QUANTUM ALGORITHMS 1: CIRCUITS, QFT AND GROVER

$$|0^n\rangle - H_N - G - G$$

Simon Apers

(CNRS & IRIF, Paris)

McKinsey, Paris, April '23

tutorial = overview (2h) + exercises (2h)

TUTORIAL 1: BASICS (21/4)

quantum circuits
quantum Fourier transform
Grover search

TUTORIAL 2: CHEMISTRY (28/4)

Hamiltonian simulation energy estimation variational quantum algorithms

TUTORIAL 3: OPTIMIZATION (26/5)

adiabatic algorithm

HHL

quantum walks

ı

CIRCUITS

QFT

GROVER

quantum state on 1 qubit

$$|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}$$
 ————

quantum state on n qubits ($N = 2^n$)

unitary dynamics

measurement

$$|\psi\rangle=\sum_{z\in\{0,1\}^n}\alpha_z\,|z\rangle$$
 — $|z\rangle$ with probability $|\alpha_z|^2$

Hadamard gate

$$- H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

such that

$$|0\rangle$$
 H $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

$$|1\rangle$$
 \overline{H} $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

phase or T

$$- T - \equiv \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$

CNOT

$$\equiv \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

CCNOT or Toffoli

EX: write down matrix for CNOT and Toffoli?

universality:

any unitary operation can be approximated with

 $\{H, CCNOT\}$

quantum oracle/RAM query (for function f)

$$|z\rangle \qquad O \qquad |z\rangle \\ |w\rangle \qquad O \qquad |w \oplus f(z)\rangle$$

such that

$$O|z\rangle|0\rangle = |z\rangle|f(z)\rangle$$

and

$$O\left(\sum_{z} \alpha_{z} |z\rangle |0\rangle\right) = \sum_{z} \alpha_{z} |z\rangle |f(z)\rangle$$

Q: which function does CNOT evaluate? (f(z) = z)

CIRCUITS

QFT

GROVER

discrete Fourier transform $F_N: \mathbb{C}^N \to \mathbb{C}^N$

$$F_{N} = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & \omega_{N} & \dots & \omega_{N}^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_{N}^{N-1} & \dots & \omega_{N}^{(N-1)(N-1)} \end{bmatrix}, \quad \omega_{N} = e^{i2\pi/N}$$

Fourier modes

$$F_N |k\rangle = |\tilde{k}\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \omega_N^{jk} |j\rangle$$

! F_N unitary matrix on $n = \log(N)$ qubits

lemma:

can implement F_N using $O(n^2)$ 2-qubit gates

application 1: quantum phase estimation (Kitaev '95)

promise: $|\phi\rangle$ U $e^{i2\pi\theta}$ $|\phi\rangle$

goal: find θ

$\hbox{Kitaev '95:} \\ \varepsilon\hbox{-approximation of θ with $O(1/\varepsilon)$ calls to U and 1 copy of $|\phi\rangle$}$

controlled unitary

quantum phase estimation

(details in exercises)

application 2: quantum period finding

given: oracle
$$\begin{vmatrix} |z\rangle & & & |z\rangle \\ |w\rangle & & & |w\oplus f(z)\rangle \end{vmatrix}$$
 with $f:\mathbb{N}\to [N]$

promise: period r s.t. f(a) = f(b) iff $a = b \pmod{r}$

goal: find r

Shor '94:

- 1. factoring and discrete log reduce to period finding
 - 2. quantum algorithm with polylog(N) calls to O

CIRCUITS

QFT

GROVER

problem: unstructured search

given: oracle access to $f:[N] \rightarrow \{0,1\}$

promise: unique x s.t. f(x) = 1

goal: find x

Grover '96:

 $O(\sqrt{N})$ quantum queries vs O(N) classical queries

reflection 1: phase oracle

$$|x\rangle$$
 O $(-1)^{f(x)}|x\rangle$

reflection 2: around $|\pi\rangle \coloneqq \frac{1}{\sqrt{N}} \sum_{y \in [N]} |y\rangle$

$$|\pi\rangle - R_{\pi} - |\pi\rangle$$

$$|\pi\rangle \perp |\phi\rangle - R_{\pi} - |\phi\rangle$$

s.t.

$$-R_{\pi} = 2 |\pi\rangle \langle \pi| - I$$

Grover operator

$$-G - \equiv -R_{\pi} - O -$$

rewriting $|\pi\rangle = \sin\theta |x\rangle + \cos\theta |\pi'\rangle$ we get

Grover's algorithm

$$|0^n\rangle$$
 $-H_N$ G G

$$G^{k}|\pi\rangle = \sin((1+2k)\theta)|x\rangle + \cos((1+2k)\theta)|\pi'\rangle$$

finds x with constant probability after $k \in O(\sqrt{N})$ iterations

matching $\Omega(\sqrt{N})$ lower bound for ℓ marked elements: complexity $\Theta(\sqrt{N/\ell})$ generalizations:

- amplitude amplification
- quantum mean estimation