Deriving logic functions from truth tables

- Given a truth table, we might want to derive a logic function (the function is easier to manipulate).
- ► Two simple ways to derive a logic function one method will yield a Sum-Of-Products (SOP) representation for the logic function while the other method will yield a Product-Of-Sums (POS) representation for the logic function.

Minterms

- Consider a truth table for an n-input function with 2^n rows.
- For each row, create an AND of all inputs according to the following rule:
 - If the input variable has value 1 in the current row, then include the variable uncomplemented (the positive literal);
 - If the input variable has value 0 in the current row, then include the variable complemented (the negative literal).
- The result of applying the above rule yields the so-called "minterm" for each row of the truth table.
 - An n-input function has 2ⁿ minterms (one for each row) and all are different.

Minterms

Example for a 3-input function...

X	У	z	minterm	
0	0	0	!x!y!z	$= m_0$
0	0	1	!x! <i>yz</i>	$= m_1$
0	1	0	!xy!z	$= m_2$
0	1	1	!xyz	$= m_3$
1	0	0	x!y!z	$= m_4$
1	0	1	x!yz	$= m_5$
1	1	0	xy!z	$= m_6$
1	1	1	xyz	$= m_7$

- ▶ Minterms are denoted by the lower-case letter "m_i" to represent the minterm for the i-th row of the truth table.
- Property of minterms: The minterm evaluates to 1 if and only if the corresponding input pattern appears, otherwise it evaluates to 0.

Canonical Sum-Of-Products

- Given the truth table for a logic function, we can ALWAYS write down a logic expression by taking the OR of the MINTERMS for which the function is 1.
 - The resulting expression if "canonical" (i.e., unique) and is called the Canonical Sum-Of-Products (SOP) or Sum-Of-Minterms representation for the function.
- Example...

We can write $f(x, y, z) = m_1 + m_4 + m_7 = |x|yz + x|y|z + xyz$.

Shortcut notation exists... $f(x, y, z) = m_1 + m_4 + m_7 = \sum (1, 4, 7)$

minterms required for f

SOP circuit implementations

When implemented as an SOP, a function f always has the same "structure"; a "plane" of NOT, followed by a "plane" of AND followed by a single OR.

Note that SOP implementations of *f* composed of minterms are not cheap!

Maxterms

- Consider a truth table for an n-input function with 2ⁿ rows.
- For each row, create an **OR** of all inputs according to the following rule:
 - If the input variable has value 0 in the current row, then include the variable uncomplemented (the positive literal);
 - If the input variable has value 1 in the current row, then include the variable complemented (the negative literal).
- The result of applying the above rule yields the so-called "maxterm" for each row of the truth table.
 - An n-input function has 2ⁿ maxterms (one for each row) and all are different.

Maxterms

Example for a 3-input function...

X	У	Z	minterm	
0	0	0	x + y + z	$= M_0$
0	0	1	x+y+!z	$= M_1$
0	1	0	x+!y+z	$= M_2$
0	1	1	x+!y+!z	$= M_3$
1	0	0	!x + y + z	$= M_4$
1	0	1	!x + y + !z	$= M_5$
1	1	0	!x+!y+z	$= M_6$
1	1	1	!x+!y+!z	$= M_7$

- Maxterms are denoted by the upper-case letter "M_i" to represent the maxterm for the i-th row of the truth table.
- ▶ Property of maxterms: The maxterm evaluates to 0 if and only if the corresponding input pattern appears, otherwise it evaluates to 1.

Canonical Product-Of-Sums

- Given the truth table for a logic function, we can ALWAYS write down a logic expression by taking the AND of the MAXTERMS for which the function is 0.
 - The resulting expression if "canonical" (i.e., unique) and is called the Canonical Product-Of-Sums (POS) or Product-Of-Maxterms representation for the function.
- Example...

X	У	z	f	
0	0	0	0	$x+y+z=M_0$
0	0	1	1	
0	1	0	0	$x+!y+z=M_2$
0	1	1	0	$x+!y+!z=M_3$
1	0	0	1	
1	0	1	0	$!x + y + !z = M_5$
1	1	0	0	$!x+!y+z=M_6$
1	1	1	1	

We can write
$$f(x, y, z) = M_0 M_2 M_4 M_5 M_6 = (x + y + z)(x + |y + z)(x + |y + |z)(|x + y + |z)(|x + |y + |z)$$

Shortcut notation exists...

$$f(x, y, z) = M_0 M_2 M_4 M_5 M_6 = \Pi(0, 2, 4, 5, 6)$$

 \max terms required for f

POS circuit implementations

When implemented as an POS, a function f always has the same "structure"; a "plane" of NOT, followed by a "plane" of OR followed by a single AND.

$$f = (x + y + z)(x+!y+z)(x+!y+!z)(!x+y+!z)(!x+!y+z)$$

▶ Note that POS implementations of *f* composed of maxterms are not cheap!

Conversion and equality of representations

- ▶ Minterms and maxterms are "duals" of each other; $m_i = !M_i$ (and $M_i = !m_i$).
- ▶ You can always convert from one canonical represention to the other We can convert from minterms to maxterms by changing \sum to Π and list those terms missing from the original list.
- The reverse (maxterms to minterms) works the same way.
 - Convert the canonical SOP $f(x, y, z) = \sum (1, 4, 7)$ to canonical POS... terms not in minterm list

Solution is
$$f(x, y, z) = \bigcap$$

changed from \sum to \prod
 $f = \sum (1, 4, 7)$
 $= m_1 + m_4 + m_7$
 $= !(!f)$
 $= !(m_0 + m_2 + m_3 + m_5 + m_6)$
 $= !m_0!m_2!m_3!m_5!m_6$
 $= M_0M_2M_3M_5M_6$
 $= \prod (0, 2, 4, 5, 6)$

(0,2,3,4,5,6)

Additional comments

- SOP and POS representations of a logic function f are often referred to as the so-called "two-level" implementations of f.
 - ▶ The is because if we ignore the inverters (e.g., because we assume that input variables are available either complemented or un-complemented), *f* is the output of two levels of logic gates (AND the OR for SOP; OR then AND for POS).

Standard Sum-Of-Product (SOP) implementations

- A function f implemented as a canonical SOP using minterms is by no means minimal.
- Let any AND of input literals be called a **product term**.
- We can then express any function f as a Sum-Of-Products where, instead of using minterms, we use product terms.
 - ► The resulting SOP is typically simpler and of lower cost than the canonical SOP
- This simplification can, for example, be obtained by Boolean algebra.

Standard Sum-Of-Product (SOP) implementations

Example...

X	У	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

We can write f(x, y, z) = !xyz + x!yz + xy!z + xyz.

- ▶ However, Boolean algebra can be used to show that f(x, y, z) = xz + zy + yz which is simpler and composed of 3 product terms (none of which is a minterm).
- Note: A minterm is a product term, but a product term is not necessarily a minterm!

Standard Product-Of-Sum (POS) implementations

- ▶ A function *f* implemented as a canonical POS using maxterms is by no means minimal.
- Let any OR of input literals be called a sum term.
- We can then express any function f as a Product-Of-Sums where, instead of using maxterms, we use sum terms.
 - The resulting POS is typically simpler and of lower cost than the canonical POS
- This simplification can, for example, be obtained by Boolean algebra.

Standard Product-Of-Sum (POS) implementations

Example...

X	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

We can write

$$f(x, y, z) = (x + y + z)(x + !y + z)(x + !y + !z)(!x + y + !z)(!x + !y + z).$$

- However, Boolean algebra can be used to show that f(x, y, z) = (x + z)(x+!y)(!y + z)(!x + y+!z) which is simpler and composed of 4 sum terms (one of which IS a maxterm).
- Note: A maxterm is a sum term, but a sum term is not necessarily a maxterm!

Propagation delay through gates

- ▶ I want to mention it now so that there is no confusion...
- ▶ Theoretically, there is no "time" involved with working with logic functions.
- However, when we actually make a circuit using gates (which, in turn, are made from transistors) "time" is involved.
 - Outputs do not change instantaneously!
- When an input signal changes, there is a slight delay after which the output will change.
- The amount of delay is called "gate delay" or "propagation delay".

Notice the small amount of delay between the time that y changes from $0 \to 1$ and the time that f = xy changes from $0 \to 1$.