

Projet Optimisation le Récuit Simulé

AARAB Abdelkbir

• • •

Table de Matière:

> Description de La Méthode :

- 1. L'algorithme de recuit simulé : historique
- 2. Schéma d'algorithme de recuit simulé
- 3. Le critère de Metropolis
- 4. Paramètre de température
- 5. Schéma de refroidissement
- 6. Réglage des paramètres du recuit simulé
- 7. Algorithmes d'acceptation avec seuil

> L'algorithme de Récuit Simulé

- 1. L'Origine de l'Algorithme
- 2. Améliorations: Tabu Search
- 3. Améliorations : Beam Search
- > Implémentation sous Python
- > Exemple explicatif:

Le Voyageur de Commerce

1. L'algorithme de recuit simulé : historique :

Le recuit physique:

- Ce processus est utilisé en métallurgie pour améliorer la qualité d'un solide. En cherchant à atteindre un état d'énergie minimale qui correspond à une structure stable du métal.
- En partant d'une haute température à laquelle la matière est devenue liquide, la phase de refroidissement conduit la matière à retrouver sa forme solide par une diminution progressive de la température.

Le recuit simulé (Simulated Annealing):

- Expériences réalisées par Metropolis et al. dans les années 50 pour simuler l'évolution de ce processus de recuit physique (Metropolis53).
- L'utilisation pour la résolution des problèmes d'optimisation combinatoire est beaucoup plus récente et date des années 80 (Kirkpatrick83, Cerny85).
- Le recuit simulé est la première métaheuristique qui a été proposée.

Principes généraux :

- L'idée est d'effectuer un mouvement selon une distribution de probabilité qui dépend de la qualité des différents voisins :
- Les meilleurs voisins ont une probabilité plus élevée ;
- Les moins bons ont une probabilité plus faible.
- On utilise un paramètre, appelé la température (notée T) :
- 1. Télevée: tous les voisins ont à peu près la même probabilité d'être acceptés.
- 2. T faible : un mouvement qui dégrade la fonction de coût a une faible probabilité d'être choisi.
- 3. T=0: aucune dégradation de la fonction de coût n'est acceptée.
- La température varie au cours de la recherche : T est élevée au début, puis diminue et finit par tendre vers 0.

_ _

Schéma d'algorithme de recuit simulé

- Engendrer une configuration initiale S0 de S; S := S0
- Initialiser T en fonction du schéma de refroidissement
- Répéter
 - Engendrer un voisin aléatoire S'de S
 - Calculer

$$\Delta = f(S') - f(S)$$

- Si CritMetropolis (Δ , T), alors S := S'
- Mettre T à jour en fonction du schéma de refroidissement
- Jusqu'à < condition fin>
- Retourner la meilleure configuration trouvée

Le critère de Metropolis

- fonction CritMetropolis (Δ, Τ)
 - Si Δ ≤ 0 renvoyer VRAI
 - Sinon
 - avec une probabilité de exp (- Δ / T) renvoyer VRAI
 - Sinon renvoyer FAUX
- Un voisin qui améliore (Δ <0) ou à coût égal (Δ =0) est toujours accepté.
- Une dégradation faible est acceptée avec une probabilité plus grande qu'une dégradation plus importante.
- La fonction CritMetropolis (Δ , T) est une fonction stochastique : appelée deux fois avec les mêmes arguments, elle peut renvoyer tantôt « vrai » et tantôt « faux ».

Paramètre de température

- Dans la fonction CritMetropolis (Δ , T), le paramètre T (température) est un réel positif.
- La température permet de contrôler l'acceptation des dégradations :
 - Si T est grand, les dégradations sont acceptées avec une probabilité plus grande.
 - A la limite, quand T tend vers l'infini, tout voisin est systématiquement accepté.
 - Inversement, pour T=0, une dégradation n'est jamais acceptée.
- La fonction qui spécifie l'évolution de la température est appelé le schéma de refroidissement.

Schéma de refroidissement

- La fonction qui spécifie l'évolution de la température est appelé le schéma de refroidissement (cooling Schedule).
- Dans le recuit simulé standard la température décroît par paliers.
- Par exemple, on pourrait avoir trois paramètres : la température initiale, la longueur d'un palier (nombre d'itérations avant de changer la température) et le coefficient de décroissance (si décroissance géométrique).
- On peut aussi utiliser d'autres schémas de refroidissement :
 - On peut faire décroître la température à chaque itération.
 - On utilise parfois une température constante (algorithme de Metropolis).
 - On peut utiliser des schémas plus complexes, dans lesquels la température peut parfois remonter.

• • •

Algorithme de recuit simulé (avec paliers et refroidissement géométrique) :

- Engendrer une configuration initiale S0; S:= S0
- T : = TO
- Répéter

```
nb_moves := 0Pour i := 1 à iter_palier
```

- Engendrer un voisin S' de S
- Calculer $\Delta = f(S') f(S)$
- Si CritMetropolis (Δ , T), alors

```
- S := S'; nb_moves := nb_moves + 1
- acceptance_rate := i / nb_moves
- T := T * coeff
```

- Jusqu'à <condition fin>
- Retourner la meilleure configuration trouvée

Réglage des paramètres du recuit simulé :

- Dans le cas du recuit simulé classique (avec refroidissement), le réglage des paramètres n'est pas évident.
- Pour régler les paramètres, il peut être utile d'observer le pourcentage d'acceptation (acceptance rate) au cours de la recherche = nombre de mouvements réellement exécutés / nombre d'itérations.

• Température initiale :

Si la température initiale est trop élevée, le début de la recherche ne sert à rien.

• Critère d'arrêt :

Il est inutile de poursuivre si :

- le pourcentage d'acceptation devient très faible,
- la fonction d'évaluation cesse d'évoluer

Réglage des paramètres du recuit simulé : implantation de Johnson et al.

- Température initiale
- Un paramètre fixe le pourcentage d'acceptation initial.

• Longueur d'un palier :

- Un paramètre borne le nombre d'essais (itérations) par palier
- Un autre paramètre borne le nombre changements (mouvements) pour le début de la recherche

• Critère d'arrêt :

- Un compteur sert à déterminer si l'algorithme stagne. Le compteur est fixé à zéro au début La recherche s'arrête quand le compteur atteint un certain seuil.
- A la fin d'un palier, le compteur est :
 - incrémenté si le pourcentage d'acceptation est inférieur à un seuil.
 - remis à zéro si la qualité de la meilleure solution a évolué au cours du palier.

<u>Implémentation du recuit simulé :</u>

- Quand on utilise le recuit simulé avec des paliers et que la fonction de coût prend des valeurs entières, on peut utiliser un tableau qui mémorise la probabilité d'acceptation associée à chaque valeur de Δ .
- L'implémentation naturelle du recuit simulé consiste à engendrer un mouvement, puis à appliquer le critère de Metropolis. Une implémentation équivalente (en termes de configurations engendrées) est le recuit sans rejet (Rejectless Annealing).

Il consiste à calculer la probabilité de chaque mouvement, puis à appliquer la roulette bigisée.

Origine de la Méthode :

C'est une amélioration de I 'algorithme hill-climbing pour **minimiser le risque d'être piégé dans des maxima/minima locaux**

- au lieu de regarder le meilleur voisin immédiat du nœud courant, avec une Certaine probabilité on va regarder un moins bon voisin immédiat » on espère ainsi s'échapper des optima locaux.
- au début de la recherche, la probabilité de prendre un moins bon voisin est plus élevée et diminue graduellement
- Le nombre d'itérations et la diminution des probabilités sont définis a l'aide d'un schéma (Schedule) de « températures », en ordre décroissant
 - ex.: schéma de 100 itérations [2-°, 2-1, 2-2, ..., 2-99]
 - ♦ la meilleure définition du schéma va varier d'un problème à l'autre.

Algorithme simulated annealing

```
Algorithme SIMULATED-ANNEALING(noeudInitial, schema) // cette variante maximise

 déclarer deux nœuds : n, n'

 déclarer: t, T, ΔE,

n = noeudInitial
4. pour t = 1 ... taille(schema)
     5. T = schema[t]
     6. n' = successeur de n choisi au hasard
     7. \Delta E = F(n') - F(n)
                                                  // si on minimisait, \Delta E = F(n) - F(n')
     8. si \Delta E > 0 alors assigner n = n'
                                                  // amélioration p/r à n

 sinon assigner n = n' seulement avec probabilité de e ΔΕ/Τ

     retourner n
6.
                                     plus T est petit,
                                     plus e^{\Delta E/T} est petite
```

D'autres Améliorations : tabu search

- L'algorithme Simulated annealing minimise le risque d'être piégé dans des optima locaux
- par contre, il n'élimine pas la possibilité d'osciller indéfiniment en revenant à un nœud antérieurement visite
 - Idée : on pourrait enregistrer les nœuds visités
 - on revient à A* et approches similaires!
 - mais c'est impraticable si L'espace d'états est trop grand
- L'algorithme tabu search (recherche taboue) enregistre seulement les k derniers nœuds visités
 - L'ensemble tabou est ('ensemble contenant les k nœuds
 - Le paramètre k est choisi empiriquement
 - Cela n'élimine pas les oscillations, mais les réduit
 - il existe en fait plusieurs autres façons de construire ('ensemble taboue...

D'autres Améliorations : beam search

- L'idée : plutôt que maintenir un seul nœud solution n, en pourrait maintenir un ensemble de k nœuds différents.
- 1. on commence avec un ensemble de k nœuds choisis aléatoirement
- 2. à chaque itération, tous les successeurs des k nœuds sont générés
- 3. on choisit les k meilleurs parmi ces nœuds et on recommence
 - Cet algorithme est appelé local beam search (exploration locale par faisceau)
 - à ne pas confondre avec tabu search
 - Variante stochastique beam search
 - plutôt que prendre les k meilleurs, on assigne une probabilité de choisir chaque nœud, même s'il n'est pas parmi les k meilleurs (comme dans simulated annealing)

> Implémentation sous Python

mport numpy as np	
mport matplotlib.pyplot as plt	
def h(x):	
f x < -1 or x > 1:	
y = 0	

> Exemple explicatif:

Le Voyageur de Commerce

Un commercial doit passer par N villes et revenir à son point de départ, il se déplace en avion et il y a des vols directs entre toutes les villes. Le but est de trouver le trajet optimal, c'est-à-dire la distance minimale à parcourir.

Il y a (N-1)! façons possibles d'effectuer le trajet. Il est donc clairement impossible d'effectuer une recherche exhaustive si N n'est pas petit.

Pour 10 villes, voici un exemple de représentation :

```
N <- 10

M <- matrix(runif(2*N),nrow=N,ncol=2)

trajini <- rbind(M,M[1,])

library(ggplot2)

ggplot(data.frame(trajini))+aes(x=trajini[,1],y=trajini[,2])+geom_path(col="blue")+xlab("")+ylab("")</pre>
```


Ce parcours n'est clairement pas optimal.

3. Construction de la matrice dist des distances entre villes :

```
distx <- (M[,1]%*%matrix(1,nrow=1,ncol=N)-matrix(1,nrow=N,ncol=1)%*%t(M[,1]))^2
disty <- (M[,2]%*%matrix(1,nrow=1,ncol=N)-matrix(1,nrow=N,ncol=1)%*%t(M[,2]))^2
dist <- sqrt(distx+disty)</pre>
```

4. On cherche donc

$$\operatorname{argmin}_{\sigma \in \mathcal{S}_N} D_\sigma = \operatorname{argmin}_{\sigma \in \mathcal{S}_N} \sum_{\ell=1}^N d(M_{\sigma(\ell)}, M_{\sigma(\ell+1)}).$$

Partant de σ , il suffit de tirer ℓ et ℓ' uniformément entre 1 et N, puis d'inverser $\sigma(\ell)$ et $\sigma(\ell')$ dans le vecteur définissant σ . Ceci définit sans ambiguïté la permutation $\sigma^{\ell,\ell'}$ (égale à σ si $\ell=\ell'$). Notons que cette transition est symétrique : la probabilité de passer de σ à $\sigma^{\ell,\ell'}$ est égale à celle de passer de $\sigma^{\ell,\ell'}$ à σ , à savoir $2/N^2$. Notons aussi qu'il y a bien d'autres façons d'explorer l'espace S_N , la littérature foisonne sur ce sujet.

Pour l'implémentation de l'algorithme, on commence par construire une fonction associant à une permutation σ la distance du parcours correspondant :

```
D <- function(perm, dist) {
    d <- dist[perm[N], perm[1]]
    for (i in 1:(N-1)) {d <- d+dist[perm[i], perm[i+1]]}
    return(d) }</pre>
```