Online Movie Group Recommendation

電機所 N26090693 吳承霖

Outline

Introduction

Motivation D

Motivation, Problem Definition, Challenges, Related Works

Dataset

Dataset Introduction, Data Preprocessing

Algorithm

Network Model, Evaluation Metrics

Experiments

Effect of Attention, Parameter Test

1. Introduction

- Motivation and Goal
- Challenge
- Problem Definition

Motivation and Goal

Motivation

- Owing to prevalence of social media, online group activities have become common.
 - Group of teenagers can organize a social party on <u>Meetup</u>
 - Group of researchers can discuss a paper on *Mendeley*

Goal

 Build Algorithm to provide movie recommendation for a group of users

2.256 Members

679 Members

Challenges

The decision making process of a group is complicated and dynamic

- A member has different influence in choosing items of different types due to his specialty.
- Traditional aggregation strategies are fixed and predefined --> insufficient the capture the dynamic process of group decision making
 - <u>Average</u> member aggregation
 - <u>Maximum Satisfaction</u> member aggregation
 - ... etc

Problem Definition

Given

- User set $U = \{u_1, u_2, \dots, u_n\}$, n users in total
- Group set $G = \{g_1, g_2, \dots, g_s\}$, s groups in total
- Item set $I = \{i_1, i_2, \dots, i_m\}, m$ items in total
- group-item interaction $Y = [y_{lj}]_{s \times m}$
- user-item interaction $R = \left[r_{lj}\right]_{n \times m}$

Find

- Item score from group $g, f_q: I \to \mathbb{R}$
- Item score from user $u, f_u: I \to \mathbb{R}$

- Dataset Introduction
- Data Preprocessing

Dataset Introduction

CAMRa2011 Dataset

- a real-world dataset containing the movie rating records of individual users and households
- 602 users, 290 groups, 7710 items, 116344 user-item interactions, and 145068 group-item interactions

Individual User Ratings

user_id	movie_id	value	Created_at
40426	30682	80	2009-07-16 18:25:09
40426	8132	75	2009-07-16 18:21:26
:	:	:	:

Group-User mapping

household_id	user_id
1	40426
1	311738
2	693545
2	894682
:	:

Group Ratings

household_id	movie_id	value	Created_at
1	14816	85	2009-07-16 18:10:49
1	27935	80	2009-07-16 18:12:02
:	:	:	:

Data Preprocessing

Rating Values

Transform rating values of all rows to 1 => treat observed interactions as positive instances

Negative Instances

Randomly sampled from missing data as negative instances (rating value = 0) to pair with each positive instance

Training/Testing Splitting

Leave-one-out, i.e. for each user (group), randomly removed one of his(its) interactions for testing

- Model Architecture
- Evaluation Metrics

Model Architecture

Implemented model: AGREE (Attentive Group REcommEndation)

Attentive Group Representation Learning

User embedding Aggregation

 group embedding is dependent of the embedding vectors of its member users and the target items:

$$g_l(j) = \sum_{\substack{t \in K_l \\ \text{user embedding} \\ \text{aggregation}}} \alpha(j,t)u_t + q_l \qquad (1)$$

• $\alpha(j,t)$ is weight for user embedding aggregation, it's learned at attention network:

$$o(j,t) = h^{T} ReLU(P_{v}v_{j} + P_{u}u_{t} + b)$$

$$\alpha(j,t) = softmax(o(j,t))$$

Interaction Learning with NCF

Pooling Layer

performs element-wise product on their embeddings, then concatenates it with the original embeddings

$$e_{0} = \varphi_{pooling}(g_{l}(j), v_{j}) = \begin{bmatrix} g_{l}(j) \odot v_{j} \\ g_{l}(j) \\ v_{j} \end{bmatrix}$$

$$e_{0} = \varphi_{pooling}(u_{i}(j), v_{j}) = \begin{bmatrix} u_{i}(j) \odot v_{j} \\ gu_{i}(j) \\ v_{j} \end{bmatrix}$$

Shared Hidden Layers

at layer
$$h$$
: $e_{h+1} = ReLU(W_{h+1}e_h)$

output:
$$\begin{cases} \hat{r}_{ij} = W^T e_h, if \ e_0 = \varphi_{pooling} (u_i(j), v_j) \\ \hat{y}_{ij} = W^T e_h, if \ e_0 = \varphi_{pooling} (g_l(j), v_j) \end{cases}$$

Evaluation Metrics

Row Format of Testset

uid (or gid), positive iid, negative iid 1, negative iid 2, ..., negative iid 100

Evaluation Procedure

- 1. **predict** rating scores for each user-item pair (or group-item pair), then **sort** it from high to low
- 2. **Top-K**: pick highest 5 predicted, calculate
 - Hit Rate: percentage of predicted rating of positive item being in the top 5 ratings
 - NDCG: wow high the predicted rating of positive item is

4. Experiments

- Effectiveness of Attention
- Parameter Test

Effectiveness of Attention

To examine the effectiveness of Attention mechanism, we compared our implemented model with:

- GREE AGREE model without attention (average member aggregation)
- Group NCF Take member aggregation away, treats group as a virtual individual

Parameter Test

To investigate the number of sampled negative instances for each observed interaction:

• For each interaction between user(/group) and item, sample 4, 5, 6 negative instances

Conclusion

What we might be able to conclude

- Attention mechanism is helpful for aggregated group representation
- The number of negative instance sampling is relevant to accuracy of evaluation

What we can further improve

- Values of Hit Rate@5 and NDCG@5 are not high in CARMa2011 dataset, try on other dataset
- Train model using un-transformed rating values (0-100), instead of [0, 1]
- Alter method of interaction between user & item in Attention network, use product-based ways instead

