Evaluating the impact of data representation on t-SNE projections

Liviu-Ștefan Neacșu-Miclea

t-SNE

- t-Distributed Stochastic Neighbor Embedding
 - Statistical visualization tool
 - Projects data to lower dimensional spaces
- Tackles the crowding problem of previous SNE methods

Evaluating a projection

- Metrics
 - Raw Stress (RS)

$$RS(X,P) = \sum_{i,j} \left(\Delta^{X}(x_{i},x_{j}) - \Delta^{P}(p_{i},p_{j}) \right)^{2}$$

 $NS(X,P) = \int \frac{\sum_{i,j} \left(\Delta^{X}(x_i, x_j) - \Delta^{P}(p_i, p_j) \right)^2}{\sum_{i,j} \Delta^{X}(x_i, x_j)^2}$

- MSE between pairwise differences in high and low dimensional spaces
- Normalized Stress (NS)
 - Reduce the amplitude of RS
- Scale-Normalized Stress (SNS) $SNS(X,P) = \min_{\alpha>0} NS(X,\alpha P)$
- Shepard Goodness Score (SGS)
 - Sperman rank correlation of the Shepard diagram
- Non-Metric (Kruskal) Stress (NMS)
 - Measure of distances order preservation
 - Involves isotonic regression on the Shepard diagram $NMS(X,P) = \frac{\sum_{i,j} \left(\Delta^{\hat{X}}(\hat{x}_i, \hat{x}_j) \Delta^P(p_i, p_j) \right)^2}{\sum_{i,j} \Delta^P(p_i, p_j)^2},$

Shepard diagram of a good and bad clustering (Smelser et al.)

Experiment setup

- t-SNE plot on multiple representations of each datasets:
 - An autoencoder (AE) latent space
 - Pretrained VGG-16
 - Trained CNN classifier (train & test subsets)

• Purpose: exploring the way rearranging the same information affects dimensionality reduction

Datasets

Fashion FMNIST

Large-Scale Fish Dataset

- 10 classes
- Benchmarking dataset
- Curated and balanced
- Many samples

- 2 classes
- Contextual diversity

Muffin vs Chihuahua

- Real world images
- Less normalized data

- 9 classes
- Geometrically predictable
- Easier to extract features
- Pre-augmented (just train)

Models Training Results - Autoencoder

Models Training Results – CNN classifier

Projection Results – Fashion MNIST

Projection Results – Muffin vs Chihuahua

Projection Results – Fish Dataset

Radial structure due to rotation during augmentation

Train-test discrepance when projecting classifier embeddings – caused by differences in the processing methods of the samples subsets of the dataset

Metrics statistics

Figure 6. Projection metrics evolution over the four phases

Figure 7. Relation between SGS and Accuracy

Conclusions and improvement opportunities

- t-SNE can reveal cluster structures, but further investigation is needed to reveal their meaning and validity,
- can detect structural patterns in the dataset (e.g. geometric similarities)
- ... but it struggles to handle large variations of contexts.
- Combining projection methods with supervised learning may provide an idea why overfitting happens
- Further work
 - Refine models training
 - Try other projection methods (PCA, MDS, UMAP) and metrics (local, per-cluster)
 - Evaluate more datasets

Thank you for your attention!

References

- S. Cortinhas. Muffin vs Chihuahua image classification dataset. https://www.kaggle.com/datasets/samuelcortinhas/muffin-vs-chihuahua-imageclassification. Accessed: 2024-11-17
- M. Espadoto et al. "Toward a Quantitative Survey of Dimension Reduction Techniques". In: IEEE Transactions on Visualization and Computer Graphics 27.3 (2021), pp. 2153–2173. doi: 10.1109/TVCG.2019.2944182.
- B. Ghojogh et al. "Stochastic neighbor embedding with Gaussian and student-t distributions: Tutorial and survey". In: arXiv preprint arXiv:2009.10301 (2020).
- K. J. Smelser, J. Miller, and S. G. Kobourov. ""Normalized Stress" is Not Normalized: How to Interpret Stress Correctly". In: ArXiv abs/2408.07724 (2024). url: https://api.semanticscholar.org/CorpusID:271874691.
- O. Ulucan, D. Ulucan, and M. Turkan. "A Large-Scale Dataset for Fish Segmentation and Classification". In: Oct. 2020. doi: 10.1109/ASYU50717.2020.9259867.
- H. Xiao, K. Rasul, and R. Vollgraf. "Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms". In: arXiv preprint arXiv:1708.07747 (2017).