Modeling-Nonlinear-Reg

May 26, 2021

1 Modeling

in previous notebook we investigated the linear algorithms for regression problem which we discussed previously. in this notebook we are going to discuss non-linear approaches for regression problem. the non-linear algorithms which we will check in this notebook are: - k-nearest neighbor - decision tree - random forest

and in the next notebooks we will discuss classification and clustering algorithms.

the reason behind the dividing the notebooks is making the understanding of principles more easily.

an imortant fact to have in mind in contrast of plotting the trained model is that in order to minimizing the effect of simpson's paradox on dataset, for plotting we are training a single variable regression based on the algorithm and then plotting it. the final model will be multivariate.

```
[1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import matplotlib.patches as patches
  import warnings
  import matplotlib
  warnings.filterwarnings("ignore")
  pd.set_option('display.max_rows', 200)
  import seaborn as sns
  from openpyxl import load_workbook
  np.set_printoptions(suppress=True)
  pd.set_option('display.float_format', lambda x: '%.2f' % x)
  from sklearn import preprocessing
  from sklearn.model_selection import KFold, cross_val_score, train_test_split
  from tqdm import tqdm_notebook, tqdm
```

```
[2]: xls = pd.ExcelFile('data/Main Dataset V3.0 .xlsx')
    ad_post = pd.read_excel(xls, 'Ad-Post')
    ad_story = pd.read_excel(xls, 'Ad-Story')
    influencer = pd.read_excel(xls, 'Influencer')
    leaders_post = pd.read_excel(xls, 'Leaders-Post')
    leaders_story = pd.read_excel(xls, 'Leaders-Story')
    post = pd.read_excel(xls, 'Post')
```

```
story = pd.read_excel(xls, 'Story')
print('Datasets Loaded Completely.')
```

Datasets Loaded Completely.

```
[3]: #dummying dataset
     # advertising posts
     dummy_field = pd.get_dummies(ad_post['field'], prefix='field')
     ad_post_dummy = pd.concat([ad_post, dummy_field], axis=1)
     ad_post_dummy.drop(['field'], axis=1, inplace=True)
     # advertising stories
     dummy_field = pd.get_dummies(ad_story['field'], prefix='field')
     ad_story_dummy = pd.concat([ad_story, dummy_field], axis=1)
     ad_story_dummy.drop(['field'], axis=1, inplace=True)
     #influencer
     dummy_gender = pd.get_dummies(influencer['gender'], prefix='gender')
     dummy_field = pd.get_dummies(influencer['field'], prefix='field')
     influencer_dummy = pd.concat([influencer, dummy_gender, dummy_field], axis=1)
     influencer_dummy.drop(['gender', 'field'], axis=1, inplace=True)
     #leaders posts
     dummy_gender = pd.get_dummies(leaders_post['gender'], prefix='gender')
     leaders_post_dummy = pd.concat([leaders_post, dummy_gender], axis=1)
     leaders_post_dummy.drop(['gender'], axis=1, inplace=True)
[4]: # label encoding dataset
     # advertising posts
     labels, _ = pd.factorize(ad_post['field'])
     ad_post_labelencoded = ad_post
     ad_post_labelencoded['field_labelencoded'] = labels.tolist()
     # advertising stories
     labels, _ = pd.factorize(ad_story['field'])
     ad_story_labelencoded = ad_story
     ad_story_labelencoded['field_labelencoded'] = labels.tolist()
     # influencer
     labels, _ = pd.factorize(influencer['gender'])
     influencer_labelencoded = influencer
     influencer_labelencoded['gender_labelencoded'] = labels.tolist()
     labels, _ = pd.factorize(influencer['field'])
     influencer_labelencoded['field_labelencoded'] = labels.tolist()
     # leaders post
```

```
labels, _ = pd.factorize(leaders_post['gender'])
leaders_post_labelencoded = leaders_post
leaders_post_labelencoded['gender_labelencoded'] = labels.tolist()
```

```
[5]: ad_post_y = np.asarray(ad_post_dummy[['cost']])
    ad_post_x = np.asarray(ad_post_dummy[['follower', 'view', 'field_art &_

→culture', 'field_fact', 'field_video', 'field_women']])
    ad_story_y = np.asarray(ad_story_dummy[['cost']])
    ad_story_x = np.asarray(ad_story_dummy[['view', 'follower', 'action',_
     →'interaction', 'impression', 'field_art & culture', 'field_fact',
     'field_news', 'field_video', u
     →'field women']])
    influencer_y = np.asarray(influencer_dummy[['cost']])
    influencer_x = np.asarray(influencer_dummy[['follower', 'view', 'action', __
     →'impression', 'cta', 'interaction', 'gender_family', 'gender_female',
     'field_cooking', 'field_health', u
     leaders_post_y = np.asarray(leaders_post_dummy[['cost']])
    leaders_post_x = np.asarray(leaders_post_dummy[['follower', 'view', 'like',_
     →'comment', 'share', 'save', 'profile_visit', 'reach', 'impression',
     'gender_female', 'gender_male']])
```

1.0.1 K-Nearest Neighbor Regressor

Advertising Posts

```
[6]: from sklearn.neighbors import KNeighborsRegressor, RadiusNeighborsRegressor
```

```
[7]: weights = ['uniform', 'distance']
```

```
temp_1st2 = []
                  temp_lst2.append(i)
                  temp_lst2.append(n)
                  temp_lst2.append(w)
                  temp_lst2.append(knr.score(X_train, y_train))
                  temp_lst2.append(knr.score(X_test, y_test))
                  temp_lst.append(temp_lst2)
    temp_df = pd.DataFrame(temp_lst, columns=['k', '# of Neighbors', 'Weights', u
    temp_lst = []
    for k in range(2, 9):
       for n_ in np.arange(2, 9):
           for w_ in weights:
               temp_1st2 = []
               temp lst2.append(k)
               temp_lst2.append(n_)
               temp lst2.append(w )
               temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
     (temp_df['Weights'] ==__
     →w_)]['KNR Train Score']), decimals=4))
               temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
     (temp_df['Weights'] ==_
     →w_)]['KNR Test Score']), decimals=4))
               temp lst.append(temp lst2)
    nn_reg_eval_df = pd.DataFrame(temp_lst, columns=['k', '# of Neighbors', | 
    nn_reg_eval_df
   HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0),
    →HTML(value='')))
[8]:
       k # of Neighbors
                         Weights KNR Train Score KNR Test Score
                                                         0.09
                         uniform
                                           0.75
    0
    1
       2
                      2 distance
                                           1.00
                                                         0.02
       2
    2
                     3
                        uniform
                                           0.57
                                                         0.18
    3
       2
                     3 distance
                                           1.00
                                                         0.12
    4
       2
                        uniform
                                           0.51
                                                         0.19
    5
       2
                     4 distance
                                           1.00
                                                         0.16
    6
       2
                     5 uniform
                                          0.48
                                                         0.22
                     5 distance
    7
       2
                                           1.00
                                                         0.20
```

8	2	6	uniform	0.43	0.20
9	2	6	distance	1.00	0.20
10	2	7	uniform	0.38	0.21
11	2	7	distance	1.00	0.24
12	2	8	uniform	0.34	0.16
13	2	8	distance	1.00	0.23
14	3	2	uniform	0.83	0.32
15	3	2	distance	1.00	0.37
16	3	3	uniform	0.67	0.23
17	3	3	distance	1.00	0.32
18	3	4	uniform	0.63	0.26
19	3	4	distance	1.00	0.33
20	3	5	uniform	0.55	0.26
21	3	5	distance	1.00	0.31
22	3	6	uniform	0.52	0.25
23	3	6	distance	1.00	0.31
24	3	7	uniform	0.46	0.27
25	3	7	distance	1.00	0.31
26	3	8	uniform	0.42	0.27
27	3	8	distance	1.00	0.30
28	4	2	uniform	0.85	0.12
29	4	2	distance	1.00	-0.06
30	4	3	uniform	0.72	0.04
31	4	3	distance	1.00	0.08
32	4	4	uniform	0.68	0.14
33	4	4	distance	1.00	0.14
34	4	5	uniform	0.60	0.20
35	4	5	distance	1.00	0.16
36	4	6	uniform	0.54	0.25
37	4	6	distance	1.00	0.20
38	4	7	uniform	0.49	0.23
39	4	7	distance	1.00	0.19
40	4	8	uniform	0.46	0.25
41	4	8	distance	1.00	0.22
42	5	2	uniform	0.87	0.21
43	5	2	distance	1.00	0.06
44	5	3	uniform	0.74	0.02
45	5	3	distance	1.00	0.16
46	5	4	uniform	0.69	0.20
47	5	4	distance	1.00	0.26
48	5	5	uniform	0.61	0.16
49	5	5	distance	1.00	0.23
50	5	6	uniform	0.56	0.21
51	5	6	distance	1.00	0.26
52	5	7	uniform	0.51	0.23
53	5	7	distance	1.00	0.26
54	5	8	uniform	0.47	0.15

55	5	8	distance	1.00	0.22
56	6	2	uniform	0.88	0.44
57	6	2	distance	1.00	0.43
58	6	3	uniform	0.76	-0.18
59	6	3	distance	1.00	0.18
60	6	4	uniform	0.70	-0.20
61	6	4	distance	1.00	0.22
62	6	5	uniform	0.63	-0.29
63	6	5	distance	1.00	0.10
64	6	6	uniform	0.58	-0.10
65	6	6	distance	1.00	0.15
66	6	7	uniform	0.53	0.06
67	6	7	distance	1.00	0.20
68	6	8	uniform	0.48	-0.10
69	6	8	distance	1.00	0.09
70	7	2	uniform	0.89	0.22
71	7	2	distance	1.00	0.05
72	7	3	uniform	0.77	-0.40
73	7	3	distance	1.00	-0.03
74	7	4	uniform	0.69	-0.04
75	7	4	distance	1.00	0.11
76	7	5	uniform	0.64	-0.15
77	7	5	distance	1.00	0.05
78	7	6	uniform	0.59	0.06
79	7	6	distance	1.00	0.13
80	7	7	uniform	0.54	0.17
81	7	7	distance	1.00	0.18
82	7	8	uniform	0.49	0.02
83	7	8	distance	1.00	0.09
84	8	2	uniform	0.89	-0.13
85	8	2	distance	1.00	-0.33
86	8	3	uniform	0.78	-0.65
87	8	3	distance	1.00	-0.41
88	8	4	uniform	0.70	-0.26
89	8	4	distance	1.00	-0.22
90	8	5	uniform	0.64	-0.32
91	8	5	distance	1.00	-0.19
92	8	6	uniform	0.59	-0.14
93	8	6	distance	1.00	-0.10
94	8	7	uniform	0.54	-0.14
95	8	7	distance	1.00	-0.03
96	8	8	uniform	0.50	-0.46
97	8	8	distance	1.00	-0.11

[9]: nn_reg_eval_df.nlargest(3, 'KNR Test Score')

```
[9]:
          k # of Neighbors
                              Weights KNR Train Score KNR Test Score
      56
         6
                          2
                              uniform
                                                  0.88
                                                                   0.44
      57
                          2 distance
                                                   1.00
                                                                   0.43
         6
      15 3
                          2 distance
                                                   1.00
                                                                   0.37
[10]: nn_reg_eval_df.nsmallest(3, 'KNR Test Score')
[10]:
          k # of Neighbors
                              Weights KNR Train Score KNR Test Score
      86
         8
                          3
                              uniform
                                                  0.78
                                                                  -0.65
      96 8
                          8
                              uniform
                                                  0.50
                                                                  -0.46
                             distance
                                                   1.00
                                                                  -0.41
      87
         8
                          3
     as you can see in the table above this approach didn't perform very well on advertising posts
     dataset. it's good to check its fitted model on dataset.
[11]: knr_uniform = KNeighborsRegressor(n_neighbors=3, weights='uniform')
      knr_distance = KNeighborsRegressor(n_neighbors=3, weights='distance')
      knr_uniform = knr_uniform.fit(ad_post_x, ad_post_y)
      knr_distance = knr_distance.fit(ad_post_x, ad_post_y)
[12]: fig = plt.figure(figsize=(18,6))
      ax1 = fig.add_subplot(1,2,1)
      ax2 = fig.add_subplot(1,2,2)
      ax1.scatter(ad_post_dummy['view'], ad_post_dummy['cost'], label='Data Points')
      ax2.scatter(ad_post_dummy['view'], ad_post_dummy['cost'], label='Data Points')
      X_plot = np.linspace(ad_post_dummy['view'].min(), ad_post_dummy['view'].max(),__
      \hookrightarrow500).reshape(-1, 1)
      y_plot_uniform = knr_uniform.fit(ad_post_x[:, 1].reshape(-1, 1), ad_post_y).
       →predict(X_plot)
      y_plot_distance = knr_distance.fit(ad_post_x[:, 1].reshape(-1, 1), ad_post_y).
       →predict(X_plot)
      ax1.plot(X_plot, y_plot_uniform, '-r', label='KNR with Uniform Weight Model')
      ax2.plot(X plot, y plot distance, '-r', label='KNR with Distance Weight Model')
      ax1.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
      \rightarrow format(int(x), ',')))
      ax1.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:

→ format(int(x), ',')))
      ax1.set_title(f'Advertising Posts, Cost vs View, Most Accurate KNR Model
      ax1.set_xlabel('view')
      ax1.set_ylabel('cost')
      ax1.legend()
      ax2.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:

→ format(int(x), ',')))
      ax2.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
       → format(int(x), ',')))
```

```
ax2.set_title(f'Advertising Posts, Cost vs View, Most Accurate KNR Model

→(Distance Weight)')

ax2.set_xlabel('view')

ax2.set_ylabel('cost')

ax2.legend()

plt.show()
```


Advertising Stories

```
[13]: temp_lst = []
     neighbors = np.arange(2, 10)
     for i in tqdm_notebook(range(2, 9)):
         kf = KFold(n_splits = i)
         for train_index, test_index in kf.split(ad_story_x):
             X_train, X_test = ad_story_x[train_index], ad_story_x[test_index]
             y_train, y_test = ad_story_y[train_index], ad_story_y[test_index]
             for n in np.arange(2, 9):
                 for w in weights:
                     knr = KNeighborsRegressor(n_neighbors = n, weights = w)
                     knr.fit(X_train, y_train)
                     temp_1st2 = []
                     temp_lst2.append(i)
                     temp_lst2.append(n)
                     temp_lst2.append(w)
                     temp_lst2.append(knr.score(X_train, y_train))
                     temp_lst2.append(knr.score(X_test, y_test))
                     temp_lst.append(temp_lst2)
     temp_df = pd.DataFrame(temp_lst, columns=['k', '# of Neighbors', 'Weights', u
      temp_lst = []
     for k in range(2, 9):
```

```
for n_ in np.arange(2, 9):
       for w_ in weights:
          temp_1st2 = []
          temp_lst2.append(k)
          temp_lst2.append(n_)
          temp_lst2.append(w_)
          temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
(temp_df['Weights'] ==__
→w_)]['KNR Train Score']), decimals=4))
          temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
(temp_df['Weights'] ==_
→w_)]['KNR Test Score']), decimals=4))
          temp_lst.append(temp_lst2)
nn_reg_eval_df = pd.DataFrame(temp_lst, columns=['k', '# of Neighbors', u
→ 'Weights', 'KNR Train Score', 'KNR Test Score'])
nn_reg_eval_df
```

HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0), HTML(value='')))

```
KNR Train Score KNR Test Score
[13]:
            # of Neighbors
                              Weights
                              uniform
                                                                   0.38
          2
                          2
                                                  0.80
      0
                                                                   0.44
      1
          2
                          2 distance
                                                  1.00
          2
                                                                   0.33
      2
                          3
                             uniform
                                                  0.57
      3
          2
                          3 distance
                                                  1.00
                                                                   0.42
      4
          2
                                                                   0.36
                          4
                             uniform
                                                  0.54
          2
      5
                          4 distance
                                                  1.00
                                                                   0.43
      6
          2
                                                  0.43
                                                                   0.33
                          5
                              uniform
      7
          2
                          5 distance
                                                                   0.40
                                                  1.00
      8
          2
                          6
                              uniform
                                                  0.40
                                                                   0.31
      9
          2
                          6 distance
                                                                   0.39
                                                  1.00
      10 2
                          7
                              uniform
                                                  0.30
                                                                   0.30
      11
         2
                          7 distance
                                                  1.00
                                                                   0.37
                             uniform
                                                                   0.27
      12 2
                          8
                                                  0.26
      13 2
                                                                   0.35
                          8 distance
                                                  1.00
      14 3
                          2
                             uniform
                                                  0.83
                                                                   0.17
                          2 distance
                                                  1.00
                                                                   0.17
      15 3
                                                  0.61
                                                                   0.18
      16 3
                          3
                             uniform
                                                                   0.24
      17
         3
                          3 distance
                                                  1.00
      18 3
                            uniform
                                                  0.55
                                                                   0.14
                          4 distance
                                                                   0.21
      19 3
                                                  1.00
      20 3
                          5
                             uniform
                                                  0.49
                                                                   0.07
      21 3
                          5 distance
                                                  1.00
                                                                   0.16
```

22	3	6	uniform	0.4	-0.01
23	3	6	distance	1.0	0.10
24	3	7	uniform	0.3	
25	3	7			
			distance	1.0	
26	3	8	uniform	0.3	-0.03
27	3	8	distance	1.0	0.05
28	4	2	uniform	0.8	3.97
29	4	2	distance	1.0	
30	4	3	uniform	0.6	
31	4	3	distance	1.0	
32	4	4	uniform	0.6	50 -2.33
33	4	4	distance	1.0	00 -2.49
34	4	5	uniform	0.5	-1.94
35	4	5	distance	1.0	
36	4	6	uniform	0.5	
37	4	6	distance	1.0	
38	4	7	uniform	0.4	4 -1.52
39	4	7	distance	1.0	00 -1.98
40	4	8	uniform	0.3	39 -1.59
41	4	8	distance	1.0	
42	5	2	uniform	0.8	
43	5	2	distance	1.0	
44	5	3	uniform	0.7	
45	5	3	distance	1.0	00 -0.37
46	5	4	uniform	0.6	50 -0.72
47	5	4	distance	1.0	00 -0.35
48	5	5	uniform	0.5	
49	5	5	distance	1.0	
50	5	6	uniform	0.5	
51	5	6	distance	1.0	
52	5	7	uniform	0.4	-0.56
53	5	7	distance	1.0	00 -0.37
54	5	8	uniform	0.4	-0.53
55	5	8	distance	1.0	
56	6	2		0.8	
			uniform		
57	6	2	distance	1.0	
58	6	3	uniform	0.7	′3 –8.09
59	6	3	distance	1.0	00 -7.91
60	6	4	uniform	0.6	52 -7.82
61	6	4	distance	1.0	
62	6	5	uniform	0.5	
63	6	5	distance	1.0	
64	6	6	uniform	0.5	
65	6	6	distance	1.0	00 -6.62
66	6	7	uniform	0.4	8 -5.50
67	6	7	distance	1.0	00 -6.23
68	6	8	uniform	0.4	
	•	o .		· · ·	0.20

```
70
          7
                           2
                                                    0.87
                                                                    -1.62
                               uniform
                                                                    -1.43
      71
          7
                              distance
                                                     1.00
      72
          7
                                                                    -0.65
                           3
                               uniform
                                                    0.74
      73
          7
                           3 distance
                                                     1.00
                                                                    -0.65
                               uniform
      74
          7
                           4
                                                    0.64
                                                                    -0.67
      75
          7
                           4
                             distance
                                                     1.00
                                                                    -0.64
          7
                               uniform
      76
                           5
                                                    0.56
                                                                    -0.55
          7
                             distance
                                                     1.00
                                                                    -0.60
      77
                           5
      78
          7
                               uniform
                                                    0.53
                                                                    -0.57
                           6
      79
          7
                              distance
                                                     1.00
                                                                    -0.57
                           6
      80
          7
                           7
                               uniform
                                                    0.49
                                                                    -0.64
      81
          7
                           7
                              distance
                                                     1.00
                                                                    -0.61
                                                                    -0.58
      82
          7
                           8
                               uniform
                                                    0.45
          7
                              distance
                                                                    -0.61
      83
                           8
                                                     1.00
                                                                    -12.10
      84
          8
                           2
                               uniform
                                                    0.88
                           2 distance
      85
          8
                                                     1.00
                                                                   -12.33
                           3
                               uniform
                                                    0.74
                                                                    -10.53
      86
          8
                           3 distance
      87
          8
                                                     1.00
                                                                    -9.51
      88
          8
                               uniform
                                                    0.65
                                                                    -9.78
      89
                           4
                             distance
                                                     1.00
                                                                    -8.33
          8
      90
          8
                           5
                               uniform
                                                    0.57
                                                                    -6.52
      91
          8
                           5 distance
                                                     1.00
                                                                    -6.78
      92
                               uniform
                                                    0.55
                                                                    -6.45
          8
                           6
                              distance
      93
          8
                           6
                                                     1.00
                                                                    -6.45
      94
          8
                           7
                               uniform
                                                    0.50
                                                                    -6.60
                              distance
                                                                    -6.62
      95
          8
                                                     1.00
      96
          8
                               uniform
                                                    0.46
                                                                    -5.31
                           8
      97 8
                              distance
                                                     1.00
                                                                    -6.01
[14]: nn_reg_eval_df.nlargest(3, 'KNR Test Score')
[14]:
                                        KNR Train Score
                                                          KNR Test Score
         k
            # of Neighbors
                              Weights
         2
                            distance
                                                    1.00
                                                                    0.44
      1
      5
         2
                             distance
                                                    1.00
                                                                    0.43
      3
         2
                             distance
                                                    1.00
                                                                    0.42
[15]: nn_reg_eval_df.nsmallest(3, 'KNR Test Score')
[15]:
                               Weights
                                         KNR Train Score
          k
             # of Neighbors
                                                           KNR Test Score
      85
          8
                           2
                              distance
                                                     1.00
                                                                   -12.33
      84
          8
                           2
                               uniform
                                                     0.88
                                                                   -12.10
      86
                               uniform
                                                    0.74
                                                                   -10.53
[16]: knr_uniform = KNeighborsRegressor(n_neighbors=3, weights='uniform')
      knr_distance = KNeighborsRegressor(n_neighbors=3, weights='distance')
      knr_uniform = knr_uniform.fit(ad_story_x, ad_story_y)
```

distance

8

1.00

-6.16

69 6

```
knr_distance = knr_distance.fit(ad_story_x, ad_story_y)
```

```
[17]: fig = plt.figure(figsize=(18,6))
      ax1 = fig.add_subplot(1,2,1)
      ax2 = fig.add_subplot(1,2,2)
      ax1.scatter(ad story dummy['view'], ad story dummy['cost'], label='Data Points')
      ax2.scatter(ad_story_dummy['view'], ad_story_dummy['cost'], label='Data Points')
      X_plot = np.linspace(ad_story_dummy['view'].min(), ad_story_dummy['view'].
      \rightarrowmax(), 500).reshape(-1, 1)
      y_plot_uniform = knr_uniform.fit(ad_story_x[:, 0].reshape(-1, 1), ad_story_y).
       →predict(X_plot)
      y_plot_distance = knr_distance.fit(ad_story_x[:, 0].reshape(-1, 1), ad_story_y).
       →predict(X_plot)
      ax1.plot(X_plot, y_plot_uniform, '-r', label='KNR with Uniform Weight Model')
      ax2.plot(X_plot, y_plot_distance, '-r', label='KNR with Distance Weight Model')
      ax1.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:

→ format(int(x), ',')))
      ax1.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
      → format(int(x), ',')))
      ax1.set_title(f'Advertising Stories, Cost vs View, Most Accurate KNR Model⊔
      →(Uniform Weight)')
      ax1.set xlabel('view')
      ax1.set ylabel('cost')
      ax1.legend()
      ax2.get yaxis().set major formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
      \rightarrow format(int(x), ',')))
      ax2.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
      \rightarrow format(int(x), ',')))
      ax2.set_title(f'Advertising Stories, Cost vs View, Most Accurate KNR Model⊔
      ax2.set xlabel('view')
      ax2.set_ylabel('cost')
      ax2.legend()
      plt.show()
```



```
Influencers
[18]: temp_lst = []
     neighbors = np.arange(2, 10)
     for i in tqdm_notebook(range(2, 9)):
         kf = KFold(n_splits = i)
         for train_index, test_index in kf.split(influencer_x):
             X train, X test = influencer_x[train_index], influencer_x[test_index]
             y_train, y_test = influencer_y[train_index], influencer_y[test_index]
             for n in np.arange(2, 9):
                for w in weights:
                    knr = KNeighborsRegressor(n_neighbors = n, weights = w)
                    knr.fit(X_train, y_train)
                    temp_1st2 = []
                    temp_lst2.append(i)
                    temp_lst2.append(n)
                    temp lst2.append(w)
                    temp_lst2.append(knr.score(X_train, y_train))
                    temp_lst2.append(knr.score(X_test, y_test))
                    temp_lst.append(temp_lst2)
     temp_df = pd.DataFrame(temp_lst, columns=['k', '# of Neighbors', 'Weights', u
      temp_lst = []
     for k in range(2, 9):
         for n_ in np.arange(2, 9):
             for w_ in weights:
                temp lst2 = []
                temp_lst2.append(k)
                temp_lst2.append(n_)
                temp_lst2.append(w_)
                temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) \&
      (temp df['Weights'] ==___
      →w_)]['KNR Train Score']), decimals=4))
                temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
      (temp df['Weights'] ==[]
      →w_)]['KNR Test Score']), decimals=4))
                temp_lst.append(temp_lst2)
     nn_reg_eval_df = pd.DataFrame(temp_lst, columns=['k', '# of Neighbors', u
      →'Weights', 'KNR Train Score', 'KNR Test Score'])
     nn_reg_eval_df
```

HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0),

→HTML(value='')))

[18]:		k	# of Neighbors	Weights	KNR Train Score	KNR Test Score
	0	2	2	uniform	1.00	0.09
	1	2	2	distance	1.00	0.09
	2	2	3	uniform	1.00	0.09
	3	2	3	distance	1.00	0.09
	4	2	4	uniform	1.00	0.31
	5	2	4	distance	1.00	0.29
	6	2	5	uniform	0.97	0.42
	7	2	5	distance	1.00	0.39
	8	2	6	uniform	0.92	0.39
	9	2	6	distance	1.00	0.38
	10	2	7	uniform	0.87	0.35
	11	2	7	distance	1.00	0.37
	12	2	8	uniform	0.81	0.31
	13	2	8	distance	1.00	0.35
	14	3	2	uniform	1.00	-0.38
	15	3	2	distance	1.00	-0.38
	16	3	3	uniform	1.00	-0.38
	17	3	3	distance	1.00	-0.38
	18	3	4	uniform	0.99	0.05
	19	3	4	distance	1.00	-0.01
	20	3	5	uniform	0.98	0.25
	21	3	5	distance	1.00	0.19
	22	3	6	uniform	0.97	0.34
	23	3	6	distance	1.00	0.30
	24	3	7	uniform	0.94	0.37
	25	3	7	distance	1.00	0.36
	26	3	8	uniform	0.91	0.38
	27	3	8	distance	1.00	0.39
	28	4	2	uniform	1.00	0.23
	29	4	2	distance	1.00	0.22
	30	4	3	uniform	1.00	0.26
	31	4	3	distance	1.00	0.27
	32	4	4	uniform	0.99	0.50
	33	4	4	distance	1.00	0.49
	34	4	5	uniform	0.98	0.60
	35	4	5	distance	1.00	0.60
	36	4	6	uniform	0.96	0.63
	37	4	6	distance	1.00	0.65
	38	4	7	uniform	0.94	0.59
	39	4	7	distance	1.00	0.64
	40	4	8	uniform	0.91	0.55
	41	4	8	distance	1.00	0.63

42	5	2	uniform	1.00	-0.50
43	5	2	distance	1.00	-0.50
44	5	3	uniform	1.00	
45	5	3	distance	1.00	
46	5	4	uniform	1.00	
47	5	4	distance	1.00	-0.21
48	5	5	uniform	0.98	0.04
49	5	5	distance	1.00	0.00
50	5	6	uniform	0.97	0.12
51	5	6	distance	1.00	
52	5	7	uniform	0.95	
53	5	7			
			distance	1.00	
54	5	8	uniform	0.92	
55	5	8	distance	1.00	
56	6	2	uniform	1.00	-0.07
57	6	2	distance	1.00	-0.03
58	6	3	uniform	1.00	-0.11
59	6	3	distance	1.00	
60	6	4	uniform	1.00	
61	6	4	distance	1.00	
62	6	5	uniform	0.99	
63	6	5	distance	1.00	
64	6	6	uniform	0.98	0.46
65	6	6	distance	1.00	0.47
66	6	7	uniform	0.96	0.51
67	6	7	distance	1.00	0.52
68	6	8	uniform	0.93	0.55
69	6	8	distance	1.00	
70	7	2	uniform	1.00	
71	7	2	distance	1.00	
72	7	3	uniform	1.00	
73	7	3	distance	1.00	
74	7	4	uniform	0.99	-2.73
75	7	4	distance	1.00	-1.65
76	7	5	uniform	0.98	-3.12
77	7	5	distance	1.00	-1.92
78	7	6	uniform	0.97	-3.37
79	7	6	distance	1.00	
80	7	7	uniform	0.95	
81	7	7	distance	1.00	
82	7	8	uniform	0.93	
83	7	8	distance	1.00	
84	8	2	uniform	1.00	
85	8	2	distance	1.00	0.31
86	8	3	uniform	1.00	0.25
87	8	3	distance	1.00	0.31
88	8	4	uniform	1.00	

```
89 8
                          4 distance
                                                  1.00
                                                                  0.53
                                                  0.98
                                                                  0.47
      90 8
                              uniform
                          5
      91 8
                          5 distance
                                                  1.00
                                                                  0.62
                                                                  0.35
      92 8
                          6
                             uniform
                                                  0.97
      93 8
                          6 distance
                                                  1.00
                                                                  0.61
      94 8
                          7
                              uniform
                                                  0.95
                                                                  0.23
      95 8
                          7 distance
                                                  1.00
                                                                  0.56
      96 8
                            uniform
                                                  0.93
                                                                  0.11
                          8
      97 8
                          8 distance
                                                  1.00
                                                                  0.49
[19]: nn_reg_eval_df.nlargest(3, 'KNR Test Score')
                              Weights KNR Train Score KNR Test Score
[19]:
             # of Neighbors
         k
     37
         4
                          6 distance
                                                  1.00
                                                                  0.65
                                                  1.00
                                                                  0.64
      39
         4
                          7 distance
      36 4
                              uniform
                                                  0.96
                                                                  0.63
[20]: nn_reg_eval_df.nsmallest(3, 'KNR Test Score')
[20]:
            # of Neighbors Weights KNR Train Score KNR Test Score
                                                 0.93
                                                                -3.63
      82
         7
                          8 uniform
                                                 0.95
      80 7
                          7 uniform
                                                                -3.58
      78 7
                          6 uniform
                                                 0.97
                                                                -3.37
[21]: knr_uniform = KNeighborsRegressor(n_neighbors=6, weights='uniform')
      knr distance = KNeighborsRegressor(n neighbors=6, weights='distance')
      knr uniform = knr uniform.fit(influencer x, influencer y)
      knr_distance = knr_distance.fit(influencer_x, influencer_y)
[22]: fig = plt.figure(figsize=(18,6))
      ax1 = fig.add_subplot(1,2,1)
      ax2 = fig.add_subplot(1,2,2)
      ax1.scatter(influencer_dummy['view'], influencer_dummy['cost'], label='Data_
      →Points')
      ax2.scatter(influencer_dummy['view'], influencer_dummy['cost'], label='Datau
      X_plot = np.linspace(influencer_dummy['view'].min(), influencer_dummy['view'].
      \rightarrowmax(), 500).reshape(-1, 1)
      y_plot_uniform = knr_uniform.fit(influencer_x[:, 1].reshape(-1, 1),__
      →influencer_y).predict(X_plot)
      y_plot_distance = knr distance.fit(influencer_x[:, 1].reshape(-1, 1),__
      →influencer_y).predict(X_plot)
      ax1.plot(X plot, y plot uniform, '-r', label='KNR with Uniform Weight Model')
      ax2.plot(X_plot, y_plot_distance, '-r', label='KNR with Distance Weight Model')
      ax1.get yaxis().set major formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
       \rightarrow format(int(x), ',')))
```

```
ax1.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
→ format(int(x), ',')))
ax1.set_title(f'Influencers, Cost vs View, Most Accurate KNR Model (Uniformu
→Weight)')
ax1.set_xlabel('view')
ax1.set_ylabel('cost')
ax1.legend()
ax2.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
\rightarrow format(int(x), ',')))
ax2.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
→ format(int(x), ',')))
ax2.set_title(f'Influencers, Cost vs View, Most Accurate KNR Model (Distance
→Weight)')
ax2.set_xlabel('view')
ax2.set_ylabel('cost')
ax2.legend()
plt.show()
```



```
temp_1st2 = []
                   temp_lst2.append(i)
                   temp_lst2.append(n)
                   temp_lst2.append(w)
                   temp_lst2.append(knr.score(X_train, y_train))
                   temp_lst2.append(knr.score(X_test, y_test))
                   temp_lst.append(temp_lst2)
     temp_df = pd.DataFrame(temp_lst, columns=['k', '# of Neighbors', 'Weights', u
     temp_lst = []
     for k in range(2, 9):
        for n_ in np.arange(2, 5):
            for w_ in weights:
               temp_1st2 = []
               temp lst2.append(k)
               temp_lst2.append(n_)
               temp lst2.append(w )
               temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
      (temp_df['Weights'] ==__
      →w_)]['KNR Train Score']), decimals=4))
               temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
      (temp_df['Weights'] ==_
      →w_)]['KNR Test Score']), decimals=4))
               temp lst.append(temp lst2)
     nn_reg_eval_df = pd.DataFrame(temp_lst, columns=['k', '# of Neighbors', | 
     nn_reg_eval_df
    HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0),
     →HTML(value='')))
[23]:
        k # of Neighbors
                          Weights KNR Train Score KNR Test Score
                                                          0.43
                          uniform
                                            0.65
     0
     1
        2
                      2 distance
                                            1.00
                                                          0.49
        2
                                                          0.34
     2
                      3
                         uniform
                                            0.48
     3
        2
                      3 distance
                                            1.00
                                                          0.51
     4
        2
                         uniform
                                            0.15
                                                         -0.03
     5
        2
                      4 distance
                                            1.00
                                                          0.47
     6
        3
                      2 uniform
                                           0.73
                                                         0.29
     7
        3
                      2 distance
                                            1.00
                                                          0.32
```

```
8
          3
                            3
                                uniform
                                                      0.48
                                                                        0.02
      9
          3
                                                                        0.25
                            3 distance
                                                      1.00
      10
          3
                                uniform
                                                      0.45
                                                                        0.23
          3
      11
                               distance
                                                      1.00
                                                                        0.34
      12
          4
                            2
                                uniform
                                                      0.73
                                                                     -70.69
      13
          4
                            2
                               distance
                                                      1.00
                                                                    -158.40
      14
          4
                            3
                                uniform
                                                      0.59
                                                                     -69.88
      15
          4
                            3
                               distance
                                                      1.00
                                                                    -142.79
                                uniform
                                                      0.46
                                                                     -43.12
      16
          4
                            4
      17
          4
                               distance
                                                      1.00
                                                                     -120.69
      18
                            2
                                uniform
                                                      0.76
                                                                        0.06
          5
      19
          5
                            2
                               distance
                                                      1.00
                                                                        0.22
      20
          5
                            3
                                uniform
                                                      0.63
                                                                       -0.05
      21
          5
                            3
                               distance
                                                      1.00
                                                                        0.25
      22
          5
                            4
                                uniform
                                                                       -0.11
                                                      0.53
      23
          5
                            4
                               distance
                                                      1.00
                                                                        0.22
                            2
      24
          6
                                uniform
                                                      0.76
                                                                       -0.15
      25
                               distance
                                                      1.00
                                                                       -0.03
          6
      26
          6
                            3
                                uniform
                                                      0.67
                                                                       -0.12
      27
          6
                            3
                               distance
                                                      1.00
                                                                        0.02
      28
                                                                       -0.21
          6
                            4
                                uniform
                                                      0.52
      29
          6
                            4
                               distance
                                                                       -0.00
                                                      1.00
      30
          7
                            2
                                uniform
                                                      0.77
                                                                       -0.02
          7
                            2
                               distance
                                                      1.00
                                                                        0.21
      31
      32
          7
                            3
                                uniform
                                                      0.68
                                                                        0.26
      33
          7
                            3
                               distance
                                                      1.00
                                                                        0.46
      34
          7
                                uniform
                                                      0.53
                                                                        0.11
      35
          7
                            4
                               distance
                                                      1.00
                                                                        0.42
      36
          8
                            2
                                uniform
                                                      0.78
                                                                        0.67
                            2
                              distance
                                                                        0.97
      37
          8
                                                      1.00
                                uniform
                                                      0.68
                                                                        0.52
      38
          8
                            3
                                                                        0.92
      39
          8
                            3
                               distance
                                                      1.00
          8
                                uniform
                                                                        0.26
      40
                                                      0.53
      41
          8
                               distance
                                                      1.00
                                                                        0.85
      nn_reg_eval_df.nlargest(3, 'KNR Test Score')
[24]:
              # of Neighbors
                                Weights
                                          KNR Train Score
                                                             KNR Test Score
          k
                                                                        0.97
      37
                            2
                               distance
                                                      1.00
          8
      39
          8
                            3
                               distance
                                                      1.00
                                                                        0.92
      41 8
                               distance
                                                      1.00
                                                                        0.85
[25]: nn_reg_eval_df.nsmallest(3, 'KNR Test Score')
             # of Neighbors
                                Weights KNR Train Score KNR Test Score
[25]:
      13
                               distance
                                                      1.00
                                                                    -158.40
      15
                                                      1.00
                                                                    -142.79
                               distance
```

17 4 4 distance 1.00 -120.69

it seems like that the k-nearest regression is best perfroming algorithm for this dataset since it got 97% accuracy on test set.

```
[26]: knr_uniform = KNeighborsRegressor(n_neighbors=2, weights='uniform')
knr_distance = KNeighborsRegressor(n_neighbors=2, weights='distance')
knr_uniform = knr_uniform.fit(leaders_post_x, leaders_post_y)
knr_distance = knr_distance.fit(leaders_post_x, leaders_post_y)
```

```
[27]: fig = plt.figure(figsize=(18,6))
      ax1 = fig.add_subplot(1,2,1)
      ax2 = fig.add_subplot(1,2,2)
      ax1.scatter(leaders_post_dummy['view'], leaders_post_dummy['cost'], label='Data_u
      →Points')
      ax2.scatter(leaders_post_dummy['view'], leaders_post_dummy['cost'], label='Data_
      →Points')
      X_plot = np.linspace(leaders_post_dummy['view'].min(),__
      →leaders_post_dummy['view'].max(), 500).reshape(-1, 1)
      y_plot_uniform = knr_uniform.fit(leaders_post_x[:, 1].reshape(-1, 1),__
      →leaders_post_y).predict(X_plot)
      y_plot_distance = knr_distance.fit(leaders_post_x[:, 1].reshape(-1, 1),__
       →leaders_post_y).predict(X_plot)
      ax1.plot(X_plot, y_plot_uniform, '-r', label='KNR with Uniform Weight Model')
      ax2.plot(X_plot, y_plot_distance, '-r', label='KNR with Distance Weight Model')
      ax1.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
      → format(int(x), ',')))
      ax1.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
      \rightarrow format(int(x), ',')))
      ax1.set title(f'Leaders Posts, Cost vs View, Most Accurate KNR Model (Uniform,
      →Weight)')
      ax1.set_xlabel('view')
      ax1.set_ylabel('cost')
      ax1.legend()
      ax2.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
      → format(int(x), ',')))
      ax2.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:
      \rightarrow format(int(x), ',')))
      ax2.set_title(f'Leaders Posts, Cost vs View, Most Accurate KNR Model (Distance
      →Weight)')
      ax2.set_xlabel('view')
      ax2.set_ylabel('cost')
      ax2.legend()
      plt.show()
```


1.0.2 Decision Tree Regressor

Advertising Posts

```
[28]: from sklearn.tree import DecisionTreeRegressor
[29]:
     criterion = ['mse', 'friedman_mse', 'mae']
[30]: temp_lst = []
      for i in tqdm_notebook(range(2, 9)):
          kf = KFold(n_splits = i)
          for train_index, test_index in kf.split(ad_post_x):
              X_train, X_test = ad_post_x[train_index], ad_post_x[test_index]
              y_train, y_test = ad_post_y[train_index], ad_post_y[test_index]
              for c in criterion:
                  dtr = DecisionTreeRegressor(criterion = c, max_features = 'auto')
                  dtr.fit(X_train, y_train)
                  temp_1st2 = []
                  temp_lst2.append(i)
                  temp lst2.append(c)
                  temp_lst2.append(dtr.score(X_train, y_train))
                  temp_lst2.append(dtr.score(X_test, y_test))
                  temp_lst.append(temp_lst2)
      temp_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTR Train Score', U
      → 'DTR Test Score'])
      temp_lst = []
      for k in range(2, 9):
          for c_ in criterion:
              temp_1st2 = []
              temp lst2.append(k)
              temp_lst2.append(c_)
```

```
temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
      temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_ 
      temp_lst.append(temp_lst2)
     dt_reg_eval_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTR Train_

¬Score', 'DTR Test Score'])
     dt_reg_eval_df
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0),
     →HTML(value='')))
[30]:
         k
              Criterion
                        DTR Train Score DTR Test Score
         2
                                   1.00
                                                  0.45
     0
                    mse
         2
     1
                                   1.00
                                                  0.40
           friedman mse
     2
         2
                                                  0.50
                    mae
                                   1.00
     3
         3
                                   1.00
                                                  0.46
                    mse
     4
         3
                                   1.00
                                                  0.61
           friedman_mse
     5
         3
                                   1.00
                                                  0.51
                    mae
     6
         4
                                                  0.69
                                   1.00
                    mse
     7
         4
           friedman_mse
                                   1.00
                                                  0.66
                                                  0.74
     8
         4
                                   1.00
                    mae
     9
         5
                                                  0.53
                    mse
                                   1.00
     10
        5
           friedman_mse
                                   1.00
                                                  0.64
                                                  0.72
     11
        5
                                   1.00
                    mae
     12
        6
                    mse
                                   1.00
                                                  0.49
     13 6
                                   1.00
                                                  0.49
           friedman mse
     14
        6
                    mae
                                   1.00
                                                 -0.51
        7
                                                  0.70
     15
                    mse
                                   1.00
     16 7
                                                  0.67
           friedman mse
                                   1.00
     17
                                   1.00
                                                  0.49
                    mae
     18
                                   1.00
                                                  0.31
        8
                    mse
     19
        8
                                   1.00
                                                  0.22
           friedman_mse
     20 8
                                   1.00
                                                 -0.51
                    mae
[31]: dt_reg_eval_df.nlargest(3, 'DTR Test Score')
[31]:
         k Criterion DTR Train Score DTR Test Score
                               1.00
                                              0.74
                mae
     11
        5
                mae
                               1.00
                                              0.72
     15 7
                               1.00
                                              0.70
                mse
[32]: dtr = DecisionTreeRegressor(max_features='auto', criterion='mse')
```

```
[33]: fig = plt.figure(figsize=(8,6))
      ax = fig.add_subplot()
      ax.scatter(ad_post_dummy['view'], ad_post_dummy['cost'], label='Data Points')
      X_plot = np.linspace(ad_post_dummy['view'].min(), ad_post_dummy['view'].max(),__
       \hookrightarrow500).reshape(-1, 1)
      y_plot = dtr.fit(ad_post_x[:, 1].reshape(-1, 1), ad_post_y).predict(X_plot)
      ax.plot(X_plot, y_plot, '-r', label='Decision Tree Model')
      ax.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:__
       \hookrightarrow format(int(x), ',')))
      ax.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:__
       \hookrightarrow format(int(x), ',')))
      ax.set_title(f'Advertising Posts, Cost vs View, Most Accurate DT Model')
      ax.set_xlabel('view')
      ax.set_ylabel('cost')
      ax.legend()
      plt.show()
```

Advertising Posts, Cost vs View, Most Accurate DT Model

Advertising Story

```
[34]: temp_lst = []
     for i in tqdm_notebook(range(2, 9)):
         kf = KFold(n_splits = i)
         for train_index, test_index in kf.split(ad_story_x):
             X_train, X_test = ad_story_x[train_index], ad_story_x[test_index]
             y_train, y_test = ad_story_y[train_index], ad_story_y[test_index]
             for c in criterion:
                dtr = DecisionTreeRegressor(criterion = c, max_features = 'auto')
                dtr.fit(X_train, y_train)
                temp_1st2 = []
                temp lst2.append(i)
                temp lst2.append(c)
                temp_lst2.append(dtr.score(X_train, y_train))
                temp_lst2.append(dtr.score(X_test, y_test))
                temp_lst.append(temp_lst2)
     temp_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTR Train Score', _
      →'DTR Test Score'l)
     temp_lst = []
     for k in range(2, 9):
         for c_ in criterion:
             temp_1st2 = []
             temp lst2.append(k)
             temp_lst2.append(c_)
            temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
      temp lst2.append(np.round(np.mean(temp df[(temp df['k'] == k) & |
      temp_lst.append(temp_lst2)
     dt_reg_eval_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTR Train_
      →Score', 'DTR Test Score'])
     dt_reg_eval_df
    HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0),
     →HTML(value='')))
「34]:
              Criterion DTR Train Score DTR Test Score
         k
     0
         2
                    mse
                                   1.00
                                                  0.67
         2 friedman_mse
                                                  0.42
     1
                                   1.00
     2
         2
                    mae
                                   1.00
                                                  0.69
     3
         3
                                   1.00
                                                  0.79
                    mse
        3 friedman_mse
     4
                                   1.00
                                                  0.78
     5
         3
                                   1.00
                                                  0.64
                    mae
         4
                                   1.00
                                                  0.70
                    mse
```

```
7
             friedman_mse
                                        1.00
                                                        0.73
                                        1.00
                                                        0.75
      8
          4
      9
          5
                       mse
                                        1.00
                                                        0.28
      10 5
             friedman_mse
                                        1.00
                                                        0.42
      11 5
                                        1.00
                                                        0.45
                       mae
      12
         6
                                        1.00
                                                        0.21
                       mse
      13 6 friedman_mse
                                        1.00
                                                        0.12
      14 6
                       mae
                                        1.00
                                                       -0.15
      15 7
                                        1.00
                                                        0.34
                       mse
      16 7
                                        1.00
                                                        0.27
             friedman mse
      17
         7
                                                        0.34
                       mae
                                        1.00
      18 8
                       mse
                                        1.00
                                                       -0.72
      19 8 friedman_mse
                                        1.00
                                                        0.16
      20 8
                       mae
                                        1.00
                                                       -1.23
[35]: dt_reg_eval_df.nlargest(3, 'DTR Test Score')
[35]:
         k
               Criterion DTR Train Score DTR Test Score
      3
         3
                                      1.00
                                                       0.79
                      mse
      4
                                      1.00
                                                       0.78
        3 friedman_mse
                                      1.00
                                                       0.75
                      mae
[36]: dtr = DecisionTreeRegressor(max features='auto', criterion='mae')
[37]: fig = plt.figure(figsize=(8,6))
      ax = fig.add_subplot()
      ax.scatter(ad_story_dummy['view'], ad_story_dummy['cost'], label='Data_Points')
      X_plot = np.linspace(ad_story_dummy['view'].min(), ad_story_dummy['view'].
       \rightarrowmax(), 500).reshape(-1, 1)
      y_plot = dtr.fit(ad_story_x[:, 0].reshape(-1, 1), ad_story_y).predict(X_plot)
      ax.plot(X_plot, y_plot, '-r', label='Decision Tree Model')
      ax.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:__
      \hookrightarrow format(int(x), ',')))
      ax.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p:__
       \hookrightarrow format(int(x), ',')))
      ax.set_title(f'Advertising Story, Cost vs View, Most Accurate DT Model')
      ax.set xlabel('view')
      ax.set_ylabel('cost')
      ax.legend()
      plt.show()
```


Influencers [38]: temp_lst = [] for i in tqdm_notebook(range(2, 9)): kf = KFold(n_splits = i) for train_index, test_index in kf.split(influencer_x): X_train, X_test = influencer_x[train_index], influencer_x[test_index] y_train, y_test = influencer_y[train_index], influencer_y[test_index] for c in criterion: dtr = DecisionTreeRegressor(criterion = c, max_features = 'auto') dtr.fit(X_train, y_train) temp lst2 = []temp_lst2.append(i) temp_lst2.append(c) temp_lst2.append(dtr.score(X_train, y_train)) temp_lst2.append(dtr.score(X_test, y_test)) temp_lst.append(temp_lst2) temp_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTR Train Score', _ →'DTR Test Score']) $temp_lst = []$

```
for k in range(2, 9):
         for c_ in criterion:
             temp_1st2 = []
             temp_lst2.append(k)
             temp_lst2.append(c_)
             temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
      temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
      temp_lst.append(temp_lst2)
     dt_reg_eval_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTR Train_
      →Score', 'DTR Test Score'])
     dt_reg_eval_df
    HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0), __
     →HTML(value='')))
[38]:
         k
              Criterion
                        DTR Train Score DTR Test Score
     0
         2
                                   1.00
                                                  0.28
                    mse
         2
                                   1.00
                                                 -0.11
     1
           friedman_mse
         2
     2
                                   1.00
                                                 -0.64
                    mae
     3
         3
                                   1.00
                                                 -0.61
                    mse
     4
           friedman mse
                                   1.00
                                                 -0.60
     5
         3
                                   1.00
                                                 -0.52
                    mae
     6
                                   1.00
                                                 0.02
         4
                    mse
     7
         4
           friedman_mse
                                   1.00
                                                 -0.02
     8
         4
                                   1.00
                                                 -0.42
                    mae
                                                 -1.28
     9
         5
                    mse
                                   1.00
                                   1.00
                                                 -0.11
     10
        5
           friedman_mse
     11
        5
                                   1.00
                                                 -1.08
                    mae
     12
        6
                    mse
                                   1.00
                                                 -0.19
     13
                                   1.00
                                                 -0.45
        6
           friedman_mse
     14
         6
                                   1.00
                                                  0.21
                    mae
     15 7
                    mse
                                   1.00
                                                 -4.76
                                                 -4.65
     16 7
           friedman_mse
                                   1.00
     17
        7
                                   1.00
                                                 -2.68
                    mae
                                   1.00
                                                 -0.87
     18
        8
                    mse
                                                 -0.07
     19
        8
           friedman mse
                                   1.00
     20 8
                    mae
                                   1.00
                                                 -1.06
[39]: dt_reg_eval_df.nlargest(3, 'DTR Test Score')
[39]:
         k Criterion DTR Train Score DTR Test Score
                                              0.28
                mse
                               1.00
```

0.21

1.00

14 6

mae

6 4 mse 1.00 0.02

as you can see in the table above, decision tree regressoris not a good fit for influencers dataset.

```
Leaders Post
[40]: temp_lst = []
     for i in tqdm_notebook(range(2, 9)):
         kf = KFold(n_splits = i)
         for train index, test index in kf.split(leaders post x):
            X_train, X_test = leaders_post_x[train_index],_
      →leaders_post_x[test_index]
            y_train, y_test = leaders_post_y[train_index],_
      →leaders_post_y[test_index]
            for c in criterion:
                dtr = DecisionTreeRegressor(criterion = c, max_features = 'auto')
                dtr.fit(X_train, y_train)
                temp lst2 = []
                temp_lst2.append(i)
                temp lst2.append(c)
                temp_lst2.append(dtr.score(X_train, y_train))
                temp_lst2.append(dtr.score(X_test, y_test))
                temp_lst.append(temp_lst2)
     temp_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTR Train Score', U
      → 'DTR Test Score'])
     temp lst = []
     for k in range(2, 9):
         for c in criterion:
            temp_1st2 = []
            temp lst2.append(k)
            temp lst2.append(c )
            temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
      temp lst2.append(np.round(np.mean(temp df[(temp df['k'] == k) &_1)
      temp lst.append(temp lst2)
     dt_reg_eval_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTR Train_
      →Score', 'DTR Test Score'])
     dt_reg_eval_df
```

HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0), HTML(value='')))

```
[40]:
          k
                             DTR Train Score DTR Test Score
                 Criterion
      0
          2
                       mse
                                         1.00
                                                         -0.15
          2
                                         1.00
                                                         -0.60
      1
             friedman mse
      2
          2
                                         1.00
                                                         -0.34
                       mae
      3
          3
                       mse
                                         1.00
                                                         -0.12
      4
              friedman mse
                                         1.00
                                                         -0.39
      5
          3
                                         1.00
                                                         -0.45
                       mae
      6
          4
                       mse
                                         1.00
                                                       -162.24
      7
                                                       -162.30
          4
                                         1.00
             friedman_mse
      8
          4
                       mae
                                         1.00
                                                       -162.28
                                                         -4.64
      9
          5
                                         1.00
                       mse
                                                         -0.42
      10
          5
             friedman_mse
                                         1.00
                                         1.00
                                                         -4.31
      11
                       mae
                                                         -6.27
      12
                                         1.00
                       mse
      13
          6
             friedman_mse
                                         1.00
                                                          0.07
      14
                                                         -5.95
                                         1.00
                       mae
      15
                                         1.00
                                                         -8.39
          7
                       mse
          7
                                         1.00
                                                         -8.39
      16
             friedman mse
      17
          7
                                                          0.49
                                         1.00
                       mae
      18 8
                                         1.00
                                                          0.97
                       mse
      19 8
             friedman mse
                                         1.00
                                                          1.00
      20 8
                                         1.00
                                                          0.97
                       mae
[41]: dt_reg_eval_df.nlargest(3, 'DTR Test Score')
[41]:
                 Criterion DTR Train Score DTR Test Score
          k
                                         1.00
                                                          1.00
      19
          8
             friedman_mse
                                                          0.97
      18
          8
                       mse
                                         1.00
      20
                       mae
                                         1.00
                                                          0.97
```

as you can see in the tables above, decision tree algorithm managed to achieve the perfect score on this dataset.

1.0.3 Random Forrest Regression

Advertising Posts

```
y_train, y_test = ad_post_y[train_index], ad_post_y[test_index]
             for c in criterion:
                 for n in n_estimators:
                     rfr = RandomForestRegressor(criterion = c, n_estimators = n)
                     rfr.fit(X_train, y_train)
                     temp_1st2 = []
                     temp_lst2.append(i)
                     temp_lst2.append(c)
                     temp lst2.append(n)
                     temp_lst2.append(rfr.score(X_train, y_train))
                     temp_lst2.append(rfr.score(X_test, y_test))
                     temp_lst.append(temp_lst2)
     temp_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', '# of Trees', 'RFR_u

¬Train Score', 'RFR Test Score'])
     temp lst = []
     for k in range(2, 9):
         for c_ in criterion:
             for n_ in n_estimators:
                 temp lst2 = []
                 temp_lst2.append(k)
                 temp_lst2.append(c_)
                 temp_lst2.append(n_)
                 temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) \&
      (temp df['# of Trees'] ==[]
      →n_)]['RFR Train Score']), decimals=4))
                 temp_lst2.append(np.round(np.mean(temp_df['k'] == k) &__
      (temp_df['# of Trees'] ==__
      →n_)]['RFR Test Score']), decimals=4))
                 temp lst.append(temp lst2)
     rfr_reg_eval_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', '# of Trees_u
      →in Forest', 'RFR Train Score', 'RFR Test Score'])
     rfr reg eval df
     100%|
               | 7/7 [03:28<00:00, 29.74s/it]
[46]:
          k Criterion # of Trees in Forest RFR Train Score RFR Test Score
          2
                                        10
                                                       0.96
                                                                      0.77
     0
                  mse
     1
          2
                  mse
                                        20
                                                       0.93
                                                                      0.73
     2
          2
                                        30
                                                       0.91
                                                                      0.74
                  mse
     3
          2
                                        40
                                                       0.89
                                                                      0.69
                  mse
          2
     4
                                        50
                                                       0.92
                                                                      0.76
                  mse
      . . . . .
```

```
275 8
                                     160
                                                      0.98
                                                                       0.54
             mae
276 8
                                                      0.98
                                                                       0.60
                                     170
             mae
277 8
             mae
                                     180
                                                      0.98
                                                                       0.58
278 8
                                     190
                                                      0.98
                                                                       0.63
             mae
279 8
                                     200
                                                      0.98
                                                                       0.60
             mae
```

[280 rows x 5 columns]

```
[47]: rfr_reg_eval_df.nlargest(3, 'RFR Test Score')
```

```
[47]:
          k Criterion # of Trees in Forest RFR Train Score RFR Test Score
                                         70
                                                        0.97
                                                                         0.83
      86
                  mse
      63 3
                                         40
                                                        0.97
                                                                         0.82
                  mae
      65 3
                                         60
                                                        0.97
                                                                         0.82
                  mae
```

Advertising Stories

```
[48]: temp lst = []
     for i in tqdm(range(2, 9)):
         kf = KFold(n splits = i)
         for train_index, test_index in kf.split(ad_story_x):
             X train, X test = ad story x[train index], ad story x[test index]
             y_train, y_test = ad_story_y[train_index], ad_story_y[test_index]
             for c in criterion:
                 for n in n_estimators:
                     rfr = RandomForestRegressor(criterion = c, n_estimators = n)
                     rfr.fit(X_train, y_train)
                     temp_lst2 = []
                     temp_lst2.append(i)
                     temp_lst2.append(c)
                     temp lst2.append(n)
                     temp_lst2.append(rfr.score(X_train, y_train))
                     temp_lst2.append(rfr.score(X_test, y_test))
                     temp_lst.append(temp_lst2)
     temp_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', '# of Trees', 'RFR_U
      →Train Score', 'RFR Test Score'])
     temp_lst = []
     for k in range(2, 9):
         for c in criterion:
             for n_ in n_estimators:
                 temp_1st2 = []
                 temp_lst2.append(k)
                 temp_lst2.append(c_)
                 temp_lst2.append(n_)
                 temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) \&
```

```
(temp_df['# of Trees'] ==__
       temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
      (temp_df['# of Trees'] ==__
      →n_)]['RFR Test Score']), decimals=4))
                 temp_lst.append(temp_lst2)
     rfr_reg_eval_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', '# of Trees_
      →in Forest', 'RFR Train Score', 'RFR Test Score'])
     rfr_reg_eval_df
     100%
               | 7/7 [03:28<00:00, 29.76s/it]
[48]:
          k Criterion # of Trees in Forest RFR Train Score RFR Test Score
          2
                                        10
                                                       0.96
                                                                       0.86
                  mse
     1
          2
                                        20
                                                       0.96
                                                                       0.79
                  mse
     2
          2
                  mse
                                        30
                                                       0.94
                                                                       0.85
     3
          2
                                        40
                                                       0.94
                                                                       0.82
                  mse
     4
          2
                                        50
                                                       0.93
                                                                       0.84
                  mse
     275 8
                                       160
                                                       0.97
                                                                       0.51
                  mae
     276 8
                                       170
                                                       0.97
                                                                       0.49
                  mae
                                                       0.97
                                                                       0.48
     277 8
                  mae
                                       180
                                                                       0.50
     278 8
                                       190
                                                       0.97
                  mae
     279 8
                                       200
                                                       0.97
                                                                       0.47
                  mae
     [280 rows x 5 columns]
[49]: rfr_reg_eval_df.nlargest(3, 'RFR Test Score')
[49]:
         k Criterion # of Trees in Forest RFR Train Score RFR Test Score
                                      100
                                                      0.95
         2
                 mse
                                                                     0.88
     9
     29
        2
                                      100
                                                      0.94
                                                                     0.87
                 mae
     24 2
                 mae
                                       50
                                                      0.94
                                                                      0.87
     Influencers
[50]: temp_lst = []
     for i in tqdm(range(2, 9)):
         kf = KFold(n_splits = i)
         for train_index, test_index in kf.split(influencer_x):
             X_train, X_test = influencer_x[train_index], influencer_x[test_index]
             y_train, y_test = influencer_y[train_index], influencer_y[test_index]
             for c in criterion:
                 for n in n_estimators:
                     rfr = RandomForestRegressor(criterion = c, n_estimators = n)
                     rfr.fit(X train, y train)
```

```
temp_1st2 = []
                     temp_lst2.append(i)
                     temp_lst2.append(c)
                     temp_lst2.append(n)
                     temp_lst2.append(rfr.score(X_train, y_train))
                     temp_lst2.append(rfr.score(X_test, y_test))
                     temp_lst.append(temp_lst2)
     temp_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', '# of Trees', 'RFR_U

¬Train Score', 'RFR Test Score'])
     temp_lst = []
     for k in range(2, 9):
         for c_ in criterion:
             for n_ in n_estimators:
                 temp_1st2 = []
                 temp_lst2.append(k)
                 temp_lst2.append(c_)
                 temp_lst2.append(n_)
                 temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
      (temp_df['# of Trees'] ==__
      →n_)]['RFR Train Score']), decimals=4))
                 temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
      (temp_df['# of Trees'] ==__
      →n_)]['RFR Test Score']), decimals=4))
                 temp lst.append(temp lst2)
     rfr_reg_eval_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', '# of Trees_
      →in Forest', 'RFR Train Score', 'RFR Test Score'])
     rfr_reg_eval_df
     100%
               | 7/7 [04:02<00:00, 34.58s/it]
[50]:
          k Criterion # of Trees in Forest RFR Train Score RFR Test Score
          2
                                                       0.99
                                                                      -0.00
     0
                  mse
                                         10
          2
     1
                                         20
                                                       1.00
                  mse
                                                                      -0.09
     2
          2
                                         30
                                                       1.00
                                                                      -0.02
                  mse
     3
          2
                                         40
                                                       1.00
                                                                      -0.07
                  mse
          2
                                                       1.00
                                                                      -0.02
                                         50
                  mse
     275 8
                  mae
                                        160
                                                       1.00
                                                                      -0.11
                                                       1.00
     276 8
                                        170
                                                                      -0.07
                  mae
     277 8
                                        180
                                                       1.00
                                                                      -0.17
                  mae
     278 8
                                        190
                                                       1.00
                                                                      -0.17
                  mae
     279 8
                  mae
                                        200
                                                       1.00
                                                                      -0.20
```

```
[51]: rfr_reg_eval_df.nlargest(3, 'RFR Test Score')
[51]:
          k Criterion # of Trees in Forest
                                             RFR Train Score RFR Test Score
                                                         0.99
                                                                          0.27
      85
                                          60
                  mse
                                                                          0.26
      84 4
                                          50
                                                         1.00
                  mse
      89 4
                                         100
                                                                          0.23
                  mse
                                                         1.00
```

as it was obvious, since the tree-based algorithms didn't perform well on influencer dataset, random forest won't change this fact.

Leaders Post

```
[52]: temp_lst = []
     for i in tqdm(range(2, 9)):
         kf = KFold(n_splits = i)
         for train index, test index in kf.split(leaders post x):
             X_train, X_test = leaders_post_x[train_index],_
       →leaders_post_x[test_index]
             y_train, y_test = leaders_post_y[train_index],_
       →leaders_post_y[test_index]
             for c in criterion:
                 for n in n estimators:
                     rfr = RandomForestRegressor(criterion = c, n_estimators = n)
                     rfr.fit(X_train, y_train)
                     temp_1st2 = []
                     temp_lst2.append(i)
                     temp_lst2.append(c)
                     temp_lst2.append(n)
                     temp_lst2.append(rfr.score(X_train, y_train))
                     temp_lst2.append(rfr.score(X_test, y_test))
                     temp_lst.append(temp_lst2)
     temp_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', '# of Trees', 'RFR_U
      →Train Score', 'RFR Test Score'])
     temp_lst = []
     for k in range(2, 9):
         for c_ in criterion:
             for n_ in n_estimators:
                 temp_1st2 = []
                 temp_lst2.append(k)
                 temp_lst2.append(c_)
                 temp lst2.append(n )
                 temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_u
```

```
(temp_df['# of Trees'] ==__
      temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
      (temp_df['# of Trees'] ==_
      →n_)]['RFR Test Score']), decimals=4))
                 temp_lst.append(temp_lst2)
     rfr_reg_eval_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', '# of Trees_
      →in Forest', 'RFR Train Score', 'RFR Test Score'])
     rfr_reg_eval_df
     100%|
               | 7/7 [03:04<00:00, 26.41s/it]
[52]:
          k Criterion # of Trees in Forest RFR Train Score RFR Test Score
          2
                                        10
                                                      0.89
                                                                      0.24
                  mse
     1
          2
                                        20
                                                      0.72
                                                                      0.10
                  mse
     2
          2
                  mse
                                        30
                                                      0.80
                                                                      0.12
     3
          2
                                                                      0.21
                                        40
                                                      0.78
                  mse
     4
          2
                                        50
                                                      0.81
                                                                      0.16
                  mse
     275 8
                                       160
                                                      0.88
                                                                      0.74
                  mae
     276 8
                                       170
                                                      0.88
                                                                      0.78
                  mae
                                                      0.87
                                                                      0.84
     277 8
                  mae
                                       180
     278 8
                                       190
                                                      0.88
                                                                      0.81
                  mae
     279 8
                                       200
                                                      0.88
                                                                      0.75
                  mae
     [280 rows x 5 columns]
[53]: rfr_reg_eval_df.nlargest(3, 'RFR Test Score')
[53]:
          k Criterion # of Trees in Forest RFR Train Score RFR Test Score
     261 8
                                        20
                                                      0.84
                                                                      0.88
                  mae
     268 8
                                        90
                                                      0.87
                                                                     0.84
                  mae
     253 8
                  mse
                                       140
                                                      0.87
                                                                      0.84
```

1.1 Regression Algorithms Summary

in the table below you can see the performance summary of most accurate regression model which we tested and discussed in this notebook and previous one.

```
[54]: data = {
    'Regression Algorithms': ['Linear', 'Polynomial', 'Ridge', 'Lasso', □
    →'Support Vector Machine', 'k-Nearest', 'Decision Tree', 'Random Forest'],
    'Advertising Post - Train Score': [0.93, 0.86, 0.93, 0.93, 0.86, 0.88, 1, 0.
    →97],
```

```
'Advertising Post - Test Score': [0.77, 0.70, 0.77, 0.80, 0.74, 0.44, 0.74,
       →0.83],
          'Advertising Story - Train Score': [1, 0.81, 1, 1, 0.97, 1, 1, 0.95],
          'Advertising Story - Test Score': [0.96, 0.71, 0.96, 0.96, 0.94, 0.44, 0.
       479, 0.88],
          'Influencers - Train Score': [0.22, '-', 0.86, 0.86, 0.72, 1, 1, 0.99],
          'Influencers - Test Score': [0.25, '-', 0.43, 0.40, 0.65, 0.65, 0.28, 0.27],
          'Leaders Post - Train Score': ['-', 0.41, '-', '-', 0.80, 1, 1, 0.84],
          'Leaders Post - Test Score': ['-', 0.40, '-', '-', 0.16, 0.97, 1, 0.88]}
      score_df = pd.DataFrame(data=data)
      score_df
[54]:
          Regression Algorithms Advertising Post - Train Score \
      0
                                                             0.93
                         Linear
                                                             0.86
      1
                     Polynomial
      2
                          Ridge
                                                             0.93
      3
                          Lasso
                                                             0.93
         Support Vector Machine
                                                             0.86
                                                             0.88
      5
                      k-Nearest
                  Decision Tree
                                                             1.00
      6
      7
                  Random Forest
                                                             0.97
         Advertising Post - Test Score Advertising Story - Train Score
      0
                                   0.77
                                   0.70
      1
                                                                     0.81
      2
                                   0.77
                                                                     1.00
      3
                                   0.80
                                                                     1.00
      4
                                   0.74
                                                                     0.97
      5
                                   0.44
                                                                     1.00
      6
                                   0.74
                                                                     1.00
      7
                                   0.83
                                                                     0.95
         Advertising Story - Test Score Influencers - Train Score \
      0
                                    0.96
                                                               0.22
                                    0.71
      1
      2
                                    0.96
                                                               0.86
      3
                                    0.96
                                                               0.86
                                    0.94
      4
                                                               0.72
                                    0.44
      5
      6
                                    0.79
                                                                  1
                                    0.88
                                                               0.99
        Influencers - Test Score Leaders Post - Train Score \
      0
                            0.25
                                                        0.41
      1
      2
                            0.43
      3
                             0.40
```

0.65	0.80
0.65	1
0.28	1
0.27	0.84
: - Test Score	
-	
0.40	
-	
-	
0.16	
0.97	
1	
0.88	
	0.65 0.28 0.27 - Test Score - 0.40 0.16 0.97

lowest accuracy for datasets is for influencers dataset, in more technical wording, the variance of these models are higher than normal and thus, in order of fix that, we are in need of more data. without additional data this accuracy couldn't be increased significantly. on other data sets we managed to achieve high score and accuracy.

2 Notebook by Ramin F. - @simplyramin

[]: