Contrôle Continu - Novembre 2018

Durée : 2 h Documents et calculatrices interdits

1. Questions de cours

- 1. Les trois assertions suivantes sont-elles vraies ou fausses? Une preuve concise justifiera le vrai; un contre-exemple précis le faux.
 - i. L'application f de \mathbb{R}^3 vers \mathbb{R}^2 définie par f(x,y,z)=(xy,0) est linéaire.
 - ii. Toute application linéaire f de \mathbb{R}^3 vers \mathbb{R}^2 est surjective.
 - iii. Aucune application linéaire f de \mathbb{R}^3 vers \mathbb{R}^2 ne peut être injective.
 - iv. Toute application linéaire f de \mathbb{R}^3 vers \mathbb{R}^3 est surjective.
- 2. Soit $f \in L(E, F)$ où E et F sont des \mathbb{R} -e.v de dimensions finies respectives n et m.
 - i. Définir son noyau Ker(f) et prouver que c'est un s-e.v de F.
 - ii. Définir le rang de f, rg(f), et établir l'inégalité : $rg(f) \leq Min(n, m)$.
 - iii. Supposons que E = F et soit $g \in L(E)$ telle que $g \circ f = \mathrm{id}_E$. Montrer que f est un automorphisme et que $f^{-1} = g$.
- 2. On considère dans \mathbb{R}^3 , les vecteurs suivants

$$v_1 = (3,0,2) \,, \ v_2 = (4,-1,3) \,, \ v_3 = (1,-1,1) \,, \ v_4 = (1,1,1) \,, \ v_5 = (2,-1,1) \,, \ v_6 = (5,-1,3)$$
 et les deux sous-espaces vectoriels de \mathbb{R}^3 , $E = \text{Vect} \{v_1,v_2,v_3\}$ et $F = \text{Vect} \{v_4,v_5,v_6\}$.

- 1. Extraire de la famille $\{v_1, v_2, v_3\}$ une base de E, puis donner la dimension de E.
- 2. Extraire de la famille $\{v_4, v_5, v_6\}$ une base de F, puis donner la dimension de F.
- 3. Caractériser E et F par des équations linéaires.
- 4. Trouver une base de $E \cap F$.
- 5. Donner la définition de E+F , déduire sa dimension de la question précédente puis en donner une base.
- 6. les sous-espaces E et F sont-ils supplémentaires dans \mathbb{R}^3 ?
- 3. 1. Soit f l'endomorphisme de \mathbb{R}^3 défini pour tout $(x, y, z) \in \mathbb{R}^3$ par

$$f(x, y, z) = (3x + 9y - 9z, 2x, 3x + 3y - 3z).$$

- i. Trouver une base de Im(f). L'endomorphisme f est-il surjectif?
- ii. Trouver une base de Ker(f). L'endomorphisme f est-il injective?
- iii. Calculer explicitement $f^2 := f \circ f$.
- iv. Donner une base de $Ker(f^2)$.

- v. Comparer Ker(f) et $Ker(f^2)$.
- vi. Calculer f^3 puis $Ker(f^3)$.
- 2. Soient E un e.v réel de dimension n et $f \in L(E)$.
 - i. Montrer que $Ker(f) \subset Ker(f^2) \subset Ker(f^3)$. ii. Montrer que $Im(f^3) \subset Im(f^2) \subset Im(f)$

 - iii. Montrer l'équivalence :

$$Ker(f) = Im(f) \iff f^2 = O_{L(E)} \text{ et } n = 2 rg(f)$$