When and how to ... migrate to Azure Synapse?

altius

Microsoft®

Most Valuable Professional

Kamil Nowinski

Principal Microsoft Consultant

Kamil Nowiński

Microsoft Data Platform MVP Speaker, blogger, data enthusiast

Principal Microsoft Consultant at Altius (<u>www.altiusdata.com</u>)

20 years of experience as DEV/BI/(DBA)

Member of the Data Community PL

Project member of "SCD Merge Wizard"

"azure.datafactory.tools" & "azure.datafactory.devops" Founder of blog SQLPlayer (www.SQLplayer.net)

SQL Server Certificates:
MCITP, MCP, MCTS, MCSA, MCSE Data Platform,
MCSE Data Management & Analytics
Moreover: Bicycle, Running, Digital photography

@NowinskiK, @SQLPlayer

Blog

SQL Player Play with data & have fun!

www.SQLPlayer.net

- Technical posts
- Various skill level
- Cheet sheets
- Recommended books
- Many useful other links
- YouTube Channel ←
- Interviews (Podcast)

"Ask SQL Family" – interviews with...

Azure Synapse is Azure SQL Data Warehouse evolved

Modern Data Warehouse

Azure Synapse Analytics - Data Lakehouse

Multiple analytics platforms

Azure brings these two worlds together

Welcome to Azure Synapse Analytics

Data warehousing & big data analytics - all in one service

Parallelism

SMP -Symmetric Multiprocessing

- Multiple CPUs used to complete individual processes simultaneously
- All CPUs share the same memory, disks, and network controllers (scale-up)
- All SQL Server implementations up until now have been SMP
- Mostly, the solution is housed on a shared SAN

MPP - Massively Parallel Processing

- Uses many separate CPUs running in parallel to execute a single program
- Shared Nothing: Each CPU has its own memory and disk (scale-out)
- Segments communicate using high-speed network between nodes

Synapse Analytics Logical Architecture

Azure Synapse Analytics

Integrated data platform for BI, AI and continuous intelligence

Key features

Rich surface area

- T-SQL language for data analytics
- Supporting large number of languages and tools
- Enterprise-grade security

SQL Provisioned

- Modern Data
 Warehouse
- Indexing and caching
- Import and query external data
- Workload management

SQL Serverless

- Querying external data
- Model raw files as virtual tables and views
- Easy data transformation

STORAGE

Table Distribution Options

- ROUND ROBIN
- HASH
- REPLICATED

Tables – Distributions

Round-robin distributed

Distributes table rows evenly across all distributions at random.

Hash distributed

Distributes table rows across the Compute nodes by using a deterministic hash function to assign each row to one distribution.

Replicated

Full copy of table accessible on each Compute node.

Tables – Partitions

Overview

Table partitions divide data into smaller groups

In most cases, partitions are created on a date column

Supported on all table types

RANGE RIGHT – Used for time partitions

RANGE LEFT – Used for number partitions

Benefits

Improves efficiency and performance of loading and querying by limiting the scope to subset of data.

Offers significant query performance enhancements where filtering on the partition key can eliminate unnecessary scans and eliminate IO.

```
CREATE TABLE partitionedOrderTable
    OrderId
            INT NOT NULL,
    Date
             DATE NOT NULL,
    Name
             VARCHAR(2),
    Country
            VARCHAR(2)
WITH
   CLUSTERED COLUMNSTORE INDEX,
    DISTRIBUTION = HASH([OrderId]),
    PARTITION (
    [Date] RANGE RIGHT FOR VALUES (
    '2000-01-01', '2001-01-01', '2002-01-01',
    '2003-01-01', '2004-01-01', '2005-01-01'
```


Tables – Distributions & Partitions

Logical table structure

OrderId	Date	Name	Country
85016	11-2-2018	٧	UK
85018	11-2-2018	Q	SP
85216	11-2-2018	Q	DE
85395	11-2-2018	V	NL
82147	11-2-2018	Q	FR
86881	11-2-2018	D	UK
93080	11-3-2018	R	UK
94156	11-3-2018	S	FR
96250	11-3-2018	Q	NL
98799	11-3-2018	R	NL
98015	11-3-2018	Т	UK
98310	11-3-2018	D	DE
98979	11-3-2018	Z	DE
98137	11-3-2018	Т	FR

Physical data distribution

(Hash distribution (Orderld), Date partitions)

Distribution1 (Orderld 80,000 – 100,000) 11-2-2018 partition				
Orderld	Date	Name	Country	
85016	11-2-2018	V	UK	
85018	11-2-2018	Q	SP	
85216	11-2-2018	Q	DE	
85395	11-2-2018	V	NL	
82147	11-2-2018	Q	FR	
86881	11-2-2018	D	UK	
11-3-2018 partition				
OrderId	Date	Name	Country	
93080	11-3-2018	R	UK	
93080 94156	11-3-2018 11-3-2018	R S	UK FR	
		.,		
94156	11-3-2018	S	FR	
94156 96250	11-3-2018 11-3-2018	S Q	FR NL	
94156 96250 98799	11-3-2018 11-3-2018 11-3-2018	S Q R	FR NL NL	
94156 96250 98799 98015	11-3-2018 11-3-2018 11-3-2018 11-3-2018	S Q R	FR NL NL UK	
94156 96250 98799 98015 98310	11-3-2018 11-3-2018 11-3-2018 11-3-2018 11-3-2018	S Q R T D	FR NL NL UK DE	

· •

x 60 distributions (shards)

Common table distribution methods

Table Category	Recommended Distribution Option
Fact	Use hash-distribution with clustered columnstore index. Performance improves because hashing enables the platform to localize certain operations within the node itself during query execution.
	Operations that benefit:
	COUNT(DISTINCT(<hashed_key>))</hashed_key>
	OVER PARTITION BY <hashed_key></hashed_key>
	most JOIN <table_name> ON <hashed_key></hashed_key></table_name>
	GROUP BY <hashed_key></hashed_key>
Dimension	Use replicated for smaller tables. If tables are too large to store on each Compute node, use hash-distributed.
Staging	Use round-robin for the staging table. The load with CTAS is faster. Once the data is in the staging table, use INSERTSELECT to move the data to production tables.

Table Distribution Options: ROUND ROBIN

1	Poland	
2	Germany	
8	UK	
•••		
66	Switzerland	
70	Ireland	

DB1 DB2 DB3 DB60

Table Distribution Options: HASH

1	Poland	
2	Germany	
8	UK	
•••		
66	Switzerland	
70	Ireland	

DB1

DB2

DB3

DB60

Table Distribution Options: REPLICATED

DB1

DB2

DB3

DB60

Execution Plan – DMS Operations

DMS Operation	Description
ShuffleMoveOperation	Distribution → Hash algorithm → New distribution Changing the distribution column in preparation for join.
PartitionMoveOperation	Distribution → Control Node Aggregations - count(*) is count on nodes, sum of count
BroadcastMoveOperation	Distribution → Copy to all distributions Changes distributed table to replicated table for join.
TrimMoveOperation	Replicated table → Hash algorithm → Distribution When a replicated table needs to become distributed. Needed for outer joins.
MoveOperation	Control Node → Copy to all distributions Data moved from Control Node back to Compute Nodes resulting in a replicated table for further processing.
RoundRobinMoveOperation HadoopRoundRobinMoveOperation	Source → Round robin algorithm → Distribution Redistributes data to Round Robin Table.

What Workloads are Suitable?

Analytics

- Store large volumes of data.
- Consolidate disparate data into a single location.
- Shape, model, transform and aggregate data.
- Batch/Micro-batch loads.
- Perform query analysis across large datasets.
- Ad-hoc reporting across large data volumes.
- All using simple SQL constructs.

What workloads are NOT suitable?

Operational workloads (OLTP)

- High frequency reads and writes
- Large numbers of singleton selects
- High volumes of single row inserts

Data Preparations

- Row by row processing needs
- Incompatible formats (XML)

Important things

- SQL DW is based on an MPP architecture (not SMP)
 - The same engine under hood, but scale and concurrency are vary
- SIZE does really matter
- Individual table size and rowcount are important
- OLTP reporting type workloads are usually poor candidates
- Proper schema design important in SQL Server
- Right schema desing CRITICAL in SQL DW

Azure Synapse Analytics
Data Distribution DEMO

Azure Synapse Analytics Migration

Is Azure Synapse a good fit?

- Verify your source database in many aspects
- Do answer for many questions
- Use form from more experienced
- Questions' diagram
- Ask Melissa Coates

https://www.blue-granite.com/blog/is-azure-sql-data-warehouse-a-good-fit-updated

Is Azure SQL Data Warehouse a good fit? technology choice for your implementation?

- Q3
 - OLTP?
 - DW / Analytical workload?
- Q4
 - -<1 TB?
 - ->1 TB

Is Azure SQL Data Warehouse the best technology choice for your implementation?

- Q7
 - Highly normalized tables?
 - Well-formed / star schema
- Q8: Number of tables & rows?
 - Many small/medium tables?
 - Fewer / large fact tables (1B+ rows)
- Q11: Skilled stuff

Is Azure SQL Data Warehouse the best technology choice for your implementation?

- Q12: Concurrent queries
 - High number
 - <128 active sessions</p>
- Q14: Frequency of ingestion?
 - Near-real-time

Azure Synapse Analytics
Preparation & Copy

Data Preparation: files

- Filter essential objects to migrate
- Create performant local storage to receive exported data
- Establish standard or dedicated connectivity to cloud
- Choose region nearest to you with Azure SQL DW
- PolyBase: One folder per table in storage container

Data Migration Recommendations

- Data Format Conversion
 - Data Format, Field delimiters, Escaping, Field order, encoding
- Compression
 - Use Gzip, ORC, parquet
- Export
 - BCP for fast export
 - Multiple files per large table, one folder per table
- Copy
 - AZCopy
 - Data Movement Library

Data Migration Tips

- Incorrect format means migration needs to be entirely repeated
- Exploit bcp options, hints, parralellism
- Multiple compressed files, split files
- Parallel import, reliable transfer
- Don't use multiple files in the same gzipped file
- Efficient Copy
 - Parallel, Async, Resumable
 - Limit concurrent copies if low bandwith
- Very large Data transfer
 - Express Route, Import/Export Service

Data Loading Recommendations

- PolyBase and SSIS (with 2017 Azure feature pack) the fastest method
 - Upload to BLOB via AZCOPY or PowerShell library
 - Historical load use CTAS
 - Incremental use INSERT...SELECT
 - UTF-8, UTF-16 also supports
- Use the highest resource class (without sacrificing concurrency)
- Increase DWU before load, decrease once done
- ADLS supported
- Doesn't support:
 - Extended ASCII
 - Custom multi-date format

Parallel Loading with PolyBase

PolyBase characteristics

- Single PolyBase load provides best performance for non-compressed files
- Load performance scales as you increase service level objective (SLO)
 - Number of files should be greater than of equal to the total number of readers of your service level objective (SLO)
- Automatically parallelizes data load process;
 - no need to manually break the input data into multiple files and issue concurrent loads
 - Each reader slice 512 MB block from data files
- Max throughput depends on number of readers available on the DWU level
- Multiple readers will not work against a compressed text file (gzip)
 - Only a single reader is used per compressed file since uncompressing the file in the buffer is single threaded
 - Alternatively, generate multiple compressed files

Azure Synapse Analytics
Parallel Loading with PolyBase

Resources

http://sqlplayer.net/Synapse

Thank you!

kamil@nowinski.net

@NowinskiK

@SQLPlayer

SQLPlayer.net

https://github.com/NowinskiK/CommunityEvents

Kamil Nowinski

Microsoft Data Platform MVP MCSE Data Platform & MCSE Data Management and Analytics

Credits

Big credits to <u>James Serra</u> (Microsoft) who shared and let me use some of his slides.

SQLBITS 2020

THE GREATEST DATA SHOW