est un ABR.

(b) Vrai

$\begin{matrix} \textbf{A} \textbf{L} \textbf{G} \textbf{O} \\ \textbf{Q} \textbf{C} \textbf{M} \end{matrix}$

 Un arbre binaire de recherche est un arbre étiqueté muni d'une relation d'ordre? (a) partielle (b) équilibrée (c) locale (d) totale 	
 2. Que l'ajout d'éléments se fasse en racine ou aux feuilles, l'arbre binaire de recherche obtenu est le même? (a) Vrai (b) Faux 	
 3. La complexité au pire de la recherche négative dans un ABR est d'ordre? (a) linéaire (b) logarithmique (c) quadratique (d) constant 	
4. Les feuilles d'un ABR sont sur au plus deux niveaux?(a) vrai(b) faux	
 5. La hauteur d'un ABR peut être? (a) Une fonction quadratique de sa taille (b) Une fonction logarithmique de sa taille (c) Une fonction linéaire de sa taille (d) Une fonction exponentielle de sa taille 	
 6. L'arbre Binaire non dégénéré B dont le parcours préfixe est (6, 8, 10, 12, 14, 18, 30, 32, 35, 37, 42, 45, 47 est un ABR. (a) Faux (b) Vrai 	7)
 7. L'arbre Binaire non dégénéré B dont le parcours infixe est (6, 8, 10, 12, 14, 18, 30, 32, 35, 37, 42, 45, 47) est un ABR. (a) Faux (b) Vrai 	

8. L'arbre Binaire non dégénéré B dont le parcours suffixe est (6,8,10,12,14,18,30,32,35,37,42,45,47)

Soit l'arbre binaire de recherche B2:

$$B2 = <14, <10, <6, \emptyset, \emptyset>, <11, \emptyset, \emptyset>>, <35, <30, <16, \emptyset, \emptyset>, <33, \emptyset \gg, \emptyset>>, \emptyset>>$$

Où les nombres sont les noeuds et où $\emptyset = arbrevide$

- 9. Le parcours préfixe de l'ABR B2, modifié par l'ajout en feuille de la valeur 15, est?
 - (a) (6, 10, 11, 14, 15, 16, 30, 33, 35)
- ((b) (14, 10, 6, 11, 35, 30, 16, 15, 33)
 - (c) (15, 14, 10, 6, 11, 35, 30, 16, 33)
 - (d) (6, 11, 10, 14, 16, 33, 30, 35, 15)
 - (e) (6, 11, 10, 15, 16, 33, 30, 35, 14)
- 10. Le parcours suffixe de l'ABR B2, modifié par l'ajout en racine de la valeur 15, est?
 - (a) (6, 10, 11, 14, 15, 16, 30, 33, 35)
 - (b) (14, 10, 6, 11, 35, 30, 16, 15, 33)
 - (c) (15, 14, 10, 6, 11, 35, 30, 16, 33)
- (()(d) (6, 11, 10, 14, 16, 33, 30, 35, 15)
 - (e) (6, 11, 10, 15, 16, 33, 30, 35, 14)

QCM₆

lundi 8 avril

Question 11

Soient E et F deux \mathbb{R} -espaces vectoriels et $f:E\longrightarrow F$ une application linéaire. Soit $(u,v)\in E^2$. On a

- a. f(2.u) = u.f(2)
- b. f(u + v) = u + v

- d. f(u) = -f(u)
- e. Aucune des autres réponses

Question 12

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$. f est une application linéaire de \mathbb{R} vers \mathbb{R} .

- a. Vrai
- Ob. Faux

Question 13

Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ telle que f((0,0,0)) = (1,0). Alors

- a. f peut être linéaire de \mathbb{R}^3 vers \mathbb{R}^2 .
- \bigcirc b. f ne peut pas être linéaire de \mathbb{R}^3 vers \mathbb{R}^2 .

Question 14

Soit f une application linéaire de \mathbb{R}^2 vers \mathbb{R} telle que f((1,0))=2 et f((0,1))=-3. Alors,

- a. f((1,-1)) = -1
- (b. f((1,-1)) = 5
 - c. f((0,0)) = -5
 - d. Aucune des autres réponses

Question 15

Parmi les fonctions de R vers R suivantes, cochez celle(s) qui est(sont) linéaire(s)

- a. $f: x \longmapsto \sin(x)$
- \bigcirc 0. $g: x \longmapsto 2x$
 - c. $h: x \longmapsto x^2$
 - d. $k: x \longmapsto e^x$
 - e. Aucune de ces fonctions n'est linéaire.

Question 16

Soient E et F deux \mathbb{R} -espaces vectoriels et f une application linéaire de E vers F. Soit $u \in E$. On a

- a. $u \in \text{Ker}(f) \iff f(u) = 0_E$
- - c. $u \in \text{Ker}(f) \iff f(u) = u$
 - d. Aucune des autres réponses

Question 17

Soient E et F deux \mathbb{R} -espaces vectoriels et f une application linéaire de E vers F.

On a $\text{Im}(f) = \{f(u), u \in E\}.$

b. Faux

Question 18

Soit l'application linéaire $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ telle que $\operatorname{Ker}(f) = \{(x,y,z) \in \mathbb{R}^3, x=y=-z\}$. On a

- a. Ker(f) = Vect((1,1,1))
- (1) b. Ker(f) = Vect((1, 1, -1))
 - c. $Ker(f) = \{0_{\mathbb{R}^3}\}$
 - d. Aucune des autres réponses

Question 19

Soit l'application linéaire $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ telle que $\mathrm{Ker}(f) = \{(x,y,z) \in \mathbb{R}^3, x=0\}$. On a

- a. $\operatorname{Ker}(f)$ est une droite de \mathbb{R}^3
- \bigcirc b. Ker(f) est un plan de \mathbb{R}^3
 - c. ((0,1,1)) peut être une base de $\operatorname{Ker}(f)$
 - d. $(1,0,0) \in Ker(f)$
 - e. Aucune des autres réponses

Question 20

Soit l'application linéaire $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$. On a $(x,y) \longmapsto x+y$

- a. $3 \in \text{Ker}(f)$
- \bigcirc b. $3 \in \text{Im}(f)$
 - c. $(1,1) \in \operatorname{Ker}(f)$
 - d. $(1,1) \in \operatorname{Im}(f)$
 - e. Aucune des autres réponses

		questions	24 1	20			!			:
Dalir	IOC.	MUDCHANC	712	- < 1 1	IIDA O	II NIII	ICIDIIFC	rennnces	CONT	nnssinies
ruui	ICS	uucsuulis	4 1 0	20	unc o	u piu	131CU13	10001303	30116	POSSIDICS.

c. Gazeuse

d. Fluide

c. 10 g/L

21. Les phases condensées sont les phases :

22. La masse volumique de l'air est d'environ

🚱a. Liquide

a. 0,1 g/L

Ob. Solide

	Øb.	1 g/L	d.	100 g/L					
23.	condition	elle microscopique, si on regarde des molécu ons normales de température et de pression	, on peut d	ire que :					
	a.	Les molécules sont immobiles	()0.	Les molécules se déplacent					
24.	La relat	ion mathématique traduisant la force de pre	ession est :	•					
	a.	$d\vec{F} = P ds$	c.	$d\vec{F} = m. g d\vec{s}$					
	Øb.	$d\vec{F} = P d\vec{s}$	d.	$d\vec{P} = F d\vec{s}$					
25.	25. Entourer dans la liste suivante les variables d'état que l'on peut qualifier d'extensible :								
	a.	Pression	Qc.	Volume Extensive					
	b.	Température	∠d.	Masse					
26.	Entour	er dans la liste suivante les variables d'état q	ue l'on pet	at qualifier d'intensive :					
	Oa.	Pression	c.	Volume					
		Température	d.	Masse					
27.	L'équat	tion d'état d'un gaz parfait est :							
			c.	PR = nVT					
	b.	PV = nRT PT = nRV	d.	TV = nRP					
28.	28. Considérons un pneu de voiture rempli d'un gaz parfait. La pression initiale est de 2 bars. On effectue un trajet de 200 km durant lequel les pneus de la voiture s'échauffent. On peut dire que :								
	a.	La pression du pneu est égale	c.	La pression du pneu est					
	_	à 2 bars à l'arrivée	<u> </u>	inférieure à 2 bars à l'arrivée					
	()b.	La pression du pneu est	(/H.	La quantité de gaz à l'intérieur					
		supérieure à 2 bars à l'arrivée		du pneu n'a pas changée					
29.	L'énerg	gie est une grandeur qui s'exprime :							
	a.	En kg	c.	En m					
	⊘b.	En J	d.	En N					
30.	capacit	ferme 100g d'air dans un récipient et on lui té thermique massique de l'eau est d'environ est de :							
	a.	5K	Oc.	50K					
		0,5K	d.	500K					