Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №5 Вариант 2

Интерполяция функции

Выполнил:

Брагин Роман Андреевич

Проверил:

Рыбаков Степан Дмитриевич

г. Санкт-Петербург 2025

Цель работы:	3
Задание:	3
Вычислительная реализация задачи:	4
Вывод:	5

Цель работы:

- 1. Решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.
- 2. Лабораторная работа состоит из двух частей: вычислительной и программной.
- 3. Для анализа использовать:
 - а. многочлен Лагранжа;
 - b. многочлен Ньютона;
 - с. многочлен Гаусса.

Задание:

	X	у	№ варианта	X_1	X_2
6)	0,50	1,5320	2	0,502	0,645
	0,55	2,5356	7	0,751	0,651
11.2	0,60	3,5406	12	0,523	0,639
Таблица	0,65	4,5462	17	0,761	0,661
a6J	0,70	5,5504	22	0,545	0,627
	0,75	6,5559	27	0,783	0,683
	0,80	7,5594	32	0,557	0,641

No	Метод	No	Метод	No	Метод
варианта		варианта		варианта	
1	1, 2, 3	10	1, 2, 3	19	1, 2, 3
2	1, 2, 4	11	1, 2, 3	20	1, 2, 4
3	1, 2, 3	12	1, 2, 4	21	1, 2, 3
4	1, 2, 3	13	1, 2, 3	16	1, 2, 3
5	1, 2, 4	14	1, 2, 4	23	1, 2, 4
6	1, 2, 3	15	1, 2, 3	24	1, 2, 3
7	1, 2, 3	16	1, 2, 3	25	1, 2, 3
8	1, 2, 4	17	1, 2, 4	26	1, 2, 4
9	1, 2, 4	18	1, 2, 3	16	1, 2, 4

Вычислительная реализация задачи:

Таблица конечных разностей:

номер	x_i	y_i	delta 1	delta 2	delta 3	delta 4	delta 5	delta 6
0.	0,5	1,532	1,0036	0,0014	-0,0008	-0,0012	0,0059	-0,0166
1.	0,55	2,5356	1,005	0,0006	-0,002	0,0047	-0,0107	
2.	0,6	3,5406	1,0056	-0,0014	0,0027	-0,006		
3.	0,65	4,5462	1,0042	0,0013	-0,0033			
4.	0,7	5,5504	1,0055	-0,002				
5.	0,75	6,5559	1,0035					
6.	0,8	7,5594						

1) Вычисляем значение функции для аргумента X_1 используя формулу Ньютона: Воспользуемся формулой Ньютона для интерполирования вперед, так как X_1 = 0.502 лежит в левой половине отрезка.

Определим вспомогательный параметр
$$t=\frac{(x-x_n)}{h}=\frac{(0.502-0.500)}{0.05}=0.04.$$

$$= y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!}\Delta^3 y_0 + \frac{t(t-1)(t-2)(t-3)}{4!}\Delta^4 y_0 + \frac{t(t-1)(t-2)(t-3)(t-4)}{5!}\Delta^5 y_0 + \frac{t(t-1)(t-2)(t-3)(t-4)(t-5)}{6!}\Delta^6 y_0 = 1.5320 + 0.04 * 1.0036 + \frac{0.04(0.04-1)}{2} * 0.0014 + \frac{0.04(0.04-1)(0.04-2)}{6} + (-0.0008) + \frac{0.04(0.04-1)(0.04-2)(0.04-3)}{24} * (-0.0012) + \frac{0.04(0.04-1)(0.04-2)(0.04-3)(0.04-4)}{120} * 0.0059 + \frac{0.04(0.04-1)(0.04-2)(0.04-3)(0.04-4)(0.04-5)}{720} * (-0.0166)$$

2) Вычисляем значение функции для аргумента X_2 используя формулу Гаусса:

Ближайшая центральная точка a=0.65 (по таблице), $X_2 = 0.645 < 0.65$, то есть $x < a \rightarrow$ используем вторую интерполяционную формулу Гаусса.

```
\begin{split} &+\frac{(t+2)(t+1)t(t-1)(t-2)}{5!}\Delta^{5}y_{-3} + \frac{(t+3)(t+2)(t+1)t(t-1)(t-2)}{6!}\Delta^{6}y_{-3} = \\ &= 4.5462 + (-0.1)*1.0056 + \frac{-0.1\left(-0.1+1\right)}{2}*\left(-0.0014\right) + \\ &+\frac{\left(-0.1+1\right)\left(-0.1\right)\left(-0.1-1\right)}{6}*\left(-0.0020\right) \\ &+\frac{\left(-0.1+2\right)\left(-0.1+1\right)\left(-0.1\right)\left(-0.1-1\right)}{2}*\left(0.0047\right) + \\ &+\frac{\left(-0.1+2\right)\left(-0.1+1\right)\left(-0.1\right)\left(-0.1-1\right)\left(-0.1-2\right)}{120}*\left(0.0059\right) + \\ &+\frac{\left(-0.1+3\right)\left(-0.1+2\right)\left(-0.1+1\right)\left(-0.1-1\right)\left(-0.1-2\right)}{720}*\left(-0.0166\right) \approx 4.4457138257325 \end{split}
```

Программная реализация задачи:

```
func Bessel(xs, ys []float64, x float64) (float64, error) {
 n := len(xs)
 if n%2 == 0 {
   return 0, errors.New("метод Бесселя требует нечётного количества узлов")
 mid := n / 2
 h := xs[1] - xs[0]
 t := (x - (xs[mid] + xs[mid-1])/2) / h
 diffTable := utils.BuildFiniteDiffs(ys)
 sum := (diffTable[mid-1][0] + diffTable[mid][0]) / 2
 p := 1.0
 fact := 1.0
 var k int
 for i := 1; i < n; i++ {
   if i%2 == 1 {
     k = (i + 1) / 2
      p *= t - 0.5
   } else {
     k = i / 2
      p *= t*t - float64(k*k)
   fact *= float64(i)
   idx := mid - (i / 2) - 1
   if idx < 0 \mid\mid idx >= len(diffTable) {
     break
   sum += p * diffTable[idx][i] / fact
  return sum, nil
```

```
func Gauss(xs, ys []float64, x float64) (float64, error) {
    n := len(xs)
    if n%2 == 0 {
```

```
return 0, errors.New("метод Гаусса требует нечётного количества узлов")
}
mid := n / 2
h := xs[1] - xs[0]
t := (x - xs[mid]) / h
diffTable := utils.BuildFiniteDiffs(ys)
sum := diffTable[mid][0]
fact := 1.0
p := 1.0
for i := 1; i < n; i++ {
  if i%2 == 1 {
    k := (i + 1) / 2
    p *= (t - float64(k-1))
  } else {
    k := i / 2
    p *= (t + float64(k))
  fact *= float64(i)
  idx := mid - (i / 2)
  sum += p * diffTable[idx][i] / fact
return sum, nil
```

```
func Lagrange(xs, ys []float64, x float64) float64 {
    n := len(xs)
    result := 0.0

for i := 0; i < n; i++ {
    li := 1.0
    for j := 0; j < n; j++ {
        if j != i {
            li *= (x - xs[j]) / (xs[i] - xs[j])
        }
    }
    result += li * ys[i]
}
return result
}</pre>
```

```
func Newton(xs, ys []float64, x float64) float64 {
    n := len(xs)
    coeff := make([]float64, n)
    copy(coeff, ys)

for j := 1; j < n; j++ {
    for i := n - 1; i >= j; i-- {
        coeff[i] = (coeff[i] - coeff[i-1]) / (xs[i] - xs[i-j])
    }
}

result := coeff[0]
mult := 1.0
```

```
for i := 1; i < n; i++ {
    mult *= (x - xs[i-1])
    result += coeff[i] * mult
  }

return result
}
```

```
func Stirling(xs, ys []float64, x float64) (float64, error) {
 n := len(xs)
 if n%2 == 0 {
   return 0, errors.New("метод Стирлинга требует нечётного количества узлов")
 mid := n / 2
 h := xs[1] - xs[0]
 t := (x - xs[mid]) / h
 diffTable := utils.BuildFiniteDiffs(ys)
 sum := diffTable[mid][0]
 p := 1.0
 fact := 1.0
 for i := 1; i < n; i++ {
   if i\%2 == 0 {
     k := i / 2
     p *= (t*t - float64(k*k))
   } else {
     p *= t
   fact *= float64(i)
   idx := mid - (i / 2)
   sum += p * diffTable[idx][i] / fact
 return sum, nil
```

Вывод:

В рамках данной работы была проведена аппроксимация функций с использованием различных подходов: линейного, квадратичного, кубического, экспоненциального и логарифмического. На основе этих методов был разработана программа на языке Golang, реализующий метод наименьших квадратов и визуализирующий исходную функцию вместе с аппроксимирующими кривыми.

Проведенный анализ позволил определить наиболее точную модель аппроксимации, рассчитать среднеквадратичное отклонение, а также

вычислить коэффициент корреляции Пирсона для линейной зависимости.