Write up

CRITERIA	MEETS SPECIFICATIONS	IMPLEMENTATION DETAILS
Implemented body rate control in C++.	The controller should be a proportional controller on body rates to commanded moments. The controller should take into account the moments of inertia of the drone when calculating the commanded moments.	Please look at the comments in lines under QuadControl.cpp:185192
Implement roll pitch control in C++.	a body rate command. The controller	Please look at the comments in lines under QuadControl.cpp:226258
Implement altitude controller in C++.	The controller should use both the down position and the down velocity to command thrust. Ensure that the output value is indeed thrust (the drone's mass needs to be accounted for) and that the	Please look at the comments in lines under QuadControl.cpp:226258

CRITERIA	MEETS SPECIFICATIONS	IMPLEMENTATION DETAILS	
	thrust includes the non-linear effects		
	from non-zero roll/pitch angles.		
	Additionally, the C++ altitude controller		
	should contain an integrator to handle		
	the weight non-idealities presented in		
	scenario 4.		
Implement lateral	The controller should use the local NE	Please look at the comments in lines under	
position control in	position and velocity to generate a		
C++.	commanded local acceleration.	QuadControl.cpp:356372	
	The controller can be a		
Implement yaw	linear/proportional heading controller to	Please look at the comments in lines under	
control in C++.	yaw rate commands (non-linear	QuadControl.cpp:408415	
	transformation not required).	Quad controllepp. 100.113	
Implement	The thrust and moments should be		
calculating the	converted to the appropriate 4 different		
motor commands	desired thrust forces for the moments.	Please look at the comments in lines under	
given commanded	Ensure that the dimensions of the drone	QuadControl.cpp:79151	
thrust and moments	are properly accounted for when		
in C++.	calculating thrust from moments.		