CARRO CONTROLADO POR BLUETOOTH

INTEGRANTES: JUAN JOSÉ HERNÁNDEZ BRAVO - 2420191052 JUAN FELIPE REYES RUBIO - 2420191049

Metodología.

Bocetar lo que será el montaje del dispositivo y desarrollar el software, realizar la compra de los componentes necesarios para la construcción del mismo, informarnos sobre el desarrollo de la aplicación móvil por medio de la cual se controlara el dispositivo, ensamblar los componentes comprados para tener como resultado el montaje del dispositivo, se necesita el apoyo de el software MPLAB X IDE y el compilador XC8 para implementar el código el cual regirá el comportamiento del dispositivo. Los materiales requeridos para la elaboración de este proyecto son: PIC 16F15244 CURIOSITY NANO, modulo bluetooth HC-05, dos módulos L298, cuatro motores, cuatro ruedas, cuatro llantas, chasis en acrílico, batería lipo de dos celdas y su cargador.

Objetivos

General:

Desarrollar un dispositivo controlado remotamente por bluetooth

Específicos:

- 1. Elaborar un código que permita controlar el PIC16f15244 a través de un módulo bluetooth.
- 2. realizar el ensamblaje del carro a controlar.
- 3. Desarrollar una aplicación para Android que funcione como control del dispositivo.

TABLA DE COSTOS

COMPONENTES	CANTIDAD	PRECIO
PIC 16F15244	1	\$ 78.000,00
HC-05	1	\$ 21.000,00
L298N	1	\$ 12.700,00
CHASIS	1	\$ 50.000,00
LM7805	1	\$ 1.000,00
2N2222	15	\$ 4.500,00
RESISTENCIAS	21	\$ 2.100,00
LEDS	6	\$ 1.000,00
BATERIA LIPO	1	\$ 25.000,00
CARGADOR	1	\$ 40.000,00
APP CONTROL	1	NA
VIÁTICOS	NA	\$ 100.000,00
TOTAL COSTOS		\$ 335.300,00

EVIDENCIAS DEL PROYECTO

Resultados

MICROPROCESSOR CONNECTIONS		
PIN	CONNECTION	
RA1 (PWM)	EN1, EN2	
RB4	IN1 (L298N)	
RB6	IN2 (L298N)	
RB7	W. L. RIGHT	
RCO (TX)	RX (BT)	
RC1 (RX)	TX (BT)	
RC4	IN4 (L298N)	
RC5	IN3 (L298N)	
RC6	W. L. LEFT	
RC7	W. L. STOP	

BT: BLUETOOTH MODULE
W. L.: WARNING LIGHTS

DESARROLLO DE LA APP

La app se desarrolló mediante la página web appinventor.

link: https://appinventor.mit.edu/

Para desarrollar la aplicación fue necesario dividir en dos etapas el diseño: la primera parte consiste en diseñar la parte gráfica "la interfaz" y la segunda consiste en asignar funcionalidad a la app.

Para la parte de dar funcionalidad a la aplicación se usó un método de programación el cual consiste en asignar las funciones de la app mediante la organización de bloques preprogramados

DISEÑO DE LA INTERFAZ

PROGRAMACIÓN POR BLOQUES

INTERFAZ

Conclusiones

 En conclusión, los microcontroladores tienen múltiples aplicaciones. Estos dispositivos son muy versátiles y ayudan mucho a reducir los costes en circuitos complejos, ya que tienen muchas funciones que pueden ser ejecutadas por él.

• Para concluir el uso de este pic puede ser muy versátil en el desarrollo de proyectos simples, al intentar hacer cosas muy complejas es inevitable toparse con incompatibilidades debido a lo poco que se ha utilizado y la carencia de librerías.

Referencias

• [1] Microchip Technology Inc https://www.microchip.com/; 2020 [en linea] avalible: https://www.microchip.com/Developmenttools/ProductDetails/EV09Z19A.

 [2] Microchip Technology Inc https://www.microchip.com/; 2020 [en linea] avalible: https://ww1.microchip.com/downloads/en/DeviceDoc/PIC16F15244-Curiosity-Nano-Hardware-User-Guider-DS50003045A.pdf.

• [3] Carlos QL; 2018 [en linea] avaliable: https://drive.google.com/file/d/1 73jVUGSD44af6EglscniyT WW Q67nA/view.