Amplificatori operazionali con reazione

Questa relazione è stata effettuata in data 05/12/2024 dal gruppo 3 del laboratorio di SETM, formato da Carbone Orazio (S300511), Dandolo Giacomo (S296525), Favellato Francesco (S312697) e Genduso Cristina (S293536).

1 Caratteristiche dell'esperienza

1.1 Objettivo

L'obiettivo di questa esercitazione è analizzare il comportamento di amplificatori operazionali reazionati e misurarne i parametri. Inoltre, si vogliono verificare alcune deviazioni rispetto a quanto prevedibile con il modello di amplificatore operazionale ideale.

1.2 Materiale utilizzato

- 1. Componenti elettronici:
 - modulo A3, contenente un amplificatore operazionale non invertente e un amplificatore operazionale invertente.
- 2. Strumentazione:
 - · alimentatore Rigol DP832;
 - · generatore di funzioni Hantek HDG2032B;
 - · oscilloscopio digitale Rigol DS1054 Z;
 - multimetro da banco Hewlett Packard 34401A.

1.3 Alimentazione duale

In questa esperienza è necessario utilizzare un alimentatore doppio, predisposto in modo da fornire, rispetto a massa, una tensione positiva di $12\ V$ e una tensione negativa di $12\ V$.

Schema del generatore in DC

2 Misure

2.1 Amplificatore non invertente

2.1.1 Predisposizione del modulo

Utilizzare il modulo A3 - 1 (amplificatore non invertente) e configurarlo come descritto nella tabella.

Schema dell'amplificatore operazionale non invertente

Interruttore	Posizione sulla basetta	Note
S1	1	aperto
S2	2	chiuso
S3	1 — 2	R_3 inserita — R_3 cortocircuitata
S4	2	chiuso
S5	1	aperto
S6	1	aperto

Interruttore	Posizione sulla basetta	Note
S7	1 	R_5 non inserita R_5 inserita

2.1.2 Valori teorici

Il quadagno dell'amplificatore si calcola con la formula dell'amplificatore non invertente:

$$A_v = 1 + rac{R_1}{R_2} = 9.33$$

Utilizzando i parametri $R_{id}=1~M\Omega$, $R_o=100~\Omega$ e $A_d=200000$, si possono calcolare la resistenza di ingresso R_i e la resistenza di uscita R_u dell'amplificatore.

Calcoliamo la resistenza di ingresso R_i .

$$R_{in,0} = R_{id} + R_1 \| R_2 = 1 \ M\Omega$$
 $eta' = rac{R2 \| R_{id}}{R_2 \| R_{id} + R_1} = 0.106$

$$R_i=R_{in,0}\cdot(1+A_deta')=2\cdot10^{10}\Omega=20\;G\Omega$$

Calcoliamo la resistenza di uscita R_u .

$$\beta = \frac{R_2}{R_1 + R_2} = 0.107$$

$$R_u=rac{R_o}{1+A_deta}=4.67\cdot 10^{-3}\Omega$$

Risulta, quindi, un ottimo amplificatore non invertente reale, approssimabile all'idealità.

2.1.3 Misure

Applicare all'ingresso un segnale sinusoidale, con frequenza $f=2\ kHz$ e ampiezza picco-picco $V_{pp}=0.5\ V$. Misurare il rapporto $A_v=V_u/V_i$, esprimendolo anche in dB.

Si ottiene che $V_i=1.20\; V$ e $V_u=10.00\; V$.

	Misura
$A_{v,1}$	8.33
$A_{v,1} _{dB}$	18.41~dB

2.2 Amplificatore invertente

2.2.1 Predisposizione del modulo

Utilizzare il modulo A3 - 2 (amplificatore invertente) e configurarlo come descritto nella tabella.

Schema dell'amplificatore invertente

Interruttore	Posizione sulla basetta	Note
S8	1	aperto
S9	1	aperto
S10	2	chiuso
S11	1	aperto
S12	1	aperto
S13	1	R_{11} non inserita
S14	1	R_{12} non inserita

2.2.2 Misure

Applicare all'ingresso un segnale triangolare con ampiezza picco-picco $V_{pp}=2\ V$ e frequenza $f=300\ Hz.$ In queste condizioni:

• determiniamo il guadagno misurando il segnale in ingresso ($V_i=2.08\ V$) e in uscita ($V_u=9.60\ V$) e calcolandolo con il rapporto $A_v=V_u/V_i$;

	Misura
$A_{v,2}$	4.62
$A_{v,2} _{dB}$	13.28~dB

ullet verifichiamo che il morsetto non invertente dell'amplificatore operazionale v^+ sia a potenziale prossimo a zero con il multimetro;

$$v^+ = 0.408 \ V$$

• verifichiamo che la tensione continua e quella di segnale sul morsello invertente dell'amplificatore operazionale v^- sia prossimo a zero usando l'oscilloscopio;

$$v^{-} = 160 \ mV$$

• aumentare l'ampiezza del segnale di ingresso fino a ottenere evidente distorsione nel segnale di uscita. Si nota che il segnale di uscita viene tagliato ad un ampiezza di $4\ V$.

2.3 Amplificatore differenziale

2.3.1 Predisposizione del modulo

Utilizzare il modulo A3 - 2 e configurarlo come descritto nello schema del circuito.

Schema dell'amplificatore differenziale

Gli interruttori permettono di ottenere come V_2 una tensione corrispondente a frazioni della V_i attraverso il partitore formato da R_6 , R_7 e R_8 . Occorre chiudere un solo interruttore per volta del gruppo S8, S9, S10 e S11, lasciando aperti gli altri. La presenza di V_i e V_2 permette di verificare il funzionamento dell'amplificatore differenziale partendo da un singolo segnale.

Interruttore	Posizione sulla basetta	Note
S8	1 - 2	aperto — chiuso, $V_2=V_i$
S9	1 - 2	aperto $\dfrac{-}{C}$ chiuso, $V_2=2/3~V_i$
S10	1 - 2	aperto $-$ chiuso, $V_2=1/3\ V_i$
S11	1 	aperto — chiuso, $V_2=0$
S12	2	chiuso
S13	1	R_{11} non inserita
S14	1	R_{12} non inserita

2.3.2 Valori teorici

Per S8 chiuso, abbiamo che $V_2=V_i.$

$$V_{u,S_8} = rac{R_{10}}{R_0}(V_2 - V_i) = 0$$

Per S9 chiuso, abbiamo che $V_2 = \frac{2}{3}V_i$.

$$V_{u,S_9} = rac{R_{10}}{R_9}(V_2 - V_i) = -rac{R_{10}}{3R_9}V_i$$

Per S10 chiuso, abbiamo che $V_2=\frac{1}{3}V_i$.

$$V_{u,S_{10}} = rac{R_{10}}{R_9}(V_2 - V_i) = -rac{2R_{10}}{3R_9}V_i$$

Per S11 chiuso, abbiamo che $V_2=0.$

$$V_{u,S_8} = rac{R_{10}}{R_9}(V_2 - V_i) = -rac{R_{10}}{R_9}V_i$$

2.3.3 Misure

Applicare all'ingresso un segnale sinusoidale con $V_{pp}=1.6\ V$ e frequenza $f=200\ Hz$. Misuriamo il valore del guadagno $A_v=V_u/V_i$ per le varie possibili configurazioni, chiudendo solo uno degli interruttori per volta.

Configurazione	V_i	V_u	$A_{v,3}$	$A_{v,3}ert_{dB}$
S8 chiuso	1.76~V	1.84~V	1.04	0.39~dB
S9 chiuso	1.76~V	1.60~V	0.91	0.83~dB
S10 chiuso	1.76~V	4.56~V	2.59	8.27~dB
S11 chiuso	1.76~V	7.68~V	4.36	12.80~dB

2.3.4 Confronto tra valori teorici e misure

I valori teorici risultano, per la maggior parte, compatibili con le misure effettuate, portando ad una corretta amplificazione. L'unica anomalia riscontrata risulta con S8 chiuso, che non tende a 0, come ci si aspetta, ma tende a un valore prossimo più alto della tensione di ingresso.

2.4 Amplificatore AC/DC

2.4.1 Predisposizione del modulo

Utilizzare il modulo A3 - 1 e configurarlo come descritto nello schema del circuito.

Schema dell'amplificatore AC/DC

Gli interruttori permettono di configurare il circuito come amplificatore DC o come amplificatore AC con variazioni di guadagno e di banda.

Interruttore	Posizione sulla basetta	Note
S1	1 - 2	aperto, C_3 non inserito — chiuso, C_3 inserito
S2	1 - 2	aperto, C_4 non inserito — chiuso, C_4 inserito
S3	2	chiuso
S4	1 - 2	aperto, C_5 inserito — chiuso, C_5 cortocircuitato
S5	2	chiuso
S6	1	aperto

2.4.2 Misure

Configuriamo il circuito come amplificatore DC con S4 chiuso, S2 chiuso e S1 aperto.

1. Misuriamo il guadagno per segnali sinusoidali con frequenze di $100\ Hz, 1\ kHz, 10\ kHz, 100\ kHz$ e $300\ kHz$;

Frequenza	V_i	V_u	$A_{v,4}$	$A_{v,4}ert_{dB}$
100~Hz	1.20~V	10.20~V	8.50	18.59~dB
1~kHz	1.20~V	10.00~V	8.33	18.42~dB
10~kHz	1.20~V	10.00~V	8.33	18.42~dB
100~kHz	1.20~V	9.36~V	7.75	17.79~dB
300~kHz	1.20~V	6.80~V	5.67	15.07~dB

	2.	Misurare a c	guale freguenza	la risposta	dell'amplificatore	scende a 3	dI
--	----	--------------	-----------------	-------------	--------------------	------------	----

$$f_t=430\;kHz$$