Recitation 7

Seung-hun Lee

Columbia University

Motivation

• Panel data: We observe multiple individuals for multiple periods of time.

$$Y_{it} = \beta_0 + \beta_1 X_{1,it} + \dots + \beta_k X_{k,it} + u_{it}$$

 $i = 1, 2, ..., N \rightarrow \text{individuals}, t = 1, 2, ..., T \rightarrow \text{time periods}.$

- Balanced: There are T datasets for each of the N individuals.
- Unbalalced: There are $t \leq T$ datapoints for some of the N individuals.

Advantages

- Panel data allows us to use more datasets.
- Panel data allows us to control for unobserved heterogeneity that are
 - different accross N entities but always remain same for T periods in a given state (cross section fixed effect)
 - ② different accross *T* times periods but remains the same for all *N* entities in a particular time period (**time fixed effects**)
 - both of 1) and 2). (two-way fixed effects)

Key differences

 Suppose that T = 2 and we are interested in the relationship between vehicle related fatality rate (deaths per 10,000 people) and the beer tax.
 Suppose that we get these result for the two years

$$\hat{Y}_{i1} = 2.01 + 0.15 X_{i1}$$
 $(0.15) \quad (0.20)$
 $\hat{Y}_{i2} = 1.86 + 0.44 X_{i2}$
 $(0.11) \quad (0.20)$

- In such case, one might suspect that there is an omitted variable bias that affects these coefficients.
 - Omitted variable specific to the states (Strictness of the relevant law)
 - Time-trends? (Specific to each of years 1 and 2)

Seung-hun Lee Recitation 7 3 / 9

How can panel regression do better?

- Let Z_i denote the strictness of state laws on DUI that are unchanging.
- Now write

$$Y_{i1} = \beta_0 + \beta_1 X_{i1} + \beta_2 Z_i + u_{i1}$$

$$Y_{i2} = \beta_0 + \beta_1 X_{i2} + \beta_2 Z_i + u_{i2}$$

Subtract the second equation from the first to get

$$(Y_{i2}-Y_{i1})=\beta_1(X_{i2}-X_{i1})+\beta_2(Z_i-Z_i)+u_{i2}-u_{i1}$$

With Z_i being the same for all periods, the above equation is reduced to

$$(Y_{i2}-Y_{i1})=\beta_1(X_{i2}-X_{i1})+(u_{i2}-u_{i1})$$

- The Z_i variable has no role in this equation because it is now gone.
- If we estimate this particular β_1 , we can obtain much more accurate estimates of the effect of bear tax on fatality rate.

Seung-hun Lee Recitation 7 4 / 9

Specific methodologies (cross-sectional FE)

- There are two ways of estimating the data when $T \ge 3$
- Least square dummy variables: Include N-1 individual dummies
- Within estimation: Subtract "demeaned" equation from the original
- Use:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 Z_i + u_{it}$$
 (1)

where Z_i is the cross section fixed effect.

• Define $\alpha_i = \beta_0 + \beta_1 Z_i$. Then the above equation can be written as

$$Y_{it} = \beta_1 X_{it} + \alpha_i + u_{it} \tag{2}$$

 α_i term can be thought of as an effect of being an entity i, which is correlated with X_{it}

Seung-hun Lee Recitation 7 5/9

LSDV method

• Define a new variable D_{ki} as follows

$$D_{ki} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{Otherwise} \end{cases}, \ k \in \{1, 2, ..., N\}$$

- Since we are going to include β_0 , a common intercept, in our regression we need to remove one of the N (dummy variable trap)
- Then we can write

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \delta_2 D_{2i} + ... + \delta_N D_{Ni} + u_{it}$$
 (LSDV)

- This equation gives different intercepts for each i (can you see why?), while keeping the slope on X_{it} constant at β_1
- Control for unobserved cross section fixed effect by allowing the intercept to differ by each i

Seung-hun Lee Recitation 7 6 / 9

WE method

• Define \bar{X}_i , \bar{Y}_i as sample mean of X_{it} , Y_{it} for given i over all possible t's.

$$\bar{X}_i = \frac{1}{T} \sum_{t=1}^T X_{it}$$

Consequently, \bar{Y}_i can be written as

$$\bar{Y}_i = \frac{1}{T} \sum_{t=1}^{T} Y_{it} = \frac{1}{T} \sum_{t=1}^{T} (\beta_1 X_{it} + \alpha_i + u_{it}) = \beta_1 \bar{X}_i + \alpha_i + \bar{u}_i$$

• Subtract Y_{it} by \bar{Y}_i to get

$$Y_{it} - \bar{Y}_i = \beta_1(X_{it} - \bar{X}_i) + (u_{it} - \bar{u}_i) \implies \tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{u}_{it}$$

ullet This process gets rid of α_i . Then, apply OLS estimation on this equation to get the within estimator

Seung-hun Lee Recitation 7 7/9

TWFE methods

We have a DGP

$$Y_{it} = \beta_1 X_{it} + \alpha_i + \lambda_t + u_{it}$$

- LSDV: With an overall constant β_0 , we can put N-1 individual and T-1 time dummies
- WE: Demeaning should be done in the following method

$$Y_{it} - \bar{Y}_i - \bar{Y}_t + \bar{Y}$$

This (and only this) would allow us to get rid of both the α_i individual fixed effect and the λ_t time effects

Seung-hun Lee Recitation 7 8 / 9

Least square assumptions for panels

- **P1** : $E[u_{it}|X_{i1},...,X_{iT},\alpha_i]=0$. It means that the conditional mean of the u_{it} term does not depend on any of the X_{it} values for entity i, whether in the future or in the past.
- **P2**: $(X_{i1},...,X_{iT},u_{i1},...u_{iT})$ is IID across i=1,...,n. This does not rule out the correlation between u_{it},u_{ij} within entity i for different j and t, allowing serial correlation within the same entity
- **P3**: (X_{it}, u_{it}) have nonzero finite fourth moments (outliers are very unlikely) so that the panel estimators have a distribution
- P4: There is no perfect multicollinearity
- \rightarrow Because of P2, we need to use **clustered standard error** at a cross-sectional level.

Seung-hun Lee Recitation 7 9 / 9