University Of Thessaly

Complex Networks ECE434

Problem Set 2

Authors: Lefkopoulou Eleni-Maria - 2557 Karanika Athanasia - 2530

April 25, 2021

Έχουμε:
$$A = \begin{bmatrix} 1 + \sum x_{0,j} & 1 - x_{0,1} & \dots & 1 - x_{0,n} \\ 1 - x_{1,0} & 1 + \sum x_{1,j} & \dots & 1 - x_{1,n} \\ \dots & \dots & \dots & \dots \\ 1 - x_{n,0} & 1 - x_{n,1} & \dots & 1 + \sum x_{n,j} \end{bmatrix}$$

και για το information centrality

$$C(i) = \frac{1}{c_{ii} + (T - 2 \cdot R)}$$

ουσιαστικά η μετρική αυτη δίνει σημασία οχι μόνο στα links μεταξύ των κόμβων αλλα και στην πληροφορία την οποία μεραφέρουν . Δεν υπολογίζουμε μόνο το συντομότερο μονοπάτι αλλά όλα τα μονοπάτια μεταξύ δυο κόμβων. Η μετρική αυτη τελικά υπολογίζει την συνολική πληροφορία που 'δεέει' από τον κόμβο που μετράμε προς αυτούς που έχει outgoing links.

Πρόβλημα 02

Μας δίνεται το παρακάτω γράγημα και ζητείται να υποόγιστεί η edge betweenness centrality κάθε κόμβου καθώς και το πλήθος των shortest path

Μέσω του dijkstra αλγορίθμου προχύπτει ο παραχάτω πίνακας με τα αντίστοιχα shortest path.

	1	2	3	4	5
1	[['1']]	[['1', '2']]	[['1', '3']]		[['1', '4', '5'], ['1', '2', '5'], ['1', '3', '5']]
2	[['2', '1']]	[['2']]	[['2', '1', '3'], ['2', '5', '3']]	[['2', '1', '4'], ['2', '5', '4']]	[['2', '5']]
3	[['3', '1']]	[['3', '1', '2'], ['3', '5', '2']]	[['3']]	[['3', '4']]	[['3', '5']]
4	[['4', '1']]	[['4', '1', '2'], ['4', '5', '2']]	[['4', '3']]	[['4']]	[['4', '5']]
5	[['5', '3', '1'], ['5', '2', '1'], ['5', '4', '1']]	[['5', '2']]	[['5', '3']]	[['5', '4']]	[['5']]

Συνολικά τα shortest path είναι 28 εκτός αν μετρήσουμε και αυτά με μήκος 0 οπότε είναι 33.

Όσον αφορά την edge betweenness centrality υπολογίζεται ως το άθροισμα του κλάσματος των shortest path που περνάνε από μια ακμή προς τα shortest path που υπάρχουν

για αυτό το ζεύγος κόμβων.Ο τύπος είναι ο εξής :

$$\sum_{s,t \in V} \frac{\sigma(s,t|e)}{\sigma(s,t)}$$

Μέσω του κατάλληλου κώδικα python υπολογίστηκαν και οι edge betweenness centralities που φαίνονται στον παρακάτω πίνακα. Ο υπολογισμός μετράει την κάθε ακμή είτε εμφανίζεται ώς 1-2 είτε ως 2-1 (αν πχ. πάρουμε ώς παράδειγμα τη συγκεκριμένη ακμή γιατί το γράφημα είναι undirected) καθώς και μετράει τα μονοπάτια για όλους τους συνδυασμούς (πχ. μετράει μονοπάτι και από τον 1 στον 5 και από τον 5 στον 1).

Name	Edge Betweenness Centrality
('1', '4')	3.66666667
('1', '2')	4.66666667
('1', '3')	3.66666667
('2', '5')	4.66666667
('3', '4')	2.0
('3', '5')	3.66666667
('4', '5')	3.66666667

Πρόβλημα 03

Για τα μη κατευθυνόμενα δίκτυα έχουμε:

To degree centrality ενος κόμβου (C_D) οριζεται ως : $C_D(i) = k_i^{1-a} \cdot s_i^a$

οπου $s_i = \sum_j^N w_{i\cdot j}$ ονομαζεται strength του κομβου και είναι το άθροισμα άλων των βαρών των ακμών οι οποίες

συνδέονται με τον κόμβο i που κοιτάμε, και $k_i = \sum_j^N x_{i\cdot j}$ είναι ο αριθμός των κόμβων με τους οποίους συνδέεται ο i

Το α ειναι ενας συντελεστης που οσο πλησιαζει στο 1 σημαίνει πως ο κόμβος μας δεν έχει πολλούς γείτονες αλλά μας ενδιαφέρει το βάρος των ακμών που έχουν οι συνδέσεις του. Όταν εχουμε σταθερή δύναμη και το α πάει προς το μηδέν έχουμε οτι η μετρική αυξάνεται.

Επίσης αντίστοιχα οταν α $^\circ$ 1 και έχουμε σταθερή δυναμη , όσο πιο πολλούς γείτονες έχουμε τόσο μαιώνεται η μετρική αυτη.

Για τα κατευθυνόμενα δίκτυα έχουμε:

Σε αυτή την περίπτωση έχουμε δύο μετρικές μια για τον indegree και μια για το out-degree

Άρα , $C_D^{in}(i)=(k_i^{in})^{1-a}\cdot(s_i^{in})^a$ για τον in-degree και $C_D^{out}(i)=(k_i^{out})^{1-a}\cdot(s_i^{out})^a$ για τον out-degree

. όπου και πάλι το k_i δηλώνει τον αριθμό των κόμβων τους οποίους δείχνει ο i και το s_i είναι το άθροισμα των βαρών προς αυτούς τους κόμβους.

Αντίστοιχα ισχυουν και για το out-degree απλά για τους κόμβους οι οποίοι εχουν outgoing link προς τον i.

Συμπερασματικά αν δύο κόμβοι εχουν την ιδια s^{out} δύναμη τότε την μεγαλύτερη μετρική την έχει αυτός που εχει τα πιο πολλά out-going links αν το a<1, αλλιώς αν a>1 μεγαλύτερη μετρική θα εχει αυτος που έχει τα λιγότερα outgoing linksάρα και k^{out}

Πρόβλημα 04

Από το δίκτυο των ςο-αυτηορς για το μέλος $\Delta E\Pi$ του Τμήματός μας που έχουμε αναλάβει για τα έτη 2000-2019 το directed graph που προκύπτει είναι το εξής :

Παρακάτω δίνεται και το link όπου μπορεί φαίνονται καλύτερα οι κόμβοι και οι ακμές: https://mlefkopoulou.github.io/hw2_ask4/graph_output.

Παρακάτω φαίνονται τα pagerank που υπολογίστηκαν για τον κάθε κόμβο :

Name	Page Rank
Georgios Stoupas	0.006560586568830083
Antonis Sidiropoulos 0.028110522348338718	
Dimitrios Katsaros	0.20202498702296717
Yannis Manolopoulos	0.14364326288253015
Dimitrios Papakostas	0.018041863280745998
Soheil Eshghi	0.006981597413227127
Leandros Tassiulas	0.05413904411674274
Pavlos Basaras	0.010620015716331654
George Iosifidis	0.004276019141923554
George Stavropoulos	0.009752326037082586
Marios Bakratsas	0.0031476125961865608
Leandros A. Maglaras	0.006093389408226658
Lei Shu	0.0038875554648809146

Continued on next page

 ${\bf Table}\ 2-{\it Continued\ from\ previous\ page}$

Name	Page Rank
Athanasios Maglaras	0.004548465078035822
Jianmin Jiang	0.005515058312203069
Helge Janicke	0.014810866083754575
Tiago J. Cruz	0.019977337637253505
Antonia Gogoglou	0.007954613546575826
Georgios Sideris	0.0031476125961865608
Ioannis Zozas	0.0031476125961865608
Stamatia Bibi	0.0038164915425889082
Panagiotis Bozanis	0.01123222607684586
Ioannis Stamelos	0.020779730797065403
Ioannis-Prodromos Belikaidis	0.004276019141923554
Alexandra I. Cristea	0.0031476125961865608
Alexandra Stagkopoulou	0.0031476125961865608
Muhammad Umer Khan	0.0031476125961865608
Lars Schmidt-Thieme	0.004944898088325902
Alexandros Nanopoulos	0.014320145035844533
Katerina Pechlivanidou	0.0031476125961865608
Kostas Katsalis	0.0036827157533084387
Ioannis Igoumenos	0.004465308417277649
Thanasis Korakis	0.014977302019067438
Nikos Makris	0.0031476125961865608
Nikos Dimokas	0.009752326037082586
Alfredo Cuzzocrea	0.0031476125961865608
Alexis Papadimitriou	0.07168497904671998
Leonidas Akritidis	0.009752326037082586
Panayiotis Bozanis	0.016045873645079912
Donatos Stavropoulos	0.0031476125961865608
Giannis Kazdaridis	0.0038164915425889082
Vasilis Sourlas	0.0031476125961865608
Paris Flegkas	0.0038164915425889082
Georgios S. Paschos	0.004897853000403476
Bhaskar Prasad Rimal	0.0031476125961865608
Admela Jukan	0.004039451191389691
Yves Goeleven	0.012360968250313286

Continued on next page

 ${\bf Table}\ 2-{\it Continued\ from\ previous\ page}$

Name	Page Rank
George Pallis	0.023650046165200823
S. Sivasubramanian	0.011985852364472215
Athena Vakali	0.03607122465006379
Andreas Papadopoulos	0.0031476125961865608
Konstantinos Stamos	0.023063690285887613
Marios D. Dikaiakos	0.011985852364472215
Pankaj Mehra	0.011450268063328144
Nicholas Loulloudes	0.013683794390717773
Ioannis Karydis	0.0031476125961865608
Apostolos N. Papadopoulos	0.005845228095315265
Maria Kontaki	0.0031476125961865608
Fotis Tsakiridis	0.0031476125961865608
Gökhan Yavas	0.015119100759560727
Özgür Ulusoy	0.01940297150704023
Murat Karakaya	0.011781062589808943

Για τους κόμβους του δικτύου εχουμε :

- $x_1 = x$ λόγω συμμετρίας
- $x_2 = x3 = Y$ λόγω συμμετρίας
- $x_4 = x_5 λόγω συμμετρίας$

$$\begin{split} X &= \frac{2 \cdot y}{3} \cdot d + (1 - d), (1) \\ y &= (\frac{y}{3} + \frac{z}{2} + \frac{x}{2}) \cdot d + (1 - d), (2) \\ z &= (\frac{z}{2} + \frac{y}{3}) \cdot d + (1 - d), (3) \\ \text{'Apa: } (2)(3) &\Rightarrow (1 - \frac{d}{d}) \cdot z = \frac{y}{3} \cdot d + (1 - d) \Rightarrow z = \frac{\frac{y}{3} \cdot d + (1 - d)}{1 - \frac{d}{2}} (4) \\ (2), (1), (4) &\Rightarrow y &= (\frac{y}{3} + \frac{\frac{y}{3} \cdot d + (1 - d)}{(1 - \frac{d}{2}) \cdot 2} + \frac{y}{3} \cdot d + \frac{1 - d}{2}) \cdot d + (1 - d) \Rightarrow \\ (1 - \frac{d}{3} - \frac{d^{2}}{3} - \frac{d}{3 \cdot (2 - d)}) \cdot y &= (\frac{1 - d}{2 - d} + \frac{1 - d}{2}) \cdot d + (1 - d) \Rightarrow \\ y &= \frac{(\frac{1 - d}{2 - d} + \frac{1 - d}{2}) \cdot d + (1 - d)}{1 - \frac{d}{3} - \frac{d^{2}}{3} - \frac{d}{3 \cdot (2 - d)}}, (5) \end{split}$$

$$(4) \Rightarrow z = \frac{\frac{(\frac{1-d}{2-d} + \frac{1-d}{2}) \cdot d + (1-d)}{\frac{1-\frac{d}{3} - \frac{d^2}{3} - \frac{d}{3 \cdot (2-d)}}{1-\frac{d}{2}} \cdot d + (1-d)}{\frac{1-\frac{d}{2}}{1-\frac{d}{2}}}$$

$$(1),(5) \Rightarrow x = 2 \cdot \frac{(\frac{y}{3} + \frac{\frac{y}{3} \cdot d + (1-d)}{(1-\frac{d}{2}) \cdot 2} + \frac{y}{3} \cdot d + \frac{1-d}{2}) \cdot d + (1-d)}{3} + (1-d)$$

Στο παραπάνω δίκτυο υπολογίστηκαν οι τιμές PageRank καθώς και η διάταξη (ρανκινγ) των κόμβων για τιμές damping factor d=0.1, 0.3, 0.5 και 0.85.

```
Number of nodes : 5
Number of edges: 9
Page rank for d = 0.1:
5: 0.1903014722222224
1: 0.1968416041666667
2: 0.1968416041666667
4: 0.2060296944444445
3: 0.209985625
Page rank for d = 0.3:
5: 0.17219460715624998
1: 0.19173097283593749
2: 0.19173097283593749
4: 0.21462949178125
3: 0.22971395539062497
Page rank for d = 0.5:
5: 0.15471681209258092
1: 0.188679300475513
2: 0.188679300475513
4: 0.21886822966391167
3: 0.2490563572924814
Page rank for d = 0.85:
5: 0.12035409457687965
1: 0.19182193316290377
2: 0.19182193316290377
4: 0.2125995966772838
3: 0.283402442420029
```

Αυτό που παρατηρούμε είναι πως η διάταξη μένει ίδια και το PageRank έχει μικρές αλλαγές για τις διαφορετικές τιμές του PageRank . Αυτό οφείλεται στο οτι το γράγημα είναι

stochastic ,irreducible , aperiodic μ΄μ ΄μ pagerank και χωρίς damping factor καθώς δεν υπάρχει dangling node.

Πρόβλημα 07

Αρχικά θα βρούμε το $\max \, c^{c*} - c^c_i$ δοκιμαζουμε για διάφορα ${\bf N}$:

1 : 1.0

2 : 0.666666666666666

Process finished with exit code 0

• για ${\cal N}=5: c^{c*}-c^c_i=0.26$, αφου $c^{c*}=0.66, c^c_i=0.4$ -----closeness_centrality------

0 . 0 4

1 : 0.5714285714285714 2 : 0.666666666666666

3 : 0.5714285714285714

4 : 0.4

• για N = 7 : $c^{c*} - c^c_i = 0.22$, αφου $c^{c*} = 0.5, c^c_i = 0.28$

-----closeness_centrality------

0 : 0.2857142857142857

1 : 0.375

2 : 0.46153846153846156

3 : 0.5

4 : 0.46153846153846156

5 : 0.375

6 : 0.2857142857142857

Άρα παρατηρούμε ότι όσο το N μεγαλώνει τόσο η διαφορά μειώνεται Αρα στον παρονομαστή θα πάρουμε το N=3.

Άρα το άθροισμα του παρονομαστή θα ειναι 0.68

Μερικά από τα δοκιμαστικά N βγάλαν τα ακόλουθα αποτελέσματα:

```
1.0416666666666667
------FOR N = 5
1.1309523809523807
1.1804601648351647
------closeness_centrality-----FOR N = 9
1.2113437328954575
1.2323394745946512
1.258990060000739
1.2679664632568994
------FOR N = 23
1.2860498577446962
1.2902468374121134
1.2938511870531897
1.2969800810353613
```

```
-----closeness_centrality------FOR N = 31
1.304299086456551
1.3062293378843675
1.3079680441995771
1.3095423618365427
1.3109745466659648
------closeness_centrality------FOR N = 45
1.3122830114331547
1.3134831207817357
1.3145877968019284
-----closeness_centrality-----FOR N = 51
1.3156079857628482
1.3165530217813441
-----closeness_centrality-----FOR N = 55
1.317430913031706
1.3182485690813155
  -----closeness_centrality-----FOR N = 59
1.3190119830108087
```

Η closeness centrality βασίζεται στο μέσο μήκος ελάχιστων μονοπατιών μεταξύ του κόμβου και όλων των υπόλοιπων κόμβων του δικτύου. Υπάρχει ο εξής τύπος για τον υπολογισμό της:

$$Cc(i) = [\sum_{j=1} Nd(i,j)]^{-1}$$

Και η κανονικοποιημένη cc:

$$Cc'(i) = Cc(i)/(N-1)$$

Όσον αφορά τον τροποποιημένο ορισμό της SPBC έχουμε ότι υπόλογίζεται από τον τύπο :

$$Cb(i) = \sum_{s,t \in V : s \neq v, u \neq t} \frac{\sigma(s,t|u)}{\sigma(s,t)}$$

για όλα τα v που ανήκουν στο V, όπου σ(s,t) είναι ο αριθμός των shortest (s,t)-paths και $bar\sigma(s,t-v)$ είναι ο αριθμός των shortest (s,t)-paths με το v ως εσωτερικό κόμβο ή κόμβο-πηγή (v=s).Η διαφοροποίηση στην ουσία είναι στο ότι προσμετράμε και τα μονοπάτιο που o v είναι πηγή (δη-λαδή στην αρχή).

Έχουμε επίσης και την Wiener-Index Iw(G)που πρόκειται για ένα δείκτη ίσο με το άθροισμα όλων των shortest path distances (μεταξύ όλων των ζευγών atoms σε ένα μόριο , και κάθε ζεύγος μετριέται μόνο μια φορά, δηλαδή:

$$Iw(G) = \frac{1}{2} * \sum_{u \in V} \sum_{w \in V} dG(u, w)$$

Αρχικά θα εξετάσουμε την ισότητα :

$$\sum_{u \in V} (Cc(u))^{-1} = 2 * Iw(G) \Rightarrow$$

$$\sum_{u \in V} \left(\frac{1}{\sum_{w \in V} d(u, w)}\right)^{-1} = 2 * \frac{1}{2} * \sum_{u \in V} \sum_{w \in V} dG(u, w) \Rightarrow$$

$$\sum_{u \in V} \sum_{w \in V} d(u, w) = \sum_{u \in V} \sum_{w \in V} dG(u, w) \Rightarrow$$

$$True$$