Total No. of Questions: 6

Total No. of Printed Pages:2

Enrollment No.....

Faculty of Science

End Sem (Even) Examination May-2019

BC3CO16 Physics - IV

Programme: B.Sc. (CS) Branch/Specialisation: Computer

Science

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

S.1 (11	10(25)	siloulu se will	en m run mstet	ia or only a, o,	c or a.	
Q.1	i.			coulomb charge (c)1.6x10 ⁻¹⁹		1
	ii.	` '	` '	(c)1.0x10	$(d)90x10^{11}$	1
	11.		is the unit of:	(1) D (1) 1	1, 00	1
		(a) Charge		(b) Potential of	interence	
		(c) Current		(d) Energy		_
	iii. 1 Bohr Magneton is equal to:			2	1	
		` '		(b) 9.28×10^{-24}		
		(c) 1.6×10^{-19}	$4m^2$	(d) 1.6×10^{-34}	Am^2	
	iv.	The intensity	of magnetic f	ield due to cur	rent I in a long straight	1
		wire is propor	tional to:			
		(a) I	(b) I^2	(c) √ I	(d) 1/I	
	v.	The time cons	stant of CR circ	euit is:		1
		(a) C/R	(b) R/C	(c) 1/CR	(d) RC	
	vi.	vi. The power loss in an alternating current circuit with pure inductance is:				1
		(a) LI^2	(b) $1/2 LI^2$	(c) $2LI^2$	(d) Zero	
	vii.					1
		(a) Silver	(b) Aquadag		(d) None of these	
	viii.					1
		(a) Zero		г		
	(b) Dependent on the number of tubes(c) Independent on the number of tubes					
	ix. The electromagnetic waves were invented by:					1
	IX.		•		*	1
		(a) Farauay	(b) Maxwell	(c) nertz	(d) Marconi	
						P.1

[2]

	х.	The 'H' quantity is analogous to which component in the following:				
		(a) B (b) D (c) E (d) V				
Q.2	i.	Define Unit Charge.	2			
	ii.	Define Gauss law.				
	iii.	What do you mean by the conservative nature of the electrostatic field? Obtain the relation between electric field and electric potential.				
OR	iv.	Obtain expression for the capacity of a parallel plate condenser. If a dielectric medium is placed in between the plates, how is its capacity affected?				
Q.3	i.	Write Ampere's circuital law.	2			
	ii.	What is Lorentz force? On its basis deduce the expression for the force acting on a current carrying conductor in a magnetic field.	8			
OR	iii.	Write Biot-Savart's law and use in to establish an expression for the	8			
OK	111,	intensity of magnetic field produced at a point near a long straight current carrying conductor.	•			
Q.4	i.	Explain root mean square value of current and potential.	3			
	ii.	Explain the growth and decay of current in L-R circuit.	7			
OR	iii.	What are steady and non-steady currents? Derive equations of continuity for them.	7			
Q.5	i.	Briefly explain Bainbridge mass spectrograph.	4			
	ii.	Draw the block diagram of CRO and explain the working of CRT in detail.	(
OR	iii.	Explain the principle and working of Cyclotron.	(
Q.6		Attempt any two:				
	i.	State Faraday's laws of electromagnetic induction. Obtain its	4			
		integral and differential forms.				
	ii.	Write down the Maxwell's equations in their differential and integral forms in an isotropic medium and deduce them.				
	iii.	What is poynting vector? Obtain the expression for it.	4			

Marking Scheme BC3CO16 Physics – IV

Q.1	i.	The number of electrons in 1 coulomb charge	ge is :	1		
		(b) 6.25×10^{18}		_		
	ii.	Electron-volt is the unit of:		1		
	iii.	(d) Energy		1		
	111.	1 Bohr Magneton is equal to: (b) 9.28x10 ⁻²⁴ Am ²		1		
	iv.	The intensity of magnetic field due to current I in a long straight wire				
	1,,,	is proportional to:				
		(a) I				
	v.	The time constant of CR circuit is:				
		(d) RC				
	vi.	The power loss in an alternating current circuit with pure inductance		1		
		is:				
		(d) Zero				
	vii.	The screen of the CRO is coated with		1		
		(b) Aquadag				
	viii.	The electric field inside the tubes of linear particle accelerator is:		1		
		(a) Zero				
	ix.	The electromagnetic waves were invented by:		1		
		(b) Maxwell				
	х.	The 'H' quantity is analogous to which component in the following:				
		(c) E				
Q.2	i.	Define Unit Charge.		2		
		Definition	1 mark			
		Formula	1 mark			
	ii.	Define Gauss law.	1 mark	3		
		Formula	1 mark			
		Diagram	1 mark			
	iii.	Conservative nature of the electrostatic field	13 marks	5		
		Relation b/w electric field and electric poter	ntial.			
			2 marks			
OR	iv.	Expression for the capacity of a parallel plate condenser		5		
		Definition	2.5 marks			
		Derivation	2.5 marks			

Q.3	i.	Write Ampere's circuital law.		2
		Law	1 mark	
		Formula	1 mark	
	ii.	Lorentz force		8
		Definition	3 marks	
		Derivation	4 marks	
		Diagram	1 mark	
OR	iii.	Biot-Savart's law		8
		Definition	3 marks	
		Derivation	4 marks	
		Diagram	1 mark	
Q.4	i.	Root mean square value of current and pote	ntial.	3
		Definition	1 mark	
		Formula	1 mark	
		Diagram	1 mark	
	ii.	Growth and decay of current in L-R circuit.		7
		Definition	2 marks	
		Derivation	4 marks	
		Diagram	1 mark	
OR	iii.	Steady and non-steady currents	2 marks	7
		Derivation of continuity for them.	5 marks	
Q.5	i.	Bainbridge mass spectrograph.		4
		Diagram	1 mark	
		Explanation	3 marks	
	ii.	CRO and working of CRT		6
		Diagram	3 marks	
		Explanation	3 marks	
OR	iii.	Principle and working of Cyclotron.		6
		Diagram	1 mark	
		Principle	2 marks	
		Working	3 marks	
Q.6		Attempt any two:		
	i.	State Faraday's laws of electromagnetic ind	uction	5
		Definition	1 mark	
		Formula	2 marks	
		Diagram	2 marks	

ii.	Maxwell's equations in their differential and integral forms		
	Definition	2.5 marks	
	Derivation	2.5 marks	
iii.	Poynting vector	2 marks	5
	Expression for it.	3 marks	
	_		
