LISTA DE EXERCÍCIOS - Máquinas de Turing

1. Seja $M=(K, \Sigma, \delta, s)$, em que $K=\{q_0, q_1, q_2\}, \Sigma=\{a, b, \#\}, s=q_0, e \delta$ é fornecido pela tabela abaixo:

q	σ	$\delta(q,\sigma)$
\mathbf{q}_0	a	(q_1, L)
\mathbf{q}_0	b	(q_0, R)
\mathbf{q}_0	#	(q_0, R)
\mathbf{q}_1	a	(q_1, L)
\mathbf{q}_1	b	(q_2, R)
\mathbf{q}_1	#	(q_1, L)
\mathbf{q}_2	a	(q_2, R)
\mathbf{q}_2	b	(q_2, R)
q_2	#	(h, '#')

- a) Execute a máquina a partir da configuração inicial (q₀, a<u>b</u>b#bb##aba).
- b) Descreva informalmente o que realiza M, e o que M faria se fosse iniciada em qualquer outro quadrado da fita.
- 2. Construa uma máquina de Turing *simples* para decidir as cadeias de L={w ∈ {a,b}*| w tem 2 "a" consecutivos}.
- 3. Demonstre o lema que permite a construção de máquinas de Turing compostas.
- 4. Explique o que a máquina de Turing composta abaixo faz (exercite-a com a seguinte entrada #abab##):

- 5. Construa uma máquina de Turing *composta* para efetuar a operação "*monus*" entre dois números naturais escritos em unário (se o parâmetro da esquerda é maior que o da direita o resultado é a subtração, senão o resultado é zero, isto é, a fita será apagada).
- 6. Idem anterior para a operação "div".
- 7. Idem anterior para a operação "mod".
- 8. Construa uma máquina de Turing *composta* para multiplicar dois números naturais escritos em unário. Sugestão: Utilize a máquina de cópia, depois una as cadeias com outra máquina (descreva as máquinas separadamente e depois monte a estrutura conjunta).
- 9. Construa uma Máquina de Turing para decidir aⁿbⁿcⁿ.
- 10. Descreva uma Máquina de Turing não-determinística que aceite a linguagem L: $L = \{ww^Ruu^R \mid w, u \in \{a, b\}^*\}.$