Chapter 5.1

- 1. The number 2 is an eigenvalue of A if and only if the equation $A\mathbf{x} = 2\mathbf{x}$ has a nontrivial solution. This equation is equivalent to $(A-2I)\mathbf{x} = 0$. Compute $A-2I = \begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$. The columns of A are obviously linearly dependent, so $(A-2I)\mathbf{x} = 0$ has a nontrivial solution, and so 2 is an eigenvalue of A.
- 5. Is $A\mathbf{x}$ a multiple of \mathbf{x} ? Compute $\begin{bmatrix} 3 & 7 & 9 \\ -4 & -5 & 1 \\ 2 & 4 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. So $\begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix}$ is an eigenvector of A for the eigenvalue 0.
- 9. For $\lambda = 1$: $A 1I = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 2 & 0 \end{bmatrix}$. The augmented matrix for $(A I)\mathbf{x} = \mathbf{0}$ is $\begin{bmatrix} 4 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$. Thus $x_1 = 0$ and x_2 is free. The general solution of $(A I)\mathbf{x} = \mathbf{0}$ is $x_2\mathbf{e}_2$, where $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and so \mathbf{e}_2 is a basis for the eigenspace corresponding to the eigenvalue 1.

For
$$\lambda = 5$$
: $A - 5I = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & -4 \end{bmatrix}$. The equation $(A - 5I)\mathbf{x} = \mathbf{0}$ leads to $2x_1 - 4x_2 = 0$, so that $x_1 = 2x_2$ and x_2 is free. The general solution is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. So $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is a basis for the eigenspace.

- 21. a. False. The equation $A\mathbf{x} = \lambda \mathbf{x}$ must have a *nontrivial* solution.
 - **b**. True. See the paragraph after Example 5.
 - **c**. True. See the discussion of equation (3).
 - d. True. See Example 2 and the paragraph preceding it. Also, see the Numerical Note.
 - e. False. See the warning after Example 3.
- 31. Suppose T reflects points across (or through) a line that passes through the origin. That line consists of all multiples of some nonzero vector v. The points on this line do not move under the action of A. So T(v) = v. If A is the standard matrix of T, then Av = v. Thus v is an eigenvector of A corresponding to the eigenvalue 1. The eigenspace is Span {v}. Another eigenspace is generated by any nonzero vector u that is perpendicular to the given line. (Perpendicularity in R² should be a familiar concept even though orthogonality in R³ has not been discussed yet.) Each vector x on the line through u is transformed into the vector -x. The eigenvalue is -1.

35. Using the figure in the exercise, plot $T(\mathbf{u})$ as $2\mathbf{u}$, because \mathbf{u} is an eigenvector for the eigenvalue 2 of the standard matrix A. Likewise, plot $T(\mathbf{v})$ as $3\mathbf{v}$, because \mathbf{v} is an eigenvector for the eigenvalue 3. Since T is linear, the image of \mathbf{w} is $T(\mathbf{w}) = T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$.

Chapter 5.2

- 1. $A = \begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}$, $A \lambda I = \begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 2 \lambda & 7 \\ 7 & 2 \lambda \end{bmatrix}$. The characteristic polynomial is $\det(A \lambda I) = (2 \lambda)^2 7^2 = 4 4\lambda + \lambda^2 49 = \lambda^2 4\lambda 45$. In factored form, the characteristic equation is $(\lambda 9)(\lambda + 5) = 0$, so the eigenvalues of A are 9 and -5.
- 9. $\det(A \lambda I) = \det\begin{bmatrix} 1 \lambda & 0 & -1 \\ 2 & 3 \lambda & -1 \\ 0 & 6 & 0 \lambda \end{bmatrix}$. From the special formula for 3×3 determinants, the

characteristic polynomial is

$$\det(A - \lambda I) = (1 - \lambda)(3 - \lambda)(-\lambda) + 0 + (-1)(2)(6) - 0 - (6)(-1)(1 - \lambda) - 0$$

$$= (\lambda^2 - 4\lambda + 3)(-\lambda) - 12 + 6(1 - \lambda)$$

$$= -\lambda^3 + 4\lambda^2 - 3\lambda - 12 + 6 - 6\lambda$$

$$= -\lambda^3 + 4\lambda^2 - 9\lambda - 6$$

(This polynomial has one irrational zero and two imaginary zeros.) Another way to evaluate the determinant is to interchange rows 1 and 2 (which reverses the sign of the determinant) and then make one row replacement:

$$\det\begin{bmatrix} 1 - \lambda & 0 & -1 \\ 2 & 3 - \lambda & -1 \\ 0 & 6 & 0 - \lambda \end{bmatrix} = -\det\begin{bmatrix} 2 & 3 - \lambda & -1 \\ 1 - \lambda & 0 & -1 \\ 0 & 6 & 0 - \lambda \end{bmatrix}$$

$$= -\det\begin{bmatrix} 2 & 3 - \lambda & -1 \\ 0 & 0 + (.5\lambda - .5)(3 - \lambda) & -1 + (.5\lambda - .5)(-1) \\ 0 & 6 & 0 - \lambda \end{bmatrix}. \text{ Next, expand by cofactors down the first }$$

column. The quantity above equals

$$-2\det\begin{bmatrix} (.5\lambda - .5)(3 - \lambda) & -.5 - .5\lambda \\ 6 & -\lambda \end{bmatrix} = -2[(.5\lambda - .5)(3 - \lambda)(-\lambda) - (-.5 - .5\lambda)(6)]$$

$$= (1 - \lambda)(3 - \lambda)(-\lambda) - (1 + \lambda)(6) = (\lambda^2 - 4\lambda + 3)(-\lambda) - 6 - 6\lambda = -\lambda^3 + 4\lambda^2 - 9\lambda - 6$$

- **25**. Example 5 of Section 4.9 showed that $A\mathbf{v}_1 = \mathbf{v}_1$, which means that \mathbf{v}_1 is an eigenvector of A corresponding to the eigenvalue 1.
- **a.** Since A is a 2×2 matrix, the eigenvalues are easy to find, and factoring the characteristic polynomial is easy when one of the two factors is known.

$$\det\begin{bmatrix} .6 - \lambda & .3 \\ .4 & .7 - \lambda \end{bmatrix} = (.6 - \lambda)(.7 - \lambda) - (.3)(.4) = \lambda^2 - 1.3\lambda + .3 = (\lambda - 1)(\lambda - .3).$$
 The eigenvalues are 1 and 3

For the eigenvalue .3, solve
$$(A - .3I)\mathbf{x} = \mathbf{0} : \begin{bmatrix} .6 - .3 & .3 & 0 \\ .4 & .7 - .3 & 0 \end{bmatrix} = \begin{bmatrix} .3 & .3 & 0 \\ .4 & .4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.

Here $x_1 + x_2 = 0$, with x_2 free. The general solution is not needed. Set $x_2 = 1$ to find an eigenvector $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. A suitable basis for \mathbb{R}^2 is $\{\mathbf{v}_1, \mathbf{v}_2\}$.

- **b.** Write $\mathbf{x}_0 = \mathbf{v}_1 + c\mathbf{v}_2$: $\begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 3/7 \\ 4/7 \end{bmatrix} + c \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. By inspection, c is -1/14. (The value of c depends on how \mathbf{v}_2 is scaled.)
- **c.** For k = 1, 2, ..., define $\mathbf{x}_k = A^k \mathbf{x}_0$. Then $\mathbf{x}_1 = A(\mathbf{v}_1 + c\mathbf{v}_2) = A\mathbf{v}_1 + cA\mathbf{v}_2 = \mathbf{v}_1 + c(.3)\mathbf{v}_2$, because \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors. Again $\mathbf{x}_2 = A\mathbf{x}_1 = A(\mathbf{v}_1 + c(.3)\mathbf{v}_2) = A\mathbf{v}_1 + c(.3)A\mathbf{v}_2 = \mathbf{v}_1 + c(.3)(.3)\mathbf{v}_2$. Continuing, the general pattern is $\mathbf{x}_k = \mathbf{v}_1 + c(.3)^k \mathbf{v}_2$. As k increases, the second term tends to $\mathbf{0}$ and so \mathbf{x}_k tends to \mathbf{v}_1 .

Chapter 5.3

1.
$$P = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, A = PDP^{-1}, \text{ and } A^4 = PD^4P^{-1}. \text{ We compute}$$

$$P^{-1} = \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}, D^4 = \begin{bmatrix} 16 & 0 \\ 0 & 1 \end{bmatrix}, \text{ and } A^4 = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 16 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 226 & -525 \\ 90 & -209 \end{bmatrix}.$$

Ty the luagonalization is new term, eigenvectors form the columns of the left ractor, and they correspond respectively to the eigenvalues on the diagonal of the middle factor.

$$\lambda = 5 : \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}; \lambda = 1 : \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}.$$

7. Since A is triangular, its eigenvalues are obviously ± 1 .

For $\lambda = 1$: $A - 1I = \begin{bmatrix} 0 & 0 \\ 6 & -2 \end{bmatrix}$. The equation $(A - 1I)\mathbf{x} = \mathbf{0}$ amounts to $6x_1 - 2x_2 = 0$, so $x_1 = (1/3)x_2$ with x_2 free. The general solution is $x_2 \begin{bmatrix} 1/3 \\ 1 \end{bmatrix}$, and a nice basis vector for the eigenspace is $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

For $\lambda = -1$: $A + 1I = \begin{bmatrix} 2 & 0 \\ 6 & 0 \end{bmatrix}$. The equation $(A + 1I)\mathbf{x} = \mathbf{0}$ amounts to $2x_1 = 0$, so $x_1 = 0$ with x_2

free. The general solution is $x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and a basis vector for the eigenspace is $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

From \mathbf{v}_1 and \mathbf{v}_2 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$. Then set $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, where the eigenvalues in D correspond to \mathbf{v}_1 and \mathbf{v}_2 respectively.

11. The eigenvalues of A are given to be 1, 2, and 3.

For $\lambda = 3$: $A - 3I = \begin{bmatrix} -4 & 4 & -2 \\ -3 & 1 & 0 \\ -3 & 1 & 0 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 3I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & -1/4 & 0 \\ 0 & 1 & -3/4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The

general solution is $x_3 \begin{bmatrix} 1/4 \\ 3/4 \\ 1 \end{bmatrix}$, and a nice basis vector for the eigenspace is $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$.

For $\lambda = 2$: $A - 2I = \begin{bmatrix} -3 & 4 & -2 \\ -3 & 2 & 0 \\ -3 & 1 & 1 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 2I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & -2/3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The general solution is $x_3 \begin{bmatrix} 2/3 \\ 1 \\ 1 \end{bmatrix}$, and a nice basis vector for the eigenspace is $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$.

For $\lambda = 1$: $A - I = \begin{bmatrix} -2 & 4 & -2 \\ -3 & 3 & 0 \\ -3 & 1 & 2 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 1I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The

general solution is $x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, and a basis vector for the eigenspace is $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

From $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 1 \\ 4 & 3 & 1 \end{bmatrix}$. Then set $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, where

the eigenvalues in D correspond to $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 respectively

23.	A is diagonalizable because you know that five linearly independent eigenvectors exist: three in the three-dimensional eigenspace and two in the two-dimensional eigenspace. Theorem 7 guarantees that the set of all five eigenvectors is linearly independent.