République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs

Concours Physique et Chimie Corrigé de l'épreuve de Mathématiques

Problème 1

Partie I:

Pour tout entier naturel n, on pose $u_n = \int_0^1 -\ln(t) t^n dt$ et $I = \int_0^1 \frac{\ln(t)}{t^2 - 1} dt$.

- 1. On pose $f(t) = \frac{\ln(t)}{t^2 1}$. On a : • f est continue sur]0,1[.

 - $f(t) \sim -\ln(t)$ et $\int_0^{\frac{1}{2}} \ln(t) dt$ converge.
 - $f(t) \sim \frac{1}{2}$ et $\int_{\frac{1}{2}}^{1} \frac{1}{2} dt$ converge.

En utilisant le critère d'équivalence, on en déduit l'existence de I.

2. On a $\lim_{t\to 0^+} g(t) = 0$, $\lim_{t\to 1^-} g(t) = -\frac{1}{2}$ et g est continue sur]0,1[. Alors g se prolonge par continuité sur [0,1] par la fonction \tilde{g} définie sur [0,1] par :

$$ilde{g}(t) = \left\{ egin{array}{ll} & g(t), & ext{si } t \in]0,1[, \ & 0, & ext{si } t = 0, \ & -rac{1}{2}, & ext{si } t = 1. \end{array}
ight.$$

Il existe alors M > 0 tel que $\forall x \in [0,1], |\tilde{g}(t)| \leq M$.

3. On a:

$$\left| I - \sum_{k=0}^{n} u_{2k} \right| = \left| \int_{0}^{1} t^{2n+2} \frac{\ln(t)}{1 - t^{2}} dt \right|$$

$$= \left| \int_{0}^{1} t^{2n+1} g(t) dt \right| \le M \int_{0}^{1} t^{2n+1} dt = \frac{M}{2n+2}.$$

4. Une intégration par parties donne $u_n = \frac{1}{(n+1)^2}$. On obtient ainsi :

$$\left| I - \sum_{k=0}^{n} \frac{1}{(2k+1)^2} \right| = \frac{M}{2n+2}.$$

Par passage à la limite quand $n \to +\infty$ on obtient :

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = I.$$

Partie II:

- 1. On pose $\varphi(x,t) = \frac{\arctan\left(\frac{x}{t}\right)}{(1+t^2)}$. φ est continue sur $\mathbb{R} \times]0, +\infty[$. On sait que $\forall t > 0$, et $x \in \mathbb{R}$, $|\varphi(x,t)| \leq \frac{\frac{\pi}{2}}{1+t^2}$ et que $\int_0^{+\infty} \frac{\frac{\pi}{2}}{1+t^2} dt$ converge alors F est définie et continue sur \mathbb{R} . $F(1) = \int_0^{+\infty} \frac{\frac{\pi}{2} \arctan(t)}{(1+t^2)} dt = \left[\frac{\pi}{2} \arctan(t) \frac{1}{2} \arctan^2(t)\right]_0^{+\infty} = \frac{\pi^2}{8}.$
- 2. φ est de classe C^1 sur $]0, +\infty[\times]0, +\infty[$ et

$$\frac{\partial \varphi}{\partial x}(x,t) = \frac{1}{t(1+t^2)\left(1+\left(\frac{x}{t}\right)^2\right)}$$
$$= \frac{t}{(1+t^2)(t^2+x^2)}.$$

Soit a > 0. On a pour tout $x \ge a$,

$$\left|\frac{\partial\varphi}{\partial x}(x,t)\right| \leq \frac{t}{(1+t^2)(t^2+a^2)} = \Psi(t).$$

 Ψ est continue sur $[0,+\infty[$, de plus $\Psi(t)\sim_{+\infty}\frac{1}{t^3}$. D'où F est de classe C^1 sur $]0,+\infty[$ et pour tout x>0 tel que $x\neq 1$, on a :

$$\frac{\partial \varphi}{\partial x}(x,t) = \frac{1}{1-x^2} \left(\frac{t}{(1+t^2)} - \frac{t}{(t^2+x^2)} \right).$$

Donc

$$F'(x) = \int_0^{+\infty} \frac{\partial \varphi}{\partial x}(x,t) dt$$

= $\frac{1}{1-x^2} \int_0^{+\infty} \frac{t}{(t^2+x^2)} - \frac{t}{(1+t^2)} dt.$

3. Un calcul simple montre que $F'(x) = \frac{\ln(x)}{x^2 - 1}$. Comme F(0) = 0 alors

$$F(x) = \int_0^x \frac{\ln(t)}{t^2 - 1} dt.$$

4. On a
$$I = F(1) = \frac{\pi^2}{8}$$
. Par suite $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$.

D'autre part, $\sum_{n=0}^{+\infty} \frac{1}{n^2} = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} + \sum_{n=0}^{+\infty} \frac{1}{(2n)^2}$ et donc $\sum_{n=0}^{+\infty} \frac{1}{n^2} = \frac{4}{3} \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{6}$.

5. On a:

$$F_1 = \frac{1}{X(X+1)^2} = \frac{1+X-X}{X(X+1)^2} = \frac{1}{X(X+1)} - \frac{1}{(X+1)^2}$$
$$= \frac{1}{X} - \frac{1}{X+1} - \frac{1}{(X+1)^2}.$$

6. On a :

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)^2} = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1} - \frac{1}{(n+1)^2} \right)$$
$$= \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) - \sum_{n=1}^{+\infty} \frac{1}{(n+1)^2} = 2 - \frac{\pi^2}{6}.$$

Partie III:

1. On a:

$$P(X = n) = \sum_{k=0}^{+\infty} P(X = n, Y = k) = \sum_{k=0}^{+\infty} \frac{\lambda}{(n+1)^{k+3}}$$
$$= \frac{\lambda}{(n+1)^3} \sum_{k=0}^{+\infty} \frac{1}{(n+1)^k}$$
$$= \frac{\lambda}{n(n+1)^2}.$$

Comme $\sum_{n=1}^{+\infty} P(X=n) = 1$ on en déduit que $\lambda = \frac{1}{2 - \frac{\pi^2}{6}}$.

2. La série de terme général $nP(X=n)=\frac{\lambda}{(n+1)^2}$ est convergente, donc X admet une espé-

rance E(X) et

$$E(X) = \sum_{n=1}^{+\infty} nP(X=n)$$

$$= \sum_{n=1}^{+\infty} \frac{\lambda}{(n+1)^2}$$

$$= \lambda \left(\frac{\pi^2}{6} - 1\right) = \frac{\frac{\pi^2}{6} - 1}{2 - \frac{\pi^2}{6}}$$

- 3. La série de terme général $n^2P(X=n)=\frac{\lambda n}{(n+1)^2}$ est divergente, donc X n'admet pas de variance.
- 4. Pour $k \in \mathbb{N}$,

$$P(Y = k) = \sum_{n=1}^{+\infty} P(X = n, Y = k)$$

$$= \sum_{n=1}^{+\infty} \frac{\lambda}{(n+1)^{k+3}}$$

$$= \lambda \sum_{n=2}^{+\infty} \frac{1}{n^{k+3}} = \lambda (H(k+3) - 1).$$

5. On a: $\sum_{k=0}^{+\infty} P(Y=k) = \sum_{k=0}^{+\infty} \lambda(H(k+3)-1) = \lambda \sum_{k=3}^{+\infty} (H(k)-1) = 1$. Alors:

$$\sum_{k=3}^{+\infty} (H(k) - 1) = \frac{1}{\lambda} = 2 - \frac{\pi^2}{6}.$$

On en déduit que $\sum_{k=2}^{+\infty} (H(k) - 1) = 1$.

6. On a $\sum_{n=2}^{+\infty} \left(\frac{2}{n}\right)^x = 1 + \sum_{n=3}^{+\infty} \left(\frac{2}{n}\right)^x$.

On pose $u_n(x) = \left(\frac{2}{n}\right)^x = e^{x\ln(\frac{2}{n})} \le \frac{4}{n^2}$ pour $x \ge 2$. Donc la série $\sum u_n(x)$ converge normalement donc uniformément sur $[2, +\infty[$. On en déduit alors que

$$\lim_{x \to +\infty} \sum_{n=2}^{+\infty} \left(\frac{2}{n}\right)^x = 1 + \lim_{x \to +\infty} \sum_{n=3}^{+\infty} \left(\frac{2}{n}\right)^x = 1.$$

- 7. D'après la question précédente $H(x)-1 \underset{x \to +\infty}{\sim} 2^{-x}$. Par conséquent $v_k = P(Y=k) \underset{k \to +\infty}{\sim} \lambda 2^{-(k+3)}$.
- 8. Les séries de termes généraux $kP(Y=k)=\frac{\lambda k}{2^{k+3}}$ et $k^2P(Y=k)=\frac{\lambda k^2}{2^{k+3}}$ sont convergentes, donc Y admet une espérance et une variance.

Problème 2

Partie I:

1. Soit $A = (a_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$. On note ${}^tA = (b_{ij})_{1 \le i,j \le n}$, avec $b_{ij} = a_{ji}$ pour tout (i,j). On note ${}^tA.A = (c_{ij})_{1 \le i,j \le n}$. On a alors $c_{ij} = \sum_{k=1}^n b_{ik} a_{kj} = \sum_{k=1}^n a_{ki} a_{kj}$. D'où:

$$Tr({}^{t}A.A) = \sum_{i=1}^{n} c_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} (a_{ki})^{2} = \sum_{1 \le i,j \le n} (a_{ij})^{2}.$$

2. Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{SO}_2(\mathbb{R}) \text{ alors } \begin{cases} {}^tA.A = I, \\ det(A) = 1, \end{cases}$$
 et par suite $\begin{cases} a^2 + b^2 = 1, \\ c^2 + d^2 = 1, \\ ad - bc = 1. \end{cases}$ Donc $\begin{cases} \exists \beta \in \mathbb{R}/a = \cos \beta, \ b = \sin \beta, \\ \exists \theta \in \mathbb{R}/c = \sin \theta, \ d = \cos \theta, \\ \cos(\theta + \beta) = 1 \Rightarrow \exists k \in \mathbb{Z}/\theta + \beta = 2k\pi, \end{cases}$ ainsi $\cos(\theta + \beta) = 1 \Rightarrow \exists k \in \mathbb{Z}/\theta + \beta = 2k\pi, \end{cases}$ et par suite A est de la forme $\begin{cases} \cos \theta - \sin \theta \\ \sin \theta - \cos \theta \end{cases} / \theta \in \mathbb{R} \}.$

3. Soient θ_1 et θ_2 deux réels. On a :

$$R_{\theta_1}.R_{\theta_2} = \begin{pmatrix} \cos\theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \end{pmatrix} \begin{pmatrix} \cos\theta_2 & -\sin\theta_2 \\ \sin\theta_2 & \cos\theta_2 \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{pmatrix} = R_{\theta_1 + \theta_2}.$$

Un raisonnement par récurrence montre que pour tout entier naturel k on a : $(R_{\theta})^k = R_{k\theta}$.

Partie II:

On considère l'application $f: \mathcal{S}L_n(\mathbb{R}) \to \mathbb{R}$; $A \mapsto Tr({}^tA.A)$.

- 1. Dans cette question n = 2.
 - (a) On a $(a-d)^2 \ge 0$ alors $a^2+d^2 \ge 2ad$. De la même manière on aura $-2bc \le b^2+c^2$.

Donc pour
$$A=egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathcal{S}L_2(\mathbb{R})$$
, on a :

$$a^2 + b^2 + c^2 + d^2 \ge 2(ad - bc) = 2.$$

C'est à dire $f(A) \in [2, +\infty[$.

(b) Si
$$f(A) = 2$$
 alors $a^2 + b^2 + c^2 + d^2 = 2 = 2(ad - bc)$ alors

$$(a-d)^2 + (b+c)^2 = 0.$$

Donc a=d et b=-c. Comme det A=1 alors $a^2+b^2=1$ donc il existe $\theta\in\mathbb{R}$ telle que

$$A = egin{pmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{pmatrix}$$
 ; c'est à dire $A \in \mathcal{SO}_2(\mathbb{R})$.

La condition suffisante est triviale.

(c) On a
$$f(M_x) = 2 + x^2$$
. On en déduit que $\forall y \ge 2$, $y = f(M_{\sqrt{y-2}})$. Par suite $\text{Im } f = [2, +\infty[$.

2. Soit $A \in \mathcal{SL}_n(\mathbb{R})$ et $X_1, X_2, ..., X_n$ les colonnes de A.

(a) On utilise la question 1. de la partie I, on trouve :

$$f(A) = \sum_{1 \le i,j \le n} (x_{ij})^2 = \sum_{1 \le i \le n} ||X_i||^2.$$

(b) En utilisant l'inégalité de Hadamard, on a :

$$1 = |\det(A)| \le ||X_1|| \dots ||X_n||,$$

donc
$$1 \le \prod_{i=1}^n \|X_i\|^2$$
. Par suite, $1 \le \sqrt[n]{\prod_{i=1}^n \|X_i\|^2}$.

(c) Par l'inégalité arithmético-géométrique on obtient :

$$1 \le \sqrt[n]{\prod_{i=1}^{n} \|X_i\|^2} \le \frac{\|X_1\|^2 + \dots + \|X_n\|^2}{n} = \frac{f(A)}{n}.$$

Donc $f(A) \ge n$ et par suite $\operatorname{Im} f \subset [n, +\infty[$.

(d) Si
$$f(A) = n$$
 alors $1 \le \sqrt[n]{\prod_{i=1}^{n} ||X_i||^2} \le \frac{||X_1||^2 + \dots + ||X_n||^2}{n} = 1$ et par suite $\det(A) = 1$ et $\sqrt[n]{\prod_{i=1}^{n} ||X_i||^2} = \frac{||X_1||^2 + \dots + ||X_n||^2}{n}$.

C'est les cas des égalités dans les inégalités de Hadamard et l'inégalité arithméticogéométrique, on en déduit que la famille $\{X_1, \ldots, X_n\}$ est orthonormale.

- (e) Si $A \in f^{-1}(\{n\})$ alors f(A) = n et par suite $\det(A) = 1$ et la famille $X_1, X_2, ..., X_n$ des colonnes de A est orthonormale. Donc $A \in \mathcal{SO}_n(\mathbb{R})$. Réciproquement si $A \in \mathcal{SO}_n(\mathbb{R})$ $f(A) = Tr({}^tA.A) = n$.
- (f) D'après la question II)2)b) on a $Im(f) \subset [n, \infty[$. Réciproquement en s'inspirant de la question II)1)d) nous considérons la matrice $M_y = I_n + \sqrt{y n}E_{12}$, on obtient $f(M_y) = y$, donc $Im f = [n, +\infty[$.

Partie III:

- 1. Soit $A \in \mathcal{S}_n(\mathbb{R})$.
 - (a) A est symétrique à coefficients réels donc d'après le théorème spectral il existe $P \in \mathcal{O}_n(\mathbb{R})$ et $D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ diagonale tel que $A = P.D.^t P$.

- (b) Comme $D = (diag(\sqrt[3]{\lambda_1}, \sqrt[3]{\lambda_2}, \cdots, \sqrt[3]{\lambda_n})^3 =: D_1^3$. $M = P.D_1$. tP répond à la question. Ceci montre aussi que l'application h est surjective.
- 2. Soit M et $N \in \mathcal{S}_n(\mathbb{R})$ tels que h(M) = h(N) = A. Soit $\{\lambda_1, \lambda_2, ..., \lambda_p\}$ l'ensemble des valeurs propres de M.
 - (a) Pour tout $i \in \{1,2,...,p\}$ et $X \neq 0$ tel que $X \in E_{\lambda_i}(M)$ on a : $MX = \lambda_i X \Rightarrow M^3 X = AX = \lambda_i^3 X \Rightarrow X \in E_{\lambda_i^3}(A)$. Par suite on a : $E_{\lambda_i}(M) \subset E_{\lambda_i^3}(A)$.
 - (b) Le fait que $M \in \mathcal{S}_n(\mathbb{R})$ alors $\mathbb{R}^n = \bigoplus_{i=1}^p E_{\lambda_i}(M)$. D'autre part on a : $E_{\lambda_i}(M) \subset E_{\lambda_i^3}(A)$ et en utilisant le fait que si $i \neq j$, $\lambda_i^3 \neq \lambda_j^3$ alors

$$\mathbb{R}^n = \bigoplus_{i=1}^p E_{\lambda_i}(M) = \bigoplus_{i=1}^p E_{\lambda_i^3}(A).$$

Par suite $\sum\limits_{i=1}^p [dim(E_{\lambda_i^3}(A)) - dim(E_{\lambda_i}(M))] = 0$ et en utilisant la question III)2)a) on en déduit que $\forall i \in \{1, \cdots, p\}$ $dim(E_{\lambda_i^3}(A)) = dim(E_{\lambda_i}(M))$ et on conclut que $\forall i \in \{1, \cdots, p\}$ $E_{\lambda_i^3}(A) = E_{\lambda_i}(M)$.

(c) D'après la question précédente, on en déduit que l'ensemble des valeurs propres de A est $\left\{\lambda_1^3, \lambda_2^3, ..., \lambda_p^3\right\}$. Soit α une valeur propre de N alors α^3 est une valeur propre de $N^3 = A$. Ainsi $\exists i \in$

 $\{1, \dots, p\}$ tel que $\alpha^3 = \lambda_i^3$ et par la suite $\alpha = \lambda_i$ est une valeur propre de M.

- (d) D'après ce qui précède $\forall i \in \{1, \dots, p\}$ $E_{\lambda_i}(M) = E_{\lambda_i}(N)$ alors M = N. On conclut que l'application h est injective et par suite h est bijective.
- 3. Il est clair que -1 et 8 sont les valeurs propres de A et $E_{-1} = vect \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ et $E_8 = vect \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$. Soit $P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$.

$$M=Pegin{pmatrix} \sqrt{2} & \sqrt{2}/ \\ -1 & 0 \\ 0 & 2 \end{pmatrix} {}^tP=egin{pmatrix} rac{1}{2} & rac{3}{2} \\ rac{3}{2} & rac{1}{2} \end{pmatrix}$$
 répond à la question.

Partie IV:

- 1. Soit $A \in \mathcal{A}_2(\mathbb{R})$.
 - (a) $A = \begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix}$. Si a > 0, alors $A = aR_{\frac{\pi}{2}}$. sinon $A = -aR_{-\frac{\pi}{2}}$. Donc il existe $\lambda \in \mathbb{R}_+$ tel que $A = \lambda R_{\frac{\pi}{2}}$ ou bien $A = \lambda R_{-\frac{\pi}{2}}$.
 - (b) Soit $\theta \in \mathbb{R}$ tel que $g_p(R_\theta) = R_{\frac{\pi}{2}} \Rightarrow (R_\theta)^p = R_{p\theta} = R_{\frac{\pi}{2}}$. $\theta = \frac{\pi}{2p}$ répond à la question.
 - (c) S'il existe $\lambda \in \mathbb{R}_+$ tel que $A = \lambda R_{\frac{\pi}{2}}$. On choisit $M = \sqrt[p]{\lambda} R_{\frac{\pi}{2p}}$. S'il existe $\lambda \in \mathbb{R}_+$ tel que $A = \lambda R_{-\frac{\pi}{2}}$. On choisit $M = \sqrt[p]{\lambda} R_{-\frac{\pi}{2p}}$.
- $\textbf{2. Soit } S \in \mathcal{S}_2(\mathbb{R}). \ \textbf{On sait qu'il existe} \ P \in \mathcal{O}_2(\mathbb{R}). \ \textbf{Soit } D = \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right) \ \textbf{tels que } S = P.D.P^{-1} \ .$
 - (a) S'il existe $M \in \mathcal{M}_2(\mathbb{R})$ tel que $M^{2p} = D$ alors $M.D = M.M^{2p} = M^{2p+1} = D.M$.
 - (b) Si $\lambda_1 \neq \lambda_2$ et $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, alors

$$MD = \left(egin{array}{cc} a\lambda_1 & b\lambda_2 \\ c\lambda_1 & d\lambda_2 \end{array}
ight) = DM = \left(egin{array}{cc} a\lambda_1 & b\lambda_1 \\ c\lambda_2 & d\lambda_2 \end{array}
ight).$$

Donc b=c=0, par suite M est une matrice diagonale.

(c) On suppose que $\lambda_1 < 0$ et qu'il existe $M \in \mathcal{M}_2(\mathbb{R})$ tel que $M^{2p} = D$. On raisonne par l'absurde et on suppose que $\lambda_1 \neq \lambda_2$ alors d'aprés la question précédente, $M = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$, donc $M^{2p} = \begin{pmatrix} a^{2p} & 0 \\ 0 & d^{2p} \end{pmatrix}$, d'où $\lambda_1 = a^{2p} < 0$. Absurde. On conclut que $\lambda_1 = \lambda_2$

3. On a
$$\left(\alpha R_{\frac{\pi}{2}}\right)^2 = -\alpha^2 I_2$$
. Si $\lambda_1 = \lambda_2$ et $\lambda_1 < 0$ alors $D = \lambda_1 I_2 = -\lambda^2 I_2$, avec $\lambda = \sqrt{-\lambda_1}$.
$$D = \left(\lambda R_{\frac{\pi}{2}}\right)^2 = \left(\left(\sqrt[p]{\lambda} R_{\frac{\pi}{2p}}\right)^p\right)^2 = \left(\sqrt[p]{\lambda} R_{\frac{\pi}{2p}}\right)^{2p}.$$

4. $A \in Im(g_{2p})$ si et seulement si ($\{\lambda_1, \lambda_2\} \subset [0, +\infty[$ ou bien $\lambda_1 = \lambda_2 < 0.$).

Fin de l'épreuve