"P0"

NESTOR RODRIGUEZ

January 2022

Resumen

Practica sencilla y unica de un demo del uso de LATEX en Overleaf.

1. Introducción

Esta practica es un ejemplo de como realizar los reportes de nuestras tareas. Vamos a incluir una ecuacion (1):

$$f(x) = 10 \tanh(x) - \int_0^\infty \frac{5}{10+x} dx.$$
 (1)

Tambien podemos citar fuentes. Al final se incluye la figura de una orquidea en la figura 1. Vamos a aprender ademas a citar fuentes [?]. Se incluye unas tablas 1 con algunos datos y en la figura [?] 1 hay una orquidea.

Figura 1: orchid recuperada de https://www.floresyplantas.net/orquidea-cymbidium/ con licencia CC.

2. Creacion de tablas y cuadros

En esta sección se aprende a crear tablas y cuadros.

Cuadro 1: Cuadro comparativo de reacciones químicas

NP Permanganato de sodio	β	8.2230
NP Oxido de gadolinio	α	236.9102
NP Titanato de Bario	Γ	15.5690
NP Silicato de Calcio	ϵ	89.1691
NP Nanocelulosa	Δ	321.7810
NP Hidrato Cloruro de Magnesio	Ω	101.3010

Cuadro 2: Tablas.							
Dato 1	Dato 2	Ω	Dato 3				
NP 1	NP 2	π	NP 3				
Resultado 1	Resultado 2	α	Resultado 3				

2.1. Midiendo en R

Se demostrará las secuencias donde se muestra la tabla de las mediciones en los siguientes parámetros logrando el tamaño en nanometros en medición R.

Cuadro 3: Medidas de tiempo y tamaño en R

Matrices	Datos	Tiempo (s)	Tamaño (nm)	Observaciones	
1	9560	< 0.01	8024703	El dato resultado es menor a 1.09	
2	120	< 1.20	3780164	El dato resultado es mayor a 1.20	
3	2360	1.03	9113822	El dato resultado es menor a 1.03	
4	2048	< 2.40	1265499	El dato resultado es mayor a 2.40	
5	4096	3.01	4708691	El dato resultado es menor a 1	
6	9600	1.02	9410875	El dato resultado es mayor a 1	
7	9900	4.20	9782103	El dato resultado es igual a 2.0	
8	9703	4.90	9587023	El dato resultado es mayor a 4.0	
9	9380	5.10	9032458	El dato resultado es mayor a 5.0	
10	9060	5.94	7598013	El dato resultado es mayor a 1.0	
11	9799	5.85	8712039	El dato resultado es mayor a 1.0	

2.2. Midiendo en Python

Se observa la siguiente tabla en la distribucion de la medicion en los vectores en Python.

3. Grafica

En esta parte se aprenderá a como utilizar y hacer una grafica en LATEX

Cuadro 4: Mediciones en tiempo, tamaño y real en Python

Datos	Tiempo (s)	Tamaño (nm)	Real
1	9560	< 0.01	8024703
2	120	< 1.20	3780164
3	2360	1.03	9113822
4	2048	< 2.40	1265499
5	4096	3.01	4708691
6	9600	1.02	9410875
7	9900	4.20	9782103
8	9703	4.90	9587023
9	9380	5.10	9032458
10	9060	5.94	7598013
11	9799	5.85	8712039

Absorbancia de la corrosion de H2SO4 con la Temperatura

4. Conclusion

En general todo el desarrollo de este documento me sirvió de práctica que me permitió explorar más a fondo las funciones que tiene el programa, además de familiarizarme con su interfaz, comandos y también obtuve más práctica con este programa. Aún así mismo considero que aún tengo mucho que aprender en cuanto a programación de códigos, dado que tuve muchas dificultades, batalle pero se logro el objetivo para aprender en esta parte para trabajar en Overleaf.

5. Referencias

@articleejemplo, author = Autor, title = Título, journal = Nombre de la revista, year = 2020, volume = 15, number = 10, pages = 562–597, doi = 10.123/lolno @articleotroejemplo, author = Autor2, title = Título2, journal = Nombre de la revista2, year = 2021, volume = 20, number = 15, pages = 562–597, doi = 10.123/lolno