Lecture Notes for **Machine Learning in Python**

Professor Eric Larson MLP History

Class Logistics and Agenda

- Logistics:
 - Next time: Flipped Module on back propagation
- Multi Week Agenda:
 - Today: Neural Networks History, up to 1980
 - Today: Multi-layer Architectures
 - Flipped: Programming Multi-layer training

Class Overview, by topic

A History of Neural Networks

Neurons

From biology to modeling:

McCulloch and Pitts, 1943

Warren McCulloch

Walter Pitts

Neurons

- McCulloch and Pitts 1943
- Donald Hebb, 1949
- Hebb's law: close neurons fire together
- Neurons learn to couple
- Easier synaptic transmission
- Basis of neural pathways

Donald O. Hebb

Logic gates of the mind

Warren McCulloch

Walter Pitts

Rosenblatt's perceptron, 1957

dendrite

.W1

W2 **W**3

 \mathbf{X}_{1}

 X_2

X3

XN

input

Frank Rosenblatt

sigmoid

$$a=-1$$
 z< 0 $a=1$ z>=0

soma

Σ

sum rows

axon

φ

activation

function

The Mark 1 F **PERCEPTRON** Perceptron Learning Rule: ~Stochastic Gradient Descent Lecture ivotes for iviachine Learning in Pythi

Layers Notation

Generic Multiple Layers Notation

notation adapted from Neural Network Design, Hagan, Demuth, Beale, and De Jesus 11

Lecture Notes for Machine Learning in Python Professor Eric C. Larson

Multiple layers notation

- Self test: How many parameters need to be trained in the above network?
 - . A. $[(N+1) \times S^1] + [(S^1+1) \times S^2] + [(S^2+1) \times S^3]$
 - . B. $|\mathbf{W}^{(1)}| + |\mathbf{W}^{(2)}| + |\mathbf{W}^{(3)}|$
 - C. can't determine from diagram
 - D. it depends on the sizes of intermediate variables, z⁽ⁱ⁾

notation adapted from *Neural Network Design*, Hagan, Demuth, Beale, and De Jesus 12

Compact feedforward notation

Compact feedforward notation

$$\mathbf{z}^{(L)} = \mathbf{W}^{(L)} \cdot \mathbf{a}^{(L)}$$
$$\left[\mathbf{z}^{(L)}\right]^{(i)} = \mathbf{W}^{(L)} \cdot \left[\mathbf{a}^{(L)}\right]^{(i)}$$

$$\begin{bmatrix} z_1^{(L)} \\ z_2^{(L)} \\ \vdots \\ z_{S^L}^{(L)} \end{bmatrix}^{(i)} = \mathbf{W}^{(L)} \cdot \begin{bmatrix} a_0^{(L)} \\ a_1^{(L)} \\ \vdots \\ a_{S^{L-1}}^{(L)} \end{bmatrix}^{(i)}$$

$$\begin{bmatrix}
\begin{bmatrix} z_1^{(L)} \\ z_2^{(L)} \\ \vdots \\ z_{S^L}^{(L)} \end{bmatrix}, \begin{bmatrix} z_1^{(L)} \\ z_2^{(L)} \\ \vdots \\ z_{S^L}^{(L)} \end{bmatrix} \dots \begin{bmatrix} z_1^{(L)} \\ z_2^{(L)} \\ \vdots \\ z_{S^L}^{(L)} \end{bmatrix} = \mathbf{W}^{(L)} \cdot \begin{bmatrix} \begin{bmatrix} a_0^{(L)} \\ a_1^{(L)} \\ \vdots \\ a_{S^{L-1}}^{(L)} \end{bmatrix}, \begin{bmatrix} a_0^{(L)} \\ a_1^{(L)} \\ \vdots \\ a_{S^{L-1}}^{(L)} \end{bmatrix} \dots \begin{bmatrix} a_0^{(L)} \\ a_1^{(L)} \\ \vdots \\ a_{S^{L-1}}^{(L)} \end{bmatrix}$$

$$\mathbf{Z}^{(L)} = \mathbf{W}^{(L)} \cdot \mathbf{A}^{(L)} = \mathbf{W}^{(L)} \cdot \phi(\mathbf{Z}^{(L-1)})$$

Start Simple: Simplifying to One Layer

where ground truth **Y** is one-hot encoded!

Need objective Function, minimize MSE

$$J(\mathbf{W}) = \|\mathbf{Y} - \hat{\mathbf{Y}}\|^2$$

$$J(\mathbf{W}) = \left[\underbrace{\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(1)} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(2)} \dots \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(M)}}_{\mathbf{Y}} - \underbrace{\begin{bmatrix} \begin{bmatrix} a_1^{(L)} \\ a_2^{(L)} \\ \vdots \\ a_C^{(L)} \end{bmatrix}^{(1)} \begin{bmatrix} a_1^{(L)} \\ a_2^{(L)} \\ \vdots \\ a_C^{(L)} \end{bmatrix}^{(2)} \dots \begin{bmatrix} a_1^{(L)} \\ a_2^{(L)} \\ \vdots \\ a_C^{(L)} \end{bmatrix}^{(M)}}_{\hat{\mathbf{Y}}} \right]^2$$

Simple Architectures

Adaline network, Widrow and Hoff, 1960

Marcian "Ted" Hoff

Bernard Widrow

Simplify Objective Function:

$$J(\mathbf{W}) = \| \mathbf{Y} - \hat{\mathbf{Y}} \|^2 \longrightarrow J(\mathbf{w}) = \| \mathbf{Y} - \mathbf{A} \cdot \mathbf{w} \|^2$$

Need gradient $\nabla J(\mathbf{w})$ for update equation $\mathbf{w} \leftarrow \mathbf{w} + \eta \nabla J(\mathbf{w})$

We have been using the Widrow-Hoff Learning Rule

Simple Architectures

Modern Perceptron network

For case S=1, this is just **logistic regression...** and **we have already solved this!**

$$\mathbf{w} \leftarrow \mathbf{w} + \eta(\mathbf{y} - g(\mathbf{X} \cdot \mathbf{w})) \odot \mathbf{X}$$

What if we have more than S=1?

$$\begin{array}{c|c}
a & z \\
\hline
(N+1) \times 1 & x \\
S \times (N+1) & x \\
\end{array}$$

$$J(\mathbf{W}) = \| \mathbf{Y} - \hat{\mathbf{Y}} \|^{2}$$
$$J(\mathbf{W}) = \| \mathbf{Y} - \phi (\mathbf{W} \cdot \mathbf{X}) \|^{2}$$

$$J(\mathbf{w}_{row=1}) = \sum_{i} (y_1^{(i)} - \phi(\mathbf{x}^{(i)} \cdot \mathbf{w}_{row=1})^2$$

$$J(\mathbf{W}) = \| \mathbf{I} - \mathbf{I} \|$$

$$J(\mathbf{W}) = \| \mathbf{Y} - \phi(\mathbf{W} \cdot \mathbf{X}) \|^{2}$$

$$J(\mathbf{w}_{row=C}) = \sum_{i} (y_{C}^{(i)} - \phi(\mathbf{x}^{(i)} \cdot \mathbf{w}_{row=C})^{2}$$

$$\mathbf{Y} = \begin{bmatrix} \begin{bmatrix} y_1 \end{bmatrix}^{(1)} & \begin{bmatrix} y_1 \end{bmatrix}^{(2)} & \begin{bmatrix} y_1 \end{bmatrix}^{(M)} \\ y_2 & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ y_C \end{bmatrix} & \begin{bmatrix} y_2 & \vdots & \ddots & \vdots \\ y_C \end{bmatrix} & \begin{bmatrix} y_C \end{bmatrix} & \begin{bmatrix} y_C \end{bmatrix} & \begin{bmatrix} y_C \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} \begin{pmatrix} 1 \\ y_1 \end{pmatrix} \begin{pmatrix} 2 \\ y_1 \end{pmatrix} \begin{pmatrix} M \\ Y_1 \end{pmatrix} \begin{pmatrix} M \\ Y_1 \end{pmatrix} \begin{pmatrix} M \\ Y_2 \\ \vdots \end{pmatrix} \begin{pmatrix} y_2 \\ \vdots \\ y_C \end{bmatrix} \begin{pmatrix} y_2 \\ \vdots \\ y_C \end{bmatrix} \begin{pmatrix} y_2 \\ \vdots \\ y_C \end{pmatrix} \begin{pmatrix} y_2 \\ \vdots \\ y_C$$

Each target class in

which is one versus-all!

 $\phi(\mathbf{x}^{(M)} \cdot \mathbf{w}_{row=C})$

Simple Architectures: Summary

- Adaline network, Widrow and Hoff, 1960
 - linear regression
- Perceptron
 - with sigmoid: logistic regression
- One-versus-all implementation is the same as having w_{class} be rows of weight matrix, W

what happens when we have multiple layers?

Moving to multiple layers...

- The multi-layer perceptron (MLP):
 - two layers shown, but could be arbitrarily many layers

each row of **yhat** is no longer independent of the rows in early W so we cannot optimize using one versus all 😥

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_C \end{bmatrix} = \begin{bmatrix} \phi(\phi(\mathbf{z}^{(1)}) \cdot \mathbf{w}_{row=1}^{(2)}) \\ \phi(\phi(\mathbf{z}^{(1)}) \cdot \mathbf{w}_{row=2}^{(2)}) \\ \vdots \\ \phi(\phi(\mathbf{z}^{(1)}) \cdot \mathbf{w}_{row=C}^{(2)}) \end{bmatrix}$$
$$\mathbf{z}^{(1)} = \mathbf{W}^{(1)} \cdot \mathbf{a}^{(1)}$$

Back propagation

- Optimize all weights of network at once
- Steps:
 - propagate weights forward
 - calculate gradient at final layer
 - back propagate gradient for each layer
 via recurrence relation

Back-propagation is solved in flipped assignment!!