Cognome		
Nome		Non scrivere qui
Matricola		
Laurea	CIV AMB GEST INF ELN TLC MEC	1 2 3 4 5 6

Università degli Studi di Parma Dipartimento di Ingegneria e Architettura

Esame di Analisi Matematica 2 — Soluzioni

A.A. 2016-2017 — PARMA, 15 GIUGNO 2017

Compilate l'intestazione in alto a sinistra e scrivete cognome e nome in stampatello anche su ogni altro foglio. Il tempo massimo per svolgere la prova è di tre ore. Al momento della consegna, inserite tutti i fogli dentro a questo foglio.

Esercizio 1. La lunghezza L della curva $\gamma(t) = -t^3 e_1 + t^2 e_2, t \in [0,1], è$

(a)
$$L = -\sqrt{13}/3$$
;

(b)
$$L = 26\sqrt{13}/3$$

(a)
$$L = -\sqrt{13}/3$$
; (b) $L = 26\sqrt{13}/3$; (c) $L = (13\sqrt{13} - 8)/27$.

Soluzione. Poiché la curva γ è liscia, risulta

$$L(\gamma) = \int_0^1 \sqrt{9t^4 + 4t^2} \, dt = \int_0^1 3t \sqrt{t^2 + 4/9} \, dt = \left(t^2 + 4/9 \right)^{3/2} \Big|_0^1 = \frac{1}{27} \left(13\sqrt{13} - 8 \right).$$

La risposta corretta è quindi (c).

Sia $f(x,y) = \operatorname{sen}(xy) + x^2 + y$, $(x,y) \in \mathbb{R}^2$. L'equazione del piano tangente al grafico di f sopra il punto di coordinate $(\pi, 1)$ è

(a)
$$(2\pi - 1)x + (1 - \pi)y - z = \pi^2 - 2\pi;$$
 (b) $(2\pi - 1)x - z = \pi^2 - \pi - 1;$ (c) $\pi x - z = 3y - 4.$

(b)
$$(2\pi - 1)x - z = \pi^2 - \pi - 1;$$

(c)
$$\pi x - z = 3y - 4$$
.

Soluzione. L'equazione del piano tangente al grafico di f in $(\pi,1)$ è

$$z = f(\pi, 1) + f_x(\pi, 1)(x - \pi) + f_y(\pi, 1)(y - 1).$$

Si ha $f(\pi, 1) = \pi^2 + 1$ e

$$f_x(\pi, 1) = x + 1$$
 c
$$f_x(\pi, 1) = y \cos(xy) + 2x \Big|_{x=\pi, y=1} = 2\pi - 1 \quad \text{e} \quad f_y(\pi, 1) = x \cos(xy) + 1 \Big|_{x=\pi, y=1} = 1 - \pi$$

da cui segue $z = (2\pi - 1)x - (\pi - 1)y - \pi^2 + 2\pi$. La risposta corretta è quindi (a).

Esercizio 3. Sia $E \subset \mathbb{R}^2$ un insieme misurabile la cui misura (area) è data dalla formula

$$|E| = \int_{\pi/4}^{\pi/3} \left(\int_{1/\cos\theta}^{2/\cos\theta} \rho \, d\rho \right) \, d\theta.$$

Quale tra i seguenti insiemi può essere E?

(a)
$$E = \{(x,y) : 1 \le x \le 2 \text{ e } x \le y \le \sqrt{3}x\};$$
 (b) $E = \{(x,y) : 1 \le x^2 + y^2 \le 4 \text{ e } x \le y \le \sqrt{3}x\};$

(c)
$$E = [1, 2] \times [\pi/4, \pi/3].$$

Soluzione. Per la fomula di riduzione e di cambiamento di variabili polari deve essere

$$E = \left\{ (\rho \cos \theta, \rho \sin \theta) : 1 \le \rho \cos \theta \le 2 e \pi/4 \le \theta \le \sqrt{3} \right\}$$

da cui segue $1 \le x \le 2$ e $y/x = \tan \theta \in [1, \sqrt{3}]$ ovvero $x \le y \le \sqrt{3}x$. La risposta corretta è quindi (a).

Esercizio 4. Sia

$$f(x, y, z) = x^2 + yz - 2x + y^2z,$$
 $(x, y, z) \in \mathbb{R}^3.$

- (a) Determinate i punti critici di f e stabilitene la natura;
- (b) Determinate il massimo ed il minimo globale di f sull'insieme

$$\Gamma = \{(x, y, z) : x^2 + y^2 + z^2 = 6 \text{ e } z = 1\}.$$

Soluzione. (a) La funzione f è un polinomio e quindi è di classe $C^{\infty}(\mathbb{R}^3)$. Le derivate parziali di f sono date da

$$f_x(x, y, z) = 2x - 2;$$
 $f_y(x, y, z) = z(1 + 2y);$ $f_z(x, y, z) = y(1 + y);$

per ogni (x, y, z) e quindi i punti critici sono le soluzioni del sistema formato dalle equazioni

$$2x - 2 = 0;$$
 $z(1 + 2y) = 0;$ $y(1 + y) = 0;$

Dalla prima equazione segue x = 1 e dalla terza equazione si ricava che deve essere y = 0 o y = -1. In entrambi i casi, la seconda equazione fornisce z = 0 e quindi i punti critici sono i punti di coordinate $P_1 = (1,0,0)$ e $P_2 = (1,-1,0)$.

Le derivate parziali seconde di f sono

$$f_{xx}(x, y, z) = 2;$$
 $f_{yy}(x, y, z) = 2z;$ $f_{zz}(x, y, z) = 0;$ $f_{zy}(x, y, z) = f_{yz}(x, y, z) = 1 + 2y;$

per ogni (x, y, z) e quindi le matrici hessiane di f nei due punti critici sono

$$D^{2}f(1,0,0) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}; \qquad D^{2}f(1,-1,0) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$

Entrambe hanno determinante negativo e traccia positiva e ciò implica che hanno due autovalori negativi e uno positivo. Conseguentemente, entrambi i punti critici P_1 e P_2 sono punti di sella.

(b) L'insieme Γ è formato dall'intersezione della sfera di centro nell'origine e raggio $\sqrt{6}$ con il piano di equazione z=1 o equivalentemente dall'intersezione del cilindro retto di equazione $x^2+y^2=5$ con il piano z=1:

$$\left\{(x,y,z):\, x^2+y^2+z^2=6 \ {\rm e} \ z=1\right\}=\Gamma=\left\{(x,y,z):\, x^2+y^2=5 \ {\rm e} \ z=1\right\}.$$

Esso consiste quindi dei punti della circonferenza di centro in (0,0,1) e raggio $\sqrt{5}$ giacente nel piano z=1. L'insieme Γ è chiuso poiché risulta $\Gamma=\left\{\Phi^1=0\right\}\cap\left\{\Phi^2=0\right\}$, essendo Φ^1 e Φ^2 i polinomi definiti da

$$\Phi^{1}(x, y, z) = x^{2} + y^{2} + z^{2} - 6$$
 e $\Phi^{2}(x, y, z) = z - 1$

per ogni $(x, y, z) \in \mathbb{R}^3$ ed è anche evidentemente limitato.

La funzione f è un polinomio e quindi assume minimo e massimo globale su Γ per il teorema di Weierstrass e, poiché su Γ risulta

$$(x, y, z) \in \Gamma$$
 \Longrightarrow $f(x, y, z) = y - 2x + 5$,

è possibile determinare il minimo e il massimo globale di f su Γ determinando il minimo e il massimo globale della funzione lineare $g(x,y)=y-2x, (x,y)\in\mathbb{R}^2$, sulla circonferenza C di equazione $x^2+y^2=5$. Gli insiemi di livello di g sono le rette r_c di equazione y-2x=c al variare di $c\in\mathbb{R}$ e i valori minimo e massimo di g su C si ottengono in corrispondenza dei valori c per i quali le rette r_c sono tangenti a C. Ciò si ottiene per $c=\pm 5$ cui corrispondono i punti di C di coordinate (-2,1) e (2,-1). In tali punti risulta g(-2,1)=5 e g(2,-1)=-5 da cui segue

$$\min_{\Gamma} f = f(2, -1, 1) = g(2, -1) + 5 = 0 \qquad \text{e} \qquad \max_{\Gamma} f = f(-2, 1, 1) = g(-2, 1) + 5 = 10.$$

Esercizio 5. Sia

$$K = \left\{ (x, y, z) : \ 2(x^2 + y^2) \le z \le 3 - \sqrt{x^2 + y^2} \ e \ 0 \le y \le x \right\}.$$

(a) Descrive l'insieme K.

(b) Calcolate
$$I = \int_K xy \, dV_3(x, y, z)$$
.

Soluzione. (a) L'insieme K è formato dai punti di coordinate $0 \le y \le x$ e $z \ge 0$ tali che

$$2(x^2 + y^2) \le z \le 3 - \sqrt{x^2 + y^2}$$

e quindi è la porzione compresa tra i semispazi $y \ge 0$ e $x \ge y$ del solido di rotazione che si ottiene facendo ruotare attorno all'asse z la figura contenuta nel primo quadrante del piano rz (con $r = \sqrt{x^2 + y^2}$) compresa tra la parabola di equazione $z = 2r^2$ e la retta di equazione z = 3 - r come illustrato in figura.

L'insieme K è quindi formato dai punti (x, y, z) con coordinate $0 \le y \le x$ che stanno al di sopra del paraboloide di equazione $z = 2(x^2 + y^2)$ e al di sotto del cono di equazione $z = 3 - \sqrt{x^2 + y^2}$.

(b) L'insieme K è evidentemente compatto ed è misurabile poiché è l'intersezione di un solido di rotazione e di un poliedro. Inoltre, la funzione $f(x,y,z)=xy,\,(x,y,z)\in\mathbb{R}^3$ è continua e quindi integrabile su ogni insieme compatto e misurabile come K.

Calcoliamo l'integrale di f su K mediante la formula di riduzione per fili. La proiezione di K sul piano xy è il cerchio

$$\pi_{xy}(K) = \{(x,y): x^2 + y^2 \le 1\}$$

e per ogni $x, y \in \pi_{xy}(K)$ la corrispondente sezione è il segmento $K_{(x,y)} = [2(x^2 + y^2), 3 - \sqrt{x^2 + y^2}]$. Per la formula di riduzione si ha allora

$$I = \int_{\pi_{xy}(K)} \left(\int_{2(x^2 + y^2)}^{3 - \sqrt{x^2 + y^2}} xy \, dz \right) dV_2(x, y) =$$

$$= \int_{\pi_{xy}(K)} xy \left[3 - \sqrt{x^2 + y^2} - 2\left(x^2 + y^2\right) \right] dV_2(x, y) =$$

e, utilizzando coordinate polari nel piano abbinate alla formula di riduzione, risulta

$$= \int_0^{\pi/4} \left(\int_0^1 r^3 \cos \theta \sin \theta \left(3 - r - 2r^2 \right) dr \right) d\theta =$$

$$= \int_0^{\pi/4} \cos \theta \sin \theta d\theta \int_0^1 r^3 \left(3 - r - 2r^2 \right) dr =$$

$$= \frac{1}{2} \sin^2 \theta \Big|_0^{\pi/4} \cdot \left(\frac{3}{4} r^4 - \frac{1}{5} r^5 - \frac{1}{3} r^6 \right) \Big|_0^1 =$$

$$= \frac{1}{4} \cdot \left(\frac{3}{4} - \frac{1}{5} - \frac{1}{3} \right) =$$

$$= \frac{13}{240}.$$

Esercizio 6. Determinate la soluzione del problema di Cauchy

$$\begin{cases} x'(t) = \operatorname{sen}(x(t)) \tan(x(t)) \\ x(0) = \pi/4. \end{cases}$$

Soluzione. L'equazione differenziale proposta è un'equazione a variabili separabili. La funzione a secondo membro è f(t,x) = g(t)h(x) con

$$g(t) = 1,$$
 $t \in \mathbb{R}$ e $h(x) = \sin x \tan x,$ $x \neq (2k+1)\pi/2$ $(K \in \mathbb{Z}).$

Essendo il dato iniziale $x_0 = \pi/4 > 0$, possiamo considerare h definita nel solo intervallo $(-\pi/2, \pi/2)$. La funzione h è infinite volte derivabile in $(-\pi/2, \pi/2)$ cosicché il problema di Cauchy considerato ha soluzione massimale $x \in C^{\infty}(\alpha, \beta)$ con $-\infty \le \alpha = \alpha(x_0) < 0 < \beta = \beta(x_0) \le +\infty$. Tale soluzione è prolungamento di ogni altra soluzione del medesimo problema di Cauchy.

Poiché la soluzione massimale relativa al dato iniziale x(0) = 0 è ovviamente la funzione costante x(t) = 0 per ogni $t \in \mathbb{R}$, la soluzione massimale relativa al dato iniziale $x(0) = \pi/4 > 0$ verifica la disuguaglianza: $0 < x(t) < \pi/2$ per ogni $t \in (\alpha, \beta)$. Si ha quindi

$$\frac{x'(t)}{\mathrm{sen}(x(t))\mathrm{tan}(x(t))} = 1, \qquad \alpha < t < \beta,$$

e ponendo

$$H(y) = \int_{\pi/4}^{y} \frac{1}{\sin z \tan z} dz = \int_{\pi/4}^{y} \frac{\cos z}{\sin^{2} z} dz = -\frac{1}{\sin z} \Big|_{\pi/4}^{y} = \sqrt{2} - \frac{1}{\sin y}, \qquad 0 < y < \pi/2,$$

si deduce che la funzione composta $H \circ x$ è in $C^{\infty}(\alpha, \beta)$ e verifica $(H \circ x)'(t) = 1$ per $\alpha < t < \beta$ e $H \circ x(0) = 0$. Per il teorema fondamentale del calcolo deve allora essere

$$(H \circ x)(t) = \sqrt{2} - \frac{1}{\operatorname{sen}(x(t))} = t, \qquad \alpha < t < \beta,$$

da cui segue con facili calcoli

$$x(t) = \arcsin\left(\frac{1}{\sqrt{2}-t}\right), \quad \alpha < t < \beta.$$

Restano infine da determinare α e β . Poiché si ha

$$\begin{split} & \lim_{y \to 0^+} H(y) = \lim_{y \to 0^+} \left(\sqrt{2} - \frac{1}{\sin y} \right) = -\infty, \\ & \lim_{y \to (\pi/2)^-} H(y) = \lim_{y \to (\pi/2)^-} \left(\sqrt{2} - \frac{1}{\sin y} \right) = \sqrt{2} - 1, \end{split}$$

si conclude che risulta $\alpha = -\infty$ e $\beta = \sqrt{2} - 1$.

La soluzione massimale del problema di Cauchy proposto è quindi

$$x(t) = \arcsin\left(\frac{1}{\sqrt{2}-t}\right), \quad t < \sqrt{2}-1.$$