Rootfinding

Bisection Method

Exercise 1: Compute by hand (and a calculator) the first 5 steps of the bisection method to find the smallest root of $x = e^{-x}$. Start with the interval [0, 2]

Exercise 2: Write a function that take into argument a function, an interval, a tolerance, and return zero of the function using the bisection method.

To test your function: compute the root of $f(x) = x^6 - x - 1.0$ on the domain [1, 2] using the bisection method with tolerance $5 \cdot 10^{-4}$. It should take 11 iterations and the root is 1.1342773437

Exercise 3: Use bisection method and graph of f(x) to find all the roots of

$$f(x) = 32x^6 - 48x^4 + 18x^2 - 1$$

within 10^{-10} accuracy.

Exercise 4: Let α be the largest root of

$$f(x) = e^x - x - 2$$

Find an interval [a, b] containing α and for which the bisection method will converge to α . Then estimate the number of iterates needed to find α within an accuracy of $5 \cdot 10^{-8}$. Then compute the root using your bisection function and see how many iterations was needed.

Newton's Method

Exercise 5: Write a function that take into argument a function, its derivative, an initial guess, a tolerance, a maximum number of iteration and return the zero of the function using Newton's method.

To test your function: compute the root of $f(x) = x^6 - x - 1.0$ using Newton's method with tolerance 10^{-10} and with starting point 1.0. It should take 6 iterations and the root is 1.1347

Exercise 6: The equation

$$x + e^{-Bx^2}\cos(x)$$

has a unique root in the interval [-1,1]. Use Newton's method to find it as accurately as possible. Use the values of B=1,5,10,25,50. What should be a good choice for x0? Explain the behavior observed in the iterates for the larger values of B.

Exercise 7: Solve the equation

$$x^3 - 3x^2 + 3x - 1 = 0$$

using Newton's method. (as accurately as possible)

Exercise 8: Give Newton's method for finding $\sqrt[m]{a}$, with a > 0 and m a positive integer. Apply it to finding $\sqrt[m]{2}$ for m = 3, 4, 5, 6, 7, 8, say to six significant digits.

Exercise 9: For $x^6 - x - 1.0 = 0$, compute the convergence of the Newton's method with initial guess 2.0 and comparing it to the solution 1.13472. Plot in the x axis the iteration number and in the y axis $\log |\alpha - x_n|$, what slope do you expect? (look mostly at the first 10 iterations)

Secant's Method

Exercise 10: Solve the equation

$$x^3 - 3x^2 + 3x - 1 = 0$$

using the secant's method. (as accurately as possible)

Exercise 11: For $x^6 - x - 1.0 = 0$, compute the convergence of the secant's method with initial guesses 1.9 and 2.0, then comparing it to the solution 1.13472. Plot in the x axis the iteration number and in the y axis $\log |\alpha - x_n|$, what slope do you expect? (look mostly at the first 10 iterations)

Fixed point

Exercise 12: Use fixed point iteration to solve the following equation for $x \in [-2, 2]$

$$x = 1 + 2\sin(x)$$

Exercise 13: Convert the equation $x^2 - 5 = 0$ to the fixed-point problem

$$x = x + c(x^2 - 5)$$

with c a non zero constant. Determine the possible values of c to ensure convergence. (The true solution is $\alpha = \sqrt{5}$.