Rechnerarithmetik

Parameter	Kursinformationen
Veranstaltung:	Eingebettete Systeme
Semester	Wintersemester 2021/22
Hochschule:	Technische Universität Freiberg
Inhalte:	Realisierung grundlegender arithmetischer Operationen im Rechner
Link auf GitHub:	https://github.com/TUBAF-IfI- LiaScript/VL_Softwareentwicklung/blob/master/09_Rechnerarithmetik.md
Autoren	Sebastian Zug & André Dietrich & Fabian Bär

Fragen an die Veranstaltung

- Was ist der Unterschied zwischen einem Stellenwertsystem und einem additiv-wirkenden Zahlensystem?
- Zu welcher Basis werden duale, oktale, hexadezimale Zahlen gebildet?
- Wie lassen sich Zahlen zwischen diesen Systemen umrechnen?
- Wie resultiert daraus der Zahlenraum für 2 Stellen?
- Welchen Vorteil bringt die komplementäre Zahlendarstellung mit sich?
- Warum arbeiten heutige Rechner ausschließlich mit der 2er-Komplementdarstellung?
- Wie sehen die Basis Addier-/Subtrahier Schaltungen aus? Was ist ein Volladdierer / Halbaddierer?
- Welchen Vorteil bringt der Carry-Look-Ahead Addierer gegenüber dem Carry-Ripple-Addierer mit?
- Warum werden beide Ansätze kombiniert?

Abstraktionsebenen

Zahlendarstellung

Ganzzahlige Zahlensystem

Frühe Zahlensysteme

Als römische Zahlen werden die Zahlzeichen einer in der römischen Antike entstandenen und noch für Nummern und besondere Zwecke gebräuchlichen Zahlschrift bezeichnet.

Es handelt sich um eine additive Zahlschrift, mit ergänzender Regel für die subtraktive Schreibung bestimmter Zahlen, aber ohne Stellenwertsystem und ohne Zeichen für Null.

	1	2	3	4	5	6	7
Majuskel	I	II	III	IV	V	VI	VII
Minuskel	i	ii	iii	iv	V	vi	vii

Eingang des Kolosseums mit der römischen Zahl LII (52) [1]

[1]: WarpFlyght, Eingang des Kolosseums mit der römischen Zahl LII (52), https://commons.wikimedia.org/wiki/File:Colosseum-Entrance_LII.jpg
Dezimale Zahlen

Darstellung positiver ganzer Zahlen in positionaler Notation (auch als Stellenwertsystem bezeichnet) mit 10 Symbolen $x_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

$$\begin{aligned} x &= (x_{n-1}x_{n-2}x_{n-3}...x_2x_1x_0)_{10} \\ x &= x_{n-1} \cdot 10^{n-1} + x_{n-2} \cdot 10^{n-2} + + x_1 \cdot 10^1 + x_0 \cdot 10^0 \end{aligned}$$

Beispiel $259_{10} = 2 \cdot 10^2 + 5 \cdot 10^1 + 9 \cdot 10^0 = 200 + 50 + 9$

Binäre Zahlen

$$y = (y_{n-1}y_{n-2}y_{n-3}...y_2y_1x_0)_2$$

$$y = y_{n-1} \cdot 2^{n-1} + y_{n-2} \cdot 2^{n-2} + + y_1 \cdot 2^1 + y_0 \cdot 2^0$$

Beispiel
$$11101_2 = 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 16 + 8 + 4 + 1 = 29$$

Verallgemeinerung b-adische Zahlensysteme

Jede natürliche Zahl z mit $0 \leq z \leq b^n-1$ ist eindeutig als n-stellige Zahl zur Basis b darstellbar:

$$\begin{split} z &= (z_{n-1}z_{n-2}z_{n-3}...z_2z_1z_0)_b \\ z &= z_{n-1} \cdot b^{n-1} + z_{n-2} \cdot b^{n-2} + + z_1 \cdot b^1 + z_0 \cdot b^0 \end{split}$$

Typische Werte für die Basis b:

Zahlensystem	b	Ziffern
Dualzahlen	2 (21)	$x_i \in \{0,1\}$
Oktalzahlen	8 (2 ³)	$x_i \in \{0,1,2,3,4,5,6,7\}$
Dezimalzahlen	10	$x_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
Hexadezimalzahlen	16 (2 ⁴)	$x_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$

Beispiel $FE01_{16} = 15 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16^1 + 1 \cdot 16^0 = 65040$

Aufgabe: Informieren Sie sich über das Sexagesimalsystem der babylonischen Mathematik! Warum verwendete man die 60 als Grundlage?

Merke: Mit der Darstellung einer Zahl im binären Zahlensystem sinkt die Zahl der Ziffernsymbole. Gleichzeitig steigt die Zahl der notwendigen Stellen an! Wir brauchen mehr Platz.

Beispiel: 214_{10}

Zahlensystem	x_7	x_6	x_5	x_4	x_3	x_2	x_1
Dual	1	1	0	1	0	1	1
Oktal						3	2
Dezimal						2	1
Hexadezimal							D

Für die Realisierung der Wandlung einer dezimalen Zahl z in eine Zahl x zur Basis b folgt man folgendem Algorithmus:

```
i=0
wiederhole, bis z=0:
  berechne z=z/b     (ganzzahlige Division mit Rest)
  notiere Rest r[i]
  i=i+1
spiegele r
```

Reste stellen das gesuchte Ergebnis dar: $x=(r_{i-1}...r_1r_0)_b$

Beispiel: Wandlung von 29_{10} in eine binäre Zahl

Der Teiler definiert das avisierte Zahlensystem

```
29 \ / \ 2 = 14 Rest 1 
 14 \ / \ 2 = 7 Rest 0 
 7 \ / \ 2 = 3 Rest 1 
 3 \ / \ 2 = 1 Rest 1 
 1 \ / \ 2 = 0 Rest 1
```

29_{10} = 11101_2

Für binäre Zahlen kann mit Blick auf die bekannten Zweierpotenzen auch effizienter vorgegangen werden:

- 1. Man schreibe alle Zweierpotenzen, welche kleiner als die Dezimalzahl sind, rückwärts auf (beginne von rechts und schreibe links jeweils den mit 2 multiplizierten Wert).
- 2. Nun setzt man von links nach rechts eine 1 unter jede Potenz welche in die dezimale Zahl passt und subtrahiert die Potenz von der Zahl. Wenn die Potenz nicht in die Zahl passt schreibt man eine 0.
- 3. Dies wird wiederholt bis alle Potenzen belegt sind.

Beispiel: 242_{10} in binär

128	64	32	16	8	4	2	1
1	1	1	1	0	0	1	0
242 - 128 = 114	114 - 64 = 50	50 - 32 = 18	18 - 16 = 2	2 - 8 < 0	2 - 4 < 0	2 - 2 = 0	0 - 1 < 0

 $\textbf{Aufgabe:} \ \text{Wandeln Sie die Zahl } 523_{10} \ \text{in eine bin\"{a}re Zahl um}.$

```
523 / 2 = 261
261 / 2 = 130
130 / 2 = 65
                                Rest
                                               1
                                Rest
                                Rest
                                               0
 130 / 2 =
65 / 2 =
32 / 2 =
16 / 2 =
8 / 2 =
4 / 2 =
2 / 2 =
1 / 2 =
                      32
                                Rest
                                               1
                      16
                                               0
                                Rest
                        8
                                Rest
                                               0
                                Rest
                                               0
                        2
                                Rest
                                               0
                        1
                                Rest
                                               0
                                Rest
                                               1
```

 523_{10} = 1000001011_2

Gebrochene Zahlen

Die Römer nutzten Brüche mit der Basis 12(!). Die Nutzung der 12 lag nahe, weil sich die am häufigsten benötigten Brüche eine Hälfte, ein Drittel und ein Viertel durch Vielfache von 1/12 darstellen lassen. Der römische Name für ein Zwölftel ist Uncia, ein Wort, das später zum Gewichtsmaß Unze wurde. Für Brüche, deren Zähler um 1 kleiner als der Nenner ist, wurde teilweise eine subtraktive Bezeichnung verwendet.

Die Darstellung einer gebrochenen Zahl ist in einem b-adischen System mit n Vorkomma und m Nachkommastellen definiert mit:

$$z = (z_{n-1}...z_1z_0, z_{-1}...z_{-m+1}z_{-m})$$

$$z = z_{n-1} \cdot b^{n-1} + + z_0 \cdot b^0, z_{-1} \cdot b^{-1} + + z_{-m} \cdot b^{-m}$$

2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
128	64	32	16	8	4	2	1

Beispiel: 1011, 1101 = 8 + 2 + 1 + 0.5 + 0.25 + 0.0625 = 11.8125

```
i=0
wiederhole, bis z=0:
berechne z=2·z
wenn z > 1
   notiere 1 für r[i]
   z=z-1
sonst
   notiere 0 für r[i]
i++
```

Beispiel 1: Wandeln Sie 0.28125_{10} in eine duale Zahl

Der Faktor definiert das avisierte Zahlensystem

```
0.28125 \cdot 2 = 0.5625
                     < 1
                           →0
                                   Rest
                                          0.5625
0.5625 · 2 = 1.125
                     >
                        1 -1
                                   Rest
                                          0.125
                     < 1 →0
0.125
       \cdot 2 = 0.25
                                   Rest
                                          0.25
0.25
       \cdot 2 = 0.5
                      < 1
                           →0
                                   Rest
                                          0.5
0.5
                                  Rest
```

Ergebnis $0.28125_{10} = 0.25 + 0.03125 = 0.01001$

Beispiel 2: Wandeln Sie 0.1_{10} in eine duale Zahl

```
0.1 \cdot 2 = 0.2 \quad 0
                       Rest
                               0.2
0.2 \cdot 2 = 0.4 \quad 0
                               0.4
                       Rest
0.4 \cdot 2 = 0.8
                               0.8
                 0
                       Rest
0.8 \cdot 2 = 1.6
                  1
                       Rest
                               0.6
0.6 \cdot 2 = 1.2
                       Rest
                               0.2
                  1
0.2 \cdot 2 = 0.4
                  0
                       Rest
                               0.4
0.4 \cdot 2 = 0.8
                  0
                       Rest
                               0.8
0.8 \cdot 2 = 1.6
                               0.6
                       Rest
0.6 · 2 = 1.2 1 ↓
                       Rest
                               0.2
```

Ergebnis Offenbar ist für den Wert 0.1_{10} keine exakte Repräsentation im dualen System möglich $0,0001100110011..._2$. Welche Konsequenzen hat das?


```
0.10000000000000555111512312578270211815834045410
100000.00000133288
```

Wechsel zwischen Zahlensystemen mit Basis 2^n

Manuelle Vorgehensweise

Binär - 2^1	Oktal - 2^3	Hexdezimal - 2^4
011, 1011011	011,101 101 1(00)	0011,1011 011(0)
	3,554	3,B6
1110, 11011	001 110,110 11(0)	1110,1101 1(000)
	16,66	E,D8

Merke: Eine Zahl, die einmal in einem 2^k Zahlensystem vorliegt, kann einfach durch die blockweise Transformation in eine Darstellung in einem 2^n System umgewandelt werden.

Zahlensystemwechsel im Rechner

```
Check01.cpp
 1 #include <iostream>
 2 #include <bitset>
 4 int main()
 5 ₹ {
      int a=11;
 6
     std::cout << "Ausgabe für a=11 " << a << std::endl;</pre>
     a = 011;
std::cout << "Ausgabe für a=011 " << a << std::endl;</pre>
 8
 9
10 a = 0x11;
     std::cout << "Ausgabe für a=0x11 " << a << std::endl;</pre>
11
12
13
      // Binäre Zahlendarstellung
14
     std::string binary = std::bitset<8>(128).to_string();
      std::cout<<binary<<"\n";</pre>
15
16
     unsigned long decimal = std::bitset<8>(binary).to_ulong();
17
      std::cout<<decimal<<"\n";</pre>
18
19
20
      return 0;
21 }
```

```
Ausgabe für a=11 11
Ausgabe für a=011 9
Ausgabe für a=0x11 17
10000000
```

Addition Binärer Zahlen

Die Addition zweier positiver n-stelliger Binärzahlen a und b kann stellenweise von rechts nach links durchgeführt werden. In jeder Stelle i kann ein Übertrag $c_i=1$ auftreten ("Carry"). Gilt für die Summe $s=a+b\geq 2^n$, so kann das Ergebnis nicht mehr als n-Bit Zahl dargestellt werden; es entsteht ein (n+1)-tes Summenbit, das als Überlauf ("Overflow") bezeichnet wird.

	0	0	0	1	0	1	1	1	A (23) ₁₀
+	0	1	0	1	0	1	1	0	B (86) ₁₀
0	0	0	1	0	1	1	0	0	Carry
	0	1	1	0	1	1	0	1	R (109) ₁₀

Kein Überlauf!

Aufgabe: Berechnen Sie binär die Summe aus 55 und 214. Müssten Sie den Prozessor darüber informieren, dass ein Überlauf eingetreten ist?

	0	0	1	1	0	1	1	1	A (55) ₁₀
+	1	1	0	1	0	1	1	0	B (214) ₁₀
1	1	1	1	0	1	1	0	0	Carry
	0	0	0	0	1	1	0	1	R $(269)_{10}$

Der Intel 4004 hatte eine Datenbreite von 4 Bit. Er verknüpfte für die Akkumulation von 2 32 Bit Zahlen 4 Einzelkalkulationen und reichte das Carry-Flag entsprechend weiter.

Negative Zahlen

"... aber wie hältst Du es mit den negativen Zahlen?"

Kriterien	Erläuterung
Einheitlichkeit von Addition & Subtraktion	Können wir die Subtraktion und Addition über ein Rechenwerk umsetzen?
Symmetrie	Ist das Spektrum der darstellbaren Zahlenwerte im Positiven wie Negativen gleich?

Intuitiver Ansatz - Betrag mit Vorzeichen

Darstellung	Pros	Cons
	+ Einfache Bildung des Komplements	- Doppelte "0" - 00000_2 und 10001_2
		- Addition / Subtraktion über unterschiedliche Rechenwerke

Komplement Darstellung

Einer-Komplement

Darstellung	Pros	Cons
	+ der darstellbare Zahlenbereich ist symmetrisch zu 0	- Doppelte "0" - 00000_2 und 11111_2
	+ sehr einfache Umwandlung von positiver zu negativer Zahl und umgekehrt durch Invertierung aller Bits	- Addierwerke sind aufwendiger, da die Summe korrigiert werden muss

Zweier-Komplement

Die Zweierkomplementdarstellung benötigt, anders als die Einerkomplementdarstellung, keine Fallunterscheidung, ob mit negativen oder mit positiven Zahlen gerechnet wird. Das Problem der Einerkomplementdarstellung, zwei Darstellungen für die Null zu haben, tritt nicht auf.

Darstellung	Pros	Cons
	+ eindeutige Darstellung der Null als 0000_2	- darstellbarer Zahlenbereich ist asymmetrisch (Zweierkomplement der kleinsten negativen Zahl ist nicht darstellbar!)
		- Umwandlung von positiver zu negativer Zahl und umgekehrt erfordert die Invertierung aller Bits sowie ein Addierwerk zur Addition von 1

Zusammenfassung

Darstellung	Pros	Cons
Vorzeichen / Betrag	+ Einfache Bildung des Komplements	- Doppelte "0" - 00000_2 und 10001_2
		- Addition / Subtraktion über unterschiedliche Rechenwerke
Einerkomplement	+ der darstellbare Zahlenbereich ist symmetrisch zu 0	- Doppelte "0" - 00000_2 und 11111_2
	+ sehr einfache Umwandlung von positiver zu negativer Zahl und umgekehrt durch Invertierung aller Bits	- Addierwerke sind aufwendiger, da die Summe korrigiert werden muss
Zweierkomplement	+ eindeutige Darstellung der Null als 0000_2	- darstellbarer Zahlenbereich ist asymmetrisch (Zweierkomplement der kleinsten negativen Zahl ist nicht darstellbar!)
		- Umwandlung von positiver zu negativer Zahl und umgekehrt erfordert die Invertierung aller Bits sowie ein Addierwerk zur Addition von 1

Merke: In aktuellen Rechnern wird ausschließlich das Zweierkomplement verwandt.

Überlauf bei arithmetischen Operationen

Merke: Wir müssen von einer festen Länge der Zahlenrepräsentation ausgehen!

- begrenzte Genauigkeit bei der Darstellung von Kommazahlen (Gegenstand der Vorlesung im Sommersemester)
- keine Abgeschlossenheit der Grundoperationen wie Addition und Multiplikation

3 + 6 =	-3+(-8) =
4 Bit 0011 + 0110	1101 + 1000
1001	0101
5 Bit 00011 + 00110	11101 + 11000
01001 = 9	10101 = -11

Bei beliebig großen Registern zur Aufnahme der Komplementdarstellung einer binären Zahl können Addition und Subtraktion ohne Einschränkungen ausgeführt werden. ABER: Mit der Beschränkung kann die

- Addition zweier positiver Zahlen eine negative Zahl ergeben!
- Addition zweier negativer Zahlen eine positive Zahle ergeben !

Entsprechend müssen Überschreitungen des Zahlenbereiches erkannt und behandelt werden. Die Bedingungen dafür sind: Gegeben die Operanden a und b und das Ergebnis s

- (a > 0) und (b > 0) und (s < 0) oder
- (a < 0) und (b < 0) und (s > 0)

Dafür werden die höchstrangigen Bits der Summanden und des Ergebnisses ausgewertet.

Schaltnetze für arithmetische Operationen

Wir starten aus der Sicht eines einzigen Bits und erweitern die Konzepte dann auf die notwendigen Registerbreiten (8 - 64 Bit).

Α	В	Addition	Subtraktion	Multiplikation
0	0	0	0	0
0	1	1	1 (borrow)	0
1	0	1	1	0
1	1	0 (carry)	0	1
		Vierteladdierer	Viertelsubtrahierer	1-Bit Multiplizierer

Halbaddierer

Um das Ergebnis komplett darzustellen müsen wir für die Addition (Subtraktion als Komplementoperation) neben dem Ergebnis S auch die Carry Flags C berücksichtigen.

Erweiterte WahrheitstabelleGleichungen

<tr> <td> <!-- data-type="none" \longrightarrow

A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = \overline{A} \cdot B + A \cdot \overline{B} = A \oplus B$$

$$C = A \cdot B$$

Die Wahrheitstafel lässt sich mit folgendem Schaltnetz umsetzen:

Volladdierer

Die allgemeingültige Addition von A_i , B_i und C_{i-1} an den Bitpositionen i=1,...,n-1 erfordert einen Volladdierer (FA = "Full Adder"), der die Summe S_i und den Übertrag C_i bestimmt:

Erweiterte WahrheitstabelleGleichungen

<tr> <td> <!-- data-type="none" \longrightarrow

A_i	B_i	C_{i-1}	S_i	C_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_i = A_i \oplus B_i \oplus C_{i-1}$$

$$C_i = \overline{A_i}B_iC_{i-1} + A_i\overline{B_i}C_{i-1} + A_iB_i\overline{C}_{i-1} + A_iB_iC_{i-1}$$

$$C_i = (\overline{A_i}B_i + A_i\overline{B_i})C_{i-1} + A_iB_i$$

$$= (A_i \oplus B_i)C_{i-1} + A_iB_i$$

$$C_i = (A_i + B_i)C_{i-1} + A_iB_i$$

 $\textbf{Aufgabe:} \ \ \textbf{Die} \ \ \textbf{Obigen} \ \ \textbf{Gleichungen} \ \ \textbf{sind} \ \ \textbf{identisch} \ \ \textbf{und} \ \ \textbf{unterscheiden} \ \ \textbf{sich} \ \ \textbf{nur} \ \ \textbf{durch} \ \oplus \ \textbf{und} \ +. \ \textbf{Erklären} \ \ \textbf{Sie} \ \ \textbf{den} \ \ \textbf{vermeintlichen} \ \ \textbf{Widerspruch}.$

Umsetzung von Addierwerken

Wie können wir also ein paralleles binäres Addierwerk umsetzen? Für die Addition zweier n-Bit Zahlen bedarf es n Volladierer, die miteinander verkettet werden.

[1]

Das Carry wird von Stelle zu Stelle weitergegeben, woraus der Name "Ripple Carry"-Addierer resultiert. Das Ergebnis steht damit erst nach dem kompletten Durchlauf durch alle Volladdierer zur Verfügung.

[1] Mik81, Carry-Ripple Addierer, Link

Umsetzung eines Addier-/Subtrahier-Werkes

Wie lässt sich ausgehend von diesen Überlegungen ein 4-Bit Addier-/Subtrahierwerk realisieren. Wir wollen die Funktion A+B sowie A-B umsetzen können.

Aufgabe: Entwerfen Sie die externe Beschaltung!

Carry Look Ahead Addierer

Die Verzögerung bei der sequenziellen Berechnung ist für realistische Systeme nicht tolerabel. Entsprechend suchen wir nach alternativen Vorgehensweisen. Ein Konzept implementiert der "Carry Look Ahead Addierer", Anstelle des sequentiellen Übertrag-Durchlaufs eine parallele Vorausberechnung aller Überträge C_i vornimmt.

$$C_i = A_i B_i + (A_i \oplus B_i) C_{i-1}$$
$$= G_i + P_i \cdot C_{i-1}$$

- ullet "Generate": $G_i=A_i\cdot B_i$ gibt an, ob in Stelle i ein Übertrag erzeugt wird
- "Propagate": $P_i = A_i + B_i$ gibt an, ob in Stelle i ein Übertrag propagiert wird $(P_i = 1)$ oder nicht $(P_i = 0)$

Damit ergeben sich für die Übergänge C_i folgende Zusammenhänge:

$$\begin{split} C_0 &= A_0 \cdot B_0 := G_0 \\ C_1 &= A_1 B_1 + (A_1 \oplus B_1) C_0 := G_1 + P_1 G_0 \\ C_2 &= G_2 + P_2 G_1 + P_2 P_1 G_0 \\ C_3 &= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 \\ C_4 &= G_4 + P_4 G_3 + P_4 P_3 G_2 + P_4 P_3 P_2 G_1 + P_4 P_3 P_2 P_1 G_0 \\ C_5 &= \dots \end{split}$$

Offenbar lässt sich die Funktion mit einem zweistufigen Schaltnetz umsetzen und generiert eine Laufzeit, die von n unabhänig ist.

Datenblatt 74HC283 [2]

An der Schaltung wird deutlich, dass Gatter mit bis zu n + 1 Eingängen erforderlich sind. Man spricht an der Stelle von einem hohen "fan-in". Gleichzeitig sind die Gatterausgänge P_i und G_i mit bis zu $(n+1)^2/4$ Gattereingängen verbunden (hoher "fan-out"). Damit ist ein vollständiger Carry-Look-Ahead Addierer nicht praktikabel und wird durch die sequenzielle Verschaltung in m-Bit Blöcken umgesetzt.

[2] Philips Semiconductors, Datenblatt 74HC283

Carry Save Addierer

Ein Carry-Save-Addierer wird verwendet, um die Summe von drei oder mehr Binärzahlen effizient zu berechnen. Er unterscheidet sich von anderen digitalen Addierern dadurch, dass er als Ergebnis eine Summe ohne Carries und die Carries separat ausgibt.

```
10011 (a) 19
+ 11001 (b) 25
+ 01011 (c) 11
----- 00001 Summe ohne Carrys 1
```

Man beachte, dass das Ergebnis der ersten Stufe der Berechnung parallel ausgeführt werden kann. Danach bedarf es eine Carry-Look-Ahead Addierers um die Gesamtsumme zu berechnen.

Damit ergibt sich für Additionen von zwei Summanden kein Vorteil, mit einer größeren Zahl lässt sich aber ein deutlicher Geschwindigkeitsvorteil erzielen. Dazu werden die Ergebnisse jeweils in Blöcken zu jeweils 3 Summanden zusammengefasst.

Exkurs: Multiplikation

```
Faktor A
               Faktor B
                           (211 x 206)
     11010011 x 11001110
               00000000 0 x Faktor A
(1)
(2)
               11010011
                         1 x Faktor A x 2
             11010011
                          1 x Faktor A x 4
(3)
(4)
            11010011
(5)
            0000000
          00000000
(6)
(7)
         11010011
(8)
         11010011
       1010100111001010
                           (43466)
```

Alle Einzelprodukte können mit Hilfe eines AND Gates parallel abgebildet werden. Dafür ist allerdings eine n^2 Zahl von Gates notwendig. Die Frage ist nun, wie die sogeannten Partialprodukte (1) bis (8) addiert werden können.

Hierfür kommt unser Carry Save Addierer zum Einsatz. Durch die Parallelisierung der Berechnungen können wir jeweils 3 Partialprodukte Berechnen, um dann die Ergebnisse S und C wiederum an die nächste Ebene zu übergeben. Im Beispiel wurde der Übersichtlichkeit wegen eine alternative Kombination gewählt. Dies ist aus der Kommutativität der Additionsoperation möglich.

```
Stufe 1:
                              (4)
(1)
          00000000
                                      11010011000 <-Achtung(!)
                     (4) 1101003
(5) 00000000
(6) 00000000
(2)
         11010011
                                   0000000
        11010011
(3)
_____
                              -----
      1011101010 S2 0011010011000
1000001000 C2 000000000000
S1
C1
Stufe 2:
    1011101010 C2 000000000
1000001000 (7) 11010011000000
0011010011000 (8) 11010011000000
S1
C1
S2
--- -----
                              -----
                             S4 101110101000000
C4 100000100000000
S3
       11001111010
C3
     0010100010000
Stufe 3:
S3
       11001111010
     0010100010000
С3
S4 101110101000000
S5 001111000101010
C5 100101010100000
Stufe 4:
S5 001111000101010
C5 100101010100000
C4 100000100000000
S6 001010110001010
C6 1001010001000000
Finale Aggregation
S6
           001010110001010
C6
        + 1001010001000000
Ergebnis: 1010100111001010 (43466)
```

- Schritt 1: Partielle Produkte
- Schritt 2: Aggregation der Partiellen Produkte
- Schritt 3: Finale Addition

Übungsaufgaben

- Implementieren Sie einen 2Bit Multiplikator in einer Simulation. Welche Breite braucht man für das Ausgangsregister.
- Realisieren Sie ein Subtraktions- / Additionswerk