

Corrigé du contrôle de MAT2053 du 14 février 2019

Exercice 1. Sans justifier votre réponse, répondre par vrai : V ou par Faux : F.

1) (\mathbf{R}^*,\times) est un groupe : **V** 0,5 pt

2) $({\bf Z}/12{\bf Z},+)$ est un groupe : **V** 0,5 pt

3) $(\mathbf{Z}/8\mathbf{Z})\setminus\{\bar{0}\},\times\}$ est un groupe : **F** car « × » n'est pas une loi interne dans $(\mathbf{Z}/8\mathbf{Z})\setminus\{\bar{0}\}$ 0,5 pt

4) (] $-\infty$,0[,×) est un groupe : **F** car « × » n'est pas une loi interne dans] $-\infty$,0[0,5 pt

Exercice 2.

1) Prouver que $\bar{5}$ est inversible dans $\mathbb{Z}/46\mathbb{Z}$

5 est un entier premier et 5 ne divise pas 46 donc $p \gcd(5,46) = 1$, d'où $\frac{1}{5}$ est inversible dans $\mathbb{Z}/46\mathbb{Z}$ 1 pt

2) Dans $\mathbb{Z}/46\mathbb{Z}$ calculer \bar{a} où $a = 343 \times 46 + 9 \times 5$

Dans **Z**/46**Z**, on a: $\bar{a} = \overline{343} \times \overline{46} + \bar{9} \times \bar{5} = \bar{0} + \bar{9} \times \bar{5} = \overline{45}$ **0,5 pt**

3) Résoudre dans $\mathbb{Z}/46\mathbb{Z}$, l'équation : $5\overline{x} + \overline{24} = \overline{34}$

D'après la question 1) on sait que $\overline{5}$ est inversible dans $\mathbb{Z}/46\mathbb{Z}$ et on remarque que $\overline{9} \times \overline{5} = \overline{45} = \overline{-1}$ dans $\mathbb{Z}/46\mathbb{Z}$ d'où $\overline{-9} = \overline{37}$ est l'inverse de $\overline{5}$ dans $\mathbb{Z}/46\mathbb{Z}$.

On a:
$$5x + 24 = 34 \Leftrightarrow 5x = 10 \Leftrightarrow -9 \times 5x = -9 \times 10 \Leftrightarrow x = -90 \Leftrightarrow x = -90 = 2$$

Donc dans $\mathbb{Z}/46\mathbb{Z}$ l'ensemble des solutions de l'équation : $\overline{5x} + \overline{24} = \overline{34}$ est $S = \{\overline{2}\}$ 1,5 pts

Exercice 3.

Soit ${\bf Z}$ muni de la loi de composition interne « * » définie par :

Si
$$(x, y) \in \mathbf{Z} \times \mathbf{Z}$$
, $x * y = x - 2y$

1) La loi « \ast » est-elle commutative dans ${\bf Z}$? Justifiez votre réponse

On a $(0,1) \in \mathbb{Z} \times \mathbb{Z}$, 0*1=0-2=-2 et 1*0=1-0=1 donc $0*1 \neq 1*0$

Conclusion : la loi « * » n'est pas commutative dans Z 1 pt

2) Z muni de la loi « * » admet-il un élément neutre ? Justifiez votre réponse

Supposons que $(\mathbf{Z},*)$ admet un élément neutre e .

Donc $e \in \mathbb{Z}$, $\forall x \in \mathbb{Z}, x * e = x$ et e * x = x en particulier e * e = e

D'où $e-2e=e \Leftrightarrow -2e=0 \Leftrightarrow e=0 \in \mathbb{Z}$

Vérifions si on a $\forall x \in \mathbb{Z}, x*0 = x \text{ et } 0*x = x \text{ ceci est faux en effet}$

Car pour x=1, 0*1=-2 donc $0*1 \ne 1$.

Conclusuion : $(\mathbf{Z},*)$ n'admet pas un élément neutre. 1,5 pts

Exercice 4.

Dans (S_3, \circ) le groupe des permutations de $\{1, 2, 3\}$, on considère les éléments suivants :

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
; $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ et $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$

1) Calculer $\sigma \circ \tau$.

$$\sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
 0,5 pt

2) Montrer que $(\{id; \tau\}, \circ)$ est un sous-groupe de (S_3, \circ)

On a
$$\tau \circ \tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = id$$
 donc

0	id	τ
id	id	τ
τ	τ	id

On a $\{id;\tau\}\subset S_3$, $id\in\{id;\tau\}$, et d'après la table de Klein, on remarque que :

- La loi « \circ » est interne dans (S_3, \circ)
- l'inverse (symétrique) de id est $id \in \{id; \tau\}$
- l'inverse (symétrique) de τ est $\tau \in \{id; \tau\}$

Conclusion : $(\{id; \tau\}, \circ)$ est un sous-groupe de (S_3, \circ) 1 pt

3) Montrer que $(\{id\,;\tau\,;\sigma;\sigma\circ\tau\},\circ)\,$ n'est pas un sous-groupe de (S_3,\circ)

On sait que $ord(S_3) = 3! = 6$, $card(\{id; \tau; \sigma; \sigma \circ \tau\}) = 4$.

Donc $card(\{id;\tau;\sigma;\sigma\circ\tau\})$ ne divise pas $ord(S_3)$ d'où d'après le théorème de Lagrange $(\{id;\tau;\sigma;\sigma\circ\tau\},\circ)$ n'est pas un sous-groupe de (S_3,\circ) 1 pt