[CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Scribed by: Akshay (202051018)

Winter 2022-2023

Lecture (Week 5)

Generator 1

A group (G, \star) is closed under \star Let's say, $\alpha \in G$ and, $\alpha^0, \alpha^1, \alpha^2, \dots \in G$, _____(1) where α^0 is identity α^n is outcome of applying \star b/w α^n and α

For any $b \in G$ if $\exists i \ge 0$ s.t. $b = \alpha^i$ then, α is called the generator of (G, \star) _____ (2) Such groups are called cyclic group.

From (1),
$$<\alpha>\subseteq G$$
 _____ (3)
From (2), $G\subseteq<\alpha>$ ____ (4) From (3) and (4) $(G,\star)=<\alpha>$

$\mathbf{2}$ Order

 (G,\star) |G|: finite $a \in G$

> Orde of 'a' i.e. O(a) is the least postive integer m such that $a^m = e$ (identity) O(a) = m

 $a^{0}(=e), a^{1}, a^{2}, \dots a^{m-1} \in G$ After a^{m-1} every element will repeat $(: a^m = e)$ $H = \{a^0, a^1, a^2, \dots a^{m-1}\},\$

- 1. $H \subseteq G$
- 2. H is group under * (you can check verify with properties)
 - $a^i \star a^{m-i} = a^0 = e \implies \text{invertible}$

H is a sub-group of G.

Lagrange's theorem 3

If G is a finite group and H is a sub-group of G then |H| divides |G|

O(a) divides |G| because O(a) is cardinality of cyclic sub-group of G

Another Result:

For
$$a \in G$$
,
$$O(a^k) = \frac{O(a)}{\gcd(O(a),k)} = \frac{t}{\gcd(t,k)}$$
 where, $t = O(a)$

If $\gcd(t,k) = 1$ then, $O(a^k) = t = O(a)$ $| \langle a^k \rangle | = | \langle a \rangle |$ $\implies \langle a^k \rangle = \langle a \rangle$ Reasoning: $x \in \langle a^k \rangle$ $\implies x = (a^k)^i = a^{ki} = a^{(some\ integer\ only)} \in \langle a \rangle$ $\implies \langle a^k \rangle$ is also a generator of same cyclic group. Result:

If k is co-prime O(a) then a^k is the generator of same set which 'a' generates.

4 Illustration:

5 Ring

A ring $(R, +_R, \times_R)$ consists of one set R with two binary operations arbitrarily denoted by $+_R$ (addition) and \times_R (multiplication) on R satisfying the following properties:

- 1. $(R, +_R)$ is an abelian group with the identity element 0_R
- 2. The operation \times_R is associative i.e., $a \times_R (b \times_R c) = (a \times_R b) \times_R c \ \forall \ a,b,c \in R$
- 3. There is a multiplicative identity denoted by 1_R with $1_R \neq 0_R$ s.t. $1_R \times_R a = a \times_R 1_R = a \ \forall a \in R$
- 4. The operation \times_R is distributive over $+_R$ i.e., $(b+_R c)\times_R a = (b\times_R a)+_R (c\times_R a),$ $a\times_R (b+_R c) = (a\times_R b)+_R (a\times_R c)$

5.1 Examples:

5.2

$$(Z,+,\cdot)$$
: Check - ring or not.
Ring \checkmark

5.3

```
(R, +_R, \times_R): Is it a ring? Yes \checkmark
If a \times_R b = b \times_R a \ \forall a, b \in R
then (R, +_R, \times_R) is a commutative ring
```

Commutativity is meaningful w.r.t second operation in ring

An element 'a' of a ring R is called unit or an invertible element if there is an element $b \in R$ s.t. $a \times_R b = 1_R$

The set of units in a ring R forms a group under multiplication operation. This is known as group of units of R.

6 Field

A Field is a non-empty set F together with two binary operation + (addition) and * (multiplication) for which the following properties are satisfied:

- 1. (F,+) is an abelian group
- 2. If 0_F denotes the additive identity element of (F,+) then $(F\setminus\{0_F\},\star)$ is a commutative/abelian group
- 3. $\forall a, b, c \in F$, we have: $a^*(b+c) = (a^*b) + (a^*c)$ (distributive)

Example:

$$(Z_p, +_p, *_p), Z_p = \{0, 1,, p - 1\}, p: prime Field \checkmark$$

6.1 Field Extension

Suppose K_2 is a field with addition (+) and multiplication (*). Suppose $K_1 \subseteq K_2$ is closed under both these operation such that K_1 itself is a field with the restriction of + and * to the set K_1 . Then K_1 is called a sub-field of K_2 , and K_2 is called a field extension of K_1 .

$$F : field \qquad (F,+,*)$$

$$F[x] = \{a_0 + a_1x + a_2x^2 + \dots | a_i \in F\}$$

F[x] is a set of all polynomials whose coefficients are from the field F. We can choose any field for our F[x]. If we choose \mathbb{F}_p then the coefficients will be from 0 to p-1. If we choose R field then

coefficients will be real numbers.

Polynomial ring, (F[x], +, *)

If we club F[x] (defined already) with plus and multiply operator then it will become a ring, more specifically, a polynomial ring.

$$P_1(x) \in F[x] \qquad P_1(x) = a_0 + a_1 x + a_2 x^2$$

$$P_2(x) \in F[x] \qquad P_2(x) = b_0 + b_1 x + b_2 x^2$$

$$P_1(x) + P_2(x) = (a_0 + a_1 x + a_2 x^2) + (b_0 + b_1 x + b_2 x^2) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$$

$$(a_i + b_i) : \text{ Field addition}$$
 Additive identity: $0 + 0.x + 0.x^2$ Additive inverse: $-a_0 - a_1 x - a_2 x^2$

Under addition it is abelian group \checkmark

* is associative

1 is multiplicative identity

* is distributive over +

Ring 🗸

6.2 Irreducible Polynomial

A polynomial $P(x) \in F[x]$ of degree $n (n \ge 1)$ is called irreducible if it cannot be written in the form of $P_1(x) * P_2(x)$ with $P_1(x), P_2(x) \in F[x]$ and degree of $P_1(x), P_2(x)$ must be ≥ 1

$$P(x) \neq P_1(x) * P_2(x)$$

Example:

$$x^2 + 1 \in \mathbb{F}_2[x]$$

 $(x+1)*(x+1) = x^2 + (1+1)x + 1 = x^2 + 1$ (Don't forget: operations are under modulo 2)
 $\implies (x^2+1) = (x+1)*(x+1)$ in $\mathbb{F}_2[x]$
 $\implies x^2+1$ is reducible in $\mathbb{F}_2[x]$

$$I = \langle P(x) \rangle = \{ q(x).P(x) \mid q(x) \in F(x) \}$$

I: ideal generated by P(x)

For every $q(x) \in F[x]$, $r(x) \in F[x]/\langle P(x) \rangle$ where r(x) is obtained as remainder by dividing q(x) with P(x) q(x) = d(x) * P(x) + r(x)

Note: degree(r(x)) < degree(P(x))

A Result:

If P(x) is an irreducible polynomial then (F[x]/< P(x)>,+,*) becomes a field.

After each operation in this field, outcome is stored as remainder we get by dividing with < P(x) >

Example:

$$x^{2} + x + 1 \in \mathbb{F}_{2}[x],$$
 $(F_{2} = \{0, 1\})$
 $P(x) = x^{2} + x + 1,$ which is irreducible
 $q(x) = d(x).P(x) + r(x)$ $(q(x) \in \mathbb{F}_{2}[x])$

$$\mathbb{F}_2[x]/< x^2 + x + 1 >$$

deg(r(x)) < 2

We can construct these polynomials: x, 1, x + 1, 0 $r(x) \in \{0, 1, x, x + 1\}$

An instance:

Observation from programming point of view:

- We can take xor of coefficients of dividend with $x^2 + x + 1$ to get to the remainder
- Remainder can be achieved by replacing x^2 (higher degree term in dividend) with x+1 (part of divisor excluding higher degree term) (x+1)+1=x

Another instance for clarity:

$$\begin{array}{r}
x+1 \\
x^2+x+1 \overline{\smash)x^3+1} \\
\underline{x^3+x^2+x} \\
x^2+x+1 \\
\underline{x^2+x+1} \\
0
\end{array}$$

Now, let's do it with our programming hacks:

Replacer: x + 1 (taken from divisor by excluding higher degree term)

$$x^3 + 1$$
$$= x \cdot x^2 + 1$$

$$= x(x+1) + 1$$
$$= x^{2} + x + 1$$
$$= (x+1) + x + 1 = 0$$

6.3 Primitive Polynomial

$$\mathbb{F}_2[x]/< x^2 + x + 1 >$$

$$x^{2} + x + 1 = 0$$
Let α is a root of $x^{2} + x + 1 = 0$
So, $\alpha^{2} + \alpha + 1 = 0$
 $\implies \alpha^{2} = \alpha + 1 \text{ (-1 = 1 under mod 2)}$
 $\{0, 1 = \alpha^{0}, \alpha^{1}, \alpha^{2} = \alpha + 1\}$ $O(\alpha) = 2$

Since, α is generating all the elements of the field (all possible polynomials r(x)), so, polynomial $x^2 + x + 1$ is a primitive polynomial.

$$\mathbb{F}_2[x]/< x^3 + x + 1 >$$

Maximum number of polynomials degree < 3: $2^3 = 8$ $\{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1\}$ $\alpha^3 + \alpha + 1 = 0 \implies \alpha^3 = \alpha + 1$ $\{0, \alpha^0, \alpha, \alpha^2, \alpha + 1, \alpha^2 + \alpha, \alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1, \alpha^3 + \alpha^2 + \alpha = \alpha^2 + 1\}$ primitive polynomial \checkmark

7 Advanced Encryption Standard (AES)

It is standardized by NIST

- Rijndael: Winner design of Advanced Encryption Standard competition.
- Winner of competition was named as AES.

AES:

- Iterated block cipher
- It is based on SPN

Variants of AES:-

AES-128:

- Block size = 128 bit
- Number of rounds = 10
- Secret key size = 128 bit

AES-192:

- Block size = 128 bit
- Number of rounds = 12
- Secret Key size = 192 bit

AES-256:

- Block size = 128 bit
- Number of rounds = 14
- \bullet Secret Key size = 256 bit

