

Politechnika Wrocławska

Wydział Matematyki

Kierunek studiów: Matematyka

Specjalność: Matematyka teoretyczna

Praca dyplomowa – licencjacka

TYTUŁ PRACY DYPLOMOWEJ

Imię i nazwisko dyplomanta

słowa kluczowe: tutaj podajemy najważniejsze słowa kluczowe (łącznie nie powinny być dłuższe niż 150 znaków).

krótkie streszczenie:

Tutaj piszemy krótkie streszczenie pracy (nie powinno być dłuższe niż 530 znaków).

Opiekun pracy	dr inż. Dawid Huczek		
dyplomowej	Tytuł/stopień naukowy/imię i nazwisko	ocena	podpis

Do celów archiwalnych pracę dyplomową zakwalifikowano do:*

- a) kategorii A (akta wieczyste)
- b) kategorii BE 50 (po 50 latach podlegające ekspertyzie)

pieczątka wydziałowa

Wrocław, rok 2019

^{*} niepotrzebne skreślić

Faculty of Pure and Applied Mathematics

Field of study: Mathematics

Specialty: Theoretical Mathematics

Bachelor's Thesis

TYTUŁ PRACY DYPLOMOWEJ W JĘZYKU ANGIELSKIM

Imię i nazwisko dyplomanta

keywords:

tutaj podajemy najważniejsze słowa kluczowe w języku angielskim (łącznie nie powinny być dłuższe niż 150 znaków)

short summary:

Tutaj piszemy krótkie streszczenie pracy w języku angielskim (nie powinno być dłuższe niż 530 znaków).

Supervisor	dr inż. Dawid Huczek		
	Title/degree/name and surname	grade	signature

For the purposes of archival thesis qualified to:*

- a) category A (perpetual files)
- b) category BE 50 (subject to expertise after 50 years)

stamp of the faculty

 $^{*\} delete\ as\ appropriate$

Spis treści

W	$V_{ m step}$	3
1	Definicje, lematy, twierdzenia, przykłady i wnioski	5
	1.1 Definicje	5
	1.1.1 Definicje i fakty ogólne	5
	1.1.2 Fakty ogólne, dotyczące zwartych przestrzeni metrycznych	7
	1.1.3 Definicje utworzone na potrzeby dowodu twierdzenia o rozszerzan	iu 8
	1.2 Lematy	9
2	2 Twierdzenie o rozszerzaniu odwzorowań chaotycznych w sensie De	eva-
	ney'a	11
Po	Podsumowanie	15
D	Dodatek	17
Bi	Bibliografia	18

Wstęp

We wstępie zapowiadamy, o czym będzie praca. Próbujemy zachęcić czytelnika do dalszej lektury, np. krótko informując, dlaczego wybraliśmy właśnie ten temat i co nas w nim zainteresowało.

Rozdział 1

Definicje, lematy, twierdzenia, przykłady i wnioski

1.1 Definicje

1.1.1 Definicje i fakty ogólne

- 1. ciąg
- 2. podciąg TODO: Dopisać do sekcji definicji definicję punktu skupienia ciągu.
- 3. ciąg Cauchy'ego (pojawia się w definicji zupełności, TODO ma byc tutaj czy w faktach ogolnych dotyczacych zwartych przestrzeni metrycznych?)
- 4. wnetrze zbioru
- 5. topologia
- 6. topologia indukowana? pojawia sie w definicji przestrzeni zwartej
- 7. baza topologii
- 8. przestrzeń topologiczna
- 9. topologia zbieżności jednostajnej (pojawia się w definicji metryki na przestrzeni odwzorowan trojkatnych)
- 10. pokrycie zbiorami otwartymi
- 11. przestrzen metryczna zwarta,
- 12. punkt izolowany w przestrzeni metrycznej
- 13. Ciaglosc funkcji na przestrzeni metrycznej (zbior C(X))
- 14. uklad dynamiczny,
- 15. orbita,
- 16. orbita okresowa
- 17. punkt okresowy odwzorowania

- 18. niezmienniczosc zbioru ze wzgledu na odwzorowanie
- 19. topologiczna tranzytywnosc
- 20. entropia topologiczna
- 21. RODZAJE CHAOSU (Devaneya, Li Yorka)
- 22. napisac ze chaotycznosc odwzorowania rozumiem przez chaotycznosc odpowiedniego ukladu dynamicznego
- 23. zbiór rezydualny
- 24. separable, second category (czyli 1 i 2 kategoria bairea) TODO: separable znaczy chyba osrodkowa??
- 25. g-delta
- 26. odwzorowania trójkątne, zbior $C_{\triangle}(X \times I)$

Definicja 1.1 (Metryka). Metryką na zbiorze X nazywamy funkcję $\rho: X \times X \longrightarrow \mathbb{R}_+ \cup \{0\}$ spełniającą następujące warunki:

- 1. $\forall_{x,y \in X} : \rho(x,y) = 0 \iff x = y,$
- $2. \ \forall_{x,y \in X} : \rho(x,y) = \rho(y,x),$
- 3. $\forall_{x,y,z \in X} : \rho(x,y) \le \rho(x,z) + \rho(z,y)$.

Warunek 3 nazywany jest zwykle nierównością trójkąta.

Definicja 1.2 (Przestrzeń metryczna). Przestrzenią metryczną nazywamy parę (X, ρ) , gdzie X jest zbiorem a ρ zdefiniowaną na nim metryką.

Definicja 1.3 (Kula otwarta). Kulą otwartą w przestrzeni metrycznej (X, ρ) nazywamy zbiór: $K(s, r) = \{x \in X : \rho(s, x) < r\}$. Punkt s nazywamy wówczas środkiem kuli K, a $r \in \mathbb{R}_+ \cup \{0\}$ jej promieniem.

Definicja 1.4 (Zbiór gęsty). Dla danej przestrzeni metrycznej (X, ρ) . Zbiór $A \subset X$ nazwiemy gęstym, gdy $\forall_{x \in X} \forall_{\epsilon > 0} \exists_{a \in A} : \rho(x, a) < \epsilon$.

Definicja 1.5 (Pokrycie otwarte). [3, s. 195] Pokryciem otwartym przestrzeni metrycznej X nazywamy rodzinę zbiorów otwartych $(U_i)_{i\in I}$ taką, że $X = \bigcup_{i\in I} U_i$.

Definicja 1.6 (Przestrzeń metryczna zwarta, definicja pokryciowa). [3, s. 196] Przestrzeń metryczną X nazywamy zwartą jeżeli każde pokrycie otwarte $(U_i)_{i\in I}$ tej przestrzeni zawiera podpokrycie skończone, to znaczy istnieje skończony zbiór indeksów $J\subset I$ taki, że $X=\bigcup_{i\in J}U_i$. Podzbiór $Y\subset X$ jest zwarty jeżeli Y jest zwarty względem topologii indukowanej.

Definicja 1.7 (Przestrzeń metryczna zwarta, definicja ciągowa). Przestrzeń metryczna (X, ρ) jest zwarta \iff z każdego ciągu $(x_n) \subset X$ można wybrać podciąg zbieżny.

1.1. Definicje

1.1.2 Fakty ogólne, dotyczące zwartych przestrzeni metrycznych

Definicja 1.8 (Ośrodkowość).

Definicja 1.9 (Zupełność). Przestrzeń metryczna jest zupełna jeśli każdy ciąg Cauchy'ego jest zbieżny.

Twierdzenie 1.10 (Ośrodkowość zwartych przestrzeni metrycznych). Jeżeli przestrzeń metryczna jest zwarta to jest również ośrodkowa.

Dowód. Niech (X, ρ) będzie przestrzenią metryczną zwartą. Oznacza to, że z każdego pokrycia X zbiorami otwartymi, można wybrać podpokrycie skończone.

Niech $\mathcal{A}_i = \{K(x, \frac{1}{i}) : x \in X\}$, \mathcal{A}_i jest oczywiście pokryciem X zbiorami otwartymi, ponieważ $\forall_{x \in X, i \in \mathbb{N}} : K(x, \frac{1}{i})$ jest otwarty, oraz $\forall_{i \in \mathbb{N}} \forall_{x \in X} \exists_{A \in \mathcal{A}_i} : x \in A$, w szczególności $\forall_{i \in \mathbb{N}} \forall_{x \in X} : x \in K(x, \frac{1}{i}) \in \mathcal{A}_i$. Zatem z każdej rodziny \mathcal{A}_i możemy wybrać podpokrycie skończone, oznaczmy je przez \mathcal{B}_i . Rozważmy teraz następującą rodzinę:

$$B = \bigcup_{i=1}^{\infty} \mathcal{B}_i$$

Składa się ona ze zbiorów postaci $K(x, \frac{1}{i})$ dla pewnych $i \in \mathbb{N}$ i $x \in X$ i jako przeliczalna suma rodzin skończonych jest przeliczalną rodziną zbiorów. Niech teraz

$$C = \{s : \exists_{i \in \mathbb{N}} K(s, \frac{1}{i}) \in B\}$$

Zbiór C jest równoliczny ze zbiorem B, a więc przeliczalny. Ponadto C jest gęsty w X. Niech $\epsilon > 0$. Weźmy dowolny $x \in X$. Oczywiście $\exists_{i_0 \in \mathbb{N}} : \frac{1}{i_0} < \epsilon$. Wiemy, że \mathcal{B}_{i_0} stanowi pokrycie X i składa się ze zbiorów postaci $K(s, \frac{1}{i_0})$, gdzie $s \in X$. Skoro \mathcal{B}_{i_0} jest pokryciem X to $\exists_{K(s, \frac{1}{i_0}) \in \mathcal{B}_{i_0}} : x \in K(s, \frac{1}{i_0})$, czyli $\rho(x, s) < \frac{1}{i_0} < \epsilon$, natomiast $s \in C$ z definicji zbioru C Czyli X zawiera podzbiór przeliczalny i gęsty, zatem przestrzeń (X, ρ) jest ośrodkowa.

Twierdzenie 1.11 (Zupełność zwartych przestrzeni metrycznych). Każda zwarta przestrzeń metryczna jest zupełna.

Dowód. Niech (X, ρ) będzie przestrzenią zwartą. Weźmy ciąg Cauchy'ego (x_n) elementów X. Ze zwartości (definicja 1.7) wynika, że istnieje podciąg $(y_n) \subset (x_n)$ zbieżny do jakiegoś $g \in X$. Zatem $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n>n_0} \rho(y_n, g) < \epsilon$. Pokażemy, że (x_n) zbiega do g.

Ustalmy $\epsilon > 0$. Z faktu, że (x_n) jest ciągiem Cauchy'ego wynika, że

$$\exists_{N\in\mathbb{N}}\,\forall_{n,m>N}\,\rho(x_m,x_n)<\frac{\epsilon}{2}$$

Ponadto

$$\exists_{n_0 \in \mathbb{N}} \, \forall_{n > n_0} \, \rho(y_n, g) < \frac{\epsilon}{2}$$

Weźmy teraz element y_k podciągu (y_n) , taki że $y_k = x_M$, gdzie $M > N \wedge M > n_0$. Wówczas

$$M > N \implies \forall_{n > N} \, \rho(x_M, x_n) < \frac{\epsilon}{2}$$

$$M > n_0 \implies \rho(x_M, g) < \frac{\epsilon}{2}$$

Zatem $\forall_{n>N}: \rho(x_n,g) \leq \rho(x_n,x_M) + \rho(x_M,g) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$, czyli $g \in X$ jest granicą ciągu (x_n) , a więc (x_n) jest zbieżny w (X,ρ) .

Twierdzenie 1.12 (Równoważność definicji pokryciowej i ciągowej zwartości przestrzeni metrycznych). TODO: Sformulowac lepiej: Definicja pokryciowa \iff definicja ciągowa

Dowód. (\Rightarrow) Załóżmy, że z dowolnego pokrycia X zbiorami otwartymi możemy wybrac podpokrycie skończone. Weźmy dwolony ciąg $(x_n) \in X$. Pokażę, że ten ciąg ma punkt skupienia w X. Załóżmy, że ciąg (x_n) nie ma punktu skupienia w X, to znaczy $\forall_{x \in X} x$ nie jest punktem skupienia x_n , czyli $\forall_{x \in X} \exists_{\epsilon > 0} K(x, \epsilon) \setminus \{x\} \cap \{x_n\}_{n=1}^{\infty} = \emptyset$. Utwórzmy pokrycie X w następujący sposób:

$$\mathcal{A} = \bigcup_{x \in X} K(x, \epsilon_x),$$

gdzie $\epsilon_x > 0$ jest liczbą spełniającą warunek $K(x, \epsilon_x) \setminus \{x\} \cap \{x_n\}_{n=1}^{\infty} = \emptyset$. Oczywiście rodzina \mathcal{A} jest pokryciem otwartym przestrzeni X. Zgodnie z założeniem, z pokrycia \mathcal{A} możemy wybrać podpokrycie skończone. Każdy zbiór $A \in \mathcal{A}$ zawiera najwyżej jeden element ciągu (x_n) . Skończenie wiele zbiorów zawierających po co najwyżej jednym elemencie ciągu prowadzi do wniosku, że przestrzeń X zawiera skończenie wiele elementów nieskończonego ciągu co stanowi sprzeczność.

Oznaczmy przez g punkt skupienia ciągu (x_n) . Oznaczmy przez y_1 pierwszy element ciągu (x_n) różny od g. przez y_2 pierwszy element ciągu (x_n) różny od g i taki, że $y_2 \in K(g, \frac{d}{2})$, gdzie $d = \rho(y_1, g)$. Następnie niech y_n będzie pierwszym elementem ciągu (x_n) różnym od g i spełniającym warunek $y_n \in K(g, \frac{d_{n-1}}{2})$, gdzie $d_{n-1} = \rho(y_{n-1}, g)$. Powstały w ten sposób podciąg $(y_n) \subset (x_n)$ jest zbieżny do $g \in X$. W przypadku gdyby na którymś etapie powyższej konstrukcji nie można było wskazać kolejnego elementu różnego od g, znaczyłoby to, że od pewnego miejsca ciąg (x_n) jest stale równy g, a więc zbieżny.

 (\Leftarrow) Złóżmy, że X spełnia definicję pokryciową. Dowód przez kontrapozycję (TODO: Opisać na czym polega kontrapozycja w logice czy to zbyt elementarne na poziom pracy licencjackiej?). Pokażemy, że jeżeli istnieje pokrycie X, z którego nie można wybrć podpokrycia skończonego to istnieje ciąg z którego nie można wybrać podciagu zbieżnego.

Załóżmy zatem, że nieskończona, przeliczalna rodzina zbiorów otwartych $\{U_i\}_{i=1}^{\infty}$ stanowi pokrycie X. Skonstruujmy następujący ciąg:

$$x_1 \notin U_1$$

$$x_n \notin \bigcup_{k=1}^{n-1} U_k$$

Zawsze znajdziemy taki $x_n \in X$, gdyż gdyby taki nie istniał znaczyłoby to, że $\bigcup_{i=1}^{n-1} U_{k_i} = X$, czyli istniałoby podpokrycie skończone. Załóżmy teraz, że ciąg (x_n) ma podciąg zbieżny. Wtedy istniałaby jego granica, tj. element $g \in X$ taki że dla każdego $\epsilon > 0$ nieskończenie wiele elementów ciągu leży wewnątrz kuli $B(g,\epsilon)$, z kolei z otwartości zbiorów U_n możemy wybrać taki ϵ , że $B(g,\epsilon) \subset U_k$, gdzie U_k jest dowolnym zbiorem z pokrycia X, zawierającym g. Z konstrukcji naszego ciągu wynika jednak, że $\forall_{n \in N} \forall_{m > n} x_m \notin U_n$, czyli do każdego U_n należy jedynie skończenie wiele elementów. Zatem otrzymujemy sprzeczność. Czyli ciąg (x_n) nie zawiera podciągu zbieżnego.

1.1.3 Definicje utworzone na potrzeby dowodu twierdzenia o rozszerzaniu

Na potrzeby dowodu wprowadźmy pojęcia odległości między odwzorowaniami oraz dwie funkcje: $\operatorname{pr}_1(x,y)$ i $\operatorname{pr}_2(x,y)$.

1.2. Lematy 9

Definicja 1.13 (Metryka na przestrzeni funkcji ciągłych w przestrzeni metrycznej). Niech (M, σ) będzie zwartą przestrzenią metryczną, rozważmy odwzorowania $h, k \in C(M)$. Odległość między nimi zdefiniujmy jako $\max_{m \in M} \sigma(h(m), k(m))$ i oznaczmy ją jako $d_1(h, k)$.

Definicja 1.14 (Metryka na przestrzeni odwzorowań trójkątnych). Odległość między odwzorowaniami trójkątnymi definiujemy wówczas następująco: Niech (X, ρ) i (Y, τ) będą zwartymi przestrzeniami metrycznymi a $F(x,y)=(f(x),g_x(y))$ i $\Phi(x,y)=(\phi(x),\psi_x(y))$ trójkątnymi odwzorowaniami należącymi do $C_{\triangle}(X\times Y)$. Odległość definiujemy wówczas jako

$$d_2(F, \Phi) = \max_{(x,y) \in X \times Y} \max \{ \rho(f(x), \phi(x)), \tau(g_x(y), \psi_x(y)) \}$$
$$= \max \{ d_1(f, \phi), \max_{x \in X} d_1(g_x, \psi_x) \}$$

Zauważmy, że jak wynika z lematu 1.16 przestrzenie metryczne $(C(X), d_1)$ oraz $(C_{\triangle}(X \times Y), d_2)$ są zupełne i odpowiednie topologie na nich są topologiami zbieżności jednostajnej.

Definicja 1.15 ($\operatorname{pr}_1(x,y)$, $\operatorname{pr}_2(x,y)$). Dla $(x,y) \in X \times Y$ niech $\operatorname{pr}_1(x,y) = x$ i $\operatorname{pr}_2(x,y) = y$. Odwzorowanie identycznościowe na Y będziemy oznaczać przez Id_Y lub krótko Id. W dalszej części pracy przestrzeń Y będzie odcinkiem rzeczywistym I = [0,1].

1.2 Lematy

Lemat 1.16.

Lemat 1.17. Niech (X, ρ) będzie zwartą przestrzenią metryczną bez punktów izolowanych. Każda okresowa orbita P_0 odwzorowania $f \in C(X)$ jest nigdziegęstym domkniętym podzbiorem X.

Lemat 1.18.

Lemat 1.19. dla przestrzeni nieskonczonej i zwartej czyli referencja 25 z pracy glownej

Lemat 1.20.

Lemat 1.21.

Lemat 1.22.

Twierdzenie 1.23. [1] - dowod twierdzenia 1.5

Lemat 1.24.

Lemat 1.25.

Lemat 1.26. W glownej pracy to byl lemat 3

Lemat 1.27.

Lemat 1.28. [1] Niech (X, ρ) będzie zwartą przestrzenią metryczną i niech $F = (f, g_x)$ będzie odwzorowaniem należącym do $C_{\triangle}(X \times I)$ którego wszystkie włókna są niemalejące i pozostawiają krańce I nie zmienione. Niech $\{a_1, a_2, \ldots, a_n\}$ będzie podzbiorem X oraz dla $i = 1, 2, \ldots, n$ niech U_i będą parami rozłącznymi zbiorami otwartymi takimi, że $a_i \in U_i$. Załóżmy, że h_i są niemalejącymi odwzorowaniami z C(I) pozostawiającymi krańce I niezmienione i spełniającymi $d_1(h_i, g_{a_i}) < \epsilon$ dla pewnego dodatniego ϵ i każdego $i = 1, 2, \ldots, n$. Wówczas istnieje odwzorowanie $\tilde{F} = (f, \tilde{g}_x) \in C_{\triangle}(X \times I)$ spełniające cztery następujące warunki:

1. wszystkie włókna \tilde{F} są niemalejące i pozostawiające krańce I niezmienione,

2.
$$d_2(F, \widetilde{F}) < \epsilon$$
,

3.
$$\tilde{g}_{a_i} = h_i \ dla \ i = 1, 2, \dots, n,$$

4.
$$\tilde{g}_x = g_x \ dla \ x \in X \setminus \bigcup_{i=1}^n U_i$$
.

Dowód. [1] Dla każdego $i=1,2,\ldots,n$ niech $V_i\subset U_i$ będzie otwartym sąsiedztwem a_i takim, że dla pewnego dodatniego $\tilde{\epsilon}<\epsilon$, $d_1(h_i,g_x)<\tilde{\epsilon}$ zawsze wtedy gdy $x\in V_i$.

Oznaczmy $U = \bigcup_{i=1}^n U_i$, $V = \bigcup_{i=1}^n V_i$ i weźmy $u : X \longrightarrow [0,1]$, ciągłą funkcję, przyjmującą wartość 1 na zbiorze $\{a_1, a_2, \ldots, a_n\}$, natomiast 0 poza zbiorem V. Zastąpmy każde odwzorowanie włóknowe g_x przez \tilde{g}_x , gdzie

$$\widetilde{g}_{x}(y) = \begin{cases} g_{x}(y) & \text{if } x \in X \setminus V, \\ g_{x}(y)(1 - u(x)) + h_{i}(y)u(x) & \text{if } x \in \{1, 2, \dots, n\}. \end{cases}$$
(1.1)

dla każdego $y \in I$. Zauważmy ponadto, że dla $x \in V_i$ oraz $i \in \{1, 2, \dots, n\}$ możemy równoważnie napisać

$$\tilde{g}_x(y) = u(x)(h_i(y) - g_x(y)) + g_x(y).$$
 (1.2)

Rozważmy odwzorowanie $\widetilde{F}=(f,\widetilde{g}_x)$. Należy ono do $C_{\triangle}(X\times I)$. Z równości 1.1 widzimy, że wszystkie włókna \widetilde{g}_x są niemalejące i pozostawjaiąc krańce przedziału I nie zmienione (TODO sprawdzie czy to dobre tluamczenie, mzoe krance ustalone? krance stale?). Ponadto $\widetilde{g}_{a_i}=h_i$ dla każdego i oraz $\widetilde{g}_x=g_x$ dla $x\in X\setminus V\supset X\setminus U$. Ponieważ dla $x\in V_i$, gdzie $i\in\{1,2,\ldots,n\}$ mamy $d_1(h_i,g_x)<\widetilde{\epsilon}$ oraz $u(x)\in[0,1]$, zatem z równości 1.2 otrzymujemy $d_1(g_x,\widetilde{g}_x)<\widetilde{\epsilon}$ dla każdego $x\in V$. Wynika z tego, że $d_2(F,\widetilde{(F)})\leq\widetilde{\epsilon}<\epsilon$ (TODO uzasadnic tutaj wewnatrz to ostatnie przejscie od d1 do d2 z definicji d1 i d2), co kończy dowód.

Lemat 1.29.

Lemat 1.30.

Lemat 1.31.

Lemat 1.32.

Lemat 1.33.

Lemat 1.34.

Lemat 1.35.

Lemat 1.36.

Rozdział 2

Twierdzenie o rozszerzaniu odwzorowań chaotycznych w sensie Devaney'a

Twierdzenie 2.1 (O rozszerzaniu). Twierdzenie wraz z dowodem przytaczamy za pracą [2] Niech (X, ρ) będzie zwartą przestrzenią metryczną bez punktów izolowanych oraz niech $f \in C(X)$ będzie odwzorowaniem chaotycznym w sensie Devaney'a. Wówczas odwzorowanie f można rozszerzyć do odwzorowania $F \in C_{\triangle}(X \times I)$ (to znaczy tak, że f jest odwzorowaniem bazowym dla F) w taki sposób, że:

- (i) F jest również chaotyczne w sensie Devaney'a,
- (ii) F ma taką samą entropię topologiczną jak f,
- (iii) zbiory $X \times \{0\}$ i $X \times \{1\}$ są niezmiennicze ze względu na F.

 $Dowód\ twierdzenia\ o\ rozszerzaniu.$ Odwzorowanie f jest chaotyczne w sensie Devaney'a, zatem spełnia warunek (2), czyli ma gęsty zbiór punktów okresowych, w szczególności istnieje orbita okresowa. Możemy zatem ustalić okresową orbitę P_0 odwzorowania f. Z lematu 1.17 mamy, że P_0 jest nigdziegęstym, domkniętym podzbiorem X.

Rozważmy zbiór \mathcal{F} wszystkich odwzorowań $F = (f, g_x)$ ze zbioru $C_{\triangle}(X \times I)$ spełniających następujące warunki:

- 1. Odwzorowanie bazowe f spełnia założenia twierdzenia 2.1.
- 2. $\forall_{x \in X}$ odwzorowanie g_x jest niemalejące i krańce przedziału I pozostawia niezmienione.
- 3. $\forall_{x \in P_0} g_x$ jest identycznością

Warunek ?? implikuje, że dla każdego odwzorowania z \mathcal{F} zbiory $X \times \{0\}$ i $X \times \{1\}$ są niezmiennicze, czyli $\forall_{F \in \mathcal{F}}$ zachodzi warunek (iii) twierdzenia 2.1. Zachodzenie warunku (ii) twierdzenia 2.1 dla każdego odwzorowania $F \in \mathcal{F}$ wynika z lematu 1.18. Pozostaje zatem wykazać prawdziwość warunku (i), czyli chaotyczność w sensie Devaney'a jakiegoś odwzorowania $F \in \mathcal{F}$. Takie odwzorowanie będzie bowiem łącznie spełniało wszystkie 3 warunki, czyli tezę twierdzenia.

Z lematu 1.19 wynika, że aby odwzorowanie F było chaotyczne w sense Devaneya potrzeba i wystarcza, żeby spełniało dwa poniższe warunki:

1. F jest topologicznie tranzytywne

2. zbiór punktów okresowych odwzorowania F jest gęsty w $(X \times I)$

Jest tak gdyż przestrzeń $(X \times I)$ spełnia założenia lematu, tj. jest przestrzenią nieskończoną i zwartą.

Chcemy wykazać, że $\exists_{F \in \mathcal{F}}$ będące jednocześnie topologicznie tranzytywne i posiadające gęsty w $(X \times I)$ zbiór punktów okresowych. Z lematu 1.20wiemy, że \mathcal{F} jest niepustym, domkniętym podzbiorem ptrzestrzeni $C_{\triangle}(X \times I)$, która jak wynika z lematu 1.21 jest przestrzenią metryczną zupełną.

Przekrój dwóch zbiorów rezydualnych jest rezydualny (patrz lemat 1.22) a więc niepusty. Wystarczy zatem pokazać, że oba zbiory:

- zbiór odwzorowań topologicznie tranzytywnych
- \bullet zbiór odwzorowań, których zbiór punktów okresowych jest gęsty w $(X \times I)$

są rezydualne w \mathcal{F} . Wówczas każde odwzorowanie należące do ich przekroju będzie spełniało wszystkie trzy warunki tezy twierdzenia 2.1

Zbiór odwzorowań tranzytywnych jest rezydualny w \mathcal{F} , zostało to udowodnione w twierdzeniu 1.23

Pozostało wykazać, że również zbiór odwzorowań posiadających gęsty zbiór punktów okresowych jest rezydualny w \mathcal{F} . Oznaczmy zbiór takich odwzorowań (jednocześnie należących do \mathcal{F}) przez \mathcal{F}_{DP} .

Niech $\{U_i^X\}_{i=1}^\infty$ będzie bazą topologii X i niech $\{U_i^I\}_{i=1}^\infty$ będzie zbiorem wszystkich odcinków otwartych o końcach wymiernych, należących do odcinka otwartego (0,1). Niech $\{U_i\}_{i=1}^\infty$ będzie ponumerowaniem zbioru $\{U_i^X\times U_j^I:i,j\in\mathbb{N}\}$. Wtedy każda kula otwarta w $X\times I$ zawiera jakiś spośród otwartych zbiorów U_i .

Dla każdego i=1,2,... niech zbiór \mathcal{F}_{SO}^i (Ś- stabilny, Ó- okresowy) będzie zdefiniowany następująco. Odwzorowanie G należy do \mathcal{F}_{SO}^i wtedy i tylko wtedy, gdy należy do \mathcal{F} , posiada punkt okresowy w U_i oraz wszystkie dostatecznie bliskie G odwzorowania z \mathcal{F} również posiadają punkt okresowy w U_i (być może różne od punktuów okresowych odwzorowania G). Zbiory \mathcal{F}_{SO}^i są otwartymi podzbiorami \mathcal{F} (patrz lemat 1.24). Ponieważ $\mathcal{F}_{DP} \supseteq \bigcap_{i=1}^{\infty} \mathcal{F}_{SO}^i$ aby pokazać, że \mathcal{F}_{DP} jest rezydualny w \mathcal{F} wystarczy pokazać, że $\forall_{i\in\mathbb{N}}\mathcal{F}_{SO}^i$ jest gęsty w \mathcal{F} . (Wynika to z faktów: 1.29 i 1.30).

Aby wykazać że każdy zbiór \mathcal{F}_{SO}^i jest gęsty w \mathcal{F} ustalmy dowolne: $i \in \mathbb{N}, F = (f, g_x) \in \mathcal{F}$ i $\epsilon > 0$. Pokażemy, że istnieje odwrorowanie $G \in \mathcal{F}_{SO}^i$, którego odległość od F nie przekracza ϵ . Dla uproszczenia sytuacji załóżmy, że $\rho(\operatorname{pr}_1(U_i), P_0) > 0$ (Jeżeli tak nie jest, zawsze możemy wziąć zamiast U_i mniejszy prostokąt $U_i^* \subset U_i$).

Weźmy dodatnią liczbę naturalną $N \geq \frac{4}{\epsilon}$. Następnie rozważmy otwarte sąsiedztwo V orbity P_0 w przestrzeni (X, ρ) takie, że $\rho(\operatorname{pr}_1(U_i), V) \geq 0$ oraz $d_1(g_x, \operatorname{Id}) < \frac{\epsilon}{4}$ dla każdego $x \in V$ (pamiętamy, że $g_x = \operatorname{Id}$ dla $x \in P_0$).

 P_0 jest zbiorem niezmienniczym ze względu na f, na mocy lematu 1.25 istnieje niepusty zbiór otwarty $W\subseteq V$ taki, że $W\cup f(W)\cup\ldots\cup f^N(W)\subseteq V$. Na mocy lematu 1.26 istnieje punkt okresowy x_0 odwzorowania f taki, że $x_0\in \operatorname{pr}_1(U_i)$ oraz orbita x_0 kroi się niepusto ze zbiorem W. Niech r>0 będzie pierwszą dodatnią liczbą całkowitą dla której $f^r(x_0)\in W$. Wtedy $f^r(x_0), f^{r+1}(x_0),\ldots, f^{r+N-1}(x_0)\in V$. Niech $s\geq 0$ będzie pierwszą nieujemną liczbą całkowitą dla której $f^{r+N+s}(x_0)=x_0$, tj. r+N+s jest okresem punktu x_0 . Weźmy y_0 takie, że $(x_0,y_0)\in U_i$. Ponieważ wszystkie odwzorowania włóknowe (g_x) odwzorowania F są ńa", to istnieje punkt $y^*\in (0,1)$ taki, że $F^s(f^{r+N}(x_0),y^*)=(x_0,y_0)$ (patrz lemat 1.27).

Przypadek 1. $z = \text{pr}_2(F^r(x_0, y_0))$ jest różne od 0 i 1. Oznaczmy przez g odwzorowanie z C(I) posiadające następujące trzy własności:

- (g1) $d_1(g, \operatorname{Id}) < \frac{\epsilon}{4}$,
- (g2) g jest odwzorowaniem niemalejącym, pozostawiającym końce przedziału I niezmienione,
- (g3) $g^N(z) = y^*$.

Następnie, rozważmy odwzorowanie $h \in C(I)$ posiadające trzy następujące własności:

- (h1) $d_1(h, g_{x_0}) < \frac{\epsilon}{4}$,
- (h2) $h(y_0) = g_{x_0}(y_0),$
- (h3) h jest stałe na zwartym odcinku $[a,b] \subseteq \operatorname{pr}_2(U_i)$ zawierającym punkt y_0 w swoim wnętrzu.

Weźmy teraz odwzorowanie $G=(f,\tilde{g}_x)\in\mathcal{F}$ takie, że $d_2(G,F)<\frac{\epsilon}{2}$ oraz

$$\widetilde{g}_{x} = \begin{cases}
h & \text{if } x = x_{0}, \\
g & \text{if } x \in \{f^{k}(x_{0}) : r \leq k \leq r + N - 1\}, \\
g_{x} & \text{if } x \in \{f^{k}(x_{0}) : 1 \leq k \leq r - 1 \text{ or } r + N \leq k \leq r + N + s - 1\}.
\end{cases}$$
(2.1)

Odwzorowanie takie istnieje na mocy lematu 1.28, ponieważ

$$d_1(\tilde{g}_{x_0}, g_{x_0}) = d_1(h, g_{x_0}) < \frac{\epsilon}{4}$$

oraz dla $x \in \{f^r(x_0), f^{r+1}(x_0), \dots, f^{r+N-1}(x_0)\},\$

$$d_1(\tilde{g}_x, g_x) = d_1(g, g_x) \le d_1(g, \operatorname{Id}) + d_1(\operatorname{Id}, g_x) < \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}$$

Punkt $(x_0, y_0) \in U_i$ jest punktem okresowym odwzorowania G, ponieważ

$$G^{r+N+s}(x_0, y_0) = G^{r+N+s-1}(G(x_0, y_0))$$

$$= G^{r+N+s-1}(F(x_0, y_0)) = G^{N+s}(F^r(x_0, y_0))$$

$$= G^{N+s}(f^r(x_0), z) = G^s(f^{r+N}(x_0), y^*)$$

$$= F^s(f^{r+N}(x_0), y^*) = (x_0, y_0).$$
(2.2)

Szczegółowe uzasadnienie powyższej równości znajduje się w 1.31 Ponadto, ze względu na (h3), na mocy 1.32 zachodzi

$$G^{r+N+s}(\{x_0\} \times [a,b]) = \{(x_0, y_0)\}.$$

Z faktu $y_0 \in (a,b)$ oraz 1.33 wynika, że każde odwzorowanie $\widetilde{G} \in \mathcal{F}$ dostatecznie bliskie G posiada własność

$$\widetilde{G}^{r+N+s}(\{x_0\}\times[a,b])\subseteq\{x_0\}\times[a,b].$$

Zatem \widetilde{G} posiada punkt okresowy w $\{x_0\} \times [a,b] \subseteq U_i$. Zatem $G \in \mathcal{F}_{SO}^i$, co kończy dowód dla przypadku 1.

Przypadek 2. $\operatorname{pr}_2(R^r(x_0, y_0))$ jest równy 0 lub 1.

W takim przypadku użyjemy lematu 1.28 aby dostać odwzorowanie $H=(f,h_x)\in\mathcal{F}$ takie, że $d_2(H,F)<\frac{\epsilon}{2}$ i dla $x\in\{x_0,f(x_0),\ldots,f^{r-1}(x_0)\}$ odwzorowania włóknowe h_x są ściśle rosnące. (Odwzorowanie takie istnieje na mocy 1.34) Ponieważ y_0 jest różnie od 0 i 1 dostajemy, że $\operatorname{pr}_2(H^r(x_0,y_0))$ również jest różne od 0 i 1 (uzasadnienie w 1.35). Następnie korzystając z przypadku 1 i z lematu 1.36 dostajemy odwzorowanie $G\in\mathcal{F}_{SO}^i$, dla którego zachodzi nierówność $d_2(G,H)<\frac{\epsilon}{2}$. Wówczas $d_2(G,F)<\epsilon$. (TODO powolac sie na nierowność trojkata)

Podsumowanie

Podsumowanie w pracach matematycznych nie jest obligatoryjne. Warto jednak na zakończenie krótko napisać, co udało nam się zrobić w pracy, a czasem także o tym, czego nie udało się zrobić.

Dodatek

Dodatek w pracach matematycznych również nie jest wymagany. Można w nim przedstawić np. jakiś dłuższy dowód, który z pewnych przyczyn pominęliśmy we właściwej części pracy lub (np. w przypadku prac statystycznych) umieścić dane, które analizowaliśmy.

Bibliografia

- [1] Alseda, L., Kolyada, S., Llibre, J., Snoha, L. Entropy and periodic points for transitive maps. *Transactions of the American Mathematical Society 351*, 4 (1999), 1551–1573.
- [2] Balibrea, F., Snoha, L. Topological entropy of devaney chaotic maps. *Topology* and its Applications 133, 3 (2003), 225–239.
- [3] RUETTE, S. Chaos on the Interval. 2018.