

Veri Madenciliği

Sınıflandırma ve Tahmin

Sınıflandırma vs. Tahmin

- Sınıflandırma (Classification)
 - Kategorik sınıf etiketlerini öngörme
 - Bir model oluşturur ve veriyi sınıflandırır
 - Öğrenme kümesi (training set)
 - Sınıf etiketleri (class labels) biliniyor
 - Sınıfı bilinmeyen veriler (sınama kümesi) yaratılan modele göre sınıflandırılır
- Tahmin, öngörü (Prediction)
 - Sürekli değere sahip fonksiyonları modeller
 - Bu modele göre eksik yada bilinmeyen değerleri tahmin eder

Sınıflandırma – Amaç/Yöntem

- Sınıflandırma: Ayrık değişkenlerin hangi kategoride olduklarını diğer nitelikleri kullanarak tahmin etme
- Girdi: öğrenme kümesi (Training set)
 - Ayrık nesnelerden oluşur
 - Her nesne niteliklerden oluşur, niteliklerden biri sınıf bilgisidir (sınıf etiketi)

Yöntem:

- Öğrenme kümesi kullanılarak bir model oluşturulur
- Bulunan modelin başarımı belirlenir

Çıktı:

 Sınıf etiketi belli olmayan nesneler oluşturulan model kullanılarak mümkün olan en iyi şekilde sınıflara atanır

Uygulama Alanları

- Kredi başvurusu değerlendirme
- Kredi kartı harcamasının sahtekarlık olup olmadığına karar verme
- Hastalık teşhisi
- DNA üzerinden akrabalık teşhisi
- Metinleri konularına göre ayırma
- Kullanıcı davranışları belirleme

Veri Önişleme

- Veri Dönüşümü
 - Ayrıklaştırma (Discretisation)
 - Sayısal yaş → {çocuk, genç, orta-yaş, yaşlı}
 - Derece olarak sıcaklık →{soğuk,serin,ılık,sıcak}
 - Normalizasyon
 - **•** [-1,1], [0,1]...
- Veri temizleme
 - Gürültü azaltma (Noise reduction)
 - Gereksiz nitelik silme

Sınıflandırma — İki Aşamalı

- Model oluşturma: önceden belli sınıfların ifade yöntemi
 - Her nesnenin sınıf etiketi olarak tanımlanan niteliğinin belirlediği bir sınıfta olduğu varsayılır
 - Model oluşturmak için kullanılan nesnelerin oluşturduğu veri kümesi öğrenme kümesi (training set) olarak tanımlanır
 - Model farklı şekillerde ifade edilebilir: if else kuralları, karar ağaçları, matematiksel formuller
- Modeli kullanma: gelecek bilinmeyen verileri sınıflandırma
 - Modelin başarımı (doğruluğu) belirlenir
 - Sınıf etiketi bilinen bir sınama kümesi örneği model kullanılarak belirlenen sınıf etiketiyle karşılaştırılır
 - Modelin doğruluğu, doğru sınıflandırılmış örneklerinin toplam sınama kümesine oranı olarak belirlenir
 - Sınama kümesi ile öğrenme kümesi bağımsız olmalı
 - Eğer doğruluk oranı kabul edilebilir ise model sınıflandırma için kullanılır

1. Adım: Model Oluşturma

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

(Model)

IF rank = 'professor' OR years > 6 THEN tenured = 'yes'

2. Adım: Doğruluk değerlendirme

NAME	RANK	YEARS	TENURED
Tom	Assistant Prof	2	no
Merlisa	Associate Prof	7	no
George	Professor	5	yes
Joseph	Assistant Prof	7	yes

75% doğruluk

Modeli Kullanma

Gözetimli vs. Gözetimsiz Öğrenme

- Gözetimli Öğrenme (Supervised learning) (sınıflandırma)
 - Gözetim: Öğrenme verisindeki sınıfların sayısı ve hangi nesne hangi sınıfta biliniyor
 - Yeni veri öğrenme kümesine bağlı olarak sınıflandırılıyor
- Gözetimsiz (Unsupervised) öğrenme (demetleme)
 - Sınıf sayısı yada hangi nesne hangi sınıfta bilinmiyor
 - Verilen ölçüm değerlerine göre yeni sınıflar yaratılıyor

Sınıflandırma Metodunu Değerlendirme

- Doğruluk
 - Sınıflandırıcı doğruluğu:sınıf etiketlerinin doğruluğu
 - Tahmin doğruluğu: verinin değerinin tahmin doğruluğu
- HIZ
 - Modeli oluşturma süresi
 - Sınıflandırma yapma süresi
- Kararlılık:
 - verinin gürültülü yada eksik olması durumunda iyi sonuç vermesi
- Ölçeklenebilirlik: büyük boyutlu verilerle çalışabilmesi
- Anlaşılabilir olması:
 - Kullanıcı tarafından yorumlanabilir olması

Karar Ağaçları

- Akış diagramı şeklinde ağaç yapısı
 - Her ara düğüm -> nitelik sınaması

Dallar -> sınama sonucu

Yapraklar -> sınıflar

Karar Ağacı: Öğrenme Kümesi

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Çıktı: "bilgisayar_alır" için bir karar ağacı

Örnek 2

					_
id	Refund	Marital St.	Income	Cheat	
1	Υ	Single	125K	Υ	Refund?
2	N	Married	100K	N	
3	N	Single	70K	N	yes
4	Υ	Married	120K	Υ	no
5	N	Divorced	95K	Υ	
6	N	Married	60K	N	YES Mar. St.
7	Υ	Divorced	220K	Υ	War. St.
8	N	Single	85K	Υ	Sin,Div N
9	N	Married	75K	N	
10	N	Single	90K	Υ	Income
Ver	iye uyan b	irden fazla karar	ağacı türeti	lebilir	≤80K >80K
Sını		/,Div,75K I,Sin,55K			NO

Karar Ağacı oluşturma

- Temel algoritma (açgözlü (greedy) algoritma)
 - Ağaç top-down recursive divide-and-conquer bir yaklaşımla oluşturulur
 - Ağaç bütün verinin oluşturduğu tek bir düğümle başlıyor
 - Nitelikler kategorik (eğer sürekli nitelikler varsa önceden ayrıştır)
 - Eğer örneklerin hepsi aynı sınıfa aitse düğüm yaprak olarak sonlanıyor ve sınıf etiketini alıyor
 - Örnekleri sınıflara en iyi bölecek olan nitelik seçiliyor?
 - Hüristik yada istatistiksel değerler (e.g., information gain)
- Sonlanma koşulları
 - örneklerin hepsi aynı sınıfa ait
 - örnekleri bölecek nitelik kalmamış çoğunluk oylaması (majority voting) ile yapraktaki sınıf belirlenir
 - kalan niteliklerin değerini taşıyan örnek yok

En İyi Nitelik Seçimi

- Orjinal Veri
 - 10 in C0 (erkek)
 - 10 in C1 (kadın)

Açgözlü yöntem:

Homojen dağılım daha iyi Sonuç verir

Çoğu (hepsi) aynı sınıfta

Nitelik Seçimi – Bilgi Kazancı (Information Gain)

entropy temeline dayanır— belirsizlik

$$Entropy = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

- Eğer tüm örnekler aynı sınıfa aitse belirsizlik yoktur dolayısıyla entropy 0 dır
- Eğer uniform dağıldıysa her sınıf eşit olasılıkla mümkündür ve entropy 1dir
- Diğer durumlarda 0< entropy < 1
- Amaç: Entropiyi (belirsizliği) en aza indirecek niteliği seç

Nitelik Seçme Ölçütü: Bilgi Kazanımı Information Gain (ID3)

- Bilgi kazanımı en yüksek olan nitelik seçilir
- p_i D öğrenme kümesindeki bir varlığın C_i sınıfına ait olma olasılığı olsun, $p_i = |C_{i,D}|/|D|$ olarak hesaplanır
- D içindeki bir varlığı sınıflandırmak için gerekli bilgi (D nin entropisi): $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$
- D kümesi A niteliğine göre v parçaya bölündükten sonra D'yi sınıflandırmak için gerekli bilgi $Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$
- A niteliğine göre bölünmeden dolayı bilgi kazancı

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$
 $+\frac{5}{14}I(3,2) = 0.694$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

$$\frac{5}{14}I(2,3)$$
 demek "age <=30" grubunda 5 örnek var toplamda 14tu, bunlar: 2 yes - 3 no

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Benzer şekilde,

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

Sürekli Değerlerli Verilerde Bilgi Ölçümü

- A niteliği sürekli değere sahip olsun
- A için en iyi bölme noktası (best split point) hesaplanmalı
 - Değerleri küçükten büyüğe sırala
 - İki komşu değerin orta noktası olası bölme noktasıdır
 - (a_i+a_{i+1})/2 is the midpoint between the values of a_i and a_{i+1}
 - A niteliği için minimum gerekli bilgi (entropi) gerektiren bölme noktası seçilir
 - Split:
 - D1 alt kümesi D içinde A ≤ bölme-noktası olanlar, ve
 - D2 alt kümesi D içinde A > bölme-noktası olanlar

Kazanım Oranı (Gain Ratio)(C4.5)

- Bilgi kazanımı metodu çok çeşitli değerlere sahip nitelikleri seçme eğilimdedir
- Bu problemin çözümünde C4.5 (ID3 ten geliştirilmiş)
 kazanım oranı kullanılır (normalization to information gain)

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times \log_{2} \left(\frac{|D_{j}|}{|D|}\right)$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- Ex. $SplitInfo_A(D) = -\frac{4}{14} \times \log_2\left(\frac{4}{14}\right) \frac{6}{14} \times \log_2\left(\frac{6}{14}\right) \frac{4}{14} \times \log_2\left(\frac{4}{14}\right) = 0.926$
 - \blacksquare gain_ratio(income) = 0.029/0.926 = 0.031
- En yüksek kazanım oranına sahip nitelik seçilir

Gini index (CART, IBM IntelligentMiner)

- Herzaman binary (ikili) agac uretir
- D kümesi n sınıfdan örnekler içeriyorsa, gini index, gini(D) şu şekilde ifade edilir (p_i j sınıfının D kümesinde görülme sıklığıdır)

$$gini(D)=1-\sum_{j=1}^{n} p_{j}^{2}$$

D kümesi A niteliğine göre ikiye D1 ve D2 olarak bölünürse, gini index gini(D) şu şekilde ifade edilir

$$gini_{A}(D) = \frac{|D_{1}|}{|D|}gini(D_{1}) + \frac{|D_{2}|}{|D|}gini(D_{2})$$

Kusurdaki azalma (Reduction in Impurity)

$$\Delta gini(A) = gini(D) - gini_A(D)$$

 En küçük gini_{split}(D)ye sahip nitelik (yada en fazla kusur azaltan) bölme noktası olarak seçilir (tüm olası bölme noktaları tektek denenmelidir)

Örnek: Gini index

9 kişi buys_computer = "yes" and 5 kişi ise "no" sınıfında

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

Income niteliği kullanarak D'yi 2ye bolduk diyelim: 10 kişi D₁ {medium, high} ve 4 kişi D₂ de {low}

$$\begin{aligned} & \text{high} \} \text{ ve 4 kişi D }_2 \text{ de } \{\text{low}\} \\ & & gini_{income \in \{low\}}(D) = \left(\frac{10}{14}\right) Gini(D_1) + \left(\frac{4}{14}\right) Gini(D_2) \\ & = \frac{10}{14}(1-(\frac{6}{10})^2-(\frac{4}{10})^2) + \frac{4}{14}(1-(\frac{1}{4})^2-(\frac{3}{4})^2) \\ & = 0.450 \\ & = Gini_{income} \in \{high\}(D) \end{aligned}$$

- gini_{low,medium} = 0.442 olarak hesaplanır
- {low,med} {high} bolmek {Low} {med,high} bolmekten daha iyi cunku ginisplit daha dusuk yani Δgini degeri daha yuksek

Ölçüm Yöntemlerinin Karşılaştırması

- Her üç yöntemde iyi sonuç verir ancak,
 - Information gain:
 - Cok ceşitli değerler (multivalued) alan nitelikleri secme eğilimindedir
 - Gain ratio:
 - Bir parçanın diğerinden daha küçük olduğu dengesiz bölmeler yapma eğiliminde
 - Gini index:
 - Cok ceşitli değerler (multivalued) alan nitelikleri secme eğilimindedir
 - Sınıf sayısı fazla ise sorun yaşayabiliyor
 - Böldüğü her iki grupta yaklaşık boyutlarda olma eğilimindedir

Aşırı Öğrenme ve Ağaç budama

- Aşırı öğrenme: Yaratılan karar ağacı öğrenme kümesine fazla bağlı olabilir
 - Çok fazla dal, gürültü ve sapan veriler nedeniyle anormallikler
 - Yeni verilerde düşük doğruluk
- Aşırı öğrenmeyi engelliyen iki yöntem
 - Ön budama (Prepruning): Ağaç yaratırken erken dur eğer bölme
 belli bir sınır değerden kötü kazanç sağlıyorsa bölme
 - Sınır değeri belirlemek kolay değil
 - Son budama (Postpruning): Tüm ağacı yarattıktan sonra kötü kısımları aşama aşama buda
 - Öğrenme kümesinden başka ikinci bir öğrenme kümesi kullanarak en iyi budama noktaları belirlenir

Karar Ağaçlarında Aşırı Öğrenme

- Öğrenme kümesinin küçük, gürültülü olması, eksik veri içermesi
- Çözüm budama (pruning)
 - En güvenilmez dalları buda

