EECE 5639 Computer Vision I

Lecture 5
Filtering
Next Class
Edges, Corners

Image processing: Filtering

Digital Images

are 2D arrays (matrices) of numbers:

Digital Images

Array of numbers (pixels)

Typically integers 0-255 (unsigned byte)

Pixels have neighbors

4-neighbors

8-neighbors

Image Paths

A path is a sequence of pixel indices $(i_0,j_0)(i_1,j_1)...(i_n,j_n)$ such that $(i_{k,jk})$ is a neighbor of (i_{k+1},j_{k+1})

Levels of Computation

Point level

Output based only on a single point

Ex.: thresholding

Local level

Output based on a neighborhood

Ex.: smoothing and edge detection

Global level

Output based on the whole image

Ex.: Fourier transform and histogram

Object level

Output based on pixels that belong to an object

Spatial Filtering

Spatial Filtering

- Use of spatial masks (kernels, filters, templates, windows) for image processing (spatial filters)
- Linear and nonlinear filters
- Spatial Filters include:
 - Sharpening
 - Smoothing
 - Edge detection
 - Noise removal
 - etc

Linear Filters

- General process:
 - Form new image whose pixels are a weighted sum of original pixel values, using the same set of weights at each point.
- Properties
 - Output is a linear function of the input
 - Output is a shift-invariant function of the input (i.e. shift the input image two pixels to the left, the output is shifted two pixels to the left)

- Example: smoothing by averaging
 - form the average of pixels in a neighborhood
- Example: smoothing with a Gaussian
 - form a weighted average of pixels in a neighborhood
- Example: finding a derivative
 - form a weighted average of pixels in a neighborhood

Note: The "Linear" in "Linear Filters" means linear combination of neighboring pixel values.

Image Filtering

Low-pass filters eliminate or attenuate high frequency components in the frequency domain (sharp image details), and result in image blurring.

<u>High-pass</u> filters attenuate or eliminate low-frequency components (resulting in sharpening edges and other sharp details).

<u>Band-pass</u> filters remove selected frequency regions between low and high frequencies (for image restoration, not enhancement).

Spatial Filtering

Operations are performed directly on the pixels in the spatial domain.

The process involves sweeping a mask on the image and performing at each point a set of predefined operations on the pixels overlapped by the mask.

Basics of Spatial Filtering

FIGURE 3.32 The mechanics of spatial filtering. The magnified drawing shows a 3×3 mask and the image section directly under it; the image section is shown displaced out from under the mask for ease of readability.

Ex of a 3x3 mask

Linear Spatial Filtering: CORRELATION

Linear filtering of an MxN image f(x,y) with a filter w(s,t) of size mxn is given by:

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$
$$a = (m-1)/2; \quad b = (n-1)/2$$

Where m and n are odd numbers

This is similar to convolution ... and it is often referred as "convolving with a mask"

Linear Spatial Filtering: CORRELATION

Alternative notation:

FIGURE 3.33

Another representation of a general 3×3 spatial filter mask.

$$R = \sum_{i=1}^{m \times n} w_i z_i$$

Where z_i are the values of the input image under the mask

Correlation Example

1	1	1			
-1	2	1			
-1	-1	1			
h					

2	2	2	3			
2	1	3	3			
2	2	1	2			
1	3	2	2			
f						

Correlation Example

									•			
					1	1	1		2	2	2	3
	Ste	p 2			-1	2	1		2	1	3	3
					-1	-1	1		2	2	1	2
h				ı					1	3	2	2
	0	0	0		1						_	
	-2	4	2	3			5	4				
	-2	-1	3	3								
	2	2	1	2		→						
	1	3	2	2								
	f			•			f'	*h		_		

Step 3

h

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

					1	1	1		2	2	2	3	
	Ste	p 4			-1	2	1		2	1	3	3	
					-1	-1	1		2	2	1	2	
h									1	3	2	2	
			0	0	0						_		
	2	2	-2	6	0		5	4	4	-2			
	2	1	-3	-3	0								
	2	2	1	2									
	1	3	2	2									
	f				ı			f	*h		•		

Step 5

h

 1
 1

 -1
 2

 -1
 -1

 1
 1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

0	2	2	2	3		
0	4	1	3	3		
0	-2	2	1	2		
	1	3	2	2		
'	f					

Step 6

h

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

And so on ...

Practical Issue: Border Handling

- Border issues:
 - When applying convolution with a
 KxK kernel, the result is undefined
 for pixels closer than K pixels from
 the border of the image
- K

• Options: Expand/Pad

Warp around

O O O O

Nost commonly used

Reflection at border also a useful option!

Correlation vs Convolution

$$\int_{0}^{a} g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

$$a = (m-1)/2; b = (n-1)/2$$

Convolution:

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

$$a = (m-1)/2; b = (n-1)/2$$

Correlation vs Convolution

If the mask is symmetric, then there is no difference.

Correlation and Convolution in MATLAB

Could use conv and conv2, but newer versions use:

Imfilter(image,template{,option1,option2,...})

Boundary options: constant, symmetric, replicate, circular

Output size options: same as image, or full size (includes partial values computed when mask is off the image).

Corr or conv option: convolution rotates the template (as we have discussed, correlation does not).

Type "help imfilter" on command line for more details

Smoothing Filters

Image Noise

Images are noisy

Noise is anything in the image that we are not interested in Examples:

Fluctuations of pixel values

Numerical errors

Clutter

Images as Surfaces

Examples

Mean = 164 Std = 1.8

Where does noise come from?

Light fluctuations
Sensor noise
Quantization effects
Finite precision

Modeling Noise

We are interested in RANDOM noise.

Deterministic noise (ex: hardware defects) can be corrected.

Dealing with Noise

Probability Review

Intuitive Development

Intuitively, the probability of an event **a** could be defined as:

$$P(a) = \lim_{n \to \infty} \frac{N(a)}{n}$$

Where N(a) is the number that event a happens in n trials

More Formal:

Ω is the Sample Space:

Contains all possible outcomes of an experiment ω in Ω is a single outcome

A in Ω is a set of outcomes of interest

1.
$$P(A) \geq 0 \forall A \in \Omega$$

2.
$$P(\Omega) = 1$$

3.
$$A_i \cap A_j = \emptyset \forall i, j \Rightarrow P(\cup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$$

4.
$$P(\emptyset) = 0$$

Independence

The probability of independent events A, B and C is given by:

$$P(ABC) = P(A)P(B)P(C)$$

A and B are **independent**, if knowing that A has happened does not say anything about B happening

Conditional Probability

One of the most useful concepts!

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Bayes Theorem

Provides a way to convert a-priori probabilities to a-posteriori probabilities:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

$$P(A|B)P(B) = P(B|A)P(A)$$

Using Partitions:

If events A_i are mutually exclusive and partition Ω

$$A_i \cap A_j = \emptyset \forall i, j$$

$$\cup_{i=1,n} A_i = \Omega$$

$$P(B) = \sum_{i=1}^{n} P(A_i \cap B)$$

Random Variables

A (scalar) random variable X is a function that maps the outcome of a random event into real scalar values

Random Variables Distributions

Cumulative Probability Distribution (CDF):

$$F_X(x) = P(X \le x)$$
Random Variable value

Probability Density Function (PDF):

$$p_X(x) = \frac{dF_X(x)}{dx}$$

Random Distributions:

From the two previous equations:

$$\int_{-\infty}^{\infty} p_X(x) dx = 1.0$$

"The area under the curve is equal to 1.0."

Statistical Characterizations

Expectation (Mean Value, First Moment):

$$E(X) = \int_{-\infty}^{\infty} x p_X(x) dx$$

"weighted average"

•Second Moment:

$$E(X^2) = \int_{-\infty}^{\infty} x^2 p_X(x) dx$$

Statistical Characterizations

Variance of X:

"how far is x from the mean"

$$Var(X) = E\{[X - E(X)]^{2}\}$$

$$= \int_{-\infty}^{\infty} (x - E[X])^{2} p_{X}(x) dx$$

$$= E[X^{2}] - (E[X])^{2}$$
Second Moment (First Moment)²

• Standard Deviation of X:
$$\sigma_X = \sqrt{Var(X)}$$

Mean Estimation from Samples

Given a set of N samples from a distribution, we can estimate the mean of the distribution by:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Variance Estimation from Samples

Given a set of N samples from a distribution, we can estimate the variance of the distribution by:

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2$$

Uniform Distribution

A R.V. X that is uniformly distributed between x_1 and x_2 has density function:

$$p_X(x) = \begin{cases} \frac{1}{x_2 - x_1} & x_1 \le x \le x_2 \\ 0 & otherwise \end{cases}$$

Gaussian (Normal) Distribution

A R.V. X that is normally distributed has density function:

$$p_X(x) = \frac{1}{2\pi\sigma} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$

... back to images

Dealing with Noise

Image Noise Models

Additive noise:

Most commonly used

$$I(i,j) = \hat{I}(i,j) + N(i,j)$$

Multiplicative noise:

$$I(i,j) = \hat{I}(i,j) * N(i,j)$$

Impulsive noise (salt and pepper):

$$I(i,j) = \begin{cases} \hat{I}(i,j) & \text{if } x < l \\ i_{\min} + y(i_{\max} - i_{\min}) & x \ge l \end{cases}$$

Additive Noise Models

Gaussian
Usually, zero-mean, uncorrelated

Uniform

Measuring Noise

Noise Amount: SNR = σ_s/σ_n

Noise Estimation:

Given a sequence of images $I_0, I_1, \dots I_{N-1}$

$$\bar{I}(i,j) = \frac{1}{N} \sum_{k=0}^{N-1} I_k(i,j)$$

$$\sigma(i,j) = \sqrt{\frac{1}{N-1} \sum_{k=0}^{N-1} (\bar{I}(i,j) - I_k(i,j))^2}$$

$$\sigma_{n=1} \frac{1}{RC} \sum_{i=0}^{R-1} \sum_{j=0}^{C-1} \sigma(i,j)$$

How can we reduce noise?

Image acquisition noise due to light fluctuations and sensor noise can be reduced by acquiring a sequence of images and averaging them.

WHY?

Smoothing Filters

Smoothing Spatial Filters

They are used for blurring and noise reduction.

Blurring is performed as pre-processing to remove small detail or bridge curve gaps

Noise reduction can be done by linear or nonlinear filtering

Linear Smoothing Filters

They are simply averaging filters: they compute the average of the filters under the mask.

They reduce sharp transitions.

They are low pass filters.

Average Filter

Mask with positive entries, that sum 1.

Replaces each pixel with an average of its neighborhood. If all weights are equal, it is called a BOX filter.

$$1/9.(10x1 + 9x1 + 11x1 + 9x1 + 99x1 + 11x1 + 11x1 + 10x1 + 10x1) = 1/9.(180) = 20$$

1/9.(159) = 17.6667

Intuitively, takes out small variations.

Consider the Image pixel values under the mask and the corresponding output at the center:

$$I_i = \hat{I}_i + N_i \quad i = 1, \dots, mn$$

$$O = \frac{1}{mn} \sum_{i=1}^{mn} (\hat{I}_i + N_i)$$

Is the output better? How?

Assume that the noise in the image is uncorrelated, zero mean, with stdev sigma.

The expected value of a pixel **before** filtering is:

$$E[I_i] = E[\hat{I}_i + N_i] = E[\hat{I}_i] + E[N_i] = \hat{I}_i + 0 = \hat{I}_i$$

 $i = 1, \dots, mn$

Assume that the noise in the image is uncorrelated, zero mean, with stdev sigma.

The expected value of a pixel after filtering is:

$$E[O] = E\left[\frac{1}{mn}\sum_{i}^{mn}(\hat{I}_{i}+N_{i})\right]$$

$$= \frac{1}{mn}\sum_{i}^{mn}E[\hat{I}_{i}] + \frac{1}{mn}\sum_{i}^{mn}E[N_{i}]$$

$$= \frac{1}{mn}\sum_{i}^{mn}\hat{I}_{i} + 0$$

$$= \frac{1}{mn}\sum_{i}^{mn}\hat{I}_{i}$$

Assume that the noise in the image is uncorrelated, zero mean, with stdev sigma.

The variance of a pixel **before** filtering is:

$$E[(I_i - E[I_i])^2] = E[(\hat{I}_i + N_i - \hat{I}_i)^2] = E[N_i^2] = \sigma^2$$

$$i = 1, \dots, mn$$

Assume that the noise in the image is uncorrelated, zero mean, with stdev sigma.

The variance of the pixel after filtering is:

$$E[(O - E[O])^{2}] = E[(\frac{1}{mn} \sum_{i=1}^{mn} (\hat{I}_{i} + N_{i}) - \frac{1}{mn} \sum_{i=1}^{mn} (\hat{I}_{i}))^{2}]$$

$$= \frac{1}{(mn)^{2}} E[(\sum_{i=1}^{mn} N_{i})^{2}]$$

$$= \frac{1}{(mn)^{2}} mn\sigma^{2} = \frac{\sigma^{2}}{mn}$$

How big should the mask be?

```
The bigger the mask,
more neighbors contribute.
smaller noise variance of the output.
bigger noise spread.
more blurring.
more expensive to compute.
```

Weighted Average Filter

Gives more weight at the central pixel and less weights to the neighbors.

The farther away the neighbors, the smaller the weight. Less blurring of edges

$$g(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)}$$

Gaussian Filter

A particular case of weighted averaging: The coefficients are a 2D Gaussian.

$$w(s,t) = Ke^{\frac{s^2 + t^2}{2\sigma^2}}$$

(0,0) is the center of the mask

 σ determines how fast the weights decay

K is s.t. the sum of the coefficients is 1

How big should the mask be?

The std. dev of the Gaussian σ determines the amount of smoothing.

The samples should adequately represent a Gaussian For a 98.76% of the area, we need

$$m = 5\sigma$$

$$5.(1/\sigma) \le 2\pi \Rightarrow \sigma \ge 0.796$$
, m ≥ 5

Efficient Implementation

Both, the BOX filter and the Gaussian filter are separable:

First convolve each row with a 1D filter.
Then convolve each column with a 1D filter.

Separable Filters

$\frac{1}{K^2}$	1	1	:	1
	1	1		1
	:		1	::
	1	1		1

1 16	1	2	1
	2	4	2
	1	2	1

	1	4	6	4	1
	4	16	24	16	4
1 56	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

$$\frac{1}{K}$$
 1 1 \cdots 1

$$\frac{1}{4}$$
 1 2 1

$$\frac{1}{16}$$
 1 4 6 4 1

(a) box,
$$K = 5$$

(b) bilinear

(c) "Gaussian"

Effects of increasing mask size

a b c

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15×15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

Efficient Implementation: Integral Image

If an image is going to be repeatedly convolved with different box filters a pre-computed summed area table can save computations for future use.

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

Efficient Implementation: Integral Image

If an image is going to be repeatedly convolved with different box filters a pre-computed summed area table can save computations for future use.

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

3	5	12	14	17
4	11	19	24	31
9	17	28	38	46
13	24	37	48	62
15	30	44	59	81

$$s(i,j) = s(i-1,j) + s(i,j-1) - s(i-1,j-1) + f(k,l)$$

Efficient Implementation: Integral Image

If an image is going to be repeatedly convolved with different box filters a pre-computed summed area table can save computations for future use.

Limitations of averaging

Signal frequencies shared with noise are lost, resulting in blurring.

Impulsive noise is diffused but not removed.

It spreads pixel values, resulting in blurring.

Non-linear Filtering

Replace each pixel with the MEDIAN value of all the pixels in the neighborhood.

Example:

Example:

Example:

10

9,9,10,10,10,11,11,11,99

Median Filter Properties

Non-linear
Does not spread the noise
Can remove spike noise
Expensive to run

Median Filter

a b c

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)