

- · we would need four yariables > 3 for n + 1 for 0
- · Rotation vector notation: K = no R (K) , (K)

COMPOSITION OF ROTATION

- $[R] \rightarrow [R] \longrightarrow [R]$
- · in frame 1, there is some rotation occuring p' = A' q'

the rotation from how would be observe another fram?

In general,

- Θ R(Ω , Θ)

 rotating by Θ about current n amin $R(\hat{n}, \Theta)$
 - · z axis by ϕ (fixed z axis) $R(\hat{n}, \Theta) \cdot R(z, \phi)$
 - $R(z, \alpha)$ $R(\hat{x}, \theta) R(z, \phi)$
- pre-multiply for body fixed

EIGEN VECTORS

· vectors that are invariant under some fransformation.

For
$$SO(2)$$
: eigen value $A_1, A_2 \Rightarrow e^{\pm i\theta}$ (complex conjugate pairs)
For $SO(3)$: A_1, A_2, A_3

- · For identity matrix as R,
 eigen value = 1
 eigen vectors -> can be anything
- i) $\theta = \pi$, $A_1 = 1$, $A_2 = -1$
 - in general, 2,=1; 2=23=exi0

•	ho th	find eigen	the n	axin vector	9	rotah respond	on =	=) to	Б Д=	find	