Lecturer: Ryosuke Takahashi

1. Find the limit, if it exists, or show that the limit does not exist.

(a) (5 points)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz^2+xz^2}{x^2+y^2+z^4}$$

(b) (5 points)
$$\lim_{(x,y)\to(0,0)} x \sin\frac{1}{x^2+y^2} + y \cos\frac{1}{x^2-y^2} + e^{xy}$$

(c) (5 points)
$$\lim_{(x,y)\to(1,2)} \frac{xy-2x-y+2}{\sqrt{x^2+y^2-2x-4y+5}}$$

2. Let
$$f(x,y) = x^4 + 3xy^3 + e^x \sin y + 2x - 7y + 4$$
.

- (a) (10 points) Find the tangent plane for z = f(x, y) at (0, 0, 4).
- (b) (10 points) Find the maximum and minimum of the $D_{\vec{v}}f(0,0)$ with $|\vec{v}|=1$. For which \vec{v} the value $D_{\vec{v}}f(0,0)$ attaches its maximum? For which \vec{v} the value $D_{\vec{v}}f(0,0)$ attaches its minimum?
- 3. (15 points) Show that the function $u(x,t) = \frac{t}{a^2t^2 x^2}$ is a solution of equation $u_{tt} = a^2u_{xx}$.
- 4. (15 points) Let $f(x, y, z) = x^2 + 4y^2 + 2z^2 16$

$$S = \{(x, y, z) \in \mathbb{R}^3 | f(x, y, z) = 0\},\$$

and $\vec{p} = (5, 5, 5)$. Find the equation of the plane P such that for any $\vec{q} \in P \cap S$, the line passing through \vec{p} and \vec{q} is tangent to S at \vec{q} .

5. (15 points) Let
$$F(x,y) = 2x^3 + 3xy^2 - 3\sqrt{2}x^2 + 3\sqrt{2}y^2 - \frac{27\sqrt{2}}{2} = 0$$
 be a plane curve.

- (a) Find $\frac{dy}{dx}$ for the curve at $(0, \frac{3\sqrt{2}}{2})$.
- (b) Do we have $\frac{dy}{dx}$ at (0,0)? Explain your answer.
- 6. (20 points) Find the absolute maximum and absolute minimum for the function $f(x, y, z) = x^2 + y + z^2 + 1$ defined on the region

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 | 4x^2 + y^2 + 2xz + 4z^2 - 16 \le 0 \text{ and } x + z \ge 1\}.$$