

RPC 2018 – XIV Workshop on Resistive Plate Chambers and Related Detectors

The CBM Time-of-Flight wall

Ingo Deppner

Physikalisches Institut der Uni. Heidelberg

Outline:

- Introduction
- CBM-ToF requirements
- TDR ToF wall design
- Low resistive material and the BFTC
- Test beam time at CERN and the MRPC1/2 prototype
- Pre-mass production for MRPC3a/b counter
- FAIR Phase 0 program
- Summary

CBM spectrometer

Engineering design of the CBM experiment

Nominal ToF
position is
between 6 m and
10 m from the
target

Movable design allows for optimization of the detection efficiency of weakly decaying particles (Kaons)

Interaction rate 10 MHz

Incident particle flux

URQMD simulated charged particle flux from Au + Au events for an interaction rate of 10 MHz

- Flux ranging from 0.1 to 100 kHz/cm²
- At different regions
 Time-of-Flight detectors
 with different rate
 capabilities are needed

Requirements

Charged hadron identification is provided by Time-of-Flight (ToF) measurement

CBM-ToF Requirements

- \triangleright Full system time resolution $\sigma_T \sim 80$ ps
- ➤ Efficiency > 95 %
- ➤ Rate capability ≤ 30 kHz/cm²
- ➤ Polar angular range 2.5° 25°
- > Active area of 120 m²
- ➤ Occupancy < 5 %
- Low power electronics (~100.000 channels)
- > Free streaming data acquisition

Multi-gap Resistive Plate Chambers (MRPC) are the most suitable ToF detectors fulfilling our requirements

TDR ToF wall layout

M6	M6	M5 M5	M5 M5	M4 M4	M5 M5	M5 M5	M6	M6																			
		M5	M5	M4	M5	M5																					
M6	M6	M5	M5	M4	M5	M5	M6	M6																			
	ME	M5	M5	M4	M5	M5	MG																				
M6	M6	M5	M5	M4	M5	M5	M6	M6																			
	M6	M5	M5	M4	M5	M5	M6																				
M6	1010	M5	M5	M4	M5	M5	IVIO	M6																			
	M6	M5	M5	M4	M5	M5	M6																				
M6	1410	M5	M5	M4	M5	M5	IVIO	M6																			
	M6	M5				M5	M6																				
M6	1410	M5	M3	M1	M3	M5	WIO	M6																			
	M5	M5	IVIS	IVII	IVIS	M5	M5																				
M6	M5	M5				M5	M5	M6																			
	M5	M5			M2	M5	M5																				
M6	M5	M5	M2			M5	M5	M6																			
	M5	M5				M5	M5																				
M6	M5	M5				M5	M5	M6																			
	M5	M5	M3	M1	M3	M5	M5																				
M6	M6	M5	IVIS	IVII	IVII	IVII	IVII	IVII	IVII	IVII	IVII	IVII		WII	WII	WII	WII.	IVII	IVII	IVII	IVII	IVII	IVIT	IVIS	M5	M6	M6
	IVIO	M5				M5	IVIO																				
M6	M6	M5	M5	M4	M5	M5	M6	M6																			
		M5	M5	M4	M5	M5																					
M6	M6	M5	M5	M4	M5	M5	M6	₩																			
		15	M5	M4	M5	M5		_ 																			
M6	M6	M5	M5	M4	M5	M5	M6	M6																			
		M5	M5	M4	M5	M5																					
C	iname.	M5	M5	A	M5	M5	c	b																			
e		M5	M5	N 4	M5	M5																					
		M5	M5	M4	M5	M5	3 3 1 1	* * * * *																			
- は腫	a 0	M5			January Developed 11	M5	- Properties																				
44	a	M5				M5		'																			
f-1		M5			d [d]	M5																					

- 6 types of modules (M1 – M6) only
- A module contains several MRPC counters
- Region containing counters equipped with float glass
- Region containing counters equipped with low resistive glass
- Region containing counters equipped with ceramic material

TDR ToF wall layout

		M5	M5	M4	M5	M5		
	M6	IVIO	IVIO	1014	IVIO	IVIO	M6	
M6		M5	M5	M4	M5	M5		M6
	146	M5	M5	M4	M5	M5	M6	
M6	M5	M5	M4	M5	M5	IVIO	M6	

6 types of modules
 (M1 – M6) only

Module	Number	Module size	Number of	Number of	Number of	Number
notation	of		MRPCs	MRPCs	cells per	of cells
	modules	mm^3	per module	in total	module	in total
M1	2	1270 × 1417 × 239	32	64	2048	4096
M2	2	2140 × 705 × 239	27	54	1728	3456
M3	4	1850 × 1417 × 239	42	168	2688	10752
M4	24	1802 × 490 × 110	5	120	160	3840
M5	132	1802 × 490 × 110	5	660	160	21120
M6	62	1802 × 740 × 110	5	310	160	9920
Sum	226			1376		53184

Table 3.1: Numbers and dimensions of the modules.

	Mp	ME	IVI5	IVI5	IVI4	IVI5	IVI5	ME	Mp
H	IVIB	IVIO	M5	M5	M4	M5	M5	IVIO	
	M6	NAC	M5	M5	M4	M5	M5	ME	M6
	M6	M5	M5	M4	M5	M5	IVIO		

⇒ 106368 readout channels

Ceramic RPCs for BFTC

Important scopes of High Energy Heavy Ion experiments are the start-time and the reaction-plane determination. For CBM the use of RPC for the Beam Fragmentation T₀ Counter (BFT₀C) with low resistive radiation hard examine electrodes and small phase heard like single.

radiation hard ceramics electrodes and small chess-board like single cells is under consideration.

1 RPC

3 cells

24 mm

Resistive Glass Development

 ρ / ρ after $^{\prime}$ before

CBM ToF

Resistive glass for high-rate MRPCs is developed in Beijing, China

Maximal dimension	$32\mathrm{cm} \times 30\mathrm{cm}$
Bulk resistivity	$10^{10} \ \Omega \mathrm{cm}$
Standard thickness	0.7, 1.1mm
Thickness uniformity	$20~\mu\mathrm{m}$
Surface roughness	< 10nm
Dielectric constant	7.5 - 9.5
DC measurement	Ohmic bebavior
	stable up to 1 C/cm^2

Semiconductive glass

Float glass

10¹¹

- Cyclotron U-120M (Řež)
- Proton energy, 36 MeV
- Neutron production target, Be
- Neutron flux, 10⁸ 10¹⁰ n/cm²/s
- Neutron energy spectra, 1 36 MeV

10¹² 10¹³ 10¹⁴ neutron fluence [n/cm²]

TDR ToF wall layout high rate region

М6

M6

M6

M6

M6

M6

M6

M6

M6

M6

	10000	
MRPC notation	MRPC1	MRPC2
Number of MRPCs	40	246
Active area [mm ²]	300×100	300×200
Number of Strips per MRPC	64	64
Strip length [mm]	100	200
Granularity (cell size) [mm ²]	472.4	944.8
Number of gas gaps	10	10
Gap size μ m	140	140
Glass size [mm ²]	320×100	320×200
Glass thickness [mm]	0.7	0.7
Number of glass plates	12	12
Glass type	low res.	low res.
Total glass surface [m ²]	15.36	188.93

Alternative solution with Pad-MRPCs is available

Beam-time @ SPS in Nov. 2015

Event display after position calibration

- 1 Track (blue) with hit multiplicity 8
- 2 Tracks (green) with hit multiplicity 7
- 1 Track (light blue) hit with multiplicity 6
- 1 Track (pink) with hit multiplicity 5

The opportunity to reconstruct tracks offers new possibilities to analyze and study the counters in much greater detail: multi hit response, 2d position dependencies

Beam-time @ SPS in Nov. 2015

MRPC1/2 prototype developed at Bucharest

- Metal HV strip electrodes
- Innovative method of impedance matching
- Impedance independent of the granularity adjustable
- Impedance tuned to 100Ω
- arXiv:1708.02707

RPC 2018 Puerto Vallarta, 19 - 23.02.2018 11

TDR ToF wall layout intermediate rate region

	M6	M5	M5	M4	M5	M5	M6	
M6		M5	M5	M4	M5	M5		M6
M6	M6	M5 M5	M5 M5	M4 M4	M5 M5	M5 M5	M6	M6
IVIO		MS	M3	M4	M3	MS		IVIO
M6	M6	M5	M5	M4	M5	M5	M6	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	Wio	VI5	.15	//4	M5	/15	1410	M6
145	M6	M	MS	M	MS	MS	M6	NAC .
M6		M5 M5	M5 M5	M4 M4	M5	M5 M5		M6
M6	M6	M5	M5	1014	M5	15	M6	M6
	M6	M				MS	M6	
M6	IVIO	M5	M3	M1	M3	M5	IVIO	M6
	M5	M5				M5	M5	
M6	M5	M5				M5	M5	M6
M6	M3 M5	M5	M2		M2	M5 M5	M5	M6
	M5	M5				M5	M5	
M6	.45	.15				M5	M5	M6
	M	M3	M3	M1	M3	M5	M	
M6	M6	M5				M5	M6	M6
M6		M5	M5	//4	M5	M5 M5		M6
IVIO	M6	MS	M	Ma	M	M	M6	IVIO
M6	NAS	M5	M5	M4	M5	M5	ME	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	M6	M5	M5	M4	M5	M5	M6	M6
145		M3	M3	M1	M5	M5		N/C
M6	M6	M5 M5	M5 M5	M4 M4	M5 M5	M5 M5	M6	M6
M6		M5	M5	M4	M5	M5		M6
	M6	M5	M5	M4	M5	M5	M6	
M6	M6	M5	M5	M4	M5	M5	M6	M6
	IVIO	M5	M5	M4	M5	M5	IVIO	

Module M5

MRPC3a
580
320×270
32
270
2700
8
250
330×280
0.7
9
low res.
482.33

TDR ToF wall layout low rate region

		M3	M5	M4	M5	M5		
M6	M6	M5	M5	M4	M5	M5	M6	M6
	M6	M5	M5	M4	M5	M5	ME	
M6	IVIO	M 5	M5	//4	1/15	15	M6	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	IVIO	M5	M5	M4	M5	M5	IVIO	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	IVIO	M5	M5	M4	M5	M5	IVIO	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	IVIO	M5	M5	M4	M5	M5	IVIO	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	IVIO	M5	M5	M4	M5	M5	IVIO	M6
	M6	M5				M5	M6	
M6	IVIO	M5	M3	M1	M3	M5	IVIO	M6
	M5	M5	IVIS	IVII	IVIS	M5	M5	
M6	M5	M5				M5	M5	M6
	M5	M5				M5	M5	M6
M6	M5	M5	M2		M2	M5	M5	
	M5	M5				M5	M5	
M6	M5	M5				M5	M5	M6
	M5	M5		5.41	242	M5	M5	
M6	145	M5	M3	M1	M3	M5		M6
	M6	M5				M5	M6	
M6	146	M5	M5	M4	M5	M5	NAC	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	145	M5	M5	M4	M5	M5	N45	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	145	M5	M5	M4	M5	M5	145	M6
	M6	M5	M5	M4	M5	M5	M6	
M6		M5	M5	M4	M5	M5	145	M6
	M6	M5	M5	M4	M5	M5	M6	
M6	ME	M3	M5	M4	M5	M5	M6	M6
	M6	M5	M5	M4	M5	M5	IVIO	
M6		M5	M5	M4	M5	M5		M6

Module M5

MRPC notation	MRPC3b
Number of MRPCs	200
Active area [mm ²]	320×270
Number of Strips per MRPC	32
Strip length [mm]	270
Granularity (cell size) [mm ²]	2700
Number of gas gaps	10
Gap size μ m	230
Glass size [mm ²]	330×280
Glass thickness [mm]	0.28
Number of glass plates	12
Glass type	float
Total glass surface [m ²]	166.32

MRPC3a and MRPC3b mass production for eTOF

Puerto V

MRPC3a mass prod at Nuctech, Beijing

MRPC3b mass production at USTC/China

See talk of Yongjie Sun on 22.02 at 10:40 and posters of Dongdong Hu, Xinjian Wang, Jian Zhou

Module integration and cosmic test stand in HD

Multi differential analysis of counter properties with cosmic tracks

About 100000 good tracks per day

RPC 2018 Puerto Vallarta, 19 - 23.02.2018

15

FAIR Phase 0 – eTOF@STAR

shipping and installation of one sector

2nd system integration test with one sector by participating in the Run18 beam time in STAR

shipping all 33 modules including infrastructure (gas system, LV-, HV-power supply) to BNL

Installation and commissioning

Start of the BES II campaign

Decommissioning and shipping of all modules including infrastructure to FAIR

Ingo Deppner

RPC 2018 Puerto Vallarta, 19 - 23.02.2018

FAIR Phase 0 - miniCBM

mTOF setup

- 25 MRPC3a counters
- 5 M4 modules + 10 CROB(GTBx)
- Active area: 150 x 120 cm²
- # of readout channels: 1600
- T0 diamond counter
- Intended interaction rate: 10 MHz

Milestones

Counter production finished

FEE ready

Module production finished

Module test with cosmics in HD

Installation

First beam time

Dec. 2017

Mar. 2018

Mar. 2018

Apr. - Jul. 2018

Jul. 2018

Aug 2018

M4 module: 5 MRPC3a counters, 10 PADI, 2 Feed-through PCBs, 10 Get4, 2 backplane PCBs (with GTBx)

Summary

- Counters are fulfilling the specs
- Innovative impedance matching solution developed
- Preproduction for MRPC3/b counter started (QC, QA procedures initiated)
- R&D for BFTC ongoing
- Ultra high rate test still pending ⇒ miniCBM
- FAIR phase 0 started looking forward to physics
- CBM TOF ready for beam in 2023

18

Thank you for your attention

Contributing institutions:

Tsinghua Beijing,

NIPNE Bucharest,

GSI Darmstadt,

IRI Frankfurt

USTC Hefei,

PI Heidelberg,

ITEP Moscow,

HZDR Rossendorf,

CCNU Wuhan,

Special thanks go to:

Norbert Herrmann

19

PROGRAMME

Backup

Backup Slides

CBM Physics topics

- \blacktriangleright Deconfinement / phase transition at high ρ_B
- > QCD critical endpoint
- \triangleright The equation-of-state at high $\rho_{\rm B}$
- chiral symmetry restoration at high ρ_B

Observables

- excitation function and flow of strangeness and charm
- > collective flow of hadrons
- > particle production at threshold energies
- excitation function of event-by-event fluctuations
- excitation function of low-mass lepton pairs
- \rightarrow in-medium modifications of hadrons $(\rho,\omega,\phi\to e+e-(\mu+\mu-),D)$

Kaon acceptance depends critically on TOF resolution

T0 – determination

Diamond start counter

- use HADES development,
- develop DAQ interface,
- limited to reaction rates ~ 100kHz

Software solution

- available for all systems
- needs fast particles from reaction
- demonstrated to work for central and semi-central heavy system

Beam fragmentation counter

- peripheral HI reaction have fast particles from projectile fragmentation
- equip region E with timing counters (BFTC)

Reaction counter

CBM Collaboration Meeting, Dubna, 27.09.2013

- needed for high rate pA reactions (charm at SIS 100)
- reaction counter at polar angles $35^{\circ} < \theta < 60^{\circ}$.

19

RPC 2018

Main parameters comparison	PADI-1	PADI-2	PADI-6	PADI-8
Channels per chip	3	4	4	8
PA Bandwidth (MHz)	280	293	416	411
PA Voltage Gain	74	87	244	251
Conversion Gain (mV/fC)	6.3	7.8	35	30
Baseline DC offset σ (mV)	6.7	21.9	5.9	1
PA Noise (mV_{RMS})	3.37	2.19	5.82	5.5
Equivalent Noise Charge (e_{RMS})	3512	1753	1039	1145
Threshold type	Extern	Extern	Ext. & DAC	DAC
Threshold dynamics $(\pm \text{ mV})$	Non.lin. 280	Non.lin. 300	Lin. 500	Lin. 750
Input Impedance Range (Ω)	30-450	37 - 370	38 - 165	30 - 160
Power consumption (mW/channel)	21.6	17.4	17.7	17

Table 3.4: Main parameters of the PAD

RPC 2018 Puerto Vallarta, 19 - 23.02.2018

Readout chain

PADI: Preamplifier board 32 ch

Feed through PCB

GET4: TDC board 32 ch

AFCK: FPGA board

CBM TOF module

