HSYLC Homework 1 Solutions

- 1) f(n) is O(g(n))
 - => exists constants c, N, such that
 - 0 \(f(n) \(\) \(c, g(n) \) for all n \(\) \(\) \(\)
 - gin) is O(h(n))
 - => exists constants cz, Nz such that
 - 0 = gln) c czhln) frall n z Nz
 - => 0 \(\cdot \cdot \cdot
 - => 0 \(\int \frac{1}{2} \left(n \) \(\int \frac{1}{2} \left
 - \Rightarrow f(n) is O(h(n))
 - random
- 2) You don't necessarily have O(1) A access to elements in a stack or queue with minimal functionality

HSYLC	Homework	2	Solutions
-------	----------	---	-----------

1) By the Master Theorem, we have the following:

a. a=3, b=2, k=2 => a < b*

=> T(n) = O(n2)

b. a=7, b=2, k=1 => a>b*

=> $7(n) = O(n^{\log_2 7})$

2) DFS: 1, 2, 4, 3, 6, 7, 5

BFS: 1, 2, 3, 4, 5, 6, 7

3) Use the shortest paths algorithm (upplication of BFS)

to find the distance from the source to all vertices, then take

the maximum over all such distances.

Is once it is a tree, there is only one path between any tuo vertices)