0 CBC-MAC

Write the basic construction of CBC-MAC.

1 Merkle-Damgård

Let $h: \{0,1\}^{n+t} \to \{0,1\}^n$ be a fixed-length compression function. Suppose we forgot a few features of Merkle-Damgård and construct H as follows:

- Value x is input.
- Split x into y_0, x_1, \ldots, x_k . Where y_0 is n bits and x_i (for $i = 1, \ldots, k$) is t bits. The last piece x_k may be padded with zeroes.
- For i = 1, ..., k, set $y_i = h(y_{i-1}||x_i)$.
- Output y_k .

It's similar to Merkle-Damgård except no IV and the final padding block is missing.

- 1. Describe an easy way to find two messages that are broken up into the same number of pieces, which have the same hash value under H.
- 2. Describe an easy way to find two messages that are broken up into a different number of pieces, which have the same hash value under H. Hint: Pick any string of length n+2t, and find a shorter string that collides with it.

Neither of your collisions above should involve finding a collision in h!

2 Hash Functions

I designed $H: \{0,1\}^* \to \{0,1\}^n$. I make H(x) = x if x is n-bit string – but assume H's behavior is more complicated on strings of other lengths. This way we know there are no collisions among n-bit strings. Is this a good design decision?

3 MAC

Prove that the following modifications of basic CBC-MAC do not yield a secure MAC (even for fixed-length messages).

- 1. Mac outputs all blocks t_1, \ldots, t_ℓ rather than just t_ℓ . Verification only checks if t_ℓ is correct.
- 2. A random initial block is used each time a message is authenticated. That is, choose a uniform $t_0 \in \{0,1\}^n$, run basic CBC-MAC over the "message" t_0, m_1, \ldots, m_ℓ and output tag $\langle t_0, t_\ell \rangle$. Verification is done in a natural way.

4 Digital Signature

Let (G, S, V) be a secure signature scheme with message space $\{0, 1\}^n$, and security parameter λ . Let $(pk_0, sk_0) \leftarrow_{\$} G(1^{\lambda})$ and $(pk_1, sk_1) \leftarrow_{\$} G(1^{\lambda})$ be two pairs of signing/verification keys. Which of the following are secure signature schemes? Show an attack or prove security.

- 1. (S_1, V_1) :
 - Sign. $S_1((sk_0, sk_1), m)$: Output $(S(sk_0, m), S(sk_1, m))$.
 - Verify. $V_1((pk_0, pk_1), m, (\sigma_0, \sigma_1))$: Output 1 if $(V(pk_0, m, \sigma_0) \vee V(pk_1, m, \sigma_1))$, 0 otherwise.

I.e., the verification accepts if one of the two signatures accepts.

- 2. (S_2, V_2)
 - Sign. $S_2((sk_0, sk_1), (m_L, m_R))$: Output $(S(sk_0, m_L), S(sk_1, m_R))$.
 - Verify. $V_2((pk_0, pk_1), (m_L, m_R), (\sigma_0, \sigma_1))$: Output 1 if $(V(pk_0, m_L, \sigma_0) \wedge V(pk_1, m_R, \sigma_1))$, 0 otherwise. I.e., both verifications must accept.