Transformations

Outline

- 1. Homogeneous lines and properties
- 2. Frames vs Points
 - a. Pre-multiply and post multiply
- 3. Linear affine and projective transform
- 4. Assignment

Homogenous lines and properties

Frames and Points

Linear transformations

Definition. A *linear transformation* is a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ satisfying

$$T(u+v) = T(u) + T(v)$$
$$T(cu) = cT(u)$$

for all vectors u, v in \mathbb{R}^n and all scalars c.

If a transformation is linear, a matrix exists to achieve that transformation.

Rotation, translation and scaling matrices are linear. Intuition for rotation next slide:

Linear transformations

Since T is defined geometrically, we give a geometric argument. For the first property, T(u) + T(v) is the sum of the vectors obtained by rotating u and v by θ . On the other side of the equation, T(u+v) is the vector obtained by rotating the sum of the vectors u and v. But it does not matter whether we sum or rotate first, as the following picture shows.

Linear transformations

For the second property, cT(u) is the vector obtained by rotating u by the angle θ , then changing its length by a factor of c (reversing direction of c < 0. On the other hand, T(cu) first changes the length of c, then rotates. But it does not matter in which order we do these two operations.

Affine

- Linear
- Line preserving
- Parallelism is also preserved

Affine Transforms

Non Affine Transforms

Projective Transforms

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

And some other stuff

Assignment

- Pose reconstruction in g2o file
- Post-multiply and pre-multiply example
 - Will be released by tomorrow
 - Expected time spent ~3 hours