# 0 Basic Math Fundamentals

# 0.1 Linear Algebra

# Transponse:

$$(AB)^T = B^T A^T (A^T)^T = A (A+B)^T = A^T + B^T$$

#### Trace

$$A \in \mathbb{R}^{n \times n}$$
:  $\mathrm{Tr} A = \sum_{i=1}^n A_{ii}$ ,  $\mathrm{Tr} A = \mathrm{Tr} A^T$ 

$$a = \text{Tr}(a)$$
 for  $a \in \mathbb{R}$ ,  $\text{Tr}ABC = \text{Tr}BCA = \text{Tr}CAB$ 

$$\frac{\partial}{\partial A} \operatorname{Tr}(AB) = B^T$$

#### **Determinant:**

$$\det(AB) = \det(A) \det(B) \quad \frac{\partial}{\partial A} (\log (\det X)) = (X^{-1})^T$$
$$\log (\det A) = -\log (\det A^{-1}) \quad \det(kA) = k^N \det(A)$$

#### Norms:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} \quad with \ p > 1$$

#### Inverse:

$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1} \qquad (A^{-1})^T = (A^T)^{-1}$$
  
 $A^{-1}$  exists  $\Leftrightarrow rank(A)$  is full  $\Leftrightarrow \det(A) \neq 0 \Leftrightarrow \forall \lambda_i : \lambda_i \neq 0$ 

#### **Matrix-Sum Notation:**

$$x^{T}Ax = \sum_{i=1}^{n} x_{i}(Ax)_{i} = \sum_{i=1}^{n} x_{i} \left( \sum_{j=1}^{n} A_{ij}x_{j} \right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}x_{i}x_{j}$$

# **Positive and Negative Definiteness:**

PD:  $x^T A x > 0$  PSD:  $x^T A x \ge 0$ 

ND:  $x^T A x < 0$  NSD:  $x^T A x \le 0$ 

# **Hessian:**

$$\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\ \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}} \end{bmatrix}$$

Hessian of non-symmetric matrix:  $f(x) = x^T A x$ 

$$H_f = \frac{1}{2}(A + A^T)$$

# Lagrangian:

$$\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda g(x, y)$$

$$\nabla_{x, y, \lambda} \mathcal{L}(x, y, \lambda) = 0$$

#### **Jacobian and Gradient:**

$$\boldsymbol{J}_{a} = \frac{\partial \boldsymbol{a}}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial a_{1}}{\partial x_{1}} & \frac{\partial a_{1}}{\partial x_{2}} & \cdots & \frac{\partial a_{i}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial a_{m}}{\partial x_{1}} & \frac{\partial a_{m}}{\partial x_{2}} & \cdots & \frac{\partial a_{m}}{\partial x_{n}} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

$$\nabla_x c = \frac{\partial c}{\partial x} = \frac{\partial c}{\partial a} \frac{\partial a}{\partial x} = \left(\frac{\partial a}{\partial x}\right)^T \nabla_a c \text{ with } \left[\frac{\partial a}{\partial x}\right]_{ij} = \frac{\partial a_i}{\partial x_j}$$

$$\nabla_a c = \left(\frac{\partial c}{\partial a}\right)^T = \left[\frac{\partial c}{\partial a_1} \quad \dots \quad \frac{\partial c}{\partial a_m}\right]^T \in \mathbb{R}^m$$

# 0.2 Probability Theory

Bayes' Theorem: 
$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B)}$$

**Independence:**  $P(A \cap B) = P(A)P(B)$ 

# Marginalization:

$$p(a) = \int \int p(a,b,c)db \ dc$$



#### Mean and Variance:

Mean: 
$$\mathbb{E}[f] = \sum_{x} p(x) f(x) = \int p(x) f(x) dx$$

 $\mathbb{E}$  is a lin. operator. For scalar x:  $\mathbb{E}[x] = \mathbb{E}[tr(x)] = tr(\mathbb{E}[x])$ 

Law of iterated expectations:  $\mathbb{E}_{z \sim p(z)} \left[ \mathbb{E}_{x \sim p(x|z)} [x|z] \right]$ 

Variance: 
$$\operatorname{Var}[f] = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2]$$
  
=  $\mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$ 

$$Var[A] + Var[B] = Var[A + B]$$

Covariance:  $Cov[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X] E[Y]$ 

# **Chain Rule:**

$$P(A,B|C) = P(A|B,C) \cdot P(B|C) = P(B|A,C) \cdot P(A|C)$$

$$P(A,B|C) = \frac{P(A,B,C)}{P(C)} = P(A|B,C) \cdot P(B|C)$$

# 1 K-Nearest Neighbor Classification

# **Indicator Variable:**

$$\mathbb{I}(e) = \begin{cases} 1 & \text{if } e \text{ is true} \\ 0 & \text{if } e \text{ is } false \end{cases}$$

# Most probable class label $\hat{y}$ :

$$\hat{y} = \arg\max_{c} p(y = c \mid x, k)$$

#### **Classification:**

$$p(y = c \mid x, k) = \frac{1}{k} \sum_{i \in \mathcal{N}_k(x)} \mathbb{I}(y_i = c)$$

# Weighted Classification:

$$p(y = c \mid x, k) = \frac{1}{Z} \sum_{i \in \mathcal{N}_k(x)} \frac{1}{d(x, x_i)} \mathbb{I}(y_i = c)$$

With 
$$Z = \sum_{i \in \mathcal{N}_k(x)} \frac{1}{d(x,x_i)}$$

# Regression:

$$\hat{y} = \frac{1}{Z} \sum_{i \in \mathcal{N}_k(x)} \frac{1}{d(x, x_i)} y_i$$

#### **Classification Performance:**

Accuracy:  $acc = \frac{TP+TN}{TP+TN+FP+FN}$ 

Precision:  $prec = \frac{TP}{TP + FP}$ 

Sensitivity/Recall:  $rec = \frac{TP}{TP+FN}$ 

Specificity:  $tnr = \frac{TP}{FP + TN}$ 

False Negative Rate:  $fnr = \frac{FN}{TP + FN}$ 

False Positive Rate:  $fpr = \frac{FP}{FP + TN}$ 

F1 Score:  $f1 = \frac{2 \cdot prec \cdot rec}{prec + rec}$ 

#### **Distance Measures:**

 $L_1$  norm:  $\sum_i |u_i - v_i|$ 

 $L_2$  norm:  $\sqrt{\sum_i (u_i - v_i)^2}$ 

 $L_{\infty}$  norm:  $\max_{i} |u_i - v_i|$ 

Mahalanobis:  $\sqrt{(u-v)^T \Sigma^{-1} (u-v)}$ 

#### Data Standardization (zero mean & unit variance):

Z-Score:  $x_{i,std} = \frac{x_i - \mu_i}{\sigma_i}$ 

# 2 Decision Trees

# $x_2 \leq 3.9$ True False $t_L$

#### Inference on decision trees:

- 1. Test attributes of x to find region  $\mathcal{R}$
- 2. New unseen sample x is given the most common label in corresponding region  $\mathcal{R}$

$$\hat{y} = \arg\max_{c} p(y = c \mid \mathcal{R}) = \frac{n_{c,\mathcal{R}}}{\sum_{c_i \in C} n_{c_i,\mathcal{R}}}$$

# **Building an optimal decision tree:**

Grow the tree top-down and choose the best split node-by-node using a greedy heuristic on the training data. → NP-complete

Stopping criteria (pre-pruning):

- Distribution in branch is pure: i(t) = 0
- Maximum depth reached
- Number of samples in each branch below  $t_n$
- Benefit of splitting too low:  $\Delta i(s,t) < t_{\Delta}$
- Accuracy on validation set

# Improvement heuristic / Information gain:

$$\Delta i(s,t) = i(t) - p_L \cdot i(t_L) - p_R \cdot i(t_R)$$

Where  $p_L$  and  $p_R$  are the percentages of original data

# **Impurity measures:**

Misclassification rate:  $i_E(t) = 1 - \max_{C} \pi_C$ 

Entropy:  $i_H(t) = -\sum_{c_i \in C} \pi_{c_i} \log_2 \pi_{c_i}$ 

Gini index:  $i_G(t) = 1 - \sum_{c_i \in C} \pi_{c_i}^2$ 

with  $\pi_C = p(y = c|t)$ 

# Reduced error pruning:

Delete all descendant nodes of t but not t itself:  $T \setminus T_t$ 

- Use val. set to get an error estimate:  $err_{\mathcal{D}_{V}}(T)$
- For each node t calculate  $err_{\mathcal{D}_{\mathcal{V}}}(T \setminus T_t)$
- Prune tree at node with highest err-reduction
- Repeat until  $\forall t$ :  $err_{\mathcal{D}_{V}}(T) < err_{\mathcal{D}_{V}}(T \setminus T_{t})$

**Ensembles** (aggregate predictions from multiple models):

Bagging: Combine predictions of many classifiers trained on sampled sub-data-set → Random forests

Boosting: Incrementally train weak classifiers that correct previous mistakes.

Stacking: Train a meta-classifier with the base classifier's predictions as features.

0.5

 $p(c_1 \mid t) = 1 - p(c_2 \mid t)$ 

# 3 Probabilistic Inference

#### General:

Independent and identically distributed (i.i.d.):

$$p(\mathcal{D} \mid \theta) = \prod_{i=1}^{N} p(x_i \mid \theta)$$

Logarithm preserves maxima:

$$\arg\max_{\theta} p(\theta \mid \mathcal{D}) = \arg\max_{\theta} \log p(\theta \mid \mathcal{D})$$

Hoeffding's Inequality:  $N \ge \frac{\ln(\frac{2}{\delta})}{2e^2}$ 

# **Maximum Likelihood Estimation (MLE):**

$$\theta_{MLE} = \arg\max_{\theta} p(\mathcal{D}|\theta)$$

- 1. Find matching distribution  $p(\mathcal{D}|\theta)$
- 2. Apply i.i.d. formula
- 3. Take logarithm of distribution  $(\prod \rightarrow \Sigma)$
- 4. Derivate w.r.t.  $\theta$
- 5. Solve for  $\theta$

Coin Flip Example:  $\theta_{MLE} = \frac{|T|}{|T| + |H|}$ 

# Maximum A Posteriori Estimation (MAP):

Performs better than MLE if less data is available.

$$\theta_{MAP} = \arg \max_{\theta} p(\theta | \mathcal{D})$$

Bayes Formula:

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta) \cdot p(\theta)}{p(\mathcal{D})} \propto p(\mathcal{D}|\theta) \cdot p(\theta)$$
Posterior Distribution Prior

- 1. Find matching distribution
- 2. Find matching prior
- 3. Apply i.i.d. formula
- 4. Take logarithm of distribution
- 5. Derivate w.r.t.  $\theta$
- 6. Solve for  $\theta$

Coin Flip Example:  $\theta_{MAP} = \frac{|T| + a - 1}{|T| + |H| + a + b - 2}$ 

MLE corresponds to having a uniform prior (which holds no information on  $\theta$ ; "improper").

#### **Posterior Distribution Estimate:**

Find full distribution  $p(\theta|\mathcal{D})$ :

- 1. Calculate  $p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta) \cdot p(\theta)$ 
  - a. Apply i.i.d. formula (no need for log)
  - b. Drop all factors independent of  $\theta$
- 2. Find normalization constant
  - a. Compute integral  $\int p(\theta|\mathcal{D})d\theta$
  - b. Match pattern of unnormalized posterior to known PDF.

Coin Example:  $p(\theta|\mathcal{D}) = Beta(\theta|a + |T|, b + |H|)$ 

The mean of a Gaussian posterior coincides with its mode/MAP.

# Posterior Predictive Distribution (Fully Bayesian):

$$\begin{split} p(x_{new}|\mathcal{D},...) &= \int_{-\infty}^{\infty} p(x_{new},\theta|\mathcal{D},...) \; d\theta \\ &= \int_{-\infty}^{\infty} p(x_{new}|\theta) \; p(\theta|\mathcal{D},...) d\theta \\ &\text{Likelihood} \quad \text{Posterior Distribution} \end{split}$$

- 1. Calculate Posterior Distribution Estimate
- 2. Find matching distribution for likelihood
- 3. Substitute these expressions

# Coin Flip Example:

$$p(x_{new}|\mathcal{D}, a, b) = \text{Ber}\left(x_{new} \mid \frac{|T| + a}{|T| + |H| + a + b}\right)$$

# **Convolution formula:**

$$p(x) = \int_{-\infty}^{\infty} p(x-z)p(z)dz$$

For two Gaussians:

$$p(x_{new}|\mathcal{D},...) = \int_{-\infty}^{\infty} \mathcal{N}(x - z|0, b_1^{-1}) \mathcal{N}(z|m, b_2^{-1}) dz$$
$$= \mathcal{N}(x \mid m, b_1^{-1} + b_2^{-1})$$

with 
$$\mathcal{N}(x - z | 0, b_1^{-1}) = \mathcal{N}(x | z, b_1^{-1})$$

# Linear Regression











Ridge regression is equivalent to Maximum a posteriori

 $E_{MAP}(\mathbf{w}) \propto E_{Ridge}(\mathbf{w}) + const.$ 

**Probabilistic Interpretation:** 

# 4.1 Ordinary Least Squares Regression

#### **Loss Function:**

$$E_{LS}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f_w(\mathbf{x}_i) - y_i)^2 = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

# **Optimal Weight Vector/ Normal Equation:**

$$w^* = \arg\min_{\mathbf{w}} E_{LS}(\mathbf{w}) = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^N (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

$$= \arg\min_{\mathbf{w}} \frac{1}{2} (\mathbf{X} \mathbf{w} - \mathbf{y})^T (\mathbf{X} \mathbf{w} - \mathbf{y})$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \mathbf{X}^+ \mathbf{y}$$

$$= \nabla_{\mathbf{w}} \frac{1}{2} (\mathbf{w}^T \mathbf{x}^T \mathbf{x} - 2\mathbf{w}^T \mathbf{x}^T \mathbf{y} + \mathbf{y}^T \mathbf{y})$$

$$= \nabla_{\mathbf{w}} \frac{1}{2} (\mathbf{w}^T \mathbf{x}^T \mathbf{x} - 2\mathbf{w}^T \mathbf{x}^T \mathbf{y} + \mathbf{y}^T \mathbf{y})$$

$$= \mathbf{x}^T \mathbf{x} \mathbf{w} - \mathbf{x}^T \mathbf{y}$$

$$= \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^N (\mathbf{w}^T \mathbf{\phi}(\mathbf{x}_i) - y_i)^2$$

$$= (\mathbf{\Phi}^T \mathbf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{T} \mathbf{y}$$
Probabilistic Interpretation:

$$egin{aligned} oldsymbol{w}^* &= \arg\min_{\mathbf{w}} rac{1}{2} \sum_{i=1}^N ig( oldsymbol{w}^T oldsymbol{\phi}(oldsymbol{x_i}) - oldsymbol{y_i} ig)^2 \ &= (oldsymbol{\Phi}^T oldsymbol{\Phi})^{-1} oldsymbol{\Phi}^T oldsymbol{y} = oldsymbol{\Phi}^+ oldsymbol{y} & ext{with } \phi_0 = 1 ext{ (absorb bias)} \end{aligned}$$

$$\text{Design M.: } \boldsymbol{\Phi} = \begin{bmatrix} \phi_0(x_1) & \cdots & \phi_M(x_1) \\ \vdots & \ddots & \vdots \\ \phi_0(x_N) & \cdots & \phi_M(x_N) \end{bmatrix} \in \mathbb{R}^{N \times (M+1)}$$

# **Probabilistic Interpretation:**

Least squares regression is equivalent to maximum likelihood estimation of  $w, \beta$ . Also equivalent to sampling from i.i.d. samples with gaussian noise  $\beta$ :

Data likelihood: 
$$p(y|\Phi, w, \beta) = \prod_{i=1}^{N} p(y_i|w^T\phi(x), \beta)$$
Gaussian mean Precision
 $w_{ML} = \operatorname*{arg\ max}_{w} p(y|\Phi, w, \beta)$ 

$$= \underset{\mathbf{w}}{\operatorname{arg \, min}} p(\mathbf{y}|\mathbf{\Phi}, \mathbf{w}, \beta)$$

$$= \underset{\mathbf{w}}{\operatorname{arg \, min}} - \ln p(\mathbf{y}|\mathbf{\Phi}, \mathbf{w}, \beta) = \underset{\mathbf{w}}{\operatorname{arg \, min}} E_{LS}(\mathbf{w})$$

Find precision of Gaussian:





#### Ridge Regression 4.2

# **Loss Function:**

$$E_{Ridge}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}_{i}) - y_{i})^{2} + \frac{\lambda}{2} ||\mathbf{w}||_{2}^{2}$$

# **Optimal Weight Vector / Normal Equation:**

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg min}} \frac{1}{2} (\mathbf{\Phi} \mathbf{w} - \mathbf{y})^T (\mathbf{\Phi} \mathbf{w} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$
$$= (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

If N < M,  $\Phi^T \Phi$  is not invertible  $\rightarrow +\lambda I$  fixes this.

# 4.3 Weighted Least Squares Regression

# **Loss Function:**

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} t_i (\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

# Optimal Weight Vector / Normal Equation:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{2} (\mathbf{\Phi} \mathbf{w} - \mathbf{y})^T \mathbf{T} (\mathbf{\Phi} \mathbf{w} - \mathbf{y})$$
$$= (\mathbf{\Phi}^T \mathbf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{T} \mathbf{y}$$

# **Probabilistic Interpretation:**

Weighted least squares is equivalent to probabilistic least squares where we choose  $\beta = t_i$ , therefore making the regression targets no longer identically distributed but still independent.

$$y_i \sim \mathcal{N}(w^T \phi(x_i), t_i^{-1})$$

#### Fully Bayesian Posterior Distribution

$$p(\boldsymbol{w}|\mathcal{D}) = p(\boldsymbol{w}|\boldsymbol{X}, \boldsymbol{y}, \boldsymbol{\beta}, \cdot) = \frac{p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}, \boldsymbol{\beta}) \cdot p(\boldsymbol{w}|\cdot)}{p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\beta}, \cdot)}$$

If 
$$p(w|\alpha) = \mathcal{N}(w|0, \alpha^{-1}I)$$
 with  $\lambda = \frac{\alpha}{\beta}$ :

$$p(\boldsymbol{w}|\mathcal{D}) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
with  $\boldsymbol{\mu} = w_{MAP} = \beta \boldsymbol{\Sigma} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$  and  $\boldsymbol{\Sigma}^{-1} = \alpha \boldsymbol{I} + \beta \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}$ 

#### 4.5 Predicting New Data

Maximum likelihood:  $oldsymbol{w}_{\mathrm{ML}}$  and  $eta_{\mathrm{ML}}$ 

$$p(\hat{y}_{new} \mid \boldsymbol{x}_{new}, \boldsymbol{w}_{\text{ML}}, \beta_{\text{ML}}) = \mathcal{N}\left(\hat{y}_{new} \mid \boldsymbol{w}_{\text{ML}}^T \boldsymbol{\phi}(\boldsymbol{x}_{new}), \beta_{\text{ML}}^{-1}\right)$$

Maximum a posteriori:  $w_{\mathrm{MAP}}$ 

$$p(\hat{y}_{new} \mid \boldsymbol{x}_{new}, \boldsymbol{w}_{MAP}, \beta) = \mathcal{N}\left(\hat{y}_{new} \mid \boldsymbol{w}_{MAP}^T \boldsymbol{\phi}(\boldsymbol{x}_{new}), \beta^{-1}\right)$$

#### Posterior Predictive Distribution:

# 5 Linear Classification

# 5.1 Perceptron

#### **General Idea:**

SGD with minibatch size 1:  $\min_{w, h} \sum_{i} L(y_i, \mathbf{w}^T \mathbf{x}_i + b)$ 

# **Hinge Loss:**

$$L(u, v) = \max(0, \varepsilon - uv) = \begin{cases} \varepsilon - uv, & \text{if } uv < \varepsilon \\ 0, & \text{else} \end{cases}$$

#### **Decision Rule:**

$$\hat{y} = f(\mathbf{w}^T \mathbf{x} + w_o)$$
 where  $f(t) = \begin{cases} 1 & \text{if } t > 0 \\ 0 & \text{otherwise} \end{cases}$ 

Learning Rule (Init. 
$$w, w_0 \leftarrow \mathbf{0}$$
): 
$$w \leftarrow \begin{cases} w + x_i & \text{if } y_i = 1 \\ w - x_i & \text{if } y_i = 0 \end{cases} \& w_0 \leftarrow \begin{cases} w_0 + 1 & \text{if } y_i = 1 \\ w_0 - 1 & \text{if } y_i = 0 \end{cases}$$

# **Multiple Classes:**

- One-Versus-Rest: Compare to all
- One-Versus-One: Compare pairwise
- Multiclass Discriminant:  $\hat{y} = \arg \max w_c^T x + x_{0c}$

#### Limitations of hard-decision based classifiers:

- No measure of uncertainty
- Cannot handle noisy data
- Poor generalization
- Difficult to optimize



# 5.2 Probabilistic Generative Model

Models the joint probability  $p(y = c | x, \psi, \theta) \propto p(x | y = c, \psi) \cdot p(y = c | \theta)$ 

Class Conditional/ Likelihood: (Distr. of points in class c)

Multiv. normal (shared  $\Sigma$ ):  $p(x|y=c) = \mathcal{N}(x|\mu_c, \Sigma)$ 

Class Prior: (Prior probability of a point belonging to a class c)

Categorical Distribution:  $p(y) = \prod_{c=1}^{c} \theta_c^{\mathbb{I}(y=c)}$ 

**Data Likelihood:** (joint distribution)

$$p(D|\{\pi_c, \theta_c\}_{c=1}^C) = \prod_{n=1}^N \prod_{c=1}^C \left(\pi_c \ p(x^{(n)}|\mu_c, \Sigma)\right)^{y_c^{(n)}}$$

(Apply log and take derivative for specific c to compute the MLE)

MLE of 
$$\theta$$
:  $\theta_c^{MLE} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i = c) = \frac{N_C}{N} = \pi_C$ 

MLE of 
$$\mu_C$$
: 
$$\mu_c = \frac{1}{N_C} \sum_{\substack{n=1 \ y^{(n)}=c}}^{N} \boldsymbol{x}^{(n)}$$

# MLE of the shared Covariance Matrix $\Sigma$ :

$$\Sigma = \sum_{c=1}^{C} \frac{N_c}{N} S_c \text{ with } S_c = \frac{1}{N_c} \sum_{\substack{n=1 \ y^{(n)}=c}}^{N} (x^{(n)} - \mu_c)(x^{(n)} - \mu_c)^T$$

**New Data:**  $y_{new} = \arg \max_{c} (p = c | n_{new}, \psi, \theta)$ 

# 5.3 Linear Discriminant Analysis (LDA)

For Gaussian class conditionals with shared covariance matrices.

LDA for two classes: Linear Decision Boundary

Rewrite the posterior as:

$$p(y = 1|x) = \sigma(a) = \frac{1}{1 + \exp(-a)}$$

where 
$$a = \log \frac{p(x|y=1)p(y=1)}{p(x|y=0)p(y=0)}$$



Solution: 
$$p(y = 1|x) = \sigma(\mathbf{w}^T x + w_o)$$

is a Sigmoid (y = 1 if a > 0) with these parameters:

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_o)$$

$$w_o = -\frac{1}{2}\mu_1 \Sigma^{-1} \mu_1 + \frac{1}{2}\mu_o \Sigma^{-1} \mu_o + \log \frac{p(y=1)}{p(y=0)}$$

LDA for more classes: Linear Decision Boundaries

The posterior over the class label is:

$$p(y = c|x) = \frac{p(x|y = c)p(y = c)}{\sum_{c'=1}^{c} p(x|y = c')p(y = c')}$$

The solution is a SoftMax:

$$p(y = c | \mathbf{x}) = \frac{\exp(\mathbf{w}_c^T \mathbf{x} + w_{c0})}{\sum_{c'=1}^{C} \exp(\mathbf{w}_{c'}^T \mathbf{x} + w_{c'0})}$$

$$\mathbf{w}_c = \mathbf{\Sigma}^{-1} \mathbf{\mu}_c$$
  $w_{c0} = -\frac{1}{2} \mathbf{\mu}_c \mathbf{\Sigma}^{-1} \mathbf{\mu}_c + \log p(y = c)$ 

Decision Boundary:  $w_1^T x + w_{10} = w_2^T x + w_{20}$ 

# 5.4 Naive Bayes Classification

 $p(y=c)=\pi_C$ Class prior:

 $p(\mathbf{x}|\mathbf{y}=c) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$ Class conditionals:

We use per-class means and diagonal per-class covariance matrices. Naive Bayes can handle mixed data types (features are cond. independent).

Assume: 
$$p(x_1, x_2, ..., x_d | y = c) = \prod_{i=1}^d p(x_i | y = c)$$

NBC for two classes: Quadratic Decision Boundary

 $p(y = 1|x) = \sigma(a)$ Start at:

Solution: 
$$p(y = 1|x) = \sigma(x^T W_2 x + W_1^T x + w_0)$$

$$W_2 = \frac{1}{2} [\Sigma_0^{-1} - \Sigma_1^{-1}] \qquad W_1 = \Sigma_1^{-1} \mu_1 - \Sigma_0^{-1} \mu_0$$

$$w_o = -\frac{1}{2} \boldsymbol{\mu}_1^T \boldsymbol{\Sigma}_1^{-1} \boldsymbol{\mu}_1 + \frac{1}{2} \boldsymbol{\mu}_o^T \boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_o + \log \frac{\pi_1}{\pi_0} + \frac{1}{2} \log \frac{|\boldsymbol{\Sigma}_0|}{|\boldsymbol{\Sigma}_1|}$$

At the decision bound.: p(y = 1|x) = p(y = 0|x)

# 5.5 Ordinary 2-class Logistic Regression (Probabilistic Generative Model)

Directly model the posterior distribution p(y|x) by treating w and  $w_0$  as free parameters. Best for pure classification task because no assumptions are needed.

**Posterior:** 

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}) = \prod_{i=1}^{N} \sigma(\mathbf{w}^{T} \mathbf{x}_{i})^{y_{i}} (1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}))^{1 - y_{i}}$$

# **Loss Function: Binary Cross Entropy**

Negative log-likelihood of Binary Logistic Regression

$$E(\mathbf{w}) = -\log p(\mathbf{y}|\mathbf{w}, \mathbf{X})$$

$$= -\sum_{i=1}^{N} (y_i \log \sigma(\mathbf{w}^T \mathbf{x}_i) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^T \mathbf{x}_i)))$$

#### **Gradient of Loss Function:**

$$\nabla E(\mathbf{w}) = \nabla(-\ln p(\mathbf{y}|\mathbf{w}, \mathbf{X})) = \sum_{i=1}^{N} \mathbf{x}_{i}(\sigma(\mathbf{w}^{T}\mathbf{x}_{i}) - \mathbf{y}_{i})$$

# 5.6 2-class Logistic Ridge Regression

#### **Posterior:**

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}) = \prod_{i=1}^{N} \sigma(\mathbf{w}^{T} \mathbf{x}_{i})^{y_{i}} (1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i})^{1 - y_{i}})$$

# **Loss Function: Binary Cross Entropy**

$$E(\mathbf{w}) = -\log p(\mathbf{y}|\mathbf{w}, \mathbf{X}) + \lambda ||\mathbf{w}||_2^2$$



# **Gradient of Loss Function:**

$$\nabla E_{Ridge}(\mathbf{w}) = \sum_{i=1}^{N} \mathbf{x}_{i} (\sigma(\mathbf{w}^{T} \mathbf{x}_{i}) - \mathbf{y}_{i}) + \lambda \mathbf{w}$$

# 5.7 Ordinary Multi-Class Logistic Regression

# Likelihood:

$$p(\mathcal{D}|\{\pi_{c}, \theta_{c}\}_{c=1}^{c}) = \prod_{n=1}^{N} p(x^{(n)}|y_{n}, \theta) p(y_{n}|\pi)$$
$$= \prod_{n=1}^{N} \prod_{c=1}^{c} (p(x^{(n)}|\theta_{c})\pi_{c})^{y_{c}^{(n)}}$$

# **Loss Function: Cross Entropy**

Negative log-likelihood of Multiclass Logistic Regression

$$E(\mathbf{w}) = -\sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} \log \frac{\exp(\mathbf{w}_{c}^{T} \mathbf{x})}{\sum_{c'} \exp(\mathbf{w}_{c'}^{T} \mathbf{x})}$$

One-Hot Encoding: 
$$y_{iC} = f(x) = \begin{cases} 1, & \text{if } x_i \in c \\ 0, & \text{else} \end{cases}$$

# 5.8 Optimizing Logistic Regression

Gradient Descent (no closed-form solution):

$$\boldsymbol{w}_{t+1} \leftarrow \boldsymbol{w}_t - \tau \, \nabla E(\boldsymbol{w}_t)$$

# 5.9 Sigmoid and SoftMax

#### SoftMax:

$$\sigma(x)_i = \frac{\exp x_i}{\sum_{c=1}^C \exp x_c} = \sigma(\mathbf{W}x + \mathbf{w}_0)$$

where  $W \in \mathbb{R}^{C \times D}$ ,  $x \in \mathbb{R}^D$ ,  $w_o \in \mathbb{R}^C$ 

$$\frac{\partial}{\partial \mathbf{w}_i} \sigma(j) = \sigma(j) \left( \delta_{ij} - \sigma(i) \right) \mathbf{x}$$

#### Sigmoid:

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

$$\frac{\partial \sigma(a)}{\partial a} = \sigma(a) (1 - \sigma(a))$$

$$\sigma(-a) = 1 - \sigma(a)$$

$$\sigma^{-1} = \ln \frac{a}{1 - a}$$

$$tanh a = 2\sigma(2a) - 1$$

$$a = \ln \frac{\sigma}{1 - \sigma}$$

# 5.10 Generative vs. Discriminative Models

- Discriminative models achieve better performance in pure classification tasks.
- Generative models are fragile when assumptions are violated (e.g. non-Gaussian class likelihoods).
- Generative models handle missing data and outliers better and can generate new data.

# 6 Optimization

# 6.1 Convexity

# **First Order Convexity Conditions:**

Function f is convex for  $x_1, x_2 \in X$  if for  $\lambda \in [0, 1]$ :

- $f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$
- $f(x_2) f(x_1) \ge \frac{f((1-\lambda)x_1 + \lambda x_2) f(x_1)}{\lambda}$
- $f(x_2) f(x_1) \ge (x_2 x_1)^T \nabla f(x_1)$
- $H_f = \nabla_x^2 f(\mathbf{x})$  is PSD
- $\bullet \quad \frac{\partial^2 f(x)}{\partial x^2} > 0$

Set *X* is convex if for  $\lambda \in [0, 1]$ :



 $\forall x, y \in X$ :  $\lambda x + (1 - \lambda)y \in X$ 

• If A and B are convex sets, then  $A \cap B$  is convex.

# **Convexity Preserving Operations:**

Let  $f_1, f_2: \mathbb{R}^d \to \mathbb{R}$  be *convex* and  $g: \mathbb{R}^d \to \mathbb{R}$  be *concave*, then:

- $-h(x) = f_1(x) + f_2(x)$  is convex
- $h(x) = \max\{f_1(x), f_2(x)\}\$  is convex
- $h(\mathbf{x}) = c \cdot f_1(\mathbf{x})$  is convex if  $c \ge 0$
- $h(\boldsymbol{x}) = c \cdot g(\boldsymbol{x})$  is convex if  $c \leq 0$
- $-h(x) = f_1(Ax + b)$  is convex (A matrix, b vector)
- $h(x) = m(f_1(x))$  is convex if  $m : \mathbb{R} \to \mathbb{R}$  is convex and nondecreasing
- h(x) = const,  $h(x) = w^T x$  and  $h(x) = e^x$  are convex
- $\pm w^T x$  is convex and concave  $\log(x)$  is concave

$$-\min(\cdot) = \max(-\cdot)$$

#### 6.2 Gradient Descent

#### **General Idea:**

- 1. Given a starting point  $\theta \in Dom(f)$
- 2.  $\Delta \boldsymbol{\theta} \coloneqq -\nabla f(\boldsymbol{\theta})$
- 3. Do line search to find  $t^*$
- 4. Update  $\theta := \theta + t^* \Delta \theta$
- 5. Repeat 2-4 until stopping criterion

#### Line Search:

$$t^* = \arg\min_{t>0} f(\boldsymbol{\theta} + t \cdot \Delta \boldsymbol{\theta})$$

# **Backtracking Line Search:**

With  $\alpha \in (0, 0.5)$  and  $\beta \in (0, 1)$ , start at t = 1 and repeat  $t = \beta \cdot t$  until

$$f(\boldsymbol{\theta} + t\Delta\boldsymbol{\theta}) < f(\boldsymbol{\theta}) + t\alpha \nabla f(\boldsymbol{\theta})^T \Delta \boldsymbol{\theta}$$

# **Learning Rate to Avoid Line Search:**

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t - \tau \cdot \nabla f(\boldsymbol{\theta}_t)$$

- τ too small: Slow convergence or ending up in a saddle point or local minima
- $\tau$  too big: Oscillations without convergence

Learning Rate Schedule:

$$\tau_{t+1} \leftarrow \alpha \cdot \tau_t \ for \ 0 < \alpha < 1$$

#### Momentum:

Incorporates history of gradients. Accelerates search in the direction where many previous gradients point to.

$$\boldsymbol{m}_t \leftarrow \tau \cdot \nabla f(\boldsymbol{\theta}_t) + \gamma \cdot \boldsymbol{m}_{t-1}$$

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t - \boldsymbol{m}_t$$

# **Stochastic Gradient Descent:**

Use a minibatch of entire data to compute a noisy gradient estimate and use it to update the parameters.

- Randomly pick a small subset  $\mathcal{S}$  from the entire data  $\mathcal{D}$ , i.e., the so-called mini batch
- Compute the gradient based on the mini batch
- Update  $\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t \tau \cdot \frac{n}{|\mathcal{S}|} \cdot \nabla f(\boldsymbol{\theta}_t)$
- Pick a new mini-batch and repeat

# 6.3 Newton Method

Uses first-order and second-order derivative. f must be convex and Hessian  $\nabla^2 f(\theta) \ge 0$  (PSD). Used only for low dimensional problems.

#### Taylor-Expansion of f at point $\theta_t$ :

For small  $\delta$ 

$$f(\boldsymbol{\theta}_t + \boldsymbol{\delta}) = f(\boldsymbol{\theta}_t) + \boldsymbol{\delta}^T \nabla f(\boldsymbol{\theta}_t) + \frac{1}{2} \boldsymbol{\delta}^T \nabla^2 f(\boldsymbol{\theta}_t) \boldsymbol{\delta} + O(\boldsymbol{\delta}^3)$$

# Minimize Approximation:

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t - [\nabla^2 f(\boldsymbol{\theta}_t)]^{-1} \nabla f(\boldsymbol{\theta}_t) = \theta_t - \frac{f(\theta_t)}{f'(\theta_t)}$$

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \mathbf{H}_E^{-1} \nabla E(\mathbf{w}_t)$$

$$\mathbf{H} = \nabla^2 E(w_t) = \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi} \text{ where } \mathbf{R} \in \mathbb{R}^{n \times n} = R_{nn}$$
  
with  $R_{nn} = \sigma(w^T \phi(x_n))(1 - \sigma(w^T \phi(x_n)))$ 

# 7 Deep Learning 1

# 7.1 Loss Functions

| Output type | Output distribution | Output layer | Cost function                                  |
|-------------|---------------------|--------------|------------------------------------------------|
| Binary      | Bernoulli           | Sigmoid      | Binary cross-entropy                           |
| Discrete    | Multinomial         | Softmax      | Cross-entropy                                  |
| Continuous  | Gaussian            | Linear       | Gaussian cross-entropy<br>(Mean squared error) |
| Continuous  | Arbitrary           | GAN, VAE,    | Various                                        |

The loss function must allow gradient-based training.

# 7.2 Activation Functions



# 7.3 Parameter Learning with Backprop

# **Advantages:**

- Reuse computations of common ancestors
- Only pass through the computation graph twice
- Modular structure

Backpropagation of Affine Layer (a = Wx + b):

$$\frac{\partial E}{\partial \boldsymbol{W}} = \begin{bmatrix} \frac{\partial E}{\partial W_{11}} & \cdots & \frac{\partial E}{\partial W_{1H}} \\ \vdots & \ddots & \vdots \\ \frac{\partial E}{\partial W_{D1}} & \cdots & \frac{\partial E}{\partial W_{DH}} \end{bmatrix} = \cdots = \boldsymbol{x} \frac{\partial E}{\partial \boldsymbol{a}}$$

$$\frac{\partial E}{\partial x} = \frac{\partial E}{\partial a} W$$

$$\frac{\partial E}{\partial \boldsymbol{b}} = \frac{\partial E}{\partial \boldsymbol{a}}$$

**Derivative of function** f: input  $\rightarrow$  output w.r.t. input:

|           |        | Input is a |              |              |
|-----------|--------|------------|--------------|--------------|
|           |        | scalar     | vector       | matrix       |
| <br>9     | scalar | scalar     | vector       | matrix       |
| Output is | vector | vector     | matrix       | 3-way tensor |
| Out       | matrix | matrix     | 3-way tensor | 4-way tensor |

# 8 Deep Learning 2

# 8.1 Convolution Neural Network (CNN)

$$(x*k)(t) = \int_{-\infty}^{\infty} x(\tau)k(t-\tau)d\tau \equiv \sum_{\tau=-\infty}^{\infty} x(\tau)k(t-\tau)$$

CNNs for images are based on discrete 2D convolution:

$$(x*k)(i,j) = \sum_{l} \sum_{m} x(l,m)k(i-l,j-m)$$

Cross Correlation

$$\hat{x}(i,j) = \sum_{l=1}^{L} \sum_{m=1}^{M} x(i+l,j+m)k(l,m)$$

**Padding:** Either reduce the output or pad the input (e.g., with zeros or constants). (VALID, SAME, FULL)

**Stride:** Distance between positions the kernel applied.

$$S > 1$$
 is downsampling  $D_{L+1} = \left\lfloor \frac{D_L + 2P - K}{S} \right\rfloor + 1$ 

**Pooling:** Calculate summary statistics in sliding window (e.g., max-, mean-,  $L_p$ -norm-pooling)

# 8.2 Training Deep Neural Networks

Weight Symmetry: Two hidden units have the same bias and weights → Same gradients → Do not learn different features → Break symmetry by initializing with small random values

**Weight Scale:** Activation function may saturate for hidden units with large fan-in → Vanishing or exploding gradients → Init. weights with good mean & variance.

**Xavier Glorot Initialization:** Preserve mean & variance of incoming i.i.d. signal  $\rightarrow$  Init. weight matrices with zero mean and variance  $Var(W) = \frac{2}{\text{fan-in+fan-out}}$ 

zero mean and variance 
$$Var(W) = \frac{2}{\text{fan-in+fan-out}}$$
 $W \sim Uniform \left(-\sqrt{\frac{6}{fan-in+fan-out}}, \sqrt{\frac{6}{fan-in+fan-out}}\right)$ 

**Regularization:** Use  $L_2$  norm penalty. Can be combined with dataset augmentation, injecting noise, dropout

**BatchNorm:** Stabilize the distribution of each layer's activations with minibatch statistics:

$$\hat{x} = \frac{x - \mathbb{E}_{\mathcal{B}}[x]}{\sqrt{Var_{\mathcal{B}}[x]} + \epsilon} \text{ and } y = \gamma \hat{x} + \beta, \quad \gamma, \beta \text{ learned w/ BP}.$$

**Skip Connections:** Improve information flow in NN  $y = f(x, W) T(x, W_T) + x(1 - T(x, W_T))$ 

# Tipps:

- Use only differentiable operations
- Always try to overfit the model on a small batch of the training set to make sure that the model is right
- Start with small models and gradually add complexity while monitoring how the performance improves
- Be aware of the properties of activation functions, e.g., no sigmoid output when doing regression
- Monitor the training procedure and use early stopping

# 9 SVM and Kernels

# 9.1 Constraint Optimization Problem

# **Feasibility:**

A point  $\boldsymbol{\theta} \in \mathbb{R}^d$  is feasible iff it satisfies the constraints of the optimization problem,  $f_i(\boldsymbol{\theta}) \leq 0 \ \forall \ i$ .

# Lagrangian:

(Min. is  $p^* = f_0(\boldsymbol{\theta}^*)$ ) Minimize:

 $f_i(\theta) \leq 0, \ i = 1, ..., M$ Subject to:

$$L(\boldsymbol{\theta}, \boldsymbol{\alpha}) = f_0(\boldsymbol{\theta}) + \sum_{i=1}^{M} \alpha_i f_i(\boldsymbol{\theta})$$
 with  $\alpha_i \ge 0$ 

# **Lagrange Dual Function:**

For every  $\alpha$ , the corresponding unconstrained and concave  $g(\alpha)$  is a lower bound on the optimal value of the constrained problem:  $\forall \alpha \ f_0(\boldsymbol{\theta}^*) \geq g(\boldsymbol{\alpha}).$ 

Maximize:  $g(\boldsymbol{\alpha})$ 

 $i=1,\ldots,m$ Subject to:  $\alpha_i \geq 0$ ,

$$g(\boldsymbol{\alpha}) = \min_{\boldsymbol{\theta} \in \mathbb{R}^d} L(\boldsymbol{\theta}, \boldsymbol{\alpha}) = \min_{\boldsymbol{\theta} \in \mathbb{R}^d} \left( f_0(\boldsymbol{\theta}) + \sum_{i=1}^M \alpha_i f_i(\boldsymbol{\theta}) \right)$$

The maximum  $d^*$  of the Lagrange dual problem is the best possible lower bound on  $p^*$ .

Duality Gap:  $p^* - d^* \ge 0$ Weak Duality:  $d^* \leq p^*$ 

Strong Duality:  $d^* = p^*$ , holds for SVM due to the complementary slackness condition  $\alpha_i^* f_i(\theta^*) = 0$ .

# 9.2 Hard Margin SVM

**Objective:** (Max. the margin)

 $f_0(\mathbf{w}, b) = \frac{1}{2} \mathbf{w}^T \mathbf{w} = \frac{1}{2} ||\mathbf{w}||^2$ Minimize:

 $f_i(\mathbf{w}, b) = y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \ge 0$ Subject to:

(w points in dir. of +1 class)

# 1. Lagrangian:

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} - \sum_{i=1}^{N} \alpha_i [y_i (\boldsymbol{w}^T \boldsymbol{x}_i + b) - 1]$$

# 2. Minimize w.r.t. w and b to construct the Dual:

$$\nabla_{w}L(w,b,\alpha) = w - \sum_{i=1}^{N} \alpha_{i}y_{i}x_{i} = 0$$

$$\frac{\partial L}{\partial b} = \sum_{i=1}^{N} \alpha_{i}y_{i} = 0$$

# 3. Dual Problem:

$$\max_{\alpha} g(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j x_i^T x_j$$

subject to:

$$\sum_{i=1}^N \alpha_i \, y_i = 0$$

$$\alpha_i \ge 0$$
, for  $i = 1, ..., N$ 

Solving dual problems of SVM is a quadratic problem:

$$g(\alpha) = \frac{1}{2}\alpha^T Q \alpha + \alpha^T \mathbf{1}_N \text{ with } Q = -yy^T \odot XX^T \leqslant 0$$

# 4. Substitute solution for $\alpha^*$ in w and find $w^*$ , $b^*$ :

$$\mathbf{w}^* = \sum_{i=1}^{N} \alpha_i^* y_i \mathbf{x}_i \qquad b^* = y_i - \mathbf{w}^{*T} \mathbf{x}_i$$

Complementary slackness condition:

$$\alpha_i^* f_i(\theta^*) = 0 \quad \Rightarrow \quad \alpha_i^* \left[ y_i \left( \boldsymbol{w}^{*T} \boldsymbol{x}_i + b^* \right) - 1 \right] = 0$$

(A training sample only contributes to  $\mathbf{w}$  if  $\alpha_i \neq 0$ , such that  $y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$ . Then  $\mathbf{x}_i$  lies on the margin and is called a support vector.)

# 5. Classification:

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{N} \alpha_i^* y_i \mathbf{x}_i^T\right) \mathbf{x} + b^*\right)$$

The solution is sparse, since most  $\alpha_i$  are 0.

# 9.1 Soft Margin SVM

Can deal with noisy data through the slack variable  $\xi_i$ (Dist. how far the margin is violated in units of ||w||).

Objective: (Max. the margin & min. violations)

 $f_0(\mathbf{w}, b) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{N} \xi_i$ Minimize:

C says how hard a violation is punished. In hard margin SVM:  $C \rightarrow \infty$ .

 $f_i(\mathbf{w}, b) = y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i \ge 0$ Subject to:

# 1. Lagrangian:

Lagrangian: 
$$L(w,b,\xi,\pmb{\alpha},\pmb{\mu}) = \frac{1}{2} \pmb{w}^T \pmb{w} + C \sum_{i=1}^N \xi_i$$

$$-\sum_{i=1}^N \alpha_i \big[ y_i \big( \pmb{w}^T \pmb{x_i} + b \big) - 1 + \xi_i \big]$$

$$-\sum_{i=1}^N \mu_i \xi_i$$

# 2. Minimize w.r.t. w, b and $\xi$ to construct the Dual:

$$\nabla_{w}L(\boldsymbol{w},b,\xi,\boldsymbol{\alpha},\boldsymbol{\mu}) = \boldsymbol{w} - \sum_{i=1}^{N} \alpha_{i}y_{i}\boldsymbol{x}_{i} = 0$$

$$\frac{\partial L}{\partial b} = \sum_{i=1}^{N} \alpha_i y_i = 0$$

$$\frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i = 0 \qquad \text{for } i = 1, ..., N$$

# 3. Dual Problem:

$$\max_{\alpha} g(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j x_i^T x_j$$

subject to:

$$\sum_{i=1}^{N} \alpha_i y_i = 0, \qquad 0 \le \alpha_i \le C, \text{ for } i = 1, ..., N$$

# 9.2 Hinge Loss Formulation

The Hinge Loss penalizes the points that lie within the margin. We can optimize the hinge loss function directly, using standard gradient descent.

# **Objective:**

Minimize: 
$$f_0(\mathbf{w}, b) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi_i$$

Subject to: 
$$f_i(\mathbf{w},b) = y_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 + \xi_i \ge 0$$
 
$$\xi_i \ge 0$$

# **Hinge Loss Formulation:**

$$\min_{\mathbf{w}, \mathbf{b}} \quad \frac{1}{2C} \mathbf{w}^T \mathbf{w} + \sum_{i=1}^{N} \max\{0, \ 1 - y_i (\mathbf{w}^T \mathbf{x}_i + b)\}$$

Can be solved with SGD.

SVMs are L2-regularized perceptrons with a Hinge-loss function.

#### 9.3 Kernels

Encode similarity between arbitrary numerical or nonnumerical data. High outcome → High similarity.

$$k(\mathbf{x}_i, \mathbf{x}_i) := \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_i) \text{ with } K: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$$

Where  $\phi(x)$  is a feature map (non-lin. transf.).

# Mercer's Theorem:

A kernel is valid if it gives rise to a symmetric, PSD kernel matrix  $\boldsymbol{K}$  (Gram matrix) for any input data  $\boldsymbol{X}$ .

$$K = \begin{bmatrix} k(x_1, x_1) & \cdots & k(x_1, x_N) \\ \vdots & \ddots & \vdots \\ k(x_N, x_1) & \cdots & k(x_N, x_N) \end{bmatrix}$$

K is PSD when  $\det K \geq 0$ .

Or a Kernel  $k: \mathcal{M} \times \mathcal{M} \to \mathbb{R}$  is valid, if there exists a feature map  $\phi: \mathcal{M} \to \mathcal{H}$ , such that  $k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$  where  $\langle \cdot, \cdot \rangle_{\mathcal{H}}$  is the inner product on  $\mathcal{H}$ 

# **Kernel Preserving Operations:**

Let  $k_1: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  and  $k_2: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  be kernels, with  $\mathcal{X} \subseteq \mathbb{R}^N$ . Then the following functions k are kernels as well:

- $k(x_1, x_2) = k_1(x_1, x_2) + k_2(x_1, x_2)$
- $k(x_1, x_2) = c \cdot k_1(x_1, x_2)$ , with c > 0
- $k(x_1, x_2) = k_1(x_1, x_2) \cdot k_2(x_1, x_2)$
- $k(x_1, x_2) = k_3(\phi(x_1), \phi(x_2))$ , with the kernel  $k_3$  on  $\mathcal{X}' \subseteq \mathbb{R}^M$  and  $\phi: \mathcal{X} \to \mathcal{X}'$
- $k(x_1,x_2)=x_1Ax_2$ , with  $A\in\mathbb{R}^N imes\mathbb{R}^N$  symmetric and positive semidefinite

Non-valid kernels loose convexity!

# **Kernel Types:**

Polynomial: 
$$k(a, b) = (a^T b)^p \text{ or } (a^T b + 1)^p$$

Gaussian: 
$$k(\boldsymbol{a}, \boldsymbol{b}) = \exp\left(-\frac{\|\boldsymbol{a} - \boldsymbol{b}\|^2}{2\sigma^2}\right)$$

Sigmoid: 
$$k(\boldsymbol{a}, \boldsymbol{b}) = \tanh(\kappa \, \boldsymbol{a}^T \boldsymbol{b} - \delta), \ \kappa, \delta > 0$$

The sigmoid kernel is not PSD but works in practice.

Linear: 
$$k(\boldsymbol{a}, \boldsymbol{b}) = \boldsymbol{a}^T \boldsymbol{b}$$

# Classifying a New Point with a Kernelized SVM:

Behaves like kNN-classifier with distance measure  $k(\cdot)$ 

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{\{j \mid \mathbf{x}_j \in \mathcal{S}\}} \alpha_j \, y_j \, k(\mathbf{x}_j, \mathbf{x}) + b\right)$$

where  $\mathcal{S}$  is the set of support vectors with  $\xi_i = 0$ .

# **Multiple Classes:**

One-vs-Rest: Train  $\mathcal{C}$  SVM models for  $\mathcal{C}$  classes. Winner is the class, where the distance from the hyperplane is maximal.

One-vs-One: Train all possible pairings and evaluate all. The winner is the class with the weighted majority vote.

# 10 Dimensionality Reduction

# 10.1 Principal Component Analysis

Find a coordinate system in which the features are lin. uncorrelated. The goal is to transform the data, s.t. the covariance between the new dimensions is 0.

# 1. Center the Data (zero mean):

$$\widetilde{\pmb{x}}_i = \pmb{x}_i - \overline{\pmb{x}}$$
 with  $\overline{\pmb{x}} = \frac{1}{N} \pmb{X}^T \, \mathbf{1}_N = \frac{1}{N} \sum_{n=1}^N x_n$ 

# 2. Compute the Covariance Matrix $\Sigma_{\widetilde{X}}$ :

$$Var(\mathbf{X}_j) = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{ij} - \overline{\mathbf{x}}_j)^2 = \frac{1}{N} \mathbf{X}_j^T \mathbf{X}_j - \overline{\mathbf{x}}_j^2$$

$$Cov(X_{j_1}, X_{j_2}) = \frac{1}{N} \sum_{i=1}^{N} (x_{ij_1} - \overline{x}_{j_1})(x_{ij_2} - \overline{x}_{j_2})$$
$$= \frac{1}{N} X_{j_1}^T X_{j_2} - \overline{x}_{j_1} \overline{x}_{j_2}$$

$$\Sigma_{\mathbf{X}}^{\sim} = \begin{bmatrix} \operatorname{var}(X_1) & \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{cov}(X_1, X_d) \\ \operatorname{cov}(X_2, X_1) & \operatorname{var}(X_2) & \cdots & \operatorname{cov}(X_2, X_d) \\ \vdots & \ddots & \ddots & \vdots \\ \operatorname{cov}(X_d, X_1) & \operatorname{cov}(X_d, X_2) & \cdots & \operatorname{var}(X_d) \end{bmatrix}$$

$$=\frac{1}{N}\widetilde{X}^{T}\widetilde{X}-\overline{x}\overline{x}^{T}=\frac{1}{N}\widetilde{X}^{T}\widetilde{X}$$

# 3. Transform the data s.t. the covariances between the new dimensions are 0:

Eigendecomposition:  $\Sigma_{\widetilde{X}} = \Gamma \cdot \Lambda \cdot \Gamma^T$ 

 $\Gamma$ : Orthonormal matrix with column-eigenvectors  $\gamma_i$ 

Λ: Diagonal matrix of eigenvalues  $λ_i$ .

After transf.: 
$$\Sigma_{\widetilde{\mathbf{Y}}^{\prime}} = \Gamma \cdot \Sigma_{\widetilde{\mathbf{X}}} \cdot \Gamma^{T} = \Gamma^{T} \cdot \Gamma \Lambda \Gamma^{T} \cdot \Gamma = \Lambda$$

Dimensions in the new coordinate system (given by the eigenvectors/ principal components) have variance  $\lambda_i$ .

# 4. Dimensionality Reduction of Original Data:

$$Y = \widetilde{X} \cdot \Gamma$$
  $\overline{y} = \Gamma \cdot \overline{x}$ 

Keep k largest var. dims:  $\mathbf{Y}_{\mathrm{reduced}} = \widetilde{\mathbf{X}} \cdot \mathbf{\Gamma}_{\mathrm{truncated}}$ 

with 90% of the energy:  $k = \sum_{i=1}^k \lambda_i \geq 0.9 \cdot \sum_{i=1}^d \lambda_i$ 

#### **Power Iteration:**

Iteratively compute the eigenvector with the largest absolute value. Initialize with arbitrary normalized vector  $\boldsymbol{v}$  and iterate until convergence:

$$v \leftarrow \frac{\Sigma_{\widetilde{X}} \cdot v}{\|\Sigma_{\widetilde{X}} \cdot v\|}$$

Deflated Matrix:  $\widehat{\mathbf{\Sigma}}_{\widetilde{X}} = \mathbf{\Sigma}_{\widetilde{X}} - \lambda_1 \cdot \mathbf{\gamma}_1 \mathbf{\gamma}_1^T$ 

# Maximum Variance Formulation (Alt. view of PCA):

Project the data to a lower dimensional space  $\mathbb{R}^k$  with  $k \ll d$  while maximizing the variance of the projected data.

# Minimum Error Formulation (Alt. view of PCA):

Find an orthogonal set of k linear basis functions  $w_j \in \mathbb{R}^d$  and corresponding low-dimensional projections  $z_j \in \mathbb{R}^k$  such that the average reconstruction error is minimized with  $\hat{x}_i = W z_i + \mu$ . In other words, find one low dimensional projection which allows us to reconstruct the original data with the most information being preserved.

# 10.2 Singular Value Decomposition

The goal of SVD is to find the best low rank approximation by minimizing the reconstruction error.

$$\min_{\substack{B \\ rank(B)=k}} ||X - B||_F^2 = \sum_{i=1}^N \sum_{j=1}^D (x_{ij} - b_{ij})^2$$

Here, the reconstruction error is the Frobenius norm. This is a constraint optimization problem.

Matrix Decomposition of  $X \in \mathbb{R}^{n \times d}$ :

$$X = U \cdot \Sigma \cdot V^{T} = \sum_{i=1}^{r=Rank(X)} \sigma_{i} u_{i} \circ v_{i}^{T}$$



 $U \in \mathbb{R}^{n \times r}$ : column orthonormal

User/Entry-to-Concept Similarity

 $U \leftarrow \text{Eigenvectors of } XX^T$ 

 $\Sigma \in \mathbb{R}^{r \times r}$ : diag. w/ decr.-order singular values  $\sigma_i$ 

Strength of each concept

 $\Sigma \leftarrow \sqrt{\text{Eigenvalues}} \text{ of } X^T X \text{ or } XX^T$ 

 $V \in \mathbb{R}^{d \times r}$ : column orthonormal

Movie/Feature-to-Concept Similarity

 $V \leftarrow \text{Eigenvectors of } X^T X$ 

If  $\boldsymbol{X}$  has full rank, r = d.

Projected Data (Coordinates in new reference frame):

$$X_{\text{proj}} = X \cdot V = U \cdot \Sigma$$



For truncated SVD, XV is preferable since we only compute the top k singular values. Columns of V are the axes of the new reference frame.

#### SVD vs. PCA:

Transform the data such that dimensions of new space are uncorrelated and discard new dimensions with smallest variance is equivalent to finding the optimal low-rank approximation regarding the Frobenius norm.

$$X^TX = V \Sigma^2 V^T \rightarrow \Gamma = V \qquad \Sigma^2 = \Lambda$$

Frobenius norm:  $||X||_F = ||X^T||_F$ ,  $||X||_F^2 = tr(X^TX)$ 

# 11 Matrix Factorization

# 11.1 Latent Factor Model

# **RMSE for Evaluating Recommender Systems:**

$$RMSE = \frac{1}{|S|} \sqrt{\sum_{(u,i) \in S} (r_{ui} - \hat{r}_{ui})^2} \propto \text{Squared Error}$$

# **SVD on Rating Data:**

Standard SVD cannot be used because missing elements are treated as zeros and lack of sparsity.

$$\pmb{R} pprox \pmb{Q} \cdot \pmb{P}^T$$
 with  $\pmb{Q} = \pmb{U} \pmb{\Sigma} \in \mathbb{R}^{n \times k}$  and  $\pmb{P} = \pmb{V} \in \mathbb{R}^{d \times k}$ 

# **Latent Factor Minimization Problem:**

Sum over existing entries  $S = \{(u, i) | r_{ui} \neq \text{missing}\} \&$ do not require **P**, **Q** to be orthogonal and unit length.

$$\min_{\mathbf{P},\mathbf{Q}} \sum_{(u,i) \in S} (r_{ui} - \mathbf{q}_u \cdot \mathbf{p}_i^T)^2 = \begin{bmatrix} \frac{1}{2} & \frac$$

# 11.2 Alternating Optimization

Alternatingly fix one variable and solve for the other.

- 1. Initialization  $P^{(0)}$ ,  $Q^{(0)}$ , t = 0:
  - Use SVD & replace missing entries by 0.
  - With mean/ random/ Gauss-distr. values.

# 2. Alternatingly optimize $P^{(t+1)}$ and $Q^{(t+1)}$ :

$$P^{(t+1)} = \underset{\mathbf{P}}{\operatorname{argmin}} f(\mathbf{P}, \mathbf{Q}^{(t)})$$

$$= \underset{\mathbf{P}}{\operatorname{argmin}} \sum_{(u,i) \in S} (r_{ui} - \mathbf{q}_u \cdot \mathbf{p}_i^T)^2$$

$$= \sum_{i=1,\dots,d} \underset{\mathbf{P}_i}{\operatorname{argmin}} \sum_{u \in S_{*,i}} (r_{ui} - \mathbf{q}_u \cdot \mathbf{p}_i^T)^2$$

$$= \sum_{i=1,\dots,d} \underset{\mathbf{P}_i}{\operatorname{argmin}} \sum_{u \in S_{*,i}} (r_{ui} - \mathbf{q}_u \cdot \mathbf{p}_i^T)^2$$

Where  $S_{*,i} = \{u | (u,i) \in S\}$  are all users who have rated item i.

$$\mathbf{Q}^{(t+1)} = \arg\min_{\mathbf{P}} f(\mathbf{P}^{(t+1)}, \mathbf{Q})$$

$$= \sum_{u=1,\dots,n} \underset{\mathbf{q}_{\mathbf{u}}}{\operatorname{argmin}} \sum_{i \in S_{u*}} (r_{ui} - \mathbf{q}_{u} \cdot \mathbf{p}_{i}^{T})^{2}$$

Where  $S_{u,*} = \{i | (u,i) \in S\}$  are all items for user u.

**Closed Form Solution:** (ordinary LS regression)

$$\boldsymbol{p}_{i}^{T} = \left(\frac{1}{\left|S_{*,i}\right|} \sum_{u \in S_{*,i}} \boldsymbol{q}_{u}^{T} \boldsymbol{q}_{u}\right)^{-1} \cdot \frac{1}{\left|S_{*,i}\right|} \sum_{u \in S_{*,i}} \boldsymbol{q}_{u}^{T} r_{ui}$$

$$\boldsymbol{q}_{u}^{T} = \left(\frac{1}{\left|S_{u,*}\right|} \sum_{i \in S_{u,*}} \boldsymbol{p}_{i}^{T} \boldsymbol{p}_{i}\right)^{-1} \cdot \frac{1}{\left|S_{u,*}\right|} \sum_{i \in S_{u,*}} \boldsymbol{p}_{i}^{T} r_{ui}$$
Regularization and 
$$+\lambda \cdot I_{d \times d}$$
 like in normal equation

# 3. Repeat step 2 until convergence.

The solution is simple to implement and efficient on sparse data. However, it is only an approximation and heavily depends on the initialization.

User, item & overall bias  $b_u$ ,  $b_i$ , b:

$$\min_{\substack{\mathbf{P},\mathbf{Q}\\b_{ui},b_{i,b}}} \sum_{(u,i)\in S} \left( r_{ui} - \left( \mathbf{q}_{u} \cdot \mathbf{p}_{i}^{T} + b_{u} + b_{i} + b \right) \right)^{2}$$

#### 11.3 Matrix Factorization with SGD

- 1. Pick random user u and a random item i with rating  $r_{ui}$  (batch size 1)
- 2. Compute the gradients  $\frac{\partial \mathcal{L}}{\partial q_u}$  and  $\frac{\partial \mathcal{L}}{\partial p_i}$
- 3. Update Rule:  $\boldsymbol{q}_u \leftarrow \boldsymbol{q}_u \tau \frac{\partial \mathcal{L}}{\partial \boldsymbol{q}_u}$ ,  $\boldsymbol{p}_i \leftarrow \boldsymbol{p}_i \tau \frac{\partial \mathcal{L}}{\partial \boldsymbol{p}_i}$

Objective Function:  $\mathcal{L} \coloneqq \sum_{(u,i) \in \mathcal{S}} (r_{ui} - \boldsymbol{q}_u \cdot \boldsymbol{p}_i^T)^2$ 

$$e_{ui} \leftarrow r_{ui} - \boldsymbol{q}_{u} \cdot \boldsymbol{p}_{i}^{T}$$

$$\boldsymbol{q}_{u} \leftarrow \boldsymbol{q}_{u} - 2\tau(e_{ui} \boldsymbol{p}_{i})$$

$$\boldsymbol{p}_{i} \leftarrow \boldsymbol{p}_{i} - 2\tau(e_{ui} \boldsymbol{q}_{u})$$

Objective Function:  $\mathcal{L} + Bias + Regularization$ :

$$e_{ui} \leftarrow r_{ui} - (\boldsymbol{q}_{u} \cdot \boldsymbol{p}_{i}^{T} + b_{u} + b_{i} + b)$$
  
$$\boldsymbol{q}_{u} \leftarrow \boldsymbol{q}_{u} - 2\tau(e_{ui} \boldsymbol{p}_{i} - \lambda_{1} \boldsymbol{q}_{u})$$
  
$$\boldsymbol{p}_{i} \leftarrow \boldsymbol{p}_{i} - 2\tau(e_{ui} \boldsymbol{q}_{u} - \lambda_{2} \boldsymbol{p}_{i})$$

$$b_u \leftarrow b_u + 2\tau e_{ui}$$

$$b_i \leftarrow b_i + 2\tau e_{ui}$$

$$b = \frac{1}{|S|} \sum_{(u,i) \in S} r_{ui}$$

# 11.4 Regularization

$$\min_{\mathbf{P}, \mathbf{Q}} \sum_{(u, i) \in S} (r_{ui} - \mathbf{q}_u \cdot \mathbf{p}_i^T)^2 + \left[ \lambda_1 \sum_{u} ||\mathbf{q}_u||^2 + \lambda_2 \sum_{i} ||\mathbf{p}_i||^2 \right]$$

L2 regularization:

- Tries to shrink the parameter vector equally.
- Large values are highly penalized.
- It is unlikely that any component will be exactly 0.

#### L1 regularization:

- Enforces sparsity of the parameter vector.
- More intuitive that sparse input data comes from a sparse signal. Less latent factors to store.

# 11.5 Non-Negative Matrix Factorization

Task: Factorize non-negative  $\boldsymbol{Q}$  in non-negative  $\boldsymbol{Q}$  and  $\boldsymbol{P}$ , i.e.  $\boldsymbol{A} \approx \boldsymbol{Q} \cdot \boldsymbol{P}^T$ 

- Given  $\pmb{A} \in \mathbb{R}^{n \times d}$  with  $\pmb{A}_{ij} \geq 0$  and integer k, find  $\pmb{P} \in \mathbb{R}^{n \times k}$ ,  $\pmb{Q} \in \mathbb{R}^{k \times d}$  such that  $\| \pmb{A} - \pmb{Q} \cdot \pmb{P}^T \|_F$  is minimized subject to  $\pmb{Q} \geq 0$  and  $\pmb{P} \geq 0$ 

$$\min_{\boldsymbol{R} \geq 0} \|\boldsymbol{A} - \boldsymbol{Q} \cdot \boldsymbol{P}^T\|_{F}$$

# 11.6 Neighbor Graph Methods

Matrix factorization methods (PCA, SVD) preserve the global structure but may loose the local structure. NG methods preserve the neighborhood of each point.

#### **General Procedure:**



- 1. Construct neighbor graph of high-dim data.
- 2. Initialize points randomly in low-dim space.
- 3. Optimize coordinates in low-dim space s.t. similarities align (between low- & high-dim data)

# t-Distributed Stochastic Neighbor Embedding (t-SNE):

- Is SotA for visualizing high-dim data
- Cluster sizes/ distances may be misleading
- Not good for more than output 3-dim.
- Reduced "Crowding Problem"

# High-dim similarities for input $x_i$ :

Set  $\sigma_i$  such that perplexity is constant (fixed # of neigh.)

<u>Low-dim similarities for parameters  $y_i$ :</u> (t-Distr.)

$$q_{ij} = \frac{\left(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2\right)^{-1}}{\sum_k \sum_{l \neq k} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}} \qquad q_{ii} = 0$$

Change  $y_i$  s.t.  $p_{ij} \approx q_{ij}$ : (min. their KL divergence)  $\min_{\mathbf{y}_i} KL(P||Q) = \sum_i \sum_{i \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$ 

$$\frac{\partial KL(P||Q)}{\partial y_s} = 4\sum\nolimits_j \bigl(y_s - y_j\bigr) \bigl(p_{sj} - q_{sj}\bigr) \bigl(1 + \bigl\|y_s - y_j\bigr\|^2\bigr)^{-1}$$

#### **KL Divergence:**

 $KL(P||Q) \ge 0 \ \forall P,Q$   $KL(P||Q) = 0 \ iff P = Q$ 



Forward KL is Mean-Seeking KL(P||Q)



# 11.7 Auto-Encoders

Neural network that finds a compact representation of non-linear data by learning to reconstruct its input, i.e.  $f_{dec}\big(f_{enc}(\textbf{\textit{X}})\big) = XW_{\rm enc}W_{\rm dec} \approx \textbf{\textit{X}}. \text{ The bottleneck layer has fewer neurons } (L \ll D). \text{ Using an Autoencoder with lin. activations is like PCA/ SVD.}$ 

Objective:  $\min_{\mathbf{W}} \frac{1}{N} \sum_{i=1}^{N} ||f(\mathbf{x}_i, \mathbf{W}) - \mathbf{x}_i||^2$ 

# 12 Clustering

Group objects into clusters based on their similarity.

# 12.1 K-Means

# **Distance Measures:**

Manhattan:  $\|\mathbf{x}_i - \mathbf{x}_j\|_1 = \sum_d |\mathbf{x}_{id} - \mathbf{x}_{jd}|$ 

Euclidean:  $\|\mathbf{x}_i - \mathbf{x}_j\|_2 = \sqrt{\sum_d (\mathbf{x}_{id} - \mathbf{x}_{jd})^2}$ 

Mahalanobis:  $d = \sqrt{(x_i - x_j)^T \Sigma^{-1} (x_i - x_j)}$ 

# **Objective Function:**

$$J(X, Z, \mu) = \sum_{i=1}^{N} \sum_{k=1}^{K} z_{ik} ||x_i - \mu_k||_2^2$$

with one-hot encoding  $\mathbf{z}_i \in \{0,1\}^K$  and centroids  $\boldsymbol{\mu}_k \in \mathbb{R}^D$ . L1-norm would lead to K-Medians.

# Alternating Optimization with Lloyd's algorithm:

- 1. Initialize the centroids  $\mu = {\mu_1, ..., \mu_k}$
- 2. Update cluster indicators (solve  $\min_{z} J(X, Z, \mu)$ )

$$\mathbf{z}_{ik} = \begin{cases} 1, & \text{if } k = \arg\min_{j} \left\| \mathbf{x}_{i} - \boldsymbol{\mu}_{j} \right\|_{2}^{2} \\ 0, & \text{else} \end{cases}$$

3. Update centroids (solve  $\min_{\mathbf{u}} J(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu})$ )

$$\mu_k = \frac{1}{N_k} \sum_{i=1}^N \mathbf{z}_{ik} \mathbf{x}_i$$
 with  $N_k = \sum_{i=1}^N \mathbf{z}_{ik}$ 

For  $L_1$ :  $\mu_{kd} = \text{median}\{x_{id} \text{ such that } z_{ik} = 1\}$ 

4. If objective  $I(X, Z, \mu)$  has not converged  $\rightarrow$  Step 2

#### Initialization of Centroids with K-means++:

- 1. Choose the first centroid  $\mu_1$  uniformly at random among the data points.
- 2. For each point  $x_i$  compute the distance  $D_i^2 = ||x_i \mu_1||_2^2$ .
- 3. Sample the next centroid  $m{\mu}_k$  from  $\{m{x}_i\}$  with probability proportional to  $D_i^2$ .
- 4. Recompute the distances  $D_i^2 = \min\{||x_i \mu_1||_2^2, ..., ||x_i \mu_k||_2^2\}$ .
- 5. Continue steps 3 and 4 until K initial centroids have been chosen.

#### Limitations:

#### Modeling Issues:

- · Underlying assumptions are not explicit.
- Quality depends on the distance measure a lot.
- Can't detect clusters w/ overlapping convex hulls.
- Sensitivity to outliers.
- No uncertainty measure.

# Algorithmic Issues:

Extreme sensitivity to initialization.

# 12.2 Gaussian Mixture Model (GMM)

$$p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \cdot p(\mathbf{z}|\boldsymbol{\theta})$$

Cluster Prior:  $p(\mathbf{z}|\boldsymbol{\pi}) = Cat(\boldsymbol{\pi})$ 

Per-class distr.:  $p(x|\mathbf{z}_k = 1, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \mathcal{N}(x|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ The variables  $\mathbf{z}$  never observed  $\rightarrow$  latent variables.

**GMM Likelihood:** 

(Mixture of K Gaussians)

$$p(\boldsymbol{x}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{k=1}^{K} p(z_k = 1|\boldsymbol{\pi}) p(\boldsymbol{x}|z_k = 1, \mu_k, \Sigma_k)$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}|\mu_k, \Sigma_k)$$

# Inference/ Responsibility/ Posterior:

$$p(\mathbf{z}_{ik} = 1 | \mathbf{x}_i, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{p(z_{ik} = 1 | \boldsymbol{\pi}) p(\mathbf{x}_i | z_{ik} = 1, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{p(\mathbf{x}_i | \boldsymbol{\pi}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$
$$= \frac{\boldsymbol{\pi}_k \, \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^K \boldsymbol{\pi}_j \, \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} = \gamma(\mathbf{z}_{ik} = \mathbf{1})$$

The latent variables are independent:  $\gamma(\mathbf{Z}) = \prod_{i=1}^{N} \gamma(\mathbf{z}_i)$ 

 $\gamma(\mathbf{z}_{ik}) = \text{Responsibility of component } k \text{ for observation } i$ 

# **EM Algorithm for GMM:**

- 1. Initialize model parameters  $\{\pi^{(0)}, \mu_1^{(0)}, ..., \mu_K^{(0)}, \Sigma_1^{(0)}, ..., \Sigma_K^{(0)}\}.$
- 2. E step. Evaluate the responsibilities

$$\gamma_t(\boldsymbol{z}_{ik}) = \frac{\boldsymbol{\pi}_k^{(t)} \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})}{\sum_{j=1}^K \boldsymbol{\pi}_j^{(t)} \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_j^{(t)}, \boldsymbol{\Sigma}_j^{(t)})}.$$

3. **M step**. Re-estimate the parameters

$$\begin{split} \boldsymbol{\mu}_k^{(t+1)} &= \frac{1}{N_k} \sum_{i=1}^N \gamma_t(\boldsymbol{z}_{ik}) \boldsymbol{x}_i \\ \boldsymbol{\Sigma}_k^{(t+1)} &= \frac{1}{N_k} \sum_{i=1}^N \gamma_t(\boldsymbol{z}_{ik}) (\boldsymbol{x}_i - \boldsymbol{\mu}_k^{(t+1)}) (\boldsymbol{x}_i - \boldsymbol{\mu}_k^{(t+1)})^T \\ \boldsymbol{\pi}_k^{(t+1)} &= \frac{N_k}{N} \qquad \text{where } N_k = \sum_{i=1}^N \gamma_t(\boldsymbol{z}_{ik}). \end{split}$$

4. Iterate steps 2 & 3 until  $\mathbb{E}_{Z\sim\gamma_t(Z)}\left[\log\operatorname{p}(X,Z\mid \pi^{(t)},\mu^{(t)},\Sigma^{(t)})
ight]$  converges

# 12.3 Expectation-Maximization Algorithm

Used when it is intractable to optimize the log-likelihood  $\log p(\boldsymbol{X}|\boldsymbol{\theta})$  due to latent variables  $\boldsymbol{Z}$ . Easier to optimize the joint probability  $\log p(\boldsymbol{X},\boldsymbol{Z}|\boldsymbol{\theta})$ .

- **E step** evaluate the posterior  $\gamma_t(Z) = p(Z \mid X, \theta^{(t)})$ .
- M step maximize the expected joint log-likelihood  $\log \mathrm{p}(X,Z\mid heta)$  w.r.t. heta under the current beliefs  $\gamma_t(Z)$

$$\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\arg\max} \ \underset{\boldsymbol{Z} \sim \gamma_t(\boldsymbol{Z})}{\mathbb{E}} \left[ \log \operatorname{p}(\boldsymbol{X}, \boldsymbol{Z} \mid \boldsymbol{\theta}) \right]$$

$$\log p(\textbf{\textit{X}} \mid \boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta}) + \mathbb{KL}\left(q \mid\mid p(\cdot \mid \textbf{\textit{X}}, \boldsymbol{\theta})\right)$$

After the E-step we have  $\log p(\boldsymbol{X} \mid \boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta})$ . So if we now perform the M-step and maximize  $\mathcal{L}(q, \boldsymbol{\theta})$  with respect to  $\boldsymbol{\theta}$ , either

- $\mathcal{L}(\mathbf{q}, m{ heta})$  does not change, we are at a local maximum of  $\log \mathrm{p}(m{X} \mid m{ heta})$  and EM converges
- ullet or  $\mathcal{L}(\mathbf{q},oldsymbol{ heta})$  "pushes" up against  $\log \mathrm{p}(oldsymbol{X}\midoldsymbol{ heta}).$

 $\mathcal{L}(q, \boldsymbol{\theta})$  is a lower-bound on  $\log p(\boldsymbol{X}|\boldsymbol{\theta})$  for any q, because  $\mathcal{L}(q, \boldsymbol{\theta})$  is maximal when the  $\mathbb{KL}$  divergence is 0, which happens when  $q(\boldsymbol{Z}) = \gamma(\boldsymbol{Z}) = p(\boldsymbol{Z}|\boldsymbol{X}, \boldsymbol{\theta})$ .

$$\log p(\boldsymbol{X}|\boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta}) = \mathbb{E}_{Z \sim q} \left[ \log \frac{p(\boldsymbol{X}, \boldsymbol{Z}|\boldsymbol{\theta})}{q(\boldsymbol{Z})} \right]$$

#### E-Step:

Use Bayes rule as in the EM Algorithm for GMM.

#### M-Step:

1. Rewrite the expected data log-likelihood  $\mathcal{L}(\gamma_t, \boldsymbol{\theta})$ :

$$\mathbb{E}_{\mathbf{Z} \sim \gamma_t}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})] = \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma(z_{ik}) \log p(x_i, z_{ik} | \boldsymbol{\theta})$$

- 2. Absorb all terms constant w.r.t.  $\theta$
- 3. Compute derivative w.r.t.  $\theta$  and find the root.

# 12.4 Choosing Number of Clusters

#### **Heuristic Methods**

Elbow/Knee Heuristic: Plot within-cluster sum of squared distances or likelihood for varying K. The optimal K is at the knee.

<u>Gap Statistic</u>: Compare within-cluster variation to uniform data. Choose smallest K such that gap statistic is within one std. dev. of gap at K+1. <u>Silhouette</u>: Per point difference of within-cluster mean distance to points in the closest other cluster. Maximize this for all points.

#### **Choosing Number of Clusters: Probabilistic Methods**

Needs generative model that defines the data likelihood  $\hat{L} = p(\boldsymbol{X} \mid \hat{\boldsymbol{Z}}, \hat{\boldsymbol{\theta}})$  (with optimal parameters  $\hat{\boldsymbol{Z}}$ ,  $\hat{\boldsymbol{\theta}}$ ).

- Bayesian information criterion (BIC): Approximate model likelihood  $p(\boldsymbol{X} \mid \text{model})$ . Balances number of parameters vs. likelihood,  $\text{BIC} = M \log N 2 \log \hat{L}$ .
- Akaike information criterion (AIC): Estimate information lost by given model,  $AIC = 2M - 2 \log \hat{L}$
- Here M is the number of free parameters (e.g  $K \cdot (D+D^2+1)$  for GMM) and N is the number of samples

#### 12.5 Hierarchical Clustering

- Agglomerative: Bottom-up, merge cluster pairs iteratively
- Divisive: Top-down, split data recursively

Cluster pairs are chosen by minimum cluster distance.

Linkage criterion defines cluster distance from sample distance:

- Complete-linkage clustering: Maximum sample distance
- Single-linkage clustering: Minimum sample distance
- Unweighted average linkage clustering (UPGMA): Mean sample distance
- Centroid linkage clustering (UPGMC): Centroid distance
- Weighted average linkage clustering (WPGMA): Distance defined recursively as average of distances in previous level (before merging)

# 13 Advanced Topics

# **Considerations beyond Accuracy:**

Privacy, Security, Fairness, Explainability, Accountability

# 13.1 Differential Privacy

Model Inversion: Attacks recover information about the training data from the trained model.

Randomized Response: Introducing randomization to provide plausible deniability.

- 1. Flip a coin. If it lands tails answer truthfully.
- 2. Else flip another coin. If it lands tails, answer yes, else no.

Unbiased Estimator:  $\mu = \frac{1}{4}(1-\hat{\mu}) + \frac{3}{4}\hat{\mu}$  where  $\hat{\mu}$  is the MLE.

# **Definition Differential Privacy:**

A randomized mechanism  $\mathcal{M}_f:\mathcal{X} o \mathcal{Y}$   $^2$  is  $\epsilon$ -differentially private if **for** all neighboring inputs  $X \simeq X'$  and for all sets of outputs  $Y \subseteq \mathcal{Y}$  we have:3

$$\mathbb{P}[\mathcal{M}_f(X) \in Y] \le e^{\epsilon}[\mathcal{M}_f(X') \in Y]$$

For any possible set of outputs we have

 $\mathcal{M}_f(X') \in Y$  is the probability that the  $e^{-\epsilon} \le \frac{\mathbb{P}[\mathcal{M}_f(X) \in Y]}{\mathbb{P}[\mathcal{M}_f(X') \in Y]}$  $\leq e^{\epsilon}$  mechanism's output for changed inputs is in Y.



# **Laplace Mechanism:**

- ullet Define the global sensitivity of a function  $f:\mathcal{X} o\mathbb{R}^d$  as  $\Delta_p = \sup_{X \simeq X'} ||f(X) - f(X')||_p$
- $\Delta_n$  measures the magnitude by which a single instance can change the output of the function in the worst case
- Output perturbation with Laplace Noise:
  - A curator holds data  $X=(x_1,\ldots,x_n)\in\mathcal{X}$  about n individuals
  - The curator computes the function f(X)
  - They sample i.i.d. Laplace noise  $Z\sim \mathsf{Lap}(0,\frac{\Delta_1}{\epsilon})^d$  Dimensions d are
  - They reveal the noisy value f(X) + Z

 $\mathcal{M}_f(X) \sim p_X(y) \sim \operatorname{Lap}\left(y|f(X), \frac{\Delta_1}{\epsilon}\right)^d = \prod_{i=1}^d \frac{\epsilon}{2\Delta_1} e^{-\frac{\epsilon}{\Delta_1}|y_i - f(X)_i|}$ 

# **Perturbation Techniques:**

Perturb input, weights, objective or gradients.

# **Fundamental properties of DP:**

- Robustness to post-processing. Operations after applying the DP-mechanism preserve DP.
- Composition: If the data is composed of different DP datasets, the overall data is also DP.
- Group privacy: If  $\mathcal{M}$  is  $\epsilon$ -DP w.r.t.  $X \simeq X'$ , then  $\mathcal{M}$ is  $(t\epsilon)$ -DP for t changed instances  $(X \simeq_t X')$ .

Federated Learning: Learning a model without any centralized entity having access to all the data. → Send weights from server to user → Compute loss and gradients locally  $\rightarrow$  Send updates weights + noise back.

# 13.2 Algorithmic Fairness

#### Causes of Bias:

- Tainted training data: algorithm maintains the existing bias caused by human bias.
- Skewed sample: initial predictions influence future observations; selection bias.
- Proxies: some features may be highly correlated to excluded (& legally protected) features.
- Sample size disparity: models tend to fit larger groups first.
- Limited features: features may be less informative or reliable for minority groups.

#### **Notions of Fairness:**

- Group fairness: treat all groups equally.
- Individual fairness: treat similar examples similarly.
- Counterfactual fairness: uses tools from causal inference. "What would the decision be if the individual belonged to a different group?"

# Fairness through Unawareness:

Use R = r(X) instead of R = r(X, A). Does not work due to correlations with of features in *X* with *A*.

# First Fairness Criterion: Independence

Binary predictor R indep. of sensitive features A:  $R \perp A$ 

For all groups 
$$a, b$$
:  $P_a\{R = 1\} = P_b\{R = 1\}$   
or relaxed:  $|P_a\{R = 1\} - P_b\{R = 1\}| \le \epsilon$ 

- + Legal support.
- Rules out the optimal predictor when base rates are different across groups.

# **Second Criterion: Separation**

R independent of A, given target  $Y: R \perp A \mid Y$ 

Enforce equal TP and FP rates for all groups a, b:

$$P_a(R=1 \mid Y=1) = P_b(R=1 \mid Y=1) \qquad \text{true positive (TP)}$$
 
$$P_a(R=1 \mid Y=0) = P_b(R=1 \mid Y=0) \qquad \text{false positive (FP)}$$

Enforce only TP-rate  $\rightarrow$  Equality of opportunity

- + Optimal predictor not ruled out.
- + Penalizes laziness.
- May not close gap between groups.



# **Third Criterion: Sufficiency**

Labels Y independent of A, given prediction  $R: Y \perp A \mid R$ 

Enforce equal target rates given equal scores for a, b:

$$P_a\{Y=1|R=r\} = P_b\{Y=1|R=r\}$$

- + Satisfied by Bayes' optimal classifier.
- + No need to see A for predicting Y when is R given.
- + Equal chance of success Y = 1 given acceptance R = 1
- May not close gaps between the groups.

# 14 Probability Distributions

# 14.1 Gaussian

$$\mathcal{N}(x\mid \mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

With 
$$\beta = \frac{1}{\sigma^2}$$
:  $\mathcal{N}(x \mid \mu, \beta^{-1}) = \frac{\beta}{\sqrt{2\pi}} e^{-\frac{\beta}{2}(x-\mu)^2}$ 

$$\sum_{i=1}^{N} \log \mathcal{N}(x_i \mid \mu_i, \beta^{-1}) = \frac{N}{2} \log \beta - \frac{N}{2} \log(2\pi) - \frac{\beta}{2} \sum_{i=1}^{N} (\mu_i - x_i)^2$$

$$E[x] = \mu$$

$$Var(x) = \sigma^2$$

# **Multivariate:**

$$\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{D}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}$$

$$\log \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) - \frac{D}{2} \log 2\pi - \frac{1}{2} \log(\det \Sigma)$$

$$\mathbb{E}[x] = \mu$$
  $\Sigma = \mathbb{E}[xx^T] - \mathbb{E}[x] E[x]^T$  (x is a vector)

For matrix 
$$X$$
:  $\Sigma = \mathbb{E}[X^T X] - E[X]^T \mathbb{E}[X]$ 

# Sum of two Gaussians is a Gaussian

$$z = x + y$$
 with  $x \sim \mathcal{N}(\mu_x, \sigma_x^2)$  and  $y \sim \mathcal{N}(\mu_y, \sigma_y^2)$   
 $\Rightarrow z \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$ 

# 14.2 Bernoulli

$$Ber(x \mid \theta) = \theta^x (1 - \theta)^{1 - x}$$

$$\log (\text{Ber}(x \mid \theta)) = x \log \theta + (1 - x) \log (1 - \theta)$$

$$E[x] = \theta$$

$$Var(x) = p(1-p)$$

# 14.1 Binomial

$$Bin(X = k \mid N, \theta) = {N \choose k} \theta^k (1 - \theta)^{N-k}$$

$$\log \operatorname{Bin}(k|N,\theta) = \log \binom{N}{k} + x \log \theta + (N-k) \log (1-\theta)$$

$$E[x] = N\theta$$

$$Var(x) = Np(1-p)$$

#### 14.1 Beta

Beta
$$(x \mid a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$$

 $\log \operatorname{Beta}(x \mid a, b) \propto (a - 1) \log x + (b - 1) \log(1 - x)$ 

$$E[x] = \frac{a}{a+b} \qquad Var(x) = \frac{ab}{(a+b)^2(a+b+1)}$$

$$Var(x) = \frac{ab}{(a+b)^2(a+b+1)}$$

# 14.1 Gamma

$$Gam(x \mid a, b) = \frac{1}{\Gamma(a)} b^a x^{a-1} e^{-bx}$$
$$\log Gam(x \mid a, b) \propto (a-1) \log x - bx$$
$$E[x] = \frac{a}{b} \qquad Var(x) = \frac{a}{b^2}$$

# 14.1 Laplace

$$Lap(x|\mu, b) = \frac{1}{2b} e^{-\frac{|x-\mu|}{b}}$$

$$log Lap(x|\mu, b) = -log 2b - \frac{|x-\mu|}{b}$$

$$E[x] = \mu \qquad Var(x) = 2b^2$$

# 14.1 Others

| Distribution             | PDF or PMF                                                                                                   | Mean                | Variance              |
|--------------------------|--------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|
| Bernoulli(p)             | $\begin{cases} p, & \text{if } x = 1\\ 1 - p, & \text{if } x = 0. \end{cases}$                               | p                   | p(1 - p)              |
| Binomial(n, p)           | $\binom{n}{k} p^k (1-p)^{n-k}$ for $0 \le k \le n$                                                           | np                  | npq                   |
| Geometric(p)             | $p(1-p)^{k-1}$ for $k = 1, 2,$                                                                               | $\frac{1}{p}$       | $\frac{1-p}{p^2}$     |
| $Poisson(\lambda)$       | $e^{-\lambda}\lambda^x/x!$ for $k=1,2,\ldots$                                                                | λ                   | λ                     |
| Uniform(a,b)             | $\frac{1}{b-a} \ \forall x \in (a,b)$                                                                        | $\frac{a+b}{2}$     | $\frac{(b-a)^2}{12}$  |
| $Gaussian(\mu,\sigma^2)$ | $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $\lambda e^{-\lambda x}  x \ge 0, \lambda > 0$ | $\mu$               | $\sigma^2$            |
| $Exponential(\lambda)$   | $\lambda e^{-\lambda x} \ x \ge 0, \lambda > 0$                                                              | $\frac{1}{\lambda}$ | $\frac{1}{\lambda^2}$ |

# 15 Derivatives

Derivative w.r.t. column vector:

$$\frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$$

$$\frac{\partial Ax}{\partial x} = x$$

$$\frac{\partial x^T Ax}{\partial x} = \begin{cases} 2Ax, & A \text{ is symmetric} \\ (A + A^T)x^T, & \text{otherwise} \end{cases}$$

Derivative w.r.t. matrix:

$$\frac{\partial \boldsymbol{a}^T \boldsymbol{X}^{-1} \boldsymbol{b}}{\partial \boldsymbol{X}} = -\boldsymbol{X}^{-T} \boldsymbol{b} \boldsymbol{a}^T \boldsymbol{X}^{-T}$$

$$\frac{\partial \log|\det \boldsymbol{X}|}{\partial \boldsymbol{X}} = \boldsymbol{X}^{-T} \quad \text{and} \quad \log \det \boldsymbol{X} = -\log \det \boldsymbol{X}^{-1}$$

$$\frac{\partial \operatorname{tr}(\boldsymbol{A}\boldsymbol{B})}{\partial \boldsymbol{A}} = \boldsymbol{B}^T$$

| Likelihood                                               | Model parameters                                                                        | Conjugate prior<br>distribution | Prior<br>hyperparameters                           | Posterior hyperparameters <sup>(note 1)</sup>                                               | Interpretation of hyperparameters                                                                                  | Posterior<br>predictive <sup>[note 2]</sup>                                                                                       |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Bernoulli                                                | p (probability)                                                                         | Beta                            | $\alpha, \beta$                                    | $\alpha + \sum_{i=1}^n x_i,  \beta + n - \sum_{i=1}^n x_i$                                  | lpha successes, $eta$ failures(note 3)                                                                             | $p(	ilde{x}=1)=rac{lpha'}{lpha'+eta'}$                                                                                           |
| Binomial                                                 | p (probability)                                                                         | Beta                            | α, β                                               | $\alpha + \sum_{i=1}^n x_i, \ \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$                  | $lpha$ successes, $eta$ failures $^{	ext{(note 3)}}$                                                               | $\operatorname{BetaBin}(\tilde{x} lpha',eta')$ (beta-binomial)                                                                    |
| Negative binomial with known failure number, $r$         | p (probability)                                                                         | Beta                            | $\alpha$ , $\beta$                                 | $\alpha + \sum_{i=1}^n x_i, \beta + rn$                                                     | $\alpha$ total successes, $\beta$ failures[note 3] (i.e., $\frac{\beta}{r}$ experiments, assuming $r$ stays fixed) | $\operatorname{BetaNegBin}(	ilde{x} lpha',eta')$ (beta-negative binomial)                                                         |
| Poisson A (rate)                                         |                                                                                         | $k,  \theta$                    | $k + \sum_{i=1}^n x_i, \; rac{	heta}{n	heta + 1}$ | $k$ total occurrences in $\dfrac{1}{	heta}$ intervals                                       | $\operatorname{NB}\!\left(\!ar{x}\mid k', rac{	heta'}{	heta'+1} ight)$ (negative binomial)                        |                                                                                                                                   |
|                                                          | n (rate)                                                                                | Gamma                           | $lpha,eta^{	ext{[note 4]}}$                        | $\alpha + \sum_{i=1}^n x_i, \ \beta + n$                                                    | $lpha$ total occurrences in $oldsymbol{eta}$ intervals                                                             | $\mathrm{NB}\Big(	ilde{x} \mid lpha', rac{1}{1+eta'}\Big)$ (negative binomial)                                                   |
| Categorical                                              | p (probability vector), $k$ (number of categories; i.e., size of $p$ )                  | Dirichlet                       | α                                                  | $\pmb{lpha} + (c_1, \dots, c_k),$ where $c_i$ is the number of observations in category $i$ | $lpha_i$ occurrences of category $i^{(note \ 3)}$                                                                  | $egin{aligned} p(	ilde{x} = i) &= rac{{lpha_i}'}{\sum_i {lpha_i}'} \ &= rac{{lpha_i} + c_i}{\sum_i {lpha_i} + n} \end{aligned}$ |
| Multinomial                                              | <b>p</b> (probability vector), <i>k</i> (number of categories; i.e., size of <b>p</b> ) | Dirichlet                       | α                                                  | $\alpha + \sum_{i=1}^{n} \mathbf{x}_{i}$                                                    | $lpha_i$ occurrences of category $i^{	ext{(note 3)}}$                                                              | $\operatorname{DirMult}(\tilde{\mathbf{x}} \mid \boldsymbol{lpha}')$ (Dirichlet-multinomial)                                      |
| Hypergeometric<br>with known total<br>population size, N | M (number of target members)                                                            | Beta-binomial <sup>[4]</sup>    | n=N,lpha,eta                                       | $\alpha + \sum_{i=1}^n x_i,  \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$                   | $lpha$ successes, $oldsymbol{eta}$ failures $^{	ext{Inote 3}}$                                                     |                                                                                                                                   |
| Geometric                                                | p <sub>0</sub> (probability)                                                            | Beta                            | α, β                                               | $\alpha+n,\beta+\sum_{i=1}^n x_i$                                                           | $lpha$ experiments, $eta$ total failures $^{	ext{[note 3]}}$                                                       |                                                                                                                                   |

| Likelihood                                                | Model parameters                                                  | Conjugate prior distribution                                    | Prior<br>hyperparameters                         | Posterior hyperparameters <sup>[note 1]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Interpretation of hyperparameters                                                                                                                                                                                               | Posterior predictive <sup>[note 5]</sup>                                                                                                                 |  |  |
|-----------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Normal<br>with known variance<br>$\sigma^2$               | μ (mean)                                                          | Normal                                                          | $\mu_0,\sigma_0^2$                               | $\frac{1}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}} \left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^n x_i}{\sigma^2}\right), \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1}$                                                                                                                                                                                                                                                                                                                | mean was estimated from observations with total precision (sum of all individual precisions) $1/\sigma_0^2$ and with sample mean $\mu_0$                                                                                        | $\mathcal{N}(	ilde{x} \mu_0',\sigma_0^{2'}+\sigma^2)^{[5]}$                                                                                              |  |  |
| Normal<br>with known<br>precision r                       | μ (mean)                                                          | Normal                                                          | $\mu_0,	au_0$                                    | $\frac{\tau_0\mu_0+\tau\sum_{i=1}^nx_i}{\tau_0+n\tau},\tau_0+n\tau$                                                                                                                                                                                                                                                                                                                                                                                                                                         | mean was estimated from observations with total precision (sum of all individual precisions) $	au_0$ and with sample mean $\mu_0$                                                                                               | $\mathcal{N}\left(	ilde{x}\mid \mu_0', rac{1}{	au_0'} + rac{1}{	au} ight)$ [5]                                                                         |  |  |
| Normal<br>with known mean $\mu$                           | σ <sup>2</sup> (variance)                                         | Inverse gamma                                                   | $\alpha$ , $\beta$ [note 6]                      | $lpha+rac{n}{2},eta+rac{\sum_{i=1}^n\left(x_i-\mu ight)^2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                            | variance was estimated from $2\alpha$ observations with sample variance $\beta/\alpha$ (i.e. with sum of squared deviations $2\beta$ , where deviations are from known mean $\mu$ )                                             | $t_{2lpha'}(	ilde{x} \mu,\sigma^2=eta'/lpha')^{	ilde{	ext{1S}}}$                                                                                         |  |  |
| Normal<br>with known mean μ                               | σ² (variance)                                                     | Scaled inverse chi-squared                                      | $ u$ , $\sigma_0^2$                              | $ u+n, \ rac{ u\sigma_0^2 + \sum_{i=1}^n (x_i - \mu)^2}{ u+n}$                                                                                                                                                                                                                                                                                                                                                                                                                                             | variance was estimated from $ u$ observations with sample variance $\sigma_0^2$                                                                                                                                                 | $t_{ u'}(	ilde{x} \mu,\sigma_0^{2'})^{	ilde{	ilde{	ilde{S}}}}$                                                                                           |  |  |
| Normal<br>with known mean μ                               | τ (precision)                                                     | Gamma                                                           | α, β <sup>note 4]</sup>                          | $lpha+rac{n}{2},eta+rac{\sum_{i=1}^n(x_i-\mu)^2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | precision was estimated from $2\alpha$ observations with sample variance $\beta/\alpha$ (i.e. with sum of squared deviations $2\beta$ , where deviations are from known mean $\mu$ )                                            | $t_{2lpha'}(	ilde{x}\mid \mu,\sigma^2=eta'/lpha')$ [5]                                                                                                   |  |  |
| Normal <sup>(note 7)</sup>                                | μ and σ²<br>Assuming<br>exchangeability                           | Normal-inverse<br>gamma                                         | $\mu_0, u,lpha,eta$                              | $\begin{split} &\frac{\nu\mu_0+n\bar{x}}{\nu+n},\nu+n,\alpha+\frac{n}{2},\\ &\beta+\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2+\frac{n\nu}{\nu+n}\frac{(\bar{x}-\mu_0)^2}{2}\\ &\bullet\;\bar{x}\;\text{is the sample mean} \end{split}$                                                                                                                                                                                                                                                                         | mean was estimated from $\nu$ observations with sample mean $\mu_0$ ; variance was estimated from $2\alpha$ observations with sample mean $\mu_0$ and sum of squared deviations $2\beta$                                        | $t_{2lpha'}\left(	ilde{x}\mid \mu', rac{eta'( u'+1)}{ u'lpha'} ight)$ [5]                                                                               |  |  |
| Normal                                                    | μ and τ<br>Assuming<br>exchangeability                            | Normal-gamma                                                    | $\mu_0,  \nu,  \alpha,  \beta$                   | $\begin{split} &\frac{\nu\mu_0+n\bar{x}}{\nu+n},\nu+n,\alpha+\frac{n}{2},\\ &\beta+\frac{1}{2}\sum_{i=1}^n(x_i-\bar{x})^2+\frac{n\nu}{\nu+n}\frac{(\bar{x}-\mu_0)^2}{2}\\ &\bullet\bar{x} \text{ is the sample mean} \end{split}$                                                                                                                                                                                                                                                                           | mean was estimated from $\nu$ observations with sample mean $\mu_0$ , and precision was estimated from $2\alpha$ observations with sample mean $\mu_0$ and sum of squared deviations $2\beta$                                   | $t_{2lpha'}\left(	ilde{x}\mid \mu', rac{eta'( u'+1)}{lpha' u'} ight)$ [5]                                                                               |  |  |
| Multivariate normal with known covariance matrix <b>Σ</b> | μ (mean vector)                                                   | Multivariate normal                                             | $oldsymbol{\mu}_0, oldsymbol{\Sigma}_0$          | $\begin{split} & \left(\boldsymbol{\Sigma}_0^{-1} + n\boldsymbol{\Sigma}^{-1}\right)^{-1} \left(\boldsymbol{\Sigma}_0^{-1}\boldsymbol{\mu}_0 + n\boldsymbol{\Sigma}^{-1}\bar{\mathbf{x}}\right), \\ & \left(\boldsymbol{\Sigma}_0^{-1} + n\boldsymbol{\Sigma}^{-1}\right)^{-1} \\ & \bullet \; \bar{\mathbf{x}} \; \text{is the sample mean} \end{split}$                                                                                                                                                   | mean was estimated from observations with total precision (sum of all individual precisions) $\mathbf{\Sigma}_0^{-1}$ and with sample mean $\mu_0$                                                                              | $\mathcal{N}(	ilde{\mathbf{x}} \mid oldsymbol{\mu_0}', oldsymbol{\Sigma_0}' + oldsymbol{\Sigma})^{[5]}$                                                  |  |  |
| Multivariate normal with known precision matrix A         | μ (mean vector)                                                   | Multivariate normal                                             | $\mu_0, \Lambda_0$                               | $\left(\mathbf{\Lambda}_0+n\mathbf{\Lambda}\right)^{-1}\left(\mathbf{\Lambda}_0oldsymbol{\mu}_0+n\mathbf{\Lambda}\mathbf{ar{x}}\right),\left(\mathbf{\Lambda}_0+n\mathbf{\Lambda}\right)$ • $\mathbf{ar{x}}$ is the sample mean                                                                                                                                                                                                                                                                             | mean was estimated from observations with total precision (sum of all individual precisions) $\Lambda_0$ and with sample mean $\mu_0$                                                                                           | $\mathcal{N}\left(\mathbf{	ilde{x}}\mid oldsymbol{\mu_0}', (oldsymbol{\Lambda_0}'^{-1} + oldsymbol{\Lambda}^{-1})^{-1} ight)^{[5]}$                      |  |  |
| Multivariate normal with known mean $\mu$                 | Σ (covariance matrix)                                             | Inverse-Wishart                                                 | $\nu$ , $\Psi$                                   | $n +  u$ , $\mathbf{\Psi} + \sum_{i=1}^{n} (\mathbf{x_i} - \boldsymbol{\mu}) (\mathbf{x_i} - \boldsymbol{\mu})^T$                                                                                                                                                                                                                                                                                                                                                                                           | covariance matrix was estimated from $ u$ observations with sum of pairwise deviation products $\Psi$                                                                                                                           | $t_{ u'-p+1}\left(	ilde{\mathbf{x}} oldsymbol{\mu},rac{1}{ u'-p+1}oldsymbol{\Psi}' ight)$ [5]                                                           |  |  |
| Multivariate normal with known mean $\mu$                 | <b>Λ</b> (precision matrix)                                       | Wishart                                                         | $\nu$ , V                                        | $n +  u$ , $\left(\mathbf{V}^{-1} + \sum_{i=1}^{n} (\mathbf{x_i} - \boldsymbol{\mu})(\mathbf{x_i} - \boldsymbol{\mu})^T\right)^{-1}$                                                                                                                                                                                                                                                                                                                                                                        | covariance matrix was estimated from $\nu$ observations with sum of pairwise deviation products ${f V}^{-1}$                                                                                                                    | $t_{ u'-p+1}\left(\mathbf{	ilde{x}}\mid oldsymbol{\mu}, rac{1}{ u'-p+1}\mathbf{V}'^{-1} ight)$ [5]                                                      |  |  |
| Multivariate normal                                       | $\mu$ (mean vector) and $\mathcal E$ (covariance matrix)          | normal-inverse-<br>Wishart                                      | $oldsymbol{\mu}_0,\kappa_0, u_0,oldsymbol{\Psi}$ | $\begin{split} &\frac{\kappa_0 \boldsymbol{\mu}_0 + n \bar{\mathbf{x}}}{\kappa_0 + n},  \kappa_0 + n,  \nu_0 + n, \\ &\bar{\boldsymbol{\Psi}} + \mathbf{C} + \frac{\kappa_0 n}{\kappa_0 + n} (\bar{\mathbf{x}} - \boldsymbol{\mu}_0) (\bar{\mathbf{x}} - \boldsymbol{\mu}_0)^T \\ &\bullet  \bar{\mathbf{x}} \text{ is the sample mean} \\ &\bullet  \mathbf{C} = \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T \end{split}$                                           | mean was estimated from $\kappa_0$ observations with sample mean $\mu_0$ ; covariance matrix was estimated from $\nu_0$ observations with sample mean $\mu_0$ and with sum of pairwise deviation products $\Psi=\nu_0 \Sigma_0$ | $t_{\nu_0'-p+1}\left(\tilde{\mathbf{x}} \boldsymbol{\mu}_0',\frac{{\kappa_0}'+1}{{\kappa_0}'(\nu_0'-p+1)}\boldsymbol{\Psi}'\right)^{[5]}$                |  |  |
| Multivariate normal                                       | μ (mean vector) and Λ (precision matrix)                          | normal-Wishart                                                  | $oldsymbol{\mu}_0, \kappa_0,  u_0, \mathbf{V}$   | $\begin{split} &\frac{\kappa_0 \boldsymbol{\mu}_0 + n \overline{\mathbf{x}}}{\kappa_0 + n},  \kappa_0 + n,  \nu_0 + n, \\ &\left(\mathbf{V}^{-1} + \mathbf{C} + \frac{\kappa_0 n}{\kappa_0 + n} (\overline{\mathbf{x}} - \boldsymbol{\mu}_0) (\overline{\mathbf{x}} - \boldsymbol{\mu}_0)^T\right)^{-1} \\ & \bullet  \overline{\mathbf{x}} \text{ is the sample mean} \\ & \bullet  \mathbf{C} = \sum_{i=1}^n (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T \end{split}$ | mean was estimated from $\kappa_0$ observations with sample mean $\mu_0$ ; covariance matrix was estimated from $\nu_0$ observations with sample mean $\mu_0$ and with sum of pairwise deviation products ${f V}^{-1}$          | $t_{\nu_0'-p+1}\left(\hat{\mathbf{x}}\mid\boldsymbol{\mu_0}',\frac{\kappa_0'+1}{\kappa_0'(\nu_0'-p+1)}\mathbf{V}'^{-1}\right)$ [5]                       |  |  |
| Uniform                                                   | $U(0,\theta)$                                                     | Pareto                                                          | $x_m, k$                                         | $\max\set{x_1,\ldots,x_n,x_{\mathrm{m}}},k+n$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $k$ observations with maximum value $x_m$                                                                                                                                                                                       |                                                                                                                                                          |  |  |
| Pareto with known minimum $x_m$                           | k (shape)                                                         | Gamma                                                           | $\alpha$ , $\beta$                               | $\alpha + n, \beta + \sum_{i=1}^n \ln \frac{x_i}{x_{\mathrm{m}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                           | $lpha$ observations with sum $eta$ of the order of magnitude of each observation (i.e. the logarithm of the ratio of each observation to the minimum $x_m$ )                                                                    |                                                                                                                                                          |  |  |
| Weibull<br>with known shape β                             | θ (scale)                                                         | Inverse gamma <sup>[4]</sup>                                    | a, b                                             | $a+n,b+\sum_{i=1}^n x_i^\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a observations with sum $b$ of the $eta$ th power of each observation                                                                                                                                                           |                                                                                                                                                          |  |  |
| Log-normal                                                | Same as for the normal distribution after exponentiating the data |                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                 |                                                                                                                                                          |  |  |
| Exponential                                               | λ (rate)                                                          | Gamma                                                           | $\alpha,eta^{	ext{[note 4]}}$                    | $\alpha+n,\beta+\sum_{i=1}^n x_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $lpha-1$ observations that sum to $oldsymbol{eta}^{[\mathfrak{S}]}$                                                                                                                                                             | $\operatorname{Lomax}(	ilde{x}\mid eta', lpha')$ (Lomax distribution)                                                                                    |  |  |
| Gamma<br>with known shape α                               | β (rate)                                                          | Gamma                                                           | $\alpha_0,eta_0$                                 | $\alpha_0 + n\alpha, \beta_0 + \sum_{i=1}^n x_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $lpha_0/lpha$ observations with sum $eta_0$                                                                                                                                                                                     | $\frac{\mathrm{CG}(\tilde{\mathbf{x}}\mid\alpha,\alpha_0{'},\beta_0{'})}{_{[\text{note 8}]}}=\beta'(\tilde{\mathbf{x}} \alpha,\alpha_0{'},1,\beta_0{'})$ |  |  |
| Inverse Gamma<br>with known shape α                       | β (inverse scale)                                                 | Gamma                                                           | $\alpha_0,\beta_0$                               | $\left lpha_0+nlpha,eta_0+\sum_{i=1}^nrac{1}{x_i} ight.$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $lpha_0/lpha$ observations with sum $eta_0$                                                                                                                                                                                     |                                                                                                                                                          |  |  |
| Gamma<br>with known rate β                                | α (shape)                                                         | $\propto \frac{a^{\alpha-1}\beta^{\alpha c}}{\Gamma(\alpha)^b}$ | a, b, c                                          | $a\prod_{i=1}^n x_i,b+n,c+n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $b$ or $c$ observations ( $b$ for estimating $\alpha$ , $c$ for estimating $\beta$ ) with product $a$                                                                                                                           |                                                                                                                                                          |  |  |