Лабораторная работа 1.5 Изучение колебаний струны

Зотов Алексей 496 гр.

23 мая 2016 г.

Цель работы: изучение поперечных стоячих волн в струне: определение собственных частот колебания струны в зависимости от натяжения струны и определение скорости распространения поперечных волн в струне.

Ограниченная, закрепленная на концах струна, может совершать собственные колебания, представляющие собой стоячие волны вида:

$$y(x,t) = A\sin(2\pi ft)\sin\left(\frac{2\pi}{\lambda}x\right) \tag{1}$$

где A— амплитуда колебаний в пучностях, f— частота, λ — длина волны, x— координата вдоль струны. В концевых точках должны располагаться узлы стоячей волны (амплитуда колебаний равна нулю), откуда следует, что на струне длиной L должно укладываться целое число полуволн:

$$L = n\frac{\lambda_n}{2}, \quad n = 1, 2, 3 \dots \tag{2}$$

Скорость распространения поперечных волн u зависит от силы натяжения струны F и массы струны на единицу длины ρ_l погонной плотности струны $\rho_l = \rho S$):

$$u = \sqrt{\frac{F}{\rho_l}} \tag{3}$$

Возможные частоты собственных колебаний струны (обертоны):

$$f_n = \frac{u}{\lambda_n} = \frac{n}{2L} \sqrt{\frac{F}{\rho_l}} \tag{4}$$

Если частота внешней поперечной синусоидальной силы совпадает с какой либо собственной частотой колебания струны, то возникает явление резонанса и образуется синусоидальная стоячая волна.

В работе используются: звуковои генератор, двухканальный осциллограф, частотомер, набор грузов, станина, с закрепленной на ней струной ($L=50~{\rm cm}$) (Puc.1).

Рис. 1: Экспериментальная установка.

Ход работы:

1. Будем нагружать струну различными массами, и измерять частоты нескольких гармоник стоячих волн. Так как ожидаемая зависимость частоты f(n) линейная, то построим аппроксимирующие по методу наименьших квадратов прямые вида f = kn + b для каждой из нагрузок струны. Произведем оценку ошибки:

$$\sigma_k \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2} \tag{5}$$

$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \tag{6}$$

После этого найдем u - скорость распространения поперечных волн, $f_n = \frac{u}{2L}n \implies u = 2Lk$, где k - коэффициент наклона прямой f(n) , тогда погрешность определяется как :

$$\left(\frac{\sigma_u}{u}\right)^2 = \left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2 \tag{7}$$

Так как L измерена достаточно точно, то считаем $\sigma_L \approx 0$, тогда $\sigma_k = \sigma_u$

• m = 1042.3g

n	0	1	2	3	4	5	6	7
f_n [Гц]	0	127.3	255.7	383.7	512.3	644.2	775.3	904.7

 $k \approx 129.4$, $b \approx -2.3$, $\sigma_k \approx 0.3$, $\sigma_b \approx 0.6$, $u \approx 129.4 (\text{m/c})$

• m = 548.0g

n	0	1	2	3	4	5
f_n [Гц]	0	101.1	203.1	303.5	400.0	493.6

 $k\approx 99.0$, $b\approx 2.7$, $\sigma_k\approx 0.7$, $\sigma_b\approx 1.1$, $k\approx 99.0 ({\rm m/c})$

 $\bullet \ m=1544.1g$

n	0	1	2	3	4
f_n [Гц]	0	166.0	331.9	498.0	668.1

 $k\approx 166.8$, $b\approx -0.8$, $\sigma_k\approx 0.4$, $\sigma_b\approx 0.5$, $u\approx 166.8 ({\rm m/c})$

 $\bullet \ m=2009.0g$

n	0	1	2	3	4
f_n [Гц]	0	170.5	341.4	516.9	687.0

 $k\approx 172.0$, $b\approx -0.9$, $\sigma_k\approx 0.4$, $\sigma_b\approx 0.5$, $u\approx 172.0 ({\rm m/c})$

 $\bullet \ m=2514.5g$

n	0	1	2	3	4
f_n [Гц]	0	208.7	418.3	629.0	837.1

 $k\approx 209.5$, $b\approx -0.3$, $\sigma_k\approx 0.2$, $\sigma_b\approx 0.2$, $u\approx 209.5 ({\rm m/c})$

2. Найдем зависимость $u^2(F)$, F=mg , $g\approx 9.81$, $\sigma_u\approx 0.5$, тогда $\sigma_u^2=2u\sigma_u\approx 129.4$

 $y \approx 1688.9x + 193.3$, $\sigma_k \approx 145.0$, $\sigma_b \approx 985.8$

3. Найдем погонную плотность струны

$$\rho_l = \frac{F}{u^2} = 1/k \tag{8}$$

 $\rho_l \approx 0.59 \ [\mathrm{g/m}]$, $\sigma_{\rho_l} = \frac{1}{k^2} \sigma_k \approx 0.05$

4. Указанная погонная плотность $\rho_{l_0}=0.5684$, значит разность ожидаемого и полученного значений укладывается в пределы погрешности.