

CSE231 – Digital Logic Design

Lecture - 8

Counters

Lesson Outcomes

After completing this lecture, students will be able to

- Describe the difference between an asynchronous and a synchronous counter
- Analyze counter timing diagrams & counter circuits
- Explain how propagation delays affect the operation of a counter
- Determine & modify the modulus of a counter
- Use an up/down counter to generate forward and reverse binary sequences
- Use cascaded counters to achieve a higher modulus
- Use logic gates to decode any given state of a counter
- Apply counters for various applications : digital clock, parking controller, elevator controller etc.

CSE231 Lecture 8 Page 1/36

Key Terms

KEY TERMS

Key terms are in order of appearance in the chapter.

- State machine
- Asynchronous
- Recycle
- Modulus
- Decade

- Synchronous
- Terminal count
- State diagram
- Cascade

Activate Wir

2-bit asynchronous binary counter

The term asynchronous refers to events that do not have a fixed time relationship with each other and, generally, do not occur at the same time. An asynchronous counter is one in which the flip-flops (FF) within the counter do not change states at exactly the same time because they do not have a common clock pulse.

TABLE 9-1

Binary state sequence for the counter in Figure 9–4.

Clock Pulse	Q_1	Q_0
Initially	0	0
1	0	1
2	1	0
3	1	1
4 (recycles)	0	0

3-bit / mod 8 asynchronous / ripple counter

TABLE 9-2

State sequence for a 3-bit binary counter.

Clock Pulse	Q_2	Q_1	Q_0
Initially	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
8 (recycles)	0	0	0

Propagation delay: ripple counter

■ Asynchronous counters are commonly referred to as ripple counters for the following reason: The effect of the input clock pulse is first "felt" by FFO. This effect cannot get to FF1 immediately because of the propagation delay through FFO. Then there is the propagation delay through FF1 before FF2 can be triggered. Thus, the effect of an input clock pulse "ripples" through the counter, taking some time, due to propagation delays, to reach the last flip-flop.

4-bit / mod16 asynchronous / ripple counter

CSE231 Lecture 8 Page 6/36

3-bit asynchronous / ripple counter

PROBE: A 4-bit asynchronous binary counter is shown in Figure (a). Each D flip-flop is negative edge-triggered and has a propagation delay for 10 nanoseconds (ns). Develop a timing diagram showing the Q output of each flip-flop, and determine the total propagation delay time from the triggering edge of a clock pulse until a corresponding change can occur in the state of Q_3 . Also determine the maximum clock frequency at which the counter can be operated.

Solution

The timing diagram with delays omitted is as shown in Figure 9–8(b). For the total delay time, the effect of CLK8 or CLK16 must propagate through four flip-flops before Q_3 changes, so

$$t_{p(tot)} = 4 \times 10 \,\text{ns} = 40 \,\text{ns}$$

The maximum clock frequency is

$$f_{\text{max}} = \frac{1}{t_{p(tot)}} = \frac{1}{40 \text{ ns}} = 25 \text{ MHz}$$

The counter should be operated below this frequency to avoid problems due to the propagation delay.

Asynchronous decade / MOD10 / BCD counter

Q ₃	Q_2	Q_1	Q_0	Decimal	Comments
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	2	
0	0	1	1	3	
0	1	0	0	4	
0	1	0	1	5	
0	1	1	0	6	
0	1	1	1	7	
1	0	0	0	8	
1	0	0	1	9	
1	0	1	0	0	Reset

CSE231 Lecture 8 Page 8/36

Asynchronous MOD12 counter

Q_3	Q_2	Q_1	Q_0	Decimal	Comments
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	2	
0	0	1	1	3	
0	1	0	0	4	
0	1	0	1	5	
0	1	1	0	6	
0	1	1	1	7	
1	0	0	0	8	
1	0	0	1	9	
1	0	1	0	10	
1	0	1	1	11	
1	1	0	0	0	Reset

CSE231 Lecture 8 Page 9/36

2-bit synchronous counter

A synchronous counter is one in which all the flipflops in the counter are clocked at the same time by a common clock pulse. J-K flip-flops are used to illustrate most synchronous counters. D flip-flops can also be used but generally require more logic because of having no direct toggle or no-change states.

2-bit synchronous counter: propagation delay

CSE231 Lecture 8 Page 11/36

3-bit synchronous counter: divide by 8 / mod 8 counter

		Outputs			J-K Inputs			At t	he Next Clock	Pulse		
Clock Pulse	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0	FF2	FF1	FF0
Initially	0	0	0	0	0	0	0	1	1	NC*	NC	Toggle
1	0	0	1	0	0	1	1	1	1	NC	Toggle	Toggle
2	0	1	0	0	0	0	0	1	1	NC	NC	Toggle
3	0	1	1	1	1	1	1	1	1	Toggle	Toggle	Toggle
4	1	0	0	0	0	0	0	1	1	NC	NC	Toggle
5	1	0	1	0	0	1	1	1	1	NC	Toggle	Toggle
6	1	1	0	0	0	0	0	1	1	NC	NC	Toggle
7	1	1	1	1	1	1	1	1	1	Toggle	Toggle	Toggle
										Counter re	cycles back to	000.

4-bit synchronous counter: divide by / mod 16 counter

☐ J and K input control for the first three flip-flops is the same as previously discussed for the 3-bit counter.

The fourth stage, FF3, changes only twice in the sequence. Notice that both of these transitions occur following the times that Q_0 , Q_1 , and Q_2 are all HIGH. This condition is decoded by AND gate G_2 so that when a clock pulse occurs, FF3 will change state. For all other times the J_3 and K_3 inputs of FF3 are LOW, and it is in a no-change condition.

4-bit synchronous BCD counter

CLK _	1	2	3	4	5	6	7	8	9	10
Q_0 0	1	0	1	0	1	0	1	0	1	0
$Q_1 = 0$	0	1	1	0	0	1	1	0	0	0
$Q_2 = 0$	0	0	0	1	1	1	1	0	0	0
Q_3 0	0	0	0	0	0	0	0	1	1	0

Clock Pulse	Q_3	Q_2	Q_1	Q_0
Initially	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10 (recycles)	0	0	0	0

CSE231 Lecture 8 Page 14/36

PROB: Construct an appropriate MOD-60 counter to divide the 60-Hz line frequency down to 1 Hz.

Solution $2^5 = 32$ and 2^6 = 64, and so we need six FFs, as shown in Figure 7-9. The counter is to be cleared when it reaches the count of 60 (111100). Thus, the outputs of flipflops Q5, Q4, Q3, and Q2 must be connected to the NAND gate. The output of flip-flop Q5 will have a frequency of 1 Hz.

Up/down synchronous binary counter

- An **up/down counter** is one that is capable of progressing in either direction through a certain sequence. An up/down counter, sometimes called a bidirectional counter, can have any specified sequence of states.
- \bigcirc Q₀ for both the up and down sequences shows that FFO toggles on each clock pulse. Thus, the J₀ and K₀ inputs of FFO are J₀ = K₀ = 1
- For the up sequence, Q_1 changes state on the next clock pulse when $Q_0 = 1$. For the down sequence, Q_1 changes on the next clock pulse when $Q_0 = 0$. Thus, the J_1 and K_1 inputs of FF1 must equal 1 under the conditions expressed by the following equation: $J_1 = K_1 = (Q_0 \cdot UP) + (Q_0 \cdot DOWN)$
- For the up sequence, Q_2 changes state on the next clock pulse when $Q_0 = Q_1 = 1$. For the down sequence, Q_2 changes on the next clock pulse when $Q_0 = Q_1 = 0$. Thus, the J_2 and K_2 inputs of FF2 must equal 1 under the conditions expressed by the following equation:

$$J_2 = K_2 = (Q_0 \cdot Q_1 \cdot UP) + (\underline{Q}_0 \cdot \underline{Q}_1 \cdot DOWN)$$

☐ Each of the conditions for the J and K inputs of each flipflop produces a toggle at the appropriate point in the counter sequence.

Up/Down sequence for a 3-bit binary counter.

Clock Pulse	Up	Q_2	Q_1	Q_0	Down
0	10	0	0	0	21
1	(0	0	1)
2	(0	1	0)
3		0	1	1)
4		1	0	0)
5		1	0	1)
6	(1	1	0)
7	1 ¢	1	1	1	> ∤

3-bit Up/down synchronous binary counter

☐ Figure shows a basic implementation of a 3-bit up/down binary counter using the logic equations just developed for the J and K inputs of each flip-flop. Notice that the UP/DOWN control input is HIGH for UP and LOW for DOWN.

4-bit synchronous up/down counter

PROB: Show the timing diagram and determine the sequence of 4-bit synchronous binary up/down counter if the clock and UP/DOWN control inputs have waveforms as shown in Figure (a). The counter starts in the all-0s state is positive edgeand triggered.

2-bit & 3-bit cascaded asynchronous counters: MOD 4x8=32

Modulus-4 counter

Modulus-8 counter

Counter decoding: decoding of state 6

Counter decoding: decoding of state 2 and 7

Mod 8 counter decoding

CSE231 Lecture 8 Page 22/36

Design of synchronous counter (3-bit gray counter)

Step 1: State Diagram

Step 2: Next-State Table

Next-state table for 3-bit Gray code counter.

	Present St	ate		Next State	
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	0	0

Step 3: Flip-Flop Transition Table

Transition table for a J-K flip-flop.

	Output Tran	Flip-Flo	p Inputs	
Q_N		Q_{N+1}	J	K
0	\longrightarrow	0	0	X
0	\longrightarrow	1	1	X
1	\longrightarrow	0	X	1
1	\longrightarrow	1	X	0

 Q_N : present state

 Q_{N+1} : next state

X: "don't care"

Design of synchronous counter (3-bit gray counter)

Step 4: Karnaugh Maps

Step 5: Logic Expressions for Flip-Flop Inputs

$$Q_2Q_1$$
 Q_0
 Q_1
 Q_2
 Q_1

$$J_{0} = Q_{2}Q_{1} + \overline{Q}_{2}\overline{Q}_{1} = \overline{Q_{2} \oplus Q_{1}}$$

$$K_{0} = Q_{2}\overline{Q}_{1} + \overline{Q}_{2}Q_{1} = Q_{2} \oplus Q_{1}$$

$$J_{1} = \overline{Q}_{2}Q_{0}$$

$$K_{1} = Q_{2}Q_{0}$$

$$J_{2} = Q_{1}\overline{Q}_{0}$$

$$K_{2} = \overline{Q}_{1}\overline{Q}_{0}$$

Design of synchronous counter (3-bit gray counter)

Step 6: Counter Implementation

Design of synchronous counter

PROB. Design a counter with the irregular binary count sequence 001-010-101-111. Use D flip-flops.

Step 1: State Diagram

Step 2: Next-State Table

Step 3: Flip-Flop Transition Table

Next-state table.

Pı	resent Sta	ite	1	Next State	e
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	1	0	1	0
0	1	0	1	0	1
1	0	1	1	1	1
1	1	1	0	0	1

Transition table for a D flip-flop.

Ou	itput Trans	Flip-Flop Input	
Q_N		Q_{N+1}	D
0		0	0
0	\longrightarrow	1	1
1	\longrightarrow	0	0
1	\longrightarrow	1	1

The invalid states (0, 3, 4, and 6) can be treated as "don't cares" in the design.

Design of synchronous counter

Step 4: Karnaugh Maps

Step 6: Counter Implementation

Step 5: Logic Expressions for Flip-Flop Inputs

$$D_0 = \overline{Q}_0 + Q_2$$

$$D_1 = \overline{Q}_1$$

$$D_2 = \overline{Q}_0 + Q_2 \overline{Q}_1$$

Counter applications: digital clock

Counter applications: digital clock

FIGURE Logic diagram of typical divide-by-60 counter using synchronous decade counters. Note that the outputs are in binary order (the right-most bit is the LSB)

Counter applications: digital clock

FIGURE Logic diagram for hours counter and decoders. Note that on the counter inputs and outputs, the right-most bit is the LSB.

Counter applications: automobile car parking control

PROBLEM. Design a parking monitoring available spaces in a one-hundred space parking garage and provide for an indication of a full condition by illuminating a display sign and lowering a gate bar at the entrance.

SOLUTION: A system that solves this problem consists of optoelectronic sensors at the entrance and exit of the garage, an up/down counter and associated circuitry, and an interface circuit that uses the counter output to turn the FULL sign on or off as required and lower or raise the gate bar at the entrance. A general block diagram of this system is shown in Figure

CSE231 Lecture 8 Page 31/36

Counter applications: automobile car parking control

Counter applications: elevator controller

Counter applications: elevator controller

Floor counter state diagram

References

- 1. Digital Fundamentals by Thomas Floyd, Pearson International Edition, 11th Edition, Chapter 9, Page 497-560.
- 2. Digital Systems: Principles and Applications by Ronald Tocci, Neal Widmer and Greg Moss, Pearson International Edition, 12th Edition, Chapter 7, Page 408-498.

Next class

Counters

CSE231 Lecture 8 Page 36/36