Collecting Analyzing Large Data - MGTA 452

Customer Lifetime Value Prediction for SureDrive Auto

Srihari Nair

Agenda

- Problem Statement
- 2 Exploratory Data Analysis
- **Feature Engineering**
- 4 Model Building & Evaluation
- Model Interpretation & Selection
- 6 Results & Conclusion

Problem Statement:

Prediction of the <u>Customer Lifetime Value</u> (CLV) for an Auto Insurance company **SureDrive Auto Insurance** has observed a **decline in customer retention** over the past few months.

The company expects us to Predict CLV for future customers based on a dataset of their existing customers

Customer Lifetime Value

Number of Policies

Monthly Premium

Income

Why?

- Understanding CLV is crucial for businesses as it guides their investment strategies in customer acquisition and retention.
- This analysis will enable our client to create targeted strategies to enhance customer engagement, retention, and drive growth.

Data	columns (total 24 columns):		
#	Column	Non-Null Count	Dtype
0	Customer	9134 non-null	object
1	State	9134 non-null	object
2	Customer Lifetime Value	9134 non-null	float64
3	Response	9134 non-null	object
4	Coverage	9134 non-null	object
5	Education	9134 non-null	object
6	Effective To Date	9134 non-null	object
7	EmploymentStatus	9134 non-null	object
8	Gender	9134 non-null	object
9	Income	9134 non-null	int64
10	Location Code	9134 non-null	object
11	Marital Status	9134 non-null	object
12	Monthly Premium Auto	9134 non-null	int64
13	Months Since Last Claim	9134 non-null	int64
14	Months Since Policy Inception	9134 non-null	int64
15	Number of Open Complaints	9134 non-null	int64
16	Number of Policies	9134 non-null	int64
17	Policy Type	9134 non-null	object
18	Policy	9134 non-null	object
19	Renew Offer Type	9134 non-null	object
20	Sales Channel	9134 non-null	object
21	Total Claim Amount	9134 non-null	float64
22	Vehicle Class	9134 non-null	object
23	Vehicle Size	9134 non-null	object
dtyp	es: float64(2), int64(6), objec	t(16)	

- <u>Key Variables:</u> State, Coverage, Education, Number of Policies,
 Employment Status, Income, Monthly Premium, Policy details, Total
 Claim Amount, and more.
- <u>Continuous Variables:</u> Income, Monthly Premium Auto, Months Since Last Claim, Number of Policies, Total Claim Amount, etc.
- **Data Quality:** No null values, ensuring data integrity and reliability.
- <u>Dataset Size and Diversity:</u> 9,134 observations with 24 variables, including a mix of categorical and continuous data.

Correlation Matrix

- 0.8

- 0.6

-0.4

- 0.2

- 0.0

- -0.2

Strong Positive Correlation:

- 'Total Claim Amount' & 'Monthly
 Premium Auto'
- 'Total Claim Amount' &
 'Number of Policies'

Negative Correlation:

- 'Income' & 'Months Since Last
 Claim'
- 'Income' & 'Monthly Premium'
 Auto'

CLV: Skewed right

Monthly Premium: Right-skewed

Total Claim: Right-skewed low values

Income: Moderately right-skewed, excludes zero

CLV vs Monthly Premium

Monthly Premium is directly proportional to CLV.

Variability in CLV grows with higher premiums.

CLV vs Total Claim Amount

Total Claim Amount is almost directly proportional to CLV.

Multiple outliers exist for this

correlation

CLV vs Income

No clear relationship between CLV &
Income
CLV varies widely across all income
levels

CLV Distribution Across Coverage Types

"Basic": Lowest CLV

"Extended": Higher median

"Premium": Widest range, most

variability.

CLV Variation by Employment Status

"Employed": Stable CLV range,

"Unemployed": Higher median CLV,

"Retired": Broad, varied CLV

distribution.

CLV Distribution by Renew Offer Type

"Offer3 & Offer4": Lower Indicates
retention effectiveness

CLV Distribution by Vehicle Class

Luxury Cars: Higher CLVs
Two-Door, Four-Door Cars: Lower CLVs

Feature Engineering

Data Cleaning for Model Training

Dropping redundant columns : Removing unnecessary or duplicate columns from the dataset to simplify the model and improve performance.

- **Dropped Date variables,** since we are not performing time series analysis
- **Dropped Customer No. & Names,** since it was not adding value to features

One Hot Encoding: Converting categorical variables into a binary (True or False) matrix to allow for proper analysis in machine learning models.

```
# One-hot encoding of categorical variables
data_encoded = pd.get_dummies(data, drop_first=True)

# Displaying the first few rows of the encoded data
data_encoded.head()
```

Number of Policies	Total Claim Amount	Customer_AA11235	Customer_AA16582	 Sales Channel_Branch	Sales Channel_Call Center	Sales Channel_Web	Vehicle Class_Luxury Car
1	384.811147	False	False	False	False	False	False
8	1131.464935	False	False	False	False	False	False
2	566.472247	False	False	False	False	False	False
7	529.881344	False	False	False	True	False	False

Feature Engineering

Data Cleaning for Model Training

Interaction Matrix: Created to capture the combined effect of two or more variables on the dependent variable, an effect that is not simply additive

```
# Creating interaction features between Income and Coverage
for coverage_type in ['Coverage_Extended', 'Coverage_Premium']:
    interaction_feature_name = f'Income_{coverage_type}'
    data_encoded[interaction_feature_name] = data_encoded['Income'] * data_encoded[coverage_type]

# Displaying the first few rows of the updated dataset
data_encoded[['Income', 'Coverage_Extended', 'Coverage_Premium', 'Income_Coverage_Extended', 'Income_Coverage_Premium', 'Income_Coverage_Extended', 'Income_Coverage_Premium', 'Income_Coverage_Extended', 'Income_Coverage_Premium', 'Income_Coverage_Premium', 'Income_Coverage_Extended', 'Income_Coverage_Premium', 'Income
```

	Income	Coverage_Extended	Coverage_Premium	Income_Coverage_Extended	Income_Coverage_Premium
0	56274	False	False	0	0
1	0	True	False	0	0
2	48767	False	True	0	48767
3	0	False	False	0	0
4	43836	False	False	0	0

Feature Engineering

Feature Selection

- Importance Ranking: We leveraged Random Forest to rank features based on their importance, helping us identify key predictors for our model.
- Dimensionality Reduction: The initial feature selection, is reducing dimensionality and simplifying our model.
- Model-based Feature Engineering: Random Forest has guided our model-based feature engineering, especially in creating polynomial and interaction features.

Feature	Importance
Number of Policies	0.466433
Monthly Premium Auto	0.253064
Months Since Last Claim	0.043022
Total Claim Amount	0.037320
Months Since Policy Inception	0.035491
Income	0.027280
Income_Coverage_Extended	0.011561
Education_High School or Below	0.005807
Number of Open Complaints	0.005530
Sales Channel_Branch	0.005120
Gender_M	0.004979
Renew Offer Type_Offer2	0.004785
Location Code_Urban	0.004395
Marital Status_Married	0.004184
Education_College	0.004168
Response_Yes	0.004063
Vehicle Size_Medsize	0.003873
Policy_Personal L2	0.003830
Sales Channel_Web	0.003735
Education_Master	0.003654

^{*}Importance tells us what is the percentage contribution of each of our variables to a unit change in the dependent variable

For our model building we considered variables only with a **threshold of 0.02**, these variables explained around **80%+ of variability in Y**

Model Building

Initial Model - Linear Regression

We have run a **Linear Regression** model using variables with **6 highest importance scores** as our **explanatory variables**, making predictions on our **dependent variable**, i.e. - **Customer Lifetime Value**

Method used -

- Employed a systematic iteration of feature combinations to optimize model accuracy.
- Selection criteria focused on minimizing Mean Absolute Error (MAE) and maximizing adjusted R-squared value.

Model	MAE	Adjusted R2
model_Monthly Premium Auto_Total Claim Amount	3983.10	0.155
model_Monthly Premium Auto_Total Claim Amount_Customer Lifetime Value	3988.12	0.153
model_Monthly Premium Auto_Total Claim Amount_Months Since Policy Inception	3983.91	0.149

Model Building

Final Model - Random Forest

Why we chose Random Forest to improve our model?

- Handles Overfitting Well: Reduces overfitting through averaging multiple decision trees.
- Works with Categorical and Numerical Data: Effectively processes both types of data without extensive preprocessing.
- Robust to Outliers and Non-linear Data: Performs well with datasets that have outliers or non-linear relationships.
- No Need for Feature Scaling: Eliminates the need for input feature normalization or standardization.

Model	MAE	Adjusted R2
model_Number of Policies_Monthly Premium Auto_Income	1529.11	0.649
model_Number of Policies_Monthly Premium Auto_Total Claim Amount	1636.99	0.635
model_Number of Policies_Monthly Premium Auto_Months Since Policy Inception	1639.74	0.621

Model Interpretation & Selection

Model - 1

Model - 2

Model - 3

X- Feature: Number of Policies, Monthly Premium, **Income**

Y- Feature: Customer Lifetime Value

X- Feature: Number of Policies, Monthly

Premium, **Total Claim Amount**

Y- Feature: Customer Lifetime Value

X- Feature: Number of Policies, Monthly Premium, Months Since Policy Inception

Y- Feature: Customer Lifetime Value

Metric	Value
Mean Absolute Error	1528.18
Adjusted R2	0.649

Metric	Value
Mean Absolute Error	1637.66
Adjusted R2	0.635

Metric	Value
Mean Absolute Error	1634.70
Adjusted R2	0.621

SureDrive Auto has received Customer Lifetime Value predictions for 100 prospects, derived from three distinct models

The selection of an appropriate model by SureDrive Auto will be guided by their specific business objectives and contextual considerations.

Results & Conclusion

- Our analysis reveals that while 'Special' policy types have a smaller customer base, they consistently yield higher Customer Lifetime Values (CLVs).
- In contrast, 'Personal' policies, despite being the most popular, exhibit lower customer retention rates.

Length of Bar - Average Customer Lifetime Value

Thank You Group I