QUESTION 1 [12 Marks]		Marks
(a)	Differentiate the following: (i) $f(x) = \cos^{-1} 2x$ (ii) $y = \ln(\tan^{-1} x)$	1 2
(b)	Find $\int \cos^2 2x dx$	3
(c)	Find $\lim_{x\to 0} \frac{x^2}{2-2\cos 2x}$	3
(d)	$\int_{0}^{1} \frac{dx}{x^2 + 3} = ap$ Find the exact value of a	3
QU	JESTION 2 [12 Marks]	Marks
(a)	(i) Graph accurately the curve $y = \frac{2}{x-1}$	3
	(ii) Hence, solve $\frac{2}{r-1} \ge -1$	2
(b)	The interval PQ has endpoints P(2,3) and Q(-3,5). Find the coordinates of the point T, which divides the interval PQ externally in the ration 3:1.	2
(c)	Find the general solution of $\tan 3J = 1$	2
(d)	A particle is moving in simple harmonic motion. Its displacement x at time t is	
	given by $x = 3\sin(2t - \frac{p}{4})$.	
	 (i) Find the period of the motion. (ii) Find the velocity of the particle when t=0 	1 2
QUESTION 3 [12 Marks]		Marks
(a)	A particle is moving along the x -axis. Its velocity, v m/s at position x metres is given by	2
(b)	$v = \sqrt{3x - x^2}$ Find the acceleration of the particle when $x = 5$ $Q(x) = x^3 + ax^2 + 2x + b$. Given that $Q(x)$ has a factor of $(x+3)$ and when $Q(x)$ is divided by $(x-1)$ the remainder is 4.	3
	Find the values of a and b .	

(c)

S and U are points on a circle. The tangents to the circle at S and U meet at T. R are a point on the circle so that the chord SR is parallel to UT.

- (i) Draw a neat sketch showing the given information.
- (ii) Prove that SU=UR 3
- (d) Find the ratio of the 5th term to the 8th term in the expansion $(2x+3)^{10}$ when

$$x = \frac{1}{2}$$

QUESTION 4 [12 Marks]

Marks

3

- (a) Using the substitution $x = 1 u^2$, find $\int \frac{x dx}{\sqrt{1 x}}$
- (b) Consider the function $f(x) = \frac{1}{2} \sin^{-1} x$.
 - (i) State the domain and range of the function.
 - (ii) Find the area of the region bounded by the curve, the *x*-axis and the line x=1.
- Show that the constant term in the expansion $\left(\frac{3x^2}{2} \frac{1}{3x}\right)^9$ is $\frac{{}^9C_6}{6^3}$

QUESTION 5 [12Marks]

Marks

3

1

3

- (a) Solve for $0 \le q \le p$, $\cos q + 3\sin \frac{q}{2} 2 = 0$
- (b) Homer Simpson borrows \$15 000 at 11.95% per annum reducible interest, calculated monthly. The loan is to be repaid in 60 monthly instalments of \$333.30 at the end of the month.

The amount A_n , of the loan remaining after n months is given by

$$A_n = MR^n - \$333.30(\frac{R^n - 1}{R - 1})$$
, where M is the principle amount borrowed.

- (i) Find the exact value of R.
- (ii) After 2 years, Homer inherits \$1500 and wishes to pay this towards his loan. By how many months is the term of his loan reduced, by paying this extra amount?

QUESTION 5 continued

(c)

A sector with centre O and radius r cm, is bounded by radii OP and OQ and arc PQ. \angle POQ is q radians.

(i) Given that r and q vary in such a way that the area of the sector POQ is always equal to 50 cm^2 , show that $q = \frac{100}{r^2}$.

(ii) Given also that the radius is increasing at a constant rate of 0.5 cm/s, finds the rate at which the angle POQ is decreasing when r=10 cm.

QUESTION 6 [12 Marks]

Marks

4

- (a) (i) Find the equation of the tangent to the parabola x = 2at, $y = at^2$ at the point P where t = p.
 - (ii) If the point Q is the point where t = q, and O is the origin, show that if OQ is parallel to the tangent, then q = 2p.
 - (iii) If M is the midpoint of PQ, find the equation of the locus of M as P and Q vary long the parabola such that OQ remains parallel to the tangent at P.
- (b) Using the principles of mathematical induction, prove that $\ln[(n+2)!] > n+2$, for $n \ge 4$
- (c) At a referendum, 30% of parents were in favour of a new uniform logo. An SRC member approached 8 parents chosen at random.

Find the probability that from this group, exactly 3 parents voted in favour of the logo.

Question 7 [12 Marks]

Marks

(a) All the letters of the word **ENCUMBRANCE** are arranged in a line. Find the total number of arrangements, which contain all the vowels in alphabetical order but separated by at least one consonant.

4

4

4

(b) A golf ball is lying at point P, at the middle of a sand bunker, which is surrounded by level ground. The point A is at the edge of the bunker and the line AB lies on the level ground. The bunker is 8 metres wide and 1 metre deep.

The ball is hit towards A with an initial speed of 12m/s and angle of elevation α . (You may assume that the acceleration due to gravity is 10m/s^2)

The golf ball's trajectory at time t seconds after being hit may be defined by the equations $x = (12\cos a)t$ and $y = -5t^2 + (12\sin a)t - 1$ where x and y are the horizontal and vertical displacements, in metres, of the ball from the origin O, shown in the diagram.

- (i) If $a = 30^{\circ}$, how far to the right of A will the ball land? (Give your answer correct to 0.1m)
- (ii) Find the range of values of α, to the nearest degree, at which the ball must hit so that it will land to the right of A