Numerieke Modellering en Benadering: Practicum 1

Jona Beysens & Arnout Devos 20 mei 2014

Opgave 1

De nulpunten van een orthogonale veelterm gebaseerd op de waarden α_k, β_k en λ_k kan gevonden worden door de eigenwaarden te bepalen een $n \ge n$ tridiagonale matrix $tridag(\nu_{k-1}; \alpha_k; \mu_{k-1})$ met $\nu_k = \frac{\beta_{k+1}}{\lambda_{k+1}}$ en $\mu_k = \frac{1}{\lambda_k}$. Dit volgt uit **stelling 3.2.5 Numerieke Modellering en Benadering**.

De Matlab-code bevindt zich in bijlage 1.

Opgave 2

Om de orthogonale veeltermen te evalueren kan efficiënt gebruikt gemaakt worden van de drietermsrecursiebetrekking zoals gegeven in **stelling 3.2.3 Numerieke Modellering en Benadering**. Elk element uit de matrix M wordt bepaald als volgt: $M_{ij} = \psi_j(x_i)$. Aangezien in elke rij dezelfde x_i geëvalueerd moet worden, maken we voor elke rij gebruik van de recursiebetrekking. De werking van de functie wordt getoond door in figuur 1 de Chebyshev veeltermen T_1, T_2, T_3 en T_4 te evalueren in een voldoende aantal punten.

De Matlab-code bevindt zich in bijlage 2.

Opgave 3

De interpolerende veelterm y_{n-1} voldoet aan volgende betrekking: $y_{n-1} = \sum_{i=0}^{n-1} c_i T_i$. Om de coëfficiënten c_i te vinden moet het stelsel Mc = B met $M_{ij} = \psi_j(x_i)$ en $B_i = f(x_i)$ opgelost worden. Verder moet de veelterm geëvalueerd worden in een stel punten t. Dit wordt bekomen door het $rekenschema\ van\ Smith\$ uit te werken dat het stel punten. Dit vermijdt de interpolerende veelterm te rangschikken naar opeenvolgende machten van x, d.w.z. de coëfficiënten d_i te bepalen zodat $y_{n-1} = \sum_{i=0}^{n-1} d_i x^i$ om daarna het $rekenschema\ van\ Horner$ toe te passen.

De Matlab-code bevindt zich in bijlage 3.

Figuur 1: Chebyshev veeltermen T_1, T_2, T_3 en T_4 van respectievelijk graad $k = 1, \ldots, 4$

Opgave 4

a) In figuur 2 en figuur 3 wordt de functie $f_1(x) = cos(x)$ benaderd door middel van chebyshev veeltermen. Zowel de interpolerende veeltermen (2a en 3a) alsook de corresponderende fouten (2b en 3b) worden voorgesteld.

In figuur 2 wordt gebruik gemaakt van equidistant verdeelde interpolatiepunten. Hierbij zien we dat de absolute fout afneemt naarmate de graad nstijgt. Vanaf graad 3 valt de interpolerende veelterm bijna volledig samen met de te benaderen functie f_1 . Verder zijn de interpolatiepunten duidelijk zichtbaar op figuur 2b. In de interpolatiepunten wordt de fout immers 0 en dus zakt de curve plots naar beneden.

In figuur 3 wordt gebruik gemaakt van de nulpunten van de Chebyshev veelterm van graad n+1 als interpolatiepunten. Ook hier zakt de absolute fout bij stijgende graad n. Verder zijn de interpolatiepunten op te merken in figuur 3b. Door het nemen van deze interpolatiepunten kan de fout verkleind worden. Dit is duidelijk te zien in de fout e_1 horende bij y_1 . Bij equidistant verdeelde interpolatiepunten liggen deze voor graad 1 in de randpunten van het interval. Dit leidt tot een grote fout in het midden van het interval. Bij de nulpunten van Chebyshev veelterm van graad n+1 is dit niet het geval. De evolutie van de maximale fout in functie van graad n wordt ook voorgesteld in figuur 6a. Vanaf graad n=15 neemt de fout bij equidistante interpolatie punten niet meer af.

b) In figuur 4 en figuur 5 wordt de functie $f_2(t) = \frac{1}{1+6x^2}$ benaderd door middel van chebyshev veeltermen. Zowel de interpolerende veeltermen (4a en 5a) alsook de corresponderende fouten (4b en 5b) worden voorgesteld. In dit geval worden Chebyshev veeltermen van graad $n = 1, \ldots, 9$ gebruikt in plaats

van n = 1, ..., 3 aangezien deze functie f_2 moeilijker te benaderen is. In figuur 4b wordt de fout bij stijgende graad n vanaf een bepaalde graad niet meer kleiner. Dit komt door het gebruik van equidistant verdeelde interpolatiepunten. Bij de nulpunten van Chebyshev veelterm van graad n + 1 zakt de fout immers wel (zie figuur 5b).

De evolutie van de maximale fout in functie van graad n wordt ook voorgesteld in figuur 7a. Vanaf graad n=5 neemt de fout bij equidistante interpolatie punten niet meer af. Het is algemeen zo dat de fout bij hogere graad bij equidistante interpolatiepunten niet meer verkleint. Dit komt door sterke oscillatie tussen de interpolatiepunten aan de randen van het interval. Dit fenomeen is gekend als het Runge's phenomenon.

Opgave 5

Het conditiegetal κ van de matrix M wordt voorgesteld in figuur 6b en figuur 7b. De matrix horende bij de benadering van f_1 en f_2 heeft nagenoeg hetzelfde conditiegetal. Het conditiegetal stijgt bij gebruik van equidistante interpolatiepunten omdat de functiewaarden van de basis Chebyshev veeltermen dichter bij elkaar komen te liggen bij een stijgend aantal interpolatiepunten. Hierdoor worden de kolommen van M meer en meer afhankelijk. Dit resulteert in een stijgend conditiegetal. Door de nulpunten van de Chebyshev veelterm te nemen blijft het conditiegetal klein en constant.

Een groot conditiegetal betekent dat het resultaat van een kleine perturbatie op de elementen van M sterk afwijkt van het oorspronkelijk resultaat. De coëfficiënten c_i zullen dus sterk veranderen bij een kleine wijziging op de interpolatiepunten. Hierdoor zal de veelterm in de intervallen rond de interpolatiepunten wijzigen. In de interpolatiepunten zal de wijziging ongeveer gelijk zijn aan de perturbatie aangezien de interpolatievoorwaarde $(y_n(x_i) = f(x_i))$ nog steeds voldaan moet worden.

Als we aannemen dat het stelsel in Matlab achterwaarts stabiel wordt opgelost, dan hangt de nauwkeurigheid van de interpolerende veelterm af van het conditiegetal. Dit wordt uiteengezet in **Theorem 15.1 Trefethen and Bau**. Als het conditiegetal stijgt, dan zal de nauwkeurigheid zakken en dus de fout op de coëfficiënten vergroten. Dit betekent niet noodzakelijk dat ook de nauwkeurigheid van interpolerende veelterm zal verminderen. In figuur 6 stijgt het conditiegetal ook voor equidistant verdeelde interpolatiepunten maar toch neemt de fout ook nog af. In figuur 7 neemt de nauwkeurigheid van de interpolerende veelterm wel af.

Opgave 6

De opbouw van het algoritme is als volgt:

Eerst wordt het aantal rijen N gezocht van de matrix x om vervolgens de N-punts FFT uit te voeren. Vervolgens worden de coëfficiënten $X_{K+1}, \ldots, X_{\frac{N}{2}}$ gelijk aan nul gesteld. In diezelfde operatie worden ook meteen de corresponderende X_{N-k} coëfficiënten gelijk aan nul gesteld vanwege de symmetrie. Om

(a) Interpolerende Chebyshev veeltermen y_1,y_2 en y_3 van respectievelijk graad $n=1,\dots,3$

(b) De fout $e_n=|y_n(t)-f(t)|$ van interpolerende Chebyshev veeltermen y_1,y_2 en y_3 van respectievelijk graad $n=1,\ldots,3$

Figuur 2: De functie $f_1(t)=\cos(t)$ wordt benaderd in equidistant verdeelde interpolatiepunten door middel van Chebyshev veeltermen

(a) Interpolerende Chebyshev veeltermen y_1,y_2 en y_3 van respectievelijk graad $n=1,\dots,3$

(b) De fout $e_n=|y_n(t)-f(t)|$ van interpolerende Chebyshev veeltermen y_1,y_2 en y_3 van respectievelijk graad $n=1,\dots,3$

Figuur 3: De functie $f_1(t)=\cos(t)$ wordt benaderd in de nulpunten van de Chebyshev-veelterm van graad n+1 door middel van Chebyshev veeltermen

(a) Interpolerende Chebyshev veeltermen y_1,\dots,y_9 van respectievelijk graad $n=1,\dots,9$

(b) De fout $e_n=|y_n(t)-f(t)|$ van interpolerende Chebyshev veeltermen y_1,\dots,y_9 van respectievelijk graad $n=1,\dots,9$

Figuur 4: De functie $f_2(t)=\frac{1}{1+6x^2}$ wordt benaderd in equidistant verdeelde interpolatiepunten door middel van Chebyshev veeltermen

(a) Interpolerende Chebyshev veeltermen y_1,\dots,y_9 van respectievelijk graad $n=1,\dots,9$

(b) De fout $e_n=|y_n(t)-f(t)|$ van interpolerende Chebyshev veeltermen y_1,\dots,y_9 van respectievelijk graad $n=1,\dots,9$

Figuur 5: De functie $f_2(t)=\frac{1}{1+6x^2}$ wordt benaderd in in de nulpunten van de Chebyshev-veelterm van graad n+1 door middel van Chebyshev veeltermen

(a) maximale fout $|y_n(t)-f(t)|$ in functie van stijgende graad n voor equidistant verdeelde punten en nulpunten van de Chebyshev-veelterm van graad n+1

(b) conditiegetal κ van de matrix M in functie van stijgende graad n voor equidistant verdeelde punten en nulpunten van de Chebyshev-veelterm van graad n+1

8

Figuur 6: Karakteristieken van de interpolerende veelterm van $f_1(t) = \cos(t)$ in functie van de graad n

(a) maximale fout $|y_n(t)-f(t)|$ in functie van stijgende graad n voor equidistant verdeelde punten en nulpunten van de Chebyshev-veelterm van graad n+1

(b) conditiegetal κ van de matrix M in functie van stijgende graad n voor equidistant verdeelde punten en nulpunten van de Chebyshev-veelterm van graad n+1

Figuur 7: Karakteristieken van de interpolerende veelterm van $f_2(t)=\frac{1}{1+6x^2}$ in functie van de graad n

de oorspronkelijke functie te kunnen evalueren in een aantal punten $M \geq N$, worden de volgende relaties gebruikt:

$$\begin{cases} Y_k = \frac{M}{N} X_k & k = 0, \dots, \frac{N}{2} - 1 \\ Y_k = \frac{M}{N} \frac{X_k}{2} & k = \frac{N}{2} \\ Y_k = 0 & k = \frac{N}{2} + 1, \dots, \frac{M}{2} \end{cases}$$
 (1)

Tenslotte kan via de M-punts inverse FFT de benadering voor het oorspronkelijke signaal gevonden worden.

De Matlab-code bevindt zich in bijlage 4.

Opgave 7

Wanneer alleen de K eerste X_k coëfficiënten behouden worden, worden de hogere frequenties uit het signaal weggehaald. Dit komt overeen met een laagdoorlaatfiltering van het signaal. Er gaat enkel informatie verloren als er wel degelijk frequenties aanwezig zijn in het oorspronkelijke signaal die coëfficiënten $X_{K+1}, \ldots, X_{\frac{N}{2}}$ verschillend van nul veroorzaken.

Als voorbeeld beschouwen we een signaal in functie van de tijdsparameter t samengesteld uit 10 verschillende frequenties

$$c = \sum_{k=1}^{10} \sin 2\pi kt \tag{2}$$

Wanneer dit signaal in 512 punten gesampled wordt en er daarna de FFT van genomen wordt, bekomt men Figuur 9a. Hetzelfde resultaat wordt bekomen door K=256 te nemen. Noteer dat de FFT er voor zorgt dat er ook schijnbaar frequenties aanwezig zijn bij 11,12,.... De waarden verschillend van nul bij deze frequenties ontstaan door de keuze van het venster en worden in de verdere behandeling verwaarloosd.

Als K=10 wordt genomen, worden er geen nuttige frequenties verwijderd uit het signaal en bijgevolg is het benaderende signaal exact gelijk aan het oorspronkelijke signaal zoals te zien is in Figuur 9b.

De laagdoorlaatfiltering wordt pas echt duidelijk wanneer K=5 wordt gesteld. Als gevolg van deze keuze van K verdwijnt de helft van de frequenties in de benadering zoals te zien in de rechterfiguur van Figuur 8c. Aangezien de hogere frequenties eenvoudigweg op nul gezet worden, verdwijnt ook de energie die in deze frequenties vervat zit wat resulteert in een signaal met een minder grote amplitude. Ook in de linkerfiguur van Figuur 8c is te zien dat er een veel geleidelijker verloop is van de veelterm.

Opgave 8

In Figuur 9 wordt een benadering geconstrueerd voor het ∞ teken aan de hand van de functies click() en periotrig(x,K,M). In de linkse deelfiguur zijn de oorspronkelijke punten weergegeven die met click() zijn getekend. De rechterfiguur toont een periodieke interpolerende en benaderende trigonometrische veelterm voor deze punten.

Figuur 8: Illustratie van de invloed van de parameter K op de benadering (rood) van een periodieke functie (blauw) met aan de linkerkant de veelterm en aan de rechterkant de FFT van deze veelterm weergegeven over een nuttig domein. (M=N=512)

.

Figuur 9: ∞ teken benaderd

.

Aangezien het teken ∞ geschreven kan worden als een speciaal geval (met name het lemniscaat van Gerono) van de meer algemene Lissajousfiguur, is deze benadering uiterst geschikt omdat de parametrisaties bij een Lissajousfiguur van de volgende vorm zijn:

$$\begin{cases} x = \sin(\alpha t + \delta) \\ y = \sin(\beta t) \end{cases}$$
 (3)

Wanneer in deze vergelijkingen de waarden $\alpha=1, \beta=2\alpha=2$ en $\delta=0$ worden genomen, verkrijgt men Figuur 10.

Figuur 10: Het ∞ teken onder de vorm van een Lissajousfiguur

Bijlage 1

```
function [x] = poly_zeros(n,alpha,beta,lambda)
% poly_zeros functie berekent de nulpunten van een orthogonale veelterm
% gebaseerd op de waarden alpha, beta en lambda uit de recursiebetrekking
   n = de graad van de veelterm waarvan we de nulpunten zoeken
    alpha = kolom vector van lengte n e.g. [a1 a2 a3]
    beta = kolom vector van lengte n e.g. [b1 b2 b3]
    lambda = kolom vector van lengte n+1 e.g. [10 11 12 13]
    \mathbf{x} = kolom vector van lengte n die de nulpunten van de veelterm bevat
% elementen van alpha op de diagonaal van A plaatsen
A = diag(alpha, 0);
mu = 1./lambda(2:n+1);
nu = beta./lambda(2:n+1);
% elementen van mu en nu op respectievelijk de 1e en -1e diagonaal van A
A = A + diag(mu(1:n-1),1) + diag(nu(2:n),-1);
% de eigenwaarden van de matrix A leveren de nulpunten van de veelterm
x = eig(A);
end
```

Bijlage 2

```
% alpha = kolom vector van lengte n e.g. [a1 a2 a3]
% beta = kolom vector van lengte n e.g. [b1 b2 b3]
% lambda = kolom vector van lengte n+1 e.g. [10 11 12 13]
% M = vierkante matrix van dimensie n die de gevalueerde punten bevat

M = zeros(n,n);
M(:,1) = lambda(1);
lambda = lambda(2:n);
% De evaluatie van de veeltermen gebeurt ahv de drietermsrecursiebetrekking
for i = 1:n
    M(i,2) = x(i);
    for j = 3:n;
        M(i,j) = lambda(j-1)*(x(i)-alpha(j-1))*M(i,j-1)-beta(j-1)*M(i,j-2);
    end
end
end
end
```

Bijlage 3

```
function [y,M] = interpolate(x,f,alpha,beta,lambda,t)
% interpolate functie berekent de waarden van de interpolerende veelterm in
\mbox{\ensuremath{\$}} elementen van t door middel van het rekenschema van smith
    x = kolom vector van lengte n die de interpolatiepunten bevat
    f = kolom vector van lengte n die de waarden van de functie in x bevat
    alpha = kolom vector van lengte n e.g. [a1 a2 a3]
     beta = kolom vector van lengte n e.g. [b1 b2 b3]
     lambda = kolom vector van lengte n+1 e.g. [10 11 12 13]
     t = kolom vector die de waarden bevat waarin de interpolerende veelterm
         gevalueerd moet worden
    y = waarden van de interpolerende veelterm in t
n = length(x);
M = eval_recursion(x,n,alpha,beta,lambda);
% los het stelsel op om de cofficinten te bepalen
c = M \setminus f;
% bereken voor elke waarde van de vector t de waarde van de interpolerende
% veelterm van graad m door middel van het rekenschema van smith
% B bevat op kolom k alle cofficinten b die horen bij een enkele waarde
% van de vector t
m = n-1;
y = zeros(length(t), 1);
lambda = lambda(2:m+1);
B = zeros(m+1, length(t));
for k = 1:length(t)
   y(k) = lambda(1);
   B(m+1,k) = c(m+1);
   \label{eq:bounds} \begin{array}{lll} \textbf{B}\left(\textbf{m,k}\right) &= & \textbf{c}\left(\textbf{m}\right) + \textbf{lambda}\left(\textbf{m}\right) \star (\textbf{t}\left(\textbf{k}\right) - \textbf{alpha}\left(\textbf{m}\right)\right) \star \textbf{B}\left(\textbf{m+1,k}\right); \end{array}
          for i = (m-1):-1:1
            B(i,k) = c(i) + lambda(i) * (t(k) - alpha(i)) * B(i+1,k) - beta(i+1) * B(i+2,k);
          end
   y(k) = B(1,k) * y(k);
end
end
```

Bijlage 4

```
function y = periotrig(x,K,M)
%periotrig Functie voor het evalueren van periodieke interpolerende en
% benaderende trigonometrische veeltermen
```

```
Y = fft(x);
%t = 0:1/M:(M-1);
[N d] = size(x);
% Coefficienten verwijderen aan de hand van K
% Y_k = 0 for k = K+1, ..., N/2 if K < N/2
Y(K+2:N-K)=0;
% Y_k = X_k * M/N for k = 0, ..., N/2-1
Y(1:N/2,:) = Y(1:N/2,:)*M/N;
% Y_k = X_k * M/(N*2) for k = N/2
Y(N/2+1,:)=Y(N/2+1,:)*M/(N*2);
% Y_k = 0 \text{ for } k = N/2+1, ..., M/2
Y(N/2+2:M/2+1,:)=0;
% Alleen de nodige coefficienten overhouden
Y = Y(1:M/2+1,:);
% Steunen op de symmetrie
Y(M/2+1:M-1,:) = conj(Y(M/2:2,:));
for k = M/2+1:M-1
  Y = [Y; conj(Y(M-k+1,:))];
y = ifft(Y,M);
end
```