Understanding Logical Effort

Using ngspice, designing a minimum sized CMOS inverter such that the rise time and fall time are equal for a load capacitance of 0.1pF.

(We shall use the time taken to traverse from 10% to 90% of the transient as the rise/fall delay).

The n channel transistor W is $0.6\mu m$ and L is $0.4\mu m$. Channel length of p channel transistor should also be $0.4\mu m$. Adjust the width of the p channel transistor to get equal rise and fall times.

For this process, we shall take V_{DD} to be 3.3V.

CMOS inverter such that the rise time and fall time are equal for a load capacitance of 0.1pF.

```
Let \lambda=90n,
L min = 2\lambda
Source Area = Drain area = W \times 4\lambda = 2 \times W \times L min .
Source Perim. = Drain Perim. = 2(W + 4\lambda) = 2(W + 2L min )
```

The n channel transistor W is $0.6\mu m$ and L is $0.4\mu m$. Channel length of p channel transistor is also $0.4\mu m$. Adjusting the width of the p channel transistor to get equal rise and fall times. Width turns out to be $1.55795\mu m$.

After measurements for transient analysis, rise time turned out to be 1.063718 nsec and fall time was 1.063717 nsec. Where time taken to traverse from 10% to 90% of the transient is considered as the rise/fall delay.

Also, the Inverter delay measured between 50% positions i.e. 1.65V on the transients at the input and output is .5774116 nsec.

Minimun size Inverter with 0.1pf load.

DUT input output waveform

Observations:

Management for Transitud Analysis 4 For		
Measurements for Transient Analysis 1 Far Rise time for output capacitor	= 1.066423e-09	
· · · · · · · · · · · · · · · · · · ·	= 1.067839e-09	
Fall time for output capacitor Rise time for DUT output	= 7.692229e-11	
•	= 7.361886e-11	
Fall time for DUT output		
Delay by DUT	= 6.495596e-11	
Measurements for Transient Analysis 2 Far	pout Load invertor (in seconds)	
Rise time for output capacitor	= 5.527538e-10	
Fall time for output capacitor	= 5.540146e-10	
Rise time for DUT output	= 1.141917e-10	
Fall time for DUT output	= 1.116567e-10	
Delay by DUT	= 8.658926e-11	
Delay by DOT	- 0.0309206-11	
Measurements for Transient Analysis 3 Far	out Load inverter	
Rise time for output capacitor	= 3.898961e-10	
Fall time for output capacitor	= 3.909244e-10	
Rise time for DUT output	= 1.557521e-10	
Fall time for DUT output	= 1.537321e-10 = 1.532822e-10	
Delay by DUT	= 1.070717e-10	
Delay by DOT	- 1.070717e-10	
Measurements for Transient Analysis 4 Far	out Load inverter	
Rise time for output capacitor	= 3.167560e-10	
Fall time for output capacitor	= 3.173368e-10	
Rise time for DUT output	= 2.039521e-10	
Fall time for DUT output	= 2.009512e-10 = 2.009512e-10	
Delay by DUT	= 1.272295e-10	
Delay by DOT	- 1.272295e-10	
Measurements for Transient Analysis 5 Far	oout Load inverter	
Rise time for output capacitor	= 2.796501e-10	
Fall time for output capacitor	= 2.790301e-10 = 2.797147e-10	
Rise time for DUT output	= 2.643911e-10	
Fall time for DUT output	= 2.584323e-10	
Delay by DUT	= 1.474070e-10	
Delay by Do i	- 1.474070C 10	
Measurements for Transient Analysis 6 Fanout Load inverter		
Rise time for output capacitor	= 2.602525e-10	
Fall time for output capacitor	= 2.595680e-10	
Rise time for DUT output	= 3.534234e-10	
Fall time for DUT output	= 3.311610e-10	
Delay by DUT	= 1.677488e-10	
Delay by Do i	- 1.077400E-10	
Measurements for Transient Analysis 7 Far	Load inverter	
Rise time for output capacitor	= 2.499899e-10	
Fall time for output capacitor	= 2.484970e-10	
Rise time for DUT output	= 4.344415e-10	
Fall time for DUT output	= 4.126067e-10	
Delay by DUT	= 1.883176e-10	
Delay by DOT	- T.000T10G-T0	
Measurements for Transient Analysis 8 Fanout Load inverter		
Rise time for output capacitor	= 2.459695e-10	
Fall time for output capacitor	= 2.4390936-10 = 2.438730e-10	
Rise time for DUT output	= 4.830160e-10	
Fall time for DUT output	= 4.686080e-10 = 2.0008070 10	
Delay by DUT	= 2.090897e-10	

Input-Output Delay Characteristcis of DUT

DUT Delay = 64.95596 pico seconds with 1 Fanout

DUT Delay = 86.58926 pico seconds with 2 Fanout

Plotting Fanout vs Delay of DUT,

FANOUT	Delay (in pico seconds)
1	64.95596
2	86.58926
3	107.0717
4	127.2295
5	147.407
6	167.7488
7	188.3176
8	209.0897

Delay vs Fanout

Evaluating τ and $\,p_{\text{inv}}$

From graph

 $p_{\rm inv}\tau = 4.51697607142857 {\rm x} 10^{\rm -11}$

where,

 $\tau = 2.04736509523811 \times 10^{-11}$

So,

 $p_{\rm inv} = 4.51697607142857 \mathrm{x} 10^{\text{-}11} / 2.04736509523811 \mathrm{x} 10^{\text{-}11}$

 $p_{inv} = 2.216872509103$