Design and Analysis of Algorithm

NP Completeness

Dr. Dayal Kumar Behera

School of Computer Engineering KIIT Deemed to be University, Bhubaneswar, India

Credits: Prof(Dr.) Biswajit Sahoo, KIIT

Course Contents

Sr#	Major and Detailed Coverage Area	Hrs
1	NP Completeness	4
	 Defination of P, NP, NP Complete, NP Hard 3-CNF Satisfiability Problem Clique Decision Problem Hamiltonian Cycle TSP 	

Contents of Discussion

- > Intractabe Problem
- Nondeterministic Algorithm
- P and NP Defination
- Optimization & Decision Problem
- Verification of Problem
- Reducibility
- NP Complete & NP Hard Defination
- Cook's Theorem
- Examples of NP Complete
 - Clique Decision Problem
 - Hamiltonian Cycle
 - TSP

Tractability

Tractable problems:	Intractable problems:
Polynomial time	Super Polynomial time
O(n ²), O(n ³), O(1),O(nlg n)	$O(2^n)$, $O(n 2^n)$, $O(n^n)$, $O(n!)$
Ex:- O(n ³); for n=100 Number of steps = 10,00,000	Ex:- $O(2^n)$; for n=100 Number of steps $\approx 90,,00$

Prove

Tractability

Tractable problems:	Intractable problems:
Polynomial time	Super Polynomial time
O(n ²), O(n ³), O(1),O(nlg n)	$O(2^n)$, $O(n 2^n)$, $O(n^n)$, $O(n!)$
O(n ¹⁰⁰) High order Polynomial	O(n 2^n) (for n=10, small input)

Disprove

Tractability

Tractable problems:	Intractable problems:
Polynomial time algorithms are <i>Tractable</i> Normally	Super Polynomial time algorithms are <i>Intractable</i> in General
Not applicable for: Higher order Polynomial	Not applicable for: Small inputs

Polynomial Time Nondeterministic Algorithm

```
int Search(a, n, key)
                  Running Time
j=choice(1:n)
                      //O(1) : Nondeterministic
if(key==a[j])
                     //1
     return(i);
else
     return(-1); //1
                Total Running time=O(1)
```

Assume time required for choice(1:n) is O(1).

P and NP

➤ **P** is set of problems that can be solved in polynomial time in a deterministic machine

➤ NP (nondeterministic polynomial time) is the set of problems that can be solved in polynomial time by a nondeterministic machine

A non-deterministic computer is a computer that magically "guesses" a solution, then has to verify that it is correct.

Is P = NP?

P and NP

Today nondeterministic, Tomorrow may be deterministic

Optimization and Decision Problems

Optimization Problem: Maximize profit or Minimize Loss

Decision Problem: Answers are in Boolean (Yes/No)

Optⁿ: Find MCST of the graph, G.

Decⁿ: Is there any MCST exist in G with cost less than k?

Optⁿ: Find TSP (optimal) of the graph, G.

Decⁿ: Is there any TSP exist in G with cost less than k?

Optⁿ: Find maximum profit in a o/1 Knapsack.

Decⁿ: Does o/1 Knapsack have a profit more than k?

Optimization and Decision Problems

In fact, from the point of view of polynomial-time solvability, there is not a significant difference between the optimization (maximize or minimize) version of the problem and the decision version (decide, yes or no).

Given a method to solve the optimization version, we automatically solve the decision version as well.

Optimization and Decision Problems

Solution to decision problems takes a fraction of time more than solution to optimization problems.(condn check).

NP completeness is proved directly w.r.t. decision problems. However, same computational complexity will also be applicable to the optimization problems.

Verification of Decision Problems

Ex:- TSP, Formula Satisfiability, o/1 Knapsack...

Given a solution (guess) to the problem, we needd to verify it in the problem

NP problems are *Verifiable* in polynomial time in deterministic machine

Verification of Decision TSP in P

Reducibility

The crux of NP-Completeness is *Reducibility*

Informally, a problem L can be reduced to another problem Q if *any* instance of L can be "easily rephrased" as an instance of Q, the solution to which provides a solution to the instance of L

Intuitively: If L reduces to Q, L is "no harder to solve" than Q

Reducibility Examples

Given an equation $ax^2 + bx + c = 0$, find roots of the equation.

Question:
$$5x + 6 = 0$$
;
 $0.x^2 + 5x + 6 = 0$

Question: Find the value of $\sqrt{(45^2 + 46^2)}$

Apply Pithagoras Theorem: P

Draw a right angle triangle with p=45, b=46, Measure h

Reducibility Examples

X: Given n integers, is the largest integer > 0?

Y: Given n Boolean variables, is there at least one TRUE?

X	-1	-49	-4	5	1	0	-6	8	-20
Y	F	F	F	Т	Т	F	F	Т	F

Transform X to Y by $y_i = T$ if $x_i > 0$, $y_i = F$ if $x_i <= 0$

Now, X is *Polynomial-time Reducible* to Y,

So, we denote this $X \leq_p Y$

Reducibility relation

A and B are two decision Problems

If decision algorithm for B is polynomial so does A
A is no harder than B

If A hard (e.g. NPC) so does B

Transitive property of Reducibility

X, Y and Z are three problems;

X is *Polynomial-time Reducible* to Y, $X \leq_p Y$ and Y is *Polynomial-time Reducible* to Z, $Y \leq_p Z$

Now, $X \leq_{n} Z$; X is *Polynomial-time Reducible* to Z

Computational Relationship

NP-Complete problems are computationaly related:

- ➤ If any *one* NP-Complete problem can be solved in polynomial time...
- ...then every NP-Complete problem can be solved in polynomial time...
- ...and in fact every problem in NP can be solved in polynomial time (which would show P = NP)

P & NP Defination

P = problems that can be solved in polynomial time (quick solution)

NP = problems for which a solution can be verified in polynomial time (quick verification)

Unknown whether P = NP? (most suspect not)

NP Complete & NP Hard Defination

NP-Complete	NP-Hard
Problem L is NP Complete, if	Problem L is NP Hard if $R \leq_p L \ \forall \ R \in \textbf{NP}$
Problem L is NP Complete, if $L \in \mathbb{NP}$ and $R \leq_p L$ for any $R \in \mathbb{NPC}$	Problem L is NP Hard if $R \leq_p L \text{ for any } R \in \textbf{NPC}$

NP-Complete Problems

Max clique problem: A complete subgraph of a graph is a clique.

Number of edges in a complete graph, G=(V,E) is |E| = |V|x|V-1|/2

The maximal clique problem is to determine the size of a largest clique in G.

Clique of size 2

Clique Decision Problem (CDP)

Is there a clique of size 3 in the graph?

Clique Decision Problem (CDC) is in NP-Complete?

- i. $CDC \in NP$ and
- ii. 3-CNF SAT \leq_p CDC

if the formula is satisfiable then the graph has a Clique of size 3.

Verification of CDP

Clique Decision Problem (CDP)

$$3$$
-CNF SAT \leq_p CDP

$$\varphi = (\overline{x1} V \times 2 V \overline{x3}) \Lambda (x1 V \overline{x2} V \times 3) \Lambda (x1 V \times 2 V \overline{x3})$$

$$C1 \qquad C2 \qquad C3 \qquad C3 \qquad C6$$

The formula is satisfiable iff the graph $G\phi$ has a Clique of size 3.

$$\varphi = (\overline{x1} \ V \ x2 \ V \ \overline{x3}) \ \Lambda \ (x1 \ V \ \overline{x2} \ V \ x3) \ \Lambda \ (x1 \ V \ x2 \ V \ \overline{x3})$$

X1

 $\overline{x2}$

Х3

 $\sqrt{x3}$

X1

X2

X2

 $(\overline{x1})$

 $\overline{x3}$

$$V = \{ \langle a, i \rangle \mid a \in Ci \}$$

E= \(\langle a, i \rangle b, j \rangle \) \| \(b \neq \overline{a}, i \neq j \)

$$\varphi = (\overline{x1} \ V \ x2 \ V \ \overline{x3}) \ \Lambda \ (x1 \ V \ \overline{x2} \ V \ x3) \ \Lambda \ (x1 \ V \ x2 \ V \ \overline{x3})$$

$$V = \{ \langle a, i \rangle \mid a \in Ci \}$$

E= \(\langle a, i \langle b, j \rangle \) \| \begin{aligned} b \neq \overline{a}, i \neq j \\ \overline{a}, i \neq j \

$$\varphi = (\overline{x1} \ V \ x2 \ V \ \overline{x3}) \ \Lambda \ (x1 \ V \ \overline{x2} \ V \ x3) \ \Lambda \ (x1 \ V \ x2 \ V \ \overline{x3})$$

$$V = \{ \langle a, i \rangle \mid a \in Ci \}$$

E= \(\langle a, i \rangle b, j \rangle \) \| \begin{array}{l} b \neq \overline{a}, i \neq j \\ \overline{a}, i \neq j

$$\varphi = (\overline{x1} \ V \ x2 \ V \ \overline{x3}) \ \Lambda \ (x1 \ V \ \overline{x2} \ V \ x3) \ \Lambda \ (x1 \ V \ x2 \ V \ \overline{x3})$$

$$V = \{ \langle a, i \rangle \mid a \in Ci \}$$

E= \(\langle a, i \langle b, j \rangle \) \| \begin{aligned} b \neq \overline{a}, i \neq j \\ \overline{a}, i \neq j \

$$\varphi = (\overline{x1} \ V \ x2 \ V \ \overline{x3}) \ \Lambda \ (x1 \ V \ \overline{x2} \ V \ x3) \ \Lambda \ (x1 \ V \ x2 \ V \ \overline{x3})$$

$$V = \{ \langle a, i \rangle \mid a \in Ci \}$$

E= \(\langle a, i \rangle \cdot b, j \rangle \) \| \begin{aligned} b \neq \overline{a}, i \neq j \\ \overline{a}, i \neq j \end{aligned}

 $\varphi = (\overline{x1} \ V \ x2 \ V \ \overline{x3}) \ \Lambda \ (x1 \ V \ \overline{x2} \ V \ x3) \ \Lambda \ (x1 \ V \ x2 \ V \ \overline{x3})$

 $\varphi = (\overline{x1} \ V \ x2 \ V \ \overline{x3}) \ \Lambda \ (x1 \ V \ \overline{x2} \ V \ x3) \ \Lambda \ (x1 \ V \ x2 \ V \ \overline{x3})$

 $\varphi = (\overline{x1} \overline{V} \ x2 \ \overline{V} \ \overline{x3}) \ \Lambda \ (x1 \ \overline{V} \ \overline{x2} \overline{V} \ x3) \ \Lambda \ (x1 \ \overline{V} \ x2 \ \overline{V} \ \overline{x3})$

 $\varphi = (\overline{x1} \overline{V} \ x2 \ \overline{V} \ \overline{x3}) \ \Lambda \ (x1 \ \overline{V} \ \overline{x2} \overline{V} \ x3) \ \Lambda \ (x1 \ \overline{V} \ x2 \ \overline{V} \ \overline{x3})$

$$\varphi = (\overline{x1} \overline{V} \ x2 \ \overline{V} \ \overline{x3}) \ \Lambda \ (x1 \ \overline{V} \ \overline{x2} \overline{V} \ x3) \ \Lambda \ (x1 \ \overline{V} \ x2 \ \overline{V} \ \overline{x3})$$

$$\varphi = (\overline{x1} \overline{V} \ x2 \ \overline{V} \ \overline{x3}) \ \Lambda \ (x1 \ \overline{V} \ \overline{x2} \overline{V} \ x3) \ \Lambda \ (x1 \ \overline{V} \ x2 \ \overline{V} \ \overline{x3})$$

$$\varphi = (\overline{x1} \ V \ x2 \ V \ \overline{x3}) \ \Lambda \ (x1 \ V \ \overline{x2} \ V \ x3) \ \Lambda \ (x1 \ V \ x2 \ V \ \overline{x3})$$

$$\varphi = (\overline{x1} \ V \ x2 \ V \ \overline{x3}) \ \Lambda \ (x1 \ V \ \overline{x2} \ V \ x3) \ \Lambda \ (x1 \ V \ x2 \ V \ \overline{x3})$$

Hamiltonian Cycle

Given a directed graph G = (V, E), we say that a cycle C in G is a Hamiltonian cycle if it visits each vertex exactly once. Find C in G.

Hamiltonian Cycle Problem: Given a G, does it contain a Hamiltonian cycle?

Hamiltonian Cycle

Hamiltonian Cycle is in NP-Complete?

- Hamiltonian Cycle ∈ **NP** and
- 3-CNF SAT ≤_p Hamiltonian Cycle

if the formula is satisfiable then the graph has a Hamiltonian Cycle

Hamiltonian Cycle ∈ **NP**

3

4

5

8

Source

1, 5, 3, 4, 8, 6, 9, 2, 7, 1

(6)

7

9

A Widget

A widget is part of a graph.

A Widget

A Widget

All edges can not be traversed opposite to widget B to visit remaining vetreces of the Widget

A subset of the edges can be traversed opposite to widget B to visit remaining vetreces of the Widget B

Reducing to Hamiltonian Cycle

3-CNF SAT \leq_p Hamiltonian Cycle

Reducing to Hamiltonian Cycle

3-CNF SAT ≤_D Hamiltonian Cycle

$$F = (\overline{x1}V \times 2 \times \overline{x3}) \wedge (x1 \times \overline{x2}V \times 3) \wedge (x1 \times \overline{x2}V \times 3) \wedge (x1 \times \overline{x3}V \times \overline{x3})$$

$$\subseteq_{p} GRAPH$$

Reducing to Hamiltonian Cycle

3-CNF SAT ≤_p Hamiltonian Cycle

if the formula is satisfiable then the Graph has a Hamiltonian Cycle

Travelling Salesperson Problem (TSP)

Consider a salesman who must visit n cities labeled v1, v2,..., vn.

The salesman starts in city v1, his home, and wants to find a tour—an order in which to visit all the other cities and return home. His goal is to find a tour that causes him to travel as little total distance as possible.

Decision Travelling Salesman Problem: Given a set of distances on n cities, and a bound D, is there a tour of length at most D?

Travelling Salesperson Problem (TSP)

TSP is in NP-Complete?

- i. $TSP \in NP$
- ii. Hamiltonian Cycle ≤_p TSP

if the graph (G) has a Hamiltonian Cycle then the graph (G') must have a TSP

TSP: Does the graph have a TSP whose cost is **k**?

 $TSP \in \mathbf{NP}$ 1, 5, 3, 4, 8, 6, 9, 2, 7, 1 Source

Reducing to Travelling Salesperson Problem (TSP)

Hamiltonian Cycle
$$\leq_p$$
 TSP G'

Reducing to Travelling Salesperson Problem (TSP)

Hamiltonian Cycle \leq_p TSP G'

Cost matrix of G is reduced to cost matrix of G' cost(i, j) = 1 if an edge is there between i to j else 0

Reducing to Travelling Salesperson Problem (TSP)

Hamiltonian Cycle
$$\leq_p$$
 TSP G'

Cost matrix of G is reduced to cost matrix of G' cost(i, j) = 1 if an edge is there between i to j else 0

The reduction can be done in P i. e. $O(n^2)$, considering n number of vertices

Hamiltonian Cycle \leq_p TSP

3

4

5

8

Source

1, 5, 3, 4, 8, 6, 9, 2, 7, 1

(6)

(7)

9

All edges are present, Hamiltonian cycle exists TSP exists with cost k

