[Supp.] The Feynman-Kac Formula 2022年7月20日 20:16 Let X be an Ito diffusion $dX_t = a(X_t, t)dt + c(X_t, t)dB_t$ (167)with generator G_t $G_t[v](x) = \sum_i a_i(x,t) \frac{\partial v(x,t)}{\partial x_i} + \frac{1}{2} \sum_i \sum_j (c(x,t)c(x,t)^T)_{i,j} \frac{\partial^2 v(x,t)}{\partial x_i \partial x_j}$ (168)Let v be the solution to the following pde $-\frac{\partial v(x,t)}{\partial t} = G_t[v](x,t) - v(x,t)f(x,t)$ (169)with a known terminal condition v(x,T), and function f. It can be shown that the solution to the pde (169) is as follows $v(x,s) = \mathbb{E}\left[v(X_T,T) \exp\left(-\int_{-1}^{1} f(X_t)dt\right) \mid X_s = x\right]$ (170)We can think of $v(X_T,T)$ as a terminal reward and of $\int_s^T f(X_t)dt$ as a discount factor. Informal Proof: Let $s \leq t \leq T$ let $Y_t = v(X_t, t), Z_t = \exp(-\int_s^t f(X_\tau) d\tau), U_t = Y_t Z_t$. It can be shown (see Lemma below) that $dZ_t = -Z_t f(X_t) dt$ (171)Using Ito's product rule $dU_t = d(Y_t Z_t) = Z_t dY_t + Y_t dZ_t + dY_t dZ_t$ (172)Since dZ_t has a dt term, it follows that $dY_t dZ_t = 0$. Thus $dU_t = Z_t dv(X_t, t) - v(X_t, t) Z_t f(X_t) dt$ (173)Using Ito's rule on dv we get $dv(X_t,t) = \nabla_t v(X_t,t)dt + (\nabla_x v(X_t,t))^T a(X_t,t)dt + (\nabla_x v(X_t,t))^T c(X_t,t)dB_t$ + $\frac{1}{2}$ trace $\left(c(X_t,t)c(X_t,t)^T\nabla_x^2v(X_t,t)\right)dt$ (174)Thus $dU_t = Z_t \left[\nabla_t v(X_t, t) + (\nabla_x v(X_t, t))^T a(X_t, t) \right]$

	ince v is t	one bora			$(X_t,t))^T$	$c(X_t)$	$t)dB_{t}$			(176)
Integr	ating		t	(* 2 0	(67 - 1)	-(6)	<i>j== i</i>			(2.0)
		7.7	7.7	$\int_{-\infty}^{T}$	· (T	(37 1)	10		(177)
		$U_{\mathcal{I}}$	$T-U_s$:	$=\int_{s} Y_{i}$	$t(\nabla_x v(X))$	$(t,t))^{T}$	$c(X_t,t)$	dB_t		(177)
taking	g expected	d values								
					$[-\mathbb{E}[U_s]]$		-			(178)
	we used to n is zero.						egrals v	vith res	pect to	Brownian
House	n is zero.				$\mathbb{E}[U_s \mid J]$		v = v(x)	(x,s)		(179)
Using	the defin				[0]	Ü	, (, ,		,
		v((x,s) =	$\mathbb{E}[v(X_T)]$	$,T)e^{-\int_{s}^{T}}$	$\int f(X_t)dt$	$dt \mid X_s = 0$	=x]		(180)
We en	nd the pro	of by s	showing	that				-		. ,
				dZ_t =	$=-Z_tf(Z_t)$	$(X_t)dt$				(181)
First 1	$let Y_t = \int$	$\int_{s}^{t} f(X_{\tau})$	$)d\tau$ and	note						
			ΔY_{i} =	$=\int_{-\infty}^{t+\Delta}$	$f(X_{-})d$	$t\tau \approx f$	$(X_{\perp})\Lambda t$			(182)
	$\Delta Y_t = \int_t^{t+\Delta_t} f(X_\tau) d\tau \approx f(X_t) \Delta t$									
					d	$Y_t = f$	$f(X_t)dt$			(183)
Let Z_t =	$= \exp(-Y)$	(t). Usin	ng Ito's	rule						, ,
	$= \exp(-Y)$ $Z_{i} = \nabla e^{-Y}$	•			2e	Y_{t} $f(\mathbf{Y})$.)dt —	_ Z. f (\	7.)d+	(184)
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$		$e^2 = -e^{-\frac{\pi}{2}}$	$Y_t f(X_t)$	$dt = -\frac{1}{2}$	$-Z_t f(X_t)$	$(T_t)dt$	(184)
dZ	,	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$				$-Z_t f(X_t)$	$(T_t)dt$	_
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$	$e^2 = -e^{-t}$ $f(X_t)^2(t)$			$-Z_t f(X_t)$	$(G_t)dt$	(184) (185)
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$				$-Z_t f(X_t)$	$(G_t)dt$	(185)
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$				$-Z_t f(X_t)$	$(T_t)dt$	(185)
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$				$-Z_t f(X_t)$	$(T_t)dt$	(185)
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$				$-Z_t f(X_t)$	$(T_t)dt$	(185)
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$				$-Z_t f(X_t)$	$(T_t)dt$	(185)
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$				$-Z_t f(X_t)$	$(T_t)dt$	(185)
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$				$-Z_t f(X_t)$	$(T_t)dt$	(185)
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$				$-Z_t f(X_t)$	$(T_t)dt$	(185)
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$				$-Z_t f(X_t)$	$(X_t)dt$	(185)
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$				$-Z_t f(X_t)$	$(X_t)dt$	(185)
dZ	$Z_t = \nabla e^{-1}$	$Y_t dY_t +$	$\frac{1}{2}\nabla^2 e^{-}$ that	$Y_t(dY_t)$				$-Z_t f(X_t)$	$(X_t)dt$	(185)