

TASK 4: VISCOELASTICITY

Fabian Roth

TUTORIAL MACHINE LEARNING IN SOLID MECHANICS

SECTIONS

- 4.1 Simple RNN
- 4.2 Maxwell model
- 4.3 FFNN Maxwell model
- 4.4 GSM model

RNN ARCHITECTURE

TECHNISCHE UNIVERSITÄT DARMSTADT

SIMPLE RNN

Physical Knowledge:

- Thermodynamics
- Equilibrium stiffness
- Non equilibrium stiffness
- Relaxation behavior

SIMPLE RNN

Trained on $\omega = 1$, A = 1

Epochs: 10,000

L. Rate: 0.001

Layers: 32,2

SIMPLE RNN

Trained on $\omega = 1, A = 1$

Epochs: 10,000

L. Rate: 0.001

Layers: 32,2

SIMPLE RNN

Trained on $\omega = 1$, A = 1

Epochs: 10,000

L. Rate: 0.001

Layers: 32,2

calibration epoch

TECHNISCHE UNIVERSITÄT DARMSTADT

SIMPLE RNN

A:
$$\omega = 1, A = 1$$

B: $\omega = 1, A = 2$
C: $\omega = 2, A = 3$

Epochs: 4000 L. Rate: 0.001 Layers: 32,2 Instances: 2

SIMPLE RNN

Epochs: 4000

L. Rate: 0.001

Layers: 32,2

Instances: 2

B:
$$\omega = 1, A = 2$$

C:
$$\omega = 2, A = 3$$

Average loss of Naive Model on relaxation data per training split

ANALYTIC MAXWELL MODEL

$$\Delta t_n = t_{n+1} - t_n$$

$$\Delta t_n = t_n - t_{n-1}$$

TECHNISCHE UNIVERSITÄT DARMSTADT

FFNN MAXWELL MODEL

Physical Knowledge:

- ▼ Thermodynamics*
- Equilibrium stiffness
- Non equilibrium stiffness
- Relaxation behavior

*For exact integration

FFNN MAXWELL MODEL

Epochs: 10,000

L. Rate: 0.001

Layers: 8, 8, 1

FFNN MAXWELL MODEL

Epochs: 10,000

L. Rate: 0.001

Layers: 8, 8, 1

0

Model Prediction

2

FFNN MAXWELL MODEL

Epochs: 10,000

L. Rate: 0.001

Layers: 8, 8, 1

FFNN MAXWELL MODEL

A:
$$\omega = 1, A = 1$$

B: $\omega = 1, A = 2$

C:
$$\omega = 2$$
, $A = 3$

Epochs: 4000 L. Rate: 0.001 Layers: 8,8,1 Instances: 2

FFNN MAXWELL MODEL

Epochs: 3,000

L. Rate: 0.001

Layers: 8, 8, 1

Evolution Equation: $\dot{\gamma} = \tilde{f}(\varepsilon, \gamma)(\varepsilon - \gamma)$

Model: $\tilde{f} = FFNN(\varepsilon, \gamma)$, Data: $\tilde{f} = \frac{E}{n} = 2$

Trained on A

Trained on C

FFNN MAXWELL MODEL

Epochs: 3,000

L. Rate: 0.001

Layers: 8, 8, 1

Trained on A

$\tilde{f}(\varepsilon, \gamma)$ 2.8 - 2.6 2.4 > - 2.2 -1- 2.0 -2

Trained on C

GSM MODEL

Physical Knowledge:

- ▼ Thermodynamics*
- Equilibrium stiffness
- Non equilibrium stiffness
- Relaxation behavior

*For exact integration

GSM MODEL

Trained on $\omega = 1$, A = 1

Epochs: 10,000

L. Rate: 0.001

Layers: 8, 8, 1

GSM MODEL

Trained on $\omega = 1$, A = 1

Epochs: 10,000

L. Rate: 0.001

Layers: 8, 8, 1

TECHNISCHE UNIVERSITÄT DARMSTADT

GSM MODEL

A:
$$\omega = 1, A = 1$$

B: $\omega = 1, A = 2$
C: $\omega = 2, A = 3$

Epochs: 6000 L. Rate: 0.001 Layers: 8,8,1 Instances: 3

DISCUSSION

SIMPLE RNN

Epochs: 4000

L. Rate: 0.001

Layers: 32,2

Instances: 2

B:
$$\omega = 1, A = 2$$

C:
$$\omega = 2, A = 3$$

SIMPLE RNN

Epochs: 4000

L. Rate: 0.001

Layers: 32,2

Instances: 2

B:
$$\omega = 1, A = 2$$

C:
$$\omega = 2, A = 3$$

ANALYTIC MAXWELL MODEL

GSM MODEL

Trained on $\omega = 1$, A = 1

Epochs: 10,000

L. Rate: 0.001

Layers: 8, 8, 1

4 - 2-4

GSM MODEL

Trained on B & C

TECHNISCHE UNIVERSITÄT DARMSTADT

Epochs: 6,000

L. Rate: 0.001

Layers: 8, 8, 1

Prediction of GSM Model trained on B & C

4 - 2-4

GSM MODEL

Trained on C

TECHNISCHE UNIVERSITÄT DARMSTADT

Epochs: 6,000

L. Rate: 0.001

Layers: 8, 8, 1

Prediction of GSM Model trained on C

