LINEAR INTEGRATED CIRCUITS

NS National

Introduction

Here is the new Linear Data Handbook from National. It gives complete specifications for devices useful in building nearly all types of electronic systems, from communications and consumer-oriented circuits to precision instrumentation and computer designs.

For information regarding newer devices introduced since the printing of this handbook, or for further information on listed parts, please contact our local representative, distributor, or regional office.

Manufactured under one or more of the following U.S. patents: 3083662, 3189758, 3231797, 3303356, 3317671, 3323071, 3381071, 3408542, 3421025, 3426423, 3440498, 3518750, 3518997, 3557431, 3560765, 3566218, 3571630, 3575609, 3593069, 3597640, 3607469, 3617859, 3631312, 3633052, 3638131, 3648071, 3551565, 3693248.

National does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied; and National reserves the right, at any time without notice, to change said circuitry or device specifications.

Ordering Information

The ordering information for National devices covered in this catalog is as follows:

DEVICE FAMILY

AH - Analog Hybrid

AM - Analog Monolithic

DM - Digital Monolithic

LH - Linear Hybrid

LM - Linear Monolithic

LX - Transducer

MM - MOS Monolithic

DEVICE NUMBER

3, 4 or 5 digit number.

Suffix Indicators:

A - Improved Electrical Specification

C - Reduced Temperature Range

PACKAGE

D - Glass/Metal Dual-In-Line Package

F - Flat Package (0.25" wide)

G-TO-8 (12 lead) Metal Can

H - TO-5 (multi-lead) Metal Can

J - Glass/Glass Dual-In-Line Package

K - TO-3 Power Package

N - Molded Dual-In-Line Package

T - TO-220 Plastic Power Package

W - Flat Package (0.275" wide)

Devices are listed in the table of contents alpha-numerically by device family (LH, LM, LX, etc.) and then by device number. With most of National's proprietary linear circuits, a 1-2-3 numbering system is employed. The 1 denotes a Military temperature range device (-55°C to +125°C), the 2 denotes an Industrial temperature range device (-25°C to +85°C), and the 3 denotes a Commercial temperature range device (0°C to +70°C), i.e. LM101/LM201/LM301.

Exceptions to this are the LM1800 series of consumer circuits which are specified for the commercial temperature range; some hybrid circuits which employ a "C" suffix to denote the commercial temperature range; and second-source products which follow the original manufacturers numbering system, i.e. LM741/LM741C or LM1414/LM1514.

Digital products, interface circuits, and sense amplifiers employ a 55 as the first two digits for the military temperature range part, and a 75 for the commercial part, i.e. LM5520/LM7520. Display drivers and line drivers and receivers employ a 78/88 prefix. The 78 applies to the military part, and the 88 to the commercial part, i.e. DM7830/DM8830.

Parts are generally listed in the table of contents by the military part number first such as the LM139/LM239/LM339, except where a separate data sheet is employed for different temperature range, i.e. LM119/LM219, and a separate LM319, or where only one temperature range exists, i.e. LM340.

Table of Contents

Introduction	ii ix
Commercial Operational Amplifiers Fixed Voltage Regulators Variable Voltage Regulators	xv xvi xvii xviii xix xx xxi xxii xxiii xxv xxv
VOLTAGE REGULATORS — SECTION 1 LM100/LM200/LM300 Voltage Regulator LM103 Regulator Diode . LM104/LM204 Negative Regulator . LM304 Negative Regulator . LM105/LM205/LM305 Voltage Regulator . LM305A Voltage Regulator . LM109/LM209 5-Volt Regulator . LM309 5-Volt Regulator . LM1309 5-Volt Regulator . LM1309 Series 3-Terminal Negative Regulators . LM123/LM223/LM323 3 Amp—5 Volt Positive Regulator . LM125 Dual Complementary Tracking Voltage Regulator . LM126 Dual Complementary Tracking Voltage Regulator . LM127 Dual Complementary Tracking Voltage Regulator . LM340 Series 3-Terminal Positive Regulators . LM340 Series 3-Terminal Positive Regulator . LM36 Voltage Regulator . LM723/LM723C Voltage Regulator .	1-1 1-4 1-7 1-10 1-13 1-16 1-18 1-21 1-24 1-27 1-31 11-1 11-1 11-1 11-1 1-35 1-42 1-45
OPERATIONAL AMPLIFIERS — SECTION 2 LH0001/LH0001C Low Power Operational Amplifier LH0001A/LH0001AC Micropower Operational Amplifier LH0002/LH0002C Current Amplifier LH0003/LH0003C Wide Bandwidth Operational Amplifier LH0004/LH0004C High Voltage Operational Amplifier LH0005/LH0005A Operational Amplifier LH0005C Operational Amplifier LH0020/LH0020C High Gain Instrumentation Operational Amplifier LH0021/LH0021C 1.0 Amp Power Operational Amplifier LH0022/LH0022C High Performance FET Operational Amplifier LH0023/LH0023C Sample and Hold Circuit	2-1 2-4 2-7 2-10 2-12 2-5 2-18 2-20 2-22 2-29 2-36

OPERATIONAL AMPLIFIERS - SECTION 2 (CONTINUED)	
LH0024/LH0024C High Slew Rate Operational Amplifier	2-44
LH0032/LH0032C Ultra Fast FET Operational Amplifier	2-47
LH0033/LH0033C Fast Buffer Amplifier	2-52
LH0041/LH0041C 0.2 Amp Power Operational Amplifier	2-22
LH0042/LH0042C Low Cost FET Operational Amplifier	2-29
LH0043/LH0043C Sample and Hold Circuit	2-36
LH0052/LH0052C Precision FET Operational Amplifier	2-29
LH0061/LH0061C 0.5 Amp Wide Band Operational Amplifier	2-63
LH0062/LH0062C High Speed FET Operational Amplifier	2-66
LH0063/LH0063C Damn Fast Buffer Amplifier	2-52
LH101 Operational Amplifier	2-72
LH201 Operational Amplifier	2-75
LH740A/LH740AC FET Input Operational Amplifier	2-171
LH2101A/LH2201A/LH2301A Dual High Performance Operational Amplifier	2-184
LH2108/LH2208/LH2308 Dual Super Beta Operational Amplifier	2-186
LH2108A/LH2208A/LH2308A Dual Super Beta Operational Amplifier	2-186 2-188
LH2110/LH2210/LH2310 Dual Voltage Follower	2-188
LH2111/LH2211/LH2311 Dual Voltage Comparator	2-190
	2-207
LM101 Operational Amplifier	2-70
LM101A/LM201A Operational Amplifier	2-84
LM301A Operational Amplifier	2-89
LM102 Voltage Follower.	2-93
LM202 Voltage Follower	2-96
LM302 Voltage Follower	2-99
LM107/LM207 Operational Amplifier	2-102
LM307 Operational Amplifier	2-105
LM108/LM208 Operational Amplifier	2-108
LM308 Operational Amplifier	2-111
LM108A/LM208A/LM308A Operational Amplifier	2-114
LM110/LM210 Voltage Follower	2-117
LM310 Voltage Follower	2-122
LM112/LM212 Operational Amplifier	2-127
LM312 Operational Amplifier	2-130
LM216/LM216A/LM316/LM316A Operational Amplifier	2-133
LM118/LM218 Operational Amplifier	2-136 2-141
LM318 Operational Amplifier	2-141
LM121/LM221/LM321 Precision Freampitter LM124/LM224/LM324 Quad Operational Amplifiers.	2-140
LM143 High Voltage Operational Amplifier	11-1
LM709 Operational Amplifier	2-156
LM709A Operational Amplifier	2-159
LM709C Operational Amplifier	2-162
LM725A/LM725/LM725C Instrumentation Operational Amplifier	2-165
LM741/LM741C Operational Amplifier	2-173
LM747/LM747C Dual Operational Amplifier	2-175
LM748/LM748C Operational Amplifier	2-179
LM1558/LM1458 Dual Operational Amplifier	2-182
LM2900 Quad Amplifier	2-192
LM3900 Quad Amplifier	2-194
LM4250/LM4250C Programmable Operational Amplifier	2-202
VOLTAGE COMPARATORS/BUFFERS — SECTION 3	
LM106/LM206 Voltage Comparator/Buffer	3-1
LM306 Voltage Comparator/Buffer	3-4
LM111/LM211 Voltage Comparator	3-7
LM311 Voltage Comparator	3-12
LM119/LM219 High Speed Dual Comparator	3-17
LM319 High Speed Dual Comparator	3-19

VOLTAGE COMPARATORS/BUFFERS — SECTION 3 (CONTINUED)	
LM139/LM239/LM339 Quad Comparator	3-21
LM139A/LM239A/LM339A Low Offset Voltage Quad Comparator	3-27
LM160/LM260/LM360 High Speed Differential Comparator	3-29 3-31
LM529/LM529C High Speed Differential Comparator	3-31
LM710 Voltage Comparator	3-33
LM710C Voltage Comparator	3-36
LM711 Dual Comparator	3-39
LM711C Dual Comparator	3-42
LM760/LM760C High Speed Differential Voltage Comparator	3-29
LM1514/LM1414 Dual Differential Voltage Comparator	3-45
FUNCTIONAL PLOCKS OF STION 4	
FUNCTIONAL BLOCKS — SECTION 4 LM122/LM222/LM322 Precision Timer	4-1
LM555/LM555C Timer.	4-1
LM2905 Timer	4-15
LM3905 Timer	4-15
LX1600A Absolute Pressure Transducer	4-21
LX1601A/LX1602A/LX1603A Absolute Pressure Transducer 0-30 PSI	4-24
LX1601D/LX1602D/LX1603D/LX1604D Differential Pressure Transducer 0-30 PSI	4-24
LX1601G/LX1602G/LX1603G/LX1604G Gage Pressure Transducer 0-30 PSI	4-24
LX1610A/LX1620A/LX1630A Absolute Pressure Transducer 0-300 PSI LX1610D/LX1620D Differential Pressure Transducer 0-300 PSI	4-27 4-27
LX1610G/LX1620G/LX1630G Gage Pressure Transducer 0-300 PSI	4-27
LX1701A/LX1702A/LX1703A Absolute Pressure Transducer 0-30 PSI	4-24
LX1701G/LX1702G/LX1703G/LX1704G Gage Pressure Transducer 0-30 PSI	4-24
LX1710A/LX1720A/LX1730A Absolute Pressure Transducer 0-300 PSI	4-27
LX1710G/LX1720G/LX1730G Gage Pressure Transducer 0-300 PSI	4-27
PSM6501 ±15 Volt, 100 mA Power Supply Module	4-30
SHM6401 Sample and Hold Module	4-32
CONSUMER CIRCUITS — SECTION 5	
LM170/LM270/LM370 AGC/Squelch Amplifier	5-1
LM170/LM270/LM370 AGC/Squelch Amplifier	5-1 5-5
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip	
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector	5-5 5-11 5-15
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector	5-5 5-11 5-15 5-15
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output	5-5 5-11 5-15 5-15 5-23
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector	5-5 5-11 5-15 5-15
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier.	5-5 5-11 5-15 5-15 5-23 5-28
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM378 4-Watt/Channel Stereo Amplifier	5-5 5-11 5-15 5-15 5-23 5-28 11-2
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM378 4-Watt/Channel Stereo Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier	5-5 5-11 5-15 5-15 5-23 5-28 11-2 5-33 5-37 5-40
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM378 4-Watt/Channel Stereo Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier LM383 5-Watt Power Amplifier	5-5 5-11 5-15 5-15 5-23 5-28 11-2 5-33 5-37 5-40 11-2
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM378 4-Watt/Channel Stereo Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier LM383 5-Watt Power Amplifier LM383 5-Watt Power Amplifier LM565/LM565C Phase Locked Loop	5-5 5-11 5-15 5-15 5-23 5-28 11-2 5-33 5-37 5-40 11-2 5-43
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM378 4-Watt/Channel Stereo Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier LM383 5-Watt Power Amplifier LM383 5-Watt Power Amplifier LM565/LM565C Phase Locked Loop LM566/LM566C Voltage Controlled Oscillator	5-5 5-11 5-15 5-15 5-23 5-28 11-2 5-33 5-37 5-40 11-2 5-43 5-48
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM378 4-Watt/Channel Stereo Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier LM383 5-Watt Power Amplifier LM383 5-Watt Power Amplifier LM565/LM565C Phase Locked Loop LM566/LM566C Voltage Controlled Oscillator LM567/LM567C Tone Decoder	5-5 5-11 5-15 5-15 5-23 5-28 11-2 5-33 5-37 5-40 11-2 5-43 5-48 5-51
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM378 4-Watt/Channel Stereo Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier LM383 5-Watt Power Amplifier LM383 5-Watt Power Amplifier LM565/LM565C Phase Locked Loop LM566/LM566C Voltage Controlled Oscillator	5-5 5-11 5-15 5-15 5-23 5-28 11-2 5-33 5-37 5-40 11-2 5-43 5-48
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM378 4-Watt/Channel Stereo Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier LM383 5-Watt Power Amplifier LM565/LM566C Phase Locked Loop LM566/LM566C Voltage Controlled Oscillator LM567/LM567C Tone Decoder LM703L Low Power Drain RF/IF Amplifier LM733/LM733C Differential Video Amplifier LM746 Color Television Chroma Demodulator	5-5 5-11 5-15 5-15 5-23 5-28 11-2 5-33 5-37 5-40 11-2 5-43 5-48 5-51 5-55
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM378 4-Watt/Channel Stereo Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier LM383 5-Watt Power Amplifier LM565/LM565C Phase Locked Loop LM566/LM566C Voltage Controlled Oscillator LM567/LM567C Tone Decoder LM703L Low Power Drain RF/IF Amplifier LM733/LM733C Differential Video Amplifier LM746 Color Television Chroma Demodulator LM1303 Stereo Preamplifier	5-5 5-11 5-15 5-23 5-28 11-2 5-33 5-37 5-40 11-2 5-43 5-54 5-55 5-57 5-61 5-63
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM378 4-Watt/Channel Stereo Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier LM383 5-Watt Power Amplifier LM565/LM565C Phase Locked Loop LM566/LM566C Voltage Controlled Oscillator LM567/LM567C Tone Decoder LM703L Low Power Drain RF/IF Amplifier LM733/LM733C Differential Video Amplifier LM746 Color Television Chroma Demodulator LM1303 Stereo Preamplifier LM1304 FM Multiplex Stereo Demodulator	5-5 5-11 5-15 5-15 5-23 5-23 5-23 5-37 5-40 11-2 5-43 5-43 5-54 5-55 5-57 5-61 5-63 5-65
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM380 Audio Power Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier LM383 5-Watt Power Amplifier LM565/LM565C Phase Locked Loop LM566/LM566C Voltage Controlled Oscillator LM567/LM567C Tone Decoder LM703L Low Power Drain RF/IF Amplifier LM733/LM733C Differential Video Amplifier LM746 Color Television Chroma Demodulator LM1303 Stereo Preamplifier LM1304 FM Multiplex Stereo Demodulator LM1305 FM Multiplex Stereo Demodulator	5-5 5-11 5-15 5-15 5-23 5-23 5-28 11-2 5-33 5-37 5-40 11-2 5-43 5-45 5-55 5-57 5-61 5-63 5-65 5-65
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM378 4-Watt/Channel Stereo Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier LM383 5-Watt Power Amplifier LM383 5-Watt Power Amplifier LM565/LM565C Phase Locked Loop LM566/LM566C Voltage Controlled Oscillator LM567/LM567C Tone Decoder LM703L Low Power Drain RF/IF Amplifier LM733/LM733C Differential Video Amplifier LM746 Color Television Chroma Demodulator LM1303 Stereo Preamplifier LM1304 FM Multiplex Stereo Demodulator LM1305 FM Multiplex Stereo Demodulator LM1307/LM1307E FM Multiplex Stereo Demodulator	5-5 5-11 5-15 5-15 5-23 5-23 5-23 5-37 5-40 11-2 5-43 5-48 5-51 5-55 5-57 5-61 5-63 5-65 5-65 5-65 5-65
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier LM378 4-Watt/Channel Stereo Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier LM383 5-Watt Power Amplifier LM383 5-Watt Power Amplifier LM565/LM565C Phase Locked Loop LM566/LM566C Voltage Controlled Oscillator LM567/LM567C Tone Decoder LM703L Low Power Drain RF/IF Amplifier LM733/LM733C Differential Video Amplifier LM746 Color Television Chroma Demodulator LM1303 Stereo Preamplifier LM1304 FM Multiplex Stereo Demodulator LM1305 FM Multiplex Stereo Demodulator LM1307/LM1307E FM Multiplex Stereo Demodulator LM1307/LM1307E FM Multiplex Stereo Demodulator	5-5 5-11 5-15 5-15 5-23 5-23 5-23 5-37 5-40 11-2 5-43 5-48 5-51 5-55 5-57 5-61 5-63 5-65 5-75 5
LM171/LM271/LM371 Integrated RF/IF Amplifier LM172/LM272/LM372 AM IF Strip. LM273/LM373 AM/FM/SSB IF Amp/Detector LM274/LM374 AM/FM/SSB IF Video Amp/Detector LM175/LM275/LM375 Oscillator and Buffer with TTL Output LM377 Dual 2-Watt Audio Amplifier. LM378 4-Watt/Channel Stereo Amplifier LM380 Audio Power Amplifier LM381 Low Noise Dual Preamplifier LM382 Low Noise Dual Preamplifier LM383 5-Watt Power Amplifier LM383 5-Watt Power Amplifier LM565/LM565C Phase Locked Loop LM566/LM566C Voltage Controlled Oscillator LM567/LM567C Tone Decoder LM703L Low Power Drain RF/IF Amplifier LM733/LM733C Differential Video Amplifier LM746 Color Television Chroma Demodulator LM1303 Stereo Preamplifier LM1304 FM Multiplex Stereo Demodulator LM1305 FM Multiplex Stereo Demodulator LM1307/LM1307E FM Multiplex Stereo Demodulator	5-5 5-11 5-15 5-15 5-23 5-23 5-23 5-37 5-40 11-2 5-43 5-48 5-51 5-55 5-57 5-61 5-63 5-65 5-65 5-65 5-65

CONSUMER CIRCUITS - SECTION 5 (CONTINUED)	
LM1805 TV Signal Processor	11-3
LM1820 AM Radio System	5-81
LM1841 FM Detector and Limiter	5-83
LM1845 Signal Processing System	5-86
LM2111 FM Detector and Limiter	5-88
LM2113 FM Detector and Limiter	5-90 5-92
LM3011 Wide Band Amplifier	5-94
LM3053 Differential RF/IF Amplifier.	5-94
LM3064 Television Automatic Fine Tuning	5-98
LM3065 Television Sound System	5-100
LM3066 Chroma Signal Processor	5-102
LM3067 Chroma Demodulator	5-105
LM3070 Chroma Subcarrier Regenerator	5-108
LM3071 Television Chroma IF Amplifier	5-112
LM3075 FM Detector/Limiter and Audio Preamplifier	5-114
TRANSISTOR/DIODE ARRAYS - SECTION 6	
LM114/LM114A Matched Dual Monolithic Transistors	6-1
LM115/LM115A Matched Dual Monolithic Transistors	6-1
LM3018/LM3018A Matched Monolithic Transistor Arrays	6-3
LM3019 Diode Array	6-7
LM3026 Transistor Array	6-10
LM3039 Diode Array	6-16
LM3045 Transistor Array	6-19
LM3046 Transistor Array	6-19
LM3054 Transistor Array	6-10
LM3086 Transistor Array	6-19
,	
ANALOG SWITCHES — SECTION 7	
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch	7-1
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch	7-1
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch	7-1 7-1
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch. AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches	7-1 7-1 7-4
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch. AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches	7-1 7-1
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch. AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches	7-1 7-1 7-4 7-4
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0150 Series Analog Switches	7-1 7-1 7-4 7-4 7-4
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch. AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches	7-1 7-1 7-4 7-4 7-4 7-4
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0150 Series Analog Switches AH0160 Series Analog Switches	7-1 7-1 7-4 7-4 7-4 7-4 7-4
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches. AH0130 Series Analog Switches AH0140 Series Analog Switches AH0140 Series Analog Switches AH0160 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch	7-1 7-1 7-4 7-4 7-4 7-4 7-4 7-11
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0140 Series Analog Switches AH0160 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch	7-1 7-4 7-4 7-4 7-4 7-4 7-11 7-13 7-20 7-20
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches. AH0130 Series Analog Switches. AH0140 Series Analog Switches AH0140 Series Analog Switches AH0150 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch. AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch	7-1 7-4 7-4 7-4 7-4 7-4 7-1 7-13 7-20 7-20
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0150 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch AM2009/AM2009C 6-Channel MOS Multiplex Switch	7-1 7-4 7-4 7-4 7-4 7-4 7-1 7-13 7-20 7-20 7-20 7-22
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0150 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch AM2009/AM2009C 6-Channel MOS Multiplex Switch AM3705/AM3705C 8-Channel MOS Analog Multiplexer.	7-1 7-1 7-4 7-4 7-4 7-4 7-11 7-13 7-20 7-20 7-22 7-22 7-24
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0160 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch AM2009/AM2009C 6-Channel MOS Multiplex Switch AM3705/AM3705C 8-Channel MOS Analog Multiplexer MM450/MM550 MOS Analog Switch	7-1 7-4 7-4 7-4 7-4 7-4 7-11 7-13 7-20 7-20 7-20 7-22 7-24 7-27
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0150 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch AM2009/AM2009C 6-Channel MOS Multiplex Switch AM3705/AM3705C 8-Channel MOS Analog Multiplexer. MM450/MM550 MOS Analog Switch MM451/MM551 MOS Analog Switch	7-1 7-1 7-4 7-4 7-4 7-4 7-1 7-13 7-20 7-20 7-20 7-22 7-24 7-27
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0150 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch AM2009/AM2009C 6-Channel MOS Multiplex Switch AM3705/AM3705C 8-Channel MOS Analog Multiplexer. MM450/MM550 MOS Analog Switch MM451/MM551 MOS Analog Switch MM452/MM552 MOS Analog Switch	7-1 7-1 7-4 7-4 7-4 7-4 7-1 7-11 7-13 7-20 7-20 7-20 7-22 7-24 7-27 7-27
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0150 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch AM2009/AM2009C 6-Channel MOS Multiplex Switch AM3705/AM3705C 8-Channel MOS Analog Multiplexer. MM450/MM551 MOS Analog Switch MM451/MM551 MOS Analog Switch MM452/MM552 MOS Analog Switch MM454/MM554 MOS Analog Switch	7-1 7-1 7-4 7-4 7-4 7-4 7-1 7-13 7-20 7-20 7-20 7-22 7-24 7-27
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0150 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch AM2009/AM2009C 6-Channel MOS Multiplex Switch AM3705/AM3705C 8-Channel MOS Analog Multiplexer. MM450/MM550 MOS Analog Switch MM451/MM551 MOS Analog Switch MM452/MM552 MOS Analog Switch	7-1 7-1 7-4 7-4 7-4 7-4 7-11 7-13 7-20 7-20 7-20 7-22 7-24 7-27 7-27 7-27 7-31
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0150 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch AM2009/AM2009C 6-Channel MOS Multiplex Switch AM3705/AM3705C 8-Channel MOS Analog Multiplexer. MM450/MM550 MOS Analog Switch MM451/MM551 MOS Analog Switch MM452/MM552 MOS Analog Switch MM455/MM555 MOS Analog Switch MM455/MM555 MOS Analog Switch MM455/MM555 MOS Analog Switch MM455/MM555 MOS Analog Switch	7-1 7-1 7-4 7-4 7-4 7-4 7-1 7-13 7-20 7-20 7-20 7-22 7-24 7-27 7-27 7-27 7-27 7-27 7-27 7-27
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0160 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch. AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch AM2009/AM2009C 6-Channel MOS Multiplex Switch AM3705/AM3705C 8-Channel MOS Analog Multiplexer MM450/MM550 MOS Analog Switch MM451/MM551 MOS Analog Switch MM454/MM554 MOS Analog Switch MM455/MM555 MOS Analog Switch MM456/MM555 MOS Analog Switch MM456/MM555 MOS Analog Switch MM456/MM555 MOS Analog Switch MM4504/MM5504 6-Channel MOS Multiplex Switch MM4504/MM5504 6-Channel MOS Multiplex Switch	7-1 7-1 7-4 7-4 7-4 7-4 7-1 7-13 7-20 7-20 7-20 7-22 7-24 7-27 7-27 7-27 7-27 7-27 7-27 7-27
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0150 Series Analog Switches AH0160 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch. AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch AM2009/AM2009C 6-Channel MOS Multiplex Switch AM3705/AM3705C 8-Channel MOS Analog Multiplexer. MM450/MM550 MOS Analog Switch MM451/MM551 MOS Analog Switch MM454/MM554 MOS Analog Switch MM455/MM555 MOS Analog Switch MM456/MM5504 6-Channel MOS Multiplex Switch. MM4504/MM5504 6-Channel MOS Multiplex Switch MM4504/MM5504 6-Channel MOS Multiplex Switch.	7-1 7-1 7-4 7-4 7-4 7-4 7-1 7-13 7-20 7-20 7-20 7-22 7-24 7-27 7-27 7-27 7-27 7-27 7-27 7-27
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0160 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM2009/AM2009C 6-Channel MOS Multiplex Switch AM3705/AM3705C 8-Channel MOS Analog Multiplexer MM450/MM550 MOS Analog Switch MM451/MM551 MOS Analog Switch MM452/MM554 MOS Analog Switch MM455/MM554 MOS Analog Switch MM455/MM554 MOS Analog Switch MM4504/MM5504 6-Channel MOS Multiplex Switch	7-1 7-1 7-4 7-4 7-4 7-4 7-4 7-11 7-20 7-20 7-20 7-22 7-24 7-27 7-27 7-27 7-27 7-27 7-27 7-22 8-6
ANALOG SWITCHES — SECTION 7 AH0014/AH0014C DPDT MOS Analog Switch. AH0015/AH0015C Quad SPST MOS Analog Switch AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch AH0120 Series Analog Switches AH0130 Series Analog Switches AH0140 Series Analog Switches AH0150 Series Analog Switches AH0160 Series Analog Switches AH0160 Series Analog Switches AH2114/AH2114C DPST Analog Switch. AH5009 Series Low Cost Analog Current Switches AM1000 Silicon N-Channel High Speed Analog Switch AM1001 Silicon N-Channel High Speed Analog Switch AM1002 Silicon N-Channel High Speed Analog Switch AM2009/AM2009C 6-Channel MOS Multiplex Switch AM3705/AM3705C 8-Channel MOS Analog Multiplexer. MM450/MM550 MOS Analog Switch MM451/MM551 MOS Analog Switch MM454/MM554 MOS Analog Switch MM455/MM555 MOS Analog Switch MM456/MM5504 6-Channel MOS Multiplex Switch. MM4504/MM5504 6-Channel MOS Multiplex Switch MM4504/MM5504 6-Channel MOS Multiplex Switch.	7-1 7-1 7-4 7-4 7-4 7-4 7-1 7-13 7-20 7-20 7-20 7-22 7-24 7-27 7-27 7-27 7-27 7-27 7-27 7-27

INTERFACE CIRCUITS — SECTION 8 (CONTINUED)	
LM1489/LM1489A Quad Line Receiver	8-4
LM55107A/LM75107A Dual Line Receiver	8-6
LM55108A/LM75108A Dual Line Receiver	8-6
LM55109/LM75109 Dual Line Driver	8-13
LM55110/LM75110 Dual Line Driver	8-13
LM75207 Dual MOS Sense Amplifier	8-6
LM75208 Dual MOS Sense Amplifier	8-6
LM75324 Memory Driver with Decode Inputs	8-16
LM55325/LM75325 Memory Driver	8-22
LM75450 Dual Peripheral Driver	8-29
LM75451 Dual Peripheral Driver	8-31
LM75452 Dual Peripheral Driver	8-31
LM75453 Dual Peripheral Driver	8-31
LM75454 Dual Peripheral Driver	8-33
DM7820/DM8820 Dual Line Receiver	8-35
DM7820A/DM8820A Dual Line Receiver	8-38
DM7822/DM8822 Dual Line Receiver	8-42
DM7830/DM8830 Dual Differential Line Driver	8-45
DM7831/DM8831 TRI-STATE Line Driver	8-48
DM7832/DM8832 TRI-STATE Line Driver	8-48
DM7833 Quad TRI-STATE Transceiver	11-4
DM7834 Quad TRI-STATE Transceiver	11-4
DM7835 Quad TRI-STATE Transceiver	11-4
DM7836/DM8836 Quad NOR Unified Bus Receiver	8-53
DM7837/DM8837 Hex Unified Bus Receiver	8-55
DM7838/DM8838 Quad Unified Bus Transceiver	8-57
DM7839 Quad TRI-STATE Transceiver	11-4
DISPLAY DRIVERS — SECTION 9	44.5
DM5446A/DM7446A BCD To 7-Segment Decoder/Driver	11-5
DM5447A/DM7447A BCD To 7-Segment Decoder/Driver	11-5
DM5448/DM7448 BCD To 7-Segment Decoder/Driver	11-5 9-1
DM75491 MOS-to-LED Quad Segment Driver	9-1
DM75492 MOS-to-LED Hex Digit Driver	9-1 11-5
	11-5
DM8857 BCD To 7-Segment LED Driver	11-5
	9-4
DM8861 MOS-to-LED 5-Segment Driver	9-4
DM7880/DM8880 High Voltage 7-Segment Decoder/Driver	9-4
DM8884A High Voltage Cathode Decoder/Driver	9-11
DM8885 MOS to High Voltage Cathode Buffer	9-13
DM8887 8-Digit Panaplex II Anode Driver	11-6
DM8889 High Voltage Segment Driver	11-6
Zinocco (iigii volugo orginant Zino)	
SENSE AMPLIFIERS — SECTION 10	
LM5520/LM7520 Dual Core Memory Sense Amplifier	
EMBO20/ EM7020 Bull Oore Memory Conse / Ampirior	10-2
LM5521/LM7521 Dual Core Memory Sense Amplifier	10-2 10-2
LM5521/LM7521 Dual Core Memory Sense Amplifier	10-2
LM5521/LM7521 Dual Core Memory Sense Amplifier LM5522/LM7522 Dual Core Memory Sense Amplifier	10-2 10-6
LM5521/LM7521 Dual Core Memory Sense Amplifier LM5522/LM7522 Dual Core Memory Sense Amplifier LM5523/LM7523 Dual Core Memory Sense Amplifier	10-2 10-6 10-6
LM5521/LM7521 Dual Core Memory Sense Amplifier LM5522/LM7522 Dual Core Memory Sense Amplifier LM5523/LM7523 Dual Core Memory Sense Amplifier LM5524/LM7524 Dual Core Memory Sense Amplifier	10-2 10-6 10-6 10-8
LM5521/LM7521 Dual Core Memory Sense Amplifier LM5522/LM7522 Dual Core Memory Sense Amplifier LM5523/LM7523 Dual Core Memory Sense Amplifier LM5524/LM7524 Dual Core Memory Sense Amplifier LM5525/LM7525 Dual Core Memory Sense Amplifier	10-2 10-6 10-6 10-8 10-8
LM5521/LM7521 Dual Core Memory Sense Amplifier LM5522/LM7522 Dual Core Memory Sense Amplifier LM5523/LM7523 Dual Core Memory Sense Amplifier LM5524/LM7524 Dual Core Memory Sense Amplifier LM5525/LM7525 Dual Core Memory Sense Amplifier LM5528/LM7528 Dual Core Memory Sense Amplifier	10-2 10-6 10-6 10-8 10-8 10-10
LM5521/LM7521 Dual Core Memory Sense Amplifier LM5522/LM7522 Dual Core Memory Sense Amplifier LM5523/LM7523 Dual Core Memory Sense Amplifier LM5524/LM7524 Dual Core Memory Sense Amplifier LM5525/LM7525 Dual Core Memory Sense Amplifier LM5528/LM7528 Dual Core Memory Sense Amplifier LM5528/LM7529 Dual Core Memory Sense Amplifier LM5529/LM7529 Dual Core Memory Sense Amplifier LM5534/LM7534 Dual Core Memory Sense Amplifier LM5535/LM7535 Dual Core Memory Sense Amplifier	10-2 10-6 10-6 10-8 10-8 10-10 10-10
LM5521/LM7521 Dual Core Memory Sense Amplifier LM5522/LM7522 Dual Core Memory Sense Amplifier LM5523/LM7523 Dual Core Memory Sense Amplifier LM5524/LM7524 Dual Core Memory Sense Amplifier LM5525/LM7525 Dual Core Memory Sense Amplifier LM5528/LM7528 Dual Core Memory Sense Amplifier LM5528/LM7529 Dual Core Memory Sense Amplifier LM5529/LM7529 Dual Core Memory Sense Amplifier LM5534/LM7534 Dual Core Memory Sense Amplifier	10-2 10-6 10-6 10-8 10-8 10-10 10-10

NEW PRODUCTS - SECTION 11

11-1

Mil Standard 883	1
Mil Standard 38510	1
Definition of Terms	Ш
Physical Dimensions	IX

Additional Linear Information Available
Linear Applications Handbook

Alpha-Numerical Index

AH0014/AH0014C DPDT MOS Analog Switch	7-1
AH0015/AH0015C Quad SPST MOS Analog Switch	7-1
AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch	7-1
AH0120 Series Analog Switches	7-4
AH0130 Series Analog Switches	7-4
AH0140 Series Analog Switches	7-4
AH0150 Series Analog Switches	7-4
AH0160 Series Analog Switches	7-4
AH2114/AH2114C DPST Analog Switch	7-11
AH5009 Series Low Cost Analog Current Switches	7-13
AM1000 Silicon N-Channel High Speed Analog Switch	7-20
AM1001 Silicon N-Channel High Speed Analog Switch	7-20
AM1002 Silicon N-Channel High Speed Analog Switch	7-20
AM2009/AM2009C 6-Channel MOS Multiplex Switch	7-22
AM3705/AM3705C 8-Channel MOS Analog Multiplexer	7-24
DM5446A/DM7446A BCD To 7-Segment Decoder/Driver	11-5
DM5447A/DM7447A BCD To 7-Segment Decoder/Driver	11-5
DM5448/DM7448 BCD To 7-Segment Decoder/Driver.	11-5
DM75491 MOS-to-LED Quad Segment Decoder/Driver	9-1
DM75492 MOS-to-LED Hex Digit Driver	9-1
DM7820/DM8820 Dual Line Receiver	8-35
DM7820A/DM8820A Dual Line Receiver	8-38
DM7822/DM8822 Dual Line Receiver	8-42
DM7830/DM8830 Dual Differential Line Driver	8-45
DM7831/DM8831 TRI-STATE Line Driver	8-48
DM7832/DM8832 TRI-STATE Line Driver	8-48
DM7833 Quad TRI-STATE Transceiver.	11-4
DM7834 Quad TRI-STATE Transceiver.	11-4
DM7835 Quad TRI-STATE Transceiver.	11-4
DM7836/DM8836 Quad NOR Unified Bus Receiver	8-53
DM7837/DM8837 Unified Bus Receiver	8-55
DM7838/DM8838 Quad TRI-STATE Transceiver	8-57
DM7839 Quad TRI-STATE Transceiver	11-4
DM7856/DM8856 BCD To 7-Segment LED Driver.	11-5
DM7857 BCD To 7-Segment LED Driver	11-5
DM7858/DM8858 BCD To 7-Segment LED Driver.	11-5
DM8861 MOS-to-LED 5-Segment Driver	9-4
DM8863 MOS-to-LED 8-Digit Driver	9-4
DM7880/DM8880 High Voltage 7-Segment Decoder/Driver	9-8
DM8884A High Voltage Cathode Decoder/Driver	9-11
DM8885 MOS to High Voltage Cathode Buffer	9-13
DM8887 8-Digit Panaplex II Anode Driver	11-6
DM8889 High Voltage Segment Driver	11-6
LH0001/LH0001C Low Power Operational Amplifier	2-1
LH0001A/LH0001AC Micropower Operational Amplifier	2-1
LH0007A/LH0007AC Micropower Operational Amplifier	2-4
LH0003/LH0003C Wide Bandwidth Operational Amplifier	
LH0004/LH0004C High Voltage Operational Amplifier	2-10
	2-12
LH0005/LH0005A Operational Amplifier	2-5
LH0005C Operational Amplifier	2-18
	2-20
LH0021/LH0021C 1.0 Amp Power Operational Amplifier	2-22
LH0022/LH0022C High Performance FET Operational Amplifier	2-29
LH0023/LH0023C Sample and Hold Circuit	2-36
LH0024/LH0024C High Slew Rate Operational Amplifier	2-24
LH0032/LH0032C Ultra Fast FET Operational Amplifier	2-47
LH0033/LH0033C High Speed Buffer	2-52
LH0041/LH0041C 0.2 Amp Power Operational Amplifier	2-22

LH0042/LH0042C Low Cost FET Operational Amplifier	2-29
LH0043/LH0043C Sample and Hold Circuit	2-36
LH0052/LH0052C Precision FET Operational Amplifier	2-29
LH0061/LH0061C 0.5 Amp Wide Band Operational Amplifier	2-63
LH0062/LH0062C High Speed FET Operational Amplifier	2-66
LH0063/LH0063C Damn Fast Buffer Amplifier	2-52
LH101 Operational Amplifier	2-72
LH201 Operational Amplifier	2-75
LH740A/LH740AC FET Input Operational Amplifier	2-171
LH2101A/LH2201A/LH2301A Dual High Performance Operational Amplifier	2-184
LH2108/LH2208/LH2308 Dual Super Beta Operational Amplifier	2-186
LH2108A/LH2208A/LH2308A Dual Super Beta Operational Amplifier	2-186
LH2110/LH2210/LH2310 Dual Voltage Follower	2-188
LH2111/LH2211/LH2311 Dual Voltage Follower	2-190
LH24250/LH24250C Dual Programmable Micropower Operational Amplifier	2-207
LM100/LM200/LM300 Voltage Regulator	1-1
LM101 Operational Amplifier	2-78
LM101A/LM201A Operational Amplifier	2-84
LM102 Voltage Follower	2-93
LM103 Regulator Diode	1-4
LM104/LM204 Negative Regulator	1-7
LM105/LM205/LM305 Voltage Regulator	1-13
LM106/LM206 Voltage Comparator/Buffer	3-1
LM107/LM207 Operational Amplifier	2-102
LM108/LM208 Operational Amplifier	2-108
LM108A/LM208A/LM308A Operational Amplifier	2-114
LM109/LM209 5-Volt Regulator	1-18
LM110/LM210 Voltage Follower	2-117
LM111/LM211 Voltage Comparator	3-7
LM112/LM212 Operational Amplifier	2-127
LM114/LM114A Matched Dual Monolithic Transistors	1-24
LM115/LM115A Matched Dual Monolithic Transistors	6-1 6-1
LM118/LM218 Operational Amplifier	2-136
LM119/LM219 High Speed Dual Comparator	3-17
LM120 Series 3-Terminal Negative Regulators	1-27
LM121/LM221/LM321 Precision Preamplifier	2-146
LM122/LM322/LM322 Precision Timer.	4-1
LM123/LM223/LM323 3-Amp-5 Volt Positive Regulator	1-31
LM124/LM224/LM324 Quad Operational Amplifiers	2-149
LM125 Dual Complimentary Tracking Voltage Regulator	11-1
LM126 Dual Complimentary Tracking Voltage Regulator	11-1
LM127 Dual Complimentary Tracking Voltage Regulator	11-1
LM139/LM239/LM339 Quad Comparator	3-21
LM139A/LM239A/LM339A Low Offset Voltage Quad Comparator	3-27
LM143 High Voltage Operational Amplifier	11-1
LM160/LM260/LM360 High Speed Differential Comparator	3-29
LM161/LM261/LM361 High Speed Differential Comparator	3-31
LM163/LM363 Dual Line Receiver	8-6
LM170/LM270/LM370 AGC/Squelch Amplifier	5-1
LM171/LM271/LM371 Integrated RF/IF Amplifier	5-5
LM172/LM272/LM372 AM IF Strip	5-11
LM175/LM275/LM375 Oscillator and Buffer with TTL Output	5-23
LM201 Operational Amplifier	2-81
LM202 Voltage Follower	2-96
LM216/LM216A/LM316/LM316A Operational Amplifier	2-133
LM273/LM373 AM/FM SSB IF Amp/Detector	5-15
LM274/LM374 AM/FM SSB IF Video Amp/Detector	5-15
LM301A Operational Amplifier	2-89
LM302 Voltage Follower	2-99
LM305A Voltage Regulator	1-10 1-16
LM306 Voltage Comparator/Buffer.	3-4
	0 1

LM307 Operational Amplifier	2-105
LM308 Operational Amplifier	2-111
LM309 5 Volt Regulator	1-21
LM310 Voltage Follower	2-122
LM311 Voltage Comparator	3-12
LM312 Operational Amplifier	2-130
LM318 Operational Amplifier	2-141
LM319 High Speed Dual Comparator	3-19
LM320 Series Three Terminal Negative Voltage Regulators	1-27
LM340 3-Terminal Positive Regulators	1-35
LM350 Dual Peripheral Driver	8-29
LM363A Dual MOS Sense Amplifier	8-6
LM376 Voltage Regulator	1-42
LM377 Dual 2-Watt Audio Amplifier	5-28
LM378 4-Watt/Channel Stereo Amplifier	11-2
LM380 Audio Power Amplifier	5-33
LM381 Low Noise Dual Preamplifier	5-37
LM382 Low Noise Stereo Preamplifier	5-40
LM383 5-Watt Power Amplifier	11-2
LM529/LM529C High Speed Differential Comparator	3-31
LM555/LM555C Timer	4-9
LM565/LM565C Phase Locked Loops	5-43
LM566/LM566C Voltage Controlled Oscillator	5-48
LM567/LM567C Tone Decoder	5-51
LM703L Low Power Drain RF/IF Amplifier	5-55
LM709 Operational Amplifier	2-156
LM709A Operational Amplifier	2-159
LM709C Operational Amplifier	2-162
LM710 Voltage Comparator.	3-33
LM710C Voltage Comparator	3-36
LM711 Dual Comparator	3-39
LM711C Dual Comparator	3-42
LM723/LM723C Voltage Regulator	1-45
LM725A/LM725/LM725C Instrumentation Operational Amplifier	2-165
LM733/LM733C Differential Video Amplifier	5-57
LM741/LM741C Operational Amplifier	2-173
LM746 Color Television Chroma Demodulator	5-61
LM747/LM747C Dual Operational Amplifier	2-175
LM748/LM748C Operational Amplifier	2-179
LM760/LM760C High Speed Differential Voltage Comparator	3-29
LM1303 Stereo Preamplifier	5-63
LM1304 FM Multiplex Stereo Demodulator	5-65
LM1305 FM Multiplex Stereo Demodulator	5-65
LM1307/LM1307E FM Multiplex Stereo Demodulator	5-65
LM1310/LM1310E Phase Locked Loop FM Stereo Demodulator	5-71
LM1351 FM Detector, Limiter and Audio Amplifier	5-73
LM1488 Quad Line Driver	8-1
LM1489/LM1489A Quad Line Receiver	8-4
LM1596/LM1496 Balanced Modulator-Demodulator	5-75
LM1489/LM1489A Quad Line Receiver	8-4
LM1514/LM1414 Dual Differential Voltage Comparator	3-45
LM1558/LM1458 Dual Operational Amplifier	2-182
LM1800 Phase Locked Fm Stereo Demodulator	5-79
LM1805 TV Signal Processor	11-3
LM1820 AM Radio System	5-81
LM1841 FM Detector and Limiter	5-83
LM1845 Signal Processing System	5-86
LM2111 FM Detector and Limiter	5-88
LM2113 FM Detector and Limiter	5-90
LM2900 Quad Amplifier	2-192
LM2905 Timer	4-15
LM3011 Wide Band Amplifier	5-92
LM3018/LM3018A Matched Monolithic Transistor Arrays	6-3

LM3019 Diode Array	6-7
LM3026 Transistor Array	6-10
LM3028A/LM3028B Differential RF/IF Amplifier	5-94
LM3039 Diode Array	6-16
LM3045 Transistor Array	6-19
LM3046 Transistor Array	6-19
LM3053 Differential RF/IF Amplifier	5-94
LM3054 Transistor Array	6-10
LM3064 Television Automatic Fine Tuning	5-92
LM3065 Television Sound System	5-100
LM3066 Chroma Signal Processor.	5-102
LM3067 Chroma Demodulator.	5-105
LM3070 Chroma Subcarrier Regenerator.	5-108
LM3071 Television Chroma IF Amplifier	5-112
LM3075 FM Detector/Limiter and Audio Preamplifier	5-114
LM3086 Transistor Array	6-19
LM3900 Quad Amplifier	2-194
LM3905 Timer	4-15
LM4250/LM4250C Programmable Operational Amplifier	2-202
LM5520/LM7520 Dual Core Memory Sense Amplifier.	10-2
LM5521/LM7521 Dual Core Memory Sense Amplifier.	10-2
LM5522/LM7522 Dual Core Memory Sense Amplifier.	10-2
LM5523/LM7523 Dual Core Memory Sense Amplifier.	10-6
LM5523/LM7524 Dual Core Memory Sense Amplifier	
LM5525/LM7525 Dual Core Memory Sense Amplifier.	10-8
LM5528/LM7528 Dual Core Memory Sense Amplifier	10-8
the state of the s	10-10
LM5529/LM7529 Dual Core Memory Sense Amplifier	10-10
LM5534/LM7534 Dual Core Memory Sense Amplifier	10-12
LM5535/LM7535 Dual Core Memory Sense Amplifier	10-12
LM5538/LM7538 Dual Core Memory Sense Amplifier	10-14
LM5539/LM7539 Dual Core Memory Sense Amplifier	10-14
LM55107A/LM75107A Dual Line Receiver	8-6
LM55108A/LM75108A Dual Line Receiver	8-6
LM55109/LM75109 Dual Line Driver	8-13
LM55110/LM75110 Dual Line Driver	8-13
LM75207 Dual MOS Sense Amplifier	8-6
LM75208 Dual MOS Sense Amplifier	8-6
LM75324 Memory Driver with Decode Inputs	8-16
LM55325/LM75325 Memory Driver	8-22
LM75450 Dual Peripheral Driver	8-29
LM75451 Dual Peripheral Driver	8-31
LM75452 Dual Peripheral Driver	8-31
LM75453 Dual Peripheral Driver	8-31
LM75454 Dual Peripheral Driver	8-33
LX1600A Absolute Pressure Transducer	7-21
LX1601A/LX1602A/LX1603A Absolute Pressure Transducer 0-30 PSI	4-24
LX1601D/LX1602D/LX1603D/LX1604D Differential Pressure Transducer 0-30 PSI	4-24
LX1601G/LX1602G/LX1603G/LX1604G Gage Pressure Transducer 0-30 PSI /	4-24
LX1610A/LX1620A/LX1630A Absolute Pressure Transducer 0-300 PSI	4-27
LX1610D/LX1620D Differential Pressure Transducer 0-300 PSI	4-27
LX1610G/LX1620G/LX1630G Gage Pressure Transducer 0-300 PSI	4-27
LX1701A/LX1702A/LX1703A Absolute Pressure Transducer 0-30 PSI	4-24
LX1701G/LX1702G/LX1703G/LX1704G Gage Pressure Transducer 0-30 PSI	4-24
LX1710A/LX1720A/LX1730A Absolute Pressure Transducer 0-300 PSI	4-27
LX1710G/LX1720G/LX1730G Gage Pressure Transducer 0-300 PSI	4-27
MM450/MM550 MOS Analog Switch	7-27
MM451/MM551 MOS Analog Switch	7-27
MM452/MM552 MOS Analog Switch	7-27
MM454/MM554 MOS Analog Switch	7-31
MM455/MM555 MOS Analog Switch	7-27
MM4504/MM5504 6-Channel MOS Multiplex Switch	7-22
PSM6501 ±15 Volt, 100 mA Power Supply Module	4-30
SHM6401 Sample and Hold Module	4-32

Edge Index by Product Family

Voltage Regulators Operational Amplifiers Voltage Comparators/Buffers **Functional Blocks Consumer Circuits** Transistor/Diode Arrays **Analog Switches** Interface Circuits **Display Drivers** Sense Amplifiers **New Products** 1

2

3

4

5

6

7

8

9

10

11

Military Hybrid Op Amp Selection Guide

MILITARY TEMPERATURE RANGE: -55°C to +125°C

Device	Input Offset Voltage Max (mV)	Input Offset Voltage Drift Typ (μV/°C)	Input Offset Current Max (nA)	Input Bias Current Max (nA)	Voltage Gain Min (Volts/V)	Bandwidth A _V = 1 Typ (MHz)	Slew Rate A _V = 1 TYP (V/µs)	Output Current (mA)	Supply Min (V)	Voltage Max (V)	Common Mode Range (V)	Differential Input Voltage (V)	Supply Current Max (mW)	Compensation Components	Package Types
LH0001	1	4	20	100	25,000	1	.25	±5	±5	±20	±V _s	±7	.5	2	TO-5
LH0001A	2.5	3	20	100	25,000	1	.25	±5	±5	±20	$\pm V_s$	±7	.5	2	TO-5 DIP F.P.
LH0002	30	(Note 2)	10×10^{3}	10 ⁴	.95	50	100	±100	±5	±22	±V _s	(Note 2)	100	0	TO-5 DIP
LH0003	3	4	200	2000	15	30 (Note 1)	30 (Note 1)	±50	±5	±20	$\pm V_s$	±7	30	. 2	TO-5
LH0004	1	4	20	100	30	1	.25	±15	±5	±45	$\pm V_s$	±7	1.5	2	TO-5
LH0005	10	20	20	50	2	30 (Note 1)	20 (Note 1)	±50	±9	±20	$\pm V_s$	±15	90	3	TO-5
LH0020	2.5	10	50	250	100,000	1	.25	±40	±5	±22	$\pm V_s$	±30	50	2	TO-5
LH0021	3	3	100	300	100,000	1	3	±1000	±5	±18	$\pm V_s$	±30	35	0	TO-3
LH0022	4	5	.002	.01	100,000	1	3	±10	±5	±22	±V _s	±30	35	0	TO-5 DIP F.P.
LH0024	4	20	3×10^{3}	20×10^{3}	4000	50	400	±100	±9	±18	±V _s	±5	252	1	TO-5
LH0032	5	25	.01	.02	1000	50	500	±100	±5	±18	$\pm V_s$	±30	200	2	TO-8
LH0033	10	(Note 3)	(Note 3)	.1	.97 (Note 3)	100	1500	±100	±5	±20	±V _s ((Note 3)	220	0	TO-8 8 PIN J
LH0041	3	3	100	300	100,000	1	. 3	±200	±5	±18	$\pm V_s$	±30	35	0	TO-8 8 PIN J
LH0042	20	5	.005	.025	50,000	1	3	±10	±5	±22	±V _s	±30	35	0	TO-5 DIP F.P.
LH0052	.5	2	.0001	.001	100,000	1	3	±10	±5	±22	$\pm V_s$	±30	25	0	TO-5 DIP
LH0061	4	5	100	300	50,000	15	70	±500	±5	±18	$\pm V_s$	(Note 4)	100	1	TO-3
LH0062	5	5	.001	.025	50,000	15	70	±6	±5	±20	$\pm V_s$	±30	80	0	TO-5 DIP
LH0063	25	(Note 1)	(Note 3)	.2	.96 (Note 3)	150	6000	±400	±5	±18	±V _s	(Note 3)	500	0	TO-3

Note 1: Specified for $A_V = -10$.

Note 2: Current booster.

Note 3: Voltage follower.

Note 4: Inputs have shunt-diode protection; current must be limited to ±10 mA.

MILITARY TEMPERATURE RANGE: $-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$

Device	Input Offset Voltäge† Max (mV)	Input Offset Voltage Drift Max (μV/°C)	Input Offset Current† Max (nA)	Input Bias Current† Max (nA)	Voltage Gain† (Volts/V)	Bandwidth A _V = 1 Typ (MHz)	Slew Rate A _V = 1 Typ (V/µs)	Output Current Max (mA)	Supply Min Typ (V)	Voltage Max (V)	Common Mode Range (V)	Differential Input Voltage (V)	Supply Current† Max (mA)	Compensation Components	Package Types
LH101	6	6	500	1500	50k	1	.5	5	±3	±22	±12	±30	3	0	TO-5 F.P.
LM101	6	6	500	1500	50k	1	.5	5	±3	±22	±12	±30	3	1	TO-5 F.P.
LM101A LH2101A (Note 1)	3	15	20	100	50k	1	.5	7.5	±3	±22	±12	±30	3	1	TO-5 DIP F.P.
LM102	7.5	6 typ	*	100	.999	10	10	1	±12	±18	±10	*	5.5	1	TO-5
LM107	3	15	20	100	50k	1	.5	7.5	±3	±22	±12	±30	3	0	TO-5 DIP F.P.
LM108 LH2108 (Note 1)	3	15	.4	3	50k	1	.3	1	±2	±20	±14	(Note 2)	.6	1	TO-5 DIP F.P.
LM108A LM2108A (Note 1)	1	5	.4	3	80k	1	.3	1	±2	±20	±14	(Note 2)	.6	1	TO-5 DIP F.P.
LM110 LH2110 (Note 1)	6	12	٠	10	.999	20	30	1	±5	±18	±10	*	5.5	0	TO-5 DIP
LM112	3	15	.4	3	50k	1	.2	1	±2	±20	±14	(Note 2)	.6	0	TO-5 DIP F.P.
LM118	4	*	50	250	50k	15	50 min†	5	±5	±18	±11.5	(Note 2)	7	0	TO-5 DIP F.P.
LM124 (Quad)	5	*	30	300	100k	1	*	40	5 (±1.5)	32 (±15)	V ⁺ - 1.5	32	2	0	DIP F.P.
LM709	6	6	500	1500	25k	1	.3	5	±9	±18	±8	±5	5.5	3	TO-5
LM725	1.5	5	40	200	1000	.5	.005	5	±3	±22	±13.5†	±5	3.5	4	TO-5 F.P.
LM741	6	*	500	1500	50k	1	.5	5	±3	±22	±12	±30	2.9	0	TO-5 DIP F.P.
LM747	6	*	500	1500	50k	1	.5	5	±3	±22	±12	±30	5.6	0	TO-5 DIP F.P.
LM748	6	6	500	1500	50k	1	.5	5	±3	±22	±12	±30	2.9	1	TO-5
LM1558 (Dual)	6	* -	500	1500	50k	1	.5	5	±3	±22	±12	±30	2.9	0	TO-5
LM4250 LH24250 (Note 1)	4	*	5	15	100k	.25	.16	.75	±1	±18	±12	±15	.03 set	0	TO-5

*Not specified.

†Guaranteed at +25°C.

Note 1: Dual version of device.

Note 2: Inputs have shunt-diode protection; current must be limited.

	Note	2:	Current	booster.
--	------	----	---------	----------

Note 1: Specified for $A_V = -10$. Note 4: Inputs have shunt-diode protection; current must be limited to ±10 mA.

Device	Input Offset Voltage Max (mV)	Input Offset Voltage Drift Typ (µV/°C)	Input Offset Current Max (nA)	Input Bias Current Max (nA)	Voltage Gain Min (Volts/V)	Bandwidth A _V = 1 Typ (MHz)	Slew Rate A _V = 1 Typ (V/µs)	Output Current (mA)	Supply Min (V)	Voltage Max (V)	Common Mode Range (V)	Differential Input Voltage (V)	Supply Current Max (mW)	Compensation Components	ⁿ Package Types
LH0001AC	5	3	60	200	.25	1	.25	±5	±5	±20	±V _s	±7	1.3	2	TO-5 DIP F.P.
LH0002C	30	(Note 2)	10 x 10 ³	10 ⁴	.95 (Note 2)	50	100	±100	±5	±22	$\pm V_{s}$	(Note 2)	100	0	TO-5 DIP
LH0003C	3	4	200	2000	15,000	30 (Note 1)	30 (Note 1)	±50	±5	±20	$\pm V_s$	±7	30	2	TO-5
LH0004C	1.5	4	45	120	30,000	1	.25	±15	±5	±45	$\pm V_s$	±7	1.5	2	TO-5
LH0005C	10	25	25	100	2000	30 (Note 1)	20 (Note 1)	±50	±9	±20	$\pm V_s$	±15	90	3	TO-5
LH0020C	6	10	200	500	50,000	1	.25	±100	±5	±18	$\pm V_s$	±30	50	2	TO-5
LH0021C	6	5	200	500	100,000	1	3	±1000	±5	±18	$\pm V_s$	±30	40	0	TO-3
LH0022C	6	5	.005	.025	75,000	1	3	±10	±5	±22	$\pm V_s$	±30	24	0	TO-5 DIP F.P.
LH0024C	8	25	5×10^{3}	22×10^{3}	3500	50	400	±100	±9	±18	$\pm V_s$	±5	252	1	TO-5
LH032C	15	25	.02	.5	700	50	500	±100	±5	±20	$\pm V_s$	±30	220	2	TO-8
LH0033C	20	(Note 3)	(Note 3)	.15	.96 (Note 3)	100	1500	±100	±5	±20	$\pm \boldsymbol{\vee}_{s}$	(Note 3)	240	0	TO-8 8 PIN J
LH0041C	6	5	200	500	100,000	1	3	±200	±5	±18	$\pm V_s$	±30	40	0	TO-8 8 PIN J
LH0042C	20	10	.01	.05	25,000	1	3	±10	±5	±22	$\pm V_s$	±30	28	0	TO-5 DIP F.P.
LH0052C	1	5	.0002	.005	75,000	1	3	±10	±5	±22	$\pm V_s$	±30	30	0	TO-5 DIP
LH0061C	10	5	200	200	25,000	15	70	±500	±5	±18	$\pm V_s$	(Note 4)	150	1	TO-3
LH0062C	15	10	.002	.065	25,000	15	70	±6	±5	±20	$\pm V_s$	±30	120	0	TO-5 DIP
LH0063C	50	(Note 3)	(Note 3)	.2	.96 (Note 3)	150	6000	±400	±5	±18	±V _s	(Note 3)	500	0	TO-3

INDUSTRIAL TEMPERATURE RANGE: -25°C to +85°C

Industrial Hybrid Op Amp Selection Guide

Note 3: Voltage follower.

INDUSTRIAL TEMPERATURE RANGE: -25°C < TA < +85°C

Device	Input Offset Voltage† Max (mV)	Input Offset Voltage Drift Max (μV/°C)	Input Offset Current† Max (nA)	Input Bias Current† Max (nA)	Voltage Gain† (Volts/V)	Bandwidth A _V = 1 Typ (MHz)	Slew Rate A _V = 1 Typ (V/µs)	Output Current Max (mA)	Supply Min Typ (V)	Voltage Max (V)	Common Mode Range (V)	Differential Input Voltage (V)	Supply Current† Max (mA)	Compensation Components	Package Types
LM201A LH2201A (Note 1)	2	15	20	75	25k	1	.5	5	±3	±22	±12	±30	3	1	TO-5 DIP F.P.
LM202	10	15 typ	*	15	.999	10	10	1	±12	±18	±10		5.5	0	TO-5
LM207	2	20	20	75	25k	1	.5	5	±3	±22	±12	±30	3	0	TO-5 DIP F.P.
LM208 LH2208 (Note 1)	2	15	.2	2	50k	1	.3	1	±2	±20	±14	(Note 2)	.4	1	TO-5 DIP F.P.
LM208A LH2208A (Note 1)	.5	5	.2	2	80k	1	.3	1	±2	±20	±14	(Note 2)	.4	1	TO-5 DIP F.P.
LM210 LH2210 (Note 1)	4	*.	*	3	.999	20	30	1	±5	±18	±10	٠	5.5	0	TO-5 DIP F.P.
LM212	2	15	.2	2	50k	1	.3	1	±2	±20	±14	(Note 2)	.6	0	TO-5 DIP F.P.
LM216	10	*	.05	.15	10k	1	.3	1	±5	±20	±13	(Note 2)	.8	0	TO-5 DIP F.P.
LM216A	3	*	.015	.05	20k	1	.3	1	±5	±20	±13	(Note 2)	.6	0	TO-5 DIP F.P.
LM218	4	*	50	500	50k	15	50 min†	5	±5	±18	±11.5	(Note 2)	7.5	0	TO-5 DIP F.P.
LM224 (Quad)	7	*	50	500	100k	1	*	40	3 (±1.5)	30 (±15)	$V^{+} - 1.5$	32	2	0	DIP
LM725B	1.5	10	20	100	500k	.5	.005	5	±3	±22	±13.5	±5	4	4	TO-5 DIP
LM2900 (Quad)	*	*	*	200	2.8k	2.5	20	18	4	36		*	10	0	DIP

*Not specified.

†Guaranteed at +25°C.

Note 1: Dual version of device.

Note 2: Inputs have shunt-diode protection; current must be limited.

COMMERCIAL TEM	PERATURE RAN	GE: 0°C < T₄ <	< +70°C
----------------	--------------	----------------	---------

Device	Input Offset Voltage† Max (mV)	Input Offset Voltage Drift Max (µV/°C)	Input Offset Current† Max (nA)	Input Bias Current† Max (nA)	Voltage Gain† (Volts/V)	Bandwidth A _V = 1 Typ (MHz)	Slew Rate A _V = 1 Typ (V/µs)	Output Current Max (mA)	Supply Min Typ (V)	Voltage Max Typ (V)	Common Mode Range (V)	Differential Input Voltage (V)	Supply Current† Max (mA)	Compensation Components	Package Types
LH201	7.5	10	500	1500	20k	1	.5	5	±3	±22	±12	±30	3	0	TO-5 F.P.
LM201	7.5	10	500	1500	20k	1	.5	5	±3	±22	±12	±30	3	1	TO-5 F.P.
LM301A LH2301A (Note 1)	7.5	30	50	250	25k	1	.5	5	±3	±18	±12	±30	3	. 1	TO-5 DIP
LM302	15	20 typ	*	30	.9985	10	10	1	±12	±18	±10		5.5	0	TO-5
LM307	7.5	30	50	250	25k	1	.5	5	±3	±18	±12	±30	3	0	TO-5 DIP F.P.
LM308 LM2308 (Note 1)	7.5	30	1	7	25k	1	.3	1	±2	±18	±14	(Note 2)	.8	1	TO-5 DIP F.P.
LM308A LM2308A (Note 1)	.5	5	1	7	80k	1	.3	1	±2	±20	±14	(Note 2)	.8	. 1	TO-5 DIP F.P.
LM310 LH2310 (Note 1)	7.5	*	*	7	.999	20	30	1	±5	±18	±10		5.5	0	TO-5 DIP F.P.
LM312	7.5	30	1	7	25k	1	.3	1	±2	±18	±14	(Note 2)	.8	0	TO-5 DIP F.P.
LM316	10	*	.05	.15	20k	1	.3	1	±5	±20	±13	(Note 2)	.8	0	TO-5 DIP F.P.
LM316A	3		.015	.05	40k	1	.3	1	±5	±20	±13	(Note 2)	.6	0	TO-5 DIP F.P.
LM318	12		200	600	25k	15	50 min	5	±5	±18	±11.5	(Note 2)	10	0	TO-5 DIP
LM324 (Quad)	7	*	50	500	100k	1	*	40	3 (±1.5)	30 (±15)	$V^{+} - 1.5$	32	2	0	DIP
LM709C	7.5	12	500	1500	25k	1	.3	5	±9	±18	±8	±5	6.6	3	TO-5 DIP
LM725C	2.5	2	35	125	250k	.5	.005	5	±3	±22	±13.5	±5	5	4	TO-5 DIP
LM741C	6	*	200	500	20k	1	.5	5	±3	±18	±12	±30	2.9	0	TO-5 DIP
LM747C	6	*	200	500	20k	1	.5	5	±3	±18	±12	±30	5.6	0	TO-5 DIP F.P.
LM748C	6	6	200	500	50k	1	.5	5	±3	±18	±12	±30	2.9	1	TO-5 DIP
LM1458 (Dual)	6	*	200	500	20k	1	.5	5	±3	±18	±12	±30	2.9	0	TO-5 DIP
LM3900 (Quad)	*		*	200	2.8k	2.5	20	10	4 (±2)	36 (±18)		*	10	0	DIP
LM4250C LH24250C (Note 1)	6	*	10	30	75k	.25	.16	.75	±1	±18	±12	±15	.03 set	0	TO-5 DIP

*Not specified. †Guaranteed at +25°C. Note 1: Dual version of device.

Note 2: Inputs have shunt-diode protection; current must be limited.

Product Type No.	Ing Vol: (\ Min	tage	Output Voltage (V) Typ	Load Regulation (mV) Typ	Line Regulation (mV) Typ	Ripple Rejection (dB) Typ	Long Term Stability (mV) Max	Output Noise Voltage (μV) Typ	Quiescent Current (mA)	Tempe	rating erature nge C) Max	Output Current† (Amps)	Package Type	
LM109K*	7	35	5	50	4	75	10	40	6	-55	125	>1	TO-3, TO-5	
LM209K*	7	35	5	50	4	75	10	40	6	-25	85	>1	TO-3, TO-5	
LM309K*	7	35	5	50	4	75	20	40	6	0	70	>1	TO-3, TO-5	
LM123K	7.5	20	5	50	4	75	10	40	6	-55	125	3	TO-3	
<u>∞</u> LM223K	7.5	20	5	50	4	75	10	40	6	-25	85	3	TO-3	
EM323K LM340-05	7.5	20	5	50	4	75	20	40	6	0	70	3	TO-3	
	7	35	5	100 max	100 max	70	20	40	6	0	70	>1	TO-3, TO-220	
LM340-06 LM340-08	8	35	6	120 max	120 max	65	24	45	6	0	70	>1	TO-3, TO-220	
№ LM340-08	10	35	8	160 max	160 max	62	32	52	6	0	70	>1	TO-3, TO-220	
LM340-12	14	35	12	240 max	240 max	61	48	75	6	0	70	>1	TO-3, TO-220	
LM340-15	17	35	15	300 max	300 max	60	60	90	6	0	70	>1	TO-3, TO-220	
LM340-18	20	35	18	360 max	360 max	59	72	110	6	0	70	>1	TO-3, TO-220	
LM340-24	26	40	24	480 max	480 max	56	96	170	6	0	70	.8	TO-3, TO-220	
LM120K-5*	-6	-25	-5	50	10	67	50	150	2	-55	125	>1	TO-3, TO-5	
LM220K-5*	-6	-25	-5	50	10	67	50	150	2	-25	85	>1	TO-3, TO-5	
LM320K-5*	-6	-25	-5	50	10	67	50	150	2	0	70	>1	TO-3, TO-5	
LM120K-5.2*	-6.2	-25	-5.2	50	10	67	50	150	2	-55	125	>1	TO-3, TO-5	
LM220K-5.2*	-6.2	-25	-5.2	50	10	67	50	150	2	-25	85	>1	TO-3, TO-5	
LM320K-5.2*	-6.2	-25	-5.2	50	10	67	50	150	2	0	70	>1	TO-3, TO-5	
⊈ LM120K-12*	-13	-30	-12	30	4	80	120	400	4	-55	125	>1	TO-3, TO-5	
EM220K-12*	-13	-30	-12	30	4	80	120	400	4	-25	85	>1	TO-3, TO-5	
≥ LM320K-12*	-13.	-30	-12	30	4	80	120	400	4	0	70	>1	TO-3, TO-5	
LM120K-15*	-16	-30	-15	30	5	80	150	400	4	-55	125	>1	TO-3, TO-5	
LM220K-15*	-16	-30	-15	30	5	80	150	400	4	-25	85	>1	TO-3, TO-5	
LM320K-15*	-16	-30	-15	30	5	80	150	400	4	0	70	>1	TO-3, TO-5	

^{*}Ratings are for TO-3(K) package; device also available in TO-5(H) package.

[†]Max output current depends on package type, heat sinking, and input voltage differential.

Variable Voltage Regulator Guide

Specifications Are Worst Case Over Operating Temperature Unless Noted.

	Product Type No.	Input Vo Rang (V) Min	e	Output Rai (\ Min	nge	Load Regu (%) Typ.		Line Regulation ($V_{OUT}/\Delta V_{IN}$) Typ.	Ripple Rejection (%) Typ.	Diffe	Output rential V) Max	Temperature Stability (%)	Quiescent Current (mA) Typ.	Temp Ra	rating erature inge C) Max	Output Current* (mA)	Package Type
	LM100	8.5	40	2.0	30	0.1	12	0.05	0.02	3	30	1.0	1.0	-55	125	20	TO-5, Flat Pack
	LM200	8.5	40	2.0	30	0.1	12	0.05	0.02	3	30	1.0	1.0	-25	85	20	TO-5, Flat Pack
	LM300	8.5	30	2.0	20	0.1	12	0.05	0.02	3	20	2.0	1.0	0	70	20	TO-5, Flat Pack
e e	LM105	8.5	50	4.5	40	0.02	12	0.015	0.003	3	30	1.0	8.0	-55	125	20	TO-5, Flat Pack
itiv tag	LM205	8.5	50	4.5	40	0.02	12	0.015	0.003	3	30	1.0	8.0	-25	85	20	TO-5, Flat Pack
Positive Voltage egulators	LM305	8.5	40	4.5	30	0.02	12	0.015	0.003	3	30	1.0	8.0	0	70	20	TO-5, Flat Pack
E - E	LM305A	8.5	50	4.5	40	0.02	45	0.015	0.003	3	30	1.0	8.0	0	70	45	TO-5
	LM376	9.0	40	5.0	37	0.2 max	25	0.03 max	0.1 max	3	30	_	2.5 max	0	70	25	Molded DIP
	LM723	9.5	40	2.0	37	0.03	50	0.01	0.02	3	38	0.015%/°C	1.3	-55	125	150	TO-5, Cavity DIP
	LM723C	9.5	40	2.0	37	0.03	50	0.01	0.02	3	38	0.015%/°C	1.3	0	70	150	TO-5, Cavity & Molded DIP
	LM104	-50	-8	-40	−15 mV	0.01	20	.05	0.01	2	50	1.0	3.6	-55	125	20	TO-5, Flat Pack
ors or	LM204	-50	-8	-40	-15 mV	0.01	20	.05	0.01	2	50	1.0	3.6	-25	85	20	TO-5, Flat Pack
Negative Voltage legulators	LM304	-40	-8	-30	−15 mV	0.01	20	.05	0.01	2	40	1.0	3.6	0	70	20	TO-5, Flat Pack
Sen Col	LM723	-40	-9.5	-37	-2	0.03	50	0.01	0.02	3	38	0.015%/°C	1.3	-55	125	150	TO-5, Cavity & Molded DIP
- 6	LM723C	-40	-9.5	-37	-2	0.03	50	0.01	0.02	3	38	0.015%/°C	1.3	0	70	150	TO-5, Cavity & Molded DIP

Note: The maximum power dissipation for the LM100, LM105 and LM104 regulators is 800 mW. For most cases of the LM100, LM105 and the LM104, output current will be limited by maximum junction temperature and thermal resistance as indicated.

Package TO-5 Flat Pack Solid Kovar TO-5 TO-3 Thermal Resistance Junction to Air 150°C/W 185°C/W Mounted 150°C/W

35°C/W

Thermal Resistance Junction to Case 45°C/W

1.5°C/W

*The output currents given, as well as the load regulation for the LM100, LM105, LM723 and LM104 family of regulators can be increased by the addition of external transistors. The increase will be roughly equal to the composite current gain of the added transistors.

Device	Temperature Range*	DTL/TTL Fanout	Supply Voltage Typ (Volts)	Input Bias Current (+25°C) Max (μA)	Input Offset Current (+25°C) Max (μΑ)	Input Offset Voltage (+25°C) Max (mV)	Response Timet Typ (ns)	Voltage Gain Typ	Package Type	Comments
LM106	Military	10	V ⁺ = + 12	20	3	2	40 max	40k	TO-5 F.P.	
LM206	Industrial	10	V_ = -3	20	3	2	40 max	40k	TO-5 F.P.	Single comparator with strobe, high speed and sensitivity, large fanout.
LM306	Commercial	10	To - 12	25	5	5	40 max	40k	TO-5 F.P.	
LM111 LH2111 (Note 1)	Military	5	±15	.1	.04	.7	200	200k	TO-5 DIP F.P.	
LM211 LH2211 (Note 1)	Industrial	5	To +5	1.1	.04	.7	200	200k	TO-5 DIP F.P.	Single, with strobe, will work from single supply, low bias current.
LM311 LH2311 (Note 1)	Commercial	5	And GND	.25	.06	2	200	200k	TO-5 DIP F.P.	
LM119	Military	2 (each side)	±15	.5	.075	4	80	40k	TO-5 DIP F.P.	
LM219	Industrial	2 (each side)	To +5	.5	.075	4	80	40k	TO-5 DIP F.P.	High speed dual comparator.
LM319	Commercial	2 (each side)	And GND	1	.2	8	80	40k	TO-5 DIP	
LM139	Military	1	[±1]	.1	.025	5	1.3 μs	200k	DIP F.P.	
LM239	Industrial	1	To ±18	.25	.050	5	1.3 μs	200k	DIP	Quad comparator designed for single supply operation; input common mode range includes ground.
LM339	Commercial	1	Or From	.25	.050	5	1.3 μs	200k	DIP	
LM139A	Military	1	+2	.1	.025	2	1.3 μs	200k	DIP F.P.	
LM239A	Industrial	1	To +36	.25	.050	2	1.3 μs	200k	DIP	Low offset voltage Quad comparator with DTL/TTL logic levels.
LM339A	Commercial	1	_And GND_	.25	.050	2	1.3 μs	200k	DIP	
LM160	Military	2	±4.5	10	2	2	16	3k	TO-5 DIP F.P.	
LM260	Industrial	2	То	10	2	2	16	3k	TO-5 DIP	Very high speed, outputs compatible with DTL/TTL logic levels.
LM360	Commercial	2	±6.5	15	4	4	16	3k	TO-5 DIP	
LM161	Military	2	±5	10	2	2	12	3k	TO-5 DIP F.P.	
LM261	Industrial	2	To ±15	10	.2	2	12	3k	TO-5 DIP	Very high speed, with individual strobes, DTL/TTL compatible.
LM361	Commercial	2	And +5	15	4	4	12	3k	TO-5 DIP	
LM710	Military	1	V ⁺ = + 12	20	3	2	40	1750	TO-5	Circle differential in single
LM710C	Commercial	1	V = -6	25	5	5	40	1500	TO-5 DIP	Single, differential in, single output.
LM711	Military	1	V ⁺ = + 12	75	10	3.5	40	1500	TO-5	Dual differential, common output,
LM711C	Commercial	1	V = -6	100	15	5	40	1500	TO-5 DIP	individual strobes.
LM1514	Military	1	V ⁺ = + 14	20	3	3	30	1250	DIP	Dual LM710 with separate strobes,
LM1414	Commercial	1	V = -7	25	5	4	30	1000	DIP	individual outputs.

*Military: -55°C to +125°C Industrial: -25°C to +85°C Commercial: 0°C to +70°C [†]Response time is specified for 100 mV step input with 5 mV overdrive.

Note 1: Dual version of device.

DATA COMMUNICATION CIRCUITS

LINE DRIVERS DEVICE NO.	LINE RECEIVERS DEVICE NO.	DESCRIPTION	POWER SUPPLY	COMMENTS
LM1488/LM1588	LM1489A/LM1589A (quad) or DM7822/DM8822 (dual)	Communication to EIA standard RS 232C.	±12V LM1489A & DM7822 +5V only.	Twisted pair single ended. Unidirectional
DM7830/DM8830	DM7820A/DM8820A	Dual differential line driver and receiver.	+5 V	True differential. ± 15 volt common mode rejection, Unidirectional, Use of internal receiver termination recommended up to 100 feet.
DM7831/DM8831	DM7820A/DM8820A	Dual differential line driver and receiver.	+5 V	True differential, bidirectional. Driver includes upper and lower level clamps to combat tran- sients. Use of internal receiver termination optional.
DM7832/DM8832	DM7820A/DM8820A	Dual differential line driver and receiver.	+5V	As above, but without upper level clamping, so party line buses may be used, even with some peripherals powered down.
DM7831/DM8831	DM7837/DM8837 (hex) or DM7836/DM8836 (quad)	Quad single-ended line driver and hex receiver, or a quad 2 input NOR receiver.	+5V	If used unidirectionally, receiver should be terminated. In party line applications disabled driver clamps line. Receiver input current is $15~\mu\text{A}$ typical, has no hysteresis.
LM75109	LM75107A	Dual differential line driver and receiver.	±5V	May be used in party-line or data-bus systems.
LM75110	LM75108A	Dual differential line driver and receiver.	±5V	May be used in party-line or data-bus systems.
	NSCEIVER VICE NO.	DESCRIPTION	POWER SUPPLY	COMMENTS
DM78	338/DM8838	Quad open collector transceiver.	+5V	Receiver has typical 15 μ A input current one-volt hysteresis. Driver will pull down double terminated 120 Ω line.
DM78	339/DM8839	Quad TRI-STATE TM transceiver. Four transmitters all disabled by control NOR gate.	+5V	Drivers have 10.4 mA forward drive at 2.4V, sink 32 mA at 0.4 volts. Receivers have 1 volt hysteresis, input current is 15 μ A typical. Disabled driver clamps undershoots. A transceiver on the bus may be powered down without affecting bus logic levels.
DM78	333/DM8833	Quad TRI-STATE transceiver. One control disables all transmitters; one control disables all receiver outputs.	+5V	
DM78	334/DM8834	Quad TRI-STATE transceiver. Controls same as DM7839 but driver and receiver are inverting.	+5 V	
DM78	335/DM8835	Quad TRI-STATE transceiver. Controls same as DM7833 but driver and receiver are inverting.	+5V	

SENSE AMPLIFIER CIRCUITS

The core sense amplifiers are monolithic circuits comprising a reference amplifier and two sense channels. The output circuit changes state when the absolute difference in input voltage to the sense amp exceeds the absolute difference in voltage applied to the reference amplifier (threshold voltage). These parts with even numbers have a tighter guaranteed input threshold uncertainty.

DEVICE NO.	OUTPUT FORM	COMMENTS
LM7520, LM7521	AND-OR common output and complement	By coupling back complement output to true gate, latch may be formed. Set by (Strobe A. Memory A + Strobe B. Memory B) reset by complement gate.
LM7522, LM7523	AND-OR-INVERT common output high current open collector	Convenient for wire-OR'ed memory expansion.
LM7524, LM7525	An AND gate for each independent channel	Separate channels for small memories.
LM7534, LM7535	Open collector NAND gate for each independent channel	Convenient—for wire-OR'ed memory expansion in small memories. Useful for direct setting of flip flop.
LM7528, LM7529	AND gate, plus test point for each sense amp	
LM7538, LM7539	NAND gate, plus test point for each sense amp	

PERIPHERAL DRIVERS

The peripheral drivers are dual monolithic circuits, each consisting of a logic gate and a large geometry NPN transistor. The transistor is guaranteed to sink 300 mA and to hold off collector voltage of 30 volts even when powered down.

DEVICE NO.	GATE FUNCTION	MODE OF CONNECTION	NO. OF PINS
LM350	NOR	External	14
LM351 (LM75453)	NOR	Internal	8
LM75450	NAND	External	14
LM75451	NAND	Internal	8
I M75454	NOR	Internal	8

MEMORY DRIVERS

DEVICE NO.	OUTPUT FORM	COMMENTS
LM55324, LM75324	AND gate decoding to two sink and two source output transitors	High Current output transistors; single timing input control
LM55325, LM75325	NAND gate decoding to two sink and two source output transistors	Separate strobe control for sink and source output devices

PERIPHERAL DRIVER CONNECTION DIAGRAMS

LM351(LM75453), LM75451,LM75452,LM75454

LM350,LM75450

MEMORY DRIVER CONNECTION DIAGRAMS

LM55325/LM75325

DEVICE NO.	PACKAGE	NEAREST NATIONAL EQUIVALENT	DEVICE NO.	PACKAGE	NEAREST NATIONAL EQUIVALENT	DEVICE NO.	PACKAGE	NEAREST NATIONAL EQUIVALENT	DEVICE NO.	PACKAGE	NEAREST NATION EQUIVALENT
Analog Devices			Fairchild			Siliconix			Zeltex		
AD503-(J, K)	TO-5	LH0042C pin for pin	U5B7740312			L120A	TO-5	LH0042	ZA801-(D1, E1)	DIP	LH0042C
AD503-(S)	TO-5	LH0042 pin for pin	(µA740)	TO-5	LH0042 pin for pin	L120C	TO-5	LH0042C	ZA801-(M1, M2)		LH0042C
AD506-(J, K)	TO-5	LH0022C pin for pin	U5B7740393			L137AA	TO-5	LH0022	ZA801-(M3)	DIP	LH0022C
AD506-(S)	TO-5	LH0022C* pin for pin	(µA740C)	TO-5	LH0042C pin for pin	L137CA	TO-5	LH0022C	ZA801-(T1)	TO-8	LH0042C
AD511	MOD	LH0042C				1			ZA802-(M1, M2)		LH0022C
AD513-(J, K) AD513-(S)	TO-5 TO-5	LH0042C* pin for pin LH0042* pin for pin				Toloduna Samia	onductor (Amelo	-1	ZA803-(M1) ZA804-(M1, M2)	MOD	LH0052C LH0042C
AD513-(5) AD516-(J, K)	TO-5	LH0022C* pin for pin				1			ZA903-(M1, M2)		LH0042C
AD516-(S)	TO-5	LH0022* pin for pin	Intech			2404BG	TO-8	LH0042C	133	MOD	LH0022C
ADP517	MOD	LH0042C	A100	MOD	LH0042C	2405BG 2709BG	TO-8 TO-8	LH0042C	133-03	MOD	LH0052C
M501-(A, B, C,)	TO-8	LH0022C	A101	MOD	LH0042C	2709BG 2809BG	TO-8	LH0042C LH0042C	133-04	MOD	LH0022C
40-(J, K,)	TO-8	LH0042C	A102	MOD	LH0022C	2740BE	TO-5	LH0042C	134	MOD	LH0042C
41-(J, K, L)	MOD	LH0052C	A103	MOD	LH0022C	2841BE	TO-5	LH0042C	134D	MOD	LH0042C
42-(J, K, L)	MOD	LH0052C	A122	MOD	LH0052	2741BF	TO-8	LH0042C	135	MOD	LH0062C
43-(J)	MOD	LH0022C	A123	MOD	LH0052	2741BH	TO-8	LH0042C			
44-(J, K)	MOD MOD	LH0062C LH0062C	A125	MOD	LH0052C						
45-(J, K) 142-(A, B, C)	MOD	LH0062C LH0042C	A130	MOD	LH0062C						
146-(J, K)	MOD	LH0022C	A131	MOD	LH0062C	Teledyne Nexus	Phillrick				
149-(J, K)	MOD	LH0062C	A136 A137	MOD MOD	LH0062C LH0062C	QFT	MOD	LH0042C			
140 (0, 14)		200020	A148-(A, B, C)	MOD	LH0042C	QFT	MOD	LH0042C	1		
*These amps use	feedforward co	empensation to boost slew	A1026	MOD	LH0022C	QFT-2B	MOD	LH0052C			
		np sèe LH0062/LH0062C.	A1027	MOD	LH0022C	QFT-5	MOD	LH0042C			
						QFT-5	MOD	LH0042C			
			1			Q25AH	TO-8	LH0042C	-		
						PP25A	MOD	LH0042C			
Bell and Howell			Intersil			1003 100301	MOD	LH0052C LH0052C			
			10110500	TO-5	1110050	100301	MOD	LH0032C	i e		
20-008	MOD MOD	LH0042C LH0042C	ICH8500 ICH8500A	TO-5	LH0052 pin for pin LH0052 pin for pin	1008	MOD	LH0042C	1		
20-108 20-208	TO-8	LH0042C	ICH8500A	TO-5	LH0052C pin for pin	1009	MOD	LH0042C			
20-208	TO-8	LH0022C	ICL8007C	TO-5	LH0042C pin for pin	100901	MOD	LH0042C			
20 240	100	21100220	ICL8007M	TO-5	LH0042 pin for pin	100902	MOD	LH0042C			
			ICL8007AM	TO-5	LH0042 pin for pin	1011	MOD	LH0062C			
			ICL8007AC	TO-5	LH0042C pin for pin	101101	MOD	LH0062C			
			1			101102	MOD	LH0062C			
Burr-Brown			1			1019 1021	MOD MOD	LH0032C LH0022C			
3307/12C	MOD	LH0042C	1			1021	MOD	LH0022C			
3308/12C	MOD	LH0042C	OEI			102301	MOD	LH0052C			
3312/12C	MOD	LH0042C				1025	MOD	LH0032C			
3313/12C	MOD	LH0042C	9714	MOD	LH0042C	1408	MOD	LH0052C			
3341/15C	MOD	LH0032C	9715 9716	MOD MOD	LH0062C	140801	MOD	LH0052C			
3342/15C	MOD	LH0032C	9717	MOD	LH0042C LH0042C	140802	MOD	LH0052C			
3348/03	MOD	LH0052C	9718	MOD	LH0062C	140810	TO-8	LH0052C			
3349/03 3350/03	MOD	LH0026C	9720	MOD	LH0032C	1402 140201	TO-8 TO-8	LH0042C			
3350/03 3400-(A, B)	MOD	LH0042C LH0032C	9721	MOD	LH0042C	140201	TO-8	LH0042C LH0042C			
3400-(A, B) 3401-(A, B)	MOD	LH0032C LH0062C	9723	MOD	LH0032C	140202	TO-8	LH0042C LH0042C	2		
3402-(A, B)	MOD	LH0062C				140701	TO-8	LH0042C	1		
3403-(A, B)	MOD	LH0042C	Signetics			1414	MOD	LH0062C	1		
3420-(J, K, L)	MOD	LH0052C	SU536T	TO-5	LH0042C pin for pin	141410	DIP	LH0062C			
3421-(J, K, L)	MOD	LH0052C	SU740C	TO-5	LH0042C pin for pin	1421	TO-5	LH0042C	1		
			l .						1		

FET OP AMP Cross Reference

Linear Cross Reference Guide

TEXAS INSTRUMENTS DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NAT'ONAL FUNCTIONAL EQUIVALENT	TEXAS INSTRUMENTS DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT	TEXAS INSTRUMENTS DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT
SN5500F		LM5524J	SN52711N		LM711H	SN72741L	LM741CH	
SN5510F		LM733H	SN52711S		LM711H	SN72741N	LM741CN-14	
SN5510L		LM733H	SN52733L	LM733H		SN72741P	LM741CN	
SN5511F		LM733H	SN52741J	LM741D		SN72741Z	LM741CF	
SN5511L		LM733H	SN52741L	LM741H		SN72747J	LM747CD	
SN5524J	LM5524J		SN52741Z	LM741F		SN72747N	LM747CN	
SN5525J	LM5525J		SN52747J	LM747D		SN72748N		LM748CN
SN7500F		LM7524J	SN52747Z	LM747F		SN72748P	LM748CN	
SN7501F		LM7524J	SN52748J		LM748H	SN72748J		LM748CN
SN7502F		LM7524J	SN52748L	LM748H		SN72748L	LM748CH	
SN7510F		LM733CH	SN52748Z		LM748H	SN72748Z		LM748H
SN7510L		LM733CH	SN52770J		LM108D	SN72770J		LM308D
SN7511L		LM733CH	SN52770L		LM108H	SN72770L		LM308H
SN7520J	LM7520J		SN52770Z		LM108F	SN72770N		LM308H
SN7520N	LM7520N		SN52771J SN52771L		LM112D	SN72770P		LM308H
SN7521J	LM7521J		SN52771Z		LM112H	SN72770Z		LM308F
SN7521N	LM7521N		SN527712 SN55107J		LM112F	SN72771L		LM312H
SN7522J	LM7522J		SN551073	LM55107J		SN72771N		LM312D
SN7522N SN7523J	LM7522N		SN55106J	LM55108J		SN72771P		LM312D
SN7523J SN7523N	LM7523J		SN55110J	LM55109J		SN72771Z		LM312F
SN7523N SN7524J	LM7523N		SN55182J	LM55110J		SN75100L		DM8820D
SN7524J SN7524N	LM7524J LM7524N		SN55183J	DM7820AJ DM7830J		SN75107J	LM75107J	
SN7525J	LM7524N LM7525J		SN56514L	DM 78303	LM1496H	SN75107N	LM75107N	
SN7525N	LM7525J		SN72301AJ	LM301AD	LIVI 1496FI	SN75108J	LM75108J	
SN7528J	LM7528J		SN72301AL	LM301AH		SN75108N SN75109J	LM75108N LM75109J	
SN7528N	LM7528N		SN72301AN	LIVISOTATI	LM301AN	SN751093	LM751093 LM75109N	
SN7529J	LM7529J		SN72301AP	LM301AN	EWSOTAN	SN75109N SN75110J	LM75109N LM75110J	
SN7529N	LM7529N		SN72301AZ	LM301AF		SN75110N	LM75110N	
SN52101AJ	LM101AD		SN72307J	LM307D		SN751760J	LW/5110N	DM8830J
SN52101AL	LM101AH		SN72307L	LM307H		SN75150N		DM8830N
SN52101AZ	LM101AF		SN72307N	LM307N		SN75105P		DM8830N
SN52107J	LM107D		SN72307P		LM307H	SN75182J	DM8820AJ	DIVIDOSOIV
SN52107L	LM107H		SN72307Z	LM307F		SN75182N	DM8820AN	
SN52107Z	LM107F		SN72558L	LM1458H		SN75183J	DM8830J	
SN52558L	LM1558H		SN72558P	LM1458N		SN75183N	DM8830N	
SN52702AF		LM101AF	SN72702F		LM301AF	SN75324J	LM75324J	
SN52702AL		LM101AH	SN72702L		LM301AH	SN75324N	LM75324N	
SN52702AN		LM301AN	SN72702N		LM301AN	SN75325J	LM75325J	
SN52702F		LM101AF	SN72709L	LM709CH		SN75325N	LM75325N	
SN52702L		LM101AH	SN72709N	LM709CN		SN75450N	LM75450N	
SN52702N		LM301AN	SN72709P		LM709CN	SN75450AN	LM75450N	
SN52702Z		LM101AF	SN72709S		LM709CH	SN75451P	LM75451N	
SN52709AF		LM709AH	SN72710J		LM710CN	SN75451AP	LM75451N	
SN52709AL	LM709AH		SN72710L	LM710CH		SN75452P	LM75452N	
SN52709AN		LM709AH	SN72710N	LM710CN		SN75453P	LM75453N	
SN52709F		LM709H	SN72710S		LM710CH	SN75454P	LM75454N	
SN52709L	LM709H		SN72711J		LM711CN	SN75460	LM75460N	
SN52709N		LM709H	SN72711L	LM711CH		SN75461	LM75461N	
SN52710J		LM710H	SN72711N	LM711CN		SN75462	LM75462N	
SN52710L	LM710H		SN72811S		LM711CH	SN75463	LM75463N	
SN52710N		LM710H	SN72720N	LM1414N		SN75464	LM75464N	
SN52710S		LM710H	SN72733L	LM733CH		SN76514L		LM1496H
SN52711J		LM711H	SN72733N	LM733CN		SN76514N		LM1496H
SN52711L	LM711H		SN72741J	LM741CD				

Linear Cross Reference Guide

MOTOROLA DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT	MOTOROLA DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT	MOTOROLA DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT
MC1303L		LM1303N	MC1488L	LM1488J		MC1710CF		LM710CH
MC1304P	LM1304N		MC1489AL	LM1489AJ		MC1710CG	LM710CH	
MC1305P	LM1305N		MC1489L	LM1489J		MC1710CL		LM710CH
MC1306P		LM380N	MC1496G	LM1496H		MC1710F		LM710H
MC1307P	LM1307N		MC1496L	LM1496N		MC1710G	LM710H	
MC1326P		LM3067N	MC1509F		LM733H	MC1710L		LM710H
MC1326PQ		LM3067N	MC1510F		LM733H	MC1711CF		LM711CH
MC1328G		LM3067N	MC1510G	LM1514J	LM733H	MC1711CG	LM711CH	
MC1328P		LM3067N	MC1514L	LW1514J	LM733H	MC1711CL		LM711CH
MC1328PQ		LM3067N	MC1519G		LM733H LM733H	MC1711F	1.4474.411	LM711H
MC1350P	LM1351N	LM703L	MC1520F MC1520G		LM733H LM733H	MC1711G	LM711H	
MC1351P	LWI351N	1 1120651	MC1530F		LM101AF	MC1711L		LM711H
MC1358P MC1358PQ		LM3065N LM3065N	MC1530F MC1530G		LM101AF	MC1712CF MC1712CG		LM733CH
MC1358PQ MC1380P		LM386N	MC1531F		LM101AF	MC1712CG MC1712CL		LM733CH
MC1380P MC1410G		LM733CH	MC1531F		LM101AH	MC1712CL MC1712F		LM733CH LM733H
MC1410G MC1414L	LM1414J	LIVI / 33CH	MC1533F		LM101AF	MC1712F MC1712G		LM733H LM733H
MC1414E MC1420G	FW13133	LM733CH	MC1533G		LM101AH	MC1712G MC1712L		LM733H
MC1420G MC1430F		LM301AF	MC1533L		LM101AD	MC1723CG	LM723CH	LIVI / SSFI
MC1430F MC1430G		LM301AH	MC1535F		LM1303N	MC1723CL	LM723CH	
MC1430G MC1430P		LM301AN	MC1535G		LM1303N	MC1723G	LM723H	
MC1430F		LM301AF	MC1536G	LM1536H	E130314	MC1723L	LM723D	
MC1431G		LM301AH	MC1537L	2.11.00011	LM1458N-14	MC1733CG	LM733CH	
MC1431P		LM301AN	MC1538R		LH0002H	MC1733CL	LM733CD	
MC1433F		LM301AF	MC1539G		LM101AH	MC1733G	LM733H	
MC1433G		LM301AH	MC1539L		LM101AD	MC1733L	LM733D	
MC1433L		LM301AN	MC1504F		LM5524J	MC1741CF	LM741CF	
MC1435F		LM1303N	MC1540G		LM5524J	MC1741CG	LM741CH	
MC1435G		LM1303N	MC1540L		LM5524J	MC1741CL		LM741CH
MC1435L		LM1303N	MC1541F		LM5524J	MC1741CP1	LM741CN	
MC1436CG	LM1436H		MC1541L		LM5524J	MC1741CP2	LM741CN-14	
MC1436G	LM1436H		MC1550F		LM171H	MC1741F	LM741F	
MC1437L		LM1458N-14	MC1550G		LM171H	MC1741G	LM741H	
MC1437P		LM1458N-14	MC1552G		LM733H	MC1741L	LM741D	
MC1438R		LH0002H	MC1553G		LM733H	MC1748CG	LM748CH	
MC1439G		LM301AH	MC1554G		LM380N	MC1748G	LM748H	
MC1439L		LM301AH	MC1556G		LM108H	MFC40000D		LM380N
MC1439P2		LM301AH	MC1558G	LM1558H		MFC4010A		LM381N
MC1440F		LM7524J	MC1558L	LM1558D		MFC4050		LM380N
MC1440G		LM7524J	MC1560G		LM105H	MFC4060		LM376N
MC1440L		LM7524J	MC1560R		LM105H	MFC6010 MFC6030		LM2111N LM376N
MC1441F MC1441L		LM7524J LM7524J	MC1561G MC1561R		LM105H LM105H	MFC6070		LM380N
MC1454G		LM380H	MC1563G		LM105H LM104H	MFC8000		LM703LN
MC1454G MC1456CG		LM308H	MC1563R		LM104H	MFC8001		LM703LN
MC1456G		LM308H	MC1566L		LM104H	MFC8002		LM703LN
MC1458CG	LM1458H	LWISOUT	MC1569G		LM105H	MFC8010		LM380N
MC1458CL	LW 143011	LM1458N-14	MC1569R		LM105H	MFC8030		LM703LN
MC1458CP1	LM1458N	CIVITADOIA-14	MC1589L		DM7831J	MF C8040		LM381N
MC1458CP2	LM1458N-14		MC1582L		DM7830J	MFC9020		LM380N
MC1458G	LM1458H		MC1583L		DM7820J	MLM101AG	LM101AH	
MC1458L		LM1458N-14	MC1584L		DM7820AJ	MLM105G	LM105H	
MC1458P1	LM1458N		MC1590G		LM170H	MLM107G	LM107H	
MC1458P2	LM1458N-14		MC1596G	LM1596H		MLM109K	LM109K	
MC1460G		LM305H	MC15961		LM1596H	MLM201AG	LM201AH	
MC1460R		LM305H	MC1709CF		LM709CH	MLM205G	LM205H	
MC1461G		LM305H	MC1709CG	LM709CH		MLM207G	LM207H	
MC1461R		LM305H	MC1709CL		LM709CN	MLM209K	LM209K	
MC1463G		LM304H	MC1709CP1	LM709CN		MLM301AG	LM301AH	
MC1463R		LM304H	MC1709CP2		LM709CN	MLM305G	LM305H	
MC1466L		LM304H	MC1709F		LM709H	MLM307G	LM307H	
MC1469G		LM305H	MC1709G	LM709H		MLM309K	LM309K	
MC1469R		LM305H	MC1709L		LM709H			

SIGNETICS DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT	SIGNETICS DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT	SIGNETICS DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT
N5201A		LM301AD	NE510A		LM371H	S5558T	LM1558H	
N5307T	LM307H	EMOOTAB	NE510J		LM371H	S5596K	LM1596H	
N5308T	LM308H		NE515A		LM733CN	S5709T	LM709H	
N53A1T	LM301AH		NE515G		LM733CH	S5710T	LM710H	
N53A1V	LM301AN		NE515K		LM733CH	S5711K	LM711H	
N53A8T	LM308AH		NE518A		LM306H	S5711T	2.0077777	LM711H
N5556V		LM307N	NE518G		LM306H	S5723L	LM723H	2, 1111
N5558F	LM1458N		NE518K		LM306H	S5733F	LM733D	
N5558T	LM1458H		NE526A		LM306H	S5733K	LM733H	
N5596K	LM1496H		NE526G		LM306H	S5740T	LM740H	
N5596K		LM1496N	NE526K		LM306H	S5741T	LM741H	
N5709A	LM709CN		NE529K	LM361H		S5747K	LM747H	
N5709T	LM709CH		NE529A	LM361N		S5748T	LM748H	
N5709 V		LM709CN	NE531G		LM318H	SE501G		LM733H
N5710A	LM710CN		NE531T		LM318H	SE501K		LM733H
N5710T	LM710CH		NE531 V		LM318H	SE510A		LM171H
N5711A	LM711CN		NE533G		LM4250CH	SE510J		LM171H
N5711K	LM711CH		NE533T		LM4250CH	SE515G		LM733H
N5723A	LM723CN		NE533V		LM4250CH	SE515K		LM733H
N5723L	LM723CH		NE536T		LM316H	SE518A		LM106H
N5733A	LM733CN		NE537G		LM308H	SE518G		LM106H
N5733K	LM733CH		NE537T		LM308H	SE518K		LM106H
N5740T	LH740CH		NE540L		LH0021CK	SE526A		LM106H
N5741A	LM741CN-14		NE550A		LM723CH	SE526G		LM106H
N5741T	LM741CH		NE550L		LM723CH	SE526K		LM106H
N5741V	LM741CN		NE555V	LM555CN		SE529K	LM161H	
N5747A	LM747CN		NE555T	LM555CH		SE531G		LM118H
N5747F	LM747CD		NE565A	LM565CN		SE533G		LM4250CH
N5747K	LM747CH		NE565K	LM565CH		SE533T		LM4250H
N5748A		LM748CH	NE566T	LM566CH		SE537G		LM108H
N5748T	LM748CH		NE566V	LM566CN		SE537T		LM108H
N5748V	LM748CN		NE567T	LM567CH		SE540L		LH0021K
N7520B	LM7520N		NE567V	LM567CN		SE550L		LM723H
N7521B	LM7521N		PA239A		LM381N	SE555T	LM555H	
N7522B	LM7522N		S5101T	LM101H		SE555V	LM555N	
N7523B	LM7523N		S5107T	LM107H		SE565K	LM565H	
N7524B	LM7524N		S5108T	LM108H		SE566T	LM566H	
N7525B	LM7525N		S51A1T	LM101AH		SE567T	LM567H	
NE501A		LM733CN	S51A8T	LM108AH		SU536G		LM216H
NE501G NE501K		LM733CH LM733CH	S5556L		LM107H	SU536T		LM216H

Linear Cross Reference Guide

FAIRCHILD DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT	FAIRCHILD DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT	FAIRCHILD DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT
U3F7101311 [UA101AF]	LM101AF		U5B7777393	LM301AH		U6A7749393		LM1303N
U3F7101333 [UA201AF]	LM201AF		U5D7703312		LM703LH	U6A7750312		LM111H
U3F7702312		LM101AF	U5D7703393	LM703LH		U6A7750393		LM311H
U3F7702313		LM101AF	U5E7064394 [UA3064]	LM3064H		U6A7754394		LM3065N
U3F7709311		LM709AH	U5E7746394		LM746CN	U6A7757312		LM374H
U3F7709312		LM709H	U5E7754393		LM3065N	U6A7757393		LM374H
U3F7709313		LM709H	U5E7796312	LM1596H		U6A7760312	LM160J	
U3F7710312		LM710AH	U5E7796393	LM1496H		U6A7777312	LM101AD	
U3F7710313		LM710CH	U5F7711312	LM711H		U6A7767394		LM1304N
U3F7711312		LM711H	U5F7711393	LM711CH		U6A7760393	LM360J	
U3F7711313		LM711H	U5F7715312		LM118H	U6A7777393	LM301AD	
U3F7733312 U3F7733313		LM733H	U5F7715393		LM318H	U6A7781394	LM3071N	
U3F 7733313 U3F 7741312	LM741F	LM733H	U5F7719312		LM273H	U6A7784354		LM3065N
U3F 7741312 U3F 7741313	LM741F LM741F		U5F7719393	1.8472211	LM373H	U6A962051X		DM7820D
U3F7748312	LM/41F LM101AF		U5F7733312	LM733H		U6A962059X		DM8820N
U3F7748313	LM201AF		U5F7733393 U5F7734312	LM733CH	LM111H	U6A962151X		DM7830D
U31962051X	LWZUTAF	DM7820D	U5F7734312		LM111H LM311H	U6A962159X		DM8830N
U31962051X		DM8820N	U5F7747312	LM747H	LIVISTIM	U6A962251X		DM7820D
U31962151 X		DM7830D	U5F7747312	LM747H LM747CH		U6A962259X	1 1120701	DM8820N
U3I962159X		DM8830N	U5R7723312	LM723H		U6B7780394	LM3070N	
U3I962251X		DM7820D	U5R7723393	LM723CH		U6W7747312	LM747D	
U3I962259X		DM8820N	U5T7725311	2.11720011	LM725AH	U6W7747393 U7A7747312	LM747CD	
U3M7722333		LMDAC-01	U5T7725312		LM725H	U7A7747312 U7A7747393	LM747D	
U3M7722334		LMDAC-01	U5T7725333		LM725H	U7B7524392	LM747CD LM7524J	
U4L961451X		DM7830D	U5T7725393		LM725CH	U7B7525393	LM7524J LM7525J	
U4L961459X		DM8830D	U5U7726312		LM114A	U7B7761391	LIVI / 5253	LM7524J
U4L961551X		DM7820D	U5U7726323		LM114H	U7B7761392	LM7524J	EM75246
U4L961559X		DM8820N	U5U7727312		LH1725H	U7B7761393	LM7525J	
U4L961651X		LM1488N	U5U7727333		LH1725H	U7B961551X	211170200	DM7820D
U4L961659X		LM1488N	U5Z7703394		LM703LH	U7B961559X		DM8820N
U4L961751X		LM1489AN	U6A7065394 [UA3065]	LM3065N		U7B964451X		DH0011H
U4L961759X		LM1489AN	U6A7101311 [UA101AD]	LM101AD		U7B961451X		DM7830D
U5A7064394 [UA3064]	LM3064H		U6A7101312 [UA101D]	LM101D		U7B961459X		DM8830N
U5B7101312 [UA101H]	LM101H		U6A7101333 [UA201AD]	LM201AD		U7B961651X		LM1488N
U5B7101311 [UA101AH]	LM101AH		U6A7101393 [UA301AD]	LM301AD		U7B961659X		LM1488N
U5B7101333 [UA201AH] U5B7101392 [UA301AH]	LM201AH		U6A7201393 [UA201D]	LM201D	LM101AD	U7B961751X		LM1489AN
U5B7201393 [UA201H]	LM301AH		U6A7702312		LM301AD	U7B961759X		LM1489AN
U5B7702312	LM201H	LM101AH	U6A7702393		LM301AD LM709AH	U7F7065394 [UA3065]	LM3065N	
U5B7702312 U5B7702393		LM301AH	U6A7709311		LM709H	U7F7784354		LM3065N
U5B7702393	LM709AH	LWSOTAH	U6A7709312 U6A7709393	LM709CN	LW/09H	U9T7101393 [UA301AN]	LM301AN	
U5B7709311	LM709H		U6A7710312	LIVI / USICIN	LM710AH	U9T7201393 [UA201T]	LM201N	
U5B7709393	LM709CH		U6A7710312 U6A7710393	LM710CN	Liii I I I I	U9T7741393	LM741CN	
U5B7710312	LM710AH		U6A7710393	ZIVI7 TOCIN	LM711H	U9T7748393	LM748CN	
U5B7710393	LM710CH		U6A7711393	LM711CN		U9T7777393	L MOADY OF	LM301AN
U5B7716393		LM380N	U6A7715312		LM118D	UGH7805393	LM340K-05	
U5B7730312		LM114AH	U6A7715393		LM318D	UGH7808393	LM340K-08 LM340K-12	
U5B7730393		LM114H	U6A7723312	LM723D		UGH7812393 UGH7815393	LM340K-12 LM340K-15	
U5B7735312		LM4250H	U6A7723393	LM723CD		UGH7815393 UGH7818393	LM340K-15 LM340K-18	
U5B7735333		LM4250H	U6A7729394	LM1304N		UGH7818393 UGH7824393	LM340K-18	
U5B7735393		LM4250CH	U6A7732394	LM1305N		UGJ7805393	LM340K-24 LM340T-05	
U5B7740312		LH740AH	U6A7733312	LM733D		UGJ7808393	LM340T-08	
U5B7740393		LH740AC	U6A7733393	LM733CD		UGJ7812393	LM340T-12	
U5B7741312	LM741H		U6A7739312		LM1303D	UGJ7815393	LM340T-15	
U5B7741393	LM741CH		U6A7739393		LM1303N	UGJ7818393	LM340T-18	
U5B7748312 U5B7748393	LM748H		U6A7741312	LM741D		UGJ7824393	LM340T-24	
U5B7748393 U5B7749394	LM748CH	I M1202N	U6A7741393	LM741CN-14		UGJ7109312 [UA109K]	LM109K	
U5B7776312	LM4250H	LM1303N	U6A7746394	LM746CN		UGJ7109333 [UA209K]	LM209K	
U5B7776393	LM4250H LM4250CH		U6A7748312	LM101AD LM301AD		UGJ7109393 [UA309K]	LM309K	
U5B7777312	LM101AH		U6A7748393	LIVISUTAD	LM1303N	UXX7791312		LH0021K
000/012	LWIDIAH		U6A7749312		LIVI 1303IV	UXX7791393		LH0021CK

Voltage Regulators

LM100/LM200/LM300 voltage regulator general description

The LM100, LM200 and LM300 are integrated voltage regulators designed for a wide range of applications from digital power supplies to precision regulators for analog circuitry. Built on a single silicon chip, these devices are encapsulated in either an 8-lead, low profile TO-5 header or a $1/4 \times 1/4$ metal flat package. Outstanding characteristics are:

- Output voltage adjustable from 2V to 30V (LM300 adjustable from 2V to 20V)
- Better than one percent load and line regulation
- One percent temperature stability
- Adjustable short-circuit limiting
- Output currents in excess of 5A possible by adding external transistors

 Can be used as either a linear or high-efficiency switching regulator.

Additional features are fast response to both load and line transients, small standby power dissipation, freedom from oscillations with varying resistive and reactive loads, and the ability to start reliably on any load within rating.

The LM100 is specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The LM200 and LM300 are low cost, commercial-industrial versions of the LM100. They are identical to the LM100 except that they are specified for operation from -25°C to 85°C and from 0°C to 70°C respectively.

schematic and connection diagrams

Pin connections shown are for TO-5 package

Metal Can REG OTHUT COMP SOSTER OUTPUT UNREG INPUT UNREG INPUT UNREG INPUT ORDUND HEF BYPASS REF BYPASS NOTE: Pol 4 connected to buttons of package TOP VICE TOP VICE TOP VICE NOTE: Pol 4 connected to buttons of package TOP VICE TO

Order Number LM100H or LM200H or LM300H See Package 11

Order Number LM100F or LM200F or LM300F See Package 3

typical applications

Basic Regulator Circuit

200 mA Regulator

2A Regulator With Foldback Current Limiting

4A Switching Regulator

absolute maximum ratings

Input Voltage	
LM100, LM200	40V
LM300	35V
Input-Output Voltage Differential	
LM100, LM200	40V
LM300	30V
Power Dissipation (Note 1)	
LM100, LM200	800 mW
LM300	500 mW
Operating Temperature Range	
LM100, LM200	-55°C to +150°C
LM300	0°C to 70°C
Storage Temperature Range	–65°C to 150°C
Lead Temperature (soldering, 10 sec)	300°C

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range LM100/LM200 LM300		8.5 8.5		40 30	V
Output Voltage Range LM100/LM200 LM300		2.0		30 20	V
Output-Input Voltage Differential LM100/LM200 LM300		3.0		30 20	V
Load Regulation (Note 3)	R _{SC} = 0, I _O < 12 mA		0.1	0.5	%
Line Regulation	$V_{IN} - V_{OUT} \le 5V$ $V_{IN} - V_{OUT} \ge 5V$		0.1 0.05	0.2 0.1	%/V %/V
Temperature Stability LM100 LM200 LM300	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$ $-25^{\circ}C \le T_{A} \le 85^{\circ}C$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$		0.3 0.3 0.3	1.0 1.0 2.0	%
Feedback Sense Voltage		1.63	1.7	1.81	V
Output Noise Voltage	10 Hz \leq f \leq 10 kHz $C_{REF} = 0$ $C_{REF} = 0.1 \mu F$		0.005 0.002		% %
Long Term Stability			0.1	1.0	%
Standby Current Drain LM100/LM200 LM300	V _{IN} = 40V V _{IN} = 30V		1.0	3.0	mA
Minimum Load Current LM100/LM200 LM300	$V_{IN} - V_{OUT} = 30V$ $V_{IN} - V_{OUT} = 20V$		1.5	3.0	mA

Note 1: The maximum junction temperature of the LM100 is 150°C, while that of the LM200 is 100°C, and the LM300 is 85°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W junction to ambient or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick, epoxy-glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. Peak dissipations to 1.0W are allowable providing the dissipation rating is not exceeded with the power averaged over a five second interval for the LM100 and LM200, and a two second interval for the LM300.

Note 2: These specifications apply for an operating temperature between -55°C to $+125^{\circ}\text{C}$ for the LM100, between -25°C to 85°C for the LM200 and between 0°C to 70°C for the LM300 devices for input and output voltages within the ranges given, and for a divider impedance seen by the feedback terminal of 2 k Ω , unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.

Note 3: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.

typical performance characteristics

Voltage Regulators

LM103 regulator diode **

general description

The LM103 is a two-terminal monolithic regulator diode electrically equivalent to a breakdown diode. The device makes use of the reverse punch-through of double-diffused transistors, combined with active circuitry, to produce a breakdown characteristic which is ten times sharper than single-junction zener diodes at low voltages. Breakdown voltages from 1.8V to 5.6V are available; and, although the design is optimized for operation between 100 μA and 1 mA, it is completely specified from 10 μA to 10 mA. Noteworthy features of the device are:

- Exceptionally sharp breakdown
- Low dynamic impedance from 10 μA to 10 mA

- Performance guaranteed over full military temperature range
- Planar, passivated junctions for stable operation
- Low capacitance.

The LM103, packaged in a hermetically sealed, modified TO-46 header is useful in a wide range of circuit applications from level shifting to simple voltage regulation. It can also be employed with operational amplifiers in producing breakpoints to generate nonlinear transfer functions. Finally, its unique characteristics recommend it as a reference element in low voltage power supplies with input voltages down to 4V.

schematic and connection diagrams

NOTE: Pin 2 connected to cas TOP VIEW

Order Number LM103H See Package 8

typical applications

Saturating Servo Preamplifier with Rate Feedback

200 mA Positive Regulator

^{**}Covered by U.S. Patent Number 3,571,630

absolute maximum ratings

Power Dissipation (note 1)
Reverse Current
Forward Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 60 sec)

250 mW 20 mA 100 mA -55°C to 125°C -65°C to 150°C 300°C

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Reverse Breakdown Voltage Change	$10 \mu\text{A} \le I_{R} \le 100 \mu\text{A}$		60	120	mV
	$100 \mu A \leq I_R \leq 1 \text{mA}$		15	50	mV
	$1 \text{ mA} \leq I_{R} \leq 10 \text{ mA}$		50	150	mV
Reverse Dynamic Impedance (Note 3)	I _R = 3 mA		5	25	Ω
	I _R = 0.3 mA		15	60	Ω
Reverse Leakage Current	$V_R = V_Z - 0.2V$		2	5	μΑ
	,				
Forward Voltage Drop	I _F = 10 mA	0.7	0.8	1.0	V
Peak-to-Peak Broadband Noise Voltage	10 Hz≤f≤100 kHz, I _R = 1 mA		300		μV
Reverse Breakdown Voltage Change	$10 \mu\text{A} \le I_{R} \le 100 \mu\text{A}$			200	mV
(Note 4)	$100 \mu\text{A} \leq I_{R} \leq 1 \text{mA}$			60	mV
	$1 \text{ mA} \leq I_{R} \leq 10 \text{ mA}$			200	mV
Breakdown Voltage Temperature Coefficient (Note 4)	$100 \mu\text{A} \leq \text{I}_{\text{R}} \leq 1 \text{mA}$		-5.0		mV/°C

NOTE 1: For operating at elevated temperatures, the device must be derated based on a 150° C maximum junction temperature and a thermal resistance of 80° C/W junction to case or 440° C/W junction to ambient (see curve).

case or 440°C/W junction to ambient (see curve). NOTE 2: These specifications apply for $T_A=25^{\circ}C$ and $1.8V < V_2 < 5.6V$ unless stated otherwise. The diode should not be operated with shunt capacitances between 100 pF and $0.01~\mu F$, unless isolated by at least a 50Ω resistor, as it may oscillate at some currents. NOTE 3. Measured with the peak-to-peak change of reverse current equal to 10 percent of the dc reverse current.

NOTE 4: These specifications apply for $-55^{\circ}\mathrm{C} < \mathrm{T_A} < 125^{\circ}\mathrm{C}$.

guaranteed reverse characteristics

Reverse Characteristics

Reverse Dynamic Impedance

Temperature Drift

Forward Characteristics

Response Time

Maximum Power Dissipation

BREAKDOWN VOLTAGE*	PART NUMBER
1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1	LM103-1.8 LM103-2.0 LM103-2.2 LM103-2.4 LM103-3.0 LM103-3.3 LM103-3.6 LM103-3.9 LM103-4.7 LM103-5.1
5.6	LM103-5.6

^{*}Measured at $I_R = 1$ mA. Standard tolerance is $\pm 10\%$.

LM104/LM204 negative regulator general description

The LM104 and LM204 are precision voltage regulators which can be programmed by a single external resistor to supply any voltage from 40V down to zero while operating from a single unregulated supply. They can also provide 0.01-percent regulation in circuits using a separate, floating bias supply, where the output voltage is limited only by the breakdown of external pass transistors. Although designed primarily as linear, series regulators, the circuits can be used as switching regulators, current regulators or in a number of other control applications. Typical performance characteristics are:

- 1 mV regulation no load to full load
- 0.01%/V line regulation
- 0.2 mV/V ripple rejection

0.3% temperature stability over military temperature range

The LM104 and LM204 are complements of the LM100 and LM105 positive regulators, intended for systems requiring regulated negative voltages which have a common ground with the unregulated supply. By themselves, they can deliver output currents to 25 mA, but external transistors can be added to get any desired current. The output voltage is set by external resistors, and either constant or foldback current limiting is made available.

The LM104 is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The LM204 is specified for operation over the -25° C to $+85^{\circ}$ C temperature range.

schematic and connection diagrams

Note: Pin 5 connected to case

Order Number LM104H or LM204H See Package 12

Order Number LM104F or LM204F See Package 3

typical applications

Operating with Separate Bias Supply

High Current Regulator

Basic Regulator Circuit

Switching Regulator

Input Voltage Input-Output Voltage Differential Power Dissipation (Note 1) 500 mW Operating Temperature Range LM104 -55°C to 125°C

LM204 -25°C to 85°C Storage Temperature Range -65° C to 150° C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range		-50		-8	V
Output Voltage Range		-40		-0.015	V
Output-Input Voltage Differential (Note 3)	I _O = 20 mA I _O = 5 mA	2.0 0.5		50 50	V V
Load Regulation (Note 4)	$0 \le I_O \le 20 \text{ mA}$ $R_{SC} = 15\Omega$		1	5	mV
Line Regulation (Note 5)	$V_{OUT} \le -5V$ $\triangle V_{IN} = 0.1 V_{IN}$		0.056	0.1	%
Ripple Rejection	$C_{19} = 10 \mu F, f = 120 Hz$ $V_{IN} < -15V$ $-7V \ge V_{IN} \ge -15V$		0.2 0.5	0.5 1.0	mV/V mV/V
Output Voltage Scale Factor	R ₂₃ = 2.4k	1.8	2.0	2.2	V/kΩ
Temperature Stability	$V_0 \le -1V$		0.3	1.0	%
Output Noise Voltage	$\begin{array}{c} 10 \; Hz \leq f \leq 10 \; kHz \\ V_O \leq -5V, C_{19} = 0 \\ C_{19} = 10 \; \mu F \end{array}$		0.007 15		% μV
Standby Current Drain	$I_L = 5 \text{ mA}, V_O = 0$ $V_O = -40 \text{ V}$		1.7 3.6	2.5 5.0	mA mA
Long Term Stability	$V_0 \le -1V$		0.1	1.0	%

50V

50V

Note 1: The maximum junction temperature of the LM104 is 150°C, while that of the LM204 is 100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors

Note 2: These specifications apply for junction temperatures between $-55\,^{\circ}\text{C}$ and 150°C (between -25°C and 100°C for the LM204) and for input and output voltages within the ranges given, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.

Note 3: When external booster transistors are used, the minimum output-input voltage differential is increased, in the worst case, by approximately 1V.

Note 4: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.

Note 5: With zero output, the dc line regulation is determined from the ripple rejection. Hence, with output voltages between OV and -5V, a dc output variation, determined from the ripple rejection, must be added to find the worst-case line regulation.

LM304 negative regulator general description

The LM304 is a precision voltage regulator which can be programmed by a single external resistor to supply any voltage from 30V down to zero while operating from a single unregulated supply. It can also provide 0.01-percent regulation in circuits using a separate, floating bias supply, where the output voltage is limited only by the breakdown of external pass transistors. Although designed primarily as a linear, series regulator, the circuit can be used as a switching regulator, a current regulator or in a number of other control applications. Typical performance characteristics are:

- 1 mV regulation no load to full load
- 0.01%/V line regulation

■ 0.2 mV/V ripple rejection

The LM304 is a complement of the LM300 and LM305 positive regulators, intended for systems requiring regulated negative voltages which have a common ground with the unregulated supply. By itself, it can deliver output currents to 25 mA, but external transistors can be added to get any desired current. The output voltage is set by external resistors, and either constant or foldback current limiting is made available. The LM304 is a commercial/industrial version of the LM104 and LM204.

schematic and connection diagrams

Note: Pin 5 connected to case.
TOP VIEW
Order Number LM304H
See Package 12

Order Number LM304F See Package 3

typical applications

Operating with Separate Bias Supply

High Current Regulator

Basic Regulator Circuit

Switching Regulator

Input Voltage
Input-Output Voltage Differential
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

40V 40V 500 mW 0°C to 70°C -65°C to 150°C 300°C

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range	J	-40		-8	V
Output Voltage Range		-30		-0.035	V
Output-Input Voltage Differential (Note 3)	I _O = 20 mA I _O = 5 mA	2.0 0.5		40 40	V
Load Regulation (Note 4)	$0 \le I_O \le 20 \text{ mA}$ $R_{SC} = 15\Omega$		1	5	mV
Line Regulation (Note 5)	$V_{OUT} \le -5V$ $\Delta V_{IN} = 0.1 V_{IN}$		0.056	0.1	%
Ripple Rejection	$C_{19} = 10 \mu F$, $f = 120 Hz$ $V_{1N} < -15V$ $-7V \ge V_{1N} \ge -15V$		0.2 0.5	0.5 1.0	mV/V mV/V
Output Voltage Scale Factor	R ₂₃ = 2.4K	1.8	2.0	2.2	√/ΚΩ
Temperature Stability	$V_{O} \le -1V, 0^{\circ}C \le T_{A} \le 70^{\circ}C$		0.3	1.0	%
Output Noise Voltage	10 Hz \leq f \leq 10 KHz V _O \leq -5V, C ₁₉ = 0 C ₁₉ = 10 μ F		0.007 15		% μV
Standby Current Drain	$I_{L} = 5 \text{ mA, } V_{O} = 0$ $V_{O} = -30 \text{V}$		1.7 3.6	2.5 5.0	mA mA
Long Term Stability	V _o ≤ -1V		0.1	1.0	%

Note 1: For operating at elevated temperatures, the device must be derated based on an 85°C maximum junction temperature and a thermal resistance of 45°C/W junction to case or 150°C/W junction to ambient. Peak dissipations to 1.0W are allowable providing the dissipation rating is not exceeded with the power averaged over a two second interval.

Note 2: These specifications apply for junction temperatures between 0°C and 85°C and for input and output voltages within the ranges given, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.

Note 3: When external booster transistors are used, the minimum output-input voltage differential is increased, in the worst case, by approximately 1V.

Note 4: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.

Note 5: With zero output, the dc line regulation is determined from the ripple rejection. Hence, with output voltages between OV and –5V, a dc output variation, determined from the ripple rejection, must be added to find the worst-case line regulation.

LM105/LM205/LM305 voltage regulator

general description

The LM105, LM205 and LM305 are positive voltage regulators similar to the LM100, except that an extra gain stage has been added for improved regulation. A redesign of the biasing circuitry removes any minimum load current requirement and at the same time reduces standby current drain, permitting higher voltage operation. They are direct, plug-in replacements for the LM100 in both linear and switching regulator circuits with output voltages greater than 4.5V. Important characteristics of the circuits are:

- Output voltage adjustable from 4.5V to 40V
- Output currents in excess of 10A possible by adding external transistors
- Load regulation better than 0.1%, full load with current limiting

- DC line regulation guaranteed at 0.03%/V
- Ripple rejection of 0.01%/V

Like the LM100, they also feature fast response to both load and line transients, freedom from oscillations with varying resistive and reactive loads and the ability to start reliably on any load within rating. The circuits are built on a single silicon chip and are supplied in either an 8-lead, TO-5 header or a 1/4" x 1/4" metal flat package.

The LM205 is identical to the LM105 except that it is specified for operation from -25° C to 85° C.

The LM305 is specified for operation from $0\,^{\circ}\text{C}$ to $70\,^{\circ}\text{C}$ and for output voltages to 30V.

schematic and connection diagrams

Pin connections shown are for metal can.

typical applications

10A Regulator with Foldback Current Limiting

Metal Can

Order Number LM105H or LM205H or LM305H See Package 11

Flat Package

Order Number LM105F or LM205F or LM305F See Package 3

1.0A Regulator with Protective Diodes

Input Voltage LM105, LM205 40V LM305 40V Input-Output Voltage Differential Power Dissipation (Note 1) 800 mW LM105, LM205 LM305 500 mW 0°C to 70°C Operating Temperature Range -55°C to +125°C LM105 LM205 -25°C to +85°C 0° C to 70° C LM305 -65°C to 150°C Storage Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range					
LM105, LM205		8.5		50	V
LM305		8.5		40	V
Output Voltage Range LM105, LM205		4.5		40	V
LM305		4.5		30	V
2000					
Output Input Voltage					
Differential		3.0		30	V
Load Regulation (Note 3)					
LM105	$0 \le I_O \le 12 \text{ mA}$				
	$R_{SC} = 10\Omega$, $T_A = 25^{\circ}C$		0.02	0.05	%
	$R_{SC} = 10\Omega, T_A = 125^{\circ}C$		0.03	0.1	%
	$R_{SC} = 10\Omega$, $T_A = -55^{\circ}C$		0.03	0.1	%
LM205	0 < I ₀ < 12 mA				
LW203	$R_{SC} = 10\Omega$, $T_A = 25^{\circ}C$		0.02	0.05	%
	R _{SC} = 10Ω, T _A = 85°C		0.03	0.1	%
	$R_{SC} = 10\Omega$, $T_A = -25^{\circ}C$		0.03	0.1	%
1 11005					
LM305	$0 \le I_O \le 12 \text{ mA}$ $R_{SC} = 10\Omega, T_A = 25^{\circ}\text{C}$		0.02	0.05	%
	$R_{SC} = 15\Omega$, $T_A = 70^{\circ}$ C		0.02	0.03	%
	$R_{SC} = 10\Omega$, $T_A = 0^{\circ}C$		0.03	0.1	%
	l section, the				
Line Regulation	$V_{IN} - V_{OUT} \le 5V$		0.025	0.06	%/V
	$V_{IN} - V_{OUT} > 5V$		0.015	0.03	%/V
Ripple Rejection	C _{BEE} = 10 μF, f = 120 Hz		0.003	0.01	%/V
Ripple Rejection	CREF - 10 µF, 1 - 120 H2		0.003	0.01	76/ V
Temperature Stability					
LM105	-55° C \leq T _A \leq 125 $^{\circ}$ C		0.3	1.0	%
LM205	-25° C \leq T _A \leq 85 $^{\circ}$ C		0.3	1.0	%
LM305	$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$		0.3	1.0	%
Feedback Sense Voltage		1.63	1.7	1.81	V
Output Noise Voltage	10 Hz < f < 10 kHz	1.03	1/	1.01	ľ
	C _{REF} = 0		0.005		%
	$C_{REF} > 0.1 \mu F$		0.002		%
Current Limit Sense	$R_{SC} = 10\Omega$, $T_A = 25^{\circ}C$,	205	200	045	
Voltage Standby Current Drain	V _{OUT} = 0V	225	300	315	mV
LM105, LM205	V _{IN} = 50V		0.8	2.0	mA
LM305	V _{IN} = 40V		0.8	2.0	mA
Long Term Stability		1	0.1	1.0	%

Note 1: The maximum junction temperature of the LM105 is 150°C, while that for the LM205 is 100°C, and that for the LM305 is 85°C. For operating at elevated temperatures, devices in the T0-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. Peak dissipations to 1W are allowable providing the dissipation rating is not exceeded with the power averaged over a five second interval for the LM105 and LM205, and averaged over a two second interval for the LM305.

Note 2: These specifications apply for input and output voltages within the ranges given, and for a divider impedance seen by the feedback terminal of $2\,\mathrm{k}\Omega$, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation. Unless otherwise specified, $T_A = 25^\circ\mathrm{C}$.

Note 3: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.

typical performance characteristics

INPUT VOLTAGE (V)

TIME (µs)

LM305A voltage regulator general description

The LM305A is a positive voltage regulator designed primarily for commercial series regulator applications. By itself, it will supply output currents up to 45 mA; but external transistors can be added to provide any desired load current. The circuit features extremely low standby current drain, and provision is made for either linear or foldback current limiting. Important characteristics are:

45 mA output current without external pass transistor

- Output currents in excess of 10A possible by adding external transistors
- Maximum input voltage = 50V
- Output voltage adjustable from 4.5V to 40V
- Can be used as either a linear or a switching regulator

The LM305A is also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller.

schematic and connection diagrams

Order Number LM305AH See Package 11

typical applications

Linear Regulator with Foldback Current Limiting

Shunt Regulator

Current Regulator

Switching Regulator

Input Voltage
Input-Output Voltage Differential
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

50V 40V 800 mW 0°C to 70°C -65°C to 150°C 300°C

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range		8.5		50	V
Output Voltage Range		4.5		40	V
Output-Input Voltage Differential		3.0		30	V
Load Regulation (Note 3)	$\begin{array}{l} 0 \leq I_O \leq 45 \text{ mA} \\ R_{SC} = 0\Omega, T_A = 25^{\circ}C \\ R_{SC} = 0\Omega, T_A = 70^{\circ}C \\ R_{SC} = 0\Omega, T_A = 0^{\circ}C \end{array}$		0.02 0.03 0.03	0.2 0.4 0.4	% % %
Line Regulation	$V_{IN} - V_{OUT} \le 5V$ $V_{IN} - V_{OUT} > 5V$		0.025 0.015	0.06 0.03	%/V %/V
Ripple Rejection	$C_{REF} = 10 \mu F$, f = 120 Hz		0.003		%/V
Temperature Stability	$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$		0.3	1.0	%
Feedback Sense Voltage		1.55	1.7	1.85	V
Output Noise Voltage	10 Hz \leq f \leq 10 kHz $C_{REF} = 0$ $C_{REF} > 0.1 \mu F$		0.005 0.002		% %
Current Limit Sense Voltage (Note 4)	$R_{SC} = 10\Omega$, $T_A = 25^{\circ}C$, $V_{OUT} = 0V$	225	300	375	mV
Standby Current Drain	V _{IN} = 50 V		0.8	2.0	mA
Long Term Stability			0.1	1.0	%

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 45°C/W junction to case or 150°C/W junction to ambient.

Note 2: These specifications apply for an operating temperature between $0^{\circ}C$ and $70^{\circ}C$, for input and output voltages within the ranges given, and for a divider impedance seen by the feedback terminal of $2~K\Omega$, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.

Note 3: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.

Note 4: With no external pass transistor.

LM109/LM209 five-volt regulator

general description

The LM109 and LM209 are complete 5V regulators fabricated on a single silicon chip. They are designed for local regulation on digital logic cards, eliminating the distribution problems associated with single-point regulation. The devices are available in two common transistor packages. In the solid-kovar TO-5 header, it can deliver output currents in excess of 200 mA, if adequate heat sinking is provided. With the TO-3 power package, the available output current is greater than 1A.

The regulators are essentially blow-out proof. Current limiting is included to limit the peak output current to a safe value. In addition, thermal shutdown is provided to keep the IC from overheating. If internal dissipation becomes too great, the regulator will shut down to prevent excessive heating.

Considerable effort was expended to make these devices easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient

response somewhat. Input bypassing is needed, however, if the regulator is located very far from the filter capacitor of the power supply. Stability is also achieved by methods that provide very good rejection of load or line transients as are usually seen with TTL logic.

Although designed primarily as a fixed-voltage regulator, the output of the LM109 and LM209 can be set to voltages above 5V, as shown below. It is also possible to use the circuits as the control element in precision regulators, taking advantage of the good current-handling capability and the thermal overload protection.

To summarize, outstanding features of the regulator are:

- Specified to be complete, worst case, with TTL and DTL
- Output current in excess of 1A
- Internal thermal overload protection
- No external components required

schematic diagram

typical application

connection diagrams

TO-5 (H)

Order Number LM109H or LM209H See Package 9

OUTPUT GNO (CASE)

TO-3 (K)

Order Number LM109K or LM209K See Package 18

Input Voltage Power Dissipation Operating Junction Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) 35VInternally Limited -55° C to 150° C -65° C to 150° C 300° C

design characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	$T_j = 25^{\circ}C$	4.7	5.05	5.3	V
Line Regulation	$\begin{aligned} T_j &= 25^{\circ}C \\ 7V &\leq V_{1N} \leq 25V \end{aligned}$		4	50	mV
Load Regulation LM109H LM109K	$\begin{split} T_j &= 25^{\circ}C \\ 5 \text{ mA} &\leq I_{OUT} \leq 0.5A \\ 5 \text{ mA} &\leq I_{OUT} \leq 1.5A \end{split}$		20 50	50 100	mV mV
Output Voltage	$7V \le V_{IN} \le 25V$ $5 \text{ mA} \le I_{OUT} \le I_{max}$ $P < P_{max}$	4.6		5.4	V
Quiescent Current	$7V \le V_{1N} \le 25V$		5.2	10	mA
Quiescent Current Change	$7V \le V_{IN} \le 25V$ $5 \text{ mA} \le I_{OUT} \le I_{max}$			0.5 0.8	mA mA
Output Noise Voltage	$T_A = 25^{\circ} C$ 10 Hz $\leq f \leq 100 \text{ kHz}$		40		μV
Long Term Stability				10	mV
Thermal Resistance Junction to Case (Note 2)					
LM109H LM109K			15 3		°C/W °C/W

Note 1: Unless otherwise specified, these specifications apply for $-55^{\circ}C \le T_{j} \le 150^{\circ}C$ ($-25^{\circ}C \le T_{j} \le 150^{\circ}C$ for the LM209), V_{IN} = 10V and I_{OUT} = 0.1A for the TO-5 package or I_{OUT} = 0.5A for the TO-3 package. For the TO-5 package, I_{max} = 0.2A and P_{max} = 2.0W. For the TO-3 package, I_{max} = 1.0A and P_{max} = 20W.

Note 2: Without a heat sink, the thermal resistance of the TO-5 package is about 150°C/W , while that of the TO-3 package is approximately 35°C/W . With a heat sink, the effective thermal resistance can only approach the values specified, depending on the efficiency of the sink.

typical applications(con't)

LM309 five-volt regulator

general description

The LM309 is a complete 5V regulator fabricated on a single silicon chip. It is designed for local regulation on digital logic cards, eliminating the distribution problems associated with single-point regulation. The device is available in two common transistor packages. In the solid-kovar TO-5 header, it can deliver output currents in excess of 200 mA, if adequate heat sinking is provided. With the TO-3 power package, the available output current is greater than 1A.

The regulator is essentially blow-out proof. Current limiting is included to limit the peak output current to a safe value. In addition, thermal shutdown is provided to keep the IC from overheating. If internal dissipation becomes too great, the regulator will shut down to prevent excessive heating.

Considerable effort was expended to make the LM309 easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient

response somewhat. Input bypassing is needed, however, if the regulator is located very far from the filter capacitor of the power supply. Stability is also achieved by methods that provide very good rejection of load or line transients as are usually seen with TTL logic.

Although designed primarily as a fixed-voltage regulator, the output of the LM309 can be set to voltages above 5V, as shown below. It is also possible to use the circuit as the control element in precision regulators, taking advantage of the good current-handling capability and the thermal overload protection.

To summarize, outstanding features of the regulator are:

- Specified to be compatible, worst case, with TTL and DTL
- Output current in excess of 1A
- Internal thermal overload protection
- No external components required

schematic diagram

typical application

connection diagrams

OUTPUT

OND

(CASE)

BOTTOM VIEW

TO-5 (H)

Order Number LM309H See Package 9

TO-3 (K)

Order Number LM309K See Package 18

Input Voltage Power Dissipation Operating Junction Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) 35VInternally Limited $0^{\circ}C$ to $125^{\circ}C$ $-65^{\circ}C$ to $150^{\circ}C$ $300^{\circ}C$

design characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	$T_j = 25^{\circ}C$	4.8	5.05	5.2	V
Line Regulation	$T_{j} = 25^{\circ}C$ $7V \leq V_{1N} \leq 25V$		4.0	50	mV
Load Regulation LM309H LM309K	$\begin{split} &T_j = 25^{\circ}C\\ &5\text{ mA} \leq I_{OUT} \leq 0.5A\\ &5\text{ mA} \leq I_{OUT} \leq 1.5A \end{split}$		20 50	50 100	mV mV
Output Voltage	$7V \le V_{IN} \le 25V$ $5 \text{ mA} \le I_{OUT} \le I_{max}$ $P < P_{max}$ 4.75			5.25	V
Quiescent Current	$7V \le V_{1N} \le 25V$		5.2	10	mA
Quiescent Current Change	$7V \leq V_{IN} \leq 25V$ $5~\text{mA} \leq I_{OUT} \leq I_{max}$			0.5 0.8	mA mA
Output Noise Voltage	$T_A = 25^{\circ} C$ $10 \text{ Hz} \le f \le 100 \text{ kHz}$		40		μ∨
Long Term Stability				20	mV
Thermal Resistance Junction to Case (Note 2) LM309H			15		°C/W
LM309K			3.0		°C/W

Note 1: Unless otherwise specified, these specifications apply for $0^{\circ}C \le T_{j} \le 125^{\circ}C$, V_{IN} = 10V and I_{OUT} = 0.1A for the LM309H or I_{OUT} = 0.5A for the LM309K. For the LM309H, I_{max} = 0.2A and P_{max} = 2.0W. For the LM309K, I_{max} = 1.0A and P_{max} = 20W.

Note 2: Without a heat sink, the thermal resistance of the TO-5 package is about 150°C/W , while that of the TO-3 package is approximately 35°C/W . With a heat sink, the effective thermal resistance can only approach the values specified, depending on the efficiency of the sink.

typical applications(con't)

LM113 reference diode

general description

The LM113 is a temperature-compensated, low-voltage reference diode. It features extremely-tight regulation over a wide range of operating currents in addition to an unusually-low breakdown voltage and good temperature stability.

The diode is synthesized using transistors and resistors in a monolithic integrated circuit. As such, it has the same low noise and long term stability as modern IC op amps. Further, output voltage of the reference depends only on highly-predictable properties of components in the IC; so it can be manufactured and supplied to tight tolerances. Outstanding features include:

Low breakdown voltage: 1.220V

- \blacksquare Dynamic impedance of 0.3Ω from 500 $\mu\mathrm{A}$ to 20 mA
- Temperature stability typically 1% over -55°C to 125°C range
- Tight tolerance: ±5% standard, ±2% and ±1% on special order.

The characteristics of this reference recommend it for use in bias-regulation circuitry, in low-voltage power supplies or in battery powered equipment. The fact that the breakdown voltage is equal to a physical property of silicon—the energy-band-gap voltage—makes it useful for many temperature-compensation and temperature-measurement functions.

schematic and connection diagrams

Order Number LM113H See Package 8

typical applications

Level Detector for Photodiode

Low Voltage Regulator

 Power Dissipation (Note 1)
 100 mW

 Reverse Current
 50 mA

 Forward Current
 50 mA

 Operating Temperature Range
 -55°C to 125°C

 Storage Temperature Range
 -65°C to 150°C

 Lead Temperature (soldering, 10 sec)
 300°C

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Reverse Breakdown Voltage	I _R = 1 mA	1.160	1.220	1.280	V
Reverse Breakdown Voltage Change	$0.5~\mathrm{mA} \leq \mathrm{I_R} \leq 20~\mathrm{mA}$		6.0	15	mV
Reverse Dynamic Impedance	I _R = 1 mA I _R = 10 mA		0.2 0.25	1.0 0.8	Ω
Forward Voltage Drop	I _F = 1.0 mA		0.67	1.0	V
RMS Noise Voltage	10 Hz \leq f \leq 10 kHz I _R = 1 mA		5		μV
Reverse Breakdown Voltage Change	$0.5 \text{ mA} \le I_{R} \le 10 \text{ mA}$ $-55^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$			15	mV
Breakdown Voltage Temperature Coefficient	1.0 mA \leq I _R \leq 10 mA -55°C \leq T _A \leq 125°C		0.01		%/°C

Note 1: For operating at elevated temperatures, the device must be derated based on a 150° C maximum junction and a thermal resistance of 80° C/W junction to case or 440° C/W junction to ambient

Note 2: These specifications apply for $T_A=25^{\circ}\text{C}$, unless stated otherwise. At high currents, breakdown voltage should be measured with lead lengths less than 1/4 inch. Kelvin contact sockets are also recommended. The diode should not be operated with shunt capacitances between 200 pF and $0.1\,\mu\text{F}$, unless isolated by at least a $100\,\Omega$ resistor, as it may oscillate at some currents .

typical performance characteristics (con't) **Reverse Characteristics** Reverse Dynamic Impedance Noise Voltage 10-2 90 100 80 DYNAMIC IMPEDANCE (12) REVERSE CURRENT (A) 70 NOISE (nV/VHz) 60 50 40 10⁻⁵ 30 100 0.2 0.4 1.0 10k 10 100 10 k 0.6 0.8 REVERSE VOLTAGE (V) FREQUENCY (Hz) FREQUENCY (Hz) Maximum Shunt Capacitance Response Time **Forward Characteristics** 2.0 2.0 1.5 10 STABLE REVERSE CURRENT (mA) FORWARD VOLTAGE (V) OUTPUT **VOLTAGE SWING (V)** 0.5 10 0.3 0.5 0.03 10 12 16 10² 10⁴ 10⁵ FORWARD CURRENT (mA) TIME (µs) CAPACITANCE (pF) typical applications (con't) 130K DUTPUT 2N2222 Amplifier Biasing for Constant Gain with Temperature Constant Current Source 250K† 2N2222 LM112 LM113 *Adjust for 0V at 0°C †Adjust for 100 mV/°C

Thermometer

LM120 series three-terminal negative regulators general description

The LM120 Series are three-terminal negative regulators with a fixed output voltage of -5V, -5.2V, -12V, and -15V and up to 1.5A load current capability. These devices need only one external component – a compensation capacitor at the output, making them easy to apply. Worst case guarantees on output voltage deviation due to any combination of line, load or temperature variation assure satisfactory system operation.

Exceptional effort has been made to make the LM120 Series immune to overload conditions. The regulators have current limiting which is independent of temperature, combined with thermal overload protection. Internal current limiting protects against momentary faults while thermal shutdown prevents junction temperatures from exceeding safe limits during prolonged overloads.

Although primarily intended for fixed output voltage applications, the LM120 Series may be pro-

grammed for higher output voltages with a simple resistive divider. The low quiescent drain current of the devices allows this technique to be used with good regulation.

The LM120 Series is available in TO-5 and TO-3 packages. The TO-5 is rated at 200 mA and 2W; the TO-3 at 1A and 20W.

features

- Preset output voltage error less than ±3%
- Preset current limit
- Internal thermal shutdown
- Operates with input-output voltage differential down to 1V
- Excellent ripple rejection
- .50 mV load regulation

schematic and connection diagrams

Order Numbers: LM120H-05 LM120H-5.2 LM120H-12 LM120H-15 LM220H-05 LM220H-5.2 LM220H-12 LM220H-15 LM320H-05 LM320H-5.2 LM320H-12 LM320H-15 See Package 9

TO-3 (K)

Order Numbers: LM120K-05 LM120K-5.2 LM120K-12 LM120K-15 LM220K-05 LM220K-5.2 LM220K-12 LM220K-15 LM320K-05 LM320K-5.2 LM320K-12 LM320K-15 See Package 18

Davis Torre	Input	Input-Output	Power Dissipation	Internally Limited
Device Type	Voltage	Differential	Operating Junction Temperature Range	
LM120 Series/-5.0V	-25 V	25V	LM120	-55°C to +150°C
LM120 Series/-5.2V	-25 V	25V	LM220	-25°C to +150°C
LM120 Series/-12V	-35V	30 V	LM 320	0°C to +125°C
LM120 Series/-15V	-40 V	30∨	Storage Temperature Range	-65°C to +150°C
			Lead Temperature (Soldering 10 sec)	300°C

electrical characteristics (-5V & -5.2V) (Note 1)

PARAMETER	CONDITIONS	LM120 LM220		TYP	LM	320	UNITS
FARAMETER	CONDITIONS	MIN	MAX	TYP	MIN	MAX	UNITS
Output Voltage	$T_j = 25^{\circ}C$ $-5V$	-5.1	-4.9	-5.0	-5.2	-4.8	V
	-5.2V	-5.3	-5.1	-5.2	-5.4	-5.0	V
Line Regulation (Note 2)	$T_{j} = 25^{\circ}C$ $-25V \le V_{IN} \le -7V$		25	10		50	mV
Load Regulation (Note 2) H Package K Package	$\begin{split} &T_{j}=25^{\circ}C\\ &5\text{ mA}\leq I_{OUT}\leq 0.5A\\ &5\text{ mA}\leq I_{OUT}\leq 1.5A \end{split}$		50 75	20 50		50 100	mV mV
Output Voltage	$-25V \le V_{IN} \le -7V$ $5 \text{ mA} \le I_{OUT} \le I_{MAX}$						
	$P \le P_{MAX}$ -5V	-5.20	-4.80		-5.25	-4.75	V
	-5.2V	-5.40	-5.00		-5.45	-4.95	V
Quiescent Current	$-25V \le V_{1N} \le -7V$		2.0	1.0		2.0	mA
Quiescent Current Change	$T_A = 25^{\circ}C$						
	$-25V \le V_{IN} \le -7V$		0.4	0.1		0.4	mA
	$5 \text{ mA} \leq I_{\text{OUT}} \leq I_{\text{MAX}}$		0.4	0.1		0.4	mA
Output Noise Voltage	$T_A = 25^{\circ}C, C_L = 1 \mu F$						
	$10 \text{ Hz} \le f \le 100 \text{ kHz}$			150			μV
Long Term Stability			50	5		50	mV
Thermal Resistance Junction to Case							
H Package				15			°C/W
K Package				3			°C/W

electrical characteristics (-12V) (Note 1)

PARAMETER	CONDITIONS	LM120 LM220				ТҮР	LIV	1320	UNITS
TANAMETEN	CONDITIONS	MIN	MAX	1 '''	MIN	MAX	UNITS		
Output Voltage	$T_j = 25^{\circ}C$	-12.3	-11.7	-12	-12.4	-11.6	V		
Line Regulation (Note 2)	$T_{j} = 25^{\circ}C$ $-32V \le V_{IN} \le -14V$		10	4		20	mV		
Load Regulation H Package K Package (Note 2)	$T_j = 25^{\circ}C$ $5 \text{ mA} \le I_{OUT} \le 0.2A$ $5 \text{ mA} \le I_{OUT} \le 1.0A$		25 80	10 30		40 80	mV		
Output Voltage	$ \begin{array}{c} -32V \le V_{IN} \le -14V \\ 5 \text{ mA} \le I_{OUT} \le I_{MAX} \\ P \le P_{MAX} \end{array} $	-12.5	-11.5		-12.6	-11.4	V		
Quiescent Current	-32V≤V _{IN} ≤-14V		4	2		4	mA		
Quiescent Current Change	$T_{j} = 25^{\circ}C$ $-32V \le V_{IN} \le -14V$ $5 \text{ mA} \le I_{OUT} \le I_{MAX}$			0.1 0.1			mA		
Output Noise Voltage	$T_A = 25^{\circ}C$ 10 Hz $\leq f \leq 100 \text{ kHz}$			400			μV		
Long Term Stability			120	15		120	mV		

electrical characteristics (-15V) (Note 1)

PARAMETER	CONDITIONS	LM120 LM220				TYP	LM	320	UNITS
		MIN	MAX		MIN	MAX	0,11,10		
Output Voltage	$T_j = 25^{\circ}C$	-15.3	-14.7	-15	-15.4	-14.6	V		
Line Regulation (Note 2)	T _j = 25°C -35V≤V _{IN} ≤∸17V		10	5		20	mV		
Load Regulation H Package K Package	$T_{j} = 25^{\circ}C$ $5 \text{ mA} \le I_{OUT} \le 0.2A$ $5 \text{ mA} \le I_{OUT} \le 1.0A$		25 80	10 30		40 80	mV		
Output Voltage	$-35V \le V_{IN} \le -17V$ $5 \text{ mA} \le I_{OUT} \le I_{MAX}$ $P \le P_{MAX}$	15.5	14.5		15.6	14.4	V		
Quiescent Current	-35V≤V _{IN} ≤-17V		4	2		4	mA		
Quiescent Current Change	$T_j = 25^{\circ}C$ $-35V \le V_{IN} \le -17V$ $5 \text{ mA} \le I_{OUT} \le I_{MAX}$			0.1 0.1			mA		
Output Noise Voltage				400			μV		
Long Term Stability			150	15		150	mV		

Note 1: Unless otherwise specified, these specifications apply: $-55^{\circ}\text{C} < T_j < 150^{\circ}\text{C}$ for the LM120, $-25^{\circ}\text{C} < T_j < 150^{\circ}\text{C}$ for the LM220, and 0 °C $< T_j < 125^{\circ}\text{C}$ for the LM320, $V_{IN} = (V_{OUT} + 5V)$ and $V_{OUT} = 0.1$ A for the T0-5 package and $V_{OUT} = 0.5$ A for the T0-3 package. $V_{OUT} = 0.5$ and $V_{OUT} = 0.1$ for the T0-3 package, $V_{OUT} = 0.5$ and $V_{OUT} = 0.5$ for the T0-5 package, $V_{OUT} = 0.5$ for the T0-3 package, $V_{OUT} = 0.5$ for the T0-3. With an infinite heat sink, the thermal resistance is 15 °C/W and 3°C/W respectively.

Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. To ensure constant junction temperature, pulse testing with a low duty cycle is used.

typical applications

**SELECT RESISTORS TO SET OUTPUT VOLTAGE. 1 PPM/ C TRACKING SUGGESTED.

High Stability 1 Amp Regulator

Dual Trimmed Supply

Variable Output

REQUIRED IF REGULATOR
IS SEPARATED FROM
FILTER CAPACITOR. FOR
VALUE GIVEN, CAPACITOR MUST
BE SOLIO TANTALUM. 25,F ALUMNBUM
ELECTROLYTIC MAY BE
LIMIT.

REQUIRED FOR STABILITY. FOR
VALUE GIVEN, CAPACITOR MUST
BE SOLIO TANTALUM. 25,F ALUMNBUM
MAY BE INCREASED WITHOUT
LIMIT.

FOR OUTPUT CAPACITANCE IN EXCESS OF 100 µF, A HIGH CURRENT DIODE FROM INPUT TO OUTPUT IN4001, ETC) WILL PROTECT THE REGULATOR FROM MOMENTARY INPUT SHORTS.

Fixed Regulator

Current Source

LM123/LM223/LM323 3 amp-5 volt positive regulator general description

The LM123 is a three-terminal positive regulator with a preset 5V output and a load driving capability of 3 amps. New circuit design and processing techniques are used to provide the high output current without sacrificing the regulation characteristics of lower current devices.

The 3 amp regulator is virtually blowout proof. Current limiting, power limiting, and thermal shutdown provide the same high level of reliability obtained with these techniques in the LM109 1 amp regulator.

No external components are required for operation of the LM123. If the device is more than 4 inches from the filter capacitor, however, a 1μ F solid tantalum capacitor should be used on the input. A $0.1\mu F$ or larger capacitor may be used on the output to reduce load transient spikes created by fast switching digital logic, or to swamp out stray load capacitance.

An overall worst case specification for the combined effects of input voltage, load currents, ambient temperature, and power dissipation ensure that the LM123 will perform satisfactorily as a system element.

Operation is guaranteed over the junction temperature range -55°C to +150°C. An electrically identical LM223 operates from -25°C to +150°C and the LM323 is specified from 0°C to +125°C junction temperature. A hermetic TO-3 package is used for high reliability and low thermal resistance.

features

- 3 amp output current
- Internal current and thermal limiting
- 0.01Ω typical output impedance
- 7.5 minimum input voltage
- 30W power dissipation

schematic diagram

connection diagram

See Package 18

typical applications

TREGULATOR IS STABLE WITH NO LOAD CAPACITOR INTO RESISTIVE LOADS

Input Voltage 20V Power Dissipation Internally Limited

Operating Junction Temperature Range

LM123 -55° C to $+150^{\circ}$ C LM223 -25° C to $+150^{\circ}$ C LM323 0°C to +125°C Storage Temperature Range -65° C to $+150^{\circ}$ C 300°C

Lead Temperature (Soldering, 10 sec)

electrical characteristics (Note 1)

PARAMETER	CONDITIONS		LM123/LM2	23		LM323		LINUTO
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Output Voltage	$T_j = 25^{\circ}C$ $V_{IN} = 7.5V, I_{OUT} = 0$	4.7	\ 5	5.3	4.8	5	5.2	V
Output Voltage	$7.5V \le V_{IN} \le 15V$ $0 \le I_{OUT} \le 3A, P \le 30W$	4.6		5.4	4.75		5.25	V
Line Regulation (Note 3)	$T_{j} = 25^{\circ}C$ 7.5V $\leq V_{IN} \leq 15V$		5	25		5	25	mV
Load Regulation (Note 3)	$T_i = 25^{\circ}C, V_{1N} = 7.5V,$ $0 \le I_{OUT} \le 3A$		25	100		25	100	mV
Quiescent Current	$7.5V \le V_{IN} \le 15V,$ $0 \le I_{OUT} \le 3A$		12	20		12	20	mA
Output Noise Voltage	$T_j = 25^{\circ}C$ 10 Hz $\leq f \leq$ 100 kHz		40			40		μVrms
Short Circuit Current Limit	$T_j = 25^{\circ}C$ $V_{IN} = 15V$ $V_{IN} = 7.5V$		3 4	4.5 5		3 4	4.5 5	A A
Long Term Stability				35			35	mV
Thermal Resistance Junction to Case (Note 2)			2			2		°C/W

Note 1: Unless otherwise noted, specifications apply for $-55^{\circ}C \le T_{i} \le +150^{\circ}C$ for the LM123, $-25^{\circ}C \le T_{i} \le +150^{\circ}C$ for the LM223, and 0° C \leq T_i \leq +125 $^{\circ}$ C for the LM323. Although power dissipation is internally limited, specifications apply only for $P \leq 30W$.

Note 2: Without a heat sink, the thermal resistance of the TO-3 package is about 35°C/W. With a heat sink, the effective thermal resistance can only approach the specified values of 2°C/W, depending on the efficiency of the heat sink.

Note 3: Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width \leq 1 ms and a duty cycle \leq 5%.

typical applications (con't)

Adjustable Output 5V - 10V 0.1% Regulation

typical applications (con't)

10 Amp Regulator With Complete Overload Protection

Adjustable Regulator 0-10V @ 3A

A₁ - LM101A

C₁ - 2µF OPTIONAL - IMPROVES RIPPLE REJECTION, NOISE, AND TRANSIENT RESPONSE

Trimming Output to 5V

,

112

Voltage Regulators

LM340 series 3-terminal positive regulators

general description

The LM340-XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM340-XX series is available in two power packages. Both the plastic TO-220 and metal TO-3 packages allow these regulators to deliver over 1.0A if adequate heat sinking is provided. Even with over 1.0A of output current available the regulators are essentially blow-out proof. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expended to make the LM340-XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

features

- Output current in excess of 1A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-220 and metal TO-3 packages

voltage range

LM340-5	5V	LM340-15	15V
LM340-6	6V	LM340-18	18V
LM340-8	8V	LM340-24	24V
LM340-12	12\/		

schematic and connection diagrams

1-35

Input Voltage (V _O = 5V through 18V)	35V
$(V_O = 24V)$	40V
Internal Power Dissipation (Note 1)	Internally Limited
Operating Temperature Range	0°C to 70°C
Maximum Junction Temperature	
TO-3 Package	150°C
TO-220 Package	150°C
Storage Temperature Range	-65° C to $+150^{\circ}$ C
Lead Temperature	
TO-3 Package (Soldering, 10 sec)	300°C
TO-220 Package (Soldering, 10 sec)	230°C

electrical characteristics

LM340-5 $(V_{1N} = 10V, I_{OUT} = 500 \text{ mA}, 0^{\circ}\text{C} \le T_{A} \le 70^{\circ}\text{C}, \text{ unless otherwise specified})$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	T _j = 25°C	4.8	5	5.2	V
Line Regulation	$T_j = 25^{\circ}C, 7V \le V_{1N} \le 25V$ $I_{OUT} = 100 \text{ mA}$ $I_{OUT} = 500 \text{ mA}$			50 100	mV mV
Load Regulation	$T_j = 25^{\circ}C, 5 \text{ mA} \le I_{OUT} \le 1.5A$			100	mV
Output Voltage	$7V \le V_{IN} \le 20V$, 5 mA $\le I_{OUT} \le 1.0A$ $P_D \le 15W$	4.75		5.25	V
Quiescent Current	$T_j = 25^{\circ}C$		7	10	mA
Quiescent Current Change	$7V \le V_{IN} \le 25V$ $5 \text{ mA} \le I_{OUT} \le 1.5A$			1.3 .5	mA mA
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz $\leq f \leq 100$ kHz		40		μV
Long Term Stability				20	mV/1000 hr
Ripple Rejection	I _{OUT} = 20 mA, f = 120 Hz		60		dB
Dropout Voltage	$T_j = 25^{\circ}C$, $I_{OUT} = 1.0A$		2		V

LM340-6 (V_{IN} = 11V, I_{OUT} = 500 mA, 0° C \leq T_A \leq 70° C, unless otherwise specified)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	T _j = 25°C	5.75	6	6.25	V
Line Regulation	$T_j = 25^{\circ}C$, $8V \le V_{IN} \le 25V$ $I_{OUT} = 100 \text{ mA}$ $I_{OUT} = 500 \text{ mA}$			60 120	m V m V
Load Regulation	$T_{j} = 25^{\circ}C$, 5 mA $\leq I_{OUT} \leq 1.5A$			120	mV
Output Voltage	$8V \le V_{IN} \le 21V$, 5 mA $\le I_{OUT} \le 1.0A$ $P_D \le 15W$	5.7		6.3	V
Quiescent Current	$T_j = 25^{\circ}C$		7	10	mA
Quiescent Current Change	$8V \le V_{IN} \le 25V$ $5 \text{ mA} \le I_{OUT} \le 1.5A$			1.3 .5	mA mA
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz \leq f \leq 100 kHz		45		μ∨
Long Term Stability				24	mV/1000 hr
Ripple Rejection	I _{OUT} = 20 mA, f = 120 Hz		57		dB
Dropout Voltage	T _j = 25°C, I _{OUT} = 1.0A		2		V

Note 1: Thermal resistance without a heat sink for junction to case temperature is 4°C/W for the TO-3 package and 6°C/W for the TO-220 package. Thermal resistance for case to ambient temperature is 35°C/W for the TO-3 package and 50°C/W for the TO-220 package.

electrical characteristics (con't)

LM340-8 (V_{IN} = 14V, I_{OUT} = 500 mA, 0° C \leq T_A \leq 70° C, unless otherwise specified)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	T _i = 25°C	7.7	8	8.3	V
Line Regulation	$\begin{split} T_j &= 25^{\circ}C, 10.5V \leq V_{IN} \leq 25V \\ I_{OUT} &= 100 \text{ mA} \\ I_{OUT} &= 500 \text{ mA} \end{split}$			80 160	mV mV
Load Regulation	$T_j = 25^{\circ}C$, 5 mA $\leq I_{OUT} \leq 1.5A$			160	mV
Output Voltage	10.5V \leq V $_{IN}$ \leq 23V, 5 mA \leq I $_{OUT}$ \leq 1.0A $_{PD}$ \leq 15W	7.6		8.4	V
Quiescent Current	$T_j = 25^{\circ}C$		7	10	mA
Quiescent Current Change	$10.5V \le V_{IN} \le 25V$ 5 mA $\le I_{OUT} \le 1.5A$			1 .5	mA mA
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz		52		μV
Long Term Stability				32	mV/1000 hr
Ripple Rejection	I _{OUT} = 20 mA, f = 120 Hz		55		dB
Dropout Voltage	T _j = 25°C, I _{OUT} = 1.0A		2		V

LM340-12 (V_{IN} = 19V, I_{OUT} = 500 mA, $0^{\circ}C \le T_{A} \le 70^{\circ}C$, unless otherwise specified)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	$T_j = 25^{\circ}C$	11.5	12	12.5	V
Line Regulation	$\begin{split} T_j &= 25^{\circ}C, 14.5V \leq V_{IN} \leq 30V \\ I_{OUT} &= 100 \text{ mA} \\ I_{OUT} &= 500 \text{ mA} \end{split}$			120 240	mV mV
Load Regulation	$T_j = 25^{\circ}C$, 5 mA $\leq I_{OUT} \leq 1.5A$			240	mV
Output Voltage	$14.5 \text{V} \le \text{V}_{\text{IN}} \le 27 \text{V}, 5 \text{ mA} \le \text{I}_{\text{OUT}} \le 1.0 \text{A}$ $\text{P}_{\text{D}} \le 15 \text{W}$	11.4		12.6	V
Quiescent Current	$T_j = 25^{\circ}C$		7	10	mA
Quiescent Current Change	$14.5V \le V_{IN} \le 30V$ 5 mA $\le I_{OUT} \le 1.5A$			1 .5	mA mA
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz $\leq f \leq 100 \text{ kHz}$		75		μV
Long Term Stability				48	mV/1000 h
Ripple Rejection	I _{OUT} = 20 mA, f = 120 Hz		52		dB
Dropout Voltage	T _j = 25°C, I _{OUT} = 1.0A		2		V

LM340-15 (V_{IN} = 23V, I_{OUT} = 500 mA, $0^{\circ}C \le T_{A} \le 70^{\circ}C$, unless otherwise specified)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	T _j = 25°C	14.4	15	15.6	V
Line Regulation	$T_{\rm j}$ = 25°C, 17.5V \leq V $_{\rm IN}$ \leq 30V $I_{\rm OUT}$ = 100 mA $I_{\rm OUT}$ = 500 mA			150 300	mV mV
Load Regulation	$T_j = 25^{\circ}C$, 5 mA $\leq I_{OUT} \leq 1.5A$			300	mV
Output Voltage	$17.5V \le V_{IN} \le 30V$, 5 mA $\le I_{OUT} \le 1.0A$ $P_D \le 15W$	14.25		15.75	V
Quiescent Current	$T_j = 25^{\circ}C$		7	10	mA
Quiescent Current Change	$17.5V \le V_{IN} \le 30V$ $5 \text{ mA} \le I_{OUT} \le 1:5A$			1 .5	mA mA
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz $\leq f \leq 100 \text{ kHz}$		90		μ∨
Long Term Stability				60	mV/1000
Ripple Rejection	I _{OUT} = 20 mA, f = 120 Hz		50		dB
Dropout Voltage	T _i = 25°C, I _{OUT} = 1.0A		2		V

electrical characteristics (con't)

LM340-18 (V_{IN} = 27V, I_{OUT} = 500 mA, 0° C \leq T_A \leq 70° C, unless otherwise specified)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	$T_j = 25^{\circ}C$	17.3	18	18.7	V
Line Regulation	$T_{\rm I} = 25^{\rm o}{\rm C}, \ 21{\rm V} \le {\rm V}_{\rm IN} \le 33{\rm V}$ ${\rm I}_{\rm OUT} = 100 \ {\rm mA}$ ${\rm I}_{\rm OUT} = 500 \ {\rm mA}$			180 360	mV mV
Load Regulation	$T_j = 25^{\circ}C$, 5 mA $\leq I_{OUT} \leq 1.0A$			360	mV
Output Voltage	21V \leq V $_{IN}$ \leq 33V, 5 mA \leq I $_{OUT}$ \leq 1.0A $_{D}$ \leq 15W	17.1		18.9	V
Quiescent Current	$T_j = 25^{\circ}C$		7	10	mA
Quiescent Current Change	$21V \le V_{IN} \le 33V$ $5 \text{ mA} \le I_{OUT} \le 1.0A$			1 .5	mA mA
Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz $\leq f \leq 100 \text{ kHz}$		110		μV
Long Term Stability				72	mV/1000 hr
Ripple Rejection	I _{OUT} = 20 mA, f = 120 Hz		48		dB
Dropout Voltage	$T_{j} = 25^{\circ}C, I_{OUT} = 1.0A$		2		V

LM340-24 (V_{IN} = 33V, I_{OUT} = 500 mA, 0° C \leq T_A \leq 70° C, unless otherwise specified)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	T _j = 25°C	23	24	25	V
Line Regulation	$\begin{split} T_j &= 25^{\circ}C, 27V \leq V_{IN} \leq 38V \\ I_{OUT} &= 100 \text{ mA} \\ I_{OUT} &= 500 \text{ mA} \end{split}$			240 480	m V m V
Load Regulation	$T_j = 25^{\circ}C$, 5 mA $\leq I_{OUT} \leq 1.0A$			480	mV
Output Voltage	$27V \le V_{IN} \le 38V$, 5 mA $\le I_{OUT} \le 1.0A$ $P_D \le 15W$	22.8		25.2	V
Quiescent Current	T _j = 25°C		7	10	mA
Quiescent Current Change	$27V \le V_{IN} \le 38V$ $5 \text{ mA} \le I_{OUT} \le 1.0A$			1 .5	mA mA
Output Noise Voltage	T_A = 25°C, 10 Hz \leq f \leq 100 kHz		170		μV
Long Term Stability				96	mV/1000 hr
Ripple Rejection	I _{OUT} = 20 mA, f = 120 Hz		44		dB
Dropout Voltage	$T_{j} = 25^{\circ}C$, $I_{OUT} = 1.0A$		2		V

typical performance characteristics (con't)

typical applications

Fixed Output Regulator

- *REQUIRED IF THE REGULATOR IS LOCATED FAR FROM THE POWER SUPPLY FILTER.
- **ALTHOUGH NO OUTPUT CAPACITOR IS NEEDED FOR STABILITY, IT DOES HELP TRANSIENT RESPONSE. (IF NEEDED USE 0.14F, CERAMIC, DISC.)

Adjustable Output Regulator

Current Regulator

15V 5 Amp Regulator With Short Circuit Current Limit

NOTE 1: CURRENT SHARING BETWEEN THE LM340 AND Q1 ALLOWS THE EXTENSION OF SHORT CIRCUIT CURRENT LIMIT, SAFE OPERATING AREA PROTECTION, AND (ASSUMING Q1'S HEAT SINK HAS FOUR OR MORE TIMES THE CAPACITY OF THE LM340 HEAT SINK) THERMAL SHUTDOWN PROTECTION.

NOTE 2: I_{SHORT CIRCUIT} IS APPROXIMATELY 5.5 AMP.

NOTE 3: I_{OUT MAX} AT V_{OUT} = 15V IS APPROXIMATELY 9.5 AMP.

typical applications (con't)

High Current Voltage Regulator

Electronic Shutdown Circuit

**HEAT SINK Q1 AND THE LM340

Dual Power Supply

*SOLID TANTALUM
**GERMANIUM DIODE (USING A PNP GERMANIUM TRANSISTOR
WITH THE COLLECTOR SHORTED TO THE EMITTER)

NOTE 1: DIODES D1 AND D2 ASSURE REGULATOR STARTUP INTO A COMMON LOAD REGARDLESS OF THE INPUT VOLTAGE STARTUP SEQUENCE.

Voltage Regulators

LM376 voltage regulator

general description

The LM376 is a positive voltage regulator designed primarily for commercial product applications. The device is especially useful because it is packaged in an 8-pin mini-DIP which has the advantage of reduced size and low cost. Used independently, the device will supply 25 mA; but with the addition of external pass elements any desired load current can be achieved. The circuit features extremely low standby current drain, and provision

is made for either linear or foldback current limiting. Important characteristics of the LM376 are:

Output voltage range

+5V to 37V

Output current

25 mA

■ Load regulation

0.2%

■ Line regulation

0.03%/V

simplified schematic and connection diagrams

Order Number LM376N See Package 20

typical applications

Basic Positive Regulator with Current Limiting

1.0A Regulator with Protective Diodes

Linear Regulator with Foldback Current Limiting

 Input Voltage
 40V

 Input-Output Voltage Differential
 40V

 Power Dissipation (Note 1)
 400 mW

 Operating Temperature Range
 0°C to 70°C

 Storage Temperature Range
 -65°C to +150°C

 Lead Temperature (Soldering, 10 sec)
 300°C

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range		9.0		40	V
Output Voltage Range		5.0		37	V
Output-Input Voltage Differential		3.0		30	V
Load Regulation	$\begin{split} 0 &\leq I_{O} \leq 25 \text{ mA} \\ R_{SC} &= 0\Omega, T_{A} = 25^{\circ}\text{C} \\ R_{SC} &= 0\Omega, T_{A} = 70^{\circ}\text{C} \\ R_{SC} &= 0\Omega, T_{A} = 0^{\circ}\text{C} \end{split}$			0.2 0.5 0.5	% % %
Line Regulation	T _A = 25°C			.03 .1	%/V %/V
Ripple Rejection	f = 120 Hz, T _A = 25°C			0.1	%/V
Standby Current Drain	$V_{1N} = 30V, T_A = 25^{\circ}C$			2.5	mA
Reference Voltage		1.60	1.72	1.80	V
Current Limit Sense Voltage			.360		V

Note 1: For operating at elevated temperatures, the device must be derated based on a 100°C maximum junction temperature and a thermal resistance of 187°C/W junction to ambient.

Note 2: These specifications apply for an operating temperature between 0°C and 70°.

typical performance characteristics

Voltage Regulators

LM723/LM723C voltage regulator

general description

The LM723/LM723C is a voltage regulator designed primarily for series regulator applications. By itself, it will supply output currents up to 150 mA; but external transistors can be added to provide any desired load current. The circuit features extremely low standby current drain, and provision is made for either linear or foldback current limiting. Important characteristics are:

- 150 mA output current without external pass
- Output currents in excess of 10A possible by adding external transistors

- Input voltage 40V max
- Output voltage adjustable from 2V to 37V
- Can be used as either a linear or a switching regulator.

The LM723/LM723C is also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller.

The LM723C is identical to the LM723 except that the LM723C has its performance guaranteed over a 0°C to 70°C temperature range, instead of -55° C to $+125^{\circ}$ C.

schematic and connection diagrams *

Dual-In-Line Package CURRENT SENSE

Order Number LM 723D or LM723CD See Package 1

Order Number LM723N or LM723CN See Package 22

Order Number LM723H or LM723CH See Package 13

equivalent circuit*

1-45

Pulse Voltage from V $^{+}$ to V $^{-}$ (50 ms) Continuous Voltage from V $^{+}$ to V $^{-}$ 50V 40V Input-Output Voltage Differential 40V Maximum Amplifier Input Voltage (Either Input) 7.5V Maximum Amplifier Input Voltage (Differential) 5V Current from Vz 25 mA Current from V_{REF} 15 mA Internal Power Dissipation Metal Can (Note 1) 800 mW Cavity DIP (Note 1) 900 mW Molded DIP (Note 1) 660 mW -55°C to +125°C Operating Temperature Range LM723 Storage Temperature Range Metal Can
DIP
Titleian 10 sec) 0° C to $+70^{\circ}$ C -65°C to +150°C -55°C to +125°C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 2)

PARAMETER	CONDITIONS		LM723	3		LM7230	0	UNITS
PARAMETER	GONDITIONS		TYP	MAX	MIN	TYP	MAX	UNITS
Line Regulation	V _{IN} = 12V to V _{IN} = 15V		.01	0.1		.01	0.1	% V _{OUT}
	-55°C ≤ T _A ≤ +125°C			0.3				% V _{out}
	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$						0.3	% V _{OUT}
	$V_{IN} = 12V$ to $V_{IN} = 40V$.02	0.2		0.1	0.5	% V _{OUT}
Load Regulation	I _L = 1 mA to I _L = 50 mA		.03	0.15		.03	0.2	% V _{out}
	-55°C ≤ T _A ≤ +125°C			0.6				%V out
	$0^{\circ}C \leq T_A \leq = +70^{\circ}C$						0.6	%V out
Ripple Rejection	f = 50 Hz to 10 kHz, C _{REF} = 0		74			74		dB
	f = 50 Hz to 10 kHz, C _{REF} = 5 μF		86			86		dB
Average Temperature	-55°C ≤ T _A ≤ +125°C		.002	.015				%/°C
Coefficient of Output Voltage	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$.003	.015	%/°C
Short Circuit Current Limit	$R_{SC} = 10\Omega$, $V_{OUT} = 0$		65			65		mA
Reference Voltage		6.95	7.15	7.35	6.80	7.15	7.50	V
Output Noise Voltage	BW = 100 Hz to 10 kHz, C _{REF} = 0		20			20		μVrms
	BW = 100 Hz to 10 kHz, $C_{REF} = 5 \mu F$		2.5			2.5		μVrms
Long Term Stability			0.1			0.1		%/1000 hrs
Standby Current Drain	I _L = 0, V _{IN} = 30V		1.3	3.5		1.3	4.0	mA
Input Voltage Range		9.5		40	9.5		40	V
Output Voltage Range		2.0		37	2.0		37	V
Input-Output Voltage Differential		3.0		38	3.0		38	V

Note 1: See derating curves for maximum power rating above 25°C .

Note 2: Unless otherwise specified, $T_A=25^{\circ}C$, $V_{1N}=V^{\dagger}=V_C=12V$, $V^{\prime}=0$, $V_{OUT}=5V$, $I_L=1$ mA, $R_{SC}=0$, $C_1=100$ pF, $C_{REF}=0$ and divider impedance as seen by error amplifier $\leq 10~k\Omega$ connected as shown in Figure 1. Line and load regulation specifications are given for the condition of constant chip temperature. Temperature drifts must be taken into account separately for high dissipation conditions.

Note 3: L_1 is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core or equivalent with 0.009 in. air gap.

Note 4: Figures in parentheses may be used if R1/R2 divider is placed on opposite input of error amp.

Note 5: Replace R1/R2 in figures with divider shown in Figure 13.

Note 6: V⁺ must be connected to a +3V or greater supply.

Note 7: For metal can applications where V_Z is required, an external 6.2 volt zener diode should be connected in series with V_{OUT} .

maximum power ratings

TABLE I RESISTOR VALUES ($\mbox{k}\Omega\mbox{)}$ FOR STANDARD OUTPUT VOLTAGE

POSITIVE OUTPUT VOLTAGE	APPLICABLE FIGURES	OUT	FIXED OUTPUT ±5%		OUTPUT ADJUSTABLE ±10% (Note 5) NEGATIVE OUTPUT VOLTAGE					I OUTPUT		TPUT	-	% OUT DJUST ±10%	ABLE
	(Note 4)	R1	R2	R 1	P1	R2			R1	R2	R1	P1	R2		
+3.0	1, 5, 6, 9, 12 (4)	4.12	3.01	1.8	0.5	1.2	+100	7	3.57	102	2.2	10	91		
+3.6	1, 5, 6, 9, 12 (4)	3.57	3.65	1.5	0.5	1.5	+250	7	3.57	255	2.2	10	240		
+5.0	1, 5, 6, 9, 12 (4)	2.15	4.99	.75	0.5	2.2	-6 (Note 6)	3, (10)	3.57	2.43	1.2	0.5	.75		
+6.0	1, 5, 6, 9, 12 (4)	1.15	6.04	0.5	0.5	2.7	-9	3, 10	3.48	5.36	1.2	0.5	2.0		
+9.0	2, 4, (5, 6, 12, 9)	1.87	7.15	.75	1.0	2.7	-12	3, 10	3.57	8.45	1.2	0.5	3.3		
+12	2, 4, (5, 6, 9, 12)	4.87	7.15	2.0	1.0	3.0	-15	3, 10	3.65	11.5	1.2	0.5	4.3		
+15	2, 4, (5, 6, 9, 12)	7.87	7.15	3.3	1.0	3.0	-28	3, 10	3.57	24.3	1.2	0.5	10		
+28	2, 4, (5, 6, 9, 12)	21.0	7.15	5.6	1.0	2.0	-45	8	3.57	41.2	2.2	10	33		
+45	7	3.57	48.7	2.2	10	39	-100	8	3.57	97.6	2.2	10	91		
+75	7	3.57	78.7	2.2	10	68	-250	8	3.57	249	2.2	10	240		

TABLE II FORMULAE FOR INTERMEDIATE OUTPUT VOLTAGES

-1			
	Outputs from +2 to +7 volts [Figures 1, 5, 6, 9, 12, (4)]	Outputs from +4 to +250 volts [Figure 7]	Current Limiting $I_{LIMIT} = \frac{V_{SENSE}}{R_{SC}}$
	$V_{OUT} = [V_{REF} \times \frac{R2}{R1 + R2}]$	$V_{OUT} = [\frac{V_{REF}}{2} \times \frac{R2 - R1}{R1}]$; R3 = R4	LIMIT R _{SC}
	Outputs from +7 to +37 volts	Outputs from -6 to -250 volts	Foldback Current Limiting
١	[Figures 2, 4, (5, 6, 9, 12)]	[Figures 3, 8, 10]	$I_{KNEE} = \left[\frac{V_{OUT} R3}{R_{SC} R4} + \frac{V_{SENSE} (R3 + R4)}{R_{SC} R4} \right]$
	$V_{OUT} = [V_{REF} \times \frac{R1 + R2}{R2}]$	$V_{OUT} = [\frac{V_{REF}}{2} \times \frac{R1 + R2}{R1}]; R3 = R4$	R _{SC} R4 R _{SC} R4
			$I_{SHORTCKT} = \left[\frac{V_{SENSE}}{R_{SC}} \times \frac{R3 + R4}{R4}\right]$

typical applications

FIGURE 1. Basic Low Voltage Regulator (V_{OUT} = 2 to 7 Volts)

FIGURE 3. Negative Voltage Regulator

Note: $R3 = \frac{R1 + R2}{R1 + R2}$ for minimum temperature drift.

R3 may be eliminated for minimum component count.

R3 may be eliminated for minimum component count.

Load Regulation ($LS_L = 50 \text{ mA}$) 4.5 m

FIGURE 2. Basic High Voltage Regulator (V_{OUT} = 7 to 37 Volts)

FIGURE 4. Positive Voltage Regulator (External NPN Pass Transistor)

typical applications (con't.)

FIGURE 5. Positive Voltage Regulator (External PNP Pass Transistor)

FIGURE 6. Foldback Current Limiting

FIGURE 7. Positive Floating Regulator

FIGURE 8. Negative Floating Regulator

FIGURE 9. Positive Switching Regulator

FIGURE 10. Negative Switching Regulator

FIGURE 11. Remote Shutdown Regulator with **Current Limiting**

FIGURE 12. Shunt Regulator

FIGURE 13. Output Voltage Adjust (See Note 5)

LH0001* low power operational amplifier general description

The LH0001 is a general purpose operational amplifier designed for extremely low quiescent power. Typical NO-load dissipation at $25^{\circ}\mathrm{C}$ is 2 milliwatts at $V_S=\pm15$ volts, and 0.5 milliwatts at $V_S=\pm5$ volts. Even with this low power dissipation, the LH0001 will deliver ±10 volts into a 2K load with ±15 volt supplies, and typical short circuit currents of 20 to 30 milliamps. Additional features are:

- Operation from ±5V to ±20V
- Very low offset voltage: typically 200 μ V at 25°C, 600 μ V at -55°C to 125°C

- Very low input offset current: typically 3 nA at 25°C, 6 nA at -55°C
- Low noise: typically $3 \mu V$ rms

COMPENSATION

- Frequency compensation with 2 small capacitors
- Output may be clamped at any desired level
- Output is continuously short circuit proof

The LH0001 is ideally suited for space borne applications or where battery operated equipment requires extremely low power dissipation.

schematic and connection diagrams

INPUT 2 HO001 BOUTPUT V- 3 BIAS INPUT 4 S BIAS COMPENSATION

TOP VIEW

Note: Pin 7 must be grounded or connected to a voltage at least 5 volts more negative than the positive supply (Pin 9). Pin 7 may be connected to the negative supply, however the standby current will be increased. A resistor may be inserted in series with Pin 7 up to a maximum of 100 kt Ω per volt between Pin 3 and Pin 9.

Order Number LH0001H See Package 14

typical applications

Voltage Follower

Integrator with Bias Current Compensation

*Previously called NH0001

Voltage Comparator for Driving MOS Circuits

External Current Limiting Method

Supply Voltage ±20V Power Dissipation (see Curve) 400 mW Differential Input Voltage ±7V Input Voltage Equal to supply Short Circuit Duration (Note 1) Continuous Operating Temperature Range -55°C to +125°C Storage Temperature Range -65°C to +150°C Lead Temperature (Soldering 10 sec.) 300°C

electrical characteristics (Note 2)

PARAMETER	TEMP (°C)	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	25 -55 to 125	$R_s \le 5K$ $R_s \le 5K$		0.2 0.6	1.0 2.0	mV mV
Input Offset Current	25 to 125 -55				20 100	nA nA
Input Bias Current	25 to 125 -55				100 300	nA nA
Supply Current (+)	25 125 –55	$V_S = \pm 20V$ $V_S = \pm 20V$ $V_S = \pm 20V$		90 70 100	125 100 150	μΑ μΑ μΑ
Supply Current (-)	25 125 –55	$V_S = \pm 20V$ $V_S = \pm 20V$ $V_S = \pm 20V$		60 45 75	90 75 125	μΑ μΑ μΑ
Voltage Gain	-55 to 25 125	$R_L = 100 \text{ K}\Omega$, $V_S = \pm 15 \text{ V}$, $V_{OUT} = \pm 10 \text{ V}$ $R_L = 100 \text{ K}\Omega$, $V_S = \pm 15 \text{ V}$, $V_{OUT} = \pm 10 \text{ V}$	25 10	60 30		V/mV V/mV
Vouт	25 -55 125	$V_S = \pm 15V, R_L = 2K$ $V_S = \pm 15V, R_L = 2K$ $V_S = \pm 15V, R_L = 2K$	10 9 11	11.5 10.5 12.5		V V V
Common Mode Rejection Ratio	-55 to 125	$V_S = \pm 15V$, $V_{IN} = \pm 10V$, $R_S \le 5K$	70	90		dB
Power Supply Rejection Ratio	-55 to 125	$V_S = \pm 15V$, $\triangle V = 5V$ to $20V$, $R_S = \leq 5K$	70	90		dB
Input Resistance	25		0.5	1.5		МΩ
Average Temperature Coefficient of Offset Voltage	-55 to 125	$R_S \leq 5K$		4	2	μV/°C
Average Temperature Coefficient of Bias Current	-55 to 125			0.4		μA/°C
Equivalent Input Noise Voltage	25	$R_S = 1K$, $f = 5 Hz$ to 1000 Hz, $V_S = \pm 15V$		3.0		μV rms

Note 1: Based on maximum short circuit current of 50 mA, device may be operated at any combination of supply voltages, and temperature to be within rated power dissipation

Note 2: These specifications apply for Pin 7 grounded, for $\pm 5V \le V_S \le \pm 20V$, with Capacitor C1 = 39 pF from Pin 1 to Pin 10, and C2 = 22 pF from Pin 5 to ground, unless otherwise specified.

guaranteed performance

Small Signal Voltage Gain

Maximum Power Dissipation

typical performance characteristics

LH0001A/LH0001AC micropower operational amplifier

general description

The LH0001A/LH0001AC is a micropower, high performance integrated circuit operational amplifier designed to have a no load power dissipation of less than 0.5 mW at $V_S = \pm 5V$ and less than 2 mW at $V_S = \pm 20V$. Open loop gain is greater than 50k and input bias current is typically 20 nA.

features

- 1.0 mV Typical low offset voltage
- 5 nA Typical low offset current
- 3 μVrms Typical low noise
- Simple frequency compensation
- Moderate bandwidth and slewrate

Output short circuit proof

The LH0001A/LH0001AC may be substituted directly for the LH0001/LH0001C. Low power consumption, high open loop gain, and excellent input characteristics make the LH0001A an ideal amplifier for many low power applications such as battery powered instrument or transducer amplifiers.

The LH0001A is specified for operation over the -55°C to +125°C military temperature range. The LH0001AC is specified for operation over the 0°C to +85°C temperature range.

schematic diagram*

typical application*

Integrator with Bias Compensation

connection diagrams

Order Number LH0001AH or LH0001ACH See Package 14

LH0001AF/LH0001ACF

Flat Package

Order Number LH0001AF or LH0001ACF See Package 3

Cavity Dual-In-Line Package

Order Number LH0001AD or LH0001ACD See Package 1

^{*}Pin shown for TO-5 package

Supply Voltage ±20V Power Dissipation (See curve) 400 mW Differential Input Voltage ±7V Input Voltage $\pm V_S$ Short Circuit Duration Continuous Operating Temperature Range LH0001A -55°C to 125°C LH0001AC -25°C to 85°C Storage Temperature Range -65°C to 150°C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 1)

DADAMETERS	CONDITIONS	L	H0001	A	L	.H0001	AC	LINUTO
PARAMETERS	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	$R_S \le 1k$, $T_A = 25^{\circ}C$		1.0	2.5 4.0		2.0	5.0 7.0	mV mV
Input Bias Current	$T_A = 25^{\circ}C$		20	100 300		20	200 300	nA nA
Input Offset Current	$T_A = 25^{\circ}C$		5	20 100		20	60 100	nA nA
Supply Current	$V_S = \pm 20V, T_A = 25^{\circ}C$ $V_S = \pm 20V$		80	125 150		80	125 150	μA nA
Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = 10V$, $R_L = 100k$, $T_A = 25^{\circ}C$ $V_S = \pm 15V$, $V_{OUT} = 10V$, $R_L = 100k$	25 25 10	60 60 30	*	25 25 10	60 60		V/mV V/mV
Output Voltage	$V_S = \pm 15V$, $R_L = 2k$, $T_A = 25^{\circ}C$ $V_S = \pm 15V$, $R_L = 2k$	10 9	11.5		10 9	11.5		V
Common Mode Rejection Ratio	$V_S = \pm 15V, V_{1N} = 10V, R_S = 1k$	70	90		70	90		db
Power Supply Rejection Ratio	$V_S = \pm 15V$, $R_S = 1k$, $V_S = \pm 5V$ to $\pm 20V$	70	90		70	90		db
Equivalent Input Noise Voltage	$V_S = \pm 15V$, $R_S = 1k$, $T_A = 25^{\circ}C$ f = 500 Hz to 5 kHz		3.0			3.0		μVrms
Average Temperature Coefficient of Offset Voltage	$R_S \le 1k$		3.0			3.0		μV/°C
Average Temperature Coefficient of Bias Current			0.3			0.3		nA/°C

Note 1: The specifications apply for $\pm 5V \le V_{\rm S} \le 20V$, with output compensation capacitor, $C_1 = 39$ pF, input compensation capacitor, $C_2 = 22$ pF, ± 5 °C to 125°C for the LH0001A and ± 25 °C to ± 85 °C for the LH0001AC unless otherwise specified.

typical applications

TTL/DTL Compatible Comparator

Voltage Follower

External Output Current Limiting

typical performance characteristics

LH0002/LH0002C* current amplifier

general description

The LH0002/LH0002C is a general purpose thick film hybrid current amplifier that is built on a single substrate. The circuit features:

■ High Input Impedance

400 k Ω

■ Low Output Impedance

 6Ω

- High Power Efficiency
- Low Harmonic Distortion
- DC to 30 MHz Bandwidth
- Output Voltage Swing that Approaches Supply Voltage
- 400 mA Pulsed Output Current
- Slew rate is typically 200V/μs
- Operation from ±5V to ±20V

These features make it ideal to integrate with an operational amplifier inside a closed loop configuration to increase current output. The symmetrical

output portion of the circuit also provides a low output impedance for both the positive and negative slopes of output pulses.

The LH0002 is available in an 8-lead low-profile TO-5 header; the LH0002C is also available in an 8-lead TO-5, and a 10-pin molded dual-in-line package.

The LH0002 is specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The LH0002C is specified for operation over the 0°C to $+85^{\circ}\text{C}$ temperature range.

applications

- Line driver
- 30 MHz buffer
- High speed D/A conversion
- Instrumentation buffer
- Precision current source

schematic and connection diagrams

Metal Can Package

Order Number LH0002CN See Package 21

Order Number LH0002H or LH0002CH See Package 11

typical applications

High Current Operational Amplifier

Line Driver

^{*}Previously called NH0002/NH0002C

Supply Voltage ±22V
Power Dissipation Ambient 600 mW
Input Voltage (Equal to Power Supply Voltage)
Storage Temperature Range -65°C to +150°C
Possition Temperature Range -65°C to +150°C

Operating Temperature Range LH0002 -55°C to +125°C LH0002C 0°C to +85°C Steady State Output Current ±100 mA Pulsed Output Current (50 ms On/1 sec Off) ±400 mA

electrical characteristics (Note 1)

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS
Voltage Gain	$R_S = 10 \text{ k}\Omega, R_L = 1.0 \text{ k}\Omega$ $V_{IN} = 3.0 \text{ V}_{PP}, f = 1.0 \text{ kHz}$ $T_A = -55^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$.95	.97		
AC Current Gain	V _{IN} = 1.0 V _{rms} f = 1.0 kHz		40		A/mA
Input Impedance	$R_S = 200 \text{ k}\Omega, V_{IN} = 1.0 V_{rms},$ $f = 1.0 \text{ kHz}, R_L = 1.0 \text{ k}\Omega$	180	400	_	kΩ
Output Impedance	$V_{IN} = 1.0 V_{rms}, f = 1.0 \text{ kHz}$ $R_L = 50\Omega, R_S = 10 \text{ k}\Omega$	_	6	10	Ω
Output Voltage Swing	$R_L = 1.0 \text{ k}\Omega, f = 1.0 \text{ kHz}$	±10	±11	-	V
Output Voltage Swing	$V_S = \pm 15V, V_{1N} = \pm 10V,$ $R_L = 100\Omega, T_A = 25^{\circ}C$	±9.5V			
DC Output Offset Voltage	$R_S = 300\Omega$, $R_L = 1.0 \text{ k}\Omega$ $T_A = -55^{\circ}\text{C}$ to 125°C	_	±10	±30	mV
DC Input Offset Current	$R_S = 10 \text{ k}\Omega, R_L = 1.0 \text{ k}\Omega$ $T_A = -55^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	_	±6.0	±10	μΑ
Harmonic Distortion	V _{IN} = 5.0 V _{rms} , f = 1.0 kHz	_	0.1	-	%
Bandwidth	V_{IN} = 1.0 V_{rms} , R_L = 50 Ω , f = 1 MHz	30	50	-	MHz
Positive Supply Current	$R_S = 10 \text{ k}\Omega$, $R_L = 1 \text{ k}\Omega$	_	+6.0	+10.0	mA
Negative Supply Current	$R_S = 10 \text{ k}\Omega$, $R_L = 1 \text{ k}\Omega$	_	-6.0	-10.0	mA

Note 1: Specification applies for T_A = 25°C with +12V on Pins 1 and 2; -12V on Pins 6 and 7 for the metal can package and +12V on Pins 1 and 2; -12V on Pins 4 and 5 for the dual-in-line package unless otherwise specified. The parameter guarantees for LH0002C apply over the temperature range of 0°C to +85°C, while parameters for the LH0002 are guaranteed over the temperature range -55°C to 125°C.

typical performance

LH0003/LH0003C* wide bandwidth operational amplifier general description

The LH0003/LH0003C is a general purpose operational amplifier which features: slewing rate up to 70 volts/µsec, a gain bandwidth of up to 30 MHz, and high output currents. Other features are:

■ Very low offset voltage

Typically 0.4 mV

Large output swing

> $\pm 10 \text{V}$ into 100Ω load

■ High CMRR

Typically > 90 dB

 Good large signal frequency response 50 kHz to 400 kHz depending on compensa-

The LH0003 is specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The LH0003C is specified for operation over the 0°C to $+85^{\circ}\text{C}$ temperature range.

schematic and connection diagrams

Order Number LH0003H or LH0003CH See Package 14

Circuit Gain	C ₁ pF	C ₂ pF	Slew Rate $R_L > 200\Omega$; $V/\mu sec$	Full Output Frequency R _L = 200Ω V _{OUT} = ±10 V
≥ 40	0	0	70	400
≥ 10	5	30	30	350
≥ 5	15	30	15	250 > kHz
≥ 2	50	50	5	100
≥ 1	90	90	2	50

Typical Compensation

typical applications

High Slew Rate Unity Gain Inverting Amplifier

Unity Gain Follower

^{*}Previously called NH0003/NH0003C

Supply Voltage ±20V Power Dissipation See curve Differential Input Voltage ±7V Input Voltage Equal to supply Load Current 120 mA Operating Temperature Range NH0003 -55° C to $+125^{\circ}$ C NH0003C 0° C to +85 $^{\circ}$ C Storage Temperature Range -65° C to $+150^{\circ}$ C 300°C Lead Temperature (Soldering, 10 sec)

electrical characteristics (Notes 1 & 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$R_S < 1k$		0.4	3.0	mV
Input Offset Current			0.02	0.2	μΑ
Input Bias Current			0.4	2.0	μΑ
Supply Current	V _S = ±20V		1.2	3	mA
Voltage Gain	$R_L = 100k, V_S = \pm 15V, V_{OUT} = \pm 10V$	20	70		V/mV
Voltage Gain	$R_L = 2k$, $V_S = \pm 15V$, $V_{OUT} = \pm 10V$	15	40		V/mV
Output Voltage Swing	V _S = ±15, R _L = 100Ω	±10	±12		V
Input Resistance			100		kΩ
Average Temperature Coefficient of Offset Voltage	$R_{\rm S} < 5 k$		4		μV/°C
Average Temperature Coefficient of Bias Current			8		nA/°C
CMRR	$R_S < 1k$, $V_S = \pm V$, $V_{1N} = \pm 10V$	70	90		dB
PSRR	$R_S < 1k$, $V_S = \pm 15V$, $\Delta V = 5V$ to $20V$	70	90		dB
Equivalent Input Noise Voltage	R_S = 1K, f = 10 kHz to 100 kHz V_S = ±15V dc		1.8		μVrms

Note 1. These specifications apply for Pin 7 grounded, for $\pm 5V < V_S < \pm 20V$, with capacitor $C_1 = 90$ pF from Pin 1 to Pin 10 and $C_2 = 90$ pF from Pin 5 to ground, over the specified operating temperature range, unless otherwise specified.

Note 2. Typical values are for t_{AMBIENT} = 25°C unless otherwise specified.

typical performance

LH0004/LH0004C* high voltage operational amplifier general description

The LH0004/LH0004C is a general purpose operational amplifier designed to operate from supply voltages up to $\pm 40 \, \text{V}$. The device dissipates extremely low quiescent power, typically 8 mW at $25^{\circ} \, \text{C}$ and $V_{S} = \pm 40 \, \text{V}$. Additional features include:

- Capable of operation over the range of ±5V to ±40V.
- Large output voltage typically ± 35 V for the LH0004 and ± 33 V for the LH0004C into a 2 K Ω load with ± 40 V supplies
- Low input offset current typically 20 nA for the LH0004 and 45 nA for the LH0004C
- Low input offset voltage typically 0.3 mV
- Frequency compensation with two small capacitors.

■ Low power consumption 8 mW at ±40V

The LH0004's high gain and wide range of operating voltages make it ideal for applications requiring large output swing and low power dissipation.

The LH0004 is specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The LH0004C is specified for operation over the 0°C to $+85^{\circ}\text{C}$ temperature range.

applications

- Precision high voltage power supply.
- Resolver excitation.
- Wideband high voltage amplifier.
- Transducer power supply.

schematic and connection diagrams

Note: Pin 7 must be grounded or connected to a voltage at less t5 volts more negative than the positive supply (Pin 9). Pin 7 may be connected to the negative supply; however, the standby current will be increased. A resistor may be inserted in series with Pin 7 to Pin 9. The value of the resistor should be a maximum of 100 K Ω per volt of potential between Pin 3 and Pin 9.

Order Number LH0004H or LH0004CH See Package 14

typical applications

Voltage Follower

Voltage Adjust

Input Offset

External Current Limiting Method

High Compliance Current Source

*Previously called NH0004/NH0004C

Supply Voltage, Continuous ±45V Supply Voltage, Transient (<0.1 sec, no load) ±60V Power Dissipation (See curve) 400 mW Differential Input Voltage ±7V Input Voltage Equal to supply Short Circuit Duration 3 sec Operating Temperature Range LH0004 -55° C to $+125^{\circ}$ C 0°C to 85°C LH0004C -65° C to $+150^{\circ}$ C Storage Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 1)

			LH000	4	LH0004		С	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	$R_S \le 5k$, $T_A = 25^{\circ}C$ $R_S \le 5k$		0.3	1.0 2.0		0.3	1.5 3.0	
Input Bias Current	$T_A = 25^{\circ}C$ $= -55^{\circ}C$		20	100 300		30	120 300	nA nA
Input Offset Current	$T_A = 25^{\circ}C$ $= -55^{\circ}C$		3	20 100		10	45 150	nA nA
Positive Supply Current	$V_S = \pm 40 V, T_A = 25^{\circ} C$ $V_S = \pm 40 V$		110	150 175		110	150 175	μA μA
Negative Supply Current	$V_S = \pm 40V, T_A = 25^{\circ}C$ $V_S = \pm 40V$		80	100 135		80	100 135	μA μA
Voltage Gain	$V_S = \pm 40V, R_L = 100k, T_A = 25^{\circ}C$ $V_{OUT} = \pm 30V$	30	60		30	60		V/mV
	$V_S = \pm 40V, R_L = 100k$ $V_{OUT} = \pm 30V$	10			10			V/mV
Output Voltage	$V_S = \pm 40V, R_L = 2k$ $V_S = \pm 40V, R_L = 4k$	±30 ±34	±35 ±36		±30 ±33	±33 ±35		V
CMRR	$V_S = \pm 40V$, $R_S \le 5k$ $V_{IN} = \pm 33V$	70	90		70	90		dB
PSRR	$V_S = \pm 40 \text{V}, R_S \leq 5 \text{k}$ $\Delta \text{V} = 20 \text{V} \text{ to } 40 \text{V}$	70	90		70	90		dB
Average Temperature Coefficient Offset Voltage	$R_S \leq 5k$		4.0			4.0		μV/°C
Average Temperature Coefficient of Offset Current			0.4			0.4		μΑ/°C
Equivalent Input Noise Voltage	$R_S = 1k$, $V_S = \pm 40V$ f = 500 Hz to 5 kHz, $T_A = 25^{\circ}C$		3.0			3.0		μVrms

Note 1: These specifications apply for $\pm 5 V \le V_S \le \pm 40 V$, Pin 7 grounded, with capacitors C1 = 39 pF between Pin 1 and Pin 10, C2 = 22 pF between Pin 5 and ground, -55°C to 125°C for the LH0004, and 0°C to 85°C for the LH0004C unless otherwise specified.

typical performance

LH0005/LH0005A* operational amplifier general description

The LH0005/LH0005A is a hybrid integrated circuit operational amplifier employing thick film resistors and discrete silicon semiconductors in its design. The select matching of the input pairs of transistors results in low input bias currents and a very low input offset current, both of which exhibit excellent temperature tracking. In addition, the device features:

- Very high output current capability: ±50 mA into a 100 ohm load
- Low standby power dissipation: typically 60 mW at ±12V
- High input resistance: typically 2M at 25°C

- Full operating range: -55°C to +125°C
- Good high frequency response: unity gain at 30 MHz

With no external roll-off network, the amplifier is stable with a feedback ratio of 10 or greater. By adding a 200 pF capacitor between pins 9 and 10, and a 200 ohm resistor in series with a 75 pF capacitor from pin 4 to ground, the amplifier is stable to unity gain. The unity gain loop phase margin with the above compensation is typically 70 degrees. With a gain of 10 and no compensation the loop phase margin is typically 50 degrees.

schematic and connection diagrams

application or selected to suit design requirements

Order Number LH0005H or LH0005AH See Package 14

typical applications

Voltage Follower

Offset Balancing Circuit

External Current Limiting

of diodes D₁ to D₄ at approx. For continuous short circuit

protection (V $_{S}$ = ±12V, -55°C \leq T $_{A}$ \leq +100°C) R $_{L\,IM}$ \geq 50 Ω

Integrator with Bias Current Compensation

2-15

±20V Supply Voltage Power Dissipation (see Curve) 400 mW Differential Input Voltage ±15V Input Voltage Equal to supply voltages Peak Load Current ±100 mA -65° C to $+150^{\circ}$ C Storage Temperature Range -55°C to +125°C Operating Temperature Range 300°C Lead Temperature (Soldering, 10 sec)

electrical characteristics (Note 1)

		I	_H000	5	L	H000	ōΑ	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage 25°C -55°C, 125°C	$\begin{aligned} &R_S \leq 20 \;k\Omega \\ &R_S \leq 20 \;k\Omega \end{aligned}$		5	10 10		1	3 4	mV mV
Input Offset Current 25°C to 125°C -55°C			10 25	20 75		2	5 25	nA nA
Input Bias Current 25°C to 125°C –55°C			15 100	50 250		8 60	25 125	nA nA
Large Signal Voltage Gain -55°C to 25°C 125°C	R _L = 10K, R2 = 3K, V _{OUT} = ±5V	2 1.5	4		4 3	5.5 5		V/mV V/mV
Output Voltage Swing -55°C to 125°C 25°C to 125°C -55°C	$R_L = 10 \text{ k}\Omega$ $R_L = 100\Omega$ $R_L = 100\Omega$	-10 -5 -4		+6 +5 +4	-10 -5 -4		+6 +5 +4	V V
Input Resistance 25°C		1	2		1	2		MΩ
Common Mode Rejection Ratio 25°C	V_{IN} = ±4V, RS \leq 20 k Ω	55	60		60	66		dB
Power Supply Rejection Ratio 25°C		55	60		60	66		dB
Supply Current (+) -55°C to 125°C			3	5		3	5	mA
Supply Current (–) –55°C to 125°C			2	4		2	4	mA
Average Temperature Coefficient of Input Offset Voltage -55°C to 125°C	${ m R_S}\!\le\!20~{ m k}\Omega$		20			10		uV/°C
Output Resistance 25°C			70			70		Ω

Note 1: These specifications apply for pin 6 grounded, V_S = ±12V, with Resistor R₁ = 200 Ω in series with Capacitor C₁ = 75 pF from pin 4 to ground, and C₂ = 200 pF between pins 9 and 10 unless otherwise specified.

guaranteed performance characteristics

typical performance characteristics

LH0005C* operational amplifier

general description

The LH0005C is a hybrid integrated circuit operational amplifier employing thick film resistors and discrete silicon semiconductors in its design. The select matching of the input pairs of transistors results in low input bias currents and a very low input offset current both of which exhibit excellent temperature tracking. In addition, the device features:

- Very high output current capability: ±40 mA into a 100 ohm load
- Low standby power dissipation: typically 60 mW at ±12V
- High input resistance: typically 2M at 25°C

- Operating range: 0° to 70°C
- Good high frequency response: unity gain at 30 MHz

With no external roll-off network, the amplifier is stable with a feedback ratio of 10 or greater. By adding a 200 pF capacitor between pins 9 and 10, and a 200 ohm resistor in series with a 75 pF capacitor from pin 4 to ground, the amplifier is stable to unity gain. The unity gain loop phase margin with the above compensation is typically 70 degrees. With a gain of 10 and no compensation the loop phase margin is typically 50 degrees.

schematic and connection diagrams

Order Number LH0005CH See Package 14

typical applications

Voltage Follower

Offset Balancing Circuit

*Previously called NH0005C

External Current Limiting

Integrator With Bias Current Compensation

Supply Voltage
Power Dissipation (see Curve)
Differential Input Voltage
Input Voltage
Peak Load Current
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 10 sec)

±20V 400 mW ±15V Equal to supply voltages ±100 mA -55°C to +125°C 0°C to 85°C 300°C

electrical characteristics

			LH0005C			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
			(Note 2)			
Input Offset Voltage	$R_{S} \leq 20 \text{ k}\Omega$		3	10	mV	
Input Offset Current	/		5	25	nA	
Input Bias Current			20	100	nA	
Large Signal Voltage Gain	$R_L = 10K, R2 = 3K, V_{OUT} = \pm 5V$	2	5		V/mV	
Output Voltage Swing	$R_{L} = 10 \text{ k}\Omega$ $R_{L} = 100\Omega$	-10 -4	±6	+6 +4	V V	
Input Resistance	$T_A = 25^{\circ}C$	0.5	2		ΩМ	
Common Mode Rejection Ratio	$V_{IN} = \pm 4V, R_S \le 20 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$	50	60		dB	
Power Supply Rejection Ratio	$T_A = 25^{\circ}C$	50	60		dB	
Supply Current (+)			3	5	mA	
Supply Current (-)			2	4	mA	

Note 1: These specifications apply for pin 6 grounded, $V_S = \pm 12V$, with Resistor R1 = 200Ω in series with Capacitor C1 = 75 pF from pin 4 to ground, and C2 = 200 pF between pins 9 and 10, over the temperature range of 0° C to +85 $^{\circ}$ C unless otherwise specified.

Note 2: Typical values are for 25°C only.

Maximum Power Dissipation

LH0020/LH0020C* high gain instrumentation operational amplifier

general description

The LH0020/LH0020C is a general purpose operational amplifier designed to source and sink 50 mA output currents. In addition to its high output capability, the LH0020/LH0020C exhibits excellent open loop gain, typically in excess of 100 dB. The parameters of the LH0020 are guaranteed over the temperature range of -55°C to $+125^{\circ}\text{C}$ and $\pm15\text{V} \leq \text{V}_{\text{S}} \leq \pm22\text{V}$, while those of the LH0020C are guaranteed over the temperature range of 0°C to 85°C and $\leq\pm5\text{V} \leq \text{V}_{\text{S}} \leq \pm18\text{V}$. Additional features include:

■ Low offset voltage typically 1.0 mV at 25°C over the entire common mode voltage range.

- Low offset current typically 10 nA at 25°C for the LH0020 and 30 nA for the LH0020C.
- Offset voltage is adjustable to zero with a single potentiometer.
- ±14V, 50 mA output capability.

Output current capability, excellent input characteristics, and large open loop gain make the LH0020/LH0020C suitable for application in a wide variety of applications from precision dc power supplies to precision medium power comparator.

schematic and connection diagrams

Order Number LH0020G or LH0020CG See Package 6

typical applications

Offset Adjustment

Unity Gain Frequency Compensation

^{*}Previously called NH0020/NH0020C

Supply Voltage ±22V Power Dissipation 1.5W ±30V Differential Input Voltage Input Voltage (Note 1) ±15V Output Short Circuit Duration Continuous Operating Temperature Range LH0020 -55°C to +125°C LH0020C 0°C to 85°C Storage Temperature -65°C to +150°C Lead Temperature (Soldering, 10 sec)

electrical characteristics

PARAMETER	CONDITIONS	LH0020					LH002	UNITS		
PARAMETER		TEMP °C	MIN	TYP	MAX	TEMP °C	MIN	TYP	MAX	OWYS
Input Offset Voltage	$R_S \le 10k$	25 -55 to +125		1.0	2.5 4.0	25 0 to 85		1.0	6.0 7.5	
Input Offset Current		25 -55 to +125		10	50 100	25 0 to 85		30	200 300	nA nA
Input Bias Current		25 -55 to +125		60	250 500	25 0 to 85		200	500 800	nA nA
Supply Current	V _S = ±15V	25		3.5	5.0	25		3.6	6.0	mA
Input Resistance		25	0.6	1.0		25	0.3	1.0		MΩ
Large Signal Voltage Gain	$V_S = \pm 15V, R_L = 300\Omega, V_O = \pm 10V$ $V_S = \pm 15V, R_L = 300\Omega, V_O = \pm 10V$		100 50	300		25 0 to 85	50 30	150		V/mV V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 300\Omega$	25 -55 to +125	14.2 14.0	14.5		25 0 to 85	14.0 13.5	14.2		V V
Output Short Circuit Current	$V_S = \pm 15V$ $R_L = 0$	25		100	130	25	25	120	140	mA
Input Voltage Range	V _S = ±15V	-55 to +125	±12			0 to 85	±12			V V
Common Mode Rejection Ratio	$R_S \le 10k$	-55 to +125	90	96		0 to 85	90	96		dB
Power Supply Rejection Ratio	$R_S \leq 10k$	-55 to +125	90	96		0 to 85	90	96		dB

Note 1: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

Note 2: These specifications apply for $\pm 5 \text{V} \leq \text{V}_\text{S} \leq \pm 22 \text{V}$ for the LH0020, $\pm 5 \text{V} \leq \text{V}_\text{S} \leq \pm 18 \text{V}$ for the LH0020C, pin 9 grounded, and a 5000 pF capacitor between pins 2 and 3, unless otherwise specified.

LH0021/LH0021C 1.0 amp power operational amplifier LH0041/LH0041C 0.2 amp power operational amplifier

general description

The LH0021/LH0021C and LH0041/LH0041C are general purpose operational amplifiers capable of delivering large output currents not usually associated with conventional IC Op Amps. The LH0021 will provide output currents in excess of one ampere at voltage levels of ±12V; the LH0041 delivers currents of 200 mA at voltage levels closely approaching the available power supplies. In addition, both the inputs and outputs are protected against overload. The devices are compensated with a single external capacitor and are free of any unusual oscillation or latch-up problems.

features

Output current
 1.0 Amp (LH0021)
 0.2 Amp (LH0041)

Output voltage swing $\pm 12V$ into 10Ω (LH0021) $\pm 14V$ into 100Ω (LH0041)

Wide full power bandwidth15 kHz

Low standby power 100 mW at ±15V
 Low input offset

voltage and current

1 mV and 20 nA

■ High slew rate

3.0V/μs

High open loop gain

100 dB

The excellent input characteristics and high output capability of the LH0021 make it an ideal choice for power applications such as DC servos, capstan drivers, deflection yoke drivers, and programmable power supplies.

The LH0041 is particularly suited for applications such as torque driver for internal guidance systems, diddle yoke driver for alpha-numeric CRT displays, cable drivers, and programmable power supplies for automatic test equipment.

The LH0021 is supplied in a 8 pin TO-3 package rated at 20 watts with suitable heatsink. The LH0041 is supplied in both 12 pin TO-8 (2.5 watts with clip on heatsink) and a power 8 pin ceramic DIP (2 watts with suitable heatsink). The LH0021 and LH0041 are guaranteed over the temperature range of -55°C to +125°C while the LH0021C and LH0041C are guaranteed from -25°C to +85°C

For information on other National op amps, see listing on last page.

schematic and connection diagrams

 $^{\bullet}R_{SC}$ external on T0.8 and T0.3 packages. R_{SC} internal on "J" package Offset Null connections available only on T0.8 "G" package.

TO-3 Package

Order Number LH0021K or LH0021CK See Package 19

TO-8 Package

Order Number LH0041G or LH0041CG See Package 6

Ceramic DIP

Order Number LH0041CJ See Package 15

Supply Voltage ±18V Power Dissipation See curves Differential Input Voltage ±30V Input Voltage (Note 1) ±15V Peak Output Current (Note 2) LH0021/LH0021C 2.0 Amps LH0041/LH0041C 0.5 Amps Continuous Output Short Circuit Duration (Note 3) Operating Temperature Range LH0021/LH0041 -55° C to $+125^{\circ}$ C LH0021C/LH0041C -25° C to $+85^{\circ}$ C Storage Temperature Range -65° C to $+150^{\circ}$ C Lead Temperature (Soldering, 10 sec) 300°C

dc electrical characteristics for LH0021/LH0021C (Note 4)

PARAMETER	CONDITIONS	LH0021			LH0021C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$R_S \le 10 \text{ k}\Omega$, $T_C = 25^{\circ}C$		1.0	3.0		3.0	6.0	mV
	$R_S \le 10 \text{ k}\Omega$			5.0			7.5	mV
Voltage Drift with Temperature	$R_S \le 10 \text{ k}\Omega$		3	25		5	30	μV/°C
Offset Voltage Drift with Time			5			5		μV/week
Offset Voltage Change with Output Power			5	15		5	20	μV/watt
Input Offset Current	$T_C = 25^{\circ}C$		30	100		50	200	nA
				300			500	nA
Offset Current Drift with Temperature		1	0.1	1.0		0.2	1.0	nA/°C
Offset Current Drift with Time			2			2		nA/week
Input Bias Current	$T_C = 25^{\circ}C$		100	300		200	500	nA
				1.0			1.0	μΑ
Input Resistance	$T_C = 25^{\circ}C$	0.3	1.0		0.3	1.0		МΩ
Input Capacitance			3			3		pF
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $\Delta V_{CM} = \pm 10V$	70	90		70	90		dB
Input Voltage Range	V _S = ±15V	±12			±12			V
Power Supply Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $\Delta V_S = \pm 10 \text{V}$	80	96		70	90		dB
Voltage Gain	$V_S = \pm 15V, V_O = \pm 10V$							
_	$R_L = 1 k\Omega, T_C = 25^{\circ}C,$	100	200		100	200		V/mV
	$V_S = \pm 15V$, $V_O = \pm 10V$ $R_1 = 100\Omega$.	25			20			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 100\Omega$ $V_S = \pm 15V$, $R_L = 10\Omega$	±13.5 ±11.0	14 ±12		±13 ±10	±14 ±12		V V
Output Short Circuit Current	$V_S = \pm 15V$, $R_C = 25^{\circ}C$, $R_{SC} = 0.5\Omega$	0.8	1.2	1.6	0.8	1.2	1.6	Amps
	0	0.8			0.6			
Power Supply Current	$V_S = \pm 15V, V_{OUT} = 0$		2.5	3.5		3.0	4.0	mA
Power Consumption	$V_S = \pm 15V, V_{OUT} = 0$		75	105		90	120	mW

ac electrical characteristics for LH0021/LH0021C ($T_A = 25^{\circ}C$, $V_S = \pm 15V$, $C_C = 3000 \ pF$)

Slew Rate	A _V = +1, R _L = 100Ω	1.5	3.0		1.0	3.0		V/µs
Power Bandwidth	R _L = 100Ω		40			40		kHz
Small Signal Transient Response			0.3	1.0		0.3	1.5	μs
Small Signal Overshoot			5	20		10	30	%
Settling Time (0.1%)	$\triangle V_{IN} = 10V, A_{V} = +1$		4			4		μs
Overload Recovery Time			3			3		μs
Harmonic Distortion	f = 1 kHz, P _O = 0.5W		0.2			0.2		%
Input Noise Voltage	R_S = 50 Ω , B.W. = 10 Hz to 10 kHz		5			5		μV/rms
Input Noise Current	B.W. = 10 Hz to 10 kHz		0.05			0.05		nA/rms

dc electrical characteristics for LH0041/LH0041C (Note 4)

	CONDITIONS							
PARAMETER		LH0041			LH0041C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$R_S \le 10 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$ $R_S \le 10 \text{ k}\Omega$		1.0	3.0 5.0		3.0	6.0 7.5	mV mV
Voltage Drift with Temperature	$R_S \leq 10 \ k\Omega$		3			5		μV/°C
Offset Voltage Drift with Time			5			5		$\mu V/week$
Offset Voltage Change with Output Power			15			15		μV/watt
Offset Voltage Adjustment Range	(Note 5)		20			20		mV
Input Offset Current	$T_A = 25^{\circ}C$		30	100 300		50	200 500	nA nA
Offset Current Drift with Temperature			0.1	1.0		0.2	1.0	nA/°C
Offset Current Drift with Time			2			2		nA/week
Input Bias Current	$T_A = 25^{\circ}C$		100	300 1.0		200	500 1.0	nΑ μΑ
Input Resistance	$T_A = 25^{\circ}C$	0.3	1.0		0.3	1.0		МΩ
Input Capacitance			3			3		pF
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $\Delta V_{CM} = \pm 10 \text{V}$	70	90		70	90		dB
Input Voltage Range	V _S = ±15V	±12			±12			V
Power Supply Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $\Delta V_S = \pm 10 \text{V}$	80	96		70	90		dB
Voltage Gain	$V_S = \pm 15V$, $V_O = \pm 10V$ $R_L = 1 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$ $V_S = \pm 15V$, $V_O = \pm 10V$ $R_L = 100\Omega$	100	200		100	200		V/mV V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 100\Omega$	±13.0	14.0		±13.0	±14.0		V
Output Short Circuit Current	$V_S = \pm 15V$, $T_A - 25^{\circ}C$ (Note 6)		200	300		200	300	mA
Power Supply Current	$V_S = \pm 15V, V_{OUT} = 0$		2.5	3.5		3.0	4.0	mA
Power Consumption	$V_S = \pm 15V$, $V_{OUT} = 0$		75	105		90	120	mW

ac electrical characteristics for LH0041/LH0041C (T_A = 25°C, V_S = $\pm 15V$, C_C = 3000 pF)

Slew Rate	$A_V = +1$, $R_L = 100\Omega$	1.5	3.0		1.0	3.0		V/µs
Power Bandwidth	R _L = 100Ω		40			40		kHz
Small Signal Transient Response			0.3	1.0		0.3	1.5	μs
Small Signal Overshoot			5	20		10	30	%
Settling Time (0.1%)	$\triangle V_{IN} = 10V$, $A_V = +1$		4			4		μs
Overload Recovery Time	,		3			3		μs
Harmonic Distortion	f = 1 kHz, P _O = 0.5W		0.2			0.2		%
Input Noise Voltage	R_S = 50 Ω , B.W. = 10 Hz to 10 kHz		5			5		μV/rms
Input Noise Current	B.W. = 10 Hz to 10 kHz		0.05			0.05		nA/rms

Note 1: Rating applies for supply voltages above $\pm 15V$. For supplies less than $\pm 15V$, rating is equal to supply voltage.

Note 2: Rating applies for LH0041G and LH0021K with R_{SC} = 0Ω .

Note 3: Rating applies as long as package power rating is not exceeded.

Note 4: Specifications apply for $\pm 5V \le V_S \pm 18V$, and $-55^{\circ}C \le T_C = \le 125^{\circ}C$ for LH0021K and LH0041G, and $-25^{\circ}C \le T_C \le +85^{\circ}C$ for LH0021CK, LH0041CG and LH0041CJ unless otherwise specified. Typical values are for $25^{\circ}C$ only.

Note 5: TO-8 "G" packages only.

Note 6: Rating applies for "J" DIP package and for TO-8 "G" package with R_{SC} = 3.3 ohms.

typical performance characteristics

typical performance characteristics (con't)

typical applications

Programmable One Amp Power Supply

35 WATT (rms) Audio Amplifier

typical applications (con't)

Dual Tracking One Amp Power Supply

CRT Deflection Yoke Driver

Two Way Intercom

Programmable High Current Source/Sink

Power Comparator

DC Servo Amplifier

auxiliary circuits

LH0021 Unity Gain Circuit with Short Circuit Limiting

LH0041G Unity Gain with Short Circuit Limiting

LH0041/LH0021 Offset Voltage Null Circuit (LH0041CJ Pin Connections Shown)*

LH0041G Offset Voltage Null Circuit

Operation from Single Supplies*

Operation from Non-Symmetrical Supplies

^{*}For additional offset null circuit techniques see National Linear Applications Handbook.

Operational Amplifiers

LH0052/LH0052C

LH0022/LH0022C* high performance FET op amp LH0042/LH0042C low cost FET op amp precision FET op amp

general description

The LH0022/LH0042/LH0052 are a family of FET input operational amplifiers with very closely matched input characteristics, very high input impedance, and ultra-low input currents with no compromise in noise, common mode rejection ratio, open loop gain, or slew rate. The internally laser nulled LH0052 offers 200 microvolts maximum offset and 5 $\mu V/^{\circ}C$ offset drift. Input offset current is less than 100 femtoamps at room temperature and 100 pA maximum at 125°C. The LH0022 and LH0042 are not internally nulled but offer comparable matching characteristics. All devices in the family are internally compensated and are free of latch-up and unusual oscillation problems. The devices may be offset nulled with a single 10k trimpot with neglible effect in offset drift or CMRR.

The LH0022, LH0042 and LH0052 are specified for operation over the -55°C to +125°C military temperature range. The LH0022C, LH0042C and LH0052C are specified for operation over the -25°C to +85°C temperature range.

features

■ Low input offset current — 100 femtoamps max. (LH0052)

- Low input offset drift $-5\mu V/^{\circ}C$ max (LH0052)
- Low input offset voltage 100 microvolts-typ.
- High open loop gain 100 dB typ.
- Excellent slew rate $-3.0 \text{ V}/\mu\text{s}$ typ.
- Internal 6 dB/octave frequency compensation
- Pin compatible with standard IC op amps (TO-5 package)

The LH0022/LH0042/LH0052 family of IC op amps are intended to fulfill a wide variety of applications for process control, medical instrumentation, and other systems requiring very low input currents and tightly matched input offsets. The LH0052 is particularly suited for long term high accuracy integrators and high accuracy sample and hold buffer amplifiers. The LH0022 and LH0042 provide low cost high performance for such applications as electrometer and photocell amplification, pico-ammeters, and high input impedance buffers.

Special electrical parameter selection and custom built circuits are available on special request.

For additional application information and information on other National operational amplifiers, see Available Linear Applications Literature.

schematic and connection diagrams

*Previously Called NH0022/NH0022C

absolute maximum ratings

Supply Voltage ±22V Power Dissipation (see graph) 500 mW ±15V Input Voltage (Note 1) Differential Input Voltage (Note 2) ±30V Voltage Between Offset Null and V ±0.5V Short Circuit Duration Continuous Operating Temperature Range LH0022, LH0042, LH0052 -55° C to $+125^{\circ}$ C LH0022C, LH0042C, LH0052C -25° C to $+85^{\circ}$ C -65° C to $+150^{\circ}$ C Storage Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

dc electrical characteristics For LH0022/LH0022C (Note 3)

				LIN	NITS			
PARAMETER	CONDITIONS		LH0022			LH00220		UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$R_S \le 100 \text{ k}\Omega$; $T_A = 25^{\circ}\text{C}$		2.0	4.0		3.5	6.0	mV
	$R_S \le 100 \text{ k}\Omega$			5.0			10.0	mV
Temperature Coefficient of Input Offset Voltage	$R_S \le 100 \text{ k}\Omega$		5	10		5	15	μV/°C
Offset Voltage Drift with Time			3			4		μV/week
Input Offset Current	T _A = 25°C		0.2	2.0		1.0	5.0	pA
				200			200	pA
Temperature Coefficient of Input Offset Current		Dou	, ibles every	20°C	Dou	bles every	20°C	
Offset Current Drift with Time			0.1			0.1		pA/week
Input Bias Current	T _A = 25°C		5	10		10	25	pA
				1.0			1.0	nA
Temperature Coefficient of Input Bias Current		Dou	, ibles every 	20°C	Dou	bles every	20°C	
Differential Input Resistance			10 ¹²			10 ¹²		Ω
Common Mode Input Resistance			10 ¹²			10 ¹²		Ω
Input Capacitance			4.0			4.0		pF
Input Voltage Range	V _S = ±15V	±12	±13.5		±12	±13.5		V
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $V_{IN} = \pm 10V$	80	90		70	90		dB
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega, \pm 5V \le V_S \le \pm 15V$	80	90		70	90		dB
Large Signal Voltage Gain	$R_L = 2 k\Omega$, $V_{OUT} = \pm 10V$, $T_A = 25^{\circ}C$, $V_S = \pm 15V$	100	200		75	160		V/mV
	$R_L = 2 k\Omega$, $V_{OUT} = \pm 10V$, $V_S = \pm 15V$	50			50			V/mV
Output Voltage Swing	$R_L = 1 k\Omega, T_A = 25^{\circ}C,$ $V_S = \pm 15V$	±10	±12.5		±10	±12		V
	$R_L = 2 k\Omega, V_S = \pm 15V$	±10			±10			V
Output Current Swing	V _{OUT} = ±10V, T _A = 25°C	±10	±15		±10	±15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current			25			25		mA
Supply Current	V _S = ±15V		2.0	2.5		2.4	2.8	mA
Power Consumption	V _S = ±15V			75			85	mW

dc electrical characteristics for LH0042/LH0042C

 $(T_A = 25^{\circ}C, V_S = \pm 15V; \text{ unless otherwise specified})$

				LIM	ITS			
PARAMETER	CONDITIONS		LH0042			LH0042C		UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage R _S	$_{S} \le 100 \text{ k}\Omega; \pm 5 \text{V} \le \text{V}_{S} \le 20 \text{V}$		5.0	20		6.0	20	mV
Temperature Coefficient of R _S	s ≤ 100 kΩ		5	20		10	25	μV/°C
Offset Voltage Drift with Time			7			10		μV/week
Input Offset Current			1	5		2	10	pA
Temperature Coefficient of Input Offset Current		Dou	bles every 2	20°C	Dou	bles every	20°C I	
Offset Current Drift with Time			0.1			0.1		pA/week
Input Bias Current			10	25		15	50	pA
Temperature Coefficient of Input Bias Current		Dou	bles every 2	20°C	Dou	bles every	20°C	
Differential Input Resistance			10 ¹²			10 ¹²		Ω
Common Mode Input Resistance			10 ¹²			10 ¹²		Ω
Input Capacitance			4.0			4.0		pF
Input Voltage Range		±12	±13.5		±12	±13.5		V
Common Mode Rejection Ratio R _S	$_{\rm S}$ \leq 10 k Ω , $V_{\rm IN}$ = \pm 10 V	70	86		70	80		dB
Supply Voltage Rejection Ratio R _S	$_{\mathrm{S}} \leq$ 10 k Ω , \pm 5V \leq V $_{\mathrm{S}} \leq$ \pm 15V	70	86		70	80		dB
Large Signal Voltage Gain R _L	$_{L}$ = 1 k Ω , V_{OUT} = ±10 V	50	150		25	100		V/mV
Output Voltage Swing R ₁	L = 1 kΩ	±10	±12.5		±10	±12		V
Output Current Swing Vo	OUT = ±10V	±10	±15		±10	±15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current			20			20		mA
Supply Current			2.5	3.5		2.8	4.0	mA
Power Consumption				105			120	mW

dc electrical characteristics For LH0052/LH0052C (Note 3)

				LIN	MITS			
PARAMETER	CONDITIONS		LH0052			LH00520	0	UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$R_S \le 100 \text{ k}\Omega$; $V_S = \pm 15V$, $T_A = 25^{\circ}\text{C}$		0.1	0.5		0.2	1.0	mV
	$R_S \le 100 \text{ k}\Omega$, $V_S = \pm 15V$			1.0			1.5	mV
Temperature Coefficient of Input Offset Voltage	$R_S \leq 100 \; k\Omega$		2	5		5	10	μV/°C
Offset Voltage Drift with Time			2			4		μV/week
Input Offset Current	T _A = 25°C		0.01	0.1		0.02	0.2	pA
				100			100	pA
Temperature Coefficient of Input Offset Current		Dou	bles every	20°C	Dou	bles every	20°C	
Offset Current Drift with Time			<0.1			<0.1		pA/week
Input Bias Current	T _A = 25°C		0.5	1.0		1.0	5.0	pA
				500			500	pA
Temperature Coefficient of Input Bias Current		Dou	bles every	20°C	Dou	bles every	20°C	
Differential Input Resistance			10 ¹²			10 ¹²		Ω
Common Mode Input Resistance			10 ¹²			10 ¹²		Ω
Input Capacitance			4.0			4.0		pF
Input Voltage Range	V _S = ±15V	±12	±13.5		±12	±13.5		V
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $V_{IN} = \pm 10 \text{V}$	80	90		76	90		dB
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $\pm 5V \le V_S \le \pm 15V$	80	90		76	90		dB
Large Signal Voltage Gain	$R_L = 2 \text{ k}\Omega$, $V_{OUT} = \pm 10V$, $V_S = \pm 15V$, $T_A = 25^{\circ}\text{C}$	100	200		75	160		V/mV
	$R_L = 2 k\Omega, V_{OUT} = \pm 10V,$ $V_S = \pm 15V$	50			50			V/mV
Output Voltage Swing	$R_L = 1 k\Omega, T_A = 25^{\circ}C$ $V_S = \pm 15V$	±10	±12.5		±10	±12		V
	$R_L = 2 k\Omega$, $V_S = \pm 15V$	±10			±10			V
Output Current Swing	$V_{OUT} = \pm 10V$, $T_A = 25^{\circ}C$	±10	±15		±10	±15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current			25			25		mA
Supply Current	V _S = ±15V		2.0	2.5		2.5	3.0	mA
Power Consumption	V _S = ±15V			75			90	mW

ac electrical characteristics For all amplifiers ($T_A = 25^{\circ}C$, $V_S = \pm 15V$)

				1.184	ITC			
				LIM	115			
PARAMETER	CONDITIONS	LH	0022/42/	52	LH0	022C/42C	/52C	UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Slew Rate	Voltage Follower	1.5	3.0		1.0	3.0		V/μs
Large Signal Bandwidth	Voltage Follower		40			40		kHz
Small Signal Bandwidth			1.0			1.0		MHz
Rise Time			0.3	1.5		0.3	1.5	μs
Overshoot	~		10	30		15	40	%
Settling Time (0.1 %)	$\triangle V_{IN} = 10V$		4.5			4.5		μs
Overload Recovery			4.0			4.0		μs
Input Noise Voltage	$R_S = 10 \text{ k}\Omega$, $f_o = 10 \text{ Hz}$		150			150		nV/√Hz
Input Noise Voltage	$R_S = 10 \text{ k}\Omega$, $f_o = 100 \text{ Hz}$		55			55		nV/√Hz
Input Noise Voltage	$R_S = 10 \text{ k}\Omega$, $f_o = 1 \text{ kHz}$		35			35		nV/√Hz
Input Noise Voltage	$R_S = 10 \text{ k}\Omega$, $f_o = 10 \text{ kHz}$		30			30		nV/√Hz
Input Noise Voltage	BW = 10 Hz to 10 kHz, R_S = 10 k Ω		12			12		μVrms
Input Noise Current	BW = 10 Hz to 10 kHz		<.1			<.1		pArms

Note 1: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage,

Note 2: Rating applies for minimum source resistance of $10~k\Omega$, for source resistances less than $10~k\Omega$, maximum differential input voltage is ±5V.

Note 3: Unless otherwise specified, these specifications apply for :5V \le V_S \le :20V and -55°C \le T_A \le :125°C for the LH0022C, LH0042 and LH0052 and -25°C \le T_A +85°C for the LH0022C, LH0042C and LH0052C. Typical values are given for T_A = 25°C.

auxiliary circuits (shown for TO-5 pin out)

INPUT TOOK 2 FET 6 OUTPUT OP AMP 6 OUTPUT Note: All diodes are ultra low leakage

Offset Null

Protecting Inputs From ± 150V Transients

Boosting Output Drive to ±100 mA

typical applications

Precision Voltage Comparator

typical applications (con't)

Picoamp Amplifier for pH Meters and Radiation Detectors

Precision Subtractor for Automatic Test Gear

Sensitive Low Cost "VTVM"

Ultra Low Level Current Source

True Instrumentation Amplifier

Precision Integrator

Precision Sample and Hold

Re-Zeroing Amplifier

typical performance characteristics (con't)

Operational Amplifiers

LH0023/LH0023C, LH0043/LH0043C sample and hold circuits

general description

The LH0023/LH0023C and LH0043/LH0043C are complete sample and hold circuits including input buffer amplifier. FET output amplifier, analog signal sampling gate, TTL compatible logic circuitry and level shifting. They are designed to operate from standard ±15V DC supplies, but provision is made on the LH0023/LH0023C for connection of a separate +5V logic supply in minimum noise applications. The principal difference between the LH0023/LH0023C and the LH0043/LH0043C is a 10:1 trade-off in performance on sample accuracy vs sample acquisition time. Devices are pin compatible except that TTL logic is inverted between the two types.

The LH0023/LH0023C and LH0043/LH0043C are ideally suited for a wide variety of sample and hold applications including data acquisition, analog to digital conversion, synchronous demodulation, and automatic test setup. They offer significant cost and size reduction over equivalent module or discrete designs. Each device is available in a hermetic TO-8 package and are completely specified over both full military and instrument temperature ranges.

The LH0023 and LH0043 are specified for operation over the -55°C to +125°C military temperature range. The LH0023C and LH0043C are specified for operation over the -25°C to +85°C temperature range.

For information on other National analog products, see Available Linear Applications Literature.

features

LH0023/LH0023C

- Sample accuracy -0.01% max
- Hold draft rate—0.5 mV/sec typ
- Sample acquisition time—100 μs max for 20V
- Aperture time—150 ns typ
- Wide analog range-±10V min
- Logic input-TTL/DTL
- Offset adjustable to zero with single 10k pot
- Output short circuit proof

features

LH0043/LH0043C

- Sample acquisition time-15 μs max for 20V 4 μs typ for 5V
- Aperture time-20 nS typ
- Hold drift rate-1 mV/sec typ
- Sample accuracy-0.1% max
- Wide analog range-±10V min
- Logic input-TTL/DTL
- Offset adjustable to zero with single 10k pot
- Output short circuit proof

block and connection diagrams

Order Number LH0023G or LH0023CG or LH0043G or LH0043CG See Package 6

absolute maximum ratings

Supply Voltage (V⁺ and V⁻) ±20V Logic Supply Voltage (V_{CC}) LH0023, LH0023C +7.0V Logic Input Voltage (V₆)
Analog Input Voltage (V₅) +5.5V ±15V Power Dissipation See graph Output Short Circuit Duration Continuous Operating Temperature Range LH0023, LH0043 -55° C to $+125^{\circ}$ C LH0023C, LH0043C -25°C to +85°C -65° C to $+150^{\circ}$ C Storage Temperature Range Lead Soldering (10 sec) 300°C

electrical characteristics LH0023/LH0023C (Note 1)

				LIN	/IITS			
PARAMETER	CONDITIONS		LH0023			LH0023C		UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Sample (Logic "1") Input Voltage	V _{CC} = 4.5V	2.0			2.0			V
Sample (Logic "1") Input Current	$V_6 = 2.4V, V_{CC} = 5.5V$			5.0			5.0	μА
Hold (Logic ''0'') Input Voltage	V _{CC} = 4.5V			0.8			0.8	V
Hold (Logic ''0'') Input Current	$V_6 = 0.4V$, $V_{CC} = 5.5V$			0.5			0.5	mA
Analog Input Voltage Range		±10	±11		±10	±11		V
Supply Current - I ₁₀	$V_5 = 0V, V_6 = 2V, V_{11} = 0V$		4.5	6		4.5	6	mA
Supply Current - I ₁₂	$V_5 = 0V, V_6 = 0.4V, V_{11} = 0V$		4.5	6		4.5	6	mA
Supply Current - I ₈	$V_8 = 5.0V, V_5 = 0$		1.0	1.6		1.0	1.6	mA
Sample Accuracy	$V_{OUT} = \pm 10V$ (Full Scale)		0.002	0.01		0.002	0.01	%
DC Input Resistance	Sample Mode Hold Mode	500 20	1000 25		300 20	1000 25		kΩ kΩ
Input Current - I ₅	Sample Mode		0.2	1.0		0.3	1.5	μΑ
Input Capacitance			3.0			3.0		pF
Leakage Current — pin 1	$V_5 = \pm 10V; V_{11} = \pm 10V,$ $T_A = 25^{\circ}C$		100	200		200	500	pA
	$V_5 = \pm 10V; V_{11} = \pm 10V$		0.6	1.0		1.0	2	nΑ
Drift Rate	$V_{OUT} = \pm 5V, C_S = 0.01 \mu F,$ $T_A = 25^{\circ}C$		0.5			0.5		mV/s
Drift Rate	$V_{OUT} = \pm 10V,$ $C_S = 0.01 \mu\text{F}, T_A = 25^{\circ}\text{C}$		10	20		20	50	mV/s
Drift Rate	V _{OUT} = ±10V, C _S = 0.01 μF			0.1			0.2	mV/m
Aperture Time			150			150		ns
Sample Acquisition Time	$\Delta V_{OUT} = 20V,$ $C_S = 0.01 \mu\text{F}$		50	100		50	100	μs
Output Amplifier Slew Rate		1.5	3.0		1.5	3.0		V/μs
Output Offset Voltage (without null)	$R_{S} \leq 10k$, $V_{5} = 0V$, $V_{6} = 0V$			±20			±20	mV
Analog Voltage	$R_L \ge 1k$, $T_A = 25^{\circ}C$	±10	±11		±10	±11		V
Output Range	$R_L \ge 2k$	±10	±12		±10	±12		V

NOTE 1: Unless otherwise noted, these specifications apply for $V^+ = +15V$, $V_{CC}^- = +5V$, $V^- = -15V$, pin 9 grounded, a 0.01 μ F capacitor connected between pin 1 and ground over the temperature range -55° C to $+125^{\circ}$ C for the LH0023, and -25° C to $+125^{\circ}$ C for the LH0023C. All typical values are for $T_A = 25^{\circ}$ C.

electrical characteristics LH0043/LH0043C: (Note 2)

			1110075	LI	MITS	11100455		-
PARAMETER	CONDITIONS		LH0043			LH0043C		UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Hold (Logic "1") Input Voltage		2.0			2.0			V
Hold (Logic "1") Input Current	$V_6 = 2.4V$			5.0			5.0	μΑ
Sample (Logic "0") Input Voltage				0.8			0.8	V
Sample (Logic "0") Input Current	$V_6 = 0.4V$			1.5			1.5	mA
Analog Input Voltage Range		±10	±11		±10	±11		V
Supply Current	$V_5 = 0V$, $V_6 = 2V$, $V_{11} = 0V$ $V_5 = 0V$, $V_6 = 0.4V$, $V_{11} = 0V$		20 14	22 18		20 14	22 18	mA mA
Sample Accuracy	V _{OUT} = ±10V (Full Scale)		0.02	0.1		0.02	0.3	%
DC Input Resistance	$T_C = 25^{\circ}C$	10 ¹⁰	10 ¹²		10 ¹⁰	10 ¹²		Ω
Input Current - I ₅			1.0	5.0		2.0	10.0	nA
Input Capacitance			1.5			1.5		pF
Leakage Current— pin 1	$V_5 = \pm 10V; V_{11} = \pm 10,$ $T_C = 25^{\circ}C$		10	25		20	50	рА
	$V_5 = \pm 10V; V_{11} = \pm 10V$		10	25		2	5	nΑ
Drift Rate	$V_{OUT} = \pm 10V$, $C_S = 0.001 \mu F$, $T_A = 25^{\circ}C$		10	25		20	50	mV/s
Drift Rate	$V_{OUT} = \pm 10V, C_S = 0.001 \mu F$		10	25		2	5	mV/ms
Drift Rate	$V_{OUT} = \pm 10V$, $C_S = 0.01 \mu F$, $T_A = 25^{\circ}C$		1	2.5		2	5	mV/s
Drift Rate	$V_{OUT} = \pm 10V$, $C_S = 0.01 \mu F$		1	2.5		0.2	0.5	mV/ms
Aperture Time			20	60		20	60	ns
Sample Acquisition Time	$\begin{array}{l} \Delta V_{OUT} = 20V, C_S = 0.001\mu\text{F} \\ \Delta V_{OUT} = 20V, C_S = 0.01\mu\text{F} \\ \Delta V_{OUT} = 5V, C_S = 0.001\mu\text{F} \end{array}$		10 30 4	15 50	,	10 30 4	15 50	μs μs μs
Output Amplifier Slew Rate	$V_{OUT} = 5V, C_S = 0.001 \mu\text{F}$	1.5	3.0		1.5	3.0		V/μs
Output Offset Voltage (without null)	$R_S \leq$ 10k, $V_5 = 0V$, $V_6 = 0V$			±40			±40	mV
Analog Voltage Output Range	$R_L \ge 1k$, $T_A = 25^{\circ}C$ $R_L \ge 2k$	±10 ±10	±11 ±12		±10 ±10	±11 ±12		V

Note 2: Unless otherwise noted, these specifications apply for $V^+ = +15V$, $V^- = -15V$, pin 9 grounded, a 5000 pF capacitor connected between pin 1 and ground over the temperature range -55° C to $+125^{\circ}$ C for the LH0043, and -25° C to $+125^{\circ}$ C for the LH0043. All typical values are for $+125^{\circ}$ C for the LH0043.

typical performance characteristics

Sample Acquisition

typical applications

How to Build a Sample and Hold Module

typical applications (con't)

Forcing Function Setup for Automatic Test Gear

*See op. amp. selection guide for details. Most popular types include LH0052, LH1725, LM108, LM112 and LM116.

Data Acquisition System

Single Pulse Sampler

Two Channel Double Sideband Demodulator

applications information

1.0 Drift Error Minimization

In order to minimize drift error, care in selection of $\mathrm{C_S}$ and layout of the printed circuit board is required. The capacitor should be of high quality Teflon, polycarbonate, or polystyrene construction. Board cleanliness and layout are critical particularly at elevated temperatures. See AN-63 for detailed recommendations. A guard conductor connected to the output surrounding the storage node (pin 1) will be helpful in meeting severe environmental conditions which would otherwise cause leakage across the printed circuit board.

2.0 Capacitor Selection

The size of the capacitor is dictated by the required drift rate and acquisition time. The drift is determined by the leakage current at pin 1 and may be calculated by $\frac{dV}{dt} = \frac{I_L}{C_S}$, where I_L is the total leakage current at pin 1 of the device, and C_S is the value of the storage capacitor.

2.1 Capacitor Selection - LH0023

At room temperature leakage current for the LH0023 is approximately 100 pA. A drift rate of 10 mV/sec would require a 0.01 μ F capacitor.

For values of C_S up to 0.01 μF the acquisition time is limited by the slew rate of the input buffer amplifier, A1, typically 0.5 V/ μs . Beyond this point, current availability to charge C_S also enters the picture. The acquisition time is given by:

$$t_A \cong \sqrt{\frac{2\Delta e_O RC_S}{0.5 \times 10^6}} = 2 \times 10^{-3} \sqrt{\Delta e_O RC_S}$$

where: R = the internal resistance in series with C_S

 Δe_{O} = change in voltage sampled

An average value for R is approximately 600 ohms. The expression for t_{Δ} reduces to:

$$t_A \cong \frac{\sqrt{\Delta e_O C_S}}{20}$$

For a -10V to +10V change and $C_S = .05~\mu F$, acquisition time is typically $50~\mu s$.

2.2 Capacitor Selection-LH0043

At 25° C case temperature, the leakage current for the LH0043G is approximately 10 pA, so a drift rate of 5 mV/s would require a capacitor of $C_S = 10 \cdot 10^{-12}/5 \cdot 10^{-3} = 2000$ pF or larger.

For values of C_S below about 5000 pF, the acquisition time of the LH0043G will be limited by the slew rate of the output amplifier (the signal will be acquired, in the sense that the voltage

will be stored on the capacitor, in much less time as dictated by the slew rate and current capacity of the input amplifier, but it will not be available at the output). For larger values of storage capacitance, the limitation is the current sinking capability of the input amplifier, typically 10 mA. With $C_S = 0.01~\mu\text{F}$, the slew rate can be estimated by $\frac{dV}{dt} = \frac{10 \cdot 10^{-3}}{0.01 \cdot 10^{-6}} = 1 \text{V}/\mu\text{s}$ or a slewing time for a 5 volt signal change of $5\mu\text{s}$.

3.0 Offset Null

Provision is made to null both the LH0023 and LH0043 by use of a 10k pot between pins 3 and 4. Offset null should be accomplished in the sample mode at one half the input voltage range for minimum average error.

4.0 Switching Spike Minimization-LH0043

A capacitive divider is formed by the storage capacitor and the capacitance of the internal FET switch which causes a small error current to be injected into the storage capacitor at the termination of the sample interval. This can be considered a negative DC offset and nulled out as described in (3.0), or the transient may be nulled by coupling an equal but opposite signal to the storage capacitor. This may be accomplished by connecting a capacitor of about 30 pF (or a trimmer) between the logic input (pin 6) and the storage capacitor (pin 1). Note that this capacitor must be chosen as carefully as the storage capacitor itself with respect to leakage. The LH0023 has switch spike minimization circuitry built into the device.

5.0 Elimination of the 5V Logic Supply-LH0023

The 5V logic supply may be eliminated by shorting pin 7 to pin 8 which connects a 10k dropping resistor between the +15V and V $_{\rm C}$. Decoupling pin 8 to ground through 0.1 $\mu{\rm F}$ discreapacitor is recommended in order to minimize transients in the output.

6.0 Heat Sinking

The LH0023 and LH0043G may be operated without damage throughout the military temperature range of -55 to +125°C (-25 to +85°C for the LH0023CG and LH0043CG) with no explicit heat sink, however power dissipation will cause the internal temperature to rise above ambient. A simple clip-on heat sink such as Wakefield #215-1.9 or equivalent will reduce the internal temperature about 20°C thereby cutting the leakage current and drift rate by one fourth at max. ambient. There is no internal electrical connection to the case, so it may be mounted directly to a grounded heat sink.

7.0 Theory of Operation-LH0023

The LH0023/LH0023C is comprised of input buffer amplifier, A1, analog switches, S1 and S2, a

applications information (con't)

TTL to MOS level translator, and output buffer amplifier, A2. In the "sample" mode, the logic input is raised to logic "1" $(V_6 \geq 2.0V)$ which opens S1 and closes S2. Storage capacitor, $C_{\rm S}$, is charged to the input voltage through S2 and the output slews to the input voltage. In the "hold" mode, the logic input is lowered to logic "0" $(V_6 \leq 0.8V)$ opening S2 and closing S1. $C_{\rm S}$ retains the sample voltage which is applied to the output via A2. Since S1 is closed, the input signal is overridden, and leakage across the MOS switch is therefore minimized. With S2 open, drift is primarily determined by input bias current of A2, typically 100 pA at 25°C.

7.1 Theory of Operation-LH0043

The LH0043/LH0043C is comprised of input buffer amplifier A1, FET switch S1 operated by a TTL compatible level translator, and output buffer amplifier A2. To enter the "sample" mode, the logic input is taken to the TTL logic "0" state $(V_6=0.8V)$ which commands the switch S1

closed and allows A1 to make the storage capacitor voltage equal to the analog input voltage. In the ''hold'' mode ($V_6 = 2.0V$), S1 is opened isolating the storage capacitor from the input and leaving it charged to a voltage equal to the last analog input voltage before entering the hold mode. The storage capacitor voltage is brought to the output by low leakage amplifier A2.

8.0 Definitions

V₅: The voltage at pin 5, e.g., the analog input voltage.

76: The voltage at pin 6, e.g., the logic control input signal.

V₁₁: The voltage at pin 11, e.g., the output signal.

 T_{Δ} : The temperature of the ambient air.

T_C: The temperature of the device case at the center of the bottom of the header.

Acquisition Time:

The time required for the output (pin 11) to settle within the rated accuracy after a specified input change is applied to the input (pin 5) with the logic input (pin 6) in the low state.

Aperture Time:

The time indeterminacy when switching from sample mode to hold including the delay from the time the mode control signal (pin 6) passes through its threshold (1.4 volts) to the time the circuit actually enters the hold mode.

Output Offset Voltage:

The voltage at the output terminal (pin 11) with the analog input (pin 5) at ground and logic input (pin 6) in the "sample" mode. This will always be adjustable to zero using a 10k pot between pins 3 and 4 with the wiper arm returned to V.

Operational Amplifiers

LH0024/LH0024C high slew rate operational amplifier

general description

The LH0024/LH0024C is a very wide bandwidth, high slew rate operational amplifier intended to fulfill a wide variety of high speed applications such as buffers to A to D and D to A converters and high speed comparators. The device exhibits useful gain in excess of 50 MHz making it possible to use in video applications requiring higher gain accuracy than is usually associated with such amplifiers.

features

- Very high slew rate $-500 \text{ V}/\mu\text{s}$ at Av = +1
- Wide small signal bandwidth 70 MHz
- Wide large signal bandwidth 15 MHz
- High output swing ±12V into 1K

- Offset null with single pot
- Low input offset 2 mV
- Pin compatible with standard IC op amps

The LH0024/LH0024C's combination of wide bandwidth and high slew rate make it an ideal choice for a variety of high speed applications including active filters, oscillators, and comparators as well as many high speed general purpose applications.

The LH0024 is guaranteed over the temperature range -55° C to $+125^{\circ}$ C, whereas the LH0024C is guaranteed -25° C to $+85^{\circ}$ C.

For information on other National operational amplifiers, see listing on last page.

schematic and connection diagrams

Metal Can Package

Thermalloy 2230-5 series.

Order Number LH0024H or LH0024CH
See Package 11

typical applications

TTL Compatible Comparator

V_{0.1.7} V₀

Offset Null

Video Amplifier

absolute maximum ratings

Lead Temperature (Soldering, 10 sec)

 Supply Voltage
 ±18V

 Input Voltage
 Equal to Supply

 Differential Input Voltage
 ±5V

 Power Dissipation
 600 mW

 Operating Temperature Range
 LH0024
 -55°C to +125°C

 Storage Temperature Range
 -65°C to +150°C

dc electrical characteristics (Note 1)

PARAMETER	CONDITIONS	l	_H0024			LH0024C		LINUTE
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	$R_S = 50\Omega$, $T_A = 25^{\circ}C$ $R_S = 50\Omega$		2.0	4.0 6.0		5.0	8.0 10.0	mV mV
Average Temperature Coefficient of Input Offset Voltage	$V_S = \pm 15V$, $R_S = 50\Omega$ -55°C to 125°C		20		,	25		μV/°C
Input Offset Current	T _A = 25°C		2.0	5.0 10.0		4.0	15.0 20.0	μA μA
Input Bias Current	$T_A = 25^{\circ}C$		15	30 40		18	40 50	μA μA
Supply Current			12.5	13.5		12.5	13.5	mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $R_L = 1k$, $T_A = 25^{\circ}C$ $V_S = \pm 15V$, $R_L = 1k$	4 3	5		3 2.5	4		V/mV V/mV
Input Voltage Range	$V_S = \pm 15V$	±12	±13		±12	±13		V
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 1k$, $T_A = 25^{\circ}C$ $V_S = \pm 15V$, $R_L = 1k$	±12 ±10	±13		±10 ±10	±13		V V
Slew Rate	$V_S = \pm 15V$, $R_L = 1k$, $C_1 = C_2 = 30 \text{ pF}$ $A_V = +1$, $T_A = 25^{\circ}\text{C}$	400	500		250	400		V/μs
Common Mode Rejection Ratio	$V_S = \pm 15V$, $\triangle V_{IN} = \pm 10V$ $R_S = 50\Omega$		60			60		dB
Power Supply Rejection Ratio	$\pm 5V \le V_S \le \pm 18V$ $R_S = 50\Omega$		60			60		dB

300°C

Note 1: These specifications apply for $\pm 5V \le V_S \le \pm 18V$ and $-55^{\circ}C$ to $+125^{\circ}C$ for the LH0024 and $-25^{\circ}C$ to $+85^{\circ}C$ for the LH0024C.

frequency compensation

TABLE I

CLOSED LOOP GAIN	C ₁	C ₂	C3
100	0	0	0
20	0	0	0
10	0	20 pF	1 pF
1	30 pF	30 pF	3 pF

Frequency Compensation Circuit

typical performance characteristics

applications information

1. Layout Considerations

The LH0024/LH0024C, like most high speed circuitry, is sensitive to layout and stray capacitance. Power supplies should be by-passed as near the device as is practicable with at least .01 μF disc type capacitors. Compensating capacitors should also be placed as close to device as possible.

2. Compensation Recommendations

Compensation schemes recommended in Table 1 work well under typical conditions. However, poor layout and long lead lengths can degrade the performance of the LH0024 or cause the device to oscillate. Slight adjustments in the values for C1, C2, and C3 may be necessary for a given layout. In particular, when operating at a gain of

-1, C3 may require adjustment in order to perfectly cancel the input capacitance of the device. When operating the LH0024/LH0024C at a gain of +1, the value of R1 should be at least 1K ohm.

The case of the LH0024 is electrically isolated from the circuit; hence, it may be advantageous to drive the case in order to minimize stray capacitances.

3. Heat Sinking

The LH0024/LH0024C is specified for operation without the use of an explicit heat sink. However, internal power dissipation does cause a significant temperature rise. Improved offset voltage drift can be obtained by limiting the temperature rise with a clip-on heat sink such as the Thermalloy 2228B or equivalent.

Operational Amplifiers

LH0032/LH0032C ultra fast FET operational amplifier

 $10^{12}\Omega$

general description

The LH0032/LH0032C is a high slew rate, high input impedance differential operational amplifier suitable for diverse application in fast signal handling. The high allowable differential input voltage, ease of output clamping, and high output drive capability particularly suit it for comparator applications. It may be used in applications normally reserved for video amplifiers allowing the use of operational gain setting and frequency response shaping into the megahertz region.

features

 High slew rate 500 V/μs 70 MHz

 High bandwidth High input impedance Low input bias current

20 pA max

Offset null with single pot

 Low input offset voltage 2 mV max

No compensation for gains above 50

The LH0032's wide bandwidth, high input impedance and high output capacity make it an ideal choice for applications such as summing amplifiers in high speed D to A's, buffers in data acquisition systems, and sample and hold circuits. Additional applications include high speed integrators and video amplifiers. The LH0032 is guaranteed over the temperature range -55°C to +125°C and the LH0032C is guaranteed from -25°C to +85°C.

For information on other National operational amplifiers, see listing on last page.

schematic and connection diagrams

Metal Can Package

Note: For heat sink use thermalloy 2240 series or Wakefield 215-XX series Order Number LH0032G or LH0032CG See Package 6

typical applications

1 MHz Function Generator

DC to Video Log Amplifier

Note: All diodes must be low stored charge, high speed. Decouple power supplies at each amp with $0.01\mu F$ ceramic discs

absolute maximum ratings

Supply Voltage $$\pm 18 \rm{V}$$ Input Voltage $$\pm V_{\rm{S}}$$ Differential Input Voltage $$\pm 30 \rm{V}$$ Power Dissipation See curve Operating Temperature Range LH0032 $-55^{\circ}\rm{C}$ to $+125^{\circ}\rm{C}$ Storage Temperature Range $-65^{\circ}\rm{C}$ to $+150^{\circ}\rm{C}$

Lead Temperature (Soldering, 10 sec)

dc electrical characteristics (Note 1)

242445752	CONDITIONS		LH0032	4.		LH0032	С	UNITS
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	ONITS
Input Offset Voltage	$V_S = \pm 15V$, $R_S \le 100k$, $T_A = 25^{\circ}C$		2	5		5	15	mV
	$V_S = \pm 15V, R_S \le 100k$			10			20	mV
Average Offset Voltage Drift	$R_S \leq 100k$		25			25		μV/°C
Input Bias Current	T _A = 25°C		10	100		25	200	pA
				50			15.0	nA
Input Offset Current	T _A = 25°C		5	25		10	50	pA
				25			5	nA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$, $f = 1 \text{ kHz}$ $R_L = 1 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$	60	70		60	70		dB
	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$, $f = 1$ kHz $R_L = 1$ k Ω	57			57			dB
Input Voltage Range	V _S = ±15V	±10	±12		±10	±12		V
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 1 \text{ k}\Omega$	±10	±13.5		±10	±13		V
Power Supply Rejection Ratio	$V_S = \pm 15V, \Delta V_S = \pm 10V$	50	60		50	60		dB
Common Mode Rejection Ratio	$V_S = \pm 15V, \Delta V_{1N} = 10V$	50	60		50	60		dB
Supply Current	$V_S = \pm 15V, T_A = 25^{\circ}C$		18	20		20	22	mA

300°C

ac electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Slew Rate	$A_V = +1, \Delta V_{1N} = 20V$	350	500		V/µs
Settling Time to 1% of Final Value	$A_V = -1, \Delta V_{1N} = 20V$		100		ns
Settling Time to 0.1% of Final Value	$A_V = -1, \triangle V_{1N} = 20V$		300		ns
Small Signal Rise Time	$A_V = +1$, $\triangle V_{1N} = 1V$		8	20	ns
Small Signal Delay Time	$A_V = +1$, $\triangle V_{1N} = 1V$		10	25	ns

Note 1: .These specifications apply for $\pm 5V \le V_{\mbox{S}} \le \pm 18V$ and $-55^{\circ}\mbox{C}$ to $+125^{\circ}\mbox{C}$ for the LH0032 and $-25^{\circ}\mbox{C}$ to $+85^{\circ}\mbox{C}$ for the LH0032C.

Note 2: These specifications apply for V $_S$ = ±15V, R $_L$ = 1 $k\Omega$ and T $_A$ = 25°C.

typical performance characteristics

auxiliary circuits

Output Short Circuit Protection

typical applications (con't)

Unity Gain Amplifier

10X Buffer Amplifier

100X Buffer Amplifier

High Impedance, High Speed Comparator

typical applications (con't)

High Speed Sample and Hold

Current Mode Multiplexer

applications information

Power Supply Decoupling

The LH0032/LH0032C like most high speed circuits is sensitive to layout and stray capacitance. Power supplies should be by-passed as near to Pins 10 and 12 as practicable with low inductance capacitors such as 0.01 µF disc ceramics. Compensation components should also be located close to the appropriate pins to minimize stray reactances.

Input Capacitance

The input capacitance to the LH0032/LH0032C is typically 5 pF and thus may form a significant time constant with high value resistors. For optimum performance, the input capacitance to the inverting input should be compensated by a small capacitor across the feedback resistor. The value is strongly dependent on layout and closed loop gain, but will typically be in the neighborhood of several picofarads.

In the non-inverting configuration, it may be advantageous to bootstrap the case and/or a guard conductor to the inverting input. This serves both to divert leakage currents away from the non-inverting input and to reduce the effective input capacitance. A unity gain follower so treated will have an input capacitance under a picofarad.

Heat Sinking

While the LH0032/LH0032C is specified for operation without any explicit head sink, internal power dissipation does cause a significant temperature rise. Improved bias current performance can thus be obtained by limiting this temperature rise with a small head sink such as the Thermalloy No. 2241 or equivalent. The case of the device has no internal connection, so it may be electrically connected to the sink if this is advantageous. Be aware, however, that this will affect the stray capacitances to all pins and may thus require adjustment of circuit compensation values.

Operational Amplifiers

LH0033/LH0033C, LH0063/LH0063C fast and damn fast buffer amplifiers

general description

The LH0033/LH0033C and LH0063/LH0063C are high speed, FET input, voltage follower/buffers designed to provide high current drive at frequencies from DC to over 100 MHz. The LH0033/ LH0033C will provide ± 10 mA into 1 k Ω loads (± 100 mA peak) at slew rates of $1500V/\mu s$. The LH0063/LH0063C will provide ±250 mA into 50Ω loads (± 500 mA peak) at slew rates of up to $6000V/\mu s$. In addition, both exhibit excellent phase linearity up to 20 MHz.

Both are intended to fulfill a wide range of buffer applications such as high speed line drivers, video impedance transformation, nuclear instrumentation amplifiers, op amp isolation buffer for driving reactive loads and high impedance input buffers for high speed A to D's and comparators. In addition, the LH0063/LH0063C can continuously drive 50Ω coaxial cables or be used as a diddle yoke driver for high resolution CRT displays. For additional applications information, see AN-48.

advantages

- Only +10V supply needed for 5 V_{P-P} video out
- Speed does not degrade system performance
- Wide data rate range for phase encoded systems

- Output drive adequate for most loads
- Single pre-calibrated package

features

- 6000V/us ■ Damn fast (LH0063)
- Wide range single or dual supply operation
- DC to 100 MHz ■ Wide power bandwidth
- $\pm 10 \text{V}$ with 50Ω load ■ High output drive
- Low phase non-linearity 2 degrees
- 2 ns Fast rise times
- 120 dB High current gain
- - $10^{10} \Omega$ High input resistance

These devices are constructed using specially selected junction FET's and active laser trimming to achieve guaranteed performance specifications. The LH0033 and LH0063 are specified for operation from -55°C to +125°C; whereas, the LH0033C and LH0063C are specified from -25° C to $+85^{\circ}$ C. The LH0033/LH0033C is available in a 1.5W metal TO-8 package and a special 1/2 x 1 inch 8 pin ceramic dual-in-line package while the LH0063/ LH0063C is available in a 5W 8-pin TO-3 package.

connection diagrams

Order Number LH0033G or LH0033CG See Package 6

LH0033/LH0033C **Dual-In-Line Package**

Order Number LH0033J or LH0033CJ See Package 15

LH0063/LH0063C Metal Can Package

Order Number LH0063K or LH0063CK See Package 19

absolute maximum ratings

 Supply Voltage (V* - V*)
 40V

 Maximum Power Dissipation (See Curves)
 5W

 LH00637/LH0063C
 5W

 LH0033/LH0033C
 1.5W

 Maximum Junction Temperature
 175°C

 Input Voltage
 Equal to Supplies

 Continuous Output Current
 400

uous Output Current LH0063/LH0063C ±250 mA LH0033/LH0033C ±100 mA
 Peak Output Current
 ±500 mA

 LH0063/LH0063C
 ±500 mA

 LH0033/LH0033C
 ±250 mA

 Operating Temperature Range
 LH0033 and LH0063
 −55°C to +125°C

 LH0033C and LH0063C
 −25°C to +85°C

 Storage Temperature Range
 −65°C to +150°C

 Lead Temperature (Soldering, 10 sec)
 300°C

dc electrical characteristics LH0033/LH0033C: (Note 1)

				LII	MITS			
PARAMETER	CONDITIONS		LH0033			LH0033C		UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Output Offset Voltage	$R_S = 100 \text{ k}\Omega$, $T_C = 25^{\circ}\text{C}$ $R_S = 100 \text{ k}\Omega$		5	10 15		12	20 25	mV mV
Average Temperature Coefficient of Offset Voltage	R_S = 100 k Ω , -55°C \leq T _C \leq 125°C		25			25		μV/°C
Input Bias Current	$T_C = 25^{\circ}C$.05	.1 10		.05	.15 5	nA nA
Voltage Gain	V_{IN} = 1Vrms, f = 1 kHz, R_L = 1 k Ω , R_S = 100 k Ω	.97	.98	1	.96	.98	1	V/V
Input Impedance	V_{IN} = 1Vrms, f = 1 kHz, R _L = 1 k Ω	10 ¹⁰	10 ¹¹		10 ¹⁰	10 ¹¹		Ω
Output Impedance	V_{IN} = 1Vrms, f = 1 kHz, R_S = 100 k Ω , R_L = 1 k Ω		6	10		6	10	Ω
Output Voltage Swing	$R_L = 1 \text{ k}\Omega$, $R_L = 100\Omega$, $T_C = 25^{\circ}\text{C}$ $V_S = \pm 5V$, $R_L = 1 \text{ k}\Omega$	±12 ±9	±13		±12 ±9	±13		V V V _{P-P}
Supply Current	$V_{IN} = 0V, V_{S} = \pm 15V$ $V_{S} = \pm 5V$		20 18	22		21 18	24	mA mA
Power Consumption	$V_{1N} = 0V, V_{S} = \pm 15V$ $V_{S} = \pm 5V$		600 180	660		630 180	720	mW mW

ac electrical characteristics

LH0033/LH0033C ($T_C = 25^{\circ}C$, $V_S = \pm 15V$, $R_S = 50\Omega$, $R_L = 1 \text{ k}\Omega$)

				LIN	MITS			
PARAMETER	CONDITIONS		LH0033			LH0033C		UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Slew Rate	V _{IN} = ±10V	1000	1500		1000	1400		V/µs
Bandwidth	V _{IN} = 1Vrms		100			100		MHz
Phase Non-Linearity	BW = 1 to 20 MHz		2			2		degrees
Rise Time	$\Delta V_{IN} = 0.5V$		2.9			3.2		ns
Propagation Delay	$\Delta V_{IN} = 0.5V$		1.2			1.5		ns
Harmonic Distortion			<0.1			<0.1		%

Note 1: Unless otherwise specified, these specifications apply for +15V applied to pins 1 and 12, -15V applied to pins 9 and 10, and pin 6 shorted to pin 7 for the LH0033/LH0033C. For the LH0063/LH0063C, specifications apply for +15V applied to pins 1 and 2, -15V applied to pins 7 and 8, and pin 5 shorted to pin 6. Unless otherwise noted, specifications apply over a temperature range of -55 $^{\circ}$ C $_{7}$ C $_{7}$ +125 $^{\circ}$ C for the LH0033 and LH0063; and -25 $^{\circ}$ C $_{7}$ C C $_{7}$ C

dc electrical characteristics LH0063/LH0063C (Note 1)

	CONDITIONS	LIMITS						
PARAMETER		LH0063			LH0063C			UNITS
	-	MIN	TYP	MAX	MIN	TYP	MAX	
Output Offset Voltage	$R_S \le 100 \text{ k}\Omega$, $T_C = 25^{\circ}\text{C}$ $R_S \le 100 \text{ k}\Omega$		10	25 100		10	50 100	mV mV
Average Temperature Coefficient of Output Offset Voltage	$R_{S} \leq 100 \text{ k}\Omega$		300			300		μV/°C
Input Bias Current	$T_C = 25^{\circ}C$.1	.2 10		.1	.2 5	nA nA
Voltage Gain	$\begin{aligned} &V_{1N}=\pm10V,R_{S}\leq100\;k\Omega,\\ &R_{L}=1\;k\Omega \end{aligned}$.96	.98	1	.96	.98	1	V/V
Voltage Gain	V_{IN} = ±10V, $R_{S} \le 100 \text{ k}\Omega$, R_{L} = 50 Ω	.94	.96	.98	.94	.96	.98	V/V
Input Resistance		10 ¹⁰	10 ¹¹		10 ¹⁰	10 ¹¹		Ω
Input Capacitance	Case Shorted to Output		8			8		pF
Output Impedance	V_{OUT} = ±10V, R_S = 100 k Ω		1	4		1	4	Ω
Output Current Swing	V_{IN} = ±10V, $R_S \le 100 \ k\Omega$.2	.25		.2	.25		Amps
Output Voltage Swing	$R_L = 50\Omega$	±10	±13		±10	±13		V
Output Voltage Swing	$V_S = \pm 5V$, $R_L = 50\Omega$, $T_C = 25^{\circ}C$	5	7		5	7		V _{P-P}
Supply Current	$T_C = 25^{\circ}C$, $R_L = \infty$, $V_S = \pm 15V$		60	75		60	80	mA
Supply Current	V _S = ±5V		50			50		mA
Power Consumption	$T_C = 25^{\circ}C$, $R_L = \infty$, $V_S = \pm 15V$		1.80	2.25		1.80	2.40	W
Power Consumption	V _S = ±5V		500			500		mW

ac electrical characteristics

LH0063/LH0063C: $(T_C = 25^{\circ}C, V_S = \pm 15V, R_S = 50\Omega, R_L = 50\Omega)$

	CONDITIONS	LIMITS						
PARAMETER		LH0063			LH0063C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Slew Rate	$R_L = 1 k\Omega$, $V_{IN} = \pm 10V$		6000			6000		V/μs
Slew Rate	$R_L = 50\Omega$, $V_{IN} = \pm 10V$ $T_C = 25^{\circ}C$	2000	4000		2000	4000		V/μs
Bandwidth	V _{IN} = 1 Vrms		200			200		MHz
Phase Non-Linearity	BW = 1 to 20 MHz		2			2		degrees
Rise Time	$\Delta V_{IN} = .5V$		1.6	,		1.9		ns
Propagation Delay	$\Delta V_{IN} = .5V$		1.9			2.1		ns
Harmonic Distortion			<0.1			<0.1		%

Note 1: Unless otherwise specified, these specifications apply for +15V applied to pins 1 and 12, -15V applied to pins 9 and 10, and pin 6 shorted to pin 7 for the LH0033/LH0033C. For the LH0063/LH0063C, specifications apply for +15V applied to pins 1 and 2, -15V applied to pins 7 and 8, and pin 5 shorted to pin 6. Unless otherwise noted, specifications apply over a temperature range of -56° C $\leq T_C \leq +125^\circ$ C for the LH0033 and LH0063; and -25° C $\leq T_C \leq +85^\circ$ C for the LH0033C and LH0063C. Typical values shown are for $T_C = 25^\circ$ C.

typical performance characteristics (con't)

application hints

Recommended Layout Precautions: RF/video printed circuit board layout rules should be followed when using the LH0033 and LH0063 since they will provide power gain to frequencies over 100 MHz. Ground planes are recommended and power supplies should be decoupled at each device with low inductance $0.1\mu F$ disc capacitors. In addition, ground plane shielding may be extended to the metal case of the device since it is electrically isolated from internal circuitry. Alternatively the case should be connected to the output to minimize input capacitance.

Offset Voltage Adjustment: Both the LH0033's and LH0063's offset voltages have been actively trimmed by laser to meet guaranteed specifications when the offset preset pin is shorted to the offset adjust pin. This pre-calibration allows the devices to be used in most DC or AC applications without individually offset nulling each device. If offset null is desirable, it is simply obtained by leaving the offset preset pin open and connecting a trim pot of 100Ω for the LH0033 or $1~k\Omega$ for the LH0063 between the offset adjust pin and V^- as illustrated in Figures 1 and 2.

FIGURE 1. Offset Zero Adjust for LH0033 (Pin nos. shown for TO-8)

FIGURE 2. Offset Zero Adjust for LH0063

application hints (con't)

Operation from Single or Asymmetrical Power Supplies: Both device types may be readily used in applications where symmetrical supplies are unavailable or not desirable. A typical application might be an interface to a MOS shift register where $V^+ = +5V$ and $V^- = -12V$. In this case, an apparent output offset occurs due to the device's voltage gain of less than unity. This additional output offset error may be predicted by:

$$\Delta V_{O} \cong (1 - A_{V}) \frac{(V^{+} - V^{-})}{2} = .005 (V^{+} - V^{-})$$

where:

 A_V = No load voltage gain, typically .99

V⁺ = Positive supply voltage

V = Negative supply voltage

For the above example, ΔV_{O} would be -35 mV. This may be adjusted to zero as described in Section 2. For AC coupled applications, no additional offset occurs if the DC input is properly biased as illustrated in the "typical applications" section.

Short Circuit Protection: In order to optimize transient response and output swing, output current limit has been omitted from the LH0033 and LH0063. Short circuit protection may be added by inserting appropriate value resistors between V $^+$ and V $_C^+$ pins and V $^-$ and V $_C^-$ pins as illustrated in Figures 3 and 4. Resistor values may be predicted by:

$$R_{LIM} \cong \frac{V^+}{I_{SC}} = \frac{V^-}{I_{SC}}$$

where.

 $I_{SC} \leq 100 \text{ mA for LH0033}$

 $I_{SC} \leq 250 \text{ mA for LH0063}$

FIGURE 3. LH0033 Using Resistor Current Limiting

The inclusion of limiting resistors in the collectors of the output transistors reduces output voltage swing. Decoupling V_C^+ and V_C^- pins with capacitors to ground will retain full output swing for transient pulses. Alternate active current limit techniques that retain full DC output swing are shown in Figures 5, 6 and 7. In Figures 5 and 6, the current sources are saturated during normal operation thus apply full supply voltage to the V_C pins. Under fault conditions, the voltage decreases as required by the overload. For Figure 5:

$$R_{LIM} = \frac{V_{BE}}{I_{SC}} = \frac{.6V}{60 \text{ mA}} = 10\Omega$$

In Figure 6, quad transistor arrays are used to minimize can count and:

$$R_{LIM} = \frac{V_{BE}}{1/3 \text{ (Isc.)}} = \frac{.6V}{1/3 \text{ (200 mA)}} = 8.2\Omega$$

Foldback current has been added in Figure 7 to minimize power dissipation under fault conditions. Output transistor collector current is sensed and input stage voltage is reduced as required by fault load. Resistor values may be predicted by:

$$R_{\text{LIM}} \cong \frac{V_{\text{BE}}}{I_{\text{KNEE}}}$$

$$\mathsf{R}_{\mathsf{FB}} \cong \frac{(\mathsf{V}_\mathsf{S} \ \mathsf{X} \ \mathsf{R}_\mathsf{1})}{\mathsf{V}_{\mathsf{BE}} - (\mathsf{R}_{\mathsf{LIMIT}} \ \mathsf{X} \ \mathsf{I}_{\mathsf{SHORT}} \ \mathsf{CIRCUIT})}$$

Thus for the LH0033 with $\rm I_{KNEE}=60~mA$ and $\rm I_{SHORT}=10~mA,~R_{LIM}=10\Omega$ and $\rm R_{FB}=30~k\Omega.$ For the LH0063 with $\rm I_{KNEE}=200~mA$ and $\rm I_{SHORT}=50~mA,~R_{LIM}=3\Omega$ and $\rm R_{FB}=33~k\Omega.$

FIGURE 4. LH0063 Using Resistor Current Limiting

application hints (con't)

FIGURE 5. LH0033 Current Limiting Using Current Sources

FIGURE 6. LH0063 Current Limiting Using Current Sources

FIGURE 7. Foldback Current Limit

Capacitive Loading: Both the LH0033 and LH0063 are designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads without susceptibility to oscillation. However, peak current resulting from (C $\chi\,d_V/d_t$) should be limited below absolute maximum peak current ratings for the devices.

Thus for the LH0033:

$$\left(\!\!\!\frac{\Delta V_{1N}}{\Delta T}\!\!\!\right) \! \times C_L \; \leq \; I_{OUT} \; \leq \; \pm 250 \; mA$$

and for the LH0063:

$$\left(\frac{\Delta V_{IN}}{\Delta T}\right)$$
 X C_L \leq I_{OUT} \leq ±500 mA

Peak current limiting may be accomplished by controlling input large signal rise time, inserting 20 to 100Ω resistors between V^+ and V_C^- pins and V^- and V_C^- pins, using active current limit as described in Section 4, Figures 5, 6 and 7, or inserting a small value resistor in series with the output.

application hints (con't)

In addition, power dissipation resulting from driving capacitative loads plus standby power should be kept below total package power rating:

$$P_{diss} \ge P_{DC} + P_{AC}$$

$$P_{diss} \ge (V^+ - V^-) \times I_S + P_{AC}$$

$$P_{AC} \cong (V_{P-P})^2 X f X C_L$$

where V_{P-P} = Peak-to-peak output voltage swing f = frequency

C_L = Load Capacitance

Operation Within an Op Amp Loop: Both devices may be used as a current booster or isolation buffer within a closed loop with op amps such as LH0032, LH0062, or LM118. An isolation

resistor of 47Ω should be used between the op amp output and the input of LH0033. The wide bandwidths and high slew rates of the LH0033 and LH0063 assure that the loop has the characteristics of the op amp and that additional rolloff is not required.

Hardware: In order to utilize the full drive capabilities of both devices, each should be mounted with a heat sink particularly for extended temperature operation. The cases of both are isolated from the circuit and may be connected to system chassis. Heat sinks are commercially available at low cost; the following or their equivalents are recommended:

LH0033G (TO-8 pkg):

Thermalloy #2240A

Wakefield #215-CB

LH0063K (TO-3 pkg): IERC #LAIC3B4V

Mounting and test sockets are available from:

LH0033G (TO-8 pkg): Barnes Corp. #MGX-12 LH0063K (TO-3 pkg): Keystone Elect. (N.Y.)

#4626 or #4627

schematic diagrams

LH0033/LH0033C

PIN NUMBERS SHOWN FOR TO-8 ("G") PACKAGE.

LH0063/LH0063C

typical applications

High Speed Automatic Test Equipment Forcing Function Generator

Gamma Ray Pulse Integrator

typical applications (con't)

Nuclear Particle Detector

High Input Impedance AC Coupled Amplifier

Isolation Buffer

Coaxial Cable Driver

Coaxial Cable Driver

1W CW Final Amplifier

typical applications (con't)

High Input Impedance Comparator With Offset Adjust

Instrumentation Shield/Line Driver

Single Supply AC Amplifier

4.5 MHz Notch Filter

High Speed Sample & Hold

LH0061/LH0061C 0.5 amp wide band operational amplifier

general description

The LH0061/LH0061C is a wide band, high speed, operational amplifier capable of supplying currents in excess of 0.5 ampere at voltage levels of ±12V. Output short circuit protection is set by external resistors, and compensation is accomplished with a single external capacitor. With a suitable heat sink the device is rated at 20 Watts.

The wide bandwidth and high output power capabilities of the LH0061/LH0061C make it ideal for such applications as AC servos, deflection yoke drivers, capstan drivers, and audio amplifiers. The

LH0061 is guaranteed over the temperature range -55° C to $+125^{\circ}$ C; whereas, the LH0061C is guaranteed from -25° C to $+85^{\circ}$ C.

features

Output current0.5 Amp

■ Wide large signal bandwidth 1 MHz

■ High slew rate $75 \text{ V/}\mu\text{s}$ ■ Low standby power 240 mW

■ Low input current 300 nA Max

schematic and connection diagrams

TO-3 Package

Order Numbers:

LH0061K (-55°C to +125°C) LH0061CK (-25°C to +85°C) See Package 19

Supply Voltage
Power Dissipation
Differential Input Current (Note 2)
Input Voltage (Note 3)
Peak Output Current
Output Short Circuit Duration (Note 4)
Operating Temperature Range LH0061
LH0061C

±18V See Curve ±10 mA ±15V 2A Continuous -55°C to +125°C -25°C to +85°C

Storage Temperature Range Lead Temperature (Soldering, 10 sec) -25°C to +85°C -65°C to +150°C 300°C

dc electrical characteristics (Note 1)

			LIMITS					
PARAMETER	CONDITIONS		LH0061			LH0061C		UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	1 1
Input Offset Voltage	$\begin{split} &R_{S} \leq 10~k\Omega,~T_{C} = 25^{\circ}C,~V_{S} = \pm 15V \\ &R_{S} \leq 10~k\Omega,~V_{S} = \pm 15V \end{split}$		1.0	4.0 6.0		3.0	10 15	mV mV
Voltage Drift with Temperature	$R_S \leq 10 \ k\Omega$		5			5		μV/°C
Offset Voltage Change with Output Power			5			5		μV/watt
Input Offset Current	$T_C = 25^{\circ}C$		30	100 300		50	200 500	nA nA
Offset Current Drift with Temperature			1		7	1		nA/°C
Input Bias Current	$T_C = 25^{\circ}C$		100	300 1.0		200	500 1.0	nA μA
Input Resistance	T _C = 25°C	0.3	1.0		0.3	1.0		МΩ
Input Capacitance			3			3		pF
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $\Delta V_{CM} = \pm 10 \text{V}$	70	90		60	80		dB
Input Voltage Range	V _S = ±15V	±11			±11			V
Power Supply Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $\triangle V_S = \pm 10 \text{ V}$	70	80	4	50	70		dB
Voltage Gain	$V_S = \pm 15V, V_O = \pm 10V$ $R_L = 1 k\Omega, T_C = 25^{\circ}C$ $V_S = \pm 15V, V_O = \pm 10V$ $R_L = 20\Omega$	50 5	100		25 2.5	50		V/mV V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 20\Omega$	±10	±12		±10	±12		V
Output Short Circuit Current	$V_S = \pm 15V$, $T_C = 25^{\circ}C$, $R_{SC} = 1.0\Omega$		600			600		mA
Power Supply Current	V _S = ±15V, V _{OUT} = 0		7	10		10	15	mA
Power Consumption	V _S = ±15V, V _{OUT} = 0		210	300		300	450	mW

ac electrical characteristics $(T_C = 25^{\circ}C, V_S = \pm 15V, C_C = 3000 pF)$

Slew Rate	A_V = +1, R_L = 100 Ω	50	70		50	70		V/μs
Power Bandwidth	$R_L = 100\Omega$		1			1		MHz
Small Signal Transient Response			30			30		ns
Small Signal Overshoot			5	20		10	30	%
Settling Time (0.1%)	ΔV_{IN} = 10V, A_V = +1		0.8			0.8		μς
Overload Recovery Time			1			1		μs
Harmonic Distortion	f = 1 kHz, P _O = 0.5W		0.2			0.2		%

Note 1: Specifications apply for $\pm 5V \le V_S \le \pm 18V$, $C_C = 3000$ pF, and $-55^{\circ}C \le T_C \le +125^{\circ}C$ for the LH0061K and $-25^{\circ}C \le T_C \le +85^{\circ}C$ for the LH0061CK. Typical values are for $T_C = 25^{\circ}C$.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Excessive current will flow if a differential voltage in excess of 1V is applied between the inputs without limiting resistors.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: Rating applies as long as package power rating is not exceeded.

typical performance characteristics

typical applications

AC Servo Amplifier

LH0062/LH0062C high speed FET op amp

general description

The LH0062/LH0062C is a precision, high speed FET input operational amplifier with more than an order of magnitude improvement in slew rate and bandwidth over conventional FET IC op amps. In addition it features very closely matched input characteristics, very high input impedance, and ultra low input currents with no compromise in noise, common mode rejection ratio or open loop gain. The device has internal unity gain frequency compensation, thus assuring stability in all normal applications. This considerably simplifies its application, since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feedforward compensation will boost the slew rate to over 120 V/ μ s and almost double the bandwidth. (See LB-2, LB-14, and LB-17 for discussions of the application of feed-forward techniques). Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under $1 \mu s$. In addition it is free of latch-up and may be simply offset nulled with negligible effect on offset drift or CMRR.

The LH0062 is also available on special order with offset voltage internally laser nulled and ultra low (0.1 pA) offset current.

The LH0062 is designed for applications requiring wide bandwidth, high slew rate and fast settling time while at the same time demanding the high input impedance and low input currents characteristic of FET inputs. Thus it is particularly suited for such applications as video amplifiers, sample/hold circuits, high speed integrators, and buffers for A/D conversion and multiplex system. The LH0062 is specified for the full military temperature range of -55° to $+125^{\circ}$ C while the LH0062C is specified to operate over a -25° C to $+85^{\circ}$ C temperature range.

features

High slew rate	70 V/μs
Wide bandwidth	15 MHz
Settling time (0.1%)	1μs
Low input offset voltage	2 mV
Low input offset current	1 pA
Wide supply range	±5V to ±20V
Internal 6 dB/octave frequency co	ompensation
Pin compatible with std IC op am	ps (TO-5 pkg)

BALANCE/ COMP 2 BALANCE/ COMP 1 V UNVERTING INPUT ON INVERTING IMPUT SALANCE/ COMP 3

Metal Can Package

Order Number LH0062H or LH0062CH See Package 11

Dual-In-Line Package

Order Number LH0062D or LH0062CD See Package 1

*Pin Numbers Shown for TO-5 Package

 Supply Voltage
 ±20V

 Power Dissipation (see graph)
 500 mW

 Input Voltage (Note 1)
 ±15V

 Differential Input Voltage (Note 2)
 ±30V

 Short Circuit Duration
 Continuous

Operating Temperature LH0062, LH0062C, Storage Temperature Range Lead Temperature (Soldering, 10 sec)

-55°C to +125°C -25°C to +85°C -65°C to +150°C 300°C

dc electrical characteristics (Note 3)

				LIMI	TS				
PARAMETER	CONDITIONS		LH0062			LH0062C		UNITS	
	1 X	MIN	TYP	MAX	MIN	TYP	MAX		
Input Offset Voltage	$R_S \le 100 \text{ k}\Omega$; $T_A = 25^{\circ}\text{C}$		2	5		10	15	mV	
	$R_S \le 100 \text{ k}\Omega$			7			20	mV	
Temperature Coefficient of Input Offset Voltage	$R_S \le 100 \text{ k}\Omega$		5	25		10	35	μV/°C	
Offset Voltage Drift with Time			4			5		μV/week	
Input Offset Current	T _A = 25°C		0.2	2		1	5	pA	
				500			200	pA	
Temperature Coefficient of Input Offset Current		Doul	l oles every :	20°C	Dou	bles every	20°C		
Offset Current Drift with Time			0.1			0.1		pA/week	
Input Bias Current	T _A = 25°C	-	5	25		10	65	pA	
				5			2	nA	
Temperature Coefficient of Input Bias Current		Doubles every 20°C Doubles every 20°C							
Differential Input Resistance			10 ¹²			10 ¹²		Ω	
Common Mode Input Resistance			10 ¹²			10 ¹²		Ω	
Input Capacitance			4			4		pF	
Input Voltage Range	V _S = ±15V	±10	±12		±10	±12		V	
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $V_{IN} = \pm 10 \text{V}$	80	90		70	90	A	dB	
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $\pm 5V \le V_S \le \pm 15V$	80	90		70	90		dB	
Large Signal Voltage Gain	$R_L = 2 k\Omega$, $V_{OUT} = \pm 10V$, $T_A = 25^{\circ}C$, $V_S = \pm 15V$	50	200		25	160	10 = 40	V/mV	
	$R_L = 2 k\Omega$, $V_{OUT} = \pm 10V$, $V_S = \pm 15V$	25			25			V/mV	
Output Voltage Swing	$R_L = 2 k\Omega, T_A = 25^{\circ}C,$ $V_S = \pm 15V$	±12	±13		±12	±13		V	
	$R_L = 2 k\Omega, V_S = \pm 15V$	±10			±10			V	
Output Current Swing	V _{OUT} = ±10V, T _A = 25°C	±10	±15		±10	±15		mA	
Output Resistance			75			75		Ω	
Output Short Circuit Current	T _A = 25°C		25		,	25		mA	
Supply Current	V _S = ±15V		5	8		7	12	mA	
Power Consumption	V _S = ±15V			240			360	mW	

ac electrical characteristics ($T_A = 25^{\circ}C$, $V_S = \pm 15V$)

				LIM	ITS				
PARAMETER	CONDITIONS		LH0062		LH0062C			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX		
Slew Rate	Voltage Follower	50	70		50	70		V/µs	
Large Signal Bandwidth	Voltage Follower		2			2		MHz	
Small Signal Bandwidth			15			15		MHz	
Rise Time			25			25		ns	
Overshoot			10			15		%	
Settling Time (0.1%)	∆V _{IN} = 10V		1			1		μs	
Overload Recovery			0 9			0.9		μs	
Input Noise Voltage	$R_S = 10 \text{ k}\Omega$, $f_o = 10 \text{ Hz}$		150			150		nV/√Hz	
Input Noise Voltage	$R_S = 10 \text{ k}\Omega$, $f_o = 100 \text{ Hz}$		55			55		nV/√Hz	
Input Noise Voltage	$R_S = 10 \text{ k}\Omega$, $f_o = 1 \text{ kHz}$		35			35		nV/√Hz	
Input Noise Voltage	$R_S = 10 \text{ k}\Omega$, $f_0 = 10 \text{ kHz}$		30			30		nV/√Hz	
Input Noise Voltage	BW = 10 Hz to 10 kHz, R_S = 10 k Ω		12			12		μVrms	
Input Noise Current	BW = 10 Hz to 10 kHz		<.1			<.1		pArms	

Note 1: For supply voltages less than \pm 15V, the absolute maximum input voltage is equal to the supply voltage. Note 2: Rating applies for minimum source resistance of 10 k Ω , for source resistances less than 10 k Ω , maximum differential input voltage is ±5V.

Note 3: Unless otherwise specified, these specifications apply for :5V \leq V_S \leq :20V and -55° C \leq T_A \leq +125° C for the LH0062 and -25° C \leq T_A \leq +85° C for LH0062C. Typical values are given for T_A \approx 25° C. Power supplies should be bypassed with 0.1 μ C rearning capacitors.

typical performance characteristics Input Offset Input Bias Maximum Power Dissipation Current vs Temperature Current vs Temperature 100 800 1000 700 (pA) BIAS CURRENT (DA) 600 10 100 NPUT OFFSET CURRENT TO-5 AND DIP POWER DISSIPATION 500 WITH HEAT 400 10 FREE AIR 300 INPUT 200 0.1 100 0 0.01 0.1 50 100 150 200 25 45 65 85 105 125 65 85 105 125 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) Large Signal Frequency Voltage Follower Open Loop Frequency Response Pulse Response Response 14 120 15 T_A = 25°C T_ = 25°C 12 100 225 12 ±15V V_S = ±15V 3 OUTPUT SWING (±V) 10 80 6 (qB) PHASE LAG SWING 3 TAGE GAIN 60 135 0 OUTPUT PHASE 90 VOLTAGE 6 INPUT 40 (de -3 -6 VOL 45 20 4 GAIN -9 Vs ±15V -12 = 25°C 1M 2M 5M 10M 20M 100 100k 1M 10M 100M 0.5M 800 1k 10k 0 200 400 600 10 FREQUENCY (Hz) TIME (ns) FREQUENCY (Hz) Large Signal Frequency Open Loop Frequency Response Inverter Pulse Response Response 20 14 120 V_S = ±15V 16 12 225 V_S = ±15V T_ = 25°C 12 180 PHASE LAG (degrees) 135 90 45 OUTPUT SWING (+V) 10 VOLTAGE GAIN (dB) 80 8 SWING (4 OUTPUT 60 PHASE 0 /OLTAGE 6 40 _4 4 -8 20 FEEDFORWARD FEEDFORWARD -12 FEEDFORWARD 0 TA = 25°C -16 GAIN -20 100 10k 100k 1M 10M 100M 1M 10M 30M 100M -0.1 0.3 0.7 0.9 10 1k FREQUENCY (Hz) TIME (µs) FREQUENCY (Hz) Inverter Settling Time Unity Gain Bandwidth Voltage Follower Slew Rate 15 24 130 10 mV 22 POSITIVE SLEW 120 10 UNITY GAIN BANDWIDTH (MHz) $V_c = \pm 20V$ **DUTPUT VOLTAGE (V)** 20 15V 110 5 18 SLEW (V/µs) 100 0 ±15V 16 $T_A = 25^{\circ}C$ 14 NEGATIVE SLEW -5 $R_S = 5 k\Omega$ 80 100 m\ $B_4 = 5 k\Omega$ 12 V_S = ±15V -10 C_f = 10 pF $R_S = R_f = 100 \text{ k}\Omega$ 70 10 mV 10 $C_{5,7} = 0.1 \, \mu F$ $C_f \cong 2.0 \text{ pF}$ -15 0.03 0.1 0.3 -55 -35 -15 5 25 45 65 85 105 125 -55 -35 -15 5 25 45 65 85 105 125 TIME (µs) TEMPERATURE (°C) TEMPERATURE (°C)

typical performance characteristics (con't)

Total Input Noise

Closed Loop Output

*Noise Voltage Includes Contribution from Source Resistance

auxiliary circuits

Feedforward Compensation for Greater Inverting Slew Rate[†]

Offset Balancing

Compensation for Minimum Settling[†] Time

auxiliary circuits (con't)

Isolating Large Capacitive Loads

Overcompensation

Boosting Output Drive to ± 100 mA

typical applications*

Fast Voltage Follower

Fast Summing Amplifier

Differential Amplifier

High Speed Subtractor

Wide Range AC Voltmeter

Fast Precision Voltage Comparator

Video DC Restoring Amplifier

High Speed Positive Peak Detector

^{*}Pin numbers shown for TO-5 package

typical applications* (con't)

Precision Integrator

*Pin numbers shown for TO-5 package

Precision Wide Range Current to Period Converter

LH101 operational amplifier general description

The LH101 is a general-purpose operational amplifier which is internally compensated for unity-gain feedback. The device combines a LM101 operational amplifier and the 30 pF compensation capacitor in a single package. As such, it is a direct, plug-in replacement for both the LM101 and the LM709 in the majority of applications. Features of the amplifier include:

- Operation guaranteed for supply voltages from ±5V to ±20V
- Low current drain even with the output saturated

**Pin connections shown are for metal can.

- No latch-up when common-mode range is exceeded
- Continuous short-circuit protection
- Input transistors protected from excessive input voltage.

The LH101 is available in either an 8-lead, low-profile TO-5 header or a $1/4'' \times 1/4''$ metal flat package.

"Select for zero integrator drift

schematic** and connection diagrams Metal Can Order Number LH101H See Package 11 Flat Pack NO CONNECTION NO CONNECTION NO CONNECTION # Order Number LH101F See Package 3 typical applications ** Low Drift Thermocouple Amplifier **FET Operational Amplifier** 2N3956 Temperature Probe Integrator with Bias Current Compensation

Supply Voltage ±22V Power Dissipation (Note 1) 500 mW Differential Input Voltage ±30V Input Voltage (Note 2) ±15V Output Short-Circuit Duration (Note 3) Indefinite -55° C to $+125^{\circ}$ C Operating Temperature Range -65° C to $+150^{\circ}$ C Storage Temperature Range Lead Temperature (Soldering, 60 sec) 300°C

electrical characteristics (note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 10k\Omega$		1.0	5.0	mV
Input Offset Current	T _A = 25°C		40	200	nA
Input Bias Current	$T_A = 25^{\circ}C$		120	500	nA
Input Resistance	$T_A = 25^{\circ}C$	300	800		kΩ
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 20V$		1.8	3.0	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$ $V_{OUT} = \pm 10V, R_L \ge 2k\Omega$	50	160		V/mV
Input Offset Voltage	$R_S \leq 10k\Omega$			6.0	mV
Average Temperature	$R_S \leq 50\Omega$		3.0		μV/°C
Coefficient of Input Offset Voltage	$R_S \leq 10k\Omega$		6.0	200	μV/°C
Input Offset Current	T _A = +125°C T _A = -55°C		10 100	200 500	nA nA
Input Bias Current	$T_A = -55^{\circ}C$		0.28	1.5	μΑ
Supply Current	$T_A = +125^{\circ}C$, $V_S = \pm 20V$		1.2	2.5	mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2k\Omega$	25			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10k\Omega$ $R_L = 2k\Omega$	±12 ±10	±14 ±13		V V
Input Voltage Range	$V_S = \pm 15V$	±12		,	V
Common Mode Rejection Ratio	$R_S \leq 10k\Omega$	70	90		dB
Supply Voltage Rejection Ratio	$R_{S} \leq 10k\Omega$	70	90		dB

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 150°C/W junction to ambient or 45°C/W junction to case for the metal-can package. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick, epoxy-glass board with ten, 0.03-inch-wide, 2-ounce copper conductors (see curve).

Note 2: For supply voltages less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to $+125^{\circ}$ C and ambient temperatures to $+70^{\circ}$ C.

Note 4: These specifications apply for ~55°C \leq T $_A \leq$ 125°C, ±5V, \leq V $_S \leq$ ±20V and C1 = 30 pF unless otherwise specified.

guaranteed performance characteristics

LH201 operational amplifier general description

The LH201 is a general-purpose operational amplifier which is internally compensated for unity-gain feedback. The device combines a LM201 operational amplifier and the 30 pF compensation capacitor in a single package. As such, it is a direct, plug-in replacement for both the LM201 and the LM709C in the majority of applications. It is identical to the LH101 except that operation is specified over a 0 to 70°C temperature range. Features of the amplifier include:

 Operation guaranteed for supply voltages from ±5V to ±20V

- Low current drain even with the output saturated
- No latch-up when common-mode range is exceeded
- Continuous short-circuit protection
- Input transistors protected from excessive input voltage.

The LH201 is available in either an 8-lead, low-profile TO-5 header or a $1/4^{\prime\prime}$ x $1/4^{\prime\prime}$ metal flat package.

typical applications **

FET Operational Amplifier

Temperature Probe

Metal Can VC CONNECTION VC CHIZOTH CONTROL CON

Order Number LH201H See Package 11

Flat Pack

Order Number LH201F See Package 3

Low Drift Thermocouple Amplifier

Integrator with Bias Current Compensation

Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

±22V 250 mW ±30V ±15V Indefinite 0°C to +70°C -65°C to +150°C 300°C

electrical characteristics (note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C, R_S \leq 10k\Omega$		2.0	7.5	mV
Input Offset Current	$T_A = 25^{\circ}C$		100	500	nA
Input Bias Current	$T_A = 25^{\circ}C$		0.25	1.5	μΑ
Input Resistance	$T_A = 25^{\circ}C$	150	400	-	kΩ
Supply Current	$T_A = 25^{\circ}C$, $V_S = \pm 20V$		1.8	3.0	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2k\Omega$	20	150		V/mV
Input Offset Voltage	$R_S \leq 10k\Omega$			10	mV
Average Temperature	$R_S \leq 50\Omega$		6		μV/°C
Coefficient of Input Offset Voltage	$R_{s} \leq 10k\Omega$		10		μV/°C
Input Offset Current	$T_A = +70^{\circ}C$ $T_A = 0^{\circ}C$		50 150	400 750	nA nA
Input Bias Current	$T_A = 0^{\circ}C$		0.32	2.0	μΑ
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2k\Omega$	15			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10k\Omega$ $R_L = 2k\Omega$	±12 ±10	±14 ±13		V
Input Voltage Range	$V_S = \pm 15V$	±12			V
Common Mode Rejection Ratio	$R_{S} \leq 10k\Omega$	65	90		dB
Supply Voltage Rejection Ratio	$R_S \leq 10k\Omega$	70	90		dB

Note 1: For operating at elevated temperatures, the device must be derated based on a $150^{\circ}\mathrm{C}$ maximum junction temperature and a thermal resistance of $150^{\circ}\mathrm{C/W}$ junction to ambient or $45^{\circ}\mathrm{C/W}$ junction to case for the metal-can package. For the flat package, the derating is based on a thermal resistance of $185^{\circ}\mathrm{C/W}$ when mounted on a 1/16-inch-thick, epoxy-glass board with ten, 0.03-inch-wide, 2-ounce copper conductors (see curve). Note 2: For supply voltages less than $215\mathrm{V}$, the absolute maximum input voltage is equal

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to +125°C and ambient

temperatures to +70°C. Note 4: These specifications apply for –55°C \leq T $_A$ \leq 125°C, \pm 5V, \leq V $_S$ \leq \pm 20V and C1 = 30 pF unless otherwise specified.

guaranteed performance characteristics

LM101 operational amplifier general description

The LM101 is a general-purpose operational amplifier built on a single silicon chip. The resulting close match and tight thermal coupling gives low offsets and temperature drift as well as fast recovery from thermal transients. In addition, the device features:

- Frequency compensation with a single 30 pF capacitor
- Operation from ±5V to ±20V
- Low current drain: 1.8 mA at ±20V
- Continuous short-circuit protection
- Operation as a comparator with differential inputs as high as ±30V

- No latch-up when common mode range is exceeded
- Same pin configuration as the LM709.

The unity-gain compensation specified makes the circuit stable for all feedback configurations, even with capacitive loads. However, it is possible to optimize compensation for best high frequency performance at any gain. As a comparator, the output can be clamped at any desired level to make it compatible with logic circuits. Further, the low power dissipation permits high-voltage operation and simplifies packaging in full-temperature-range systems.

schematic** and connection diagrams

typical applications **

Inverting Amplifier with Balancing Circuit

**Pin connections shown are for metal can

Metal Can

Order Number LM101H See Package 11

Flat Package

Order Number LM101F See Package 3

Voltage Comparator for Driving DTL or TTL Integrated Circuits

Voltage Comparator for Driving RTL Logic or High Current Driver

Supply Voltage ±22V Power Dissipation (Note 1) 500 mW Differential Input Voltage ±30V Input Voltage (Note 2) ±15V Output Short-Circuit Duration (Note 3) Indefinite Operating Temperature Range -55°C to +125°C Storage Temperature Range -65° C to $+150^{\circ}$ C Lead Temperature (Soldering, 60 sec) 300°C

electrical characteristics (note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 10$ k Ω		1.0	5.0	mV
Input Offset Current	$T_A = 25^{\circ}C$		40	200	nA
Input Bias Current	$T_A = 25^{\circ}C$		120	500	nA
Input Resistance	$T_A = 25^{\circ}C$	300	800		kΩ
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 20V$		1.8	3.0	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2k\Omega$	50	160		V/mV
Input Offset Voltage	$R_S \leq 10k\Omega$			6.0	mV
Average Temperature	$R_S \leq 50\Omega$		3.0		μV/°C
Coefficient of Input Offset Voltage	$R_S \leq 10k\Omega$		6.0		μV/°C
Input Offset Current	$T_A = +125^{\circ}C$ $T_A = -55^{\circ}C$		10 100	200 500	nA nA
Input Bias Current	$T_A = -55^{\circ}C$		0.28	1.5	μΑ
Supply Current	$T_A = +125^{\circ}C$, $V_S = \pm 20V$		1.2	2.5	mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2k\Omega$	25			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10k\Omega$ $R_L = 2k\Omega$	±12 ±10	±14 ±13		V V
Input Voltage Range	$V_S = \pm 15V$	±12			V
Common Mode Rejection Ratio	$R_{S} \leq 10k\Omega$	70	90		dB
Supply Voltage Rejection Ratio	$R_{S} \leq 10k\Omega$	70	90		dB

Note 1: For operating at elevated temperatures, the device must be derated based on a $150^{\circ}C$ maximum junction temperature and a thermal resistance of $150^{\circ}C/W$ junction to ambient or $45^{\circ}C/W$ junction to case for the metal-can package. For the flat package, the derating is based on a thermal resistance of $185^{\circ}C/W$ when mounted on a 1/16-inch-thick, epoxy-glass board with ten, 0.03-inch-wide, 2-ounce copper conductors (see curve).

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to +125 $^{\circ}\text{C}$ and ambient temperatures to +70 $^{\circ}\text{C}$.

Note 4: These specifications apply for ~55°C \leq T $_A \leq$ 125°C, ±5V, \leq V $_S \leq$ ±20V $\,$ and C1 $^-$ 30 pF unless otherwise specified.

guaranteed performance characteristics

LM201 operational amplifier general description

The LM201 is a general-purpose operational amplifier built on a single silicon chip. It is identical to the LM101 except that operation is specified over a 0 to 70° C temperature range. The device features:

- Frequency compensation with a single 30 pF capacitor
- Operation from ±5V to ±20V
- Low current drain: 1.8 mA at ±20V
- Continuous short-circuit protection
- Operation as a comparator with differential inputs as high as ±30V

- No latch-up when common mode range is exceeded
- LM709 lead configuration in metal cans and flat-packages.

The unity-gain compensation specified makes the circuit stable for all feedback configurations, even with capacitive loads. However, it is possible to optimize compensation for best high frequency performance at any gain. As a comparator, the output can be clamped at any desired level to make it compatible with logic circuits. Further, the low power dissipation permits high-voltage operation and simplifies packaging.

COMPENSATION

schematic** and connection diagrams

typical applications**

Voltage Comparator for Driving DTL or TTL Integrated Circuits

**Pin connections shown are for metal can.

Metal Can BALANCE 1 LM201H 7 G OUTPUT INPUTS 3 BALANCE

Note: Pin 4 connected to case VOrder Number LM201H
See Package 11

Order Number LM201F See Package 3

Inverting Amplifier with Balancing Circuit

Flat Pack

Voltage Comparator for Driving RTL Logic or High Current Driver

Supply Voltage ±22V Power Dissipation (Note 1) 250 mW Differential Input Voltage ±30V Input Voltage (Note 2) ±15V Output Short-Circuit Duration (Note 3) Indefinite 0° C to $+70^{\circ}$ C Operating Temperature Range Storage Temperature Range -65° C to $+150^{\circ}$ C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 10k\Omega$		2.0	7.5	mV
Input Offset Current	$T_A = 25^{\circ}C$		100	500	nA
Input Bias Current	$T_A = 25^{\circ}C$		0.25	1.5	μΑ
Input Resistance	$T_A = 25^{\circ}C$	100	400		kΩ
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 20V$		1.8	3.0	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2k\Omega$	20	150		V/mV
Input Offset Voltage	$R_{S} \leq 10k\Omega$			10	mV
Average Temperature	$R_S \leq 50\Omega$		6		μV/°C
Coefficient of Input Offset Voltage	$R_{S} \leq 10k\Omega$		10		μV/°C
Input Offset Current	$T_A = +70^{\circ}C$ $T_A = 0^{\circ}C$		50 150	400 750	nA nA
Input Bias Current	$T_A = 0^{\circ}C$		0.32	2.0	μΑ
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2k\Omega$	15			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10k\Omega$ $R_L = 2k\Omega$	±12 ±10	±14 ±13		V
Input Voltage Range	$V_S = \pm 15V$	±12		2	V
Common Mode Rejection Ratio	$R_{S} \leq 10k\Omega$	65	90		dB
Supply Voltage Rejection Ratio	$R_S \leq 10k\Omega$	70	90		dB

Note 1: For operating at elevated temperatures, the device must be derated based on a 100° C maximum junction temperature and a thermal resistance of 150° C/W junction to ambient or 45° C/W junction to case for the metal-can package. For the flat package, the derating is based on a thermal resistance of 185° C/W when mounted on a 1/16-inch-thick, epoxy-glass board with ten, 0.03-inch-wide, 2-ounce copper conductors (see curve). Note 2: For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to 70°C and ambient temperatures to 55°C .

Note 4: These specifications apply for $0^{\circ}C \leq T_{A} \leq 70^{\circ}C$, $\pm 5V, \leq V_{S} \leq \pm 20V$ and C1 = 30 pF unless otherwise specified.

guaranteed performance characteristics

LM101A/LM201A operational amplifier general description

The LM101A and LM201A are general purpose operational amplifiers which feature improved performance over industry standards like the LM101 and the 709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:

- Offset voltage 3 mV maximum over temperature
- Input current 100 nA maximum over temperature
- Offset current 20 nA maximum over temperature
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of 10V/µs as a summing amplifier

This amplifier offers many features which make its application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, freedom from oscillations and compensation with a single 30 pF

capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin. Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.

The LM101A series offers the features of the LM101, which makes its application nearly fool-proof. In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at a lower cost.

The LM201A is identical to the LM101A, except that the LM201A has its performance guaranteed over a -25° C to 85° C temperature range, instead of -55° C to 125° C.

schematic** and connection diagrams

typical applications ** Fast AC/DC Converter*

**Pin connections shown are for metal can.

Metal Can COMPLEXATION BALANCE OUTPUT SALANCE V SALANCE V SALANCE V SALANCE NOTIT NOTIT

Order Number
LM101AH or LM201AH LN
See Package 11
Dual-In-Line

Order Number
LM101AF or LM201AF
See Package 3

Order Number LM101AD or LM201AD See Package 1

Instrumentation Amplifier

Supply Voltage ±22V Power Dissipation (Note 1) 500 mW Differential Input Voltage ±30V Input Voltage (Note 2) ±15V Output Short-Circuit Duration (Note 3) Indefinite -55°C to 125°C Operating Temperature Range LM101A -25°C to 85°C Storage Temperature Range -65°C to 150°C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 50 \text{ k}\Omega$		0.7	2.0	mV
Input Offset Current	T _A = 25°C		1.5	10	nA
Input Bias Current	T _A = 25°C		30	75	nA
Input Resistance	T _A = 25°C	1.5	4		MΩ
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 20V$		1.8	3.0	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$ $V_{OUT} = \pm 10V, R_L \ge 2 k\Omega$	50	160		V/mV
Input Offset Voltage	$R_{S} \leq 50 \text{ k}\Omega$			3.0	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	15	μV/°C
Input Offset Current				20	nA
Average Temperature Coefficient of Input Offset Current	$25^{\circ}\text{C} \le \text{T}_{A} \le 125^{\circ}\text{C}$ $-55^{\circ}\text{C} \le \text{T}_{A} \le 25^{\circ}\text{C}$		0.01 0.02	0.1 0.2	nA/°C nA/°C
Input Bias Current				100	nA
Supply Current	$T_A = +125^{\circ}C, V_S = \pm 20V$		1.2	2.5	mA
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V$ $R_L \ge 2 k\Omega$	25			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$ $R_L = 2 \text{ k}\Omega$	±12 ±10	±14 ±13		V V
Input Voltage Range	V _S = ±20V	±15			٧
Common Mode Rejection Ratio	$R_{S} \leq$ 50 k Ω	80	96		dB
Supply Voltage Rejection Ratio	$R_{S} \leq 50 \text{ k}\Omega$	80	96		dB

Note 1: The maximum junction temperature of the LM101A is 150° C, while that of the LM201A is 100° C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150° C/W, junction to ambient, or 45° C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185° C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100° C/W, junction to ambient.

Note 2: For supply voltages less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to $+125^{\circ}C$ and ambient temperatures to $+75^{\circ}C$.

Note 4: These specifications apply for $\pm 5V \le V_S \le \pm 20V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise specified. With the LM201A, however, all temperature specifications are limited to $-25^{\circ}C \le T_A \le 85^{\circ}C$.

guaranteed performance characteristics

compensation circuits **

Single Pole Compensation

Two Pole Compensation

Feedforward Compensation

typical performance characteristics (con't)

^{**}Pin connections shown are for metal can.

typical applications ** (con't)

Variable Capacitance Multiplier

Simulated Inductor

Fast Inverting Amplifier With High Input Impedance

Inverting Amplifier with Balancing Circuit

Sine Wave Oscillator

Integrator with Bias Current Compensation

application hints**

Protecting Against Gross Fault Conditions

Compensating For Stray Input Capacitances Or Large Feedback Resistor

Isolating Large Capacitive Loads

Although the LM101A is designed for trouble free operation, experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnormal operating conditions. It might be pointed out that the advice given here is applicable to practically any IC op amp, although the exact reason why may differ with different devices.

When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100 mA. This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage sources. Large capacitors on the input (greater than 0.1 μ F) should be treated as a low source impedance and isolated with a resistor. Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned off, so the isolation is usually needed.

The output circuitry is protected against damage from shorts to ground. However, when the amplifier output is connected to a test point, it should be isolated by a limiting resistor, as test points frequently get shorted to bad places. Further, when the amplifier drives a load external to the equipment, it is also advisable to use some sort of limiting resistance to preclude mishaps.

Precautions should be taken to insure that the power supplies for the integrated circuit never become reversed—even under transient conditions. With reverse voltages greater than 1V, the IC will conduct excessive current, fuzing internal aluminum interconnects. If there is a possibility of this happening, clamp diodes with a high peak current rating should be installed on the supply lines. Reversal of the voltage between V^{\top} and V^{\top} will always cause a problem, although reversals with respect to ground may also give difficulties in many circuits.

The minimum values given for the frequency compensation capacitor are stable only for source resistances less than $10\,\mathrm{k}\Omega,$ stray capacitances on the summing junction less than $5\,\mathrm{pF}$ and capacitive loads smaller than $100\,\mathrm{pF}.$ If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads.

Although the LM101A is relatively unaffected by supply bypassing, this cannot be ignored altogether. Generally it is necessary to bypass the supplies to ground at least once on every circuit card, and more bypass points may be required if more than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved.

^{**}Pin connections shown are for metal can.

LM301A operational amplifier general description

The LM301A is a general-purpose operational amplifier which features improved performance over the 709C and other popular amplifiers. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current.

This amplifier offers many features which make its application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, freedom from oscillations and compensation with a single 30 pF capacitor. It has advantages over internally compensated amplifiers in that the compensation can be tailored to the particular application. For

example, as a summing amplifier, slew rates of $10~V/\mu s$ and bandwidths of 10~MHz can be realized. In addition, the circuit can be used as a comparator with differential inputs up to $\pm 30V$; and the output can be clamped at any desired level to make it compatible with logic circuits.

The LM301A provides better accuracy and lower noise than its predecessors in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at reduced cost.

schematic** and connection diagrams

Order Number LM301AH See Package 11

Order Number LM301AN See Package 20

typical applications **

Integrator with Bias Current Compensation

Low Frequency Square Wave Generator

Voltage Comparator for Driving DTL or TTL Integrated Circuits

^{**}Pin connections shown are for metal can.

Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

±18V 500 mW ±30V ±15V Indefinite 0°C to 70°C -65°C to 150°C 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 50 \text{ k}\Omega$		2.0	7.5	mV
Input Offset Current	$T_A = 25^{\circ}C$		3	50	nA
Input Bias Current	$T_A = 25^{\circ}C$		70	250	nA
Input Resistance	$T_A = 25^{\circ}C$	0.5	2		Ω M
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		1.8	3.0	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2 \text{ k}\Omega$	25	160		V/mV
Input Offset Voltage	$R_S \leq 50 \text{ k}\Omega$			10	mV
Average Temperature Coefficient of Input Offset Voltage			6.0	30	μV/°C nA
Average Temperature Coefficient of Input Offset Current	$25^{\circ}C \le T_{A} \le 70^{\circ}C$ $0^{\circ}C \le T_{A} \le 25^{\circ}C$		0.01 0.02	0.3 0.6	nA/°C nA/°C
Input Bias Current				300	nA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2 \text{ k}\Omega$	15			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$ $R_L = 2 \text{ k}\Omega$	±12 ±10	±14 ±13		V V
Input Voltage Range	V _S = ±15V	±12			V
Common Mode Rejection Ratio	$R_{S} \leq 50 \text{ k}\Omega$	70	90		dB
Supply Voltage Rejection Ratio	$R_S \leq 50 \text{ k}\Omega$	70	96		dB

Note 1: For operating at elevated temperatures, the device must be derated based on a 100° C maximum junction temperature and a thermal resistance of 150° C/W junction to ambient or 45° C/W junction to case.

Note 2: For supply voltages less than $\pm 15 V$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to 70°C and ambient temperatures to 55°C .

Note 4: These specifications apply for $0^{\circ}C \le T_A \le 70^{\circ}C$, $\pm 5V$, $\le V_S \le \pm 15V$ and C1 = 30 pF unless otherwise specified.

guaranteed performance characteristics

typical applications ** (con't)

Standard Compensation and Offset Balancing Circuit

Fast Summing Amplifier

Fast Voltage Follower

Bilateral Current Source

**Pin connections shown are for metal can.

LM102 voltage follower general description

The LM102 is a high-gain operational amplifier designed specifically for unity-gain voltage follower applications. Built on a single silicon chip, the device incorporates advanced processing techniques to obtain very low input current and high input impedance. Further, the input transistors are operated at zero collector-base voltage to virtually eliminate high temperature leakage currents. It can therefore be operated in a temperature stabilized component oven to get extremely low input currents and low offset voltage drift. Other outstanding characteristics of the device include:

- Fast slewing 10V/μs
- Low input current 10 nA (max)

- High input resistance 10,000 M Ω
- No external frequency compensation required
- Simple offset balancing with optional 1K potentiometer
- Plug-in replacement for both the LM101 and LM709 in voltage follower applications.

The LM102, which is designed to operate with supply voltages between ±12V and ±15V, also features low input capacitance as well as excellent small signal and large signal frequency response — all of which minimize high frequency gain error. Because of the low wiring capacitances inherent in monolithic construction, this fast operation can be realized without increasing power consumption.

schematic** and connection diagrams

typical applications **

Low Pass Active Filter

High Pass Active Filter

**Pin connections shown are for metal can.

Order Number LM102H See Package 11

Sample and Hold With Offset Adjustment

Torycardo

High Input Impedance AC Amplifier

Supply Voltage ±18V Power Dissipation (Note 1) 500 mW Input Voltage (Note 2) ±15V Output Short-Circuit Duration (Note 3) Indefinite

Operating Temperature Range -55°C to 125°C Storage Temperature Range -65°C to 150°C

Lead Temperature 300°C (soldering, 10 sec)

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Offset Voltage			2	5	mV
Average Temperature Coefficient of Offset Voltage			6		μV/°C
Input Current			3	10	nA
Input Resistance		10 ¹⁰	10 ¹²		Ω
Voltage Gain	$R_L \ge 10 \ k\Omega$	0.999	0.9996		
Output Resistance			0.8	2.5	Ω
Output Voltage Swing (Note 5)	$R_L \ge 8 \text{ k}\Omega$	±10	±13		V
Supply Current			3.5	5.5	mA
Positive Supply Rejection		60			dB
Negative Supply Rejection		70			dB
Input Capacitance				3.0	pF
Offset Voltage	$-55^{\circ}C \le T_A \le 125^{\circ}C$			7.5	mV
Input Current	$T_A = 125^{\circ}C$ $T_A = -55^{\circ}C$		30	10 100	nA nA
Voltage Gain	-55° C \leq T _A \leq 125 $^{\circ}$ C R _L \geq 10 k Ω	0.999			
Output Voltage Swing (Note 5)	$R_{L} \ge 10 \text{ k}\Omega$	±10			V
Supply Current	T _A = 125°C		2.6	4.0	mA

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 45°C/W junction to case or 150°C/W junction to ambient (see curve).

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to 125°C and ambient temperatures to 70°C. It is necessary to insert a resistor greater than 2 kΩ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.

Note 4: These specifications apply for T $_A$ = 25 $^{\circ}C,~V_S$ = ±15V and $C_L \leq 100~pF$ unless

otherwise noted Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and ∇ terminals. See curve.

2

guaranteed performance characteristics

Input Current

Output Swing

Supply Current

Voltage Gain

Voltage Gain

Output Resistance

Positive Output Swing

Negative Output Swing

Output Swing

Large Signal Frequency Response

Large Signal Pulse Response

Maximum Power Dissipation

LM202 voltage follower general description

The LM202, a limited temperature range version of the LM102, is a high-gain operational amplifier designed specifically for unity-gain voltage follower applications. Built on a single silicon chip, the device incorporates advanced processing techniques to obtain very low input current and high input impedance. Further, the input transistors are operated at zero collector-base voltage to virtually eliminate high temperature leakage currents. It can therefore be operated in a temperature stabilized component oven to get extremely low input currents and low offset voltage drift. Other outstanding characteristics of the device include:

Fast slewing: 10V/μs

Low input current: 15 nA (max)

■ High input resistance: 10,000 M Ω

■ No external frequency compensation required

Simple offset balancing with optional 1K potentiometer

■ Specified for operation from -25°C to 85°C

 Plug-in replacement for both the LM201 and LM709C voltage follower applications.

The LM202, which is designed to operate with supply voltages between $\pm 12V$ and $\pm 15V$, also features low input capacitance as well as excellent small signal and large signal frequency response — all of which minimize high frequency gain error. Because of the low wiring capacitances inherent in monolithic construction, this fast operation can be realized without increasing power consumption.

schematic and connection diagrams

typical applications

Low Pass Active Filter

High Pass Active Filter

Order Number LM202H See Package 11

Sample and Hold With Offset Adjustment

High Input Impedance AC Amplifier

Supply Voltage ±18V
Power Dissipation (Note 1) 500 mW
Input Voltage (Note 2) ±15V
Output Short Circuit Duration (Note 3) Indefinite
Operating Temperature Range -25°C to 85°C
Storage Temperature Range -65°C to 150°C
Lead Temperature (soldering, 10 sec) 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Offset Voltage			3	10	mV
Average Temperature Coefficient of Offset Voltage			15		μV/°C
Input Current			7	15	nA
Input Resistance		10 ¹⁰	1012		Ω
Voltage Gain	$R_{L} \ge 8 K\Omega$.999	0.9995	1.000	
Output Resistance			0.8	2.5	Ω
Output Voltage Swing	$R_{L} \ge 8 K\Omega$	±10			V
Supply Current			3.5	5.5	mA
Positive Supply Rejection		60			
Negative Supply Rejection		70			
Input Capacitance			3.0		pF
Offset Voltage	-25° C \leq T _A \leq 85° C			15	mV
Input Current	$T_A = 85^{\circ}C$ $T_A = -25^{\circ}C$		1.5 30	5.0 50	nA nA

Note 1: For operating at elevated temperatures, the device must be derated based on a 100° C maximum junction temperature and a thermal resistance of 45° C/W junction to case or 150° C/W junction to ambient (see curve).

Note 2: For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to 85° C and ambient temperatures to 55° C. It is necessary to insert a resistor greater than $2 \text{ K}\Omega$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.

Note 4: These specifications apply for T $_A$ = 25 $^{\circ}C$, V $_S$ = ±15V and $C_L \leq$ 100 pF unless otherwise noted.

guaranteed performance characteristics

LM302 voltage follower general description

The LM302, an epoxy encapsulated version of the LM102, is a high gain operational amplifier designed specifically for unity-gain voltage follower applications. Built on a single silicon chip, the device incorporates advanced processing techniques to obtain very low input current and high input impedance. Further, the input transistors are operated at zero collector-base voltage to virtually eliminate high temperature leakage currents. It can therefore be operated in a temperature stabilized component oven to get extremely low input currents and low offset voltage drift. Other outstanding characteristics of the device include:

- Fast Slewing 10V/µs
- Low input current 30 nA (max)

- High input resistance 1,000 M Ω
- No external frequency compensation required
- Simple offset balancing with optional 1K potentiometer
- Specified for operation from 0°C to 70°C
- Plug-in replacement for both the LM201 and LM709C in voltage follower applications.

The LM302, which is designed to operate with supply voltages between $\pm 12V$ and $\pm 15V$, also features low input capacitance as well as excellent small signal and large signal frequency response — all of which minimize high frequency gain error. Because of the low wiring capacitances inherent in monolithic construction, this fast operation can be realized without increasing power consumption.

schematic and connection diagrams

typical applications

Low Pass Active Filter

High Pass Active Filter

Order Number LM302H See Package 11

High Input Impedance AC Amplifier

2-99

2

Supply Voltage
Power Dissipation (Note 1)
Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

±18V 400 mW ±15V Indefinite 0°C to 70°C -65°C to 150°C 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Offset Voltage			5	15	mV
Average Temperature Coefficient of Offset Voltage			20		μV/°C
Input Current			10	30	nA
Input Resistance		10 ⁹	10 ¹²		Ω
Voltage Gain	$R_L > 8 K\Omega$	0.9985	0.9995	1.000	
Output Resistance			0.8	2.5	Ω
Output Voltage Swing	$R_L \ge 8 K\Omega$	±10			V
Supply Current			3.5	5.5	mA
Positive Supply Rejection		60			dB
Negative Supply Rejection		70			dB
Input Capacitance			3.0		pF
Offset Voltage	$0^{\circ}C \leq T_A \leq 70^{\circ}C$			20	mV
Input Current	$T_A = 70^{\circ}C$ $T_A = 0^{\circ}C$	-	3.0 20	15 50	nA nA

Note 1: For operating at elevated temperatures, the device must be derated based on a 85°C maximum junction temperature and a thermal resistance of 45°C/W junction to case or 150°C/W junction to ambient (see curve).

Note 2: For supply voltages less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to 70°C and ambient temperatures to 55°C . It is necessary to insert a resistor greater than $2~\text{K}\Omega$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.

Note 4: These specifications apply for T_A = 25°C, V_S = ±15V and $C_L \le 100$ pF unless otherwise noted.

2

guaranteed performance characteristics

typical performance characteristics

LM107/LM207 operational amplifier general description

The LM107 and LM207 are complete, general purpose operational amplifiers, with the necessary frequency compensation built into the chip. Advanced processing techniques make the input currents a factor of ten lower than industry standards like the 709. Yet, they are a direct, plug-in replacement for the 709, LM101, LM101A and 741. Specifications which have been improved include:

- Offset voltage 3 mV maximum over temperature
- Input current 100 nA maximum over temperature
- Offset current 20 nA maximum over temperature
- Guaranteed drift characteristics

Offsets guaranteed over entire common mode range

The LM107 series offers the features of the LM101, which makes its application nearly fool-proof. In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at a lower cost.

The LM207 is identical to the LM107, except that the LM207 has its performance guaranteed over a -25°C to 85°C temperature range, instead of -55°C to 125°C .

schematic** and connection diagrams

Order Number LM107H or LM207H See Package 11

Order Number
LM107F or LM207F
See Package 3

Order Number LM107D or LM207D See Package 1

typical applications **

Inverting Amplifier

Non-Inverting AC Amplifier

Non-Inverting Amplifier

^{**}Pin connections shown are for metal can.

Supply Voltage ±22V Power Dissipation (Note 1) 500 mW Differential Input Voltage ±30V Input Voltage (Note 2) ±15V Output Short-Circuit Duration Indefinite -55°C to 125°C Operating Temperature Range LM107 -25°C to 85°C LM207 -65° C to 150° C Storage Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 50 \text{ k}\Omega$		0.7	2.0	mV
Input Offset Current	$T_A = 25^{\circ}C$		1.5	10	nA
Input Bias Current	$T_A = 25^{\circ}C$		30	75	nA
Input Resistance	$T_A = 25^{\circ}C$	1.5	4		M22
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 20V$		1.8	3.0	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2 \text{ k}\Omega$	50	160		V/mV
Input Offset Voltage	$R_{S} \leq$ 50 k Ω			3.0	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	15	μV/°C
Input Offset Current				20	nA
Average Temperature Coefficient of Input Offset Current Input Bias Current	$25^{\circ}C \le T_{A} \le 125^{\circ}C$ $-55^{\circ}C \le T_{A} \le 25^{\circ}C$		0.01 0.02	0.1 0.2	nA/°C nA/°C nA
Supply Current	$T_A = +125^{\circ}C, V_S = \pm 20V$		1.2	2.5	mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2 \text{ k}\Omega$	25	1.2	2.5	V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$ $R_L = 2 \text{ k}\Omega$	±12 ±10	±14 ±13		V V
Input Voltage Range	V _S = ±20V	±15			V
Common Mode Rejection Ratio	$R_{S} \leq$ 50 k Ω	80	96		dB
Supply Voltage Rejection Ratio	$R_{S} \leq 50 \text{ k}\Omega$	80	96		dB

Note 1: The maximum junction temperature of the LM107 is 150°C, while that of the LM207 is 100°C. For operating at elevated temperatures, devices in the T0-5 package must be derated based on a thermal resistance of 150°C/M, junction to ambient, or 45°C/M, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/M when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/M, junction to ambient.

Note 2: For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: These specifications apply for $\pm5V \le V_S \le \pm20V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$ for the LM107 or $-25^{\circ}C \le T_A \le 85^{\circ}C$ for the LM207, unless otherwise specified.

LM307 operational amplifier general description

The LM307 is a complete, general purpose operational amplifier, with the necessary frequency compensation built into the chip. Advanced processing techniques make the input currents a factor of ten lower than industry standards like the 709C. Yet, it is a direct, plug-in replacement for the 709C, LM201, MC1439 and 741 in most applications.

In addition to reduced input current, the offset voltage and offset current are guaranteed over the entire common mode range and maximum drift specifications are given. The amplifier also offers many features which make its application nearly

foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM307 provides better accuracy and lower noise than its predecessors in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at reduced cost.

schematic** and connection diagrams

Metal Can

Order Number LM307F See Package 3

Order Number LM307N See Package 20

typical applications**

Tunable Notch Filter

Differential Input Instrumentation Amplifier

**Pin connections shown are for metal can.

Supply Voltage ±18V Power Dissipation (Note 1) 500 mW Differential Input Voltage ±30V Input Voltage (Note 2) ±15V Output Short-Circuit Duration (Note 3) Indefinite Operating Temperature Range 0° C to 70° C -65° C to 150° C Storage Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 50 \text{ k}\Omega$		2.0	7.5	mV
Input Offset Current	$T_A = 25^{\circ}C$		3	50	nA
Input Bias Current	$T_A = 25^{\circ}C$		70	250	nA
Input Resistance	$T_A = 25^{\circ}C$	0.5	2		МΩ
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		1.8	3.0	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$ $V_{OUT} = \pm 10V, R_L \ge 2 \text{ k}\Omega$	25	160		V/mV
Input Offset Voltage	$R_S \leq 50 \text{ k}\Omega$			10	mV
Average Temperature Coefficient of Input Offset Voltage			6.0	30	μV/°C
Input Offset Current				70	nA
Average Temperature Coefficient of Input Offset Current	25°C ≤ T _A ≤ 70°C 0°C ≤ T _A ≤ 25°C		0.01 0.02	0.3 0.6	nA/°C nA/°C
Input Bias Current				300	nA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2 k\Omega$	15			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$ $R_L = 2 \text{ k}\Omega$	±12 ±10	±14 ±13		V
Input Voltage Range	V _S = ±15V	±12			V
Common Mode Rejection Ratio	$R_{S} \leq 50 \text{ k}\Omega$	70	90		dB
Supply Voltage Rejection Ratio	$R_S \leq 50 \text{ k}\Omega$	70	96		dB

Note 1: For operating at elevated temperatures, the device must be derated based on a $10^{\circ}\mathrm{C}$ maximum junction temperature and a thermal resistance of $150^{\circ}\mathrm{C/W}$ junction to asse.

Note 2: For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to $70^{\circ}C$ and ambient temperatures to $55^{\circ}C$.

Note 4: The specifications apply for $0^{o}C \le T_{A} \le 70^{o}C$ and $\pm 5V \le V_{S} \le \pm 15V$, unless otherwise specified.

LM108/LM208 operational amplifier

general description

The LM108 and LM208 are precision operational amplifiers having specifications a factor of ten better than FET amplifiers over a $-55^{\circ}\mathrm{C}$ to $125^{\circ}\mathrm{C}$ temperature range. Selected units are available with offset voltages less than 1.0 mV and drifts less than $5\,\mu\mathrm{V}/^{\circ}\mathrm{C}$, again over the military temperature range. This makes it possible to eliminate offset adjustments, in most cases, and obtain performance approaching chopper stabilized amplifiers.

The devices operate with supply voltages from $\pm 2V$ to $\pm 20V$ and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with and uses the same compensation as the LM101A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary. Outstanding characteristics include:

- Maximum input bias current of 3.0 nA over temperature
- Offset current less than 400 pA over temperature
- Supply current of only $300 \, \mu A$, even in saturation
- Guaranteed drift characteristics

The low current error of the LM108 series makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from 10 M Ω source resistances, introducing less error than devices like the 709 with 10 k Ω sources. Integrators with drifts less than 500 $\mu V/sec$ and analog time delays in excess of one hour can be made using capacitors no larger than 1 μF .

The LM208 is identical to the LM108, except that the LM208 has its performance guaranteed over a -25°C to 85°C temperature range, instead of -55°C to 125°C .

Supply Voltage Power Dissipation (Note 1) Differential Input Current (Note 2) Input Voltage (Note 3) Output Short-Circuit Duration Operating Temperature Range LM108

LM208

Storage Temperature Range Lead Temperature (Soldering, 10 sec)

500 mW ±10 mA ±15V Indefinite -55°C to 125°C -25°C to 85°C -65° C to 150° C 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 5)	T _A = 25°C		0.7	2.0	mV
Input Offset Current	T _A = 25°C		0.05	0.2	nA
Input Bias Current	T _A = 25°C		0.8	2.0	nA
Input Resistance	$T_A = 25^{\circ}C$	30	70		MΩ
Supply Current	T _A = 25°C		0.3	0.6	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 10 \text{ k}\Omega$	50	300		V/mV
Input Offset Voltage (Note 5)			,	3.0	mV ,
Average Temperature Coefficient of Input Offset Voltage (Note 5)			3.0	15	μV/°C
Input Offset Current				0.4	nA
Average Temperature Coefficient of Input Offset Current			0.5	2.5	pA/°C
Input Bias Current				3.0	nA
Supply Current	$T_A = +125^{\circ}C$		0.15	0.4	mA
Large Signal Voltage Gain	V_S = ±15V, V_{OUT} = ±10V $R_L \ge 10~k\Omega$	25			V/mV
Output Voltage Swing	V_S = ±15V, R_L = 10 k Ω	±13	±14		V
Input Voltage Range	$V_S = \pm 15V$	±13.5			V
Common Mode Rejection Ratio		85	100		dB
Supply Voltage Rejection Ratio		80	96		dB

Note 1: The maximum junction temperature of the LM108 is 150°C, while that of the LM208 is 100°C. For operating at elevated temperatures, devices in the TQ-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100 C/W, junction to ambient.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $\pm 5 \text{V} \leq \text{V}_\text{S} \leq \pm 20 \text{V}$ and $-55^{\circ}\text{C} \leq \text{T}_\text{A} \leq 125^{\circ}\text{C}$, unless otherwise specified. With the LM208, however, all temperature specifications are limited to $-25\,^\circ\text{C} \le T_A \le 85\,^\circ\text{C}$.

Note 5: The LM108A has a guaranteed offset voltage less than 0.5 mV at $25\,^{\circ}\text{C}$ and 1.0 mV for -55 C $_{\rm A}$ \leq 125 C and V $_{\rm S}$ = ±15 V. The average temperature coefficient of input offset voltage is guaranteed to be less than 5 μ V/ C for these same conditions.

LM308 operational amplifier

general description

The LM308 is a precision operational amplifier featuring input currents nearly a thousand times lower than industry standards like the LM709C. In fact, its performance approaches that of high quality FET amplifiers. The circuit is directly interchangeable with the LM301A in low frequency circuits and incorporates the same protective features which make its application nearly foolproof.

The device operates with supply voltages from $\pm 2V$ to $\pm 15V$ and has sufficient supply rejection to use unregulated supplies. Although the circuit is designed to work with the standard compensation for the LM301A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary. Power consumption is extremely low, so the amplifiers are ideally suited for battery powered applications. Out-

standing characteristics include:

- Maximum input bias current of 7.0 nA
- Offset current less than 1.0 nA
- Supply current of only $300 \, \mu A$, even in saturation
- Guaranteed drift characteristics

The low current error of the LM308 makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from $10~\text{M}\Omega$ source resistances, introducing less error than devices like the 709C with $10~\text{k}\Omega$ sources. Integrators with worst case drifts less than 1 mV/sec and analog time delays in excess of one hour can be made using capacitors no larger than 1 μF . The device is well suited for use with piezoelectric, electrostatic or other capacitive transducers, in addition to low frequency active filters with small capacitor values.

connection diagrams *

Metal Can Package

Dual-In-Line Package

Flat Package

Dual-In-Line Package

Order Number LM308H See Package 11

Order Number LM308D See Package 1

Order Number LM308F See Package 3

Order Number LM308N See Package 20.

schematic diagram* and compensation circuits

Standard Compensation Circuit

Alternate* Frequency Compensation

 Supply Voltage
 ±18V

 Power Dissipation (Note 1)
 500 mW

 Differential Input Current (Note 2)
 ±10 mA

 Input Voltage (Note 3)
 ±15V

 Output Short-Circuit Duration
 Indefinite

 Operating Temperature Range
 0°C to 70°C

 Storage Temperature Range
 -65°C to 150°C

 Lead Temperature (Soldering, 10 sec)
 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	T _A = 25°C		2.0	7.5	mV
Input Offset Current	$T_A = 25^{\circ}C$		0.2	1	nA
Input Bias Current	$T_A = 25^{\circ}C$		1.5	7	nA
Input Resistance	$T_A = 25^{\circ}C$	10	40		ΩΜΩ
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		0.3	0.8	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$ $V_{OUT} = \pm 10V, R_L \ge 10 \text{ k}\Omega$	25	300		V/mV
Input Offset Voltage				10	mV
Average Temperature Coefficient of Input					
Offset Voltage			6.0	30	μV/°C
Input Offset Current				1.5	nA
Average Temperature Coefficient of Input					7
Offset Current			2.0	10	pA/°C
Input Bias Current				10	nA
Large Signal Voltage	$V_S = \pm 15V, V_{OUT} = \pm 10V$				
Gain	$R_L \ge 10 \ k\Omega$	15			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$	±13	±14		V
Input Voltage Range	V _S = ±15V	±14			V
Common Mode		80	100		dB
Rejection Ratio					
Supply Voltage Rejection Ratio		80	96		dB

Note 1: The maximum junction temperature of the LM308 is 85°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $\pm 5 \text{V} \leq \text{V}_\text{S} \leq \pm 15 \text{V}$ and $0^{\circ}\text{C} \leq \text{T}_\text{A} \leq 70^{\circ}\text{C}$, unless otherwise specified.

typical performance characteristics

LM108A/LM208A/LM308A operational amplifier general description

The LM108A, LM208A and LM308A are precision operational amplifiers having specifications about a factor of ten better than FET amplifiers over their operating temperature range. In addition to low input currents, these devices have extremely low offset voltage, making it possible to eliminate offset adjustments, in most cases, and obtain performance approaching chopper stabilized amplifiers.

The devices operate with supply voltages from $\pm 2V$ to $\pm 20V$ and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with and uses the same compensation as the LM101A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary. Outstanding characteristics include:

- Offset voltage guaranteed less than 0.5 mV
- Maximum input bias current of 3.0 nA over temperature

- Offset current less than 400 pA over temperature
- Supply current of only $300 \,\mu\text{A}$, even in saturation
- Guaranteed 5 μV/°C drift.

The low current error of the LM108A series makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from $10~\text{M}\Omega$ source resistances, introducing less error than devices like the 709 with 10 k Ω sources. Integrators with drifts less than 500 $\mu\text{V/sec}$ and analog time delays in excess of one hour can be made using capacitors no larger than 1 μF .

The LM208A is identical to the LM108A, except that the LM208A has its performance guaranteed over a -25°C to 85°C temperature range, instead of -55°C to 125°C. The LM308A has slightly-relaxed specifications and has its performance guaranteed over a 0°C to 70°C temperature range.

LM108A/LM208A

absolute maximum ratings

Supply Voltage ±20V Power Dissipation (Note 1) 500 mW Differential Input Current (Note 2) ±10 mA Input Voltage (Note 3) +15V Output Short-Circuit Duration Indefinite -55°C to 125°C Operating Temperature Range LM108A -25°C to 85°C LM208A -65°C to 150°C Storage Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	T _A = 25°C		0.3	0.5	mV
Input Offset Current	T _A = 25°C		0.05	0.2	nA
Input Bias Current	T _A = 25°C		0.8	2.0	nA
Input Resistance	T _A = 25°C	30	70		MΩ
Supply Current	T _A = 25°C		0.3	0.6	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$ $V_{OUT} = \pm 10V, R_L \ge 10 \text{ k}\Omega$	80	300		V/mV
Input Offset Voltage				1.0	mV
Average Temperature Coefficient of Input Offset Voltage			1.0	5.0	μV/°C
Input Offset Current				0.4	nA
Average Temperature Coefficient of Input Offset Current			0.5	2.5	pA/°C
Input Bias Current				3.0	nA
Supply Current	$T_A = +125^{\circ}C$		0.15	0.4	mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 10 \text{ k}\Omega$	40			V/mV
Output Voltage Swing	$V_{S} = \pm 15V, R_{L} = 10 \text{ k}\Omega$	±13	±14		V
Input Voltage Range	V _S = ±15V	±13.5			V
Common Mode Rejection Ratio		96	110		dB
Supply Voltage Rejection Ratio		96	110		dB

Note 1: The maximum junction temperature of the LM108A is 150°C, while that of the LM208A is 100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $\pm 5V \le V_S \le \pm 20V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise specified. With the LM208A, however, all temperature specifications are limited to $-25^{\circ}C \le T_A \le 85^{\circ}C$.

LM308A

absolute maximum ratings

Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

±18V 500 mW ±10 mA ±15V Indefinite 0°C to 70°C -65°C to 150°C 300°C

electrical characteristics (Note 4)

		I			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$		0.3	0.5	mV
Input Offset Current	$T_A = 25^{\circ}C$		0.2	1	nA
Input Bias Current	$T_A = 25^{\circ}C$		1.5	7	nA
Input Resistance	$T_A = 25^{\circ}C$	10	40		MΩ
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		0.3	0.8	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 10 \text{ k}\Omega$	80	300		V/mV
Input Offset Voltage	8			0.73	mV
Average Temperature Coefficient of Input Offset Voltage			1.0	5.0	μV/°C
Input Offset Current				1.5	nA
Average Temperature Coefficient of Input Offset Current Input Bias Current			2.0	10	pA/°C
				10	nA
Large Signal Voltage Gain	V_S = ±15V, V_{OUT} = ±10V $R_L \ge 10~k\Omega$	60			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$	±13	±14		V
Input Voltage Range	V _S = ±15V	±14			V
Common Mode Rejection Ratio		96	110		dB
Supply Voltage Rejection Ratio		96	110		dB

Note 1: The maximum junction temperature of the LM308A is 85°C. For operating at elevated temperatures, devices in the T0-5 package must be derated based on a thermal resistance of 150°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage

Note 4: These specifications apply for $\pm 5 \text{V} \leq \text{V}_\text{S} \leq \pm 15 \text{V}$ and $0^{\circ}\text{C} \leq \text{T}_\text{A} \leq 70^{\circ}\text{C}$, unless otherwise specified.

LM110/LM210 voltage follower general description

The LM110 and LM210 are monolithic operational amplifiers internally connected as unitygain non-inverting amplifiers. They use supergain transistors in the input stage to get low bias current without sacrificing speed. Directly interchangeable with 101, 741 and 709 in voltage follower applications, these devices have internal frequency compensation and provision for offset balancing. Outstanding characteristics include:

■ Input current: 10 nA max. over temperature

■ Small signal bandwidth: 20 MHz

Slew rate: 30V/μs

■ Supply voltage range: ±5V to ±18V

The LM110 and LM210 are useful in fast sample and hold circuits, active filters or as general-purpose buffers. Further, the frequency response is enough better than standard IC amplifiers that the followers can be included in the feedback loop without introducing instability. They are plug-in replacements for the LM102 or LM202 voltage followers, offering lower offset voltage, drift, bias current and noise in addition to higher speed and wider operating voltage range.

The LM210 is identical to the LM110, except that its performance is specified over a -25°C to 85°C temperature range instead of -55°C to 125°C.

schematic** and connection diagrams

LM110H or LM210H LM110F or LM210F
See Package 11 See Package 3

Order Number LM110D or LM210D See Package 1

typical applications **

Fast Inverting Amplifier with High Input Impedance

Fast Integrator with Low Input Current

¹⁸⁷UT - 187UT - 187UT

^{**}Pin connections shown are for metal can.

±18V Supply Voltage Power Dissipation (Note 1) 500 mW ±15V Input Voltage (Note 2) Output Short Circuit Duration (Note 3) Indefinite -55°C to 125°C Operating Temperature Range LM110 LM210 -25°C to 85°C -65°C to 150°C Storage Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	T _A = 25°C		1.5	4.0	mV
Input Bias Current	$T_A = 25^{\circ}C$		1.0	3.0	nA
Input Resistance	T _A = 25°C	10 ¹⁰	10 ¹²		Ω
Input Capacitance			1.5		pF
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L = 8K\Omega$	0.999	0.9997		V/V
Output Resistance	T _A = 25°C		0.75	2.5	Ω
Supply Current	T _A = 25°C		3.9	5.5	mA
Input Offset Voltage				6.0	mV
Offset Voltage Temperature Drift	$-55^{\circ}C \le T_{A} \le 85^{\circ}C$ $T_{A} = 125^{\circ}C$		6 12		μV/°C μV/°C
Input Bias Current				10	nA
Large Signal Voltage Gain	$V_{S} = \pm 15V, V_{OUT} = \pm 10V$ $R_{L} = 10K\Omega$	0.999			V/V
Output Voltage Swing (Note 5)	$V_S = \pm 15V$, $R_L = 10K\Omega$	±10			V
Supply Current	T _A = 125°C		2.0	4.0	mA
Supply Voltage Rejection Ratio	$\pm 5V \le V_S \le \pm 18V$	70	80		dB

Note 1: The maximum junction temperature of the LM110 is 150°C, while that of the LM210 is 100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to 125°C and ambient temperatures to 70° C. It is necessary to insert a resistor greater than $2k\Omega$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.

Note 4: These specifications apply for $\pm 5 \text{V} \leq \text{V}_S \leq \pm 18 \text{V}$ and $-55^{\circ}\text{C} \leq \text{T}_A \leq 125^{\circ}\text{C}$, unless otherwise specified. With the LM210, however, all temperature specifications are limited to $-25^{\circ}\text{C} \leq \text{T}_A \leq 85^{\circ}\text{C}$.

Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V⁻ terminals. See curve.

auxiliary circuits

Offset Balancing Circuit

Increasing Negative Swing Under Load

typical applications** (con't)

Simulated Inductor

Differential Input Instrumentation Amplifier

Bandpass Filter

High Q Notch Filter

Low Pass Active Filter

Buffered Reference Source

Sample and Hold

Low Drift Sample and Hold*

High Pass Active Filter

^{**}Pin connections shown are for metal can.

typical applications** (con't)

Comparator for Signals of Opposite Polarity

Zero Crossing Detector

Comparator for AC Coupled Signals

Comparator for A/D Converter Using a Binary-Weighted Network

Comparator for A/D Converter Using a Ladder Network

Driver for A/D Ladder Network

Buffer for Analog Switch*

High Input Impedance AC Amplifier

Bilateral Current Source

Sine Wave Oscillator

^{**}Pin connections shown are for metal can.

LM310 voltage follower general description

The LM310 is a monolithic operational amplifier internally connected as a unity-gain non-inverting amplifier. It uses super-gain transistors in the input stage to get low bias current without sacrificing speed. Directly interchangeable with 301, 741C and 709C in voltage follower applications, this device has internal frequency compensation and provision for offset balancing. Outstanding characteristics include:

■ Input current: 10 nA max. over temperature

■ Small signal bandwidth: 20 MHz

Slew rate: 30V/μs

Supply voltage range: ±5V to ±18V

The LM310 is useful in fast sample and hold circuits, active filters or as a general-purpose buffer. Further, the frequency response is enough better than standard IC amplifiers that the follower can be included in the feedback loop without introducing instability. It is a plug-in replacement for the LM302 voltage follower, offering lower offset voltage, drift, bias current and noise in addition to higher speed and wider operating voltage range.

schematic** and connection diagrams

Order Number LM310H See Package 11

Order Number LM310F

See Package 3

Order Number LM310D See Package 1

Order Number LM310N See Package 20.

typical applications **

Sample and Hold

**Pin connections shown are for metal can.

Low Drift Sample and Hold*

Supply Voltage
Power Dissipation (Note 1)
Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

±18V 500 mW ±15V Indefinite 0°C to 70°C -65°C to 150°C 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	T _A = 25°C		2.5	7.5	mV
Input Bias Current	$T_A = 25^{\circ}C$		2.0	7.0	nA
Input Resistance	$T_A = 25^{\circ}C$	10 ¹⁰	10 ¹²		Ω
Input Capacitance			1.5		pF
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$ $V_{OUT} = \pm 10V, R_L = 8K\Omega$	0.999	0.9999		V/V
Output Resistance	$T_A = 25^{\circ}C$		0.75	2.5	Ω
Supply Current	T _A = 25°C		3.9	5.5	mA
Input Offset Voltage				10	mV
Offset Voltage Temperature Drift			10		μV/°C
Input Bias Current				10	nA
Large Signal Voltage Gain	$V_{S} = \pm 15V, V_{OUT} = \pm 10V$ $R_{L} = 10K\Omega$	0.999			V/V
Output Voltage Swing (Note 5)	$V_S = \pm 15V$, $R_L = 10K\Omega$	±10			V
Supply Voltage Rejection Ratio	$\pm 5V \le V_S \le \pm 18V$	70	80		dB

Note 1: The maximum junction temperature of the LM310 is 85°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage

Note 3: Continuous short circuit is allowed for case temperatures to 70°C and ambient temperatures to 55°C . It is necessary to insert a resistor greater than 2 k Ω in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.

Note 4: These specifications apply for $\pm 5 \text{V} \le \text{V}_\text{S} \le \pm 18 \text{V}$ and $0^{\circ}\text{C} \le \text{T}_\text{A} \le 70^{\circ}\text{C}$, unless otherwise specified.

Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^- terminals. See curve.

2

auxiliary circuits **

Offset Balancing Circuit

18701 3 1 100 17701 added to reduce entertain disagnition.

Increasing Negative Swing Under Load

typical applications** (con't)

High Q Notch Filter

Fast Inverting Amplifier with High Input Impedance

Fast Integrator with Low Input Current

Simulated Inductor

Differential Input Instrumentation Amplifier

NPUT - Volume are for 10 kHz cutoff.

Low Pass Active Filter

Buffered Reference Source

High Pass Active Filter

^{**}Pin connections shown are for metal can.

typical applications** (con't)

Comparator for Signals of Opposite Polarity

Zero Crossing Detector

Comparator for AC Coupled Signals

Comparator for A/D Converter Using a Binary-Weighted Network

Comparator for A/D Converter Using a Ladder Network

**Pin connections shown are for metal can.

Driver for A/D Ladder Network

Buffer for Analog Switch*

High Input Impedance AC Amplifier

Bilateral Current Source

Sine Wave Oscillator

LM112/LM212 operational amplifier

general description

The LM112 and LM212 are micropower operational amplifiers with very low offset-voltage and input-current errors—at least a factor of ten better than FET amplifiers over a -55°C to 125°C temperature range. Similar to the LM108 series, that also use supergain transistors,* they differ in that they include internal frequency compensation and have provisions for offset adjustment with a single potentiometer.

These amplifiers will operate on supply voltages of $\pm 2V$ to $\pm 20V$, drawing a quiescent current of only $300~\mu\text{A}$. Performance is not appreciably affected over this range of voltages, so operation from unregulated power sources is easily accomplished. They can also be run from a single supply like the 5V used for digital circuits. Some noteworthy features are:

 Maximum input bias current of 3.0 nA over temperature

- Offset current less than 400 pA over temperature
- Low noise
- Guaranteed drift specifications

The LM112 series are the first IC amplifiers to improve reliability by including overvoltage protection for the MOS compensation capacitor. Without this feature, IC's have been known to suffer catastrophic failure caused by short-duration overvoltage spikes on the supplies. Unlike other internally-compensated IC amplifiers, it is possible to overcompensate with an external capacitor to increase stability margin.

The LM212 is identical to the LM112, except that the LM212 has its performance guaranteed over a -25°C to 85°C temperature range instead of -55°C to 125°C .

schematic diagram**

**Pin connections shown are for metal can.

connection diagrams

Order Number LM112H or LM212H See Package 11

Flat Package

Order Number LM112F or LM212F See Package 3

auxiliary circuits **

Offset Balancing

Overcompensation for Greater Stability Margin

Dual-In-Line NC 1 14 NC BALANCE 2 13 NC CUARD 3 1-12 BALANCE INPUT 4 16 OUTPUT CUARD 5 1 NC

Order Number LM112D or LM212D See Package 1

^{*}Patent pending

Supply Voltage ±20V Power Dissipation (Note 1) 500 mW Differential Input Current (Note 2) ±10 mA Input Voltage (Note 3) +15V Output Short-Circuit Duration Indefinite -55°C to 125°C -25°C to 85°C Operating Temperature Range LM112 LM212 -65° C to 150° C Storage Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	T _A = 25°C		0.7	2.0	mV
Input Offset Current	$T_A = 25^{\circ}C$		0.05	0.2	nA
Input Bias Current	T _A = 25°C		0.8	2.0	nA
Input Resistance	$T_A = 25^{\circ}C$	30	70		M22
Supply Current	$T_A = 25^{\circ}C$		0.3	0.6	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 10 \text{ k}\Omega$	50	300		V/mV
Input Offset Voltage				3.0	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	15	μV/°C
Input Offset Current				0.4	nA
Average Temperature Coefficient of Input Offset Current		-	0.5	2.5	pA/°C
Input Bias Current				3.0	nA
Supply Current	$T_A = +125^{\circ}C$		0.15	0.4	mA
Large Signal Voltage Gain	V_S = ±15V, V_{OUT} = ±10V $R_L \ge 10 \text{ k}\Omega$	25			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$	±13	±14		V
Input Voltage Range	V _S = ±15V	±13.5			V
Common Mode Rejection Ratio		85	100		dB
Supply Voltage Rejection Ratio		80	96		dB

Note 1: The maximum junction temperature of the LM112 is 150°C, while that of the LM212 is 100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: The inputs are shunted with shunt diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $\pm5V \le V_S \le \pm20V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise specified. With the LM212, however, all temperature specifications are limited to $-25^{\circ}C \le T_A \le 85^{\circ}C$.

LM312 operational amplifier general description

The LM312 is a micropower operational amplifier with very low offset voltage and input-current errors—approaching that of FET amplifiers over its operating temperature range. Similar to the LM308 series, that also uses supergain transistors[†], it differs in that it includes internal frequency compensation and has provisions for offset adjustment with a single potentiometer.

This amplifier will operate on supply voltages of $\pm 2V$ to $\pm 20V$, drawing a quiescent current of only $300~\mu A$. Performance is not appreciably affected over this range of voltages, so operation from unregulated power sources is easily accomplished. It can also be run from a single supply like the 5V used for digital circuits. Some noteworthy features are:

- Maximum input bias current of 7.0 nA
- Offset current less than 1.0 nA
- Low noise
- Guaranteed drift specifications

The LM312 series is the first IC amplifier to improve reliability by including overvoltage protection for the MOS compensation capacitor. Without this feature, IC's have been known to be sensitive to catastrophic failure caused by short-duration overvoltage spikes on the supplies. Unlike other internally-compensated IC amplifiers, it is possible to overcompensate with an external capacitor to increase stability margin.

The low current error of the LM312 makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from 10 $M\Omega$ source resistances, introducing less error than devices like the 709C with 10 $k\Omega$ sources. Integrators with worst case drifts less than 1 mV/sec and analog time delays in excess of one hour can be made using capacitors no larger than 1 μF . The device is well suited for use with piezo-electric, electrostatic or other capacitive tranducers, in addition to low frequency active filters with small capacitor values.

†Patent pending

* *Pin connections snown are for metal can.

connection diagrams Metal Can

Order Number LM312H See Package 11

Order Number LM312F See Package 3

auxiliary circuits**

Offset Balancing

Overcompensation for Greater Stability Margin

Order Number LM312D See Package 1

Supply Voltage ±18V Power Dissipation (Note 1) 500 mW Differential Input Current (Note 2) $\pm 10 \text{ mA}$ ±15V Input Voltage (Note 3) Output Short-Circuit Duration Indefinite Operating Temperature Range 0°C to 70°C Storage Temperature Range -65° C to 150° C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	T _A = 25°C		2.0	7.5	mV
Input Offset Current	$T_A = 25^{\circ}C$		0.2	1	nA
Input Bias Current	$T_A = 25^{\circ}C$		1.5	7	nA
Input Resistance	$T_A = 25^{\circ}C$	10	40		MS2
Supply Current	$T_A = 25^{\circ}C$, $V_S = \pm 15V$		0.3	0.8	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 10 k\Omega$	25	300		V/mV
Input Offset Voltage				10	mV
Average Temperature Coefficient of Input Offset Voltage			6.0	30	μV/°C
Input Offset Current				1.5	nA
Average Temperature Coefficient of Input Offset Current			2.0	10	pA/°C
Input Bias Current				10	nA
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V$ $R_L \ge 10 \text{ k} \Omega$	15			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$	±13	±14		V
Input Voltage Range	V _S = ±15V	±14			V
Common Mode Rejection Ratio		80	100		dB
Supply Voltage Rejection Ratio		80	96		dB

Note 1: The maximum junction temperature of the LM312 is 85° C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150° C/W, junction to ambient, or 45° C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185° C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100° C/W, junction to ambient.

Note 2: The inputs are shunted with shunt diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $\pm 5V \le V_S \le \pm 15V$ and $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise specified.

LM216/LM216A/LM316/LM316A operational amplifier

general description

These devices are precision, high input impedance operational amplifiers designed for applications requiring extremely low input-current errors. They use supergain transistors in a Darlington input stage to get input bias currents that are equal to high-quality FET amplifiers—even in limited temperature range operation. The low input current is, however, obtained with some sacrifice to offset voltage, offset voltage drift and noise when compared to the non-Darlington LM112 series. Noteworthy specifications include:

- Guaranteed bias currents as low as 50 pA
- Maximum offset currents down to 15 pA
- Operates from supplies of ±3V to ±20V
- Supply current only 300 µA at ±20V

These operational amplifiers are internally frequency compensated and have provisions for offset balancing with a single external potentiometer.

Further, unlike most other internally compensated amplifiers, the MOS compensation capacitor is protected to prevent catastrophic failure from overvoltage spikes on the supplies.

The low current error of these amplifiers make possible many designs that were previously impractical with monolithic amplifiers. They will operate from $100~\text{M}\Omega$ source resistances, introducing less error than general purpose amplifiers with $10~\text{k}\Omega$ sources. Integrators with worst case drifts less than $10~\mu\text{V/sec}$ and analog time delays in excess of one day can also be made using capacitors no larger than $1~\mu\text{F}$.

The LM216A and LM316A are high performance versions of the LM216 and LM316. The LM216 and LM216A are specified for operation from -25°C to 85°C, while the LM316 and LM316A are specified from 0°C to 55°C.

schematic diagram

auxiliary circuits ** Overcompensation for Greater

Overcompensation for Greate Stability Margin

Offset Balancing

**Pin connections shown are for metal can.

connection diagrams Metal Can

Order Number LM216H or LM216AH or LM316H or LM316AH See Package 11

Order Number LM216F or LM216AF or LM316F or LM316AF See Package 3

Dual-In-Line NC 1 13 NC BALANCE 2 13 NC GUARO 3 12 BALANCE INPUT 4 11 V' INPUT 5 1 COMMENSATION V' 7 COMMENSATION V 7 TO A COMMENSATION

Order Number LM216D or LM216AD or LM316D or LM316AD See Package 1 2

Supply Voltage ±20V Power Dissipation (Note 1) 500 mW Differential Input Current (Note 2) ±10 mA Input Voltage (Note 3) ±15V Output Short-Circuit Duration Indefinite Operating Temperature Range LM216/LM216A -25°C to 85°C LM316/LM316A 0°C to 70°C Storage Temperature Range -65°C to 150°C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	LM216	LM216A	LM316	LM316A	UNITS
Input Offset Voltage	T _A = 25°C	10	3	10	3	mV
Input Offset Current	$T_A = 25^{\circ}C$	50	15	50	15	pA
Input Bias Current	$T_A = 25^{\circ}C$	150	50	150	50	рА
Input Resistance	T _A = 25°C	1	5	1	5	GΩ
Supply Current	$T_A = 25^{\circ}C$	0.8	0.6	0.8	0.6	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 10 \text{ k}Ω$	20	40	20	40	V/mV
Input Offset Voltage		15	6	15	6	mV
Input Offset Current		100	30	100	30	рА
Input Bias Current		250	100	250	100	рА
Supply Current	T _A = T _{MAX}		0.5		0.5	mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 10 \text{ k}\Omega$	10	20	15	30	V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$	±13	±13	±13	±13	V
Input Voltage Range	V _S = ±15V	±13	±13	±13	±13	V
Common Mode Rejection Ratio		80	80	80	80	dB
Supply Voltage Rejection Ratio		80	80	80	80	dB

Note 1: The maximum junction temperature of the LM216 and LM216A is 100° C, while that of the LM316 and LM316A is 70° C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150° C/W, junction to ambient, or 45° C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185° C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copyer conductors. The thermal resistance of the dual-in-line package is 100° C/W, junction to ambient.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $\pm 5 \text{V} \leq \text{V}_\text{S} \leq \pm 20 \text{V}$ and $-25^{\circ}\text{C} \leq \text{T}_\text{A} \leq 85^{\circ}\text{C}$, unless otherwise specified. With the LM316 and LM316A however, all temperature specifications are limited to $0^{\circ}\text{C} \leq \text{T}_\text{A} \leq 55^{\circ}\text{C}$.

typical performance characteristics

LM118/LM218 operational amplifier

general description

The LM118 and LM218 are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor of ten increase in speed over general purpose devices without sacrificing DC performance.

features

- 15 MHz small signal bandwidth
- Guaranteed 50V/µs slew rate
- Maximum bias current of 250 nA
- Operates from supplies of ±5V to ±20V
- Internal frequency compensation
- Input and output overload protected
- Pin compatible with general purpose op amps

The LM118 has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary for operation. However, unlike most internally

compensated amplifiers, external frequency compensation may be added for optimum performance For inverting applications, feedforward compensation will boost the slew rate to over $150V/\mu s$ and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under $1\,\mu s$.

The high speed and fast settling time of these op amps make them useful in A/D converters, oscillators, active filters, sample and hold circuits, or general purpose amplifiers. These devices are easy to apply and offer an order of magnitude better AC performance than industry standards such as the LM709.

The LM218 is identical to the LM118 except that the LM218 has its performance specified over a -25°C to 85°C temperature range, instead of -55°C to 125°C .

schematic and connection diagrams

*Pin connections shown on schematic diagram and typical applications are for TO-5 package.

typical applications

Metal Can Package

Order Number LM118H or LM218H See Package 11

Order Number LM118F or LM218F See Package 3

Order Number LM118D or LM218D See Package 1

Supply Voltage ±20V Power Dissipation (Note 1) 500 mW Differential Input Current (Note 2) ±10 mA Input Voltage (Note 3) ±15V Output Short-Circuit Duration Indefinite Operating Temperature Range LM118 -55°C to 125°C LM218 -25° C to 85° C Storage Temperature Range -65°C to 150°C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$		2	4	mV
Input Offset Current	$T_A = 25^{\circ}C$		6	50	nA
Input Bias Current	$T_A = 25^{\circ}C$		120	250	nA
Input Resistance	$T_A = 25^{\circ}C$	1	3		МΩ
Supply Current	$T_A = 25^{\circ}C$		5	8	mA
Large Signal Voltage Gain	T_A = 25°C, V_S = ±15V V_{OUT} = ±10V, $R_L \ge 2 \text{ k}\Omega$	50	200		V/mV
Slew Rate	$T_A = 25^{\circ}C$, $V_S = \pm 15V$, $A_V = 1$	50	70		V/µs
Small Signal Bandwidth	$T_A = 25^{\circ}C, V_S = \pm 15V$		15		MHz
Input Offset Voltage				6	mV
Input Offset Current				100	nA
Input Bias Current				500	nA
Supply Current	$T_A = +125^{\circ}C$		4.5	7	mA
Large Signal Voltage Gain	V_{S} = ±15V, V_{OUT} = ±10V $R_{L} \ge 2 \text{ k}\Omega$	25			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 2 \text{ k}\Omega$	±12	±13		V
Imput Voltage Range	$V_S = \pm 15V$	±11.5			V
Common Mode Rejection Ratio		80	100		dB
Supply Voltage Rejection Ratio		70	80		dB

Note 1: The maximum junction temperature of the LM118 is 150°C, while that of the LM218 is 100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $\pm 5\text{V} \leq \text{V}_\text{S} \leq \pm 20\text{V}$ and $-55^{\circ}\text{C} \leq \text{T}_\text{A} \leq 125^{\circ}\text{C}$, unless otherwise specified. With the LM218, however, all temperature specifications are limited to $-25^{\circ}\text{C} \leq \text{T}_\text{A} \leq 85^{\circ}\text{C}$. Also, power supplies must be bypassed with 0.1 μF disc capacitors.

typical performance characteristics (con't)

auxiliary circuits

Feedforward Compensation for Greater
Inverting Slew Rate[†]

Compensation for Minimum Settling[†] Time

Offset Balancing

Isolating Large Capacitive Loads

Overcompensation

typical applications (con't)

Fast Sample and Hold

D/A Converter Using Ladder Network

D/A Converter Using Binary Weighted Network

Fast Summing Amplifier with Low Input Current

Wein Bridge Sine Wave Oscillator

Instrumentation Amplifier

LM318 operational amplifier

general description

The LM318 is a precision high speed operational amplifier designed for applications requiring wide bandwidth and high slew rate. It features a factor of ten increase in speed over general purpose devices without sacrificing DC performance.

features

- 15 MHz small signal bandwidth
- Guaranteed 50V/μs slew rate
- Maximum bias current of 500 nA
- Operates from supplies of ±5V to ±20V
- Internal frequency compensation
- Input and output overload protected
- Pin compatible with general purpose op amps

The LM318 has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary

for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feedforward compensation will boost the slew rate to over $150 \text{V}/\mu \text{s}$ and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under $1\,\mu \text{s}$.

The high speed and fast settling time of these op amps make them useful in A/D converters, oscillators, active filters, sample and hold circuits, or general purpose amplifiers. These devices are easy to apply and offer an order of magnitude better AC performance than industry standards such as the LM709.

The LM318 is specified for operation over 0° C to 70° C.

schematic diagram and typical application

Instrumentation Amplifier

connection diagrams

Metal Can Package*

*Pin connections shown on schematic diagram and typical applications are for TO-5 package.

Order Number LM318H See Package 11

Dual-In-Line Package

Order Number LM318D See Package 1

2-141

2

Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

±20V 500 mW ±10 mA ±15V Indefinite 0°C to 70°C -65°C to 150°C 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$		4	10	- mV
Input Offset Current	$T_A = 25^{\circ}C$		30	200	nA
Input Bias Current	$T_A = 25^{\circ}C$		150	500	nA
Input Resistance	$T_A = 25^{\circ}C$	0.5	3		МΩ
Supply Current	$T_A = 25^{\circ}C$		5	10	mA
Large Signal Voltage Gain	T_A = 25°C, V_S = ±15V V_{OUT} = ±10V, $R_L \ge 2 \text{ k}\Omega$	25	200		V/mV
Slew Rate	$T_A = 25^{\circ}C$, $V_S = \pm 15V$, $A_V = 1$	50	70		V/μs
Small Signal Bandwidth	$T_A = 25^{\circ}C, V_S = \pm 15V$		15		MHz
Input Offset Voltage				15	mV
Input Offset Current				300	nA
Input Bias Current				750	nA
Large Signal Voltage Gain	V_S = ±15V, V_{OUT} = ±10V $R_L \ge 2 \text{ k}\Omega$	20			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 2 k\Omega$	±12	±13		V
Input Voltage Range	$V_S = \pm 15V$	±11.5			V
Common Mode Rejection Ratio		70	100		dB
Supply Voltage Rejection Ratio		65	80		dB

Note 1: The maximum junction temperature of the LM318 is 85°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $\pm 5V \le V_S \le \pm 20V$ and $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise specified. For proper operation, the power supplies must be bypassed with 0.1 μF disc capacitors.

typical performance characteristics Input Current Voltage Gain

2

typical applications (con't)

Fast Voltage Follower

Fast Summing Amplifier

Differential Amplifier

Fast Sample and Hold

D/A Converter Using Ladder Network

Four Quadrant Multiplier

Fast Summing Amplifer with Low Input Current

Wein Bridge Sine Wave Oscillator

LM121/LM221/LM321 precision preamplifier

general description

The LM121 series are precision preamplifiers designed to operate with general purpose operational amplifiers to drastically decrease DC errors. Drift, bias current, common mode and supply rejection are more than a factor of 10 better than standard op amps alone. Further, the added DC gain of the LM121 decreases the closed loop gain error.

The LM121 operates with supply voltages from $\pm 3V$ to $\pm 20V$ and has sufficient supply rejection to operate from unregulated supplies. The operating current is programmable from $5\mu A$ to $200\mu A$ so bias current, offset current, gain and noise can be optimized for the particular application while still realizing very low drift. Super-gain transistors are used for the input stage so input error currents are lower than conventional amplifiers at the same operating current. Further, the initial offset voltage is easily nulled to zero.

advantages

- Permits optimization of general purpose op amps
- Replaces many specialized op amps

features

- Guaranteed drift less than $1\mu V/^{\circ}C$ when nulled
- Offset voltage less than 0.7 mV

- Bias current less than 10 nA at 10μA operating current
- CMRR 120 dB minimum
- 114 dB supply rejection
- Easily nulled offset voltage

The extremely low drift of the LM121 will improve accuracy on almost any precision DC circuit. For example, instrumentation amplifier, strain gauge amplifiers and thermocouple amplifiers now using chopper amplifiers can be made with the LM121. The full differential input and high common mode rejection are another advantage over choppers. For applications where low bias current is more important than drift, the operating current can be reduced to low values. High operating currents can be used for low voltage noise with low source resistance. The programmable operating current of the LM121 allows tailoring the input characteristics to match those of specialized op amps.

The LM121 is specified over a -55° C to 125° C temperature range, the LM221 over a -25° C to 85° C range and the LM321 over a 0° C to 70° C temperature range.

A lower drift version of the LM121 – the LM121A series – is available for applications requiring $0.2\mu V/^{\circ}C$ offset voltage drift.

schematic and connection diagrams

*Pin connections shown on schematic diagram and typical applications are for TO-5 package

Dual-In-Line Package

Order Number LM121D, LM221D or LM321D See Package 1

Metal Can Package

Order Number LM121H, LM221H or LM321H See Package 11

Order Number LM121F, LM221F or LM321F See Package 3

Note: Outputs are inverting from the input of the same number.

Supply Voltage ±20V Power Dissipation (Note 1) 500mW ±15V Differential Input Voltage (Notes 2, 3) ±15V Input Voltage (Note 3) Operating Temperature Range LM121 -55°C to 125°C -25° C to 85° C LM221 0°C to 70°C LM321 -65° C to 150° C Storage Temperature Range 300°C Lead Temperature (Soldering, 10 sec)

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	LM121 LM221	LM321	UN	NITS
Input Offset Voltage	$T_A = 25^{\circ}C$ $6.4k \le R_{Set} \le 70k$	0.7	1.5	mV	Max
Input Offset Current	$T_A = 25^{\circ} C R_{Set} = 70k$ $R_{Set} = 6.4k$	1 10	2 20	nA nA	Max Max
Input Bias Current	$T_A = 25^{\circ} C R_{Set} = 70k$ $R_{Set} = 6.4k$	10 100	18 180	nA nA	Max Max
Input Resistance	$T_A = 25^{\circ} C R_{Set} = 70k$ $R_{Set} = 6.4k$	4 0.4	2 0.2	ΩM ΩM	Min Min
Supply Current	$T_A = 25^{\circ}C$	1.5	2.2	mA	Max
Input Offset Voltage	6.4k ≤ R _{Set} = 70k	1	2.5	mV	Max
Input Bias Current	R _{Set} = 70k R _{Set} = 6.4k	30 300	28 280	nA nA	Max Max
Input Offset Current	R _{Set} = 70k R _{Set} = 6.4k	3 30	4 40	nA nA	Max Max
Average Temperature Coefficient of Input Offset Voltage	$R_{S} \leq 200\Omega~6.4k \leq R_{Set} \leq 70k$ Offset Voltage Nulled	1	1	μV/°C	Max
Supply Current		2.5	3.5	mA	Max
Input Voltage Range	$V_{S} = \pm 15V R_{Set} = 70k$	±13	±13	V	Min
	R _{Set} = 6.4k (Note 5)	+7 -13	+7 -13	V	Min
Common Mode Rejection Ratio	R _{Set} = 70k R _{Set} = 6.4k	120 114	114 114	dB dB	Min Min
Supply Voltage Rejection Ratio	R _{Set} = 70k R _{Set} = 6.4k	120 114	114 114	dB dB	Min Min
Voltage Gain	$T_A = 25^{\circ}C R_{Set} = 70k$ $R_L > 3 meg$	16	12	V/V	Min

Note 1: The maximum junction temperature of the LM121 is 150°C, while that of the LM221 is 100°C. The maximum junction temperature of the LM321 is 85°C. For operating at elevated temperature, devices in the T0-5 package must be derated based on a thermal resistance of 150°C/M, junction to ambient, or 45°C/M, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/6-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce cooper conductors. The thermal resistance of the dual-in-line package is 100°C/M, junction to ambient.

Note 2: The inputs are shunted with back-to-back diodes in series with a 500Ω resistor for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $\pm 5 \le Vs < \pm 20V$ and $-55^{\circ}C \le T_{A} \le 125^{\circ}C$, unless otherwise specified. With the LM221, however, all temperature specifications are limited to $-25^{\circ}C \le T_{A} \le 85^{\circ}C$, and for the LM321 the specifications apply over a $0^{\circ}C$ to $70^{\circ}C$ temperature range.

Note 5: External precision resistors-0.1%-can be placed from pins 1 and 8 to 7 to increase positive common mode range.

typical applications

Low Drift Op Amp Using the LM121 as a Preamp

FIGURE 1.

Gain of 1000 Instrumentation Amplifier ‡

FIGURE 2.

frequency compensation

Universal Frequency Compensation

The additional gain of the LM121 preamplifier when used with an operational amplifier usually necessitates additional frequency compensation. When the closed loop gain of the op amp with the LM121 is less than the gain of the LM121 alone, more compensation is needed. The worst case situation is when there is 100% feedback — such as a voltage follower or integrator — and the gain of the LM121 is high. When high closed loop gains are used — for example $A_{\rm V}=1000$ — and only an addition gain of 200 is inserted by the LM121, the frequency compensation of the op amp will usually suffice.

The frequency compensation shown here is designed to operate with any unity-gain stable op amp. Figure 1 shows the basic configuration of frequency stabilizing network. In operation the output of the LM121 is rendered single ended by a $0.01\mu F$ bypass capacitor to ground. Overall frequency compensation then is achieved by an integrating capacitor around the op amp.

Bandwidth at unity gain
$$\cong \frac{12}{2\pi R_{Set} C}$$

for 0.5 MHz bandwidth C =
$$\frac{4}{10^6 R_{Set}}$$

For use with higher frequency op amps such as the LM118 the bandwidth may be increased to about 2 MHz.

If the closed loop gain is greater than unity "C" may be decreased by

$$C = \frac{4}{10^6 A_{CL} R_{Set}}$$

Alternate Compensation

The two compensation capacitors can be made equal for improved power supply rejection. In this case the formula for the compensation capacitor is

$$C = \frac{8}{10^6 A_{CL} R_{Set}}$$

Table 1 shows typical values for the two compensating capacitors for various gains and operating currents.

TABLE 1.

CLOSED	CURRENT SET RESISTOR						
GAIN -	120k Ω	60k Ω	30k Ω	12k Ω	6kΩ		
A _V = 1	68	130	270	680	1300		
A _V = 5	15	27	56	130	270		
A _V = 10	10	15	27	68	130		
A _V = 50	1	3	5	15	27		
A _V = 100	-	1	3	5	10		
A _V = 500	-	-	1	1	3		
A _V = 1000	-	-	-	-	-		

This table applies for the LM108, LM101A, LM741, LM118. Capacitance is in pF.

Design equations for the LM121 series:

$$\text{Gain } A_{\text{V}} \approx \frac{1.2 \times 10^6}{R_{\text{Set}}}$$

Null Pot Value should be 10% of R_{Set}

$$\text{Operating Current} \approx \frac{2 \times 0.65 \text{V}}{\text{R}_{\text{Set}}}$$

$$\begin{array}{ll} Positive \; Common \\ Mode \; Limit \end{array} \approx V^+ - \;\; 0.6 + \;\; \frac{0.65V \times 50k}{R_{Set}} \label{eq:positive_position}$$

LM124/LM224/LM324 quad op amps

general description

The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard +5V_{DC} power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 V_{DC}$ power supplies.

unique characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply
- The unity gain cross frequency is temperature compensated.
- The input bias current is also temperature compensated.

advantages

Eliminates need for dual supplies

- Four internally compensated op amps in a single package
- Allows directly sensing near GND and V_{QUT} also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

features

- Internally frequency compensated for unity gain
- Large DC voltage gain

100 dB

■ Wide bandwidth (unity gain)

1 MHz

(temperature compensated) Wide power supply range:

3V_{DC} to 30V_{DC} Single supply or dual supplies $\pm 1.5 V_{DC}$ to $\pm 15 V_{DC}$

- Very low supply current drain $(800\mu A)$ essentially independent of supply voltage (1 mW/op amp at $+5V_{DC}$)
- Low input biasing current (temperature compensated)

45 nA_{DC}

■ Low input offset voltage and offset current

2 mV_{DC} 5 nApc

- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- $0V_{DC}$ to $V^{+} 1.5V_{DC}$ Large output voltage swing

schematic and connection diagrams

Order Number LM124F See Package 4

Dual-In-Line Package

Order Number LM124D, LM224D, LM324D, or LM324N See Package 1 or 22

Supply Voltage, V+ 32 V_{DC} or ±16 V_{DC} Differential Input Voltage 32 V_{DC} -0.3 V_{DC} to $+32 \text{ V}_{DC}$ Input Voltage

Power Dissipation (Note 1)

Molded DIP (LM324N) Cavity DIP (LM124D, LM224D & LM324D) 900 mW 800 mW Flat Pack (LM124F) Continuous

Output Short-Circuit to GND (Note 2) $V^+ < 15 V_{DC}$ and $T_A = 25^{\circ}C$

Operating Temperature Range

 0° C to $+70^{\circ}$ C LM324 LM224 -25° C to $+85^{\circ}$ C -55°C to +125°C LM124 Storage Temperature Range -65° C to $+150^{\circ}$ C

Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (V⁺ = +5 V_{DC} and T_A = 25°C unless otherwise noted)

	001101710110	LM124		LM124 LM224, LM324				UNITS
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	ONITS
Input Offset Voltage	$R_S = 0\Omega$		2	5		2	7	mV _{DC}
Input Bias Current (Note 3)	I _{IN(+)} or I _{IN(-)}		45	300		45	500	nA _{DC}
Input Offset Current	$I_{1N(+)} - I_{1N(-)}$		±3	±30		±5	±50	nA _{DC}
Input Common-Mode Voltage Range (Note 4)		0		V ⁺ -1.5	0		V ⁺ -1.5	V _{DC}
Supply Current	R _L = ∞ On All Op Amps		0.8	2		0.8	2	mA _{DC}
Large Signal Voltage Gain	$R_L \ge 2 k\Omega$		100			100		V/mV
Output Voltage Swing	$R_L = 2 k\Omega$	0		V ⁺ -1.5	0		V ⁺ -1.5	V _{DC}
Common Mode Rejection Ratio	DC		85			85		dB
Power Supply Rejection Ratio	DC		100			100		dB
Amplifier-to-Amplifier Coupling	f = 1 kHz to 20 kHz (Input Referred)		-120			-120		dB
Output Current Source	V _{IN} ⁺ = +1 V _{DC} , V _{IN} ⁻ = 0 V _{DC}	20	40		20	40		mA _{DC}
Output Current Sink	$V_{1N}^{-} = +1 V_{DC}, V_{1N}^{+} = 0 V_{DC}$	10	20		10	20		mA _{DC}

Note 1: For operating at high temperatures, the LM324 must be derated based on a +125°C maximum junction temperature and a thermal resistance of 175°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM224 and LM124 can be derated based on a +150°C maximum junction temperature.

Note 2: Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately 40 mA independent of the magnitude of V⁺. At values of supply voltage in excess of +15V_{DC}, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction.

Note 3: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

Note 4: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is $V^+ - 1.5V$, but either or both inputs can go to $+30V_{DC}$ without

typical performance characteristics

application hints

The LM124 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of $0V_{DC}$. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At 25° C amplifier operation is possible down to a minimum supply voltage of $2.3V_{DC}$.

The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14).

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V⁺ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3V_{DC}$ (at $25^{\circ}C$). An input clamp consisting of a diode-connected NPN transistor (C-B short) can be used.

To reduce the power supply current drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For AC applications, where the load is capacitively coupled to the output of the amplifier, a resistor

should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion. Where the load is directly coupled, as in DC applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

The bias network of the LM124 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $3V_{DC}$ to $30V_{DC}$.

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of $V^+/2)$ will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

typical single-supply applications $(V^+ = 5V_{DC})$

Non-Inverting DC Gain (0V Input = 0V Output)

DC Summing Amplifier $(V_{\mbox{IN'S}} \geq 0 V_{\mbox{DC}} \mbox{ AND } V_{\mbox{O}} \geq 0 V_{\mbox{DC}})$

typical single-supply applications (con't) $(V^+ = 5V_{DC})$

High Input Z, DC Differential Amplifier

Photo Voltaic-Cell Amplifier

High Input Z Adjustable-Gain DC Instrumentation Amplifier

Using Symmetrical Amplifiers to Reduce Input Current (General Concept)

Low Drift Peak Detector

Bridge Current Amplifier

typical single-supply applications (con't) $(V^+ = 5V_{DC})$

AC Coupled Inverting Amplifier

AC Coupled Non-Inverting Amplifier

Ground Referencing A Differential Input Signal

DC Coupled Low-Pass RC Active Filter

Bandpass Active Filter

Fixed Current Sources

"BI-QUAD" RC Active Bandpass Filter

typical single-supply applications (con't) $(V^+ = 5V_{DC})$

Pulse Generator

Voltage Follower

High Compliance Current Sink

Pulse Generator

Squarewave Oscillator

Voltage Controlled Oscillator (VCO)

Comparator With Hysteresis

*WIDE CONTROL VOLTAGE RANGE: $0V_{DC} \leq V_{C} \leq 2~(V^{+}~-1.5~V_{DC})$

Power Amplifier

Driving TTL

LED Driver

LM709 operational amplifier general description

The LM709 is a monolithic operational amplifier intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design, in addition to providing high gain, minimizes both offset voltage and bias currents. Further, the class-Boutput stage gives a large output capability with minimum power drain.

External components are used to frequency compensate the amplifier. Although the unity-gain com-

pensation network specified will make the amplifier unconditionally stable in all feedback configurations, compensation can be tailored to optimize high-frequency performance for any gain setting.

The fact that the amplifier is built on a single silicon chip provides low offset and temperature drift at minimum cost. It also ensures negligible drift due to temperature gradients in the vicinity of the amplifier.

schematic and connection diagrams

Metal Can

Order Number LM709H See Package 11

typical applications*

Offset Balancing Circuit

Unity Gain Inverting Amplifier

FET Operational Amplifier

±18V Supply Voltage Power Dissipation (Note 1) 300 mW Differential Input Voltage ±5V ±10V Input Voltage Output Short-Circuit Duration ($T_A = 25^{\circ}C$) 5 sec -65°C to +150°C Storage Temperature Range -55°C to +125°C Operating Temperature Range 300°C Lead Temperature (Soldering, 10 sec)

electrical characteristics (Note 2)

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$		1.0	5.0	mV
Input Bias Current	$T_A = 25^{\circ}C$		200	500	nA
Input Offset Current	$T_A = 25^{\circ}C$		50	200	nA
Input Resistance	$T_A = 25^{\circ}C$	150	400		kΩ
Output Resistance	$T_A = 25^{\circ}C$		150		Ω
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		2.6	5.5	mA
Transient Response Risetime Overshoot	$V_{IN} = 20 \text{ mV}, C_L \leq 100 \text{ pF}$ $T_A = 25^{\circ}\text{C}$		0.3 10	1.0 30	μS %
Slewing Rate	$T_A = 25^{\circ}C$		0.25		V/μS
Input Offset Voltage	$R_S \leq 10 k\Omega$			6.0	mV
Average Temperature Coefficient of Input Offset Voltage	$R_S = 50 \Omega$ $R_S = 10 k\Omega$		3.0 6.0		μV/°C μV/°C
Large-Signal Voltage Gain	$V_S = \pm 15V$, $R_L \ge 2 k\Omega$ $V_{OUT} = \pm 10V$	25,000	45,000	70,000	
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$ $V_S = \pm 15V$, $R_L = 2 \text{ k}\Omega$	±12 ±10	±14 ±13		V V
Input Voltage Range	$V_S = \pm 15V$	±8.0	±10		V
Common Mode Rejection Ratio	R _S ≤10 kΩ	70	90		db
Supply Voltage Rejection Ratio Input Offset Current	R _S ≤10 kΩ T _Δ .=+125°C		25 20	150 200	μV/V nA
Input Offset Current	$T_A = -55^{\circ}C$		100	500	nA
Input Bias Current	$T_A = -55^{\circ}C$		0.5	1.5	μΑ
Input Resistance	$T_A = -55^{\circ}C$	40	100		kΩ

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 150°C/W junction to ambient or 45°C/W junction to case for the metal-can package. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick, epoxy-glass board with ten, 0.03-inch-wide, 2-ounce copper conductors (see curve).

Note 2: These specifications apply for –55°C \leq T $_{A}$ \leq +125°C, $^{\pm}$ 9V \leq V $_{S}$ \leq ±15V, C $_{1}$ = 5000 pF, R $_{1}$ = 1.5K, C $_{2}$ = 200 pF and R $_{2}$ = 51 Ω unless otherwise specified.

guaranteed performance characteristics

typical performance characteristics

LM709A operational amplifier general description

The LM709A is a monolithic operational amplifier intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design, in addition to providing high gain, minimizes both offset voltage and bias currents. Further, the class-Boutput stage gives a large output capability with minimum power drain.

External components are used to frequency compensate the amplifier, Although the unity-gain com-

pensation network specified will make the amplifier unconditionally stable in all feedback configurations, compensation can be tailored to optimize high-frequency performance for any gain setting.

The fact that the amplifier is built on a single silicon chip provides low offset and temperature drift at minimum cost. It also ensures negligible drift due to temperature gradients in the vicinity of the amplifier.

schematic and connection diagrams

Metal Can

Order Number LM709AH See Package 11

typical applications

Unity Gain Inverting Amplifier

Offset Balancing Circuit

FET Operational Amplifier

Supply Voltage ±18V Power Dissipation (Note 1) 300 mW Differential Input Voltage ±5V Input Voltage ±10V Output Short-Circuit Duration (T_A = 25°C) 5 sec Output Short-Circuit Bases Storage Temperature Range -65°C to +150°C -55°C to +125°C Operating Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$		0.6	2.0	mV
Input Bias Current	$T_A = 25^{\circ}C$		100	200	nA
Input Offset Current	$T_A = 25^{\circ}C$		10	50	nA
Input Resistance	$T_A = 25^{\circ}C$	350	700		$\mathbf{k}\Omega$
Output Resistance	$T_A = 25^{\circ} C$		150		Ω
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		2.5	3.6	mA
Transient Response	$V_{IN} = 20 \text{ mV}, C_{L} \le 100 \text{ pF}$				
Risetime	$T_A = 25^{\circ}C$			1.5	μs
Overshoot				30	%
Slewing Rate	$T_A = 25^{\circ}C$		0.25		V/μs
Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$			3.0	mV
Average Temperature Coefficient of Input Offset Voltage	$R_S = 50\Omega$ $T_A = 25^{\circ}C \text{ to } +125^{\circ}C$ $T_A = 25^{\circ}C \text{ to } -55^{\circ}C$		1.8	10	μV/°C
			1.8	10	μV/°C
	$R_S = 10 \text{ k}\Omega$ $T_A = 25^{\circ}\text{C to} + 125^{\circ}\text{C}$		2.0	15	μV/°C
	$T_A = 25^{\circ} \text{C to } -55^{\circ} \text{C}$		4.8	25	μV/°C
Large-Signal Voltage Gain	$V_S = \pm 15V$, $R_L \ge 2 k\Omega$	25,000		70,000	
	$V_{OUT} = \pm 10V$				
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$	±12	±14		V
	$V_S = \pm 15V$, $R_L = 2 k\Omega$	±10	±13		V
Input Voltage Range	$V_S = \pm 15V$	±8.0			V
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	80	110		dB
Supply Voltage Rejection Ratio	$R_{S} \leq 10 \text{ k}\Omega$		40	100	$\mu V/V$
Input Offset Current	$T_A = +125^{\circ}C$		3.5	5.0	nA
	$T_A = -55^{\circ}C$		40	250	nΑ
Input Bias Current	$T_A = -55^{\circ}C$		300	600	nΑ
Input Resistance	T _A = -55°C	85	170		$k\Omega$

Note 1: For operating at elevated temperatures, the device must be derated based on a 150° C maximum junction temperature and a thermal resistance of 150° C/W junction to amblent or 45° C/W junction to case for the metal-can package.

Note 2: These specifications apply for –55°C \leq T $_{A}$ \leq +125°C, \pm 9V \leq V $_{S}$ \leq ±15V, C $_{1}$ = 5000 pF, R $_{1}$ = 1.5K, C $_{2}$ = 200 pF and R $_{2}$ = 51 Ω unless otherwise specified.

guaranteed performance characteristics

typical performance characteristics

Input Bias Current as a Function of Supply Voltage

Slew Rate as a Function of Closed-Loop Gain Using

Recommended

Frequency Responce For Various Closed -Loop Gains

Output Voltage Swing

LM709C operational amplifier

general description

The LM709C is a monolithic operational amplifier intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design, in addition to providing high gain, minimizes both offset voltage and bias currents. Further, the class-B output stage gives a large output capability with minimum power drain.

External components are used to frequency compensate the amplifier. Although the unity-gain compensation network specified will make the amplifier unconditionally stable in all feedback configurations, compensation can be tailored to optimize high-frequency performance for any gain setting.

The fact that the amplifier is built on a single silicon ship provides low offset and temperature drift at minimum cost. It also ensures negligible drift due to temperature gradients in the vicinity of the amplifier.

The LM709C is commercial-industrial version of the LM709. It is identical to the LM709 except that it is specified for operation from 0° C to 70° C.

schematic** and connection diagrams

typical applications **

Voltage Follower Vomimaxi To be used with any capacitive loading on output. TShould be equal to dc source restance on input.

Order Number LM709CH See Package 11

See Package 22 Offset Balancing Circuit

FET Operational Amplifier

±18V Supply Voltage 250 mW Power Dissipation (Note 1) Differential Input Voltage ±5V ±10V Input Voltage Output Short-Circuit Duration (T_A = 25°C) 5 sec -65° C to $+150^{\circ}$ C Storage Temperature Range 0° C to $+70^{\circ}$ C Operating Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 2)

PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$		2.0	7.5	mV
Input Offset Current	$T_A = 25^{\circ}C$		100	500	nA
Input Bias Current	$T_A = 25^{\circ}C$		0.3	1.5	μΑ
Input Resistance	$T_A = 25^{\circ}C$	50	250		kΩ
Output Resistance	$T_A = 25^{\circ}C$		150		Ω
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		2.6	6.6	mA
Transient Response Risetime Overshoot	V_{IN} = 20 mV, $C_L \le 100 pF$ $T_A = 25^{\circ}C$		0.3 10	1.0 30	μs %
Slewing Rate	$T_A = 25^{\circ}C$		0.25		V/μs
Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$			10	mV
Average Temperature Coefficient of Input Offset Voltage	$R_S = 50\Omega$ $R_S = 10 \text{ k}\Omega$		6.0 12		μV/°C μV/°C
Large-Signal Voltage Gain	$V_S = \pm 15V$, $R_L \ge 2 k\Omega$ $V_{OUT} = \pm 10V$	15,000	45,000		
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$ $V_S = \pm 15V$, $R_L = 2 \text{ k}\Omega$	±12 ±10	±14 ±13	-	V V
Input Voltage Range	V _S = ±15V	±8.0	±10		V
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	65	90		dB
Supply Voltage Rejection Ratio	$R_{S} \le 10 \text{ k}\Omega$		25	200	μV/V
Input Offset Current	$T_A = +70^{\circ} C$ $T_A = 0^{\circ} C$		75 125	400 750	nA nA
Input Bias Current	$T_A = 0^{\circ}C$		0.36	2.0	μΑ

Note 1: For operating at elevated temperatures, the device must be derated based on a 100°C maximum junction temperature and a thermal resistance of 45°C/W junction to case or 150°C/W junction to ambient for the metal can package. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick, epoxy-glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. Note 2: These specifications apply for 0° C \leq T_A \leq +70°C, \pm 9V \leq V_S \leq ±15V, C₁ = 5000 pF, R₁ = 1.5K, C₂ = 200 pF and R₂ = 51 Ω unless otherwise specified.

guaranteed performance characteristics

typical performance characteristics

LM725A/LM725/LM725C instrumentation operational amplifier

general description

The LM725A/LM725/LM725C are operational amplifiers featuring superior performance in applications where low noise, low drift, and accurate closed-loop gain are required. With high common mode rejection and offset null capability, it is especially suited for low level instrumentation applications over a wide supply voltage range.

The LM725A has tightened electrical performance with higher input accuracy and like the LM725, is guaranteed over a -55°C to +125°C temperature range. The LM725C has slightly relaxed specifications and has its performance guaranteed over a 0°C to 70°C temperature range.

features

	High open loop gain	3,000,000
8	Low input voltage drift	$0.6\mu\text{V}/^{\circ}\text{C}$
	High common mode rejection	120 dB
	Low input noise current	0.15 pA/√Hz
	Low input offset current	2 nA
	High input voltage range	±14V
	Wide power supply range	±3V to ±22V

- Offset null capability
- Output short circuit protection

schematic and connection diagrams

Order Number LM725H or LM725AH or LM725CH See Package 11

Dual-In-Line Package

Order Number LM725CN See Package 20

auxiliary circuits

Voltage Offset Null Circuit

Compensation Component Values

	R1	C1	R2	C2
AVCL	(75)	(μF)	(77)	(μF)
10,000	10K	50 pF	-	-
1,000	470	.001		-
100	47	.01	- 1	-
10	27	.05	270	.0015
1	10	.05	39	.02
	1,000 100	10,000 10K 1,000 470 100 47 10 27	10,000 10K 50 pF 1,000 470 .001 100 47 .01 10 27 .05	10,000 10K 50 pF — 1,000 470 001 — 100 47 .01 — 10 27 .05 270

Frequency Compensation Circuit

LM725A

absolute maximum ratings

 Supply Voltage
 ±22V

 Internal Power Dissipation (Note 1)
 500 mW

 Differential Input Voltage
 ±5V

 Input Voltage (Note 2)
 ±22V

 Storage Temperature Range
 -65°C to +150°C

 Operating Temperature Range
 -55°C to +125°C

 Lead Temperature (Soldering, 10 sec)
 300°C

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Without External Trim)	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$			0.5	mV
Input Offset Current	T _A = 25°C		2.0	5.0	nA
Input Bias Current	$T_A = 25^{\circ}C$		42	80	nA
Input Noise Voltage	$T_A = 25^{\circ}C$, $f_o = 10$ Hz $f_o = 100$ Hz $f_o = 1$ kHz		15 9.0 8.0		nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz}
Input Noise Current	$T_A = 25^{\circ}C$, $f_o = 10 \text{ Hz}$ $f_o = 100 \text{ Hz}$ $f_o = 1 \text{ kHz}$		1.0 0.3 0.15		pA/√Hz pA/√Hz pA/√Hz
Input Resistance	$T_A = 25^{\circ}C$		1.5		МΩ
Input Voltage Range	$T_A = 25^{\circ}C$	±13.5	±14		V
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $R_L \ge 2 \text{ k}\Omega$, $V_{OUT} = \pm 10V$	1,000,000	3,000,000		
Common Mode Rejection Ratio	T_A = 25°C, $R_S \le 10 \text{ k}\Omega$	120			dB
Power Supply Rejection Ratio	T_A = 25°C, $R_S \le$ 10 k Ω		2.0	5.0	μV/V
Output Voltage Swing	T_A = 25°C, $R_L \ge 10 \text{ k}\Omega$ $R_L \ge 2 \text{ k}\Omega$	±12.5 ±12.0	±13.5 ±13.5		V
Power Consumption	$T_A = 25^{\circ}C$		80	105	mW
Input Offset Voltage (Without External Trim)	$R_S \leq 10 \text{ k}\Omega$			0.7	mV
Average Input Offset Voltage Drift (Without External Trim)	$R_S = 50\Omega$			2.0	μV/°C
Average Input Offset Voltage Drift (With External Trim)	$R_S = 50\Omega$		0.6	1.0	μV/°C
Input Offset Current	$T_A = +125^{\circ}C$ $T_A = -55^{\circ}C$		1.2 7.5	4.0 18.0	nA nA
Average Input Offset Current Drift			35	90	pA/°C
Input Bias Current	$T_A = +125^{\circ}C$ $T_A = -55^{\circ}C$		20 80	70 180	nA nA
Large Signal Voltage Gain	$R_L \ge 2 k\Omega$, $T_A = +125^{\circ}C$ $R_L \ge 2 k\Omega$, $T_A = -55^{\circ}C$	1,000,000 500,000			
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	110			dB
Power Supply Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$			8.0	μV/V
Output Voltage Swing	$R_L \ge 2 k\Omega$	±12			V

Note 1: Derate at 150°C/W for operation at ambient temperatures above 75°C.

Note 2: For supply voltages less than $\pm 22V$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: These specifications apply for $V_S = \pm 15V$ unless otherwise specified.

LM725

absolute maximum ratings

 Supply Voltage
 ±22V

 Internal Power Dissipation (Note 1)
 500 mW

 Differential Input Voltage
 ±5V

 Input Voltage (Note 2)
 ±22V

 Storage Temperature Range
 -65°C to +156°C

 Operating Temperature Range
 -55°C to +126°C

 Lead Temperature (Soldering, 10 sec)
 300°C

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Without External Trim)	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$		0.5	1.0	mV
Input Offset Current	$T_A = 25^{\circ}C$		2.0	20	nA
Input Bias Current	$T_A = 25^{\circ}C$		42	100	nA
Input Noise Voltage	$T_A = 25^{\circ}C$, $f_o = 10 \text{ Hz}$ $f_o = 100 \text{ Hz}$ $f_o = 1 \text{ kHz}$		15 9.0 8.0		nV/√Hz nV/√Hz nV/√Hz
Input Noise Current	$T_A = 25^{\circ}C$, $f_o = 10 \text{ Hz}$ $f_o = 100 \text{ Hz}$ $f_o = 1 \text{ kHz}$		1.0 0.3 0.15		pA/√Hz pA/√Hz pA/√Hz
Input Resistance	$T_A = 25^{\circ}C$		1.5		МΩ
Input Voltage Range	$T_A = 25^{\circ}C$	±13.5	±14		V
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $R_L \ge 2 k\Omega$, $V_{OUT} = \pm 10V$	1,000,000	3,000,000		
Common Mode Rejection Ratio	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$	110	120		dB
Power Supply Rejection Ratio	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$		2.0	10	μV/V
Output Voltage Swing	$T_A = 25^{\circ}C$, $R_L \ge 10 \text{ k}\Omega$ $R_L \ge 2 \text{ k}\Omega$	±12 ±10	±13.5 ±13.5		V
Power Consumption	$T_A = 25^{\circ}C$		80	105	mW
Input Offset Voltage (Without External Trim)	$R_S \leq 10 \text{ k}\Omega$			1.5	mV
Average Input Offset Voltage Drift (Without External Trim)	$R_S = 50\Omega$		2.0	5.0	μV/°C
Average Input Offset Voltage Drift (With External Trim)	$R_S = 50\Omega$		0.6		μV/°C
Input Offset Current	$T_A = +125^{\circ}C$ $T_A = -55^{\circ}C$		1.2 7.5	20 40	nA nA
Average Input Offset Current Drift			35	150	pA/°C
Input Bias Current	$T_A = +125^{\circ}C$ $T_A = -55^{\circ}C$		20 80	100 200	nA nA
Large Signal Voltage Gain	$R_L \ge 2 k\Omega$, $T_A = +125^{\circ}C$ $R_L \ge 2 k\Omega$, $T_A = -55^{\circ}C$	1,000,000 250,000			
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	100			dB
Power Supply Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$			20	μV/V
Output Voltage Swing	${ m R_L} \geq 2~{ m k}\Omega$	±10			V

Note 1: Derate at 150°C/W for operation at ambient temperatures above 75°C.

Note 2: For supply voltages less than $\pm 22V$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: These specifications apply for $V_S = \pm 15 V$ unless otherwise specified.

LM725C

absolute maximum ratings

Supply Voltage Internal Power Dissipation (Note 1) 500 mV Differential Input Voltage Input Voltage (Note 2) ±22V -65° C to $+150^{\circ}$ C Storage Temperature Range Operating Temperature Range 0°C to +70°C 300°C Lead Temperature (Soldering, 10 sec)

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Without External Trim)	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$		0.5	2.5	mV
Input Offset Current	T _A = 25°C		2.0	35	nA
Input Bias Current	T _A = 25°C		42	125	nA
Input Noise Voltage	$T_A = 25^{\circ}C$, $f_o = 10 \text{ Hz}$ $f_o = 100 \text{ Hz}$ $f_o = 1 \text{ kHz}$		15 9.0 8.0		$nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz}$
Input Noise Current	$T_A = 25^{\circ}\text{C}$, $f_o = 10 \text{ Hz}$ $f_o = 100 \text{ Hz}$ $f_o = 1 \text{ kHz}$		1.0 0.3 0.15		pA/√Hz pA/√Hz pA/√Hz
Input Resistance	$T_A = 25^{\circ}C$		1.5		МΩ
Input Voltage Range	T _A = 25°C	±13.5	±14		V
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $R_L \ge 2 k\Omega$, $V_{OUT} = \pm 10V$	250,000	3,000,000		
Common Mode Rejection Ratio	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$	94	120		dB
Power Supply Rejection Ratio	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$		2.0	35	μV/V
Output Voltage Swing	$T_A = 25^{\circ}C$, $R_L \ge 10 \text{ k}\Omega$ $R_L \ge 2 \text{ k}\Omega$	±12 ±10	±13.5 ±13.5		V
Power Consumption	T _A = 25°C		80	150	mW
Input Offset Voltage (Without External Trim)	$R_S \le 10 \text{ k}\Omega$			3.5	mV
Average Input Offset Voltage Drift (Without External Trim)	$R_S = 50\Omega$		2.0		μV/°C
Average Input Offset Voltage Drift (With External Trim)	$R_S = 50\Omega$		0.6		μV/°C
Input Offset Current	$T_{A} = +70^{\circ}C$ $T_{A} = 0^{\circ}C$		1.2 4.0	35 50	nA nA
Average Input Offset Current Drift			10		pA/°C
Input Bias Current	$T_A = +70^{\circ}C$ $T_A = 0^{\circ}C$			125 250	nA nA
Large Signal Voltage Gain	$R_L \ge 2 k\Omega$, $T_A = +70^{\circ}C$ $R_L \ge 2 k\Omega$, $T_A = 0^{\circ}C$	125,000 125,000		-	
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$		115		dB
Power Supply Rejection Ratio	$R_S \le 10 \text{ k}\Omega$		20		μV/V
Output Voltage Swing	$R_L \ge 2 k\Omega$	±10			V

±22V

±5V

Note 1: Rating applies for case temperature to 70°C.

Note 2: For supply voltages less than $\pm 22V$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: These specifications apply for $V_S = \pm 15V$ unless otherwise specified.

typical performance characteristics

typical performance characteristics (con't)

Change in Input Offset Voltage Due to Thermal Shock vs Time

Absolute Maximum Power Dissipation vs Ambient Temperature

Stabilization Time of Input Offset Voltage from Power Turn-On

Power Consumption

Transient Response

Transient Response Test Circuit

LH740A/LH740AC FET input operational amplifier

general description

The LH740A/LH740AC is a FET input, general purpose operational amplifier with high input impedance, closely matched input characteristics, and good slew rates. Input offset voltage is typically 10.0 mV at 25°C , while input bias current is less than 100 pA at 25°C . Offset current is typically less than 40 pA at 25°C . Other important design features include:

- Internal 6 dB/octave frequency compensation
- Unity gain slew rate in excess of 6 V/μs
- Unity gain bandwidth of 1 MHz
- Input offset is adjustable with a single 10k pot
- Pin compatible with LM741, LM709, LM101A, and µA740
- Excellent offset current match over temperature, typically 100 pA

- Output is continuously short-circuit proof
- Excellent open loop gain, typically in excess of 100 dB
- Guaranteed over the full military temperature range

The LH740A/LH740AC is intended to fulfill a wide variety of applications requiring extremely low bias currents such as integrators, sample and hold amplifiers, and general purpose operational amplifier applications.

The LH740A is specified for operation over the -55°C to +125°C military temperature range. The LH740AC is specified for operation over the 0°C to +85°C temperature range.

connection diagram

Order Number LH740AH or LH740ACH
See Package 11

typical applications

Integrator

Transient Response

Offset Null

2

Supply Voltage		±22V
Maximum Power Dissipation		500 mW
Differential Input Voltage		±5V
Input Voltage		±15V
Short Circuit Duration		Continuous
Operating Temperature Range	LH740A	-55°C to +125°C
	LH740AC	0°C to +85°C
Storage Temperature Range		-65°C to +150°C
Lead Temperature (soldering, 10	sec.)	300°C

electrical characteristics (Notes 1 & 2) ($V_S = \pm 15V$, $T_A = 25^{\circ}C$ unless otherwise noted)

			LH740A		LH740AC			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	$R_S \leq 100 \text{ k}\Omega$		10	15		10	20	mV
Input Offset Current			40	100		60	150	pA '
Input Current (either input)			100	200		100	500	pA
Input Resistance			1,000,000			1,000,000		МΩ
Large Signal Voltage Gain	$R_L \ge 2 k\Omega$, $V_{OUT} = \pm 10V$	50,000	100,000		50,000	100,000		V/V
Output Resistance			75			75		Ω
Output Short-Circuit Current			20			20		mA
Common Mode Rejection Ratio		80			80			dB
Supply Voltage Rejection Ratio		80			80			dB
Supply Current			3.0	4.0		3.0	4.0	mA
Slew Rate			6.0			6.0		V/µs
Unity Gain Bandwidth			1.0			1.0		MHz
Transient Response (Unity Gain) Risetime Overshoot	$C_L \leq 100 pF$, $R_L = 2 k\Omega$, $V_{1N} = 100 mV$		110 10	20		300 10		ns %
(These specifications apply f	or $-55^{\circ}\mathrm{C} \le \mathrm{T_A} \le 125^{\circ}\mathrm{C}$ for the LH740A a	nd 0°C ≤	$T_A \le 85^\circ$	C for t	he LH740	AC unless	otherw	rise noted.)
Input Voltage Range		±12			±12			v
Common Mode Rejection Ratio		80			80			dB
Supply Voltage Rejection Ratio		80			80			dB
Large Signal Voltage Gain		40,000			40,000			V/V
Output Voltage Swing	$R_L \ge 10 \text{ k}\Omega$ $R_L \ge 2 \text{ k}\Omega$	±12 ±10	±14 ±13		±12 ±10	±14 ±13		v v
Input Offset Voltage	N	1 10	15	20	110	30		mV
Input Offset Current			100	500		60	500	pA
Input Current (either input)			2.5	4.0		1.1	5.0	nA
	R _S < 100K		5.0		1	5.0		μV/°C

Note 1: Unless otherwise noted these specifications apply to $\pm5V \le V_{\mbox{S}} \pm 20V$ and –55°C to +125°C for the LH740A and 0°C to 85°C for the LH740AC.

Note 2: For supply voltages less than $\pm 10 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

typical performance characteristics

LM741/LM741C operational amplifier

general description

The LM741 and LM741C are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.

The offset voltage and offset current are guaranteed over the entire common mode range. The amplifiers also offer many features which make

their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741 except that the LM741C has its performance guaranteed over a 0° C to 70° C temperature range, instead of -55° C to 125° C.

schematic and connection diagrams

Order Number LM741CN

See Package 20

 Supply Voltage
 LM741
 ±22V

 M/74C
 ±18V

 Power Dissipation (Note 1)
 500 mW

 Differential Input Voltage
 ±30V

 Input Voltage (Note 2)
 ±15V

 Output Short-Circuit Duration
 Indefinite

 Operating Temperature Range
 LM741
 -55°C to 125°C

 LM741C
 0°C to 70°C
 Storage Temperature Range
 -65°C to 150°C

 Lead Temperature (Soldering, 10 sec)
 300°C
 300°C

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	LM741			LM741C			UNITS
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	T_A = 25°C, R_S \leq 10 k Ω		1.0	5.0		1.0	6.0	mV
Input Offset Current	T _A = 25°C		30	200		30	200	nA
Input Bias Current	T _A = 25°C		200	500		200	500	nA
Input Resistance	T _A = 25°C	0.3	1.0		0.3	1.0		МΩ
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		1.7	2.8		1.7	2.8	mA
Large Signal Voltage Gain	T_A = 25°C, V_S = ±15V V_{OUT} = ±10V, $R_L \ge 2$ k Ω	50	160		25	160		V/mV
Input Offset Voltage	${ m R}_{ m S} \le 10~{ m k}\Omega$			6.0			7.5	mV
Input Offset Current				500			300	nA
Input Bias Current				1.5			0.8	μА
Large Signal Voltage Gain	V_S = ±15V, V_{OUT} = ±10V $R_L \ge 2 \text{ k}\Omega$	25			15			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$ $R_L = 2 \text{ k}\Omega$	±12 ±10	±14 ±13		±12 ±10	±14 ±13		V V
Input Voltage Range	V _S = ±15V	±12			±12			V
Common Mode Rejection Ratio	${ m R_S} \le 10~{ m k}\Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	${ m R_S} \le$ 10 k Ω	77	96		77	96		dB

Note 1: The maximum junction temperature of the LM741 is 150° C, while that of the LM741C is 100° C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150° C/W, junction to case.

Note 2: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: These specifications apply for V_S = ± 15 V and -55° C $\leq T_{A} \leq 125^{\circ}$ C, unless otherwise specified. With the LM741C, however, all specifications are limited to 0°C $\leq T_{A} \leq 70^{\circ}$ C and V_S = ± 15 V.

LM747/LM747C dual operational amplifier

general description

The LM747 and the LM747C are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.

features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges

- Low-power consumption
- No latch-up
- Balanced offset null

Additional features of the LM747 and LM747C are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package flexibility.

The LM747C is identical to the LM747 except that the LM747C has its specifications guaranteed over the temperature range from 0° C to 70° C instead of -55° C to $+125^{\circ}$ C.

schematic diagram (each amplifier)

connection diagrams

NC OUTPUT B V'A** OUTPUT B V'S** INVERTING NOVI NVERTING NOVI NVERTING NOVI NVERTING NOVI NVERTING NOVI NVERTING

Metal Can Package

Order Number LM747H or LM747CH See Package 14

Flat Package

Order Number LM747F or LM747CF See Package 4

Dual-In-Line Packages

Order Number LM747D or LM747CD See Package 1 Order Number LM747CN See Package 22

**V*A and V*B are internally connected

Supply Voltage LM747 ±22V LM747C ±18V Power Dissipation (Note 1) 800 mW ±30V Differential Input Voltage ±15V Input Voltage (Note 2) Output Short-Circuit Duration Indefinite Operating Temperature Range LM747 -55°C to 125°C 0°C to 70°C LM747C Storage Temperature Range -65° C to 150° C 300°C Lead Temperature (Soldering, 10 sec)

electrical characteristics (Note 3)

	001151510110		LM747		LM747C				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$		1.0	5.0		1.0	6.0	mV	
Input Offset Current	$T_A = 25^{\circ}C$		80	200		80	200	nA	
Input Bias Current	$T_A = 25^{\circ}C$		200	500		200	500	nA	
Input Resistance	T _A = 25°C	0.3	1.0		0.3	1.0		МΩ	
Supply Current Both Amplifiers	$T_A = 25^{\circ}C, V_S = \pm 15V$		3.0	5.6		3.0	5.6	mA	
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2 \text{ k}\Omega$	50	160		50	160		V/mV	
Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$			6.0			7.5	mV	
Input Offset Current				500			300	nA	
Input Bias Current				1.5			0.8	μΑ	
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V$ $R_L \ge 2 k\Omega$	25			25			V/mV	
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$ $R_L = 2 \text{ k}\Omega$	±12 ±10	±14 ±13		±12 ±10	±14 ±13		V V	
Input Voltage Range	V _S = ±15V	±12			±12			V	
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	70	90		70	90		dB	
Supply Voltage Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	77	96		77	96		dB	

Note 1: The maximum junction temperature of the LM747 is 150°C, while that of the LM747C is 100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: For supply voltages less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: These specifications apply for V_S = ± 15 V and -55° C \leq T_A \leq 125° C, unless otherwise specified. With the LM747C, however, all specifications are limited to 0° C \leq T_A \leq 70° C V_S = ± 15 V.

typical performance characteristics

typical performance characteristics (con't)

LM748/LM748C operational amplifier

general description

The LM748/LM748C is a general purpose operational amplifier built on a single silicon chip. The resulting close match and tight thermal coupling gives low offsets and temperature drift as well as fast recovery from thermal transients. In addition, the device features:

- Frequency compensation with a single 30 pF capacitor
- Operation from ±5V to ±20V
- Low current drain: 1.8 mA at ±20V
- Continuous short-circuit protection
- Operation as a comparator with differential inputs as high as ±30V

- No latch-up when common mode range is exceeded.
- Same pin configuration as the LM101.

The unity-gain compensation specified makes the circuit stable for all feedback configurations, even with capacitive loads. However, it is possible to optimize compensation for best high frequency performance at any gain. As a comparator, the output can be clamped at any desired level to make it compatible with logic circuits.

The LM748 is specified for operation over the $-55^{\circ}C$ to $+125^{\circ}C$ military temperature range. The LM748C is specified for operation over the 0°C to +70°C temperature range.

connection diagrams

Order Number LM748H or LM748CH See Package 11

Order Number LM748CN See Package 20

typical applications

Inverting Amplifier with Balancing Circuit

Low Drift Sample and Hold

Voltage Comparator for Driving **DTL** or **TTL** Integrated Circuits

Voltage Comparator for Driving **RTL Logic or High Current Driver**

Supply Voltage ±22V Power Dissipation (Note 1) 500 mW Differential Input Voltage ±30V Input Voltage (Note 2) ±15V Output Short-Circuit Duration (Note 3) Indefinite Operating Temperature Range: LM748 -55° C to $+125^{\circ}$ C LM748C 0° C to $+70^{\circ}$ C Storage Temperature Range -65° C to $+150^{\circ}$ C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$		1.0	5.0	mV
Input Offset Current	$T_A = 25^{\circ}C$		40	200	nA
Input Bias Current	$T_A = 25^{\circ}C$		120	500	nA
Input Resistance	$T_A = 25^{\circ}C$	300	800		kΩ
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		1.8	2.8	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2 k\Omega$	50	160		V/mV
Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$			6.0	mV
Average Temperature	$R_S \leq 50\Omega$		3.0		μV/°C
Coefficient of Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$		6.0		μV/°C
Input Offset Current	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$ $T_A = -55^{\circ} C \text{ to } 125^{\circ} C$			300 500	nA nA
Input Bias Current	$T_A = 0^{\circ} C \text{ to } 70^{\circ} C$ $T_A = -55^{\circ} C \text{ to } 125^{\circ} C$			0.8 1.5	μΑ μΑ
Supply Current	$T_A = +125^{\circ}C, V_S = \pm 15V$ $T_A = -55^{\circ}C \text{ to } 125^{\circ}C$		1.2 1.9	2.25 3.3	mA mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2 K\Omega$	25			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10\Omega$ $R_L = 2 k\Omega$	±12 ±10	±14 ±13		V
Input Voltage Range	V _S = ±15V	±12			V
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	70	90		dB
Supply Voltage Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	77	90		dB

Note 1: For operating at elevated temperatures the devices must be derated based on a maximum junction to case thermal resistance of 45°C per watt, or 150°C per watt junction to ambient. (See Curves).

Note 2: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to $+125^{\circ}C$ and ambient temperatures to $+70^{\circ}C$.

Note 4: These specifications apply for $\pm 5V \le V_S \le \pm 15V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise specified. With the LM748C, however, all temperature specifications are limited to $0^{\circ}C \le T_A \le 70^{\circ}C$.

guaranteed performance characteristics (Note 4)

typical performance characteristics

NPUT CURRENT (nA)

VOLTAGE SWING (V)

LM1558/LM1458 dual operational amplifier

general description

The LM1558 and the LM1458 are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent. Features include:

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges

- Low-power consumption
- 8-lead TO-5 and 8-lead mini DIP
- No latch up when input common mode range is exceeded

The LM1458 is identical to the LM1558 except that the LM1458 has its specifications guaranteed over the temperature range from 0° C to 70° C instead of -55° C to $+125^{\circ}$ C.

schematic and connection diagrams

Metal Can Package

Order Number LM1458H or LM1558H See Package 11

Dual-In-Line Package

Order Number LM1458N See Package 20

 Supply Voltage LM1558
 ±22V

 LM1458
 ±18V

 Power Dissipation (Note 1) LM1558H/LM1458H
 500 mW

 LM1458N
 400 mW

Differential Input Voltage ±30V Input Voltage (Note 2) ±15V

Output Short-Circuit Duration Operating Temperature Range LM1558

LM1458 Storage Temperature Range Lead Temperature (Soldering, 10 sec) Indefinite -55° C to 125° C 0° C to 70° C -65° C to 150° C 300° C

electrical characteristics (Note 3)

PARAMETER	CONDITIONS		LM1558			LM1458		UNITS
FANAMETER	COMPLIENS	MIN	TYP	MAX	MIN	TYP	MAX	ONIIS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$		1.0	5.0		1.0	6.0	mV
Input Offset Current	T _A = 25°C		80	200		80	200	nA
Input Bias Current	T _A = 25°C		200	500		200	500	nA
Input Resistance	T _A = 25°C	0.3	1.0		0.3	1.0		ΩM
Supply Current Both Amplifiers	$T_A = 25^{\circ}C, V_S = \pm 15V$		3.0	5.0		3.0	5.6	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$ $V_{OUT} = \pm 10V, R_L \ge 2 k\Omega$	50	160		20	160		V/mV
Input Offset Voltage	$R_S \le 10 \text{ k}\Omega$			6.0			7.5	mV
Input Offset Current				500			300	nA
Input Bias Current				1.5			0.8	μΑ
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2 k\Omega$	25			15			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$ $R_L = 2 \text{ k}\Omega$	±12 ±10	±14 ±13		±12 ±10	±14 ±13		V V
Input Voltage Range	V _S = ±15V	±12			±12			V
Common Mode Rejection Ratio	$R_{S} \leq$ 10 k Ω	70	90		70	90		dB
Supply Voltage Rejection Ratio	$R_{S} \le 10 \text{ k}\Omega$	77	96		77	96		dB

Note 1: The maximum junction temperature of the LM1558 is 150°C, while that of the LM1458 is 100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient or 45°C/W, junction to case. For the DIP the device must be derated based on a thermal resistance of 187°C/W, junction to ambient.

Note 2: For supply voltages less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: These specifications apply for $V_S=\pm 15V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise specified. With the LM1458, however, all specifications are limited to $0^{\circ}C \le T_A \le 70^{\circ}C$ and $V_S=\pm 15V$.

LH2101A/LH2201A/LH2301A dual high performance op amp general description

The LH2101A series of dual operational amplifiers are two LM101A type op amps in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost, and smaller size than two singles. For additional information, see the LM101A data sheet and National's Linear Application Handbook.

The LH2101A is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The LH2201A is specified for operation over the

 -25°C to $+85^{\circ}\text{C}$ temperature range. The LH2301A is specified for operation over the 0°C to $+70^{\circ}\text{C}$ temperature range.

features

- Low offset voltage
- Low offset current
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10V/\mu s$ as a summing amplifier

connection diagram

auxiliary circuits

Inverting Amplifier with Balancing Circuit

May be zero or equal to parallel combination of R1 and R2 for minimum offset

Alternate Balancing Circuit

Single Pole Compensation

Two Pole Compensation

Feedforward Compensation

Supply Voltage ±22V Power Dissipation (Note 1) 500 mW Differential Input Voltage ±30V Input Voltage (Note 2) ±15V Output Short-Circuit Duration Continuous

Operating Temperature Range LH2101A LH2201A LH2301A

Lead Temperature (Soldering, 10 sec)

Storage Temperature Range

-55°C to 125°C -25°C to 85°C 0°C to 70°C -65°C to 150°C 300°C

electrical characteristics each side (Note 3)

DADAMETED	CONDITIONS		LIMITS		
PARAMETER	CONDITIONS	LH2101A	LH2201A	LH2301A	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 50 \text{ k}\Omega$	2.0	2.0	7.5	mV Max
Input Offset Current	T _A = 25°C	10	10	50	nA Max
Input Bias Current	T _A = 25°C	75	75	250	nA Max
Input Resistance	T _A = 25°C	1.5	1.5	0.5	MΩ Min
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 20V$	3.0	3.3	3.0	mA Max
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2 k\Omega$	50	50	25	V/mV Mii
Input Offset Voltage	$R_S \le 50 \text{ k}\Omega$	3.0	3.0	10	mV Max
Average Temperature Coefficient of Input Offset Voltage		15	15	30	μV/°C Ma
Input Offset Current		20	20	70	nA Max
Average Temperature Coefficient of Input Offset Current	$25^{\circ}C \le T_{A} \le 125^{\circ}C$ $-55^{\circ}C \le T_{A} \le 25^{\circ}C$	0.1 0.2	0.1 0.2	0.3 0.6	nA/°C Ma nA/°C Ma
Input Bias Current		100	100	300	nA Max
Supply Current	T _A = +125°C, V _S = ±20V	2.5	2.5		mA Max
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2 \text{ k}\Omega$	25	25	15	V/mV Mir
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$ $R_L = 2 \text{ k}\Omega$	±12 ±10	±12 ±10	±12 ±10	V Min V Min
Input Voltage Range	V _S = ±20V	±15	±15	±12	V Min
Common Mode Rejection Ratio	$R_{S} \le 50 \text{ k}\Omega$	80	80	70	dB Min
Supply Voltage Rejection Ratio	$R_{S} \le 50 \text{ k}\Omega$	80	80	70	dB Min

Note 1: The maximum junction temperature of the LH2101A is 150°C, while that of the LH2201A is 100°C. For operating temperatures, devices in the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 11/6-inch-thick goopy glass board with 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient. Note 2: For supply voltage; less than ±15V, the absolute maximum input voltage is equal to the supply voltage. Note 3: These specifications apply for ±5V \leq Vg \leq ±20V and -55° C \leq Ta, \leq 15C°C, consists otherwise specification supply for ±5V \leq Vg \leq ±10V and \leq 5°C \leq Ta, \leq 5°C. For the LH2301A these specifications apply for 5°C \leq Ta, \leq 5°C. For the LH2301A these specifications apply for 5°C \leq Ta, \leq 5°C. For the LH2301A these specifications apply for 5°C \leq Ta, \leq 5°C. For the LH2301A consists of the LH2301A consists of the H2301A cons

LH2108/LH2208/LH2308, LH2108A/LH2208A/LH2308A dual super beta op amp general description

The LH2108A/LH2208A/LH2308A and LH2108/LH2208/LH2308 series of dual operational amplifiers are two LM108A or LM108 type op amps in a single hermetic package. Featuring all the same performance characteristics of the single device, these duals also offer closer thermal tracking, lower weight, reduced insertion cost, and smaller size than two single devices. For additional information see the LM108A or LM108 data sheet and National's Linear Application Handbook.

The LH2108A/LH2108 is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The LH2208A/LH2208 is specified for operation over the -25° C to $+85^{\circ}$ C temperature

range. The LH2308A/LH2308 is specified for operation over the 0°C to $+70^{\circ}\text{C}$ temperature range.

features

Low offset current

50 pA

Low offset voltage

0.7 mV

Low offset voltage

LH2108A 0.3 mV LH2108 0.7 mV

Wide input voltage range

±15V

■ Wide operating supply range

±3V to ±20V

connection diagram

Order Number LH2108AD, LH2208AD, LH2308AD, or LH2108D, LH2208D, or LH2308D

See Package 2

Order Number LH2108F, LH2208F, or LH2308F See Package 5

auxiliary circuits

Standard Compensation Circuit

Alternate * Frequency Compensation

Feedforward Compensation

 Supply Voltage
 ± 20V

 Power Dissipation (Note 1)
 500 mW

 Differential Input Current (Note 2)
 ± 10 mA

 Input Voltage (Note 3)
 ± 15V

 Output Short Circuit Duration
 Continuous

Operating Temperature Range LH2108A/LH2108 LH2208A/LH2208 LH2308A/LH2308 Storage Temperature Range

Lead Temperature (Soldering, 10 sec)

-55°C to +125°C -25°C to +85°C 0°C to +70°C -65°C to +150°C 300°C

electrical characteristics each side (Note 4)

PARAMETER	CONDITIONS		LIMITS		
PARAMETER	CONDITIONS	LH2108	LH2208	LH2308	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$	2.0	2.0	7.5	mV Max
Input Offset Current	$T_A = 25^{\circ}C$	0.2	0.2	1.0	nA Max
Input Bias Current	$T_A = 25^{\circ}C$	2.0	2.0	7.0	nA Max
Input Resistance	$T_A = 25^{\circ}C$	30	30	10	MΩ Min
Supply Current	$T_A = 25^{\circ}C$	0.6	0.6	0.8	mA Max
Large Signal Voltage Gain	T_A = 25°C V_S = ±15V V_{OUT} = ±10V, $R_L \ge$ 10 k Ω	50	50	25	V/mV Min
Input Offset Voltage		3.0	3.0	10	mV Max
Average Temperature Coefficient of Input Offset Voltage		15	15	30	μV/°C Max
Input Offset Current		0.4	0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current		2.5	2.5	10	pA/°C Max
Input Bias Current		3.0	3.0	10	nA Max
Supply Current	$T_A = +125^{\circ}C$	0.4	0.4	-	mA Max
Large Signal Voltage Gain	V_S = ±15V, V_{OUT} = ±10V $R_L \ge 10 \text{ k}\Omega$	25	25	15	V/mV Min
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$	±13	±13	±13	V Min
Input Voltage Range	V _S = ±15V	±13.5	±13.5	±14	V Min
Common Mode Rejection Ratio		85	85	80	dB Min
Supply Voltage Rejection Ratio		80	80	80	dB Min

electrical characteristics each side (Note 4)

DARAMETER	COMPLETIONS		LIMITS		LIAUTE
PARAMETER	CONDITIONS	LH2108A	LH2208A	LH2308A	UNITS
Input Offset Voltage	T _A = 25°C	0.5	0.5	0.5	mV Max
Input Offset Current	T _A = 25°C	0.2	0.2	1.0	nA Max
Input Bias Current	T _A = 25°C	2.0	2.0	7.0	nA Max
Input Resistance	T _A = 25°C	30	30	10	MΩ Min
Supply Current	T _A = 25°C	0.6	0.6	0.8	mA Max
Large Signal Voltage Gain	$T_A = 25^{\circ}C V_S = \pm 15V$ $V_{OUT} = \pm 10V, R_L \ge 10 k\Omega$	80	80	80	V/mV Min
Input Offset Voltage		1.0	1.0	0.73	mV Max
Average Temperature Coefficient of Input Offset Voltage		5	5	5	μV/°C Max
Input Offset Current		0.4	0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current		2.5	2.5	10	pA/°C Max
Input Bias Current		3.0	3.0	10	nA Max
Supply Current	T _A = +125°C	0.4	0.4	-	mA Max
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 10 \text{ k}\Omega$	40	40	60	V/mV Min
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$	± 13	±13	±13	V Min
Input Voltage Range	V _S = ±15V	±13.5	±13.5	±14	V Min
Common Mode Rejection Ratio		96	96	96	dB Min
Supply Voltage Rejection Ratio		96	96	96	dB Min

Note 1: The maximum junction temperature of the LH2108A/LH2108 is 150°C, while that of the LH2208A/LH2208 is 100°C and the LH2308A/LH2308 is B5°C. For operating at elevated temperatures, devices in the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with 0.03-inch-wide, 2-ounce cooper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of IV is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $.55 \text{V} \le \text{V}_S \le .20 \text{V}$ and $.55^{\circ}\text{C} \le \text{T}_A \le .125^{\circ}\text{C}$, unless otherwise specified. With the LH2208A/LH42208, however, all temperature specifications are limited to $-25^{\circ}\text{C} \le \text{T}_A \le .85^{\circ}\text{C}$ and with the LH2308A/LH2208 by $.55^{\circ}\text{C} \le .55^{\circ}\text{C} \le .55^{\circ}\text{C}$ and $.55^{\circ}\text{C} \le .55^{\circ}\text{C} \ge .55^{\circ}\text{C}$ and $.55^{\circ}\text{C} \ge .55^{\circ}\text{C} \ge .55^{\circ}\text{C}$ and $.55^{\circ$

LH2110/LH2210/LH2310 dual voltage follower general description

The LH2110 series of dual voltage followers are two LM110 type followers in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost and smaller size than two singles. For additional information, see the LM110 data sheet and National's Linear Application Notebook.

The LH2110 is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The LH2210 is specified for operation over the -25° C to $+85^{\circ}$ C temperature range. The LH2310 is specified

fied for operation over the 0°C to $+70^{\circ} \text{C}$ temperature range.

features

	Low	input	current	
--	-----	-------	---------	--

1 nA

High input resistance

10¹⁰ ohms

High slew rate

 $30 \text{V}/\mu\text{s}$

■ Wide bandwidth

20 MHz

Wide operating supply range

±5V to ±18V

Output short circuit proof

connection diagram

Order Number LH2110D or LH2210D or LH2310D See Package 2

Order Number LH2110F or LH2210F or LH2310F See Package 5

auxiliary circuits

Increasing Negative Swing Under Load

Supply Voltage ±18V Power Dissipation (Note 1) 500 mW Input Voltage (Note 2) ±15V

Operating Temperature Range LH2110 LH2210

LH2310

-55°C to 125°C -25°C to 85°C 0°C to 70°C -65°C to 150°C

300°C

Output Short Circuit Duration (Note 3)

Storage Temperature Range Lead Temperature (Soldering, 10 sec)

electrical characteristics Each side (Note 4)

PARAMETER	CONDITIONS		LIMITS		UNITS					
PANAMETER	CONDITIONS	LH2110	LH2110 LH2210		ONITS					
Input Offset Voltage	T _A = 25°C	4.0	4.0	7.5	mV Max					
Input Bias Current	$T_A = 25^{\circ}C$	3.0	3.0	7.0	nA Max					
Input Resistance	$T_A = 25^{\circ}C$	10 ¹⁰	10 ¹⁰	10 ¹⁰	Ω Min					
Input Capacitance		1.5	1.5	1.5	рЕ Тур					
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$.999	.999	.999	V/V Min					
	$V_{OUT} = \pm 10V$, $R_L = 8 k\Omega$									
Output Resistance	T _A = 25°C	2.5	2.5	2.5	Ω Max					
Supply Current (Each Amplifier)	T _A = 25°C	5.5	5.5	5.5	mA Max					
Input Offset Voltage		6.0	6.0	10	mV Max					
Offset Voltage	-55° C \leq T _A \leq 85° C	6	6	10	μV/°C Typ					
Temperature Drift	$T_A = 125^{\circ}C$	12	12	-	μV/°C Typ					
Input Bias Current		10	10	10	nA Max					
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V$ $R_L = 10 \text{ k}\Omega$.999	.999	.999	V/V Min					
Output Voltage Swing (Note 5)	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$	±10	±10	±10	V Min					
Supply Current (Each Amplifier)	T _A = 125°C	4.0	4.0	_	mA Max					
Supply Voltage Rejection Ratio	$\pm 5V \le V_S \le \pm 18V$	70	70	70	dB Min					

Continuous

Note 1: The maximum junction temperature of the LH2110 is 150°C, while that of the LH2210 is 100°C and the LH2310 is Note 1: The maximum junction temperature of the LH2110 is 150°C, while that of the LH2210 is 100°C and the LH2210 is 85°C. For operating at elevated temperatures, devices in the flat package, the derating is based on a themal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to 125°C and ambient temperatures to 70°C. It is necessary to insert a resistor greater than 2 kΩ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.

Note 4: These specifications apply for $\pm 5V \le V_S \le \pm 18V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise specified. With the LM210, however, all temperature specifications are limited to $-25^{\circ}C \le T_A \le 85^{\circ}C$ and for the LH2310, all temperature specifications are limited to $0^{\circ}C \le T_A \le 70^{\circ}C$.

Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V

LH2111/LH2211/LH2311 dual voltage comparator

general description

The LH2111 series of dual voltage comparators are two LM111 type comparators in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost and smaller size than two singles. For additional information see the LM111 data sheet and National's Linear Application Handbook.

The LH2111 is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The LH2211 is specified for operation over the -25° C to $+85^{\circ}$ C temperature range. The LH2311 is specified

fied for operation over the $0^{\circ} C$ to $70^{\circ} C$ temperature range.

features

Wide	operating	supply	range	±15V	to a
				single	+5V

Low input currents 6 nAHigh sensitivity $10 \,\mu\text{V}$ Wide differential input range $\pm 30\text{V}$

■ High output drive 50 mA, 50V

connection diagram

Order Number LH2111D or LH2211D or LH2311D See Package 2

Order Number LH2111F or LH2211F or LH2311F See Package 5

auxiliary circuits

Offset Balancing

Strobing

Increasing Input Stage Current*

Driving Ground-Referred Load

Using Clamp Diodes to Improve Responses

Comparator and Solenoid Driver

Strobing off Both Input* and Output Stages

TTL Interface with High Level Logic

Total Supply Voltage (V ⁺ – V ⁻) Output to Negative Supply Voltage (V _{OUT} – V ⁻)	36V 50V	Output Short Circuit Duration Operating Temperature Range LH2111	10 sec -55°C to 125°C
Ground to Negative Supply Voltage (GND - V ⁻)	30V	LH2211	-25° C to 85° C
Differential Input Voltage Input Voltage (Note 1)	±30V ±15V	LH2311 Storage Temperature Range	0°C to 70°C -65°C to 150°C
Power Dissipation (Note 2)	500 mW	Lead Temperature (Soldering, 10 sec)	300°C

electrical characteristics - each side (Note 3)

PARAMETER	CONDITIONS		LIMITS		LINUTO
PARAMETER	CONDITIONS	LH2111	LH2211	LH2311	UNITS
Input Offset Voltage (Note 4)	$T_A = 25^{\circ}C, R_S \leq 50k$	3.0	3.0	7.5	mV Max
Input Offset Current (Note 4)	T _A = 25°C	10	10	50	nA Max
Input Bias Current	T _A = 25°C	100	100	250	nA Max
Voltage Gain	T _A = 25°C	200	200	200	V/mV Typ
Response Time (Note 5)	T _A = 25°C	200	200	200	ns Typ
Saturation Voltage	$V_{IN} \le -5 \text{ mV}$, $I_{OUT} = 50 \text{ mA}$ $T_A = 25^{\circ}\text{C}$	1.5	1.5	1.5	V Max
Strobe On Current	T _A = 25°C	3.0	3.0	3.0	mA Typ
Output Leakage Current	$V_{IN} \ge 5 \text{ mV}, V_{OUT} = 35V$ $T_A = 25^{\circ}C$	10	10	50	nA Max
Input Offset Voltage (Note 4)	$R_S \le 50k$	4.0	4.0	10	mV Max
Input Offset Current (Note 4)		20	20	70	nA Max
Input Bias Current		150	150	300	nA Max
Input Voltage Range		±14	±14	±14	V Typ
Saturation Voltage	$V^{+} \ge 4.5V, V^{-} = 0$ $V_{IN} < -5 \text{ mV}, I_{SINK} \le 8 \text{ mA}$	0.4	0.4	0.4	V Max
Positive Supply Current	T _A = 25°C	6.0	6.0	7.5	mA Max
Negative Supply Current	T _A = 25°C	5.0	5.0	5.0	mA Max

Note 1: This rating applies for ±15V supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below the positive supply, whichever is less.

Note 2: The maximum junction temperature is 150°C. For operating at elevated temperatures, devices in the flat package, the detating is based on a thermal resistance of 185°CW when mounted on a 1/16-inch-thick pepoxy glass board with 0.03-inch-wide, 2 ounce copper conductor. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 3: These specifications apply for V_S = ±15V and -55°C $\le T_A \le 125$ °C for the LH2111, -25°C $\le T_A \le 85$ °C for the LH2211, and 0°C $\le T_A \le 70$ °C for the LH2311, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V supply up to ±15V supplying the LH2311, V_{IN} =±10 mV. Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.

LM2900 quad amplifier general description

The LM2900 consists of four independent, dual input, internally compensated amplifiers which were designed specifically for automotive and industrial applications. They operate off a single power supply voltage and provide a large output voltage swing. These amplifiers make use of a current mirror to achieve the non-inverting input function.

Applications include: AC amplifiers, RC active filters; low frequency triangle, squarewave and pulse waveform generation circuits; tachometers and low speed, high voltage digital logic gates.

For additional information, see Application Note 72, "The LM3900 - A New Current-Differencing Quad of \pm Input Amplifiers."

features

- Wide single supply voltage range
- 4 V_{DC} to 36 V_{DC}
- Supply current drain independent of supply voltage
- Low input biasing current
- 30 nA
- High open-loop gain
- 70 dB
- Wide bandwidth
- 2.5 MHz (Unity Gain)
- Larger gain-bandwidth product in non-inverting mode (A_V = 100 @ f = 1 MHz)
- Large output voltage swing
- (V -I) V_{p-p}
- Internally frequency compensated for unity gainOutput short-circuit protection
- Eliminates need for dual supplies
- Eliminates need for dual supplie
- Reduces package count

schematic and connection diagrams

Dual-In-Line Package

Order Number LM2900N See Package 22

typical applications (V+= 15VDC)

Inverting Amplifier

Triangle/Square Generator

Frequency-Doubling Tachometer

Low VIN-VOUT Voltage Regulator

Non-Inverting Amplifier

Boosting to 300 mA Loads

Supply Voltage	+36 V _{DC}
	±18 V _{DC}
Power Dissipation ($T_A = 25^{\circ}C$) (Note 1)	570 mW
Input Currents, I _{IN} + or I _{IN} -	20 mA DC
Output Short Circuit Duration — One	Continuous
Amplifier $T_A = 25^{\circ}C$	
(See Application Hints)	
Operating Temperature Range	-40° C to $+85^{\circ}$ C
Storage Temperature Range	-65° C to $+150^{\circ}$ C
Lead Temperature (Soldering, 10 sec)	300°C

electrical characteristics ($V^+ = +15 V_{DC}$ and $T_A = 25^{\circ} C$ unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Open Loop Voltage Gain Input Resistance Output Resistance	f = 100 Hz Inverting Input	1200	2800 1 8		V/V MΩ kΩ
Unity Gain Bandwidth	Inverting Input (Note 2)		2.5		MHz
Input Bias Current	Inverting Input		30	200	nA
Slew Rate	Positive Output Swing Negative Output Swing		0.5 20		V/μs V/μs
Supply Current	R _L = ∞ On All Amplifiers		6.2	10	mA DC
Output Voltage Swing V _{OUT} High V _{OUT} Low	$R_L = 5.1k$ $I_{IN} = 0, I_{IN} = 0$ $I_{IN} = 10 \mu A, I_{IN} = 0$	13.5	14.2 0.09	0.2	V _{DC}
Output Current Capability Source		3	18		mA DC
Sink	(Note 3)	0.5	1.3		mA DC
Power Supply Rejection	f = 100 Hz		70		dB
Mirror Gain	I_{IN} + = 200 μ A (Note 4)	0.90	1	1.1	μΑ/μΑ
Mirror Current	(Note 5)		10	500	μA DC
Negative Input Current	(Note 6)		1.0		mA DC

Note 1: For operating at high temperatures, the device must be derated based on a 125°C maximum junction temperature and a thermal resistance of 175°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. Note 2: When used as a "non-inverting amplifier" (see bottom of page 1) the gain-bandwidth product is not limited to 2.5 MHz. The isolation provided by the "current mirror" allows a constant unity voltage gain feedback for the main inverting amplifier. This means that large values of gain can be achieved at high frequencies and the dominate limit is due to the slew rate of the amplifier. For example: a voltage gain of 100 is easily obtained at 1 MHz and an output voltage swing of 160 mVp-p can be

achieved prior to slew rate limiting. This operational mode is useful for signal frequencies in the 50 kHz to 1 MHz range as would be encountered in IF or carrier frequency applications.

Note 3: The output current sink capability can be increased for large signal conditions by overdriving the inverting input. This is shown in the section on Typical Characteristics.

Note 4: This spec indicates the current gain of the current mirror which is used as the non-inverting input.

Note 5: Input VBE match between the non-inverting and the inverting inputs occurs for a mirror current (non-inverting input current) of approximately 10 µA. This is therefore a typical design center for many of the application circuits.

Note 6: Clamp transistors are included on the IC to prevent the input voltages from swinging below ground more than approximately -0.3 VDC. The negative input currents which may result from large signal overdrive with capacitance input coupling need to be externally limited to values of approximately 1 mA. Negative input currents in excess of 4 mA will cause the output voltage to drop to a low voltage. This maximum current applies to any one of the input terminals. If more than one of the input terminals are simultaneously driven negative smaller maximum currents are allowed. Common-mode current biasing can be used to prevent negative input voltages; for example, see the "Differentiator Circuit" in the applications section.

LM3900 quad amplifier general description

The LM3900 consists of four independent, dual input, internally compensated amplifiers which were designed specifically to operate off of a single power supply voltage and to provide a large output voltage swing. These amplifiers make use of a current mirror to achieve the non-inverting input function. Application areas include: AC amplifiers, RC active filters; low frequency triangle, squarewave and pulse waveform generation circuits, tachometers and low speed, high voltage digital logic gates.

features

■ Wide single supply voltage range 4 V_{DC} to 36 V_{DC} $\pm 2 V_{DC}$ to $\pm 18 V_{DC}$ or dual supplies

 Supply current drain independent of supply voltage

30 nA Low input biasing current

■ High open-loop gain 70 dB

Wide bandwidth 2.5 MHz (Unity Gain)

 $(V^{+}-1) V_{p-p}$ Large output voltage swing Internally frequency compensated for unity gain

Output short-circuit protection

schematic and connection diagrams

Order Number LM3900N See Package 22

typical applications (V+= 15VDC)

Triangle/Square Generator

Frequency-Doubling Tachometer

Non-Inverting Amplifier

Negative Supply Biasing

Supply Voltage +36 VDC ±18 VDC Power Dissipation ($T_{\Delta} = 25^{\circ}C$) (Note 1) 570 mW Input Currents, I_{IN}+ or I_{IN}-20 mA DC Output Short Circuit Duration - One Continuous Amplifier $T_A = 25^{\circ}C$ (See Application Hints) 0° C to $+70^{\circ}$ C Operating Temperature Range -65° C to $+150^{\circ}$ C Storage Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (V⁺ = +15 VDC and T_A = 25°C unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Open Loop Voltage Gain Input Resistance Output Resistance	f = 100 Hz Inverting Input	1200	2800 1 8		V/V MΩ kΩ
Unity Gain Bandwidth	Inverting Input		2.5		MHz
Input Bias Current	Inverting Input		30	200	nA
Slew Rate	Positive Output Swing Negative Output Swing		0.5 20		V/μs V/μs
Supply Current	R _L = ∞ On All Amplifiers		6.2	10	mA DC
Output Voltage Swing V _{OUT} High V _{OUT} Low	$R_L = 5.1k$ $I_{IN} = 0, I_{IN} + 0$ $I_{IN} = 10 \mu A, I_{IN} + 0$	13.5	14.2 0.09	0.2	VDC VDC
Output Current Capability Source		3	18		mA DC
Sink	(Note 2)	0.5	1.3		mA DC
Power Supply Rejection	f = 100 Hz		70		dB
Mirror Gain	I_{1N} + = 200 μ A (Note 3)	0.9	1	1.1	μΑ/μΑ
Mirror Current	(Note 4)		10	500	μA DC
Negative Input Current	(Note 5)		1.0		mA DC

Note 1: For operating at high temperatures, the device must be derated based on a 125°C maximum junction temperature and a thermal resistance of 175°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient.

Note 2: The output current sink capability can be increased for large signal conditions by overdriving the inverting input. This is shown in the section on Typical Characteristics.

Note 3: This spec indicates the current gain of the current mirror which is used as the non-inverting input.

Note 4: Input V_{BE} match between the non-inverting and the inverting inputs occurs for a mirror current (non-inverting input current) of approximately 10 μ A. This is therefore a typical design center for many of the application circuits.

Note 5: Clamp transistors are included on the IC to prevent the input voltages from swinging below ground more than approximately -0.3 VDC. The negative input currents which may result from large signal overdrive with capacitance input coupling need to be externally limited to values of approximately 1 mA. Negative input currents in excess of 4 mA will cause the output voltage to drop to a low voltage. This maximum current applies to any one of the input terminals. If more than one of the input terminals are simultaneously driven negative smaller maximum currents are allowed. Common-mode current biasing can be used to prevent negative input voltages; see for example the "Differentiator Circuit" in the applications section.

typical performance characteristics

application hints

When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak input current. Currents as large as 20 mA will not damage the device, but the current mirror on the non-inverting input will saturate and cause a loss of mirror gain at mA current levels — especially at high operating temperatures.

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fuzing of the internal conductors and result in a destroyed unit.

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fuzing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. For example, when operating from a well-regulated +15 VDC power supply at $T_A = 25^{\circ}C$ with a 100 k Ω shuntfeedback resistor (from the output to the inverting input) a short directly to the power supply will not cause catastrophic failure but the current magnitude will be approximately 50 mA and the junction temperature will be above T₁ max. Larger feedback resistors will reduce the current, $11 \,\mathrm{M}\Omega$ provides approximately 30 mA, an open circuit provides 1.3 mA, and a direct connection from the output to the non-inverting input will result in catastrophic failure when the output is shorted to V⁺ as this then places the base-emitter junction of the input transistor directly across the power supply. Short-circuits to ground will have magnitudes of approximately 30 mA and will not cause catastrophic failure at $T_A = 25^{\circ}C$.

Unintentional signal coupling from the output to the non-inverting input can cause oscillations. This is likely only in breadboard hook-ups with long component leads and can be prevented by a more careful lead dress or by locating the non-inverting input biasing resistor close to the IC. A quick check of this condition is to bypass the non-inverting input to ground with a capacitor. High impedance biasing resistors used in the non-inverting input circuit make this input lead highly susceptible to unintentional AC signal pickup.

Operation of this amplifier can be best understood by noticing that input currents are differenced at the inverting-input terminal and this difference current then flows through the external feedback resistor to produce the output voltage. Common mode current biasing is generally useful to allow operating with signal levels near ground or even negative as this maintains the inputs biased at +V_BE. Internal clamp transistors (see note 5) catch negative input voltages at approximately $-0.3\ VDC$ but the magnitude of current flow has to be limited by the external input network. For operation at high temperature, this limit should be approximately $100\ \mu A$.

This new "Norton" current-differencing amplifier can be used in most of the applications of a standard IC op amp. Performance as a DC amplifier using only a single supply is not as precise as a standard IC op amp operating with split supplies but is adequate in many less critical applications. New functions are made possible with this amplifier which are useful in single power supply systems. For example, biasing can be designed separately from the AC gain as was shown in the "inverting amplifier", the "difference integrator" allows controlling the charging and the discharging of the integrating capacitor using only positive voltages, and the "frequency doubling tachometer" provides a simple circuit which reduces the ripple voltage on a tachometer output DC voltage.

typical applications (con't)

Low-Drift Ramp & Hold Circuit

Bi-Quad Active Filter
(2nd Degree State-Variable Network)

typical applications (con't)

Frequency Differencing Tachometer

Frequency Averaging Tachometer

Squaring Amplifier (W/Hysteresis)

Bi-Stable Multivibrator

Differentiator (Common-Mode Biasing Keeps Input at +VBE)

"OR" Gate

"AND" Gate

Difference Integrator

Low Pass Active Filter

Staircase Generator

V_{BE} Biasing

One-Shot Multivibrator

Low-Frequency Mixer

typical applications (con't) Z₁ DIFFERENCE PULSE GENERATOR Supplying I_{IN} with Aux. Amp (to Allow High Z Feedback Networks) Free-Running Staircase Generator/Pulse Counter Non-Inverting DC Gain to (0,0) f₀ = 1 kH; Q = 25 **Bandpass Active Filter** Power Amplifier

One-Shot w/ DC Input Comparator

Channel Selection by DC Control

(or Audio Mixer)

typical applications (con't)

High Pass Active Filter

Sawtooth Generator

Sample-Hold & Compare with New +VIN

split-supply applications (V+= +15V_DC & V^= -15V_DC)

Inverting DC Gain

AC Amplifier

LM4250/LM4250C programmable operational amplifier general description

The LM4250 and LM4250C are extremely versatile programmable monolithic operational amplifiers. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product. The device is a truly general purpose operational amplifier.

- No frequency compensation required
- Programmable electrical characteristics
- Offset Voltage nulling capability
- Can be powered by two flashlight batteries

Standby power consumption as low as 500 nW

Short circuit protection

The LM4250C is identical to the LM4250 except that the LM4250C has its performance guaranteed over a 0°C to 70°C temperature range instead of the -55°C to +125°C temperature range of the LM4250.

features

- $\pm 1V$ to $\pm 18V$ power supply operation
- 3 nA input offset current

schematic and connection diagrams

typical applications

X5 Difference Amplifier

Metal Can Package

Order Number LM4250H or LM4250CH See Package 11

Dual-In-Line Package

Order Number LM4250CN See Package 20

500 Nano-Watt X10 Amplifier

Supply Voltage
Power Dissipation (Note 1)
Differenital Input Voltage
Input Voltage (Note 2)
I_{SET} Current

±18V 500 mW ±30V ±15V 150 µA Output Short-Circuit Duration
Operating Temperature Range LM4250
LM4250C

Lead Temperature (Soldering, 10 sec)

Storage Temperature Range

 $\begin{array}{c} \text{Indefinite} \\ -55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 125^{\circ}\text{C} \\ 0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C} \\ -65^{\circ}\text{C to } 150^{\circ}\text{C} \\ 300^{\circ}\text{C} \end{array}$

electrical characteristics LM4250 (-55°C \leq T_A \leq 125°C unless otherwise specified)

			V _S :	±1.5V				
PARAMETERS	CONDITIONS	I _{SET}	I _{SET} = 1 μA		= 10 μ A			
		MIN	MAX	MIN	MAX			
Vos	$T_A = 25^{\circ} R_S \le 100 k\Omega$		3 mV		5 mV			
los	T _A = 25°		3 nA		10 nA			
bias	T _A = 25°		7.5 nA		50 nA			
Large Signal Voltage Gain	$T_A = 25^{\circ} R_L = 100 \text{ k}\Omega$	40k						
	$V_0 = \pm 0.6, R_L = 10 \text{ k}\Omega$			50k				
Supply Current	T _A = 25°C		7.5 µA		80 μΑ			
Power Consumption	T _A = 2E°C		23 μW		240 μW			
Vos	$R_S \le 100 \text{ k}\Omega$		4 mV		6 mV			
Ios	T _A = 125°C		5 nA		10 nA			
	$T_A = -55^{\circ}C$		3 nA		10 nA			
bias			7.5 nA		50 nA			
Input Voltage Range		±0.7V		±0.7V				
Large Signal Voltage Gain	$V_{O} = \pm 0.6 V R_{L} = 100 k\Omega$	30k						
	R _L = 10 kΩ			30k				
Output Voltage Swing	$R_L = 100 \text{ k}\Omega$	±0.6V						
	R _L = 10 kΩ			±0.6V				
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	70 dB		70 dB				
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	76 dB		76 dB				
Supply Current			8 μΑ		90 μΑ			
Power Consumption			24 μW		270 μW			
	-	+		. 4514				
					V+1EV			

		V _S = ±15V			
PARAMETERS	CONDITIONS	I _{SET}	= 1 μA	I _{SET} =	10 μΑ
		MIN	MAX	MIN	MAX
Vos	$T_A = 25^{\circ}C R_S \le 100 k\Omega$		3 mV		5 mV
los	T _A = 25°C		3 nA		10 nA
l _{bias}	$T_A = 25^{\circ}C$		7.5 nA		50 nA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$ $R_L = 100 \text{ k}\Omega$	100k			
	$V_O = \pm 10V R_L = 10 k\Omega$			100k	
Supply Current	$T_A = 25^{\circ}C$		10 μΑ	ares	90 μΑ
Power Consumption	$T_A = 25^{\circ}C$		300 μW		2.7 mW
Vos	$R_S \le 100 \text{ k}\Omega$		4 mV		6 mV
Ios	T _A = 125°C		25 nA		25 nA
	T _A = -55°C		3 nA		10 nA
l _{bias}			7.5 nA		50 nA
Input Voltage Range		±13.5V		±13.5V	
Large Signal Voltage Gain	$V_O = \pm 10V R_L = 100 k\Omega$	50k			
	$R_L = 10 \text{ k}\Omega$			50k	
Output Voltage Swing	$R_L = 100 \text{ k}\Omega$	±12V			7
	$R_L = 10 \text{ k}\Omega$			±12V	
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	76 dB		76 dB	
Supply Current			11 μΑ		100 μΑ
Power Consumption			330 μW		3 mW
					l

Note 1: The maximum junction temperature of the LM4250 is 150°C, while that of the LM4250C is 100°C. For operating at elevated temperatures, devices in the T0-5 package must be derated based on a thermal resistance of 150°C/W junction to ambient, or 46°C/W junction to case. The thermal resistance of the dual-in-ine package is 125°C/W.

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

electrical characteristics LM4250C (0°C \leq $T_{A} \leq$ 70°C unless otherwise specified)

				±1.5V	40 4
PARAMETERS	CONDITIONS		= 1 μA		10 μA
		MIN	MAX	MIN	MA
Vos	$T_A = 25^{\circ}C R_S \le 100 k\Omega$		5 mV		6 mV
los	T _A = 25°C		6 nA		20 nA
bias	T _A = 25°C		10 nA		75 nA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$ $R_L = 100 \text{ k}\Omega$	25k			
	$V_{O} = \pm 0.6 V R_{L} = 10 k\Omega$			25k	
Supply Current	T _A = 25°C		8 μΑ		90 μA
Power Consumption	T _A = 25°C		24 μW		270 μ
Vos	$R_S \le 10 \text{ k}\Omega$		6.5 mV		7.5 m
los			8 nA		25 nA
bias			10 nA		80 nA
Input Voltage Range		±0.6V		±0.6V	
Large Signal Voltage Gain	$V_{O} = \pm 0.6 V R_{L} = 100 k\Omega$	25k			
	R _L = 10 kΩ			25k	
Output Voltage Swing	R _L = 100 kΩ	±0.6V			
	R _L = 10 kΩ			±0.6V	
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	74 dB		74 dB	
Supply Current			8 μΑ		90 u
Power Consumption			24 μW		270 ເ
		+	V _S =	<u>†</u> ±15V	
PARAMETERS	CONDITIONS	ISET	= 1 μA	I _{SET} =	10 μA
		MIN	MAX	MIN	MA
Vos	$T_{\bullet} = 25^{\circ} \text{C B}_{\circ} < 100 \text{ k}\Omega$		5 mV	ı	1 6 m V
	$T_A = 25^{\circ}C R_S \le 100 k\Omega$ $T_A = 25^{\circ}C$		5 mV 6 nA		
os	T _A = 25°C		6 nA		20 nA
OS bias	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$	60k	l .		20 n/
OS bias	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $R_L = 100 \text{ k}\Omega$	60k	6 nA	60k	20 nA
os _{bias} .arge Signal Voltage Gain	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $R_L = 100 kΩ$ $V_O = \pm 10V$ $R_L = 10$ $KΩ$	60k	6 nA	60k	20 n/ 75 n/
OS bias Large Signal Voltage Gain Supply Current	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $R_L = 100 \text{ k}\Omega$	60k	6 nA 10 nA	60k	20 nA 75 nA 100 μ
OS bias Large Signal Voltage Gain Supply Current Power Consumption	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $R_L = 100 \text{ k}\Omega$ $V_O = \pm 10V$ $R_L = 10 \text{ k}\Omega$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$	60k	6 nA 10 nA 11 µA	60k	20 nA 75 nA 100 µ 3 mW
OS bias Large Signal Voltage Gain Supply Current Power Consumption	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $R_L = 100 \text{ k}\Omega$ $V_O = \pm 10V$ $R_L = 10 \text{ k}\Omega$ $T_A = 25^{\circ}C$	60k	6 nA 10 nA 11 μA 330 μW	60k	20 nA 75 nA 100 µ 3 mW 7.5 m
OS Diss Large Signal Voltage Gain Supply Current Power Consumption Vos OS	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $R_L = 100 \text{ k}\Omega$ $V_O = \pm 10V$ $R_L = 10 \text{ k}\Omega$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$	60k	6 nA 10 nA 11 μA 330 μW 6.5 mV	60k	20 n/ 75 n/ 100 / 3 mW 7.5 m 25 n/
os bias Large Signal Voltage Gain Supply Current Power Consumption Vos os	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $R_L = 100 \text{ k}\Omega$ $V_O = \pm 10V$ $R_L = 10 \text{ k}\Omega$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$	60k ±13.5V	6 nA 10 nA 11 μA 330 μW 6.5 mV 8 nA	60k ±13.5V	20 nA 75 nA 100 µ 3 mW 7.5 m 25 nA
os Large Signal Voltage Gain Supply Current Power Consumption Vos os bias input Voltage Range	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $R_L = 100 \text{ k}\Omega$ $V_O = \pm 10V$ $R_L = 10 \text{ k}\Omega$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$		6 nA 10 nA 11 μA 330 μW 6.5 mV 8 nA		20 nA 75 nA 100 µ 3 mW 7.5 m 25 nA
los Large Signal Voltage Gain Supply Current Power Consumption Vos Joins Join Join Join Join Join Join Join Join	$\begin{split} T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C R_L = 100 \text{ k}\Omega \\ V_O &= \pm 100 R_L = 10 \text{ k}\Omega \\ T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ R_S &\leq 10 \text{ k}\Omega \end{split}$	±13.5V	6 nA 10 nA 11 μA 330 μW 6.5 mV 8 nA		20 nA 75 nA 100 μ 3 mW 7.5 m 25 nA
los Large Signal Voltage Gain Supply Current Power Consumption Vos Jos Jos Jos Jos Jos Jos Jos Jos Jos J	$\begin{split} T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C R_L = 100 \text{ k}\Omega \\ V_O &= \pm 10V R_L = 10 \text{ k}\Omega \\ T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ R_S &\leq 10 \text{ k}\Omega \\ \end{split}$	±13.5V	6 nA 10 nA 11 μA 330 μW 6.5 mV 8 nA	±13.5V	20 nA 75 nA 100 μ 3 mW 7.5 m 25 nA
Vos los los Large Signal Voltage Gain Supply Current Power Consumption Vos los Los Lipux Voltage Range Large Signal Voltage Gain	$\begin{split} T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C R_L = 100 \text{ k}\Omega \\ V_O &= \pm 10V R_L = 10 \text{ k}\Omega \\ T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ R_S &\leq 10 \text{ k}\Omega \\ \end{split}$	±13.5V 50k	6 nA 10 nA 11 μA 330 μW 6.5 mV 8 nA	±13.5V	6 mV 20 nA 75 nA 100 µ 3 mW 7.5 m 25 nA 80 nA
los Large Signal Voltage Gain Supply Current Power Consumption Vos Jos Jos Jonet Voltage Range Large Signal Voltage Gain Dutput Voltage Swing	$\begin{split} T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ R_L &= 100 \text{ k}\Omega \\ V_O &= \pm 10V \text{ R}_L = 10 \text{ k}\Omega \\ T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ R_S &\leq 10 \text{ k}\Omega \\ \end{split}$	±13.5V 50k	6 nA 10 nA 11 μA 330 μW 6.5 mV 8 nA	±13.5V 50k	20 nA 75 nA 100 μ 3 mW 7.5 m 25 nA
los Large Signal Voltage Gain Supply Current Power Consumption Vos Jos Jos Los Los Los Large Signal Voltage Gain Output Voltage Swing Common Mode Rejection Ratio	$\begin{split} T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ R_L &= 100 \text{ k}\Omega \\ V_O &= \pm 10V \text{ R}_L = 10 \text{ k}\Omega \\ T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ R_S &\leq 10 \text{ k}\Omega \\ \end{split}$	±13.5V 50k ±12V	6 nA 10 nA 11 μA 330 μW 6.5 mV 8 nA	±13.5V 50k ±12V	20 nA 75 nA 100 μ 3 mW 7.5 m 25 nA
los Large Signal Voltage Gain Supply Current Power Consumption Vos Jos Jos Jos Jos Jos Jos Jos Jos Jos J	$\begin{split} T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ T_A &= 25^{\circ} C \\ R_L &= 100 \text{ k} \Omega \\ V_O &= \pm 10V \\ R_L &= 10 \text{ k} \Omega \\ T_A &= 25^{\circ} C \\ R_S &\leq 10 \text{ k} \Omega \\ \end{split}$	±13.5V 50k ±12V 70 dB	6 nA 10 nA 11 μA 330 μW 6.5 mV 8 nA	±13.5V 50k ±12V 70 dB	20 nA 75 nA 100 μ 3 mW 7.5 m 25 nA

resistor biasing

Set Current Setting Resistor to V

I _{SET}						
Vs	0.1 μΑ	0.5 μΑ	1.0 μA	5 μΑ	10 μ A	
±1.5V	25.6 MΩ	5.04 MΩ	2.5 MΩ	492 kΩ	244 kΩ	
±3.0V	55.6 MΩ	11.0 MΩ	5.5 MΩ	1.09 MΩ	544 kΩ	
±6.0V	116 MΩ	23.0 MΩ	11.5 MΩ	2.29 MΩ	1.14 MΩ	
±9.0V	176 MΩ	35.0 MΩ	17.5 MΩ	3.49 MΩ	1.74 MΩ	
±12.0V	236 MΩ	47.0 MΩ	23.5 M Ω	4.69 MΩ	2.34 MΩ	
±15.0V	296 MΩ	59.0 MΩ	29.5 M $Ω$	5.89 MΩ	2.94 MΩ	

typical performance characteristics

typical performance characteristics (con't)

typical applications (con't)

Floating Input Meter Amplifier 100 Nano-Ampere Full Scale

X100 Instrumentation Amplifier 10 μ W

ISET EQUATIONS

RSET Connected to V

RSET Connected to Ground

Transistor Current Source Biasing *R1 limits I_{SET} maximum

FET Current Source Biasing

Offset Null Circuit

LH24250/LH24250C dual programmable micropower op amp

general description

The LH24250/LH24250C series of dual programmable micropower operational amplifiers are two LM4250 type op amps in a single hermetic package. Featuring all the same performance characteristics of the LM4250, the LH24250/LH24250C duals also offer closer thermal tracking lower weight, reduced insertion cost and smaller size than two single devices. For additional information, see the LM4250 data sheet and National's Linear Application Handbook.

features

- ±1V to ±18V power supply operation
- Standby power consumption as low as 20 μ W
- Offset current programmable from less than 0.5 nA to 30 nA
- Programmable slew rate
- May be shut-down using standard open collector TTL
- Internally compensated and short circuit proof

connection diagram and auxiliary circuit

Order Number LH24250F or LH24250CF See Package 5

Order Number LH24250D or LH24250CD See Package 2

Offset Null Circuit

typical quiescent current setting resistor

(Pin 8 to V-)

Vs	10 μΑ	30 μΑ	100 μΑ	300 μΑ
±1.5	1.5 MΩ	470 kΩ	150 kΩ	
±3	$3.3~\mathrm{M}\Omega$	$1.1~\mathrm{M}\Omega$	330 kΩ	100 kΩ
±6	$7.5~\mathrm{M}\Omega$	$2.7~\mathrm{M}\Omega$	750 kΩ	220 kΩ
±9	13 M Ω	4 M Ω	$1.3~\mathrm{M}\Omega$	350 kΩ
±12	18 M Ω	$5.6~\mathrm{M}\Omega$	1.5 M Ω	510 kΩ
±15	22 M Ω	$7.5~\mathrm{M}\Omega$	$2.2~\mathrm{M}\Omega$	620 kΩ

2-207

±18V 500 mW Supply Voltage Power Dissipation (Note 1) Differential Input Voltage (Note 2)
Input Voltage (Note 3)
Output Short Circuit Duration ±15V ±15V Continuous

Operating Temperature Range LH24250 LH24250C LH24250C Storage Temperature Range Lead Temperature (Soldering, 10 sec)

-55°C to +125°C 0°C to +70°C -65°C to +150°C 300°C

electrical characteristics - each side (Note 4)

DADAMETED	CONDITIONS	LIM	ITS	UNITS
PARAMETER			LH24250C	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 100 \text{ k}\Omega$	3.0	6.0	mV Max
Input Offset Current	T _A = 25°C	5	10	nA Max
Input Bias Current	T _A = 25°C	15	30	nA Max
Input Resistance	T _A = 25°C	3	3	MΩ Min
Power Consumption	$T_A = 25^{\circ}C, V_O = 0, R_{SET} = 2.7 M\Omega$	480	600	μW Max
Large Signal Voltage Gain	T_A = 25°C, $R_L \geq$ 10 k Ω	100	75	V/mV Min
Input Offset Voltage	$R_S \ge 10 \ k\Omega$	4.0	7.5	mV Max
Input Offset Current		5	15	nA Max
Input Bias Current		15	50	nA Max
Large Signal Voltage Gain	$R_L \geq 10 \; k\Omega$	50	50	V/mV Min
Output Voltage Swing	$R_L \ge 10 \text{ k}\Omega$, $V_S = \pm 15V$	±10	±10	V Min
Input Voltage Range	$T_A = 25^{\circ}C, V_S = \pm 15V$	±12	±12	V Min
Common Mode Rejection Ratio	${\sf T_A}$ = 25°C, ${\sf R_S}$ \leq 10 k Ω	70	70	dB Min
Supply Voltage Rejection Ratio	T_A = 25°C, $R_S \leq 10~k\Omega$	76	76	dB Min

Note 1: Derate linearly 2 mW/ $^{\circ}$ C case temperature above 25 $^{\circ}$ C.

Note 1: The rate inearity 2 to the term of the term o

LM106/LM206 voltage comparator/buffer general description

The LM106 and LM206 are high-speed voltage comparators designed to accurately detect lowlevel analog signals and drive a digital load. They are equivalent to an LM710, combined with a two input NAND gate and an output buffer. The circuits can drive RTL, DTL or TTL integrated circuits directly. Furthermore, their outputs can switch voltages up to 24V at currents as high as 100 mA. Other features include:

- Improved accuracy: 2 mV maximum worst case offset.
- Fan-out of 10 with DTL or TTL
- Added logic or strobe capability
- Useful as a relay or lamp driver
- Plug-in replacement for the LM710.

■ 40 ns maximum response time

The devices have short-circuit protection which limits the inrush current when it is used to drive incandescent lamps, in addition to preventing damage from accidental shorts to the positive supply. The speed is equivalent to that of an LM710. However, they are even faster where buffers and additional logic circuitry can be eliminated by the increased flexibility of the LM106 and LM206. They can also be operated from any negative supply voltage between -3V and -12V with little effect on performance.

The LM106 is specified for operation over the -55°C to +125°C military temperature range. The LM206 is specified for operation over the $-25^{\circ}C$ to +85°C temperature range.

schematic and connection diagrams

GROUND OUTPUT

Metal Can

Order Number LM106H or LM206H See Package 11

Order Number LM106F or LM206F See Package 4

typical applications

Level Detector and Lamp Driver

Fast Response Peak Detector

Adjustable Threshold Line Receiver

3-1

Positive Supply Voltage	15V	Power Dissipation (Note 1)	600 mW
Negative Supply Voltage	-15V	Output Short Circuit Duration	10 sec
Output Voltage	24V	Operating Temperature Range LM106	-55°C to 125°C
Output to Negative Supply Voltage	30V	LM206	-25° C to 85° C
Differential Input Voltage	±5V	Storage Temperature Range	-65°C to 150°C
Input Voltage	±7V	Lead Temperature (soldering, 10 sec)	300°C

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	Note 3		0.5	2.0	mV
Input Offset Current	Note 3		0.7	3.0	μΑ
Input Bias Current			10	20	μΑ
Response Time	Note 4, $R_L = 390\Omega$ to +5V, $C_L = 15 pF$		28	40	ns
Saturation Voltage	$V_{IN} \le -5 \text{ mV}$, $I_{OUT} = 100 \text{ mA}$		1.0	1.5	V
Output Leakage Current	$V_{IN} \ge 5 \text{ mV}, 8V \le V_{OUT} \le 24V$		0.02	1.0	μΑ

electrical characteristics

The following specifications apply for $T_L \le T_A \le T_H$ (Note 5)

Input Offset Voltage	Note 3			3.0	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	10	μV/°C
Input Offset Current	Note 3, $T_L \le T_A \le 25^{\circ}C$ $25^{\circ}C \le T_A \le T_H$		1.8 0.25	7.0 3.0	μΑ μΑ
Average Temperature Coefficient of Input Offset Current	$25^{\circ}C \le T_{A} \le T_{H}$ $T_{L} \le T_{A} \le 25^{\circ}C$		5.0 15	25 75	nA/°C nA/°C
Input Bias Current	$T_L \le T_A \le 25^{\circ}C$ $25^{\circ}C \le T_A \le T_H$			45 20	μA μA
Input Voltage Range	-7V ≥ V ⁻ ≥ -12V	±5.0			V
Differential Input Voltage Range		±5.0			V
Saturation Voltage	$V_{IN} \le -5$ mV, $I_{OUT} = 50$ mA			1.0	V
Saturation Voltage	$V_{IN} \le -5 \text{ mV}$, $I_{OUT} = 16 \text{ mA}$			0.4	V
Positive Output Level	$V_{IN} \ge 5$ mV, $I_{OUT} = -400 \mu\text{A}$	2.5		5.5	V
Output Leakage Current	$V_{IN} \ge 5 \text{ mV}, 8V \le V_{OUT} \le 24V$ $T_L \le T_A \le 25^{\circ}C$			1.0	μΑ
	$25^{\circ}C < T_A \le T_H$			100	μΑ
Strobe Current	V _{strobe} = 0.4V		-1.7	-3.2	mA
Strobe ON Voltage		0.9	1.4		V
Strobe OFF Voltage	I _{sink} ≤16 mA		1.4	2.2	V
Positive Supply Current	V _{IN} = -5 mV		5.5	10	mA
Negative Supply Current			-1.5	-3.6	mA

Note 1: The maximum junction temperature of the LM106 is 150°C, while that of the LM206 Note 1: The maximum junction temperature of the LM106 is $150^{\circ}\mathrm{C}$, while that of the LM206 is $110^{\circ}\mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ}\mathrm{C/W}$, junction to ambient, or $45^{\circ}\mathrm{C/W}$, junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ}\mathrm{C/W}$ when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.3-inch-wide, 2-ounce copper conductors. Note 2: These specifications apply for $-3V \ge V^{-} \ge -12V$, $V^{+} = 12V$ and $T_{A} = 25^{\circ}\mathrm{C}$ unless otherwise the specifications apply for $-3V \ge V^{-} \ge -12V$, $V^{+} = 12V$ and $T_{A} = 25^{\circ}\mathrm{C}$ unless otherwise the specifications apply for $-3V \ge V^{-} \ge -12V$.

wise specified. All currents into device pins are considered positive.

Note 3: The offset voltages and offset currents given are the maximum values required to drive the output down to 0.5V or up to 5.0V. Thus, these parameters actually define an error band and take into account the worst-case effects of voltage gain, specified supply voltage variations, and common mode voltage variations.

Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive. Note 5: All currents into device pins are considered positive.

	T _L	T _H
LM106	-55°C	+125°C
LM206	-25°C	+85°C

typical performance characteristics

LM306 voltage comparator/buffer general description

The LM306 is a high-speed voltage comparator designed to accurately detect low-level analog signals and drive a digital load. It is equivalent to an LM710C, combined with a two input NAND gate and an output buffer. The circuit can drive RTL, DTL or TTL integrated circuits directly. Furthermore, the output can switch voltages up to 24V at currents as high as 100 mA. Other features include:

- Improved accuracy: 5 mV (max) offset
- Fan-out of 10 with DTL or TTL
- Added logic or strobe capability
- Useful as a relay or lamp driver

- Plug-in replacement for the LM710C.
- 40 ns maximum response time

The device has short-circuit protection which limits the inrush current when it is used to drive incandescent lamps, in addition to preventing damage from accidental shorts. The speed is equivalent to that of an LM710C. However, it is even faster where buffers and additional logic circuitry can be eliminated by the increased flexibility of the LM306. It can also be operated from any negative supply voltage between -3V and -12V with little effect on performance. The LM306 is identical to the LM106, except that it is specified over a 0°C to 70°C temperature range.

schematic and connection diagrams**

Order Number LM306H See Package 11

typical applications**

Level Detector and Lamp Driver

Relay Driver

Adjustable Threshold Line Receiver

Positive Supply Voltage 15V Negative Supply Voltage -15V Output Voltage 24V Output to Negative Supply Voltage 30V Differential Input Voltage ±5V Input Voltage ±7V Power Dissipation (Note 1) 600 mW Output Short Circuit Duration 10 sec Operating Temperature Range 0°C to 70°C -65° C to $+150^{\circ}$ C Storage Temperature Range Lead Temperature (soldering, 10 sec) 300°C

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	Note 3		1.6	5.0	mV
Input Offset Current	Note 3		1.8	5.0	μΑ
Input Bias Current			16	25	μΑ
Response Time	Note 4, $R_L = 390\Omega$ to +5V, $C_L = 15 \text{ pF}$		28	40	ns
Saturation Voltage	$V_{IN} \leq -7 \text{mV}$, $I_{OUT} = 100 \text{mA}$		0.8	2.0	V
Output Leakage Current	$V_{IN} \ge 7 \text{mV}$, $8V \le V_{OUT} \le 24V$		0.02	2.0	μΑ

electrical characteristics

The following specifications apply for $0^{\circ}C \le T_A \le 70^{\circ}C$ (Note 5)

Input Offset Voltage	Note 3			6.5	mV	
Average Temperature Coefficient of Input Offset Voltage			5	20	μV/°C	
Input Offset Current	Note 3, 0° C \leq T _A $<$ 25° C		2.4	7.5	μΑ	
	$25^{\circ}C \le T_A \le 70^{\circ}C$			5.0	μΑ	
Average Temperature Coefficient	25° C \leq T _A \leq 70° C		15	50	nA/°C	
of Input Offset Current	$0^{\circ}C \le T_A \le 25^{\circ}C$		24	100	nA/°C	
Input Bias Current	$0^{\circ}C \leq T_A < 25^{\circ}C$		25	40	μΑ	
	25° C \leq T _A \leq 70° C			25	μΑ	
Input Voltage Range	$-7V \ge V^- \ge -12V$	±5.0			V	
Differential Input Voltage Range		±5.0			V	
Saturation Voltage	$V_{IN} \le -8 \text{ mV}$, $I_{OUT} = 50 \text{ mA}$			1.0	V	
Saturation Voltage	$V_{IN} \le -8 \text{ mV}$, $I_{OUT} = 16 \text{ mA}$			0.4	V	
Positive Output Level	$V_{IN} \ge 8 \text{mV}$, $I_{OUT} = -400 \mu\text{A}$	2.5		5.5	V	
Output Leakage Current	$V_{IN} \ge 8 \text{ mV}, 8V \le V_{OUT} \le 24V$					
	$0^{\circ}C \leq T_{A} \leq 25^{\circ}C$			2.0	μΑ	
	25° C $<$ T _A $\le 70^{\circ}$ C			100	μΑ	
Strobe Current	$V_{\text{strobe}} = 0.4V$		-1.7	-3.2	mA	
Strobe ON Voltage		0.9	1.4		V	
Strobe OFF Voltage	$I_{sink} \leq 16 \text{ mA}$		1.4	2.2	V	
Positive Supply Current	V _{IN} = -8 mV		5.5	10	mA	
Negative Supply Current			-1.5	-3.6	mA	

Note 1: For operating at elevated temperatures, the device must be derated based on a 85°C maximum junction temperature and a thermal resistance of 45°C/W junction to case or 150°C/W junction to ambient.

Note 2: These specifications apply for $-3V \ge V^- \ge -12V$, $V^+ = 12V$ and $T_A = 25^{\circ}C$ unless otherwise specified. All currents into pins are considered positive.

Note 3: The offset voltages and offset currents given are the maximum values required to drive the output down to 0.5V or up to 5.0V. Thus, these parameters actually define an error band and take into account the worst-case effects of voltage gain, and input impedance, specified supply voltage variations, and common mode voltage variations.

Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

Note 5: All currents into device pins are considered positive.

typical performance characteristics

LM111/LM211 voltage comparator

general description

The LM111 and LM211 are voltage comparators that have input currents nearly a thousand times lower than devices like the LM106 or LM710. They are also designed to operate over a wider range of supply voltages: from standard ±15V op amp supplies down to the single 5V supply used for IC logic. Their output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50V at currents as high as 50 mA. Outstanding characteristics include:

- Operates from single 5V supply
- Input current: 150 nA max, over temperature
- Offset current: 20 nA max. over temperature

- Differential input voltage range: ±30V
- Power consumption: 135 mW at ±15V

Both the inputs and the outputs of the LM111 or the LM211 can be isolated from system ground. and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the LM106 and LM710 (200 ns response time vs 40 ns) the devices are also much less prone to spurious oscillations. The LM111 has the same pin configuration as the LM106 and LM710.

The LM211 is identical to the LM111, except that its performance is specified over a -25°C to 85°C temperature range instead of -55°C to 125°C.

schematic diagram and auxiliary circuits**

Strobing

Increasing Input Stage Current*

typical application

Metal Can

Order Number

LM111H or LM211H

Order Number

LM111F or LM211F

Dual-In-Line

See Package 3

Order Number LM111D or LM211D See Package 1

Detector for Magnetic Transducer

connection diagrams**

**Pin connections shown are for metal can

Total Supply Voltage (V ₈₄)	36V
Output to Negative Supply Voltage (V74)	50V
Ground to Negative Supply Voltage (V14)	30V
Differential Input Voltage	±30V
Input Voltage (Note 1)	±15V
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range LM111	-55° C to 125° C
LM211	-25° C to 85° C
Storage Temperature Range	-65° C to 150° C
Lead Temperature (soldering, 10 sec)	300°C

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$T_A = 25^{\circ}C$, $R_S \leq 50k$		0.7	3.0	mV
Input Offset Current (Note 4)	$T_A = 25^{\circ}C$		4.0	10	nA
Input Bias Current	$T_A = 25^{\circ}C$		60	100	nA
Voltage Gain	$T_A = 25^{\circ}C$		200		V/mV
Response Time (Note 5)	$T_A = 25^{\circ}C$		200		ns
Saturation Voltage	$V_{IN} \le -5 \text{ mV}, I_{OUT} = 50 \text{ mA}$ $T_A = 25^{\circ}\text{C}$		0.75	1.5	V
Strobe On Current	$T_A = 25^{\circ}C$		3.0		mA
Output Leakage Current	$V_{IN} \ge 5 \text{ mV}, V_{OUT} = 35V$ $T_A = 25^{\circ}C$		0.2	10	nA
Input Offset Voltage (Note 4)	$R_S \leq 50k$			4.0	mV
Input Offset Current (Note 4)				20	nA
Input Bias Current				150	nA
Input Voltage Range			±14		V
Saturation Voltage	$V^{+} \ge 4.5V, V^{-} = 0$ $V_{IN} < -6 \text{ mV}, I_{SINK} < 8 \text{ mA}$		0.23	0.4	V
Output Leakage Current	$V_{IN} \ge 5 \text{ mV}, V_{OUT} = 35 \text{V}$		0.1	0.5	μΑ
Positive Supply Current	$T_A = 25^{\circ}C$		5.1	6.0	mA
Negative Supply Current	$T_A = 25^{\circ}C$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \text{V}$ supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below the positive supply, whichever is less.

Note 2: The maximum junction temperature of the LM111 is 150°C, while that of the LM211 is 110°C. For operating at elevated temperatures, devices in the TO-5 package must be derarted based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 3: These specifications apply for V_S = $\pm 15V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise stated. With the LM211, however, all temperature specifications are limited to $-25^{\circ}C \le T_A \le 85^{\circ}C$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V supply up to $\pm 15V$ supplies.

Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

typical performance characteristics (con't)

typical applications (con't)

Zero Crossing Detector Driving MOS Switch

100 kHz Free Running Multivibrator

10 Hz to 10 kHz Voltage Controlled Oscillator

Driving Ground-Referred Load

Using Clamp Diodes to Improve Response

TTL Interface with High Level Logic

Crystal Oscillator

Comparator and Solenoid Driver

typical applications (con't)

Precision Squarer

Low Voltage Adjustable Reference Supply

Zero Crossing Detector driving MOS logic

Negative Peak Dectector

Positive Peak Detector

Strobing off Both Input* and Output Stages

Precision Photodiode Comparator

Relay Driver with Strobe

Switching Power Amplifier

Switching Power Amplifier

LM311 voltage comparator general description

The LM311 is a voltage comparator that has input currents more than a hundred times lower than devices like the LM306 or LM710C. It is also designed to operate over a wider range of supply voltages: from standard ±15V op amp supplies down to the single 5V supply used for IC logic. Its output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, it can drive lamps or relays, switching voltages up to 40V at currents as high as 50 mA.

features

- Operates from single 5V supply
- Maximum input current: 250 nA

- Maximum offset current: 50 nA
- Differential input voltage range: ±30V
- Power consumption: 135 mW at ±15V

Both the input and the output of the LM311 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the LM306 and LM710C (200 ns response time vs 40 ns) the device is also much less prone to spurious oscillations. The LM311 has the same pin configuration as the LM306 and LM710C.

Total Supply Voltage (V ₈₄)	36V
Output to Negative Supply Voltage (V74)	40V
Ground to Negative Supply Voltage (V ₁₄)	30V
Differential Input Voltage	±30V
Input Voltage (Note 1)	±15V
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range	0°C to 70°C
Storage Temperature Range	-65° C to 150° C
Lead Temperature (soldering, 10 sec)	300°C

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$T_A = 25^{\circ}C$, $R_S \leq 50K$		2.0	7.5	mV
Input Offset Current (Note 4)	$T_A = 25^{\circ}C$		6.0	50	nA
Input Bias Current	$T_A = 25^{\circ}C$		100	250	nA
Voltage Gain	$T_A = 25^{\circ}C$		200		V/mV
Response Time (Note 5)	$T_A = 25^{\circ}C$	5	200		ns
Saturation Voltage	$V_{IN} \le -10 \text{ mV}, I_{OUT} = 50 \text{ mA}$ $T_A = 25^{\circ}\text{C}$		0.75	1.5	V
Strobe On Current	$T_A = 25^{\circ}C$		3.0		mA
Output Leakage Current	$V_{IN} \ge 10 \text{ mV}, V_{OUT} = 35 \text{V}$ $T_A = 25^{\circ}\text{C}$		0.2	50	nA
Input Offset Voltage (Note 4)	$R_S \le 50 K$			10	mV
Input Offset Current (Note 4)				70	nA
Input Bias Current				300	nΑ
Input Voltage Range			±14		V
Saturation Voltage	$V^{+} \ge 4.5V, V^{-} = 0$ $V_{1N} \le -10 \text{ mV}, I_{SINK} \le 8 \text{ mA}$		0.23	0.4	V
Positive Supply Current	$T_A = 25^{\circ}C$		5.1	7.5	mA
Negative Supply Current	$T_A = 25^{\circ}C$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \text{V}$ supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below the positive supply, whichever is less.

Note 2: The maximum junction temperature of the LM311 is 85°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 3: These specifications apply for V_S = $\pm 15V$ and $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise specified. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V supply up to $\pm 15V$ supplies.

Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

typical performance characteristics

3

typical performance characteristics (con't)

typical applications

Detector for Magnetic Transducer

Zero Crossing Detector Driving MOS Switch

100 kHz Free Running Multivibrator

10 Hz to 10 kHz Voltage Controlled Oscillator

Driving Ground-Referred Load

Using Clamp Diodes to Improve Response

TTL Interface with High Level Logic

Crystal Oscillator

Comparator and Solenoid Driver

LM119/LM219 high speed dual comparator general description

The LM119/LM219 are precision high speed dual comparators fabricated on a single monolithic chip. They are designed to operate over a wide range of supply voltages down to a single 5V logic supply and ground. Further, they have higher gain and lower input currents than devices like the LM710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA. Outstanding features include:

features

- Two independent comparators
- Operates from a single 5V supply
- Typically 80 ns response time at ±15V
- Minimum fan-out of 2 each side

- Maximum input current of 1 μA over tempera-
- Inputs and outputs can be isolated from system
- High common mode slew rate

Although designed primarily for applications requiring operation from digital logic supplies, the LM119 is fully specified for power supplies up to ±15V. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices like the LM711.

The LM219 is identical to the LM119, except that its performance is specified over a -25°C to 85°C temperature range instead of -55°C to 125°C.

schematic and connection diagrams

typical applications

Relay Driver

Window Detector

Dual-In-Line-Package

Order Number LM119D or LM219D See Package 1

Metal Can Package

Order Number LM119H or LM219H See Package 12

Flat Package

Order Number LM119F or LM219F See Package 3

Total Supply Voltage Output to Negative Supply Voltage Ground to Negative Supply Voltage Ground to Positive Supply Voltage Differential Input Voltage Input Voltage (Note 1) 36V Power Dissipation (Note 2)
36V Output Short Circuit Duration
25V Operating Temperature Range LM119
18V LM219

±5V

±15V

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

500 mW 10 sec -55°C to 125°C -25°C to 85°C -65°C to 150°C 300°C

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$T_A = 25^{\circ}C, R_S \leq 5k$		0.7	4.0	mV
Input Offset Current (Note 4)	T _A = 25°C		30	75	nA
Input Bias Current	$T_A = 25^{\circ}C$		150	500	nA
Voltage Gain	$T_A = 25^{\circ}C$	10	40		V/mV
Response Time (Note 5)	$T_A = 25^{\circ}C \ V_S = \pm 15V$		80		ns
Saturation Voltage	$V_{IN} \le -5 \text{ mV}, I_{OUT} = 25 \text{ mA}$ $T_A = 25^{\circ}\text{C}$		0.75	1.5	v
Output Leakage Current	$V_{IN} \ge 5 \text{ mV}, V_{OUT} = 35V$ $T_A = 25^{\circ}\text{C}$		0.2	2	μΑ
Input Offset Voltage (Note 4)	$R_S \le 5k$			7	mV
Input Offset Current (Note 4)				100	nA
Input Bias Current				1000	nA
Input Voltage Range	$V_S = \pm 15V$ $V^+ = 5V$, $V^- = 0$	1	±13	3	v v
Saturation Voltage	$\begin{array}{c} V^{+}\!\geq\!4.5V,V^{-}\!=\!0\\ V_{1N}\!\leq\!-6\text{mV},I_{S1NK}\!\leq\!3.2\text{mA}\\ T_{A}\!\geq\!0^{\circ}\text{C}\\ T_{A}\!\leq\!0^{\circ}\text{C} \end{array}$		0.23	0.4 0.6	V
Output Leakage Current	$V_{IN} \ge 5 \text{ mV}$, $V_{OUT} = 35 \text{V}$		1	10	μΑ
Differential Input Voltage				±5	V
Positive Supply Current	$T_A = 25^{\circ}C, V^{+} = 5V, V^{-} = 0$		4.3		mA
Positive Supply Current	$T_A = 25^{\circ}C \ V_S = \pm 15V$		8	11.5	mA
Negative Supply Current	$T_A = 25^{\circ}C \ V_S = \pm 15V$		3	4.5	mA

Note 1: For supply voltages less than ±15V the absolute maximum input voltage is equal to the supply voltage.

Note 2: The maximum junction temperature of the LM119 is 150°C, while that of the LM219 is 110°C. For operating at elevated temperatures, devices in the T0-5 package must be derated based on a thermal resistance of 150°CW, junction to animbent, or 45°CW, interior to case. For the flat package, the derating is based on a thermal resistance of 185°CW when mounted on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°CW, junction to ambient.

Note 3: These specifications apply for $V_S=:15V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise stated. With the LM219, however, all temperature specifications are limited to $-25^{\circ}C \le T_A \le 85^{\circ}C$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V supply up to 15V supply up to

Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.

LM319 high speed dual comparator general description

The LM319 is a precision high speed dual comparator fabricated on a single monolithic chip. It is designed to operate over a wide range of supply voltages down to a single 5V logic supply and ground. Further, it has higher gain and lower input currents than devices like the LM710. The uncommitted collector of the output stage makes the LM319 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA.

features

- Two independent comparators
- Operates from a single 5V supply
- Typically 80 ns response time at ±15V

- Minimum fan-out of 2 each side
- Maximum input current of 1 μA
- Inputs and outputs can be isolated from system ground
- High common mode slew rate

Although designed primarily for applications requiring operation from digital logic supplies, the LM319 is fully specified for power supplies up to ± 15 V. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM319 much more versatile than older devices like the LM711.

The LM319 has its performance specified over a 0°C to 70°C temperature range.

schematic and connection diagrams

typical applications

Relay Driver

Window Detector

Dual In-Line-Package

LM319D See package 1

LM319N See Package 22

Metal Can Package †

Order Number LH319H See Package 12

Wide Range Variable Oscillator

3-19

Total Supply Voltage 36V Power Dissipation (Note 2) 500 mW Output to Negative Supply Voltage 36V Output Short Circuit Duration 10 sec Ground to Negative Supply Voltage 25V Operating Temperature Range LM319 0°C to 70°C 181/ Ground to Positive Supply Voltage Storage Temperature Range -65°C to 150°C Differential Input Voltage +5V Lead Temperature (Soldering, 10 sec) 300°C ±15V Input Voltage (Note 1)

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$T_A = 25^{\circ}C, R_S \le 5k$		2.0	8.0	mV
Input Offset Current (Note 4)	T _A = 25°C		80	200	nA
Input Bias Current	T _A = 25°C		250	1000	nA
Voltage Gain	T _A = 25°C	8	40		V/mV
Response Time (Note 5)	$T_A = 25^{\circ}C \ V_S = \pm 15V$		80		ns
Saturation Voltage	$V_{IN} \le -10 \text{ mV}, I_{OUT} = 25 \text{ mA}$ $T_A = 25^{\circ}\text{C}$		0.75	1.5	V
Output Leakage Current	$V_{IN} \ge 10 \text{ mV}, V_{OUT} = 35V$ $T_A = 25^{\circ}\text{C}$		0.2	10	μΑ
Input Offset Voltage (Note 4)	$R_S \le 5k$			10	mV
Input Offset Current (Note 4)				300	nA
Input Bias Current				1200	nA
Input Voltage Range	$V_S = \pm 15V$ $V^+ = 5V, V^- = 0$	1	±13	3	V V
Saturation Voltage	$V^{+} \ge 4.5V$, $V^{-} = 0$ $V_{IN} \le -10 \text{ mV}$, $I_{SINK} \le 3.2 \text{ mA}$		0.3	0.4	V
Differential Input Voltage				±5	V
Positive Supply Current	$T_A = 25^{\circ}C, V^+ = 5V, V^- = 0$		4.3		mA
Positive Supply Current	$T_A = 25^{\circ}C \ V_S = \pm 15V$		8	12.5	mA
Negative Supply Current	$T_A = 25^{\circ}C \ V_S = \pm 15V$		3	5	mA

Note 1: For supply voltages less than ±15V the absolute maximum input voltage is equal to the supply voltage.

Note 1: For supply voltages less than $\pm 15V$ the absolute maximum input voltage is equal to the supply voltage. Note 2: The maximum junction temperature of the LM319 is 85°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $\pm 15V$. Junction to ambient, or $\pm 15V$. Junction to asset the thermal resistance of the dual-in-line package is $\pm 15V$ and $\pm 15V$. Junction to ambient.

Note 3: These specifications apply for $\pm 15V$ and $\pm 15V$ and $\pm 15V$. Also $\pm 15V$ supply up to $\pm 15V$ supplies.

Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.

LM139/LM239/LM339 quad comparators general description

The LM139 series consists of four independent voltage comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM339 will directly interface with MOS logic where the low power drain of the LM339 is a distinct advantage over standard comparators.

advantages

Eliminates need for dual supplies

- Allows sensing near GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

features

Wide single supply

Voltage range 2 V_{DC} to 36 V_{DC} or dual supplies $\pm 1 \text{ V}_{DC}$ to $\pm 18 \text{ V}_{DC}$

■ Very low supply current drain (0.8 mA) independent of supply voltage (1 mW/comparator at +5 V_{DC})

 Low input biasing current 35 nA

- Low input offset current 3 nA and offset voltage 3 mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Low output 1 mV at 5µA saturation voltage 70 mV at 1 mA
- Output voltage compatible with TTL (fanout of 3), DTL, ECL, MOS and CMOS logic systems

schematic and connection diagrams

Dual-In-Line and Flat Package

Order Number LM139F See Package 4

Order Number LM139D, LM239D, or LM339D See Package 1

Order Number LM339N See Package 22

typical applications $(V^+ = 5 V_{DC})$

Comparator with Hysteresis

3-21

Lead Temperature (Soldering, 10 sec)

Supply Voltage, V+ 36 V_{DC} or ±18 V_{DC} Differential Input Voltage 36 V_{DC} -0.3 V_{DC} to +36 V_{DC} Input Voltage Power Dissipation (Note 1) 570 mW Molded DIP (LM339N) (LM139D, LM239D & LM339D) 900 mW Cavity DIP 800 mW Flat Pack (LM139F) Continuous Output Short-Circuit to GND (Note 2) Operating Temperature Range LM339 0° C to $+70^{\circ}$ C -25° C to $+85^{\circ}$ C LM239 LM139 -55° C to $+125^{\circ}$ C Storage Temperature Range -65°C to 150°C

electrical characteristics (V⁺ = +5 V_{DC} and T_A = 25°C unless otherwise noted)

PARAMETER	CONDITIONS	LM139			L	LINUTO		
FANAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	At Output Switch Point, $V_0 \cong 1.4 \ V_{DC}$, V_{REF} = +1.4 V_{DC} and R_S = 0Ω		2	5		2	5	mV _{DC}
Input Bias Current (Note 3)	$I_{IN(+)}$ or $I_{IN(-)}$ With Output in Linear Range		25	100		25	250	nA _{DC}
Input Offset Current	$I_{IN(+)} = I_{IN(-)}$		3	25		5	50	nA _{DC}
Input Common-Mode Voltage Range (Note 4)		0		V ⁺ -1.5	0		V ⁺ -1.5	V _{DC}
Supply Current	R _L = ∞ On All Comparators		0.8	2		0.8	2	mA _{DC}
Voltage Gain	R_L = 15 k Ω		200			200		V/mV
Response Time (Note 5)	$\rm V_{RL}$ = 5.0 $\rm V_{DC}$ and $\rm R_L$ = 5.1 $\rm k\Omega$		1.3			1.3		μs
Output Sink Current	$V_{\text{IN(-)}}$ = +1 $V_{\text{DC}},V_{\text{IN(+)}}$ = 0 and $V_{0} \leq$ + 1.5 V_{DC}	6	16		6	16		mA _{DC}
Saturation Voltage	$V_{IN(-)}$ = +1 V_{DC} , $V_{IN(+)}$ = 0 and I_{SINK} = 3 mA		200	400		200	400	mV _{DC}
Output Leakage Current	$V_{IN\{+\}}$ = +1 V_{DC} , $V_{IN\{-\}}$ = 0 and V_{OUT} = 5 V_{DC}		0.1			0.1		nA _{DC}

300°C

Note 1: For operating at high temperatures, the LM339 must be derated based on a $\pm 125^{\circ}$ C maximum junction temperature and a thermal resistance of 175° C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM239 and LM139 must be derated based on a $\pm 150^{\circ}$ C maximum junction temperature. The low bias dissipation and the ON-OFF characteristic of the outputs keeps the chip dissipation very small (Pd \leq 100 mW), provided the output transistors are allowed to saturate.

Note 2: Short circuits from the output to V^+ can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of V^+ .

Note 3: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.

Note 4: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is $V^+ - 1.5V$, but either or both inputs can go to $\pm 30~V_{DC}$ without damage.

Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.

typical performance characteristics

application hints

The LM139 is a high gain, wide bandwidth device: which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to <10 k Ω reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be grounded.

The bias network of the LM139 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2V_{DC}$ to $30\ V_{DC}$.

It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than V^+ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3~V_{DC}$ (at $25^{\circ}C$). An input clamp diode can be used as shown in the applications section.

The output of the LM139 is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pullup resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V⁺ terminal of the LM139 package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^+) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60Ω r_{sat} of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level for small load currents.

typical applications (con't) (V⁺ = 15 V_{DC})

Low Frequency Op Amp

Low Frequency Op Amp ($V_0 = 0V$ for $V_{1N} = 0V$)

Transducer Amplifier

Low Frequency Op Amp with Offset Adjust

Zero Crossing Detector (Single Power Supply)

split-supply applications ($V^+ = +15 V_{DC} \& V^- = -15 V_{DC}$)

MOS Clock Driver

Zero Crossing Detector

Comparator With a Negative Reference

LM139A/LM239A/LM339A low offset voltage quad comparators

general description

The LM139A series consists of four independent precision voltage comparators with an offset voltage specification of 2 mV max, for all four comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground. even though operated from a single power supply

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139A series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM339A will directly interface with MOS logic where the low power drain of the LM339A is a distinct advantage over standard comparators.

advantages

- High precision comparators
- Reduced V_{OS} drift over temperature

- Eliminates need for dual supplies
- Allows sensing near GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

features

- Wide single supply
 - Voltage range 2 V_{DC} to 36 V_{DC} or dual supplies ± 1 V_{DC} to ± 18 V_{DC}
- Very low supply current drain (0.8 mA) independent of supply voltage (2 mW/comparator at +5 V_{DC})
- Low input biasing current 35 nA Low input offset current 3 nA
- 2 mV and maximum offset voltage Input common-mode voltage range includes
- ground ■ Differential input voltage range equal to the
- power supply voltage
- Low output 1 mV at 5µA 70 mV at 1 mA saturation voltage
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

schematic and connection diagrams

Dual-In-Line and Flat Package

Order Number LM139AF See Package 4

Order Number LM139AD, LM239AD or LM339AD See Package 1

Order Number LM339AN See Package 22

typical applications $(V^+ = 5 V_{DC})$

Basic Comparator

Comparator with Hysteresis

Non-Inverting Comparator with Hysteresis

Supply Voltage, V+ 36 V_{DC} or ±18 V_{DC} Differential Input Voltage 36 V_{DC} $-0.3 V_{DC}$ to +36 V_{DC} Input Voltage Power Dissipation (Note 1) Molded DIP (LM339AN) 570 mW (LM139AD, LM239AD & LM339AD) 900 mW Cavity DIP 800 mW Flat Pack (LM139AF) Output Short-Circuit to GND (Note 2) Continuous Operating Temperature Range 0° C to $+70^{\circ}$ C LM339A

Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (V⁺ = 15 V_{DC} and T_A = 25°C unless otherwise noted)

DADAMETED	CONDITIONS	LM139A			LM239A, LM339A			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	At Output Switch Point, V $_0 \cong$ 1.4 V $_{\rm DC}$; V $_{\rm REF}$ = +1.4 V $_{\rm DC}$ and R $_{\rm S}$ = 0 Ω		1	2		1	2	mV_DC
Input Bias Current (Note 3)	$I_{IN(+)}$ or $I_{IN(-)}$ With Output in Linear Range		25	100		25	250	nA _{DC}
Input Offset Current	$I_{1\mathbf{N}(+)} = I_{1\mathbf{N}(-)}$		3	25		5	50	nA _{DC}
Input Common-Mode Voltage Range (Note 4)				V ⁺ -1.5			V ⁺ -1.5	V _{DC}
Supply Current	R _L = ∞ On All Comparators		.8	2		.8	2	mA _{DC}
Voltage Gain	$R_L = 15 k\Omega$	-	200			200		V/mV
Response Time (Note 5)	V_{RL} = 5.0 V_{DC} and R_L = 5.1 k Ω		1.3			1.3		μs
Output Sink Current	$V_{IN(-)}$ = +1 V_{DC} , $V_{IN(+)}$ = 0 and $V_0 \leq$ + 1.5 V_{DC}	6	16		6	16		mA _{DC}
Saturation Voltage	$V_{IN(-)}$ = +1 V_{DC} , $V_{IN(+)}$ = 0 and I_{SINK} = 3 mA		200	400		200	400	mV_{DC}
Output Leakage Current	$V_{IN(+)}$ = +1 V_{DC} , $V_{IN(-)}$ = 0 and V_{OUT} = 5 V_{DC}		0.1			.1		nA _{DC}

Note 1: For operating at high temperatures, the LM339A must be derated based on a +125°C maximum junction temperature and a thermal resistance of 175° C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM239A and LM139A must be derated based on a +150°C maximum junction temperature. The low bias dissipation and the ON-OFF characteristic of the outputs keeps the chip dissipation very small (Pd \leq 100 mW), provided the output transistors are allowed to saturate.

Note 2: Short circuits from the output to V^+ can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of V^+ .

Note 3: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.

Note 4: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is $V^+ - 1.5V$, but either or both inputs can go to +30 V_{DC} without damage.

Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.

typical applications (con't) (V⁺ = 5 V_{DC})

Zero Crossing Detector (Single Power Supply)

For more applications and design information, see LM139 data sheet.

LM160/LM260/LM360 high speed differential comparator general description features

The LM160/LM260/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the $\mu A760/\mu A760C$, for which it is a pin-forpin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 500 mV.

Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disc file systems.

- Guaranteed high speed
- 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible

schematic and connection diagrams

INVERTING

Metal Can Package

Order Number LM160H, LM260H, or LM360H See Package 11

Dual-In-Line and Flat Packages

Order Number LM360N See Package 22

Order Number LM160D, LM260D, or LM360D See Package 1

Order Number LM160F See Package 4

Positive Supply Voltage Negative Supply Voltage Peak Output Current Differential Input Voltage Input Voltage $^{+8V}_{-8V}$ 20 mA $^{\pm5V}_{V}$ $V^{+} \geq V_{IN} \geq V^{-}$

Operating Temperature Range
LM160
LM260
LM360
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

-55°C to +125°C -25°C to +85°C 0°C to +70°C -65°C to +150°C 300°C

electrical characteristics $(T_{MIN} \le T_A \le T_{MAX})$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Conditions					
Supply Voltage V _{CC} +		4.5	5	6.5	V
Supply Voltage V _{CC}		-4.5	-5	-6.5	V
Input Offset Voltage	$R_{S} \le 200\Omega$		1		mV
Input Offset Current			.5		μΑ
Input Bias Current			5		μΑ
Output Resistance (Either Output)	V _{OUT} = V _{OH}		100		Ω
Response Time	$T_A = 25^{\circ}C, V_S = \pm 5V \text{ (Note 1)}$		16	30	ns
	$T_A = 25^{\circ}C, V_S = \pm 5V \text{ (Note 2)}$			25	ns
	$T_A = 25^{\circ}C$, $V_S = \pm 5V$ (Note 3)		14		ns
Response Time Difference Between Outputs					
$(t_{pd} \text{ of } +V_{IN1}) - (t_{pd} \text{ of } -V_{IN2})$	$T_A = 25^{\circ}C$, (Note 1)		2		ns
$(t_{pd} \text{ of } +V_{IN2}) - (t_{pd} \text{ of } -V_{IN1})$	$T_A = 25^{\circ}C$, (Note 1)		2		ns
$(t_{pd} \text{ of } +V_{IN1}) - (t_{pd} \text{ of } +V_{IN2})$	$T_A = 25^{\circ}C$, (Note 1)		2		ns
$(t_{pd} \text{ of } -V_{IN1}) - (t_{pd} \text{ of } -V_{IN2})$	$T_A = 25^{\circ}C$, (Note 1)		2		ns
Input Resistance	f = 1 MHz		17		kΩ
Input Capacitance	f = 1 MHz		3		pF
Average Temperature Coefficient of Input Offset Voltage	$R_S = 50\Omega$		5		μV/°C
Average Temperature Coefficient of Input Offset Current			7		nA/°C
Common Mode Input Voltage Range	V _S = ±6.5V	±4	±4.5		V
Differential Input Voltage Range		±5			V
Output High Voltage (Either Output)	$I_{OUT} = -320 \mu A$, $V_{S} = \pm 4.5 V$	2.4	3		V
Output Low Voltage (Either Output)	I _{SINK} = 6.4 mA		.25	.4	V
Positive Supply Current	V _S = ±6.5V		18	32	mA
Negative Supply Current	V _S = ±6.5V		-9	-16	mA

Note 1: Response time measured from the 50% point of a 30 mVp.p 10 MHz sinusoidal input to the 50% point of the output.

Note 2: Response time measured from the 50% point of a 2 Vp.p 10 MHz sinusoidal input to the 50% point of the output.

Note 3: Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold.

LM161/LM261/LM361 high speed differential comparators

general description

The LM161/LM261/LM361 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the SE529/NE529 for which it is a pin-for-pin replacement. The device has been optimized for greater speed performance and lower input offset voltage. Typically delay varies only 3 ns for over-drive variations of 5 mV to 500 mV. It may be operated from op amp supplies (±15V).

Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disc file systems.

features

- Independent strobes
- Guaranteed high speed

- Tight delay matching on both outputs
- Complementary TTL outputs
- Operates from op amp supplies

±15V

- Low speed variation with overdrive variation
- Low input offset voltage
- Versatile supply voltage range

schematic and connection diagrams

Dual-In-Line and Flat Package

Order Number LM361N See Package 22

Order Number LM161D, LM261D or LM361D See Package 1

> Order Number LM161F See Package 4

Metal Can Package

Order Number LM161H or LM261H See Package 11

logic diagram

operating conditions absolute maximum ratings TYP MAX Supply Voltage V^+ Positive Supply Voltage, V^+ +16V LM161/LM261 5V 15V Negative Supply Voltage, V -16V 15V LM361 5V Gate Supply Voltage, V_{CC} +7V Supply Voltage V Output Voltage +7V LM161/LM261 -6V -15V Differential Input Voltage ±5V -15V Input Common Mode Voltage ±6V LM361 -6V Supply Voltage V_{CC} 600 mW Power Dissipation 4.5V 5V 5.5V -65°C to +150°C LM161/LM261 Storage Temperature Range LM361 4.75V 5.25V Operating Temperature Range -55°C to +125°C LM161 -25°C to +85°C LM261 0° C to $+70^{\circ}$ C LM361 300°C Lead Temperature (Soldering, 10 sec)

 $\textbf{electrical characteristics} \quad \text{($v^+ = +10$V$, $V_{CC} = +5$V$, $V^- = -10$V$, $T_{MIN} \le T_A \le T_{MAX}$, unless noted)}$

					IITS			1	
PARAMETER	CONDITIONS		LM161/LM			LM361		UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX		
Input Offset Voltage	T _A = 25°C		1			1		mV	
Input Bias Current	T _A = 25°C		5	10 36		5	20 50	μΑ	
Input Offset Current	T _A = 25°C		2	3 9		2	5 15	μΑ	
Voltage Gain	$T_A = 25^{\circ}C$		5			5		V/mV	
Input Resistance	T _A = 25°C, f = 1 kHz		20			20		kΩ	
Logical "1" Output Voltage	V _{CC} = 4.75V, I _{SOURCE} =5 mA	2.4	3.3		2.4	3.3		V	
Logical "0" Output Voltage	V _{CC} = 4.75V, I _{SINK} = 6.4 mA			.4			.4	V	
Strobe Input "1" Current	V _{CC} = 5.25V, V _{STROBE} = 2.4V			200			200	μΑ	
	T _A = 25°C			50			100	μΑ	
Strobe Input "0" Current	V _{CC} = 5.25V, V _{STROBE} = .4V			-1.6			-1.6	mA	
Strobe Input "O" Voltage	V _{CC} = 4.75V			.8			.8	V	
Strobe Input "1" Voltage	V _{CC} = 4.75V	2			2			V	
Output Short Circuit Current	V _{CC} = 5.25V, V _{OUT} = 0V	-18		-55	-18		-55	mA	
Supply Current I ⁺	V ⁺ = 10V, V ⁻ = -10V, V _{CC} = 5.25V, T _A = 125°C			3.25				mA	
Supply Current I ⁺	$V^{+} = 10V, V^{-} = -10V,$ $V_{CC} = 5.25V, T_{A} = 25^{\circ}C$			3.75				mA	
Supply Current I ⁺	$V^{+} = 10V, V^{-} = -10V,$ $V_{CC} = 5.25V, T_{A} = -55^{\circ}C$			4				mA	
Supply Current I ⁺	$V^{+} = 10V, V^{-} = -10V,$ $V_{CC} = 5.25V,$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$						5	mA	
Supply Current I	$V^{+} = 10V, V^{-} = -10V,$ $V_{CC} = 5.25V, T_{A} = 125^{\circ}C$			7				mA	
Supply Current I	$V^{+} = 10V, V^{-} = -10V,$ $V_{CC} = 5.25V, T_{A} = 25^{\circ}C$			7.5				mA	
Supply Current I	$V^{+} = 10V, V^{-} = -10V,$ $V_{CC} = 5.25V, T_{A} = -55^{\circ}C$			8.5				mA	
Supply Current I	$V^{+} = 10V, V^{-} = -10V,$ $V_{CC} = 5.25V,$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$						10	mA	
Supply Current I _{CC}	$V^{+} = 10V, V^{-} = -10V,$ $V_{CC} = 5.25V, T_{A} = 125^{\circ}C$			15				mA	
Supply Current I _{CC}	$V^{+} = 10V, V^{-} = -10V,$ $V_{CC} = 5.25V, T_{A} = 25^{\circ}C$			16				mA	
Supply Current I _{CC}	$V^{+} = 10V, V^{-} = -10V,$ $V_{CC} = 5.25V, T_{A} = -55^{\circ}C$			18				mA	
Supply Current I _{CC}	$V^{+} = 10V, V^{-} = -10V,$ $V_{CC} = 5.25V,$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$						20	mA	
TRANSIENT RESPONSE	V _{IN} = 50 mV Overdrive								
Propagation Delay Time $(t_{pd(0)})$	T _A = 25°C		11	20		11	20	ns	
Propagation Delay Time (tpd(1))	T _A = 25°C		12	22		12	22	ns	
Delay Between Output A and B	T _A = 25°C		2	5		2	5	ns	
Strobe Delay Time (tpd(0))	T _A = 25°C		6			6		ns	
Strobe Delay Time (tpd(1))	T _A = 25°C		6			6		ns	

LM710 voltage comparator general description

The LM710 is a high-speed voltage comparator intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance. The circuit has a differential input and a single-ended output, with saturated output levels compatible with practically all types of integrated logic.

The device is built on a single silicon chip which insures low offset and thermal drift. The use of a minimum number of stages along with minoritycarrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in

saturating comparator applications. In fact, the low stray and wiring capacitances that can be realized with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.

The LM710 is useful as a pulse height discriminator, a voltage comparator in high-speed A/D converters or a go, no-go detector in automatic test equipment. It also has applications in digital systems as an adjustable-threshold line receiver or an interface between logic types. In addition, the low cost of the unit suggests it for applications replacing relatively simple discrete component circuitry.

schematic* and connection diagrams

Metal Can

Order Number LM710H See Package 11

typical applications *

Schmidt Trigger

Pulse Width Modulator

*Pin connections shown are for metal can

Line Receiver With Increased Output Sink Current

Level Detector With Lamp Driver

14.0V Positive Supply Voltage -7.0V Negative Supply Voltage 10 mA Peak Output Current ±5.0V Differential Input Voltage ±7.0V Input Voltage Power Dissipation 300 mW TO-99 (Note 1) 200 mW Flat Package (Note 2) Operating Temperature Range -55° C to $+125^{\circ}$ C Storage Temperature Range -65° C to $+150^{\circ}$ C 300°C

electrical characteristics (Note 3)

Lead Temperature (Soldering, 10 sec)

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	$T_A = 25^{\circ}C, R_S \le 200\Omega$ $V_{CM} = 0V$		0.6	2.0	mV
Input Offset Current	$T_A = 25^{\circ}C, V_{OUT} = 1.4V$		0.75	3.0	μΑ
Input Bias Current	T _A = 25°C		13	20	μА
Voltage Gain	T _A = 25°C	1250	1700		
Output Resistance	T _A = 25°C		200		Ω
Output Sink Current	$T_A = 25^{\circ}C, V_{IN} \le -5 \text{ mV}$ $V_{OUT} = 0$	2.0	2.5		mA
Response Time	$T_A = 25^{\circ}C$		40		ns
(Note 4)					
Input Offset Voltage	R _S ≤200Ω , V _{CM} = 0V			3.0	mV
Average Temperature	-55°C≤T _A ≤125°C				
Coefficient of Input	R _S ≤50Ω		3.0	10	μV
Offset Voltage					
Input Offset Current	$T_A = 125^{\circ}C$ $T_A = -55^{\circ}C$		0.25 1.8	3.0 7.0	μA μA
		-	5.0	25	nA/
Average Temperature Coefficient of Input	25°C≤T _A ≤125°C -55°C <t<sub>A<25°C</t<sub>		15	75	nA/
Offset Current	-33 0 <u>2</u> 1 <u>A</u> <u>2</u> 23 0				
Input Bias Current	T _A = -55°C		27	45	μΑ
Input Voltage Range	V ⁻ = -7.0V	±5.0			V
Common Mode Rejection Ratio	$R_S \le 200\Omega$	80	100		dB
Differential Input Voltage Range		±5.0V	* 9		V
Voltage Gain		1000			
Positive Output Level	$V_{IN} \ge 5 \text{ mV},$	2.5	3.2	4.0	٧
	0 ≤ I _{OUT} ≤ −5 mA				
Negative Output Level	$V_{IN} \le -5 \text{ mV}$	-1.0	-0.5	0	V
Output Sink Current	T _A = 125°C, V _{IN} ≤−5 mV	0.5	1.7		mA
	V _{OUT} = 0V				
	$T_A = -55^{\circ}C, V_{IN} \le -5 \text{ mV}$	1.0	2.3		mA
D	V _{OUT} = 0		5.0	0.0	mA
Positive Supply Current	$V_{IN} \le -5 \text{ mV}$		5.2 4.6	9.0 7.0	mA
Negative Supply Current					mW
Power Consumption	$V_{IN} \le -5 \text{ mV}$ $I_{OUT} = 0 \text{ mA}$		90	150	mw

Note 1: Rating applies for case temperatures to $\pm 125^{\circ}$ C; derate linearly at 5.6 mW/ $^{\circ}$ C for ambient temperatures above +105°C.

Note 2: Derate linearly at 4.4 mW/°C for ambient temperatures above +100°C.

Note 3: These specifications apply for $V^+=12.0V$, $V^-=-6.0V$, $-55^{\circ}C \leq T_{\rm A} \leq +125^{\circ}C$ unless otherwise specified. The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.8V at $-55^{\circ}C$, 1.4V at $+25^{\circ}C$, and 1.0V at $+125^{\circ}C$.

Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

typical performance characteristics

Voltage Comparators/Buffers

LM710C voltage comparator

general description

The LM710C is a high-speed voltage comparator intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance. The circuit has a differential input and a single-ended output, with saturated output levels compatible with practically all types of integrated logic.

The device is built on a single silicon chip which insures low offset and thermal drift. The use of a minimum number of stages along with minoritycarrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in saturating comparator applications. In fact, the low stray and wiring capacitances that can be realized

with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.

The LM710C is useful as a pulse height discriminator, a voltage comparator in high-speed A/D converters or a go, no-go detector in automatic test equipment. It also has applications in digital systems as an adjustable-threshold line receiver or an interface between logic types. In addition, the low cost of the unit suggests it for applications replacing relatively simple discrete component circuitry.

The LM710C is the commercial/industrial version of the LM710A. It is identical to the LM710A except that operation is specified over a 0°C to 70°C temperature range.

schematic* and connection diagrams

Metal Can Package

Order Number LM710CH See Package 11

Dual-In-Line Package

Order Number LM710CN See Package 22

typical applications*

Schmidt Trigger

Pulse Width Modulator

*Pin connections shown are for metal can.

Line Receiver With Increased Output Sink Current

Level Detector With Lamp Driver

Positive Supply Voltage 14.0V Negative Supply Voltage -7.0VPeak Output Current 10 mA Differential Input Voltage ±5.0V ±7.0V Input Voltage Power Dissipation (Note 1) TO-99 300 mW 200 mW Flat Package Output Short Circuit Duration 10 sec $0^{\circ}C$ to $70^{\circ}C$ Operating Temperature Range -65° C to $+150^{\circ}$ C Storage Temperature Range 300°C Lead Temperature (Soldering, 10 sec)

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UN
Input Offset Voltage	$T_A = 25^{\circ}C, R_S < 200\Omega$ $V_{CM} = 0V$		1.6	5.0	mV
Input Offset Current	T _A = 25°C, V _{OUT} = 1.4V		1.8	5.0	μА
Input Bias Current	T _A = 25°C		16	25	μΑ
Voltage Gain	T _A = 25°C	1000	1500		
Output Resistance	T _A = 25°C		200	,	Ω
Output Sink Current	$T_A = 25^{\circ}C$, $\Delta V_{IN} \ge 10 \text{ mV}$ $V_{OUT} = 0$	1.6	2.5		mA
Response Time (Note 3)	T _A = 25°C		40		ns
Input Offset Voltage	$R_S \leq 200\Omega$, $V_{CM} = 0V$			6.5	mV
Average Temperature Coefficient of Input Offset Voltage	$0^{\circ}\text{C} \leq \text{T}_{A} \leq 70^{\circ}\text{C}$ $\text{R}_{S} \leq 50\Omega$		5.0	20	μ∨.
Input Offset Current				7.5	μА
Average Temperature Coefficient of Input Offset Current	25°C≤T _A ≤70°C 0°C≤T _A ≤25°C		15 24	50 100	nA,
Input Bias Current	$T_A = 0^{\circ}C$		25	40	μА
Input Voltage Range	V ⁻ = -7.0V	±5.0			v
Common Mode Rejection Ratio	$R_S \le 200\Omega$	70	98		dB
Differential Input Voltage Range		±5.0			V
Voltage Gain	,	800			10
Positive Output Level	$V_{IN} \ge 10 \text{ mV}$ $0 \le I_{OUT} \le -5 \text{ mA}$	2.5	3.2	4.0	V
Negative Output Level	$V_{IN} \leq -10 \text{ mV}$	-1.0	-0.5	0	V
Output Sink Current	$V_{IN} \le -10 \text{ mV}, V_{OUT} = 0V$	0.5			m.A
Positive Supply Current	$V_{IN} \leq -10 \text{ mV}$		5.2	9.0	m/
Negative Supply Current			4.6	7.0	m/
Power Consumption				150	mV

Note 1: Ratings apply for ambient temperatures to 70°C.

Note 2: These specifications apply for V⁺ = 12.0V, V⁻ = 6.0V, 0° C \leq T_A \leq 70 $^{\circ}$ C unless otherwise specified. The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.5V at 0° C, 1.4V at 25° C and 1.2V at 70° C.

Note 3: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

typical performance characteristics

Transfer Function

4.0

V+= 12V

V-= -8.0V

TA = 25°C

1.0

1.0

1.0

INPUT VOLTAGE (mV)

Response Time For

Common Mode Pulse

Voltage Comparators/Buffers

LM711 dual comparator

general description

The LM711 contains two voltage comparators with separate differential inputs, a common output and provision for strobing each side independently. Similar to the LM710, the device features low offset and thermal drift, a large input voltage range, low power consumption, fast recovery from large overloads and compatibility with most integrated logic circuits.

With the addition of an external resistor network, the LM711 can be used as a sense amplifier for core memories. The input thresholding, combined with the high gain of the comparator, eliminates many of the inaccuracies encountered with conventional sense amplifier designs. Further, it has the speed and accuracy needed for reliably detecting the outputs of cores as small as 20 mils.

The LM711 is also useful in other applications where a dual comparator with OR'ed outputs is required, such as a double-ended limit detector. By using common circuitry for both halves, the device can provide high speed with lower power dissipation than two single comparators. The LM711 is available in either an 10-lead low profile TO-5 header or a 1/4" by 1/4" metal flat package.

schematic** and connection diagrams

typical applications**

Sense Amplifier With Supply Strobing for Reduced Power Consumption*

Double-Ended Limit Detector With Lamp Driver

**Pin connections shown are for metal can

Positive Supply Voltage	+14.0V
Negative Supply Voltage	-7.0V
Peak Output Current	25 mA
Differential Input Voltage	±5.0V
Input Voltage	±7.0V
Strobe Voltage	0 to +6.0V
Internal Power Dissipation (Note 1)	300 mW
Operating Temperature Range	-55°C to 125°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature (Soldering, 10 sec)	300°C

electrical characteristics (These specifications apply for $T_A = 25^{\circ}C$, $V^+ = 12V$, $V^- = -6V$)

PARAMETER	CONDITIONS (Note 2)	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	$R_{S} \le 200\Omega$, $V_{CM} = 0$		1.0	3.5	mV
	$R_S \le 200\Omega$, $-5V \le V_{CM} \le +5V$		1.0	5.0	mV
Input Offset Current			0.5	10.0	μΑ
Input Bias Current			25	75	μΑ
Voltage Gain		750	1500		
Response Time (Note 3)			40		ns
Strobe Release Time			12		ns
Input Voltage Range	V = -7.0V	±5.0			V
Differential Input Voltage Range		±5.0			V
Output Resistance			200		2.5
Positive Output Level	$V_{IN} > 10 \text{ mV}$		4.5	5.0	V
Loaded Positive Output Level	$V_{IN} > 10 \text{ mV}, I_{OUT} = -5 \text{ mA}$	2.5	3.5		V
Negative Output Level	V _{IN} <-10 mV	-1.0		0	V
Strobed Output Level	V _{STROBE} < 0.3V	-1.0		0	V
Output Sink Current	$V_{IN} \le -10 \text{ mV}, V_{OUT} \ge 0$	0.5	0.8		mA
Strobe Current	V _{STROBE} = 100 mV		1.2	2.5	mA
Positive Supply Current	$V_{IN} \leq -10 \text{ mV}$		8.6		mA
Negative Supply Current			3.9		mA
Power Consumption			130	200	mW
The following specifications app	oly for -55° C \leq T _A \leq 125 $^{\circ}$ C:				
Input Offset Voltage	$R_{S} \le 200\Omega$, $V_{CM} = 0$			4.5	mV
	$R_S \leq 200\Omega$			6.0	mV
Input Offset Current				20	μΑ
Input Bias Current				150	μΑ
Average Temperature Coefficient of Input Offset Voltage			5.0		μV/°C
Voltage Gain		500			

Note 1: Rating applies for case temperatures to $\pm 125^{\circ}\text{C}$; derate linearly at 5.6 mW/ $^{\circ}\text{C}$ for ambient temperatures above 105°C .

Note 2: The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.8V at -55° C, 1.4V at $+25^{\circ}$ C, and 1.0V at $+125^{\circ}$ C.

Note 3: The response time specified is for a 100 mV input step with 5 mV overdrive (see definitions).

typical performance characteristics

Voltage Comparators/Buffers

LM711C dual comparator

general description

The LM711C contains two voltage comparators with separate differential inputs, a common output and provision for strobing each side independently. Similar to the LM710C, the device features low offset and thermal drift, a large input voltage range, low power consumption, fast recovery from large overloads and compatibility with most integrated logic circuits.

With the addition of an external resistor network, the LM711C can be used as a sense amplifier for core memories. The input thresholding, combined with the high gain of the comparator, eliminates many of the inaccuracies encountered with conventional sense amplifier designs. Further, it has the speed and accuracy needed for reliably detecting the outputs of cores as small as 20 mils.

The LM711C is also useful in other applications where a dual comparator with OR'ed outputs is required, such as a double-ended limit detector. By using common circuitry for both halves, the device can provide high speed with lower power dissipation than two single comparators. The LM711C is the commercial/industrial version of the LM711. It is identical to the LM711, except that operation is specified over a 0°C to 70°C temperature range.

schematic** and connection diagrams

Order Number LM711CH See Package 14

Order Number LM711CN See Package 22

typical applications **

Sense Amplifier With Supply Strobing for Reduced Power Consumption

Double-Ended Limit Detector With Lamp Driver

^{**}Pin connections shown are for metal can

Positive Supply Voltage +14.0V Negative Supply Voltage -7.0V Peak Output Current 25 mA Differential Input Voltage ±5.0V Input Voltage ±7.0V Strobe Voltage 0 to +6.0V Internal Power Dissipation (Note 1) 300 mW Operating Temperature Range 0°C to 70°C Storage Temperature Range -65°C to 150°C 300°C Lead Temperature (Soldering, 10 sec)

electrical characteristics

(The following specifications apply for $T_A = 25^{\circ}C$, $V^+ = 12.0V$, $V^- = -6.0V$ unless otherwise specified)

PARAMETER	CONDITIONS (Note 2)	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	$R_S \leq 200\Omega$, $V_{CM} = 0$		1.0	5.0	mV
	$R_S \le 200\Omega$, $-5V \le V_{CM} \le +5V$		1.0	7.5	mV
Input Offset Current			0.5	15	μΑ
Input Bias Current			25	100	μΑ
Voltage Gain		700	1500		
Response Time (Note 3)			40		ns
Strobe Release Time			12		ns
Input Voltage Range	V ⁻ =-7.0V	±5.0			V
Differential Input Voltage Range		±5.0			V
Output Resistance		_5.0	200		Ω
Positive Output Level	$V_{IN} > 10 \text{ mV}$		4.5	5.0	V
Loaded Positive Output Level	$V_{IN} > 10 \text{ mV}, I_{OUT} = -5 \text{ mA}$	2.5	3.5	0.0	V
Negative Output Level	$V_{IN} \le -10 \text{ mV}$	-1.0	-0.5	0	V
Strobed Output Level	V _{STROBE} < 0.3V	-1.0		0	V
Output Sink Current	$V_{IN} < -10 \text{ mV}, V_{OUT} > 0$	0.5	0.8		mA
Strobe Current	V _{STROBE} = 100 mV		1.2	2.5	mA
Positive Supply Current	$V_{IN} < -10 \text{ mV}$		8.6		mA
Negative Supply Current			3.9		mA
Power Consumption			130	230	mW
The following specifications ap	ply for $0^{\circ}C \le T_A \le +70^{\circ}C$:				
Input Offset Voltage	$R_{S} < 200\Omega$, $V_{CM} = 0$			6.0	mV
	$R_S \leq 200\Omega$, $-5V \leq V_{CM} \leq +5V$			10	mV
Input Offset Current				25	μΑ
Input Bias Current				150	μΑ
Average Temperature Coefficient of Input Offset Voltage			5.0		μV/°C
Voltage Gain		500			

Note 1: Ratings apply for ambient temperatures to 70°C.

Note 2: The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.5V at 0° C, 1.4V at 25° C, and 1.2V at $+70^{\circ}$ C.

Note 3: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

typical performance characteristics

Response Time for Various Input Overdrives

Output Pulse Stretching With Capacitive Loading

Common Mode Pulse Response

Voltage Comparators/Buffers

LM1514/LM1414 dual differential voltage comparator

general description

The LM1514/LM1414 is a dual differential voltage comparator intended for applications requiring high accuracy and fast response times. The device is constructed on a single monolithic silicon chip.

The LM1514/LM1414 is useful as a variable threshold Schmitt trigger, a pulse height discriminator, a voltage comparator in high-speed A-D converters, a memory sense amplifier or a high noise immunity line receiver. The output of the comparator is compatible with all integrated logic forms. The LM1514/LM1414 meet or exceed the specifications for the MC1514/MC1414 and are pin-for-pin replacements. The LM1514 is available in the ceramic dual-in-line package. The LM1414 is available in either the ceramic or molded dual-in-line package.

The LM1514 is specified for operation over the -55°C to +125°C military temperature range. The LM1414 is specified for operation over the 0°C to +70°C temperature range.

features

- Two totally separate comparators per package
- Independent strobe capability
- High speed 30 ns typ
- Low input offset voltage and current
- High output sink current over temperature
- Output compatible with TTL/DTL logic
- Molded or ceramic dual-in-line package

schematic and connection diagram

Dual-In-Line Package

Order Number LM1414J or LM1514J See Package 16

Order Number LM1414N See Package 22

3-45

absolute maximum ratings (Note 1)

600 mW +14.0V Power dissipation (Note 2) Positive supply voltage Operating temperature Range: LM1514 -55°C to +125°C Negative supply voltage -7.0V 0° C to $+70^{\circ}$ C 10 mA LM1414 Peak output current -65°C to +150°C ±5.0V Differential input voltage Storage temperature range 300°C Input voltage ±7.0V Lead temperature (soldering, 10 sec)

electrical characteristics for $T_A = 25^{\circ}C$, $V^+ = +12V$, $V^- = -6V$, unless otherwise specified

PARAMETER	CONDITIONS		LM1514			LM1414			
ranaweten	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
Input Offset Voltage	$R_S \le 200\Omega$, $V_{CM} = 0V$, $V_{OUT} = 1.4V$		0.6	2.0		1.0	5.0	mV	
Input Offset Current	V _{CM} = 0V, V _{OUT} = 1.4V		0.8	3.0		1.2	5.0	μΑ	
Input Bias Current				20			25	μΑ	
Voltage Gain		1250			1000				
Output Resistance			200			200		Ω	
Differential Input Voltage Range		±5.0			±5.0			V	
Input Voltage Range	V ⁻ = -7.0V	±5.0			±5.0			V	
Common Mode Rejection Ratio	$R_S \le 200\Omega$, $V^- = -7.0V$	80	100		70	100		dB	
Positive Output Voltage	$V_{IN} \ge 7.0 \text{ mV}, 0 \le I_{OUT} \le -5.0 \text{ mA}$	2.5	3.2	4.0	2.5	3.2	4.0	V	
Negative Output Voltage	$V_{IN} \leq -7.0 \text{ mV}$	-1.0	-0.5	0	-1.0	-0.5	0	V	
Strobed Output Voltage	V _{STROBE} ≤ 0.3V	-1.0	-0.5	0	-1.0	-0.5	0	V	
Strobe "0" Current	V _{STROBE} = 100 mV		-1.2	-2.5		-1.2	-2.5	mA	
Positive Supply Current	$V_{IN} \leq -7 \text{ mV}$			18			18	mA	
Negative Supply Current	$V_{IN} \leq -7 \text{ mV}$			-14			-14	mA	
Power Consumption			180	300		180	300	mW	
Response Time	(Note 3)		30			30		ns	
LM1514/LM1414: The following	apply for $T_L \le T_A \le T_H$ (Note 4) unless of	herwise spe	cified						
Input Offset Voltage	$R_S \le 200\Omega$, $V_{OUT} = 1.8V$ for $T_A = T_L$			3.0			6.5	mV	
	$V_{CM} = 0V$, $V_{OUT} = 1.0V$ for $T_A = T_H$			3.0			6.5	mV	
Input Bias Current Temperature Coefficient of Input Offset Voltage			3.0	45		5.0	40	μΑ μV/°C	
Input Offset Current	$V_{CM} = 0V, V_{OUT} = 1.8V, T_A = T_L$ $V_{CM} = 0V, V_{OUT} = 1.0V, T_A = T_H$			7.0 3.0			7.5 7.5	μΑ μΑ	
Voltage Gain		1000			800				
Output Sink Current	$V_{1N} < -9.0 \text{ mV}, V_{OUT} \ge 0V$	2.8	4.0		1.6	2.5		mA	

Note 1: Voltage values are with respect to network ground terminal. Positive current is defined as current into the referenced pin. Note 1: Voltage values are with respect to network ground terminal. Positive current is derined as current into the reterence by Note 2: LM15d ceramic package: The maximum junction temperature is +150°C, for operating at elevated temperatures, devices must be derated linearly at 12.5 mW/°C. LM1414 ceramic package: The maximum junction temperature is +95°C operating at elevated temperatures, devices must be derated interarily at 12.5 mW/°C. LM1414 more interarily at 12.5 mW/°C. LM1414 model package: The maximum junction temperature is +115°C, for operating at elevated temperatures, devices must be derated linearly at 6.7 mW/°C. Note 3: The response time specified (see Definitions) for a 100 m input step with 5 mV overdrive. Note 4: For LM1514, $T_L = -55^{\circ}$ C, $T_H = +725^{\circ}$ C. For LM1514, $T_L = 0^{\circ}$ C, $T_H = +70^{\circ}$ C.

Functional Blocks

LM122/LM222/LM322 precision timer

general description

The LM122 is a precision timer that offers great versatility with high accuracy. It operates off unregulated supplies from 4.5V to 40V while maintaining constant timing periods from microseconds to hours. Internal logic and regulator circuits complement the basic timing function enabling the LM122 to operate in many different applications with a minimum of external components.

The output of the timer is a floating transistor with built in current limiting. It can drive either ground referred or supply referred loads up to 40V and 50 mA. The floating nature of this output makes it ideal for interfacing, lamp or relay driving, and signal conditioning where an open collector or emitter is required. A "logic reverse" circuit can be programmed by the user to make the output transistor either "on" or "off" during the timing period.

The trigger input to the LM122 has a threshold of 1.6V independent of supply voltage, but it is fully protected against inputs as high as $\pm 40V$ — even when using a 5V supply. The circuitry reacts only to the rising edge of the trigger signal, and is immune to any trigger voltage during the timing periods.

An internal 3.15V regulator is included in the timer to reject supply voltage changes and to provide the user with a convenient reference for applications other than a basic timer. External loads up to 5 mA can be driven by the regulator. An internal 2V divider between the reference and ground sets the timing period to 1 RC. The timing period can be voltage controlled by driving this divider

with an external source through the V_{ADJ} pin. Timing ratios of 50:1 can be easily achieved.

The comparator used in the LM122 utilizes high gain PNP input transistors to achieve 300 pA typical input bias current over a common mode range of 0V to 3V. A boost terminal allows the user to increase comparator operating current for timing periods less than 1 ms. This lets the timer operate over a 3µs to multi-hour timing range with excellent repeatability.

The LM122 operates over a temperature range of -55°C to $+125^{\circ}\text{C}$. An electrically identical LM222 is specified from -25°C to $+85^{\circ}\text{C}$. The timer is available in TO-5, flat package, and dual-in-line packages.

features

- Immune to changes in trigger voltage during timing interval
- Timing periods from microseconds to hours
- Internal logic reversal
- Immune to power supply ripple or noise during the timing interval
- Operates from 4.5V to 40V supplies
- Input protected to ±40V
- Floating transistor output with internal current limiting
- Internal regulated reference
- Timing period can be voltage controlled
- TTL compatible input and output

connection diagrams

Metal Can Package EMITTER LOGIC 1 3 COLLECTOR TRIGGER 2 8 BOOST VREF 3 7 V' R/C 4 5 0 VADJ GND TOP VIEW

Order Number LM122H, LM222H or LM322H See Package 14

Order Number LM122F See Package 3

Dual-In-Line Package

Order Number LM322N See Package 22

Power Dissipation	500 mW
V ⁺ Voltage	40V
Collector Output Voltage	40V
V _{REF} Current	5 mA
Trigger Voltage	±40V
V _{ADJ} Voltage (Forced)	5V
Logic Reverse Voltage	5.5V
Output Short Circuit Duration (Note 1)	
Lead Temperature (Soldering, 10 sec)	300°C

LM122/LM222 electrical characteristics (Note 2)

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS
Timing Ratio (Note 3)	T_A = 25°C, 4.5V \leq V ⁺ \leq 40V Boost Tied to V ⁺	.626 .620	.632 .632	.638 .644	
Comparator Input Current	$T_A = 25^{\circ}C$, $4.5V \le V^+ \le 40V$ Boost Tied to V^+	.3		1 100	nA nA
Trigger Voltage	$T_A = 25^{\circ}C, 4.5V \le V^{+} \le 40V$	1.2	1.6	2	V
Trigger Current	$T_A = 25^{\circ}C$, $V_{TRIG} = 2V$		25		μΑ
Supply Current	$T_A = 25^{\circ}C, 4.5V \le V^+ \le 40V$		2.5	4	mA
Timing Ratio	4.5V ≤ V ⁺ ≤ 40V Boost Tied to V ⁺	.620 .620		.644 .644	
Comparator Input Current (Note 4)	$4.5V \le V^+ \le 40V$ Boost Tied to V^+	-5		5 100	nA nA
Trigger Voltage	$4.5V \le V^+ \le 40V$.8		2.5	V
Trigger Current	V _{TRIG} = 2.5V			100	μΑ
Output Leakage Current	V _{CE} = 40V			1	μΑ
Capacitor Saturation Voltage	$\begin{aligned} \mathbf{R_t} &\geq 1 \ M\Omega \\ \mathbf{R_t} &= 10 \ k\Omega \end{aligned}$		2.5 25		mV mV
Reset Resistance			150		Ω
Reference Voltage	$T_A = 25^{\circ}C$	3	3.15	3.3	V
Reference Regulation	$0 \le I_{OUT} \le 3 \text{ mA}$ $4.5V \le V^+ \le 40V$		20 6	50 25	mV mV
Collector Saturation Voltage	I _L = 8 mA I _L = 50 mA		.25 .7	.4 1.4	V V
Emitter Saturation Voltage	I _L = 3 mA T _A = 25°C		1.8 2.1	2.2	V
Average Temperature Coefficient of Timing Ratio				.003	%/°C
Minimum Trigger Width	V _{TRIG} = 2.5V		.25		μs

Note 1: Continuous output shorts are not allowed. Short circuit duration at ambient temperatures of 40° C may be calculated from t = $120/V_{CE}$ seconds, where V_{CE} is the collector to emitter voltage across the output transistor during the short.

Note 2: Specifications include the temperature range, $-55^{\circ}C \le T_{A} \le +125^{\circ}C$ for the LM122 and $-25^{\circ}C \le T_{A} \le +85^{\circ}C$ for the LM222.

Note 3: Output pulse width can be calculated from the following equation: $t = (R_{\uparrow})(C_{\uparrow})[1-2(0.632-r)-V_C/V_{REF}] \text{ where } r \text{ is timing ratio and } V_C \text{ is capacitor saturation voltage. This reduces to } t = (R_{\uparrow})(C_{\uparrow}) \text{ for all but the most critical applications.}$ Note 4: Sign reversal may occur at high temperatures ($> 100^{\circ}\text{C}$) where comparator input current is predominately leakage. See typical curves.

Power Dissipation	500 mW
V ⁺ Voltage	40V
Collector Output Voltage	40V
V _{REF} Current	5 mA
Trigger Voltage	±40V
V _{ADJ} Voltage (Forced)	5V
Logic Reverse Voltage	5.5V
Output Short Circuit Duration (Note 1)	
Lead Temperature (Soldering, 10 sec)	300°C

LM322
electrical characteristics (Note 2)

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS
Timing Ratio (Note 3)	$T_A = 25^{\circ}C$, $4.5V \le V^+ \le 40V$ Boost Tied to V^+	.620 .620	.632 .632	.644 .644	
Comparator Input Current	$T_A = 25^{\circ}C$, $4.5V \le V^+ \le 40V$ Boost Tied to V^+			1 100	nA nA
Trigger Voltage	$T_A = 25^{\circ}C, 4.5V \le V^{+} \le 40V$	$T_A = 25^{\circ}C, 4.5V \le V^+ \le 40V$ 1.2		2	V
Trigger Current	$T_A = 25^{\circ}C$, $V_{TRIG} = 2V$		25		μΑ
Supply Current	$T_A = 25^{\circ}C, 4.5V \le V^+ \le 40V$		2.5	4.5	mA
Timing Ratio	$4.5V \le V^+ \le 40V$ Boost Tied to V^+	.610 .610		.654 .654	
Comparator Input Current (Note 4)	$4.5V \le V^+ \le 40V$ Boost Tied to V^+	-2		2 150	nA nA
Trigger Voltage	$4.5V \le V^+ \le 40V$.8		2.5	V
Trigger Current	V _{TRIG} = 2.5V			200	μΑ
Output Leakage Current	V _{CE} = 40V			5	μΑ
Capacitor Saturation Voltage	$R_t \ge 1 \text{ M}\Omega$ $R_t = 10 \text{ k}\Omega$		2.5 25		mV mV
Reset Resistance			150		Ω
Reference Voltage	T _A = 25°C	3	3.15	3.3	V
Reference Regulation	$0 \le I_{OUT} \le 3 \text{ mA}$ $4.5V \le V^+ \le 40V$		20 6	50 25	mV mV
Collector Saturation Voltage	I _L = 8 mA I _L = 50 mA		.25 .7	.4 1.4	V
Emitter Saturation Voltage	$I_L = 3 \text{ mA}$ $I_A = 25^{\circ}\text{C}$		1.8 2.1	2.2	V
Average Temperature Coefficient of Timing Ratio	,			.003	%/°C
Minimum Trigger Width	V _{TRIG} = 2.5V		.25		μs

Note 1: Continuous output shorts are not allowed. Short circuit duration at ambient temperatures of 40° C may be calculated from t = $.120/V_{CE}$ seconds, where V_{CE} is the collector to emitter voltage across the output transistor during the short.

Note 2: Specifications include the temperature range 0° C to $+70^{\circ}$ C for the LM322 unless otherwise noted.

See typical curves.

Note 3: Output pulse width can be calculated from the following equation: $t = (R_t)(C_t)[1 - 2(0.632 - r) - V_C/V_{REF}]$ where r is timing ratio and V_C is capacitor saturation voltage. This reduces to $t = (R_t)(C_t)$ for all but the most critical applications. Note 4: Sign reversal may occur at high temperatures ($> 70^{\circ}C$) where comparator input current is predominately leakage.

typical performance characteristics

typical performance characteristics (con't)

schematic diagram

typical applications

Basic Timer-Emitter Output and Timing Chart

5V Logic Supply Driving 28V Relay

Basic Timer-Collector Output and Timing Chart

30V Supply Interfacing to 5V Logic

 $\label{eq:total_time_time} \mbox{Time Out On Power Up} \\ \mbox{Relay Energized Until R}_t \mbox{C}_t \mbox{ Seconds After V}_{CC} \mbox{ is Applied}$

Time Out On Power Up
Relay Energized R_t C_t Seconds After V_{CC} is Applied

typical applications (con't)

Zero Power Dissipation Between Timing Intervals

One Hour Timer with Reset & Manual Cycle End

5V Switching Regulator with 1 Amp Output and 5.5V Minimum Input

Frequency to Voltage Converter (Tachometer)
Output Independent of Supply Voltage

Timer Triggered by Negative Edge of Input Pulse

typical applications (con't)

Operating off ±15V Supplies*

Comparator with 0V to 3V Threshold

Chain of Timers and Timing Chart

Functional Blocks

LM555/LM555C timer

general description

The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to 200 mA or drive TTL circuits.

features

- Direct replacement for SE555/NE555
- Timing from microseconds through hours
- Operates in both astable and monostable modes

- Adjustable duty cycle
- Output can source or sink 200mA
- Output and supply TTL compatible
- Temperature stability better than .005% per °C
- Normally on and normally off output

applications

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator

TOP VIEW
Order Number LM555H or LM555CH
See Package 11

TOP VIEW
Order Number LM555CN
See Package 20

Supply Voltage
Power Dissipation
Operating Temperature Ranges
LM555C

LM555C LM555

Storage Temperature Range Lead Temperature (Soldering, 10 sec) +18V 600 mW

0°C to +70°C -55°C to +125°C

-65°C to +150°C

electrical characteristics (T_A = 25°C, V_{CC} = +5V to +15V unless otherwise specified)

					LIMITS				
PARAMETER	CONDITIONS		LM555			LM555C		UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX		
Supply Voltage		4.5		18	4.5		16	V	
Supply Current	$V_{CC} = 5V, R_L = \infty$ $V_{CC} = 15V, R_L = \infty$ (Low State) (Note 1)		3 10	5 12		3 10	6 15	mA mA	
Timing Error, Monostable Initial Accuracy	R _A , R _B = 1k to 100k,		.5	2		1		o _o	
Drift with Temperature	$C = .1 \mu F$, (Note 2)		30	100		50		ррт С	
Drift with Supply			.005	.02		.01		% V	
Threshold Voltage			.667			.667		x V _{CC}	
Trigger Voltage	$V_{CC} = 15V$ $V_{CC} = 5V$	4.8 1.45	5 1.67	5.2 1.9		5 1.67		V	
Trigger Current			.5			.5		μΑ	
Reset Voltage		.4	.7	1	.4	.7	1	V	
Reset Current			.1			.1		mΑ	
Threshold Current	(Note 3)		.1	.25		.1	.25	μΑ	
Control Voltage Level	V _{CC} = 15V V _{CC} = 5V	9.6 2.9	10 3.33	10.4 3.8	9 2.6	10 3.33	11 4	V	
Output Voltage Drop (Low)	V _{CC} = 15V I _{SINK} = 10 mA		.1	.15		.1	.25	V	
	I _{SINK} = 50 mA		.4	.5		.4	.75	V	
	I _{SINK} = 100 mA		2	2.2		2	2.5	V	
	I _{SINK} = 200 mA		2.5			2.5		V	
	V _{CC} = 5V I _{SINK} = 8 mA		.1	.25				V	
	I _{SINK} = 5 mA					.25	.35	V	
Output Voltage Drop (High)	I _{SOURCE} = 200 mA V _{CC} = 15V		12.5			12.5		V	
	I _{SOURCE} = 100 mA V _{CC} = 15V	13	13.3		12.75	13.3		V	
	V _{CC} = 5V	3	3.3		2.75	3.3		V	
Rise Time of Output			100			100		ns	
Fall Time of Output			100			100		ns	

Note 1: Supply current when output high typically 1 mA less at V_{CC} = 5V.

Note 2: Tested at V_{CC} = 5V and V_{CC} = 15V.

Note 3: This will determine the maximum value of $R_A + R_B$ for 15V operation. The max total $(R_A + R_B) = 20 \text{ M}\Omega$.

typical performance characteristics

applications information

MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot (Figure 1). The external capacitor is initially held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than $1/3~V_{\rm CC}$ to pin 2, the flip flop is set which both releases the short circuit across the capacitor and drives the output high. The voltage

FIGURE 1. Monostable

across the capacitor then increases exponentially for a period of t = 1.1 $R_{A}\,C$, at the end of which time the voltage equals 2/3 $V_{CC}.$ The comparator then resets the flip flop which in turn discharges the capacitor and drives the output to its low state. Figure 2 shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing internal is independent of supply.

FIGURE 2. Monostable Waveforms

During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit. However the circuit can be reset during this time by the application of a negative pulse to the reset terminal (pin 4). The output will then remain in the low state until a trigger pulse is again applied.

When the reset function is not in use, it is recommended that it be connected to V_{CC} to avoid any possibility of false triggering.

Figure 3 is a nomograph for easy determination of R, C values for various time delays.

FIGURE 3. Time Delay

ASTABLE OPERATION

If the circuit is connected as shown in Figure 4 (pins 2 and 6 connected) it will trigger itself and free run as a multivibrator. The external capacitor charges through $R_{\rm A}+R_{\rm B}$ and discharges through $R_{\rm B}$. Thus the duty cycle may be precisely set by the ratio of these two resistors.

In this mode of operation, the capacitor charges and discharges between 1/3 V_{CC} and 2/3 V_{CC} . As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage.

 $V_{\rm CC}=8V$ TOP TRACE: OUTPUT SV/DIV. TIME = 2 $\mu_{\rm M}/2$ DIV. BOTTOM TRACE: CAPACITOR VOLTAGE 1V/DIV. R $_{\rm R}=3$ ki? C = 31 ki?

FIGURE 5. Astable Waveforms

Figure 5 shows the waveforms generated in this mode of operation.

applications information (con't)

The charge time (output high) is given by: $t_1 = 0.693 (R_A + R_B) C$

And the discharge time (output low) by: $t_2 = 0.693 (R_B) C$

Thus the total period is:

$$T = t_1 + t_2 = 0.693 (R_A + 2R_B) C$$

The frequency of oscillation is:

$$f = \frac{1}{T} = \frac{1.44}{(R_A + 2 R_B) C}$$

FIGURE 6. Free Running Frequency

Figure 6 may be used for quick determination of these RC values.

The duty cycle is:

$$D = \frac{R_B}{R_A + 2R_B}$$

FREQUENCY DIVIDER

The monostable circuit of Figure 1 can be used as a frequency divider by adjusting the length of the timing cycle. Figure 7 shows the waveforms generated in a divide by three circuit.

FIGURE 7. Frequency Divider

PULSE WIDTH MODULATOR

When the timer is connected in the monostable mode and triggered with a continuous pulse train,

FIGURE 8. Pulse Width Modulator

the output pulse width can be modulated by a signal applied to pin 5. Figure 8 shows the circuit, and in Figure 9 are some waveform examples.

FIGURE 9. Pulse Width Modulator

PULSE POSITION MODULATOR

This application uses the timer connected for astable operation, as in Figure 10, with a modulating signal again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the threshold voltage and hence

FIGURE 10. Pulse Position Modulator

applications information (con't)

the time delay is varied. Figure 11 shows the waveforms generated for a triangle wave modulation signal.

FIGURE 11. Pulse Position Modulator

LINEAR RAMP

When the pullup resistor, R_A , in the monostable circuit is replaced by a constant current source, a

FIGURE 12.

linear ramp is generated. Figure 12 shows a circuit configuration that will perform this function.

Figure 13 shows waveforms generated by the linear ramp.

The time interval is given by:

$$T = \frac{2/3 V_{CC} R_E (R_1 + R_2) C}{R_1 V_{CC} - V_{DE} (R_1 + R_2)}$$

$$V_{BE} \simeq 0.6 V$$

 $V_{CC} = 5V$ TIME = $20\mu s/DIV$. $R_1 = 47 k\Omega$ $R_2 = 100 k\Omega$

TOP TRACE: INPUT 3V/DIV.
MIDDLE TRACE: OUTPUT 5V/DIV.
BOTTOM TRACE: CAPACITOR VOLTAGE 1V/DIV.

 $R_1 = 47 \text{ k}\Omega$ $R_2 = 100 \text{ k}\Omega$ $R_E = 2.7 \text{ k}\Omega$ $C = .01 \mu\text{F}$

FIGURE 13. Linear Ramp

50% DUTY CYCLE OSCILLATOR

For a 50% duty cycle, the resistors R_A and R_B may be connected as in Figure 14. The time period for the output positive is the same as previous,

FIGURE 14. 50% Duty Cycle Oscillator

 $t_1 = .693 R_A$ C. For the output negative it is $t_2 =$

$$[(R_A R_B)/(R_A + R_B)] CLn \left[\frac{R_B - 2R_A}{2R_B - R_A}\right]$$

Thus the frequency of oscillation is $f = \frac{1}{t_1 + t_2}$

Note that this circuit will not oscillate if R_B is greater than 1/2 R_A because the junction of R_A and R_B cannot bring pin 2 down to 1/3 V_{CC} and trigger the lower comparator.

Functional Blocks

LM2905/LM3905 precision timer

general description

The LM3905 is a precision timer that offers great versatility with high accuracy. It operates off unregulated supplies from 4.5V to 40V while maintaining constant timing periods from milliseconds to hours. Internal logic and regulator circuits complement the basic timing function enabling the LM3905 to operate in many different applications with a minimum of external components.

The output of the timer is a floating transistor with built in current limiting. It can drive either ground referred or supply referred loads up to 40V and 50 mA. The floating nature of this output makes it ideal for interfacing, lamp or relay driving, and signal conditioning where an open collector or emitter is required. A "logic reverse" circuit can be programmed by the user to make the output transistor either "on" or "off" during the timing period.

The trigger input to the LM3905 has a threshold of 1.6V independent of supply voltage, but it is fully protected against inputs as high as ±40V — even when using a 5V supply. The circuitry reacts only to the rising edge of the trigger signal, and is immune to any trigger voltage during the timing periods.

An internal 3.15V regulator is included in the timer to reject supply voltage changes and to provide the user with a convenient reference for applications other than a basic timer. External loads up to 5 mA can be driven by the regulator. An internal 2V divider between the reference and ground sets the timing period to 1 RC.

The comparator used in the LM3905 utilizes high gain PNP input transistors to achieve 300 pA typical input bias current over a common mode range of 0V to 3V.

features

- Immune to changes in trigger voltage during timing interval
- Timing periods from milliseconds to hours
- Internal logic reversal
- Immune to power supply ripple or noise during the timing interval
- Operates from 4.5V to 40V supplies
- Input protected to ±40V
- Floating transistor output with internal current limiting
- Internal regulated reference
- TTL compatible input and output

typical applications

Basic Timer-Emitter Output and Timing Chart

connection diagram

Dual-In-Line Package

Order Number LM2905N or LM3905N See Package 20

Power Dissipation	500 mW
V ⁺ Voltage	40V
Collector Output Voltage	40V
V _{REF} Current	5 mA
Trigger Voltage	±40V
Logic Reverse Voltage	5.5V
Output Short Circuit Duration (Note 1)	
Lead Temperature (Soldering, 10 sec)	300°C

LM2905/LM3905 electrical characteristics (Note 2)

PARAMETERS	CONDITIONS	MIN	. 7	ГҮР	MAX	UNITS
Timing Ratio (Note 3)	$T_A = 25^{\circ}C, 4.5V \le V^{+} \le 40V$	620		.632	.644	
Comparator Input Current	$T_A = 25^{\circ}C, 4.5V \le V^{+} \le 40V$.3	1	nA
Trigger Voltage	$T_A = 25^{\circ}C, 4.5V \le V^{+} \le 40V$	1.2		1.6	2	V
Trigger Current	$T_A = 25^{\circ}C$, $V_{TRIG} = 2V$		2	5		μΑ
Supply Current	$T_A = 25^{\circ}C, 4.5V \le V^{+} \le 40V$			2.5	4.5	mA
Timing Ratio	$4.5V \le V^+ \le 40V$.610			.654	
Comparator Input Current (Note 4)	$4.5V \le V^{+} \le 40V$	-2			2	nA
Trigger Voltage	$4.5V \le V^+ \le 40V$.8			2.5	V
Trigger Current	V _{TRIG} = 2.5V				200	μΑ
Output Leakage Current	V _{CE} = 40V				5	μΑ
Capacitor Saturation Voltage	$R_t \ge 1 M\Omega$ $R_t = 10 k\Omega$		1	2.5 5		mV mV
Reset Resistance			15	0		Ω
Reference Voltage	$T_A = 25^{\circ}C$	3		3.15	3.3	V
Reference Regulation	$0 \le I_{OUT} \le 3 \text{ mA}$ $4.5V \le V^+ \le 40V$			0 6	50 25	mV mV
Collector Saturation Voltage	I _L = 8 mA I _L = 50 mA			.25 .7	.4 1.4	V
Emitter Saturation Voltage	I _L = 3 mA I _L = 50 mA		- (1.8 2.1	2.2 3	V
Average Temperature Coefficient of Timing Ratio					.003	%/°C
Minimum Trigger Width	V _{TRIG} = 2.5V			.25		μs

Note 1: Continuous output shorts are not allowed. Short circuit duration at ambient temperatures of 40° C may be calculated from t = $50/V_{CE}$ seconds, where V_{CE} is the collector to emitter voltage across the output transistor during the short.

Note 2: Specifications include the temperature range -40° C \leq T_A \leq +85 $^{\circ}$ C for the LM2905 and 0° C \leq T_A \leq +70 $^{\circ}$ C for the LM3905 unless otherwise noted.

Note 3: Output pulse width can be calculated from the following equation: $t = (R_{\uparrow})(C_{\Gamma})[1 - 2(0.632 - r) - V_{C}/V_{REF}]$ where r is timing ratio and V_{C} is capacitor saturation voltage. This reduces to $t = (R_{\uparrow})(C_{\uparrow})$ for all but the most critical applications. Note 4: Sign reversal may occur at high temperatures ($> 70^{\circ}$ C) where comparator input current is predominately leakage. See typical curves.

typical performance characteristics

schematic diagram

typical applications(con't)

Zero Power Dissipation Between Timing Intervals

One Hour Timer with Reset & Manual Cycle End

typical applications (con't)

Operating off ±15V Supplies*

5V Logic Supply Driving 28V Relay

Basic Timer-Collector Output and Timing Chart

30V Supply Interfacing to 5V Logic

typical applications (con't)

Chain of Timers and Timing Chart

Timer Triggered by Negative Edge of Input Pulse

Functional Blocks

LX1600A absolute pressure transducer

general description

The LX1600A is a highly accurate, completely field interchangeable, temperature compensated, absolute pressure transducer. It contains in one small package all four of the basic transduction elements shown below in the block diagram — diaphragm and vacuum reference, piezoresistive sensor, signal discriminator and conditioner, and signal amplifier and processor. The first three elements are contained in one single silicon die and the fourth is provided by various standard National linear integrated circuit operational amplifiers.

By applying automatic laser trimming techniques, the output of each LX1600A is factory adjusted so that it meets the nominal values within the specified tolerances. This eliminates the need for user evaluation and calibration — for each unit the specified nominal output is the "best straight line actual" value.

The particular design chosen leads to an equivalent circuit for the LX1600A that can be described as a simple potentiometer without a potentiometer's loading problems — the input impedance is thousands of ohms and the output impedance is millions of ohms. Included in this transducer is protection for both input over-voltage and output short circuits.

High volume integrated circuit processing and simplicity of both electrical and mechanical design allows the LX1600A to be price competitive with individual basic sensor elements such as strain gauges, piezoelectric crystals and differential transformers, even though it performs the total pressure transducer function.

features

- Absolute Pressure Measurement each unit contains a vacuum reference.
- Accuracy maximum static error band of ±3% of full scale. Includes calibration error.
- Field interchangeability all units meet one guaranteed characteristic curve.
- Easily installed with standard 3/16" flexible tubing and standard 5 pin electronic component sockets.
- Equivalent circuit is a simple potentiometer.
- Flexibility single ended op amp configuration permits arithmetic functions, digital format, and multiplexing of 2 or more LX1600A's.
- Input overvoltage and output short circuit protection.
- Temperature measurement capability at point of pressure sensing.
- Extended pressure and temperature range capability.
- Availability through local National distributors.

applications

- Fuel metering and ignition controls.
- Heating and ventilation, refrigeration and air conditioning controls.
- Altimetry, air data, and meteorology.
- Automotive safety and diagnostics.
- Pneumatic and pneumatic thermostat controls.
- Utility metering.
- Fluid systems proportional control.

block and connection diagrams

Total Useful Pressure Transducer

Order Number LX1600A See Package 31

Excitation Voltage
Output Current I_P
Calibrated Pressure Range
Pressure Over-Range
Temperature Sensing Current I_{T34}
Operating Temperature Range
Extended Pressure Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

 30 V_{DC} 5 mA 0 to 1.0 Satm 3.0 Satm $100 \mu\text{A}$ $-40 \text{ to } +240^{\circ}\text{F}$ 0 to 1.9 Satm $-40 \text{ to } +240^{\circ}\text{F}$ 572°F

* electrical characteristics

PARAMETER	CONDITIONS (Note 1)	NOMINAL VALUE	MAXIMUM DEVIATION
Pressure			
Null Voltage (V _{PN})	$T = 78^{\circ}F$, $P = 0$ atm., $V_{F} = 12.5V$	2.5 V _{DC}	±2% FS
Full Scale Voltage (V _{PES})	$T = 78^{\circ}F$, $P = 1.0$ Satm., $V_F = 12.5V$	7.5 V _{DC}	±2% FS
Null Temp. Coeff. (TC _{N1})	$78^{\circ} F \le T \le 180^{\circ} F$, P = 0 atm	0	±1.0 mV/°F
Full Scale Temp. Coeff. (TC _{FS1})	$78^{\circ} F \le T \le 180^{\circ} F$, P = 1.0 Satm.	0	±1.5 mV/°F
Null Temp. Coeff. (TC _{N2})	$-40^{\circ} F \le T \le 240^{\circ} F$, P = 0 atm.	0	±1.5 mV/°F
Full Scale Temp. Coeff. (TC _{FS2})	$-40^{\circ} F \le T \le 240^{\circ} F$, P = 1.0 Satm.	0	±2.0 mV/°F
Linearity	$T = 78^{\circ} F$, $P = 0.5 Satm$.		±0.5% FS
Deadband	$T = 78^{\circ} F$, $P = 1.0 Satm$.	0	±0.1% FS
Hysteretic Error	$T = 78^{\circ} F$, $P = 0.5 Satm$.	0	±0.1% FS
Accuracy			
Static Error Band	T = 78°F,		±3.0% FS
Total Error Band	$78^{\circ} F \le T \le 180^{\circ} F$,		±3.5% FS
Total Error Band	-40° F \leq T \leq 240 $^{\circ}$ F		±4.0% FS
Temperature		TYP	
Ref Voltage (V _{TREE})	$T = 78^{\circ}F$, $I_{T34} = 10 \mu A$	7.0V	
Sensitivity $(\triangle V_T/\triangle T)$	$-40^{\circ} \text{F} \le \text{T} \le 240^{\circ} \text{F}, I_{\text{T34}} = 10.0 \mu\text{A}$	1.1 mV/°F	

^{*}See Pg. 4 for Definition of Terms

Note 1: $78^{\circ}F = 25^{\circ}C$, $180^{\circ}F = 82^{\circ}C$, $240^{\circ}F = 105^{\circ}C$, $-40^{\circ}F = -40^{\circ}C$, $572^{\circ}F = \frac{300^{\circ}C}{100^{\circ}C}$, $1 \text{ mV/}^{\circ}F = 1.8 \text{ mV/}^{\circ}C$.

typical applications

Absolute Pressure Transducer - Figure 1 - As would be expected a minimum of work is required - just combine one voltmeter, one LX1600A, and one 12.5 $V_{\mbox{\scriptsize DC}}$ power supply as shown.

Differential Pressure Transducer - Figure 2- The differential output between Pin 1 of the two LX1600A may be amplified by the addition of an LM107 and scaled to the output required by the proper selection of the resistor ratio $\rm R_4/R_3$ and $\rm R_2/R_1$.

It is possible to maintain the specified accuracies over the 10V min to 30V max useable range of excitation voltage (V_E). However, the regulation of the power supply voltage must be maintained within $\pm 1\%$ and for voltages other than 12.5V, a new calibration curve is necessary.

The LX1600A with its small size and standard electronic and pnuematic connections has been designed for ease of installation in other packages when the application involves harsh or corrosive environments.

The temperature sensor of the LX1600A is activated by grounding Pin 4 and connecting Pin 3 to a 10 μ A constant current source as shown. Then V_{TE} measured with a 10 megohm voltmeter indicatents the temperature being sensed. With measurements at several different known temperatures the unit is easily calibrated.

For Temperature Sensing

4

typical applications (con't)

Figure 1. Absolute Pressure Transducer

Figure 2. Differential Pressure Transducer

Figure 3. Single Ended LIMIT Detector

Figure 4. Double Ended LIMIT Detector

typical performance characteristics

Functional Blocks

LX1601A/LX1602A/LX1603A, LX1701A/LX1702A/LX1703A absolute LX1601G/LX1602G/LX1603G/LX1604G, LX1701G/LX1702G/LX1703G/LX1704G gage LX1601D/LX1602D/LX1603D/LX1604D differential pressure transducers 0-30psi

general description

These rugged devices are highly accurate, completely field interchangeable, temperature compensated linear pressure transducers.

All of the basic transduction elements are incorporated in one hybrid package. A totally useful pressure transducer is shown in the block diagram below—the diaphragm and pressure reference, piezoresistive sensor, signal discriminator, and signal amplifier and processor. The first three functional elements are contained in a single silicon die and the fourth is provided by standard National linear IC operational amplifiers.

applications

- Medical electronics
- Altimetry, air data, and meteorology
- Computer pneumatics
- Fluid system proportional control
- Hydraulics
- Pneumatic controls
- Heating, ventilation, refrigeration and air conditioning controls
- Automotive emission control, safety, and diagnostic systems

features

- Field interchangeability—by using computerized laser trim all units meet one guaranteed characteristic curve.
- Accuracy—maximum calibration error band of ±1.5% of span
- Temperature compensated—transducer temperature effects offset by computerized laser trimming
- Flexibility—arithmetic functions, digital format and multiplexing are easily attainable because of the single ended op amp configuration
- Input overvoltage and output short circuit protection
- Low mass, no moving parts, good frequency response
- Temperature measurement capability at point of pressure sensing
- Available from local National distributor

block diagram

Total Useful Pressure Transducer

PRODUCT SELECTION GUIDE

absolute maximum ratings

Excitation Voltage 30 V_{DC}
Output Current 5 mA
Temperature Sensing Current 100
Operating and Storage Temperature Range 30 V_{DC}
Bias Current at 15V Excitation 15 mA
Lead Temperature (Soldering, 10 sec) 572° F
(See Note 5 and 6)

nominal characteristics (+70°F, 15V excitation)

ABSOLUTE TRANSDUCERS

OUTPL	JT VOLTAGE	CALIBRATED PRESSURE RANGE (psia)			
±1.5% Span (±150 mV)		LX1601A LX1701A	LX1602A LX1702A	LX1603A LX1703A	
2.5V	Low Pressure End Point	10	0	0	
7.5V	Mid-Range	15	7.5	15	
12.5V	High Pressure End Point	20	15	30	
Maximum Allowable Over-Pressure		40	40	50	

GAGE AND DIFFERENTIAL TRANSDUCERS

OUTPU	T VOLTAGE	CALIBRATED PRESSURE RANGE (psig)			
	.5% Span 150 mV)	LX1601G LX1701G LX1601D	LX1602G LX1702G LX1602D	LX1603G LX1703G LX1603D	LX1604G LX1704G LX1604D
2.5V	Low Pressure End Point	-5	0	0	-15
7.5V	Mid-Range	0	7.5	15	0
12.5V	High Pressure End Point	+5	15	30	+15
Maximu Over-Pr	um Allowable essure	30	40	50	40

- Note 1: All nominal characteristics calibrated with 15V excitation and +70° Farenheit.
- Note 2: The 17 series package is available for absolute and gage units only.
- Note 3: Refer to the physical specifications, page 4, for the proper pressure connections to all differential units.
- Note 4: To maintain the specified tolerances, the power supply must be regulated to within ±1%. These transducers can be calibrated for any excitation voltage from 10V to 30V.
- Note 5: The unit may not withstand corrosive working fluid. In addition to standard die passivation a chemical coating is added to permit use with many common non-conductive working gas and liquids. For specific requirements, consult the factory.
- Note 6: The transducers are not electrically isolated from the working fluid.

ELECTRICAL SPECIFICATIONS

combined linearity and hysteresis

±50 mV (±0.5% Span)

output voltage temperature tolerance

NOMINAL OUTPUT VOLTAGE	MAX TEMP COEFFICIENT ±mV/°F	MAX ERROR OVER TEMP RANGE ±mV	MAX ERROR OVER TEMP RANGE % SPAN					
Calibrated Temp Range $+70^{\circ} F \le T \le +170^{\circ} F$								
2.5V Low Pressure End Point	1.5	150	1.5%					
12.5V High Pressure End Point	2	200	2%					
Full Temp Range -40°F	≤ T < 240° F							
2.5V Low Pressure- End Point	2	290	3%					
12.5V High Pressure End Point	3	410	4%					

Temperature Error Band 410 DEV. TEMPERATURE (FE) 1330 DEV. TEMPERATURE (FE) 1410 DEV. TEMPERATURE (FE)

V_{OUT} = 2.5V AT P_{LOW}, V_{OUT} = 12.5V AT P_{HIGH}

connection diagram

Typical Excitation Voltage Tracking

temperature sensor

The temperature sensor of the transducer is activated by grounding pin 4 and connecting pin 3 to a $10\mu A$ constant current source as shown. Then V_{T3} measured with a 10 $M\Omega$ voltmeter indicates the temperature being sensed. With measurements at several different known temperatures the unit is easily calibrated. When connected in this fashion the typical reference voltage is 7V with a sensitivity of 1.1 mV/°F.

Temperature Sensing Connection

Note: 70° F = 21° C, 170° F = 78° C, 240° F = 116° C, -40° F = -40° C, 572° F = 300° C, 1 mV/ $^{\circ}$ F = 1.8 mV/ $^{\circ}$ C, 1 psi = 51.71 TORR (mmHg) = 2.036 in Hg = 27.67 in H₂O = 2.307 ft H₂O = 68.95 mbar.

Functional Blocks

LX1610A/LX1620A/LX1630A, LX1710A/LX1720A/LX1730A absolute LX1610G/LX1620G/LX1630G, LX1710G/LX1720G/LX1730G gage LX1610D/LX1620D differential pressure transducers 0-300psi

general description

These rugged devices are highly accurate, completely field interchangeable, temperature compensated linear pressure transducers.

All of the basic transduction elements are incorporated in one hybrid package. A totally useful pressure transducer is shown in the block diagram below—the diaphragm and pressure reference, piezoresistive sensor, signal discriminator, and signal amplifier and processor. The first three functional elements are contained in a single silicon die and the fourth is provided by standard National linear IC operational amplifiers.

applications

- Medical electronics
- Altimetry, air data, and meteorology
- Computer pneumatics
- Fluid system proportional control
- Hydraulics
- Pneumatic controls
- Heating, ventilation, refrigeration and air conditioning controls
- Automotive emission control, safety, and diagnostic systems

features

- Field interchangeability—by using computerized laser trim all units meet one guaranteed characteristic curve
- Accuracy—maximum calibration error band of ±1.5% of span
- Temperature compensated—transducer temperature effects offset by computerized laser trimming
- Flexibility—arithmetic functions, digital format and multiplexing are easily attainable because of the single ended op amp configuration
- Input overvoltage and output short circuit protection
- Low mass, no moving parts, good frequency response
- Temperature measurement capability at point of pressure sensing
- Available from local National distributor

block diagram

Total Useful Pressure Transducer

PRODUCT SELECTION GUIDE

absolute maximum ratings

Excitation Voltage	30 V _{DC}
Output Current	5 mA
Temperature Sensing Current	100μΑ
Operating and Storage Temperature Range	-40° F to $+240^{\circ}$ F
Bias Current at 15V Excitation	15 mA
Lead Temperature (Soldering, 10 sec)	572°F
(See Note 5 and 6)	

nominal characteristics (+70°F, 15V excitation)

ABSOLUTE TRANSDUCERS

OUTPU	T VOLTAGE	CALIBRATED PRESSURE RANGE (psia)				
± 1.5% Span (±150 mV)		LX1610A LX1710A	LX1620A LX1720A	LX1730A		
2.5V	Low Pressure End Point	0	0	0		
7.5V	Mid-Range	30	50	150		
12.5V	High Pressure End Point	60	100	300		
Maximum Allowable Over-Pressure		100	150	500		

GAGE AND DIFFERENTIAL TRANSDUCERS

OUTPL	JT VOLTAGE	CALIBRAT	CALIBRATED PRESSURE RANGE (psig)					
±1.5% Span (±150 mV)		LX1610G LX1710G LX1610D	LX1620G LX1720G LX1620D	LX1730G				
2.5V	Low Pressure End Point	0	0	0				
7.5V	Mid-Range	30	50	150				
12.5V	High Pressure End Point	60	100	300				
Maximum Allowable Over-Pressure		100	150	500				

- Note 1: All nominal characteristics calibrated with 15V excitation and +70° Farenheit.
- Note 2: The 17 series package is available for absolute and gage units only.
- Note 3: Refer to the physical specifications, page 4, for the proper pressure connections to all differential units.
- Note 4: To maintain the specified tolerances, the power supply must be regulated to within $\pm 1\%$. These transducers can be calibrated for any excitation voltage from 10V to 30V.
- Note 5: The unit may not withstand corrosive working fluid. In addition to standard die passivation a chemical coating is added to permit use with many common non-conductive working gas and liquids. For specific requirements, consult the factory.
- Note 6: The transducers are not electrically isolated from the working fluid.

ELECTRICAL SPECIFICATIONS

combined linearity and hysteresis

±75 mV (±0.75% Span)

output voltage temperature tolerance

NOMINAL OUTPUT VOLTAGE	MAX TEMP COEFFICIENT ±mV/°F	MAX ERROR OVER TEMP RANGE ±mV	MAX ERROR OVER TEMP RANGE % SPAN
Calibrated Temp Range	$+70^{\circ}$ F \leq T \leq $+170^{\circ}$ F		
2.5V Low Pressure End Point	1.5	150	1.5%
12.5V High Pressure End Point	2	200	2%
Full Temp Range -40°F	≤ T < 240° F		
2.5V Low Pressure End Point	2	290	3%
12.5V High Pressure End Point	3	410	4%

connection diagram

EXCITATION VOLTAGE (VDC)

Typical Excitation

temperature sensor

The temperature sensor of the transducer is activated by grounding pin 4 and connecting pin 3 to a $10\mu A$ constant current source as shown. Then V_{T3} measured with a 10 $M\Omega$ voltmeter indicates the temperature being sensed. With measurements at several different known temperatures the unit is easily calibrated. When connected in this fashion the typical reference voltage is 7V with a sensitivity of 1.1 mV/°F.

Temperature Sensing Connection

Note: 70° F = 21° C, 170° F = 78° C, 240° F = 116° C, -40° F = -40° C, 572° F = 300° C, 1 mV/° F = 1.8 mV/° C, 1 psi = 51.71 TORR (mmHg) = 2.036 in Hg = 27.67 in H_2 O = 2.307 ft H_2 O = 68.95 mbar.

Functional Blocks

PSM6501 ±15V, 100mA power supply module

general description

The PSM6501 is a ± 15 V modular power supply capable of continuously delivering 100 mA DC minimum. The required input voltage is 105V to 125V AC at 50 Hz to 440 Hz. This supply incorporates short circuit protection, thermal shutdown protection to prevent thermal runaway and safe operating area compensation in the output devices to limit internal power dissipation. Integrated circuits are used extensively to improve reliability.

features

- Complete compact plug-in module
- Excellent line and load regulation
- AC input, DC output
- Output short circuit protection
- Thermal shutdown avoids runaway
- Safe area compensation

equivalent circuit

typical application

Operational Amplifier Power Supply

Order Number PSM6501
(For Matching Socket Order Part Number SKT0001)
See Package 34

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{IN}	50 Hz - 440 Hz	105		125	V _{AC}
V _{OUT} Positive		15		15.30	V _{DC}
V_{OUT} Negative		-15		-15.30	V _{DC}
I _{OUT}		±100			mA
V_{OUT} Tracking				0.1	%
V _{OUT} Tempco				0.015	%/°C
Line Regulation	±10 V _{AC}		0.02	0.05	%
Load Regulation	0 mA - 100 mA		0.03	0.1	%
Isolation			50		МΩ
R _{out}	10 kHz		0.2		Ω
Ripple & Noise				0.5	mVrms
Warm-up Drift				45	mV

Note 1: All parameters apply for T_A = 25°C, V_{IN} = 115 Vrms @ 60 Hz, unless otherwise noted.

The	PSM6501 repl	aces	the	following	part types:
	902			ZM15	100
	543			MD15	5D
	2212			P1106	6
	LCD2.15.100			SE90:	2
	SP5902				

Functional Blocks

SHM6401 sample and hold module

general description

The SHM6401 is a compact sample and hold module capable of acquiring and holding an analog signal upon command of a digital pulse. A high impedance input buffer, complete digital logic, 3 analog switches, hold capacitor and a FET input hold amplifier are all included within the package. Higher accuracy may be obtained by adding an external trim pot and capacitor.

features

- Self contained plug-in module
- High accuracy

■ TTL, DTL compatible logic

±10V Analog signal range 10 mV/sec max

Low droop rate

■ High input impedance

 Standard power supplies Low acquisition time

±15V

0.01%

equivalent circuit

NOTE: HOLD MODE (LOGIC "O") SHOWN. ALL OTHER PINS NO CONNECT

Order Number SHM6401 See Package 35

absolute maximum ratings

Analog Input Voltage Range ±15V
Digital Input Voltage 5.5V
Analog Supply Voltage (V⁺ to V⁻) 40V
Short Circuit Indefinite
Operating Temperature Range 0°C to +70°C
Storage Temperature Range -55°C to +85°C
Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC Accuracy	$R_L = 2k\Omega$			±0.01	%
Voltage Gain			1		
Voltage Gain Temperature Coefficient				±1	PPM/°C
Frequency Response	Tracking, -3 dB, Small Signal		50		kHz
Frequency Response	Tracking, Full Power 20V _{P.P} Sine Wave		10		kHz
Slew Rate			0.5		V/µs
Sample Mode Settling Time	To ±1 mV, 10V Step Input		75		μs
Input Overload Recovery	To ±1 mV, 50% Overvoltage		150		μs
Input Voltage Range		±10			V
Input Resistance	Sample Mode	100			МΩ
Input Bias Current	Sample Mode		400		nA
Input Offset Voltage	Sample Mode		20		mV
Input Offset Voltage Temperature Coefficient	0°C to +70°C		10		μV/°C
Power Supply Rejection Ratio				0.015	mV/%ΔV _S
Output Swing	$R_L = 2k\Omega$	±10			V
Output Current	$R_L = 2k\Omega$	±10			mA
Load Capacitance	No Oscillation		1000		pF
Wide Band Output Noise	Hold Mode, Grounded Input		1		mVrms
Droop Rate	Hold Mode, +25°C			10	mV/s
Droop Rate	0°C to +70°C		Doubles Every 10°C		
Signal Feed Through	Hold Mode, 20V _{P-P} , Sine Wave, 10 kHz			2	mV _{P.P}
Aperature Time	Sample to Hold Transition			50	ns
Offset Step	Sample to Hold Transition			1	mV
Transition Settling Time	To ±1 mV of Final Value, Sample to Hold Transition			10	μs
Transition Settling Time	To ±1 mV, Hold to Sample Transition			100	μs
Acquisition Time	20V Step to ±1 mV of Final Value, Hold to Sample Transition			130	μs
Logic High	I = 5μA Max	2		5.5	V
Logic Low	I = 0.5 mA Max	-0.5		0.8	V
Supply Current				8	mA

Note 1: All specifications apply for $V_S = \pm 15V$, $T_A = 25^{\circ}C$ unless otherwise specified.

typical application

Analog Data Distribution System

high accuracy connection

NOTE 1: MAX DROOP RATE = d_v/d_t = $[0.1\times10^{-9}/10\times10^{-9}+C_{EXT})]$ V/Sec. NOTE 2: TO ZERO ADJUST, SET DIGITAL INPUT TO SAMPLE MODE, APPLY OV TO THE ANALOG INPUT, AND TRIM R1 UNTIL ANALOG OUTPUT READS OV.

NOTE 3: SIGNAL GROUND AND ANALOG GROUND SHOULD BE TIED TOGETHER AT ONE POINT NEAR THE SUPPLY.

NOTE 4: C_{ext} should be low leakage teflon, polycarbonate or polystyrene.

explanation of terminology

Consumer Circuits

LM170/LM270/LM370 agc/squelch amplifier general description

The LM170 is a direct coupled monolithic amplifier whose voltage gain is controlled by an external DC voltage. The device features:

- Large Gain Control Range
- Self-contained AGC/Squelch system, with fastattack, slow-release.
- Low Distortion
- Minimum DC output shift as gain is varied
- Differential inputs, with large common-mode input range
- Outputs of several amplifiers may be directly summed in multichannel systems.
- Dissipates only 18 mW from +4.5V supply, usable with supply up to +24V.

Sensitive squelch threshold set by single external resistor.

In addition to communication system squelch and AGC applications, the LM170 is useful as constant-amplitude audio oscillator, linear low frequency modulator, single-sideband automatic load control, and as a variable DC gain element in analog computation.

The LM170 is specified for operation over the -55°C to +125°C military temperature range. The LM270 is specified for operation over the -25°C to +75°C temperature range. The LM370 is specified for operation over the 0°C to +70°C temperature range.

typical applications**

AGC Using Built-in Detection, Driven By Additional System Gain

Squelched Preamplifier with Hysteresis

absolute maximum ratings

Supply Voltage 24V Storage Temperature -65° C to $+150^{\circ}$ C Operating Temperature LM170 -55°C to +125°C LM270 -25°C to +75°C LM370 0° C to $+70^{\circ}$ C Differential Input Voltage ±19.5V Common-mode Input Voltage $(V_{CC} + 0.4)V$ Output Short Circuit Duration Indefinite +6.0V Voltage applied to Pin 3 or 4 +12.0V Voltage applied to Pin 2 1000 mW Surge power into Pin 6 (1 second max.) Continuous power into Pin 6 100 mW

electrical characteristics (Note 1)

PARAMETER	SYMBOL	CONDITIONS	М	N	TYP	MAX	UNITS
DC CHARACTERISTICS							
DC Output Voltage	V _O (DC)	V _{IN} (dd) = 0, V (gain control) = 0)	5.0	+6.0	+7.0	٧
DC Output Voltage	V _O (DC)	V _{IN} (dd) = 0 V (gain control) = +3.0	+	-5.0	+6.0	+7.0	· V
DC Output Shift	$\Delta V_{O}(DC)$	V _{IN} (dd) = 0 V (gain control) changed from 0 to +3.0V					
		LM170	-20	00	0	+200	mV
		LM270	-50	00	0	+500	mV
		LM370	-100	00	0	1000	
Power Supply Drain	IPS	V _{CC} = +24V V _{CC} = +4.5V			13.5 4.0		mA
		V _{CC} = +12V LM170, 270 LM370			8.0 8.0	10.0 12.0	mA mA
Input Bias Current	IIB	LM170, 270 LM370			5.0 5.0	10.0 12.0	μΑ
AC CHARACTERISTICS							
Voltage Gain	A _V	V (gain control) = 0					
		LM170, 270	3	7.5	40.0		
		LM370	3	5.0	40.0		dB
		f = 1 KHz					
Gain Reduction Range	ΔA_V	V (gain control) changed from 0 to +3.0V. Gain reduction occurs for control voltages between +2.1 and +2.5 volts, pin 3 or pin 4. f = 1 KHz			-80.0		dB

Note 1: T_A = 25°C, V_{CC} = +12V, V_{IN(cm)} = +6V

operating notes

Voltage gain is continuously variable from a maximum value, dependent upon supply voltage, to a minimum value, by application of a DC control voltage at Pin 3 or 4. DC output voltage is substantially independent of gain changes, provided that differential DC input voltage is minimized, so that direct-coupled or fast gain-control operation is possible with minimum disturbance of succeeding amplifiers.

Input characteristics are similar to those of an operational amplifier, with common-mode input range extending from +4.5 volts up to and including the positive supply voltage. Lowest distortion occurs at input levels of 20 mV p-p or less. Outputs of several amplifiers, which will have quiescent DC levels approximately half of the positive

supply, may be directly connected together in multi-channel summing systems, without damage.

Emitter-follower control inputs, Pins 3 and 4, may be used as positive peak detectors by connecting a smoothing capacitor at Pin 2, in AGC applications.

A sensitive squelch detector, independent of the amplifier's gain, provides fast-attack, slow release control at Pin 6, with threshold set by an external resistance from Pin 7 to ground. Injecting a portion of the control voltage at Pin 6 into this threshold results in a hysteresis, reducing response to the creatic inputs. Since threshold is dependent on DC levels, differential DC input voltage should be held constant for squelch operation.

variable gain characteristics

input and output characteristics

Consumer Circuits

LM171/LM271/LM371 integrated rf/if amplifier general description

The LM171/LM271/LM371 is a monolithic RF-IF amplifier capable of emitter coupled or cascode operation from DC to 250 MHz. Wide versatility is offered by having all inputs and outputs brought out so many circuit configurations are possible.

features

- Low internal feedback, allowing high stabilitylimited gain
- Versatility through user-connected configurations
- As emitter coupled amplifier, symmetrical, nonsaturated limiting

- As cascode, wide AGC range with constant input admittance
- As differential DC amplifier, low input offset voltage and wide dynamic range
- As video amplifier, externally selected gain, and high gain-bandwidth product
- 100 MHz tuned power gain

(Emitter Coupled) (Cascode)

24.6 dB 27.5 dB

In addition to amplifier service, the circuit is useful in mixer, oscillator, detector, modulator, and numerous other applications. The LM271 is a plug-in replacement for the 911C type.

schematic and connection diagrams

Metal Can Package

Order Number LM171H or LM271H or LM371H See Package 14

typical applications

100 MHz Cascode Test Circuit

FIGURE 1

100 MHz Emitter Coupled Test Circuit

FIGURE 2

Note: All unmarked bypass capacitors 1000 pF

5-5

absolute maximum ratings

 Supply Surge Voltage
 30V

 Supply Operating Voltage
 24V

 Storage Temperature
 -65° C to +125° C

 Operating Temperature
 LM171
 -55° C to +125° C

 LM271
 0° C to +100° C

 Power Dissipation
 230 mW

 Voltage between 1 and 7
 ±5V

 Voltage between 4 and 6
 ±5V

electrical characteristics These specifications apply for $V^+ = +12V$ and $T_A = 25^{\circ}C$

PARAMETER	CONDITIONS LM17		LM171	1 LM271				LM371			UNITS
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	ONTIS
DC CHARACTERISTICS											
Input Offset Voltage (V _{OS})	Ι ₈ = Ι ₁₀ = 500 μΑ			3			3			10	mV
Input Bias Current (IBIAS)		1.30		2.65	1.3		2.65	1.3		2.65	mA
Ratio of R1/R2		0.895		1.12	0.895		1.12	0.895		0.895	
Voltage at Pin 3 (V ₃)	V ₂ = +12V	2.0			2.0			2.0			V
Current Through Current Source Q3 (I _C)	I _C = I ₈ + I ₁₀	2.45		5.70	2.45		5.70	2.45		5.70	mA
Current Gain (β)		40			40			40			
Power Supply Current Drain (I _{PS})	I _{PS} = I _{BIAS} + I ₈ + I ₁₀			9.0			9.0			10.5	mΑ

EMITTER COUPLED CHARACTERISTICS (Input Signal < 10 mVrms) LM171, LM271, LM371

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Conductance (G ₁₁)	455 kHz		0.30	0.40	mmhos
Output Conductance (G ₂₂)	455 kHz		0.01	0.04	mmhos
Magnitude of Forward Transadmittance ($ Y_{21} $)	455 kHz	17.0	27.0		mmhos
Magnitude of Reverse Transadmittance ($ Y_{12} $)	200 MHz		0.1		mmhos
Tuned Power Gain (A _P)	10.7 MHz BW = 470 kHz		24.6		dB
Tuned Power Gain (A _P)	100 MHz BW = 5 MHz		22.7		dB

CASCODE CHARACTERISTICS (Input Signal < 10 mVrms) LM171, LM271, LM371

Input Conductance (G ₁₁)	455 kHz		1.1	2.5	mmhos
Output Conductance (G ₂₂)	455 kHz Connect Pin 1 to 7		0.01	0.04	mmhos
Magnitude of Forward Transadmittance ($ Y_{21} $)	455 kHz Pin 1 GND	25.0	50.0		mmhos
Magnitude of Reverse Transadmittance ($ Y_{12} $)	200 MHz 100 MHz		0.001		mmhos
Tuned Power Gain (A _P)	Pin 1 GND BW = 5 MHz		27.5		dB

THE FOLLOWING PARAMETERS APPLY FOR THE LM171 FOR –55 $^{\circ}$ C < T_A < +125 $^{\circ}$ C

Magnitude of Forward Transadmittance (Emitter Coupled) (Y_{21})	455 kHz e _{in} < 10 mV rms	17.0	*	mmhos
Magnitude of Forward Transadmittance (Cascode) ($ Y_{21} $)	455 kHz e _{in} < 10 mV rms	21.0		mmhos
	Pin 1 GND			

Pin 1 GND

BW = 6 MHz

25.0

dB

Tuned Power Gain (A_P)

biasing considerations

The active portion of the 171 is biased by monolithic matching of constant-current transistor Q3 and diode D1. R1 and R2 may be connected in one of four ways to force a current from $V_{\rm CC}$ through three diodes. Alternatively, an external resistor may be used. If pin 4 is connected to pin 6, directly, or through an inductor or resistor having less than 100 ohms DC resistance, the current drawn by Q3 will approximately equal that forced through D1.

Pin 3 may be used as a DC reference voltage, to bias pins 1 and 7, and is approximately the minimum voltage required to guarantee proper current source collector characteristics.

Typical Biasing for Emitter Coupled Amplifier

FIGURE 3

typical temperature characteristics

cascode configuration

The common-emitter, common-base, or cascode, configuration is useful as a tuned RF or IF amplifier to 250 MHz. Two common-base stages are formed by the differential pair, Q1 and Q2, which may be used as a gain control system by applying a differential gain control voltage between pins 1 and 7. With Q1 cut off, maximum gain is obtained, being reduced as Q1 is progressively turned on and Q2 turned off. The input common-emitter transistor presents a nearly constant input admittance as AGC is applied.

DC input bias is obtained through the input inductor from the bias chain, pin 4.

Pin 3 may be used as the DC reference for the AGC input, to assure adequate bias voltage for the collector of Q3. Where large AGC voltages are used, an external resistive divider, from pin 3 to 1 to the

AGC voltage may be used to optimize the DC AGC requirements. VAGC is defined as the voltage between pin 1 and 7.

At some frequencies, bypassing may be required at pins 1, 3, 4 or the V_{CC} connection.

emitter coupled configuration

The common-collector, common-base, or emitter-coupled configuration is useful as a symmetrically non-saturated limiting RF or IF amplifier to 150 MHz. Basically a differential amplifier, this configuration is especially suited to FM IF strips using conventional interstage tuning. While available gain is lower and noise figure higher than the cascode, emitter coupled operation may be considered wherever fast recovery from large-signal overdrive or excellent AM rejection is required.

Q3 is used as a current source, obtaining its bias from the diode chain. Current available from Q3 is shunted through Q1 or Q2, depending on input sig-

nal, and is equally divided when no signal is present, assuring inherently symmetrical operation. DC bias for pin 7 is obtained from the divider chain, and through the input inductor, the same bias is applied to pin 1.

For non-saturated operation, the output load must be chosen so that the collector voltage of the output transistor is higher than the DC reference voltage, with all source current shunted into the output, for the particular bias levels used.

At some frequencies, bypassing of pins 3, 6, 7, or the V_{CC} connection may be required.

dc, audio and video configuration

Convenient self-contained biasing, excellent monolithic matching, and high gain-bandwidth product make a wide variety of applications possible using resistive loads.

The biasing shown in Figure 3 uses R2 as collector load for a single-ended output, differential input amplifier. By choosing the proper external load resistor, bias configuration, and supply voltage, video amplifiers may be constructed to meet specific gain and bandwidth requirements, in either cascode or emitter coupled form.

With matched pairs of external load resistors, true differential DC amplifiers may be constructed, with large common-mode input range, input offset voltages typically 0.3 mV, and monolithically matched, self-contained current sources easily tailored to specific operating point requirements.

Cascode & Emitter Coupled Video Amplifiers Dynamic Range vs Load Resistance

Direct Coupled Test Circuit (Connect R_L Between Pins 8 and 10, or Connect Pin 2 to 8 for Internal R_L)

FIGURE 4

Cascode and Emitter Coupled Video Amplifiers Voltage Gain and Load Resistance vs

Cascode Video Amplifier Voltage Gain & Dynamic Range vs AGC Voltage

Consumer Circuits

LM172/LM272/LM372 am if strip

general description

The LM172/LM272/LM372 is a broadband AM receiver subsystem, including a high gain amplifier, an active detector, and self-contained automatic gain control. It is intended for IF or TRF applications from 50 kHz to 2 MHz. Bandpass shaping is performed by a single, external filter, which may be ceramic, crystal, mechanical, or LC, having single or multiple poles. The IF strip features:

- AGC Range: 60 dB
- Audio Output of 0.8V p-p for 80% modulated inputs, at carrier levels as low as 50 µV rms.
- Total dissipation only 8.4 mW from +6V supply, usable with supply up to +15V.

- AGC time constant and audio frequency response selected by choice of external capacitors.
- Internal supply regulators eliminate individual stage decoupling.
- AGC voltage available to drive receiver "front end."

The LM172 is specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The LM272 is specified for operation over the -25°C to $+75^{\circ}\text{C}$ temperature range. The LM372 is specified for operation over the 0°C to $+70^{\circ}\text{C}$ temperature range.

absolute maxium ratings

Supply Voltage Range Storage Temperature
Operating Temperature I M1

Operating Temperature LM172 LM272

LM272 LM372

RF Input Level, Pin 2

+6V to +15V -65°C to +150°C -55°C to +125°C -25°C to +75°C 0°C to +70°C 500 mV rms

electrical characteristics (T_A = 25°C)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Drain	I _{ps}	V _{CC} = 6V, Input = 50 mV f = 455 kHz		1.4		mA
		V _{CC} = 6V, Input = 50 μV f = 455 kHz		1.7		mA
		V _{CC} = 15V, Input = 50 mV f = 455 kHz LM172/272 LM372		2.5 2.5	2.65 3.2	mA mA
AGC Range	AGCR	V _{CC} = 6V, f = 455 kHz LM172/272 LM372	50 47	69 69		dB dB
AGC Threshold	V _{IN} (th)	V _{CC} = 6V, f = 455 kHz		50		μV, rms
Maximum Usable Frequency	MUF	V _{CC} = 6V		2.0		MHz
Audio Output Voltage	V _{OUT}	V_{IN} Between 50 μ V and 50 mV, 455 kHz, 80% modulated by 100 Hz,				
		V _{CC} = 6V LM172/272 LM372	0.4 0.35	0.8 0.8		V, p-p V, p-p
		V _{CC} = 15V LM172/272 LM372	0.45 0.40	0.9 0.9		V, p-p V, p-p

input-output impedance characteristics

typical characteristics

power supply characteristics

Consumer Circuits

LM273/LM373 am/fm/ssb if amp/detector LM274/LM374 am/fm/ssb if video amp/detector

general description

The LM273/LM373 and LM274/LM374 are broadband communications subsystems, capable of performing the diverse functions required in AM, FM or single sideband receivers and transmitters. In addition, the LM274/LM374 may operate as high gain AGC'd video amplifier. Bandpass shaping may be performed by a single external filter, connected between amplifier sections, at frequencies from audio up to 30 MHz. The first section of the LM273/LM373 is optimized to drive low impedance loads, such as mechanical or ceramic filters. The LM274/LM374 has a high output impedance, ideal for high-Z crystal, LC or ceramic filters.

The LM273 and LM274 are specified for operation over the -25° C to $+100^{\circ}$ C military temperature range. The LM373 and LM374 are specified for operation over the 0° C to $+70^{\circ}$ C temperature range.

features

CONNECTED FOR AM OPERATION

- High gain; typical sensitivity of $10 \,\mu\text{V}$ at $455 \,\text{kHz}$
- Wide bandwidth; 30 MHz capability
- Self-contained detector and AGC system
- Wide AGC range, greater than 60 dB for a 10 dB output change at 27 MHz
- Less than ±1 dB change in audio output -20°C to +100°C, typically
- Access to detector input for S/N improvement
- No DC paths required through external filters

 Low feedthrough between amplifier sections, typically better than 65 dB

CONNECTED FOR FM OPERATION

- Three emitter coupled limiting stages and simple quadrature detector
- Detection of ±5 kHz deviation FM at either 455 kHz or 10.7 MHz
- Two separated amplifier blocks, allowing filtering in two or more blocks
- No DC paths required through external filters or through quadrature network

CONNECTED FOR SSB OPERATION

- Double balanced product detector
- Self contained audio peak AGC system
- Easy external tailoring of AGC characteristic for desired AGC figure of merit

CONNECTED FOR VIDEO AMPLIFIER OPERATION

- Internal video peak detector for video AGC
- High and low level video outputs
- Gated video AGC capability

In addition, these versatile microcircuits may be used as:

- Constant amplitude or amplitude modulated RF oscillator
- Synchronous demodulating IF strip
- Mixer and IF, using AGC section as a mixer
- Double sideband modulator with audio AGC

connection diagrams

Metal Can Package

Order Number LM273H or LM373H LM274H or LM374H See Package 14

Dual-In-Line Package

Order Number LM373N or LM374N See Package 22

absolute maximum ratings

Supply Voltage, Operating
Supply Voltage, Surge (100 ms max)
AC Voltage Applied to Any Pin
DC Voltage Applied to AGC Section Output Pin
LM273/LM373

LM273/LM373 +10V, -0.5V LM274/LM374 +18V, -0.5V

18V

24V

1.4V_{p-p}

DC Voltage Applied to Any Other Pin Junction Temperature (Note 1) Storage Temperature Range Operating Temperature Range LM273, LM274 LM373, LM374

LM273/LM274

+8V, -0.5V 150°C -65°C to +150°C

-25°C to +100°C 0°C to +70°C

LM373/LM374

electrical characteristics

 $(T_A = 25^{\circ}C, V_{CC} = +12V \text{ unless otherwise noted})$ (Subscript numbers in parentheses are DIP pin numbers)

DC CHARACTERISTICS

	01/44001	CONDITIONS	LIVI2/3/LIVI2/4		LIV	LIVI3/3/LIVI3/4		UNITS	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	ONTIS
Power Supply Current	I ₁₀₍₁₄₎	V _{CC} = 12V, AM Mode		14	20		14	20	mA
		-20° C \leq T _A \leq $+100^{\circ}$ C			21				mA
AGC Input Current	I ₁	V _{AGC} ≤5V		50	110		50	110	μΑ
		$-20^{\circ}C \le T_A \le +100^{\circ}C$			110				μΑ
AGC Section Quiescent Output	V ₉₍₁₂₎	V _{AGC} = 0V, LM273/LM373		4.75			4.75		V
	I ₉₍₁₂₎	V _{AGC} = 0V, LM274/LM374	0.5	0.7	1.0	0.5	0.7	1.0	mA
AGC Section Output Shift		$V_{AGC} = 0V$ to $V_{AGC} = 5V$							
	∆V ₉₍₁₂₎	LM273/LM373		0.1			0.1		V
	∆I ₉₍₁₂₎	LM274/LM374		-0.1			-0.1		mA
Second Section Quiescent Output Voltage	V ₇₍₉₎			3.8			3.8		V
Peak Detector Quiescent Output Voltage	V ₈₍₁₀₎			3.8			3.8		V
VIDEO CHARACTERISTICS									
AGC Section Voltage Gain	A ₂₋₉₍₁₁₎	V _{AGC} = 0V, f = 455 kHz	30	32		29	32		dB
		V _{AGC} = 4.5V			-40			-40	dB
		-20° C \leq T _A \leq 100 $^{\circ}$ C LM273/LM373	28						dB
AGC Section Transconductance	9m2-9(11)	V _{AGC} = 0V, f = 455 kHz	28	40		28	40		mmhos
		-20°C ≤ T _A ≤ 100°C LM274/LM374	28						mmhos
AGC Section Bandwidth	BWAGC	Z _L = 1k 3 pF		30			30		MHz
AGC Section Output Swing	V ₉₍₁₂₎ max _{p-p}	$R_L = 1k$, $V_{AGC} = 0V$, $V_2 = \pm 300 \text{ mV}$,	0.95	1.4		0.78	1.4		V _{p-p}
		$-20^{\circ}\text{C} \le \text{T}_{\text{A}} \le 100^{\circ}\text{C}$	0.7						V _{p-p}
AGC Section Conversion Voltage Gain	A _{C, AGC}	f ₁ = 30 MHz, f ₂ = 30.455 MHz, e ₂ = 800 mVrms		22			22		dB

AC PORT PARAMETERS (Typical, e_{IN} = 20 mVrms)

 $A_{4-7(11)}$

V₇₍₁₁₎ max_{p-p}

 BW_2

Second Section Voltage Gain

Second Section Bandwidth

Second Section Output Swing

TERMINAL		LM273/LM373		LM274/LM374					
TERMINAL	f = 455 kHz	f = 10.7 MHz	f = 27 MHz	f = 455 kHz	f = 10.7 MHz	f = 27 MHz			
2 (V _{AGC} = 0V)	1.2k 2.5 pF	1.2k 2.5 pF	1.15k 2.6 pF	1.2k 2.5 pF	1.2k 2.5 pF	1.15k 2.6 pF			
$2(V_{AGC} = 5V)$	1.18k 3 pF	1.18k 3 pF	1.1k 2.7 pF	1.18k ∐3 pF	1.18k 3 pF	1.1k 2.7 pF			
4	4.5k 4 pF	5k 5 pF	4.3k 5.5 pF	4.5k 4 pF	5k 5 pF	4.3k ∏5.5 pF			
6(8)	3.0k 7.7 pF	3.0k 7.7 pF	3.0k 8.0 pF	3.0k 7.7 pF	3.0k 7.7 pF	3.0k 8.0 pF			
7(9)	1.0k 6 pF	1.0k 6 pF	1.0k 5 pF	1.0k 6 pF	1.0k 6 pF	1.0k 5 pF			
9(12)	70Ω –100 pF	60Ω ∥5 pF	200Ω Ⅱ –90 pF	600k 5.5 pF	100k ∥3.3 pF	10k 3.5 pF			

32.5 37

0.93 1.4

0.75

31

20

29.5

.83 1.4

20

dB

MHz

 $V_{p - p}$

Note 1: For operation at elevated temperatures, derate devices based on 150° C maximum junction temperature and 150° C/W junction to ambient or 45° C/W junction to case thermal coefficients for the metal can.

(See Figure 8)

f = 455 kHz

 $T_A = 100^{\circ}C$

Z_L = 100k || 3 pF

 $V_{3-4} = \pm 100 \text{ mV}_{p-p}$

 $-20^{\circ} C \le T_A \le 100^{\circ} C$

electrical characteristics (con't)

TYPICAL AM PERFORMANCE (See Figures 1 and 2)

PARAMETER	CONDITIONS	f = 455 kHz	f = 10.7 MHz	f = 27 MHz	UNITS
Sensitivity	(Signal + Noise)/Noise = 10 dB	10	15	30	μVrms
AGC Threshold	Output 3 dB below extrapolated low level gain curve value for same input	35	55	110	μVrms
AGC Figure of Merit	Number (dB) input change from 100 mVrms for 10 dB output change	68	63	60	dB
Gain Control Range	$V_1 = 0 \text{ to } V_1 = +5V$	80	70	66	dB
Audio Output	R _{AGC} = 2.4k, V _{IN} 100 mVrms f _m = 1 kHz, m = 0.7	100	100	100	mVrms
	As above, $T_A = 100^{\circ}C$ LM273 and LM274 only	90	90	90	mVrms
Signal to Noise Ratio	M = 0.7 to M = 0 e _{IN} = 30 mVrms	42	38	40	dB
Audio Distortion	M = 0.7, f _m = 1 kHz, e _{IN} = 10 mV	5	3.5	2.8	%
TYPICAL FM PERFORM	MANCE (See Figures 3 and 4)				
Limiting Threshold	e _O = 3 dB from value at				
	e _{IN} = 100 mVrms				
	∆f = ±75 kHz		800	_	μVrms
	∆f = ±5 kHz	800	800	-	μVrms
AM Rejection Ratio	M _{fm} = 1, M _{am} = 0.3 e _{IN} = 10 mVrms				
	∆f = ±75 kHz		45	-	dB
	∆f = ±5 kHz	35		-	dB
Audio Output	e _{IN} = 10 mVrms				
	∆f = ±75 kHz		80	-	mVrms
	∆f = ±5 kHz	70	38	-	mVrms
	@ T _A = 100°C, ∆f = ±75 kHz		50	_	mVrms
	@ $T_A = 100^{\circ}$ C, $\triangle f = \pm 5 \text{ kHz}$ LM273 and LM274 only	40	19	-	mVrms
Audio Distortion	e _{IN} = 10 mVrms				
	∆f = ±75 kHz		1.5	-	%
	∆f = ±5 kHz	2	1.0	_	%
TYPICAL SSB PERFORI	MANCE (See Figures 5 and 6)				
Sensitivity	(Signal + Noise)/Noise = 10 dB e _{LO} = 60 mVrms	25	30	60	μVrms
AGC Threshold	Same as AM	300	300	500	μVrms
AGC Figure of Merit	Same as for AM	60	60	50	dB
Audio Output Voltage	e _{IN} = 100 mVrms	60	80	85	mVrms
	T _A = 100°C LM273 and LM274 only	40	55	60	mVrms

schematic diagram

Pin connections shown are for TO-5 package only.

typical performance characteristics (con't)

APPLICATION HINTS

The LM273/LM373 and LM274/LM374 devices have been designed for stability and minimum usage of external components, while at the same time offering wide versatility through access to inputs and outputs of nearly every major functional block of the device. This makes possible the detection of AM, FM, and SSB signals with a single device with a minimum of circuitry switching. Experience has shown that for optimum performance of the multiple mode IF strip, the following suggestions should be noted.

First, as with any radio frequency gain device, proper layout and minimum lead length should be observed. The first gain block, Pin 2 to Pin 9, shows a typical gain of 32 dB and the second gain block, Pin 4 to Pin 7, shows a typical gain of 37 dB so it is clear why any stray coupling or long leads should be kept clear from any of the gain input pins. Despite it's high gain, however, the device does not require any shielding between stages. Construction on a copperclad printed circuit type board is more than adequate. It should also be observed that good power supply bypassing directly at Pin 10 and DC feedback bypassing at Pin 3 is always necessary.

The devices can be wide-band coupled to provide video gain response up to approximately 50 MHz. For AM operation, however, it is much more desirable to limit the IF bandwidths. This will greatly increase both input sensitivity and AGC figure of merit by preventing the device from AGCing on wideband detected noise. There are two ways of accomplishing this. One is to insert filtering from the first gain block to the second, Pin 9 to Pin 4, but the most effective way is to AC couple an L-C tank from the input of the active peak detector to ground. A lossy filter from Pin 9 to Pin 4 should be avoided as this will greatly reduce the audio output and AGC figure merit. In addition the tank on Pin 7 should have high enough Q to limit noise yet low enough to pass the full IF signal. It should also have a high enough impedance (>5k) to avoid affecting the gain of that stage. Proper audio output is attained by a small capacitor at Pin 8 to peak detect the RF envelope, followed by a series RC roll off to shape the audio response. Here again excessive loading will reduce available output. There is a trade off available between audio level out and AGC range so the feedback resistor from Pin 8 to the AGC feedback, Pin 1, should be adjusted to give the desired results. Pin 1 must be filtered well with approximately 15 μ F capacitor or larger to prevent any AC variation from causing erratic AGC action.

For proper FM operation, the input level needs to be larger, on the order of 1 mV to give full limiting which is necessary for good AM rejection. Here again low loss coupling from Pin 9 to Pin 4 is desired. The phase shift network on Pin 6 should be shielded to prevent any extraneous RF pickup or radiation. Also the Q of the network should be adjusted to give the proper bandwidth for the type of signal to be detected, whether wideband or narrowband FM. Obviously, it should be tuned to the same center frequency as the IF input and the Pin 9 to Pin 4 filtering so that detection takes

place symmetrically around the resonant frequency of the tank. Since the audio output for FM is at Pin 7, it should be RF bypassed along with audio rolloff and de-emphasis.

For SSB operation, the devices operate almost the same as in the AM mode, with the exception that the product detector which was unbalanced and used as a simple gain stage for AM is now balanced and used for detection. The local oscillator signal is fed into Pin 6 at an optimum level around 60 mVrms. For better AGC, a capacitor may be added to Pin 8 in addition to the one already at Pin 1 to provide even more filtering for AGC feedback voltage. The output level and AGC figure of merit is still adjusted by the feedback resistors from Pin 8 to Pin 1.

typical applications

FIGURE 1. LM273/LM373 AM IF Connection

FIGURE 2. LM274/LM374 AM IF Connection

FIGURE 3. LM273/LM373 Wide Band FM IF Connection

typical applications (con't)

FIGURE 4. LM273/LM373 Narrow Band FM IF Connection

FIGURE 5. LM273/LM373 SSB & CW IF Connection

FIGURE 6. LM274/LM374 SSB & CW IF Connection

typical applications (con't)

FIGURE 7. LM274/LM374 Video Amplifier Configuration

FIGURE 8. LM274/LM374, LM273/LM373 First Stage Converter Operation for AM Signal Detection @ 455 kHz

Consumer Circuits

LM175/LM275/LM375 oscillator and buffer with TTL output

general description

The LM175/LM275/LM375 is a monolithic, differential pair, general purpose oscillator. It may be used with crystal control or with LC or RC tanks. Two output configurations are possible. It may be connected to the internal isolating buffer to provide sine or square wave outputs, or to the internal logic buffer with output levels and switching times compatible with TTL and DTL logic circuitry. It provides extremely high temperature and power supply versus frequency rejection.

The LM175 is specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The LM275 is specified for operation over the -25°C to $+85^{\circ}\text{C}$ temperature range. The LM375 is specified for operation over the 0°C to $+70^{\circ}\text{C}$ temperature range.

features

- Oscillation up to 200 MHz
- Operation from supplies from 4.5V to 24V (Logic buffer maximum supply at 7.0V)
- High supply voltage rejection, typically 0.1 ppm/V
- Low temperature coefficient, typically 0.05 ppm/°C
- Variable drive to crystal to limit dissipation
- Capable of fundamental or overtone, series or parallel mode of operation
- Separate power supply lead for logic buffer for noise isolation
- Low power dissipation

schematic and connection diagrams

Dual-In-Line Package

Order Number LM175D or LM275D or LM375D See Package 1

Order Number LM375N See Package 22

typical applications

FIGURE 1. 10 MHz L-C Sine Wave Oscillator

FIGURE 2. 1 MHz Crystal Oscillator with TTL Output

absolute maximum ratings

Supply Operating Voltage (Pin 14) Supply Operating Voltage (Pin 13) Differential Input Voltage ΔV P $_2$ to Pin 3 -65° C to $+150^{\circ}$ C 24V Storage Temperature Range 7V Operating Temperature Range LM175 -55°C to +125°C 5V LM275 -25°C to +85°C 0°C to 70°C LM375 5V Lead Temperature (Soldering, 10 sec) Power Dissipation (Note 1) 500 mW

electrical characteristics (T_A = 25°C, V_{CC} = 5V unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS						
Power Supply Current (Pin 14)	I _{PS14}	V _{CC} = 24V	4.0	6.0	12.0	mA
Power Supply Current (Pin 13)	I _{PS13}	No Load at Pin 12	4.0	6.0	14.0	mA
Oscillator Output Current	losc	R_L (Pin 5) = 1 k Ω Pin 9 Open, Pin 10 Open Pin 9 Tied to Pin 10 Pin 9 Grounded, Pin 10 Open Pin 10 Grounded, Pin 9 Open	120 160 300 750	140 190 360 1000		μΑ _{p-p} μΑ _{p-p} μΑ _{p-p} μΑ _{p-p}
Buffer Output Current	IBUF		2.5	3.0		mA _{p-p}
Logic Buffer Output Voltage	V _{TTL}	Input LOW Input HIGH	2.1	2.7		
		I _{SINK} = 1.6 mA		200	400	mV
The Following Specifications ap	ply to -55° C $<$	$T_{A} < +125^{\circ}C$				
Oscillator Output Current	l _{osc}	R_L (Pin 5) = 1 k Ω Pin 9 Open, Pin 10 Open Pin 9 Tied to Pin 10 Pin 9 Grounded, Pin 10 Open Pin 10 Grounded, Pin 9 Open	100 130 250 600			μΑ _{p-p} μΑ _{p-p} μΑ _{p-p} μΑ _{p-p}
Buffer Ouptut Current	I _{BUF}		2.0			mA _{p-p}
AC CHARACTERISTICS						
Oscillator Gain (at 1 kHz)	gm _{OSC}	Pin 9 Open, Pin 10 Open Pin 9 Tied to Pin 10 Pin 9 Grounded, Pin 10 Open Pin 9 Open, Pin 10 Grounded		1.4 1.9 3.6 10.0		mmhos mmhos mmhos
Oscillator 3 dB Bandwidth	BWosc	$R_S = R_L \text{ (Pin 5)} = 50\Omega$		200		MHz
Buffer Gain (at 1 kHz)	gm _{BUF}	R _L (Pin 1) = 500Ω Linear Mode Limiting Mode		8 30		mmhos mmhos
Buffer 3 dB Bandwidth	BW _{BUF}	$R_S = R_L$ (Pin 1) = 50 Ω Linear Mode Limiting Mode		200 80		MHz MHz
Logic Buffer Rise Time				20	50	ns
Logic Buffer Fall Time				20	50	ns

Note 1: For operation at elevated temperatures, the device must be operated based on a 150°C maximum junction temperature with a thermal resistance of 140°C/W for the metal DIP package and 100°C maximum junction temperature with a thermal resistance of 150°C/W for the plastic DIP package.

electrical characteristics (con't)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
OSCILLATOR CHARACTERISTICS (See Oscillator Circuit)								
Frequency vs Power Supply Rejection		5V < V _{CC} < 10V		0.1		ppm/V		
Frequency vs Temperature Rejection		-55° C $<$ T _A $< +125^{\circ}$ C		0.05		ppm/°C		
Load Pull (Change in Frequency vs Change in Buffer Load Impedance)		$0 \le R_{L BUF} \le \infty$		0.01		ppm		
INPUT-OUTPUT TERMINAL C	HARACTER	ISTICS						
Oscillator Input Resistance	R ₄	Minimum Current Maximum Current		10 4.5		$k\Omega$ $k\Omega$		
	R ₆	Minimum Current Maximum Current		10 4.5		$k\Omega$		
Oscillator Input Capacitance	C ₄ C ₆			3 3		pF pF		
Oscillator Output Resistance	R ₅	Minimum Current Maximum Current		100 30		$k\Omega$		
Oscillator Output Capacitance	C ₅			3		pF		
Buffer Input Resistance	R ₂ R ₃			10 10		kΩ kΩ		
Buffer Input Capacitance	C ₂ C ₃			2 2		pF pF		
Buffer Output Resistance	R ₁			100		kΩ		
Buffer Output Capacitance	C ₁			5		рF		
Logic Buffer Input Resistance	R ₁₁			1.2		kΩ		
Logic Buffer Input Capacitance	C ₁₁			4		pF		

typical oscillator circuit connections

typical oscillator circuit connections (con't)

Frequency and Output Voltage for Series Tuned VCXO

10,705,200

10,705,200

10,702,000

10,703,600

10,698,800

10,697,200

24 20 16 12 8 4 0

VCONTROL

10.7 MHz Voltage Controlled Crystal Oscillator Series Tuning

10.7 MHz Series Resonant Crystal Oscillator

10.7 MHz Parallel Resonant Crystal Oscillator

typical performance characteristics

typical performance characteristics (con't)

Phase Shift from Pin 4 to Pin 5 -300 V_{CC} = 5V $R_S = 50\Omega$ $R_L = 50\Omega$ PHASE SHIFT IN DEGREES T_A = 25°C -200 -150 -100 -50 0 10 100 FREQUENCY (MHz)

dc test circuit

- use to seet seared usumstor current
 Used to swing soliditator output and measure I_{OSC}.
 Used to swing buffer output and measure I_{RUF}.
 Used to switch TTL buffer to high and low states
 Switches in maximum guaranteed TTL load to measure V_{TTL} in the low state

LM377 dual 2 watt audio amplifier general description

The LM377 is a monolithic dual power amplifier which offers high quality performance for stereo phonographs, tape players, recorders, and AM-FM stereo receivers, etc.

The LM377 will deliver 2W/channel into 8 or 16Ω loads. The amplifier is designed to operate with a minimum of external components and contains an internal bias regulator to bias each amplifier. Device overload protection consists of both internal current limit and thermal shutdown.

features

- A_{VO} typical 90 dB
- 2W per channel
- 80 dB ripple rejection
- 75 dB channel seperation
- Internal stabilization

- Self centered biasing
- 3 MΩ input impedance
- 10 26V operation
- Internal current limiting
- Internal thermal protection

applications

- Multi-channel audio systems
- Tape recorders and players
- Movie projectors
- Automotive systems
- Stereo phonographs
- Bridge output stages
- AM-FM radio receivers
- Intercoms
- Servo amplifiers
- Instrument systems

schematic and connection diagrams

Order Number LM377N-10 See Package 30

Order Number LM377N See Package 22

Supply Voltage 26V
Input Voltage 0V to V_{SUPPLY}
Operating Temperature 0°C to +70°C
Storage Temperature -65°C to +150°C
Junction Temperature 150°C
Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics

 V_S = 20V, T_{TAB} = 25°C, R_L = 8 Ω , A_V = 50 (34 dB), unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Total Supply Current	P _{OUT} = 0W P _{OUT} =1.5W/Channel		15 430	50 500	mA mA
DC Output Level			10		V
Supply Voltage		10		26	V
Output Power	T.H.D. = < 5%	2	2.5		W
T.H.D.	P _{OUT} = 0.05W/Channel, f = 1 kHz P _{OUT} = 1W/Channel, f = 1 kHz P _{OUT} = 2W/Channel, f = 1 kHz		0.25 0.07 0.10	1	% % %
Offset Voltage			3		mV
Input Bias Current			500		nA
Input Impedance		3			MΩ
Open Loop Gain	$R_S = 0\Omega$	66	90		dB
Output Swing			V _S -6		V _{P.P}
Channel Separation	$C_F = 250 \mu F$, $f = 1 \text{ kHz}$	50	70		dB
Ripple Rejection	f = 120 Hz, C _F = 250μF	60	80		dB
Current Limit			1.5		А
Slew Rate			1.4		V/µs
Equivalent Input Noise Voltage	R _S = 600Ω, 100 Hz – 10 kHz		3		μVrms

Note 1: For operation at ambient temperatures greater than 25° C the LM377 must be derated based on a maximum 150° C junction temperature using a thermal resistance which depends upon device mounting techniques.

Note 2: Dissipation characteristics are shown for four mounting configurations.

- a. Infinite sink 13.4°C/W
- b. P.C. board +V $_7$ sink 21° C/W. P.C. board is 2 1/2 square inches. Staver V $_7$ sink is 0.02 inch thick cooper and has a radiating surface area of 10 square inches.
- c. P.C. board only -29° C/W. Device soldered to 2 1/2 square inch P.C. board.
- d. Free air -58° C/W.

typical performance characteristics (con't)

typical applications

15W Per Channel Audio Amplifier

4W Bridge Amplifier

Simple Stereo Amplifier

LM380 audio power amplifier general description

The LM380 is a power audio amplifier for consumer application. In order to hold system cost to a minimum, gain is internally fixed at 34 dB. A unique input stage allows inputs to be ground referenced. The output is automatically self entering to one half the supply voltage.

The output is short circuit proof with internal thermal limiting. The package outline is standard dual-in-line. A copper lead frame is used with the center three pins on either side comprising a heat sink. This makes the device easy to use in standard p-c layout. A mini dual-in-line package version with reduced power capability also available.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs,

alarms, ultrasonic drivers, TV sound systems, AM-FM radio, small servo drivers, power converters, etc.

features

- Wide supply voltage range
- Low quiescent power drain
- Voltage gain fixed at 50
- High peak current capability
- Input referenced to GND
- High input impedance
- Low distortion
- Quiescent output voltage is at one-half of the supply voltage
- Standard dual-in-line package

block and connection diagrams

Dual-In-Line Package

Order Number LM380N See Package 22

Dual-In-Line Package

Order Number LM380N-8 See Package 20

schematic diagram

Supply Voltage	22V
Peak Current	1.3A
Package Dissipation 14 Pin DIP (Note 6)	5.0W
Package Dissipation 8 Pin DIP (Note 7)	660 mW
Input Voltage	±0.5V
Storage Temperature	-65° C to $+150^{\circ}$ C
Operating Temperature	0°C to +70°C
Junction Temperature	+150°C
Lead Temperature (Soldering, 10 sec)	+300°C

electrical characteristics (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Power	P _{OUT(RMS)}	(Notes 3, 4) $R_L = 8\Omega$, THD = 3%	2.5			W
Gain	A _V		40	50	60	V/V
Output Voltage Swing	V _{OUT}	$R_L = 8\Omega$		14		V _{p-p}
Input Resistance	Z _{IN}			150k		Ω
Total Harmonic Distortion	THD	(Note 4, 5)		0.2		%
Power Supply Rejection Ratio	PSRR	(Note 2)		38		dB
Supply Voltage	Vs		8		22	V
Bandwidth	BW	$P_{OUT} = 2W, R_L = 8\Omega$		100k		Hz
Quiescent Supply Current	lα			7	25	mA
Quiescent Output Voltage	ν _{ουτα}		8	9.0	10	V
Bias Current	IBIAS	Inputs Floating		100		nA ·
Short Circuit Current	I _{sc}			1.3		А
				ľ		

Note 1: $V_S = 18V$ and $T_A = 25^{\circ}C$ unless otherwise specified.

Note 2: Rejection ratio referred to the output with $C_{BYPASS} = 5 \mu F$.

Note 3: With device Pins 3, 4, 5, 10, 11, 12 soldered into a 1/16" epoxy glass board with 2 ounce copper foil with a minimum surface of 6 square inches.

Note 4: If oscillation exists under some load conditions, add 2.7Ω and $0.1~\mu fd$ series network from Pin 8 to Gnd.

Note 5: $C_{BYPASS} = 0.47 \mu fd$ on Pin 1.

Note 6: Pins 3, 4, 5, 10, 11, 12 at 25°C derate 25°C/W above 25°C case.

Note 7: For operating at elevated temperatures, the device must be derated based on a 150° C maximum junction temperature and a thermal resistance of 187° C/W junction to ambient.

heat sink dimensions

COPPER WINGS 2 REQUIRED SOLDERED TO PINS 3, 4, 5, 10, 11, 12 THICKNESS 0.04 INCHES

typical performance characteristics

Po - OUTPUT POWER (WATTS)

OUTPUT POWER (WATTS)

FREQUENCY

typical applications

Phono Amplifier

V₄-1EV

VOLUME

TONE

CONTROL

T

Intercom

Phase Shift Oscillator

LM381 low noise dual preamplifier general description

The LM381 is a dual preamplifier for the amplication of low level signals in applications requiring optimum noise performance. Each of the two amplifiers is completely independent, with individual internal power supply decoupler-regulator, providing 120 dB supply rejection and 60 dB channel separation. Other outstanding features include high gain (112 dB), large output voltage swing (V_{CC} -2V) p-p, and wide power bandwidth (75 kHz, 20V_{p-p}). The LM381 operates from a single supply across the wide range of 9 to 40V.

Either differential input or single ended input configurations may be selected. The amplifier is internally compensated with the provision for additional external compensation for narrow band applications.

features

- Low Noise .5 μ V total input noise
- High Gain 112 dB open loop
- Single Supply Operation
- Wide supply range 9-40 V
- Power supply rejection 120 dB
- Large output voltage swing (V_{CC} -2V)_{p-p}
- Wide bandwidth 15 MHz unity gain
- Power bandwidth 75 kHz, 20 V_{p-p}
- Internally compensated
- Short circuit protected

schematic and connection diagrams

Dual-In-Line Package

Order Number LM381N See Package 22

typical applications

Typical Tape Playback Amplifier

Two-Pole Fast Turn-On NAB Tape Preamp

Typical Magnetic Phono Preamp.

Audio Mixer

5

Supply Voltage
Power Dissipation
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

+40V 800 mW 0°C to 70°C -65°C to +150°C 300°C

electrical characteristics $T_A = 25^{\circ}C$, $V_{CC} = 14V$, unless otherwise stated.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Voltage Gain	Open Loop (Differential Input)		160,000		V/V
3	Open Loop (Single Ended)		320,000		V/V
Supply Current	V_{CC} 9 to 40V, $R_L = \infty$		10		mA
Input Resistance					
(Positive Input)			100		kΩ
(Negative Input)			200		kΩ
Input Current					
(Negative Input)			0.5		μΑ
Output Resistance	Open Loop		150		Ω
Output Current	Source		8		mA
	Sink		2		mA
Output Voltage Swing	Peak-to-Peak		V _{CC} - 2		V
Small Signal Bandwidth			15		мна
Power Bandwidth	20 V _{p-p} (V _{CC} = 24V)		75		kHz
Maximum Input Voltage	Linear Operation			300	mVrr
Supply Rejection Ratio	f = 1 kHz		120		dB
Channel Separation	f = 1 kHz		60		dB
Total Harmonic Distortion	75 dB Gain, f = 1 kHz		0.1		%
Total Equivalent Input Noise	$R_S = 600\Omega$, 10 – 10,000 Hz (Single Ended Input)		0.5	0.7	μVrn
LM381A			0.5	0.7	μVrn
LM381			0.5	1.0	μVrn
Noise Figure	50 kΩ, 10 – 10,000 Hz)		1.0		dB
	10 kΩ, 10 − 10,000 Hz		1.3		dB
	5 kΩ, 10 – 10,000 Hz		1.6		dB

typical performance characteristics Large Signal Frequency Response Gain vs Temperature V_{CC} vs I_{CC} 22 120 13 PEAK-PEAK OUTPUT VOLTAGE SWING V_{CC} = 40V, A_V = 1000 · 20 12 < 1% DISTORTION 18 115 VOLTAGE GAIN (dB) 11 16 14 I_{CC} (mA) 10 12 110 10 q 8 105 4 100 100M 25 50 75 5 20 40 1 kHz 10 kHz 100 kHz 10M 0 10 15 25 30 35 1M FREQUENCY (Hz) TEMPERATURE (°C) SUPPLY VOLTAGE (V) P-P Output Voltage Swing vs % Distortion Channel Separation Vcc 1.1 40 70 PEAK-PEAK OUTPUT VOLTAGE SWING 1.0 V_{CC} = 12V 60 .9 CHANNEL SEPARATION (dB) .8 50 .7 DISTORTION 40 .6 .5 NAB EQUIVALENT 30 .4 .3 20 10 .2 A_V = 1000 10 .1 $V_{\rm CC}$ = 12V0 30 40 10 20 1k 100k 10 1 kHz 10 kHz 100 kHz 1 MHz SUPPLY VOLTAGE (V) FREQUENCY (Hz) FREQUENCY (Hz) Voltage Gain vs Supply PSRR vs Frequency Gain and Phase Response Voltage 130 120 120 110 15 110 120 100 30 100 90 45 90 80 60 VOLTAGE GAIN (dB) 110 80 75 PSRR (dB) GAIN (dB) 70 70 PHASE 100 60 90 60 50 105 50 120 40 40 30 135 30 20 150 165 20 180 10 70 10 100k 10M 10 100 1k 10k :1M 20 25 30 FREQUENCY (Hz) SUPPLY VOLTAGE (V) FREQUENCY (Hz) Noise Voltage vs Frequency Noise Current vs Frequency Pulse Response 12 9 NOTE: R_S = 0 Mode-single ended R_S= 50k MODE-SINGLE ENDED 8 .5 10 6 V_{IN} (nV/√Hz) PULSE OUTPUT 5 In (pA/V .3 3 .2 2 0 104 100 1k 100 1k 10k -20 -10 0 10 20 30 40 50 60 70 80 f (Hz) f (Hz) TIME (µs)

LM382 low noise dual preamplifier general description

The LM382 is a dual preamplifier for the amplication of low level signals in applications requiring optimum noise performance. Each of the two amplifiers is completely independent, with individual internal power supply decoupler-regulator, providing 120 dB supply rejection and 60 dB channel separation. Other outstanding features include high gain (100 dB), large output voltage swing (V_{CC} –2V) p-p, and wide power bandwidth (75 kHz, 20 V_{p-p}). The LM382 operates from a single supply across the wide range of 9 to 40V.

A resistor matrix is provided on the chip to allow the user to select a variety of closed loop gain options and frequency response characteristics such as flat-band, NAB or RIAA equalization. The circuit is supplied in the 14 lead dual-in-line package.

features

- Low noise $-0.8 \mu V$ total equivalent input noise
- High gain 100 dB open loop
- Single supply operation
- Wide supply range 9 to 40V
- Power supply rejection 120 dB
- Large output voltage swing
- Wide bandwidth 15 MHz unity gain
- Power bandwidth 75 kHz, 20 V_{p-p}
- Internally compensated
- Short circuit protected.

schematic and connection diagrams

Dual-In-Line Package

Molded Dual-In-Line Package (N)
Order Number LM382N
See Package 22

typical applications

Tape Reamplifier (NAB Equilization)

Phono Pre-Amp (RIAA Equilization)

Flat Response — Fixed Gain Configuration

Supply Voltage
Power Dissipation
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

+40V 800 mW 0°C to 70°C -65°C to +150°C 300°C

electrical characteristics $T_A = 25^{\circ}C$, $V_{CC} = 14V$, unless otherwise stated.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Voltage Gain	Open Loop (Differential Input)		100,000		V/V
Supply Current	V_{CC} 9 to 40V, $R_L = \infty$		10	16	mA
Input Resistance					
(Positive Input)			100		$\mathbf{k}\Omega$
(Negative Input)			200		$k\Omega$
Input Current					
(Negative Input)			0.5		μΑ
Output Resistance	Open Loop		150		Ω
Output Current	Source		8		mA
	Sink		2		mA
Output Voltage Swing	Peak-to-Peak , R = 10k		V _{CC} - 2		V
Small Signal Bandwidth			15		MHz
Power Bandwidth	20 V _{p-p} (V _{CC} = 24V)		75		kHz
Maximum Input Voltage	Linear Operation			300	mVrms
Supply Rejection Ratio	f = 1 kHz		120		dB
Channel Separation	f = 1 kHz	40	60		dB
Total Harmonic Distortion	60 dB Gain, f = 1 kHz		0.1	0.3	%
Total Equivalent Input Noise	$R_S = 600\Omega$, 100 – 10,000 Hz		0.8	1.2	μVrms
Noise Figure	50 kΩ, 100 – 10,000 Hz		1.0		dB
	10 kΩ, 100 – 10,000 Hz		1.6		dB
	5 kΩ, 100 – 10,000 Hz		2.8		dB

LM565/LM565C phase locked loop

general description

The LM565 and LM565C are general purpose phase locked loops containing a stable, highly linear voltage controlled oscillator for low distortion FM demodulation, and a double balanced phase detector with good carrier suppression. The VCO frequency is set with an external resistor and capacitor, and a tuning range of 10:1 can be obtained with the same capacitor. The characteristics of the closed loop system—bandwidth, response speed, capture and pull in range—may be adjusted over a wide range with an external resistor and capacitor. The loop may be broken between the VCO and the phase detector for insertion of a digital frequency divider to obtain frequency multiplication.

The LM565H is specified for operation over the -55°C to +125°C military temperature range. The LM565CH and LM565CN are specified for operation over the 0°C to +70°C temperature range.

features

- 200 ppm/°C frequency stability of the VCO
- Power supply range of ±5 to ±12 volts with 100 ppm/% typical

- 0.2% linearity of demodulated output
- Linear triangle wave with in phase zero crossings available
- TTL and DTL compatible phase detector input and square wave output
- Adjustable hold in range from $\pm 1\%$ to $> \pm 60\%$.

applications

- Data and tape synchronization
- Modems
- FSK demodulation
- FM demodulation
- Frequency synthesizer
- Tone decoding
- Frequency multiplication and division
- SCA demodulators
- Telemetry receivers
- Signal regeneration
- Coherent demodulators.

schematic and connection diagrams

Metal Can Package

Order Number LM565H or LM565CH See Package 14

Dual-In-Line Package

Order Number LM565CN See Package 22

 Supply Voltage
 ±12V

 Power Dissipation (Note 1)
 300 mW

 Differential Input Voltage
 ±1V

 Operating Temperature Range LM565H
 -55°C to +125°C

 LM565CH, LM565CD
 0°C to 70°C

 Storage Temperature Range
 -65°C to +150°C

 Lead Temperature (Soldering, 10 sec)
 300°C

electrical characteristics (AC Test Circuit, T_A = 25°C, V_C = ±6V)

			LM565		LM	565C/LM56	65CN	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Power Supply Current			8.0	12.5		8.0	12.5	mA
Input Impedance (Pins 2, 3)	$-4V < V_2 = V_3 < 0V$		5			5		kΩ
VCO Maximum Operating Frequency	C _o = 2.7 pF		500			500		kHz
Operating Frequency Temperature Coefficient			100			200		ppm/°C
Frequency Drift with Supply Voltage			100			200		ppm/%
Triangle Wave Output Voltage	,	2	2.4		2	2.4		V _{p·p}
Triangle Wave Output Linearity			.2			.5		%
Square Wave Output Level		4.7	5.4		4.7	5.4		V _{p·p}
Output Impedance (Pin 4)	ν'		5			5		kΩ
Square Wave Duty Cycle		45	50	55	40	50	60	%
Square Wave Rise Time	,		20			20		ns
Square Wave Fall Time			50			50		ns
Output Current Sink (Pin 4)			1			1		mA
VCO Sensitivity	f _o = 10 kHz		6600			6600		Hz/V
Demodulated Output Voltage (Pin 7)	±10% Frequency Deviation	250	300	\$	200	300		mV_{pp}
Total Harmonic Distortion	±10% Frequency Deviation		0.2	0.75		0.2	1.5	%
Output Impedance (Pin 7)			3.5	7		3.5		kΩ
DC Level (Pin 7)	. ,		4.5			4.5		V
Output Offset Voltage V ₇ - V ₆			30	100		50	200	mV
Temperature Drift of $ V_7 - V_6 $			500			500		μV/°C
AM Rejection			40			40		dB
Phase Detector Sensitivity K _D	9 -		.68			.68		V/radian

Note 1: The maximum junction temperature of the LM565 is 150°C, while that of the LM565C and LM565CN is 100°C. For operation at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W junction to ambient or 45°C/W junction to case. Thermal resistance of the dual-in-line package is 100°C/W.

typical performance characteristics

ac test circuit

applications information

In designing with phase locked loops such as the LM565, the important parameters of interest are:

FREE RUNNING FREQUENCY

$$f_o \cong \frac{1}{3.7 R_0 C_0}$$

LOOP GAIN: relates the amount of phase change between the input signal and the VCO signal for a shift in input signal frequency (assuming the loop remains in lock). In servo theory, this is called the "velocity error coefficient".

Loop gain =
$$K_o K_D \left(\frac{1}{\text{sec}}\right)$$

$$K_o$$
 = oscillator sensitivity $\left(\frac{\text{radians/sec}}{\text{volt}}\right)$
 K_D = phase detector sensitivity $\left(\frac{\text{volts}}{\text{radian}}\right)$

$$K_D$$
 = phase detector sensitivity $\left(\frac{\text{volts}}{\text{radian}}\right)$

The loop gain of the LM565 is dependent on supply voltage, and may be found from:

$$K_o K_D = \frac{33.6 f_o}{V_c}$$

fo = VCO frequency in Hz

V_c = total supply voltage to circuit.

Loop gain may be reduced by connecting a resistor between pins 6 and 7; this reduces the load impedance on the output amplifier and hence the loop gain.

HOLD IN RANGE: the range of frequencies that the loop will remain in lock after initially being locked.

$$f_H = \pm \frac{8 f_o}{V_c}$$

fo = free running frequency of VCO

V_c = total supply voltage to the circuit.

THE LOOP FILTER

In almost all applications, it will be desirable to filter the signal at the output of the phase detector (pin 7) this filter may take one of two forms:

Simple Lag Filter

Lag-Lead Filter

A simple lag filter may be used for wide closed loop bandwidth applications such as modulation following where the frequency deviation of the carrier is fairly high (greater than 10%), or where wideband modulating signals must be followed.

The natural bandwidth of the closed loop response may be found from:

$$f_n = \frac{1}{2\pi} \sqrt{\frac{K_o K_D}{R_1 C_1}}$$

Associated with this is a damping factor:

$$\delta = \frac{1}{2} \sqrt{\frac{1}{R_1 C_1 K_0 K_D}}$$

For narrow band applications where a narrow noise bandwidth is desired, such as applications involving tracking a slowly varying carrier, a lead lag filter should be used. In general, if $1/R_1C_1 < K_0K_d$, the damping factor for the loop becomes guite small resulting in large overshoot and possible instability in the transient response of the loop. In this case, the natural frequency of the loop may be found from

$$f_n = \frac{1}{2\pi} \sqrt{\frac{K_o K_D}{\tau_1 + \tau_2}}$$

$$\tau_1 + \tau_2 = (R_1 + R_2) C_1$$

R2 is selected to produce a desired damping factor δ , usually between 0.5 and 1.0. The damping factor is found from the approximation:

$$\delta \simeq \pi \tau_2 f_n$$

These two equations are plotted for convenience.

Filter Time Constant vs Natural Frequency

Damping Time Constant vs Natural Frequency

Capacitor C2 should be much smaller than C1 since its function is to provide filtering of carrier. In general $C_2 < 0.1 C_1$.

LM566/LM566C voltage controlled oscillator general description

The LM566/LM566C are general purpose voltage controlled oscillators which may be used to generate square and triangular waves, the frequency of which is a very linear function of a control voltage. The frequency is also a function of an external resistor and capacitor.

The LM566 is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The LM566C is specified for operation over the 0° C to $+70^{\circ}$ C temperature range.

features

- Wide supply voltage range: 10 to 24 volts
- Very linear modulation characteristics

- High temperature stability
- Excellent supply voltage rejection
- 10 to 1 frequency range with fixed capacitor
- Frequency programmable by means of current, voltage, resistor or capacitor.

applications

- FM modulation
- Signal generation
- Function generation
- Frequency shift keying
- Tone generation

schematic and connection diagrams

Metal Can

Order Number LM566H or LM566CH See Package 11

Dual-In-Line Package

Order Number LM566CN See Package 20

typical application

1 kHz and 10 kHz TTL Compatible Voltage Controlled Oscillator

applications information

The LM566 may be operated from either a single supply as shown in this test circuit, or from a split (±) power supply. When operating from a split supply, the square wave output (pin 4) is TTL compatible (2 mA current sink) with the addition of a 4.7 $k\Omega$ resistor from pin 3 to ground.

A .001 μF capacitor is connected between pins 5 and 6 to prevent parasitic oscillations that may occur during VCO switching.

$$f_{O} = \frac{2(V^{+} - V_{5})}{R_{1}C_{1}V^{+}}$$

where

 $2K < R_1 < 20K$

and V₅ is voltage between pin 5 and ground.

Power Supply Voltage Power Dissipation (Note 1) 300 mW Operating Temperature Range LM566 -55° C to $+125^{\circ}$ C 0°C to 70°C LM566C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics $V_{CC} = 12V$, $T_A = 25^{\circ}C$, AC Test Circuit

			LM566		L	M566C		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Maximum Operating Frequency	R ₀ = 2k		1			1		MHz
Input Voltage Range Pin 5	C ₀ = 2.7 pF	3/4 V _{CC}		V _{cc}	3/4 V _{CC}		Vcc	
Average Temperature Coefficient of Operating Frequency			100			200		ppm/°C
Supply Voltage Rejection			1			2		%/V
Input Impedance Pin 5 VCO Sensitivity	f ₀ = 10 kHz		1 6600			1 6600		MΩ Hz/V
FM Distortion	±10% Deviation		.2	.75		.2	1.5	%
Maximum Sweep Rate			1			1		MHz
Sweep Range			10:1			10:1		
Output Impedance Pin 3 Pin 4			50 50			50 50		Ω
Square Wave Output Level Triangle Wave Output Level Square Wave Duty Cycle	R _{L1} = 10k R _{L2} = 10k	5.0 2.0 45	5.4 2.4	55	5.0 40	5.4	60	V p-p V p-p %
Square Wave Rise Time			20			20		ns
Square Wave Fall Time			50			50		ns
Triangle Wave Linearity			.2			.5		%

26V

Note 1: The maximum junction temperature of the LM566 is 150° C, while that of the LM566C is 100°C. For operating at elevated junction temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W. The thermal resistance of the dual-in-line package is 100° C/W.

LM567/LM567C tone decoder general description

The LM567 and LM567C are general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband. The circuit consists of an I and Ω detector driven by a voltage controlled oscillator which determines the center frequency of the decoder. External components are used to independently set center frequency, bandwidth and output delay.

features

- 20 to 1 frequency range with an external resistor
- Logic compatible output with 100 mA current sinking capability
- Bandwidth adjustable from 0 to 14%

- High rejection of out of band signals and noise
- Immunity to false signals
- Highly stable center frequency
- Center frequency adjustable from 0.01 Hz to 500 kHz

applications

- Touch tone decoding
- Precision oscillator
- Frequency monitoring and control
- Wide band FSK demodulation
- Ultrasonic controls
- Carrier current remote controls
- Communications paging decoders

schematic and connection diagrams

Metal Can Package

Order Number LM567H or LM567CH See Package 11

Dual-In-Line Package

Order Number LM567CN See Package 20

Supply Voltage Pin 10V Power Dissipation (Note 1) 300 mW V_8 15V V_3 -10V V_3 $V_8 + 0.5V$ Storage Temperature Range -65°C to $+150^{\circ}\text{C}$

electrical characteristics (AC Test Circuit, T_A = 25°C, V_C = 5V)

DADAMETERS	CONDITIONS		LM567			67C/LM567		UNITS
PARAMETERS	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	ONTO
Power Supply Voltage Range		4.75		9.0	4.75		9.0	V
Power Supply Current	R _L = 20k							
Quiescent			6	8		7	10	mA
Power Supply Current	R _L = 20k							
Activated			11	13		12	15	mA
Input Resistance			20			20		kΩ
Smallest Detectable Input Voltage	I _L = 100 mA, f _i = f _o		20	25		20	25	mVrms
Largest No Output Input Voltage	I _C = 100 mA, f _i = f _o	10	15		10	15		mVrms
Largest Simultaneous Outband Signal to Inband Signal Ratio			6			6		dB
Minimum Input Signal to Wideband Noise Ratio	B _n = 140 kHz		-6			-6		dB
Largest Detection Bandwidth		12	,14	16	10	14	18	% of f _o
Largest Detection Bandwidth Skew			1	2		2	3	% of fo
Largest Detection Bandwidth Variation with Temperature			±0.1			±0.1		%/°C
Largest Detection Bandwidth Variation with Supply Voltage			±2			±2		%V
Highest Center Frequency		100	500		100	500		kHz
Center Frequency Stability	0 < T _A < 70		35 ± 60			35 ± 60		ppm/°C
	-55 < T _A < +125		35 ± 140					ppm/°C
Center Frequency Shift with Supply Voltage			0.5	1.0		2	7	%/V
Fastest ON-OFF Cycling Rate			f _o /20			f _o /20		
Output Leakage Current	V ₈ = 15V		0.01	25		0.01	25	μΑ
Output Saturation Voltage	e _i = 25 mV,		0.2	0.4		0.2	0.4	V
	I ₈ = 30 mA e _i = 25 mV, I ₈ = 100 mA		0.6	1.0		0.6	1.0	
Output Fall Time (Note 3)	18 - 100 MA		30			30		ns
Output Rise Time (Note 3)			150			150		ns

Note 1: The maximum junction temperature of the LM567 is 150° C, while that of the LM567C and LM567CN is 100° C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150° C/W, junction to ambient or 45° C/W, junction to case. For the DIP the device must be derated based on a thermal resistance of 187° C/W, junction to ambient.

typical performance characteristics

Typical Bandwidth Variation

typical applications

Touch-Tone Decoder

Oscillator with Quadrature Output

Oscillator with Double Frequency Output

Precision Oscillator Drive 100 mA Loads

ac test circuit

*Note: Adjust for fo = 100 kHz

applications information

The center frequency of the tone decoder is equal to the free running frequency of the VCO. This is given by

$$f_o \;\cong\; \frac{1}{R_1\,C_1}$$

The bandwidth of the filter may be found from the approximation

$$BW = 1070 \sqrt{\frac{V_i}{f_o C_2}}$$

Where:

V_i = Input voltage (volts rms)

 C_2 = Capacitance at Pin 2 (μ F)

LM703L low power drain rf/if amplifier

general description

The LM703L is a monolithic RF-IF amplifier, having an efficient DC biasing system, reducing demands upon power supply and decoupling elements. Its low internal feedback guarantees a high stability-limited gain.

Applications include limiting and nonlimiting amplifiers, mixers, and RF oscillators. The LM703L is specifically characterized for operation in consumer applications such as TV sound IF, FM-IF limiter amplifier, and Chroma reference oscillator for color TV.

features

 Power Consumption 96 mW (max.)

■ Forward Transadmittance 33 mmhos

 Input Conductance 0.35 mmhos

 Output Conductance 0.03 mmhos

■ Peak-to-Peak Output Current 5.0 mA

schematic and connection diagrams

See Package 20.

Order Number LM703LH See Package 10

typical applications

100 MHz Narrow Band Amplifier

RC Coupled Video Amplifier

Four Stage 10.7 MHz FM-IF Amplifier

Supply Voltage 20V Output Collector Voltage 24V Voltage Between Input Terminals ±5.0V Internal Power Dissipation 200 mW Operating Temperature Storage Temperature Range Lead Temperature (Soldering, 10 sec)

0°C to 70°C -65° C to 150° C 300°C

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Power Consumption	e _{in} = 0		71	96	mW
Quiescent Output Current	e _{in} = 0	1.5	2.5	3.3	mA
Peak-to-Peak Output Current	e _{in} = 400 mV rms, f = 10.7 MHz	3.0	5.0		mA
Output Saturation Voltage				1.7	V
Forward Transadmittance	e _{in} = 10 mV rms, f ≤ 10.7 MHz	24.0	33.0		mmho
Reverse Transadmittance	e _{in} = 10 mV rms, f ≤ 10.7 MHz		0.002		mmho
Input Conductance	e_{in} = $<$ 10 mV rms, f \leq 10.7 MHz ·		0.35	1.0	mmho
Input Capacitance	$\rm e_{in}$ $<$ 10 mV rms, f \leq 10.7 MHz		9.0	12.5	pF
Output Capacitance	f ≤ 10.7 MHz		2.6	4.0	pF
Output Conductance	f≤ 10.7 MHz		0.03	0.05	mmho
Noise Figure	$R_S = 500\Omega$, $f = 10.7 \text{ MHz}$ $R_S = 500\Omega$, $f = 100 \text{ MHz}$		6.0 8.0		dB dB
Maximum Stable Gain	f = 100 MHz		28.0		dB

Note 1: These specifications apply for $T_A = 25^{\circ}C$, $V^+ = 12V$ unless otherwise specified.

typical performance characteristics

Power Consumption as a

-60 -40 -20 0 20 40 60 80 100 120 140

TEMPERATURE (°C)

Output Current as a Function

Power Consumption as a

Function of Ambient

Note: For additional performance curves, and packaging, see LM703/C/E data sheet.

LM733/LM733C differential video amp

general description

The LM733/LM733C is a two-stage, differential input, differential output, wide-band video amplifier. The use of internal series-shunt feedback gives wide bandwidth with low phase distortion and high gain stability. Emitter-follower outputs provide a high current drive, low impedance capability. It's 120 MHz bandwidth and selectable gains of 10, 100, and 400, without need for frequency compensation, make it a very useful circuit for memory element drivers, pulse amplifiers, and wide band linear gain stages.

The LM733 is specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The LM733C is specified for operation over the 0°C to $+70^{\circ}\text{C}$ temperature range.

features

- 120 MHz bandwidth
- 250 k Ω input resistance
- Selectable gains of 10, 100, 400
- No frequency compensation
- High common mode rejection ratio at high frequencies.

applications

- Magnetic tape systems
- Disk file memories
- Thin and thick film memories
- Woven and plated wire memories
- Wide band video amplifiers.

schematic and connection diagrams

Order Number LM733D or LM733CD See Package 1

Order Number LM733CN See Package 22

Order Number LM733H or LM733CH See Package 14

test circuits

Voltage Gain Adjust Circuit

Differential Input Voltage ±5V Common Mode Input Voltage ±6V V_{CC} ±8V Output Current 10 mA Power Dissipation (Note 1) 500 mW +150°C Junction Temperature -65° C to $+150^{\circ}$ C Storage Temperature Range -55°C to +125°C Operating Temperature Range LM733 LM733C 0° C to $+70^{\circ}$ C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics $(T_{\Delta} = 25^{\circ} \text{C,unless otherwise specified, see test circuits, } V_{S} = \pm 6.0 \text{V})$

CHARACTERISTICS	TEST	TECT COMPLETIONS		LM733			LM733C		UNITS
CHARACTERISTICS	CIRCUIT	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3) Gain 3 (Note 4)	1	$R_L = 2 k\Omega V_{OUT} = 3 V_{pp}$	300 90 9.0	400 100 10	500 110 11	250 80 8.0	400 100 10	600 120 12	
Bandwidth Gain 1 Gain 2 Gain 3	2			40 90 120			40 90 120		MHz MHz MHz
Rise Time Gain 1 Gain 2 Gain 3	2	V _{OUT} = 1 V _{p·p}		10.5 4.5 2.5	10		10.5 4.5 2.5	12	ns ns ns
Propagation Delay Gain 1 Gain 2 Gain 3	2	V _{OUT} = 1 V _{p:p}		7.5 6.0 3.6	10		7.5 6.0 3.6	10	ns ns ns
Input Resistance Gain 1 Gain 2 Gain 3			20	4.0 30 250		10	4.0 30 250		kΩ kΩ kΩ
Input Capacitance		Gain 2		2.0			2.0		pF
Input Offset Current				0.4	3.0		0.4	5.0	μΑ
Input Bias Current				9.0	20		9.0	30	μΑ
Input Noise Voltage		BW = 1 kHz to 10 MHz		12			12		μVrms
Input Voltage Range	1		±1.0			±1.0			V
Common Mode Rejection Ratio Gain 2 Gain 2	1	$V_{CM} = \pm 1V \text{ f} \le 100 \text{ kHz}$ $V_{CM} = \pm 1V \text{ f} = 5 \text{ MHz}$	60	86 60		60	86 60		dB dB
Supply Voltage Rejection Ratio Gain 2	1	△V _S = ±0.5V	50	70		50	70		dB
Output Offset Voltage Gain 1 Gain 2 and 3	1	R _L = ∞		0.6 0.35	1.5 1.0		0.6 0.35	1.5 1.5	V V
Output Common Mode Voltage	1	R _L = ∞	2.4	2.9	3.4	2.4	2.9	3.4	V
Output Voltage Swing	1	R _L = 2k	3.0	4.0		3.0	4.0		
Output Sink Current			2.5	3.6		2.5	3.6		mA
Output Resistance				20			20		Ω
Power Supply Current	1	R _L = ∞		18	24		18	24	mA

electrical characteristics

(The following specifications apply for $-55^{\circ}C < T_{A} < 125^{\circ}C$ for the LM733 and $0^{\circ}C < T_{A} < 70^{\circ}C$ for the LM733C, $V_{S} = \pm 6.0V$)

CHARACTERISTICS	TEST	TEST CONDITIONS		LM733			LM733C		
CHARACTERISTICS	CIRCUIT	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Differential Voltage Gain									
Gain 1			200		600	250		600	
Gain 2	1	$R_L = 2 k\Omega$, $V_{OUT} = 3 V_{p-p}$	80		120	80		120	
Gain 3			8.0		12.0	8.0		12.0	
Input Resistance Gain 2			8			8			kΩ
Input Offset Current	-				5			6	μΑ
Input Bias Current					40			40	μΑ
Input Voltage Range	1		±1			±1			V
Common Mode Rejection Ratio									
Gain 2	1	$V_{CM} = \pm 1V$, f $\leq 100 \text{ kHz}$	50			50			dB
Supply Voltage Rejection Ratio									
Gain 2	1	$\triangle V_S = \pm 0.5V$	50			50			dB
Output Offset Voltage									
Gain 1	1	R _L = ∞			1.5			1.5	V
Gain 2 and 3					1.2			1.5	V
Output Voltage Swing	1	R _L = 2k	2.5			2.8			V _{PP}
Output Sink Current			2.2			2.5			mA
Power Supply Current	1	R _L = ∞			27			27	mA

Note 1: The maximum junction temperature of the LM733 is 150°C, while that of the LM733C is 100°C. For operation at elevated temperatures, devices in the TO-100 package must be derated based on a thermal resistance of 150°C/W junction to ambient or 45°C/W junction to case. Thermal resistance of the dual-in-line package is 100°C/W.

Note 2: Pins G1A and G1B connected together.

Note 3: Pins G2A and G2B connected together

Note 4: Gain select pins open.

typical performance characteristics

LM746 color television chroma demodulator general description features

The LM746 is a monolithic silicon integrated circuit which demodulates the chroma subcarrier information contained in a color television video signal and provides color-difference signals at the outputs

The low DC voltage drift of the outputs insures excellent performance in direct-coupled chrominance output circuitry.

- Low output voltage drift with temperature
- Doubly balanced demodulation
- Internal color-difference matrix for NTSC color television
- 10V peak-to-peak E_B E_Y output

schematic and block diagrams

Dual-In-Line Package

Order Number LM746N or LM746N-01 See Packages 22 and 24

typical application

test circuit 1

5

Power Dissipation $T_A = 70^{\circ}C$ or less $T_A = 70^{\circ}C$ or more

Operating Temperature

450 mW Derate Linearly 8.2 mW/°C 0°C to +70°C Storage Temperature Supply Voltage Reference Input Volt (p-p) Chroma Input Voltage (p-p) -65°C to +150°C +30V 5V

electrical characteristics $(T_A = 25^{\circ}C) (V_{CC} = 24V) (R_L = 3.3K)$

PARAMETER	SYMBOL	TEST CKT	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC							
Supply Current	Is	1	$e_C = 0 R_L = 1M$	5.5	9.0	12.5	mA
Supply Current	Is	1	$e_{C} = 0 R_{L} = 1M T_{A} = 70^{\circ}C$		9.0	13.0	mA
Supply Current	I _S	1	$e_{C} = 0 R_{L} = 3.3 k$	16.5	22	25.5	mA
Supply Current	Is	1	$e_{C} = 0 R_{L} = 3.3 k T_{A} = 70^{\circ} C$		22		mA
Power Dissipation	PD	1	e _C = 0		340	430	mW
Power Dissipation	P _D	1	$e_{C} = 0 T_{A} = 70^{\circ}C$		340	445	mW
DC Output Volts	V9, V11, V13	1	$e_{C} = 0 R_{L} = 3.3k$	13.2	14.5	15.8	V
DC Output Volts	V9, V11, V13	1	$e_C = 0 T_A = 70^{\circ} C R_L = 3.3 k$	13.0	14.5	16.0	V
Absolute Value of DC Difference Voltage Between any 2 Output Terminals	I∆V _o I		e _C = 0 R _L = 3.3k		.15	.6	V
Temperature Coefficient			e _C = 0	-5.0	3	+5.0	mV/°C
DYNAMIC							
Chroma Input Voltage Sensitivity	e _C	1	E _B - E _Y = 5 V _{p·p}		.4	.7	V _{pp}
E _R - E _Y Output Voltage	V11	1	$E_B - E_Y = 5 V_{p \cdot p}$	3.5	3.8	4.2	V _{p-p}
E _G - E _Y Output Voltage	V9	1	$E_B - E_Y = 5 V_{pp}$.75	1.0	1.25	V _{p-p}
$\begin{array}{l} \text{Maximum E}_{\text{B}} - \text{E}_{\text{Y}} \text{ Output} \\ \text{Voltage} \end{array}$	V13	1	e _C = 1.5 V _{p-p}	8.0	10.0		V _{p·p}
$E_{B} - E_{Y}$ Demod Angle Relative to $E_{R} - E_{Y}$	E _R φ	1	$E_B - E_Y = 5 V_{pp}$	101	106	111	degrees
$E_B - E_Y$ Demod Angle Relative to $E_G - E_Y$	$E_G \phi$	1	$E_B - E_Y = 5 V_{p \cdot p}$	-96	-104	-112	degrees
AC Unbalance @ Any Output Terminal		1	e _C = 0		.1	.8	V _{p-p}

LM1303 stereo preamplifier

general description

The LM1303 consists of two identical operational amplifiers constructed on a single silicon chip. Intended for amplification of low-level stereo signals, the LM1303 features low input noise voltage, high open-loop voltage gain, large output voltage swing and short circuit protection.

features

- Large Output Voltage Swing 4.0V rms min
- High Open-Loop Voltage Gain 6,000 min
- Channel Separation 60 dB min at 10 kHz

schematic and connection diagrams

Dual-In-Line Package

Order Number LM1303N See Package 22

typical application and characteristic

Magnetic Phono Playback Preamplifier/R IAA Equalized

FIGURE 1

 Supply Voltage
 ±15V

 Power Dissipation (Note 1)
 415 mW

 Operating Temperature Range
 0 ° to 75° C

 Storage Temperature Range
 -66° to 150° C

 Lead Temperature (Soldering, 10 sec)
 300° C

electrical characteristics (Note 2)

PARAMETER	MIN	TYP	MAX	UNITS
Input Offset Voltage		1.5	10	mV
Input Offset Current		0.2	0.4	μΑ
Input Bias Current		1.0	10	μΑ
Supply Current Both Amplifiers V _{OUT} = 0V			15	mA
Large Signal Voltage Gain	6,000	10,000		V/V
Channel Separation f = 10 kHz	60	70		dB
Output Voltage Swing R _L = 10 kΩ	4.0	5.5		Vrms

Note 1: The maximum junction temperature of the LM1303 is 100°C. For operating at elevated temperatures, devices must be derated based on a thermal resistance of 150°C/M, junction to ambient. Note 2: These specifications apply for V_S = ±13V and T_A = 25°C, unless otherwise specified.

typical application and characteristic

Tape Head Playback Preamplifier/NAB Equalization

FIGURE 2

typical performance characteristics

LM1304/LM1305/LM1307/LM1307E FM multiplex stereo demodulator

general description

The LM1304, LM1305, LM1307 and LM1307E are designed to derive the left and right channel audio information from the detected composite stereo signal. The LM1304 eliminates the need for an external stereo-channel separation control. The LM1305 is similar to the LM1304 but permits the use of an external stereo-channel separation control for maximum separation. The LM1307 is also similar to the LM1304 but does not have the audio mute control, or the stereo/mono switch. The LM1307E is similar to the LM1307 but has the

option of emitter-follower output drivers for buffers or high current applications.

features

- Operation over a wide power supply range
- Built in stereo-indicator lamp driver 100 mA typical
- Automatic switching between stereo and monaural
- Audio mute control

circuit schematics

Order Number LM1304N or LM1305N or LM1307N or LM1307EN See Package 22

Order Number LM1304N-01 or LM1305N-01 or LM1307N-01 or LM1307EN-01 See Package 24

Power Supply Voltage Lamp Driver Current Power Dissipation Derate Above $T_A = +25^{\circ}C$ Operating Temperature Range (Ambient) Storage Temperature Range Output Current (LM1307E) Lead Temperature (Soldering, 10 sec) +22V 120 mA 625 mW 5.0 mW/°C 0°C to +75°C -65°C to +150°C 25 mA 300°C

electrical characteristics ($V_{CC} = 12V$, $T_A = 25^{\circ}C$, 75 μ s de-emphasis unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Impedance	f = 1 kHz	12	20		kΩ
Stereo Channel Separation (Note 1) (Note 3)	f = 100 Hz f = 1 kHz f = 10 kHz	30	35 45 30		dB dB dB
Channel Balance	Monaural Input = 200 mV		0.2	1.0	dB
Total Harmonic Distortion (Note 1)	$f_{MOD} = 1 k_c$		0.5	1.0	%
Ultrasonic Frequency Rejection (Note 2)	19 kHz 38 kHz	20	30 25		dB dB
Inherent SCA Rejection (Without De-Emphasis)	60 kHz, 67 kHz, 74 kHz		50		dB
Lamp Indicator	R_A = 180Ω Min 19 kHz Input Level for Lamp On Max 19 kHz Input Level for Lamp Off	5.0	16 14	25	mVrms mVrms
Power Dissipation	Without Lamp		150	300	mW
Audio Muting (LM1304/5 Only)	Mute On (Pin 5 Voltage) Mute Off (Pin 5 Voltage) Attenuation in Mute Mode	0.6 1.3	.8 1.6 55	1.0 2.0	V V dB
Stereo-Monaural Switching (LM1304/5 Only)	Stereo (Pin 4 Voltage) Monaural (Pin 5 Voltage)	1.3 0.6	1.6 .8	2.0 1.0	V

Note 1: Measurement made with standard multiplex composite signal. L = 1, R = 0 or L = 0, R = 1; composite signal defined as 564 mV peak to peak (100 mVrms as read on Ballantine 310 -A voltmeter) with a 20 mVrms 19 kHz pilot carrier.

Note 2: Referenced to 1 kHz output signal with signal per Note 1.

Note 3: Stereo channel separation is adjusted for maximum separation in the LM1305 with a resistor from Pin 9 to GND.

 $(R_A = 180\Omega, All \text{ voltages measured with respect to GND})$

(V_{CC} = 12V, 2.7 k Ω in series w/Pin 8)

Pins 1 2 3 5 6 7 8 10 11 12 13 14 3.9 9.7 9.7 3.9 1.9 LM1304 12 2.3 3.0 1.9 1.9 8.0 0 4.6 12 1.9 LM1305 12 2.3 3.0 1.9 8.0 0 12 0.36 3.9 9.7 9.7 3.9 1.9 LM1307 12 2.3 3.0 8.0 0 12 3.9 9.7 9.7 3.9 1.9 LM1307E 12 2.3 3.0 .8 12 0 9.7 9.0 9.0 9.7 3.9 3.9 1.9

circuit schematics (con't)

LM1305

LM1307

circuit schematics (con't)

LM1307E

typical performance characteristics

Channel Separation vs

circuit configurations

LM1304 Typical Circuit Configuration

LM1305 Typical Circuit Configuration

LM 1307 Typical Circuit Configuration

circuit configurations (con't)

LM1307E Typical Circuit Configuration

LM1310/LM1310E phase locked loop FM stereo demodulator general description

The LM1310 and LM1310E are integrated FM stereo demodulators using phase locked loop techniques to regenerate the 38 kHz subcarrier. The LM1310 is a 14 pin version while the LM1310E offers buffered emitter follower outputs in a 16 pin package. A third version, the LM1800, is also available (see separate data sheet) which adds superb power supply rejection to the basic phase locked decoder circuit. The features available in these integrated circuits make possible a system

delivering high fidelity sound within the cost restraints of inexpensive stereo receivers.

features

- Automatic stereo/monaural switching
- No coils, all tuning performed with single potentiometer
- Wide supply operating voltage range
- Excellent channel separation
- Emitter follower output buffers (on LM1310E)

connection diagrams

Order Number LM1310EN See Package 22

TOP VIEW
Order Number LM1310N
See Package 23

typical applications

Supply Voltage
Power Dissipation (Note 3)
Operating Temperature Range
Operating Supply Voltage Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

24V 575 mW 0°C to +70°C +10V to +24V -55°C to +150°C 300°C

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current LM1310E LM1310	Lamp ''off'' Lamp ''off''		22 19	30 30	mA mA
Lamp Driver Saturation	100 mA Lamp Current		1.3	1.8	V
Lamp Driver Leakage	*		1		nA
Pilot Level for Lamp "on"	Pin 11 Adjusted to 19.00 kHz		16	23	mVrms
Pilot Level for Lamp "off"	Pin 11 Adjusted to 19.00 kHz	3	8		mVrms
Stereo Lamp Hysteresis		3	6		dB
Stereo Channel Separation	100 Hz (Note 2) 1000 Hz (Note 2) 10000 Hz (Note 2)	30	40 45 45		dB dB dB
Monaural Channel Unbalance	200 mVrms, 1000 Hz Input		.3	1.5	dB
Recovered Audio	200 mVrms, 400 Hz Input	100		190	mVrms
Total Harmonic Distortion	500 mVrms, 1000 Hz Input			1	%
Capture Range	25 mVrms of Pilot	±2		±6	% of fo
Ultrasonic Freq. Rejection	Combined 19 and 38 kHz, Ref. to Outputs		33	-	dB
Dynamic Input Resistance		20	45		kΩ
Dynamic Output Resistance	(LM1310E Only)	900	1300	2000	Ω
SCA Rejection	200 mVrms Composite at 67 kHz		50		dB

Note 1: $T = 25^{\circ}C$ and $V^{+} = 12V$ unless otherwise specified.

Note 2: The stereo input signal is made by summing 123 mVrms LEFT or RIGHT modulated signal with 25 mVrms of 19 kHz pilot tone, measuring all voltages with an average responding meter calibrated in rms. The resulting waveform is about 800 mVp.p.

Note 3: The maximum junction temperature is +125°C and the package should be derated at +175°C/W junction to ambient.

LM1351 FM detector, limiter and audio amplifier

general description

The LM1351 is a monolithic integrated circuit FM detector, limiter and audio amplifier that requires a minimum of external components for operation. It includes three stages of IF limiting and a balanced product detector. The audio amplifier is capable of driving a single external transistor class A-audio output stage.

features

- A direct replacement for MC1351
- Simple detector alignment: one coil or ceramic filter.
- Sensitivity: 3 dB limiting voltage 80 μV typ.
- Low harmonic distortion
- High IF voltage gain
- High audio preamplifier open loop gain

schematic diagram

Order Number LM1351N See Package 22 Order Number LM1351N-01 See Package 24

block diagram

Supply Voltage Input Signal Voltage (Pin 4) Power Dissipation $T_A = 25^{\circ}\text{C}$ or less $T_A = 25^{\circ}\text{C}$ or more

0.7 Vrms

Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec)

0°C to 75°C -65°C to +150°C 300°C

= 25°C or less = 25°C or more Derate Linearly 6.67 mW/°C

electrical characteristics (T_A = 25°C, V_{CC} = 12V, unless otherwise noted)

242445752	01/44001	CONDITIONS		LIMITS		UNITS
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC CHARACTERISTICS	3					
Supply Current	114	I _Z = 5 mA		31		mA
Power Dissipation	P_D	I _Z = 5 mA		300	375	mW
Nominal Zener Voltage	V ₁₄	$I_Z = 5 \text{ mA}$		11.6		V
DYNAMIC CHARACTERIST	ICS f ₀ = 4.5 MH	z , $\triangle F = \pm 25$ kHz, unless otherwise noted				
Amplifier Voltage Gain	A _{V(IF)}	$V_{IN} \leq 0.3 \text{ mVrms}$		65		dB
Audio Preamplifier Open Loop Gain	$A_{V(AF)}$	V _{IN} = 500 mV @ 400 Hz		40		dB
Input Limiting Threshold	V _{IN(LIM)}	FM = 400 Hz		80	160	μVrms
Recovered Audio Output	V _{O(AF)}		0.35	0.50		Vrms
Recovered Audio Output	V _{O(AF)}	f ₀ = 5.5 MHz, AF = ±50 kHz		0.8		Vrms
Total Harmonic Distortion	T _{HD}	$Q_L = 24$, $\triangle f = 7.5 \text{ kHz}$		1.0		%
Maximum Undistorted		Q _L = 24				
Audio Output Voltage	V _{OMAX}	Audio Gain = 10		3.5		Vrms
AM Suppression	AMR	AM: 1 kHz @ 30%, V _{IN} = 20 mV	38	45		dB

test circuit

LM1596/LM1496 balanced modulator-demodulator

general description

The LM1596/LM1496 are double balanced modulator-demodulators which produce an output voltage proportional to the product of an input (signal) voltage and a switching (carrier) signal. Typical applications include suppressed carrier modulation, amplitude modulation, synchronous detection, FM or PM detection, broadband frequency doubling and chopping.

The LM1596 is specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The LM1496 is specified for operation over the 0°C to $+70^{\circ}\text{C}$ temperature range.

features

- Excellent carrier suppression
 - 65 dB typical at 0.5 MHz 50 dB typical at 10 MHz
- Adjustable gain and signal handling
- Fully balanced inputs and outputs
- Low offset and drift
- Wide frequency response up to 100 MHz

schematic and connection diagrams

Note: Pin 10 is connected electrically to the case through the device substrate.

Order Number LM1496H or LM1596H

See Package 11

Order Number LM1496N See Package 22

typical application and test circuit

Suppressed Carrier Modulator

Internal Power Dissipation (Note 1) 500 mW Applied Voltage (Note 2) Differential Input Signal (V7 - V8) ±5.0V Differential Input Signal $(V_4 - V_1)$ ±(5+1₅R_e) V Input Signal ($V_2 - V_1$, $V_3 - V_4$) 5.0V Bias Current (I₅) 12 mA -55°C to +125°C Operating Temperature Range LM1596 LM1496 0°C to +70°C Storage Temperature Range -65° C to $+150^{\circ}$ C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (T_A = 25°C, unless otherwise specified, see test circuit)

PARAMETER	CONDITIONS	-	LM1596			LM1496		UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Carrier Feedthrough	$V_C = 60 \text{ mVrms sine wave}$ $f_C = 1.0 \text{ kHz}$, offset adjusted		40			40		μVrms
	$V_C = 60 \text{ mVrms sine wave}$ $f_C = 10 \text{ MHz}, \text{ offset adjusted}$		140			140		μVrms
	$V_C = 300 \text{ mV}_{pp} \text{ square wave}$ $f_C = 1.0 \text{ kHz}, \text{ offset adjusted}$		0.04	0.2		0.04	0.2	m V rms
	$V_C = 300 \text{ mV}_{pp} \text{ square wave}$ $f_C = 1.0 \text{ kHz, offset not adjusted}$		20	100		20	150	mVrms
Carrier Suppression	f_S = 10 kHz, 300 mVrms f_C = 500 kHz, 60 mVrms sine wave offset adjusted		65		50	65		dB
	f_S = 10 kHz, 300 mVrms f_C = 10 MHz, 60 mVrms sine wave offset adjusted		50			50		dB
Transadmittance Bandwidth	$R_L = 50\Omega$ Carrier Input Port, $V_C = 60 \text{ mVrms}$ sine wave $f_S = 1.0 \text{ kHz}$, 300 mVrms sine wave		300			300		MHz
	Signal Input Port, $V_S = 300 \text{ mVrms}$ sine wave $V_7 - V_8 = 0.5 \text{Vdc}$		80			80		MHz
Voltage Gain, Signal Channel	V _S = 100 mV rms, f = 1.0 kHz V ₇ - V ₈ = 0.5 Vdc	2.5	3.5		2.5	3.5		V/V
Input Resistance, Signal Port	f = 5.0 MHz V ₇ - V ₈ = 0.5 Vdc		200			200		kΩ
Input Capacitance, Signal Port	f = 5.0 MHz V ₇ - V ₈ = 0.5 Vdc		2.0			2.0		pF
Single Ended Output Resistance	f = 10 MHz		40			40		kΩ
Single Ended Output Capacitance	f = 10 MHz		5.0			5.0		pF
Input Bias Current	(1 ₁ + 1 ₄)/2		12	25		12	30	μΑ
Input Bias Current	(I ₇ + I ₈)/2		12	25		12	30	μΑ
Input Offset Current	(11 - 14)		0.7	5.0		0.7	5.0	μΑ
Input Offset Current	(17 - 18)		0.7	5.0		5.0	5.0	μΑ
Average Temperature Coefficient of Input Offset Current	(-55°C < T _A < +125°C) (0°C < T _A < +70°C		2.0			2.0		nA/°C nA/°C
Output Offset Current	(16 – 19)		14	50		14	60	μΑ
Average Temperature Coefficient of Output Offset Current	(-55°C < T _A < +125°C) (0°C < T _A < +70°C)		90			90		nA/°C nA/°C
Signal Port Common Mode Input Voltage Range	f _S = 1.0 kHz		5.0			5.0		V _{p-p}
Signal Port Common Mode Rejection Ratio	V ₇ - V ₈ = 0.5 Vdc		-85			-85		dB
Common Mode Quiescent Output Voltage			8.0			8.0		Vdc
Differential Output Swing Capability			8.0			8.0		V _{p-p}
Positive Supply Current	(16 + 19)		2.0	3.0		2.0	3.0	mA
Negative Supply Current	(110)		3.0	4.0		3.0	4.0	mA
Power Dissipation			33			33		mW

Note 1: LM1596 rating applies to case temperatures to $+125^{\circ}C$; derate linearly at 6.5 mW/°C for ambient temperature above 75°C. LM1496 rating applies to case temperatures to $+70^{\circ}C$.

Note 2: Voltage applied between pins 6-7, 8-1, 9-7, 9-8, 7-4, 7-1, 8-4, 6-8, 2-5, 3-5.

typical performance characteristics

Sideband and Signal Port

typical applications (con't)

SSB Product Detector

This figure shows the LM1596 used as a single sideband (SSB) suppressed carrier demodulator (product detector). The carrier signal is applied to the carrier input port with sufficient amplificent amplified for switching operation. A carrier input level of 300 mVrms is optimum. The composite SSB signal is applied to the signal input port with an amplitude of 5.0 to 500 mVrms. All output signal components except the desired demodulated audio are filtered out, so that an offset adjustment is not required. This circuit may also be used as an AM detector by applying composite and carrier signals in the same manner as described for product detector operation.

typical applications (con't)

Broadband Frequency Doubler

The frequency doubler circuit shown will double low-level signals with low distortion. The value of C should be chosen for low reactance at the operating frequency.

Signal level at the carrier input must be less than 25 mV peak to maintain operation in the linear region of the switching differential amplifier. Levels to 50 mV peak may be used with some distortion of the output waveform. If a larger input signal is available a resistive divider may be used at the carrier input, with full signal applied to the signal input.

LM1800 phase locked loop FM stereo demodulator

general description

The LM1800 is a second generation integrated FM stereo demodulator using phase locked loop techniques to regenerate the 38 kHz subcarrier. The numerous features integrated on the die make possible a system delivering high fidelity sound while still meeting the cost requirements of inexpensive stereo receivers.

features

- Automatic stereo/monaural switching
- 45 dB power supply rejection
- No coils, all tuning performed with single potentiometer
- Wide operating supply voltage range
- Excellent channel separation
- Emitter follower output buffers

connection diagram

Order Number LM1800N See Package 23

typical application

Supply Voltage
Power Dissipation (Note 3)
Operating Temperature Range
Operating Supply Voltage Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

24V 575 mW 0°C to +70°C +10V to +24V -55°C to +150°C 300°C

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Lamp "off"		21	30	mA
Lamp Driver Saturation	100 mA Lamp Current		1.3	1.8	V
Lamp Driver Leakage			1		nA
Pilot Level for Lamp "on"	Pin 11 Adjusted to 19.00 kHz		16	23	mVrms
Pilot Level for Lamp "off"	Pin 11 Adjusted to 19.00 kHz	3	8		mVrms
Stereo Lamp Hysteresis		3	6		dB
Stereo Channel Seperation	100 Hz (Note 2) 1000 Hz (Note 2) 10000 Hz (Note 2)	30	40 45 45		dB dB dB
Monaural Channel Unbalance	200 mVrms, 1000 Hz Input		.3	1.5	dB
Recovered Audio	200 mVrms, 400 Hz Input	140		260	mVrms
Total Harmonic Distortion	500 mVrms, 1000 Hz Input			1	%
Capture Range	25 mVrms of Pilot	±2		±6	% of fo
Supply Ripple Rejection	600 mVrms of 200 Hz Ripple	35	45		dB
Dynamic Input Resistance		20	45		kΩ
Dynamic Output Resistance		900	1300	2000	Ω
SCA Rejection	200 mVrms composite at 67 kHz		50		dB
Ultrasonic Freq. Rejection	Combined 19 and 38 kHz, Ref. to Output		33		dB

Note 1: $T = 25^{\circ}C$ and $V^{+} = 12V$ unless otherwise specified.

Note 2: The stereo input signal is made by summing 123 mVrms LEFT or RIGHT modulated signal with 25 mVrms of 19 kHz pilot tone, measuring all voltages with an average responding meter calibrated in rms. The resulting waveform is about 800 mV_{P,P}.

Note 3: The maximum junction temperature is +125°C and the package should be derated at +175°C/W junction to ambient.

LM1820 AM radio system

general description

The LM1820 is a monolithic integrated circuit AM radio system. It includes two amplifiers a mixer-oscillator; an AGC detector and a zener regulator.

features

Overvoltage protection

- Separately accessible amplifiers
- Regulated supply
- AGC for RF stage

schematic and block diagrams

Order Number LM1820N See Package 22

electrical characteristics (T_A = 25°C, V⁺ = 12V, Figure 1)

PARAMETER	CONDITIONS		UNITS		
FANAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC CHARACTERISTICS					
Supply Current (I)			18		mA
Zener Regulator (V ₃)	I ₂ + I ₃ = 15 mA		7.1		V
Local Oscillator Current (I ₂)	I ₂ + I ₃ = 15 mA		1.2		mA
IF Current (I ₆)	I ₂ + I ₃ = 15 mA		4.5		mA
RF Current (I ₁₃)	I ₂ + I ₃ = 15 mA		5.6		mA
Mixer Current (I ₁₄)			300		μΑ
DYNAMIC CHARACTERISTICS	79		•		
RF Transconductance (i ₁₃ /e ₁₂)	f ₁₂ = 1 MHz, e ₁₂ = 100μV, e ₅ = 0 S1 in Pos 1		120		mmhos
RF Input Resistance (R ₁₂)	f ₁₂ = 1 MHz, S1 in Pos 2		1		kΩ
IF Transconductance (i ₆ /e ₇)	f ₇ = 260 kHz, e ₇ = 1 mVrms		90	-	mmhos
IF Input Resistance (R ₇)	f ₇ = 260 kHz		1		kΩ
Mixer Transconductance (i_{14}/e_1)	f ₁ = 1 MHz, e ₁ = 1 mVrms		2.5		mmhos
Mixer Input Resistance (R ₁)	f ₁ = 1 MHz		1.4		kΩ
Oscillator Voltage (e ₂)			1.7		Vrms

test circuit

Figure 1.

LM1841 FM detector and limiter

general description

The LM1841 is a monolithic integrated circuit FM detector and limiter that requires a minimum of external components for operation. It includes three stages of IF limiting, a balanced product detector and a 7.8V regulator.

features

A direct replacement for ULN2136A

- Simple detector alignment: one coil
- Sensitivity: 3 dB limiting voltage 300 μ V typ.
- Low harmonic distortion
- High IF voltage gain
- Regulated 7.8V output

schematic diagram

Order Number LM1841N See Package 22

Supply Voltage 20V Input Signal Voltage (Pin 4) 3.5V Power Dissipation $T_A = 25^{\circ} C$ or Less $T_A = 25^{\circ} C$ or More 850 mW Derate Linearly 6.67 mW/°C Operating Temperature Range -25°C to +85°C -65°C to +150°C

Storage Temperature Range Lead Temperature (Soldering, 10 sec)

electrical characteristics ($T_A = 25^{\circ}C$, $V^+ = 12V$ unless otherwise specified)

300°C

DADAMETED	CONDITIONS		LIMITS		UNITS
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC CHARACTERISTICS (amplifier and o	detector)	11			
Supply Current (I ₃)	No Load at Pin 13	12	17	22	mA
Amplifier Input Reference (V ₆)			1.45		V
Detector Input Reference (V ₂)			3.65		, v
Amplifier High Output Level (V ₁₀)		1.25	1.45	1.65	V
Amplifier Low Output Level (V ₉)		0.125	0.145		V
Detector Output Level (V ₁)		3	3.8	4.6	V
Temperature Stability of Detector Output Level ($\Delta V_1/\Delta T$)			+1		mV/°C
De-emphasis Resistance (R _d)			8.8		kΩ
STATIC CHARACTERISTICS (regulator)					
Output Voltage (V ₁₃)	i _{LOAD} = 20 mA		7.8		V
Line Regulation (V ₁₃)			5	10	mV/V
Temperature Stability (V ₁₃)			+1.6		mV/°C
DYNAMIC CHARACTERISTICS fo = 4.5 MH	, $\Delta f = \pm 25$ kHz, Peak Separation = 150 kHz, Sou	rce Resistar	nce = 50Ω		
Amplifier Voltage Gain (A _{IF})	$V_{IN} \le 0.3 \text{ mVrms (Figure 1)}$		58		dB
Amplifier Output Voltage (V _{10(1F)})	V _{IN} = 10 mV (Figure 1)		1.45		V _{P.P}
Input Limiting Threshold ($V_{IN(LIM)}$)	FM = 400 Hz (Figure 2)	-	300		μVrms
Recovered Audio Output (V _{0(af)})	V _{IN} = 60 mV, FM = 400 Hz (Figure 2)		0.5		Vrms
Output Distortion (T _{HD})	100% FM Modulation (Figure 2)		1.5		%
AM Rejection (AMR)	AM: 1 kHz @ 30%, V _{IN} = 10 mV (Figure 2)		46		dB
DYNAMIC CHARACTERISTICS f ₀ = 10.7 M	Hz, $\Delta f = \pm 75$ kHz, Peak Separation = 550 kHz, So	urce Resista	nce = 50Ω		
Amplifier Voltage Gain (A _{IF})	$V_{IN} \leq 0.3 \text{ mVrms (Figure 1)}$	- 3.	53		dB
Amplifier Output Voltage ($V_{10(iF)}$)	V _{IN} = 10 mV (Figure 1)		1.45		V _{P-P}
Input Limiting Threshold ($V_{IN(LIM)}$)	FM = 400 Hz (Figure 2)		400		μV
Recovered Audio Output (V _{O(af)})	V _{IN} = 60 mV, FM = 400 Hz (Figure 2)		0.3		Vrms
Output Distortion (T _{HD})	100% FM Modulation (Figure 2)		1,		%
AM Rejection (AMR)	AM: 1 kHz = 30%, V _{IN} = 10 mV (Figure 2)		40		dB

block diagram

test circuits

FIGURE 1.

COMPONENT VALUES

f	L1	C1	R1	Q(R1,L1)	C2	C3
MHz	μН	pF	kΩ		pF	μF
4.5	14	120	20	30	3.0	0.003
5.5	8.0	100	20	30	3.0	0.003
10.7	2.0	120	3.9	20	4.7	0.01

LM1845 signal processing system general description

The LM1845 is a signal processing system for television receivers which performs the functions of AGC and sync separation. It provides both positive and negative going sync signals and includes an internal AGC amplifier with noise cancelling. AGC outputs are available for both IF and tuner.

features

Video internally delayed for total noise inversion

- Low impedance noise cancelled positive and negative going sync outputs
- No noise threshold or AGC detector level adjustment
- Low impedance video output for driving luminance channel or a video output stage
- Two delayed tuner AGC outputs; one for an NPN bipolar tuner and one for a FET, tube, or PNP

schematic diagram

Order Number LM1845N See Package 23

Order Number LM1845N-01 See Package 25

typical circuit configuration

Supply Voltage
Power Dissipation (Note 2)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

30V 625 mW 0°C to 70°C -55°C to +150°C 300°C

electrical characteristics (Note 1)

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS
AGC Threshold		4.65		5.3	V
Threshold Separation			1.7		V
Negative Sync Output (Low)	Ι _{Ρ4} = 100 μΑ			2.5	V
Negative Sync Output (High)	V _{P4} = 0V	23.9			V
Positive Sync Output (Low)	V _{P4} = 0V			0.1	V
Positive Sync Output (High)	Ι _{Ρ4} = 100 μΑ	20.5			V
AGC Filter Discharge Current			1.70		mA
AGC Filter Charge Current			20		mA
Reverse Tuner AGC Maximum Current			3.2		mA
Forward Tuner AGC Maximum Current			9.8		mA
Internal AC Coupled Noise Gate Lockout Interval		1		55	μs
Supply Current	1 Kohm between P6 and P7		10		mA

Note 1: $T = 25^{\circ}C$ and $V_{CC} = 24V$.

Note 2: The maximum junction temperature of the LM1845 is 125° C. For operating at elevated temperatures the derating factor is 175° C/W junction to ambient.

LM2111 FM detector and limiter

general description

The LM2111 is a monolithic integrated circuit FM detector and limiter that requires a minimum of external components for operation. It includes three stages of IF limiting and a balanced product detector.

features

 A direct replacement for ULN2111A and MC1357

- Simple detector alignment: one coil or ceramic filter
- Sensitivity: 3 dB limiting voltage 300 μ V typ.
- Low harmonic distortion

See Package 24

■ High IF voltage gain

schematic diagram

See Package 22

block diagram

5

absolute maximum ratings

Supply Voltage Input Signal Voltage (Pin 4) Power Dissipation

15V 3.5V Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) 0°C to +85°C -65°C to +150°C 300°C

 $T_A = 25^{\circ}C$ or less $T_A = 25^{\circ}C$ or more \$850~mW\$ Derate Linearly $6.67~\text{mW/}^{\circ}\text{C}$

electrical characteristics (T_A = 25°C, V_{CC} = 12V)

		TEST			LIMITS		
PARAMETER	SYMBOL	CIRCUIT	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC CHARACTERISTICS							
Supply Current	113			12	17	22	mA
Amplifier Input Reference	V ₆				1.45		V
Detector Input Reference	V ₂				3.65		V
Amplifier High Output Level	V ₁₀			1.25	1.45	1.65	V
Amplifier Low Output Level	V ₉			0.125	0.145	0.20	V
Detector Output Level	V ₁			4.3	5.0	5.7	V
De-emphasis Resistance	R _d			7.2	8.8	10.8	kΩ
DYNAMIC CHARACTERISTICS	f ₀ = 4.5 MH	∆F = ±25	kHz, Peak Separation = 15.0 kHz, Sc	ource Res	istance =	50Ω	
Amplifier Voltage Gain	A _{IF}	1	$V_{IN} \leq 0.3 \text{ mVrms}$	55	58		dB
Amplifier Output Voltage	V _{10(IF)}	1	V _{IN} = 10 mV	1.25	1.45		V _{p-p}
Input Limiting Threshold	V _{IN(LIM)}	2	FM = 400 Hz		400	800	μVrms
Recovered Audio Output	V _{O(af)}	2	V _{IN} = 60 mV, FM = 400 Hz	0.5	0.6		Vrms
Output Distortion	T _{HD}	2	100% FM Modulation		1.5		%
AM Suppression	AMR	2	AM: 1 kHz @ 30%, V _{IN} = 10 mV	40	46		dB
DYNAMIC CHARACTERISTICS	f ₀ = 10.7 MH	Hz, △F = ±	75 kHz, Peak Separation = 1 MHz, So	ource Re	sistance =	= 50Ω	
Amplifier Voltage Gain	A _{IF}	1	$V_{IN} \le 0.3 \text{ mVrms}$		53		dB
Amplifier Output Voltage	V _{10(IF)}	1	V _{IN} = 10 mV		1.45		V _{p·p}
Input Limiting Threshold	V _{IN(LIM)}	2	FM = 400 Hz		300		μVrms
Recovered Audio Output	V _{O(af)}	2	V _{IN} = 60 mV, FM = 400 Hz		0.3		Vrms
Output Distortion	T _{HD}	2	100% FM Modulation		0.3		%
AM Suppression	AMR	2	AM: 1 kHz @ 30%, V _{IN} = 10 mV		40		dB

test circuit

TEST CIRCUIT 1

TEST CIRCUIT 2

LM2113 FM detector and limiter general description

The LM2113 is a monolithic integrated circuit FM detector and limiter that requires a minimum of external components for operation. It includes three stages of IF limiting and a balanced product detector.

features

A direct replacement for ULN 2113A

- Simple detector alignment: one coil or ceramic filter
- Sensitivity: 3 dB limiting voltage 300 μV typ.
- Low harmonic distortion

Order Number LM2113N-01

See Package 24

- High IF voltage gain
- Nominal 8V supply

schematic diagram

Order Number LM2113N See Package 22

block diagram

Supply Voltage Input Signal Voltage (Pin 4) Power Dissipation $T_A = 25^{\circ}\text{C} \text{ or less}$ $T_A = 25^{\circ}\text{C} \text{ or more}$

14V 3.5V 850 mW Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) 0°C to +85°C -65°C to +150°C 300°C

 $_{\Delta}$ = 25°C or more Derate Linearly 6.67 mW/°C

		TEST		LIMITS			
PARAMETER	SYMBOL	CIRCUIT	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC CHARACTERISTICS							
Supply Current	I ₁₃			11	16	22	mA
Amplifier Input Reference	V ₆				1.45		V
Detector Input Reference	V ₂				3.65		V
Amplifier High Output Level	V ₁₀			1.25	1.45	1.65	V
Amplifier Low Output Level	V ₉			0.125	0.145	0.20	V
Detector Output Level	V ₁			3.0	3.8	4.5	V
De-emphasis Resistance	R _d			7.2	8.8	10.8	kΩ
DYNAMIC CHARACTERISTICS	f ₀ = 4.5 MH,	∆f = ±25 kHz	, Peak Separation = 150 kHz, Source R	esistance	= 50Ω		
Amplifier Voltage Gain	A _{IF}	1	$V_{IN} \leq 0.3 \text{ mVrms}$		58		dB
Amplifier Output Voltage	V _{10(IF)}	1	V _{IN} = 10 mV		1.45		V _{p-p}
Input Limiting Threshold	V _{IN(LIM)}	2	FM = 400 Hz		300		μVrms
Recovered Audio Output	V _{O(af)}	2	$V_{1N} = 60 \text{ mV}, FM = 400 \text{ Hz}$		0.5		Vrms
Output Distortion	T _{HD}	2	100% FM Modulation		1.5		%
AM Suppression	AMR	2	AM: 1 kHz @ 30%, $V_{IN} = 10 \text{ mV}$		46		dB
DYNAMIC CHARACTERISTICS	f ₀ = 10.7 MH	z, ∆f = ±75 k	Hz, Peak Separation = 550 kHz, Source	Resistano	ce = 50Ω		
Amplifier Voltage Gain	A _{IF}	1	$V_{1N} \leq 0.3 \; mV rms$		53		dB
Amplifier Output Voltage	V _{10(IF)}	1	$V_{IN} = 10 \text{ mV}$		1.45		V _{pp}
Input Limiting Threshold	V _{IN(LIM)}	2	FM = 400 Hz	230	300	500	μV
Recovered Audio Output	V _{O(af)}	2	V_{1N} = 60 mV, FM = 400 Hz	0.3	0.4	0.5	Vrms
Output Distortion	T _{HD}	2	100% FM Modulation		1.0		%
AM Suppression	AMR	2	AM: 1 kHz @ 30%, V _{IN} = 10 mV		40		dB

test circuits

TEST CIRCUIT 1

LM3011 wide band amplifier general description

The LM3011 is a monolithic wide band amplifier circuit that requires a minimum of external components for operation. It includes three stages of limiting.

features

- A direct replacement for CA3011
- High amplifier gain
- Excellent limiting characteristics
- Wide frequency capability

schematic diagram

block diagram

1. LM3011 5 1F OUTPUT 1. LM3011 5 1F OUTPUT

connection diagram

Order Number LM3011H See Package 12

5

absolute maximum ratings

Supply Voltage Input Signal (Pin 1) Power Dissipation

15V ±3V 300 mW Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) -55°C to +125°C -65°C to +150°C 300°C

electrical characteristics (T_A = 25°C)

PARAMETER	CONDITIONS					
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
STATIC CHARACTERISTICS						
Total Device Dissipation (P _T)	V _{CC} = 6V (Figure 1)	60	90	133	- mW	
Total Device Dissipation (P_T)	V _{CC} = 7.5V (Figure 1)	95	120	187	mW	
DYNAMIC CHARACTERISTICS $V_{CC} = 7$	5V, F = 4.5 MHz, unless otherwise noted					
Voltage Gain (A)	V _{CC} = 6V, f = 1 MHz (Figure 2)	60	66		dB	
Voltage Gain (A)	V _{CC} = 7.5V, f = 1 MHz (Figure 2)	65	70		dB	
Voltage Gain (A)	V _{CC} = 7.5V, f = 10.7 MHz (Figure 2)	55	61	, ,	dB	
Parallel Input Resistance (R _{IN})			3		kΩ	
Parallel Input Capacitance (C _{IN})			7		pF	
Parallel Output Resistance (R _{OUT})			31.5	-	kΩ	
Parallel Output Capacitance (C _{OUT})			4.2		pF	
Noise Figure (NF)			8.7		dB	
Input Limiting Voltage (V _{IN (Lim)})	(-3 dB) (Figure 2)		300	400	μV	

test circuits

FIGURE 1

FIGURE 2

LM3028A/LM3028B/LM3053 differential rf/if amplifier general description

The LM3028A/LM3028B/LM3053 is a monolithic RF/IF amplifier intended for emitter-coupled (differential) or cascode amplifier operation from DC to 120 MHz in industrial and communications equipment. The LM3028A/LM3028B and LM3053 are plug-in replacements for the CA3028A/CA3028B and CA3053 respectively. The LM3028B is similar to the LM3028A but has premium performance with tighter limits in offset voltage and current, bias current and voltage gain. The LM3053 is similar to the LM3028A/LM3028B but is recommended for IF amplifier operation with less critical DC parameters.

features

- Controlled for input offset voltage, input offset current, and input bias current
- Balanced differential amplifier configuration with controlled constant-current source to provide unexcelled versatility

- Single- and dual-ended operation
- Operation from DC to 120 MHz
- Balanced-AGC capability*
- Wide operating-current range.

applications

- RF and IF linear amplifiers, both differential and cascode
- Mixers
- Oscillators
- Converters in commercial FM
- DC, audio and sense amplifiers
- Limiting IF amplifiers
- Hybrid building block
- Emitter coupled switches

schematic and connection diagrams

Metal Can Package

Order Number LM3028AH or LM3028BH or LM3053H See Package 11

typical applications

A Balanced Differential Amplifier with a Controlled Constant-Current-Source Drive and AGC Capability

A Cascode Amplifier with a Constant-Impedance AGC Capability

Mixer

^{*}Does not apply to the LM3053.

Storage Temperature Operating Temperature Power Dissipation @ 25°C Derate 5 mW°C Above 85°C Lead Temperature (Soldering, 10 sec) -65°C to 200°C -55°C to 125°C 450 mW

dc electrical characteristics

	SYMBOL	TEST CIRCUIT	V _{cc}	VEE	MIN	LM3028A TYP	MAX	MIN	LM3028B TYP	MAX	MIN	LM3053 TYP	MAX	UNITS
Input Offset Voltage	Vos	А	6 12	-6 -12			5.0 5.0		0.4 0.4	2.0 2.0		n -		mV mV
Input Offset Current	Ios	В	6 12	-6 -12			5.0 5.0		0.15 0.25	2.0 2.0				μA μA
Input Bias Current	BIAS	B C C	6 12 9 12	-6 -12 - -		7.5 17	50 106		7.5 17	40 80		13 18	85 125	μΑ μΑ μΑ μΑ
Output Quiescent Operating Current	I _a	B B C	6 12 9 12	-6 -12 - -	0.9 2.3	1.25 3.15	2.0 5.0	1.1 2.5	1.25 3.15	1.5 4.0	1.2 2.3	2.2 3.15	3.5 5.0	mA mA
AGC Bias Current into Terminal 7	IAGC	D D	12 12 9 12	V _{AGC} =9V V _{AGC} =12V		1.1 1.5		*	1.1 1.5			1.05 1.45		mA mA mA
Input Current into Terminal 7	17	B B	6 12	-6 -12	0.5 1.0	0.7 1.5	1.1 2.2	0.5 1.0	0.7 1.5	1.1 2.2				mA mA
Power Dissipation	P _D	B B C	6 12 9 12	-6 -12 - -	24 120	35 170	54 260	24 120	35 170	42 220		48 91	80 150	mW mW mW

ac electrical characteristics

	SYMBOL	TEST CIRCUIT	V _{CC}	V _{EE}	MIN	LM3028A TYP	MAX	MIN	LM3028B TYP	MAX	MIN	LM3053 TYP	MAX	UNITS
100 MHz Power Gain	Ap	E(Cascode) F(Diff.)	9	-	17 14.5	22 18.5		17 14.5	22 18.5					dB dB
10.7 MHz Power Gain	Ap	E(Cascode) F(Diff.)	9 9	-	36 29	42 33.5		36 29	42 33.5					dB dB
100 MHz Noise Figure	NF	E(Cascode) F(Diff.)	9	-		6.7 5.9	9.0 9.0		6.7 5.9	9.0 9.0				dB dB
Input Admittance at 10.7 MHz	Y ₁₁	Cascode Diff.	+9 +9			0.5+j1.3 0.4+j0.58			0.5+j1.3 0.4+j0.58			0.5+j1.3 0.4+j0.58		mmho mmho
Reverse Transadmittance at 10.7 MHz	Y ₁₂	Cascode Diff.	+9 +9	-		0.2+j0 10+j0.2			0.2+j0 10+j0.2			0.2+j0 10+j0.2		μmho μmho
Forward Transadmittance at 10.7 MHz	Y ₂₁	Cascode Diff.	+9 +9	-		95-j27 -32+j.5			95-j27 -32+j.5			95-j27 -32+j.5		mmho mmho
Output Admittance at 10.7 MHz	Y ₂₂	Cascode Diff.	+9 +9	-		0+j100 20+j160			0+j100 20+j160			0+j100 20+j160		μmho μmho
Output Power (Untuned) at 10.7 MHz	Po	G	+9	-		5.7			5.7			5.7		μW
AGC Range at 10.7 MHz		F	+9	-		76			76			76		dB
Voltage Gain at 10.7 MHz	A,	H(Cascode) I(Diff.)	+9 +9	-		40 30			40 30			40 30		dB dB
Differential 1 kHz Voltage Gain	A _{vD}	J	6 12	-6 -12				35 40	38 42.5	42 45				dB dB
Maximum Peak to Peak Output Voltage at 1 kHz	VMAX VOUT, pp	J R _L =2k J R _L =1.6k	6 12	-6 -12	-			8 16	11 22					V _{p-p} V _{p-p}
3 dB Bandwidth	BW	J R _L =2k J R _L =1.6k	6 12	-6 -12					11.2 12.7					MHz MHz
Common-Mode Input Voltage Range	V _{CM}	K K	6 12	-6 -12				-2.5 -5	-3.2 to +4.5 -7 to +9	4 7				v v
Common-Mode Rejection Ratio	CMRR	K K	6 12	-6 -12				60 60	110 90					dB dB
Peak to Peak Output Current V _{IN} = 400 mV at 10.7 MHz	I _{p-p}	Diff. Diff.	9 12	-	2 3.5	4.7 6.5	7 10	2.5 4.5	4.7 6.5	6 8	2 3.5	4.7 6.5	7 10	mA mA

test circuits

Test Circuit A: VOS LM3028A & LM3028B

Test Circuit B: I_{OS} , I_{BIAS} , P_{D} , I_{Q} & I_{7} for LM3028A & LM3028B

Test Circuit C: IBIAS, PD, IQ for LM3053

Test Circuit D: IAGC vs VAGC and I7 for LM3028A & LM3028B

Test Circuit E: Cascode Ap & NF 10.7 MHz & 100 MHz

Test Circuit F: Differential Ap, NF and AGC Range, 10.7 MHz & 100 MHz

Test Circuit G: P₀ (Untuned) for LM3028A & LM3028B

Test Circuit H: Cascode $\boldsymbol{A_{V}}$ and Transfer Function, 10.7 MHz

Test Circuit I: Differential Mode $A_{\mbox{\scriptsize V}}$ and Transfer Function, 10.7 MHz

test circuits (con't)

Test Circuit J: A_v, V_{OUT}, MAX, p/p B.W. for LM3028B

Test Circuit K: CMRR and V_{CM} Range for LM3028B

LM3064 television automatic fine tuning

general description

The LM3064 is a monolithic integrated circuit designed primarily for AFT (automatic fine tuning) applications. It includes a zener regulated power supply, IF amp, differential peak detector, and an AGC circuit.

The LM3064 is supplied in both the formed and straight lead TO-5 and 14 lead dual-in-line package.

features

- Primarily intended for AFT applications
- High gain input amp (18 mV for rated output)
- Differential output correction voltage
- Wide operating temperature -40°C to +85°C
- Formed leads available for easy PC board design

schematic and connection diagrams

Metal Can Package V IREGIATION INTERIOR MATERIAL MATER

Order Number LM3064H See Package 14&29

test circuits

Test Circuit 1
Correction Voltage Test Circuit

Test Circuit 2
DC Parameter Test Circuit

Power Dissipation $T_A = 25^{\circ}C \text{ or Less}$ $T_A = 25^{\circ}C \text{ or More}$

700 mW
Derate Linearly 5.6 mW/°C for TO-5
Derate Linearly 10 mW/°C for DIP

Operating Temperature Range Storage Temperature Range Power Supply Current -40°C to +85°C -65°C to +150°C 50 mA

electrical characteristics (T_A = 25°C)

PARAMETER	SYMBOL	TEST	CONDITIONS	LIF	MITS		
PARAMETER	STWBUL	CIRCUIT	CONDITIONS	MIN	MAX	UNITS	
STATIC							
Device Dissipation	P _T	2	$V_{CC} = 30V; R_S = 1.5k$	130	150	mW	
Current Drain	I _T	2	$V_{10} = 10.5V$	4.0	9.5	mA	
Zener Regulating Voltage	V ₁₀	2	$V_{CC} = 30V; R_S = 1.5k$	10.9	12.8	V	
Quiescent Current into Pin 2	I ₂	2	$V_{CC} = 30V; R_S = 1.5k$	1	4	mA	
Quiescent Voltage at Pin 4	V ₄	. 1	V _{CC} = 30V; R _S = 1.5k	5.0	8.0	V	
Quiescent, Voltage at Pin 5	V ₅	, 1 *	$V_{CC} = 30V; R_S = 1.5k$	5.0	8.0	v	
Output Offset Voltage between Pins 4 & 5	V ₄ -V ₅	1 1	$V_{CC} = 30V; R_S = 1.5k$	-1.0	+1.0	V	
DYNAMIC - Output Voltage	vs Frequency Deviation	on AFT		•			
		x		Correction as Show			
Correction Control			$V_{CC} = 30V; R_S = 1.5k$	% of	% of		
Voltage at Pin 4			$V_i = 18 \text{ mV}$	V ₁₀	V ₁₀		
	V ₄	1	f = 45.7503 MHz	85		V	
	V ₄	1	f = 45.75 + .03 MHz		25	V	
	V ₄	1	f = 45.759 MHz	80		V	
	V ₄	1	f = 45.75 + .9 MHz		35	V	
	V ₄	1	f = 45.75 - 1.5 MHz		80	V	
	V ₄	1	f = 45.75 + 1.5 MHz	35		V	
Correction Control	V ₅	1	f = 45.7503 MHz		25	V	
Voltage at Pin 5	V ₅	1	f = 45.75 + .03 MHz	85		V	
See Curves	V ₅	1	f = 45.759 MHz		35	V	

f = 45.75 + .9 MHz

f = 45.75 - 1.5 MHz

f = 45.75 + 1.5 MHz

correction control voltage

 V_5

V₅

80

35

80

coil winding data

COIL DATA FOR DISCRIMINATOR WINDINGS

 L_1- Discriminator Primary: 3-1/6 turns; No. 20 Enamel-covered wire-close-wound, at bottom of coil form. Inductance of L_1 = 0.165 μH ; Q_o = 120 at f_o = 45.75 MHz.

Start winding at Terminal No. 6; finish at Terminal No. 1. See Notes below.

 L_2 — Tertiary Windings: 2–1/6 turns; No. 20 Enamel-covered wire—close- wound over bottom end of L_1 . Start winding at Terminal No. 3; finish at Terminal No. 4. See Notes below.

 L_3 — Discriminator Secondary: 3--1/2 turns; center-tapped, space wound at bottom of coil form. Inductance of L_3 = 0.180 μH ; Q_o = 150 at f_o = 45.75 MHz.

Start winding at Terminal No. 2; finish at Terminal No. 5, connect center tap to Terminal No. 7. See Notes .

Note 1: Coil Forms; Cylindrical; -0.30" Dia. max.

Note 2: Tuning Core: 0.250" Dia. x 0.37" Lngth.
Material: Carbinal J or equivalent.

Note 3: Coil Form Base: See drawing below.

Note 4: End of coil nearest terminal board to be designated the winding start end.

L₁ is aligned for symmetrical bandwidth on either side of 45.750 MHz L₂ tertiary winding wound on L₁ coil form L₂ is aligned for zero differential output between terminals 4 and 5 at f₀ = 45.750 MHz

Consumer Circuits

LM3065 television sound system general description

The LM3065 is a monolithic integrated circuit television sound system that requires a minimum of external components for operation. It includes three stages of IF limiting, an FM detector, an electronic attenuator or volume control, an audio amplifier-driver, and a temperature stable regulated power supply. Volume control is accomplished by varying bias levels of the electronic attenuator with a potentiometer between pin 6 and ground. Because no audio signal is present in this control, hum and noise pickup are easily filtered. Unshielded wire may be used for volume control. Features include:

Electronic attenuator: replaces conventional ac volume control

- Volume reduction range: >60 dB
- Sensitivity: 3 dB limiting voltage $-200~\mu V$ typically
- High stability
- Low harmonic distortion
- Audio drive capability: 6 mA p-p
- Undistorted audio output voltage: 7V p-p
- Differential peak detector
- Simple detector alignment: one coil
- Internal zener diode regulator
- Excellent AM rejection—50 dB typ. @ 4.5 MHz

schematic and connection diagrams

Dual-In-Line Package

TOP VIEW

Order Number LM3065N See Package 22

Order Number LM3065N-01 See Package 24

block diagram

Input Signal Voltage (Between Pin 1 and 2)
Power Supply Current (Pin 5)

±3V

Power Dissipation $T_A=25^{\circ}C \text{ or less} \\ T_A=25^{\circ}C \text{ or more} \\ Operating Temperature Range} \\ Storage Temperature Range$

850 mW
Derate Linearly 6.67 mW/°C
-40°C to +85°C
-65°C to +150°C

electrical characteristics

PARAMETER	SYMBOL	TEST	EST CONDITIONS		LIMITS			
FANAMETER	STMBOL	CIRCUIT	CONDITIONS	MIN	TYP	MAX	X UNITS	
Static Characteristics								
Zener Regulating Voltage	V ₅			10.3	11.5	12.2	V	
Ouiescent Supply Current	15				28		mA	
Voltage @ Pin 12	V12			4.0	5.2	5.8	V	
Current into Terminal 5	15		V ₅ = 9V	10.0	12.3	24	mA	
Dynamic Characteristics								
IF Amplifier/Detector Input Limiting Voltage (-3 dB point)	V _{IN} (lim)	1	fo = 4.5 MHz fm: 400 Hz @ ±25 kHz		200	400	μV	
Recovered Audio	V _O (af)	1	fo = 4.5 MHz, V _{IN} = 100 mV fm: 400 Hz @ ±25 kHz	500	750		mV rms	
AM Rejection	AMR	1	fo = 4.5 MHz, fm: 400 Hz @ ±25 kHz AM: 1 kHz @ 30%	40	50		dB	
Total Harmonic Distortion Attenuator	THD	1	fo = 4.5 MHz, V _{IN} = 100 mV fm: 400 Hz @ ±25 kHz		.9	2	%	
Volume Reduction Range			fo = 4.5 MHz fm: 400 Hz @ ±25 kHz	60			dB	
			$R_A = 0$ for max-volume; $R_A = \infty$ for minimum volume					
Audio Driver								
Voltage Gain	Av(af)	2	V _{IN} = 100 mV @ 400 cps	17.5	20		dB	
Total Harmonic Distortion	THD	2	V _O = 2V rms @ 400 cps		1.5		%	
Undistorted Output Voltage		2	THD = 5% @ 400 cps	2	2.5		V rms	

test circuits

TEST CIRCUIT 1

TEST CIRCUIT 2

Consumer Circuits

LM3066 chroma signal processor

general description

The LM3066 is a monolithic integrated circuit designed for color signal processing in color television receivers. It includes gain controlled chroma and bandpass amplifiers, chroma output stage, gated burst amplifier, 3.58 MHz injectionlocked oscillator, automatic chroma control (ACC) detector-amplifier, killer detector-amplifier, and a zener-regulated voltage reference. The input chroma signal is applied to the chroma amplifier which is controlled by the ACC detector-amplifier maintaining a constant chroma level at terminal 16. The chroma amplifier feeds the chroma signal in parallel to the bandpass and burst amplifiers. The bandpass amplifier is gain controlled by the DC chroma gain control and is also controlled by the killer detector-amplifier. The horizontal keying pulse gates the burst signal from the bandpass amplifier to the burst amplifier which then injects the burst signal into the 3.58 oscillator. The ACC and killer detectors sense the oscillator amplitude.

Thresholds are set independently at terminals 9 and 4. The LM3066 and the LM3067 Chroma Demodulator constitute a complete chroma system for color television receivers.

features

- Complete color sync circuitry
- Blanked chroma amplifier
- Chroma bandpass amplifier
- Low output impedance chroma driver
- Color killer
- Automatic color control
- DC chroma gain control
- Zener regulated voltage reference
- Aligned independently
- Short circuit protection

Power Dissipation

 $T_A = 70^{\circ} C$ or less Above $70^{\circ} C$

600 mW derate linearly 7.7 mW/°C

Ambient Temperature Range

Operating Storage

-40 to +85°C -65 to +150°C

Power Supply Voltage (Pin 12) Power Supply Current (Pin 12)

+12V 50 mA

electrical characteristics (T_A = 25°C and V⁺ = 11.2V)

PARAMETERS	CONDITIONS		LIMITS	LIMITS		
PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS	
STATIC CHARACTERISTICS (Test C	ircuit 1)					
ACC Reference (V ₂)			.5		V	
Burst-Chroma Bias (V ₃)			2.9		V	
Killer Reference (V ₄)			1.0		V	
Zener Reg. Reference (V ₆)		10.6	11.9	12.6	V	
Oscillator Input (V ₇)			1.3		V	
Oscillator Output (V ₈)			2.3		V	
Balance (ACC Control) (V ₉)			1.65		V	
Chroma Output (V ₁₄)			4.6		V	
Burst-Sperator Output (I ₁₁)	S1 Closed		6.5		mA	
Bandpass Amplifier Output (I ₁₃)			4.8		mA	
Chroma Amplifier Output (I ₁₆)			1.27		mA	
Quiescent Supply Current (I ₅)		14	24	33	mA	
DYNAMIC CHARACTERISTICS (Tes	t Circuit 2)			•		
Oscillator Output (V ₈)	$V_1 = 0 V_{p-p}$ $V_1 = 1.25 V_{p-p}$	0.8	1.05 2.5	3.5	V _{p-p}	
Chroma Output (V ₁₄) 100% Killed	$V_1 = 1.25 V_{p-p}$ $V_1 = .025 V_{p-p}$	0.5	1.0	.02	V _{p-p} V _{p-p}	
ACC Detector Output (V ₂)	V ₁ = 1.25 V _{p-p}		0.9		V	
Small Signal Input Resistance (r _i)			50		kΩ	
Small Signal Input Capacitance (C _i)			2.4		pF	
Small Signal Output Impedance (r _o)			250		Ω	

DYNAMIC CHARACTERISTICS TEST PROCEDURE

Note 1: $V_1 = 0 V_{p-p}$

(A) Adjust $V_2 = +0.65V$

(B) Adjust $V_4 = +1.2V$

(C) Adjust C_X so $f_{OSC} = 3.579545$ MHz.

Note 2: Chroma input test signal (V_1) is a 52 μs line at subcarrier frequency and 10 cycles of burst at 46.5% of line amplitude.

test circuits

TEST CIRCUIT 1

All resistance values are in DHMS
Unless otherwise indicated, all capacitance values less than 1.0 are in microfarads, 1.0 or greater are in picofarads.
All coils have a $\Omega_{\rm OU} > 30$

TEST CIRCUIT 2

Consumer Circuits

LM3067 chroma demodulator

general description

The LM3067 is a monolithic integrated circuit designed primarily for color signal demodulation in color television receivers. A DC tint control is also included. The reference subcarrier and chroma signals are applied and the three demodulated R-Y, G-Y, B-Y color difference signals are delivered with close DC balance and proper amplitude ratios. The tint control achieves a 100°+ phase adjustment by means of a customeroperated DC control. A limiting amplifier and phase shift network provide constant amplitude carriers phase shifted 76° which then feed demodulator drive amplifiers. The demodulators consist of two sets of balanced detectors which receive the reference subcarrier and chroma signal. The chroma signal is then demodulated, matrixed, and DC shifted in voltage. The LM3067 and LM3066

Chroma Signal Processor constitute a complete chroma system for color television receivers.

features

- Balanced chroma demodulators
- DC tint control
- Color difference matrix
- Low output impedance drivers for direct coupling
- Reference subcarrier limiter
- Zener regulated voltage reference
- Internal RF filtering of demodulation components

Power Dissipation $T_A = 70^{\circ} \text{C or less}$ Above 70°C

600 mW derate linearly 7.7 mW/°C

Ambient Temperature Range Operating

-40 to +85°C -65 to +150°C

Power Supply Voltage (Pin 13) Power Supply Current (Pin 13) 55 to +150°C +12V 50 mA

electrical characteristics ($T_A = 25^{\circ}C$ and $V^+ = 11.2V$)

PARAMETERS	CHARACTERISTICS		LIMITS		UNITS	
- Andre Fello	ONAMA TEMOTICS	MIN	TYP	MAX		
Static Characteristics (Test Circuit 1)						
Voltage Inputs						
Tint Control Input (V ₂)	I ₂ = 0.25 mA		3.5			
Reference Subcarrier (V ₃)			2.1			
Zener Regulator Ref. (V ₄)		10.6	11.9	12.6	V	
B-Y, R-Y Oscillator Ref. Inputs (V ₆ ,V ₁₂)			5.7			
Balance (B-Y, R-Y) (V_7,V_{11})			5.0			
$B-Y$, $G-Y$, $R-Y$ Outputs ($V_{8,9,10}$)		4.2	5.0	5.8		
Difference Outputs (Note 1), $(\triangle V_8, \triangle V_9, \triangle V_{10})$		-0.3		0.3		
Chroma Inputs (V ₁₄ ,V ₁₅)			3.0			
Tint Amplifier Balance (V ₁₆)			4.7			
Input Currents						
Tint Amplifier Output (min.) (I ₁ (min.))	V ₁₆ = 8V	0.16	0.37		mA	
Total Supply $(I_1 + I_{13})$		15	24	33		
Dynamic Characteristics (Test Circuit 2)						
Tint Amplifier Output						
Sensitivity (V ₁)	$V_3 = 7 \text{ mVRMS}$	160	250		mVRMS	
Limiting Knee (V ₁)	V ₃ = 35 mVRMS		300			
Limiting (V ₁)	V ₃ = 350 mVRMS			380		
Tint Amplifier Phase Ref. (Note 2) (ϕ_6)	V ₃ = 70 mVRMS	185	220	235	degrees	
Tint Amplifier Phase Ref. (Note 3) $(\triangle\phi_6)$	V ₃ = 70 mVRMS	90	105		degrees	
Demodulated Chroma Outputs						
R-Y (V ₁₀)	V ₃ = 70 mVRMS	0.15	0.25		VRMS	
Ratio of $G-Y$ to $R-Y$ (V_9/V_{10})	V ₁₄ = 35 mVRMS	0.28	0.36	0.44		
Ratio of B-Y to R-Y (V_8/V_{10})	V ₁₄ - 35 III V NIVIS	1.0	1.2	1.4	,	
Color Difference Output				-		
BW at 3.3 dB (BW _{Diff.})		450	550		kHz	
Color Difference Outputs (max. input signals):						
R-Y (V ₁₀)			3.0			
G-Y (V ₉)	V ₃ = 70 mVRMS		1.1	_	V _{p-p}	
B-Y (V ₈)	V ₁₄ 212 mVRMS		3.6			
Small Signal Input Resistance						
Terminal Number 3 (r _i)			550		Ω	
Terminal Numbers 6 and 12 (r _i)			22			
Small Signal Output Resistance						
Terminal Numbers 8, 9, and 10 (r _o)			5			

$$\textbf{Note 1: } \triangle V_8 = V_8 - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_9 = V_9 - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10} - \left(\frac{V_8 + V_9 + V_{10}}{3}\right), \\ \triangle V_{10} = V_{10$$

Note 2: Terminal No. 3 is phase reference

Note 3: Read phase shift as tint control is varied

block and functional diagram

test circuits

TEST CIRCUIT 1

TEST CIRCUIT 2

Consumer Circuits

LM3070 chroma subcarrier regenerator

general description

The LM3070 integrated circuit is a phase locked loop oscillator controlled by an Automatic Phase Control (APC) detector, and an Automatic Chroma Control (ACC) detector which generates the correction voltage for the ACC amplifier of the LM3071. Both the APC and the ACC detectors are piloted by the burst signal present in the NTSC color video signal applied at Pins 13 and 14 in quadrature. The APC error output voltage controls the phase shift at Pin 7 in the oscillator feedback loop and locks the frequency of oscillation to the burst signal frequency. The APC and ACC detectors are

keyed by the horizontal pulse applied at Pin 4, which also inhibits the oscillator output amplifier during the burst interval. Balance adjustment of DC offsets are provided to establish an initial no-signal offset control in the ACC output, and a no-signal, on-frequency adjustment through the APC detectoramplifier circuit which controls the oscillator frequency. The oscillator output stage is differentially controlled at Pins 2 and 3 by the HUE control to Pin 1.

The circuit also includes a shunt regulator to establish a 12V DC supply.

schematic diagram

block diagram

Supply Current
Internal Power Dissipation up to 70°C
Above 70°C Derate at 7 mW/°C
Operating Temperature
Storage Temperature

40 mA 550 mW

 -40° C to $+85^{\circ}$ C -65° C to $+150^{\circ}$ C

electrical characteristics T_A = 25°C V⁺ = 24V

PARAMETER	SYMBOL	CONDITIONS		LIMITS		UNITS
PANAMETER	STIVIBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC (Refer to Test Circuit 1)						
Supply Current	I _S			25.5		mA
Voltage at Supply Terminal	V ₁₀		11.3	12	12.8	V
Supply Regulation	$\triangle V_{10}$	$V^{+} = 21V \text{ to } V^{+} = 27V$		30		mV
Total Current into Oscillator Output Terminals	1 ₂ + 1 ₃	S ₁ "OFF", S ₂ Position 1, Pins 2 and 3 shorted together	4.2	5.8	7.8	mA
APC Output Current	I ₁₁ , I ₁₂	S ₁ "ON", S ₂ Position 1		1.45		mA
ACC Output Current	I ₁₅ , I ₁₆	S ₁ "ON", S ₂ Position 1		1.45		mA
APC Output Balance	V ₁₁ - V ₁₂	S ₁ "ON", S ₂ Position 1	-350	0	+350	mV
ACC Output Balance	V ₁₅ - V ₁₆	S ₁ "ON", S ₂ Position 1	-300	0	+300	mV
Oscillator Control Balance	V ₇ - V ₈	S ₂ Position 2, V ₁₁ =V ₁₂ =9.5V	-300	0	+300	mV
Voltage at Hue Control Terminal	V ₁	S ₁ "OFF"	7.1	7.7	8.3	V
Voltage at Oscillator Feedback Terminal	V ₆	S ₂ Position 3		2.8		V
Voltage at APC and ACC Input Terminal	V ₁₃ , V ₁₄		5.8	6.3	6.9	V
DYNAMIC (Refer to Test Circuit 2)						
Oscillator Pullin Range				±650		Hz
Oscillator Control Sensitivity				12		Hz/mV
Oscillator Output at Pin 2	V ₂	S ₁ , Position 1	.75	1.0		V_{p-p}
Oscillator Output at Pin 3	V ₃	S ₁ , Position 2	.75	1.0		V_{p-p}
ACC Detected Output			120	150		mV

typical performance characteristics

dc test circuit

TEST CIRCUIT 1

ac test circuit

5-111

Consumer Circuits

LM3071 television chroma IF amplifier

general description

The LM3071 is a two stage chroma IF amplifier on a single silicon chip encapsulated in a 14 lead molded-Dual-In-Line Package. The first stage is an automatic gain controlled amplifier, and its output from Pin 6 is used to drive the ACC detector of the LM3070 or an equivalent circuit. The output from the ACC detector is applied to Pins 1 and 14 to control the gain of the stage. The second amplifier stage is driven from the output of the first at Pin 7, and the gain is controlled by adjusting the DC voltage at Pin 10. The output from Pin 9 supplies the chroma drive signal to the chroma demodulator circuit. In addition, the second stage

may be gated "OFF" to provide "color killing" action in the absence of color signal at the output of the first stage. The killer trip point is adjusted externally.

features

- Very effective gain control of both stages
- Good signal handling capability
- Excellent gain stability with temperature and supply voltage variations
- Low distortion

Supply Voltage Internal Power Dissipation at 70°C Above 70°C derate at 7 mW/°C Operating Temperature Storage Temperature V⁺ = 30V 550 mW

 -40° C to $+85^{\circ}$ C -65° C to $+150^{\circ}$ C

electrical characteristics $T_{\Delta} = 25^{\circ}C$ $V^{+} = 24V$

PARAMETER	SYMBOL	CONDITIONS		LIMITS		UNIT
FANAMETER	STIVIBUL	CONDITIONS	MIN	TYP	MAX	ONT
STATIC (Refer to Test Circuit 1)						
Supply Current	Is		17	24	31	mA
Bias Voltage at Pin 12	V ₁₂		14	15.3	16.5	V
Voltage at Input 1	V ₂			1.7		V
Voltage at Input 2	V ₇			1.4		V
Voltage at Output 1	V ₆	V _{ACC} = V ₁ - V ₁₄ = 0V	15.5	17.5	20	V
Voltage at Output 2	V ₉	V ₁₀ = 0V	17.25	18.25	19	V
DYNAMIC (Refer to Test Circuit 2) f =	3.58 MHz					
Gain, ACC Amplifier Stage	A _{V1}	S _A Position 1, V ₁ = V ₁₄ = 10V	14	16.5	19	db
Gain Reduction of ACC Amplifier		S_A Position 2, R_1 set for $V_{14} - V_1 = 75 \text{ mV}$		14		db
Maximum Gain, Chroma Level Amplifier	A _{V2}	S _B Position 1, V ₁₀ = 0V	13	15.5	17	db
90% Chroma Gain Control Reference Voltage	V ₁₀	S _B Position 1, R ₂ set for 90% of Maximum Gain	2.3	3.5	4.8	V _{DC}
10% Chroma Gain Control Reference Voltage	V ₁₀	S _B Position 1, R ₂ Set for 10% of Maximum Gain	17	20	21.7	V _{DC}
Maximum Chroma Output Before Distorting	V ₉	S _B Position 1, V ₁₀ = 0V		5.5		V _{p-p}
ACC Amplifier Bandwidth	BW₁	S _A Position 1		12		MHz
Level Amplifier Bandwidth	BW ₂			30		MHz
Killer on Threshold	V ₁₃	S _B Position 2, Adjust R ₃ to Kill Output		16.5		V _{DC}
Gain Variation with V ⁺ , Level	∆A _{V2}	R ₂ set for 10% of maximum Gain		0.3		db
Amplifier Stage		V ⁺ = 24 ± 3V				
Gain Variation with Temperature,	∆A _{V2}	R ₂ set for 10% of Maximum Gain		0.5		db
Level Amplifier Stage		$T_A = 25^{\circ}C$ to $T_A = 70^{\circ}C$				
ACC Amplifier Input Resistance	R _i 1			2.0		kΩ
ACC Amplifier Input Capacitance	C, 1			5		pF
Level Amplifier Input Resistance	R _i 2			2.2		kΩ
Level Amplifier Input Capacitance	C _i 2			4.2		pF

typical performance characteristics

ACC Amplifier Gain as a

Chroma Level Amplifier Gain

Consumer Circuits

LM3075 FM detector/limiter and audio preamplifier

general description

The LM3075 is a monolithic integrated circuit FM detector/limiter and audio preamplifier that requires a minimum of external components for operation. It includes three stages of IF limiting and a differential-peak-detection circuit.

features

■ A direct replacement for the CA3075

- Simple detector alignment: one coil
- \blacksquare Sensitivity: 3 dB limiting voltage 250 μV typical at 10.7 MHz
- Low harmonic distortion
- Excellent AM rejection 55 dB typ. at 10.7 MHz
- Internal audio preamplifier

Power Supply Current (Pin 5) Supply Voltage (Pin 5) Power Dissipation T_A = 25°C or less T_A = 25°C or more

30 mA 12.5V Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec)

-40°C to +85°C -65°C to +150°C 300°C

850 mW Derate Linearly 6.67 mW/°C

electrical characteristics T_A = 25°C

DADAMETED	0./440.01	TEST	004151710410		LIMITS		
PARAMETER	SYMBOL	CIRCUIT	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC CHARACTERISTICS							
Supply Current	1 ₅		$V_{CC} = 8.5V$ $V_{CC} = 11.2V$ $V_{CC} = 12.5V$	8.5	15 17.5 19	29	mA mA mA
Detector Output Level (High)	V ₇				6.1		V
Detector Output Level (Low)	V ₈		V _{CC} = 11.2V		5.4		V
Audio Amplifier Output Level	V ₁₂				5.2		V
DYNAMIC CHARACTERISTICS AT	V ⁺ = 11.2V, f ₀ =	= 10.7 MHz, ∆f	= ±75 kHz, fm = 400 Hz				
Input Limiting Threshold	V _{IN(LIM)}	1			250	600	μV
AM Rejection	AMR	1	AM: 1 kHz @ 30% V _{IN} = 100 mV		55		dB
Recovered AF Voltage (At Terminal 12)	V ₀ (AF)	1			1.5		V
Total Harmonic Distortion	T _{HD}	1			1	2	%
Audio Preamplifier							
Voltage Gain	A _{V(af)}	2	V _{IN} = 100 mV, f = 400 Hz		21		dB
Total Harmonic Distortion	T _{HD}	2	V _{OUT} = 2V, f = 400 Hz		1.5	5	%

TEST CIRCUIT 1

TEST CIRCUIT 2

Transistor/Diode Arrays

LM114/LM114A/LM115/LM115A matched dual monolithic transistors

general description

These devices contain a pair of junction-isolated NPN transistors fabricated on a single silicon substrate. This monolithic structure makes possible extremely-tight parameter matching at low cost. Further, advanced processing techniques yield exceptionally high current gains at low collector currents, virtual elimination of "popcorn noise," low leakages and improved long-term stability. Some of the major features of these pairs are indicated by the following specifications:

- Low offset voltage—0.5 mV maximum
- Low drift—2 μ V/ $^{\circ}$ C maximum from -55 $^{\circ}$ C to 125 $^{\circ}$ C

- High current gain-500 minimum at 10 μA
- Tight beta match—10% maximum
- High breakdown voltage—to 60V
- Matching guaranteed over a 0V to 45V collectorbase voltage range.

Although designed primarily for high breakdown voltage and exceptional dc characteristics, these transistors have surprisingly good high-frequency performance. The gain-bandwidth product is 450 MHz with 1 mA collector current and 5V collector-base voltage and 22 MHz with $10\,\mu\text{A}$ collector current. Collector-base capacitance is only 1.3 pF at 5V.

connection diagram

Order Number LM114H or LM114AH LM115H or LM115AH See Package 10

absolute maximum ratings

	LIVI I I 4	LIVITIO			
	LM114A	LM115A			
Collector-Base Voltage (BV _{CBO})	45V	60V			
Collector-Emitter Voltage (BV _{CER})	45V	60V			
Collector-Collector Voltage	45V	60V			
Emitter-Emitter Voltage	45V	60V			
Emitter-Base Voltage (BV _{EBO})	6	/			
Collector Current	20 r	nΑ			
Total Power Dissipation (Note 1)	1.8				
Operating Junction Temperature	−55°C to	150°C			
Storage Temperature	-65°C to	-65°C to 150°C			
Lead Temperature (soldering, 10 sec)	300	°C			

Note 1: The maximum dissipation given is for a 25°C case temperature. For operation under other conditions, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 70°C/W junction to case or 230°C/W junction to ambient.

electrical characteristics (Note 2)

PARAMETER	CONDITIONS			UNITS		
PARAMETER	CONDITIONS	LM114	LM114A	LM115	LM115A	Olerro
Offset Voltage	$1 \mu\text{A} \le I_{\text{C}} \le 100 \mu\text{A}$	2.0	0.5	2.0	0.5	mV
Offset Current	I _C = 10 μA I _C = 1 μA	10	2.0 0.5	10	2.0 0.5	nA nA
Bias Current	I _C = 10 μA I _C = 1 μA	40	20 3.0	40	40 6.0	nA nA
Offset Voltage Change	$0V \le V_{CB} \le V_{max}$ $I_C = 10 \mu\text{A}$	1.5	0.2	2.0	0.3	mV
Offset Current Change	$0V \le V_{CB} \le V_{max}$ $I_C = 10 \mu\text{A}$	4.0	1.0	4.0	1.0	nA
Offset Voltage Drift	$-55^{\circ}C \le T_{A} \le 125^{\circ}C$ $I_{C} = 10 \mu\text{A}$	10	2.0	10	2.0	μV/°C
Offset Current	$-55^{\circ}C \le T_{A} \le 125^{\circ}C$ $I_{C} = 10 \mu A$	50	12	50	20	nA
Bias Current	$-55^{\circ}C \le T_{A} \le 125^{\circ}C$ $I_{C} = 10 \mu A$	150	60	150	150	nA
Collector-Base Leakage Current	$V_{CB} = V_{max}$ $T_A = 25^{\circ}C$ $T_A = 125^{\circ}C$	50 50	10 10	50 50	10 10	pA nA
Collector-Emitter Leakage Current	$V_{CE} = V_{max}, V_{EB} = 0$ $T_A = 25^{\circ}C$ $T_A = 125^{\circ}C$	200 200	50 50	200 200	50 50	pA nA
Collector-Collector Leakage Current	$V_{CC} = V_{max}$ $T_A = 25^{\circ}C$ $T_A = 125^{\circ}C$	300 300	100 100	300 300	100 100	pA nA

Note 2: These specifications apply for T $_A$ = 25°C and 0V \leq V_{CB} \leq V_{max} , unless otherwise specified. For the LM114 and LM114A, V_{max} = 30V. For the LM115 and LM115A, V_{max} = 45V.

typical performance characteristics

Transistor/Diode Arrays

LM3018/LM3018A matched monolithic transistor arrays

general description

The LM3018 and LM3018A consist of four general purpose silicon NPN transistors on a common monolithic substrate. Two of the four transistors are connected in the Darlington configuration. The substrate is connected to a separate terminal for maximum flexibility. The transistors are well suited to a wide variety of applications in low-power systems in the DC through VHF range. They may be used as discrete transistors in conventional circuits but in addition they provide the advantages of close electrical and thermal matching inherent in integrated circuit construction.

features

- Matched monolithic general purpose transistors
- H_{EE} matched ±10%

V_{BE} matched LM3018 LM3018A

±5 mV ±2 mV

- Operation from DC to 120 MHz
- Wide operating current range
- LM3018A performance controlled from $10\mu A$ to 10 mA
- Low noise figure

3.2 dB typical at 1 kHz

Full military temperature range capability

-55°C to +125°C

applications

- General use in signal processing systems in DC through VHF range
- Custom designed differential amplifiers
- Temperature compensated amplifiers

schematic and connection diagram

Order Number LM3018H or LM3018AH
See Package 7

6

The following ratings apply for each transistor in the device:

	LM3018	LM3018A		LM3018	LM3018A
Power Dissipation (Note 1) Any One Transistor Total Package Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10	300 450 sec)	300 mW 450 mW -55°C to +125°C -65°C to +150°C 300°C	Collector to Emitter Voltage, V _{CEO} Collector to Base Voltage, V _{CBO} Collector to Substrate Voltage, V _{CIO} (Note 2) Emitter to Base Voltage, V _{EBO} Collector Current, I _C	15 20 20 5 50	15V 30V 40V 5V 50 mA

dc electrical characteristics $T_A = 25^{\circ}C$

PARAMETER	CONDITIONS		LM3018			LM3018A		UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
STATIC CHARACTERISTICS								
Collector Cutoff Current (I _{CBO})	V _{CB} = 10V, I _E = 0		.002	100		.002	40	nA
Collector Cutoff Current (I _{CEO})	V _{CE} = 10V, I _B = 0			5			.5	μΑ
Collector Cutoff Current Darlington Pair (I _{CEOD})	V _{CE} = 10V, I _B = 0						5	μΑ
Collector to Emitter Breakdown Voltage (V(BRICEO)	I _C = 1 mA, I _B = 0	15	24		15	24		V
Collector to Base Breakdown Voltage (V _{(BRICBO})	I _C = 10μA, I _E = 0	20	60		30	60		V
Emitter to Base Breakdown Voltage (V(BR)EBO)	$I_E = 10\mu A$, $I_C = 0$	5	7		5	7		V
Collector to Substrate Breakdown Voltage (V _{(BR)CIO})	I _C = 10μA, I _{C1} = 0	20	60		40	60		V
Collector to Emitter Saturation Voltage (V _{CES})	I _B = 1 mA, I _C = 10 mA		.23			.23	.5	V
Static Forward Current Transfer Ratio (h _{FE})	$V_{CE} = 3V$, $\begin{cases} I_{C} = 10 \text{ mA} \\ I_{C} = 1 \text{ mA} \\ I_{C} = 10 \mu \text{A} \end{cases}$	30	100 100 54		50 60 30	100 100 54		
Magnitude of Static Beta Ratio (Isolated Transistors \mathbf{Q}_1 and \mathbf{Q}_2)	V _{CE} = 3V, I _{C1} = I _{C2} = 1 mA	.9	.97		.9	.97		
Static Forward Current Transfer Ratio Darlington Pair $(Q_3 \text{ and } Q_4)$ (h_{FED})	$V_{CE} = 3V \begin{cases} I_C = 1 \text{ mA} \\ I_C = 100\mu\text{A} \end{cases}$	1500	5400		2000 1000	5400 2800		
Base to Emitter Voltage (V _{BE})	$V_{CE} = 3V \begin{cases} I_E = 1 \text{ mA} \\ I_E = 10 \text{ mA} \end{cases}$.715 .800		.600	.715 .800	.800 .900	v
Input Offset Voltage $\begin{pmatrix} V_{BE_1} \\ -V_{BE_2} \end{pmatrix}$	V _{CE} = 3V, I _E = 1 mA		.48	5		.48	2	mV
Temperature Coefficient: Base to Emitter Voltage Q ₁ , Q ₂ $\left(\frac{ \Delta V_{BE} }{\Delta T}\right)$	V _{CE} = 3V, I _E = 1 mA		-1.9			-1.9		mV/C
Base (Q_3) to Emitter (Q_4) Voltage Darlington Pair $(V_{BED} (V_{9,1}))$	$V_{CE} = 3V$ $I_E = 10 \text{ mA}$ $I_E = 1 \text{ mA}$		1.46 1.32		1.10	1.46 1.32	1.60 1.50	V
Temperature Coefficient: Base to Emitter Voltage Darlington Pair Q_3 , $Q_4 = \left(\frac{ \Delta V_{BEO} }{\Delta T}\right)$	V _{CE} = 3V, I _E = 1 mA		4.4			4.4		mV/°C
Temperature Coefficient: Magnitude of Input Offset Voltage $\begin{pmatrix} V_{BE_1} - V_{BE_2} \\ \Delta T \end{pmatrix}$	$V_{CC} = +6, V_{EE} = -6V$ $I_{C_1} = I_{C_2} = 1 \text{ mA}$		10			10		μV/°C

ac electrical characteristics $T_A = 25^{\circ}C$

DYNAMIC CHARACTERISTICS						
Low Frequency Noise Figure (NF)	$f = 1 \text{ kHz}, V_{CE} = 3V,$ $I_C = 100\mu\text{A}, \text{ Source}$ Resistance = $1 \text{ k}\Omega$		3.25		3.25	dB .
Low Frequency, Small-Signal Equivalent						
Circuit Characteristics:						
Forward Current Transfer Ratio (h _{fe})			110		110	
Short Circuit Input Impedance (hie)	f = 1 kHz, V _{CE} = 3V,		3.5		3.5	kΩ
Open Circuit Output Impedance (h _{oe})	I _C = 1 mA		15.6		15.6	μmho
Open Circuit Reverse Voltage Transfer Ratio (h _{re})			1.8 x 10 ⁻⁴		1.8 x 10 ⁻⁴	
Admittance Characteristics:						
Forward Transfer Admittance (Y _{fe})]		31 -j1.5		31 -j1.5	mmho
Input Admittance (Yie)	f = 1 MHz, V _{CE} = 3V,		.3 +j0.04		.3 +j0.04	mmho
Output Admittance (Yoe)	I _C = 1 mA		.001 +j0.03		.001 +j0.03	mmho
Reverse Transfer Admittance (Y _{re})			See Curve		See Curve	mmho
Gain Bandwidth Product (f _T)	V _{CE} = 3V, I _C = 3 mA	300	500	300	500	MHz
Emitter to Base Capacitance (C _{EB})	V _{EB} = 3V, I _E = 0		.6		.6	pF
Collector to Base Capacitance (C _{CB})	V _{CB} = 3V, I _C = 0		.58		.58	pF
Collector to Substrate Capacitance (C _{CI})	V _{C1} = 3V, I _C = 0		2.8		2.8	pF

Note 1: Derate at 5 mW/ $^{\circ} C$ for $T_{\mbox{\scriptsize A}} > 85 ^{\circ} C$

Note 2: The collector of each transistor of the LM3018 and LM3018A is isolated from the substrate by an integral diode. The substrate (terminal 10) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

typical performance characteristics (con't)

10

f - FREQUENCY (MHz)

100

0

3 4 5 6

I_C - COLLECTOR (mA)

7 8 9 10

T_A = 25°C

 $V_{CE} = 3V$

I_C = 1 mA

Transistor/Diode Arrays

LM3019 diode array

general description

The LM3019 consists of one silicon diode "quad" and two isolated silicon diodes on a common monolithic substrate.

features

- Excellent diode match
- Low leakage current
- Low pedestal voltage when gating
- Built-in temperature stability for operation from -55°C to +125°C

- 10-pin TO-5 package
- Hermetically sealed

applications

- Modulator
- Mixer
- Balanced modulator
- Analog switch
- Diode gate for chopper-modulator applications

schematic and connection diagrams

NOTE 1: CONNECT TO MOST NEGATIVE CIRCUIT POTENTIAL

Metal Can Package

Order Number LM3019H See Package 13

absolute maximum voltage limits $T_A = 25^{\circ}C$

TERMINAL	VOLTAGE	LIMITS	CONDIT	TIONS			
TERMINAL	NEGATIVE	POSITIVE	TERMINAL	VOLTAGE			
1	-3	+12	7	-6			
2	-3	+12	7	-6			
3	-3	+12	7	-6			
4	-3	+12	7	-6			
5	-3	+12	7	-6			
6	-3	+12	7	-6			
7	-18	0	1, 2, 3, 6, 8	0			
8	-3	+12	7	-6			
9	-3	+12	7	-6			
10		NO CON	NECTION				
CASE	INTER		CTED TO TERMI	NAL 7			

Power Dissipation
Any One Diode Unit
Total For Device
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 sec)

20 mW 120 mW -65°C to +200°C -55°C to +125°C 300°C

electrical characteristics for each diode unit, unless otherwise specified, T_A = 25°C.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC Forward Voltage Drop (V _F)	DC Forward Current I _F = 1 mA		.73	.78	V
DC Reverse Breakdown Voltage $(V_{(BR)R})$	DC Reverse Current I _R = -10μA	4	6		V
DC Reverse Breakdown Voltage Between Any Diode Unit and Substrate ($V_{(BR)R}$)	DC Reverse Current I _R = -10μA	25	80		V
DC Reverse (Leakage) Current (I _R)	DC Reverse Voltage V _R = -4V		.0055	10	μΑ
DC Reverse (Leakage) Current Between Any Diode Unit and Substrate ($I_{\rm R}$)	DC Reverse Voltage V _R = -4V		.010	10	μΑ
Magnitude of Diode Offset Voltage (Difference in DC Forward Voltage Drops of Any Two Diode Units) $(V_{F_1} - V_{F_2})$	DC Forward Current I _F = 1 mA		1	5	mV
Single Diode Capacitance	Frequency f = 1 MHz DC Reverse Voltage V _R = -2V		1.8		pF
Diode Quad-to-Substrate Capacitance (C _{DQ-1)}	Frequency f = 1 MHz DC Reverse Voltage V _R Between Terminal 2, 5, 6 or 8 of Diode Quad and Terminal 7 Substrate = -2V				
	Terminal 2 or 6 to Terminal 7		4.4		pF
	Terminal 5 or 8 to Terminal 7		2.7		pF
Series Gate Switching Pedestal Voltage (V_S)			10		mV

6

typical performance characteristics

Reverse (Leakage) Current

series gate switching test setup

Transistor/Diode Arrays

LM3026, LM3054 transistor arrays

general description

The LM3026 and LM3054 each consists of two independent differential amplifiers with associated constant-current transistors on a common monolithic substrate. The six NPN transistors which comprise the amplifiers are general purpose devices which exhibit low 1/f noise and a value of $f_{\rm T}$ in excess of 300 MHz. These features make the LM3026 and LM3054 useful from DC to 120 MHz. Bias and load resistors have been omitted to provide maximum application flexibility.

The monolithic construction of the LM3026 and LM3054 provides close electrical and thermal matching of the amplifiers. This feature makes these devices particularly useful in dual channel applications where matched performance of the two channels is required.

The LM3026 is supplied in a hermetic 12-lead TO-5 style package and is rated for full military operating temperature range of -55°C to +125°C.

The LM3054 is supplied in a 14-lead molded dual-in-line package with a limited temperature range. The availability of extra terminals allows the introduction of an independent substrate connection for maximum flexibility.

features

Two differential amplifiers on a common substrate

- Independently accessible inputs and outputs
- Maximum input offset voltage ±5 mV
- Full military temperature range capability

 $-55^{\circ}C$ to $+125^{\circ}C$

Limited temperature range, LM3054

 0° C to $+85^{\circ}$ C

applications

- Dual sense amplifiers
- Dual Schmitt triggers
- Multifunction RF mixer combinations oscillator converter IF
- IF amplifiers (differential and or cascade)
- Prodúct detectors
- Doubly balanced modulators and demodulators
- Balanced quadrature detectors
- Cascade limiters
- Synchronous detectors
- Pairs of balanced mixers
- Synthesizer mixers
- Balanced (push-pull) cascode amplifiers

schematic and connection diagrams

Metal Can Package

TOP VIEW

Order Number LM3026H See Package 7

Order Number LM3054N See Package 22

absolute maximum ratings (T_A = 25°C)

	LM3026	LM3054		
Power Dissipation			The following ratings apply for each transistor in the device:	
Any One Transistor	300 mW	300 mW	Collector to Emitter Voltage (V _{CEO})	15V
Total Package	600 mW	750 mW	Collector to Base Voltage (V _{CBO})	20V
For T _A > 55°C	Derate at 5 mW/°C	6.67 mW/°C	Collector to Substrate Voltage (V _{CIO}) (Note)	20V
Operating Temperature Range	-55°C to +125°C	-40°C to +85°C	Emitter to Base Voltage (V _{EBO})	5V
Storage Temperature Range	-65°C to +150°C	-65°C to +150°C	Collector Current	50 mA
Lead Temperature (Soldering, 1	10 sec)	300°C		

dc electrical characteristics (T_A = 25°C)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC CHARACTERISTICS					
For Each Differential Amplifier					
Input Offset Voltage (V _{IO})			.45	5	mV
Input Offset Current (I _{IO})			.3	2	μΑ
Input Bias Current (I _I)	V _{CB} = 3V		10	24	μΑ
Quiescent Operating Current Ratio $\left(\frac{I_{C(Q1)}}{I_{C(Q2)}} \text{ or } \frac{I_{C(Q5)}}{I_{C(Q6)}}\right)$	$I_{E(Q3)} = I_{E(Q4)} = 2 \text{ mA}$.98 to 1.02		
Temperature Coefficient			1.1		μV/°C
For Each Transistor					
DC Forward Base to Emitter Voltage (V $_{\rm BE})$	$V_{CB} = 3V \begin{cases} I_{C} = 50 \ \mu A \\ 1 \ mA \\ 3 \ mA \\ 10 \ mA \end{cases}$.630 .715 .750 .800	.700 .800 .850 .900	٧
Temperature Coefficient of Base to Emitter Voltage $\left(\frac{\Delta V_{BE}}{\Delta T}\right)$	V _{CB} = 3V, I _C = 1 mA		-1.9		μV/°C
Collector Cutoff Current (I _{CBO})	V _{CB} = 10V, I _E = 0		.002	100	nA
Collector to Emitter Breakdown Voltage $(V_{(BR)CEO})$	I _C = 1 mA, I _B = 0	15	24		V
Collector to Base Breakdown Voltage (V _{(BR)CBO})	$I_C = 10\mu A, I_E = 0$	20	60		V
Collector to Substrate Breakdown Voltage $(V_{(BR)CIO})$	I _C = 10μA, I _{CI} = 0	20	60		V
Emitter to Base Breakdown Voltage (V(BR)EBO)	$I_{E} = 10\mu A$, $I_{C} = 0$	5	7		V

ac electrical characteristics

DYNAMIC CHARACTERISTICS			
Common Mode Rejection Ratio For Each Amplifier (CMR)		100	dB
AGC Range, One Stage (AGC)	V _{CC} = 12V	75	dB
Voltage Gain, Single Stage Double Ended Output (A)	V _{EE} = -6V	32	dB
AGC Range, Two Stage (AGC)	$V_x = -3.3V$ f = 1 kHz	105	dB
Voltage Gain, Two Stage Double Ended Output (A)	, ,	60	dB
Low-Frequency, Small Signal Equivalent Circuit Characteristics: (For Single Transistor)			
Forward Current Transfer Ratio (h _{fe})		110	
Short Circuit Input Impedance (h _{ie})	f = 1 kHz, V _{CE} = 3V,	3.5	kΩ
Open Circuit Output Impedance (h _{oe})	I _C = 1 mA	15.6	μmho
Open Circuit Reverse Voltage Transfer Ratio (h _{re})		1.8×10^{-4}	
1/f Noise Figure (For Single Transistor) (NF)	f = 1 kHz, V _{CE} = 3V	3.25	dB
Gain Bandwidth Product (For Single Transistor) (f_T)	$V_{CE} = 3V$, $I_{C} = 3 \text{ mA}$	550	MHz
Admittance Characteristics; Differential Circuit Configuration: (For Each Amplifier)			

Note: The collector of each transistor of the LM3026 and LM3054 is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistors and provide for normal transistor action. The substrate should be maintained at signal (AC) ground by means of a suitable grounding capacitor, to avoid undesired coupling between transistors.

ac electrical characteristics (con't)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Forward Transfer Admittance (y ₂₁)			-20 + j0		mmho
Input Admittance (y ₁₁)	V _{CB} = 3V Each Collector		.22 + j0.1		mmho
Output Admittance (y ₂₂)	I _C ≈ 1.25 mA		.01 + j0		mmho
Reverse Transfer Admittance (y ₁₂)	f = 1 MHz		-0.003 + j0		mmho
Admittance Characteristics; Cascode Circuit Configuration: (For Each Amplifier)					
Forward Transfer Admittance (y ₂₁)			68 – j0		mmho
Input Admittance (y ₁₁)	V _{CB} = 3V Total Stage		.55 + j0		mmho
Output Admittance (y ₂₂)	I _C ≈ 2.5 mA		0 + j0.02		mmho
Reverse Transfer Admittance (y ₁₂)	f = 1 MHz		.004 - j.005		μmho
Noise Figure (NF)	f = 100 MHz		8		dB

typical performance characteristics

Collector-To-Base Cutoff Current vs Ambient Temperature for Each Transistor

Input Bias Current
Characteristic vs Collector
Current for Each
Transistor

Base-To-Emitter Voltage Characteristic for Each Transistor vs Ambient Temperature

Offset Voltage Characteristic vs Ambient Temperature for Differential Pairs

Static Base-To-Emitter Voltage Characteristic and Input Offset Voltage for Differential Pairs vs

Input Offset Current for Matched Differential Pairs vs Collector Current

typical performance characteristics (con't)

Forward Current-Transfer Ratio (h_{fe}) , Short-Circuit Input Impedance (h_{ie}) , Open-Circuit Output Impedance (h_{Oe}) , and Open-Circuit Reverse Voltage-Transfer Ratio (h_{re}) vs Collector Current for Each Transistor

I_C - COLLECTOR (mA)

Gain-Bandwidth Product

typical performance characteristics (con't)

The following chart gives the range of voltages which can be applied to the terminals listed vertically with respect to the terminals listed horizontally. For example, the voltage range between vertical terminal 1^{\dagger} and horizontal terminal 3^{\dagger} is +15V to -5V.

LM3054 TERMINAL N	0.	13	14	1	2	3	4	6	7	8	9	11	12	5
	LM3026 TERMINAL NO.	10	11	12	1	2	3	4	5	6	7	8	(Note 2) 9	(Note 2)
13	10		0 -20		+5 -5	*	+15 -5	*	*			٠		
14	11			*		٠	+20 0	*	*	*			*	+20 0
1	12				+20 0	*	+20 0		*	٠				+20 0
2	1					*	+15 -5	٠	*	٠		*		
3	2						+1 -5	*	*	*				
4	3							*	*	٠				
6	4								0 -20	٠	+5 -5		+15 -5	
7	5									٠				+20 0
8	6										-20 0	*		+20 0
9	7											*	+15 -5	
11	8												+1 -5	
12	9													
5	9													Ref Substrate

LM3054 TERMINAL NO. (Note 2)	LM3026 TERMINAL NO.	I _{IN} mA	lout mA
13	10	5	.1
14	1 1	50	.1
1	12	50	.1
2	1	5	.1
3	2	5	.1
4	3	.1	-50
6	4	5	.1
7	5	50	.1
8	6	50	.1
9	7	5	.1
11	8	5	.1
12	9	.1	50

Note 1: In the LM3026 terminal No. 9 is connected to the emitter of Q_4 , the reference substrate, and the case; therefore, the case should not be grounded. Two terminal 9 columns LM3026 appear in the voltage rating chart because it is a composite chart for both the LM3026 and the LM3054. Wherever an asterisk is shown in one column 9 and a rating is shown in the other column 9, the asterisk should be ignored.

Note 2: Terminal No. 10 of LM3054 is not used.

 $^{^\}dagger$ LM3026; corresponding terminals for LM3054 are vertical terminal 2 and horizontal terminal 4.

^{*}Voltages are not normally applied between these terminals. Voltages appearing between these terminals will be safe if the specified limits between all other terminals are not exceeded.

Transistor/Diode Arrays

LM3039 diode array

general description

The LM3039 consists of six ultra-fast, low capacitance silicon diodes on a common monolithic substrate. Five of the diodes are independently accessible, the sixth shares a common terminal with the substrate. Integrated circuit construction assures excellent static and dynamic matching of the diodes, making the array extremely useful for a wide variety of applications in communication and switching systems.

features

Excellent reverse recovery time

1 ns typ

Matched monolithic construction

V_F matched within 5 mV

 Low diode capacitance $C_D = .65 pF typ$ at $V_B = -2V$

applications

- Balanced modulators or demodulators
- Ring modulators
- High speed diode gates
- Analog switches

For applications such as balanced modulators or ring modulators where capacitive balance is important, the substrate should be returned to a DC potential which is significantly more negative (with respect to the active diodes) than the peak signal applied.

schematic and connection diagrams

Metal Can Package

Order Number LM3039H See Package 7

Power Dissipation Any One Diode 100 mW Total For Device 600 mW For $T_A > 55^{\circ}C$ Derate Linearly 5.7 mW/°C Operating Temperature Range -55°C to +125°C Storage Temperature Range -65°C to +150°C Peak Inverse Voltage, PIV for: D1 - D5 5V D6 .5V Peak Diode to Substrate Voltage, V_{DI} for D1 – D5 +20, -1V (Term. 1, 4, 5, 8 or 12 to Term. 10) DC Forward Current, I_F 25 mA Peak Recurrent Forward Current, I_f 100 mA Peak Forward Surge Current, If (SURGE) 100 mA

electrical characteristics

 $(T_A = 25^{\circ}C)$ Characteristics apply for each diode unit, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	I _F = 50μA		.65	.69	V
DC Farmerd Valters Braze (V.)	1 mA		.73	.78	V
DC Forward Voltage Drop (V _F)	3 mA		.76	.80	V
	10 mA		.81	.90	V
DC Reverse Breakdown Voltage $(V_{(BR)R})$	I _R = -10μA	5	7		V
DC Reverse Breakdown Voltage Between Any Diode Unit and Substrate $(V_{(BR)R})$	I _R = -10μΑ	20			V
DC Reverse (Leakage) Current (I _R)	V _R = -4V		.016	100	nA
DC Reverse (Leakage) Current Between Any Diode Unit and Substrate (I_R)	V _R = -10V		.022	100	nA
Magnitude of Diode Offset Voltage (Difference in DC Forward Voltage Drops of Any Two Diode Units) $(V_{F_1} - V_{F_2})$	I _F = 1 mA		.5	5	mV
Temperature Coefficient of $ V_{F_1} - V_{F_2} $ $\left(\frac{\triangle V_{F_1} - V_{F_2} }{\triangle T}\right)$	I _F = 1 mA		1		μV/°(
Temperature Coefficient of Forward Drop $\left(\frac{\Delta V_F}{\Delta T}\right)$	I _F = 1 mA		-1.9		mV/°
DC Forward Voltage Drop for Anode-to-Substrate Diode (D_S) (V_F)	I _F = 1 mA		.65		V
Reverse Recovery Time (t _{rr})	I _F = 10 mA, I _R = 10 mA		1		ns
Diode Resistance (R _D)	f = 1 kHz, I _F = 1 mA	25	30	45	Ω
Diode Capacitance (C _D)	$V_{R} = -2V_{1}I_{F} = 0$.65		pF
Diode-to-Substrate Capacitance (C _{DI})	V _{DI} = +4V, I _F = 0		3.2		pF

typical performance characteristics

DC Forward Voltage Drop (Any Diode) and Diode Offset Voltage vs DC Forward Current

DC Reverse (Leakage) Current (Diodes 1, 2, 3, 4, 5) vs Temperature

DC Reverse (Leakage) Current Between Diodes (1, 2, 3, 4, 5) and Substrate vs Temperature

Diode Offset Voltage (Any Diode) vs Temperature

VF1 - VF2 | - DIODE OFFSET (mV)

DC Forward Voltage Drop (Any Diode) vs Temperature

Diode Resistance (Any Diode) vs DC Forward Current

Diode Capacitance (Diodes 1, 2, 3, 4, 5) vs Reverse Voltage

Diode-to-Substrate Capacitance vs

OR 12 AND SUBSTRATE (TERMINAL S1, 4,

Transistor/Diode Arrays

LM3045, LM3046, LM3086 transistor arrays

general description

The LM3045, LM3046, and LM3086 each consist of five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the DC through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The LM3045 is supplied in a 14-lead cavity dual-in-line package rated for operation over the full military temperature range. The LM3046 and LM3086 are electrically identical to the LM3045 but are supplied in a 14-lead molded dual-in-line package for applications requiring only a limited temperature range.

features

- Two matched pairs of transistors
 V_{BE} matched ±5 mV
 - Input offset current $2\mu A$ max at $I_C = 1$ mA
- Five general purpose monolithic transistors
 - Operation from DC to 120 MHz
- Wide operating current range
- Low noise figure
 - 3.2 dB typ at 1 kHz
- Full military
 - temperature range (LM3045) -55°C to +125°C

applications

- General use in all types of signal processing systems operating anywhere in the frequency range from DC to VHF
- Custom designed differential amplifiers
- Temperature compensated amplifiers

schematic and connection diagram

Dual-In-Line Package

Order Number LM3045D See Package 1

0

Order Number LM3046N or LM3086N See Package 22

absolute maximum ratings (T_A = 25°C)

	LM30	045	LM3046/I	_M3086	
	Each Transistor	Total Package	Each Transistor	Total Package	Units
Power Dissipation:					
$T_{\Delta} = 25^{\circ}C$	300	750	300	750	mW
$T_A = 25^{\circ} \text{C to } 55^{\circ} \text{C}$			300	750	mW
$T_{\Delta} > 55^{\circ}C$			Derate a	it 6.67	mW/°C
$T_A = 25^{\circ} \text{C to } 75^{\circ} \text{C}$	300	750			mW
$T_A > 75^{\circ}C$	Derate	at 8			mW/°C
Collector to Emitter Voltage, V _{CEO}	15		15		V
Collector to Base Voltage, V _{CBO}	20		20		V
Collector to Substrate Voltage, V _{CIO} (Note 1)	20		20		V
Emitter to Base Voltage, V _{EBO}	5		5		V
Collector Current, I _C	50		50		mA
Operating Temperature Range	−55°C to	+125°C	0°C to	+85°C	
Storage Temperature Range	−65°C to	+150°C	−25°C to	+85°C	
Lead Temperature (Soldering, 10 sec)	300		300		°C

electrical characteristics (T_A = 25°C unless otherwise specified)

			LIMITS			LIMITS		
PARAMETER	CONDITIONS	LN	/13045, LM3	046		LM3086		UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Collector to Base Breakdown Voltage (V _{(BR)CBO})	I _C = 10μA, I _E = 0	20	60		20	60		V
Collector to Emitter Breakdown Voltage ($V_{(BR)CEO}$)	I _C = 1 mA, I _B = 0	15	24		15	24		V
Collector to Substrate Breakdown Voltage $(V_{(BR)CIO})$	I _C = 10μA, I _{CI} = 0	20	60		20	60		V
Emitter to Base Breakdown Voltage $(V_{(BR)EBO})$	I _E = 10μA, I _C = 0	5	7		5	7		V
Collector Cutoff Current (I _{CBO})	V _{CB} = 10V, I _E = 0		.002	40		.002	100	nΑ
Collector Cutoff Current (I _{CEO})	V _{CE} = 10V, I _B = 0			.5			5	μΑ
Static Forward Current Transfer Ratio (Static Beta) (h_{FE})	$V_{CE} = 3V$ $\begin{cases} I_{C} = 10 \text{ mA} \\ I_{C} = 1 \text{ mA} \\ I_{C} = 10 \mu\text{A} \end{cases}$	40	100 100 54		40	100 100 54		
Input Offset Current for Matched Pair \mathbf{Q}_1 and \mathbf{Q}_2 $ \mathbf{I}_{\mathbf{Q}_1} - \mathbf{I}_{\mathbf{I}\mathbf{Q}_2} $	V _{CE} = 3V, I _C = 1 mA		.3	2				μΑ
Base to Emitter Voltage (V_{BE})	$V_{CE} = 3V$ $\begin{cases} I_E = 1 \text{ mA} \\ I_E = 10 \text{ mA} \end{cases}$.715 .800			.715 .800		V
Magnitude of Input Offset Voltage for Differential Pair $ V_{BE1} - V_{BE2} $	V _{CE} = 3V, I _C = 1 mA		.45	5				mV
Magnitude of Input Offset Voltage for Isolated Transistors $ V_{BE3} - V_{BE4} $, $ V_{BE4} - V_{BE5} $, $ V_{BE5} - V_{BE3} $	V _{CE} = 3V, I _C = 1 mA		.45	5				.mV
Temperature Coefficient of Base to Emitter Voltage $\left(\frac{\Delta V_{BE}}{\Delta T}\right)$	V _{CE} = 3V, I _C = 1 mA		-1.9			-1.9		mV/°C
Collector to Emitter Saturation Voltage $(V_{CE(SAT)})$	I _B = 1 mA, I _C = 10 mA		.23			.23		V
Temperature Coefficient of Input Offset Voltage $\left(\frac{\Delta V_{10}}{\Delta T}\right)$	V _{CE} = 3V, I _C = 1 mA	,	1.1					μV/°C

Note 1: The collector of each transistor of the LM3045, LM3046, and LM3086 is isolated from the substrate by an integral diode. The substrate (terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

electrical characteristics (con't)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Low Frequency Noise Figure (NF)	$f = 1 \text{ kHz}, V_{CE} = 3V, I_{C} = 100\mu\text{A}$ $R_{S} = 1 \text{ k}\Omega$		3.25		dB
Low Frequency, Small Signal Equivalent Circuit Ch	aracteristics:				
Forward Current Transfer Ratio (h_{fe})			110 (LM3045, LM3046) (LM3086)		
Short Circuit Input Impedance (hie)	f = 1 kHz, V _{CF} = 3V, I _C = 1 mA		3.5		kΩ
Open Circuit Output Impedance (h _{oe})	1 = 1 kHz, V _{CE} = 3V, I _C = 1 mA		15.6		μmho
Open Circuit Reverse Voltage Transfer Ratio (h _{re})			1.8×10 ⁻⁴		
Admittance Characteristics:					
Forward Transfer Admittance (Y_{fe})			31 - j 1.5		
Input Admittance (Y _{ie})	f = 1 MHz, V _{CE} = 3V, I _C = 1 mA		0.3+j 0.04		
Output Admittance (Y _{oe})	1 - 1 MHz, V _{CE} - 3V, I _C - 1 HIA		0.001+j 0.03		
Reverse Transfer Admittance (Y _{re})			See curve		
Gain Bandwidth Product (f _T)	$V_{CE} = 3V$, $I_C = 3 \text{ mA}$	300	550		
Emitter to Base Capacitance (C_{EB})	V _{EB} = 3V, I _E = 0		.6		pF
Collector to Base Capacitance (C_{CB})	V _{CB} = 3V, I _C = 0		.58		pF
Collector to Substrate Capacitance (C_{C1})	V _{CS} = 3V, I _C = 0		2.8		pF

typical performance characteristics

Typical Collector To Emitter

Typical Static Forward

Typical Input Offset Current for Matched Transistor Pair Ω_1 Ω_2 vs Collector Current

Typical Static Base To Emitter Voltage Characteristic and Input Offset Voltage for Differential Pair and Paired Isolated Transistors vs Emitter Current

typical performance characteristics (con't)

Typical Base To Emitter Voltage Characteristic for Each Transistor vs Ambient Temperature

Typical Input Offset Voltage Characteristics for Differential Pair and Paired Isolated Transistors vs Ambient Temperature

Typical Noise Figure vs Collector Current

Typical Noise Figure vs Collector Current

Typical Noise Figure vs Collector Current

Typical Normalized Forward Current Transfer Ratio, Short Circuit Input Impedance, Open Circuit Output Impedance, and Open Circuit Reverse Voltage Transfer Ratio vs Collector Current

Typical Forward Transfer

Typical Input Admittance vs Frequency

INPUT CONDUCTANCE OR

(mmhos)

SUSCEPTANCE

Typical Output Admittance vs Frequency

OUTPUT CONDUCTANCE OR

(mmhos)

SUSCEPTANCE

typical performance characteristics (con't)

AH0014/AH0014C* DPDT, AH0015/AH0015C quad SPST, AH0019/AH0019C* dual DPST-TTL/DTL compatible MOS analog switches

general description

This series of TTL/DTL compatible MOS analog switches feature high speed with internal level shifting and driving. The package contains two monolithic integrated circuit chips: the MOS analog chip is similar to the MM450 type which consists of four MOS analog switch transistors; the second chip is a bipolar I.C. gate and level shifter. The series is available in both hermetic dual-in-line package and flatpack.

features

- Large analog voltage switching ±10V
- Fast switching speed 500 ns
- Operation over wide range of power supplies
- Low ON resistance
- High OFF resistance
- 200Ω $10^{11}Ω$

- Fully compatible with DTL or TTL logic
- Includes gating and level shifting

These switches are particularly suited for use in both military and industrial applications such as commutators in data acquisition systems, multiplexers, A/D and D/A converters, long time constant integrators, sample and hold circuits, modulators/demodulators, and other analog signal switching applications. For information on other National analog switches and analog interface elements, see listing on last page.

The AH0014, AH0015 and AH0019 are specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The AH0014C, AH0015C and AH0019C are specified for operation over the -25°C to $+85^{\circ}\text{C}$ temperature range.

block and connection diagrams

Order Number AH0014F or AH0014CF See Package 4

Order Number AH0015D or AH0015CD See Package 2

typical applications

*Previously called NH0014/NH0014C and NH0019/NH0019C

Order Number AH0014D or AH0014CD See Package 1

Order Number AH0019F or AH0019CF See Package 4 Order Number AH0019D or AH0019CD See Package 1

V _{CC} Supply Voltage V ⁻ Supply Voltage	7.0V -30V
V ⁺ Supply Voltage	+30V
V ⁺ /V ⁻ Voltage Differential	40V
Logic Input Voltage	5.5V
Storage Temperature Range	65°C to +150°C
Operating Temperature Range	
AH0014, AH0015, AH0019	-55°C to +125°C
AH0014C, AH0015C, AH0019C	-25° C to $+85^{\circ}$ C
Lead Temperature (Soldering, 10 sec)	300°C

electrical characteristics (Notes 1 and 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical ''1'' Input Voltage	V _{CC} = 4.5V	2.0			V
Logical "0" Input Voltage	V _{CC} = 4.5V			0.8	V
Logical "1" Input Current	V _{CC} = 5.5V V _{IN} = 2.4V			5	μΑ
Logical "1" Input Current	V _{CC} = 5.5V V _{IN} = 5.5V			1	mA
Logical "0" Input Current	V _{CC} = 5.5V V _{IN} = 0.4V		0.2	0.4	mA
Power Supply Current Logical "1" Input – each gate (Note 3)	V _{CC} = 5.5V V _{IN} = 4.5V		0.85	1.6	mA
Power Supply Current Logical "0" Input – each gate (Note 3) AH0014, AH0014C AH0015, AH0015C AH0019, AH0019C	$V_{CC} = 5.5V$ $V_{1N} = 0V$		1.5 0.22 0.22	3.0 0.41 0.41	mA mA mA
Analog Switch ON Resistance — each gate	V_{IN} (Analog) = +10V V_{IN} (Analog) = -10V		75 150	200 600	Ω
Analog Switch OFF Resistance			10 ¹¹		Ω
Analog Switch Input Leakage Current — each input (Note 4)	V _{IN} = -10V				
AH0014, AH0015, AH0019	$T_A = 25^{\circ}C$ $T_A = 125^{\circ}C$		25 25	200 200	pA nA
AH0014C, AH0015C, AH0019C	$T_A = 25^{\circ}C$ $T_A = 70^{\circ}C$		0.1 30	10 100	nA nA
Analog Switch Output Leakage Current — each output (Note 4)	V _{OUT} = -10V				
AH0014, AH0015, AH0019	$T_A = 25^{\circ}C$ $T_A = 125^{\circ}C$		40 40	400 400	pA nA
AH0014C, AH0015C, AH0019C	$T_A = 25^{\circ}C$ $T_A = 70^{\circ}C$		0.05 4	10 50	nA nA
Analog Input (Drain) Capacitance	1 MHz @ Zero Bias		8	10	pF
Output Source Capacitance	1 MHz @ Zero Bias		11	13	pF
Analog Turn-OFF Time $-t_{OFF}$	See test circuit; T _A = 25°C		400	500	ns
Analog Turn-ON Time — t _{ON}	See test circuit; T _A = 25°C				
AH0014, AH0014C AH0015, AH0015C AH0019, AH0019C			350 100 100	425 150 150	ns ns ns

Note 1: Min/max limits apply across the guaranteed temperature range of -55° C to $+125^{\circ}$ C for AH0014, AH0015, AH0019 and -25° C to $+85^{\circ}$ C for AH0014C, AH0015C, AH0019C. V⁻ = -20V. V⁺ = +10V and an analog test current of 1 mA unless otherwise specified.

Note 2: All typical values are measured at $T_A = 25^{\circ}C$ with $V_{CC} = 5.0V$. $V^{+} = +10V$, $V^{-} = -22V$.

Note 3: Current measured is drawn from V_{CC} supply.

Note 4: All analog switch pins except measurement pin are tied to V+.

analog switch characteristics (Note 2)

Schematic (Single Driver Gate and MOS Switch Shown)

Analog Switching Time Test Circuit

selecting power supply voltage

The graph shows the boundary conditions which must be used for proper operation of the unit. The range of operation for power supply V $^-$ is shown on the X axis. It must be between $-25\mathrm{V}$ and $-8\mathrm{V}$. The allowable range for power supply V $^+$ is governed by supply V $^-$. With a value chosen for V $^-$, V $^+$ may be selected as any value along a vertical line passing through the V $^-$ value and terminated by the boundaries of the operating region. A voltage difference between power supplies of at least 5V should be maintained for adequate signal swing.

AH0120/AH0130/AH0140/AH0150/AH0160 series analog switches

general description

The AH0100 series represents a complete family of junction FET analog switches. The inherent flexibility of the family allows the designer to tailor the device selection to the particular application. Switch configurations available include dual DPST, dual SPST, DPDT, and SPDT. $r_{ds(ON)}$ ranges from 10 ohms through 100 ohms. The series is available in both 14 lead flat pack and 14 lead cavity DIP. Important design features include:

- TTL/DTL and RTL compatible logic inputs
- Up to 20V p-p analog input signal
- $r_{ds(ON)}$ less than 10Ω (AH0140, AH0141, AH0145, AH0146)
- Analog signals in excess of 1 MHz
- "OFF" power less than 1 mW

- Gate to drain bleed resistors eliminated
- Fast switching, t_{ON} is typically .4 μ s, t_{OFF} is 1.0 μ s
- Operation from standard op amp supply voltages, ±15V, available (AH0150/AH0160 series)
- Pin compatible with the popular DG 100 series.

The AH0100 series is designed to fulfill a wide variety of analog switching applications including commutators, multiplexers, D/A converters, sample and hold circuits, and modulators/demodulators. The AH0100 series is guaranteed over the temperature range $-55\,^{\circ}\mathrm{C}$ to $+125\,^{\circ}\mathrm{C}$; whereas, the AH0100C series is guaranteed over the temperature range $-25\,^{\circ}\mathrm{C}$ to $+85\,^{\circ}\mathrm{C}$.

schematic diagrams

DUAL DPST and DUAL SPST

Note: Dotted line portions are not applicable to the dual SP.

DPDT (diff.) and SPDT (diff.)

Note: Dotted line portions are not applicable to the SPDT (differential).

logic and connection diagrams

Order any of the devices below using the part number with a D or F suffix. See Packages 1 and 4.

	High Level	Medium Level
Total Supply Voltage (V ⁺ – V ⁻)	36V	34V
Analog Signal Voltage $(V^+ - V_A \text{ or } V_A - V^-)$	30V	25V
Positive Supply Voltage to Reference (V ⁺ – V _B)	25V	25V
Negative Supply Voltage to Reference (V _R - V ⁻)	22V	22V
Positive Supply Voltage to Input (V ⁺ – V _{IN})	25V	25V
Input Voltage to Reference (V _{IN} - V _R)	±6V	±6V
Differential Input Voltage (V _{IN} - V _{IN2})	±6V	±6V
Input Current, Any Terminal	30 mA	30 mA
Power Dissipation	S	See Curve
Operating Temperature Range AH0100 Series	−55°C to	+125°C
AH0100C Series	−25°C :	to +85°C
Storage Temperature Range	−65°C to	+150°C
Lead Temperature (Soldering, 10 sec)		300°C

electrical characteristics for "HIGH LEVEL" Switches (Note 1)

		7	DEVICE	TYPE		CONDIT	IONS	LIN	1TS	
PARAMETER	SYMBOL	DUAL DPST	DUAL SPST	DPDT (DIFF)	SPDT (DIFF)	V ⁺ = 12.0V, V ⁻ = -1	8.0V, V _R = 0.0V	ТҮР	MAX	UNITS
Logic "1"	I _{IN(ON)}		All Ci	rcuits		Note 2	T _A = 25°C Over Temp. Range	2.0	60	μΑ
Logic "0"	I _{IN(OFF)}		All Ci	rcuits		Note 2	T _A = 25°C Over Temp, Range	.01	.1	μΑ
Positive Supply Current Switch ON	I*(ON)		All Ci	rcuits		One Driver ON Note 2	T _A = 25°C Over Temp, Range	2.2	3.0	mA mA
Negative Supply Current Switch ON	I ⁻ (0N)		All Ci	rcuits		One Driver ON Note 2	T _A = 25°C Over Temp. Range	-1.0	-1.8 -2.0	mA mA
Reference Input (Enable) ON Current	I _{R(ON)}		All Ci	rcuits		One Driver ON Note 2	T _A = 25°C Over Temp, Range	-1.0	-1.4	mA mA
Positive Supply Current Switch OFF	I ⁺ (OFF)		All Ci	rcuits		V _{IN1} = V _{IN2} = 0.8V	T _A = 25°C Over Temp. Range	1.0	10	μΑ
Negative Supply Current Switch OFF	I ⁻ (OFF)		All Ci	rcuits		V _{IN1} = V _{IN2} = 0.8V	T _A = 25°C Over Temp. Range	-1.0	-10 -25	μΑ
Reference Input (Enable) OFF Current	I _{R(OFF)}		All Circuits		T _A = 25°C Over Temp. Range	-1.0	-10 -25	μΑ		
Switch ON Resistance	r _{ds(ON)}	AH0126	AH0134	AH0142	AH0143	V _D = 10V I _D = 1 mA	T _A = 25°C Over Temp, Range	45	80 150	Ω
Switch ON Resistance	r _{ds(ON)}	AH0129	AH0133	AH0139	AH0144	V _D = 10V I _D = 1 mA	T _A = 25°C Over Temp. Range	25 .	30 60	Ω
Switch ON Resistance	r _{ds(ON)}	AH0140	AH0141	AH0145	AH0146	V _D = 10V I _E = 1 mA	T _A = 25°C Over Temp. Range	8	10 20	Ω
Driver Leakage Current	(I _D + I _S) _{ON}		All Ci	rcuits	1	V _D = V _S = -10V	T _A = 25°C Over Temp. Range	.01	1 100	nA nA
Switch Leakage Current	I _{S(OFF)} OR	AH0126 AH0129	AH0134 AH0133	AH0142 AH0139	AH0143 AH0144	V _{DS} = ±20V	T _A = 25°C Over Temp. Range	0.8	1 100	nA nA
Switch Leakage Current	I _{S(OFF)} OR	AH0140	AH0141	AH0145	AH0146	V _{DS} = ±20V	T _A = 25°C Over Temp, Range	4	10	nA µÀ
Switch Turn-ON Time	ton	AH0126 AH0129	AH0134 AH0133	AH0142 AH0139	AH0143 AH0144	See Test 0		0.5	0.8	μs
Switch Turn-ON Time	ton	AH0140	AH0141	AH0145	AH0146	See Test (0.8	1.0	μs
Switch Turn-OFF Time	t _{OFF}	AH0126 AH0129	AH0134 AH0133	AH0142 AH0139	AH0143 AH0144	See Test (0.9	1.6	μs
Switch Turn-OFF Time	t _{OFF}	AH0140	AH0141	AH0145	AH0146	See Test (1.1	2.5	μs

Note 1: Unless otherwise specified these limits apply for $-55^{\circ}C$ to $+125^{\circ}C$ for the AH0100 series and $-25^{\circ}C$ to $+85^{\circ}C$ for the AH0100C series. All typical values are for $T_{A} = 25^{\circ}C$.

Note 2: For the DPST and Dual DPST, the ON condition is for V_{1N} = 2.5V; the OFF condition is for V_{1N} = 0.8V. For the differential switches and SW1 and 2 ON, V_{1N2} = 2.5V, V_{1N1} = 3.0V. For SW3 and 4 ON, V_{1N2} = 2.5V, V_{1N1} = 2.0V.

electrical characteristics for "MEDIUM LEVEL" Switches (Note 1)

			DEVICE	TYPE		CONDITIONS $V^+ = +15.0V, V^- = -15V, V_R = 0V$		LIN	IITS	
PARAMETER	SYMBOL	DUAL DPST	DUAL SPST	DUAL DPDT	SPDT (DIFF)			TYP	MAX	UNITS
Logic "1" Input Current	I _{IN(ON)}	All Circuits		Note 2 $\frac{T_A = 25^{\circ}C}{Over Temp. Range}$		20	60 120	μΑ		
Logic "0" Input Current	(INIOFF)		All C	ircuits		Note 2	T _A = 25°C Over Temp. Range	.01	0.1	μΑ
Positive Supply Current Switch ON	I*(ON)		All C	ircuits		One Driver ON Note 2	$T_A = 25^{\circ}C$ Over Temp. Range	2.2	3.0	mA mA
Negative Supply Current Switch ON	I ⁻ (ON)		All Cir	rcuits		One Driver ON Note 2	T _A = 25°C Over Temp. Range	-1.0	-1.8 -2.0	mA mA
Reference Input (Enable) ON Current	I _{R(ON)}		All Ci	ircuits		One Driver ON Note 2	$T_A = 25^{\circ}C$ Over Temp. Range	-1.0	-1.4 -1.6	mA mA
Positive Supply Current Switch OFF	I ⁺ (OFF)		All C	ircuits		V _{IN1} = V _{IN2} = 0.8V	T _A = 25°C Over Temp. Range	1.0	10 25	μΑ
Negative Supply Current Switch OFF	I ⁻ (OFF)		All C	ircuits		V _{IN1} = V _{IN2} = 0.8V	T _A = 25°C Over Temp. Range	-1.0	-10 -25	μΑ
Reference Input (Enable) OFF Current	I _{R(OFF)}		All C	ircuits		$V_{IN1} = V_{IN2} = 0.8V$ $\frac{T_A = 25^{\circ}C}{Over Temp. Ra}$		-1.0	-10 -25	μΑ
Switch ON Resistance	r _{ds(ON)}	AH0153	AH0151	AH0163	AH0161	V _D = 7.5V I _D = 1 mA	T _A = 25°C Over Temp. Range	10	15 30	Ω
Switch ON Resistance	r _{ds(ON)}	AH0154	AH0152	AH0164	AH0162	V _D = 7.5V I _D = 1 mA	T _A = 25°C Over Temp. Range	45	50 100	Ω
Driver Leakage Current	(I _D + I _S) _{ON}		All C	ircuits		V _D = V _S = -7.5V	T _A = 25°C Over Temp. Range	.01	2 500	nA nA
Switch Leakage Current	I _{D(OFF)} OR I _{S(OFF)}	AH0153	AH0151	AH0163	AH0161	V _{DS} = ±15V	T _A = 25°C Over Temp. Range	5	10	nA μA
Switch Leakage Current	Î _{D(OFF)} OR I _{S(OFF)}	AH0154	AH0152	AH0164	AH0162	V _{DS} = ±15.0V	T _A = 25°C Over Temp. Range	1.0	2.0	nA nA
Switch Turn-ON Time	ton	AH0153	AH0151	AH0163	AH0161	See Test Circuit V _A = ±7.5V T _A = 25°C		0.8	1.0	μs
Switch Turn-ON Time	ton	AH0154	AH0152	AH0164	AH0162	See Test Circuit V _A = ±7.5V. T _A = 25°C		0.5	0.8	μs
Switch Turn-OFF Time	t _{OFF}	AH0153	AH0151	AH0163	AH0161	See Test Circuit $V_{A} = \pm 7.5V$ $T_{A} = 25^{\circ}C$		1.1	2.5	μs
Switch Turn-OFF Time	t _{OFF}	AH0154	AH0152	AH0164	AH0162	See Test Circuit $V_A = \pm 7.5V$ $T_A = 25^{\circ}C$		0.9	1.5	μs

Note 1: Unless otherwise specified, these limits apply for -55° C to $+125^{\circ}$ C for the AH0100 series and -25° C to $+85^{\circ}$ C for the AH0100C series. All typical values are for T_A = 25° C.

Note 2: For the DPST and Dual DPST, the ON condition is for V_{IN} = 2.5V; the OFF condition is for V_{IN} = 0.8V. For the differential switches and SW1 and 2 ON, V_{IN2} = 2.5V, V_{IN1} = 3.0V. For SW3 and 4 ON, V_{IN2} = 2.5V, V_{IN1} = 2.0V.

typical performance characteristics

Differential Input

switching time test circuits

V_n 0017F4

applications information

1. INPUT LOGIC COMPATIBILITY

A. Voltage Considerations

In general, the AH0100 series is compatible with most DTL, TTL, and RTL logic families. The ONinput threshold is determined by the $V_{\rm BE}$ of the input transistor plus the $V_{\rm f}$ of the diode in the emitter leg, plus I x R₁, plus V_R. At room temperature and V_R = 0V, the nominal ON threshold is: 0.7V + 0.7V + 0.2V, = 1.6V. Over temperature and manufacturing tolerances, the threshold may be as high as <math display="inline">2.5V and as low as 0.8V. The rules for proper operation are:

$$V_{IN}$$
 – $V_R \ge 2.5 V$ AII switches ON V_{IN} – $V_R \le 0.8 V$ AII switches OFF

B. Input Current Considerations

 $l_{IN(ON)},$ the current drawn by the driver with $V_{IN}=2.5 V$ is typically 20 μA at $25^{\circ} C$ and is guaranteed less than 120 μA over temperature. DTL, such as the DM930 series can supply 180 μA at logic "1" voltages in excess of 2.5V. TTL output levels are comparable at 400 μA . The DTL and TTL can drive the AH0100 series directly. However, at low temperature, DC noise margin in the logic "1" state is eroded with DTL. A pull-up resistor of 10 $k\Omega$ is recommended when using DTL over military temperature range.

If more than one driver is to be driven by a DM930 series (6K) gate, an external pull-up resistor should be added. The value is given by:

$$R_P = \frac{11}{N-1}$$
 for $N > 2$

where:

 R_P = value of the pull-up resistor in $k\Omega$

N = number of drivers.

C. Input Slew Rate

The slew rate of the logic input must be in excess of $0.3V/\mu s$ in order to assure proper operation of the analog switch. DTL, TTL, and RTL output rise times are far in excess of the minimum slew rate requirements. Discrete logic designs, however, should include consideration of input rise time.

2. ENABLE CONTROL

The application of a positive signal at the V_{R}

terminal will open all switches. The V $_{\rm R}$ (ENABLE) signal must be capable of rising to within 0.8V of V $_{\rm IN(ON)}$ in the OFF state and of sinking I $_{\rm R(ON)}$ milliamps in the ON state (at V $_{\rm IN(ON)}$ – V $_{\rm R}$ \geq 2.5V). The V $_{\rm R}$ terminal can be driven from most TTL and DTL gates.

3. DIFFERENTIAL INPUT CONSIDERATIONS

The differential switch driver is essentially a differential amplifier. The input requirements for proper operation are:

$$|V_{1N1} - V_{1N2}| \ge 0.3V$$

2.5 < $(V_{1N1} \text{ or } V_{1N2}) - V_B < 5V$

The differential driver may be furnished by a DC level as shown below. The level may be derived from a voltage divider to V⁺ or the 5V V_{CC} of the DTL logic. In order to assure proper operation, the divider should be ''stiff'' with respect to $I_{\rm IN2}$. Bypassing R1 with a 0.1 $\mu\rm F$ disc capacitor will prevent degradation of $t_{\rm ON}$ and $t_{\rm OFF}$.

Alternatively, the differential driver may be driven from a TTL flip-flop or inverter.

Connection of a 1 mA current source between V_R and V^- will allow operation over a $\pm 10V$ common mode range. Differential input voltage must be less than the 6V breakdown, and input threshold of 2.5V and 300 mV differential overdrive still prevail.

4. ANALOG VOLTAGE CONSIDERATIONS

The rules for operating the AH0100 series at supply voltages other than those specified essentially breakdown into OFF and ON considerations. The OFF considerations are dictated by the maximum negative swing of the analog signal and the pinch off of the JFET switch. In the OFF state, the gate of the FET is at $V^- + V_{BE} + V_{SAT}$ or about 1.0V above the V^- potential. The maximum V_P of the FET switches is 7V. The most negative analog voltage, V_A , swing which can be accomodated for any given supply voltage is:

$$|V_A| \le |V^-| - V_P - V_{BE} - V_{SAT}$$
 or $|V_A| < |V^-| - 8.0$ or $|V^-| > |V_A| + 8.0$ V

For the standard high level switches, $V_A \leq |-18|$ +8 = -10V. The value for V^+ is dictated by the maximum positive swing of the analog input voltage. Essentially the collector to base junction of the turn-on PNP must remain reversed biased for all positive value of analog input voltage. The base of the PNP is at $V^+ - V_{SAT} - V_{BE}$ or $V^+ - 1.0V$. The PNP's collector base junction should have at least 1.0V reverse bias. Hence, the most positive analog voltage swing which may be accommodated for a given value of V^+ is:

$$V_A < V^+ - V_{SAT} - V_{BE} - 1.0V$$
 or

$$V_A < V^+ - 2.0V \text{ or } V^+ > V_A + 2.0V$$

For the standard high level switches, $V_A = 12 - 2.0V = +10V$.

5. SWITCHING TRANSIENTS

Due to charge stored in the gate-to-source and gate-to-drain capacitances of the FET switch, transients may appear in the output during switching. This is particularly true during the OFF to ON transition. The magnitude and duration of the transient may be minimized by making source and load impedance levels as small as practical.

Furthermore, transients may be minimized by operating the switches in the differential mode; i.e., the charge delivered to the load during the ON to OFF transition is, to a large extent, cancelled by the OFF to ON transition.

typical applications

Programmable One Amp Power Supply

Four to Ten Bit D to A Converter (4 Bits Shown)

typical applications (con't)

Four Channel Differential Transducer Commutator

4 x 4 Cross Point Analog Switch

Delta Measurement System for Automatic Linear Circuit Tester

Four Channel Commutator

AH2114/AH2114C DPST analog switch general description

The AH2114 is a DPST analog switch circuit comprised of two junction FET switches and their associated driver. The AH2114 is designed to fulfill a wide variety of high level analog switching applications including multiplexers, A to D Converters, integrators, and choppers. Design features include:

- Low ON resistance, typically 75Ω
- High OFF resistance, typically $10^{11}\Omega$
- Large output voltage swing, typically ±10V

- Powered from standard op-amp supply voltages of ±15V
- Input signals in excess of 1 MHz
- \blacksquare Turn-ON and turn-OFF times typically 1 μ s

The AH2114 is guaranteed over the temperature range -55° C to $+125^{\circ}$ C whereas the AH2114C is guaranteed over the temperature range 0° C to $+85^{\circ}$ C.

schematic and connection diagrams

Order Number AH2114G or AH2114CG See Package 6A

ac test circuit and waveforms

FIGURE 1.

FIGURE 2.

+25V Vplus Supply Voltage Vminus Supply Voltage
Vmlus—Vminus Differential Voltage -25V 40V 25V Logic Input Voltage Power Dissipation (Note 3) 1.36W Operating Temperature Range AH2114 -55°C to +125°C 0°C to +85°C AH2114C -65°C to +125°C 300°C Storage Temperature Range Lead Temperature (Soldering, 10 sec)

electrical characteristics (Notes 1 and 2)

	004101710410		AH2114 AH2114C				C	UNITS
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Static Drain-Source ''On'' Resistance	$I_D = 1.0 \text{ mA}, V_{GS} = 0V, T_A = 25^{\circ}\text{C}$ $I_D = 1.0 \text{ mA}, V_{GS} = 0V$		75	100 150		75	125 160	Ω
Drain-Gate Leakage Current	$V_{DS} = 20V$, $V_{GS} = -7V$, $T_A = 25^{\circ}C$		0.2	1.0 60		0.2	5.0 60	nA nA
FET Gate-Source Breakdown Voltage	$I_G = 1.0 \mu A$ $V_{DS} = 0 V$	35			35			V
Drain-Gate Capacitance	V _{DG} = 20V, I _S = 0 f = 1.0 MHz, T _A = 25°C		4.0	5.0		4.0	5.0	pF
Source-Gate Capacitance	V _{DG} = 20V, I _D = 0 f = 1.0 MHz, T _A = 25°C		4.0	5.0		4.0	5.0	pF
Input 1 Turn-ON Time	$V_{IN1} = 10V$, $T_A = 25^{\circ}C$ (See Figure 1)		35	60		35	60	ns
Input 2 Turn-ON Time	V_{IN2} = 10V, T_A = 25°C (See Figure 1)		1.2	1.5		1.2	1.2	μs
Input 1 Turn-OFF Time	V_{IN1} = 10V, T_A = 25°C (See Figure 1)		0.6	0.75		0.6	0.75	μs
Input 2 Turn-OFF Time	V_{IN2} = 10V, T_A = 25°C (See Figure 1)		50	80		50	80	ns
DC Voltage Range	T _A = 25°C (See Figure 2)	±9.0	±10.0		±9.0	±10.0		V
AC Voltage Range	T _A = 25°C (See Figure 2)	±9.0	±10.0		±9.0	±10.0		V

Note 1: Unless otherwise specified these specifications apply for pin 12 connected to +15V, pin 2 connected to -15V, -55°C to 125°C for the AH2114, and 0°C to 85°C for the AH2114C.

Note 2: All typical values are for $T_A = 25^{\circ}C$.

Note 3: Derate linearly at 100°C/W above 25°C.

AH5009 series low cost analog current switches

general description

The AH5009 series is a versatile family of analog switches designed to economically fulfill a wide variety of multiplexing and analog switching applications.

Even numbered switches (AH5010, AH5012, AH5014, etc.,) may be driven directly from standard (5V) TTL; whereas the odd numbered switches (AH5009, AH5011, AH5013, etc.,) are intended for applications utilizing open-collector (15V) structures.

features

■ Large analog signal range ±10V p	seak	K
------------------------------------	------	---

98	Excellent isolation	80 dB
	between channels	at 1 kHz

• Low on resistance
$$100\Omega$$

Interfaces with standard TTL

functional and schematic diagrams

MUX Switches (4 channel version shown)

SPST Switches (quad version shown)

(See additional types on page 6.)

MUX Switches

S

SPST Switches (quad version shown)

connection diagrams

Dual-In-Line Package

Order Number: AH5017CN AH5018CN

> AH5019CN AH5020CN AH5021CN AH5022CN AH5023CN

AH5024CN See Package 20

Dual-In-Line Package

Order Number: AH5009CN AH5010CN AH5013CN AH5014CN

See Package 22

Dual-In-Line Package

Order Number: AH5011CN AH5012CN AH5015CN AH5016CN See Package 23

±30V Input Voltage (V_{IN}) Positive Analog Signal Voltage (V_A) 30V -15V Negative Analog Signal Voltage (VA) Diode Current 10 mA 30 mA Drain Current (ID) Power Dissipation (see graph) 500 mW -25° C to $+85^{\circ}$ C Operating Temperature Range -65° C to $+150^{\circ}$ C Storage Temperature Range Lead Temperature (Soldering, 10 sec.) 300°C

electrical characteristics (each channel)

PARAMETER (Note 2)	CIRCUIT TYPE	CONDITIONS (Note 1)	TYP	MAX	UNITS
Input Current "ON" (I _{IN(ON)})	AII	V _{IN} = 0V, I _D = 2 mA, T _A = 25°C V _{IN} = 0V, I _D = 2 mA	.01	.1 100	μA μA
Input Current "OFF" (I _{IN(OFF)})	5VTTL	$V_{1N} = 4.5V$, $V_A = \pm 10V$, $T_A = 25^{\circ}C$ $V_{1N} = 4.5V$, $V_A = \pm 10V$.04	.2 10	nA nA
Input Current "OFF" (I _{IN(OFF)})	15VTTL	$V_{1N} = 11V, V_A = \pm 10V, T_A = 25^{\circ}C$.04	.2 10	nA nA
Channel Control Voltage "ON" (V _{IN(ON)})	5VTTL 15VTTL	$V_A = \pm 10V, I_D = 1 \text{ mA}$ $V_A = \pm 10V, I_D = 1 \text{ mA}$.5 1.5	V
Channel Control Voltage "OFF" (V _{IN(OFF)})	5VTTL 15VTTL	$V_A = \pm 10V$ $V_A = \pm 10V$		4.5 11	V V
Leakage Current "OFF" (I _{D(OFF)})	5VTTL	$V_{1N} = 4.5V, V_A = \pm 10V, T_A = 25^{\circ}C$ $V_{1N} = 4.5V, V_A = \pm 10V$.02	.2 10	nA nA
Leakage Current "OFF" (I _{D(OFF)})	15VTTL	V_{1N} = +11V, V_A = ±10V, T_A = 25°C V_{1N} = +11V, V_A = ±10V	.02	.2 10	nA nA
Leakage Current "ON" (I _{D(ON)})	5VTTL	V _{IN} = 0V, I _S = 1mA, T _A = 25°C V _{IN} = 0V, I _S = 1 mA	.3	1 .2	nΑ μΑ
Leakage Current "ON" (I _{D(ON)})	15VTTL	$V_{1N} = 0V$, $I_S = 1 \text{ mA}$, $T_A = 25^{\circ}\text{C}$ $V_{1N} = 0V$, $I_S = 1 \text{ mA}$.1	.5 .1	nΑ μΑ
Leakage Current "ON" (I _{D(ON)}	5VTTL	$V_{1N} = 0V$, $I_S = 2 \text{ mA}$, $T_A = 25^{\circ}\text{C}$ $V_{1N} = 0V$, $I_S = 2 \text{ mA}$		1 10	μA μA
Leakage Current "ON" $(I_{D(ON)})$	15VTTL	V _{IN} = 0V, I _S = 2 mA, T _A = 25°C V _{IN} = 0V, I _S = 2 mA		2 1	nΑ μΑ
Drain-Source Resistance "ON" (r _{DS(ON)})	5VTTL	$V_{1N} = 0.5V$, $I_D = 2 \text{ mA}$, $T_A = 25^{\circ}\text{C}$ $V_{1N} = 0.5V$, $I_D = 2 \text{ mA}$	90	150 240	Ω
Drain-Source Resistance "ON" (r _{DS(ON)})	15VTTL	$V_{1N} = 1.5V$, $I_D = 2$ mA, $T_A = 25^{\circ}C$ $V_{1N} = 1.5V$, $I_D = 2$ mA	60	100 160	Ω
r _{DS(ON)} Match (Effective r _{DS(ON)})(r _{DS(ON)} EFF.)	15VTTL MUX 5VTTL MUX	V _{IN} = 1.5V, I _D = 2 mA V _{IN} = 0.5V, I _D = 2 mA		50	Ω
Turn-On Time (t _(ON))	AII	See AC Test Circuits, T _A = 25°C	150	500	ns
Turn-Off Time $(t_{(OFF)})$	All	See AC Test Circuits, T _A = 25°C	300	500	ns
Cross Talk (CT)	AII	See AC Test Circuits, T _A = 25°C	120		dB

Note 1: Unless otherwise noted, these specifications apply for -25° C to $+85^{\circ}$ C for AH5009C through AH5012C.

Note 2: "OFF" and "ON" notation refers to the conduction state of the FET switch.

typical performance characteristics

test circuits

Cross Talk Test Circuit

applications information

Theory of Operation

The AH5009 series of analog switches are primarily intended for operation in current mode switch applications; i.e., the drains of the FET switch are held at or near ground by operating into the summing junction of an operational amplifier. Limiting the drain voltage to under a few hundred mV eliminates the need for a special gate driver. Thus, the switch may be controlled with conventional TTL elements (5V) or with the open collector (15V) structures.

Two basic switch configurations are available: multiple independent switches (N by SPST) and multiple pole switches used for multiplexing (NPST-MUX). The MUX versions such as the AH5009 offer common drains and include a series FET operated at $V_{GS} = 0V$. The additional FET is placed in feedback path in order to compensate for the "ON" resistance of the switch FET as shown in Figure 1.

The closed-loop gain of Figure 1 is:

$$A_{VCL} = \frac{R_2 + r_{DS(ON)Q2}}{R_1 + r_{DS(ON)Q1}}$$

FIGURE 1. Use of Compensation FET

For $R_1 = R_2$, gain accuracy is determined by the $r_{\text{DS}(\text{ON})}$ match between Q_1 and $\text{Q}_2.$ Standard match between \textbf{Q}_1 and \textbf{Q}_2 is 50Ω resulting in a gain accuracy of 0.5% (for $R_1 = R_2 = 10k$). Tighter r_{DS(ON)} match versions are available.

Noise Immunity

The switches with the source diodes grounded exhibit improved noise immunity for positive analog signals in the "OFF" state. With $V_{IN} = 15V$ and the $V_A = +10V$, the source of Q_1 is clamped to about 0.6V by the diode ($V_{GS} = 14.4V$). The "ON" impedance of the diode is about 26 $\!\Omega$ ensuring that AC signals imposed on the +10V will not gate the FET "ON."

Selection of Gain Setting Resistors

Since the AH5009 series of analog switches are operated current mode, it is generally advisable to make the signal current as large as possible. However, current through the FET switch tends to forward bias the gate to channel (source) diode resulting in leakage across the diode. This leakage, $I_{D(ON)}$, increases exponentially with increasing I_S . As shown in Figure 2, I_{D(ON)} represents a finite error in the current reaching the summing junction of the op amp.

FIGURE 2. On Leakage Current, ID(ON)

Secondly, the $r_{DS(ON)}$ of the FET begins to "round" as I_S approaches I_{DSS}. A practical rule of thumb is to maintain Is at less than 1/10 of IDSS. Combining the criteria from the above discussion

$$R_{1(MIN)} \ge \frac{V_{A(MAX)} A_{D}}{I_{D(ON)}}$$
 (2a)

$$\geq \frac{V_{A(MAX)}}{I_{DSS}/10}$$
 (2b)

which ever is worse

Where: $V_{A(MAX)}$ = Peak amplitude of the analog input signal

Desired accuracy

= Leakage at a given Is $I_{D(ON)}$

= Saturation current of the

FET switch

 \cong 20 mA

In a typical application, V_A might = $\pm 10V$, A_D = 0.1%, 0° C \leq T_A \leq 85 $^{\circ}$ C. The criterion of equation (2b) predicts:

$$R_{1(MIN)} \ge \frac{10V}{20MA} = 5k\Omega$$

For R_1 = 5k, $I_S \cong 10V/5k$ or 2 mA. The electrical characteristics guarantee an $I_{D(ON)} < 1\mu A$ at $85^{\circ}C$ for the AH5010C. Per the criterion of equation

$$R_{1(MIN)} \ge \frac{(10V)(10^{-3})}{1 \times 10^{-6}} \ge 10k\Omega$$

Since equation (2a) predicts a higher value, the 10k resistor should be used.

FIGURE 3.

The "OFF" condition of the FET also effects gain accuracy. As shown in Figure 3, the leakage across Q₂, I_{D(OFF)} represents a finite error in the current arriving at the summing junction of the op amp.

applications information (con't)

FIGURE 4. Interfacing with +5V Logic

FIGURE 5. Interfacing with +15V Open Collector Logic

Accordingly:

$$R_{1(MAX)} \le \frac{V_{A(MIN)} A_{D}}{(N) I_{D(OFF)}}$$

Where: V_{A(MIN)} = Minimum value for the analog input signal

A_D = Desired accuracy

I_{D(OFF)} = OFF leakage of a given FET

Number of channels

As an example, if N = 10, A_D = 0.1%, and $I_{D(OFF)}$ \leq 10 nA at 85°C for the AH5009C, $R_{1(MAX)}$ is:

$$R_{1(MAX)} \le \frac{(1V)(10^{-3})}{(10)(10 \times 10^{-9})} = 10k$$

Selection of R_2 , of course, depends on the gain desired and for unity gain $R_1 = R_2$.

Lastly, the foregoing discussion has ignored resistor tolerances, input bias current and offset voltage of the op amp — all of which should be considered in setting the overall gain accuracy of the circuit.

TTL Compatibility

Two input logic drive versions of AH5009 series are available: the even numbered part types are specified to be driven from standard 5V-TTL logic

and the odd numbered types from 15V open collector TTL .

Standard TTL gates pull-up to about 3.5V (no load). In order to ensure turn-off of the even numbered switches such as AH5010, a pull-up resistor, $R_{\rm EXT},$ of at least 10 $k\Omega$ should be placed between the 5V $V_{\rm CC}$ and the gate output as shown in Figure 4.

Likewise, the open-collector, high voltage TTL outputs should use a pull-up resistor as shown in Figure 5. In both cases, $t_{(OFF)}$ is improved for lower values of R_{EXT} and the expense of power dissipation in the low state.

FIGURE 6. Definition of Terms

Definition of Terms

The terms referred to in the electrical characteristics tables are as defined in Figure 6.

device schematics and pin connections

FOUR CHANNEL

AH5009CN (RDS(ON) $\leq 100\,\Omega$ 15V - TTL) AH5010CN (RDS(ON) $\leq 150\,\Omega$ 5V - TTL) 14 PIN DIP

AH5011CN (RDS(ON) \leq 100 Ω 15V - TTL) AH5012CN (RDS(ON) \leq 150 Ω 5V - TTL) 16 PIN DIP

THREE CHANNEL

AH5013CN (RDS(ON) \leq 100 Ω 15V - TTL) AH5014CN (RDS(ON) \leq 150 Ω 5V - TTL) 14 PIN DIP

AH5015CN (RDS(ON) $\leq 100\Omega$ 15V - TTL) AH5016CN (RDS(ON) $\leq 150\Omega$ 5V - TTL) 16 PIN DIP

TWO CHANNEL

AH5017CN (RDS(ON) $\leq 100\Omega$ 15V \cdot TTL) AH5018CN (RDS(ON) $\leq 150\Omega$ 5V \cdot TTL) 8 PIN DIP

AH5019CN (RDS(ON) $\leq 100\Omega$ 15V - TTL) AH5020CN (RDS(ON) $\leq 150\Omega$ 5V - TTL) 8 PIN DIP

SINGLE CHANNEL

AH5021CN (RDS(ON) $\leq 100\,\Omega$ 15V - TTL) AH5022CN (RDS(ON) $\leq 150\,\Omega$ 5V - TTL) 8 PIN DIP

AH5023CN (RDS(ON) \leq 100 Ω 15V - TTL) AH5024CN (RDS(ON) \leq 150 Ω 5V - TTL) 8 PIN DIP

Package Types - 8, 14, 16 pin epoxy "B"

AM1000,AM1001,AM1002 silicon N-channel high speed analog switch

general description

The AM1000 series are junction FET integrated circuit analog switches. These devices commutate faster and with less voltage spiking than any other analog switch presently available. By comparison, discrete JFET switches require elaborate drive circuits to obtain reasonable performance for high toggle rates. Encapsulated in a four pin TO-72 package, these units require a minimum of circuit board area. Switching transients are greatly reduced by a monolithic integrated circuit process. The resulting analog switch device provides the following features:

■ Low ON Resistance

 30Ω

High Analog Signal Frequency

100 MHz

High Toggle Rate

4 MHz

■ Low Leakage Current

250 pA

Large Analog Signal SwingBreak Before Make Action

±15V

The AM1000 series of analog switches are particularly suitable for the following applications:

- High Speed Commutators
- Multiplexers
- Sample and Hold Circuits
- Reset Switching
- Video Switching

schematic and connection diagram

TO-72 Package

Order Number AM1000H or AM1001H or AM1002H See Package 9A

equivalent circuit

typical applications

±10 Volt Swing Analog Switch 0.5% Accuracy

±15 Volt Swing Analog Switch

		AM1000	Power Dissipation @ T _A = 25°C	300 mW
	AM1001	AM1002	Linear Derating Factor	1.7 mW/°C
V _{IN} (Note 1)	+50V	+40V	Power Dissipation @ T _C = 125°C	150 mW
VOUT (Note 1)	+50V	+40V	Linear Derating Factor	6 mW/°C
V _{DRIVE} (Note 1)	50V	-40V	Maximum Junction Operating Temperature	-55°C to +150°C
V _{BIAS} (Note 1)	+50V	+40V	Storage Temperature	+200°C
DIAG.			Lead Temperature (Soldering, 10 sec)	+300°C

electrical characteristics

ON CHARACTERISTICS (Note 2)

PARAMETER	CONDITION		MIN	TYP	MAX	UNITS	
R _{ON}	$V_{DRIVE} = +15V, V_{BIAS} = -15V$ $I_{IN} = 1 \text{ mA}, V_{OUT} = 0V$	AM1001	20	40	50	Ω	
R _{ON}	V _{DRIVE} = +10V, V _{BIAS} = -10V I _{IN} = 1 mA, V _{OUT} = 0V	AM1000 AM1002	20 20	25 50	30 100	Ω Ω	

OFF CHARACTERISTICS

PARAMETER	CONDITION	AM1000 AM1001		AM1002			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX	
lout (off)	$V_{ORIVE} = -20V, V_{BIAS} = -10V$ $V_{IN} = -10V, V_{OUT} = +10V$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$.05	.25 .25		0.5 0.2	1 1	nA μA
lout (off)	$V_{DRIVE} = -20V, V_{BIAS} = -10V$ $V_{IN} = +10V, V_{OUT} = -10V$ $T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$.05 .05	.25 .25		0.5 0.2	1 1	nΑ μΑ

DRIVE CHARACTERISTICS (Note 3)

PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
IDRIVE (Switch OFF)	$V_{DRIVE} = -20V, V_{BIAS} = -10V$ AM1000, 1001, 1002 $V_{IN} = \pm 10V, V_{OUT} = \pm 10V$		5	10	mA

SWITCHING CHARACTERISTICS

PARAMETER	CONDITION	AM1000 MAX	AM1001 MAX	AM1002 MAX	UNITS
t _{ON}	See Switching Time	100	150	200	ns
t _{OFF}	Test Circuit	100	100	100	ns

Note 1: The maximum voltage ratings may be applied between any pin or pins simultaneously. Power dissipation may be exceeded in some modes if the voltage pulse exceeds 10 ms. Normal operation will not cause excessive power dissipation even in a "10.C." switching application.

Note 2: All parameters are measured with external silicon diodes. See electrical connection diagram for proper diode placement.

tor proper alone placement.

Note 3: I B_{LOS} [Switch OFF] is equal to I D_{RIVE} [Switch OFF], I_(BIAS) [Switch ON], is equal to external clode leakage.

Note 4: Rise and fall times of V_{DRIVE} shall be 15 ns maximum for switching time testing.

switching time test circuit and waveforms

AM2009/AM2009C/MM4504/MM5504 six channel MOS multiplex switches

general description

The AM2009/AM2009C/MM4504/MM5504 are six channel multiplex switches constructed on a single silicon chip using low threshold P-channel MOS process. The gate of each MOS device is protected by a diode circuit.

features

■ Typical low "on" resistance 150Ω
■ Typical low "off" leakage 100 pA
■ Typical large analog voltage range ±10V

Zero inherent offset voltage

■ Normally off with zero gate voltage

The AM2009/AM2009C/MM4504/MM5504 are designed for applications such as time division multiplexing of analog or digital signals. Switching speeds are primarly determined by conditions external to the device such as signal source impedance, capacitive loading and the total number of channels used in parallel.

The AM2009/MM4504 are specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The AM2009C/MM5504 are specified for operation over the -25°C to $+85^{\circ}\text{C}$ temperature range.

schematic diagram

Order Number AM2009F or AM2009CF MM4504F or MM5504F See Package 4 Order Number AM2009D or AM2009CD MM4504D or MM5504D See Package 1

typical applications

TTL Compatible 6 Channel MUX

32 Channel MUX

absolute maximum ratings (V_{BULK} = 0V)

Voltage on Any Source or Drain	-30V
Voltage on Any Gate	-35V
Positive Voltage on Any Pin	+0.3V
Source or Drain Current Gate Current (forward direction of zener clamp)	50 mA 0.1 mA

 $\begin{array}{ll} \mbox{Total Power Dissipation (at T_A = 25°C)} \\ \mbox{Power Dissipation} - \mbox{each gate circuit} \\ \mbox{Operating Temperature Range} & \mbox{AM2009} \\ \mbox{AM2009C} \end{array}$

900 mW 150 mW -55°C to +125°C -25°C to +85°C -65°C to +150°C 300°C

Storage Temperature Range Lead Temperature (Soldering, 10 sec)

electrical characteristics (Note 1)

			LIMITS		
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Threshold Voltage	$V_{GS} = V_{DS}$, $I_{DS} = -1 \mu A$	-1.0		-3.0	V
DC ON Resistance	$V_{GS} = -20V$, $I_{DS} = -100 \mu A$, $T_A = 25^{\circ} C$		150	250	Ω
DC ON Resistance	$V_{GS} = -10V$, $V_{SB} = -20V$, $I_{DS} = -100 \mu A$, $T_A = 25^{\circ} C$		500	1250	Ω
DC ON Resistance	V_{GS} = -20V, I_{DS} = -100 μA			325	Ω
DC ON Resistance	$V_{GS} = -10V$, $V_{SB} = -20V$, $I_{DS} = -100 \mu\text{A}$			1500	Ω
Gate Leakage	$V_{GS} = -20V$, Note 2 $V_{GS} = -20V$, Note 2, $T_A = 25^{\circ}C$		100	1.0	μA pA
Input Leakage	$V_{DS} = -20V$, Note 2 $V_{DS} = -20V$, Note 2, $T_A = 25^{\circ}C$		100	1.0	μA pA
Output Leakage	V _{SD} = -20V, Note 2 V _{SD} = -20V, Note 2, T _A = 25°C		500	3.0	μΑ pA
Gate-Bulk Breakdown Voltage	$I_{GB} = -10 \mu A$, Note 2	-35			V
Source-Drain Breakdown Voltage	$I_{SD} = -10 \ \mu A, \ V_{GD} = 0,$ Note 2	-30			V
Drain-Source Breakdown Voltage	$I_{DS} = -10 \ \mu A, \ V_{GS} = 0,$ Note 2	-30			V
Transconductance			4000		mhos
Gate Capacitance	Note 3, f = 1 MHz		4.7	8	pF
Input Capacitance	Note 3, f = 1 MHz		4.6	8	pF
Output Capacitance	Note 3, f = 1 MHz		16	20	pF

Note 1: Ratings apply over the specified temperature range and $V_{BULK} = 0$, unless otherwise specified.

Note 2: All other pins grounded

Note 3: Capacitance measured on dual-in-line package between pin under measurement to all other pins. Capacitances are guaranteed by design.

typical performance characteristics

"ON" Resistance vs Gate-to-Source Voltage 700 I_{DS} = -100 μA TA = 25 C 500 400 V_{BS} = +10V 300 100 -5 -30 -25 -20 -15 -10

AM3705/AM3705C 8-channel MOS analog multiplexer general description

The AM3705/AM3705C is an eight-channel MOS analog multiplex switch. TTL compatible logic inputs that require no level shifting or input pull-up resistors and operation over a wide range of supply voltages is obtained by constructing the device with low threshold P-channel enhancement MOS technology. To simplify external logic requirements, a one-of-eight decoder and an output enable are included in the device.

Important design features include:

- TTL/DTL compatible input logic levels
- Operation from standard +5V and −15V supplies
- Wide analog voltage range ±5V
- One-of-eight decoder on chip
- Output enable control

- Low ON resistance 150Ω
- Input gate protection
- Low leakage currents 0.5 nA

The AM3705/AM3705C is designed as a low cost analog multiplex switch to fulfill a wide variety of data acquisition and data distribution applications including cross-point switching, MUX front ends for A/D converters, process controllers, automatic test gear, programmable power supplies and other military or industrial instrumentation applications.

The AM3705 is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The AM3705C is specified for operation over the -25° C to $+85^{\circ}$ C temperature range.

Order Number
AM3705D or AM3705CD
See Package 2
AM3705F or AM3705CF
See Package 5

block diagram (MIL-STD-806B)

truth table

LO	GIC INP	PUTS	CHANN		
2 ⁰	21	22	OE	ON	
L	L	L	Н	S ₁	
н	L	L	Н	S ₂	
L	H	L	H	S ₃	
н	H	L	Н	S ₄	
L	L	H	Н	S ₅	
н	L	H	Н	S ₁ S ₂ S ₃ S ₄ S ₅ S ₆ S ₇	
L	H	H	Н	S ₇	
Н	H	Н	Н	S ₈	
X	X	Х	L	OFF	

typical application

Buffered 8-Channel Multiplex, Sample and Hold

Positive Voltage on Any Pin (Note 1) +0.3V Negative Voltage on Any Pin (Note 1) -35V Source to Drain Current ±30 mA Logic Input Current ±0.1 mA Power Dissipation (Note 2) 500 mW Operating Temperature Range AM3705 -55°C to +125°C -25°C to +85°C Storage Temperature Range -65° C to $+150^{\circ}$ C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 3)

PARAMETER SYN		CONDITIONS		LIMITS		LINUTO
PANAIVIETEN	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ON Resistance	R _{ON}	$V_{IN} = V_{SS}$; $I_{OUT} = 100 \mu\text{A}$		80	250	Ω
ON Resistance	R _{ON}	$V_{IN} = -5V; I_{OUT} = -100 \mu A$		160	400	Ω
ON Resistance AM3705 AM3705C	R _{ON}	$V_{IN} = -5V$; $I_{OUT} = -100 \mu A$ $T_A = +125^{\circ} C$ $T_A = +70^{\circ} C$			400 400	Ω
ON Resistance	R _{ON}	$V_{IN} = +5V; V_{DD} = -15V;$ $I_{OUT} = 100 \mu A$		100		Ω
ON Resistance	R _{ON}	$V_{IN} = 0V, V_{DD} = -15V,$ $I_{OUT} = -100 \mu A$		150		Ω
ON Resistance	R _{ON}	$V_{IN} = -5V; V_{DD} = -15V;$ $I_{OUT} = -100 \mu A$		250		Ω
OFF Resistance	R _{OFF}			1010		Ω
Output Leakage Current AM3705 AM3705C	I _{LO} I _{LO}	$V_{SS} - V_{OUT} = 15V$ $V_{SS} - V_{OUT} = 15V; T_A = 125^{\circ}C$ $V_{SS} - V_{OUT} = 15V; T_A = 70^{\circ}C$		0.5 150 35	10 500 500	nA nA nA
Data Input Leakage Current AM3705 AM3705C	I _{LDI} I _{LDI}	$V_{SS} - V_{IN} = 15V$ $V_{SS} - V_{IN} = 15V$; $T_A = 125^{\circ}C$ $V_{SS} - V_{IN} = 15V$; $T_A = 70^{\circ}C$		0.1 25 0.5	3.0 500 500	nA nA nA
Logic Input Leakage Current AM3705 AM3705C	եր Մեր Մեր	$V_{SS} - V_{Logic \ In} = 15V$ $V_{SS} - V_{Logic \ In} = 15V; T_A = 125^{\circ}C$ $V_{SS} - V_{Logic \ In} = 15V; T_A = 70^{\circ}C$.001 .05 .05	1 10 10	μΑ μΑ μΑ
Logic Input LOW Level	VIL	V _{SS} = +5.0V		0.5	1.0	V
Logic Input LOW Level Logic Input HIGH Level Logic Input HIGH Level	V _{IL} V _{IH} V _{IH}	V _{SS} = +5.0V	V _{DD} 3.0 V _{SS} - 2.0	3.5	V _{SS} - 4.0 V _{SS} + 0.3	V V V
Channel Switching Time-Positive	t ⁺	Switching Time		300		ns
Channel Switching Time-Negative	t ⁻	Test Circuit		600		ns
Channel Separation		f = 1 kHz		62		dB
Output Capacitance	C _{db}	V _{SS} - V _{OUT} = 0; f = 1 MHz		35		pF
Data Input Capacitance	C _{sb}	V _{SS} - V _{DIP} = 0; f = 1 MHz		6.0		pF
Logic Input Capacitance	C _{cg}	V _{SS} - V _{Logic In} = 0; f = 1 MHz		6.0		pF
Power Dissipation	PD	$V_{DD} = -31V, V_{SS} = 0V$		125	175	mW

Note 1: All voltages referenced to $V_{\mbox{SS}}$.

Note 2: Rating applies for ambient temperatures to $+25^{\circ}\text{C}$, derate linearly at 3 mW/°C for ambient temperatures above $+25^{\circ}\text{C}$.

Note 3: Specifications apply for T $_A$ = 25°C, -24V \leq V $_{DD}$ \leq -20V, and +5.0V \leq V $_{SS}$ \leq +7.0V; unless otherwise specified (all voltages are referenced to ground).

typical performance characteristics

ON Resistance vs Analog Input Voltage 300 V_{DD} = -20V V_{SS} = +7V T_A = +25°C lour 200 TEST POINT 100 50 -5 -3 0 +1 +3 +5 INPUT (V)

ON Resistance vs
Ambient Temperature

400

V_{DD} = -20V

V_{SS} = +7V

350

V_{INPUT} = -5V

V_{INPUT} = -5V

V_{INPUT} = +7V

0

75 -50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

Output Leakage Current vs Ambient Temperature

switching time test circuit

typical applications (con't.)

Differential Input MUX

16-Channel Commutator

8-Channel Demultiplexer with Sample and Hold

Wide Input Range Analog Switch

MM450/MM550, MM451/MM551 MM452/MM552, MM455/MM555 MOS analog switches

general description

MM455, MM555

The MM450, and MM550 series each contain four p channel MOS enhancement mode transistors built on a single monolithic chip. The four transistors are arranged as follows:

MM450, MM550	Dual Differential
	Switch

applications. The use of low threshold transistors $(V_{TH} = 2 \text{ volts})$ permits operations with large analog input swings (\pm 10 volts) at low gate voltages (\pm 20 volts). Significant features, then, include:

■ Large Analog Input Swing ±10 Volts

■ Low Supply Voltage
$$V_{BULK} = +10 \text{ Volts}$$

 $V_{GG} = -20 \text{ Volts}$

Low ON Resistance
$$V_{IN} = -10V$$
 150 Ω

$$V_{1N}$$
 = +10V 75 Ω
• Low Leakage Current 200 pA @ 25°C

Each gate input is protected from static charge build-up by the incorporation of zener diode protective devices connected between the gate input and device bulk.

The MM450, MM451, MM452 and MM455 are specified for operation over the -55°C to +125°C military temperature range. The MM550, MM551, MM552 and MM555 are specified for operation over the -25°C to +70°C temperature range.

schematic and connection diagrams

NOTE: Pin 5 connected to case and device bulk MM450 MM550

Order Number MM450H or MM550H See Package 12

NOTE: Pin 5 connected to case and device bu Drain and Source may be interchanged MM455. MM555

Order Number MM455H or MM555H See Package 12

NOTE 1: Pins 1 and 8 connected to case and device bulk. Drain and Source may be interchanged. MM452F, MM552F.

NOTE 2: MM452D and MM552D (dual-in-line packages) have same pin connections as MM452F and MM552F shown above.

Order Number MM452F or MM552F See Package 4

Order Number MM452D or MM552D See Package 1

NOTE: Pin 5 connected to case and device bulk

Order Number MM451H or MM551H See Package 12

typical applications

DPDT Analog Switch

MM450, MM451, MM452, MM455 MM550, MM551, MM552, MM555

Gate Voltage (V_{GG}) Bulk Voltage (V_{BULK}) Analog Input (V_{IN}) Power Dissipation Operating Temperature Storage Temperature

+10V to -30V +10V +10V to -20V 200 mW -55°C to +125°C -65°C to +150°C

+10V to -30V +10V to -20V200 mW -25°C to 70°C -65° C to $+150^{\circ}$ C

electrical characteristics

STATIC CHARACTERISTICS (Note 1)

PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
Analog Input Voltage Threshold Voltage $(V_{GS(T)})$	V _{DG} = 0, I _D = 1 μA	1.0	2.2	±10 3.0	V V
ON Resistance	V _{IN} = -10V		150	600	Ω
ON Resistance	V _{IN} = V _{SS}		75	200	Ω
OFF Resistance Gate Leakage Current (I _{GSB})	$V_{GS} = -25V, V_{BS} = 0, T_A = 25^{\circ}C$		10 ¹⁰ 20		Ω pA
Input (Drain) Leakage Current MM450, MM451, MM452, MM455	$T_A = 25^{\circ} C$ $T_A = 85^{\circ} C$ $T_A = 125^{\circ} C$.025 .002 .025	100 1.0 1.0	nΑ μΑ μΑ
Input (Drain) Leakage Current MM550, MM551, MM552, MM555	$T_A = 25^{\circ} C$ $T_A = 70^{\circ} C$		0.1	100 1.0	nΑ μΑ
Output (Source) Leakage Current MM450, MM451, MM452, MM455	T _A = 25°C		.040	100	nA
Output (Source) Leakage Current MM450 MM451 MM452, MM455 MM450, MM451, MM452, MM455	$T_A = 85^{\circ} C$ $T_A = 85^{\circ} C$ $T_A = 85^{\circ} C$ $T_A = 85^{\circ} C$ $T_A = 125^{\circ} C$			1.0 1.0 1.0 1.0	μΑ μΑ μΑ μΑ
Output (Source) Leakage Current MM550 MM551 MM552, MM555	$T_A = 70^{\circ} C$ $T_A = 70^{\circ} C$ $T_A = 70^{\circ} C$			1.0 1.0 1.0	μΑ μΑ μΑ

DYNAMIC CHARACTERISTICS

Large Signal Transconductance	$V_{DS} = -10V, I_{D} = 10 \text{ mA}$ $f = 1 \text{ kHz}$	4000		μmhos
-------------------------------	--	------	--	-------

CAPACITANCE CHARACTERISTICS (Note 2)

PARAMETER	DEVICE TYPE	MIN	TYP	MAX	UNITS
Analog Input (Drain) Capacitance (C _{DB})	ALL		8	10	pF
Output (Source) Capacitance (C _{SB})	MM450, MM550		11	14	pF
	MM451, MM551		20	24	pF
	MM452, MM552		7.5	11	pF
	MM455, MM555		7.5	11	pF
Gate Input Capacitance (C _{GB})	MM450, MM550		10	13	pF
	MM451, MM551		5.5	8	pF
	MM452, MM552		5.5	9	pF
	MM455, MM555		5.5	9	pF
Gate to Output Capacitance (C _{GS})	ALL		3.0	5	pF

Note 1: The resistance specifications apply for $-55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq$ + 85°C, V_{GG} = -20V, V_{BULK} = +10V, and a test current of 1 mA. Leakage current is measured with all pins held at ground except the pin being measured which is biased at -25V.

Note 2: All capacitance measurements are made at 0 volts bias at 1 MHz.

typical dynamic input characteristics (TA = 25°C Unless Otherwise Noted)

typical input capacitance characteristics

typical applications (con't)

4-Channel Multiplexer*

*Expansion in the number of data input lines is possible by using multiple level series switches allowing the same decode gates to be used for all lower rank decoding.

MM454/MM554 four-channel commutator general description

The MM454/MM554 is a four-channel analog commutator capable of switching four analog input channels sequentially onto an output line. The device is constructed on a single silicon chip using MOS P Channel enhancement transistors; it contains all the digital circuitry necessary to sequentially turn ON the four analog switch transistors permitting multiplexing of the analog input data. The device features:

High Analog Voltage Handling	±10V
High Commutating Rate	500 kHz

Low Leakage Current ($T_A = 25^{\circ}C$) 200 pA ($T_A = 85^{\circ}C$) 50 nA All Channel Blanking input provided

Reset capability provided

■ Low ON Resistance

 200Ω

In addition, the MM454/MM554 can easily be applied where submultiplexing is required since a 4:1 clock countdown signal is provided which can drive the clock input of subsequent MM454/MM554 units

The MM454 is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The MM554 is specified for operation over the -25° C to $+70^{\circ}$ C temperature range.

schematic and connection diagrams

OTE: Pin 7 connected to case and to device bulk. Nominal Operating Voltages: $V_{GG} = -24V$; $V_{DD} = 0V$; $V_{SS} = +12V$, RESET BIAS = +12V (0V for RESET), ALL CHANNEL

Order Number MM454F or MM554F See Package 4

absolute maximum ratings (Note 1)

static characteristics (Note 2)

PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
Analog Input Voltage				± 10	V
ON Resistance	$V_{IN} = -10V$		170	600	25
ON Resistance	VIN = VSS		90	200	Ω
OFF Resistance			1010		Ω
Analog Input Leakage Current MM454	$T_A = 25^{\circ}C$.050	100	nA
MM454	$T_A = 85^{\circ}C$.006	1.0	μΑ
MM554	$T_A = 25^{\circ}C$.0001	100	nA
MM554	$T_A = 70^{\circ}C$.030	1.0	μΑ
Analog Output Leakage Current MM454	$T_A = 25^{\circ}C$		0.100	100	nA
MM454	$T_A = 85^{\circ}C$		30	1.0	μΑ
MM554	$T_{\Delta} = 25^{\circ}C$.0001	100	nA
MM554	$T_{\Delta} = 70^{\circ} C$.030	1.0	μΑ
V _{SS} Supply Current Drain	V _{SS} = +12V		3.8	5.5	m A
V _{GG} Supply Current Drain	V _{GG} = -24V		2.4	3.5	m A

capacitance characteristics

PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
Analog Input Capacitance Channel OFF	I _{IN} = 0		4	6	pF
Analog Input Capacitance Channel ON	I _{IN} = 0		20	24	pF
Analog Output Capacitance	I _{IN} = 0		20	24	pF
Clock Input	V _{CL} = +12V		2.0		pF
Reset Input	V _{RESET} = +12V		2.0		pF
Blanking Input	V _{BLANK} = +12V		2.0		pF

clock characteristics (Note 3)

PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
Clock Input (HIGH) ⁽⁴⁾		V _{SS} - 2		V _{SS}	V
Clock Input (LOW)		-5	0	+5	V
Clock Input Rise Time (POS GOING)		No requirement			
Clock Input Fall Time (NEG GOING)				20	μsec
Countdown Output (POS) V _{OH}		V _{SS} -2		V _{SS}	V
Countdown Output (NEG) V _{OL}			0		V
Maximum Commutation Rate		0.5	2.0		MHz
V _{SS}		+10.0	+12	+14	V

Note 1: Maximum ratings are limiting values above which the device may be damaged. All voltages referenced to V_{DD} = 0.

Note 2: These specifications apply over the indicated operating temperature range for V_{GG} = -24V, V_{DD} = 0V, V_{SS} = +12V, V_{RESET} = +12V, V_{BLANK} = +12V. ON resistance measured at 1 mA, OFF resistance and leakage measured with all analog inputs and output common. Capacitance measured at 1 MHz

Note 3: Operating conditions in Note 2 apply, V_{SS} to V_{DD} (0V) voltage is applied to counting and gating circuits, V_{GG} is required only for analog switch biasing. All logic inputs are high resistance and are essentially capacitive.

Note 4: Logic input voltage must not be more positive than V_{SS} .

typical performance characteristics

timing diagram

LM1488 quad line driver

general description

The LM1488 is a quad line driver which converts standard DTL/TTL input logic levels through one stage of inversion to output levels which meet EIA Standard No. RS-232C and CCITT Recommendation V. 24.

features

- Current limited output
- ±10 mA typ
- Power-off source impedance
- 300Ω min
- Simple slew rate control with external capacitor
- Flexible operating supply range
- Inputs are DTL/TTL compatible

schematic and connection diagrams

typical applications

RS232C Data Transmission

*OPTIONAL FOR NOISE FILTERING

absolute maximum ratings (Note 1)

Supply Voltage V^{+} +15V ٧--15V $-15V \leq V_{1N} \leq 7.0V$ Input Voltage (V_{IN}) Output Voltage Power Derating (Note 2) (Package Limitation, J Package) 1000 mW 6.7 mW/°C Derating above $T_A = +25^{\circ}C (1/\theta_{JA})$ Operating Temperature Range 0°C to +75°C -65° C to $+175^{\circ}$ C Storage Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 3)

PARAMETER	cor	NDITIONS	MIN	TYP	MAX	UNITS
Logic "0" Input Current	V _{IN} = 0V			-1.0	-1.3	mA
Logic ''1'' Input Current	V _{IN} = +5.0V			.005	10.0	μΑ
High Level Output Voltage	$R_L = 3.0k\Omega$ $V_{IN} = 0.8V$	$\begin{cases} V^{+} = 9.0V \\ V^{-} = -9.0V \\ V^{+} = 13.2V \end{cases}$	6.0	7.0		٧
		V = -13.2V	9.0	10.5		V
Low Level	$R_L = 3.0 k\Omega$	$\begin{cases} V^{+} = 9.0V \\ V^{-} = -9.0V \end{cases}$	-6.0	-6.8		٧
Output Voltage	V _{IN} = 1.9V	V ⁺ = 13.2V V ⁻ = -13.2V	-9.0	-10.5		V
High Level Output Short-Circuit Current	$V_{OUT} = 0V$ $V_{IN} = 0.8V$		-6.0	-10.0	-12.0	mA
Low Level Output Short-Circuit Current	$V_{OUT} = 0V$ $V_{IN} = 1.9V$		6.0	10.0	12.0	mA
Output Resistance	$V^+ = V^- = 0V$ $V_{OUT} = \pm 2V$		300			Ω
Positive Supply	V _{IN} = 1.9V	$\begin{cases} V^{+} = 9.0V, V^{-} = -9.0V \\ V^{+} = 12V, V^{-} = -12V \\ V^{+} = 15V, V^{-} = -15V \end{cases}$		15.0 19.0 25.0	20.0 25.0 34.0	mA mA mA
Current (Output Open)	V _{IN} = 0.8V	$\begin{cases} V^{+} = 9.0V, V^{-} = -9.0V \\ V^{+} = 12V, V^{-} = -12V \\ V^{+} = 15V, V^{-} = -15V \end{cases}$		4.5 5.5 8.0	6.0 7.0 12.0	mA mA mA
Negative Supply	V _{IN} = 1.9V	$\begin{cases} V^{+} = 9.0V, V^{-} = -9.0V \\ V^{+} = 12V, V^{-} = -12V \\ V^{+} = 15V, V^{-} = -15V \end{cases}$		-13.0 -18.0 -25.0	-17.0 -23.0 -34.0	mA mA mA
Current (Output Open)	V _{IN} = 0.8V	$\begin{cases} V^{+} = 9.0V, V^{-} = -9.0V \\ V^{+} = 12V, V^{-} = -12V \\ V^{+} = 15V, V^{-} = -15V \end{cases}$		001 001 01	-1.0 -1.0 -2.5	mA mA mA
Power Dissipation	V ⁺ = 9.0V, V ⁻ V ⁺ = 12V, V ⁻ =			252 444	333 576	mW mW
Propagation Delay to "1" (t _{pd1})	$R_L = 3.0 \text{ k}\Omega$	C _L = 15 pF, T _A = 25°C		230	300	ns
Propagation Delay to ''0'' (t _{pd0})	$R_L = 3.0 \text{ k}\Omega$	$C_L = 15 pF, T_A = 25^{\circ}C$		70	175	ns
Rise Time (t _r)	_	$C_L = 15 \text{ pF}$, $T_A = 25^{\circ}C$		75	100	ns
Fall Time (t _f)	$R_L = 3.0 \text{ k}\Omega$	$C_L = 15 \text{ pF}, T_A = 25^{\circ}C$		40	75	ns

Note 1: Voltage values shown are with respect to network ground terminal. Positive current is defined as current into the referenced pin.

Note 2: The maximum junction temperature of the LM1488 is 150°C. For operating at elevated temperatures the cavity Dual-In-Line Package (J) must be derated based on a thermal resistance of 85°C/W, junction to ambient.

Note 3: These specifications apply for $V^+=+9.0V\pm1\%$, $V^-=-9.0V\pm1\%$, $T_A=0^{\circ}C$ to $+75^{\circ}C$ unless otherwise noted. All typicals are for $V^+=9.0V$, $V^-=-9.0V$, and $T_A=25^{\circ}C$.

applications

By connecting a capacitor to each driver output the slew rate can be controlled utilizing the output current limiting characteristics of the LM1488. For a set slew rate the appropriate capacitor value may be calculated using the following relationship

$$C = I_{SC} (\triangle T / \triangle V)$$

where C is the required capacitor, I_{SC} is the short circuit current value, and $\Delta V/\Delta T$ is the slew rate.

RS232C specifies that the output slew rate must not exceed 30V per microsecond. Using the worst case output short circuit current of 12 mA in the above equation, calculations result in a required capacitor of 400 pF connected to each output.

typical applications (con't)

DTL/TTL-to-MOS Translator

DTL/TTL-to-HTL Translator

DTL/TTL-to-RTL Translator

ac load circuit

switching time waveforms

typical performance characteristics

Output Voltage and Current-Limiting Characteristics

LM1489/LM1489A quad line receiver

general description

The LM1489/LM1489A are quad line receivers designed to interface data terminal equipment with data communications equipment. They are constructed on a single monolithic silicon chip. These devices satisfy the specifications of EIA standard No. RS232C. The LM1489/LM1489A meet and exceed the specifications of MC1489/MC1489A and are pin-for-pin replacements. The LM1489/LM1489A are available in 14 lead ceramic dual-in-line package.

features

- Four totally separate receivers per package
- Programmable threshold
- Built-in input threshold hysteresis
- "Fail safe" operating mode
- Inputs withstand ±30V

schematic and connection diagrams

Dual-In-Line Package

Order Number LM1489J or LM1489AJ See Package 16

ac test circuit and voltage waveforms

typical applications

RS232C Data Transmission

MOS to T²L/DTL Translator

absolute maximum ratings (Note 1)

The following apply for $T_A = 25^{\circ}C$ unless otherwise specified.

 Power Supply Voltage
 10V

 Input Voltage Range
 ±30V

 Output Load Current
 20 mA

Power Dissipation (Note 2) Operating Temperature Range Storage Temperature Range 1W 0°C to +75°C -65°C to +175°C

electrical characteristics (Note 3)

LM1489/LM1489A: The following apply for V_{CC} = 5.0V \pm 1%, 0°C \leq T_A \leq +75°C unless otherwise specified.

PARAMETER	CONDITIONS	LM1489				LM1489A		LIBULTO
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input High Threshold Voltage	$T_A = 25^{\circ}C$, $V_{OUT} \le 0.45V$, $I_{OUT} = 10 \text{ mA}$	1.0		1.5	1.75		2.25	V
Input Low Threshold Voltage	$T_A = 25^{\circ}C$, $V_{OUT} \ge 2.5V$, $I_{OUT} = -0.5 \text{ mA}$	0.75		1.25	0.75		1.25	V
Input Current	V _{IN} = +25V	+3.6	+5.6	+8.3	+3.6	+5.6	+8.3	mA
	V _{IN} = -25V	-3.6	-5.6	-8.3	-3.6	-5.6	-8.3	mA
	V _{IN} = +3V	+0.43	+0.53		+0.43	+0.53		mA
	V _{IN} = -3V	-0.43	-0.53		-0.43	-0.53		
Output High Voltage	V _{IN} = 0.75V, I _{OUT} = -0.5 mA	2.6	3.8	5.0	2.6	3.8	5.0	V
	Input = Open, I _{OUT} = -0.5 mA	2.6	3.8	5.0	2.6	3.8	5.0	V
Output Low Voltage	V _{IN} = 3.0V, I _{OUT} = 10 mA		0.33	0.45		0.33	0.45	V
Output Short Circuit Current	V _{IN} = 0.75V		3.0			3.0		mA
Supply Current	V _{IN} = 5.0V		14	26		14	26	mA
Power Dissipation	V _{IN} = 5.0V		70	130		70	130	mW
LM1489/LM1489A: The follow	ving apply for V_{CC} = 5.0V \pm 1%, T_A = 25°C							
Input to Output "High" Propagation Delay (t _{pd1})	R _L = 3.9k (Figure 1) (AC Test Circuit)		28	85		28	85	ns
Input to Output "Low" Propagation Delay (t _{pd0})	$R_L = 390\Omega$ (Figure 1) (AC Test Circuit)		20	50		20	50	ns
Output Rise Time	R _L = 3.9k {Figure 1) (AC Test Circuit)		110	175		110	175	ns
Output Fall Time	R ₁ = 390Ω (Figure 1) (AC Test Circuit)		9	20		9	20	ns

Note 1: Voltage values shown are with respect to network ground terminal. Positive current is defined as current into the referenced pin.

Note 2: For operation at elevated temperatures, the device must be derated based on a 125°C maximum junction temperature and a thermal resistance of 85°C/W junction to case.

Note 3: These specifications apply for response control pin = open.

LM55107A/LM75107A,LM55108A/LM75108A, LM163/LM363 dual line receivers LM75207,LM75208,LM363A dual MOS sense amplifiers

general description

The nine products described herein are TTL compatible dual high speed circuits intended for sensing in a broad range of system applications. While the primary usage will be for line receivers or MOS sensing, any of the products may effectively be used as voltage comparators, level translators, window detectors, transducer preamplifiers, and in other sensing applications. As digital line receivers the products are applicable with the LM55109/LM75109 and LM55110/LM75110 companion drivers, or may be used in other balanced or unbalanced party-line data transmission systems. The improved input sensitivity and delay specifications of the LM75207, LM75208 and LM363A make them ideal for sensing high performance MOS memories as well as high sensitivity line receivers and voltage comparators. TRI-STATE® products enhance bused organizations.

features

 High speed 17 ns typ

■ TTL compatible

■ Input sensitivity ±10 mV or ±25 mV

Input common-mode range

High input impedance with normal V_{CC}, or $V_{CC} = 0V$

- Strobes for channel selection
- TRI-STATE outputs for high speed buses
- Dual circuits
- Sensitivity guaranteed over full common-mode range
- Logic input clamp diodes
- 14 pin cavity or molded dual-in-line package
- Standard supply voltages

connection diagrams

Dual-In-Line Package

Order Number: LM55107AJ LM75107AJ I M55108A.I LM75108AJ

Order Number: LM75107AN LM75108AN LM75207N LM75208N

LM75207J See Package 22 LM75208J See Package 16

product selection guide

TEMPERATURE→ PACKAGE→	-55° C \leq T _A \leq +125 $^{\circ}$ C CAVITY DIP		$_{ m L} \leq$ +70 $^{\circ}$ C MOLDED DIP
INPUT SENSITIVITY→ OUTPUT LOGIC↓			±10 mV
TTL Active Pull-up TTL Open Collector TTL TRI-STATE	LM55107A LM55108A LM163	LM75107A LM75108A LM363	LM75207 LM75208 LM363A

Dual-In-Line Package

Order Number: LM163J

LM363J LM363A.I

See Package 16

Order Number: LM363N LM363AN

See Package 22

absolute maximum ratings

Supply Voltage, V _{CC} ⁺	7V	Strobe Input Voltage	5.5V
Supply Voltage, V _{CC}	-7V	Storage Temperature Range	-65°C to +150°C
Differential Input Voltage	±6V	Power Dissipation	600 mW
Common Mode Input Voltage	±5V	Lead Temperature (Soldering, 10 sec)	300° C

operating conditions

	LM55107A, LM55108A, LM163			LM75107A, LM75207 LM75108A, LM75208 LM363, LM363A			
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage V _{CC} ⁺	4.5V	5V	5.5V	4.75V	5V	5.25V	
Supply Voltage V _{CC}	-4.5V	-5V	-5.5V	-4.75V	-5V	-5.25V	
Operating Temperature Range	−55° C	to	+125°C	0° C	to	+70° C	

typical applications

Line Receiver Used in a Party-Line or Data-Bus System

Line Receiver Used in MOS Memory System

schematic diagrams

LM55107A/LM75107A, LM75207 LM55108A/LM75108A, LM75208

NOTE 1: 1/2 OF THE DUAL CIRCUIT IS SHOWN.

NOTE 2: *INDICATES CONNECTIONS COMMON TO SECOND HALF OF DUAL CIRCUIT.
NOTE 3: COMPONENTS SHOWN WITH DASH LINES ARE APPLICABLE TO THE LM55107A,
LM75107A, AND LM75207 ONLY.

LM163/LM363, LM363A

LM55107A/LM75107A, LM55108A/LM75108A dc electrical characteristics $(T_{MIN} \leq T_A \leq T_{MAX})$

PARAMETER	CONDITIONS	LM55	107A/LM7	5107A	LM55	108A/LM7	5108A	UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
High Level Input Current Into 1A, 1B, 2A or 2B (I _{IH})	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{ID}^- = 0.5V, V_{IC}^- = -3V \text{ to } 3V$		30	75		30	75	μΑ
Low Level Input Current Into 1A, 1B, 2A or 2B (I _{IL})	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{ID} = -2V, V_{IC} = -3V \text{ to } 3V$			-10			-10	μА
High Level Input Current Into 1G or 2G (I _{IH})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IH(S)}^{-} = 2.4V$			40			40	μΑ
High Level Input Current Into 1G or 2G (I _{IH})	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{IH\{S\}}^- = Max V_{CC}^+$			1			1	mA
Low Level Input Current Into 1G or 2G (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IL(S)} = 0.4V$			-1.6			-1.6	mA
High Level Input Current Into S (I _{IH})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IH(S)} = 2.4V$			80			80	μΑ
High Level Input Current Into S (I _{IH})	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{1H(S)}^- = Max V_{CC}^+$			2			2	mA
Low Level Input Current Into S (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IL\{S\}} = 0.4V$			-3.2			-3.2	mA
High Level Output Voltage (V _{OH})	$V_{CC}^+ = Min, V_{CC}^- = Min,$ $I_{LOAD} = -400\mu A, V_{ID} = 25 \text{ mV},$ $V_{IC} = -3V \text{ to } 3V$	2.4						V
Low Level Output Voltage (V _{OL})	$V_{CC}^{+} = Min, V_{CC}^{-} = Min,$ $I_{SINK} = 16 \text{ mA}, V_{ID} = -25 \text{ mV},$ $V_{IC} = -3V \text{ to } 3V$			0.4			0.4	٧
High Level Output Current (I _{OH})	$V_{CC}^+ = Min, V_{CC}^- = Min$ $V_{OH} = Max V_{CC}^+$						250	μΑ
Short Circuit Output Current (I _{OS})	V _{CC} ⁺ = Max, V _{CC} ⁻ = Max	-18		-70				mA
High Logic Level Supply Current From V _{CC} (I _{CCH} ⁺)	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID} = 25 \text{ mV}, T_{A} = 25^{\circ}\text{C}$		18	30		18	30	mA
High Logic Level Supply Current From V _{CC} (I _{CCH} ⁻)	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID} = 25 \text{ mV}, T_{A} = 25^{\circ}\text{C}$		-8.4	-15		-8.4	-15	mA
Input Clamp Voltage on G or S (V ₁)	$V_{CC}^{+} = Min, V_{CC}^{-} = Min,$ $I_{IN} = -12 \text{ mA}, T_A = 25^{\circ}\text{C}$		-1	-1.5		-1	-1.5	V

ac switching characteristics (V_{CC}^+ = 5V, V_{CC}^- = -5V, T_A = 25°C)

		LIMITS						
PARAMETER	CONDITIONS	LM55107A/LM75107A			LM55108A/LM75108A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Propagation Delay Time, Low to High Level, From Differential Inputs A and B to Output (Note 1) (t _{PLH(D)})	$R_L = 390\Omega, C_L = 50 pF$		17	25				ns
Propagation Delay Time, Low to High Level, From Differential Inputs A and B to Output (Note 1) (t _{PLH(D)})	$R_L = 390\Omega, C_L = 15 pF$					19	25	ns
Propagation Delay Time, High to Low Level, From Differential Inputs A and B to Output (Note 1) (t _{PHL(D)})	$R_L = 390\Omega, C_L = 50 pF$		17	25				ns
Propagation Delay Time, High to Low Level, From Differential Inputs A and B to Output (Note 1) (t _{PHL(D)})	$R_L = 390\Omega$, $C_L = 15 pF$					19	25	ns
Propagation Delay Time, Low to High Level, From Strobe Input G or S to Output $(t_{PLH(S)})$	$R_L = 390\Omega, C_L = 50 pF$		10	15				ns .
Propagation Delay Time, Low to High Level, From Strobe Input G or S to Output $(t_{PLH(S)})$	$R_L = 390\Omega, C_L = 15 pF$					13	20	ns
Propagation Delay Time, High to Low Level, From Strobe Input G or S to Output $(t_{PHL(S)})$	$R_L = 390\Omega, C_L = 50 pF$		8	15				ns
Propagation Delay Time, High to Low Level, From Strobe Input G or S to Output $(t_{PHL(S)})$	R _L = 390Ω, C _L = 15 pF					13	20	ns

Note 1: Differential input is +100 mV to -100 mV pulse. Delays read from 0 mV on input to 1.5V on output.

LM75207, LM75208 dc electrical characteristics (0°C \leq $T_A \leq$ +70°C)

		LIMITS						
PARAMETER	CONDITIONS		LM75207			LM75208		UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
High Level Input Current Into 1A, 1B, 2A or 2B (I _{IH})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID} = 0.5V, V_{IC} = -3V \text{ to } 3V$		30	75		30	75	μΑ
Low Level Input Current Into 1A, 1B, 2A or 2B (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID}^{-} = -2V, V_{IC}^{-} = -3V \text{ to } 3V$			-10			-10	μΑ
High Level Input Current Into 1G or 2G (I _{IH})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{IH(S)} = 2.4V$			40			40	μΑ
High Level Input Current Into 1G or 2G (I _{IH})	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{IH(S)} = Max V_{CC}^+$			1			1 .	mA
Low Level Input Current Into 1G or 2G (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IL(S)}^{-} = 0.4V$			-1.6			-1.6	mA
High Level Input Current Into S (I _{IH})	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{IH(S)} = 2.4V$			80			80	μА
High Level Input Current Into S (I _{IH})	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{IH(S)} = Max V_{CC}^+$			2			2	mA
Low Level Input Current Into S (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IL(S)}^{-} = 0.4V$			-3.2			-3.2	mA
High Level Output Voltage (V _{OH})	$V_{CC}^{+} = Min, V_{CC}^{-} = Min,$ $I_{LOAD} = -400\mu A, V_{ID} = 10 \text{ mV},$ $V_{IC} = -3V \text{ to } 3V$	2.4						Á
Low Level Output Voltage (V _{OL})	$V_{CC}^{+} = Min, V_{CC}^{-} = Min,$ $I_{SINK} = 16 \text{ mA}, V_{ID} = -10 \text{ mV},$ $V_{IC} = -3V \text{ to } 3V$			0.4			0.4	v
High Level Output Current (I _{OH})	$V_{CC}^+ = Min, V_{CC}^- = Min$ $V_{OH} = Max V_{CC}^+$						250	μΑ
Short Circuit Output Current (I _{OS})	V _{CC} ⁺ = Max, V _{CC} ⁻ = Max	-18		-70				mA
High Logic Level Supply Current From V _{CC} (I _{CCH} ⁺)	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID} = 10 \text{ mV}, T_A = 25^{\circ}\text{C}$		18	30		18	30	mA
High Logic Level Supply Current From V _{CC} (I _{CCH} ⁻)	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID} = 10 \text{ mV}, T_A = 25^{\circ}\text{C}$		-8.4	-15		-8.4	-15	mA
Input Clamp Voltage on G or S (V ₁)	$V_{CC}^{+} = Min, V_{CC}^{-} = Min,$ $I_{1N} = -12 \text{ mA}, T_{A} = 25^{\circ}\text{C}$		-1	-1.5		-1	-1.5	v

ac switching characteristics $(V_{CC}^+ = 5V, V_{CC}^- = -5V, T_A = 25^{\circ}C)$

				LIN	IITS			
PARAMETER	CONDITIONS		LM75207			LM75208		UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Propagation Delay Time, Low to High Level, From Differential Inputs A and B to Output (Note 1) $(t_{PLH(D)})$	R _L = 470Ω, C _L = 15 pF			35				ns
Propagation Delay Time, Low to High Level, From Differential Inputs A and B to Output (Note 1) (t _{PLH(D)})	$R_L = 470\Omega, C_L = 15 pF$						35	ns
Propagation Delay Time, High to Low Level, From Differential Inputs A and B to output (Note 1) $(t_{PHL(D)})$	R _L = 470Ω, C _L = 15 pF			20				ns
Propagation Delay Time, High to Low Level, From Differential Inputs A and B to Output (Note 1) (t _{PHL(D)})	$R_L = 470\Omega, C_L = 15 pF$						20	ns
Propagation Delay Time, Low to High Level, From Strobe Input G or S to Output $(t_{PLH(S)})$	$R_L = 470\Omega, C_L = 15 pF$			17				ns
Propagation Delay Time, Low to High Level, From Strobe Input G or S to Output $(t_{PLH(S)})$	$R_L = 470\Omega, C_L = 15 pF$						17	ns
Propagation Delay Time, High to Low Level, From Strobe Input G or S to Output $(t_{PHL(S)})$	$R_L = 470\Omega, C_L = 15 pF$			17				ns
Propagation Delay Time, High to Low Level, From Strobe Input G or S to Output $(t_{PHL}(\underline{s}))$	$R_L = 470\Omega, C_{L} = 15 pF$						17	ns

Note 1: Differential input is $\pm 10 \text{ mV}$ to $\pm 30 \text{ mV}$ pulse. Delays read from 0 mV on input to 1.5V on output.

			LIMITS		
PARAMETER	CONDITIONS		LM163/LM363		UNITS
		MIN	TYP	MAX	
High Level Input Current Into 1A, 1B, 2A or 2B (I _{IH})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID} = 0.5V, V_{IC} = -3V \text{ to } 3V$		30	75	μΑ
Low Level Input Current Into 1A, 1B, 2A or 2B (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID} = -2V, V_{IC} = -3V \text{ to } 3V$			-10	μА
High Level Input Current Into 1G, 2G or D (I _{IH})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IH(S)}^{-} = 2.4V$			40	μА
High Level Input Current Into 1G, 2G or D (I _{IH})	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{IH(S)} = Max V_{CC}^+$			1	mA
Low Level Input Current Into D (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IL(D)}^{-} = 0.4V$			-1.6	mA
Low Level Input Current Into 1G or 2G (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IH(D)} = 2V, V_{IL(G)} = 0.4V$			-40	μА
Low Level Input Current Into 1G or 2G (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{IL(D)} = 0.8V, V_{IL(G)} = 0.4V$			-1.6	mA
High Level Output Voltage (V _{OH})	V_{CC}^{+} = Min, V_{CC}^{-} = Min, I_{LOAD} = -2 mA, V_{ID} = 25 mV, $V_{IL(D)}$ = 0.8V, V_{IC} = -3V to 3V	2.4			V
Low Level Output Voltage (V _{OL})	$V_{CC}^+ = Min, V_{CC}^- = Min,$ $I_{SINK} = 16 \text{ mA}, V_{ID} = -25 \text{ mV},$ $V_{IL(D)} = 0.8V, V_{IC} = -3V \text{ to } 3V$,	0.4	V
Output Disable Current (I_{OD})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{IH(D)} = 2V, V_{OUT} = 2.4V$			40	μΑ
Output Disable Current (I _{OD})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IH(D)} = 2V, V_{OUT} = 0.4V$			-40	μΑ
Short Circuit Output Current (I _{OS})	$V_{CC}^{+} = Max, V_{IL\{D\}} = 0.8V,$ $V_{CC}^{-} = Max$	-18		-70	mA
High Logic Level Supply Current From V _{CC} ⁺ (I _{CCH} ⁺)	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID}^{-} = 25 \text{ mV}, T_{A}^{-} = 25^{\circ}\text{C}$		28	40	mA
High Logic Level Supply Current From V _{CC} (I _{CCH})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{1D} = 25 \text{ mV}, T_{A} = 25^{\circ}\text{C}$		-8.4	-15	mA
Input Clamp Voltage on G or D (V_1)	V _{CC} ⁺ = Min, V _{CC} ⁻ = Min, I _{IN} = -12 mA, T _A = 25°C		-1	-1.5	V

ac switching characteristics $(V_{CC}{}^{+}$ = 5V, $V_{CC}{}^{-}$ = -5V, T_{A} = 25°C)

			LIMITS		
PARAMETER	CONDITIONS		LM163/LM363		UNITS
		MIN	TYP	MAX	
Propagation Delay Time, Low to High Level, From Differential Inputs A and B to Output (Note 1) (t _{PLH(D)})	$R_L = 390\Omega, C_L = 50 pF$		17	25	ns
Propagation Delay Time, High to Low Level, From Differential Inputs A and B to Output (Note 1) (t _{PHL(D)})	$R_L = 390\Omega$, $C_L = 50 pF$		17	25	ns
Propagation Delay Time, Low to High Level, From Strobe Input G to Output (t _{PLH(S)})	$R_L = 390\Omega$, $C_L = 50 pF$		10	15	ns
Propagation Delay Time, High to Low Level, From Strobe Input G to Output (t _{PHL(S)})	$R_L = 390\Omega$, $C_L = 50 pF$		8	15	ns
Disable Low to High to Output High to Off (t_{1H})	R _L = 39052, C _L = 5 pF			20	ns
Disable Low to High to Output Low to Off (t_{OH})	R _L = 390Ω, C _L = 5 pF			30	ns
Disable High to Low to Output Off to High (t _{H1})	R _L = 1k to 0V, C _L = 50 pF			25	ns
Disable High to Low to Output Off to Low (t _{HO})	R _L = 390Ω, C _L = 50 pF			25	ns

Note 1: Differential input is +100 mV to -100 mV pulse. Delays read from 0 mV on input to 1.5V on output.

LM363A dc electrical characteristics (0°C≤T_A≤+70°C)

			LIMITS		
PARAMETER	CONDITIONS		LM363A		UNITS
		MIN	TYP	MAX	
High Level Input Current Into 1A, 1B, 2A or 2B (I _{IH})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID} = 0.5V, V_{IC} = -3V \text{ to } 3V$		30	75	μΑ
Low Level Input Current Into 1A, 1B, 2A or 2B (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID} = -2V, V_{IC} = -3V \text{ to } 3V$			-10	μΑ
High Level Input Current Into 1G, 2G or D (I _{IH})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IH(S)} = 2.4V$			40	μА
High Level Input Current Into 1G, 2G or D (I _{IH})	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{IH(S)} = Max V_{CC}^+$			1	mA
Low Level Input Current Into D (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IL(D)} = 0.4V$			-1.6	mA
Low Level Input Current Into 1G or 2G (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{IH(D)} = 2V, V_{IL(G)}^{-} = 0.4V$			-40	μΑ
Low Level Input Current Into 1G or 2G (I _{IL})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IL(D)} = 0.8V, V_{IL(G)} = 0.4V$			-1.6	mA
High Level Output Voltage (V _{OH})	$V_{CC}^{+} = Min, V_{CC}^{-} = Min,$ $I_{LOAD}^{-} = -2 \text{ mA}, V_{ID}^{-} = 10 \text{ mV},$ $V_{IL(D)}^{-} = 0.8 \text{ V}, V_{IC}^{-} = -3 \text{ V to } 3 \text{ V}$	2.4			V
Low Level Output Voltage (V _{OL})	V_{CC}^+ = Min, V_{CC}^- = Min, I_{SINK} = 16 mA, V_{ID} = -10 mV, $V_{IL(D)}$ = 0.8V, V_{IC} = -3V to 3V			0.4	V
Output Disable Current (I _{OD})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IH(D)} = 2V, V_{OUT} = 2.4V$			40	μΑ
Output Disable Current (I _{OD})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IH(D)} = 2V, V_{OUT} = 0.4V$			-40	μΑ
Short Circuit Output Current (I _{OS})	$V_{CC}^{+} = Max, V_{IL(D)} = 0.8V,$ $V_{CC}^{-} = Max$	-18		-70	mA
High Logic Level Supply Current From V_{CC}^+ (I_{CCH}^+)	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID} = 10 \text{ mV}, T_A = 25^{\circ}\text{C}$		28	40	mA
High Logic Level Supply Current From V_{CC}^- (I_{CCH}^-)	$V_{CC}^{+} = Max, V_{CC}^{-} = Max,$ $V_{ID}^{-} = 10 \text{ mV}, T_A^{-} = 25^{\circ}\text{C}$		-8.4	-15	mA
Input Clamp Voltage on G or D (V ₁)	$V_{CC}^{+} = Min, V_{CC}^{-} = Min,$ $I_{IN} = -12 \text{ mA}, T_{A} = 25^{\circ}\text{C}$		-1	-1.5	V

ac switching characteristics $(V_{CC}^+ = 5V, V_{CC}^- = -5V, T_A = 25^{\circ}C)$

			LIMITS		
PARAMETER	CONDITIONS		LM363A		UNITS
		MIN	TYP	MAX	
Propagation Delay Time, Low to High Level, From Differential Inputs A and B to Output (Note 1) (tpLH(D))	$R_L = 470\Omega$, $C_L = 15 pF$			35	ns
Propagation Delay Time, High to Low Level, From Differential Inputs A and B to Output (Note 1) (t _{PHL(D)})	$R_L = 470\Omega$, $C_L = 15 pF$			20	ns
Propagation Delay Time, Low to High Level, From Strobe Input G to Output $(t_{PLH(S)})$	R _L = 470Ω, C _L = 15 pF			17	ns
Propagation Delay Time, High to Low Level, From Strobe Input G to Output $(t_{PHL(S)})$	R _L = 470Ω, C _L = 15 pF			17	ns
Disable Low to High to Output High to Off (t_{1H})	R _L = 470Ω, C _L = 5 pF			20	ns
Disable Low to High to Output Low to Off (t_{OH})	$R_L = 470\Omega$, $C_L = 5 pF$			30	ns
Disable High to Low to Output Off to High (t _{H1})	R _L = 1k to 0V, C _L = 15 pF			25	ns
Disable High to Low to Output Off to Low (t_{H0})	R _L = 470Ω, C _L = 15 pF			25	ns

Note 1: Differential input is +10 mV to -30 mV pulse. Delays read from 0 mV on input to 1.5V on output.

LM55109/LM75109, LM55110/LM75110 dual line drivers

general description

These products are TTL compatible high speed differential line drivers intended for use in terminated twisted-pair party-line data transmission systems. They may also be used for level shifting since output common-mode range is -3V to +10V. An internal current sink is switched to either output dependent on input logic conditions. The current sink may be turned off by appropriate inhibit input conditions.

features

 Tightly controlled output currents over temperature, V_{CC}, and common-mode variations

- High speed
- Wide output common-mode range
- High output impedance
- Inhibits for party-line applications
- Current sink outputs

6 or 12 mA

15 ns max

- Dual circuits
- Standard supply voltages

±5V

- Input clamp diodes
- 14 pin cavity or molded DIP

schematic diagram

connection diagram

Dual-In-Line Package

Order Number LM55109J, LM55110J, LM75109J, or LM75110J See Package 16

or

Order Number LM75109N or LM75110N See Package 22

typical application

Party-Line Data Transmission System

absolute maximum ratings

Supply Voltage, V_{CC}^+ Supply Voltage, V_{CC}^- 5.5V Logic and Inhibitor Input Voltages Common-mode Output Voltage -5V to 12V -65° C to $+150^{\circ}$ C Storage Temperature Range 600 mW Power Dissipation Operating Temperature Range LM55109/LM55110 -55°C to +125°C

LM75109/LM75110 Lead Temperature (Soldering, 10 sec) 0° C to $+70^{\circ}$ C 300°C

7V -7V

dc electrical characteristics $(T_{MIN} \leq T_A \leq T_{MAX})$

				LIM	ITS			
PARAMETER	CONDITIONS	LM55	109/LM	75109	LM55	110/LM	75110	UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Operating Conditions								
Supply Voltage V _{CC} ⁺		4.5	5	5.5	4.75	5	5.25	V
Supply Voltage V _{CC}		-4.5	-5	-5.5	-4.75	-5	-5.25	V
Positive Common Mode Output Voltage		0		10	0		10	V
Negative Common Mode Output Voltage		0		-3	0		-3	V
High Level Input Current Into 1A, 1B, 2A or 2B (I _{IH (L)})	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{IH(L)} = 2.4V$			40			40	μΑ
High Level Input Current Into 1A, 1B, 2A or 2B (I _{IH(L)})	$V_{C_s}^+ = Max, V_{CC}^- = Max,$ $V_{IH(L)} = Max, V_{CC}^+$			1			1	mA
Low Level Input Current Into 1A, 1B, 2A or 2B (I _{IL(L)})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IL(L)} = 0.4V$			-3			-3	mA
High Level Input Current Into 1C or 2C $(I_{IH(I)})$	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IH(I)} = 2.4V$			40			40	μА
High Level Input Current Into 1C or $2C(I_{1H(I)})$	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{IH(I)} = Max V_{CC}^+$			1			1	mA
Low Level Input Current Into 1C or 2C $(I_{1L(1)})$	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IL(I)} = 0.4V$			-3			-3	mA
High Level Input Current Into D $(I_{\mathrm{IH}(I)})$	$V_{CC}^{+} = Max. V_{CC}^{-} = Max, V_{IH(I)} = 2.4V$			80			80	μА
High Level Input Current Into D $(I_{IH(I)})$	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{IH(I)} = Max V_{CC}^+$			2			2	mA
Low Level Input Current Into D (I _{IL (I)})	$V_{CC}^{+} = Max, V_{CC}^{-} = Max, V_{IL(I)} = 0.4V$			-6			-6	mA
On State Output Current (I _{O(ON)})	$V_{CC}^+ = Max, V_{CC}^- = Max,$ $V_{CC}^+ = Min, V_{CC}^- = Max$	3.5		7	6.5		15	mA mA
Off State Output Current (IO(OFF))	V _{CC} ⁺ = Min, V _{CC} ⁻ = Min			100			100	μΑ
Supply Current From V_{CC}^+ With Driver Enabled $(I_{CC}^+(ON))$	$V_{IL(L)} = 0.4V, V_{IH(I)} = 2V$		18	30		23	35	mA
Supply Current From V_{CC}^- With Driver Enabled $\{I_{CC}^-(ON)\}$	$V_{IL(L)} = 0.4V, V_{IH(I)} = 2V$		-18	-30		-34	-50	mA
Supply Current From V_{CC}^+ With Driver Inhibited $(I_{CC}^+_{(OFF)})$	$V_{1L(L)} = 0.4V, V_{1L(1)} = 0.4V$		18			21		mA
Supply Current From V_{CC}^- With Driver Inhibited $(I_{CC}^-(OFF))$	$V_{IL(L)} = 0.4V, V_{IL(I)} = 0.4V$		-10			-17		mA
Input Clamp Voltage on Inputs or Inhibits (V ₁)	$V_{CC}^{+} = Min, V_{CC}^{-} = Min,$ $I_{1N} = -12 \text{ mA}, T_{\Delta} = 25^{\circ}\text{C}$		-1	-1.5		-1	-1.5	v

ac switching characteristics ($V_{CC}^+ = 5V$, $V_{CC}^- = 5V$, $T_A = 25^{\circ}C$)

				LIM	ITS			
PARAMETER	CONDITIONS	LM55	109/LM7		LM55	110/LM	75110	UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Propagation Delay Time, Low to High Level, From Logic Input A or B to Output Y or Z (t _{PLH (L)})	$R_L = 50\Omega$, $C_L = 40 pF$		9	15		9	15	ns
Propagation Delay Time, High to Low Level, From Logic Input A or B to Output Y or Z (t _{PHL(L)})	$R_L = 50\Omega$, $C_L = 40 pF$		9	15		9	15	ns
Propagation Delay Time, Low to High Level, From Inhibitor Input C or D to Output Y or Z (t _{PLH(I)})	$R_L = 50\Omega$, $C_L = 40 pF$		16	25		16	25	ns
Propagation Delay Time, High to Low Level, From Inhibitor Input C or D to Output Y or Z (t _{PHL(I)})	$R_L = 50\Omega$, $C_L = 40 pF$		13	25		13	25	ns

LM75324 memory driver with decode inputs general description

The LM75324 is a monolithic memory driver which features two 400 mA (source/sink) switch pairs along with decoding capability from four address lines. Inputs B and C function as mode selection lines (source or sink) while lines A and D are used for switch-pair selection (output pair Y/Z or W/X).

- High voltage outputs
- Dual sink/source outputs
- Internal decoding and timing circuitry
- Fast switching times
- Operation

 0° C to $+70^{\circ}$ C

- DTL/TTL compatible
- Input clamping diodes

features

Output capability

400 mA

schematic and connection diagrams

Dual-In-Line Package (J)

Order Number LM75324J See Package 17

Dual-In-Line Package (N)

Order Number LM75324N See Package 22

absolute maximum ratings

Supply Voltage V_{CC} (Note 1) 17V Input Voltage (Note 2) 5.5V Operating Case Temperature Range 0°C to +70°C Continuous Total Power Dissipation at (or Below) +70°C Case Temperature 800 mW

Storage Temperature Range $$-65^{\circ}\textrm{C}$$ to $+150^{\circ}\textrm{C}$$ Lead Temperature (Soldering, 10 sec) $300^{\circ}\textrm{C}$

dc electrical characteristics ($V_{CC} = 14V$, $T_{C} = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Required to Insure Logical "1" At Any Input (V _{IN(1)})	Figure 1	3.5			V
Input Voltage Required to Insure Logical "0" At Any Input $(V_{IN(0)})$	Figure 1			0.8	V
Logical "1" Level Address Input Current (I _{IN(1)})	V _{IN} = 5V, Figure 1			200	μΑ
Logical "1" Level Timing Input Current $(I_{IN(1)})$	V _{IN} = 5V, Figure 1			100	μΑ
Logical "0" Level Address Input Current $(I_{IN(0)})$	V _{IN} = 0V, Figure 1			-6	mA
Logical "0" Level Timing Input Current (I _{IN(0)})	V _{IN} = 0V, Figure 1			-12	mA
Sink Saturation Voltage (V _{sat})	$I_{SINK} \simeq 420 \text{ mA}, R_L = 53\Omega, \text{ Figure 2}$		0.75	0.85	V
Source Saturation Voltage (V _{sat})	$I_{\rm SOURCE} \simeq$ -420 mA, R _L = 47.5 Ω , Figure 2		0.75	0.85	V
Output Reverse Current (Off State) (I _{OFF})	V _{IN} = 0V, Figure 1		125	200	μΑ
Supply Current, All Sources and Sinks Off (I_{CC})	V _{IN} = 0V, Figure 3		12.5	15	mA
Supply Current, Either Sink Selected (I_{CC})	Figure 4		30	40	mA
Supply Current, Either Source Selected (I_{CC})	Figure 4		25	35	mA
Input Clamp Voltage (V ₁)	$I_{1N} = -12 \text{ mA}, T_A = 25^{\circ}\text{C}$			-1.5	V

ac switching characteristics $(V_{CC} = 14V, T_{C} = 25^{\circ}C)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time to Logical "1" Level, Source Output (t _{pd1})	$R_{L1} = 53\Omega$, $R_{L2} = 500\Omega$, $C_{L} = 20 pF$,			90	ns
Propagation Delay Time to Logical "0" Level, Source Output (t_{pd0})	Figure 5			50	ns
Propagation Delay Time to Logical "1" Level, Sink Output (t _{pd1})				110	ns
Propagation Delay Time to Logical "0" Level, Sink Output (t _{pd0})	$R_L = 53\Omega$, $C_L = 20 pF$, Figure 6			40	ns
Sink Storage Time (t _s)				70	ns

Note 1: Voltage values are with respect to network ground terminal.

Note 2: Input signals must be zero or positive with respect to network ground terminal.

truth table

	INPUTS OUTPUTS									
Al	DD	RES	SS TIMING		SINK	sour	RCES	SINK		
Α	В	С	D	Ε	F	G	w	х	Υ	z
0	0	1	1	1	1	1	ON	OFF	OFF	OFF
0	1	0	1	1	1	1	OFF	ON	OFF	OFF
1	1	0	0	1	1	1	OFF	OFF	ON	OFF
1	0	1	0	1	1	1	OFF	OFF	OFF	ON
Χ	Χ	Χ	Χ	0	Χ	X	OFF	OFF	OFF	OFF
Х	Χ	Χ	Χ	Х	0	X	OFF	OFF	OFF	OFF
Х	Χ	Χ	Χ	X	Χ	0	OFF	OFF	OFF	OFF

test circuits and switching time waveforms

TEST TABLE FOR IIN(0)

APPLY 3.5V	GROUND	TEST I _{IN(0)}
B, C, E, F, and G	A and D	А
B, C, E, F, and G	A and D	D
A, D, E, F, and G	B and C	В
A, D, E, F, and G	B and C	С
A, B, C, D, F, and G	E	E
A, B, C, D, E, and G	F	F
A, B, C, D, E, and F	G	G

FIGURE 1. $V_{IN(0)}$, $V_{IN(1)}$, $I_{IN(0)}$, $I_{IN(1)}$, and I_{OFF}

test circuits and switching time waveforms (con't)

NOTE: THIS PARAMETER MUST BE MEASURED USING PULSE TECHNIQUES. t_{P} = 500 ns, duty cycle \leq 1%.

FIGURE 2. V(SAT)

FIGURE 3. I_{CC} (All Outputs Off)

test circuits and switching time waveforms (con't)

NOTE 1: GND A AND B, APPLY +3.5V TO C AND D, AND MEASURE (cc. (DUTPUT W IS ON)). NOTE 2: GND B AND 0, APPLY +3.5V TO A AND C. AND MEASURE (cc. (DUTPUT Z IS ON)). NOTE 3: GND A AND C. APPLY +3.5V TO B AND D, AND MEASURE (cc. (DUTPUT X IS ON)). NOTE 4: GND C AND D, APPLY +3.5V TO B AND B, AND MEASURE (cc. (DUTPUT Y IS ON)). AND MEASURE (cc. (DUTPUT Y IS ON).

FIGURE 4. I_{CC} (One Output On)

NOTE 1: THE INPUT WAVEFORM IS SUPPLIED BY A GENERATOR WITH THE FOLLOWING CHARACTERISTICS: $t_1 t_1 = 10$, BUTY CYCLE ≤ 15 , AND $Z_{OUT} = 500$.

NOTE 2: WHEN MEASURING DELAY TIMES AT OUTPUT X, APPLY ≤ 15 IN INPUT Q, AND GOOD A. WHEN MEASURING DELAY TIMES AT OUTPUT Y, APPLY ≤ 15 TO INPUT A, AND GOOD A.

NOTE 3: C_L INCLUDES PROBE AND JIG CAPACITANCE. NOTE 4: UNLESS OTHERWISE NOTED ALL RESISTORS ARE 0.5W.

FIGURE 5. Source-Output Switching Times

test circuits and switching time waveforms (con't)

NOTE 1: THE INPUT WAVEFORM IS SUPPLIED BY A GENERATOR WITH THE FOLLOWING CHARACTERISTICS: _ t_* : 10, NUTY CYLEG < 1%, 20, T * \$0,01.

NOTE 2: WHEN MEASURING DELAY TIMES AT OUTPUT WHEN WEASURING DELAY TIMES AT OUTPUT AND A PROPERTY OF INPUT A, AND GOND A. WHEN MEASURING DELAY TIMES AT OUTPUT Z, APPLY +SV TO INPUT A, AND GOND A.

NOTE 3: CL INCLUDES PROBE AND JIG CAPACITANCE.

FIGURE 6. Sink-Output Switching Times

LM55325/LM75325 memory drivers general description

The LM55325 and LM75325 are monolithic memory drivers which feature high current outputs as well as internal decoding of logic inputs. These circuits are designed for use with magnetic memories.

The circuit contains two 600 mA sink-switch pairs and two 600 mA source-switch pairs. Inputs A and B determine source selection while the source strobe (S_1) allows the selected source turn on. In the same manner, inputs C and D determine sink selection while the sink strobe (S_2) allows the selected sink turn on.

Sink-output collectors feature an internal pull-up resistor in parallel with a clamping diode connected to V_{CC2} . This protects the outputs from voltage surges associated with switching inductive loads.

The source stage features Node R which allows extreme flexibility in source current selection by controlling the amount of base drive to each source transistor. This method of setting the base drive brings the power associated with the resistor outside the package thereby allowing the circuit to

operate at higher source currents for a given junction temperature. If this method of source current setting is not desired, then Nodes R and $R_{\rm INT}$ can be shorted externally activating an internal resistor connected from $V_{\rm CC2}$ to Node R. This provides adequate base drive for source currents up to 375 mA with $V_{\rm CC2}$ = 15V or 600 mA with $V_{\rm CC2}$ = 24V.

The LM55325 operates over the full military temperature range of -55° C to $+125^{\circ}$ C, while the LM75325 operates from 0° C to $+70^{\circ}$ C.

features

- 600 mA output capability
- 24V output capability
- Dual sink and dual source outputs
- Fast switching times
- Source base drive externally adjustable
- Input clamping diodes
- DTL/TTL compatible

schematic and connection diagrams

Dual-In-Line Package

Order Number LM55325J or LM75325J See Package 17

> Order Number LM75325N See Package 23

truth table

AD	DRES	S INF	PUTS	STROBE	INPUTS	OUTPUTS			
sou	RCE	S	INK	SOURCE	SINK	SOURCE		SINK	
А	В	С	D	S1	S2	W	х	Υ	Z
L	Н	Х	X	L	Н	ON	OFF	OFF	OFF
Н	L	Х	X	L	н	OFF	ON	OFF	OFF
X	X	L	Н	н	L	OFF	OFF	ON	OFF
X	X	Н	L	н	L	OFF	OFF	OFF	ON
×	X	×	X	н	н	OFF	OFF	OFF	OFF
н	Н	н	Н	×	×	OFF	OFF	OFF	OFF

H = high level, L = low level, X = irrelevant NOTE: Not more than one output is to be on at any one time

absolute maximum ratings

Supply Voltage V_{CC1} (Note 1) Supply Voltage V_{CC2} (Note 1) 25V Input Voltage (Any Address or Strobe Input) 5.5V Continuous Total Dissipation at (or Below) +70°C Free-Air Temperature (Note 2) 800 mW Operating Temperature Range LM55325 -55°C to +125°C LM75325 0°C to +70°C Storage Temperature Range 65°C to +150°C Lead Temperature (Soldering, 10 sec) 300°C

dc electrical characteristics

				LIN	IITS			
PARAMETER	CONDITIONS	LM55325			LM75325			UNITS
		MIN	TYP*	MAX	MIN	TYP*	MAX	
High Level Input Voltage (V _{IH})	Figure 1 and 2	2			2			٧
Low Level Input Voltage (V_{1L})	Figure 3 and 4			0.8			0.8	V
Input Clamp Voltage (V_1)	$V_{CC1} = 4.5V$, $V_{CC2} = 24V$, $I_{1N} = -12$ mA, $T_A = 25^{\circ}$ C, Figure 5		-1.3	-1.7		-1.3	-1.7	V
Source Collectors Terminal Off State Current (I _{OFF})	V _{CC1} = 4.5V, V _{CC2} = 24V, Full Range, Figure 1			500			200	μΑ
Source Collectors Terminal Off State Current (I _{OFF})	V _{CC1} = 4.5V, V _{CC2} = 24V, T _A = 25°C, Figure 1		3	150		3	200	μΑ
High Level Sink Output Voltage (V _{OH})	V _{CC1} = 4.5V, V _{CC2} = 24V, I _{OUT} = 0V, Figure 2	19	23		19	23		V
Saturation Voltage Source Outputs** (V _{SAT})	V_{CC1} = 4.5V, V_{CC2} = 15V, R_L = 24 Ω , I_{SOURCE} \approx -600 mA, Full Range, (Note 3) Figure 3			0.9			0.9	V
Saturation Voltage Source Outputs** (V _{SAT})	$V_{CC1} = 4.5V, V_{CC2} = 15V,$ $R_{L} = 24\Omega, I_{SOURCE} \approx -600 \text{ mA},$ $T_{A} = 25^{\circ}\text{C}, \text{ (Note 3) Figure 3}$		0.43	0,7		0.43	0.75	V
Saturation Voltage Sink Outputs** (V _{SAT})	V_{CC1} = 4.5V, V_{CC2} = 15V, R_L = 24 Ω , $I_{SINK} \approx 600$ mA, Full Range, (Note 3) Figure 4			0.9			0.9	V
Saturation Voltage Sink Outputs ** (V _{SAT})	$V_{CC1} = 4.5V, V_{CC2} = 15V,$ $R_L = 24\Omega, I_{SINK} \approx 600 \text{ mA},$ $T_A = 25^{\circ}\text{C}, (Note 3) \text{ Figure 4}$		0.43	0.7		0.43	0.75	v
Input Current at Maximum Input Voltage Address Inputs (I ₁)	V _{CC1} = 5.5V, V _{CC2} = 24V, V ₁ = 5.5V, Figure 5			1		-	1	mA
Input Current at Maximum Input Voltage Strobe Inputs (I ₁)	V _{CC1} = 5.5V, V _{CC2} = 24V, V ₁ = 5.5V, Figure 5			2			2	mA
High Level Input Current Address Inputs (I _{IH})	V _{CC1} = 5.5V, V _{CC2} = 24V, V ₁ = 2.4V, Figure 5		3	40		3	40	μΑ
High Level Input Current Strobe Inputs (I _{IH})	V _{CC1} = 5.5V, V _{CC2} = 24V, V ₁ = 2.4V, Figure 5		6	80		6	80	μΑ
Low Level Input Current Address Inputs (I _{IL})	V _{CC1} = 5.5V, V _{CC2} = 24V, V ₁ = 0.4V, Figure 5		-1	-1.6		-1	-1.6	mA
Low Level Input Current Strobe Inputs (I _{IL})	V _{CC1} = 5.5V, V _{CC2} = 24V, V _I = 0.4V, Figure 5		-2	-3.2		-2	-3.2	mA
Supply Current, All Sources and Sinks Off From V_{CC1} (I_{CCOFF})	V _{CC1} = 5.5V, V _{CC2} = 24V, T _A = 25°C, Figure 6		14	22		14	22	mA
Supply Current, All Sources and Sinks Off From V_{CC2} (I_{CCOFF})	V _{CC1} = 5.5V, V _{CC2} = 24V, T _A = 25°C, Figure 6		7.5	20		7.5	20	mA
Supply Current From V_{CC1} , Either Sink On (I_{CC1})	$V_{CC1} = 5.5V$, $V_{CC2} = 24V$, $I_{SINK} = 50$ mA, $T_A = 25^{\circ}$ C, Figure 7		55	70		55	70	mA
Supply Current From V_{CC2} , Either Source On (I_{CC2})	V_{CC1} = 5.5V, V_{CC} = 24V, I_{SOURCE} = -50 mA, T_A = 25°C, Figure 8		32	50		32	50	mA

Note 1: Voltage values are with respect to network ground terminal.

Note 2: For operation of LM55325 above +70°C free-air temperature, refer to Dissipation Derating Curve (Figure 12).

Note 3: These parameters must be measured using pulse techniques. t_W = 200 μ s, duty cycle $\leq 2\%$.

^{*}All typical values are at $T_A = 25^{\circ} C$.

^{**}Not more than one output is to be on at any one time.

ac switching characteristics ($V_{CC1} = 5V, T_A = 25^{\circ}C$)

			LIMITS		UNITS
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time, Low to High Level Output to Source Collectors (t _{PLH})	V_{CC2} = 15V, R_L = 24 Ω , C_L = 25 pF, Figure 9		25	50	ns
Propagation Delay Time, High to Low Level Output to Source Collectors (t _{PHL})	V_{CC2} = 15V, R_L = 24 Ω , C_L = 25 pF, Figure 9		25	50	ns
Transition Time, Low to High Level Output to Source Outputs (t_{TLH})	$V_{CC2} = 20V$, $R_L = 1 k\Omega$, $C_L = 25 pF$, Figure 10		55		ns
Transition Time, High to Low Level Output to Source Outputs (t_{THL})	$V_{CC2} = 20V$, $R_L = 1 k\Omega$, $C_L = 25 pF$, Figure 10		7		ns
Propagation Delay Time, Low to High Level Output to Sink Outputs (t_{PLH})	V_{CC2} = 15V, R_L = 24 Ω , C_L = 25 pF, Figure 9		20	45	ns
Propagation Delay Time, High to Low Level Output to Sink Outputs (t_{PHL})	$V_{CC2} = 15V, R_{L} = 24\Omega,$ $C_{L} = 25 pF, Figure 9$		20	45	ns
Transition Time, Low to High Level Output to Sink Outputs (t_{TLH})	$V_{CC2} = 15V, R_L = 24\Omega,$ $C_L = 25 pF, Figure 9$		7	15	ns
Transition Time, High to Low Level Output to Sink Outputs (t_{THL})	V_{CC2} = 15V, R_L = 24 Ω , C_L = 25 pF, Figure 9		9	20	ns
Storage Time, Sink Outputs (t_S)	$V_{CC2} = 15V, R_L = 24\Omega,$ $C_L = 25 pF, Figure 9$		15	30	ns

dc test circuits

Α В S1 GND GND 2V 2V

GND

2V

TEST TABLE

С	D	S2	Υ	Z
2V	4.5V	GND	V _{OH}	OPEN
GND	4.5V	2V	V _{OH}	OPEN
4.5V	2V	GND	OPEN	V _{OH}
4.5V	GND	2V	OPEN	VoH

FIGURE 1. IOFF

FIGURE 2. V_{IH} and V_{OH}

NOTE 1: FIGURE 3 AND 4 PARAMETERS MUST BE MEASURE - USING PULSE TECHNIQUES. t_{W} = 200 μs , Duty cycle \leq 2%.

TEST TABLE

А	В	S1	W	х
0.8V	4.5V	0.8V	GND	OPEN
4.5V	0.8V	0.8V	OPEN	GND

TEST TABLE

С	D	S2	Υ	Z
0.8V	4.5V	0.8V	0.8V RL O	
4.5V	0.8V	0.8V	OPEN	RL

FIGURE 3. VIL and Source VSAT

FIGURE 4. VIL and Sink VSAT

 $I_{\rm L}, I_{\rm IH}$

APPLY V _I = 5.5V MEASURE I _I APPLY V _I = 2.4V MEASURE I _{IH}	GROUND	APPLY 5.5V
Α	S1	B, C, S2, D
S1	- A, B	C, S2, D
В	S1	A, C, S2, D
С	S2	A, S1, B, D
S2	C, D	A, S1, B
D	S2	A, S1, B, C

TEST TABLES

APPLY V _I = 0.4V,					
MEASURE I _{IL}	APPLY 5.5V				
APPLY I _I = -10 mA,	APPLY 5.5V				
MEASURE V _I					
А	S1, B, C, S2, D				
S1	A, B, C, S2, D				
В	A, S1, C, S2, D				
С	A, S1, B, S2, D				
S2	A, S1, B, C, D				
D	A, S1, B, C, S2				

 V_I , I_{IL}

FIGURE 5. V_I, I_I, I_{IH}, and I_{IL}

dc test circuits(con't)

FIGURE 6. I_{CC1(OFF)} and I_{CC2(OFF)}

8-26

dc test circuits(con't)

TEST TABLE

PARAMETER	OUTPUT UNDER TEST	INPUT	CONNECT TO 5V
	6	A and S1	B, C, D and S2
tpLH and tpHL Source collectors		B and S1	A, C, D and S2
tpLH, tpHL,	Sink output Y	C and S2	A, B, D and S1
t _{TLH} , t _{THL} , and t _s	Sink output Z	D and S2	A, B, C and S1

FIGURE 9. Switching Times

NOTE 1: THE PULSE GENERATOR HAS THE FOLLOWING CHARACTERISTICS: $Z_{OUT} \approx 50\Omega_c$ duty cycle $\leq 1\%$.

DUTY CYCLE < 1%.

NOTE 2: C_L INCLUDES PROBE AND JIG CAPACITANCE.

TEST TABLE

PARAMETER	OUTPUT UNDER TEST	INPUT	CONNECT TO 5V
tTLH and tTHL	Source output W	A and S1	B, C, D, and S2
TTLH and THL	Source output X	B and S1	A, C, D, and S2

FIGURE 10. Transition Times of Source Outputs

applications

External Resistor Calculation

A typical magnetic-memory word drive requirement is shown in Figure 11. A source-output transistor of one LM75325 delivers load current (I_{\perp}). The sink-output transistor of another LM75325 sinks this current.

The value of the external pull-up resistor (R_{ext}) for a particular memory application may be determined using the following equation:

$$R_{ext} = \frac{16 \left[V_{CC2(min)} - V_S - 2.2 \right]}{I_L - 1.6 \left[V_{CC2(min)} - V_S - 2.9 \right]}$$
 (1)

where: R_{ext} is in $k\Omega$,

 $V_{CC2(min)}$ is the lowest expected value of V_{CC2} in volts, V_S is the source output voltage in volts with respect to ground, I_L is in $m\Delta$

The power dissipated in resistor R_{ext} during the load current pulse duration is calculated using Equation 2.

$$P_{\text{Rext}} \approx \frac{I_L}{16} \left[V_{\text{CC2(min)}} - V_{\text{S}} - 2 \right]$$
 (2)

where: P_{Rext} is in mW.

After solving for R_{ext} , the magnitude of the source collector current (I_{CS}) is determined from Equation 3.

$$I_{CS} \approx 0.94 I_{L}$$
 (3)

where: I_{CS} is in mA.

As an example, let $V_{CC2(min)} = 20V$ and $V_L = 3V$ while I_L of 500 mA flows. Using Equation 1:

$$R_{\text{ext}} = \frac{16 (20 - 3 - 2.2)}{500 - 1.6 (20 - 3 - 2.9)} = 0.5 \text{ k}\Omega$$

and from Equation 2:

$$P_{\text{Rext}} \approx \frac{500}{16} [20 - 3 - 2] \approx 470 \text{ mW}$$

The amount of the memory system current source (I_{CS}) from Equation 3 is:

$$I_{CS} \approx 0.94 (500) \approx 470 \text{ mA}$$

In this example the regulated source-output transistor base current through the external pull-up resistor ($R_{\rm ext}$) and the source gate is approximately 30 mA. This current and $I_{\rm CS}$ comprise $I_{\rm L}$.

NOTE 1: FOR CLARITY, PARTIAL LOGIC DIAGRAMS OF TWO LM55325'S ARE SHOWN. NOTE 2: SOURCE AND SINK SHOWN ARE IN DIFFERENT PACKAGES.

FIGURE 11. Typical Application Data

FIGURE 12. Thermal Information

LM75450,LM350 dual peripheral driver

general description

The LM75450 and LM350 are general purpose dual peripheral drivers. The design employs two standard TTL gates (NOR in LM350, NAND in LM75450) and two totally uncommitted, high-voltage, high-current NPN transistors. These transistors are capable of sinking 300 mA and will withstand 30V in the OFF state. Inputs are fully DTL/TTL compatible. The LM75450 meets or exceeds the specifications for both the SN75450 and the SN75450 A and is a pin-for-pin replacement.

features

- High speed
- High sink current 300 mA
- Separate gates and transistors
- Both transistors can sink 300 mA simultaneously
- Transistors withstand 30V collector to emitter in the OFF state
- Input clamp diodes

schematic and connection diagrams

Positive Logic: $\overline{A+S} = X$

Order Number LM350N See Package 22

Positive Logic: $\overline{A \cdot S} = X$

Order Number LM75450N See Package 22

absolute maximum ratings (Note 1)

Supply Voltage V_{CC} Input Voltage 5.5V 35V V_{CC} -to-Substrate Voltage Collector-to-Substrate Voltage Collector-Base Voltage 35V Collector-Emitter Voltage (Note 2) 30V Emitter-Base Voltage Continuous Collector Current Continuous Total Power Dissipation (Note 3) Operating Free-Air Temperature Range Storage Temperature Range

300 mA 800 mW 0°C to 70°C -65°C to 150°C

electrical characteristics

The following apply for $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C}$, $\text{V}_{\text{CC}} = 5\text{V} \pm 5\%$, for LM75450 and LM350 unless otherwise specified.

PARAMETER	COMMENTS	LOGIC	LOGIC OUTPUT	SUPPLY VOLTAGE	MIN	TYP	MAX	UNIT
Logical "1" Input Voltage	Logic Output ≤ 0.4V	V _{IN}	16 mA	4.75V	2			V
Logical "0" Input Voltage	Logic Output ≥ 2.4V	V _{IN}	-400 µA	4.75V			0.8	V
Logical "1" Output Voltage		0.8V	-400 µA	4.75V	2.4			V
Logical "0" Output Voltage		2V	16 mA	4.75V			0.4	V
Logical "1" Input Current	A Input	2.4V		5.25V			40	μΑ
	S Input	2.4V		5.25V			80	μА
	A Input	5.5V		5.25V			1	mA
	S Input	5.5V		5.25V			2	mA
Logical "0" Input Current	A Input	0.4V		5.25V			-1.6	mA
	S Input	0.4V		5.25V			-3.2	mA
Output Short Circuit Current	Note 4	0V	0V	5.25V	-18		-55	mA
Supply Current: Output Low								
LM350	Per Package	5V		5.25V		8	14	mA
LM75450	Per Package	5V		5.25V		6	11	mA
Output High LM350	Per Package	0V		5.25V		4	7	mA
LM75450	Per Package	0V		5.25V		2	4	mA
Input Diode Clamp Voltage	T _A = 25°C, V _{SUB} = 0V	-12 mA		5V			-1.5	V

TRANSISTORS

MANGGTONG								
PARAMETER	COMMENTS	BASE	EMITTER	COLLECTOR	MIN	TYP	MAX	UNIT
BV _{CBO}		0V		100 μΑ	35			V
BV _{CER}	$R_{BE} \le 500\Omega$		0V	100 μΑ	30			V
BV _{EBO}		0V	100 μΑ		5			V
V _{BE}		10 mA 30 mA	0V 0V	100 mA 300 mA		0.85 1.05	1 1.2	V
$V_{CE(sat)}$,	10 mA 30 mA	0V 0V	100 mA 300 mA		0.25 0.5	0.4 0.7	V V
h _{FE}	$V_{CE} = 3V$, $T_A = 0^{\circ}C$, Note 5 $V_{CE} = 3V$, $T_A = 0^{\circ}C$, Note 5 $V_{CE} = 3V$, $T_A = 25^{\circ}C$, Note 5 $V_{CE} = 3V$, $T_A = 25^{\circ}C$, Note 5	I _B	0V 0V 0V	100 mA 300 mA 100 mA 300 mA	20 25 25 30			

The following apply for $V_{CC} = 5V$, $T_A = 25^{\circ}C$

TTL GATES (Note 6)

PARAMETER	TYP	MAX
t _{pd1}	10 ns	22 ns
t _{pd0}	5 ns	15 ns

TRANSISTORS

PARAMETER	TYP	MAX
t _d	6 ns	15 ns
t _r	12 ns	20 ns
ts	6 ns	15 ns
t _f	8 ns	15 ns

GATES AND TRANSISTORS (Note 7)

PARAMETER	TYP				
t _{pd1}	14 ns				
t _{pd0}	18 ns				
t _r	5 ns				
t _f	10 ns				

Note 1: All voltage values are with respect to ground terminal. Positive current is defined to be current into referenced pin, Note 2: With base-emitter resistance \leq 500 Ω . Note 3: The maximum junction temperature is 150°C. For operating at elevated temperatures the

package must be derated based on a thermal resistance of 150°C/W $\theta_{\rm JA}$.

Note 4: Only one output should be shorted at a time.

Note 5: These parameters are to be measured with less than 2% duty cycle.

Note 6: Delays measured with fanout of 10, 15 pF total load capacitance; measured from 1.5V input to 1.5V output.

Note 7: Delays measured with 50Ω load to 10V, 15 pF total load capacitance; measured from 1.5V input to 50% of output.

LM75451, LM75452, LM75453 dual peripheral driver

general description

These devices are general purpose dual peripheral drivers, each capable of sinking two independent 300 mA loads to ground. In the off state (or with $V_{\rm CC}=0$ V) the outputs will withstand 30V. Inputs are fully DTL/TTL compatible. The LM75451 meets or exceeds the specifications for the SN75451 and is a pin-for-pin replacement. The LM75452 and LM75453 meet or exceed the specifications for SN75452 and SN75453, respectively, and are pin-for-pin replacements.

features

- High speed 20 ns max (LM75451, LM75453) 25 ns max (LM75452)
- Both outputs can sink 300 mA simultaneously
- Withstands 30V on output with V_{CC} = 0V for power strobing applications
- Input clamp diodes
- Two separate drivers per package

schematic diagrams

LM75452

connection diagrams

Order Number LM75451N See Package 20

Order Number LM75452N See Package 20

Order Number LM75453N See Package 20

truth tables

Positive logic: AB=X						
Α	B OUTPUT X*					
0	0	. 0				
1	0	0				
0	1	0				
1	1	1				

 $^{^*}$ ''0'' Output \leq 0.7V ''1'' Output \leq 100 μ A

*"0" Output \leq 0.7V "1" Output \leq 100 μ A

Positive	e logic:	Α	+	В	=	X

Α	В	OUTPUT X*					
0	0	0					
1	0	1					
0	1	1					
1	1	1					

^{*&#}x27;'0'' Output ≤ 0.7V
''1'' Output ≤ 100 μA

absolute maximum ratings (Note 1)

Supply Voltage V_{CC}
Input Voltage
Output Voltage (Note 2)
Continuous Output Current

Continuous Total Power Dissipation (Note 3) Operating Free Air Temperature Range Storage Temperature Range Lead Temperature (soldering, 10 sec) 800 mW 0°C to 70°C -65°C to 150°C 300°C

electrical characteristics

The following apply for $0^{\circ}C \le T_A \le 70^{\circ}C$, V_{CC} = 5V $\pm 5\%$, unless otherwise specified. (Note 4)

30V

300 mA

PARAMETER	LOGIC INPUT	ОИТРИТ	SUPPLY VOLTAGE	COMMENTS	MIN	TYP	MAX	UNIT
Logic "1" Input Voltage	V _{IN}	30V (300 mA)	4.75V	Output \leq 100 μ A (\leq 0.7V)	2			V
Logic "0" Input Voltage	V _{IN}	300 mA (30V)	4.75V	Output $\leq 0.7V~(\leq 100~\mu A)$			0.8	V
Output Leakage Currents	2V (0.8V)	30V 30V	4.75V 0V				100 100	μΑ μΑ
Output LOW Voltages	0.8V (2V) 0.8V (2V)	100 mA 300 mA	4.75V 4.75V			0.25 0.5	0.4 0.7	V
Logic "1" Input Currents	2.4V 5.5V		5.25V 5.25V				40 1	μA mA
Logic "0" Input Current	0.4V		5.25V			-1	-1.6	mA
Supply Currents: Output Low LM75451 LM75452 LM75453	0V 5V 0V		5.25V 5.25V 5.25V	Per Package Per Package Per Package		48 51 50	60 65 63	mA mA mA
Output High LM75451 LM75452 LM75453	5V 0V 5V		5.25V 5.25V 5.25V	Per Package Per Package Per Package		7 9 9	11 14 14	mA mA mA
Input Diode Clamp Voltage	-12 mA		5V	T _A = 25°C			-1.5	V
The following apply for V _{CC}	= 5V, T _A = 25°(,				,	
Propagation Delay Times: Input to Output HIGH LM75451& LM75453 LM75452			(Note 5) (Note 5)			11 13	20 25	ns ns
Input to Output LOW LM75451& LM75453 LM75452			(Note 5) (Note 5)			16 19	20 25	ns ns
Output Risetime						4		ns
Output Falltime						10		ns

Note 1: All voltage values are with respect to ground terminal. Positive current is defined to be current

Note 2: Maximum voltage to be applied to either output in the off state.

Note 3: The maximum junction temperature is 150°C. For operating at elevated temperatures, the package must be derated based on a thermal resistance of 110°C/W θ JA.

Note 4: Test conditions in parentheses pertain to LM75452, other test conditions pertain to LM75451 and LM75453.

Note 5: Delays measured with 50Ω load to 10V, 15 pF total load capacitance; measured from 1.5V input to 50% of output.

LM75454 dual peripheral driver

general description

The LM75454 is a dual NOR peripheral line driver with output transistors rated up to 300mA continuous current. Both output transistors can sink this current at the same time, bringing maximum chip power dissipation to 820mW. Switching speeds are compatible with standard TTL and logic levels interface directly with TTL, DTL, and LPTTL logic families. The overall input to output NOR function allows pin for pin replacement with TI's SN75454 positive logic NOR driver.

features

- High speed, 25 ns maximum
- Both outputs can sink 300 mA simultaneously
- Withstands 30V on outputs
- Input clamp diodes
- \blacksquare Maximum package power dissipation at maximum current rating $\leq 820 \; \text{mW}$

schematic diagram

connection diagram

Dual-In-Line Package

Order Number LM75454N See Package 20

truth table

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

absolute maximum ratings (Note 1

7V Supply Voltage, V_{CC} 5.5V Input Voltage Output Voltage (Note 4) 30V 300mA Continuous Output Current 820mW Continuous Total Power Dissipation (Note 2) Operating Free Air Temperature Range 0° C to $+70^{\circ}$ C -65° C to $+150^{\circ}$ C Storage Temperature Range 300°C Lead Temperature (soldering, 10 sec)

 $\textbf{electrical characteristics} \ \ \text{The following apply at 0}^{\circ}\text{C} \leq \text{T}_{A} \leq +70^{\circ}\text{C}, \ \text{V}_{\text{CC}} = 5\text{V} + 5\% \ \text{unless otherwise noted}.$

PARAMETER	LOGIC INPUT	ОПТРИТ	SUPPLY VOLTAGE	COMMENTS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	V _{IN}	300mA	4.75V	Output ≤ 0.7V	2.0			V
Logical "0" Input Voltage	V _{IN}	30 V	4.75V	Output ≤ 100μA			0.8	V
Logical "1" Input Current	2.4V 5.5V		5.25V 5.25V				40 1	μA mA
Logical "0" Input Current	0.4V		5.25V	9		-1.0	-1.6	mA
Output Low Voltage	2.0V 2.0V	100mA 300mA	4.75V 4.75V			0.25 0.5	0.4 0.7	V V
Output Leakage Current	0.8V 0.8V	30 V 30 V	4.75V 0V				100 100	μA μA
Supply Currents: Output Low	A ₁ = 5V B ₁ = 0V		5.25V	Per Package		61	79	mA
Output High	A ₁ = B ₁ = 0V		5.25V	Per Package		13	17	mA
Input Clamp Diode Voltage	-12mA		5V	T _A = 25°C			-1.5	V
Propagation Delay Times: The fo	ollowing Apply for V	_{CC} = 5V, T _A =	25°C					
t _{pd1} , Input "0" to Output "1"			(Note 3)			13	25	ns
t _{pd1} , Input "1" to Output "0"			(Note 3)			19	25	ns
Output Risetime								ns
Output Falltime								ns

Note 1: All voltage values are with respect to ground. Positive current is defined to be current into referenced pin. Note 2: Maximum junction temperature is 150° C. For operating at elevated temperatures, the package must be derated based on a thermal resistance, $\theta_{\rm JA}$, of 110° C/W.

Note 3: Delay is measured with a 50Ω load to 10V, 15pF load capacitance, measured from 1.5V input to 50% point on output. Unused inputs should be grounded for this test.

Note 4: Maximum voltage to be applied to either output in the off state.

DM7820/DM8820 dual line receiver

general description

The DM7820, specified from -55°C to 125°C, and the DM8820, specified from 0°C to 75°C, are digital line receivers with two completely independent units fabricated on a single silicon chip. Intended for use with digital systems connected by twisted pair lines, they have a differential input designed to reject large common mode signals while responding to small differential signals. The output is directly compatible with RTL, DTL or TTL integrated circuits. Some important design features include:

- Operation from a single +5V logic supply
- Input voltage range of ±15V
- Each channel can be strobed independently

- High input resistance
- Fan out of two with either DTL or TTL integrated circuits
- Outputs can be wire OR'ed

The response time can be controlled with an external capacitor to eliminate noise spikes, and the output state is determined for open inputs. Termination resistors for the twisted pair line are also included in the circuit. Both the DM7820 and the DM8820 are specified, worst case, over their full operating temperature range, for ± 10 -percent supply voltage variations and over the entire input voltage range.

Order Number DM7820J or DM8820J See Package 16

> Order Number DM7820W See Package 27

> Order Number DM8820N See Package 22

> Order Number DM8820W See Package 26

typical application

8.0V Supply Voltage ±20V Input Voltage Differential Input Voltage ±20V Strobe Voltage 8.0V 25 mA Output Sink Current 600 mW Power Dissipation (Note 1) -55°C to 125°C Operating Temperature Range (DM7820) 0°C to 70°C Storage Temperature Range (DM8820) 300°C Lead temperature (soldering, 10 sec)

electrical characteristics (Notes 2 & 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Threshold Voltage	$V_{IN} = 0$ -15V $\leq V_{IN} \leq 15V$	-0.5 -1.0	0	0.5 1.0	V
High Output Level	$I_{OUT} \leq 0.2 \text{ mA}$	2.5		5.5	V
Low Output Level	$I_{sink} \leq 3.5 mA$	0		0.4	V
Inverting Input Resistance		3.6	5.0		kΩ
Non-inverting Input Resistance		1.8	2.5		kΩ
Line Termination Resistance	$T_A = 25^{\circ}C$	120	170	250	Ω
Response Time	$C_{delay} = 0$ $C_{delay} = 100 pF$		40 150		ns ns
Strobe Current	V _{strobe} = 0.4V V _{strobe} = 5.5V		1.0	1.4 -5.0	mA μA
Power Supply Current	$V_{IN} = 15V$ $V_{IN} = 0$ $V_{IN} = -15V$		3.2 5.8 8.3	6.0 10.2 15.0	mA mA mA
Non-inverting Input Current	$V_{IN} = 15V$ $V_{IN} = 0$ $V_{IN} = -15V$	-1.6 -9.8	5.0 -1.0 -7.0	7.0	mA mA mA
Inverting Input Current	$V_{IN} = 15V$ $V_{IN} = 0$ $V_{IN} = -15V$	-4.2	3.0 0 -3.0	4.2 0.5	mA mA mA

Note 1: For operating at elevated temperatures, the device must be derated based on a thermal resistance of 100°C/W and a maximum junction temperature of 160°C for the DM7820 or 105°C for the DM8820.

Note 2: These specifications apply for 4.5V \leq V $_{CC} \leq$ 5.5V, $-15V \leq$ V $_{CM} \leq$ 15V and $-55^{\circ}C \leq$ T $_{A} \leq$ 125 $^{\circ}C$ for the DM7820 or $0^{\circ}C \leq$ T $_{A} \leq$ 70 $^{\circ}C$ for the DM8820 unless otherwise specified: typical values given are for V $_{CC}$ = 5.0V, T $_{A}$ = 25 $^{\circ}C$ and V $_{CM}$ = 0 unless stated differently.

Note 3: The specifications and curves given are for one side only. Therefore, the total package dissipation and supply currents will be double the values given when both receivers are operated under identical conditions.

typical performance characteristics (Note 3)

DM7820A/DM8820A dual line receiver

general description

The DM7820A and the DM8820A are improved performance digital line receivers with two completely independent units fabricated on a single silicon chip. Intended for use with digital systems connected by twisted pair lines, they have a differential input designed to reject large common mode signals while responding to small differential signals. The output is directly compatible with RTL, DTL or TTL integrated circuits. Some important design features include:

- Operation from a single +5V logic supply
- Input voltage range of ±15V
- Strobe low forces output to "1" state
- High input resistance

- Fanout of ten with either DTL or TTL integrated circuits
- Outputs can be wire OR'ed
- Series 54/74 compatible

The response time can be controlled with an external capacitor to reject input noise spikes. The output state is a logic "1" for both inputs open. Termination resistors for the twisted pair line are also included in the circuit. Both the DM7820A and the DM8820A are specified, worst case, over their full operating temperature range (–55°C to 125° C and 0° C to 70° C respectively), over the entire input voltage range, for $\pm 10\%$ supply voltage variations.

schematic and connection diagrams

Dual-In-Line Package

Order Number DM7820AD See Package 1

Order Number DM8820AN See Package 22

typical applications

Differential Line Driver and Receiver

Single Ended (EIA-RS232C) Receiver with Hysteresis

Lead Temperature (Soldering, 10 sec)

Supply Voltage 8.0V Common-Mode Voltage ±20V Differential Input Voltage ±20V Strobe Voltage 8.0V Output Sink Current 50 mA 600 mW Power Dissipation (Note 1) Operating Temperature Range DM7820A -55°C to 125°C 0° C to 70° C DM8820A -65°C to 150°C Storage Temperature Range

electrical characteristics (Notes 2, 3 & 4)

0.4.0.4.4.5.7.5.0		CONDIT	IONS	MIN	TYP	MAX	LINUTO
PARAMETER	V _{CM}	OUTPUT	OTHER	IVITIN	TYP	IMAX	UNITS
Differential Threshold Voltage	$-3V \le V_{CM} \le +3V$ $-15V \le V_{CM} \le +15V$ $-3V \le V_{CM} \le +3V$ $-15V \le V_{CM} \le +15V$	-400 μA -400 μA +16 mA +16 mA	$V_{OUT} \ge 2.5V$ $V_{OUT} \ge 2.5V$ $V_{OUT} \le 0.4V$ $V_{OUT} \le 0.4V$		+0.06 +0.06 -0.08 -0.08	+0.5 +1.0 -0.5 -1.0	V V V
Inverting Input Resistance	-15V ≤ V _{CM} ≤ +15V			3.6	5		kΩ
Non-Inverting Input Resistance	$-15V \le V_{CM} \le +15V$			1.8	2.5		kΩ
Line Termination Resistance			$T_A = 25^{\circ}C$	120	170	250	Ω
Inverting Input Current	+15V 0V -15V				+3.0 0 -3.0	+4.2 -0.5 -4.2	mA mA mA
Non-Inverting Input Current	+15V 0V -15V				+5.0 -1.0 -7.0	+7.0 -1.6 -9.8	mA mA mA
Power Supply Current	+15V 0V -15V	Logic ''0'' Logic ''0'' Logic ''0''	V _{DIFF} = -1V V _{DIFF} = -0.5V V _{DIFF} = -1V	-	+3.9 +6.5 +9.2	+6.0 +10.2 +14.0	mA mA mA
Logical "1" Output Voltage		-400 μA	V _{DIFF} = +1V	2.5	4.0	5.5	V
Logical "0" Output Voltage		+16 mA	V _{DIFF} = -1V	0	0.22	0.4	V
Logical "1" Strobe Input Voltage		+16 mA	$V_{OUT} \le 0.4 V$, $V_{DIFF} = -3 V$	2.1			V
Logical "0" Strobe Input Voltage		-400 μA	$V_{OUT} \ge 2.5V$, $V_{DIFF} = -3V$			0.9	V
Logical "1" Strobe Input Current			V _{STROBE} = 5.5V, V _{DIFF} = +3V		0.01	5.0	μΑ
Logical "0" Strobe Input Current	×		$V_{STROBE} = 0.4V$, $V_{DIFF} = -3V$		-1.0	-1.4	mA
Output Short Circuit Current		0V	V _{CC} = 5.5V, V _{STROBE} = 0V	-2.8	-4.5	-6.7	mA
Propagation Delays: (see waveforms) Differential Input to "0" Output Differential Input to "1" Output Strobe Input to "0" Output Strobe Input to "1" Output			V _{CC} = 5V, T _A = 25°C V _{CC} = 5V, T _A = 25°C V _{CC} = 5V, T _A = 25°C V _{CC} = 5V, T _A = 25°C		30 24 16 18	45 40 25 30	ns ns ns

300°C

Note 1: For operating at elevated temperatures, the device must be derated based on a thermal resistance of 100°C/W and a maximum junction temperature of 160°C for the DM7820A, or 150°C/W and 115°C maximum junction temperature for the DM8820A.

Note 2: These specifications apply for 4.5V \leq V_{CC} \leq 5.5V, -15V \leq V_{CM} \leq 15V and -55°C \leq T_A \leq 125°C for the DM7820A or 0°C \leq T_A \leq 70°C for the DM8820A unless otherwise specified. Typical values given are for V_{CC} = 5.0V, T_A = 25°C and V_{CM} = 0V unless stated differently.

Note 3: The specifications and curves given are for one side only. Therefore, the total package dissipation and supply currents will be double the values given when both receivers are operated under identical conditions.

Note 4: Min and max limits apply to absolute values.

typical performance characteristics (Note 3)

ac test circuit and waveforms

DM7822/DM8822 dual line receiver

general description

The DM7822/DM8822 is a dual inverting line receiver which meets the requirements of EIA specification RS232 Revision B. The device contains both receivers on a single monolithic silicon chip. The receivers share common power supply and ground connections, otherwise their operation is fully independent.

In addition to meeting the requirements of RS232, the DM7822/DM8822 also has independent strobe inputs which allow the receiver to be placed in the

high state independent of the information being received at the input.

The output of the DM7822/DM8822 is completely compatible with five volt DTL and TTL logic families

The DM7822 is specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The DM8822 is specified for operation over the 0°C to $+70^{\circ}\text{C}$ temperature range.

connection diagram

*Make no connection to these pins.

Order Number DM7822J or DM8822J See Package 16

> Order Number DM8822N See Package 22

typical connection

*For Mark Hold R1 = 47052, otherwise connect pin 3 to ground

^{**}For operation requiring "Mark Hold" with the input open connect a 47052 resistors from each of these pins to ground.

Supply Voltage 8.0V Input Voltage ±30V Strobe Voltage 8.0V Output Sink Current 25 mA Power Dissipation (Note 1) 600 mW Operating Temperature Range DM7822 -55° C to $+125^{\circ}$ C 0°C to 70°C DM8822 Storage Temperature Range -65° C to $+150^{\circ}$ C Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics (Note 2)

PARAMETER	PARAGRAPH IN RS-232	CONDITIONS	MIN	TYP	MAX	UNITS
Negative Input Threshold Voltage	4.8 (8)	$V_{OUT} \ge 2.5V$	-2.0			٧
Positive Input Threshold Voltage (Note 3)		$V_{OUT} \leq 0.4V$			2.0	V
Input Resistance	4.5 and 4.8 (5)	,	3.0	5.0	7.0	kΩ
Input Current		V _{IN} = 25V V _{IN} = 0V V _{IN} = -25V	3.57	5 0 -5	8.33 -3.57	mA mA mA
Open Circuit Input Voltage	4.5 and 4.8 (4)	$V_{1N} = 0V$	0.00	.03	0.5	V
Logical "1" Output Voltage		I _{OUT} ≤ -0.2 mA	2.5			V
Logical "0" Output Voltage		I _{OUT} = 3.5 mA			0.4	V
Strobe Current		V _{STROBE} = 0.4V V _{STROBE} = 5.5V		1.0 -5.0 μA	1.4 -1.0 mA	mA
Power Supply Current (Both Receivers)		$-25V \le V_{IN} \le 25V$			24.0	mA
Response Time, t ₁ or t ₂		$T_A = 25^{\circ}C$ $V_{CC} = 5.0V$ Input Ramp Rate ≤ 10 ns		65	125	ns

Note 1. For operating at elevated temperatures, the device must be derated in accordance with the "Maximum Power Dissipation" curve.

Note 2. Min/Max limits apply across the guaranteed temperature range of -55°C to $+125^{\circ}\text{C}$ for the DM7822 and 0°C to 70°C for the DM8822 unless otherwise specified. Likewise the limits apply across the guaranteed V_{CC} range of 4.5V to 5.5V for the DM7822 and 4.75V to 5.25V for the DM8822 unless otherwise specified. Typical values are given for V_{CC} = 5.0V and T_A = 25°C.

Note 3. Since the EIA RS-232 specification requires the threshold to be between -3V and +3V, the immunity limits shown here guarantee 1 volt additional noise immunity.

typical performance characteristics

switching time waveforms

ac test circuit

Maximum Power Dissipation

DM7830/DM8830 dual differential line driver

general description

The DM7830/DM8830 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function,

TTL (Transistor-Transistor-Logic) multiple emitter inputs allow this line driver to interface with standard TTL or DTL systems. The differential outputs are balanced and are designed to drive long lengths of coaxial cable, strip line, or twisted pair transmission lines with characteristic impedances of 50Ω to 500Ω . The differential feature of the output eliminates troublesome ground-loop errors normally associated with single-wire transmissions.

Kev Features:

- Single 5 volt power supply
- Diode protected outputs for termination of positive and negative voltage transients
- Diode protected inputs to prevent line ringing
- High Speed
- Short Circuit Protection

The DM7830 is specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The DM8830 is specified for operation over the 0°C to $+70^{\circ}\text{C}$

schematic* and connection diagram

Order Number DM7830J or DM8830J See Package 16

Order Number DM7830W or DM8830W See Package 27

> Order Number DM8830N See Package 22

typical application

Digital Data Transmission

 $\begin{array}{cccccccc} V_{CC} & 7.0V \\ Input Voltage & 5.5V \\ Operating Temperature & DM7830 & -55^{\circ}C \text{ to } +125^{\circ}C \\ DM8830 & 0^{\circ}C \text{ to } 70^{\circ}C \\ Storage Temperature & -65^{\circ}C \text{ to } +150^{\circ}C \\ Lead Temperature (Soldering, 10 sec) & 300^{\circ}C \\ Output Short Circuit Duration (125^{\circ}C) & 1 second \\ \end{array}$

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage		2.0			V
Logical "0" Input Voltage				0.8	V
Logical "1" Output Voltage	V _{IN} = 0.8V I _{OUT} = -0.8 mA	2.4			V
Logical ''1''Output Voltage	V _{IN} = 0.8V I _{OUT} = -40 mA	1.8	2.9		V
Logical "0" Output Voltage	V _{IN} = 2.0V I _{OUT} = +32 mA		0.2	0.4	V
Logical "0" Output Voltage	V _{IN} = 2.0V I _{OUT} = +40 mA		0.22	0.5	V
Logical "1" Input Current	V _{IN} = +2.4V			120	μΑ
Logical "1" Input Current	V _{IN} = 5.5V			2	mA
Logical "0" Input Current	V _{IN} = 0.4V			4.8	mA
Output Short Circuit Current	V _{CC} = 5.0V	Note 2 -40	-100	Note 2 -120	mA
Supply Current	$V_{CC} = 5.0V V_{IN} = 5.0V$ (Each Driver)		11	18	mA
Propagation Delay AND Gate t _{pd1}	$T_A = 25^{\circ}C$		8	12	ns
t _{pd0}	$V_{CC} = 5.0V$		11	18	ns
Propagation Delay NAND Gate t _{pd1}	C _L = 15 pF		8	12	ns
t _{pd0}	See Figure 1 and 1A	3	5	8	ns
Differential Delay t ₁	$ brace$ Load, 100 Ω and 5000 pF		12	16	ns
Differential Delay t ₂	See Figure 2		12	16	ns

Note 1: Specifications apply for DM7830 -55°C \leq T_A \leq +125°C, V_{CC} = +5V \pm 10%, DM8830 0°C \leq T_A \leq 70°C, V_{CC} = +5V \pm 5% unless otherwise stated. Typical values given are for T_A = 25°C, V_{CC} = \pm 5.0V.

Note 2: Applies for $T_A = +125^{\circ}C$ only.

typical performance characteristics

Output High Voltage (Logical "1")

20 DELAY (15 DIFFERENTIAL 10 5

Differential Delay Vs Temperature

Differential Output Voltage

(|VAND - VNAND|) Vs Differential Output Current

Maximum Power Dissipation

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

Output Low Voltage (Logical "0") Vs Output Current

OUTPUT CURRENT (mA) Power Dissipation (No Load) Vs Data Input Frequency

50

100 75

ac test circuit

DATA INPUT FREQUENCY (MHz) switching time waveforms

FIGURE 1

FIGURE 2

DM7831/DM8831,DM7832/DM8832 TRI-STATE[™] line driver

general description

Through simple logic control, the DM7831/DM8831, DM7832/DM8832 can be used as either a quad single-ended line driver or a dual differential line driver. They are specifically designed for party line (bus-organized) systems. The DM7832/DM8832 does not have the V_{CC} clamp diodes found on the DM7831/DM8831.

The DM7831 & DM7832 are specified for operation over the -55°C to $+125^{\circ}\text{C}$ military temperature range. The DM8831 & DM8832 are specified for operation over the 0°C to $+70^{\circ}\text{C}$ temperature range.

Key features include:

- Series 54/74 compatible
- 17 ns propagation delay
- Very low output impedance—high drive capability
- 40 mA sink and source currents
- Gating control to allow either single-ended or differential operation

High impedance output state which allows many outputs to be connected to a common bus line.

mode of operation

To operate as a quad single-ended line driver apply logical "0"s to the Output Disable pins (to keep the outputs in the normal low impedance mode) and apply logical "0"s to both Differential/Single-ended Mode Control inputs. All four

and apply logical "0""s to both Differential/Single-ended Mode Control inputs. All four channels will then operate independently and no signal inversion will occur between inputs and outputs.

To operate as a dual differential line driver apply logical "0"s to the Output Disable pins and apply at least one logical "1" to the Differential/Single-ended Mode Control inputs. The inputs to the A channels should be connected together and the inputs to the B channels should be connected to the inputs to the B channels should be connected to the resulting inputs will pass non-inverted on the $\rm A_2$ and $\rm B_2$ outputs and inverted on the $\rm A_1$ and $\rm B_1$ outputs.

When operating in a bus-organized system with outputs tied directly to outputs of other

(continued on page 3)

connection and logic diagram

Order Number DM7831J or DM8831J or DM7832J or DM8832J See Package 17

Order Number DM7831W or DM8831W or DM7832W or DM8832W See Package 28

Order Number DM8831N or DM8832N See Package 23

truth-table (Shown for A Channels Only)

"A" OUTPL	"A" OUTPUT DISABLE		ENTIAL/ ENDED ONTROL	INPUT A ₁	OUTPUT A ₁	INPUT A ₂	OUTPUT A ₂	
0	0	0	0	Logical "1" or Logical "0"	Same as Input A ₁	Logical "1" or Logical "0"	Same as Input A ₂	
0	0	X 1	1 X	Logical "1" or Logical "0"	Opposite of Input A ₁	Logical "1" or Logical "0"	Same as Input A ₂	
1 X	X 1	×	×	×	High impedance state	×	High impedance state	

X = Don't Care

Time that 2 bus-connected devices may be in opposite low impedance states simultaneously

10 ms

electrical characteristics (Note 1)

PARAMETE	R	(CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	DM7831,DM7832 DM8831,DM8832			2.0			V
Logical ''0'' Input Voltage	DM7831,DM7832 DM8831,DM8832	$V_{CC} = 4.5V$ $V_{CC} = 4.75V$				0.8	V
Logical ''1'' Output Voltage	DM7831,DM7832 DM8831,DM8832	$V_{CC} = 4.5V$ $V_{CC} = 4.75V$	$I_0 = -40 \text{ mA}$ $I_0 = -2 \text{ mA}$ $I_0 = -40 \text{ mA}$ $I_0 = -5.2 \text{ mA}$	1.8 2.4 1.8 2.4	2.3 2.7 2.5 2.9		V V V
Logical ''0'' Output Voltage	DM7831,DM7832 DM8831,DM8832		I ₀ = 40 mA I ₀ = 32 mA I ₀ = 40 mA I ₀ = 32 mA		0.29 0.29	0.50 .40 0.50 .40	V V V
Logical ''1'' Input Current	DM7831,DM7832 DM8831,DM8832	$V_{CC} = 5.5V$ $V_{CC} = 5.25V$	$V_{IN} = 5.5V$ $V_{IN} = 2.4V$			1 40	mΑ μΑ
Logical "0" Input Current	DM7831,DM7832 DM8831,DM8832				-1.0	-1.6	mA
Output Disable Current	DM7831,DM7832 DM8831,DM8832	$V_{CC} = 5.5V$ $V_{CC} = 5.25V$	$V_0 = 2.4V \text{ or } 0.4V$	-40		40	μΑ
Output Short Circuit Current	DM7831,DM7832 DM8831,DM8832			-40 (Note 2)	-100	–120 (Note 2)	mA
Supply Current	DM7831,DM7832 DM8831,DM8832	V _{CC} = 5.25V			65	90	mA
Input Diode Clamp Voltage		$V_{CC} = 5.0V,$ $I_{IN} = -12 \text{ mA}$				-1.5	V
Output Diode Clamp Voltage	DM7831,DM7832 DM8831,DM8832	I _{OUT} = -12 m	nA,V _{CC} = 5.0V, T _A = 25°C nA,V _{CC} = 5.0V, T _A = 25°C			-1.5 V _{cc} +1.5	V V
Propagation Delay to a Logical from Inputs A ₁ , A ₂ , B ₁ , B ₂ D tial Single-ended Mode Contro Outputs, t _{pd0}	ifferen-	V _{CC} = 5.0V,	$T_A = 25^{\circ}C$		13	25	ns
Propagation Delay to a Logical from Inputs A ₁ , A ₂ , B ₁ , B ₂ D tial Single-ended Mode Contro Outputs, t _{pd 1}	ifferen-	V _{CC} = 5.0V,	$T_A = 25^{\circ}C$		13	25	ns
Delay from Disable Inputs to H Impedance State (from Logica Level), t _{1 H}		V _{CC} = 5.0V,	T _A = 25°C		6	12	ns
Delay from Disable Inputs to F Impedance State (from Logica Level), t _{O H}		V _{CC} = 5.0V,	$T_A = 25^{\circ}C$		14	22	ns
Propagation Delay from Disabl to Logical "1" Level (from Hig Impedance State), t _{H 1}		V _{CC} = 5.0V,	$T_A = 25^{\circ}C$		14	22	ns
Propagation Delay from Disabl to Logical ''O'' Level (from Hig Impedance State), t _{H O}		V _{CC} = 5.0V,	$T_A = 25^{\circ}C$		18	27	ns

Note 1: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DM7831, DM7832 and across the 0° C to 70° C temperature range for the DM8831, DM8832. All typicals are given for V_{CC} = 5.0V and T_{A} = 25° C.

Note 2: Applies for $T_A = 125^{\circ}C$ only. Only one output should be shorted at a time.

mode of operation (cont.)

DM7831/DM8831's, DM7832/DM8832's (Figure 1), all devices except one must be placed in the "high impedance" state. This is accomplished by ensuring that a logical "1" is applied to at least one of the Output Disable pins of each device which is to be in the "high impedance" state. A NOR gate was purposely chosen for this function since it is possible with only two DM5442/DM7442, BCD-to-decimal decoders, to decode as many as 100 DM7831/DM8831's, DM7832/DM8832's (Figure 2).

The unique device whose Disable inputs receive two logical "0" levels assumes the normal low

impedance output state, providing good capacitive drive capability and waveform integrity especially during the transition from the logical "0" to logical "1" state. The other outputs—in the high impedance state—take only a small amount of leakage current from the low impedance outputs. Since the logical "1" output current from the selected device is 100 times that of a conventional Series 54/74 device (40 mA vs. 400 $\mu{\rm A})$, the output is easily able to supply that leakage current for several hundred other DM7831/DM8831's, DM7832/DM8832's and still have available drive for the bus line (Figure 3).

Figure 1

FOR DRIVING OTHER TTL INPUTS ONE OF FOUR OUTPUTS D D M M SELECTED AS 8 8 3 DRIVING DEVICE 40 mA D D M M 8 8 8 8 3 3 1 2 GATED INTO HIIMPEDANCE STATE 40 .. A LEAKAGE CURRENT PER CONN D D M M 8 8 8 8 3 3 GATED INTO HI IMPEDANCE STATE 40 uA

Figure 3

typical performance characteristics

-2

V_{OUT} (V)

-50

TEMPERATURE (°C)

switching time waveforms

Amplitude = 3Vfrequency = 1 MHz, 50% duty cycle. t, = $t_r \le 10$ nsec (10% to 90%)

tОН		3V
INPUT	1.50	
0V	t _{OH}	
OUTPUT ACTUAL LOGICAL "O" — VOLTAGE		=====================================

INPUT

1.5V

0V

0UTPUT

tH1

	Switch S ₁	Switch S ₂	CL
t _{pd1}	closed	closed	50 pF
t _{pd0}	closed	closed	50 pF
t _{OH}	closed	closed	* 5 pF
t _{1H}	closed	closed	* 5 pF
t _{HO}	closed	open	50 pF
t _{H1}	open	closed	50 pF

*jig capacitance

DM7836/DM8836 quad NOR unified bus receiver

general description

The DM7836/DM8836 are quad 2-input receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be 180Ω resistor from the bus to the +5V logic supply together with a 390Ω resistor from the bus to ground. The design employs a built-in input hysteresis providing substantial noise immunity. Low input current allows up to 27 driver/receiver pairs to utilize a common bus. This receiver has been specifically configured to replace the SP380 gate pin-for-pin to provide the distinct advantages of the DM7837 receiver design in existing systems. Performance is optimized for systems with bus rise and fall times $\leq 10\mu s$.

features

- Plug-in replacement for SP380 gate
- Low input current with normal V_{CC} or $V_{CC} = 0V$ (15 μ A typ)
- Built-in input hysteresis (1V typ)
- High noise immunity (2V typ)
- Temperature-insensitive input thresholds track bus logic levels
- DTL/TTL compatible output
- Matched, optimized noise immunity for "1" and "0" levels
- High speed (18 ns typ)

typical application

connection diagram

Dual-In-Line and Flat Package

Order Number DM7836F Order Number DM7836J Order Number DM8836N
See Package 4 See Package 16 See Package 22

absolute maximum ratings (Note 1)

7.0V Supply Voltage 5.5V Input Voltage 600 mW Power Dissipation Operating temperature range: -55°C to +125°C DM7836 0° C to $+70^{\circ}$ C DM8836

 -65° C to $+150^{\circ}$ C Storage Temperature Range Lead Temperature (Soldering, 10 sec) 300°C

electrical characteristics

The following apply for $V_L \leq V_{CC} \leq V_H$, $T_L \leq T_A \leq T_H$, unless otherwise specified (Note 2)

PARAMETER	INPUT	OUTPUT	COMMENTS	MIN	TYP	MAX	UNIT
High Level Input Threshold:							
DM7836	V _{TH}	16 mA	Output < 0.4V	1.85	2.25	2.65	V
DM8836	V _{TH}	16 mA	Output < 0.4V	2.00	2.25	2.50	V
Low Level Input Threshold:							
DM7836	V _{TH}	-400 μA	Output > 2.4V	1.03	1.30	1.57	V
DM8836	V _{TH}	-400 μA	Output > 2.4V	1.10	1.30	1.50	V
Maximum Input Current	4V		V _{CC} = V _H		15	50	μΑ
Maximum Input Current	4V		V _{CC} = 0V		1	50	μΑ
Logic "1" Output Voltage	0.5V	-400 μA		2.4			V
Logic "0" Output Voltage	4V	16 mA			0.25	0.4	V
Output Short Circuit Current	0.5V	0V	V _{CC} = V _H	-18		- 55	mA
Power Supply Current	4V		Per Package		25	40	mA
Input Clamp Diode Voltage	-12 mA		T _A = 25°C		-1	- 1.5	V
The following apply for $V_{CC} = 5V$	', T _A = 25°C ur	less otherwise spe	cified.				
Propagation Delays:							
Input to Logic "1" Output			Note 3		20	30	ns
Input to Logic "0" Output			Note 4		18	30	ns

Note 1: Voltage values are with respect to network ground terminal. Positive current is defined as current into the reference pin.

Note 2: For DM7836: $V_L = 4.5V$, $V_H = 5.5V$, $T_L = -55^{\circ}C$, $T_H = +125^{\circ}C$. For DM8836: $V_L = 4.75V$, $V_H = 5.25V$, $T_L = 0^{\circ}C$, $T_H = +70^{\circ}C$.

Note 3: Fan-out of 10 load, C_{LOAD} = 15 pF total, measured from V_{IN} = 1.3V to V_{OUT} = 1.5V, V_{IN} = 0V to 3V pulse.

Note 4: Fan-out of 10 load, C_{LOAD} = 15 pF total, measured from V_{IN} = 2.3V to V_{OUT} = 1.5V, V_{IN} = 0V to 3V pulse.

DM7837/DM8837 hex unified bus receiver

general description

The DM7837/DM8837 are high speed receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is inténded to be 180Ω resistor from the bus to the +5V logic supply together with a 390Ω resistor from the bus to ground. The receiver design employs a built-in input hysteresis providing substantial noise immunity. Low input current allows up to 27 driver/receiver pairs to utilize a common bus. Disable inputs provide time discrimination. Disable inputs and receiver outputs are DTL/TTL compatible. Performance is optimized for systems with bus rise and fall times $\leq 10\mu s$.

features

- Low receiver input current for normal V_{CC} or V_{CC} = 0V (15 µA typ)
- Six separate receivers per package
- Built-in receiver input hysteresis (1V typ)
- High receiver noise immunity (2V typ)
- Temperature insensitive receiver input thresholds track bus logic levels
- DTL/TTL compatible disable and output
- Molded or cavity dual-in-line or flat package
- High speed

typical application

connection diagram

Dual-In-Line and Flat Package

TOP VIEW

Order Number DM7837F Order Number DM7837J Order Number DM8837N See Package 5 See Package 17 See Package 23

absolute maximum ratings (Note 1)

 Supply Voltage
 7V

 Input Voltage
 5.5V

 Power Dissipation
 600 mW

 Operating Temperature Range
 -55°C to +125°C

 DM8837
 -0°C to +70°C

 Storage Temperature Range
 -65°C to +150°C

 Lead Temperature (Soldering, 10 sec)
 300°C

electrical characteristics

The following apply for $V_L \leq V_{CC} \leq V_H$, $T_L \leq T_A \leq T_H$, unless otherwise specified (Note 2)

PARAMETER	RECEIVER INPUT	DISABLE INPUT	OUTPUT	COMMENTS	MIN	TYP	MAX	UNIT
High Level Receiver Threshold: DM7837	V _{TH}	0.8V	16 mA	Output < 0.4V	1.85	2.25	2.65	V
High Level Receiver Threshold: DM8837	V _{TH}	0.8V	16 mA	Output < 0.4V	2.00	2.25	2.50	V
Low Level Receiver Threshold: DM7837	V _{TH}	0.8V	-400 mA	Output > 2.4V	1.03	1.30	1.57	V
Low Level Receiver Threshold: DM8837	V _{TH}	0.8V	-400 mA	Output > 2.4V	1.10	1.30	1.50	V
Maximum Receiver Input Current	4 V			V _{CC} = V _H		15.0	50.0	μΑ
Maximum Receiver Input Current	4V			V _{cc} = 0V		1.0	50.0	μА
Logic "1" Input Voltage: Disable	0.5V	VIN	16 mA	Output < 0.4V	2.0			V
Logic "0" Input Voltage: Disable	0.5V	VIN	-400 µA	Output > 2.4V			0.8	V
Logic "1" Output Voltage	0.5V	0.8V	-400 μA		2.4			V
Logic "0" Output Voltage	4V	0.8V	16 mA			0.25	0.4	V
Logic "1" Input Current: Disable		2.4V					80.0	μΑ
Logic "1" Input Current: Disable		5.5V					2.0	mA
Logic "0" Input Current: Disable	4V	0.4V					-3.2	mA
Output Short Circuit Current	0.5V	0V	0V	V _{CC} = V _H	-18.0		-55.0	mA
Power Supply Current	4V	0V		Per Package		45.0	60.0	mA
Input Clamp Diode	-12 mA	-12 mA		T _A = 25°C		-1.0	-1.5	V
The following apply for $V_{CC} = 5V$, $T_A = 25$	°C unless otherwi	se specified.						
Propagation Delays: Receiver Input to Logic "1" Output		0V		Note 3		20	30	ns
Receiver Input to Logic "0" Output		0V		Note 4		18	30	ns
Disable Input to Logic "1" Output	0V			Note 5		9	15	ns
Disable Input to Logic "0" Output	0V			Note 5		4	10	ns

Note 1: Voltage values are with respect to network ground terminal. Positive current is defined as current into the referenced pin.

Note 2: For DM7837: $V_L = 4.5 \text{V}, V_H = 5.5 \text{V}, T_L = -55^{\circ}\text{C}, T_H = +125^{\circ}\text{C}$ For DM8837: $V_L = 4.75 \text{V}, V_H = 5.25 \text{V}, T_L = 0^{\circ}\text{C}, T_H = +70^{\circ}\text{C}$

Note 3: Fan-out of 10 load, C_{LOAD} = 15 pF total. Measured from V_{IN} = 1.3V to V_{OUT} = 1.5V, V_{IN} = 0V to 3V pulse. Note 4: Fan-out of 10 load, C_{LOAD} = 15 pF total. Measured from V_{IN} = 2.3V to V_{OUT} = 1.5V, V_{IN} = 0V to 3V pulse.

Note 5: Fan-out of 10 load, C_{LOAD} = 15 pF total. Measured from V_{IN} = 1.5V to V_{OUT} = 1.5V, V_{IN} = 0V to 3V pulse.

DM7838/DM8838 quad unified bus transceiver general description

The DM7838/DM8838 are quad high speed drivers/ receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be a 180Ω resistor from the bus to the +5V logic supply together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. Low bus pin current allows up to 27 driver/receiver pairs to utilize a common bus. The bus loading is unchanged when $V_{CC} = 0V$. The receivers incorporate hysteresis to greatly enhance bus noise immunity. One two-input NOR gate is included to disable all drivers in a package simultaneously. Receiver performance is optimized for systems with bus rise and fall times $< 10 \mu s$.

features

- 4 totally separate driver/receiver pairs per package
- 1V typical receiver input hysteresis
- Receiver hysteresis independent of receiver
- Guaranteed minimum bus noise immunity of 1.3V. 2V tvp.
- Temperature-insensitive receiver thresholds track bus logic levels
- 20µA typical bus terminal current with normal V_{CC} or with $V_{CC} = 0V$
- Open collector driver output allows wire-OR connection
- High speed
- Series 74 TTL compatible driver and disable inputs and receiver outputs

typical application

connection diagram

Dual In-Line and Flat Package

Order Number DM7838F See Package 5

Order Number DM7838J See Package 17

Order Number DM8838 See Package 23

Supply Voltage Input and Output Voltage Power Dissipation

5.5V 600 mW

Operating Temperature Range DM7838 DM8838 Storage Temperature Range

Lead Temperature (Soldering, 10 sec)

-55°C to +125°C 0°C to +70°C -65°C to +150°C 300°C

electrical characteristics

DM7838/DM8838: The following apply for V $_{L} \leq$ V $_{CC} \leq$ V $_{H}$, T $_{L} \leq$ T $_{A} \leq$ T $_{H}$ unless otherwise specified (Note 2).

PARAMETER	DISABLE INPUT	DRIVER INPUT	BUS PIN	RECEIVER OUTPUT	COMMENTS	MIN	TYP	MAX	UNIT
Logic ''1'' Input Voltage: Disable	V _{IN}	2V	4V		Bus < 100 μA	2.0			V
Logic "O" Input Voltage: Disable	V _{IN}	2V	50 mA		Bus < 0.7V			0.8	V
Logic "1" Input Voltage: Driver	0.8V	V _{IN}	50 mA		Bus < 0.7V	2.0			V
Logic "O" Input Voltage: Driver	0.8∨	V _{IN}	4V		Bus $<$ 100 μ A			0.8	V
High Level Receiver Threshold: DM7838		0.8V	V _{TH}	16·mA	Receiver output < 0.4V	1.85	2.25	2.65	V
High Level Receiver Threshold: DM8838		0.8V	V _{TH}	16 mA	Receiver output < 0.4V	2.00	2.25	2.50	V
Low Level Receiver Threshold: DM7838		0.8V	V _{TH}	-400 μΑ	Receiver output > 2.4V	1.03	1.30	1.57	V
Low Level Receiver Threshold: DM8838		0.8∨	V _{TH}	-400 μΑ	Receiver output > 2.4V	1.10	1.30	1.50	V
Logic "1" Input Current: Disable and Driver	5.5V	5.5V						1	mA
Logic "1" Input Current: Disable and Driver	2.4V	2.4V						40	μΑ
Logic "O" Input Current: Disable and Driver	0.4V	0.4V						-1.6	mA
Maximum Bus Current	0.8V	0.8V	4V		V _{CC} = V _H		20	100	μΑ
Maximum Bus Current	0.8V	0.8V	4V		V _{CC} = 0V		2	100	μΑ
Low Level Bus Voltage	0.8V	2V	50 mA				0.4	0.7	V
Logic "1" Output Voltage: Receiver	0.8V	0.8V	0.5V	-400 μΑ		2.4			V
Logic "0" Output Voltage: Receiver	0.8V	0.8V	4V	16 mA			0.25	0.4	V
Output Short Circuit Current: Receiver	0.8V	0.8V	0.5V	0V	V _{CC} = V _H	-18		-55	mA
Supply Current	0V	2V			Per Package		50	70	mΑ
Input Diode Clamp Voltage	-12 mA	-12 mA	-12 mA		$T_A = 25^{\circ}C$		-1	-1.5	V
The following apply for $V_{\rm cc}$	 = 5V, T _A = 2	 25°C unless oth 	l erwise specif I	ied.					
Propagation Delays: Disable to Bus "1"					Note 3		19	30	ns
Disable to Bus "0"					Note 3		15	23	ns
Driver Input to Bus "1"					Note 3		17	25	ns
Driver Input to Bus "0"					Note 3		9	15	ns
Bus to Logic "1" Receiver Output				,	Note 4		20	30	ns
Bus to Logic "0" Receiver Output					Note 5		18	30	ns

Note 1: Voltage values are with respect to network ground terminal. Positive current is defined as current into the referenced pin.

pin. Note 2: For DM7838: V_L = 4.5V, V_H = 5.5V, T_L = -55°C, T_H = 125°C. For DM8838: V_L = 4.75V, V_H = 5.25, T_L = 0°C, T_H = 70°C. Note 3: $91\,\Omega$ from bus pin to V_{CC} and $200\,\Omega$ from bus pin to ground, C_{LOAD} = 15 pF total. Measured from V_{IN} = 1.5V to V_{BUS} = 1.5V, V_{IN} = 0V to 3V pulse. Note 4: Fan-out of 10 load, C_{LOAD} = 15 pF total. Measured from V_{IN} = 1.3V to V_{OUT} = 1.5V, V_{IN} = 0V to 3V pulse. Note 5: Fan-out of 10 load, C_{LOAD} = 15 pF total. Measured from V_{IN} = 2.3V to V_{OUT} = 1.5V, V_{IN} = 0V to 3V pulse.

Display Drivers

DM75491 MOS-to-LED quad segment driver DM75492 MOS-to-LED hex digit driver

general description

The DM75491 and DM75492 are interface circuits designed to be used in conjunction with MOS integrated circuits and common-cathode LED's in serially addressed multi-digit displays. The number of drivers required for this time-multiplexed system is minimized as a result of the segment-address-and-digit-scan method of LED drive.

features

 Source or sink capability per driver (DM75491)

50 mA

Sink capability per driver (DM75492)

250 mA

- MOS compatability (low input current)
- Low standby power
- High-gain Darlington circuits

schematic and connection diagrams

Order Number DM75491N or DM75492N See Package 22

absolute maximum ratings	DM75491	DM75492
Input Voltage Range (Note 1)	$-5V$ to V_{SS}	–5V to $V_{\rm SS}$
Collector Output Voltage (Note 2)	10V	10V
Collector Output to Input Voltage	10V	10V
Emitter to Ground Voltage ($V_1 \ge 5V$)	10V	
Emitter to Input Voltage	5V	
Voltage at V _{SS} Terminal With Respect to Any Other Device Terminal	10V	10V
Collector Output Current		
Each Collector Output	50 mA	250 mA
All Collector Outputs	200 mA	600 mA
Continuous Total Dissipation	800 mW	800 mW
Operating Temperature Range	0° C to $+70^{\circ}$ C	0° C to $+70^{\circ}$ C
Storage Temperature Range	−65°C to +150°C	−65°C to +150°C
Lead Temperature (Soldering, 10 sec)	300°C	300°C

dc electrical characteristics

DM75491 ($V_{SS} = 10V$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
On State Collector Emitter Voltage (V _{CE ON})	Input = 8.5V through 1 k Ω , V _E = 5V, I _C = 50 mA, T _A = 25 $^{\circ}$ C		.9	1.2	V
On State Collector Emitter Voltage (V _{CE ON})	Input = 8.5V through 1 k Ω , V _E = 5V, I _C = 50 mA			1.5	V
Off State Collector Current (I _{C OFF})	$V_{C} = 10V, V_{E} = 0, I_{IN} = 40\mu A$			100	μΑ
Off State Collector Current (I _{C OFF})	$V_{C} = 10V, V_{E} = 0, V_{IN} = .7V$			100	μΑ
Input Current at Maximum Input Voltage (I _I)	V _{IN} = 10V, V _E = 0, I _C = 20 mA		2.2	3.3	mA
Emitter Reverse Current (I _E)	V _{IN} = 0, V _E = 5V, I _C = 0			100	μΑ
Current Into V _{SS} Terminal (I _{SS})				1	mA

DM75492 ($V_{SS} = 10V$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Low Level Output Voltage (V _{OL})	Input = 6.5V through 1 k Ω , I _{OUT} = 250 mA T _A = 25 $^{\circ}$ C		.9	1.2	٧
Low Level Output Voltage (V _{OL})	Input = 6.5V through 1 k Ω , I _{OUT} = 250 mA			1.5	V
High Level Output Current (I _{OH})	V _{OH} = 10V, I _{IN} = 40μA			200	μΑ
High Level Output Current (I _{OH})	V _{OH} = 10V, V _{IN} = .5V			200	μΑ
Input Current at Maximum Input Voltage (I,)	V _{IN} = 10V, I _{OL} = 20 mA		2.2	3.3	mA
Current Into V _{SS} Terminal (I _{SS})				1	mA.

ac switching characteristics

DM75491 ($V_{SS} = 7.5V, T_A = 25^{\circ}C$)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time, Low to High Level Output (Collector) (t _{PLH})	V _{IH} = 4.5V, V _E = 0,		100		ns
Propagation Delay Time, High to Low Level Output (Collector) (t _{PHL})	$R_L = 200\Omega$, $C_L = 15 pF$		20		ns

DM75492 ($V_{SS} = 7.5V$, $T_A = 25^{\circ}C$)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time, Low to High Level Output (t _{PLH})	V_{IH} = 7.5V, R_L = 39 Ω ,		300		ns
Propagation Delay Time, High to Low Level Output (t _{PHL})	C _L = 15 pF		30		ns

Note 1: The input is the only device terminal which may be negative with respect to ground.

Note 2: Voltage values are with respect to network ground terminal unless otherwise noted.

NOTE 1: THE PULSE GENERATOR HAS THE FOLLOWING CHARACTERISTICS: Z_{OUT} = 50 Ω , PRR = 100 KHz, t_W = 1 μ s. Note 2: C_L includes probe and Jig capacitance.

Display Drivers

DM8861 MOS-to-LED 5-segment driver DM8863 MOS-to-LED 8-digit driver

general description

The DM8861 and DM8863 are designed to be used in conjunction with MOS integrated circuits and common-cathode LED's in serially addressed multi-digit displays.

The DM8861 is a 5-segment driver capable of sinking or sourcing up to 50 mA from each driver.

The DM8863 is an 8-digit driver. Each driver is capable of sinking up to 500 mA.

features

- Source or sink capability per driver, DM8861
- 50 mA

- Sink capability per driver, DM8863
- 500 mA
- MOS compatibility (low input current)
- Low standby power
- High gain Darlington circuits

schematic and connection diagrams

Order Numbers DM8861N or DM8863N See Package 29

	DM8861	DM8863
Input Voltage Range (Note 1)	−5V to V _{SS}	-5V to V _{SS}
Collector (Output) Voltage (Note 2)	10V	10V
Collector (Output)-to-Input Voltage	10V	10V
Emitter-to-Ground Voltage ($V_1 \ge 5V$)	10V	
Emitter-to-Input Voltage	5V	
Voltage at V _{SS} Terminal With Respect to Any Other Device Terminal	10V	10V
Collector (Output) Current		
Each Collector (Output)	50 mA	500 mA
All Collectors (Output)	200 mA	600 mA
Continuous Total Dissipation	800 mW	800 mW
Operating Temperature Range	0° C to $+70^{\circ}$ C	0° C to $+70^{\circ}$ C
Storage Temperature Range	-65° C to $+150^{\circ}$ C	-65° C to $+150^{\circ}$ C
Lead Temperature (Soldering, 10 sec)	300°C	300°C

dc electrical characteristics

DM8861 ($V_{SS} = 10V$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted)

PARAMETER	PARAMETER CONDITIONS		TYP	MAX	UNIT
On State Collector Emitter Voltage (V _{CE ON})	Input = 8.5V through 1 k Ω , V _E = 5V, I _C = 50 mA, T _A = 25°C	,	.9	1.2	V
On State Collector Emitter Voltage (V _{CE ON})	Input = 8.5V through 1 k Ω , V _E = 5V, I _C = 50 mA		e	1.5	V
Off State Collector Current (I _{C OFF})	$V_{C} = 10V, V_{E} = 0, I_{IN} = 40\mu A$			100	μΑ
Off Set Collector Current (I _{C OFF})	$V_{C} = 10V, V_{E} = 0, V_{IN} = .7V$			100	μΑ
Input Current at Maximum Input Voltage (I_1)	$V_{1N} = 10V, V_{E} = 0, I_{C} = 20 \text{ mA}$		2.2	3.3	mA
Emitter Reverse Current (I _E)	V _{IN} = 0, V _E = 5V, I _C = 0			100	μΑ
Current Into V_{SS} Terminal (I_{SS})				1	mA

DM8863 ($V_{SS} = 10V$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Low Level Output Voltage (V _{OL})	$V_{IN} = 7V$, $I_{OUT} = 500 \text{ mA}$, $T_A = 25^{\circ}\text{C}$			1.5	V
Low Level Output Voltage (V_{OL})	V _{IN} = 7V, I _{OUT} = 500 mA			1.6	V
High Level Output Current (IOH)	V _{OH} = 10V, I _{IN} = 40μA			250	μΑ
High Level Output Current (IOH)	V _{OH} = 10V, V _{IN} = .5V			250	μΑ
Input Current at Maximum Input Voltage (I_1)	V _{IN} = 10V, I _{OL} = 20 mA			2	mA
Current Into V_{SS} Terminal (I_{SS})				1	mA

ac switching characteristics

DM8861 $(V_{SS} = 7.5V, T_A = 25^{\circ}C)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Propagation Delay Time, Low to High Level Output (Collector) (t _{PLH})	V _{IH} = 4.5V, V _E = 0		100		ns
Propagation Delay Time, High to Low Level Output (Collector) (t _{PHL})	$R_L = 200\Omega$, $C_L = 15 pF$		20		ns

DM8863 ($V_{SS} = 7.5V, T_A = 25^{\circ}C$)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Propagation Delay Time, Low to High Level Output (t _{PLH})	$V_{IH} = 8V$, $R_L = 21\Omega$,		300		ns
Propagation Delay Time, High to Low Level Output (t _{PHL})	C _L = 15 pF		30		ns

Note 1: The input is the only device terminal which may be negative with respect to ground.

Note 2: Voltage values are with respect to network ground terminal unless otherwise noted.

ac test circuits and waveforms

NOTE 1: THE PULSE GENERATOR HAS THE FOLLOWING CHARACTERISTICS: Z_{OUT} = 50Ω, PRR = 100 KHz, t_W = 1 μs . Note 2: C_L includes probe and Jig capacitance.

Display Drivers

DM7880/DM8880 high voltage 7-segment decoder/driver (for driving Sperry and Panaplex II™ displays)

general description

The DM7880/DM8880 is custom designed to decode four lines of BCD and drive a gas-filled seven-segment display tube.

The design employs a 112-bit read-only memory which provides BCD input to full hexadecimal output decoding in the standard DM7880/DM8880 product. For applications desiring other fonts, or not using standard BCD coding, the ROM contents can be custom modified to produce any 16 output displays for the 16 binary input combinations.

Each output constitutes a switchable, adjustable current sink which provides constant current to the tube segment, even with high tube anode supply tolerance or fluctuation. These current sinks have a voltage compliance from 3V to at least 80V; typically the output current varies 1% for output voltage changes of 3 to 50V. Each bit line of the ROM switches a current sink on or off as prescribed by the input code. Each current sink is ratioed to the b-output current as required for even illumination of all segments.

Output currents may be varied over the 0.2 to 1.5 mA range for driving various tube types or multiplex operation. The output current is adjusted by connecting an external program resistor (Rp) from V_{CC} to the Program input in accordance with the programming curve. The circuit design provides a one-to-one correlation between program input current and b-segment output current.

The Blanking Input provides unconditional blanking of any output display, while the Ripple Blanking pins allow simple leading- or trailing-zero blanking.

features

- Current sink outputs
- Adjustable output current 0.2 to 1.5 mA
- High output breakdown voltage 110V typ
- Suitable for multiplex operation
- Blanking and Ripple Blanking provisions
- Low fan-in and low power

logic and connection diagrams

See Package 17

Order Number DM8880N See Package 23

absolute maximum rati	ngs	operating co	ndition	s		
			MIN	MAX	UNITS	
VCC Input Voltage (Except BI) Input Voltage (BI) Segment Output Voltage Power Dissipation (Note 1) Transient Segment Output Current (Note 2) Storage Temperature Range Lead Temperature (Soldering, 10 sec)	7V 6V VCC 80V 600 mW 50 mA -65°C to 150°C	Supply Voltage (V _{CC}) DM7880 DM8880 Temperature (T _A) DM7880 DM8880	4.5 4.75 -55 0	5.5 5.25 +125 +70	V V	

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logic "1" Input Voltage	V _{CC} = Min	2.0			V
Logic "0" Input Voltage	V _{CC} = Min			0.8	V
Logic "1" Output Voltage (RBO)	V _{CC} = Min, I _{OUT} = -200 μA	2.4	3.7		V
Logic "0" Output Voltage (RBO)	V _{CC} = Min, I _{OUT} = 8 mA		0.13	0.4	V
Logic "1" Input Current (Except BI)	$V_{CC} = Max$, $V_{IN} = 2.4V$ $V_{CC} = Max$, $V_{IN} = 5.5V$		2 4	15 400	μA μA
Logic "0" Input Current (Except BI)	V _{CC} = Max, V _{IN} = 0.4V		-300	-600	μΑ
Logic "O" Input Current (BI)	$V_{CC} = Max, V_{IN} = 0.4V$		-1.2	-2.0	mA
Power Supply Current	$V_{CC} = Max, R_P = 2.2k$ All Inputs = $0V$		27	43	mA
Input Diode Clamp Voltage	$V_{CC} = Max$, $T_A = 25^{\circ}C$ $I_{1N} = -12 \text{ mA}$		-0.9	-1.5	V
Segment Outputs: Outputs a, f, g ON Current Ratio	All Outputs = 50V Output b Curr. = Ref.	0.84	0.93	1.02	
Output c ON Current Ratio	All Outputs = 50V, Output b Curr. = Ref.	1.12	1.25	1.38	
Output d ON Current Ratio	All Outputs = 50V Output b Curr. = Ref.	0.90	1.00	1.10	
Output e ON Current Ratio	All Outputs = 50V Output b Curr. = Ref.	0.99	1.10	1.21	
Output b ON Current	$V_{CC} = 5V, V_{OUT} b = 50V$ $T_A = 25^{\circ}C, R_P = 18.1k$	0.18	0.20	0.22	mA
	$V_{CC} = 5V, V_{OUT} b = 50V$	0.45	0.50	0.55	mA
	$T_A = 25^{\circ}C, R_P = 7.03k$ $V_{CC} = 5V, V_{OUT} b = 50V$ $T_A = 25^{\circ}C, R_P = 3.40k$	0.90	1.00	1.10	mA
	$V_{CC} = 5V, V_{OUT} b = 50V$ $T_A = 25^{\circ}C, R_P = 2.20k$	1.35	1.50	1.65	mA
Output Saturation Voltage	$V_{CC} = Min, R_P = 1k\pm 5\%$ $I_{OUT} b = 2 mA (Note 4)$		0.8	2.5	V
Output Leakage Current	V _{OUT} = 75V, BI = 0V		.003	3	μΑ
Output Breakdown Voltage	I _{OUT} = 250 μA, BI = 0V	80	110		V
Propagation Delays: BCD Input to Segment Output	$V_{CC} = 5V$, $T_A = 25^{\circ}C$		0.4	10	μς
BI to Segment Output	$V_{CC} = 5V, T_A = 25^{\circ}C$ $V_{CC} = 5V, T_A = 25^{\circ}C$		0.4 0.7	10 10	μs μs
RBI to Segment Output RBI to RBO	$V_{CC} = 5V, T_A = 25^{\circ}C$ $V_{CC} = 5V, T_A = 25^{\circ}C$		0.7	10	μs μs

Note 1: Maximum junction temperature for DM7880 is 150°C whereas that for DM8880 is 130°C . For operating at elevated temperatures the device must be derated based on a thermal resistance of 85°C/W Θ_{JA} for DM7880 and 150°C/W Θ_{JA} for DM8880.

Note 2: In all applications transient segment output current must be limited to 50 mA. This may be accomplished in DC applications by connecting a 2.2k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.

Note 3: Min/max limits apply across the guaranteed operating temperature range of -55° C to 125° C for DM7880 and 0° C to 70° C for DM8880, unless otherwise specified. Typicals are for $V_{CC} = 5V$, $T_{A} = 25^{\circ}$ C. Positive current is defined as current into the referenced pin.

Note 4: For saturation mode the segment output currents are externally limited and ratioed.

typical performance characteristics

Output Current Programming

10.0

V_{CC} = 5V

V_{OUT} = 50V

T_A = 25°C

1.0

0.3

typical application

10

 $R_P(k\Omega)$

30

100

3

truth table

DECIMAL OR FUNCTION	RBI	D	С	В	А	BI/RBO	a	b	С	d	е	f	g	DISPLAY
0	1	0	0	0	0	1	0	0	0	0	0	0	1	/7/
1	X	0	0	0	1	1	1	0	0	1	1	1	1	/
2	X	0	0	1	0	1	0	0	1	0	0	1	0	,=1
3	X	0	0	1	1	1	0	0	0	0	1	1	0	<u>=</u> 7
4	X	0	1	0	0	1	1	0	0	1	1	0	0	<i>/</i>
5	X	0	1	0	1	1	0	1	0	0	1	0	0	
6	X	0	1	1	0	1	0	1	0	0	0	0	0	5
7	X	0	1	1	1	1	0	0	0	1	1	1	1	_/
8	X	1	0	0	0	1	0	0	0	0	0	0	0	<i> </i> =/
9	X	1	0	0	1	1	0	0	0	0	1	0	0	<u> </u>
10	X	1	0	1	0	1	0	0	0	1	0	0	0	<i> </i> -
11	X	1	0	1	1	1	1	1	0	О	0	0	0	1_
12	×	1	1	0	0	1	0	1	1	0	0	0	1	
13	X	1	1	0	1	1	1	0	0	0	0	1	0	<i>i</i> =/
14	X	1	1	1	0	1	0	1	1	0	0	0	0	E E
15	X	1	1	1	1	1	0	1	1	1	0	0	0	<i> </i>
ВІ	X	Х	Х	×	Х	0	1	1	1	1	1	1	1	
RBI	0	0	0	0.	0	0	1	1	1	1	1	1	1	

Display Drivers

DM8884A high voltage cathode decoder/driver (for driving Panaplex II[™] and Sperry displays)

general description

The DM8884A is designed to decode four lines of BCD input and drive seven-segment digits of gas-filled readout displays. Two separate inputs are provided for driving the decimal point and comma cathodes.

All outputs consist of switchable and programable current sinks which provide constant current to the tube cathodes, even with high tube anode supply tolerance. Output currents may be varied over the 0.2 to 1.2 mA range for multiplex operation. The output current is adjusted by connecting an external program resistor ($R_{\rm P}$) from $V_{\rm CC}$ to the

program input in accordance with the programming curve.

features

- Usable with AC or DC input coupling
- Current sink outputs
- High output breakdown voltage
- Low input load current
- Intended for multiplex operation.
- Input pullups increase noise immunity

logic and connection diagrams

Order Number DM8884AN See Package 29

absolute maximum ratings

 Vcc
 7V

 Input Voltage (Note 1)
 Vcc

 Segment Output Voltage
 80V

 Power Dissipation (Note 2)
 600 mW

 Transient Segment Output Current (Note 3)
 50 mA

 Operating Temperature Range
 0°C to +70°C

 Storage Temperature Range
 -65°C to +150°C

 $\textbf{electrical characteristics} \quad (0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C} - \text{U nless otherwise noted}), \ \text{V_{CC} = 5V $\pm 5\%$}.$

PARAMETER	CONDITIONS	MIN	MAX	UNITS
Logic ''1'' Input Voltage	V _{CC} = 4.75V	2.0		V
Logic ''0'' Input Voltage	V _{CC} = 4.75V		1.0	V
Logic "1" Input Current	V _{CC} = 5.25V, V _{IN} = 2.4V		15	μΑ
Positive Input Clamp Voltage	V _{CC} = 4.75, I _{IN} = 1 mA	5.0		V
Logic "0" Input Current	$V_{CC} = 5.25V, V_{IN} = 0.4V$		-250	μΑ
Power Supply Current	$V_{CC} = 5.25 \text{V}, R_p = 2.8 \text{k},$ All Inputs = 5V		40	mA
Negative Input Clamp Voltage	$V_{CC} = 5V$, $I_{IN} = -12$ mA, $T_A = 25^{\circ}$ C		-1.5	V
Segment Outputs: All Outputs ON Current Ratio	All Outputs = 50V Output b Current = Ref.	0.9	1.1	
Output b ON Current	$V_{CC} = 5V$, $V_{OUT} b = 50V$, $T_A = 25^{\circ}C$, $R_P = 18.1k$ $R_P = 7.03k$ $R_P = 3.40k$ $R_P = 2.80k$	0.18 0.45 0.90 1.08	0.22 0.55 1.10 1.32	mA mA mA
Output Leakage Current	V _{OUT} = 75V		5	μΑ
Output Breakdown Voltage	Ι _{ΟυΤ} = 250 μΑ	80		V
Propagation Delay: Any Input to Segment Output	V _{CC} = 5V, T _A = 25°C		10	μs

Note 1: This limit can be higher for a current limiting voltage source.

Note 2: The maximum junction temperature is 140°C. For operation at elevated temperatures, the device must be derated based on a thermal resistance of 140°C/W θ JA.

Note 3: In all applications transient segment output current must be limited to 50 mA. This may be accomplished in DC applications by connecting a 2.2k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.

truth table

e d d Decimal Poir

typical application

*Decimal point and comma can be displayed with or without any numera

typical performance characteristics (see DM7880 data sheet)

Display Drivers

DM8885 MOS to high voltage cathode buffer

general discription

The DM8885 interfaces MOS calculator or counterlatch-decoder-driver circuits directly to sevensegment high-voltage gas-filled displays. The six inputs A, B, D, E, F, G are decoded to drive the seven segments of the tube.

Each output constitutes a switchable, adjustable current source which provides constant current to the tube segment, even with high tube anode supply tolerance or fluctuation. These current sources have a voltage compliance from 3V to at least 80V. Each current source is ratioed to the b-output current as required for even illumination of all segments. Output currents may be varied over the 0.2 to 1.5 mA range for driving various tube types or

multiplex operation. The output current is adjusted by connecting a program resistor (R_P) from V_{CC} to the program input.

features

- Current source outputs
- Adjustable output currents 0.2 to 1.5 mA
- High output breakdown voltage 80V min
- Suitable for multiplex operation
- Low fan-in and low power
- Blanking via program input
- Also drives overrange, polarity, decimal point cathodes

connection diagram

Dual-In-Line Package

Order Number DM8885 See Package 23

truth tables

	-					
А	В	D	Ε	F	G	DISPLAY
1	1	1	1	1	0	
0	1	0	0	0	0	
1	1	1	1	0	1	=
1	1	1	0	0	1	=/
0	1	0	0	1	1	<i>' </i>
1	0	1	0	1	1	5
1	0	1	1	1	1	5
1	1	0	0	0	0	7/
1	1	1	1	1	1	\exists
1	1	1	0	1	1	9
0	0	1	1	1	1	5
1	1	0	0	1	1	7
1	1	0	1	1	1	9
0	1	0	1	1	1	-/
0	1	1	1	1	0	
0	0	0	0	0	1	151
0	0	0	0	0	0	

INPUT*	OUTPUT*
0	1 (OFF)
1	0 (ON)

*Positive Logic

 $C = (A \cdot B \cdot D + E)$

typical applications

9-13

absolute maximum ratings

Vcc
Input Voltage
Segment Output Voltage
Power Dissipation (Note 1)
Transient Segment Output Current (Note 2)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

7V 6V 80V 600 mW 50 mA 0°C to +70°C -65°C to +150°C 300°C

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logic "1" Input Voltage	V _{CC} = 4.75V	2.0			V
Logic "0" Input Voltage	V _{CC} = 4.75V			0.8	V
Logic "1" Input Current	V _{CC} = 5.25V, V _{IN} = 2.4V		2	15	μΑ
	V _{CC} = 5.25V, V _{IN} = 5.5V		4	400	μΑ
Logic "0" Input Current	V _{CC} = 5.25V, V _{IN} = 0.4V		-300	-600	μА
Power Supply Current	V _{CC} = 5.25V, All Inputs = 0V, R _P = 2.2k		22	31	mA
Input Diode Clamp Voltage	V _{CC} = 5V, I _{IN} = -12 mA, T _A = 25°C		-0.9	-1.5	V
Segment Outputs:					
Outputs a, f, g On Current Ratio	All Outputs = 50V, Output b Curr. = Ref.	0.84	0.93	1.02	
Output c On Current Ratio	All Outputs = 50V, Output b Curr. = Ref.	1.12	1.25	1.38	
Output d On Current Ratio	All Outputs = 50V, Output b Curr. = Ref.	0.90	1.00	1.10	
Output e On Current Ratio	All Outputs = 50V, Output b Curr. = Ref.	0.99	1.10	1.21	
Output b On Current	V _{CC} = 5V, V _{OUT} b = 50V, T _A = 25°C, R _P = 18.1k	0.18	0.20	0.22	mA
	V _{CC} = 5V, V _{OUT} b = 50V, T _A = 25°C, R _P = 7.03k	0.45	0.50	0.55	mA
	V _{CC} = 5V, V _{OUT} b = 50V, T _A = 25°C, R _P = 3.40k	0.90	1.00	1.10	mA
	V _{CC} = 5V, V _{OUT} b = 50V, T _A = 25°C, R _P = 2.20k	1.35	1.50	1.65	mA
Output Saturation Voltage	$V_{CC} = 4.75V$, $I_{OUT}b = 2 \text{ mA}$, $R_P = 1k \pm 5\%$ (Note 4)		0.8	2.5	V
Output Leakage Current	$V_{OUT} = 75V$, $V_{IN} = 0.8V$, $R_p \ge 1k$		0.003	3	μΑ
	V _{OUT} = 75V, V _{PROG} = 0.4V		0.003	3	μΑ
Output Breakdown Voltage	I _{OUT} = 250 μA, V _{IN} = 0.8V	80	110		V
Propagation Delays:					
Input to Segment Output	V _{CC} = 5V, T _A = 25°C		0.4	10	μs

Note 1: Maximum junction temperature is 130° C. For operating at elevated temperatures, the device must be derated based on a thermal resistance of 150° C/W θ JA.

Note 2: In all applications transient segment output current must be limited to 50 mA. This may be accomplished in DC applications by connecting a 2.2k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.

Note 3: Min/max limits apply across the guaranteed operating temperature range of 0° C to $+70^{\circ}$ C, unless otherwise specified. Typicals are for $V_{CC} = 5V$, $T_A = 25^{\circ}$ C. Positive current is defined as current into the referenced pin.

Note 4: For saturation mode the segment output currents are externally limited and ratioed.

typical performance characteristics (see DM7880 data sheet)

Sense Amplifiers

LM5520/LM7520 series dual core memory sense amplifiers general description

The devices in this series of dual core sense amplifiers convert bipolar millivolt-level memory sense signals to saturated logic levels. The design employs a common reference input which allows the input threshold voltage level of both amplifiers to be adjusted. Separate strobe inputs provide time discrimination for each channel, Logic inputs and outputs are DTL/TTL compatible. All devices of the series have identical preamplifier configurations, while various logic connections are provided to suit the specific application.

The LM5520/LM7520 has output latch capability and provides sense, strobe, and memory function for two sense lines. The LM5522/LM7522 contains a single open collector output which may be used to expand the number of inputs of the LM5520/LM7520, or to drive an external Memory Data Register (MDR). Intended for small memories, the two channels of the LM5524/LM7524 are independent with two separate outputs. The LM5534/LM7534 is similar to the LM5524/ LM7524 but has uncommitted, wire-ORable outputs. The LM5528/LM7528 has the same logic configuration of the LM5524/LM7524 and in addition provides separate low impedance Test Points at each preamplifier output. A similar device having uncommitted, wire-ORable outputs is the LM5538/LM7538.

features

- High speed
- Guaranteed narrow threshold uncertainty over temperature

- Adjustable input threshold voltage
- Fast overload recovery times
- Two amplifiers per package
- Molded or cavity dual-in-line package
- Six logic configurations

The part number ending with an even number (e.g., LM5520) designates a tighter guaranteed input threshold uncertainty than the subsequent odd number ending (e.g., LM5521). The remaining specifications for the two are identical. All devices meet or exceed the specifications for the corresponding device (where applicable) in the SN5520/SN7520 series and are pin-for-pin replacements.

absolute maximum ratings

Supply Voltage	±7V
Differential or Reference Input	
Voltage	±5V
Logic Input Voltage	+5.5V
Operating Temperature Range	
LM55XX	-55°C to +125°C
	0 0

LM75XX 0° C to $+70^{\circ}$ C -65°C to +150°C

Storage Temperature Range

typical application

Expanded Small Memory System

LM5520/LM7520 and LM5521/LM7521 electrical characteristics

LM5520/LM5521: The following apply for –55°C \leq T_A \leq 125°C

					TEST CONDITIONS (EACH AMPLIFIER)									
PARAMETER	MIN	TYP	MAX	UNIT	DIFF. INPUT	REF. INPUT	STROBE	GATE Q INPUT	GATE Q INPUT	LOGIC OUTPUT (NOTE 3)	SUPPLY VOLT.	COMMENTS		
Differential Input Threshold Voltage (V _{TH}) (Note 2) Differential & Reference Input Bias Current	10(8) 35(33)	15 15 40 40 30	20(22) 45(47) 100	mV mV mV mV	±V _{TH} ±V _{TH} ±V _{TH} ±V _{TH}	15 mV 15 mV 40 mV 40 mV	+5V +5V +5V +5V +5.25V	+5V +5V +5V +5V +5.25V	+5.25V	+16 mA(Q)' -400 μA(Q) +16 mA(Q) -400 μA(Q)	±5V ±5V ±5V ±5V ±5V	Logic Output <0.4V Logic Output >2.4V Logic Output <0.4V Logic Output >2.4V		
LM7520/LM752	l: The	follo	wing app	oly fo	r 0°C	≤T _A ≤	≤ 70°C							
Differential Input Threshold Voltage (V _{TH}) (Note 4)	11(8) 36(33)	15 15 40 40	19(22) 44(47)	mV mV mV	±V _{TH} ±V _{TH} ±V _{TH} ±V _{TH}	15 mV 15 mV 40 mV 40 mV	+5V +5V +5V +5V	+5V +5V +5V +5V		+16 mA(Q) -400 μA(Q) +16 mA(Q) -400 μA(Q)	±5V ±5V ±5V ±5V	Logic Output <0.4V Logic Output >2.4V Logic Output <0.4V Logic Output >2.4V		
Differential & Reference Input Bias Current		30	75	μА	0V	0V	+5.25V	+5.25V	+5.25V		±5.25V			

LM5520/LM5521: The following apply for –55°C \leq $T_A \leq$ 125°C LM7520/LM7521: The following apply for 0°C \leq $T_A \leq$ 70°C

Differential Input Offset Current		0.5		μА	0V	0∨	+5.25V	+5.25V	+5.25V		±5.25V	
Logic "1" Input Voltage (Strobes) (Gate Q) (Gate Q)	2 2 2			V V	40 mV 40 mV 40 mV	20 mV 20 mV 20 mV	+2V 0V 0V	+4.75V +2V 0V	+2V	-400 μA(Q) +16 mA(Q) +16 mA(Q)	±5V ±5V ±5V	Logic Output >2.4V Logic Output <0.4V Logic Output <0.4V
Logic "0" Input Voltage (Strobes) (Gate Q) (Gate Q)			0.8 0.8 0.8	V V	40 mV 40 mV 40 mV	20 mV 20 mV 20 mV	+0.8V 0V 0V	+4.75V +0.8V 0V	+0.8V	+16 mA(Q) -400 μA(Q) -400 μA(Q)	±5V ±5V ±5V	Logic Output <0.4V Logic Output >2.4V Logic Output >2.4V
Logic "0" Input Current		-1	-1.6	mA	40 mV	20 mV	+0.4V	+0.4V	+0.4V		±5.25V	Each Input
Logic "1" Input Current (Strobe & Gate $\overline{\Omega}$) (Gate Q)		5 .02 5 .02	40 1 40 1	μA mA μA mA	0V 0V 40 mV 40 mV	20 mV 20 mV 20 mV 20 mV	+2.4V +5.25V +5.25V +5.25V	+5.25V +5.25V +2.4V +5.25V	+2.4V +5.25V		±5.25V ±5.25V ±5.25V ±5.25V	Each Input Each Input
Logic "1" Output Voltage (Strobe) (Gate Q) (Gate $\overline{\mathrm{Q}}$)	2.4 2.4 2.4	3.9 3.9 3.9		V V V	40 mV 40 mV 40 mV	20 mV 20 mV 20 mV	+2.0V 0V +4.75V	+5.25V +0.8V 0V	+0.8V	-400 μA(Q) -400 μA(Q) -400 μA(Q)	±4.75V ±4.75V ±4.75V	
Logic "0" Output Voltage (Strobe) (Gate Q) (Gate Q)		0.25 0.25 0.25	0.40 0.40 0.40	V V	40 mV 0V 0V	20 mV 20 mV 20 mV	+0.8V 0V 0V	+4.75V +2V 0V	+2V	+16 mA(Q) +16 mA(Q) +16 mA(Q)	±4.75V ±4.75V ±4.75V	
Q Output Short Circuit Current	-3	-4	-5	mA	0٧	20 mV	0V	ov		0 V(Q)	±5.25V	
Q Output Short Circuit Current	-2.1	-2.8	-3.5	mA	ov	20 mV	0V	ov	ov	0 V(Q)	±5.25V	
V+ Supply Current		21	35	mA	0V	20 mV	ov	ov	0V		±5.25V	
V- Supply Current		-13	-18	mA	0V	20 mV	0V	0V	0V		±5.25V	

Note 1: For $0^{\circ}\text{C} \le T_{A} \le 70^{\circ}\text{C}$ operation, electrical characteristics for LM5520 and LM5521 are guaranteed the same as LM7520 and LM7521, respectively.

Note 2: Limits in parentheses pertain to LM5521, other limits pertain to LM5520.

Note 3: Q or \overline{Q} in parentheses indicate Q or \overline{Q} logic output, respectively. Note 4: Limits in parentheses pertain to LM7521, other limits pertain to LM7520. Note 5: Positive current is defined as current into the referenced pin.

Note 6: Pin 1 to have \geq 100 pF capacitor connected to ground.

LM5520/LM7520 and LM5521/LM7521

electrical characteristics

LM5520/LM5521 and LM7520/LM7521: The following apply for $T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = -5V$

					TEST CONDITIONS							
PARAMETER	MIN	ТҮР	MAX	UNIT	DIFF.	REF. INPUT	STROBE AND GATE INPUTS	Q LOGIC OUTPUT	AC TEST CIRCUIT			
AC Common-Mode Input Firing Voltage		±2.5		v	PULSE	20 mV	+5V	SCOPE				
Propagation Delays												
Differential Input to Logical "1" Q Output		20	40	ns		20 mV			1			
Differential Input to Logical "0" Q Output		28		ns		20 mV			1			
Differential Input to Logical ''1'' Q Output		36		ns		20 mV			1			
Differential Input to Logical "0" $\overline{\Omega}$ Output		28	55	ns		20 mV			1			
Strobe Input to Logical "1" Q Output		10	30	ns		20 mV			1			
Strobe Input to Logical "O" Q Output		20		ns		20 mV			1			
Strobe Input to Logical "1" $\overline{\mathbb{Q}}$ Output		33		ns		20 mV			1			
Strobe Input to Logical "O" Q Output		16	55	ns		20 mV			1			
Gate Q Input to Logical "1" Q Output		12	20	ns		20 mV			2			
Gate Q Input to Logical ''0'' Q Output		6		ns		20 mV			2			
Gate Q Input to Logical "1" $\overline{\mathbb{Q}}$ Output		17		ns		20 mV			2			
Gate Q Input to Logical "0" Q Output		19	30	ns		20 mV			2			
Gate $\overline{\Omega}$ Input to Logical "1" $\overline{\Omega}$ Output		12		ns		20 mV			2			
Gate $\overline{\mathbb{Q}}$ Input to Logical "O" $\overline{\mathbb{Q}}$ Output		6	20	ns		20 mV			2			
Diff. Input Overload Recovery Time		10		ns								
Common-Mode Input Overload Recovery Time		5		ns								
Min. Cycle Time		200		ns								

LM5520/LM7520 and LM5521/LM7521

schematic diagram

connection diagram

Order Number LM5520J or LM7520J See Package 17

Order Number LM5520N or LM7520N See Package 23

Order Number LM5521J or LM7521J See Package 17

Order Number LM5521N or LM7521N See Package 23

LM5520/LM7520 and LM5521/LM7521 AC test circuit (1)

voltage waveforms (1)

Z_{OUT} = 5052, t_r = t_f = 15 ± 5 ns, PRR = 1 MHz

AC test circuit (2)

voltage waveforms (2)

Z_{OUT} = 5052, t, = t₁ = 15 ± 5 ns, PRR = 1 MH 2. Propagation delays: A = Gate Q input to logical "0" output Q

A = Gate Q input to logical "0" output Q
B = Gate Q input to logical "1" output Q
C = Gate Q input to logical "1" output Q
D = Gate Q input to logical "0" output Q
E = Gate Q input to logical "0" output Q

rropagation onays:

A = Differential input to logical "1" output

B = Differential input to logical "0" output

C = Differential input to logical "0" output

D = Differential input to logical "1" output

F = Strobe input to logical "1" output to

LM5522/LM7522 and LM5523/LM7523 electrical characteristics

LM5522/LM5523: The following apply for –55 $^{\circ}C \leq T_{A} \leq 125\,^{\circ}C$ (Note 1)

					DIEE	255			NS (EACH A		
PARAMETER	MIN	TYP	MAX	UNIT	DIFF. INPUT	REF.	STROBE INPUT	GATE INPUT	LOGIC	SUPPLY VOLT.	COMMENTS
Differential Input	10(8)	15	00:	mV	±V _{TH}	15 mV	+5V	+5V	-400 μA	±5V	Logic Output >2.4V
Threshold Voltage	35(33)	15 40	20(22)	mV mV	±V _{TH} ±V _{TH}	15 mV 40 mV	+5V +5V	+5V +5V	+16 mA -400 μA	±5V ±5V	Logic Output <0.4V Logic Output >2.4V
(V _{TH}) (Note 2)	00,000	40	45(47)	mV	±V _{TH}	40 mV	+5V	+5V	+16 mA	±5V	Logic Output <0.4V
Differential & Reference		30	100	μА	ov	0V	+5.25V	+5.25V		±5.25∨	
7522/LM7523: The	follo									-5.25 V	
			ірріу іс					.51/	4004	+51/	Lasta Olivara NO 414
Differential Input	11(8)	15 15	19(22)	mV mV	±V _{TH} ±V _{TH}	15 mV 15 mV	+5V +5V	+5V +5V	−400 µA +16 mA	±5V ±5V	Logic Output >2.4V Logic Output <0.4V
Threshold Voltage (V _{TH}) (Note 3)	36(33)			mV	±V _{TH}	40 mV	+5V	+5V	-400 μA	±5V	Logic Output >2.4V
(A1H) (IAOCE 2)		40	44(47)	mV	±V _{TH}	40 mV	+5V	+5V	+16 mA	±5V	Logic Output <0.4V
Differential & Reference Input Bias Current		30	75	μΑ	0V	0V	+5.25V	+5.25V		±5.25V	
5522/LM5523: The	follo	wing a	pply fo	or –59	5°C ≤	$T_A \leq 1$	125°C				
17522/LM7523: The	follo	wing a	apply fo	or 0°($C \leq T_A$	≤ 70°	°C				
Diff. Input Offset Current		0.5		μА	0V	0V	+5.25V	+5.25V		±5.25V	
Logic "1" Input Voltage	1 2			.,	40	20 11	+3),	14.751	+10 0	451/	Logia Outros CO (1)
(Strobes) (Gate)	2 2			\ \v	40 mV 40 mV	20 mV 20 mV	+2V 0V	+4.75V +2V	+16 mA -400 μA	±5V ±5V	Logic Output <0.4V Logic Output >2.4V
Logic "0" Input Voltage	1								100 μΛ	-54	Output > E.4V
(Strobes)			0.8	V	40 mV	20 mV	+0.8V	+4.75V	-400 μA	±5V	Logic Output >2.4V
(Gate)			0.8	v	40 mV	20 mV	0V	+0.8V	+16 mA	±5V	Logic Output <0.4V
Logic "0" Input Current		-1	-1.6	mA	40 mV	20 mV	+0.4V	+0.4V		±5.25V	Each Input
Logic "1" Input Current											
(Strobes)			40	μА	ov	20 mV	+2.4V	+5.25V		±5.25V	
			1	mA	0V	20 mV	+5.25V	+5.25V		±5.25V	
(Gate)			40	μA	40 mV 40 mV	20 mV	+5.25V +5.25V	+2.4V		±5.25V ±5.25V	
1			Ι'	mA		20 mV		+5.25V	400 .		
Logic "1" Output Voltage	1	3.9		٧	40 mV	20 mV	+0.8V	+2V	-400 μA	±4.75V	
Logic "0" Output Voltage (Strobes)		0.25	0.40	l v	40 mV	20 mV	+2V	+4.75V	+16 mA	±4.75V	Tie Pins 10 and 12
(Gate)		0.25	0.40	v	40 mV	20 mV	0V	+4.75V +0.8V	+16 mA +16 mA	±4.75V	Tie Pins 10 and 12
Output Short Circuit											T . N
Current	-2.1	-2.8	-3.5	mA	40 mV	20 mV	0V	+5.25V	0V	±5.25V	Tie Pins 10 and 12
Output Leakage Current		0.01	250	μА	0V	20 mV	0V	+2V	+5.25V	±4.75V	
V ⁺ Supply Current		23	36	mA	ov	20 mV	0V	ov		±5.25V	
V Supply Current		-13	-18	mA	0V	20 mV	0V	0V		±5.25V	
15522/LM5523 and L	M75'								L 5°C V ⁺		\/ ⁻ = _5\/
AC Common Mode Input	I		., 525.	T				T		٥٧,	
Firing Voltage		±2.5		V	PULSE	20 mV	+5V	+5V	SCOPE		
Propagation Delays:											
Differential Input to Logical "1" Output		26		ns		20 mV				;	AC Test Circuit
Differential Input to Logical "O" Output		21	45	ns		20 mV					AC Test Circuit
Strobe Input to Logical "1" Output		22		ns		20 mV					AC Test Circuit
Strobe Input to Logical "O" Output		12	40	ns		20 mV					AC Test Circuit
Gate Input to Logical "1" Output		4		ns		20 mV					AC Test Circuit
Gate Input to		15	25	ns		20 mV					AC Test Circuit
Logical "0" Output	1	10		ns							
Logical "O" Output Differential Input Over- load Recovery Time		1			ı			1			
Differential Input Over-		5		ns							
Differential Input Over- load Recovery Time Common Mode Input				ns							

Note 1: For $0^{\circ}C \le T_A \le 70^{\circ}C$ operation, electrical characteristics for LM552 quaranteed the same as LM5223 and LM7523, respectively. Note 2: Limits in parentheses pertain to LM5523, other limits pertain to LM5520 Note 3: Limits in parentheses pertain to LM7523, other limits pertain to LM7522. Note 4: Postive current is defined as current into the referenced in. Note 5: \mathbb{P} in 1 to have ≥ 100 pF capacitor connected to ground.

LM5522/LM7522 and LM5523/LM7523

schematic diagram

connection diagram

Order Number LM5522J or LM7522J See Package 17

Order Number LM5522N or LM7522N See Package 23

Order Number LM5523J or LM7523J See Package 17

Order Number LM5523N or LM7523N See Package 23

AC test circuit

voltage waveforms

LM5524/LM7524 and LM5525/LM7525 electrical characteristics

LM5524/LM5525: The following apply for $-55^{\circ}C \le T_A \le 125^{\circ}C$ (Note 1)

					DIFF.	REF.	STROBE	IONS (EAC	SUPPLY	
PARAMETER	MIN	TYP	MAX	UNIT	INPUT	INPUT	INPUT	OUTPUT	VOLT.	COMMENTS
Differential Input	10(8)	15		mV	±V _{TH}	15 mV	+5V	+16 mA	±5V	Logic Output < 0.4V
Threshold Voltage		15	20(22)	mV	±V _{TH}	15 mV	+5V	-400 μA	±5V	Logic Output >2.4V
(V _{TH}) (Note 2)	35(33)	40 40	45(47)	mV	±V _{TH}	40 mV 40 mV	+5V +5V	+16 mA -400 μA	±5V ±5V	Logic Output <0.4V Logic Output >2.4V
Differential & Reference		30	100	mV μA	±V _{TH}	0V	+5.25V	-400 μΑ	±5.25V	Logic Output >2.4v
Input Bias Current										
M7524/LM7525: The fo	ollowi	ng app	oly for 0	°C ≤	$T_A \le 7$	′0°C				
Differential Input	11(8)	15		mV	±V _{TH}	15 mV	+5V	+16 mA	±5V ±5%	Logic Output < 0.4V
Threshold Voltage	00/00	15	19(22)	mV	±V _{TH}	15 mV	+5V	-400 μA	±5V ±5%	Logic Output >2.4V
(V _{TH}) (Note 3)	36(33)	40 ·40	44(47)	mV mV	±V _{TH} ±V _{TH}	40 mV 40 mV	+5V +5V	+16 mA -400 μA	±5V ±5% ±5V ±5%	Logic Output <0.4V Logic Output >2.4V
		-40	44(47)	1111	± VTH	40 111 0	+50	-400 μΑ	25 V 25 /6	Logic Output >2.4V
Differential & Reference Input Bias Current		30	75	μА	0V	0V	+5.25V		±5.25V	
Л5524/LM5525: The fo Л7524/LM7525: The fo							C			
Diff. Input Offset Current		0.5		μА	0V	0V	+5.25V		±5.25V	
Logic "1" Input Voltage	2			V	40 mV	20 mV	+2V	-400 μA	±5V	Logic Output >2.4V
Logic "O" Input Voltage			0.8	l v	40 mV	20 mV	+0.8V	+16 mA	±5V	Logic Output < 0.4V
Logic "O" Input Current		-1	-1.6	mA	40 mV	20 mV	+0.4V		±5.25V	
-			l							
Logic "1" Input Current		5 0.02	40	μA mA	0V 0V	20 mV 20 mV	+2.4V +5.25V		±5.25V ±5.25V	
			'							
Logic "1" Output Voltage	2.4	3.9		V	40 mV	20 mV	+2.0V	-400 μA	±4.75V	
Logic "0" Output Voltage		0.25	0.40	V	40 mV	20 mV	+0.8V	+16 mA	±4.75V	
Output Short Circuit Current	-2.1	-2.8	-3.5	mA	40 mV	20 mV	+5.25V	0V	±5.25V	
V ⁺ Supply Current		29	40	mA	0V	20 mV	0V		±5.25V	
V Supply Current		-13	-18	mA	ov	20 mV	0V		±5.25V	
//5524/LM5525 and LM	17524/	LM75	525: Th	e follo	owing a	pply fo	or T _A = :	25°C, V ⁻¹	= 5V, \	/ ⁻ = -5V
AC Common-Mode Input Firing Voltage		±2.5		\ \	PULSE	20 mV	+5V	SCOPE		
Propagation Delays:										
Differential Input to Logical "1" Output		20	40	ns		20 mV				AC Test Circuit
Differential Input to Logical "O" Output		28		ns		20 mV				AC Test Circuit
		10	30	ns		20 mV				AC Test Circuit
Strobe Input to Logical "1" Output		I		ns		20 mV				AC Test Circuit
		20					I			
Logical "1" Output Strobe Input to		20		ns						
Logical "1" Output Strobe Input to Logical "0" Output Differential Input Over-										

Note 2: Limits in parentheese pertain to LM5526, other limits pertain to LM5524.
Note 3: Limits in parentheese pertain to LM5526, other limits pertain to LM7524.
Note 4: Positive current is defined as current into the referenced pin.
Note 5: Pin 1 to have ≥100 pF capacitor connected to ground.

10-8

LM5524/LM7524 and LM5525/LM7525

schematic diagram

connection diagram

Order Number LM5524J or LM7524J See Package 17

Order Number LM5524N or LM7524N See Package 23

Order Number LM5525J or LM7525J See Package 17

Order Number LM5525N or LM7525N See Package 23

AC test circuit

voltage waveforms

LM5528/LM7528 and LM5529/LM7529 electrical characteristics

LM5528/LM5529: The following apply for –55 $^{\circ}$ C \leq T $_{A} \leq$ 125 $^{\circ}$ C (Note 1)

								ITIONS (EA		TER/
PARAMETER	MIN	TYP	MAX	UNIT	DIFF. INPUT	REF.	STROBE INPUT	LOGIC OUTPUT	SUPPLY VOLT.	COMMENTS
Differential Input	10(8)	15		mV	±V _{TH}	15 mV	+5V	+16 mA	±5V	Logic Output < 0.4V
Threshold Voltage	05 (00)	15	20(22)	mV	±V _{TH}	15 mV	+5V	-400 μA	±5V	Logic Output >2.4V
(V _{TH}) (Note 2)	35(33)	40 40	45(47)	mV mV	±V _{TH}	40 mV 40 mV	+5V +5V	+16 mA -400 μA	±5V ±5V	Logic Output <0.4V Logic Output >2.4V
Differential & Reference		30	100	μA	OV	40 mV	+5.25V	-400 μΑ	±5.25V	Logic Output >2.4V
Input Bias Current				,			10.201		-0.201	
LM7528/LM7529: Th	e follo	owing a	apply fo	or 0°C	\leq T _A	≤ 70° C				
Differential Input	11(8)	15 15	19(22)	mV mV	±V _{TH} ±V _{TH}	15 mV 15 mV	+5V +5V	+16 mA -400 μA	±5V ±5V	Logic Output <0.4V Logic Output >2.4V
Threshold Voltage	36(33)	40	19(22)	mV	±V _{TH}	40 mV	+5V	+16 mA	±5V	Logic Output <0.4V
(V _{TH}) (Note 3)	00(00)	40	44(47)	mV	±V _{TH}	40 mV	+5V	-400 μA	±5V	Logic Output >2.4V
Differential & Reference Input Bias Current		30	75	μА	0V	0V	+5.25V		±5.25V	
_M5528/LM5529: Th _M7528/LM7529: Th	e follo e follo	owing a	apply fo	or –55 or 0°C	°C≤T ≤T _A	A ≤ 12 ≤ 70°0	25°C			
Diff. Input Offset Current		0.5		μА	0V	0V	+5.25V		±5.25V	
Logic "1" Input Voltage	2			v	40 mV	20 mV	+2V	-400 μA	±5V	Logic Output >2.4V
Logic "0" Input Voltage			0.8	v	40 mV	20 mV	+0.8V	+16 mA	±5V	Logic Output <0.4V
Logic "0" Input Current		-1	-1.6		40 mV		+0.4V		±5.25V	Logic Output to 11
				mA		20 mV				
Logic "1" Input Current		5 0.02	40 1	μA mA	0V 0V	20 mV 20 mV	+2.4V +5.25V		±5.25V ±5.25V	
Logic "1" Output Voltage	2.4	3.9		v	40 mV	20 mV	+2.0V	-400 μA	±4.75V	
Logic "0" Output Voltage		0.25	0.40	v	40 mV	20 mV	+0.8V	+16 mA	±4.75V	
Output Short Circuit Current	-2.1	-2.8	-3.5	mA	40 mV	20 mV	+5.25V	0٧	±5.25V	
V ⁺ Supply Current		29	40	mA	ov	20 mV	0V		±5.25V	
V Supply Current		-13	-18	mA	0٧	20 mV	οv		±5.25V	
LM5528/LM5529 and	LM75	28/LN	// 7529 :	The f	ollowir	ng appl	y for T _A	= 25°C,	V ⁺ = 5	V, V = -5V
AC Common-Mode Input Firing Voltage		±2.5		v	PULSE	20 mV	+5V	SCOPE		
Propagation Delays:										
Differential Input to Logical "1" Output		20	40	ns		20 mV				AC Test Circuit
Differential Input to Logical "0" Output		28		ns		20 mV				AC Test Circuit
Strobe Input to Logical "1" Output		10	30	ns		20 mV				AC Test Circuit
Strobe Input to Logical "0" Output		20		ns		20 mV				AC Test Circuit
Differential Input Over- load Recovery Time		10		ns						
Common-Mode Input		5		ns						
Overload Recovery Time										

Note 1: For $0^{\circ}C \le T_A \le 70^{\circ}C$ operation, electrical characteristics for LM552 quaranteed the same as LM7528 and LM7529 respectively. Note 2: Limits in parentheses pertain to LM5529, other limits pertain to LM5528. Note 3: Limits in parentheses pertain to LM529, other limits pertain to LM7528. Note 4: Positive current is defined as current into the referenced pin. Note 5: Pin 1 to have ≥ 100 pF capacitor connected to ground. Note 8: Each test point to have ≤ 15 pF capacitive load to ground.

LM5528/LM7528 and LM5529/LM7529

schematic diagram

connection diagram

Order Number LM5528J or LM7528J See Package 17

Order Number LM5528N or LM7528N See Package 23

Order Number LM5529J or LM7529J See Package 17

Order Number LM5529N or LM7529N See Package 23

AC test circuit

voltage waveforms

LM5534/LM7534 and LM5535/LM7535 electrical characteristics

LM5534/LM5535: The following apply for $-55^{\circ}C \le T_A \le 125^{\circ}C$ (Note 1)

					TEST CONDITIONS (EACH AMPLIFIER)							
PARAMETER	MIN	TYP	MAX	UNIT	DIFF.	REF.	STROBE INPUT	LOGIC OUTPUT	SUPPLY VOLT.	COMMENTS		
Differential Input Threshold Voltage (V _{TH}) (Note 2)	10(8) 35(33)	15 15 40 40	20(22) 45(47)	m V m V m V	±V _{TH} ±V _{TH} ±V _{TH} ±V _{TH}	15 mV 15 mV 40 mV 40 mV	+5V +5V +5V +5V	+5.25V +20 mA +5.25V +20 mA	±5V ±5V ±5V ±5V	Logic Output <250 µA Logic Output <0.4V Logic Output <250 µA Logic Output <0.4V		
Differential & Reference Input Bias Current		30	100	μА	0V	0٧	+5.25V		±5.25V			

LM7534/LM7535: The following apply for $0^{\circ}C \leq T_{A} \leq 70^{\circ}C$

Differential Input Threshold Voltage (V _{TH}) (Note 3)	11(8) 36(33)	15 15 40 40	19(22) 44(47)	mV mV mV	±V _{TH} ±V _{TH} ±V _{TH} ±V _{TH}	15 mV 15 mV 40 mV 40 mV	+5V +5V +5V +5V	+20 mA +5.25V	±5V ±5V ±5V ±5V	Logic Output $<$ 250 μ A Logic Output $<$ 0.4V Logic Output $<$ 250 μ A Logic Output $<$ 0.4V
Differential & Reference Input Bias Current		30	75	μΑ	0V	0٧	+5.25V		±5.25V	

LM5534/LM5535: The following apply for –55° C \leq T $_A$ \leq 125° C LM7534/LM7535: The following apply for 0° C \leq T $_A$ \leq 70° C

Diff. Input Offset Current		0.5		μΑ	0V	0V	+5.25V		±5.25V	
Logic "0" Input Voltage			0.8	V	40 mV	20 mV	+0.8V	+5.25V	±5V	Logic Output <250 μA
Logic "1" Input Voltage	2.0			V	40 mV	20 mV	+2.0V	+20 mA	±5V	Logic Output <0.4V
Logic "0" Input Current		-1	-1.6	mA	40 mV	20 mV	+0.4V		±5.25V	
Logic "1" Input Current		5 0.02	40 1	μA mA	0V 0V	20 mV 20 mV	+2.4V +5.25V		±5.25V ±5.25V	*
Logic "0" Output Voltage		0.25	0.40	V	40 mV	20 mV	+2V	+20 mA	±4.75V	
Output Leakage Current		0.01	250	μΑ	40 mV	20 mV	+0.8V	+5.25V	±4.75V	
V ⁺ Supply Current		28	38	mA	0V	20 mV	0V		±5.25V	
V Supply Current		-13	-18	mA	0V	20 mV	0∨		±5.25V	

LM5534/LM5535 and LM7534/LM7535: The following apply for $T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = -5V$

AC Common-Mode Input Firing Voltage	±2.5		V	PULSE	20 mV	+5V	SCOPE	
Propagation Delays:								
Differential Input to Logical ''1'' Output	24		ns		20 mV			AC Test Circuit
Differential Input to Logical "O" Output	20	40	ns		20 mV			AC Test Circuit
Strobe Input to Logical "1" Output	16		ns		20 mV			AC Test Circuit
Strobe Input to Logical "0" Output	10	30	ns		20 mV			AC Test Circuit
Differential Input Over- load Recovery Time	10		ns					
Common-Mode Input Overload Recovery Time	5		ns	8				
Min. Cycle Time	200		ns					

Note 1: For $0^{\circ}C \le T_A \le 70^{\circ}C$ operation, electrical characteristics for LM5534 and LM5535 are guaranteed the same as LM7534 and LM7535 respectively.

Note 2: Limits in parentheses pertain to LM5535, other limits pertain to LM5534

Note 3: Limits in parentheses pertain to LM7535, other limits pertain to LM7534.

Note 4: Positive current is defined as current into the referenced pin.

Note 5: Pin 1 to have \geq 100 pF capacitor connected to ground.

LM5534/LM7534 and LM5535/LM7535

schematic diagram

connection diagram

Order Number LM5534J or LM7534J See Package 17

Order Number LM5534N or LM7534N See Package 23

Order Number LM5535J or LM7535J See Package 17

Order Number LM5535N or LM7535N See Package 23

AC test circuit

voltage waveforms

10

LM5538/LM7538 and LM5539/LM7539

electrical char	2040	victi	CC L		000	, = IV	,,,,,,			
LM5538/LM5539: Th				or _66	° C < 7	1	25°C (N	lote 1)		
LIVI5538/LIVI5539: ITI	e ronc	owing a	ірріу іс	JI -50						
					DIEE		TEST COND	LOGIC	SUPPLY	IFIER)
PARAMETER	MIN	TYP	MAX	UNIT	DIFF.	REF.	STROBE INPUT	OUTPUT	VOLT.	COMMENTS
Differential Input	10(8)	15		mV	±V _{TH}	15 mV	+5V	+5.25V	±5V	Logic Output <250 μA
Threshold Voltage	35(33)	15 40	20(22)	mV mV	±V _{TH} ±V _{TH}	15 mV 40 mV	+5V +5V	+20 mA +5.25V	±5V ±5V	Logic Output <0.4V Logic Output <250 µA
(V _{TH}) (Note 2)	33(33)	40	45(47)	mV	±V _{TH}	40 mV	+5V	+20 mA	±5V	Logic Output <0.4V
Differential & Reference Input Bias Current		30	100	μА	0∨	0V	+5.25V		±5.25V	
LM7538/LM7539: Th	LM7538/LM7539: The following apply for 0° C \leq T _A \leq 70° C									
Differential Input	11(8)	15		mV	±V _{TH}	15 mV	+5V	+5.25V	±5V	Logic Output <250 μA
Threshold Voltage	36(33)	15 40	19(22)	mV mV	±V _{,TH} ±V _{TH}	15 mV 40 mV	+5V +5V	+20 mA +5.25V	±5V ±5V	Logic Output <0.4V Logic Output <250 μA
(V _{TH}) (Note 3)	30(33)	40	44(47)	mV	±V _{TH}	40 mV	+5V	+20 mA	±5V	Logic Output <0.4V
Differential & Reference Input Bias Current		30	75	μΑ	0V	0V	+5.25V		±5.25V	
LM5538/LM5539: Th	e follo	owing a	apply fo	or –55	°C < 1	_Δ < 1	25°C			
LM7538/LM7539: Th	LM5538/LM5539: The following apply for $-55^{\circ}C \le T_A \le 125^{\circ}C$ LM7538/LM7539: The following apply for $0^{\circ}C \le T_A \le 70^{\circ}C$									
Diff. Input Offset Current		0.5		μΑ	0V	0V	+5.25V		±5.25V	
Logic "1" Input Voltage	2			V	40 mV	20 mV	+2V	+20 mA	±5V	Logic Output <0.4V
Logic "0" Input Voltage			0.8	V	40 mV	20 mV	+0.8V	+5.25V	±5V	Logic Output <250 μA
Logic "0" Input Current		-1	-1.6	mA	40 mV	20 mV	+0.4V		±5.25V	
Logic "1" Input Current		5 0.02	40 1	μA mA	0V 0V	20 mV 20 mV	+2.4V +5.25V		±5.25V ±5.25V	
Logic "0" Output Voltage		0.25	0.40	V	,40 mV	20 mV	+2.0V	+20 mA	±4,75V	
Output Leakage Current		0.01	250	μΑ	40 mV	20 mV	+0.8V	+5.25V	±4.75V	
V ⁺ Supply Current		28	38	mA	ov	20 mV	0V		±5.25V	
V Supply Current		-13	-18	mA	0V	20 mV	0V		±5.25V	
LM5538/LM5539 and	LM75	38/LN	17539:	The	followi	ng app	ly for T _A	(= 25°C	;, V ⁺ = 5	SV, V ⁻ = -5V
AC Common-Mode Input Firing Voltage		±2.5		٧	PULSE	20 mV	+5V	SCOPE		
Propagation Delays:										
Differential Input to Logical "1" Output		24		ns		20 mV				AC Test Circuit
Differential Input to Logical "O" Output		20	40	ns		20 mV				AC Test Circuit
Strobe Input to Logical "1" Output		16		ns		20 mV				AC Test Circuit
Strobe Input to Logical "0" Output		10	30	ns		20 mV				AC Test Circuit
Differential Input Over- load Recovery Time		10		ns						
Common-Mode Input Overload Recovery		5		ns						

Note 1: For $0^{\circ}C \le T_A \le 70^{\circ}C$ operation, electrical characteristics for LM5538 and LM5539 are guaranteed the same as LM7538 and LM7539 respectively.

Note 2: Limits in parentheses pertain to LM5539, other limits pertain to LM5538.

200

Note 3: Limits in parentheses pertain to LM7539, other limits pertain to LM7538. Note 4: Positive current is defined as current into the referenced pin.

Note 5: Pin 1 to have ≥ 100 pF capacitor connected to ground.

Note 6: Each test point to have ≤ 15 pF capacitive load to ground.

Time Min. Cycle Time

LM5538/LM7538 and LM5539/LM7539

schematic diagram

connection diagram

Order Number LM5538J or LM5538J See Package 17

Order Number LM5538N or LM7538N See Package 23

Order Number LM5539J or LM7539J See Package 17

Order Number LM5539N or LM7539N See Package 23

AC test circuit

voltage waveforms

guaranteed performance characteristics

typical performance characteristics

typical performance characteristics (cont.)

typical performance characteristics (cont.)

Gate to Output Propagation Delays LM5520/LM5521/LM7520/LM7521 (GATE Q TO Q OUTPUT DELAYS)
SEE AC TEST CIRCUIT 27 (us) 25 PROPAGATION DELAY 23 DELAY TO "O" OUTPUT 21 19 17 "1" OUTPUT DELAY TO 15 -35 +5 +45 +85 TA (°C)

Gate to Output Propagation

typical applications

Large Memory System with Sectored Core Planes

typical applications (cont.)

Small Memory System

Large Memory System

New Products

LM125,LM126,LM127 dual complementary tracking voltage regulators

general description

These are precision dual regulators with fixed outputs of $\pm 15V$ (LM125), $\pm 12V$ (LM126), and +5V, -12V (LM127), accurate to ±2%. Complete protection of the regulators is assured by internal short circuit current limit and thermal shutdown. Positive output voltage tracks negative output under all conditions. The circuit will be available in 9-lead power plastic dual-in-line and 10-lead TO-5 hermetic packages.

features

Output currents

±100 mA with provisions for current boost to 5 amps

connection diagrams

Dual-In-Line Package

■ Low output drift

±0.001%/°C

Output impedance

 $50 M\Omega$

Internally compensated

few external

components

Other specs

Line regulation Input/output differential Maximum input Electronic shutdown

1 mV/V 2.5V min. ±40V

TTL compatible

Metal Can Package

LM143 high voltage operational amplifier general description features

A general purpose internally compensated super β operational amplifier with operation to ±40V. The circuit is pin-for-pin compatible with the Motorola MC1536 but has improved offset, drift and input over-voltage characteristics. It will be available in an 8-lead TO-5 metal can package.

connection diagram

■ Low input bias 10 nA Low input offset current 2 nA High slew rate ±2.5V/μs

 Input over voltage protection Full ±40V

 Pin compatible with Motorola MC1536 but has improved offset, drift and breakdown characteristics

LM378 4 watt/channel stereo amplifier

general description

The LM378 is a monolithic dual power amplifier which offers high quality performance for stereo phonographs, tape players, and recorders, AM & FM stereo receivers, etc.

The LM378 will deliver 4 Watts/channel into a 16Ω load. The amplifier is designed to operate with a minimum of external components and contains an internal bias regulator to bias each amplifier and supply 80 dB supply rejection.

features

High Gain

100 dB/channel

Low Distortion

1% T.H.P.

High Output Current

1.2A

Supply Voltage

9-30V

- Internally Compensated
- Short Circuit Protection
- Thermal Limiting Protection

block diagram

LM383 5 watt power amplifier

general description

The LM383 is a monolithic power amplifier capable of delivering 5 watts rms into a 4Ω load at 14V supply voltage. The amplifier includes a separate preamplifier and power amplifier giving an open loop gain of 15,000. Also provided on the chip is a power supply decoupler-regulator providing power supply rejection as well as an external 7V regulated reference voltage.

features

Wide supply operating range

8 - 18V

■ High gain —

Preamplifier 1500 V/V Power amplifier 10 V/V

■ Low distortion

1% T.H.D.

■ Wide power bandwidth

40 kHz

Short circuit protection

Thermal limiting protection

block diagram

LM1805 TV signal processor

general description

A complete two watt TV sound system, utilizing proven circuit techniques, has been incorporated in the LM1805. The FM IF portion utilizes a three stage limiting amplifier and a differential peak detector combined with a linear DC volume control. Designed for use with a minimum number of external components, the audio power amplifier section may be operated over a wide range of power supply and a speaker impedance combinations.

Thermal overload protection and current limiting

insure reliable, fail safe operation in adverse enviornments.

features

- Regulator for FM IF section
- Low harmonic distortion
- Excellent AM rejection
- Fixed voitage gain in audio power amplifier
- 1.3 amp current capability
- Linear volume control

block diagram

DM7833,DM7834,DM7835,DM7839 quad TRI-STATE® transceiver

general description

This family of TRI-STATETM party line transceivers offer extreme versatility in bus organized data transmission systems. The data bus may be unterminated, or terminated DC or AC at one or both ends. Drivers in the third (high impedance) state load the data bus with a negligible leakage current. The receiver input current is low allowing at least 100 driver/receiver pairs to utilize a single bus. The bus loading is unchanged when $V_{CC} = 0V$. The receiver incorporates hysteresis to provide greater noise immunity. All devices utilize a high current TRI-STATE output driver. The DM7833/ DM8833 and DM7835/DM8835 employ TRI-STATE outputs on the receiver also, while on the DM7834/DM8834 and DM7839/DM8839 the receiver outputs are standard active pull up T2L.

The DM7833/DM8833 are non-inverting quad transceivers with a common inverter driver disable control and a common inverter receiver disable control

The DM7839/DM8839 are non-inverting quad transceivers with a common two-input driver disable control.

The DM7834/DM8834 are inverting quad transceivers with a common two input driver disable control.

The DM7835/DM8835 are inverting quad transceivers with a common inverter driver disable control and a common inverter receiver disable control.

features

Receiver hysteresis
 Receiver noise immunity
 1.4V (typ)

Receiver input current 50 μ A (max) for normal V_{CC} or

V_{CC} = 0V ■ Receivers

Sink 16 mA at 0.4V (max)
Source 2.0 mA (mil)
5.2 mA (com) at 2.4V (min)

Drivers

Sink 50 mA at 0.5V (max) or 32 mA at 0.4V (max) or 10.4 mA at 2.4V (min)

- Drivers have TRI-STATE outputs
- DM7833/DM8833 and DM7835/DM8835 receivers have TRI-STATE outputs
- lacktriangle Capable of driving 100 Ω DC terminated buses
- 74 series TTL compatible

connection diagrams

DM5446A/DM7446A, DM5447A/DM7447A. DM5448/DM7448 BCD to 7-segment decoder/drivers

DM7856/DM8856, DM8857, DM7858/DM8858 BCD-to-7-segment LED drivers

general description

This versatile series of 7-segment display drivers fullfills a wide variety of requirements for most active high or active low LED or lamp displays. Each device fully decodes a 4-bit BCD input into a number from 0 through 9 in the standard 7segment display format, and BCD numbers above 9 into unique patterns that verify operation.

The DM5446A/DM7446A has active-low, opencollector outputs that will drive segments requiring up to 40 mA. The outputs will withstand 30V with a maximum reverse current of 250µA. In addition the circuit may be used to drive logic circuits with a normalized fanout of 25.

The DM5447A/DM7447A has the same output characteristics as the DM5446A/DM7446A except that the outputs withstand 15V at a maximum reverse current of 250µA.

The DM5448/DM7448 has active-high, passivepull-up outputs with a fanout of 4 and typical source current of 2 mA at a voltage of 0.85V. It is normally used to drive logic circuits, operate high-voltage loads such as electroluminescent displays through buffer transistors or SCR switches, and in low current non-multiplex LED applications. The DM7856/DM8856 has active-high, passivepull-up outputs which provide a typical source current of 6 mA at an output voltage of 1.7V. The applications are the same as for the DM5448/ DM7448 except that more design freedom is allowed with higher source levels.

The DM8857 has active-high outputs and is designed for multiplexing applications. It provides a typical source current of 50 mA at an output voltage of 2.3V.

The DM7858/DM8858 has active high outputs with source current adjustable with an external resistor. This feature allows extreme flexibility in source current value selection for either multiplex or non-multiplex applications.

features

- Lamp-test input
- Leading/trailing zero suppression (RBI and
- Blanking input that may be used to modulate lamp intensity or inhibit output
- TTL and DTL compatible

connection diagram

Dual-In-Line Package

TOP VIEW

output stage schematics

DM5446A/DM7446A DM5447A/DM7447A

DM5448/DM7448 DM7856/DM8856

DM7858/DM8858

DM8887 8-digit Panaplex II anode driver general description

The DM8887 is designed to drive the individual anodes of a 7-segment high voltage gas-discharge panel in a time multiplexed fashion.

When driven with appropriate input signals, the driver will switch voltage and impedance levels at

the anode. This will allow or prevent ionization of gas around selected cathodes in order to form a numeric display. Its main application will be to act as a buffer between MOS outputs (fully decoded) and the anodes of a gas-discharge panel, since it can source up to 16 mA at a low impedance and can tolerate more than -55V in the off state.

DM8889 high voltage segment driver general description

DM8889 is capable of driving eight outputs with a constant output sink current programmable by an external resistor, R_P . The program current is

half that of output on current. In the off state the outputs can tolerate more than 80V. The ration of "on" currents is within $\pm 10\%$.

connection diagrams

Dual-In-Line Package

INPUTS

V*

IS. 17 16 15 14 13 12 11 10

OM8887

OM8887

OUTPUTS

TOP VIEW

typical applications

MIL-STD-883/MIL-M-38510

MIL-STD-883

Mil-Standard-883 is a Test Methods and Procedures Document for Microelectronic Circuits. It was derived from MIL-S-19500, MIL-STD-750, and MIL-STD-202C for transistors and diodes at about the time that National Semiconductor Corporation was entering the military microelectronics market. As a result, our standard quality control operations are written around MIL-STD-883. The bonding control, visual inspections, and post seal screening requirements set forth by 883 (as well as added control procedures beyond the requirements of 883) have been part of National's quality control procedures almost from the start. Our Quality Assurance Procedures Manual is available upon request.

We offer a complete line of linear/883 (Class B) products as standard, off-the-shelf items. Special Linear/883 data sheets have been prepared to reflect this capability. They show process flow, electrical parameters, end of test criteria, and test circuits. We save you the problem of specifying test and inspection procedures, and offer significant cost savings by having an off-the-shelf, "to the letter" 883 program. In addition, we will test any of our integrated circuits to any class of MIL-STD-883.

The detailed information concerning MIL-STD-883 screening is contained in National's specification NSC10002

MIL-M-38510

MIL-M-38510 specifies the general requirements for supplying microcircuits. These are; product assurance, which includes screening and quality conformance inspection; design and construction; marking; and workmanship. The screening and quality conformance inspection are conducted in accordance with MIL-STD-883.

SCREENING

All microcircuits delivered in accordance with MIL-M-38510 must have been subjected to, and passed all the screening tests detailed in Method 5004 of MIL-STD-883 for the type of microcircuit and product assurance level.

The device electrical and package requirements of MIL-M-38510 are detailed by a device specification referred to as a slash sheet. Each slash sheet defines the microcircuit electrical performance and mechanical requirements. Each device listed on a slash sheet is referred to as a slash number and the group of the microcircuits contained on a slash sheet is defined as a family of devices. The device may be Class B or C as defined by MIL-STD-883, Method 5004 and 5005. Three lead finishes are allowed by the slash sheet, pot solder dip, bright tin plate, and gold plate.

The MIL-M-38510 specs for standard linear devices require 100% DC testing at 25°C, -55°C and +125°C. AC testing is performed at +25°C. The electrical parameters specified are tighter than the normal data sheet guaranteed limits. Additionally, MIL-M-38510 requires device traceability, extensive documentation and closely matched maintenance.

QUALITY CONFORMANCE

Quality conformance inspection is conducted in accordance with the applicable requirements of Group A, (electrical test), Group B and C, (environmental test) of Method 5005, MIL-STD-883. These tests are conducted on a sample basis with Group A performed on each sublot, Group B on each lot, and Group C as specified (usually every three months).

To supply devices to MIL-M-38510, the IC manufacturer must quality the devices he plans to supply to the detail specifications. Qualification consists of notifying the qualifying activity of one's intent of qualify to MIL-M-38510. After passing comprehensive audits of facilities and documentation systems, the IC manufacturer will subject the device to and demonstrate that they satisfy all of

1

MIL-M-38510 (con't)

the Group A, B, and C requirements of Method 5005 of MIL-STD-883 for the specified classes and types of IC. The qualification tests shall be monitored by the qualifying agency. Finally the IC manufacturer shall prepare and submit qualification test data to the qualifying agency. Groups A, B, and C inspections then shall be performed at intervals no greater than three months.

The purpose of qualification testing is to assure that the device and lot quality conform to certain standard limits. In effect, lot qualification tests tend to ensure that once a particular device type is demonstrated to be acceptable, it's production, including materials, processing, and testing will continue to be acceptable. These limits are specified in MIL-STD-883 in terms of LTPD's (Lot Tolerance Percent Defective) for the various qualification test sub-groups. Qualification testing is

performed on a sample of devices which are chosen at random from a lot of devices that has satisfactorily completed the screening of Method 5004 must be performed on each device, i.e. on a 100% basis as opposed to qualification testing (Method 5005) which occurs on a random sample basis.

In summary, the entire purpose of MIL-M-38510 and MIL-STD-883 is to provide the military, through its contractors with standard devices.

We at National Semiconductor have supplied and are supplying devices to the MIL-M-38510 specifications. To order a MIL-M-38510 microcircuit, specify the following:

For example; to specify an LM741 in a DIP processed to the requirements of MIL-M-38510, Class B, with gold plated leads, specify M-38510/10101BCC.

Definition of Terms

voltage regulators

Current-Limit Sense Voltage: The voltage across the current limit terminals required to cause the regulator to current-limit with a short circuited output. This voltage is used to determine the value of the external current-limit resistor when external booster transistors are used.

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reductions in input voltage.

Feedback Sense Voltage: The voltage, referred to ground, on the feedback terminal of the regulator while it is operating in regulation.

Input Voltage Range: The range of DC input voltages over which the regulator will operate within specifications.

Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accelerated life-test conditions at 125°C with maximum rated voltages and power dissipation for 1000 hours.

Maximum Power Dissipation: The maximum total device dissipation for which the regulator will operate within specifications.

Output-Input Voltage Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate within specifications.

Output Noise Voltage: The RMS AC voltage at the output with constant load and no input ripple, measured over a specified frequency range.

Output Voltage Range: The range of regulated output voltages over which the specifications apply.

Output Voltage Scale Factor: The output voltage obtained for a unit value of resistance between the adjustment terminal and ground.

Quiescent Current: That part of input current to the regulator that is not delivered to the load.

Ripple Rejection: The line regulation for AC input signals at or above a given frequency with a specified value of bypass capacitor on the reference bypass terminal.

Standby Current Drain: That part of the operating current of the regulator which does not contribute to the load current.

Temperature Stability: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

operational amplifiers

Bandwidth: That frequency at which the voltage gain is reduced to $1/\sqrt{2}$ times the low frequency value.

Common Mode Rejection Ratio: The ratio of the input voltage range to the peak-to-peak change in input offset voltage over this range.

Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental. % harmonic distortion =

$$\frac{(V_2^2 + V_3^3 + V_4^2 + \ldots)^{1/2} (100\%)}{V_1}$$

where V_1 is the rms amplitude of the fundamental and V_2 , V_3 , V_4 , . . . are the rms amplitudes of the individual harmonics.

Input Bias Current: The average of the two input currents.

Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance (R_S) and load resistance (R_L) .

Input Offset Current: The difference in the currents into the two input terminals when the output is at zero.

Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.

Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.

operational amplifiers (con't)

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

Output Impedance: The ratio of output voltage to output current under the stated conditions for source resistance (R_S) and load resistance (R_L) .

Output Resistance: The small signal resistance seen at the output with the output voltage near zero.

Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.

Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.

Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.

Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.

Supply Current: The current required from the power supply to operate the amplifier with no load and the output at zero.

Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.

Unity Gain Bandwidth: The frequency range from DC to the frequency where the amplifier open loop gain rolls off to one.

Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (R_s) and load resistance (R_l) .

voltage comparators/buffers

Input Bias Current: The average of the two input currents.

Input Offset Current: The absolute value of the difference between the two input currents for which the output will be driven higher than or lower than specified voltages.

Input Offset Voltage: The absolute value of the voltage between the input terminals required to make the output voltage greater than or less than specified voltages.

Input Voltage Range: The range of voltage on the input terminals (common mode) over which the offset specifications apply.

Logic Threshold Voltage: The voltage at the output of the comparator at which the loading logic circuitry changes its digital state.

Negative Output Level: The negative DC output voltage with the comparator saturated by a differential input equal to or greater than a specified voltage.

Output Leakage Current: The current into the output terminal with the output voltage within a given range and the input drive equal to or greater than a given value.

Output Resistance: The resistance seen looking into the output terminal with the DC output level at the logic threshold voltage.

Output Sink Current: The maximum negative current that can be delivered by the comparator.

Positive Output Level: The high output voltage level with a given load and the input drive equal to or greater than a specified value.

Power Consumption: The power required to operate the comparator with no output load. The power will vary with signal level, but is specified as a maximum for the entire range of input signal conditions.

Response Time: The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparator from some initial, saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive.

Saturation Voltage: The low-output voltage level with the input drive equal to or greater than a specified value.

Strobe Current: The current out of the strobe terminal when it is at the zero logic level.

Strobed Output Level: The DC output voltage, independent of input conditions, with the voltage on the strobe terminal equal to or less than the specified low state.

Strobe ON Voltage: The maximum voltage on either strobe terminal required to force the output to the specified high state independent of the input voltage.

voltage comparators/buffers (con't)

Strobe OFF Voltage: The minimum voltage on the strobe terminal that will guarantee that it does not interfere with the operation of the comparator.

Strobe Release Time: The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from zero to the one logic level.

Supply Current: The current required from the positive or negative supply to operate the comparator with no output load. The power will vary with input voltage, but is specified as a maximum for the entire range of input voltage conditions.

Voltage Gain: The ratio of the change in output voltage to the change in voltage between the input terminals producing it.

functional blocks

(LM122/LM222/LM322, LM2905/LM3905 only)

Maximum Power Dissipation: The maximum total device dissipation for which the timer will operate within specifications.

Timing Ratio: The ratio of the firing voltage at the R/C pin to the reference voltage.

Comparator Input Current: The average current flowing from the R/C pin during the timing cycle.

Trigger Voltage: The voltage required at the trigger terminal to initiate a timing cycle, referenced to the ground pin.

Output Leakage Current: The maximum current flowing into the collector of the output transistor when the transistor is in the "off" state.

Reset Resistor: The equivalent resistor which may be used to calculate the discharge time of the timing capacitor. $t_{DISCHARGE} = (5) (C_t) (R_{RESET})$.

Collector Saturation Voltage: The collector to emitter voltage on the output transistor when it is in the "on" state with specified sink current flowing into the collector terminal.

Emitter Saturation Voltage: The voltage across the output transistor when the collector is tied to V+, the transistor is in the "on" state, and the specified output current is flowing from the emitter terminal.

Capacitor Saturation Voltage: The offset voltage remaining on the timing capacitor after capacitor discharge current has dropped to zero.

Trigger Current: The current flowing into or out of the trigger terminal at the specified trigger voltage.

 $R_{t}\!\!:$ Timing resistor connected between V_{REF} and the R/C terminal.

C_t: Timing capacitor connected between the R/C terminal and the ground terminal.

consumer circuits

AGC DC Output Shift: The shift of the quiescent IC output voltage of the AGC section for a given change in AGC central voltage.

AGC Figure of Merit (AGC Range): The widest possible range of input signal level required to make the output drop by a specified amount from the specified maximum output level.

AGC Input Current: The current required to bias the central voltage input of the AGC section.

AM Rejection Ratio: The ratio of the recovered audio output produced by a desired FM signal of specified level and duration to the recovered audio output produced by an unwanted AM signal of specified amplitude and modulating index.

Channel Separation: The level of output signal of an undriven amplifier with respect to the output level of an adjacent driven amplifier.

Detection Bandwidth: That frequency range about the free running frequency of the tone decoder/ phase locked loop where a signal above a specified level will cause a detected signal condition at the output.

Detection Bandwidth Skew: The measure of how well the detection bandwidth is centered about the free running frequency. It is equal to the maximum detection bandwidth frequency plus the minimum detection bandwidth frequency minus twice the free running frequency.

Hold In Range: That range of frequencies about the free running frequency for which the phase locked loop will stay in lock if initially starting out in lock.

Input Bias Current: The average of the two input currents.

consumer circuits (con't)

Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Input Sensitivity: The minimum level of input signal at a specified frequency required to produce a specified signal-to-noise ratio at the recovered audio output.

Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

Limiting Threshold: In FM the input signal level which causes the recovered audio output level to drop 3 dB from the output level with a specified large signal input.

Lock In Range: That range of frequencies about the free running frequency for which the phase locked loop will come into lock if initially starting out of lock.

Maximum Sweep Rate: The maximum rate that the VCO may be made to vary its oscillating frequency over its Sweep Range.

Output Resistance: The ratio of the change in output voltage to the change in output current with the output around zero.

Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.

Phase Detector Sensitivity: The change in the output voltage of the phase detector for a given change in phase between the two input signals to the phase detector.

Power Bandwidth: That frequency at which the voltage gain reduces to $1/\sqrt{2}$ with respect to the flat band voltage gain specified for a given load and output power.

Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

Slew Rate: The internally limited rate of change in output voltage with a large amplitude step function applied to the input.

Supply Current: The current required from the power supply to operate the amplifier with no load and the output at zero.

Sweep Range: That ratio of maximum oscillating frequency to minimum operating frequency produced by varying the central voltage of the VCO from its maximum value to its minimum value with fixed values of timing resistance and capacitance.

VCO Sensitivity: The change in operating frequency for a given change in VCO central voltage.

analog switches

Driver Leakage Current: The sum of the currents into the source and drain switch terminals, with both held at the same specified voltage.

Logic "1" Input Voltage: The voltage level which is guaranteed to be interpreted by the device as a logical "'true" signal.

Logic "O" Input Voltage: The voltage level which is guaranteed to be interpreted by the device as a logical "false" signal.

Logic Input Slew Rate: The voltage difference between the logic "1" and logic "0" states divided by the transistion time.

Switch Leakage Current: The current seen when a specified voltage is applied between drain and source of a channel that is logically turned off.

Switch On Resistance: The equivalent resistance from source to drain, tested by forcing a specified current and measuring the resultant voltage drop.

Switch Turn-Off Time: The interval between the time that the logic input passes through the threshold voltage and the time that the output goes to a specified voltage level in the test circuit.

Switch Turn-On Time: The interval between the time that the logic input passes through the threshold voltage and the time that the output goes to 90% of its final value in the specified test circuit.

interface circuits

Common Mode Voltage: Arithmetic mean of voltages at the differential inputs referenced to ground pin at the receiver.

Common Mode Sensitivity: Rate of change of input differential voltage required to produce a given output level, against common mode voltage.

Supply Sensitivity: Rate of change of input dif-

ferential voltage required to produce a given output level, against power supply voltage (V Pin 14 - V Pin 7).

Disabled Output Clamp Current: The current which flows from the output of a disabled TRI-STATE gate when it is dragged below ground (for instance by a transmission-line-associated transient). It is derived from the V_{CC} power rail.

sense amplifiers

AC Common-Mode Input Firing Voltage: The peak level of a common-mode pulse which will exceed the input dynamic range and cause the logic output to switch. Pulse characteristics: $t_r = t_f \le 15$ ns, PW = 50 ns.

Common-Mode Input Overload Recovery Time: The time necessary for the device to recover from a $\pm 2V$ common-mode pulse ($t_r = t_f = 20$ ns) prior to the strobe enable signal.

Differential Input Offset Current: The absolute difference in the two input bias currents of one differential input.

Differential Input Overload Recovery Time: The time necessary for the device to recover from a 2V differential pulse ($t_f = t_r = 20$ ns) prior to the strobe enable signal.

Differential Input Threshold Voltage: The DC input voltage which forces the logic output to the logic threshold voltage (\sim 1.5V) level.

Input Bias Current: The DC current which flows into each input pin with differential input of OV.

Supply Current: The total DC current per package drawn from the voltage supply.

Offset Voltage: Difference between the absolute values of threshold voltage in positive- and negative-going directions.

Propagation Delay Time: Interval from switching input through 1.5V to output traversing its 50% voltage point. Measured with 50Ω load to +10V 15 pF total capacitance.

Physical Dimensions

(All dimensions are in inches.)

Package 1 14 Lead Cavity DIP (D)

Package 2 16 Lead Cavity DIP (D)

Package 3 10 Lead Flat Package (F)

Package 4 14 Lead Flat Package (F)

Package 5 16 Lead Flat Package (F)

Package 6
12 Lead TO-8 Metal Can (G)

Package 6A 12 Lead TO-8 Metal Can (G) (AH2114/AH2114C only)

INCHES TO MILLIMETERS CONVERSION TABLE											
INCHES	MM	INCHES	MM	INCHES	MM						
.001	.0254	.010	.254	.100	2.54						
.002	.0508	.020	.508	.200	5.08						
.003	.0762	.030	.762	.300	7.62						
.004	.1016	.040	1.016	.400	10.16						
.005	.1270	.050	1.270	.500	12.70						
.006	.1524	.060	1.524	.600	15.24						
.007	.1778	.070	1.778	.700	17.78						
.008	.2032	.080	2.032	.800	20.32						
.009	.2286	.090	2.286	.900	22.86						

National Semiconductor Corporation

2900 Semiconductor Drive Santa Clara, California 95051

(408) 732-5000 TWX: 910-339-9240

National Semiconductor GmbH

8080 Fuerstenfeldbruck Industriestrasse 10 West Germany

Telephone: 01841 1484

Telex: 527-649

National Semiconductor (UK) Ltd.

Larkfield Industrial Estates Greenock, Scotland Telephone: 33251 Telex: 778 632

National Semiconductor (Pte.) Ltd.

No. 1100 Lower Delta Rd. Singapore 3

Telephone: 630011

Telex: 402

REGIONAL AND DISTRICT SALES OFFICES

SOUTH-EAST DISTRICT OFFICE 3322 Memorial Pkway, S.W. Huntsville, Alabama 35802 (205) 881-0622 TWX: 810-726-2207

ROCKY MOUNTAIN REGIONAL OFFICE 3313 North 68th Street, No. 114 Scottsdale, Arizona 85251 (602) 945-8473

CALIFORNIA

NORTH-WEST REGIONAL OFFICE 2680 Bayshore Frontage Road, Suite 112 Mountain View, California 94040 (415) 961-4740 TWX: 910-379-6432

SOUTH-WEST REGIONAL OFFICE Valley Freeway Center Building 15300 Ventura Boulevard, Suite 305 Sherman Oaks, California 91403

(213) 783-8272 TWX: 910-495-1773

DISTRICT SALES OFFICE

17452 Irvine Boulevard, Suite 2 Tustin, California 92680 (714) 832-8113 TWX: 910-595-1523

REGIONAL SALES OFFICE 2721 South Bayshore Drive, Suite 121 Miami, Florida 33133 (305) 446-8309 TWX: 810-848-9725

NORTH-CENTRAL REGIONAL OFFICE 800 E. Northwest Highway, Suite 1060 Palatine, Illinois 60067 (312) 693-2660 TWX: 910-693-4805

KANSAS DISTRICT SALES OFFICE 13201 West 82nd Street Lenexa, Kansas 66215 (816) 358-8102

MARYLAND

REGIONAL SALES OFFICE 300 Hospital Drive, No. 232 Glen Burnie, Maryland 21061 TWX: 710-861-0519

MASSACHUSETTS

NORTH-EAST REGIONAL OFFICE No. 3 New England, Exec. Office Park Burlington, Massachusetts 01803 TWX: 710-332-0166

NEW JERSEY/NEW YORK CITY MID-ATLANTIC REGIONAL OFFICE

301 Sylvan Avenue Englewood Cliffs, New Jersey 07632 (201) 871-4410 TWX: 710-991-9734

NEW YORK (UPSTATE)

DISTRICT SALES OFFICE 104 Pickard Drive Syracuse, New York 13211 (315) 455-5858

OHIO/PENNSYLVANIA/ W. VIRGINIA/KENTUCKY

EAST-CENTRAL REGIONAL OFFICE Financial South Building 5335 Far Hills, Suite 214 Dayton, Ohio 45429 (513) 434-0097

OREGON

DISTRICT SALES OFFICE P.O. Box "B" Beaverton, Oregon 97005 (503) 643-5445

SOUTH-CENTRAL REGIONAL OFFICE 5925 Forest Lane, Suite 205 Dallas, Texas 75230 (214) 233-6801 TWX 910-860-5091

INTERNATIONAL SALES OFFICES

AUSTRALIA

NATIONAL SEMICONDUCTOR **ELECTRONICS PTY, LTD** Cnr. Stud Road & Mountain Highway Bayswater, Victoria 3153 Australia Telephone: 729-0733

Telex: 32096 CANADA

NATIONAL SEMICONDUCTOR LTD 1111 Finch Avenue West Downsview, Ontario, Canada (416) 635-9880 TWX: 610-492-2510

DENMARK

NATIONAL SEMICONDUCTOR SCANDINAVIA Vordingborggade 22 2100 Copenhagen Denmark Telephone: (01) 92-OBRO-5610 Telex: DK 6827 MAGNA

ENGLAND

NATIONAL SEMICONDUCTOR (UK) LTD The Precinct Broxbourne, Hertfordshire England Telephone: 69571 Telex: 267-204

NATIONAL SEMICONDUCTOR FRANCE, S.A.R.L 40 Boulevard Felix Faure 92. Chatillon Sous Bagneux France Telephone: 253 60 50 Telex: 25956 F

HONG KONG

NATIONAL SEMICONDUCTOR HONG KONG LTD. 9 Lai Yip Street Kwun Tung, Kowloon Hong Kong Telephone: 3-458888 Telex: HX3866

NATIONAL SEMICONDUCTOR JAPAN New Ueno Building 1-24, Yotsuya, Shinjuku-ku Telephone: 03-359-7321 Telex: J 24952 ELEMART

NATIONAL SEMICONDUCTOR SWEDEN Stockholm Sweden Telephone: (08) 712-04-80

WEST GERMANY

NATIONAL SEMICONDUCTOR GMBH 8000 Munchen 81 Cosimastrasse 4 Telephone: (0811) 915-027