SPPU-TE-COMP-CONTENT - KSKA Git Polymorphism Definition -Polymorphism -Polymoxphism is basically an ability to execte vaxiable, function ax object that has more than one form * Operator Overloading --> . It is defined as ability to define a new meaning for an existing (built-in) "operator" · Various types of operators are: + - * / < > 08 11 = << >>

· We can overload operators by defining a function with keyword operator. Then write operator

· Only existing operators can be overloaded, and overloaded operators must have at least one

as a function name

operand

```
classmate
SPPU-TE-COMP-CONTENT - KSKA Gitate
* Program to concatenate two strings using operator

avexloading on 't' operator
+ #include <iastream>
   # include < cstring>
   using namespace std;
   class string1
   public :
      chax S[15];
       String1()
          stxcpy(5, "10");
       String 1 (Char T[15])
         stropy (S,T);
      String 1 operator + (string1 k)
          streat (5, k.5);
          strat (5, "10");
          xetuin 5;
  int main ()
      strings 51 ("Hello"), 52 ("Friends");
      stiling1 5;
      5 = 51 + 52;
      cout << 5.5 << endl;
      vetum 05
```

SPPU-TE-COMP-CONTENT - KSKA Gitte

```
* Type Casting - + standard of many a
. It is a technique in which data of one type
    gets convexted to another data type
   · Eq. conversion of class type to basic data type
    #include <iostream>
    using namespace std;
    class test
      public:
    operator int();
    test :: operator int()
     int sum;
       Sum = 5;
     return sum;
    int main()
       int x;
        2 = 10;
         a = int(obj) // class assigns value to variable
    return 0;
         ant sif " willow) so (" signife").
```

SPPU-TE-COMP-CONTENT - KSKA Git * Function Overloading -. It is a concept in which one can use many functions having same function reame, but can pass different no of parameters · Eg, program to take two integer / two float nos and output smallest no. #include <iostream> using namespace std; class Test public: int smallest (int, int) // Function float smallest (float, float) 11 Overloading Defn int Test :: smallest (int a, int b) if (a < b) return a; else Detuin b: float Test: Smallest (float x, float y) if (a < y)

xetuin 2;

xeturn 4;

else

6	SPPU-TE-COMP-CONTENT - KSKA Git Date Page					
	Definition -					
	Runtime Polymorphism is also known as					
	dynamic polymorphism ox late binding. In xuntime polymorphism function call is resolved at sun time					
	* Compasison: Compile Time v/s Run Time Polymorphism					
1)	Campile Time Poly. Call to functions having same name is made at compile time	Run Time Poly. 1) Call to functions having same name is made at xun time				
2>	In this, function overloading mechanism is used	2) In this, function arex- siding mechanism is used				
3)	Function overloading & operator overloading techniques are used	7) Vixtual functions & pointers are used				
4>	It provides fast execution	4) It provides slow execution				
5)	It is less flexible	5) It is more flexible				
		4219				

SPPU-TE-COMP-CONTENT - KSKA Git * Puxe Vixtual Function -· A puxe vixtual function is a vixtual function which is to be implemented by derived class · Class that contains pure virtual function is called abstract class. · Eq, #include <iostream > using namespace std; class A public: vixtual void display() = 0; class B: public A public: void display() cout << " In derived class B" << endl; 3 int main () A * P ; p= bb; p -> display (); 3

SPPU-TE-COMP-CONTENT - KSKA Git * Vistual Destructor -· Vixtual destauctox is basically a base class destructor preceded by keyword virtual · Base class is declared as vixtual in order to deallocate the memory of derived class explicitly to = O myaid display of Coulded display

cout < " In derived class 8" << endly

1	SPPU-TE-COMP-CONTENT - KSKA Gitasmate					
	Files And Strooms					
	* Stream -					
V	flows from sender to seceiver.					
	Data can be sent out from program on output stream or received into program on input stream					
	Stxeam		eaning	Device		
	cin	Standa	rd input	Connected to Keyboard		
	cout	Standa	rd output	Screen		
	Cexx		rd errox	Screen		
	clog	Buffe	r of error	Screen		
* Stream Exxoxs -						
6	Membex Function bool ios:: good()		Returns take if there is no errox			
	bool ios:: bad() bool ios:: eof() bool ios:: fail()		Returns true if no x/w operation is performed ox invalid x/w operation performed			
			Returns true if input operation is reached at end of file			
			Returns true if input operation failed to sead / output operation failed to generate desired characters			

_

SPPU-TE-COMP-CONTENT - KSKA Git * Disk Files IIO with Streams -▲ Open File Operation -- Flags used in modes of file open operation: Open for input operation ios::in Open for output operation ios:: out Open for binary operation ios: binary If flag set, then initial position is set at end of file, else at beginning ins ate Output operations are appended to file ios :: app Contents of pre existing file get destroyed and replaced by new one ios :: taunc * e++ exogram to read contents of text file → #include < iostream> # include < fstream> # include < stdlib. h> using namespace std; int main () Returns true if in 3 ifstream in; chax Data [80]; in open ("text. dat"); if (lin)

Classmate SPPU-TE-COMP-CONTENT - KSKA Git Date cerr « " could not open file " « end); exit(1);

cout << " Contents are: " << endl; while (in)

> in getline (Data, 80); cout << " In " << Data;

in close();

return 0;

SPPU-TE-COMP-CONTENT - KSKA GIT * Overloading Extraction & Insertion operators -. C++ code for avexloading insertion and extraction operators is: Minsextion function ofstream coperator << (ostream est, Point obj) st << obj. x << ", " << obj. y << "In", return st; 11 extractor function istream & operator >> (istream &st, Point &obj) coutes " Enter x " =: of st>> obj.x; veturn st; * Command Line Arguments -- Command line axquiments are the arguments that axe passed to main function. They axe represented as int main (int argc, char *argv []) · Here the argo represents total number of arguments and argv is array of characters that stake command line arguments

SPPU-TE-COMP-CONTENT - KSKA Git #include < iostream> Using namespace std; int main (int argo, chax *axgr[]) Cout << "In Total no. of arguments = "<< a>gc;
fox Cint i = 0; i < a>gc; i + t) cout << " Argument " << i << axgv [i]; setun 0;

SPPU-TE-COMP-CONTENT - KSKA GIT UNIT-V Exception Handling & Templates * Simple Exception Handling then exceptions are raised by handling control to special functions called Handlers. This provides built-in exxox handling mechanisms which is known as exception handling · C++ ha exception handling uses 3 keywords try, catch and throw · Try' represents block of statements in which there are chances of occurring exceptional condition · When exception is detected, it is thrown using 'throw' statement . The exception thrown is handled appropriately in the 'catch' block. * Multiple Catching -. When an exception occurs, then control is transferred to catch block, and at that time try block is terminated · There can be multiple exceptions in multiple catch statements with one try block.

SPPU-TE-COMP-CONTENT - KSKA Git · Following is structure of program when multiple catch blocks are allowed: void function tay catch (datatypes arg) catch (datatypen arg) * Usex - Defined Exception -· User Defined Exception is a kind of exception defined by the user · As most of exception that we need to handle are of class type · Object of class type is passed to exception handler and with help of object, exxox is processed

SPPU-TE-COMP-CONTENT - KSKA Git · Example, program to compute square root of number If it is negative, usex defined func mysqut() should raise a exception: #include <iastream> # include < math. h> void mysqrt (double val) if (val < 0.0) throw " Negative"; else cout << " Sgrt of " << val << "is" << sgrt (val) << endly catch (char * str) cout << could not handle" << str <<" no. " << endl; int main () cout << " Enter no. : "; double num; cin >> num; mysqrt (num); xeturn O;

SPPU-TE-COMP-CONTENT - KSKA Git * Re-throwing on Exception -. When exception is thrown inside try block it is propagated to catch block · But sometimes, handles may decide to sethrow it to propagate next catch statement · In such a situation, exception can be sethroun by simply waiting throw without any axgument · Example, void function() throw "mywoxld"; catch (chax *) cout << " Inside function()"; throw; // Exception Rethrown tay function(); catch (char *) // Rethrown exception catch here

SPPU-TE-COMP-CONTENT - KSKA GIT

Definition -

Generic Programming
The generic programming is a technique that

allows to write code for any data type elements.

Template is used as a tool for generic programming

* Function Template -

- type conveniently, function templates are used
 - · One can write single function template definition
 - · Based on argument types provided in calls to function, compiler automatically instantiates seperate object code functions
 - Syntax is
 template < class name of datatype >

 name of datatype function name (name of datatype id1,
 name of datatype id2)
 - Program #include <iostream>
 using namespace std;
 template < class T>
 T min (T a , T b)

if (axb)

```
SPPU-TE-COMP-CONTENT - KSKA Git
          xeturn a;
        else
          return b;
 * Class Template -
- Using class template, we can write class
    whose members use template parameters as
    types
  • Syntax is -
     template < class Type >
    class classname
     E .... 11 body
   Program - 10 mon 2010 > staland
   #include <iostream >
   using namespace std;
   template < class T>
   class Compare E
      Ta,b;
    public:
      Compare (Tf, Ts)
```

	UNIT-WSPPU-TE-COMP-CONTENT - KSKALGITE DK			
-	Standard Template Library			
	Definition -			
	STL -			
	The standard template library (STL) is a collection of well structured generic (++ classes (templates) and functions. STL consists 3 basic components: 1) Container 2) Algorithms 3) Iterators			
	# Container is collection of objects of different types. There are 2 types of containers -			
-	i) Sequence container ii) Associative container			
_				
	- Survice *			
	* Vectors (Sequence Container)			
	Vector stores the element in contagious memory locations.			
	Program illustrating vector functions— int main()			
	int main () E vector < charz v(10); // Creates a vector			
	int i.			
	A STATE OF THE PARTY OF THE PAR			

```
SPPU-TE-COMP-CONTENT - KSKA Git Page
          cout << " Size = " << v. size() << end | Il display size
         out << " Insexting elements ... " << endly
         for (i=0; i<5; i+t)
            v. push_back (i+ 10+ 'A');
        rout « " Deleting elements .. " « endl;
        for (i=0; i<5; i++)
          v. pop-back();
     · Explaination -
       The function v. size() xeturns size of vector
    Then we inserted some characters in vector by
     v. push back () function.
     Using v. pap-back () we have deleted last five elements
     and retained original vector
  * Deque -
-. Deque is data structure in which element can be
   insexted I deleted from both, front and rear end
  · Program illustrating operations on Deque -
    int main ()
     int item;
      deque < int > dq;
    deque < int>:: iterator i;
      cout « " Enter element to insert : ";
```

SPPU-TE-COMP-CONTENT - KSKA Git cin>>item; dq. push back (item); cout << " Enter element to insert from front"; ein >> item; or dq push front (item); item = dq. front(); dq.pap-front(); cout << " Deleted element << item ; cout << " Elements of DEQUE are: "; for (i = dq. begin (); i!= dq. end(); i++) cout << " i << " "; (Associative Container) Map is a associative container in which the elements axe stored in form of key value and mapped value · Program to implement Map using STL -#include < iostream> #include < map > using namespace std; int main() int count, key; map < int, char > m; chax item; map < int, char > :: iterator i;

```
SPPU-TE-COMP-CONTENT - KSKA Git
    cout << "Enter element : ";
     cin >> key;
    cout << " Enter value : ">;
    cin>> item;
    m. insert (paix < int, char > (key, item));
    cout << " Enter key to be deleted : ";
    cin >> key;
     m. erase (key);
   count = m. size();
   cout << " Size is : " << count;
  cout << " Enter key for searching";
   cin >> key;
   if (m. count (key) ! = 0)
       cout << " Element " << m. find (key) -> second << " is present
       cout « " Element obsent " « endl;
  cout << "elements of map are: ";
     for (i = m. begin (); i! = m. end(); i++)
           cout << "[" << (*i).first << ", " << (*i). second << "]
```

SPPU-TE-COMP-CONTENT - KSKApaGit

- * Stack (Desived Container)
- elements inserted at last get popped off first.
 - · Basic operations that can be implemented on stack
 - pop :

 - . Implementation of Stack using STL-#include < iostream>
 - # include < stack > using namespace std;
 - int main()
 - Int main()
 - stack < int > 5;
 - char ans;
 - Chus dis
 - int choice;

 - cout << " 1. Push ";
 - cout <<" 3. Display ";
 - cout << "enter choice: ";
 - cin >> choice; switch (choice)
 - Switch Colores
 - case1: cout << " Enter push element: ";
 - cin>> item;

-	SPPU-TE-COMP-CONTENT - KSKA Gitte
_	* Algorithms -
	-> Algorithms are used to process contents of
	Functionalities in container are not sufficient to perform complex operations, hence algorithms are used to support complex operations
	· Vaxious categories of algorithm are-
	▲ Saxting Algorithm - Related to sorting of list
	Mutating sequence Algorithm - Modify contents of container
	A Monmutating sequence Algorithm - Do not modify contents of container as they work
	A Numerical Algorithm - Useful for performing computations
	bootello as popon Faresbod
	After hounds of pointers someth
	a superior to

/

SPPU-TE-COMP-CONTENT - KSKA Git

- * Itexatoxs
- Ttexators are basically objects but sometimes they can be pointers & hence they specify positions in containex
 - · Iterators are used to traverse the contents of containex

There are 5 types of iterators:

- i) Random Access -Elements can be stoxed ox retrieved randomly
- Elements can be stored or retailered but only forward moving is allowed
- iii) Bidixectional -Store and retrive elements and forward! backward moving is allowed
- iv) Input -Element setsieving is allowed with forward moving
- v) Output -Element storing is allowed with forward moving.

	SPPU-TE-COMP-CONTENT – KSKA Git					
1	Sequential Container These are ordered collection in which each element has a position	Associative Cont 1) These are sorted collection in which position depends on its value	Derived Container 1) These are un-ordered Collection in which position doesn't matter			
2	Position depends on time and place of insertion	2) Value of element determine position Order of insertion doesn't matter	2) Neither does order of insertion nor value of element, only existence matters			
3)	Examples - Vectors, Deque, Array, etc	3) Examples - Set, multiset, map, etc	3) Example - Stack, Queue, etc			
1						