S1b Tranzistorlar için f_{T_1} =10MHz, C_{be1} =30pF ve f_{T_2} =100MHz, C_{be2} =60pF değerleri verilmektedir. v_L/v_S kazancının üst kesim frekansını bulunuz.(10Puan) (cb) = $\frac{1}{2\pi} \int_{C} \int_{C$	Analog Elektronik Devreleri-Yaz-2012-Yılsonu Adı:	Soyadı:	No:	
Sta DC durumda V _{C2} =0 olsun istenmektedir. I, akim kaynağının değerini bulunuz. (5Puan) TC2 = TC1 = TC1 = TC1 = TC2 = SOMA TA2 = TC1 = TC1 = TC1 = TC2 = SOMA TA2 = TC1 = TC1 = TC1 = TC2 = SOMA TA2 = TC1 = TC1 = TC1 = TC2 = SOMA TA2 = TC1 = TC1 = TC2 = SOMA TA2 = TC1 = TC1 = TC2 = SOMA TA2 = TC1 = TC1 = TC2 = SOMA TA3 = TC1 = TC1 = TC2 = SOMA TA3 = TC2 = TC1 = TC1 = TC2 = SOMA Stb Tranzistorlar için f _{T1} =10MHz, C ₀₀₁ =30pF ve f _{T2} =100MHz, C ₀₀₂ =60pF değerleri verilmektedir. v ₁ v ₀ kazancının üst kesim frekansını bulunuz. (10Puan) Cb1 = TC1 = TC2 = SOMA Cc1 = TC2 = TC2 = SOMA TA3 = TC2 =			İmza:	
S1b Tranzistoriar için $f_{Ti}=10MHz$, $C_{be1}=30pF$ ve $f_{Ti}=10MHz$, $C_{be2}=60pF$ değerleri verilmektedir. v_i/v_i s kazancının üst kesim frekansını bulunuz.(10Puan) $\begin{array}{c} C_{bb} = \frac{1}{12\pi} \sum_{i=1}^{R_{bi}} \sum_{j=1}^{R_{bi}} \sum_{j=1}^{R$	S1a DC durumda V _{C2} =0 olsun istenmektedir. I ₁ akım kaynağının obulunuz.(5Puan)	değerini	<u></u>	$\downarrow \qquad
S1b Tranzistoriar için $f_{Ti}=10MHz$, $C_{be1}=30pF$ ve $f_{Ti}=10MHz$, $C_{be2}=60pF$ değerleri verilmektedir. v_i/v_i s kazancının üst kesim frekansını bulunuz.(10Puan) $\begin{array}{c} C_{bb} = \frac{1}{12\pi} \sum_{i=1}^{R_{bi}} \sum_{j=1}^{R_{bi}} \sum_{j=1}^{R$	Icr=Tal= Val - Sh - Jul		1, 1	1.8κΩ Τ ₂
S1b Tranzistoriar için $f_{r_1}=10MHz$, $C_{be1}=30pF$ ve $f_{r_2}=100MHz$, $C_{be2}=60pF$ değerleri verilmektedir. v_i / v_s kazancının üst kesim frekansını bulunuz.(10Puan)	IDZ = IEZ = IDMA	4	R_s	+
S1b Tranzistorlar için $f_{T_1}=10MHz$, $C_{be1}=30pF$ ve $f_{T_2}=100MHz$, $C_{be2}=60pF$ değerleri verilmektedir. v_1/v_5 kazancının üst kesim frekansını bulunuz.(10Puan) $ \begin{array}{cccccccccccccccccccccccccccccccccc$	II + IB2= IC1 = IE1 = ID1 = 40/	uA vs	I ₂	$\begin{cases} R_L \\ 5k\Omega \end{cases} \begin{cases} V_L \\ - \end{cases}$
Ciz = $(1-(C_2)(C_{1})_2 + C_{1})_2$ Coz = $(1-(C_2)(C_{1})_2 + C_{1$	S1b Tranzistorlar için f_{T1} =10MHz, C_{be1} =30pF ve f_{T2} =100MHz, C_{be2}	=60pF	18	5V
Ciz = $(1-1/2)$ Ccbz + Cbez Coz = $(1-1/2)$ Ccbz + Cbez Coz = $(1-1/2)$ Ccbz Coz = $(1-1/2)$ Cccc Coz = $(1-1/2)$ Ccccc Coz = $(1-1/2)$ Cccccc Coz = $(1-1/2)$ Ccccccccccccccccccccccccccccccccccccc	E11 171.161 0 160	Cc62= -	I - Ch	02=3
Std Giriş işaretinin 1kHz'lik darbe işareti olması durumunda çıkış işaretinde oluşacak darbe üstü eğilmesini ve yükselme süresini bulunuz.(5Puan) $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000 \text{ MHz}$ $(2 = -R_{MZ} L_{L} = -\frac{1}{25} \times 5k = 1000$		= (1-10	12) (cb2 +C	bez.
Std Giriş işaretinin 1kHz'lik darbe işareti olması durumunda çıkış işaretinde oluşacak darbe üstü eğilmesini ve yükselme süresini bulunuz.(5Puan) $ \frac{1}{2\pi} \frac{1}{(c_{11}+(c_{12}))} \frac{1}{(c_{11}+(c_{11}))} \frac{1}{(c_{11}+(c$	Z COUL Z J Trizz Co.	L = (1-	tiz) (cb2	
Sid Giriş işaretinin 1kHz'lik darbe işareti olması durumunda çıkış işaretinde oluşacak darbe üstü eğilmesini ve yükselme süresini bulunuz.(5Puan) $ \begin{array}{cccccccccccccccccccccccccccccccccc$	continer cere ner nels	2 = - Pm	2 PL= - 1/25	x Sk=
S1c Devrenin alt kesim frekansını bulunuz. (5Puan) S1d Giriş işaretinin 1kHz'lik darbe işareti olması durumunda çıkış işaretinde oluşacak darbe üstü eğilmesini ve yükselme süresini bulunuz. (5Puan)	1 = IT CONRECT = 2TT Cher. (No 11 (1)) = 16MHZ	12 = 803	17PF Con	E], 70
S1c Devrenin alt kesim frekansını bulunuz. (5Puan) S1d Giriş işaretinin 1kHz'lik darbe işareti olması durumunda çıkış işaretinde oluşacak darbe üstü eğilmesini ve yükselme süresini bulunuz. (5Puan)	= 1 (cc)+(iz) (2/1/01) 1/29/			- 11
S1d Giriş işaretinin 1kHz'lik darbe işareti olması durumunda çıkış işaretinde oluşacak darbe üstü eğilmesini ve yükselme süresini bulunuz.(5Puan)	= 1 = 211 COL PLICOZ = 8,6MHZ	1/2/1/01	= 12 = Pfler = 2 = 12 = 5 h	:2,5h
S1d Giriş işaretinin 1kHz'lik darbe işareti olması durumunda çıkış işaretinde oluşacak darbe üstü eğilmesini ve yükselme süresini bulunuz.(5Puan)	S1c Devrenin alt kesim frekansını bulunuz.(5Puan)	and the second s		
S1d Giriş işaretinin 1kHz'lik darbe işareti olması durumunda çıkış işaretinde oluşacak darbe üstü eğilmesini ve yükselme süresini bulunuz.(5Puan)	July CIPAL Fait=	1	~ ~ 10,	6HZ
eğilmesini ve yükselme süresini bulunuz.(5Puan)	5, 7,7	1 (11	+19)	
2 TO 0/35 = 0/35		ş işaretinde ol	uşacak darbe üstü	
= G((1+10) = 0,033 + 55+ 1 +1/4 Usn	in to make an VI	0,35	= 791	
=4,4/Usn	d= CI((1+12)) =0,033	tust	Th	
The state of the s			= 4,4,1	Jn

1001

MA = OHS oldependa faz -14°.

2 c'de bulandi

fort pays = - 14° Yan; donne hororsiz.

S3-Şekildeki devrede tranzistor için V_{CEsat}=0.25V değeri verilmektedir. S3a Tranzistorun dayanabileceği maksimum kollektör akımı I_{CMAX}=200mA olduğuna göre devreden maksimum çıkış gücünü almamızı sağlayacak yük değerini (sinüzodal işaret durumu için) bulunuz.(10Puan)

S3b Tranzistorun maksimum kollektör emetör gerilim değerini bulunuz.(5Puan)

Jalmax = ICQ

S3c Devrenin maksimum verim değerini bulunuz.(5Puan)

PDC = VCC x I CQ = 6 V x 100 mA = 0,6W

PRIMOIX = VMMOIX + TRIMOX = 5 x 0,1 = 0,25W

MAN = 0,25 = 6,42/

S3d Tranzistor üzerinde harcanacak maksimum gücü bulunuz.(5Puan)

S3e Tranzistor için maksimum jonksiyon sıcaklığı 170C° ve maksimum ortam sıcaklığı 60C° olarak verildiğine göre jonksiyondan havaya toplam ısıl direnç hangi şartı sağlamalıdır bulunuz. (5Puan)

S3f Devrenin 500MHz'lik frekansta çalışması istenmektedir. Cc kondansatörünün değeri nasıl seçilmelidir? Bulunuz. Not: L endüktansının değeri yeterince büyüktür.(5Puan)