resumen: N1 – 'el escenario', marcos inerciales N2 - EDO's, determinista N3 - hoy.

momento lineal (total): $p_{tot} = \sum_{i} m_{j} v_{j}$

momento angular (total) : $\vec{C}_{tot} = \sum_{i} m_{j} q_{j} \times v_{j}$

momento inercial: $\vec{\omega} \cdot \vec{\omega} = \sum m_j \rho_j^2$

tensor de inercia : $\vec{\omega} = \vec{C}_{tot}$

porque las integrales de movimiento son útiles? :

considera un campo vectorial $v: \mathbb{R}^3 \to \mathbb{R}^3$ y la EDO:

 $F: \mathbb{R}^3 \to \mathbb{R}$, es (primer) integral \Rightarrow

 $\dot{x} = v(x) , \ x \in \mathbb{R}^3$

soluciones quedan en conjuntos niveles de F.

Conservación de momentos (sistemas cerrados)

ejemplo (choques lineales):

3'era ley de Newton:

si un objeto, A, ejerce una fuerza, \vec{f} , sobre un objeto, Bentonces B ejerce una fuerza sobre A que es igual y opuesta, es decir $-\vec{f}$.

Para un sistema de partículas, $q_1,...,q_N$, produciendo fuerzas unas sobre otras : $(pongamos \ \vec{f}_{ij} := fuerza \ sobre \ q_j \ debido \ a \ q_i)$ $\vec{f}_{ij} = - \vec{f}_{ji} \quad y \quad \vec{f}_{ij} \sim q_i - q_j.$

en un sistema cerrado (solo fuerzas debido a interacciones mutuas), momento lineal total v momento angular total son conservados.

$$m_1 \ddot{q}_1 = f_{21} + \dots + f_{N1}$$
...

$$+ m_N \ddot{q}_N = f_{1N} + \dots + f_{N-1,N}$$

$$m_1\ddot{q}_1 + \dots + m_N\ddot{q}_N = 0 \Rightarrow \frac{d}{dt} p_{tot} = 0 \Rightarrow p_{tot} = cst.$$

 $del\ mismo\ modo,\ \overrightarrow{C}_{tot}=cst.\ (para\ practicar)$

Energía

ejemplo (la palanca):

comentario: centro de masa de dos ojetos, q_1 , q_2 con masas m_1 , m_2 es $q_{cm} = \frac{m_1q_1 + m_2q_2}{m_1 + m_2}$

Dado un campo de fuerzas, \vec{f} , y un sendero γ , el trabajo hecho por las fuerzas al mover un objeto a lo largo de γ es :

$$W := \int \vec{f} \cdot d\gamma$$

$$\int_{0}^{1} -m\vec{g} \cdot \dot{\gamma} dt = \int_{0}^{1} -mg \dot{\gamma}_{z} dt = -mgh$$

$$\mathcal{M}(x, Y, Z) = -mgZ$$

cuando el trabajo no depende del camino, sino solo de sus puntos finales, llamamos a \vec{f} un campo conservativo. Es equivalente a la existencia de una función U para que : $f = \nabla U = -\nabla V.$

V es llamada el potencial, U la funcion de fuerza.

La energía de un ojeto es su 'trabajo almacenado'. Energía es una cantidad conservada (para fuerzas conservativas).

ejemplo (energía cinética):

$$\frac{t^2}{2m}$$
 f pos ; $\frac{t}{m}$ f

$$\frac{d^2f}{dt} = d$$
 $\frac{dt}{dt}$

$$\int f = \frac{\sum w}{\sum \sum w_{x}} = \frac{\sum w_{x}}{\sum w_{x}}$$

Deja que
$$\gamma$$
 sea una trayectoria : $m\ddot{\gamma} = f = \nabla U$. Entonces : r_2

$$U(\gamma(t_{2})) - U(\gamma(t_{1})) = \int_{\gamma(t_{1})}^{\gamma(t_{2})} \vec{f} \cdot d\gamma = \int_{t_{1}}^{t_{2}} m \ddot{\gamma} \cdot \dot{\gamma} dt = \int_{t_{1}}^{t_{2}} m \frac{d}{dt} \frac{|\dot{\gamma}|^{2}}{2} dt = m \frac{|\dot{\gamma}(t_{2})|^{2}}{2} - m \frac{|\dot{\gamma}(t_{1})|^{2}}{2}$$

$$E := m \frac{|\dot{q}|^2}{2} - U(q) = m \frac{|\dot{q}|^2}{2} + V(q) \text{ es un integral.}$$

* fuerzas centrales (2 cuerpos) * el potencial $\frac{1}{-}$ * cuerpos rígidos (principio d'Alembert)

$$f(r) > 0$$
, attraction
 $f(r) < 0$, repulsion

$$m_1\ddot{q}_1 = f_{21}$$

$$m_1\dot{q}_1 + m_2\dot{q}_2 = p = cst.$$

$$m_1\ddot{q}_1 + m_2\ddot{q}_2 = p = cst.$$

$$m_1\dot{q}_1 + m_2\dot{q}_2 = p = cst.$$

 $m_1q_1 + m_2q_2 = tp + a$
 $q_{cm} = tb + c$
 $wlog: q_{cm} = 0$
 $m_1q_1 + m_2q_2 = 0$