CHANGES: Airways redesig one-way. Airways realigned.

© JEPPESEN, 1999, 2010. ALL RIGHTS RESERVED.

VERACRUZ,

MMVR/VER GEN HEŔIBERTO JARA INTL JEPPESEN

10 DEC 10 (10-3) Eff 16 Dec

MEXICO SID

310	INITIAL CLIMB						
AVTUX TWO	Climb via VER R-185 to D10 VER, turn LEFT heading 158° to intercept VER R-176 to AVTUX. Continue on the assigned route or according to instructions from ATC.						
AXELI TWO ALFA IMARA TWO IPTAK TWO OTILO TWO	Climb via VER R-185 to D7 VER, turn LEFT and proceed on the VER 10 DME Arc to intercept the corresponding radial from VER to AXELI, IMARA, IPTAK, or OTILO. Continue on the assigned route or according to instructions from ATC.						
LEXUR TWO	Climb via VER R-185 to D10 VER, turn RIGHT heading 194° to intercept VER R-188 to LEXUR. Continue on the assigned route or according to instructions from ATC.						
TAMVO TWO URSOT TWO	Climb via VER R-185 to D7 VER, turn RIGHT and proceed on the VER 10 DME Arc to intercept the corresponding radial from VER to TAMVO or URSOT. Continue on the assigned route or according to instructions from ATC.						
VERACRUZ THREE ALFA	Climb via VER R-185 to D7 VER (or 1300' in case of DME failure), turn LEFT within 10 NM to VER, then depart VER at the MCA for the assigned route or according to instructions from ATC.						

INITIAL CLIMB

SID

MMVR/VER GEN HERIBERTO JARA INTL

D10 VER N19 18.5 W096 09.5

JEPPESEN

VERACRUZ, MEXICO

10 DEC 10 (10-3A) Eff 16 Dec

Apt Elev 90'

Trans level: FL195 Trans alt: 18500

4500' స్ట్ 3700 2000' MSA VER VOR

DEPARTURES RWY 36 AMORA THREE (AMORA3) AXELI TWO BRAVO (AXELIZB), AXORO TWO (AXORO2), BOLTA TWO (BOLTA2), ETNAS TWO (ETNAS2) ONBAD TWO (ONBAD2), VERACRUZ THREE BRAVO (VER3B)

0

VERACRUZ

THREE

BRAVO

(VER3B)

25 TO LIDAR N19 58.5 W096 09.0 V 29 VERACRUZ **AMORA** THREE BRAVO N19 33.6 W096 09.7 Turn LEFT at **D25** D7 VER **AXORO** (or 1400' N19 31.0 W096 23.2 in case of DME failure)

D14 VER X

0	MINIMUM CROSSING ALTITUDE							
MID		UJ-18	2500					
CPE		UJ-24	2500					
CME	V-28	UJ-28	2500					
VSA	V-23	UJ-12	2500					
MTT	V-22,A-552	UA-552	2500					
IZT	V-33	UJ-34	2500					
HUX		UJ-70	2500					
OAX	V-29		3500					
CUA		UJ-24	14500					
PBC		UJ-12	14500					
APN	V-22	UJ-18	10500					
REXES	V-28,V-54	UJ-28,UJ-41	7000					
NAU	V-23,A-552	UJ-34,UA-552	2500					
LIDAR	V-29		2500					

BOLTA N19 21.5 W096 34.0 N19 16.1 W095 46.1 0 **D7 VER** N19 15.5 D25 BOLTA TWO 40 TO GOTAS N19 17.7 W095 03.5 W096 10.1 -068°-ETNAS TWO **ETNAS** __077° (ETNAS2) N19 12.2 W095 45.2 36 TO NOREL N19 02.1 W095 08.1 AXELI TWO BRAVO **ŪJ 28 AXELI** V 28 0/ N19 06.0 W095 45.0 -VERACRUZ-114.0 VER N19 08.6 W096 11.4

These SIDs require a minimum climb gradient of: ONBAD TWO: 250' per NM to 14000.

Gnd speed-KT	75	100	150	200	250	300
250' per NM	313	417	625	833	1042	1250

SID	INITIAL CLIMB						
AMORA THREE	Climb via VER R-005 to D10 VER, then proceed on heading 340° to intercept VER R-359 to AMORA. Continue on the assigned route or according to instructions from ATC.						
AXELI TWO BRAVO BOLTA TWO ETNAS TWO	Climb via VER R-005 to D7 VER, turn RIGHT and proceed on the VER 10 DME Arc to intercept the corresponding radial from VER to BOLTA, ETNAS or AXELI. Continue on the assigned route or according to instructions from ATC.						
AXORO TWO ONBAD TWO	Climb via VER R-005 to D7 VER, turn LEFT and proceed on the VER 10 DME Arc to intercept the corresponding radial from VER to AXORO or ONBAD. Continue on the assigned route or according to instructions from ATC.						
VERACRUZ THREE BRAVO	Climb via VER R-005 to D7 VER (or 1400' in case of DME failure), then turn LEFT within 10 NM to VER, then depart at the MCA (a) for the assigned route or according to instructions from ATC.						

ONBAD

JEPPESEN JeppView 3.7.3.0

MMVR/VER GEN HERIBERTO JARA INTL

Apt Elev

90'

JEPPESEN 10 DEC 10 (10-3B) Eff 16 Dec

VERACRUZ, MEXICO

Trans level: FL195 Trans alt: 18500'

DEPARTURE RWY 09 VERACRUZ ONE CHARLIE (VER1C)

(MINIMUM CROSSING ALTITUDE							
MID		UJ-18	2500					
CPE		UJ-24	2500					
CME	V-28	UJ-28	2500					
VSA	V-23	UJ-12	2500					
MTT	V-22 A-552	UA-552	2500					
IZT	V-33	UJ-34	2500					
HUX		UJ-70	2500					
OAX	V-29		3500					
PBC		UJ-12-24	14500					
APN	V-22	UJ-18	10500					
REXES	V-28 V-54	UJ-28-41	7000					
NAU	V-23 A-552	UJ-34 UA-552	2500					
LIDAR	V-29		2500					
CUA		UJ-24	14500					

INITIAL CLIMB

Climb via VER R-091 until D7 VER (or 10 NM to VER. Depart VER at the MCA instructions.

CHANGES: Minimum crossing altitudes.

1400' in case of DME failure). Turn LEFT within A for the assigned route or according to ATC

© JEPPESEN, 2005, 2010. ALL RIGHTS RESERVED.

Licensed to TRANSPORTES AEROMAR S.A DE C.V.. Printed on 10 Feb 2011. Notice: After 25 Feb 2011 0901Z, this chart may no longer be valid. Disc 03-2011 JEPPESEN JeppView 3.7.3.0

MMVR/VER GEN HERIBERTO JARA INTL

JEPPESEN 10 DEC 10 (10-3C) Eff 16 Dec

VERACRUZ, MEXICO

Apt Elev Trans level: FL195 Trans alt: 18500' 90'

> **DEPARTURE RWY 27** VERACRUZ TWO DELTA (VER2D)

(A)	MINIMUM CROSSING ALTITUDE									
MID		UJ-18	2500							
CPE		UJ-24	2500							
CME	V-28	UJ-28	2500							
VSA	V-23	UJ-12	2500							
MTT	V-22 A-552	UA-552	2500							
IZT	V-33	UJ-34	2500							
HUX		UJ-70	2500							
OAX	V-29		3500							
PBC		UJ-12-24	14500							
APN	V-22	UJ-18	10500							
REXES	V-28 V-54	UJ-28-41	7000							
NAU	V-23 A-552	UJ-34 UA-552	2500							
LIDAR	V-29		2500							
CUA		UJ-24	14500							

INITIAL CLIMB

Climb via VER R-280 to D7 VER (or 1500' in case of DME failure). Turn LEFT within 10 NM to VER. Depart VER at the MCA for the assigned route or according to ATC instructions.

CHANGES: Minimum crossing altitudes.

	MMVR/VEF	₹		10 DEC	10	ESE			ERAC	RUZ,	ME)	KICO
	GEN HERIBER	TO JARA	INTL	Eff 16	Dec		CAT A, B	& C		DMÉ RACRUZ TOV		/ 09
		.7.8				JZ Approa 0.4	cn		*VEI	118.5	ver	
STRIP TA	VOR	Final		inimum		MDA	A(H)			\top		· ·
	∨er 114.0	Apch C 100°		D5.0		(CONDIT		Apt E	lev 90'	1/1/50	ر 500'	\$
BRIEFING	MISSED APCH: C						,	ako a	LEET	3700	1)
BRIE	turn within 10								LLII		/ 20	000'
	Alt Set: MB (IN of 1. Power station oscillation of ins	at approxin				level: FL 19 thresh			lt: 18500 ght	`	VER	VOR
	T T		<u>^</u> 490′									I
110	۸	лм(R)-115										
	010.0 <u>0</u> 1800 010.0 <u>0</u> 1800 19-10	D8.0			(IAF) - VERACR I 14.0 :		MA Manual Ma Manual Manual Manual Manual Manual Manual Manual Ma Manual Manual Ma Ma Manual Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	Λ(R)-14				//////////////////////////////////////
2					$\Rightarrow \approx$	A.	091°	_)		
	00	<u></u>		20	60°(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	200	280°\		* ^	- 1		
	D8.0	,			100	2000	(100)			07.0		
							\smile	,		4444 (D) 3	00	
										MM(R)-1	108	
0												
٥_												
-												
-												
-												
_	- 19-00											-
2	96-:	20				96-10	1				(96-00
		D	8.0					-260°	VOR	000'		
	10 NM	1800'				D5.0		⊬20U		000		
	from		100	0		[FDØ9] ;	3.4 NM o RWØ9					
	VOR		į ,	*	120)′÷		[R\ 0∘₁	VØ9]			
						-		**********	- M-	[TCH 5	0']	
			<u>i </u>	3.0		_i_	4.7			APT. 9	0′	
	Gnd speed-Kts Descent Angle [3.	70	90 100		140 16 743 84					VER		
		00°] 372	478 531	637	743 84	9			A 0	n 114.0 R-09		7.0
	MAP at VOR	STRAIGH	T-IN LAND	ING RV	VY 09		1		CIRCLE	E-TO-LAN		
	МПА	а _(Н) 560′(1								
		DAY	,		N	IGHT	Max Kts		MDA(H)		
	В	1					90			550′)-1		
	С	11/4			ı	NΑ	140		640′	550')- 1 ½	2	
	D N	IOT APPLICA	ABLE				D			APPLICAB		
	CHANGES: CAT C mi	nimums added	d.					C JEPPE:	SEN, 2005, 2	2010. ALL RIC	SHTS RE	SERVED.

© JEPPESEN, 2005, 2010. ALL RIGHTS RESERVED.

CHANGES: CAT C minimums added.

JEPPESEN VERACRUZ, MEXICO MMVR/VER 10 DEC 10 (13-3) Eff 16 Dec VOR DME-1 Rwy 18 GEN HERIBERTO JARA INTL *ATIS 127.8 *VERACRUZ Approach *VERACRUZ Tower 120.4 118.5 VOR Final Minimum Alt MDA(H)VER Apch Crs D5.0 Apt Elev 90' 4500' 580' (490') 185° 1200′ (1110′) 114.0 MISSED APCH: Climb outbound on VER VOR R-185 to D7.0, make LEFT turn 3700 2000' within 10 NM to VER VOR at the minimum holding altitude. Alt Set: MB (IN on reg) Apt Elev: 3 MB Trans level: FL 195 1. Power station at approximately 2.4 NM from Rwy 09 threshold creates a slight oscillation of instruments in aircraft. MSA VER VOR D10.0 D8.0 D8.0 490' 19-15 MM(R)-115 D5.0 MM(R)-149 - 19-10 VERACRUZ-MM(R)-108 114.0 VER 19-05 96-20 96-00 VOR D8.0 D10.0 2000 1800 D5.0 1200' APT. 90' 3.0 2.0 VER 114.0 D7.0 PAPI-I R-185 MAP at VOR STRAIGHT-IN LANDING RWY 18 CIRCLE-TO-LAND MDA(H) 580'(490') 90 640'(550')-1 120 11/4 140 640'(550')-11/2 $1\frac{1}{2}$ 165 700′(610′)-2

Notice: After 25 Feb 2011 09012, this chai				Jeppview 3.7.3.0
MMVR/VER GEN HERIBERTO JARA INT	JEPP 10 DEC 10 (13	$\overline{}$		UZ, MEXICO VOR Rwy 18
*ATIS	*VERACRU	Z Approach		CRUZ Tower
127.8	120).4	1	18.5
VOR Final VER Apch Crs 114.0 185°	No FAF	MDA(H) 660' (570')	Apt Elev 90'	11500' 8
MISSED APCH: Climb outbound 10 NM to VER VOR at the m	inimum holding a	85, make LEF Iltitude. utbound distanc		3700′ 2000′
	Gnd speed-Kts 80	100 120 14		87
Alt Set: MB (IN on req) Apt El 1. Power station at approximately oscillation of instruments in aircr	ev: 3 MB Trans I 2.4 NM from Rwy 0	evel: FL 195	Trans alt: 18500'	MSA VER VOR
Λ ⁴⁹⁰ ′	1	85° (35°		
/\\ - 19-15	[F\$1	17		
MM(R)-115				
			M(R)-149	
	005%	[RW18]		MM(R)-108
	\$ (G	A TO		
	2000	VERACRU:	/FP	
	2002	\	(EK)	MM(R)-108
- 19-05	185	Ţ		· · · · · · · · · · · · · · · · · · ·
96-20	i,	96-10		96-00
2000'		F\$18]	1800′ 10 N	
[TCH 50']	[RW18] 3.00°]		10 10	I/V\
[TCH 50'] APT. 90'	5.3			
	100 120 140 160 531 637 743 849		PAPI-L	VER
MAP at VOR		 		R-185
	ANDING RWY 18		CIRCLE-1	TO-LAND
MDA(H) 66	0'(570')	Max Kts	MDA(H).	
A B 1		90 120	660′(5	70')-1
c 1½	2	140	660′(52	70')-11/2
D 13/2	1	165	700′(6	10')-2
CHANGES: None.		• •	© IEPPESEN 2000 201	IO. ALL RIGHTS RESERVED

CHANGES: CAT C minimums added.

	Notice: After 25 Feb 2011 0901Z, this cha	rt may no ion	ger be valid. Disc o	3-2011		Jeppv	iew 3.7.	3.0
	MMVR/VER	10.056	JEPPESE		VERAC	RUZ,	MEX:	100
	GEN HERIBERTO JARA INT	10 DEC L Eff 16	Dec (13-7)		CAT A, B & C	VOŔ	Rwy	27
	*ATIS		*VERACRUZ Approac	:h	*VEF	RACRUZ To	wer	
TM	127.8		120.4			118.5		
BRIEFING STRIP	VOR Final VER Apch Crs	No F		IONAL)	Apt Elev 90 ′	.		
ING	114.0 271°	\	600′				4500' هُرُّ	
BRIEF	MISSED APCH: Climb outbound 10 NM to VER VOR at the mi			to the	LEFT within	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		Gnd speed-		120 140	160 180 20	<u></u>	ر پې	0, /
	Alt Set: MB (IN on reg) Apt El	Time ev: 3 MB	5:15 4:12 3 Trans level: FL		0 2:38 2:20 2:0 Trans alt: 18500	7	A VER VO	^ ^P
	Power station at approximately oscillation of instruments in airce		m Rwy 09 thresho	ld create	s a slight	70137	A VER VO	JK.
0_	Λ 490)'					,	
	- 19-15 •				//			
	MM(R)-115			MM(R)-149			
			(IAF) VERACRUZ					
22		<u> 1</u>	14.0 VER		: 	,,,,,,,,,,		//////
	- 19-10	280)° [RW	27 1				
	\ -	091°	(5) 00:	0		27 1°)	
			2000		[F\$27]	13		
			27 ΰ			1	5.	
٥_	- 19-05					-		
-								
						MM(R)-108	
_								
2	96-20		96-10				96-	-00
	VOR 2000'	091∘.	[F\$27]					
		-			1800' 10 N			
	[RV	/27] 3.00	2710		10 N	/V\		
	[TCH 50']	***************************************						
	APT. 90 ′	5.4						
	Gnd speed-Kts 70 90 Descent Angle [3.00°] 372 478	100 120 531 637	140 160 743 849				on 114	
	MAP at VOR					Т	R-2	
	STRAIGHT-IN L	ANDING R	WY 27		CIRCLE	-TO-LAN	ND	
	мдА(H) 600′ (510′) DAY		NIGHT	Max				
	A 1			90	MDA(. 640'(:	н) 550′) - 1		
	C 1½		NA	120		550′) - 1!		
	D NOT APPLICABLE			D	•	PPLICAE		
			l					
	CHANGES: CAT C minimums added.				© JEPPESEN, 2005, 2	2010. ALL R	IGHTS RESE	RVED.

© JEPPESEN, 2005, 2010. ALL RIGHTS RESERVED.

MMVR/VEF	₹	/	PPESEN	VERACR	NZ WEXI
	TO JARA INT	_	<u> </u>	VOR DM	
	atis 27.8		CRUZ Approach		CRUZ Tower
VOR	Final	Minimum Alt		<u>'</u>	
VER 114.0	Apch Crs 005 °	<i>D5.0</i> 1200 ′ (1110′)	MDA(H) 560' (470')	Apt Elev 90'	11500' 8
_			R-005 to D7.0, i	make LEFT turn	3700' 2000
	to VER VOR at	the minimum	holding altitue		- 1 \ 85° 2000
	at approximately	2.4 NM from Rw	ns level: FL 195 y 09 threshold crea	Trans alt: 18500' ates a slight	
	struments in aircra	att.	ı		MSA VER VO
025.0 VER	▼.		=_		
o. WM(R)-115 490	Λ	D7.0		
50 2 ^{13.0}		1	T.		
2000	(IAF)	1	MAA(D) 1	40	
N U 10	D12.0		MM(R)-1	49	
or from		2000			
APN "IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	279				
(IAF)		S &		0	12.0 3000
2 13.0 D12.0	4 231			-091°	V 28
₹ UJ 24		O VER		-104°_ (II	UJ 28
5000	<u>, </u>	<u> </u>	A	D1.	2.0 13.0
	5/P2	D5.0		1190	23
	ONEGO	D8.0	5 \ 1	D 12.	300 12
	Z	\$\\ \	154	^ /· 7\	0000
- 19-00	"/		173	WE W	130
	,		2000 100		48
	DΊ	0. 0	2000 100 D12.0		455
		· · · / / \ °	D12.04		0000
	/*	15,000 1500	<u>, </u>		
1 80	0 D (1)	5.0 A S VER)	D15.0 WE	7.53 MAA/E	2)-108
	(R-18	S VER)	D13.0 30 4	WW(N	()-106
	c	$\frac{1}{2}$		\	
	0/		0.0 556	OTILO 96-00	
- 18-50	96-20	LEXUR A	ντυχ	OTILO 96-00	
D10	. 0			VOR	•
2000'	.0 005° 1800	8.0			
i	005° 1800	,	D5.0	- 1	
ļ	1000	12	001		
			_*	1.	/
i	2.0	3.0	4.1		APT. 90 ′
					VER
			P	SALS API : A on	114.0 D7
MAP at VOR			_	- [] ' [R-005
		ANDING RWY 36	<u> </u>	CIRCLE-1	TO-LAND
	MDA(H) 56	0' (470') ALS (Max Kts	MDA(H)_	
А	1	ALS	90		
В	1		120	640′(55	ou ⁻)- I
	11/4		140	640′(55	50')-11/2
С	1/4				
D	1/4		165	700′(6)	

13/4

CHANGES: None.

140 640'(550') - 1 1/2

165 700'(610') - 2

© JEPPESEN, 2000, 2010. ALL RIGHTS RESERVED.