Modeling with Probability Distributions - Capturing Noise

Zack Treisman

Spring 2021

Philosophy

Recall that a model fundamentally looks like

$$y = f(x) + \epsilon$$

where f(x) is the **deterministic** part of the model (the signal) and ϵ is the **stochastic** part (the noise).

▶ This week we are looking at the **noise**.

We'll look at the how to model noise in the general context of studying probability, and we'll lay some groundwork for some additional applications of probability.

The noise is a probability distribution. So far, we have discussed models where the noise follows a normal (Gaussian) distribution. Choosing the best distribution is an important part of the modeling process.

Breaking up the noise

We have already talked about how the noise can be broken into **irreducible** and **reducible** error, and the reducible error can be split into **bias** and **variance**. This decomposition is **model based**.

Another way that the noise can be decomposed is more **observation based**:

- Measurement error Unavoidable, but hopefully minimal. If it has structure or pattern, this can cause difficulties, some of which can be overcome (eg. distance sampling).
- Process noise Natural demographic and environmental variability. Minimized with large samples and stable environments. The main input to the stochastic part of a model.

Conditional distributions

A more computationally convenient phrasing and notation than $y = f(x) + \epsilon$ is to describe noise as a **conditional distribution**.

$$Y \sim \mathbb{P}(f(X))$$

- ightharpoonup f(X) represents the expected value of Y as a function of X.
- P can be any probability distribution.

A model where applying a link function to f makes it linear in its parameters is called a **generalized linear model** (GLM).

• e.g. $f(x) = e^{\beta_0 + \beta_1 x}$

Somewhat more general f can be fit with a **generalized additive** model (GAM).

e.g. splines. local regression

The glm and related commands

Fitting generalized linear models in R is done using glm, generalized additive models with gam.

```
?glm
glm(formula, family = gaussian, data,
    na.action, start = NULL, ...)
?family
binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
```

Probability: Definitions and notation

The **sample space** is the set of all possible **outcomes**. Each opportunity for an outcome to occur is a **trial**. Outcomes are collected into **events**. To each event A we assign a number P(A) between 0 and 1 called the **probability** of A representing the frequency with which A occurs.

Example: A feeder at my house is visited by various birds and mammals. Each visit is a trial. The set of all critters that visit the feeder is the sample space. A grey jay visiting is an event. By my estimation P(Grey Jay) = 0.3. One of the grey jays that visits I've named June. June visiting the feeder is an outcome.

More Notation

Let A and B be events from a sample space S.

- ▶ A or B is written $A \cup B$. (Inclusive or: A or B or both.)
- ightharpoonup A and B is written $A \cap B$.
- ▶ The **conditional probability** of A given B, written P(A|B), is the probability that A happens if B is known to happen.

Axioms of Probability

The mathematics of probability can be derived from the following three algebraic axioms.

- 1. P(S) = 1: **Something** has to happen.
- 2. $P(A \cup B) = P(A) + P(B) P(A \cap B)$: The probability of **either or both** of A or B happening is the **sum** of their individual probabilities, less the probability that both happen (which was counted twice in the sum).
- 3. $P(A|B) = \frac{P(A \cap B)}{P(B)}$: The probability that A happens given that B has happened can be computed by rescaling the probability that both A and B happen by the probability of B.

Algebra of Probability

Some immediate consequences of the axioms that are very useful are the following.

- ▶ Since $S = A \cup (\text{not } A)$, combining rules 1 and 2 gives that the probability that A **doesn't** happen is P(not A) = 1 P(A).
- More generally, if A and B are any **mutually exclusive** events, $P(A \cup B) = P(A) + P(B)$.
- An **unknown unconditional** probability of an event can be computed by making use of **known conditional** probabilities: P(A) = P(A|B)P(B) + P(A|not B)P(not B)
- ▶ If P(A) = P(A|B) we say that A and B are **independent**. In this situation, rule 3 implies that $P(A \cap B) = P(A)P(B)$.

Application: Zero-inflated distributions

Consider the seed predation example from Bolker (2008):

A feeder has N seeds. The **sample space** is the number of seeds taken between occasions when the feeder is checked, so the **numbers between** 0 **and** N.

On many occasions, **no seeds are taken**, in which case it is reasonable to assume that **the feeder may not have been visited**.

▶ $P(\text{feeder is visited}) = \nu$.

Assume that a visitor to the feeder **independently** considers taking each seed.

ightharpoonup P(seed taken) = p.

Application: Zero-inflated distributions (cont.)

If no seeds are taken that means that either nobody visited

$$P(\text{no visit}) = 1 - \nu$$

or a visitor came

$$P(\text{visit}) = \nu$$

and decided not to take each seed

$$P(\text{not seed } 1 \cap \cdots \cap \text{not seed } N) = P(\text{not seed } 1) \cdots P(\text{not seed } N)$$

= $(1 - p)^N$

Putting these together gives

$$P(\text{no seeds taken}) = 1 - \nu + \nu (1 - p)^N$$

Application: Zero-inflated distributions (cont. 2)

On the other hand, the event that x seeds are taken consists of

$$\binom{N}{x} = \frac{N!}{x!(N-x)!}$$

different outcomes (one for each way to select x of N seeds) each with probability

$$p^{x}(1-p)^{N-x}$$

So for x > 0,

$$P(x \text{ seeds taken}) = \nu \binom{N}{x} p^x (1-p)^{N-x}$$

The distribution that we have just derived is called the **zero-inflated binomial**. Other zero-inflated models are similar, and can be very useful in myriad applications.

Zero-inflated binomial in R

This code defines and plots a zero-inflated binomial model. See Figure 4.1 in Bolker.

```
N <-10 # number of seeds per feeder
nu <- 0.8 # visit probability
p <- 0.3 # probability of taking each individual seed
dzibinom <- numeric(N+1) # Initialize an empty vector of length N+1
dzibinom[1] <- 1-nu+nu*(1-p)^N # Zero seeds taken
for(x in 1:N) { # x seeds taken
    dzibinom[x+1] <-nu*choose(N,x)*p^x*(1-p)^(N-x)}
barplot(dzibinom, names.arg=0:N, xlab="Taken", ylab="Probability")</pre>
```


More Definitions and Notation

Let X be a random variable. Traditional notation uses X for the variable and x for particular values.

"I worried for a long time about what the term 'random variable' means. In the end I concluded it means: 'variable.' "-J.H.Conway

- ► The **probability distribution function** of *X* tells us the probability that *X* takes a particular value.
 - ightharpoonup X discrete: f(x) = P(X = x)
 - ightharpoonup X continuous: $\int_a^b f(x)dx = P(a \le X \le b)$
- The cumulative distribution function of X is $F(x) = P(X \le x)$.

R has many distributions built in. See ?Distributions.

Moments

A probability distribution f(x) on a sample space S defines an **expectation** operation.

$$E[z] = \sum_{x \in S} zf(x) \text{ or } E[z] = \int_{x \in S} zf(x)dx.$$

- $ightharpoonup E[x] = \mu = \bar{x}$ is the **mean**.
- $E[(x-\bar{x})^2] = \sigma^2$ is the **variance**.

Continuing in a similar way defines the **skewness** and **kurtosis** (heavy-tailedness). If you need to numerically measure these things you are probably doing something fancy and mathematically impressive.

Method of moments: To choose a particular distribution from an assumed family, calculate moments for data and use these to compute appropriate parameters.

Normal

X: The sum of many independent samples.

Parameters mean μ and variance σ^2 (or standard deviation σ). Write $N(\mu, \sigma^2)$.

Continuous, defined for all real numbers x

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

The gold standard for noise. Most classical statistical techniques rely on assuming that the noise is normal.

Binomial

X: The number of successes after repeated independent and identical trials.

Parameters are N, the number of trials, and p, the probability of success on each trial.

- ▶ Discrete, defined for $0 \le x \le N$
- $f(x) = {\binom{N}{x}} p^x (1-p)^{N-x}$
- Logistic regression estimates the probability of y = success based on predictors x: glm(p~x, family=binomial)
 - Default link is logit.

Approximately normal for large N, intermediate p. Approximately Poisson for large N, small p.

Binomial example

Suppose 10% of red foxes have the cross fox color variation. How many cross foxes would we expect in a sample of size *N*?

Poisson

X: The count of observations of an evenly distributed event in a given time/space/unit of counting effort.

Parameter is λ , the expected count.

- Discrete, defined for 0 < x</p>
- $f(x) = \frac{e^{-\lambda} \lambda^x}{x!}$ $\mu = \lambda, \ \sigma^2 = \lambda$
- Poisson regression estimates a count y based on predictors x: glm(y~x, family=poisson)
 - Default link is log.

Right skewed. Approximately normal for large λ .

Negative Binomial

X: Similar to Poisson, but the events can be clustered.

Parameters are μ , the expected count, and k, the overdispersion parameter. Smaller k means more clustering.

- ▶ Discrete, defined for $0 \le x$
- $f(x) = \frac{\Gamma(k+x)}{\Gamma(k)x!} \left(\frac{k}{k+\mu}\right)^k \left(\frac{\mu}{k+\mu}\right)^x$
- $\mu = \mu, \ \sigma^2 = \mu + \mu^2/k$
- ► Negative binomial regression: glm.nb(y~x)
 - Default link is log.
 - ▶ glm.nb is in MASS. Other options exist.

Gamma

X: The waiting time until a set number of events take place.

Parameters scale s, the length per event, or rate r=1/s, the rate at which events occur, and shape a, the number of events.

- ightharpoonup Continuous, $x \ge 0$
- $f(x) = \frac{1}{s^a \Gamma(a)} x^{-1} e^{-x/s}$
- $\mu = as, \ \sigma^2 = as^2$

Along with the log-normal, also used for models needing a continuous, right skewed, non-negative distribution without necessarily having a mechanistic reason.

Log-normal

X: The product of many independent samples.

Parameters mean of the log μ and standard deviation of the log σ .

- ightharpoonup Continuous, x > 0
- ► $X \sim \exp(\mu + \sigma Z)$ for $Z \sim N(0,1)$.
- ► The mean of X is $\exp(\mu + \sigma^2/2)$.

Mixtures and compounded distributions

Sometimes it is useful to combine distributions or allow the parameters of a distribution be drawn from another distribution. For example, the effects of unknown or unmeasured variables, can potentially be captured by such a varying parameter.

Combining a finite number of distributions into a single distribution is called a **mixture distribution**. The zero-inflated binomial that we created earlier is an example.

Drawing a parameter of one distribution from a second is called a **compound distribution**. Drawing the rate parameter λ for a Poisson distribution from a Gamma distribution gives a negative binomial distribution.

References

Bolker, Benjamin M. 2008. *Ecological Models and Data in R.* Princeton University Press.