1 Translations

Intuition: Une translation est un *glissement* avec :

- une direction,
- un sens,
- une longueur (on parle alors de *norme*.

FIGURE 1 – Dans cet exemple, le triangle DEF est l'image de ABC par la translation qui transforme *A* en *D*.

Définition 1 Soit A, B deux points du plan, on appelle **translation de vecteur** \overrightarrow{AB} la transformation du plan qui envoie un point C quelconque sur un point D obtenu en faisant glisser D

- 1. dans la direction de la droite (AB),
- 2. dans le sens de A vers B,
- 3. d'une longueur égale à la longueur AB.

Théorème 1 (règle du parallélogramme) D est l'image de C par la translation de vecteur \overrightarrow{AB} si, et seulement si, ABDC est un parallélogramme éventuellement aplati.

Remarque: Attention à l'ordre des lettres dans ce théorème!

2 Vecteurs

2.1 Notion de vecteur

Définition 2 Soit t la translation qui transforme A en D, B en E et C en F (voir figure plus haut). Les couples de points (A; D), (B; E) et (C; F) définissent un même vecteur caractérisé par

- 1. une direction, celle de la droite (AD) qui est aussi parallèle à celle de
- 2. un sens, celui de A vers D qui est aussi celui de vers ou de vers
- 3. une longueur : AD =

On note ce vecteur \overrightarrow{u} .

Remarques:

- 1. Un vecteur n'a pas de "place" dans le plan. On peut le faire partir de n'importe où.
- 2. Lorsque l'on donne un vecteur par deux lettres, par exemple \overrightarrow{AD} , A s'appelle l'origine du vecteur et D l'extrémité.

2.2 Vecteurs égaux

Définition 3 Deux vecteurs sont égaux s'ils ont le même sens, la même direction et la même longueur.

Remarque : De manière équivalente, deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si la translation qui transforme A en B transforme C en D.

Théorème 2 (règle du parallélogramme version 2) Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si, et seulement si le quadrilatère ABDC est un parallélogramme.

Exemple: Dans la figure ci-dessous, on a les égalités:

Remarque: Lorsque deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux, on dit qu'ils sont les **représentants** d'un même vecteur. Dans la figure ci-dessus, le vecteur \overrightarrow{u} est un représentant des vecteurs \overrightarrow{AB} et \overrightarrow{CD} .

Coordonnées d'un vecteur

On considère un repère du plan (*O*; *I*, *J*).

Définition 4 Soit \overrightarrow{u} un vecteur. On considère la translation de vecteur \overrightarrow{u} et on appelle M l'image de l'origine O par cette translation. Les coordonnées de \overrightarrow{u} sont celles du point M. On a $\overrightarrow{u} = \overrightarrow{OM}$ et on note \overrightarrow{u}

Exemples:

Proposition 1 *Soit un vecteur* \overrightarrow{AB} *dans un vecteur* (O; I, J) *alors ses coordonnées sont*

Proposition 2 Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si, et seulement si ils ont les mêmes coordonnées.

Exemple:

Dans le repère orthogonal ci-dessous, placer les points A(-2;3), B(4;-1), C(-3;1). Calculer les coordonnées

- 1. du vecteur \overrightarrow{AB} ,
- 2. du point D tel que $\overrightarrow{AB} = \overrightarrow{CD}$.

4 Opérations sur les vecteurs

4.1 Somme de vecteurs

Proposition 3 L'enchaînement de deux translations de vecteurs \overrightarrow{u} et \overrightarrow{v} est une translation. Le vecteur de cette nouvelle translation est appelée $\overrightarrow{u} + \overrightarrow{v}$.

Proposition 4 (Relation de Chasles) Soit \overrightarrow{AB} , \overrightarrow{BC} , deux vecteurs, alors $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Remarque: $\overrightarrow{AB} + \overrightarrow{BA} =$

4.2 Vecteur opposé, vecteur nul

Définition 5 On appelle vecteur nul et on note $\overrightarrow{0}$ le vecteur de coordonnées $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Il correspond à la translation qui laisse le plan identique à lui même.

Définition 6 Le vecteur associé à la translation qui transforme B en A est appelé vecteur **opposé** au vecteur \overrightarrow{AB} . On note alors $\overrightarrow{BA} = -\overrightarrow{AB}$.

4.3 Lien avec les coordonnées

Proposition 5 Soit
$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 alors $-\overrightarrow{u} \begin{pmatrix} -x \\ -y \end{pmatrix}$.

Proposition 6 Soit
$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
, $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors $\overrightarrow{u} + \overrightarrow{v}$ a pour coordonnées $\begin{pmatrix} & & \\ & & \end{pmatrix}$

5 Produit d'un vecteur par un réel, colinéarité

5.1 Produit d'un vecteur par un réel

Soit λ un nombre réel et $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$.

Définition 7 On appelle produit de \overrightarrow{u} par le réel λ le vecteur $\begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}$. On note ce vecteur $\lambda \overrightarrow{u}$.

5.2 Colinéarité

Définition 8 Soit \overrightarrow{u} , \overrightarrow{v} deux vecteurs. On dit que \overrightarrow{u} et \overrightarrow{v} sont colinéaires s'il existe un réel tel que $\overrightarrow{u} = \lambda \overrightarrow{v}$.

Remarque : Le vecteur est colinéaire à tous les autres vecteurs.

Proposition 7 Deux vecteurs \overrightarrow{u} , \overrightarrow{v} sont colinéaires si, et seulement si, leurs coordonnées sont

5.3 Application au parallélisme et à l'alignement

Proposition 8 *Soit A, B, C, D quatre points distincts du plan, alors* (AB) *et* (CD) *sont parallèles si, et seulement si,* \overrightarrow{AB} *et* \overrightarrow{CD} *sont colinéaires.*

Remarque : Si \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires alors \overrightarrow{ABDC} est un

Proposition 9 Soit A, B, C trois points du plan, alors ils sont alignés si, et seulement si, $\overrightarrow{AB} = \overrightarrow{BC}$ sont colinéaires.

