8100 Problem Set 1.

September 1, 2021

Prove the following results. Unless otherwise stated, assume \succeq is complete and transitive and \succ , \sim are as defined in the notes.

- **1.** If \succeq is complete but \succ is intransitive then for every budget $B \subset X$ with $\#(B) \leq 2$, $C(B) \neq \emptyset$ but there is some budget $B \subseteq X$ with $\#(B) \geq 3$ such that $C(B) = \emptyset$.
- **2.** If \succeq is complete and transitive, then $\forall x, x' \in X$ either $\succeq (x) \subseteq \succeq (x')$ or $\succeq (x') \subseteq \succeq (x)$.
- 3. \succ $\cup \sim = \succeq \& \succ \cap \sim = \emptyset$.
- **4.** $\sim (x) = \succeq (x) \cap \preceq (x)$.
- **5.** $\succeq (x) = \sim (x) \cup \succ (x)$.
- **6.** \sim is transitive but not necessarily complete.
- 7. \succ is transitive but not necessarily complete.