Clustering

Mohammad Sadegh Talebi Department of Computer Science

Introduction

Clustering: Grouping unlabeled data points by similarity

- putting similar items in the same group, and
- dissimilar items end up in different groups

Introduction

Clustering: Grouping unlabeled data points by similarity

- putting similar items in the same group, and
- dissimilar items end up in different groups

Although sounds natural, clustering is an ill-defined problem.

VS.

Introduction

Clustering: Grouping unlabeled data points by similarity

- putting similar items in the same group, and
- dissimilar items end up in different groups

Although sounds natural, clustering is an ill-defined problem.

VS.

Clustering methods are unsupervised learning techniques —No access to a labeling teacher \implies Lack of ground truth.

Motivation

Clustering is perhaps the most widely used tool for exploratory data analysis.

Why clustering?

- Gaining information about internal structure of data
- Modeling over smaller subsets of data
- Data reduction
- Outlier detection

Clustering: Issues

Clustering is subjective:

- Proper clustering depends upon the context
- Even the number of clusters is not well-defined in all tasks

Clustering: Issues

Clustering is subjective:

- Proper clustering depends upon the context
- Even the number of clusters is not well-defined in all tasks

see here?

Clustering: Issues

- Clustering relies on similarity (or proximity) notions, which are not transitive.
- But clustering is an equivalence relation (and thus, transitive).
- A relation R is transitive if when R relates u to v, and v to w, then it also relates u to w.
- ullet A relation R is an equivalence if it is reflexive, symmetric, and transitive.

For clustering, we need:

For clustering, we need:

- (i) Proximity measure
 - ullet A similarity score function to quantify how similar x is to y
 - Or a distance function to quantify how dissimilar data items are

For clustering, we need:

- (i) Proximity measure
 - A similarity score function to quantify how similar x is to y
 - Or a distance function to quantify how dissimilar data items are
- (ii) Criterion to assess the quality of clustering
 - Helps us compare possible clusterings

For clustering, we need:

- (i) Proximity measure
 - A similarity score function to quantify how similar x is to y
 - Or a distance function to quantify how dissimilar data items are
- (ii) Criterion to assess the quality of clustering
 - Helps us compare possible clusterings

VS.

For clustering, we need:

- (i) Proximity measure
 - ullet A similarity score function to quantify how similar x is to y
 - Or a distance function to quantify how dissimilar data items are
- (ii) Criterion to assess the quality of clustering
 - Helps us compare possible clusterings

VS.

- (iii) Algorithm to cluster items
 - To determine a good clustering in view of the chosen criterion.

A Clustering Model

A rigorous common clustering setup:

Input:

- ullet A set of elements ${\mathcal X}$
- A distance function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ (or a similarity function $s: \mathcal{X} \times \mathcal{X} \to [0,1]$)
- The number k of clusters (optional)

Output:

ullet A partition of $\mathcal X$ into subsets $C=(C_1,\ldots,C_k)$, namely,

$$\bigcup_{i=1}^k C_i = \mathcal{X}$$
 and $C_i \cap C_j = \emptyset, \ \forall i \neq j.$

• A measure of the quality of C (optional)

A Clustering Model

A rigorous common clustering setup:

Input:

- ullet A set of elements ${\mathcal X}$
- A distance function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ (or a similarity function $s: \mathcal{X} \times \mathcal{X} \to [0,1]$)
- The number k of clusters (optional)

Output:

ullet A partition of $\mathcal X$ into subsets $C=(C_1,\ldots,C_k)$, namely,

$$\bigcup_{i=1}^k C_i = \mathcal{X}$$
 and $C_i \cap C_j = \emptyset, \ \forall i \neq j.$

• A measure of the quality of C (optional)

Clustering Paradigms

Popular paradigms for clustering:

- Hierarchical clustering
 - Agglomerative
 - Divisive

Clustering Paradigms

Popular paradigms for clustering:

- Hierarchical clustering
 - Agglomerative
 - Divisive
- Partitional (or flat) clustering
 - Cost minimization based
 - Spectral clustering

Hierarchical Clustering

Agglomerative and divisive clustering

Partitional Clustering via Cost Minimization

This lecture: Partitional clustering based on cost minimization

We study:

- The K-means problem, a classical clustering/partitioning problem
- The k-means (or Lloyd's) algorithm to approximately solve K-means
- Convergence guarantees of k-means, and its pitfalls
- k-means++ as an improved seeding for k-means
- Extensions beyond K-means (e.g., K-median)

The K-Means Problem

K-means is a classical problem in computational geometry but also arising in many applications.

The K-Means Problem

Given $\mathcal{X} \subset \mathbb{R}^m$, find $\mathcal{C} = \{c_1, \dots, c_k\} \subset \mathbb{R}^m$ so as to minimize

$$\phi(\mathcal{X}, \mathcal{C}) := \sum_{x \in \mathcal{X}} \min_{c \in \mathcal{C}} \|x - c\|_2^2$$

The K-Means Problem

K-means is a classical problem in computational geometry but also arising in many applications.

The K-Means Problem

Given $\mathcal{X} \subset \mathbb{R}^m$, find $\mathcal{C} = \{c_1, \dots, c_k\} \subset \mathbb{R}^m$ so as to minimize

$$\phi(\mathcal{X}, \mathcal{C}) := \sum_{x \in \mathcal{X}} \min_{c \in \mathcal{C}} \|x - c\|_2^2$$

The K-Means Problem:

$$\min_{\mathcal{C} \subset \mathbb{R}^m, |\mathcal{C}| = k} \phi(\mathcal{X}, \mathcal{C}) = \min_{\mathcal{C} \subset \mathbb{R}^m, |\mathcal{C}| = k} \sum_{x \in \mathcal{X}} \min_{c \in \mathcal{C}} \|x - c\|_2^2$$

The K-Means Problem

K-means is a classical problem in computational geometry but also arising in many applications.

The K-Means Problem

Given $\mathcal{X} \subset \mathbb{R}^m$, find $\mathcal{C} = \{c_1, \dots, c_k\} \subset \mathbb{R}^m$ so as to minimize

$$\phi(\mathcal{X}, \mathcal{C}) := \sum_{x \in \mathcal{X}} \min_{c \in \mathcal{C}} \|x - c\|_2^2$$

The K-Means Problem:

$$\min_{\mathcal{C} \subset \mathbb{R}^m, |\mathcal{C}| = k} \phi(\mathcal{X}, \mathcal{C}) = \min_{\mathcal{C} \subset \mathbb{R}^m, |\mathcal{C}| = k} \sum_{x \in \mathcal{X}} \min_{c \in \mathcal{C}} \|x - c\|_2^2$$

- ϕ is called the cost function. It can be defined using any distance function (e.g., $\|\cdot\|_1$).
- c_1, \ldots, c_k may not belong to \mathcal{X} .
- ullet An 0-1 Integer Program, which is NP-hard for general k.
 - Even NP-hard to approximate

The K-Means Problem: Special Cases

Case 1: k = 1

ullet The solution for k=1 is $\mathcal{C}=\{c_1\}$ where its i-the element is

$$c_{1,i} = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} x_i$$

The K-Means Problem: Special Cases

Case 1: k = 1

ullet The solution for k=1 is $\mathcal{C}=\{c_1\}$ where its i-the element is

$$c_{1,i} = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} x_i$$

Case 2: $C \subset X$

- Enumerate all $\binom{n}{k}$ possible configurations and choose the one with minimal ϕ .
- ullet So in this case, for a fixed k, the optimal clustering is found in polynomial time.

The k-means Algorithm

In 1956, Stuart Lloyd proposed the k-means algorithm (a.k.a. Lloyd's algorithm) to approximate the K-means problem.

k-means:

- Is based on local search, i.e., makes local improvements to an arbitrarily chosen initial clustering.
- Is very simple and easy to implement.

The k-means algorithm partitions the given data into k clusters:

- Each cluster has a cluster center, called centroid
- k is specified by the user

The k-means algorithm partitions the given data into k clusters:

- Each cluster has a cluster center, called centroid
- ullet k is specified by the user

Centroid

Consider a finite set $S \subset \mathbb{R}^m$. The centroid (or center of mass) of S is

$$c = \frac{1}{|S|} \sum_{x \in S} x$$

The sum of squared distances of the points in S to point x is minimized when x is the centeroid.

Example

What is the centriod of the following dataset?

Example

What is the centriod of the following dataset?

$$c_1 = \frac{1}{4}(-6+0+2+5) = \frac{1}{4}, \qquad c_2 = \frac{1}{4}(0-1+3+0) = \frac{1}{2}$$

input: \mathcal{X} , k

initialization: Select c_1, \ldots, c_k arbitrarily.

input: \mathcal{X} , k

initialization: Select c_1, \ldots, c_k arbitrarily.

repeat until convergence:

• Assign to clusters: For all $i \in [k]$, set

$$C_i = \left\{ x \in \mathcal{X} : i = \underset{j}{\operatorname{argmin}} \|x - c_j\| \right\}$$

namely, map each point $x \in \mathcal{X}$ to its nearest cluster center (w.r.t. the Euclidean distance).

input: \mathcal{X} , k

initialization: Select c_1, \ldots, c_k arbitrarily.

repeat until convergence:

ullet Assign to clusters: For all $i \in [k]$, set

$$C_i = \left\{ x \in \mathcal{X} : i = \underset{j}{\operatorname{argmin}} \|x - c_j\| \right\}$$

namely, map each point $x \in \mathcal{X}$ to its nearest cluster center (w.r.t. the Euclidean distance).

• Update cluster centers: For all $j \in [k]$, compute new centroids:

$$c_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

k-means: Illustration

Illustration of k-means for k=3:

k-means: Convergence

Lemma

Each iteration of k-means does not increase ϕ . Thus, k-means always converges after finitely many iterations.

k-means: Convergence

Lemma

Each iteration of k-means does not increase ϕ . Thus, k-means always converges after finitely many iterations.

The lemma relies on the following facts:

• Let S be a set of points with center of mass c(S), and let z be an arbitrary point. Then,

$$\sum_{x \in S} \|x - z\|^2 - \sum_{x \in S} \|x - c(S)\|^2 = |S| \cdot \|c(S) - z\|^2.$$

k-means: Convergence

Lemma

Each iteration of k-means does not increase ϕ . Thus, k-means always converges after finitely many iterations.

The lemma relies on the following facts:

• Let S be a set of points with center of mass c(S), and let z be an arbitrary point. Then,

$$\sum_{x \in S} \|x - z\|^2 - \sum_{x \in S} \|x - c(S)\|^2 = |S| \cdot \|c(S) - z\|^2.$$

- k-means makes local improvements to an arbitrary clustering until it is no longer possible to do so.
- There are finitely many feasible clustering configurations.

k-means: Iteration Complexity

• A trivial iteration complexity is $O(k^n)$ with $n =: |\mathcal{X}|$.

k-means: Iteration Complexity

- A trivial iteration complexity is $O(k^n)$ with $n =: |\mathcal{X}|$.
- Lower bounds are important for us to see if there are clustering instances challenging k-means.
- A known lower bound is $2^{\Omega(\sqrt{n})}$ due to Arthur and Vassilvitskii (2006).
 - This means there are a set of n data points and a set of adversarially chosen cluster centers for which the algorithm requires $2^{\Omega(\sqrt{n})}$ iterations.

k-means: Convergence

k-means may converge to a locally-optimal solution, which could be arbitrarily worse than the optimal clustering:

Theorem

For any $\alpha>1$, there is an instance of the K-means problem for which k-means might find a solution whose cost is at least $\alpha\cdot\phi^{\star}$, where ϕ^{\star} is the minimum K-means cost

k-means: Convergence

k-means may converge to a locally-optimal solution, which could be arbitrarily worse than the optimal clustering:

Theorem

For any $\alpha>1$, there is an instance of the K-means problem for which k-means might find a solution whose cost is at least $\alpha\cdot\phi^{\star}$, where ϕ^{\star} is the minimum K-means cost.

The theorem relies on constructing a clustering instance due to Kanungo et al. (2004), on which k-means performs arbitrarily worse than the optimal.

k-means: Construction of a bad example

Example by Kanungo et al. (2004):

• Consider 4 points on the line such that z > y > x.

k-means: Construction of a bad example

Example by Kanungo et al. (2004):

- Consider 4 points on the line such that z > y > x.
- For k=3, the optimal cost is $\phi^*=x^2/2$.

k-means: Construction of a bad example

Example by Kanungo et al. (2004):

- Consider 4 points on the line such that z > y > x.
- For k=3, the optimal cost is $\phi^*=x^2/2$.

Consider the heuristic solution:

- $\phi = y^2/2$.
- The approximation ratio is y^2/x^2 , which can be made arbitrarily bad (increase y while keeping y < z).
- Let initial centers: first, third, fourth points. k-means terminates (why?)

Class Exercise

Class Exercise

Consider the clustering instance below. Discuss with your neighbors the worst-case that might be found by 3-means. Also, discuss why 3 clusters.

Class Exercise

The worst choice of centers (left) vs. the optimal clustering (right): The filled circles indicate the initial (and final) centers under each scheme.

k-means: Pros and Cons

Strengths:

- Simple and easy to implement, and relatively efficient
- Fast convergence in practice (often in a few iterations)

Weaknesses:

- Needs k in advance
- Converges to an arbitrarily bad locally optimal solution
- Sensitive to the choice of initialization
- Sensitive to outliers

How to Choose k?

Increasing k always leads to smaller cost, but choosing smaller k is consistent with Occam's razor.

Seeding Methods

The choice of seeds significantly impacts the quality of k-means's output.

In face of this problem:

- Repeat *k*-means several times with different initial cluster centers, and accept the best clustering (i.e., the one with the smallest cost)
- Resort to using wiser seeding methods, that are more adaptive to data.

Seeding Methods

The choice of seeds significantly impacts the quality of k-means's output.

In face of this problem:

- Repeat *k*-means several times with different initial cluster centers, and accept the best clustering (i.e., the one with the smallest cost)
- Resort to using wiser seeding methods, that are more adaptive to data.

Seeding Methods

The choice of seeds significantly impacts the quality of k-means's output.

In face of this problem:

- Repeat k-means several times with different initial cluster centers, and accept the best clustering (i.e., the one with the smallest cost)
- Resort to using wiser seeding methods, that are more adaptive to data.

Some popular seeding methods:

- Farthest Traversal
- w-means++

k-means++

k-means++ is a seeding method for k-means based on adaptive sampling, and is proposed in (Arthur & Vassilvitskii, 2007).

k-means++

k-means++ is a seeding method for k-means based on adaptive sampling, and is proposed in (Arthur & Vassilvitskii, 2007).

Given a set C, define:

$$D(x,C) := \min_{c \in C} ||x - c||$$

input: \mathcal{X} initialization: Choose c_1 uniformly at random from \mathcal{X} .

for $i = 2, \ldots, k$

• Take c_i , by sampling x with probability

$$\frac{D(x,\{c_1,\ldots,c_{i-1}\})^2}{\sum_{y\in\mathcal{X}}D(y,\{c_1,\ldots,c_{i-1}\})^2}$$

k-means step: Run k-means using the initial centers c_1, \ldots, c_k .

k-means++: Example

Consider the dataset below and assume k=3. How does k-means++ proceeds?

k-means++: Example

Consider the dataset below and assume k=3. How does k-means++ proceeds?

k-means++: Example

- Step 1. c_1 is chosen uniformly at random. So any point can be chosen as c_1 w.p. $\frac{1}{4}$.
- Step 2. Assume that $c_1 = (5,0)$ is chosen. Now,

$$D((0,1), c_1) = \sqrt{26}, \quad D((0,-1), c_1) = \sqrt{26}, \quad D((-5,0), c_1) = 10, \quad D((5,0), c_1) = 0,$$

$$\text{so that: } c_2 = \begin{cases} (0,1) & \text{w.p.} & \frac{26}{152} \\ (0,-1) & \text{w.p.} & \frac{26}{152} \\ (-5,0) & \text{w.p.} & \frac{100}{152} \end{cases}$$

• Step 3. Assume that $c_2 = (0,1)$ is chosen. Now,

$$D\big((0,-1),\{c_1,c_2\}\big) = \min\big(2,\sqrt{26}\big) = 2, \quad D\big((-5,0),\{c_1,c_2\}\big) = \min\big(10,\sqrt{26}\big) = \sqrt{26}$$
$$D\big((5,0),\{c_1,c_2\}\big) = D\big((0,1),\{c_1,c_2\}\big) = 0,$$

so that:
$$c_3 = \begin{cases} (-5,0) & \text{w.p.} & \frac{26}{30} \\ (0,-1) & \text{w.p.} & \frac{4}{20} \end{cases}$$

• After c_3 is chosen, k-means will be applied with the chosen c_1, c_2 , and c_3 .

Assuming $c_3 = (-5,0)$ is chosen, the final (output) clustering will be

$$C_1 = \{(5,0)\}, \quad C_2 = \{(0,1),(0,-1)\}, \quad C_3 = \{(-5,0)\}$$

with the associated cluster centers at (5,0),(0,0),(-5,0) (why?). And the associated cost is $\phi(\mathcal{X},\{C_1,C_2,C_3\})=2$.

k-means++: Clustering Quality

• k-means++ improves over k-means empirically.

k-means++: Clustering Quality

- k-means++ improves over k-means empirically.
- k-means++ is $O(\log(k))$ -competitive in expectation.

Theorem

For the output constructed using k-means++, the corresponding cost function satisfies:

$$\mathbb{E}[\phi] \le 8(\log(k) + 2) \cdot \phi^*$$

Class Exercise

Class Exercise

Consider the clustering instance below. Discuss with your neighbor how k-means++ could avoid outputting a bad clustering.

Useful References

- Stuart Lloyd. "Least squares quantization in PCM." IEEE Transactions on Information Theory 28.2 (1982): 129–137.
- David Arthur and Sergei Vassilvitskii. "k-means++: the advantages of careful seeding." Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. 2007.
- Johannes Blömer, et al., "Theoretical analysis of the k-means algorithm

 a survey." Algorithm Engineering.
 Springer, Cham, 2016.
 81–116.
- Tapas Kanungo, et al. "A local search approximation algorithm for k-means clustering." Computational Geometry 28.2-3 (2004): 89–112.

