

ABSTRACT OF THE DISCLOSURE

METHOD OF DISTRIBUTING COMMUNICATIONS WITHIN A CELL
OF A RADIO-COMMUNICATION NETWORK, AND A
CORRESPONDING DEVICE AND BASE STATION.

The invention relates to a method of distributing communications established by radio-communication terminals, within a geographic cell of a radio-communication network, the geographic cell being sub-divided into at least two geographic sectors.

According to this invention, the method comprises a step of modifying, by rotation, the orientation of the sectors within said cell.

10

Figure 2b

3 / 4

41 → Y Rate(S_i) ≥ Rate_Max N
 $\forall i \in [1, N]$

42 → Choice of S_{sat} such that
 $Rate(S_{sat}) = \max(Rate(S_i))$

43 → Measurement of Rate(S_i) for the 2 sectors
 S_{sat-1} and S_{sat+1} adjacent to S_{sat}

44 → Determination of the sector S_{min} such that
 $Rate(S_{min}) = \min(Rate(S_{sat-1}), Rate(S_{sat+1}))$

Time T
49

45 → Rotation through an angle α in the
direction from S_{sat} towards S_{min}

46 → Measurement of Rate(S'_i)
 $\forall i \in [1, N]$

47 → Y An S'_i exists such that N
 $Rate(S'_i) \geq Rate(S_{sat})$

48' → New
Position
Established

Fig. 4a

4 / 4

41' → Y $\text{Nblinks}(S_i) \geq \text{NbLinks_Max}$ N
 $\forall i \in [1, N]$

42' → Choice of S_{sat} such that
 $\text{NbLinks}(S_{\text{sat}}) = \max(\text{NbLinks}(S_i))$

43' → Measurement of $\text{NbLinks}(S_i)$ for the 2 sectors
 $S_{\text{sat}-1}$ and $S_{\text{sat}+1}$ adjacent to S_{sat}

44' → Determination of the sector S_{min} such that
 $\text{NbLinks}(S_{\text{min}}) = \min(\text{NbLinks}(S_{\text{sat}-1}), \text{NbLinks}(S_{\text{sat}+1}))$

Time T
49

45' → Rotation through an angle α in the
direction from S_{sat} towards S_{min}

46' → Measurement of $\text{NbLinks}(S'_i)$
 $\forall i \in [1, N]$

47' \rightarrow Y An S'_i exists such that N
 $NbLinks(S'_i) \geq NbLinks(S_{sat})$

48° → New Position Established

Fig. 4b