Sampling from 1d distributions

1d sampling (discrete)

We can always sample from uniform $\mathcal{U}[0,1]$

Uniform is quite easy to emulate.

1d sampling (discrete)

Summary

1d discrete distributions with finite number of values are easy

At least then number of values is < 100 000

If we have 1 million discrete classes (values here mean class), then this will be hard. We have to use techniques for continuous distributions.

Continuous sampling

Use central limit theorem. The sum of the independent x_i variables will eventually become gaussian

Sampling from Gaussian distribution

$$z = \sum_{i=1}^{12} x_i - 6, \quad x_i \sim \mathcal{U}[0, 1]$$

However, we can't get values outside the range [-6,6].

This can happen in a gaussian (with small probability).

Expectation of each x_i is 0.5, so 0.5 x 12 = 6. Subtract 6 to make E(z) = 0.

$$p(z) \approx \mathcal{N}(0,1)$$

Sampling from Gaussian distribution

Or call library function © z = numpy.random.randn()

How do we sample from p(x)?

$$q(x) = \mathcal{N}(1, 3^2)$$

$$p(x) \le 2q(x)$$

Let's upper bound our distribution with some gaussian times so constant.

Why?
Because we know how to sample from gaussians.

Accept
$$\widetilde{x}$$
 with probability $\dfrac{p(x)}{2q(x)}$: if $y \leq p(x)$ if y is greater than p(x), then don't accept at all.

Accept
$$\widetilde{\mathcal{X}}$$
 with probability $\frac{p(x)}{2q(x)}\colon$ if $y\leq p(x)$

Accept
$$\widetilde{x}$$
 with probability $\frac{p(x)}{2q(x)}$: if $y \leq p(x)$

Presumably, q(x) will converge to p(x) so that $p(x) / Mq(x) \cdot f(x)$ \rightarrow 1 / M.

$$p(x) \le Mq(x)$$

M is the constant.

Accepts
$$\frac{1}{M}$$
 points on average

$$\widehat{p}(x) \leq \underbrace{ZM}_{\widetilde{M}} q(x)$$

Summary

Pros:

Works for most distributions (even unnormalized)

Cons:

- If q and p are too different (M is large), rejects most of the points
- M is large for d-dimensional distributions