薬剤耐性(AMR)対策アクションプラン

National Action Plan on Antimicrobial Resistance

2023-2027

令和5年4月7日 国際的に脅威となる感染症対策の強化のための 国際連携等関係閣僚会議

目次

はじ	めに		4
略称	i		6
薬剤	耐性(#	AMR)対策アクションプラン(2016-2020)の取組と成果	9
我が	国にお	ける薬剤耐性の現状とその課題	.12
薬剤	耐性(/	AMR)対策アクションプラン(2023-2027)	.19
目標	1 🛭	国民の薬剤耐性に関する知識や理解を深め、専門職等 への教育・ 研修を推進する	.23
戦	略 1.1	国民に対する薬剤耐性の知識、理解に関する普及啓発・教育活動の推進	.24
戦	略 1.2	関連分野の専門職等に対する薬剤耐性に関する教育、研修の推進	.27
目標		薬剤耐性及び抗微生物剤の使用量を継続的に監視し、薬剤耐性の変化や拡大の予兆を	
_	に把握		
		医療・介護分野における薬剤耐性に関する動向調査の強化	
		医療機関における抗微生物薬使用量の動向の把握	
		畜水産、獣医療等における薬剤耐性に関する動向調査の強化	
		医療機関、検査機関、行政機関等における薬剤耐性に対する検査手法の標準化 此の強化	
戦	略 2.5	ヒト、動物、食品、環境等に関する統合的なワンヘルス動向調査の実施	.45
目標	3 i	適切な感染予防・管理の実践により、薬剤耐性微生物の拡大を阻止する	.48
戦	略 3.1	医療、介護における感染予防・管理と地域連携の推進	.49
戦	略 3.2	畜水産、獣医療、食品加工・流通過程における感染予防・管理の推進	.52
戦	略 3.3	薬剤耐性感染症の集団発生への対応能力の強化	.54
目標	4 2	医療、畜水産等の分野における抗微生物剤の適正な使用を推進する	.57
戦	略 4.1	医療機関における抗微生物薬の適正使用の推進	.58
戦	略 4.2	畜水産、獣医療等における動物用抗菌性物質の慎重な使用の徹底	.62
		薬剤耐性の研究や、薬剤耐性微生物に対する予防・診断・治療手段を確保するための研 進する	
• • •		薬剤耐性の発生・伝播機序及び社会経済に与える影響を明らかにするための研究の推進	_
		薬剤耐性に関する普及啓発・教育、感染予防・管理、抗微生物剤の適正使用に この推進	
戦	略 5.3	感染症に対する既存の予防・診断・治療法の最適化に資する臨床研究の推進	.72
戦	略 5.4	新たな予防・診断・治療法等の開発に資する研究及び産学官連携の推進	.74
		薬剤耐性の研究及び薬剤耐性感染症に対する新たな予防・診断・治療法等の研 する国際共同研究の推進	-

戦略	5.6	抗微生物薬の持続的な開発、安定供給の強化	80
目標6	<u>=</u>	国際的視野で多分野と協働し、薬剤耐性対策を推進する	82
戦略	6.1	薬剤耐性に関する国際的な政策に係る日本の主導力の発揮	83
		薬剤耐性に関するグローバル・アクション・プラン達成のための国際協力の風	
アクショ	シプ	ランの成果指標	89
進捗状	況の	評価	92
参考資	料		93
用語	の解	言 兑	93

はじめに

薬剤耐性 (AMR) の脅威

特定の種類の抗菌薬や抗ウイルス薬等の抗微生物剤が効きにくくなる、又は効かなくなることを、 「薬剤耐性(AMR)」という。こうした耐性を持った細菌やウイルスが増えると、従来の薬が効かなくな ることから、これまでは感染、発症しても軽症で回復できた感染症の治療が困難になり重症化・死 亡に至る可能性が高まる。そのため、薬剤耐性(AMR)の発生をできる限り抑制し、薬剤耐性微生 物 (ARO) による感染症のまん延を防止することが重要である。1980 年代以降、従来の抗菌薬が効 かない薬剤耐性(AMR)をもつ細菌が世界中で確認され、これにより感染症の予防や治療が困難にな るケースが増加しており、今後も抗菌薬が効かない感染症が増加していくことが予想される。我が国に おいても、メチシリン耐性黄色ブドウ球菌(MRSA)やバンコマイシン耐性腸球菌(VRE)といった薬剤耐 性グラム陽性球菌、次いで、多剤耐性緑膿菌(MDRP)、多剤耐性アシネトバクター(MDRA)といった薬 剤耐性グラム陰性桿菌による医療関連感染症が広がり、現在も医療機関において大きな問題となって いる。さらに最近では、カルバペネム系の抗菌薬に耐性を持つカルバペネム耐性腸内細菌目細菌 CRE)が出現している。

薬剤耐性微生物(ARO)による感染症については、新型コロナウイルス感染症(COVID-19)など の急速なパンデミックを起こす可能性が高いと考えられている感染症に比して、危機感が容易に認識 され難い。一方で、英国の薬剤耐性(AMR)レビュー委員会(オニール・コミッション)では、このまま対 策が取られなければ、2050年までに全世界における死者数は1000万人に上り、がんによる死亡者数 を上回ると推計されている。我が国においても、2019年の国内の調査において、薬剤耐性菌の中で も頻度が高いメチシリン耐性黄色ブドウ球菌(MRSA)及びフルオロキノロン耐性大腸菌(FQREC)の菌 血症²による 2017 年の年間死亡者数が 8,000 人を超えると推定される研究結果が報告されている³。

さらに、薬剤耐性(AMR)は経済的な影響も大きく、2017年の世界銀行の調査では、このまま対策を 何も講じない場合、世界の年間国内総生産(GDP)は、2050年には2017年比で3.8%減少する可能 性があり、この数値は2008年に発生した金融危機と同程度であることから、世界経済が危機的状況に 陥るのは明白であるとも言われている。

以上のことから、薬剤耐性(AMR)は、世界的に深刻な健康上の脅威として取り上げられ、先進7カ 国(G7)の保健分野における取り組むべき優先事項の1つとして認識されているほか、世界保健機関 (WHO)は薬剤耐性(AMR)対策を重要な政策アジェンダに取り上げている5。我が国は先進7カ国(G 7)の一員として、国内での対策はもとより、世界、特にアジア地域における薬剤耐性(AMR)対策の主 導力を発揮すべき立場にある。

¹ Jim O'Neill, "The Review on Antimicrobial Resistance. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations.," May 2016

² 菌血症とは血液中に細菌が入り込んだ状態。さまざまな感染症が菌血症の原因となるが、菌血症をきたすとより重症となり 死亡率が高くなる。

³ S Tsuzuki, et al., National trend of blood-stream infection attributable deaths caused by *Staphylococcus aureus* and Escherichia coli in Japan. J Infect Chemother. 2020; 26(4): 367-371

World Bank, "Drug-resistant infections: a threat to our economic future: final report," May 2017

 $^{^{5}}$ World Health Organization, 10 global health issues to track in 2021, 24 December 2020

薬剤耐性(AMR)対策アクションプラン

抗菌薬等の抗微生物剤に対する薬剤耐性(AMR)の発生をできる限り抑えるとともに、薬剤耐性微 生物(ARO)による感染症のまん延を防止するためには、薬剤耐性(AMR)や抗微生物剤の使用に関 する保健医療、介護福祉、食品、畜水産、農業等の分野の従事者を中心とした国民の知識と理解の 増進が重要である。また、薬剤耐性(AMR)の発生状況や抗微生物剤の使用実態の把握(動向調査、 監視等)とこれに基づくリスク評価、適切な感染予防・管理(IPC)と抗微生物剤の適切な使用(AMS)に よる薬剤耐性微生物(ARO)の減少に向けた取組、薬剤耐性(AMR)の発生や伝播の機序、社会経済 に与える影響等の研究、新たな予防・診断・治療法の研究開発を含む薬剤耐性感染症(ARI)の有効 な予防・診断・治療手段の確保が重要である。

2015 年5月の世界保健機関(WHO)総会において「薬剤耐性(AMR)に関するグローバル・アクショ ン・プラン」が採択され、加盟各国に2年以内の自国のアクションプランの策定が求められた。我が国 でも、薬剤耐性(AMR)に係る国内対策及び国際協力を促進・強化するため、2016 年2月9日に開催 された「国際的に脅威となる感染症対策関係閣僚会議」において、薬剤耐性(AMR)対策アクションプ ランの策定等を盛り込んだ「国際的に脅威となる感染症対策の強化に関する基本計画」を策定した。 これに引き続いて、2016 年4月5日に開催された「国際的に脅威となる感染症対策関係閣僚会議」に おいて、薬剤耐性(AMR)に起因する感染症による疾病負荷のない世界の実現を目指し、薬剤耐性 (AMR)の発生をできる限り抑えるとともに、薬剤耐性微生物(ARO)による感染症のまん延を防止する ための対策をまとめた「薬剤耐性(AMR)対策アクションプラン(2016-2020)」を策定し、薬剤耐性 (AMR)対策について政府一体となった取組を進めてきた。

新型コロナウイルス感染症(COVID-19)のまん延の影響により、「薬剤耐性(AMR)対策アクションプ ラン(2016-2020) |の計画期間を2022年度末まで延長しており、今般、更なる薬剤耐性(AMR)対策の 推進にあたって、今後5年間で実施すべき事項をまとめた新たな「薬剤耐性(AMR)対策アクションプラ (2023-2027)」を取りまとめる。

略称

		5	5. 1.11
AMED	Japan Agency for Medical Research and Development	DALYs	Disability-adjusted life year 障害調整生命年
	国立研究開発法人日本医療研究開発機構	DDD	Defined Daily Dose
AMR	Antimicrobial Resistance		一日維持投与量
	(抗微生物薬に対する)薬剤耐性	DID	DDD per 1,000 inhabitants per day
AMS	Antimicrobial Stewardship		人口 1,000 人当たりの1日使用量
	抗微生物剤の適正使用	DOT	Days of Therapy
AMU	Antimicrobial Use		抗微生物薬使用日数
	抗微生物剤使用量	DPC/PDPS	Diagnosis Procedure Combination / Per-
ARG	Antimicrobial-resistant Gene		Diem Payment System
	薬剤耐性遺伝子		診断群分類に基づく診療報酬包括支払制度
ARI	Antimicrobial-resistant Infection	ESBL	Extended-spectrum beta-Lactamase
	薬剤耐性感染症		基質拡張型 β ラクタマーゼ
ARISE	ARO Alliance for ASEAN & East Asia	EU	European Union
	アセアン 東アジア国際共同臨床研究アライ		欧州連合
	アンス	FAO	Food and Agricultural Organization of the
ARO	Antimicrobial-resistant Organism		United Nations
	薬剤耐性微生物		国際連合食糧農業機関
ASIARS-Net	Asian Antimicrobial Resistance Surveillance	FETP-J	Field Epidemiology Training Program Japan
	Network	-	国立感染症研究所実地疫学専門家養成
	アジア薬剤耐性サーベイランスネットワーク		コース
ASP	Antimicrobial Stewardship Program	FQREC	Fluoroquinolone resistant Escherichia coli
	抗菌薬適正使用支援プログラム		フルオロキノロン耐性大腸菌
ASPIRE	Asia-Pacific One Health Initiative on AMR	G7	Group of Seven
	薬剤耐性(AMR) に関するアジア太平洋ワン		先進7カ国
	ヘルス・イニシアチブ	GAIN Act	Generating Antibiotics Incentives Now Act
AST	Antimicrobial Stewardship Team		米国抗菌薬創出インセンティブ付与法
	抗微生物薬適正使用チーム	GCP	Good Clinical Practice
AUD	Antimicrobial Use Density		医薬品臨床試験実施基準
	抗微生物薬使用密度	GDP	Gross Domestic Product
CAUTI	Catheter-associated Urinary Tract Infection		国内総生産
	カテーテル関連尿路感染症	GHIT Fund	Global Health Innovation Technology Fund
CCP	Critical Control Point		グローバルヘルス技術振興基金
	危害要因	GHSA	Global Health Security Agenda
CDC	Centers for Disease Prevention and Control		世界健康安全保障アジェンダ
	米国疾病予防管理センター	GLASS	Global Antimicrobial Resistance Surveillance
CDI	Clostridium difficile Infection		System
	クロストリジウム・ディフィシル感染症		グローバル薬剤耐性サーベイランスシステム
CiCLE	Cyclic Innovation for Clinical Empowerment	GloPID-R	Global Research Collaboration for Infectious
	医療研究開発革新基盤創成事業		Disease Preparedness
CLABSI	Central Line-associated Bloodstream		感染症のアウトブレイクに対する国際連携ネ
	Infection		ットワーク
	中心静脈カテーテル関連血流感染症	HACCP	Hazard Analysis and Critical Control Point
CLSI	Clinical & Laboratory Standards Institute		危害要因分析重要管理点(ハサップ)
	臨床•検査標準協会	HAI	Healthcare-associated Infection
COI	Conflict of Interest		医療関連感染症
	利益相反	Hib	Haemophilus influenzae type b
COVID-19	CoronaVirus Infectious Disease, emerged in		ヘモフィルス・インフルエンザ b 型
	2019	ICD	Infection Control Doctor
	新型コロナウイルス感染症		インフェクション・コントロール・ドクター
CRE	Carbapenem-resistant Enterobacteriaceae		
	カルバペネト耐性眼内細菌日細菌		

カルバペネム耐性腸内細菌目細菌

ICH	International Conference on Harmonisation of	MRC	Medical Research Council
	Technical Requirements for Registration of Pharmaceuticals for Human Use	MRSA	英国医学研究会議 Methicillin-resistant Staphylococcus aureus
ICMRA	日米 EU 医薬品規制調和国際会議 International Coalition of Medicines	NCGM	メチシリン耐性黄色ブドウ球菌 National Center for Global Health and
	Regulatory Authorities 薬事規制当局国際連携組織		Medicine 国立研究開発法人国立国際医療研究センタ
ICT	Infection Control Team		
	感染制御チーム	NDB	National Database for Prescription and
ICU	Intensive Care Unit 集中治療室		National Health Check-up レセプト情報・特定健診等情報データベース
IDES	Infectious Disease Emergency Specialist	NICU	Neonatal Intensive Care Unit
	(Training Program)	NILLI	新生児集中治療室
	厚生労働省 感染症危機管理専門家養成 プログラム	NIH	National Institutes of Health 米国国立衛生研究所
IHR	International Health Regulation 国際保健規則	NOAR	Nippon AMR One Health Report 薬剤耐性ワンヘルス動向調査年次報告書
IPC	Infection Prevention and Control 感染予防·管理	NTDs	Neglected Tropical Diseases 顧みられない熱帯病
JARBB	Japan Antimicrobial Resistant Bacterial Bank	OECD	Organisation for Economic Co-operation and
JARBS	薬剤耐性菌バンク Japan Antimicrobial Resistant Bacterial		Development 経済協力開発機構
Ji IKDO	Surveillance	PCR	Polymerase Chain Reaction
	薬剤耐性菌サーベイランス		ポリメラーゼ連鎖反応
JANIS	Japan Nosocomial Infections Surveillance 厚生労働省院内感染対策サーベイランス事	PCU	Population-corrected Unit 個体数調整単位
	業	PK/PD	Pharmacokinetics/Pharmacodynamics
JICA	Japan International Cooperation Agency	DO C	薬剤動態学/薬力学
JPIAMR	国際協力機構 Joint Programming Initiative on Antimicrobial	POC	Point of Care 臨床現場
JI II IIII	Resistance	POT	PCR-based Open Reading Frame Typing
	薬剤耐性に関するプログラム連携イニシアテ	DDD	PCR 依存性 ORF 型別
JSAC	ィブ Japan Surveillance of Antimicrobial	PPP	Public Private Partnership 海外機関官民連携スキーム
Jarre	Consumption	PPS	Point Prevalence Survey
I GIDLID	抗菌薬使用サーベイランス		点有病率調査
J-SIPHE	Japan Surveillance for Infection Prevention and Healthcare Epidemiology	QALYs	Quality-adjusted life year 質調整生存年
JVARM	感染対策連携共通プラットフォーム Japanese Veterinary Antimicrobial Resistance	SMA	Sodium Mercaptoacetate メルカプト酢酸ナトリウム
J V / MAINI	Monitoring System	SNS	Social networking service
	動物由来薬剤耐性菌モニタリング		ソーシャル・ネットワーキング・サービス
J-VEG	Japanese Veterinary Epidemiology and Genomics	SSI	Surgical Site Infection 手術部位感染症
	動物分野における疫学的ゲノムデータベース	TATFAR	Transatlantic Task Force on Antimicrobial
MALDI-TOF MS	Matrix-assisted Laser Desorption/Ionization		Resistance
	Time Of Flight Mass Spectrometry マトリックス支援レーザー脱離イオン化飛行	UNEP	薬剤耐性に関する大西洋横断タスクフォース United Nations Environment Programme
	時間型質量分析計	ONEI	国際連合環境計画
MBL	Metallo-beta-lactamase	VICH	International Cooperation on Harmonisation
MEPM-R	メタロ-β-ラクタマーゼ Meropenem Resistance		of Technical Requirements for Registration of Veterinary Medicinal Products
IVILI IVI IX	Meropenent Resistance メロペネム耐性		動物用医薬品の承認申請資料の調和に関す
MDRA	Multidrug-resistant <i>Acinetobacter</i> spp.		る国際協力
MDRP	多剤耐性アシネトバクター属 Multidrug-resistant <i>Pseudomonas aeruginosa</i>	WGS	Whole Genome Sequencing 全ゲノムシークエンス解析
MIDIM	多剤耐性緑膿菌		エノノーマーノーマハ肝切

WHO	World Health Organization	VRE	Vancomycin-resistant Enterococci
	世界保健機関		バンコマイシン耐性腸球菌
WOAH	World Organisation for Animal Health	XDR	Extensively Drug-resistance
	国際獣疫事務局		広範囲薬剤耐性
WPRO	Regional Office for the Western Pacific	YLD	Years Lived with Disability
	西太平洋事務局		障害生存年数
VAP	Ventilator-associated Pneumonia		

人工呼吸器関連肺炎

なお、以下の文書においてはヒト及び動物へ用いる抗微生物活性のある物質及び製剤について「抗微生物剤」 (antimicrobials)と総称し、ヒトに関するものは、特に「抗微生物薬」と呼称する。中でも特に細菌に対する抗微生物薬につい ては「抗菌薬」(antibiotics)と呼ぶ。動物に関しては、細菌に対する抗微生物剤のみを扱うものとし、これらのうち動物用医薬 品であるものを「動物用抗菌剤」、飼料添加物であるものを「抗菌性飼料添加物」と呼称する。この「動物用抗菌剤」及び「抗 菌性飼料添加物」を合わせて「動物用抗菌性物質」と呼称する。また、一般に用いられる「サーベイランス」を「動向調査」、 「モニタリング」を「監視」と記載する。

薬剤耐性(AMR)対策アクションプラン (2016-2020)の取組と成果

薬剤耐性(AMR)対策を推進するため、「薬剤耐性(AMR)対策アクションプラン(2016-2020)」では、 ① 普及啓発・教育、② 動向調査・監視、③ 感染予防・管理、④ 抗微生物剤の適正使用、⑤ 研究 開発・創薬及び⑥ 国際協力の合計6つの分野に関する目標を設定の上、「薬剤耐性(AMR)対策ア クションプラン(2016-2020) |全体を诵しての数値目標を成果指標として設定し、関係省庁、関係機関 等の関係者がヒト、動物等の垣根を越えた世界規模での取組(ワンヘルス・アプローチ)の視野に立ち、 協働して集中的に薬剤耐性(AMR)対策を進めてきた。

普及啓発・教育

薬剤耐性(AMR)に係る全国的な普及啓発活動を推進するため、「薬剤耐性(AMR)対策推進国民 啓発会議」の設置や、薬剤耐性(AMR) に係る様々な情報を集約化し、医療関係者や自治体職員等 に向けた情報提供や研修の提供等を行う AMR 臨床リファレンスセンター(AMRCRC) の設立、「薬剤 耐性(AMR)対策推進月間」の設定等に取り組んできた。また、保健医療、介護福祉、食品、獣医療、 畜水産、農業等の様々な分野の専門職や従事者に対しては、医療関係者等を目指す教育課程のカ リキュラム等への薬剤耐性(AMR)に関する事項の追加・充実等を図るなど薬剤耐性(AMR)に関する 教育・研修を推進してきた。

一方、国民の薬剤耐性(AMR)の認知度は高い水準にあるとは言えず、また、全国の診療所におけ る「薬剤耐性(AMR)対策アクションプラン」の理解度もいまだ十分ではない。引き続き、様々な手法を 用いた啓発活動を継続的に行っていく必要がある。

動向調査・監視

医療・介護分野における動向調査を強化するため、国立感染症研究所に「薬剤耐性研究センター」 の設置、全国の参加施設における医療関連感染症(HAI)及び薬剤耐性菌の発生状況、抗菌薬の使 用状況等に関する情報を集約する「感染対策連携共通プラットフォーム(J-SIPHE)」の運用、外来・高 齢者施設における薬剤耐性率に関する情報収集の拡充等に取り組んできた。

畜水産分野では、薬剤耐性(AMR)基幹検査機関としての動物医薬品検査所の機能・体制の充実 化、家畜に加え、養殖水産動物、愛玩動物における薬剤耐性菌に関する情報収集の拡充等を推進し てきた。

これらに加え、ワンヘルス・アプローチを推進する観点から、ヒト医療の分野のみならず獣医療、畜 水産、農業、食品衛生、環境など幅広い分野のデータを網羅した「薬剤耐性(AMR)ワンヘルスプラッ トフォーム」を AMR 臨床リファレンスセンター(AMRCRC)において公開・運営し、薬剤耐性(AMR)に 関する全国的な動向調査・監視を実施してきた。さらに、日本におけるヒトや動物に対する抗微生物剤 の使用量や微生物の薬剤耐性率等の状況等を検討する「薬剤耐性ワンヘルス動向調査検討会」を設

[『]薬剤耐性(AMR)に関する医療・福祉における情報を集約し、医療従事者、福祉従事者、公衆衛生関連の自治体職員等 を対象とした教育啓発を実施する機関。教育啓発資材の開発作成や、オンラインでの情報提供、研修機会を提供する。国 立国際医療研究センターに設置

置し、ヒト、動物、環境などの分野の有識者による議論を行い、各分野における現状及び動向把握に ついて評価した「薬剤耐性ワンヘルス動向調査年次報告書(NOAR)」を毎年作成している。

引き続き、ヒト、動物、環境等の垣根を越えた薬剤耐性(AMR)動向の把握を進めるとともに、地域に 即した薬剤耐性(AMR)対策を行うため、対象微生物や参加施設の拡充、動向調査に必要な検査体 制の強化を行っていくことが必要である。

感染予防·管理

医療機関における感染症対策については、令和4年度診療報酬改定において、これまでの感染防 止対策加算による取組を踏まえつつ、個々の医療機関等における感染防止対策の取組や地域の医 療機関等が連携して実施する感染症対策の取組を推進する観点から、感染対策向上加算を新設し た。また、「感染対策連携共通プラットフォーム(J-SIPHE)」により、感染予防・管理(IPC)に関する比 較・評価を実施してきた。一方で、現行の院内感染対策は、医療機関を主な対象としており、高齢者 施設等での更なる取組の推進・強化が必要である。

畜水産分野では、抗菌剤に頼らない生産体制を推進するため、ワクチン、免疫賦活剤、体外診断 薬及び試薬の開発・実用化を支援するとともに、飼養衛生管理基準の遵守の徹底を図り、各畜種の 飼養衛生管理基準ガイドブックの普及に努めてきた。さらに、食品分野では、製造・加工、調理、販売 等を行う全ての食品等事業者が、円滑に HACCP(ハサップ) で取り組めるよう、支援を進めてきた。

抗微生物剤の適正使用

抗微生物薬の適正使用の推進のため、厚生労働省において「抗微生物薬適正使用の手引き」を策 定し、周知を図ってきた。また、平成30年度診療報酬改定においては、適正使用を進める取組の支 援のため、抗菌薬適正使用支援加算及び小児抗菌薬適正使用支援加算を創設した。特に、小児抗 菌薬適正使用支援加算の導入により、外来における小児への抗菌薬投与は約2割減少するなど実績 も得られている。一方で、医療現場では広域の抗微生物薬使用に当たり、必ずしもガイドラインを遵 守していないとの報告9.10があり、更なる適正使用の推進に向けた取組が求められる。

畜水産分野では、慎重使用に関するガイドラインを策定し、慎重使用の徹底を推進している。また、 国内で指定されている全ての抗菌性飼料添加物について、薬剤耐性菌の食品健康影響評価を終了 し、ヒトの健康に悪影響を及ぼすおそれがあると評価された5種類の抗菌性飼料添加物□の指定を取 り消している。一方、生産現場での抗菌剤使用実態の把握が課題であり、仕組みの構築が求められて いる。

[『]原材料の入荷から出荷までに発生するかもしれない食中毒菌汚染や異物混入を防止する特に重要な工程を管理する食 品の衛生管理の手法

Okubo Y, Nishi A, Michels KB, et al. The consequence of financial incentives for not prescribing antibiotics: a Japan's nationwide quasi-experiment. Int J Epidemiol. 2022;51(5):1645-1655. doi:10.1093/ije/dyac057

[🤋] 愼重虎, 佐々木典子,國澤進,今中雄一. 抗菌薬の院内使用基準が市中肺炎患者の診療ガイドライン推奨抗菌薬の選 択に及ぼす影響、及びその抗菌薬選択がアウトカムに及ぼす影響. 第58回日本医療・病院管理学会学術総会: 福岡、オ ンライン開催 2020 年 10 月 2-4 日(日本医療・病院管理学会誌— Vol.57 Suppl. p.172.)

¹⁰ 平成 30 年度厚生労働省委託事業:EBM (根拠に基づく医療)普及推進事業「診療ガイドラインの活用ガイド」p3

[□] バージニアマイシン、硫酸コリスチン、リン酸タイロシン、クロルテトラサイクリン、アルキルトリメチルアンモニウムカルシウム オキシテトラサイクリン

研究開発・創薬

薬剤耐性(AMR)対策に関する研究開発及び創薬については、薬剤耐性菌バンク(IARBB)の整備、 ヒト・動物・環境由来のゲノムデータベースの拡充、医療経済的評価や抗微生物薬の適正使用に関す る臨床・疫学研究の推進などに加えて、産学官連携体制の下、日本医療研究開発機構(AMED)の 「新興・再興感染症に対する革新的医薬品等開発推進研究事業」及び「医療研究開発革新基盤創成 事業」による推進を図ってきた。

このような取組により、薬剤耐性(AMR)対策に関する研究の進展など一定の成果が出つつあるが、 1990 年代以降、我が国の新規抗菌薬の開発は停滞している。他方、開発に成功し市場に流通する薬 剤が増えても、不適正な使用が広がれば、耐性菌が増加し、結果として効果が減弱してしまうことから、 使用量を適正な水準にコントロールすることが求められる。米国や英国、スウェーデンなどでは、「使用 量(販売量)」と「売上げ(収益)」を切り離しつつ(de-link)、市販後の収益予見性を高める市場インセ ンティブが、試験的に導入されつつある。我が国においても、市場インセンティブなどの薬剤耐性菌の 治療薬を確保するための具体的な手法を検討していく必要がある。また、抗菌薬の供給不足が世界 中で発生しており、日本においても大規模な抗菌薬の供給不足が発生している。適正使用を推進し、 薬剤耐性(AMR)の拡大を抑制するためにも抗菌薬の安定供給は重要な課題であり、新たな抗菌薬 の研究開発の促進に加え、抗微生物薬の安定供給を維持するための方策が求められている。

国際協力

我が国は、世界保健機関(WHO)のグローバル薬剤耐性サーベイランスシステム(GLASS)へのデ ータ提出、世界保健機関西太平洋事務局(WPRO)との AMR ワンヘルス東京会議の共催、国際獣疫 事務局(WOAH)が行う動物用抗菌性物質使用量のデータベース構築へのデータ提供や助言等を通 じ、世界保健機関(WHO)、先進7カ国(G7)プロセス、国際獣疫事務局(WOAH)等の取組を支援し てきた。また、ヒト分野では、日米 EU を含む薬事規制当局国際連携組織(ICMRA)の枠組みにおいて 薬事当局が実施する必要がある規制対応に向けた議論に、動物分野では、動物用医薬品の承認申 請資料の調和に関する国際協力(VICH)の枠組みにおいて世界共通試験ガイドラインの策定に向け た議論にそれぞれ参画するとともに、主にアジア諸国を対象とした、感染予防・管理(IPC)、動向調査 体制の支援、耐性菌情報を収集する体制基盤の整備、薬剤耐性(AMR)検査の技術伝達等の国際協 力を行ってきた。

我が国は抗菌薬使用量について経済協力開発機構(OECD)平均を下回る程度で推移をしており、 引き続き、世界、特にアジア地域において、薬剤耐性(AMR)対策を主導すべき役割を担っている。

我が国における薬剤耐性の現状とその課題

薬剤耐性(AMR)対策アクションプラン (2016-2020)では、成果指標として計画全体を通しての数 値目標を設定し、目標達成に向けて薬剤耐性(AMR)対策に取り組んできた。

表1 薬剤耐性(AMR)対策アクションプラン(2016-2020)の成果指標

ヒトに関して

- 1. 2020 年の肺炎球菌のペニシリン耐性率を 15%以下に低下させる。
- 肺炎球菌のペニシリン耐性率は、2014 年現在 45%程度と諸外国と比較し高い水準にある。現 在、同指標は年率2%程度で減少傾向にあることから、経口セファロスポリン薬を含む抗微生物薬 の適正使用の推進により、これを年率5-6%に加速することで、2030年時点で耐性率を他の先進 諸国と同水準である15%以下を目指す。
- 2. 2020年の黄色ブドウ球菌のメチシリン耐性率を20%以下に低下させる。
- 黄色ブドウ球菌のメチシリン耐性率は、2014年現在50%程度と他の先進諸国と比較し高い水準 にある。年率2%で減少傾向にある。英国では、2006年から2011年にかけて、対策強化を進め たことで、年率5%の減少を達成しており、我が国においても感染予防・管理の徹底、抗微生物薬 の適正使用の推進により、これを約5%に加速することで他の先進諸国と同水準である耐性率 20%以下を目指す。
- 3. 2020年の大腸菌のフルオロキノロン耐性率を25%以下に低下させる。
- 大腸菌のフルオロキノロン耐性率は、フルオロキノロン剤の使用量と高い相関がある。耐性率 は年率 1.5%で増加傾向にあり、これは他の先進諸国と比較しても高い水準にある。経口フルオ ロキノロン剤を含む抗微生物薬の適正使用を推進することで減少に転じさせ、他の先進諸国と 同水準である25%以下を目指す。
- 4. 2020 年の緑膿菌のカルバペネム(イミペネム)耐性率を 10%以下に低下させる。
- 緑膿菌のカルバペネム耐性率は、2014 年現在 20%であり、この数値は、諸外国において高い ものではない。現在、年率 0.5%で減少傾向にあり、減少率を1-2%に加速することで耐性率 10% 以下を目指す。
- 5. 2020年の大腸菌及び肺炎桿菌のカルバペネム耐性率 0.2%以下を維持する。
- カルバペネム耐性腸内細菌科細菌(CRE)感染症は、その治療薬の選択肢の少なさから、現 在世界的に拡大傾向にあり重大な薬剤耐性の脅威の一つである。幸い、我が国における大腸 菌及び肺炎桿菌のカルバペネム耐性率は 2014 年現在 0.1%、0.2%と極めて低い。このため、適 切な薬剤耐性対策により、耐性率を同水準に維持する。

- 6. 2020 年の人口千人当たりの一日抗菌薬使用量を 2013 年の水準の3分の2に減少させる。
- 7. 2020 年の経口セファロスポリン系薬、フルオロキノロン系薬、マクロライド系薬の人口千人当たり の一日使用量を2013年の水準から50%削減する。
- 8. 2020年の人口千人当たりの一日静注抗菌薬使用量を2013年の水準から20%削減する。
- 2013年の日本の一日抗菌薬使用量は、1000人当たり15.8と推計されており、欧州との比較に おいては、比較的少ない。しかし、欧州で1000人当たりの一日使用量が最も少ないオランダは 11.3 と日本の約3分の2程度である。一方で、日本の経口抗菌薬使用の特徴として、経口広域 抗菌薬の使用割合が極めて高いことが挙げられる。
- 2013 年における経口抗菌薬の使用割合は、マクロライド系薬が 33%、セファロスポリン系薬が 27%(うち 80%は第3世代)、フルオロキノロン系薬が 19%と全体の約 80%を占める。これらの抗菌 薬の使用を半減し、適正使用の推進により静注抗菌薬の使用量を20%削減することで、全抗菌 薬の使用量を3分の2に減少させることを目指す。

動物に関して

- 1. 大腸菌のテトラサイクリン耐性率を33%以下に低下させる。
- 日本での家畜における大腸菌のテトラサイクリン耐性率は 2001 年の 59.0%から 2014 年には 45.2%へと減少した。これは適正使用の確保のための取組等によるものと考えられた。このため、 本行動計画を実行することにより、耐性率の減少を加速させることが可能と考えられ、2020 年に 33%以下とすることを目指す。
- 2. 大腸菌の第3世代セファロスポリン耐性率を、2020年におけるG7各国の数値と同水準にする。
- 3. 大腸菌のフルオロキノロン耐性率を、2020年におけるG7各国の数値と同水準にする。
- 食品安全委員会の「食品を介してヒトの健康に影響を及ぼす細菌に対する抗菌性物質の重要 度ランク付けについて」において、ヒトの医療上極めて高度に重要とされている第3世代セファロ スポリン及びフルオロキノロンに対する我が国の牛、豚及び肉用鶏由来大腸菌の耐性率は、G7 各国とほぼ同水準であった。これは、我が国においてこれらの動物用抗菌剤が、獣医師の指示 による使用の義務付け等のリスク管理措置に加えて、他の動物用抗菌剤が無効の場合にのみ 使用すること、市販後の耐性菌の発現状況調査の定期報告の義務付け等の特別な措置を講じ ていることによるものと考えられた。現状で既に G7各国とほぼ同水準であるが、G7各国が自国 の行動計画を実行することにより 2020 年における水準は向上すると考えられるため、我が国に おいても本行動計画を実行することにより、2020 年における G7各国の数値と同水準にすること を目指す。

薬剤耐性(AMR)対策アクションプラン(2016-2020)に基づく取組により、2020年の薬剤耐性率につ いて、大腸菌や肺炎桿菌のカルバペネム耐性率は、世界各国では近年増加が問題となっている一方 で、我が国では 2013 年の水準を維持又は下回っている。また、緑膿菌のカルバペネム耐性率は減少 傾向にあり、数値目標は達成していないものの進捗が認められる。一方で大腸菌のフルオロキノロン 耐性率や黄色ブドウ球菌のメチシリン耐性率は増加傾向が続いており、2021 年はわずかに減少して いる。髄液検体の肺炎球菌のペニシリン非感受性率は高い水準にある。

ヒト用抗菌薬の販売量に基づいた抗菌薬使用は、2021 年においては、9.77 DID であり、2013 年と 比較して、32.7%減少していた。また、注射用抗菌薬も2013年と比較して1.1%減少していた。経口セフ アロスポリン系薬、経口マクロライド系薬、経口フルオロキノロン系薬を含む経口抗菌薬の販売量に基 づく抗菌薬使用は、2013年と比較して減少したが、いずれも目標値の達成には至っておらず、継続し た取組が必要である。

表2 ヒトに関するアクションプランの成果指標:特定の耐性菌の分離率(%) *12

	2013年 2	014年 2	015年 2	016年 2	2017年 2	018年 2	019年 2	020年 2	021年	2020年(目標値)
肺炎球菌のペニシリン非感受性率,髄液検体 [§]	47.4	47.0	40.5	36.4	29.1	38.3	32.0	33.3	59.5	15%以下
肺炎球菌のペニシリン非感受性率,髄液検体以外 [§]	3.2	2.5	2.7	2.1	2.1	2.2	2.2	3.5	3.4	
大腸菌のフルオロキノロン耐性率	35.5	36.1	38.0	39.3	40.1	40.9	41.4	41.5	40.4	25%以下
黄色ブドウ球菌のメチシリン耐性率	51.1	49.1	48.5	47.7	47.7	47.5	47.7	47.5	46.0	20%以下
緑膿菌のカルバペネム耐性率(イミペネム)	17.1	19.9	18.8	17.9	16.9	16.2	16.2	15.9	15.8	10%以下
緑膿菌のカルバペネム耐性率(メロペネム)	10.7	14.4	13.1	12.3	11.4	10.9	10.6	10.5	10.3	10%以下
大腸菌のカルバペネム耐性率(イミペネム)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2%以下(同水準) ¶
大腸菌のカルバペネム耐性率(メロペネム)	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.2%以下(同水準) ¶
肺炎桿菌のカルバペネム耐性率(イミペネム)	0.3	0.3	0.3	0.2	0.2	0.3	0.2	0.2	0.2	0.2%以下(同水準) ¶
肺炎桿菌のカルバペネム耐性率(メロペネム)	0.6	0.6	0.6	0.5	0.4	0.5	0.4	0.4	0.4	0.2%以下(同水準) ¶

薬剤耐性ワンヘルス動向調査年次報告書(NOAR)2021より引用

表3 ヒトに関するアクションプランの成果指標:抗菌薬使用(DID)(販売量による検討)¹²

2013年13	2021年	2013年との比較	2020年(目標値)
14.52	9.77	32.7%減	33% 減
3.91	2.11	46.1%減	50% 減
2.83	1.48	43.7%減	50% 減
4.83	2.72	47.5%減	50% 減
0.90	0.89	1.1%減	20% 減
	14.52 3.91 2.83 4.83 0.90	14.52 9.77 3.91 2.11 2.83 1.48 4.83 2.72	14.52 9.77 32.7%減 3.91 2.11 46.1%減 2.83 1.48 43.7%減 4.83 2.72 47.5%減 0.90 0.89 1.1%減

薬剤耐性ワンヘルス動向調査年次報告書(NOAR)2021より引用

DID: Defined daily dose per 1,000 inhabitants per day 人口 1,000 人当たりの1日使用量。

^{*}JANIS データより作成。 2013 年からは2年おきにデータを掲載、2017 年以降は毎年のデータを掲載

^{§ 2014}年の肺炎球菌のペニシリン非感受性率は、CLSI 2007の基準に沿ってペニシリンの MIC が 0.125µg/ml 以上を耐性としている。 しかし、2008年にCLSI が基準を変更し、髄液検体と髄液以外の検体とで基準が分けられたことに伴い JANIS でも 2015年以降髄液 検体と髄液以外の検体とで集計を分けて掲載している。

^{¶2014}年の大腸菌と肺炎桿菌のカルバペネム耐性率は0.1%と0.2%であり、2020年の耐性率を同水準に維持する。

¹² 薬剤耐性ワンヘルス動向調査年次報告書(NOAR)2021

¹³ Muraki Y, et al. "Japanese antimicrobial consumption surveillance: first report on oral and parenteral antimicrobial consumption in Japan (2009-2013)" J Glob Antimicrob Resist. 2016 Aug 6;7:19-23

薬剤耐性(AMR)の拡大の背景として、抗微生物剤の不適切な使用等が指摘されている。2020 年 の抗菌薬使用サーベイランス(JSAC)報告によれば、2020年における、我が国のヒトに対する抗菌薬 使用量は、人口千人当たり一日約 10.8 となっており、欧州連合(EU)の先進諸国の中で比較しても低 い水準となっている(図1)。しかし、抗菌薬の種類別使用割合をみると、他国と比較し、細菌に対して 幅広く効果を示す経口のセファロスポリン系薬、フルオロキノロン系薬、マクロライド系薬が使用されて おり、ペニシリン系薬の使用が低くなっている。

薬剤耐性菌の出現率(図2)をみると、メチシリン耐性黄色ブドウ球菌(MRSA)及び第3世代セファロ スポリン耐性大腸菌の薬剤耐性率は、諸外国と比較して高くなっている。近年世界中で問題となって いるカルバペネム耐性腸内細菌目細菌(CRE)についても、0.1-0.2%と低い水準を保っている。

図1 欧州及び日本における抗菌薬使用量の国際比較(2020年)14

14 AMR 臨床リファレンスセンター(AMRCRC) 抗菌薬使用サーベイランス Japan Surveillance of Antimicrobial Consumption (JSAC) https://amrcrc.ncgm.go.jp/surveillance/010/NDB_2013-2020_comparison_ecdc_20230119.pdf

¹⁵ 黄色ブドウ球菌のメチシリン耐性率、大腸菌の第3世代セファロスポリン(セフォタキシム)耐性率、大腸菌のフルオロキノロ ン(レボフロキサシン)耐性率は、各国が WHO GLASS に提出した 2019 年のデータ(日本のデータは、院内感染対策サーベ イランス事業(JANIS)データを WHO GLASS 方式で集計したものであり、リンク先のスプレッドシートの B 列)

⁽https://docs.google.com/spreadsheets/d/1Ej0a-av4V5uoFw19DfZoDvcLpdvHTscfXoqJgozGiwc/edit#gid=1592777314)

また、健康な畜産動物由来の大腸菌の第3世代セファロスポリン及びフルオロキノロン系の抗菌剤 に対する耐性率は低い水準が保たれた。一方で、テトラサイクリンについては、使用量が2018年以降 減少しても、耐性率は目標値よりも高い値となっている。引き続き適正かつ慎重な使用の推進を図ると ともに、その耐性率の動向を確認していく必要がある。

表4 動物に関するアクションプランの成果指標:特定の耐性菌の分離率(%)16

	, , , .,					- ' ' '		
	2014年	2015年	2016年	2017年	2018年	2019年	2020年	2020年(目標値)
大腸菌のテトラサイクリン耐性率(農場)	45.2	39.9					33	3%以下
(と畜場)		39.8	47.6	40.8	43.6	44.3	45.0	
大腸菌の第3世代セファロスポリン耐性率(農場)	1.5	0.9					G	7 各国の数値17,18と同水準
(と畜場)		0.7	2.4	2.1	1.1	2.1	1.4	
大腸菌のフルオロキノロン耐性率(農場)	4.7	3.8					G	7 各国の数値と同水準
(と畜場)		2.7	5.0	4.0	4.7	5.1	5.2	

薬剤耐性ワンヘルス動向調査年次報告書(NOAR)2021より引用

一方、畜産分野における薬剤耐性(AMR)の現状については、調査対象動物や調査方法が異なる ため単純な国際的な比較はできないが、G7各国の薬剤耐性菌の出現率(図3)をみると、薬剤耐性の 指標細菌である大腸菌において、使用量の多いテトラサイクリン並びに食品安全委員会の「食品を介 してヒトの健康に影響を及ぼす細菌に対する抗菌性物質の重要度ランク付けについて」において、ヒト の医療上極めて高度に重要とされている第3世代セファロスポリン及びフルオロキノロンに対する薬剤 耐性率は、欧米諸国とほぼ同水準であった。

また、畜産分野における抗菌剤の使用量の現状については、それぞれの国によって家畜数、家畜 の体重、調査薬剤、調査方法が異なるため単純な国際的な比較はできないが、G7各国の家畜にお ける抗菌剤の使用量(図4)をみると、米国が最も多く、日本はドイツやイタリアと同水準となっている。

¹⁶ 農林水産省動物医薬品検査所"薬剤耐性菌のモニタリング Monitoring of AMR"から作成、一部改変。JVARM「農場に おける家畜由来細菌の薬剤耐性モニタリング結果」https://www.maff.go.jp/nval/yakuzai/yakuzai_p3.html

¹⁷ NARMS: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/narms-nowintegrated-data

¹⁸ EFSA: https://www.efsa.europa.eu/en

図3 家畜由来大腸菌の薬剤耐性率の国際比較(2020年)19

米国は2019年、カナダは2018年、ドイツ、フランス、英国及びイタリアの牛及び豚は2019年のデータ。

図4 動物分野における抗菌剤使用量の国際比較(2020年)20

¹⁹ 農林水産省動物医薬品検査所"薬剤耐性菌のモニタリング Monitoring of AMR" The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019-2020, Canadian Integrated Program for Antimicrobial Resistance Surveillance(CIPARS)2018, National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS)

家畜の全飼養頭羽数に対する抗菌剤の総使用量を示している。

²⁰ 米国:Summary Report On Antimicrobials Sold or Distributed for Use in Food-Producing Animals (fda.gov)、カナダ: Canadian Antimicrobial Resistance Surveillance System Report、英国、イタリア、ドイツ、フランス:Sales of veterinary antimicrobial agents in 31 European countries in 2016-2020、日本:動物用医薬品製造販売高年報 なお、米国、カナダ、EU、日本のデータのうち、一部愛玩動物、馬などのデータが含まれる。各国のデータは、各国における

薬剤耐性(AMR)対策アクションプラン (2023-2027)

これまで、「薬剤耐性(AMR)対策アクションプラン(2016-2020)」に基づき、関係省庁、関係機 関等が密接に連携して、薬剤耐性(AMR)に起因する感染症による疾病負荷のない世界の実現を 目指し、薬剤耐性(AMR)の発生をできる限り抑えるとともに、薬剤耐性微生物(ARO)による感染 症のまん延を防止するための対策を進めてきた。こうした取組により、一部の指標は改善傾向には あるが、改善の乏しい指標や新たに生じた課題がいまだ多くあり、引き続き、国際的な動きと協調し つつ継続的に薬剤耐性(AMR)対策に取り組んでいく必要がある。

切れ目のない薬剤耐性(AMR)対策を推進するため、引き続き、① 普及啓発・教育、② 動向調 査・監視、③ 感染予防・管理、④ 抗微生物剤の適正使用、⑤ 研究開発・創薬及び⑥ 国際協力の 6つの分野に関する目標を設定し、目標の達成に向けて薬剤耐性(AMR)対策を進めることが重要で ある。

さらに、2021 年の先進7カ国(G7)気候・環境大臣会合では、初めて会合コミュニケに薬剤耐性 (AMR)に関する記載が盛り込まれ、2021 年の先進7カ国(G7)カービスベイ首脳コミュニケでは、 ワンヘルス・アプローチの強化に合意した保健宣言が承認された。世界的なワンヘルス・アプロー チの推進に適切に対応し、我が国が先進的な取組を継続していくこと、国際的な取組において主 導的な役割を果たすことにより、国民の健康と命を守ることに資するとともに、世界の薬剤耐性 (AMR)対策をリードしていくことも期待できる。

そこで、新たに「薬剤耐性 (AMR) 対策アクションプラン (2023-2027)」を定め、更なる薬剤耐性 (AMR)対策の推進を図ることとする。

「薬剤耐性(AMR)対策アクションプラン(2023-2027)」では、6つの分野に関する目標(大項目) を設定し、目標を実現するための戦略(中項目)及び戦略を実行するための具体的な取組(小項 目)をそれぞれに設定するものとする。目標を達成するための戦略については、その目的、背景、具 体的な取組項目、各取組の関係府省庁・機関及び各取組を評価するための指標について記載する (図5)。また、アクションプラン全体を通しての数値目標を成果指標として設定する。

図5 アクションプランの枠組みと各対策における記載事項

表5 薬剤耐性(AMR)対策アクションプラン(2023-2027)の6分野の目標と戦略

目標1	国民の薬剤耐性に関する知識や理解を深め、専門職等への教育・研修を推進す
普及啓発·教育	る。
戦略 1.1	国民に対する薬剤耐性の知識、理解に関する普及啓発・教育活動の推進
戦略 1.2	関連分野の専門職等に対する薬剤耐性に関する教育、研修の推進
目標2	薬剤耐性及び抗微生物剤の使用量を継続的に監視し、薬剤耐性の変化や拡大
動向調查•監視	の予兆を適確に把握する。
戦略 2.1	医療・介護分野における薬剤耐性に関する動向調査の強化
戦略 2.2	医療機関における抗微生物薬使用量の動向の把握
戦略 2.3	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
What o	医療機関、検査機関、行政機関等における薬剤耐性に対する検査手法の標準
戦略 2.4	化と検査機能の強化
戦略 2.5	ヒト、動物、食品、環境等に関する統合的なワンヘルス動向調査の実施
目標3	適切な感染予防・管理の実践により、薬剤耐性微生物の拡大を阻止する。
感染予防•管理	
戦略 3.1	医療、介護における感染予防・管理と地域連携の推進
戦略 3.2	畜水産、獣医療、食品加工・流通過程における感染予防・管理の推進
戦略 3.3	薬剤耐性感染症の集団発生への対応能力の強化
目標4 抗微生物剤の	医療、畜水産等の分野における抗微生物剤の適正な使用を推進する。
適正使用	
戦略 4.1	医療機関における抗微生物薬の適正使用の推進
戦略 4.2	畜水産、獣医療等における動物用抗菌性物質の慎重な使用の徹底
目標5	薬剤耐性の研究や、薬剤耐性微生物に対する予防・診断・治療手段を確保する
研究開発•創薬	ための研究開発等を推進する。
戦略 5.1	薬剤耐性の発生・伝播機序及び社会経済に与える影響を明らかにするための研究の推進
2/15 m/z = 0	薬剤耐性に関する普及啓発・教育、感染予防・管理、抗微生物剤の適正使用に
戦略 5.2	関する研究の推進
戦略 5.3	感染症に対する既存の予防・診断・治療法の最適化に資する臨床研究の推進
戦略 5.4	新たな予防・診断・治療法等の開発に資する研究及び産学官連携の推進
Whmb = -	薬剤耐性の研究及び薬剤耐性感染症に対する新たな予防・診断・治療法等の研
戦略 5.5	究開発に関する国際共同研究の推進
戦略 5.6	抗微生物薬の持続的な開発、安定供給の強化
目標6 国際協力	国際的視野で多分野と協働し、薬剤耐性対策を推進する。
戦略 6.1	薬剤耐性に関する国際的な政策に係る日本の主導力の発揮
戦略 6.2	薬剤耐性に関するグローバル・アクション・プラン達成のための国際協力の展開
Meh 0:0	ANTONIA ITA - NA A GA A A A A A A A A A A A A A A A A

表6 薬剤耐性(AMR)対策アクションプラン(2023-2027)の成果指標

ヒトに関して

- 1. 2027 年のバンコマイシン耐性腸球菌(VRE)感染症の罹患数を 80 人以下(2019 年時点)に維持 する。
- 2027年までに黄色ブドウ球菌のメチシリン耐性率を20%以下に低下させる。 2.
- 3. 2027年の大腸菌のフルオロキノロン耐性率を30%以下に維持する。
- 4. 2027 年までに緑膿菌のカルバペネム(MEPM=R)耐性率を3%以下に低下させる。
- 2027年の大腸菌及び肺炎桿菌のカルバペネム耐性率を0.2%以下に維持する。
- 2027 年までに人口千人当たりの一日抗菌薬使用量を2020 年の水準から15%減少させる。
- 2027 年までに経口第3世代セファロスポリン系薬、経口フルオロキノロン系薬、経口マクロライド系 薬の人口千人当たりの一日使用量を2020年の水準からそれぞれ経口第3世代セファロスポリン 系薬は40%、経口フルオロキノロン系薬は30%、経口マクロライド系薬は25%削減する。
- 8. 2027年までに人口千人当たりのカルバペネム系の一日静注抗菌薬使用量を2020年の水準から 20%削減する。

動物に関して

- 1. 2027 年までに大腸菌のテトラサイクリン耐性率を、牛は 20%以下、豚は 50%以下、鶏は 45%以 下に低下させる。
- 2027 年までに大腸菌の第3世代セファロスポリン耐性率を、牛は1%以下、豚は1%以下、鶏は 5%以下に低下させる。
- 3. 2027 年までに大腸菌のフルオロキノロン耐性率を、牛は1%以下、豚は2%以下、鶏は 15%以下 に低下させる。
- 2027 年までに畜産分野の動物用抗菌剤の全使用量を2020 年の水準から15%削減する。
- 5. 2027年の畜産分野の第二次選択薬(第3世代セファロスポリン、15員環マクロライド(ツラスロマイ シン、ガミスロマイシン)、フルオロキノロン、コリスチン)の全使用量を27t以下に抑える。

目標1

国民の薬剤耐性に関する知識や理解を深め、専 門職等への教育・研修を推進する

戦略

- (1.1) 国民に対する薬剤耐性の知識、理解に関する普及啓発・ 教育活動の推進
- (1.2) 関連分野の専門職等に対する薬剤耐性に関する教育、 研修の推進

戦略 1.1 国民に対する薬剤耐性の知識、理解に関す る普及啓発・教育活動の推進

背景

- 国を挙げて薬剤耐性(AMR)対策を推進するためには、薬剤耐性(AMR)や抗微生物薬に関す る国民の理解が必要不可欠である。「薬剤耐性(AMR)対策アクションプラン(2016-2020)」が策定 されて以降、各地での様々な教育資材やツールの配布、ウェブサイトやメディアを通じた情報発信、 普及啓発イベント等を通じて国民向けの教育啓発活動が行われてきた。
- また、学校教育の現場では、中学校・高等学校において、保健教育の一環として、感染症対策 や医薬品を正しく使用する必要性についての指導を実施している21。
- しかし、2020 年に我が国で行われた意識調査では、「薬剤耐性という言葉を聞いたことがある」と 回答した人は全体の4割から5割程度であり^{22,23}、薬剤耐性(AMR)の認知度は高い水準にあるとは 言えない。また、抗微生物薬に関する正しい知識の浸透もまだ十分ではなく、例えば、2022 年に 我が国で行われた意識調査では、「『抗菌薬・抗生物質はウイルスをやっつける』は間違い」と正し く回答した人は 16.4%と少なく、「『抗菌薬・抗生物質は治ったら早くやめる方がよい』は間違い」と正 しく回答した人も 28.3% にとどまった²⁴。
- また、上記の意識調査では、「家にとってある抗菌薬・抗生物質がある」との回答は 27.4%、「とっ ておいた抗菌薬・抗生物質を自分で飲んだことがある」との回答は 25.5%であり、自己判断で抗微 生物薬を使用する人が一定数存在している。さらに、2020年の意識調査では、抗菌薬を処方され たときに 34.6%の人が正しく飲み切っていなかった25。このように抗微生物薬を不適切な量や期間 使用することは、薬剤耐性(AMR)の出現を促すことにつながる。
- このため、国民に対する薬剤耐性(AMR)に関する知識、理解に関する普及啓発・教育活動を進 めることが重要である。特に、抗微生物薬が処方される機会が多い小児やその保護者、高齢者と いった特定層に対象を絞った啓発活動も引き続き重要と考えられる²⁶。なお、普及啓発活動にあた っては、薬剤耐性感染症(ARI)患者等に対する差別が生じないよう留意することも重要である。

²¹ 文部科学省「健康な生活を送るために(令和2年度版)」(高校生用)

²² 内閣府、薬が効かない(薬剤耐性)感染症に関する世論調査(令和元年8月)

²³ 厚生労働科学研究大曲班、厚生労働行政推進調査事業費研究「薬剤耐性(AMR)アクションプランの実行に関する研究」

²⁴ 抗菌薬意識調査レポート 2022(2022 年8月:インターネット調査)、国立研究開発法人 国立国際医療研究センター病院 AMR 臨床リファレンスセンター(https://amr.ncgm.go.jp/pdf/20220930_report_press.pdf)

²⁵ 抗菌薬意識調査レポート 2020(2020 年8月:インターネット調査)、国立研究開発法人 国立国際医療研究センター病院 AMR 臨床リファレンスセンター(https://amr.ncgm.go.jp/pdf/20201006_report.pdf)

²⁶ Plan national d'alerte sur les antibiotiques 2011-2016, Ministère du Travail, de L'emploi et de la Santé, France, 2011

方針

- 国民全体の薬剤耐性(AMR)に関する意識向上のため、抗微生物剤の適正使用(AMS)、感染 予防・管理(IPC)、ヒト、動物等の垣根を越えた世界規模での取組(ワンヘルス・アプローチ)等に 関する適切な普及啓発を推進するためのツールを作成する。また、薬剤耐性(AMR)に対する国 民全体の認知度を向上させ理解を深めるため、年間を通じ関係諸機関・諸団体、報道機関等と協 力して、薬剤耐性(AMR)の脅威に対する国民運動を展開することにより、適切な薬剤を必要な場 合に適切な量と期間使用することを徹底する。
- 特に抗微生物薬が処方される機会が多い小児やその保護者、高齢者などの特定層、また薬剤 耐性(AMR)に関連する企業、医療・動物衛生・食品衛生に関する学術団体等に向けて重点的な 啓発活動を行う。

主な国民啓発事項

- 薬剤耐性(AMR)の実態:問題の深刻さ、世界の情勢、日本の実態や立ち位置
- 抗微生物剤の適正使用 (AMS):かぜ症候群の多くには抗菌薬は有効ではないこと、不必要な抗微 生物薬の使用が薬剤耐性微生物(ARO)の発生の温床になっていること
- **感染予防・管理(IPC)**: 感染予防のためには咳エチケット・手洗いや予防接種(肺炎球菌、ヘモ フィルス・インフルエンザ b型(Hib)、インフルエンザ等)が重要であること
- ワンヘルス・アプローチ:薬剤耐性(AMR)に取り組むためには、医療、獣医療、畜水産、食品衛 生、環境などの分野における一体的な取組が重要であること

取組

■ 国民全体に向けた施策

- 政府一体となった普及啓発に係る会議等の実施
- 普及啓発ツールの作成、配布
- 情報提供基盤(ウェブサイト)の運営、ソーシャル・ネットワーキング・サービス(SNS)やメディ アを通じた情報発信
- 普及啓発イベントの実施(「薬剤耐性(AMR)対策推進月間」との連携)
- ヒト分野、獣医療・畜水産分野、食品衛生分野に関するリスクコミュニケーション27の徹底
- 薬剤耐性(AMR)に関する意識・態度・行動に関する定期調査の実施

27 リスクアナリシスの全過程において、リスクやリスクに関連する要因などについて、一般市民(消費者、消費者団体)、行政 (リスク管理機関、リスク評価機関)、メディア、事業者(一次生産者、製造業者、流通業者、業界団体など)、専門家(研究者、 研究・教育機関、医療機関など)といった関係者(ステークホルダー)がそれぞれの立場から相互に情報や意見を交換するこ と。リスクコミュニケーションを行うことで、検討すべきリスクの特性やその影響に関する知識を深め、その過程で関係者間の 相互理解を深め、信頼を構築し、リスク管理やリスク評価を有効に機能させることができる。リスクコミュニケーションの目的は、 「対話・共考・協働」(engagement)の活動であり、説得ではない。これは、国民が、ものごとの決定に関係者として関わるべきと いう考えによるものである。

■ 特定層に向けた施策

対象: 入院・外来患者、小児及びその保護者、高齢者、施設入所者

対象となる層ごとにそれぞれの特徴を踏まえた普及啓発ツールの作成、配布

対象:中学生・高校生

• 感染症対策及び医薬品を正しく使用することの必要性に関する教育の推進

対象:海外渡航者

渡航者向けのウェブサイト28等を通じた情報提供

対象:薬剤耐性(AMR)に関連する企業、医療・動物衛生・食品衛生に関する学術団体

- 企業等の自主的啓発活動を推進するための指針の策定(利益相反(COI)の観点を含む)
- 薬剤耐性(AMR)対策への協力表明の依頼

関係府省庁·機関

内閣官房新型コロナウイルス等感染症対策推進室、内閣府食品安全委員会、外務省、文部科学 省、厚生労働省、農林水産省、環境省

評価指標

薬剤耐性(AMR)の認知度、理解度

・ 薬剤耐性(AMR)普及啓発ツールの配布数

• 薬剤耐性(AMR)情報提供基盤(ウェブサイト)、ソーシャル・ネットワーキング・サービス(SNS)の閲 覧数

²⁸ 外務省海外安全ホームページ(http://www.anzen.mofa.go.jp)、厚生労働省ウェブサイト(http://www.mhlw.go.jp)、厚生 労働省検疫所 FORTH(http://www.forth.go.jp)等

戦略 1.2 関連分野の専門職等に対する薬剤耐性に関 する教育、研修の推進

背景

- 薬剤耐性(AMR)の発生・伝播を抑制するためには、抗微生物剤の適正使用(AMS)、感染予 防・管理(IPC)が重要であり、このためには、規制のみならず、抗微生物剤を使用する者、微生物 の感染予防・管理(IPC)に関わる者等の薬剤耐性(AMR)に関する知識、理解を深め、行動変容 に結び付けることが重要である。
- 医療従事者に対する教育介入は一定の効果を上げている。例えば、英国では、地域の一般診 療所に対するワークショップ型の介入で、診療所における抗菌薬処方量が 6.1%低下することが示 されている29。また、オランダにおける一般開業医のオンライントレーニングでは、コントロール群で は 33%の抗菌薬処方率であったのに対し、介入群では 21%の抗菌薬処方率だったという研究結果 もある³⁰。
- 一方、感染症対策の専門家は、国内においては少数にとどまっており、例えば、2022年7月にお ける感染症専門医数は1,554名であり、外科専門医の15分の1、救急科専門医の3分の1程度で ある。また、感染症内科・感染症科を標榜する診療科にて従事する医師は531名であり、病院・診 療所に勤務する医師の 0.2%に過ぎない31。また、その他の医療関係者における認定資格保持者 数は、2021 年 12 月現在、感染管理認定看護師 3,312 名、感染症看護専門看護師 100 名、感染 制御認定薬剤師 1,045 名、感染制御認定臨床微生物検査技師 776 名と極めて限られているのが 現状である³²。
- また、2020 年に全国の診療所医師を対象に行われた意識調査では、「薬剤耐性(AMR)対策ア クションプランを人に説明できる/理解している」と回答した人は31.3%に過ぎず、「抗菌薬適正使用 による薬剤耐性の抑制効果は大いにある」と回答した人は 54.4%、「感冒と診断したときに抗菌薬を ほとんど処方していない(0~20%に処方)」と回答した人は 71.1%にとどまっている33。
- 畜水産分野では、薬剤耐性(AMR)によるリスクの低減を図る上で、特に動物用抗菌剤や抗菌性 飼料添加物の使用者である獣医師や畜水産業の従事者(生産者)の果たす役割が重要であり、こ れらの者が、薬剤耐性(AMR)、動物用抗菌性物質の適正使用・慎重使用等について、正しく認 識・理解した上で動物用抗菌性物質を使用する必要がある。
- これらの抗微生物剤を使用する者、微生物の感染予防・管理(IPC)に関わる者等への薬剤耐性 (AMR)に関する普及・教育に関する取組について、より一層の充実・強化を図ることが必要である。

²⁹ McNulty C, Hawking M, Lecky D, et al. Effects of primary care antimicrobial stewardship outreach on antibiotic use by general practice staff: pragmatic randomized controlled trial of the TARGET antibiotics workshop. J Antimicrob Chemother. 2018;73(5):1423-1432. doi:10.1093/jac/dky004

³⁰ Dekker ARJ, Verheij TJM, Broekhuizen BDL, et al. Effectiveness of general practitioner online training and an information booklet for parents on antibiotic prescribing for children with respiratory tract infection in primary care: a cluster randomized controlled trial. J Antimicrob Chemother. 2018;73 (5):1416-1422. doi:10.1093/jac/dkx542

³¹ 感染症専門医名簿(令和4年7月1日)(https://www.kansensho.or.jp/uploads/files/senmoni/meibo_220701.pdf)

³² 日本看護協会資格認定制度(http://nintei.nurse.or.jp/nursing/qualification/)、感染症看護専門看護師(http://www.nc n.ac.jp/examination/grad/050/026advanced.html)、感染制御認定薬剤師(https://www.jshp.or.jp/snmon/senmon2.html)、 感染制御認定臨床微生物検査技師(ICMT)制度(http://www.jscm.org/icmt_new/index.html)

³³ 具ら、日本感染症学会合同外来抗菌薬適正使用調査委員会、全国の診療所医師を対象とした抗菌薬適正使用に関す るアンケート調査(第2回), 日本化学療法学会誌 69(Suppl.A) 195 2021 年4月

方針

- 保健医療、介護福祉、食品、獣医療、畜水産、農業等の様々な分野の専門職や従事者におけ る薬剤耐性(AMR)に関する知識の普及、感染予防・管理(IPC)、抗微生物剤の適正使用(AMS) 等に関する教育を推進するため、必要な知見を集積し、実践的な教育プログラムを充実させ、関 係機関における活用を推進する。
- 専門職の教育・研修を推進するため、専門職等に関する継続的な薬剤耐性(AMR)教育体制を 充実・推進する。
- 感染症対策の専門家数が限られていることから、感染症対策の教育人材を共有できる仕組み、 関連専門職が容易に情報を入手することができる情報基盤を整備する。

取組

■ 卒前教育

対象:医療関係者34、獣医療関係者35、介護福祉関係者36、農業・畜水産・食品衛生に関連する職を 目指す教育課程の学生

各職種の基礎教育等における薬剤耐性(AMR)、感染予防・管理(IPC)及び抗微生物剤の 適正使用(AMS)に関する内容は充実しており、引き続き関係機関における教育活動を推進

■ 国家資格試験

対象:医療関係者、獣医療関係者、介護福祉関係者に関連する職に関する国家試験受験者

資格試験出題基準に薬剤耐性(AMR)、感染予防・管理(IPC)及び抗微生物剤の適正使用 (AMS)に関する項目の設定・継続

■ 卒後教育 研修

対象:医師、歯科医師

医師臨床研修制度及び歯科医師臨床研修制度における抗微生物薬適正使用(AMS)等に 関する教育の実施(戦略 4.1 と連携)

対象:薬剤師

臨床研修における薬剤耐性(AMR)、感染予防・管理(IPC)及び抗微生物薬適正使用(AMS) に関して標準化された研修プログラムの開発、導入

対象:獣医師

- 卒後臨床研修における抗微生物剤の適正使用(AMS)等に関する研修プログラムの実施
- 家畜防疫員、臨床獣医師を対象とした講習会・研修会の実施、充実

³⁴ 医師、歯科医師、薬剤師、看護師、准看護師、助産師、保健師、臨床検査技師、診療放射線技師、臨床工学技士、言語 聴覚士、理学療法士、作業療法士、歯科衛生士、管理栄養士等

³⁵ 獣医師、愛玩動物看護師等

³⁶ 社会福祉士、介護福祉士、精神保健福祉士、介護支援専門員、訪問介護員等

対象: 医師、 歯科医師、 薬剤師以外の医療関係者、医療関係者以外の医療機関で働く者37

卒後導入研修における感染予防・管理(IPC)等に関する研修プログラムの開発、充実

■ 生涯教育

対象: 医療関係者、医療関係者以外の医療機関で働く者、獣医療関係者、畜水産・農業関係者

- 生涯教育研修における感染予防・管理(IPC)(手指消毒の重要性など)、抗微生物剤の適正 使用(AMS)等に関する研修プログラムの実施の継続、充実
- 新たに医療関係者を対象とした薬剤感受性表(アンチバイオグラム)等を活用した教育プロ グラムの周知をすることによる適切な抗菌薬投与の推進
- 学会を含む関連団体への研修プログラムの活用・研修強化についての働きかけ
- 感染症教育専門家ネットワーク(「感染症教育コンソーシアム」38)を通じた教育研修の支援の 推進
- 家畜生産者、養殖業者、飼料製造業者等を対象とした講習会・研修会の実施、都道府県等 を通じた獣医療現場及び生産現場での普及啓発・指導の徹底

対象:自治体担当者

- 専門教育研修における薬剤耐性感染症(ARI)の集団発生等に関するプログラムの実施の継 続、充実(戦略 3.3 と連携)
- 研修プログラムの活用・研修強化についての働きかけ
- 講習会・研修会の充実(戦略 3.3 参照)

■ 専門教育

対象:感染症に関する医療領域の団体・学会、資格認定機関等による認定資格39を有する者又は 資格取得を目指す者

- 薬剤耐性(AMR)等に関する研修履修を認定・更新要件へ追加することについての、当該資 格の関係団体への働きかけ
- 病院内における実地疫学(病院疫学)に関する研修の提供体制の強化 (戦略 2.1、戦略 3.3 と連携)

37 医療機関で従事し、直接患者や患者の体液等と接する機会がある看護助手、健康運動指導士、診療情報管理士、医療 事務員、医師事務作業補助者、臨床研究コーディネーター、リネンキーパー、清掃員、警備員等の職種

³⁸ 感染症に関する教育を行うことができる人材を集めた専門領域(医療、動物、食品、感染予防・管理、抗微生物剤の適正 使用等)の枠を越えたネットワーク。薬剤耐性(AMR)について教育・研修を提供できる人材は限られているため、教育・研修 活動のための教育ツールの開発や人材育成を行う。

³⁹ 感染予防・管理に関する認定資格: インフェクションコントロールドクター(ICD協議会)、感染症看護専門看護師・感染 管理認定看護師(日本看護協会)、感染制御専門薬剤師・認定薬剤師(日本病院薬剤師会)、感染制御認定臨床微生物検 查技師(日本臨床微生物学会)、院内感染予防対策認定医・歯科衛生士(日本口腔感染症学会)、滅菌技士(日本医療機 器学会)等の民間資格

感染症診療に関する学会認定資格: 感染症専門医(日本感染症学会)、抗菌化学療法認定医・指導医(日本化学療法学 会)、抗菌化学療法認定歯科医・指導医(日本化学療法学会)、抗菌化学療法認定薬剤師(日本化学療法学会)、外来抗感 染症薬認定薬剤師(日本化学療法学会)、薬物療法専門薬剤師(日本医療薬学会)、地域薬学ケア専門薬剤師(日本医療 薬学会)

対象:上記以外の医師、歯科医師、薬剤師、臨床検査技師、看護師

薬剤耐性(AMR)等に関する既存の関連認定資格への薬剤耐性(AMR)等に関する要件の 追加等の支援、推進

対象:獣医師

獣医療における感染症の適切な管理を行う資格認定機関等による認定資格の創設の検討

■ 普及啓発・教育体制の確保

対象:医療関係者、介護福祉関係者、食品関係者等

各分野(関連職能団体・学会、自治体など)が連携して教育啓発活動を推進するため、各分 野の専門家による感染症教育専門家ネットワーク(「感染症教育コンソーシアム」)の活動を

対象:医療関係者、介護福祉関係者、地方自治体職員

• AMR 臨床リファレンスセンター (AMRCRC)を中心とした情報提供及び啓発・教育の推進

对象: 獣医療関係者、畜水産・農業・食品関係者等

農林水産分野における薬剤耐性(AMR)に係る情報提供基盤の充実

関係府省庁·機関

文部科学省、厚生労働省、農林水産省、国立感染症研究所、動物医薬品検査所、農業・食品産業 技術総合研究機構、農林水産消費安全技術センター、国立国際医療研究センター

評価指標

- ・ 講習会・研修会の種類・実績
- ・ 薬剤耐性(AMR)等に関する研修履修を要件としている資格数

目標2

薬剤耐性及び抗微生物剤の使用量を継続的に 監視し、薬剤耐性の変化や拡大の予兆を適確に 把握する

戦略

- (2.1) 医療・介護分野における薬剤耐性に関する動向調査の強 化
- (2.2) 医療機関における抗微生物薬使用量の動向の把握
- (2.3) 畜水産、獣医療等における薬剤耐性に関する動向調査 の強化
- (2.4) 医療機関、検査機関、行政機関等における薬剤耐性に 対する検査手法の標準化と検査機能の強化
- (2.5) ヒト、動物、食品、環境等に関する統合的なワンヘル ス動向調査の実施

医療・介護分野における薬剤耐性に関する 戦略 2.1 動向調査の強化

背景

- 我が国では、医療分野の薬剤耐性(AMR)動向調査として、薬剤耐性(AMR)の傾向を把握する 「院内感染対策サーベイランス事業(JANIS)」、感染症の予防及び感染症の患者に対する医療に 関する法律(平成 10 年法律第 114 号)に基づく「感染症発生動向調査」及び耐性結核菌の動向 を把握する感染症サーベイランスシステム(結核登録者情報サブシステム)に加え、2017 年4月に は薬剤耐性(AMR)関連のデータを集約して医療機関や地域ネットワークで活用するための「感染 対策連携共通プラットフォーム(J-SIPHE)」を設立し、これらにより重要な薬剤耐性(AMR)の動向 調査を行っている。また、令和4年度診療報酬改定において、地域や全国の動向調査に参加して いる医療機関の評価として、サーベイランス強化加算を新設した。
- しかし、いずれの仕組みからも対象外となり、十分に広がりを確認できていない薬剤耐性微生物 (ARO)が存在している40。「院内感染対策サーベイランス事業(JANIS)」は任意参加型の動向調査 であり、参加施設は 200 床以上の比較的大規模の医療機関が多く41、さらに高齢者施設等は参加 していないことから、200 床未満の医療機関における薬剤耐性(AMR)の実態把握が課題となって いる。
- 医療関連感染症(HAI)動向調査については、「院内感染対策サーベイランス事業(JANIS)」に 加えて「感染対策連携共通プラットフォーム(J-SIPHE)」42において、参加施設の感染症診療状況、 感染対策や抗菌薬適正使用への取組、医療関連感染症(HAI)の発生状況、主要な細菌や薬剤 耐性微生物(ARO)の発生状況、それらによる血流感染の発生状況、抗菌薬の使用状況等の情報 を集約し、個々の施設及び地域の施設間の連携にその情報を役立てることが期待されている。一 方、参加施設が少ないことが課題であり、活用機会を増やしていく必要がある。
- 新型コロナウイルス感染症(COVID-19)の影響について、「院内感染対策サーベイランス事業 (JANIS)」データを利用し、2019 年及び 2020 年の黄色ブドウ球菌、肺炎球菌、大腸菌、肺炎桿菌 及び緑膿菌の分離患者数と分離率を比較した。各菌の分離患者数及び分離率は、メチシリン感 性耐性の黄色ブドウ球菌ではわずかに減少し、ペニシリン感性耐性の肺炎球菌では60%減少し、 第3世代セファロスポリン耐性肺炎桿菌では増加した。残りの菌では分離患者数は減少したが分 離率は増加した43。

⁴⁰ 多剤耐性淋菌や耐性結核、フルオロキノロン耐性サルモネラ属・シゲラ属等に関するデータ収集はなされておらず、多剤 耐性淋菌や耐性結核については、研究班で把握が行われている。

^{41 2023} 年1月現在、「院内感染対策サーベイランス事業(JANIS)」参加医療機関 3,016 施設(診療所を除く)のうち、集中治 療室(ICU)部門には 177 施設、新生児集中治療室(NICU)部門には 120 施設、手術部位感染症(SSI)部門には 945 施設 が参加している。

^{42 2023} 年1月現在、「感染対策連携共通プラットフォーム(J-SIPHE)」参加医療機関 1,870 施設(診療所を除く)のうち、AST 関連・感染症診療情報部門には 866 施設、AMU 情報部門には 1,730 施設、ICT 関連情報部門には 1,240 施設、医療関 連感染情報部門には1,069施設、微生物・耐性菌関連情報部門には1,441施設が参加している。

⁴³ Hirabayashi A, Kajihara T, Yahara K, Shibayama K, Sugai M. Impact of the COVID-19 pandemic on the surveillance of antimicrobial resistance. J Hosp Infect. 2021;117:147-156. doi:10.1016/j.jhin.2021.09.011

方針

- 「院内感染対策サーベイランス事業(JANIS)」の対象施設や対象項目の見直し・拡大などにより、 200 床未満の小規模な医療機関及び診療所における薬剤耐性(AMR)の動向の把握に努め、医 療分野の薬剤耐性(AMR)の動向調査を強化する。特に世界的な広がりが問題となっている耐性 結核及び耐性淋菌感染症に対する全数把握及び薬剤耐性(AMR)真菌の把握を検討する。
- 「院内感染対策サーベイランス事業(JANIS)」の対象施設や対象項目の見直し等により小規模 \bigcirc な医療機関や高齢者施設入所者における薬剤耐性(AMR)の動向の把握に努める。
- 医師の診断に基づき、かつ効率的な医療関連感染症(HAI)の動向調査の手法を開発する。医 療関連感染症(HAI)の動向調査により得られた情報、「院内感染対策サーベイランス事業 (JANIS)」により得られたデータ及びレセプト情報から得られた抗微生物薬使用量(AMU)情報を、 「感染対策連携共通プラットフォーム(J-SIPHE)」を用いて連携させ、院内及び地域連携における 薬剤耐性微生物(ARO)による医療関連感染症(HAI)のリスク評価・リスク管理を推進する。
- 国内外の様々な薬剤耐性(AMR)の情報を収集し、臨床現場への還元、研究面での活用、行政 や世界保健機関(WHO)等への政策提言を行うなど、薬剤耐性(AMR)に関する包括的なシンクタ ンク機能を強化する。

取組

■ 感染症発生動向調査の強化

- 耐性結核、多剤耐性淋菌感染症等の把握の推進
 - 薬剤感受性検査手法及び項目の標準化
 - ✓ 多剤耐性淋菌に対する分子疫学的調査研究の実施
 - 薬剤耐性(AMR)緑膿菌感染症の全数把握の必要性及び妥当性の検討
- 届出義務となっている感染症の届出を推進するための支援策の実施
 - ✓ 電子診療録における届出支援システムの開発・導入の支援
 - 医療機関から保健所への届出の電子化及び標準化の支援
- 5類感染症に指定された薬剤耐性感染症(ARI)4や薬剤耐性(AMR)が問題となる感染症に 関して、「院内感染対策サーベイランス事業(JANIS)」により得られたデータとの連携の推進 及び必要に応じた届出基準等の見直し
- 新たに国立感染症研究所が感染症発生動向調査の発生届や病原体のデータから各地域 の薬剤耐性(AMR)のリスク評価を実施した上で、地方衛生検査所、保健所等へのリスク評 価結果をフィードバックする手法の検討

院内感染対策サーベイランス事業(JANIS)の強化

「院内感染対策サーベイランス事業(JANIS)」の対象施設や対象項目の見直しに資する調 査研究の実施(戦略 3.1 参照)

⁴⁴ カルバペネム耐性腸内細菌目細菌(CRE)感染症、薬剤耐性アシネトバクター感染症、薬剤耐性緑膿菌感染症、バンコマ イシン耐性腸球菌(VRE)感染症、バンコマイシン耐性黄色ブドウ球菌感染症、ペニシリン耐性肺炎球菌感染症、メチシリン 耐性黄色ブドウ球菌(MRSA)感染症

- 検査受託機関との協力による、院内微生物検査室のない医療機関における薬剤耐性(AMR) の動向調査の実施の支援
- 「WHOグローバル薬剤耐性サーベイランスシステム(GLASS)」の仕様更新に応じて要求され る菌種における動向調査対象の更なる拡大45
- 重要な薬剤耐性遺伝子(ARG)46や臨床情報に関する情報収集・分析の推進
- 薬剤耐性(AMR)真菌47を「院内感染対策サーベイランス事業(JANIS)」の対象に加えること を検討
 - ✓ 薬剤感受性検査手法及び項目の標準化
- 「院内感染対策サーベイランス事業(JANIS)」により得られたデータを地域レベルで分析でき る仕組みの導入48及び「地域感染症対策ネットワーク(仮称)」による動向調査活動への活用 の推進(戦略 3.1 と連携)

感染対策連携共通プラットフォーム(J-SIPHE)の強化

- 「院内感染対策サーベイランス事業(JANIS)」に加えて、「感染対策連携共通プラットフォー ム(I-SIPHE)」による動向調査を引き続き実施
 - ✓ 医療機関及び地域における「抗微生物薬適正使用チーム(AST)」の業務の一環として の医療関連感染症(HAI)に関する情報収集の実施
 - ✓ 新たに薬剤耐性微生物(ARO)による血流感染症の患者数、死亡者数、障害調整生命 年(DALYs)、質調整生存年(QALYs)等の疾病負荷及び治療費等の経済負荷の調査 の検討
- 電子診療録における医療関連感染症(HAI)の疑い例の自動検出システムに関する研究の
- 「院内感染対策サーベイランス事業(JANIS)」とのデータ連携による解析の実施49
- 「感染対策連携共通プラットフォーム(J-SIPHE)」の実施に必要な知識及び技術を学ぶため の研修の提供(戦略 1.2、戦略 3.3 と連携)

⁴⁵ 菌種(Acinetobacter spp, E. coli, K. pneumoniae, P. aeruginosa, S. aureus, S. pneumoniae, N. meningitidis, H. influenzae, Salmonella spp. (non-typhoidal), S. enterica serovar Typhi, S. enterica serovar Paratyphi A, Shigella spp, N. gonorrhoeae) 検体情報(血液検体、CSF 髄液検体、尿検体、便検体、下気道由来検体)、薬剤耐性因子(NDM, OXA, VIM, IMP, GES, KPC, mcr 1-10, CTX-M, TEM, SHV, NDM, OXA, VIM, mecA/mecC, cfr)

⁴⁶ 基質拡張型 β ラクタマーゼ(ESBL)、AmpC 等の第3世代セファロスポリン耐性、メタロ β ラクタマーゼ(MBL)、KPC、ΟΧΑ 等のカルバペネマーゼ、MCR-1等のその他の重要な薬剤耐性に関する遺伝子を含む。

⁴⁷ Candida albicans; C. glabrata; C. parapsilosis; C. tropicalis; C. krusei

⁴⁸ 厚生労働科学研究費補助金(科研費)で実施されている感染症対策に関する地域連携支援システムの開発研究(下記) により、「院内感染対策サーベイランス事業(JANIS)」データを地域レベルで解析する仕様が開発されている。

⁴⁹ 科研費による感染症対策に関する地域連携支援システムについては、すでに「院内感染対策サーベイランス事業 (JANIS) との連携は可能な仕様となっており、医療関連感染症(HAI)サーベイランスデータとの連携により、どういった薬剤 耐性微生物(ARO)がどの程度医療関連感染症(HAI)に寄与しているかを解析することができる。

■ 薬剤耐性 (AMR) に関する包括的なシンクタンク機能を担う組織の整備

国立感染症研究所薬剤耐性(AMR)研究センターと国立国際医療研究センターAMR 臨床リ ファレンスセンター(AMRCRC)が連携し、基礎研究から臨床までの薬剤耐性(AMR)対策の 取組を強化

関係府省庁·機関

厚生労働省、国立感染症研究所、国立国際医療研究センター、保健所、地方衛生研究所

評価指標

- 耐性結核、多剤耐性淋菌感染症等の報告数
- ・薬剤耐性(AMR)に関する動向調査及びその調査研究等に参加する医療機関数

表7 代表的な医療関連感染症(HAI) (米国疾病予防管理センターの動向調査対象)

医療関連感染症 (HAI)	
中心静脈カテーテル関連血流 感染症 (CLABSI)	中心静脈カテーテルへの感染を契機に発症した菌血症、敗血症及びその合併症
カテーテル関連尿路感染症 (CAUTI)	膀胱留置カテーテル等、尿路に留置するカテーテル存在下で発症した尿路感染症
人工呼吸器関連肺炎(VAP)	人工呼吸器管理下にある患者に発生した肺炎
手術部位感染症(SSI)	手術後に手術創部に発生する感染症
クロストリジウム・ディフィシ ル感染症(CDI)	クロストリジウム・ディフィシルにより生じる腸管感染症 (抗菌薬等の使用により選択的な過剰増殖により発症することがある)

出典: 米国疾病予防管理センター(CDC)(National Healthcare Safety Network 及び Emerging Infections Program)より

戦略 2.2 医療機関における抗微生物薬使用量の動向 の把握

背景

- 医療機関における抗微生物薬使用量(AMU)は、薬剤耐性(AMR)と密接な関係があることが知 られており50、また、抗微生物薬の使用量を減少させることは薬剤耐性微生物(ARO)の出現を抑 制することが示されている51。
- 医療機関における抗微生物薬使用量(AMU)に関する動向調査は、抗微生物薬使用量に関す る指標(AMU 指標52)を把握し、「院内感染対策サーベイランス事業(JANIS)」などの薬剤耐性 (AMR)動向調査データと連携することで、医療機関間での抗微生物薬の適正使用(AMS)の量 的・質的な評価に用いることができるため、その活用に関する調査研究53が行われている。
- また、国際標準の抗微生物薬の使用量に関する指標(AMU 指標)を用いることで、我が国の抗 微生物薬使用量(AMU)に関する状況を世界と比較することもできる。
- 抗微生物薬は感染症の種類、患者の年齢や臓器の機能等に応じて投与量や投与日数だけで なく、地域により使用状況が異なることを考慮して、医療機関ごとの細かい動向把握を可能とする 仕組みを展開していく必要がある。
- 現在、販売量及び診療明細情報を用いた抗微生物薬使用量(AMU)に関する入院・外来での 監視を実施している54。この調査結果から、抗微生物薬の使用は、病院以上に診療所での処方が 多くを占めている実態が明らかとなった。なかでも処方の9割を外来が占めており、上気道感染症 や下痢症といった本来抗菌薬が不要と考えられる疾患に多くが使用されていることが明らかになっ てきた55,56,57。適正使用の更なる推進のためには、多くの処方がなされている診療所を対象とする 動向調査を実施することが重要となる。

http://amrcrc.ncgm.go.jp/surveillance/010/ref/NDB_2013-2020.pdf

⁵⁰ Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis. 2014;14:13. Published 2014 Jan 9. doi:10.1186/1471-2334-

⁵¹ Dancer SJ, Kirkpatrick P, Corcoran DS, Christison F, Farmer D, Robertson C. Approaching zero: temporal effects of a restrictive antibiotic policy on hospital-acquired Clostridium difficile, extended-spectrum β -lactamase-producing coliforms meticillin-resistant Staphylococcus aureus. Antimicrob Agents. 2013:41(2):137-142. doi:10.1016/j.ijantimicag.2012.10.013

⁵² 抗微生物薬使用密度(AUD)、抗微生物薬使用日数(DOT)及びその組み合わせ

⁵³ 令和3年度厚生労働科学研究費補助金「薬剤耐性(AMR)アクションプランの実行に関する研究」

⁵⁴ 抗菌薬使用サーベイランス Japan Surveillance of Antimicrobial Consumption (JSAC)

⁵⁵ Hashimoto H, Saito M, Sato J, et al. Indications and classes of outpatient antibiotic prescriptions in Japan: A descriptive study using the national database of electronic health insurance claims, 2012-2015. Int J Infect Dis. 2020;91:1-8. doi:10.1016/j.ijid.2019.11.009

⁵⁶ Kimura Y, Fukuda H, Hayakawa K, et al. Longitudinal trends of and factors associated with inappropriate antibiotic prescribing for non-bacterial acute respiratory tract infection in Japan: A retrospective claims database study, 2012-2017. PLoS One. 2019;14(10):e0223835. Published 2019 Oct 16. doi:10.1371/journal.pone.0223835

⁵⁷ Ono A, Aoyagi K, Muraki Y, et al. Trends in healthcare visits and antimicrobial prescriptions for acute infectious diarrhea in individuals aged 65 years or younger in Japan from 2013 to 2018 based on administrative claims database: a retrospective observational study. BMC Infect Dis. 2021;21(1):983. Published 2021 Sep 21. doi:10.1186/s12879-021-06688-2

- 全国の診療所における抗菌薬の処方や傷病名の情報を解析し、可視化することにより、診療所 での抗菌薬の適正使用(AMS)を推進すること、抗菌薬の使用状況等に関する情報を集約させ、 それらを参加医療機関や地域等で活用されることを目的とし、診療所版「感染対策連携共通プラ ットフォーム(J-SIPHE)」を立ち上げた。介護老人保健施設等で、抗菌薬使用の点有病率調査(P PS)を実施したが、参加は一部にとどまっており、参加施設の拡充が必要である。今後、継続的に 動向調査を行うことに加え、他の疾患での使用状況等の詳細な分析や、介入点等の検討が必要 である。
- 2016 年より抗微生物薬使用量(AMU)は徐々に減少していたが、2020 年から更に大きく減少し た58。新型コロナウイルス感染症(COVID-19)への感染対策が行われた結果、急性気道感染症の 罹患が減り、診療所を受診する患者が減少したことが影響していると考えられる。 抗微生物薬適正 使用(AMS)に加え感染症への予防対策が、抗微生物薬使用量(AMU)を減らすことに貢献した。

方針

- 各医療機関(入院・外来部門)における抗微生物薬使用量(AMU)を把握するための動向調査 \bigcirc 手法を開発する。
- 医療機関ごとの抗微生物薬の使用量に関する指標(AMU 指標)を把握し、「院内感染対策サー ベイランス事業(JANIS)」などの薬剤耐性(AMR)の動向調査データと連携することにより、抗微生 物薬適正使用(AMS)の量的・質的な比較・評価を行い、対策を継続する。
- 高齢者施設において処方される抗微生物薬の実態を把握する。

取組

- 医療機関における「感染対策連携共通プラットフォーム(J-SIPHE)」による抗微生 物薬使用量(AMU)動向調査の実施
 - 「感染対策連携共通プラットフォーム(J-SIPHE)」への中小病院及び診療所の参加の推進及 び「院内感染対策サーベイランス事業(JANIS)」との連携による活用の強化
 - 医療機関間の枠組み等における「感染対策連携共通プラットフォーム(J-SIPHE) |等を用い た量的・質的な評価ができる体制確保の推進及びその多施設比較を各医療機関にフィード バックする方法の検討
 - 病院の外来部門や診療所における抗微生物薬使用量(AMU)動向調査システムの活用の 推進
 - レセプト情報・特定健診等情報データベース(NDB)情報の活用の推進
 - 抗微生物薬使用量(AMU)動向調査システムへの医療機関の参加の推進
 - 入院部門と外来部門の抗微生物薬使用量(AMU)動向調査システムの統合についての調査 研究の実施
 - 診療部門ごとの感染症発生率、抗菌薬使用割合、予後の記述とそのリスク因子を探索する 研究調査の実施

⁵⁸ 抗菌薬使用サーベイランス (JSAC: Japan SJurveillance of Antimicrobial Consumption)

入院部門と外来部門の抗微生物薬使用量(AMU)動向調査システムとの連携の検討

■ 抗微生物薬使用量(AMU)動向調査のリスク評価・リスク管理への応用

- 一部の医療機関における抗微生物薬使用量に関する指標(AMU指標)の「院内感染対策サ ーベイランス事業(JANIS)」データとの連携による、それぞれの医療機関における抗微生物 薬適正使用(AMS)の質的・量的な評価(ベンチマーキング)の継続及び抗微生物薬適正使 用の活用に向けた調査研究の実施(戦略 4.1 参照)
- 抗微生物薬の使用量に関する指標(AMU 指標)を用いた抗微生物薬適正使用(AMS)の質 の評価のためのガイドラインの改定
- 「地域感染症対策ネットワーク(仮称)」(戦略 3.1 参照)、医療機関間の枠組み等における抗 微生物薬の使用量に関する指標(AMU 指標)を用いた量的・質的な評価ができる体制確保 の推進及びその多施設比較を各医療機関にフィードバックする方法の検討
- 「感染対策連携共通プラットフォーム(J-SIPHE)」及び「院内感染対策サーベイランス事業 (JANIS)」データを用いた、「薬剤耐性(AMR)ワンヘルスプラットフォーム」における各都道府 県の抗菌薬使用量、耐性率、診療プラクティス情報59等の情報の充実

高齢者施設で処方される抗微生物薬の処方実態の把握

高齢者施設において処方されている抗微生物薬の使用実態調査の実施

関係府省庁・機関

厚生労働省、国立感染症研究所、国立国際医療研究センター、保健所、地方衛生研究所

評価指標

・ 医療機関における抗微生物薬使用量(AMU)

- 入院・外来部門における抗微生物薬使用量(AMU)動向調査参加施設数
- 地域における抗微生物薬使用量に関する指標(AMU 指標)に関する検討体制を持つ自治体数

⁵⁹ 例えば、血液培養の状況(複数セット率)、手指衛生の使用量/遵守率

戦略 2.3 畜水産、獣医療等における薬剤耐性に関す る動向調査の強化

背景

- 畜産分野については、1999 年から「動物由来薬剤耐性菌モニタリング(JVARM)」を開始し、全 国の薬剤耐性(AMR)の動向を調査する体制を整備し、各都道府県、独立行政法人農林水産消 費安全技術センター等と連携協力し、動物医薬品検査所が基幹検査機関として薬剤耐性微生物 (ARO)の動向調査を実施している。あわせて、動物用抗菌性物質の販売量から換算した使用量 に関する情報収集もこの一環として実施し、これらの結果については、毎年報告書として公表する とともに、ワンヘルス・アプローチの観点から「薬剤耐性ワンヘルス動向調査年次報告書(NOAR)」 ヘデータを提供している。さらに、国際獣疫事務局(WOAH)が集計し報告する「動物分野での抗 菌剤使用に関する年次報告書」に日本のデータとしても提供している。
- 「動物由来薬剤耐性菌モニタリング(JVARM)」では、各種薬剤耐性微生物(ARO)の性状分析等 に関する調査・研究を実施し、その成果をリスク評価のための資料等として活用している。薬剤耐 性菌の遺伝子情報を蓄積し解析するため令和元年度に新たに開発したゲノムデータベース(J-VEG)にデータの登録し・解析を開始した。今後、更にデータベースを充実させ、薬剤耐性(AMR) の変化や拡大の予兆を適確に把握していく必要がある。
- 水産分野については、国際連合食糧農業機関(FAO)での検討において薬剤耐性菌がヒトの健 康に及ぼす影響は低いとされており60、諸外国においても組織的な動向調査・監視体制は整備さ れていない。一方、我が国においては、これまで養殖水産動物用抗菌剤の効能又は効果の対象 となる病原菌等の薬剤感受性について、動向調査を実施し、リスク評価のための資料等として活 用している。
- 愛玩動物分野については、国際的にもこれまで欧州の一部の国を除いて薬剤感受性について の動向調査・監視は行われていなかったが、我が国においては病気の愛玩動物を対象とした薬剤 感受性の動向調査を 2017 年より、健康な愛玩動物を対象とした動向調査を 2018 年より開始して いる。
- 農業分野については、国際連合食糧農業機関(FAO)等において、動向調査等に関するデータ の収集、共有等について議論がなされているところである。

60 Improving biosecurity through prudent and responsible use of veterinary medicines in aquatic food production, FAO Fisheries and Aquaculture Technical Paper No. 547, 2012.

方針

- 家畜、養殖水産動物、愛玩動物における薬剤耐性(AMR)の動向調査を継続する。
- 動物、農業分野における抗微生物剤の総使用量を推計するための動向調査を継続する。加え て、農場ごとの使用量(AMU)を把握するための体制を新たに確立する。
- これらの結果を、広く公表し、リスク評価及び戦略 2.5 のワンヘルス動向調査の実施に利用する とともに、リスク管理措置の策定に活用する。
- 動物分野における薬剤耐性遺伝子(ARG)等のデータベースを充実させ、薬剤耐性(AMR)の変 化や拡大の予兆を適確に把握する。

取組

■ 動物分野における薬剤耐性(AMR)の動向調査の実施

- 家畜、養殖水産動物、愛玩動物の薬剤耐性(AMR)に関する動向調査について、対象菌種・ 薬剤の見直しを図りつつ充実
- 統一的な比較・評価が可能となる薬剤感受性試験マニュアル等の整備及び統一的な手法に 基づくデータの収集
- 収集した菌株について全ゲノム解析を実施し、遺伝子情報を引き続き蓄積

■ 抗微生物剤使用量(AMU)の動向調査の実施

- 家畜、養殖水産動物、愛玩動物における動物用抗菌性物質の使用量(AMU)を推計するた めの動向調査の継続
- 家畜、愛玩動物におけるヒト用抗菌薬の使用量(AMU)を推計するための動向調査の継続
- 畜産分野において農場ごとの使用量(AMU)を把握するための体制を新たに確立
- 抗菌性飼料添加物の対象家畜ごとの使用量(AMU)を推計するための動向調査の継続
- 農業で用いられる抗微生物剤の使用量に関する動向調査の実施

■ 動向調査のリスク評価・リスク管理への応用

- 畜種ごとの薬剤耐性(AMR)の状況や家畜疾病の発生を踏まえ、薬剤耐性(AMR)の変 化や拡大の予兆を適確に把握
- 「動物由来薬剤耐性菌モニタリング(JVARM)」で収集した菌株の全ゲノム解析の結果を 用い、「院内感染対策サーベイランス事業(JANIS)」と連携し、動物由来耐性菌とヒト由来 耐性菌の疫学的関連性について解析

関係府省庁・機関

農林水産省、動物医薬品検査所、農林水産消費安全技術センター、農業・食品産業技術総合研 究機構、水産研究・教育機構、家畜保健衛生所、水産試験場

評価指標

- ・ 動向調査の報告数
- ・収集した菌株数

戦略 2.4 医療機関、検査機関、行政機関等における 薬剤耐性に対する検査手法の標準化と検査 機能の強化

背景

- 薬剤耐性(AMR)に関する検査には、病原体培養同定検査、薬剤感受性試験、核酸増幅同定 検査、薬剤耐性遺伝子(ARG)検査、薬剤耐性(AMR)迅速診断キット等が、また薬剤耐性感染症 (ARI)の集団発生調査には疫学的なゲノム解析が含まれるが、これらの検査については、全国規 模での統一的な精度管理が実施されておらず、薬剤耐性(AMR)に関する動向調査・監視を行い 評価する上での障壁となっている。また、薬剤耐性遺伝子(ARG)を含む薬剤耐性(AMR)に関す る詳細な検査については、実施が可能な検査機関が限られており、また検査基準や検査対象、検 査方法などが統一されていない。
- 動物分野においては、「動物由来薬剤耐性菌モニタリング(JVARM)」の調査に参加する検査機 関等における手法を統一するため、基幹検査機関である動物医薬品検査所が、都道府県の家畜 防疫員への研修や、検査機関への精度管理等を実施してきた。
- 院内微生物検査室は、薬剤耐性(AMR)及び医療関連感染症(HAI)の動向調査・監視及び抗 微生物薬の適正使用(AMS)上、極めて重要な機能を担っているが、これまで医療機関の検査業 務、特に微生物検査に係る業務は不採算と言われており、中小規模病院では、外部委託が進め られてきた。

方針

- 薬剤耐性(AMR)の検査に関する全国規模での外部評価管理体制の構築を支援することで、検 査技術のレベル向上を図るとともに、統一的な比較・評価が可能になる検査体制を確保する。
- 基幹検査機関である動物医薬品検査所が、研修、精度管理等を実施することにより、調査に参 加する検査機関の検査技術の精度向上を図るとともに、統一的な比較・評価が可能になる検査体 制を確保する。
- 医療機関における抗微生物薬の適正使用(AMS)に資する微生物検査体制の調査研究を実施
- 公衆衛生・動物衛生検査機関61において、薬剤耐性(AMR)の情報収集・提供機能を強化する ための整備、新技術の導入等を検討する。

⁶¹ 国立感染症研究所、動物医薬品検査所、地方衛生研究所、家畜保健衛生所等

■ 検査手法の統一化・精度管理の充実

- 各分野での統一的な比較や評価が可能となる、国際標準に準拠した薬剤感受性試験マニ ュアルの更新及び研修の実施
- 外部評価管理体制の構築支援及び医療機関、検査機関等への導入の推進
- 薬剤耐性遺伝子(ARG)検査や薬剤耐性微生物(ARO)の比較分析のためのマニュアル・ガ イドラインの整備
- 新たに細菌検査の測定機器の精度管理に用いる細菌株(パネル)作成及び全国の検査室 への提供の検討
- 各医療機関において代表的感染症起炎微生物に関する薬剤感受性表(アンチバイオグラム) を作成するためのマニュアル・ガイドラインの更新及び普及啓発
- 「動物由来薬剤耐性菌モニタリング(IVARM)」の調査に関与する検査機関において、統一し た手法で検査を実施するための研修、精度管理等の実施の継続

■ 薬剤耐性(AMR)関連検査機能の拡大及びそのための調査研究の実施

- 公衆衛生・動物衛生検査機関における薬剤耐性(AMR)情報収集・提供機能の強化・拡充
- 薬剤耐性(AMR)関連検査⁶²や抗微生物薬適正使用(AMS)に資する基本的微生物学的検 査63の活用に関する臨床研究の実施(戦略 5.2 参照)

■ 最新動向調査・監視技術の導入と対策への応用

- 公衆衛生・動物衛生検査機関における分子疫学に基づく動向調査・監視のための新技術⁴ の開発・導入促進
- 薬剤耐性(AMR)に関するゲノムデータベースの拡充による、分子疫学に基づく動向調査・ 監視65の充実とリスク評価・リスク管理への応用

関係府省庁・機関

厚生労働省、農林水産省、国立感染症研究所、動物医薬品検査所、農業・食品産業技術総合研 究機構、農林水産消費安全技術センター、国立国際医療研究センター、保健所、地方衛生研究所、 家畜保健衛生所

⁶² E-test、ブレイクポイントチェッカーボード法、マルチプレックス PCR 法、薬剤耐性遺伝子産物の迅速診断検査、マトリック ス支援レーザー脱離イオン化飛行時間型質量分析計 (MALDI-TOF MS)等

⁶³ グラム染色、蛍光染色、細菌培養同定検査、嫌気性培養検査、細菌薬剤感受性検査、抗酸菌分離培養検査、抗酸菌薬 剤感受性検査、酵母様真菌薬剤感受性検査、各種細菌・ウイルス等の迅速診断検査等

⁶⁴ 全ゲノムシークエンス解析(WGS)、メタゲノム解析等

⁶⁵ 薬剤耐性微生物(ARO)のゲノム解析、ゲノムデータベースとサーベイランス・モニタリングデータの連携による薬剤耐性遺 伝子(ARG)及びAROの伝播経路の解明と対策への応用

評価指標

- 標準化実施機関数
- ・標準化のための研修の実施回数
- ・ 分子疫学に基づく動向調査・監視で収集された標本数(サンプル数)

戦略 2.5 ヒト、動物、食品、環境等に関する統合的 なワンヘルス動向調査の実施

背景

- 薬剤耐性(AMR)の伝播経路を断ち切るためには、どの種類の薬剤耐性(AMR)がどの経路によ り、どの程度広がっているのか、という薬剤耐性(AMR)の生態系を正確に把握する必要がある。
- 現在、我が国では、ヒトについては「院内感染対策サーベイランス事業(JANIS)」、動物について は「動物由来薬剤耐性菌モニタリング(IVARM)」という2つの動向調査・監視体制がそれぞれ存在 し、連携が図られている。食品に関しては、多剤耐性腸内細菌科菌及びバンコマイシン耐性腸球 菌(VRE)の調査研究を行っているほか、地方衛生研究所で収集する食品由来細菌の薬剤耐性 (AMR)データを収集し、「院内感染対策サーベイランス事業(IANIS)」や「動物由来薬剤耐性菌モ ニタリング(JVARM)」とデータを統合して定期的に確認している。
- また、我が国の動向調査では、ワンヘルスに関わる薬剤耐性(AMR)、入院・外来部門における 抗微生物薬使用量(AMU)、感染症及び予防接種に関する情報を集約し、各地域における薬剤 耐性(AMR)対策への活用を目的とした「薬剤耐性(AMR)ワンヘルスプラットフォーム」を AMR 臨 床リファレンスセンター(AMRCRC)において運営し、ヒト分野のみならず家畜、養殖水産動物及び 愛玩動物の薬剤耐性(AMR)に関するデータの利用を促進している。
- さらに、我が国におけるヒトや動物に対する抗微生物剤の使用量(AMU)や微生物の薬剤耐性 率等の状況等を検討するため、「薬剤耐性ワンヘルス動向調査検討会」を設置し、ヒト、動物、食 品及び環境分野の有識者による議論を行い、国内の各分野における薬剤耐性(AMR)及び抗微 生物薬使用量(AMU)の現状及び動向把握について評価することを目的に、毎年、「薬剤耐性ワ ンヘルス動向調査年次報告書(NAOR)」を作成している。

方針

- 「院内感染対策サーベイランス事業(JANIS)」、「動物由来薬剤耐性菌モニタリング(JVARM)」等 の複数の動向調査・監視を統合した、ヒト、動物等の垣根を越えた世界規模での取組による動向 調査体制(ワンヘルス動向調査体制)を確立するため、国立感染症研究所、動物医薬品検査所及 び国立国際医療研究センター等に構築したネットワークにおいて、情報を集約・共有する。また、 「薬剤耐性ワンヘルス動向調査検討会」において、各動向調査・監視の情報を連携させ、国際比 較等も行いながら、薬剤耐性(AMR)の推移や対策等について定期的に分析・評価を行う。また、 評価結果を公表し、「薬剤耐性(AMR)対策アクションプラン(2023-2027)」の見直しに活用する。
- 食品中における薬剤耐性微生物(ARO)の動向調査・監視体制の確立に向けた調査研究を実 施する。
- 水圏、土壌環境及び野生動物中における薬剤耐性微生物(ARO)、抗微生物剤残留濃度等に 関する動向調査・監視に関する調査研究を実施する。

図 6 ワンヘルス・アプローチに基づく協働体制

取組

■ ワンヘルス動向調査体制の推進

- 薬剤耐性(AMR)及び抗微生物剤使用量(AMU)に関する「薬剤耐性ワンヘルス動向調査検 討会」66において、以下の取組を実施
 - ✔ 国立感染症研究所、動物医薬品検査所、国立国際医療研究センター等による「薬剤耐 性(AMR)ワンヘルス動向調査ネットワーク(仮称)」の構築及び情報の集約・共有
 - 動向調査・監視情報、その他の学術的研究情報、地方自治体による検査情報等の統合 された情報に基づく分析・評価引き続き推進
 - 「薬剤耐性ワンヘルス動向調査年次報告書(NAOR)67」の作成及び公表の継続・内容の 充実
- 食品⁶⁸中の薬剤耐性(AMR)に関する動向調査・監視体制の確立に向けた調査研究の実施
- ヒト、動物、食品、環境等が保有する薬剤耐性伝達因子の解析及び伝達過程の関連性に関 する調査研究の実施
- 水圏・土壌環境における薬剤耐性(AMR)及び残留抗微生物剤の動向を把握するための調 査研究の実施
- 薬剤耐性菌に関する環境中の水、土壌中における存在状況、健康影響等に関する情報の 収集
- 環境中における抗微生物剤の残留状況に関する基礎情報の収集

⁶⁶ 委員の専門分野:ヒト臨床、ヒト耐性菌、ヒト抗菌薬、動物耐性菌、動物抗菌薬、食品耐性菌、環境耐性菌、環境残留抗菌

^{67「}薬剤耐性ワンヘルス動向調査年次報告書(NOAR)2017」、「薬剤耐性ワンヘルス動向調査年次報告書(NOAR)2018」、 「薬剤耐性ワンヘルス動向調査年次報告書(NOAR)2019」、「薬剤耐性ワンヘルス動向調査年次報告書(NOAR)2020」、「薬 剤耐性ワンヘルス動向調査年次報告書(NOAR)2021」

https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000120172.html

⁶⁸ 輸入食品を含む。

- ヒト、動物、食品及び環境における薬剤耐性(AMR)に関する動向調査・監視に関するデー タとの連携及び遺伝子データベースを活用したヒトへの伝播が懸念されている薬剤耐性菌の 調査・解析の実施
- 農業で用いられる抗微生物剤使用量の動向調査の実施
- 「グローバル AMR サーベイランスシステム(GLASS)」の仕様変更への動向調査・監視事業の 適合化
- 「薬剤耐性(AMR)ワンヘルスプラットフォーム」を地域連携に活用しやすいよう、薬剤耐性 (AMR)に関する各地域の動向調査・監視の実施及び各地域におけるデータの解釈や取組 の掲載等の利用の促進

関係府省庁・機関

内閣府食品安全委員会、厚生労働省、農林水産省、環境省、国立感染症研究所、動物医薬品検 査所、農業・食品産業技術総合研究機構、農林水産消費安全技術センター、国立国際医療研究セン ター、保健所、地方衛生研究所、家畜保健衛生所

評価指標

- ・ ヒト、動物等の垣根を越えた世界規模での取組(ワンヘルス・アプローチ)による動向調査の報告数
- 各分野における薬剤耐性(AMR)に関する動向調査及び調査研究における標本数

目標3

適切な感染予防・管理の実践により、薬剤耐性微 生物の拡大を阻止する

戦略

- (3.1) 医療、介護における感染予防・管理と地域連携の推進
- (3.2) 畜水産、獣医療、食品加工・流通過程における感染予 防・管理の推進
- (3.3) 薬剤耐性感染症の集団発生への対応能力の強化

戦略 3.1 医療、介護における感染予防・管理と地域 連携の推進

背景

- 平成 18 年の医療法(昭和 23 年法律第 205 号)改正により、全医療機関に対し、院内感染対策 委員会の設置が義務付けられ、院内感染対策が推進されてきた。平成24年度診療報酬改定で は、地域における中小規模の医療機関の感染防止対策を支援するため、感染防止対策地域連携 加算が創設され、「医療機関間の感染対策ネットワーク」69が構築されつつある。令和4年度診療報 酬改定において、感染予防・管理(IPC)の取組を更に推進する観点から、感染対策向上加算を新 設した70。
- また、これまで感染管理又は感染制御と呼ばれてきた取組についても、感染予防の役割が重視 されるようになり、感染予防・管理(IPC)として一体的に取り組まれるようになってきている。
- 一方で、近年では、高齢者施設等においても薬剤耐性微生物(ARO)による感染症が問題とな っており、より幅広い概念として、医療関連感染症(HAI) ⁷¹に対する取組が進められている⁷²が、 現行の院内感染対策は、医療機関の入院部門及び外来部門を主な対象としており、高齢者施設 等は対象として明示されていない。
- 新型コロナウイルス感染症(COVID-19)の流行により、感染予防・管理(IPC)への意識が高まり、 手指衛生及び防護具装着などの実施率や技術の向上が認められる73。この成果を薬剤耐性 (AMR)対策にも活用して医療機関の院内感染対策の質を更に高めていく必要がある。

方針

- 医療機関の入院及び外来部門、高齢者施設、在宅医療などの様々な臨床現場においても感染 予防・管理(IPC)に一体的に取り組めるような連携体制を推進する。また、現場レベルでの既存の 感染制御チーム(ICT)の取組と新たな抗微生物薬適正使用支援プログラム(ASP)の取組とを連 携させ、総合的に薬剤耐性(AMR)対策を推進する。
- 感染予防・管理(IPC)に関する地域の病院と関係機関(診療所、薬局、高齢者施設、保健所、 地方衛生研究所等)とが連携した活動を広げ、地域における総合的な感染症対策ネットワークの 具体的な活動モデルを構築し、段階的に全国での整備を支援する。
- 感染予防・管理(IPC)を更に推進するための技術的な支援(コンピュータを用いた診療データの 自動分析システムなど)に資する調査研究を推進する。

⁶⁹ 都道府県における感染防止のネットワーク構築として、院内感染地域支援ネットワーク事業があり、院内感染の予防や発 生時の対応について支援することを目的としている。一部の都道府県において実施されている。

²⁰²⁰ 年年報の対象参加医療機関は 778 施設(感染防止対策加算1の対象施設;539、感染防止対策加算2の対象施 設;232、加算なしの施設;7)

⁷¹ Strausbaugh LJ. Emerging health care-associated infections in the geriatric population. *Emerg Infect Dis.* 2001;7(2):268-271. doi:10.3201/eid0702.010224

⁷² Cohen CC, Herzig CT, Carter EJ, Pogorzelska-Maziarz M, Larson EL, Stone PW. State focus on health care-associated infection prevention in nursing homes. Am J Infect Control. 2014;42(4):360-365. doi:10.1016/j.ajic.2013.11.024

⁷³ 感染対策連携共通プラットフォーム(J-SIPHE)2020/2021 年報

予防接種や医療の質の評価等の関連する枠組みの活用を通じ、感染予防・管理(IPC)を一層 促進する。

取組

■ 感染予防・管理 (IPC) の推進及び連携強化

- 必要に応じ、厚生労働省に設置した「薬剤耐性(AMR)に関する小委員会」、「抗微生物薬適 正使用(AMS)等に関する作業部会」(戦略 4.1 参照)等において、外来部門や在宅医療等 での感染予防・管理(IPC)対策について引き続き検討
- 「院内感染対策サーベイランス事業(JANIS)」の対象施設や対象項目の見直しに資する調 査研究の継続(戦略 2.1 参照)
- 地域における感染防止対策の具体的な活動モデル(「地域感染症対策ネットワーク(仮称)」) 事業の実施を踏まえ、都道府県の役割の検討及び全国展開の推進
- 感染対策向上加算の具体的な活用例等の周知及び「感染対策連携共通プラットフォーム (J-SIPHE)」を用いたより効果的な運用の推進
- 病院等における日常的な手指衛生の徹底及び遵守率について評価する研究の実施
- 高齢者施設等における抗微生物薬の実態調査を踏まえ、感染予防・管理(IPC)ガイドライン やマニュアルへの、抗微生物薬適正使用(AMS)や薬剤耐性(AMR)に関するスクリーニング などの導入について検討(戦略 5.2 と連携)

■ 検査機関と、医療機関、地方自治体の連携体制整備

- 検査機関において重要な薬剤耐性微生物(ARO)を検出した場合の報告・相談体制の整備
- 地域の関係機関の連携による薬剤耐性(AMR)のリスク評価・リスク管理に関する具体的な活 動内容のマニュアル作成に資する調査研究の推進
- 医療機関、地域及び全国レベルでの感染予防・管理(IPC)に関する比較・評価(ベンチマー キング) 及びその結果に基づく感染予防・管理(IPC)対策への活用に向けた調査研究の実 施

■ 感染予防の推進

- 薬剤耐性感染症(ARI)の感染予防の推進に資する予防接種(肺炎球菌、ヘモフィルス・イン フルエンザ b型(Hib)、インフルエンザワクチン等)について引き続き推進
- 医療機能評価における感染予防・管理(IPC)、抗微生物薬適正使用(AMS)等に関する評 価について引き続き推進

関係府省庁・機関

厚生労働省、国立感染症研究所、国立国際医療研究センター、保健所、地方衛生研究所、日本 医療機能評価機構

評価指標

- ・ 薬剤耐性微生物(ARO)に起因する医療関連感染症(HAI)発生件数
- ・ 要件を満たす「地域感染症対策ネットワーク(仮称)」を設立した自治体数
- ・ 肺炎球菌、ヘモフィルス・インフルエンザ b型(Hib)及びインフルエンザワクチンの予防接種率

戦略 3.2 畜水産、獣医療、食品加工・流通過程にお ける感染予防・管理の推進

背景

- 家畜の飼養衛生管理水準を向上させ、その健康状態を良好に維持することは、動物の感染症 の発生を予防し、安全な畜産物の生産を確保するとともに、動物用抗菌性物質の使用機会を減ら すことにつながり、薬剤耐性微生物(ARO)の発生、選択を抑制する上できわめて重要な要素であ る。さらには、生産コストの削減の観点からも重要性は高い。
- 畜産生産現場における感染症の予防のための適切な飼養衛生管理については、家畜伝染病 予防法(昭和26年法律第166号)の規定に基づく飼養衛生管理基準が定められており、毎年、家 畜(牛、豚、鶏等)の飼養に係る衛生管理の状況、飼養衛生管理指導等計画の実施状況、都道府 県知事がとった指導及び助言、勧告並びに命令の実施状況及び家畜防疫員の確保状況につい て、都道府県ごとに整理して公表しており、衛生管理状況の改善が進められている状況にある。
- また、飼養衛生管理基準で示されている家畜の伝染病を予防するための対策に加え、より安全 な畜産物を生産し、食中毒の発生を減らすための対策を示した生産衛生管理ハンドブック(牛肉、 豚肉、鶏肉及び鶏卵)を公表している。
- 一方、養殖水産動物現場における感染症の予防のための適切な衛生管理については、「水産 防疫対策要綱」や「水産基本計画」において、養殖業者に対し、衛生管理の取組や水産用医薬品 の適正な使用等を求めている。
- また、食品の加工・流通過程においては薬剤耐性微生物(ARO)を含む微生物等による汚染を 低減し、食中毒を未然に防ぐ対策を推進するため、平成 30 年の食品衛生法(昭和 22 年法律第 233 号)改正において、HACCP(ハサップ)を原則、全ての事業者に義務化した。
- 家畜、養殖水産動物及び愛玩動物のいずれにおいても、衛生管理の徹底に加えて、適切なワ クチンの接種も感染症を予防する上で重要である。希少疾病や養殖水産動物等の場合、ワクチン 開発が望まれていたとしても市場規模が小さい等の理由でワクチン開発が進まない現状がある。

方針

- 飼養衛生管理基準の遵守の更なる徹底や適切なワクチン接種及び生産衛生管理ハンドブック の普及等を通じて、畜水産及び獣医療に関連する施設等における感染予防・管理(IPC)の考え 方の普及・推進を図る。
- 感染症予防を行うことが結果として動物用抗菌性物質の使用機会を減らし、薬剤耐性(AMR)対 策になるという考え方を普及啓発する。
- 食品の加工・流通過程におけるHACCP(ハサップ)の定着を図る。

取組

■ 家畜、養殖水産動物及び愛玩動物の感染予防・管理(IPC)の推進

- 家畜用、養殖水産動物用及び愛玩動物用のワクチンや免疫賦活剤等の開発・実用化の推
- 家畜伝染病予防法の規定に基づく飼養衛生管理基準の遵守の徹底及び生産衛生管理ハ ンドブックの普及
- 畜産分野における優良事例の生産者への共有・家畜保健衛生所職員等による抗菌剤の適 正使用に係る指導の徹底
- 養殖管理における優良事例を都道府県に対して共有するとともに、養殖水産動物用の動物 用抗菌剤を使用する際の魚類防疫員等による養殖衛生管理・水産医薬品の適正指導体制 の強化

■ 食品加工・流通過程における感染予防・管理(IPC)の推進

HACCP(ハサップ)の定着

関係府省庁・機関

農林水産省、厚生労働省、動物医薬品検査所、農業・食品産業技術総合研究機構、地方衛生研 究所、家畜保健衛生所

評価指標

- 実用化された動物用ワクチンや免疫賦活剤等の数
- ・ 飼養衛生管理の遵守状況
- ・ 生産衛生管理ハンドブックの関連ウェブページの閲覧数
- 家畜用、養殖水産動物用及び愛玩動物用ワクチンの使用量

戦略 3.3 薬剤耐性感染症の集団発生への対応能力の 強化

- 近年、カルバペネム耐性腸内細菌目細菌(CRE)等の薬剤耐性微生物(ARO)による感染症の 医療機関内での集団発生事例が増加している。一方で、医療機関自身による疫学調査の実施能 力や封じ込め対応能力については、医療機関による差が大きい。また地方自治体においては、薬 剤耐性感染症(ARI)に関する知識や対応経験に差があり、ガイドラインの整備や研修等を通じた 対応能力強化が求められている。
- バンコマイシン耐性腸球菌(VRE)感染症は、感染症法上の5類全数把握対象疾患であり、感染 症発生動向調査における届出患者数は 2011~2019 年まで年間 100 例未満で推移してきた。しか し、2020年は135例(2021年1月25日現在)と、これまで最多であった2010年の120例を超えた。 海外では、新たな流行株(pts 欠損 Enterococcus faecium)がオセアニアにて州をまたぐ大規模な集 団発生を起こしたとして報告され74、その後、欧州でもこの流行株による大規模な集団発生が報告さ れている。我が国で2018年に青森県で報告された大規模な集団発生もこの流行株であった75。
- 海外では他にもカルバペネム耐性アシネトバクター76や多剤耐性結核菌77による集団発生が報 告されている。薬剤耐性感染症(ARI)の集団発生は、これまで院内が中心であったが、近年の薬剤 耐性(AMR)の市中における広がりにより、市中型の集団発生も危惧されている。2017 年多剤耐性 A 群溶血性レンサ球菌感染症の集団発生がイスラエルで報告された78。2016 年以降、パキスタンで は超多剤耐性腸チフス感染症の大規模流行が報告され79、多剤耐性サルモネラ属菌の集団発生 が、中国・台湾・イスラエルなどで報告されている^{80,81,82,83}。2022 年初頭には、欧州を中心に超多

⁷⁴ Carter GP, Buultjens AH, Ballard SA, et al. Emergence of endemic MLST non-typeable vancomycin-resistant Enterococcus faecium. J Antimicrob Chemother. 2016;71(12):3367-3371. doi:10.1093/jac/dkw314

⁷⁵ Saito N, Kitazawa J, Horiuchi H, et al. Interhospital transmission of vancomycin-resistant Enterococcus faecium in Aomori, Japan. Antimicrob Resist Infect Control. 2022;11(1):99. Published 2022 Jul 23. doi:10.1186/s13756-022-01136-5

Rivera F, Reeme A, Graham MB, et al. Surveillance cultures following a regional outbreak of carbapenem-resistant Acinetobacter baumannii. Infect Control Hosp Epidemiol. 2022;43(4):454-460. doi:10.1017/ice.2021.162

⁷⁷ Suppli CH, Norman A, Folkvardsen DB, et al. First outbreak of multidrug-resistant tuberculosis (MDR-TB) in Denmark involving six Danish-born cases. Int J Infect Dis. 2022;117:258-263. doi:10.1016/j.ijid.2022.02.017

⁷⁸ Ron M, Brosh-Nissimov T, Korenman Z, et al. Invasive Multidrug-Resistant emm93.0 Streptococcus pyogenes Strain Harboring a Novel Genomic Island, Israel, 2017-2019. Emerg Infect Dis. 2022;28(1):118-126. doi:10.3201/eid2801.210733 ⁷⁹ Chatham-Stephens K, Medalla F, Hughes M, et al. Emergence of Extensively Drug-Resistant Salmonella Typhi Infections Among Travelers to or from Pakistan - United States, 2016-2018. MMWR Morb Mortal Wkly Rep. 2019;68(1):11-13. Published 2019 Jan 11. doi:10.15585/mmwr.mm6801a3

⁸⁰ Merker M, Nikolaevskaya E, Kohl TA, et al. Multidrug- and Extensively Drug-Resistant Mycobacterium tuberculosis Beijing Clades, Ukraine, 2015. Emerg Infect Dis. 2020;26(3):481-490. doi:10.3201/eid2603.190525

⁸¹ Xiang Y, Li F, Dong N, et al. Investigation of a Salmonellosis Outbreak Caused by Multidrug Resistant Salmonella Typhimurium in China. Front Microbiol. 2020;11:801. Published 2020 Apr 29. doi:10.3389/fmicb.2020.00801

⁸² Tiew WT, Janapatla RP, Chang YJ, et al. Emergence and spread in Taiwan of multidrug-resistant serotypes of nontyphoidal Salmonella. Infection. 2022;50(2):475-482. doi:10.1007/s15010-021-01736-0

⁸³ Cohen E, Kriger O, Amit S, Davidovich M, Rahav G, Gal-Mor O. The emergence of a multidrug resistant Salmonella Muenchen in Israel is associated with horizontal acquisition of the epidemic pESI plasmid. Clin Microbiol Infect. 2022;28(11):1499.e7-1499.e14. doi:10.1016/j.cmi.2022.05.029

剤耐性赤痢菌(XDR Shigella sonnei)の流行が発生した84。こうした食水系感染症における薬剤耐性 微生物(ARO)の流行や集団事例に対する監視体制及び対応能力強化も重要な課題である。

感染予防・管理(IPC)、感染症診療、行政対応に関する必要な支援を行う仕組みの整備や地域 の感染症専門家の配置の充実が求められる。

方針

- 院内及び市中等における薬剤耐性感染症(ARI)の集団発生に対し、地域レベルで対応できる よう、マニュアルやガイドラインを整備する。また、地域の専門家による集団発生の対応支援を行う ことができる体制を整備する。感染症集団発生対策に関係する関係者に教育・研修などへの参加 機会を提供することで、対応能力の強化、ネットワークの強化を図る。
- 大規模な感染症集団発生が発生した際には、深刻な人材不足が発生することが危惧されるた め、必要に応じて疫学、臨床、公衆衛生対応などの観点で外部から専門家を派遣し対応できる体 制を構築する。また、平時から地域の感染症専門家の配置を充実させるとともに、国レベルから地 方レベルへの対応支援体制も強化する。

取組

地域における薬剤耐性感染症(ARI)集団発生対応支援

- 「地域感染症対策ネットワーク(仮称)」(戦略 3.1 参照)による薬剤耐性感染症(ARI)の集団 発生対応支援
 - ✓ 院内感染による薬剤耐性感染症(ARI)の集団発生事例に地域で対応するためのマニ ュアル・ガイドライン85の更新
 - ✓ マニュアル・ガイドラインの周知による、平時からの集団発生に備えた医療機関の体制 構築及び保健所との連携
 - 新たに、マニュアル・ガイドラインのリスク評価に基づいた、病院から保健所、地域の感 染症専門家、都道府県や国へ支援を要請する際の仕組みの検討
- 「地域感染症対策ネットワーク(仮称)」構成員や自治体担当者に対する研修会の実施(戦略 2.1 と連携)

Extensively drug-resistant Shigella sonnei infections - Europe - European Region (EURO). 2022 https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON364

⁸⁵ 高齢者介護施設における感染対策マニュアル 中小病院における薬剤耐性菌アウトブレイク対応ガイダンス Responding to outbreaks of antimicrobial-resistant pathogens in health-care facilities: guidance for the Western Pacific region (https://apps.who.int/iris/handle/10665/363498) カルバペネム耐性腸内細菌科細菌感染症に関する保健所によるリスク 評価と対応の目安について ~保健所と医療機関のよりよい連携に向けて~

■ 大規模集団発生に対する対応能力強化

薬剤耐性感染症(ARI)の大規模集団発生の発生に伴う極端な人材不足に対応し得る薬剤 耐性感染症(ARI)専門家86の人材プールの強化

関係府省庁·機関

厚生労働省、国立感染症研究所、国立国際医療研究センター、保健所、地方衛生研究所

評価指標

・ 薬剤耐性感染症(ARI)の集団発生への対応件数及び患者数

・ 関係者向けの研修会の実施回数

⁸⁶ 国立感染症研究所実地疫学専門家養成コース(FETP-J)卒業生、国立国際医療研究センター国際感染症センターの薬 剤耐性感染症(ARI)専門家、厚生労働省感染症危機管理専門家 (IDES)その他の医療機関、研究機関等に所属する実地 疫学、臨床マネジメント、IPC、公衆衛生対応等に関する薬剤耐性感染症(ARI)対策専門家

目標4

医療、畜水産等の分野における抗微生物剤の適 正な使用を推進する

戦略

- (4.1) 医療機関における抗微生物薬の適正使用の推進
- (4.2) 畜水産、獣医療等における動物用抗菌性物質の慎重な 使用の徹底

医療機関における抗微生物薬の適正使用の 戦略 4.1 推進

背景

- 医療機関における感染予防・管理(IPC)は、薬剤耐性(AMR)の拡大の防止に資するが、それだ けでは、薬剤耐性微生物(ARO)の出現と薬剤耐性感染症(ARI)の発生を予防することはできない。
- 薬剤耐性感染症(ARI)の発生を最小限にとどめ、それによる疾病負荷を減らすためには、入院 及び外来における抗微生物薬の適正使用(AMS)が極めて重要である87。我が国においては、 2016 年に上気道炎を対象に処方された不適切な抗菌薬に係る年間コストが 297.1 百万米ドル (USD)であったと推定されている88。
- 抗微生物薬適正使用(AMS)は、不必要な処方を減らし、薬剤耐性微生物(ARO)の出現を抑え る効果があるほか、医療費を抑制する効果がある。我が国においては、院内の抗微生物薬適正使 用チーム(AST)の取組でカルバペネム耐性菌を減らすことにより、150 千米ドル(USD)のコストが 削減されたと推定する報告89や、地域の病院にて医師、薬剤師及び細菌検査技師から成るチーム により、投与適性やデ・エスカレーション(de-escalation)、血液培養採取の推奨などの介入・フィー ドバックを行うことで、抗菌薬治療費が25.8%削減されたという報告がある90。
- 我が国の一部の医療機関において、特定の抗菌薬91について許可制や届出制を導入するなど の適正使用の取組が行われているが、抗微生物薬適正使用(AMS)を推進するための対策を一体 的に進める包括的な推進体制として「感染対策連携共通プラットフォーム(J-SIPHE)」を活用して いく必要がある。
- このような状況を受けて、平成 30 年度診療報酬改定において、院内の抗微生物薬適正使用支 援チーム(AST)の評価である抗菌薬適正使用支援加算を新設するとともに、小児科外来診療料 及び小児かかりつけ診療料において、抗菌薬の適正使用に関する患者・家族の理解向上に資す る診療を評価する小児抗菌薬適正使用支援加算を新設した。小児抗菌薬適正使用支援加算の 導入により、外来における小児への抗菌薬投与は約2割減少するなど実績も得られている。また令 和4年度診療報酬改定において、耳鼻咽喉科小児抗菌薬適正使用支援加算を新設し、抗菌薬の 適正使用を更に推進している。

⁸⁷ Society for Healthcare Epidemiology of America; Infectious Diseases Society of America; Pediatric Infectious Diseases Society. Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Infect Control Hosp Epidemiol. 2012;33(4):322-327. doi:10.1086/665010

⁸⁸ Tsuzuki S, Kimura Y, Ishikane M, Kusama Y, Ohmagari N. Cost of inappropriate antimicrobial use for upper respiratory infection in Japan. BMC Health Serv Res. 2020;20(1):153. Published 2020 Feb 28. doi:10.1186/s12913-020-5021-1

⁸⁹ Akazawa T, Kusama Y, Fukuda H, et al. Eight-Year Experience of Antimicrobial Stewardship Program and the Trend of Carbapenem Use at a Tertiary Acute-Care Hospital in Japan-The Impact of Postprescription Review and Feedback. Open Forum Infect Dis. 2019;6(10):ofz389. Published 2019 Sep 5. doi:10.1093/ofid/ofz389

⁹⁰ Fukuda T, Watanabe H, Ido S, Shiragami M. Contribution of antimicrobial stewardship programs to reduction of antimicrobial therapy costs in community hospital with 429 Beds --before-after comparative two-year trial in Japan. J Pharm Policy Pract. 2014;7(1):10. Published 2014 Aug 5. doi:10.1186/2052-3211-7-10

⁹¹ 抗メチシリン耐性黄色ブドウ球菌 (MRSA)薬及びカルバペネム系薬等の広域抗菌薬

抗微生物薬適正使用(AMS)は、本質的に製薬企業等との利益相反(COI)の考慮が必要な領 域であり、我が国では、「薬剤耐性 (AMR) 対策アクションプラン (2016-2020) 」の策定後、厚生労 働省が 2017 年6月1日に「抗微生物薬適正使用の手引き 第一版」、2019 年 12 月5日に「抗微生 物薬適正使用の手引き 第二版」を発行したほか、日本感染症学会と日本化学療法学会が 「JAID/JSC 感染症治療ガイド 2019」、日本化学療法学会と日本外科感染症学会が「術後感染予 防抗菌薬適正使用のための実践ガイドライン」を発行するなど、感染症診療に係る種々のガイドラ イン等が存在する。一方、医療現場では広域の抗微生物薬使用に当たり、必ずしもガイドラインを 遵守していないとの報告がある92,93。

方針

- 抗微生物薬適正使用(AMS)の推進にあたっては、医療機関や薬局と関連企業等との利益相反 \bigcirc (COI)の管理が徹底されなければならないとの考え方に基づき、厚生労働省に設置した「抗微生 物薬適正使用(AMS)等に関する作業部会」で、「抗微生物薬適正使用の手引き」の必要に応じた 改定を行う。
- 最新の知見を基に「抗微生物薬適正使用の手引き」を継続的に更新及び充実させ、医療機関 ごとに抗微生物薬適正使用(AMS)ガイドラインや薬剤感受性に基づいた感染症診療マニュアル を整備するための指針を策定するとともに、医療機関における抗微生物薬適正使用(AMS)推進 のための抗微生物薬適正使用チーム(AST)の運用、抗微生物薬適正使用(AMS)の質の評価等 の実施を通じて、外来患者、入院患者等に対する抗微生物薬適正使用(AMS)及び感染症診療 の適正化を推進する。
- 抗微生物薬適正使用(AMS)推進に資する感染症の予防、診断及び治療に関わる取組を推進 する。

取組

■ 抗微生物薬適正使用(AMS)の推進に資するガイドライン・マニュアルの整備

- 厚生労働省に設置した「薬剤耐性(AMR)に関する小委員会」、「抗微生物薬適正使用 (AMS)等に関する作業部会」で必要な検討を行い、感染予防・管理(IPC)や抗微生物薬適 正使用(AMS)を引き続き推進(戦略 3.1 と連携)
- 「抗微生物薬適正使用の手引き」の更新、内容の充実及び臨床現場での活用の推進
- 診療所版「感染対策連携共通プラットフォーム(J-SIPHE)」による外来患者に対する抗菌薬 適正使用(AMS)に対する支援の拡大

⁹² 愼重虎, 佐々木典子, 國澤進, 今中雄一. 抗菌薬の院内使用基準が市中肺炎患者の診療ガイドライン推奨抗菌薬の選 択に及ぼす影響、及びその抗菌薬選択がアウトカムに及ぼす影響. 第 58 回日本医療・病院管理学会学術総会: 福岡, オ ンライン開催 2020 年 10 月2-4日(日本医療・病院管理学会誌— Vol.57 Suppl. p.172.)

⁹³ 平成 30 年度厚生労働省委託事業:EBM (根拠に基づく医療)普及推進事業「診療ガイドラインの活用ガイド」p3

■ 抗微生物薬適正使用(AMS)の推進のための診断、治療に関わる規制の検討

- 抗微生物薬の添付文書の記載事項(使用上の注意等)の科学的根拠に基づく見直し
- 薬剤動熊学/薬力学(PK/PD)等の最新の科学的根拠に基づく知見の「抗微生物薬適正使 用の手引き194等への反映
- 静注抗菌薬における適正使用の取組の最適化に関する調査研究の実施
- 関連する研究結果を踏まえ、外来患者に対する抗菌薬適正使用(AMS)の更なる推進方法 の検討95 (戦略 5.2 と連携)

医療機関における抗微生物薬適正使用(AMS)体制の整備支援

- 医師、薬剤師、看護師、臨床検査技師等に対する専門職教育・研修における抗微生物薬適 正使用(AMS)の具体的内容の充実(戦略 1.2 参照)
- 医療機関における抗微生物薬適正使用(AMS)に関する利益相反(COI)管理指針%、抗微 生物薬適正使用(AMS)ガイドライン及び各医療機関の薬剤感受性に基づいた感染症診療 マニュアルの整備の支援の継続(戦略 2.4 と連携)
- レセプト情報などに基づいて医療機関における抗微生物薬適正使用チーム(AST)の設置 及び専任の従事者確保に資する調査研究の継続
- 研究結果を踏まえ、抗微生物薬適正使用(AMS)実施を追加することについて、中小病院に 拡大することを検討
- 「地域感染症対策ネットワーク(仮称)」(戦略 3.1 参照)による抗微生物薬適正使用(AMS)に 関する専門家派遣、教育、コンサルテーション等による支援体制(戦略 1.2 と連携)の整備及 び感染対策向上加算に基づく医療機関等が連携して実施する感染症対策の推進
- 「抗菌薬適正使用支援システム(仮称)」97の開発及び薬剤師の活用に関する調査研究の実 施(戦略 5.3 参照)

関係府省庁・機関

厚生労働省、国立国際医療研究センター

⁹⁴ 第一版(<u>https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/0000166612.pdf</u>)、第二版 (https://www.mhlw.go.jp/content/10900000/000573655.pdf)

[%] 急性上気道炎患者への初診時の抗菌薬処方を禁止することは、予後とは関連しないことがコクラン・システマティックレビ ューにおいて確認されており、最も根拠のある抗微生物薬適正使用(AMS)ストラテジーの一つである。

Spurling GK, Del Mar CB, Dooley L, Foxlee R, Farley R. Delayed antibiotics for respiratory infections. Cochrane Database Syst Rev. 2013;(4):CD004417. Published 2013 Apr 30. doi:10.1002/14651858.CD004417.pub4

Dar OA, Hasan R, Schlundt J, et al. Exploring the evidence base for national and regional policy interventions to combat resistance. Lancet. 2016;387(10015):285-295. doi:10.1016/S0140-6736(15)00520-6.

⁹⁶ 医療機関における製薬企業等による抗微生物薬のプロモーション活動に対する自主的規制や抗微生物薬適正使用 (AMS)に関連する研究に対する研究費の受領の自粛等

⁹⁷ 適正な抗菌薬使用量、回数が投与されるためのシステムを開発し、抗菌薬適正使用及び予後改善に対する効果につい て研究を実施する。

評価指標

- ・ 包括的な抗微生物薬適正使用(AMS)プログラム(抗微生物薬適正使用チーム(AST)の設置など) を実施する医療機関数
- ・ 地域における抗微生物薬適正使用(AMS)支援体制の整備数

戦略 4.2 畜水産、獣医療等における動物用抗菌性物 質の慎重な使用の徹底

背景

- 家畜に使用される動物用抗菌剤及び抗菌性飼料添加物は、家畜の健康を守り、安全な食品の 安定生産を確保する上で重要な資材であるが、その使用により選択され得る薬剤耐性菌のヒトの 医療、獣医療及び食品安全に対するリスクも常に存在している。
- このため、我が国においては、国際獣疫事務局(WOAH)やコーデックス委員会の国際基準で 定められているリスクアナリシス(リスク分析)の考え方に基づき、薬剤耐性菌の食品を介したヒトの 健康への影響について食品安全委員会がリスク評価を行っている。その結果に基づき、農林水産 省がリスクの程度に応じたリスク管理措置を策定・実施している。
- 動物用抗菌剤の使用については、都道府県の薬事監視員等の監視指導により関係法令98の各 種規制制度の遵守を推進しており、それにより動物用抗菌剤の適正使用を図っている。また、畜 産分野における動物用抗菌剤の慎重使用に関するガイドラインを策定し、獣医師や生産者に対 する、国による普及啓発や都道府県による動物用抗菌剤の使用に関する指導等により、慎重使用 の徹底を図っている。
- さらに、獣医師が動物用抗菌剤の慎重使用のために必要とする薬剤感受性試験の検査資材や 判定基準について整備、充実を図ってきた。
- なお、養殖水産動物用の動物用抗菌剤については、獣医師が関与する要指示医薬品制度の 対象とはなっていないが、各都道府県において水産試験場等の専門家により適正使用に関する 指導が行われている。
- 一方、抗菌性飼料添加物については、使用できる対象飼料(動物種及び飼育ステージ(ほ乳期 用、肥育期用等))、使用量等の基準を定め99適正使用を図っている。なお、その使用によってヒト の医療に悪影響を与えるものは、飼料添加物として指定しないこととしている。
- 薬剤耐性菌に関する食品健康影響評価について着実に実施し、指定されている全ての抗菌性 飼料添加物について評価を完了した。また、その経験や国際動向を踏まえ、2022 年3月に「家畜 等への抗菌性物質の使用により選択される薬剤耐性菌の食品健康影響に関する評価指針 | 及び 「食品を介してヒトの健康に影響を及ぼす細菌に対する抗菌性物質の重要度のランク付けについ て」を改正した。
- 愛玩動物については、「愛玩動物における抗菌薬の慎重使用に関するワーキンググループ」に おいて「愛玩動物における抗菌薬の慎重使用の手引き」を作成し、愛玩動物の臨床獣医師に対 する慎重使用の徹底について普及啓発を図っているところ。

⁹⁸ 動物用医薬品については、獣医師による診察の義務付け(獣医師法(昭和 24 年法律第 186 号))、獣医師の指示を受け た者以外への販売の禁止や使用基準の設定(医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律(昭 和35年法律第145号))など、動物用抗菌剤を適正かつ限定的に使用するための措置を講じているところ。

⁹⁹ 飼料添加物については、 飼料の安全性の確保及び品質の改善に関する法律(昭和 28 年法律第 35 号)に基づき、抗菌 性飼料添加物を適正かつ限定的に使用するための措置を講じているところ。

方針

- 国際獣疫事務局(WOAH)やコーデックス委員会の国際基準で定められているリスクアナリシス (リスク分析)の考え方に沿って、食品安全委員会が行う薬剤耐性菌の食品を介したヒトの健康へ の影響に関するリスク評価結果を踏まえ、引き続き、リスクの程度に応じたリスク管理措置を策定し、 適確に実施する。
- 獣医師による動物用抗菌剤の慎重使用に必要な手法等を整備・充実する。
- 養殖水産動物用の動物用抗菌剤を使用する際の、専門家の関与の充実・強化等を検討・実施 する。

取組

■ 動物用抗菌性物質の使用による薬剤耐性の食品を介したヒトへの健康影響に関するリ スク評価・リスク管理の推進

- 食品安全委員会によるリスク評価結果を踏まえた、リスク管理措置策定指針に基づくリスク管 理措置の策定及び適確な実施(承認・指定の取消し、一時使用禁止、使用できる家畜の範 囲や期間の縮小、動向調査の強化等)
- 薬剤耐性菌に関する食品健康影響評価の適切な推進、食品健康影響評価の手法及び必 要な事項を定めた「家畜等への抗菌性物質の使用により選択される薬剤耐性菌の食品健康 影響評価に関する評価指針」及び食品健康影響評価を行うためのヒト用抗菌薬の医療にお ける重要度のランク付けである「食品を介してヒトの健康に影響を及ぼす細菌に対する抗菌 性物質の重要度ランク付けについて」の必要に応じた見直し
- 動物用抗菌剤及び抗菌性飼料添加物のリスク管理措置策定指針の必要に応じた見直し

動物用抗菌性物質の適正使用体制の整備

- 「動物由来薬剤耐性菌モニタリング(JVARM)」による、獣医療におけるヒト用抗菌薬及び動物 用抗菌性物質の使用総量の把握・分析
- 適切な動物用抗菌性物質使用量単位に基づく畜種ごとの動物用抗菌性物質の使用量 (AMU)の算出及び国際比較の実施
- 農場ごとの抗菌剤の使用実態を把握し、獣医師の投薬指導等に活用できるシステムの構築

■ 動物用抗菌性物質の慎重使用徹底のための体制の強化

- 動物用抗菌剤の慎重使用を推進するため、「畜産物生産における動物用抗菌性物質製剤 の慎重使用に関する基本的な考え方について」、「水産用医薬品の適正使用等に関する指 導について」、「愛玩動物における抗菌薬の慎重使用の手引き」等の獣医師・生産者等に対 する一層の遵守・指導の徹底及び獣医師、生産者、愛玩動物の飼い主等向け普及・啓発ツ ール(パンフレット、リーフレット等)の内容の充実
- 抗菌性飼料添加物の適正使用に関する生産者・飼料製造業者向けリーフレットの作成

- 動物用抗菌剤の慎重使用に必要な薬剤感受性に係る検査資材、判定手法、判定基準、治 療の有効性の指標等の充実・整備
- 養殖水産動物用の動物用抗菌剤を使用する際の獣医師、薬事監視員、魚類防疫員等の専 門家による指導体制の強化

関係府省庁·機関

内閣府食品安全委員会、農林水産省、動物医薬品検査所、農林水産消費安全技術センター、家 畜保健衛生所、水産試験場

評価指標

・ リスク管理措置の策定・実施数

目標5

薬剤耐性の研究や、薬剤耐性微生物に対する予 防・診断・治療手段を確保するための研究開発等 を推進する

戦略

- (5.1) 薬剤耐性の発生・伝播機序及び社会経済に与える影響を明らか にするための研究の推進
- (5.2) 薬剤耐性に関する普及啓発・教育、感染予防・管理、抗微生物 剤の適正使用に関する研究の推進
- (5.3) 感染症に対する既存の予防・診断・治療法の最適化に資する臨 床研究の推進
- (5.4) 新たな予防・診断・治療法等の開発に資する研究及び産学官連 携の推進
- (5.5) 薬剤耐性の研究及び薬剤耐性感染症に対する新たな予防・診断・ 治療法等の研究開発に関する国際共同研究の推進
- (5.6) 抗微生物薬の持続的な開発、安定供給の強化

基礎		臨床		社会
薬剤耐性の 発生・伝播 機序に関する 研究	動向調査・リスク評価 に関する研究 新規予防・診断・ 治療法の前臨床開発	既存の予防・診断・ 治療法の最適化 新規予防・診断・ 治療法の臨床開発	感染予防・ 管理、抗微生物 剤適正使用に 関する研究	啓発・教育・ 社会経済への 影響評価

薬剤耐性の発生・伝播機序及び社会経済に与 戦略 5.1 える影響を明らかにするための研究の推進

背景

- 薬剤耐性(AMR)の伝播経路を断ち切るためには、どの種類の微生物が、どのような機序により 耐性を獲得し、どの経路で、どの程度広がっているのか、という薬剤耐性(AMR)の生態系全体を 正確に把握する必要がある。こうした薬剤耐性(AMR)の生態系を解明する取組が世界的に進めら れている100。
- 抗微生物剤への耐性機構の解明、新たな予防・診断・治療法の開発など薬剤耐性(AMR)に対 する研究開発を推進するためには、薬剤耐性微生物(ARO)の分離株の保存及び薬剤耐性遺伝 子(ARG)を含むゲノム情報の蓄積が重要である。また、薬剤耐性(AMR)の獲得に至る疫学的なリ スク因子の同定及びその耐性機序のひも付けが、効果的かつ実効可能な薬剤耐性(AMR)対策 の促進のために重要である。我が国では、2019年に国立感染症研究所による「薬剤耐性菌バンク (JARBB)」を設置し、日本では希少な薬剤耐性菌株等についても収集できるよう、海外との協力体 制を構築している。
- また、疾病負荷(死亡率、合併症発生率、入院期間延長等)、経済負荷(医療費の増大、機会費 用等)など、薬剤耐性(AMR)が社会、経済に与える影響について、米国、欧州などで試算がなさ れており、こうしたデータを元に、英国の薬剤耐性(AMR)レビュー委員会(オニール・コミッション) は、このまま対策が取られなければ、2050年までに全世界における死者数は 1000万人に上り、 1,000 兆ドルの国内総生産が失われると試算している101。
- 厚生労働省の研究班で行った診断群分類(DPC)データを用いた試算によると、メチシリン耐性 黄色ブドウ球菌(MRSA)感染症症例の入院費用は、非メチシリン耐性黄色ブドウ球菌(MRSA)感 染症症例に比し、約 3.4 倍、在院日数は約 3.0 倍、死亡率は 3.7 倍であった。この結果を 2014 年 の診断群分類に基づく診療報酬包括支払制度(DPC/PDPS)を導入済みの 1,584 病院全体に外 挿したメチシリン耐性黄色ブドウ球菌 (MRSA) 感染症による疾病負荷は、2,100 億円の入院費用増 加(全入院医療費の 3.41%)、434 万日の在院日数増加(全在院日数 3.02%)、14 万 3000 人の 死亡数増加(全死亡の 3.62%)と推計された¹⁰²。また、過去に薬剤耐性菌の集団発生を経験した 病院に協力を得た同研究班による調査研究では、集団発生による経済的損失が、封じ込め費用 は最高で6,980万円、生産性損失は最高で4億7,600万円に上ること、及び早期の情報開示を含 めた対応が損失を抑える可能性が示されている103。

D.G. Joakim Larsson & Carl-Fredrik FlachNature Reviews Microbiology (https://www.nature.com/articles/s41579-021-00649-x)

¹⁰¹ Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. The Review on Antimicrobial Resistance Chaired by Jim O'Neill, December 2014

¹⁰² Uematsu H, Yamashita K, Kunisawa S, Fushimi K, Imanaka Y. Estimating the disease burden of methicillin-resistant Staphylococcus aureus in Japan: Retrospective database study of Japanese hospitals. PLoS One. 2017;12(6):e0179767. Published 2017 Jun 27. doi:10.1371/journal.pone.0179767 平成 28 年度厚生労働科学研究費補助金(政策科学総合研究事 業) 厚生労働科学研究費補助金 新興・再興感染症及び予防接種政策推進研究事業「薬剤耐性菌の蔓延に関する健康 及び経済学的リスク評価に関する研究」

¹⁰³ Morii D, Tomono K, Imanaka Y. Economic impact of antimicrobial-resistant bacteria outbreaks on Japanese hospitals. Am J Infect Control. 2020;48(10):1195-1199. doi:10.1016/j.ajic.2019.12.006 2019 年度厚生労働行政推進調査事業費補 助金(新興・再興感染症及び予防接種政策推進研究事業)「薬剤耐性(AMR)アクションプランの実行に関する研究」

方針

- ゲノム解析等に基づいた薬剤耐性(AMR)の発生・伝播機序の解明に向けた研究を推進する。
- 薬剤耐性微生物(ARO)の分離株の保存を推進し、国立感染症研究所の「薬剤耐性菌バンク (JARBB)」及び薬剤耐性(AMR)を含むゲノムデータベースを活用することで、ゲノム情報に基づく 動向調査を推進し、薬剤耐性(AMR)の発生・伝播機序の解明や創薬に役立てる。
- 農林水産分野においては、動物医薬品検査所において開発したゲノムデータベース(J-VEG)を 運用し、国立感染症研究所の薬剤耐性(AMR)ゲノムデータベース(GenEpid-J)、「薬剤耐性菌バ ンク(JARBB)」と連携して薬剤耐性(AMR)対策に役立てる。
- 薬剤耐性感染症(ARI)が健康、社会、経済等に与える影響の具体的推計に必要な調査研究を実 施する。その結果について、できる限りわかりやすく公表するとともに、啓発・教育活動に活用する。

取組

薬剤耐性(AMR)の発生・伝播に関する研究の推進

- 薬剤耐性(AMR)の発生・伝播機序や薬剤耐性微生物・遺伝子(ARO・ARG)の伝播過程、 一般社会や環境中における薬剤耐性微生物・遺伝子(ARO・ARG)の広がりや相互作用等 の生態系解明に向けた研究の推進(戦略 2.1 と連携)
- 産・学・医療で利用可能な「薬剤耐性菌バンク(JARBB)」での分離株保存の推進(戦略 2.4、 戦略 5.4 と連携)
- 「薬剤耐性菌バンク(JARBB)」104を利用した病原体動向調査及び薬剤耐性(AMR)の発生・ 伝播機序の解明、創薬等の研究開発の推進及び国内外における分離株のゲノム情報(デ ータ)の収集(薬剤耐性菌サーベイランス(JARBS))
- 世界保健機関(WHO)と連携した、大腸菌を用いたワンヘルス薬剤耐性(AMR)サーベランス (三輪車サーベイランス)105の研究の推進
- 薬剤耐性微生物(ARO)の菌株と臨床情報を一括管理するシステム構築及び活用するため の研究の推進
- ゲノムデータベース(J-VEG)を活用した薬剤耐性(AMR)のヒト及び動物間の伝播過程の関 連性に関する研究の推進
- 畜水産、獣医療等における薬剤耐性(AMR)の発生・伝播機序及び危害要因(CCP)の特定 に関する研究の実施
- 下水中の抗微生物薬や薬剤耐性微生物(ARO)が環境に及ぼす影響に関する研究の実施

¹⁰⁴ 薬剤耐性(AMR)ゲノムデータベースを含む。

¹⁰⁵ 世界保健機関(WHO)によって開発された多分野統合型のサーベイランスプロトコールに基づき、ヒト、動物、環境におけ る基質拡張型 β-ラクタマーゼ (ESBL) 産生大腸菌を標的とするサーベイランス

■ 薬剤耐性 (AMR) の健康及び社会経済への負荷に関する研究の推進

- 医療機関における薬剤耐性感染症(ARI)の疾病負荷¹⁰⁶及び経済負荷に関する研究の推進 107(戦略 2.1 と連携)
- 薬剤耐性(AMR)対策による医療費削減効果等に関する研究の推進
- 動向調査結果に基づく体系的なリスク評価のあり方に関する研究の推進
- 診断群分類(DPC)データ及びレセプト情報・特定健診等情報データベース(NDB)情報の 活用の支援

関係府省庁·機関

内閣府健康•医療戦略推進事務局、文部科学省、厚生労働省、農林水産省、環境省、国立感染症 研究所、動物医薬品検査所、農業・食品産業技術総合研究機構、農林水産消費安全技術センター、 国立国際医療研究センター、日本医療研究開発機構

評価指標

該当領域の公的研究費による論文掲載数

ゲノムデータベースに蓄積されたゲノム情報数(国内及び海外)

¹⁰⁶ 発生率、死亡率、後遺症が残る割合、入院期間、疾病負荷指標(障害調整生命年(DALYs)、障害生存年数(YLD)等)

¹⁰⁷ 平成 27 年厚生労働科学研究費補助金「薬剤耐性菌の蔓延に関する健康及び経済学的リスク評価に関する研究」にお いて研究を実施中

戦略 5.2 薬剤耐性に関する普及啓発・教育、感染予 防・管理、抗微生物剤の適正使用に関する 研究の推進

背景

- 薬剤耐性(AMR)に関する施策を実施するためには、既存の科学的根拠を集積し、公衆衛生施 策に盛り込むのみでなく、我が国における新たな科学的根拠を創出し、社会及び世界に還元する 必要がある。
- 有効な啓発普及、教育のためには、薬剤耐性(AMR)や抗微生物剤に関する国民の知識、態度 及び行動を把握する必要、どういったメッセージが行動変容に結び付くかを検討する必要があり、 国内外で、国民及び医療従事者に対する有効なキャンペーン手法に関する研究がなされている 108,109
- 感染予防・管理(IPC)に関する地域連携は、我が国において先行している領域であるが、この有 効性に関する研究は現在進行中である110。
- 抗微生物剤の適正使用(AMS)については、我が国は、使用量自体は、他国に比べて比較的少 ないが、経口の第3世代セファロスポリン系、フルオロキノロン系及びマクロライド系の広域抗菌薬 が使用される頻度が高い。また、厚生労働科学研究班の2018年実施の調査によると、感染制御 チーム(ICT)の活動自体が行われている病院は多いものの、その活動内容には病院により差があ り、抗菌薬投与の際の投与日数又は投与製剤等の基準が定められている病院は約7割、抗メチシ リン耐性黄色ブドウ球菌(MRSA)薬と広域抗菌薬の使用基準がある病院はそれぞれ約6割、5割 にとどまっている111。
- 畜水産分野においては、動物用抗菌剤の適正使用・慎重使用に必要な指標や科学的根拠に 関する調査・研究を実施してきている。

¹⁰⁸ Gu Y, Fujitomo Y, Soeda H, et al. A nationwide questionnaire survey of clinic doctors on antimicrobial stewardship in Japan. J Infect Chemother. 2020;26(2):149-156. doi:10.1016/j.jiac.2019.12.005

¹⁰⁹ Kamata K, Tokuda Y, Gu Y, Ohmagari N, Yanagihara K. Public knowledge and perception about antimicrobials and antimicrobial resistance in Japan: A national questionnaire survey in 2017. PLoS One. 2018;13(11):e0207017. Published 2018 Nov 5. doi:10.1371/journal.pone.0207017

¹¹⁰ 平成 26 年度厚生労働科学研究費補助金(科研費)「医療機関における感染制御に関する研究」及び平成 25 年度科研 費「全国を対象とした抗菌薬使用動向調査システムの構築及び感染対策防止加算の評価」において研究が実施されている。 111 Shin JH, Mizuno S, Okuno T, et al. Nationwide multicenter questionnaire surveys on countermeasures against antimicrobial resistance and infections in hospitals. BMC Infect Dis. 2021;21(1):234. Published 2021 Feb 27. doi:10.1186/s12879-021-05921-2 2019 年度厚生労働行政推進調査事業費補助金(新興·再興感染症及び予防接種政策 推進研究事業)「薬剤耐性(AMR)アクションプランの実行に関する研究」

また、薬剤耐性(AMR)に関する各施策を有効に実施するためには、施策の取組状況を把握す るためのプロセス指標及び有効性を評価するための成果(アウトカム)指標の設定が必要であり、こ うした指標の妥当性についても検討が必要である。厚生労働科学研究班の調査では、施策の国 際比較を行っている¹¹²。過去にメチシリン耐性黄色ブドウ球菌(MRSA)による血流感染の数が大幅 に減少していた経験のある英国では、医療関連感染症(HAI)の発生数に基づいたアウトカムベー スのインセンティブと措置的な介入の組み合わせ、及び多分野の院内感染対策チーム(ICT)によ る介入を組み合わせた医療関連感染症(HAI)対策が行われており、体系的な政策介入が多く実 施された。一方、我が国では、自発的な動向調査を用いており、勧告や説得的な介入に重点を置 いており、このように異なる介入・適切な組み合わせを今後の検討事項として提示している。

方針

普及啓発・教育、感染予防・管理(IPC)及び抗微生物剤の適正使用(AMS)の推進のため、有 効な介入方法に関する研究や、有効性を評価するための比較・評価(ベンチマーキング)手法の 開発に資する研究を行う。

取組

■ 行動変容に関する研究

- 普及啓発・教育活動の効果を把握・評価・改善するための知識・意識・行動に関する調査の 推進
- 医療における抗微生物薬適正使用(AMS)及び感染予防・管理(IPC)に関する臨床研究・ 疫学研究の推進
 - 医療機関における抗微生物薬適正使用(AMS)の実施状況及び有効性・経済性等に関する 研究の推進(戦略 4.1 と連携)
 - 抗微生物薬適正使用(AMS)に資する基本的微生物学的検査の活用に関する臨床研究の 推進(戦略 2.4 参照)
 - 外来における急性上気道感染症に対する抗菌薬処方の規制の有効性に関する研究の検討 (戦略 4.1 と連携)
 - 医療機関における薬剤耐性微生物 (ARO) 保菌リスク及びスクリーニング手法に関する調査 研究の検討
 - 高齢者施設等における耐性菌の検出状況及び抗微生物薬の使用実態に関する研究の検 討(戦略 3.1 と連携)

¹¹² Mizuno S, Iwami M, Kunisawa S, et al. Comparison of national strategies to reduce meticillin-resistant Staphylococcus aureus infections in Japan and England. J Hosp Infect. 2018;100(3):280-298. doi:10.1016/j.jhin.2018.06.026 平成 30 年度 厚生労働行政推進調査事業費補助金(新興・再興感染症及び予防接種政策推進研究事業) 指定研究「薬剤耐性(AMR) アクションプランの実行に関する研究」

- 新たに医療関連感染症(HAI)の集団発生事例を効果的に予防又は拡大防止するため、各 医療機関での集団発生対応地域の専門家や自治体が事例に関与する在り方の検討及びそ の効果を検討する研究の実施(戦略 3.3 と連携)
- 手指衛生についての既存の評価指標(消毒剤使用量及び遵守率)の適正性評価及び階層 別(各医療機関/地域/国)の評価指標を構築するための研究の実施
- 「地域感染症対策ネットワーク(仮称)」で利用可能な感染予防・管理(IPC)、抗微生物薬適 正使用(AMS)及び動向調査情報を含めた総合的な地域連携システム開発に向けた研究の 実施(戦略 3.1 と連携)
- 抗微生物薬適正使用(AMS)に基づく適切な感染症診療を支援するための補助ツールの研 究開発の実施
- 在宅医療等における薬剤耐性微生物 (ARO) の分離率及び分子疫学解析に関する研究の 実施113
- 薬局を起点とする抗微生物薬使用状況(AMU)に関する研究の実施114
- 薬剤耐性ピロリ菌の実態把握の手法に関する研究の実施
- 畜水産、獣医療等における動物用抗菌性物質の適正使用(AMS)及び感染予防・管理 (IPC) に関する研究の推進
 - 畜種別に抗菌剤に頼らない飼養管理推進のための研究並びに動物用抗菌性物質の使用中 止等による耐性率の変化及び二次的リスクの研究等の推進
 - 適切な動物用抗菌性物質の使用を確保するため、迅速かつ的確な診断手法の開発のための 調査研究の実施

関係府省庁·機関

厚生労働省、農林水産省、国立感染症研究所、動物医薬品検査所、農業・食品産業技術総合研 究機構、農林水産消費安全技術センター、国立国際医療研究センター

評価指標

・前述の取組に関連する調査研究の実施状況

¹¹³ 厚生労働科学研究費補助金平成 27 年度地域医療基盤開発推進研究事業「在宅医療患者等における多剤耐性菌の分 離率及び分子疫学解析」において在宅医療患者等における薬剤耐性微生物の伝播に関する研究を実施している。

¹¹⁴ 抗菌薬の使用量、残薬の状況に関する情報等の実態調査の研究の実施

戦略 5.3 感染症に対する既存の予防・診断・治療法 の最適化に資する臨床研究の推進

背景

- これまで、我が国では、海外では使用できるが、国内では使用できないワクチンや診断法、新薬 などが存在し、申請・承認の遅れなどの問題が議論されてきた。
- 感染症に関してはこれらの問題に対して、医療上の必要性の高い未承認薬・適応外薬検討会 議等で製薬企業等への開発要請がなされ、メトロニダゾール静注薬、コリスチン等に加え、2021年 には、世界各国で梅毒の第一選択薬として使用され、梅毒での耐性菌の報告がない薬剤である ベンジルペニシリンベンザチンが承認された115。また、一部の製造販売業者によるセファゾリン注 射薬の供給の課題があり、抗微生物薬の安定供給を維持するための方策が求められている。
- 一方で、海外では販売中止等の事由で使用できないが国内では使用されている薬剤耐性微生 物(ARO)に対して有用な既存の抗微生物剤には、臨床的なエビデンスが不十分なために、国際 的なガイドライン等での推奨に至らない薬剤も存在する116。
- さらに、抗微生物薬を最適に投与するために必要な最近の薬物動態学/薬力学(PK/PD)理論 等に基づいた用法・用量設定がなされていない抗微生物剤や、特定の感染症に対して世界的に は推奨されていない抗微生物薬の保険適応がなされている薬剤もある。例えば、溶連菌による咽 頭炎に対する第3世代セファロスポリン系経口薬などは欧米のガイドラインにおいては推奨されて レバない^{117,118}
- 我が国は、抗微生物薬の使用量(AMU)自体は、他の先進国と比較して多い方ではないが、世 界保健機関(WHO)が抗菌薬適正使用(AMS)の指標として推奨している AWaRe 分類¹¹⁹において、 世界保健機関(WHO)は全抗菌薬に占める"Access"の抗菌薬の割合を60%以上にすることを目標 としているところ、日本では他国と比較して割合が少ない傾向にあり、2020年は 21.1%である¹²⁰。更

¹¹⁵ 医療上の必要性の高い未承認薬・適応外薬検討会議での検討結果を受けて開発企業の募集又は開発要請を行った医 薬品のリスト、厚生労働省 http://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/iyakuhin/kaihatsuyousei/ Accessed on 7July 2022

¹¹⁶ ナフシリン、エルタペネム、ニトロフラントイン、セフィデロコル等

¹¹⁷ Shulman ST, Bisno AL, Clegg HW, et al. Clinical practice guideline for the diagnosis and management of group A streptococcal pharyngitis: 2012 update by the Infectious Diseases Society of America [published correction appears in Clin Infect Dis. 2014 May;58(10):1496. Dosage error in article text]. Clin Infect Dis. 2012;55(10):e86-e102. doi:10.1093/cid/cis629

¹¹⁸ ESCMID Sore Throat Guideline Group, Pelucchi C, Grigoryan L, et al. Guideline for the management of acute sore throat. Clin Microbiol Infect. 2012;18 Suppl 1:1-28. doi:10.1111/j.1469-0691.2012.03766.x

¹¹⁹ AWaRe 分類は世界保健機関(WHO)の必須医薬品リスト(Model Lists of Essential Medicines)第20版に掲載された抗菌 薬分類を適正使用の指標として応用したもので、抗菌薬を"Access"(一般的な感染症の第一選択薬、又は第二選択薬とし て用いられる耐性化の懸念の少ない抗菌薬で、全ての国が高品質かつ手頃な価格で、広く利用出来るようにすべき抗菌薬。 例. アンピシリン、セファレキシンなど)、"Watch"(耐性化が懸念されるため、限られた疾患や適応にのみ使用すべき抗菌薬。 例. バンコマイシン、メロペネム、レボフロキサシン、セフトリアキソンなど)、"Reserve"(他の手段が使用できなくなった時に最 後の手段として使用すべき抗菌薬。例. チゲサイクリン、コリスチン、ダプトマイシンなど)、未分類の4カテゴリーに分類してい る。この分類は 2019 年に改訂され、新たに、"非推奨"(WHO で臨床上の使用を推奨していない抗菌薬。例. セフォペラゾ ン・スルバクタム) のカテゴリーが追加された。

¹²⁰ Muraki Y, Kitamura M, Maeda Y, et al. Nationwide surveillance of antimicrobial consumption and resistance to Pseudomonas aeruginosa isolates at 203 Japanese hospitals in 2010. Infection. 2013;41(2):415-423. doi:10.1007/s15010-013-0440-0

なる適正使用の推進のため、既存の予防・診断・治療法の最適化に関する臨床研究・疫学研究等 を進めていく必要がある。

方針

- 薬剤耐性(AMR)対策推進に資する、海外で既に利用可能な感染症の予防・診断・治療法に関 して評価・検討を行い、最新の科学的知見に基づき、我が国において使用されるべき抗微生物剤 の効能・効果の最適化を図るための研究を推進する。
- また、こうした科学的知見を蓄積し、薬剤耐性(AMR)対策に応用するための研究を推進する。

取組

■ 既存の予防・診断・治療法の最適化に関する研究

- 他国において利用可能であるが国内においては利用できない(未採用又は販売中止された) 薬剤耐性(AMR)対策上有用な感染症の予防・診断・治療法に関する我が国への導入・再導 入の検討に資する研究の実施
- 薬剤耐性(AMR)対策上有用と考えられる既存の抗微生物薬の有効性を温存するための使 用規制に関する研究の推進
- 治療法の組合せ、高用量治療等の既存の治療法の改善による薬剤耐性感染症(ARI)の治 療に関する研究の実施
- 「抗菌薬適正使用システム(仮称)」の開発及び薬剤師の活用に関する調査研究の実施(戦 略 4.1 再掲)
- 世界保健機関(WHO)が抗菌薬適正使用(AMS)の指標として推奨している AWaRe 分類に 基づく日本の評価及び AWaRe 分類を用いた抗菌薬適正支援チーム(AST)や外来処方の 取組の研究の実施

関係府省庁・機関

厚生労働省、国立感染症研究所、国立国際医療研究センター

評価指標

・前述の取組に関連する調査研究の実施状況

戦略 5.4 新たな予防・診断・治療法等の開発に資す る研究及び産学官連携の推進

背景

- 我が国は、世界標準の抗微生物剤を数多く開発してきた歴史を持つ。薬剤耐性微生物(ARO) に切り札として使用されてきたカルバペネム系抗菌薬であるメロペネムやドリペネム、カルバペネム 耐性腸内細菌目細菌(CRE)感染症に有効な数少ない抗菌薬の一つであるコリスチン、多剤耐性 結核に有効な抗結核薬のデラマニド等は我が国発の薬剤である。
- 2016 年以降、我が国で新たに販売開始された抗微生物薬は 13 剤であり、抗菌薬が7剤¹²¹、抗 真菌薬が2剤122、抗寄生虫薬が2剤123、抗結核薬が1剤124、抗非結核性抗酸菌薬が1剤125を占め る。このうち、ラスクフロキサシン、ホスラブコナゾール及びセフトロザン/タゾバクタムのセフトロザン は我が国発の薬剤である。
- 新規抗菌薬開発を更に促進する必要があるが、新規に開発される抗微生物剤には更なる薬剤 耐性(AMR)を生まないために適正使用上の規制がかかるため、製薬企業にとっては創薬に対す る経済的利点が乏しい状況がある。
- 検査法としてメタロ-β-ラクマーゼ産生菌を SMA ディスクによって検出する方法やポリメラーゼ 連鎖反応(PCR)によって分子疫学解析を行う PCR-based ORF Typing (POT 法)がわが国で開 発されてきたが、まだその開発数は少ない。
- 我が国では、健康・医療戦略推進法(平成26年法律第48号)及び日本医療研究開発機構法 (平成 26 年法律第 49 号)に基づき、平成 27 年4月に日本医療研究開発機構(AMED)が設立さ れ、感染症についても重点的に研究開発を推進している。また、アフリカやアジア地域においては、 不十分な結核治療等に起因する多剤耐性結核の増加等により、現在もなお結核対策は政策上、 最も重要な課題の一つである。こうした中、我が国は、健康・医療に関する国際展開推進にも資す るグローバルヘルス技術振興基金(GHIT Fund)等を活用し、マラリア、結核、顧みられない熱帯病 (NTDs)等に対する途上国向けの医薬品等の開発などにも積極的に取り組んでいる。
- 畜産分野においては、動物用抗菌剤の慎重使用に必要な薬剤感受性判定手法等に関する調 査・研究を、国の事業として大学や民間団体等が実施している。

¹²¹ 新規キノロン系薬であるラスクフロキサシン、カルバペネム系抗菌薬とβラクタマーゼ阻害薬の配合剤であるレレバクタム/ イミペネム/シラスタチン、セファロスポリン系抗菌薬とβラクタマーゼ阻害薬の配合剤であるセフトロザン/タゾバクタム、抗メ チシリン耐性黄色ブドウ球菌(MRSA)薬のテジゾリド、抗クロストリジウム・ディフィシル感染症(CDI)薬のフィダキソマイシン、 クロストリジウム・ディフィシル感染症(CDI)再発抑制のベズロトクスマブ(モノクローナル抗体)、梅毒治療に用いられる持続 性薬剤のベンジルペニシリンベンザチン

¹²² 爪白癬治療の新規トリアゾール系薬であるホスラブコナゾール、深在性真菌症治療の新規アゾール系薬であるポサコナ

¹²³ 抗マラリア治療薬のアルテメテル/ルメファントリン、抗トキソプラズマ薬のスピラマイシン

¹²⁴ 多剤耐性結核治療薬のベダキリン

¹²⁵ 非結核性抗酸菌症の吸入用アミカシン

方針

- 薬剤耐性感染症(ARI)を克服するため、新たなワクチンやその他の感染症予防法、抗微生物剤 の適正使用(AMS)推進に寄与する迅速診断法、新たな機序の抗微生物剤又はその他の非伝統 的な治療法等の開発など、ヒト及び動物における感染症に対する新たな予防・診断・治療法の開 発に資する研究を推進する。
- 薬剤耐性微生物(ARO)の出現頻度を考慮すると、できるだけ短期間で成果を得るためには、優 先順位の設定、開発促進策の実施などの目的で、官民連携を進めることが必要であるため、薬剤 耐性(AMR)に関する官民連携を推進する会議における取組を強化する。

取組

■ 新たな予防法の研究開発の推進

- ヒト及び動物の感染症の罹患を減少させる新たなワクチンの研究開発の推進
- 薬剤耐性微生物(ARO)の出現を促進しない新たな感染症予防法126についての研究開発の 推進

新たな診断法の研究開発の推進

- 抗微生物剤適正使用(AMS)の推進や薬剤耐性微生物(ARO)の拡散防止等の対策に寄与 する、原因微生物及び薬剤耐性(AMR)に関する簡易迅速診断法(POC を含む)及び検査 機器127についての研究開発の推進
- 動物用抗菌剤の生産現場等での慎重使用に寄与する簡易な検査方法等の開発

■ 新たな治療法の研究開発の推進

- ヒトにおける薬剤耐性感染症(ARI)の治療に資する新しい機序の抗微生物薬の研究開発の更な る推進(戦略 5.6 参照)
- 感染症に対する抗微生物薬とは異なる非伝統的な治療法128の研究開発の推進

■ 産学官連携の推進

新たに予防・診断・治療法の研究開発、薬剤耐性(AMR)の発生・伝播の解明に向けた研究 等を推進するため、7学会合同感染症治療・創薬促進検討委員会及び AMED 感染症創薬 産学官連絡会の取組を強化し、産学官連携による感染症領域の創薬を推進

■ 開発促進策の検討・実施

日米 EU を含めた国際薬事規制当局間における抗微生物薬開発のための臨床評価手法等 の調和の推進(戦略 5.5、戦略 6.1 参照)

¹²⁶ ヒトにおける手術関連感染症や化学療法中の感染症を含む特定の病態における予防法等

¹²⁷ 迅速化された薬剤感受性検査、薬剤耐性遺伝子(ARG)に対する多項目遺伝子増幅検査、ARG 産物の免疫クロマトグラ

¹²⁸ ファージ治療、抗体を含む免疫療法、合成微生物叢(クロストリジウム・ディフィシル感染症(CDI)の治療法として有望視さ れている正常腸内細菌叢を模した合成腸内細菌叢等)、遺伝子治療等

- グローバルヘルス技術振興基金(GHIT Fund)による耐性結核や耐性マラリア等の予防・診 断・治療法の研究開発支援の活用
- 薬剤耐性感染症(ARI)用医薬品の優先審査制度の継続(戦略 5.6 参照)
- 薬剤耐性感染症(ARI)用医薬品の薬事戦略相談の継続
- 抗菌剤の使用機会の減少に資するワクチンや免疫賦活剤等の開発の支援
- 「抗菌薬確保支援事業」による新たな抗微生物薬に対する市場インセンティブの仕組みの導 入(戦略 5.6 参照)

関係府省庁·機関

内閣府健康•医療戦略推進事務局、外務省、文部科学省、厚生労働省、農林水産省、国立感染症 研究所、動物医薬品検査所、農業・食品産業技術総合研究機構、国立国際医療研究センター、日本 医療研究開発機構

評価指標

・前述の取組に関連する調査研究の実施状況

戦略 5.5 薬剤耐性の研究及び薬剤耐性感染症に対す る新たな予防・診断・治療法等の研究開発 に関する国際共同研究の推進

背景

- 薬剤耐性(AMR)と闘うための武器である抗微生物剤や薬剤耐性(AMR)の診断技術、感染症自 体の罹患を減らすワクチンなどの研究は長年滞っており、近年、欧米各国は、新規の予防・診断・ 治療法に関する研究開発を再加速させている。2021年の先進7カ国(G7)財務大臣会合におい て採択された"抗生物質の開発を促進するための取組に関する G7財務大臣文書"では薬剤耐性 (AMR)に関する抗生物質の研究・開発を強化し、新薬を市場に投入するための適切な経済状況 を創出するため、具体的かつ適切な追加措置を講じることにコミットしている129。また、2022 年先進 7カ国(G7)首脳声明においては、国際的パートナーシップの下で新しい抗微生物薬の研究及び イノベーションを強化することとされた。
- 米国における新規抗菌薬開発インセンティブ付与法(GAIN Act)に代表されるように、新規抗微 生物剤の研究開発は世界的に推進されており、重複や非協調的な競争を避けるため国際共同研 究イニシアティブ130の下で協調的に研究開発を進める必要がある。
- 米国と欧州は、2009 年より薬剤耐性(AMR)に関する大西洋横断タスクフォース(TATFAR)にお いて、共同的に新薬開発のための協力を進めており¹³¹、また薬剤耐性(AMR)に関するプログラム 連携イニシアティブ(IPIAMR)や感染症のアウトブレイクに対する国際連携ネットワーク(GloPID-R) が薬剤耐性(AMR)研究の国際連携を推進している。我が国は、2015 年に日本医療研究開発機 構(AMED)が薬剤耐性(AMR)に関するプログラム連携イニシアティブ(JPIAMR)及び感染症のア ウトブレイクに対する国際連携ネットワーク(GloPID-R)に参画し132,133、国際連携の推進に努めてい る。
- 抗微生物薬を含むとト用医薬品臨床試験実施基準(GCP)については、日米 EU 医薬品規制調 和国際会議(ICH)で共通ガイドラインが定められている134。世界規模で研究開発を展開し、各国 で早期に利用可能にするためには、臨床開発過程において、共通の臨床評価要件が用いられる ことが望まれるが、日米 EU の規制当局間で技術協議を進めた結果、感染症の地域特性等を踏ま えガイドライン自体の共通化は最終的に合意が得られなかった。新型コロナウイルス感染症 (COVID-19)の発生以降は、抗微生物薬の臨床評価手法に限らず、感染症対応全般において国 際薬事当局間の協働や規制調和を推進すべく各国が対応している。

¹²⁹ G7 Finance Ministers' Statement on Actions to Support Antibiotic Development

¹³⁰ 薬剤耐性に関するプログラム連携イニシアティブ (JPIAMR)、感染症のアウトブレイクに対する国際連携ネットワーク (GloPID-R)

¹³¹ Transatlantic Task Force on Antimicrobial Resistance, Centers for Disease Prevention and Control, http://www.cdc.gov/drugresistance/tatfar/, accessed on 24 December 2015

¹³² JPIAMR Press Release, Japan joins as newest JPIAMR member, 19 October 2015. http://www.jpiamr.eu/japan-joins-asnewest-jpiamr-member/, accessed on 24 December 2015

¹³³ GloPID-R Press Release, New member joins the fight against global epidemics, 4 August 2015. http://www.glopidr.org/new-member-joins-the-fight-against-global-epidemics/, acceded on December 24, 2015

¹³⁴ Guidelines for Good Clinical Practice E6 (R1), ICH harmonized tripartite guideline - Implemented in June 1996

薬剤耐性(AMR)に関する資料等を含む抗菌剤等の動物用医薬品の承認申請に必要な資料に ついては、動物用医薬品の承認申請資料の調和に関する国際協力(VICH)において、日米 EU で共通のガイドラインが作成されている135,136。

方針

- 日本医療研究開発機構(AMED)等の関係機関が、薬剤耐性(AMR)に関する国際的な活動に 参加し、情報交換することで、世界規模での研究開発の推進に寄与する。
- また、世界規模で協働して抗微生物薬開発を推進するため、日本、米国、EU 等の規制当局と 協調し、臨床評価手法の調和など、新薬開発の加速を図る。

取組

■ 臨床評価手法等の国際調和の推進

- 日米 EU を含めた国際薬事規制当局間における抗微生物薬開発のための臨床評価手法等 の調和の推進(戦略 5.4、戦略 6.1 参照)
- 日米 EU を含めた動物用医薬品の承認申請資料の調和に関する国際協力(VICH)の枠組 みにおける抗菌剤等の動物用医薬品の承認申請に必要な資料の調和の推進(戦略 6.1 参 照)

国際共同研究の推進

- 薬剤耐性(AMR)に関する研究開発の推進に寄与するための、薬剤耐性(AMR)に関する国 際的な活動への継続的な参加(国際的な研究者の人事交流を含む)及び日本主導の国際 臨床研究ネットワーク(ARISE)のプラットフォームの活用137
- 新たに病原性細菌等による集団発生の発生時の医薬品開発の迅速化のため、海外機関官 民連携スキーム(PPP)との連携体制の確立及び薬剤耐性(AMR)等の有望シーズの初期臨 床段階までの開発及び治療薬候補のバンク化の実施。
- 米国国立衛生研究所(NIH)や英国医学研究会議(MRC)など世界の資金配分機関との連 携等、国際対話を通じた研究と政策の橋渡しの推進(戦略 6.1 と連携)
- 「薬剤耐性(AMR) に関するアジア太平洋ワンヘルス・イニシアチブ(ASPIRE)」に関するア ジア各国との1)発生動向に関する調査及びネットワーク 2) 医療管理 3) 抗菌薬へのア クセスと規制 4) 研究開発の4分野の研究開発の推進

135 Pre-approval information for registration of new veterinary medicinal products for food producing animals with respect to antimicrobial resistance, VICH GL27 (Antimicrobial resistance: pre-approval) - Implemented in December 2004

¹³⁶ Studies to evaluate the safety of residues of veterinary drugs in human food: General approach to establish a microbiological ADI, VICH GL36(R) (Safety) May 2004 - Implemented in June 2013

¹³⁷ 臨床研究・治験推進研究事業 感染症緊急事態に対応するためのアジア諸国及び本邦アカデミアとの国際 ARO アライ アンスの機能強化、及び関連機関との連携システム構築 研究開発代表者:国立研究開発法人国立国際医療研究センター 飯山達雄

関係府省庁·機関

内閣府健康•医療戦略推進事務局、外務省、文部科学省、厚生労働省、農林水産省、国立感染症 研究所、動物医薬品検査所、医薬品医療機器総合機構、国立国際医療研究センター、日本医療研 究開発機構

評価指標

- ・ 日米 EU を含めた国際薬事規制当局間における抗微生物薬開発に資する規制措置等を取りまとめ た共同文書の策定の有無
- ・抗菌剤等の動物用医薬品の承認申請に必要な世界共通試験ガイドラインの策定の有無

戦略 5.6 抗微生物薬の持続的な開発、安定供給の強 化

背景

- 我が国は、世界標準の抗微生物剤を数多く開発してきた歴史を持つ。薬剤耐性微生物(ARO) に切り札として使用されてきたカルバペネム系抗菌薬であるメロペネムやドリペネム、カルバペネム 耐性腸内細菌目細菌(CRE)感染症に有効な数少ない抗菌薬の一つであるコリスチン、多剤耐性 結核に有効な抗結核薬のデラマニド等は我が国発の薬剤である。
- 薬剤耐性(AMR)と闘うための武器である抗微生物剤の研究は長年滞っており、近年、国際的に 新規の予防・診断・治療法に関する研究開発を再加速させる取組が行われている。
- 2020年には、2030年までに最大4種類の新規の抗微生物剤を市場に投入するため、世界の20 以上の製薬会社が出資し、世界保健機関(WHO)や欧州投資銀行など製薬業界の外からの支 持・支援も取り付けた「薬剤耐性アクション基金(AMR Action Fund)」が設立された138。
- 新規抗微生物薬の実用化に向けて新興・再興感染症に対する革新的医薬品等開発推進研究 事業で薬剤耐性菌に関する疫学的調査、基礎研究、基盤技術の開発等を実施し感染症対策の 強化を推進するとともに、診断薬、治療薬、ワクチン等の創薬研究開発を一体的に推進している。 また医療研究開発革新基盤創成事業(CiCLE)においても抗微生物薬の研究開発の支援を行っ ている。
- 継続的な新規抗微生物薬の開発のためには、研究開発への公的研究費による支援(いわゆる "プッシュ型インセンティブ")に加え、魅力的な投資環境をつくり、新規抗微生薬が継続的に上市 される環境を構築していくことが重要であり、企業の上市後の利益予見可能性を高めることで研究 開発を進める動機付けを行う市場インセンティブ(いわゆる"プル型インセンティブ")139の導入が求 められている。国際社会においても、2021年の先進7カ国(G7)財務大臣会合において、関連す る市場インセンティブの支援に特に重点を置きつつその幅広いオプションの検討など抗菌薬のイ ンセンティブに関する議論を実施し、2022 年の先進7カ国(G7) 首脳声明においても、市場インセ ンティブを特に強調して新しい抗微生物薬の開発を奨励することととしており、米国140、英国141、 スウェーデン142などでは、市場インセンティブが導入又は検討されつつある。先進7カ国(G7)プロ セスにおいては、新規抗菌薬の研究開発・国際協力を推進し、国際的な取組において主導的な 役割を果たすことが求められる。

139 研究支援補助金、研究開発費に対する税制優遇等の研究開発に直接関わるインセンティブであるプッシュ型インセンテ ィブに対し、市場後の薬価の優遇、薬価の事前審査、新薬の買い取り保証、市場参入報奨金、独占期間の優遇や他の製品 への移転の許可等の研究開発を進めるモチベーションを高めるインセンティブをプル型インセンティブという。

¹³⁸ AMR Action Fund https://www.amractionfund.com/ja/, accessed on 4 July 2022

¹⁴⁰ 米国の抗菌薬創出インセンティブ付与法(GAIN Act)においては、新規抗菌薬候補の優先審査品への位置付け、特許 期間延長等が盛り込まれている。2021年6月には、連邦議会に法案としてPASTEUR Act が再提出された。

¹⁴¹ Mark Perkins, David Glover, "Mark Perkins and David Glover Medicine," https://www.england.nhs.uk/blog/how-the- nhs-model-to-tackle-antimicrobial-resistance-amr-can-set-a-global-standard/, accessed on 4 July 2022

Public Health Agency of Sweden, "Availability of antibiotics," 1 December https://www.folkhalsomyndigheten.se/the-public-health-agency-of-sweden/communicable-disease-control/antibioticsand-antimicrobial-resistance/availability-of-antibiotics/, accessed on 4 July 2022

また、抗菌薬の供給不足が世界中で発生しており、日本においても 2019 年のセファゾリン注射 薬の供給の課題など、大規模な抗菌薬の供給不足が発生している。抗微生物薬の適正使用 (AMS)を推進し、薬剤耐性(AMR)の更なる拡大を抑制するためにも抗菌薬の安定供給は重要な 課題であり、新たな抗菌薬の研究開発の促進に加え、抗微生物剤の安定供給を維持するための 方策が求められている。

方針

- 市場インセンティブなどの薬剤耐性菌の治療薬を確保するための具体的な手法を検討し、導入 \bigcirc する。
- 抗微生物剤の安定供給の維持を推進する。

取組

■ 新たな抗微生物薬の研究開発の推進

ヒトにおける薬剤耐性感染症(ARI)の治療に資する新しい機序の抗微生物薬の研究開発の 推進(戦略 5.4 参照)

■ 抗微生物薬市場における市場インセンティブの仕組みの導入

- 「抗菌薬確保支援事業」による新たな抗微生物薬に対する市場インセンティブの仕組みの導 入(戦略 5.4 参照)
- 薬剤耐性感染症(ARI)治療薬の優先審査制度の継続(戦略 5.4 参照)

■ 原料等の国内生産推進等による抗菌薬の安定供給の強化

原薬等の海外依存度が高い抗菌薬等の医薬品のサプライチェーンの強靱化を図り、我が国 における安定供給体制を整備するため、「医薬品安定供給支援事業」の実施

関係府省庁·機関

厚生労働省、医薬品医療機器総合機構、国立国際医療研究センター、日本医療研究開発機構

評価指標

・ 新規抗微生物薬の開発数・承認数

目標6

国際的視野で多分野と協働し、薬剤耐性対策を 推進する

戦略

- (6.1)薬剤耐性に関する国際的な政策に係る日本の主導力の 発揮
- (6.2) 薬剤耐性に関するグローバル・アクション・プラン達 成のための国際協力の展開

薬剤耐性に関する国際的な政策に係る日本 戦略 6.1 の主導力の発揮

背景

- 薬剤耐性(AMR)は、地球規模の健康安全保障上の脅威として捉えられており、世界保健機関 (WHO)や先進7カ国(G7)プロセスにおいて議論されてきたところであり、引き続き重要な保健課 題の一つである。143
- 我が国は以前より医療分野及び畜水産分野において薬剤耐性(AMR)対策を推進しており、薬 剤耐性率に関する動向調査体制が整備され、抗菌薬使用量についても経済協力開発機構 (OECD)平均を下回る程度で推移¹⁴していることから、世界、特にアジア地域において、対策を主 導すべき役割を担っている。2016年には、「薬剤耐性(AMR)に関するアジア太平洋ワンヘルス・ イニシアチブ(ASPIRE)」を創設し、アジア太平洋諸国のワンヘルス・アプローチを推進している。
- また、世界各国での感染症対策の能力を向上させることを目的として、世界保健機関(WHO)の 国際保健規則(IHR)の履行強化を目指す多国間イニシアティブである世界健康安全保障アジェ ンダ(GHSA)の分野別の取組においても、我が国は薬剤耐性(AMR)に関するリード国として国際 貢献すべき立場にある。AMR 臨床リファレンスセンター (AMRCRC)及び薬剤耐性 (AMR)研究セ ンターは、ともに世界保健機関(WHO)連携センターに指定されており、抗微生物薬適正使用 (AMS)及び薬剤耐性(AMR)対策の国際的活動を行っている。
- 畜水産分野においては、薬剤耐性菌に関する国際獣疫事務局(WOAH)の国際基準、コーデッ クス委員会の実施規範やガイドライン、国際連合食糧農業機関(FAO)のガイドライン等の策定過 程において、農林水産省から関係会合等に参画し、積極的に意見提出を行うなどの貢献をしてき たところである。
- 国際獣疫事務局(WOAH)が行っている動物用抗菌性物質使用量のデータベース構築等の取 組においては、我が国の専門家が会議等に出席してデータの提供や助言等を行っている。
- 環境分野においては、第3回国際連合環境総会で公表された国連環境フロンティア報告書で薬 剤耐性(AMR)は6つの懸念領域の一つとされており、国際連合環境計画(UNEP)は、世界保健機 関(WHO)、国際連合食糧農業機関(FAO)及び国際獣疫事務局(WOAH)と協力して "Quadripartite"¹⁴⁵として、取組を行っている。我が国としては国際連合環境計画(UNEP)の動向を 注視しているところ。

¹⁴³ Abe S. Japan's vision for a peaceful and healthier world. *Lancet*. 2015;386(10011):2367-2369. doi:10.1016/S0140-

¹⁴⁴ Muraki Y, Kitamura M, Maeda Y, et al. Nationwide surveillance of antimicrobial consumption and resistance to Pseudomonas aeruginosa isolates at 203 Japanese hospitals in 2010. Infection. 2013;41(2):415-423. doi:10.1007/s15010-013-0440-0

¹⁴⁵ 世界保健機関(WHO)、国際連合食糧農業機関(FAO)、国際獣疫事務局(WOAH)及び国際連合環境計画(UNEP)の 四機関間で締結されたパートナーシップ

方針

- 世界保健機関(WHO)の世界における薬剤耐性(AMR)に対する取組を、ハイレベル・草の根レ ベル両面から支援する(特にアジア太平洋地域)。また世界健康安全保障アジェンダ(GHSA)によ る「薬剤耐性(AMR)アクションパッケージ」の実行を通じて対象国の薬剤耐性(AMR)アクションプ ランの策定・履行を支援する。
- 2023 年先進7カ国(G7)広島サミットや先進7カ国(G7)長崎保健大臣会合・先進7カ国(G7)宮 崎農業大臣会合等の先進7カ国(G7)プロセスにおいて、薬剤耐性(AMR)に対するコミットメントを 強化することを目指し、研究開発・国際協力を推進し、国際的な取組において主導的な役割を果 たす。
- 国際獣疫事務局(WOAH)による国際基準の策定・改正やデータベースの構築等の薬剤耐性 (AMR)に対する国際的な取組の強化を支援する。また、コーデックス委員会における薬剤耐性 (AMR)に関する国際的な取組について、基準の改正作業への参画等を通じて貢献する。

取組

■ 薬剤耐性 (AMR) に関する国際的な政策の推進

- 世界保健機関(WHO)の薬剤耐性(AMR)に対する取組の支援
 - ✓ 「薬剤耐性(AMR)ワンヘルス東京会議(Tokyo AMR One-Health Conference) |の年次開 催の継続を通じた、アジア諸国及び国際機関の関係者間の情報共有及び各国の薬剤耐 性(AMR)対策の推進
- 先進7カ国(G7)プロセスにおける薬剤耐性(AMR)の取組の更なる推進
 - ✓ 先進7カ国(G7)プロセスにおいて、薬剤耐性(AMR)に関する取組の強化及び抗菌薬開 発に対する新たな市場インセンティブの導入を含めた、薬剤耐性(AMR)対策に資する研 究開発を推進し、国際的な取組における主導力の発揮
- 国際連合食糧農業機関(FAO)及び国際獣疫事務局(WOAH)の薬剤耐性(AMR)に対する 取組への支援
 - ✓ 薬剤耐性(AMR)に関する国際連合食糧農業機関(FAO)のガイドライン、国際獣疫事務 局(WOAH)の国際基準の策定・改正作業、動物用抗菌性物質の使用量データベース構 築等の取組の支援
- コーデックス委員会の薬剤耐性(AMR)に対する取組への貢献
 - ✓ 薬剤耐性(AMR)に関するコーデックス委員会の実施規範やガイドラインの改正作業への 参画を通じた貢献
- 世界健康安全保障アジェンダ(GHSA)の「薬剤耐性(AMR)アクションパッケージ」におけるリ ード国としてアジア等での取組の推進
- 米国国立衛生研究所(NIH)や英国医学研究会議(MRC)など世界の資金配分機関との連 携等、国際対話を通じた国際協力の推進(戦略 5.5 と連携)
- 日米 EU を含めた国際薬事規制当局間における、抗微生物薬開発のための臨床評価手法 等の調和の推進(戦略 5.5 参照)

- 日米 EU を含めた動物用医薬品の承認申請資料の調和に関する国際協力(VICH)の枠組 みにおける、抗菌剤等の動物用医薬品の承認申請に必要な世界共通試験ガイドラインの策 定・改定作業への参画を通じた貢献(戦略 5.5 参照)
- 国際連合環境計画(UNEP)の動向を注視し、薬剤耐性(AMR)に対する取組に貢献

関係府省庁·機関

内閣官房新型コロナウイルス等感染症対策推進室、内閣府健康・医療戦略推進事務局、外務省、 厚生労働省、農林水産省、環境省、国立感染症研究所、動物医薬品検査所、医薬品医療機器総合 機構、農林水産消費安全技術センター、国立国際医療研究センター、日本医療研究開発機構

評価指標

- ・ 各取組の活動状況
- ・ 会議等への参加国数
- ・ 先進7カ国(G7) 首脳会議進捗報告書コミットメント 13(薬剤耐性(AMR)) 指標
- ・ 世界健康安全保障アジェンダ (GHSA) 「薬剤耐性 (AMR) アクションパッケージ」目標の達成状況

戦略 6.2 薬剤耐性に関するグローバル・アクション・ プラン達成のための国際協力の展開

背景

- 世界保健機関(WHO)による「薬剤耐性(AMR)に関するグローバル・アクション・プラン」では、ド ナー国に対し、グローバル・アクション・プランの達成に向けた支援(特に、動向調査、有効性の確 保のための対策を伴う抗微生物剤の利用可能性の確保及び新しい予防・診断・治療法に関して) を実行することが求められている146。
- 2016 年に東京で開催されたアジア各国保健大臣会議(Tokyo Meeting of Health Ministers on Antimicrobial Resistance in Asia)においてアジア太平洋領域における薬剤耐性(AMR)問題に協 働して立ち向かい、地域の薬剤耐性(AMR)対策を実現するロードマップを描く「薬剤耐性(AMR) に関するアジア-太平洋ワンヘルス・イニシアチブ(ASPIRE)」が採択された。ASPIRE では1) サー ベイランスシステムと検査室ネットワーク 2) 医療管理 3) 抗菌薬へのアクセスと規制 4) 研究 開発の4分野を優先課題として挙げている。その後、先進7カ国(G7)保健大臣会議の神戸コミュ ニケ及び第71回国際連合総会ハイレベル会合における薬剤耐性(AMR)に関する政治宣言が採 択された。これらを受け、2017 年には「薬剤耐性(AMR)ワンヘルス東京会議」が開催され、アジア における薬剤耐性(AMR)対策グローバル・アクション・プランの推進について協議がなされ、成果 概要が発表された。2019 年薬剤耐性(AMR)ワンヘルス東京会議は厚生労働省と世界保健機関 西太平洋地域事務局(WPRO)の共同開催となり、4つの優先課題(柱)を進めるASPIRE 調整会議 が発足した。2021年の薬剤耐性(AMR)ワンヘルス東京会議では ASPIRE 調整会議の下で4つの 優先課題(柱)について議長を中心とした現状確認、今後の活動について議論がなされた。
- 2021 年、世界保健機関(WHO)は国立国際医療研究センターAMR 臨床リファレンスセンター (AMRCRC)を「薬剤耐性の予防・準備・対応のための世界保健機関(WHO)連携センター」147、国 立感染症研究所薬剤耐性(AMR)研究センターを「薬剤耐性(AMR)サーベイランス・研究のため の世界保健機関(WHO)連携センター」148として認定した。世界保健機関(WHO)連携センターは 世界保健機関(WHO)が認定する国際的な協力ネットワークを形成する機関で同機関のポリシー の下で薬剤耐性(AMR)対策プログラムを支援することが求められている。
- 我が国では、抗微生物薬や感染症対策に関する研究開発の長い歴史に加え、医薬品の品質 管理、質の高い動向調査、臨床における感染予防・管理(IPC)を推進してきた歴史があり、国際協 力機構(JICA)を通じて、感染予防・管理(IPC)、特に医療関連感染症(HAI)対策を主眼とした能 力強化等の協力を展開してきた。こうした観点から、薬剤耐性(AMR)対策について我が国が支援 し得る領域は幅広い。
- また、厚生労働省が関わる新興・再興感染症研究事業等の枠組みにおいて、薬剤耐性(AMR) 対策に関する国際協力を展開してきた。
- 畜水産分野においては、国際獣疫事務局(WOAH)や国際連合食糧農業機関(FAO)の研修等 への協力や、個別の国々からの依頼に基づくセミナー等への薬剤耐性菌の専門家の参画等を実 施してきている。

¹⁴⁶ Global Action Plan on Antimicrobial Resistance, World Health Organization 2015, ISBN 978 92 4 150976 3

¹⁴⁷ WHO Collaborating Center (CC) for prevention, preparedness and response to Antimicrobial Resistance

 $^{^{148}\,}$ AMR CC for AMR surveillance and research

方針

関係省庁、関係機関、研究機関、企業等の更なる協調により、アジア太平洋地域を中心に薬剤 耐性(AMR)に対する国際協力を推進する。

取組

■ 公衆衛生領域における国際協力

- 日本医療研究開発機構(AMED)、国立感染症研究所等における薬剤耐性(AMR)対策の 国際協力の推進
 - ✓ 我が国のオンライン動向調査システムの基盤¹⁴⁹を活用した動向調査機能強化
 - 動向調査強化と合わせた検査室の薬剤耐性(AMR)検査に関する能力強化の実施
 - ✓ ゲノムデータベースを通じた新たな予防・診断・治療薬シーズの研究開発
 - ✓ アジア太平洋地域における薬剤耐性(AMR)らい菌の動向調査活動への貢献
- 世界保健機関(WHO)連携センターとして、国立感染症研究所薬剤耐性(AMR)研究センタ 一及び国立国際医療研究センターAMR 臨床リファレンスセンター(AMRCRC)の取組の推 進
 - ✓ 西太平洋地域における各国の抗菌薬適正使用推進(AST)、感染防止対策、サーベイラ ンス及び薬剤耐性(AMR)に関する意識向上に加え、薬剤耐性微生物(ARO)による集団 発生対応を通じた世界保健機関(WHO)の活動への協力
 - 西太平洋地域において 以下の対策の実施の強化
 - WHO-Net¹⁵⁰、海外版「院内感染対策サーベイランス事業(JANIS)」(ASIARS-Net)を 利用した各国の薬剤耐性(AMR)動向調査の強化
 - ・ 薬剤耐性微生物(ARO)の検査能力の強化
 - ・ 世界保健機関(WHO)と連携した、大腸菌を用いたワンヘルス薬剤耐性(AMR)動向 調査(三輪車サーベイランス)参加国への技術的支援
 - 全ゲノム解析(WGS)を用いた薬剤耐性(AMR)集団発生の病原体解析支援
 - 薬剤耐性(AMR)動向調査・集団発生対応ガイダンス文書作成
 - 「グローバル AMR サーベイランスシステム(GLASS)」の改訂支援
- 国際協力機構(JICA)技術協力プロジェクト等による感染予防・管理(IPC)対策、抗微生物薬 の適正使用(AMS)を含めた抗微生物薬の利用可能性の確保、検査室機能強化等に関する 技術協力の実施
- 我が国で開発され、世界保健機関(WHO)で承認された耐性結核に対する新規診断法、新 薬等を用いた耐性結核対策の国際協力の推進

¹⁴⁹ 院内感染対策サーベイランス事業(JANIS)、動物由来薬剤耐性菌モニタリング(JVARM)、薬剤耐性ゲノムデータベース (GenEpid-I)等

¹⁵⁰ 米国ボストン Brigham and Women's Hospitalの薬剤耐性サーベイランス世界保健機関(WHO)連携センターが開発し、 世界 130 カ国で使用されている微生物検査データベース

■ 動物衛生領域における国際協力

- 国際連合食糧農業機関(FAO)や国際獣疫事務局(WOAH)などの国際機関等による薬剤 耐性(AMR)対策に関する国際協力、特にアジア地域に対する国際協力の推進の支援
- 国際獣疫事務局(WOAH)と協力し、動物医薬品検査所の国際獣疫事務局(WOAH)コラボ レーティングセンター機能や「動物用医薬品の承認申請資料の調和に関する国際協力 (VICH)のアウトリーチフォーラム」の活用等による、動向調査・監視に関する国際的な研修 等の実施

関係府省庁·機関

内閣府健康•医療戦略推進事務局、外務省、厚生労働省、農林水産省、国立感染症研究所、動物 医薬品検査所、国際協力機構、農業・食品産業技術総合研究機構、国立国際医療研究センター、日 本医療研究開発機構

評価指標

- 研修会の実施回数、参加国数
- ・ 薬剤耐性(AMR)アクションプラン策定・実施のために支援を行った国の数

アクションプランの成果指標

「薬剤耐性(AMR)対策アクションプラン(2023-2027)」の成果指標として、以下を設定する。

ヒトに関して

- 2027 年のバンコマイシン耐性腸球菌(VRE)感染症の罹患数¹⁵¹を 80 人以下(2019 年時点)に維 持する。
- 2. 2027年までに黄色ブドウ球菌のメチシリン耐性率152を20%以下に低下させる。
- 2027年の大腸菌のフルオロキノロン耐性率153を30%以下に維持する。 3.
- 2027 年までに緑膿菌のカルバペネム(MEPM=R)耐性率¹⁵⁴を3%以下に低下させる。 4.
- 2027年の大腸菌及び肺炎桿菌のカルバペネム耐性率155を0.2%以下に維持する。

^{*} 薬剤耐性率の予測は、2011 年から2021 年までの院内感染対策サーベイランス事業(JANIS)データを元に、今回の成果 指標の対象となる耐性菌の検体(血液・尿・呼吸器)から検出された対象となる菌のデータから、ポアソン回帰で将来の検出 数を、感受性菌・耐性菌それぞれについて予測した。耐性率は、それぞれの年度ごとの総検出数を分母・耐性菌検出数を分 子として耐性率を計算した。予測の際に 2011 年からの季節性、抗菌薬消費量、新型コロナウイルス感染症(COVID-19)の 影響を変数として投入し、2027 年までの数値を算出した。なお、 2022 年から 2027 年までと長期間の予測であるため、結果 は参考値として考慮し設定。耐性率については JANIS 公開データ四半期報から個別に算出した。

¹⁵¹ バンコマイシン耐性腸球菌(VRE)感染症は、その治療薬の選択肢の少なさから、現在世界的に拡大傾向にあり、重大な 薬剤耐性(AMR)の脅威の一つである。病院や高齢者施設での水平感染を制御すべき耐性菌であり、平時の感染対策の指 標として感染症の実数を新たに追加指標とする(全数把握疾患報告)。病院をまたぎ地域内で流行することがあり、地域の感 染対策連携の評価指標にもなる。地域での拡散を防止し、感染者数を現状の低い数を維持することを目標とする。

¹⁵² 黄色ブドウ球菌のメチシリン耐性率は、2020 年現在 50%程度と他の先進諸国と比較し高い水準にある。血流感染症は疾 病負荷に大きく寄与することや保菌の影響を除く意図で血液検体を用いた指標とする。2011 年から 2021 年までのデータを 元に、2020 年実測値 35.9%から季節性、抗菌薬消費量、新型コロナウイルス感染症(COVID-19)の影響を考慮した 2027 年 の予測は 32%である。 本アクションプランにて実施する感染予防・管理 (IPC) の推進により毎年 1.4%加速されることを加味 し、目標値を20%と設定する。

¹⁵³ 大腸菌のフルオロキノロン耐性率は、フルオロキノロン剤の使用量と高い相関がある。非耐性菌と比べて治療が困難であ り、本邦における死亡の多くを占めていることから指標として採用を継続する。外来において、薬剤耐性菌が治療に直結する 尿路感染症を対象とすることから尿検体を用いた指標とする。2011年から2021年までのデータを元に、2020年実測値35.0% から季節性、抗菌薬消費量、新型コロナウイルス感染症(COVID-19)の影響を考慮した 2027 年の予測は 42%である。本ア クションプランにて実施する抗菌薬適正使用(AMS)の推進及び尿道カテーテル感染症に対する感染予防・管理(IPC)の徹 底により毎年約2.4%加速されることを加味し、目標値を30%と設定する。

¹⁵⁴ 緑膿菌のカルバペネム耐性率は、2020 年現在 11.0%であり、この数値は、諸外国において高いものではない。血流感染 症は疾病負荷に大きく寄与することや保菌の影響を除く意図で血液検体を用いた指標とする。 2011 年から 2021 年までのデ ータを元に、2020 年実測値 7.1%から季節性、抗菌薬消費量、新型コロナウイルス感染症(COVID-19)の影響を考慮した 2027年の予測は6%である。 本アクションプランにて実施する感染予防・管理(IPC)の推進により毎年約0.6%加速されること を加味し、目標値を3%と設定する。

¹⁵⁵ カルバペネム耐性腸内細菌目細菌(CRE)感染症は、その治療薬の選択肢の少なさから、現在世界的に拡大傾向にあり 重大な薬剤耐性(AMR)の脅威の一つである。幸い、我が国における大腸菌及び肺炎桿菌のカルバペネム耐性率は2020年 現在 0.1%、0.2%と極めて低い。このため、適切な薬剤耐性 (AMR) 対策により、耐性率を同水準に維持する。

- 2027 年までに人口千人当たりの一日抗菌薬使用量156を2020 年の水準から15%減少させる。 6.
- 7. 2027 年までに経口第3世代セファロスポリン系薬、経口フルオロキノロン系薬、経口マクロライド系 薬の人口千人当たりの一日使用量157を 2020 年の水準からそれぞれ経口第3世代セファロスポリ ン系薬は 40%、経口フルオロキノロン系薬は 30%、経口マクロライド系薬は 25%削減する。
- 8. 2027 年までに人口千人当たりのカルバペネム系の一日静注抗菌薬使用量¹⁵⁸を 2020 年の水準 から20%削減する。

補足 抗菌薬使用量の目標値は、適正に抗菌薬を使用することで患者予後を改善し、不必要な抗菌 薬を削減することで、薬剤耐性への影響を最小限にすることにつながる。

^{*} 抗菌薬使用量の予測は、2013 年から 2019 年までのレセプト情報・特定健診等情報データベース(NDB)データを元に、 人口 1000 人当たり1日当たり使用量を算出し、ポアソン回帰で将来の抗菌薬使用量を予測した。予測の際に 2016 から 2019 年の薬剤耐性(AMR)対策アクションプラン(2016-2020)の影響のみを変数として投入し、2027 年までの数値を算出した。 2021年から2027年までと長期間の予測であるため、結果は参考値として考慮

¹⁵⁶ 2020 年の日本の一日抗菌薬使用量は、1000 人当たり 10.4 と推計されており、欧州との比較においては、比較的少ない (図1)。人口千人当たりの一日抗菌薬使用量の使用量は、2019 年 13.1 DID、2020 年 10.4 DID である。2013 年から 2019 年までのデータを元に、薬剤耐性(AMR)対策アクションプラン(2016-2020)の影響を考慮した 2027 年の予測値は 9.0 DID である。本アクションプランにて上気道炎に対する抗菌薬適正使用(AMS)の推進により、2020 年から更に毎年約 0.3%加速 されることを加味し、目標値を15%減少(8.85 DID)と設定する。

¹⁵⁷ 人口千人当たりの一日経口第3世代セファロスポリン系薬使用量の使用量は、2019 年 2.72 DID、2020 年 1.93 DID であ る。2013 年から 2019 年までのデータを元に、薬剤耐性(AMR)対策アクションプラン(2016-2020)の影響を考慮した 2027 年 の予測値は 1.24 DID である。本アクションプランにて上気道炎に対する抗菌薬適正使用(AMS)の推進により、2020 年から 更に毎年約 0.8%加速されることを加味し、目標値を 40%減少 (1.16 DID)と設定する。

人口千人当たりの一日経口フルオロキノロン系抗菌薬使用量の使用量は、2019 年 2.46 DID、2020 年 1.76 DID である。 2013 年から 2019 年までのデータを元に、薬剤耐性(AMR)対策アクションプラン(2016-2020)の影響を考慮した 2027 年の 予測値は 1.32 DID である。本アクションプランにて上気道炎に対する抗菌薬適正使用(AMS)の推進により、2020 年から更 に毎年約1%加速されることを加味し、目標値を30%減少(1.23 DID)と設定する。

人口千人当たりの一日経口マクロライド系抗菌薬使用量の使用量は、2019年4.37 DID、2020年3.30 DID である。2013年 から 2019 年までのデータを元に、薬剤耐性(AMR)対策アクションプラン(2016-2020)の影響を考慮した 2027 年の予測値は 2.49 DID である。本アクションプランにて上気道炎に対する抗菌薬適正使用(AMS)の推進により、2020 年から更に毎年約 0.1%加速されることを加味し、目標値を 2.48 DID (25%減少)と設定する。

¹⁵⁸ 人口千人当たりの一日カルバペネム系静脈抗菌薬使用量の使用量は、2019 年 0.063 DID、2020 年 0.058 DID である。 2013 年から 2019 年までのデータを元に、薬剤耐性(AMR)対策アクションプラン(2016-2020)の影響を考慮した 2027 年の 予測値は 0.05 DID である。本アクションプランにて病院に対する抗菌薬適正使用(AMS)の推進により、2020 年から更に毎 年約 1.5%加速されることを加味し、目標値を 20%減少 (0.046 DID) と設定する。

動物に関して

- 2027 年までに大腸菌のテトラサイクリン耐性率¹⁵⁹を、牛は 20%以下、豚は 50%以下、鶏は 45% 以下に低下させる。
- 2027 年までに大腸菌の第3世代セファロスポリン耐性率160を、牛は1%以下、豚は1%以下、鶏は 5%以下に低下させる。
- 3. 2027 年までに大腸菌のフルオロキノロン耐性率¹⁶¹を、牛は1%以下、豚は2%以下、鶏は 15%以 下に低下させる。
- 2027 年までに畜産分野の動物用抗菌剤の全使用量162を2020 年の水準から15%削減する。
- 2027 年の畜産分野の第二次選択薬(第3世代セファロスポリン、15 員環マクロライド(ツラスロマイ) シン、ガミスロマイシン)、フルオロキノロン、コリスチン)の全使用量163を27t以下に抑える。

159 テトラサイクリンは、家畜において最も多く使用されている抗菌剤であるため、家畜での抗菌剤の使用状況を反映するもの であるとして薬剤耐性(AMR)対策アクションプラン(2016-2020)より設定している。本アクションプランでは、継続性の観点か ら引き続き設定する。また、耐性状況や衛生管理は畜種ごとで異なり、課題への対応の成果の指標とするため、本アクション プランでは畜種別に設定する。なお、目標値は、と畜場及び食鳥処理場での採材が開始された 2012 年から 2020 年までの 数値を基に、2021 年から 2027 年までの傾向値を単回帰直線で算出し、2027 年にかけて上昇傾向を示す場合は、2016 年 から 2020 年までの間に得られた最小値を、下降傾向を示す場合は 2027 年の傾向値を参考に設定している。

160 第3世代セファロスポリンは、ヒト医療上重要な抗菌剤であり、家畜においては第二次選択薬として使用されている。この ため、家畜における監視の必要性があるものとして薬剤耐性(AMR)対策アクションプラン(2016-2020)より設定している。薬 剤耐性(AMR)対策アクションプラン(2016-2020)で設定した目標値(G7各国と同水準を維持)は達成しているが、継続性の 観点から引き続き設定する。また、耐性状況や衛生管理は畜種ごとで異なり、課題への対応の成果の指標とするため、本ア クションプランでは畜種別に設定する。なお、目標値は、と畜場及び食鳥処理場での採材が開始された 2012 年から 2027 年 までの傾向値を単回帰直線で算出し、2027年にかけて上昇傾向を示す場合は、2016年から2020年までの間に得られた最 小値(0%の場合は2016年から2020年までの数値の平均値)を、下降傾向を示す場合は2027年の傾向値の半分を参考に 設定している。

¹⁶¹ フルオロキノロンは、ヒト医療上重要な抗菌剤であり、家畜においては第二次選択薬として使用されている。このため、家 畜における監視の必要性があるものとして薬剤耐性(AMR)対策アクションプラン(2016-2020)より設定している。薬剤耐性 (AMR)対策アクションプラン(2016-2020)で設定した目標値(G7各国と同水準を維持)は達成しているが、継続性の観点か ら引き続き設定する。また、耐性状況や衛生管理は畜種ごとで異なり、課題への対応の成果の指標とするため、本アクション プランでは畜種別に設定する。なお、目標値は、と畜場及び食鳥処理場での採材が開始された 2012 年から 2027 年までの 傾向値を単回帰直線で算出し、2027 年にかけて上昇傾向を示す場合は、2016 年から 2020 年までの間に得られた最小値 (0%の場合は2016年から2020年までの数値の平均値)を、下降又は横ばい傾向を示す場合は2027年の傾向値の半分を 参考に設定している。

¹⁶²抗菌剤は、疾病の流行に応じて使用するもので、指標は抗菌剤の適正使用の結果を示すものとの観点から、薬剤耐性 (AMR)対策アクションプラン(2016-2020)では設定していない。抗菌剤は家畜の細菌感染症治療において重要な資材であ り、将来にわたり、必要な時に使用し、求める効果が得られる状況を整備しておくことが必要であることと、近年、EU 等では使 用量(販売量)を削減するための施策を進める中で、他国と比較して、我が国の動物用抗菌剤使用量(販売量)が多いことは、 農業分野全体のイメージダウンや消費者からの信頼低下につながる懸念がある。このような観点から、今般新たに畜産分野 の動物用抗菌剤の使用量(販売量)を成果指標として設定する。なお、目標値は、牛・鶏での適正使用を推進した場合に削 減可能な量として算出した値と豚での薬剤耐性(AMR)対策アクションプラン(2016-2020)で達成した削減量を基に算出した 値の和を参考に設定している。

163 動物用抗菌剤のうち、ヒト医療上重要な抗菌剤を第二次選択薬として指定している。第二次選択薬は第一次選択薬での 治療が無効な場合にのみ使用するもので、現在は必要最小限の量と考えられる。今般新たに使用量(販売量)全体を削減 することで第二次選択薬の多用を招くことがないよう、現時点の数量を増加させないこととして目標値に設定する。

進捗状況の評価

各戦略、各取組の達成状況及び評価指標は、「国際的に脅威となる感染症対策の強化のための国 際連携等関係閣僚会議」の枠組みの下で、毎年評価を行う。「薬剤耐性ワンヘルス動向調査年次報 告書(NOAR)」を作成することにより、成果指標の評価を行う。

参考資料

用語の解説

薬剤耐性: Antimicrobial Resistance (AMR)

微生物(細菌、真菌、ウイルス、寄生虫)による感染症に対し、抗微生物剤が無効になる、又は、製剤 による効果が減弱する事象を指す。

薬剤耐性微生物: Antimicrobial-resistant organisms (AROs)

薬剤耐性を示す微生物(細菌、真菌、ウイルス、寄生虫)を指す。薬剤耐性を示す細菌を特に薬剤耐 性菌と呼ぶ。

薬剤耐性遺伝子: Antimicrobial-resistant genes (ARGs)

薬剤耐性微生物において、薬剤耐性を惹起する染色体上又はプラスミド(核外環状 DNA)上の遺伝 子及び遺伝子群を指す。

プラスミド媒介性薬剤耐性遺伝子: Plasmid-mediated ARGs

細菌の核外に存在する環状 DNA(プラスミド)上に存在する薬剤耐性遺伝子を指す。他の細菌との接 合により、薬剤感受性であった細菌に薬剤耐性を伝播することができる。近年問題となっているグラム 陰性桿菌による薬剤耐性の多くが、本遺伝子を持つ。

水平伝播: horizontal transfer

接合によるプラスミドの伝播や、菌体から遊離した DNA 自体が別の菌に入り込むことにより耐性遺伝 子を伝播する形質転換、細菌に感染するウイルス(ファージ)による形質導入等のメカニズムによりもと もと薬剤感受性であった細菌に薬剤耐性が伝播することを指す。水平伝播は同一の菌種で起こるほ か、菌種を越えて伝播されることがある。

抗微生物剤: Antimicrobials

ヒト、動物、農業で使用され、病原微生物に対する抗微生物活性を持ち、感染症の治療、予防又は動 物の飼料中の栄養成分の有効利用の目的で利用されている製剤の総称。ヒトで用いられる抗微生物 薬、動物・農業で用いられる抗微生物剤を指す。このうち、ヒトに対する抗微生物薬には、抗菌薬(細 菌に対する抗微生物活性を持つもの。抗生物質及び合成抗菌剤)、抗真菌薬、抗ウイルス薬、抗寄生 虫薬を含む。動物用の抗微生物剤には、動物用抗菌性物質(細菌に対する抗微生物活性を持つもの。 抗生物質及び合成抗菌剤)、抗真菌剤、抗ウイルス剤、抗寄生虫剤を含む。動物用医薬品として動物 の感染症の治療に用いられる動物用抗菌剤及び飼料中の栄養成分の有効利用目的で用いられる抗 菌性飼料添加物を合わせて動物用抗菌性物質と呼ぶ。

選択圧: Selection pressure

抗微生物剤の使用により、該当製剤に対して感受性の微生物を死滅させ、薬剤耐性を持つ微生物の みが選択的に生き延びるよう圧力をかけることを指す。薬剤耐性には様々なメカニズムが存在するが、 選択圧はその最大の誘導因子の一つである。

ワンヘルス・アプローチ: One Health Approach

ヒト、動物、環境等の複雑な相互作用によって生じる感染症の対策に、公衆衛生部門、動物衛生部門、 環境衛生(保全)部門等の関係者が連携し、一体となって対応しようとする概念を指す。薬剤耐性対 策においては、抗菌薬等の抗微生物薬は、医療、介護、獣医療、畜水産、農業などの現場で使用さ れ、それらの使用により選択された薬剤耐性微生物や薬剤耐性の原因となる遺伝子が、食品や環境 などを介してヒトへ伝播することが指摘されており、こうした分野で一体となり取組を進める必要性が指 摘されている。

動向調査(サーベイランス): Surveillance

問題の実態を把握するために定期的に調査を行い、動向を把握したり変化を検出すること。

監視(モニタリング): Monitoring

矯正的措置をとる必要があるかどうかを決定するために、定期的に調査を行うこと。

院内感染対策サーベイランス事業(JANIS)

厚生労働省所管の有床医療機関において検出された微生物の薬剤耐性傾向を把握するサーベイラ ンス事業。参加は任意であり、参加医療機関には、施設内の薬剤耐性傾向を分析したサーベイランス 報告が還元されるほか、全国レベルでの薬剤耐性傾向を掲載した報告書が一般公開されている。

動物由来薬剤耐性菌モニタリング(JVARM)

農林水産省による畜水産における薬剤耐性及び動物用抗菌剤の販売量のモニタリング体制。各都道 府県、独立行政法人農林水産消費安全技術センター及び水産試験場等と連携協力し、動物医薬品 検査所が基幹ラボとして実施。サーベイランス/モニタリング結果について日本語で毎年、英語で数年 ごとに報告書が一般公開されている。

医療関連感染症: Healthcare-associated Infection (HAI)

医療介入に関連した感染症の総称。主要な医療関連感染症として、カテーテル関連血流感染症、カ テーテル関連尿路感染症、手術部位感染症、人工呼吸器関連肺炎、クロストリジウム・ディフィシル感 染症が挙げられ、これらの感染症に対する院内サーベイランスを行うことで、薬剤耐性の院内における 疾病負荷を把握することができる。

薬剤感受性検査: Antimicrobial Susceptibility Test

特定の病原微生物(細菌及び真菌)に対し、抗菌薬又は抗真菌薬が、有効(感受性: susceptible)であ るか否かを判断するための検査。病原微生物が定められた薬剤濃度(ブレイクポイント)を超える環境 下でも発育可能であった場合は、耐性(resistant)と判定される。微生物の種別に各抗微生物薬の感 受性の割合を示し、リスト化したものを薬剤感受性表(アンチバイオグラム: Antibiogram)と呼ぶ。

抗微生物剤使用量: Antimicrobial Use (AMU)

抗微生物剤の使用量を表す指標。使用量を直接比較することができないため、人数、投与期間、抗 微生物薬使用密度及び抗微生物薬使用日数が用いられる。動物分野においては抗菌剤の使用を意 図した抗菌剤の量のことで、投与量、販売量や給餌量を個体数、平均体重で補正したものが用いられ

抗微生物薬使用密度: Antimicrobial Use Density (AUD)

ヒトにおいて抗微生物薬使用量を測定する標準的指標の一つ。1000人又は100人当たりの一日の抗 微生物薬使用量を示す。抗微生物剤により、一日維持投与量(DDD)が異なることから、総使用純抹 量を DDD で割り、更に対象の人口における延べ投与日数で割ることで算出される。

抗微生物薬使用日数: Days of Therapy (DOT)

米国疾病予防管理センター(CDC)において開発されたヒトにおいて抗微生物薬使用量を測定する指 標の一つで主に先進国で用いられる。抗微生物薬使用密度と異なり、一日当たりの使用量に関わら ず、抗微生物薬の投与日数のみを評価する。

薬剤耐性診断法: AMR diagnostics

薬剤耐性の診断は、主に表現型検査(薬剤感受性検査)及び遺伝子型検査(薬剤耐性遺伝子、又は 薬剤耐性遺伝子産物の同定検査)により行う。表現型検査が、微生物の実際の薬剤に対する反応性 を評価するのに対し、遺伝子型検査は特定の薬剤耐性遺伝子及びその遺伝子産物(タンパク質)を 評価する。遺伝子型検査は、薬剤耐性が垂直伝播型か、水平伝播型かの判断等に役立つ。

コーデックス委員会: Codex Alimentalius Commission

コーデックス委員会は、消費者の健康の保護、食品の公正な貿易の確保等を目的として、1963年に 国連農業食糧機関(FAO)及び世界保健機関(WHO)により設置された国際的な政府間機関であり、 国際食品規格(コーデックス規格)の策定等を行っている(我が国は1966年より加盟)。

家畜防疫員

家畜伝染病予防法第53条第3項に基づき、都道府県知事が、家畜伝染病予防法に規定する事務に 従事させるため、都道府県の職員で獣医師であるものの中から任命するもの。ただし、特に必要があ るときは、当該都道府県の職員で家畜の伝染病予防に関し学識経験のある獣医師以外で、都道府県 知事が任命するもの。

魚類防疫員

持続的養殖生産確保法(平成11年法律第51号)第13条第1項に基づき、都道府県知事が、養殖水 産動植物の伝染性疾病の予防の事務に従事させるため、都道府県の職員のうちから任命するもの。

飼養衛生管理基準

家畜伝染病予防法第 12 条の3に基づき、家畜の飼養に係る衛生管理の方法に関し家畜の所有者が 遵守すべき基準のこと。

国際獣疫事務局(WOAH)コラボレーティングセンター

国際獣疫事務局(WOAH)が動物衛生に関連する科学的知見と技術的支援を得るために認定した検 査・研究機関のこと。

動物分野における第二次選択薬

第一次選択薬が無効の場合に限って、食用動物に使用する抗菌性物質製剤。食品安全委員会によ る薬剤耐性菌の評価結果(家畜等への抗菌性物質の使用により選択される薬剤耐性菌が、食品を介 してヒトに伝播し健康に影響を及ぼす可能性及びその程度について評価したもの)を踏まえ、第二次 選択薬を指定している。