NATIONAL INSTITUTE OF TECHNOLOGY SILCHAR ENGINEERING MECHANICS (ME 1101) Second Semester (All Branch)

ASSIGNMENT - 17

1. Forces act upon a particle during short intervals of time as shown by the forcetime diagram given in Fig. A. Find the velocity and displacement of the particle at any time $t > t_3$. Assume $x_0 = 0$ and $\dot{x_0} = 0$ when t = 0.

- 2. A particle initially at rest is submitted to the action of force X = kt.

 Prove that the ratio $\frac{x}{\dot{x}}$ increases as a linear function of time. Ans. $\frac{x}{\dot{x}} = \frac{t}{3}$
- 3. The magnitude of a force acting upon a body of mass $\frac{W}{g}$ is initially zero and increases uniformly with time, being equal to W at the end of the first second. Find the velocity and displacement of the body after 6 seconds, assuming $x_0 = 0$ and $\dot{x_0} = 1 \frac{m}{sec}$. Ans. $(\dot{x})_{t=6} = 176.58 \frac{m}{sec}$, $(x)_{t=6} = 363.16 m$
- 4. A particle of mass m moves rectilinearly under the action of a force X = F(t) as represented by the force-time diagram OCB in Fig. B. If this curve is a parabola, find the displacement at time t_1 . $Ans. x = \frac{Pt_1^2}{3m}$

5. A particle of weight W moves rectilinearly under the action of a force $X = P \sin \omega t$. Derive the general displacement-time equation, assuming $x_0 = 0$ and $\dot{x_0} = 0$. Ans. $x = \frac{Pg}{W\omega^2}(\omega t - \sin \omega t)$

[Turn over]

- 6. The magnitude of the force acting on a body of weight W=3.14~N is given by the equation $X=X_0\sin\omega t$, in which $\omega=8~\frac{rad}{sec}$. If after one complete force cycle the displacement of the body is 10~m, find the maximum value X_0 of the acting force. Assume $x_0=0$ and $\dot{x_0}=0$. Ans.
- 7. A body is acted upon for $5 \, sec$ by a constant force $X_1 = 10 \, N$, immediately after which it is acted upon by a force in the opposite direction of constant magnitude $X_2 = 3 \, N$. What time t_1 must this second force act to bring the body to rest? What time t_2 must it act to return the body to its starting point? Assume $x_0 = 0$. Ans. $t_1 = 16.7 \, sec$; $t_2 = 35.7 \, sec$
- 8. Under the action of a force $X = X_0 kt$ a particle starts from rest at the origin and moves along the *x axis*. At what instant *t* will it again be at the origin? Assume $X_0 = 12 N$ and $k = 2 \frac{N}{sec}$. Ans. t = 18 sec
- 9. A particle of weight W moves rectilinearly under the action of a force $X = P \cos \omega t$. Develop the velocity-time and displacement-time equations if $x_0 = 0$ and $\dot{x_0} = 0$. Ans. $x = \frac{Pg}{W\omega^2}(1 \cos \omega t)$
- 10. Find the velocity and displacement at any time t for a particle of weight W moving rectilinearly under the action of a constant force X_0 . Assume $x_0 = 0$ and $\dot{x_0} = 0$. Ans. $\dot{x} = at$, $x = \frac{1}{2}at^2$
- 11. A particle of mass m is acted upon by a force that has initial magnitude X_0 when t=0 and decreases at a uniform rate until, when $t=t_1$, its magnitude is zero. Find the velocity and displacement of the particle when $t=t_2$, assuming that $t_2>t_1$. Assume $x_0=0$ and $\dot{x_0}=0$. Ans. $(x)_{t_2}=\frac{X_0}{m}\frac{t_1}{2}\left(t_2-\frac{t_1}{3}\right)$
