山东大学 计算机科学与技术 学院

计算机组成与设计 课程实验报告

学号: 202200130048 姓名: 陈静雯 班级: 6

实验题目:综合实验

实验学时: 2 实验日期: 5.28

实验目的:

完成一个 CPU 综合实验,能够进行微指令的运行和存储

硬件环境: 康芯 KX-CDS EP4CE6/10 器件

软件环境: quartus || 环境

实验内容与设计:

1、实验内容

CPU 综合实验电路包括运算器电路和控制器电路。

运算器由三个寄存器 RO、R1、R2、移位器、加法器等构成,并组装在一起构成 ALU 算术逻辑运算部件,参照四位补码运算器电路框图所示

2、实验原理图

		Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential P
	_ dr	Input	PIN_34	2	B2_N0	PIN_34	2.5 V (default)		8mA (default)		
ou	d0	Output	PIN_60	4	B4_N0	PIN_60	2.5 V (default)		8mA (default)	2 (default)	
ou.	d1	Output	PIN_65	4	B4_N0	PIN_65	2.5 V (default)		8mA (default)	2 (default)	
on	d2	Output	PIN_70	4	B4_N0	PIN_70	2.5 V (default)		8mA (default)	2 (default)	
on.	d3	Output	PIN_74	5	B5_N0	PIN_74	2.5 V (default)		8mA (default)	2 (default)	
in in	_ p	Input	PIN_84	5	B5_N0	PIN_84	2.5 V (default)		8mA (default)		
- <	<new node="">></new>										

Addr	+0	+1	+2	+3	+4	+5	+6	+7	ASCII
000	600080	800040	000028	C00080	300040	000028	000000	000000	((
008	000000	000000	000000	000000	000000	000000	000000	000000	
040	000000	000000	000000	000000	000000	000000	000000	000000	

3、实验步骤

- (1) 调用 ALU 模块、μPC 模块及门电路按 CPU 综合实验结构框图完成连线。
- (2) 管脚定义:实验平台工作于模式 5, ALU 的输入数据 a3-a0 依次锁定在μIR23-μIR420
- 上, CPR0、CPR1、CPR2 依次锁定在μIR7-μIR5 上, LM、DM、RM、CO 依次锁定在μIR4-μIR1
- 上, P 锁定在键 8 上。Q3-Q0 依次锁定在 D4-D1 上。

- (3) 适配、下载
- (4) 编制微程序

微指令可确定如下格式:

μ IRO

将微指令格式分为两部分: 前面部分 μ IR23 \sim μ IR20 可设置数据, 后面部分 μ IR7 \sim μ IR0 可确定微命令, 例: 需要 CPR0 脉冲, 该位为 1, 否则为 0; 备用位填 0。

0110+1000 的微程序。

寄存器分配: 0110 送 R0、1000 送 R1、结果送 R2。

操作步骤 微指令 说明

0 1 1 0→R0; 60 00 80H 存入控制存储器 ROM 的 0 单元。

 \downarrow

1 0 0 0→R1; 80 00 40H 存入控制存储器 ROM 的 1 单元。

 \downarrow

R0+R1→R2; 00 00 28H 存入控制存储器 R0M 的 2 单元。

(5) 功能检查

按 CPU 复位键清 µ PC, 使之指向控制存储器的 0 号单元。

每按一次单脉冲键, 便执行一条微指令。

按第3次单脉冲键,微程序执行完毕。

运算结果应存放在 R2 中, 并用 LD3-0 指示。

4、实验结果

Add	dr +0		+1	+2	+3	+4	+5	+6	+7	ASCII
000	6000	30 8	300040	000028	C00080	300040	000028	000000	000000	((
008	0000	00 0	000000	000000	000000	000000	000000	000000	000000	

键 8=clk=p, 键 7=clrn, led4-1=输出 d3-0

按 mif 文件前三个指令所示, 执行 6+8=0110+1000=1110, 按三次 clk, 输出 1110

地址 3~5, 执行 C+3=1100+0011=1111, 按三次 clk, 输出 1111

结论分析与体会:

1. PC 不断地加 1, 一个个读取 rom 地址中的 24 位指令, 24 位的二进制数, 高 4 位作为数据送进 ALU, 低 8 位作为 ALU 的控制信号,最后输出 4 位运算后的结果