Mathematics and numerics for data assimilation and state estimation – Lecture 13

Summer semester 2020

Overview

- Metropolis Hastings MCMC method
- 2 Smoothing in continuous state-space
 - Examples of dynamics
- 3 Well-posedness of smoothing
- 4 Smoothing for deterministic dynamics

Summary of lecture 12

■ Monte Carlo methods for sampling π :

$$\pi_{MC}^{M}[f] = \sum_{k=1}^{M} \frac{f(U_i)}{M}, \quad \text{where} \quad U_i \stackrel{iid}{\sim} \pi$$

- Sampling the target (exactly or approximately) π indirectly through change of measure or an auxiliary/proposal distribution $\hat{\pi}$.
- Discrete-time continuous-space Markov chains
- Metropolis Hastings MCMC method.

Overview

- Metropolis Hastings MCMC method
- Smoothing in continuous state-spaceExamples of dynamics
- 3 Well-posedness of smoothing
- 4 Smoothing for deterministic dynamics

Markov Chain Monte Carlo method (MCMC)

Input: target pdf π , a conditional proposal q(y|x) (i.e., $q(\cdot|x) \in \mathcal{M}$ for every $x \in \mathbb{R}^d$).

Output: Markov chain X_0, X_1, \ldots with objective that $\pi_{MCMC}^M = \frac{1}{M} \sum_{k=1}^{M} \delta_{X_k}$ approximates measure associated to π .

Metropolis-Hastings algorithm

Given X_n ,

- **1** generate proposal $Y_n \sim q(\cdot|X_n)$
- 2 set

$$X_{n+1} = \begin{cases} Y_n & \text{with probability} \quad \rho(X_n, Y_n) \\ X_n & \text{with probability} \quad 1 - \rho(X_n, Y_n) \end{cases}$$

where the M-H acceptance probability is defined by

$$\rho(x,y) = \min\left(\frac{\pi(y)}{\pi(x)}\frac{q(x|y)}{q(y|x)}, 1\right)$$

Assumptions and properties of Metropolis Hastings

Assumptions

- must be able to sample from $q(\cdot|x)$ for relevant x
- \blacksquare π must be known up to a constant (i.e., relevant for posterior densities with Z unknown),
- $\mathbf{q}(\cdot|x)$ must be known up to a constant that is independent of x.

Properties:

■ When q(x|y) = q(y|x) the test ratio becomes

$$\frac{\pi(y)}{\pi(x)}\frac{q(x|y)}{q(y|x)} = \frac{\pi(y)}{\pi(x)}.$$

- If q(x|y) > q(y|x), then (compared to not having a q ratio in the acceptance probability), the probability accepting transitions $x \mapsto y$ increases. So transitions for which the reverse transition q(x|y) is more often proposed than the transition itself, increases likelihood.
- If q(x|y) < q(y|x), then (compared to not having a q ratio in the acceptance probability), the probability accepting transitions $x \mapsto y$ decreases

Effect of M-H acceptance

Top row: Markov chain with kernel density k(u, v) = q(v|y).

Bottom row: M-H transforms kernel density to new kernel "density"

$$p(u,v) = \rho(u,v)q(v|u), \quad \text{with} \quad \rho(u,v) = \min\left(\frac{\pi(v)}{\pi(u)}\frac{q(u|v)}{q(v|u)}, 1\right)$$

$$u = \frac{\int_{0.2 \times 0.5}^{0.2 \times 0.5} \frac{\pi(u)q(u,v)}{\pi(v)q(v,u)}}{\pi(v)q(v,u)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.3 \times 0.5} \frac{\pi(u)q(v,v)}{\pi(v)q(v,w)}}{\pi(v)q(v,w)} \quad v = \min\left(\frac{\pi(v)q(v,u)}{\pi(u)q(u,v)}, 1\right)$$

$$u = \frac{\int_{0.2 \times 0.5}^{0.2 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,u)}}{\pi(v)p(v,u)} \quad v = \frac{\int_{0.3 \times 0.5}^{0.3 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.3 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.3 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.3 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.3 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.3 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(v)p(v,w)}}{\pi(v)p(v,w)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(u)p(u,v)}}{\pi(v)p(v,w)}} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(u)p(u,v)}}{\pi(v)p(v,w)}} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(u)p(u,v)}}{\pi(u)p(u,v)} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(u)p(u,v)}} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v)}{\pi(u)p(u,v)}} \quad v = \frac{\int_{0.5 \times 0.5}^{0.5 \times 0.5} \frac{\pi(u)p(u,v$$

Figure: From Data Assimilation and Inverse Problems, Sanz-Alonso et al.

0.5 * 0.2

0.5 * 0.3

M-H dynamics is associated to the transition kernel (ubung 5)

$$K(x,A) = \underbrace{\int_{A} \rho(u,v)q(y|x)dy}_{r(x,A)} + \left(1 - r(x,\mathbb{R}^{d})\right)\delta_{x}(A)$$

Idea:

$$K(x, A) = \mathbb{P}(X_1 \in A \mid X_0 = x)$$

= $\mathbb{P}(Y_0 \in A, X_1 = Y_0 \mid X_0 = x) + \mathbb{P}(x \in A, X_1 = x \mid X_0 = x)$

M-H properties

If $q(\cdot|x)$ dominates π for all x, then the M-H kernel satisfies detailed balance wrt π :

$$\int_{A} K(x,B)\pi(x)dx = \int_{B} K(x,A)\pi(x)dx \qquad \forall A,B \in \mathcal{B}^{d},$$

and π is an invariant pdf of the M-H Markov chain.

Sketch of proof: Assume that $X_0 \sim \pi$. Then

$$\mathbb{P}_{1}(A) = \int_{\mathbb{R}^{d}} K(x, A) \mathbb{P}_{X_{0}}(dx)$$

$$= \int_{\mathbb{R}^{d}} K(x, A) \pi(x) dx$$

$$= \int_{A} K(x, \mathbb{R}^{d}) \pi(x) dx$$

$$= \int_{A} \pi(x) dx = \mathbb{P}_{0}(A)$$

Remarks

Challenges in real applications: Choosing a proposal such that (1) one achieves convergence $\pi^n \to \pi$, (2) the convergence is fast in n, and (3) that acceptance of the proposal is frequent (for efficiency of MCMC).

See SST 6.4.2 for assumptions on prior and likelihood for $\pi(\cdot|y)$ in combination with Gaussian proposal $q(\cdot|x)$ which ensures convergence of the chain distribution.

If interested, "Monte Carlo Statistical Methods" by Robert and Casella is a good book on Monte Carlo and MCMC methods.

Overview

- Metropolis Hastings MCMC method
- 2 Smoothing in continuous state-space
 - Examples of dynamics
- 3 Well-posedness of smoothing
- 4 Smoothing for deterministic dynamics

Dynamics and observation setting

Continuous state-space dynamics: A mapping $\Psi \in \mathcal{C}(\mathbb{R}^d,\mathbb{R}^d)$ is associated to the dynamics

$$V_{j+1} = \Psi(V_j) + \xi_j, \quad j = 0, 1, \dots$$

 $V_0 \sim N(m_0, C_0)$ (1)

where $\{\xi_j\}$ is iid $\xi \sim N(0, \Sigma)$ -distributed and $V_0 \perp \{\xi_j\}$.

Observations:

$$Y_j = h(V_j) + \eta_j, \quad j = 1, 2, ...,$$
 (2)

where $h \in C(\mathbb{R}^d, \mathbb{R}^k)$ and $\{\eta_j\}$ is iid with $\eta_1 \sim N(0, \Gamma)$.

Independence assumptions:

$$\{\eta_j\} \perp \{\xi_j\}$$
 and $\{\eta_j\} \perp V_0$.

Objectives: Study the smoothing pdf of $V_{0:J}|Y_{1:J} = y_{1:J}$.

Examples of Ψ

In many applications, Ψ can be associated to a solution of a time-invariant ODE:

$$\dot{v} = f(v), \quad t \ge 0
v(0) = v_0$$
(3)

Viewing v_0 as a **variable**, let us denote the solution of (3) at time s by $\Psi(v_0; s)$.

For a fixed interval $\tau > 0$ and any $V \in \mathbb{R}^d$, we define

$$\Psi(V) := \Psi(V; \tau).$$

For later reference, let us also introduce

$$\Psi^{(j)}(V) := \underbrace{\Psi \circ \Psi \circ \ldots \circ \Psi}_{j \text{ times}}(V) = \Psi(V; j\tau).$$

Guiding examples

The scalar-valued ODE

$$\dot{v} = \log(\lambda)v, \quad t \ge 0$$

$$v(0) = v_0 \tag{4}$$

and au=1 yields

$$\Psi(V) = e^{\log(\lambda)\tau}V = \lambda V.$$

The dynamics

$$V_{j+1} = \lambda V_j + \xi_j, \quad j = 0, 1, \dots$$

with $\xi \sim N(0, \sigma^2)$ is fundamentally different when $|\lambda| < 1$ and $|\lambda| > 1$.

Using that

$$\mathbb{E}[V_{j+1}] = \lambda \mathbb{E}[V_j], \quad \mathbb{E}[V_{j+1}] = \lambda^2 \mathbb{E}[V_j^2] + \sigma^2,$$

one can show that when $|\lambda| < 1$,

$$\mathbb{P}_{V_n} \Rightarrow N(0, \frac{\sigma^2}{1-\lambda^2}).$$

Figure: Dynamics of $V_{j+1} = \lambda V_j + \xi_j$ with $\lambda = 0.5$ (left) and $\lambda = 1.05$ (right).

Nonlinear dynamics

For

$$\Psi(v) = \alpha \sin(v)$$

the deterministic dynamics

$$V_{j+1} = \alpha \sin(V_j)$$

is sensitive to the initial condition.

Figure: Dynamics of with $\alpha=2.5$ and $V_0=1$ (left) and $V_0=-1$ (right)

The stochastic dynamics

$$V_{j+1} = \alpha \sin(V_j) + \xi_j, \quad \xi \sim N(0, \sigma^2).$$

is not sensitive to the initial condition, if one views

$$\mathbb{P}_{V}(\cdot) := \lim_{J \to \infty} \frac{1}{J} \sum_{j=1}^{J} \delta_{V_{j}}(\cdot)$$

as the relevant feature (take as soft motivation, have not even shown that this measure exists).

Figure: lpha=2.5, $\sigma=1/4$ and $V_0=1$ (left) and $V_0=-1$ (right)

The stochastic dynamics

$$V_{j+1} = \alpha \sin(V_j) + \xi_j, \quad \xi \sim N(0, \sigma^2).$$

is not sensitive to the initial condition, if one views

$$\mathbb{P}_V(\cdot) := \lim_{J o \infty} rac{1}{J} \sum_{j=1}^J \delta_{V_j}(\cdot)$$

as the relevant feature (take as soft motivation; we have not shown that this measure exists).

Figure: $\pi_V = PDF(\mathbb{P}_V)$ for $\alpha = 2.5$, $\sigma = 1/4$, $J = 10^7$, and $V_0 = 1$ (left) and $V_0 = -1$ (right)

Lorenz '63

Is the system of ODE

$$\begin{vmatrix} \dot{v}_1 = a(v_2 - v_1) \\ \dot{v}_2 = -av_1 - v_2 - v_1v_3 \\ \dot{v}_3 = v_1v_2 - bv_3 - b(r+a) \end{vmatrix} =: f(v), \qquad t \ge 0,$$

where a, b, r > 0 and $v(0) \in \mathbb{R}^3$.

For some $\alpha, \beta > 0$, depending on vector field, it can be shown that

$$f(v)^T v \leq \alpha - \beta |v|^2$$
.

This ensures that [LSZ Example 1.22]

$$\lim \sup_{t \to \infty} |v(t)|^2 \le \frac{\alpha}{\beta}$$

For any $|v(0)| \le \alpha/\beta$ there exists a unique solution, see ubung 6, but v(t) is very sensitive to the initial condition!

Integration in Matlab with parameter values (a, b, r) = (10, 8/3, 28)v(0) = (1, 1, 1) and $\tilde{v}(0) = (1, 1, 1 + 10^{-5})$:

b = 8/3:

$$a = 10;$$

 $b = 8/3;$
 $r = 28;$
 $f = @(t,v) [a*(v(2)-v(1));$

-a*v(1)-v(2)-v(1)*v(3): v(1)*v(2)-b*v(3)-b*(r+a):

Result: $|v(0) - \tilde{v}(0)| = 10^{-5}$ and $|v(20) - \tilde{v}(20)| \approx 15.7$

[t2,vTilde] = ode45(f,[0 20],[1 1 1+1e-5], options);

[t,v] = ode45(f,[0 20],[1 1 1], options); RK 4/5 order ODE solve

If $v_1(s) = v_2(s) = 0$, then $(v_1, v_2) = (0, 0)$ for all later times: when v_3 is sufficiently negative, it is an unstable stationary point on the (v_1, v_2) -subspace.

$$\dot{v}_1 = a(v_2 - v_1)$$

 $\dot{v}_2 = -av_1 - v_2 - v_1v_3$
 $\dot{v}_3 = v_1v_2 - bv_3 - b(r+a)$

Overview

- Metropolis Hastings MCMC method
- Smoothing in continuous state-spaceExamples of dynamics
- 3 Well-posedness of smoothing
- 4 Smoothing for deterministic dynamics

Smoothing

Given dynamics

$$V_{j+1} = \Psi(V_j) + \xi_j, \quad \xi \sim N(0, \Sigma)$$

 $V_0 \sim N(m_0, C_0)$

and observations

$$Y_j = h(V_j) + \eta_j, \quad \eta \sim N(0, \Gamma)$$

with $h \in C(\mathbb{R}^d, \mathbb{R}^k)$ and $V_0 \perp \{\eta_j\} \perp \{\xi_j\}$.

Objectives: given $y_{1:J} \in \mathbb{R}^{k \times J}$,

derive the pdf for smoothing problem:

$$\pi_{V_{0:J}|Y_{1:J}}(v_{0:J}|y_{1:J}) =: \pi(v_{0:J}|y_{1:J})$$

• verify that the smoothing problem is stable wrt perturbations in $y_{1:J} \in \mathbb{R}^{k \times J}$. That is, show that

$$|y_{1:J} - \tilde{y}_{1:J}| = \mathcal{O}(\delta) \implies d_H(\pi(\cdot|y_{1:J}), \pi(\cdot|\tilde{y}_{1:J})) = \mathcal{O}(\delta)$$

The smoothing pdf

By Bayes' rule and the Bayesian viewpoint

$$\pi(v_{0:J}|y_{1:J}) \propto \underbrace{\pi(y_{1:J}|v_{0:J})}_{\text{Likelihood}} \underbrace{\pi(v_{0:J})}_{\text{Prior}}$$

Prior: Note that $\{V_i\}$ is a Markov chain, hence

$$\pi(v_{0:J}) = \pi(v_J|v_{0:J-1})\pi(v_{0:J-1}) = \pi(v_J|v_{J-1})\pi(v_{0:J-1})$$

$$= \ldots = \prod_{i=0}^{J-1} \pi(v_{j+1}|v_j)\pi_{V_0}(v_0).$$

And

$$V_0 \sim N(m_0, C_0) \implies \pi_{V_0}(v_0) \propto \exp(-\frac{1}{2}|v_0 - m_0|_{C_0}^2),$$

and

$$V_{j+1}|(V_j=v_j)=(\Psi(V_j)+\underbrace{\eta_j})|(V_j=v_j)\sim N(\Psi(v_j),\Sigma)$$

$$\implies \pi(v_{j+1}|v_j) \propto \exp(-\frac{1}{2}|v_{j+1} - \Psi(v_j)|_{\Sigma}^2)$$

Prior:

$$\pi(v_{0:J}) = \frac{1}{Z_P} \exp(-\mathsf{R}(v_{0:J}))$$

where

$$\mathsf{R}(v_{0:J}) := rac{1}{2} |v_0 - m_0|_{C_0}^2 + rac{1}{2} \sum_{j=1}^{J-1} |v_{j+1} - \Psi(v_j)|_{\Sigma}^2.$$

Next,

$$\pi(v_{0:J}|y_{1:J}) \propto \underbrace{\pi(y_{1:J}|v_{0:J})}_{\mathsf{Likelihood}} \underbrace{\pi(v_{0:J})}_{\mathsf{Prior}}$$

Likelihood: Since $Y_i = h(V_i) + \eta_i$ and $V_0 \perp \{\eta_i\} \perp \{\xi_i\}$,

$$Y_{1:J}|(V_{0:J}=v_{0:J}) = (Y_1|(V_1=v_1), \ldots, Y_J|(V_J=v_J))$$

 $= (h(v_1) + n_1, \dots, h(v_i) + n_i)$

with independent components and $h(v_i) + \eta_i \sim N(h(v_i), \Gamma)$.

with independent components and
$$h(v_j) + \eta_j \sim N(h(v_j), \Gamma)$$
. Hence,

 $\pi(y_{1:J}|v_{0:J}) = \prod_{i=1}^{n} \pi(y_{j}|v_{j}) \propto \exp(-\mathsf{L}(v_{1:J};y_{1:J}))$

$$\pi(y_{1:J}|v_{0:J})=\prod_{j=1}^n\pi(y_j|v_j)\propto \exp(-\mathsf{L}(v_{1:J};y_j))$$

with

$$\mathsf{L}(v_{1:J};y_{1:J}) := \frac{1}{2} \sum_{i=1}^{J} |h(v_j) - y_j|_{\Gamma}^2.$$

Smoothing pdf

Theorem 1

For the dynamics-observation sequence (1) and (2) with $Y_{1:J}=y_{1:J}$, we obtain

$$\pi(v_{0:J}|y_{1:J}) = \frac{1}{Z} \exp(-L(v_{1:J}; y_{1:J}) - R(v_{0:J}))$$

$$= \frac{1}{Z} \exp\left(-\frac{1}{2} \sum_{j=1}^{J} |h(v_j) - y_j|_{\Gamma}^2 - \frac{1}{2} |v_0 - m_0|_{C_0}^2 - \frac{1}{2} \sum_{j=0}^{J-1} |v_{j+1} - \Psi(v_j)|_{\Sigma}^2\right)$$

where $v_{0:J} \in \mathbb{R}^{d \times (J+1)}$ and the normalizing constant Z depends on $y_{1:J} \in \mathbb{R}^{k \times J}$

Next question: How stable is the pdf wrt perturbations in $y_{1:J}$?

Well-posedness of the smoothing pdf

Theorem 2 (LSZ 2.15)

Fix $J \in \mathbb{N}$, a pair of observation sequences $y_{1:J}, \tilde{y}_{1:j} \in \mathbb{R}^{k \times J}$, and assume that the dynamics V_i satisfies

$$\mathbb{E}\left|\left|\sum_{j=0}^{J}(1+|h(V_j)|^2)\right|\right|<\infty.$$

Then there exists a constant c>0 that depends on $y_{1:J}$ and $\tilde{y}_{1:J}$) such that

$$d_H(\pi(\cdot|y_{1:J}),\pi(\tilde{|}\tilde{y}_{1:J}) \leq c\sqrt{\sum_{i=1}^J |y_i - \tilde{y}_j|^2}$$

Proof ideas:

$$\pi(v_{0:J}|y_{1:J}) = \frac{1}{7} \exp(-\mathsf{L}(v_{1:J}; y_{1:J}) - \mathsf{R}(v_{0:J}))$$

and

$$\pi(v_{0:J}|\tilde{y}_{1:J}) = \frac{1}{\tilde{Z}} \exp(-\mathsf{L}(v_{1:J}; \tilde{y}_{1:J}) - \mathsf{R}(v_{0:J}))$$

Results follows from showing that

$$Z, \tilde{Z} > K > 0$$
 and $|Z - \tilde{Z}| = \mathcal{O}(|y_{1:J} - \tilde{y}_{1:J}|)$

and that

$$\begin{aligned} |\mathsf{L}(v_{1:J}; y_{1:J}) - \mathsf{L}(v_{1:J}; \tilde{y}_{1:J})| &= \frac{1}{2} \sum_{j=1}^{J} \left| |h(v_j) - y_j|_{\Gamma}^2 - |h(v_j) - \tilde{y}_j|_{\Gamma}^2 \right| \\ &= \mathcal{O}(|y_{1:J} - \tilde{y}_{1:J}|). \end{aligned}$$

Hint for bounding the loss-term difference: for $u, v \in \mathbb{R}^k$,

$$|u|_{\Gamma}^2 - |v|_{\Gamma}^2 = \langle u + v, u - v \rangle_{\Gamma}$$

where $\langle u, v \rangle_{\Gamma} := u^T \Gamma^{-1} v$.

Overview

- Metropolis Hastings MCMC method
- Smoothing in continuous state-spaceExamples of dynamics
- 3 Well-posedness of smoothing
- 4 Smoothing for deterministic dynamics

Smoothing problem – deterministic dynamics

Consider the simplified version of (1) where the dynamics is deterministic (but with random initial data):

$$V_{j+1} = \Psi(V_j), j = 0, 1, ..., V_0 \sim N(m_0, C_0)$$

with observations $j = 1, 2, \dots$

$$Y_j = h(V_j) + \eta_j, \quad \eta \sim N(0, \Gamma)$$

with $h \in C(\mathbb{R}^d, \mathbb{R}^k)$ and $V_0 \perp \{\eta_j\}$.

Then, given $Y_{1:J} = y_{1:J}$, we now have that $V_{0:J}$ only is random in V_0 , since using that $V_j = \Psi^{(j)}(V_0)$,

$$V_{0:J} = (V_0, \Psi(V_0), \Psi^{(2)}(V_0), \dots, \Psi^{(J)}(V_0)).$$

Consequently, we now seek to determine the pdf of $V_0|Y_{1:J}=y_{1:J}$:

$$\pi(v_0|y_{1:J}) \propto \underbrace{\pi(y_{1:J}|v_0)}_{\text{Likelihood}} \underbrace{\pi_{V_0}(v_0)}_{\text{Prior}}.$$

Likelihood: Since

$$Y_j = h(V_j) + \eta_j = h(\Psi^{(j)}(V_0)) + \eta_j$$

we obtain that

$$Y_{1:J}|(V_0=v_0) = (h(\Psi^{(1)}(v_0))+\eta_1,h(\Psi^{(2)}(V_0))+\eta_2,\ldots,h(\Psi^{(J)}(V_0))+\eta_J).$$

This yields

$$\pi(y_{1:J}|v_0) = \prod_{j=1}^J \pi(y_j|v_0) \propto \exp\left(-\underbrace{\frac{1}{2}\sum_{j=1}^J \left|y_{j+1} - h(\Psi^{(j)}(v_0))\right|_{\Gamma}^2}_{=L(v_0;y_{1:J})}\right)$$

and the posterior

$$\pi(v_0|y_{1:J}) \propto \exp\left(-\mathsf{L}(v_0;y_{1:J}) - \underbrace{\frac{1}{2}|v_0 - m_0|_{C_0}^2}\right)$$

Numerical study

For the dynamics

$$V_{j+1} = \lambda V_j$$

with $V_0 \sim N(m_0, \sigma_0^2)$ and

$$Y_j = V_j + \eta_j, \quad \eta \sim N(0, \gamma^2)$$

it can be shown that

$$\pi(v_0|y_{1:J}) \propto \exp\Big(-\frac{1}{2\gamma^2} \sum_{j=1}^J |y_{j+1} - \lambda^j v_0|^2 - \underbrace{\frac{1}{2\sigma_0^2} |v_0 - m_0|_{C_0}^2}_{=\mathsf{R}(v_0)}\Big)$$

and completing squares in the exponent yields that

$$V_0|(Y_{1:J} = y_{1:J}) \sim N(m, \sigma_{post}^2)$$

If $|\lambda| < 1$, then

$$\lim_{J \to \infty} \sigma_{post}^2 \stackrel{\text{a.s.}}{=} \frac{\gamma^2}{\lambda^2/(1-\lambda^2)+\gamma^2/\sigma_n^2}$$
 (so uncertainty remains for large J).

But cases when either $\lambda^2 \approx 1$ and/or $\gamma \approx 0$ reduce uncertainty (ubung 6).

Numerical test with $\lambda = 1/2$,

Figure: Numerical tests with $m_0=3$, $\sigma_0=5$ from $v_0=-1$ and [left $\lambda=1/2$ and $\gamma=1$], [right $\lambda=0.9$ and $\gamma=0.1$].

See LSZ 2.8 for more illustrations of smoothing pdfs for $V_0|Y_{1:J}$.

Next time

We will talk about the filtering pdf $\pi(v_j|y_{1:j})$ and Kalman filtering.