在RSA加密体制中,取p=7,q=11,公钥e=13,则密文41所对应的明文为
 41 62 71 13
在背包公钥密码体制中,设超递增背包A=(3,13,29,61,147),取M=383,U=311,则密文517所对应的明文为
 19 20 21 22
以下几项中,不属于公钥密码体制所依据的数学难题的是
模幂运算问题大整数因子分解问题离散对数问题椭圆曲线离散对数问题
2000年10月,NIST将下列哪个候选算法作为高级数据加密标准,该算法是由两位比利时密码学者提出的
■ MARS ■ Rijndael ■ Twofish ■ Bluefish
下列算法中哪个是不可逆的数学运算
 MD5算法 Rijndael算法 ElGamal算法 背包算法 清空 保存答案

是否为正确签名?答:	在美国数字签名算法 DSA 中,取 $p=47$, $q=23$,取 $g=25$,公钥 $y=8$,
■	设消息的 Hash 值 SHA(M)=19, 那么消息[SHA(M), (r, s)]=[19, (12, 18)]
上、下、下、 自定又标题 段落格式 字体 字号 內 看 長 三 三 三 三 A A A A A A A	是否为正确签名?答:。
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
高级数据加密标准 AES 的轮函数中有一个计算部件是字节替换,在字节替换中有一步是将字节看做 $GF(2^8)$ 上的元素,映射到自己的乘法逆,而 $GF(2^8)$ 上的乘法运算的模多项式是 $m(x) = x^8 + x^4 + x^3 + x + 1$,在当前阵列中某个元素的字节值为 $(a_7a_6a_5a_4a_3a_2a_1a_0) = (00001011)$,则该字节值的乘法逆是	■
中有一步是将字节看做 $GF(2^8)$ 上的元素,映射到自己的乘法逆,而 $GF(2^8)$ 上的乘法运算的模多项式是 $m(x)=x^8+x^4+x^3+x+1$,在当前阵列中某个元素的字节值为 $(a_7a_6a_5a_4a_3a_2a_1a_0)=(00001011)$,则该字节值的乘法逆是	是
■	中有一步是将字节看做 $GF(2^8)$ 上的元素,映射到自己的乘法逆,而 $GF(2^8)$ 上
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	字节值为 $(a_7a_6a_5a_4a_3a_2a_1a_0)=(00001011)$,则该字节值的乘法逆是;
应的明文单词是 ■ ●	■
□ ★ ▼ * ↓ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	设对某英文文件进行仿射密码的加解密算法,加密算法为c=19m+7 (mod 26),则密文单词'ydfim'所对应的明文单词是
	□ ★ ▼ ▼ ↓ □ 自定义标题 ▼ 段落 ▼ arial ▼ 16px ▼ ▼ ■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

分组密码 DES 算法的钥控非线性函数 F 中有 8 个 S 盒, 下表是第三个 S 盒 S_3 :

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
3	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

已知一个周期为15的2元序列为011101100101000,则该序列在一个周期内的1游程的个数为

- (1) 设LFSR1是一个3级m-序列,其特征多项式为: $f_1(x)=1+x+x^3$,取初始值为 $a_0=a_1=1$, $a_2=0$,则该序列的一个周期 $\{a_k\}=1101001$;设LFSR2是另一个3级m-序列,其特征多项式为: $f_2(x)=1+x^2+x^3$,取初始值为 $b_0=b_1=b_2=1$,则输出序列 $\{b_k\}=1110010$,现使用钟控序列中的走停生成器来产生一个周期为49的钟控序列,试给出钟控序列的前20位。
- (2) 一个周期为8的2元序列 $\{s_k\}=11010011$, 计算该序列的自相关函数值。

己知F23上的椭圆曲线

$$E_{23}(9,17): y^2 = x^3 + 9x + 17,$$

取P = (16,5)作为 $E_{23}(9,17)$ 的一个生成元,解答下列几个问题:

- (1) 设用户B的私钥为a=13, 求B的公钥Q=13P;
- (2) 设用户A欲发消息m = (10,16)给B,选择随机数k = 5,求密文c;
- (3) 设用户B收到密文c = ((15,13),(14,9)), 试求明文m。

- (1) 在分组密码IDEA中,设MA变换的输入为 $a=1001\,1100\,1010\,0110,\;\;b=1111\,1010\,1101\,1011,\;\;c=1010\,1010\,0011\,0010,\\ d=1110\,0100\,1010\,0101,\;\;z_5=0000\,1010\,1101\,1011,\\ z_6=0000\,1101\,0010\,1101,\\ 计算此MA部件的输出。$
- (2) 在分组密码AES中,设列混合(又称列混淆)部件的输入状态阵列中的一列

现打算用密钥短语密码加密算法对某英文文件进行加解密,请计算下面两题: (1) 若所选择的密钥字是英文句子 "pack my boxes with five dozen liquor jugs" ,试给出某明文文件中 "des algorithm" 的密文; (2) 若所选择的密钥字是英文短语 "heavy box perform waltzes and jigs quickly" ,试给出某密文文件中 "hmotnpjxw" 的明文。

秘密分割的原始模型是"海盗分割藏宝图"。设共有 n 个海盗有权参加宝物分配。为了防止独吞或联手作弊,规定: t 个人以上同时到场才能找到宝物,而 t-1 个人以下同时到场是不能找到宝物的。著名密码学家 Shamir 提出一个基于有限域上的多项式的秘密分割门限方案,方案的设计如下所述。

选择一个素数 p , 假设秘密是一个系数取自有限域 Z_p 上的 t-1 次多项式 $h(x) = a_{t-1}x^{t-1} + a_{t-2}x^{t-2} + \cdots + a_tx + a_0$,

也就是多项式 h(x) 的系数 $\{a_0,a_1,\cdots,a_{t-1}\}$ 是要分割的秘密。设参与秘密分割的总人数是 n ,其中第 k 个人的公开身份是 x_k , $x_k \in Z_p$, $k=1,2,\cdots,n$, 而第 k 个人的秘密身份是 h(x) 在 x_k 点的多项式值,即 $h(x_k)$ mod p 。 也就是第 k 个人拥有 (x_k) mod p),其中 x_k 对其他参与者公开,而 $h(x_k)$ mod p 对其参与人保密。任何 t 个人以上同时到场,不妨设分别是第 k_i 个人, $i=1,2,\cdots,t$,每个人交出自己的身份 (x_k) mod p),将这

些拼在一起列出线性方程组 $\begin{cases} a_0 + a_1 x_{k_1} + a_2 x_{k_1}^2 + \dots + a_{t-1} x_{k_1}^{t-1} = h(x_{k_1}) \operatorname{mod} p \\ a_0 + a_1 x_{k_2} + a_2 x_{k_2}^2 + \dots + a_{t-1} x_{k_2}^{t-1} = h(x_{k_2}) \operatorname{mod} p \\ \dots & \dots \\ a_0 + a_1 x_{k_t} + a_2 x_{k_t}^2 + \dots + a_{t-1} x_{k_t}^{t-1} = h(x_{k_t}) \operatorname{mod} p \end{cases}$