计量经济学:作业二

刘泓尊 2018011446 计84

liu-hz18@mails.tsinghua.edu.cn

2020.10

1.

$$H = \sum u_i^2 = \sum (y_i - \beta x_i)^2 \tag{1}$$

令残差平方和对 β 的偏导为 0:

$$\frac{\partial H}{\partial \beta} = \sum -2(y_i - \beta x_i)(x_i) = -2\sum x_i y_i - \beta x_i^2 = 0$$

解得:

$$\beta = \frac{\sum x_i y_i}{\sum x_i^2}$$

2. 考虑一个通式:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

将 x_1 对 x_2, x_3, \cdots, x_k 和常数做回归:

$$x_{i1} = \delta_0 + \delta_1 x_{i2} + \cdots + \delta_k x_{ik} + r_{i1}$$

因为

$$\sum \hat{r_{i1}} = 0, \sum \hat{r_{i1}} x_{ik} = 0 (\forall k), \sum \hat{r_{i1}} \hat{x_{i1}} = 0, x_{i1} = x_{i1} + \hat{r}_{i1}$$

代入: $\sum x_{i1}\hat{u}_i = 0$ 得到

$$\sum x_{i1}\hat{u}_{i} = (\sum \delta_{1} + \delta_{2}x_{i2} + \dots + \delta_{k}x_{ik} + \hat{r}_{i1})\hat{u}_{i}$$

$$= \delta_{1} \sum \hat{u}_{i} + \delta_{2} \sum x_{i2}\hat{u}_{i} + \dots + \delta_{k} \sum x_{ik} + \hat{u}_{i}$$

$$= \sum \hat{r}_{i1}(y_{i} - \hat{\beta}_{0} - \beta_{1}\hat{x}_{i1} - \dots - \beta_{k}\hat{x}_{ik})$$

$$= \sum \hat{r}_{i1}y_{i} - \beta_{0} \sum \hat{r}_{i1} - \beta_{1} \sum \hat{r}_{i1}(x_{i1} + \hat{r}_{i1}) - \dots$$

$$= \sum \hat{r}_{i1}\hat{y}_{i} - \beta_{1} \sum \hat{r}_{i1}^{2} = 0$$
(2)

解得:

$$\beta_1 = \frac{\sum r_{i1} y_i}{\sum r_{i1}^2}$$

因为

$$\sum r_{i1} = 0$$

所以上式中 β_0 是否存在是没有影响的,因为无论如何这一项都为 0.

3. 因为残差平方和对 β 的偏导为 0 导出条件:

$$\frac{\partial H}{\partial \beta} = \sum -2(y_i - \beta x_i)(x_i) = 0$$

根据上式并不能确定 $\sum u_i = \sum (y_i - \beta x_i) = 0$,因为还有 x_i 的影响。实际上可以举例 $(x_1, y_1) = (1, 1), (x_2, y_2) = (2, 1.5)$ 计算得出:

$$\beta = 0.8$$

但是

$$\sum u_i = u_1 + u_2 = (1 - 0.8) + (1.5 - 1.6) = -0.1$$

所以不包含截距回归的残差平方和不为 0

4.

$$\tilde{\beta}_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum (x_i)^2 - (\sum x_i)^2}$$
$$\tilde{\beta}_0 = \bar{y} - \tilde{\beta}_1 \bar{x}$$
$$\hat{\beta}_1 = \frac{\sum x_i y_i}{\sum (x_i)^2}$$

右侧:

$$\tilde{\beta}_{1} + \tilde{\beta}_{0} \frac{\sum x_{i}}{\sum x_{i}^{2}} = \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{n \sum (x_{i})^{2} - (\sum x_{i})^{2}} (1 - \frac{(\sum x_{i})^{2}}{\sum x_{i}^{2}}) + \frac{\sum y_{i} \sum x_{i}}{n \sum x_{i}^{2}}$$

$$= \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i} + \sum x_{i} \sum y_{i}}{n \sum x_{i}^{2}}$$

$$= \frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}$$

$$= \hat{\beta}_{1}$$
(3)

原式成立。

Summary for variables: cigs by categories of: agegrp							
agegrp	mean	N					
0 1 2 3	7.674912 10.775 8.693467 2.022222	283 280 199 45					
Total	8.686493	807					

图 1:

5. (a) 年龄和抽烟数目不是线性关系,因为从图中可以看到,随着年龄上升,抽烟数目呈现先上升后下降的趋势。

	cigs ~ age, a e agesq educ r		, restaurn.	agesq:	square of	age	
Source	SS	df	MS	Numb	er of obs	=	807
				F(4,	802)	=	10.78
Model	7739.48459	4	1934.87115	Prob	> F	=	0.0000
Residual	144014.198	802	179.568826	R-sq	uared	=	0.0510
				Adj	R-squared	=	0.0463
Total	151753.683	806	188.280003	Root	MSE	=	13.4
cigs	Coef.	Std. Err.	t	P> t	[95% Cor	ıf.	Interval]
age	.822327	.1541866	5.33	0.000	.51967	7	1.124984
agesq	0095886	.0016779	-5.71	0.000	0128822	2	006295
educ	4504	.1614857	-2.79	0.005	7673845	5	1334156
restaurn	-2.746372	1.09685	-2.50	0.012	-4.899408	3	5933367
_cons	.1521404	3.503322	0.04	0.965	-6.724623	3	7.028904
<u> </u>							

图 2:

(b) 回归方程:

 $cigs = 0.1521 + 0.822age - 0.0095age^2 - 0.4504educ - 2.746restaurn$

在控制了教育水平和禁烟政策之后,平均来说年龄 42.880513 的人群吸烟最多。

(c) $H_0: \beta_1 = 0, \beta_2 = 0, \beta_3 = 0$

 $H_1: H_0$ 不正确

进行 F 检验,通过 p 值与显著性水平 α 的大小,来确定是拒绝原假设还是接受原假设。P 值越

图 3:

小,我们拒绝原假设的理由越充分。

在 %1 的显著性水平下,因为 $p=0.000<\alpha=0.01$,所以拒绝原假设。在 %5 的显著性水平下,因为 $p=0.000<\alpha=0.05$,所以拒绝原假设。

(d) $H_0: \beta_4 = 0$

 $H_1: H_0$ 不正确. 在 %1 的显著性水平下,因为 $p = 0.0125 > \alpha = 0.01$,所以接受原假设。在 %5 的显著性水平下,因为 $p = 0.0125 < \alpha = 0.05$,所以拒绝原假设。

图 4:

(e) 回归结果:

. reg cigs age agesq restaurn educ i.restaurn#c.edu									
Source		SS	df	df MS		Number of obs		=	807
Model	7	7740.79264	5 1548.15853		F(5, 801) Prob > F		=	8.61 0.0000	
Residual		144012.89	801 179.791373		R-squared Adj R-squared		=	0.0510	
Total	1	L51753.683	806	188	3.280003	Root MS		=	0.0451 13.409
cig	gs	Coef.	Std. E	rr.	t	P> t	[95%	Conf.	Interval]
ag	ge	.8225172	.15429	82	5.33	0.000	.519	6405	1.125394
ages	q	0095893	.0016	79	-5.71	0.000	012	8849	0062936
restaur	'n	-2.357973	4.683	95	-0.50	0.615	-11.5	5224	6.836294
edu	ıc	4426885	.18515	87	-2.39	0.017	806	1421	0792349
restaurn#c.edu	ıc								
1	L	0306016	.35876	93	-0.09	0.932	734	8406	.6736375
_con	ıs	.0502483	3.7034	41	0.01	0.989	-7.21	9348	7.319844

图 5:

restaurn 对 cigs 的偏效应为 $\beta_4 + \beta_5 \cdot educ = -2.3579 - 0.0306 educ$

 β_5 的含义是在其他条件不变时,禁烟政策的实施对教育水平高的人起的作用更大,也就是吸烟数量更少。