Vorlesung Deterministische Signale und Systeme

Marius Pesavento

Copyright

- The presented material is part of a lecture taught at Technische Universität Darmstadt.
- The lecture material is only intended for the students of the class.
- All lecture material, figures and content is used under the legal framework of §60a UrhG.
- Dissemination or disclosure of material of this course (pdf documents, videos, animations, and others) in part of as a whole in not permitted.

Übergang zur Einseitige Laplace Transformation

- FT als Instrument für Analyse von LTI Systemen kennengelernt.
- Fourieranalyse von Systemen mit periodischen Eingängen nur mithilfe verallgemeinerten Funktionen.
- Bei Analyse von **instabilen Systemen** stößt FT an ihre Grenzen, da Impulsantwort nicht absolut integrierbar.
- In diesem Fall kann die Frequenzbereichsanalyse mithilfe der Laplace Transformation (LT) durchgeführt werden.
- Die LT kann als Verallgemeinerung der FT aufgefasst werden, bei der $j\omega$ durch $p = \sigma + j\omega$ ersetzt wird.
- Berechnung der LT auch in Fällen möglich, in denen die FT nicht existiert.

Beidseitige LT

Beidseitige LT X(p) eines Signals x(t) definiert als

$$X(p) = \int_{-\infty}^{\infty} x(t)e^{-pt} dt$$

wobei $p = \sigma + i\omega$.

Beidseitige LT als FT, wenn $y(t; \sigma) = x(t)e^{-\sigma t}$ gewählt wird und $Y(\omega; \sigma) = \mathcal{F}\{y(t; \sigma)\}.$

$$X(p) = \int_{-\infty}^{\infty} x(t)e^{-pt} dt \bigg|_{p=\sigma+j\omega} = \int_{-\infty}^{\infty} y(t;\sigma)e^{-j\omega t} dt = Y(\omega;\sigma)$$

Beidseitige LT $X(p)|_{p=\sigma+i\omega}$ des Signals x(t) entspricht FT des Signals $x(t)e^{-\sigma t}$.

Andererseits erhält man das Signal $X(\omega)$ aus der LT für $\text{Re}\{p\} = \sigma = 0$.

Konvergenz der beidseitigen LT

Aus den Konvergenzbedingungen der FT ergibt sich für beidseitige LT:

$$\int_{-\infty}^{\infty} |x(t)| e^{-\sigma t} \, \mathrm{d}t < \infty,$$

für ein beliebiges endliches σ .

Beidseitige LT konvergiert somit lediglich für bestimmte Werte von $\sigma = \text{Re}\{p\}.$

Der Bereich der Werte in der komplexen Ebene, für die X(p) konvergiert, wird Konvergenzbereich (KB) genannt.

Konvergenz der LT

Beispiel: $x(t) = e^{-at}u(t)$

Abbildung: Konvergenzbereich a) a > 0 und b) a < 0.