chapitre (01): Introduction à la sécurité

Definition: Ensemble de moyens techniques, organisationnels et juridiques visant à protèger le système d'information.

· Objectif de la SI: TRIAD CID:

propriétés fondamentales de la sécurité

- confidentialité: préservé l'accès aux données aux sells personnes autorisés
- Intégrité: garantis que les données ne soit pas modifiés de manière non auto risée
- Disponibilité: Assurer l'accés aux rescources en temp utile.

Hape (04): Miss en oeuvre (Do)

· application concrete de la politique de sécurité

- action:

- former et sensibiliser le pensonnel.

- Déployer les controles de sécurité (pare-fou, anti-virus)

- Appliquer les procedures définies

thopse (Or): Verification (Check)

· controle de l'éfficacité du système

→ Audit de sécurité (= 2006)

-> Scans de vuherabilités

→ tests d'intrusion

→ Etape (06). A mélioration (Act)

. sur la base des audits:

- corniger les écarts

- Ajouter de novelles mesures

- Adapter la politique oux nouvelles menales

chopitre (01): Introduction à la cryptographie · Notions de bases de la cryptographie: crayph logie cryptanialyse cryptographie analyse defrequenc forus brut dictionain quantique classique modern Hybride Asymetrique transposition symptique substitution RSA, DIA Par Hux Parbla décalage Rail fenu Blow fich AGS , DES. losor · Définitions de bases · cryptographie: chiffrer le message · cryptanalyse; causer le systeme de oryptographie · cryptologie = cryptographie + cryptanalyse · cryptosysteme = ensemble des fonctions de chif/dechif + clés · Objectif de la cryptographier non- repudiation confidentialité Authentification integrite

· Histoire:

- O scytale: message autour d'un bâton
- 1 lesar: décaloge des lettres
- 3 vigenere: subtitution polyalphobetique
- 1 Enigna
- O Modome: DES/AES.

Z âge artisanal

3 åge technique

I age paradoxal

- cryptographie classique:

· subtitution:

- décalage d'un nombre fix
- facile a casé par analyse Frequentielle ou force brute
- . trans position.
 - Mélange des lettres sons en changer

- cryptanalyse

Type d'altaques

force brute: tester tout les clé possibles

Analyse frequentielle : basé sur la fréquence des lettres indice de cuicidence

text clair connu (choisis)
text chiffré choisis
(sclon les vapacités
de l'altaquant)
(c'est l'attaque
par dictionnair)

methode kaiski - s indice of cuisiolence - s Analyse Frequencielle

$$ic = E \frac{fi(fi-2)}{N(N-2)}$$

- chifferement par transposition:

· Columnar:

mursage : "message confidentiel" clé = 5

	m	0	5	3	10
	9	e	C	0	2
	f	i	d	e	(n)
	E	i	e	U	
1	9		0		

message chiffré : mgfe ee ii soel ann

C apriso € -> 5->4

· Keyword Columnar:

M: un message confidentiel cle: secu

Message chiffré: ma ode nscii useft egnel

clé	S	16	C	14
1	3	2	1	4
_	U	M	m	10
1	5	S	a	9
,	0	C	0	n
1	F	î	d	e
/	(F)	li	(4)	1/
1			1	

- clé faible:

dans cesar, c'est la clé ou on chiffre le musage deux fois on obtient le musage claire

- · Cryptographie modern:
 - . Manipule des bits (non pas des lettres)
 - · toujour basé sur sublitation et transposition, mais de laçan plus complexe
 - -> Objectif: meme avec du tede chiffré accessible, aucune information 1910 ne doit être déductible sans le clé.
- · cry pho graphie symétrique:
 - meme clé pour chiffié et déchiffrer (Ke = kd = k)
 - necessite eun canal sécurisé pour l'échange de clé.
 - Rapide, mais la distribution des cle devient complexe à grande exhelle.

- type

chifferement par bloc: devise le message en blocs

(AES, DES)

bit a bit, unoctet pur

chifferement par blocs:

concepts de shanon:

- confusion: relation enthe clé et message chiffier n'est pas clair
- -> Diffusion: un petit changement dans menage chair -> grands changements dans le musage chiffré.

fonctionnement:

- combinaison de plusieurs tours de substitution + transposition

- clé souvent > 128 bits (DES : 56 bits, AES juoqu'a 256 bits)

Elemple Diffusion:

21=00001011= Black cipher > 41=10111002 22=00001011= Black cipher > 42=0110 1100 41 multiple bit flip

→ DES (Data Encry phion standard)

functionement: chifferement par blocs de by bits avec une dé de 16 bits et 16 tours (treaspost trensposition et substitution) utilisant un néseau de fiestel

décurité: obsolite can saché courte le rand vulnérable aux attaque par force brute.

S-DES (DES simplifier): version simplifier de DES pour ·
l'apprentissage (block 8 bits, clé 10 bits,
2 tours)

- AES (Advanced Encryption standard)

fonctionnement: chifferement par blocs she 128 bits avec des clés de 148, 192, 256 bits et 10, 12, 14 tours selon la baille de la clé (128 -> 10, 192 -> 12 256 -> 14)

~ utilise substytes, shifthows, MixColumns, Adol Round Key

- . Sub Bytes, Remplace chaque octét par un autre via une table (S+Box)
- · shiftRows, Décale ciculairement les lignes d'une matrice
- · MixColumns: Mélange linéairement les volonnes d'une matrice
- . Add Rounded Kay: XOR entre la matrice et une sous dé

securité: ties foite (standard actuel)

- Mode de chi fferement par blocs:

- . ECB : chaque bloc shiffré inde pendament (taible)
- · CBC: chaque bloc est xORÉ avec le précident + IV

 Vecteur d'initialisation, bloc de bits aléahire

 ou pseudo aléatoire pour initialiséer un algo de

 chifferement (non secret)
 - · CFB, OFB, CTR: modes "Flux" utilisant IV, adapté a ces cos specifiques
- ~ IV doit être unique à chaque chifferement

- problemus de la cryptographie symétrique:

- · Distribution des clés: pour n personus → n((n-2))/2 clés nécessaires
- · Defficile a géror à grande échelle.

· Crypto graphie Asymétrique: (à dé publique)

principe:

* Deux clés : & publique pour chiffrer et privé pour dédniffrér

fonction-nument :

Attice chiffre avec de publique de Bob (chequian a cos des publique et privé)

done Objectif

Authentification

Authentification

Authentification

properété: Authentique, non falistate, non reutilisable, non réqueriable, inaltérable.

Algorithme RIA:

→ Basé sur une fonction unidirectionnelle à trappé :

tacile à faire dans un sens, mais impossible à inverser sans ter
te trappé (lé privé)

- Etapes de génération des clés RSA:

O- choisir deux nombres premiers Petq

0- calculur A tq: n = q * p et p(n) = (P-1) * (q-1)

O-choisir un e tq: 1 < e < p(n) et Paud (e, a(n) = 1

O-calcular d to: d = e mod (o(n)) (inverséde e mod (o(n))

- clé RSA:

· publique (e, n)

· privé (din)

- fonction:

chiffrement: C = M'e mod n

déchiffrement: M = C'd mod n

exemple: p = 17, q = 11 $\rightarrow n = 187$, $\Phi(n) = 160$, e = 7 d = 28

clé publique (7, 187)

clé privé (3 , 187)

M = 30

C = 307 mod 187 = 123

deeliffrer = 12327 mool (187) = 30

- A vantages et incovénients :

- Avantago:

- · plus bessin d'echangerune clé de secréte
- · permet l'authentification et la non-repudiation

- Lounvénient:

- · lent pour grande memage
- · Necéssite des clés langues
- · on chiffre généralement un petit message (clé de sussion), pos bute le fichier.

symétrique Vs Asymétrique.

critère	Symétrique	Asymétrique
clé	une seule clé partagé	Down clé (privé, Publique)
clésā geren (n pensonnu)	n(n-1)/2 cte	n paires clés
échange ole clé	Necessaire, canal séculisé	Non nécessaire (cli publique)
vitesse	80 ā ar6 bits	512 à 4096 bits
Usage	chifferement rapide du donnée	Échange de clé, signature,

- fonction de Hostrage:

- · Honsfirme les données de taille variable en une empreinte fixe (exi256 bits)
- · Sens unique : on ne peut pasntrouver les donnés de l'origine
- · utilised pour : intégrité, signature numérique, vérification
 - + Exemple: SHA 1, SHA -2 ._

- Signature numériques

• garantir — Authenticité

Intégrité

Non-népudiation

- · Réaliser ovec clé privé et vérifier ovec dé publique
- . On signe le hashage du musage pour gagner du temps

- Risque : attaque Man-in the Middle (MITM).
 - · un attaquent peut remplaier la clé publique.
 - . Necessite d'un certificat électronique signé par une autorité de confiance (AC)

- certificat éléctronique:

- · fichier signé par une autorité de confiance, contenant:
 - · clé plu publique
 - · identité du propiétaire (nom, adresse, m etc)
 - . la signature de l'autorité (AC)

· white:

- Associer une clé publique à une identité
- prévenir les attaques MITM
- Gostion de clés publiques : RK

PKI:

(neeharchique, avec outorité de

Lendiante certificat) Web of trust:

(non hierarchique , wonfiance entre utilisateur)

→ PKIX: norme PKI basé sur cultificats X.509

- Gére : création, publication ... etc de certificats

→ permet de faire confiant à une clé publique via une chaîne de contificats

→ composants cless

- · AG: (Autorité d'en registrement): vérifier les demandes et identités
- · Ac: émet, signe, névoque les certificats
- · CSR: demande des contificats
- · CPL: liste des certificats névoqués

(artificat signic por AC

Publication

- chaine de confiance: contificat utilisateur, signé par CA intermédiaire, lui même signé par CA noune

- Services AC:

الفاء

- · creation, publication, renouvellement et névocation des certificats
- · Raison de névocation:
 - . دلا compromise (مفتدف)
 - · Perte de note
 - . Lompromission de AC

-الهلك

- Role de AC: vérification identité, preuve de prossession, gestion de la clé privée.