Le travail de Tarik Hakam **est disponible ici**

BENOUCIEF Amine

22/12/2020

SYNTHESE DU TRAVAIL EN QUESTION

rSymPy est un package de mathematiques qui sert a effectuer des calcules ainsi que les simplifier. C'est un bon travail qui resume bien les fonctionnalites de rSymPy. Tarek a fait un bon travail sur la forme ainsi que le fonds, expliquant bien sa demarche et sa logique.

Introduction

rSymPy est le package Python de référence pour effectuer des calculs symboliques simples. [@Laude_Henri]

library(rSymPy)

```
## Warning: package 'rSymPy' was built under R version 4.0.3
```

Loading required package: rJython

Warning: package 'rJython' was built under R version 4.0.3

Loading required package: rJava

Warning: package 'rJava' was built under R version 4.0.3

Loading required package: rjson

Warning: package 'rjson' was built under R version 4.0.3

Prenons pour exemple le calcul du carré d'une matrice. [@CRAN]

Pour se faire, nous définissons la variable \boldsymbol{x} de la façon suivante :

sympy("var('x')")

[1] "x"

Puis, nous définissons la fonction y en fonction de x telle que :

$$y = x \times x = x^2 \tag{1}$$

que l'on code de la façon suivante :

```
sympy("y = x*x")

## [1] "x**2"

sympy("y")
```

```
## [1] "x**2"
```

Nous poursuivons par la définion de la matrice que l'on nomme A en fonction des variables x et y, de dimension $n \times n$ avec n = 2.

Le code R est le suivant :

```
# Création de la matrice A en fonction de x et y précédemment définis \mathsf{cat}(\mathsf{sympy}("A = \mathsf{Matrix}([[1,x], [y,1]])"), "\n")
```

```
## [ 1, x]
## [x**2, 1]
```

La fonction cat() nous permet de mettre en forme notre matrice pour le rendre plus lisible.

Pour finir, nous procédons au calcul du carré de la matrice $A \times A$.

```
# Carré de la matrice A cat(sympy("A**2"), "\n")
```

```
## [1 + x**3, 2*x]
## [ 2*x**2, 1 + x**3]
```

Pour dernier exemple, pour illustrer les usages du package \mathbf{rSymPy} , nous procédons au calcul de la limite de la fonction $\sqrt(x)$ pour $x \to \infty$ soit :

$$\lim_{x \to \infty} \sqrt{(x)} = \infty \tag{2}$$

```
sympy("limit(sqrt(x), x, oo)")
```

```
## [1] "oo"
```

Bibliographie

EVALUATION DU TRAVAIL EN QUESTION

Critère 1 : Visuel sur pdf 3/4 Agreable a lire.

Critère 2 : Originalite du code 4/4 Tarek a montre des elements de rSymPy que les autres n'ont pas montrer.

Critère 3 : Fonctionnalité du code 4/4 Le code fonctionne.

Critère 4 : Lisibilité du code 4/4 Claire et lisible.

Critère 5 : Explications données 4/4 Toutes les explications sont claire sur chaque ligne de code.

CONCLUSION

Globalement un tres bon travail qui exlique tres bien rSymPy et donc pas necessaire de commenter les lignes de code. Il a su montre des choses que les autres n'ont pas fait ce qui lui fait gagner de points.