Тема:

Построение наибольшего паросочетания

Сергей Витальевич Рыбин svrybin@etu.ru

СПбГЭТУ «ЛЭТИ», кафедра «Алгоритмической математики»

22 июня 2023 г.

① Двудольным графом (биграфом, четным графом) называют граф G(V, E), такой, что множество его вершин V есть объединение двух непересекающихся, непустых множеств V_1 и V_2 . При этом каждое ребро графа соединяет вершину из множества V_1 с вершиной из множества V_2 .

- **1** Двудольным графом (биграфом, четным графом) называют граф G(V, E), такой, что множество его вершин V есть объединение двух непересекающихся, непустых множеств V_1 и V_2 . При этом каждое ребро графа соединяет вершину из множества V_1 с вершиной из множества V_2 .
- 2 Множества V_1 и V_2 называют долями двудольного графа. Если двудольный граф содержит все ребра, соединяющие множества V_1 и V_2 , то это полный двудольный граф. При этом, если $|V_1| = n$, а $|V_2| = m$, то такой граф обозначают как $K_{n,m}$.

- **1** Двудольным графом (биграфом, четным графом) называют граф G(V, E), такой, что множество его вершин V есть объединение двух непересекающихся, непустых множеств V_1 и V_2 . При этом каждое ребро графа соединяет вершину из множества V_1 с вершиной из множества V_2 .
- 2 Множества V_1 и V_2 называют долями двудольного графа. Если двудольный граф содержит все ребра, соединяющие множества V_1 и V_2 , то это полный двудольный граф. При этом, если $|V_1|=n$, а $|V_2|=m$, то такой граф обозначают как $K_{n,m}$.
- f 3 Пусть ${f G}({f V},{f E})$ двудольный граф. Его всегда можно изобразить так, чтобы вершины доли ${f V}_1$ лежали слева, а доли ${f V}_2$ справа. Иногда вершины доли ${f V}_1$ будем обозначать литерой L, а доли ${f V}_2$ литерой R.

- **1** Двудольным графом (биграфом, четным графом) называют граф G(V, E), такой, что множество его вершин V есть объединение двух непересекающихся, непустых множеств V_1 и V_2 . При этом каждое ребро графа соединяет вершину из множества V_1 с вершиной из множества V_2 .
- 2 Множества V_1 и V_2 называют долями двудольного графа. Если двудольный граф содержит все ребра, соединяющие множества V_1 и V_2 , то это полный двудольный граф. При этом, если $|V_1|=n$, а $|V_2|=m$, то такой граф обозначают как $K_{n,m}$.
- Паросочетанием двудольного графа называют подмножество его ребер, никакие два из которых не являются смежными (не инциденты одной вершине).

- **1** Двудольным графом (биграфом, четным графом) называют граф G(V, E), такой, что множество его вершин V есть объединение двух непересекающихся, непустых множеств V_1 и V_2 . При этом каждое ребро графа соединяет вершину из множества V_1 с вершиной из множества V_2 .
- $oldsymbol{2}$ Множества $oldsymbol{V}_1$ и $oldsymbol{V}_2$ называют долями двудольного графа. Если двудольный граф содержит все ребра, соединяющие множества $oldsymbol{V}_1$ и $oldsymbol{V}_2$, то это полный двудольный граф. При этом, если $|oldsymbol{V}_1|=n$, а $|oldsymbol{V}_2|=m$, то такой граф обозначают как $K_{n,m}$.
- Паросочетанием двудольного графа называют подмножество его ребер, никакие два из которых не являются смежными (не инциденты одной вершине).
- 5 Будем считать, что множество из одного ребра является паросочетанием.

- **1** Двудольным графом (биграфом, четным графом) называют граф G(V, E), такой, что множество его вершин V есть объединение двух непересекающихся, непустых множеств V_1 и V_2 . При этом каждое ребро графа соединяет вершину из множества V_1 с вершиной из множества V_2 .
- 2 Множества V_1 и V_2 называют долями двудольного графа. Если двудольный граф содержит все ребра, соединяющие множества V_1 и V_2 , то это полный двудольный граф. При этом, если $|V_1|=n$, а $|V_2|=m$, то такой граф обозначают как $K_{n,m}$.
- ③ Пусть G(V, E) двудольный граф. Его всегда можно изобразить так, чтобы вершины доли V_1 лежали слева, а доли V_2 справа. Иногда вершины доли V_1 будем обозначать литерой L, а доли V_2 литерой R.
- Паросочетанием двудольного графа называют подмножество его ребер, никакие два из которых не являются смежными (не инциденты одной вершине).
- Будем считать, что множество из одного ребра является паросочетанием.
- б Паросочетание P в графе G называется наибольшим или максимальным по размеру, если в G нет паросочетаний, число ребер в которых больше, чем в P. Число ребер в наибольшем паросочетании графа G называется его числом паросочетания.

- **1** Двудольным графом (биграфом, четным графом) называют граф G(V, E), такой, что множество его вершин V есть объединение двух непересекающихся, непустых множеств V_1 и V_2 . При этом каждое ребро графа соединяет вершину из множества V_1 с вершиной из множества V_2 .
- 2 Множества V_1 и V_2 называют долями двудольного графа. Если двудольный граф содержит все ребра, соединяющие множества V_1 и V_2 , то это полный двудольный граф. При этом, если $|V_1|=n$, а $|V_2|=m$, то такой граф обозначают как $K_{n,m}$.
- Паросочетанием двудольного графа называют подмножество его ребер, никакие два из которых не являются смежными (не инциденты одной вершине).
- Будем считать, что множество из одного ребра является паросочетанием.
- [6] Паросочетание P в графе G называется наибольшим или максимальным по размеру, если в G нет паросочетаний, число ребер в которых больше, чем в P. Число ребер в наибольшем паросочетании графа G называется его числом паросочетания.
- Паросочетание P в графе G называется максимальным или максимальным по включению, если оно не содержится ни в каком другом паросочетании этого графа, т. е. в него нельзя включить ни одного ребра несмежного ко всем ребрам паросочетания. Очевидно, что наибольшее паросочетание является максимальным по включению. Обратное, не всегда верно.

- ① Двудольным графом (биграфом, четным графом) называют граф G(V, E), такой, что множество его вершин V есть объединение двух непересекающихся, непустых множеств V_1 и V_2 . При этом каждое ребро графа соединяет вершину из множества V_1 с вершиной из множества V_2 .
- 2 Множества V_1 и V_2 называют долями двудольного графа. Если двудольный граф содержит все ребра, соединяющие множества V_1 и V_2 , то это полный двудольный граф. При этом, если $|V_1|=n$, а $|V_2|=m$, то такой граф обозначают как $K_{n,m}$.
- Паросочетанием двудольного графа называют подмножество его ребер, никакие два из которых не являются смежными (не инциденты одной вершине).
- Будем считать, что множество из одного ребра является паросочетанием.
- б Паросочетание P в графе G называется наибольшим или максимальным по размеру, если в G нет паросочетаний, число ребер в которых больше, чем в P. Число ребер в наибольшем паросочетании графа G называется его числом паросочетания.
- Паросочетание P в графе G называется максимальным или максимальным по включению, если оно не содержится ни в каком другом паросочетании этого графа, т. е. в него нельзя включить ни одного ребра несмежного ко всем ребрам паросочетания. Очевидно, что наибольшее паросочетание является максимальным по включению. Обратное, не всегда верно.
- ${f 8}$ Вершина v графа ${f G}$ называется насыщенной или покрытой в паросочетании P, если в P существует ребро, инцидентное v, в противном случае вершина называется свободной.

- **1** Двудольным графом (биграфом, четным графом) называют граф G(V, E), такой, что множество его вершин V есть объединение двух непересекающихся, непустых множеств V_1 и V_2 . При этом каждое ребро графа соединяет вершину из множества V_1 с вершиной из множества V_2 .
- 2 Множества V_1 и V_2 называют долями двудольного графа. Если двудольный граф содержит все ребра, соединяющие множества V_1 и V_2 , то это полный двудольный граф. При этом, если $|V_1|=n$, а $|V_2|=m$, то такой граф обозначают как $K_{n,m}$.
- Паросочетанием двудольного графа называют подмножество его ребер, никакие два из которых не являются смежными (не инциденты одной вершине).
- Будем считать, что множество из одного ребра является паросочетанием.
- б Паросочетание P в графе G называется наибольшим или максимальным по размеру, если в G нет паросочетаний, число ребер в которых больше, чем в P. Число ребер в наибольшем паросочетании графа G называется его числом паросочетания.
- Паросочетание P в графе G называется максимальным или максимальным по включению, если оно не содержится ни в каком другом паросочетании этого графа, т. е. в него нельзя включить ни одного ребра несмежного ко всем ребрам паросочетания. Очевидно, что наибольшее паросочетание является максимальным по включению. Обратное, не всегда верно.
- ${\color{red} {\bf 3}}$ Вершина v графа ${\color{red} {\bf G}}$ называется **насыщенной** или **покрытой** в паросочетании P, если в P существует ребро, инцидентное v, в противном случае вершина называется **свободной**.
- ① Паросочетание P называется **совершенным**, если все вершины графа G насыщены в P. Очевидно, что каждое совершенное паросочетание является наибольшим, но обратное не всегда верно.

- **1** Двудольным графом (биграфом, четным графом) называют граф G(V, E), такой, что множество его вершин V есть объединение двух непересекающихся, непустых множеств V_1 и V_2 . При этом каждое ребро графа соединяет вершину из множества V_1 с вершиной из множества V_2 .
- 2 Множества V_1 и V_2 называют долями двудольного графа. Если двудольный граф содержит все ребра, соединяющие множества V_1 и V_2 , то это полный двудольный граф. При этом, если $|V_1|=n$, а $|V_2|=m$, то такой граф обозначают как $K_{n,m}$.
- ③ Пусть G(V, E) двудольный граф. Его всегда можно изобразить так, чтобы вершины доли V_1 лежали слева, а доли V_2 справа. Иногда вершины доли V_1 будем обозначать литерой L, а доли V_2 литерой R.
- Паросочетанием двудольного графа называют подмножество его ребер, никакие два из которых не являются смежными (не инциденты одной вершине).
- 5 Будем считать, что множество из одного ребра является паросочетанием.
- б Паросочетание P в графе G называется наибольшим или максимальным по размеру, если в G нет паросочетаний, число ребер в которых больше, чем в P. Число ребер в наибольшем паросочетании графа G называется его числом паросочетания.
- Паросочетание P в графе G называется максимальным или максимальным по включению, если оно не содержится ни в каком другом паросочетании этого графа, т. е. в него нельзя включить ни одного ребра несмежного ко всем ребрам паросочетания. Очевидно, что наибольшее паросочетание является максимальным по включению. Обратное, не всегда верно.
- ${\color{red} {\mathfrak g}}$ Вершина v графа ${\color{red} {G}}$ называется насыщенной или покрытой в паросочетании P, если в P существует ребро, инцидентное v, в противном случае вершина называется свободной.
- ① Паросочетание P называется **совершенным**, если все вершины графа G насыщены в P. Очевидно, что каждое совершенное паросочетание является наибольшим, но обратное не всегда верно.
- Понятие паросочетания справедливо для любого графа (не обязательно двудольного). Мы будем рассматривать это понятие применительно к двудольным графам.

Puc. 1

Puc. 1

 $\begin{array}{ll} \textbf{1} & \text{Множество ребер } \{(v_1,v_6),(v_2,v_5)\} \\ \text{является паросочетанием, но не максимальным} \\ \text{по включению. Оно, например, включается в} \\ \text{паросочетание} \\ \{(v_1,v_6),(v_2,v_5),(v_3,v_7),(v_4,v_9)\}. \end{array}$

 $\{(v_1, v_6), (v_2, v_5), (v_3, v_7), (v_4, v_9)\}.$ Последнее очевидно, является наибольшим (ребра и насыщенные вершины отмечены зеленым цветом, оставшиеся ребра и свободная вершина v_8 — желтым), рисунок 1:b.

Puc. 1

- f 1 Множество ребер $\{(v_1,v_6),(v_2,v_5)\}$ является паросочетанием, но не максимальным по включению. Оно, например, включается в паросочетание
- $\{(v_1,v_6),(v_2,v_5),(v_3,v_7),(v_4,v_9)\}.$ Последнее очевидно, является наибольшим (ребра и насыщенные вершины отмечены зеленым цветом, оставшиеся ребра и свободная вершина v_8 желтым), рисунок 1:b.
- 2 В данном графе существует еще наибольшее паросочетание, например, $\{(v_1,v_6),(v_2,v_5),(v_3,v_8),(v_4,v_9)\}$, рисунок 1:с.

Puc. 1

- Множество ребер $\{(v_1, v_6), (v_2, v_5)\}$ является паросочетанием, но не максимальным по включению. Оно, например, включается в паросочетание
- $\{(v_1, v_6), (v_2, v_5), (v_3, v_7), (v_4, v_9)\}.$ Последнее очевидно, является наибольшим (ребра и насыщенные вершины отмечены зеленым цветом, оставшиеся ребра и свободная вершина v_8 — желтым), рисунок 1:b.
- В данном графе существует еще наибольшее паросочетание, например, $\{(v_1, v_6), (v_2, v_5), (v_3, v_8), (v_4, v_9)\},\$ рисунок 1:с.
- Паросочетание $\{(v_2, v_5), (v_3, v_8), (v_4, v_6)\}$, рисунок 1:d является максимальным по включению, но не наибольшим.

Puc. 1

- f 1 Множество ребер $\{(v_1,v_6),(v_2,v_5)\}$ является паросочетанием, но не максимальным по включению. Оно, например, включается в паросочетание
- $\{(v_1,v_6),(v_2,v_5),(v_3,v_7),(v_4,v_9)\}$. Последнее очевидно, является наибольшим (ребра и насыщенные вершины отмечены зеленым цветом, оставшиеся ребра и свободная вершина v_8 желтым), рисунок 1:b.
- igoplus B данном графе существует еще наибольшее паросочетание, например, $\{(v_1, v_6), (v_2, v_5), (v_3, v_8), (v_4, v_9)\}$, рисунок 1:c.
- $\begin{cal}{l}$ Паросочетание $\{(v_2,v_5),(v_3,v_8),(v_4,v_6)\},$ рисунок 1:d является максимальным по включению, но не наибольшим.
- 4 Число паросочетания равно 4.

Puc. 1

floor Множество ребер $\{(v_1,v_6),(v_2,v_5)\}$ является паросочетанием, но не максимальным по включению. Оно, например, включается в паросочетание

 $\{(v_1,v_6),(v_2,v_5),(v_3,v_7),(v_4,v_9)\}$. Последнее очевидно, является наибольшим (ребра и насыщенные вершины отмечены зеленым цветом, оставшиеся ребра и свободная вершина v_8 — желтым), рисунок 1:b.

igg(2) В данном графе существует еще наибольшее паросочетание, например, $\{(v_1,v_6),(v_2,v_5),(v_3,v_8),(v_4,v_9)\},$

рисунок 1:с.

3 Паросочетание

 $\overline{\{(v_2,v_5),(v_3,v_8),(v_4,v_6)\}}$, рисунок 1:d является максимальным по включению, но не наибольшим.

Число паросочетания равно 4.

🕕 Постановка задачи. В заданном двудольном графе найти наибольшее паросочетание (или все наибольшие паросочетания).

Алгоритм

Алгоритм 3.0. Построение наибольшего паросочетания в двудольном графе

Изменяем ориентацию ребер графа G вдоль пути: e_2, \dots, e_{k-1}

Исходные данные: двудольный граф $G = (V_1 \cup V_2, E)$ **Результат:** Множество ребер графа G, ориентированных справа налево Инициализация Вводим две фиктивные вершины S и TСоединяем S с вершинами V_1 фиктивными ребрами, ориентированными от вершины SСоединяем T с вершинами V_2 фиктивными ребрами, ориентированными к вершине TОриентируем все ребра двудольного графа слева направо (от V_1 к V_2) Основной алгоритм while существует путь $\{e_1,\ldots,e_k\}\mid e_i\in E, 2\leqslant i\leqslant k-1 \text{ of } S$ к T do Удаляем фиктивные ребра пути: e_1 и e_k

end while

- $2 \quad S \rightarrow v_2 \rightarrow u_3 \rightarrow T$

$$2 S \rightarrow v_2 \rightarrow u_3 \rightarrow T$$

$$3 S \rightarrow v_3 \rightarrow u_2 \rightarrow T$$

$$2 \quad S \rightarrow v_2 \rightarrow u_3 \rightarrow T$$

$$3 S \rightarrow v_3 \rightarrow u_2 \rightarrow T$$

$$2 S \rightarrow v_2 \rightarrow u_3 \rightarrow T$$

$$3 S \rightarrow v_3 \rightarrow u_2 \rightarrow T$$

$$2 \hspace{.1in} S \rightarrow v_2 \rightarrow u_3 \rightarrow T$$

$$3 S \rightarrow v_3 \rightarrow u_2 \rightarrow T$$

$$5 S \rightarrow v_6 \rightarrow u_7 \rightarrow T$$

Таким образом, искомое паросочетание:

$$\{(v_1,u_5),\,(v_2,u_3),\,(v_3,u_2),\,(v_5,u_1),\,(v_6,u_7)\}$$

$$2 \hspace{.1in} S \rightarrow v_2 \rightarrow u_3 \rightarrow T$$

$$3 S \rightarrow v_3 \rightarrow u_2 \rightarrow T$$

Таким образом, искомое паросочетание:

$$\{(v_1,u_5),\,(v_2,u_3),\,(v_3,u_2),\,(v_5,u_1),\,(v_6,u_7)\}$$

6 Число паросочетания равно 5.

$$2 \hspace{.1in} S \rightarrow v_2 \rightarrow u_3 \rightarrow T$$

$$3 S \rightarrow v_3 \rightarrow u_2 \rightarrow T$$

Таким образом, искомое паросочетание:

$$\{(v_1,u_5),\,(v_2,u_3),\,(v_3,u_2),\,(v_5,u_1),\,(v_6,u_7)\}$$

Число паросочетания равно 5.

Построенное паросочетание не является единственным для данного графа. Например:

$$\{(v_5,u_6),\,(v_1,u_5),\,(v_2,u_3),\,(v_4,u_2),\,(v_6,u_7)\}$$