Date: 1 08 19

A CONSOLIDATED QUESTION PAPER-CUM-ANSWER BOOKLET

MAINS TEST SERIES-2019

(JUNE-2019 to SEPT.-2019)

Under the guidance of K. Venkanna

MATHEMAT

PAPER - II : FULL SYLLABUS

TEST CODE: TEST-8: IAS(M)/28-JULY.-2019

Time: 3 Hours

Maximum Marks:

INSTRUCTIONS

- This question paper-cum-answer booklet has 48 pages and has
 - 30 PART/SUBPART questions. Please ensure that the copy of the question paper-cum-answer booklet you have received contains all the questions.
- 2. Write your Name, Roll Number, Name of the Test Centre and Medium in the appropriate space provided on the right side.
- A consolidated Question Paper-cum-Answer Booklet, having space below each part/sub part of a question shall be provided to them for writing the answers. Candidates shall be required to attempt answer to the part/sub-part of a question strictly within the pre-defined space. Any attempt outside the pre-defined space shall not be evaluated."
- Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- Candidates should attempt Question Nos. 1 and 5, which are compulsory, and any THREE of the remaining questions selecting at least ONE question from each Section.
- The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- Symbols/notations carry their usual meanings, unless otherwise indicated.
- All questions carry equal marks.
- All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- 10. All rough work should be done in the space provided and scored out finally.
- 11. The candidate should respect the instructions given by the invigilator.
- 12. The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any

READ INSTRUCTIONS ON THE LEFT SIDE OF THIS PAGE CAREFULLY

Name ABHISHEK GARG

Roll No. 0818220

ONLINE **Test Centre**

Medium ENGUSH

Do not write your Roll Number or Name anywhere else in this Question Papercum-Answer Booklet.

I have read all the instructions and shall abide by them

Signature of the Candidate

I have verified the information filled by the candidate above

Signature of the invigilator

IMPORTANT NOTE:

Whenever a question is being attempted, all its parts/ sub-parts must be attempted contiguously. This means that before moving on to the next question to be attempted, candidates must finish attempting all parts/ sub-parts of the previous question attempted. This is to be strictly followed. Pages left blank in the answer-book are to be clearly struck out in ink. Any answers that follow pages left blank may not be given credit.

DO NOT WRITE ON THIS SPACE

INDEX TABLE

_	PAGE NO.	MAX. MARKS	MARKS OBTAINED
(a)			00
(b)			08
(c)			1
(d)			08
(e)	A COLUMN TO THE REAL PROPERTY.		08
(a)			00
(b)			
(c)		The state of the s	
(d)			
(a)			15 7
(b)			13 4
(c)			15
(d)			
(a)	A MARKET AND A	SAME SAME	13 7
(b)		1	2 1 1/2 two
The Contract of			18
	1 1 1	- YME - 下型沙亚	1027
	44		09 7
			09
			08
			08
_		All Control of	28
			14 1
			11
71.22			07
_			12
_			
(2) (2) (1) (1) (4)			
-			/
Eddler of			
720			
(-7			
	Jakrya - make	Total Marks	
	(c) (d) (e) (a) (b) (c) (d) (a) (b) (c) (d) (a)	(c) (d) (e) (a) (b) (c) (d) (a) (b) (c) (d) (a) (a) (b) (c) (d) (a) (b) (c) (d) (e) (e) (e) (e) (e) (f) (e) (e) (f) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	(c) (d) (e) (a) (b) (c) (d) (a) (a) (b) (c) (d) (d) (a) (a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d

AMINE CHIEF

DO NOT WRITE ON THIS SPACE

SECTION - A

 (a) Give an example of two subgroups H, K which are not normal but HK is a subgroup.

Let G be a group of 2x2 matrices, whose determinant is not equal to zero.

Now, let
$$H = g \left[\begin{array}{c} a & b \\ b & d \end{array} \right] ad \pm 0$$
.

Check if H is normal { [a a] /ad +0}

let
$$K = \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix}$$
, clearly $AkA^{-1} \not\in K$.

Now,
$$HK = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix} = \begin{bmatrix} 0 & ab \\ cd & 0 \end{bmatrix} \subseteq G$$
.

and for \$1, \$2 EHK., clearly,

(b) Show by means of an example that we can find A ⊆ B ⊆ R where A is an ideal of B, B is an ideal of R, but A is not an ideal of R. [10]

Let
$$A = \begin{bmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}$, and

Now, to prove A is an ideal of B.

Clearly, for A, A, EA, A,-A, EA.

Now, to prove B is an ideal of R.

for B, B & B, B,-B & B.

Mow, for A andR, ASR,

but
$$A_1R_1 = \begin{bmatrix} 0 & 0 & aj \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in A$$
, but $R_1A_1 = \begin{bmatrix} 0 & 0 & da \\ 0 & 0 & ga \\ 0 & 0 & 0 \end{bmatrix}$

clearly, R.A. & A , : A is not an ideal of R. _ (1)

1. (c) Prove that the function f defined on \mathbb{R} by $f(x) = \frac{1}{x^2 + 1}$, $x \in \mathbb{R}$ is uniformly continuous of \mathbb{R} .

Given
$$f(x) = \frac{1}{x^2 + 1}$$
 — ①.

let
$$x_1, x_2 \in R$$
, such that $f(x_1) = \frac{1}{x_1^2 + 1}$; $f(x_2) = \frac{1}{x_2^2 + 1}$

Now,

$$| \pm (x_1) - \pm (x_2) | = \left| \frac{1}{|x_1^2 + 1|} - \frac{1}{|x_2^2 + 1|} \right| = \left| \frac{|x_2^2 - x_1^2|}{|x_1^2 + 1|} \right|$$

$$|f(x_1) - f(x_2)| = \frac{|x_1 + x_2||x_1 - x_2|}{(x_1^2 + 1)(x_2^2 + 1)} \leq |x_1 - x_2| < \epsilon.$$

let
$$S = E$$
, such that $|x_1 - x_2| < S$.

1. (d) By using Riemann integrable definition evaluate $\int_a^b x^{99} dx$ where 0 < a < b. [10]

let I be the interval,
$$I = \left[a, a + \frac{(b-a)a}{h}a + \frac{2(b-a)}{h}, \dots b\right]$$

"
$$I_r = \left(a + \left(b - q \right) \frac{x-1}{n}, a + \left(b - q \right) \frac{x}{n} \right)$$

The lower Darboux sum = 5m8.87.

$$\Gamma(a,p) = \sum_{k=1}^{k=1} \left(a + (p-a)(k-1) \right) \frac{1}{a} \left(\frac{p-a}{p-a} \right) - 0$$

and upper Darboux sum = 5M2.80.

$$U(a,b) = \sum_{n} \left[a + (b-a)^{n} \right]^{aq} \left[\frac{b-a}{n} \right] - 2$$

Now,
$$\int_{\overline{a}} x^{qq} = \text{lt } L(q,b).$$

on solving, we shall get

$$\int_{a}^{b} x^{99} dx = \int_{a}^{b} x^{99} dx = \int_{a}^{b} x^{99} dx$$

100

(e) Prove that the function $u = e^x (x \cos y - y \sin y)$ satisfies Laplace's equation and find the corresponding analytic function f(z) = u + iv.

$$\frac{\partial u}{\partial x} = e^{x} (x \cos y - y \sin y + \cos y) = \phi_{1}(x, y)$$

$$\frac{\partial^2 y}{\partial x^2} = e^{x} \left(x \cos y - y \sin y + \cos y + \cos y \right).$$

Now,
$$\frac{\partial y}{\partial y} = e^{x}(-x\sin y - \sin y - y\cos y) = \phi_{2}(x,y)$$

$$\frac{\partial^2 y}{\partial y^2} = e^{x} \left(-x \cos y - \cos y + y \sin y - \cos y \right) = 2$$

Clearly,
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
; i.e. u satisfies Laplace's equation.

Ind past, Set A(x,y) BY MILNE-THOMSON METHOD

$$f(z) = \int \phi'(s,0) - \phi'(s,0) ds + c$$

$$f^{z}(z) = \int e^{z}(z+1-0) \cdot dz = \int e^{z}(z+1) \cdot +c$$

.. The required analytic function,

will so which is the with privi -horn to an early to a first the 3. (a) Let G be defined as all formal symbols x^iy^j , i = 0, 1, j = 0, 1, 2, ..., n-1 where we assume $x^iy^j = x^{i'}y^{j'}$ if and only if i = i', j = j' $x^2 = y^n = e, n > 2$ $xy = y^{-1} x$. (i) find the form of the product (xⁱy^j) (x^ky^j) (x^αy^β). (ii) Using this, prove that G is a non-abelian group of order 2n. (iii) If n is odd, prove that the center of Gis(e), while if n is even the center of Gislarger than (e). [This group G is known as a dihedral group.] [18] (i) $(x^iy^i)(x^ky^k)(x^{\alpha}y^k) = P(eay)$. Powers of x can give result or or e, and xy=yx ⇒ yxy = x => (yxy)(yxy) = x=e. .. P shall be of the form, xyixyexy si, k, x = odd xyj-! (yxy) y = yxy.y = xyj-! x.y.x.y =

Solving this way, we shall get P as a power of x, even for other permutations and combinations ex i, i, k, l, d, R, P= x (or)e (or) y (or) xys where (ii) To prove that order of G = 2n 1,8 ≤ n-1 and G is non-abelian. from first result, O(G)= 1+1+ n-1 + n-1 = 2n / for non-abelian - given that, xy = y-1x.-0 => xyx-1= y-1x.x-1= y-1 (on) xyx = y-1 (:x=x-1) =) $xx^{-1}y^{-1} = xy^{-1} = xy^{$ clearly, xy #yx => G is non abelian group. (iii) let Z(G) be the centre of G; ie. Z(G) = faeG | xa = ax y xeG} Case (i) n = odd we know that, y'. x.y' = x [as yxy = x] Now, if y'EZ(G), then y' commute with xyi i.e. y'. x.y' = xyi.yi => xy'+i

Since misodo, i=m
$$\Rightarrow$$
 $Z(G)$ if $y^2 = e$ (or) $\frac{2i}{m}$.

Since misodo, i=m \Rightarrow $Z(G) = e^1$.

[as none of the elements of type $xy^1 \in Z(G)$].

Cax-ii $n = even$, now $\frac{2i}{n} \Rightarrow i$ can take e^1

Other values, e^1
 $e^$

3. (b) Let
$$f_n(x) = \frac{nx}{1 + n^2x^2} - \frac{(n-1)x}{1 + (n-1)^2x^2}, x \in [0,1]$$

Show that at
$$x = 0$$
, $\frac{d}{dx} \sum f_n(x) \neq \sum \frac{d}{dx} f_n(x)$.

[15]

Limit function,
$$f(x) = \text{lt } f_n(x) = \text{lt } \frac{n \times (n-1) \times (n-1)^2 \times (n-1$$

Picho (WH) + 2013

Using L- Hospital rule, differentiating Numerator and Denominator.

$$f(x) = l_{\frac{x}{2nx^{2}}} - \frac{x}{2(n-1)x^{2}} = l_{\frac{x}{2x}} \left[\frac{1}{n(n-1)} \right] = 0.$$

Now, Consider
$$\Sigma f_n(x)$$
... $J_n(x) = \frac{nx}{1+n^2x^2}$

Now, to prove:
$$\frac{d}{dx} \sum f_{N}(x) \neq \sum \frac{d}{dx} f_{N}(x)$$
 at $x = 0$.

L.H.C. $\equiv \frac{d}{dx} S_{\infty}(x) = 0$

R.H.S. $\equiv \sum \frac{d}{dx} f_{N}(x) \Big|_{x=0} = \sum \left[\frac{n(1+n^{2}x^{2})^{2}}{(1+n^{2}x^{2})^{2}} - \frac{(n-1)(1+(n-1)^{2}x^{2})^{2}}{(1+(n-1)^{2}x^{2})^{2}} \right]_{x=0} = \sum (n) - (n-1)$
 $= \sum 1 = \infty$

or $= \sum (n) - (n-1)$
 $= \sum 1 = \infty$

or $= \sum (n) - (n-1)$
 $= \sum 1 = \infty$

or $= \sum (n) - (n-1)$
 $= \sum 1 = \infty$

or $= \sum (n) - (n-1)$
 $= \sum 1 = \infty$

or $= \sum (n) - (n-1)$
 $= \sum 1 = \infty$

or $= \sum (n) - (n-1)$
 $= \sum 1 = \infty$

or $= \sum (n) - (n-1)$
 $= \sum 1 = \infty$

or $= \sum (n) - (n-1)$
 $= \sum 1 = \infty$

or $= \sum (n) - (n-1)$
 $= \sum 1 = \infty$

or $= \sum (n) - (n-1)$
 $= \sum 1 = \infty$

or $= \sum (n) - (n-1)$
 $= \sum (n-1)(1+n^{2}x^{2})^{2}$
 $= \sum (n) - (n-1)$
 $= \sum (n-1)(1+n^{2}x^{2})^{2}$
 $= \sum (n-1)(1+n^{2}x^{2})^{2}$

(ii) Now, to find
$$I = \int_{0}^{14} (x-y+1x) (dx+idy)$$

first along $y = 0$, x varies from $x = 0$ to 1.

$$\int_{0}^{1} (1+i)x \cdot dx = (1+i)\left[\frac{x^{2}}{2}\right]_{0}^{1} = \frac{1+i}{2} = I_{1}(x-y).$$

Now, along, $x = 1$, y varies from $y = 0$ to 1.

$$\int_{0}^{1} (1+i-y)i dy = i\left[\frac{1}{2}+i\right] = -1 + \frac{1}{2}i = I_{1}(x-y).$$

Now, required result, $I = I_{1} + I_{2} = \frac{1}{2} + \frac{1}{2} - 1 + \frac{1}{2} = \frac{-1}{2} + \frac{1}{2}$

Now, required result, $I = I_{1} + I_{2} = \frac{-1}{2} + \frac{1}{2}$

For any prime p, show that the polynomial $x^{p-1} + x^{p-2} + \dots + x^2 + x + 1$ isirreducible let f(x) = 1+x+x2+x3.... xp-2+xp-1 = xp-1 Now, replacing x by x41, we get $f(x+1) = \frac{1}{(1+x)^{p}-1} = \frac{1}{x} [1+px+...x^{p}-1]$ $\int_{-\infty}^{\infty} f(x+1) = \frac{1}{2} \left[px + p(p-1) \frac{x^2}{21} \dots \right]$ $f(x+1) = p + p(p-1)\frac{2}{x} + p(p-1)(p-2)x^2 + p(p-1)(p-2)x^2$ Now, let a = p, a = p(p-1) ... and so. on, o plao, a, apri, plap and p2 dan BY EINSTEIN'S CRITERIA OF IRREDUCIBILITY ONER Q, f(x+1) is irreducible over Q. -To prove f(x) is also irreducible our Q. Suppose, f(x) is not inseducible and f(x)= g(x). h(x). Such deg (g(x)) and deg (h(x)) >0. Mow, f(x+1) = g(x+1). h(x+1) is not irreducible as deg(g(xxx)) >0, deg(h(xxx)) >0. , which is outsadictor of f(x) is irreducible own of by coming assumption

4. (b) Prove that the series $e^{-x} - \frac{e^{-2x}}{2} + \frac{e^{-3x}}{3} - \frac{e^{-4x}}{4} + \dots$ is uniformly convergent on [0,1].

Given series can be written as, Etn(x), where

$$t^{2}(x) = (-1)_{x} \cdot \frac{\omega}{6}$$

Limit Lunction, & (20) = lt fn(x) = 0.

Also,
$$\sum_{1}^{2} \frac{1}{1} = \frac{e^{-x}}{1} - \frac{(e^{-x})^{2}}{2} + \frac{(e^{-x})^{3}}{3}$$
...

$$\sum f_n(x) = \log \left(1 + e^{-x}\right) \quad \begin{bmatrix} \text{By expansion} \\ \text{of log}(1 + x) \end{bmatrix}$$

$$= x - \frac{x^2}{2} + \frac{x^2}{3} \dots$$

Mow, clearly, since log (14e-x) is a

simple compination of log, ex and is

log (14e-x) is bounded in [0,1].

of given series is uniformly convergent.

4.	(c)	A job shop has purchased 5 new machines of different type. There are 5 available
1		locations in the shop where a machine could be installed. Some of these locations
1		are more desirable than others for a still a land of these locations
133		are more desirable than others for particular machines because of their proximity
		to work centres which would have a heavy work flow to and from these machines.
1		increase, the objective is to assign the new machines to the qualitable leasting
1		in order to minimize the total cost of material handling. The estimated cost non
		unit time of materials handling involving each of the machines is given below for
		the respective locations. Locations 1, 2, 3, 4 and 5 are not considered suitable
		for machines A, B, C, D and E, respectively. find the optimal solution:

			in Rs.	,
1	2	3	4	. 5
A ×	10	25	25	10_
B 1	×	10	15	2
C 8	9	×	20	10
D 14	10	24	×	.15
E 10	8	25	27	× '

How would the optimal solution get modified if location 5 is also unsuitable for machine A?

	1	2	3	4	2.
A.	X	10	25	25	10
B	1	X	10	15	2
C	8	9	×	20	10
E	14	10	24	×	15
E	10	8	25	27	×.

(i) Subtract lowest element in each row from all elements of that row and repeat same process with each column.

2	X	0	15	is	0
	0	X	9	19	1
	0	1	X	12	2
1	4	0	14	X	5
- 1	2	0	17	19	X

×	0	6	3.	d
0	×	0	2	
0	1	X	0	-2
4	9	5	×	5
2	0	8	7	X

(ii) Now, cover all sows/columns, containing, 200000 with minimum number of lines (say) 8.

(iii) Find smallest number in unconvered elements and subtract this from all uncoursed elements and add at point of intersection of lives. our Repeat Step (ii), covering ZENOES. 4 HOW, 8=5=n. (V) Finding such rows with a single zero and cutting the other zeroes in that Column and repeating till all zences are encircled The optimal solution becomes. A=5, B -3, C -4, D -2, E -1, Min = 60. Ind past location 5 becomes unsuitable for A. New table 12 12 On further solving, new optimed sol. : A-2, B-3, C-4, D-5, E-1, Min = 65

SECTION - B

5. (a) Solve

$$(\partial^2 z / \partial x^2) - (\partial^2 z / \partial y^2) + (\partial z / \partial x) + 3(\partial z / \partial y) - 2z = e^{x-y} - x^2 y.$$

Ø

$$[D^2 - D'^2 + D + 3D' - 2]Z = e^{x-y} - x^2y ; D = \frac{\partial}{\partial x}, D' = \frac{\partial}{\partial y}$$

The solution of this equation be, Z = Zc + Zp. — (1)

for complementary function, Zo, Let homogeneous equation

Auxillary equation: n=(D+D'-1)(D-D'+2)=0.

for Particular Integral, Zp., Zp = 1 [ex-y-x2y]. Zp wist ex=y

$$= \frac{1}{D^2 - D'^2 + D + 3D' - 2} (e^{x-y}) = \frac{1}{1^2 - (-1)^2 + 1 - 3 - 2} e^{x-y} = \frac{-1}{4} e^{x-y}.$$

Mow, 2p, $\omega \cdot st$ $x^2y = \frac{1}{(D+D'-1)(D-D'+2)}$ = $\frac{-1}{2} \left[1 - (D+D') \right]^{-1} \left[1 + \frac{D-D'}{2} \right] (x^2y)$

$$= \frac{-1}{2} \left[1 - (D + D') \right]^{-1} \left[1 + \frac{D - D'}{2} \right] (\chi^{2} y)$$

on solving, we get, = = = (x2y + xy + 3x2 + 3x + 1x+2)

.. The general solution becomes,

1) = Z = Zc+Zp = exp, (y-x)+ exp, (y+x) - 1ex-y \$ 4 + + (x2y + xy + 3x2+ 24 + 3x + 21)

(b) Reduce the following equation to a canonical form and hence solve it : $yu_{xx} + (x + y)u_{xy} + xu_{yy} = 0$ Rewriting given equation, in Pr+Ss+Tt+f(x,y,z,pa)=0 4x + (x+4)s + xt = 0 The quadratic RA+SA+T becomes, $y\lambda^2 + (xx+y)\lambda + x = 0 \Rightarrow \lambda = -1, \frac{-x}{y}$ (Realized) Now, $\frac{dy}{dx} + \lambda_1 = 0$, $\frac{dy}{dx} + \lambda_1 = 0$. becomes. $\frac{dy}{dx} - 1 = 0$, $\frac{dy}{dx} - \frac{x}{y} = 0$. (01) y-x=0,=u(say): x2-y2=0= (say). Changing independent variable x, y to u, u. $\mathcal{T} = \frac{\partial^2 z}{\partial x} = \frac{\partial^2 z}{\partial x} \left(\frac{\partial y}{\partial x} \right)^2 + \frac{2\partial^2 z}{\partial y} \left(\frac{\partial y}{\partial x}, \frac{\partial y}{\partial x} \right) + \frac{\partial^2 z}{\partial z} \left(\frac{\partial y}{\partial x} \right)^2 + \frac{\partial^2 z}{\partial y} \left(\frac{\partial^2 y}{\partial x} \right)^2$ + 35 (31) $\Rightarrow \tau = \frac{\partial^2}{\partial y^2} - 4x \frac{\partial^2}{\partial y^2} + 4x^2 \frac{\partial^2}{\partial y^2} + \frac{2\partial^2}{\partial y} - \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial y} - \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial y} = 0$ Similarly, $t = \frac{\partial^2 z}{\partial u^2} = \frac{\partial^2 z}{\partial u^2} - 4y\frac{\partial^2 z}{\partial u\partial v} + 4y^2\frac{\partial^2 z}{\partial v^2} - \frac{2\partial z}{\partial v}$ Now, $S = \frac{\partial x}{\partial z} = \frac{\partial u^2}{\partial z^2} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial x} + \frac{\partial u}{\partial z} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \cdot \frac{\partial u}{\partial x}$ + \frac{\partial \frac{\partial \chi \frac{\partial \chi \partial \chi \frac{\partial \chi \partial \chi \frac{\partial \chi \partial \chi \frac{\partial \chi \partial \chi \partial \chi \frac{\partial \chi \partial \chi \quad \chi \partial " S = - 02 + 2 (X44) 32 + 4xy 32

D 16	
Putling values of r,s, t from @, @, @ in (1), e	9 s-
$0.\frac{9n_{r}}{0.9\frac{5}{5}} + 5(x-h)_{r}\frac{9n_{9}}{9\frac{5}{5}} + 0.\frac{9n_{r}}{9\frac{5}{5}} + 5(\lambda-x)\frac{9n}{95} = 0$) -37
$\Rightarrow \frac{1}{2} \frac{\partial^2 z}{\partial y^2} + \frac{1}{2} \frac{\partial z}{\partial y} = 0$ which is the canon for	10.5
For solution: (5) = $\left[\frac{\partial^2 z}{\partial u \partial v} + \frac{\partial z}{\partial v} = 0. \right] \times u$	5.8
$\frac{9491}{4495} + 695 = 0. \Rightarrow \left[(11) D_1 + 1 D_1 \right] S = 0$,). Y
which is clearly Cauchy-Euler type. lete=4, e	1=0
$(D_1D_1' + D_1')z = 0 \Rightarrow Z = e^{-x}\phi_1(y) + \phi_2(x)$.	
	but
Or) Z = 1 p, (logo) + p, (logu) = turker	2,4
5. (c) Using Newton's forward formula find the number of men getting wages Rs. 10 and 15 from the following data:	between
Wages in Rs.: 0+10 10-20 20-30 30-40	[10]
Frequency: 9 30 35 42	[10]
i lages (x) y; by dy dy dy Here, we use	1
0 0-10 9 30 Cumulative frequen	cy
1 10-20 39 35 5 2 as y.	#1/30 mg
12 20-30 74 42 7	
3 30-40 116 Finding for x=15.	
yo= 9, Ayo= 30, A	3,=5
$\Delta^3 y_0 = 2., u =$	
Using NEWTON'S FORWARD FORMUAS,	jo '
	0.2
A (12) = 20+ 17 70 + 1/(1-1) 720 + 1/(1-1) (1-5) 73	to.
31	,

$$+ (0.5)(-0.5)(-1.5)(5)$$

$$+ (0.5)(-0.5)(-1.5)(2).$$

5. (d) The velocity v is a particle at distance s from a point on its path is given by the table

s(ft.):	0	10	20	301	40	50	60
v(ft./sec):	47	58	64	65	61	52	38

Estimate the time taken to travel 60 ft. by using Simpson's 1/3 rule. compare the result with Simpson's 3/8 rule.

$$V = \frac{ds}{dt} =) dt = \frac{ds}{V} (or) T = \int \frac{ds}{V} ; h = 10.$$
 $V = \frac{ds}{dt} =) dt = \frac{ds}{V} (or) T = \int \frac{ds}{V} ; h = 10.$
 $V = \frac{ds}{dt} =) dt = \frac{ds}{V} (or) T = \int \frac{ds}{V} ; h = 10.$
 $V = \frac{ds}{dt} =) dt = \frac{ds}{V} (or) T = \int \frac{ds}{V} ; h = 10.$
 $V = \frac{ds}{V} = 0.$
 $V = \frac{ds}{V} = 0.$
 $V = \frac{ds}{V} ; h = 10.$
 $V = \frac{ds}{V} ; h = 10.$

Vorticity,
$$\nabla \times \vec{Q} = \begin{vmatrix} i & j & k \\ 3/6x & 3/6y & 3/6z \\ u & v & \omega \end{vmatrix} = \Omega_i \hat{i} + \Omega_z \hat{j} + \Omega_z \hat{k}$$

$$\Omega_{1} = \frac{\partial \omega}{\partial y} - \frac{\partial v}{\partial z} = Q_{1}(sqy) = Constant (given).$$

Similarly,
$$\Omega_2 = \frac{\partial q}{\partial z} - \frac{\partial \omega}{\partial x} = Q_2$$
; $\Omega_3 = \frac{\partial v}{\partial x} - \frac{\partial q}{\partial y} = Q_3$

Given fluid in incompressible,
$$\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial w}{\partial z} = 0$$

Differentiating partially with x., $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 w}{\partial x \partial z} = 0$ Now, using equations of 2, $\frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 u}{\partial y^2} \quad \text{and} \quad \frac{\partial^2 w}{\partial x \partial z} = \frac{\partial^2 u}{\partial z^2} = 0$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0 = \sqrt{2}u$ of $3 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2$

 (a) (i) Form a partial differential equation by eliminating the arbitrary functions f and g from z = y f(x) + x g(y).

(ii) Find a complete and the singular integral of 4xyz = pq + 2px²y +2qxy².

[15]

(i)
$$z = yf(x) + x(g(y))$$

Partially differentiating $\omega \cdot x \cdot t \cdot x$, $\frac{\partial z}{\partial x} = yf(x) + g(y)$.
Partially differentiating $\omega \cdot x \cdot t \cdot y$, $\frac{\partial z}{\partial y} = f(x) + xg(y)$
Now, $\frac{\partial^2 z}{\partial x^2} = yf''(x)$ and $\frac{\partial^2 z}{\partial y^2} = xg''(y)$.

$$\frac{\partial^2 z}{\partial x \partial y} = f'(x) + g'(y)$$

Now, $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = xy (f'(x) + g'(y)) + xg(y) + yf(x)$

$$\frac{\partial}{\partial x} + y \frac{\partial^2}{\partial y} = xy \frac{\partial^2}{\partial x \partial y} + z$$
. The required differential

equation.

(08)
$$Z = \frac{1}{2x} \frac{\partial z}{\partial x} \cdot \frac{1}{2y} \frac{\partial z}{\partial y} + x^2 \left(\frac{1}{2x} \frac{\partial z}{\partial x} \right) + y^2 \left(\frac{1}{2y} \frac{\partial z}{\partial y} \right) = 0$$

$$\therefore x^2 = X , y^2 = Y$$

which is clearly chariaut form.

Complete Integral

For singular Integral, put
$$\frac{\partial z}{\partial q}$$
, $\frac{\partial z}{\partial b} = 0$.

$$\frac{\partial^2}{\partial a} = x^2 + b = 0, \frac{\partial^2}{\partial b} = y^2 + a = 0.$$

$$\Rightarrow$$
 $b=-x^2$, $\alpha=-y^2$

Singular
$$Z = x^2(-y^2) + y^2(-x^2) + (-x^2)(-y^2)$$

$$Z = -x^2y^2$$

Apply Gauss-Seidel iteration method to solve the equations 20x + y - 2z = 17; 3x + 20y - z = -18; 2x - 3y + 20z = 25. [12] BY GAUSS - SEEDEL ITERATION METHOD, $x^{(k+1)} = \frac{1}{2} \left[17 - y^{(k)} + 2z^{(k)} \right]$ A(KHI) = \frac{1}{1} \left[-18 - 3x(KHI) + 5(K) \] Z(kH) = 1 [25 -2x(kH) +39(kH)]. let x° = y° = 2° = 0, (100) Using above formulae, Iteration - 1 -> $x^{(1)} = \frac{17}{20}$, $y^{(1)} = \frac{-411}{400}$, $z^{(1)} = \frac{8087}{8000}$ Iteration-2 -> x(2) = 1.0024, y(2) = -0.999, Z(2) = 0.999 Iteration-3 -> x(3) = 0.9999, y(3) = -1.000, z(3)= 1.0000 Iteration-4 -> x4)= 1.000, 4=-0.9999, Z4)= 0.99999 Clearly, the approximate values become,

porte of Might of Aveloria A Contra

(1-P) X PV for 1/2 Les

Ma Halden A pr fall to to

6. (c) Obtain the principal disjunctive and conjunctive normal forms of $p \rightarrow [(p \rightarrow q) \land \sim (\sim q \lor \sim p)].$ [08] P-9 = ~P VQ ; ~ (~p) = p. and ~ (pvq) = ~p 1 ~q and ~ (pxq) = ~px~q. MOM. ~ (Nd N Nb) = N(Nd) V N(Nb) = dvb. \$(p → q) \ (~(~q~v~p)) = (~p vq) \ (q \ p). Exper(qnq) = 91p - 2 Now, P -> [(p-19) ~ ~ (~qv~p)] becomes. NP V (NP V9) 1 (9 1/2). 30 A (dvb) (dvb) A (bx bu) X du (3) Principal ((wp 100) V (wp 19) V (prq) = Disjunctive Normal And similarly, given statement reduces to, form. wp v (~p vq) ~ (q ~ p). (3) (np 1 (np 1 d)) v (np 1 d v B) principal (((n p n d) v (n b n d) v (u b x b) () l n b n d Conjunctive

33 of 52 Write Hamilton's equations for a particle of mass m moving in a plane under a force which is some function of distance from the origin. Mass of pastide = m. let co-ordinates of the particle at time t, be P(r,0). , r = measured from origin O. Velocity, U= 8 + 78.0 (4) = (8°2 + 8°0°) 1/2 " Kinetic Energy, T= - WVI = - m(x + x 0). For Potential energy, force f = f(r). : V = - (F. dx = V(x) (say). - 2 Lagrangian: L = T-V = - m(+++6) - V(+). . 8,0 becomes generalised a-ordinates. $b^2 = \frac{g_0^2}{g_1} = m_0^2$? $b^2 = \frac{g_0^2}{g_1} = m_0 g_0$

Hamilton's function, H = Spigi - L

7. (a) A thin annulus occupies the region $0 < a \le r \le b$, $0 \le \theta \le 2\pi$, where b > a. The faces are insulated, and along the inner edge, the temperature is maintained at 0°, while along the outer edge, the temperature is held at 100°. Find the temperature distribution in the annulus. [20]

ROUGH SPACE

$$G = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} =$$

$$H = \begin{bmatrix} 1 & k \\ 0 & l \end{bmatrix}, HG = \begin{bmatrix} a & b + kd \\ 0 & d \end{bmatrix}, H \neq$$

$$GH = \begin{bmatrix} a & ak + b \\ 0 & d \end{bmatrix}$$

$$\begin{bmatrix} 1 & k \\ 0 & l \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & l \end{bmatrix}$$

