Project Proposal

Title: Predicting Soccer Player Position from Attributes Using FIFA 23 Data

Abstract: This project aims to build a machine learning model that predicts a soccer player's position—Forward, Midfielder, Defender, or Goalkeeper—using their physical and technical attributes from the FIFA 23 dataset. This helps support smarter decisions in scouting, player development, and lineup planning.

Introduction: Soccer's growing fast in the U.S., and clubs are putting a lot into developing players. But figuring out a player's best position is still mostly guesswork. This project uses FIFA 23 data to train a model that predicts positions based on skill stats, helping coaches make smarter, data-driven decisions.

Motivation: Soccer is personal for me — it's part of my upbringing and family culture. This project connects that passion with my data science training. It matters now because:

- Soccer analytics is becoming mainstream.
- The U.S. is investing more in soccer development.
- Clubs want to make smarter choices early on.

This helps take the guesswork out of assigning positions, especially in youth development. **Previous Work:** Most projects focus on ratings or value. Few use skill stats to predict position—that's what makes this one different.

Problem Formulation & Plan

Problem Formulation:

- Task: Classification
- Input: Skill stats (e.g., pace, dribbling, defending)
- Output: Position group (FWD, MID, DEF, GK)
- Tools: Python, pandas, scikit-learn, XGBoost
- Metrics: Accuracy, confusion matrix
- The data will be split into training and test sets (e.g., 80/20), with 5-fold cross-validation for reliability.

Dataset: Source: FIFA 23 dataset (Kaggle)

- Size: ~19,000 players, 100+ features
- Preprocessing: Normalize values, group position labels, drop irrelevant fields

Expected Accuracy: ~80–90% using Random Forest or XGBoost

Final Output:

A Python notebook or script that predicts position from input data, with visualizations (charts, confusion matrix, feature importance). The tool will be reusable and easy to modify for future player datasets.

Timeline:

- Jun 20: Proposal
- Jun 27: Preprocessing
- Jul 4: Train baseline model
- Jul 11: Tune model + build visuals
- Jul 18–Aug 1: Finalize and package