Lab2MD

April 9, 2025

```
[3]: # Data manipulation and visualization
     import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     # Model development
     from sklearn.model_selection import train_test_split, cross_val_score,_
      →GridSearchCV
     from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
     from sklearn.pipeline import Pipeline
     from sklearn.compose import ColumnTransformer
     from sklearn.impute import SimpleImputer
     # Models
     from sklearn.linear_model import LogisticRegression
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.tree import plot_tree
     # Model evaluation
     from sklearn.metrics import (
         accuracy_score,
         precision_score,
        recall_score,
         f1_score,
         classification_report,
         confusion_matrix
     )
     # For displaying results nicely in the notebook
     from IPython.display import display, HTML
     # Set visualization style
     plt.style.use('seaborn-v0_8-whitegrid')
     sns.set_palette('viridis')
```

```
# For reproducibility
import random
random.seed(42)
np.random.seed(42)
```

```
[4]: # Read the student performance dataset
     df = pd.read_csv('student_performance_data.csv')
     # Remove StudentID column from the dataset, irrelevant for what I am finding
     df = df.drop(columns=['StudentID'])
     # Basic info about the dataset
     print("Dataset shape:", df.shape)
     print("\nFirst 5 rows of the dataset:")
     display(df.head())
     # Descriptive statistics
     print("\nDescriptive statistics:")
     display(df.describe())
     # Check for missing values
     print("\nMissing values per column:")
     display(df.isnull().sum())
     # Display information about data types and non-null counts
     print("\nDataset information:")
     display(df.info())
```

Dataset shape: (500, 8)

First 5 rows of the dataset:

	Gender	Age	StudyHoursPerWeek	AttendanceRate	GPA	Major	\
0	Male	24	37	90.75	3.47	Arts	
1	Female	22	37	74.90	2.32	Education	
2	Male	22	10	53.36	2.38	Business	
3	Male	24	10	70.26	3.46	Science	
4	Male	18	19	74.87	2.31	Education	

PartTimeJob ExtraCurricularActivities

0	Yes	No
1	No	No
2	No	No
3	Yes	No
4	Yes	No

Descriptive statistics:

	Age	StudyHoursPerWeek	AttendanceRate	GPA
count	500.000000	500.000000	500.000000	500.00000
mean	20.956000	19.876000	74.990380	2.98516
std	2.000517	11.471347	14.565917	0.56362
min	18.000000	1.000000	50.010000	2.00000
25%	19.000000	10.000000	62.607500	2.48750
50%	21.000000	20.500000	75.730000	3.00000
75%	23.000000	30.000000	87.220000	3.48000
max	24.000000	39.000000	99.970000	3.99000

Missing values per column:

Gender	0
Age	0
StudyHoursPerWeek	0
AttendanceRate	0
GPA	0
Major	0
PartTimeJob	0
ExtraCurricularActivities	0

dtype: int64

Dataset information:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Gender	500 non-null	object
1	Age	500 non-null	int64
2	StudyHoursPerWeek	500 non-null	int64
3	AttendanceRate	500 non-null	float64
4	GPA	500 non-null	float64
5	Major	500 non-null	object
6	PartTimeJob	500 non-null	object
7	ExtraCurricularActivities	500 non-null	object

dtypes: float64(2), int64(2), object(4)

memory usage: 31.4+ KB

None

```
[5]: # Step 1: Create binary target based on GPA
gpa_column = 'GPA'
df['target'] = (df[gpa_column] >= 3.2).astype(int)

# Display the distribution of the target variable
print("Target distribution:")
```

```
print(df['target'].value_counts())
print(f"Percentage of students with GPA 3.2: {df['target'].mean()*100:.2f}%")
# Step 2: Prepare the data
# Exclude GPA and target from features
X = df.drop(columns=[gpa_column, 'target'])
y = df['target']
# Handle categorical features
categorical_features = X.select_dtypes(include=['object', 'category']).columns.
 →tolist()
numerical_features = X.select_dtypes(include=['int64', 'float64']).columns.
 otolist()
# Create preprocessing pipelines
numeric_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='median')),
    ('scaler', StandardScaler())
])
categorical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')),
    ('onehot', OneHotEncoder(handle_unknown='ignore'))
])
# Combine preprocessing steps
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numeric_transformer, numerical_features),
        ('cat', categorical_transformer, categorical_features)
    ])
# Step 3: Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
 →random_state=42, stratify=y)
# Step 4: Build the models
# Logistic Regression
log_reg_pipeline = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('classifier', LogisticRegression(max_iter=1000, random_state=42))
])
# k-NN
knn_pipeline = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('classifier', KNeighborsClassifier(n_neighbors=5))
```

```
])
# Decision Tree
dt_pipeline = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('classifier', DecisionTreeClassifier(random_state=42))
])
# Dictionary of models
models = {
    'Logistic Regression': log_reg_pipeline,
    'k-Nearest Neighbors': knn_pipeline,
    'Decision Tree': dt_pipeline
}
# Step 5: Train and evaluate each model
results = {}
for name, model in models.items():
    print(f"\n{'-'*50}")
    print(f"Training and evaluating {name}...")
    # Train the model
    model.fit(X_train, y_train)
    # Make predictions
    y_pred = model.predict(X_test)
    # Calculate metrics
    accuracy = accuracy_score(y_test, y_pred)
    # Store results
    results[name] = {
        'accuracy': accuracy,
        'predictions': y_pred
    }
    # Print classification report
    print(f"\nClassification Report for {name}:")
    print(classification_report(y_test, y_pred))
# Create and display confusion matrix
    cm = confusion_matrix(y_test, y_pred)
    plt.figure(figsize=(8, 6))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
                xticklabels=['GPA < 3.2', 'GPA 3.2'],</pre>
                yticklabels=['GPA < 3.2', 'GPA
```

```
plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.title(f'Confusion Matrix - {name}')
    plt.tight_layout()
    plt.show()
# Step 6: Compare model performance
model_comparison = pd.DataFrame({
     'Model': list(results.keys()),
     'Accuracy': [results[model]['accuracy'] for model in results]
})
# Sort by accuracy
model_comparison = model_comparison.sort_values('Accuracy', ascending=False).
 →reset_index(drop=True)
# Display comparison
print("\nModel Comparison:")
display(model_comparison)
# Visualize model comparison
plt.figure(figsize=(10, 6))
sns.barplot(x='Model', y='Accuracy', data=model_comparison)
plt.title('Model Accuracy Comparison')
plt.ylim(0, 1)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
Target distribution:
target
0
     300
     200
Name: count, dtype: int64
Percentage of students with GPA 3.2: 40.00%
Training and evaluating Logistic Regression...
Classification Report for Logistic Regression:
              precision recall f1-score
                                              support
           0
                   0.60
                             0.88
                                       0.72
                                                   60
                   0.42
                             0.12
                                       0.19
                                                   40
           1
                                       0.58
                                                  100
   accuracy
                  0.51 0.50
                                       0.45
                                                  100
  macro avg
```

weighted avg 0.53 0.58 0.51 100

Training and evaluating k-Nearest Neighbors...

Classification Report for k-Nearest Neighbors:

	precision	recall	f1-score	support
0	0.57	0.70	0.63	60
1	0.31	0.20	0.24	40
accuracy			0.50	100
macro avg	0.44	0.45	0.43	100
weighted avg	0.46	0.50	0.47	100

Training and evaluating Decision Tree...

Classification Report for Decision Tree:

	precision	recall	f1-score	${ t support}$
0	0.58	0.52	0.55	60
1	0.38	0.45	0.41	40
accuracy			0.49	100
macro avg	0.48	0.48	0.48	100
weighted avg	0.50	0.49	0.49	100

Model Comparison:

	Model	Accuracy
0	Logistic Regression	0.58
1	k-Nearest Neighbors	0.50
2	Decision Tree	0.49

