Desátá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Desátá přednáška

Program

- grounding, Herbrandova věta
- unifikace, unifikační algoritmus
- rezoluční pravidlo, rezoluční důkaz

Materiály

Zápisky z přednášky, Sekce 8.3-8.5 z Kapitoly 8

8.3 Grounding

Grounding

základní (ground) instance otevřené φ ve volných proměnných x_1, \ldots, x_n je $\varphi(x_1/t_1, \ldots, x_n/t_n)$, kde vš. t_i jsou konstantní

Herbrandova věta říká, že je-li otevřená teorie nesplnitelná, lze to doložit "na konkrétních prvcích": existuje konečně mnoho základních instancí axiomů, jejichž konjunkce je nesplnitelná

- např. pro $T = \{P(x,y) \lor R(x,y), \neg P(c,y), \neg R(x,f(x))\}$ substituujeme konstantní termy $\{x/c, y/f(c)\}$: $(P(c,f(c)) \lor R(c,f(c))) \land \neg P(c,f(c)) \land \neg R(c,f(c))$
- základní atomické sentence chápeme jako prvovýroky:

$$(p_1 \vee p_2) \wedge \neg p_1 \wedge \neg p_2$$

- to už snadno zamítneme výrokovou rezolucí
- p_1 znamená "platí P(c, f(c))", p_2 znamená "platí R(c, f(c))"

Přímá redukce do výrokové logiky

Herbrandova věta + korektnost a úplnost výrokové rezoluce dává následující, neefektivní postup (S' je moc velká, i nekonečná):

- 1. $S \rightsquigarrow S' = \text{množina všech základních instancí klauzulí z } S$
- 2. atomické sentence v S' chápeme jako prvovýroky
- 3. S nesplnitelná $\Leftrightarrow S'$ zamítnutelná 'na úrovni výrokové logiky'

Např. pro
$$S = \{\{P(x,y), R(x,y)\}, \{\neg P(c,y)\}, \{\neg R(x,f(x))\}\}\}$$

 $S' = \{\{P(c,c), R(c,c)\}, \{P(c,f(c)), R(c,f(c))\}, \{P(f(c),c), R(f(c),c)\}, \dots, \{\neg P(c,c)\}, \{\neg P(c,f(c))\}, \{\neg P(c,f(f(c)))\}, \{\neg R(f(c),f(f(c)))\}, \{\neg R(f(c),f(f(c)))\}, \{\neg R(f(f(c)),f(f(c)))\}, \dots\}$

 S^\prime je nesplnitelná obsahuje konečnou nesplnitelnou podmnožinu:

$$\{\{P(c,f(c)),R(c,f(c))\},\{\neg P(c,f(c))\},\{\neg R(c,f(c))\}\} \vdash_{R} \Box$$

Efektivnější je hledat vhodné základní instance unifikací [za chvíli]

Herbrandův model

Mějme jazyk $L=\langle \mathcal{R},\mathcal{F} \rangle$ s alespoň jedním konstantním symbolem. L-struktura $\mathcal{A}=\langle A,\mathcal{R}^{\mathcal{A}},\mathcal{F}^{\mathcal{A}} \rangle$ je Herbrandův model, jestliže:

- A je množina všech konst. L-termů (Herbrandovo univerzum)
- pro každý n-ární $f \in \mathcal{F}$ a (konstantní) " t_1 ", . . . , " t_n " $\in A$:

$$f^{\mathcal{A}}("t_1",\ldots,"t_n") = "f(t_1,\ldots,t_n)"$$

- speciálně, pro konstantní symbol $c \in \mathcal{F}$ je $c^{\mathcal{A}} = ``c"$
- na relační symboly neklademe podmínky

Např. $L = \langle P, f, c \rangle$ (P unární rel., f binární funkční, c konstantní) Herbrandův model je každá struktura $\mathcal{A} = \langle A, P^{\mathcal{A}}, f^{\mathcal{A}}, c^{\mathcal{A}} \rangle$, kde

- $A = \{ (c, c), (f(c, c)), (f(c, c)), (f(c, c), c), (f(c$
- $c^{A} = "c"$
- $f^{\mathcal{A}}("c", "c") = "f(c, c)", f^{\mathcal{A}}("c", "f(c, c)") = "f(c, f(c, c))",$ $f^{\mathcal{A}}("f(c, c)", "c") = "f(f(c, c), c)", \text{ atd.}$
- $P^{\mathcal{A}} \subseteq A$ může být libovolná

Herbrandova věta

Věta (Herbrandova): Je-li *T* otevřená, v jazyce bez rovnosti a s alespoň jedním konstantním symbolem, potom:

- buď má T Herbrandův model, nebo
- existuje konečně mnoho základních instancí axiomů T, jejichž konjunkce je nesplnitelná.

Důkaz: $T_{\rm ground} = {\rm množina}$ všech základních instancí axiomů T Zkonstruujeme "systematické tablo" τ z $T_{\rm ground}$ s ${\rm F}\bot$ v kořeni, ale z jazyka L, bez rozšíření o pomocné konstantní symboly na L_C . (Nepotřebujeme je, protože v $T_{\rm ground}$ nejsou kvantifikátory.)

Pokud má τ bezespornou větev, je "kanonický model" (opět bez pomocných symbolů) Herbrandovým modelem T.

Jinak je τ důkaz sporu, $T_{\rm ground}$ (a tedy i T) je nesplnitelná. Tablo τ je konečné, používá jen konečně mnoho $\alpha_{\rm ground} \in T_{\rm ground}$, jejich konjunkce už je nesplnitelná.

Poznámky

- konstatní symbol potřebujeme, aby existovaly vůbec nějaké konstantní termy (ale není-li v L žádný, můžeme ho přidat)
- Herbrandův model je podobný kanonickému, ale nepřidáváme pomocné symboly, a neříkáme nic o relacích
- je-li jazyk s rovností, najdeme Herbrandův model pro T^* (přidané axiomy rovnosti) a faktorizujeme podle $=^A$

Důsledky Herbrandovy věty

Důsledek: Je-li T otevřená v jazyce s konstantním symbolem, potom T má model, právě když má model teorie $T_{\rm ground}$.

Důkaz: \Rightarrow V modelu T platí i všechny základní instance axiomů. Je tedy i modelem $T_{\rm ground}$.

Pokud T nemá model, podle Herbrandovy věty je nějaká konečná podmnožina teorie T_{ground} nesplnitelná.

Důsledek: Mějme otevřenou $\varphi(x_1,\ldots,x_n)$ v L s konst. symbolem. Potom existuje $m\in\mathbb{N}$ a konstantní L-termy t_{ij} $(i\in[m],j\in[n])$, že sentence $(\exists x_1)\ldots(\exists x_n)\varphi(x_1,\ldots,x_n)$ je pravdivá, právě když je následující formule (výroková) tautologie:

$$\varphi(x_1/t_{11},\ldots,x_n/t_{1n})\vee\cdots\vee\varphi(x_1/t_{m1},\ldots,x_n/t_{mn})$$

Důkaz: Je pravdivá, právě když $(\forall x_1) \dots (\forall x_n) \neg \varphi$ neboli $\neg \varphi$ je nesplnitelná. Stačí aplikovat Herbrandovu větu na $\mathcal{T} = \{\neg \varphi\}$.

8.4 Unifikace

Příklady substitucí

Místo všech základních použijeme 'vhodné' substituce (unifikace):

- 1. $\{P(x), Q(x, a)\}\ a\ \{\neg P(y), \neg Q(b, y)\}$
 - substitucí $\{x/b, y/a\}$ získáme $\{P(b), Q(b, a)\}$ a $\{\neg P(a), \neg Q(b, a)\}$, z nich rezolucí $\{P(b), \neg P(a)\}$
 - nebo $\{x/y\}$ a rezolucí přes P(y) máme $\{Q(y,a), \neg Q(b,y)\}$
 - šlo by např. $\{x/a\}$, získat $\{Q(a,a), \neg Q(b,a)\}$, ale to je horší
- 2. $\{P(x), Q(x,z)\}\$ a $\{\neg P(y), \neg Q(f(y),y)\}\$
 - Ize použít $\{x/f(a), y/a, z/a\}$, získat $\{P(f(a)), Q(f(a), a)\}$ a $\{\neg P(a), \neg Q(f(a), a)\}$, rezolucí $\{P(f(a)), \neg P(a)\}$
 - lepší je $\{x/f(z), y/z\}$, dává $\{P(f(z)), Q(f(z), z)\}$ a $\{\neg P(z), \neg Q(f(z), z)\}$, rezolventu $\{P(f(z)), \neg P(z)\}$
 - proč lepší? obecnější, rezolventa 'říká více': $\{P(f(a)), \neg P(a)\}$ je důsledkem $\{P(f(z)), \neg P(z)\}$, ale nejsou ekvivalentní
 - $\{x/f(a), y/a, z/a\}$ získáme složením $\{x/f(z), y/z\}$ a $\{z/a\}$

Substituce formálně

- substituce je konečná množina $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$, kde x_i jsou navzájem různé proměnné, t_i jsou termy, t_i není x_i
 - základní: všechny termy t_i jsou konstantní
 - přejmenování proměnných: vš. t_i navzájem různé proměnné
- výraz je term nebo literál (atomická formule nebo její negace)
- instance výrazu E při substituci $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$, $E\sigma$: simultánně nahradíme všechny výskyty x_i za termy t_i
- pro množinu výrazů S je $S\sigma = \{E\sigma \mid E \in S\}$
- ullet simultánně proto, aby výskyt x_i v termu t_j nevedl ke zřetězení
- např. $S = \{P(x), R(y, z)\}, \ \sigma = \{x/f(y, z), y/x, z/c\}$

$$S\sigma = \{P(f(y,z)), R(x,c)\}$$

Skládání substitucí

- substituce lze skládat, $\sigma \tau$ znamená nejprve σ a potom τ
- chceme, aby platilo $E(\sigma\tau) = (E\sigma)\tau$, pro libovolný výraz E
- např. pro výraz E = P(x, w, u) a substituce

$$\sigma = \{x/f(y), w/v\} \qquad \tau = \{x/a, y/g(x), v/w, u/c\}$$
 máme $E\sigma = P(f(y), v, u)$ a $(E\sigma)\tau = P(f(g(x)), w, c)$, takže:
$$\sigma\tau = \{x/f(g(x)), y/g(x), v/w, u/c\}$$

- skládání není komutativní, $\sigma \tau$ je (typicky) jiná než $\tau \sigma$, zde

$$\tau\sigma = \{x/a, y/g(f(y)), u/c, w/v\}$$

- ale je asociativní (takže nemusíme psát závorky v $\sigma_1\sigma_2\cdots\sigma_n$)

Buď
$$\sigma = \{x_1/t_1, \dots, x_n/t_n\}$$
 a $\tau = \{y_1/s_1, \dots, y_m/s_m\}$, označme $X = \{x_1, \dots, x_n\}$ a $Y = \{y_1, \dots, y_m\}$. Složení σ a τ je substituce
$$\sigma\tau = \{x_i/t_i\tau \mid x_i \in X, x_i \neq t_i\tau\} \cup \{y_j/s_j \mid y_j \in Y \setminus X\}$$

Vlastnosti skládání

Tvrzení: Pro libovolné substituce σ , τ , ϱ a výraz E platí:

(i)
$$(E\sigma)\tau = E(\sigma\tau)$$
 (ii) $(\sigma\tau)\varrho = \sigma(\tau\varrho)$

Důkaz: (i) Buď $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ a $\tau = \{y_1/s_1, \dots, y_m/s_m\}$. Stačí pro E proměnnou (substituce nemění ostatní symboly):

- pro $E = x_i$ je $E\sigma = t_i$ a $(E\sigma)\tau = t_i\tau = E(\sigma\tau)$
- pro $E=y_j\notin X$ je $E\sigma=E$ a $(E\sigma)\tau=E\tau=s_j=E(\sigma\tau)$
- je-li E jiná proměnná, potom $(E\sigma)\tau=E=E(\sigma\tau)$.
- (i) opakovaným užitím (i) máme pro lib. výraz, tedy i proměnnou:

$$E((\sigma\tau)\varrho) = (E(\sigma\tau))\varrho = ((E\sigma)\tau)\varrho = (E\sigma)(\tau\varrho) = E(\sigma(\tau\varrho))$$

Z toho plyne, že $(\sigma \tau)\varrho$ a $\sigma(\tau \varrho)$ jsou touž substitucí.

(Podrobněji, zřejmě platí: $\pi = \{z_1/v_1, \dots, z_k/v_k\}$ právě když $z_i\pi = v_i$ a $E\pi = E$ je-li E proměnná různá od všech z_i .)

Unifikace

- unifikace pro $S = \{E_1, \dots, E_n\}$ je substituce σ taková, že $E_1 \sigma = E_2 \sigma = \dots = E_n \sigma$, tj. $S \sigma$ obsahuje jediný výraz
- pokud má S unifikaci, je unifikovatelná
- unifikace pro S je nejobecnější, pokud pro každou unifikaci au pro S existuje substituce λ taková, že $au = \sigma \lambda$

NB: různé nejobecnějších unifikace pro S se liší jen přejmenováním proměnných

Např. pro
$$S = \{P(f(x), y), P(f(a), w)\}$$

- $\sigma = \{x/a, y/w\}$ je nejobecnější unifikace
- $\tau = \{x/a, y/b, w/b\}$ je unifikace, ale není nejobecnější, nelze z ní získat např. unifikaci $\varrho = \{x/a, y/c, w/c\}$
- z nejobecnější unifikace σ získáme $\tau=\sigma\lambda$ pro $\lambda=\{w/b\}$

Unifikační algoritmus

- postupně od začátku výrazů aplikuje substituce
- buď p nejlevější pozice, na které se nějaké dva výrazy z S liší
- D(S) je množina všech podvýrazů začínajících na pozici p
- $S = \{P(x,y), P(f(x),z), P(z,f(x))\}, p = 3, D(S) = \{x,f(x),z\}$

vstup: konečná množina výrazů $S \neq \emptyset$ výstup: nejobecnější unifikace σ nebo info, že není unifikovatelná

- (0) nastav $S_0 := S$, $\sigma_0 := \emptyset$, k := 0
- (1) pokud $|S_k| = 1$, vrať $\sigma = \sigma_0 \sigma_1 \cdots \sigma_k$
- (2) zjisti, zda je v $D(S_k)$ proměnná x a term t neobsahující x
- (3) pokud ano, nastav $\sigma_{k+1}:=\{x/t\}$, $S_{k+1}:=S_k\sigma_{k+1}$, k:=k+1, a jdi na (1)
- (4) pokud ne, odpověz, že S není unifikovatelná

NB: hledání x a t v kroku (2) je relativně výpočetně náročné

Ukázkový běh

```
S = S_0 = \{P(f(y, g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), y)\}
(k = 0) |S_0| > 1, D(S_0) = \{y, h(w), h(b)\}, proměnná y není v
h(w), nastavíme \sigma_1 := \{y/h(w)\}\ a S_1 = S_0\sigma_1
S_1 = \{P(f(h(w), g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), h(w))\}
(k = 1) D(S_1) = \{w, b\}, \sigma_2 = \{w/b\}, S_2 = S_1\sigma_2
S_2 = \{P(f(h(b), g(z)), h(b)), P(f(h(b), g(a)), t)\}
(k = 2) D(S_2) = \{z, a\}, \sigma_3 = \{z/a\}, S_3 = S_2\sigma_3
S_3 = \{P(f(h(b), g(a)), h(b)), P(f(h(b), g(a)), t)\}
(k = 3) D(S_3) = \{h(b), t\}, \sigma_4 = \{t/h(b)\}, S_4 = S_3\sigma_4
S_4 = \{P(f(h(b), g(a)), h(b))\}
(k=4) |S_4| = 1, nejobecnější unifikace pro S je \sigma = \sigma_1 \sigma_2 \sigma_3 \sigma_4 =
\{y/h(w)\}\{w/b\}\{z/a\}\{t/h(b)\} = \{y/h(b), w/b, z/a, t/h(b)\}
```

15

Důkaz korektnosti

Tvrzení: Unifikační algoritmus je korektní. Pro sestrojenou σ navíc platí, že je-li τ libovolná unifikace, potom $\tau = \sigma \tau$.

Důkaz: Algoritmus vždy skončí, neboť v každém kroku eliminuje proměnnou. Skončí-li neúspěchem, nelze unifikovat S_k , tedy ani S.

Odpoví-li $\sigma=\sigma_0\sigma_1\cdots\sigma_k$, zjevně jde o unifikaci. Zbývá dokázat, že je nejobecnější, k tomu stačí dokázat vlastnost 'navíc': Buď τ lib. unifikace pro S. Indukcí pro $0\leq i\leq k$ ukážeme $\tau=\sigma_0\sigma_1\cdots\sigma_i\tau$

(báze indukce) Pro i=0 je $\sigma_0=\emptyset$, $\tau=\sigma_0\tau$ tedy platí triviálně.

(indukční krok) Buď $\sigma_{i+1} = \{x/t\}$. Ukažme, že pro lib. proměnnou platí: $u\sigma_{i+1}\tau = u\tau$ Z toho okamžitě plyne i $\tau = \sigma_0\sigma_1\cdots\sigma_i\sigma_{i+1}\tau$.

Pro $u \neq x$ je $u\sigma_{i+1} = u$, tedy i $u\sigma_{i+1}\tau = u\tau$. Je-li u = x, máme $u\sigma_{i+1} = x\sigma_{i+1} = t$. Protože τ unifikuje $S_i = S\sigma_0\sigma_1\cdots\sigma_i$ a $x,t\in D(S_i)$, τ unifikuje i x a t, tzn. $t\tau = x\tau$, tj. $u\sigma_{i+1}\tau = u\tau$. \square

8.5 Rezoluční metoda

Příklad rezolučního kroku

Chceme-li ukázat $T \models \varphi$, skolemizací najdeme CNF formuli S ekvisplnitelnou s $T \cup \{\neg \varphi\}$. Stačí najít rezoluční zamítnutí S.

Jediným podstatným rozdílem bude rezoluční pravidlo.

Rezolventou dvojice klauzulí bude klauzule, kterou lze odvodit aplikací (nejobecnější) unifikace. Nejprve příklad:

$$C_1 = \{P(x), Q(x, y), Q(x, f(z))\}, C_2 = \{\neg P(u), \neg Q(f(u), u)\}$$

Vyberme z C_1 oba pozitivní literály začínající Q, z C_2 negativní.

$$S = \{Q(x,y), Q(x,f(z)), Q(f(u),u)\}$$
 lze unifikovat pomocí nejobecnější unifikace $\sigma = \{x/f(f(v)), y/f(v), z/v, u/f(v)\}$

- $C_1 \sigma = \{ P(f(f(v))), Q(f(f(v)), f(v)) \}$
- $C_2\sigma = {\neg P(f(v)), \neg Q(f(f(v)), f(v))}$

z nich odvodíme rezolventu $C = \{P(f(f(v))), \neg P(f(v))\}$

Rezoluční pravidlo

Mějme klauzule C_1 a C_2 s disjunktními množinami proměnných tvaru

$$C_1 = C_1' \sqcup \{A_1, \dots, A_n\}, \quad C_2 = C_2' \sqcup \{\neg B_1, \dots, \neg B_m\}$$

kde $n,m\geq 1$ a $S=\{A_1,\ldots,A_n,B_1,\ldots,B_m\}$ lze unifikovat. Buď σ nejobecnější unifikace S. Rezolventa C_1 a C_2 je potom klauzule

$$C = C_1' \sigma \cup C_2' \sigma$$

Disjunktní množiny proměnných lze získat přejmenováním. Proč? Např. z $\{\{P(x)\}, \{\neg P(f(x))\}\}$ lze získat \square , nahradíme-li $\{P(x)\}$ klauzulí $\{P(y)\}$. Ale $S = \{P(x), P(f(x))\}$ není unifikovatelná.

Rezoluční důkaz

Rezoluční důkaz (odvození) klauzule C z formule S je konečná posloupnost klauzulí $C_0, C_1, \ldots, C_n = C$ taková, že pro každé i je buď

- $C_i = C_i' \sigma$ pro nějakou $C_i' \in S$ a přejmenování proměnných σ
- nebo C_i je rezolventou nějakých C_j , C_k kde j < i a k < i.

Existuje-li, je C rezolucí dokazatelná z S, $S \vdash_R C$. (Rezoluční) zamítnutí S je rez. důkaz \square z S, potom je S (rezolucí) zamítnutelná.

Proč potřebujeme odstranit více literálů z jedné klauzule najednou? Např. $S = \{\{P(x), P(y)\}, \{\neg P(x), \neg P(y)\}\}\$ je zamítnutelná, ale neexistuje zamítnutí, které by v každém kroku odstranilo jen jeden.

$$S = \{ \{ \neg P(x, y), \neg P(y, z), P(x, z) \}, \{ \neg P(x, x) \}, \{ \neg P(x, y), P(y, x) \}, \{ P(x, f(x)) \} \}$$

Rezoluční zamítnutí:

$$\{\neg P(x,y), \neg P(y,z), P(x,z)\},$$

$$\{P(x',f(x'))\},$$

$$\{\neg P(f(x),z), P(x,z)\},$$

$$\{\neg P(x,y), P(y,x)\}, \{P(x',f(x'))\},$$

$$\{P(f(x'),x')\},$$

$$\{P(x,x)\},$$

$$\{P(x',x')\},$$

Příklad rezolučního stromu

$$S = \{ \{ \neg P(x, y), \neg P(y, z), P(x, z) \}, \{ \neg P(x, x) \}, \{ \neg P(x, y), P(y, x) \}, \{ P(x, f(x)) \} \}$$

$$\{\neg P(x,y), \neg P(y,z), P(x,z)\} \qquad \{P(x',f(x'))\} \qquad \{\neg P(x,y), P(y,x)\} \qquad \{P(x',f(x'))\}$$

$$y/f(x'), x'/x \qquad \{\neg P(f(x),z), P(x,z)\} \qquad \qquad \{P(f(x'),x')\} \qquad \qquad x/x, y/f(x')$$

$$z/x, x'/x \qquad \{P(x,x)\} \qquad \{\neg P(x',x')\}$$