2 EXERCICES D'ENTRAÎNEMENT

Exercice 15. Étudier le sens de variation des suites de terme général :

(i)
$$u_n = \sqrt{n^2 + 1} - n$$

$$(ii) u_n = 2^n \left(1 - \frac{1}{n}\right)$$

(iii)
$$u_n = 2^n + 2^{\frac{1}{n}}$$

(iv)
$$u_n = \sqrt{(n-3)^2 + 1}$$

(v)
$$u_n = (n+1)^{10} + (n-1)^{10} - 2n^{10}$$

$$(vi)$$
 $u_n = \frac{n^n}{n!}$

Exercice 16. Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite réelle croissante. Pour tout $n\in\mathbb{N}^*$, on pose

$$v_n := \frac{u_1 + \ldots + u_n}{n}.$$

Montrer que la suite $(v_n)_{n\in\mathbb{N}^*}$ est croissante.

Exercice 17. Soit $n \in \mathbb{N}^*$. Déterminer le coefficient binomial maximal $\max_{k \in [\![0,n]\!]} \binom{n}{k}$.

Exercice 18. La masse capillaire d'un professeur de mathématiques peut être modélisée de la façon suivante : chaque année entre septembre et juin, elle diminue de 20%, puis elle augmente de 10 grammes pendant les vacances scolaires. Pour tout $n \in \mathbb{N}$, on note u_n la masse capillaire du professeur (en grammes) le jour de la rentrée scolaire n années après sa prise de poste. On suppose que $u_0 = 100$.

- 1. Pour tout $n \in \mathbb{N}$, donner une relation liant u_{n+1} et u_n .
- 2. Donner l'expression explicite de u_n pour tout $n \in \mathbb{N}$.
- 3. Quel est la masse totale de cheveux perdue par le professeur au cours de ses 20 premières années d'enseignement?

♠ ■ Exercice 19. Donner la valeur explicite du terme général des suites récurrentes doubles définies par :

(i)
$$u_0 = 1$$
, $u_1 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+2} = \frac{3u_{n+1} + u_n}{4}$.

(ii)
$$u_0 = 1$$
, $u_1 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = \frac{3u_{n+1} + u_n}{4}$.

(iii)
$$u_0 = 0, u_2 = 1 \text{ et } \forall n \in \mathbb{N}, u_{n+2} = \frac{3u_{n+1} + u_n}{4}.$$

(iv)
$$u_0 = 1$$
, $u_1 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} - \frac{2}{9}u_n$.

(v)
$$u_0 = 1$$
, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 2u_n$.

(vi)
$$u_0 = -3$$
, $u_1 = 6$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 6u_{n+1} - 9u_n$.

(vii)
$$u_0 = -1$$
, $u_1 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 2u_{n+1} - 4u_n$.

♠ ■ Exercice 20. Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = 1, u_1 = 4$ et la relation de récurrence suivante :

$$\forall n \in \mathbb{N}, \ u_{n+2} = \left(\frac{u_{n+1}}{u_n}\right)^4.$$

- 1. Montrer par récurrence double qu'il existe une suite $(a_n)_{n\in\mathbb{N}}$ vérifiant une relation de récurrence linéaire double que l'on précisera telle que l'on ait $u_n=2^{a_n}$ pour tout $n\in\mathbb{N}$.
- 2. En déduire la valeur explicite de u_n pour tout $n \in \mathbb{N}$.

Exercice 21. Donner le sens de variation de la suite définie par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = |u_n \cos(u_n)|.$

Exercice 22. Soit $(u_n)_{n\in\mathbb{N}}$ et soit $\ell\in\mathbb{R}$. On rappelle que l'on dit que $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ si et seulement si on a :

(i)
$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geqslant N, |u_n - \ell| \leqslant \varepsilon.$$

Montrer que cette définition est équivalente aux trois conditions suivantes :

- (ii) $\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geqslant N, |u_n \ell| < \varepsilon.$
- (iii) $\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n > N, |u_n \ell| \leqslant \varepsilon.$
- (iv) $\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n > N, |u_n \ell| < \varepsilon.$

Exercice 23. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et soit $\ell\in\mathbb{R}$. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ si et seulement si les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers ℓ .

Exercice 24. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle positive convergeant vers une limite $\ell\geqslant 0$. L'objet de cet exercice est de montrer que $\sqrt{u_n} \xrightarrow[n \to +\infty]{} \sqrt{\ell}$.

- 1. On considère tout d'abord le cas où $\ell > 0$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, on a $|\sqrt{u_n} \sqrt{\ell}| \leq \frac{1}{\sqrt{\ell_0}} |u_n \ell|$.
 - (b) Conclure.

2. On considère à présent le cas où $\ell=0$. En utilisant la définition de la limite, montrer que $\sqrt{u_n} \xrightarrow[n \to +\infty]{} 0 = \sqrt{\ell}.$

Exercice 25. Soit x > 0. On veut montrer que $\frac{n!}{x^n} \xrightarrow[n \to +\infty]{} +\infty$.

- 1. En écrivant n! comme un produit, montrer que si $n \ge \lfloor x \rfloor + 1$, alors $n! \ge (\lfloor x \rfloor + 1)^{n-\lfloor x \rfloor} \lfloor x \rfloor!$.
- 2. Justifier que $\left(\frac{\lfloor x \rfloor + 1}{x}\right)^n \xrightarrow[n \to +\infty]{} +\infty$, puis conclure.

Exercice 26. Étudier la convergence ou la divergence de la suite de terme général :

$$(i) \ u_n = \left(1 + \frac{2}{n}\right) \left(1 + \frac{n}{2}\right) \qquad (iii) \ u_n = \sqrt{n+1} - \sqrt{n} \qquad \qquad (v) \ u_n = \sum_{k=0}^n \frac{k^3}{n^4}$$

$$(ii) \ u_n = \frac{(-1)^n}{3+n} \qquad \qquad (iv) \ u_n = \sum_{k=0}^n q^k, \ \text{où } q \in \mathbb{R}.$$

$$(vi) \ u_n = \frac{\lfloor xn \rfloor}{n}, \ \text{où } x \in \mathbb{R}.$$

(v)
$$u_n = \sum_{k=0}^n \frac{k^3}{n^4}$$

$$(ii) \ u_n = \frac{(-1)^n}{3+n}$$

$$(iv)$$
 $u_n = \sum_{k=0}^n q^k$, où $q \in \mathbb{R}$

$$(vi)$$
 $u_n = \frac{\lfloor xn \rfloor}{n}$, où $x \in \mathbb{R}$.

Exercice 27. Étudier la convergence ou la divergence de la suite de terme général :

(i)
$$u_n = \frac{3n^3 - 2n + 1}{2n^5 + 2n}$$

(iii)
$$u_n = \frac{7n^4 - 2n^3 - n + 1}{-2n^4 + 7n^3 + 1}$$
 (v) $u_n = \frac{n + \sqrt{n^3}}{n - \sqrt{n^5}}$

$$(v) u_n = \frac{n + \sqrt{n^3}}{n - \sqrt{n^5}}$$

(ii)
$$u_n = \frac{-n^6 + 2}{n^5 - 19n}$$

$$(iv) u_n = \frac{n + \sqrt{n}}{n - \sqrt{n}}$$

(vi)
$$u_n = \frac{5^n + 3^n}{3^n - 2^n}$$

Les exercices 28 à 33 ci-après pourraient être traités à l'aide des résultats théoriques de la section 3. On détaille néanmoins les énoncés de façon à éviter l'utilisation de ces résultats, grâce à des jalons similaires à ceux qui structurent les sujets de concours.

Exercice 28. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 \in \mathbb{R}_+$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = u_n^3 + 1.$

- 1. Montrer que $u_n \ge 0$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que pour tout $x \ge 0$ on a $x^3 + 1 > x$.
- 3. En déduire le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}.$
- 4. Montrer que $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Exercice 29. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 = \frac{\pi}{2}$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n).$

1. Montrer par récurrence que :

$$\forall n \in \mathbb{N}, \quad 0 \leqslant u_{n+1} \leqslant u_n \leqslant \frac{\pi}{2}.$$

2. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell \in [0,1]$.

Exercice 30. Soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie par

$$u_0 = \frac{2}{3}$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = 2u_n^2 - 2u_n + 1.$

- 1. Montrer que $(u_n)_{n\in\mathbb{N}}$ est bien définie et à valeurs dans $\left[\frac{1}{2},1\right]$.
- 2. Montrer par récurrence que $u_{n+1} \leq u_n$ pour tout $n \in \mathbb{N}$.
- 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 31. On considère la suite définie par

$$u_0 = 2$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n + 1}{2u_n}.$

- 1. Montrer que $(u_n)_{n\in\mathbb{N}}$ est bien définie et à valeurs dans $\left[\frac{1}{2}, +\infty\right[$.
- 2. Déterminer l'unique réel x_0 de $\left[\frac{1}{2}, +\infty\right]$ vérifiant la relation $x_0 = \frac{x_0 + 1}{2x_0}$.
- 3. Montrer par récurrence que pour tout $n \in \mathbb{N}$ on a

$$u_{2n}\geqslant u_{2n+2}\geqslant x_0\geqslant u_{2n+3}\geqslant u_{2n+1}.$$

4. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge vers x_0 .

- **Exercice 32.** On considère une suite $(u_n)_{n\in\mathbb{N}}$ vérifiant la relation de récurrence $u_{n+1}=u_n^2+\frac{1}{4}$ pour tout $n\in\mathbb{N}$. Déterminer l'ensemble B des valeurs de u_0 pour lesquelles $(u_n)_{n\in\mathbb{N}}$ converge vers $\frac{1}{2}$.
- **Exercice 33.** On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 = \frac{1}{2}$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{1 - u_n^2}.$

- 1. Quelle est la nature géométrique du sous-ensemble du plan défini par $\{(x,y)\in\mathbb{R}^2: x^2+y^2=1\}$?
- 2. En déduire l'allure de la courbe de la fonction $f: x \mapsto \sqrt{1-x^2}$.
- 3. Placer graphiquement les quatre premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$. Que conjecture-t-on?
- 4. Démontrer la conjecture réalisée.

L'exercice 32 est un exemple simple de question traitée par l'étude des systèmes dynamiques, c'est-à-dire des systèmes décrits par une condition initiale et une règle d'évolution (dans le cas présent, une relation de récurrence). On cherche ici à déterminer le bassin d'attraction du point fixe $\frac{1}{2}$, c'est-à-dire l'ensemble des conditions initiales qui seront « ramenées vers $\frac{1}{2}$ » (en un temps éventuellement infini) par la dynamique du système.

Exercice 34. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels vérifiant $u_0>0$ ainsi que la condition suivante :

$$\forall n \in \mathbb{N}, \quad 0 < u_{n+1} < 2\sqrt{2} - \frac{2}{u_n}.$$

- 1. Quel est le sens de variation de $(u_n)_{n\in\mathbb{N}}$?
- 2. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge, puis déterminer sa limite.
- 3. Trouver un exemple d'une telle suite.
- **Exercice 35.** Soient $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ les suites définies par

$$\forall n \in \mathbb{N}^*, \quad u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n+1} \quad \text{et} \quad v_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}.$$

- 1. Montrer que $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.
- 2. En déduire que $\lim_{n\to+\infty} \sum_{k=1}^n \frac{1}{\sqrt{k}} = +\infty$.

Exercice 36. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les suites réelles définies par $u_0=1$ et $v_0=2$ ainsi que

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \sqrt{u_n v_n} \quad \text{et} \quad v_{n+1} = \frac{u_n + v_n}{2}.$$

- 1. Montrer que pour tous $x,y\in\mathbb{R}_+$ on a $\sqrt{xy}\leqslant\frac{x+y}{2}$. $Indication: \text{on pourra développer la quantité } (\sqrt{x}-\sqrt{y})^2.$
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont bien définies, et que pour tout $n\in\mathbb{N}$ on a $0\leqslant u_n\leqslant v_n$.
- 3. Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent et admettent la même limite.