

区域能源规划的探索与实践

马宏权 丰盛绿建集团有限公司

目录

- 1 参与的能源规划案例
- 2 采用的能源规划方法
- 3 困难挑战与应对思考

参与的区域能源规划

武汉东湖国家自主创新示范区能源规划

南京市可再生能源量调查及应用规划

上海临港新城核心区区域能源规划

上海崇明生态岛可再生能源建筑应用规划

武汉国际博览中心区域能源规划

电力并网

取水方 案

用水流程 图

冰蓄冷方 案论证

溴化锂方 案论证

项目建设 期时的运 行成本 (酒店使 用系数)

引入能源 服务商的 分析

苏通科技产业园绿色园区规划

江海生态城 国际创业园 江苏省绿色园区示范区

整合十大集约型城乡关键技术,三年内示范试点超过50万平绿色建筑。计划通过10年开发建设,把园区建设成为长三角经济圈体制创新的示范区、科技发展的先导区、先进产业的集聚区和可容纳30万人口的现代化新城区。

昆山花桥国际低碳商务城能源规划

规划目标:单位GDP能耗小于 0.146吨标煤/万元。

绿色建筑: 新建政府办公建筑、 金融外包服务区的大型公共建筑全 部达到国家三星级绿色建筑标准。 其他新建公共建筑达到二星级国家 绿色建筑标准。

可再生能源利用比例:地源热泵利用比例达23%、热电联供利用比例达6%。

在公共建筑中,采暖空调系统100% 实现浅层地热利用。

后世博再开发区域能源规划

南京江北新区区域能源规划

能源规划方法简介

能源规划的总体思路

能源供应:

能源利用: 增效

能源消费:

- •需求分析
- •传统能源
- •可再生能源
- •未利用能源
- •废热余热

- 分布式能源站
- 区域供冷供热
- 热电联产
- 温湿度独立控制
- 排热回收
- 热泵技术
- 蓄热蓄冷

- •被动式节能
- •行为节能
- •绿色建筑
- •控制节能
- •税收调节

能源规划

能源规划的流程

能源规划的分级目标

- ▶能源供给的保证
- ▶能源结构的优化
- ▶用能方式合理化
- ▶基础设施与机制建设
- ▶节能减排指标

单体建筑

- ▶园区功能的满足
- ▶上位规划的规定
- ▶招商引资的需求
- ▶适宜体系的推广

- ▶满足节能规范
- > 供应侧的增效
- ▶需求侧的降耗
- > 促进行为节能

能源规划的分级指标

- ▶ 万元GDP能耗
- ▶ 万元GDP碳排放
- ▶ 能源消费弹性系数
- > 关键用户用能保证率
- > 天然气利用率
- 合同能源管理实行率

>

城市规模

单体建筑

- ▶ 能源需求预测
- > 可再生能源利用率
- > 天然气利用率
- 建筑节能率
- > 绿色建筑比例
- **>**

- 建筑负荷指标
- > 系统性能系数
- > 室内温湿度
- 建筑年耗能指标
- > 室内舒适性指标
- **>**

增效技术

降耗技术

技术的应用层级

太阳能热水

土壤源热泵

太阳能光电

地表水源热泵 污水源热泵

小型风力发电

生物质发电

适宜规模推广

市政照明推广

适宜试点

市政照明补充

适度考虑发展

需求侧分析—用能预测

产业用能

交通用能

	2009	2015	2020
车辆拥有量 (万辆)	1.719	5. 283	13.703
年车辆总燃油耗量(万吨)	3.08	9. 475	24. 576
折算标准煤(万吨)	4.40	13. 54	35. 11

供应侧分析—资源量调查

■可再生能源资源总量

	应用建筑面积/ 万 m ²	节电潜 力/亿 kwh
太阳能光热	13018.63	13.947
太阳能光电	13018.63	6.974
太阳能道路照 明	/	8.982
土壤源热泵	12297.31	29.583
地表水源热泵	168.84	0.419
污水源热泵	141.31	0.458
生物质/城市 垃圾	/	1.314
合计		61.676

- 1、未计入周边农林生物质,高新区自身的林地生物质资源;
- 2、只考虑民用建筑,未计入工业建筑;
- 3、太阳能光电与光热有交叉;
- 4、太阳能路灯与风力发电路灯有交叉,风力发电未计入;
- 5、资源量计算考虑了技术的适用的场合。

能源系统的评价与决策

- 1 能源评价指标
- 能源和火用效率
- 化石能源的节省
- 电力天然气削峰
- 2 环境评价指标
- 对生物链的影响
- 燃烧的排放减少
- 温室气体的减排
- 热岛效应的缓解
- 噪音漂水的消除
- 3 经济评价指标
- 运行费用的节省
- 淡水资源的节省
- 机房面积的节省
- 费用效果比计算

实施计划与目标的制定

基础目标中档目标高档目标

能源规划的实施模式研究

区域能源规划的实施方案制定

困难挑战与应对建议

能源规划的目标设定

- > 部分能源规划的服务对象不明确
- > 规划者管理者与建设者使用者分离
- ▶难以与区域电力燃气规划有效衔接
- > 现场困难与技术进步难以准确预测
- > 规划调整与建设滞后情况发生普遍

能源规划的指标设定

- 〉指标设定要有科学性
- ▶指标设定要有可实施性
- 〉指标设定要考虑经济性
- > 部分指标设定要有一定弹性

能源规划中的技术导向

- > 新技术成熟的采用
- > 常规技术高效的使用
- > 适宜项目适度鼓励采用新技术发展
- > 区域内高比例的新技术必须充分论证

能源规划中的区域能源系统

- > 分散系统与集中系统的权衡
- > 集中系统要有运营模式和经济性分析
- > 可行项目中要发挥集中系统的优势
- > 集中系统要有不确定性与风险分析

能源规划中的住宅建筑

- > 不鼓励大型集中系统
- > 不排斥小型集中系统
- > 可适度热湿单独处理
- > 给出要点和控制指标

对区域能源规划的总体建议

- > 明确规划目标分析供需特点
- > 熟悉技术进步清楚行业发展
- ▶指标合理引导开源增效节流
- > 模式机制要探索可持续发展

