資料結構與演算法入門:第 1 章 演算法複雜度分析

悠太翼 Yuuta Tsubasa

July 16, 2025

同樣是乘法,哪個比較快?

寫法一:用加法模擬乘法

```
int multiply(int a, int b) {
   int result = 0;
   for (int i = 0; i < b; i++) {
      result += a;
   }
   return result;
}</pre>
```

寫法二:直接用乘法運算子

```
int multiply(int a, int b) {
    return a * b;
}
```

問題:

- 如果 a = 12, b = 1000000, 兩者誰比較快?為什麼?
- 我們可以怎麼評估程式「快不快」?

各種基本運算所需的指令數(假設)

為了更真實地比較不同程式的效率,我們先來假設:

操作類型	指令數(估計值)
變數初始化(如 int x = 0)	1
加法 (x + y)	1
乘法 (x * y)	2
比較 (x < y)	1
賦值 (x = y)	1
函式呼叫 (不含內容)	1
迴圈迭代一次	每次約3(包含比較、執行、遞增)

- 我們會用這些估計,來推算整段程式「大概」會執行幾個基本指令
- 雖然實際上會更複雜,但這是理解效率的第一步

怎麼比較程式的效率?

加法版本的乘法:估算指令數

- int result = 0; → 初始化:1 指令
- int i = 0; → 初始化:1 指令
- for 迴圈跑 b 次,每次包含:
 - 比較 (i < b):1 指令
 - 加法 (result += a):1 指令
 - 遞增(i++):1 指令
 - \rightarrow 每次迴圈共 3 指令 \times b 次
- return result; → 1 指令

總共:1+1+3b+1=3b+3 次指令

- 而直接乘法如 return a * b; 只需約 3 指令 (乘法 + return)
- 所以我們可以透過「基本指令總數」來估算效率差異

比較兩種乘法方式的指令數

根據我們對「基本運算所需指令數」的假設:

方式一(用加法實作):總共約 3b + 3 指令

方式二(直接使用乘法運算子):約3指令(乘法 + return)

代入不同參數來估算指令總數:

а	b	加法實作 (3b+3)	乘法運算子
1	5	18	3
10	100	303	3
5000	6	21	3
3000	1,000,000	3,000,003	3
5	2,147,483,647	6,442,450,944	3

結論:當輸入變大,**使用加法的版本會產生極大量的重複操作**,而直接 乘法始終只需常數次指令。

我們想要找「上限」

- 剛才我們得到:用加法做乘法需要 3b + 3 次操作
- 現在我們想問:
 - 有沒有一個比較簡單的式子可以「估過它」?
 - 我們不需要知道「準確」幾次,只要知道「最多大概多少」
- 這就帶出「Big O」的想法!

Big O 的數學定義(非正式)

$$f(n) = O(g(n)) \Rightarrow$$
 存在常數 c , 當 n 很大時,可以使得 $f(n) \le c \cdot g(n)$

- 舉例: 3b + 3 < 4b, 當 b 很大時就成立
- 所以我們說:3b + 3 = O(b)

從指令數推導 Big O:幾個簡單例子

我們已經知道:可以估算每個指令的成本,現在我們試著從估出來的「總指令數」來找出 Big O!

範例一:一次加法

```
int result = a + b;
```

指令數:約 1 (加法) + 1 (賦值) = 2 \rightarrow Big O: O(1)

範例二:for 迴圈相加

```
int sum = 0;
for (int i = 0; i < n; i++) {
    sum += i;
}</pre>
```

初始: 2 指令 (sum, i) 每次迴圈: 3 指令 \times n \rightarrow 總指令數:約 3n+2 \rightarrow Big O: O(n)

從指令數推導 Big O:巢狀迴圈

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        count++;
    }
}</pre>
```

分析指令數:

- 外層:
 - 初始化 int i = 0;:1 指令
 - 比較 i < n:約 n+1 次
 - 號增 i++:約 n 次
- 內層(每次外層執行 n 次):
 - 初始化 int j = 0;:n次
 - 比較 j < n: n(n+1) 次
 - a 振慢 i++ · n² 力
 - 遞增 j++:n² 次
 - 主體 count++: n² 次

總指令數估算:約 $3n^2 + 4n + 1$

結論:主導項為 n^2 ,因此這段程式的複雜度為

常見時間複雜度的成長速度比較

透過 Big O 的表示法,我們可以將不同演算法的效率分門別類,依據「輸入大小 n 增加時,執行時間成長的快慢」來做比較。

為什麼要把 n 放大來觀察?

在前一張圖中,我們看到 $O(n^3)$ 好像比 $O(2^n)$ 還大?但那只是因為我們看的範圍太小, 2^n 的成長是「爆炸性的」,需要把 n 放大才能看出來!

空間複雜度也是 Big O 的應用

除了分析「演算法執行多久」,我們也可以分析「需要多少記憶體」這稱為:空間複雜度(Space Complexity)

幾個範例:

- 宣告一個變數: O(1) 空間
- 宣告一個長度為 n 的陣列: O(n) 空間
- 宣告一個 $n \times n$ 的二維陣列: $O(n^2)$ 空間
- 遞迴呼叫 n 層函式,每層都有參數與區域變數: O(n) 空間(呼叫堆疊)

結論: Big O 不只能用來估時間,也可以估演算法的空間需求

進階補充:五種常見漸進符號的數學定義(可略過)

以下是 Big O 與其他常見漸進符號的正式數學定義:

符號	數學定義
O(g(n))	存在正實數 c 和 n_0 ,使得對所有 $n \ge n_0$,都有 $f(n) \le c \cdot g(n)$
o(g(n))	對所有正數 c ,存在 n_0 ,使得對所有 $n \geq n_0$,都有 $f(n) < c \cdot g(n)$
$\Omega(g(n))$	存在正實數 c 和 n_0 ,使得對所有 $n \ge n_0$,都有 $f(n) \ge c \cdot g(n)$
$\omega(g(n))$	對所有正數 c ,存在 n_0 ,使得對所有 $n \geq n_0$,都有 $f(n) > c \cdot g(n)$
$\Theta(g(n))$	同時滿足 $O(g(n))$ 與 $\Omega(g(n))$ 的條件

備註:這些定義有助於理解演算法在「最佳、最壞、平均」等不同情況下的行為。

本章總結

- 時間複雜度(Time Complexity)
 - 分析程式在不同輸入大小下,會執行多少「基本操作」
 - 幫助我們預估程式的執行效率
- 空間複雜度(Space Complexity)
 - 分析演算法需要佔用多少額外記憶體空間
 - 特別重要於資料量龐大或遞迴深層的情況
- Big O 表示法
 - 用來描述演算法的「上限成長速度」
 - 忽略常數與低次項,聚焦在輸入變大時的趨勢
 - 也有 $Big \Omega \times \Theta$ 等進階表示法

搞懂這些,才是真正開始學演算法的第一步!