数学分析I习题课一

2022年9月27日

问题 1. 证明数列 $x_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{(-1)^{n+1}}{n}$ 收敛并求其极限.

问题 2. 证明

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = e.$$

问题 3. 记 $S_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}, n \in \mathbb{N}_+$. 用 K_n 表示使 $S_k \geq n$ 的最小下标, 求极限 $\lim_{n \to \infty} \frac{K_{n+1}}{K_n}$.

问题 4. 证明: 若有界数列 $\{x_n\}$ 不收敛, 则必存在两个子列 $\{x_{n_k}^{(1)}\}$ 与 $\{x_{n_k}^{(2)}\}$ 收敛于不同的极限, 即 $\lim_{k\to\infty}x_{n_k}^{(1)}=a$, $\lim_{k\to\infty}x_{n_k}^{(2)}=b$, $a\neq b$.

问题 5. 设 f(x) 是定义在 $X \subset \mathbb{R}$ 上的周期函数, 定义数集

$$E = \{ T \mid T > 0 为 f(x) 的 周 期 \}$$

证明或者有 $\inf E = 0$, 或者有 $\inf E \in E$.

问题 6. 设 A 是有上界的数集, $\sup A = \beta$. 证明: 存在 $\{a_n\}$, 使 $a_n \in A, n \in \mathbb{N}_+$, 而且 $\lim_{n \to \infty} a_n = \beta$. 又若 $\beta \notin A$, 则 $\{a_n\}$ 可以是严格单调增加的.