Bases de Datos I

Introducción

BASES DE DATOS

La tecnología de BD es un componente esencial de casi todos los sistemas de información "tradicionales" y aplicaciones más recientes

- Sistemas de bancos, compras online, sistemas de salud, reservas (hoteles, vuelos, bibliotecas, etc.)
- BD Multimedia (almacenamiento de imágenes, videos, animaciones)
 - Sistemas de Información Geográfica (GIS)
- BD de gran capacidad, sistemas de almacenamiento big data, sistemas No-SQL usados en redes sociales, búsquedas web, etc.

....

¿Qué es una BASE DE DATOS?

Conjunto de datos almacenados, representando entidades y sus relaciones, lógicamente coherente (no hay contradicción entre los datos relacionados ni pérdida de información, aún ante uso compartido),

con significado implícito (representa aspectos del "universo de discurso", Datos + contexto = Información)
y persistente (los datos permanecen en el tiempo)

Una BD es diseñada, construida y poblada con datos para un propósito específico

Contiene información relevante para una organización que es clave para la correcta toma de decisiones

¿Por qué surgen las BD?

Debilidades de los sistemas de gestión de archivos (SGA):

- demasiado elementales para el tratamiento de los datos y sus interrelaciones, puede haber redundancia e inconsistencia de datos, problemas en la actualización simultánea por varios usuarios, etc.
- utilización mediante programas de aplicación demasiado compleja

impulsaron el desarrollo de software más sofisticado:

Sistemas de Gestión de Bases de Datos (SGBD) o DataBase Management System (DBMS)

- Permiten definir, almacenar y recuperar datos de la BD de manera eficiente
- Los mismos datos son compartidos por diferentes usuarios/aplicaciones

Historia de los sistemas de BD

1º Generación: Sistemas en red y jerárquicos

- A comienzos de los '60 Bachman creó el 1º DBMS en red (Integrated Data Store)
- IBM desarrolló un sistema jerárquico (Information Management System)
- Independencia de datos mínima, acceso complejo a los datos

2º Generación: modelo relacional

- 1970: Codd (IBM) propone el *Modelo de Datos Relacionales*
- 1976: Chen presentó el Modelo de Entidades-Relaciones
- Amplio desarrollo de SGBD relacionales comerciales (DB2 de IBM, Oracle, Informix)
- Lenguaje de consultas estructurado (SQL) estandarizado hacia fines de los '80
- Capacidad limitada para modelar datos

3° Generación: modelo relacional extendido y orientado a objetos

- Mejoras sobre el modelo relacional puro y lenguajes de consulta
- Extensión de capacidades, tipos de datos y aplicaciones

Características de los SGBD

Brindan capacidad y soporte para:

- Control de redundancia (para modelar relaciones entre los datos y mejorar las prestaciones) y evitan riesgo de inconsistencias al compartir la información
- Seguridad y control de acceso (los datos pueden ser compartidos, con posibilidad de distintos permisos a usuarios autorizados)
- Integridad de datos: se define la validez de los datos, mediante la especificación de restricciones o reglas
- Concurrencia y recuperación: gestión de acceso por distintos usuarios al mismo tiempo sin interferencias y se garantiza la recuperación ante fallas
- Accesibilidad a los datos: lenguaje para definición de datos y restricciones, consulta y actualización <u>ocultando detalles de cómo</u> se almacenan y actualizan

Requieren:

- Inversión inicial (en software, hardware, training, migración): el costo varía, aunque hay SGBD open source completos y versátiles (ej: PostgreSQL)
- Comprender su alcance para mayor aprovechamiento de sus posibildades

Arquitectura en 3 Niveles

(según ANSI/SPARC - American National Standards Institute, Standards Planning And Requirements Committee)

Los niveles de abstracción facilitan la independencia de los datos entre un nivel y el superior

Obtención del esquema de una BD

Roles en una base de datos

Administrador de la base de datos (DBA):

- Tiene control central sobre datos y programas de acceso
- Responsabilidad del manejo de aspectos técnicos de la BD
- Se encarga de mantener la integridad y disponibilidad de datos, control de seguridad y concurrencia, mantenimiento del sistema y prestaciones

Diseñadores de la base de datos:

- Diseño lógico de la BD: relevamiento e identificación de datos, relaciones y restricciones
- Diseño físico de la BD: decidir la implementación física a partir del diseño lógico

Programadores de aplicaciones:

 Implementan por medio de programas las especificaciones que darán servicio a los usuarios y los mantienen

Usuarios finales:

Clientes de la base de datos (consultan, actualizan,...)

Esquema de acceso a los datos

El SGBD transforma una solicitud de usuario (esquema externo) a una solicitud expresada según el esquema conceptual y garantiza el acceso a los datos almacenados (esquema interno)

METADATOS (descripción acerca de los datos)

Modelo de Datos

 Colección de herramientas conceptuales para describir los datos, sus relaciones, semántica en el UdeD y restricciones a sus valores

Modelo de datos relacional: uno de los modelos más populares,

subyacente a la mayoría de las BD actuales

Modelo o Diagrama de Entidades-Relaciones
 (Extendido) - DEREXt: Representación gráfica de entidades, atributos, relaciones y restricciones

- Derivación a modelo relacional según Reglas de transformación
- Existen otros modelos de datos: orientado a objetos, objeto-relacional, post-relacional

Structured Query Language (SQL)

Es un lenguaje para definición y manipulación de datos

- desarrollado inicialmente en laboratorios de investigación de IBM
- se transformó en estándar en 1986 (SQL-86) y ha tenido numerosas revisiones
- SQL:1999 incorporó triggers y características OO (SQL3)
- Nuevas versiones: incorporaron nuevas características, no sustancialmente diferentes de SQL3

Es Declarativo: se indica qué datos se requieren, sin especificar cómo

- Lenguaje de Definición de Datos (DDL): permite crear y modificar el esquema de la base, tablas, restricciones, vistas, etc.
- Lenguaje de Manejo de Datos (DML): permite consultar y actualizar datos (inserción, modificación, eliminación)

Otras posibilidades:

- SQL empotrado: Manipulación de datos empotrada desde un lenguaje anfitrión
- SQL Procedural: Lenguaje de programación para escribir PSM (Persistent Stored Modules): Triggers, Funciones y Stored Procedures
- Lenguajes de 4° Generación (4GL): Generadores de formularios, informes, gráficos

Structured Query Language (SQL)

Algunas sentencias SQL:

Definición de Datos (DDL):

```
CREATE TABLE <nom_tabla> (.... ); \rightarrow creación de una tabla ALTER TABLE <nom_tabla> ... ; \rightarrow modificación de una tabla DROP TABLE <nom_tabla> ; \rightarrow eliminación de una tabla
```

Manejo de Datos (DML):

```
INSERT INTO <nom_tabla> (...) VALUES (....); → inserción de tuplas

UPDATE <nom_tabla> SET (...) WHERE (....); → modificación de datos

DELETE FROM <nom_tabla> WHERE (....); → borrado de tuplas
```

```
SELECT < lista_atrib > FROM < lista_tablas > WHERE (....); → consulta de datos
```


BIBLIOGRAFÍA

Date, C., "An Introduction to Database Systems". 7º ed., Addison Wesley, 2000

Elmasri, R., Navathe, S., "Fundamentals of Database Systems", Addison Wesley, 2011 (también: de Pearson, 2016, 7° ed.)

Silberschatz, A., Korth, H, Sudarshan, S., "Database System Concepts", 6° ed., WCB/McGraw Hill, 2010

Sumathi S., Esakkirajan S., "Fundamentals of Relational Database Management Systems", 2007

