Lecture 27

Diffie-Hellman Key Exchange Section 3.5

Diffie-Hellman Key Exchange

- No third party involved
- After a common shared key, $\alpha^{X_AX_B}$ is established, it can be used to encrypt message
- A common shared key is symmetric

The Diffie-Hellman Key Exchange

From B's view

•
$$K = Y_B^{X_A} \mod q$$

 $= (\alpha^{X_B} \mod q)^{X_A} \mod q$
 $= \alpha^{X_B X_A} \mod q$

Alice and Bob share a prime q and α , such that $\alpha < q$ and α is a primitive root of q

Alice generates a private key X_A such that $X_A < q$

Alice calculates a public key $Y_A = \alpha^{X_A} \mod q$

Alice receives Bob's public key *YB* in plaintext

Alice calculates shared secret key $K = (Y_B)^{X_A} \mod q$

Bob

Alice and Bob share a prime q and α , such that $\alpha < q$ and α is a primitive root of q

Bob generates a private key X_R such that $X_R < q$

Bob calculates a public key $Y_B = \alpha^{X_B} \mod q$

Bob receives Alice's public key Y_A in plaintext

Bob calculates shared secret key $K = (Y_A)^{X_B} \mod q$

Example

- given q = 353, $\alpha = 3$, $X_A = 97$, $X_B = 233$
- A computes $Y_A = 3^{97} \mod 353 = 40$. B computes $Y_B = 3^{233} \mod 353 = 248$
- Then communication key exchange Y_A , Y_B
- A receives Y_B . B receives Y_A
- A computes $K = Y_B^{X_A} \mod 353 = 248^{97} \mod 353 = 160$ B computes $K = Y_A^{X_B} \mod 353 = 40^{233} \mod 353 = 160$

Attack

- Adversary gets q, α , Y_A , Y_B .
- She needs to compute either X_A or $X_B = dlog_{\alpha,p}Y_B$
- Secure?

Discrete Log Problem

Two cryptographic assumptions:

- Discrete logarithm problem (discrete log problem): Given α , q, α^{X_A} mod q for random X_A , it is computationally hard to find X_A
- **Diffie-Hellman assumption**: Given α , q, α^{X_A} mod q, and α^{X_B} mod q for random X_A , X_B , no polynomial time attacker can distinguish between a random value R and $\alpha^{X_AX_B}$ mod q.
 - Intuition: The best known algorithm is to first calculate X_A and then compute $(\alpha^{X_B})^{X_A} \mod q$, but this requires solving the discrete log problem, which is hard!
- Note: Multiplying the values doesn't work, since you get $\alpha^{X_A+X_B} \mod p \neq \alpha^{X_AX_B} \mod p$