Name:		
Instructor		

Math 10560, Quiz 3 Tutorial February 14, 2017

- The Honor Code is in effect for this quiz. All work is to be your own.
- No calculators.
- \bullet The quiz lasts for 25 Minutes .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 5 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!					
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this box.
Multiple Choice	
5.	
Total	

Name:

Instructor:

Multiple Choice

1.(2 pts) Find the integral

$$\int_0^1 e^x x^2 \, dx$$

(a) $\frac{3}{3}$

- (b) 2e + 2
- (c) 4e + 1

(d) e+2

(e) e-2

2.(2 pts) Compute the integral

$$\int_0^{\pi/4} \tan^3(x) \sec^3(x) dx$$

- (a) $\frac{7}{3} \frac{31}{5}$
- (b) $\frac{2^{5/2}-1}{5}+\frac{2^{3/2}-1}{3}$
- (c) $\frac{2^{5/2}-1}{5}-\frac{2^{3/2}-1}{3}$
- (d) $\frac{31}{5} + \frac{7}{3}$
- (e) $\frac{31}{5} \frac{7}{3}$

Name: _____ Instructor:

3.(2 pts) Compute the integral

$$\int_0^{\pi/2} \sin^3 x \, dx$$

- (a) $\frac{1}{2}$ (b) $\frac{2}{3}$ (c) -1 (d) 1 (e) $-\frac{1}{2}$

4.(2 pts)Which of the indefinite integrals shown below is equal to the indefinite integral

$$\int \frac{1}{x^2 \sqrt{1+x^2}} \, dx?$$

(**Note:** A trigonometric substitution might help.)

- (a) $-\int \frac{\sin \theta}{\cos^2 \theta} d\theta$ (b) $\int \frac{\sin \theta}{\cos^2 \theta} d\theta$ (c) $-\int \tan \theta d\theta$
- (d) $-\int \frac{\cos \theta}{\sin^2 \theta} d\theta$ (e) $\int \frac{\cos \theta}{\sin^2 \theta} d\theta$

Name:	
Instructor:	

5.(2 pts) Compute

$$\int \frac{1}{(x^2 - 2x + 2)^2} \, dx$$

Present your answer as a function of the variable x. Note the formula sheet at the back of the exam may be helpful in working out your final answer.

Name: _______
Instructor: ______

The following is the list of useful trigonometric formulas:

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin 2x = 2\sin x \cos x$$

$$\sin x \cos y = \frac{1}{2}(\sin(x - y) + \sin(x + y))$$

$$\sin x \sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$$

$$\int \sec \theta = \ln|\sec \theta + \tan \theta| + C$$

Name:		
Instructor	ANSWERS	

Math 10560, Quiz 3 Tutorial February 14, 2017

- The Honor Code is in effect for this quiz. All work is to be your own.
- No calculators.
- ullet The quiz lasts for 25 Minutes .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 5 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!					
1.	(a)	(b)	(c)	(d)	(ullet)
2.	(a)	(b)	(•)	(d)	(e)
3.	(a)	(●)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(ullet)

Please do NOT	write in this box.	
Multiple Choice		
5.		
Total		