Lecture 2 – Random Testing

AAA705: Software Testing and Quality Assurance

Jihyeok Park

2024 Spring

Recall

- Equivalence Partitioning (EP)
- Boundary Value Analysis (BVA)
- Category Partition Method (CPM)
- Combinatorial Testing (CT)
 - Covering Array (CA)
 - Fault Detection Effectiveness
 - Greedy Algorithm IPOG Strategy
 - Greedy vs. Meta-heuristic

Contents

1. Random Testing (RT)

Probabilistic Analysis Weaknesses of Random Testing Examples

2. Adaptive Random Testing (ART)

Levenshtein (Edit) Distance
Distance Comparison Target
Complexity of ART
Quasi-Random Strategy for ART

3. Fuzz Testing

Pre-process
Input Generation – Mutation-Based Fuzzing
Input Generation – Generation-Based Fuzzing
Test Oracles (Sanitizers)
De-duplication

1. Random Testing (RT)

Probabilistic Analysis Weaknesses of Random Testing Examples

2. Adaptive Random Testing (ART)

Levenshtein (Edit) Distance
Distance Comparison Target
Complexity of ART
Quasi-Random Strategy for ART

3. Fuzz Testing

Pre-process
Input Generation – Mutation-Based Fuzzing
Input Generation – Generation-Based Fuzzing
Test Oracles (Sanitizers)
De-duplication

Random Testing

 We need to sample the test input from the vast and possibly infinite input space.

- What happens if we just sample the input randomly?
 - Since developers has their own mental model of the software, they
 often have a biased view of the input space.
 - Random testing can help to ignore this bias.

Random Testing

- SUT: Software Under Test
- S: Set of all possible test inputs for SUT
- F: a subset of S a set of all failing test inputs

Failure Rate
$$t = \frac{|F|}{|S|}$$

(The probability that a randomly sampled test input is fail when we sample uniformly at random from S)

Random Testing – Example


```
/* C */
int abs(int x) {
  if (x < 0) return x;  // should be -x
  else return x;
}</pre>
```

- Failure Rate $t \approx 0.5$
- Oracle
 - assertEqual(abs(-5), 5)
 - assertEqual(abs(5), 5)

How Random Can We Get?

- Pseudo-random number generators (PRNGs)
 - Middle Square Method Initial algorithm by John von Neumann
 - Linear Congruential Generator Most popular
 - Mersenne Twister (1997) C++ 11 / PHP 7.1 a bias bug¹²
 - Xorshift Fast but fail some tests / variants (xorshift+, xoshiro, etc.)
- True-random number generators (TRNGs) expensive
 - Atmospheric noise https://random.org
 - Quantum random number generator (QRNG) https://qrng.anu.edu.au
 - Lava lamps Cloudflare

¹https://bugs.php.net/bug.php?id=75170

²https://github.com/php/php-src/commit/a0724d

How Random Can We Get?

The new Galaxy Quantum 4 is equipped with the world's smallest (width 2.5mm x length 2.5mm) **Quantum Random Number Generator (QRNG)** chipset, enabling trusted authentication and encryption of information.

Probabilistic Analysis

Failure Rate
$$p = \frac{|F|}{|S|}$$

 Given a failure rate p, how many test inputs do we need to sample to find the first failure?

 Given n random test inputs, what is the probability of finding at least one failure?

Probabilistic Analysis - Geometric Distribution

- The geometric distribution models the first occurrence of a success in a sequence of n independent (Bernoulli) trials with the same probability p.
- The most popular example is the coin flipping.
- The probability mass function (PMF) of the geometric distribution:

$$Pr(X = k) = (1 - p)^{k-1}p$$

It is the probability that the first success occurs on the n-th trial.

Probabilistic Analysis - Geometric Distribution

 Given a failure rate p, how many test inputs do we need to sample to find the first failure?

$$E(X) = \sum_{k=1}^{\infty} k \cdot Pr(X = k)$$

$$= \sum_{k=1}^{\infty} k \cdot (1 - p)^{k-1} p$$

$$= p \sum_{k=1}^{\infty} k \cdot (1 - p)^{k-1}$$

$$= p \left(\sum_{k=1}^{\infty} (1 - p)^{k-1} + \sum_{k=2}^{\infty} (1 - p)^{k-1} + \cdots \sum_{k=3}^{\infty} (1 - p)^{k-1} + \cdots \right)$$

$$= p \left(\frac{1}{p} + \frac{1 - p}{p} + \frac{(1 - p)^2}{p} + \cdots \right)$$

$$= 1 + (1 - p) + (1 - p)^2 + \cdots = \frac{1}{p}$$

Probabilistic Analysis – Geometric Distribution

- Given a failure rate *p*, **how many** test inputs do we need to sample to find the **first failure**?
- Mean (If p = 0.01, the average test inputs = 100)

$$\frac{1}{p}$$

• **Median** (If p = 0.01, the median test inputs ≈ 69)

$$\left\lceil \frac{-1}{\log_2(1-p)} \right\rceil$$

• Variance (If p = 0.01, the variance = 9900)

$$\frac{1-p}{p^2}$$

Probabilistic Analysis - Geometric Distribution

 Given n random test inputs, what is the probability of finding at least one failure?

$$P(X \le n) = \sum_{k=1}^{n} \cdot Pr(X = k)$$

$$= \sum_{k=1}^{n} \cdot (1 - p)^{k-1} p$$

$$= p \frac{1 - (1 - p)^{n+1}}{1 - (1 - p)}$$

$$= 1 - (1 - p)^{n+1}$$

Probabilistic Analysis – Geometric Distribution

- If we test n = 100 random test inputs, the probability of finding at least one failure is $1 (1 0.01)^{101} = 63.76\%$.
- If we test n = 200 random test inputs, the probability of finding at least one failure is $1 (1 0.01)^{201} = 86.74\%$.

Probabilistic Analysis – Geometric Distribution

- Unfortunately, failure rate *p* is **unknown** in practice.
- But, we can **estimate** *p* in various ways:
 - Previous versions of the software
 - Similar software
 - Literature

Weaknesses of Random Testing

 Random testing provides no guidance; it is the needle in a haystack problem – the probability of finding a failure is low.

```
/* C */
void foo(int x) {
   if (x == 0) {
      /* faulty code here */
   }
}
```

```
# Python
def foo(x):
    # e.g., x = 2840
    if (x * 7919 % 5711 == 42):
        # faulty code here
}
```

- We need biased random testing with predefined probability:
 - Special values (-0, null, π , ...)
 - Extracted values from code (e.g., constants, literals)
 - Previously successful values

Examples

- Apple (1983) "Monkey" for random events (e.g., mouse clicks, key presses, etc.) to test the robustness of the MacWrite and MacPaint applications.
- Amazon (2003) "Game day" for website reliability
- Google (2006) "DiRT" or Site Reliability Engineering (SRE)
- Netflix (2011) "Chaos Monkey" that randomly terminates AWS instances to test the fault tolerance of the Netflix infrastructure.

1. Random Testing (RT)

Probabilistic Analysis Weaknesses of Random Testing Examples

2. Adaptive Random Testing (ART)

Levenshtein (Edit) Distance Distance Comparison Target Complexity of ART Quasi-Random Strategy for ART

3. Fuzz Testing

Pre-process
Input Generation – Mutation-Based Fuzzing
Input Generation – Generation-Based Fuzzing
Test Oracles (Sanitizers)
De-duplication

Adaptive Random Testing (ART)

• Insight – failing test inputs often cluster in the input space.

Consider the fault under the condition x >= 0 && x < 100.

We call such clustered reasons faulty regions.

 Without knowing the faulty regions, what is the best way to sample the test inputs?

Adaptive Random Testing (ART)

- A more diverse set of test inputs is more likely to find a failure.
- Diversity is depending on the **distance** between test inputs.
- If input data is numeric, we can use the **Euclidean distance**.

$$d((x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n)) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

• Then, how to measure the distance between complex data types?

Levenshtein (Edit) Distance

- The Levenshtein distance is a measure of the similarity between two strings.
- It is the minimum number of single-character edits (insertions, deletions, or substitutions) required to change one word into the other.
- For example, the distance between "kitten" and "sitting" is 3:

"kitten"
$$\xrightarrow[k \to s]{\text{substitute}}$$
 "sitten" $\xrightarrow[e \to i]{\text{substitute}}$ "sittin" $\xrightarrow[i]{\text{insert}}$ "sitting"

• and the distance between "uninformed" and "uniform" is 3:

"uninformed"
$$\xrightarrow[n]{\text{delete}}$$
 "uniformed" $\xrightarrow[e]{\text{delete}}$ "uniformd" $\xrightarrow[d]{\text{delete}}$ "uniform"

• The formal definition of the **Levenshtein distance** is as follows:

$$lev(a,b) = \begin{cases} |a| & \text{if } |b| = 0\\ |b| & \text{if } |a| = 0\\ lev(tail(a), tail(b)) & \text{if } head(a) = head(b)\\ 1 + \min \begin{cases} lev(tail(a), b) & \text{(insert)}\\ lev(a, tail(b)) & \text{(delete)} \end{cases} & \text{otherwise} \end{cases}$$

- It is usually extended into a parameterized version with a set of allowed edit operations (e.g., transposition) with different costs.
- Wagner-Fischer algorithm (1967) O(mn) time complexity
- Indyk and Bačkurs (2015) proved that the problem of finding the edit distance cannot be solved in less than quadratic time. (We cannot do better than the Wagner-Fischer algorithm.)

Adaptive Random Testing (ART)

 The diversity of a test suite is defined as the sum of distances between all pairs of test inputs.

$$extit{diversity}(T) = \sum_{(t_1, t_2) \in T imes T} d(t_1, t_2)$$

- We will sample multiple Z test inputs and measure the distance between existing test inputs and the new test input.
- Choose the test input that has the maximum distance from the existing test inputs.
- Add the **chosen new test input** to the set of existing test inputs.
- Iterate the process until the stopping criterion is met.

Adaptive Random Testing (ART)

 It samples Z = 3 new test inputs and chooses the one with the maximum distance from the existing test inputs.

Distance Comparison Target

- For each new test case t, we need to choose the target for comparison in the existing test suite T.³
- Minimum-Distance

$$fitness(t, T) = \min_{t' \in T} d(t, t')$$

Average-Distance

$$fitness(t, T) = \frac{1}{|T|} \sum_{t' \in T} d(t, t')$$

Maximum-Distance

$$fitness(t, T) = \max_{t' \in T} d(t, t')$$

Centroid-Distance

$$fitness(t, T) = d(t, 1/|T| \sum t')$$

³[CSUR'19] R. Huang et al. "A survey on adaptive rartdom testing."

Complexity

 If we use Z sample points and get ART test suite of k test cases, how many distance calculations do we need?

$$0 + Z + 2Z + 3Z + \cdots + (k-1)Z = \frac{k(k-1)}{2}Z$$

- $O(k^2Z)$ time complexity this could be expensive.
- It may be difficult to choose the meaningful distance metric for complex data types.

Quasi-Random Strategy for ART

- What if we can randomly sample the test inputs having diversity (i.e., low discrepancy)?
- Quasi-random sequences could be a good choice.
- Let's learn Halton sequence, one of the representative quasi-random sequences.

Quasi-Random Strategy for ART – Halton Sequence PLRG

- The halton sequence is constructed in a deterministic way using co-prime numbers.
- For example, generate the sequence of numbers in the range [0,1] by recursively splitting the range into $\mathbf 2$ or $\mathbf 3$ subintervals.

• Generate a sequence of pairs of numbers (x, y) by combining above sequences.

$$(\frac{1}{2}, \frac{1}{3}), (\frac{1}{4}, \frac{2}{3}), (\frac{3}{4}, \frac{1}{9}), (\frac{1}{8}, \frac{4}{9}), (\frac{5}{8}, \frac{7}{9}), (\frac{3}{8}, \frac{2}{9}), (\frac{7}{8}, \frac{5}{9}), (\frac{1}{16}, \frac{8}{9}), \cdots$$

Quasi-Random Strategy for ART

We can utilize other quasi-random sequences for ART:⁴

• Halton Sequence

$$\phi_b(i) = \sum_{j=0}^{\omega} i_j b^{-j-1}$$

Sobol Sequence

$$Sobol(i) = XOR_{j=1,2,\cdots,\omega}(i_j\delta_j)$$

where

$$\delta_j = XOR_{k=1,2,\cdots,r} \left(\frac{\beta_k \delta_{j-k}}{2^j} \right) \oplus \frac{\delta_{j-k}}{2^{j+r}}$$

Niederreiter Sequence

⁴[CSUR'19] R. Huang et al. "A survey on adaptive random testing."

Adaptive Random Testing (ART) – Summary

- Application Domains
 - Numeric Programs
 - Object-Oriented Programs
 - Configurable Systems
 - Web Services and Applications
 - Embedded Systems
 - Simulations and Models
- Faulty regions may not apply to all types of faults.
- ART is still mostly an academic idea, with debates going on:
 - [ISSTA'11] A. Arcuri et al. "Adaptive random testing: an illusion of effectiveness?"
 - [CSUR'19] R. Huang et al. "A survey on adaptive random testing."

Contents

1. Random Testing (RT)

Probabilistic Analysis Weaknesses of Random Testing Examples

2. Adaptive Random Testing (ART)

Distance Comparison Target
Complexity of ART
Quasi-Random Strategy for ART

3. Fuzz Testing

Pre-process
Input Generation – Mutation-Based Fuzzing
Input Generation – Generation-Based Fuzzing
Test Oracles (Sanitizers)
De-duplication

https://xkcd.com/1210/

• **[CACM'90]** B. P. Miller et al. "An empirical study of the reliability of UNIX utilities." ⁵

"On a dark and stormy night one of the authors was logged on to his workstation on a dial-up line from home and the rain had affected the phone lines; there were frequent spurious characters on the line. The author had to race to see if he could type a sensible sequence of characters before the noise scrambled the command. This line noise was not surprising; but we were surprised that these spurious characters were causing programs to crash."

⁵https://alastairreid.github.io/RelatedWork/papers/miller:cacm:1990/

- Fuzz testing is a random testing technique to find exceptional outcomes (e.g., crashes, exceptions, freezes, etc.) of a software system.
- 1990 study found crashes in: adb, as, bc, cb, col, diction, emacs, eqn, ftp, indent, lex, look, m4, make, nroff, plot, prolog, ptx, refer!, spell, style, tsort, uniq, vgrind, vi

Fuzz Testing - Overview

- Pre-process prepare the SUT for fuzz testing
- Input Generation generate test inputs
 - Mutation-Based Fuzzing modify existing test inputs
 - Generation-Based Fuzzing generate new test inputs
- Test Oracles (Sanitizers) detect exceptional outcomes
- **De-duplication** remove duplicate test inputs

Pre-process

- Instrumentation source-level or binary-level modification of the SUT to collect information about the execution in compile time (static) or runtime (dynamic).
 - Execution Feedback collect execution information including node/branch coverage.
 - Thread Scheduling control how threads are scheduled to to trigger different non-deterministic behaviors.
 - In-Memory Fuzzing take a memory snapshot and restore it before
 writing the new new test case directly into memory and executing it. It
 can skip over unnecessary startup costs.
- Preparing a Driver Application we need to prepare for a driver program when it is difficult to directly fuzz the SUT.
 - Libraries a driver program that calls functions in the library
 - Kernels may fuzz user-land applications to test kernels
 - loT devices a driver communicate with the corresponding smartphone application.

Input Generation – Mutation-Based Fuzzing

- In the mutation-based fuzzing, a seed is a test input that is used to generate new test inputs.
- Mutation-Based Fuzzing first initializes seed pool with the initial seeds, and then mutates them to generate new test inputs and updates the seed pool when a new test input is interesting.

Input Generation - Mutation-Based Fuzzing

- Initial Seeds from the existing test suite, manually crafted, inferred from the SUT or specification.
- **Seed Selection random** or **guided** selection (e.g., coverage-based, distance-based, etc.) of the seed from the seed pool.
- Seed Mutation mutate the seed to generate new test inputs.
 - Bit-Flip flip a random bit in the seed
 - Arithmetic Mutation add, subtract, multiply, divide, etc.
 - Block-based Mutation mutate a block of bits
 - Dictionary-Based Mutation replace a value with a predefined value
 - Semantic-aware Mutation⁶ mutate seeds using spec. of SUT
- Seed Trimming filter out the uninteresting test inputs (e.g., no coverage increase).

⁶[ICSE'21] J. Park et al. "JEST: N+1-version Differential Testing of Both JavaScript Engines and Specification."

Input Generation – Generation-Based Fuzzing

Generation-Based Fuzzing generates new test inputs from a **model** that represents the **input space** of the SUT.

- Predefined Model a model that is manually crafted
 - Simple Specification e.g., a range of values, a set of values, etc.
 - Grammar-Based Model inputs are generated from a input grammar
- Inferred Model a model that is inferred from previous executions of the SUT or existing test suite.
 - Probabilistic Grammar
 - Call Sequence Model
 - Code Bricks
 - State Machines
- Encoder Model generates test inputs for decoder programs (e.g., image decoders, audio decoders, etc.) using the corresponding encoder programs.

Test Oracles (Sanitizers)

- Test Oracles (Sanitizers) a mechanism to detect exceptional outcomes (e.g., crashes, exceptions, freezes, etc.) of the SUT.
 - ASAN (Address Sanitizer) finds memory corruption bugs (e.g., buffer overflows, use-after-free, etc.)
 - MSAN (Memory Sanitizer) finds uninitialized memory bugs
 - UBSAN (Undefined Behavior Sanitizer) finds undefined behavior bugs
 - CFISAN (Control Flow Integrity Sanitizer) finds control flow integrity bugs
 - TSAN (Thread Sanitizer) finds thread race conditions
 - LSAN (Leak Sanitizer) finds memory leaks
- They are usually instrumented into the SUT to collect information about the execution in compile time (static) or runtime (dynamic) with runtime overhead.

De-duplication

- De-duplication removes duplicate test inputs triggering the exceptional outcomes depending on the their equivalence criteria.
 - Stack Backtrace Hashing hash the (limited) stack backtrace of the exceptional outcome and compare the hash values

foo
bar
g
h
foo (crashed)

X
y
g
h
foo (crashed)

(e.g., both are the same with the stack backtrace hashing with n=3)

- Coverage-based De-duplication compare the coverage of the test inputs (e.g., node, branch, grammar, semantics, etc.)
- Semantic-aware De-duplication compare the semantics of the test inputs (e.g., backward data-flow analysis for blaming)

If you are interested in further more details about fuzz testing, please refer to the following resources:

- [TSE'19] V. Manès et al. "The Art, Science, and Engineering of Fuzzing: A Survey"
- [CSUR'22] X. Zhu et al. "Fuzzing: a survey for roadmap"
- The Fuzzing Book by Andreas Zeller et al.

https://www.fuzzingbook.org/

• AFL++ (American Fuzzy Lop Plus Plus)

https://aflplus.plus/

ClusterFuzz developed by Google

https://google.github.io/clusterfuzz

Summary

1. Random Testing (RT)

Probabilistic Analysis Weaknesses of Random Testing Examples

2. Adaptive Random Testing (ART)

Levenshtein (Edit) Distance
Distance Comparison Target
Complexity of ART
Quasi-Random Strategy for ART

3. Fuzz Testing

Pre-process
Input Generation – Mutation-Based Fuzzing
Input Generation – Generation-Based Fuzzing
Test Oracles (Sanitizers)
De-duplication

Next Lecture

• Coverage Criteria

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr