Algebraic topology 1

Luka Horjak (luka1.horjak@gmail.com)

October 2, 2023

Contents Luka Horjak

Contents

Introduction		3	
	Basic homotopy theory 1.1 Definition	4	
Ind	dex	4 . 4	

Introduction Luka Horjak

Introduction

These are my lecture notes on the course Algebraic topology 1 in the year 2023/24. The lecturer that year was prof. dr. Petar Pavešić.

The notes are not perfect. I did not write down most of the examples that help with understanding the course material. I also did not formally prove every theorem and may have labeled some as trivial or only wrote down the main ideas.

I have most likely made some mistakes when writing these notes – feel free to correct them.

1 Basic homotopy theory

1.1 Definition

Definition 1.1.1. Continuous maps $f, g: X \to Y$ of topological spaces are *homotopic*, if there is a continuous map $H: X \times I \to Y$, such that H(x, 0) = f(x) and H(x, 1) = g(x). Such H is called a *homotopy*. We write $H: f \simeq g$.

Remark 1.1.1.1. If X is a locally compact and Hausdorff space, homotopies coincide with paths in the space C(X,Y).

Proposition 1.1.2. Homotopy is an equivalence relation on C(X,Y).

Proof. The proof is obvious and need not be mentioned.

Definition 1.1.3. We denote the set of equivalence classes of the homotopy relation on C(X,Y) by [X,Y].

Remark 1.1.3.1. If X is a locally compact and Hausdorff space, [X, Y] is the set of path components of $\mathcal{C}(X, Y)$.

Definition 1.1.4. With $f:(X,A) \to (Y,B)$ we denote maps $f:X \to Y$ such that $f(A) \subseteq f(B)$. Similarly, we define $\mathcal{C}((X,A),(Y,B))$ and [(X,A),(Y,B)].

Definition 1.1.5. Let $A \subseteq X$ and $f, g: X \to Y$ be maps, such that $f|_A = g|_A$. $G: X \times I \to Y$ is a homotopy relative to A if $H: f \simeq g$ and $H_t|_A = f|_A$ for all $t \in I$.

Index

\mathbf{H}

```
homotopic, 4
homotopy, 4
relative to a subspace, 4
```