PRVI ISPITNI ROK IZ ELEKTRONIKE 2

ZADATAK 1. (8 bodova) Za diferencijsko pojačalo sa slike zadano je $U_{CC} = U_{EE} = 12 \text{ V}$, $R_g = 500 \Omega$, $R_C = 1 \text{ k}\Omega$, $R_E = 2 \text{ k}\Omega$ i $R_T = 100 \Omega$. Tranzistori T_1 i T_2 imaju jednake parametre $\beta \approx h_{fe} = 100$ i $U_{\gamma} = 0.7 \text{ V}$. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

- a) Izračunati struje I_{CQ} i napone U_{CEQ} za oba tranzistora u statičkoj radnoj točki (3 boda).
- b) Izračunati izlaznu struju ako je $u_g = 20 \sin \omega t$ mV (5 bodova).

ZADATAK 2. (9 bodova) Za pojačalo na slici zadano je $U_{DD}=12~\rm{V}$, $R_g=1~\rm{k}\Omega$, $C_G=40~\rm{nF}$, $R_G=1~\rm{M}\Omega$, $R_S=1~\rm{k}\Omega$, $C_S=2~\rm{\mu F}$ i $R_T=4~\rm{k}\Omega$. Parametri FET-a su $I_{DSS}=12~\rm{mA}$ i $U_P=-6~\rm{V}$. Zanemariti porast struje odvoda s naponom u_{DS} u području zasićenja.

- a) Izračunati struju I_{DQ} i napone U_{GSQ} i U_{DSQ} u statičkoj radnoj točki **(2 boda)**.
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku niskofrekvencijsku analizu (2 boda).
- c) Izračunati pojačanje $A_{Vg} = U_{iz}/U_g$ na srednjim frekvencijama (2 boda).
- d) Izračunati donju graničnu frekvenciju pojačanja A_{Vg} (3 boda).

ZADATAK 3. (9 bodova) Za pojačalo na slici zadano je: U_{CC} = 12 V , R_g = 500 Ω , C_B = 2 μF , R_I = 400 kΩ , R_Z = 100 kΩ , R_E = 500 Ω , R_E = 100 μF , R_T = 4 kΩ i R_T = 10 pF . Parametri tranzistora su R_T = 100 , R_T = 100 pF . Parametri tranzistora su R_T = 100 , R_T = 100 pF . Zanemariti porast struje kolektora s naponom R_T u normalnom aktivnom području. Naponski ekvivalent temperature R_T = 25 mV .

- a) Izračunati struju I_{CQ} i napon U_{CEQ} u statičkoj radnoj točki (2 boda).
- Nacrtati nadomjesnu shemu pojačala za dinamičku visokofrekvencijsku analizu (2 boda).
- c) Izračunati pojačanje $A_{Vg} = U_{iz}/U_g$ na srednjim frekvencijama (2 boda).
- d) Izračunati gornju graničnu frekvenciju pojačanja A_{Vg} (3 boda).

ZEMRIS 10. 7. 2020.

ZADATAK 4. (10 bodova) Za pojačalo na slici zadano je $U_{CC} = 12 \text{ V}$, $R_C = 2 \text{ k}\Omega$, $R_B = 150 \text{ k}\Omega$, $R_E = 2 \text{ k}\Omega$ i $R_T = 500 \Omega$. Parametri tranzistora su $\beta_1 \approx h_{fe_1} = 100$, $\beta_2 \approx h_{fe_2} = 100$ i $U_{\gamma} = 0.7 \text{ V}$. Zanemariti serijski otpor baze $r_{bb'}$ i porast struja kolektora s naponima u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

- a) Izračunati struje I_{CQ} i napone U_{CEQ} za oba tranzistora u statičkoj radnoj točki (2 boda).
- b) Odrediti tip povratne veze i nacrtati A-granu pojačala za mali signal uzevši u obzir opterećenje β -grane (2 boda).
- c) Odrediti pojačanje A-grane (4 boda).
- d) Odrediti koeficijent povratne veze β (1 bod).
- e) Odrediti pojačanja $A_{Vf} = u_{iz}/u_{ul}$ i $A_{If} = i_{iz}/i_{ul}$ (1 bod).

ZADATAK 5. (6 bodova) U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala i koeficijent povratne veze su

$$A(j\omega) = \frac{10^4}{\left(1 + j\omega/10^4\right)^2 \left(1 + j\omega/10^6\right)}, \qquad \beta(j\omega) = \beta_0 \frac{1 + j\omega/10^5}{1 + j\omega/10^6},$$

Grafičkim postupkom crtanjem Bodeovog dijagrama odrediti β_0 uz koje će pojačalo biti stabilno s faznim osiguranjem $F.O. = 45^{\circ}$. Koliko je pri tome amplitudno osiguranje?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka. (Bodeov dijagram – **4 boda**, određivanje β_0 – **1 bod**, A.O. – **1 bod**)

ZADATAK 6. (8 bodova) Analogno-digitalnim pretvornikom napona u frekvenciju digitalizira se istosmjerni napon od 3 V. Vremenska konstanta integratora ulaznog napona je 210 μ s, a trajanje izbijanja kondenzatora integratora je zanemarivo. Napon komparacije je $-U_{ref} = -4$ V.

- a) Nacrtajte blok shemu pretvornika i vremenski dijagram jednog ciklusa pretvorbe (2 boda).
- b) Odredite stanje brojila ako se impulsi na izlazu iz komparatora broje u vremenskom intervalu trajanja 60 ms (2 boda).
- c) Odredite relativnu pogrešku pretvorbe u slučaju vremenskog intervala kao pod b) (2 boda).
- d) Odredite stanje brojila ako je smetnja pravokutnog valnog oblika amplitude 360 mV i perioda 100 ms sinkronizirana s početkom pretvorbe (2 boda).

Popis složenijih formula:

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2 \left(1 + \lambda u_{DS} \right)$$

$$i_C = \beta I_B \left(1 + \frac{u_{CE}}{U_A} \right)$$