13. Теория и системы массового обслуживания. Задача о распределении ресурсов. Задача о замене оборудования. Динамическая задача о распределении ресурсов. Задача о надежности с мультипликативными функциями. Задача складирования. Задача управления запасами с заданным расходом. Стохастическая задача о распределении ресурсов

Предметом изучения теории массового обслуживания являются СМО.

Цель теории массового обслуживания — выработка рекомендаций по рациональному построению СМО, рациональной организации их работы и регулированию потока заявок для обеспечения высокой эффективности функционирования СМО.

Для достижения этой цели ставятся задачи теории массового обслуживания, состоящие в установлении зависимостей эффективности функционирования СМО от ее организации (параметров): характера потока заявок, числа каналов и их производительности и правил работы СМО.

Системы массового обслуживания (СМО)

Система массового обслуживания (СМО) — система, которая производит обслуживание поступающих в неё требований. Обслуживание требований в СМО производится обслуживающими приборами. Классическая СМО содержит от одного до бесконечного числа приборов. В зависимости от наличия возможности ожидания поступающими требованиями начала обслуживания СМО подразделяются на:

- системы с отказами, в которых требования, не нашедшие в момент поступления ни одного свободного прибора, теряются;
- системы с неограниченной очередью, в которых имеется накопитель бесконечной ёмкости для буферизации поступивших требований, при этом ожидающие требования образуют очередь;
- системы с ограниченной очередью, в которых длина очереди не может превышать ёмкости накопителя; при этом требование, поступающее в переполненную СМО (отсутствуют свободные места для ожидания), теряется.

Задача о распределении ресурсов

Имеются производства X_1, X_2, \dots, X_m которые используют один вид ресурсов. Известны функции прибыли в каждом производстве. Они имеют вид $f_i(x_i)$, где x_i — количество ресурсов, вложенных в производство X_i . Известно также общее количество ресурсов k_1 . Требуется определить способ распределения ресурсов между производствами, при котором общая прибыль будет максимальной.

Будем решать задачу обратным планированием. Введем обозначения:

 k_i – количество ресурсов, вложенных в производства $X_i, X_{i+1}, \dots, X_n;$ $P_i(k_i)$ – максимальная прибыль в производствах $X_i, X_{i+1}, \dots, X_n.$ если им выделено k_i единиц ресурсов.

Запишем рекуррентные соотношения (функциональные уравнения). Для последних двух производств имеем

 $P_{n-1}(k_{n-1}) = \max_{n=1} (f_{n-1}(x_{n-1}) + f_n(k_{n-1} - x_{n-1})).$

Для остальных производств: $P_i(k_i) = \max_{0 \le i \le k} (f_i(x_i) + P_{i+1}(k_i - x_i))$.

Последовательно находим $P_{n-1}(k_{n-1})$, $h_{n-2}^{\max_{n=0}\infty}(k_{n-2})$, ..., $P_1(k_1)$. Зная k_1 , последовательно находим $x_1,k_2,x_2,k_3,\ldots,x_n$.

Для сокращения вычислений возможные значения $\boldsymbol{k_i}$

предварительно оцениваются неравенствами вида:

 $\max(a_i+a_{i+1}+\ldots+a_n,k_1-b_1-\ldots-b_{i-1})\leq k_i\leq \min(b_i+b_{i+1}+\ldots+b_n,k_1-a_1-\ldots-a_{i-1}),$ for $a_i\leq x_i\leq b_i$.

Если ограничения на x_i явно не заданы, то надо рассматривать весь возможный диапазон значений $0 \le x_i \le k_1$.

Задача о замене оборудования

Задача о замене оборудования рассматривается в различных формулировках. При этом ищется либо максимальная прибыль, либо минимальные затраты. В первом случае задача может быть сформулирована в следующем виде.

Имеется некоторое оборудование, которое эксплуатируется в течение некоторого периода (n месяцев). В начале любого месяца оборудование может быть заменено на новое. Прибыль от использования оборудования возраста t в течении k-го месяца определяется функцией $f_t(t)$.

Кроме того, при замене старое оборудование продается по стоимости $\varphi_k(t)$, стоимость нового оборудования в начале k-го месяца составляет p_k . Требуется найти план замены оборудования на n месяцев, дающий максимальную прибыль.

Обозначим $P_k(t)$ — максимальную прибыль от эксплуатации оборудования с k-го месяца до конца периода, если в начале k-го месяца возраст оборудования равен t.

Требуется найти план эксплуатации оборудования, при котором прибыль за весь период максимальна.

Обозначим u — управление в этой задаче, которое может принимать два значения: u_0 — не делается замена оборудования, u_1 — делается замена оборудования.

Запишем рекуррентные соотношения для целевой функции.

Для последнего месяца:

$$\begin{split} P_n(t) &= \max \begin{cases} f_n(t), u = u_0, \\ -p_n + \varphi_n(t) + f_n(0), u = u_1. \end{cases} \end{split}$$

Для остальных месяцев $(1 \le k \le n-1)$:

$$\begin{split} P_k(t) &= \max \begin{cases} f_k(t) + P_{k+1}(t+1), u = u_0, \\ -p_k + \varphi_k(t) + f_k(0) + P_{k+1}(1), u = u_1. \end{cases} \end{split}$$

Последовательно находим $P_n(t),\ P_{n-1}(t),\ \dots,\ P_1(t).$ Заметим, что $P_1(0)$ задает максимальный доход за весь период. Здесь предполагается, что в начале периода оборудование является новым. Затем проводим прямую безусловную оптимизацию, определяя месяцы, когда проводятся замены оборудования.

Более часто рассматриваются и другие задачи о замене оборудования – задачи о минимизации расходов.

Пусть заданы функции: $r_k(t)$ — затраты на эксплуатацию оборудования возраста t в течение k-го месяца, p_k — стоимость нового оборудования в начале k-го месяца, $\varphi_k(t)$ — ликвидная стоимость оборудования возраста t в течение k-го месяца.

Кроме того, будем полагать, что в начале периода оборудование является новым, а в конце периода оборудование продается по ликвидной стоимости.

Обозначим $P_{k}(t)$ — минимальные затраты на эксплуатацию оборудования с k-го месяца до конца периода, если в начале k-го месяца возраст оборудования равен t.

Рекуррентные соотношения следующий вид.

Для последнего месяца

$$P_{n}(t) = \min \begin{cases} r_{n}(t) - \varphi_{n+1}(t+1), u = u_{0}, \\ p_{n} - \varphi_{n}(t) + r_{n}(0) - \varphi_{n+1}(1), u = u_{1}. \end{cases}$$

Для остальных месяцев

$$P_k(t) = \min \begin{cases} r_k(t) + P_{k+1}(t+1), u = u_0, \\ p_k - \varphi_k(t) + r_k(0) + P_{k+1}(1), u = u_1. \end{cases}$$

Обратной условной оптимизацией находим $P_n(t)$, $P_{n-1}(t)$, ..., $P_1(t)$, затем прямой оптимизацией — план замены оборудования.

Динамическая задача о распределении ресурсов

Имеются два производства X и Y, которые используют один вид ресурсов. Прибыль в производствах X и Y в течение месяца задаётся функциями f(x) и g(y), где x и y — количество ресурсов, вложенных в производство X и Y. Функция остатков ресурсов в производствах X и Y имеет вид $\varphi(x)$ и $\psi(y)$.

В начале каждого месяца ресурсы, оставшиеся в производствах, перераспределяются между ними. Общее количество ресурсов равно k_1 и дополнительные ресурсы не вкладываются, при этом прибыль изымается из производства.

Требуется найти план производства на n месяцев, дающий максимальную прибыль.

Обозначим k_i — количество имеющихся ресурсов в начале i-го месяца, $P_i(k_i)$ — максимальную прибыль с i-го месяца до конца периода, если в начале i-го месяца имеется k_i единиц ресурсов.

Запишем функциональные уравнения.

Для последнего месяца

$$P_n(k_n) = \max_{0 \le x_n \le k_n} (f(x_n) + g(k_n - x_n)),$$

для остальных месяцев

$$P_i(k_i) = \max_{i \in A} (f(x_i) + g(k_i - x_i) + P_{i+1}(\phi(x_i) + \psi(k_i - x_i))).$$

Последовательно находим $P_{_{n}}(k_{_{n}}), P_{_{n-1}}(k_{_{n-1}}), ..., P_{_{1}}(k_{_{1}}).$

После этого определяем план производства на каждый месяц. Значения k_i , i=2,3,...n можно предварительно оценить.

Задачи с мультипликативными функциями

Рассмотрим задачу о надежности. Имеется некоторый прибор, который использует n различных узлов. Элементы могут отказать, поэтому для повышения надежности они могут дублироваться (параллельно). Известны стоимости узлов прибора с учетом количества элементов и их надежности. Элементы работают независимо.

Требуется найти конструкцию прибора стоимостью не выше $k_1\,$ и максимальной надежности.

Заданы x_i — стоимости i-го узла и p_i — вероятности безотказной работы i-го узла в зависимости от количества элементов m.

Обозначим $P_i(k_i)$ – максимальную вероятность безотказной работы узлов с i-го по n-й, если на них выделено k_i единиц средств.

Функциональные уравнения имеют вид

 $P_{n-1}(k_{n-1})=p_{n-1}(x_{n-1})p_n(k_{n-1}-x_{n-1}),\ P_i(k_i)=p_i(x_i)P_{i+1}(k_i-x_i),\ (1\leq i\leq n-1),$ где x_i — количество средств, выделенных на i-й узел.

Задача складирования

Имеется склад ёмкости c единиц продукции. Рассматривается период в n месяцев. В начале каждого месяца запас продукции на складе пополняется и расходуется. Затраты на пополнение продукции пропорциональны количеству продукции и составляют α_i единиц на единицу поставляемой продукции (в начале i-го месяца). Доход от расхода продукции со склада составляет β_i единиц на единицу продукции. Известно количество единиц продукции на складе в начале первого месяца и оно равно k_1 . Требуется определить глан пополнения и расхода продукции, дающий максимальную прибыль.

Обозначим: k_i — количество продукции на складе в начале i-го месяца, x_i — количество продукции, пополняемой в начале i-го месяца, y_i — количество продукции, расходуемой в начале i-го месяца, $P_i(k_i)$ — максимальную прибыль с i-го месяца до конца периода, если в начале i-го месяца на складе k_i единиц продукции.

В этой задаче возможны три варианта: 1) пополнение перед расходом, 2) расход перед пополнением, 3) возможны оба случая.

Заметим, что $k_i = k_{i-1} + x_{i-1} - y_{i-1}$ и прибыль за i-й месяц находится как $\beta_i y_i - \alpha_i x_i$.

Заметим также, что, поскольку прибыль за i-й месяц является линейной функцией и целевая функция $P_i(k_i)$ также является линейной, оптимальный план можно рассматривать только в вершинах области: O,A,B_1,B_2,C .

Запишем функциональные уравнения. Для последнего месяца имеем

$$\begin{split} P_{\scriptscriptstyle n}(k_n) &= \max_{O,A,B_n,B_2,C}(\beta_n y_n - \alpha_n x_n) = \max \begin{cases} 0,(O),\\ \beta_n k_n,(A),\\ \beta_n c - \alpha_n (c - k_n),(B_1), = \\ \beta_n c - \alpha_n c,(B_2),\\ -\alpha_n (c - k_n),(C), \end{cases} \\ &= \max \begin{cases} \beta_n k_n,(A),\\ \alpha_n k_n + (\beta_n - \alpha_n)c,(B_1). \end{cases} \end{split}$$

Здесь можно рассматривать только точки A и B_1 .

Для остальных месяцев функция имеет вид

$$\begin{split} P_{i}(k_{i}) &= \max \begin{cases} P_{i+1}(k_{i+1}), (O), \\ \beta_{i}k_{i} + P_{i+1}(k_{i+1}), (A), \\ \alpha_{i}k_{i} + (\beta_{i} - \alpha_{i})c + P_{i+1}(k_{i+1}), (B_{1}), \\ \beta_{i}k_{i} - \alpha_{i}c + P_{i+1}(k_{i+1}), (B_{2}), \\ \alpha_{i}k_{i} - \alpha_{i}c + P_{i+1}(k_{i+1}), (C), \end{cases} \\ \\ \begin{bmatrix} P_{i+1}(k_{i}), (O), \\ P_{i+1}(k_{i}), (O), \\ \end{pmatrix} \end{split}$$

$$= \max \begin{cases} P_{i+1}(k_i), (O), \\ \beta_i k_i + P_{i+1}(0), (A), \\ \alpha_i k_i + (\beta_i - \alpha_i)c + P_{i+1}(0), (B_1), \\ \beta_i k_i - \alpha_i c + P_{i+1}(c), (B_2), \\ \alpha_i k_i - \alpha_i c + P_{i+1}(c), (C). \end{cases}$$

Задача управления запасами с заданным расходом

Имеется склад, на который в течение каждого месяца непрерывно и равномерно поступает продукция. В конце i-го месяца продукция со склада вывозится в количестве k_i единиц. Известно количество продукции на складе в начале первого месяца, которое составляет k_0 единиц. Кроме того, может быть задано количество продукции на складе в конце n-го месяца, которое равно k_n .

Затраты на хранение продукции на складе в течение i-го месяца задаются функцией $\varphi(\overline{k_i})$, где $\overline{k_i}$ – среднее количество продукции на складе в течение i-го месяца. Поскольку продукция пополняется непрерывно и равномерно, среднее количество продукции на складе выражается формулой $\overline{k_i} = k_{i-1} + \frac{x_i}{2}$.

Затраты на пополнение продукции задаются функцией $\psi(x_i)$, где x_i — количество продукции, пополняемое в течение i-го месяца. Расходы на i-й месяц заданы и составляют y_i единиц.

Требуется найти оптимальный план пополнения продукции на n месяцев.

Будем решать задачу прямым планированием. Сначала выполним условную прямую оптимизацию, а затем обратную безусловную оптимизацию. Обозначим k_i — количество продукции на складе в конце i-го месяца. Введем целевые функции: $\mathcal{Q}_i(k_{i-1},x_i)$ — минимальные затраты на хранение и выполнение продукции с первого месяца до i-го, если в конце (i-1)-го месяца на складе имеется k_{i-1} единиц продукции и пополнение в течение i-го месяца составляет x_i единиц, $\mathcal{Q}_i(k_i)$ — минимальные затраты на хранение и пополнение продукции с первого по i-й месяц, если в конце i-го месяца на складе k_i единиц продукции.

Значения k_l можно оценить. Сначала заметим, что $k_{n-1}=k_n-x_n+y_n$. Максимальное значение достигается при $x_n=0$ и составляет k_n+y_n . Следовательно, $0 \le k_{n-1} \le k_n+y_n$. Далее аналогично получаем оценки для всех k_l .

Запишем рекуррентные соотношения.

Для первого месяца:

$$\begin{split} &Q_{1}(k_{0},x_{1}) = \varphi(\overline{k_{1}}) + \psi(x_{1}) = \varphi\left(k_{0} + \frac{x_{1}}{2}\right) + \psi(x_{1}). \\ &Q_{1}(k_{1}) = \min_{w} Q_{1}(k_{0},x_{1}) = \min_{w} Q_{1}(k_{1} - x_{1} + y_{1},x_{1}). \end{split}$$

Для i-го месяца $(2 \le i \le n)$:

$$Q_{i}(k_{i-1},x_{i}) = \varphi(\overline{k_{i}}) + \psi(x_{i}) + Q_{i-1}(k_{i-1}) = \varphi\left(k_{i-1} + \frac{x_{i}}{2}\right) + \psi(x_{i}) + Q_{i-1}(k_{i-1}).$$

$$Q_{i}(k_{i}) = \min_{x} Q_{i}(k_{i-1},x_{i}) = \min_{x} Q_{i}(k_{i} - x_{i} + y_{i},x_{i}).$$

По этим формулам последовательно находим $Q_1(k_1)$, $Q_2(k_2)$, ..., $Q_n(k_n)$. Если k_n задано, то $Q_n(k_n)$ задает искомое значение, если не задано, то надо взять $\min_{k_n}Q_n(k_n)$ (обычно при $Q_n(0)$). Затем находим значение x_i с помощью обратной безусловной оптимизации: x_n — из таблицы для k_n , x_{n-1} — из таблицы для k_{n-1} и так до x_1 .

Стохастическая задача распределения ресурсов

Стохастические модели используют вероятностные методы и применяются в тех случаях, когда одна или несколько величин являются случайными и известны их законы распределения. Задачи такого рода возникают и в управлении запасами, и в динамическом программировании.

Рассмотрим стохастическую задачу распределения ресурсов для двух производств. Имеются два производства X и Y, которые используют один вид ресурсов. Функции дохода f(x) и g(y) и функции остатка $\varphi(x)$ и $\psi(y)$ являются случайными. Данные об этих функциях известны законами распределения.

$f_1(x)$	$f_2(x)$	 $f_n(x)$
$\varphi_1(x)$	$\varphi_2(x)$	 $\varphi_n(x)$
p_1	p_2	 p_n

$g_1(y)$	g ₂ (y)	 $g_m(y)$
$\psi_1(y)$	$\psi_2(y)$	 $\psi_m(y)$
q_1	q_2	 q_m

Тогда средние доходы и остатки будут находиться с помощью математического ожидания. Задачу можно решать обратным планированием, находя математическое ожидание общей прибыли за / месяцев. После этого можно найти и закон распределения прибыли.

Запишем функциональные уравнения. Для последнего l-го месяца

$$\overline{P}_{l}(k_{l}, x_{l}) = M(f(x_{l}) + g(k_{l} - x_{l})),$$

где k_l — количество ресурсов в начале l-го месяца; x_l — количество ресурсов, выделяемых производству X на l-ый месяц; $P_l(k_l,x_l)$ — математическое ожидание прибыли за l-ый месяц, если в начале l-го месяца имеется k_l единиц ресурсов, из которых x_l направляется в V

$$\overline{P}_l(k_l) = \max_{0 \le x \le k} \overline{P}_l(k_l, x_l).$$