

1^{ère} année Master MAS Séries Chronologiques Année : 2019/2020

Corrigé de l'examen final

EXERCICE N° 1:

1. Représenter graphiquement cette série temporelle :

La série chronologique

FIGURE 1 – Série chronologique.

- 2. Le nuage de points est limité par deux droites qui ne sont pas parallèles : Les variations saisonnières sont proportionnelles à la tendance. L'enveloppe de la courbe s'évase quand la tendance est croissante.
- 3. Estimer la tendance de cette série par la méthode des moindres carrés ordinaires (MCO). On a

$$\overline{t} = 8.5, \quad \overline{x} = 53.75$$

et

$$\sigma_t^2 = 21.25, \qquad \sigma_X^2 = 662.94.$$

De plus,

$$Cov(t, X) = 54.75.$$

L'équation de la droite de la régression de X sur t, X = at + b, avec :

$$a:=rac{Cov(t,X)}{\sigma_t^2}=2.58$$
 et $b:=\overline{x}-a\overline{t}=31.85$

	t	X	t^2	X^2	$t \times X$
	1	36	1	1296	36
	2	50	4	2500	100
	3	31	9	961	93
	4	21	16	441	84
	5	50	25	2500	250
	6	68	36	4624	408
	7	40	49	1600	280
	8	24	64	576	192
	9	62	81	3844	558
	10	90	100	8100	900
	11	51	121	2601	561
	12	31	144	961	372
	13	78	169	6084	1014
	14	120	196	14400	1680
	15	70	225	4900	1050
	16	38	256	1444	608
Total	136	860	1496	56832	8186

4. Représenter la droite d'ajustement sur le graphique précédent.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
m_t	34.43	37.00	39.58	42.16	44.73	47.31	49.89	52.46	55.04	57.61	60.19	62.77	65.34	67.92	70.50	73.07

FIGURE 2 – Ajustement Linéaire.

5. Estimer les coefficients saisonniers. Rapport = Série brute / Tendance

Années	trimestre 1	trimestre 2	trimestre 3	trimestre 4
1	1.05	1.35	0.78	0.50
2	1.12	1.44	0.80	0.46
3	1.13	1.56	0.85	0.49
4	1.19	1.77	0.99	0.52
Coefficients saisonniers	1.12	1.53	0.86	0.49

Etablir la série désaisonnalisée ou corrigée des variations saisonnières.
 La série corrigée des variations saisonnières = Série brute / Coefficient saisonnier multiplicatif

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
X_t^{cvs}	32.12	32.69	36.20	42.65	44.61	44.46	46.71	48.74	55.31	58.85	59.56	62.96	69.59	78.46	81.74	77.18

FIGURE 3 – Série corrigée des variations saisonnières.

7. Donner une prévision de la série au troisième trimestre de la cinquième année.

$$\widehat{X_{19}} = (2.58 \times 19 + 31.85) \times 0.86 = 69.55$$

EXERCICE N° 2:

1. On considère le processus défini par $\forall t \in \mathbb{Z}$, $X_t = \epsilon_t - \frac{1}{\theta} \epsilon_{t-1}$ où $(\epsilon_t)_{t \in \mathbb{Z}}$ est un bruit blanc et $\theta \in]-1,+1[$.

Montrer que X_t est stationnaire.

On a

$$\mathbb{E}[X_t] = \mathbb{E}\left[\epsilon_t - \frac{1}{\theta}\epsilon_{t-1}\right] = \mathbb{E}[\epsilon_t] - \frac{1}{\theta}\mathbb{E}[\epsilon_{t-1}] = 0,$$

$$\mathbb{V}[X_t] = \mathbb{V}[\epsilon_t - \frac{1}{\theta}\epsilon_{t-1}] = \mathbb{V}[\epsilon_t] + \frac{1}{\theta^2}\mathbb{V}[\epsilon_{t-1}] - 2\frac{1}{\theta}\mathbb{C}ov(\epsilon_t, \epsilon_{t-1}) = \left(1 + \frac{1}{\theta^2}\right)\sigma^2$$

et

$$\mathbb{C}ov(X_{t}, X_{t+h}) = \mathbb{E}[X_{t}X_{t+h}] - \mathbb{E}[X_{t}]\mathbb{E}[X_{t+h}] \\
= \mathbb{E}\left[\left(\epsilon_{t} - \frac{1}{\theta}\epsilon_{t-1}\right)\left(\epsilon_{t+h} - \frac{1}{\theta}\epsilon_{t+h-1}\right)\right] \\
= \mathbb{E}\left[\epsilon_{t}\epsilon_{t+h} - \frac{1}{\theta}\epsilon_{t-1}\epsilon_{t+h} - \frac{1}{\theta}\epsilon_{t}\epsilon_{t+h-1} + \frac{1}{\theta^{2}}\epsilon_{t-1}\epsilon_{t+h-1}\right] \\
= \mathbb{E}[\epsilon_{t}\epsilon_{t+h}] - \frac{1}{\theta}\mathbb{E}[\epsilon_{t-1}\epsilon_{t+h}] - \frac{1}{\theta}\mathbb{E}[\epsilon_{t}\epsilon_{t+h-1}] + \frac{1}{\theta^{2}}\mathbb{E}[\epsilon_{t-1}\epsilon_{t+h-1}] \\
= \begin{cases}
\left(1 + \frac{1}{\theta^{2}}\right)\sigma^{2} & \text{si } h = 0, \\
-\frac{1}{\theta}\sigma^{2} & \text{si } |h| = 1, \\
0 & \text{sinon.}
\end{cases}$$

2. La fonction d'auto-covariance $\gamma(\cdot)$ et la fonction d'auto-corrélation $\rho(\cdot)$, de X_t :

$$\gamma(h) = \left\{ \begin{array}{ll} \left(1 + \frac{1}{\theta^2}\right)\sigma^2 & \text{ si } h = 0, \\ -\frac{1}{\theta}\sigma^2 & \text{ si } |h| = 1, \\ 0 & \text{ sinon.} \end{array} \right.$$

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)} = \left\{ \begin{array}{ll} 1 & \text{si } h = 0, \\ -\frac{\theta}{\theta^2 + 1} & \text{si } |h| = 1, \\ 0 & \text{sinon.} \end{array} \right.$$

3. La fonction d'auto-corrélation partielle de X_t .

On a $\rho_{11} = \rho_1$ et

$$\rho_{22} = \frac{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & 0 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{vmatrix}} = -\frac{\rho_1^2}{1 - \rho_1^2}$$