Введение в байесовский вывод

Сергей Николенко Академия MADE — Mail.Ru 30 января 2021 г.

Random facts:

- 30 января Международный день круассана; впервые навеянную турецким флагом выпечку сделали в империи Габсбургов (Австрии) в 1683 году
- 30 января 1703 г. в Эдо сорок семь ронинов, бывших вассалов клана Ако, отомстили Кире Кодзукэ-но-Сукэ, придворному сёгуна Токугавы Цунаёси, за смерть своего господина. даймё Асано Такуми-но-Ками Наганори
- 30 января 1930 г. вышло постановление Политбюро ЦК ВКП(б) «О мероприятиях по ликвидации кулацких хозяйств в районах сплошной коллективизации», положившее начало политике раскулачивания
- 30 января 1969 г. прошёл последний импровизированный концерт The Beatles на крыше здания студии Apple Corps, на Savile Row в Лондоне
- 30 января 1945 г. после торпедной атаки подводной лодки С-13 под командованием А.И.
 Маринеско у берегов Польши затонул «Вильгельм Густлофф» десятипалубное круизное судно, полное беженцев из Германии; по некоторым оценкам, погибло почти 10000 человек, что делает это самым кровавым кораблекрушением в истории

Байесовский вывод

для монетки

ML vs. MAP

• Итак, в статистике обычно ищут *zunomesy максимального* правдоподобия (maximum likelihood):

$$\theta_{ML} = \arg \max_{\theta} p(D \mid \theta).$$

• В байесовском подходе ищут апостериорное распределение (posterior)

$$p(\theta|D) \propto p(D|\theta)p(\theta)$$

и, возможно, максимальную anостериорную гипотезу (maximum a posteriori):

$$\theta_{MAP} = \arg \max_{\theta} p(\theta \mid D) = \arg \max_{\theta} p(D \mid \theta) p(\theta).$$

1

Постановка задачи

• Простая задача вывода: дана нечестная монетка, она подброшена *N* раз, имеется последовательность результатов падения монетки. Надо определить её «нечестность» и предсказать, чем она выпадет в следующий раз.

Постановка задачи

• Если у нас есть вероятность p_h того, что монетка выпадет решкой (вероятность орла $p_t=1-p_h$), то вероятность того, что выпадет последовательность s, которая содержит n_h решек и n_t орлов, равна

$$p(s|p_h) = p_h^{n_h} (1 - p_h)^{n_t}.$$

- Сделаем предположение: будем считать, что монетка выпадает равномерно, т.е. у нас нет априорного знания p_h .
- Теперь нужно использовать теорему Байеса и вычислить скрытые параметры.

- Правдоподобие: $p(p_h|s) = \frac{p(s|p_h)p(p_h)}{p(s)}$.
- Здесь $p(p_h)$ следует понимать как непрерывную случайную величину, сосредоточенную на интервале [0,1], коей она и является. Наше предположение о равномерном распределении в данном случае значит, что априорная вероятность $p(p_h) = 1$, $p_h \in [0,1]$ (т.е. априори мы не знаем, насколько нечестна монетка, и предполагаем это равновероятным). А $p(s|p_h)$ мы уже знаем.
- Итого получается:

$$p(p_h|s) = \frac{p_h^{n_h}(1-p_h)^{n_t}}{p(s)}.$$

• Итого получается:

$$p(p_h|s) = \frac{p_h^{n_h}(1-p_h)^{n_t}}{p(s)}.$$

 $\cdot p(s)$ можно подсчитать как

$$p(s) = \int_0^1 p_h^{n_h} (1 - p_h)^{n_t} dp_h =$$

$$= \frac{\Gamma(n_h + 1)\Gamma(n_t + 1)}{\Gamma(n_h + n_t + 2)} = \frac{n_h! n_t!}{(n_h + n_t + 1)!},$$

но найти $\arg\max_{p_h} p(p_h \mid s) = \frac{n_h}{n_h + n_t}$ можно и без этого.

• Итого получается:

$$p(p_h|s) = \frac{p_h^{n_h}(1-p_h)^{n_t}}{p(s)}.$$

• Но это ещё не всё. Чтобы предсказать следующий исход, надо найти p(heads|s):

$$p(\text{heads}|s) = \int_0^1 p(\text{heads}|p_h)p(p_h|s)dp_h =$$

$$= \int_0^1 \frac{p_h^{n_h+1}(1-p_h)^{n_t}}{p(s)}dp_h =$$

$$= \frac{(n_h+1)!n_t!}{(n_h+n_t+2)!} \cdot \frac{(n_h+n_t+1)!}{n_h!n_t!} = \frac{n_h+1}{n_h+n_t+2}.$$

• Получили правило Лапласа.

• Итого получается:

$$p(p_h|s) = \frac{p_h^{n_h}(1-p_h)^{n_t}}{p(s)}.$$

- Это была иллюстрация двух основных задач байесовского вывода:
 - 1. найти апостериорное распределение на гипотезах/параметрах:

$$p(\theta \mid D) \propto p(D|\theta)p(\theta)$$

(и/или найти гипотезу максимального правдоподобия $\arg\max_{\theta} p(\theta \mid D)$);

2. найти апостериорное распределение исходов дальнейших экспериментов:

$$p(x \mid D) \propto \int_{\theta \in \Theta} p(x \mid \theta) p(D|\theta) p(\theta) d\theta.$$

Сопряжённые априорные

распределения

Напоминание

- Напоминаю, что основная наша задача как обучить параметры распределения и/или предсказать следующие его точки по имеющимся данным.
- В байесовском выводе участвуют:
 - $p(x \mid \theta)$ правдоподобие данных;
 - \cdot $p(\theta)$ априорное распределение;
 - $p(x) = \int_{\Theta} p(x \mid \theta) p(\theta) d\theta$ маргинальное правдоподобие;
 - $p(\theta \mid x) = \frac{p(x|\theta)p(\theta)}{p(x)}$ апостериорное распределение;
 - $p(x' \mid x) = \int_{\Theta} p(x' \mid \theta) p(\theta \mid x) d\theta$ предсказание нового x'.
- · Задача обычно в том, чтобы найти $p(\theta \mid x)$ и/или $p(x' \mid x)$.

Априорные распределения

- Когда мы проводим байесовский вывод, у нас, кроме правдоподобия, должно быть ещё априорное распределение (prior distribution) по всем возможным значениям параметров.
- Мы раньше к ним специально не присматривались, но они очень важны.
- Задача байесовского вывода как подсчитать $p(\theta \mid x)$ и/или $p(x' \mid x)$.
- Но чтобы это сделать, сначала надо выбрать $p(\theta)$. Как выбирать априорные распределения?

Сопряжённые априорные распределения

- Разумная цель: давайте будем выбирать распределения так, чтобы они оставались такими же и *a posteriori*.
- · До начала вывода есть априорное распределение $p(\theta)$.
- После него есть какое-то новое апостериорное распределение $p(\theta \mid x)$.
- Я хочу, чтобы $p(\theta \mid x)$ тоже имело тот же вид, что и $p(\theta)$, просто с другими параметрами.

Сопряжённые априорные распределения

- Не слишком формальное определение: семейство распределений $p(\theta \mid \alpha)$ называется семейством сопряжённых априорных распределений для семейства правдоподобий $p(x \mid \theta)$, если после умножения на правдоподобие апостериорное распределение $p(\theta \mid x, \alpha)$ остаётся в том же семействе: $p(\theta \mid x, \alpha) = p(\theta \mid \alpha')$.
- α называются zunepnapamempamu (hyperparameters), это «параметры распределения параметров».
- Тривиальный пример: семейство всех распределений будет сопряжённым чему угодно, но это не очень интересно.

Сопряжённые априорные распределения

- Разумеется, вид хорошего априорного распределения зависит от вида распределения собственно данных, $p(x \mid \theta)$.
- Сопряжённые априорные распределения подсчитаны для многих распределений, мы приведём несколько примеров.

Испытания Бернулли

- Каким будет сопряжённое априорное распределение для бросания нечестной монетки (испытаний Бернулли)?
- Ответ: это будет бета-распределение; плотность распределения нечестности монетки θ

$$p(\theta \mid \alpha, \beta) = \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)}.$$

Испытания Бернулли

 \cdot Плотность распределения нечестности монетки heta

$$p(\theta \mid \alpha, \beta) = \frac{\theta^{\alpha-1} (1-\theta)^{\beta-1}}{B(\alpha, \beta)}.$$

• Тогда, если мы посэмплируем монетку, получив s орлов и f решек, получится

$$p(s, f \mid \theta) = {s + f \choose s} \theta^{s} (1 - \theta)^{f}, \ \mathsf{M}$$

$$p(\theta|s,f) = \frac{\binom{s+f}{s}\theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}/B(\alpha,\beta)}{\int_0^1 \binom{s+f}{s}x^{s+\alpha-1}(1-x)^{f+\beta-1}/B(\alpha,\beta)dx} = \frac{\theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}}{B(s+\alpha,f+\beta)}.$$

Испытания Бернулли

• Итого получается, что сопряжённое априорное распределение для параметра нечестной монетки θ – это

$$p(\theta \mid \alpha, \beta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$$
.

• После получения новых данных с s орлами и f решками гиперпараметры меняются на

$$p(\theta \mid s + \alpha, f + \beta) \propto \theta^{s+\alpha-1} (1-\theta)^{f+\beta-1}$$
.

• На этом этапе можно забыть про сложные формулы и выводы, получилось очень простое правило обучения (под обучением теперь понимается изменение гиперпараметров).

Бета-распределение

Мультиномиальное распределение

- Простое обобщение: рассмотрим мультиномиальное распределение с n испытаниями, k категориями и по x_i экспериментов дали категорию i.
- Параметры θ_i показывают вероятность попасть в категорию i:

$$p(x \mid \theta) = \binom{n}{x_1, \dots, x_n} \theta_1^{x_1} \theta_2^{x_2} \dots \theta_k^{x_k}.$$

• Сопряжённым априорным распределением будет распределение Дирихле:

$$p(\theta \mid \alpha) \propto \theta_1^{\alpha_1-1}\theta_2^{\alpha_2-1}\dots\theta_k^{\alpha_k-1}.$$

Мультиномиальное распределение

• Сопряжённым априорным распределением будет распределение Дирихле:

$$p(\theta \mid \alpha) \propto \theta_1^{\alpha_1-1} \theta_2^{\alpha_2-1} \dots \theta_k^{\alpha_k-1}.$$

Упражнение. Докажите, что при получении данных x_1, \dots, x_k гиперпараметры изменятся на

$$p(\theta \mid X, \alpha) = p(\theta \mid X + \alpha) \propto \theta_1^{x_1 + \alpha_1 - 1} \theta_2^{x_2 + \alpha_2 - 1} \dots \theta_k^{x_k + \alpha_k - 1}.$$

Распределение Дирихле

Еще немного про вероятности

Зачем нужны вероятностные модели

- Зачем нужны вероятностные модели? Апостериорные вероятности помогают:
 - · добавить опцию «я не знаю»;
 - минимизировать риск, учесть разные веса ошибок;
 - перебалансировать классы или по-другому добавить априорные вероятности;
 - комбинировать модели (например, наивным Байесом)...
- Понимание смысла помогает:
 - понимать границы применимости, предположения, которые делают модели;
 - обобщать и переносить идеи моделей на другие задачи;
 - содержательно интерпретировать происходящее.

Байес в жизни

- (1) Прокурор указал, что O.J. Simpson уже бил жену в прошлом. Адвокат ответил: «Убивают только одну из 2500 женщин, подвергавшихся семейному насилию, так что это вообще нерелевантно». Суд согласился с адвокатом; верно ли это рассуждение?
- (2) У Салли Кларк погибли два младенца; прокурор указал, что вероятность двух случаев SIDS в одной семье, которую он получил из статистики одиночных случаев, около 1 из 73 миллионов; в чём он не прав?

• И ещё один очень любопытный пример, о котором я узнал... с сайта sports.ru:

- В баскетболе (и других видах спорта) есть устойчивая вера в «горячую руку» (hot hand)
- В 1985 году Гилович, Валлоне и Тверски (тот самый!) решили её опровергнуть, показать, что это всё cognitive bias
- Они изучили статистику из матчей, в том числе штрафных, а также сделали контролируемый эксперимент, и нигде не было статистически значимой разницы

TABLE 3
Probability of Making a Second Free Throw Conditioned on the Outcome of the First
Free Throw for Nine Members of the Boston Celtics during the 1980–1981 and
1981–1982 Seasons

Player	$P(H_2/M_1)$	$P(H_2/H_1)$	Serial correlation r
Larry Bird	.91 (53)	.88 (285)	032
Cedric Maxwell	.76 (128)	.81 (302)	.061
Robert Parish	.72 (105)	.77 (213)	.056
Nate Archibald	.82 (76)	.83 (245)	.014
Chris Ford	.77 (22)	.71 (51)	069
Kevin McHale	.59 (49)	.73 (128)	.130
M. L. Carr	.81 (26)	.68 (57)	128
Rick Robey	.61 (80)	.59 (91)	019

• Баскетболисты всерьёз не приняли, конечно

• А надо было? Давайте проверим...

- Оказывается, на самом деле в этих экспериментах надо было ожидать куда меньший процент попаданий, чем $\frac{1}{2}$!
- Miller, Sanjurjo (2016, 2018):

• Стоп, как это так? Gambler's fallacy теперь не fallacy? Все в казино?

- Нет, на рулетке так не выиграть, конечно. Этот результат связан с тем, что мы выбираем конечную последовательность опытов и фиксируем её заранее, а потом уже считаем streaks
- Становится более интуитивно, если разобрать N=3
- А вообще это уже не очень простой результат, но давайте попробуем интуицию выработать: рассмотрим последовательность испытаний Бернулли X_1, \dots, X_n с вероятностью успеха p

- Пусть D данные, $\hat{p}_k(D)$ оценка вероятности успеха после k успехов подряд, а $I_k(D)$ множество бросков сразу после k успехов подряд, т.е. $I_k(D) = \left\{t \mid \prod_{i=t-k}^{t-1} X_i = 1\right\}$.
- Нам нужно оценить $\mathbb{E}\left[\hat{p}_k(D) \mid I_k(D) \neq \emptyset\right]$. Доказательство идёт так (это только outline!):
 - сначала покажем, что

$$\mathbb{E}\left[\hat{p}_k(D) \mid I_k(D) \neq \emptyset\right] = p\left(X_{\tau} = 1 | I_k(D) \neq \emptyset\right),\,$$

где τ выбран равномерно из $I_k(D)$;

- Пусть D данные, $\hat{p}_k(D)$ оценка вероятности успеха после k успехов подряд, а $I_k(D)$ множество бросков сразу после k успехов подряд, т.е. $I_k(D) = \left\{t \mid \prod_{i=t-k}^{t-1} X_i = 1\right\}$.
- Нам нужно оценить $\mathbb{E}\left[\hat{p}_k(D) \mid I_k(D) \neq \emptyset\right]$. Доказательство идёт так (это только outline!):
 - дальше по теореме Байеса:

$$p(X_{t} = 1 | \tau = t, I_{k}(D) \neq \emptyset) = p\left(X_{t} = 1 | \tau = t, \prod_{i=t-k}^{t-1} X_{i} = 1\right) \propto$$

$$p\left(\tau = t | X_{t} = 1, \prod_{i=t-k}^{t-1} X_{i} = 1\right) p\left(X_{t} = 1 | \prod_{i=t-k}^{t-1} X_{i} = 1\right) =$$

$$p\left(\tau = t | X_{t} = 1, \prod_{i=t-k}^{t-1} X_{i} = 1\right) \times p;$$

- Пусть D данные, $\hat{p}_k(D)$ оценка вероятности успеха после k успехов подряд, а $I_k(D)$ множество бросков сразу после k успехов подряд, т.е. $I_k(D) = \left\{t \mid \prod_{i=t-k}^{t-1} X_i = 1\right\}$.
- Нам нужно оценить $\mathbb{E}\left[\hat{p}_k(D)\mid I_k(D)\neq\emptyset\right]$. Доказательство идёт так (это только outline!):
 - а теперь осталось заметить, что

$$p\left(\tau = t | X_t = 1, \prod_{i=t-k}^{t-1} X_i = 1\right) < p\left(\tau = t | X_t = 0, \prod_{i=t-k}^{t-1} X_i = 1\right),$$

потому что если $X_t=0$, то следующие k бросков точно не попадут в $I_k(D)$, и в среднем $I_k(D)$ будет меньше, а значит, вероятность выбрать конкретный t из него будет выше.

• Теперь понятно, что эффект вперёд во времени не работает, и понятно, что на бесконечности пропадает. Но наша жизнь – это малые выборки...

Линейная регрессия

Метод наименьших квадратов

• Линейная регрессия: рассмотрим линейную функцию

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^p x_j w_j = \mathbf{x}^\top \mathbf{w}, \quad \mathbf{x} = (1, x_1, \dots, x_p).$$

• Таким образом, по вектору входов $\mathbf{x}^{\top} = (x_1, \dots, x_p)$ мы будем предсказывать выход y как

$$\hat{y}(\mathbf{x}) = \hat{w}_0 + \sum_{j=1}^{p} x_j \hat{w}_j = \mathbf{x}^{\top} \hat{\mathbf{w}}.$$

Метод наименьших квадратов

- Как найти оптимальные параметры $\hat{\mathbf{w}}$ по тренировочным данным вида $(\mathbf{x}_i, y_i)_{i=1}^N$?
- Метод наименьших квадратов: будем минимизировать

$$\mathrm{RSS}(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2.$$

• Как минимизировать?

Метод наименьших квадратов

• Можно на самом деле решить задачу точно – записать как

$$\mathrm{RSS}(w) = (y - Xw)^{\top}(y - Xw),$$

где X – матрица $N \times p$, продифференцировать по \mathbf{w} , получится

$$\hat{W} = (X^{\top}X)^{-1}X^{\top}y,$$

если матрица $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ невырожденная.

· Замечание: $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ называется *псевдообратной матрицей Мура-Пенроуза* (Moore-Penrose pseudo-inverse) матрицы \mathbf{X} ; это обобщение понятия обратной матрицы на неквадратные матрицы.

- Теперь давайте поговорим о линейной регрессии по-байесовски.
- Основное наше предположение в том, что шум (ошибка в данных) распределён нормально, т.е. переменная *t*, которую мы наблюдаем, получается как

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2).$$

Иными словами,

$$p(t \mid \mathbf{x}, \mathbf{w}, \sigma^2) = \mathcal{N}(t \mid y(\mathbf{x}, \mathbf{w}), \sigma^2).$$

• Здесь пока у – любая функция.

 Чтобы не повторять совсем уж то же самое, мы рассмотрим не в точности линейную регрессию, а её естественное обобщение – линейную модель с базисными функциями:

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x})$$

(М параметров, М - 1 базисная функция, $\phi_0(\mathbf{x}) = 1$).

- Базисные функции ϕ_i это, например:
 - результат feature extraction;
 - расширение линейной модели на нелинейные зависимости (например, $\phi_j(x) = x^j$);
 - локальные функции, которые существенно не равны нулю только в небольшой области (например, гауссовские базисные функции $\phi_j(\mathbf{x}) = e^{-\frac{(\mathbf{x} \mu_j)^2}{2s^2}}$);

٠..

- Рассмотрим набор данных $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ со значениями $\mathbf{t} = \{t_1, \dots, t_N\}.$
- Будем предполагать, что данные взяты независимо по одному и тому же распределению:

$$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^2) = \prod_{n=1}^{N} \mathcal{N} \left(t_n \mid \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_n), \sigma^2 \right).$$

• Прологарифмируем (опустим **X**, т.к. по нему всегда условная вероятность будет):

$$\ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_n))^2.$$

• Прологарифмируем (опустим **X**, т.к. по нему всегда условная вероятность будет):

$$\ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n))^2.$$

• И вот мы получили, что для максимизации правдоподобия по **w** нам нужно как раз минимизировать среднеквадратичную ошибку!

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n).$$

• Решая систему уравнений $\nabla \ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = 0$, получаем то же самое, что и раньше:

$$W_{\text{ML}} = \left(\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi}\right)^{-1}\boldsymbol{\Phi}^{\top}t.$$

· Здесь $\mathbf{\Phi} = (\phi_j(\mathbf{x}_i))_{i,j}$.

• Теперь можно и относительно σ^2 максимизировать правдоподобие; получим

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} \left(t_n - \mathbf{w}_{ML}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right)^2,$$

т.е. как раз выборочная дисперсия имеющихся данных вокруг предсказанного значения.

Спасибо!

Спасибо за внимание!