1 Review of Session

Definition 1 The span of a finite list of vectors in a vector space V over a field \mathbb{F} is defined as:

$$span(v_1, ..., v_k) = \{a_1v_1 + ... + a_kv_k | a_i \in \mathbb{F}\}\$$

Definition 2 A finite list of vectors $v_1, ..., v_k \in V$ is called linearly independent if for any i

$$v_i \notin span(v_1, ..., v_{i-1}, v_{i+1}, ..., v_k)$$

We then gave an equivalent definition

Definition 3 A finite list of vectors if linearly independent of the only set of scalars a_i such that

$$a_1v_1 + ... + a_kv_k = 0$$

is
$$a_i = 0 \forall i \in \{1, ..., k\}$$

Note that from the first definition, we see that a list of linearly dependent vectors (defined as a list of vectors that are not linearly independent), is a list from which you can always remove a vector, without changing the span.

Theorem 1 From the definition above we claimed and proved that given a list of linearly dependent vectors can also be reduced to a list of linearly independent vectors that have the same span.

Definition 4 A vector space V is called finite dimensional if exist $v_1, ..., v_p \in V$ such that $V = span(v_1, ..., v_p)$

Definition 5 A basis of a finite dimensional vector space V, is a set of linearly independent vectors $v_1, ..., v_n$ such that $V = span(v_1, ..., v_n)$

Definition 6 The dimension of a finite dimensional vector space is the length of its basis.

2 Suggested Exercises

- I) Linearly Dependent Vectors Let a finite list of vectors be linearly dependent if it is not linearly independent
 - Show that the two definitions of linear independence above are equivalent.
 - Explain the "redundance theorem" 1
- II) **Dimension of Vector Space** The goal of this exercise is to show that the dimension of a finite dimensional vector space is well defined. We will proceed by contradiction. Suppose a finite dimensional vector space has 2 bases of different length. Denote them as $v_1, ..., v_p$ and $u_1, ..., u_m$.
 - (a) What are the conditions on v_i and u_i (i.e. write down the definition of the basis for each of them).
 - (b) Consider the list of vectors $v_1, ..., v_p, u_1$. Show that it has the same span as the list $v_1, ..., v_p$.
 - (c) Prove that you can remove one of the vectors v_i from the list $v_1, ..., v_p, u_1$ without changing the span. Prove that after the removal, this list will be linearly independent.
 - (d) Apply induction and show that $u_1, ..., u_p$ must be linearly independent
 - (e) Conclude the proof.
 - (f) See how the proof above shows that any list longer than the basis, has to be linearly dependent.

3 Question III

3.1 Useful Definitions

Definition 7 A linear map from a vector space to itself is called a linear operator.

Definition 8 A basis $\beta = \{v_1, ..., v_n\}$ of a finite dimensional vector space V is said to be upper triangular with respect to some linear operator $T: V \to V$ if $Tv_i \in span(Tv_1, ..., Tv_i)$. (i.e. the matrix $\beta \mathcal{M}_{\beta}(T)$ is upper triangular.

Definition 9 A vector $v \in V$ is an eigenvector of some linear operator T if $Tv = \lambda v$ for some $\lambda \in \mathbb{F}$. We then call λ the eigenvalue of v.

Theorem 2 Any polynomial with complex coefficients has at least one complex root.

This has the following consequence. Any polynomial of degree n with complex coefficients can be written as a product of n monomials as follows:

$$a_0 + a_1 x + \dots + a_n x^n = (x - \lambda_0) \cdots (x - \lambda_n)$$

3.2 Existence of Upper Triangular basis

The goal of this exercise, is to prove that any operator $T:V\to V$ over a finite dimensional vector space V over $\mathbb C$ has a basis in which it is upper triangular.

- (I) Prove that the corollary above, follows from the theorem
- (II) Let V be a vector space over \mathbb{C} with $\dim(V) = n$ and $T \in \mathcal{L}(V)$
 - (i) Let v be any non-zero vector. Consider the set of vectors:

$$v, Tv, T^2v, ..., T^nv$$

Argue that these have to be linearly dependent. Write down some non-trivial linear combination that gives 0.

- (ii) Rewrite the result above, as some polynomial in T applied to v giving 0. Use the corollary above and conclude there must be at least one eigenvalue and eigenvector.
- (III) We will now use the fact above, to prove that any operator $T \in \mathcal{L}(V)$ over a finite-dimensional complex vector space has a basis β , in which its matrix is upper triangular. Recall that a matrix is upper triangular in a basis $\beta = \{v_1, ..., v_n\}$ if

$$Tv_i \in \text{span}(v_1, ..., v_i) \quad \forall i$$

- (i) Prove that above is true if $\dim(V)=1$.
- (ii) We now proceed by induction. Suppose the result holds for any operator over a space with $\dim(V) = n > 1$. Let's show it for $\dim(V) = n + 1$

By theorem in part II and III, know exists an eigenvalue λ . Let

$$U = \text{Range}(T - \lambda I)$$

Argue that $T - \lambda I$ is not surjective. Prove that U is invariant under T (i.e. $TU \subseteq U$)

- (iii) Use the induction hypothesis to argue that $T|_U$ has an upper-triangular basis $u_1, ..., u_m$.
- (iv) Extend $u_1, ..., u_j$ to a basis $\beta = \{u_1, ..., u_m, v_1, ..., v_k\}$ of V. Prove that $Tv_j \in \text{span } (u_1, ..., u_m, v_1, ..., v_j)$ Hint: Consider the equation $(T \lambda I)v_k + \lambda v_k$
- (v) Conclude the result.