4. Доминаторы и постдоминаторы

4.1.1 Определение

- \Diamond В ГПУ вершина d является $\partial omunamopom$ вершины n (этот факт записывается как d dom n или $d \in Dom(n)$), если любой путь от вершины Entry до вершины n проходит через вершину d.
- \Diamond Замечание. Из определения 4.2.1 следует, что каждая вершина n является доминатором самой себя, так как путь от Entry до n проходит через n.

4.1.2 Примеры доминаторов

- \Diamond Рассмотрим ГПУ с входной вершиной B_1 , показанный на рисунке.

(Определение. Вершина d является domunamopom вершины n, если любой путь от Entry до n проходит через d.)

4.1.2 Примеры доминаторов

- \Diamond Рассмотрим ГПУ с входной вершиной B_1 ,
 - $\& B_7$ является доминатором вершин B_7, B_8, B_9 и B_{10} .

показанный на рисунке.

- $\& B_8$ является доминатором вершин B_8, B_9 и B_{10} .

(Определение. Вершина d является domunamopom вершины n, если любой путь от Entry до n проходит через d.)

4.1.3 Свойства отношения *dom*

- \Diamond **1.** Отношение dom рефлексивно, антисимметрично и транзитивно, т.е. является отношением частичного порядка.
 - (1) *Рефлексивность*: a dom a.
 - (2) Aнтисимметрчность: если $a\ dom\ b$ и $b\ dom\ a$, то a=b.
 - (3) Транзитивность: если $a\ dom\ b$ и $b\ dom\ c$, то $a\ dom\ c$.
- \Diamond **2.** Для любой вершины n ГПУ каждый ациклический путь от Entry до n проходит через все доминаторы n, причем на всех таких путях доминаторы проходятся в $o\partial hom\ u\ mom\ же порядке$

4.1.3 Свойства отношения *dom*

- \Diamond **3.** Вершина i ГПУ является henocpedcmbehnum domunamopom вершины <math>n (i idom n), если
 - (1) i dom n
 - (2) не существует вершины $m, m \neq i, m \neq n,$ такой что $i \ dom \ m$ и $m \ dom \ n.$
- \Diamond **4.** У каждой вершины n, за исключением Entry, существует единственный непосредственный доминатор.
- \Diamond **5.** Вершина *s* ГПУ является *строгим доминатором* вершины *n* (*s sdom n*), если *s dom n* и *s* \neq *n*.

4.1.3 Свойства отношения *dom*

- \Diamond **6.** Пусть n, d вершины ГПУ, $Pred(n) = \{p_1, p_2, ..., p_k\}$ и $d \neq n$. Тогда $d \ dom \ n$ тогда и только тогда, когда $\forall \ i: \ d \ dom \ p_i$.
- \Diamond 7. Множество строгих доминаторов вершины n является пересечением множеств доминаторов всех ее предшественников.

4.1.4 Алгоритм вычисления доминаторов

♦ Задача поиска всех доминаторов вершин ГПУ формулируется как задача анализа потока данных в прямом направлении.

Значением потока данных на входе в блок B является множество вершин (базовых блоков), являющихся доминаторами B.

Операцией сбора является операция пересечения множеств.

Передаточная функция f_B добавляет вершину B к рассматриваемому множеству вершин.

Граничное условие: единственным доминатором вершины *Entry* является она сама.

4.1.4 Алгоритм вычисления доминаторов

♦ Алгоритм

Вход: граф потока $G = \langle N, E \rangle$ с входным узлом Entry.

Выход: для каждой вершины $n \in N$ множество D(n)

ее доминаторов.

Метод: найти решение следующей задачи потока данных

(вершины n соответствуют базовым блокам):

 $\forall n \in N$ D(n) = Out[Pred(n)].

4.1.4 Алгоритм вычисления доминаторов

Область определения Множество подмножеств базовых блоков

Направление обхода Forward

Передаточная функция $f_B(x) = x \cup \{B\}$

Граничное условие Out [Entry] = Entry

Операция сбора (^)

Система уравнений $Out[B] = f_B(In[B])$

 $In[B] = \bigcap_{P \in Pred(B)} Out[P]$

Начальное приближение Out[B] = N

4.1.4 Алгоритм вычисления доминаторов

- О Пример. Применим алгоритм к ГПУ на рисунке в предположении, что блоки посещаются в порядке их номеров.
- ♦ Первая итерация

Граничное условие: $D(Entry) = \{Entry\}$ $Pred(B_1) = \{Entry, B_9\}$

$$D(B_1) = \{B_1\} \cup (D(Entry) \cap$$

Замечание. Далее в этом примере для краткости мы не будем включать Entry в

множества $D(B_i)$, однако в дальнейшем Entry будет нужно в дереве доминаторов в качестве

Idom(B1) для корректной работы алгоритма построения границы доминирования.

 B_6

Entry

4.1.4 Алгоритм вычисления доминаторов

О Пример. Применим алгоритм к ГПУ на рисунке в предположении, что блоки посещаются в порядке их номеров.

♦ Первая итерация

$$Pred(B_2) = \{B_1\}$$

 $D(B_2) = \{B_2\} \cup D(B_1) = \{B_1, B_2\}$

$$Pred(B_3) = \{B_1, B_2, B_4, B_8\}$$

$$D(B_3) = \{B_3\} \cup (D(B_1) \cap D(B_2)$$

$$\cap D(B_4) \cap D(B_8) =$$

$$= \{B_3\} \cup (\{B_1\} \cap \{B_1, B_2\} \cap N \cap N) = \{B_1, B_3\}$$

$$N = \{B_1, B_2, B_3, B_4, B_5, B_6, B_7, B_8, B_9, B_{10}\}$$

 B_6

4.1.4 Алгоритм вычисления доминаторов

 \Diamond Первая итерация (окончание) $Pred(B_4) = \{B_3, B_7\}$ $D(B_4) = \{B_4\} \cup (D(B_3) \cap D(B_7)) = \{B_4\} \cup (\{B_1, B_3\} \cap N) = \{B_1, B_3, B_4\}$

4.1.4 Алгоритм вычисления доминаторов

 \Diamond Первая итерация (окончание) $Pred(B_4) = \{B_3, B_7\}$ $D(B_4) = \{B_4\} \cup (D(B_3) \cap D(B_7)) = \{B_4\} \cup (\{B_1, B_3\} \cap N) = \{B_1, B_3, B_4\}$ $Pred(B_5) = Pred(B_6) = \{B_4\}$ $D(B_5) = \{B_5\} \cup D(B_4) = \{B_5\} \cup \{B_1, B_3, B_4\} = \{B_1, B_3, B_4, B_5\}$ $D(B_6) = \{B_6\} \cup D(B_4) = \{B_6\} \cup \{B_1, B_3, B_4\} = \{B_1, B_3, B_4, B_6\}$

4.1.4 Алгоритм вычисления доминаторов

 \Diamond Первая итерация (окончание) $Pred(B_4) = \{B_3, B_7\}$ $D(B_4) = \{B_4\} \cup (D(B_3) \cap D(B_7)) = \{B_4\} \cup (\{B_1, B_3\} \cap N) = \{B_4\} \cup (\{B_1, B_2\} \cap N) = \{B_4\} \cup (\{B_4, B_4\} \cap N) = \{B_4, B_4\} \cup (\{B_4, B_4\} \cap N) = \{B_4, B_4\}$ $= \{B_1, B_3, B_4\}$ $Pred(B_{5}) = Pred(B_{6}) = \{B_{4}\}\$ $D(B_5) = \{B_5\} \cup D(B_4) = \{B_5\} \cup \{B_1, B_3, B_4\} = \{B_1, B_3, B_4, B_5\}$ $D(B_6) = \{B_6\} \cup D(B_4) = \{B_6\} \cup \{B_1, B_3, B_4\} = \{B_1, B_3, B_4, B_6\}$ $Pred(B_7) = \{B_5, B_6, B_{10}\}\$ $D(B_7) = \{B_7\} \cup (D(B_5) \cap D(B_6)) \cap D(B_{10}) = \{B_7\} \cup (\{B_1, B_3, B_4, B_5\} \cap B_{10}) = \{B_7\} \cup (\{B_1, B_5, B_5, B_5\} \cap B_{10}) = \{B_7\} \cup (\{B_1, B_5, B_5, B_5\} \cap B_{10}) = \{B_7\} \cup (\{B_1, B_5, B_5, B_5\} \cap B_{10}) =$ $= \{B_1, B_3, B_4, B_6\} \cap N \} = \{B_1, B_3, B_4, B_7\}$ $Pred(B_8) = \{B_7\}$

4.1.4 Алгоритм вычисления доминаторов

 \Diamond Первая итерация (окончание) $Pred(B_{4}) = \{B_{3}, B_{7}\}$ $D(B_4) = \{B_4\} \cup (D(B_3) \cap D(B_7)) = \{B_4\} \cup (\{B_1, B_3\} \cap N) = \{B_4\} \cup (\{B_1, B_2\} \cap N) = \{B_4\} \cup (\{B_1, B_3\} \cap N) = \{B_4\} \cup (\{B_1, B_2\} \cap N) = \{B_4\} \cup ($ $= \{B_1, B_3, B_4\}$ $Pred(B_5) = Pred(B_6) = \{B_{\Delta}\}\$ $D(B_5) = \{B_5\} \cup D(B_4) = \{B_5\} \cup \{B_1, B_3, B_4\} = \{B_1, B_3, B_4, B_5\}$ $D(B_6) = \{B_6\} \cup D(B_4) = \{B_6\} \cup \{B_1, B_3, B_4\} = \{B_1, B_3, B_4, B_6\}$ $Pred(B_7) = \{B_5, B_6, B_{10}\}\$ $D(B_7) = \{B_7\} \cup (D(B_5) \cap D(B_6)) \cap D(B_{10}) = \{B_7\} \cup (\{B_1, B_3, B_4, B_5\} \cap B_{10}) = \{B_7\} \cup (\{B_1, B_5, B_5, B_5\} \cap B_{10}) = \{B_7\} \cup (\{B_1, B_5, B_5, B_5\} \cap B_{10}) = \{B_7\} \cup (\{B_1, B_5, B_5, B_5\} \cap B_{10}) =$ $= \{B_1, B_3, B_4, B_6\} \cap N \} = \{B_1, B_3, B_4, B_7\}$ $Pred(B_8) = \{B_7\}$ $D(B_8) = \{B_8\} \cup D(B_7) = \{B_8\} \cup \{B_1, B_3, B_4, B_7\} = \{B_1, B_3, B_4, B_7, B_8\}$ $Pred(B_9) = Pred(B_{10}) = \{B_8\}$ $D(B_9) = \{B_9\} \cup D(B_8) = \{B_9\} \cup \{B_1, B_3, B_4, B_7, B_8\} = \{B_1, B_3, B_4, B_7, B_8, B_9\}$ $D(B_{10}) = \{B_{10}\} \cup D(B_8) = \{B_{10}\} \cup \{B_1, B_3, B_4, B_7, B_8\} =$ $=\{B_1, B_3, B_4, B_7, B_8, B_{10}\}$

4.1.4 Алгоритм вычисления доминаторов

Первая итерация (окончание) $Pred(B_{4}) = \{B_{3}, B_{7}\}\$ $D(B_4) = \{B_4\} \cup (D(B_3) \cap D(B_7)) = \{B_4\} \cup (\{B_1, B_3\} \cap N) = \{B_4\} \cup (\{B_1, B_2\} \cap N) = \{B_4\} \cup (\{B_1, B_3\} \cap N) = \{B_4\} \cup (\{B_1, B_2\} \cap N) = \{B_4\} \cup ($ $= \{B_1, B_3, B_4\}$ $Pred(B_5) = Pred(B_6) = \{B_{\Delta}\}\$ $D(B_5) = \{B_5\} \cup D(D) - (D) + (D D D) - (D D), B_4, B_5\}$ $D(B_6) = \{B_6\} \cup L$ Полученные значения $\{B_4, B_6\}$ $Pred(B_7) = \{B_5, B | D(B_1) - D(B_{10}) \text{ на второй } \}$ $D(B_7) = \{B_7\} \cup (I$ итерации не изменяются $\{B_1, B_3, B_4, B_5\} \cap \{B_7\}$ $=\{B_1,B_3,\overline{B_4},B_6\}\cap N\}=\{B_1,B_3,B_4,B_7\}$ $Pred(B_8) = \{B_7\}$ $D(B_8) = \{B_8\} \cup D(B_7) = \{B_8\} \cup \{B_1, B_3, B_4, B_7\} = \{B_1, B_3, B_4, B_7, B_8\}$ $Pred(B_{9}) = Pred(B_{10}) = \{B_{8}\}\$ $D(B_9) = \{B_9\} \cup D(B_8) = \{B_9\} \cup \{B_1, B_3, B_4, B_7, B_8\} = \{B_1, B_3, B_4, B_7, B_8, B_9\}$ $D(B_{10}) = \{B_{10}\} \cup D(B_{8}) = \{B_{10}\} \cup \{B_{1}, B_{3}, B_{4}, B_{7}, B_{8}\} =$ $=\{B_1, B_3, B_4, B_7, B_8, B_{10}\}$

4.1.5 Непосредственные доминаторы и дерево доминаторов

n	D(n)	IDom(n)
B_1	B_1	_
B_2	B_1, B_2	B_1
B_3	B_1, B_3	B_1
B_4	B_1, B_3, B_4	B_3
B_5	B_1, B_3, B_4, B_5	B_4
B_6	B_1, B_3, B_4, B_6	B_4
B_7	B_1, B_3, B_4, B_7	B_4
B_8	B_1, B_3, B_4, B_7, B_8	B_7
B_9	$B_1, B_3, B_4, B_7, \mathbf{B_8}, B_9$	B_8
B_{10}	$B_1, B_3, B_4, B_7, \mathbf{B_8}, B_{10}$	B_8

В таблице приведены списки доминаторов каждой вершины ГПУ из рассмотренного примера. Непосредственный доминатор в каждом списке предпоследний. Соединив дугами для каждого $n \in N$ IDom(n) с n, получим дерево доминаторов. Оно изображено на следующем слайде

⁺ в начале каждой строки неявно подразумевается Entry, который доминирует все блоки ГПУ.

4.1.5 Непосредственные доминаторы и дерево доминаторов

4.2.1. Определение границы доминирования (Dominance Frontier)

- **Определение**. *Границей доминирования* узла n называется множество узлов m, удовлетворяющих условиям:
 - (1) n является доминатором предшественника m:

$$\exists p \in Pred(m) \& n \in Dom(p)$$

(2) n не является строгим доминатором m:

$$n \notin (Dom(m) - \{m\}).$$

(иными словами, n не является доминатором m,

либо n совпадает с m)

Граница доминирования обозначается, как DF(n).

Неформально: DF(n) содержит все первые узлы, которые достижимы из n, на любом пути графа потока, проходящем через n, но над которыми n не доминирует.

23

4.2.1. Определение границы доминирования ($Dominance\ Frontier$)

◆ Замечание. Условие про строгость доминатора в (2) Определении 4.2.1 «(2) п не является строгим доминатором т» необходимо для определения границы доминирования в случае цикла, тело которого состоит из единственного базового блока, показанном на нижнем рисунке: в этом случае п, т и р совпадают и п является своей собственной границей

$$n = m = p:$$

$$x = x + y$$

На левом рисунке n не является доминатором m (ни строгим, ни нестрогим).

На правом рисунке n является (нестрогим) доминатором m (т. к. n=m), и это допускается определением границы доминирования.

4.2.1. Определение границы доминирования ($Dominance\ Frontier$)

По определению, $m \in DF(n)$ тогда и только тогда, когда выполняются оба условия:

• n является доминатором предшественника m:

$$\exists p \in Pred(m) \& n \in Dom(p)$$

• n не является доминатором m, либо n совпадает с m :

$$n \notin (Dom(m) - \{m\}).$$

4.2.1. Определение границы доминирования (*Dominance Frontier*)

Конструкция, которая похожа на цикл (do-while), но не является циклом:

По определению, $m \in DF(n)$ тогда и только тогда, когда выполняются оба условия:

• n является доминатором предшественника m:

$$\exists p \in Pred(m) \& n \in Dom(p)$$

• n не является доминатором m, либо n совпадает с m :

$$n \notin (Dom(m) - \{m\}).$$

4.2.1. Определение границы доминирования (*Dominance Frontier*)

Цикл while:

По определению, $m \in DF(n)$ тогда и только тогда, когда выполняются оба условия:

• n является доминатором предшественника m:

$$\exists p \in Pred(m) \& n \in Dom(p)$$

• n не является доминатором m, либо n совпадает с m :

$$n \notin (Dom(m) - \{m\}).$$

4.2.1. Определение границы доминирования

♦ Пример. На рисунке справа

$$B_3 \in Dom(B_4), B_3 \in Dom(B_5),$$

$$B_3 \in Dom(B_6)$$
,

$$B_3 \notin (Dom(B_7) - \{B_7\}),$$

т.е. B_3 является доминатором B_4 , B_5 и B_6 , но не является доминатором B_7 .

Более того, на любом пути, выходящем из B_3 , B_7 – первая вершина, для которой

 B_3 не является доминатором

Следовательно, $B_7 \in DF(B_3)$

а так как узел B_3 не является доминатором узлов B_0 , B_1 и B_2 , то $\mathbf{DF}(B_3) = \{B_7\}$

(3)

4.2.2. Построение границы доминирования

- ♦ Свойства узлов, входящих в границу доминирования
 - (1) узел, принадлежащий границе доминирования, должен быть точкой сбора графа потока.
 - (2) если j точка сбора: $n \in Pred(j) \& n \notin Dom(j)$, то $j \in DF(n)$
 - т.е. точка сбора j входит в границу доминирования любого своего предшественника n, не являющегося доминатором j.
 - если j точка сбора: $m \in Pred(j) \& n \in Dom(m) \& n \notin Dom(j)$, то $j \in DF(n)$ т.е. доминаторы предшественников точки сбора j должны иметь j в своих множествах границ доминирования, если только они не доминируют над j.

4.2.2. Построение границы доминирования

- ♦ Свойства узлов границы доминирования позволяют составить простой алгоритм ее построения
 - Шаг 1. Найти все точки сбора j графа потока, т.е. все узлы j, у которых |Pred(j)| > 1.
 - Шаг 2. Исследовать каждый узел $p \in Pred(j)$ и продвинуться по дереву доминаторов, начиная с p и вплоть до непосредственного доминатора j: при этом j входит в состав границы доминирования каждого из пройденных узлов, за исключением непосредственного доминатора j.

4.2.3. Алгоритм построения границ доминирования

- ♦ **Вход**: граф потока управления с добавленными блоками *Entry* и *Exit*
- ♦ Выход: множество границ доминирования для узлов графа потока
- ♦ Метод: выполнить следующую программу:

```
for all n \in N do DF(n) = \emptyset;
for all n \in N do {
  if |Pred(n)| > 1 then {
     for each p \in Pred(n) do {
        r=p;
        while r \neq IDom(n) do {
           DF(r) = DF(r) \cup \{n\}; частая ошибка:
                                           добавлять r в DF(n)
           r = IDom(r);
                                           – это неверно!
```

4.2.3. Алгоритм построения границ доминирования

- ♦ Вход: граф потока управления с добавленными блоками Entry и Exit
- ♦ Выход: множество границ доминирования для узлов графа потока
- ♦ Метод: выполнить следующую программу:

```
for all n \in N do DF(n) = \emptyset;
for all n \in N do {
  if |Pred(n)| > 1 then {
   for each p \in Pred(n) do {
    r = p;
  while r \neq IDom(n) do {
```

У исходного ГПУ должны быть блоки *Entry* и *Exit*, иначе если в первый же блок входит обратная дуга, условие |Pred(n)| > 1 не выполнится, и алгоритм не сработает корректно. Даже если определить понятие «точки сбора» каким-либо другим способом, у первого узла должен быть предок для его сравнения с IDom точки сбора.

4.2.4. Пример применения алгоритма построения границ доминирования

4.2.4. Пример применения алгоритма построения границ

доминирования

 \Diamond У графа три точки сбора – входы в узлы B_1 , B_6 и B_7 .

Узел B_6 : $Pred(B_6) = \{B_4, B_5\}$, $Idom(B_6) = \{B_3\}$, проходим от B_5 до B_3 , добавляем B_6 к $DF(B_5)$, проходим от B_4 до B_3 , добавляем B_6 к $DF(B_4)$.

Узел B_7 : $Pred(B_7) = \{B_2, B_6\}$, $Idom(B_7) = \{B_1\}$, проходим от B_2 до B_1 , добавляем B_7 к $DF(B_2)$, проходим от B_6 до B_3 , добавляем B_7 к $DF(B_6)$ проходим от B_3 до B_1 , добавляем B_7 к $DF(B_3)$

♦ Таблица текущих результатов:

n	0	1	2	3	4	5	6	7
$DF(B_n)$	Ø	Ø	$\{B_7\}$	$\{B_7\}$	$\{B_6\}$	$\{B_6\}$	$\{B_7\}$	Ø

(промежуточные результаты после рассмотрения B₆ и B₇)

Дерево доминаторов

4.2.4. Пример применения алгоритма построения границ

доминирования

Граф потока управления

Узел B_1 : $Pred(B_1) = \{B_0, B_7\}, Idom(B_1) = \{B_0\},$

Предок B_0 совпадает с непосредственным доминатором точки сбора В1:

 $Idom(B_1) = B_0$, значит, точка сбора B_1 не будет добавлена к $DF(B_0)$.

Предок B_7 : 1) проходим от B_7 до B_1 (по обратному ребру), добавляем B_1 к $DF(B_7)$.

2) далее проходим от B_1 до B_0 , добавляем B_1 к $DF(B_1)$.

Окончательная таблица результатов: \Diamond

n	0	1	2	3	4	5	6	7
$\overline{DF(B_n)}$	Ø	$\{B_1\}$	$\{B_7\}$	$\{B_7\}$	$\{B_6\}$	$\{B_6\}$	$\{B_7\}$	$\{B_1\}$

Дерево доминаторов

4.3.1 Определение

- \Diamond В ГПУ вершина p является $nocm \partial omunamopom$ вершины n (этот факт записывается как p postdom n или p = Postdom(n)), если любой путь от вершины n до вершины Exit проходит через вершину p.
- \Diamond Замечание. Из определения 4.2.1 следует, что каждая вершина n является постдоминатором самой себя: путь от n до Exit проходит через n.

4.3.2 Определения

- \Diamond Обратным графом ориентированного графа $G = \langle N, E \rangle$ называется ориентированный граф $G^R = \langle N, E^R \rangle$, у которого направления всех ребер противоположны.
- \Diamond Постдоминаторы ГПУ это доминаторы его *обратного* графа.(*)
- \Diamond Обратная граница ∂ оминирования (RDF(n)) вершины $n \in G$ это обычная граница доминирования в обратном графе G^R .
- ♦ Необходимо отметить, что, несмотря на сказанное выше (*), дерево постдоминаторов для исходного графа *G* нельзя получить с помощью какого-либо «обращения» или «переподвешивания вверх ногами за Exit» из его дерева доминаторов.
 В этом легко убедиться на примере (на след. слайде).

4.3.2.1 Определения

- \Diamond Дерево постдоминаторов для исходного графа G нельзя получить с помощью «обращения» его дерева доминаторов.
- \Diamond Если бы это было верно, то из $A\ dom\ B$ следовало бы $B\ pdom\ A$. Это, конечно же, не так отношение доминирования рассматривает только пути от Entry, а постдоминирования только до Exit, и взаимное расположение на путях от Entry не дает никаких гарантий относительно путей к Exit.

В примере ниже видно, что в (2) и (4) даже разные пары вершин соединены ребрами (напр. в (2) **A-B**, а в (4) **D-B**). Т.е. видно, что $(DomTree(G))^R \neq PostDomTree(G)$. Но при этом $DomTree(G^R) = PostDomTree(G)$.

(4) Дерево доминаторов для G^R (оно же постдоминаторов для исходного G):

4.3.3 Применение постдоминаторов. Зависимость по управлению.

- О По определению, вершина m ГПУ зависит по управлению от вершины <math>n тогда, и только тогда, когда:
 - \Leftrightarrow существует непустой путь T от n до m, такой что $\forall k \in T \{n\}: m = Postdom(k)$, т.е. если выполнение программы пошло по пути T, то, чтобы достичь exit, оно обязательно пройдет через m.
 - $\ \ \, \ \ \, m$ не является строгим постдоминатором n. (У n может быть несколько выходов, так что помимо T возможны и другие пути, проходящие через n, но потом ведущие не в m, а в другие вершины).
- \Diamond Другими словами: несколько ветвей исходят из n. Какие-то из них ведут в m, какие-то нет. Решение, принимаемое в ветвелении n определяет, будет ли исполняться m.
- Обратная граница доминирования позволяет определять границы зависимостей по управлению. 42

4.3.4 Эквивалентность по управлению

- \Diamond Определение. Два базовых блока B_i и B_j эквивалентны по ynpasnehui, если B_i выполняется тогда, и только тогда, когда выполняется B_i .
- ♦ Утверждение. Если выполняются соотношения:

$$B_i = Dom(B_i)$$
 u $B_j = Postdom(B_i)$

то базовые блоки B_i и B_j эквивалентны по управлению

4.3.3 Зависимость и эквивалентность по управлению. Примеры.

- ♦ ВЗ (а также В6) зависит по управлению от ВЗ,
 т. к. в ВЗ принимается решение о выборе пути дальнейшего выполнения (и попадания в ВЗ и В6)
- ♦ С точки зрения определения зависимости по управлению:

ВЗ зависит по управлению от В1

♦ аналогично,В5 зависит по управлению от В3

♦ нет пути, исходящего из В1, в котором В4 или В5 являются постдоминаторами для узлов этого пути => В4 и В5 не зависят по управлению от В1, хотя и зависят от В3, а В3 зависит от В1 => зависимость по управлению не транзитивна

4.3.3 Зависимость и эквивалентность по управлению. Примеры.

- ♦ ВЗ (а также В6) зависит по управлению от В1,
 т. к. в В1 принимается решение о выборе пути дальнейшего выполнения (и попадания в В6)
- ♦ С точки зрения определения зависимости по управлению:
 - ♦ существуют пути (вообще говоря, все пути, начинающихся в В1, проходящие через В3, и заканчивающихся в В6):
 - (В1, В3, ..., b_i , ..., В6] в них В6 будет постдоминатором для всех промежуточных узлов b_i (не считая В1)
 - ♦ В6 не является постдоминатором В1
- ♦ В1 входит в обратную границу доминирования В6 (и В3)
- ♦ В6 не зависит по управлению от В3 эти блоки эквивалентны по управлению: если выполнился код в В3, то обязательно выполнится и В6, и наоборот: если выполнился В6, то прежде был выполнен и В3.

4.3.3 Зависимость и эквивалентность по управлению. Примеры.

m	1	2	3	4	5
RDF(m)	{4}	{1}	{1}	{4}	Ø

- ♦ В1 зависит по управлению от В4 и по RDF, и по определению: существует путь (В4, В1], в котором В1 постдоминирует все узлы, кроме первого В4, при этом В1 не является постдоминатором В4.
- В4 зависит по управлению от В4: ∃ путь (В4, В1, В2, В4], в котором В4 постдоминирует все узлы, и В4 не является строгим постдоминатором В4.
- ♦ В2 и В3 зависят по управлению от В1.

Определение. Вершина m ГПУ зависит по управлению от вершины <math>n тогда, и только тогда, когда:

- 1) существует непустой путь T от n до m, такой что $\forall k \in T \{n\}: m = Postdom(k)$, т.е. если выполнение программы пошло по пути T, то чтобы достичь Exit, оно обязательно пройдет через m.
- 2) m не является строгим постдоминатором n.

Обратный граф $G^R = \langle N, E^R \rangle$ для построения RDF для исходного G (DF для G^R)

4.3.3 Зависимость и эквивалентность по управлению. Примеры.

- ♦ Базовый блок может зависеть по управлению сразу от нескольких блоков.
- ♦ Например, В5 зависит по управлению от В2 и В4:
 - ♦ RDF(B5) = { B2, B4 }
 - ♦ в каждом из этих блоков может быть принято решение о выполнении В5