

Presentations (10/11, and 10/13)

Slide 1: Title (with the team info)
Slide 2: Problem statement
Slide 3: Your approach
Slide 4: Your software
Slide 5: Plan for software testing
Slide 6: Evaluation Method

Presentation should be no longer than 12 minutes including the Q&A session. (10 minutes: presentation, 2 minutes: Q&A)
All of the team members should present
Audience will get 2% of participation score based on their questions and attendance
Please send me your slides at least 2 hours before your presentation


```
Computing AUC

• 90% of the data is used for training and the remaining 10% for validation

import org.apache.spark.rdd._

def areaUnderCurve(
    positiveData: RDD[ Rating],
    ballItemIDs: Broadcast[ Array[ Int]],
    predictFunction: (RDD[( Int, Int)] = >
    RDD[Rating])) = {
    ...
}

val allData = buildRatings( rawUserArtistData, bArtistAlias)
val Array( trainData, cvData) =
allData.randomSplit(Array( 0.9, 0.1))
```

```
trainData.cache()
cvData.cache()
val allItemIDs = allData.map(_. product). distinct().
collect()
val bAllItemIDs = sc.broadcast( allItemIDs)
val model = ALS.trainImplicit( trainData, 10, 5, 0.01, 1.0)
val auc = areaUnderCurve( cvData, bAllItemIDs, model.predict)
```


*MLUtils.kFold()

def predictMostListened(
 sc: SparkContext,
 train: RDD[(ating))(allData:
 RDD[(Int, Int)]) = {

 val bListenCount = sc.broadcast(
 train.map(r = > (r.product, r.rating)).
 reduceByKey(_ + _).collectAsMap()
)
 allData.map { case (user, product) = >
 Rating(
 user, product,
 bListenCount.value.getOrElse(product, 0.0))
 }
}
val auc = areaUnderCurve(cvData, bAllItemIDs,
 predictMostListened(sc,trainData))

Hyperparameter selection

MatrixFactorizationModel
ALS.trainImplicit()
rank = 10
The number of latent factors in the model
The number of columns, k
iterations = 5
The number of iterations that the factorization runs

lambda = 0.1
A standard overfitting parameter
Higher value guards against overfitting
Values that are too high will decrease the factorization's accuracy

alpha = 1.0
Controls the relative weight of observed versus unobserved user-product interactions in the factorization

Large scale data analysis using Spark
CASE STUDY: Recommendation Systems
Amazon.com: Item-to-item collaborative
filtering

Determining the most-similar match The algorithm builds a similar-items table By finding items that customers tend to purchase together How about building a product-to-product matrix by iterating through all item pairs and computing a similarity metric for each pair? Many product pairs have no common customer If you already bought a TV today, will you buy another TV again today?

10/04/16	CS535 Big Data - Fall 2016	W7.A.24
Scalabili	ty	
	m has around 110 million active customers(2- customers) and several million catalog items	
Traditional c computation	collaborative filtering does little or no offline	
Online comp catalog item	putation scales with the number of customers as.	and
http://www.fool.com/	/investing/general/2014/05/24/how-many-customers-does-amazon-	have.aspx

10/04/16	CS535 Big Data - Fall 2016	W7.A.25
Key scalability str	ategy for amazon	
,	0,	
recommendations	5	
Creating the expensive	similar-items table offline	
Online component		
 Looking up similar items f 	or the user's purchases and ratings	
Scales independently of the scales independent indepe	he catalog size or the total number of cus	tomers
It is dependent only on or rated	how many titles the user has purch	nased

$f(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots$								
		В	С	D	Е	F	G	
Math score	85	85	62	67	89	65	80	67
Physics score	89	92	70	95	95	80	75	80
How big is the error of the fitted model? We would like to minimize this error								

10/04/16	CS535 Big Data - Fall 2016	W7.A.32
Squared err	or	
Squared error Strongly penalizes Drawback Is very sensitive Erroneous or outh	. 0	sultant linear function
We should choos	e the objective function to optim	nize

10/04/16		CS535 Big Data - F	Fall 2016		W7.A.36
Objec	tive fund	ction (Co	st fund	ction)	
• For a give θ ?	en training	set, how do w	e pick, or	learn, the	parameter
	x) close to y our prediction	close to the real	observation		
• We defir	ne the objec	tive (cost) fu	nction		
$J(\theta)$ =	$\frac{1}{2}\sum\nolimits_{i=0}^{m}(h_{\theta}($	$x^{(i)} - y^{(i)})^2$			

Minimization problem

• We have a function $J(\theta_o, \theta_I)$ • We want to find $\min_{\theta_o, \theta_I} J(\theta_o, \theta_I)$ • Goal: Find parameters to minimize the cost (output of the objective function)

• Outline of our approach:
• Start with some θ_o, θ_I • Keep changing θ_o, θ_I to reduce $J(\theta_o, \theta_I)$ until we end up at a minimum

10/04/16 CS535 Big Data - Fall 2016	W7.A.48
$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_i) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - (y^{(i)}))^2$	
$= \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_i x^{(i)} - y^{(i)})^2$	
Case 1, θ_0 $(j=0)$:	
$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_0} \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - (y^{(i)}))^2 = \frac{1}{m} \sum_{i=1}^$	$h_{\theta}(x^{(i)}) - (y^{(i)}))$
Case 2, θ_I $(j = I)$:	
$\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_i) = \frac{\partial}{\partial \theta_0} \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - (y^{(i)}))^2 = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - (y^{(i)}))^$	$(x^{(i)}) - (y^{(i)}))x^{(i)}$
	$\begin{split} \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) &= \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - (y^{(i)}))^2 \\ &= \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2 \\ \\ \text{Case 1, } \theta_0 \left(j = 0 \right) : \\ &\qquad \qquad \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_0} \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - (y^{(i)}))^2 = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - (y^{(i)})^2 = $

10/04/16	CS535 Big Data - Fall 2016	W7.A.54
"Batch" G	radient Descent	
Batch Each step of g	radient descent uses all of the training examp	ole
$\theta_j \coloneqq \theta_j$	$+\alpha \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$	

Running with Spark in parallel For the sample size 1,000 (m=1,000)

Batch gradient descent:
$$\theta_j := \theta_j + \alpha \frac{1}{1,000} \sum_{i=1}^{1000} (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$

Using 4 machines

10/04/16	CS535 Big Da	ta - Fall 2016	W7.A.56
continued			
• Step 1. 4 input • (x ⁽¹⁾ ,y ⁽¹⁾),,((x ⁽² • (x ⁽²⁵¹⁾ ,y ⁽²⁵¹⁾),, • (x ⁽⁵⁰¹⁾ ,y ⁽⁵⁰¹⁾),, • (x ⁽⁷⁵¹⁾ ,y ⁽⁷⁵¹⁾),,		$temp1 = \sum_{i=1}^{250} (y^{(i)} - i)$ $temp2 = \sum_{i=1}^{500} (y^{(i)} - i)$	
 Step 2. Calcula 	te temp1 ~ 4	i=1	, , , ,
Step 3. Calcula	te final results	$temp3 = \sum_{i=1}^{7.50} (y^{(i)} - 1)^{-1}$	$h_{\theta}(x^{(i)}))x_j^{(i)}$
		$temp4 = \sum_{i=1}^{1000} (y^{(i)} -$	$h_{\theta}(x^{(i)}))x_{j}^{(i)}$