$12n_{0726} (K12n_{0726})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^5 + u^4 + 2u^3 + 2u^2 + b, \ -u^5 - u^4 - 3u^3 - 2u^2 + a - 2u, \\ &u^{10} + u^9 + 6u^8 + 5u^7 + 12u^6 + 8u^5 + 8u^4 + 3u^3 + u^2 - 2u + 1 \rangle \\ I_2^u &= \langle -2u^{29} - 3u^{28} + \dots + 2b + 10, \ -13u^{29} - 37u^{28} + \dots + 2a + 42, \ u^{30} + 3u^{29} + \dots - 8u - 1 \rangle \\ I_3^u &= \langle u^2 + b, \ a + 1, \ u^3 - u^2 + 2u - 1 \rangle \\ I_4^u &= \langle -u^2a + b, \ -u^2a + a^2 + u^2 - 2a + 2, \ u^3 - u^2 + 2u - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 49 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^5 + u^4 + 2u^3 + 2u^2 + b, -u^5 - u^4 - 3u^3 - 2u^2 + a - 2u, u^{10} + u^9 + \dots - 2u + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{5} + u^{4} + 3u^{3} + 2u^{2} + 2u \\ -u^{5} - u^{4} - 2u^{3} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{7} - u^{6} - 3u^{5} - 2u^{4} - u^{3} + 2u \\ -u^{9} - u^{8} - 4u^{7} - 3u^{6} - 5u^{5} - 3u^{4} - 2u^{3} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{9} - u^{8} - 5u^{7} - 4u^{6} - 8u^{5} - 4u^{4} - 4u^{3} - u \\ u^{9} + u^{8} + 4u^{7} + 4u^{6} + 4u^{5} + 4u^{4} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} - u^{2} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{7} + 3u^{5} + u^{4} + 3u^{3} + 2u^{2} + u \\ u^{9} + 3u^{7} + 2u^{5} - u^{4} - u^{3} - 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{8} - u^{7} - 4u^{6} - 4u^{5} - 5u^{4} - 3u^{3} - u^{2} + 2u \\ 2u^{8} + u^{7} + 7u^{6} + 4u^{5} + 6u^{4} + 3u^{3} - u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{5} - u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^9 + 4u^8 + 22u^7 + 22u^6 + 42u^5 + 40u^4 + 30u^3 + 20u^2 + 8u 10u^2 + 3u^2 + 3u^$

Crossings	u-Polynomials at each crossing
c_1, c_{10}	$u^{10} - u^9 + 8u^8 - 7u^7 + 18u^6 - 18u^5 + 8u^4 - 13u^3 + 7u^2 + 1$
c_2, c_5, c_6 c_8, c_{11}, c_{12}	$u^{10} - u^9 + 6u^8 - 5u^7 + 12u^6 - 8u^5 + 8u^4 - 3u^3 + u^2 + 2u + 1$
c_{3}, c_{7}	$u^{10} + u^9 + 4u^8 + 4u^7 + 21u^6 - 9u^5 + 33u^4 + 5u^3 + 7u^2 + 3u + 2$
c_4, c_9	$u^{10} + 7u^9 + \dots + 24u + 8$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$y^{10} + 15y^9 + \dots + 14y + 1$
c_2, c_5, c_6 c_8, c_{11}, c_{12}	$y^{10} + 11y^9 + \dots - 2y + 1$
c_3, c_7	$y^{10} + 7y^9 + \dots + 19y + 4$
c_4, c_9	$y^{10} - 7y^9 + \dots + 256y + 64$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.728898 + 0.479191I		
a = -0.415541 + 1.217980I	5.65760 + 4.71262I	-6.31236 - 5.61759I
b = -0.927397 + 0.394143I		
u = -0.728898 - 0.479191I		
a = -0.415541 - 1.217980I	5.65760 - 4.71262I	-6.31236 + 5.61759I
b = -0.927397 - 0.394143I		
u = 0.066306 + 1.207890I		
a = -0.854695 - 0.475151I	5.29548 - 2.05211I	-3.55200 + 3.27198I
b = 0.697376 + 1.144550I		
u = 0.066306 - 1.207890I		
a = -0.854695 + 0.475151I	5.29548 + 2.05211I	-3.55200 - 3.27198I
b = 0.697376 - 1.144550I		
u = 0.11337 + 1.49042I		
a = 1.075600 - 0.665737I	11.32540 - 4.10290I	0.47358 + 2.87242I
b = -1.60291 + 0.39329I		
u = 0.11337 - 1.49042I		
a = 1.075600 + 0.665737I	11.32540 + 4.10290I	0.47358 - 2.87242I
b = -1.60291 - 0.39329I		
u = -0.28831 + 1.50977I		
a = -2.00632 + 0.94362I	18.5056 + 12.2668I	-0.40879 - 5.71170I
b = 3.37727 - 0.98896I		
u = -0.28831 - 1.50977I		
a = -2.00632 - 0.94362I	18.5056 - 12.2668I	-0.40879 + 5.71170I
b = 3.37727 + 0.98896I		
u = 0.337535 + 0.237080I		
a = 0.700954 + 1.016800I	-0.483217 - 0.888721I	-8.20043 + 7.80792I
b = -0.044343 - 0.474934I		
u = 0.337535 - 0.237080I		
a = 0.700954 - 1.016800I	-0.483217 + 0.888721I	-8.20043 - 7.80792I
b = -0.044343 + 0.474934I		

II.
$$I_2^u = \langle -2u^{29} - 3u^{28} + \dots + 2b + 10, \ -13u^{29} - 37u^{28} + \dots + 2a + 42, \ u^{30} + 3u^{29} + \dots - 8u - 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{13}{2}u^{29} + \frac{37}{2}u^{28} + \dots - \frac{209}{2}u - 21 \\ u^{29} + \frac{3}{2}u^{28} + \dots - \frac{43}{2}u - 5 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{15}{2}u^{29} + \frac{43}{2}u^{28} + \dots - \frac{249}{2}u - 25 \\ u^{29} + \frac{3}{2}u^{28} + \dots - \frac{41}{2}u - 5 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{29} - \frac{5}{2}u^{28} + \dots + \frac{11}{2}u + \frac{5}{2} \\ -\frac{1}{2}u^{27} - u^{26} + \dots + 3u + \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} - u^{2} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 8u^{29} + 23u^{28} + \dots - 142u - \frac{57}{2} \\ \frac{5}{2}u^{29} + 5u^{28} + \dots - 20u - \frac{9}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 7u^{29} + 19u^{28} + \dots - 85u - 13 \\ \frac{1}{2}u^{29} - \frac{1}{2}u^{28} + \dots - \frac{31}{2}u - 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{5} - u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{11}{2}u^{29} + 15u^{28} + \dots 99u \frac{51}{2}$

Crossings	u-Polynomials at each crossing
c_1, c_{10}	$u^{30} - 3u^{29} + \dots - 18u^2 + 1$
c_2, c_5, c_6 c_8, c_{11}, c_{12}	$u^{30} - 3u^{29} + \dots + 8u - 1$
c_3, c_7	$u^{30} + 3u^{29} + \dots + 1074u - 153$
c_4, c_9	$(u^{15} - 3u^{14} + \dots - 12u + 8)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_{10}	$y^{30} + 37y^{29} + \dots - 36y + 1$
$c_2, c_5, c_6 \\ c_8, c_{11}, c_{12}$	$y^{30} + 29y^{29} + \dots - 20y + 1$
c_3, c_7	$y^{30} + 17y^{29} + \dots - 192024y + 23409$
c_4, c_9	$(y^{15} - 21y^{14} + \dots + 784y - 64)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.705981 + 0.612665I		
a = -0.189821 + 0.894198I	12.57910 - 3.33907I	-2.38574 + 0.22991I
b = -1.092990 + 0.473497I		
u = -0.705981 - 0.612665I		
a = -0.189821 - 0.894198I	12.57910 + 3.33907I	-2.38574 - 0.22991I
b = -1.092990 - 0.473497I		
u = -0.786126 + 0.466474I		
a = 0.307960 - 1.352620I	12.1008 + 8.3364I	-3.32084 - 5.47194I
b = 0.918649 - 0.316331I		
u = -0.786126 - 0.466474I		
a = 0.307960 + 1.352620I	12.1008 - 8.3364I	-3.32084 + 5.47194I
b = 0.918649 + 0.316331I		
u = -0.685541 + 0.538898I		
a = 0.386781 - 0.997148I	5.87309	-5.59057 + 0.I
$\frac{b = 0.987952 - 0.464825I}{u = -0.685541 - 0.538898I}$		
	F 07900	F F00F7 + 0 T
a = 0.386781 + 0.997148I	5.87309	-5.59057 + 0.I
b = 0.987952 + 0.464825I $u = 0.713656 + 0.166582I$		
a = -0.855543 - 0.376613I $a = -0.855543 - 0.376613I$	2.81581 - 0.87895I	E 62502 + 0.02021 I
	2.01001 — 0.010901	-5.63582 + 0.83931I
$\frac{b = 0.448037 + 0.280112I}{u = 0.713656 - 0.166582I}$		
a = -0.855543 + 0.376613I	2.81581 + 0.87895I	-5.63582 - 0.83931I
b = 0.448037 - 0.280112I	2.01901 0.010391	0.00002 0.000011
$\frac{v = 0.448037 - 0.2801121}{u = 0.243602 + 1.279880I}$		
a = 0.169871 + 0.426938I	2.51678 - 3.17894I	0.37815 + 5.88971I
b = 0.032440 - 0.551805I	2.310,0 3.1,0011	3.3,010 3.000111
u = 0.243602 - 1.279880I		
a = 0.169871 - 0.426938I	2.51678 + 3.17894I	0.37815 - 5.88971I
b = 0.032440 + 0.551805I	·	
		L

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.302233 + 0.572979I		
a = -0.891160 - 0.823170I	4.68149 - 2.48936I	-2.42897 + 4.40087I
b = 0.029484 + 0.794061I		
u = 0.302233 - 0.572979I		
a = -0.891160 + 0.823170I	4.68149 + 2.48936I	-2.42897 - 4.40087I
b = 0.029484 - 0.794061I		
u = -0.029336 + 1.362430I		
a = 1.53009 + 0.04314I	2.81581 + 0.87895I	-5.63582 - 0.83931I
b = -2.06494 - 0.86724I		
u = -0.029336 - 1.362430I		
a = 1.53009 - 0.04314I	2.81581 - 0.87895I	-5.63582 + 0.83931I
b = -2.06494 + 0.86724I		
u = 0.635625		
a = 0.526188	-1.48208	-4.72100
b = -0.268208		
u = 0.315927 + 1.335280I		
a = 0.056628 - 0.761520I	7.52431 - 4.63680I	0. + 2.51110I
b = -0.400717 + 0.793524I		
u = 0.315927 - 1.335280I		
a = 0.056628 + 0.761520I	7.52431 + 4.63680I	0 2.51110I
b = -0.400717 - 0.793524I		
u = 0.099338 + 1.386390I		
a = -0.972274 + 0.248617I	4.68149 - 2.48936I	-2.42897 + 4.40087I
b = 1.323920 + 0.164440I		
u = 0.099338 - 1.386390I		
a = -0.972274 - 0.248617I	4.68149 + 2.48936I	-2.42897 - 4.40087I
b = 1.323920 - 0.164440I		
u = -0.084417 + 1.399330I		
a = -1.87882 + 0.15021I	7.52431 + 4.63680I	0 2.51110I
b = 2.75314 + 0.68684I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.084417 - 1.399330I		
a = -1.87882 - 0.15021I	7.52431 - 4.63680I	0. + 2.51110I
b = 2.75314 - 0.68684I		
u = -0.26139 + 1.50518I		
a = 2.03229 - 0.92308I	12.1008 + 8.3364I	0 5.47194I
b = -3.40445 + 0.88020I		
u = -0.26139 - 1.50518I		
a = 2.03229 + 0.92308I	12.1008 - 8.3364I	0. + 5.47194I
b = -3.40445 - 0.88020I		
u = -0.23109 + 1.51730I		
a = -2.02333 + 0.87807I	12.57910 + 3.33907I	0
b = 3.32265 - 0.75494I		
u = -0.23109 - 1.51730I		
a = -2.02333 - 0.87807I	12.57910 - 3.33907I	0
b = 3.32265 + 0.75494I		
u = -0.21368 + 1.55326I		
a = 1.97146 - 0.87493I	19.7380	0
b = -3.15532 + 0.76228I		
u = -0.21368 - 1.55326I		_
a = 1.97146 + 0.87493I	19.7380	0
b = -3.15532 - 0.76228I		
u = -0.354580 + 0.145881I		
a = 2.47267 - 0.38301I	2.51678 + 3.17894I	0.37815 - 5.88971I
b = 0.785485 - 0.312110I		
u = -0.354580 - 0.145881I		
a = 2.47267 + 0.38301I	2.51678 - 3.17894I	0.37815 + 5.88971I
b = 0.785485 + 0.312110I		
u = -0.280853	1 40000	4.70100
a = -2.75980	-1.48208	-4.72100
b = -0.698487		

III.
$$I_3^u = \langle u^2 + b, \ a + 1, \ u^3 - u^2 + 2u - 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} - 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u - 2 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u - 2 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-8u^2 + 8u 20$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_7 c_{10}	$u^3 + u^2 - 1$
c_2, c_8	$u^3 - u^2 + 2u - 1$
c_4,c_9	u^3
c_5, c_6, c_{11} c_{12}	$u^3 + u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7 c_{10}	$y^3 - y^2 + 2y - 1$
$c_2, c_5, c_6 \\ c_8, c_{11}, c_{12}$	$y^3 + 3y^2 + 2y - 1$
c_4, c_9	y^3

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = -1.00000	6.04826 - 5.65624I	-4.98049 + 5.95889I
b = 1.66236 - 0.56228I		
u = 0.215080 - 1.307140I		
a = -1.00000	6.04826 + 5.65624I	-4.98049 - 5.95889I
b = 1.66236 + 0.56228I		
u = 0.569840		
a = -1.00000	-2.22691	-18.0390
b = -0.324718		

IV.
$$I_4^u = \langle -u^2a + b, -u^2a + a^2 + u^2 - 2a + 2, u^3 - u^2 + 2u - 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ u^{2}a \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a \\ u^{2}a \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2}a + au + u^{2} - 2a - 2u + 2 \\ -au + 2u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -au + 2a \\ u^{2}a + au - a \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{2}a + 2au + 3u^{2} - 2a - u + 4 \\ 2u^{2}a - 2au - u^{2} + a \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^2a 5au 3u^2 + 3a + 3u 12$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_7 c_{10}	$(u^3 + u^2 - 1)^2$
c_2, c_8	$(u^3 - u^2 + 2u - 1)^2$
c_4,c_9	u^6
c_5, c_6, c_{11} c_{12}	$(u^3 + u^2 + 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7 c_{10}	$(y^3 - y^2 + 2y - 1)^2$
$c_2, c_5, c_6 \\ c_8, c_{11}, c_{12}$	$(y^3 + 3y^2 + 2y - 1)^2$
c_4, c_9	y^6

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = -0.162359 + 0.986732I	6.04826	-6 - 1.085931 + 0.10I
b = -0.28492 - 1.73159I		
u = 0.215080 + 1.307140I		
a = 0.500000 - 0.424452I	1.91067 - 2.82812I	-9.95703 + 1.11003I
b = -0.592519 + 0.986732I		
u = 0.215080 - 1.307140I		
a = -0.162359 - 0.986732I	6.04826	-6 - 1.085931 + 0.10I
b = -0.28492 + 1.73159I		
u = 0.215080 - 1.307140I		
a = 0.500000 + 0.424452I	1.91067 + 2.82812I	-9.95703 - 1.11003I
b = -0.592519 - 0.986732I		
u = 0.569840		
a = 1.16236 + 0.98673I	1.91067 - 2.82812I	-9.95703 + 1.11003I
b = 0.377439 + 0.320410I		
u = 0.569840		
a = 1.16236 - 0.98673I	1.91067 + 2.82812I	-9.95703 - 1.11003I
b = 0.377439 - 0.320410I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$(u^{3} + u^{2} - 1)^{3}$ $\cdot (u^{10} - u^{9} + 8u^{8} - 7u^{7} + 18u^{6} - 18u^{5} + 8u^{4} - 13u^{3} + 7u^{2} + 1)$ $\cdot (u^{30} - 3u^{29} + \dots - 18u^{2} + 1)$
c_2, c_8	$(u^{3} - u^{2} + 2u - 1)^{3}$ $\cdot (u^{10} - u^{9} + 6u^{8} - 5u^{7} + 12u^{6} - 8u^{5} + 8u^{4} - 3u^{3} + u^{2} + 2u + 1)$ $\cdot (u^{30} - 3u^{29} + \dots + 8u - 1)$
c_3, c_7	$(u^{3} + u^{2} - 1)^{3}$ $\cdot (u^{10} + u^{9} + 4u^{8} + 4u^{7} + 21u^{6} - 9u^{5} + 33u^{4} + 5u^{3} + 7u^{2} + 3u + 2)$ $\cdot (u^{30} + 3u^{29} + \dots + 1074u - 153)$
c_4, c_9	$u^{9}(u^{10} + 7u^{9} + \dots + 24u + 8)(u^{15} - 3u^{14} + \dots - 12u + 8)^{2}$
c_5, c_6, c_{11} c_{12}	$(u^{3} + u^{2} + 2u + 1)^{3}$ $\cdot (u^{10} - u^{9} + 6u^{8} - 5u^{7} + 12u^{6} - 8u^{5} + 8u^{4} - 3u^{3} + u^{2} + 2u + 1)$ $\cdot (u^{30} - 3u^{29} + \dots + 8u - 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$((y^3 - y^2 + 2y - 1)^3)(y^{10} + 15y^9 + \dots + 14y + 1)$ $\cdot (y^{30} + 37y^{29} + \dots - 36y + 1)$
c_2, c_5, c_6 c_8, c_{11}, c_{12}	$((y^3 + 3y^2 + 2y - 1)^3)(y^{10} + 11y^9 + \dots - 2y + 1)$ $\cdot (y^{30} + 29y^{29} + \dots - 20y + 1)$
c_3, c_7	$((y^3 - y^2 + 2y - 1)^3)(y^{10} + 7y^9 + \dots + 19y + 4)$ $\cdot (y^{30} + 17y^{29} + \dots - 192024y + 23409)$
c_4, c_9	$y^{9}(y^{10} - 7y^{9} + \dots + 256y + 64)(y^{15} - 21y^{14} + \dots + 784y - 64)^{2}$