08 Relations.

08_02_Equivalence Relations

<u>Definition</u>. Suppose R is relation on a set A. R is <u>reflexive</u> if $(a, a) \in R$ for every element $a \in A$.

Example. The following relations on the set of integers are reflexive.

 $R_1 = \{(a, b): a \text{ and } b \text{ are integers, } a = b\}$ since a = a is true for any integer a.

 $R_2 = \{(a, b): a \text{ and } b \text{ are integers, } a \ge b\}$ since $a \ge a$ is true for any integer a.

 $R_3 = \{(a, b): a \text{ and } b \text{ are integers, } a = b \text{ or } a = -b\} \text{ since } a = a \text{ is true}$ for any integer a and therefore (a, a) is in R_3 .

The following relations on the set of integers are not reflexive.

 $R_4 = \{(a, b): a \text{ and } b \text{ are integers}, a < b\} \text{ since } 7 < 7 \text{ is not true}.$

 $R_5 = \{(a, b): a \text{ and } b \text{ are integers}, b = a + 3\} \text{ since } 7 = 7 + 3 \text{ is not true}.$

 $R_6 = \{(a, b): a \text{ and } b \text{ are integers}, a + b \le 17\} \text{ since } 9 + 9 \le 17 \text{ is not true.}$

<u>Definition</u>. Suppose R is relation on a set A. R is <u>symmetric</u> if $(a, b) \in R$ if and only if $(b, a) \in R$ for any elements a and b in A.

Example. Decide if the following relations are symmetric.

 $R_1 = \{(a, b): a \text{ and } b \text{ are integers, } a = b\}$ is symmetric since

- $(a, b) \in R_1$ if and only if $(b, a) \in R_1$ for any two integers a and b.
- $R_2 = \{(a, b): a \text{ and } b \text{ are integers, } a \ge b\}$ is not symmetric since $3 \ge 2$ is true, but $2 \ge 3$ is false.
- $R_3 = \{(a, b): a \text{ and } b \text{ are integers}, a = b \text{ or } a = -b\}$ is symmetric since $(a, b) \in R_3$ if and only if $(b, a) \in R_3$ for any two integers a and b.
 - [Proof] $(a, b) \in R_3$ is equivalent to $(a = b \text{ or } a = -b) \Leftrightarrow$ $(b = a \text{ or } b = -a) \Leftrightarrow (b, a) \in R_3.$
- R_4 = {(a, b): a and b are integers, a < b} is not symmetric since 5 < 7 is true, but 7 < 5 is false.
- $R_5 = \{(a, b): a \text{ and } b \text{ are integers}, b = a + 3\}$ is not symmetric since 5 = 2 + 3 is true, but 2 = 5 + 3 is false.
- $R_6 = \{(a, b): a \text{ and } b \text{ are integers, } a + b \le 17\}$ is symmetric since $(a, b) \in R_6$ if and only if $(b, a) \in R_6$ for any two integers a and b.

<u>Definition</u>. Suppose R is relation on a set A. R is <u>transitive</u> if whenever $(a, b) \in R$ and $(b, c) \in R$, we have $(a, c) \in R$ for any elements a, b, and c in A.

Example. Decide if the following relations are transitive.

- $R_1 = \{(a, b): a \text{ and } b \text{ are integers, } a = b\}$ is transitive since whenever $(a, b) \in R_1$ and $(b, c) \in R_1$, we have $(a, c) \in R_1$ for any integers a, b, and c.
- $R_2 = \{(a, b): a \text{ and } b \text{ are integers, } a \ge b\}$ is transitive since whenever $(a, b) \in R_2$ and $(b, c) \in R_2$, we have $(a, c) \in R_2$

for any integers a, b, and c.

 $R_3 = \{(a, b): a \text{ and } b \text{ are integers, } a = b \text{ or } a = -b\}$ is transitive since $(a, b) \in R_3$ and $(b, c) \in R_3$, we have $(a, c) \in R_3$ for any integers a, b, and c.

[Proof] Since $(a, b) \in R_3$, we have a = b or a = -b.

Since $(b, c) \in R_3$, we have b = c or b = -c.

Hence, we have the following four cases.

Case 1. a = b, b = c. Thus a = c.

Case 2. a = b, b = -c. Thus a = -c.

Case 1. a = -b, b = c. Thus a = -c.

Case 1. a = -b, b = -c. Thus a = c.

Therefore a = c or a = -c. So $(a, c) \in R_3$.

- $R_4 = \{(a, b): a \text{ and } b \text{ are integers, } a < b\}$ is transitive since whenever $(a, b) \in R_4$ and $(b, c) \in R_4$, we have $(a, c) \in R_4$ for any integers a, b, and c.
- $R_5 = \{(a, b): a \text{ and } b \text{ are integers}, b = a + 3\}$ is not transitive since $(2, 5) \in R_6$ and $(5, 8) \in R_5$ are true, but $(2, 8) \in R_5$ is false.
- R_6 = {(a, b): a and b are integers, a + b \leq 17} is not transitive since (10, 6) \in R_6 and (6, 9) \in R_6 are true, but (10, 9) \in R_6 is false.

<u>Definition</u>. Suppose R is relation on a set A. R is an <u>equivalent</u> relation if R is reflexive, symmetric, and transitive.

Example. Decide if the following relations are equivalent relations.

- $R_1 = \{(a, b): a \text{ and } b \text{ are integers, } a = b\}$ is an equivalent relation since it is reflexive, symmetric, and transitive.
- $R_2 = \{(a, b): a \text{ and } b \text{ are integers, } a \ge b\}$ is not an equivalent relation since it is not symmetric although it is reflexive and transitive.
- $R_3 = \{(a, b): a \text{ and } b \text{ are integers, } a = b \text{ or } a = -b\}$ is an equivalent relation since it is reflexive, symmetric, and transitive.
- R_4 = {(a, b): a and b are integers, a < b} is not an equivalent relation. Note that R_4 is not reflexive, R_4 it is not symmetric, R_4 is transitive.
- $R_5 = \{(a, b): a \text{ and } b \text{ are integers}, b = a + 3\}$ is not an equivalent relation. Note that R_5 is not reflexive, R_5 is not symmetric, R_5 is not transitive.
- R_6 = {(a, b): a and b are integers, a + b \leq 17} is not an equivalent relation. Note that R_5 is not reflexive, R_5 it is symmetric, R_5 is not transitive.