Lect 2

Where From Have the Performance Improvements Come?

Technology

- More transistors per chip
- Faster logic

Processor Organization

- Effective and deep pipelines
- Parallel execution units

- Reduced Instruction Set Computers (RISC)
- Multimedia extensions
- Explicit parallelism

Compiler technology

- Finding more parallelism in code
- Greater levels of optimization

How Did Processor Performance Improve?

- VLSI

- Reduction in feature size Substrate (p.

- Improvements due to innovating manufacturing technologies have slowed down since 1980s:
 - Smaller feature size gives rise to increased resistance, capacitance, propagation delays and leakage.
 - Larger power dissipation.

What is the power consumption of core i7 processor?

Roughly 100 watts when in use and 40 watts idle...

IC Power Consumption Trends

Power Consumption in a Processor

- Power=Dynamic power + Leakage power
- Dynamic power = Number of transistors x capacitance x voltage² x frequency
- Leakage power is rising and will soon match dynamic power.

	Pentium	P-Pro	P-II	P-III	P-4
Year	1993	95	97	99	2000
Transistors	3.1M	5.5M	7.5M	9.5M	42M
Clock Speed	60M	200M	300M	500M	1.5 <i>G</i>

Switching Power

$$P = a \cdot C \cdot V^2 \cdot f$$

Static power

Static Power

Leakage Currents

Sub-threshold Leakage

- As MOSFET geometries shrink:
 - Voltage applied to the gate must be reduced to maintain reliability.
- As threshold voltage is reduced, 10 pA Slope V, 0.3 0.6 0.9 1.2 1.5 1
 - A transistor cannot be switched from complete turn-off to complete turn-on with the limited voltage swing available;
 - Strong current is the "on" state and low current is the "off" state.
 - Subthreshold operation...

 $V_{ds} = 1.8$

Gate Leakage: junction leakage and tunneling

Junction leakage: A reverse-biased pn junction has some leakage.

 I_s depends on doping levels and area and perimeter of diffusion regions

Tunneling leakage:

- Carriers may tunnel through very thin gate oxides
- Negligible for older processes

Tunnelling Leakage

- Gate oxide serves as insulator between the gate and channel.
- However, gate oxide now has thickness of around 1.2 nm (about 5 atoms thick):

Substrate (p-type)

- Quantum mechanical phenomenon of electron tunneling occurs between gate and channel.

Dynamic Power Parits

- Dynamic power in CMOS: Due to a transistor switching on and off
- Terms
 - C: capacitance of circuit
 - · wire length, number and size of transistors
 - V: supply voltage
 - A: activity factor
 - f: frequency
- · Future: Power dissipation a major factor

Average Transistor Cost Per Year

Power Density Trend

CMOS IC Power Trends

Watch This...

