In [1]:

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="white")
sns.set(style="whitegrid",color_codes=True)
import warnings
warnings.simplefilter(action='ignore')
```

In [2]:

```
df=pd.read_csv(r"C:\Users\Gowthami\Downloads\framingham.csv")
df
```

Out[2]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalent
0	1	39	4.0	0	0.0	0.0	0	
1	0	46	2.0	0	0.0	0.0	0	
2	1	48	1.0	1	20.0	0.0	0	
3	0	61	3.0	1	30.0	0.0	0	
4	0	46	3.0	1	23.0	0.0	0	
4233	1	50	1.0	1	1.0	0.0	0	
4234	1	51	3.0	1	43.0	0.0	0	
4235	0	48	2.0	1	20.0	NaN	0	
4236	0	44	1.0	1	15.0	0.0	0	
4237	0	52	2.0	0	0.0	0.0	0	

4238 rows × 16 columns

In [3]:

df.head()

Out[3]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	О
2	1	48	1.0	1	20.0	0.0	0	О
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	О
4	_							

In [4]:

df.tail()

Out[4]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalent
4233	1	50	1.0	1	1.0	0.0	0	
4234	1	51	3.0	1	43.0	0.0	0	
4235	0	48	2.0	1	20.0	NaN	0	
4236	0	44	1.0	1	15.0	0.0	0	
4237	0	52	2.0	0	0.0	0.0	0	

In [5]:

df.shape

Out[5]:

(4238, 16)

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4238 entries, 0 to 4237
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	male	4238 non-null	int64
1	age	4238 non-null	int64
2	education	4133 non-null	float64
3	currentSmoker	4238 non-null	int64
4	cigsPerDay	4209 non-null	float64
5	BPMeds	4185 non-null	float64
6	prevalentStroke	4238 non-null	int64
7	prevalentHyp	4238 non-null	int64
8	diabetes	4238 non-null	int64
9	totChol	4188 non-null	float64
10	sysBP	4238 non-null	float64
11	diaBP	4238 non-null	float64
12	BMI	4219 non-null	float64
13	heartRate	4237 non-null	float64
14	glucose	3850 non-null	float64
15	TenYearCHD	4238 non-null	int64
	67 (64/6)	1 6 4 (-)	

dtypes: float64(9), int64(7)

memory usage: 529.9 KB

In [7]:

df.describe()

Out[7]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	pre
count	4238.000000	4238.000000	4133.000000	4238.000000	4209.000000	4185.000000	
mean	0.429212	49.584946	1.978950	0.494101	9.003089	0.029630	
std	0.495022	8.572160	1.019791	0.500024	11.920094	0.169584	
min	0.000000	32.000000	1.000000	0.000000	0.000000	0.000000	
25%	0.000000	42.000000	1.000000	0.000000	0.000000	0.000000	
50%	0.000000	49.000000	2.000000	0.000000	0.000000	0.000000	
75%	1.000000	56.000000	3.000000	1.000000	20.000000	0.000000	
max	1.000000	70.000000	4.000000	1.000000	70.000000	1.000000	
4							

In [8]:

df.isnull().sum()

Out[8]:

0 male age 0 education 105 currentSmoker 0 29 cigsPerDay **BPMeds** 53 prevalentStroke 0 prevalentHyp 0 0 diabetes totChol 50 sysBP 0 0 diaBP 19 BMI heartRate 1 glucose 388 TenYearCHD 0 dtype: int64

In [9]:

df.describe().any()

Out[9]:

male True age True education True currentSmoker True cigsPerDay True **BPMeds** True prevalentStroke True prevalentHyp True diabetes True totChol True sysBP True diaBP True BMI True heartRate True glucose True TenYearCHD True dtype: bool

In [10]:

```
ax=df["education"].hist(bins=15,density=True,stacked=True,color='cyan',alpha=0.6)
df["education"].plot(kind='density',color='teal')
ax.set(xlabel='education')
plt.xlim(-0,15)
plt.show()
```


In [11]:

```
print(df["education"].mean(skipna=True))
print(df["education"].median(skipna=True))
```

1.9789499153157513

2.0

In [12]:

```
print((df['glucose'].isnull().sum()/df.shape[0]*100))
```

9.155261915998112

In [13]:

```
print((df['totChol'].isnull().sum()/df.shape[0]*100))
```

In [14]:

```
print(df['totChol'].value_counts())
sns.countplot(x='totChol',data=df,palette='Set2')
plt.show()
totChol
```

240.0 85 220.0 70 260.0 62 210.0 61 232.0 59 392.0 1 405.0 1 359.0 1 398.0 1 119.0

Name: count, Length: 248, dtype: int64

In [15]:

```
print(df['totChol'].value_counts().idxmax())
```

In [16]:

```
data=df.copy()
data["education"].fillna(df["education"].median(skipna=True),inplace=True)
data["totChol"].fillna(df["totChol"].value_counts().idxmax(),inplace=True)
data.drop('glucose',axis=1,inplace=True)
```

In [17]:

```
data.isnull().sum()
```

Out[17]:

male	0
age	0
education	0
currentSmoker	0
cigsPerDay	29
BPMeds	53
prevalentStroke	0
prevalentHyp	0
diabetes	0
totChol	0
sysBP	0
diaBP	0
BMI	19
heartRate	1
TenYearCHD	0
dtype: int64	

In [18]:

```
ax=df["cigsPerDay"].hist(bins=15,density=True,stacked=True,color='cyan',alpha=0.6)
df["cigsPerDay"].plot(kind='density',color='teal')
ax.set(xlabel='cigsPerDay')
plt.xlim(-10,85)
plt.show()
```


In [19]:

```
print(df["cigsPerDay"].mean(skipna=True))
print(df["cigsPerDay"].median(skipna=True))
```

9.003088619624615

0.0

In [20]:

```
print((df['BPMeds'].isnull().sum()/df.shape[0]*100))
```

1.2505899008966492

In [21]:

```
print((df['BMI'].isnull().sum()/df.shape[0]*100))
```

In [22]:

```
print((df['heartRate'].isnull().sum()/df.shape[0]*100))
```

0.023596035865974516

In [23]:

```
print(df['BPMeds'].value_counts())
sns.countplot(x='BPMeds',data=df,palette='Set2')
plt.show()
```

BPMeds

0.0 40611.0 124

Name: count, dtype: int64

In [24]:

```
print(df['heartRate'].value_counts().idxmax())
```

In [25]:

```
data=df.copy()
data["cigsPerDay"].fillna(df["cigsPerDay"].median(skipna=True),inplace=True)
data["BPMeds"].fillna(df["BPMeds"].median(skipna=True),inplace=True)
data["education"].fillna(df["education"].median(skipna=True),inplace=True)
data["totChol"].fillna(df["totChol"].value_counts().idxmax(),inplace=True)
data.drop('glucose',axis=1,inplace=True)
data.drop('BMI',axis=1,inplace=True)
data.drop('heartRate',axis=1,inplace=True)
```

In [26]:

```
data.isnull().sum()
```

Out[26]:

0 male 0 age education 0 0 currentSmoker cigsPerDay 0 **BPMeds** 0 prevalentStroke 0 prevalentHyp 0 diabetes 0 totCho1 0 sysBP 0 diaBP 0 TenYearCHD dtype: int64

In [27]:

```
data.head()
```

Out[27]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	0
2	1	48	1.0	1	20.0	0.0	0	0
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	0
4								

In [28]:

```
plt.figure(figsize=(15,8))
ax=df["education"].hist(bins=15,density=True,stacked=True,color='teal',alpha=0.6)
df["education"].plot(kind='density',color='teal')
ax=data["education"].hist(bins=15,density=True,stacked=True,color='orange',alpha=0.5)
data["education"].plot(kind='density',color='orange')
ax.legend(["education","age"])
ax.set(xlabel='education')
plt.xlim(-0,10)
plt.show()
```


In [29]:

```
data['Disease']=np.where((data["prevalentHyp"]+data["prevalentStroke"])>0,0,1)
data.drop('prevalentHyp',axis=1,inplace=True)
data.drop('prevalentStroke',axis=1,inplace=True)
```

In [30]:

```
training=pd.get_dummies(data,columns=["currentSmoker","totChol","sysBP"])
training.drop("TenYearCHD",axis=1,inplace=True)
training.drop("male",axis=1,inplace=True)
training.drop("diaBP",axis=1,inplace=True)

final_train=training
final_train.head()
```

Out[30]:

	age	education	cigsPerDay	BPMeds	diabetes	Disease	currentSmoker_0	currentSmoker
0	39	4.0	0.0	0.0	0	1	True	Fal
1	46	2.0	0.0	0.0	0	1	True	Fal
2	48	1.0	20.0	0.0	0	1	False	Tr
3	61	3.0	30.0	0.0	0	0	False	Tr
4	46	3.0	23.0	0.0	0	1	False	Tr

5 rows × 490 columns

In [31]:

```
plt.figure(figsize=(15,8))
ax=sns.kdeplot(final_train["age"][final_train.Disease== 1], color="darkturquoise",shade=
sns.kdeplot(final_train["age"][final_train.Disease == 0], color="lightcoral", shade=True
plt.legend(['Disease', 'Died'])
ax.set(xlabel='age')
plt.xlim(10,100)
plt.show()
```


In [32]:

```
plt.figure(figsize=(20,8))
avg_survival_byage = final_train[["age", "Disease"]].groupby(['age'], as_index=False).me
g = sns.barplot(x='age', y='Disease', data=avg_survival_byage, color="LightSeaGreen")
plt.show()
```


In [33]:

```
final_train['IsMinor']=np.where(final_train['age']<=16, 1, 0)
print(final_train['IsMinor'])</pre>
```

```
0
        0
1
        0
2
        0
3
        0
4
        0
4233
        0
4234
        0
4235
        0
4236
        0
4237
Name: IsMinor, Length: 4238, dtype: int32
```

In [34]:

sns.barplot(x='Disease', y='education', data=final_train, color="mediumturquoise")
plt.show()

In [35]:

```
import seaborn as sns
import matplotlib.pyplot as plt
# Assuming 'train_df' is your DataFrame containing the data
sns.barplot(x='diabetes', y='age', data=df, color='aquamarine')
plt.show()
```


In []: