Map-Matching on Big Data: a Distributed and Efficient Algorithm with a Hidden Markov Model

Matteo Francia, Enrico Gallinucci, Federico Vitali

{m.francia,enrico.gallinucci} @ unibo.it {federico.vitali} @ studio.unibo.it

Map-Matching: problem definition

Trajectory $T = (p_0, ..., p_t)$: sequence of GPS points ordered by time [1]

Map-Matching: attach points to the route along which an object is moving

- Inputs: trajectory dataset T, road network G(V, S)
- Output: matched trajectories M

Issues

- Millions of GPS points
- ... with systematic measurement errors
- ... from different road networks

Up to now

- Sequential implementations achieve best accuracy
 - Naïve: generate all possible routes to identify the most-likely [2]
 - HMMs model road network topology to achieve higher accuracy [3, 4]
 - Highest accuracy (up to now)
- Distributed implementations
 - Scalable approximations of exact algorithms [5]
 - Indexing structures facilitating the matching process [6, 7]
- There is room to improve accuracy of distributed implementation

Hidden Markov Model (HMM)

HMM describes probability distribution over sequences

- Find most likely sequence of hidden states producing observed symbols
- Markov chain: state transition depends only on current state

From HMM to Map-Matching of trajectory T

НММ	Map-Matching
Hidden states (not observable)	Road segments (S)
Initial state probability	Equally probable segments
Observable symbols	GPS points $(p_0,, p_t)$
Emission probability	Point/Segment geometrical relationship
Transition probability	Segment/Segment topological relationships

Our contribution

- Map-Matching on big data
 - Based on HMM (inspired by [4])
 - Extend transition probability to fragmented networks
 - [4] considers only 3 segments
 - Scale up to millions of GPS points
 - Implemented in Spark & GeoSpark
- Given \mathcal{T} and G(V,S), three-step approach
 - (A) Emission probability estimation
 - (B) Transition probability estimation
 - (C) Viterbi algorithm

Map-Matching: Step A

Emission probability estimation

$$P(p_t|X_t=i) = \frac{d_H(p_t, s_i)^{-1}}{\sum_{s_j \in N(p_t, S, \alpha, \tau)} d_H(p_t, prj(p_t, s_j))^{-1}}$$

 d_H = Haversine distance

Map-Matching: Step A

Emission probability estimation

$$P(p_t|X_t=i) = \frac{d_H(p_t, s_i)^{-1}}{\sum_{s_j \in N(p_t, S, \alpha, \tau)} d_H(p_t, prj(p_t, s_j))^{-1}}$$

Compute the neighborhood N for each point p_t in T

• Join \mathcal{T} and G(V,S) on element-wise distance

Efficiency: road segments far from p_t have a null emission probability

- τ bounds the neighborhood range
- α bounds the neighbors cardinality

Map-Matching: Step B

Transition probability estimation

$$P(X_t = j | X_{t-1} = i) = \frac{1}{\beta} e^{-d/\beta}$$

where

$$d = |d_H(p_t, p_{t-1}) - d_R(prj(p_t, s_j), prj(p_{t-1}, s_i))|$$

 d_H = Haversine distance

 d_R = shorthest path in G(V,S)

Map-Matching: Step B

Transition probability estimation

$$P(X_t = j | X_{t-1} = i) = \frac{1}{\beta} e^{-d/\beta}$$

where

$$d = |d_H(p_t, p_{t-1}) - d_R(prj(p_t, s_j), prj(p_{t-1}, s_i))|$$

Compute routes (Segment/Segment shortest path)

Group T by trajectory T

Join consequent points in T to routes to estimate d_R

Efficiency: far road segments have a null transition probability

- ϑ bounds the routes depth
- γ bounds the routes length

Map-Matching: Step C

Map-matching and aiding

- Viterbi algorithm returns matched routes
 - Bag-of-task (for each trajectory)
- Aiding fragmented routes
 - Consequent points can map to non-adjacent segments
 - Match all segments along the shortest path

Efficiency: tackle Viterbi algorithm complexity $O(/S/^2/T/)$

- /T/: trajectory simplification (out of scope)
- $/S/^2$: far road segments have a null probability
 - Tune neighborhood range τ and cardinality α in Step A

Evaluation: dataset

Case study in Milan

- 120K trajectories
- 8M GPS points
- Ground truth: 50 trajectories

Tests

- Scaling up
- Step complexity

Evaluation: scaling up

#Executors: [1, 10]

- Execution time from 2h20m to 20m
- Speedup (of 7x) bounded by Viterbi and parallelization overhead

#Trajectories: [12, 120K]

- Execution time increases linearly with $|\mathcal{T}|$
- For small $|\mathcal{T}|$ the Spark's overhead overcomes actual workload times

12

Evaluation: step complexity

Matteo Francia – University of Bologna miproBIS 2019

13

Conclusion

Contribution:

- Distributed Map-Matching on Spark
- Accuracy equivalent to sequential HMM [4]
 - Overcome limitations for highly fragmented urban networks
 - Map aiding embedded in the Viterbi computation

Future directions:

- Matching should adapt to high variance in:
 - Means of transportation (e.g., car, walk, bicycle)
 - Sampling rates of GPS points (e.g., from seconds to minutes)
- And scale up to huge road networks
 - From Milan to the entire region Lombardia

https://github.com/big-unibo/map-matching

References

- [1] Xiaofang Zhou and Lei Li. Spatiotemporal data: Trajectories. In Encyclopedia of Big Data Technologies. Springer, 2019.
- [2] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan Huang. Map-matching for low-sampling-rate GPS trajectories. In 17th ACM SIGSPATIAL Int. Symp. on Advances in Geographic Inform. Syst., ACM-GIS 2009, Nov. 4-6, 2009, Seattle, Washington, USA, Proc., pages 352–361, 2009.
- [3] Paul Newson and John Krumm. Hidden markov Map-Matching through noise and sparseness. In 17th ACM SIGSPATIAL Int. Symp. on Advances in Geographic Inform. Syst., ACM-GIS 2009, Nov. 4-6, 2009, Seattle, Washington, USA, Proc., pages 336–343, 2009.
- [4] An Luo, Shenghua Chen, and Bin Xv. Enhanced map-matching algorithm with a hidden markov model for mobile phone positioning. ISPRS Int. J. Geo-Inform., 6(11):327, 2017.
- [5] Antonio M. R. Almeida, Maria I. V. Lima, José Antonio Fernandes de Macedo, and Javam C. Machado. DMM: A distributed map-matching algorithm using the mapreduce paradigm. In 19th IEEE Int. Conf. on Intelligent Transportation Syst., ITSC 2016.
- [6] Ayman Zeidan, Eemil Lagerspetz, Kai Zhao, Petteri Nurmi, Sasu Tarkoma, and Huy T. Vo. Geomatch: Efficient large-scale Map-Matching on apache spark. In IEEE Int. Conf. on Big Data, Big Data 2018, Seattle, WA, USA, Dec. 10-13, 2018, pages 384–391, 2018.
- [7] Douglas Alves Peixoto, Hung Quoc Viet Nguyen, Bolong Zheng, and Xiaofang Zhou. A framework for parallel map-matching at scale using spark. Distributed and Parallel Databases, pages 1–24, 2018.

Thank you

Questions?

