

- 4. $\int \int_D \sqrt{1-x^2-y^2} \, dxdy$, D est le disque de centre O et de rayon R=1, utiliser les
- 5. $\int \int \int_D z \ dx dy dz$, D est la demi-sphère supérieur de centre O et de rayon R, utiliser les
- 6. $\int \int \int_D \sqrt{x^2 + y^2 + z^2} \, dx dy dz$, D est la sphère de centre O et de rayon R, utiliser les $\sqrt{2}$ coordonnées sphériques.

Deux sphères métalliques très petites A et B identiques, de même masse m=1 g, sont suspendues en un point O par deux fils isolants de masse négligeable et de même longueur l = 10 cm. On les charge avec un bâton de verre frotté sur de la laine. A l'équilibre l'angle entre les deux fils est 60 °.

- A quelles forces sont soumises les sphères ?
- 2. Quelle est la valeur de leur charge commune q ? On prendra $g=10~m.s^{-2}$. \checkmark

Exercice 6

Deux charges électriques de même valeur q, sont fixées en A et B sur un axe (x'ox) aux abscisses $x_A = -a$ et $x_B = +a$. Entre A et B on place une charge q' libre de se déplacer sur

Quelle est la position d'équilibre de q'?

Exercice 7

- Calculer la charge totale portée par une tige de verre filiforme de longueur 30 cm avec une charge linéique $\lambda = 20 \ \mu C.m^{-1}$
- 2. Quelle est la charge totale d'un corps uniformément chargé en volume avec une densité volumique de 4 $nC.m^{-3}$ et qui a la forme d'un cylindre de rayon R=2 mm et de hauteur 5 cm;
- 3. Calculer la densité surfacique d'une balle aphérique de rayon R=6-mm, porteuse d'une charge 30 nC ; (/
- Soit une sphère de rayon R, dont la répartition de charge n'est pas uniforme $\rho = \rho_0(1 - \frac{r^2}{10^2})$. Quelle est sa charge totale.

Exercice 8

- Quatre charges ponctuelles +q et −q (q > 0) sont disposées alternativement aux quatre sommets d'un carré de centre O et de côté a. Déterminer le champ électrostatique total créé par les quatre charges au centre O.
- 2. On place maintenant quatre charges ponctuelles identique -q (q > 0) aux sommets du carré et une charge q' > 0 au centre O. Déterminer la valeur de q' en fonction de q pour que la force électrostatique totale qui s'exerce sur chacune des cinq charges soit nulle.

Travaux dirigés d'Electrostatique Série N 2 CPL ENSAH Année 2019-2020

Exercice 1:

Déterminer le vecteur \vec{U} , de module U = I, situé dans le plan xOy et orthogonal au vecteur \vec{A} défini par la relation: $\vec{A} = 4\vec{e}_1 + 3\vec{e}_2 + 7\vec{e}_3$

Exercice 2:

- 1. Déterminer l'angle solide sous lequel on voit un espace formé par un cône de demi-angle au sommet a o à partir du sommet O
- Déterminer l'angle solide sous lequel on voit la moitié de l'espace entier
- Déterminer l'angle solide sous lequel on voit l'espace entier

Exercice 3:

On considère deux charges ponctuelles identiques $+q=2~\mu C$ disposées en A et B suivant l'axe Oy tel que OA = OB = a = 30 cm

- 1. Déterminer (en fonction de x) le champ électrostatique sur l'axe Ox Une charge $+q'=4 \mu C$ est placée en M sur l'axe Ox à l'abscisse OM=x.
- 2. Déterminer (en fonction de x) l'intensité et la direction de la résultante F des forces électrostatique
- agissant sur q'. 3. Déterminer (en fonction de x) l'expression de la charge équivalente $q_{équi}$ (placé en O) à l'ensemble

deux charges
$$+q$$
.
On donne : $k = \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 N.m^2 / C^2$: Constante de la loi de Coulomb

Exercice 4:

Dans un plan mené du repère orthonormé (O, \vec{i}, \vec{j}) une particule A qui porte une charge $q_A = 10 \ \mu C$ situ la position $\overrightarrow{OA} = 2\vec{i} + 3\vec{j}$ crée autour d'elle un champ électrostatique \vec{E}

- 1. Calculer le champ électrostatique $\vec{E}(M)$ au point d'abscisses $\overrightarrow{OM} = 3\vec{i} + \vec{j}$
- 2. Calculer la force électrostatique appliquée sur une particule B placée au point M et qui porte une c $q_B = 6 \mu C$

supportion art Bound Actual

Université Abdelmalek Essaadi École Nationale des Sciences Appliquées d'Al Hoceima

Physique 1 (M AP13) API : SI Année : 2019 / 2020

Travaux dirigés d'Electrostatique Série 3

- Exercice 1

On considère une sphère de centre O et de rayon R chargée en volume avec la densité uniforme p.

- Calculer le champ électrique E(r) en tout point de l'espace :
 - (a) en un point intérieur à la sphère;
 - (b) en un point extérieur à la sphère.
- 2. Calculer le potentiel électrique V(r). Le potentiel à l'infini est supposé nul;
- 3. Tracer l'allure du champ \vec{E} et du potentiel V créés par cette sphère.

Exercice 2

On considère un système de trois sphères concentriques de centre O, de rayons R₁, R₂, R₃

La sphère de rayon R_1 porte une densité surfacique de charge $\sigma>0$, celle de rayon R_2 porte une densité surfacique de charge - \sigma et celle de rayon R3 porte une densité surfacique de charge σ.

- Calculer le champ électrique E(r) en tout point de l'espace.
- Calculer le potentiel électrique V(r). Le potentiel à l'infini est supposé nul.

Exprimer le champ électrique créé en tout point de l'espace par une distribution volumique de charge $(\rho > 0)$ répartie uniformément entre deux cylindres coaxiaux de longueur infinie de rayons respectifs R_1 et R_2 ($R_1 < R_2$),

/ 1. en utilisant le théorème de Gauss.

Soit (ξ) une sphère conductrice de rayon R=15 cm, on l'éloigne de tout autre corps. On porte (ξ) au potentiel V=-270 kV, on donne $\frac{1}{\epsilon_0}\simeq 36\pi 10^9$ (SI).

- Calculer la charge totale Q de la sphère.
- Déterminer le champ E en un point très voisin de (ξ) à l'extérieur de celle-ci. On note \overrightarrow{n} l'unitaire normale sortant de (ξ) .
- Exprimer E on fonction de R, V et n. Calculer E.

Exercice 5

- Calculer la capacité d'un condensateur sphérique de rayon R₁ et R₂.
- Calculer la capacité d'un condensateur cylindrique de rayon R₁ et R₂ de hauteur h.

Exercice 6

Une sphère conductrice S_1 de centre O et de rayon R_1 et portant une charge Q_1 entourée d'une sphère S_2 conductrice creuse de même centre O, de rayon intérieur R_2 et de rayon extérieur R_3 initialement neutre.

- Donner la répartition des charges sur S₂.
- Calculer et représenter graphiquement le potentiel et le champ électrique en tout point de l'espace.
- Si on relie S₂ au sol :
 - (a) Quel est le potentiel de S₂ et donner la nouvelle répartition des charges
 - (b) Écrire les équations aux charges correspondantes
 - (c) Exprimer le potentiel de S₁
 - (d) Exprimer C₁₁ , C₁₂ et C₂₁

Exercice 7

Trois condensateurs de capacités respectives : $C_1 = 4 nF_1$ $C_2 = 6 nF$ et $C_3 = 0.6 nF$ sont montés comme le montre la figure ci-contre.

- Calculer la capacité équivalente de l'ensemble, vue de A et B.
- On applique une différence de potentiel (V_A-V_B) = 100 V entre les bornes A et B. Calculer les charges Q_1 , Q_2 et Q_3 prises respectivement par C_1 , C_2 et C_3 .

Université Abdelmalek Essaadi École Nationale des Sciences Appliquées d'Al Hoceima

Physique 1 (M AP13) AP-I: Semestre 1 Année : 2019 / 2020

Série 4 (Magnétostatique)

Exercice 1

Soit un fil rectiligne de longueur L parcouru par un courant I indépendant du temps.

- 1. Calculer le champ magnétique en un point M situé à une distance r du fil, en utilisant la loi de Biot-Savart;
- Déduire le champ créé par un fil infini;
- Calculer le champ créé par un fil infini, en utilisant le théorème d'Ampère;
- 4. Calculer le potentiel vecteur créé par le fil infini. On suppose que $A(r=r_0)=0$;
- Tracer l'allure du champ magnétique et du potentiel vecteur.

Exercice 2

Soit une spire circulaire de rayon R, parcouru par un courant I.

- Calculer le champ magnétique créé en un point de son axe;
- Calculer son flux.

Exercice 3

Soit un solénoïde constitué par plusieurs enroulement de fil conducteur autours d'un cylindre de longueur L et de rayon R ayant le même axe (Oz) et parcourues par un courant I dans le même sens.

- Calculer le champ magnétique en un point M de l'axe (Oz) du solénoïde de longueur L;
- Déduire le champ créé par un solénoïde infini;
- Par l'application du théorème d'Ampère ;
 - (a) Montrer que le champ créé par le solénoïde infini est nul à l'extérieur;
 - (b) Montrer que $\overrightarrow{B}_{int}(M) = \mu_0 n \overrightarrow{I} \overrightarrow{e_z}$.
- 4. Calculer le potentiel vecteur $\vec{A}(r)$ créé par le solénoïde infini on tout points de l'espe
- Tracer l'allure du champ B et du potentiel vecteur.

Exercice 4

Soit un conducteur cylindrique rectiligne infini d'axe (Oz)et de rayon R, parcour

un courant d'intensité I et de densité volumique $\overrightarrow{j} = j\overrightarrow{e_z}$. Ce conducteur est placé à une distance y_0 d'un conducteur plan ABCD ayant la d'un rectangle de longueur b et de largeur a.

On donne $I = \int \int_{(S)} = \vec{j} \, d\vec{S}$.

- 1. Déterminer la forme des lignes de champ magnétique créé par le conducteur cylindrique.
- 2. Calculer le champ \overrightarrow{B} créé par ce conducteur cylindrique en tout points de l'espace.
- 3. Calculer le flux magnétique ϕ crée par I à travers le cadre ABCD.

Exercice 5

Soit \overrightarrow{A} le potentiel vecteur associé à un champ magnétique uniforme \overrightarrow{B} , tel que :

$$\overrightarrow{A} = \frac{1}{2}\overrightarrow{B} \wedge \overrightarrow{\tau}$$

Ou, $\overrightarrow{r} = \overrightarrow{OM}$ et en coordonnées cartésiennes (x,y,z), \overrightarrow{B} est supposé dirigé selon l'axe Oz.

1. Montrer que $\overrightarrow{B} = \overrightarrow{rot}\overrightarrow{A}$.