and express the constants A, B, C, D, and E in terms of the constants a_0 , a_1 , a_2 , b_0 , b_1 , and b_2 .

(b) Show that *S* may be considered a cascade connection of the following two causal LTI systems:

$$S_{1}: y_{1}(t) = Cx_{1}(t) + D \int_{-\infty}^{t} x_{1}(\tau) d\tau + E \int_{-\infty}^{t} \left(\int_{-\infty}^{\tau} x_{1}(\sigma) d\sigma \right) d\tau,$$

$$S_{2}: y_{2}(t) = A \int_{-\infty}^{t} y_{2}(\tau) d\tau + B \int_{-\infty}^{t} \left(\int_{-\infty}^{\tau} y_{2}(\sigma) d\sigma \right) d\tau + x_{2}(t).$$

- (c) Draw a block diagram representation of S_1 .
- (d) Draw a block diagram representation of S_2 .
- (e) Draw a block diagram representation of S as a cascade connection of the block diagram representation of S_1 followed by the block diagram representation of S_2 .
- (f) Draw a block diagram representation of S as a cascade connection of the block diagram representation of S_2 followed by the block diagram representation of S_1 .
- (g) Show that the four integrators in your answer to part (f) may be collapsed into two. The resulting block diagram is referred to as a *Direct Form II* realization of *S*, while the block diagrams obtained in parts (e) and (f) are referred to as *Direct Form I* realizations of *S*.

EXTENSION PROBLEMS

2.61. (a) In the circuit shown in Figure P2.61(a), x(t) is the input voltage. The voltage y(t) across the capacitor is considered to be the system output.

Figure P2.61a

- (i) Determine the differential equation relating x(t) and y(t).
- (ii) Show that the homogeneous solution of the differential equation from part (i) has the form $K_1e^{j\omega_1t} + K_2e^{j\omega_2t}$. Specify the values of ω_1 and ω_2 .
- (iii) Show that, since the voltage and current are restricted to be real, the natural response of the system is sinusoidal.