Capacity of a Binary Channel with a Time-Bounded Adversary

Mingjun Ying, Fatih Berkay Sarpkaya, Serhat Bakirtas, Elza Erkip, Theodore S. Rappaport, and Sundeep Rangan

Asilomar Conference on Signals, Systems, and Computers 2024

1. Intermittent Wireless Vulnerabilities

- ☐ In adversarial scenarios, the receiver's processing can be intermittently compromised.
 - jamming, hardware Trojans, ...
- ☐ This may happen due to:
 - hardware errors, power-saving techniques, ...

Decoding with Intermittent Errors

Research Questions:

- → What is the capacity under intermittent errors?
- → How do we design the decoder to make it robust to errors?

Main Contribution is the derivation of the worst-case adversarial capacity for a binary input memoryless channel under the influence of such a time-bounded adversary.

2. Worst-Case Adversarial Model

- $P(r_i|b_i)$: Known channel with no errors;
- Adversary $y_i = Q_i(\boldsymbol{r}, \boldsymbol{b})$ with $P(y_i \neq r_i) \leq \delta$:
 - Adversary is arbitrary, but time-bounded
 - Adversary is not known to the decoder
 - The adversary has knowledge of the transmitted codeword and received symbols, but not the shared randomness (the shared randomness [1] allows the transmitter and receiver to randomly interleave)

3. Main Idea

☐ Interleave + LLR Clipping

- Randomly interleave and de-interleave:
 - Unknown to adversary (i.e., shared randomness);
 - Compute LLR for ideal channel:

$$z'_i = \log \frac{P(y_i|b_i = 1)}{P(y_i|b_i = -1)}$$

• Clip LLR: $z_i = T_t(z_i')$ and decode as usual:

$$\widehat{\boldsymbol{b}} = \max_{\boldsymbol{b} \in \mathcal{C}} \sum_{i} b_i z_i$$

Intuition: Clipping LLR limits damage from adversary:

$$\phi_t(y) = \begin{cases} t & z'_i > t \\ z'_i & -t \le z'_i \le t \\ -t & z'_i < -t \end{cases}$$

4. Minimax Optimality

Fix error rate δ and true channel P(r|b)

Achievability

- \square There exists a threshold t and C_0 such that:
 - Any rate $R < C_0$ is achievable for all adversaries;
 - Adversary may be any, even non-causal, function;
 - Can be achieved with LLR clipping and interleaving;
 - Idea is readily implementable with existing decoders.

Converse

 \Box There exists a memoryless adversary s.t. capacity = C_0 .

5. Simulation Results

- ☐ BLER for LDPC code [2] (Code rate 1/3, 64 QAM)
 - Correct LLRs (i.e., no adversary)
 - Corrupted LLRs (worst-case adversary, no thresholding)
 - Clipped LLRs (minimax optimum)
- \square 5% corruption is assumed. (δ = 0.05)
- ☐ Clipping the LLRs provides improved robustness.

5G NR LDPC BG1 (K =8448)

5G NR LDPC BG2 (K =3840)

6. Conclusions

- ☐ Our work provide an **exact characterization** of the capacity in the presence of a time-bounded adversary.
- ☐ Optimal capacity achievable with simple modifications to existing decoders (clipped LLRs + interleaving)
- ☐ Shared randomness is essential
- ☐ Simulations on a real LDPC code
- ☐ Future applications:
 - Jammers with frequency hopping
 - Low-power circuits with intermittent errors

7. References

- [1] A. D. Sarwate, "Coding against myopic adversaries," in 2010 IEEE Information Theory Workshop. IEEE, 2010, pp. 1–5.
- [2] 3GPP, "Multiplexing and channel coding (Release 15)," 3GPP TR 38.212 V15.2.0 (2018-07), pp. 1 –101, July 2018.