This Lecture:
-Classical Cryptography
Symmetric Cryptography
Assymetric Cryptography
RSA Encryption Limitation
 Vernam Cipher (One Time Pad)
 Quantum One Time Pad

Classical Cryptography

Symmetric Cryptography

Caeser Cipher 100 BC

Scytale 7 BC

The Enigma Machines 20 AD งจะ3

1932 -33.

1940.

B& K.

n = pxq.

One way Functions used:

- Integer factorization problem
- The discrete logarithm problem
- Elliptic-curve discrete logarithm problem

RSA F	Encryption:	Rivest-Shamir-Adleman	1977
	_HCFyption.	HIVEST-SHAHIII-AUICHIAH	1311

 $n = p \times q \cdot \varepsilon : n \quad D : p, q$

_. Select two prime numbers

- calculate n=pxq.

- Public Key (e,n). C=Me mod n.

- Private Key (d, n). $M' = C^d \mod n \cdot \chi$ $M' = M \cdot M \cdot \chi$

- generate e.

- 1 < e < 9(n).

- e should not be a factor of n.

- generate private key (d,n).

For given n, p, q, & e, there is a unique d.

s.t. d is inverse et e (mod p(n)).

 $ed = 1 \mod \varphi(n)$

ed-1=Kp(n) => ed=1+Kp(n)

Then
$$M' = C^d \mod n$$
.

$$= M^e d \mod n$$

$$= M \pmod n$$

$$= M \cdot M \pmod n$$

$$= M \cdot M \pmod n$$

$$= M \cdot M \pmod n$$

Example:

$$- \cdot n = p \times 9 = 53 \times 69 = 3127$$

- Public Key is
$$(n, e) = (3127, 3)$$
.

$$d = (K \varphi(n) + 1)/e$$

$$K=2$$
 $d=(2 \times 3016 + 1)/3 = 2011$.
Private $Key : (n,d) = (3127,2011)$.

Send the Message: Hi. _. Convert Message into a number. abcdefghij Everyone 123456789. | knows. Hi -> 89 = M. _. Encrypted message-C = Me mod n. = 89 mod 3127 = 704969 mod 3127 = 1394 Decrypt: M'= Cd modn. = (1394)²⁰¹¹ mod (3127) Difficult to break if difficult to find prime factors of no shor's algorithm (quantum algo) can break the code!

Symmetric Cryptography

One Time Pad: The Vernam Cipher 1926 (Perfect Secracy)

$$P = 0 1 1 0 1 0 0 1 0 1$$

$$K = 1 0 1 1 1 0 1 1 0 0$$

$$C = P \oplus K$$

$$1 1 0 1 0 0 1 0 0 1$$

$$1 1 0 1 0 0 1 0 0 1$$

$$1 1 0 1 0 0 1 0 0 1$$

$$1 1 0 1 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 1 0 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 0 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 0 0 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 0 0 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 0 0 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 0 0 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1$$

$$1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1$$

_ perfectly seeure iff.
K is random.
K is secret
As long as the message. Used only once.
used my ince
QKD solves the problem of key distributed.
j J

Quantum One Time Pad:

$$X107 = 117$$
 $X1M7 = 1M017$

2 - operator:

Encryphon:

Decryption: 1D7= X ZK2/E7 = XK1 ZK2 ZK2 XK1 IM7.

 $= \chi_{K_1} \chi_{K_1} / M >$

= IM7

Sender & Reciever should have same K, & K2.

Quantum one-time pad gives no advantage over classical one-time pad

so we gor QKD.