Total tell with the

- lar , an the

PART B SOLAR - GEOPHYSICAL DATA

cof

ISSUED APRIL 1958

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

SOLAR - GEOPHYSICAL DATA

CONTENTS

INTRODUCTION

Description of Tables and Graphs

I DAILY SOLAR INDICES

- (a) Relative Sunspot Numbers and 2800 Mc Solar Flux
- (b) Graph of Sunspot Cycle

II SOLAR CENTERS OF ACTIVITY

- (a) Calcium Plage and Sunspot Regions
- (b) Coronal Line Emission Indices

III SOLAR FLARES

- (a-k) Optical Observations
- (1) Flare Patrol Observations
- (m) Subflares
- (n) Ionospheric Effects

IV SOLAR RADIO WAVES

- (a,b) 2800 Mc -- Outstanding Occurrences (Ottawa)
- (c) 2800 Mc -- Times of Observations (Ottawa)
- (d) 200 Mc -- Daily Data (Cornell) March 1958
- (e) 200 Mc -- Outstanding Occurrences (Cornell) March 1958
- (f) 167 Mc -- Daily Data (Boulder) February 1958
- (g,h) 167 Mc -- Outstanding Occurrences (Boulder) February 1958
- (i) 470 Mc -- Daily Data (Boulder) February 1958
- (j) 470 Mc -- Outstanding Occurrences (Boulder) February 1958

V GEOMAGNETIC ACTIVITY INDICES

- (a) C, Kp, Ap, and Selected Quiet and Disturbed Days
- (b) Charts of Kp by Solar Rotations

VI RADIO PROPAGATION QUALITY INDICES

North Atlantic:

- (a) CRPL Quality Figures and Forecasts
- (b) Graphs Comparing Forecast and Observed Quality
- (c,d) Graphs of Useful Frequency Ranges

North Pacific:

- (e) CRPL Quality Figures and Forecasts
- (f) Graphs Comparing Forecast and Observed Quality

VII ALERT PERIODS AND SPECIAL WORLD INTERVALS

(a) IGY World Warning Agency Decisions for Alerts and SWI

SOLAR - GEOPHYSICAL DATA

INTRODUCTION

This monthly report series is intended to keep research workers abreast of the major particulars of solar activity and the associated ionospheric, radio propagation and other geophysical effects. It is made possible through the cooperation of many observatories, laboratories and agencies as recorded in the detailed description of the tables and graphs which follows. The report is edited by Miss J. V. Lincoln of the Sun-Earth Relationships Section.

I DAILY SOLAR INDICES

Relative Sunspot Numbers -- The table includes (1) the daily American relative sunspot numbers, RA', as compiled by the Solar Division of the American Association of Variable Star Observers, and (2) the provisional daily Zürich relative sunspot numbers, RZ, as communicated by the Swiss Federal Observatory. Because of the time required to collect and reduce the observations, RA' will normally appear one month later than RZ.

The relative sunspot number is an index of the activity of the entire visible disk. It is determined each day without reference to preceding days. Each isolated cluster of sunspots is termed a sunspot group and it may consist of one or a large number of distinct spots whose size can range from 10 or more square degrees of the solar surface down to the limit of resolution (e.g. 1/8 square degrees). The relative sunspot number is defined as R=K(10g+s), where g is the number of sunspot groups and s is the total number of distinct spots. The scale factor K (usually less than unity) depends on the observer and is intended to effect the conversion to the scale originated by Wolf. The observations for sunspot numbers are made by a rather small group of extraordinarily faithful observers, many of them amateurs, each with many years of experience. The counts are made visually with small, suitably protected telescopes.

Final values of R_Z appear in the IAU <u>Quarterly Bulletin on Solar Activity</u>, the <u>Journal of Geophysical Research</u> and elsewhere. They usually differ slightly from the provisional values. The American numbers, R_Δ , are not revised.

Solar Flux Values, 2800 Mc -- The table also lists the daily values of solar flux at 2800 Mc recorded in watts/M²/cycle/second bandwidth (x 10-22) in two polarizations by the National Research Council at Ottawa, Canada. These solar radio noise indices are being published in accordance with CCIR Report 25 that a basic solar index for ionospheric propagation should be measured objectively and "preferably refer to a property of the sun such as radiation flux which has direct physical relationship to the ionosphere."

Graph of Sunspot Cycle -- The graph illustrates the recent trend of Cycle 19 of the 11-year sunspot cycle and some predictions of the future level of activity. The customary "12-month" smoothed index, R, is used throughout, the data being final R_Z numbers except for the current year. Predictions shown are those made for one year after the latest available datum by the method of A. G. McNish and J. V. Lincoln (Trans. Am. Geophys. Union, 30, 673-685, 1949) modified by the use of regression coefficients and mean cycle values recomputed for Cycles 8 through 18. Cycle 19 began April 1954, when the minimum \overline{R} of 3.4 was reached.

II SOLAR CENTERS OF ACTIVITY

<u>Calcium Plage and Sunspot Regions</u> -- The table gives particulars of the centers of activity visible on the solar disk during the preceding month. These are based on estimates made and reported on the day of observation and are therefore of limited reliability.

The table gives the heliographic coordinates of each center (taken as the calcium plage unless two or more significantly and individually active sunspot groups are included in an extended plage) in terms of the Greenwich date of passage of the sun's central meridian (CMP) and the latitude; the serial number of the plage as assigned by McMath-Hulbert Observatory; the serial number of the center in the previous solar rotation, if it is a persisting region; particulars of the plage at CMP: area, central intensity; a summary of the development of the plage during the current transit of the disk, where b = born on disk, ℓ = passed to or from invisible hemisphere, d = died on disk, and /= increasing, -= stable, \= decreasing; and age in solar rotations; particulars of the associated sunspot group, if any, at CMP: area and spot count and the summary of development during the current disk transit, similar to the above. The unit of area is a millionth of the area of a solar hemisphere; the central intensity of calcium plages is roughly estimated on a scale of l = faint to 5 = very bright.

Calcium plage data are available through the cooperation of the McMath-Hulbert Observatory of the University of Michigan and the Mt. Wilson Observatory. The sunspot data are compiled from reports from the U.S. Naval Observatory, Mt. Wilson Observatory, and from reports from Europe and Japan received through the daily Ursigram messages.

Coronal Line Emission Indices -- In the table are summarized solar coronal emission intensity indices for the green (Fe XIV at $\lambda5303$) and red (Fe X at $\lambda6374$) coronal lines. The indices are based on measurements made at 5° intervals around the periphery of the solar disk by the High Altitude Observatory at Climax, Colorado, and by Harvard University observers at Sacramento Peak (The USAF Upper Air Research Observatory at Sunspot, New Mexico, under contract AF 19(604)-146). The measurements are expressed as the number of millionths of

an Angstrom of the continum of the center of the solar disk (at the same wavelength as the line) that would contain the same energy as the observed coronal line. The indices have the following meanings:

 G_6 = mean of six highest line intensities in quadrant for λ 5303.

 $R_6 = same for \lambda 6374$.

 G_1 = highest value of intensity in quadrant, for $\lambda 5303$.

 $R_1 = same for \lambda 6374$.

The dates given in the table correspond to the approximate time of CMP of the longitude zone represented by the indices. The actual observations were made for the North East and South East quadrants 7 days before; for the South West and North West quadrants 7 days after the CMP date given.

To obtain rough measures of the integrated emission of the entire solar disk in either of the lines, assuming the coronal changes to be small in a half solar rotation, it is satisfactory to perform the following type of summation given in example for 15 October:

where N is the number of indices entering the summation.

Such integrated disk indices as well as integrated wholesun indices are computed for each day and are published quarterly in the "Solar Activity Summary" issued by the High Altitude Observatory at Boulder, Colorado. In the same reports are given maps of the intensity distribution of coronal emission derived from all available Climax and Sacramento Peak observations, as well as other information on solar activity, such as maps made from daily limb prominence surveys in H α and notes regarding the history of active regions on the solar disk.

Preliminary summaries of solar activity, prepared on a fast schedule, are issued Friday of each week from High Altitude Observatory in conjunction with CRPL and include solar activity through the preceding day. These are useful to groups needing information on the current status of activity on the visible solar disk, but are not recommended for research uses unless such a prompt schedule of reporting is essential. The same information is included in the subsequent quarterly reports, with extensive additions, corrections and evaluations.

Optical Observations -- The table presents the preliminary record of solar flares as reported to the CRPL on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete data are published later in the Quarterly Bulletin on Solar Activity, I.A.U., in various observatory publications and elsewhere. The present listing serves to identify and roughly describe the phenomena observed.

Reporting directly to the CRPL are the following observatories:
McMath-Hulbert, Wendelstein, Sacramento Peak, Mitaka and Swedish Astrophysical Station on Capri. The remainder report through the URS Igram centers or are available through the IGY World Data Center for Solar Activity in Boulder. Observations are in the light of the center of the H-alpha line unless noted otherwise. The reports from Sacramento Peak, New Mexico (communicated to CRPL by the High Altitude Observatory at Boulder) are from observations at the USAF Upper Air Research Observatory at Sunspot, New Mexico, by Harvard University observers, under contract AF 19(604)-146.

For each flare are listed the reporting observatory, the date, beginning and ending times, time of maximum phase, the heliographic coordinates in degrees, McMath serial number of the region, duration, the flare importance on the IAU scale of 1- to 3+, observing conditions where 1 means poor, 2 fair and 3 good, time of measurement for tabulated width of Na or tabulated area, measured (i.e. projected) maximum area in square degrees, corrected maximum area in square degrees which equals measured area times secant h where h is the heliocentric angle, maximum effective line-width in Na expressed in Angstroms, and maximum intensity of Na expressed in per cent of the continuous spectrum. The following symbols are used in the table:

D = Greater than F = Approximately E = Less than E = Plus

A final column lists provisionally the occurrence of simultaneous ionospheric effects as observed on selected field-strength recordings of distant high-frequency radio transmissions; a more nearly definitive list of these ionospheric effects, including particulars, appears in these reports after the lapse of a month (see below). All times are Universal Time (UT or GCT). Subflares (importance 1-) are listed by date, time of beginning and their heliographic coordinates. A graph presents intervals for which there were no patrols for flare observations from the observatories whose complete data are published in the table.

Ionospheric Effects -- STD (and GID-gradual ionospheric disturbances) may be detected in a number of ways: short wave fadeouts, enhancement of low frequency atmospherics, increases in cosmic absorption, and so forth. The table lists events that have been recognized on field-strength recordings of distant high-frequency radio transmissions.

Under a coordinated program, the staffs at the following ionospheric sounding stations contribute reports that are screened and synthesized at CRPL-Boulder: Puerto Rico, Ft. Belvoir, Va., and Anchorage, Alaska (CRPL-Boulder: PR, BE, AN); Huancayo, Peru, and College, Alaska (CRPL-Associated Laboratories: HU, CO); and White Sands, N. Mex., Adak, Alaska, and Okinawa (U.S. Signal Corps Stations: WS, AD, OK). McMath-Hulbert Observatory (MC) also contributes such reports. In addition, reports are volunteered by RCA Communications Inc., Marconi Wireless, Netherlands Postal and Telecommunications Services, Swedish Telecommunications, and others; these usually specify times of SID and the radio paths involved.

In the coordinated program, the abnormal fades of field strength not obviously ascribable to other causes, are described as short wave fadeouts with the following further classification:

S-SWF: sudden drop-out and gradual recovery Slow S-SWF: drop-out taking 5 to 15 minutes and

gradual recovery

G-SWF: gradual disturbance; fade irregular in

both drop-out and recovery.

When there is agreement among the various reporting stations on the time (UT) of an event, it is accepted as a widespread phenomenon and listed in the table.

The degree of confidence in identifying the event, a subjective estimate, is reported by the stations and this is summarized in an index of certainty that the event is widespread, ranging from 1 (possible) to 5 (definite). The times given in the table for the event are from the report of a station (underlined in table) that identified it with high confidence. The criteria for the subjective importance rating assigned by each station on a scale of 1- to 3+ include amplitude of the fade, duration and confidence; greater consideration is given to reports on paths near the subsolar point in arriving at the summary importance rating given in the table.

Note: The tables of SID observed at Washington included in CRPL F-

Note: The tables of SID observed at Washington included in CRPL F-reports prior to F-135 were restricted to events classed here as S-SWF.

IV SOLAR RADIO WAVES

2800 Mc Observations

The data on solar radio wave events made in Ottawa, Canada by the Radio and Electrical Engineering Division of the National Research Council (A. E. Covington) at 2800 Mc (10-cm emission) are presented. Near local noon (about 1700 UT) the sensitivity of the radiometer is determined and a mean flux for the whole day calculated. These values are given in a tabular form (see table I-1) in units of 10^{-22} watts/ $M^2/c/s$. Burst phenomena are measured above this level and are given in terms especially suitable for the variations

observed on this frequency. The basis for the classifications is described by Covington - J.R. Astro. Soc. Can. 45, 49, 1951 and Dodson, Bledeman and Covington, Ap. J. 119, 541, 1954. A modification in terminology with a view to simplification has been introduced and consists essentially of the omission of the descriptive word "Single" from the "Single-Simple" and "Single-Complex" classes; in designating the "Single", "Single-Simple" and "Rise and Fall" bursts into a single classification designated as "Simple Bursts" with an appropriate type number; in the addition of the letter "f" to indicate that the burst deviates from the basic pattern by the presence of one or more small fluctuations in intensity; and by the addition of the letter "A" to indicate that the event has another smaller duration event superimposed upon it.

Simple Burst

Any single burst which rises to one maximum and then decreases to the pre-burst level.

- $1 \underline{\text{Simple 1}}$ -- Simple burst, type 1 (formerly "single"). Bursts of intensity less than 7 1/2 flux units and duration less than 7 1/2 minutes.
- $2 \underline{\text{Simple 2}}$ -- Simple burst, type 2 (formerly "singlesimple"). Bursts of impulsive nature with intensity greater than 7 1/2 flux units.
- $3 \underline{\text{Simple 3}}$ -- Simple burst, type 3 (formerly "rise and fall"). Bursts of moderate intensity with duration greater than 7 1/2 minutes.
- 4 Post-burst increase -- Postburst level is greater than the preburst level. The gradual return to normal flux may require as long as several hours.
 - 5 Absorption following burst (negative post).
- 6 <u>Complex</u> -- (formerly "single-complex"). A single burst which shows two or more comparable maxima before the activity has declined to zero.
- 7 Period of irregular activity or fluctuations -- Series of overlapping bursts of moderate intensity and duration.
- 8 <u>Group</u> -- Series of single isolated bursts occurring in succession with intensity between the events equal to the level before and after the group.
- 9 <u>Precursor</u> -- A small increase of intensity occurring before a larger increase.

Great Burst

Infrequently occurring bursts of great intensity, often of complicated structure.

Letter "A"

Indicates that this event has another event superimposed upon it.

Letter "f"

Indicates that the basic form of the event is modified by secondary fluctuations.

200 Mc Observations

Data on solar radio waves made at Cornell University, Ithaca, N.Y. (Marshall Cohen) on 201.5 Mc are presented. All times are in Universal Time (UT or GCT). The antenna is linearly polarized and has a pattern appreciably broader than the solar disk. Flux is reported in units of 10^{-22} watts/m²/cps and the tabulated numbers are twice the values observed in the one linear component.

Tables of flux and outstanding occurrences are given in general according to the systems used for the NBS 170 Mc and 450 Mc data.

170 Mc and 450 Mc Observations

Data on solar radio emission at the nominal frequencies of 170 Mc and 450 Mc recorded at the Gunbarrel Hill (Boulder) station of the National Bureau of Standards (R.S. Lawrence) are presented. The half width of the antenna lobe is appreciably greater than the solar disk. Polarization is not determined, but the dipole is oriented E-W. All times are in Universal Time (UT or GCT).

3-Hourly and Daily Flux Density and Variability -- Flux density is given in power units. These units are approximately 10^{-22} watts meter- $2(c/s)^{-1}$ for both polarizations together. They will be subject to a correction factor when gain measurements of the antenna have been made. The median flux is measured for every one-hour period having at least thirty minutes of usable record and an applicable gain calibration. A three-hour value of flux is obtained by averaging the available one-hour medians (at least two required). A daily value of flux is obtained by averaging all available one-hour medians (at least four required). A dash indicates that insufficient measurements were made to meet the above requirements or that the records were not of usable quality. Flux values may be followed by the qualifying symbols D, S, and X defined subsequently.

The variability index, given for each three-hour interval, is on a scale 0 to 3 defined as follows:

- 0 The instantaneous flux did not drop below one-half the median level or exceed twice the median level at any time.
 - 1 The instantaneous flux made from one to ten excursions

outside the range described above.

- 2 The instantaneous flux made from ten to one hundred excursions outside the range described above.
- 3 The instantaneous flux made more than one hundred excursions outside the range described above.

For the purpose of the variability index, an excursion whose maximum intensity is M times the median level is counted as M excursions. The variability index is omitted if measurements were made for less than one hour during the period. The variability for the day is the mean of the three-hourly values. The letter S follows variability indices which are in doubt because of atmospherics or local interference.

The observing periods are given in U. T. to the nearest 1/10 hour and they usually extend into the next Greenwich day.

Outstanding Occurrences -- A separate table lists the occurrences which are not adequately described by the three-hourly values of flux density and variability. Two classifications are given: (1) A system in general accord with that described and illustrated by Dodson, Hedeman, and Owren (Ap. J. 118, 169, 1953) and (2) the system described in the IGY Solar Activity Instruction Manual, prepared by the Radio Emission editor of the I.A.U. Quarterly Bulletin on Solar Activity.

In system (1) the occurrences are identified by numbers which do not necessarily indicate the magnitude of the event, as follows:

- O Rise in base level -- A temporary increase in the continuum with duration of the order of tens of minutes to an hour.
- l <u>Series of bursts</u> -- Bursts or groups of bursts, occurring intermittently over an interval of time of the order of minutes or hours. Such series of bursts are assigned as distinctive events only when they occur on a smooth record or show as a distinct change in the activity.
- 2 Groups of bursts -- A cluster of bursts occurring in an interval of time of the order of minutes.
- 3 Minor burst -- A burst of moderate or small amplitude, and duration of the order of one or two minutes.
- 4 Minor burst and second part -- A double rise in flux in which the early rise is a minor burst.

- 6 Noise storm -- A temporary increase in radiation characterized by numerous closely spaced bursts, by an increase in the continuum, or by both. Duration is of the order of hours or days.
- 7 Noise storm begins -- The onset of a noise storm occurs at some time during the observing period.
- 8 Major burst -- An outburst, or other burst of large amplitude and more than average duration. A major burst is usually complex, with a duration of the order of one to ten minutes.
- 9A, 9B, or 9 Major burst and second part or large event without distinct first and second parts -- If there is a double rise in flux, the first part, a major burst, is listed as 9A and the second part as 9B. The second part may consist of a rise in base level, a group or series of bursts, a noise storm. A major increase in flux with duration greater than ten minutes but without distinct first and second parts, is listed simply as 9.

In system (2) combinations of the following letters are used to describe some distinctive characteristics of the recorded disturbances:

S = simple rise and fall of intensity,

C = complex variation of intensity,

A = appears to be part of general activity,

D = distinct from (i.e. apparently superimposed upon) the general background,

M = multiple peaks separated by relatively long periods of quietness.

F = multiple peaks separated by relatively short periods of quietness,

E = sudden commencement or rise of activity.

Starting and maximum times are read to the nearest 1/10 minute if they are very definite and otherwise to the nearest minute. If the duration is less than five minutes, it is given to the nearest 1/10 minute; otherwise to the nearest minute (see also qualifying symbols below).

Maximum flux densities are given in units of 10^{-22} watts meter- $2(c/s)^{-1}$. The instantaneous maximum flux density is the highest peak in the disturbance measured above the sky level. The smoothed maximum flux density is the maximum value of a smooth curve drawn through the outstanding occurrence with a smoothing period of 20 to 50 percent of the total duration; it is measured above the estimated level in the absence of the disturbance. The intention is that (smoothed maximum) x (duration) should give a measure of the energy radiated in the disturbance.

A dash indicates missing or insignificant data. Observations are interrupted during the period from 26 to 29 minutes after each hour for calibrations. Observing periods are given in the Daily Data tables. The following qualifying symbols are used:

- B Event in progress before observations began.
- D Greater than.
- I Event apparently continued during an interruption of the observations. The period of the interruption may be given in the remarks.
- N See footnotes.
- X Measurement is uncertain or doubtful.
- S Measurement may be influenced by interference or atmospherics.

V GEOMAGNETIC ACTIVITY INDICES

C. Kp. Ap. and Selected Quiet and Disturbed Days -- The data in the table are: (1) preliminary international character figures, C; (2) geomagnetic planetary three-hour range indices, Kp; (3) daily "equivalent amplitude," Ap; (4) magnetically selected quiet and disturbed days.

This table is made available by the Committee on Characterization of Magnetic Disturbance of IAGA, IUGG. The Meteorological Office, De Bilt, Holland collects the data from magnetic observatories distributed throughout the world, and compiles C and selected days. The Chairman of the Committee computes the planetary and equivalent amplitude indices. The same data are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of O (quiet) to 2 (storm).

Kp is the mean standardized K-index from 12 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g. 5- is 4 2/3, 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948" of the Association of Terrestrial Magnetism and Electricity (IATME), International Union of Geodesy and Geophysics.

Ap is a daily index of magnetic activity on a linear scale rather than on the quasi-logarithmic scale of the K-indices. It is the average of the eight values of an intermediate 3-hourly index "ap," defined as one-half the average gamma range of the most disturbed of the three force components, in the three-hour interval at standard stations; in practice, ap is computed from the Kp for the 3-hour interval. The extreme range of the scale of Ap is 0 to 400. The method is described in IATME Bulletin No. 12h (for 1953) p. viii f. Values of Ap (like Kp and Cp) have been published for the Polar Year 1932/33 and for the years 1937 onwards.

The magnetically quiet and disturbed days are selected in accordance with the general outline in <u>Terr. Mag.</u> (predecessor to <u>J. Geophys. Res.</u>) 48, pp 219-227, December 1943. The method in current use calls for ranking the days of a month by their geomagnetic activity as determined from the following three criteria with equal weight: (1) the sum of the eight Kp's; (2) the sum of the squares of the eight Kp's; and (3) the greatest Kp.

<u>Chart of Kp by Solar Rotations</u> -- The graph of Kp by solar rotations is furnished through the courtesy of Dr. J. Bartels, Geophysikalisches Institute, Göttingen.

VI RADIO PROPAGATION QUALITY INDICES

One can take as the definition of a radio propagation quality index: the measure of the efficiency of a medium-powered radio circuit operated under ideal conditions in all respects, except for the variable effect of the ionosphere on the propagation of the transmitted signal. The indices given here are derived from monitoring and circuit performance reports, and are the nearest practical approximation to the ideal index of propagation quality.

Quality indices are usually expressed on a scale that ranges from one to nine. Indices of four or less are generally taken to represent significant disturbance. (Note that for geomagnetic K-indices, disturbance is represented by higher numbers.) The adjectival equivalents of the integral quality indices are as follows:

1 = useless 4 = poor-to-fair 7 = good 2 = very poor 5 = fair 8 = very good3 = poor 6 = fair-to-good 9 = excellent

CRPL forecasts are expressed on the same scale. The tables summarizing the outcome of forecasts include categories P-Perfect; S-Satisfactory; U-Unsatisfactory; F-Failure. The following conventions apply:

- P forecast quality equal to observed U forecast quality two or more grades different from observed when both forecast and observed were > 5, or both < 5
- S forecast quality one grade F other times when forecast quality two or more grades different from observed

Full discussion of the reliability of forecasts requires consideration of many factors besides the over-simplified summary given.

The quality figures represent a consensus of experience with radio propagation conditions. Since they are based entirely on monitoring or traffic reports, the reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must often

be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality for reasons such as multipath or interference. These considerations should be taken into account in interpreting research correlations between the Q-figures and solar, auroral, geomagnetic or similar indices.

North Atlantic Radio Path -- The CRPL quality figures, Qa, are compiled by the North Atlantic Radio Warning Service (NARWS), the CRPL forecasting center at Ft. Belvoir, Virginia, from radio traffic data for North Atlantic transmission paths closely approximating New York-to-London. These are reported to CRPL by the Canadian Defense Research Board, Canadian Broadcasting Corporation, and the following agencies of the U. S. Government:--Coast Guard, Navy, Army Signal Corps, U. S. Information Agency. Supplementing these data are CRPL monitoring, direction-finding observations and field-strength measurements of North Atlantic transmissions made at Belvoir.

The original reports are submitted on various scales and for various time intervals. The observations for each 6-hour interval are averaged on the original scale. These 6-hour indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by comparing the distribution of these indices for at least four months, usually a year, with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. The 6-hourly quality figure is the mean of the reports available for that period.

The 6-hourly quality figures are given in this table to the nearest one-third of a unit, e.g. 50 is 5 and 0/3; 5- is 4 and 2/3; 5+ is 5 and 1/3. Other data included are:

- (a) Whole-day radio quality indices, which are weighted averages of the four 6-hourly indices, with half weight given to quality grades 5 and 6. This procedure tends to give whole-day indices suitable for comparison with whole-day advance forecasts which seek to designate the days of significant disturbance or unusually quiet conditions.
- (b) Short-term forecasts, issued every six hours by the North Atlantic Radio Warning Service. These are issued one hour before 00^h , 06^h , 12^h , 18^h , UT and are applicable to the period 1 to 7 hours ahead.
- (c) Advance forecasts, issued twice weekly by the NARWS (CRPL-J reports) and applicable 1 to 3 or 4 days ahead, 4 or 5 to 7 days ahead, and 8 to 25 days ahead. These forecasts are scored against the whole-day quality indices.

(d) Half-day averages of the geomagnetic K indices measured by the Fredericksburg Magnetic Observatory of the U. S. Coast and Geodetic Survey.

A chart compares the short-term forecasts with Qa-figures. A second chart compares the outcome of advance forecasts (1 to 3 or 4 days ahead) with a type of "blind" forecast. For the latter, the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

Ranges of useful frequencies on the North Atlantic radio path are shown in a series of diagrams, one for each day. The shaded area indicates the range of frequencies for which transmissions of quality 5 or greater were observed. The blacker the diagram, the quieter the day has been; a narrow strip indicates either high LUHF, low MUF, or both. These diagrams are based on data reported to CRPL by the German Post Office through the Fermeldetechnischen Zentralamtes, Darmstadt, Germany, being observations every one and a half hours of selected transmitters located in the eastern portion of North America. Since January 6, 1958 the transmitters monitored are restricted to those located north of 39° latitude. The magnetic activity index, AFr, from Fredericksburg, Va., is also given for each day.

Note: Beginning with data for September 1955, Qa has been determined from reports that are available within a few hours or at most within a few days, including for the first time, the CRPL observations. Therefore these are the indices by which the forecasters assess every day the conditions in the recent past. Over a period of several years, they have closely paralleled the former Qa indices which excluded CRPL observations and included three additional reports received after a considerable lag. Qa was first published to the nearest one-third of a unit at the same time.

North Pacific Radio Path -- The CRPL quality figures, Qp, are compiled by the North Pacific Radio Warning Service (NPRWS), the CRPL forecasting center at Anchorage, Alaska, from radio traffic data for moderately long transmission paths in the North Pacific equivalent to Seattle-to-Anchorage or Anchorage-to-Tokyo. These include reports to CRPL by the Alaska Communications System, Aeronautical Radio, Inc., U. S. Air Force and Civil Aeronautical Administration. In addition, there are CRPL monitoring, direction finder observations and field strength measurements of suitable transmissions.

The original reports are on various scales and for various time intervals. The observations for each 8 hours or 24 hour period are averaged on the original scale. This average is compared with reports for the same period in the preceding two months and expressed

as a deviation from the 3-month mean. The deviations are put on the 1 to 9 scale of quality which is assumed to have a standard deviation of 1.25 and a mean for the various periods as follows:

03-10	hours	UT	5.33
11-18			5,33
19-02			6.00
00-24			5.67

The 8-hour and 24-hour indices Qp are determined separately. Each index is a weighted mean where the CRPL observations have unit weight and the others are weighted by the correlation coefficient with the CRPL observations.

The table, analogous to that for Qa, includes the 8-hourly quality figures; whole day quality figures; short-term forecasts issued by NPRWS three times daily at 02^h , 10^h , and 18^h UT, applicable to the stated 8-hour periods; advance forecasts issued twice weekly by NPRWS (CRPL-Jp report); and half-day averages of geomagnetic K indices from Sitka.

The chart compares the outcome of advance forecasts, on the same basis as the similar chart for the North Atlantic Radio Path.

Note: Beginning with November 1956 the short-term forecast formerly made at 0900 UT was changed to 1000 UT. The North Pacific quality figures used for evaluation are now 8-hourly rather than 9-hourly.

VII ALERT PERIODS AND SPECIAL WORLD INTERVALS

A table gives the Alert Periods and Special World Intervals (SWI) as designated by the IGY World Warning Agency at Ft. Belvoir, Va. For each day of the Alert or SWI are given the number of flares of importance two or greater reported promptly to the IGY World Warning Agency and the magnetic activity index $A_{\mbox{\footnotesize{Be}}}$ observed at the IGY World Warning Agency.

DAILY SOLAR INDICES

Feb. 1958	American Relative Sunspot Numbers R _A '
1	154
2	143
3	158
4	159
5	176
6	119
7	160
8	131
9	155
10	117
11	160
12	143
13	128
14	130
15	143
16	162
17	145
18	121
19	103
20	156
21	159
22	171
23	129
24	156
25	163
26	139
27	108
28	85
Mean:	141.9

Mar. 1958	Zürich Provisional Relative Sunspot Numbers R _Z	Daily Values Solar Flux at 2800 Mc, Ottawa, Canada Flux
1	109	195
2	90	209
3	140	223
4	185	232
5	203	233
6 7 8 9	215 220 187 177 181	251 256 251 255 242
11	168	235
12	156	232
13	145	238
14	158	227
15	165	217
16	155	214
17	164	208
18	162	210
19	155	220
20	154	232
21	156	224
22	163	266
23	187	268
24	204	274
25	180	258
26	194	284
27	226	302
28	292	295
29	302	332
30	338	344
31	342	338
Mean:	189.4	250.5

CALCIUM PLAGE AND SUNSPOT REGIONS MARCH 1958

		24-24-4-1	D = 4	000	lada D	lass Data		Γ	C	Date
CMP	7.00	McMath	Return of	CMP V		lage Data			Sunspot Values	Data
Mar.	Lat	Plage Number	Region	Area	Int.	History	A ~ ~		Count	174
1958		Mulliper	Region	Area	IIIC.	HISCOLY	, Age	Area	Count	History
01.6	S12	4442	*	(5000)	(3)	l — l	5	70	3	b — l
06.2	N24	4443	4399	1800	3	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2	660	20	b — ℓ
07.3	N32	4444	New	2500	3	$\ell - \ell$	1	820	16	$\ell - \ell$
07.7	S15	4445	4400	8000	2.5	$\ell - \ell$	_	2210	24	$\ell - \ell$
08.8	N21	4446	4405	4000	2.5	$\ell \stackrel{\iota}{\smile} \ell$	3	70	2	$\ell - \ell$
00.0	NZI	4440	4405	4000	2.5	<i>k k</i>)	70	2	
09.7	S23	4447	4400	1300	2	$\ell \smile \ell$	5			
10.5	N25	4450	4411	1000	1.5	$\ell \stackrel{\iota}{\smile} \ell$	3			
10.5		4448	4411	1000						
	N10				2	$\ell \stackrel{\iota}{-} \ell$	2	1000	10	1 , _ ,
11.9	N14	4449 **	4410	8300	3		3	1060	12	$\ell \frown \ell$
12.2	S12	^^	New	600	2.5	b	1			
12.5	N41	4454	New	200	2	b — d	1			
13.4	N41 N25	4454	4410	1000	2 2		3	50	2	b — d
13.4	N14	4453	New	2300	3		1	850	6	
15.6	S26	4455	4414	500	1.5	$\ell \stackrel{\iota}{\wedge} d$	8	650	O	
	NO8	4453 4462	New	300	1.5	1	1			
16.7	MOS	4462	New	300	1.5	b d	1			
17.6	N27	4468	+	400	1	b — l	1			
17.7	S20	4457	4422	900	1.5		5			
18.2		4456	New	6200		1		880	20	1 , ,
	N13 S04	4436 4472	New New	500	3 1	l l	1 1	000	20	l — l
19.1					3	b l	1	200	7	0 0
20.5	N36	4460	New	1500	3	$\ell \smile \ell$	1	200	′	l — l
20.7	N20	4461	4424	400	1	ℓ \ _ d	4	(10)	(1)	ℓ ~ d
20.8	N08	4463	4430	400	1.5	$\ell \stackrel{\mathcal{L}}{\smile} d$	2	(10)	(1)	" ~ u
21.0	S18	4459	++	2200	2.5	$\tilde{\ell} \stackrel{\sim}{\smile} \tilde{\ell}$	3	140	1	l — l
22.3	506	4466	New	300	1	$\ell \sim d$	ĭ	140	-	~ ~
22.4	S20	4473	4427	1100	1	$\ell \sim \ell$	3			
22.4	520	4473	7727	1100	- 1	~ ~ ~	,			
22.6	N22	4465	New	4000	3	l — l	1	1440	20	l — l
23.7	N11	4467	New	1200	2.5	$\ell - \ell$	î	170	9	$\tilde{\ell} - \tilde{\ell}$
24.2	S18	4470	4428	2000	2	$\ell \sim \ell$	4	2.0	-	~ ~
24.9	N26	4469	New	2200	3	$\ell \sim \ell$	1	600	27	l — l
26.6	N18	4474	New	2300	3.5		i	200	2	$\ell - \ell$
20.0	1110	7-7/-	11CM	2300	3.5	2	•	200	-	2 (2
28.2	S24	4479	New	800	2	b — ℓ	1			
28.3	N20	4475	New	1600	3	l — î	î	190	10	l → d
28.5	S12	4476	New	12,000	3.5	~ ~ ~ ~	i	2090	37	$\ell - \ell$
28.9	N31	4477	4435	500	2.5	$\ell \sim \ell$	2		٥,	~ ~
29.1	NO9	4482	New	700	2.5	$b \stackrel{z}{\smile} l$	1	80	4	b — d
	,	. 102		,	,	- ~		50		
30.2	S22	4478	4438	2400	2.5	$\ell \smile \ell$	2	1720	11	l — l
30.5	N06	4491	New	(200)	(1.5)	b — d	1			
					,					
لــــــا										

^{* 4393} and 4394.

^{** 4451 (4458).}

⁺ In position of 4417.

^{++ 4431} and 4426.

COMMERCE - STANDARDS - BOULDER

CORONAL LINE EMISSION INDICES

MARCH 1958

																										_			_					
ant ter)	R1	×	×	77	×	×	H	×	×	×	×	×	: >	+ >	: >	<	×	×	: ×	×	×	12a	×	×	×	×	77	×	06	×	>	: ×	;	×
North West Quadrant served 7 days later)	R6	×	×	19	×	×	×	×	×	×	×	×	*	; ×		<	×	×	×	×	×	10a	×	×	×	×	31	×	38	×	×	×	ļ	×
North Wes (observed 7	G1	911	×	104	×	×	×	×	×	×	222	×	×	: ×	: >	₹	×	×	×	×	×	108a	×	×	×	×	194	×	230	×	×	72	,	×
on Nc	99	87	Ħ	æ	×	×	×	×	×	×	176	×	×	: ×	*	4	×	×	×	×	Ħ	102a	×	×	×	×	129	×	169	*	×	59	;	*
rant ater)	R1	×	×	35	×	×	×	×	×	×	×	×	×	×	: Þ	4	×	×	×	×	×	150a	×	×	×	×	36	×	×	×	×	×	;	∢
st Quadrant days later)	R6	×	×	50	×	×	×	×	×	×	×	×	×	×	· >	4	×	×	×	×	×	57a	×	×	×	×	18	×	×	×	×	×	,	≺
South West Quadrant (observed 7 days later	61	108	×	29	×	×	×	×	×	×	%	×	×	×		4	×	×	×	×	×	139a	×	×	×	×	26	×	260	×	×	118	,	₹
eqo)	95	83	×	45	×	×	×	×	×	×	2	×	×	×	Þ	4 1	×	×	×	×	×	106a	×	×	×	×	87	×	174	×	×	46	>	<
nt lier)	R1	30	×	×	×	×	×	×	×	×	32	×	77	×	*	: :	×	×	75	×	×	×	×	×	×	×	×	×	×	×	×	×	>	∢
last Quadrant 7 days earlier)	R6	17	×	×	×	×	×	×	×	×	21	×	ដ	×	*		×	×	23	×	×	×	×	×	×	×	×	×	×	×	×	×	>	<
South East Quadrant served 7 days earli	G1	370	93	×	×	×	×	×	×	×	8118	84	2	52	*	; ;	‡	×	87	×	×	×	×	×	×	216	×	×	×	×	×	×	>	<
South F (observed	99	106	92	×	×	×	×	×	×	×	93	89	53	7	; ×	2 2) (×	63	×	×	×	×	×	×	135	×	×	×	×	×	×	>	4
nt lier)	R1	109	×	×	×	×	×	×	×	×	89	×	20	×	×	: ;	×	×	35	×	×	×	×	×	×	30	×	×	×	×	×	×	>	4
st Quadrant days earlier)	R6	77	×	×	×	×	×	×	×	×	3	×	30	×	×	. ;	×	×	18	×	×	H	×	×	×	50	×	×	×	×	×	×	>	4
7	G1	147	8	×	×	×	×	×	×	×	202	136	178	128	×	7	ę,	×	169	×	×	×	×	×	×	238	×	H	×	×	×	×	Þ	4
North I	95	117	81	×	×	×	×	×	×	×	14.7	111	123	103	×	, ta	T ₀	×	123	×	×	×	×	×	×	125	×	×	H	×	×	×	Þ	4
CMP Mar.	1958	ı	2	w -	4	2	9	7	₩	6	OT	11	ដ	13	77	75		16	17	18	19	20	21	22	23	77	25	56	27	58	59	30	33	!

* = yellow line observed. a = index computed from low weight data. x = no observations.

SOLAR FLARES

PROVISIONAL	IONOSPHERIC	TOWN STREET	EFFECT			S-SWF		S-SWF										S-SWF															j	- SWF															
	MAX.	No.	, k															e L	750			72			106											7.1			707	0	108		18	9 7	2				7
	MAX.	MIDTE	WIDIN He				4.10		2.00								3.60	1	0/ • 9	00.0	2				1.00				2.30		2.50				2.20	1.00			0	3				1.00					PAGE
MEASUREMENTS	CORR.	ABFA	Sq. Deg.	34.00				3.00		3.00	2.00	1.00				10.00	18.93		14.80		04.4	3.11		2.40	1.59	00.00		00•4	,	000	}		00.9	00.4		3.19	3.40	11.03	, t	7.6.24	1.03	3.86		4.04	77.1		2.80	2.70	
ME	MCAS	ABEA	Sq. Deg.											3.40	?	2.00	9.72		01.		2.00	1.47	2.50	1.90	1.13	00.5										1.92	2.94	4.52	1.00	7.00	06.	3036	3.60	2.60	61.0	•	1.30	2.50	
	TIME	1	i p		_		0918		0929		1346	1408		0820	,	1026	1018		1071	1040	1209	1231	1825	2346	1322	6711		908	1007	1001	1022			1313	1327	1414	1642	1656	1049	7 102	1723	1724		1902	2328	9767	0820	9480	
OBS.	COND.						e	1	3		2	2		_	•	2	2		η.	-	1 (**	`~	_	2	2 -	2	1	m	m ·	0	e		,	7	-	1 -1	-	2	-	4	-	7	e	,	7		3	m	
ΙŔ	POR.	2020	TANCE	36	m	m	9 .	٦,	3	-	-		_	_	_	26	m (7	3 0	,	16	2 -	_	_	 ٦,		•	16		-	1 11	-	3.		2		-	_	۷,	٠,-		-	-	٠,	٠,-	-	7	7 7	•
DURA.	NOLL	ı	MINUTES	27	55		0 4		0 7		2 0	4 9	77	18.0		34 0			2,4	`	121 0	131 0	20 0			17 0		15 0		1 6	91	=	26 0	77	200				31.0	8	. 0	19			2 5	2	24 0		
Z	McMATH	PLAGE	REGION	4436	4436	4436	4436	4428	4442	4428	4442	4434	4436	4435		4445	4442	4440	4447	4447	4445	4445	4445	4445	4445	4445	ì	4445	4440	4440	4442	4445	4445	4447	4442	4442	4445	4435	4430	4445	4445	4445	4445	4442	4440	*	4441	4445	}
LOCATION	APPROX.	-	MER. DIST.	M48				9 1	E 78	80	E 77	W31	¥20	W 2 2		E59	E60	E 28	E62	1 2 4	F65	E61				F 3 3		£29	E 28	E 2 2	E30	E28	E29	E26	F 2.8	¥24	E28	8 P	100		E28				E 23	213	W63	£19	2
L	APP	LAT	Ś	808	810	\$12	\$13	\$16	217	819	216	N 15	215	N 32	!	\$14	\$19	512	517	2.5	518	\$20	521	514	 \$25	517	5	817	522	527	\$22	\$21	818	715	518	810	820	N24	N 32	514	\$15	\$13	\$15	208	200	2	\$20	S17	1 2
	10		PHASE														1018		7707				1825	2346	1322	2215	1				1022							1656	1703	7 7 7	1723	_	1822	1902	2328	0767			
OBSERVED	UNIVERSAL TIME	END	a de la companya de l	9860	1001	0820	0922	0938	0933	1036	1348	1412	1539	0.838.0		1042 0	1048	0011	1036 0		1407 0		1832 D		1410	2225 D		0923	1018	1135	1037	1035	1333 0	1330		2019 0	1721	1710	07/1	1728	1730	1740		2100 0	2341	1467	0 644 0		
	_	START	197/16	0911	0912		0918 E		0929 E		1346 E	1408	1527	0820 F					1016				1812	2340	1320		3	0908 E	0956 E	1001		1024	1307 E	1315		1413 E		1647 E		1720	1721	1721	1820	1902	2311 F		0820 E	0846 E	
DATE		Mon	1958	10	0	0	0	0 0	0	0	0	0.0	0.1	02	!	03	03	500	2 0	3 6	03	03	03	03	7 0	5 0	;	90	0 0	0 0	0.0	90	0.0	0 0	0.50	0.5	0.5	0 2	0 0	000	0.50	90	90	000	0 0	3	90	9 6	3
		OBSERVATORY		(WENDEL	SIMEIZ	SCHAUINS	ONOREJON	WENDEL	ONOREJOV	WENDEL	ZURICH	ZURICH	AROSA	acci E		CAPRI S	NIZAMIAH	ARCEIRI	STOCKHOLM	KODATKNI	(CAPRI S	USARL	CLIMAX	HAWA!	USNRL	HUANCAYO		ZURICH	CNOKEDOV	WENDE!	CONOREJOV	AROSA	WENDEL	1 20KICH	ONORFION	USNRL	USNRL	OTTAWA	USNKL	MT WILSON	USNRL	OTTAWA	SAC PEAK	USNRL	OSARL TIMAX	CL 1:34	ARCETRI	ARCETR I	1

SOLAR FLARES

PROVISIONAL	IONOSPHERIC	EFFECT									S-SWP								Slow S-SWF										S-SWF				S-SWF		G-SWF														
	MAX.	INT.			18		149			_			_		4.5	3 5	21:	8 4	103			70	120	:				30			,	2		183	122	113	100	115										,	7
	MAX.	WIDTH			1.00		1.56							2.50	00.7	_			1.00			1.66	2.27											4.86	1.78	2.11	1 • 74	2.36							2.20	i	0/ • 4	000	PAGE
MEASUREMENTS	CONR.	AREA Bq. Deg.	22.0		2.78		7 ° 06 4 ° 00	3.40	6.80	2.40			00.61	1300	12.3	3.64	1001	140	1.83			36	3,92	3.80	5 40	:				3.00			06.4	16.20	11.20	1.93	2.47	5.68	00 • 9	06.4	00 0	9 0	2.40	5.10		4.40			
	MEAS.	AREA Sq. Deg.	1.00		5.00	. !	2.00	1,50	2.00	09.			90		1.40	3.56	1,57	1.24	1.81			, 0	1,84	3,30	040	:		09 09		1.60	0 2 0 0	2.20	2.70	7.657	7.57	1.84	1.84	3,71		3.40	2.40	2 2 2	2.20	3.40		4.00			
-	TIME	I D	1246		2023		0530	1024	1054	1043			9111	1208	127.2	1244	1330	1455	1815			200	0602							2208	6693	2340	2344	2337	0216	4440	0453	0621		0920	0.00	0000	1004	1033	1034	1059	1059	7711	_
OBS.	COMP		6		7		7	2	7	1			r	7 0	7 -	1 -	4 (*	, 15	n	-	1	-		1 4	. 4			2		-	c	7	7	-	7	7	-	1		7,0	7	- 4	4	4	e	2	m	٠	
Ä	POR.	TANCE				. :	3 2	-	7	-	7 7	٠.	٠, د	٦-	- Y	2	2 -		-	-	1			16	2 2	-	-	7	7		-		-	26	16	_	1	3.6	16	3.		2 ~	١ -	16	-	9 .		51	_
TION	_	23	0 44	0 0	12 0 17 D		32 0		98		0 0 0					200		16.4	30		37 0		34 0		_	60	89	35		17 D	2 -	12 0	16 0				13 0		27 0	27	ر د -	24	30	7	2 0		0 9		
	McMATH	PLAGE	4442	4445	4445		6444	6444	6444	6444	6444	4447	7444	0 7 7 7	0777	4445	4445	6777	4445	4442	4442	****	6444	4445	4442	4444	4445	7477	7777	6444	2444	6444	6444	6444	4443	7777	4445	6444	6444	5555	4400	4453	4444	6545	6444	6444	4444	1400	
	≚ .	LAT. MER. DIST.	S14 W61	20 E12	522 E13 508 W71	: 1	N22 E23 N11 E85		14 E72	10 E72	N10 E70	10 E /2	11 506	1 E E E E	200	9 6 6	18 601	38 F 65	S18 W03	15 W80	15 WB0	1422	N12 F56	21 W31	S13 W90			N34 W19		N12 E52		N17 E47			24 W35		S15 W19	10 E42	09 E45	32 1428	N 14 E 60	14 140	34 W34	N12 E50			N 11 E40		
			S	, v	S S		žz	z	z	Z	Z	z :	ž z	ž	ź	ž v	· ·	ž	S	S	S	ž	Ż	V	S	z	S	z	z	z z	2	ž	z	ž	ž	z	S	z	ž	Z	zz	2	Z	z	ž	Z	Z 2	_	
		PHASE					0829			1043			1116	711			1330	1455	1815	2001	2033							1727		2208	2000	2340	2344	2337	0216					0920	0930	0056	1004	1033		1059	1059	7711	
OBSERVED	JAIVERSAL TIME	GN3	1330 D	1547	2030 0		0060		1156	1050 0		1200	0711	1212	1310	1307	1338	1536	1845	2024	2110 0	0643	0631 0		0858	0922	1059	1755		2215 D	2217	2348 0	2352 D		0221	0514	0 5050	0628 D	9080	0927	1660	1032	10.25	1038	1038		1104	6611	
		START	1246 E	1538	2018		0525 E	1024	1030	1043 E	1100 E	1105 E			1230 F			1453	1815	1947 E	2033		0557 F		0851	0914	1051		1740 E	2158	2200	2336	2336	2337 E			0452 E		0737 E	0060	2060	0.946	0955	1031	1033 E		1057 E	_	
DATE		Mar. 1958			90		0 0	0.7	0.7		_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	-	_	90	-	_		_	-	_	-	-		-) O		
	OBSERVATORY		CAPRIS	AROSA	CL IMAX USNRL		MILAKA UCCLE	OCCLE	CAPRI S	JR O HERST	STOCKHOLM	NEDERHORS	2000	CONDRE	SUSADI	13NPI	USNRI	USNRI	USNRL	HUANCAYO	HUANCAYO	AVTIM	MITAKA	ATHENS	ATHENS	AROSA	AROSA	SAC PEAK	(MCMATH	I VAN I	7450	CL IMAX	HAWAII	MITAKA	MITAKA	MITAKA	MITAKA	MITAKA	WENDEL	UCCLE			UCCLE	DCCLE	JONDREJOV	(UCCLE	ONORE JOV	CINDRESOV	

SOLAR FLARES MARCH 1958

PROVISIONAL	IONOSPHERIC	EFFECT	S-SWF				S-SWF		S-SWF					G-SWF		Slow S-SWF	G-SWF		S-SWF	G-SWF			G-SWF			G-SWF						G-SWF								Slow S-SWF			STOW S-SWF			
	MAX.	. *	1	2 4	2	52		145	18	134	87	901	128	149	154								104	50							227	115	771							162					107	m
	MAX.	WIDTH	2.40					1.00		2.45	1.91	1.61	1.99	2 • 22	2.00				4.50				00.1						2.60	1.35	2.29		1.90							2.00		3.23	ç	0 4 9	2.10	PAGE
MEASUREMENTS	сопв.	AREA Sq. Deg.	i	0) • 7	2.37		10.00	4.33		2.98	6.73	1.044	2.87	8 0 04	04.4	980	07.7	2.45	_	2.12		70	0 - 7	•		9.00	000	2.20		5,693	7.95	E 6	4	4 • 70			0 0	5.60		5.50		1.22		4.50	2.89	
ME	MCAS.	Sq. Deg.		1.08	1,91	6.80	6.38	2.71	20 50	1.84	5.67	680	1.84	5.67	3.90	1.80	8	1,39		1:16	2.10	200	3.00	3.90		9 9 9	9 4	2.00	i	2.78	7.63	9 2	0 0	3.40	5.60	2.20	2 4 4 6	4.50	3.40	2.04		• 89	7.00	4.00	2.78	,
	TIME	l p	1145	1961	1455		1648	1645		0013	0113	0134	0154	0212	0213	1916	1310	1411	1412	1714	2001	2000	2020			0034	2000	0923	0923	2358	0044	0028	4100	9460	5760	1113	1110	1137	1148	1441		0034	0000	1033 2220	0251	
OBS.	COND		6	7 0	1	7	2	2	2	~	7	7	-	7	en ·	m -	1	-	m	e		·	V 0	1 7		-1 (0 0	n m	71	N	2	2 0	7 :	14	4	4 4	† 4	4	4	7	_	~4 .		7 7	1	
IM.	POR.	TANCE		٠,	1 -1	7	7	16	_	_	-	7	7	16	- :	٠,	7 2		16	-	п с	7 0	7 7	2	_	٦ ،			٦,	-	26			16	7		3 ~	1 7	-	26	v	٦.	٠,		-	
DURA-		ES	0 6	* 6	ه و	120 D		29 D	33	24 D	20 D	0 9		33 D		4 6	100	•	0 6	80	13	400		20		12 D	4	- 0-	11 p				7 7 7	4 0	16	32	30	25	22	55 0			0 21	v 4 o	34 D	
NO	McMATH	PLAGE	4453	4477	4445	7747	4444	7777	6444	4444	9444	4444	4444	4453	4453	4444	4444	4444	7777	4444	4444	2777	4445	4445		6444	4444	4453	4453	4440	6444	6444	444	4456	4453	44449	_	4446		4445	n # #			4453	4453	
LOCATION	ĕ	DIST.	E49						E37	W 38							W35				94%			¥50		E02				7 M 62		404		£ 70		E03				69%		E78	E 90	10×	W08	
	V V	LAT.	N 13	2 2 2	519	N 34	N 32	N 35	ž	N 32	N 2.3	N 32	N 33	N 12	Z	2 2	N 3 7	N 3	N33	N35	× 24	7	7	810	_	NII	N S	Z	60%	515	NO8	2 2	2 2	Z Z	N 12	2 2	2 2	N 23	N12	\$2D	7	Z	2 2	N 19	N10	
		MAX. PHASE		1455	1455	1547		1645	2007	0026				0214	0213				1412	1714	2001	2040	2032			0034	0000	0923			0D37		4100	0944	0945	1113	1158	1137	1148	1441				2220		
OBSERVED	INIVERSAL TIME	END	1154 0	1507	1500	1740 U	1709	1642 D	2030	0031	0131	D140 0	0155		0217 D	0 743	1345		1420 D	1718	2006	2062		2041 0		D042 D	9000		0929 0	2400		0032 D		0540	6560	1152	1200	1157	120D D	1531		0034 0		1038 23DD	0350	
		START	1145 E		1454	1540	1542	1543	1957	D007 F	0111 E	0134 E	0148 E	0208	0210 E	0709 E	1335	1408	1411 E	1710	1955	2024	2020	2040 E		0030 E	0000	0918		2352 E		0027 E	0043	0943 E	0943	1137	1128	1132	1138	1436 E		0018 E		1053 E 2216	0246 E	
DATE		Mar. 1958	60	0 0	60	60	60	60	60	10	10	10	10	10	0 7	0 0	201	10	10	10	01	2 5	2 2	201		7.7	1 =	11	Ξ:	7	12	77	77	12	12	12	12	12	12	12	71	13	5 5	13	14	
	OBSERVATORY		ONDREJOV	CAC DEAK	OTTAWA	SAC PEAK	⟨OTTAWA	USNRL	SAC PEAK	MITAKA	MITAKA	MITAKA	MITAKA	MITAKA	(KOOA I KNL	A THENS	NEDERHORST	OTTAWA	ONOREJDV	OTTAWA	CLIMAX	V E V E V E V E V E V E V E V E V E V E	A LAWALL	SAC PEAK	,	HAWAII	מכנו ב	JUCCLE	ONDREJOV	MILAKA	MITAKA	AMI LAKA	MI ARA	UCCLE	UCCLE		בו בו	UCCLE) OCCLE	USNRL	C (C (C (C (C (C (C (C (C (C (MITAKA	HAWAI I	HAWAII	MITAKA	

	IONOSPHERIC	BIFECT												JAC-C MOTO								Slow S-SWF																										
	_	IMT.		131									_														_								_	_						- :	100					4
~	MAX.	WiDTH	1.60	1.84										2.20								2.20								2.00							1.80)					000					PAGE
	CORR.	AREA Sq. Deg.	3.22	11.80		,	3	_		_	-	00 49	3			0	000	2,00	:	3.70	1.00		2.30	6.30	4.50	2.00	000	2		5 2 34	2,00	00 • 9	2.10	3.00	7.00	,	000	00.4	2.00	3.00	3.50	2 0 14	1.091		90	07 **		
MERC	MEAS.	Sq. Deg.	3.04	11.40			2.20	02.7	05.4		3.30	2	9	3		200	2	2,00	:	3.50			2 • 00	4.50	3.60		4 20		,	4,86			04	•		,	3.65				1.50	49.	1.00		000	2 6 6 0	2.20	
The state of	TIME	1 5	9440	0502		0,0	1018	2	1001	1701	1143	1320	1507	1518		0 0 2 5		1030		1344	1345	1541	1542	0841	0842	840	957	3		0444	804	804	9000	2		900	1030				1515	1517	1518		0633	0825	0927	
COND.			9	7		-	1 4	,	*	`	*	٠-		7 -	4	t <	- 0	1 4	7	4	7	7	7	4	4	7	4 0	1		~	7	7	٠-	•			4 "	`		-	6		7 -		† :	1 4	- 4	
DOD.	-HOM	TANCE	-	16		7 .	, -	• -	7.					+ m		2 -			-	-	_	_	-	7	16	٦:	å.		-	16	-	7	٥ 	٠.	16	7,	٥.		16	-	.				7 .	9.		
5	1	MINUTES	16	16 0	54	7,7	2 0	23	3 7		200	24 0		23 0	20	2 1-	18.0		27	2		9	S	11	20	25 0	ر بر م	٠ ،	14	15	13 0	65 0	9 6		9 7	22	16.0	27 0			20 0		34.0		107	2 7 7		
Manager	McMATH	PLAGE	4453	4453	6444	****	6744	6444	4453	0 9 4 4	4453	4453	4446	4445	7463	0444	4453	4453	4460	4453	4453	4453	4453	4453	4456	4461	4420	4446	4456	4456	6444	4465	4465	4465	4456	4456	4430	4465	4460	4465	4465	4465	4465		4400	4453	4453	
APPROX.		MER. DIST.	WII	W12	W18	A T 3			2 2	10					3		1200						W27				F 30	100	E25	F18	W71	E71											2 2		125	100	W80	
APP		TAT.	60N	N 11	800	2 2	1 2	90	2 2	2 0	2	N I I	2	\$23	2	N 37	Z	N 12	N36	N13	N 10	Z	N 13	N13	N14	N17	Z Z	N 27	N12	NIO	N 15	N20	2 2 2	N 23	N10	N 10	101	N23	N35	N23	N 23	777	N 13	: 2	777	000	N13	:
	4	MAX. PHASE	9440	0200			1018	2	1021		1143	:	1507	2		2835		1030	1219	1344		1	1542	0841	0842		8160			0444			0938			30.01	1030				1515		9161	900	0000	0825	0927	
JUIVERSAL TIME	MINERSAL HIM	END	0458	0512	0810	1700	1020	1036	1100	2401	1200		1530	1541 0	0400	0841	1028	1033	1235	1347	1346	1547	1547	0880	9480	9060	0660	0.955	1412	0453	0817	0 6060	0 949		1054	1120	1043	1220	1238	1336 0	1535		1550	30.1.	2717		0660	
2.0		START	0445	0456 E	0846	0350	1000		1013	1023	1136			1518 E	0000	0834	1010 F		1208	1342		1541 E	1542 E	0839		0840 E	0851	0950	1358	0438	0804 E	0804 E		1006 E	1008	1008	1027 F		1215		1515 E	1516	1516 F		1000	0810	0922	!
	;	Mar. 1958	14	14	1,	1 3	1 7	1 7	1 7 7	7.	. 1	14	71	1 1	4	2 5	2 2	15	15	15	15	12	15	16	16	16	9 7	16	16	17		17	17	17	17	17	17	17	17	17	17	7 .	17	9	9 0	18	18	
	OBSERVATORY		INIZAMIAH	MITAKA	AROSA	AROSA	UTUCZ UTUCZ	AROSA	F 1001	A 2004	H 10011	ZURICH	P O HERST	ONOREJOV	u 700	ווייי די	COURTCH	UCCLE	UCCLE	JUCCLE JUCCLE	ZURICH	ONOREJOV	(UCCLE	UCCLE	UCCLE	ZURICH	2URICH	AROSA	AROSA	NIZAMIAH	2URICH	2URICH	P O HFP ST	WENDEL	WENDEL	AROSA	NIZAMIAH	WENDEL	WENDEL	WENDEL	UCCLE	O I AWA	USNRL			UCCLE	UCCLE	

SOLAR FLARES

PROVISIONAL IONOSPHERIC EFFECT Slow S-SWE S-SWF G-SWF S-SWF G-SWF G-SWF S-SWF S-SWF S-SWF 54 52 29 154 w 24 120 MAX. 2.09 2.D0 800 PAGE 1.71 MAX. VIDTH He 2.10 9.40 5.80 2.20 05.4 6.70 08. 2.60 CORR. AREA Sq. Dog. 13.40 7.90 2.80 2.20 2.60 2.60 2.10 4.50 6.20 9.40 4.50 4.10 5.50 2.00 4.10 2.20 MEAS. AREA Sq. Deg. 1028 1050 1517 1022 1030 1031 TIME ... 0321 1125 0752 0754 0726 0726 0730 0828 0838 092D 1415 902 1130 **4644 48** N4 W4 W4 W W 200 ----3211125 2 2 POR. -2-٥ ۵ ۵ ۵۵ 20 32 32 25 30000 19 47 28 25 4456 4465 4465 LAT. MER. DIST. E21 E20 E17 E14 E12 E07 M60 E05 NNNNNN 23 N 22 N 22 N 23 N 23 N 23 N 23 N 23 N18 N22 N20 MAX. PHASE 1155 0752 0759 0726 0730 0828 0838 1915 2045 2255 9080 0920 1325 1022 1857 1130 ۵ ۵ ۵۵ 1140 1032 D 1125 D 1120 1140 1135 D 1931 ۵۵ ۵ ۵ ۵۵ ۵ 1201 1552 1538 1930 2130 2315 END 1050 1432 1937 1920 1925 00656 E 00723 00723 00723 00723 00724 00725 00725 00826 00826 00827 0092 0300 E 0730 E 0956 E 0956 E 1022 11045 E 11114 E 11114 E 11117 E 11117 E 1019 1021 1027 1040 1413 1850 1852 lar. 958 18 22 22 22 22 ONDRE JOY

OCCLE

UCCLE

UCCLE

UCCLE

UCCLE

UCCLE

UCCLE

UCCLE

UCCLE

MEDDON

UCCLE

MEDDON

MEDDON

UCCLE

MEDDON

MEDDON MITAKA
ATHENS
OCCLE
UCCLE
UCCLE
(MEUDDN
COCLE
CAPRI S
ARDSA
ARDSA UCCLE HUANCAYD CUCCLE KDDAIKNL R D EDIN NIZAMIAH CAPRI S SAC PEAK HAWAII UCCLE UCCLE MEUDON

_				_	_				_	_							_				_			_	_		_	_	_		_									_		_	_				_	_
PROVISIONAL	IONOSPHERIC	EFFECT						S-SWP											AMS-S								9	JAC-C																			G-SWP	
	MAX	ri *														85																_		_														9
	MAX.	WIDTH Ra									1	3.60				2.00																						2.20	2.50									PAGE
	CORR	AREA Bq. Deg.		3.00	94.00	25.00	3		_			10.61	5.00		10.00	6.51	2.00		3,10	}	2.40	-		01.0	3010	•	3 • 00	3.00	6.80	••	00 **	3.00		3.00	3 8	9 6	6.80			1	900	•	3.00		2.00	2.40	000	!
-	MEAS.	Bq. Deg.			29.00	000						5.47				5.04			1.50	1	2 • 10			2.20	3.40	9 6			3.40	_		2.20		2.20		2 20	3.40				3.40	2.20				1,20	2	
-	TIME	1 1 1			1005	10701					_	1018			1215	1218	1227	_	1828		900		-	0737	0 744	0 759		158	0 7 5 8	86)		0822			60%		1047	1052	*111		1117	1145	:			14.00	2	
COND					* (٦			2		4	7			7	2	7		2	•	-		•	* 4	f 4	1 4		7	4 (7		4		* (7	4	4	2	2		4	4				7	•	
	POR	TANCE		-	36	3.6	9 40	36	9		7	7	16	7	56	7	_ (7 (7		-	-			1,1	-	-	16	7 .			_				-	7	-			7 7			_			• -	_
TION	_	23	707	13	130 0	248			20	2		11 D	153	_		11 0	25	120	12	-	4	0 8	13	40	`=	32	38	27 D	~ ;	9 5	212	19	15	- ·	7 6	2 2	1 =	4		4 5	30 0	22	18	4	27 0	۰ ٥	25 0	
	McMATH	REGION	4478 4476	4456	9244	44 76	4476	9244	4476	4476	4476	9244	4476	4476	9244	4476	4465	9/ 54 /	4456	1	4469	4465	4465	4462	44 76	4465	4465	4465	4478	0 4	44 76	44.76	4476	4476	9/ 44	4476	4478	4478	9244	4476	9244	4465	4465	4465	4465	4402	44.76	
* Oudd #		MER. DIST.	E90	¥68	E80	E 7.5	E 6.7	E78	E76		E85								E 90				W26	974	F72					202	#4.	E72	E66		104	F 72	E88	E91	E57	E22	E57						E 60	
A PD		Š	\$20 \$12	N 13	\$15	110	525	513	512	808	\$12	818	316	514	514	513	M23	250	2 T N	!	N23	N17	Z 2	320	212	N21	N20	N20	\$22	210	517	517	516	217	010	517	522	521	\$16	216	515	N 20	81 N	N17	N 19	222	517	<u>.</u>
	ı	MAX. PHASE			1005		1010				1016	1018							1828		8700		6	0770	0 746	0759			0758			0822					1047				1117	1145	:			1400	2	
TRIVESSAL TIME	SMC THE	ONZ	1201	0857	1200 0	1358 0		1137 0	1055	1119	1200 0		1329	1200 D	1319 0	1227	1252	1415	1838		0052 D	0703	0726	1670	0756	0823	0827	0825	0803	0834	0831	0830	0828	0550	1010	1007	1056	1055	1119 0	1124	1122	1200		1242 0	1338 D	1522	1632 0	
36		START	1210	0844	0950	0020		0957 E	1005	1009 E	1012	1016 E	1056	ш	ш	1216 E	1227	1256 E	1826		_	0655 E		0717			6420	0758 E	9570	0 738 E	0800		0813	_	0923	J	_	1051 E		1110 E	1110 E	1138	1139	1238	1311 E	1355	1607 E	
DAIL	-	Mar. 1958	1		53	_	_	_	_	_	_		_	_	_	_			_		_	_		_		_	_		-	_	_				_		_	_					54		_		24	
	OBSERVATORY		MEUDON	WENDEL	UCCLE	WENDE	MOSCOW	SCHAUINS	ZURICH	MEUDON	UCCLE	NIZAMIAH	WENDEL	AROSA	/ZURICH	USNRL	ZURICH	NEDEKNORSI	HAWAII		HAWAII	AROSA	AROSA	ונינים הינים הינים	ווייים ווייים	UCCLE	MENDEL	ZURICH	UCCLE	20K1CT	WENDEL	UCCLE	AROSA	OCCLE Guestin	LONG CA	UCCLE	VCCLE	OMOREJOV	ONOREJOV	AROSA	WENDEL	UCCLE	WENDEL	AROSA	WENDEL	100 F	WENDEL	

SOLAR FLARES MARCH 1958

PROVISIONAL	IONOSPHERIC	DFECT			S-SWF	340	Slow S-SWF			S-SWF		AMC - C															G-SWF					Slow S-SWF			Slow S-SWF		G-SWF			G-SWF						S-SWF		
	MAX.	INT.		:	3					154																								9.0	•	17										52		7
	MAX.	WIDTH						1.60	2.30	2.00	2.50	2.60	2.20			2.60							2,20	2				0	02.62		2.40																	1.70 PAGE
MEASUREMENTS	CORR.	Sg. Deg.		4.10	3.30	90	5.90	2.38	8 . 74	09.9	7 . 62			3.00	3			1.00				3 8	•	7.00		2.00	2.80	2.66	00	2 • 78			3.20	7.00				3.90					1.96	2.66	2.08	4.30	07.0	2 • 79
M	MEAS.	AREA Sq. Deg.		3.40	200	3,30	3,10	1,52	7.29	5.50	4.86																5.00	1.80		1,91	!		1.80	2.00	0707	3.30		2.10					1.80	2.26	1.80	10.20	•	1,22
	TIME	1 5		1638	2016	2210	2320	0349	0530	0538	6090	9090	0825	000	268	0850		859					1125	}			1415	1418	7	1503	1458		1510	1520				9036					1945	5049	2155	2340	7340	0542
OBS.	COND.			4 (7 0	160	2	2	2	1	2	9	3	•	1	15	1	1			6		e	`	2		2		0	1	· m		1	710	7	2		-					4	9	6	7 (7	7
Ä	POR.	TANCE	-	3.		-1	16	-	7	16	7	7	_	٦,	- -	-		-	-	٦.	٦,			16	-	16	7	9.	1,4	16	16	7	-	7 -		16	-	-			<u> </u>			-	~	7,	7	-
DURA.	NO!	MINUTES				16	09	7		0 6			s ;		10		. 50	•	7	13		0 42		62.0			14		2 7	. 7			13 0	20		i	12		2 0	50	E :	13	!	20		6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2	12 0
NO	McMATH	PLAGE	94476	4476	4476	4465	4476	4476	4474	4674	4476	4476	4465	4460	4467	4478	4478	4478	44.76	44 76	0944	44/0	4478	4460	4460	4465	4465	4465	4440	4476	4476	4476	4476	4476	4476	94 4 1 6	4460	4465	4474	4/44	4476	4410	4476	44.76	4476	44.76	•	4465
LOCATION	APPROX.	MER.					E 60	E51							1 0						061								744					E 20			W15			8 6						E29		M 58
1	APP	TWT:	\$13	\$15	514	N 25	\$18	\$ 13	N 18	N 15	\$ 13	818	N20	2 2	N 1 2	5.24	\$25	\$25	\$12	\$15	2 5	200	518	N37	N 35	N 19	N21	S S	A15	514	515	513	514	515	\$15	517	N37	N 21	N22	N18	515	0 C Z	529	808	517	518	970	N24
		MAX. PHASE		1638		2210	2320	0349	0530		6090		0825														1415							1520				0036					1945	2049		2339	7540	0542
OBSERVED	UNIVERSAL TIME	EN3		1643	2028	2224	9000	0354	0555	0547 D	0626	0622	0828	1 0 0 0	1400	0.851	0853	9060	0912	1045	1101	1122	1127	1252		1435 0	1428	00,1	1556	1605	1538			1533 0			1830		0755 D	1712	1 (55	1827		2106		2410 D	0400	0549
		START	1614 E	1635	2012	2208	2306	0347		0538 E			0823		0835 F		0848	6580	9060	1032		1056 F		1151	1202	1411		1418 E	1440	1454	1457 E	1502 E	1509 E	1513 E	1708	1715 E	1818	0036 E		1652	747	1815	1930	2046	2142	2327	0007	0537 E
DATE		Mar. 1958	742	24	24	54	54	52	25	25	52	25	25	_	_	_			52	25	67	25	25	25	25	52	52	52	25	25				25	25	25	52	26	56	56	97	2 6	56	56	56	56	0 7	27
	VECTAVETERO		H WILSON	CUCCLE	HAWAII	HAWAII	HAWAII	NIZAMIAH	(NIZAMIAH	KODAIKNL	NIZAMIAH	ONDREJOV	ONOREJOV	AENDEL Zilor Ci	ABOSA	ONDREJOV	AROSA	ZURICH	AROSA	ROME	OCCLE.	ME ADEL	ONOREJON	WENDEL	UCCLE	WENDEL	/UCCLE	OTTAWA	WENDEL	OTTAWA	ONOREJOV	(NEDE RHOR ST	CAPRIS	SAC BEAK	ROME	SAC PEAK	ROME	HAWA I I	AROSA	MT WILSON	M-WILSON	MT WILSON	OTTAWA	OTTAWA	OTTAWA	SAC PEAK	I I WHAT	NIZAMIAH

COMMERCE - STANDARDS - BOULDER

SOLAR FLARES

PROVISIONAL	IONOSPHERIC	EPPECT																				0.15	340-0									S-SWF		AMS-S																	S-SWF				!	AMS-S		
	MAX.	Ĭ.	×																											56					16		17	;			_												Ī	_				8
	MAX.	WIDTH	He									2.10	2.10				6	3.30		2.8			4.20		2.10		2.00		1.90			3.00	2.60																			•						PAGE
	CORR.	AREA	Sq. Deg.	2.00	,	• 50	3	8	3	1.50	3.00			5	3		0		0		8.4			3.65		8.					4.93	:		3.01				_			2.60	-	5.8	9.00	3.00	98		6.80	9.00							04.4	00.9	
	MEAS.	AREA	Sq. Deg.		_					1.50						,	000		70707					3,31						10.20	4.47	:		2032	2.50	2.32	7.50	8.70	3		5.10							3.40				9.40	9.80		7.00	3.80		
-	TIME	1	TO	823		435				1033		1032	1040	-				1054	-	1112	_		1202	1322	1321		1419		1512		1555	1552	1547	1705		1941		2156	}		0805		809		845	843		0921				9101	1643		1020	1052	1045	:
COND				2		7				4		3	. "	`		,	+ 0	n	2	6			6	6	9		9	9	9	2	e	m	(1)	e	2	m	~	-	•		2		m		m	6		4				7	7		·	7 0	Jen	,
	POR-	TANCE		٦.	٠,	٠,	٠,	٦,	-	-	-	7		25	2 -	٠, ١	7	3 .	٥,	٦.	-	-	16	16	-	-	-	-		56	2	2	2	3.6	-	16	2	2.6	}	-	7	_	-	. Te		-	٦,	7	. Ié	_	_	٦,	7 (7 .	2 0	7,0	2 2	
TION	1	1	MINOTES	27	G B ;	1			0 0	11 0	14	4	10	40		0 0		0 77		٠,		O 6	10	17	7	13	11		7 0	06	46		31 D	54	80		25	20	;	15 0		15		21 D	21		10 0	24 D		20 D		0 67		† - :			29 0	
	McMATH	PLAGE	REGION	4476	4465	400	44/0	9/4/8	4400	4/44	44.74	6944	44.74	47.65	77.77	2044	9	4400	1100	4480	4470	4465	4465	4476	4476	4476	4465	4478	4478	94476	4476	4476	4476	4478	4465	4465	4465	4465	!	94 4 7 6	4478	4478	44 78	4478	44 78	4478	4478	4465	4465	944	4465	9 7	0754	0/44	4478	4478	4478	!
ADDOOR	21	· MER.	DIST.	_							5 W07	4 W43									3 1456	N23 W57	N24 W58	\$18 E22	S18 E23					S16 E22	7 E 23				2 W79		7 W 78	_														5 F.13			5 530		4 E20	
	<	LAT.	_	519	NZZ	N 23	7	2 2	7	9T N	N 15	N24	N 15	N 2.3	000	770	2 2	N 22	2 '	7	\$23	2	ZZ	2	21	S	N23	\$23	\$28		517	\$15	\$19	\$23	N 22	01N	_	N 28	<u> </u>	တ္	\$25	524	25	523	254	\$22	\$24	N20	2 9	\$14	Z	o I	222	620	200	5.2	524)
		MAX.	PHASE			0000	0060			1033							1067	‡ 001					1202	1322	1321		1419			1557 U		1552		1705	1940	1941	2157 U	2156			0814						;	0921				9701	TO#2		1038	2		
THIVEDEAL TIME	MINERSAL TIME	END		0850	6480	946		0 0 2 0 0	9701	1040	1044	1035	1047	1116	901	1113	1101	1100		6111	1212	1210	1211	1335	1326	1332	1428	1515 D	1517	1705	1710	1620 D	1616	1726	1945		2212	2210		0010	0817	0819	2680	0833	6060	9060			0934 D	1015	1020	1035	1100	1100	1052		1114 0	
Ē		ат	-		LLI C	_			u I		_	_	ш		_			 		_		ш	_	_	_	_	_		ш			_	ш	-	_	_	_	_	_	ш		_		ıı			ш		w i			ш L		_			ш	
		START		0823	0835	0830	0 0	2	101	1029	1030	1031	1037	1042	10,6	1046		100		0111	1159	1201	1201	1318	1319	1319	141	1510	1510	1535	1536	1537	1545	1702	1937	1938	2147	2150		0645	0805	0807	6080	0812	7990	0843	0845	0916	0915	0955	1000	7101	100	1033	1034	1035	1045	
DAIR	;	Mar.	1958	27	77	, ,	7 .	7	7	17	27	27	2.7	27	27	, ,	7 .	27	7	17	7.7	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27		28	28	28	28	28	87	28	28	28	28	28	28	200	0 0	280	28	28	28	
	OBSERVATORY			ZURICH	AROSA	ZOKICA CITATORIA	A CAPET	WENDEL .	WENDEL	(OCCLE	WENDEL	ONDREJOY	ONDREJOY	MENDEL	Aposa	4 7 7 7	0000	CAURE JOY	OCCE.	UNDREGOV	WENDEL	NEDERHORST	ONDRE JOV	OTTAWA	ONDREJOV	WENDEL	ONDREJOV	ONDRE JOV	ONDREJOV	SAC PEAK	OTTAWA	ONDREJOV	ONDREJOV	OTTAWA	SAC PEAK	OTTAWA	SAC PEAK	HAWAII		AROSA	UCCLE	AROSA	ZUKICH TENE	WENCEL	ZUKICH	ZURICH	AROSA	DCCL E	WENDEL	AROSA	AROSA	וליכר ה היכור ה	1000	STOCKHOLM	LCC F	CAPRI S	ZURICH	

SOLAR FLARES

IONOSPHERIC	Chospanic	EFFECT				S-SWF								G-SWF			S-SWF						S-SWF		S-SWF																									į	S-SWF
MAX	374	Ė×						104	5			16	115				143	124			80			102		106	52	20	149																						0
MAX	HILL ST.	WIDTH						00.1	3				90.				2,00				1.00			2.00		2°00			2,36	3.75																7.00		2.70			2 · 80
CORR.	Apre	Sq. Dog.	3.00	3,00			3	01.4	•	04.4	9 6	:	1.16	 	4.00	7.59	5.83	3.26	5.03		2.76				6.37	5.05			2.81					8.8	10.00	96	8 6	88	;	9.00	7.00	9	3.00	5.20			2.00	:	4.00		
MEAS.	4054	Sq. Deg.				2.60		2.040	26.30	000	2000	2,30	1013	;		7.37	5.20	3017	4.18		2.26		1062	1.58	5.68	3.39	2,30	2.50	2.78	1.86													2.50	8			2.00				
TIME		1 5	1045			1211	0101	1227	7771	1430	7		1548	!		1715	1714	1724	1738		1737		1838	1838	2049	2045			0208	0244					-	26.7	750	853				922	0941	0934		1		1035			1222
COND.			6			7	•	7 0	,		n	^		1		CFT	١ ٥	1 0	m		2		7	7	4	7	-		-	-						N C	v (7 ~	,	•		7	2	m	•	7	~	169		•	m
PO8-		TANCE	-	_	_	7.	٦,	7 7	2 -	4 -	÷			~	-	2.6	26	16	16	-	-	m		~	7	16	~		7	-	-	-	-	16	-	-	7.	• -	~	16	16	7	٦.	91.	٦,	٦.		-	-	٦,	
NOIL	ı	MINUTES	29 0	10 0	94	E .		2 6		• •	` :	25	35	20 0			73 0		55		37	,	64	89		36.0	0	31	7 0	9	12 0	15			13 0	11:	1 -	9 9	09	55	49 0		340		67	0 0	. «	0	13	5	10 0
McMATH	PLAGE	REGION	4478	6944	94 4 7 6	946	94 10	9244	20044	4465	4465	4465	4476	4476	4476	44.76	44.76	4476	4244	4474	44 74	92 44	4465	4465	4478	44.78	44 78	4465	4476	6944	4484	4480	6944	4469	6944	94 /6	0 7 4 4	44.76	4474	4244	44 74	4474	4/4	4/44	1 1	47.44	4476	44 76	44.76	4484	4478
ox.	1	MCR. DIST.	E28	M 58	E12	110	113	F12	717	0 0	0 0	063	212	W15	1	F10	E08	E08	W25	W20	W27	E10	98	063	E 20	E23	E 20	#90 E03	E01	06.1	E90	E58	84M	₩28	9	47M	017	K03	W30					W30	000	0 0	W02	W03	809	E 70	E19
APPROX.	LAT				514	213	0.00	200	2 6	100	2 0 0	N 2 7	206	504	507	515	515	515	N 15	N20	N 15	\$15	418	N 2 1	\$22	\$23	\$25	N24 S14	5.14	N21	N 33	\$15	N 24	N 25	NZ	503	2 2 2	517	N 22	N 19	N22	N 18	¥ 51	N 25	2 2	200	506	810	908	N 33	\$25
		MAX.				1171	1210	0777		1430	2	1517	1548			1715	1714	1724	1740		1737		1838	1838	2049		2054 E	2242	0208										0923					0934				1035			
UNIVERSAL TIME	FND	- ES	1114 0	1155	1237	1226	1220		1312		1430	1535	1622	1610	1608		1822	1904	1820		1813		1916	1922			2055 D	2308	0215 0	0 0 0 5 0	0652	0703		0 9610	8420	080	0816		1012	1010	1008 0	1018 0	0 6560			1043	1040	1040	1047	1100	1227
In	CTSRT	STANI	1045 E		1151	1155	900	1200 1224 F		404	1420	1510	1547		u	ı		1722	1725	1735 E	1736	1735	1833	1834		_	2054 E	2237	0208	ш	w		0652			0 755 E	J	ш		0915		ш	ш		0950 E	1031	1032	1033 E	1034		1217 E
	Mar.	1958	28	28	28	200	90	2 8 0	9 0	9 6	28	2.8	2.8	28	28	28	28	28	28	28		_	_	28	58	28	28	28		_				_	_	_			_					_	-	_	53	58	58	50	53
	OBSERVATORY		ZURICH	WENDEL	AROSA	AUCUE MENDE	WENOUT I	1000	7000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WENDE	SAC PEAK	(USNR)	MCMATH	WENDEL	OTTAWA	USNRL	USNRL	OTTAWA	MCMA TH	USNRL	MCMATH	(OTTAWA	USNRL	OTTAWA	USNRL	SAC PEAK	SAC PEAK	MITAKA	MITAKA	AROSA	AROSA	AROSA	WENDEL	(MEUDON	STORICE STORICE	TIRIZ.	ZURICH	AROSA	MEUDON	WENDEL	ZURICH	CAPRIS	UCCLE	STOCKHOLM ONOR 101	AROSA AROSA	UCCLE	ONOREJOV	WENDEL	AROSA	ONOREJOV

COMMERCE . STANDARDS - BOULDER

SOLAR FLARES

PROVISIONAL	IONOSPHERIC	EFFECT				S-SWF										6110	J. C.						S-SWF			S-SWF		Slow S-SWF	S-SWF					S-SWF								S-Sur	140-0							S-Sup	1 M C = C
	MAX.	INT.	*							;	07					95				91	86	;	200		_	32		165		112	103	200	183	165																	01
-	MAX	_			11.20					9			2.50	2000	:			3.00	2.00			7.50						3.47	-	1.97	20.02	10.74	1.87	4.73												_					PAGE
MEABUREMENTS	CORR.	AREA No. Decr.	000	3		00.9	-	2.00				7.16	3			2.83					2.11		,	7.10	200	3		1.00	900	1.90	0 0 0	3.78	2.76	5.88	3.50	- 6	7.	00 * 7	3, 10			000	•			90.4	2.00	9 9	200	:	
T.	MEAS.	AREA Sq. Deg.		2.38		_			1.57		7.50	77.1			1.62	.79	_			2.40	2.04	,	9 0	7.50	2.80	9 6 0	3	160		1.084	100	3.73	1.84	1.84	1.00	Ş	•		2.80			4	•	5.60						6.80	
-	TIME	1 5		1343	1346				1357	1357		1404	1413	140	1448	1450		1451	1510		1557	1554	1000	7781	2134	1013		0059	010	0120	010	0225	0408	0459					0815			7700	1	9100	:	938	3		959	1960	
COND.					. "			,	w (n .	-	~		9 66	-	7		6	6	-	2	7	٦,	_	-	1	•	-	_		-	-	-	-	6		7		4			,	•	4	•	6	m		~	1 -4*	
× į	FOR-	TANCE	-	16	26	16	7	1.	٦:	1 .	٠,	٦.	• -	1 -		7	7	٦	-	7	٦,	-, ;	۹.	٠,	7 7	16	:	-	7	- -	9 1	1 -	16	16	-	٦.				28	٦,	3.	٧-	• •	7	7	7	16	1 60	26	
TION.	1	MINUTES	1.	56	17 D	50		96		9 9	7 67	1 1	1	2	14 D	18		9		2		25	2 5	87	,	17 D		25 D		1:	1 2	1 4	7.	13.0	22	۲ در	7 -	17 0			01	٠:	11	70	255 D		e	85	24	276	
	McMATH	PLACE	44.70	4484	4484	4484	4484	4483	6844	6844	584	0044	0074	44.76	6944	6944	6944	6944	4476	4476	9/44	9 4	9/44	8/44	2 1	4 4 B 4	:	4476	4844	9/44	7047	101	4476	4484	4484	4484	4474	47.44	4480	4484	4476	4844	4044	44.7B	4476	4484	6944	4476	9244	4476	
APPROX	No.	MEH.									1 67	F 50	100	000	M67	M70	M60	W72	40A	T .	013	200	900	2 2	100	E 85	j	W13	E 6 7	414	200	0 7	M07	E 65	E62	E67		7	E43	E60	210	E69		3	W21	E69		919	1 T		
App		ž	623	N38	N 36	N33	N32	513	217	216	27.0	4 TO	3 7	5.5	N25	N27	N27	N23	810	517	515	250	523	325	N S S	N 36	:	80B	N 36	200	200	200	808	N 36	N36	N 34	2 2	7 X	518	N30	\$15	2 Z	200	523	514	N36	N 23	\$12	518	517	
		MAX.		1343	1346				1357		1401	40A	1413	7477		1450				1607	1557		1822	7791	2134	2133		0022		7310	0212	777	0408	0458					0815	9460		7400	*	0915	1		0941		0 9 5 9	1960	
OBSERVED	The same of the sa	GNS	1238	1405	1357	1400		1421 D	9047	707	1420	1421		1444	1502	1507		1458	1512	1637		1617 0	1910	0 # 9 7	0 34 C				0 100	0020	0000	0235 D		0509 D	0628	0702	080	0812	0827	0 948 D	0830	0851	0850	1000	1330	0958	9460	1106	1042	1421	
5		START	0101	1339	1340 E		1343 E	1345		1356 E		1404	0141	1439 E			1450 E		1507 E	1547		1552 E	1850			2133 E		0021 E	0102 E	0149	2126	_		0456 E	9090	0655	0755 F		0811 E	0817 E	0820	2480	0.042	0850	0915 E		0941	944	0945	5460	
DATE	,	Mar.	30	56	58	58	53	5.0	2 2	2 5	67	20	200	29	58	_	_		58	53	52	52	67		_	20	_	30	_		_		_	_		_	_		_		30	-		_	_	_	_	_	_	_	_
	OBSERVATORY		MENDE	OTTAWA	ONDREJOV	WENDEL	NEDERHOR ST	WENDEL	OLIVANA	ONDREGOV	SAC PEAK	4 LL V	ONDEE TOX	ONDREJOV	OTTAWA	USNRL	MCMATH	ONDREJOV	ONDRE JOV	SAC PEAK	COSNRL COSNRL	CADREJOV	SAC PEAR	TAMAIL.	HACAR I	SAC PEAK		MITAKA	MITAKA	MIJAKA	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MITAKA	MITAKA	MITAKA	ATHENS	AROSA	ABOSA	WENDEL	UCCLE	MOSCOM	AROSA	WENDEL	AROSA	u 100	SCHAUINS	ZURICH	ZURICH	WENDEL	/ ZUR I CH	UCCLE	-

SOLAR FLARES MARCH 1958

PROVISIONAL	- Constitution	EFFECT																S-SWF			G-SWF						S-SWF			S-SWF																					Slow S-SWF	
MAX	INT	*																		,	9 ;	17	;					146		227		149		278	. 00	149	125		96											20	18	:
MAX	WIDTH	На																										1.83		3.34		7.65		4.32	,	2037	8		2.93	2.29	1.60	3										
CORR.	AREA	Sq. Deg.	3.00		2.40		2.00		;	3.70	2.40		4.50	_		08.05	00 * 4	2.30	4.00	3.15			04.4	0 0	2	6.40	2.00	11.40		9.33	8.10	8.60		10.00	6.50	2,43	8.60		9.73	3.12	20,00	5				2.30	2 2 30	2.00				
MEAS.	AREA	Sq. Dog.		5.60	2.20				2.20	2.20	2.20	-	2.20		2.20	3.40	:	.80		66.	000	2010	2 4			2.60	4.50	9.43		8.56	7.20	3.80		9.43	00.9	1.84	3.80		2.78	689	080					2.10	2000	1.70		9,90	2.50	
TIME	1	10	1002	1020	1015				1115	1121	1155		1250	20,7	14.67	1544	:	1546		1624			2016	2036	3	2158	2308	2351		000	00 16	0031		0052	0052	0170	0233		0423	0545	0.854	2				1146	1445	1528				
COND			3	4	-				4	- 4	~		4		\$ <	,	,	7		- 0	7 (7 0	٠, ١	1 -	•	7	-	-		-		1 -	ı	-	٦,	- -			_	٦,		`			21	7 0	, 4	4		m c	m -	•
POR-	TANCE	1000	٦,	7 7	7	7	4 .				-		16			• ^		-	-		٠,	, 4	,	, -	. 2	16	16	16		56	2	16	-	26	7		16	-	-			-	-	-	٦,	٦.	٦.	٠,-	-			
TION	ı	MINUTES	200	47 0		0 6		2 8 6	2	50		22 D		51 D	- 0	, 84		17 D	12 D		4 .	100			255 0		16	9	20	28 D	9 4	10 0			16 0	7 4			4 0		† «		10 D	9	21	3 0		0	10 D	5 6	27 D	
McMATH	PLAGE	REGION	94476	44 76	4476	9244	0,44	744	44.78	4484	4476	4476	4469	4476	0 4 4 7	4844	4484	4484	4484	4484	0 0	424	44.74	44.76	44 76	4484	94476	4476	4476	4476	44.76	4484	4476	44 76	4476	9/ 44	4484	4476	4469	6944	V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4480	4485	44 76	4469	C 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4476	44 76	4476	4476	44 63	
APPROX.	MER.	DIST.					078	273	F 0.4	E 80	W21	M20	06.8	W20	0 10	80	E61	E65		E60		2 2	10	22	E09	E60	W22	W31	W.20	W24	W27	E 54	W22	W24	¥25	703	E53	M 50	7	12	7/ #	F27	E 61	W27	063	E 27	240	1,4			F 52	
AP	LAT		\$11	512	817	\$13	250	213	\$25	N36	818	820	N23	250	000	98	N 33	N35	N34	_	970		2 2	207	\$15	N37	207	808	\$15	813	S16	N 90	808	507	517	515	N 35	\$05	N 23	N 23	272	818	N20	808	N23	N 22	, 5	\$14	\$15	\$12	521	_
	MAX.	PHASE	1002	1020					1115	1121			1250	36.71	1467	1544	:				1755 0	2022		2036			2308		0015	0012	0032	0030	0053	6400	D0 52	0147	:	0350								1146	1445	1528		1720	2305 U	
UNIVERSAL TIME	END		1042	1054		1020 D		2001	1118	1134	1205 D			1351 0	1504	1621 D	1602	1557 D	1626		1951	2117 11		2040	0129	2208	2320	2353	0025	96 00	0020		0110		0106 D	0200	0244		0427 D		1000	0914 D		1032	1140	1146 0			1535 D	1725	2332 D	
2	START		0952	1007	1010 E		1017		1113	1114	1120 E	1148 E		1300 E	1452	1533	1537		1614 E		747	2007	2010		2114 E		2304	1967	0000	0008 E	0014 E	0028 E		9 6 F		0119 E	_		0423 E	0535		0901 E		1026	1119	1120 1143 F		1525	1525 E	1710	2305 E	
	Mar.	1958	30	30	30	30	0 0	200	30	30	30	30	30	0 0	0 6	30	30	30	30	000	0 0	300	30	30	30	30	30	90	31	31	33	31	31	31	31	3.1	31	31	31		3.1	31	31	31	31	7 [31	30	3	10 -	3 5	
	OBSERVATORY		ZURICH	UCCLE	CAPRI S	STDCKHOLM	NO COLUMN	MENDE	UCCL E	UCCL E	CAPRI S	MEUDDN	UCCLE	MEUDON	1000	JCCL F	WENDEL	CAPRI S	WENDEL	DITAWA	CAC PEAK	SAC PEAK	HAWA TT	TAWATI	SCHAUINS	HAWAII	HAWAII	MITAKA	SYDNEY	HITAKA	HAWAII HAWAII	ITAKA	SYDNEY	MITAKA	AWAII	ITAKA	HITAKA	SYDNEY	MITAKA	TIAKA	AT 7 AM TAH	STOCKHOLM	AROSA	AROSA	JCCL E	וכנו ב	JCCI E	UCCL E	ARDSA	SAC PEAK	SAC PEAK	

SAC PEAK: ALL VALUES IN MAX, INT. COLUMN ARE ARBITRARY UNITS (0-40), NOT PERCENT OF CONTINUOUS SPECTRUM.

ANACAPRI SWEDISH
KODATKANAL
KRASANAN PAKHRA
ROYAL OBSERVATORY, EDINBURGH
GREENWICH ROYAL OBSERVATORY, HERSTMONCEUX
SACRAMENTO PEAK
SCHAUINSLAND PAKA
SCHAUINSLAND NAVAL RESEARCH LABORATORY

CAPRI S KODAIKNL KRASNYA R O EDIN R O HERST SAC PEAK SCHAUINS USNRL

шарфі

- LESS THAN
- GREATER THAN.
- APPROXIMATE.
- PLUS.
- MINUS.

INTERVALS OF NO FLARE PATROL OBSERVATIONS

MARCH 1958

COMMERCE - STANDARDS - BOULDER

Anacapri (Swedish) Arcetri Arosa Athens Climax Greenwich Royal Observatory, Herstmonceux

Hawaii Huancayo Kodaikana1 Meudon Mitaka Nizamiah

Ondrejov

Ottawa Royal Observatory, Edinburgh Sacramento Peak

Uccle

U. S. Naval Research Laboratory

Zurich

SUBFLARES NOTEO AS FOLLOWS, DATE - UNIVERSAL TIME - COORDINATES

FEBRUARY 1958

WENDEL UCCLE WENDEL UCCLE WENDEL SAC PEAK SAC PEAK	01 0848 E 506 W03 01 0901 509 E67 01 0914 531 E20 01 0945 E 506 W02 01 0959 530 W55 01 1042 E 530 W51 01 1935 W27 W33 01 2144 521 E90	USNRL CLIMAX USNRL SAC PEAK CLIMAX MC MATH SAC PEAK SAC PEAK	08 1407	UCCLE UCCLE SAC PEAK	17 1055 S17 E44 17 1139 N12 W63 17 1600 N13 W57 17 1637 N12 W58 17 1855 N07 W80 17 2150 N09 W61 17 2225 S25 E60
SAC PEAK ATHENS WENDEL WENDEL USNRL SAC PEAK SAC PEAK SAC PEAK SAC PEAK	01 2217	* ATHENS	09 0700 E S11 W48 09 0753 S11 W51 09 0857 N08 W72 09 0905 E S17 W14 09 1515 U S15 E08 09 1530 E S13 E07 09 1710 S14 W56 09 2054 S17 W58 09 2118 S17 E07	UCCLE MC MATH MC MATH SAC PEAK SAC PEAK * USNRL CLIMAX SAC PEAK	18 1414 E S25 W25 18 1438 NO7 W02 18 1540 S22 W32 18 1542 S10 E54 18 1542 S26 W27 18 1621 S15 W05 18 1624 S12 W02 18 1922 S28 W23
ATHENS UCCLE UCCLE UCCLE UCCLE VCCLE UCCLE UCCLE UCCLE UCCLE UCCLE UCCLE UCCLE	02 1856 S11 E76 03 0729 S12 E33 03 1007 S12 E34 03 1042 S12 E34 03 1111 S20 E85 03 1207 E 311 E31 03 1248 S27 W85 03 1251 S12 E34 03 1303 S11 E70	SAC PEAK HAWAII SAC PEAK HAWAII WENDEL UCCLE UCCLE UCCLE WEUDON WENDEL	09 2142 N19 E09 09 2144 N20 E02 09 2157 S12 W54 09 2200 S17 W57 10 0834 E S22 W08 10 0918 E S16 W00 10 0917 S13 W69 10 1012 N14 E35 10 1129 E S14 W60 10 1205 E S16 W01	UCCLE SAC PEAK SAC PEAK SAC PEAK USNRL USNRL SAC PEAK USNRL * SAC PEAK * HAWA II USNRL	19 1259 N11 M16 19 1507 E N10 M18 19 1555 N10 M9 19 1620 N21 W90 19 1622 N20 W90 19 1843 N09 W22 19 1900 N21 W90 19 1901 N19 W90 19 1912 S15 W21 19 2010 E N21 E10 19 2012 N20 W90
UCCLE UCCLE CAPRI S * SAC PEAK SAC PEAK	03 1311 517 E82 03 1437 E 512 E32 03 1449 E 512 E33 03 1540 520 E78 03 1540 510 E58	UCCLE UCCLE OTTAWA USNRL SAC PEAK	10 1205 S20 W37 10 1256 S21 W11 10 1433 E S16 W03 10 1443 E S17 W05 10 1450 E S14 W03	CL IMAX USNRL USNRL USNRL USNRL	20 1822 N11 E21 20 1851 S24 E10 20 1908 S12 E16 20 1954 S15 W09
SAC PEAK SAC PEAK CLIMAX * CLIMAX * SAC PEAK	03 1540 S28 M80 03 1648 S11 E28 03 1850 S12 E63 03 1855 S22 E79 03 1856 E S20 E77 03 2015 S20 E77 03 2039 S12 E28 03 2200 U N19 E57 03 2230 E S12 E25 03 2230 N24 M58	USNRL SAC PEAK * SAC PEAK UCCLE USNRL SAC PEAK USNRL * HAWAII HAWAII ATHENS * ATHENS	10 1509 N17 E42 10 1510 N15 E43 10 1540 S21 W13 10 1541 E N08 E35 10 1542 S22 W13 10 1900 S16 W23 10 1901 S18 W23 10 1904 S16 W65 10 2326 S23 W18	ATHENS ATHENS CAPRI S CLIMAX USNRL CLIMAX USNRL * USNRL USNRL USNRL USNRL USNRL	21 0738 S25 E02 21 0853 N11 E13 21 1453 E S22 W01 21 1593 S15 E09 21 1595 S13 E09 21 1607 S13 E04 21 1608 S13 E05 21 1646 S13 E05 21 1710 S04 W20 21 1846 S12 E02
* USNRL USNRL USNRL	04 0855 E S11 E51 04 1324 S11 E16 04 1337 S10 E18 04 1425 N13 E05	ATHENS ATHENS UCCLE	11 0749 S18 W27 11 0753 N11 E08 11 0824 S16 W39 11 0952 E S20 W48	ATHENS * CL IMAX	21 2046 S12 E02 23 0645 E N20 W32 23 2049 S11 W04
USNRL USNRL SAC PEAK USNRL USNRL SAC PEAK SAC PEAK CLIMAX USNRL CLIMAX USNRL CLIMAX	04 1429 309 E15 04 1457 310 E16 04 1510 E 513 E14 04 1512 S11 E15 04 1518 N06 W10 04 1617 514 E67 04 1712 S13 E13 04 1721 S13 E14 04 1725 S15 E19 04 1852 N19 E44 04 1855 N21 E45 04 1894 S12 E44	USNRL USNRL CLIMAX USNRL USNRL USNRL HUANCAYO USNRL * MUANCAYO ATHENS WENDEL	11 1319	ATHENS ATHENS ATHENS USNRL	24 0723 N04 W54 24 0727 N13 E16 24 0730 S34 E80 24 1227 E S19 W26 24 1256 E S13 E12 24 1306 S25 W12 24 1323 S05 W60 24 1346 S20 W43 24 1446 S22 W41 24 1642 S06 E38 24 1645 S04 E38
ATMENS ATMENS OTTAWA CLIMAX CLIMAX CLIMAX CLIMAX	05 0714 N19 E37 05 0721 S12 E05 05 1517 E S07 E34 05 1819 S19 E29 05 1903 S10 W28 05 1932 S19 E27 05 1946 S13 E19	WENDEL CAPRI S SAC PEAK USNRL USNRL SAC PEAK CLIMAX CLIMAX	12 1127 E \$16 W47 12 1211 E N12 E18 12 1550	USNRL USNRL USNRL SAC PEAK SAC PEAK USNRL WENDEL	24 1901 S05 E08 24 1905 S16 W36 24 1906 N15 E39 24 1912 N13 E39 24 1945 U S15 E07 24 1948 E S14 E08 25 1123 E S07 W34
ATHENS * CAPRI S * R O EDIN OTTAWA SAC PEAK OTTAWA	06 0840 E 512 W08 06 1153 E 510 W10 06 1154 E 511 W14 06 1447 E 510 W11 06 1640 516 E22 06 1641 E 516 E22	SAC PEAK USNRL USNRL CLIMAX SAC PEAK USNRL USNRL	12 1645 NO8 E03 12 1646 NO9 E05 12 1719 N25 E05 12 1737 N11 E03 12 1745 N10 E05 12 1748 N11 E04 12 1753 S10 W90	WENDEL WENDEL USNRL USNRL * SAC PEAK MC MATH USNRL	25 1127 E S11 E01 25 1138 E S24 E66 25 1317 S24 W49 25 1434 S18 W48 25 1630 S12 W52 25 2119 S22 W60 25 2120 S23 W60
* SAC PEAK * SAC PEAK OTTAWA	06 1650 S13 W08 06 1652 N30 W90 06 1652 E S13 W07	USNRL USNRL SAC PEAK	12 1757 S10 W60 12 1851 S12 W90 12 2127 N07 E07 12 2127 N22 E69	UCCLE SAC PEAK	26 1439 E S27 W48 26 2100 S12 W16
OTTAWA SAC PEAK USNRL OTTAWA SAC PEAK	06 1725 E 518 E37 06 1746 E 518 E29 06 1802 511 W12 06 1803 E 511 W12 06 1803 E 511 W11 06 2100 510 W13	SAC PEAK UCCLE UCCLE ZURICH USNRL	12 2127 N22 E69 13 0946 N09 W05 13 1017 N15 W06 13 1446 N07 W08 13 1830 N24 E01	R O HERST SAC PEAK * SAC PEAK SAC PEAK SAC PEAK SAC PEAK	27 1226 E S12 W21 27 1637 S14 W26 27 1745 E S11 W28 27 1925 N12 W32 27 1935 S21 W80 27 1955 N34 E15
SAC PEAK SAC PEAK SAC PEAK SAC PEAK SAC PEAK	07 1502 E S21 E23 07 1502 M30 W90 07 1700 M30 W90 07 1710 S21 E26 07 1710 S10 W26	UCCLE UCCLE CAPR1 S SAC PEAK USNRL	14 0942 N25 W65 14 1130 N13 W17 14 1259 E N11 W13 14 1642 N17 W12 14 1644 N17 W12	SAC PEAK SAC PEAK SAC PEAK SAC PEAK SAC PEAK	27 2025 S13 W27 27 2107 S22 E90 27 2137 S14 W28 27 2200 S13 W29 27 2245 S14 W29
SAC PEAK SAC PEAK SAC PEAK SAC PEAK SAC PEAK SAC PEAK SAC PEAK SAC PEAK	07 1815 \$21 E26 07 1837 N17 E90 07 1905 \$11 W28 07 1925 N15 E71 07 1925 \$21 E26 07 1945 \$14 E18 07 2000 \$13 E16 07 2150 \$21 E25 07 2225 E \$10 W31	SAC PEAK ATHENS UCCLE WENDEL SAC PEAK SAC PEAK SAC PEAK SAC PEAK	14 1737 N11 W24 15 0713 S26 W72 15 0923 S16 W75 15 1347 E S12 W33 15 1742 N12 W37 15 1807 N13 W35 15 1920 N12 W37 16 1515 E N25 W43	SAC PEAK SAC PEAK SAC PEAK SAC PEAK SAC PEAK	28 1730 S13 W38 28 1820 S16 E90 28 2040 S16 E90 28 2130 S14 W38 28 2250 S10 W44
HAWAII HAWAII HAWAII ATHENS	07 2336 E 520 E32 07 2336 E 510 W31 08 0114 512 W34 08 0722 511 W36	SAC PEAK SAC PEAK HAWAII HAWAII HAWAII	16 1610 N25 W46 16 1610 N25 W46 16 2020 S12 E20 16 2302 N09 W80 16 2326 S27 W06		
ATHENS UCCLE USNRL	08 0839 S13 E10 08 0936 S21 E19 08 1338 S20 E16	UCCLE	17 1052 S15 E44		

IONOSPHERIC EFFECTS OF SOLAR FLARES

(SHORT-WAVE RADIO FADEOUTS) FEBRUARY 1958

	Start	End	Туре	Wide	Impor-	Observation Stations	Known
Feb. 1958	UT	UT		Spread Index	tance		Flare, UT CRPL-F 163 B
2	1707 15.₹7	1745 1550	Slow S-SWF Slow S-SWF	5	2+ 1+	BE, CR, HU, MC, PR, WS	1500
5	1035	1125	Slow S-SWF	2 5	2+	HU, PR HU, JU	1522
6	0053	0105	S-SWF	3	1	AD, CA	
6	1658	1718	G-SWF	4	1+	AN, HU, MC, PR	1652E
	1030	1,10	O DWI	7	- '	711, 110, 110, <u>11</u>	1032E
6	1724	1752	Slow S-SWF	5	2-	BE, CR, HU, MC, PR, WS, CW*	
8	0406	0425	S-SWF	4	1+	CA, OK, TO, CW+	*
8	1112	1130	S-SWF	3	2	KU, NE, PU	*
8	1755	1850	G-SWF	4	3-	BE, HU, MC, PR, WS	1740
9	0210	0235	Slow S-SWF	5	2	AD, <u>CA</u> , OK, TO	0207
9	0558	0610	S-SWF	1	1+	KO	0548E
9	0654	0739	S-SWF	4	3	KO, NE	0658
9	0843	0902	S-SWF	4	2	KO, KU	0837E
9	1332	1418	S-SWF	5	3	BE, HU, MC, NE, PR, PU	1330
9	1421	1436	S-SWF	5	2	BE, HU, MC, NE, PR, PU	1415
_				_			
9	1935	1957	G-SWF	3	1+	HU, MC, PR	
9	2124	2144	Slow S-SWF	5	1	CA, HU, TO, WS	2108
10 10	1325 1903	1400 1950	S-SWF	5	3	BE, DA, HU, MC, NE, PR, PU	1323
11	0809	0837	S-SWF S-SWF	4 5	3	BE, HU, MC, PR, WS	1900
11	0009	0037	2-2ML			Ju, ko, ND, <u>Pu</u>	0820
11	1322	1335	S-SWF	5	1	HU, KU	1319E
11	1345	1410	S-SWF	5	3	HU, JU, PR	1342
12	1750	1840	G-SWF	4	3-	BE, CR, HU, WS	
12	1840	1930	S-SWF	4	3-	BE CR, HU, PR, WS	1839
15	1628	1740	G-SWF	4	1+	AN, BE, MC, WS	
15	1955	2023	G-SWF	4	2	HU, MC, PR, WS	1057
17	1218	1255	S-SWF	2	1+	BE, PR	1957
19	1630	1715	G-SWF	3	2	HU, PR	1630
25	0505	0541	S-SWF	1	1	OK OK	0445
25	2008	2040	Slow S-SWF	4	2	BE, MC, PR, WS	1954
26	0432	0508	G-SWF	2	2.		į
26	0540	0636	Slow S-SWF	3 4	2+ 2+	KO, OK, TO	0449E
27	0318	0415	Slew S-SWF	3	1+	KO, OK, TO, CW+ AD, OK	0547 *
27	1153	1307	S-SWF	1	3	PU PU	1155
27	1420	1501	G-SWF	4	2-	HU, MC, PR, WS	11))
					_		

st No known flare patrol at this time.

CA = Canberra, Australia. CR = Cornell University, N.Y.

DA = Darmstadt, G.F.R.

JU = Juhlesruh, G.D.R.
KO = Kodaikanal.

KU = Kuhlungsborn

NE = Nederhorst den Berg, Netherlands.

PU = Prague, Czech.

SW = Enkoping, Sweden.

HH = Heinrich Hertz Institute, Berlin. TO = Hiraiso Radio Wave Observatory, Japan.

COMMERCE - STANDARDS - BOULDER

ZU = Zurich, Switzerland. CW* = Barbadoes. CW+ = Hong Kong

SOLAR RADIO EMISSION OUTSTANDING OCCURRENCES MARCH 1958

OTTAWA		2800 MC			
Mar. 1958	Type*	Start UT Hrs:Mins	Duration Hrs:Mins	Maximum Time UT Peak Hrs:Mins Flux	Remarks
3 4 4 4	1 Simple 1 f 1 Simple 1 2 Simple 2 1 Simple 1 f	21 47 15 32.5 16 04.5 17 23	1 4 2.5 5	21 47.8 5 15 33.5 6 16 05.5 28 17 24.5 6	
5	3 Simple 3 A 8 Group (2) 1 Simple 1 1 Simple 1 1 Simple 1	16 36 16 44.2 16 44.2 16 48.2 17 20.5	35 4.2 2 0.2 1.5	indet. 9 16 44.9 6 16 48.3 6 17 21 3	
5 6 7 8	1 Simple 1 2 Simple 2 6 Complex 6 Complex f	20 57.5 22 28.8 18 14 13 26	4 2 2.5 5	20 59.5 6 22 29.3 16 18 15 90 13 26.8 88	
8	3 Simple 3 A 8 Group (2) 2 Simple 2 1 Simple 1 6 Complex 6 Complex	17 22 17 22.4 17 22.4 17 28 18 00 18 55	1 40 9.6 2.5 4 6 5.5	17 43 13 17 23.4 26 17 29.5 7 18 02.4 11 18 56.3 7	
8 9 10	2 Simple 2 2 Simple 2 4 Post Increase A 2 Simple 2 6 Complex	20 59.2 15 43 20 07.3 13 15.2	2.5 8 5 15 2 9	21 01 9 15 45.9 85 22 20 07.9 9 13 16.1 51	
10 10	l Simple l Simple 3 A Complex f Simple 2 Simple 2 Simple 3 A Complex	18 25.2 20 24 20 28 21 31.8 15 00 15 12.6	1.8 1 30 7 1.4 >7 35 10	18 25.8 6 20 35 10 20 32.5 72 21 32.4 13 indet. 13 15 16.6 50	
12 12 12 13	3 Simple 3 A 2 Simple 2 2 Simple 2 1 Simple 1 6 Complex	14 28 14 37 17 02.4 20 42.5 13 10.5	47 2.5 1.3 1.5	14 43 9 14 38 33 17 02.8 10 20 43.1 6 13 13 6	
13 13 14	1 Simple 1 2 Simple 2 9 Precursor 6 Complex 4 Post Increase	16 20.3 22 16.5 14 53 14 58.5	1 4 5.5 13 2 45	16 20.8 6 10 13 15 01 210 40	
15 15 15 16 16	2 Simple 2 1 Simple 1	18 19.8 19 07.5 21 11.5 14 10 15 33	1.5 4 1 2.5 3	18 20.3 9 19 09 6 21 12 6 14 11.2 3 15 34.5 2	
19 19 19	2 Simple 2 2 Simple 2 4 Post Increase 2 Simple 2 f 4 Post Increase	17 27.5 19 09.5 21 07	2.5 5 35 9 30	17 28.5 13 19 11 37 6 21 09.5 14	
20	8 Group (2) 2 Simple 2 2 Simple 2 3 Simple 3 A 2 Simple 2	19 04 13 04 13 17 14 54 14 54.6	16.5 5 3.5 40 2.5	13 04.7 350 13 18.2 14 14 59 16 14 55.2 32	
20 20 20 21 21	3 Simple 3 3 Simple 3 f 1 Simple 1 1 Simple 1 3 Simple 3 f	18 50 20 47 21 41.5 13 11 18 55	45 15 2.5 1.5 40	19 02 7 20 52 7 21 42.5 3 13 11.7 7 18 59.3 18	
21 22 22	3 Simple 3 f 2 Simple 2 3 Simple 3 f A 2 Simple 2 f	21 15 12 07 18 04 18 42.2	35 1.5 3 15	21 17.2 8 12 07.4 12 18 23 26 18 44 160	
23	3 Simple 3 A 7 Period Irreg. Activity 2 Simple 2 2 Simple 2	b11 15 b11 15 18 26.2 11 38.5	>9 >4 35 4 1.5	indet. 45* 11 34 300* 18 27.2 20 11 39 30	*estimated (in sunrise)

SOLAR RADIO EMISSION OUTSTANDING OCCURRENCES

OTTAWA

MARCH 1958

2800 MC

OTTAWA			MARCH	1958	2800 MC
Mar.	Type*	Start UT	Duration	Maximum	Remarks
1958		Hrs:Mins	Hrs:Mins	Time UT Pesk Hrs:Mins Flux	
25 25 25 26 26	2 Simple 2 3 Simple 3 f 1 Simple 1 f 2 Simple 2 2 Simple 2	14 13.7 14 53.5 18 17.3 12 55 13 28.5	2 40 1 2.5 4	14 14.3 46 14 58.5 7 18 17.8 6 12 55.8 30 13 29 100	
27 27 27	2 Simple 2 8 Group (2) 1 Simple 1 2 Simple 2 2 Simple 2 f	11 59.8 13 20 13 20 13 24 15 05	14 5 1 1 2	12 00.6 470 13 20.8 5 13 24.5 11 15 06 85	
27	6 Complex 4 Post Increase A 6 Complex f 4 Post Increase	15 43.8 17 01	11 3 10 6 25	15 46.4 220 50 17 03 162 12	
27 27 27 27 27 28	1 Simple 1 2 Simple 2 2 Simple 2 7 Period Irreg.	19 38 21 04.8 21 48.8 23 04 11 47	3 1 6 3 40	19 38.5 7 21 05.1 6 21 49.7 93 23 05 60 11 58.5 16	In sunset osc.
28	Activity 8 Group (2) 2 Simple 2 1 Simple 1 9 Precursor f 2 Simple 2 f 4 Post Increase A 2 Simple 2	15 46.5 15 46.5 15 52 17 02.5 17 08.5	10.5 3 5 6 14 2 20 3.5	15 47.9 9 15 54.5 4 7 17 11.5 575 60 18 35.7 100	
28 28 28 29	2 Simple 2 f 6 Complex 3 Simple 3 f 7 Period Irreg. Activity	20 23.3 20 43 21 25 12 05	5 33 >1 40 35	20 25 9 20 45.1 520 indet. 24 12 22.9 53	
29 29 29 29 29	1 Simple 1 2 Simple 2 f 2 Simple 2 1 Simple 1 6 Complex	13 02 13 40.5 14 08.6 14 34.4 14 47.1	1 10 2.5 0.3 4	13 02.5 6 13 42 310 14 09 38 14 34.5 7 14 49.1 42	
29 29 29 29 29	1 Simple 1 3 Simple 3 A 1 Simple 1 1 Simple 1 2 Simple 2 4 Post Increase	15 29.5 15 36 16 27 16 52 18 20.5	1 1 10 3 1 12.5 1 30	15 30 4 15 56 22 16 28.5 7 16 52.5 7 18 21.8 1400 34	
29	8 Group (4) 1 Simple 1 1 Simple 1 6 Complex 2 Simple 2	21 17.5 21 17.5 21 24.8 21 29.2 21 36.4	20.4 1 2 3.5 1.5	21 17.9 7 21 25.7 6 21 31.4 220 21 36.8 12	
30 30 30	1 Simple 1 8 Group (2) 2 Simple 2 2 Simple 2 3 Simple 3	12 16.5 14 22.2 14 22.2 14 26 14 57	5 6.3 1 2.5 30	12 18.5 6 14 22.4 9 14 26.8 52 15 01 7	
30 30 30 30 30	2 Simple 2 6 Complex 2 Simple 2 1 Simple 1 2 Simple 2	15 39.3 15 50.5 15 59 17 12.2 17 20.4	2 2.5 3 0.7 1.5	15 40 58 15 51.8 12 16 00.5 18 17 12.4 7 17 20.8 24	
30	3 Simple 3 A f 8 Group (4) 2 Simple 2 2 Simple 2 6 Complex 1 Simple 1 2 Simple 2 2 Simple 2	17 45 17 49 17 49 17 55.3 18 03 18 10.8 18 59 19 08	1 45 23.8 3 3.5 1.5 2 1.5	indet. 17 17 49.5 44 17 56.2 71 18 04 20 18 11.1 7 18 59.5 8 19 08.3 22	
30 30 31 31	3 Simple 3 f A Simple 2 2 Simple 2 f 1 Simple 1 2 Simple 2	19 55 20 57.3 21 57.5 12 56 14 40.5	1 25 2 5 1.5 2	indet. 15 20 57.8 23 21 58.3 22 12 56.5 7 14 41 42	
31 31 31	2 Simple 2 2 Simple 2 7 Period Irreg. Activity	16 51.8 17 29.2 19 30	1.5 1.5 45	16 52.2 23 17 29.6 14 19 43 10	

OTTAWA

2800 MC

HOURS OF OBSERVATIONS: JANUARY, FEBRUARY, MARCH 1958

OBSERVING PERIOD: January 1300 UT - 2120 UT (approx.)

February 1250 UT - 2200 UT (approx.)

March 1155 UT - 2245 UT (approx.)

with the following exceptions:

(1) Records obscured by interference:-

Jan. 6 1535 - 1545 1710 - 1800 1815 - 1840 2000 - 2050 9 1950 - 2020 10 Feb. 4 1815 - 1845 2055 - 2100 6 1930 - 2005 15 23 1555 - 1620 **1640 - 1700** 26 2010 - 2025 Mar. 10 1840 - 1850 1940 - 1950 12 2100 - 2110 13 1835 - 1850 1910 - 1920 2050 - 2115 14 1925 - 2000 2020 - 2025 1835 - 1855 16 17 1840 - 1850 1915 - 1940 2000 - 2020 18 1720 - 1730 22 1630 - 1640 23 1730 - 1745 1755 - 1810 1630 - 1700 24 25 1830 - 1845 28 1800 - 1815 1750 - 1820 31

(2) No observations:

21

Jan.30 1600 - 1615 1630 - 1645 Feb. 3 1705 - 1720 5 1600 - 1615 6 1520 - 1530 7 1505 - 1525 1550 - 1600 1610 - 1625 20 1635 - 1645 1830 - 1850 21 1605 - 1620 22 1650 - 1715 23 1625 - 1640 1605 - 1620 24 1450 - 1910 28 Mar. 1 1605 - 1615

1620 - 1635

SOLAR RADIO EMISSION

DAILY DATA MARCH 1958

CORNELI.

200 MC

Mar. 1958	10 ⁻²² w	x Densit m ⁻² (c/s	3)-1	O Hot	ability to 3		Observing Periods Hours UT
	12 15	15 18	18 21	12 1 5	15 18	18 21	
1 2 3 4 5	[[26 [[14 [[62 [[13 [[14	22] 14] 36 15 14	 18 15	[[2 [[0 [[1 [[0 [[1	2 J 0 J 1 1 0	- - 0 1	1355-1700 1335-1715 1350-2100 1335-2110 1340-2100
6 7 8 9 10	CC 16 CC 24 CC 36 CC 44 CC 54	19 25 40] 48] 61	19 27 46	[[1 [[2 [[2 [[1	1 2 2] 1]	1 3 - - 1	1340-2100 1340-2100 1340-1700 1310-1700 1340-2100
11 12 13 14 15	[[24 [[35 [[19 [[12 [[14	27 40 22 13 14]	35 36 22 12	[[1 [[2 [[1 [[1 [[0	1 2 1 1 0]	2 1 2 1	1330-2105 1335-2100 1330-2100 1345-2100 1315-1700
16 17 18 19 20	CC 12 CC 12 CC 16 CC 12 CC 64	12] 13 13 21 90	13 13 17 111	[[0 [[1 [[3 [[3	0] 0 0 3 3	- 0 0 2 3	1330-1700 1345-2105 1345-1450, 1520-2100 1340-2100 1330-2105
21 22 23 24 25	CC 60 CC 23 CC 34 CC 32	47 25 28] 16 33	39 22 17 34	[[1 [[2 [[2 - [[1	2 2 1] 1	2 2 - 1 1	1335-2110 1345-2045 1325-1700 1520-2105 1345-2100
26 27 28 29 30 31	CC 35 CC 46 CC 52 CC 52 CC 58 CC 20	40 54 44 54] 100] 21	45 53 42 24	[[1 [[1 [[3 [[3 [[2	1 1 1 3] 3]	1 1 1 - - 2	1350-1625, 1740-2100 1330-2130 1405-2100 1300-1715 1255-1700 1340-2105

^{[=} first hour missing.

^{[[=} first two hours missing.

^{] =} last hour missing.

^{]] =} last two hours missing.

SOLAR RADIO EMISSION

OUTSTANDING OCCURRENCES

CORNELL

MARCH 1958

	L			14.	IARCH 19	76		200 MC
						Max. Flu	x Density	
Mar.	Type	Start	Time of	Duration	Type		$r^{-2}(c/s)^{-1}$	
1958	Ap.J	UT	Maximum	Minutes	IAU	Inst.	Smooth	Remarks
2	0	1404		146	F			
3		1754		146	CD	110	58	
	3	1803.5		.5	CD	>204	>142	
5	8	1732.5		2.5	CD	> 51	> 34	off-scale 1733-33.5,
,	$ $	1/32.3		2.5	CD	7 51	7 34	1734-34.5 UT
	3	1843		.5	CD	> 51	> 32	
7	7	1558			E			
	8	1606		2	CA	> 58	> 26	off-scale 1607.5-08 UT
10	0	1517.5		50	SA			
	3	1642.5		.5	CD	>224	>104	off-scale
	3	2019.5		.5	CD	>204	>110	
11	2	1726.5		3	CA	> 54	> 18	
	2	1948		14	CA	> 54	> 16	
12	3	1906.5		1.5	CA	> 233	>135	off-scale 1907.5 UT
13	0	1510		70	CA			
	0	1832		91	F			
14	8	1457		20	ECD	> 54	> 40	off-scale 1504.5 UT
	8	1940.5		10	ECD	> 52	> 37	off-scale 1945, 1946, 1948-50 UT
21	8	1750		2.5	CA	>217	>115	off-scale 1750-50.5 UT
	8	1940		5.5	CD	>224	>132	off-scale 1941-41.5, 1942-42.5, 1943, 1944.5 1945 UT
	2	2045		15	F	9		
22	0	1602		69	F	78	39	
24	8	1635		6	ECD	>190	>146	off-scale 1637-39 UT
	2	1722		12	E			
25	8	1413.5		2	ECD	>204	>109	off-scale
	3	1418.5		2.5	CD	>204	>115	off-scale 1419-19.5 UT
	3	1423	1423.5	1	CD	156	86	
	8	1817		1	CD	>196	>106	off-scale 1817.5-18 UT
	3	2008		2	CD	200	121	
26	3	1528		.5	CD	>204	>121	
28	7,4	1736.5		92	E			
	8	1836.5		3.5	CD	>240	> 84	off-scale
	2	2023		5.5	F			
	3	2023	2023.5	1.5	CD	>240	>134	
29	8	1631.5		2	ECA	> 204	>104	
30	7	1318		92	F			
	0	1524.5		107.5	E			
31	7	1935		93	E			

SOLAR RADIO EMISSION DAILY DATA FEBRUARY 1958

BOULDER

167 MC

BOUL	DEK							Variability					16/ MC
		10	Flux 0-22 _{w n}	Densit	ty s)-1					abil to			Observing Periods
		I	Hours l	JT				Но	urs	UT			Hours UT
Feb. 1958	0 3	12 15	15 18	18 21	21 24	Day	0 3	12 15	15 18	18 21	21 24	Day	
1 2 3 4 5	- - - -	- - - -	20 22 21 39	19 19 20 39	18 19 19 25 56	20 20 22 43	- - - -	-	1 2 2 3	0 0 1S 2 2	1S 0 1S 2	0 0 1S 2 3	19.8-24.1 14.2-24.1 14.2-24.1 14.2-24.2 14.2-16.4,16.8-24.2
6 7 8 9 1 0	-	- - - -	141 769 584 103 147	224 754 448 63 38	205 579 349 903 30	188 716 474 288 76	- - -	-	1 1 1 1 1S	1S 2 0 1 2S	2 2S 1S 2 2S	15 2 1 1 25	14.7-24.2 14.1-24.2 14.1-24.2 14.1-24.3 14.0-24.3
11 12 13 14 15	- - -	-	19 15 23 21 17	18 18 24 22 17	18 55 24 20 18	19 26 24 21 17	- - -	-	1 2 1S 2 1S	1S 1S 2 2S OS	1S 2S 2S 2 0S	15 25 25 2 05	14.0-24.3 14.0-24.3 14.0-24.3 13.9-24.3 13.9-24.3
16 17 18 19 20	- - - -	-	17 20 20 17 19	18 19 18 17 23	19 19 20 23 18	18 19 19 19 20	- - - -	-	1 1S 2S 2S 2S	1 1S 2S 2S 2S	2S 0S 2S 2S 2S	1 15 25 25 25	14.3-24.3 13.9-24.3 13.8-23.3 14.2-24.4 13.8-24.4
21 22 23 24 25	-	-	18 25 53 108 187	18 24 32 109 252	18 21 45 106 273	18 23 43 108 237	-	-	1S 2S 3 2S 2S	OS 1S 2S 2	OS 2S 2S 2S 2	08 28 28 28 2	13.8-24.5 13.8-24.5 13.8-24.5 13.8-24.5 13.7-24.5
26 27 28	-	- - -	457 321 222	431 348 174	326 315 136	405 328 177	-	-	2 2 1	2 2 1S	2S 2 2S	2 2 1S	13.7-24.5 14.3-24.6 13.6-24.6

SOLAR RADIO EMISSION OUTSTANDING OCCURRENCES FEBRUARY 1958

BOULDER

167 MC

Feb.	Type Ap.J	Start UT	Time of	Duration Minutes	Type I AU	Max. Flux Density 10 ⁻²² w m ⁻² (c/s) ⁻¹ Inst. Smooth		Remarks
1 2 3 3 3	2 1 1 3 3	2334 1742 1410 B 1643.3 1723.1	2338.3 1748 1448.4 1643.3 1723.4	06 D 13 595 D 01 00.6	CD MF CD ECD ECD	120 37 520 D 500 D 440 D	- - - -	B2258.9,2323.8 B(groups)1939,2253
4 4 4 4 5	1 2 2 6 6	1410 B 1509.9 1710.7 2050 1410 B	1449 1514.9 1714.1 2308.9 1720	400 D 05.3 14.8 200 D 600 D	MF CD ECD CD	1500 D 1500 D 1300 D 640 D 1400 D	- 450 D 140 7 34	B1423.7,1434.4,1532.4 I 1626-1648 IB1706,1750,1923.7
5 6 7 8 9	3 6 6 6	1931.4 1440 B 1405 B 1405 B 1405 B	1931.9 2102.2 1711.5 1637.0 1431.0	00.9 570 D 605 D 605 D 430 D	CD CD CD CD	1000 D 1800 D 1800 D 1000 D 1100 D	210 790 570 100	N2 B1950.4,LB2336.0 N3 N4
9 10 10 10 11	9 6 8 2 1	2115 1400 B 1910 2336 1400 B	I 2405.2 1912.2 2336.9 1449.2	175 D 615 D 03 02 615 D	CD CD ECD CD F	1900 D 1200 D 1700 D 920 D 280	910 D 130 750 D 540 D	N5,I 2215-2231 LB1415.6,B1437.1,1520.4 B2344,LB2414.5 S, B1408,1509.6
12 12 12 13 14	3 1 9 1 6	1751.8 1756 2220 1400 B 1430	1752.0 1758.5 2331.8 1712.5 1803.8	00.8 264 D 120 I 620 D 590 D	ESD F CD MF CD	830 D 120 1600 D 430 D 830 D	- 600 D - 5	B1555.1 B(groups)2012,2318

COMMERCE - STANDARDS - BOULDER

Notes: 1. Interference may obscure or be mistaken for solar events. Relatively small events are

not reported.

not reported.

February 5, Bursts 1950.0, 2151.2, 2156.2, 2338.3, 2404.1.

February 7, Bursts 1905.4, 2003.8, Large Bursts 2153.2, 2316.7, 2336.9.

February 8, Bursts 1433.0, 2152.8, 2307.1, 2341.3, Large Bursts 1638.4, 2144.0.

February 9, Group of large bursts 1414-1420, Bursts 1708.3, 1852.9.

SOLAR RADIO EMISSION OUTSTANDING OCCURRENCES

BOULDER

FEBRUARY 1958

167 MC

Feb.	Type Ap.J	Start UT	Time of Maximum	Duration Minutes	Type I AU		Density 1-2(c/s)-1 Smooth	Remarks
14 14 16 16 17	3 3 1 3	1436.4 2130.2 1420 B 2248.8 1355 B	1436.4 2130.2 2019.4 2249.2 1801.8	00.3 00.7 600 D 01.1 625 D	ESD ESD MF ECD MF	1100 D 680 D 93 200 73	- - - -	B2121.8,2319.6,LB2341.8
18 18 18 19	1 8 8 1 6	1350 B 1538 1619 1410 B 2100	2102.1 1539.9 1622.9 1633.2 2253	567 D O4 O7 I 410 D 205 D	MF ECD ECD MF CD	750 D 340 250 170 310	100 49 - 8	S, B1403.4,1409.0,2112.3 S, B2038.2,2133.5,2333.6
20 20 21 22 23	1 6 1 6 6	1350 B 1700 1345 B 1345 B	1521.0 2118.5 1721.9 1437.8 1355.1	190 D 445 D 645 D 645 D 645 D	MF CD MF CD CD	200 500 D 110 210 770 D	9 - 8 36	S S, LB1907.0 S S, B1708.6 N6
24 25 26 27 28	6 6 6 6	1345 B 1340 B 1340 B 1415 B 1335 B	- 1800 X 1600 X 2100 X 1420.9	645 D 650 D 650 D 620 D 660 D	CD CD CD CD	1200 D 1300 D 1200 D 1200 D 950 D	110 270 440 340 200	N7

COMMERCE - STANDARDS - BOULDER

Notes: 6. February 23, Large bursts 1357, 1426.4, 1550.8, 1555.4, 1642.1.
7. February 24, Two large bursts occurred at 1914.0, 1941.8, either of which could be considered the maximum. Other large bursts 1749.9, 1916.6.

SOLAR RADIO EMISSION DAILY DATA FEBRUARY 1958

470 MC

BOUL	DER						Variability						470 MC
		10	Flux -22 _{w m}	Densit -2(c/s	y)-1				Vari O	abil to	ity 3		Observing Periods
		H	lours U	T			Hours UT			Hours UT			
Feb. 1958	0 3	12 15	15 18	18 21	21 24	Day	0	12 15	15 18	18 21	2 1 24	Day	
1 2 3 4 5	- - - -	-	88 81 80 81	88 80 80 80	95 80 80 81 82	90 80 80 81 81	- - - -	-	0 0 0 1 0	0 0 0 0	0 0 0S 0	0 0 0 0	14.2-24.1 14.2-24.1 14.2-24.1 14.2-24.2 14.2-24.2
6 7 8 9 10	- - - -	-	82 82 81 81	82 82 81 81	82 82 81 161 81	82 82 81 101 81	- - - -	-	0 0 2 0 0	0 1 0 0 2	OS 2 0 3 1	0 1 1 2 1	14.9-24.2 14.1-24.2 14.1-24.2 14.1-24.3 14.1-24.3
11 12 13 14 15	- - - -	-	81 80 81 80 81	81 80 81 81	81 81 81 81	81 80 81 81 81	- - - -	-	0 0 0S 0	0 0 0 0	0 0 0S 0	0 0 0 0 0	14.0-24.3 14.0-24.3 14.0-24.3 13.9-24.3 13.9-24.3
16 17 18 19 20	- - - -	-	80 80 81 81	81 80 80 80	80 80 80 - 80	80 80 80 81 80	- - - -	-	0 0 0 0 0S	0 0 0 0S 0S	0 0 0 0S 0S	0 0 0 0S 0S	14.4-24.3 13.9-24.4 13.8-24.4 13.8-24.4 13.8-21.0,21.5-24.4
21 22 23 24 25	-	-	81 81 81 81	80 80 81 81	81 81 81 81	81 81 81 81	-	-	OS OS OS OS	0S 0S 0S 0S	OS OS OS OS	0S 0S 0 0S 0S	13.8-24.5 13.8-24.5 13.8-24.5 13.8-24.5 13.7-16.9,22.0-24.5
26 27 28	-	:	81 81 81	81 81 81	81 81 81	81 81 81	-	:	OS O OS	OS OS	OS 1S OS	0S 0S 0S	13.7-24.5 13.7-15.1,16.2-24.5 13.6-24.5

SOLAR RADIO EMISSION OUTSTANDING OCCURRENCES FEBRUARY 1958

BOULDER

470 MC

Feb.	Type Ap.J	Start UT	Time of Maxinum	Duration Minutes	Type I AU	Max. Flu 10 ⁻²² w m Inst.	Density 1-2(c/s)-1 Smooth	Remarks
4 5 5 6 7	1 1 2 1	1410 B 1410 B 1929 B 1453 B 1405 B	1514.9 2308.1 1929.4 1803.4 2007.8	595 D 595 D 0.6 I 557 D 605 D	MF MF CD F MF	200 270 970 150 560	- - - -	N2,N3 N4
7 7 8 9	2 3 2 1 9	2102.1 2331.7 1632 1405 B 2112	2102.6 2331.8 1638.6 1419.9 2204.3	02.2 00.2 08 427 D 133	ECD ECD CD MF CD	980 440 810 590 2300 D	120 - 90 - 230	אַ
10 10 10 10 10	3 8 1 8 0	1859.4 1904 2115 2200 2229 B	1859.5 1906.5 2242.4 2202.2 2238.4	00.5 21 105 03.7 15 I	ECD CD MF ECD CD	2500 D 280 130 210 130	10 - 100	
24 27	1 2	1345 B 2200.6	2155.8 2205.7	645 D 05.2	MF CD	170 490	- -	s, N6

COMMERCE - STANDARDS - BOULDER

Notes: 1. Interference may occasionally obscure or be mistaken for solar events.

2. February 3, small burst at 1648.7.
3. February 4, burst at 1434.3.
4. February 7, small groups of bursts at 2253 and 2336.
5. February 8, large burst 1414.3.
6. February 25, Probable type "1" or "MF" all day

GEOMAGNETIC ACTIVITY INDICES FEBRUARY 1958

Feb.	С	Values Kp Three hour Gr. interval 1 2 3 4 5 6 7 8	Sum Ap	Final Selected
1958		1 2 3 4) 0 0		Days
	0. /	2 1 2 2 2 2 1 2 2	17	
1	0.4	3- 1- 2+ 2+ 30 1+ 2- 3- 3- 2+ 3- 30 2+ 1+ 2- 0+	17- 9 16+ 9	Five
2 3 4	0.2	1- 1+ 10 1+ 30 1+ 20 20	13- 6	Quiet
14	1.1	3- 0+ 10 30 4- 3+ 5- 4-	22+ 17	3
5	1.4	3+ 4+ 4- 40 5- 4- 5- 5-	330 30	15
	1			24
6	1.3	40 4+ 4+ 4+ 4+ 5- 30 4+	33+ 30	25
7 8	1.2	40 4- 40 40 3+ 40 40 40	310 25	26 \
8	1.2	4- 5- 40 40 4- 4- 40 40	32- 27	191
9	1.0	40 40 20 3- 3- 3+ 40 30	26- 18	
10	1.2	40 4- 2- 20 2+ 50 5- 4+	28- 24	
11	2.0	90 8+ 9- 8+ 80 5+ 60 60	60- 199	Five
12	1.8	60 6- 6+ 5+ 40 5- 60 4+	42+ 59	Disturbed
13	1.0	4- 2- 3+ 4- 4+ 4- 30 2+	26- 18	
14	1.2	40 50 40 30 3+ 4+ 2+ 20	280 23	6
15	0.5	2- 10 10 2+ 2+ 3- 2+ 3-	16o 8	11
16				12
16	0.9	2+ 1- 1+ 3+ 30 40 3+ 30	210 14	17
17 18	1.3	40 5- 40 4- 5- 40 5- 40	34- 31	18
19	1.3 1.1	40 50 4+ 4+ 40 3+ 50 4-	34- 32	
20	1.2	4+ 4- 5- 4- 3+ 30 40 4- 4- 40 30 40 40 30 5- 5-	30+ 25	
	1.4	4- 40 30 40 40 30 3- 3-	310 26	
21	1.3	3+ 5- 4+ 4- 4+ 30 5- 50	330 31	Ten
22	1.1	5- 40 4- 40 4- 30 4- 40	31- 25	Quiet
23	0.9	4+ 40 40 4- 30 3+ 30 3-	280 21	
24	0.3	2+ 3- 20 3- 3- 2- 2- 1-	16+ 8	1
25	0.2	1- 20 3- 20 1- 1- 1+ 1-	11- 5	2
26	0.0	2-2-2-2-1-1-2-1-	1,	3
27	0.2	20 20 3- 20 1+ 10 2- 1+	140 7	15
28	0.8	3- 10 10 10 2- 20 3+ 4- 20 2+ 3+ 40 4+ 3- 2+ 20	16+ 10 23o 15	16
20	0.0	20 21 37 40 47 3- 27 20	230 13	24 25
				26
				27
				28
Mean:	0.96		Mean: 27	
			-	

CRPL RADIO PROPAGATION QUALITY FIGURES AND FORECASTS

NORTH ATLANTIC

FEBRUARY 1958

Feb. 1958	North Atlantic 6-hourly quality figures	Short-term forecasts issued about one hour in advance of:	Whole day index	Advance forecasts (J-reports) for whole day; issued in advance by:	Geomag- netic K _{Fr}
	00 06 12 18 to to to to 06 12 18 24	00 06 12 18		1-4 4-7 8-25 days days days	Half Day (1) (2)
1 2 3 4 5	7- 7- 70 70 6+ 7- 70 70 70 7- 70 7+ 70 7- 70 60 5+ 50 70 60	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 5 6 6	70 7- 70 7- 6-	7 7 7 7 7 7 7 7 7 7	2 2 3 1 1 2 2 3 (4) (4)
6 7 8 9 10	6- 6- 7- 60 60 6- 7- 60 6+ 7- 7- 6+ 6+ 6+ 7- 60 7- 7- 6+ 5-	6 6 7 6 6 6 7 6 6 6 7 7 6 7 7 7 7 7 6	60 6+ 7- 6+ 60	7 7 6 7 6 7 6 7 6 7	(4) (4) 3 3 (4) (4) 3 3 3 3
11 12 13 14 15	3- 1+ 30 3+ 3+ 40 6+ 6- 6+ 6+ 7- 6+ 6+ 6+ 7- 70 7-	6 2 3 3 3 2 5 5 5 6 7 6 6 6 6 6 6 6 6 6	(3-) (4+) 6+ 6+ 7-	6 6 5 7 4 7 6 4 6 6	(9) (6) (5) (5) 3 3 3 2 1 2
16 17 18 19 20	7- 7- 7- 70 7- 6+ 7- 6- 5+ 5 0 6+ 6- 60 60 7- 6+ 6- 6+ 70 6+	6 6 7 6 6 6 6 6 5 5 6 5 5 6 6 6 6 6 6 6	7- 6+ 6- 6+ 6+	6 6 7 6 6 7 6 7 6 7	1 3 (4) (4) (4) 3 (4) 3 3 3
21 22 23 24 25	6- 60 70 60 6- 6+ 70 6+ 6- 60 70 7- 60 7- 70 70 70 7- 7+ 7+	6 5 6 6 6 5 7 6 6 6 7 6 6 6 7 7 7 7 7 7	6+ 6+ 6+ 7- 70	6 6 6 6 6 6 7 6	(4) 3 3 3 (4) 3 2 2 2 1
26 27 28	70 70 70 70 70 70 70 70 7- 7- 70 70	7 7 7 7 7 7 7 7 7 7 7 7	70 70 7-	7 6 7 6 7 7	2 2 1 3 3 3
Score: Quiet Periods P 20 19 18 18 18 10 5 6 7 9 9 7 15 U 0 0 0 0 0 0 0 0 0 0 F 0 0 0 0 1 1					
D	isturbed Periods	P 1 0 1 1 S 0 1 0 0 U 0 1 0 0 F 1 0 0 0		0 0 1 0 0 0 1 2	у

^() represent disturbed values.

CRPL RADIO PROPAGATION QUALITY FIGURES AND FORECASTS NORTH ATLANTIC

9

QUALITY 2002

USEFUL FREQUENCY RANGES -- NORTH ATLANTIC PATH FEBRUARY 1958

FEBRUARY 1958

CRPL RADIO PROPAGATION QUALITY FIGURES AND FORECASTS

NORTH PACIFIC FEBRUARY 1958

Feb. 1958	North Pac 8-hourl quality fi	у	Short- casts		fore- ed at	Whole day index	(Jp : whole	nce forecasts reports) for e day; issued advance by:	Geometric RS:	ic
	to to	19 to 03	02	10	18		1-4 day:	4-7 8-25 days days	Half	Day
1 2 3 4 5	6 5 6 6 6 5 6 5	6 7 7 7 6	6 6 7 6 6	7 6 6 7 5	6 6 6 6	6 7 6 6	7 6 6 7 6	7 7 7 7	2 2 0 1 (4)	2 2 2 3 (5)
6 7 8 9 10	6 5 6 6 5 5 5 6 5 5	5 6 6 5 4	6 5 6 6 5	5 5 6 5	6 5 6 6 5	5 6 5 5 5	6 6 5 5	7 7 6 6 6	(4) (4) (4) 2 2	(4) (4) (4) 3 (4)
11 12 13 14 15	2 2 3 4 6 5 6 5 5 6	4 6 7 6 6	3 3 5 6 6	2 4 5 6 5	3 6 6	(2) (4) 6 6 6	6 3 4 6 6	6 6 6 6	(9) (6) 3 (4) 1	(6) (5) (4) 3 2
16 17 18 19 20	6 5 7 4 5 5 6 6 6 6	6 6 5 6	6 6 5 5	6 6 5 6	6 5 6 6	6 5 5 6 6	6 7 7 5 6	6 6 6 7 7	2 (4) (4) (4) (3	3 (4) (4) (4) (4)
21 22 23 24 25	6 5 6 5 5 5 5 6	6 6 6 7	6 5 6 6	6 5 4 5 6	6 6 6 7	6 6 6 6	6 5 5 5 6	7 7 7 7 7	(4) (4) (4) 2 1	(4) 3 2 2 1
26 27 28	6 6 7 6 6 6	8 6 7	6 6 6	6 7 6	7 7 6	7 7 6	6 6 6	6 6 6	1 0 3	2 2 3
Score:	Score: Quiet Periods P 12 14 13 S 14 9 12 U 0 2 0 F 0 0 1			12 11 2 1	6 19 1 0					
]	S 1 0 U 0 0			0 2 0 0		0 1 0 1	0 0 0 2			

^() represent disturbed values.

CRPL RADIO PROPAGATION QUALITY FIGURES AND FORECASTS NORTH PACIFIC FEBRUARY 1958

OUTCOME OF ADVANCED FORECASTS 1 TO 4 DAYS AHEAD

ALERT PERIODS AND SPECIAL WORLD INTERVALS

Alert Issued Ends 1600 UT 1600 UT	SWI Issued Ends 0001 UT 2400 UT	A _{Be} On Days of Alert Period (SWI Underlined)	Number of Flares of IMP ≥ 2 Reported Promptly on Days of Alert Period
1958			
Mar 02-Mar 07 Mar 12-Mar 13 Mar 14-Mar 16 Mar 20-Apr 01	Mar 05-Mar 05 Mar 15-Mar 15 Mar 23-Mar 25 Mar 30-Mar 31	09-21-27- <u>31</u> -31-20 44-38 16- <u>24</u> -19 23-33-22- <u>16-16-24</u> -18- -16-12-10- <u>27</u> - <u>14</u> -20	0-1-0-0-0-1 2-0 1-0-0 8-3-0-3-2-7-1- -6-9-2-9-2-1

