Limite d'une fonction numérique

Capacités attendues

- Calculer les limites des fonctions polynômes, des fonctions rationnelles et des fonctions irrationnelles;
- Calculer les limites de fonctions trigonométriques simples en utilisant les limites usuelles;
- Résoudre des inéquations de type $|f(x) \ell| < \epsilon$ et de type f(x) > A pour montrer que f(x) tend vers ℓ dans des situations simples.

9	Limite d'une fonction numérique · · · · · · · · · · · · · · · · · · ·
	Notion de limite : les différentes situations
Ш	Limite lorsque x tend vers $a \in \mathbb{R}$
	1 Cas d'une limite finie $\ell\in\mathbb{R}$
	2 Cas où la limite est $+\infty$ ou $-\infty$
	3 Limites à droite et à gauche
n)	Limite lorsque x tend vers $+\infty$ ou $-\infty$
	1 Cas d'une limite finie $\ell\in\mathbb{R}$
	2 Cas d'une limite infinie
IV	Opérations sur les limites
	1 Somme de limites
	2 Produit de limites
	3 Quotient de limites
	4 Limite de fonctions composées
V	Traiter les formes indéterminées
	1 Formes indéterminées avec des polynômes
	2 Forme indéterminée $\frac{0}{0}$ et changement de variable $\dots \dots \dots \dots$
	3 Forme indéterminée et radicaux : quantité conjuguée
VI	Théorèmes d'encadrement
	1 Théorème de majoration et de minoration

Notion de limite : les différentes situations

Dans ces illustrations, a et ℓ désignent des réels fixés.

La notation $\lim_{x\to a} f(x) = \ell$ se lit : la *limite* de f(x) lorsque x tend vers a est ℓ . Les symboles ℓ et a peuvent être des nombres réels ou *moins l'infini* $(-\infty)$ ou *plus l'infini* $(+\infty)$.

Limite lorsque x tend vers $a \in \mathbb{R}$

1

Cas d'une limite finie $\ell \in \mathbb{R}$

Définition

On dit que la limite de f(x), lorsque x tend vers a, est $\ell \in \mathbb{R}$ si le nombre f(x) peut être rendu aussi proche que l'on veut du réel ℓ , pourvu que x soit assez proche du réel a. Précisément

$$\lim_{x \to a} f(x) = \ell \in \mathbb{R} \Leftrightarrow$$

pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que pour tout $x \in]a - \delta, a + \delta[$ on ait $f(x) \in]\ell - \varepsilon, \ell + \varepsilon[$.

 $\underline{\mathrm{Ou}}: \lim_{x \to a} f(x) = \ell \Leftrightarrow \forall \varepsilon > 0, \ \exists \, \delta > 0 \ \mid \ x \in]a - \delta, a + \delta [\Longrightarrow f(x) \in]\ell - \varepsilon, \ell + \varepsilon [.$

2

Cas où la limite est $+\infty$ ou $-\infty$

Définition

On dit que la limite de f(x), lorsque x tend vers a, est $+\infty$ si le nombre f(x) peut être rendu aussi grand que l'on veut, pourvu que x soit assez proche du réel a. Précisément :

$$\lim_{x \to a} f(x) = +\infty \Leftrightarrow$$

pour tout A > 0, il existe $\delta > 0$ tel que pour tout $x \in]a - \delta, a + \delta[$ on ait $f(x) \in]A, +\infty[$. Ou : $\lim f(x) = +\infty \Leftrightarrow \forall A > 0, \exists \delta > 0 \mid x \in]a - \delta, a + \delta[\Longrightarrow f(x) \in]A, +\infty[$.

$$\lim_{x \to \infty} f(x) = -\infty \Leftrightarrow$$

pour tout A > 0, il existe $\delta > 0$ tel que pour tout $x \in]a - \delta, a + \delta[$ on ait $f(x) \in]-\infty, -A[$.

Interprétation géométrique :

Si $\lim_{x\to a} f(x) = +\infty$ ou $-\infty$, on dit que la courbe représentative de f admet la droite d'équation x = a comme asymptote verticale.

3

Limites à droite et à gauche

Définition

Les *limites à droite* $\lim_{x \to a^+} = \lim_{x \to a, x > a}$ sont définies en remplaçant $]a - \delta, a + \delta[$ par $]a, a + \delta[$. Les *limites à gauche* $\lim_{x \to a^-} = \lim_{x \to a, x < a}$ sont définies en remplaçant $]a - \delta, a + \delta[$ par $]a - \delta, a[$. L'interprétation en terme d'asymptote est identique.

Limite lorsque x tend vers $+\infty$ ou $-\infty$

1

Cas d'une limite finie $\ell \in \mathbb{R}$

Définition

On dit que la limite de f(x), lorsque x tend vers $+\infty$ (plus l'infini), est $\ell \in \mathbb{R}$ si le nombre f(x) peut être rendu aussi proche que l'on veut du réel ℓ , pourvu que x soit assez grand. Précisément

$$\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R} \Leftrightarrow$$

pour tout $\varepsilon > 0$, il existe B > 0 tel que pour tout $x \in]B, +\infty[$ on ait $f(x) \in]\ell - \varepsilon, \ell + \varepsilon[$.

$$\underline{\mathrm{Ou}}: \lim_{x \to +\infty} f(x) = \ell \Leftrightarrow \forall \varepsilon > 0, \ \exists B > 0 \ | \ x \in]B, +\infty[\Rightarrow f(x) \in]\ell - \varepsilon, \ell + \varepsilon[.$$

Remarque

On définit de même $\lim_{x\to-\infty}$ en remplaçant $]B,+\infty[$ par $]-\infty,-B[$.

Interprétation géométrique.

Lorsque $\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}$, on dit que la courbe représentative de f admet la droite d'équation $y = \ell$ comme asymptote horizontale en $+\infty$.

On définit de façon analogue l'asymptote horizontale en $-\infty$.

Cas d'une limite infinie

Définition

On dit que la limite de f(x), lorsque x tend vers $+\infty$ (plus l'infini), est $+\infty$ si le nombre f(x) peut être grand que l'on veut, pourvu que x soit assez grand. Précisément

$$\lim_{x \to +\infty} f(x) = +\infty \in \mathbb{R} \Leftrightarrow$$

pour tout A > 0, il existe B > 0 tel que pour tout $x \in]B, +\infty[$ on ait $f(x) \in]A, +\infty[$.

$$\underline{\mathrm{Ou}}: \lim_{x \to +\infty} f(x) = \ell \Leftrightarrow \forall \varepsilon > 0, \ \exists B > 0 \ \mid \ x \in]B, +\infty[\Rightarrow f(x) \in]\ell - \varepsilon, \ell + \varepsilon[.$$

Exemple

Définir avec précision :

$$\lim_{\substack{x \to -\infty \\ \lim_{x \to -\infty} f(x) = \ell}} f(x) = \ell \Leftrightarrow \dots$$

$$\lim_{\substack{x \to -\infty \\ \lim_{x \to -\infty}}} f(x) = -\infty \Leftrightarrow \dots$$

IV

Opérations sur les limites

Les résultats qui suivent sont valables pour $a \in \mathbb{R} \cup \{-\infty, +\infty\}$.

1

Somme de limites

$\lim_{x\to a}u(x)$	$\ell \in \mathbb{R}$	$\ell \in \mathbb{R}$	$\ell \in \mathbb{R}$	+∞	$-\infty$	+∞
$\lim_{x \to a} u(x)$	$\ell' \in \mathbb{R}$	+∞	$-\infty$	+∞	$-\infty$	$-\infty$
$\lim_{x \to a} u(x) + v(x)$	$\ell + \ell'$	+∞	$-\infty$	+∞	$-\infty$	FI

2

Produit de limites

$\lim_{x \to a} u(x)$	$\ell \in \mathbb{R}$	$\ell > 0$	$\ell < 0$	$\ell > 0$	$\ell < 0$	+∞	+∞	$-\infty$	0
$\lim_{x \to a} v(x)$	$\ell' \in \mathbb{R}$	+∞	+∞	$-\infty$	$-\infty$	+∞	$-\infty$	$-\infty$	±∞
$\lim_{x \to a} u(x) \times v(x)$	$\ell \times \ell'$	+∞	-∞	-∞	+∞	+∞	-∞	+∞	FI

Quotient de limites

$\lim_{x \to a} v(x)$	$\ell \neq 0$	±∞	$0^+ (0, v(x) > 0)$	$0^- (0, v(x) < 0)$
$\lim_{x \to a} \frac{1}{v(x)}$	$\frac{1}{\ell}$	0	+∞	-∞

Remarques

- Lorsque la forme indéterminée, $\left(\infty \infty; \infty \times 0; \frac{0}{0}; \frac{\infty}{\infty}\right)$ il faut changer l'écriture de la fonction pour lever l'indétermination.
- Pour traiter les limites de quotients $\frac{u}{v}$ on remarque $\frac{u}{v} = u \times \frac{1}{v}$.
- Dans le cas de $\frac{1}{v(x)}$, si la limite de v(x) est nulle, il faut étudier le signe de v(x) pour conclure.
- On n'écrit jamais de calcul faisant intervenir $+\infty$, $-\infty$, 0^+ , 0^- ,...

Exemple

$$\bullet \lim_{x \to +\infty} \frac{1}{\sqrt{x}} =$$

$$\operatorname{car} \lim_{x \to +\infty} \sqrt{x} =$$

• La limite $\lim_{x \to 2, x < 2} \frac{1}{2 - x}$ dépend du signe de 2 - x car $\lim_{x \to 2} 2 - x = 0$. Or $\frac{x}{2 - x} - \infty$ $\frac{2}{2 - x} + \infty$ donc si x < 2, on a 2 - x > 0, d'où $\lim_{x \to 2, x < 2} \frac{1}{2 - x} = +\infty$.

Or
$$\begin{array}{c|ccccc} x & -\infty & 2 & +\infty \\ \hline 2-x & + & 0 & - \end{array}$$

Limite de fonctions composées

Soient $a, b, \ell \in \mathbb{R} \cup \{+\infty, -\infty\}$. Si $\lim_{x \to a} u(x) = b$ et $\lim_{X \to b} v(X) = \ell$ alors $\lim_{x \to a} v(u(x)) = \ell$.

$$\lim_{x \to +\infty} \cos\left(\frac{1}{x}\right) =$$

Traiter les formes indéterminées

Avant d'utiliser l'une des techniques suivantes, s'assurer d'avoir **simplifié** l'expression.

Exemple

$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2} = \dots$$

Formes indéterminées avec des polynômes

D'une manière générale, factoriser dans l'expression, ou au numérateur et au dénominateur, le terme qui semble devoir dominer :

Exemple

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} x^6 - x^4 + x^3 + 1 = \dots$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} 10\sqrt{x} - x + 2 = \dots$$

Propriété

La limite d'un polynôme en $+\infty$ ou $-\infty$ est la même que la limite de son terme de plus haut degré. De même, la limite du quotient de deux polynômes en $+\infty$ ou $-\infty$ est la même que celle du quotient de leurs termes de plus haut degré.

Démonstration

Dans le cas d'un polynôme en $+\infty$: soit $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ un polynôme avec $a_n \neq 0$. Alors pour tout $x \neq 0$, on a :

$$P(x) = a_n x^n \times \left(1 + \frac{a_{n-1}}{a_n} \frac{1}{x} + \dots + \frac{a_1}{a_n} \frac{1}{x^{n-1}} + \frac{a_0}{a_n} \frac{1}{x^n}\right). \text{ Or } \lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x^2} = \dots = \lim_{x \to +\infty} \frac{1}{x^n} = 0 \text{ donc la}$$

limite du facteur entre parenthèses est 1.

Par produit on a bien : $\lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} a_n x^n$.

Exemple

$$\lim_{x \to +\infty} -2x^3 + 3x^4 - 5x + 4 = \dots$$

Exemple

$$\lim_{x \to -\infty} \frac{3-x}{2x+1} = \lim_{x \to -\infty} \frac{-x}{2x} = \lim_{x \to -\infty} \frac{-1}{2} = -\frac{1}{2} \text{ par th\'eor\`eme.}$$

Exemple

$$\lim_{x \to +\infty} \frac{-x+1}{x^2+x+1} \dots$$

La propriété du plus haut degré ne s'applique que pour les limites en $+\infty$ ou $-\infty$. L'utilisation de la propriété pour les quotients de deux polynômes se fait en trois temps : 1. Application de la propriété 2. Simplification 3. Conclusion.

Forme indéterminée $\frac{0}{0}$ et changement de variable

Pour les limites en $a \in \mathbb{R}$ (ou a^+ , a^-) qui présentent une forme indéterminée du type $\frac{0}{0}$, il peut être opportun de faire un changement de variable en posant x = a + h.

Exemple

$$\lim_{x \to 1} \frac{x^3 + x - 2}{1 - x} = \dots$$

Forme indéterminée et radicaux : quantité conjuguée

Pour les limites faisant intervenir des radicaux, on peut essayer de multiplier au numérateur et au dénominateur par *la quantité conjuguée* avec comme idée d'utiliser l'identité remarquable : $a^2 - b^2 = (a - b)(a + b)$:

Exemple

$$\lim_{x \to 1^{+}} \frac{x-1}{\sqrt{x+3}-2} = \dots$$

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x+1} - \sqrt{x}} = \dots$$

THÉORÈMES D'ENCADREMENT

Théorème de majoration et de minoration

Soient u et f deux fonctions définies sur un intervalle de la forme $[a, +\infty[$.

- si $\lim_{x \to +\infty} u(x) = +\infty$ et pour tout $x \in [a, +\infty[, f(x) \ge u(x), alors <math>\lim_{x \to +\infty} f(x) = +\infty$
- si $\lim_{x \to +\infty} u(x) = -\infty$ et pour tout $x \in [a, +\infty[, f(x) \le u(x), alors \lim_{x \to +\infty} f(x) = -\infty]$

Démonstration

On prouve le premier point (la démo du second est analogue).

Par définition, $\lim_{x\to +\infty} u(x) = +\infty$ signifie que pour tout A>0, il existe B>a tel que pour tout $x\in [B,+\infty[$, on ait $u(x)\in [A,+\infty[$.

Or pour tout $x \in [a, +\infty[$, $f(x) \ge u(x)$ donc en particulier, pour tout x > B, on a l'inégalité $f(x) \ge u(x) \ge A$, donc $f(x) \ge A$. On a prouvé :

Pour tout A > 0, il existe B > 0 tel que pour tout $x \in [B, +\infty[$, on ait $f(x) \in [A, +\infty[$, c'est-à-dire $\lim_{x \to +\infty} f(x) = +\infty$.

Exemple

 $\lim_{x \to +\infty} x(\cos(x) - 2) = \dots$