Московский Физико-Технический Институт (государственный университет)

Работа 2.1.4 "Определение теплоемкости твердых тел"

Цель работы:

1) измерение количества подведенного тепла и вызванного им нагрева твердого тела; 2) определение теплоемкости.

В работе используются:

калориметр с нагревателем и термомет- ром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания $36~\mathrm{B}.$

Описание работы

В предлагаемой работе измерение теплоемкости твердых тел про- изводится по обычной схеме. Исследуемое тело помещается в кало- риметр. Измеряется ΔQ — количество тепла, подведенного к телу, и ΔT — изменение температуры тела, произошедшее в результате подвода тепла. Теплоемкость определяется по формуле

$$C = \frac{\Delta Q}{\Delta T} = \frac{P\Delta t - \lambda (T - T_k)\Delta t}{\Delta T} = \frac{P - \lambda (T - T_k)}{\Delta T/\Delta t}$$

 $\frac{\Delta T}{\Delta t} = f(T)$ -строим график и проводим касательную при $T = T_k$

Тогда
$$C=rac{P}{(\Delta T/\Delta t)_k}$$
 Дополнительно $R_t=R_o(1+\alpha\Delta T); rac{dR}{dt}=R_olpharac{dT}{dt}$

$$C = \frac{PR_k \alpha}{(dR/dt)_k (1 + \alpha \Delta T_k)}$$

Экспериментальная установка:

нагревателя

Ход работы

1. Определим параметры R_o и α .

Нам дано:

Класс точности моста Р4833: 0,1

Масса железного цилиндра, $m_{fe}=(815,1\pm0,1)$ г

Масса алюминиевого цилиндра, $m_{al}=(294,2\pm0,1)$ г

Сила тока: I=0,3А Напряжение: U=36В Мощность: W=10,8Вт

 $R_{20} = 18 - 18,5 \,\,\mathrm{Om}$ - указано на установке

Поэтому за R_{20} возьмём среднее значение $18,25~\mathrm{Om}$

 $R_{T_k} = 18,074~{
m O}$ м - до включения нагревателя; $T_k = 23,8~{
m C}$

Тогда:

$$R_0 = \frac{R_k}{1 + \alpha \delta T_k}$$

Поэтому

$$\alpha = \frac{R_k/R_0 - 1}{\delta T_k}$$

 $\alpha \approx 4,28 \times 10^{-3}~1/\mathrm{K}$

2. Таблицы.

Пустой калориметр		
R , Om $\sigma_R = 0,0005 Om$	t, c $\sigma_t = 1c$	
18,074	0	
18,124	42,89	
18,174	85,1	
18,224	130,45	
18,274	176,79	
18,324	225,29	
18,374	275,71	
18,424	326,08	
18,474	378,5	
18,524	433,68	
18,574	491,19	
18,624	548,57	
18,674	607,96	
18,724	667,1	
18,774	729,87	
18,824	794,72	

Железо $(814, 2 \pm 0, 1)$ г		
R , Om $\sigma_R = 0,0005 Om$	t, c $\sigma_t = 1c$	
18,143	0	
18,193	48	
18,243	118	
18,293	190	
18,343	265	
18,393	340	
18,443	421	
18,493	501	
18,543	584	
18,593	668	

Ι.			
	${ m A}$ люминий $(288,0\pm0,1)$ г		
$\ $	R, Om $\sigma_R = 0,0005 Om$	t, c $\sigma_t = 1c$	
1	18,000	0	
1	18,050	45	
1	18,100	103	
1	18,150	165	
	18,200	230	
	18,250	294	
1	18,300	362	
1	18,350	430	
1	18,400	501	
Г			

2. При реизменной мощности нагревателя определим зависимость сопротивления термометра от времени для пустого калориметра $R_T = R(t)$

Используем полученную зависимость для построения графика, выражающего зависимость dR/dt=f(R). Для этого кривую графика $R_T=R(t)$ разделим на 10-15 отрезков и для каждого из них определим наклон dR/dt. По полученным значениям построим новый график, откладывая по оси абсцисс сопротивление, а по оси ординат - величину dR/dt. Экстраполируем полученный график к точке $R_T=R_k$. Запишем полученные значения в таблицу:

Пустой калориметр		
R, Om $\sigma_R = 0,0005 Om$		
18,099		
18,149		
18,199		
18,249		
18,299		
18,349		
18,399		
18,449		
18,499		
18,549		
18,599		
18,649		
18,699		
18,749		

Для расчёта погрешностей при построении графиков применялся МНК:

$$y = a + bx$$

$$b = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}$$

$$\sigma_b \approx \frac{1}{\sqrt{n}} * \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2}} - b^2$$

$$a = \langle y \rangle - b \langle x \rangle$$

$$\sigma_a = \sigma_b \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

$$b = \frac{178,61 - 18,424 \times 9,7}{339,48 - 339,44} \approx -6,189c^{-1}$$

$$a = 9,7 + 6,189 \times 18,424 \approx 123,7$$

Тогда y = -6,189x + 123,7

Погрешности этих коэффициентов соответственно равны:

$$\sigma_b \approx \frac{1}{\sqrt{14}} * \sqrt{\frac{95,77 - 94,09}{339,48 - 339,44} - 6,189^2} \approx 0,51$$

$$\sigma_a = 0,51\sqrt{339,48 - 339,44} \approx 0,102$$

Таким образом, dR/dt = -6,189R + 123,7

Измеренные таким образом значения $(dR/dt)_{R=R_k}$ и R_k подставим в формулу

$$C = \frac{PR_k \alpha}{(dR/dt)_k (1 + \alpha \Delta T_k)}$$

и вычислим теплоёмкость пустого калориметра:

$$C_0=rac{0.83}{(11.84 imes10^{-4} imes1.1}pprox637,28pprox637$$
 Дж/К Погрешность этого значения:

$$\left(\frac{\sigma_C}{C}\right)^2 = \left(\frac{\sigma_{R_k}}{R_k}\right)^2 + \left(\frac{\sigma_{dR/dt}}{dR/dt}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2$$

Вычислим отдельно погрешность $(\frac{\sigma_{dR/dt}}{dR/dt})^2$:

$$dR/dt = a + bx$$
$$(\frac{\sigma_{bx}}{bx})^2 = (\frac{\sigma_b}{b})^2 + (\frac{\sigma_x}{x})^2$$

Поэтому:

$$\sigma_{bx} = \sqrt{(\frac{\sigma_b}{b})^2 + (\frac{\sigma_x}{x})^2} \times bx$$

Поэтому:

$$\frac{\sigma_{dR/dt}}{dR/dt} \approx \sqrt{(\frac{\sigma_b}{b})^2 + (\frac{\sigma_x}{x})^2}$$

Тогда

$$\begin{split} \sigma_C &= C \times \sqrt{(\frac{\sigma_{\delta T}}{\delta T})^2 + (\frac{\sigma_{R_k}}{R_k})^2 + (\frac{\sigma_b}{b})^2 + (\frac{\sigma_x}{x})^2} \\ \sigma_C &\approx 637, 28 \times \sqrt{(\frac{0,1}{23,8})^2 + 2 \times (\frac{0,001}{18,099})^2 + (\frac{0,51}{6,189})^2} \approx 53 \end{split}$$

Тогда $C_0=637\pm53~{
m Дж/K}$

Тогда относительная погрешность составила 8 %

3. Охладив установку латунным конусом до сопротивления $R_k = 18,257$ Ом, повторим измерения прошлого пункта, но с железным конусом внутри.

При неизменной мощности нагревателя определим зависимость сопротивления термометра от времени для калориметра с железным конусом внутри $R_T = R(t)$

Используем полученную зависимость для построения графика, выражающего зависимость dR/dt=f(R). Для этого кривую графика $R_T=R(t)$ разделим на 10-15 отрезков и для каждого из них определим наклон dR/dt. По полученным значениям построим новый график, откладывая по оси абсцисс сопротивление, а по оси ординат - величину dR/dt. Экстраполируем полученный график к точке $R_T=R_k$. Запишем полученные значения в таблицу:

Калориметр с железным конусом		
$dR/dt, 10^{-4} \text{ Om/c}$	R, Om $\sigma_R = 0,0005 Om$	
9,96	18,305	
7,74	18,355	
6,9	18,405	
6,7	18,455	
6,41	18,505	
6,3	18,555	
6,12	18,605	
5,98	18,655	
5,77	18,705	
5,68	18,755	
5,58	18,805	

Для расчёта погрешностей при построении графиков применялся МНК:

$$y = a + bx$$

$$b = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}$$

$$\sigma_b \approx \frac{1}{\sqrt{n}} * \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - b^2}$$

$$a = \langle y \rangle - b \langle x \rangle$$

$$\sigma_a = \sigma_b \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

$$b = \frac{123, 21 - 18, 555 \times 6, 65}{344, 31 - 344, 288} \approx -8, 22c^{-1}$$

$$a = 6, 65 + 8, 22 \times 18, 555 \approx 156, 17$$

Погрешности этих коэффициентов соответственно равны:

$$\sigma_b \approx \frac{1}{\sqrt{11}} * \sqrt{\frac{45,663 - 44,223}{344,31 - 344,288} - 8,22^2} \approx 0,44$$
$$\sigma_a = 0,44\sqrt{344,31 - 344,288} \approx 0,06$$

Таким образом, dR/dt = -8,22R + 156,17

Измеренные таким образом значения $(dR/dt)_{R=R_k}$ и R_k подставим в формулу

$$C = \frac{PR_k \alpha}{(dR/dt)_k (1 + \alpha \Delta T_k)}$$

и вычислим теплоёмкость калориметра с железным конусом:

 $C_{Fe+0}=rac{0.844}{(6.7 imes10^{-4} imes1.1}pprox1145,18pprox1145$ Дж/К Погрешность этого значения:

$$(\frac{\sigma_{C_{Fe+0}}}{C_{Fe+0}})^2 = (\frac{\sigma_{R_k}}{R_k})^2 + (\frac{\sigma_{dR/dt}}{dR/dt})^2 + (\frac{\sigma_T}{T})^2$$

Вычислим отдельно погрешность $(\frac{\sigma_{dR/dt}}{dR/dt})^2$:

$$dR/dt = a + bx$$
$$(\frac{\sigma_{bx}}{bx})^2 = (\frac{\sigma_b}{b})^2 + (\frac{\sigma_x}{x})^2$$

Поэтому:

$$\sigma_{bx} = \sqrt{(\frac{\sigma_b}{b})^2 + (\frac{\sigma_x}{x})^2} \times bx$$

Поэтому:

$$\frac{\sigma_{dR/dt}}{dR/dt} \approx \sqrt{(\frac{\sigma_b}{b})^2 + (\frac{\sigma_x}{x})^2}$$

Тогда

$$\begin{split} \sigma_{C_{Fe+0}} &= C_{Fe+0} \times \sqrt{(\frac{\sigma_{\delta T}}{\delta T})^2 + (\frac{\sigma_{R_k}}{R_k})^2 + (\frac{\sigma_b}{b})^2 + (\frac{\sigma_x}{x})^2} \\ \sigma_{C_{Fe+0}} &\approx 1145, 18 \times \sqrt{(\frac{0,1}{23,8})^2 + 2 \times (\frac{0,001}{18,305})^2 + (\frac{0,44}{8,22})^2} \approx 61 \end{split}$$

Тогда $C_{Fe+0} = 1145 \pm 61 \; \text{Дж/K}$

Найдём теплоёмкость железного конуса:

$$C_{Fe} = C_{Fe+0} - C_0$$

$$\sigma_{C_{Fe}} = \sqrt{(\sigma_{C_{Fe+0}})^2 + (\sigma_{C_0})^2}$$

$$\sigma_{C_{Fe}} = \sqrt{(61)^2 + (53)^2} \approx 81$$

Тогда теплоёмкость железного конуса:

$$C_{Fe} = 508 \pm 81 \; \text{Дж/K}$$

Тогда относительная погрешность составила 16 % Найдём удельную теплоемкость:

$$C_{yd} = \frac{C_{Fe}}{0.815kg} \approx 623 \pm 81 \; \text{Дж/K}$$

 $\overline{\textbf{4.}}$ Охладив установку латунным конусом до сопротивления $R_k=18,213$ Ом, повторим измерения прошлого пункта, но с алюминиевым конусом внутри.

При неизменной мощности нагревателя определим зависимость сопротивления термометра от времени для калориметра с алюминиевым конусом внутри $R_T = R(t)$

Используем полученную зависимость для построения графика, выражающего зависимость dR/dt = f(R). Для этого кривую графика $R_T = R(t)$ разделим на 10-15 отрезков и для каждого из них определим наклон dR/dt. По полученным значениям построим новый график, откладывая по оси абсцисс сопротивление, а по оси ординат - величину dR/dt. Экстраполируем полученный график к точке $R_T = R_k$.

Для расчёта погрешностей при построении графиков применялся МНК:

$$y = a + bx$$

$$b = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}$$

$$\sigma_b \approx \frac{1}{\sqrt{n}} * \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2}} - b^2$$

$$a = \langle y \rangle - b \langle x \rangle$$

$$\sigma_a = \sigma_b \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

$$b = \frac{137, 1 - 18, 488 \times 7, 43}{341, 83 - 344, 8} \approx -8, 86c^{-1}$$

$$a = 7, 43 + 8, 86 \times 18, 488 \approx 170, 23$$

Тогда y = -8,86x + 170,23

Погрешности этих коэффициентов соответственно равны:

$$\sigma_b \approx \frac{1}{\sqrt{11}} * \sqrt{\frac{57, 9 - 55, 2}{341, 83 - 344, 8} - 8,86^2} \approx 1,02$$

$$\sigma_a = 1,02\sqrt{341, 83 - 344, 8} \approx 0,18$$

Таким образом, dR/dt = -8,86R + 170,23

Измеренные таким образом значения $(dR/dt)_{R=R_k}$ и R_k подставим в формулу

$$C = \frac{PR_k \alpha}{(dR/dt)_k (1 + \alpha \Delta T_k)}$$

и вычислим теплоёмкость калориметра с алюминиевым конусом:

 $C_{Al+0}=rac{0.842}{(8.64 imes10^{-4} imes1.1)}pprox1259,89pprox886$ Дж/К Погрешность этого значения:

$$(\frac{\sigma_{C_{Al+0}}}{C_{Al+0}})^2 = (\frac{\sigma_{R_k}}{R_k})^2 + (\frac{\sigma_{dR/dt}}{dR/dt})^2 + (\frac{\sigma_T}{T})^2$$

Вычислим отдельно погрешность $(\frac{\sigma_{dR/dt}}{dR/dt})^2$:

$$dR/dt = a + bx$$
$$(\frac{\sigma_{bx}}{bx})^2 = (\frac{\sigma_b}{b})^2 + (\frac{\sigma_x}{x})^2$$

Поэтому:

$$\sigma_{bx} = \sqrt{(\frac{\sigma_b}{b})^2 + (\frac{\sigma_x}{x})^2} \times bx$$

Поэтому:

$$\frac{\sigma_{dR/dt}}{dR/dt} \approx \sqrt{(\frac{\sigma_b}{b})^2 + (\frac{\sigma_x}{x})^2}$$

Тогда

$$\sigma_{C_{Al+0}} = C_{Al+0} \times \sqrt{\left(\frac{\sigma_{\delta T}}{\delta T}\right)^2 + \left(\frac{\sigma_{R_k}}{R_k}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2 + \left(\frac{\sigma_x}{x}\right)^2}$$
$$\sigma_{C_{Al+0}} \approx 886, 16 \times \sqrt{\left(\frac{0,1}{23,8}\right)^2 + 2 \times \left(\frac{0,001}{18,238}\right)^2 + \left(\frac{1,02}{8,86}\right)^2} \approx 102$$

Тогда $C_{Fe+0} = 886 \pm 102$ Дж/К

Тогда относительная погрешность составила 13 % Найдём теплоёмкость алюминиевого конуса:

$$C_{Al} = C_{Al+0} - C_0$$

$$\sigma_{C_{Al}} = \sqrt{(\sigma_{C_{Al+0}})^2 + (\sigma_{C_0})^2}$$

$$\sigma_{C_{Al}} = \sqrt{(102)^2 + (53)^2} \approx 115$$

Тогда теплоёмкость алюминиевого конуса:

$$C_{Fe} = 249 \pm 115 \; \text{Дж/K}$$

Найдём удельную теплоемкость:

$$C_{yd} = \frac{C_{Al}}{0,294kg} \approx 847 \pm 115 \; \text{Дж/кг*K}$$

Вывод

Литература

Лабораторный практикум по общей физике. Термодинамика/А.Д. Гладун - М, 2004 г