Significance Of Exploratory Data Analysis (EDA) for the Sentiment Analysis Project:

Data Overview

• Code

```
data.sample(9)
data.tail(9)
```

• This code displays random samples (9 rows) and the last 9 rows of your dataset. It helps you quickly view the structure of your data and understand its content.

Checking for Missing Values

• Code

```
data.isnull()
data.isnull().sum()
```

• These lines of code check for missing values in your dataset and provide a summary of the count of missing values in each column. It's essential for data cleaning and imputation.

Data Information

• Code

```
data.info()
data.dtypes
data.columns
```

• These code snippets provide an overview of your dataset. `data.info()` gives information about data types, non-null values, and memory usage, while `data.dtypes` shows the data types of each column, and `data.columns` lists the column names.

Duplicates Removal

• Code

```
data.duplicated().sum()
data = data.drop_duplicates()
data.duplicated().sum()
```

• The code first checks for and reports the number of duplicate rows in the dataset. Then, it removes the duplicates using `drop_duplicates()`. This ensures your data contains unique records, avoiding data inconsistencies.

Scatter Plot

• Code

plt.scatter(data.tweet_id, data.airline_sentiment_confidence)

• This code creates a scatter plot between "tweet_id" and "airline_sentiment_confidence." It helps visualize the distribution and confidence of airline sentiments

Box Plot

• Code

plt.boxplot(data['airline_sentiment_confidence'], vert=False)

• The box plot visualizes the distribution of the "airline_sentiment_confidence" column. It shows the median, quartiles, and potential outliers.

Pie Chart

• Code

plt.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f'%%', startangle=140)

• This code creates a pie chart to display the distribution of different airline sentiments. It offers a visual representation of sentiment proportions.

Histograms

• Code

plt.hist(data['airline_sentiment_confidence'], bins=20, edgecolor='k') plt.hist(data['retweet_count'], bins=20, edgecolor='k')

• These snippets generate histograms to visualize the distribution of "airline_sentiment_confidence" and "retweet_count." Histograms provide insights into data distribution.

Bar Charts

Code

plt.bar(airline_counts.index, airline_counts.values)

plt.bar(negativereason counts.index, negativereason counts.values)

• These code snippets create bar charts to display the distribution of airlines and negative reasons. They help understand which airlines are mentioned more and why customers express negative sentiments.

Seaborn Count Plot

• Code

sns.countplot(data=data, x='airline sentiment')

• This snippet uses Seaborn to create a count plot of sentiment classes. It provides a clear view of the distribution of sentiment classes.

Word Clouds

• Code

```
wordcloud = WordCloud(width=800, height=400,
background_color='white').generate(text)
```

• These code snippets generate word clouds to visualize the most common words in tweets. They help identify frequent keywords in the dataset.

Tweet Length Distribution

• Code

```
plt.hist(data['tweet_length'], bins=20)
```

• This snippet creates a histogram to visualize the distribution of tweet lengths, helping you understand the length of tweets in your dataset.

Top Hashtags and Mentions

• Code

```
top_hashtags.plot(kind='bar', title="Top Hashtags")
top_mentions.plot(kind='bar', title="Top Mentions")
```

• These snippets display bar charts of the top hashtags and mentions in the tweets, allowing you to identify popular topics and user mentions.