cyclone Problems

1. For the following particle size distribution, calculate the efficiency of a Lapple conventional cyclone with a body diameter of 0.50 meters. The particulate density $\rho_p = 1200 \text{ kg/m}^3$, the gas density $\rho_g = 0.90 \text{ kg/m}^3$, the gas viscosity $\mu = 1.67 \times 10^{-5} Pa \cdot s$, and the inlet gas velocity $V_i = 25 \text{ m/s}$.

Size Range, µm	Mass Percent in Size Range		
0 - 4	3.0		
4 – 10	10.0		
10 – 20	30.0		
20 – 40	40.0		
40 – 80	15.0		
> 80	2.0		

Solution

Lapple conventional cyclone (Table 4.1)

$$H=0.5\times0.5=0.25$$
 $W=0.25\times0.5=0.125$ $L_b=2.0\times0.5=1.0$ $Lc=2.0\times0.5=1.0$

$$N_e = \frac{1}{H} \left[L_b + \frac{L_c}{2} \right] = \frac{1}{0.25} \left[1.0 + \frac{1.0}{2} \right] = 6$$

$$\begin{split} d_{pc} &= \left[\frac{9\mu W}{2\pi N_e V_i (\rho_p - \rho_g)}\right]^{1/2} = \left[\frac{9\times 1.67\times 10^{-5}\times 0.125}{2\times 3.14\times 6\times 25\times (1200-0.9)}\right]^{1/2} = 4.08\times 10^{-6}m = 4.08\mu m \\ \eta_1 &= \frac{1}{1+\left(d_{pc}/\bar{d}_{p_i}\right)^2} = \frac{1}{1+(4.08/2)^2} = 0.1939 \end{split}$$

Size Range, μm	$\overline{m{d}}_{pm{j}}$, \mum{m}	η_j	m_j , %	$\eta_j \boldsymbol{m}_j$, %
0 – 4	2	0.1939	3.0	0.0058
4 – 10	7	0.7466	10.0	0.0747
10 – 20	15	0.9312	30.0	0.2793
20 – 40	30	0.9819	40.0	0.3927
40 – 80	60	0.9954	15.0	0.1493
> 80	80	0.9974	2.0	0.0199

$$\eta_o = \sum_{j=1}^6 \eta_j m_j = 92.18\%$$

2. Design a Lapple conventional cyclone to clean a dusty airstream flowing at $180000 \, m^3/h$ (at 90 °C and 1 atm). The required efficiency must be between 75% and 85% with a maximum allowable pressure drop of 3000Pa. The particle density is $1200 \, kg/m^3$ and the particle size distribution is given below.

Particle Size Range, µm	Mass Percent in Size Range	
0 – 5	10	
5 – 15	30	
15 – 30	40	
30 – 50	15	
> 50	5	

Solution

Since the problem specifies a conventional Lapple cyclone, choose a type 3 cyclone from Table

4.1; the dimensional relationships are:

$$\begin{split} H &= 0.5D \qquad W = 0.25D \qquad D_e = 0.5D \qquad L_b = 2D \qquad L_c = 2D \\ Q &= 180000 \, m^3/h = 180000/3600 = 50 \, m^3/s \\ V_i &= \frac{Q}{HW} = \frac{50}{0.5D \times 0.25D} = \frac{400}{D^2} \qquad \text{m/s} \\ H_v &= K \frac{HW}{D_e^2} = 16 \times \frac{(0.5\text{D})(0.25\text{D})}{(0.5\text{D})^2} = 8 \end{split}$$

From Appendix B, Table B. 2 the density of air is $0.0606 \, \text{lbm/ft}^3 = 0.97 \, \text{kg/m}^3$; the gas viscosity $\mu = 0.0517 \, \text{lbm/(hr \cdot ft)} = 2.14 \times 10^{-5} \, Pa \cdot s$

$$\Delta P = \frac{1}{2} \rho_g V_i^2 H_v = \frac{1}{2} \times 0.97 \times (\frac{400}{D^2})^2 \times 8 = \frac{620800}{D^4} \quad \text{Pa}$$

$$N_e = \frac{1}{H} \left[L_b + \frac{L_c}{2} \right] = \frac{1}{0.25D} \left[1.0D + \frac{1.0D}{2} \right] = 6$$

$$d_{pc} = \left[\frac{9\mu W}{2\pi N_e V_i (\rho_p - \rho_g)} \right]^{1/2} = \left[\frac{9 \times 2.14 \times 10^{-5} \times 0.25D}{2 \times 3.14 \times 6 \times \frac{400}{D^2} \times (1200 - 0.97)} \right]^{1/2}$$

$$= 1.6323 \times 10^{-6} \times D^{1.5} = 1.6323D^{1.5} \quad \mu m$$

$$\eta_j = \frac{1}{1 + \left(d_{pc}/\bar{d}_{p_j}\right)^2}$$

经过试算,无法设计出这样一台旋风除尘器,既满足除尘效率在 $75\%\sim85\%$ 之间,又满足阻力降小于 3000Pa。径试算,分成 6 台旋风并联处理,每台处理风量 $30000m^3/h$,于是,有:

$$Q = 30000 \, m^3 / h = 30000 / 3600 = \frac{25}{3} \, m^3 / s$$

$$\begin{split} V_i &= \frac{Q}{HW} = \frac{\frac{25}{3}}{0.5D \times 0.25D} = \frac{200}{3D^2} \quad \text{m/s} \\ H_v &= K \frac{HW}{D_e^2} = 16 \times \frac{(0.5\text{D})(0.25\text{D})}{(0.5\text{D})^2} = 8 \\ \Delta P &= \frac{1}{2} \rho_g V_i^2 H_v = \frac{1}{2} \times 0.97 \times (\frac{200}{3D^2})^2 \times 8 = \frac{155200}{9D^4} \quad \text{Pa} \\ N_e &= \frac{1}{H} \left[L_b + \frac{L_c}{2} \right] = \frac{1}{0.25D} \left[1.0D + \frac{1.0D}{2} \right] = 6 \\ d_{pc} &= \left[\frac{9\mu W}{2\pi N_e V_i (\rho_p - \rho_g)} \right]^{1/2} = \left[\frac{9 \times 2.14 \times 10^{-5} \times 0.25D}{2 \times 3.14 \times 6 \times \frac{200}{3D^2} \times (1200 - 0.97)} \right]^{1/2} \\ &= 3.998 \times 10^{-6} \times D^{1.5} = 3.998 D^{1.5} \quad \mu m \end{split}$$

经试算,当 D=1550mm 时, $d_{pc}=7.7\mu m$,可达到要求.

Size Range, µm	$\overline{m{d}}_{pm{j}}, \mum{m}$	η_j	m_j , %	$\eta_j \boldsymbol{m}_j$, %
0 – 5	2.5	0.095	10.0	0.095
5 – 15	10	0.627	30.0	0.188
15 – 30	22.5	0.895	40.0	0.358
30 – 50	40	0.964	15.0	0.145
> 50	50	0.977	5.0	0.049

$$\eta_o = \sum_{j=1}^5 \, \eta_j m_j = 92.18\%$$

$$\Delta P = \frac{155200}{9 \times 1.55^4} = 2988$$
 Pa