Below is a step-by-step look at what the slide is showing and how one would analyze it. The core design problem is:

Given a 3-bit input
$$(X_2X_1X_0)$$
, produce a 3-bit output $(Y_2Y_1Y_0)$ which equals "input 2."

Because we are working in only 3 bits, the outputs for small inputs become negative in 2's-complement form. For example, "0 2" (decimal) is binary = 110 if interpreted as -2 in 3-bit 2's-complement.

1. Construct the Truth Table

List out all eight input combinations $(X_2X_1X_0)$ from 0 to 7 in decimal, then compute (input -2) in 3-bit 2's-complement:

Decimal	$X_2X_1X_0$	"input – 2"	$Y_2Y_1Y_0$ (3-bit 2's-complement)
0	000	-2	110
1	001	-1	111
2	010	0	000
3	011	1	001
4	100	2	010
5	101	3	011
6	110	4	100
7	111	5	101

In other words:

- input = $0 \rightarrow \text{output} = 110$
- input = $1 \rightarrow \text{output} = 111$
- input = $2 \rightarrow \text{output} = 000$
- \bullet ... and so on.

2. Fill the K-Map(s)

A Karnaugh map (K-map) for a 3-bit input is a 2×4 or 4×2 grid in Gray code order.

One common layout (columns = X_2X_1 , row = X_0) is:

- Columns go $00 \to 01 \to 11 \to 10$ so that each step flips only one bit.
- Rows go $X_0 = 0$ then $X_0 = 1$.

Because the output itself is **3 bits** (Y_2, Y_1, Y_0) , you actually fill **three** separate K-maps (one per output bit).

(a) K-Map for Y_2

From the truth table:

$$Y_2 = 1$$
 when input decimal $\in \{0, 1, 6, 7\}$

That corresponds to $(X_2X_1X_0) = 000, 001, 110, 111.$

Placing 1's in those K-map cells and 0 in the rest, you find that Y_2 is 1 in two adjacent columns (00 and 11) for **both** $X_0 = 0$ and $X_0 = 1$. The largest group covers those entire two columns, yielding a simplified expression:

$$Y_2 = (X_2' \wedge X_1') \vee (X_2 \wedge X_1)$$

which is the "equivalence" function $X_2 \leftrightarrow X_1$ (i.e. $Y_2 = 1$ exactly when X_2 and X_1 match).

(b) K-Map for Y_1

From the table:

$$Y_1 = 1$$
 when input decimal $\in \{0, 1, 4, 5\}$.

In terms of $(X_2X_1X_0)$, that is 000,001,100,101. Notice that those all have $X_1=0$. Hence:

$$Y_1 = X_1'$$
 (i.e. $Y_1 = \neg X_1$).

(c) K-Map for Y_0

From the table:

$$Y_0 = 1$$
 when input decimal $\in \{1, 3, 5, 7\}$.

Those are exactly the cases where $X_0 = 1$. Hence:

$$Y_0 = X_0$$
.

3. Final Simplified Logic

Putting it all together:

$$Y_2 = X_2' X_1' + X_2 X_1 \quad \text{(equivalence of X_2 and X_1)},$$

$$Y_1 = X_1',$$

$$Y_0 = X_0.$$

If you wire up a 3-bit combinational circuit whose outputs follow those three equations, it implements "input -2" under 3-bit 2's-complement arithmetic.

Takeaways

1. K-Map Setup

• Label rows/columns in Gray code so adjacent cells differ by only one input bit.

2. Filling Outputs

• For each possible input, compute "input-2" in 3-bit 2's-complement and mark the corresponding 1/0 in the map for each output bit.

3. Grouping and Simplifying

- Combine adjacent 1-cells to get minimal SOP (Sum of Products). Here, we see the neat patterns:
 - Y_2 "equivalence" of X_2 and X_1 .

- $-Y_1$ is simply $\overline{X_1}$.
- $-Y_0$ is simply X_0 .

Hence, the slide is illustrating how to go from the truth table for "input minus 2" to a Karnaugh map, and then derive the simplest Boolean expressions for each output bit.