MAT1120

Robin A. T. Pedersen

November 3, 2016

Contents

1	Kpt	t.4 - Vektorrom	2
	1.1	4.1 - Vektor rom og underrom	2
		1.1.1 Definisjon - vektorrom	2
		1.1.2 Definisjon - underrom	2
		1.1.3 Teorem 1	3
	1.2	4.2 - Nullrom, kolonnerom og lineærtransformasjoner	3
	1.3	4.3 - Lineært uavhengige mengder: basiser	3
	1.4	4.4 - Koordinatsystemer	3
	1.5	4.5 - Dimensjon av vektorrom	3
	1.6	4.6 - Rang	3
	1.7	4.7 - Basisskifte	3
	1.8	4.8 - Ikke eksamensrelevant	3
	1.9	4.9 - Anvendelser til Markovkjeder	3
2	Kpt	t.5 - Egenverdier og Egenvektorer	3
	$2.\overline{1}$	5.1 - Egenvektor og egenverdier	3
	2.2	5.2 - Den karakteristisk ligningen	3
	2.3	5.3 - Diagonalisering	4
	2.4	5.4 - Egenvektorer og lineærtransformasjoner	4
	2.5	5.5 - Komplekse egenverdier	4
	2.6	5.6 - Diskrete dynamiske systemer	4
	2.7	5.7 - Anvendelser til differensialligninger	4
	2.8	5.8 - Iterative estimater for egenverdier? TODO	4
3	Kpt	t.6 - Ortogonalitet og Minstekvadrater	4
	3.1	6.1 - Indre produkt, lengde og ortogonalitet	4
	3.2	6.2 - Ortogonale mengder	4
	3.3	6.3 - Ortogonal projeksjon	4
	3.4	6.4 - Gram-Schmidt prosessen	4
	3.5	6.5 - Minstekvadraters problem	4
	3.6	6.6 - Anvendelser til lineære modeller	5
	3.7	6.7 - Indreproduktrom? TODO	5
	3.8	6.8 - Anvendelser til indreproduktrom	5

4	Kpt.7 - Symmetriske Matriser og Kvadratisk Form	5
	4.1 7.1 - Diagonalisering av symmetriske matriser	5
	4.2 7.2 - Kvadratisk form	5
	4.3 7.3 - Begrenset optimalisering? TODO	5
	4.4 7.4 - Singulærverdidekomposisjon	5
	4.5 7.5 - Ikke pensum? TODO	5
5	5 Notat 1	
6	Notat 2	5

1 Kpt.4 - Vektorrom

1.1 4.1 - Vektor rom og underrom

1.1.1 Definisjon - vektorrom

Et vektorrom er en ikketom mengde V. Den består av såkalte *vektorer*. Disse vektorene må være beskrevet av 2 operasjoner: Addisjon og skalarmultiplikasjon.

De to operasjonene defineres av følgende aksiomer: La $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$

- 1. $u + v \in V$
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 4. $\exists \mathbf{0} \in Vs.a.\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. $\forall \mathbf{u} \in V, \ \exists -\mathbf{u} \in V s.a.\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 6. $c\mathbf{u} \in V, c \in \mathbb{R}$
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1**u**=**u**

1.1.2 Definisjon - underrom

Et underrom H er en delmengde av V. H er et underrom av V. To egenskaper må være oppfylt:

- 1. H er lukket under addisjon. $\mathbf{u} + \mathbf{v} \in H$, $\forall \mathbf{u}, \mathbf{v} \in H$
- 2. H er lukket under skalarmultiplikasjon. $c\mathbf{u} \in H, \ \forall c \in \mathbb{R}$

1.1.3 Teorem 1

Hvis $\mathbf{v}_1,...,\mathbf{v}_p$ er i et vektorrom V, så er Span $\{\mathbf{v}_1,...,\mathbf{v}_p\}$ et underrom av V.

1.2 4.2 - Nullrom, kolonnerom og lineærtransformasjoner $_{ m TODO}$

1.3 4.3 - Lineært uavhengige mengder: basiser

TODO

1.4 4.4 - Koordinatsystemer

TODO

1.5 4.5 - Dimensjon av vektorrom

TODO

1.6 4.6 - Rang

TODO

1.7 4.7 - Basisskifte

TODO

1.8 4.8 - Ikke eksamensrelevant

Ikke eksamensrelevant.

1.9 4.9 - Anvendelser til Markovkjeder

TODO

2 Kpt.5 - Egenverdier og Egenvektorer

2.1 5.1 - Egenvektor og egenverdier

TODO

2.2 5.2 - Den karakteristisk ligningen

TODO

2.3 5.3 - Diagonalisering

TODO

2.4 5.4 - Egenvektorer og lineærtransformasjoner TODO

2.5 5.5 - Komplekse egenverdier

TODO

2.6 5.6 - Diskrete dynamiske systemer

TODO

2.7 - 5.7 - Anvendelser til differensialligninger

TODO

2.8 5.8 - Iterative estimater for egenverdier? TODO TODO

- 3 Kpt.6 Ortogonalitet og Minstekvadrater
- 3.1 6.1 Indre produkt, lengde og ortogonalitet $_{\mathrm{TODO}}$
- 3.2 6.2 Ortogonale mengder

TODO

3.3 6.3 - Ortogonal projeksjon

TODO

3.4 6.4 - Gram-Schmidt prosessen

TODO

3.5 6.5 - Minstekvadraters problem

TODO

3.6 6.6 - Anvendelser til lineære modeller $_{
m TODO}$

3.7 6.7 - Indreproduktrom? TODO

TODO

3.8 6.8 - Anvendelser til indreproduktrom $_{
m TODO}$

4 Kpt.7 - Symmetriske Matriser og Kvadratisk Form

4.1 7.1 - Diagonalisering av symmetriske matriser $_{\rm TODO}$

4.2 7.2 - Kvadratisk form

TODO

4.3 7.3 - Begrenset optimalisering? TODO

TODO

4.4 7.4 - Singulærverdidekomposisjon

TODO

4.5 7.5 - Ikke pensum? TODO

Ikke pensun? TODO

5 Notat 1

TODO

6 Notat 2

TODO