Les 2-foncteurs de Mackey et de Green

Ivo Dell'Ambrogio

Colloque tournant du Réseau Thématique «Algèbre» CIRM Luminy, 13–15 mars 2024

Références:

- Paul Balmer et I.D. Mackey 2-functors and Mackey 2-motives. EMS MONOGRAPHS IN MATHEMATICS. EMS, Zürich (2020)
- Paul Balmer et I.D. Green equivalences in equivariant mathematics. MATH. ANN. (2021)
- Jun Maillard. A categorification of the Cartan-Eilenberg formula. ADV. MATH. (2022).
- I.D. Green 2-functors. TRANS. AMER. MATH. Soc. (2022)
- Paul Balmer et I.D. Cohomological Mackey 2-functors.
 J. INST. MATH. JUSSIEU (2022)
- I.D. An introduction to Mackey and Green 2-functors. arXiv:2305.01371 (2023)

Qu'est-ce que la théorie des représentations?

Au minimum : groupes finis agissant par transformations linéaires !

Pour G un groupe fini et k un corps ou anneau commutatif, on veut étudier la catégorie des kG-modules (à gauche, de type fini) et les applications kG-linéaires:

Aussi, dans le cas modulaire (non semi-simple):

la catégorie dérivée $D^b(mod kG)$, la category stable $\underline{mod}(kG)$.

Soit donc $\mathcal{M}(G)$ une des catégorie mod(kG), $D^b(mod kG)$, ou $\underline{mod}(kG)$.

Laissons varier G!

Une couche supplémentaire d'information 2-catégorique

• Les foncteurs de **restriction**, **induction** et **conjugaison** $(H \le G, g \in G)$:

$$\mathcal{M}(G)$$
}
 $Ind_{H}^{G} \left(\bigcup_{Res_{H}^{G}} Res_{H}^{G} \right)$
 $\mathcal{M}(H) \xrightarrow{Conj_{g}} \mathcal{M}({}^{g}H)$

- Les adjonctions Ind ⊢ Res ⊢ Ind
 (On a une ambijonction car l'index est fini et les catégories sont additives!)
- Isomorphismes naturels de conjugaison entre certains foncteurs, e.g.

$$conj_g: Conj_g \circ Res_H^G \xrightarrow{\simeq} Res_{\varepsilon_H}^G$$

• La formule de Mackey (for $K, L \leq G$):

$$Res_L^G \circ Ind_K^G \overset{\simeq}{\to} \bigoplus_{[g] \in L \backslash G/K} Ind_{L \cap {}^gK}^L \circ Conj_g \circ Res_{L^g \cap K}^K \,.$$

Axiomatization: les 2-foncteurs de Mackey

 gpd_f : la 2-catégorie des groupoïdes finis, foncteurs fidèles, isom. naturels ADD: la 2-catégorie des catégories et foncteurs additifs, transf. naturelles

Definition [Balmer-D. 2020]

Un 2-foncteur de Mackey (global) est un 2-functor

$$\mathcal{M}: (gpd_f)^{op} \longrightarrow ADD$$

satisfaisant les axiomes suivants:

- Additivité : $\mathcal{M}(G_1 \sqcup G_2) \xrightarrow{\sim} \mathcal{M}(G_1) \oplus \mathcal{M}(G_2)$ et $\mathcal{M}(\emptyset) \xrightarrow{\sim} 0$.
- ② Pour tout $i: H \to G$ fidèle, la "restriction" $i^* := \mathcal{M}(i): \mathcal{M}(G) \to \mathcal{M}(H)$ admet un adoint à gauche i_{ℓ} et un adjoint à droite i_{r} .
- Les adjonction de gauche et droite satisfont le Changement de Base.
- **1** Il existe un isomorphisme de foncteurs $i_{\ell} \cong i_r$ pour tout $i: H \to G$.

Pour la variante «locale», pour un G fixé: remplacer gpd_f avec $gpd_{f/G} \simeq G$ -set.

Commentaires sur les axiomes

Inspirés par:

- Les foncteur de Mackey ordinaires (en groupes abéliens) [Green, Dress 70s]
- Les dérivateurs additifs [Grothendieck 80s]
- Similaire et complémentaire aux $(\infty,1)$ -functors de Mackey de [Barwick '17]

Explications:

- Additivité 1: les groupoïdes se décomposent en groupes $G \simeq \bigsqcup_n G_n$
 - \leadsto la donnée du 2-foncteur \mathcal{M} est déterminée par son effet sur la 2-souscatégorie des groupes finis : les Res_H^G , $Cong_g$ (ou $Isos_{\varphi}$), et $cong_g$!
- **Induction 2:** comme pour les dérivateurs, les foncteurs de co/induction i_{ℓ} and i_r ne font vraiment pas partie des données.
- **Ambidexterité 4:** l'existence d'un iso $i_{\ell} \cong i_r$ quelconque suffit, ce qui est facile à vérifier dans les exemples!
 - Fait (théorème de rectification): les axiomes 1-4 impliquent l'existence d'isomorphismes canoniques θ_i : $i_\ell \cong i_r$ pour tout i, uniquement déterminés, satisfaisant des compatibilités en plus (pseudo-naturalité en i etc).

Changement de Base = formule de Mackey canonique

Axiome 3 de CB: un carré iso-comma (pseudo-pullback) γ dans gpd_f définit, via le 2-foncteur \mathcal{M} et les adjonctions gauche/droite, deux «mates» γ_ℓ et $(\gamma^{-1})_r$:

L'axiome 3 demande que les deux soient inversibles : $j^*i_\ell \cong q_\ell p^*$ and $j^*i_r \cong q_r p^*$. Fait : via les isos de rectification θ_i et θ_j , ils sont inverses : $(\gamma_\ell)^{-1} = (\gamma^{-1})_r$.

Exemple fondamental: pour deux sous-groupes $K, L \leq G$

iso-comma
$$K \stackrel{p}{\stackrel{(i/j)}{\rightleftharpoons}} L \longrightarrow (i/j) \simeq \coprod_{[g] \in L \setminus G/K} L \cap {}^gK$$
 on obtient la formule de Mackey!

Rmq: le groupoïde d'iso-comma (i/j) et les isos de CB sont canoniques, tandis que cette décomposition dépends de choix.

Exemples: les 2-foncteurs de Mackey sont partout

Il existe un 2-foncteur de Mackey $\mathcal M$ pour chacune des familles suivantes de catégories additives (en fait, abéliennes ou triangulées):

- En théorie des représentations linéaires : $\mathcal{M}(G) = mod \, kG$, $Mod \, kG$, $D^b(mod \, kG)$, $D(Mod \, kG)$, $\underline{mod}(kG)$...
- En topologie : $\mathcal{M}(G) = Ho(Sp^G)$, la catégorie homotopique équivariante des G-spectres.
- En géométrie non-commutative : $\mathcal{M}(G) = KK^G$ or E^G , la théorie équivariante de Kasparov ou la E-théorie de Higson-Connes des C*-algebres.
- X: un espace localement annelé (e.g. un schéma) muni d'une G-action. $\forall H \leq G$, $\mathcal{M}(H) = Sh(X//H)$ la catégorie des \mathcal{O}_X -modules H-équivariants. Variantes: la catégorie dérivée D(Sh(X//H)), ou les faisceaux constructibles, ou cohérents si X est un schéma noethérien, etc.

• En géométrie (défini localement, pour un groupe G fixé):

Monadicité

OK... Qu'est-ce qu'on peut démontrer avec ces axiomes?

Parmi les bonnes propriétés des isos canoniques θ_i , on peut démontrer que l'ambijonction à chaque $i: H \to G$ a la **propriété de Frobenius spéciale**:

$$\big(\operatorname{Id}_{\mathscr{M}(H)} \overset{\operatorname{unit\acute{e}}}{\Longrightarrow} i^* i_\ell \overset{\theta_i}{\cong} i^* i_r \overset{\operatorname{counit\acute{e}}}{\Longrightarrow} \operatorname{Id}_{\mathscr{M}(H)} \big) \quad = \quad \operatorname{id}$$

Par une version «separable» du critère de monadicité de Beck, ceci entraine :

Co/monadicité de la restriction [Balmer-D. 2020]

Supposons que \mathcal{M} prends ses valeurs dans les catégories idempotent-complètes. Pour tout $i: H \to G$, l'adjunction $i^* \dashv i_r$ est monadique and $i_\ell \dashv i^*$ comonadique:

$$\mathcal{M}(G)^{i_{\ell}i^{*}} \stackrel{\sim}{\leftarrow} \mathcal{M}(H) \stackrel{\sim}{\rightarrow} \mathcal{M}(G)^{i_{r}i^{*}}$$

On peut ainsi extraire la «petite» catégorie $\mathcal{M}(H)$ de la «grande» $\mathcal{M}(G)$. Parfois, on peut aussi aller dans l'autre direction!

La formule de Cartan-Eilenberg

Un résultat classique reliant la cohomologie et la fusion dans les groupes :

Formule des éléments stables [Cartan-Eilenberg '56]

Soit 0 . L'algèbre de cohomologie est calculée par la limite

$$H^*(G;k) \cong \lim_{P \in \mathscr{F}_p(G)} H^*(P;k)$$

sur la catégorie de p-fusion $\mathscr{F}_p(G) = \begin{cases} \text{objets: } p\text{-sous-groupes } P \text{ de } G \\ \text{morphismes: incl. & conj. entre eux.} \end{cases}$

Mais la cohomologie n'est qu'un petit morceau de la catégorie dérivée de G:

$$H^*(G; k) \cong \operatorname{Hom}_{D^b(mod \, kG)}(k, \Sigma^* k).$$

Question: est-ce que $D^b(mod \, kG)$ admet une reconstruction similaire à partir de $D^b(mod \, kP)$ pour les *p*-sous-groupes $P \leq G$, avec les restrictions & conjugations?

Oui!

 \mathcal{M} est dit **cohomologique** si $(\operatorname{Id}_{\mathcal{M}(G)} \Rightarrow i_r i^* \stackrel{\theta^{-1}}{\cong} i_\ell i^* \Rightarrow \operatorname{Id}_{\mathcal{M}(G)}) = [G:H]$ id pour toute inclusion de sous-groupe $i: H \to G$.

Descente p-locale, ou Cartan-Eilenberg catégorifié [Maillard '21]

Supposons $\mathcal M$ idempotent-complet et k-linéaire, avec k une $\mathbb Z_{(p)}$ -algèbre. Si de plus $\mathcal M$ est cohomologique, il existe une équivalence de catégories

$$\mathcal{M}(G) \simeq \underset{P \in \mathcal{O}_p(G)}{\text{bilim}} \mathcal{M}(P)$$

où la bilimite est calculée dans ADD au-dessus de la catégorie des p-orbites :

$$\mathcal{O}_p(G) = \begin{cases} \text{ objets: les orbites } G/P \text{ pour } P \leq G \text{ un } p\text{-sous-groupe} \\ \text{morphismes: les applications } G\text{-\'equivariantes entre elles.} \end{cases}$$

- $\mathcal{O}_p(G)$ raffine la catégorie de fusion $\mathscr{F}_p(G)$, qu'elle admet comme quotient.
- Exemples de \mathcal{M} cohomologiques: $\mathcal{M} = mod(k-)$, $D^b(k-)$, and $\underline{mod}(k-)$.
- Aussi, les faisceaux équivariants sur une G-variété X sur k: Sh(X//G) etc. Examples précédents: le cas $X = \operatorname{Spec}(k)$ muni de la G-action triviale!

L'équivalence de Green

Pour ${\mathcal M}$ un 2-foncteur de Mackey, notons :

- $\mathcal{M}(G;S) := \{M \mid M \text{ sommand de Ind}(N) \text{ pour un } N \in \mathcal{M}(S)\} \subset \mathcal{M}(G)$ la sous-catégorie pleine des **S-objets**, pour $S \leq G$ un sous-groupe.
- $\mathcal{M}(G; \mathbb{S})$ de façon similaire pour un ensemble \mathbb{S} de sous-groupes de G.

L'équivalence de Green [Balmer-D. 2021]

Soit \mathcal{M} un 2-foncteur de Mackey (pour G), et $Q \le H \le G$ des groupes finis. Alors le foncteur d'induction induit une équivalence de catégories

$$\left(\frac{\mathcal{M}(H;Q)}{\mathcal{M}(H;\mathbb{X})}\right)^{\natural} \xrightarrow{Ind_{H}^{G}} \left(\frac{\mathcal{M}(G;Q)}{\mathcal{M}(G;\mathbb{X})}\right)^{\natural}$$

où $\mathbb{X} = \{Q \cap {}^{g}Q \mid g \in G \setminus H\}$ et où $(-)^{\ddagger}$ dénote la complétion idempotente.

- Ici les quotients $\frac{\mathscr{A}}{\mathscr{B}}$ sont au sens des catégories additives.
- Dans les exemples on a jamais besoin de $(-)^{\natural}$, pour différentes raisons.

Supposons que ${\mathscr M}$ prends ses valeurs dans les catégories de **Krull-Schmidt** : tout object admet donc une unique décomposition en somme d'indécomposables.

Tout objet indécomposable $M \in \mathcal{M}(G)$ a un **vertex**: un sous-groupe $Q \leq G$, unique à moins de G-conjugaison, tel que $M \in \mathcal{M}(G;Q)$ et minimal pour cela.

Corollaire (la correspondance de Green)

Si \mathcal{M} est de Krull-Schmidt et $Q \leq H \leq G$ tels que $N_G(Q) \subseteq H$, on a une bijection

objets indéc. de
$$\mathcal{M}(H)$$
de vertex Q

"Ind"
objets indéc. de $\mathcal{M}(G)$
de vertex Q

où $N \in \mathcal{M}(H)$ correspond à $M \in \mathcal{M}(G)$ ssi $M \leq \operatorname{Ind}_{H}^{G}(N)$ ssi $N \leq \operatorname{Res}_{H}^{G}(M)$.

- Pour $\mathcal{M} = mod(k-)$ on récupère les cas classiques [J. A. Green '58, '64, '74]
- Exemples d'autres $\mathcal M$ de Krull-Schmidt :
 - ▶ $D^b(mod(k-))$, sur un corps k ou un anneau local gentil.
 - ► Coh(X//-) et $D^b(CohX//-)$, les faisceaux cohérents équivariants sur X une G-variété algébrique régulière et propre sur un corps k.

Quelques autres utilisations de notre théorie

• [Balmer–D. 20 & 22] Une approche «motivique» à la **théorie des blocs** : on peut étudier dans ce cadre les décompositions

$$\mathcal{M}(G) \simeq \mathcal{B}_1 \oplus \ldots \oplus \mathcal{B}_n$$

en termes de la structure de G et indépendamment de \mathcal{M} .

- [D. 2022] On peut introduire des structures multiplicatives (munir les $\mathcal{M}(G)$ d'un produit tensoriel), ce qui nous amène aux **2-foncteurs de Green**.
- En homotopie stable : tout \mathbb{E}_{∞} -anneau R dans l' ∞ -catégorie monoïdale des G-spectres Sp^G définit un 2-foncteur de Mackey et de Green (local pour G) via

$$\forall H \leq G$$
: $\mathcal{M}(H) = \text{Ho}(Res_H^G(R) - \text{modules dans } Sp^H).$

Ceci catégorifie le fait bien connu que les groupes d'homotopies de tout G-spectre (en anneaux) X s'organisent en un foncteur de Mackey (de Green) $\underline{\pi}_* X$ au sens classique.

Merci de votre attention!