Drone Precision Landing on a Moving Platform

Workshop in Autonomous Systems Simulation (Fall 2025)

Today's talk

Requirements Scenario

Environmental constraints Evaluation criteria

System architecture Live Run

Sequence Diagram Future Design

Class Diagram Alternative Design

Requirements

- Autonomous guidance
- Real time computation

Constraints

- No obstacles
- Platform: constant* vx and vy limited to +-5 m/s, vz = 0
- Camera: Limited resolution
- Wind: constant*, limited to +-10 m/s
- Sensors noise: constant and only in x,y axis of pos

*can be altered

System architecture

Sequence Diagram App Threads

Sequence Diagram Orchestrator

- +orchestrator: BasicOrchestrator
- -running_event: threadding.event
- -terminated: bool
- -fps: BasicFPS
- +is running(): bool
- +is_terminated(): bool
- +resume()
- +pause()
- +terminate()
- +status(): str
- +run()

SimulationRunner

- +continue streaming(): bool
- +stream(frame: np.array)
- +set_pad_vel(vel: np.array)
- +get pad vel(): np.array
- +plot_logs()

BasicGUI

- -simulation: BasicSimulation
- -terminate btn
- -pause btn
- -wind x
- -wind y
- -pad vel x
- -pad_vel_y
- -timer
- -on terminate()
- -toaggle_pause_resume()
- -apply_wind()
- -apply_pad_vel()
- -sync_pause_label()

GUI

- -simulation: SimulationRunner
- -camera streamer data label
- -simulation_data_label
- -camera_label
- +update_simulation_data(data: str)
- +update_camera_streamer_data(data: str)
- +update_camera_view(frame: np.array)

CameraStreamer

- -simulation
- -fps: BasicFPS
- -resolutions: dict(name<str> : [w,h])
- -option: mujoco.MjvOption
- -camera: mujoco.MjvCamera
- +status(): str +run()

Scenario

The drone hovers and the platform start moving

follows and catches up to the platform

Bottom camera streams to marker detection model

Prediction model makes a prediction of the mean detections

The drone gets a better evaluation of the platform position

The drone goes through the landing phases

Evaluation

- Success or Fail: Land or Crash
- Accuracy: x,y absolute error
- Delay: time to land

Live Run

Future Design

- Tune hyper parameters from config file
- Platform controller: vz != 0, dynamic movement
- Wind model: dynamic, different types
- Sensors noise: dynamic, on sensors

New:

- Orchestrator: abort mission
- Fog model
- FPS model: better real time computations

Alternative Designs

change	What to do update
drone	drone.xml, models.py, controllers.py
platform	platform.xml, models.py, controllers.py
gui	gui.py
predictor	predictor.py
noise	noises.py
sensor	sensors.py
scenario	orchestrator.py, scene.xml