EEE 416 – Microprocessor and Embedded Systems Laboratory Jan 2025 Level-4 Term-1 Section B1 Final Project Presentation

IOT-BASED SYSTEM FOR REAL-TIME MONITORING AND CONTROL OF FRUIT STORAGE CONDITIONS

SUBMITTED BY - GROUP 6

Puspita Mobarak 2006087

Md. Al Amin 2006088

Md. Muaz Rahman 2006089

Mohammad Al Hosan 2006090

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

1

Outline

- 1. Abstract
- 2. Introduction
- 3. Design
- 4. Implementation
- 5. Design Analysis and Evaluation
- 6. Reflection on Individual and Team Work
- 7. Communication to External Stakeholders
- 8. Project Management and Cost Analysis
- 9. Future Work
- 10.References

1. Abstract

This project aims to -

- ☐ Designed an IoT-based system to monitor crop storage conditions in real-time.
- □Uses sensors to track temperature, humidity, and air quality.
- □Automates misting, cooling, and ventilation using threshold-based logic.
- □Displays live data on an LCD screen.
- □Aims to reduce spoilage and improve storage efficiency.

EEE 416 (2025) – Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006087

3

3

2.Introduction

- Post-harvest losses are high due to improper storage conditions like humidity, heat, and pests.
- Manual monitoring is slow and ineffective,
 especially in large storage facilities.
- IoT systems enable real-time, automated monitoring, helping prevent spoilage and reduce crop loss.

3.1.1 Identification of Scope

■ **Problem:** No automated way to ensure proper crop storage conditions. Manual monitoring is slow, inconsistent, and not scalable.

□ **Scope:** Real-time monitoring of temperature, humidity, and gas levels.

☐ Goal: Prevent spoilage by maintaining optimal storage environment using IoT.

EEE 416 (2025) – Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006087

5

3.1.2 Literature Review

- ■Ansari et al. (2023) and Hema et al. (2020) demonstrated the use of IoT with sensors like DHT22 for real-time monitoring of grain storage, reducing spoilage through automated alerts and control.
- **Gupta et al.** (2021) highlighted an energy-efficient system using air quality sensors and Peltier modules, proving the potential of low-cost IoT setups for maintaining optimal storage conditions.

3.1.3 Analysis

- Key factors: temperature, humidity, and air quality directly affect crop storage.
- DHT22 and MQ-135 sensors provide real-time environmental data.

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006087

7

3.1.3 Analysis

- Automated climate control using Arduino Mega to manage misting, cooling, and ventilation based on preset threshold values.
- ➤Relay modules and servos automate the system's physical responses.
- ➤Low-cost, scalable design with ESP8266 enabling remote monitoring and future IoT integration.

3.3 Design: Circuit Diagram

WALL AC NUMBER AND UND 27

LEE 416 (2025) – Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006090

3.3 Design: Circuit Diagram

ADUNO 28

Fruit Storage Monitoring and Control

Presented by: 2006090

10

4. Implementation: Control Mechanism

2-Channel Relay

| Alimplementation: Control Mechanism | Control Mec

4.1 Implementation: Photo Gallery

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006090 17

17

4.2 Implementation: Demonstration

Saturday, 26th JULY 06:50pm

Saturday, 26th JULY 11:00pm;

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006090 18

4. Implementation: Final Result

Experiment Started: Saturday, 26th JULY 06:50pm

Experiment Ended: Monday, 28th JULY 09:10AM

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006090 19

19

Expected Protype:

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006090

21

5. Design Analysis and Evaluation

- 5.1 Novelty
- 5.2 Design Considerations (PO(c))
- 5.3 Investigations (PO(d))
- 5.4 Limitations of Tools (PO(e))
- 5.5 Impact Assessment (PO(f))
- 5.6 Sustainability and Environmental Impact Evaluation (PO(g))
- 5.7 Ethical Issues (PO(h))

5.1 Novelty

- Combines cooling, humidifying, and gas detection in one box
- Auto-controls environment based on sensor thresholds
- Uses Peltier for dual cooling and dehumidification
- Gas-triggered venting with servo control
- Compact and low-cost design for home use

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006089 23

23

5.2 Design Considerations (PO(c))

• 5.2.1 Considerations to public health and safety:

Prevents consumption of spoiled fruit by maintaining safe storage conditions.

• 5.2.2 Considerations to environment:

Reduces fruit waste and uses energy-efficient components.

5.2.3 Considerations to cultural and societal needs:

Supports safe storage of local fruits and reduces postharvest loss.

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006089 24

5.3 Investigations (PO(d))

- ☐ Tested gas sensor readings against overripe fruit to validate spoilage detection.
- Measured temperature/humidity variations to optimize energy use and reduce waste.
- Analyzed fruit storage practices to adapt the design for local household and vendor needs.

EEE 416 (2025) – Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006089 **25**

25

5.4 Limitations of Tools (PO(e))

- MQ135 needs calibration for accuracy
- DHT22 has limited precision under fluctuation
- Peltier draws high current, slow to stabilize
- Relay lacks variable control, only supports switching
- Mist module can overshoot humidity
- Open wiring may cause signal noise

5.5 Impact Assessment (PO(f))

5.5.1 Assessment of Societal and Cultural Issues:

Promotes better fruit preservation, supporting food security and reducing waste in local communities.

5.5.2 Assessment of Health and Safety Issues:

Prevents health risks by detecting spoilage gases and maintaining safe storage.

5.5.3 Assessment of Legal Issues:

No significant legal risks; operates within general safety guidelines.

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006089 27

27

5.6 Sustainability Evaluation (PO(g))

- Encourages sustainable fruit storage practices in local households and markets.
- Improves long-term food safety by preventing early spoilage and contamination.
- System design supports sustainability goals without conflicting with any existing safety or electrical standards.

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006089 28

5.7 Ethical Evaluation (PO(h))

- ☐ We ensured safety in design by using proper insulation and isolating high-current paths to prevent electrical hazards.
- ☐ All components were selected keeping in mind ethical sourcing and safety ratings.
- ☐ No data privacy concerns exist, but if extended to IoT cloud storage, ethical handling of data would be considered.

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006089 29

29

6.1 Individual Contribution of Each Member

Team Member	Responsibility
87,88	Sensor selection & calibration
88, 89	Testing & validation; documentation
89, 90	Cloud setup & dashboard development
87, 90	Microcontroller coding & integration
88, 89, 90	Wiring and Set-up complete

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006088 30

6.2 Logbook of Project

Date	Activity	Key Decision / Observation
Week 1	Formed project group and received initial instructions	Group members finalized; received guidance on project expectations, scope, and timeline from course instructor.
Week 2-3	Explored project topics and reviewed references	Explored project ideas by reviewing course content and relevant papers; finalized the topic after team discussion.
Week 4	Shortlisted project ideas for presentation	Selected 3 potential projects and planned to present them in the following week for feedback and final decision.
Week 5	Finalized project topic and goals	Was instructed to focus on smart fruit storage using sensors
Week 6	Component selection and sourcing, Sensor testing (DHT22, MQ135)	Chose ESP32, DHT22, MQ135, Peltier module, Verified basic readings; observed slight DHT delay
Week 7	Relay control setup	Decided on 2 relays: one for cooling, one for mist
EEE 416 (20)	25) – Final Project Group 06 Fru	it Storage Monitoring and Control Presented by: 2006088 31

31

6.2 Logbook of Project

CEI	= 416 (202 5)	Final Broject Group 06 Frui	t Storage Monitoring and Control	Presented by: 2006088 32	
	Week 14	Final packaging and report preparation	Minor wiring cleanup needed; logbodone	ook and cost table	
	Week 13	Live test with stored fruit	System maintained stable temperature and humidity; vent triggered after mild gas rise; fruit stayed visibly fresh over 48 hours		
	Week12	Box setup and internal layout optimization	Airflow and wiring adjusted for bette	er reliability	
	Week 11	Full system integration	All modules respond to thresholds	as expected	
	Week 10	Vent + servo control based on gas levels	Servo works well; adjusted position	for airflow	
	Week 9	Mist module and humidity threshold testing	Overshoot noted when humidity ve	ry low	
	Week 8	Peltier + fan integration	Cooling confirmed; cold side cause	s condensation	
	Mid-break	Optional cloud integration and code refinement	e Explored cloud-based UI options ar logic for smoother sensor-actuator	•	

7 Communication to External Stakeholders (PO(j))

1. GitHub Link

 $\underline{https://github.com/mohammad-al-hosan/IOT_Fruit_Storage_System.git}$

2. YouTube Link

https://youtu.be/SsQY30of0jE

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006088 33

33

8. Project Management and Cost Analysis (PO(k))

- 8.1 Bill of Materials
- 8.2 Calculation of Per Unit Cost of Prototype
- 8.3 Calculation of Per Unit Cost of Mass-Produced Unit
- 8.4 Timeline of Project Implementation

Component	Qty	Unit Cost (BDT)	Total Cost (BDT)
DHT22	3	220	660
MQ-135	2	120	240
ESP32	2	400	800
Peltier Tec1-12706	1	200	200
Buck Converter	2	60	120
Mist Module	1	120	120
Relay Module	3	80	240
Cooling Fan (12V)	2	90	180
Alarm Buzzer Module	2	50	100
Servo motor	2	200	400
Arduino UNO	1	900	900
Arduino MEGA	1	1790	1790
Lipo charger(1	300	300
Enclosure & Cabling	1	500	500
416 (2025) – Final Project Group 06	Fruit Storag	e Monitoring and Control	Presented by: 2006

8.1 Bill of Materials (PO(k))								
Component	Qty	Unit Cost (BDT)	Total Cost (BDT)					
12V 10A SMPS	1	700	700					
USB micro B	1	60						
CPU Cooler	1	400	400					
funnel	1	30	30					
insulating foil	1	100	100					
Heat sink (large)	1	300	300					
Heat sink (small)	1	100	100					
Peltier Fan (large)	1	400	400					
Peltier Fan (small)	1	150	150					
Mounting Screw and Drilling	1	100	100					
Ice Box 8L	1	920	920					
Motor Driver	1	350	350					
LCD	1	350	350					
Magnets	1	150	150					
Total			10,660					
EEE 416 (2025) – Final Project Group 06	Fruit Stora	ge Monitoring and Control	Presented by: 2006088 36					

8.2 Calculation of Per Unit Cost of Prototype (PO(k))

Component	Qty	Unit Cost (BDT)	Total Cost (BDT)	Component	Qty	Unit Cost (BDT)	Total Cost (BDT)
12V 10A SMPS	1	700	700	DHT22	1	220	220
funnel	1	30	30	MQ-135	1	120	120
Heat sink (large)	1	300	300	Peltier Tec1-12706	1	200	200
Heat sink (small)	1	100	100	Buck Converter	1	60	60
Peltier Fan (large)	1	400	400	Mist Module	1	120	120
Peltier Fan (small)	1	150	150	Relay Module	2	80	160
Ice Box 8L	1	920	920	Cooling Fan (12V)	2	90	180
LCD	1	350	350	Alarm Buzzer Module	1	50	50
Magnets	1	150	150				
Servo motor	1	200	200	Enclosure & Cabling	1	300	300
Arduino MEGA	1	1790	1790	Total			6,500

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006088 37

37

8.3 Calculation of Per Unit Cost of Mass-Produced Unit (100 unit) (PO(k))

Component	Qty	Unit Cost (BDT)	Total Cost (BDT)	Component	Qty	Unit Cost (BDT)	Total Cost (BDT)
12V 10A SMPS	100	650	65000	DHT22	100	190	19000
Funnel	100	15	1500	MQ-135	100	110	11000
Heat sink (large)	100	300	30000	Peltier Tec1-12706	100	180	18000
Heat sink (small)	100	100	10000	Buck Converter	100	50	5000
Peltier Fan (large)	100	350	35000	Mist Module	100	120	12000
Peltier Fan (small)	100	120	12000	Relay Module	200	70	14000
Ice Box 8L	100	750	75000	Cooling Fan (12V)	200	70	14000
LCD	100	250	25000	Alarm Buzzer Module	100	40	4000
Magnets	100	100	10000				
Servo motor	100	180	18000	Enclosure & Cabling	100	180	18000
ESP32	100	380	38000	Total			434,500
				Per Unit Cost			4,345

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006088 38

Comparison with Similar Products

- \square MQ135 vs MQ2/MQ3 \rightarrow MQ135 detects NH₃, CO₂, CH₂O, and other VOCs released during fruit spoilage, while MQ2 targets combustible gases and MQ3 focuses on alcohol — less relevant in sealed fruit storage.
- □Relay vs MOSFET→ Relay is simpler for binary control; PWM not needed.
- □ Ice Box vs Custom Enclosure → Ice box is pre-insulated, cheaper, and ready to use.
- □Locally Available Modules vs Specialized Imports → Chose modules readily available in local markets to reduce cost and ensure replacements.

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006088 39

39

8.4 Timeline of Project Implementation (PO(k))

- •Week 6: Finalize components and plan circuit design
- •Week 7: Interface sensors and test basic hardware functions
- •Mid-break: Optional work on cloud UI and code optimization
- ■Week 8-10: Perform testing, debugging, and edge case handling
- ■Week 11-12: Assemble final setup with enclosure and safety
- •Week 12-13: Final testing and documentation
- Week 14: Project Presentation and demonstration

9. Future Work (PO(I))

- Create a mobile app for easier remote access.
- Use AI to predict spoilage early.
- Power the system with solar for remote areas.
- Expand system to monitor multiple storage sites.

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006088 41

41

References

1. Ansari et al., "IoT-Enabled Smart Storage System," Security and Privacy,

https://onlinelibrary.wiley.com/doi/10.1002/spy2.282

2. Hema et al., "IoT based real-time control for grain storage," IOP Conf. Series, 2020.

https://iopscience.iop.org/article/10.1088/1757-899X/993/1/012008

3. Gupta et al., IoT Based Cold Storage Monitoring System for Food Grains, Materials Today: Proceedings, 2021.

https://www.sciencedirect.com/science/article/pii/S2214785321011983

4. Mehta & Patel, An IoT Framework for Post-Harvest Crop Management, Journal of Agricultural Informatics, 2022.

https://journal.magisz.org/index.php/jai/article/view/144

EEE 416 (2025) - Final Project Group 06

Fruit Storage Monitoring and Control

Presented by: 2006088 42