ARX采集-训练-部署手册

环境配置与代码编译

全套链路目前<mark>只适配ROS2</mark>系统

适配设备列表

产品型号	说明
AC one	\
X7s	\
LIFT2s	X5设备的上代LIFT同样兼容,R5版本的旧款LIFT不适配

模仿学习部分不负责技术售后,但全部迁移ACT进行开源。

注:本开源只让开发者能跑通整个流程。官方宣传中模型并非原版ACT,开源的代码达不到宣传视 频中的泛化性以及流畅度,需开发者自行编写~

https://github.com/ARXroboticsX

X7s控制SDK	https://github.com/ARXroboticsX/X7s		
X7s-模仿学习SDK	https://github.com/ARXroboticsX/ROS2_X7s_Play		
LIFT控制SDK	https://github.com/ARXroboticsX/LIFT		
LIFT模仿学习SDK	https://github.com/ARXroboticsX/ROS2_LIFT_Play		
AC one控制SDK	https://github.com/ARXroboticsX/ARX_X5		
AC one模仿学习SDK	https://github.com/ARXroboticsX/ROS2_AC-one_Play		

控制SDK与模仿学习仓库在同级目录下

环境配置

控制SDK

进入tools文件夹

依次执行如下文件

sudo.sh.x

upgrade....

ROS2系统22.04建议选择humble,桌面版切记不要选择最小版本安装

ROS2系统24.04建议选择jazzy,桌面版切记不要选择最小版本安装

IL环境配置

依次执行如下文件

每次执行前,新开启终端执行命令

注意: Ubuntu22.04需要删除~/miniconda/env/act/lib/中的libstdc++.6.0.29

SDK编译

进入对应控制部分SDK的00-sh文件夹,注意进入ROS2文件夹

执行01make.sh 等全部子窗口编译成功后,执行02make.sh

编译相机驱动

· realsense库安装

在主目录下

代码块

- git clone https://github.com/IntelRealSense/librealsense.git
- 2
- 3 cd librealsense
- mkdir build 4
- 5 cd build
- 6 cmake ../ -DBUILD_EXAMPLES=true
- make -j\$(nproc) 7
- sudo make install 8
- 添加udev规则

在/home/arx/librealsense/目录下

代码块

- sudo cp config/99-realsense-libusb.rules /etc/udev/rules.d/
- sudo udevadm control --reload-rules && sudo udevadm trigger

依赖项安装

代码块

- sudo apt install -y ros-\$ROS_DISTRO-diagnostic-updater
- sudo apt install -y ros-\$ROS_DISTRO-image-transport-plugins

硬件配置

硬件连接

AC one

https://youtu.be/hpzz6BWvTGI

注尽量保证一个USB口只有一个设备,防止多个设备互相干扰

• 相机连接

依次将相机插入USB3.0插口即可,若通过hub连接,一个hub最多只能接入两个摄像头

• VR连接

- CAN设备连接将设备插入USB口即可
- 电池安装与充电

请勿在电源开启的情况下拆、装电池。

- 1. 状态指示灯
- 2. 电源接口
- 3. 模式切换开关

- 4. 电池接口
- 5. USB-C 调参接口

使用

拨动模式切换开关选择充电模式。

፟፟፟፟፟፟፟፟፟ 标准模式:依次将每个电池充电至100%。

绿 待命模式:依次将每个电池充电至90%,便于快速使用电池。

充电管家将根据电池温度和电量依次为电池充电。充电耗时最短的电池将优先充电。

充电完成后,请取下电池并断开电源连接。

注意启动时将即停开关提前旋开

出现紧急情况用脚或工具将即停开关按下,注意断电时升降设备坠落

ARX信号设备配置

设备名称	左臂	右臂	机体	按键
X7s	can0	can1	can5	\
LIFT	can1	can3	can5	\
AC one	can1	can3	\	can6

四臂系统

左前	can1	右前	can3
左后	can0	右后	can2

LIFT 及 X7 出厂即配置无需更改

相机配置

在电脑上连接realsense d405的usb

ROS2_XX_Play/realsense目录下

代码块

1 colcon build

代码块

1 ./serach.sh

若显示出的USB口不为3.2,请检查相机连接是否正常,确保都是3.2输出

```
$ ros2 run realsense2_camera list_camera_node
Found 3 device(s):
```

- Serial: 218622276727 , USB: 3.2 - Serial: 230322270639 , USB: 3.2

- Serial: 218622270814 , USB: 3.2

Press any key in the image window(s) to exit...

显示的图像对应的标题及为其序列号,根据图像判断左右和头部,将获取到的Serial number填入到 realsense.sh 中

```
declare -A CAMS=(
    [camera_h]="218622270814"
    [camera_l]="218622276727"
    [camera_r]="230322270639"
)
```

确保相机序列号与安装的对应,从上至下依次为头部,左臂,右臂

采集|遥操作

执行XX_Play/tools/目录下的01_collect.sh

出现如下代表采集正常

AC one

初次启动后按2机械臂到达期望位置后;

按1开始采集,电脑语音提示Go。

采集后按2进行自动复位并保存,电脑语音提示Safe。

LIFT2s&X7s

开始采集:长按左右臂复位,电脑语音提示Go。

保存数据:长按左右臂复位,复位后自动保存,同时电脑语音提示Safe。

成功采集后在如下目录下即可看到产生的数据。

û 主文件夹 / AC_one / ac_one_play_ros2 / act / datasets

VR遥操作介绍

https://youtu.be/-9LXCBwEN0s

训练

执行XX_Play/tools/目录下 02_train.sh

出现如下进度条即代表训练正常

```
ROBOMIMIC WARNING(

No private macro file found!

It is recommended to use a private macro file

To setup, run: python /home/arx/AC_one/ac_one_play_ros2/act/robomimic/scripts/setup_macros.py
)

args.camera_names=['head', 'left_wrist', 'right_wrist']

Detect 6 episodes in dataset directory

states_dim=14 action_dim=28

Data from: /home/arx/AC_one/ac_one_play_ros2/act/datasets

number of parameters: 106.26M

0%|

| 0/3000 [00:00<?, ?it/s]

Saved plots to /home/arx/AC_one/ac_one_play_ros2/act/weights

2%|

| 50/3000 [00:40<33:34, 1.46it/s]
```

训练结束后会出现类似如下文件

部署

执行XX_Play/tools/目录下 03_inference.sh 在inference目录下按下回车,即开始自动推理

```
action dim=32 states dim=16
follow arm publish continuous: 1
follow arm publish continuous: 2
follow_arm_publish_continuous: 3
follow_arm_publish_continuous: 4
follow_arm_publish_continuous: 5
follow_arm_publish_continuous: 6
follow_arm_publish_continuous: 7
follow_arm_publish_continuous: 8
follow_arm_publish_continuous: 9
follow_arm_publish_continuous: 10
follow_arm_publish_continuous: 11
follow_arm_publish_continuous: 12
follow_arm_publish_continuous: 13
follow_arm_publish_continuous: 14
follow_arm_publish_continuous: 15
follow_arm_publish_continuous: 16
follow_arm_publish_continuous: 17
```

采集及部署技巧

注意以下操作更改后需重新编译代码,注意代码保存后编译

高度控制

针对LIFT2s 及 X7s

。 采集时固定高度

该变量对应范围为0-20即setHeight(0/41.54)到setHeight(20/41.54)

XX/body/ROS2/src/ARX_LIFT_ros2/arx_lift_controller/src/lift_controller.cpp

更改ARX VR L接收的话题,将height改为固定变量

。 推理时固定高度

XX/body/ROS2/src/ARX_LIFT_ros2/arx_lift_controller/src/lift_controller.cpp body_control话题下注释设定高度值

在主函数中设定目标高度

```
while (ros::ok()) {
    control_loop.loop();
    control_loop.setHeight(5 / 41.54);
    lib
```

头部控制

针对LIFT2s 及 X7s

XX/body/ROS2/src/ARX_LIFT_ros2/arx_lift_controller/src/lift_controller.cpp

在主函数中,调用此两个函数进行姿态设置,单位为rad

```
while (rclcpp::ok()) {
   control_loop->loop();
   control_loop->setHeadYaw(0);
   control_loop->setHeadPitch(0.5);
```

底盘速度反馈

针对LIFT2s 及 X7s

反馈话题

/body_information

底盘速度控制

针对LIFT2s 及 X7s

控制话题

/body_control