# Ciência de Dados e Alto Desempenho

#### Lucas Mello Schnorr Instituto de Informática, UFRGS

Café com Pesquisa do PPGC –
PPGC/UFRGS, Porto Alegre, Brasil
25 de janeiro de 2024, 13h





# O maior supercomputador do mundo (de acordo com Top500 em 11/2023)

# Supercomputador Frontier (Oak Ridge National Laboratory, USA)

- ullet Custo estimado o 600M USD (fonte, pprox33% LOA2023 de POA)
- ullet Power ightarrow 22.7 MW (pprox15% da UH Passo Real)
- 1.194 exaFLOPS (operações em ponto-flutuante por segundo)
- Poder computacional
  - 9472 AMD Epyc 7A53s "Trento" 64 core 2 GHz CPUs
  - 37,888 Radeon Instinct MI250X GPUs
- 74 racks, cada um com 64 blades, cada blade com 2 nós
  - 1 nó: 1 CPU (4 TBytes), 4 GPUs (cada uma com 128 GBytes)
  - Todos os nós computacionais são iguais (recursos homogêneos)



# Parque Computacional de Alto Desempenho (PCAD) @ INF/UFRGS

Site: https://gppd-hpc.inf.ufrgs.br/

Possui aproximadamente 40 nós: 1000+ núcleos de CPU e 100.000+ de GPU

Recursos heterogêneos (detalhamento das configurações)







Temos um GT (Grupo de Trabalho) → Formamos alunos no gerenciamento da plataforma



(1) Pensamento computacional paralelo

https://doi.org/10.5753/sbc.13058.5

Cap 3: Pensamento Computacional Paralelo: Desafios do Presente e do Futuro



#### (1) Pensamento computacional paralelo

https://doi.org/10.5753/sbc.13058.5

Cap 3: Pensamento Computacional Paralelo: Desafios do Presente e do Futuro

#### (2) Balanceamento de carga computacional

- Dividir corretamente a carga de trabalho
- Mais complexo em máquinas heterogêneas



(1) Pensamento computacional paralelo

https://doi.org/10.5753/sbc.13058.5

Cap 3: Pensamento Computacional Paralelo: Desafios do Presente e do Futuro

#### (2) Balanceamento de carga computacional

- Dividir corretamente a carga de trabalho
- Mais complexo em máquinas heterogêneas

#### (3) Escolha do modelo de programação paralela adequado

- Tradicional: MPI/OpenMP/CUDA
- Modelos mais abstratos baseado em grafo de tarefas (OpenMP Tasks, StarPU, ...)



(1) Pensamento computacional paralelo

https://doi.org/10.5753/sbc.13058.5

Cap 3: Pensamento Computacional Paralelo: Desafios do Presente e do Futuro

#### (2) Balanceamento de carga computacional

- Dividir corretamente a carga de trabalho
- Mais complexo em máquinas heterogêneas

#### (3) Escolha do modelo de programação paralela adequado

- Tradicional: MPI/OpenMP/CUDA
- Modelos mais abstratos baseado em grafo de tarefas (OpenMP Tasks, StarPU, ...)

### Reflexões importantes

Estou usando adequadamente? Será que poderia ser melhor?



(1) Pensamento computacional paralelo

https://doi.org/10.5753/sbc.13058.5

Cap 3: Pensamento Computacional Paralelo: Desafios do Presente e do Futuro

#### (2) Balanceamento de carga computacional

- Dividir corretamente a carga de trabalho
- Mais complexo em máquinas heterogêneas

#### (3) Escolha do modelo de programação paralela adequado

- Tradicional: MPI/OpenMP/CUDA
- Modelos mais abstratos baseado em grafo de tarefas (OpenMP Tasks, StarPU, ...)

### Reflexões importantes

Estou usando adequadamente? Será que poderia ser melhor?

#### Análise de desempenho



Dica de disciplina PPGC: CMP223 Computer System Performance Analysis Prof. Luciano Gaspary

# Observação do comportamento de aplicações paralelas

Existem basicamente duas técnicas



# Observação do comportamento de aplicações paralelas

Existem basicamente duas técnicas



#### Tracing

Rastreamento de eventos importantes

Habilita reconstruir comportamento



Volume de dados consequente (Big Data)

- Técnicas de ciência de dados
- Visualização de dados

# Ciência de dados para análise de aplicações paralelas

### Python

 ${\sf Pandas} + {\sf NumPy} + {\sf Dask} + {\sf PySpark}$ 

#### R

Tidyverse + ggplot2 + ...

### starvz: R-Based Visualization Techniques for Task-Based Applications

- $\bullet \ (\text{dev}) \ \text{https://github.com/schnorr/starvz} \ | \ (\text{release}) \ \text{https://CRAN.R-project.org/package=starvz}$
- Técnicas de visualização de dados focada na semântica da aplicação paralela



### Linhas de Pesquisa e Contato

### Computação de Alto Desempenho e Sistemas Distribuídos

Área de Concentração: Sistemas de Computação  $\to$  Arthur Francisco Lorenzon, Claudio Fernando Resin Geyer, Lucas Mello Schnorr, Philippe Olivier Alexandre Navaux

### Mineração, Integração e Análise de Dados

Área de Concentração: <u>Ciência de Dados</u> e Engenharia de Software → João Luiz Dihl Comba, Jose Palazzo Moreira De Oliveira, Joel Luis Carbonera, Karin Becker, <u>Lucas Mello Schnorr</u>, Mara Abel, Mariana Recamonde Mendoza, Renata De Matos Galante, Viviane Pereira Moreira

### Linhas de Pesquisa e Contato

### Computação de Alto Desempenho e Sistemas Distribuídos

Área de Concentração: Sistemas de Computação  $\rightarrow$  Arthur Francisco Lorenzon, Claudio Fernando Resin Geyer, Lucas Mello Schnorr, Philippe Olivier Alexandre Navaux

### Mineração, Integração e Análise de Dados

Área de Concentração: <u>Ciência de Dados</u> e Engenharia de Software → João Luiz Dihl Comba, Jose Palazzo Moreira De Oliveira, Joel Luis Carbonera, Karin Becker, <u>Lucas Mello Schnorr</u>, Mara Abel, Mariana Recamonde Mendoza, Renata De Matos Galante, Viviane Pereira Moreira

Obrigado pelo atenção! schnorr@inf.ufrgs.br

