Chapter 3Radiation

Units

Waves – Information from the skies

Waves in What?

The Wave Nature of Radiation

The Electromagnetic Spectrum

Thermal Radiation

The Kelvin Temperature Scale

More about the Radiation Laws

The Doppler Effect

3.1 Waves

Electromagnetic Radiation: energy transmitted through space as varying electric and magnetic fields

Examples: Light,

radio waves,

X-rays, IR

Not beta rays (e-) or alpha rays

3.1 Waves

Wave motion: transmits energy without the physical transport of material

3.1 Waves

Example: water wave

Water just moves up and down

Wave travels and can transmit energy

3.1 Waves - terminology

Frequency: number of wave crests that pass a given point per second

Period: time between passage of successive crests

Relationship: Frequency = 1 / Period

3.1 Wave terminology

Wavelength: distance between successive crests

Velocity: speed at which crests move

Relationship:

Velocity = Wavelength / Period

3.1 Wave terminology

Visible spectrum:

ROYGBIV

Water waves, sound waves, and so on, travel in a medium (water, air, ...)

Electromagnetic waves need no medium

Created by accelerating charged particles:

Electromagnetic waves: Oscillating electric and magnetic fields. Changing electric field creates magnetic field, and vice versa

What is the wave speed of electromagnetic waves?

$$c = 3.0 \times 10^8 \text{ m/s}$$

This speed is very large, but still finite; it can take light millions or even billions of years to traverse astronomical distances

The wave nature of radiation: radiation: radiation diffracts, which is purely a wave phenomenon

3.3 The Electromagnetic Spectrum

No upper limit on wavelength

Different ranges have different names

Blackbody Spectrum: the electromagnetic spectrum produced by a hypothetical object which can absorb 100% of incident light. The spectrum obeys a particular equation which depends only on the temperature.

Radiation Laws

1. Peak wavelength is inversely proportional to temperature

Kelvin Temperature scale:

- All thermal motion ceases at 0 K
- Water freezes at 273 K and boils at 373 K

Radiation Laws

2. Total energy emitted is proportional to fourth power of temperature (note intensity of curves)

3.5 The Doppler Effect

If one is moving toward a source of radiation, the wavelengths seem shorter; if moving away, they seem longer

3.5 The Doppler Effect

Relationship between frequency and speed:

$$\frac{\text{apparent wavelength}}{\text{true wavelength}} = \frac{\text{true frequency}}{\text{apparent frequency}}$$

$$= 1 + \frac{\text{recession velocity}}{\text{wave speed}}$$

3.5 The Doppler Effect

Depends only on the relative motion of source and observer: