Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Lista M 13 $15 \operatorname{stycznia} 2015 \,\mathrm{r.}^1$

M 13.1. 2 punkty Wykazać, że macierzowa norma spektralna, indukowana przez normę euklidesową wektorów $\|\cdot\|_2$, wyraża się wzorem

$$||A||_2 = \sqrt{\varrho(A^T A)},$$

gdzie promień spektralny $\varrho(A^TA)$ macierzy A^TA jest z definicji jej największą wartością własną.

M 13.2. I punkt Niech cond $(A) := \|A\|_p \|A^{-1}\|_p$ $(p \in \{1, 2, \infty\})$ oznacza p-ty wskaźnik uwarunkowania macierzy $A \in \mathbb{R}^{n \times n}$.

- a) Wykazać, że $cond(A) \ge 1$.
- b) Wykazać, że $\operatorname{cond}(AB) \leq \operatorname{cond}(A)\operatorname{cond}(B)$.

M 13.3. 1,5 punktu Niech $B = [b_{ij}] \in \mathbb{R}^{n \times n}$ będzie macierzą o elementach

$$b_{ii} = 1$$
 $(i = 1, 2, ..., n),$
 $b_{ij} = -1$ $(i < j),$
 $b_{ij} = 0$ $(i > j).$

Sprawdzić, że $\det B \ll \operatorname{cond}_{\infty}(B)$, gdzie $\operatorname{cond}_{\infty}(B) := \|B\|_{\infty} \|B^{-1}\|_{\infty}$. Jaki stąd wniosek?

M 13.4. I punkt Jak ocenimy uwarunkowanie układu Ax = b, o macierzy

$$A = \left[\begin{array}{cc} 1 & 1 + \varepsilon \\ 1 - \varepsilon & 1 \end{array} \right],$$

dla $0 < \varepsilon \le 0.01$?

M 13.5. I punkt Niech \tilde{x} będzie przybliżonym rozwiązaniem układu Ax = b, gdzie det $A \neq 0$, $b \neq \theta$. Niech $r := b - A\tilde{x}$ oznacza reszte. Wykazać, że wówczas zachodzą nierówności

$$\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\| \leqslant \operatorname{cond}(A) \frac{\|\boldsymbol{r}\|}{\|A\|}, \qquad \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \leqslant \operatorname{cond}(A) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|},$$

gdzie $\boldsymbol{x} := A^{-1}\boldsymbol{b}$ jest dokładnym rozwiązaniem.

M 13.6. 1 punkt Macierz

$$B = \begin{bmatrix} a_1 & c_1 & & & b_1 \\ b_2 & a_2 & c_2 & & \\ & \ddots & \ddots & \ddots & \\ & & b_{n-1} & a_{n-1} & c_{n-1} \\ c_n & & b_n & a_n \end{bmatrix},$$

różni się od trójprzekątniowej tylko obecnością narożnych elementów b_1 i c_n . Wyznaczyć rozkład trójkątny macierzy B, przy założeniu, że istnieje.

 $^{^{1}\,}$ wprowadzono drobną zmianę w treści M13.2 w dniu 18 stycznia 2015

- **M 13.7.** 1 punkt Załóżmy, że nieosobliwa macierz $A = [a_{ij}^{(1)}] \in \mathbb{R}^{n \times n}$ jest symetryczna, tj. $a_{ij}^{(1)} = a_{ji}^{(1)}$ dla $i, j = 1, 2, \ldots, n$. Załóżmy ponadto, że do rozwiązania układu równań liniowych $A\boldsymbol{x} = \boldsymbol{b}$ można zastosować metodę eliminacji bez wyboru elementów głównych.
 - zastosować metodę eliminacji bez wyboru elementów głównych. a) Wykazać, że wówczas wielkości $a_{ij}^{(k)}$, otrzymywane w tej metodzie kolejno dla $k=2,3,\ldots,n,$ są takie, że $a_{ij}^{(k)}=a_{ji}^{(k)}$ dla $i,j=k,k+1,\ldots,n.$
 - b) Wskazać, jak można wykorzystać ten fakt dla zmniejszenia kosztu metody eliminacji.
- **M 13.8.** 1 punkt Wykazać, że jeśli L jest macierzą trójkątną dolną z jedynkami na przekątnej głównej, to L^{-1} również jest macierzą tego typu.
- **M 13.9.** I punkt Niech $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ będzie macierzą dominującą przekątniowo, tj. taką, że

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \qquad (i = 1, 2, \dots, n).$$

Wykazać, że metoda eliminacji Gaussa bez wyboru elementów głównych zachowuje tę własność, tzn. że wszystkie macierze $A^{(k)}$ są dominujące przekątniowo. Wywnioskować stąd, że każda macierz dominująca przekątniowo jest nieosobliwa i posiada rozkład LU.

M 13.10. 1 punkt Wykazać, że jeśli dowolna norma macierzy B jest mniejsza od 1, to ciąg $\{x^{(k)}\}_{k=0}^{\infty}$ określony wzorem

$$x^{(k+1)} = Bx^{(k)} + c$$
 $(k = 0, 1, ...)$

jest zbieżny do pewnego wektora \boldsymbol{x}^* , niezależnie od wyboru $\boldsymbol{x}^{(0)}$, przy czym – przy naturalnym założeniu (jakim?) – zachodzi nierówność

$$\|\boldsymbol{x}^* - \boldsymbol{x}^{(k)}\| \le \|B\|^k \|\boldsymbol{x}^* - \boldsymbol{x}^{(0)}\| \qquad (k \ge 1).$$