Properties of Regular Languages

Chapter – 4

4.1 – Closure Properties of Regular Languages

Closure Properties of Regular Languages

• If L1 and L2 are regular languages, then so are

```
\rightarrowL1 U L2,
```

$$\rightarrow$$
L1 \cap L2,

$$\rightarrow$$
 L1L2,

 \rightarrow L1,

→L1*

• The family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof:

- If L1 and L2 are regular, then there exist regular expressions r1 and r2 such that L1 = L(r1) and L2 = L(r2).
- By definition, r1 + r2, r1r2, and r1* are regular expressions denoting the languages $L1 \cup L2$, L1L2, and L1*.
- To show closure under complementation, let $M = (Q, \Sigma, \delta, q0, F)$ be a dfa that accepts L1.

Then the dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$ accepts L1

- Assume δ^* to be a total function, so that δ^* (qo,w) is defined for all $w \in \Sigma^*$.
- Consequently either $\delta^*(q0,w)$ is a final state, in which case $w \in L$, or $\delta^*(q0,w) \in Q F$ and $w \in \overline{L}$
- To demonstrating <u>closure under intersection</u> Let L1 = L (M1) and L2 = L(M2), where $M1 = (Q, \Sigma, \delta 1, q0, F1)$ and $M2 = (P, \Sigma, \delta 2, p0, F2)$ are dfa's.
- So the combined automaton $\widehat{M} = (\widehat{Q}, \Sigma, \widehat{\delta}, (q_0, p_0), \widehat{F})$ whose state set $\widehat{Q} = Q \times P$ consists of pairs (qi, pj), and whose transition function $\widehat{\delta}$ is such that \widehat{M} is in state (qi, pj) whenever M1 is in state qi and M2 is in state pj. So

$$\widehat{\delta}\left(\left(q_{i},p_{j}\right),a\right)=\left(q_{k},p_{l}\right), \quad \text{Where} \quad \delta_{1}\left(q_{i},a\right)=q_{k} \quad \text{and} \quad \delta_{2}\left(p_{j},a\right)=p_{l}.$$

• Using DeMorgan's Law, taking complement on both sides of $\overline{L1 \cap L2} = \overline{L1} \cup \overline{L2}$

$$L_1 \cap L_2 = \overline{L_1 \cup \overline{L_2}}$$

• If L1 and L2 are regular then by closure under complementation , Union and again complementation , $L_1 \cap L_2 = \overline{L_1 \cup \overline{L_2}}$ is regular.

 Similarly regular languages are closed under difference as well as under reversal.

<u>Homomorphism</u>

• Definition of homomorphism is given as

Suppose Σ and Γ are alphabets. Then a function

$$h : \Sigma \rightarrow \Gamma^*$$

is called a **homomorphism**. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

$$w = a_1 a_2 \cdots a_n$$

then

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on Σ , then its **homomorphic image** is defined as

$$h(L) = \{h(w) : w \in L\}$$

Example 1:

Let $\Sigma = \{a, b, c\}$ and $\Gamma = \{a, b, c,\}$ define h by

$$h(a) = ab,$$

 $h(b) = bbc.$

Then h(aba) = abbbcab. The homomorphic image of $L = \{aa, aba\}$ is the language $h(L) = \{abab, abbbcab\}$.

If L is a regular language, then its homomorphic image h (L) is also regular. The family of regular languages is therefore closed under homomorphisms.

Example 2:

Take $\Sigma = \{a, b\}$ and $\Gamma = \{b, c, d\}$. Define h by

$$h\left(a\right) =dbcc,$$

$$h(b) = bdc.$$

If L is the regular language denoted by

$$r = (a + b^*) (aa)^*,$$

then

$$r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$$

denotes the regular language h(L).

Right Quotient

Let L_1 and L_2 be languages on the same alphabet. Then the **right quotient** of L_1 with L_2 is defined as

$$L_1/L_2 = \{x : xy \in L_1 \text{ for some } y \in L_2\}.$$

Example 1:

$$L_1 = \{a^n b^m : n \ge 1, m \ge 0\} \cup \{ba\}$$

$$L_2 = \{b^m : m \ge 1\},\,$$

$$L_1/L_2 = \{a^n b^m : n \ge 1, m \ge 0\}.$$

$$L_1 = \{a^n b^m : n \ge 1, m \ge 0\} \cup \{ba\}$$

$$L_2 = \{b^m : m \ge 1\},$$

$$L(M0) = aa^* + aa^*bb^* + ba$$

 $L(M1) = a^* + a^*bb^*$
 $L(M2) = b^*$
 $L(M3) = a$
 $L(M4) = \lambda$
 $L(M5) = \Phi$

Now Find intersection with L2 L(M0): $L(aa^* + aa^*bb^* + ba) \cap L(bb^*) = \Phi$ L(M1): $L(a^* + a^*bb^*) \cap L(bb^*) \neq \Phi$ L(M2): $L(b^*) \cap L(bb^*) \neq \Phi$ L(M3): $L(a) \cap L(bb^*) = \Phi$ L(M4): $L(\lambda) \cap L(bb^*) = \Phi$ L(M5): $L(\Phi) \cap L(bb^*) = \Phi$

Now only make M1 and M2 as acceptor in L1/L2

$$L_1/L_2 = \{a^n b^m : n \ge 1, m \ge 0\}.$$

Output after making q1 and q2 as acceptor state

Try Example 2.....

Find L_1/L_2 for

$$L_1 = L(a^*baa^*),$$

 $L_2 = L(ab^*).$