Vector Math Library C Reference

Table of Contents

Structures (Array of Structures/AoS)	32
VmathMatrix3	33
VmathMatrix4	34
VmathPoint3	35
VmathQuat	36
VmathTransform3	37
VmathVector3	38
VmathVector4	39
Structures (Structure of Arrays/SoA)	40
VmathSoaMatrix3	
VmathSoaMatrix4	42
VmathSoaPoint3	43
VmathSoaQuat	44
VmathSoaTransform3	45
VmathSoaVector3	46
VmathSoaVector4	47
3-D Vector Functions (AoS, by reference)	48
vmathV3AbsPerElem	49
vmathV3Add	50
vmathV3AddP3	51
vmathV3Copy	52
vmathV3CopySignPerElem	53
vmathV3Cross	54
vmathV3CrossMatrix	55
vmathV3CrossMatrixMul	56
vmathV3DivPerElem	57
vmathV3Dot	58
vmathV3Get128	59
vmathV3GetElem	60
vmathV3GetX	61
vmathV3GetY	62
vmathV3GetZ	63
vmathV3Length	64
vmathV3LengthSqr	65
vmathV3Lerp	
vmathV3LoadXYZArray	
vmathV3MakeFrom128	
vmathV3MakeFromElems	69
vmathV3MakeFromP3	
vmathV3MakeFromScalar	71
vmathV3MakeXAxis	72
vmathV3MakeYAxis	73
vmathV3MakeZAxis	74
vmathV3MaxElem	75

	vmathV3MaxPerElem	76
	vmathV3MinElem	77
	vmathV3MinPerElem	78
	vmathV3MulPerElem	79
	vmathV3Neg	80
	vmathV3Normalize	81
	vmathV3Outer	82
	vmathV3Print	83
	vmathV3Prints	84
	vmathV3RecipPerElem	85
	vmathV3RowMul	
	vmathV3RsqrtPerElem	
	vmathV3ScalarDiv	
	vmathV3ScalarMul	
	vmathV3Select	
	vmathV3SetElem	_
	vmathV3SetX	
	vmathV3SetY	
	vmathV3SetZ	
	vmathV3Slerp	
	vmathV3SqrtPerElem	
	vmathV3StoreHalfFloats	
	vmathV3StoreXYZ	
	vmathV3StoreXYZArray	
	vmathV3Sub	100
	vmathV3Sum	
4-D	Vector Functions (AoS, by reference)	102
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem	102 103
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Add	102 103 104
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Add vmathV4Copy	102 103 104 105
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Add vmathV4Copy vmathV4CopySignPerElem	102 103 104 105 106
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Add vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem	102 103 104 105 106
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Add vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Dot.	102 103 104 105 106 107
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Dot vmathV4Get128	102 103 104 105 106 107 108 109
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Dot vmathV4Get128 vmathV4GetElem	102 103 104 105 106 107 108 109
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Dot vmathV4Get128 vmathV4GetElem vmathV4GetElem	102 103 104 105 106 107 108 110 111
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Dot. vmathV4Get128 vmathV4GetElem vmathV4GetElem vmathV4GetW vmathV4GetX	102 103 104 105 106 107 108 109 111 111
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Dot vmathV4Get128 vmathV4GetElem vmathV4GetElem vmathV4GetW vmathV4GetXYZ	102 103 104 105 106 107 108 110 111 112
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Dot vmathV4Get128 vmathV4GetElem vmathV4GetElem vmathV4GetElem vmathV4GetX vmathV4GetX vmathV4GetXYZ vmathV4GetY	102 103 104 105 106 107 108 110 111 111 113 114
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Dot vmathV4Get128 vmathV4GetElem vmathV4GetElem vmathV4GetX vmathV4GetX vmathV4GetX vmathV4GetY vmathV4GetY vmathV4GetY vmathV4GetZ	102 103 104 105 106 107 108 111 111 113 114 115
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Dot vmathV4Get128 vmathV4GetElem vmathV4GetElem vmathV4GetW vmathV4GetX vmathV4GetX vmathV4GetY vmathV4GetY vmathV4GetZ vmathV4GetZ vmathV4Length	102 103 104 105 106 108 109 111 112 113 114 115
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Dot vmathV4Get128 vmathV4GetElem vmathV4GetElem vmathV4GetW vmathV4GetX vmathV4GetX vmathV4GetY vmathV4GetY vmathV4GetY vmathV4GetZ vmathV4GetZ vmathV4Length vmathV4LengthSqr	102 103 104 105 106 107 108 110 111 112 114 115 116
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Dot vmathV4Get128 vmathV4GetElem vmathV4GetElem vmathV4GetElem vmathV4GetX vmathV4GetX vmathV4GetX vmathV4GetY vmathV4GetZ vmathV4GetZ vmathV4Copt vmathV4Copt vmathV4Copt vmathV4Copt vmathV4Copt vmathV4Copt vmathV4Copt vmathV4Length vmathV4Length vmathV4Length vmathV4Length vmathV4Length	102 103 104 105 106 107 108 110 111 113 114 115 116 117
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Get128 vmathV4GetElem vmathV4GetElem vmathV4GetW vmathV4GetX vmathV4GetXYZ vmathV4GetY vmathV4GetZ vmathV4GetZ vmathV4Copy vmathV4Length vmathV4Length vmathV4Length vmathV4Lerp vmathV4MakeFrom128	102 103 104 105 106 108 109 111 112 113 114 115 116 117 118
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem. vmathV4Dot. vmathV4Get128 vmathV4GetElem vmathV4GetElem vmathV4GetW vmathV4GetX vmathV4GetX vmathV4GetY vmathV4GetY vmathV4GetZ vmathV4GetZ vmathV4GetZ vmathV4Length vmathV4Lengthsqr vmathV4Lerp vmathV4MakeFrom128 vmathV4MakeFromElems	102 103 104 105 106 107 108 110 111 112 115 116 117 118 119 119 120
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem vmathV4DivPerElem vmathV4Get128 vmathV4GetElem vmathV4GetW vmathV4GetX vmathV4GetX vmathV4GetY vmathV4GetY vmathV4GetY vmathV4GetY vmathV4GetY vmathV4CopySignPerElem vmathV4Get128 vmathV4Get128 vmathV4Get128 vmathV4GetElem vmathV4GetW vmathV4GetX vmathV4GetX vmathV4GetX vmathV4GetY vmathV4GetY vmathV4GetZ vmathV4GetZ vmathV4Length vmathV4Length vmathV4LengthSqr vmathV4MakeFrom128 vmathV4MakeFromElems vmathV4MakeFromP3	102 103 104 105 106 108 109 111 112 115 116 117 118 119 120 121
4-D	Vector Functions (AoS, by reference) vmathV4AbsPerElem vmathV4Copy vmathV4CopySignPerElem. vmathV4Dot. vmathV4Get128 vmathV4GetElem vmathV4GetElem vmathV4GetW vmathV4GetX vmathV4GetX vmathV4GetY vmathV4GetY vmathV4GetZ vmathV4GetZ vmathV4GetZ vmathV4Length vmathV4Lengthsqr vmathV4Lerp vmathV4MakeFrom128 vmathV4MakeFromElems	102 103 104 105 106 107 108 110 111 112 115 116 117 118 119 120 121 121

	vmathV4MakeFromV3	124
	vmathV4MakeFromV3Scalar	125
	vmathV4MakeWAxis	126
	vmathV4MakeXAxis	127
	vmathV4MakeYAxis	128
	vmathV4MakeZAxis	129
	vmathV4MaxElem	130
	vmathV4MaxPerElem	131
	vmathV4MinElem	132
	vmathV4MinPerElem	133
	vmathV4MulPerElem	134
	vmathV4Neg	135
	vmathV4Normalize	136
	vmathV4Outer	137
	vmathV4Print	138
	vmathV4Prints	139
	vmathV4RecipPerElem	140
	vmathV4RsqrtPerElem	141
	vmathV4ScalarDiv	142
	vmathV4ScalarMul	143
	vmathV4Select	144
	vmathV4SetElem	145
	vmathV4SetW	146
	vmathV4SetX	147
	vmathV4SetXYZ	148
	vmathV4SetY	149
	vmathV4SetZ	150
	vmathV4Slerp	151
	vmathV4SqrtPerElem	152
	vmathV4StoreHalfFloats	
	vmathV4Sub	
	vmathV4Sum	155
Point	Functions (AoS, by reference)	156
	vmathP3AbsPerElem	
	vmathP3AddV3	158
	vmathP3Copy	159
	vmathP3CopySignPerElem	
	vmathP3Dist	
	vmathP3DistFromOrigin	162
	vmathP3DistSqr	163
	vmathP3DistSqrFromOrigin	
	vmathP3DivPerElem	
	vmathP3Get128	166
	vmathP3GetElem	167
	vmathP3GetX	
	vmathP3GetY	169
	vmathP3GetZ	170
	vmathP3Lerp	171

	VIIIatiiP3LoauX1ZAIIay	1/2
	vmathP3MakeFrom128	173
	vmathP3MakeFromElems	174
	vmathP3MakeFromScalar	175
	vmathP3MakeFromV3	176
	vmathP3MaxElem	177
	vmathP3MaxPerElem	
	vmathP3MinElem	
	vmathP3MinPerElem	
	vmathP3MulPerElem	
	vmathP3NonUniformScale	
	vmathP3Print	
	vmathP3Prints	
	vmathP3Projection	
	vmathP3RecipPerElem	
	vmathP3RsqrtPerElem	
	vmathP3Scale	
	vmathP3Select	
	vmathP3SetElem	
	vmathP3SetX	
	vmathP3SetY	
	vmathP3SetZ	193
	vmathP3SqrtPerElem	194
	vmathP3StoreHalfFloats	195
	vmathP3StoreXYZ	196
	vmathP3StoreXYZArray	197
	vmathP3Sub	198
	vmathP3SubV3	199
	vmathP3Sum	200
Quat	ernion Functions (AoS, by reference)	201
L uut	vmathQAdd	
	vmathQConj	
	vmathQCopy	
	vmathQDot	
	vmathQGet128	
	vmathQGetElem	
	vmathQGetW	
	vmathQGetX	
	vmathQGetXYZ	
	vmathQGetY	
	vmathQGetZ	
	vmathQLength	
	vmathQLerp	
	vmathQMakeFrom128	
	vmathQMakeFromElems	
	vmathQMakeFromM3	
	vmathQMakeFromScalar	218
	vmathQMakeFromV3Scalar	219

	vmathQMakeFromV4	
	vmathQMakeIdentity	221
	vmathQMakeRotationArc	
	vmathQMakeRotationAxis	
	vmathQMakeRotationX	
	vmathQMakeRotationY	
	vmathQMakeRotationZ	
	vmathQMul	
	vmathQNeg	
	vmathQNorm	229
	vmathQNormalize	
	vmathQPrint	
	vmathQPrints	232
	vmathQRotate	233
	vmathQScalarDiv	234
	vmathQScalarMul	235
	vmathQSelect	236
	vmathQSetElem	237
	vmathQSetW	238
	vmathQSetX	239
	vmathQSetXYZ	240
	vmathQSetY	241
	vmathQSetZ	
	vmathQSlerp	243
	vmathQSquad	
	vmathQSub	245
3x3 N	Matrix Functions (AoS, by reference)	246
	vmathM3AbsPerElem	247
	vmathM3Add	248
	vmathM3AppendScale	249
	vmathM3Copy	250
	vmathM3Determinant	251
	vmathM3GetCol	252
	vmathM3GetCol0	253
	vmathM3GetCol1	254
	vmathM3GetCol2	255
	vmathM3GetElem	256
	vmathM3GetRow	257
	vmathM3Inverse	258
	vmathM3MakeFromCols	259
	vmathM3MakeFromQ	260
	vmathM3MakeFromScalar	261
	vmathM3MakeIdentity	262
	vmathM3MakeRotationAxis	263
	vmathM3MakeRotationQ	264
	vmathM3MakeRotationX	265
	vmathM3MakeRotationY	266
	vmathM3MakeRotationZ	267

	vmathM3MakeRotationZYX	268
	vmathM3MakeScale	269
	vmathM3Mul	270
	vmathM3MulPerElem	271
	vmathM3MulV3	272
	vmathM3Neg	273
	vmathM3PrependScale	274
	vmathM3Print	275
	vmathM3Prints	276
	vmathM3ScalarMul	277
	vmathM3Select	278
	vmathM3SetCol	279
	vmathM3SetCol0	280
	vmathM3SetCol1	281
	vmathM3SetCol2	282
	vmathM3SetElem	283
	vmathM3SetRow	284
	vmathM3Sub	285
	vmathM3Transpose	286
4x4 N	latrix Functions (AoS, by reference)	287
	vmathM4AbsPerElem	
	vmathM4Add	289
	vmathM4AffineInverse	290
	vmathM4AppendScale	291
	vmathM4Copy	292
	vmathM4Determinant	293
	vmathM4GetCol	294
	vmathM4GetCol0	295
	vmathM4GetCol1	296
	vmathM4GetCol2	297
	vmathM4GetCol3	298
	vmathM4GetElem	299
	vmathM4GetRow	300
	vmathM4GetTranslation	301
	vmathM4GetUpper3x3	302
	vmathM4Inverse	303
	vmathM4MakeFromCols	304
	vmathM4MakeFromM3V3	305
	vmathM4MakeFromQV3	306
	vmathM4MakeFromScalar	307
	vmathM4MakeFromT3	308
	vmathM4MakeFrustum	
	vmathM4MakeIdentity	
	vmathM4MakeLookAt	
	vmathM4MakeOrthographic	
	vmathM4MakePerspective	
	vmathM4MakeRotationAxis	
	vmathM4MakeRotationQ	315

	vmathM4MakeRotationX	316
	vmathM4MakeRotationY	317
	vmathM4MakeRotationZ	318
	vmathM4MakeRotationZYX	319
	vmathM4MakeScale	320
	vmathM4MakeTranslation	321
	vmathM4Mul	
	vmathM4MulP3	323
	vmathM4MulPerElem	324
	vmathM4MulT3	325
	vmathM4MulV3	
	vmathM4MulV4	
	vmathM4Neg	328
	vmathM4OrthoInverse	
	vmathM4PrependScale	
	vmathM4Print	
	vmathM4Prints	
	vmathM4ScalarMul	
	vmathM4Select	
	vmathM4SetCol	335
	vmathM4SetCol0	336
	vmathM4SetCol1	337
	vmathM4SetCol2	
	vmathM4SetCol3	
	vmathM4SetElem	340
	vmathM4SetRow	341
	vmathM4SetTranslation	
	vmathM4SetUpper3x3	
	vmathM4Sub	344
	vmathM4Transpose	345
Trans	formation Functions (AoS, by reference)	346
	vmathT3AbsPerElem	347
	vmathT3AppendScale	348
	vmathT3Copy	349
	vmathT3GetCol	350
	vmathT3GetCoI0	351
	vmathT3GetCoI1	352
	vmathT3GetCol2	353
	vmathT3GetCol3	354
	vmathT3GetElem	355
	vmathT3GetRow	356
	vmathT3GetTranslation	357
	vmathT3GetUpper3x3	358
	vmathT3Inverse	359
	vmathT3MakeFromCols	360
	vmathT3MakeFromM3V3	361
	vmathT3MakeFromQV3	362
	vmathT3MakeFromScalar	363

	vmathT3MakeIdentity	. 364
	vmathT3MakeRotationAxis	. 365
	vmathT3MakeRotationQ	. 366
	vmathT3MakeRotationX	. 367
	vmathT3MakeRotationY	. 368
	vmathT3MakeRotationZ	. 369
	vmathT3MakeRotationZYX	. 370
	vmathT3MakeScale	. 371
	vmathT3MakeTranslation	. 372
	vmathT3Mul	. 373
	vmathT3MulP3	. 374
	vmathT3MulPerElem	. 375
	vmathT3MulV3	. 376
	vmathT3OrthoInverse	. 377
	vmathT3PrependScale	. 378
	vmathT3Print	. 379
	vmathT3Prints	. 380
	vmathT3Select	. 381
	vmathT3SetCol	. 382
	vmathT3SetCol0	. 383
	vmathT3SetCol1	. 384
	vmathT3SetCol2	. 385
	vmathT3SetCol3	. 386
	vmathT3SetElem	. 387
	vmathT3SetRow	. 388
	vmathT3SetTranslation	. 389
	vmathT3SetUpper3x3	. 390
3-D \	/ector Functions (SoA, by reference)	391
	vmathSoaV3AbsPerElem	
	vmathSoaV3Add	
	vmathSoaV3AddP3	
	vmathSoaV3Copy	
	vmathSoaV3CopySignPerElem	
	vmathSoaV3Cross	
	vmathSoaV3CrossMatrix	
	vmathSoaV3CrossMatrixMul	
	vmathSoaV3DivPerElem	
	vmathSoaV3Dot	
	vmathSoaV3Get4Aos	
	vmathSoaV3GetElem	
	vmathSoaV3GetX	
	vmathSoaV3GetY	
	vmathSoaV3GetZ	
	vmathSoaV3Length	
	vmathSoaV3LengthSqr	
	vmathSoaV3Lerp	
	vmathSoaV3LoadXYZArray	
	vmathSoaV3MakeFrom4Aos	

vmathSoaV3MakeFromAos	412
vmathSoaV3MakeFromElems	413
vmathSoaV3MakeFromP3	414
vmathSoaV3MakeFromScalar	415
vmathSoaV3MakeXAxis	416
vmathSoaV3MakeYAxis	
vmathSoaV3MakeZAxis	418
vmathSoaV3MaxElem	419
vmathSoaV3MaxPerElem	420
vmathSoaV3MinElem	
vmathSoaV3MinPerElem	422
vmathSoaV3MulPerElem	423
vmathSoaV3Neg	
vmathSoaV3Normalize	
vmathSoaV3Outer	
vmathSoaV3Print	
vmathSoaV3Prints	
vmathSoaV3RecipPerElem	
vmathSoaV3RowMul	
vmathSoaV3RsqrtPerElem	
vmathSoaV3ScalarDiv	
vmathSoaV3ScalarMul	
vmathSoaV3Select	
vmathSoaV3SetElem	
vmathSoaV3SetX	
vmathSoaV3SetY	
vmathSoaV3SetZ	
vmathSoaV3Slerp	
vmathSoaV3SqrtPerElem	
vmathSoaV3StoreHalfFloats	
vmathSoaV3StoreXYZArray	
vmathSoaV3Sub	
vmathSoaV3Sum	
ector Functions (SoA, by reference)	
vmathSoaV4AbsPerElem	
vmathSoaV4Add	
vmathSoaV4Copy	
vmathSoaV4CopySignPerElem	
vmathSoaV4DivPerElem	
vmathSoaV4Dot	
vmathSoaV4Get4Aos	
vmathSoaV4GetElem	
vmathSoaV4GetW	
vmathSoaV4GetX	
vmathSoaV4GetXYZ	
vmathSoaV4GetY	
vmathSoaV4GetZ	
vmathSoaV4Length	459

	vmathSoaV4LengthSqr	460
	vmathSoaV4Lerp	461
	vmathSoaV4MakeFrom4Aos	462
	vmathSoaV4MakeFromAos	463
	vmathSoaV4MakeFromElems	464
	vmathSoaV4MakeFromP3	465
	vmathSoaV4MakeFromQ	466
	vmathSoaV4MakeFromScalar	467
	vmathSoaV4MakeFromV3	468
	vmathSoaV4MakeFromV3Scalar	469
	vmathSoaV4MakeWAxis	470
	vmathSoaV4MakeXAxis	471
	vmathSoaV4MakeYAxis	472
	vmathSoaV4MakeZAxis	473
	vmathSoaV4MaxElem	474
	vmathSoaV4MaxPerElem	475
	vmathSoaV4MinElem	476
	vmathSoaV4MinPerElem	477
	vmathSoaV4MulPerElem	478
	vmathSoaV4Neg	479
	vmathSoaV4Normalize	480
	vmathSoaV4Outer	481
	vmathSoaV4Print	482
	vmathSoaV4Prints	483
	vmathSoaV4RecipPerElem	484
	vmathSoaV4RsqrtPerElem	485
	vmathSoaV4ScalarDiv	486
	vmathSoaV4ScalarMul	487
	vmathSoaV4Select	488
	vmathSoaV4SetElem	489
	vmathSoaV4SetW	490
	vmathSoaV4SetX	491
	vmathSoaV4SetXYZ	492
	vmathSoaV4SetY	493
	vmathSoaV4SetZ	494
	vmathSoaV4Slerp	495
	vmathSoaV4SqrtPerElem	496
	vmathSoaV4StoreHalfFloats	497
	vmathSoaV4Sub	
	vmathSoaV4Sum	499
Point	t Functions (SoA, by reference)	500
	vmathSoaP3AbsPerElem	
	vmathSoaP3AddV3	502
	vmathSoaP3Copy	503
	vmathSoaP3CopySignPerElem	
	vmathSoaP3Dist	505
	vmathSoaP3DistFromOrigin	
	vmathSoaP3DistSqr	507

	vmathSoaP3DistSqrFromOrigin	508
	vmathSoaP3DivPerElem	509
	vmathSoaP3Get4Aos	510
	vmathSoaP3GetElem	.511
	vmathSoaP3GetX	512
	vmathSoaP3GetY	513
	vmathSoaP3GetZ	514
	vmathSoaP3Lerp	515
	vmathSoaP3LoadXYZArray	516
	vmathSoaP3MakeFrom4Aos	517
	vmathSoaP3MakeFromAos	518
	vmathSoaP3MakeFromElems	519
	vmathSoaP3MakeFromScalar	520
	vmathSoaP3MakeFromV3	521
	vmathSoaP3MaxElem	522
	vmathSoaP3MaxPerElem	-
	vmathSoaP3MinElem	524
	vmathSoaP3MinPerElem	525
	vmathSoaP3MulPerElem	526
	vmathSoaP3NonUniformScale	527
	vmathSoaP3Print	528
	vmathSoaP3Prints	529
	vmathSoaP3Projection	530
	vmathSoaP3RecipPerElem	531
	vmathSoaP3RsqrtPerElem	
	vmathSoaP3Scale	533
	vmathSoaP3Select	
	vmathSoaP3SetElem	
	vmathSoaP3SetX	536
	vmathSoaP3SetY	
	vmathSoaP3SetZ	
	vmathSoaP3SqrtPerElem	539
	vmathSoaP3StoreHalfFloats	540
	vmathSoaP3StoreXYZArray	
	vmathSoaP3Sub	542
	vmathSoaP3SubV3	543
	vmathSoaP3Sum	544
Quate	ernion Functions (SoA, by reference)	545
	vmathSoaQAdd	
	vmathSoaQConj	547
	vmathSoaQCopy	548
	vmathSoaQDot	549
	vmathSoaQGet4Aos	550
	vmathSoaQGetElem	551
	vmathSoaQGetW	552
	vmathSoaQGetX	553
	vmathSoaQGetXYZ	554
	vmathSoaQGetY	555

	vmathSoaQGetZ	556
	vmathSoaQLength	557
	vmathSoaQLerp	558
	vmathSoaQMakeFrom4Aos	559
	vmathSoaQMakeFromAos	560
	vmathSoaQMakeFromElems	561
	vmathSoaQMakeFromM3	562
	vmathSoaQMakeFromScalar	563
	vmathSoaQMakeFromV3Scalar	564
	vmathSoaQMakeFromV4	565
	vmathSoaQMakeIdentity	566
	vmathSoaQMakeRotationArc	567
	vmathSoaQMakeRotationAxis	
	vmathSoaQMakeRotationX	
	vmathSoaQMakeRotationY	
	vmathSoaQMakeRotationZ	571
	vmathSoaQMul	
	vmathSoaQNeg	
	vmathSoaQNorm	
	vmathSoaQNormalize	
	vmathSoaQPrint	
	vmathSoaQPrints	
	vmathSoaQRotate	
	vmathSoaQScalarDiv	
	vmathSoaQScalarMul	
	vmathSoaQSelect	
	vmathSoaQSetElem	
	vmathSoaQSetW	
	vmathSoaQSetX	
	vmathSoaQSetXYZ	
	vmathSoaQSetY	
	vmathSoaQSetZ	
	vmathSoaQSlerp	
	vmathSoaQSquad	
	vmathSoaQSub	
3x3 N	Matrix Functions (SoA, by reference)	591
	vmathSoaM3AbsPerElem	592
	vmathSoaM3Add	593
	vmathSoaM3AppendScale	
	vmathSoaM3Copy	595
	vmathSoaM3Determinant	
	vmathSoaM3Get4Aos	
	vmathSoaM3GetCol	
	vmathSoaM3GetCol0	
	vmathSoaM3GetCol1	
	vmathSoaM3GetCol2	
	vmathSoaM3GetElem	
	vmathSoaM3GetRow	603

	vmathSoaM3Inverse	604
	vmathSoaM3MakeFrom4Aos	605
	vmathSoaM3MakeFromAos	606
	vmathSoaM3MakeFromCols	607
	vmathSoaM3MakeFromQ	608
	vmathSoaM3MakeFromScalar	
	vmathSoaM3MakeIdentity	
	vmathSoaM3MakeRotationAxis	
	vmathSoaM3MakeRotationQ	
	vmathSoaM3MakeRotationX	
	vmathSoaM3MakeRotationY	
	vmathSoaM3MakeRotationZ	
	vmathSoaM3MakeRotationZYX	
	vmathSoaM3MakeScale	
	vmathSoaM3Mul	
	vmathSoaM3MulPerElem	
	vmathSoaM3MulV3	
	vmathSoaM3Neg	
	vmathSoaM3PrependScale	
	vmathSoaM3Print	
	vmathSoaM3Prints	
	vmathSoaM3ScalarMul	
	vmathSoaM3Select	
	vmathSoaM3SetCol	
	vmathSoaM3SetCol0	
	vmathSoaM3SetCol1	
	vmathSoaM3SetCol2 vmathSoaM3SetElem	
	vmathSoaM3SetRow	
	vmathSoaM3Sub	
	vmathSoaM3Transpose	
4x4 N	Matrix Functions (SoA, by reference)	
	vmathSoaM4AbsPerElem	636
	vmathSoaM4Add	637
	vmathSoaM4AffineInverse	638
	vmathSoaM4AppendScale	639
	vmathSoaM4Copy	640
	vmathSoaM4Determinant	641
	vmathSoaM4Get4Aos	642
	vmathSoaM4GetCol	643
	vmathSoaM4GetCol0	644
	vmathSoaM4GetCol1	645
	vmathSoaM4GetCol2	646
	vmathSoaM4GetCol3	647
	vmathSoaM4GetElem	648
	vmathSoaM4GetRow	649
	vmathSoaM4GetTranslation	650
	vmathSoaM4GetUpper3x3	651

	vmathSoaM4Inverse	652
	vmathSoaM4MakeFrom4Aos	653
	vmathSoaM4MakeFromAos	654
	vmathSoaM4MakeFromCols	655
	vmathSoaM4MakeFromM3V3	656
	vmathSoaM4MakeFromQV3	657
	vmathSoaM4MakeFromScalar	658
	vmathSoaM4MakeFromT3	659
	vmathSoaM4MakeFrustum	660
	vmathSoaM4MakeIdentity	661
	vmathSoaM4MakeLookAt	662
	vmathSoaM4MakeOrthographic	663
	vmathSoaM4MakePerspective	664
	vmathSoaM4MakeRotationAxis	665
	vmathSoaM4MakeRotationQ	666
	vmathSoaM4MakeRotationX	667
	vmathSoaM4MakeRotationY	668
	vmathSoaM4MakeRotationZ	669
	vmathSoaM4MakeRotationZYX	670
	vmathSoaM4MakeScale	671
	vmathSoaM4MakeTranslation	672
	vmathSoaM4Mul	673
	vmathSoaM4MulP3	674
	vmathSoaM4MulPerElem	675
	vmathSoaM4MulT3	676
	vmathSoaM4MulV3	677
	vmathSoaM4MulV4	678
	vmathSoaM4Neg	679
	vmathSoaM4OrthoInverse	680
	vmathSoaM4PrependScale	681
	vmathSoaM4Print	682
	vmathSoaM4Prints	683
	vmathSoaM4ScalarMul	684
	vmathSoaM4Select	685
	vmathSoaM4SetCol	686
	vmathSoaM4SetCol0	687
	vmathSoaM4SetCol1	688
	vmathSoaM4SetCol2	689
	vmathSoaM4SetCol3	690
	vmathSoaM4SetElem	691
	vmathSoaM4SetRow	692
	vmathSoaM4SetTranslation	693
	vmathSoaM4SetUpper3x3	694
	vmathSoaM4Sub	695
	vmathSoaM4Transpose	696
Trans	sformation Functions (SoA, by reference)	697
	vmathSoaT3AbsPerElem	
	vmathSoaT3AppendScale	

	vmathSoaT3Copy	. 700
	vmathSoaT3Get4Aos	. 701
	vmathSoaT3GetCol	. 702
	vmathSoaT3GetCol0	. 703
	vmathSoaT3GetCol1	. 704
	vmathSoaT3GetCol2	. 705
	vmathSoaT3GetCol3	. 706
	vmathSoaT3GetElem	. 707
	vmathSoaT3GetRow	. 708
	vmathSoaT3GetTranslation	
	vmathSoaT3GetUpper3x3	
	vmathSoaT3Inverse	
	vmathSoaT3MakeFrom4Aos	
	vmathSoaT3MakeFromAos	
	vmathSoaT3MakeFromCols	
	vmathSoaT3MakeFromM3V3	
	vmathSoaT3MakeFromQV3	
	vmathSoaT3MakeFromScalar	
	vmathSoaT3MakeIdentity	
	vmathSoaT3MakeRotationAxis	
	vmathSoaT3MakeRotationQ	
	vmathSoaT3MakeRotationX	
	vmathSoaT3MakeRotationY	
	vmathSoaT3MakeRotationZ	
	vmathSoaT3MakeRotationZYX	
	vmathSoaT3MakeScale	
	vmathSoaT3MakeTranslation	
	vmathSoaT3Mul	
	vmathSoaT3MulP3	
	vmathSoaT3MulPerElem	
	vmathSoaT3MulV3	
	vmathSoaT3OrthoInverse	
	vmathSoaT3PrependScale	
	vmathSoaT3Print	
	vmathSoaT3Prints	
	vmathSoaT3Select	
	vmathSoaT3SetCol	
	vmathSoaT3SetCol0	
	vmathSoaT3SetCol3	
	vmathSoaT3SetCol2	
	vmathSoaT3SetCol3	
	vmathSoaT3SetElem	
	vmathSoaT3SetRow	
	vmathSoaT3SetTranslation	
	vmathSoaT3SetUpper3x3	
3-D \	/ector Functions (AoS, by value)	745
	vmathV3AbsPerElem_V	
	vmathV3Add_V	. 747

vmathV3AddP3_V	748
vmathV3CopySignPerElem_V	749
vmathV3Cross_V	750
vmathV3CrossMatrix_V	751
vmathV3CrossMatrixMul_V	752
vmathV3DivPerElem_V	753
vmathV3Dot_V	754
vmathV3Get128_V	755
vmathV3GetElem_V	756
vmathV3GetX_V	757
vmathV3GetY_V	758
vmathV3GetZ_V	759
vmathV3Length_V	760
vmathV3LengthSqr_V	761
vmathV3Lerp_V	762
vmathV3LoadXYZArray_V	763
vmathV3MakeFrom128_V	764
vmathV3MakeFromElems_V	765
vmathV3MakeFromP3_V	766
vmathV3MakeFromScalar_V	767
vmathV3MakeXAxis_V	
vmathV3MakeYAxis V	769
vmathV3MakeZAxis_V	770
vmathV3MaxElem_V	771
vmathV3MaxPerElem_V	772
vmathV3MinElem_V	773
vmathV3MinPerElem_V	774
vmathV3MulPerElem_V	775
vmathV3Neg_V	
vmathV3Normalize_V	
vmathV3Outer_V	
vmathV3Print_V	779
vmathV3Prints_V	
vmathV3RecipPerElem_V	
vmathV3RowMul_V	
vmathV3RsqrtPerElem_V	
vmathV3ScalarDiv_V	784
vmathV3ScalarMul_V	785
vmathV3Select_V	786
vmathV3SetElem_V	
vmathV3SetX_V	788
vmathV3SetY_V	789
vmathV3SetZ_V	
vmathV3Slerp_V	
vmathV3SqrtPerElem_V	
vmathV3StoreHalfFloats_V	
vmathV3StoreXYZ_V	
vmathV3StoreXYZArray_V	
	

	vmathV3Sub_V	. 796
	vmathV3Sum_V	. 797
4-D V	/ector Functions (AoS, by value)	. 798
	vmathV4AbsPerElem V	
	vmathV4Add_V	. 800
	vmathV4CopySignPerElem_V	. 801
	vmathV4DivPerElem_V	. 802
	vmathV4Dot_V	. 803
	vmathV4Get128_V	. 804
	vmathV4GetElem_V	. 805
	vmathV4GetW_V	. 806
	vmathV4GetX_V	. 807
	vmathV4GetXYZ_V	. 808
	vmathV4GetY_V	. 809
	vmathV4GetZ_V	. 810
	vmathV4Length_V	811
	vmathV4LengthSqr_V	. 812
	vmathV4Lerp_V	. 813
	vmathV4MakeFrom128_V	. 814
	vmathV4MakeFromElems_V	. 815
	vmathV4MakeFromP3_V	. 816
	vmathV4MakeFromQ_V	. 817
	vmathV4MakeFromScalar_V	
	vmathV4MakeFromV3_V	. 819
	vmathV4MakeFromV3Scalar_V	
	vmathV4MakeWAxis_V	
	vmathV4MakeXAxis_V	
	vmathV4MakeYAxis_V	
	vmathV4MakeZAxis_V	
	vmathV4MaxElem_V	
	vmathV4MaxPerElem_V	
	vmathV4MinElem_V	
	vmathV4MinPerElem_V	
	vmathV4MulPerElem_V	
	vmathV4Neg_V	
	vmathV4Normalize_V	
	vmathV4Outer_V	
	vmathV4Print_V	
	vmathV4Prints_V	
	vmathV4RecipPerElem_V	
	vmathV4RsqrtPerElem_V	
	vmathV4ScalarDiv_V	
	vmathV4ScalarMul_V	
	vmathV4Select_V	
	vmathV4SetElem_V	
	vmathV4SetW_V	
	vmathV4SetX_V	
	vmathV4SetXYZ_V	. 843

vmathV4SetY_V	844
vmathV4SetZ_V	845
vmathV4Slerp_V	846
vmathV4SqrtPerElem V	847
vmathV4StoreHalfFloats V	848
vmathV4Sub V	849
vmathV4Sum V	
Functions (AoS, by value)	
vmathP3AbsPerElem_V	
vmathP3AddV3_V	
vmathP3CopySignPerElem_V	
vmathP3Dist V	
-	
vmathP3DistFromOrigin_V	
vmathP3DistSqr_V	
vmathP3DistSqrFromOrigin_V	
vmathP3DivPerElem_V	
vmathP3Get128_V	
vmathP3GetElem_V	
vmathP3GetX_V	
vmathP3GetY_V	
vmathP3GetZ_V	
vmathP3Lerp_V	
vmathP3LoadXYZArray_V	
vmathP3MakeFrom128_V	
vmathP3MakeFromElems_V	
vmathP3MakeFromScalar_V	
vmathP3MakeFromV3_V	
vmathP3MaxElem_V	
vmathP3MaxPerElem_V	
vmathP3MinElem_V	
vmathP3MinPerElem_V	
vmathP3MulPerElem_V	
vmathP3NonUniformScale_V	
vmathP3Print_V	
vmathP3Prints_V	
vmathP3Projection_V	
vmathP3RecipPerElem_V	
vmathP3RsqrtPerElem_V	
vmathP3Scale_V	882
vmathP3Select_V	883
vmathP3SetElem_V	884
vmathP3SetX_V	885
vmathP3SetY_V	886
vmathP3SetZ_V	887
vmathP3SqrtPerElem_V	888
vmathP3StoreHalfFloats_V	889
vmathP3StoreXYZ_V	890
vmathP3StoreXYZArray_V	

vmathP3Sub_V	892
vmathP3SubV3_V	893
vmathP3Sum_V	894
Quaternion Functions (AoS, by value)	895
vmathQAdd_V	896
vmathQConj_V	897
vmathQDot_V	898
vmathQGet128_V	899
vmathQGetElem_V	900
vmathQGetW_V	901
vmathQGetX_V	902
vmathQGetXYZ_V	903
vmathQGetY_V	904
vmathQGetZ_V	905
vmathQLength_V	906
vmathQLerp_V	907
vmathQMakeFrom128_V	908
vmathQMakeFromElems_V	909
vmathQMakeFromM3_V	910
vmathQMakeFromScalar_V	911
vmathQMakeFromV3Scalar_V	912
vmathQMakeFromV4_V	
vmathQMakeIdentity_V	914
vmathQMakeRotationArc_V	
vmathQMakeRotationAxis_V	
vmathQMakeRotationX_V	
vmathQMakeRotationY_V	
vmathQMakeRotationZ_V	
vmathQMul_V	
vmathQNeg_V	
vmathQNorm_V	
vmathQNormalize_V	
vmathQPrint_V	
vmathQPrints_V	
vmathQRotate_V	
vmathQScalarDiv_V	
vmathQScalarMul_V	
vmathQSelect_V	
vmathQSetElem_V	
vmathQSetW_V	
vmathQSetX_V	
vmathQSetXYZ_V	
vmathQSetY_V	
vmathQSetZ_V	
vmathQSlerp_V	
vmathQSquad_V	
vmathQSub_V	938
3x3 Matrix Functions (AoS, by value)	939

vmathM3AbsPerElem_V	940
vmathM3Add_V	941
vmathM3AppendScale_V	942
vmathM3Determinant_V	943
vmathM3GetCol0_V	944
vmathM3GetCol1_V	945
vmathM3GetCol2 V	
vmathM3GetCol V	947
vmathM3GetElem V	
vmathM3GetRow V	
vmathM3Inverse_V	
vmathM3MakeFromCols V	
vmathM3MakeFromQ_V	
vmathM3MakeFromScalar V	
vmathM3MakeIdentity_V	
vmathM3MakeRotationAxis_V	
vmathM3MakeRotationQ V	
vmathM3MakeRotationX_V	
vmathM3MakeRotationY V	
vmathM3MakeRotationZ V	
vmathM3MakeRotationZYX_V	
vmathM3MakeScale V	
vmathM3Mul_V	
vmathM3MulPerElem V	
vmathM3MulV3 V	
vmathM3Neg V	
vmathM3PrependScale V	
vmathM3Print_V	
vmathM3Prints_V	
vmathM3ScalarMul_V	
vmathM3Select_V	
vmathM3SetCol0_V	
vmathM3SetCoI1_V	
vmathM3SetCol2_V	
vmathM3SetCol_V	
vmathM3SetElem_V	
vmathM3SetRow_V	
vmathM3Sub_V	
vmathM3Transpose_V	
. –	
atrix Functions (AoS, by value)	
vmathM4AbsPerElem_V	
vmathM4Add_V	
vmathM4AffineInverse_V	
vmathM4AppendScale_V	
vmathM4Determinant_V	
vmathM4GetCol0_V	
vmathM4GetCoI1_V	
vmathM4GetCol2_V	987

4x4

vmathM4GetCol3_V	988
vmathM4GetCol_V	989
vmathM4GetElem_V	990
vmathM4GetRow_V	991
vmathM4GetTranslation_V	992
vmathM4GetUpper3x3_V	993
vmathM4Inverse_V	994
vmathM4MakeFromCols_V	995
vmathM4MakeFromM3V3_V	
vmathM4MakeFromQV3_V	997
vmathM4MakeFromScalar_V	998
vmathM4MakeFromT3_V	999
vmathM4MakeFrustum_V	1000
vmathM4MakeIdentity_V	
vmathM4MakeLookAt_V	
vmathM4MakeOrthographic_V	1003
vmathM4MakePerspective_V	
vmathM4MakeRotationAxis_V	1005
vmathM4MakeRotationQ_V	1006
vmathM4MakeRotationX_V	1007
vmathM4MakeRotationY_V	
vmathM4MakeRotationZ_V	
vmathM4MakeRotationZYX_V	
vmathM4MakeScale_V	1011
vmathM4MakeTranslation_V	
vmathM4Mul_V	
vmathM4MulP3_V	
vmathM4MulPerElem_V	
vmathM4MulT3_V	
vmathM4MulV3_V	
vmathM4MulV4_V	
vmathM4Neg_V	
vmathM4OrthoInverse_V	
vmathM4PrependScale_V	
vmathM4Print_V	
vmathM4Prints_V	
vmathM4ScalarMul_V	
vmathM4Select_V	
vmathM4SetCol0_V	
vmathM4SetCol1_V	
vmathM4SetCol2_V	
vmathM4SetCol3_V	
vmathM4SetCol_V	
vmathM4SetElem_V	
vmathM4SetRow_V	
vmathM4SetTranslation_V	
vmathM4SetUpper3x3_V	
vmathM4Sub_V	1035

	vmathM4Transpose_V	1036
Trans	formation Functions (AoS, by value)	1037
	vmathT3AbsPerElem_V	
	vmathT3AppendScale_V	1039
	vmathT3GetCol0_V	1040
	vmathT3GetCol1_V	1041
	vmathT3GetCol2_V	1042
	vmathT3GetCol3_V	1043
	vmathT3GetCol_V	1044
	vmathT3GetElem_V	1045
	vmathT3GetRow_V	1046
	vmathT3GetTranslation_V	1047
	vmathT3GetUpper3x3_V	1048
	vmathT3Inverse_V	1049
	vmathT3MakeFromCols_V	1050
	vmathT3MakeFromM3V3_V	1051
	vmathT3MakeFromQV3_V	1052
	vmathT3MakeFromScalar_V	1053
	vmathT3MakeIdentity_V	1054
	vmathT3MakeRotationAxis_V	1055
	vmathT3MakeRotationQ_V	1056
	vmathT3MakeRotationX_V	1057
	vmathT3MakeRotationY_V	1058
	vmathT3MakeRotationZ_V	1059
	vmathT3MakeRotationZYX_V	1060
	vmathT3MakeScale_V	1061
	vmathT3MakeTranslation_V	1062
	vmathT3Mul_V	1063
	vmathT3MulP3_V	1064
	vmathT3MulPerElem_V	1065
	vmathT3MulV3_V	1066
	vmathT3OrthoInverse_V	
	vmathT3PrependScale_V	1068
	vmathT3Print_V	
	vmathT3Prints_V	
	vmathT3Select_V	1071
	vmathT3SetCol0_V	1072
	vmathT3SetCol1_V	1073
	vmathT3SetCol2_V	
	vmathT3SetCol3_V	1075
	vmathT3SetCol_V	
	vmathT3SetElem_V	
	vmathT3SetRow_V	
	vmathT3SetTranslation_V	
	vmathT3SetUpper3x3_V	1080
3-D V	ector Functions (SoA, by value)	1081
	vmathSoaV3AbsPerElem_V	1082
	vmathSoaV3Add_V	1083

vmathSoaV3AddP3_V	. 1084
vmathSoaV3CopySignPerElem_V	. 1085
vmathSoaV3Cross_V	. 1086
vmathSoaV3CrossMatrix_V	. 1087
vmathSoaV3CrossMatrixMul_V	. 1088
vmathSoaV3DivPerElem_V	. 1089
vmathSoaV3Dot_V	. 1090
vmathSoaV3Get4Aos_V	. 1091
vmathSoaV3GetElem_V	. 1092
vmathSoaV3GetX_V	. 1093
vmathSoaV3GetY_V	. 1094
vmathSoaV3GetZ_V	. 1095
vmathSoaV3Length_V	. 1096
vmathSoaV3LengthSqr_V	. 1097
vmathSoaV3Lerp_V	. 1098
vmathSoaV3LoadXYZArray_V	. 1099
vmathSoaV3MakeFrom4Aos_V	1100
vmathSoaV3MakeFromAos_V	1101
vmathSoaV3MakeFromElems_V	1102
vmathSoaV3MakeFromP3_V	1103
vmathSoaV3MakeFromScalar_V	1104
vmathSoaV3MakeXAxis_V	1105
vmathSoaV3MakeYAxis_V	1106
vmathSoaV3MakeZAxis_V	1107
vmathSoaV3MaxElem_V	1108
vmathSoaV3MaxPerElem_V	1109
vmathSoaV3MinElem_V	1110
vmathSoaV3MinPerElem_V	1111
vmathSoaV3MulPerElem_V	1112
vmathSoaV3Neg_V	1113
vmathSoaV3Normalize_V	1114
vmathSoaV3Outer_V	1115
vmathSoaV3Print_V	1116
vmathSoaV3Prints_V	1117
vmathSoaV3RecipPerElem_V	1118
vmathSoaV3RowMul_V	1119
vmathSoaV3RsqrtPerElem_V	1120
vmathSoaV3ScalarDiv_V	1121
vmathSoaV3ScalarMul_V	1122
vmathSoaV3Select_V	1123
vmathSoaV3SetElem_V	1124
vmathSoaV3SetX_V	1125
vmathSoaV3SetY_V	1126
vmathSoaV3SetZ_V	1127
vmathSoaV3Slerp_V	1128
vmathSoaV3SqrtPerElem_V	1129
vmathSoaV3StoreHalfFloats_V	1130
vmathSoaV3StoreXYZArray_V	1131

vmathSoaV3Sub_V	1132
vmathSoaV3Sum_V	1133
4-D Vector Functions (SoA, by value)	1134
vmathSoaV4AbsPerElem_V	
vmathSoaV4Add V	
vmathSoaV4CopySignPerElem_V	
vmathSoaV4DivPerElem_V	
vmathSoaV4Dot_V	
vmathSoaV4Get4Aos_V	1140
vmathSoaV4GetElem_V	1141
vmathSoaV4GetW_V	1142
vmathSoaV4GetX_V	1143
vmathSoaV4GetXYZ_V	1144
vmathSoaV4GetY_V	1145
vmathSoaV4GetZ_V	1146
vmathSoaV4Length_V	1147
vmathSoaV4LengthSqr_V	1148
vmathSoaV4Lerp_V	1149
vmathSoaV4MakeFrom4Aos_V	1150
vmathSoaV4MakeFromAos_V	1151
vmathSoaV4MakeFromElems_V	1152
vmathSoaV4MakeFromP3_V	1153
vmathSoaV4MakeFromQ_V	1154
vmathSoaV4MakeFromScalar_V	1155
vmathSoaV4MakeFromV3_V	
vmathSoaV4MakeFromV3Scalar_V	1157
vmathSoaV4MakeWAxis_V	
vmathSoaV4MakeXAxis_V	
vmathSoaV4MakeYAxis_V	
vmathSoaV4MakeZAxis_V	
vmathSoaV4MaxElem_V	
vmathSoaV4MaxPerElem_V	
vmathSoaV4MinElem_V	
vmathSoaV4MinPerElem_V	
vmathSoaV4MulPerElem_V	
vmathSoaV4Neg_V	
vmathSoaV4Normalize_V	
vmathSoaV4Outer_V	
vmathSoaV4Print_V	
vmathSoaV4Prints_V	
vmathSoaV4RecipPerElem_V	
vmathSoaV4RsqrtPerElem_V	
vmathSoaV4ScalarDiv_V	
vmathSoaV4ScalarMul_V	
vmathSoaV4Select_V	
vmathSoaV4SetElem_V	
vmathSoaV4SetW_V	
vmathSoaV4SetX_V	1179

	vmathSoaV4SetXYZ_V	1180
	vmathSoaV4SetY_V	1181
	vmathSoaV4SetZ_V	1182
	vmathSoaV4Slerp_V	1183
	vmathSoaV4SqrtPerElem_V	1184
	vmathSoaV4StoreHalfFloats_V	1185
	vmathSoaV4Sub V	1186
	vmathSoaV4Sum V	1187
Point	Functions (SoA, by value)	
ı om	vmathSoaP3AbsPerElem V	
	vmathSoaP3AddV3 V	
	vmathSoaP3CopySignPerElem_V	
	vmathSoaP3Dist_VvmathSoaP3DistFromOrigin_V	
	· -	
	vmathSoaP3DistSqr_V	
	vmathSoaP3DistSqrFromOrigin_V	
	vmathSoaP3DivPerElem_V	
	vmathSoaP3Get4Aos_V	
	vmathSoaP3GetElem_V	
	vmathSoaP3GetX_V	
	vmathSoaP3GetY_V	
	vmathSoaP3GetZ_V	
	vmathSoaP3Lerp_V	
	vmathSoaP3LoadXYZArray_V	
	vmathSoaP3MakeFrom4Aos_V	
	vmathSoaP3MakeFromAos_V	
	vmathSoaP3MakeFromElems_V	
	vmathSoaP3MakeFromScalar_V	
	vmathSoaP3MakeFromV3_V	
	vmathSoaP3MaxElem_V	1209
	vmathSoaP3MaxPerElem_V	1210
	vmathSoaP3MinElem_V	1211
	vmathSoaP3MinPerElem_V	1212
	vmathSoaP3MulPerElem_V	1213
	vmathSoaP3NonUniformScale_V	1214
	vmathSoaP3Print_V	1215
	vmathSoaP3Prints_V	1216
	vmathSoaP3Projection_V	1217
	vmathSoaP3RecipPerElem_V	1218
	vmathSoaP3RsqrtPerElem_V	1219
	vmathSoaP3Scale_V	1220
	vmathSoaP3Select_V	
	vmathSoaP3SetElem_V	
	vmathSoaP3SetX_V	
	vmathSoaP3SetY_V	1224
	vmathSoaP3SetZ_V	
	vmathSoaP3SqrtPerElem_V	
	vmathSoaP3StoreHalfFloats_V	

	vmathSoaP3StoreXYZArray_V	1228
	vmathSoaP3Sub_V	1229
	vmathSoaP3SubV3_V	1230
	vmathSoaP3Sum_V	1231
Quate	ernion Functions (SoA, by value)	1232
	vmathSoaQAdd V	
	vmathSoaQConj V	
	vmathSoaQDot V	
	vmathSoaQGet4Aos_V	
	vmathSoaQGetElem V	
	vmathSoaQGetW V	
	vmathSoaQGetX_V	1239
	vmathSoaQGetXYZ V	
	vmathSoaQGetY_V	1241
	vmathSoaQGetZ_V	1242
	vmathSoaQLength_V	1243
	vmathSoaQLerp_V	1244
	vmathSoaQMakeFrom4Aos_V	1245
	vmathSoaQMakeFromAos_V	1246
	vmathSoaQMakeFromElems_V	1247
	vmathSoaQMakeFromM3_V	1248
	vmathSoaQMakeFromScalar_V	1249
	vmathSoaQMakeFromV3Scalar_V	1250
	vmathSoaQMakeFromV4_V	1251
	vmathSoaQMakeIdentity_V	1252
	vmathSoaQMakeRotationArc_V	1253
	vmathSoaQMakeRotationAxis_V	1254
	vmathSoaQMakeRotationX_V	1255
	vmathSoaQMakeRotationY_V	1256
	vmathSoaQMakeRotationZ_V	1257
	vmathSoaQMul_V	1258
	vmathSoaQNeg_V	1259
	vmathSoaQNorm_V	1260
	vmathSoaQNormalize_V	1261
	vmathSoaQPrint_V	1262
	vmathSoaQPrints_V	1263
	vmathSoaQRotate_V	1264
	vmathSoaQScalarDiv_V	1265
	vmathSoaQScalarMul_V	1266
	vmathSoaQSelect_V	1267
	vmathSoaQSetElem_V	1268
	vmathSoaQSetW_V	1269
	vmathSoaQSetX_V	1270
	vmathSoaQSetXYZ_V	1271
	vmathSoaQSetY_V	1272
	vmathSoaQSetZ_V	1273
	vmathSoaQSlerp_V	1274
	vmathSoaQSquad_V	1275

	vmathSoaQSub_V	1276
3x3 N	Matrix Functions (SoA, by value)	1277
	vmathSoaM3AbsPerElem_V	
	vmathSoaM3Add_V	1279
	vmathSoaM3AppendScale_V	1280
	vmathSoaM3Determinant_V	1281
	vmathSoaM3Get4Aos_V	1282
	vmathSoaM3GetCol0_V	1283
	vmathSoaM3GetCol1_V	1284
	vmathSoaM3GetCol2_V	1285
	vmathSoaM3GetCol_V	1286
	vmathSoaM3GetElem_V	1287
	vmathSoaM3GetRow_V	1288
	vmathSoaM3Inverse_V	1289
	vmathSoaM3MakeFrom4Aos_V	1290
	vmathSoaM3MakeFromAos_V	1291
	vmathSoaM3MakeFromCols_V	1292
	vmathSoaM3MakeFromQ_V	1293
	vmathSoaM3MakeFromScalar_V	1294
	vmathSoaM3MakeIdentity_V	1295
	vmathSoaM3MakeRotationAxis V	1296
	vmathSoaM3MakeRotationQ V	1297
	vmathSoaM3MakeRotationX_V	1298
	vmathSoaM3MakeRotationY_V	1299
	vmathSoaM3MakeRotationZ_V	1300
	vmathSoaM3MakeRotationZYX_V	1301
	vmathSoaM3MakeScale_V	1302
	vmathSoaM3Mul_V	1303
	vmathSoaM3MulPerElem_V	1304
	vmathSoaM3MulV3 V	
	vmathSoaM3Neg_V	1306
	vmathSoaM3PrependScale_V	
	vmathSoaM3Print_V	
	vmathSoaM3Prints_V	
	vmathSoaM3ScalarMul_V	
	vmathSoaM3Select_V	1311
	vmathSoaM3SetCol0_V	
	vmathSoaM3SetCoI1_V	
	vmathSoaM3SetCol2_V	
	vmathSoaM3SetCol_V	
	vmathSoaM3SetElem_V	
	vmathSoaM3SetRow_V	
	vmathSoaM3Sub_V	
	vmathSoaM3Transpose_V	
444 N	/ – Matrix Functions (SoA, by value)	
TAT II	vmathSoaM4AbsPerElem_V	
	vmathSoaM4Add_V	
	vmathSoaM4AffineInverse_V	

vmathSoaM4AppendScale_V	1324
vmathSoaM4Determinant_V	1325
vmathSoaM4Get4Aos_V	1326
vmathSoaM4GetCol0_V	1327
vmathSoaM4GetCoI1_V	1328
vmathSoaM4GetCol2_V	1329
vmathSoaM4GetCol3_V	1330
vmathSoaM4GetCol_V	1331
vmathSoaM4GetElem_V	1332
vmathSoaM4GetRow_V	1333
vmathSoaM4GetTranslation_V	1334
vmathSoaM4GetUpper3x3_V	1335
vmathSoaM4Inverse_V	1336
vmathSoaM4MakeFrom4Aos_V	1337
vmathSoaM4MakeFromAos_V	1338
vmathSoaM4MakeFromCols_V	1339
vmathSoaM4MakeFromM3V3_V	1340
vmathSoaM4MakeFromQV3_V	1341
vmathSoaM4MakeFromScalar_V	1342
vmathSoaM4MakeFromT3_V	1343
vmathSoaM4MakeFrustum_V	1344
vmathSoaM4MakeIdentity_V	1345
vmathSoaM4MakeLookAt_V	1346
vmathSoaM4MakeOrthographic_V	1347
vmathSoaM4MakePerspective_V	1348
vmathSoaM4MakeRotationAxis_V	1349
vmathSoaM4MakeRotationQ_V	
vmathSoaM4MakeRotationX_V	1351
vmathSoaM4MakeRotationY_V	1352
vmathSoaM4MakeRotationZ_V	
vmathSoaM4MakeRotationZYX_V	
vmathSoaM4MakeScale_V	1355
vmathSoaM4MakeTranslation_V	1356
vmathSoaM4Mul_V	1357
vmathSoaM4MulP3_V	1358
vmathSoaM4MulPerElem_V	1359
vmathSoaM4MulT3_V	
vmathSoaM4MulV3_V	1361
vmathSoaM4MulV4_V	1362
vmathSoaM4Neg_V	1363
vmathSoaM4OrthoInverse_V	1364
vmathSoaM4PrependScale_V	
vmathSoaM4Print_V	
vmathSoaM4Prints_V	
vmathSoaM4ScalarMul_V	1368
vmathSoaM4Select_V	
vmathSoaM4SetCol0_V	
vmathSoaM4SetCoI1_V	1371

	vmathSoaM4SetCol2_V	1372
	vmathSoaM4SetCol3_V	1373
	vmathSoaM4SetCol_V	1374
	vmathSoaM4SetElem_V	1375
	vmathSoaM4SetRow_V	1376
	vmathSoaM4SetTranslation_V	1377
	vmathSoaM4SetUpper3x3_V	
	vmathSoaM4Sub_V	1379
	vmathSoaM4Transpose_V	
Trans	sformation Functions (SoA, by value)	
	vmathSoaT3AbsPerElem_V	
	vmathSoaT3AppendScale_V	
	vmathSoaT3Get4Aos V	
	vmathSoaT3GetCol0 V	
	vmathSoaT3GetCol1 V	
	vmathSoaT3GetCol2 V	
	vmathSoaT3GetCol3 V	
	vmathSoaT3GetCol_V	
	vmathSoaT3GetElem V	
	vmathSoaT3GetRow V	
	vmathSoaT3GetTranslation_V	
	vmathSoaT3GetUpper3x3_V	
	vmathSoaT3Inverse_V	
	vmathSoaT3MakeFrom4Aos_V	
	vmathSoaT3MakeFromAos_VvmathSoaT3MakeFromAos_V	
	vmathSoaT3MakeFromCols V	
	vmathSoaT3MakeFromM3V3 V	
	vmathSoaT3MakeFromQV3_V	
	vmathSoaT3MakeFromScalar_V	
	vmathSoaT3MakeIdentity_V	
	vmathSoaT3MakeRotationAxis V	
	vmathSoaT3MakeRotationQ_V	
	vmathSoaT3MakeRotationX_V	
	-	
	vmathSoaT3MakeRotationY_V	
	vmathSoaT3MakeRotationZ_V	
	vmathSoaT3MakeRotationZYX_V	
	vmathSoaT3MakeScale_V	
	vmathSoaT3MakeTranslation_V	
	vmathSoaT3Mul_V	
	vmathSoaT3MulP3_V	
	vmathSoaT3MulPerElem_V	
	vmathSoaT3MulV3_V	
	vmathSoaT3OrthoInverse_V	
	vmathSoaT3PrependScale_V	
	vmathSoaT3Print_V	
	vmathSoaT3Prints_V	
	vmathSoaT3Select_V	
	vmathSoaT3SetCol0_V	1419

vmathSoaT3SetCol1_V	1420
vmathSoaT3SetCol2_V	1421
vmathSoaT3SetCol3_V	
vmathSoaT3SetCol_V	1423
vmathSoaT3SetElem_V	1424
vmathSoaT3SetRow_V	1425
vmathSoaT3SetTranslation_V	1426
vmathSoaT3SetUpper3x3 V	1427

VmathMatrix3

A 3x3 matrix in array-of-structures format.

Definition

Members

coll Column 0 coll Column 1 coll Column 2

Description

A struct representing a 3x3 matrix stored in array-of-structures (AoS) format

VmathMatrix4

A 4x4 matrix in array-of-structures format.

Definition

Members

co10 Column 0co11 Column 1co12 Column 2co13 Column 3

Description

A struct representing a 4x4 matrix stored in array-of-structures (AoS) format

VmathPoint3

A 3-D point in array-of-structures format.

Definition

```
#include <vectormath/c/vectormath_aos.h> or <vectormath/c/vectormath_aos_v.h>
typedef struct _VmathPoint3 {
          vec_float4 vec128;
} VmathPoint3;
```

Members

vec128 Vector float data

Description

A struct representing a 3-D point stored in array-of-structures (AoS) format

VmathQuat

A quaternion in array-of-structures format.

Definition

```
#include <vectormath/c/vectormath_aos.h> or <vectormath/c/vectormath_aos_v.h>
typedef struct _VmathQuat {
         vec_float4 vec128;
} VmathQuat;
```

Members

vec128 Vector float data

Description

A struct representing a quaternion stored in array-of-structures (AoS) format

VmathTransform3

A 3x4 transformation matrix in array-of-structures format.

Definition

Members

co10 Column 0 co11 Column 1 co12 Column 2 co13 Column 3

Description

A struct representing a 3x4 transformation matrix stored in array-of-structures (AoS) format

VmathVector3

A 3-D vector in array-of-structures format.

Definition

```
#include <vectormath/c/vectormath_aos.h> or <vectormath/c/vectormath_aos_v.h>
typedef struct _VmathVector3 {
         vec_float4 vec128;
} VmathVector3;
```

Members

vec128 Vector float data

Description

A struct representing a 3-D vector stored in array-of-structures (AoS) format

VmathVector4

A 4-D vector in array-of-structures format.

Definition

```
#include <vectormath/c/vectormath_aos.h> or <vectormath/c/vectormath_aos_v.h>
typedef struct _VmathVector4 {
         vec_float4 vec128;
} VmathVector4;
```

Members

vec128 Vector float data

Description

A struct representing a 4-D vector stored in array-of-structures (AoS) format

VmathSoaMatrix3

A set of four 3x3 matrices in structure-of-arrays format.

Definition

Members

col0	Column 0 of four 3x3 matrices in SoA format
col1	Column 1 of four 3x3 matrices in SoA format
co12	Column 2 of four 3x3 matrices in SoA format

Description

A struct representing a set of four 3x3 matrices stored in structure-of-arrays (SoA) format

VmathSoaMatrix4

A set of four 4x4 matrices in structure-of-arrays format.

Definition

Members

col0	Column 0 of four 4x4 matrices in SoA format
col1	Column 1 of four 4x4 matrices in SoA format
co12	Column 2 of four 4x4 matrices in SoA format
co13	Column 3 of four 4x4 matrices in SoA format

Description

A struct representing a set of four 4x4 matrices stored in structure-of-arrays (SoA) format

VmathSoaPoint3

A set of four 3-D points in structure-of-arrays format.

Definition

Members

- x A set of four x elements in SoA format
- *y* A set of four y elements in SoA format
- z A set of four z elements in SoA format

Description

A struct representing a set of four 3-D points stored in structure-of-arrays (SoA) format

VmathSoaQuat

A set of four quaternions in structure-of-arrays format.

Definition

```
#include <vectormath/c/vectormath_soa.h> or <vectormath/c/vectormath_soa_v.h>
typedef struct _VmathSoaQuat {
         vec_float4 x;
         vec_float4 y;
         vec_float4 z;
         vec_float4 w;
} VmathSoaQuat;
```

Members

A set of four x elements in SoA format
 A set of four y elements in SoA format
 A set of four z elements in SoA format
 A set of four w elements in SoA format

Description

A struct representing a set of four quaternions stored in structure-of-arrays (SoA) format

VmathSoaTransform3

A set of four 3x4 transformation matrices in structure-of-arrays format.

Definition

Members

col0	Column 0 of four 3x4 transformation matrices in SoA format
col1	Column 1 of four 3x4 transformation matrices in SoA format
col2	Column 2 of four 3x4 transformation matrices in SoA format
co13	Column 3 of four 3x4 transformation matrices in SoA format

Description

A struct representing a set of four 3x4 transformation matrices stored in structure-of-arrays (SoA) format

VmathSoaVector3

A set of four 3-D vectors in structure-of-arrays format.

Definition

```
#include <vectormath/c/vectormath_soa.h> or <vectormath/c/vectormath_soa_v.h>
typedef struct _VmathSoaVector3 {
          vec_float4 x;
          vec_float4 y;
          vec_float4 z;
} VmathSoaVector3;
```

Members

- x A set of four x elements in SoA format
- *y* A set of four y elements in SoA format
- z A set of four z elements in SoA format

Description

A struct representing a set of four 3-D vectors stored in structure-of-arrays (SoA) format

VmathSoaVector4

A set of four 4-D vectors in structure-of-arrays format.

Definition

```
#include <vectormath/c/vectormath_soa.h> or <vectormath/c/vectormath_soa_v.h>
typedef struct _VmathSoaVector4 {
          vec_float4 x;
          vec_float4 y;
          vec_float4 z;
          vec_float4 w;
} VmathSoaVector4;
```

Members

- A set of four x elements in SoA format
 A set of four y elements in SoA format
 A set of four z elements in SoA format
 A set of four w elements in SoA format
- **Description**

A struct representing a set of four 4-D vectors stored in structure-of-arrays (SoA) format

3-D Vector Functions (AoS, by reference)

vmathV3AbsPerElem

Compute the absolute value of a 3-D vector per element.

Definition

Arguments

3-D vector in which each element is the absolute value of the corresponding element of vec

vec 3-D vector

Return Values

None

Description

Compute the absolute value of each element of a 3-D vector.

vmathV3Add

Add two 3-D vectors.

Definition

Arguments

```
result Sum of the specified 3-D vectorsvec0 3-D vectorvec1 3-D vector
```

Return Values

None

Description

Add two 3-D vectors.

vmathV3AddP3

Add a 3-D vector to a 3-D point.

Definition

Arguments

result Sum of the specified 3-D vector and 3-D point vec 3-D vector

pnt 3-D point

Return Values

None

Description

Add a 3-D vector to a 3-D point.

vmathV3Copy

Copy a 3-D vector.

Definition

Arguments

result The constructed result vec 3-D vector

Return Values

None

Description

Construct a copy of a 3-D vector.

vmathV3CopySignPerElem

Copy sign from one 3-D vector to another, per element.

Definition

Arguments

result	3-D vector in which each element has the magnitude of the corresponding element of $vec0$ and the sign of the corresponding element of $vec1$
vec0	3-D vector
vec1	3-D vector

Return Values

None

Description

For each element, create a value composed of the magnitude of vec0 and the sign of vec1.

vmathV3Cross

Compute cross product of two 3-D vectors.

Definition

Arguments

```
result Cross product of the specified 3-D vectors vec0 3-D vector vec1 3-D vector
```

Return Values

None

Description

Compute cross product of two 3-D vectors.

vmathV3CrossMatrix

Cross-product matrix of a 3-D vector.

Definition

Arguments

```
result Cross-product matrix of vec
vec 3-D vector
```

Return Values

None

Description

Compute a matrix that, when multiplied by a 3-D vector, produces the same result as a cross product with that 3-D vector.

vmathV3CrossMatrixMul

Create cross-product matrix and multiply.

Definition

Arguments

result Product of cross-product matrix of vec and mat
vec 3-D vector
mat 3x3 matrix

Return Values

None

Description

Multiply a cross-product matrix by another matrix.

Notes

Faster than separately creating a cross-product matrix and multiplying.

vmathV3DivPerElem

Divide two 3-D vectors per element.

Definition

Arguments

result	3-D vector in which each element is the quotient of the corresponding elements of the specified 3-D vectors
vec0	3-D vector
vec1	3-D vector

Return Values

None

Description

Divide two 3-D vectors element by element.

Notes

Floating-point behavior matches standard library function divf4.

vmathV3Dot

Compute the dot product of two 3-D vectors.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

Dot product of the specified 3-D vectors

Description

Compute the dot product of two 3-D vectors.

vmathV3Get128

Get vector float data from a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Internal vector float data

Description

Get internal vector float data from a 3-D vector.

vmathV3GetElem

Get an x, y, or z element of a 3-D vector by index.

Definition

Arguments

```
vec 3-D vectoridx Index, expected in the range 0-2
```

Return Values

Element selected by the specified index

Description

Get an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

vmathV3GetX

Get the x element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

x element of a 3-D vector

Description

Get the x element of a 3-D vector.

vmathV3GetY

Get the y element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

y element of a 3-D vector

Description

Get the y element of a 3-D vector.

vmathV3GetZ

Get the z element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

z element of a 3-D vector

Description

Get the z element of a 3-D vector.

vmathV3Length

Compute the length of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Length of the specified 3-D vector

Description

Compute the length of a 3-D vector.

vmathV3LengthSqr

Compute the square of the length of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Square of the length of the specified 3-D vector

Description

Compute the square of the length of a 3-D vector.

vmathV3Lerp

Linear interpolation between two 3-D vectors.

Definition

Arguments

result Interpolated 3-D vector
t Interpolation parameter
vec0 3-D vector
vec1 3-D vector

Return Values

None

Description

Linearly interpolate between two 3-D vectors.

Notes

Does not clamp t between 0 and 1.

vmathV3LoadXYZArray

Load four three-float 3-D vectors, stored in three quadwords.

Definition

Arguments

```
vec0An output 3-D vectorvec1An output 3-D vectorvec2An output 3-D vectorvec3An output 3-D vectorthreeQuadsArray of 3 quadwords containing 12 floats
```

Return Values

None

Description

Load four three-float 3-D vectors, stored in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$, into four 3-D vectors.

vmathV3MakeFrom128

Set vector float data in a 3-D vector.

Definition

Arguments

```
result The constructed 3-D vector vf4 Scalar value
```

Return Values

None

Description

Construct a 3-D vector whose internal vector float data is set to the vector float argument.

vmathV3MakeFromElems

Construct a 3-D vector from x, y, and z elements.

Definition

Arguments

 $egin{array}{ll} result & The 3-D \ vector \ that \ contains \ the \ specified \ elements \ x & Scalar \ value \ y & Scalar \ value \ z & Scalar \ value \ \end{array}$

Return Values

None

Description

Construct a 3-D vector containing the specified x, y, and z elements.

vmathV3MakeFromP3

Copy elements from a 3-D point into a 3-D vector.

Definition

Arguments

```
result The constructed 3-D vector pnt 3-D point
```

Return Values

None

Description

Construct a 3-D vector containing the x, y, and z elements of the specified 3-D point.

vmathV3MakeFromScalar

Set all elements of a 3-D vector to the same scalar value.

Definition

Arguments

```
result The constructed 3-D vector scalar Scalar value
```

Return Values

None

Description

Construct a 3-D vector with all elements set to the scalar value argument.

vmathV3MakeXAxis

Construct x axis.

Definition

Arguments

result The constructed 3-D vector

Return Values

None

Description

Construct a 3-D vector equal to (1,0,0).

vmathV3MakeYAxis

Construct y axis.

Definition

Arguments

result The constructed 3-D vector

Return Values

None

Description

Construct a 3-D vector equal to (0,1,0).

vmathV3MakeZAxis

Construct z axis.

Definition

Arguments

result The constructed 3-D vector

Return Values

None

Description

Construct a 3-D vector equal to (0,0,1).

vmathV3MaxElem

Maximum element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Maximum value of all elements of vec

Description

Compute the maximum value of all elements of a 3-D vector.

vmathV3MaxPerElem

Maximum of two 3-D vectors per element.

Definition

Arguments

result	3-D vector in which each element is the maximum of the corresponding elements of the specified 3-D vectors
vec0	3-D vector
vec1	3-D vector

Return Values

None

Description

Create a 3-D vector in which each element is the maximum of the corresponding elements of the specified 3-D vectors.

vmathV3MinElem

Minimum element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Minimum value of all elements of vec

Description

Compute the minimum value of all elements of a 3-D vector.

vmathV3MinPerElem

Minimum of two 3-D vectors per element.

Definition

Arguments

result	3-D vector in which each element is the minimum of the corresponding elements of the specified 3-D vectors
vec0	3-D vector
vec1	3-D vector

Return Values

None

Description

Create a 3-D vector in which each element is the minimum of the corresponding elements of two specified 3-D vectors.

vmathV3MulPerElem

Multiply two 3-D vectors per element.

Definition

Arguments

result	3-D vector in which each element is the product of the corresponding elements of the specified 3-D vectors
vec0	3-D vector
vec1	3-D vector

Return Values

None

Description

Multiply two 3-D vectors element by element.

vmathV3Neg

Negate all elements of a 3-D vector.

Definition

Arguments

result 3-D vector containing negated elements of the specified 3-D vector vec 3-D vector

Return Values

None

Description

Negate all elements of a 3-D vector.

vmathV3Normalize

Normalize a 3-D vector.

Definition

Arguments

result The specified 3-D vector scaled to unit length vec 3-D vector

Return Values

None

Description

Compute a normalized 3-D vector.

Notes

The result is unpredictable when all elements of vec are at or near zero.

vmathV3Outer

Outer product of two 3-D vectors.

Definition

Arguments

result The 3x3 matrix product of a column-vector, vec0, and a row-vector, vec1
vec0 3-D vector
vec1 3-D vector

Return Values

None

Description

Compute the outer product of two 3-D vectors.

vmathV3Print

Print a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

None

Description

Print a 3-D vector. Prints the 3-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathV3Prints

Print a 3-D vector and an associated string identifier.

Definition

Arguments

vec 3-D vectorname String printed with the 3-D vector

Return Values

None

Description

Print a 3-D vector and an associated string identifier. Prints the 3-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathV3RecipPerElem

Compute the reciprocal of a 3-D vector per element.

Definition

Arguments

3-D vector in which each element is the reciprocal of the corresponding element of the specified 3-D vector

vec 3-D vector

Return Values

None

Description

Create a 3-D vector in which each element is the reciprocal of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function recipf4.

vmathV3RowMul

Pre-multiply a row vector by a 3x3 matrix.

Definition

Arguments

```
result Product of a row-vector and a 3x3 matrix vec 3-D vector
mat 3x3 matrix
```

Return Values

None

Description

Transpose a 3-D vector into a row vector and pre-multiply by 3x3 matrix.

Notes

Slower than column post-multiply.

vmathV3RsqrtPerElem

Compute the reciprocal square root of a 3-D vector per element.

Definition

Arguments

3-D vector in which each element is the reciprocal square root of the corresponding element of the specified 3-D vector3-D vector

Return Values

None

Description

Create a 3-D vector in which each element is the reciprocal square root of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function rsqrtf4.

vmathV3ScalarDiv

Divide a 3-D vector by a scalar.

Definition

Arguments

result Quotient of the specified 3-D vector and scalarvec 3-D vectorscalarScalar value

Return Values

None

Description

Divide a 3-D vector by a scalar.

vmathV3ScalarMul

Multiply a 3-D vector by a scalar.

Definition

Arguments

result Product of the specified 3-D vector and scalar vec 3-D vector
scalar Scalar value

Return Values

None

Description

Multiply a 3-D vector by a scalar.

vmathV3Select

Conditionally select between two 3-D vectors.

Definition

Arguments

```
resultEqual to vec0 if select1 == 0, or to vec1 if select1 != 0vec03-D vectorvec13-D vectorselect1False selects the vec0 argument, true selects the vec1 argument
```

Return Values

None

Description

Conditionally select one of the 3-D vector arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

vmathV3SetElem

Set an x, y, or z element of a 3-D vector by index.

Definition

Arguments

result An output 3-D vectoridx Index, expected in the range 0-2value Scalar value

Return Values

None

Description

Set an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

vmathV3SetX

Set the x element of a 3-D vector.

Definition

Arguments

```
result An output 3-D vector 
x Scalar value
```

Return Values

None

Description

Set the x element of a 3-D vector to the specified scalar value.

vmathV3SetY

Set the y element of a 3-D vector.

Definition

Arguments

```
result An output 3-D vector y Scalar value
```

Return Values

None

Description

Set the y element of a 3-D vector to the specified scalar value.

vmathV3SetZ

Set the z element of a 3-D vector.

Definition

Arguments

```
result An output 3-D vector Scalar value
```

Return Values

None

Description

Set the z element of a 3-D vector to the specified scalar value.

vmathV3Slerp

Spherical linear interpolation between two 3-D vectors.

Definition

Arguments

```
    result Interpolated 3-D vector
    t Interpolation parameter
    unitVec0 3-D vector, expected to be unit-length
    unitVec1 3-D vector, expected to be unit-length
```

Return Values

None

Description

Perform spherical linear interpolation between two 3-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

vmathV3SqrtPerElem

Compute the square root of a 3-D vector per element.

Definition

Arguments

3-D vector in which each element is the square root of the corresponding element of the specified 3-D vector3-D vector

Return Values

None

Description

Create a 3-D vector in which each element is the square root of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function sqrtf4.

vmathV3StoreHalfFloats

Store eight 3-D vectors as half-floats.

Definition

Arguments

```
vec0
              3-D vector
vec1
              3-D vector
vec2
              3-D vector
vec3
              3-D vector
vec4
              3-D vector
vec5
              3-D vector
vec6
              3-D vector
vec7
              3-D vector
```

threeQuads An output array of 3 quadwords containing 24 half-floats

Return Values

None

Description

Store eight 3-D vectors in three quadwords of half-float values. The output is {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7}.

vmathV3StoreXYZ

Store x, y, and z elements of a 3-D vector in the first three words of a quadword. The value of the fourth word (the word with the highest address) remains unchanged.

Definition

Arguments

vec 3-D vector

quad Pointer to a quadword in which x, y, and z will be stored

Return Values

None

Description

Store x, y, and z elements of a 3-D vector in the first three words of a quadword. The value of the fourth word (the word with the highest address) remains unchanged.

vmathV3StoreXYZArray

Store four 3-D vectors in three quadwords.

Definition

Arguments

```
vec03-D vectorvec13-D vectorvec23-D vectorvec33-D vectorthreeQuadsAn output array of 3 quadwords containing 12 floats
```

Return Values

None

Description

Store four 3-D vectors in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$.

vmathV3Sub

Subtract a 3-D vector from another 3-D vector.

Definition

Arguments

```
result Difference of the specified 3-D vectors vec0 3-D vector vec1 3-D vector
```

Return Values

None

Description

Subtract a 3-D vector from another 3-D vector.

vmathV3Sum

Compute the sum of all elements of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Sum of all elements of vec

Description

Compute the sum of all elements of a 3-D vector.

4-D Vector Functions (AoS, by reference)

vmathV4AbsPerElem

Compute the absolute value of a 4-D vector per element.

Definition

Arguments

4-D vector in which each element is the absolute value of the corresponding element of vec

vec 4-D vector

Return Values

None

Description

Compute the absolute value of each element of a 4-D vector.

vmathV4Add

Add two 4-D vectors.

Definition

Arguments

```
result Sum of the specified 4-D vectorsvec0 4-D vectorvec1 4-D vector
```

Return Values

None

Description

Add two 4-D vectors.

vmathV4Copy

Copy a 4-D vector.

Definition

Arguments

result The constructed result vec 4-D vector

Return Values

None

Description

Construct a copy of a 4-D vector.

vmathV4CopySignPerElem

Copy sign from one 4-D vector to another, per element.

Definition

Arguments

result	4-D vector in which each element has the magnitude of the corresponding
	element of $vec0$ and the sign of the corresponding element of $vec1$
vec0	4-D vector
vec1	4-D vector

Return Values

None

Description

For each element, create a value composed of the magnitude of vec0 and the sign of vec1.

vmathV4DivPerElem

Divide two 4-D vectors per element.

Definition

Arguments

4-D vector in which each element is the quotient of the corresponding elements of the specified 4-D vectors
 4-D vector
 4-D vector
 4-D vector

Return Values

None

Description

Divide two 4-D vectors element by element.

Notes

Floating-point behavior matches standard library function divf4.

vmathV4Dot

Compute the dot product of two 4-D vectors.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

Dot product of the specified 4-D vectors

Description

Compute the dot product of two 4-D vectors.

vmathV4Get128

Get vector float data from a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Internal vector float data

Description

Get internal vector float data from a 4-D vector.

vmathV4GetElem

Get an x, y, z, or w element of a 4-D vector by index.

Definition

Arguments

```
vec 4-D vectoridx Index, expected in the range 0-3
```

Return Values

Element selected by the specified index

Description

Get an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

vmathV4GetW

Get the w element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

w element of a 4-D vector

Description

Get the w element of a 4-D vector.

vmathV4GetX

Get the x element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

x element of a 4-D vector

Description

Get the x element of a 4-D vector.

vmathV4GetXYZ

Get the x, y, and z elements of a 4-D vector.

Definition

Arguments

```
result 3-D vector containing x, y, and z elements vec 4-D vector
```

Return Values

None

Description

Extract a 4-D vector's x, y, and z elements into a 3-D vector.

vmathV4GetY

Get the y element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

y element of a 4-D vector

Description

Get the y element of a 4-D vector.

vmathV4GetZ

Get the z element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

z element of a 4-D vector

Description

Get the z element of a 4-D vector.

vmathV4Length

Compute the length of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Length of the specified 4-D vector

Description

Compute the length of a 4-D vector.

vmathV4LengthSqr

Compute the square of the length of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Square of the length of the specified 4-D vector

Description

Compute the square of the length of a 4-D vector.

vmathV4Lerp

Linear interpolation between two 4-D vectors.

Definition

Arguments

```
result Interpolated 4-D vector
t Interpolation parameter
vec0 4-D vector
vec1 4-D vector
```

Return Values

None

Description

Linearly interpolate between two 4-D vectors.

Notes

Does not clamp t between 0 and 1.

vmathV4MakeFrom128

Set vector float data in a 4-D vector.

Definition

Arguments

```
result The constructed 4-D vector vf4 Scalar value
```

Return Values

None

Description

Construct a 4-D vector whose internal vector float data is set to the vector float argument.

vmathV4MakeFromElems

Construct a 4-D vector from x, y, z, and w elements.

Definition

Arguments

result	The 4-D vector that contains the specified elements
X	Scalar value
Y	Scalar value
Z	Scalar value
W	Scalar value

Return Values

None

Description

Construct a 4-D vector containing the specified x, y, z, and w elements.

vmathV4MakeFromP3

Copy x, y, and z from a 3-D point into a 4-D vector, and set w to 1.

Definition

Arguments

```
result The constructed 4-D vector pnt 3-D point
```

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D point and with the w element set to 1.

vmathV4MakeFromQ

Copy elements from a quaternion into a 4-D vector.

Definition

Arguments

```
result The constructed 4-D vector quat Quaternion
```

Return Values

None

Description

Construct a 4-D vector containing the x, y, z, and w elements of the specified quaternion.

vmathV4MakeFromScalar

Set all elements of a 4-D vector to the same scalar value.

Definition

Arguments

```
result The constructed 4-D vector scalar Scalar value
```

Return Values

None

Description

Construct a 4-D vector with all elements set to the scalar value argument.

vmathV4MakeFromV3

Copy x, y, and z from a 3-D vector into a 4-D vector, and set w to 0.

Definition

Arguments

```
result The constructed 4-D vector vec 3-D vector
```

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to 0.

vmathV4MakeFromV3Scalar

Construct a 4-D vector from a 3-D vector and a scalar.

Definition

Arguments

result The constructed resultxyz 3-D vectorw Scalar value

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

vmathV4MakeWAxis

Construct w axis.

Definition

Arguments

result The constructed 4-D vector

Return Values

None

Description

Construct a 4-D vector equal to (0,0,0,1).

vmathV4MakeXAxis

Construct x axis.

Definition

Arguments

result The constructed 4-D vector

Return Values

None

Description

Construct a 4-D vector equal to (1,0,0,0).

vmathV4MakeYAxis

Construct y axis.

Definition

Arguments

result The constructed 4-D vector

Return Values

None

Description

Construct a 4-D vector equal to (0,1,0,0).

vmathV4MakeZAxis

Construct z axis.

Definition

Arguments

result The constructed 4-D vector

Return Values

None

Description

Construct a 4-D vector equal to (0,0,1,0).

vmathV4MaxElem

Maximum element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Maximum value of all elements of vec

Description

Compute the maximum value of all elements of a 4-D vector.

vmathV4MaxPerElem

Maximum of two 4-D vectors per element.

Definition

Arguments

result	4-D vector in which each element is the maximum of the corresponding elements
	of the specified 4-D vectors
vec0	4-D vector
vec1	4-D vector

Return Values

None

Description

Create a 4-D vector in which each element is the maximum of the corresponding elements of the specified 4-D vectors.

vmathV4MinElem

Minimum element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Minimum value of all elements of vec

Description

Compute the minimum value of all elements of a 4-D vector.

vmathV4MinPerElem

Minimum of two 4-D vectors per element.

Definition

Arguments

result	4-D vector in which each element is the minimum of the corresponding elements of the specified 4-D vectors
vec0	4-D vector
vec1	4-D vector

Return Values

None

Description

Create a 4-D vector in which each element is the minimum of the corresponding elements of two specified 4-D vectors.

vmathV4MulPerElem

Multiply two 4-D vectors per element.

Definition

Arguments

result	4-D vector in which each element is the product of the corresponding elements of
	the specified 4-D vectors
vec0	4-D vector
vec1	4-D vector

Return Values

None

Description

Multiply two 4-D vectors element by element.

vmathV4Neg

Negate all elements of a 4-D vector.

Definition

Arguments

result 4-D vector containing negated elements of the specified 4-D vector vec 4-D vector

Return Values

None

Description

Negate all elements of a 4-D vector.

vmathV4Normalize

Normalize a 4-D vector.

Definition

Arguments

result The specified 4-D vector scaled to unit length vec 4-D vector

Return Values

None

Description

Compute a normalized 4-D vector.

Notes

The result is unpredictable when all elements of vec are at or near zero.

vmathV4Outer

Outer product of two 4-D vectors.

Definition

Arguments

result The 4x4 matrix product of a column-vector, vec0, and a row-vector, vec1
vec0 4-D vector
4-D vector

Return Values

None

Description

Compute the outer product of two 4-D vectors.

vmathV4Print

Print a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

None

Description

Print a 4-D vector. Prints the 4-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when $_\mbox{VECTORMATH_DEBUG}$ is defined.

vmathV4Prints

Print a 4-D vector and an associated string identifier.

Definition

Arguments

```
vec 4-D vectorname String printed with the 4-D vector
```

Return Values

None

Description

Print a 4-D vector and an associated string identifier. Prints the 4-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathV4RecipPerElem

Compute the reciprocal of a 4-D vector per element.

Definition

Arguments

4-D vector in which each element is the reciprocal of the corresponding element of the specified 4-D vector

4-D vector

4-D vector

Return Values

None

Description

Create a 4-D vector in which each element is the reciprocal of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function recipf4.

vmathV4RsqrtPerElem

Compute the reciprocal square root of a 4-D vector per element.

Definition

Arguments

4-D vector in which each element is the reciprocal square root of the corresponding element of the specified 4-D vector

vec 4-D vector

Return Values

None

Description

Create a 4-D vector in which each element is the reciprocal square root of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function rsqrtf4.

vmathV4ScalarDiv

Divide a 4-D vector by a scalar.

Definition

Arguments

result Quotient of the specified 4-D vector and scalarvec 4-D vectorscalarScalar value

Return Values

None

Description

Divide a 4-D vector by a scalar.

vmathV4ScalarMul

Multiply a 4-D vector by a scalar.

Definition

Arguments

result Product of the specified 4-D vector and scalar vec 4-D vector
scalar Scalar value

Return Values

None

Description

Multiply a 4-D vector by a scalar.

vmathV4Select

Conditionally select between two 4-D vectors.

Definition

Arguments

```
resultEqual to vec0 if select1 == 0, or to vec1 if select1 != 0vec04-D vectorvec14-D vectorselect1False selects the vec0 argument, true selects the vec1 argument
```

Return Values

None

Description

Conditionally select one of the 4-D vector arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

vmathV4SetElem

Set an x, y, z, or w element of a 4-D vector by index.

Definition

Arguments

result An output 4-D vector

idx Index, expected in the range 0-3

value Scalar value

Return Values

None

Description

Set an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

vmathV4SetW

Set the w element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector w Scalar value
```

Return Values

None

Description

Set the w element of a 4-D vector to the specified scalar value.

vmathV4SetX

Set the x element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector 
x Scalar value
```

Return Values

None

Description

Set the x element of a 4-D vector to the specified scalar value.

vmathV4SetXYZ

Set the x, y, and z elements of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector vec 3-D vector
```

Return Values

None

Description

Set the x, y, and z elements to those of the specified 3-D vector.

Notes

This function does not change the w element.

vmathV4SetY

Set the y element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector y Scalar value
```

Return Values

None

Description

Set the y element of a 4-D vector to the specified scalar value.

vmathV4SetZ

Set the z element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector 
z Scalar value
```

Return Values

None

Description

Set the z element of a 4-D vector to the specified scalar value.

vmathV4Slerp

Spherical linear interpolation between two 4-D vectors.

Definition

Arguments

```
 \begin{array}{ll} \textit{result} & \textit{Interpolated 4-D vector} \\ \textit{t} & \textit{Interpolation parameter} \\ \textit{unitVec0} & \textit{4-D vector, expected to be unit-length} \\ \textit{unitVec1} & \textit{4-D vector, expected to be unit-length} \\ \end{array}
```

Return Values

None

Description

Perform spherical linear interpolation between two 4-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

vmathV4SqrtPerElem

Compute the square root of a 4-D vector per element.

Definition

Arguments

4-D vector in which each element is the square root of the corresponding element of the specified 4-D vector

vec 4-D vector

Return Values

None

Description

Create a 4-D vector in which each element is the square root of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function sqrtf4.

vmathV4StoreHalfFloats

Store four 4-D vectors as half-floats.

Definition

Arguments

```
vec04-D vectorvec14-D vectorvec24-D vectorvec34-D vectortwoQuadsAn output array of 2 quadwords containing 16 half-floats
```

Return Values

None

Description

Store four 4-D vectors in two quadwords of half-float values. The output is $\{x0,y0,z0,w0,x1,y1,z1,w1,x2,y2,z2,w2,x3,y3,z3,w3\}$.

vmathV4Sub

Subtract a 4-D vector from another 4-D vector.

Definition

Arguments

```
result Difference of the specified 4-D vectors vec0 4-D vector vec1 4-D vector
```

Return Values

None

Description

Subtract a 4-D vector from another 4-D vector.

vmathV4Sum

Compute the sum of all elements of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Sum of all elements of vec

Description

Compute the sum of all elements of a 4-D vector.

vmathP3AbsPerElem

Compute the absolute value of a 3-D point per element.

Definition

Arguments

3-D point in which each element is the absolute value of the corresponding element of pnt
3-D point
3-D point

Return Values

None

Description

Compute the absolute value of each element of a 3-D point.

vmathP3AddV3

Add a 3-D point to a 3-D vector.

Definition

Arguments

result Sum of the specified 3-D point and 3-D vector pnt 3-D point vec 3-D vector

Return Values

None

Description

Add a 3-D point to a 3-D vector.

vmathP3Copy

Copy a 3-D point.

Definition

Arguments

```
result The constructed result pnt 3-D point
```

Return Values

None

Description

Construct a copy of a 3-D point.

vmathP3CopySignPerElem

Copy sign from one 3-D point to another, per element.

Definition

Arguments

result	3-D point in which each element has the magnitude of the corresponding element of pnt0 and the sign of the corresponding element of pnt1
pnt0	3-D point
pnt1	3-D point

Return Values

None

Description

For each element, create a value composed of the magnitude of pnt0 and the sign of pnt1.

vmathP3Dist

Compute the distance between two 3-D points.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Distance between two 3-D points

Description

Compute the distance between two 3-D points.

vmathP3DistFromOrigin

Compute the distance of a 3-D point from the coordinate-system origin.

Definition

Arguments

pnt 3-D point

Return Values

Distance of a 3-D point from the origin

Description

Compute the distance of a 3-D point from the coordinate-system origin.

vmathP3DistSqr

Compute the square of the distance between two 3-D points.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Square of the distance between two 3-D points

Description

Compute the square of the distance between two 3-D points.

vmathP3DistSqrFromOrigin

Compute the square of the distance of a 3-D point from the coordinate-system origin.

Definition

Arguments

pnt 3-D point

Return Values

Square of the distance of a 3-D point from the origin

Description

Compute the square of the distance of a 3-D point from the coordinate-system origin.

vmathP3DivPerElem

Divide two 3-D points per element.

Definition

Arguments

result	3-D point in which each element is the quotient of the corresponding elements of
	the specified 3-D points
pnt0	3-D point
pnt1	3-D point

Return Values

None

Description

Divide two 3-D points element by element.

Notes

Floating-point behavior matches standard library function divf4.

vmathP3Get128

Get vector float data from a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Internal vector float data

Description

Get internal vector float data from a 3-D point.

vmathP3GetElem

Get an x, y, or z element of a 3-D point by index.

Definition

Arguments

```
pnt 3-D pointidx Index, expected in the range 0-2
```

Return Values

Element selected by the specified index

Description

Get an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

vmathP3GetX

Get the x element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

x element of a 3-D point

Description

Get the x element of a 3-D point.

vmathP3GetY

Get the y element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

y element of a 3-D point

Description

Get the y element of a 3-D point.

vmathP3GetZ

Get the z element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

z element of a 3-D point

Description

Get the z element of a 3-D point.

vmathP3Lerp

Linear interpolation between two 3-D points.

Definition

Arguments

```
result Interpolated 3-D point t Interpolation parameter pnt0 3-D point pnt1 3-D point
```

Return Values

None

Description

Linearly interpolate between two 3-D points.

Notes

Does not clamp *t* between 0 and 1.

vmathP3LoadXYZArray

Load four three-float 3-D points, stored in three quadwords.

Definition

Arguments

```
\begin{array}{lll} pnt0 & \text{An output 3-D point} \\ pnt1 & \text{An output 3-D point} \\ pnt2 & \text{An output 3-D point} \\ pnt3 & \text{An output 3-D point} \\ threeQuads & \text{Array of 3 quadwords containing 12 floats} \end{array}
```

Return Values

None

Description

Load four three-float 3-D points, stored in three quadwords as {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3}, into four 3-D points.

vmathP3MakeFrom128

Set vector float data in a 3-D point.

Definition

Arguments

```
result The constructed 3-D point vf4 Scalar value
```

Return Values

None

Description

Construct a 3-D point whose internal vector float data is set to the vector float argument.

vmathP3MakeFromElems

Construct a 3-D point from x, y, and z elements.

Definition

Arguments

result
 X
 Scalar value
 y
 Scalar value
 z
 Scalar value

Return Values

None

Description

Construct a 3-D point containing the specified x, y, and z elements.

vmathP3MakeFromScalar

Set all elements of a 3-D point to the same scalar value.

Definition

Arguments

```
result The constructed 3-D point scalar Scalar value
```

Return Values

None

Description

Construct a 3-D point with all elements set to the scalar value argument.

vmathP3MakeFromV3

Copy elements from a 3-D vector into a 3-D point.

Definition

Arguments

```
result The constructed 3-D point vec 3-D vector
```

Return Values

None

Description

Construct a 3-D point containing the x, y, and z elements of the specified 3-D vector.

vmathP3MaxElem

Maximum element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Maximum value of all elements of pnt

Description

Compute the maximum value of all elements of a 3-D point.

vmathP3MaxPerElem

Maximum of two 3-D points per element.

Definition

Arguments

result	3-D point in which each element is the maximum of the corresponding elements of the specified 3-D points
pnt0	3-D point
pnt1	3-D point

Return Values

None

Description

Create a 3-D point in which each element is the maximum of the corresponding elements of the specified 3-D points.

vmathP3MinElem

Minimum element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Minimum value of all elements of pnt

Description

Compute the minimum value of all elements of a 3-D point.

vmathP3MinPerElem

Minimum of two 3-D points per element.

Definition

Arguments

result	3-D point in which each element is the minimum of the corresponding elements
	of the specified 3-D points
pnt0	3-D point
pnt1	3-D point

Return Values

None

Description

Create a 3-D point in which each element is the minimum of the corresponding elements of two specified 3-D points.

vmathP3MulPerElem

Multiply two 3-D points per element.

Definition

Arguments

result	3-D point in which each element is the product of the corresponding elements of
	the specified 3-D points
pnt0	3-D point
pnt1	3-D point

Return Values

None

Description

Multiply two 3-D points element by element.

vmathP3NonUniformScale

Apply non-uniform scale to a 3-D point.

Definition

Arguments

3-D point in which each element is the product of the corresponding elements of the specified 3-D point and 3-D vector
 pnt
 scaleVec
 3-D vector

Return Values

None

Description

Apply non-uniform scale to a 3-D point.

vmathP3Print

Print a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

None

Description

Print a 3-D point. Prints the 3-D point transposed, that is, as a row instead of a column.

Notes

Function is only defined when $_\mbox{VECTORMATH_DEBUG}$ is defined.

vmathP3Prints

Print a 3-D point and an associated string identifier.

Definition

Arguments

```
pnt 3-D pointname String printed with the 3-D point
```

Return Values

None

Description

Print a 3-D point and an associated string identifier. Prints the 3-D point transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathP3Projection

Scalar projection of a 3-D point on a unit-length 3-D vector.

Definition

Arguments

```
pnt 3-D pointunitVec 3-D vector, expected to be unit-length
```

Return Values

Scalar projection of the 3-D point on the unit-length 3-D vector

Description

Scalar projection of a 3-D point on a unit-length 3-D vector (dot product).

vmathP3RecipPerElem

Compute the reciprocal of a 3-D point per element.

Definition

Arguments

3-D point in which each element is the reciprocal of the corresponding element of the specified 3-D point

3-D point 3-D point

Return Values

None

Description

Create a 3-D point in which each element is the reciprocal of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function recipf4.

vmathP3RsqrtPerElem

Compute the reciprocal square root of a 3-D point per element.

Definition

Arguments

3-D point in which each element is the reciprocal square root of the corresponding element of the specified 3-D point

3-D point

3-D point

Return Values

None

Description

Create a 3-D point in which each element is the reciprocal square root of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function rsqrtf4.

vmathP3Scale

Apply uniform scale to a 3-D point.

Definition

Arguments

result
 pnt
 scaleVal
 3-D point in which every element is multiplied by the scalar value
 Scalar value

Return Values

None

Description

Apply uniform scale to a 3-D point.

vmathP3Select

Conditionally select between two 3-D points.

Definition

Arguments

```
resultEqual to pnt0 if select1 == 0, or to pnt1 if select1 != 0pnt03-D pointpnt13-D pointselect1False selects the pnt0 argument, true selects the pnt1 argument
```

Return Values

None

Description

Conditionally select one of the 3-D point arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

vmathP3SetElem

Set an x, y, or z element of a 3-D point by index.

Definition

Arguments

result An output 3-D pointidx Index, expected in the range 0-2value Scalar value

Return Values

None

Description

Set an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

vmathP3SetX

Set the x element of a 3-D point.

Definition

Arguments

```
result An output 3-D point x Scalar value
```

Return Values

None

Description

Set the x element of a 3-D point to the specified scalar value.

vmathP3SetY

Set the y element of a 3-D point.

Definition

Arguments

```
result An output 3-D point y Scalar value
```

Return Values

None

Description

Set the y element of a 3-D point to the specified scalar value.

vmathP3SetZ

Set the z element of a 3-D point.

Definition

Arguments

```
result An output 3-D point z Scalar value
```

Return Values

None

Description

Set the z element of a 3-D point to the specified scalar value.

vmathP3SqrtPerElem

Compute the square root of a 3-D point per element.

Definition

Arguments

3-D point in which each element is the square root of the corresponding element of the specified 3-D point

3-D point

3-D point

Return Values

None

Description

Create a 3-D point in which each element is the square root of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function sqrtf4.

vmathP3StoreHalfFloats

Store eight 3-D points as half-floats.

Definition

Arguments

```
pnt0
              3-D point
pnt1
              3-D point
pnt2
              3-D point
pnt3
              3-D point
pnt4
              3-D point
pnt5
              3-D point
pnt6
              3-D point
pnt7
              3-D point
threeQuads
             An output array of 3 quadwords containing 24 half-floats
```

Return Values

None

Description

Store eight 3-D points in three quadwords of half-float values. The output is $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7\}$.

vmathP3StoreXYZ

Store x, y, and z elements of a 3-D point in the first three words of a quadword. The value of the fourth word (the word with the highest address) remains unchanged.

Definition

Arguments

pnt 3-D point

quad Pointer to a quadword in which x, y, and z will be stored

Return Values

None

Description

Store x, y, and z elements of a 3-D point in the first three words of a quadword. The value of the fourth word (the word with the highest address) remains unchanged.

vmathP3StoreXYZArray

Store four 3-D points in three quadwords.

Definition

Arguments

```
\begin{array}{lll} pnt0 & 3-D \ point \\ pnt1 & 3-D \ point \\ pnt2 & 3-D \ point \\ pnt3 & 3-D \ point \\ three \textit{Quads} & An \ output \ array \ of \ 3 \ quadwords \ containing \ 12 \ floats \\ \end{array}
```

Return Values

None

Description

Store four 3-D points in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$.

vmathP3Sub

Subtract a 3-D point from another 3-D point.

Definition

Arguments

```
result Difference of the specified 3-D pointspnt0 3-D pointpnt1 3-D point
```

Return Values

None

Description

Subtract a 3-D point from another 3-D point.

vmathP3SubV3

Subtract a 3-D vector from a 3-D point.

Definition

Arguments

result Difference of the specified 3-D point and 3-D vector pnt 3-D point vec 3-D vector

Return Values

None

Description

Subtract a 3-D vector from a 3-D point.

vmathP3Sum

Compute the sum of all elements of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Sum of all elements of pnt

Description

Compute the sum of all elements of a 3-D point.

Quaternion Functions (AoS, by reference)

vmathQAdd

Add two quaternions.

Definition

Arguments

result Sum of the specified quaternionsquat0 Quaternionquat1 Quaternion

Return Values

None

Description

Add two quaternions.

vmathQConj

Compute the conjugate of a quaternion.

Definition

Arguments

result Conjugate of the specified quaternion quat Quaternion

Return Values

None

Description

Compute the conjugate of a quaternion.

<u>vmathQ</u>Copy

Copy a quaternion.

Definition

Arguments

result The constructed result quat Quaternion

Return Values

None

Description

Construct a copy of a quaternion.

vmathQDot

Compute the dot product of two quaternions.

Definition

Arguments

```
quat0 Quaternion quat1 Quaternion
```

Return Values

Dot product of the specified quaternions

Description

Compute the dot product of two quaternions.

vmathQGet128

Get vector float data from a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Internal vector float data

Description

Get internal vector float data from a quaternion.

vmathQGetElem

Get an x, y, z, or w element of a quaternion by index.

Definition

Arguments

```
quatQuaternionidxIndex, expected in the range 0-3
```

Return Values

Element selected by the specified index

Description

Get an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

vmathQGetW

Get the w element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

w element of a quaternion

Description

Get the w element of a quaternion.

vmathQGetX

Get the x element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

x element of a quaternion

Description

Get the x element of a quaternion.

vmathQGetXYZ

Get the x, y, and z elements of a quaternion.

Definition

Arguments

```
result 3-D vector containing x, y, and z elements quat Quaternion
```

Return Values

None

Description

Extract a quaternion's x, y, and z elements into a 3-D vector.

vmathQGetY

Get the y element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

y element of a quaternion

Description

Get the y element of a quaternion.

vmathQGetZ

Get the z element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

z element of a quaternion

Description

Get the z element of a quaternion.

vmathQLength

Compute the length of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Length of the specified quaternion

Description

Compute the length of a quaternion.

vmathQLerp

Linear interpolation between two quaternions.

Definition

Arguments

result Interpolated quaternion t Interpolation parameter quat0 Quaternion quat1 Quaternion

Return Values

None

Description

Linearly interpolate between two quaternions.

Notes

Does not clamp *t* between 0 and 1.

vmathQMakeFrom128

Set vector float data in a quaternion.

Definition

Arguments

result The constructed quaternion vf4 Scalar value

Return Values

None

Description

Construct a quaternion whose internal vector float data is set to the vector float argument.

vmathQMakeFromElems

Construct a quaternion from x, y, z, and w elements.

Definition

Arguments

result	The quaternion that contains the specified elements
X	Scalar value
Y	Scalar value
Z	Scalar value
W	Scalar value

Return Values

None

Description

Construct a quaternion containing the specified x, y, z, and w elements.

vmathQMakeFromM3

Convert a rotation matrix to a unit-length quaternion.

Definition

Arguments

result The constructed result
rotMat 3x3 matrix, expected to be a rotation matrix

Return Values

None

Description

Construct a unit-length quaternion representing the same transformation as a rotation matrix.

vmathQMakeFromScalar

Set all elements of a quaternion to the same scalar value.

Definition

Arguments

result The constructed quaternion scalar Scalar value

Return Values

None

Description

Construct a quaternion with all elements set to the scalar value argument.

vmathQMakeFromV3Scalar

Construct a quaternion from a 3-D vector and a scalar.

Definition

Arguments

result The constructed resultxyz 3-D vectorw Scalar value

Return Values

None

Description

Construct a quaternion with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

vmathQMakeFromV4

Copy elements from a 4-D vector into a quaternion.

Definition

Arguments

```
result The constructed quaternion vec 4-D vector
```

Return Values

None

Description

Construct a quaternion containing the x, y, z, and w elements of the specified 4-D vector.

vmathQMakeIdentity

Construct an identity quaternion.

Definition

Arguments

result The constructed quaternion

Return Values

None

Description

Construct an identity quaternion equal to (0,0,0,1).

vmathQMakeRotationArc

Construct a quaternion to rotate between two unit-length 3-D vectors.

Definition

Arguments

```
result The constructed quaternionunitVec0 3-D vector, expected to be unit-lengthunitVec1 3-D vector, expected to be unit-length
```

Return Values

None

Description

Construct a quaternion to rotate between two unit-length 3-D vectors.

Notes

The result is unpredictable if unitVec0 and unitVec1 point in opposite directions.

vmathQMakeRotationAxis

Construct a quaternion to rotate around a unit-length 3-D vector.

Definition

Arguments

result The constructed quaternionradians Scalar valueunitVec 3-D vector, expected to be unit-length

Return Values

None

Description

Construct a quaternion to rotate around a unit-length 3-D vector by the specified radians angle.

vmathQMakeRotationX

Construct a quaternion to rotate around the x axis.

Definition

Arguments

result The constructed quaternion radians Scalar value

Return Values

None

Description

Construct a quaternion to rotate around the x axis by the specified radians angle.

vmathQMakeRotationY

Construct a quaternion to rotate around the y axis.

Definition

Arguments

result The constructed quaternion radians Scalar value

Return Values

None

Description

Construct a quaternion to rotate around the y axis by the specified radians angle.

vmathQMakeRotationZ

Construct a quaternion to rotate around the z axis.

Definition

Arguments

result The constructed quaternion radians Scalar value

Return Values

None

Description

Construct a quaternion to rotate around the z axis by the specified radians angle.

vmathQMul

Multiply two quaternions.

Definition

Arguments

```
result Product of the specified quaternionsquat0 Quaternionquat1 Quaternion
```

Return Values

None

Description

Multiply two quaternions.

vmathQNeg

Negate all elements of a quaternion.

Definition

Arguments

result Quaternion containing negated elements of the specified quaternion quat Quaternion

Return Values

None

Description

Negate all elements of a quaternion.

vmathQNorm

Compute the norm of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

The norm of the specified quaternion

Description

Compute the norm, equal to the square of the length, of a quaternion.

vmathQNormalize

Normalize a quaternion.

Definition

Arguments

result The specified quaternion scaled to unit length quat Quaternion

Return Values

None

Description

Compute a normalized quaternion.

Notes

The result is unpredictable when all elements of quat are at or near zero.

vmathQPrint

Print a quaternion.

Definition

Arguments

quat Quaternion

Return Values

None

Description

Print a quaternion.

Notes

Function is only defined when $_\mbox{VECTORMATH_DEBUG}$ is defined.

vmathQPrints

Print a quaternion and an associated string identifier.

Definition

Arguments

quatquaternionnameString printed with the quaternion

Return Values

None

Description

Print a quaternion and an associated string identifier.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathQRotate

Use a unit-length quaternion to rotate a 3-D vector.

Definition

Arguments

result The rotated 3-D vector, equivalent to unitQuat*Quat(vec,0)*conj(unitQuat)
unitQuat Quaternion, expected to be unit-length
vec 3-D vector

Return Values

None

Description

Rotate a 3-D vector by applying a unit-length quaternion.

vmathQScalarDiv

Divide a quaternion by a scalar.

Definition

Arguments

result Quotient of the specified quaternion and scalar quat Quaternion
scalar Scalar value

Return Values

None

Description

Divide a quaternion by a scalar.

vmathQScalarMul

Multiply a quaternion by a scalar.

Definition

Arguments

resultProduct of the specified quaternion and scalarquatQuaternionscalarScalar value

Return Values

None

Description

Multiply a quaternion by a scalar.

vmathQSelect

Conditionally select between two quaternions.

Definition

Arguments

result	Equal to $quat0$ if $select1 == 0$, or to $quat1$ if $select1 != 0$
quat0	Quaternion
quat1	Quaternion
select1	False selects the quat0 argument, true selects the quat1 argument

Return Values

None

Description

Conditionally select one of the quaternion arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

vmathQSetElem

Set an x, y, z, or w element of a quaternion by index.

Definition

Arguments

result An output quaternionidx Index, expected in the range 0-3value Scalar value

Return Values

None

Description

Set an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

vmathQSetW

Set the w element of a quaternion.

Definition

Arguments

```
result An output quaternion 
w Scalar value
```

Return Values

None

Description

Set the w element of a quaternion to the specified scalar value.

vmathQSetX

Set the x element of a quaternion.

Definition

Arguments

```
result An output quaternion x Scalar value
```

Return Values

None

Description

Set the x element of a quaternion to the specified scalar value.

vmathQSetXYZ

Set the x, y, and z elements of a quaternion.

Definition

Arguments

```
result An output quaternion vec 3-D vector
```

Return Values

None

Description

Set the x, y, and z elements to those of the specified 3-D vector.

Notes

This function does not change the w element.

vmathQSetY

Set the y element of a quaternion.

Definition

Arguments

```
result An output quaternion

y Scalar value
```

Return Values

None

Description

Set the y element of a quaternion to the specified scalar value.

vmathQSetZ

Set the z element of a quaternion.

Definition

Arguments

```
result An output quaternion z Scalar value
```

Return Values

None

Description

Set the z element of a quaternion to the specified scalar value.

vmathQSlerp

Spherical linear interpolation between two quaternions.

Definition

Arguments

resultInterpolated quaterniontInterpolation parameterunitQuat0Quaternion, expected to be unit-lengthunitQuat1Quaternion, expected to be unit-length

Return Values

None

Description

Perform spherical linear interpolation between two quaternions.

Notes

Interpolates along the shortest path between orientations. Does not clamp *t* between 0 and 1.

vmathQSquad

Spherical quadrangle interpolation.

Definition

Arguments

```
Interpolated quaternion

t Interpolation parameter

unitQuat0 Quaternion, expected to be unit-length

unitQuat1 Quaternion, expected to be unit-length

unitQuat2 Quaternion, expected to be unit-length

unitQuat3 Quaternion, expected to be unit-length

Quaternion, expected to be unit-length
```

Return Values

None

Description

Perform spherical quadrangle interpolation between four quaternions.

vmathQSub

Subtract a quaternion from another quaternion.

Definition

Arguments

```
result Difference of the specified quaternionsquat0 Quaternionquat1 Quaternion
```

Return Values

None

Description

Subtract a quaternion from another quaternion.

3x3 Matrix Functions (AoS, by reference)

vmathM3AbsPerElem

Compute the absolute value of a 3x3 matrix per element.

Definition

Arguments

3x3 matrix in which each element is the absolute value of the corresponding element of the specified 3x3 matrix

mat 3x3 matrix

Return Values

None

Description

Compute the absolute value of each element of a 3x3 matrix.

vmathM3Add

Add two 3x3 matrices.

Definition

Arguments

```
result Sum of the specified 3x3 matrices
mat0 3x3 matrix
mat1 3x3 matrix
```

Return Values

None

Description

Add two 3x3 matrices.

vmathM3AppendScale

Append (post-multiply) a scale transformation to a 3x3 matrix.

Definition

Arguments

result The product of mat and a scale transformation created from scaleVec
mat 3x3 matrix
scaleVec 3-D vector

Return Values

None

Description

Post-multiply a 3x3 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathM3Copy

Copy a 3x3 matrix.

Definition

Arguments

result The constructed result mat 3x3 matrix

Return Values

None

Description

Construct a copy of a 3x3 matrix.

vmathM3Determinant

Determinant of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

The determinant of mat

Description

Compute the determinant of a 3x3 matrix.

vmathM3GetCol

Get the column of a 3x3 matrix referred to by the specified index.

Definition

Arguments

result The column referred to by the specified index 3x3 matrix

col Index, expected in the range 0-2

Return Values

None

Description

Get the column of a 3x3 matrix referred to by the specified index.

Get column 0 of a 3x3 matrix.

Definition

Arguments

result Column 0 mat 3x3 matrix

Return Values

None

Description

Get column 0 of a 3x3 matrix.

Get column 1 of a 3x3 matrix.

Definition

Arguments

```
result Column 1 mat 3x3 matrix
```

Return Values

None

Description

Get column 1 of a 3x3 matrix.

Get column 2 of a 3x3 matrix.

Definition

Arguments

```
result Column 2 mat 3x3 matrix
```

Return Values

None

Description

Get column 2 of a 3x3 matrix.

vmathM3GetElem

Get the element of a 3x3 matrix referred to by column and row indices.

Definition

Arguments

```
mat 3x3 matrixcol Index, expected in the range 0-2row Index, expected in the range 0-2
```

Return Values

Element selected by col and row

Description

Get the element of a 3x3 matrix referred to by column and row indices.

vmathM3GetRow

Get the row of a 3x3 matrix referred to by the specified index.

Definition

Arguments

result The row referred to by the specified indexmat 3x3 matrixrow Index, expected in the range 0-2

Return Values

None

Description

Get the row of a 3x3 matrix referred to by the specified index.

vmathM3Inverse

Compute the inverse of a 3x3 matrix.

Definition

Arguments

```
result Inverse of mat mat 3x3 matrix
```

Return Values

None

Description

Compute the inverse of a 3x3 matrix.

Notes

Result is unpredictable when the determinant of mat is equal to or near 0.

vmathM3MakeFromCols

Construct a 3x3 matrix containing the specified columns.

Definition

Arguments

The 3x3 matrix that contains the specified columns
3-D vector
3-D vector
3-D vector

Return Values

None

Description

Construct a 3x3 matrix containing the specified columns.

vmathM3MakeFromQ

Construct a 3x3 rotation matrix from a unit-length quaternion.

Definition

Arguments

result A 3x3 matrix that applies the same rotation as unitQuat unitQuat Quaternion, expected to be unit-length

Return Values

None

Description

Construct a 3x3 matrix that applies the same rotation as the specified unit-length quaternion.

vmathM3MakeFromScalar

Set all elements of a 3x3 matrix to the same scalar value.

Definition

Arguments

```
result The constructed 3x3 matrix scalar Scalar value
```

Return Values

None

Description

Construct a 3x3 matrix with all elements set to the scalar value argument.

vmathM3MakeIdentity

Construct an identity 3x3 matrix.

Definition

Arguments

result The constructed 3x3 matrix

Return Values

None

Description

Construct an identity 3x3 matrix in which non-diagonal elements are zero and diagonal elements are 1.

vmathM3MakeRotationAxis

Construct a 3x3 matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

result The constructed 3x3 matrixradians Scalar valueunitVec 3-D vector, expected to be unit-length

Return Values

None

Description

Construct a 3x3 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

vmathM3MakeRotationQ

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

result A 3x3 matrix that applies the same rotation as unitQuat unitQuat Quaternion, expected to be unit-length

Return Values

None

Description

Construct a 3x3 matrix that applies the same rotation as the specified unit-length quaternion.

vmathM3MakeRotationX

Construct a 3x3 matrix to rotate around the x axis.

Definition

Arguments

result The constructed 3x3 matrix radians Scalar value

Return Values

None

Description

Construct a 3x3 matrix to rotate around the x axis by the specified radians angle.

vmathM3MakeRotationY

Construct a 3x3 matrix to rotate around the y axis.

Definition

Arguments

```
result The constructed 3x3 matrix radians Scalar value
```

Return Values

None

Description

Construct a 3x3 matrix to rotate around the y axis by the specified radians angle.

vmathM3MakeRotationZ

Construct a 3x3 matrix to rotate around the z axis.

Definition

Arguments

```
result The constructed 3x3 matrix radians Scalar value
```

Return Values

None

Description

Construct a 3x3 matrix to rotate around the z axis by the specified radians angle.

vmathM3MakeRotationZYX

Construct a 3x3 matrix to rotate around the x, y, and z axes.

Definition

Arguments

result The constructed 3x3 matrix radiansXYZ 3-D vector

Return Values

None

Description

Construct a 3x3 matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

vmathM3MakeScale

Construct a 3x3 matrix to perform scaling.

Definition

Arguments

result The constructed 3x3 matrix scaleVec 3-D vector

Return Values

None

Description

Construct a 3x3 matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

vmathM3Mul

Multiply two 3x3 matrices.

Definition

Arguments

```
result Product of the specified 3x3 matrices
mat0    3x3 matrix
mat1    3x3 matrix
```

Return Values

None

Description

Multiply two 3x3 matrices.

vmathM3MulPerElem

Multiply two 3x3 matrices per element.

Definition

Arguments

result	3x3 matrix in which each element is the product of the corresponding elements of
	the specified 3x3 matrices
mat0	3x3 matrix
mat1	3x3 matrix

Return Values

None

Description

Multiply two 3x3 matrices element by element.

vmathM3MuIV3

Multiply a 3x3 matrix by a 3-D vector.

Definition

Arguments

result Product of the specified 3x3 matrix and 3-D vector

mat 3x3 matrix

vec 3-D vector

Return Values

None

Description

Multiply a 3x3 matrix by a 3-D vector.

vmathM3Neg

Negate all elements of a 3x3 matrix.

Definition

Arguments

result 3x3 matrix containing negated elements of the specified 3x3 matrix 3x3 matrix

Return Values

None

Description

Negate all elements of a 3x3 matrix.

vmathM3PrependScale

Prepend (pre-multiply) a scale transformation to a 3x3 matrix.

Definition

Arguments

result The product of a scale transformation created from scaleVec and mat scaleVec 3-D vector

mat 3x3 matrix

Return Values

None

Description

Pre-multiply a 3x3 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathM3Print

Print a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

None

Description

Print a 3x3 matrix. Unlike the printing of vectors, the 3x3 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathM3Prints

Print a 3x3 matrix and an associated string identifier.

Definition

Arguments

mat 3x3 matrixname String printed with the 3x3 matrix

Return Values

None

Description

Print a 3x3 matrix and an associated string identifier. Unlike the printing of vectors, the 3x3 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathM3ScalarMul

Multiply a 3x3 matrix by a scalar.

Definition

Arguments

result Product of the specified 3x3 matrix and scalar mat 3x3 matrix
scalar Scalar value

Return Values

None

Description

Multiply a 3x3 matrix by a scalar.

vmathM3Select

Conditionally select between two 3x3 matrices.

Definition

Arguments

result	Equal to mat0 if select1 == 0, or to mat1 if select1!= 0
mat0	3x3 matrix
mat1	3x3 matrix
select1	False selects the mat0 argument, true selects the mat1 argument

Return Values

None

Description

Conditionally select one of the 3x3 matrix arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

Set the column of a 3x3 matrix referred to by the specified index.

Definition

Arguments

result An output 3x3 matrix
col Index, expected in the range 0-2
vec 3-D vector

Return Values

None

Description

Set the column of a 3x3 matrix referred to by the specified index.

Set column 0 of a 3x3 matrix.

Definition

Arguments

```
result An output 3x3 matrix col0 3-D vector
```

Return Values

None

Description

Set column 0 of a 3x3 matrix.

Set column 1 of a 3x3 matrix.

Definition

Arguments

result An output 3x3 matrix coll 3-D vector

Return Values

None

Description

Set column 1 of a 3x3 matrix.

Set column 2 of a 3x3 matrix.

Definition

Arguments

result An output 3x3 matrix col2 3-D vector

Return Values

None

Description

Set column 2 of a 3x3 matrix.

vmathM3SetElem

Set the element of a 3x3 matrix referred to by column and row indices.

Definition

Arguments

result An output 3x3 matrix

col Index, expected in the range 0-2

row Index, expected in the range 0-2

val Scalar value

Return Values

None

Description

Set the element of a 3x3 matrix referred to by column and row indices.

vmathM3SetRow

Set the row of a 3x3 matrix referred to by the specified index.

Definition

Arguments

result An output 3x3 matrix
row Index, expected in the range 0-2
vec 3-D vector

Return Values

None

Description

Set the row of a 3x3 matrix referred to by the specified index.

vmathM3Sub

Subtract a 3x3 matrix from another 3x3 matrix.

Definition

Arguments

```
result Difference of the specified 3x3 matrices
mat0     3x3 matrix
mat1     3x3 matrix
```

Return Values

None

Description

Subtract a 3x3 matrix from another 3x3 matrix.

vmathM3Transpose

Transpose of a 3x3 matrix.

Definition

Arguments

```
result mat transposed
mat 3x3 matrix
```

Return Values

None

Description

Compute the transpose of a 3x3 matrix.

4x4 Matrix Functions (AoS, by reference)

vmathM4AbsPerElem

Compute the absolute value of a 4x4 matrix per element.

Definition

Arguments

4x4 matrix in which each element is the absolute value of the corresponding element of the specified 4x4 matrix

mat 4x4 matrix

Return Values

None

Description

Compute the absolute value of each element of a 4x4 matrix.

vmathM4Add

Add two 4x4 matrices.

Definition

Arguments

result Sum of the specified 4x4 matrices
mat0 4x4 matrix
mat1 4x4 matrix

Return Values

None

Description

Add two 4x4 matrices.

vmathM4AffineInverse

Compute the inverse of a 4x4 matrix, which is expected to be an affine matrix.

Definition

Arguments

```
result Inverse of the specified 4x4 matrix
mat 4x4 matrix
```

Return Values

None

Description

Naming the upper-left 3x3 submatrix of the specified 4x4 matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is inverse(M), whose translation vector is -inverse(M)*v, and whose bottom row is (0,0,0,1).

Notes

This can be used to achieve better performance than a general inverse when the specified 4x4 matrix meets the given restrictions. The result is unpredictable when the determinant of mat is equal to or near 0.

vmathM4AppendScale

Append (post-multiply) a scale transformation to a 4x4 matrix.

Definition

Arguments

result The product of mat and a scale transformation created from scaleVec
mat 4x4 matrix
scaleVec 3-D vector

Return Values

None

Description

Post-multiply a 4x4 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathM4Copy

Copy a 4x4 matrix.

Definition

Arguments

result The constructed result
mat 4x4 matrix

Return Values

None

Description

Construct a copy of a 4x4 matrix.

vmathM4Determinant

Determinant of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

The determinant of mat

Description

Compute the determinant of a 4x4 matrix.

Get the column of a 4x4 matrix referred to by the specified index.

Definition

Arguments

result The column referred to by the specified index mat 4x4 matrix

Index, expected in the range 0-3

Return Values

None

Description

Get the column of a 4x4 matrix referred to by the specified index.

Get column 0 of a 4x4 matrix.

Definition

Arguments

```
result Column 0 mat 4x4 matrix
```

Return Values

None

Description

Get column 0 of a 4x4 matrix.

Get column 1 of a 4x4 matrix.

Definition

Arguments

```
result Column 1 mat 4x4 matrix
```

Return Values

None

Description

Get column 1 of a 4x4 matrix.

Get column 2 of a 4x4 matrix.

Definition

Arguments

result Column 2
mat 4x4 matrix

Return Values

None

Description

Get column 2 of a 4x4 matrix.

Get column 3 of a 4x4 matrix.

Definition

Arguments

result Column 3 mat 4x4 matrix

Return Values

None

Description

Get column 3 of a 4x4 matrix.

vmathM4GetElem

Get the element of a 4x4 matrix referred to by column and row indices.

Definition

Arguments

```
mat 4x4 matrixcol Index, expected in the range 0-3row Index, expected in the range 0-3
```

Return Values

Element selected by col and row

Description

Get the element of a 4x4 matrix referred to by column and row indices.

vmathM4GetRow

Get the row of a 4x4 matrix referred to by the specified index.

Definition

Arguments

result The row referred to by the specified indexmat 4x4 matrixrow Index, expected in the range 0-3

Return Values

None

Description

Get the row of a 4x4 matrix referred to by the specified index.

vmathM4GetTranslation

Get the translation component of a 4x4 matrix.

Definition

Arguments

result Translation component mat 4x4 matrix

Return Values

None

Description

Get the translation component of a 4x4 matrix.

vmathM4GetUpper3x3

Get the upper-left 3x3 submatrix of a 4x4 matrix.

Definition

Arguments

```
result Upper-left 3x3 submatrix mat 4x4 matrix
```

Return Values

None

Description

Get the upper-left 3x3 submatrix of a 4x4 matrix.

vmathM4Inverse

Compute the inverse of a 4x4 matrix.

Definition

Arguments

```
result Inverse of mat mat 4x4 matrix
```

Return Values

None

Description

Compute the inverse of a 4x4 matrix.

Notes

Result is unpredictable when the determinant of mat is equal to or near 0.

vmathM4MakeFromCols

Construct a 4x4 matrix containing the specified columns.

Definition

Arguments

result	The 4x4 matrix that contains the specified columns
co10	4-D vector
col1	4-D vector
co12	4-D vector
co13	4-D vector

Return Values

None

Description

Construct a 4x4 matrix containing the specified columns.

vmathM4MakeFromM3V3

Construct a 4x4 matrix from a 3x3 matrix and a 3-D vector.

Definition

Arguments

result The constructed 4x4 matrix mat 3x3 matrix

translateVec 3-D vector

Return Values

None

Description

Construct a 4x4 matrix whose upper 3x3 elements are equal to the 3x3 matrix argument, whose translation component is equal to the 3-D vector argument, and whose bottom row is (0,0,0,1).

vmathM4MakeFromQV3

Construct a 4x4 matrix from a unit-length quaternion and a 3-D vector.

Definition

Arguments

result The constructed 4x4 matrix

unitQuat Quaternion, expected to be unit-length

translateVec 3-D vector

Return Values

None

Description

Construct a 4x4 matrix whose upper-left 3x3 submatrix is a rotation matrix converted from the unit-length quaternion argument, whose translation component is equal to the 3-D vector argument, and whose bottom row is (0,0,0,1).

vmathM4MakeFromScalar

Set all elements of a 4x4 matrix to the same scalar value.

Definition

Arguments

```
result The constructed 4x4 matrix scalar Scalar value
```

Return Values

None

Description

Construct a 4x4 matrix with all elements set to the scalar value argument.

vmathM4MakeFromT3

Construct a 4x4 matrix from a 3x4 transformation matrix.

Definition

Arguments

result The constructed 4x4 matrix 3x4 transformation matrix

Return Values

None

Description

Construct a 4x4 matrix whose upper 3x4 elements are equal to the 3x4 transformation matrix argument and whose bottom row is equal to (0,0,0,1).

vmathM4MakeFrustum

Construct a perspective projection matrix based on frustum.

Definition

Arguments

```
result The constructed 4x4 matrix

left Scalar value

right Scalar value

bottom Scalar value

top Scalar value

zNear Scalar value

zFar Scalar value
```

Return Values

None

Description

Construct a perspective projection matrix based on frustum, equal to:

```
 2*z \text{Near}/(\text{right-left}) \quad 0 \qquad (\text{right+left})/(\text{right-left}) \quad 0 \\ 0 \qquad 2*z \text{Near}/(\text{top-bottom}) \quad (\text{top+bottom})/(\text{top-bottom}) \quad 0 \\ 0 \qquad 0 \qquad -(z \text{Far}+z \text{Near})/(z \text{Far}-z \text{Near}) \\ -2*z \text{Far}*z \text{Near}/(z \text{Far}-z \text{Near}) \\ 0 \qquad 0 \qquad -1 \qquad 0 \ .
```

vmathM4MakeIdentity

Construct an identity 4x4 matrix.

Definition

Arguments

result The constructed 4x4 matrix

Return Values

None

Description

Construct an identity 4x4 matrix in which non-diagonal elements are zero and diagonal elements are 1.

vmathM4MakeLookAt

Construct viewing matrix based on eye position, position looked at, and up direction.

Definition

Arguments

resultThe constructed 4x4 matrixeyePos3-D pointlookAtPos3-D pointupVec3-D vector

Return Values

None

Description

Construct the inverse of a coordinate frame that is centered at the eye position, with z axis directed away from lookAtPos, and y axis oriented to best match the up direction.

vmathM4MakeOrthographic

Construct an orthographic projection matrix.

Definition

Arguments

```
result The constructed 4x4 matrix

left Scalar value

right Scalar value

bottom Scalar value

top Scalar value

zNear Scalar value

zFar Scalar value
```

Return Values

None

Description

Construct an orthographic projection matrix, equal to

vmathM4MakePerspective

Construct a perspective projection matrix.

Definition

Arguments

resultThe constructed 4x4 matrixfovyRadiansScalar valueaspectScalar valuezNearScalar valuezFarScalar value

Return Values

None

Description

Construct a perspective projection matrix, equal to:

vmathM4MakeRotationAxis

Construct a 4x4 matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

result The constructed 4x4 matrixradians Scalar valueunitVec 3-D vector, expected to be unit-length

Return Values

None

Description

Construct a 4x4 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

vmathM4MakeRotationQ

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

result A 4x4 matrix that applies the same rotation as unitQuat unitQuat Quaternion, expected to be unit-length

Return Values

None

Description

Construct a 4x4 matrix that applies the same rotation as the specified unit-length quaternion.

vmathM4MakeRotationX

Construct a 4x4 matrix to rotate around the x axis.

Definition

Arguments

result The constructed 4x4 matrix radians Scalar value

Return Values

None

Description

Construct a 4x4 matrix to rotate around the x axis by the specified radians angle.

vmathM4MakeRotationY

Construct a 4x4 matrix to rotate around the y axis.

Definition

Arguments

```
result The constructed 4x4 matrix radians Scalar value
```

Return Values

None

Description

Construct a 4x4 matrix to rotate around the y axis by the specified radians angle.

vmathM4MakeRotationZ

Construct a 4x4 matrix to rotate around the z axis.

Definition

Arguments

result The constructed 4x4 matrix radians Scalar value

Return Values

None

Description

Construct a 4x4 matrix to rotate around the z axis by the specified radians angle.

vmathM4MakeRotationZYX

Construct a 4x4 matrix to rotate around the x, y, and z axes.

Definition

Arguments

result The constructed 4x4 matrix radiansXYZ 3-D vector

Return Values

None

Description

Construct a 4x4 matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

vmathM4MakeScale

Construct a 4x4 matrix to perform scaling.

Definition

Arguments

result The constructed 4x4 matrix scaleVec 3-D vector

Return Values

None

Description

Construct a 4x4 matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

vmathM4MakeTranslation

Construct a 4x4 matrix to perform translation.

Definition

Arguments

result The constructed 4x4 matrix translateVec 3-D vector

Return Values

None

Description

Construct a 4x4 matrix to perform translation, which is an identity matrix except for the translation component, with coordinates equal to those in *translateVec*.

vmathM4Mul

Multiply two 4x4 matrices.

Definition

Arguments

```
result Product of the specified 4x4 matrices
mat0     4x4 matrix
mat1     4x4 matrix
```

Return Values

None

Description

Multiply two 4x4 matrices.

vmathM4MuIP3

Multiply a 4x4 matrix by a 3-D point.

Definition

Arguments

Return Values

None

Description

Multiply a 4x4 matrix by a 3-D point treated as if it were a 4-D vector with the w element equal to 1.

vmathM4MulPerElem

Multiply two 4x4 matrices per element.

Definition

Arguments

result	4x4 matrix in which each element is the product of the corresponding elements of the specified 4x4 matrices
	the specified 4x4 matrices
mat0	4x4 matrix
mat1	4x4 matrix

Return Values

None

Description

Multiply two 4x4 matrices element by element.

vmathM4MuIT3

Multiply a 4x4 matrix by a 3x4 transformation matrix.

Definition

Arguments

result Product of the specified 4x4 matrix and 3x4 transformation matrix

mat 4x4 matrix

tfrm 3x4 transformation matrix

Return Values

None

Description

Multiply a 4x4 matrix by a 3x4 transformation matrix treated as if it were a 4x4 matrix with the bottom row equal to (0,0,0,1).

vmathM4MuIV3

Multiply a 4x4 matrix by a 3-D vector.

Definition

Arguments

result Product of the specified 4x4 matrix and 3-D vector
mat 4x4 matrix
vec 3-D vector

Return Values

None

Description

Multiply a 4x4 matrix by a 3-D vector treated as if it were a 4-D vector with the w element equal to 0.

vmathM4MuIV4

Multiply a 4x4 matrix by a 4-D vector.

Definition

Arguments

result Product of the specified 4x4 matrix and 4-D vector mat 4x4 matrix

vec 4-D vector

Return Values

None

Description

Multiply a 4x4 matrix by a 4-D vector.

vmathM4Neg

Negate all elements of a 4x4 matrix.

Definition

Arguments

result 4x4 matrix containing negated elements of the specified 4x4 matrix 4x4 matrix

Return Values

None

Description

Negate all elements of a 4x4 matrix.

vmathM4OrthoInverse

Compute the inverse of a 4x4 matrix, which is expected to be an affine matrix with an orthogonal upper-left 3x3 submatrix.

Definition

Arguments

result Inverse of the specified 4x4 matrix mat 4x4 matrix

Return Values

None

Description

Naming the upper-left 3x3 submatrix of the specified 4x4 matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is transpose(M), whose translation vector is -transpose(M)*v, and whose bottom row is (0,0,0,1).

Notes

This can be used to achieve better performance than a general inverse when the specified 4x4 matrix meets the given restrictions.

vmathM4PrependScale

Prepend (pre-multiply) a scale transformation to a 4x4 matrix.

Definition

Arguments

result The product of a scale transformation created from scaleVec and mat scaleVec 3-D vector

mat 4x4 matrix

Return Values

None

Description

Pre-multiply a 4x4 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathM4Print

Print a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

None

Description

Print a 4x4 matrix. Unlike the printing of vectors, the 4x4 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathM4Prints

Print a 4x4 matrix and an associated string identifier.

Definition

Arguments

mat 4x4 matrix

name String printed with the 4x4 matrix

Return Values

None

Description

Print a 4x4 matrix and an associated string identifier. Unlike the printing of vectors, the 4x4 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathM4ScalarMul

Multiply a 4x4 matrix by a scalar.

Definition

Arguments

result Product of the specified 4x4 matrix and scalar mat 4x4 matrix
scalar Scalar value

Return Values

None

Description

Multiply a 4x4 matrix by a scalar.

vmathM4Select

Conditionally select between two 4x4 matrices.

Definition

Arguments

```
resultEqual to mat0 if select1 == 0, or to mat1 if select1 != 0mat04x4 matrixmat14x4 matrixselect1False selects the mat0 argument, true selects the mat1 argument
```

Return Values

None

Description

Conditionally select one of the 4x4 matrix arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

Set the column of a 4x4 matrix referred to by the specified index.

Definition

Arguments

result An output 4x4 matrix
col Index, expected in the range 0-3
vec 4-D vector

Return Values

None

Description

Set the column of a 4x4 matrix referred to by the specified index.

Set column 0 of a 4x4 matrix.

Definition

Arguments

result An output 4x4 matrix col0 4-D vector

Return Values

None

Description

Set column 0 of a 4x4 matrix.

Set column 1 of a 4x4 matrix.

Definition

Arguments

result An output 4x4 matrix coll 4-D vector

Return Values

None

Description

Set column 1 of a 4x4 matrix.

Set column 2 of a 4x4 matrix.

Definition

Arguments

result An output 4x4 matrix col2 4-D vector

Return Values

None

Description

Set column 2 of a 4x4 matrix.

Set column 3 of a 4x4 matrix.

Definition

Arguments

result An output 4x4 matrix col3 4-D vector

Return Values

None

Description

Set column 3 of a 4x4 matrix.

vmathM4SetElem

Set the element of a 4x4 matrix referred to by column and row indices.

Definition

Arguments

result An output 4x4 matrix

col Index, expected in the range 0-3

row Index, expected in the range 0-3

val Scalar value

Return Values

None

Description

Set the element of a 4x4 matrix referred to by column and row indices.

vmathM4SetRow

Set the row of a 4x4 matrix referred to by the specified index.

Definition

Arguments

row Index, expected in the range 0-3
vec 4-D vector

Return Values

None

Description

Set the row of a 4x4 matrix referred to by the specified index.

vmathM4SetTranslation

Set translation component.

Definition

Arguments

result An output 4x4 matrix translateVec 3-D vector

Return Values

None

Description

Set the translation component of a 4x4 matrix equal to the specified 3-D vector.

Notes

This function does not change the bottom row elements.

vmathM4SetUpper3x3

Set the upper-left 3x3 submatrix.

Definition

Arguments

```
result An output 4x4 matrix mat3 3x3 matrix
```

Return Values

None

Description

Set the upper-left 3x3 submatrix elements of a 4x4 matrix equal to the specified 3x3 matrix.

Notes

This function does not change the bottom row elements.

vmathM4Sub

Subtract a 4x4 matrix from another 4x4 matrix.

Definition

Arguments

```
result Difference of the specified 4x4 matrices
mat0     4x4 matrix
mat1     4x4 matrix
```

Return Values

None

Description

Subtract a 4x4 matrix from another 4x4 matrix.

vmathM4Transpose

Transpose of a 4x4 matrix.

Definition

Arguments

```
result mat transposed
mat 4x4 matrix
```

Return Values

None

Description

Compute the transpose of a 4x4 matrix.

Transformation Functions (AoS, by reference)

vmathT3AbsPerElem

Compute the absolute value of a 3x4 transformation matrix per element.

Definition

Arguments

3x4 transformation matrix in which each element is the absolute value of the corresponding element of the specified 3x4 transformation matrix3x4 transformation matrix

Return Values

None

Description

Compute the absolute value of each element of a 3x4 transformation matrix.

vmathT3AppendScale

Append (post-multiply) a scale transformation to a 3x4 transformation matrix.

Definition

Arguments

result The product of tfrm and a scale transformation created from scaleVec
tfrm 3x4 transformation matrix
scaleVec 3-D vector

Return Values

None

Description

Post-multiply a 3x4 transformation matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathT3Copy

Copy a 3x4 transformation matrix.

Definition

Arguments

result The constructed result tfrm 3x4 transformation matrix

Return Values

None

Description

Construct a copy of a 3x4 transformation matrix.

Get the column of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

result The column referred to by the specified index tfrm 3x4 transformation matrix col Index, expected in the range 0-3

Return Values

None

Description

Get the column of a 3x4 transformation matrix referred to by the specified index.

Get column 0 of a 3x4 transformation matrix.

Definition

Arguments

```
result Column 0
tfrm 3x4 transformation matrix
```

Return Values

None

Description

Get column 0 of a 3x4 transformation matrix.

Get column 1 of a 3x4 transformation matrix.

Definition

Arguments

```
result Column 1
tfrm 3x4 transformation matrix
```

Return Values

None

Description

Get column 1 of a 3x4 transformation matrix.

Get column 2 of a 3x4 transformation matrix.

Definition

Arguments

result Column 2 tfrm 3x4 transformation matrix

Return Values

None

Description

Get column 2 of a 3x4 transformation matrix.

Get column 3 of a 3x4 transformation matrix.

Definition

Arguments

```
result Column 3
tfrm 3x4 transformation matrix
```

Return Values

None

Description

Get column 3 of a 3x4 transformation matrix.

vmathT3GetElem

Get the element of a 3x4 transformation matrix referred to by column and row indices.

Definition

Arguments

```
tfrm 3x4 transformation matrix
col Index, expected in the range 0-3
row Index, expected in the range 0-2
```

Return Values

Element selected by col and row

Description

Get the element of a 3x4 transformation matrix referred to by column and row indices.

vmathT3GetRow

Get the row of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

result The row referred to by the specified indextfrm 3x4 transformation matrixrow Index, expected in the range 0-2

Return Values

None

Description

Get the row of a 3x4 transformation matrix referred to by the specified index.

vmathT3GetTranslation

Get the translation component of a 3x4 transformation matrix.

Definition

Arguments

result Translation component tfrm 3x4 transformation matrix

Return Values

None

Description

Get the translation component of a 3x4 transformation matrix.

vmathT3GetUpper3x3

Get the upper-left 3x3 submatrix of a 3x4 transformation matrix.

Definition

Arguments

```
result Upper-left 3x3 submatrix tfrm 3x4 transformation matrix
```

Return Values

None

Description

Get the upper-left 3x3 submatrix of a 3x4 transformation matrix.

vmathT3Inverse

Inverse of a 3x4 transformation matrix.

Definition

Arguments

```
result Inverse of tfrm
tfrm 3x4 transformation matrix
```

Return Values

None

Description

Compute the inverse of a 3x4 transformation matrix.

Notes

Result is unpredictable when the determinant of the left 3x3 submatrix is equal to or near 0.

vmathT3MakeFromCols

Construct a 3x4 transformation matrix containing the specified columns.

Definition

Arguments

result	The 3x4 transformation matrix that contains the specified columns
co10	3-D vector
col1	3-D vector
co12	3-D vector
co13	3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix containing the specified columns.

vmathT3MakeFromM3V3

Construct a 3x4 transformation matrix from a 3x3 matrix and a 3-D vector.

Definition

Arguments

result The constructed 3x4 transformation matrix tfrm 3x3 matrix

translateVec 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix whose upper 3x3 elements are equal to the 3x3 matrix argument and whose translation component is equal to the 3-D vector argument.

vmathT3MakeFromQV3

Construct a 3x4 transformation matrix from a unit-length quaternion and a 3-D vector.

Definition

Arguments

result The constructed 3x4 transformation matrix unitQuat Quaternion, expected to be unit-length translateVec 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix whose upper-left 3x3 submatrix is a rotation matrix converted from the unit-length quaternion argument and whose translation component is equal to the 3-D vector argument.

vmathT3MakeFromScalar

Set all elements of a 3x4 transformation matrix to the same scalar value.

Definition

Arguments

result The constructed 3x4 transformation matrix scalar Scalar value

Return Values

None

Description

Construct a 3x4 transformation matrix with all elements set to the scalar value argument.

vmathT3MakeIdentity

Construct an identity 3x4 transformation matrix.

Definition

Arguments

result The constructed 3x4 transformation matrix

Return Values

None

Description

Construct an identity 3x4 transformation matrix in which non-diagonal elements are zero and diagonal elements are 1.

vmathT3MakeRotationAxis

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

result The constructed 3x4 transformation matrixradians Scalar valueunitVec 3-D vector, expected to be unit-length

Return Values

None

Description

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector by the specified radians angle.

vmathT3MakeRotationQ

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

result A 3x4 transformation matrix that applies the same rotation as unitQuat unitQuat Quaternion, expected to be unit-length

Return Values

None

Description

Construct a 3x4 transformation matrix that applies the same rotation as the specified unit-length quaternion.

vmathT3MakeRotationX

Construct a 3x4 transformation matrix to rotate around the x axis.

Definition

Arguments

result The constructed 3x4 transformation matrix radians Scalar value

Return Values

None

Description

Construct a 3x4 transformation matrix to rotate around the x axis by the specified radians angle.

vmathT3MakeRotationY

Construct a 3x4 transformation matrix to rotate around the y axis.

Definition

Arguments

result The constructed 3x4 transformation matrix radians Scalar value

Return Values

None

Description

Construct a 3x4 transformation matrix to rotate around the y axis by the specified radians angle.

vmathT3MakeRotationZ

Construct a 3x4 transformation matrix to rotate around the z axis.

Definition

Arguments

result The constructed 3x4 transformation matrix radians Scalar value

Return Values

None

Description

Construct a 3x4 transformation matrix to rotate around the z axis by the specified radians angle.

vmathT3MakeRotationZYX

Construct a 3x4 transformation matrix to rotate around the x, y, and z axes.

Definition

Arguments

result The constructed 3x4 transformation matrix radiansXYZ 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

vmathT3MakeScale

Construct a 3x4 transformation matrix to perform scaling.

Definition

Arguments

result The constructed 3x4 transformation matrix scaleVec 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

vmathT3MakeTranslation

Construct a 3x4 transformation matrix to perform translation.

Definition

Arguments

result The constructed 3x4 transformation matrix translateVec 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix to perform translation, which is an identity matrix except for the translation component, with coordinates equal to those in *translateVec*.

vmathT3Mul

Multiply two 3x4 transformation matrices.

Definition

Arguments

result Product of the specified 3x4 transformation matrices 3x4 transformation matrix tfrm1 3x4 transformation matrix

Return Values

None

Description

Multiply two 3x4 transformation matrices.

vmathT3MuIP3

Multiply a 3x4 transformation matrix by a 3-D point.

Definition

Arguments

result Product of the specified 3x4 transformation matrix and 3-D point tfrm 3x4 transformation matrix pnt 3-D point

Return Values

None

Description

Applies the 3x3 upper-left submatrix and the translation component of a 3x4 transformation matrix to a 3-D point.

vmathT3MulPerElem

Multiply two 3x4 transformation matrices per element.

Definition

Arguments

result	3x4 transformation matrix in which each element is the product of the
	corresponding elements of the specified 3x4 transformation matrices
tfrm0	3x4 transformation matrix
tfrm1	3x4 transformation matrix

Return Values

None

Description

Multiply two 3x4 transformation matrices element by element.

vmathT3MuIV3

Multiply a 3x4 transformation matrix by a 3-D vector.

Definition

Arguments

result Product of the specified 3x4 transformation matrix and 3-D vector 3x4 transformation matrix vec 3-D vector

Return Values

None

Description

Applies the 3x3 upper-left submatrix (but not the translation component) of a 3x4 transformation matrix to a 3-D vector.

vmathT3OrthoInverse

Compute the inverse of a 3x4 transformation matrix, expected to have an orthogonal upper-left 3x3 submatrix.

Definition

Arguments

result Inverse of the specified 3x4 transformation matrix tfrm 3x4 transformation matrix

Return Values

None

Description

Naming the upper-left 3x3 submatrix of the specified 3x4 transformation matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is transpose(M), and whose translation vector is -transpose(M)*v.

Notes

This can be used to achieve better performance than a general inverse when the specified 3x4 transformation matrix meets the given restrictions.

vmathT3PrependScale

Prepend (pre-multiply) a scale transformation to a 3x4 transformation matrix.

Definition

Arguments

result The product of a scale transformation created from scaleVec and tfrm scaleVec 3-D vector

tfrm 3x4 transformation matrix

Return Values

None

Description

Pre-multiply a 3x4 transformation matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathT3Print

Print a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

None

Description

Print a 3x4 transformation matrix. Unlike the printing of vectors, the 3x4 transformation matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathT3Prints

Print a 3x4 transformation matrix and an associated string identifier.

Definition

Arguments

tfrm 3x4 transformation matrix

name String printed with the 3x4 transformation matrix

Return Values

None

Description

Print a 3x4 transformation matrix and an associated string identifier. Unlike the printing of vectors, the 3x4 transformation matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathT3Select

Conditionally select between two 3x4 transformation matrices.

Definition

Arguments

result	Equal to tfrm0 if select1 == 0, or to tfrm1 if select1!= 0
tfrm0	3x4 transformation matrix
tfrm1	3x4 transformation matrix
select1	False selects the tfrm0 argument, true selects the tfrm1 argument

Return Values

None

Description

Conditionally select one of the 3x4 transformation matrix arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

Set the column of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

result An output 3x4 transformation matrix col Index, expected in the range 0-3 vec 3-D vector

Return Values

None

Description

Set the column of a 3x4 transformation matrix referred to by the specified index.

Set column 0 of a 3x4 transformation matrix.

Definition

Arguments

result An output 3x4 transformation matrix col0 3-D vector

Return Values

None

Description

Set column 0 of a 3x4 transformation matrix.

Set column 1 of a 3x4 transformation matrix.

Definition

Arguments

result An output 3x4 transformation matrix coll 3-D vector

Return Values

None

Description

Set column 1 of a 3x4 transformation matrix.

Set column 2 of a 3x4 transformation matrix.

Definition

Arguments

result An output 3x4 transformation matrix col2 3-D vector

Return Values

None

Description

Set column 2 of a 3x4 transformation matrix.

Set column 3 of a 3x4 transformation matrix.

Definition

Arguments

result An output 3x4 transformation matrix col3 3-D vector

Return Values

None

Description

Set column 3 of a 3x4 transformation matrix.

vmathT3SetElem

Set the element of a 3x4 transformation matrix referred to by column and row indices.

Definition

Arguments

result An output 3x4 transformation matrix col Index, expected in the range 0-3
row Index, expected in the range 0-2
val Scalar value

Return Values

None

Description

Set the element of a 3x4 transformation matrix referred to by column and row indices.

vmathT3SetRow

Set the row of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

result An output 3x4 transformation matrix row Index, expected in the range 0-2 vec 4-D vector

Return Values

None

Description

Set the row of a 3x4 transformation matrix referred to by the specified index.

vmathT3SetTranslation

Set translation component.

Definition

Arguments

result An output 3x4 transformation matrix translateVec 3-D vector

Return Values

None

Description

Set the translation component of a 3x4 transformation matrix equal to the specified 3-D vector.

vmathT3SetUpper3x3

Set the upper-left 3x3 submatrix.

Definition

Arguments

result An output 3x4 transformation matrix mat3 3x3 matrix

Return Values

None

Description

Set the upper-left 3x3 submatrix elements of a 3x4 transformation matrix equal to the specified 3x3 matrix.

3-D Vector Functions (SoA, by reference)

vmathSoaV3AbsPerElem

Compute the absolute value of a 3-D vector per element.

Definition

Arguments

result
3-D vector in which each element is the absolute value of the corresponding element of vec
vec
3-D vector

Return Values

None

Description

Compute the absolute value of each element of a 3-D vector.

vmathSoaV3Add

Add two 3-D vectors.

Definition

Arguments

result Sum of the specified 3-D vectorsvec0 3-D vectorvec1 3-D vector

Return Values

None

Description

Add two 3-D vectors.

vmathSoaV3AddP3

Add a 3-D vector to a 3-D point.

Definition

Arguments

result Sum of the specified 3-D vector and 3-D pointvec 3-D vectorpnt 3-D point

Return Values

None

Description

Add a 3-D vector to a 3-D point.

vmathSoaV3Copy

Copy a 3-D vector.

Definition

Arguments

result The constructed result vec 3-D vector

Return Values

None

Description

Construct a copy of a 3-D vector.

vmathSoaV3CopySignPerElem

Copy sign from one 3-D vector to another, per element.

Definition

Arguments

result	3-D vector in which each element has the magnitude of the corresponding element of $vec0$ and the sign of the corresponding element of $vec1$
vec0	3-D vector
vec1	3-D vector

Return Values

None

Description

For each element, create a value composed of the magnitude of *vec0* and the sign of *vec1*.

vmathSoaV3Cross

Compute cross product of two 3-D vectors.

Definition

Arguments

result Cross product of the specified 3-D vectors vec0 3-D vector vec1 3-D vector

Return Values

None

Description

Compute cross product of two 3-D vectors.

vmathSoaV3CrossMatrix

Cross-product matrix of a 3-D vector.

Definition

Arguments

```
result Cross-product matrix of vec
vec 3-D vector
```

Return Values

None

Description

Compute a matrix that, when multiplied by a 3-D vector, produces the same result as a cross product with that 3-D vector.

vmathSoaV3CrossMatrixMul

Create cross-product matrix and multiply.

Definition

Arguments

result Product of cross-product matrix of vec and mat
vec 3-D vector
mat 3x3 matrix

Return Values

None

Description

Multiply a cross-product matrix by another matrix.

Notes

Faster than separately creating a cross-product matrix and multiplying.

vmathSoaV3DivPerElem

Divide two 3-D vectors per element.

Definition

Arguments

result	3-D vector in which each element is the quotient of the corresponding elements of the specified 3-D vectors
vec0	3-D vector
vec1	3-D vector

Return Values

None

Description

Divide two 3-D vectors element by element.

Notes

Floating-point behavior matches standard library function divf4.

vmathSoaV3Dot

Compute the dot product of two 3-D vectors.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

Dot product of the specified 3-D vectors

Description

Compute the dot product of two 3-D vectors.

vmathSoaV3Get4Aos

Extract four AoS 3-D vectors.

Definition

Arguments

```
vec3-D vectorresult0An output AoS 3-D vectorresult1An output AoS 3-D vectorresult2An output AoS 3-D vectorresult3An output AoS 3-D vector
```

Return Values

None

Description

Extract four AoS 3-D vectors from four slots of an SoA 3-D vector (transpose the data format).

vmathSoaV3GetElem

Get an x, y, or z element of a 3-D vector by index.

Definition

Arguments

```
vec 3-D vector
```

idx Index, expected in the range 0-2

Return Values

Element selected by the specified index

Description

Get an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

vmathSoaV3GetX

Get the x element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

x element of a 3-D vector

Description

Get the x element of a 3-D vector.

vmathSoaV3GetY

Get the y element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

y element of a 3-D vector

Description

Get the y element of a 3-D vector.

vmathSoaV3GetZ

Get the z element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

z element of a 3-D vector

Description

Get the z element of a 3-D vector.

vmathSoaV3Length

Compute the length of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Length of the specified 3-D vector

Description

Compute the length of a 3-D vector.

vmathSoaV3LengthSqr

Compute the square of the length of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Square of the length of the specified 3-D vector

Description

Compute the square of the length of a 3-D vector.

vmathSoaV3Lerp

Linear interpolation between two 3-D vectors.

Definition

Arguments

result Interpolated 3-D vector
t Interpolation parameter
vec0 3-D vector
vec1 3-D vector

Return Values

None

Description

Linearly interpolate between two 3-D vectors.

Notes

Does not clamp *t* between 0 and 1.

vmathSoaV3LoadXYZArray

Load four three-float 3-D vectors, stored in three quadwords.

Definition

Arguments

vec An output 3-D vector
threeQuads Array of 3 quadwords containing 12 floats

Return Values

None

Description

Load four three-float 3-D vectors, stored in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$, into four slots of an SoA 3-D vector.

vmathSoaV3MakeFrom4Aos

Insert four AoS 3-D vectors.

Definition

Arguments

```
result The constructed SoA 3-D vector vec0 AoS 3-D vector AoS 3-D vector vec2 AoS 3-D vector vec3 AoS 3-D vector
```

Return Values

None

Description

Insert four AoS 3-D vectors into four slots of an SoA 3-D vector (transpose the data format).

vmathSoaV3MakeFromAos

Replicate an AoS 3-D vector.

Definition

Arguments

```
result The constructed SoA 3-D vector vec AoS 3-D vector
```

Return Values

None

Description

Replicate an AoS 3-D vector in all four slots of an SoA 3-D vector.

vmathSoaV3MakeFromElems

Construct a 3-D vector from x, y, and z elements.

Definition

Arguments

 $egin{array}{ll} result & The 3-D \ vector \ that \ contains \ the \ specified \ elements \ x & Scalar \ value \ y & Scalar \ value \ z & Scalar \ value \ \end{array}$

Return Values

None

Description

Construct a 3-D vector containing the specified x, y, and z elements.

vmathSoaV3MakeFromP3

Copy elements from a 3-D point into a 3-D vector.

Definition

Arguments

```
result The constructed 3-D vector pnt 3-D point
```

Return Values

None

Description

Construct a 3-D vector containing the x, y, and z elements of the specified 3-D point.

vmathSoaV3MakeFromScalar

Set all elements of a 3-D vector to the same scalar value.

Definition

Arguments

```
result The constructed 3-D vector scalar Scalar value
```

Return Values

None

Description

Construct a 3-D vector with all elements set to the scalar value argument.

vmathSoaV3MakeXAxis

Construct x axis.

Definition

Arguments

result The constructed 3-D vector

Return Values

None

Description

Construct a 3-D vector equal to (1,0,0).

vmathSoaV3MakeYAxis

Construct y axis.

Definition

Arguments

result The constructed 3-D vector

Return Values

None

Description

Construct a 3-D vector equal to (0,1,0).

vmathSoaV3MakeZAxis

Construct z axis.

Definition

Arguments

result The constructed 3-D vector

Return Values

None

Description

Construct a 3-D vector equal to (0,0,1).

vmathSoaV3MaxElem

Maximum element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Maximum value of all elements of vec

Description

Compute the maximum value of all elements of a 3-D vector.

vmathSoaV3MaxPerElem

Maximum of two 3-D vectors per element.

Definition

Arguments

result	3-D vector in which each element is the maximum of the corresponding elements of the specified 3-D vectors
vec0	3-D vector
vec1	3-D vector

Return Values

None

Description

Create a 3-D vector in which each element is the maximum of the corresponding elements of the specified 3-D vectors.

vmathSoaV3MinElem

Minimum element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Minimum value of all elements of vec

Description

Compute the minimum value of all elements of a 3-D vector.

vmathSoaV3MinPerElem

Minimum of two 3-D vectors per element.

Definition

Arguments

result	3-D vector in which each element is the minimum of the corresponding elements of the specified 3-D vectors
vec0	3-D vector
vec1	3-D vector

Return Values

None

Description

Create a 3-D vector in which each element is the minimum of the corresponding elements of two specified 3-D vectors.

vmathSoaV3MulPerElem

Multiply two 3-D vectors per element.

Definition

Arguments

result	3-D vector in which each element is the product of the corresponding elements of
	the specified 3-D vectors
vec0	3-D vector
vec1	3-D vector

Return Values

None

Description

Multiply two 3-D vectors element by element.

vmathSoaV3Neg

Negate all elements of a 3-D vector.

Definition

Arguments

result 3-D vector containing negated elements of the specified 3-D vector vec 3-D vector

Return Values

None

Description

Negate all elements of a 3-D vector.

vmathSoaV3Normalize

Normalize a 3-D vector.

Definition

Arguments

result The specified 3-D vector scaled to unit length vec 3-D vector

Return Values

None

Description

Compute a normalized 3-D vector.

Notes

The result is unpredictable when all elements of vec are at or near zero.

vmathSoaV3Outer

Outer product of two 3-D vectors.

Definition

Arguments

result The 3x3 matrix product of a column-vector, vec0, and a row-vector, vec1
vec0 3-D vector
vec1 3-D vector

Return Values

None

Description

Compute the outer product of two 3-D vectors.

vmathSoaV3Print

Print a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

None

Description

Print a 3-D vector. Prints the 3-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaV3Prints

Print a 3-D vector and an associated string identifier.

Definition

Arguments

vec 3-D vectorname String printed with the 3-D vector

Return Values

None

Description

Print a 3-D vector and an associated string identifier. Prints the 3-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaV3RecipPerElem

Compute the reciprocal of a 3-D vector per element.

Definition

Arguments

3-D vector in which each element is the reciprocal of the corresponding element of the specified 3-D vector

vec 3-D vector

Return Values

None

Description

Create a 3-D vector in which each element is the reciprocal of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function recipf4.

vmathSoaV3RowMul

Pre-multiply a row vector by a 3x3 matrix.

Definition

Arguments

```
result Product of a row-vector and a 3x3 matrix vec 3-D vector
mat 3x3 matrix
```

Return Values

None

Description

Transpose a 3-D vector into a row vector and pre-multiply by 3x3 matrix.

vmathSoaV3RsqrtPerElem

Compute the reciprocal square root of a 3-D vector per element.

Definition

Arguments

3-D vector in which each element is the reciprocal square root of the corresponding element of the specified 3-D vector3-D vector

Return Values

None

Description

Create a 3-D vector in which each element is the reciprocal square root of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function rsqrtf4.

vmathSoaV3ScalarDiv

Divide a 3-D vector by a scalar.

Definition

Arguments

result Quotient of the specified 3-D vector and scalarvec 3-D vectorscalarScalar value

Return Values

None

Description

Divide a 3-D vector by a scalar.

vmathSoaV3ScalarMul

Multiply a 3-D vector by a scalar.

Definition

Arguments

result Product of the specified 3-D vector and scalarvec 3-D vectorscalarScalar value

Return Values

None

Description

Multiply a 3-D vector by a scalar.

vmathSoaV3Select

Conditionally select between two 3-D vectors.

Definition

Arguments

result	Each slot of the result is equal to the 3-D vector at the corresponding slot of $vec0$ or $vec1$, depending on the value of $select1$ at the corresponding slot. A value of 0 selects the slot of $vec0$, and a value of 0xFFFFFFFF selects the slot of $vec1$
vec0	3-D vector
vec1	3-D vector
select1	For each of the four word slots, this mask selects either the 3-D vector in the corresponding slot of $vec0$ or the 3-D vector in the corresponding slot of $vec1$. A 0 bit selects from $vec0$ whereas a 1 bit selects from $vec1$. Identical bits should be set for each word of the mask.

Return Values

None

Description

Conditionally select one of the 3-D vectors at each of the corresponding slots of vec0 or vec1.

Notes

This function uses a conditional select instruction to avoid a branch.

vmathSoaV3SetElem

Set an x, y, or z element of a 3-D vector by index.

Definition

Arguments

```
result An output 3-D vectoridx Index, expected in the range 0-2value Scalar value
```

Return Values

None

Description

Set an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

vmathSoaV3SetX

Set the x element of a 3-D vector.

Definition

Arguments

```
result An output 3-D vector 
x Scalar value
```

Return Values

None

Description

Set the x element of a 3-D vector to the specified scalar value.

vmathSoaV3SetY

Set the y element of a 3-D vector.

Definition

Arguments

```
result An output 3-D vector y Scalar value
```

Return Values

None

Description

Set the y element of a 3-D vector to the specified scalar value.

vmathSoaV3SetZ

Set the z element of a 3-D vector.

Definition

Arguments

```
result An output 3-D vector Scalar value
```

Return Values

None

Description

Set the z element of a 3-D vector to the specified scalar value.

vmathSoaV3Slerp

Spherical linear interpolation between two 3-D vectors.

Definition

Arguments

result Interpolated 3-D vector
 t Interpolation parameter
 unitVec0 3-D vector, expected to be unit-length
 unitVec1 3-D vector, expected to be unit-length

Return Values

None

Description

Perform spherical linear interpolation between two 3-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

vmathSoaV3SqrtPerElem

Compute the square root of a 3-D vector per element.

Definition

Arguments

3-D vector in which each element is the square root of the corresponding element of the specified 3-D vector3-D vector

Return Values

None

Description

Create a 3-D vector in which each element is the square root of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function sqrtf4.

vmathSoaV3StoreHalfFloats

Store eight slots of two SoA 3-D vectors as half-floats.

Definition

Arguments

vec0vec13-D vectorvec1

threeQuads An output array of 3 quadwords containing 24 half-floats

Return Values

None

Description

Store eight slots of two SoA 3-D vectors in three quadwords of half-float values. Numbering slots of vec0 as 0..3 and slots of vec1 as 4..7, the output is {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7}.

vmathSoaV3StoreXYZArray

Store four slots of an SoA 3-D vector in three quadwords.

Definition

Arguments

vec 3-D vector
threeQuads An output array of 3 quadwords containing 12 floats

Return Values

None

Description

Store four slots of an SoA 3-D vector in three quadwords as {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3}.

vmathSoaV3Sub

Subtract a 3-D vector from another 3-D vector.

Definition

Arguments

```
result Difference of the specified 3-D vectors vec0 3-D vector vec1 3-D vector
```

Return Values

None

Description

Subtract a 3-D vector from another 3-D vector.

vmathSoaV3Sum

Compute the sum of all elements of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Sum of all elements of vec

Description

Compute the sum of all elements of a 3-D vector.

4-D Vector Functions (SoA, by reference)

vmathSoaV4AbsPerElem

Compute the absolute value of a 4-D vector per element.

Definition

Arguments

4-D vector in which each element is the absolute value of the corresponding element of vec

4-D vector

4-D vector

Return Values

None

Description

Compute the absolute value of each element of a 4-D vector.

vmathSoaV4Add

Add two 4-D vectors.

Definition

Arguments

```
result Sum of the specified 4-D vectorsvec0 4-D vectorvec1 4-D vector
```

Return Values

None

Description

Add two 4-D vectors.

vmathSoaV4Copy

Copy a 4-D vector.

Definition

Arguments

result The constructed result vec 4-D vector

Return Values

None

Description

Construct a copy of a 4-D vector.

vmathSoaV4CopySignPerElem

Copy sign from one 4-D vector to another, per element.

Definition

Arguments

result	4-D vector in which each element has the magnitude of the corresponding
	element of $vec0$ and the sign of the corresponding element of $vec1$
vec0	4-D vector
vec1	4-D vector

Return Values

None

Description

For each element, create a value composed of the magnitude of vec0 and the sign of vec1.

vmathSoaV4DivPerElem

Divide two 4-D vectors per element.

Definition

Arguments

4-D vector in which each element is the quotient of the corresponding elements of the specified 4-D vectors
 4-D vector
 4-D vector
 4-D vector

Return Values

None

Description

Divide two 4-D vectors element by element.

Notes

Floating-point behavior matches standard library function divf4.

vmathSoaV4Dot

Compute the dot product of two 4-D vectors.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

Dot product of the specified 4-D vectors

Description

Compute the dot product of two 4-D vectors.

vmathSoaV4Get4Aos

Extract four AoS 4-D vectors.

Definition

Arguments

```
vec4-D vectorresult0An output AoS 4-D vectorresult1An output AoS 4-D vectorresult2An output AoS 4-D vectorresult3An output AoS 4-D vector
```

Return Values

None

Description

Extract four AoS 4-D vectors from four slots of an SoA 4-D vector (transpose the data format).

vmathSoaV4GetElem

Get an x, y, z, or w element of a 4-D vector by index.

Definition

Arguments

```
vec 4-D vectoridx Index, expected in the range 0-3
```

Return Values

Element selected by the specified index

Description

Get an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

vmathSoaV4GetW

Get the w element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

w element of a 4-D vector

Description

Get the w element of a 4-D vector.

vmathSoaV4GetX

Get the x element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

x element of a 4-D vector

Description

Get the x element of a 4-D vector.

vmathSoaV4GetXYZ

Get the x, y, and z elements of a 4-D vector.

Definition

Arguments

```
result 3-D vector containing x, y, and z elements vec 4-D vector
```

Return Values

None

Description

Extract a 4-D vector's x, y, and z elements into a 3-D vector.

vmathSoaV4GetY

Get the y element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

y element of a 4-D vector

Description

Get the y element of a 4-D vector.

vmathSoaV4GetZ

Get the z element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

z element of a 4-D vector

Description

Get the z element of a 4-D vector.

vmathSoaV4Length

Compute the length of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Length of the specified 4-D vector

Description

Compute the length of a 4-D vector.

vmathSoaV4LengthSqr

Compute the square of the length of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Square of the length of the specified 4-D vector

Description

Compute the square of the length of a 4-D vector.

vmathSoaV4Lerp

Linear interpolation between two 4-D vectors.

Definition

Arguments

result Interpolated 4-D vector
t Interpolation parameter
vec0 4-D vector
vec1 4-D vector

Return Values

None

Description

Linearly interpolate between two 4-D vectors.

Notes

Does not clamp *t* between 0 and 1.

vmathSoaV4MakeFrom4Aos

Insert four AoS 4-D vectors.

Definition

Arguments

```
result The constructed SoA 4-D vector vec0 AoS 4-D vector vec1 AoS 4-D vector vec2 AoS 4-D vector vec3 AoS 4-D vector
```

Return Values

None

Description

Insert four AoS 4-D vectors into four slots of an SoA 4-D vector (transpose the data format).

vmathSoaV4MakeFromAos

Replicate an AoS 4-D vector.

Definition

Arguments

result The constructed SoA 4-D vector vec AoS 4-D vector

Return Values

None

Description

Replicate an AoS 4-D vector in all four slots of an SoA 4-D vector.

vmathSoaV4MakeFromElems

Construct a 4-D vector from x, y, z, and w elements.

Definition

Arguments

result	The 4-D vector that contains the specified elements
X	Scalar value
Y	Scalar value
Z	Scalar value
W	Scalar value

Return Values

None

Description

Construct a 4-D vector containing the specified x, y, z, and w elements.

vmathSoaV4MakeFromP3

Copy x, y, and z from a 3-D point into a 4-D vector, and set w to 1.

Definition

Arguments

```
result The constructed 4-D vector pnt 3-D point
```

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D point and with the w element set to 1.

vmathSoaV4MakeFromQ

Copy elements from a quaternion into a 4-D vector.

Definition

Arguments

```
result The constructed 4-D vector quat Quaternion
```

Return Values

None

Description

Construct a 4-D vector containing the x, y, z, and w elements of the specified quaternion.

vmathSoaV4MakeFromScalar

Set all elements of a 4-D vector to the same scalar value.

Definition

Arguments

```
result The constructed 4-D vector scalar Scalar value
```

Return Values

None

Description

Construct a 4-D vector with all elements set to the scalar value argument.

vmathSoaV4MakeFromV3

Copy x, y, and z from a 3-D vector into a 4-D vector, and set w to 0.

Definition

Arguments

```
result The constructed 4-D vector vec 3-D vector
```

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to 0.

vmathSoaV4MakeFromV3Scalar

Construct a 4-D vector from a 3-D vector and a scalar.

Definition

Arguments

result The constructed resultxyz 3-D vectorw Scalar value

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

vmathSoaV4MakeWAxis

Construct w axis.

Definition

Arguments

result The constructed 4-D vector

Return Values

None

Description

Construct a 4-D vector equal to (0,0,0,1).

vmathSoaV4MakeXAxis

Construct x axis.

Definition

Arguments

result The constructed 4-D vector

Return Values

None

Description

Construct a 4-D vector equal to (1,0,0,0).

vmathSoaV4MakeYAxis

Construct y axis.

Definition

Arguments

result The constructed 4-D vector

Return Values

None

Description

Construct a 4-D vector equal to (0,1,0,0).

vmathSoaV4MakeZAxis

Construct z axis.

Definition

Arguments

result The constructed 4-D vector

Return Values

None

Description

Construct a 4-D vector equal to (0,0,1,0).

vmathSoaV4MaxElem

Maximum element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Maximum value of all elements of vec

Description

Compute the maximum value of all elements of a 4-D vector.

vmathSoaV4MaxPerElem

Maximum of two 4-D vectors per element.

Definition

Arguments

result	4-D vector in which each element is the maximum of the corresponding elements of the specified 4-D vectors
vec0	4-D vector
vec1	4-D vector

Return Values

None

Description

Create a 4-D vector in which each element is the maximum of the corresponding elements of the specified 4-D vectors.

vmathSoaV4MinElem

Minimum element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Minimum value of all elements of vec

Description

Compute the minimum value of all elements of a 4-D vector.

vmathSoaV4MinPerElem

Minimum of two 4-D vectors per element.

Definition

Arguments

result	4-D vector in which each element is the minimum of the corresponding elements of the specified 4-D vectors
vec0	4-D vector
vec1	4-D vector

Return Values

None

Description

Create a 4-D vector in which each element is the minimum of the corresponding elements of two specified 4-D vectors.

vmathSoaV4MulPerElem

Multiply two 4-D vectors per element.

Definition

Arguments

result	4-D vector in which each element is the product of the corresponding elements of
	the specified 4-D vectors
vec0	4-D vector
vec1	4-D vector

Return Values

None

Description

Multiply two 4-D vectors element by element.

vmathSoaV4Neg

Negate all elements of a 4-D vector.

Definition

Arguments

result 4-D vector containing negated elements of the specified 4-D vector vec 4-D vector

Return Values

None

Description

Negate all elements of a 4-D vector.

vmathSoaV4Normalize

Normalize a 4-D vector.

Definition

Arguments

result The specified 4-D vector scaled to unit length vec 4-D vector

Return Values

None

Description

Compute a normalized 4-D vector.

Notes

The result is unpredictable when all elements of vec are at or near zero.

vmathSoaV4Outer

Outer product of two 4-D vectors.

Definition

Arguments

result The 4x4 matrix product of a column-vector, vec0, and a row-vector, vec1
vec0 4-D vector
4-D vector

Return Values

None

Description

Compute the outer product of two 4-D vectors.

vmathSoaV4Print

Print a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

None

Description

Print a 4-D vector. Prints the 4-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaV4Prints

Print a 4-D vector and an associated string identifier.

Definition

Arguments

vec 4-D vector

name String printed with the 4-D vector

Return Values

None

Description

Print a 4-D vector and an associated string identifier. Prints the 4-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaV4RecipPerElem

Compute the reciprocal of a 4-D vector per element.

Definition

Arguments

4-D vector in which each element is the reciprocal of the corresponding element of the specified 4-D vector

4-D vector

4-D vector

Return Values

None

Description

Create a 4-D vector in which each element is the reciprocal of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function recipf4.

vmathSoaV4RsqrtPerElem

Compute the reciprocal square root of a 4-D vector per element.

Definition

Arguments

4-D vector in which each element is the reciprocal square root of the corresponding element of the specified 4-D vector

vec 4-D vector

Return Values

None

Description

Create a 4-D vector in which each element is the reciprocal square root of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function rsqrtf4.

vmathSoaV4ScalarDiv

Divide a 4-D vector by a scalar.

Definition

Arguments

result Quotient of the specified 4-D vector and scalarvec 4-D vectorscalarScalar value

Return Values

None

Description

Divide a 4-D vector by a scalar.

vmathSoaV4ScalarMul

Multiply a 4-D vector by a scalar.

Definition

Arguments

result Product of the specified 4-D vector and scalarvec 4-D vectorscalarScalar value

Return Values

None

Description

Multiply a 4-D vector by a scalar.

vmathSoaV4Select

Conditionally select between two 4-D vectors.

Definition

Arguments

result	Each slot of the result is equal to the 4-D vector at the corresponding slot of $vec0$ or $vec1$, depending on the value of $select1$ at the corresponding slot. A value of 0 selects the slot of $vec0$, and a value of 0xFFFFFFFF selects the slot of $vec1$
vec0	4-D vector
vec1	4-D vector
select1	For each of the four word slots, this mask selects either the 4-D vector in the corresponding slot of $vec0$ or the 4-D vector in the corresponding slot of $vec1$. A 0 bit selects from $vec0$ whereas a 1 bit selects from $vec1$. Identical bits should be set for each word of the mask.

Return Values

None

Description

Conditionally select one of the 4-D vectors at each of the corresponding slots of vec0 or vec1.

Notes

This function uses a conditional select instruction to avoid a branch.

vmathSoaV4SetElem

Set an x, y, z, or w element of a 4-D vector by index.

Definition

Arguments

result An output 4-D vector

idx Index, expected in the range 0-3

value Scalar value

Return Values

None

Description

Set an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

vmathSoaV4SetW

Set the w element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector w Scalar value
```

Return Values

None

Description

Set the w element of a 4-D vector to the specified scalar value.

vmathSoaV4SetX

Set the x element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector 
x Scalar value
```

Return Values

None

Description

Set the x element of a 4-D vector to the specified scalar value.

vmathSoaV4SetXYZ

Set the x, y, and z elements of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector vec 3-D vector
```

Return Values

None

Description

Set the x, y, and z elements to those of the specified 3-D vector.

Notes

This function does not change the w element.

vmathSoaV4SetY

Set the y element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector y Scalar value
```

Return Values

None

Description

Set the y element of a 4-D vector to the specified scalar value.

vmathSoaV4SetZ

Set the z element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector 
z Scalar value
```

Return Values

None

Description

Set the z element of a 4-D vector to the specified scalar value.

vmathSoaV4Slerp

Spherical linear interpolation between two 4-D vectors.

Definition

Arguments

result Interpolated 4-D vector
 t Interpolation parameter
 unitVec0 4-D vector, expected to be unit-length
 unitVec1 4-D vector, expected to be unit-length

Return Values

None

Description

Perform spherical linear interpolation between two 4-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

vmathSoaV4SqrtPerElem

Compute the square root of a 4-D vector per element.

Definition

Arguments

4-D vector in which each element is the square root of the corresponding element of the specified 4-D vector

4-D vector

4-D vector

Return Values

None

Description

Create a 4-D vector in which each element is the square root of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function sqrtf4.

vmathSoaV4StoreHalfFloats

Store four slots of an SoA 4-D vector as half-floats.

Definition

Arguments

vec 4-D vector
twoQuads An output array of 2 quadwords containing 16 half-floats

Return Values

None

Description

Store four slots of an SoA 4-D vector in two quadwords of half-float values. Numbering slots of *vec* as 0..3, the output is {x0,y0,z0,w0,x1,y1,z1,w1,x2,y2,z2,w2,x3,y3,z3,w3}.

vmathSoaV4Sub

Subtract a 4-D vector from another 4-D vector.

Definition

Arguments

```
result Difference of the specified 4-D vectors vec0 4-D vector vec1 4-D vector
```

Return Values

None

Description

Subtract a 4-D vector from another 4-D vector.

vmathSoaV4Sum

Compute the sum of all elements of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Sum of all elements of vec

Description

Compute the sum of all elements of a 4-D vector.

vmathSoaP3AbsPerElem

Compute the absolute value of a 3-D point per element.

Definition

Arguments

3-D point in which each element is the absolute value of the corresponding element of pnt
3-D point
3-D point

Return Values

None

Description

Compute the absolute value of each element of a 3-D point.

vmathSoaP3AddV3

Add a 3-D point to a 3-D vector.

Definition

Arguments

result Sum of the specified 3-D point and 3-D vector pnt 3-D point vec 3-D vector

Return Values

None

Description

Add a 3-D point to a 3-D vector.

vmathSoaP3Copy

Copy a 3-D point.

Definition

Arguments

result The constructed result pnt 3-D point

Return Values

None

Description

Construct a copy of a 3-D point.

vmathSoaP3CopySignPerElem

Copy sign from one 3-D point to another, per element.

Definition

Arguments

result	3-D point in which each element has the magnitude of the corresponding element
	of pnt0 and the sign of the corresponding element of pnt1
pnt0	3-D point
pnt1	3-D point

Return Values

None

Description

For each element, create a value composed of the magnitude of pnt0 and the sign of pnt1.

vmathSoaP3Dist

Compute the distance between two 3-D points.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Distance between two 3-D points

Description

Compute the distance between two 3-D points.

vmathSoaP3DistFromOrigin

Compute the distance of a 3-D point from the coordinate-system origin.

Definition

Arguments

pnt 3-D point

Return Values

Distance of a 3-D point from the origin

Description

Compute the distance of a 3-D point from the coordinate-system origin.

vmathSoaP3DistSqr

Compute the square of the distance between two 3-D points.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Square of the distance between two 3-D points

Description

Compute the square of the distance between two 3-D points.

vmathSoaP3DistSqrFromOrigin

Compute the square of the distance of a 3-D point from the coordinate-system origin.

Definition

Arguments

pnt 3-D point

Return Values

Square of the distance of a 3-D point from the origin

Description

Compute the square of the distance of a 3-D point from the coordinate-system origin.

vmathSoaP3DivPerElem

Divide two 3-D points per element.

Definition

Arguments

result	3-D point in which each element is the quotient of the corresponding elements of
	the specified 3-D points
pnt0	3-D point
pnt1	3-D point

Return Values

None

Description

Divide two 3-D points element by element.

Notes

Floating-point behavior matches standard library function divf4.

vmathSoaP3Get4Aos

Extract four AoS 3-D points.

Definition

Arguments

```
    pnt
    result0
    An output AoS 3-D point
    result1
    An output AoS 3-D point
    result2
    An output AoS 3-D point
    result3
    An output AoS 3-D point
```

Return Values

None

Description

Extract four AoS 3-D points from four slots of an SoA 3-D point (transpose the data format).

vmathSoaP3GetElem

Get an x, y, or z element of a 3-D point by index.

Definition

Arguments

```
pnt 3-D pointidx Index, expected in the range 0-2
```

Return Values

Element selected by the specified index

Description

Get an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

vmathSoaP3GetX

Get the x element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

x element of a 3-D point

Description

Get the x element of a 3-D point.

vmathSoaP3GetY

Get the y element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

y element of a 3-D point

Description

Get the y element of a 3-D point.

vmathSoaP3GetZ

Get the z element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

z element of a 3-D point

Description

Get the z element of a 3-D point.

vmathSoaP3Lerp

Linear interpolation between two 3-D points.

Definition

Arguments

```
 \begin{array}{ll} result & Interpolated 3-D \ point \\ t & Interpolation \ parameter \\ pnt0 & 3-D \ point \\ pnt1 & 3-D \ point \end{array}
```

Return Values

None

Description

Linearly interpolate between two 3-D points.

Notes

Does not clamp *t* between 0 and 1.

vmathSoaP3LoadXYZArray

Load four three-float 3-D points, stored in three quadwords.

Definition

Arguments

pnt An output 3-D point threeQuads Array of 3 quadwords containing 12 floats

Return Values

None

Description

Load four three-float 3-D points, stored in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$, into four slots of an SoA 3-D point.

vmathSoaP3MakeFrom4Aos

Insert four AoS 3-D points.

Definition

Arguments

```
result The constructed SoA 3-D point pnt0 AoS 3-D point pnt1 AoS 3-D point pnt2 AoS 3-D point pnt3 AoS 3-D point
```

Return Values

None

Description

Insert four AoS 3-D points into four slots of an SoA 3-D point (transpose the data format).

vmathSoaP3MakeFromAos

Replicate an AoS 3-D point.

Definition

Arguments

```
result The constructed SoA 3-D point pnt AoS 3-D point
```

Return Values

None

Description

Replicate an AoS 3-D point in all four slots of an SoA 3-D point.

vmathSoaP3MakeFromElems

Construct a 3-D point from x, y, and z elements.

Definition

Arguments

 $egin{array}{ll} result & {
m The 3-D \ point \ that \ contains \ the \ specified \ elements} \ x & {
m Scalar \ value} \ y & {
m Scalar \ value} \ z & {
m Scalar \ value} \ \end{array}$

Return Values

None

Description

Construct a 3-D point containing the specified x, y, and z elements.

vmathSoaP3MakeFromScalar

Set all elements of a 3-D point to the same scalar value.

Definition

Arguments

```
result The constructed 3-D point scalar Scalar value
```

Return Values

None

Description

Construct a 3-D point with all elements set to the scalar value argument.

vmathSoaP3MakeFromV3

Copy elements from a 3-D vector into a 3-D point.

Definition

Arguments

```
result The constructed 3-D point vec 3-D vector
```

Return Values

None

Description

Construct a 3-D point containing the x, y, and z elements of the specified 3-D vector.

vmathSoaP3MaxElem

Maximum element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Maximum value of all elements of pnt

Description

Compute the maximum value of all elements of a 3-D point.

vmathSoaP3MaxPerElem

Maximum of two 3-D points per element.

Definition

Arguments

result	3-D point in which each element is the maximum of the corresponding elements of the specified 3-D points
pnt0	3-D point
pnt1	3-D point

Return Values

None

Description

Create a 3-D point in which each element is the maximum of the corresponding elements of the specified 3-D points.

vmathSoaP3MinElem

Minimum element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Minimum value of all elements of pnt

Description

Compute the minimum value of all elements of a 3-D point.

vmathSoaP3MinPerElem

Minimum of two 3-D points per element.

Definition

Arguments

result	3-D point in which each element is the minimum of the corresponding elements
	of the specified 3-D points
pnt0	3-D point
pnt1	3-D point

Return Values

None

Description

Create a 3-D point in which each element is the minimum of the corresponding elements of two specified 3-D points.

vmathSoaP3MulPerElem

Multiply two 3-D points per element.

Definition

Arguments

result	3-D point in which each element is the product of the corresponding elements of
	the specified 3-D points
pnt0	3-D point
pnt1	3-D point

Return Values

None

Description

Multiply two 3-D points element by element.

vmathSoaP3NonUniformScale

Apply non-uniform scale to a 3-D point.

Definition

Arguments

3-D point in which each element is the product of the corresponding elements of the specified 3-D point and 3-D vector
 3-D point
 3-D point
 3-D vector

Return Values

None

Description

Apply non-uniform scale to a 3-D point.

vmathSoaP3Print

Print a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

None

Description

Print a 3-D point. Prints the 3-D point transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaP3Prints

Print a 3-D point and an associated string identifier.

Definition

Arguments

```
pnt 3-D pointname String printed with the 3-D point
```

Return Values

None

Description

Print a 3-D point and an associated string identifier. Prints the 3-D point transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaP3Projection

Scalar projection of a 3-D point on a unit-length 3-D vector.

Definition

Arguments

```
pnt 3-D pointunitVec 3-D vector, expected to be unit-length
```

Return Values

Scalar projection of the 3-D point on the unit-length 3-D vector

Description

Scalar projection of a 3-D point on a unit-length 3-D vector (dot product).

vmathSoaP3RecipPerElem

Compute the reciprocal of a 3-D point per element.

Definition

Arguments

3-D point in which each element is the reciprocal of the corresponding element of the specified 3-D point

3-D point 3-D point

Return Values

None

Description

Create a 3-D point in which each element is the reciprocal of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function recipf4.

vmathSoaP3RsqrtPerElem

Compute the reciprocal square root of a 3-D point per element.

Definition

Arguments

3-D point in which each element is the reciprocal square root of the corresponding element of the specified 3-D point

3-D point

3-D point

Return Values

None

Description

Create a 3-D point in which each element is the reciprocal square root of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function rsqrtf4.

vmathSoaP3Scale

Apply uniform scale to a 3-D point.

Definition

Arguments

result
 pnt
 scaleVal
 3-D point in which every element is multiplied by the scalar value
 Scalar value

Return Values

None

Description

Apply uniform scale to a 3-D point.

vmathSoaP3Select

Conditionally select between two 3-D points.

Definition

Arguments

result	Each slot of the result is equal to the 3-D point at the corresponding slot of pnt0 or pnt1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of pnt0, and a value of 0xFFFFFFFF selects the slot of pnt1
pnt0 pnt1	3-D point 3-D point
select1	For each of the four word slots, this mask selects either the 3-D point in the corresponding slot of <i>pnt0</i> or the 3-D point in the corresponding slot of <i>pnt1</i> . A 0 bit selects from <i>pnt0</i> whereas a 1 bit selects from <i>pnt1</i> . Identical bits should be set for each word of the mask.

Return Values

None

Description

Conditionally select one of the 3-D points at each of the corresponding slots of pnt0 or pnt1.

Notes

This function uses a conditional select instruction to avoid a branch.

vmathSoaP3SetElem

Set an x, y, or z element of a 3-D point by index.

Definition

Arguments

```
result An output 3-D pointidx Index, expected in the range 0-2value Scalar value
```

Return Values

None

Description

Set an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

vmathSoaP3SetX

Set the x element of a 3-D point.

Definition

Arguments

```
result An output 3-D point x Scalar value
```

Return Values

None

Description

Set the x element of a 3-D point to the specified scalar value.

vmathSoaP3SetY

Set the y element of a 3-D point.

Definition

Arguments

```
result An output 3-D point y Scalar value
```

Return Values

None

Description

Set the y element of a 3-D point to the specified scalar value.

vmathSoaP3SetZ

Set the z element of a 3-D point.

Definition

Arguments

```
result An output 3-D point z Scalar value
```

Return Values

None

Description

Set the z element of a 3-D point to the specified scalar value.

vmathSoaP3SqrtPerElem

Compute the square root of a 3-D point per element.

Definition

Arguments

3-D point in which each element is the square root of the corresponding element of the specified 3-D point

3-D point

3-D point

Return Values

None

Description

Create a 3-D point in which each element is the square root of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function sqrtf4.

vmathSoaP3StoreHalfFloats

Store eight slots of two SoA 3-D points as half-floats.

Definition

Arguments

pnt0pnt13-D point3-D point

threeQuads An output array of 3 quadwords containing 24 half-floats

Return Values

None

Description

Store eight slots of two SoA 3-D points in three quadwords of half-float values. Numbering slots of pnt0 as 0..3 and slots of pnt1 as 4..7, the output is {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7}.

vmathSoaP3StoreXYZArray

Store four slots of an SoA 3-D point in three quadwords.

Definition

Arguments

pnt 3-D point threeQuads An output array of 3 quadwords containing 12 floats

Return Values

None

Description

Store four slots of an SoA 3-D point in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$.

vmathSoaP3Sub

Subtract a 3-D point from another 3-D point.

Definition

Arguments

```
result Difference of the specified 3-D pointspnt0 3-D pointpnt1 3-D point
```

Return Values

None

Description

Subtract a 3-D point from another 3-D point.

vmathSoaP3SubV3

Subtract a 3-D vector from a 3-D point.

Definition

Arguments

result Difference of the specified 3-D point and 3-D vector pnt 3-D point vec 3-D vector

Return Values

None

Description

Subtract a 3-D vector from a 3-D point.

vmathSoaP3Sum

Compute the sum of all elements of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Sum of all elements of pnt

Description

Compute the sum of all elements of a 3-D point.

Quaternion Functions (SoA, by reference)

vmathSoaQAdd

Add two quaternions.

Definition

Arguments

result Sum of the specified quaternionsquat0 Quaternionquat1 Quaternion

Return Values

None

Description

Add two quaternions.

vmathSoaQConj

Compute the conjugate of a quaternion.

Definition

Arguments

result Conjugate of the specified quaternion quat Quaternion

Return Values

None

Description

Compute the conjugate of a quaternion.

vmathSoaQCopy

Copy a quaternion.

Definition

Arguments

result The constructed result quat Quaternion

Return Values

None

Description

Construct a copy of a quaternion.

vmathSoaQDot

Compute the dot product of two quaternions.

Definition

Arguments

```
quat0 Quaternion quat1 Quaternion
```

Return Values

Dot product of the specified quaternions

Description

Compute the dot product of two quaternions.

vmathSoaQGet4Aos

Extract four AoS quaternions.

Definition

Arguments

```
    quat
    quaternion
    quaternion
```

Return Values

None

Description

Extract four AoS quaternions from four slots of an SoA quaternion (transpose the data format).

vmathSoaQGetElem

Get an x, y, z, or w element of a quaternion by index.

Definition

Arguments

```
quatQuaternionidxIndex, expected in the range 0-3
```

Return Values

Element selected by the specified index

Description

Get an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

vmathSoaQGetW

Get the w element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

w element of a quaternion

Description

Get the w element of a quaternion.

vmathSoaQGetX

Get the x element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

x element of a quaternion

Description

Get the x element of a quaternion.

vmathSoaQGetXYZ

Get the x, y, and z elements of a quaternion.

Definition

Arguments

result 3-D vector containing x, y, and z elements quat Quaternion

Return Values

None

Description

Extract a quaternion's x, y, and z elements into a 3-D vector.

vmathSoaQGetY

Get the y element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

y element of a quaternion

Description

Get the y element of a quaternion.

vmathSoaQGetZ

Get the z element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

z element of a quaternion

Description

Get the z element of a quaternion.

vmathSoaQLength

Compute the length of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Length of the specified quaternion

Description

Compute the length of a quaternion.

vmathSoaQLerp

Linear interpolation between two quaternions.

Definition

Arguments

result Interpolated quaternion t Interpolation parameter quat0 Quaternion quat1 Quaternion

Return Values

None

Description

Linearly interpolate between two quaternions.

Notes

Does not clamp *t* between 0 and 1.

vmathSoaQMakeFrom4Aos

Insert four AoS quaternions.

Definition

Arguments

```
result The constructed SoA quaternion quat0 AoS quaternion quat1 AoS quaternion quat2 AoS quaternion quat3 AoS quaternion
```

Return Values

None

Description

Insert four AoS quaternions into four slots of an SoA quaternion (transpose the data format).

vmathSoaQMakeFromAos

Replicate an AoS quaternion.

Definition

Arguments

result The constructed SoA quaternion quat AoS quaternion

Return Values

None

Description

Replicate an AoS quaternion in all four slots of an SoA quaternion.

vmathSoaQMakeFromElems

Construct a quaternion from x, y, z, and w elements.

Definition

Arguments

result	The quaternion that contains the specified elements
X	Scalar value
Y	Scalar value
Z	Scalar value
W	Scalar value

Return Values

None

Description

Construct a quaternion containing the specified x, y, z, and w elements.

vmathSoaQMakeFromM3

Convert a rotation matrix to a unit-length quaternion.

Definition

Arguments

result The constructed result
rotMat 3x3 matrix, expected to be a rotation matrix

Return Values

None

Description

Construct a unit-length quaternion representing the same transformation as a rotation matrix.

vmathSoaQMakeFromScalar

Set all elements of a quaternion to the same scalar value.

Definition

Arguments

result The constructed quaternion scalar Scalar value

Return Values

None

Description

Construct a quaternion with all elements set to the scalar value argument.

vmathSoaQMakeFromV3Scalar

Construct a quaternion from a 3-D vector and a scalar.

Definition

Arguments

```
result The constructed resultxyz 3-D vectorw Scalar value
```

Return Values

None

Description

Construct a quaternion with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

vmathSoaQMakeFromV4

Copy elements from a 4-D vector into a quaternion.

Definition

Arguments

```
result The constructed quaternion vec 4-D vector
```

Return Values

None

Description

Construct a quaternion containing the x, y, z, and w elements of the specified 4-D vector.

vmathSoaQMakeIdentity

Construct an identity quaternion.

Definition

Arguments

result The constructed quaternion

Return Values

None

Description

Construct an identity quaternion equal to (0,0,0,1).

vmathSoaQMakeRotationArc

Construct a quaternion to rotate between two unit-length 3-D vectors.

Definition

Arguments

```
result The constructed quaternionunitVec0 3-D vector, expected to be unit-lengthunitVec1 3-D vector, expected to be unit-length
```

Return Values

None

Description

Construct a quaternion to rotate between two unit-length 3-D vectors.

Notes

The result is unpredictable if unitVec0 and unitVec1 point in opposite directions.

vmathSoaQMakeRotationAxis

Construct a quaternion to rotate around a unit-length 3-D vector.

Definition

Arguments

result The constructed quaternionradians Scalar valueunitVec 3-D vector, expected to be unit-length

Return Values

None

Description

Construct a quaternion to rotate around a unit-length 3-D vector by the specified radians angle.

vmathSoaQMakeRotationX

Construct a quaternion to rotate around the x axis.

Definition

Arguments

result The constructed quaternion radians Scalar value

Return Values

None

Description

Construct a quaternion to rotate around the x axis by the specified radians angle.

vmathSoaQMakeRotationY

Construct a quaternion to rotate around the y axis.

Definition

Arguments

result The constructed quaternion radians Scalar value

Return Values

None

Description

Construct a quaternion to rotate around the y axis by the specified radians angle.

vmathSoaQMakeRotationZ

Construct a quaternion to rotate around the z axis.

Definition

Arguments

result The constructed quaternion radians Scalar value

Return Values

None

Description

Construct a quaternion to rotate around the z axis by the specified radians angle.

vmathSoaQMul

Multiply two quaternions.

Definition

Arguments

result Product of the specified quaternionsquat0 Quaternionquat1 Quaternion

Return Values

None

Description

Multiply two quaternions.

vmathSoaQNeg

Negate all elements of a quaternion.

Definition

Arguments

result Quaternion containing negated elements of the specified quaternion quat Quaternion

Return Values

None

Description

Negate all elements of a quaternion.

vmathSoaQNorm

Compute the norm of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

The norm of the specified quaternion

Description

Compute the norm, equal to the square of the length, of a quaternion.

vmathSoaQNormalize

Normalize a quaternion.

Definition

Arguments

result The specified quaternion scaled to unit length quat Quaternion

Return Values

None

Description

Compute a normalized quaternion.

Notes

The result is unpredictable when all elements of quat are at or near zero.

vmathSoaQPrint

Print a quaternion.

Definition

Arguments

quat Quaternion

Return Values

None

Description

Print a quaternion.

Notes

Function is only defined when $_\mbox{VECTORMATH_DEBUG}$ is defined.

vmathSoaQPrints

Print a quaternion and an associated string identifier.

Definition

Arguments

quat Quaternion

name String printed with the quaternion

Return Values

None

Description

Print a quaternion and an associated string identifier.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaQRotate

Use a unit-length quaternion to rotate a 3-D vector.

Definition

Arguments

result The rotated 3-D vector, equivalent to unitQuat*Quat(vec,0)*conj(unitQuat)
unitQuat Quaternion, expected to be unit-length
vec 3-D vector

Return Values

None

Description

Rotate a 3-D vector by applying a unit-length quaternion.

vmathSoaQScalarDiv

Divide a quaternion by a scalar.

Definition

Arguments

result Quotient of the specified quaternion and scalar quat Quaternion
scalar Scalar value

Return Values

None

Description

Divide a quaternion by a scalar.

vmathSoaQScalarMul

Multiply a quaternion by a scalar.

Definition

Arguments

resultProduct of the specified quaternion and scalarquatQuaternionscalarScalar value

Return Values

None

Description

Multiply a quaternion by a scalar.

vmathSoaQSelect

Conditionally select between two quaternions.

Definition

Arguments

result	Each slot of the result is equal to the quaternion at the corresponding slot of quat0 or quat1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of quat0, and a value of 0xFFFFFFFF selects the slot
	of quat1
quat0	Quaternion
quat1	Quaternion
select1	For each of the four word slots, this mask selects either the quaternion in the
	corresponding slot of quat 0 or the quaternion in the corresponding slot of
	quat 1. A 0 bit selects from quat 0 whereas a 1 bit selects from quat 1. Identical
	bits should be set for each word of the mask.

Return Values

None

Description

Conditionally select one of the quaternions at each of the corresponding slots of quat 0 or quat 1.

Notes

This function uses a conditional select instruction to avoid a branch.

vmathSoaQSetElem

Set an x, y, z, or w element of a quaternion by index.

Definition

Arguments

result An output quaternion
idx Index, expected in the range 0-3
value Scalar value

Return Values

None

Description

Set an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

vmathSoaQSetW

Set the w element of a quaternion.

Definition

Arguments

result An output quaternion w Scalar value

Return Values

None

Description

Set the w element of a quaternion to the specified scalar value.

vmathSoaQSetX

Set the x element of a quaternion.

Definition

Arguments

result An output quaternion x Scalar value

Return Values

None

Description

Set the x element of a quaternion to the specified scalar value.

vmathSoaQSetXYZ

Set the x, y, and z elements of a quaternion.

Definition

Arguments

```
result An output quaternion vec 3-D vector
```

Return Values

None

Description

Set the x, y, and z elements to those of the specified 3-D vector.

Notes

This function does not change the w element.

vmathSoaQSetY

Set the y element of a quaternion.

Definition

Arguments

```
result An output quaternion
Y Scalar value
```

Return Values

None

Description

Set the y element of a quaternion to the specified scalar value.

vmathSoaQSetZ

Set the z element of a quaternion.

Definition

Arguments

```
result An output quaternion z Scalar value
```

Return Values

None

Description

Set the z element of a quaternion to the specified scalar value.

vmathSoaQSlerp

Spherical linear interpolation between two quaternions.

Definition

Arguments

resultInterpolated quaterniontInterpolation parameterunitQuat0Quaternion, expected to be unit-lengthunitQuat1Quaternion, expected to be unit-length

Return Values

None

Description

Perform spherical linear interpolation between two quaternions.

Notes

Interpolates along the shortest path between orientations. Does not clamp *t* between 0 and 1.

vmathSoaQSquad

Spherical quadrangle interpolation.

Definition

Arguments

```
Interpolated quaternion

t Interpolation parameter

unitQuat0 Quaternion, expected to be unit-length

unitQuat1 Quaternion, expected to be unit-length

unitQuat2 Quaternion, expected to be unit-length

unitQuat3 Quaternion, expected to be unit-length

Quaternion, expected to be unit-length
```

Return Values

None

Description

Perform spherical quadrangle interpolation between four quaternions.

vmathSoaQSub

Subtract a quaternion from another quaternion.

Definition

Arguments

```
result Difference of the specified quaternionsquat0 Quaternionquat1 Quaternion
```

Return Values

None

Description

Subtract a quaternion from another quaternion.

3x3 Matrix Functions (SoA, by reference)

vmathSoaM3AbsPerElem

Compute the absolute value of a 3x3 matrix per element.

Definition

Arguments

result 3x3 matrix in which each element is the absolute value of the corresponding

element of the specified 3x3 matrix

mat 3x3 matrix

Return Values

None

Description

Compute the absolute value of each element of a 3x3 matrix.

vmathSoaM3Add

Add two 3x3 matrices.

Definition

Arguments

result Sum of the specified 3x3 matrices
mat0 3x3 matrix
mat1 3x3 matrix

Return Values

None

Description

Add two 3x3 matrices.

vmathSoaM3AppendScale

Append (post-multiply) a scale transformation to a 3x3 matrix.

Definition

Arguments

result The product of mat and a scale transformation created from scaleVec
mat 3x3 matrix
scaleVec 3-D vector

Return Values

None

Description

Post-multiply a 3x3 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathSoaM3Copy

Copy a 3x3 matrix.

Definition

Arguments

result The constructed result mat 3x3 matrix

Return Values

None

Description

Construct a copy of a 3x3 matrix.

vmathSoaM3Determinant

Determinant of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

The determinant of mat

Description

Compute the determinant of a 3x3 matrix.

vmathSoaM3Get4Aos

Extract four AoS 3x3 matrices.

Definition

Arguments

```
mat3x3 matrixresult0An output AoS 3x3 matrixresult1An output AoS 3x3 matrixresult2An output AoS 3x3 matrixresult3An output AoS 3x3 matrix
```

Return Values

None

Description

Extract four AoS 3x3 matrices from four slots of an SoA 3x3 matrix (transpose the data format).

Get the column of a 3x3 matrix referred to by the specified index.

Definition

Arguments

result The column referred to by the specified index mat 3x3 matrix

Index, expected in the range 0-2

Return Values

None

Description

Get the column of a 3x3 matrix referred to by the specified index.

Get column 0 of a 3x3 matrix.

Definition

Arguments

```
result Column 0 mat 3x3 matrix
```

Return Values

None

Description

Get column 0 of a 3x3 matrix.

Get column 1 of a 3x3 matrix.

Definition

Arguments

```
result Column 1 mat 3x3 matrix
```

Return Values

None

Description

Get column 1 of a 3x3 matrix.

Get column 2 of a 3x3 matrix.

Definition

Arguments

result Column 2 mat 3x3 matrix

Return Values

None

Description

Get column 2 of a 3x3 matrix.

vmathSoaM3GetElem

Get the element of a 3x3 matrix referred to by column and row indices.

Definition

Arguments

```
mat 3x3 matrixcol Index, expected in the range 0-2row Index, expected in the range 0-2
```

Return Values

Element selected by col and row

Description

Get the element of a 3x3 matrix referred to by column and row indices.

vmathSoaM3GetRow

Get the row of a 3x3 matrix referred to by the specified index.

Definition

Arguments

result The row referred to by the specified indexmat 3x3 matrixrow Index, expected in the range 0-2

Return Values

None

Description

Get the row of a 3x3 matrix referred to by the specified index.

vmathSoaM3Inverse

Compute the inverse of a 3x3 matrix.

Definition

Arguments

```
result Inverse of mat mat 3x3 matrix
```

Return Values

None

Description

Compute the inverse of a 3x3 matrix.

Notes

Result is unpredictable when the determinant of mat is equal to or near 0.

vmathSoaM3MakeFrom4Aos

Insert four AoS 3x3 matrices.

Definition

Arguments

```
result The constructed 3x3 matrix
mat0    AoS 3x3 matrix
mat1    AoS 3x3 matrix
mat2    AoS 3x3 matrix
mat3    AoS 3x3 matrix
```

Return Values

None

Description

Insert four AoS 3x3 matrices into four slots of an SoA 3x3 matrix (transpose the data format).

vmathSoaM3MakeFromAos

Replicate an AoS 3x3 matrix.

Definition

Arguments

```
result The constructed 3x3 matrix
Mat AoS 3x3 matrix
```

Return Values

None

Description

Replicate an AoS 3x3 matrix in all four slots of an SoA 3x3 matrix.

vmathSoaM3MakeFromCols

Construct a 3x3 matrix containing the specified columns.

Definition

Arguments

result	The 3x3 matrix that contains the specified columns
co10	3-D vector
col1	3-D vector
co12	3-D vector

Return Values

None

Description

Construct a 3x3 matrix containing the specified columns.

vmathSoaM3MakeFromQ

Construct a 3x3 rotation matrix from a unit-length quaternion.

Definition

Arguments

result A 3x3 matrix that applies the same rotation as unitQuat unitQuat Quaternion, expected to be unit-length

Return Values

None

Description

Construct a 3x3 matrix that applies the same rotation as the specified unit-length quaternion.

vmathSoaM3MakeFromScalar

Set all elements of a 3x3 matrix to the same scalar value.

Definition

Arguments

```
result The constructed 3x3 matrix scalar Scalar value
```

Return Values

None

Description

Construct a 3x3 matrix with all elements set to the scalar value argument.

vmathSoaM3MakeIdentity

Construct an identity 3x3 matrix.

Definition

Arguments

result The constructed 3x3 matrix

Return Values

None

Description

Construct an identity 3x3 matrix in which non-diagonal elements are zero and diagonal elements are 1.

vmathSoaM3MakeRotationAxis

Construct a 3x3 matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

result The constructed 3x3 matrixradians Scalar valueunitVec 3-D vector, expected to be unit-length

Return Values

None

Description

Construct a 3x3 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

vmathSoaM3MakeRotationQ

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

result A 3x3 matrix that applies the same rotation as unitQuat unitQuat Quaternion, expected to be unit-length

Return Values

None

Description

Construct a 3x3 matrix that applies the same rotation as the specified unit-length quaternion.

vmathSoaM3MakeRotationX

Construct a 3x3 matrix to rotate around the x axis.

Definition

Arguments

result The constructed 3x3 matrix radians Scalar value

Return Values

None

Description

Construct a 3x3 matrix to rotate around the x axis by the specified radians angle.

vmathSoaM3MakeRotationY

Construct a 3x3 matrix to rotate around the y axis.

Definition

Arguments

result The constructed 3x3 matrix radians Scalar value

Return Values

None

Description

Construct a 3x3 matrix to rotate around the y axis by the specified radians angle.

vmathSoaM3MakeRotationZ

Construct a 3x3 matrix to rotate around the z axis.

Definition

Arguments

result The constructed 3x3 matrix radians Scalar value

Return Values

None

Description

Construct a 3x3 matrix to rotate around the z axis by the specified radians angle.

vmathSoaM3MakeRotationZYX

Construct a 3x3 matrix to rotate around the x, y, and z axes.

Definition

Arguments

result The constructed 3x3 matrix radiansXYZ 3-D vector

Return Values

None

Description

Construct a 3x3 matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

vmathSoaM3MakeScale

Construct a 3x3 matrix to perform scaling.

Definition

Arguments

result The constructed 3x3 matrix scaleVec 3-D vector

Return Values

None

Description

Construct a 3x3 matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

vmathSoaM3Mul

Multiply two 3x3 matrices.

Definition

Arguments

```
result Product of the specified 3x3 matrices
mat0    3x3 matrix
mat1    3x3 matrix
```

Return Values

None

Description

Multiply two 3x3 matrices.

vmathSoaM3MulPerElem

Multiply two 3x3 matrices per element.

Definition

Arguments

result	3x3 matrix in which each element is the product of the corresponding elements of
	the specified 3x3 matrices
mat0	3x3 matrix
mat1	3x3 matrix

Return Values

None

Description

Multiply two 3x3 matrices element by element.

vmathSoaM3MuIV3

Multiply a 3x3 matrix by a 3-D vector.

Definition

Arguments

result Product of the specified 3x3 matrix and 3-D vector mat 3x3 matrix

vec 3-D vector

Return Values

None

Description

Multiply a 3x3 matrix by a 3-D vector.

vmathSoaM3Neg

Negate all elements of a 3x3 matrix.

Definition

Arguments

result 3x3 matrix containing negated elements of the specified 3x3 matrix 3x3 matrix

Return Values

None

Description

Negate all elements of a 3x3 matrix.

vmathSoaM3PrependScale

Prepend (pre-multiply) a scale transformation to a 3x3 matrix.

Definition

Arguments

result The product of a scale transformation created from scaleVec and mat scaleVec 3-D vector

mat 3x3 matrix

Return Values

None

Description

Pre-multiply a 3x3 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathSoaM3Print

Print a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

None

Description

Print a 3x3 matrix. Unlike the printing of vectors, the 3x3 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaM3Prints

Print a 3x3 matrix and an associated string identifier.

Definition

Arguments

mat 3x3 matrixname String printed with the 3x3 matrix

Return Values

None

Description

Print a 3x3 matrix and an associated string identifier. Unlike the printing of vectors, the 3x3 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaM3ScalarMul

Multiply a 3x3 matrix by a scalar.

Definition

Arguments

result Product of the specified 3x3 matrix and scalarmat 3x3 matrixscalar Scalar value

Return Values

None

Description

Multiply a 3x3 matrix by a scalar.

vmathSoaM3Select

Conditionally select between two 3x3 matrices.

Definition

Arguments

result	Each slot of the result is equal to the 3x3 matrix at the corresponding slot of mat0 or mat1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of mat0 and a value of 0xFFFFFFFF selects the slot of mat1
mat0	3x3 matrix
mat1	3x3 matrix
select1	For each of the four word slots, this mask selects either the 3x3 matrix in the corresponding slot of mat0 or the 3x3 matrix in the corresponding slot of mat1. A 0 bit selects from mat0 whereas a 1 bit selects from mat1. Identical bits should be set for each word of the mask.

Return Values

None

Description

Conditionally select one of the 3x3 matrices at each of the corresponding slots of mat0 or mat1.

Notes

This function uses a conditional select instruction to avoid a branch.

Set the column of a 3x3 matrix referred to by the specified index.

Definition

Arguments

result An output 3x3 matrix
col Index, expected in the range 0-2
vec 3-D vector

Return Values

None

Description

Set the column of a 3x3 matrix referred to by the specified index.

Set column 0 of a 3x3 matrix.

Definition

Arguments

result An output 3x3 matrix col0 3-D vector

Return Values

None

Description

Set column 0 of a 3x3 matrix.

Set column 1 of a 3x3 matrix.

Definition

Arguments

```
result An output 3x3 matrix coll 3-D vector
```

Return Values

None

Description

Set column 1 of a 3x3 matrix.

Set column 2 of a 3x3 matrix.

Definition

Arguments

result An output 3x3 matrix col2 3-D vector

Return Values

None

Description

Set column 2 of a 3x3 matrix.

vmathSoaM3SetElem

Set the element of a 3x3 matrix referred to by column and row indices.

Definition

Arguments

result An output 3x3 matrix

col Index, expected in the range 0-2

row Index, expected in the range 0-2

val Scalar value

Return Values

None

Description

Set the element of a 3x3 matrix referred to by column and row indices.

vmathSoaM3SetRow

Set the row of a 3x3 matrix referred to by the specified index.

Definition

Arguments

result An output 3x3 matrix
row Index, expected in the range 0-2
vec 3-D vector

Return Values

None

Description

Set the row of a 3x3 matrix referred to by the specified index.

vmathSoaM3Sub

Subtract a 3x3 matrix from another 3x3 matrix.

Definition

Arguments

```
result Difference of the specified 3x3 matrices
mat0     3x3 matrix
mat1     3x3 matrix
```

Return Values

None

Description

Subtract a 3x3 matrix from another 3x3 matrix.

vmathSoaM3Transpose

Transpose of a 3x3 matrix.

Definition

Arguments

```
result mat transposed
mat 3x3 matrix
```

Return Values

None

Description

Compute the transpose of a 3x3 matrix.

4x4 Matrix Functions (SoA, by reference)

vmathSoaM4AbsPerElem

Compute the absolute value of a 4x4 matrix per element.

Definition

Arguments

result 4x4 matrix in which each element is the absolute value of the corresponding element of the specified 4x4 matrix

mat 4x4 matrix

Return Values

None

Description

Compute the absolute value of each element of a 4x4 matrix.

vmathSoaM4Add

Add two 4x4 matrices.

Definition

Arguments

result Sum of the specified 4x4 matrices
mat0 4x4 matrix
mat1 4x4 matrix

Return Values

None

Description

Add two 4x4 matrices.

vmathSoaM4AffineInverse

Compute the inverse of a 4x4 matrix, which is expected to be an affine matrix.

Definition

Arguments

result Inverse of the specified 4x4 matrix
mat 4x4 matrix

Return Values

None

Description

Naming the upper-left 3x3 submatrix of the specified 4x4 matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is inverse(M), whose translation vector is -inverse(M)*v, and whose bottom row is (0,0,0,1).

Notes

This can be used to achieve better performance than a general inverse when the specified 4x4 matrix meets the given restrictions. The result is unpredictable when the determinant of mat is equal to or near 0.

vmathSoaM4AppendScale

Append (post-multiply) a scale transformation to a 4x4 matrix.

Definition

Arguments

result The product of mat and a scale transformation created from scaleVec
mat 4x4 matrix
scaleVec 3-D vector

Return Values

None

Description

Post-multiply a 4x4 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathSoaM4Copy

Copy a 4x4 matrix.

Definition

Arguments

result The constructed result
mat 4x4 matrix

Return Values

None

Description

Construct a copy of a 4x4 matrix.

vmathSoaM4Determinant

Determinant of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

The determinant of mat

Description

Compute the determinant of a 4x4 matrix.

vmathSoaM4Get4Aos

Extract four AoS 4x4 matrices.

Definition

Arguments

```
mat4x4 matrixresult0An output AoS 4x4 matrixresult1An output AoS 4x4 matrixresult2An output AoS 4x4 matrixresult3An output AoS 4x4 matrix
```

Return Values

None

Description

Extract four AoS 4x4 matrices from four slots of an SoA 4x4 matrix (transpose the data format).

Get the column of a 4x4 matrix referred to by the specified index.

Definition

Arguments

result The column referred to by the specified index mat 4x4 matrix

Index, expected in the range 0-3

Return Values

None

Description

Get the column of a 4x4 matrix referred to by the specified index.

Get column 0 of a 4x4 matrix.

Definition

Arguments

```
result Column 0 mat 4x4 matrix
```

Return Values

None

Description

Get column 0 of a 4x4 matrix.

Get column 1 of a 4x4 matrix.

Definition

Arguments

```
result Column 1 mat 4x4 matrix
```

Return Values

None

Description

Get column 1 of a 4x4 matrix.

Get column 2 of a 4x4 matrix.

Definition

Arguments

result Column 2
mat 4x4 matrix

Return Values

None

Description

Get column 2 of a 4x4 matrix.

Get column 3 of a 4x4 matrix.

Definition

Arguments

```
result Column 3 mat 4x4 matrix
```

Return Values

None

Description

Get column 3 of a 4x4 matrix.

vmathSoaM4GetElem

Get the element of a 4x4 matrix referred to by column and row indices.

Definition

Arguments

```
mat 4x4 matrixcol Index, expected in the range 0-3row Index, expected in the range 0-3
```

Return Values

Element selected by col and row

Description

Get the element of a 4x4 matrix referred to by column and row indices.

vmathSoaM4GetRow

Get the row of a 4x4 matrix referred to by the specified index.

Definition

Arguments

result The row referred to by the specified indexmat 4x4 matrixrow Index, expected in the range 0-3

Return Values

None

Description

Get the row of a 4x4 matrix referred to by the specified index.

vmathSoaM4GetTranslation

Get the translation component of a 4x4 matrix.

Definition

Arguments

result Translation component mat 4x4 matrix

Return Values

None

Description

Get the translation component of a 4x4 matrix.

vmathSoaM4GetUpper3x3

Get the upper-left 3x3 submatrix of a 4x4 matrix.

Definition

Arguments

```
result Upper-left 3x3 submatrix mat 4x4 matrix
```

Return Values

None

Description

Get the upper-left 3x3 submatrix of a 4x4 matrix.

vmathSoaM4Inverse

Compute the inverse of a 4x4 matrix.

Definition

Arguments

```
result Inverse of mat mat 4x4 matrix
```

Return Values

None

Description

Compute the inverse of a 4x4 matrix.

Notes

Result is unpredictable when the determinant of mat is equal to or near 0.

vmathSoaM4MakeFrom4Aos

Insert four AoS 4x4 matrices.

Definition

Arguments

```
result The constructed 4x4 matrix
mat0 AoS 4x4 matrix
mat1 AoS 4x4 matrix
mat2 AoS 4x4 matrix
mat3 AoS 4x4 matrix
```

Return Values

None

Description

Insert four AoS 4x4 matrices into four slots of an SoA 4x4 matrix (transpose the data format).

vmathSoaM4MakeFromAos

Replicate an AoS 4x4 matrix.

Definition

Arguments

```
result The constructed 4x4 matrix

Mat AoS 4x4 matrix
```

Return Values

None

Description

Replicate an AoS 4x4 matrix in all four slots of an SoA 4x4 matrix.

vmathSoaM4MakeFromCols

Construct a 4x4 matrix containing the specified columns.

Definition

Arguments

result	The 4x4 matrix that contains the specified columns
co10	4-D vector
col1	4-D vector
col2	4-D vector
co13	4-D vector

Return Values

None

Description

Construct a 4x4 matrix containing the specified columns.

vmathSoaM4MakeFromM3V3

Construct a 4x4 matrix from a 3x3 matrix and a 3-D vector.

Definition

Arguments

result The constructed 4x4 matrix 3x3 matrix translateVec 3-D vector

Return Values

None

Description

Construct a 4x4 matrix whose upper 3x3 elements are equal to the 3x3 matrix argument, whose translation component is equal to the 3-D vector argument, and whose bottom row is (0,0,0,1).

vmathSoaM4MakeFromQV3

Construct a 4x4 matrix from a unit-length quaternion and a 3-D vector.

Definition

Arguments

result The constructed 4x4 matrix

unitQuat Quaternion, expected to be unit-length

translateVec 3-D vector

Return Values

None

Description

Construct a 4x4 matrix whose upper-left 3x3 submatrix is a rotation matrix converted from the unit-length quaternion argument, whose translation component is equal to the 3-D vector argument, and whose bottom row is (0,0,0,1).

vmathSoaM4MakeFromScalar

Set all elements of a 4x4 matrix to the same scalar value.

Definition

Arguments

result The constructed 4x4 matrix scalar Scalar value

Return Values

None

Description

Construct a 4x4 matrix with all elements set to the scalar value argument.

vmathSoaM4MakeFromT3

Construct a 4x4 matrix from a 3x4 transformation matrix.

Definition

Arguments

result The constructed 4x4 matrix 3x4 transformation matrix

Return Values

None

Description

Construct a 4x4 matrix whose upper 3x4 elements are equal to the 3x4 transformation matrix argument and whose bottom row is equal to (0,0,0,1).

vmathSoaM4MakeFrustum

Construct a perspective projection matrix based on frustum.

Definition

Arguments

```
result The constructed 4x4 matrix

left Scalar value

right Scalar value

bottom Scalar value

top Scalar value

zNear Scalar value

zFar Scalar value
```

Return Values

None

Description

Construct a perspective projection matrix based on frustum, equal to:

```
 2*z \text{Near}/(\text{right-left}) \quad 0 \qquad (\text{right+left})/(\text{right-left}) \quad 0 \\ 0 \qquad 2*z \text{Near}/(\text{top-bottom}) \quad (\text{top+bottom})/(\text{top-bottom}) \quad 0 \\ 0 \qquad 0 \qquad -(z \text{Far}+z \text{Near})/(z \text{Far}-z \text{Near}) \\ -2*z \text{Far}*z \text{Near}/(z \text{Far}-z \text{Near}) \\ 0 \qquad 0 \qquad -1 \qquad 0 \ .
```

vmathSoaM4MakeIdentity

Construct an identity 4x4 matrix.

Definition

Arguments

result The constructed 4x4 matrix

Return Values

None

Description

Construct an identity 4x4 matrix in which non-diagonal elements are zero and diagonal elements are 1.

vmathSoaM4MakeLookAt

Construct viewing matrix based on eye position, position looked at, and up direction.

Definition

Arguments

resultThe constructed 4x4 matrixeyePos3-D pointlookAtPos3-D pointupVec3-D vector

Return Values

None

Description

Construct the inverse of a coordinate frame that is centered at the eye position, with z axis directed away from lookAtPos, and y axis oriented to best match the up direction.

vmathSoaM4MakeOrthographic

Construct an orthographic projection matrix.

Definition

Arguments

```
result The constructed 4x4 matrix

left Scalar value

right Scalar value

bottom Scalar value

top Scalar value

zNear Scalar value

zFar Scalar value
```

Return Values

None

Description

Construct an orthographic projection matrix, equal to

vmathSoaM4MakePerspective

Construct a perspective projection matrix.

Definition

Arguments

result The constructed 4x4 matrix fovyRadians Scalar value
aspect Scalar value
zNear Scalar value
zFar Scalar value

Return Values

None

Description

Construct a perspective projection matrix, equal to:

vmathSoaM4MakeRotationAxis

Construct a 4x4 matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

result The constructed 4x4 matrixradians Scalar valueunitVec 3-D vector, expected to be unit-length

Return Values

None

Description

Construct a 4x4 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

vmathSoaM4MakeRotationQ

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

result A 4x4 matrix that applies the same rotation as unitQuat unitQuat Quaternion, expected to be unit-length

Return Values

None

Description

Construct a 4x4 matrix that applies the same rotation as the specified unit-length quaternion.

vmathSoaM4MakeRotationX

Construct a 4x4 matrix to rotate around the x axis.

Definition

Arguments

result The constructed 4x4 matrix radians Scalar value

Return Values

None

Description

Construct a 4x4 matrix to rotate around the x axis by the specified radians angle.

vmathSoaM4MakeRotationY

Construct a 4x4 matrix to rotate around the y axis.

Definition

Arguments

result The constructed 4x4 matrix radians Scalar value

Return Values

None

Description

Construct a 4x4 matrix to rotate around the y axis by the specified radians angle.

vmathSoaM4MakeRotationZ

Construct a 4x4 matrix to rotate around the z axis.

Definition

Arguments

result The constructed 4x4 matrix radians Scalar value

Return Values

None

Description

Construct a 4x4 matrix to rotate around the z axis by the specified radians angle.

vmathSoaM4MakeRotationZYX

Construct a 4x4 matrix to rotate around the x, y, and z axes.

Definition

Arguments

result The constructed 4x4 matrix radiansXYZ 3-D vector

Return Values

None

Description

Construct a 4x4 matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

vmathSoaM4MakeScale

Construct a 4x4 matrix to perform scaling.

Definition

Arguments

result The constructed 4x4 matrix scaleVec 3-D vector

Return Values

None

Description

Construct a 4x4 matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

vmathSoaM4MakeTranslation

Construct a 4x4 matrix to perform translation.

Definition

Arguments

result The constructed 4x4 matrix translateVec 3-D vector

Return Values

None

Description

Construct a 4x4 matrix to perform translation, which is an identity matrix except for the translation component, with coordinates equal to those in *translateVec*.

vmathSoaM4Mul

Multiply two 4x4 matrices.

Definition

Arguments

```
result Product of the specified 4x4 matrices
mat0     4x4 matrix
mat1     4x4 matrix
```

Return Values

None

Description

Multiply two 4x4 matrices.

vmathSoaM4MuIP3

Multiply a 4x4 matrix by a 3-D point.

Definition

Arguments

Return Values

None

Description

Multiply a 4x4 matrix by a 3-D point treated as if it were a 4-D vector with the w element equal to 1.

vmathSoaM4MulPerElem

Multiply two 4x4 matrices per element.

Definition

Arguments

result	4x4 matrix in which each element is the product of the corresponding elements of
	the specified 4x4 matrices
mat0	4x4 matrix
mat1	4x4 matrix

Return Values

None

Description

Multiply two 4x4 matrices element by element.

vmathSoaM4MuIT3

Multiply a 4x4 matrix by a 3x4 transformation matrix.

Definition

Arguments

result Product of the specified 4x4 matrix and 3x4 transformation matrix

mat 4x4 matrix

tfrm 3x4 transformation matrix

Return Values

None

Description

Multiply a 4x4 matrix by a 3x4 transformation matrix treated as if it were a 4x4 matrix with the bottom row equal to (0,0,0,1).

vmathSoaM4MuIV3

Multiply a 4x4 matrix by a 3-D vector.

Definition

Arguments

result Product of the specified 4x4 matrix and 3-D vector
mat 4x4 matrix
vec 3-D vector

Return Values

None

Description

Multiply a 4x4 matrix by a 3-D vector treated as if it were a 4-D vector with the w element equal to 0.

vmathSoaM4MuIV4

Multiply a 4x4 matrix by a 4-D vector.

Definition

Arguments

result Product of the specified 4x4 matrix and 4-D vector

mat 4x4 matrix vec 4-D vector

Return Values

None

Description

Multiply a 4x4 matrix by a 4-D vector.

vmathSoaM4Neg

Negate all elements of a 4x4 matrix.

Definition

Arguments

result 4x4 matrix containing negated elements of the specified 4x4 matrix 4x4 matrix

Return Values

None

Description

Negate all elements of a 4x4 matrix.

vmathSoaM4OrthoInverse

Compute the inverse of a 4x4 matrix, which is expected to be an affine matrix with an orthogonal upper-left 3x3 submatrix.

Definition

Arguments

```
result Inverse of the specified 4x4 matrix mat 4x4 matrix
```

Return Values

None

Description

Naming the upper-left 3x3 submatrix of the specified 4x4 matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is transpose(M), whose translation vector is -transpose(M)*v, and whose bottom row is (0,0,0,1).

Notes

This can be used to achieve better performance than a general inverse when the specified 4x4 matrix meets the given restrictions.

vmathSoaM4PrependScale

Prepend (pre-multiply) a scale transformation to a 4x4 matrix.

Definition

Arguments

result The product of a scale transformation created from scaleVec and mat scaleVec 3-D vector

mat 4x4 matrix

Return Values

None

Description

Pre-multiply a 4x4 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathSoaM4Print

Print a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

None

Description

Print a 4x4 matrix. Unlike the printing of vectors, the 4x4 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaM4Prints

Print a 4x4 matrix and an associated string identifier.

Definition

Arguments

mat 4x4 matrix

name String printed with the 4x4 matrix

Return Values

None

Description

Print a 4x4 matrix and an associated string identifier. Unlike the printing of vectors, the 4x4 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaM4ScalarMul

Multiply a 4x4 matrix by a scalar.

Definition

Arguments

result Product of the specified 4x4 matrix and scalar mat 4x4 matrix
scalar Scalar value

Return Values

None

Description

Multiply a 4x4 matrix by a scalar.

vmathSoaM4Select

Conditionally select between two 4x4 matrices.

Definition

Arguments

result	Each slot of the result is equal to the 4x4 matrix at the corresponding slot of mat0 or mat1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of mat0 and a value of 0xFFFFFFFF selects the slot of mat1
mat0	4x4 matrix
mat1	4x4 matrix
select1	For each of the four word slots, this mask selects either the $4x4$ matrix in the corresponding slot of $mat0$ or the $4x4$ matrix in the corresponding slot of $mat1$. A
	0 bit selects from mat 0 whereas a 1 bit selects from mat 1. Identical bits should be set for each word of the mask.

Return Values

None

Description

Conditionally select one of the 4x4 matrices at each of the corresponding slots of mat0 or mat1.

Notes

This function uses a conditional select instruction to avoid a branch.

Set the column of a 4x4 matrix referred to by the specified index.

Definition

Arguments

result An output 4x4 matrix
col Index, expected in the range 0-3
vec 4-D vector

Return Values

None

Description

Set the column of a 4x4 matrix referred to by the specified index.

Set column 0 of a 4x4 matrix.

Definition

Arguments

result An output 4x4 matrix col0 4-D vector

Return Values

None

Description

Set column 0 of a 4x4 matrix.

Set column 1 of a 4x4 matrix.

Definition

Arguments

result An output 4x4 matrix coll 4-D vector

Return Values

None

Description

Set column 1 of a 4x4 matrix.

Set column 2 of a 4x4 matrix.

Definition

Arguments

result An output 4x4 matrix col2 4-D vector

Return Values

None

Description

Set column 2 of a 4x4 matrix.

Set column 3 of a 4x4 matrix.

Definition

Arguments

result An output 4x4 matrix col3 4-D vector

Return Values

None

Description

Set column 3 of a 4x4 matrix.

vmathSoaM4SetElem

Set the element of a 4x4 matrix referred to by column and row indices.

Definition

Arguments

result An output 4x4 matrix

col Index, expected in the range 0-3

row Index, expected in the range 0-3

val Scalar value

Return Values

None

Description

Set the element of a 4x4 matrix referred to by column and row indices.

vmathSoaM4SetRow

Set the row of a 4x4 matrix referred to by the specified index.

Definition

Arguments

result An output 4x4 matrix
row Index, expected in the range 0-3
vec 4-D vector

Return Values

None

Description

Set the row of a 4x4 matrix referred to by the specified index.

vmathSoaM4SetTranslation

Set translation component.

Definition

Arguments

result An output 4x4 matrix translateVec 3-D vector

Return Values

None

Description

Set the translation component of a 4x4 matrix equal to the specified 3-D vector.

Notes

This function does not change the bottom row elements.

vmathSoaM4SetUpper3x3

Set the upper-left 3x3 submatrix.

Definition

Arguments

```
result An output 4x4 matrix mat3 3x3 matrix
```

Return Values

None

Description

Set the upper-left 3x3 submatrix elements of a 4x4 matrix equal to the specified 3x3 matrix.

Notes

This function does not change the bottom row elements.

vmathSoaM4Sub

Subtract a 4x4 matrix from another 4x4 matrix.

Definition

Arguments

```
result Difference of the specified 4x4 matrices
mat0     4x4 matrix
mat1     4x4 matrix
```

Return Values

None

Description

Subtract a 4x4 matrix from another 4x4 matrix.

vmathSoaM4Transpose

Transpose of a 4x4 matrix.

Definition

Arguments

```
result mat transposed
mat 4x4 matrix
```

Return Values

None

Description

Compute the transpose of a 4x4 matrix.

Transformation Functions (SoA, by reference)

vmathSoaT3AbsPerElem

Compute the absolute value of a 3x4 transformation matrix per element.

Definition

Arguments

3x4 transformation matrix in which each element is the absolute value of the corresponding element of the specified 3x4 transformation matrix3x4 transformation matrix

Return Values

None

Description

Compute the absolute value of each element of a 3x4 transformation matrix.

vmathSoaT3AppendScale

Append (post-multiply) a scale transformation to a 3x4 transformation matrix.

Definition

Arguments

result The product of tfrm and a scale transformation created from scaleVec
tfrm 3x4 transformation matrix
scaleVec 3-D vector

Return Values

None

Description

Post-multiply a 3x4 transformation matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathSoaT3Copy

Copy a 3x4 transformation matrix.

Definition

Arguments

result The constructed result tfrm 3x4 transformation matrix

Return Values

None

Description

Construct a copy of a 3x4 transformation matrix.

vmathSoaT3Get4Aos

Extract four AoS 3x4 transformation matrices.

Definition

Arguments

tfrm	3x4 transformation matrix
result0	An output AoS 3x4 transformation matrix
result1	An output AoS 3x4 transformation matrix
result2	An output AoS 3x4 transformation matrix
result3	An output AoS 3x4 transformation matrix

Return Values

None

Description

Extract four AoS 3x4 transformation matrices from four slots of an SoA 3x4 transformation matrix (transpose the data format).

Get the column of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

result The column referred to by the specified index tfrm 3x4 transformation matrix col Index, expected in the range 0-3

Return Values

None

Description

Get the column of a 3x4 transformation matrix referred to by the specified index.

Get column 0 of a 3x4 transformation matrix.

Definition

Arguments

```
result Column 0
tfrm 3x4 transformation matrix
```

Return Values

None

Description

Get column 0 of a 3x4 transformation matrix.

Get column 1 of a 3x4 transformation matrix.

Definition

Arguments

```
result Column 1
tfrm 3x4 transformation matrix
```

Return Values

None

Description

Get column 1 of a 3x4 transformation matrix.

Get column 2 of a 3x4 transformation matrix.

Definition

Arguments

```
result Column 2
tfrm 3x4 transformation matrix
```

Return Values

None

Description

Get column 2 of a 3x4 transformation matrix.

Get column 3 of a 3x4 transformation matrix.

Definition

Arguments

```
result Column 3
tfrm 3x4 transformation matrix
```

Return Values

None

Description

Get column 3 of a 3x4 transformation matrix.

vmathSoaT3GetElem

Get the element of a 3x4 transformation matrix referred to by column and row indices.

Definition

Arguments

```
tfrm 3x4 transformation matrix
col Index, expected in the range 0-3
row Index, expected in the range 0-2
```

Return Values

Element selected by col and row

Description

Get the element of a 3x4 transformation matrix referred to by column and row indices.

vmathSoaT3GetRow

Get the row of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

result The row referred to by the specified index tfrm 3x4 transformation matrix row Index, expected in the range 0-2

Return Values

None

Description

Get the row of a 3x4 transformation matrix referred to by the specified index.

vmathSoaT3GetTranslation

Get the translation component of a 3x4 transformation matrix.

Definition

Arguments

result Translation component tfrm 3x4 transformation matrix

Return Values

None

Description

Get the translation component of a 3x4 transformation matrix.

vmathSoaT3GetUpper3x3

Get the upper-left 3x3 submatrix of a 3x4 transformation matrix.

Definition

Arguments

```
result Upper-left 3x3 submatrix tfrm 3x4 transformation matrix
```

Return Values

None

Description

Get the upper-left 3x3 submatrix of a 3x4 transformation matrix.

vmathSoaT3Inverse

Inverse of a 3x4 transformation matrix.

Definition

Arguments

```
result Inverse of tfrm
tfrm 3x4 transformation matrix
```

Return Values

None

Description

Compute the inverse of a 3x4 transformation matrix.

Notes

Result is unpredictable when the determinant of the left 3x3 submatrix is equal to or near 0.

vmathSoaT3MakeFrom4Aos

Insert four AoS 3x4 transformation matrices.

Definition

Arguments

result	The constructed 3x4 transformation matrix
tfrm0	AoS 3x4 transformation matrix
tfrm1	AoS 3x4 transformation matrix
tfrm2	AoS 3x4 transformation matrix
tfrm3	AoS 3x4 transformation matrix

Return Values

None

Description

Insert four AoS 3x4 transformation matrices into four slots of an SoA 3x4 transformation matrix (transpose the data format).

vmathSoaT3MakeFromAos

Replicate an AoS 3x4 transformation matrix.

Definition

Arguments

result The constructed 3x4 transformation matrix tfrm AoS 3x4 transformation matrix

Return Values

None

Description

Replicate an AoS 3x4 transformation matrix in all four slots of an SoA 3x4 transformation matrix.

vmathSoaT3MakeFromCols

Construct a 3x4 transformation matrix containing the specified columns.

Definition

Arguments

result	The 3x4 transformation matrix that contains the specified columns
col0	3-D vector
col1	3-D vector
col2	3-D vector
col3	3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix containing the specified columns.

vmathSoaT3MakeFromM3V3

Construct a 3x4 transformation matrix from a 3x3 matrix and a 3-D vector.

Definition

Arguments

result The constructed 3x4 transformation matrix tfrm 3x3 matrix

translateVec 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix whose upper 3x3 elements are equal to the 3x3 matrix argument and whose translation component is equal to the 3-D vector argument.

vmathSoaT3MakeFromQV3

Construct a 3x4 transformation matrix from a unit-length quaternion and a 3-D vector.

Definition

Arguments

result The constructed 3x4 transformation matrix unitQuat Quaternion, expected to be unit-length translateVec 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix whose upper-left 3x3 submatrix is a rotation matrix converted from the unit-length quaternion argument and whose translation component is equal to the 3-D vector argument.

vmathSoaT3MakeFromScalar

Set all elements of a 3x4 transformation matrix to the same scalar value.

Definition

Arguments

result The constructed 3x4 transformation matrix scalar Scalar value

Return Values

None

Description

Construct a 3x4 transformation matrix with all elements set to the scalar value argument.

vmathSoaT3MakeIdentity

Construct an identity 3x4 transformation matrix.

Definition

Arguments

result The constructed 3x4 transformation matrix

Return Values

None

Description

Construct an identity 3x4 transformation matrix in which non-diagonal elements are zero and diagonal elements are 1.

vmathSoaT3MakeRotationAxis

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

resultradiansScalar valueunitVec3-D vector, expected to be unit-length

Return Values

None

Description

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector by the specified radians angle.

vmathSoaT3MakeRotationQ

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

result A 3x4 transformation matrix that applies the same rotation as unitQuat unitQuat Quaternion, expected to be unit-length

Return Values

None

Description

Construct a 3x4 transformation matrix that applies the same rotation as the specified unit-length quaternion.

vmathSoaT3MakeRotationX

Construct a 3x4 transformation matrix to rotate around the x axis.

Definition

Arguments

result The constructed 3x4 transformation matrix radians Scalar value

Return Values

None

Description

Construct a 3x4 transformation matrix to rotate around the x axis by the specified radians angle.

vmathSoaT3MakeRotationY

Construct a 3x4 transformation matrix to rotate around the y axis.

Definition

Arguments

result The constructed 3x4 transformation matrix radians Scalar value

Return Values

None

Description

Construct a 3x4 transformation matrix to rotate around the y axis by the specified radians angle.

vmathSoaT3MakeRotationZ

Construct a 3x4 transformation matrix to rotate around the z axis.

Definition

Arguments

result The constructed 3x4 transformation matrix radians Scalar value

Return Values

None

Description

Construct a 3x4 transformation matrix to rotate around the z axis by the specified radians angle.

vmathSoaT3MakeRotationZYX

Construct a 3x4 transformation matrix to rotate around the x, y, and z axes.

Definition

Arguments

result The constructed 3x4 transformation matrix radiansXYZ 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

vmathSoaT3MakeScale

Construct a 3x4 transformation matrix to perform scaling.

Definition

Arguments

result The constructed 3x4 transformation matrix scaleVec 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

vmathSoaT3MakeTranslation

Construct a 3x4 transformation matrix to perform translation.

Definition

Arguments

result The constructed 3x4 transformation matrix translateVec 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix to perform translation, which is an identity matrix except for the translation component, with coordinates equal to those in *translateVec*.

vmathSoaT3Mul

Multiply two 3x4 transformation matrices.

Definition

Arguments

result Product of the specified 3x4 transformation matrices 3x4 transformation matrix tfrm1 3x4 transformation matrix

Return Values

None

Description

Multiply two 3x4 transformation matrices.

vmathSoaT3MuIP3

Multiply a 3x4 transformation matrix by a 3-D point.

Definition

Arguments

result Product of the specified 3x4 transformation matrix and 3-D point 3x4 transformation matrix

pnt 3-D point

Return Values

None

Description

Applies the 3x3 upper-left submatrix and the translation component of a 3x4 transformation matrix to a 3-D point.

vmathSoaT3MulPerElem

Multiply two 3x4 transformation matrices per element.

Definition

Arguments

result	3x4 transformation matrix in which each element is the product of the
	corresponding elements of the specified 3x4 transformation matrices
tfrm0	3x4 transformation matrix
tfrm1	3x4 transformation matrix

Return Values

None

Description

Multiply two 3x4 transformation matrices element by element.

vmathSoaT3MuIV3

Multiply a 3x4 transformation matrix by a 3-D vector.

Definition

Arguments

result Product of the specified 3x4 transformation matrix and 3-D vector 3x4 transformation matrix vec 3-D vector

Return Values

None

Description

Applies the 3x3 upper-left submatrix (but not the translation component) of a 3x4 transformation matrix to a 3-D vector.

vmathSoaT3OrthoInverse

Compute the inverse of a 3x4 transformation matrix, expected to have an orthogonal upper-left 3x3 submatrix.

Definition

Arguments

result Inverse of the specified 3x4 transformation matrix tfrm 3x4 transformation matrix

Return Values

None

Description

Naming the upper-left 3x3 submatrix of the specified 3x4 transformation matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is transpose(M), and whose translation vector is -transpose(M)*v.

Notes

This can be used to achieve better performance than a general inverse when the specified 3x4 transformation matrix meets the given restrictions.

vmathSoaT3PrependScale

Prepend (pre-multiply) a scale transformation to a 3x4 transformation matrix.

Definition

Arguments

result The product of a scale transformation created from scaleVec and tfrm

scaleVec 3-D vector

tfrm 3x4 transformation matrix

Return Values

None

Description

Pre-multiply a 3x4 transformation matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathSoaT3Print

Print a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

None

Description

Print a 3x4 transformation matrix. Unlike the printing of vectors, the 3x4 transformation matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaT3Prints

Print a 3x4 transformation matrix and an associated string identifier.

Definition

Arguments

tfrm 3x4 transformation matrix

name String printed with the 3x4 transformation matrix

Return Values

None

Description

Print a 3x4 transformation matrix and an associated string identifier. Unlike the printing of vectors, the 3x4 transformation matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaT3Select

Conditionally select between two 3x4 transformation matrices.

Definition

Arguments

result	Each slot of the result is equal to the 3x4 transformation matrix at the corresponding slot of tfrm0 or tfrm1, depending on the value of select1 at
	the corresponding slot. A value of 0 selects the slot of tfrm0 and a value of
	<pre>0xFFFFFFF selects the slot of tfrm1</pre>
tfrm0	3x4 transformation matrix
tfrm1	3x4 transformation matrix
select1	For each of the four word slots, this mask selects either the 3x4 transformation
	matrix in the corresponding slot of tfrm0 or the 3x4 transformation matrix in the
	corresponding slot of tfrm1. A 0 bit selects from tfrm0 whereas a 1 bit selects
	from tfrm1. Identical bits should be set for each word of the mask.

Return Values

None

Description

Conditionally select one of the 3x4 transformation matrices at each of the corresponding slots of tfrm0 or tfrm1.

Notes

This function uses a conditional select instruction to avoid a branch.

Set the column of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

result An output 3x4 transformation matrix col Index, expected in the range 0-3 vec 3-D vector

Return Values

None

Description

Set the column of a 3x4 transformation matrix referred to by the specified index.

Set column 0 of a 3x4 transformation matrix.

Definition

Arguments

result An output 3x4 transformation matrix col0 3-D vector

Return Values

None

Description

Set column 0 of a 3x4 transformation matrix.

Set column 1 of a 3x4 transformation matrix.

Definition

Arguments

result An output 3x4 transformation matrix coll 3-D vector

Return Values

None

Description

Set column 1 of a 3x4 transformation matrix.

Set column 2 of a 3x4 transformation matrix.

Definition

Arguments

result An output 3x4 transformation matrix col2 3-D vector

Return Values

None

Description

Set column 2 of a 3x4 transformation matrix.

Set column 3 of a 3x4 transformation matrix.

Definition

Arguments

result An output 3x4 transformation matrix col3 3-D vector

Return Values

None

Description

Set column 3 of a 3x4 transformation matrix.

vmathSoaT3SetElem

Set the element of a 3x4 transformation matrix referred to by column and row indices.

Definition

Arguments

result An output 3x4 transformation matrix col Index, expected in the range 0-3
row Index, expected in the range 0-2
val Scalar value

Return Values

None

Description

Set the element of a 3x4 transformation matrix referred to by column and row indices.

vmathSoaT3SetRow

Set the row of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

result An output 3x4 transformation matrix row Index, expected in the range 0-2 vec 4-D vector

Return Values

None

Description

Set the row of a 3x4 transformation matrix referred to by the specified index.

vmathSoaT3SetTranslation

Set translation component.

Definition

Arguments

result An output 3x4 transformation matrix translateVec 3-D vector

Return Values

None

Description

Set the translation component of a 3x4 transformation matrix equal to the specified 3-D vector.

vmathSoaT3SetUpper3x3

Set the upper-left 3x3 submatrix.

Definition

Arguments

result An output 3x4 transformation matrix mat3 3x3 matrix

Return Values

None

Description

Set the upper-left 3x3 submatrix elements of a 3x4 transformation matrix equal to the specified 3x3 matrix.

vmathV3AbsPerElem_V

Compute the absolute value of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the absolute value of the corresponding element of vec

Description

Compute the absolute value of each element of a 3-D vector.

vmathV3Add_V

Add two 3-D vectors.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

Sum of the specified 3-D vectors

Description

Add two 3-D vectors.

vmathV3AddP3_V

Add a 3-D vector to a 3-D point.

Definition

Arguments

```
vec 3-D vector
pnt 3-D point
```

Return Values

Sum of the specified 3-D vector and 3-D point

Description

Add a 3-D vector to a 3-D point.

vmathV3CopySignPerElem_V

Copy sign from one 3-D vector to another, per element.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

3-D vector in which each element has the magnitude of the corresponding element of vec0 and the sign of the corresponding element of vec1

Description

For each element, create a value composed of the magnitude of *vec0* and the sign of *vec1*.

vmathV3Cross_V

Compute cross product of two 3-D vectors.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

Cross product of the specified 3-D vectors

Description

Compute cross product of two 3-D vectors.

vmathV3CrossMatrix_V

Cross-product matrix of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Cross-product matrix of vec

Description

Compute a matrix that, when multiplied by a 3-D vector, produces the same result as a cross product with that 3-D vector.

vmathV3CrossMatrixMul_V

Create cross-product matrix and multiply.

Definition

Arguments

```
vec 3-D vector
mat 3x3 matrix
```

Return Values

Product of cross-product matrix of vec and mat

Description

Multiply a cross-product matrix by another matrix.

Notes

Faster than separately creating a cross-product matrix and multiplying.

vmathV3DivPerElem_V

Divide two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the quotient of the corresponding elements of the specified 3-D vectors

Description

Divide two 3-D vectors element by element.

Notes

Floating-point behavior matches standard library function divf4.

vmathV3Dot_V

Compute the dot product of two 3-D vectors.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

Dot product of the specified 3-D vectors

Description

Compute the dot product of two 3-D vectors.

vmathV3Get128_V

Get vector float data from a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Internal vector float data

Description

Get internal vector float data from a 3-D vector.

vmathV3GetElem_V

Get an x, y, or z element of a 3-D vector by index.

Definition

Arguments

```
vec 3-D vectoridx Index, expected in the range 0-2
```

Return Values

Element selected by the specified index

Description

Get an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

vmathV3GetX_V

Get the x element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

x element of a 3-D vector

Description

Get the x element of a 3-D vector.

vmathV3GetY_V

Get the y element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

y element of a 3-D vector

Description

Get the y element of a 3-D vector.

vmathV3GetZ_V

Get the z element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

z element of a 3-D vector

Description

Get the z element of a 3-D vector.

vmathV3Length_V

Compute the length of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Length of the specified 3-D vector

Description

Compute the length of a 3-D vector.

vmathV3LengthSqr_V

Compute the square of the length of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Square of the length of the specified 3-D vector

Description

Compute the square of the length of a 3-D vector.

vmathV3Lerp_V

Linear interpolation between two 3-D vectors.

Definition

Arguments

```
t Interpolation parametervec0 3-D vectorvec1 3-D vector
```

Return Values

Interpolated 3-D vector

Description

Linearly interpolate between two 3-D vectors.

Notes

Does not clamp *t* between 0 and 1.

vmathV3LoadXYZArray_V

Load four three-float 3-D vectors, stored in three quadwords.

Definition

Arguments

```
vec0An output 3-D vectorvec1An output 3-D vectorvec2An output 3-D vectorvec3An output 3-D vectorthreeQuadsArray of 3 quadwords containing 12 floats
```

Return Values

None

Description

Load four three-float 3-D vectors, stored in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$, into four 3-D vectors.

vmathV3MakeFrom128_V

Set vector float data in a 3-D vector.

Definition

Arguments

vf4 Scalar value

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector whose internal vector float data is set to the vector float argument.

vmathV3MakeFromElems_V

Construct a 3-D vector from x, y, and z elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value

Return Values

The 3-D vector that contains the specified elements

Description

Construct a 3-D vector containing the specified x, y, and z elements.

vmathV3MakeFromP3_V

Copy elements from a 3-D point into a 3-D vector.

Definition

Arguments

pnt 3-D point

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector containing the x, y, and z elements of the specified 3-D point.

vmathV3MakeFromScalar_V

Set all elements of a 3-D vector to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector with all elements set to the scalar value argument.

vmathV3MakeXAxis_V

Construct x axis.

Definition

#include <vectormath/c/vectormath_aos_v.h>
static inline VmathVector3 vmathV3MakeXAxis_V();

Arguments

None

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector equal to (1,0,0).

vmathV3MakeYAxis_V

Construct y axis.

Definition

#include <vectormath/c/vectormath_aos_v.h>
static inline VmathVector3 vmathV3MakeYAxis_V();

Arguments

None

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector equal to (0,1,0).

vmathV3MakeZAxis_V

Construct z axis.

Definition

#include <vectormath/c/vectormath_aos_v.h>
static inline VmathVector3 vmathV3MakeZAxis_V();

Arguments

None

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector equal to (0,0,1).

vmathV3MaxElem_V

Maximum element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Maximum value of all elements of vec

Description

Compute the maximum value of all elements of a 3-D vector.

vmathV3MaxPerElem_V

Maximum of two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the maximum of the corresponding elements of the specified 3-D vectors

Description

Create a 3-D vector in which each element is the maximum of the corresponding elements of the specified 3-D vectors.

vmathV3MinElem_V

Minimum element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Minimum value of all elements of vec

Description

Compute the minimum value of all elements of a 3-D vector.

vmathV3MinPerElem_V

Minimum of two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the minimum of the corresponding elements of the specified 3-D vectors

Description

Create a 3-D vector in which each element is the minimum of the corresponding elements of two specified 3-D vectors.

vmathV3MulPerElem_V

Multiply two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the product of the corresponding elements of the specified 3-D vectors

Description

Multiply two 3-D vectors element by element.

vmathV3Neg_V

Negate all elements of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector containing negated elements of the specified 3-D vector

Description

Negate all elements of a 3-D vector.

vmathV3Normalize_V

Normalize a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

The specified 3-D vector scaled to unit length

Description

Compute a normalized 3-D vector.

Notes

The result is unpredictable when all elements of vec are at or near zero.

vmathV3Outer_V

Outer product of two 3-D vectors.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

The 3x3 matrix product of a column-vector, vec0, and a row-vector, vec1

Description

Compute the outer product of two 3-D vectors.

vmathV3Print_V

Print a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

None

Description

Print a 3-D vector. Prints the 3-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathV3Prints_V

Print a 3-D vector and an associated string identifier.

Definition

Arguments

```
vec 3-D vectorname String printed with the 3-D vector
```

Return Values

None

Description

Print a 3-D vector and an associated string identifier. Prints the 3-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathV3RecipPerElem_V

Compute the reciprocal of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the reciprocal of the corresponding element of the specified 3-D vector

Description

Create a 3-D vector in which each element is the reciprocal of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function recipf4.

vmathV3RowMul_V

Pre-multiply a row vector by a 3x3 matrix.

Definition

Arguments

```
vec 3-D vector
mat 3x3 matrix
```

Return Values

Product of a row-vector and a 3x3 matrix

Description

Transpose a 3-D vector into a row vector and pre-multiply by 3x3 matrix.

Notes

Slower than column post-multiply.

vmathV3RsqrtPerElem_V

Compute the reciprocal square root of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the reciprocal square root of the corresponding element of the specified 3-D vector

Description

Create a 3-D vector in which each element is the reciprocal square root of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function rsqrtf4.

vmathV3ScalarDiv_V

Divide a 3-D vector by a scalar.

Definition

Arguments

```
vec 3-D vectorscalar Scalar value
```

Return Values

Quotient of the specified 3-D vector and scalar

Description

Divide a 3-D vector by a scalar.

vmathV3ScalarMul_V

Multiply a 3-D vector by a scalar.

Definition

Arguments

```
vec 3-D vectorscalar Scalar value
```

Return Values

Product of the specified 3-D vector and scalar

Description

Multiply a 3-D vector by a scalar.

vmathV3Select_V

Conditionally select between two 3-D vectors.

Definition

Arguments

vec03-D vectorvec13-D vector

False selects the vec0 argument, true selects the vec1 argument

Return Values

Equal to vec0 if select1 == 0, or to vec1 if select1 != 0

Description

Conditionally select one of the 3-D vector arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

vmathV3SetElem_V

Set an x, y, or z element of a 3-D vector by index.

Definition

Arguments

```
result An output 3-D vectoridx Index, expected in the range 0-2value Scalar value
```

Return Values

None

Description

Set an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

vmathV3SetX_V

Set the x element of a 3-D vector.

Definition

Arguments

```
result An output 3-D vector 
x Scalar value
```

Return Values

None

Description

Set the x element of a 3-D vector to the specified scalar value.

vmathV3SetY_V

Set the y element of a 3-D vector.

Definition

Arguments

```
result An output 3-D vector y Scalar value
```

Return Values

None

Description

Set the y element of a 3-D vector to the specified scalar value.

vmathV3SetZ_V

Set the z element of a 3-D vector.

Definition

Arguments

```
result An output 3-D vector Scalar value
```

Return Values

None

Description

Set the z element of a 3-D vector to the specified scalar value.

vmathV3Slerp_V

Spherical linear interpolation between two 3-D vectors.

Definition

Arguments

```
t Interpolation parameterunitVec0 3-D vector, expected to be unit-lengthunitVec1 3-D vector, expected to be unit-length
```

Return Values

Interpolated 3-D vector

Description

Perform spherical linear interpolation between two 3-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

vmathV3SqrtPerElem_V

Compute the square root of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the square root of the corresponding element of the specified 3-D vector

Description

Create a 3-D vector in which each element is the square root of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function sqrtf4.

vmathV3StoreHalfFloats_V

Store eight 3-D vectors as half-floats.

Definition

Arguments

```
vec0
              3-D vector
vec1
              3-D vector
vec2
              3-D vector
vec3
              3-D vector
vec4
              3-D vector
vec5
              3-D vector
vec6
              3-D vector
vec7
              3-D vector
```

threeQuads An output array of 3 quadwords containing 24 half-floats

Return Values

None

Description

Store eight 3-D vectors in three quadwords of half-float values. The output is {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7}.

vmathV3StoreXYZ_V

Store x, y, and z elements of a 3-D vector in the first three words of a quadword. The value of the fourth word (the word with the highest address) remains unchanged.

Definition

Arguments

vec 3-D vector

quad Pointer to a quadword in which x, y, and z will be stored

Return Values

None

Description

Store x, y, and z elements of a 3-D vector in the first three words of a quadword. The value of the fourth word (the word with the highest address) remains unchanged.

vmathV3StoreXYZArray_V

Store four 3-D vectors in three quadwords.

Definition

Arguments

```
vec03-D vectorvec13-D vectorvec23-D vectorvec33-D vectorthreeQuadsAn output array of 3 quadwords containing 12 floats
```

Return Values

None

Description

Store four 3-D vectors in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$.

vmathV3Sub_V

Subtract a 3-D vector from another 3-D vector.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

Difference of the specified 3-D vectors

Description

Subtract a 3-D vector from another 3-D vector.

vmathV3Sum_V

Compute the sum of all elements of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Sum of all elements of vec

Description

Compute the sum of all elements of a 3-D vector.

vmathV4AbsPerElem_V

Compute the absolute value of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the absolute value of the corresponding element of vec

Description

Compute the absolute value of each element of a 4-D vector.

vmathV4Add_V

Add two 4-D vectors.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

Sum of the specified 4-D vectors

Description

Add two 4-D vectors.

vmathV4CopySignPerElem_V

Copy sign from one 4-D vector to another, per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element has the magnitude of the corresponding element of vec0 and the sign of the corresponding element of vec1

Description

For each element, create a value composed of the magnitude of *vec0* and the sign of *vec1*.

vmathV4DivPerElem_V

Divide two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the quotient of the corresponding elements of the specified 4-D vectors

Description

Divide two 4-D vectors element by element.

Notes

Floating-point behavior matches standard library function divf4.

vmathV4Dot_V

Compute the dot product of two 4-D vectors.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

Dot product of the specified 4-D vectors

Description

Compute the dot product of two 4-D vectors.

vmathV4Get128_V

Get vector float data from a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Internal vector float data

Description

Get internal vector float data from a 4-D vector.

vmathV4GetElem_V

Get an x, y, z, or w element of a 4-D vector by index.

Definition

Arguments

```
vec 4-D vectoridx Index, expected in the range 0-3
```

Return Values

Element selected by the specified index

Description

Get an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

vmathV4GetW_V

Get the w element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

w element of a 4-D vector

Description

Get the w element of a 4-D vector.

vmathV4GetX_V

Get the x element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

x element of a 4-D vector

Description

Get the x element of a 4-D vector.

vmathV4GetXYZ_V

Get the x, y, and z elements of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

3-D vector containing x, y, and z elements

Description

Extract a 4-D vector's x, y, and z elements into a 3-D vector.

vmathV4GetY_V

Get the y element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

y element of a 4-D vector

Description

Get the y element of a 4-D vector.

vmathV4GetZ_V

Get the z element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

z element of a 4-D vector

Description

Get the z element of a 4-D vector.

vmathV4Length_V

Compute the length of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Length of the specified 4-D vector

Description

Compute the length of a 4-D vector.

vmathV4LengthSqr_V

Compute the square of the length of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Square of the length of the specified 4-D vector

Description

Compute the square of the length of a 4-D vector.

vmathV4Lerp_V

Linear interpolation between two 4-D vectors.

Definition

Arguments

```
t Interpolation parametervec0 4-D vectorvec1 4-D vector
```

Return Values

Interpolated 4-D vector

Description

Linearly interpolate between two 4-D vectors.

Notes

Does not clamp *t* between 0 and 1.

vmathV4MakeFrom128_V

Set vector float data in a 4-D vector.

Definition

Arguments

vf4 Scalar value

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector whose internal vector float data is set to the vector float argument.

vmathV4MakeFromElems_V

Construct a 4-D vector from x, y, z, and w elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value
- ₩ Scalar value

Return Values

The 4-D vector that contains the specified elements

Description

Construct a 4-D vector containing the specified x, y, z, and w elements.

vmathV4MakeFromP3_V

Copy x, y, and z from a 3-D point into a 4-D vector, and set w to 1.

Definition

Arguments

pnt 3-D point

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D point and with the w element set to 1.

vmathV4MakeFromQ_V

Copy elements from a quaternion into a 4-D vector.

Definition

Arguments

quat Quaternion

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector containing the x, y, z, and w elements of the specified quaternion.

vmathV4MakeFromScalar_V

Set all elements of a 4-D vector to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector with all elements set to the scalar value argument.

vmathV4MakeFromV3_V

Copy x, y, and z from a 3-D vector into a 4-D vector, and set w to 0.

Definition

Arguments

vec 3-D vector

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to 0.

vmathV4MakeFromV3Scalar_V

Construct a 4-D vector from a 3-D vector and a scalar.

Definition

Arguments

```
xyz 3-D vectorw Scalar value
```

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

vmathV4MakeWAxis_V

Construct w axis.

Definition

#include <vectormath/c/vectormath_aos_v.h>
static inline VmathVector4 vmathV4MakeWAxis_V();

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (0,0,0,1).

vmathV4MakeXAxis_V

Construct x axis.

Definition

#include <vectormath/c/vectormath_aos_v.h>
static inline VmathVector4 vmathV4MakeXAxis_V();

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (1,0,0,0).

vmathV4MakeYAxis_V

Construct y axis.

Definition

#include <vectormath/c/vectormath_aos_v.h>
static inline VmathVector4 vmathV4MakeYAxis_V();

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (0,1,0,0).

vmathV4MakeZAxis_V

Construct z axis.

Definition

#include <vectormath/c/vectormath_aos_v.h>
static inline VmathVector4 vmathV4MakeZAxis_V();

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (0,0,1,0).

vmathV4MaxElem_V

Maximum element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Maximum value of all elements of vec

Description

Compute the maximum value of all elements of a 4-D vector.

vmathV4MaxPerElem_V

Maximum of two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the maximum of the corresponding elements of the specified 4-D vectors

Description

Create a 4-D vector in which each element is the maximum of the corresponding elements of the specified 4-D vectors.

vmathV4MinElem_V

Minimum element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Minimum value of all elements of vec

Description

Compute the minimum value of all elements of a 4-D vector.

vmathV4MinPerElem_V

Minimum of two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the minimum of the corresponding elements of the specified 4-D vectors

Description

Create a 4-D vector in which each element is the minimum of the corresponding elements of two specified 4-D vectors.

vmathV4MulPerElem_V

Multiply two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the product of the corresponding elements of the specified 4-D vectors

Description

Multiply two 4-D vectors element by element.

vmathV4Neg_V

Negate all elements of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector containing negated elements of the specified 4-D vector

Description

Negate all elements of a 4-D vector.

vmathV4Normalize_V

Normalize a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

The specified 4-D vector scaled to unit length

Description

Compute a normalized 4-D vector.

Notes

The result is unpredictable when all elements of vec are at or near zero.

vmathV4Outer_V

Outer product of two 4-D vectors.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

The 4x4 matrix product of a column-vector, vec0, and a row-vector, vec1

Description

Compute the outer product of two 4-D vectors.

vmathV4Print_V

Print a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

None

Description

Print a 4-D vector. Prints the 4-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when $_\mbox{VECTORMATH_DEBUG}$ is defined.

vmathV4Prints V

Print a 4-D vector and an associated string identifier.

Definition

Arguments

```
vec 4-D vectorname String printed with the 4-D vector
```

Return Values

None

Description

Print a 4-D vector and an associated string identifier. Prints the 4-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathV4RecipPerElem_V

Compute the reciprocal of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the reciprocal of the corresponding element of the specified 4-D vector

Description

Create a 4-D vector in which each element is the reciprocal of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function recipf4.

vmathV4RsqrtPerElem_V

Compute the reciprocal square root of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the reciprocal square root of the corresponding element of the specified 4-D vector

Description

Create a 4-D vector in which each element is the reciprocal square root of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function rsqrtf4.

vmathV4ScalarDiv_V

Divide a 4-D vector by a scalar.

Definition

Arguments

```
vec 4-D vector scalar Scalar value
```

Return Values

Quotient of the specified 4-D vector and scalar

Description

Divide a 4-D vector by a scalar.

vmathV4ScalarMul_V

Multiply a 4-D vector by a scalar.

Definition

Arguments

```
vec 4-D vector scalar Scalar value
```

Return Values

Product of the specified 4-D vector and scalar

Description

Multiply a 4-D vector by a scalar.

vmathV4Select_V

Conditionally select between two 4-D vectors.

Definition

Arguments

vec0 4-D vector
vec1 4-D vector

select1 False selects the vec0 argument to

False selects the vec0 argument, true selects the vec1 argument

Return Values

Equal to vec0 if select1 == 0, or to vec1 if select1 != 0

Description

Conditionally select one of the 4-D vector arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

vmathV4SetElem_V

Set an x, y, z, or w element of a 4-D vector by index.

Definition

Arguments

```
result An output 4-D vectoridx Index, expected in the range 0-3value Scalar value
```

Return Values

None

Description

Set an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

vmathV4SetW_V

Set the w element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector w Scalar value
```

Return Values

None

Description

Set the w element of a 4-D vector to the specified scalar value.

vmathV4SetX_V

Set the x element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector 
x Scalar value
```

Return Values

None

Description

Set the x element of a 4-D vector to the specified scalar value.

vmathV4SetXYZ_V

Set the x, y, and z elements of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector vec 3-D vector
```

Return Values

None

Description

Set the x, y, and z elements to those of the specified 3-D vector.

Notes

This function does not change the w element.

vmathV4SetY_V

Set the y element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector y Scalar value
```

Return Values

None

Description

Set the y element of a 4-D vector to the specified scalar value.

vmathV4SetZ_V

Set the z element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector 
z Scalar value
```

Return Values

None

Description

Set the z element of a 4-D vector to the specified scalar value.

vmathV4Slerp_V

Spherical linear interpolation between two 4-D vectors.

Definition

Arguments

```
    t Interpolation parameter
    unitVec0 4-D vector, expected to be unit-length
    unitVec1 4-D vector, expected to be unit-length
```

Return Values

Interpolated 4-D vector

Description

Perform spherical linear interpolation between two 4-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

vmathV4SqrtPerElem_V

Compute the square root of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the square root of the corresponding element of the specified 4-D vector

Description

Create a 4-D vector in which each element is the square root of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function sqrtf4.

vmathV4StoreHalfFloats_V

Store four 4-D vectors as half-floats.

Definition

Arguments

```
vec04-D vectorvec14-D vectorvec24-D vectorvec34-D vectortwoQuadsAn output array of 2 quadwords containing 16 half-floats
```

Return Values

None

Description

Store four 4-D vectors in two quadwords of half-float values. The output is $\{x0,y0,z0,w0,x1,y1,z1,w1,x2,y2,z2,w2,x3,y3,z3,w3\}$.

vmathV4Sub_V

Subtract a 4-D vector from another 4-D vector.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

Difference of the specified 4-D vectors

Description

Subtract a 4-D vector from another 4-D vector.

vmathV4Sum_V

Compute the sum of all elements of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Sum of all elements of vec

Description

Compute the sum of all elements of a 4-D vector.

Point Functions (AoS, by value)

vmathP3AbsPerElem_V

Compute the absolute value of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the absolute value of the corresponding element of pnt

Description

Compute the absolute value of each element of a 3-D point.

vmathP3AddV3_V

Add a 3-D point to a 3-D vector.

Definition

Arguments

```
pnt 3-D point
vec 3-D vector
```

Return Values

Sum of the specified 3-D point and 3-D vector

Description

Add a 3-D point to a 3-D vector.

vmathP3CopySignPerElem_V

Copy sign from one 3-D point to another, per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element has the magnitude of the corresponding element of pnt0 and the sign of the corresponding element of pnt1

Description

For each element, create a value composed of the magnitude of pnt0 and the sign of pnt1.

vmathP3Dist_V

Compute the distance between two 3-D points.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Distance between two 3-D points

Description

Compute the distance between two 3-D points.

vmathP3DistFromOrigin_V

Compute the distance of a 3-D point from the coordinate-system origin.

Definition

Arguments

pnt 3-D point

Return Values

Distance of a 3-D point from the origin

Description

Compute the distance of a 3-D point from the coordinate-system origin.

vmathP3DistSqr_V

Compute the square of the distance between two 3-D points.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Square of the distance between two 3-D points

Description

Compute the square of the distance between two 3-D points.

vmathP3DistSqrFromOrigin_V

Compute the square of the distance of a 3-D point from the coordinate-system origin.

Definition

Arguments

pnt 3-D point

Return Values

Square of the distance of a 3-D point from the origin

Description

Compute the square of the distance of a 3-D point from the coordinate-system origin.

vmathP3DivPerElem_V

Divide two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the quotient of the corresponding elements of the specified 3-D points

Description

Divide two 3-D points element by element.

Notes

Floating-point behavior matches standard library function divf4.

vmathP3Get128_V

Get vector float data from a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Internal vector float data

Description

Get internal vector float data from a 3-D point.

vmathP3GetElem_V

Get an x, y, or z element of a 3-D point by index.

Definition

Arguments

```
pnt 3-D pointidx Index, expected in the range 0-2
```

Return Values

Element selected by the specified index

Description

Get an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

vmathP3GetX_V

Get the x element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

x element of a 3-D point

Description

Get the x element of a 3-D point.

vmathP3GetY_V

Get the y element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

y element of a 3-D point

Description

Get the y element of a 3-D point.

vmathP3GetZ_V

Get the z element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

z element of a 3-D point

Description

Get the z element of a 3-D point.

vmathP3Lerp_V

Linear interpolation between two 3-D points.

Definition

Arguments

```
t Interpolation parameterpnt0 3-D pointpnt1 3-D point
```

Return Values

Interpolated 3-D point

Description

Linearly interpolate between two 3-D points.

Notes

Does not clamp *t* between 0 and 1.

vmathP3LoadXYZArray_V

Load four three-float 3-D points, stored in three quadwords.

Definition

Arguments

```
pnt0An output 3-D pointpnt1An output 3-D pointpnt2An output 3-D pointpnt3An output 3-D pointthreeQuadsArray of 3 quadwords containing 12 floats
```

Return Values

None

Description

Load four three-float 3-D points, stored in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$, into four 3-D points.

vmathP3MakeFrom128_V

Set vector float data in a 3-D point.

Definition

Arguments

vf4 Scalar value

Return Values

The constructed 3-D point

Description

Construct a 3-D point whose internal vector float data is set to the vector float argument.

vmathP3MakeFromElems_V

Construct a 3-D point from x, y, and z elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value

Return Values

The 3-D point that contains the specified elements

Description

Construct a 3-D point containing the specified x, y, and z elements.

vmathP3MakeFromScalar_V

Set all elements of a 3-D point to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed 3-D point

Description

Construct a 3-D point with all elements set to the scalar value argument.

vmathP3MakeFromV3_V

Copy elements from a 3-D vector into a 3-D point.

Definition

Arguments

vec 3-D vector

Return Values

The constructed 3-D point

Description

Construct a 3-D point containing the x, y, and z elements of the specified 3-D vector.

vmathP3MaxElem_V

Maximum element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Maximum value of all elements of pnt

Description

Compute the maximum value of all elements of a 3-D point.

vmathP3MaxPerElem_V

Maximum of two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the maximum of the corresponding elements of the specified 3-D points

Description

Create a 3-D point in which each element is the maximum of the corresponding elements of the specified 3-D points.

vmathP3MinElem_V

Minimum element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Minimum value of all elements of pnt

Description

Compute the minimum value of all elements of a 3-D point.

vmathP3MinPerElem_V

Minimum of two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the minimum of the corresponding elements of the specified 3-D points

Description

Create a 3-D point in which each element is the minimum of the corresponding elements of two specified 3-D points.

vmathP3MulPerElem_V

Multiply two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the product of the corresponding elements of the specified 3-D points

Description

Multiply two 3-D points element by element.

vmathP3NonUniformScale_V

Apply non-uniform scale to a 3-D point.

Definition

Arguments

```
pnt 3-D point
scaleVec 3-D vector
```

Return Values

3-D point in which each element is the product of the corresponding elements of the specified 3-D point and 3-D vector

Description

Apply non-uniform scale to a 3-D point.

vmathP3Print_V

Print a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

None

Description

Print a 3-D point. Prints the 3-D point transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathP3Prints V

Print a 3-D point and an associated string identifier.

Definition

Arguments

```
pnt 3-D pointname String printed with the 3-D point
```

Return Values

None

Description

Print a 3-D point and an associated string identifier. Prints the 3-D point transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathP3Projection_V

Scalar projection of a 3-D point on a unit-length 3-D vector.

Definition

Arguments

```
pnt 3-D pointunitVec 3-D vector, expected to be unit-length
```

Return Values

Scalar projection of the 3-D point on the unit-length 3-D vector

Description

Scalar projection of a 3-D point on a unit-length 3-D vector (dot product).

vmathP3RecipPerElem_V

Compute the reciprocal of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the reciprocal of the corresponding element of the specified 3-D point

Description

Create a 3-D point in which each element is the reciprocal of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function recipf4.

vmathP3RsqrtPerElem_V

Compute the reciprocal square root of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the reciprocal square root of the corresponding element of the specified 3-D point

Description

Create a 3-D point in which each element is the reciprocal square root of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function rsqrtf4.

vmathP3Scale_V

Apply uniform scale to a 3-D point.

Definition

Arguments

```
pnt 3-D point
scaleVal Scalar value
```

Return Values

3-D point in which every element is multiplied by the scalar value

Description

Apply uniform scale to a 3-D point.

vmathP3Select_V

Conditionally select between two 3-D points.

Definition

Arguments

pnt0 3-D point pnt1 3-D point

select1 False selects the pnt0 argument, true selects the pnt1 argument

Return Values

Equal to pnt0 if select1 == 0, or to pnt1 if select1 != 0

Description

Conditionally select one of the 3-D point arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

vmathP3SetElem_V

Set an x, y, or z element of a 3-D point by index.

Definition

Arguments

```
result An output 3-D point
idx Index, expected in the range 0-2
value Scalar value
```

Return Values

None

Description

Set an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

vmathP3SetX_V

Set the x element of a 3-D point.

Definition

Arguments

```
result An output 3-D point x Scalar value
```

Return Values

None

Description

Set the x element of a 3-D point to the specified scalar value.

vmathP3SetY_V

Set the y element of a 3-D point.

Definition

Arguments

```
result An output 3-D point y Scalar value
```

Return Values

None

Description

Set the y element of a 3-D point to the specified scalar value.

vmathP3SetZ_V

Set the z element of a 3-D point.

Definition

Arguments

```
result An output 3-D point z Scalar value
```

Return Values

None

Description

Set the z element of a 3-D point to the specified scalar value.

vmathP3SqrtPerElem_V

Compute the square root of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the square root of the corresponding element of the specified 3-D point

Description

Create a 3-D point in which each element is the square root of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function sqrtf4.

vmathP3StoreHalfFloats_V

Store eight 3-D points as half-floats.

Definition

Arguments

```
pnt0
              3-D point
pnt1
              3-D point
pnt2
              3-D point
pnt3
              3-D point
pnt4
              3-D point
pnt5
              3-D point
pnt6
              3-D point
pnt7
              3-D point
threeQuads
              An output array of 3 quadwords containing 24 half-floats
```

Return Values

None

Description

Store eight 3-D points in three quadwords of half-float values. The output is $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7\}$.

vmathP3StoreXYZ_V

Store x, y, and z elements of a 3-D point in the first three words of a quadword. The value of the fourth word (the word with the highest address) remains unchanged.

Definition

Arguments

pnt 3-D point

quad Pointer to a quadword in which x, y, and z will be stored

Return Values

None

Description

Store x, y, and z elements of a 3-D point in the first three words of a quadword. The value of the fourth word (the word with the highest address) remains unchanged.

vmathP3StoreXYZArray_V

Store four 3-D points in three quadwords.

Definition

Arguments

```
\begin{array}{lll} pnt0 & 3-D \ point \\ pnt1 & 3-D \ point \\ pnt2 & 3-D \ point \\ pnt3 & 3-D \ point \\ three \textit{Quads} & An \ output \ array \ of \ 3 \ quadwords \ containing \ 12 \ floats \\ \end{array}
```

Return Values

None

Description

Store four 3-D points in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$.

vmathP3Sub_V

Subtract a 3-D point from another 3-D point.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Difference of the specified 3-D points

Description

Subtract a 3-D point from another 3-D point.

vmathP3SubV3_V

Subtract a 3-D vector from a 3-D point.

Definition

Arguments

```
pnt 3-D point
vec 3-D vector
```

Return Values

Difference of the specified 3-D point and 3-D vector

Description

Subtract a 3-D vector from a 3-D point.

vmathP3Sum_V

Compute the sum of all elements of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Sum of all elements of pnt

Description

Compute the sum of all elements of a 3-D point.

vmathQAdd_V

Add two quaternions.

Definition

Arguments

quat0 Quaternion
quat1 Quaternion

Return Values

Sum of the specified quaternions

Description

Add two quaternions.

vmathQConj_V

Compute the conjugate of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Conjugate of the specified quaternion

Description

Compute the conjugate of a quaternion.

vmathQDot_V

Compute the dot product of two quaternions.

Definition

Arguments

```
quat0 Quaternion quat1 Quaternion
```

Return Values

Dot product of the specified quaternions

Description

Compute the dot product of two quaternions.

vmathQGet128_V

Get vector float data from a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Internal vector float data

Description

Get internal vector float data from a quaternion.

vmathQGetElem_V

Get an x, y, z, or w element of a quaternion by index.

Definition

Arguments

```
quatQuaternionidxIndex, expected in the range 0-3
```

Return Values

Element selected by the specified index

Description

Get an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

vmathQGetW_V

Get the w element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

w element of a quaternion

Description

Get the w element of a quaternion.

vmathQGetX_V

Get the x element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

x element of a quaternion

Description

Get the x element of a quaternion.

vmathQGetXYZ_V

Get the x, y, and z elements of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

3-D vector containing x, y, and z elements

Description

Extract a quaternion's x, y, and z elements into a 3-D vector.

vmathQGetY_V

Get the y element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

y element of a quaternion

Description

Get the y element of a quaternion.

vmathQGetZ_V

Get the z element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

z element of a quaternion

Description

Get the z element of a quaternion.

vmathQLength_V

Compute the length of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Length of the specified quaternion

Description

Compute the length of a quaternion.

vmathQLerp_V

Linear interpolation between two quaternions.

Definition

Arguments

```
t Interpolation parameterquat0 Quaternionquat1 Quaternion
```

Return Values

Interpolated quaternion

Description

Linearly interpolate between two quaternions.

Notes

Does not clamp *t* between 0 and 1.

vmathQMakeFrom128_V

Set vector float data in a quaternion.

Definition

Arguments

vf4 Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion whose internal vector float data is set to the vector float argument.

vmathQMakeFromElems_V

Construct a quaternion from x, y, z, and w elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value
- w Scalar value

Return Values

The quaternion that contains the specified elements

Description

Construct a quaternion containing the specified x, y, z, and w elements.

vmathQMakeFromM3_V

Convert a rotation matrix to a unit-length quaternion.

Definition

Arguments

rotMat 3x3 matrix, expected to be a rotation matrix

Return Values

The constructed quaternion

Description

Construct a unit-length quaternion representing the same transformation as a rotation matrix.

vmathQMakeFromScalar_V

Set all elements of a quaternion to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion with all elements set to the scalar value argument.

vmathQMakeFromV3Scalar_V

Construct a quaternion from a 3-D vector and a scalar.

Definition

Arguments

```
xyz 3-D vectorw Scalar value
```

Return Values

The constructed quaternion

Description

Construct a quaternion with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

vmathQMakeFromV4_V

Copy elements from a 4-D vector into a quaternion.

Definition

Arguments

vec 4-D vector

Return Values

The constructed quaternion

Description

Construct a quaternion containing the x, y, z, and w elements of the specified 4-D vector.

vmathQMakeIdentity_V

Construct an identity quaternion.

Definition

#include <vectormath/c/vectormath_aos_v.h>
static inline VmathQuat vmathQMakeIdentity_V();

Arguments

None

Return Values

The constructed quaternion

Description

Construct an identity quaternion equal to (0,0,0,1).

vmathQMakeRotationArc_V

Construct a quaternion to rotate between two unit-length 3-D vectors.

Definition

Arguments

```
unitVec0 3-D vector, expected to be unit-lengthunitVec1 3-D vector, expected to be unit-length
```

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate between two unit-length 3-D vectors.

Notes

The result is unpredictable if unitVec0 and unitVec1 point in opposite directions.

vmathQMakeRotationAxis_V

Construct a quaternion to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around a unit-length 3-D vector by the specified radians angle.

vmathQMakeRotationX_V

Construct a quaternion to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the x axis by the specified radians angle.

vmathQMakeRotationY_V

Construct a quaternion to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the y axis by the specified radians angle.

vmathQMakeRotationZ_V

Construct a quaternion to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the z axis by the specified radians angle.

vmathQMul_V

Multiply two quaternions.

Definition

Arguments

```
quat0 Quaternion quat1 Quaternion
```

Return Values

Product of the specified quaternions

Description

Multiply two quaternions.

vmathQNeg_V

Negate all elements of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Quaternion containing negated elements of the specified quaternion

Description

Negate all elements of a quaternion.

vmathQNorm_V

Compute the norm of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

The norm of the specified quaternion

Description

Compute the norm, equal to the square of the length, of a quaternion.

vmathQNormalize_V

Normalize a quaternion.

Definition

Arguments

quat Quaternion

Return Values

The specified quaternion scaled to unit length

Description

Compute a normalized quaternion.

Notes

The result is unpredictable when all elements of quat are at or near zero.

vmathQPrint_V

Print a quaternion.

Definition

Arguments

quat Quaternion

Return Values

None

Description

Print a quaternion.

Notes

Function is only defined when $_\mbox{VECTORMATH_DEBUG}$ is defined.

vmathQPrints_V

Print a quaternion and an associated string identifier.

Definition

Arguments

quatquaternionnameString printed with the quaternion

Return Values

None

Description

Print a quaternion and an associated string identifier.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathQRotate_V

Use a unit-length quaternion to rotate a 3-D vector.

Definition

Arguments

```
unitQuat Quaternion, expected to be unit-length
vec 3-D vector
```

Return Values

The rotated 3-D vector, equivalent to unitQuat*Quat(vec,0)*conj(unitQuat)

Description

Rotate a 3-D vector by applying a unit-length quaternion.

vmathQScalarDiv_V

Divide a quaternion by a scalar.

Definition

Arguments

```
quat Quaternion scalar Scalar value
```

Return Values

Quotient of the specified quaternion and scalar

Description

Divide a quaternion by a scalar.

vmathQScalarMul_V

Multiply a quaternion by a scalar.

Definition

Arguments

```
quat Quaternion scalar Scalar value
```

Return Values

Product of the specified quaternion and scalar

Description

Multiply a quaternion by a scalar.

vmathQSelect_V

Conditionally select between two quaternions.

Definition

Arguments

quat0 Quaternion
quat1 Quaternion
select1 False selects the quat0

False selects the quat0 argument, true selects the quat1 argument

Return Values

Equal to quat0 if select1 == 0, or to quat1 if select1 != 0

Description

Conditionally select one of the quaternion arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

vmathQSetElem_V

Set an x, y, z, or w element of a quaternion by index.

Definition

Arguments

result An output quaternionidx Index, expected in the range 0-3value Scalar value

Return Values

None

Description

Set an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

vmathQSetW_V

Set the w element of a quaternion.

Definition

Arguments

result An output quaternion w Scalar value

Return Values

None

Description

Set the w element of a quaternion to the specified scalar value.

vmathQSetX_V

Set the x element of a quaternion.

Definition

Arguments

```
result An output quaternion x Scalar value
```

Return Values

None

Description

Set the x element of a quaternion to the specified scalar value.

vmathQSetXYZ_V

Set the x, y, and z elements of a quaternion.

Definition

Arguments

```
result An output quaternion vec 3-D vector
```

Return Values

None

Description

Set the x, y, and z elements to those of the specified 3-D vector.

Notes

This function does not change the w element.

vmathQSetY_V

Set the y element of a quaternion.

Definition

Arguments

```
result An output quaternion
Y Scalar value
```

Return Values

None

Description

Set the y element of a quaternion to the specified scalar value.

vmathQSetZ_V

Set the z element of a quaternion.

Definition

Arguments

```
result An output quaternion z Scalar value
```

Return Values

None

Description

Set the z element of a quaternion to the specified scalar value.

vmathQSlerp_V

Spherical linear interpolation between two quaternions.

Definition

Arguments

```
t Interpolation parameter

unitQuat0 Quaternion, expected to be unit-length

unitQuat1 Quaternion, expected to be unit-length
```

Return Values

Interpolated quaternion

Description

Perform spherical linear interpolation between two quaternions.

Notes

Interpolates along the shortest path between orientations. Does not clamp *t* between 0 and 1.

vmathQSquad_V

Spherical quadrangle interpolation.

Definition

Arguments

```
t Interpolation parameter

unitQuat0 Quaternion, expected to be unit-length

unitQuat1 Quaternion, expected to be unit-length

unitQuat2 Quaternion, expected to be unit-length

unitQuat3 Quaternion, expected to be unit-length
```

Return Values

Interpolated quaternion

Description

Perform spherical quadrangle interpolation between four quaternions.

vmathQSub_V

Subtract a quaternion from another quaternion.

Definition

Arguments

```
quat0 Quaternion quat1 Quaternion
```

Return Values

Difference of the specified quaternions

Description

Subtract a quaternion from another quaternion.

vmathM3AbsPerElem_V

Compute the absolute value of a 3x3 matrix per element.

Definition

Arguments

mat 3x3 matrix

Return Values

3x3 matrix in which each element is the absolute value of the corresponding element of the specified 3x3 matrix

Description

Compute the absolute value of each element of a 3x3 matrix.

vmathM3Add_V

Add two 3x3 matrices.

Definition

Arguments

mat0 3x3 matrix
mat1 3x3 matrix

Return Values

Sum of the specified 3x3 matrices

Description

Add two 3x3 matrices.

vmathM3AppendScale_V

Append (post-multiply) a scale transformation to a 3x3 matrix.

Definition

Arguments

```
mat 3x3 matrix
scaleVec 3-D vector
```

Return Values

The product of mat and a scale transformation created from scaleVec

Description

Post-multiply a 3x3 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathM3Determinant_V

Determinant of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

The determinant of mat

Description

Compute the determinant of a 3x3 matrix.

vmathM3GetCoI0_V

Get column 0 of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

Column 0

Description

Get column 0 of a 3x3 matrix.

vmathM3GetCoI1_V

Get column 1 of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

Column 1

Description

Get column 1 of a 3x3 matrix.

vmathM3GetCoI2_V

Get column 2 of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

Column 2

Description

Get column 2 of a 3x3 matrix.

vmathM3GetCol_V

Get the column of a 3x3 matrix referred to by the specified index.

Definition

Arguments

```
mat 3x3 matrix col Index, expected in the range 0-2
```

Return Values

The column referred to by the specified index

Description

Get the column of a 3x3 matrix referred to by the specified index.

vmathM3GetElem_V

Get the element of a 3x3 matrix referred to by column and row indices.

Definition

Arguments

```
mat 3x3 matrixcol Index, expected in the range 0-2row Index, expected in the range 0-2
```

Return Values

Element selected by col and row

Description

Get the element of a 3x3 matrix referred to by column and row indices.

vmathM3GetRow_V

Get the row of a 3x3 matrix referred to by the specified index.

Definition

Arguments

```
mat 3x3 matrix
row Index, expected in the range 0-2
```

Return Values

The row referred to by the specified index

Description

Get the row of a 3x3 matrix referred to by the specified index.

vmathM3Inverse_V

Compute the inverse of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

Inverse of mat

Description

Compute the inverse of a 3x3 matrix.

Notes

Result is unpredictable when the determinant of mat is equal to or near 0.

vmathM3MakeFromCols_V

Construct a 3x3 matrix containing the specified columns.

Definition

Arguments

```
co10 3-D vectorco11 3-D vectorco12 3-D vector
```

Return Values

The 3x3 matrix that contains the specified columns

Description

Construct a 3x3 matrix containing the specified columns.

vmathM3MakeFromQ_V

Construct a 3x3 rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

A 3x3 matrix that applies the same rotation as unitQuat

Description

Construct a 3x3 matrix that applies the same rotation as the specified unit-length quaternion.

vmathM3MakeFromScalar_V

Set all elements of a 3x3 matrix to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix with all elements set to the scalar value argument.

vmathM3MakeIdentity_V

Construct an identity 3x3 matrix.

Definition

#include <vectormath/c/vectormath_aos_v.h>
static inline VmathMatrix3 vmathM3MakeIdentity_V();

Arguments

None

Return Values

The constructed 3x3 matrix

Description

Construct an identity 3x3 matrix in which non-diagonal elements are zero and diagonal elements are 1.

vmathM3MakeRotationAxis_V

Construct a 3x3 matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

vmathM3MakeRotationQ_V

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

A 3x3 matrix that applies the same rotation as unitQuat

Description

Construct a 3x3 matrix that applies the same rotation as the specified unit-length quaternion.

vmathM3MakeRotationX_V

Construct a 3x3 matrix to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the x axis by the specified radians angle.

vmathM3MakeRotationY_V

Construct a 3x3 matrix to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the y axis by the specified radians angle.

vmathM3MakeRotationZ_V

Construct a 3x3 matrix to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the z axis by the specified radians angle.

vmathM3MakeRotationZYX_V

Construct a 3x3 matrix to rotate around the x, y, and z axes.

Definition

Arguments

radiansXYZ 3-D vector

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

vmathM3MakeScale_V

Construct a 3x3 matrix to perform scaling.

Definition

Arguments

scaleVec 3-D vector

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

vmathM3Mul_V

Multiply two 3x3 matrices.

Definition

Arguments

mat0 3x3 matrix
mat1 3x3 matrix

Return Values

Product of the specified 3x3 matrices

Description

Multiply two 3x3 matrices.

vmathM3MulPerElem_V

Multiply two 3x3 matrices per element.

Definition

Arguments

```
mat0 3x3 matrix
mat1 3x3 matrix
```

Return Values

3x3 matrix in which each element is the product of the corresponding elements of the specified 3x3 matrices

Description

Multiply two 3x3 matrices element by element.

vmathM3MuIV3_V

Multiply a 3x3 matrix by a 3-D vector.

Definition

Arguments

```
mat 3x3 matrix
vec 3-D vector
```

Return Values

Product of the specified 3x3 matrix and 3-D vector

Description

Multiply a 3x3 matrix by a 3-D vector.

vmathM3Neg_V

Negate all elements of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

3x3 matrix containing negated elements of the specified 3x3 matrix

Description

Negate all elements of a 3x3 matrix.

vmathM3PrependScale_V

Prepend (pre-multiply) a scale transformation to a 3x3 matrix.

Definition

Arguments

```
scaleVec 3-D vector
mat 3x3 matrix
```

Return Values

The product of a scale transformation created from scaleVec and mat

Description

Pre-multiply a 3x3 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathM3Print_V

Print a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

None

Description

Print a 3x3 matrix. Unlike the printing of vectors, the 3x3 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathM3Prints_V

Print a 3x3 matrix and an associated string identifier.

Definition

Arguments

```
mat 3x3 matrixname String printed with the 3x3 matrix
```

Return Values

None

Description

Print a 3x3 matrix and an associated string identifier. Unlike the printing of vectors, the 3x3 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathM3ScalarMul_V

Multiply a 3x3 matrix by a scalar.

Definition

Arguments

```
mat 3x3 matrix
scalar Scalar value
```

Return Values

Product of the specified 3x3 matrix and scalar

Description

Multiply a 3x3 matrix by a scalar.

vmathM3Select_V

Conditionally select between two 3x3 matrices.

Definition

Arguments

mat0 3x3 matrix
mat1 3x3 matrix

select1 False selects the mat0 argument, true selects the mat1 argument

Return Values

Equal to mat0 if select1 == 0, or to mat1 if select1 != 0

Description

Conditionally select one of the 3x3 matrix arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

vmathM3SetCoI0_V

Set column 0 of a 3x3 matrix.

Definition

Arguments

```
result An output 3x3 matrix col0 3-D vector
```

Return Values

None

Description

Set column 0 of a 3x3 matrix.

vmathM3SetCoI1_V

Set column 1 of a 3x3 matrix.

Definition

Arguments

```
result An output 3x3 matrix coll 3-D vector
```

Return Values

None

Description

Set column 1 of a 3x3 matrix.

vmathM3SetCol2_V

Set column 2 of a 3x3 matrix.

Definition

Arguments

```
result An output 3x3 matrix col2 3-D vector
```

Return Values

None

Description

Set column 2 of a 3x3 matrix.

vmathM3SetCol_V

Set the column of a 3x3 matrix referred to by the specified index.

Definition

Arguments

```
result An output 3x3 matrix
col Index, expected in the range 0-2
vec 3-D vector
```

Return Values

None

Description

Set the column of a 3x3 matrix referred to by the specified index.

vmathM3SetElem_V

Set the element of a 3x3 matrix referred to by column and row indices.

Definition

Arguments

result An output 3x3 matrix

col Index, expected in the range 0-2

row Index, expected in the range 0-2

val Scalar value

Return Values

None

Description

Set the element of a 3x3 matrix referred to by column and row indices.

vmathM3SetRow_V

Set the row of a 3x3 matrix referred to by the specified index.

Definition

Arguments

```
result An output 3x3 matrix
row Index, expected in the range 0-2
vec 3-D vector
```

Return Values

None

Description

Set the row of a 3x3 matrix referred to by the specified index.

vmathM3Sub_V

Subtract a 3x3 matrix from another 3x3 matrix.

Definition

Arguments

```
mat0 3x3 matrix
mat1 3x3 matrix
```

Return Values

Difference of the specified 3x3 matrices

Description

Subtract a 3x3 matrix from another 3x3 matrix.

vmathM3Transpose_V

Transpose of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

mat transposed

Description

Compute the transpose of a 3x3 matrix.

vmathM4AbsPerElem_V

Compute the absolute value of a 4x4 matrix per element.

Definition

Arguments

mat 4x4 matrix

Return Values

4x4 matrix in which each element is the absolute value of the corresponding element of the specified 4x4 matrix

Description

Compute the absolute value of each element of a 4x4 matrix.

vmathM4Add_V

Add two 4x4 matrices.

Definition

Arguments

mat0 4x4 matrix
mat1 4x4 matrix

Return Values

Sum of the specified 4x4 matrices

Description

Add two 4x4 matrices.

vmathM4AffineInverse_V

Compute the inverse of a 4x4 matrix, which is expected to be an affine matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Inverse of the specified 4x4 matrix

Description

Naming the upper-left 3x3 submatrix of the specified 4x4 matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is inverse(M), whose translation vector is -inverse(M)*v, and whose bottom row is (0,0,0,1).

Notes

This can be used to achieve better performance than a general inverse when the specified 4x4 matrix meets the given restrictions. The result is unpredictable when the determinant of mat is equal to or near 0.

vmathM4AppendScale_V

Append (post-multiply) a scale transformation to a 4x4 matrix.

Definition

Arguments

```
mat      4x4 matrix
scaleVec      3-D vector
```

Return Values

The product of mat and a scale transformation created from scaleVec

Description

Post-multiply a 4x4 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathM4Determinant_V

Determinant of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

The determinant of mat

Description

Compute the determinant of a 4x4 matrix.

vmathM4GetCoI0_V

Get column 0 of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Column 0

Description

Get column 0 of a 4x4 matrix.

vmathM4GetCoI1_V

Get column 1 of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Column 1

Description

Get column 1 of a 4x4 matrix.

vmathM4GetCoI2_V

Get column 2 of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Column 2

Description

Get column 2 of a 4x4 matrix.

vmathM4GetCoI3_V

Get column 3 of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Column 3

Description

Get column 3 of a 4x4 matrix.

vmathM4GetCol_V

Get the column of a 4x4 matrix referred to by the specified index.

Definition

Arguments

mat 4x4 matrix col Index, expected in the range 0-3

Return Values

The column referred to by the specified index

Description

Get the column of a 4x4 matrix referred to by the specified index.

vmathM4GetElem_V

Get the element of a 4x4 matrix referred to by column and row indices.

Definition

Arguments

```
mat 4x4 matrixcol Index, expected in the range 0-3row Index, expected in the range 0-3
```

Return Values

Element selected by col and row

Description

Get the element of a 4x4 matrix referred to by column and row indices.

vmathM4GetRow_V

Get the row of a 4x4 matrix referred to by the specified index.

Definition

Arguments

```
mat 4x4 matrix
row Index, expected in the range 0-3
```

Return Values

The row referred to by the specified index

Description

Get the row of a 4x4 matrix referred to by the specified index.

vmathM4GetTranslation_V

Get the translation component of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Translation component

Description

Get the translation component of a 4x4 matrix.

vmathM4GetUpper3x3_V

Get the upper-left 3x3 submatrix of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Upper-left 3x3 submatrix

Description

Get the upper-left 3x3 submatrix of a 4x4 matrix.

vmathM4Inverse_V

Compute the inverse of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Inverse of mat

Description

Compute the inverse of a 4x4 matrix.

Notes

Result is unpredictable when the determinant of mat is equal to or near 0.

vmathM4MakeFromCols_V

Construct a 4x4 matrix containing the specified columns.

Definition

Arguments

```
co10 4-D vectorco11 4-D vectorco12 4-D vectorco13 4-D vector
```

Return Values

The 4x4 matrix that contains the specified columns

Description

Construct a 4x4 matrix containing the specified columns.

vmathM4MakeFromM3V3_V

Construct a 4x4 matrix from a 3x3 matrix and a 3-D vector.

Definition

Arguments

```
mat 3x3 matrix
translateVec 3-D vector
```

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix whose upper 3x3 elements are equal to the 3x3 matrix argument, whose translation component is equal to the 3-D vector argument, and whose bottom row is (0,0,0,1).

vmathM4MakeFromQV3_V

Construct a 4x4 matrix from a unit-length quaternion and a 3-D vector.

Definition

Arguments

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix whose upper-left 3x3 submatrix is a rotation matrix converted from the unit-length quaternion argument, whose translation component is equal to the 3-D vector argument, and whose bottom row is (0,0,0,1).

vmathM4MakeFromScalar_V

Set all elements of a 4x4 matrix to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix with all elements set to the scalar value argument.

vmathM4MakeFromT3_V

Construct a 4x4 matrix from a 3x4 transformation matrix.

Definition

Arguments

mat 3x4 transformation matrix

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix whose upper 3x4 elements are equal to the 3x4 transformation matrix argument and whose bottom row is equal to (0,0,0,1).

vmathM4MakeFrustum_V

Construct a perspective projection matrix based on frustum.

Definition

Arguments

```
leftScalar valuerightScalar valuebottomScalar valuetopScalar valuezNearScalar valuezFarScalar value
```

Return Values

The constructed 4x4 matrix

Description

Construct a perspective projection matrix based on frustum, equal to:

vmathM4MakeIdentity_V

Construct an identity 4x4 matrix.

Definition

#include <vectormath/c/vectormath_aos_v.h>
static inline VmathMatrix4 vmathM4MakeIdentity_V();

Arguments

None

Return Values

The constructed 4x4 matrix

Description

Construct an identity 4x4 matrix in which non-diagonal elements are zero and diagonal elements are 1.

vmathM4MakeLookAt_V

Construct viewing matrix based on eye position, position looked at, and up direction.

Definition

Arguments

```
eyePos 3-D pointlookAtPos 3-D pointupVec 3-D vector
```

Return Values

The constructed 4x4 matrix

Description

Construct the inverse of a coordinate frame that is centered at the eye position, with z axis directed away from lookAtPos, and y axis oriented to best match the up direction.

vmathM4MakeOrthographic_V

Construct an orthographic projection matrix.

Definition

Arguments

```
leftScalar valuerightScalar valuebottomScalar valuetopScalar valuezNearScalar valuezFarScalar value
```

Return Values

The constructed 4x4 matrix

Description

Construct an orthographic projection matrix, equal to

vmathM4MakePerspective_V

Construct a perspective projection matrix.

Definition

Arguments

```
fovyRadiansScalar valueaspectScalar valuezNearScalar valuezFarScalar value
```

Return Values

The constructed 4x4 matrix

Description

Construct a perspective projection matrix, equal to:

vmathM4MakeRotationAxis_V

Construct a 4x4 matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

vmathM4MakeRotationQ_V

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

A 4x4 matrix that applies the same rotation as unitQuat

Description

Construct a 4x4 matrix that applies the same rotation as the specified unit-length quaternion.

vmathM4MakeRotationX_V

Construct a 4x4 matrix to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the x axis by the specified radians angle.

vmathM4MakeRotationY_V

Construct a 4x4 matrix to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the y axis by the specified radians angle.

vmathM4MakeRotationZ_V

Construct a 4x4 matrix to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the z axis by the specified radians angle.

vmathM4MakeRotationZYX_V

Construct a 4x4 matrix to rotate around the x, y, and z axes.

Definition

Arguments

radiansXYZ 3-D vector

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

vmathM4MakeScale_V

Construct a 4x4 matrix to perform scaling.

Definition

Arguments

scaleVec 3-D vector

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

vmathM4MakeTranslation_V

Construct a 4x4 matrix to perform translation.

Definition

Arguments

translateVec 3-D vector

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to perform translation, which is an identity matrix except for the translation component, with coordinates equal to those in *translateVec*.

vmathM4Mul_V

Multiply two 4x4 matrices.

Definition

Arguments

mat0 4x4 matrix
mat1 4x4 matrix

Return Values

Product of the specified 4x4 matrices

Description

Multiply two 4x4 matrices.

vmathM4MuIP3_V

Multiply a 4x4 matrix by a 3-D point.

Definition

Arguments

```
mat 4x4 matrix
pnt 3-D point
```

Return Values

Product of the specified 4x4 matrix and 3-D point

Description

Multiply a 4x4 matrix by a 3-D point treated as if it were a 4-D vector with the w element equal to 1.

vmathM4MulPerElem_V

Multiply two 4x4 matrices per element.

Definition

Arguments

```
mat0 4x4 matrix
mat1 4x4 matrix
```

Return Values

4x4 matrix in which each element is the product of the corresponding elements of the specified 4x4 matrices

Description

Multiply two 4x4 matrices element by element.

vmathM4MuIT3_V

Multiply a 4x4 matrix by a 3x4 transformation matrix.

Definition

Arguments

```
mat 4x4 matrix
tfrm 3x4 transformation matrix
```

Return Values

Product of the specified 4x4 matrix and 3x4 transformation matrix

Description

Multiply a 4x4 matrix by a 3x4 transformation matrix treated as if it were a 4x4 matrix with the bottom row equal to (0,0,0,1).

vmathM4MuIV3_V

Multiply a 4x4 matrix by a 3-D vector.

Definition

Arguments

```
mat 4x4 matrix
vec 3-D vector
```

Return Values

Product of the specified 4x4 matrix and 3-D vector

Description

Multiply a 4x4 matrix by a 3-D vector treated as if it were a 4-D vector with the w element equal to 0.

vmathM4MuIV4_V

Multiply a 4x4 matrix by a 4-D vector.

Definition

Arguments

```
mat 4x4 matrix
vec 4-D vector
```

Return Values

Product of the specified 4x4 matrix and 4-D vector

Description

Multiply a 4x4 matrix by a 4-D vector.

vmathM4Neg_V

Negate all elements of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

4x4 matrix containing negated elements of the specified 4x4 matrix

Description

Negate all elements of a 4x4 matrix.

vmathM4OrthoInverse_V

Compute the inverse of a 4x4 matrix, which is expected to be an affine matrix with an orthogonal upper-left 3x3 submatrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Inverse of the specified 4x4 matrix

Description

Naming the upper-left 3x3 submatrix of the specified 4x4 matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is transpose(M), whose translation vector is -transpose(M)*v, and whose bottom row is (0,0,0,1).

Notes

This can be used to achieve better performance than a general inverse when the specified 4x4 matrix meets the given restrictions.

vmathM4PrependScale_V

Prepend (pre-multiply) a scale transformation to a 4x4 matrix.

Definition

Arguments

```
scaleVec 3-D vector
mat 4x4 matrix
```

Return Values

The product of a scale transformation created from scaleVec and mat

Description

Pre-multiply a 4x4 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathM4Print_V

Print a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

None

Description

Print a 4x4 matrix. Unlike the printing of vectors, the 4x4 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathM4Prints_V

Print a 4x4 matrix and an associated string identifier.

Definition

Arguments

mat 4x4 matrix

name String printed with the 4x4 matrix

Return Values

None

Description

Print a 4x4 matrix and an associated string identifier. Unlike the printing of vectors, the 4x4 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathM4ScalarMul_V

Multiply a 4x4 matrix by a scalar.

Definition

Arguments

```
mat 4x4 matrix
scalar Scalar value
```

Return Values

Product of the specified 4x4 matrix and scalar

Description

Multiply a 4x4 matrix by a scalar.

vmathM4Select_V

Conditionally select between two 4x4 matrices.

Definition

Arguments

mat04x4 matrixmat14x4 matrix

select1 False selects the mat0 argument, true selects the mat1 argument

Return Values

Equal to mat0 if select1 == 0, or to mat1 if select1 != 0

Description

Conditionally select one of the 4x4 matrix arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

vmathM4SetCoI0_V

Set column 0 of a 4x4 matrix.

Definition

Arguments

```
result An output 4x4 matrix col0 4-D vector
```

Return Values

None

Description

Set column 0 of a 4x4 matrix.

vmathM4SetCoI1_V

Set column 1 of a 4x4 matrix.

Definition

Arguments

```
result An output 4x4 matrix coll 4-D vector
```

Return Values

None

Description

Set column 1 of a 4x4 matrix.

vmathM4SetCoI2_V

Set column 2 of a 4x4 matrix.

Definition

Arguments

```
result An output 4x4 matrix col2 4-D vector
```

Return Values

None

Description

Set column 2 of a 4x4 matrix.

vmathM4SetCol3_V

Set column 3 of a 4x4 matrix.

Definition

Arguments

```
result An output 4x4 matrix col3 4-D vector
```

Return Values

None

Description

Set column 3 of a 4x4 matrix.

vmathM4SetCol_V

Set the column of a 4x4 matrix referred to by the specified index.

Definition

Arguments

```
result An output 4x4 matrix
col Index, expected in the range 0-3
vec 4-D vector
```

Return Values

None

Description

Set the column of a 4x4 matrix referred to by the specified index.

vmathM4SetElem V

Set the element of a 4x4 matrix referred to by column and row indices.

Definition

Arguments

result An output 4x4 matrix

col Index, expected in the range 0-3

row Index, expected in the range 0-3

val Scalar value

Return Values

None

Description

Set the element of a 4x4 matrix referred to by column and row indices.

vmathM4SetRow V

Set the row of a 4x4 matrix referred to by the specified index.

Definition

Arguments

```
result An output 4x4 matrix
row Index, expected in the range 0-3
vec 4-D vector
```

Return Values

None

Description

Set the row of a 4x4 matrix referred to by the specified index.

vmathM4SetTranslation_V

Set translation component.

Definition

Arguments

```
result An output 4x4 matrix translateVec 3-D vector
```

Return Values

None

Description

Set the translation component of a 4x4 matrix equal to the specified 3-D vector.

Notes

This function does not change the bottom row elements.

vmathM4SetUpper3x3_V

Set the upper-left 3x3 submatrix.

Definition

Arguments

```
result An output 4x4 matrix mat3 3x3 matrix
```

Return Values

None

Description

Set the upper-left 3x3 submatrix elements of a 4x4 matrix equal to the specified 3x3 matrix.

Notes

This function does not change the bottom row elements.

vmathM4Sub_V

Subtract a 4x4 matrix from another 4x4 matrix.

Definition

Arguments

```
mat0 4x4 matrix
mat1 4x4 matrix
```

Return Values

Difference of the specified 4x4 matrices

Description

Subtract a 4x4 matrix from another 4x4 matrix.

vmathM4Transpose_V

Transpose of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

mat transposed

Description

Compute the transpose of a 4x4 matrix.

Transformation Functions (AoS, by value)

vmathT3AbsPerElem_V

Compute the absolute value of a 3x4 transformation matrix per element.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

3x4 transformation matrix in which each element is the absolute value of the corresponding element of the specified 3x4 transformation matrix

Description

Compute the absolute value of each element of a 3x4 transformation matrix.

vmathT3AppendScale_V

Append (post-multiply) a scale transformation to a 3x4 transformation matrix.

Definition

Arguments

```
tfrm 3x4 transformation matrix scaleVec 3-D vector
```

Return Values

The product of tfrm and a scale transformation created from scaleVec

Description

Post-multiply a 3x4 transformation matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathT3GetCol0_V

Get column 0 of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Column 0

Description

Get column 0 of a 3x4 transformation matrix.

vmathT3GetCol1_V

Get column 1 of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Column 1

Description

Get column 1 of a 3x4 transformation matrix.

vmathT3GetCol2_V

Get column 2 of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Column 2

Description

Get column 2 of a 3x4 transformation matrix.

vmathT3GetCol3_V

Get column 3 of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Column 3

Description

Get column 3 of a 3x4 transformation matrix.

vmathT3GetCol_V

Get the column of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

tfrm 3x4 transformation matrixcol Index, expected in the range 0-3

Return Values

The column referred to by the specified index

Description

Get the column of a 3x4 transformation matrix referred to by the specified index.

vmathT3GetElem_V

Get the element of a 3x4 transformation matrix referred to by column and row indices.

Definition

Arguments

```
tfrm 3x4 transformation matrix
col Index, expected in the range 0-3
row Index, expected in the range 0-2
```

Return Values

Element selected by col and row

Description

Get the element of a 3x4 transformation matrix referred to by column and row indices.

vmathT3GetRow_V

Get the row of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

tfrm 3x4 transformation matrix row Index, expected in the range 0-2

Return Values

The row referred to by the specified index

Description

Get the row of a 3x4 transformation matrix referred to by the specified index.

vmathT3GetTranslation_V

Get the translation component of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Translation component

Description

Get the translation component of a 3x4 transformation matrix.

vmathT3GetUpper3x3_V

Get the upper-left 3x3 submatrix of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Upper-left 3x3 submatrix

Description

Get the upper-left 3x3 submatrix of a 3x4 transformation matrix.

vmathT3Inverse_V

Inverse of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Inverse of tfrm

Description

Compute the inverse of a 3x4 transformation matrix.

Notes

Result is unpredictable when the determinant of the left 3x3 submatrix is equal to or near 0.

vmathT3MakeFromCols_V

Construct a 3x4 transformation matrix containing the specified columns.

Definition

Arguments

```
co10 3-D vectorco11 3-D vectorco12 3-D vectorco13 3-D vector
```

Return Values

The 3x4 transformation matrix that contains the specified columns

Description

Construct a 3x4 transformation matrix containing the specified columns.

vmathT3MakeFromM3V3_V

Construct a 3x4 transformation matrix from a 3x3 matrix and a 3-D vector.

Definition

Arguments

```
tfrm 3x3 matrix translateVec 3-D vector
```

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix whose upper 3x3 elements are equal to the 3x3 matrix argument and whose translation component is equal to the 3-D vector argument.

vmathT3MakeFromQV3_V

Construct a 3x4 transformation matrix from a unit-length quaternion and a 3-D vector.

Definition

Arguments

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix whose upper-left 3x3 submatrix is a rotation matrix converted from the unit-length quaternion argument and whose translation component is equal to the 3-D vector argument.

vmathT3MakeFromScalar_V

Set all elements of a 3x4 transformation matrix to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix with all elements set to the scalar value argument.

vmathT3MakeIdentity_V

Construct an identity 3x4 transformation matrix.

Definition

#include <vectormath/c/vectormath_aos_v.h>
static inline VmathTransform3 vmathT3MakeIdentity_V();

Arguments

None

Return Values

The constructed 3x4 transformation matrix

Description

Construct an identity 3x4 transformation matrix in which non-diagonal elements are zero and diagonal elements are 1.

vmathT3MakeRotationAxis_V

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector by the specified radians angle.

vmathT3MakeRotationQ_V

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

A 3x4 transformation matrix that applies the same rotation as unitQuat

Description

Construct a 3x4 transformation matrix that applies the same rotation as the specified unit-length quaternion.

vmathT3MakeRotationX_V

Construct a 3x4 transformation matrix to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the x axis by the specified radians angle.

vmathT3MakeRotationY_V

Construct a 3x4 transformation matrix to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the y axis by the specified radians angle.

vmathT3MakeRotationZ_V

Construct a 3x4 transformation matrix to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the z axis by the specified radians angle.

vmathT3MakeRotationZYX_V

Construct a 3x4 transformation matrix to rotate around the x, y, and z axes.

Definition

Arguments

radiansXYZ 3-D vector

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

vmathT3MakeScale_V

Construct a 3x4 transformation matrix to perform scaling.

Definition

Arguments

scaleVec 3-D vector

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

vmathT3MakeTranslation_V

Construct a 3x4 transformation matrix to perform translation.

Definition

Arguments

translateVec 3-D vector

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to perform translation, which is an identity matrix except for the translation component, with coordinates equal to those in <code>translateVec</code>.

vmathT3Mul_V

Multiply two 3x4 transformation matrices.

Definition

Arguments

```
tfrm0 3x4 transformation matrixtfrm1 3x4 transformation matrix
```

Return Values

Product of the specified 3x4 transformation matrices

Description

Multiply two 3x4 transformation matrices.

vmathT3MuIP3_V

Multiply a 3x4 transformation matrix by a 3-D point.

Definition

Arguments

```
tfrm 3x4 transformation matrix pnt 3-D point
```

Return Values

Product of the specified 3x4 transformation matrix and 3-D point

Description

Applies the 3x3 upper-left submatrix and the translation component of a 3x4 transformation matrix to a 3-D point.

vmathT3MulPerElem_V

Multiply two 3x4 transformation matrices per element.

Definition

Arguments

```
tfrm0 3x4 transformation matrixtfrm1 3x4 transformation matrix
```

Return Values

3x4 transformation matrix in which each element is the product of the corresponding elements of the specified 3x4 transformation matrices

Description

Multiply two 3x4 transformation matrices element by element.

vmathT3MuIV3_V

Multiply a 3x4 transformation matrix by a 3-D vector.

Definition

Arguments

```
tfrm 3x4 transformation matrix vec 3-D vector
```

Return Values

Product of the specified 3x4 transformation matrix and 3-D vector

Description

Applies the 3x3 upper-left submatrix (but not the translation component) of a 3x4 transformation matrix to a 3-D vector.

vmathT3OrthoInverse_V

Compute the inverse of a 3x4 transformation matrix, expected to have an orthogonal upper-left 3x3 submatrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Inverse of the specified 3x4 transformation matrix

Description

Naming the upper-left 3x3 submatrix of the specified 3x4 transformation matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is transpose(M), and whose translation vector is -transpose(M)*v.

Notes

This can be used to achieve better performance than a general inverse when the specified 3x4 transformation matrix meets the given restrictions.

vmathT3PrependScale_V

Prepend (pre-multiply) a scale transformation to a 3x4 transformation matrix.

Definition

Arguments

```
scaleVec 3-D vector
tfrm 3x4 transformation matrix
```

Return Values

The product of a scale transformation created from <code>scaleVec</code> and <code>tfrm</code>

Description

Pre-multiply a 3x4 transformation matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathT3Print_V

Print a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

None

Description

Print a 3x4 transformation matrix. Unlike the printing of vectors, the 3x4 transformation matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathT3Prints_V

Print a 3x4 transformation matrix and an associated string identifier.

Definition

Arguments

tfrm 3x4 transformation matrix

name String printed with the 3x4 transformation matrix

Return Values

None

Description

Print a 3x4 transformation matrix and an associated string identifier. Unlike the printing of vectors, the 3x4 transformation matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathT3Select_V

Conditionally select between two 3x4 transformation matrices.

Definition

Arguments

tfrm03x4 transformation matrixtfrm13x4 transformation matrixselect1False selects the tfrm0 argument, true selects the tfrm1 argument

Return Values

Equal to tfrm0 if select1 == 0, or to tfrm1 if select1 != 0

Description

Conditionally select one of the 3x4 transformation matrix arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch.

vmathT3SetCoI0_V

Set column 0 of a 3x4 transformation matrix.

Definition

Arguments

```
result An output 3x4 transformation matrix col0 3-D vector
```

Return Values

None

Description

Set column 0 of a 3x4 transformation matrix.

vmathT3SetCoI1_V

Set column 1 of a 3x4 transformation matrix.

Definition

Arguments

```
result An output 3x4 transformation matrix coll 3-D vector
```

Return Values

None

Description

Set column 1 of a 3x4 transformation matrix.

vmathT3SetCol2_V

Set column 2 of a 3x4 transformation matrix.

Definition

Arguments

```
result An output 3x4 transformation matrix col2 3-D vector
```

Return Values

None

Description

Set column 2 of a 3x4 transformation matrix.

vmathT3SetCol3_V

Set column 3 of a 3x4 transformation matrix.

Definition

Arguments

```
result An output 3x4 transformation matrix col3 3-D vector
```

Return Values

None

Description

Set column 3 of a 3x4 transformation matrix.

vmathT3SetCol_V

Set the column of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

result An output 3x4 transformation matrix col Index, expected in the range 0-3 vec 3-D vector

Return Values

None

Description

Set the column of a 3x4 transformation matrix referred to by the specified index.

vmathT3SetElem V

Set the element of a 3x4 transformation matrix referred to by column and row indices.

Definition

Arguments

result An output 3x4 transformation matrix col Index, expected in the range 0-3
row Index, expected in the range 0-2
val Scalar value

Return Values

None

Description

Set the element of a 3x4 transformation matrix referred to by column and row indices.

vmathT3SetRow_V

Set the row of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

result An output 3x4 transformation matrix row Index, expected in the range 0-2 vec 4-D vector

Return Values

None

Description

Set the row of a 3x4 transformation matrix referred to by the specified index.

vmathT3SetTranslation_V

Set translation component.

Definition

Arguments

result An output 3x4 transformation matrix translateVec 3-D vector

Return Values

None

Description

Set the translation component of a 3x4 transformation matrix equal to the specified 3-D vector.

vmathT3SetUpper3x3_V

Set the upper-left 3x3 submatrix.

Definition

Arguments

result An output 3x4 transformation matrix mat3 3x3 matrix

Return Values

None

Description

Set the upper-left 3x3 submatrix elements of a 3x4 transformation matrix equal to the specified 3x3 matrix.

vmathSoaV3AbsPerElem_V

Compute the absolute value of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the absolute value of the corresponding element of vec

Description

Compute the absolute value of each element of a 3-D vector.

vmathSoaV3Add_V

Add two 3-D vectors.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

Sum of the specified 3-D vectors

Description

Add two 3-D vectors.

vmathSoaV3AddP3_V

Add a 3-D vector to a 3-D point.

Definition

Arguments

```
vec 3-D vector
pnt 3-D point
```

Return Values

Sum of the specified 3-D vector and 3-D point

Description

Add a 3-D vector to a 3-D point.

vmathSoaV3CopySignPerElem_V

Copy sign from one 3-D vector to another, per element.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

3-D vector in which each element has the magnitude of the corresponding element of vec0 and the sign of the corresponding element of vec1

Description

For each element, create a value composed of the magnitude of *vec0* and the sign of *vec1*.

vmathSoaV3Cross_V

Compute cross product of two 3-D vectors.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

Cross product of the specified 3-D vectors

Description

Compute cross product of two 3-D vectors.

vmathSoaV3CrossMatrix_V

Cross-product matrix of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Cross-product matrix of vec

Description

Compute a matrix that, when multiplied by a 3-D vector, produces the same result as a cross product with that 3-D vector.

vmathSoaV3CrossMatrixMul_V

Create cross-product matrix and multiply.

Definition

Arguments

```
vec 3-D vector
mat 3x3 matrix
```

Return Values

Product of cross-product matrix of vec and mat

Description

Multiply a cross-product matrix by another matrix.

Notes

Faster than separately creating a cross-product matrix and multiplying.

vmathSoaV3DivPerElem_V

Divide two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the quotient of the corresponding elements of the specified 3-D vectors

Description

Divide two 3-D vectors element by element.

Notes

Floating-point behavior matches standard library function divf4.

vmathSoaV3Dot_V

Compute the dot product of two 3-D vectors.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

Dot product of the specified 3-D vectors

Description

Compute the dot product of two 3-D vectors.

vmathSoaV3Get4Aos_V

Extract four AoS 3-D vectors.

Definition

Arguments

```
vec3-D vectorresult0An output AoS 3-D vectorresult1An output AoS 3-D vectorresult2An output AoS 3-D vectorresult3An output AoS 3-D vector
```

Return Values

None

Description

Extract four AoS 3-D vectors from four slots of an SoA 3-D vector (transpose the data format).

vmathSoaV3GetElem_V

Get an x, y, or z element of a 3-D vector by index.

Definition

Arguments

```
vec 3-D vectoridx Index, expected in the range 0-2
```

Return Values

Element selected by the specified index

Description

Get an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

vmathSoaV3GetX_V

Get the x element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

x element of a 3-D vector

Description

Get the x element of a 3-D vector.

vmathSoaV3GetY_V

Get the y element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

y element of a 3-D vector

Description

Get the y element of a 3-D vector.

vmathSoaV3GetZ_V

Get the z element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

z element of a 3-D vector

Description

Get the z element of a 3-D vector.

vmathSoaV3Length_V

Compute the length of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Length of the specified 3-D vector

Description

Compute the length of a 3-D vector.

vmathSoaV3LengthSqr_V

Compute the square of the length of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Square of the length of the specified 3-D vector

Description

Compute the square of the length of a 3-D vector.

vmathSoaV3Lerp_V

Linear interpolation between two 3-D vectors.

Definition

Arguments

```
t Interpolation parametervec0 3-D vectorvec1 3-D vector
```

Return Values

Interpolated 3-D vector

Description

Linearly interpolate between two 3-D vectors.

Notes

Does not clamp *t* between 0 and 1.

vmathSoaV3LoadXYZArray_V

Load four three-float 3-D vectors, stored in three quadwords.

Definition

Arguments

vec An output 3-D vector
threeQuads Array of 3 quadwords containing 12 floats

Return Values

None

Description

Load four three-float 3-D vectors, stored in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$, into four slots of an SoA 3-D vector.

vmathSoaV3MakeFrom4Aos_V

Insert four AoS 3-D vectors.

Definition

Arguments

```
vec0 AoS 3-D vectorvec1 AoS 3-D vectorvec2 AoS 3-D vectorvec3 AoS 3-D vector
```

Return Values

The constructed SoA 3-D vector

Description

Insert four AoS 3-D vectors into four slots of an SoA 3-D vector (transpose the data format).

vmathSoaV3MakeFromAos_V

Replicate an AoS 3-D vector.

Definition

Arguments

vec AoS 3-D vector

Return Values

The constructed SoA 3-D vector

Description

Replicate an AoS 3-D vector in all four slots of an SoA 3-D vector.

vmathSoaV3MakeFromElems_V

Construct a 3-D vector from x, y, and z elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value

Return Values

The 3-D vector that contains the specified elements

Description

Construct a 3-D vector containing the specified x, y, and z elements.

vmathSoaV3MakeFromP3_V

Copy elements from a 3-D point into a 3-D vector.

Definition

Arguments

pnt 3-D point

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector containing the x, y, and z elements of the specified 3-D point.

vmathSoaV3MakeFromScalar_V

Set all elements of a 3-D vector to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector with all elements set to the scalar value argument.

vmathSoaV3MakeXAxis_V

Construct x axis.

Definition

#include <vectormath/c/vectormath_soa_v.h>
static inline VmathSoaVector3 vmathSoaV3MakeXAxis_V();

Arguments

None

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector equal to (1,0,0).

vmathSoaV3MakeYAxis_V

Construct y axis.

Definition

#include <vectormath/c/vectormath_soa_v.h>
static inline VmathSoaVector3 vmathSoaV3MakeYAxis_V();

Arguments

None

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector equal to (0,1,0).

vmathSoaV3MakeZAxis_V

Construct z axis.

Definition

#include <vectormath/c/vectormath_soa_v.h>
static inline VmathSoaVector3 vmathSoaV3MakeZAxis_V();

Arguments

None

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector equal to (0,0,1).

vmathSoaV3MaxElem_V

Maximum element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Maximum value of all elements of vec

Description

Compute the maximum value of all elements of a 3-D vector.

vmathSoaV3MaxPerElem_V

Maximum of two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the maximum of the corresponding elements of the specified 3-D vectors

Description

Create a 3-D vector in which each element is the maximum of the corresponding elements of the specified 3-D vectors.

vmathSoaV3MinElem_V

Minimum element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Minimum value of all elements of vec

Description

Compute the minimum value of all elements of a 3-D vector.

vmathSoaV3MinPerElem_V

Minimum of two 3-D vectors per element.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

3-D vector in which each element is the minimum of the corresponding elements of the specified 3-D vectors

Description

Create a 3-D vector in which each element is the minimum of the corresponding elements of two specified 3-D vectors.

vmathSoaV3MulPerElem_V

Multiply two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the product of the corresponding elements of the specified 3-D vectors

Description

Multiply two 3-D vectors element by element.

vmathSoaV3Neg_V

Negate all elements of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector containing negated elements of the specified 3-D vector

Description

Negate all elements of a 3-D vector.

vmathSoaV3Normalize_V

Normalize a 3-D vector.

Definition

```
#include <vectormath/c/vectormath_soa_v.h>
static inline VmathSoaVector3 vec

VmathSoaVector3 vec
);
```

Arguments

vec 3-D vector

Return Values

The specified 3-D vector scaled to unit length

Description

Compute a normalized 3-D vector.

Notes

The result is unpredictable when all elements of vec are at or near zero.

vmathSoaV3Outer_V

Outer product of two 3-D vectors.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

The 3x3 matrix product of a column-vector, vec0, and a row-vector, vec1

Description

Compute the outer product of two 3-D vectors.

vmathSoaV3Print_V

Print a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

None

Description

Print a 3-D vector. Prints the 3-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaV3Prints_V

Print a 3-D vector and an associated string identifier.

Definition

Arguments

```
vec 3-D vectorname String printed with the 3-D vector
```

Return Values

None

Description

Print a 3-D vector and an associated string identifier. Prints the 3-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaV3RecipPerElem_V

Compute the reciprocal of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the reciprocal of the corresponding element of the specified 3-D vector

Description

Create a 3-D vector in which each element is the reciprocal of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function recipf4.

vmathSoaV3RowMul_V

Pre-multiply a row vector by a 3x3 matrix.

Definition

Arguments

```
vec 3-D vector
mat 3x3 matrix
```

Return Values

Product of a row-vector and a 3x3 matrix

Description

Transpose a 3-D vector into a row vector and pre-multiply by 3x3 matrix.

vmathSoaV3RsqrtPerElem_V

Compute the reciprocal square root of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the reciprocal square root of the corresponding element of the specified 3-D vector

Description

Create a 3-D vector in which each element is the reciprocal square root of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function rsqrtf4.

vmathSoaV3ScalarDiv_V

Divide a 3-D vector by a scalar.

Definition

Arguments

```
vec 3-D vectorscalar Scalar value
```

Return Values

Quotient of the specified 3-D vector and scalar

Description

Divide a 3-D vector by a scalar.

vmathSoaV3ScalarMul_V

Multiply a 3-D vector by a scalar.

Definition

Arguments

```
vec 3-D vectorscalar Scalar value
```

Return Values

Product of the specified 3-D vector and scalar

Description

Multiply a 3-D vector by a scalar.

vmathSoaV3Select_V

Conditionally select between two 3-D vectors.

Definition

Arguments

vec03-D vectorvec13-D vectorselect1For each of

For each of the four word slots, this mask selects either the 3-D vector in the corresponding slot of vec0 or the 3-D vector in the corresponding slot of vec1. A 0 bit selects from vec0 whereas a 1 bit selects from vec1. Identical bits should be

set for each word of the mask.

Return Values

Description

Conditionally select one of the 3-D vectors at each of the corresponding slots of vec0 or vec1.

Notes

This function uses a conditional select instruction to avoid a branch.

vmathSoaV3SetElem_V

Set an x, y, or z element of a 3-D vector by index.

Definition

Arguments

```
result An output 3-D vector
idx Index, expected in the range 0-2
value Scalar value
```

Return Values

None

Description

Set an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

vmathSoaV3SetX_V

Set the x element of a 3-D vector.

Definition

Arguments

```
result An output 3-D vector 
x Scalar value
```

Return Values

None

Description

Set the x element of a 3-D vector to the specified scalar value.

vmathSoaV3SetY_V

Set the y element of a 3-D vector.

Definition

Arguments

```
result An output 3-D vector y Scalar value
```

Return Values

None

Description

Set the y element of a 3-D vector to the specified scalar value.

vmathSoaV3SetZ_V

Set the z element of a 3-D vector.

Definition

Arguments

```
result An output 3-D vector Scalar value
```

Return Values

None

Description

Set the z element of a 3-D vector to the specified scalar value.

vmathSoaV3Slerp_V

Spherical linear interpolation between two 3-D vectors.

Definition

Arguments

```
t Interpolation parameterunitVec0 3-D vector, expected to be unit-lengthunitVec1 3-D vector, expected to be unit-length
```

Return Values

Interpolated 3-D vector

Description

Perform spherical linear interpolation between two 3-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

vmathSoaV3SqrtPerElem_V

Compute the square root of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the square root of the corresponding element of the specified 3-D vector

Description

Create a 3-D vector in which each element is the square root of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function sqrtf4.

vmathSoaV3StoreHalfFloats_V

Store eight slots of two SoA 3-D vectors as half-floats.

Definition

Arguments

vec0vec13-D vectorvec1

threeQuads An output array of 3 quadwords containing 24 half-floats

Return Values

None

Description

Store eight slots of two SoA 3-D vectors in three quadwords of half-float values. Numbering slots of vec0 as 0..3 and slots of vec1 as 4..7, the output is {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7}.

vmathSoaV3StoreXYZArray_V

Store four slots of an SoA 3-D vector in three quadwords.

Definition

Arguments

vec 3-D vector
threeQuads An output array of 3 quadwords containing 12 floats

Return Values

None

Description

Store four slots of an SoA 3-D vector in three quadwords as {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3}.

vmathSoaV3Sub_V

Subtract a 3-D vector from another 3-D vector.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

Difference of the specified 3-D vectors

Description

Subtract a 3-D vector from another 3-D vector.

vmathSoaV3Sum_V

Compute the sum of all elements of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Sum of all elements of vec

Description

Compute the sum of all elements of a 3-D vector.

vmathSoaV4AbsPerElem_V

Compute the absolute value of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the absolute value of the corresponding element of vec

Description

Compute the absolute value of each element of a 4-D vector.

vmathSoaV4Add_V

Add two 4-D vectors.

Definition

Arguments

vec0 4-D vectorvec1 4-D vector

Return Values

Sum of the specified 4-D vectors

Description

Add two 4-D vectors.

vmathSoaV4CopySignPerElem_V

Copy sign from one 4-D vector to another, per element.

Definition

Arguments

vec0 4-D vectorvec1 4-D vector

Return Values

4-D vector in which each element has the magnitude of the corresponding element of vec0 and the sign of the corresponding element of vec1

Description

For each element, create a value composed of the magnitude of *vec0* and the sign of *vec1*.

vmathSoaV4DivPerElem_V

Divide two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the quotient of the corresponding elements of the specified 4-D vectors

Description

Divide two 4-D vectors element by element.

Notes

Floating-point behavior matches standard library function divf4.

vmathSoaV4Dot_V

Compute the dot product of two 4-D vectors.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

Dot product of the specified 4-D vectors

Description

Compute the dot product of two 4-D vectors.

vmathSoaV4Get4Aos_V

Extract four AoS 4-D vectors.

Definition

Arguments

```
vec4-D vectorresult0An output AoS 4-D vectorresult1An output AoS 4-D vectorresult2An output AoS 4-D vectorresult3An output AoS 4-D vector
```

Return Values

None

Description

Extract four AoS 4-D vectors from four slots of an SoA 4-D vector (transpose the data format).

vmathSoaV4GetElem_V

Get an x, y, z, or w element of a 4-D vector by index.

Definition

Arguments

```
vec 4-D vectoridx Index, expected in the range 0-3
```

Return Values

Element selected by the specified index

Description

Get an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

vmathSoaV4GetW_V

Get the w element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

w element of a 4-D vector

Description

Get the w element of a 4-D vector.

vmathSoaV4GetX_V

Get the x element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

x element of a 4-D vector

Description

Get the x element of a 4-D vector.

vmathSoaV4GetXYZ_V

Get the x, y, and z elements of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

3-D vector containing x, y, and z elements

Description

Extract a 4-D vector's x, y, and z elements into a 3-D vector.

vmathSoaV4GetY_V

Get the y element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

y element of a 4-D vector

Description

Get the y element of a 4-D vector.

vmathSoaV4GetZ_V

Get the z element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

z element of a 4-D vector

Description

Get the z element of a 4-D vector.

vmathSoaV4Length_V

Compute the length of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Length of the specified 4-D vector

Description

Compute the length of a 4-D vector.

vmathSoaV4LengthSqr_V

Compute the square of the length of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Square of the length of the specified 4-D vector

Description

Compute the square of the length of a 4-D vector.

vmathSoaV4Lerp_V

Linear interpolation between two 4-D vectors.

Definition

Arguments

```
t Interpolation parametervec0 4-D vectorvec1 4-D vector
```

Return Values

Interpolated 4-D vector

Description

Linearly interpolate between two 4-D vectors.

Notes

Does not clamp *t* between 0 and 1.

vmathSoaV4MakeFrom4Aos_V

Insert four AoS 4-D vectors.

Definition

Arguments

```
vec0 AoS 4-D vectorvec1 AoS 4-D vectorvec2 AoS 4-D vectorvec3 AoS 4-D vector
```

Return Values

The constructed SoA 4-D vector

Description

Insert four AoS 4-D vectors into four slots of an SoA 4-D vector (transpose the data format).

vmathSoaV4MakeFromAos_V

Replicate an AoS 4-D vector.

Definition

Arguments

vec AoS 4-D vector

Return Values

The constructed SoA 4-D vector

Description

Replicate an AoS 4-D vector in all four slots of an SoA 4-D vector.

vmathSoaV4MakeFromElems_V

Construct a 4-D vector from x, y, z, and w elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value
- w Scalar value

Return Values

The 4-D vector that contains the specified elements

Description

Construct a 4-D vector containing the specified x, y, z, and w elements.

vmathSoaV4MakeFromP3_V

Copy x, y, and z from a 3-D point into a 4-D vector, and set w to 1.

Definition

Arguments

pnt 3-D point

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D point and with the w element set to 1.

vmathSoaV4MakeFromQ_V

Copy elements from a quaternion into a 4-D vector.

Definition

Arguments

quat Quaternion

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector containing the x, y, z, and w elements of the specified quaternion.

vmathSoaV4MakeFromScalar_V

Set all elements of a 4-D vector to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector with all elements set to the scalar value argument.

vmathSoaV4MakeFromV3_V

Copy x, y, and z from a 3-D vector into a 4-D vector, and set w to 0.

Definition

Arguments

vec 3-D vector

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to 0.

vmathSoaV4MakeFromV3Scalar_V

Construct a 4-D vector from a 3-D vector and a scalar.

Definition

Arguments

```
xyz 3-D vectorw Scalar value
```

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

vmathSoaV4MakeWAxis_V

Construct w axis.

Definition

#include <vectormath/c/vectormath_soa_v.h>
static inline VmathSoaVector4 vmathSoaV4MakeWAxis_V();

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (0,0,0,1).

vmathSoaV4MakeXAxis_V

Construct x axis.

Definition

#include <vectormath/c/vectormath_soa_v.h>
static inline VmathSoaVector4 vmathSoaV4MakeXAxis_V();

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (1,0,0,0).

vmathSoaV4MakeYAxis_V

Construct y axis.

Definition

#include <vectormath/c/vectormath_soa_v.h>
static inline VmathSoaVector4 vmathSoaV4MakeYAxis_V();

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (0,1,0,0).

vmathSoaV4MakeZAxis_V

Construct z axis.

Definition

#include <vectormath/c/vectormath_soa_v.h>
static inline VmathSoaVector4 vmathSoaV4MakeZAxis_V();

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (0,0,1,0).

vmathSoaV4MaxElem_V

Maximum element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Maximum value of all elements of vec

Description

Compute the maximum value of all elements of a 4-D vector.

vmathSoaV4MaxPerElem_V

Maximum of two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the maximum of the corresponding elements of the specified 4-D vectors

Description

Create a 4-D vector in which each element is the maximum of the corresponding elements of the specified 4-D vectors.

vmathSoaV4MinElem_V

Minimum element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Minimum value of all elements of vec

Description

Compute the minimum value of all elements of a 4-D vector.

vmathSoaV4MinPerElem_V

Minimum of two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the minimum of the corresponding elements of the specified 4-D vectors

Description

Create a 4-D vector in which each element is the minimum of the corresponding elements of two specified 4-D vectors.

vmathSoaV4MulPerElem_V

Multiply two 4-D vectors per element.

Definition

Arguments

vec0 4-D vectorvec1 4-D vector

Return Values

4-D vector in which each element is the product of the corresponding elements of the specified 4-D vectors

Description

Multiply two 4-D vectors element by element.

vmathSoaV4Neg_V

Negate all elements of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector containing negated elements of the specified 4-D vector

Description

Negate all elements of a 4-D vector.

vmathSoaV4Normalize_V

Normalize a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

The specified 4-D vector scaled to unit length

Description

Compute a normalized 4-D vector.

Notes

The result is unpredictable when all elements of vec are at or near zero.

vmathSoaV4Outer_V

Outer product of two 4-D vectors.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

The 4x4 matrix product of a column-vector, vec0, and a row-vector, vec1

Description

Compute the outer product of two 4-D vectors.

vmathSoaV4Print_V

Print a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

None

Description

Print a 4-D vector. Prints the 4-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaV4Prints_V

Print a 4-D vector and an associated string identifier.

Definition

Arguments

vec 4-D vectorname String printed with the 4-D vector

Return Values

None

Description

Print a 4-D vector and an associated string identifier. Prints the 4-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaV4RecipPerElem_V

Compute the reciprocal of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the reciprocal of the corresponding element of the specified 4-D vector

Description

Create a 4-D vector in which each element is the reciprocal of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function recipf4.

vmathSoaV4RsqrtPerElem_V

Compute the reciprocal square root of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the reciprocal square root of the corresponding element of the specified 4-D vector

Description

Create a 4-D vector in which each element is the reciprocal square root of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function rsqrtf4.

vmathSoaV4ScalarDiv_V

Divide a 4-D vector by a scalar.

Definition

Arguments

```
vec 4-D vector scalar Scalar value
```

Return Values

Quotient of the specified 4-D vector and scalar

Description

Divide a 4-D vector by a scalar.

vmathSoaV4ScalarMul_V

Multiply a 4-D vector by a scalar.

Definition

Arguments

```
vec 4-D vector scalar Scalar value
```

Return Values

Product of the specified 4-D vector and scalar

Description

Multiply a 4-D vector by a scalar.

vmathSoaV4Select_V

Conditionally select between two 4-D vectors.

Definition

Arguments

vec04-D vectorvec14-D vectorselect1For each of

For each of the four word slots, this mask selects either the 4-D vector in the corresponding slot of vec0 or the 4-D vector in the corresponding slot of vec1. A 0 bit selects from vec0 whereas a 1 bit selects from vec1. Identical bits should be

set for each word of the mask.

Return Values

Description

Conditionally select one of the 4-D vectors at each of the corresponding slots of vec0 or vec1.

Notes

This function uses a conditional select instruction to avoid a branch.

vmathSoaV4SetElem_V

Set an x, y, z, or w element of a 4-D vector by index.

Definition

Arguments

result An output 4-D vector

idx Index, expected in the range 0-3

value Scalar value

Return Values

None

Description

Set an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

vmathSoaV4SetW_V

Set the w element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector w Scalar value
```

Return Values

None

Description

Set the w element of a 4-D vector to the specified scalar value.

vmathSoaV4SetX_V

Set the x element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector 
x Scalar value
```

Return Values

None

Description

Set the x element of a 4-D vector to the specified scalar value.

vmathSoaV4SetXYZ_V

Set the x, y, and z elements of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector vec 3-D vector
```

Return Values

None

Description

Set the x, y, and z elements to those of the specified 3-D vector.

Notes

This function does not change the w element.

vmathSoaV4SetY_V

Set the y element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector y Scalar value
```

Return Values

None

Description

Set the y element of a 4-D vector to the specified scalar value.

vmathSoaV4SetZ_V

Set the z element of a 4-D vector.

Definition

Arguments

```
result An output 4-D vector 
z Scalar value
```

Return Values

None

Description

Set the z element of a 4-D vector to the specified scalar value.

vmathSoaV4Slerp_V

Spherical linear interpolation between two 4-D vectors.

Definition

Arguments

```
    t Interpolation parameter
    unitVec0 4-D vector, expected to be unit-length
    unitVec1 4-D vector, expected to be unit-length
```

Return Values

Interpolated 4-D vector

Description

Perform spherical linear interpolation between two 4-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

vmathSoaV4SqrtPerElem_V

Compute the square root of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the square root of the corresponding element of the specified 4-D vector

Description

Create a 4-D vector in which each element is the square root of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function sqrtf4.

vmathSoaV4StoreHalfFloats_V

Store four slots of an SoA 4-D vector as half-floats.

Definition

Arguments

vec 4-D vector twoQuads An output array of 2 quadwords containing 16 half-floats

Return Values

None

Description

Store four slots of an SoA 4-D vector in two quadwords of half-float values. Numbering slots of *vec* as 0..3, the output is {x0,y0,z0,w0,x1,y1,z1,w1,x2,y2,z2,w2,x3,y3,z3,w3}.

vmathSoaV4Sub_V

Subtract a 4-D vector from another 4-D vector.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

Difference of the specified 4-D vectors

Description

Subtract a 4-D vector from another 4-D vector.

vmathSoaV4Sum_V

Compute the sum of all elements of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Sum of all elements of vec

Description

Compute the sum of all elements of a 4-D vector.

vmathSoaP3AbsPerElem_V

Compute the absolute value of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the absolute value of the corresponding element of pnt

Description

Compute the absolute value of each element of a 3-D point.

vmathSoaP3AddV3_V

Add a 3-D point to a 3-D vector.

Definition

Arguments

```
pnt 3-D point
vec 3-D vector
```

Return Values

Sum of the specified 3-D point and 3-D vector

Description

Add a 3-D point to a 3-D vector.

vmathSoaP3CopySignPerElem_V

Copy sign from one 3-D point to another, per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element has the magnitude of the corresponding element of pnt0 and the sign of the corresponding element of pnt1

Description

For each element, create a value composed of the magnitude of pnt0 and the sign of pnt1.

vmathSoaP3Dist_V

Compute the distance between two 3-D points.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Distance between two 3-D points

Description

Compute the distance between two 3-D points.

vmathSoaP3DistFromOrigin_V

Compute the distance of a 3-D point from the coordinate-system origin.

Definition

Arguments

pnt 3-D point

Return Values

Distance of a 3-D point from the origin

Description

Compute the distance of a 3-D point from the coordinate-system origin.

vmathSoaP3DistSqr_V

Compute the square of the distance between two 3-D points.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Square of the distance between two 3-D points

Description

Compute the square of the distance between two 3-D points.

vmathSoaP3DistSqrFromOrigin_V

Compute the square of the distance of a 3-D point from the coordinate-system origin.

Definition

Arguments

pnt 3-D point

Return Values

Square of the distance of a 3-D point from the origin

Description

Compute the square of the distance of a 3-D point from the coordinate-system origin.

vmathSoaP3DivPerElem_V

Divide two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the quotient of the corresponding elements of the specified 3-D points

Description

Divide two 3-D points element by element.

Notes

Floating-point behavior matches standard library function divf4.

vmathSoaP3Get4Aos_V

Extract four AoS 3-D points.

Definition

Arguments

```
    pnt
    result0
    An output AoS 3-D point
    result1
    An output AoS 3-D point
    result2
    An output AoS 3-D point
    result3
    An output AoS 3-D point
```

Return Values

None

Description

Extract four AoS 3-D points from four slots of an SoA 3-D point (transpose the data format).

vmathSoaP3GetElem_V

Get an x, y, or z element of a 3-D point by index.

Definition

Arguments

```
pnt 3-D pointidx Index, expected in the range 0-2
```

Return Values

Element selected by the specified index

Description

Get an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

vmathSoaP3GetX_V

Get the x element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

x element of a 3-D point

Description

Get the x element of a 3-D point.

vmathSoaP3GetY_V

Get the y element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

y element of a 3-D point

Description

Get the y element of a 3-D point.

vmathSoaP3GetZ_V

Get the z element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

z element of a 3-D point

Description

Get the z element of a 3-D point.

vmathSoaP3Lerp_V

Linear interpolation between two 3-D points.

Definition

Arguments

```
t Interpolation parameterpnt0 3-D pointpnt1 3-D point
```

Return Values

Interpolated 3-D point

Description

Linearly interpolate between two 3-D points.

Notes

Does not clamp *t* between 0 and 1.

vmathSoaP3LoadXYZArray_V

Load four three-float 3-D points, stored in three quadwords.

Definition

Arguments

pnt An output 3-D point threeQuads Array of 3 quadwords containing 12 floats

Return Values

None

Description

Load four three-float 3-D points, stored in three quadwords as {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3}, into four slots of an SoA 3-D point.

vmathSoaP3MakeFrom4Aos_V

Insert four AoS 3-D points.

Definition

Arguments

```
pnt0 AoS 3-D pointpnt1 AoS 3-D pointpnt2 AoS 3-D pointpnt3 AoS 3-D point
```

Return Values

The constructed SoA 3-D point

Description

Insert four AoS 3-D points into four slots of an SoA 3-D point (transpose the data format).

vmathSoaP3MakeFromAos_V

Replicate an AoS 3-D point.

Definition

Arguments

pnt AoS 3-D point

Return Values

The constructed SoA 3-D point

Description

Replicate an AoS 3-D point in all four slots of an SoA 3-D point.

vmathSoaP3MakeFromElems_V

Construct a 3-D point from x, y, and z elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value

Return Values

The 3-D point that contains the specified elements

Description

Construct a 3-D point containing the specified x, y, and z elements.

vmathSoaP3MakeFromScalar_V

Set all elements of a 3-D point to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed 3-D point

Description

Construct a 3-D point with all elements set to the scalar value argument.

vmathSoaP3MakeFromV3_V

Copy elements from a 3-D vector into a 3-D point.

Definition

Arguments

vec 3-D vector

Return Values

The constructed 3-D point

Description

Construct a 3-D point containing the x, y, and z elements of the specified 3-D vector.

vmathSoaP3MaxElem_V

Maximum element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Maximum value of all elements of pnt

Description

Compute the maximum value of all elements of a 3-D point.

vmathSoaP3MaxPerElem_V

Maximum of two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the maximum of the corresponding elements of the specified 3-D points

Description

Create a 3-D point in which each element is the maximum of the corresponding elements of the specified 3-D points.

vmathSoaP3MinElem_V

Minimum element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Minimum value of all elements of pnt

Description

Compute the minimum value of all elements of a 3-D point.

vmathSoaP3MinPerElem_V

Minimum of two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the minimum of the corresponding elements of the specified 3-D points

Description

Create a 3-D point in which each element is the minimum of the corresponding elements of two specified 3-D points.

vmathSoaP3MulPerElem_V

Multiply two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the product of the corresponding elements of the specified 3-D points

Description

Multiply two 3-D points element by element.

vmathSoaP3NonUniformScale_V

Apply non-uniform scale to a 3-D point.

Definition

Arguments

```
pnt 3-D point
scaleVec 3-D vector
```

Return Values

3-D point in which each element is the product of the corresponding elements of the specified 3-D point and 3-D vector

Description

Apply non-uniform scale to a 3-D point.

vmathSoaP3Print_V

Print a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

None

Description

Print a 3-D point. Prints the 3-D point transposed, that is, as a row instead of a column.

Notes

Function is only defined when $_\mbox{VECTORMATH_DEBUG}$ is defined.

vmathSoaP3Prints_V

Print a 3-D point and an associated string identifier.

Definition

Arguments

```
pnt 3-D pointname String printed with the 3-D point
```

Return Values

None

Description

Print a 3-D point and an associated string identifier. Prints the 3-D point transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaP3Projection_V

Scalar projection of a 3-D point on a unit-length 3-D vector.

Definition

Arguments

```
pnt 3-D pointunitVec 3-D vector, expected to be unit-length
```

Return Values

Scalar projection of the 3-D point on the unit-length 3-D vector

Description

Scalar projection of a 3-D point on a unit-length 3-D vector (dot product).

vmathSoaP3RecipPerElem_V

Compute the reciprocal of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the reciprocal of the corresponding element of the specified 3-D point

Description

Create a 3-D point in which each element is the reciprocal of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function recipf4.

vmathSoaP3RsqrtPerElem_V

Compute the reciprocal square root of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the reciprocal square root of the corresponding element of the specified 3-D point

Description

Create a 3-D point in which each element is the reciprocal square root of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function rsqrtf4.

vmathSoaP3Scale_V

Apply uniform scale to a 3-D point.

Definition

Arguments

```
pnt 3-D point
scaleVal Scalar value
```

Return Values

3-D point in which every element is multiplied by the scalar value

Description

Apply uniform scale to a 3-D point.

vmathSoaP3Select_V

Conditionally select between two 3-D points.

Definition

Arguments

For each of the four word slots, this mask selects either the 3-D point in the corresponding slot of pnt0 or the 3-D point in the corresponding slot of pnt1. A 0 bit selects from pnt0 whereas a 1 bit selects from pnt1. Identical bits should be set for each word of the mask.

Return Values

Each slot of the result is equal to the 3-D point at the corresponding slot of pnt0 or pnt1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of pnt0, and a value of 0xFFFFFFFF selects the slot of pnt1

Description

Conditionally select one of the 3-D points at each of the corresponding slots of pnt0 or pnt1.

Notes

This function uses a conditional select instruction to avoid a branch.

vmathSoaP3SetElem_V

Set an x, y, or z element of a 3-D point by index.

Definition

Arguments

result An output 3-D pointidx Index, expected in the range 0-2value Scalar value

Return Values

None

Description

Set an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

vmathSoaP3SetX_V

Set the x element of a 3-D point.

Definition

Arguments

```
result An output 3-D point x Scalar value
```

Return Values

None

Description

Set the x element of a 3-D point to the specified scalar value.

vmathSoaP3SetY_V

Set the y element of a 3-D point.

Definition

Arguments

```
result An output 3-D point y Scalar value
```

Return Values

None

Description

Set the y element of a 3-D point to the specified scalar value.

vmathSoaP3SetZ_V

Set the z element of a 3-D point.

Definition

Arguments

```
result An output 3-D point z Scalar value
```

Return Values

None

Description

Set the z element of a 3-D point to the specified scalar value.

vmathSoaP3SqrtPerElem_V

Compute the square root of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the square root of the corresponding element of the specified 3-D point

Description

Create a 3-D point in which each element is the square root of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function sqrtf4.

vmathSoaP3StoreHalfFloats_V

Store eight slots of two SoA 3-D points as half-floats.

Definition

Arguments

pnt0pnt13-D point3-D point

threeQuads An output array of 3 quadwords containing 24 half-floats

Return Values

None

Description

Store eight slots of two SoA 3-D points in three quadwords of half-float values. Numbering slots of pnt0 as 0..3 and slots of pnt1 as 4..7, the output is {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7}.

vmathSoaP3StoreXYZArray_V

Store four slots of an SoA 3-D point in three quadwords.

Definition

Arguments

ont 3-D point threeQuads An output array of 3 quadwords containing 12 floats

Return Values

None

Description

Store four slots of an SoA 3-D point in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$.

vmathSoaP3Sub_V

Subtract a 3-D point from another 3-D point.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Difference of the specified 3-D points

Description

Subtract a 3-D point from another 3-D point.

vmathSoaP3SubV3_V

Subtract a 3-D vector from a 3-D point.

Definition

Arguments

```
pnt 3-D point
vec 3-D vector
```

Return Values

Difference of the specified 3-D point and 3-D vector

Description

Subtract a 3-D vector from a 3-D point.

vmathSoaP3Sum_V

Compute the sum of all elements of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Sum of all elements of pnt

Description

Compute the sum of all elements of a 3-D point.

vmathSoaQAdd_V

Add two quaternions.

Definition

Arguments

quat0 Quaternion quat1 Quaternion

Return Values

Sum of the specified quaternions

Description

Add two quaternions.

vmathSoaQConj_V

Compute the conjugate of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Conjugate of the specified quaternion

Description

Compute the conjugate of a quaternion.

vmathSoaQDot_V

Compute the dot product of two quaternions.

Definition

Arguments

```
quat0 Quaternion quat1 Quaternion
```

Return Values

Dot product of the specified quaternions

Description

Compute the dot product of two quaternions.

vmathSoaQGet4Aos_V

Extract four AoS quaternions.

Definition

Arguments

```
    quat
    quaternion
    quaternion
```

Return Values

None

Description

Extract four AoS quaternions from four slots of an SoA quaternion (transpose the data format).

vmathSoaQGetElem_V

Get an x, y, z, or w element of a quaternion by index.

Definition

Arguments

```
quatQuaternionidxIndex, expected in the range 0-3
```

Return Values

Element selected by the specified index

Description

Get an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

vmathSoaQGetW_V

Get the w element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

w element of a quaternion

Description

Get the w element of a quaternion.

vmathSoaQGetX_V

Get the x element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

x element of a quaternion

Description

Get the x element of a quaternion.

vmathSoaQGetXYZ_V

Get the x, y, and z elements of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

3-D vector containing x, y, and z elements

Description

Extract a quaternion's x, y, and z elements into a 3-D vector.

vmathSoaQGetY_V

Get the y element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

y element of a quaternion

Description

Get the y element of a quaternion.

vmathSoaQGetZ_V

Get the z element of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

z element of a quaternion

Description

Get the z element of a quaternion.

vmathSoaQLength_V

Compute the length of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Length of the specified quaternion

Description

Compute the length of a quaternion.

vmathSoaQLerp_V

Linear interpolation between two quaternions.

Definition

Arguments

```
t Interpolation parameterquat0 Quaternionquat1 Quaternion
```

Return Values

Interpolated quaternion

Description

Linearly interpolate between two quaternions.

Notes

Does not clamp *t* between 0 and 1.

vmathSoaQMakeFrom4Aos_V

Insert four AoS quaternions.

Definition

Arguments

```
quat0 AoS quaternionquat1 AoS quaternionquat2 AoS quaternionquat3 AoS quaternion
```

Return Values

The constructed SoA quaternion

Description

Insert four AoS quaternions into four slots of an SoA quaternion (transpose the data format).

vmathSoaQMakeFromAos_V

Replicate an AoS quaternion.

Definition

Arguments

quat AoS quaternion

Return Values

The constructed SoA quaternion

Description

Replicate an AoS quaternion in all four slots of an SoA quaternion.

vmathSoaQMakeFromElems_V

Construct a quaternion from x, y, z, and w elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value

Return Values

The quaternion that contains the specified elements

Description

Construct a quaternion containing the specified x, y, z, and w elements.

vmathSoaQMakeFromM3_V

Convert a rotation matrix to a unit-length quaternion.

Definition

Arguments

rotMat 3x3 matrix, expected to be a rotation matrix

Return Values

The constructed quaternion

Description

Construct a unit-length quaternion representing the same transformation as a rotation matrix.

vmathSoaQMakeFromScalar_V

Set all elements of a quaternion to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion with all elements set to the scalar value argument.

vmathSoaQMakeFromV3Scalar_V

Construct a quaternion from a 3-D vector and a scalar.

Definition

Arguments

```
xyz 3-D vectorw Scalar value
```

Return Values

The constructed quaternion

Description

Construct a quaternion with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

vmathSoaQMakeFromV4_V

Copy elements from a 4-D vector into a quaternion.

Definition

Arguments

vec 4-D vector

Return Values

The constructed quaternion

Description

Construct a quaternion containing the x, y, z, and w elements of the specified 4-D vector.

vmathSoaQMakeIdentity_V

Construct an identity quaternion.

Definition

#include <vectormath/c/vectormath_soa_v.h>
static inline VmathSoaQuat vmathSoaQMakeIdentity_V();

Arguments

None

Return Values

The constructed quaternion

Description

Construct an identity quaternion equal to (0,0,0,1).

vmathSoaQMakeRotationArc_V

Construct a quaternion to rotate between two unit-length 3-D vectors.

Definition

Arguments

```
unitVec0 3-D vector, expected to be unit-lengthunitVec1 3-D vector, expected to be unit-length
```

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate between two unit-length 3-D vectors.

Notes

The result is unpredictable if unitVec0 and unitVec1 point in opposite directions.

vmathSoaQMakeRotationAxis_V

Construct a quaternion to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around a unit-length 3-D vector by the specified radians angle.

vmathSoaQMakeRotationX_V

Construct a quaternion to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the x axis by the specified radians angle.

vmathSoaQMakeRotationY_V

Construct a quaternion to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the y axis by the specified radians angle.

vmathSoaQMakeRotationZ_V

Construct a quaternion to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the z axis by the specified radians angle.

vmathSoaQMul_V

Multiply two quaternions.

Definition

Arguments

quat0 Quaternion quat1 Quaternion

Return Values

Product of the specified quaternions

Description

Multiply two quaternions.

vmathSoaQNeg_V

Negate all elements of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Quaternion containing negated elements of the specified quaternion

Description

Negate all elements of a quaternion.

vmathSoaQNorm_V

Compute the norm of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

The norm of the specified quaternion

Description

Compute the norm, equal to the square of the length, of a quaternion.

vmathSoaQNormalize_V

Normalize a quaternion.

Definition

Arguments

quat Quaternion

Return Values

The specified quaternion scaled to unit length

Description

Compute a normalized quaternion.

Notes

The result is unpredictable when all elements of quat are at or near zero.

vmathSoaQPrint_V

Print a quaternion.

Definition

Arguments

quat Quaternion

Return Values

None

Description

Print a quaternion.

Notes

Function is only defined when $_\mbox{VECTORMATH_DEBUG}$ is defined.

vmathSoaQPrints_V

Print a quaternion and an associated string identifier.

Definition

Arguments

quatQuaternionnameString printed with the quaternion

Return Values

None

Description

Print a quaternion and an associated string identifier.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaQRotate_V

Use a unit-length quaternion to rotate a 3-D vector.

Definition

Arguments

```
unitQuat Quaternion, expected to be unit-length
vec 3-D vector
```

Return Values

The rotated 3-D vector, equivalent to unitQuat*Quat(vec,0)*conj(unitQuat)

Description

Rotate a 3-D vector by applying a unit-length quaternion.

vmathSoaQScalarDiv_V

Divide a quaternion by a scalar.

Definition

Arguments

```
quat Quaternion scalar Scalar value
```

Return Values

Quotient of the specified quaternion and scalar

Description

Divide a quaternion by a scalar.

vmathSoaQScalarMul_V

Multiply a quaternion by a scalar.

Definition

Arguments

```
quat Quaternion scalar Scalar value
```

Return Values

Product of the specified quaternion and scalar

Description

Multiply a quaternion by a scalar.

vmathSoaQSelect_V

Conditionally select between two quaternions.

Definition

Arguments

quat0Quaternionquat1Quaternionselect1For each of

For each of the four word slots, this mask selects either the quaternion in the corresponding slot of <code>quat0</code> or the quaternion in the corresponding slot of <code>quat1</code>. A 0 bit selects from <code>quat0</code> whereas a 1 bit selects from <code>quat1</code>. Identical bits should be set for each word of the mask.

Return Values

Description

Conditionally select one of the quaternions at each of the corresponding slots of quat 0 or quat 1.

Notes

This function uses a conditional select instruction to avoid a branch.

vmathSoaQSetElem_V

Set an x, y, z, or w element of a quaternion by index.

Definition

Arguments

result An output quaternion
idx Index, expected in the range 0-3
value Scalar value

Return Values

None

Description

Set an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

vmathSoaQSetW_V

Set the w element of a quaternion.

Definition

Arguments

result An output quaternion w Scalar value

Return Values

None

Description

Set the w element of a quaternion to the specified scalar value.

vmathSoaQSetX_V

Set the x element of a quaternion.

Definition

Arguments

```
result An output quaternion x Scalar value
```

Return Values

None

Description

Set the x element of a quaternion to the specified scalar value.

vmathSoaQSetXYZ_V

Set the x, y, and z elements of a quaternion.

Definition

Arguments

```
result An output quaternion vec 3-D vector
```

Return Values

None

Description

Set the x, y, and z elements to those of the specified 3-D vector.

Notes

This function does not change the w element.

vmathSoaQSetY_V

Set the y element of a quaternion.

Definition

Arguments

```
result An output quaternion
Y Scalar value
```

Return Values

None

Description

Set the y element of a quaternion to the specified scalar value.

vmathSoaQSetZ_V

Set the z element of a quaternion.

Definition

Arguments

```
result An output quaternion z Scalar value
```

Return Values

None

Description

Set the z element of a quaternion to the specified scalar value.

vmathSoaQSlerp_V

Spherical linear interpolation between two quaternions.

Definition

Arguments

```
t Interpolation parameter

unitQuat0 Quaternion, expected to be unit-length

unitQuat1 Quaternion, expected to be unit-length
```

Return Values

Interpolated quaternion

Description

Perform spherical linear interpolation between two quaternions.

Notes

Interpolates along the shortest path between orientations. Does not clamp *t* between 0 and 1.

vmathSoaQSquad_V

Spherical quadrangle interpolation.

Definition

Arguments

```
t Interpolation parameter

unitQuat0 Quaternion, expected to be unit-length

unitQuat1 Quaternion, expected to be unit-length

unitQuat2 Quaternion, expected to be unit-length

unitQuat3 Quaternion, expected to be unit-length
```

Return Values

Interpolated quaternion

Description

Perform spherical quadrangle interpolation between four quaternions.

vmathSoaQSub_V

Subtract a quaternion from another quaternion.

Definition

Arguments

```
quat0 Quaternion quat1 Quaternion
```

Return Values

Difference of the specified quaternions

Description

Subtract a quaternion from another quaternion.

vmathSoaM3AbsPerElem_V

Compute the absolute value of a 3x3 matrix per element.

Definition

Arguments

mat 3x3 matrix

Return Values

3x3 matrix in which each element is the absolute value of the corresponding element of the specified 3x3 matrix

Description

Compute the absolute value of each element of a 3x3 matrix.

vmathSoaM3Add_V

Add two 3x3 matrices.

Definition

Arguments

mat0 3x3 matrix
mat1 3x3 matrix

Return Values

Sum of the specified 3x3 matrices

Description

Add two 3x3 matrices.

vmathSoaM3AppendScale_V

Append (post-multiply) a scale transformation to a 3x3 matrix.

Definition

Arguments

```
mat 3x3 matrix
scaleVec 3-D vector
```

Return Values

The product of mat and a scale transformation created from scaleVec

Description

Post-multiply a 3x3 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathSoaM3Determinant_V

Determinant of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

The determinant of mat

Description

Compute the determinant of a 3x3 matrix.

vmathSoaM3Get4Aos_V

Extract four AoS 3x3 matrices.

Definition

Arguments

```
mat3x3 matrixresult0An output AoS 3x3 matrixresult1An output AoS 3x3 matrixresult2An output AoS 3x3 matrixresult3An output AoS 3x3 matrix
```

Return Values

None

Description

Extract four AoS 3x3 matrices from four slots of an SoA 3x3 matrix (transpose the data format).

vmathSoaM3GetCol0_V

Get column 0 of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

Column 0

Description

Get column 0 of a 3x3 matrix.

vmathSoaM3GetCoI1_V

Get column 1 of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

Column 1

Description

Get column 1 of a 3x3 matrix.

vmathSoaM3GetCol2_V

Get column 2 of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

Column 2

Description

Get column 2 of a 3x3 matrix.

vmathSoaM3GetCol_V

Get the column of a 3x3 matrix referred to by the specified index.

Definition

Arguments

mat 3x3 matrix col Index, expected in the range 0-2

Return Values

The column referred to by the specified index

Description

Get the column of a 3x3 matrix referred to by the specified index.

vmathSoaM3GetElem_V

Get the element of a 3x3 matrix referred to by column and row indices.

Definition

Arguments

```
mat 3x3 matrixcol Index, expected in the range 0-2row Index, expected in the range 0-2
```

Return Values

Element selected by col and row

Description

Get the element of a 3x3 matrix referred to by column and row indices.

vmathSoaM3GetRow_V

Get the row of a 3x3 matrix referred to by the specified index.

Definition

Arguments

```
mat 3x3 matrix
row Index, expected in the range 0-2
```

Return Values

The row referred to by the specified index

Description

Get the row of a 3x3 matrix referred to by the specified index.

vmathSoaM3Inverse_V

Compute the inverse of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

Inverse of mat

Description

Compute the inverse of a 3x3 matrix.

Notes

Result is unpredictable when the determinant of mat is equal to or near 0.

vmathSoaM3MakeFrom4Aos_V

Insert four AoS 3x3 matrices.

Definition

Arguments

```
mat0 AoS 3x3 matrixmat1 AoS 3x3 matrixmat2 AoS 3x3 matrixmat3 AoS 3x3 matrix
```

Return Values

The constructed 3x3 matrix

Description

Insert four AoS 3x3 matrices into four slots of an SoA 3x3 matrix (transpose the data format).

vmathSoaM3MakeFromAos_V

Replicate an AoS 3x3 matrix.

Definition

Arguments

mat AoS 3x3 matrix

Return Values

The constructed 3x3 matrix

Description

Replicate an AoS 3x3 matrix in all four slots of an SoA 3x3 matrix.

vmathSoaM3MakeFromCols_V

Construct a 3x3 matrix containing the specified columns.

Definition

Arguments

```
co10 3-D vectorco11 3-D vectorco12 3-D vector
```

Return Values

The 3x3 matrix that contains the specified columns

Description

Construct a 3x3 matrix containing the specified columns.

vmathSoaM3MakeFromQ_V

Construct a 3x3 rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

A 3x3 matrix that applies the same rotation as unitQuat

Description

Construct a 3x3 matrix that applies the same rotation as the specified unit-length quaternion.

vmathSoaM3MakeFromScalar_V

Set all elements of a 3x3 matrix to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix with all elements set to the scalar value argument.

vmathSoaM3MakeIdentity_V

Construct an identity 3x3 matrix.

Definition

#include <vectormath/c/vectormath_soa_v.h>
static inline VmathSoaMatrix3 vmathSoaM3MakeIdentity_V();

Arguments

None

Return Values

The constructed 3x3 matrix

Description

Construct an identity 3x3 matrix in which non-diagonal elements are zero and diagonal elements are 1.

vmathSoaM3MakeRotationAxis_V

Construct a 3x3 matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

vmathSoaM3MakeRotationQ_V

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

A 3x3 matrix that applies the same rotation as unitQuat

Description

Construct a 3x3 matrix that applies the same rotation as the specified unit-length quaternion.

vmathSoaM3MakeRotationX_V

Construct a 3x3 matrix to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the x axis by the specified radians angle.

vmathSoaM3MakeRotationY_V

Construct a 3x3 matrix to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the y axis by the specified radians angle.

vmathSoaM3MakeRotationZ_V

Construct a 3x3 matrix to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the z axis by the specified radians angle.

vmathSoaM3MakeRotationZYX_V

Construct a 3x3 matrix to rotate around the x, y, and z axes.

Definition

Arguments

radiansXYZ 3-D vector

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

vmathSoaM3MakeScale_V

Construct a 3x3 matrix to perform scaling.

Definition

Arguments

scaleVec 3-D vector

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

vmathSoaM3Mul_V

Multiply two 3x3 matrices.

Definition

Arguments

mat0 3x3 matrix
mat1 3x3 matrix

Return Values

Product of the specified 3x3 matrices

Description

Multiply two 3x3 matrices.

vmathSoaM3MulPerElem_V

Multiply two 3x3 matrices per element.

Definition

Arguments

```
mat0 3x3 matrix
mat1 3x3 matrix
```

Return Values

3x3 matrix in which each element is the product of the corresponding elements of the specified 3x3 matrices

Description

Multiply two 3x3 matrices element by element.

vmathSoaM3MuIV3_V

Multiply a 3x3 matrix by a 3-D vector.

Definition

Arguments

```
mat 3x3 matrix
vec 3-D vector
```

Return Values

Product of the specified 3x3 matrix and 3-D vector

Description

Multiply a 3x3 matrix by a 3-D vector.

vmathSoaM3Neg_V

Negate all elements of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

3x3 matrix containing negated elements of the specified 3x3 matrix

Description

Negate all elements of a 3x3 matrix.

vmathSoaM3PrependScale_V

Prepend (pre-multiply) a scale transformation to a 3x3 matrix.

Definition

Arguments

```
scaleVec 3-D vector
mat 3x3 matrix
```

Return Values

The product of a scale transformation created from scaleVec and mat

Description

Pre-multiply a 3x3 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathSoaM3Print_V

Print a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

None

Description

Print a 3x3 matrix. Unlike the printing of vectors, the 3x3 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaM3Prints_V

Print a 3x3 matrix and an associated string identifier.

Definition

Arguments

mat 3x3 matrixname String printed with the 3x3 matrix

Return Values

None

Description

Print a 3x3 matrix and an associated string identifier. Unlike the printing of vectors, the 3x3 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaM3ScalarMul_V

Multiply a 3x3 matrix by a scalar.

Definition

Arguments

```
mat 3x3 matrix
scalar Scalar value
```

Return Values

Product of the specified 3x3 matrix and scalar

Description

Multiply a 3x3 matrix by a scalar.

vmathSoaM3Select_V

Conditionally select between two 3x3 matrices.

Definition

Arguments

mat03x3 matrixmat13x3 matrixselect1For each of

For each of the four word slots, this mask selects either the 3x3 matrix in the corresponding slot of mat0 or the 3x3 matrix in the corresponding slot of mat1. A 0 bit selects from mat0 whereas a 1 bit selects from mat1. Identical bits should be

set for each word of the mask.

Return Values

Each slot of the result is equal to the 3x3 matrix at the corresponding slot of mat0 or mat1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of mat0 and a value of 0xFFFFFFFF selects the slot of mat1

Description

Conditionally select one of the 3x3 matrices at each of the corresponding slots of mat0 or mat1.

Notes

This function uses a conditional select instruction to avoid a branch.

vmathSoaM3SetCol0_V

Set column 0 of a 3x3 matrix.

Definition

Arguments

```
result An output 3x3 matrix col0 3-D vector
```

Return Values

None

Description

Set column 0 of a 3x3 matrix.

vmathSoaM3SetCol1_V

Set column 1 of a 3x3 matrix.

Definition

Arguments

```
result An output 3x3 matrix coll 3-D vector
```

Return Values

None

Description

Set column 1 of a 3x3 matrix.

vmathSoaM3SetCol2_V

Set column 2 of a 3x3 matrix.

Definition

Arguments

```
result An output 3x3 matrix col2 3-D vector
```

Return Values

None

Description

Set column 2 of a 3x3 matrix.

vmathSoaM3SetCol_V

Set the column of a 3x3 matrix referred to by the specified index.

Definition

Arguments

result An output 3x3 matrix
col Index, expected in the range 0-2
vec 3-D vector

Return Values

None

Description

Set the column of a 3x3 matrix referred to by the specified index.

vmathSoaM3SetElem_V

Set the element of a 3x3 matrix referred to by column and row indices.

Definition

Arguments

result An output 3x3 matrix

col Index, expected in the range 0-2

row Index, expected in the range 0-2

val Scalar value

Return Values

None

Description

Set the element of a 3x3 matrix referred to by column and row indices.

vmathSoaM3SetRow_V

Set the row of a 3x3 matrix referred to by the specified index.

Definition

Arguments

result An output 3x3 matrix
row Index, expected in the range 0-2
vec 3-D vector

Return Values

None

Description

Set the row of a 3x3 matrix referred to by the specified index.

vmathSoaM3Sub_V

Subtract a 3x3 matrix from another 3x3 matrix.

Definition

Arguments

mat0 3x3 matrix
mat1 3x3 matrix

Return Values

Difference of the specified 3x3 matrices

Description

Subtract a 3x3 matrix from another 3x3 matrix.

vmathSoaM3Transpose_V

Transpose of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

mat transposed

Description

Compute the transpose of a 3x3 matrix.

vmathSoaM4AbsPerElem_V

Compute the absolute value of a 4x4 matrix per element.

Definition

Arguments

mat 4x4 matrix

Return Values

4x4 matrix in which each element is the absolute value of the corresponding element of the specified 4x4 matrix

Description

Compute the absolute value of each element of a 4x4 matrix.

vmathSoaM4Add_V

Add two 4x4 matrices.

Definition

Arguments

mat0 4x4 matrix
mat1 4x4 matrix

Return Values

Sum of the specified 4x4 matrices

Description

Add two 4x4 matrices.

vmathSoaM4AffineInverse_V

Compute the inverse of a 4x4 matrix, which is expected to be an affine matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Inverse of the specified 4x4 matrix

Description

Naming the upper-left 3x3 submatrix of the specified 4x4 matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is inverse(M), whose translation vector is -inverse(M)*v, and whose bottom row is (0,0,0,1).

Notes

This can be used to achieve better performance than a general inverse when the specified 4x4 matrix meets the given restrictions. The result is unpredictable when the determinant of mat is equal to or near 0.

vmathSoaM4AppendScale_V

Append (post-multiply) a scale transformation to a 4x4 matrix.

Definition

Arguments

```
mat      4x4 matrix
scaleVec      3-D vector
```

Return Values

The product of mat and a scale transformation created from scaleVec

Description

Post-multiply a 4x4 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathSoaM4Determinant_V

Determinant of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

The determinant of mat

Description

Compute the determinant of a 4x4 matrix.

vmathSoaM4Get4Aos_V

Extract four AoS 4x4 matrices.

Definition

Arguments

```
mat4x4 matrixresult0An output AoS 4x4 matrixresult1An output AoS 4x4 matrixresult2An output AoS 4x4 matrixresult3An output AoS 4x4 matrix
```

Return Values

None

Description

Extract four AoS 4x4 matrices from four slots of an SoA 4x4 matrix (transpose the data format).

vmathSoaM4GetCoI0_V

Get column 0 of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Column 0

Description

Get column 0 of a 4x4 matrix.

vmathSoaM4GetCoI1_V

Get column 1 of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Column 1

Description

Get column 1 of a 4x4 matrix.

vmathSoaM4GetCol2_V

Get column 2 of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Column 2

Description

Get column 2 of a 4x4 matrix.

vmathSoaM4GetCol3_V

Get column 3 of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Column 3

Description

Get column 3 of a 4x4 matrix.

vmathSoaM4GetCol_V

Get the column of a 4x4 matrix referred to by the specified index.

Definition

Arguments

```
mat 4x4 matrix
col Index, expected in the range 0-3
```

Return Values

The column referred to by the specified index

Description

Get the column of a 4x4 matrix referred to by the specified index.

vmathSoaM4GetElem_V

Get the element of a 4x4 matrix referred to by column and row indices.

Definition

Arguments

```
mat 4x4 matrixcol Index, expected in the range 0-3row Index, expected in the range 0-3
```

Return Values

Element selected by col and row

Description

Get the element of a 4x4 matrix referred to by column and row indices.

vmathSoaM4GetRow_V

Get the row of a 4x4 matrix referred to by the specified index.

Definition

Arguments

```
mat 4x4 matrix
row Index, expected in the range 0-3
```

Return Values

The row referred to by the specified index

Description

Get the row of a 4x4 matrix referred to by the specified index.

vmathSoaM4GetTranslation_V

Get the translation component of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Translation component

Description

Get the translation component of a 4x4 matrix.

vmathSoaM4GetUpper3x3_V

Get the upper-left 3x3 submatrix of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Upper-left 3x3 submatrix

Description

Get the upper-left 3x3 submatrix of a 4x4 matrix.

vmathSoaM4Inverse_V

Compute the inverse of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Inverse of mat

Description

Compute the inverse of a 4x4 matrix.

Notes

Result is unpredictable when the determinant of mat is equal to or near 0.

vmathSoaM4MakeFrom4Aos_V

Insert four AoS 4x4 matrices.

Definition

Arguments

```
mat0 AoS 4x4 matrixmat1 AoS 4x4 matrixmat2 AoS 4x4 matrixmat3 AoS 4x4 matrix
```

Return Values

The constructed 4x4 matrix

Description

Insert four AoS 4x4 matrices into four slots of an SoA 4x4 matrix (transpose the data format).

vmathSoaM4MakeFromAos_V

Replicate an AoS 4x4 matrix.

Definition

Arguments

mat AoS 4x4 matrix

Return Values

The constructed 4x4 matrix

Description

Replicate an AoS 4x4 matrix in all four slots of an SoA 4x4 matrix.

vmathSoaM4MakeFromCols_V

Construct a 4x4 matrix containing the specified columns.

Definition

Arguments

```
co10 4-D vectorco11 4-D vectorco12 4-D vectorco13 4-D vector
```

Return Values

The 4x4 matrix that contains the specified columns

Description

Construct a 4x4 matrix containing the specified columns.

vmathSoaM4MakeFromM3V3_V

Construct a 4x4 matrix from a 3x3 matrix and a 3-D vector.

Definition

Arguments

```
mat 3x3 matrix
translateVec 3-D vector
```

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix whose upper 3x3 elements are equal to the 3x3 matrix argument, whose translation component is equal to the 3-D vector argument, and whose bottom row is (0,0,0,1).

vmathSoaM4MakeFromQV3_V

Construct a 4x4 matrix from a unit-length quaternion and a 3-D vector.

Definition

Arguments

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix whose upper-left 3x3 submatrix is a rotation matrix converted from the unit-length quaternion argument, whose translation component is equal to the 3-D vector argument, and whose bottom row is (0,0,0,1).

vmathSoaM4MakeFromScalar_V

Set all elements of a 4x4 matrix to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix with all elements set to the scalar value argument.

vmathSoaM4MakeFromT3_V

Construct a 4x4 matrix from a 3x4 transformation matrix.

Definition

Arguments

mat 3x4 transformation matrix

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix whose upper 3x4 elements are equal to the 3x4 transformation matrix argument and whose bottom row is equal to (0,0,0,1).

vmathSoaM4MakeFrustum_V

Construct a perspective projection matrix based on frustum.

Definition

Arguments

```
leftScalar valuerightScalar valuebottomScalar valuetopScalar valuezNearScalar valuezFarScalar value
```

Return Values

The constructed 4x4 matrix

Description

Construct a perspective projection matrix based on frustum, equal to:

```
 2*z \text{Near}/(\text{right-left}) \quad 0 \qquad (\text{right+left})/(\text{right-left}) \quad 0 \\ 0 \qquad 2*z \text{Near}/(\text{top-bottom}) \quad (\text{top+bottom})/(\text{top-bottom}) \quad 0 \\ 0 \qquad 0 \qquad -(z \text{Far}+z \text{Near})/(z \text{Far}-z \text{Near}) \\ -2*z \text{Far}*z \text{Near}/(z \text{Far}-z \text{Near}) \\ 0 \qquad 0 \qquad -1 \qquad 0 \ .
```

vmathSoaM4MakeIdentity_V

Construct an identity 4x4 matrix.

Definition

#include <vectormath/c/vectormath_soa_v.h>
static inline VmathSoaMatrix4 vmathSoaM4MakeIdentity_V();

Arguments

None

Return Values

The constructed 4x4 matrix

Description

Construct an identity 4x4 matrix in which non-diagonal elements are zero and diagonal elements are 1.

vmathSoaM4MakeLookAt_V

Construct viewing matrix based on eye position, position looked at, and up direction.

Definition

Arguments

```
eyePos 3-D pointlookAtPos 3-D pointupVec 3-D vector
```

Return Values

The constructed 4x4 matrix

Description

Construct the inverse of a coordinate frame that is centered at the eye position, with z axis directed away from lookAtPos, and y axis oriented to best match the up direction.

vmathSoaM4MakeOrthographic_V

Construct an orthographic projection matrix.

Definition

Arguments

Return Values

The constructed 4x4 matrix

Description

Construct an orthographic projection matrix, equal to

vmathSoaM4MakePerspective_V

Construct a perspective projection matrix.

Definition

Arguments

```
fovyRadiansScalar valueaspectScalar valuezNearScalar valuezFarScalar value
```

Return Values

The constructed 4x4 matrix

Description

Construct a perspective projection matrix, equal to:

vmathSoaM4MakeRotationAxis_V

Construct a 4x4 matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

vmathSoaM4MakeRotationQ_V

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

A 4x4 matrix that applies the same rotation as unitQuat

Description

Construct a 4x4 matrix that applies the same rotation as the specified unit-length quaternion.

vmathSoaM4MakeRotationX_V

Construct a 4x4 matrix to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the x axis by the specified radians angle.

vmathSoaM4MakeRotationY_V

Construct a 4x4 matrix to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the y axis by the specified radians angle.

vmathSoaM4MakeRotationZ_V

Construct a 4x4 matrix to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the z axis by the specified radians angle.

vmathSoaM4MakeRotationZYX_V

Construct a 4x4 matrix to rotate around the x, y, and z axes.

Definition

Arguments

radiansXYZ 3-D vector

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

vmathSoaM4MakeScale_V

Construct a 4x4 matrix to perform scaling.

Definition

Arguments

scaleVec 3-D vector

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

vmathSoaM4MakeTranslation_V

Construct a 4x4 matrix to perform translation.

Definition

Arguments

translateVec 3-D vector

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to perform translation, which is an identity matrix except for the translation component, with coordinates equal to those in *translateVec*.

vmathSoaM4Mul_V

Multiply two 4x4 matrices.

Definition

Arguments

```
mat0 4x4 matrix
mat1 4x4 matrix
```

Return Values

Product of the specified 4x4 matrices

Description

Multiply two 4x4 matrices.

vmathSoaM4MuIP3_V

Multiply a 4x4 matrix by a 3-D point.

Definition

Arguments

```
mat 4x4 matrix
pnt 3-D point
```

Return Values

Product of the specified 4x4 matrix and 3-D point

Description

Multiply a 4x4 matrix by a 3-D point treated as if it were a 4-D vector with the w element equal to 1.

vmathSoaM4MulPerElem_V

Multiply two 4x4 matrices per element.

Definition

Arguments

```
mat0 4x4 matrix
mat1 4x4 matrix
```

Return Values

4x4 matrix in which each element is the product of the corresponding elements of the specified 4x4 matrices

Description

Multiply two 4x4 matrices element by element.

vmathSoaM4MuIT3_V

Multiply a 4x4 matrix by a 3x4 transformation matrix.

Definition

Arguments

```
mat 4x4 matrix
tfrm 3x4 transformation matrix
```

Return Values

Product of the specified 4x4 matrix and 3x4 transformation matrix

Description

Multiply a 4x4 matrix by a 3x4 transformation matrix treated as if it were a 4x4 matrix with the bottom row equal to (0,0,0,1).

vmathSoaM4MuIV3_V

Multiply a 4x4 matrix by a 3-D vector.

Definition

Arguments

```
mat 4x4 matrix
vec 3-D vector
```

Return Values

Product of the specified 4x4 matrix and 3-D vector

Description

Multiply a 4x4 matrix by a 3-D vector treated as if it were a 4-D vector with the w element equal to 0.

vmathSoaM4MuIV4_V

Multiply a 4x4 matrix by a 4-D vector.

Definition

Arguments

```
mat 4x4 matrix
vec 4-D vector
```

Return Values

Product of the specified 4x4 matrix and 4-D vector

Description

Multiply a 4x4 matrix by a 4-D vector.

vmathSoaM4Neg_V

Negate all elements of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

4x4 matrix containing negated elements of the specified 4x4 matrix

Description

Negate all elements of a 4x4 matrix.

vmathSoaM4OrthoInverse_V

Compute the inverse of a 4x4 matrix, which is expected to be an affine matrix with an orthogonal upper-left 3x3 submatrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Inverse of the specified 4x4 matrix

Description

Naming the upper-left 3x3 submatrix of the specified 4x4 matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is transpose(M), whose translation vector is -transpose(M)*v, and whose bottom row is (0,0,0,1).

Notes

This can be used to achieve better performance than a general inverse when the specified 4x4 matrix meets the given restrictions.

vmathSoaM4PrependScale_V

Prepend (pre-multiply) a scale transformation to a 4x4 matrix.

Definition

Arguments

```
scaleVec 3-D vector
mat 4x4 matrix
```

Return Values

The product of a scale transformation created from scaleVec and mat

Description

Pre-multiply a 4x4 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathSoaM4Print_V

Print a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

None

Description

Print a 4x4 matrix. Unlike the printing of vectors, the 4x4 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaM4Prints_V

Print a 4x4 matrix and an associated string identifier.

Definition

Arguments

mat 4x4 matrix

name String printed with the 4x4 matrix

Return Values

None

Description

Print a 4x4 matrix and an associated string identifier. Unlike the printing of vectors, the 4x4 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaM4ScalarMul_V

Multiply a 4x4 matrix by a scalar.

Definition

Arguments

```
mat 4x4 matrix
scalar Scalar value
```

Return Values

Product of the specified 4x4 matrix and scalar

Description

Multiply a 4x4 matrix by a scalar.

vmathSoaM4Select_V

Conditionally select between two 4x4 matrices.

Definition

Arguments

mat0 4x4 matrix
mat1 4x4 matrix
select1 For each of

For each of the four word slots, this mask selects either the 4x4 matrix in the corresponding slot of mat0 or the 4x4 matrix in the corresponding slot of mat1. A

0 bit selects from mat 0 whereas a 1 bit selects from mat 1. Identical bits should be

set for each word of the mask.

Return Values

Each slot of the result is equal to the 4x4 matrix at the corresponding slot of mat0 or mat1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of mat0 and a value of 0xFFFFFFFF selects the slot of mat1

Description

Conditionally select one of the 4x4 matrices at each of the corresponding slots of mat0 or mat1.

Notes

This function uses a conditional select instruction to avoid a branch.

vmathSoaM4SetCol0_V

Set column 0 of a 4x4 matrix.

Definition

Arguments

```
result An output 4x4 matrix col0 4-D vector
```

Return Values

None

Description

Set column 0 of a 4x4 matrix.

vmathSoaM4SetCol1_V

Set column 1 of a 4x4 matrix.

Definition

Arguments

result An output 4x4 matrix coll 4-D vector

Return Values

None

Description

Set column 1 of a 4x4 matrix.

vmathSoaM4SetCol2_V

Set column 2 of a 4x4 matrix.

Definition

Arguments

result An output 4x4 matrix col2 4-D vector

Return Values

None

Description

Set column 2 of a 4x4 matrix.

vmathSoaM4SetCol3_V

Set column 3 of a 4x4 matrix.

Definition

Arguments

result An output 4x4 matrix col3 4-D vector

Return Values

None

Description

Set column 3 of a 4x4 matrix.

vmathSoaM4SetCol_V

Set the column of a 4x4 matrix referred to by the specified index.

Definition

Arguments

result An output 4x4 matrix
col Index, expected in the range 0-3
vec 4-D vector

Return Values

None

Description

Set the column of a 4x4 matrix referred to by the specified index.

vmathSoaM4SetElem_V

Set the element of a 4x4 matrix referred to by column and row indices.

Definition

Arguments

result An output 4x4 matrix

col Index, expected in the range 0-3

row Index, expected in the range 0-3

val Scalar value

Return Values

None

Description

Set the element of a 4x4 matrix referred to by column and row indices.

vmathSoaM4SetRow V

Set the row of a 4x4 matrix referred to by the specified index.

Definition

Arguments

result An output 4x4 matrix
row Index, expected in the range 0-3
vec 4-D vector

Return Values

None

Description

Set the row of a 4x4 matrix referred to by the specified index.

vmathSoaM4SetTranslation_V

Set translation component.

Definition

Arguments

result An output 4x4 matrix translateVec 3-D vector

Return Values

None

Description

Set the translation component of a 4x4 matrix equal to the specified 3-D vector.

Notes

This function does not change the bottom row elements.

vmathSoaM4SetUpper3x3_V

Set the upper-left 3x3 submatrix.

Definition

Arguments

```
result An output 4x4 matrix mat3 3x3 matrix
```

Return Values

None

Description

Set the upper-left 3x3 submatrix elements of a 4x4 matrix equal to the specified 3x3 matrix.

Notes

This function does not change the bottom row elements.

vmathSoaM4Sub_V

Subtract a 4x4 matrix from another 4x4 matrix.

Definition

Arguments

```
mat0 4x4 matrix
mat1 4x4 matrix
```

Return Values

Difference of the specified 4x4 matrices

Description

Subtract a 4x4 matrix from another 4x4 matrix.

vmathSoaM4Transpose_V

Transpose of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

mat transposed

Description

Compute the transpose of a 4x4 matrix.

Transformation Functions (SoA, by value)

vmathSoaT3AbsPerElem_V

Compute the absolute value of a 3x4 transformation matrix per element.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

3x4 transformation matrix in which each element is the absolute value of the corresponding element of the specified 3x4 transformation matrix

Description

Compute the absolute value of each element of a 3x4 transformation matrix.

vmathSoaT3AppendScale_V

Append (post-multiply) a scale transformation to a 3x4 transformation matrix.

Definition

Arguments

```
tfrm 3x4 transformation matrix scaleVec 3-D vector
```

Return Values

The product of tfrm and a scale transformation created from scaleVec

Description

Post-multiply a 3x4 transformation matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathSoaT3Get4Aos_V

Extract four AoS 3x4 transformation matrices.

Definition

Arguments

```
tfrm3x4 transformation matrixresult0An output AoS 3x4 transformation matrixresult1An output AoS 3x4 transformation matrixresult2An output AoS 3x4 transformation matrixresult3An output AoS 3x4 transformation matrix
```

Return Values

None

Description

Extract four AoS 3x4 transformation matrices from four slots of an SoA 3x4 transformation matrix (transpose the data format).

vmathSoaT3GetCoI0_V

Get column 0 of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Column 0

Description

Get column 0 of a 3x4 transformation matrix.

vmathSoaT3GetCoI1_V

Get column 1 of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Column 1

Description

Get column 1 of a 3x4 transformation matrix.

vmathSoaT3GetCoI2_V

Get column 2 of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Column 2

Description

Get column 2 of a 3x4 transformation matrix.

vmathSoaT3GetCoI3_V

Get column 3 of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Column 3

Description

Get column 3 of a 3x4 transformation matrix.

vmathSoaT3GetCol_V

Get the column of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

```
tfrm 3x4 transformation matrix col Index, expected in the range 0-3
```

Return Values

The column referred to by the specified index

Description

Get the column of a 3x4 transformation matrix referred to by the specified index.

vmathSoaT3GetElem_V

Get the element of a 3x4 transformation matrix referred to by column and row indices.

Definition

Arguments

```
tfrm 3x4 transformation matrix
col Index, expected in the range 0-3
row Index, expected in the range 0-2
```

Return Values

Element selected by col and row

Description

Get the element of a 3x4 transformation matrix referred to by column and row indices.

vmathSoaT3GetRow_V

Get the row of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

tfrm 3x4 transformation matrix row Index, expected in the range 0-2

Return Values

The row referred to by the specified index

Description

Get the row of a 3x4 transformation matrix referred to by the specified index.

vmathSoaT3GetTranslation_V

Get the translation component of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Translation component

Description

Get the translation component of a 3x4 transformation matrix.

vmathSoaT3GetUpper3x3_V

Get the upper-left 3x3 submatrix of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Upper-left 3x3 submatrix

Description

Get the upper-left 3x3 submatrix of a 3x4 transformation matrix.

vmathSoaT3Inverse_V

Inverse of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Inverse of tfrm

Description

Compute the inverse of a 3x4 transformation matrix.

Notes

Result is unpredictable when the determinant of the left 3x3 submatrix is equal to or near 0.

vmathSoaT3MakeFrom4Aos_V

Insert four AoS 3x4 transformation matrices.

Definition

Arguments

```
tfrm0 AoS 3x4 transformation matrix
tfrm1 AoS 3x4 transformation matrix
tfrm2 AoS 3x4 transformation matrix
tfrm3 AoS 3x4 transformation matrix
```

Return Values

The constructed 3x4 transformation matrix

Description

Insert four AoS 3x4 transformation matrices into four slots of an SoA 3x4 transformation matrix (transpose the data format).

vmathSoaT3MakeFromAos_V

Replicate an AoS 3x4 transformation matrix.

Definition

Arguments

tfrm AoS 3x4 transformation matrix

Return Values

The constructed 3x4 transformation matrix

Description

Replicate an AoS 3x4 transformation matrix in all four slots of an SoA 3x4 transformation matrix.

vmathSoaT3MakeFromCols_V

Construct a 3x4 transformation matrix containing the specified columns.

Definition

Arguments

```
co10 3-D vectorco11 3-D vectorco12 3-D vectorco13 3-D vector
```

Return Values

The 3x4 transformation matrix that contains the specified columns

Description

Construct a 3x4 transformation matrix containing the specified columns.

vmathSoaT3MakeFromM3V3_V

Construct a 3x4 transformation matrix from a 3x3 matrix and a 3-D vector.

Definition

Arguments

```
tfrm 3x3 matrix translateVec 3-D vector
```

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix whose upper 3x3 elements are equal to the 3x3 matrix argument and whose translation component is equal to the 3-D vector argument.

vmathSoaT3MakeFromQV3_V

Construct a 3x4 transformation matrix from a unit-length quaternion and a 3-D vector.

Definition

Arguments

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix whose upper-left 3x3 submatrix is a rotation matrix converted from the unit-length quaternion argument and whose translation component is equal to the 3-D vector argument.

vmathSoaT3MakeFromScalar_V

Set all elements of a 3x4 transformation matrix to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix with all elements set to the scalar value argument.

vmathSoaT3MakeIdentity_V

Construct an identity 3x4 transformation matrix.

Definition

#include <vectormath/c/vectormath_soa_v.h>
static inline VmathSoaTransform3 vmathSoaT3MakeIdentity_V();

Arguments

None

Return Values

The constructed 3x4 transformation matrix

Description

Construct an identity 3x4 transformation matrix in which non-diagonal elements are zero and diagonal elements are 1.

vmathSoaT3MakeRotationAxis_V

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector by the specified radians angle.

vmathSoaT3MakeRotationQ_V

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

A 3x4 transformation matrix that applies the same rotation as unitQuat

Description

Construct a 3x4 transformation matrix that applies the same rotation as the specified unit-length quaternion.

vmathSoaT3MakeRotationX_V

Construct a 3x4 transformation matrix to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the x axis by the specified radians angle.

vmathSoaT3MakeRotationY_V

Construct a 3x4 transformation matrix to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the y axis by the specified radians angle.

vmathSoaT3MakeRotationZ_V

Construct a 3x4 transformation matrix to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the z axis by the specified radians angle.

vmathSoaT3MakeRotationZYX_V

Construct a 3x4 transformation matrix to rotate around the x, y, and z axes.

Definition

Arguments

radiansXYZ 3-D vector

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

vmathSoaT3MakeScale_V

Construct a 3x4 transformation matrix to perform scaling.

Definition

Arguments

scaleVec 3-D vector

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

vmathSoaT3MakeTranslation_V

Construct a 3x4 transformation matrix to perform translation.

Definition

Arguments

translateVec 3-D vector

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to perform translation, which is an identity matrix except for the translation component, with coordinates equal to those in <code>translateVec</code>.

vmathSoaT3Mul_V

Multiply two 3x4 transformation matrices.

Definition

Arguments

```
tfrm0 3x4 transformation matrixtfrm1 3x4 transformation matrix
```

Return Values

Product of the specified 3x4 transformation matrices

Description

Multiply two 3x4 transformation matrices.

vmathSoaT3MuIP3_V

Multiply a 3x4 transformation matrix by a 3-D point.

Definition

Arguments

```
tfrm 3x4 transformation matrix pnt 3-D point
```

Return Values

Product of the specified 3x4 transformation matrix and 3-D point

Description

Applies the 3x3 upper-left submatrix and the translation component of a 3x4 transformation matrix to a 3-D point.

vmathSoaT3MulPerElem_V

Multiply two 3x4 transformation matrices per element.

Definition

Arguments

```
tfrm0 3x4 transformation matrixtfrm1 3x4 transformation matrix
```

Return Values

3x4 transformation matrix in which each element is the product of the corresponding elements of the specified 3x4 transformation matrices

Description

Multiply two 3x4 transformation matrices element by element.

vmathSoaT3MuIV3_V

Multiply a 3x4 transformation matrix by a 3-D vector.

Definition

Arguments

```
tfrm 3x4 transformation matrix vec 3-D vector
```

Return Values

Product of the specified 3x4 transformation matrix and 3-D vector

Description

Applies the 3x3 upper-left submatrix (but not the translation component) of a 3x4 transformation matrix to a 3-D vector.

vmathSoaT3OrthoInverse_V

Compute the inverse of a 3x4 transformation matrix, expected to have an orthogonal upper-left 3x3 submatrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Inverse of the specified 3x4 transformation matrix

Description

Naming the upper-left 3x3 submatrix of the specified 3x4 transformation matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is transpose(M), and whose translation vector is -transpose(M)*v.

Notes

This can be used to achieve better performance than a general inverse when the specified 3x4 transformation matrix meets the given restrictions.

vmathSoaT3PrependScale_V

Prepend (pre-multiply) a scale transformation to a 3x4 transformation matrix.

Definition

Arguments

```
scaleVec 3-D vector
tfrm 3x4 transformation matrix
```

Return Values

The product of a scale transformation created from <code>scaleVec</code> and <code>tfrm</code>

Description

Pre-multiply a 3x4 transformation matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

vmathSoaT3Print_V

Print a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

None

Description

Print a 3x4 transformation matrix. Unlike the printing of vectors, the 3x4 transformation matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaT3Prints_V

Print a 3x4 transformation matrix and an associated string identifier.

Definition

Arguments

tfrm 3x4 transformation matrix

name String printed with the 3x4 transformation matrix

Return Values

None

Description

Print a 3x4 transformation matrix and an associated string identifier. Unlike the printing of vectors, the 3x4 transformation matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

vmathSoaT3Select_V

Conditionally select between two 3x4 transformation matrices.

Definition

Arguments

tfrm0 3x4 transformation matrix tfrm1 3x4 transformation matrix select1 For each of the four words

For each of the four word slots, this mask selects either the 3x4 transformation matrix in the corresponding slot of tfrm0 or the 3x4 transformation matrix in the corresponding slot of tfrm1. A 0 bit selects from tfrm0 whereas a 1 bit selects from tfrm1. Identical bits should be set for each word of the mask.

Return Values

Description

Conditionally select one of the 3x4 transformation matrices at each of the corresponding slots of tfrm0 or tfrm1.

Notes

This function uses a conditional select instruction to avoid a branch.

vmathSoaT3SetCoI0_V

Set column 0 of a 3x4 transformation matrix.

Definition

Arguments

result An output 3x4 transformation matrix col0 3-D vector

Return Values

None

Description

Set column 0 of a 3x4 transformation matrix.

vmathSoaT3SetCoI1_V

Set column 1 of a 3x4 transformation matrix.

Definition

Arguments

```
result An output 3x4 transformation matrix coll 3-D vector
```

Return Values

None

Description

Set column 1 of a 3x4 transformation matrix.

vmathSoaT3SetCol2_V

Set column 2 of a 3x4 transformation matrix.

Definition

Arguments

```
result An output 3x4 transformation matrix col2 3-D vector
```

Return Values

None

Description

Set column 2 of a 3x4 transformation matrix.

vmathSoaT3SetCol3_V

Set column 3 of a 3x4 transformation matrix.

Definition

Arguments

```
result An output 3x4 transformation matrix col3 3-D vector
```

Return Values

None

Description

Set column 3 of a 3x4 transformation matrix.

vmathSoaT3SetCol_V

Set the column of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

result An output 3x4 transformation matrix col Index, expected in the range 0-3 vec 3-D vector

Return Values

None

Description

Set the column of a 3x4 transformation matrix referred to by the specified index.

vmathSoaT3SetElem_V

Set the element of a 3x4 transformation matrix referred to by column and row indices.

Definition

Arguments

result An output 3x4 transformation matrix col Index, expected in the range 0-3
row Index, expected in the range 0-2
val Scalar value

Return Values

None

Description

Set the element of a 3x4 transformation matrix referred to by column and row indices.

vmathSoaT3SetRow_V

Set the row of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

result An output 3x4 transformation matrix row Index, expected in the range 0-2 vec 4-D vector

Return Values

None

Description

Set the row of a 3x4 transformation matrix referred to by the specified index.

vmathSoaT3SetTranslation_V

Set translation component.

Definition

Arguments

result An output 3x4 transformation matrix translateVec 3-D vector

Return Values

None

Description

Set the translation component of a 3x4 transformation matrix equal to the specified 3-D vector.

vmathSoaT3SetUpper3x3_V

Set the upper-left 3x3 submatrix.

Definition

Arguments

result An output 3x4 transformation matrix mat3 3x3 matrix

Return Values

None

Description

Set the upper-left 3x3 submatrix elements of a 3x4 transformation matrix equal to the specified 3x3 matrix.