Binary Tree

1. Same Tree

Pattern: Tree Traversal (Recursion / DFS)

Problem Statement

Given the roots of two binary trees p and q, write a function to check if they are the same or not.

Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.

Sample Input & Output

```
Input: p = [1,2,3], q = [1,2,3]
Output: true
Explanation: Both trees have identical structure and node values.
```

```
Input: p = [1,2], q = [1,null,2]
Output: false
Explanation: Left child of p is 2;
q has no left child but a right child → structural mismatch.
```

```
Input: p = [], q = []
Output: true
Explanation: Both trees are empty - considered identical.
```

```
from typing import Optional
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def isSameTree(self, p: Optional[TreeNode], q: Optional[TreeNode])-> bool:
        \# STEP 1: Base cases - both nodes are None \rightarrow identical
        if not p and not q:
            return True
        # STEP 2: One is None, the other isn't → not identical
        if not p or not q:
            return False
        # STEP 3: Values differ → not identical
        if p.val != q.val:
           return False
        # STEP 4: Recursively check left and right subtrees
           - Both must be identical for whole tree to match
        return (self.isSameTree(p.left, q.left) and
                self.isSameTree(p.right, q.right))
# ------ INLINE TESTS ------
if __name__ == "__main__":
   sol = Solution()
    # Test 1: Normal case - identical trees
   p1 = TreeNode(1, TreeNode(2), TreeNode(3))
    q1 = TreeNode(1, TreeNode(2), TreeNode(3))
    assert sol.isSameTree(p1, q1) == True
```

```
# Test 2: Edge case - both empty
assert sol.isSameTree(None, None) == True

# Test 3: Tricky case - same values, different structure
p3 = TreeNode(1, TreeNode(2))
q3 = TreeNode(1, None, TreeNode(2))
assert sol.isSameTree(p3, q3) == False

print(" All tests passed!")
```

Example Walkthrough

Let's trace **Test 3**:

```
p3 = [1,2] (2 is left child), q3 = [1,null,2] (2 is right child)
```

- 1. Call isSameTree(p3, q3)
 - p3 and q3 both exist \rightarrow skip first two base cases.
 - p3.val == 1, q3.val == $1 \rightarrow \text{values match}$.
 - Now check: isSameTree(p3.left, q3.left) and isSameTree(p3.right, q3.right)
- 2. Left subtree call: isSameTree(TreeNode(2), None)
 - p = TreeNode(2), q = None
 - One is None, the other isn't \rightarrow return False
- 3. Right subtree is never evaluated due to short-circuiting (and stops at first False)
- 4. Final result: False \rightarrow correctly detects structural difference.

State snapshots:

- Initial: p=1(L:2,R:None), q=1(L:None,R:2)
- After value check: proceed to children
- Left comparison: (2 vs None) \rightarrow mismatch \rightarrow return False

Complexity Analysis

• Time Complexity: O(min(m, n))

We visit each node once until a mismatch or full traversal. In worst case (identical trees), we visit all nodes in the smaller tree.

• Space Complexity: O(min(m, n))

Due to recursion stack depth, which equals the height of the smaller tree. Worst case: skewed tree \rightarrow height number of nodes \rightarrow linear space.

2. Symmetric Tree

Pattern: Tree Traversal (Recursive Mirror Comparison)

Problem Statement

Given the **root** of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).

Sample Input & Output

```
Input: root = [1,2,2,3,4,4,3]
Output: true
Explanation: The left and right subtrees are mirror images.
```

```
Input: root = [1,2,2,null,3,null,3]
Output: false
```

Explanation: Left subtree has [2,null,3], right has [2,null,3] - but structure isn't mirrore

```
Input: root = [1]
Output: true
Explanation: Single node is trivially symmetric.
```

```
from typing import Optional
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def isSymmetric(self, root: Optional[TreeNode]) -> bool:
        # STEP 1: Handle empty tree
        # - Empty tree is symmetric by definition
        if not root:
            return True
        # STEP 2: Define helper to compare two subtrees as mirrors
        # - Recursively checks if left subtree of A mirrors right of B
        def is_mirror(left: Optional[TreeNode],
                      right: Optional[TreeNode]) -> bool:
            \# Both nodes are None \rightarrow symmetric at this branch
            if not left and not right:
                return True
            # One is None, other isn't → asymmetric
            if not left or not right:
                return False
            # Values must match AND:
                left's left mirrors right's right
                left's right mirrors right's left
            return (left.val == right.val and
                    is_mirror(left.left, right.right) and
                    is_mirror(left.right, right.left))
```

```
# STEP 3: Start mirror check on root's children
       # - Root itself is center; compare its left & right
       return is_mirror(root.left, root.right)
# ------ INLINE TESTS ------
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal symmetric tree
        1
   # / \
   # 2 2
   # / \ / \
   # 3 4 4 3
   root1 = TreeNode(1)
   root1.left = TreeNode(2)
   root1.right = TreeNode(2)
   root1.left.left = TreeNode(3)
   root1.left.right = TreeNode(4)
   root1.right.left = TreeNode(4)
   root1.right.right = TreeNode(3)
   assert sol.isSymmetric(root1) == True
   # Test 2: Edge case - single node
   root2 = TreeNode(1)
   assert sol.isSymmetric(root2) == True
   # Test 3: Tricky asymmetric tree
   # 1
   # / \
   # 2 2
      \ \
   # 3 3
   root3 = TreeNode(1)
   root3.left = TreeNode(2)
   root3.right = TreeNode(2)
   root3.left.right = TreeNode(3)
   root3.right.right = TreeNode(3)
   assert sol.isSymmetric(root3) == False
   print(" All tests passed!")
```

Example Walkthrough

We'll trace **Test 1** ([1,2,2,3,4,4,3]):

- 1. Call isSymmetric(root1)
 - root1 exists \rightarrow skip empty check.
 - Call is_mirror(root1.left, root1.right) \rightarrow is_mirror(node2a, node2b).
- 2. First is_mirror call:
 - left = node2a (val=2), right = node2b (val=2)
 - Both exist \rightarrow check 2 == 2 \rightarrow True.
 - Recurse:
 - is_mirror(node2a.left=node3, node2b.right=node3)
 - is_mirror(node2a.right=node4, node2b.left=node4)
- 3. Check left pair (node3, node3):
 - Both exist, $3 == 3 \rightarrow True$.
 - Recurse on their children \rightarrow both (None, None) \rightarrow return True.
- 4. Check right pair (node4, node4):
 - Same logic \rightarrow returns True.
- 5. Combine results: True and True and True \rightarrow True.

Final output: True.

Complexity Analysis

• Time Complexity: O(n)

We visit every node exactly once in the worst case (fully symmetric or asymmetric at leaves).

• Space Complexity: O(h)

Recursion depth equals tree height h. In worst case (skewed tree), h = n; in balanced tree, h = log n.

3. Maximum Depth of Binary Tree

Pattern: Tree Traversal (DFS / Recursion)

Problem Statement

Given the root of a binary tree, return its maximum depth.

A binary tree's **maximum depth** is the number of nodes along the longest path from the root node down to the farthest leaf node.

Sample Input & Output

```
Input: root = [3,9,20,null,null,15,7]
Output: 3
Explanation: Longest path is 3 → 20 → 15 (or 7), 3 nodes deep.

Input: root = [1,null,2]
Output: 2
Explanation: Only right child exists; depth = 2.

Input: root = []
Output: 0
Explanation: Empty tree has depth 0.
```

```
from typing import Optional
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
       self.val = val
       self.left = left
       self.right = right
class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
       # STEP 1: Base case - empty node contributes 0 depth
       # - Recursion stops here; prevents infinite calls
       if not root:
           return 0
       # STEP 2: Recursively compute depth of left & right subtrees
          - Each call explores one branch fully (DFS)
           - We trust recursion to return correct subtree depth
       left_depth = self.maxDepth(root.left)
       right_depth = self.maxDepth(root.right)
       # STEP 3: Current node adds 1 to the deeper subtree
       # - Ensures we count this node in the path
       # - Max picks the longer of the two paths
       return 1 + max(left_depth, right_depth)
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
    # Test 1: Normal case - balanced-ish tree
   # Tree: [3,9,20,null,null,15,7]
   root1 = TreeNode(3)
   root1.left = TreeNode(9)
   root1.right = TreeNode(20)
   root1.right.left = TreeNode(15)
```

```
root1.right.right = TreeNode(7)
assert sol.maxDepth(root1) == 3, "Test 1 failed"

# Test 2: Edge case - skewed tree (only right children)
# Tree: [1,null,2]
root2 = TreeNode(1)
root2.right = TreeNode(2)
assert sol.maxDepth(root2) == 2, "Test 2 failed"

# Test 3: Tricky/negative - empty tree
root3 = None
assert sol.maxDepth(root3) == 0, "Test 3 failed"

print(" All tests passed!")
```

Example Walkthrough

Let's trace Test 1: root = [3,9,20,null,null,15,7].

We call sol.maxDepth(root1) where root1.val = 3.

- 1. Call 1: maxDepth(3)
 - root exists \rightarrow skip base case.
 - Compute left_depth = maxDepth(9)
 - Compute right_depth = maxDepth(20)
 - Will return 1 + max(left, right)
- 2. Call 2: maxDepth(9) (left child of 3)
 - Node 9 exists.
 - $maxDepth(9.left) \rightarrow maxDepth(None) \rightarrow returns 0$
 - $maxDepth(9.right) \rightarrow maxDepth(None) \rightarrow returns 0$

- Returns 1 + max(0, 0) = 1
- 3. Call 3: maxDepth(20) (right child of 3)
 - Node 20 exists.
 - left_depth = maxDepth(15)
 - right_depth = maxDepth(7)
- 4. Call 4: maxDepth(15)
 - Both children are None \rightarrow returns 1
- 5. Call 5: maxDepth(7)
 - Both children are None \rightarrow returns 1
- 6. Back to Call 3: maxDepth(20)
 - left_depth = 1, right_depth = 1
 - Returns 1 + max(1,1) = 2
- 7. Back to Call 1: maxDepth(3)
 - left_depth = 1, right_depth = 2
 - Returns 1 + max(1,2) = 3

Final output: 3

Key Insight: Each node waits for its children to report their depths, then adds itself (hence +1). The recursion naturally explores all paths and picks the longest.

Complexity Analysis

• Time Complexity: O(n)

We visit every node exactly once. In the worst case (skewed tree), recursion depth is n, but total work is still proportional to number of nodes.

• Space Complexity: O(h)

Where h is the height of the tree. This is due to the recursion stack.

```
Best case (balanced): O(log n)Worst case (skewed): O(n)
```

4. Binary Tree Level Order Traversal

Pattern: BFS (Breadth-First Search) / Level-Order Traversal

Problem Statement

Given the root of a binary tree, return the level order traversal of its nodes' values. (i.e., from left to right, level by level).

Sample Input & Output

```
Input: root = [3,9,20,null,null,15,7]
Output: [[3],[9,20],[15,7]]
Explanation: Level 0: [3], Level 1: [9,20], Level 2: [15,7]

Input: root = [1]
Output: [[1]]
Explanation: Single node tree.

Input: root = []
Output: []
Explanation: Empty tree returns empty list.
```

```
from typing import List, Optional
from collections import deque
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
        # STEP 1: Initialize structures
        # - Use deque for efficient popleft (FIFO queue)
            - Result list stores levels as sublists
        if not root:
            return []
        queue = deque([root])
        result = []
        # STEP 2: Main loop / recursion
        # - Process all nodes at current level before moving deeper
           - Level size = len(queue) at start of each iteration
        while queue:
            level_size = len(queue)
            current_level = []
            # STEP 3: Update state / bookkeeping
            # - Dequeue each node in current level
            # - Append its value and enqueue children
            for _ in range(level_size):
                node = queue.popleft()
                current_level.append(node.val)
                if node.left:
                    queue.append(node.left)
                if node.right:
                    queue.append(node.right)
            result.append(current_level)
```

```
# STEP 4: Return result
         - Already handles empty tree via early return
       return result
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal case
   # Tree: [3,9,20,null,null,15,7]
   root1 = TreeNode(3)
   root1.left = TreeNode(9)
   root1.right = TreeNode(20)
   root1.right.left = TreeNode(15)
   root1.right.right = TreeNode(7)
   print(sol.levelOrder(root1)) # [[3], [9, 20], [15, 7]]
   # Test 2: Edge case - single node
   root2 = TreeNode(1)
   print(sol.levelOrder(root2)) # [[1]]
   # Test 3: Tricky/negative - empty tree
   print(sol.levelOrder(None))
```

Example Walkthrough

```
We'll trace Test 1: root = [3,9,20,null,null,15,7].

Initial state:
- queue = deque([3])
- result = []

Level 0 (root level): - level_size = 1 - Loop runs once: - Pop 3 → current_level = [3] - Add left (9) and right (20) to queue → queue = [9, 20] - Append [3] to result → result = [[3]]
```

Level 1: - level_size = 2 - First iteration: - Pop 9 \rightarrow current_level = [9] - No children \rightarrow queue becomes [20] - Second iteration: - Pop 20 \rightarrow current_level = [9, 20] - Add 15 and 7 \rightarrow queue = [15, 7] - Append [9,20] \rightarrow result = [[3], [9,20]]

Level 2: - level_size = 2 - Pop 15 \rightarrow current_level = [15]; no children - Pop 7 \rightarrow current_level = [15,7]; no children - Append \rightarrow result = [[3], [9,20], [15,7]]

Queue empty \rightarrow exit loop \rightarrow return result.

Final output: [[3], [9, 20], [15, 7]]

Key insight: BFS with level-by-level processing using queue size snapshot.

Complexity Analysis

• Time Complexity: O(n)

Each node is visited exactly once. All operations inside the loop (append, popleft) are O(1). Total = O(n).

• Space Complexity: O(n)

In worst case (complete binary tree), the queue holds up to $\sim n/2$ nodes (last level). Output list also stores n values. Thus, O(n).

5. Binary Tree Zigzag Level Order Traversal

Pattern: BFS (Level Order Traversal) + Directional Toggle

Problem Statement

Given the **root** of a binary tree, return the zigzag level order traversal of its nodes' values. (i.e., from left to right, then right to left for the next level and alternate between).

Sample Input & Output

```
Input: root = [3,9,20,null,null,15,7]
Output: [[3],[20,9],[15,7]]
Explanation: Level 0: [3] (L→R), Level 1: [9,20] reversed → [20,9], Level 2: [15,7] (L→R)

Input: root = [1]
Output: [[1]]
Explanation: Single node - only one level.

Input: root = []
Output: []
Explanation: Empty tree returns empty list.
```

```
from typing import List, Optional
from collections import deque
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def zigzagLevelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
        # STEP 1: Initialize structures
        # - Use deque for efficient BFS
            - 'result' stores final levels
        # - 'left_to_right' toggles direction per level
        if not root:
            return []
        queue = deque([root])
```

```
result = []
       left_to_right = True
       # STEP 2: Main loop / recursion
       # - Process level-by-level using queue size
           - Maintain invariant: queue holds all nodes of current level
       while queue:
           level_size = len(queue)
           level_nodes = []
           # STEP 3: Update state / bookkeeping
           # - Collect node values in order
           # - Reverse if direction is right-to-left
           for _ in range(level_size):
               node = queue.popleft()
               level_nodes.append(node.val)
               if node.left:
                   queue.append(node.left)
               if node.right:
                   queue.append(node.right)
           # Reverse level if needed before appending
           if not left_to_right:
               level_nodes.reverse()
           result.append(level_nodes)
           # Toggle direction for next level
           left_to_right = not left_to_right
       # STEP 4: Return result
       # - Handles all cases including empty root
       return result
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal case
   # Tree: [3,9,20,null,null,15,7]
   root1 = TreeNode(3)
   root1.left = TreeNode(9)
```

```
root1.right = TreeNode(20)
root1.right.left = TreeNode(15)
root1.right.right = TreeNode(7)
assert sol.zigzagLevelOrder(root1) == [[3],[20,9],[15,7]]

# Test 2: Edge case - single node
root2 = TreeNode(1)
assert sol.zigzagLevelOrder(root2) == [[1]]

# Test 3: Tricky/negative - empty tree
assert sol.zigzagLevelOrder(None) == []

print(" All tests passed!")
```

Example Walkthrough

```
We'll trace Test 1: root = [3,9,20,null,null,15,7]
Initial State:
- queue = [3]
- result = []
- left_to_right = True
```

```
Level 0 (left_to_right = True):
```

- -level_size = 1
- Process node 3:
- Append 3 to level_nodes → [3]
- Enqueue children: 9, 20 \rightarrow queue = [9, 20]
- Since direction is $L\rightarrow R$, don't reverse \rightarrow append [3] to result
- Toggle direction → left_to_right = False
- State: result = [[3]], queue = [9, 20]

```
Level 1 (left\_to\_right = False):
-level_size = 2
- Process node 9:
-level_nodes = [9]
- No children \rightarrow queue becomes [20]
- Process node 20:
-level nodes = [9, 20]
- Enqueue 15, 7 \rightarrow queue = [15, 7]
- Direction is R \rightarrow L \rightarrow reverse \rightarrow [20, 9]
- Append to result \rightarrow [[3], [20,9]]
- Toggle direction → left_to_right = True
Level 2 (left to right = True):
-level_size = 2
- Process 15: level nodes = [15], no children
- Process 7: level_nodes = [15, 7], no children
- Direction L\rightarrowR \rightarrow no reverse \rightarrow append [15,7]
- Queue empty \rightarrow loop ends
- Final result: [[3], [20,9], [15,7]]
  Matches expected output!
```

Complexity Analysis

• Time Complexity: O(N)

We visit each node exactly once. Reversing a level takes O(k) for k nodes in that level, and sum of all k is N. So total is still linear.

• Space Complexity: O(N)

The queue holds at most the width of the tree (N/2 nodes in worst case, e.g., complete binary tree). The output list also stores N values. Thus, O(N).

6. Binary Tree Right Side View

Pattern: Tree BFS (Level-order Traversal)

Problem Statement

Given the root of a binary tree, imagine yourself standing on the right side of it. Return the values of the nodes you can see ordered from top to bottom.

Sample Input & Output

```
Input: root = [1,2,3,null,5,null,4]
Output: [1,3,4]
Explanation: From the right, you see node 1 (level 0), node 3 (level 1), and node 4 (level 2

Input: root = [1,null,3]
Output: [1,3]
Explanation: Only right children exist beyond root.

Input: root = []
Output: []
Explanation: Empty tree → nothing to see.
```

```
from typing import List, Optional
from collections import deque

# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right

class Solution:
    def rightSideView(self, root: Optional[TreeNode]) -> List[int]:
```

```
# STEP 1: Initialize structures
       # - Use a queue for BFS (level-order traversal)
       # - Result list stores rightmost node per level
       if not root:
           return []
       queue = deque([root])
       right_view = []
       # STEP 2: Main loop / recursion
       # - Process level by level using queue size
       # - The last node in each level is the rightmost
       while queue:
           level_size = len(queue)
           for i in range(level_size):
               node = queue.popleft()
               # STEP 3: Update state / bookkeeping
               # - Only record the last node in the level
               if i == level_size - 1:
                   right_view.append(node.val)
               # Add children for next level
               if node.left:
                   queue.append(node.left)
               if node.right:
                   queue.append(node.right)
       # STEP 4: Return result
       # - Already built during traversal
       return right_view
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal case
   # Tree: [1,2,3,null,5,null,4]
   root1 = TreeNode(1)
   root1.left = TreeNode(2)
   root1.right = TreeNode(3)
```

```
root1.left.right = TreeNode(5)
root1.right.right = TreeNode(4)
assert sol.rightSideView(root1) == [1, 3, 4], "Test 1 Failed"

# Test 2: Edge case - only right children
root2 = TreeNode(1)
root2.right = TreeNode(3)
assert sol.rightSideView(root2) == [1, 3], "Test 2 Failed"

# Test 3: Tricky/negative - empty tree
assert sol.rightSideView(None) == [], "Test 3 Failed"

print(" All tests passed!")
```

Example Walkthrough

```
We'll trace Test 1: root = [1,2,3,null,5,null,4]
Initial state:
- queue = [1]
- right_view = []
Level 0 (root level):
-level_size = 1
- Loop i = 0 (only node):
- node = 1
- Since i == 0 == level_size - 1, append 1 \rightarrow right_view = [1]
- Enqueue left (2) and right (3) \rightarrow queue = [2, 3]
Level 1:
-level_size = 2
-i = 0: node = 2
- Not last \rightarrow skip adding to result
- Enqueue its right child 5 \rightarrow queue = [3, 5]
-i = 1: node = 3
- Last in level \rightarrow append 3 \rightarrow right_view = [1, 3]
- Enqueue its right child 4 \rightarrow queue = [5, 4]
```

Level 2:

- -level_size = 2
- -i = 0: node = 5
- Not last \rightarrow skip
- No children \rightarrow queue becomes [4]
- -i = 1: node = 4
- Last \rightarrow append 4 \rightarrow right_view = [1, 3, 4]
- No children \rightarrow queue empty

Loop ends \rightarrow return [1, 3, 4]

Final output matches expected.

Complexity Analysis

• Time Complexity: O(n)

We visit every node exactly once in BFS. n = number of nodes.

• Space Complexity: O(w)

w = maximum width of the tree (stored in queue at one level). In worst case (complete tree), $w = n/2 \rightarrow \text{still } O(n)$, but typically much less.