кафедра МО ЭВМ

ОТЧЕТ по лабораторной работе № <u>1</u> по дисциплине «Методы оптимизации»

Выполнил Олейник А.Л.

Факультет КТИ

Группа № 8381

Преподаватель Мальцева Н.В.

Задание (вар. 15)

Минимизировать функцию $F(x_1,x_2,a)=(x_2-x_1^2)^2+a(x_1-1)^2$ с точностью до 10^{-5} $\left|\left|\left(F(x_{1k},x_{2k},a)-F(x_1,x_2,a)\right)\right|<10^{-5}\right|$ градиентными методами – методом с дроблением шага и методом наискорейшего спуска.

Оценить скорость и порядок сходимости обоих методов.

Исследовать эффективность метода с дроблением шага в зависимости от начальной точки и величины начального шага и сравнить его с методом наискорейшего спуска.

Параметр а положить равным a = 20.

Теоретические сведения

Пусть имеется функция $\varphi(x)$, $x \in \mathbb{R}^n$ и точка начального приближения x_0 . необходимо минимизировать функцию φ , т.е. найти $x^* = argmin \varphi(x)$ (пишут $\varphi(x) \to min$, $x \in \mathbb{R}^n$). Сущность методов спуска (к которым относятся градиентные методы) заключается в построении penakcayuohhoй последовательности $\{x_i\}$, то есть последовательности, удовлетворяющей условию $\varphi(x_i) \ge \varphi(x_{i+1})$.

Введём величину $\Delta_k = ||x_k - x^*||$.

Определение 1

Предел
$$\overline{\lim_{k \to \infty}} \frac{\ln \Delta_{k+1}}{\ln \Delta_k}$$
 называется *порядком сходимости метода*. \blacktriangleleft

Определение 2

Последовательность
$$\varphi(x_k)$$
 сходится к $\varphi(x^*)$ линейно если $\exists k_0, q \in (0,1) : \|\varphi(x_{k+1}) - \varphi(x^*)\| \le q \|\varphi(x_k) - \varphi(x^*)\|$, при $k > k_0$.

Определение 3

Последовательность $\varphi(x_k)$ сходится к $\varphi(x^*)$ сверхлинейно если $\exists q_k : \|\varphi(x_{k+1}) - \varphi(x^*)\| \le q_{k+1} \|\varphi(x_k) - \varphi(x^*)\|$, где $q_k \xrightarrow{\bullet} 0^+$

Определение 4

Последовательность $\varphi(\mathbf{x}_k)$ сходится к $\varphi(\mathbf{x}^*)$ c квадратичной скоростью если $\exists k_0, c \ge 0 : \|\varphi(x_{k+1}) - \varphi(x^*)\| \le c \|\varphi(x_k) - \varphi(x^*)\|^2$, $npu \ k > k_0$.

Определение 5

Функция φ на $X \subset \mathbb{R}^n$ удовлетворяет *условиям Липшица*, если $\exists L > 0 : \forall u, v \in X \ \|\varphi(u) - \varphi(v)\| \le L\|u - v\|$. \blacktriangleleft

Определение 6

Функция ф удовлетворяет условиям Липшица и существует непрерывный градиент ф', удовлетворяющий условиям Липшица, то $\phi \in C^{1,1}$.

Определение 7

Функция φ называется *сильно выпуклой с параметром* $\approx > 0$, если $\forall u, v \in X : \varphi(u) \ge \varphi(v) + (\varphi'(v), u - v) + \alpha ||u - v||^2$.

Геометрически это означает, что график функции лежит внутри некоторого параболоида вращения.

Определение 8

Функция вида $\varphi = \frac{1}{2}(Ax,x) - (b,x)$, где A – симметричная положительно определённая матрица, называется *квадратичной*. \blacktriangleleft

Определение 9

Рассмотрим поверхность уровня $L_{\delta} = \{x : \varphi(x) = \varphi(x^*) + \delta\}$. Обозначим $m_{\delta} = \min \|x - x^*\|$, $M_{\delta} = \max \|x - x^*\|$, $x \in L_{\delta}$. Тогда величина $r = \overline{\lim_{\delta \to 0}} \frac{M_{\delta}}{m_{\delta}}$ называется числом обусловленности точки локального минимума. Функции, для которых r >> 1 называют овражными. \blacktriangleleft

Градиентные методы

Градиентные методы оптимизации основаны на построении последовательности $\{x_i\}$ по следующему правилу: $x_{k+1} = x_k - \alpha_k \boldsymbol{\varphi}'(x_k)$, $\alpha_k > 0$, k = 0, 1, ... ($\boldsymbol{\varphi}'(x)$ — градиент функции $\boldsymbol{\varphi}(x)$).

Если
$$\varphi'(x_k) \neq 0$$
 , то α_k можно выбрать так, чтобы $\varphi(x_{k+1}) < \varphi(x_k)$.

Если $\boldsymbol{\varphi}'(x_k) = 0$, то x_k – стационарная точка, которая должна быть исследована на глобальный минимум.

Все градиентные методы отличаются друг от друга способом выбора α_k .

Метод наискорейшего спуска

На луче
$$\{x \in \mathbb{R}^n : x = x_k - \alpha \varphi'(x_k), \alpha \ge 0\}$$
 вводится функция $\psi(\alpha) = \varphi(x_k - \alpha \varphi'(x_k)), \alpha \ge 0$. Величина шага выбирается следующим образом: $\alpha_k = \underset{\alpha > 0}{\operatorname{argmin}} \varphi(x_k - \alpha \varphi'(x_k))$.

Для квадратичной функции метод наискорейшего спуска сходится с линейной скоростью; порядок сходимости равен 1. В общем случае верна следующая теорема:

Теорема 1

Рассмотрим задачу $\varphi(x) \to min$, $x \in \mathbb{R}^n$. Пусть $\varphi \in C^{1,1}$ и φ сильно выпукла с параметром \mathfrak{A} . Тогда при любом начальном приближении для $\{x_k\}$, построенной по методу наискорейшего спуска справедливо:

1.
$$x_k \rightarrow x^* = argmin \varphi(x)$$
;

2.
$$\varphi(x_{k+1}) - \varphi(x^*) \le const \, q^k$$
 , где $q = 1 - \frac{2æ}{L} \in [0,1)$ (L – постоянная Липшица) . ◀

Для овражных функций метод наискорейшего спуска сходится достаточно медленно.

Метод с дроблением шага

На начальном этапе выбираются константы $\beta > 0, \ 0 < \lambda < 1$. Для $\alpha = \beta$ проверяется условие $\phi(x_k - \alpha \ \phi'(x_k)) < \phi(x_k)$.

Если условие выполнено, то полагаем шаг $\alpha_k = \alpha$

В противном случае выполняется дробление шага: $\alpha = \lambda \beta$.

Прим.: Если на первом шаге условие условие $\varphi(x_k - \alpha \varphi'(x_k)) < \varphi(x_k)$ выполнилось, то можно увеличить шаг α .

Экспериментальное исследование методов

Очевидно, что точкой минимума (глобального) функции F является точка $x^* = (1, 1)$, причём F(1, 1) = 0.

При помощи программы wxMaxima построим изолинии функции F в окрестности точки (1,1):

Видно, что изолинии по своему виду близки к эллипсам. Таким образом, в качестве начальных приближений можно выбрать три точки, равноудалённые от x^* , расположенные так, как показано на рисунке.

Итак, в качестве различных начальных приближений выбраны точки:

$$x_a = (2, 11); x_6 = (-9, 2); x_B = (-5,364, 8,778).$$

Также следует отметить, что функция F содержит слагаемые x_1^4 и x_2^2 . Поэтому можно утверждать, что она является сильно выпуклой и, таким образом, удовлетворяет условиям Теоремы 1. Это значит, что метод наискорейшего спуска сходится по крайней мере с линейной скоростью.

Метод с дроблением шага исследуем на сходимость при начальных приближениях x_a , x_b , x_b и величине начального шага, равной 1, 0.1, 0.01.

Метод наискорейшего спуска

Начальное приближение $x_a = (2, 11)$

№ шага	X ₁	X ₂	$F(x_1, x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(F(x_k)/F(x_{k-1})$ с учётом $F(x^*) = 0$
1	2,393927	10,655314	63,110634779	12		
10	1,351677	6,335964	22,804016203	13		
20	1,120758	3,454246	5,123503258			
30	1,049073	2,126602	1,1009375495	10		
40	1,02176	1,524784	0,2406301448			
50	1,010005	1,246757	0,0533709004			
60	1,004651	1,116408	0,0118996089	12		
70	1,002197	1,055085	0,0026656615			
80	1,001037	1,026104	0,0005988998			
90	1,000492	1,012374	0,0001345749	11		
95	1,000967	1,008651	6,38101E-005	11		
96	1,000314	1,007908	5,49666E-005	12	1,0200724002	0,8614090873
97	1,000833	1,007452	4,73466E-005	11	1,0111531723	0,8613703595
98	1,000271	1,006812	4,07845E-005	12	1,0194591547	0,8614029307
99	1,000718	1,006419	3,51307E-005		1,0108248002	
100	1,000233	1,005868	0,000030262	12	1,0188759585	0,8614118136
101	1,000618	1,005529	2,60665E-005	11	1,0105278896	0,8613607825
102	1,000201	1,005055	2,24546E-005	11	1,0183081026	
103	1,000532	1,004763	1,93432E-005	10	1,0102317079	0,8614359641
104	1,000173	1,004354	1,66617E-005	11	1,017824182	0,861372472
105	1,000459	1,004102	1,43514E-005		1,0099685026	0,8613406795
106		1,003751	1,23634E-005		1,0172831332	0,8614769291
107	1,000395	1,003534	0,000010651	11	1,0096997742	0,8614944109
108	1,000129	1,003232	9,1773E-006	11	1,0168006886	0,8616374049

Начальное приближение $x_{\delta} = (-9, 2)$

№ шага	X ₁	X ₂	$F(x_1,x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(F(x_k)/F(x_{k-1})$ с учётом $F(x^*) = 0$
1	1,193546	2,49648	1,898230644	9		` ` `
10	1,045574	1,809314	0,554323131	12		
20	1,022115	1,406166	0,140424907	11		
30	1,010935	1,204205	0,035594079	12		
40	1,005463	1,102786	0,009029635	12		
50	1,002745	1,05177	0,002291852	12		
60	1,001379	1,02608	0,000581867	12		
70	1,000693	1,013141	0,000147784	12		
80	1,000349	1,006623	3,75389E-005	11		
81	1,000747	1,006139	3,27311E-005	12	1,0139407254	0,8719248566
82	1,000304	1,005775	2,85395E-005	12	1,0131915531	0,8719383094
83	1,000651	1,005353	2,48845E-005	12	1,0135699854	0,8719318839
84	1,000265	1,005035	2,16979E-005	12	1,0128670223	0,871944383
85	1,000568	1,004667	1,89193E-005	12	1,0132190779	0,8719415243
86	1,000231	1,00439	1,64966E-005	12	1,0125294718	0,8719455794
87	1,000495	1,00407	0,000014384	12	1,0128480601	0,8719372477
88	1,000202	1,003828	1,25421E-005	12	1,0122348052	0,8719479978
89	1,000432	1,003548	0,000010936	12	1,0125791326	0,871943295
90	1,000176	1,003338	9,5356E-006	12	1,0118889196	0,8719458669

Начальное приближение $x_{\scriptscriptstyle 6} = (-5,364,\,8,778)$

№ шага	x ₁	X ₂	$F(x_1, x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(F(x_k)/F(x_{k-1}) c$ учётом $F(x^*) = 0$
1	2,017374	9,209817	47,120794682	9		
2	2,23243	6,384134	32,33878336	16	0,8088172727	0,686295373
3	1,590425	6,335262	21,456224772	10	0,9832844202	0,6634827456
4	1,767744	4,064649	12,671703746	16	0,6845693792	0,5905840324
5	1,295507	4,027768	7,2663069073	10	0,9671400877	0,5734277768
6	1,4107	2,501084	3,6346254953	15	0,3975331879	0,5002025846
7	1,131298	2,480002	1,7851826915	10	0,8952733469	0,4911600091
8	1,192125	1,664546	0,797476785	18	-0,9306790237	0,4467199849
9	1,055032	1,654317	0,3534949308	11	1,1414441591	0,4432667351
10	1,08341	1,28322	0,1511226757	16	2,9002144729	0,4275101636
11	1,022931	1,278595	0,0644368733	10	1,0448194826	0,4263878535
12	1,03464	1,113289	0,025831464	16	1,6735373915	0,4008801588
13	1,009105	1,11148	0,0103418057	10	1,0269376383	0,4003569329
14	1,013524	1,042591	0,0038940883	16	1,4188358329	0,3765385285
15	1,003409	1,041942	0,0014652756	11	1,0193346303	0,3762820684
16	1,005094	1,016083	0,0005533516	17	1,2884995151	0,3776433594
17	1,001287	1,015835	0,0002089314	10	1,0147098058	0,377574403
18	1,001898	1,005874	7,63594E-005	18	1,2282158929	0,3654759409
19	1,000469	1,005786	2,79002E-005	11	1,0120831678	0,3653800318
20	1,0007	1,002196	1,04283E-005	17	1,1793911762	0,3737715142
21	1,000176	1,002163	0,000003898	10	1,0099177293	0,3737905507

Метод с дроблением шага

Величина шага: 1

Начальное приближение $x_a = (2, 11)$

№ шага	X ₁	X ₂	F(x ₁ ,x ₂)	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(F(x_k)/F(x_{k-1})$ с учётом $F(x^*) = 0$
1	2,5	10,5625	63,59765625	6		
10	1,461211	6,980707	27,73385627	5		
20	0,952778	3,156803	5,102672092	4		
30	1,03566	1,98435	0,856736219	5		
40	1,007995	1,444337	0,184705201	5		
50	1,011533	1,209355	0,037314284	6		
60	1,001078	1,093638	0,008392144	5		
70	1,001827	1,043938	0,001689305	6		
80	1,001215	1,020627	0,000360603	6		
90	1,000136		8,00935E-005	5		
91	1,001082	1,008643	6,53836E-005	6	1,0117091503	,
92	0,999998	1,007834	0,000061429	5	1,0223585449	0,9395169431
93	1,00098	1,007344	0,000048186	6	1,0114995452	0,7844177831
94	1,000428	1,007007	4,14974E-005	6	1,0109962383	0,8611920475
95	1,000896	,	3,58146E-005		1,0217271031	0,8630564806
96	1,000332		3,02546E-005		1,0107052291	,
97	1,000826	1,005299	2,69349E-005	5	1,0209462172	0,8902745368
98	1,00025	1,005071	2,21436E-005	6	1,0104758362	0,8221155453
99	1,000769	1,004499	0,000020584	5	1,0201586055	0,9295688145

100	1,000178	1,004314	1,62979E-005	6	1,010304805	0,7917751652
101	1,00045	1,004067	0,000014079	6	1,0098670103	0,8638536253
102	1,000117	1,003671	1,20904E-005	5	1,0196440568	0,8587541729
103	1,000401	1,003456	1,02581E-005	6	1,009662101	0,8484500099
104	1,000063	1,003124	9,0688E-006	5	1,0189863483	0,8840623507

Начальное приближение $x_6 = (-9, 2)$

№ шага	x ₁	x ₂	F(x ₁ ,x ₂)	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(F(x_k)/F(x_{k-1}) c$ учётом $F(x^*) = 0$
1	3,671875	2,617188	260,83694369	9		
10	1,06425		0,7505647973	6		
20	,		0,1586685111	6		
30	1,001328		0,0359858483			
40	,		0,0071332862			
50	1,002536		0,0015224122	6		
60		•	0,000335481	5		
70	1,000385	,	6,86321E-005			
71	1,000917	,	5,94903E-005		1,0113895115	
72	1,000259	,	5,08011E-005		1,0226054865	·
73	,	·	4,33157E-005		1,0110735993	· ·
74	,		3,79862E-005		1,021771728	-
75		· .	3,16421E-005		1,0107982211	0,8329893488
76	,	,	0,000028803		1,0209339441	0,9102746025
77	1,000657		2,32241E-005		1,0105845277	0,8063083707
78	1,000314	1,004896	2,01876E-005	6	.,	0,8692521992
79	,	1,004362	1,71618E-005	5	1,0203602106	0,8501159127
80	·	·	1,46909E-005		1,009948771	0,856023261
81	1,000547		1,28038E-005		1,0196191429	,
82	,		1,07236E-005		,	0,8375326075
83	1,000506	1,003147	9,6794E-006	5	1,0189513511	0,9026259838

Начальное приближение $x_{\scriptscriptstyle 6} = (-5,364,\,8,778)$

№ шага	X ₁	X ₂	F(x ₁ ,x ₂)	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(F(x_k)/F(x_{k-1}) c$ учётом $F(x^*) = 0$
1	-0,023673	9,090414	103,5835508	8		
10	1,227624	2,609554	2,251746412	5		
20	1,109984	1,732274	0,492138986	5		
30	1,039685	1,348845	0,103268376	6		
40	1,021758	1,155424	0,021885878	5		
50	1,008574	1,073334	0,004618896	6		
60	,	1,032486	,	5		
70	,	1,01531	0,000209325	6		
71	1,000895	1,014609	0,000180323	6	1,0129031788	0,8614498323
72	1,001864	1,013007	0,000155535	5	1,0255332558	0,8625371486
73	,	•	,		1,0125156737	0,8452234607
74	1,001718	1,011048	0,000116915	5	1,0244479978	0,8893421673
75	1,000523	1,010572	9,62062E-005	6	1,0121874489	0,8228751389
76	1,001598	1,009381	8,92822E-005	5	1,0234026222	0,9280295865
77	1,000375	1,008995	7,07927E-005	6	1,0119128012	0,7929094489

78	1,000937	1,00848	6,11859E-005	6	1,0114132816	0,8642967425
79	1,000247	1,007654	5,24944E-005	5	1,0226762783	0,8579492988
80	1,000834	1,007207	4,45757E-005	6	1,0110929286	0,8491515285
81	1,000135	1,006514	3,93501E-005	5	1,0218299758	0,8827702089
82	1,000747	1,006124	3,25894E-005	6	1,010840836	0,8281910338
83	1,000038	1,005545	2,99375E-005	5	1,0209663464	0,9186269155
84	1,000674	1,005203	2,39476E-005	6	1,010657499	0,799919833
85	1,000314	1,004963	0,000020761	6	1,0101992928	0,8669344736
86	1,000614	1,004421	1,77262E-005	5	1,0203798468	0,8538220702
87	1,000246	1,004221	1,51162E-005	6	1,0100059929	0,8527603209
88	1,000564	1,003755	1,32558E-005	5	1,0196715698	0,8769267408
89	1,000188	1,003591	1,10426E-005	6	1,0097682827	0,8330391225
90	1,000522	1,003189	1,00531E-005	5	1,0189893774	0,91039248
91	1,000138	1,003055	8,1053E-006	6	1,0096130325	0,8062488188

Величина шага: 0.1 Начальное приближение $x_a = (2, 11)$

№ шага	X ₁	x ₂	$F(x_1, x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(F(x_k)/F(x_{k-1}) \ c$ учётом $F(x^*) = 0$
1	2,4	10,65	63,1121	3		
10	1,258487	5,8516	19,550519274	2		
20	1,037046	3,124134	4,2244943207	2		
30	1,065627	1,829714	0,5679862431	3		
40	1,021195	1,2904	0,0702709025	3		
50	1,007083	1,095637	0,0076326918	3		
60	1,002335	1,03139	0,0008226867	3		
70	1,000767	1,010291	8,84462E-005	3		
71	1,001206	1,00854	6,66159E-005	1	1,0392252988	0,7531798992
72	1,000613	1,008233	5,66125E-005	3	1,0091980451	0,8498346491
73	1,000964	1,006832	4,26276E-005	1	1,0374080255	0,7529715169
74	1,000018	1,006342	3,97801E-005	2	1,0169355706	0,9332005555
75	1,000631	1,006027	0,000030658	3	1,0089907237	0,770686851
76	1,000015	1,005074	2,54405E-005	1	1,0347756335	0,829816035
77	1,000504	1,004821	0,000019622	3	1,0086526867	0,7712898724
78	1,000013	1,004059	1,62723E-005	1	1,0333014177	0,8292885537
79	1,000403	1,003857	1,25586E-005	3	1,008284841	0,7717778065
80	1,000011	1,003247	1,04094E-005	1	1,0319826185	0,8288662749
81	1,000323	1,003086	8,0377E-006	3	1,0079255864	0,7721578573

Начальное приближение $x_{\delta} = (-9, 2)$

№ шага	X ₁	X ₂	$F(x_{_{1}},x_{_{2}})$	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(F(x_k)/F(x_{k-1}) c$ учётом $F(x^*) = 0$
1	1,1375	2,49375	1,8177500244	6		
10	1,072927	1,500299	0,2282554506	1		
20	1,029864	1,173609	0,0306036858	2		
30	1,009358	1,057111	0,0032190126	1		
40	1,00302	1,018738	0,0003434144	1		
41	1,001273	1,018104	0,0002744009	3	1,0112947304	0,7990372564
42	1,002412	1,014992	0,0002196492	1	1,0444743948	0,80046822
43	1,001019	1,014484	0,000175652	3	1,0106940431	0,7996933292

44	1,001928	1,011995	0,0001405061	1	1,0421218337	0,7999117573
45	1,000815	1,011588	0,0001124354	3	1,0101589723	0,8002172148
46	1,001541	1,009597	8,98885E-005	1	1,0400102859	0,7994679612
47	1,000652	1,009271	7,19679E-005	3	1,0096730032	0,8006352314
48	1,001231	1,007678	5,75105E-005	1	1,0381132307	0,7991132158
49	1,000522	1,007417	4,60642E-005	3	1,0092252056	0,8009702576
50	1,000985	1,006143	3,67975E-005	1	1,0363641238	0,7988307623
51	1,000418	1,005934	2,94835E-005	3	1,0088257563	0,801236497
52	1,000787	1,004914	2,35457E-005	1	1,0348169037	0,798606
53	1,000334	1,004747	1,88707E-005	3	1,0084422534	0,8014499463
54	1,00063	1,003932	1,50668E-005	1	1,0333147949	0,798422952
55	1,000267	1,003798	1,20779E-005	3	1,0081221505	0,801623437
56	1,000503	1,003145	9,6415E-006	1	1,0320413953	0,7982761904

Начальное приближение $x_{\scriptscriptstyle 6} = (-5,364,\,8,778)$

№ шага	X ₁	X ₂	$F(x_1, x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(F(x_k)/F(x_{k-1}) c$ учётом $F(x^*) = 0$
1	3,180524	9,277862	95,795708378	4		
10	1,457619	5,792922	17,64450134	3		
20	1,036142	2,933606	3,4857842506	2		
30	1,024939	1,724284	0,4664242116	1		
40	1,019743	1,26309	0,0576204257	3		
50	1,001004	1,083341	0,0066349518	1		
60	1,000523	1,027333	0,0006964764	1		
65	1,001679	1,016656	0,0002331567	3		
66	1,000289	1,013997	0,0001817406	1	1,04370968	0,7794783508
67	1,001342	1,013326	0,0001492455	3	1,0103764327	0,8212006563
68	1,000235	1,011198	0,0001162059	1	1,0414577335	0,778622471
69	1,001073	1,010662	0,00009553	3	1,0098470144	0,8220752991
70	1,00019	1,008959	7,43172E-005	1	1,0394267787	0,7779461949
71	1,000858	1,00853	6,11459E-005	3	1,0093874698	0,8227691571
72	1,000154	1,007167	4,75353E-005	1	1,0375918869	0,7774078066
73	1,000686	1,006824	3,91368E-005	3	1,0089599594	0,8233207742
74	1,000124	1,005734	3,04085E-005	1	1,0358924292	0,7769797224
75	1,000549	1,00546	2,50493E-005	3	1,0085579759	0,823759804
76	1,0001	1,004587	1,94543E-005	1	1,0343910065	0,776640465
77	1,000439	1,004368	1,60324E-005	3	1,0081966961	0,8241057247
78	1,00008	1,00367	1,24471E-005	1	1,0329563747	0,7763715975
79	1,000351	1,003494	1,02612E-005	3	1,0079113237	0,8243847965
80	1,000064	1,002936	7,9643E-006	1	1,0316334158	0,7761567848

Величина шага: 0.01

Hачальное приближение $x_a = (2, 11)$

№ шага	X,	X ₂	$F(x_1, x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(F(x_k)/F(x_{k-1})$ с учётом $F(x^*) = 0$
1	2,16	10,86	65,28259136	1		
26	1,920236	8,295793	38,1748347	1		
51	1,610845	6,225141	20,64184946	1		

76	1,393253	4,638589	10,36911665	1		
101	1,251222	3,484377	4,944122141	1		
126	1,161071	2,674684	2,27873869	1		
151	1,103947	2,119723	1,027944016	1		
176	1,067485	1,744806	0,45745045	1		
201	1,044016	1,493787	0,201817044	1		
226	1,028803	1,326672	0,088542819	1		
251	1,018892	1,215815	0,038706375	1		
276	1,01241	1,14245	0,016880744	1		
301	1,00816	1,093969	0,007350788	1		
326	1,00537	1,061964	0,00319771	1		
351	1,003535	1,04085	0,001390136	1		
376	1,002328	1,026925	0,00060407	1		
401	1,001533	1,017745	0,000262417	1		
426	1,00101	1,011694	0,000113977	1		
451	1,000665	1,007706	4,94978E-005	1		
476	1,000438	1,005078	2,14942E-005	1		
488	1,000359	1,004157	1,44021E-005	1		
489	1,000353	1,004088	1,39294E-005	1	1,003054922	0,9671783976
490	1,000347	1,00402	1,34723E-005	1	1,003052534	0,9671845162
491	1,000341	1,003954	1,30302E-005	1	1,003004073	0,9671845193
492	1,000336		1,26025E-005	1	1,003041528	0,9671762521
493	1,00033	1,003824	1,21889E-005	1	1,002994589	0,9671811149
494	1,000325	1,003761	1,17889E-005	1	1,002984525	0,9671832569
495	1,000319	1,003699	0,000011402	1	1,002981933	0,9671809923
496	1,000314		1,10279E-005	1	1,003019159	0,9671899667
497	1,000309		1,06659E-005	1	1,002962896	0,9671741673
498	1,000304	1,003518	1,03159E-005	1	1,002953977	0,9671851414
499	1,000299	1,00346	9,9774E-006	1	1,002944269	0,9671865761

Начальное приближение $x_6 = (-9, 2)$

№ шага	X ₁	X ₂	F(x ₁ ,x ₂)	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(F(x_k)/F(x_{k-1}) c$ учётом $F(x^*) = 0$
1	-0,89	•	74,01128841			
26	1,077982		0,6011885332			
51	1,050792		0,2658928985			
76	1,033205		0,1168423304			
101	1,021764	1,248103	0,0511307849	1		
126	1,01429	1,163804	0,022314497	1		
151	1,009394	1,108074	0,0097212652	1		
176	1,00618	1,071273	0,0042301413	1		
201	1,004068	1,04699	0,0018393164	1		
226	1,002679	1,030974	0,0007993571	1		
251	1,001764	1,020414	0,0003472821	1		
276	1,001162	1,013454	0,0001508446	1		
301	1,000766	1,008866	6,55112E-005	1		
326	1,000504	1,005842	2,84486E-005	1		
346	1,000361		1,45961E-005			
347	1,000355	1,004115	1,41171E-005	1	1,0030821279	0,967183014
348	1,000349	1,004047	1,36538E-005	1	1,0030359909	0,96718164
349	1,000344	1,00398	1,32057E-005	1	1,0030288906	0,967181297
350	1,000338	1,003915	1,27723E-005	1	1,0029830878	0,967180838

351	1,000332	1,00385	1,23532E-005	1	1,0030240354	0,9671868027
352	1,000327	1,003786	1,19478E-005	1	1,0030150144	0,9671825924
353	1,000321	1,003723	1,15557E-005	1	1,0030134447	0,9671822428
354	1,000316	1,003662	1,11764E-005	1	1,0029545069	0,9671763718
355	1,000311	1,003601	1,08096E-005	1	1,0029952685	0,9671808454
356	1,000306	1,003542	1,04549E-005	1	1,0029376201	0,9671865749
357	1,000301		1,01118E-005	1	1,0029782101	0,9671828521
358	1,000296	1,003425	9,7799E-006	1	1,0029688458	0,9671769616

Начальное приближение $x_s = (-5,364, 8,778)$

№ шага	X ₁	X ₂	$F(x_1, x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(F(x_k)/F(x_{k-1}) \ c$ учётом $F(x^*) = 0$
1	1,471619	9,17789		1		
26	1,702343	6,852316	•	1		
51	1,455378	5,109295		1		
76	,	3,821564		1		
101	1,186313	2,908839	2,948754016	1		
126	1,119975	2,279199		1		
151	1,077749	1,852121		1		
176	1,050641	1,56546		1		
201	1,033107	1,374313		1		
226		1,247387		1		
251	1,014248	1,16333	0,022185688	1		
276	1,009367	1,107761	0,009665054	1		
301	1,006162	1,071067	0,004205654	1		
326	1,004056	1,046854	0,001828661	1		
351	1,002671	1,030884	0,000794724	1		
376	1,001759	1,020355	0,000345269	1		
401	1,001159	1,013415	0,00014997	1		
426	1,000763	1,00884	6,51313E-005	1		
451	1,000503	1,005825	2,82836E-005	1		
469	1,000372		1,55129E-005	1		
470	1,000366	1,004243	1,50038E-005	1	1,003048869	0,9671821516
471	1,00036	1,004173	1,45114E-005	1	1,003047309	0,9671816473
472	1,000354		1,40352E-005	1	1,003045265	0,9671844205
473	1,000348	1,004036	1,35746E-005	1	1,003042716	0,9671825125
474	1,000343	1,003969	1,31291E-005	1	1,003035718	0,9671813534
475	1,000337	1,003903	1,26982E-005	1	1,003035948	0,9671797762
476			1,22815E-005	1	1,002985071	0,9671843253
477	1,000326	1,003775	1,18785E-005	1	1,003022173	0,9671864186
478			1,14886E-005	1	1,002968633	0,9671759902
479	1,000315		1,11116E-005	1	1,003013863	0,9671848615
480	1,00031		1,07469E-005	1	1,002953474	0,9671784441
481			1,03942E-005	1		0,9671812337
482	1,0003		1,00531E-005	1	1,002935263	0,9671836216
483	1,000295	1,003415	9,7232E-006	1	1,002975962	0,9671842516

Оценка скорости и порядка сходимости методов

При любых начальных точках оценочное значение порядка сходимости метода наискорейшего спуска близки к единице, что подтверждает теоретические сведения. Таким образом, порядок сходимости метода наискорейшего спуска — единица.

Во всех случаях запуска метода наискорейшего спуска выполняется соотношение $|F(x_{k+1}) - F(x^*)| \le 0.88 |F(x_k) - F(x^*)|$. Таким образом, метод наискорейшего спуска сходится с линейной скоростью.

При всех использованных исходных данных исследование метода с дроблением шага показало, что <u>порядок его сходимости равен единице</u>.

Во всех случаях запуска метода с дроблением шага выполнилось соотношение $|F(x_{k+1})-F(x^*)| \le 0.97|F(x_k)-F(x^*)|$. Это говорит о том, что метод сходится с линейной скоростью.

Исследование эффективности метода с дроблением шага и его сравнение с методом наискорейшего спуска.

Начальное приближен ие	Метод наискорейшего спуска		Метод с дроблением шага (нач. шаг равен 1)		Метод с дроблением шага (нач. шаг равен 0.1)		Метод с дроблением шага (нач. шаг равен 0.01)	
	Шагов	Вычисле ний F	Шагов	Вычисле ний F	Шагов	Вычисле ний F	Шагов	Вычисле ний F
(2, 11)	108	1211	104	575	81	165	499	499
(-9, 2)	90	1040	83	465	56	114	358	358
(-5.364, 8.778)	21	277	91	506	80	166	483	483

Выводы

1. Эффективность метода с дроблением шага

Количество шагов метода с дроблением шага, необходимых для достижения заданной точности зависит от начального приближения. В нашем случае точки начальных приближений расположены на одинаковом расстоянии от точки минимума. При этом можно заметить (глядя на изолинии функции F), что методу с дроблением шага требуется тем меньше шагов, чем больше норма градиента минимизируемой функции.

С другой стороны, количество шагов метода с дроблением шага зависит от величины начального шага. Отметим следующее:

- При достаточно малых значениях начального шага метод с дроблением шага обращается в метод с постоянным шагом и не является эффективным.
- При достаточно больших значениях начального шага на каждом шаге требуется большое количество вычислений минимизируемой функции.

Таким образом, наиболее эффективным метод с дроблением шага становится при некотором оптимальном значении начального шага; его увеличение или уменьшение в этом случае снижает эффективность метода.

2. Сравнение метода с дроблением шага и метода наискорейшего спуска

Отметим основные различия:

- 1. В общем случае метод наискорейшего спуска (МНС) сходится за значительно меньшее число шагов, чем метод с дроблением шага (МДШ).
- 2. Однако, для МНС можно подобрать такие данные, при которых необходимая точность достигается за большое число шагов; МДШ в этом смысле более предсказуем.
- 3. На каждом шаге (и в целом) MHC требует большее количество вычислений, чем МДШ.

Таким образом МНС в среднем эффективнее, чем МДШ, но, с другой стороны, МДШ менее ресурсоёмок и более предсказуем.