponding to \mathbf{a} .

Theorem 1. Assume CH. The group $(\mathbb{R},+)$ has a directed T_{∞} -terrace $\mathbf{g}:\mathbb{R}\longrightarrow\mathbb{R}$.

Proof. Consider the poset \mathbb{P} consisting of conditions which are countable partial directed T_{∞} -terraces on \mathbb{R} partially ordered so that $\mathbf{a} \leq \mathbf{b}$ (following convention in set theory, we say \mathbf{a} is stronger than \mathbf{b}) if and only if dom $\mathbf{b} \subseteq \text{dom } \mathbf{b}$ and $\mathbf{a} \upharpoonright \text{dom } \mathbf{b} = \mathbf{b}$.

It is not hard to see that \mathbb{P} is countably closed. Suppose we have an decreasing chain of countable partial directed T_{∞} -terraces, \mathbf{a}_n for $n \in \mathbb{N}$, on \mathbb{R} . Then the union of all of them, \mathbf{a} , is a countable partial directed T_{∞} -terrace on \mathbb{R} . Indeed, \mathbf{a} is a bijection since each \mathbf{a}_n in the chain is. For each $d \in \mathbb{R}^+$, we have that $\mathbf{a}_{(d)}$ is injective since dom $\mathbf{a}_{(d)} \subseteq \text{dom } \mathbf{a}$. Moreover $\mathbf{a}_{(d)}$ is a surjection since if $\mathbf{a}_{(d)}(i) = \mathbf{a}_{(d)}(j)$ then it must be that for some $n, m \in \mathbb{N}$, say $n \leq m$, we have that $\mathbf{a}_n(i+d) - \mathbf{a}_n(i) = \mathbf{a}_m(j+d) - \mathbf{a}_m(j)$, but this would imply that i = j since then $\mathbf{a}_m \leq \mathbf{a}_n$ and \mathbf{a}_m is surjective.

Need to establish:

1. It is dense to add a real number r to the domain of a condition in \mathbb{P} : i.e., for each $r \in \mathbb{R}$, the set $D_r = \{\mathbf{d} \in \mathbb{P} \mid r \in \text{dom } \mathbf{d}\}$ is dense.

To see this, let $\mathbf{a} \in \mathbb{P}$ with domain A. Choose $r \in \mathbb{R} \setminus A$. We need to find $\mathbf{d} \in D_r$ satisfying $\mathbf{d} \leq \mathbf{a}$. In order to find such a \mathbf{d} , first we must ensure that $\mathbf{d}(r) \neq \mathbf{a}(i)$ for each $i \in A$.

Secondly, we must ensure the T_d -sequencings for \mathbf{d} are bijections. This amounts to ensuring that for each pair $i, i + d \in A$,

$$\mathbf{a}(i+d) - \mathbf{a}(i) \neq \mathbf{a}(r+d) - \mathbf{d}(r)$$

 $\neq \mathbf{d}(r) - \mathbf{a}(r-d)$

If r - d and/or r + d happen to be in A.

As A and the ranges of \mathbf{a} and $\mathbf{a}_{(d)}$ are countable, the set of values to rule out for $\mathbf{d}(r)$ is at most countable, and we just need to make sure it's not one of those values. As \mathbb{R} is uncountable, this can be done.

2. It is dense to add a real number r to the range of a condition in \mathbb{P} : i.e., for each $r \in \mathbb{R}$, the set $E_r = \{\mathbf{e} \in \mathbb{P} \mid r \in \text{range } \mathbf{e}\}$ is dense.

Again the idea should be that we only have to avoid countably many scenarios, but we have room in \mathbb{R} for that. Suppose $r \in \mathbb{R} \setminus \text{range } \mathbf{a}$. We need to find $\mathbf{e} \in E_r$

satisfying $\mathbf{e} \leq \mathbf{a}$. This amounts to finding $\overline{r} \notin A = \text{dom } \mathbf{a}$ so that we can let $\mathbf{d}(\overline{r}) = r$, satisfying $\overline{r} \notin A_{(d)}$ for whenever $A_{(d)}$ is nonempty.

Both A and $A_{(d)} \subseteq A$ are countable, so this can be done.

- 3. For each $d \in \mathbb{R}^+$ it is dense to add a real number r to the domain of a condition's partial $T_{(d)}$ -sequencing: This is captured by 1., since we may add both r and d+r to the domain of a condition.
- 4. For each $d \in \mathbb{R}^+$ it is dense to add a real number r to the range of a condition's partial $T_{(d)}$ -sequencing: In other words, we would like to show that for each $r \in \mathbb{R}$ and each $d \in \mathbb{R}^+$, the set $F_r^d = \{\mathbf{f} \in \mathbb{P} \mid r \in \text{range } \mathbf{f}_{(d)}\}$ is dense in \mathbb{P} .

To see this, fix $d \in \mathbb{R}^+$ and let $r \in \mathbb{R}$. Let $\mathbf{a} \in \mathbb{P}$, and suppose that $r \notin \text{range } \mathbf{a}_{(d)}$. We want to see that it is possible to extend \mathbf{a} to a condition $\mathbf{f} \in F_r^d$ such that $r = \mathbf{f}(\overline{r} + d) - \mathbf{f}(\overline{r})$ for some $\overline{r} \in \mathbb{R}$. This amounts to finding a suitable \overline{r} . First we need \overline{r} to be so that neither \overline{r} nor $\overline{r} + d$ are in $A = \text{dom } \mathbf{a}$. Then we need to ensure that $\mathbf{f}(\overline{r}), \mathbf{f}(\overline{r} + d) \notin \text{range } \mathbf{a}$, and also that $r = \mathbf{f}(\overline{r} + d) - \mathbf{f}(\overline{r})$.

It must also be the case that for any $i \in A$, we have that

$$\mathbf{f}(\overline{r}) - \mathbf{a}(i) \notin \text{range } \mathbf{a}_{(\overline{r}-i)}, \ \mathbf{a}(i) - \mathbf{f}(r) \notin \text{range } \mathbf{a}_{(i-\overline{r})},$$

$$\mathbf{f}(\overline{r}+d) - \mathbf{a}(i) \notin \text{range } \mathbf{a}_{(\overline{r}+d-i)}, \ \mathbf{a}(i) - \mathbf{f}(\overline{r}+d) \notin \text{range } \mathbf{a}_{(i-\overline{r}-d)}.$$

Moreover, we can't inadvertently mess up another sequencing. In particular, whenever we have that $\overline{r} + l, \overline{r} + d + l \in \text{dom } A$, we must have that

$$\mathbf{a}(\overline{r}+l) - \mathbf{f}(\overline{r}) \neq \mathbf{a}(\overline{r}+d+l) - \mathbf{f}(\overline{r}+d),$$

meaning that

$$r = \mathbf{f}(\overline{r} + d) - \mathbf{f}(\overline{r}) \neq \mathbf{a}(\overline{r} + d + l) - \mathbf{a}(\overline{r} + l).$$

This contradicts $r \notin \text{range } \mathbf{a}_{(d)}$. Dually, we need that whenever $\overline{r} - l, \overline{r} - d - l \in \text{dom } A$, we must have that

$$\mathbf{f}(\overline{r}) - \mathbf{a}(\overline{r} - l) \neq \mathbf{f}(\overline{r} + d) - \mathbf{a}(\overline{r} + d - l),$$

which again contradicts $r \notin \text{range } \mathbf{a}_{(d)}$.

Since we have only eliminated countably many options, as we are restricted by A and its image under \mathbf{a} , we have plenty of room to choose such an \overline{r} as desired.

Now that we have verified these collections sets are dense, we may find a filter $\mathcal{G} \subseteq \mathbb{P}$ which meets the family of dense sets

$$\mathcal{D} = \{ D_r \mid r \in \mathbb{R} \} \cup \{ E_r \mid r \in \mathbb{R} \} \cup \left\{ F_r^d \mid d \in \mathbb{R}^+, r \in \mathbb{R} \right\}$$

because $|\mathcal{D}| = \aleph_1$ as CH holds, and since the forcing axiom for countably closed forcing is true.

To see why such a filter can be built, simply construct a sequence of \mathbf{g}_{α} 's by transfinite induction, enabling the filter to be defined by

$$\mathcal{G} = \{ \mathbf{f} \in \mathbb{P} \mid \mathbf{f} \geq \mathbf{g}_{\alpha} \text{ for some } \alpha < \omega_1 \}.$$

The idea is to start meeting each of the dense sets in \mathcal{D} one-by-one, ensuring that the filter is closed downward. Enumerate the dense sets as $\mathcal{D} = \langle \mathcal{D}_{\alpha} \mid \alpha < \omega_1 \rangle$. Let $\mathbf{g}_0 \in \mathcal{D}_0$. Then at stage $n \leq \omega$, let $\mathbf{g}_n \leq \mathbf{g}_{n-1}$ satisfy $\mathbf{g}_n \in \mathcal{D}_n$. Density allows us to continue the construction through all successor stages. At limit stages, say $\lambda < \omega_1$, we use the fact that \mathbb{P} is countably closed to find a condition strengthening the chain of our constructed \mathbf{g}_{α} s for $\alpha < \gamma$, and then strengthen this condition to obtain $\mathbf{g}_{\lambda} \in \mathcal{D}_{\lambda}$.

By construction, $\cup G$ defines a function $\mathbf{g}: \mathbb{R} \longrightarrow \mathbb{R}$ with the desired properties.

- 1. **g** is a bijection: This is ensured by meeting, for each $r \in \mathbb{R}$, the dense sets D_r for injectivity and for meeting E_r for each $r \in \mathbb{R}$ for surjectivity.
- 2. For each $d \in \mathbb{R}^+$, $\mathbf{g}_{(d)}$ is a bijection: This is ensured by item 3. above and the dense sets F_r^d for each $r \in \mathbb{R}$.

Corollary 1. If CH holds, there is a Vatican square on \mathbb{R} .

Corollary 2. There is a real-preserving forcing which adds a Vatican square on \mathbb{R} .

Question 1. Let G be an abelian group of size continuum with continuum-many non-involutions. Does G have a directed T_{∞} -terrace?

The answer is yes. See Matt's note.

Theorem 2. Let G be an abelian group of size \aleph_1 with \aleph_1 -many non-involutions. Then G has a directed T_{∞} -terrace.

Question 2. Can we force to add a terrace of size \aleph_{n+1} given that there is a partial terrace of size \aleph_n ?

Poset would consist of partial terraces, as usual, and should be $\langle \aleph_{n+1}$ -closed, so that no new elements are added to the group of size \aleph_{n+1} .