How To Quotient A Cpo

Paul Blain Levy

July 28, 2006

An exposition of an old result, based on Achim Jung's notes.

1 Admissible Closure

In this section, let A be a cpo (poset with all directed joins) and let $U \subseteq A$. We write \leq for the order on A.

Definition 1 We define $\operatorname{adm}_A(U)$ to be least subset of A that is admissible (closed under directed joins) and contains U.

Proposition 1 Each $x \in \text{adm}_A(U)$ is a least upper bound of $\{y \in U | y \leq x\}$, and this lub is preserved by every continuous function from $\text{adm}_A(U)$.

Proof Let $\operatorname{adm}_A(U) \stackrel{h}{\longrightarrow} B$ be a continuous function. For each $x \in \operatorname{adm}_A(U)$, it is clear that h(x) is an upper bound for the set $Q(x) \stackrel{\text{def}}{=} \{h(y)|y \in U, y \leqslant x\}$. We wish to show that it is a least upper bound. (Taking h to be the identity on $\operatorname{adm}_A(U)$ then gives that x is the lub of $\{y \in U | y \leqslant x\}$.)

The set $K \stackrel{\text{def}}{=} \{x \in \text{adm}_A(U) \mid h(x) \text{ is a lub of } Q(x) \}$ contains U. To see that K is admissible, suppose that D is a directed subset of K. We wish to show that $h(\bigsqcup_{x \in D} x) = \bigsqcup_{x \in D} h(x)$ is a lub of $Q(\bigsqcup_{x \in D} x)$. Suppose that n is an upper bound of $Q(\bigsqcup_{x \in D} x)$; we wish to show that $\bigsqcup_{x \in D} h(x) \leqslant n$. So, for each $x \in D$, we need to show that $h(x) \leqslant n$, i.e. that n is an upper bound for Q(x), which follows from $Q(x) \subseteq Q(\bigsqcup_{x \in D} x)$.

2 Quotienting

In this section, let A be a cpo, and let \mathcal{R} be a binary relation on A. We write \leq for the order on A. Define $\theta(\mathcal{R})$ to be the full subcategory of the coslice category A/\mathbf{Cpo} consisting of those objects $(B, A \xrightarrow{g} B)$ such that if $x \mathcal{R} y$ then $g(x) \leq_B g(y)$. Our aim is to prove that $\theta(\mathcal{R})$ has an initial object.

Let us say that a set $P \subseteq A$ is \mathcal{R} -compatible when

• P is \mathcal{R} -downclosed (i.e. $x \mathcal{R} y$ and $y \in P$ implies $x \in P$)

• P is Scott-closed (admissible and \leq -downclosed).

The poset \mathcal{L} of \mathcal{R} -compatible sets (ordered by inclusion) is a complete lattice, with meets given by intersection. In particular, it has directed joins, which we

For $x \in A$, we define $[x] \in \mathcal{L}$ to be the least \mathcal{R} -compatible subset that $\exists x$. Thus for $x \in A$ and $P \in \mathcal{L}$ we have

$$x \in P \iff [x] \subseteq P$$
 (1)

We then define \mathcal{K} to be $\mathrm{adm}_{\mathcal{L}}(\{[x] \mid x \in A\})$. We are going to show that $X \stackrel{\mathrm{def}}{=}$ $(\mathcal{K}, A \xrightarrow{[-]} \mathcal{K})$ is an initial object of $\theta(\mathcal{R})$. To show that X is an object of $\theta(\mathcal{R})$, we reason as follows.

- To show [-] is monotone, suppose $x \leq y$. Then $y \in [y]$ gives $x \in [y]$ (since [y] is \leq -downclosed) which gives $[x] \subseteq [y]$ by (1).
- To show [-] is continuous, suppose that $D \subseteq A$ is directed, and that $P \in \mathcal{L}$ is an upper bound for $\{[d] | d \in D\}$. Then $D \subseteq P$, so $| D \in P$ (since P is admissible), so $[\mid D] \subseteq P$ by (1).
- Suppose $x\mathcal{R}y$. Then $y \in [y]$ gives $x \in [y]$ (since [y] is \mathcal{R} -downclosed) which gives $[x] \subseteq [y]$ by (1).

Now suppose that $Y = (B, A \xrightarrow{g} B)$ is an arbitrary object of $\theta(\mathcal{R})$. We seek a morphism $X \xrightarrow{\ h} Y$. Prop. 1, together with (1), tells us that h must map each $P \in \mathcal{K}$ to a lub of $g"P \stackrel{\text{def}}{=} \{g(y) \mid y \in P\}$, so h is unique. We need to show that g" P has a lub, for every $P \in \mathcal{K}$.

Lemma 1

- 1. Suppose $P, Q \in \mathcal{K}$, and $P \subseteq Q$. If g"P has a lub m, and g"Q has a lub n, then $m \leq_B n$.
- 2. Suppose $\mathcal{D} \subseteq \mathcal{K}$ is directed. If, for each $P \in \mathcal{D}$, the set g "P has a lub m_P , so that the set $\{m_P \mid P \in \mathcal{D}\}\$ is directed by part 1, then $m = \bigsqcup_{P \in \mathcal{D}} m_P$ is a lub for g "($\bigsqcup_{P \in \mathcal{D}}^{\mathcal{L}} P$).
- 3. For each $x \in A$, the set g''[x] has lub g(x).

Proof

1. Because $g"P \subseteq g"Q$.

- 2. The set $\{x \in A \mid g(x) \leq_B m\}$ is \mathcal{R} -compatible, and contains P for each $P \in \mathcal{D}$. Therefore it contains $\bigsqcup_{P \in \mathcal{D}}^{\mathcal{L}} P$. So if $x \in \bigsqcup_{P \in \mathcal{D}}^{\mathcal{L}} P$, then $g(x) \leq_B m$. So m is an upper bound for g "($\bigsqcup_{P \in \mathcal{D}}^{\mathcal{L}} P$).
 - Suppose n is an arbitrary upper bound for $g"(\bigsqcup_{P\in\mathcal{D}}^{\mathcal{L}}P)$. For each $p\in P$, we have that n is an upper bound for g"P, so $m_P\leqslant_B n$. Therefore $m\leqslant_B n$. So m is a least upper bound for $g"(\bigsqcup_{P\in\mathcal{D}}^{\mathcal{L}}P)$.
- 3. For each $x \in A$, the set $\{y \in A \mid g(y) \leq_B g(x)\}$ is \mathcal{R} -compatible and contains x, so by (1) it contains [x]. Hence g(x) is an upper bound of g''[x]. Clearly, any upper bound of g''[x] is $\geq_B g(x)$.

Lemma 1 tells us that the set $\{P \in \mathcal{K} \mid g"P \text{ has a lub}\}$ is admissible and contains $\{[x] \mid x \in A\}$, hence it is the whole of \mathcal{K} , as we wanted. Lemma 1 also tells us that the function $\mathcal{K} \xrightarrow{h} B$ that maps $P \in \mathcal{K}$ to the lub of g"[x] is monotone and continuous, and satisfies h([x]) = g(x) for all $x \in A$, as required.