Exercise 2: Problem 1 f)

Jostein Aastebøl Aanes, Frederick Nilsen

22.03.2022

Problem 1 f) - What does the task entail?

- Change MCMC sampler to allow for block updates
- Explore results for different choices of blocking parameter M.
- Compare runtime and predictions to the single-site sampler

Results from 1 e) - single site MCMC

Series result\$tau[366,]

Expected results from 1 f)

- Updating τ as block should improve performance.
- Should get less variation and "more" stationarity
- ullet Choice of M should be determining factor for runtime and performance
 - Runtime should decrease as M increases. Performance should improve for increasing M up to a certain threshold, in which the acceptance probability becomes too small.

Precomputations

 \bullet Before iterating, we precompute Q given by

$$Q = \begin{bmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & \\ & & \ddots & & \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{bmatrix}$$

- Precompute for 3 different steps
 - First block is the first $M \times M$ block of Q, the second block is the block $(2: M+1) \times (2: M+1)$ and the last block is the last block from $M \cdot |366/M| + 1$ to the end.
- Precompute also its inverse and Cholesky decomposition of its inverse
- Total of 9 precomputations

Results

- Incredibly high runtime, ≈ 300 seconds for 20 000 iterations
- Analysis shows that memory allocation dominate the time taken
- Results hard to extract when runtime is this long

Code	File	Memory (MB)		Time (ms
▼ profvis		-8432	84102	. 331450
tau[, k] = MH_block_new(M, current_tau, sigma_u, alpha, beta, mu_factor_1, mu_factor_2, mu_factor_3, chol_11, chol_22, chol_33, blockList,	<expr></expr>	-7720	71729	. 265700
► MCMC_block_sampler	<expr></expr>	-6470	11491	. 62960
.classEnv		-1519.9	899.5	780
getClass		-506.5	561.0	370
current_tau = tau[, k-1]	<expr></expr>	-281.7	279.3	130
$setTxtProgressBar(pb,k) \neq Update progress bar$	<expr></expr>	-112.4	335.6	120
variances[k-1] = get_variance(tau, alpha, beta, k)	<expr></expr>	0	279.2	70
► compiler:::tryCmpfun	<expr></expr>	0	1.5	60
sigma_u = sqrt(variances[k-1])	<expr></expr>	-112.3	55.9	20
for(k in 2:nsteps)(<expr></expr>	0	0.0	10
<anonymous></anonymous>		-0.2	0	10

Provisory prediction plot

• Here, M = 10, n = 5000.

Series result\$tau[366,]

