Basic	C	Contents		<pre>#include <bits stdc++.h=""></bits></pre>
1.1 Default Code	1	Dagia	1	<pre>#include <bits extc++.h=""></bits></pre>
1.3 gyimre	T			
1.3 gyimre				
1.4 PBDS				
1.5 Random		e e e e e e e e e e e e e e e e e e e		
1.6 Clock 2				
#define gsort(a) sort(riter(a)) #define gsort(a) push_back(a) #define bb(a) push_back(a) #define pf(a) push_front(a) #define pot pot_back(a) #define pot pot_back(a) #define pf(a) push_front(a) #define pf(a) push_front(a) #define pf(a) push_front(a) #define pf(a) push_front(a) #define pot pot_back(a) #define push_front(a) #define pot push_front(a) #define pot push_front(a)				#4-#÷ 7+ (-)
2 Data Structure		1.6 Clock	2	
2 Data Structure 2.1 Binary Indexed Tree 3.2.2 Disjoint Set Union-Find 3.3 Segment Tree 3.4 Dynamic Segment Tree 4.5 Treap 3.7 Treap 3.6 Graph 3.1 Dijkstra 3.2 Floyd-Warshall 3.3 Kruskal 3.4 Tarjan SCC 5.5 SFFA 5.6 Block-cut Tree 5.6 Block-cut Tree 5.7 String 5.8 String 5.9 Land Math Formulae 5.1 Voctor Operations 5.1 Voctor Operations 5.2 Convex Hull 5.3 Prime Sieve 5.4 XOR Basis 5.7 Numbers and Math Formulae 7.1 Fibonacci 7.1 Fibonacci 7.2 Catalan 7.3 Goometry 7.4 Basic 1 Basic 1 Basic 1 Basic 1 Basic 2 Bidefine eb(a) emplace back(a) #define of(a) push_front(a) #define opt pop_back() #define pop pop_back() #define in pop pop_front() #define mp(a, b) make_pair(a, b) #define tomax(a, b) ((a) = max((a), (b)) #define tomax(a, b) ((a) = max((a), (b)) #define tomax(a, b) ((a) = max((a), (b)) #define tomin(a, b) ((a) = max((a), (b)) #define tomax(a, b) ((1.7 Fast IO	2	_
2.1 Binary Indexed Tree 3	2	D . G.		#define ch(a) emplace hack(a)
2.1 Dimary indexed tree				#define nf(a) nuch front(a)
2.2 Disjoint Set Union-Find 2.3 Segment Tree 3.3 Caph 3.4 Dynamic Segment Tree 3.5 Treap 3.6 Graph 3.1 Dijkstra 3.2 Floyd-Warshall 3.2 Floyd-Warshall 3.3 Kruskal 3.4 Tarjan SCC 3.5 SFFA 3.6 Block-cut Tree 4.7 MoDD				#define ef(a) emplace front(a)
2.3 Segment Tree				<u>-</u>
2.4 Dynamic Segment Tree. 4 2.5 Treap 5 3 Graph 6 3.1 Dijkstra 6 3.2 Floyd-Warshall 6 3.3 Kruskal 6 3.4 Tarjan SCC 7 3.6 Block-cut Tree 7 3.6 Block-cut Tree 7 3.6 Block-sut Tree 8 4.1 KMP 8 4.2 Z Value 8 4.3 Longest Palindromic Substring 9 4.4 Suffix Array LCP 10 5.3 Vector Operations 10 5.2 Convex Hull 10 5.3 Prime Sieve 10 5.4 XOR Basis 11 6 DP Trick 11 6.1 Dynamic Convex Hull 11 7 Numbers and Math Formulae 7 7.1 Fibonacci 12 7.2 Catalan 12 7.3 Geometry 12 7.4 Prime Numbers 12 7.5 Number Theory 12 7.6 Combinatorics 12 7.7 Combinatorics 12 7.8 Combinatorics 12 7.9 Catalan 12 7.1 Fibonacci 12 7.2 Catalan 12 7.3 Geometry 12 7.4 Prime Numbers 12 7.5 Number Theory 12 7.6 Combinatorics 12 7.7 Combinatorics 12 7.8 Compinatorics 12 7.9 Combinatorics 12 7.9 Combinatoric 12 7.9 Combinatori		2.3 Segment Tree	3	
2.5 Treap 5 3 Graph 6 3.1 Dijkstra 6 3.2 Floyd-Warshall 6 3.3 Kruskal 6 3.4 Tarjan SCC 7 3.6 Block-cut Tree 7 3.6 Block-cut Tree 7 3.6 String 8 4.1 KMP 8 4.2 Z Value 8 4.3 Longest Palindromic Substring 9 4.4 Suffix Array LCP 10 5.1 Vector Operations 5 5.2 Convex Hull 10 5.3 Prime Sieve 10 5.4 XOR Basis 11 6 DP Trick 6.1 Dynamic Convex Hull 11 7 Numbers and Math Formulae 7 7.1 Fibonacci 12 7.2 Catalan 12 7.3 Geometry 12 7.4 Prime Numbers 12 7.5 Number Theory 12 7.6 Combinatorics 12 7.7 Basic				
#define S second #define mt make_tuple 3.1 Dijkstra				#define mp(a, b) make_pair(a, b)
3 Graph		2.0 11cap		#deline i ilist
3.1 Dijkstra	3	Graph	6	
3.2 Floyd-Warshall				#deline mt make_tuple
3.3 Kruskal 3.4 Tarjan SCC 3.5 SPFA 3.6 Block-cut Tree 7 **Mefine tomin(a, b) ((a) = min((a), (b)) 3.6 Block-cut Tree 7 **Mefine tomin(a, b) ((a) = min((a), (b)) 8 **Mefine tomin(a, b) ((a) = min((a), (b)) 8 **Mefine tomin(a, b) ((a) = min((a), (b)) 9 **Mefine tomin(a, b) ((a) = ((a) * MoD + mod) 10 **MOD) **MOD) **Mefine tomin(a, b) ((a) = ((a) * MoD + mod)				" dol 1110 80 (0, 1) 800 (1) (0)
3.4 Tarjan SCC 7 #define tomin(a, b) ((a) = min((a), (b)) 3.5 SPFA 7 7 3.6 Block-cut Tree 7 #define tomin(a, b) ((a) = min((a), (b)) 3.6 SPFA 7 7 7 #define tomin(a, b) ((a) = min((a), (b)) 3.6 SPFA 7 7 7 #define tomin(a, b) ((a) = min((a), (b)) 3.6 SPFA 7 7 7 8 #define tomin(a, b) ((a) = min((a), (b)) 3.6 SPFA 7 7 8 #define tomin(a, b) ((a) = min((a), (b)) 3.6 SPFA 7 7 8 #define tomin(a, b) ((a) = min((a), (b)) 3.6 SPFA 7 7 8 #define tomin(a, b) ((a) = min((a), (b)) 3.6 SPFA 7 7 8 #define tomin(a, b) ((a) = min((a), (b)) 3.7 \$ #define tomin(a, b) ((a) = min((a), (b)) 3.7 \$ #define tomin(a, b) ((a) = min((a), (b)) 3.7 \$ #define tomin(a, b) ((a) = min((a), (b)) 3.7 \$ #define tomin(a, b) ((a) = min((a), (b)) 5 #define tomin(a, b) ((a) = min((a), (b) particular 1.0 #define tomin(a, b) ((a) = min((a), (b) particular 1.0 #define tomin(a) ((a) = ((a) # min((a), b) #define tomin(a) ((a) = ((a) # min((a), b) #define tomin(a) ((a) = ((a) # min((a) a resize (unique(ter(a)) a #define tomin(a) ((a) = ((a) # min((a) a resize (unique(ter(a)) a #define tomin(a) ((a) = ((a) # mod particular (a) = ((a) # mod partic		*		
3.5 SPFA 3.6 Block-cut Tree 3.6 Block-cut Tree 3.6 Block-cut Tree 4.7 #define topos(a) ((a) = (((a) % MOD) + MOD) % MOD)) 4 String 4.1 KMP. 4.2 Z Value 4.3 Longest Palindromic Substring 4.4 Suffix Array 4.5 Suffix Array LCP 5 Math and Geometry 5.1 Vector Operations 5.2 Convex Hull 5.3 Prime Sieve 5.4 XOR Basis 10 6 DP Trick 6.1 Dynamic Convex Hull 7 Numbers and Math Formulae 7.1 Fibonacci 7.2 Catalan 7.3 Geometry 7.4 Prime Numbers 7.5 Number Theory 7.6 Combinatorics 1 Basic 7 Bibonacci 7 Const 11 MOD = 10000000007; 7 Const 11 MAX = 2147483647; 1 Long and the post (a) ((a) = (((a) % MOD) + MOD) * MOD) * MOD) * MOD) * MOD) **define topos(a) ((a) = (((a) % MOD) + MOD) * MOD) * MOD) **define topos(a) ((a) = (((a) % MOD) + MOD) * MOD) **define topos(a) ((a) = (((a) % MOD) + MOD) * MOD) **define uni(a) a.resize (unique (iter (a)) **a.begin()) **define uni(a) a.resize (unique (iter (a)) **define uni(a) a.resize (unique (iter (a)) **b.elian (in) (a) a.resize (unique (iter (a)) **b.elian (in) (a) a.resize (unique (iter (a)) **b.elian (in) (a) a.resize (unique (iter (a)) **idefine uni(a) a.resize (unique (
#define topos(a) ((a) = (((a) % MOD) + MOD) % MOD) % MOD)				· .
#MOD) % MOD) % MOD) % MOD) % MOD) % MOD) % MOD) % Mode fine uni(a) a.resize(unique(iter(a)) - a.begin()) - a.begin()) % #define uni(a) a.resize(unique(iter(a)) - a.begin()) - a.begin()) - a.begin()) % #define uni(a) a.resize(unique(iter(a)) - a.begin()) - a.begin()) - a.begin()) % #define uni(a) a.resize(unique(iter(a)) - a.begin()) - a.begin() - a.begin(
# String 4.1 KMP		3.6 Block-cut Tree	7	
4.1 KMP		a		
#define printv(a, b) {bool pvaspace= false; \ for(auto pva : a) { \ if (pvaspace) b << " "; pvaspace=true; \ b << pva; \ } Math and Geometry 5.1 Vector Operations 5.2 Convex Hull 5.3 Prime Sieve 5.4 XOR Basis 10 6 DP Trick 6.1 Dynamic Convex Hull 7 Numbers and Math Formulae 7.1 Fibonacci 7.2 Catalan 7.3 Geometry 7.4 Prime Numbers 7.5 Number Theory 7.6 Combinatorics 1 Basic #define printv(a, b) {bool pvaspace= false; \ for(auto pva : a) { \ if (pvaspace) b << " "; pvaspace=true; \ b << "\n"; } const ll mp in printv(a, b) {bool pvaspace= false; \ for(auto pva : a) { \ if (pvaspace) b << " "; pvaspace=true; \ b << "\n"; } b << "\n"; pvaspace=true; \ b << "\n"; } b << "\n"; punp in	4	_		
## data		4.1 KMP	8	_
4.4 Suffix Array		4.2 Z Value	8	·
4.5 Suffix Array LCP		4.3 Longest Palindromic Substring	g 9	·
10		4.4 Suffix Array	9	
5 Math and Geometry 5.1 Vector Operations 5.2 Convex Hull 5.3 Prime Sieve 5.4 XOR Basis 11 6 DP Trick 6.1 Dynamic Convex Hull 11 7 Numbers and Math Formulae 7.1 Fibonacci 7.2 Catalan 7.3 Geometry 7.4 Prime Numbers 12 7.5 Number Theory 7.6 Combinatorics 1 Basic 1 b << pva; \				
b		V		_
5.1 Vector Operations 5.2 Convex Hull 5.3 Prime Sieve 5.4 XOR Basis 11 6 DP Trick 6.1 Dynamic Convex Hull 11 7 Numbers and Math Formulae 7.1 Fibonacci 7.2 Catalan 7.3 Geometry 7.4 Prime Numbers 7.5 Number Theory 7.6 Combinatorics 1 Using namespace std; 1 using namespacegnu_pbds; 1 typedef long long ll; 1 typedef long double ld; 1 using pii = pair <int, int="">; 1 using pil = pair<11, ll>; 2 using pil = pair<11, ll>; 3 using pil = pair<11, ll>; 4 using pil = pair<11, ll>; 5 using namespacegnu_pbds;</int,>	5	Math and Geometry		
5.3 Prime Sieve		5.1 Vector Operations	10	b << "\n";}
5.3 Prime Sieve		5.2 Convex Hull	10	
5.4 XOR Basis		5.3 Prime Sieve		using namespace std;
6 DP Trick 6.1 Dynamic Convex Hull 11 typedef unsigned long long ull; typedef long double ld; 7 Numbers and Math Formulae 7.1 Fibonacci				dsing namespacegnu_pbus,
6 DP Trick 6.1 Dynamic Convex Hull 11 typedef unsigned long long ull; typedef long double ld; 7 Numbers and Math Formulae 7.1 Fibonacci				typedef long long 11;
6.1 Dynamic Convex Hull 11 typedef long double ld; 7 Numbers and Math Formulae 12 using pii = pair <int, int="">; 7.1 Fibonacci 12 using pl1 = pair<11, ll>; 7.2 Catalan 12 using pdd = pair<1d, ld>; 7.3 Geometry 12 using pdd = pair<1d, ld>; 7.4 Prime Numbers 12 const ll MOD = 10000000007; 7.5 Number Theory 12 const ll MAX = 2147483647; 1 Basic template typename A, typename B> ostream& operator 0 stream& operator operator</int,>	6			typedef unsigned long long ull;
7.1 Fibonacci		6.1 Dynamic Convex Hull	11	
7.1 Fibonacci	7	Numbers and Math Formulae	19	
7.2 Catalan	1			dsing pir - parr line, inc.,
7.3 Geometry				abing pir pair ir, ir,
7.4 Prime Numbers				0 1 1 1
7.5 Number Theory		v		
7.6 Combinatorics		7.4 Prime Numbers	12	
template < typename A, typename B > ostream& operator << (ostream& o, pair < A, B > p) {		7.5 Number Theory	12	const 11 MOD = 1000000007;
1 Basic ostream& operator << (ostream& o, pair < A, B> p) {		· · · · · · · · · · · · · · · · · · ·		const ll MAX = 2147483647;
B> p){				template <typename a,="" b="" typename=""></typename>
B> p){	1	\mathbf{Basic}		ostream& operator << (ostream& o, pair < A,
1.1 Default Code return o << '(' << p.F << ',' << p.S				
	1.1 Default Code			return o << '(' << p.F << ',' << p.S

1.2 .vimrc

```
:set nu
:set ai
:set cursorline
:set tabstop=4
:set shiftwidth=4
:set mouse=a
:set expandtab
hi CursorLine cterm=none ctermbg=
    DarkMagenta
```

1.3 gvimrc

Put _gvimrc in HOME.

```
:set nu
:set ai
:set tabstop=4
:set shiftwidth=4
:set mouse=a
:set expandtab
:set cursorline
:set guifont=Consolas:h11
:set backspace=indent,eol,start
:syntax enable
```

1.4 PBDS

1.5 Random

```
mt19937 rnd(chrono::steady_clock::now().
   time_since_epoch().count());
uniform_int_distribution<int> dis(1,
   100);
cout << dis(rnd) << "\n";</pre>
1.6 Clock
int st = clock();
int ed = clock();
if(ed - st >= CLOCKS_PER_SEC * 1);
1.7 Fast IO
// From wangyenjen/JAW
inline int my_getchar() {
  const int N = 1 << 20;
  static char buf[N];
  static char *p = buf , *end = buf;
  if(p == end) {
    if((end = buf + fread(buf , 1 , N ,
   stdin)) == buf) return EOF;
    p = buf;
  return *p++;
inline int readint(int &x) {
  static char c , neg;
  while((c = my_getchar()) < '-') {
    if(c == EOF) return 0;
  neg = (c == '-') ? -1 : 1;
  x = (neg == 1) ? c - '0' : 0;
  while((c = my_getchar()) >= '0') x = (
   x \ll 3) + (x \ll 1) + (c - '0');
  x *= neg;
  return 1;
const int kBufSize = 524288;
char inbuf[kBufSize];
char buf_[kBufSize]; size_t size_;
inline void Flush_() { write(1, buf_,
   size_); size_ = 0; }
inline void CheckFlush_(size_t sz) { if
   (sz + size_ > kBufSize) Flush_(); }
inline void PutInt(int a) {
  static char tmp[22] = "
   01234567890123456789\n";
  CheckFlush_(10);
  if(a < 0){
```

*(buf_ + size_) = '-';

a = ~a + 1;

```
size_++;
}
int tail = 20;
if (!a) {
   tmp[--tail] = '0';
} else {
   for (; a; a /= 10) tmp[--tail] = (a
   % 10) ^ '0';
}
memcpy(buf_ + size_, tmp + tail, 21 -
   tail);
size_ += 21 - tail;
}
int main() {
   Flush_();
   return 0;
}
```

2 Data Structure

2.1 Binary Indexed Tree

```
template < typename T>
struct BIT{
private:
  vector<T> bit;
  int lowbit(int x){
    return x & (-x);
  }
public:
  explicit BIT(int sz){
   bit.resize(sz + 1);
  void modify(int x, T v){
    for(; x < bit.size(); x += lowbit(x)</pre>
   ) bit[x] += v;
  T get(int x){
    T ans = T();
    for(; x; x -= lowbit(x)) ans += bit[
    return ans;
  }
};
```

2.2 Disjoint Set Union-Find

```
vector<int> dsu, rk;

void initDSU(int n){
  dsu.resize(n);
  rk.resize(n);
```

```
for(int i = 0; i < n; i++) dsu[i] = i,
    rk[i] = 1;
}
int findDSU(int x){
    if(dsu[x] == x) return x;
    dsu[x] = findDSU(dsu[x]);
    return dsu[x];
}

void unionDSU(int a, int b){
    int pa = findDSU(a), pb = findDSU(b);
    if(rk[pa] > rk[pb]) swap(pa, pb);
    if(rk[pa] == rk[pb]) rk[pb]++;
    dsu[pa] = pb;
}
```

2.3 Segment Tree

```
template < typename T>
struct Node{
  T v = 0, tag = 0;
  int sz = 1, 1 = -1, r = -1;
  T rv(){
    return v + tag * sz;
  void addTag(T t){
    tag += t;
};
template < typename T >
T pullValue(T b, T c){
  return b + c;
}
template < typename T>
void pull(Node<T> &a, Node<T> &l, Node<T</pre>
   > &r){
  a.v = pullValue(1.rv(), r.rv());
  a.sz = 1.sz + r.sz;
}
template < typename T >
void push(Node<T> &a, Node<T> &l, Node<T</pre>
   > &r){
  1.addTag(a.tag);
  r.addTag(a.tag);
  a.v = a.rv();
  a.tag = 0;
template < typename T>
struct SegmentTree{
  vector < Node < T >> st;
  int cnt = 0;
```

```
explicit SegmentTree(int sz){
                                         |};
  st.resize(4 * sz);
int build(int 1, int r, vector<T>& o){
  int id = cnt++;
  if(l == r){
    st[id].v = o[1];
    return id;
  }
  int m = (1 + r) / 2;
  st[id].1 = build(1, m, o);
  st[id].r = build(m + 1, r, o);
 pull(st[id], st[st[id].1], st[st[id
 ].r]);
  return id;
}
void modify(int 1, int r, int v, int L
 , int R, int id){
  if(1 == L \&\& r == R){
    st[id].addTag(v);
    return;
  }
  int M = (L + R) / 2;
  if(r <= M) modify(l, r, v, L, M, st[</pre>
 else if(l > M) modify(l, r, v, M +
 1, R, st[id].r);
  else{
    modify(1, M, v, L, M, st[id].1);
    modify(M + 1, r, v, M + 1, R, st[
 id].r);
 pull(st[id], st[st[id].1], st[st[id
 ].r]);
T query(int 1, int r, int L, int R,
 int id){
 if(l == L \&\& r == R) return st[id].
 push(st[id], st[st[id].1], st[st[id
 ].r]);
 int M = (L + R) / 2;
  if(r <= M) return query(l, r, L, M,</pre>
 st[id].1);
  else if(1 > M) return query(1, r, M
 + 1, R, st[id].r);
    return pullValue(query(1, M, L, M,
  st[id].1), query(M + 1, r, M + 1, R,
  st[id].r));
  }
}
```

2.4 Dynamic Segment Tree

```
template < typename T>
struct Node{
  T v = T(), tag = T();
  int 1 = -1, r = -1;
  int lr = -1, rr = -1;
  T rv(){
    return v + tag * (rr - lr + 1);
  void addTag(T t){
    tag += t;
  }
};
template < typename T>
T pullValue(T b, T c){
  return b + c;
}
template < typename T>
struct SegmentTree{
  vector < Node < T >> st;
  int cnt = 0;
  explicit SegmentTree(int sz){
    st.resize(sz);
  int node(int 1, int r){
    int id = cnt++;
    st[id].lr = 1;
    st[id].rr = r;
    return id;
  }
  void pull(int id){
    st[id].v = pullValue(st[id].l == -1
   ? T() : st[st[id].1].rv(), st[id].r
   == -1 ? T() : st[st[id].r].rv());
  void push(int id, int L, int R){
    int M = (L + R) / 2;
    if(st[id].l == -1) st[id].l = node(L
    st[st[id].1].addTag(st[id].tag);
    if(st[id].r == -1) st[id].r = node(M
    + 1, R);
    st[st[id].r].addTag(st[id].tag);
    st[id].v = st[id].rv();
    st[id].tag = T();
  int modify(int 1, int r, T v, int L,
```

template < typename T>

```
int R, int id){
                                             struct Treap{
    if(id == -1) id = node(L, R);
                                               vector<Node<T>> tr;
    if(1 == L \&\& r == R){
                                               int ts = 0;
      st[id].addTag(v);
                                               explicit Treap(int sz){
      return id;
                                                 tr.resize(sz);
    }
    int M = (L + R) / 2;
    if(r \le M) st[id].l = modify(l, r, v)
                                               int node(T v){
                                                 int r = ts++;
   , L, M, st[id].1);
    else if(l > M) st[id].r = modify(l,
                                                 tr[r].v = v;
   r, v, M + 1, R, st[id].r);
                                                 tr[r].sum = 0;
    else{
                                                 tr[r].tag = 0;
                                                 return r;
      st[id].l = modify(l, M, v, L, M,
                                               }
   st[id].1);
      st[id].r = modify(M + 1, r, v, M +
    1, R, st[id].r);
                                               void pull(int r){
                                                 if(r != -1){
    }
    pull(id);
                                                   tr[r].sz = 1;
                                                   tr[r].sum = tr[r].v;
    return id;
                                                   if(tr[r].l != -1){
                                                     tr[r].sum += tr[tr[r].1].rsum();
  T query(int 1, int r, int L, int R,
                                                     tr[r].sz += tr[tr[r].1].sz;
                                                   }
   int id){
    if(id == -1) return T();
                                                   if(tr[r].r != -1){
    if(1 == L \&\& r == R) return st[id].
                                                     tr[r].sum += tr[tr[r].r].rsum();
                                                     tr[r].sz += tr[tr[r].r].sz;
   rv();
    push(id, L, R);
    int M = (L + R) / 2;
                                                 }
                                               }
    if(r <= M) return query(l, r, L, M,</pre>
   st[id].1);
    else if(1 > M) return query(1, r, M
                                               void push(int r){
   + 1, R, st[id].r);
                                                 if(r == -1) return;
                                                 if(tr[r].l != -1){
    else{
      return pullValue(query(1, M, L, M,
                                                   tr[tr[r].1].tag += tr[r].tag;
    st[id].1), query(M + 1, r, M + 1, R,
    st[id].r));
                                                 if(tr[r].r != -1){
    }
                                                   tr[tr[r].r].tag += tr[r].tag;
  }
                                                 tr[r].sum = tr[r].rsum();
                                                 tr[r].v += tr[r].tag;
};
                                                 tr[r].tag = 0;
2.5
     Treap
                                               }
mt19937 rnd(chrono::steady_clock::now().
                                               void merge(int a, int b, int& r){
   time_since_epoch().count());
                                                 push(a);
                                                 push(b);
template < typename T>
                                                 if (a == -1 \&\& b == -1) r = -1;
struct Node{
                                                 else if (a == -1) r = b;
  int l = -1, r = -1, pri = rnd(), sz =
                                                 else if(b == -1) r = a;
                                                 else{
  T v, sum, tag;
                                                   if(tr[a].pri > tr[b].pri){
  T rsum(){
                                                     r = a:
    return sum + tag * sz;
                                                     merge(tr[a].r, b, tr[a].r);
  }
                                                   }
};
                                                   else{
                                                     r = b;
```

```
merge(a, tr[b].1, tr[b].1);
    }
  }
 pull(r);
void split1(int a, T k, int& r1, int&
 r2){
  if(a == -1){
    r1 = r2 = -1;
    return;
  }
  push(a);
  if(tr[a].v < k){
    r1 = a;
    split1(tr[a].r, k, tr[a].r, r2);
  }
  else{
    r2 = a;
    split1(tr[a].1, k, r1, tr[a].1);
 pull(a);
}
void split2(int a, int k, int& r1, int
 & r2){
  if(a == -1){
    r1 = r2 = -1;
    return;
  }
  push(a);
  if(k == 0){
    r1 = -1;
    r2 = a;
    return;
  if(tr[a].1 == -1 || tr[tr[a].1].sz <
  k){
    r1 = a;
    if(tr[a].l != -1) split2(tr[a].r,
 k - tr[tr[a].1].sz - 1, tr[a].r, r2);
    else split2(tr[a].r, k - 1, tr[a].
 r, r2);
 }
  else{
    split2(tr[a].1, k, r1, tr[a].1);
 pull(a);
void printtr(int now){
  if(now == -1) return;
  printtr(tr[now].1);
  cerr << now << "," << tr[now].v + tr
 [now].tag << "," << tr[now].rsum() << |}</pre>
```

```
"," << tr[now].tag << " ";
    printtr(tr[now].r);
}

void print(int r){
    printtr(r);
    cerr << "\n";
}
};</pre>
```

3 Graph

3.1 Dijkstra

```
// pll = (vertex, weight)
vector<vector<pll>> g;
int n;
const ll INF = 1LL << 60;</pre>
11 dijkstra(int start, int end){
  // pll = (dis, vertex)
  priority_queue<pll, vector<pll>,
   greater<>> pq;
  pq.push(mp(0, start));
  vector<ll> dis(n, INF);
  dis[start] = 0;
  while(!pq.empty()){
    int v = pq.top().S;
    ll d = pq.top().F;
    pq.pop();
    if(d != dis[v]) continue;
    for(pll p : g[v]){
      if(d + p.S < dis[p.F]){
        dis[p.F] = d + p.S;
        pq.push(mp(d + p.S, p.F));
    }
  }
  return dis[end];
```

3.2 Floyd-Warshall

```
vector<vector<int>> g;
int n;

void floydwarshall() {
  for(int k = 0; k < n; k++)
    for(int i = 0; i < n; i++)
      for(int j = 0; j < n; j++)
        if(g[i][k] != -MAX && g[k][j] !=
        -MAX && (g[i][j] == -MAX || g[i][k]
        + g[k][j] < g[i][j]))
        g[i][j] = g[i][k] + g[k][j];
}</pre>
```

3.3 Kruskal

```
int kruskal() {
   int ans = 0;
   lsort(e);
   initDSU();
   for(auto& i : e) {
      int a = i.S.F, b = i.S.S;
      if(findDSU(a) == findDSU(b))
      continue;
      ans += i.F;
      unionDSU(a, b);
   }
   return ans;
}
```

3.4 Tarjan SCC

```
vector<vector<int>> g;
vector<int> st;
vector<bool> inst;
vector<int> scc;
vector<int> ts, low;
int tmp = 0;
int sccid = 0;
void initSCC(int n){
 tmp = 0;
 sccid = 0;
 st.clear();
 g.clear();
 g.resize(2 * n + 1);
 inst.clear();
 inst.resize(2 * n + 1);
 scc.clear();
 scc.resize(2 * n + 1);
 ts.clear();
 ts.resize(2 * n + 1, -1);
 low.clear();
 low.resize(2 * n + 1);
void dfs(int now){
 st.eb(now);
 inst[now] = true;
 ts[now] = ++tmp;
 low[now] = ts[now];
 for(int i : g[now]){
    if(ts[i] == -1){
      dfs(i);
      low[now] = min(low[now], low[i]);
    else if(inst[i]) low[now] = min(low[
   now], ts[i]);
  }
```

```
if(low[now] == ts[now]){
    sccid++;
    int t;
    do{
        t = st.back();
        st.pob;
        inst[t] = false;
        scc[t] = sccid;
    }
    while(t != now);
}
```

3.5 SPFA

```
const 11 INFINITE = 2147483647;
int n;
vector<vector<pii>> g;
int spfa(int start, int end){
  vector<int> dis(n, INFINITE);
  int start:
  cin >> start;
  dis[start] = 0;
  queue < int > q;
  q.push(start);
  vector < bool > inq(n);
  inq[start] = true;
  vector<int> cnt(n);
  while(!q.empty()){
    int v = q.front();
    q.pop();
    inq[v] = false;
    for(pii p : g[v]){
      if(!(dis[p.F] == INFINITE || dis[v
   ] + p.S < dis[p.F])) continue;
      cnt[p.F]++;
      if(cnt[p.F] >= n) return -INFINITE
   ; //negetive cycle
      dis[p.F] = dis[v] + p.S;
      if(!inq[p.F]){
        inq[p.F] = true;
        q.push(p.F);
      }
    }
  return dis[end];
```

3.6 Block-cut Tree

```
* g: block-cut tree
 * id[v]: vertex in block-cut tree which
     v belongs to
 * iscut[v]: whether v in origin graph
    is an articulation
 * bcccut[v]: whether v in block-cut
    tree is an articulation
 * tg: origin graph
int n;
vector<vector<int>> g;
vector<int> id;
vector < bool > iscut, bcccut;
vector<vector<int>> tg;
vector<int> in, low;
int ts = 1;
stack<int> st;
int bccid = 1;
void init(){
 tg.resize(n + 1);
 in.resize(n + 1);
 low.resize(n + 1);
 id.resize(n + 1, -1);
 g.resize(2 * n + 1);
 iscut.resize(n + 1);
 bcccut.resize(2 * n + 1);
}
void addv(int b, int v){
 if(id[v] == -1){
    id[v] = b;
   return;
 }
 if(!iscut[v]){
    int o = id[v];
    iscut[v] = true;
    id[v] = bccid++;
    bcccut[id[v]] = true;
    g[o].eb(id[v]);
   g[id[v]].eb(o);
 }
 g[b].eb(id[v]);
 g[id[v]].eb(b);
}
void dfs(int now, int p){
 in[now] = low[now] = ts++;
  st.push(now);
 int cnt = 0;
  for(int i : tg[now]){
    if(i == p) continue;
```

```
if(in[i]) low[now] = min(low[now],
 in[i]);
  else{
    cnt++;
    dfs(i, now);
    low[now] = min(low[now], low[i]);
    if(low[i] >= in[now]){
      int nowid = bccid++;
      while(true){
        int x = st.top();
        st.pop();
        addv(nowid, x);
        if(x == i) break;
      addv(nowid, now);
    }
if(cnt == 0 && now == p) addv(bccid++,
  now);
```

4 String

4.1 KMP

```
vector<int> f;
void build(string& t){
  f.clear();
  f.resize(t.size());
  int p = -1;
  f[0] = -1;
  for(int i = 1; i < t.size(); i++){
    while (p != -1 \&\& t[p + 1] != t[i]) p
    = f[p];
    if(t[p + 1] == t[i]) f[i] = p + 1;
    else f[i] = -1;
    p = f[i];
  }
}
int kmp(string& s, string& t){
  int ans = 0;
  int p = -1;
  for(int i = 0; i < s.size(); i++){
    while (p != -1 \&\& t[p + 1] != s[i]) p
    = f[p];
    if(t[p + 1] == s[i]) p++;
    if(p + 1 == t.size()){
      ans++;
      p = f[p];
  }
  return ans;
```

4.2 Z Value

```
vector<int> z;

void build(string s, int n){
   z.clear();
   z.resize(n);
   int 1 = 0;
   for(int i = 1; i < n; i++){
      if(1 + z[1] >= i) z[i] = min(z[1] +
      1 - i, z[i - 1]);
      while(i + z[i] < n && s[z[i]] == s[i
            + z[i]]) z[i]++;
      if(i + z[i] > 1 + z[1]) 1 = i;
   }
}
```

4.3 Longest Palindromic Substring

```
#define T(x) ((x) % 2 ? s[(x) / 2] : '.'
   )
string s;
int L;
int ex(int 1, int r){
 int i = 0;
 while (1 - i \ge 0 \&\& r + i < L \&\& T(1 - i)
    i) == T(r + i)) i++;
 return i;
}
int lps(string ss){
 s = ss;
 L = 2 * s.size() + 1;
 int mx = 0;
 int center = 0;
 vector<int> r(L);
 int ans = 1;
 r[0] = 1;
  for(int i = 1; i < L; i++){
    int ii = center - (i - center);
    int len = mx - i + 1;
    if(i > mx){
      r[i] = ex(i, i);
      center = i;
      mx = i + r[i] - 1;
    else if(r[ii] == len){
      r[i] = len + ex(i - len, i + len);
      center = i;
      mx = i + r[i] - 1;
    else r[i] = min(r[ii], len);
    ans = max(ans, r[i]);
 }
```

```
return ans - 1;
```

4.4 Suffix Array

```
#include <bits/stdc++.h>
#define eb(a) emplace_back(a)
#define iter(a) a.begin(), a.end()
#define id(a) ((a) - 'a')
using namespace std;
string s;
vector<int> rk;
vector < int > sa;
int n;
void build_sa(){
  sa.resize(n);
  rk.resize(n);
  vector<int> t1(n), t2(n);
  vector<int> cnt(max(n, 27));
  for(int i = 0; i < n; i++) cnt[id(s[i</pre>
   ])]++, t1[i] = id(s[i]);
  for(int i = 1; i < 27; i++) cnt[i] +=
   cnt[i - 1];
  for(int i = n - 1; i >= 0; i--) sa[--
   cnt[id(s[i])]] = i;
  for(int k = 1; k < n; k *= 2){
    fill(iter(cnt), 0);
    for(int i = 0; i < n; i++) cnt[t1[i
    for(int i = 1; i < cnt.size(); i++)</pre>
   cnt[i] += cnt[i - 1];
    int p = 0;
    for(int i = n - k; i < n; i++) t2[p]
   ++] = i;
    for(int i = 0; i < n; i++) if(sa[i]
   >= k) t2[p++] = sa[i] - k;
    for(int i = n - 1; i \ge 0; i--) sa
   [--cnt[t1[t2[i]]]] = t2[i];
   t2[sa[0]] = p = 0;
    for(int i = 1; i < n; i++){
      int a = sa[i], b = sa[i - 1];
      if(t1[a] == t1[b] \&\& a + k < n \&\&
   b + k < n \&\& t1[a + k] == t1[b + k]);
      else p++;
      t2[sa[i]] = p;
    if(n == p + 1) break;
    t1.swap(t2);
```

```
for(int i = 0; i < n; i++) rk[sa[i]] =
    i;
}</pre>
```

4.5 Suffix Array LCP

```
vector<int> lcp(n);
int lst = 0;
for(int i = 0; i < n; i++){
  int now = rk[i];
  if(now == 0){
    lcp[now] = 0;
    continue;
  }
  if(lst) lst--;
  lcp[now] = lst;
  int pos = sa[now - 1];
  while(s[i + lcp[now]] == s[pos + lcp[now]]) lcp[now]++;
  lst = lcp[now];
}</pre>
```

5 Math and Geometry

5.1 Vector Operations

```
template < typename T>
pair<T, T> operator+(pair<T, T> a, pair<
   T, T > b
  return mp(a.F + b.F, a.S + b.S);
}
template < typename T>
pair <T, T > operator - (pair <T, T > a, pair <
   T, T > b
  return mp(a.F - b.F, a.S - b.S);
}
template < typename T>
pair<T, T> operator*(pair<T, T> a, T b){
  return mp(a.F * b, a.S * b);
template < typename T>
pair<T, T> operator/(pair<T, T> a, T b){
  return mp(a.F / b, a.S / b);
}
template < typename T>
T dot(pair<T, T> a, pair<T, T> b){
  return a.F * b.F + a.S * b.S;
template < typename T>
T cross(pair<T, T> a, pair<T, T> b){
  return a.F * b.S - a.S * b.F;
```

```
template < typename T>
T abs2(pair < T, T > a) {
  return a.F * a.F + a.S * a.S;
}
```

5.2 Convex Hull

```
template < typename T>
pair <T, T> operator - (pair <T, T> a, pair <
   T, T > b
  return mp(a.F - b.F, a.S - b.S);
template < typename T>
T cross(pair<T, T> a, pair<T, T> b){
  return a.F * b.S - a.S * b.F;
}
template < typename T>
vector<pair<T, T>> getConvexHull(vector<</pre>
   pair<T, T>>& pnts){
  int n = pnts.size();
  lsort(pnts);
  vector<pair<T, T>> hull;
  hull.reserve(n);
  for(int i = 0; i < 2; i++){
    int t = hull.size();
    for(pair<T, T> pnt : pnts){
      while(hull.size() - t >= 2 \&\&
   cross(hull.back() - hull[hull.size()
   - 2], pnt - hull[hull.size() - 2]) <=
        hull.pop_back();
      hull.pb(pnt);
    hull.pop_back();
    reverse(iter(pnts));
  return hull;
5.3 Prime Sieve
```

```
vector<int> prime;
vector<int> p;
void sieve(int n) {
  prime.resize(n + 1, 1);
  for(int i = 2; i <= n; i++) {
    if(prime[i] == 1) {
      p.push_back(i);
    }
}
```

```
prime[i] = i;
}
for(int j : p){
   if((11)i * j > n || j > prime[i])
break;
   prime[i * j] = j;
}
}
```

5.4 XOR Basis

```
const int mxdigit = 50;
vector<ll> b(mxdigit + 1);
void add(ll t){
  for(int i = mxdigit; i >= 0; i--){
    if(!(1LL << i & t)) continue;
    if(b[i] != 0){
      t ^= b[i];
      continue;
    }
    for(int j = 0; j < i; j++){
      if(1LL << j & t) t ^= b[j];
    for(int j = i + 1; j <= mxdigit; j</pre>
   ++){
      if(1LL << i & b[j]) b[j] ^= t;</pre>
    b[i] = t;
    break;
  }
}
```

6 DP Trick

6.1 Dynamic Convex Hull

```
struct Line{
    ll a, b, l = MIN, r = MAX;
    Line(ll a, ll b): a(a), b(b) {}
    ll operator()(ll x) const{
        return a * x + b;
    }
    bool operator<(Line b) const{
        return a < b.a;
    }
    bool operator<(ll b) const{
        return r < b;
    }
};

ll iceil(ll a, ll b){
    if(b < 0) a *= -1, b *= -1;
    if(a > 0) return (a + b - 1) / b;
    else return a / b;
```

```
}
ll intersect(Line a, Line b){
  return iceil(a.b - b.b, b.a - a.a);
struct DynamicConvexHull{
  multiset <Line, less <>> ch;
  void add(Line ln){
    auto it = ch.lower_bound(ln);
    while(it != ch.end()){
      Line tl = *it;
      if(tl(tl.r) <= ln(tl.r)){</pre>
        it = ch.erase(it);
      else break;
    }
    auto it2 = ch.lower_bound(ln);
    while(it2 != ch.begin()){
      Line tl = *prev(it2);
      if(tl(tl.1) <= ln(tl.1)){</pre>
        it2 = ch.erase(prev(it2));
      else break;
    }
    it = ch.lower_bound(ln);
    if(it != ch.end()){
      Line tl = *it;
      if(tl(tl.l) >= ln(tl.l)) ln.r = tl
    .1 - 1;
      else{
        11 pos = intersect(ln, tl);
        tl.l = pos;
        ln.r = pos - 1;
        ch.erase(it);
        ch.insert(tl);
      }
    }
    it2 = ch.lower_bound(ln);
    if(it2 != ch.begin()){
      Line tl = *prev(it2);
      if(tl(tl.r) >= ln(tl.r)) ln.l = tl
   .r + 1;
      else{
        11 pos = intersect(t1, ln);
        tl.r = pos - 1;
        ln.l = pos;
        ch.erase(prev(it2));
        ch.insert(t1);
    if(ln.1 <= ln.r) ch.insert(ln);</pre>
  11 query(11 pos){
```

```
auto it = ch.lower_bound(pos);
if(it == ch.end()) return 0;
return (*it)(pos);
}
};
```

7 Numbers and Math Formulae

7.1 Fibonacci

$$f(n) = f(n-1) + f(n-2)$$

$$\begin{bmatrix} f(n) \\ f(n-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$f(45) \approx 10^9$$

 $f(88) \approx 10^{18}$

7.2 Catalan

$$C_0 = 1, C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i}$$

$$C_n = C_n^{2n} - C_{n-1}^{2n}$$

7.3 Geometry

• Heron's formula:

The area of a triangle whose

The area of a triangle whose lengths of sides are a,b,c and s = (a+b+c)/2 is $\sqrt{s(s-a)(s-b)(s-c)}$.

- Vector cross product: $v_1 \times v_2 = |v_1||v_2|\sin\theta = (x_1 \times y_2) (x_2 \times y_1).$
- Vector dot product: $v_1 \cdot v_2 = |v_1||v_2|\cos\theta = (x_1 \times y_1) + (x_2 \times y_2).$

7.4 Prime Numbers

First 50 prime numbers:

Very large prime numbers:

1000001333 1000500889 2500001909 2000000659 900004151 850001359

7.5 Number Theory

- Inversion: $aa^{-1} \equiv 1 \pmod{m}$. a^{-1} exists iff gcd(a, m) = 1.
- Linear inversion: $a^{-1} \equiv (m \lfloor \frac{m}{a} \rfloor) \times (m \mod a)^{-1} \pmod{m}$
- Fermat's little theorem: $a^p \equiv a \pmod{p}$ if p is prime.
- Euler function: $\phi(n) = n \prod_{p|n} \frac{p-1}{p}$
- Euler theorem: $a^{\phi(n)} \equiv 1 \pmod{n}$ if $\gcd(a, n) = 1$.
- Extended Euclidean algorithm: $ax + by = \gcd(a, b) = \gcd(b, a \mod b) = \gcd(b, a \lfloor \frac{a}{b} \rfloor b) = bx_1 + (a \lfloor \frac{a}{b} \rfloor b)y_1 = ay_1 + b(x_1 \lfloor \frac{a}{b} \rfloor y_1)$
- Divisor function: $\sigma_x(n) = \sum_{d|n} d^x. \ n = \prod_{i=1}^r p_i^{a_i}.$ $\sigma_x(n) = \prod_{i=1}^r \frac{p_i^{(a_i+1)x} 1}{p_i^x 1} \text{ if } x \neq 0. \quad \sigma_0(n) = \prod_{i=1}^r (a_i + 1).$
- Chinese remainder theorem: $x \equiv a_i \pmod{m_i}$. $M = \prod m_i$. $M_i = M/m_i$. $t_i = M_i^{-1}$. $x = kM + \sum a_i t_i M_i$, $k \in \mathbb{Z}$.

7.6 Combinatorics

- $\bullet \ P_k^n = \frac{n!}{(n-k)!}$
- $C_k^n = \frac{n!}{(n-k)!k!}$
- $H_k^n = C_k^{n+k-1} = \frac{(n+k-1)!}{k!(n-1)!}$