Foundations of Algorithms

Dynamic Programming: Introduction & Weighted Interval Scheduling

Introduction & Weighted Interval Scheduling

Objectives

- Introduce Dynamic Programming and its applications
- Explain solution of the Weighted Interval Scheduling problem using Dynamic Programming

Algorithmic Paradigms

Greedy

Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer

Break up a problem into disjoint sub-problems, solve each sub-problem independently, combine solution to sub-problems to form solution to original problem.

Dynamic programming

Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming Applications

Bellman pioneered systematic study of dynamic programming in the 1950s.

Application areas

- Bioinformatics
- Operations research
- Control theory
- Information theory
- Computer graphics
- Artificial intelligence

Some famous dynamic programming algorithms.

- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

Weighted Interval Scheduling

Weighted interval scheduling problem

- Job j starts at s_i, finishes at f_i, and has weight/value v_i.
- Two jobs are compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall that greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail if arbitrary weights are allowed.

Weighted Interval Scheduling

- Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$.
- Define p(j) = largest index i < j such that job i is compatible with j.
- Example: p(8) = 5, p(7) = 3, p(2) = 0.

Dynamic Programming: Binary Choice

Define OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: OPT selects job j.
 - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - must include optimal solution to the problem consisting of remaining compatible jobs 1, 2, ..., p(j)

optimal substructure

- Case 2: OPT does not select job j.
 - must include optimal solution to the problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \left\{ v_j + OPT(p(j)), OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

Weighted Interval Scheduling: Brute Force

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \le f_2 \le \ldots \le f_n.
Compute p(1), p(2), ..., p(n)
Compute-Opt(n)
Compute-Opt(j) {
   if (j = 0)
       return 0
   else
       return max(v; + Compute-Opt(p(j)), Compute-Opt(j-1))
```

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails due to redundant sub-problems ⇒ exponential algorithms.

Example: Number of recursive calls for family of "layered" instances

grows like Fibonacci sequence.

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache and lookup as needed.

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.
Compute p(1), p(2), ..., p(n)
for j = 1 to n
  M[j] = empty
M[0] = 0
M-compute(n)
M-Compute-Opt(j) {
   if (M[j] is empty)
       M[j] = max(v_i + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
```

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

- Sort by finish time: O(n log n).
- Computing p(·): O(n) after sorting by start time (which takes O(n log n) time).
- M-Compute-Opt(j): each invocation takes O(1) time and either
 - √ (i) returns an existing value M [j]
 - √ (ii) fills in one new entry M[j] and makes two recursive calls
- Progress measure Φ = # nonempty entries of M[].
 - ✓ initially $\Phi = 0$, throughout $\Phi \le n$.
 - ✓ (ii) increases Φ by 1 \Rightarrow at most 2n recursive calls.
- Overall running time of M-Compute-Opt(n) is O(n).

Remark. Running time is O(n) if jobs are pre-sorted by start and finish times.

Automated Memoization

• Many functional programming languages (e.g., Lisp) have built-in support for memoization.

Weighted Interval Scheduling: Finding a Solution

- Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
- A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
   if (j = 0)
      output nothing
   else if (v<sub>j</sub> + M[p(j)] > M[j-1])
      print j
      Find-Solution(p(j))
   else
      Find-Solution(j-1)
}
```

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = max(v_j + M[p(j)], M[j-1])
}
```

Summary

Foundations of Algorithms

Knapsack Problem

Knapsack Problem

Objectives

 Explain solution of the Knapsack problem using Dynamic Programming

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Example: { 3, 4 } has value 40.

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy algorithm: repeatedly add item with maximum ratio v_i / w_i.

Example: $\{5, 2, 1\}$ achieves only value = $35 \Rightarrow$ greedy algorithm is not optimal.

Dynamic Programming: False Start

- Define OPT(i) = max profit subset of items 1, ..., i.
 - Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 }.
 - Case 2: OPT selects item i.
 - accepting item i does not imply rejecting other items.
 - Without knowing what other problems were selected before item I, we do not even know if there is enough room for item i.
- Conclusion. We need more sub-problems!

Dynamic Programming: Adding a New Variable

- Let OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.
 - Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w.
 - Case 2: OPT selects item i.
 - new weight limit = w w_{i.}
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit.

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

 The Knapsack problem can be considered as filling up an n-by-W array using the following algorithm.

```
Input: n, W, w<sub>1</sub>,...,w<sub>n</sub>, v<sub>1</sub>,...,v<sub>n</sub>

for w = 0 to W
    M[0, w] = 0

for i = 1 to n
    for w = 1 to W
        if (w<sub>i</sub> > w)
            M[i, w] = M[i-1, w]
    else
        M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}

return M[n, W]
```

Knapsack Algorithm

					W + 1								
		0	1	2	3	4	5	6	7	8	9	10	11
n + 1	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
	{ 1, 2, 3, 4, 5 }	0	1	6	7	7	18	22	28	29	34	35	40

$$W = 11$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm.

• There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum.

Summary

Foundations of Algorithms

Shortest Paths: Bellman-Ford

Shortest Paths

Objectives

 Explain solution of the Shortest Path problem using Dynamic Programming and Bellman-Ford algorithm

Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge weights c_{vw} , find the shortest path from node s to t.

allow negative weights

Example. In the following graph, nodes are agents in a financial setting and c_{vw} is transaction cost when we buy from agent v and sell to w. What is the total minimum cost from node s to t?

Shortest Paths: Failed Attempts

Dijkstra's algorithm can fail if there are negative edge costs.

Re-weighting. Adding a constant to every edge weight can change

the solution.

Shortest Paths: Negative Cost Cycles

Negative cost cycle.

Observation. If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple.

Shortest Paths: Dynamic Programming

Definition. OPT(i, v) = length of shortest v-t path P using at most i edges.

- Case 1: P uses at most i-1 edges.
 - OPT(i, v) = OPT(i-1, v)
- Case 2: P uses exactly i edges.
 - if (v, w) is the first edge, then OPT uses (v, w) and then selects best w-t path using at most i-1 edges

$$OPT(i,v) \ = \ \begin{cases} 0 & \text{if } i=0 \text{ and } v=t \\ \infty & \text{if } i=0 \text{ and } v\neq t \\ \min \left\{ OPT(i-1,v), \ \min_{(v,w)\in E} \left\{ OPT(i-1,w) + \ell_{vw} \right\} \right\} & \text{if } i>0 \end{cases}$$

Remark. By previous observation, if there are no negative cycles, then OPT(n-1, v) = length of shortest v-t path.

Shortest Paths: Implementation

```
Shortest-Path(G, t) {
    foreach node v ∈ V
        M[0, v] ← ∞
    M[0, t] ← 0

for i = 1 to n-1
    foreach node v ∈ V
        M[i, v] ← M[i-1, v]
    foreach edge (v, w) ∈ E
        M[i, v] ← min { M[i, v], M[i-1, w] + c<sub>vw</sub> }
}
```

This algorithm computes the length of a shortest path in $\Theta(mn)$ time and $\Theta(n^2)$ space.

Finding the shortest paths. Maintain a successor [i, v] that points to next node on a shortest v-t path using at most i edges.

Shortest Paths: Practical Improvements

Practical improvements.

- Maintain only one array M[v] = shortest v-t path that we have found so far.
- No need to check edges of the form (v, w) unless M[w] changed in previous iteration.

Theorem. Throughout the algorithm, M[v] is length of some v-t path, and after i rounds of updates, the value M[v] is no larger than the length of shortest v-t path using \leq i edges.

Overall impact.

- Memory: O(m + n).
- Running time: O(mn) worst case, but substantially faster in practice.

Bellman-Ford: Efficient Implementation

```
Push-Based-Shortest-Path(G, s, t) {
   foreach node v ∈ V {
      M[v] \leftarrow \infty
       successor[v] \leftarrow \phi
   M[t] = 0
   for i = 1 to n-1 {
       foreach node w ∈ V {
       if (M[w] has been updated in previous iteration) {
          foreach node v such that (v, w) \in E {
              if (M[v] > M[w] + C_{vw}) {
                 M[v] \leftarrow M[w] + c_{vw}
                 successor[v] \leftarrow w
       If no M[w] value changed in iteration i, stop.
```

Summary

Foundations of Algorithms

Distance Vector Protocol

Distance Vector Protocol

Objectives

Explain Distance Vector Protocol

Distance Vector Protocol

- We can apply the shortest path problem to routers in a communication network to determine the most efficient path to a destination.
 - nodes represent routers,
 - edges represent direct communication links,
 - cost of an edge is the delay on the link.
- We can use Dijkstra's algorithm to solve this problem but it requires global knowledge of the network.
- The Bellman-Ford algorithm uses only local knowledge of neighboring nodes.
- We don't expect routers to run in lockstep. The order in which each foreach loop executes is not important. Moreover, algorithm still converges even if updates are asynchronous.

Distance Vector Protocol

Distance vector protocol (Routing by rumor)

- Each router maintains a vector of shortest path lengths to every other node (distances) and the first hop on each path (directions).
- Each router performs n separate computations, one for each potential destination node.
- Examples: Routing Information Protocol (RIP), Xerox XNS RIP, Novell IPX RIP, Cisco IGRP, AppleTalk RTMP.

Caveats

- Edge costs may change during algorithm.
- If edge (v, t) below is deleted, the Bellman-Ford algorithm will begin counting to infinity.

Path Vector Protocols

- To avoid the problems of the Distance Vector Protocol, network designers adopted Path Vector Protocol:
 - Each router stores the entire path (not just the distance and first hop).
 - Based on Dijkstra's algorithm.
 - Requires significantly more storage.
- Examples using the Path Vector Protocol:
 - Border Gateway Protocol (BGP)
 - Open Shortest Path First (OSPF)

Summary

Foundations of Algorithms

Negative Cycles in a Graph

Negative Cycles in a Graph

Objectives

Explain how to detect negative cycles in a graph

Detecting Negative Cycles

- Lemma. If OPT(n,v) = OPT(n-1,v) for all v, then there are no negative cycles on paths to node t.
- Proof. Bellman-Ford algorithm.

- Lemma. If OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest path from v to t contains a cycle W. Moreover W has negative cost.
- Proof.
 - Since OPT(n,v) < OPT(n-1,v), we know P has exactly n edges.
 - By pigeonhole principle, P must contain a directed cycle W.
 - Deleting W yields a v-t path with < n edges ⇒ W has negative cost.

Detecting Negative Cycles

- Theorem. One can detect negative cost cycle in O(mn) time.
 - Add new node t and connect all nodes to t with 0-cost edge.
 - Check if OPT(n, v) = OPT(n-1, v) for all nodes v.
 - if yes, then there are no negative cycles
 - if no, then extract cycle from shortest path from v to t

Detecting Negative Cycles: Application

• Currency conversion. Given n currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

