The main agenda is not to build the best model for this data but to learn about how to use regularization and apply the theory concepts I learn about ridge and lasso.

```
import warnings
In [1]:
         warnings.filterwarnings('ignore')
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.preprocessing import Normalizer
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LinearRegression
         from sklearn.metrics import mean_squared_error
         sns.set(style="darkgrid")
         df = pd.read csv('auto-mpg.csv')
In [2]:
In [3]:
         print(df.shape)
         df.head()
         (398, 9)
Out[3]:
                                                                           model
            mpg cylinders displacement horsepower weight acceleration
                                                                                  origin
                                                                                            car name
                                                                             year
                                                                                             chevrolet
            18.0
                                   307.0
                                                 130
                                                       3504
                                                                     12.0
                                                                              70
                                                                                      1
                                                                                             chevelle
                                                                                               malibu
                                                                                          buick skylark
            15.0
                         8
                                   350.0
                                                 165
                                                       3693
                                                                     11.5
                                                                              70
                                                                                                 320
                                                                                            plymouth
         2
            18.0
                         8
                                   318.0
                                                 150
                                                       3436
                                                                     11.0
                                                                              70
                                                                                      1
                                                                                              satellite
            16.0
                                   304.0
                                                                     12.0
                                                                              70
                                                                                       1 amc rebel sst
         3
                                                 150
                                                       3433
                                                                     10.5
                                                                              70
            17.0
                         8
                                   302.0
                                                 140
                                                       3449
                                                                                           ford torino
```

Basic idea about data

```
# checking for any null value present in the dataset
In [4]:
         # we are good to go as no null value we have.
         df.isna().sum()
        mpg
                         0
Out[4]:
                         0
        cylinders
        displacement
                         0
        horsepower
                         0
        weight
                         0
        acceleration
                         0
        model year
                         0
        origin
                         0
        car name
                         0
        dtype: int64
```

```
In [5]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):
                  Non-Null Count Dtype
     Column
     _____
                                   _ _ _ _ _
 0
                   398 non-null
                                   float64
     mpg
 1
     cylinders
                   398 non-null
                                   int64
 2
     displacement 398 non-null
                                   float64
 3
     horsepower
                  398 non-null
                                   object
 4
                                   int64
    weight
                   398 non-null
     acceleration 398 non-null
 5
                                   float64
 6
     model year 398 non-null
                                   int64
 7
                  398 non-null
                                   int64
     origin
     car name
                   398 non-null
 8
                                   object
dtypes: float64(3), int64(4), object(2)
memory usage: 28.1+ KB
```

'horsepower' column is object type so let's convert it into float.

There is non numeric value ('?') present in 6 rows so because of less dirty row we can drop those rows.

• Also df.describe() indicate that feature scalling is required and attribute ranges differently for regression analysis.

```
In [6]: # Basic information about data
df.describe()
```

Out[6]:	Out	[6]	:
---------	-----	-----	---

	mpg	cylinders	displacement	weight	acceleration	model year	origin
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	2970.424623	15.568090	76.010050	1.572864
std	7.815984	1.701004	104.269838	846.841774	2.757689	3.697627	0.802055
min	9.000000	3.000000	68.000000	1613.000000	8.000000	70.000000	1.000000
25%	17.500000	4.000000	104.250000	2223.750000	13.825000	73.000000	1.000000
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	76.000000	1.000000
75%	29.000000	8.000000	262.000000	3608.000000	17.175000	79.000000	2.000000
max	46.600000	8.000000	455.000000	5140.000000	24.800000	82.000000	3.000000

```
In [7]: # data preprocessing
    df = df[df.horsepower!='?']
    df.drop(columns='car name', axis=1, inplace=True )
    df.horsepower = df.horsepower.astype(float)

In [8]: print(sns.distplot(df.mpg).set_title('distribution plot - mpg'))
    # slightly right skewed distribution
```

Text(0.5, 1.0, 'distribution plot - mpg')

In [9]: print(sns.histplot(df.cylinders).set_title('cylinders counts'))
mejorly 4 cylinders in the data

Text(0.5, 1.0, 'cylinders counts')


```
In [10]: # distribution and skewness of data for further analysis
fig, axs = plt.subplots(3, 2, figsize=(14, 14))

sns.histplot(data=df, x="mpg", color="skyblue", kde=True, ax=axs[0, 0])
sns.histplot(data=df, x="acceleration", color="red", kde=True, ax=axs[0, 1])
sns.histplot(data=df, x="displacement", color="olive", kde=True, ax=axs[1, 0])
sns.histplot(data=df, x="horsepower", color="gold", kde=True, ax=axs[1, 1])
sns.histplot(data=df, x="weight", color="teal", kde=True, ax=axs[2, 0])
plt.show()
```



```
In []:

In [11]: # target and feature seperation
```

```
In [11]: # target and feature seperation
y = df.iloc[:,0:1]
X = df.iloc[:,1:]
```

```
In [12]: # scalling using L2 norm
    norm_scaler = Normalizer().fit(X)
    X.loc[:,:] = norm_scaler.transform(X)
    X.head(3)
```

Out[12]:		cylinders	displacement	horsepower	weight	acceleration	model year	origin
	0	0.002272	0.087202	0.036926	0.995299	0.003409	0.019883	0.000284
	1	0.002154	0.094240	0.044428	0.994372	0.003096	0.018848	0.000269
	2	0.002316	0.092049	0.043419	0.994593	0.003184	0.020262	0.000289

```
# splitting data into 2/3 training set and 1/3 testing set
In [13]:
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_sta
         # model fitting
In [14]:
         model_linear = LinearRegression()
         model_linear.fit(X_train, y_train)
Out[14]:
         ▼ LinearRegression
         LinearRegression()
         # prediction
In [15]:
         y_pred_linear = model_linear.predict(X_test)
         mean_squared_error(y_test, y_pred_linear)
In [16]:
         7.509541105366527
Out[16]:
         # checking weights/theta of each feature
In [17]:
         model_linear.coef_
                                   -59.97523525, -392.17357538, -1627.07954354,
         array([[-2921.95396213,
Out[17]:
                 -1067.47680963, 1132.17455966,
                                                    509.93710123]])
In [ ]:
```

Let's implement liner regression with regularization.

```
from sklearn.linear model import RidgeCV, LassoCV
In [18]:
         #from sklearn.model_selection import cross_val_score
         alphas = [10**-6, 10**-5, 10**-4, 10**-3, 10**-2, 10**-1, 0.5]
In [19]:
         model RidgeCV = RidgeCV(alphas=alphas, cv=10).fit(X train, y train)
         y_pred_RidgeCV = model_RidgeCV.predict(X_test)
         mean_squared_error(y_test, y_pred_RidgeCV)
In [20]:
         7.54016330504988
Out[20]:
In [ ]:
         model_LassoCV = LassoCV(alphas=alphas, cv=10).fit(X_train, y_train)
In [21]:
         y pred LassoCV = model LassoCV.predict(X test)
         mean_squared_error(y_test, y_pred_LassoCV)
In [22]:
         7.5140637978676965
Out[22]:
         # best alpha for each model
In [23]:
         model_LassoCV.alpha_, model_RidgeCV.alpha_
         (1e-05, 1e-05)
Out[23]:
```

```
# Comparison of regression models
In [24]:
          compare = pd.DataFrame(data = [model_RidgeCV.coef_.tolist()[0], model_LassoCV.coef_.to
                         columns=X test.columns,
                         index=['RidgeCV', 'LassoCV', 'OLR'])
          compare['best alpha'] = [model RidgeCV.alpha , model LassoCV.alpha , None]
          compare['mean_squared_error'] = [mean_squared_error(y_test, y_pred_RidgeCV), mean_squared_error
          compare
Out[24]:
                       cylinders displacement horsepower
                                                               weight
                                                                       acceleration
                                                                                    model year
                                                                                                    origi
          RidgeCV -1328.106284
                                   -44.785126
                                              -345.248721
                                                          -1041.002511
                                                                        -991.355322
                                                                                    1101.180946
                                                                                                207.97598
           LassoCV -2591.741749
                                   -53.626718
                                              -376.485111
                                                         -1453.931703
                                                                      -1036.970086
                                                                                    1128.985007
              OLR -2921.953962
                                   -59.975235
                                              -392.173575 -1627.079544 -1067.476810 1132.174560
                                                                                                509.93710
```

Observation:

- As we can see that LassoCV reduce the overfitting far batter than RidgeCV.
- Also, LassoCV helped to reduce coefficient of attritube to zero, eventually in helps in feature selections process to improve the model over other.
- for example 'weight' attribute is not that important in prediction as it's coefficient is zero in LassoCV shown in above table. Similarly for 'cylinders' and 'origin' column.
- Similarly, if we carefully obeserv the above then get to know that as per the LassoCV
 'displacement' attribute is directly dependent on mpg wheres in RidgeCV its inversly
 proportional to target variable.

Note that L1 regularization or Lasso create sparcity in the data. weights of corresponding features became zero.

```
Most of the columns can treat as categorical, like cylinders, model year, origin, horsepower (with feature engineering), and use other algorithms to get better accuracy.

In [ ]:
```