高等机器学习

大师上年一大王立合

Statistical Learning Theory

An example: Diagnostics for learning

• Formulation: maximize likelihood

$$\max_{\theta} \sum_{i=1}^{\infty} \log p(y^i | x^i, \theta) - \lambda \|\theta\|^2$$

- High test error. Try to improve the algorithm!
 - Try getting more training examples.
 - Try a smaller set of features.
 - Try a larger set of features.
 - Try changing the features
 - Run gradient descent more iterations.
 - Try Newton's method.
 - Try another model (e.g., larger/smaller depth/width)
 - Use a different value of λ .

 A better approach: Diagnose the possible problem based on the observation.

Train loss	validation loss	Test loss	diagnosis
high	high	high	?
low	Low	low	done
low	high	high	?
low	low	high	?

Statistical Learning Theory

• Reality: Find a function f from a class \mathcal{F} based on training data \mathcal{D} .

• Goal: f performs well on test data from a distribution \mathcal{P} ?

- Where is the gap?
 - $\mathcal{D} \rightarrow \mathcal{P}$: estimation error
 - Hypothesis space \mathcal{F} : approximation error
 - Find: optimization error

A mathematical formulation

Training data set:

$$S = \{(x_1, y_1), \dots, (x_n, y_n)\}$$

Contains n i.i.d. copies of a random variable (x, y) with distribution D, where $x \in \mathcal{X}$ is feature, $y \in \mathcal{Y}$ is label

• Hypothesis class \mathcal{F} :

$$\mathcal{F} = \{f \colon \mathcal{X} \to \mathcal{Y}\}\$$
 (e.g. neural networks)

• Loss function *l*:

Prediction error l(f(x), y) of f for a sample (x, y)

Example: Least squares regression

$$x \in R^d, y \in R, \mathcal{F} = \{f | f(x) = \theta^\top x, \theta \in R^d\}, l(f(x), y) = (f(x) - y)^2$$

A mathematical formulation

• Hypothesis set \mathcal{F} :

$$\mathcal{F} = \{f \colon \mathcal{X} \to \mathcal{Y}\}\$$
 (e.g. neural networks)

• Loss function *l*:

Prediction error l(f(x), y) of f for a sample (x, y)

- $L(f) = L_D(f) = \mathbb{E}_{x,y \in D} l(f(x),y)$ \rightarrow Population Risk. The goal of learning is to minimize the risk.
- $L_S(f) = \frac{1}{n} \sum_{i=1}^n l(f; x_i, y_i) \rightarrow$ Empirical Risk. Estimate of the risk: law of large number
- For a hypothesis class \mathcal{F} , and the data distribution D, the population risk minimization is defined as $f_{\mathcal{F}}^* = \operatorname{argmin}_f L_D(f)$
- For a hypothesis class \mathcal{F} , and the dataset S, the empirical risk minimization (ERM) is defined as $\hat{f_F}^* = \operatorname{argmin}_{f \in \mathcal{F}} L_S(f)$
- For a the data distribution D, the bayes risk minimization is defined as

$$f^* = \operatorname{argmin}_f L_D(f)$$

Error Decomposition

Excess risk: Optimization Error Estimation Error Approximation Error
$$L(\hat{f}_{\mathcal{F}}^T) - L(f^*) = \left(L(\hat{f}_{\mathcal{F}}^T) - L(\hat{f}_{\mathcal{F}}^*)\right) + \left(L(\hat{f}_{\mathcal{F}}^*) - L(f_{\mathcal{F}}^*)\right) + \left(L(f_{\mathcal{F}}^*) - L(f^*)\right)$$

Error Decomposition

Excess risk: Optimization Error Estimation Error Approximation Error
$$L(\hat{f}_{\mathcal{F}}^T) - L(f^*) = \left(L(\hat{f}_{\mathcal{F}}^T) - L(\hat{f}_{\mathcal{F}}^*)\right) + \left(L(\hat{f}_{\mathcal{F}}^*) - L(f_{\mathcal{F}}^*)\right) + \left(L(f_{\mathcal{F}}^*) - L(f^*)\right)$$

Concept check:

- Can excess risk ever be negative?
- Is approximation error a random or non-random variable?
- Is estimation error a random or non-random variable?
- Can optimization error be negative?
- Can we have a concrete example of finding $\hat{f}_{\mathcal{F}}^T$ and checking its error decomposition?

More Discussion

	Optimization Error	Estimation Error	Approximation Error
Definition	$L(\hat{f}_{\mathcal{F}}^T) - L(\hat{f}_{\mathcal{F}}^*)$	$L(\hat{f}_{\mathcal{F}}^*) - L(f_{\mathcal{F}}^*)$	$L(f_{\mathcal{F}}^*) - L(f^*)$
Caused by	Approximate Optimization Algorithm	Finite Training Data	Limited Hypothesis Space
Hypothesis space ${\mathcal F}$	Not clear	the larger, the larger	the larger, the smaller
Number of training instances n	In general, the smaller, the smaller	the larger, the smaller	1.5
Opt Algorithm and Iteration number <i>T</i>	the better/larger, the smaller	Total Error	
	Error	Varian Bias²	0.5
		♦ Model Complexity	0 + 1+ 1

高等机器学习@清华EE

Fig. 1. Trade-off between fit and complexity.

Guarantees for Three Errors

- Optimization error <= = Convergence rate of optimization algorithms $L(\hat{f}_{\mathcal{F}}^T) L(\hat{f}_{\mathcal{F}}) \le \epsilon(Alg, \mathcal{F}, n, T)$
- Estimation/generalization error <= = Upper bound in terms of capacity $L(\hat{f}_{\mathcal{F}}) L(f_{\mathcal{F}}) \le 2 \sup_{f \in \mathcal{F}} |\hat{L}(f) L(f)| \le \epsilon(Cap(\mathcal{F}), n)$
- Approximation error (cannot be controllable in general) for neural networks <== Universal approximation theorem of neural networks

Outline

Optimization theory

Generalization theory

Approximation theory

Definition of Convergence Rate

Assume the optimization $\operatorname{error} L(\hat{f}_{\mathcal{F}}^T) - L(\hat{f}_{\mathcal{F}}) \leq \epsilon(Alg, \mathcal{F}, n, T)$ Does the log error $\log \epsilon(T)$ decrease faster than -T?

- Equal to: linear convergence rate, e.g., $O(e^{-T})$
- Faster than: super-linear convergence rate, e.g., $O\left(e^{-T^2}\right)$
 - Quadratic: $\log \log \epsilon(T)$ deceasing in the same order with -T, e.g. $O\left(e^{-2^T}\right)$
- Slower than: sub-linear convergence rate, e.g., $O\left(\frac{1}{T}\right)$

Convexity

$$g(w) - g(v) \ge \nabla g(v)^{\tau}(w - v)$$

$$\forall w, v \in \mathcal{W},$$

$$g(w) - g(v) \ge \nabla g(v)^{\tau} (w - v) + \frac{\alpha}{2} \left| |w - v| \right|^{2}$$

$$\forall w, v \in \mathcal{W},$$

$$g(w) = w_1^2 + w_2^2$$

Convex

Strongly-Convex

Smoothness

Smooth

 β -smooth: $\left|\left|\nabla g(w) - \nabla g(w)\right|\right| \leq \beta \left|\left|w - v\right|\right|$ $\forall w, v \in \mathcal{W},$

Lipschitz

L-Lipschitz: $|g(w) - g(v)| \le L ||w - v||$ $\forall w, v \in \mathcal{W}$

Convergence Rate of GD

Theorem 1: Assume the objective g is **convex** and β -smooth on R^d .

With step size $\eta = \frac{1}{\beta}$, Gradient Descent satisfies:

$$g(x_{T+1}) - g(x^*) \le \frac{2\beta ||x_1 - x^*||^2}{T}.$$

Sub-linear Convergence

Theorem 2: Assume the objective g is α -strongly convex and β -smooth on R^d .

With step size $\eta = \frac{2}{\alpha + \beta}$, Gradient Descent satisfies:

$$g(x_{T+1}) - g(x^*) \le \frac{\beta}{2} \exp\left(-\frac{4T}{Q+1}\right) ||x_1 - x^*||^2$$
, Linear Convergence

where
$$Q = \frac{\beta}{\alpha}$$
.

Convergence Rate of Newton's Method

$$f(x^{k} + d^{k}) = f(x^{k}) + \nabla f(x^{k})^{T} d^{k} + \frac{1}{2} (d^{k})^{T} \nabla^{2} f(x^{k}) d^{k} + o(\|d^{k}\|^{2})$$
$$x^{k+1} = x^{k} - \alpha_{k} \nabla^{2} f(x^{k})^{-1} \nabla f(x^{k}).$$

Theorem 3: Suppose the function g is continuously differentiable, its derivative is not 0 at its optimum x^* , and it has a second derivative at x^* , then the convergence is quadratic:

$$\left|\left|x_{t}-x^{*}\right|\right| \leq O\left(e^{-2^{T}}\right)$$

Advantage:

We have a more accurate local approximation of the objective, the convergence is much faster.

Disadvantage:

We need to compute the inverse of Hessian, which is time/storage consuming.

Convergence Rate of GD and SGD

Overall Complexity (ϵ) = Convergence Rate⁻¹(ϵ) * Complexity of each iteration

	Strongly Convex + Smooth			Convex + Smooth		
	Convergence Rate	Complexity of each iteration	Overall Complexity	Convergence Rate	Complexity of each iteration	Overall Complexity
GD	$O\left(\exp\left(-\frac{t}{Q}\right)\right)$	$O(n \cdot d)$	$O\left(nd\cdot Q\cdot\log\left(\frac{1}{\epsilon}\right)\right)$	$O\left(\frac{\beta}{t}\right)$	$O(n \cdot d)$	$O\left(nd \cdot \beta \cdot \left(\frac{1}{\epsilon}\right)\right)$
SGD	$O\left(\frac{1}{t}\right)$	O(d)	$O\left(\frac{d}{\epsilon}\right)$	$O\left(\frac{1}{\sqrt{t}}\right)$	O(d)	$O\left(\frac{d}{\epsilon^2}\right)$

When data size n is very large, SGD is faster than GD.

Outline

Optimization theory

Generalization theory

Approximation theory

Generalization error upper bound

• Estimation/generalization error: $L_D(\hat{f}_{\mathcal{F}}^*) - L_D(f_{\mathcal{F}}^*)$

Error decomposition

$$L_D(\hat{f}_{\mathcal{F}}^*) - L_D(f_{\mathcal{F}}^*)$$

$$= L_D(\hat{f}_{\mathcal{F}}^*) - L_S(\hat{f}_{\mathcal{F}}^*) + L_S(\hat{f}_{\mathcal{F}}^*) - L_S(f_{\mathcal{F}}^*) + L_S(f_{\mathcal{F}}^*) - L_D(f_{\mathcal{F}}^*)$$

$$L_S(\hat{f}_{\mathcal{F}}^*) - L_S(f_{\mathcal{F}}^*) \text{: non-positive}$$

$$L_S(f_{\mathcal{F}}^*) - L_D(f_{\mathcal{F}}^*) \text{: zero mean}$$

$$L_D(\hat{f}_{\mathcal{F}}^*) - L_S(\hat{f}_{\mathcal{F}}^*) \text{: not zero mean, but} < \sup_{f \in \mathcal{F}} (L_D(f) - L_S(f))$$

Finite Hypothesis Class

Union bound

$$p(A_i) > 1 - \delta$$

$$p(\bigcap_{i=1}^n A_i) = 1 - p(\bigcup_{i=1}^n \overline{A_i}) > 1 - n\delta$$

Hoeffding's inequality

$$s_n = x_1 + \dots + x_n, \Delta_i = b_i - a_i, a_i \le x_i \le b_i$$

$$p(s_n - Es_n \ge t) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n \Delta_i^2}\right)$$

Theorem: If \mathcal{F} is finite and $l(f(x), y) \in [0,1]$, we have

(1) For any fixed $f \in \mathcal{F}$ and $\epsilon > 0$,

$$\Pr[|\hat{L}(f) - L(f)| \le \epsilon] \ge 1 - 2e^{-2n\epsilon^2}$$

(2) For any $\epsilon > 0$,

$$\Pr[\forall f \in \mathcal{F}, \quad |\hat{L}(f) - L(f)| \le \epsilon] \ge 1 - 2|\mathcal{F}|e^{-2n\epsilon^2}$$

(3) With prob. at least $1 - \delta$,

$$\sup_{f \in \mathcal{F}} |\hat{L}(f) - L(f)| \le \sqrt{\frac{\log|\mathcal{F}| + \log\frac{2}{\delta}}{2n}}$$

What about the infinite hypothesis class

- VC dimension
- Covering number
- Rademacher Average
- Margin bound

VC dimension

Growth function

• The growth function of $\mathcal F$ with n points is maximum number of ways that n points can be classified by the hypothesis class $\mathcal F$

$$S_{\mathcal{F}}(n) = \sup_{(z_1, \dots, z_n)} \left| \left\{ \left(f(z_1), \dots, f(z_n) \right) : f \in \mathcal{F} \right\} \right|$$

VC dimension

• The VC dimension h of a class G is the largest n such that $S_{\mathcal{F}}(n) = 2^n$.

VC dimension

Generalization bound

Theorem 2 (Vapnik-Chervonenkis). For any $\delta > 0$, with probability at least $1 - \delta$,

$$\forall g \in \mathcal{G}, \ R(g) \leq R_n(g) + 2\sqrt{2\frac{\log S_{\mathcal{G}}(2n) + \log \frac{2}{\delta}}{n}}.$$

$$\forall g \in \mathcal{G}, \ R(g) \le R_n(g) + 2\sqrt{2\frac{h\log\frac{2en}{h} + \log\frac{2}{\delta}}{n}}.$$

With probability at least $1 - \delta$,

in infinite hypothesis class :
$$\sup_{f \in \mathcal{F}} \left| \widehat{R}_n(f) - R(f) \right| \leq 2\sqrt{2 \frac{h \log \frac{2en}{h} + \log \frac{2}{\delta}}{n}}$$

in finite hypothesis class:
$$\sup_{f \in \mathcal{F}} \left| \hat{L}(f) - L(f) \right| \leq \sqrt{\frac{\log |\mathcal{F}| + \log_{\delta}^2}{2n}}$$

Outline

Optimization theory

Generalization theory

Approximation theory

Approximation Error

Continuous function on compact set.

2-layer neural networks with finite hidden units

Universal Approximation of Neural Networks

- (Hornik 1989) Feedforward networks with only a single hidden layer can approximate any continuous function **uniformly** on any compact set and any measurable function arbitrarily well.
- For example, $\forall f \in C([0,1]^d), \forall \epsilon > 0, \exists 2$ -layer neural network NN, s.t.

$$\forall x \in [0,1]^d, |NN(x) - f(x)| \le \epsilon.$$

-0.5

0.0

0.5

-0.5

0.0

0.5

0.0

0.5

Overall Picture of Statistical Learning Theory

• Training: Find a function f from a function class \mathcal{F} based on training dataset \mathcal{D} .

$$\arg\min_{f\in\mathcal{F}}\mathbb{E}_{(x_i,y_i)\in\mathcal{D}}L(f(x_i),y_i)$$

Evaluation: How does f perform on test data: good or not?

$$\mathbb{E}_{(x_i,y_i)\in\mathcal{P}} L(f(x_i),y_i)$$

- Where is the gap?
 - argmin: optimization error → convergence of the algorithm
 - $\mathcal{D} \rightarrow \mathcal{P}$: generalization error \rightarrow hypothesis space capacity
 - Hypothesis space F: approximation error → hypothesis space capacity

Reference

- 周志华, 机器学习, 清华出版社
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press
- Vapnik, The Nature of Statistical Learning Theory, Springer, 1999
- Shalev-Shwartz, Shai, and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge university press, 2014.
- Bousquet, Olivier, Stéphane Boucheron, and Gábor Lugosi. "Introduction to statistical learning theory." Springer, Berlin, Heidelberg, 2003.
- Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural networks, 1989, 2(5): 359-366.

Thanks!

http://web.ee.tsinghua.edu.cn/wqzhang