探索性因素分析作业

——基于KIMS问卷数据

第三大组—第三小组

1 基本信息

2 数据分析

本研究想要探讨KIMS的内部结构,即选取最适合且稳定的因子结构。

采用探索性因素分析中的R分析,被试数为601,项目数为39,样本量与项目数的比例达到15:1,满足做EFA要达到10:1的要求(Costello & Osborne, 2005)。

2.1 数据清理

共有39个变量,有两名被试的缺失率超过30%,即删除100和187号被试。(如表1所示)

表1 个案缺失值

	—————————————————————————————————————								
					Cumulative				
		Frequency	Percent	Valid Percent	Percent				
Valid	.00	521	86.7	86.7	86.7				
	1.00	59	9.8	9.8	96.5				
	2.00	14	2.3	2.3	98.8				
	3.00	4	.7	.7	99.5				
	4.00	1	.2	.2	99.7				
	14.00	1	.2	.2	99.8				
	22.00	1	.2	.2	100.0				
	Total	601	100.0	100.0					

39个变量的缺失比例均未超过10%,说明缺失值对结果将不造成影响。(如表2所示)

表2 变量缺失值

			Std		Missing		tremes
	N	Mean	Deviation	Count	Percent	Low	High
Q1	601	3.61	.983	0	.0	17	0
Q2	598	3.61	1.034	3	.5	14	0
Q3	599	3.44	1.023	2	.3	17	0
Q4	598	3.04	1.224	3	.5	0	0
Q5	596	3.20	1.054	5	.8	0	0
Q6	598	3.79	1.031	3	.5	0	0
Q7	598	3.00	1.014	3	.5	0	0
Q8	600	3.79	.981	1	.2	0	0
Q9	599	3.05	1.129	2	.3	0	0
Q10	598	3.65	1.021	3	.5	14	0
Q11	601	3.02	1.057	0	.0	0	0
Q12	597	2.95	1.226	4	.7	0	0

012	507	2.22	1 124	A	7	^	^
Q13	597	3.32	1.134	4	.7	0	0
Q14	599	2.42	1.107	2	.3	0	30
Q15	599	3.67	1.023	2	.3	14	0
Q16	600	2.63	1.309	1	.2	0	0
Q17	598	3.23	1.165	3	.5	0	0
Q18	596	2.49	1.149	5	.8	0	28
Q19	593	3.05	.972	8	1.3	0	0
Q20	599	3.07	1.268	2	.3	0	0
Q21	598	3.83	.963	3	.5	0	0
Q22	596	2.37	1.045	5	.8	0	19
Q23	595	2.82	1.084	6	1.0	0	0
Q24	598	3.02	1.217	3	.5	0	0
Q25	594	3.76	1.021	7	1.2	0	0
Q26	596	3.47	1.141	5	.8	33	0
Q27	598	3.78	1.001	3	.5	0	0
Q28	597	2.70	1.288	4	.7	0	0
Q29	596	3.99	.931	5	.8	43	0
Q30	594	3.41	1.134	7	1.2	34	0
Q31	594	3.21	1.046	7	1.2	34	0
Q32	599	2.59	1.300	2	.3	0	0
Q33	597	3.98	1.011	4	.7	0	0
Q34	595	3.42	1.158	6	1.0	32	0
Q35	596	3.32	1.046	5	.8	26	0
Q36	597	2.78	1.305	4	.7	0	0
Q37	599	3.69	1.011	2	.3	11	0
Q38	598	3.09	.971	3	.5	0	0
Q39	599	3.76	.945	2	.3	11	0
a Number of aggs o	outgide the ren	gg (O1 15	*IOD O2 ± 1 5*I	OD)			

a. Number of cases outside the range (Q1 - 1.5*IQR, Q3 + 1.5*IQR).

MCAR检验p=0.010<0.05,拒绝零假设,缺失类型非MCAR。(如表3所示)

表 3 EM Means^a

factor	means	factor	means
Q1	3.61	Q21	3.83
Q2	3.62	Q22	2.37
Q3	3.44	Q23	2.82
Q4	3.04	Q24	3.01
Q5	3.20	Q25	3.76
Q6	3.79	Q26	3.47
Q7	3.00	Q27	3.78
Q8	3.79	Q28	2.70
Q9	3.05	Q29	3.99
Q10	3.64	Q30	3.42
Q11	3.02	Q31	3.22
Q12	2.95	Q32	2.59

Q13	3.32	Q33	3.98
Q14	2.43	Q34	3.43
Q15	3.67	Q35	3.33
Q16	2.63	Q36	2.77
Q17	3.23	Q37	3.69
Q18	2.49	Q38	3.09
Q19	3.05	Q39	3.76
Q20	3.07		

a. Little's MCAR test: Chi-Square = 2064.112, DF = 1917, Sig. = .010

2.2 探索性因素分析

(1) 探索性因素分析

相关矩阵检验:无任一变量与其他变量均不相关,且所有变量均至少与一个变量的相关显著。MSA和Anti-image矩阵:Anti-image矩阵中非对角线上的元素 大部分均为负的偏相关系数,且非对角线上的元素不都很大,所以符合做主成分分析。所有变量的MSA值都大于0.5,满足了做主成分分析的条件。

KMO和Bartlett球形检验: KMO为0.906, 大于0.5, 适合做主成分分析的条件; Baelett球形检验, p值为.000, 拒绝零假设, 说明数据适合做主成分分析。(如表4所示)

表 4 KMO and Bartlett's Test

Raiser-Meyer-Olkin Measure of Sampling Adequacy. .906

Bartlett's Test of Sphericity Approx. Chi-Square df 741
Sig. .000

主成分抽取与检验:采用principal components,特征大于1时抽取主成分,并绘制碎石图,用正交Varimax法进行旋转。39个变量其中特征值大于1的有7个,抽取了7个主成分,累积可以解释60.947%的变异。(如表5所示)

表 5 Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	8.952	22.954	22.954	8.952	22.954	22.954	5.643	14.468	14.468
2	5.310	13.615	36.569	5.310	13.615	36.569	4.772	12.235	26.703
3	3.055	7.832	44.402	3.055	7.832	44.402	3.039	7.793	34.496
4	2.515	6.450	50.851	2.515	6.450	50.851	2.946	7.555	42.051
5	1.594	4.087	54.938	1.594	4.087	54.938	2.628	6.738	48.789
6	1.314	3.370	58.308	1.314	3.370	58.308	2.412	6.183	54.972
7	1.029	2.639	60.947	1.029	2.639	60.947	2.330	5.974	60.947
8	.953	2.443	63.390						
9	.883	2.263	65.653						
10	.809	2.074	67.727						
11	.743	1.904	69.631						
12	.719	1.844	71.475						
13	.704	1.804	73.279						
14	.686	1.759	75.038						

15	.634	1.626	76.663
16	.590	1.514	78.177
17	.567	1.454	79.631
18	.562	1.441	81.072
19	.525	1.345	82.417
20	.510	1.307	83.723
21	.497	1.274	84.997
22	.471	1.208	86.206
23	.438	1.122	87.328
24	.431	1.105	88.433
25	.411	1.055	89.488
26	.396	1.015	90.502
27	.384	.985	91.488
28	.378	.968	92.456
29	.353	.905	93.362
30	.336	.861	94.222
31	.312	.800	95.022
32	.311	.797	95.819
33	.293	.750	96.569
34	.277	.711	97.280
35	.274	.702	97.982
36	.247	.634	98.616
37	.214	.549	99.166
38	.187	.480	99.646
39	.138	.354	100.000

由碎石图可知,从第7个点起曲线开始变平。另外,结合特征值原则,选择7个主成分作为抽取的结果。(如图1所示)

图1 碎石图

主成分解释:旋转前的主成分矩阵,表中只显示了大于0.4的负荷。可以看出39个变量抽取了7个主成分。变量Q10、Q35、Q33在第一主成分上的负荷比较大;变量Q8、Q9、Q25、Q29、Q1、Q13、Q17在第二主成分上的负荷比较大;变量Q19在第四主成分上的负荷比较大;变量Q11、Q27

在第五主成分上的负荷比较大;变量Q32、Q16、Q12、Q36、Q4、Q30、Q20、Q28、Q37、Q21、Q24、Q5在第一、第二主成分上有交叉负荷;变量Q18、Q26、Q22、Q14、Q2、Q6、Q34在第一、第三主成分上有交叉负荷;变量Q38、Q7在第一、第四主成分上有交叉负荷;变量Q23、Q3在第一、第五主成分上有交叉负荷;变量Q39在第一、第六主成分上有交叉负荷。(如表6所示)

表 6 Component Matrix^a

	Component						
	1	2	3	4	5	6	7
Q18	647		.490				
Q32	619	.553					
Q10	.612						
Q26	.599		451				
Q22	597		.410				
Q16	594	.581					
Q14	589		.527				
Q12	585	.524					
Q2	.577		516				
Q23	574				.429		
Q35	564						
Q36	563	.473					
Q6	.557		512				
Q4	528	.442					
Q3	486				.440		
Q33	.478						
Q30	.441	.434					
Q31							
Q20	460	.629					
Q28	584	.591					
Q8		.520					
Q37	.411	.507					
Q21	.464	.502					
Q9		.471					
Q24	421	.465					
Q25		.447					
Q29		.446					
Q1		.444					
Q5	.407	.437					
Q13		.408					
Q17		.401					
Q34	.415		494				
Q19				.563			
Q38	.449			.539			
Q7	.475			.501			

Q15		
Q11		.493
Q27		.478
Q39	.426	.508

a. 7 components extracted.

正交Varimax旋转后的主成分矩阵,表中也只显示了大于0.4的负荷。可以看出,变量Q32、Q28、Q16、Q12、Q20、Q36、Q4、Q24在第一主成分上负荷比较大;变量Q6、Q18、Q14、Q2、Q26、Q34、Q22在第二主成分上负荷比较大;变量Q29、Q33、Q25、Q21在第三主成分上负荷比较大;变量Q38、Q19、Q7、Q15、Q31在第四主成分上负荷比较大;变量Q3、Q27、Q23、Q11在第五主成分上负荷比较大;变量Q39、Q37、Q30、Q17、Q8在第六主成分上负荷比较大;变量Q5、Q1、Q9在第七主成分上负荷比较大。变量Q10在第二、第三主成分上存在交叉负荷;变量Q13在第三、第七主成分上存在交叉负荷;变量Q35在第四、第五主成分上存在交叉负荷。(如表7所示)

表 7 Rotated Component Matrix^a

	Component							
	1	2	3	4	5	6	7	
Q32	.860							
Q28	.855							
Q16	.841							
Q12	.822							
Q20	.812							
Q36	.772							
Q4	.701							
Q24	.639							
Q6		.807						
Q18		792						
Q14		791						
Q2		.773						
Q26		.705						
Q34		.690						
Q22		664						
Q10		.658	.426					
Q29			.710					
Q33			.704					
Q25			.680					
Q21			.659					
Q13			.518				.507	
Q38				.834				
Q19				.824				
Q7				.752				
Q15				.526				
Q31				418				
Q3					.691			

Q27		.680		
Q23		.680		
Q11		.618		
Q35	411	.567		
Q39			.748	
Q37			.699	
Q30			.639	
Q17			.445	
Q8			.417	
Q8 Q5				.722
Q1 Q9				.669
Q9				.623

a. Rotation converged in 7 iterations.

根据公因子方差大小,删除变量Q13,重做EFA。(如表8所示)

表8 Communalities

	Initial	Extraction
01	1.000	.553
Q1		
Q2	1.000	.665
Q3	1.000	.620
Q4	1.000	.558
Q5	1.000	.663
Q6	1.000	.682
Q7	1.000	.679
Q8	1.000	.366
Q9	1.000	.583
Q10	1.000	.664
Q11	1.000	.510
Q12	1.000	.709
Q13	1.000	.586
Q14	1.000	.689
Q15	1.000	.402
Q16	1.000	.757
Q17	1.000	.445
Q18	1.000	.719
Q19	1.000	.699
Q20	1.000	.690
Q21	1.000	.628
Q22	1.000	.554
Q23	1.000	.616
Q24	1.000	.460
Q25	1.000	.544
Q26	1.000	.616
Q27	1.000	.587
Q28	1.000	.776
Q29	1.000	.607
Q30	1.000	.555
Q31	1.000	.424
Q32	1.000	.786
Q33	1.000	.582
Q34	1.000	.553
-		

Q35	1.000	.601
Q36	1.000	.634
Q37	1.000	.636
Q38	1.000	.744
Q39	1.000	.623

(2) 探索性因素分析

相关矩阵、MSA和Anti-image矩阵、KMO和Bartlett球形检验结果均说明满足做主成分分析的前提。

KMO and Bartlett's Test	
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	.905
Bartlett's Test of Sphericity Approx. Chi-Square	9968.754
df	703
Sig	000

38个变量其中特征值大于1的有7个,抽取了7个主成分,累积可以解释61.193%的变异。

Total Variance Explained

			Tota		ance Expl				
				Extrac		s of Squared	Rotation Sums of Squared		
	I	nitial Eigenv	alues		Loadin	ıgs		Loadir	ngs
		% of			% of			% of	
Component	Total	Variance Cu	mulative %	Total `	Variance (Cumulative %	Total	Variance (Cumulative %
1	8.803	23.165	23.165	8.803	23.165	23.165	5.639	14.839	14.839
2	5.142	13.532	36.698	5.142	13.532	36.698	4.753	12.509	27.348
3	2.952	7.769	44.467	2.952	7.769	44.467	3.048	8.022	35.371
4	2.499	6.576	51.043	2.499	6.576	51.043	2.903	7.639	43.009
5	1.571	4.135	55.178	1.571	4.135	55.178	2.617	6.886	49.896
6	1.279	3.367	58.544	1.279	3.367	58.544	2.384	6.274	56.169
7	1.007	2.649	61.193	1.007	2.649	61.193	1.909	5.024	61.193
8	.946	2.490	63.683						
9	.848	2.232	65.915						
10	.795	2.092	68.007						
11	.741	1.951	69.958						
12	.710	1.869	71.827						
13	.703	1.849	73.676						
14	.654	1.721	75.397						
15	.621	1.633	77.030						
16	.590	1.553	78.583						
17	.563	1.481	80.064						
18	.557	1.466	81.530						
19	.527	1.387	82.917						
20	.505	1.328	84.246						
21	.491	1.292	85.537						
22	.471	1.240	86.777						
23	.434	1.143	87.920						
24	.428	1.127	89.047						
25	.412	1.083	90.130						
26	.395	1.040	91.170						
27	.380	.999	92.169						
28	.364	.959	93.128						
29	.337	.887	94.015						
30	.323	.850	94.865						
31	.311	.819	95.684						
32	.293	.770	96.454						
33	.281	.741	97.195						

34	.276	.726	97.921
35	.247	.649	98.570
36	.218	.573	99.143
37	.187	.492	99.635
38	.139	.365	100.000

由碎石图可知,从第7个点起曲线开始变平。另外,结合特征值原则,选择7个主成分作为抽取的结果。

正交Varimax旋转后的主成分矩阵,表中也只显示了大于0.4的负荷。可以看出,变量Q32、Q28、Q16、Q12、Q20、Q36、Q4、Q24在第一主成分上负荷比较大;变量Q6、Q14、Q18、Q2、Q26、Q34、Q22在第二主成分上负荷比较大;变量Q33、Q29、Q25、Q21在第三主成分上负荷比较大;变量Q38、Q19、Q7、Q15在第四主成分上负荷比较大;变量Q3、Q23、Q27、Q11在第五主成分上负荷比较大;变量Q39、Q37、Q30、Q8、Q17在第六主成分上负荷较大;变量Q5、Q1在第七主成分上负荷比较大。变量Q10在第二、第三主成分上存在交叉负荷,变量Q31、Q35在第四、第五主成分上存在交叉负荷,变量Q9在第三、第六主成分上存在交叉负荷。

-		Rot	ated Comp	onent Mat	trix ^a		
			C	omponent			
	1	2	3	4	5	6	7
Q32	.861						
Q28	.855						
Q16	.842						
Q12	.822						
Q20	.811						
Q36	.772						
Q4	.703						
Q24	.639						
Q6		.807					
Q18		791					
Q14		790					
Q2		.771					
Q26		.704					
Q34		.692					
Q22		662					
Q10		.657	.441				
Q33			.734				
Q29			.728				
Q25			.712				
Q21			.677				
Q38				.839			

Q19		.830			
Q7		.759			
Q15		.506			
Q31		404	.401		
Q3			.691		
Q23			.672		
Q27			.670		
Q11			.630		
Q35		420	.558		
Q39				.744	
Q37				.717	
Q30				.631	
Q8				.438	
Q17				.407	
Q5					.730
Q1					.701
Q8 Q17 Q5 Q1 Q9	.401				.494

a. Rotation converged in 7 iterations. 根据公因子方差大小,删除变量Q31,重做EFA。

Communalities

	Initial	Extraction
01	Initial	Extraction
Q1	1.000	.606
Q2	1.000	.665
Q3	1.000	.625
Q4	1.000	.559
Q5	1.000	.693
Q6	1.000	.681
Q7	1.000	.685
Q8	1.000	.379
Q9	1.000	.502
Q10	1.000	.666
Q11	1.000	.519
Q12	1.000	.709
Q14	1.000	.688
Q15	1.000	.411
Q16	1.000	.758
Q17	1.000	.447
Q18	1.000	.718
Q19	1.000	.708
Q20	1.000	.688
Q21	1.000	.606
Q22	1.000	.555
Q23	1.000	.604
Q24	1.000	.459
Q25	1.000	.565
Q26	1.000	.621
Q27	1.000	.590
Q28	1.000	.775
Q29	1.000	.602
Q30	1.000	.545
Q30 Q31	1.000	.423
Q31 Q32	1.000	.787
Q32 Q33	1.000	.613
Q33 Q34	1.000	.556
Q34 Q35	1.000	.600
Q33	1.000	.000

Q36	1.000	.634
Q37	1.000	.647
Q38	1.000	.749
Q39	1.000	.617

(3) 探索性因素分析

相关矩阵、MSA和Anti-image矩阵、KMO和Bartlett球形检验结果均说明满足做主成分分析的前提。

KMO and Bartlett's Test	
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	.906
Bartlett's Test of Sphericity Approx. Chi-Square	9813.719
df	666
Sig	000

37个变量其中特征值大于1的有6个,抽取了6个主成分,累积可以解释59.373%的变异。

Total Variance Explained

			Tota		ance Expl				
				Extra		s of Squared	Rotation Sums of Squared		
	I	nitial Eigenv	alues		Loadin	ıgs	-	Loadii	ngs
		% of			% of			% of	
Component	Total	Variance Cu	mulative %	Total	Variance (Cumulative %	Total	Variance	Cumulative %
1	8.679	23.458	23.458	8.679	23.458	23.458	5.623	15.197	15.197
2	5.131	13.866	37.324	5.131	13.866	37.324	4.738	12.805	28.002
3	2.910	7.866	45.190	2.910	7.866	45.190	3.317	8.966	36.968
4	2.401	6.489	51.679	2.401	6.489	51.679	3.008	8.130	45.098
5	1.568	4.238	55.916	1.568	4.238	55.916	2.774	7.497	52.595
6	1.279	3.457	59.373	1.279	3.457	59.373	2.508	6.778	59.373
7	.982	2.654	62.027						
8	.943	2.548	64.575						
9	.846	2.287	66.861						
10	.781	2.110	68.971						
11	.713	1.926	70.898						
12	.703	1.899	72.797						
13	.656	1.773	74.569						
14	.622	1.681	76.250						
15	.591	1.596	77.846						
16	.568	1.535	79.382						
17	.558	1.507	80.889						
18	.530	1.433	82.322						
19	.505	1.365	83.687						
20	.492	1.330	85.017						
21	.471	1.272	86.289						
22	.444	1.200	87.490						
23	.431	1.164	88.653						
24	.413	1.117	89.770						
25	.396	1.069	90.839						
26	.380	1.028	91.867						
27	.369	.998	92.865						
28	.347	.937	93.802						
29	.323	.874	94.676						
30	.312	.844	95.520						
31	.294	.793	96.314						
32	.284	.767	97.080						
33	.280	.757	97.837						
34	.256	.692	98.529						

35	.218	.588	99.117
36	.188	.508	99.625
37	139	375	100 000

Extraction Method: Principal Component Analysis. 由碎石图可知,从第6个点起曲线开始变平。另外,结合特征值原则,选择6个主成分作为抽取 的结果。

正交Varimax旋转后的主成分矩阵,表中也只显示了大于0.4的负荷,Q8在6个主成分中无大于 0.4的负荷,删除Q8,重做EFA。

-	主队出拓。	Rotated C	Component	t Matrix ^a		
			Compo			
	1	2	3	4	5	6
Q32	.862					
Q28	.856					
Q16	.842					
Q12	.822					
Q20	.810					
Q36	.771					
Q4	.704					
Q24	.640					
Q6		.800				
Q14		790				
Q18		787				
Q2		.761				
Q26		.708				
Q34		.690				
Q22		672				
Q10		.647		.449		
Q37			.735			
Q39			.702			
Q30			.659			
Q5			.575			
Q17			.555			
Q1			.513			
Q9			.475	.445		
Q8						
Q33				.731		
Q25				.710		
Q29				.687		
Q21				.666		
Q38					.843	

Q19	.826
Q7	.750
Q15	.540
Q27	.715
Q3	.684
Q3 Q23	.666
Q11	.607
Q35	418 .561

a. Rotation converged in 7 iterations.

(4) 探索性因素分析

相关矩阵、MSA和Anti-image矩阵、KMO和Bartlett球形检验结果均说明满足做主成分分析的前提。

KMO and Bartlett's Test					
Kaiser-Meyer-Olkin Measur	.906				
Bartlett's Test of Sphericity	9655.325				
	df	630			
	Sig.	.000			

36个变量其中特征值大于1的有6个,抽取了6个主成分,累积可以解释60.306%的变异。

Total Variance Explained

			Extraction Sums of Squared			Rotation Sums of Squared			
	l1	nitial Eigen	ivalues	-	Loadings		Loadings		
	TD (1)	% of	1 .: 0/	T 1	% of	T 1 0/	TD 4.1	% of	a 1.: 2/
Component									Cumulative %
1	8.696	24.156	24.156			24.156		15.379	15.379
2	4.875	13.541	37.697		13.541	37.697		13.072	28.451
3	2.903	8.064	45.761		8.064	45.761		8.683	37.134
4	2.398	6.660	52.421		6.660	52.421		8.520	45.654
5	1.561	4.337	56.758		4.337	56.758		7.664	53.318
6	1.277	3.548	60.306	1.277	3.548	60.306	2.516	6.988	60.306
7	.983	2.730	63.036						
8	.873	2.425	65.461						
9	.813	2.258	67.719						
10	.730	2.029	69.748						
11	.709	1.969	71.717						
12	.663	1.841	73.558						
13	.632	1.756	75.314						
14	.611	1.696	77.010						
15	.594	1.649	78.659						
16	.562	1.561	80.220						
17	.528	1.466	81.686						
18	.521	1.448	83.135						
19	.492	1.366	84.501						
20	.477	1.325	85.826						
21	.445	1.237	87.063						
22	.429	1.193	88.256						
23	.417	1.157	89.413						
24	.400	1.112	90.525						
25	.380	1.056	91.581						
26	.368	1.023	92.604						
27	.346	.961	93.565						
28	.325	.903	94.468						
29	.318	.882	95.350						
30	.297	.826	96.176						

31	.287	.797	96.973
32	.283	.785	97.758
33	.258	.717	98.475
34	.222	.617	99.092
35	.188	.522	99.614
36	.139	.386	100.000

由碎石图可知,从第6个点起曲线开始变平。另外,结合特征值原则,选择6个主成分作为抽取的结果。

正交Varimax旋转后的主成分矩阵,表中也只显示了大于0.4的负荷。可以看出,变量Q32、Q28、Q16、Q12、Q20、Q36、Q4、Q24在第一主成分上负荷比较大;变量Q6、Q14、Q18、Q2、Q26、Q34、Q22在第二主成分上负荷比较大;变量Q37、Q39、Q30、Q5、Q17、Q1在第三主成分上负荷比较大;变量Q33、Q25、Q21、Q29在第四主成分上负荷比较大;变量Q38、Q19、Q7、Q15在第五主成分上负荷比较大;变量Q27、Q3、Q23、Q11在第六主成分上负荷较大。变量Q10在第二、第四主成分上存在交叉负荷,变量Q9、在第三、第四主成分上存在交叉负荷,变量Q35在第五、第六主成分上存在交叉负荷。

		Rotated (Component	Matrix ^a		
			Compo	nent		
	1	2	3	4	5	6
Q32	.867					
Q28	.863					
Q16	.846					
Q12	.826					
Q20	.811					
Q36	.774					
Q4	.705					
Q24	.636					
Q6		.800				
Q14		788				
Q18		783				
Q2		.762				
Q26		.709				
Q34		.691				
Q22		669				
Q10		.646		.454		
Q37			.727			
Q39			.712			
Q30			.665			
Q5			.580			

Q17	.554			
Q1	.513			
Q33		.743		
Q25		.713		
Q21		.674		
Q29		.674		
Q9	.446	.471		
Q38			.841	
Q19			.824	
Q7			.750	
Q15			.547	
Q27				.720
Q3				.687
Q23				.665
Q11				.602
Q35			411	.565

a. Rotation converged in 7 iterations. 根据公因子方差大小,删除变量Q9,重做EFA。

Communa	

	Initial	Extraction
Q1	1.000	.425
Q2	1.000	.658
Q3	1.000	.627
Q4	1.000	.546
Q5	1.000	.541
Q6	1.000	.674
Q7	1.000	.674
Q9	1.000	.463
Q10	1.000	.661
Q11	1.000	.479
Q12	1.000	.713
Q14	1.000	.686
Q15	1.000	.346
Q16	1.000	.763
Q17	1.000	.445
Q18	1.000	.712
Q19	1.000	.689
Q20	1.000	.683
Q21	1.000	.605
Q22	1.000	.550
Q23	1.000	.604
Q24	1.000	.436
Q25	1.000	.560
Q26	1.000	.627
Q27	1.000	.583
Q28	1.000	.782
Q29	1.000	.540
Q30	1.000	.523
Q32	1.000	.793
Q33	1.000	.623
Q34	1.000	.552
Q35	1.000	.598
Q36	1.000	.637
Q37	1.000	.602
Q38	1.000	.754

Q39 1.000 .556

Extraction Method: Principal Component Analysis.

(4)重做探索性因素分析

相关矩阵、MSA和Anti-image矩阵、KMO和Bartlett球形检验结果均说明满足做主成分分析的前提。

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	.907
Bartlett's Test of Sphericity Approx. Chi-Square	9388.416
df	595
Sig.	.000

35个变量其中特征值大于1的有6个,抽取了6个主成分,累积可以解释60.828%的变异。

Total Variance Explained

			Extraction Sums of Squared			Rotation Sums of Squared			
	Initial Eigenvalues		Loadings			Loadings			
_	_	% of			% of			% of	
						Cumulative %			
1	8.603		24.581			24.581			
2	4.688		37.977			37.977			
3	2.800		45.978			45.978			
4	2.370		52.750			52.750			
5	1.556		57.195			57.195			
6	1.272		60.828	1.272	3.633	60.828	2.512	7.176	60.828
7	.954		63.554						
8	.848		65.978						
9	.794		68.246						
10	.730		70.331						
11	.704		72.342						
12	.652		74.204						
13	.628		75.997						
14	.592		77.688						
15	.567		79.307						
16	.531	1.518	80.825						
17	.526		82.327						
18	.503		83.765						
19	.477	1.363	85.128						
20	.468	1.337	86.465						
21	.438		87.718						
22	.431	1.231	88.948						
23	.400	1.143	90.091						
24	.396	1.131	91.222						
25	.368	1.051	92.273						
26	.345	.985	93.258						
27	.332	.949	94.208						
28	.319	.912	95.119						
29	.314	.896	96.015						
30	.298	.851	96.866						
31	.284	.810	97.677						
32	.258	.738	98.415						
33	.228		99.067						
34	.188		99.603						
35	.139	.397	100.000						

Extraction Method: Principal Component Analysis.

由碎石图可知,从第6个点起曲线开始变平。另外,结合特征值原则,选择6个主成分作为抽取

正交Varimax旋转后的主成分矩阵,表中也只显示了大于0.4的负荷。可以看出,变量Q32、Q28、Q16、Q12、Q20、Q36、Q4、Q24在第一主成分上负荷比较大;变量Q6、Q14、Q18、Q2、Q26、Q34、Q22在第二主成分上负荷比较大;变量Q37、Q39、Q30、Q5、Q17、Q1在第三主成分上负荷比较大;变量Q33、Q25、Q29、Q21在第四主成分上负荷比较大;变量Q38、Q19、Q7、Q15在第五主成分上负荷比较大;变量Q27、Q3、Q23、Q11在第六主成分上负荷较大。变量Q10在第二、第四主成分上存在交叉负荷,变量Q35在第五、第六主成分上存在交叉负荷。

Rotated Component Matrix ^a								
	Component							
	1	2	3	4	5	6		
Q32	.867							
Q28	.863							
Q16	.846							
Q12	.826							
Q20	.811							
Q36	.773							
Q4	.701							
Q24	.634							
Q6		.801						
Q14		791						
Q18		782						
Q2		.761						
Q26		.712						
Q34		.692						
Q22		669						
Q10		.649		.447				
Q37			.730					
Q39			.723					
Q30			.668					
Q5			.578					
Q17			.562					
Q1			.519					
Q33				.748				
Q25				.709				
Q29				.691				
Q21				.661				
Q38					.843			
Q19					.825			
Q7					.748			
Q15					.546			

Q27		.721
Q3		.688
Q23		.672
Q11		.601
Q35	407	.570

a. Rotation converged in 6 iterations. 根据公因子方差大小,删除变量Q35,重做EFA。

Communalities					
	Initial	Extraction			
Q1	1.000	.428			
Q2	1.000	.660			
Q3	1.000	.628			
Q4	1.000	.540			
Q5	1.000	.526			
Q6	1.000	.675			
Q7	1.000	.672			
Q10	1.000	.661			
Q11	1.000	.470			
Q12	1.000	.714			
Q14	1.000	.691			
Q15	1.000	.345			
Q16	1.000	.763			
Q17	1.000	.453			
Q18	1.000	.713			
Q19	1.000	.689			
Q20	1.000	.683			
Q21	1.000	.593			
Q22	1.000	.552			
Q23	1.000	.611			
Q24	1.000	.436			
Q25	1.000	.560			
Q26	1.000	.629			
Q27	1.000	.584			
Q28	1.000	.783			
Q29	1.000	.572			
Q30	1.000	.520			
Q32	1.000	.794			
Q33	1.000	.630			
Q34	1.000	.553			
Q35	1.000	.600			
Q36	1.000	.637			
Q37	1.000	.604			
Q38	1.000	.753			
Q39	1.000	.567			

Extraction Method: Principal Component Analysis.

(5)重做探索性因素分析

相关矩阵、MSA和Anti-image矩阵、KMO和Bartlett球形检验结果均说明满足做主成分分析的前 提。

KMO and Bartlett's Test	
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	.904
Bartlett's Test of Sphericity Approx. Chi-Square	9051.384
df	561

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	.904
Bartlett's Test of Sphericity Approx. Chi-Square	9051.384
df	561
Sig.	.000

34个变量其中特征值大于1的有6个,抽取了6个主成分,累积可以解释61.070%的变异。

Total Variance Explained

	Total variance Explained								200	
	_			Extra		s of Squared	Rota	Rotation Sums of Squared		
	lr	nitial Eigenv	alues	Loadings			Loadings			
		% of		% of			% of			
Component		Variance Cui	mulative %	Total					Cumulative %	
1	8.313	24.449	24.449		24.449	24.449	5.507		16.198	
2 3	4.646	13.664	38.113		13.664	38.113			29.992	
	2.688	7.907	46.020		7.907	46.020		8.738	38.730	
4	2.331	6.857	52.878		6.857	52.878			46.987	
5	1.527	4.491	57.369	1.527	4.491	57.369	2.638	7.759	54.746	
6	1.258	3.701	61.070	1.258	3.701	61.070	2.150	6.324	61.070	
7	.953	2.803	63.873							
8	.840	2.469	66.342							
9	.775	2.279	68.620							
10	.724	2.128	70.749							
11	.693	2.039	72.787							
12	.639	1.879	74.666							
13	.623	1.833	76.500							
14	.594	1.747	78.247							
15	.552	1.624	79.870							
16	.541	1.592	81.463							
17	.508	1.493	82.956							
18	.491	1.443	84.400							
19	.477	1.402	85.801							
20	.466	1.370	87.171							
21	.431	1.269	88.440							
22	.409	1.203	89.643							
23	.400	1.177	90.820							
24	.375	1.103	91.924							
25	.349	1.027	92.951							
26	.337	.990	93.941							
27	.329	.967	94.907							
28	.319	.939	95.847							
29	.300	.882	96.729							
30	.297	.872	97.601							
31	.259	.761	98.362							
32	.228	.671	99.034							
33	.189	.555	99.589							
34	.140	.411	100.000							

Extraction Method: Principal Component Analysis.

由碎石图可知,从第6个点起曲线开始变平。另外,结合特征值原则,选择6个主成分作为抽取的结果。

正交Varimax旋转后的主成分矩阵,表中也只显示了大于0.4的负荷。可以看出,变量Q32、Q28、Q16、Q12、Q20、Q36、Q4、Q24在第一主成分上负荷比较大;变量Q6、Q14、Q18、Q2、Q26、Q34、Q22在第二主成分上负荷比较大;变量Q37、Q39、Q30、Q5、Q17、Q1在第三主成分上负荷比较大;变量Q33、Q25、Q21、Q29在第四主成分上负荷比较大;变量Q38、Q19、Q7、Q15在第五主成分上负荷比较大;变量Q27、Q23、Q3、Q11在第六主成分上负荷较大。变量Q10在第二、第四主成分上存在交叉负荷,删除,重做EFA。

		Rotated (Component	Matrix ^a		
			Compor	ent		
	1	2	3	4	5	6
Q32	.869					
Q28	.865					
Q16	.847					
Q12	.827					
Q20	.812					
Q36	.779					
Q4	.704					
Q24	.640					
Q6		.801				
Q14		792				
Q18		783				
Q2		.761				
Q26		.709				
Q34		.691				
Q22		667				
Q10		.649		.450		
Q37			.728			
Q39			.726			
Q30			.667			
Q5			.576			
Q17			.568			
Q1			.514			
Q33				.740		
Q25				.712		
Q29				.690		
Q21				.658		
Q38					.844	
Q19					.832	
Q7					.764	
Q15					.557	
Q27						.713

Q23	.667
Q3	.664
Q11	.636

a. Rotation converged in 7 iterations.

(6)重做探索性因素分析

相关矩阵、MSA和Anti-image矩阵、KMO和Bartlett球形检验结果均说明满足做主成分分析的前 提。

KMO and Bartlett's Test					
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	.899				
Bartlett's Test of Sphericity Approx. Chi-Square	8643.830				
df	528				
Sig	000				

33个变量其中特征值大于1的有6个,抽取了6个主成分,累积可以解释61.115%的变异。

Total Variance Explained

			100		ction Sums	s of Squared	Rota	tion Sums	on Sums of Squared	
	I	nitial Eigenv	alues		Loadir	igs	Loadings			
	% of			% of			% of			
Component	Total	Variance Cu	mulative %	Total	Variance (Cumulative %	Total	Variance (Cumulative %	
1	7.960	24.121	24.121	7.960	24.121	24.121	5.493	16.645	16.645	
2	4.479	13.572	37.693	4.479	13.572	37.693	4.276	12.956	29.601	
2 3	2.663	8.069	45.762	2.663	8.069	45.762	3.004	9.102	38.704	
4	2.330	7.062	52.824	2.330	7.062	52.824	2.636	7.988	46.692	
5	1.523	4.614	57.438	1.523	4.614	57.438	2.610	7.909	54.602	
6	1.213	3.677	61.115	1.213	3.677	61.115	2.149	6.513	61.115	
7	.952	2.886	64.000							
8	.840	2.545	66.545							
9	.774	2.344	68.889							
10	.698	2.114	71.003							
11	.679	2.058	73.061							
12	.636	1.927	74.988							
13	.622	1.886	76.874							
14	.595	1.802	78.676							
15	.553	1.674	80.350							
16	.539	1.633	81.983							
17	.510	1.544	83.527							
18	.485	1.471	84.997							
19	.476	1.441	86.438							
20	.463	1.404	87.842							
21	.431	1.306	89.149							
22	.407	1.234	90.382							
23	.386	1.169	91.551							
24	.374	1.133	92.684							
25	.342	1.036	93.719							
26	.331	1.003	94.722							
27	.326	.989	95.712							
28	.300	.909	96.621							
29	.296	.897	97.518							
30	.259	.783	98.301							
31	.228	.690	98.991							
32	.189	.574	99.565							
33	.144	.435	100.000							

Extraction Method: Principal Component Analysis. 由碎石图可知,从第6个点起曲线开始变平。另外,结合特征值原则,选择6个主成分作为抽取

的结果。

正交Varimax旋转后的主成分矩阵,表中也只显示了大于0.4的负荷。可以看出,变量Q32、Q28、Q16、Q12、Q20、Q36、Q4、Q24在第一主成分上负荷比较大;变量Q14、Q6、Q18、Q2、Q26、Q34、Q22在第二主成分上负荷比较大;变量Q37、Q39、Q30、Q5、Q17、Q1在第三主成分上负荷比较大;变量Q33、Q25、Q29、Q21在第四主成分上负荷比较大;变量Q38、Q19、Q7、Q15在第五主成分上负荷比较大;变量Q27、Q23、Q3、Q11在第六主成分上负荷较大。无存在交叉负荷的变量,结构较稳定。

		Rotated (Component	Matrix ^a		
			Compor	nent		
	1	2	3	4	5	6
Q32	.868					
Q28	.866					
Q16	.847					
Q12	.827					
Q20	.813					
Q36	.779					
Q4	.703					
Q24	.640					
Q14		802				
Q6		.801				
Q18		792				
Q2		.757				
Q26		.707				
Q34		.683				
Q22		673				
Q37			.734			
Q39			.723			
Q30			.663			
Q5			.596			
Q17			.575			
Q1			.518			
Q38				.845		
Q19				.833		
Q7				.766		
Q15				.557		
Q33					.737	
Q25					.730	
Q29					.693	
Q21					.659	
Q27						.711

Q23	.670
Q3	.666
Q11	.636

a. Rotation converged in 6 iterations.

主成分相关矩阵如上表所示。

Component	Transfor	mation	Matrix
Component	I I ansivi	mation	IVIALIA

Component	1	2	3	4	5	6
1	.638	534	314	252	253	.287
2	.653	.261	.542	.055	.451	.075
3	151	787	.270	.318	.351	244
4	.296	.130	228	.847	302	186
5	220	014	090	.336	.248	.877
6	094	099	.689	.041	675	.221

3 结论

综上所述,通过主成分分析、正交Varimax旋转,变量Q32、Q28、Q16、Q12、Q20、Q36、Q4、Q24归属第一主成分;变量Q14、Q6、Q18、Q2、Q26、Q34、Q22归属第二主成分;变量Q37、Q39、Q30、Q5、Q17、Q1归属第三主成分;变量Q33、Q25、Q29、Q21归属第四主成分;变量Q38、Q19、Q7、Q15归属第五主成分;变量Q27、Q23、Q3、Q11归属第六主成分。根据原始数据中各变量的描述,可以将6个主成分分别命名为无评价接纳、感觉外化、自我觉知、专注、事物观察、无意识行为。(如下表所示)

旋转因子矩阵及解释率

Items	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
Q32. I think some of my emotions are bad or inappropriate and I shouldn't feel them.	.868					
Q28. I tell myself that I shouldn't be thinking the way I'm thinking.	.866					
Q16. I believe some of my thoughts are abnormal or bad and I shouldn't think that way.	.847					
Q12. I tell myself that I shouldn't be feeling the way I'm feeling.	.827					
Q20. I make judgments about whether my thoughts are good or bad.	.813					
Q36. I disapprove of myself when I have irrational ideas.	.779					
Q4. I criticize myself for having irrational or inappropriate emotions.	.703					
Q24. I tend to make judgments about how worthwhile or worthless my experiences are.	.640					
Q14. It's hard for me to find the words to describe what I'm thinking.		802				
Q6. I can easily put my beliefs, opinions, and expectations into words.		.801				
Q18. I have trouble thinking of the right words to express how I feel about things.		792				
Q2. I'm good at finding the words to describe my feelings.		.757				
Q26. Even when I'm feeling terribly upset, I can find a way to put it into words.		.707				
Q34. My natural tendency is to put my experiences into words.		.683				
Q22. When I have a sensation in my body, it's difficult for me to describe it because I can't find the right		673				
words.						
Q37. I pay attention to how my emotions affect my thoughts and behavior.			.734			
Q39. I notice when my moods begin to change.			.723			
Q30. I intentionally stay aware of my feelings.			.663			
Q5. I pay attention to whether my muscles are tense or relaxed.			.596			
Q17. I notice how foods and drinks affect my thoughts, bodily sensations, and emotions.			.575			
Q1. I notice changes in my body, such as whether my breathing slows down or speeds up.			.518			
Q38. I get completely absorbed in what I'm doing, so that all my attention is focused on it.				.845		
Q19. When I do things, I get totally wrapped up in them and don't think about anything else.				.833		
Q7. When I'm doing something, I'm only focused on what I'm doing, nothing else.				.766		
Q15. When I'm reading, I focus all my attention on what I'm reading.				.554		
Q33. I notice visual elements in art or nature, such as colors, shapes, textures, or patterns of light and					.737	
shadow.						
Q25. I pay attention to sounds, such as clocks ticking, birds chirping, or cars passing.					.730	
Q29. I notice the smells and aromas of things.					.693	
Q21. I pay attention to sensations, such as the wind in my hair or sun on my face.					.659	
Q27. When I'm doing chores, such as cleaning or laundry, I tend to daydream or think of other things.						.711
Q3. When I do things, my mind wanders off and I'm easily distracted.						.670
Q23. I don't pay attention to what I'M doing because I'm daydreaming, worrying, or otherwise distracted.						.666
Q11. I drive on "automatic pilot" without paying attention to what I'm doing.						.636
Eigenvalues	5.493	4.276	3.004	2.636	2.610	2.149
Percentage of variance	16.645	12.596	9.102	7.988	7.909	6.513
Cronbach's Alpha	0.924	-0.402	0.787	0.794	0.784	0.708

4 讨论

基于参考文献及问卷的原始的文献,可知对KIMS量表的学生样本进行探索性因素分析结果为4个成分,39个项目(Baer, Smith, & Allen, 2004)。虽然在题数上有差异,但维度可以相互对应。本问卷中的第一主成分对应原始文献中的无评价接纳选项(Accept Without Judgment);第二主成分对应原始文献中的描述性选项(Describe);第三、第五主成分对应原始文献中的观察性选项(Observe);第四、第六主成分对应原始文献中的无意识活动选项(Act With Awareness),说明结果是稳定存在的。

参考文献

- Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. *Practical Assessment Research & Evaluation*, 10(7). Retrieved from http://pareonline.net/getvn.asp?v=10&n=7
- Baer, R. A., Smith, G. T., & Allen, K. B. (2004). Assessment of mindfulness by self-report: the Kentucky inventory of mindfulness skills. *Assessment*, 11(3), 191-206. doi: 10.1177/1073191104268029