PROJEKT "NISKOLATENCYJNY, SYNCHRONICZNY I SKALOWALNY SYSTEM SDR" (NESTER)

Raport z pracy o dzieło z prawami autorskimi pt.:

" Opracowanie wzoru obwodu PCB oraz weryfikacja połączeń HDL modułu EEM z układem FPGA"

zrealizowanej w okresie od 02.03.2020 r. do 28.04.2020 r. Pracę wykonał Piotr Zdunek Celem pracy było opracowanie schematów i PCB modułu EEM z układem FPGA oraz symulacje systemu cyfrowego.

Drugi etap prac zawierał następujące zadania:

- realizację schematów elektrycznych
- symulacje front-endu analogowego do przetwornika ADC
- symulacja systemu cyfrowego
- analiza opóźnienia odbioru danych

Wynikiem pracy są:

- Schematy elektryczne ukończone w 70%
 - o https://github.com/sinara-hw/Fast_Servo/tree/master/PCB
- Wstępny system cyfrowy do odbioru danych z LTC2195 oparty o design z projektu NIST Servo, ale z wykorzystaniem wrappera na VHDL
 - o https://github.com/sinara-hw/Fast Servo/tree/master/Sim/fast servo

- Raport z symulacji front-endu przetwornika ADC (po angielsku)
 - https://docs.google.com/document/d/1smgiGiFC6XPziigHHxrSAG0CFXy-PrKfYR3dXpd6QYk/edit?usp=sharing

b. Sim file for transient:

https://www.dropbox.com/s/ghg6t9eu0ng3u3w/fast_servo_tran_mc_v3.asc?dl=0

c. Sim file for AC

https://www.dropbox.com/s/qx53d03kradoqxc/fast_servo_ac_v3.asc?dl=0

d. Sim file for CMRR

https://www.dropbox.com/s/pwxwzrt2xnfyjam/fast_servo_cmrr_mc_v10.asc?dl=0

e. Sim file for noise

https://www.dropbox.com/s/fyhz8l2sw5p7yvu/fast_servo_noise_mc_v3.asc?dl=0

Transient simulation:

Common parameters: input signal is sinus

Plot for 1 MHz 1 V input signal

Simulation results:

Input signal		AFE	Output signal
Freq [MHz]	Amplitude [mV]	Gain	Output amplitude [mV]
3	100	x10	918
1	100	x10	983
3	1000	x1	925
1	1000	x1	991

AC simulation:

Plot for 1V input signal, x1 gain

Simulation results:

Cirrardicir receiter				
Input signal amplitude [V]	AFE Gain	Attenuation at 1 MHz [dB]	Attenuation at 3 MHz [dB]	
1	x1	-0.072	-0.6	
0.1	x10	-0.144	-0.719	

CMRR measurement:

Plot for 1 V input signal.

Simulation results:

Input signal amplitude [V]	AFE Gain	CMRR (0-3 MHz)			
1	x1	56 dB			
0.1	x10	49 dB			

 Analiza opóźnienia toru danych ADC-FPGA-DAC: https://docs.google.com/document/d/1A6bej79ME2-iZyJ6t FZ-XkVyk64ExRZh2uJX7Lg3b4/edit?usp=sharing

- Schemat elektryczny urządzenia zawierający dobrane komponenty:
 - o Top schematic

• USB

• SD Card

• AFE

