Формат

В контрольной работе будет 6 задач. Задачи имеют равный вес. Продолжительность работы 120 минут. Можно использовать чит-лист А4 и простой калькулятор.

Демо «Хонсю»

1. Случайный вектор (X,Y) имеет функцию плотности

$$f(x,y) = \begin{cases} cx + 3y, \text{ если } x \in [0,1], y \in [0,1] \\ 0, \text{ иначе.} \end{cases}$$

- а) Найдите константу c.
- б) Найдите функцию плотности $f_X(x)$ и условную функцию плотности $f(y \mid x)$.
- в) Найдите $\mathbb{E}(X^3)$, $\mathbb{C}\mathrm{orr}(X,Y)$ и $\mathbb{E}(Y\mid X)$.
- 2. Величина X имеет экспоненциальное распределение с интенсивностью $\lambda = 1$.
 - а) Найдите энтропию величины X.
 - б) Сколько в среднем вопросов нужно задать, чтобы угадать X с точностью до 10^{-6} , при использовании оптимальной стратегии?
 - в) А сколько в среднем вопросов придётся задать, чтобы угадать X с точностью до 10^{-6} , если ошибочно верить, что она распределена экспоненциально с интенсивностью $\lambda=2$?
- 3. Случайная величина X имеет нормальное распределение $\mathcal{N}(3,10)$. Обозначим её функции распределения и плотности как F и f, соответственно.
 - а) Найдите F(5) и f(0).
 - б) Найдите точку экстремума f и точки перегиба f.
 - в) Схематично постройте графики F и f на соседних графиках друг над другом.
 - г) Найдите α и β , если известно, что $Y=(X-\alpha)/\beta \sim \mathcal{N}(0,1).$
- 4. Вектор $X=(X_1,X_2,X_3)$ имеет многомерное нормальное распределение $\mathcal{N}(\mu,C)$, где $\mu=(1,2,3)$

и
$$C = \begin{pmatrix} 10 & -1 & 0 \\ & 20 & 1 \\ & & 30 \end{pmatrix}$$
.

Рассмотрим вектор $Y = (Y_1, Y_2) = (X_1 + X_2 + X_3, 2X_2 - X_3).$

- а) Найдите ожидание $\mathbb{E}\,Y$ и ковариационную матрицу $\mathbb{V}\mathrm{ar}\,Y.$ Как распределён вектор Y?
- б) Найдите $\mathbb{E}(X_1X_2X_3)$ и $\mathbb{C}\mathrm{ov}(X_1^2,X_3).$
- 5. Такси прибывают на остановку пуассоновским потоком с интенсивностью $\lambda=10$ в час. Пусть Y_t количество такси, прибывших от начала наблюдения до момента времени t.
 - а) Найдите функцию $\mathbb{E}(Y_5-Y_t)$ и постройте её график.
 - б) Найдите функцию $\mathbb{V}\mathrm{ar}(Y_5-Y_t)$ и постройте её график.

- в) Для вектора $X = (Y_1, Y_5, Y_{10})$ найдите $\mathbb{E} X$ и \mathbb{V} ar X.
- 6. Случайная величина X имеет функцию распределения

$$F(x) = \begin{cases} 0, \text{ если } x < 0, \\ x/4, \text{ если } x \in [0,1) \\ x/4 + 1/4, \text{ если } x \in [1,3), \\ b, \text{ если } x \geq 3. \end{cases}$$

- a) Найдите b.
- б) Найдите $\mathbb{P}(X=1)$ и $\mathbb{P}(X=2)$.
- в) Найдите $\mathbb{E}(X)$, $\mathbb{V}ar(X)$ и $\mathbb{C}orr(X, X^2)$.

Демо «Сикоку»

1. Случайный вектор (X,Y) имеет функцию плотности

$$f(x,y) = egin{cases} 4xy, \ ext{если} \ x \in [0,1], y \in [0,1] \\ 0, \ ext{иначе}. \end{cases}$$

- а) Найдите $\mathbb{P}(X + Y < 1)$, $\mathbb{P}(X + 2Y < 1 \mid X + Y < 1)$.
- б) Найдите функцию плотности $f_X(x)$ и условную функцию плотности $f(y \mid x)$.
- в) Найдите совместную функцию плотности $f_{UV}(u,v)$, где U=2X+3Y, V=2X-4Y. Зависимы ли величины U и V?
- 2. Величина X имеет нормальное распределение $\mathcal{N}(1,4).$
 - а) Найдите энтропию величины X.
 - б) Сколько в среднем вопросов нужно задать, чтобы угадать X с точностью до 10^{-6} , при использовании оптимальной стратегии?
 - в) А сколько в среднем вопросов придётся задать, чтобы угадать X с точностью до 10^{-6} , если ошибочно верить, что она распределена $\mathcal{N}(2,4)$?
- 3. Случайная величина X имеет функцию плотности $f(x) = c \cdot \exp(4x x^2/32)$, где c некоторая константа.
 - а) Как распределена случайная величина X?
 - б) Найдите константу c.
 - в) Найдите $\mathbb{E}(X^4)$, $\mathbb{E}(X^3)$, $\mathbb{C}\mathrm{ov}(X^3,X)$.

Подсказка: если представить X как $X=\mu+Y$, то $\mathbb{E}(Y)=0$ и можно будет применить лемму Стейна $\mathbb{E}(Yg(Y))=\sigma^2\,\mathbb{E}(g'(Y)).$

4. Вектор X имеет многомерное нормальное распределение $\mathcal{N}(\mu,C)$ с функцией плотности f(x). Рассмотрим функцию $h(x)=\ln f(x)$, где $x\in\mathbb{R}^n$.

- а) В какой точке функция h(x) достигает своего максимума?
- б) Чему равна матрица Гессе функции h(x)?

У случайного вектора Y функция плотности равна $f(y_1,y_2)=c\cdot \exp(-4y_1^2-6y_2^2+2y_1+20y_2).$

- в) Найдите $\mathbb{E} Y$, \mathbb{V} ar Y. Как распределён вектор Y?
- г) Найдите \mathbb{C} orr (Y_1, Y_2) .
- 5. Такси прибывают на остановку пуассоновским потоком с интенсивностью $\lambda=10$ в час. Пусть Y_t количество такси, прибывших от начала наблюдения до момента времени t.
 - а) Найдите $\mathbb{P}(Y_{0.1}=2)$, $\mathbb{P}(Y_{0.2}=2\mid Y_{0.1}=1)$.
 - б) Найдите \mathbb{C} orr (Y_1, Y_7) .
 - в) Я только что пришёл на остановку. Какова вероятность того, что следующее такси я увижу раньше, чем за 5 минут?
- 6. Илон Маск подбрасывает правильную монетку два раза. Рассмотрим три индикатора: I_1 индикатор того, что в первом броске выпал орёл, I_2 индикатор того, что во втором броске выпал орёл, I_3 индикатор того, что результаты двух бросков одинаковые.
 - а) Найдите BestLin($I_3 \mid I_1$).
 - б) Найдите BestLin($I_3 \mid I_1, I_2$).
 - в) Найдите $\mathbb{E}(I_3 \mid I_1, I_2)$.

Уточнение: конечно, функция $\operatorname{BestLin}(Y\mid X,Z)$ обязана иметь вид $\alpha+\beta X+\gamma Z.$