

Electron-Phonon Coupling in Bilayer Graphene Quantum Dots

<u>J. Richter</u>, A. Denisov, V. Kusar, C. Adam, M. Niese, M. Ruckriegel, H. Duprez, K. Ensslin and T. Ihn Nanophysics Ensslin Group, D-PHYS, ETH Zurich

Phonon as Source of Relaxation and Decoherence

- Phonons limit qubit relaxation and coherence times [1]
- 2D, high energy phonons in graphene

1 Phonon Interaction with QD

3 First Measurements of the Pumping Effect

2 DQD in Graphene

10 *V_L* (V)

Conclusion and Outlook

QPC acts as energy source that drives inelastic transition. However, multiple mechanism can cause that: Coulomb back action, plasmons, photons.

Future design should incorporate:

- Separate circuits
- Reduction of capacitive coupling (Coulomb back action)
- Tuneable distance between double dot

References

- 1. Granger et al., Quantum Interference and phonon-mediated back-action in lateral quantum-dot circuits, nat. phys. (2012)
- 2. Adam et al.,, in preparation
- 3. Tong, Spin and valleys in coupled bilayer graphene quantum dots, phd thesis, ETH publications

