Physics Lab

Teacher: Ms. Farzaneh Noor Mohammadi

Student: Mr. Ramtin Kosari

Ohm's Law Analysis

October 20, 2024

Overview

Here is book of Physics Lab experiment 2, Ohm's Law overview

Experiment Info

- **Purpose >** Experimental Investigation of Ohm's law
- Necessary Equipment > Selective Resistance, DC Power, Digital Voltmeter, Analog
 Ammeter Wires, Rheostat

Ohm's Law on Single Resistor

First we need to do this experiment on single resistor, *R* is a selective resistor. I conducted 2 experiments to validate Ohm's Law on a single resistor.

Steps

- 1. for experiment ½, I set selective resistor on 8 so output will be $(10-8)*100=200\Omega$ (because of using two black inputs, I used this conversion) but after connecting to multimeter I got 199. 9Ω (Not $k\Omega$ because it was around 200Ω I used the first multimeter so I wrote Ω instead of $k\Omega$).
- 2. I set ammeter on 0.02A accurately.
- 3. Turn on DC power and enable output.
- 4. I set source DC power to 3. 94V because i must configure rheostat to check 0. 02A accurately on Ammeter.
- 5. Connected multimeter to R and written down its voltage, then calculated Resistor via formula and compared it to real resistor value (199.9 Ω)
- 6. for last experiment, I only set ammeter to 0.04A and did the previous steps again.
- 7. then i changed Resistor to 9 so output will be $(10-9)*100 = 100\Omega$ and multimeter showed 110.2Ω then did all the steps again.

Next pages are experiments calculations

Ohm's Law on Single Resistor - Experiments Table 1

R _{real}	V_{S}	I	Ammeter	$R_{measured} = \frac{V_s}{I}$
199. 9Ω	3. 94 <i>V</i>	0. 02 <i>A</i>	0.01A	197. 000Ω : α
199. 9Ω	7.87 <i>V</i>	0. 04 <i>A</i>	0. 01 <i>A</i>	196. 750Ω : β

Calculations of α and β :

$$\alpha: R = \frac{V_s}{I} = \frac{3.94}{0.02} = 197.000\Omega$$
 $\beta: R = \frac{V_s}{I} = \frac{7.87}{0.04} = 196.750\Omega$

Ohm's Law on Single Resistor - Error Calculations

Error calculations are divided into 3 categories, absolute, relative and systematic errors and my personal task is to calculate errors of **first experiment**:

We get this absolute error for α : $\varepsilon_{abs} = |199.9\Omega - 197.0\Omega| = 2.9\Omega$

from relative formula: $Relative \ Error = \frac{|real \ value - measured \ value|}{real \ value}$

We get this absolute error for α : $\epsilon_{rol} = \frac{2.9\Omega}{199.9\Omega} \approx 0.015$

for systematic formula, We must do several mathematics operations:

- 1. Consider we have formula V = I. $R \Rightarrow R = \frac{V}{I}$.
- 2. Take the *ln* from both sides.
- 3. Take the differential from both sides.
- 4. Convert differentials to delta (Δ).
- 5. Convert every to +.
- 6. accuracy of **Analog Device** is equal to the lowest shown range on the device.
- 7. Error of **Analog Device** is equal to the lowest shown range on device multiplied by 0.5.

- 8. accuracy of **Digital Device** is equal to 10^{-x} where x is float level on the screen.
- 9. Error of **Digital Device** is equal to 10^{-x} where x is float level on the screen.

Step 1:
$$R = \frac{V_s}{I_{am}}$$

Step 2:
$$ln(R) = ln(V_s) - ln(I_{am})$$

Step 3:
$$\frac{dR}{R} = \frac{dV_s}{V_s} - \frac{dI_{am}}{I_{am}}$$

Step 4:
$$\frac{\Delta R}{R} = \frac{\Delta V_s}{V_s} - \frac{\Delta I_{am}}{I_{am}}$$

Step 5:
$$\frac{\Delta R}{R} = \frac{\Delta V_s}{V_s} + \frac{\Delta I_{am}}{I_{am}}$$

Step
$$6 \sim : \Delta V_S = 10^{-2} \qquad \Delta I_{am} = 10^{-2} \times 0.5$$

Final:
$$\frac{\Delta R}{R} = \frac{10^{-2} V}{3.94 V} + \frac{10^{-2} \times 0.5 A}{0.02 A} = 0.2525$$
$$\Rightarrow \varepsilon_{SVS} = 0.2525$$

Ohm's Law on Single Resistor - Experiments Table 2

R_{real}	$V_{_{S}}$	_	Ammeter	$R_{measured} = \frac{V_s}{I}$
110. 2Ω	4. 52 <i>V</i>	0. 04 <i>A</i>	0. 01 <i>A</i>	113. 000Ω : α
110. 2Ω	2. 10V	0. 02 <i>A</i>	0. 01 <i>A</i>	105. 000Ω : β

Calculations of α and β :

$$\alpha: R = \frac{V_s}{I} = \frac{4.52}{0.04} = 113.000\Omega$$
 $\beta: R = \frac{V_s}{I} = \frac{2.10}{0.02} = 105.000\Omega$

Ohm's Law on Single Resistor - Error Calculations

Error calculations are divided into 3 categories, absolute, relative and systematic errors and my personal task is to calculate errors of **first experiment**:

from absolute formula: $Absolute Error = |real \ value - measured \ value|$

We get this absolute error for α : $\varepsilon_{abs} = |110.2\Omega - 113.0\Omega| = 2.8\Omega$

from relative formula: $Relative \ Error = \frac{|real \ value - measured \ value|}{real \ value}$

We get this absolute error for α : $\epsilon_{rel} = \frac{2.8\Omega}{110.2\Omega} \approx 0.025$

for systematic formula, We must do several mathematics operations:

- 1. Consider we have formula $V = I.R \Rightarrow R = \frac{V}{I}$.
- 2. Take the ln from both sides.
- 3. Take the differential from both sides.
- 4. Convert differentials to delta (Δ).
- 5. Convert every to +.
- 6. accuracy of **Analog Device** is equal to the lowest shown range on the device.
- 7. Error of **Analog Device** is equal to the lowest shown range on device multiplied by 0.5.

- 8. accuracy of **Digital Device** is equal to 10^{-x} where x is float level on the screen.
- 9. Error of **Digital Device** is equal to 10^{-x} where x is float level on the screen.

Step 1:
$$R = \frac{V_s}{I_{am}}$$

Step 2:
$$ln(R) = ln(V_s) - ln(I_{am})$$

Step 3:
$$\frac{dR}{R} = \frac{dV_s}{V_s} - \frac{dI_{am}}{I_{am}}$$

Step 4:
$$\frac{\Delta R}{R} = \frac{\Delta V_s}{V_s} - \frac{\Delta I_{am}}{I_{am}}$$

Step 5:
$$\frac{\Delta R}{R} = \frac{\Delta V_s}{V_s} + \frac{\Delta I_{am}}{I_{am}}$$

Step
$$6 \sim : \Delta V_S = 10^{-2} \qquad \Delta I_{am} = 10^{-2} \times 0.5$$

Final:
$$\frac{\Delta R}{R} = \frac{10^{-2} V}{4.52 V} + \frac{10^{-2} \times 0.5 A}{0.04 A} = 0.1272$$
$$\Rightarrow \varepsilon_{sys} = 0.1272$$

Ohm's Law on Parallel Resistors

Now we need to do this experiment on parallel resistors, R_2 is a selective and R_3 is a box resistor. I conducted 2 experiments to validate Ohm's Law on parallel resistors.

Steps

- 1. for experiment ½, I set selective resistor on 8 so output will be $(10-8)*100=200\Omega$ (because of using two black inputs, I used this conversion) but after connecting to multimeter I got 199. 9Ω (Not $k\Omega$ because it was around 200Ω I used the first multimeter so I wrote Ω instead of $k\Omega$). also i set box resistor on 100Ω .
- 2. I set ammeter on 0.04A accurately.
- 3. Turn on DC power and enable output.
- 4. I set source DC power to 1.57V because i must configure rheostat to check 0.04A accurately on Ammeter.
- 5. Connected multimeter to R_3 and written down its voltage, then calculated Parallel Resistor via formula and compared it to real parallel resistor value.
- 6. for last experiment, I only set ammeter to 0.04A and did the previous steps again.

Ohm's Law on parallel Resistor - Experiments Table

R_2	R_3	$R_{real} = \frac{R_2 \times R_3}{R_2 + R_3}$	$V_{_{S}}$	I	Ammeter	$R_{measured} = \frac{V_s}{I}$
199. 9Ω	110. 2Ω	71.038Ω	1.57 <i>V</i>	0. 02 <i>A</i>	0. 01 <i>A</i>	78. 500Ω : α
199. 9Ω	110. 2Ω	71. 038Ω	2.78 <i>V</i>	0. 04 <i>A</i>	0. 01 <i>A</i>	69. 500Ω : β

Calculations of R, α and β :

$$R_{real} = \frac{199.9 \times 110.2}{199.9 + 110.2} = 71.038\Omega$$

$$\alpha: R = \frac{V_s}{I} = \frac{1.57}{0.02} = 78.500$$

$$\beta: R = \frac{V_s}{I} = \frac{2.78}{0.04} = 69.500$$

Ohm's Law on Parallel Resistors - Error Calculations

Error calculations are divided into 3 categories, absolute, relative and systematic errors and my personal task is to calculate errors of **first experiment**:

from absolute formula: Absolu

 $Absolute\ Error = |real\ value\ -\ measured\ value|$

We get this absolute error for $\boldsymbol{\alpha}$:

$$\varepsilon_{abs} = |71.038\Omega - 69.500\Omega| = 1.538\Omega$$

from relative formula:

$$Relative\ Error = \frac{|real\ value - measured\ value|}{real\ value}$$

We get this absolute error for α :

$$\varepsilon_{rel} = \frac{1.538\Omega}{71.038\Omega} \approx 0.022$$

for systematic formula, We must do several mathematics operations:

1. Consider we have formula V = I. $R \Rightarrow R = \frac{V}{I}$.

- 2. Take the *ln* from both sides.
- 3. Take the differential from both sides.
- 4. Convert differentials to delta (Δ).
- 5. Convert every to +.
- 6. accuracy of **Analog Device** is equal to the lowest shown range on the device.
- 7. Error of **Analog Device** is equal to the lowest shown range on device multiplied by 0.5.
- 8. accuracy of **Digital Device** is equal to 10^{-x} where x is float level on the screen.
- 9. Error of **Digital Device** is equal to 10^{-x} where x is float level on the screen.

Step 1:
$$R = \frac{V_s}{I_{am}}$$

Step 2:
$$ln(R) = ln(V_s) - ln(I_{am})$$

Step 3:
$$\frac{dR}{R} = \frac{dV_s}{V_s} - \frac{dI_{am}}{I_{am}}$$

Step 4:
$$\frac{\Delta R}{R} = \frac{\Delta V_s}{V_s} - \frac{\Delta I_{am}}{I_{am}}$$

Step 5:
$$\frac{\Delta R}{R} = \frac{\Delta V_s}{V_s} + \frac{\Delta I_{am}}{I_{am}}$$

Step
$$6 \sim : \Delta V_S = 10^{-2} \qquad \Delta I_{am} = 10^{-2} \times 0.5$$

Final:
$$\frac{\Delta R}{R} = \frac{10^{-2}V}{2.78V} + \frac{10^{-2} \times 0.5A}{0.04A} = 0.1286$$
$$\Rightarrow \varepsilon_{SVS} = 0.1286$$

Ohm's Law on Series Resistors

Now we need to do this experiment on series resistors, R_2 is a selective and R_3 is a box resistor. I conducted 2 experiments to validate Ohm's Law on parallel resistors.

Steps

- 1. for experiment ½, I set selective resistor on 8 so output will be $(10-8)*100=200\Omega$ (because of using two black inputs, I used this conversion) but after connecting to multimeter I got 199. 9Ω (Not $k\Omega$ because it was around 200Ω I used the first multimeter so I wrote Ω instead of $k\Omega$). also i set box resistor on 100Ω .
- 2. I set ammeter on 0.02A accurately.
- 3. Turn on DC power and enable output.
- 4. I set source DC power to 6. 03V because i must configure rheostat to check 0. 02A accurately on Ammeter.
- 5. Connected multimeter to R_3 and R_2 and wrote down its voltage, then calculated Series Resistor via formula and compared it to real parallel resistor value.
- 6. for last experiment, I only set ammeter to 0.04A and did the previous steps again.

Ohm's Law on parallel Resistor - Experiments Table

R_{2}	R_{3}	$R_{real} = R_2 + R_3$	V_{S}	I	Ammeter	$R_{measured} = \frac{V_s}{I}$
199. 9Ω	110. 2Ω	310. 100Ω	6. 03 <i>V</i>	0. 02 <i>A</i>	0. 01 <i>A</i>	301. 500Ω : α
199. 9Ω	110. 2Ω	310. 100Ω	12. 24 <i>V</i>	0. 04 <i>A</i>	0. 01 <i>A</i>	306. 000Ω : β

Calculations of R, α and β :

$$R_{real} = 199.9 + 110.2 = 301.500\Omega$$

$$\alpha: R = \frac{V_s}{I} = \frac{6.03}{0.02} = 301.500\Omega$$
 $\beta: R = \frac{V_s}{I} = \frac{12.24}{0.04} = 306.000\Omega$

Ohm's Law on Parallel Resistors - Error Calculations

Error calculations are divided into 3 categories, absolute, relative and systematic errors and my personal task is to calculate errors of **first experiment**:

from absolute formula: $Absolute Error = |real \ value - measured \ value|$

We get this absolute error for α : $\epsilon_{abs} = |310.\,100\Omega\,-\,306.\,000\Omega| = \,4.\,100\Omega$

from relative formula: $Relative \ Error = \frac{|real \ value - measured \ value|}{real \ value}$

We get this absolute error for α : $\epsilon_{rel} = \frac{4.100\Omega}{310.100\Omega} \approx ~0.~013$

for systematic formula, We must do several mathematics operations:

- 10. Consider we have formula V = I. $R \Rightarrow R = \frac{V}{I}$.
- 11. Take the *ln* from both sides.

- 12. Take the differential from both sides.
- 13. Convert differentials to delta (Δ).
- 14. Convert every to +.
- 15. accuracy of **Analog Device** is equal to the lowest shown range on the device.
- 16. Error of **Analog Device** is equal to the lowest shown range on device multiplied by 0.5.
- 17. accuracy of **Digital Device** is equal to 10^{-x} where x is float level on the screen.
- 18. Error of **Digital Device** is equal to 10^{-x} where x is float level on the screen.

Step 1:
$$R = \frac{V_s}{I_{am}}$$

Step 2:
$$ln(R) = ln(V_s) - ln(I_{am})$$

Step 3:
$$\frac{dR}{R} = \frac{dV_s}{V_s} - \frac{dI_{am}}{I_{am}}$$

Step 4:
$$\frac{\Delta R}{R} = \frac{\Delta V_s}{V_s} - \frac{\Delta I_{am}}{I_{am}}$$

Step 5:
$$\frac{\Delta R}{R} = \frac{\Delta V_s}{V_s} + \frac{\Delta I_{am}}{I_{am}}$$

Step
$$6 \sim : \Delta V_S = 10^{-2} \qquad \Delta I_{am} = 10^{-2} \times 0.5$$

Final:
$$\frac{\Delta R}{R} = \frac{10^{-2}V}{12.24V} + \frac{10^{-2} \times 0.5A}{0.04A} = 0.1258$$
$$\Rightarrow \varepsilon_{SVS} = 0.1258$$

Result

1. We proved Ohm's Law for single, parallel and series resistors.

