In [76]: # import libaries

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

In [177]: x=pd.read_csv(r"C:\Users\user\Downloads\\\Fitness.csv")

Out[177]:

	SALESMAN	JAN	FEB	MAR	APR	MAY	JUN	TOTAL SALES	Unnamed: 8	Unnamed: 9	Unname
0	ANU	70.0	80.0	75.0	60.0	72.0	55.0	412.0	NaN	NaN	N
1	BABU	30.0	48.0	35.0	45.0	25.0	37.0	220.0	NaN	NaN	Ni
2	CHANDRU	65.0	54.0	49.0	54.0	35.0	65.0	322.0	NaN	NaN	N;
3	DAVID	85.0	71.0	68.0	77.0	88.0	73.0	462.0	NaN	NaN	N:
4	EINSTEIN	55.0	25.0	45.0	50.0	53.0	30.0	258.0	NaN	NaN	N:
5	FAROOK	35.0	45.0	15.0	45.0	45.0	25.0	210.0	NaN	NaN	N:
6	GOWTHAM	75.0	66.0	59.0	65.0	56.0	30.0	351.0	NaN	NaN	N
7	HARSHITH	29.0	35.0	49.0	48.0	35.0	55.0	247.0	NaN	NaN	N
8	INIYAN	35.0	35.0	50.0	59.0	67.0	73.0	319.0	NaN	NaN	N
9	JOHN	77.0	85.0	77.0	68.0	56.0	25.0	388.0	NaN	NaN	N
10	MONTHLY SALES	556.0	544.0	522.0	571.0	532.0	468.0	NaN	3193.0	NaN	N
11	NaN	NaN	NaN	NaN	NaN	NaN	NaN	3189.0	NaN	NaN	N:

In [178]: x=x.head(10)

Out[178]:

	SALESMAN	JAN	FEB	MAR	APR	MAY	JUN	TOTAL SALES	Unnamed: 8	Unnamed: 9	Unnamed: 10	U
0	ANU	70.0	80.0	75.0	60.0	72.0	55.0	412.0	NaN	NaN	NaN	
1	BABU	30.0	48.0	35.0	45.0	25.0	37.0	220.0	NaN	NaN	NaN	
2	CHANDRU	65.0	54.0	49.0	54.0	35.0	65.0	322.0	NaN	NaN	NaN	2 tre
3	DAVID	85.0	71.0	68.0	77.0	88.0	73.0	462.0	NaN	NaN	NaN	3 u: p€
4	EINSTEIN	55.0	25.0	45.0	50.0	53.0	30.0	258.0	NaN	NaN	NaN	
5	FAROOK	35.0	45.0	15.0	45.0	45.0	25.0	210.0	NaN	NaN	NaN	5 r€
6	GOWTHAM	75.0	66.0	59.0	65.0	56.0	30.0	351.0	NaN	NaN	NaN	
7	HARSHITH	29.0	35.0	49.0	48.0	35.0	55.0	247.0	NaN	NaN	NaN	
8	INIYAN	35.0	35.0	50.0	59.0	67.0	73.0	319.0	NaN	NaN	NaN	
9	JOHN	77.0	85.0	77.0	68.0	56.0	25.0	388.0	NaN	NaN	NaN	

```
In [179]:
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 10 entries, 0 to 9
           Data columns (total 12 columns):
            #
                Column
                              Non-Null Count
                                              Dtype
            0
                SALESMAN
                              10 non-null
                                               object
            1
                                               float64
                JAN
                              10 non-null
                                               float64
            2
                FEB
                              10 non-null
            3
                MAR
                              10 non-null
                                               float64
            4
                APR
                              10 non-null
                                               float64
            5
                MAY
                                               float64
                              10 non-null
            6
                JUN
                              10 non-null
                                               float64
            7
                TOTAL SALES 10 non-null
                                               float64
            8
                Unnamed: 8
                              0 non-null
                                               float64
            9
                Unnamed: 9
                              0 non-null
                                               float64
            10
                Unnamed: 10 0 non-null
                                               float64
                Unnamed: 11 6 non-null
                                               object
           dtypes: float64(10), object(2)
           memory usage: 1.1+ KB
In [180]:
Out[180]: Index(['SALESMAN', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'TOTAL SALES',
                   'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11'],
                 dtype='object')
In [181]:
           d=x[['SALESMAN', 'JAN', 'FEB', 'MAR', 'APR', 'MAY']]
Out[181]:
              SALESMAN
                         JAN FEB MAR APR MAY
            0
                    ANU
                         70.0 80.0
                                    75.0
                                         60.0
                                              72.0
            1
                   BABU
                         30.0
                              48.0
                                    35.0
                                         45.0
                                              25.0
            2
               CHANDRU
                         65.0 54.0
                                    49.0
                                         54.0
                                              35.0
                   DAVID 85.0 71.0
            3
                                    68.0
                                         77.0
                                              88.0
            4
                EINSTEIN 55.0 25.0
                                    45.0
                                         50.0
                                              53.0
            5
                 FAROOK 35.0 45.0
                                    15.0
                                         45.0
                                              45.0
            6
               GOWTHAM 75.0 66.0
                                    59.0
                                         65.0
                                              56.0
            7
               HARSHITH 29.0
                              35.0
                                    49.0
                                         48.0
                                              35.0
            8
                  INIYAN
                         35.0 35.0
                                    50.0
                                         59.0
                                              67.0
            9
                   JOHN 77.0 85.0
                                    77.0
                                         68.0
                                              56.0
```

In [182]:

Out[182]:

	JAN	FEB	MAR	APR	MAY	JUN	SALES	Unnamed: 8
count	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	0.0
mean	55.600000	54.400000	52.200000	57.100000	53.200000	46.800000	318.900000	NaN
std	21.618922	20.408059	18.819612	10.671353	19.135772	19.577765	85.296151	NaN
min	29.000000	25.000000	15.000000	45.000000	25.000000	25.000000	210.000000	NaN
25%	35.000000	37.500000	46.000000	48.500000	37.500000	30.000000	249.750000	NaN
50%	60.000000	51.000000	49.500000	56.500000	54.500000	46.000000	320.500000	NaN
75%	73.750000	69.750000	65.750000	63.750000	64.250000	62.500000	378.750000	NaN
max	85.000000	85.000000	77.000000	77.000000	88.000000	73.000000	462.000000	NaN

In [183]:

Out[183]: <seaborn.axisgrid.PairGrid at 0x190c77b4c40>


```
In [184]:
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[184]: <AxesSubplot:xlabel='JAN', ylabel='Density'>

In [185]:

In [186]:

Out[186]: <AxesSubplot:>

In [188]: x=x1[['JAN']]

```
In [189]: # to split my dataset into traning and test date
          from sklearn.model_selection import train_test_split
In [190]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
Out[190]: LinearRegression()
In [191]:
          0.0
In [192]:
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[192]:
                Co-efficient
           JAN
                       1.0
In [193]: prediction=lr.predict(x_test)
Out[193]: <matplotlib.collections.PathCollection at 0x190c87e5bb0>
           70
           60
           50
           40
           30
                         40
                                  50
                                           60
                                                    70
In [194]: L
Out[194]: 1.0
In [195]: L
Out[195]: 1.0
In [196]:
```

```
In [197]: rr=Ridge(alpha=10)
     rr.fit(x_train,y_train)
Out[197]: 0.9999879281811936
In [198]: la=Lasso(alpha=10)
Out[198]: Lasso(alpha=10)
Out[199]: 0.9994044052629513
In [200]: from sklearn.linear_model import ElasticNet
     en=ElasticNet()
Out[200]: ElasticNet()
In [201]:
Out[201]: array([0.99759551])
In [202]:
Out[202]: array([29.06148637, 69.96290208, 74.9508796 ])
In [203]:
Out[203]: 0.13121672350762736
In [204]:
Out[204]: 0.999994058365066
In [205]:
In [206]:
     Mean Absolute Error 0.0
In [207]:
     Mean Squared Error 0.0
In [208]:
     Root Mean Squared Error 0.0
In [ ]:
```

9 of 9