beamer-purdue

A Beamer template inspired by the Purdue Visual Identity

Dennis Ogbe May 19, 2016

Overview

► Part 1: Examples

► Part 2: Plots

Part 1: Examples

Hello!

The beamer-purdue template

This is the beamer-purdue Theme. A Beamer template inspired by the Purdue Visual Identity.

An itemized list looks as follows:

- ▶ Item 1
- ▶ Item 2

The continuous-time Fourier Transform of a signal $\boldsymbol{x}(t)$ is defined as

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 (1)

A Theorem in a Box

Theorem

The Bessel functions of the first kind $J_v(x)$ are defined as the solutions to the Bessel differential equation

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - v^{2})y = 0.$$
 (2)

Proof: Omitted.

Figures

We can include graphics just like we are used to, for example this block diagram of an noise-canceling system:

Part 2: Plots

Plotting is fun!

On the following pages, we include two examples on how to include plots:

- 1. A PDF plot
- 2. A PGF/TikZ plot

PDF plots are nice, but nothing beats the native look of PGF/TikZ. The source code to generate both plots can be found in extra/plot_bessel.py

A PDF Plot

A PGF/TikZ Plot

