

Objectives

- Model GPP for one plant functional type using local and/or remote sensed data.

- Do models generalize through time and across functional types?

Methods - Data selection

Methods - Data selection

Methods - CO2 flux partitioning

(GPP, Reco) = P(NEE, env) $GPP = mean(P_{NT}, P_{DT})$

In white: QC < 0.5

In white: QC < 0.5

In white: QC < 0.5 \rightarrow 172k samples

Methods - Feature selection

Measured

- Temperature*
- VPD*
- Precipitation*
- Atmospheric pressure
- Wind speed
- SW incoming radiation
- LW incoming radiation
- Latent heat flux
- Sensible heat flux
- LAI
- FPAR

Computed

- apar = FPAR * SW_in
- Temperature squared
- Daylength
- Solar altitude

* With rolling windows for atemporal models (see next slide).

Note: I discarded Reco as modelling the flux partitioning methods was not the goal. But why not use NEE??

Methods - Atemporal vs temporal

Atemporal models

Added context to the data with 1 and 4 weeks averaging rolling windows for:

- temperature
- precipitation
- vapor deficit

Temporal models

- Split data in blocs of 64 contiguous days.
- Discard any bloc which contains any sample not meeting the QC criteria.

 $221k \rightarrow 172k$

 $221k \rightarrow 172k \rightarrow 92k$

Methods - Weight based alternative

- weight = $\sum w_i Q_i$
- weight_2 = $(GPP+1)^2 \cdot \sum w_i Q_i$
- \rightarrow Same results as with atemporal models.
- → Might be worth to try with temporal models (saves a lot of data!)
- → Not used in the remaining of this presentation.

ML Models

Baseline (mean)

2-parameter models

- Ridge 2p (FPAR & LAI)
- kNN 2p (PCA)

Atemporal models

- Ridge
- Random forest
- SVR
- DNN (1 and 2 hidden layers)

Temporal models

- LSTM
- LSTM + Dense

ML Models - Strategy

- Train-validate / Test splits: 0.7/0.3 with shuffling
- No outlier detection
- Scaling: Quantile transform due to heavy bias
- Grid search with CV
 - 3 splits (shuffle split): 0.7/0.3
 - metric: -MAE
- Tuning hyperparameters two by two, focusing on not overfitting.

Results - All models

Results - All models

- Different meteorological patterns??
- Hidden variable??
 - Different species? Age, density?
 - Different altitude (photorespiration)?
 - Soil composition, pH, temperature, ...
- Time-dependent behavior?

Error per site

Results - Cross type generalization

Results - Cross type generalization

Results - Cross type generalization

Results - Unfair comparison with the paper

My two cents

- For DNN, 700 years = 250k samples
- For LSTM, 700 years = 700 (1-year) samples
- \rightarrow Not enough data to train LSTM on long time windows.

My two cents

- For DNN, 700 years = 250k samples
- For LSTM, 700 years = 700 (1-year) samples
- \rightarrow Not enough data to train LSTM on long time windows.

 \rightarrow Try 1d-CNN on half-hourly data?

A nice read

Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks
2020, Tramontana et al.

https://doi.org/10.1111/gcb.15203

Notebooks: https://github.com/marcadella/GPP-prediction