Telco Customer Churn Prediction

Problem Statement: Telco Customer Churn Prediction

A major telecommunications company is facing a significant issue with customer retention. Customers are leaving the company (i.e., churning) at a high rate, which negatively impacts revenue and long-term business growth. The company has collected historical customer data, including demographic information, account details, and service usage patterns.

Objective

Develop a machine learning model that predicts whether a customer will churn based on their characteristics and service usage data. This predictive model will help the company proactively identify at-risk customers and take targeted actions to improve retention.

1. Libraries And Data Loading

```
In [1]:
        # Data manipulation and analysis
        import pandas as pd
        import numpy as np
        from scipy import stats
        # Data visualization
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Preprocessing
        from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder
        from sklearn.model_selection import train_test_split
        # Handling imbalance
        from imblearn.over sampling import SMOTE
        # Machine Learning Models
        from sklearn.linear_model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive bayes import GaussianNB
        from xgboost import XGBClassifier
        from sklearn.svm import SVC
        # Model evaluation
        from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_
        from sklearn.metrics import confusion matrix, classification report, roc curve
        from sklearn.metrics import roc_curve, auc
        from sklearn.metrics import ConfusionMatrixDisplay
        # Hyperparameter tuning
        from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, cross_val_score
```

2. Data Overview

• Dataset: Telco Customer Churn

Rows: 7043Columns: 21

df.head()

In [2]:

• **Objective**: Predict whether a customer will churn (**Yes/No**)

■ **Yes (1)** →They have left the service.

■ **No (0)** →They are still an active user of the service.

3. Data Observations & Cleaning (EDA)

5 ·

Out[2]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	Inte
	0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	
	1	5575- GNVDE	Male	0	No	No	34	Yes	No	
	2	3668- QPYBK	Male	0	No	No	2	Yes	No	
	3	7795- CFOCW	Male	0	No	No	45	No	No phone service	
	4	9237- HQITU	Female	0	No	No	2	Yes	No	

5 rows × 21 columns

In [3]: df.drop('customerID', axis=1, inplace=True)
 df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 20 columns):
    Column
                    Non-Null Count Dtype
---
                    -----
0
    gender
                    7043 non-null object
    gender 7043 non-null object
SeniorCitizen 7043 non-null int64
1
2 Partner
                   7043 non-null object
                   7043 non-null object
3 Dependents
                   7043 non-null int64
4
   tenure
5 PhoneService 7043 non-null object
6 MultipleLines 7043 non-null object
    InternetService 7043 non-null object
7
8 OnlineSecurity 7043 non-null object
9 OnlineBackup
                   7043 non-null object
10 DeviceProtection 7043 non-null object
11 TechSupport 7043 non-null object
12 StreamingTV 7043 non-null object
13 StreamingMovies 7043 non-null object
14 Contract
              7043 non-null object
15 PaperlessBilling 7043 non-null object
16 PaymentMethod 7043 non-null object
```

dtypes: float64(1), int64(2), object(17)

17 MonthlyCharges 7043 non-null float64

memory usage: 1.1+ MB

18 TotalCharges

19 Churn

Initial Observations

- Target column: Churn (Yes/No).
- Feature types:
 - Categorical (e.g., gender , InternetService , Contract)

7043 non-null object

7043 non-null object

- Numerical (e.g., tenure , MonthlyCharges)
- Note: TotalCharges is of type object, but it should be numeric needs cleaning.

```
Out[4]: gender
        SeniorCitizen
        Partner
                          0
        Dependents
        tenure
                         0
                         0
        PhoneService
        MultipleLines
                          0
                         0
        InternetService
        OnlineSecurity
                         0
        OnlineBackup
                          0
        DeviceProtection 0
        TechSupport
        StreamingTV
                         0
        StreamingMovies
                         0
        Contract
                          0
        PaperlessBilling 0
        PaymentMethod
                          0
        MonthlyCharges
                          0
                          0
        TotalCharges
        Churn
                          0
        dtype: int64
In [5]: for col in df.columns:
           print(col,len(df[df[col]==" "]))
           print("_____
```

```
SeniorCitizen 0
       Partner 0
       Dependents 0
       tenure 0
       PhoneService 0
       MultipleLines 0
       InternetService 0
       OnlineSecurity 0
       OnlineBackup 0
       DeviceProtection 0
       TechSupport 0
       StreamingTV 0
       StreamingMovies 0
       Contract 0
       PaperlessBilling 0
       PaymentMethod 0
       MonthlyCharges 0
       TotalCharges 11
       Churn 0
In [6]: df["TotalCharges"] = pd.to_numeric(df["TotalCharges"], errors='coerce')
In [7]: df[df["TotalCharges"].isnull()]
```

gender 0

Out[7]:		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetServic
	488	Female	0	Yes	Yes	0	No	No phone service	DS
	753	Male	0	No	Yes	0	Yes	No	N
	936	Female	0	Yes	Yes	0	Yes	No	DS
	1082	Male	0	Yes	Yes	0	Yes	Yes	N
	1340	Female	0	Yes	Yes	0	No	No phone service	DS
	3331	Male	0	Yes	Yes	0	Yes	No	N
	3826	Male	0	Yes	Yes	0	Yes	Yes	N
	4380	Female	0	Yes	Yes	0	Yes	No	N
	5218	Male	0	Yes	Yes	0	Yes	No	N
	6670	Female	0	Yes	Yes	0	Yes	Yes	DS
	6754	Male	0	No	Yes	0	Yes	Yes	DS
	4								•
In [8]:	df["To	otalChar	ges"] = df["T	otalChar	ges"].fillna	(0)			
In [9]:			rows where To ws = df[df["To						

Display the rows
zero_value_rows

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetServic
488	Female	0	Yes	Yes	0	No	No phone service	DS
753	Male	0	No	Yes	0	Yes	No	N
936	Female	0	Yes	Yes	0	Yes	No	DS
1082	Male	0	Yes	Yes	0	Yes	Yes	N
1340	Female	0	Yes	Yes	0	No	No phone service	DS
3331	Male	0	Yes	Yes	0	Yes	No	N
3826	Male	0	Yes	Yes	0	Yes	Yes	N
4380	Female	0	Yes	Yes	0	Yes	No	N
5218	Male	0	Yes	Yes	0	Yes	No	N
6670	Female	0	Yes	Yes	0	Yes	Yes	DS
6754	Male	0	No	Yes	0	Yes	Yes	DS
4								•

Findings

- All columns had 0 blank values **except** for TotalCharges , which had **11** blank space entries.
- After converting TotalCharges to numeric with errors='coerce', the blank values were turned into NaN.
- Filled NaN values in TotalCharges with 0.
- Identified **11** rows where TotalCharges == 0.
- All 11 rows had tenure = 0, indicating that these are new customers who have not been billed yet.
- Therefore, these entries with TotalCharges = 0 are not data errors but valid records for customers with no tenure yet.

In [10]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 20 columns):
    Column
               Non-Null Count Dtype
---
                    -----
   gender 7043 non-null object
SeniorCitizen 7043 non-null int64
                    7043 non-null object
0
1
2 Partner
                   7043 non-null object
                   7043 non-null object
3 Dependents
                   7043 non-null int64
4
   tenure
5 PhoneService 7043 non-null object
6 MultipleLines 7043 non-null object
    InternetService 7043 non-null object
7
8 OnlineSecurity 7043 non-null object
                   7043 non-null object
9 OnlineBackup
10 DeviceProtection 7043 non-null object
11 TechSupport 7043 non-null object
12 StreamingTV 7043 non-null object
13 StreamingMovies 7043 non-null object
14 Contract
               7043 non-null object
15 PaperlessBilling 7043 non-null object
16 PaymentMethod 7043 non-null object
17 MonthlyCharges 7043 non-null float64
18 TotalCharges
                     7043 non-null float64
19 Churn
                     7043 non-null object
dtypes: float64(2), int64(2), object(16)
memory usage: 1.1+ MB
```

3.1) Numerical Feature Analysis

In [11]: df.describe().T

Out[11]:

	coun	mean	std	min	25%	50%	75%	max
SeniorCiti	zen 7043.0	0.162147	0.368612	0.00	0.00	0.00	0.00	1.00
ten	ure 7043.0	32.371149	24.559481	0.00	9.00	29.00	55.00	72.00
MonthlyChar	ges 7043.0	64.761692	30.090047	18.25	35.50	70.35	89.85	118.75
TotalChar	ges 7043.0	2279.734304	2266.794470	0.00	398.55	1394.55	3786.60	8684.80

```
In [12]: # Set the figure size and layout
fig, axes = plt.subplots(1, 3, figsize=(18, 6)) # 1 row, 3 columns

# Plot each boxplot in a subplot
sns.boxplot(x='tenure', data=df, ax=axes[0])
axes[0].set_title('Tenure')

sns.boxplot(x='MonthlyCharges', data=df, ax=axes[2])
axes[1].set_title('Monthly Charges')

sns.boxplot(x='TotalCharges', data=df, ax=axes[1])
axes[2].set_title('Total Charges')

plt.tight_layout()
plt.show()
```



```
In [13]:

def detect_outliers_iqr(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    outliers = df[(df[column] < lower_bound) | (df[column] > upper_bound)]
    print(f"{column}: {len(outliers)} outliers")
    return outliers

# Apply to each numerical feature
for col in ['tenure', 'MonthlyCharges', 'TotalCharges']:
    detect_outliers_iqr(df, col)
```

tenure: 0 outliers
MonthlyCharges: 0 outliers
TotalCharges: 0 outliers

Findings: Numerical Feature Analysis & Outlier Detection

1. Descriptive Statistics:

- tenure ranges from 0 to 72 months, with a median of 29.
- MonthlyCharges has a wide spread, ranging from 18.25 to 118.75.
- TotalCharges ranges from 0 to 8684.80, with a high standard deviation, indicating significant variability in customer billing.

2. Boxplot Visualization:

• Visual inspection of boxplots shows that tenure, MonthlyCharges, and TotalCharges distributions do not show outliers.

3. Outlier Detection (IQR Method):

- No outliers were detected in:
 - tenure
 - MonthlyCharges
 - TotalCharges

```
In [14]: import matplotlib.pyplot as plt
import seaborn as sns

# Set style
sns.set(style="whitegrid")
```

```
# Separate numerical and target
numerical_features = ["tenure", "MonthlyCharges", "TotalCharges"]

# Plot distributions of numerical features
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
for i, feature in enumerate(numerical_features):
    row, col = divmod(i, 2)
    sns.histplot(data=df, x=feature, hue="Churn", kde=True, ax=axes[row][col])
    axes[row][col].set_title(f"{feature} Distribution by Churn")

plt.tight_layout()
plt.show()
```


Visual Analysis

1. Tenure vs Churn

• Customers with **low tenure** are more likely to churn.

TotalCharges

• Longer tenure is associated with customer retention.

2. Monthly Charges vs Churn

- Churn is higher among customers with **high monthly charges**.
- Indicates pricing could be a churn driver.

3. Total Charges vs Churn

- Churners mostly have **low total charges**, possibly due to short tenure.
- Reinforces the idea that new users are more likely to leave.

- Tenure, MonthlyCharges, and TotalCharges show strong patterns with churn.
- Recently joined or low-spending users have a higher churn risk.
- These features may be **important predictors** in the classification model.

```
In [15]: # Select relevant features
    corr_features = df[['tenure', 'MonthlyCharges', 'TotalCharges']]

# Calculate correlation matrix
    corr_matrix = corr_features.corr()

# Plot heatmap
    plt.figure(figsize=(8, 6))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', cbar=True)
    plt.title('Correlation Matrix: Tenure, MonthlyCharges, TotalCharges')
    plt.show()
```


3.2) Categorical Feature Analysis

```
In [16]: # Check data types and unique values in each column
unique_values = df.nunique()
unique_values
```

```
Out[16]: gender
          SeniorCitizen
                                 2
          Partner
                                 2
                                 2
          Dependents
          tenure
                                73
                                 2
          PhoneService
         MultipleLines
                                 3
                                 3
          InternetService
          OnlineSecurity
                                 3
                                 3
          OnlineBackup
                                 3
          DeviceProtection
                                 3
          TechSupport
          StreamingTV
                                 3
                                 3
          StreamingMovies
                                 3
          Contract
          PaperlessBilling
                                 2
          PaymentMethod
                                 4
          MonthlyCharges
                              1585
          TotalCharges
                              6531
          Churn
                                 2
          dtype: int64
```

```
In [17]: Categorical_cols=df.select_dtypes(include='object').columns.to_list()+['SeniorCitizen']

for col in Categorical_cols:
    plt.figure(figsize=(6,4))
    sns.countplot(data=df,x=col,hue='Churn')
    plt.title(f"{col} Distribution by Churn")
    plt.show()
```


PaymentMethod

SeniorCitizen Distribution by Churn Churn No Yes 2000 0 1

```
In [18]: for col in df.columns:
    if col not in numerical_features:
        print(col,df[col].unique())
        print("______")
```

SeniorCitizen

```
gender ['Female' 'Male']
SeniorCitizen [0 1]
Partner ['Yes' 'No']
Dependents ['No' 'Yes']
PhoneService ['No' 'Yes']
MultipleLines ['No phone service' 'No' 'Yes']
InternetService ['DSL' 'Fiber optic' 'No']
OnlineSecurity ['No' 'Yes' 'No internet service']
OnlineBackup ['Yes' 'No' 'No internet service']
DeviceProtection ['No' 'Yes' 'No internet service']
TechSupport ['No' 'Yes' 'No internet service']
StreamingTV ['No' 'Yes' 'No internet service']
StreamingMovies ['No' 'Yes' 'No internet service']
Contract ['Month-to-month' 'One year' 'Two year']
PaperlessBilling ['Yes' 'No']
PaymentMethod ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'
 'Credit card (automatic)']
Churn ['No' 'Yes']
```

categorical variables Observations:

- All categorical variables (e.g., Gender, SeniorCitizen, Partner, etc.) will be label encoded, converting them into numerical representations for machine learning models.
- Variables like MultipleLines, InternetService, OnlineSecurity, etc., which have 3 possible values, will be label encoded accordingly.
- **PaymentMethod** with 4 unique values will be label encoded into 4 distinct numerical values, representing the different payment methods.
- The **Churn** column, being the target variable for a classification task, will also be label encoded, with values 'Yes' and 'No' transformed into 1 and 0, respectively.

4. Data Preprocessing

4.1) Target Encoding:

```
In [19]: df['Churn'] = df['Churn'].map({'No': 0, 'Yes': 1})
```

4.2) Categorical Encoding:

Categorical Variables Encoding Summary

Observations:

All categorical variables will be encoded to make them suitable for machine learning models. A combination of **Label Encoding** and **One-Hot Encoding** is applied based on the number of unique categories and the importance of preserving ordinal relationships.

Label Encoding Applied To:

These variables have two categories, and label encoding is sufficient:

```
    Contract - 'Month-to-month', 'One year', 'Two year'
    gender - 2 values: 'Female', 'Male'
    SeniorCitizen - Already numerical (0, 1)
    Partner - 2 values: 'Yes', 'No'
    Dependents - 2 values: 'No', 'Yes'
    PhoneService - 2 values: 'No', 'Yes'
    PaperlessBilling - 2 values: 'Yes', 'No'
```

One-Hot Encoding Applied To:

These variables have **3 or more non-ordinal categories**, and one-hot encoding prevents misleading relationships:

```
    MultipleLines - 'No phone service', 'No', 'Yes'
    InternetService - 'DSL', 'Fiber optic', 'No'
    OnlineSecurity - 'No', 'Yes', 'No internet service'
    OnlineBackup - 'Yes', 'No', 'No internet service'
    DeviceProtection - 'No', 'Yes', 'No internet service'
    TechSupport - 'No', 'Yes', 'No internet service'
    StreamingTV - 'No', 'Yes', 'No internet service'
    StreamingMovies - 'No', 'Yes', 'No internet service'
    PaymentMethod - 4 values:

            'Electronic check'
```

- 'Mailed check'
- 'Bank transfer (automatic)'
- 'Credit card (automatic)'

One-hot encoding will generate new binary columns for each unique category.

Summary:

- Label Encoding is used for simpler binary and multiclass columns without ordinal significance.
- One-Hot Encoding is used where label encoding could introduce artificial order.
- This hybrid approach balances model performance and avoids data distortion.

In [21]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 7043 entries, 0 to 7042
       Data columns (total 39 columns):
          Column
                                                   Non-Null Count Dtype
       --- -----
                                                   _____
           gender
        0
                                                   7043 non-null int32
        1 SeniorCitizen
                                                   7043 non-null int64
        2 Partner
                                                   7043 non-null int32
                                                   7043 non-null int32
        3 Dependents
        4
           tenure
                                                   7043 non-null int64
        5 PhoneService
                                                   7043 non-null int32
        6 Contract
                                                   7043 non-null int32
                                                   7043 non-null int32
        7
           PaperlessBilling
        8 MonthlyCharges
                                                   7043 non-null float64
           TotalCharges
                                                   7043 non-null float64
        10 Churn
                                                   7043 non-null int64
        11 MultipleLines_No
                                                   7043 non-null bool
        12 MultipleLines_No phone service
                                                  7043 non-null bool
        13 MultipleLines_Yes
                                                  7043 non-null bool
        14 InternetService_DSL
                                                   7043 non-null bool
                                                   7043 non-null bool
        15 InternetService_Fiber optic
        16 InternetService_No
                                                   7043 non-null bool
        17 OnlineSecurity_No
                                                   7043 non-null bool
                                                   7043 non-null bool
        18 OnlineSecurity_No internet service
        19 OnlineSecurity_Yes
                                                   7043 non-null bool
        20 OnlineBackup No
                                                   7043 non-null bool
        21 OnlineBackup_No internet service
                                                   7043 non-null bool
        22 OnlineBackup_Yes
                                                   7043 non-null
                                                                  bool
        23 DeviceProtection_No
                                                   7043 non-null bool
        24 DeviceProtection_No internet service
                                                   7043 non-null bool
        25 DeviceProtection_Yes
                                                   7043 non-null bool
        26 TechSupport_No
                                                   7043 non-null bool
        27 TechSupport_No internet service
                                                   7043 non-null bool
        28 TechSupport_Yes
                                                   7043 non-null bool
                                                   7043 non-null
        29 StreamingTV_No
                                                                  bool
        30 StreamingTV_No internet service
                                                   7043 non-null bool
        31 StreamingTV Yes
                                                   7043 non-null bool
        32 StreamingMovies_No
                                                   7043 non-null
                                                                 bool
        33 StreamingMovies_No internet service
                                                   7043 non-null
                                                                 bool
        34 StreamingMovies_Yes
                                                   7043 non-null
                                                                 bool
        35 PaymentMethod_Bank transfer (automatic)
                                                   7043 non-null
                                                                  bool
            PaymentMethod Credit card (automatic)
                                                   7043 non-null
                                                                  bool
        37 PaymentMethod_Electronic check
                                                   7043 non-null
                                                                  hoo1
        38 PaymentMethod Mailed check
                                                   7043 non-null
                                                                  bool
       dtypes: bool(28), float64(2), int32(6), int64(3)
       memory usage: 632.9 KB
In [22]: # Features and target
        X = df.drop("Churn", axis=1)
        y = df["Churn"]
```

4.3. Train-Test Split

```
In [23]: # Train-test split (with stratification)
X_train, X_test, y_train, y_test = train_test_split(
          X, y, test_size=0.2, random_state=42, stratify=y
)
```

4.4. Class Imbalance Handling

4.5. Scaling numerical columns

```
In [26]: # Step 3: Scale only numerical columns
    numerical_cols = ['tenure', 'MonthlyCharges', 'TotalCharges'] # Update with your actual numer

# Create copies to avoid modifying original data
X_train_scaled = X_train_resampled.copy()
X_test_scaled = X_test.copy()

# Fit scaler on resampled training numerical features
scaler = StandardScaler()
X_train_scaled[numerical_cols] = scaler.fit_transform(X_train_resampled[numerical_cols])
X_test_scaled[numerical_cols] = scaler.transform(X_test[numerical_cols])

# Now you can train your models on X_train_scaled and test on X_test_scaled
```

In [28]: X_train_scaled

Out[28]:

		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Contract	PaperlessBilling
	0	1	0	0	0	0.289806	0	0	0
	1	1	0	1	1	-0.542996	1	0	0
	2	1	0	1	1	-0.626276	0	2	0
	3	0	0	1	0	-0.084955	1	2	1
	4	1	0	1	1	-1.125957	1	0	0
	•••	•••		•••					
8	273	0	0	0	0	-0.834477	1	0	0
8	274	0	0	0	0	-0.667916	1	0	1
8	275	1	0	0	0	0.831127	1	0	1
8	276	0	0	0	0	-1.084317	1	0	1
8	277	0	0	0	0	-1.125957	1	0	1

8278 rows × 38 columns

Data Preprocessing and Balancing Observations

1. Feature Scaling:

- Numerical features were standardized using StandardScaler to ensure they are on the same scale, preventing bias toward features with larger magnitude.
- Scaling was applied **after splitting the data**, preventing data leakage from the test set into the training process.

2. Train-Test Split:

- The dataset was split using an 80-20 ratio with stratification to maintain the class distribution in both training and test sets.
- This preserves the imbalance ratio in both sets, which is essential for model evaluation consistency.

3. Handling Class Imbalance with SMOTE:

- SMOTE (Synthetic Minority Oversampling Technique) was applied **only to the training data** to balance the classes.
- This generates synthetic samples for the minority class (churned customers), helping the model learn from a more balanced dataset and potentially improving performance on minority class predictions.

5. Model Training

```
In [29]: # 1. Define classifiers
         models = {
             "Logistic Regression": LogisticRegression(max_iter=1000),
             "Decision Tree": DecisionTreeClassifier(),
             "Random Forest": RandomForestClassifier(),
             "XGBoost": XGBClassifier(eval_metric='logloss'),
             "SVM": SVC(probability=True),
             "KNN": KNeighborsClassifier(),
             "Naive Bayes": GaussianNB(),
             "AdaBoost": AdaBoostClassifier()
         }
         # 2. Train all models
         trained models = {}
         for name, model in models.items():
             model.fit(X_train_scaled, y_train_resampled)
             trained_models[name] = model
             print(f"{name} trained successfully.")
        Logistic Regression trained successfully.
        Decision Tree trained successfully.
        Random Forest trained successfully.
```

Decision Tree trained successfully.
Random Forest trained successfully.
XGBoost trained successfully.
SVM trained successfully.
KNN trained successfully.
Naive Bayes trained successfully.
AdaBoost trained successfully.

6. Model Evaluation

6.1) Traing Data

```
In [30]: # Initialize dictionary to store performance metrics
         model_performance_Training = {}
         # Evaluate each model on training data
         for name, model in trained_models.items():
             y_pred = model.predict(X_train_scaled)
             y_prob = model.predict_proba(X_train_scaled)[:, 1] # For AUC-ROC
             # Calculate performance metrics
             accuracy = accuracy_score(y_train_resampled, y_pred)
             precision = precision_score(y_train_resampled, y_pred)
             recall = recall_score(y_train_resampled, y_pred)
             f1 = f1 score(y train resampled, y pred)
             auc_roc = roc_auc_score(y_train_resampled, y_prob)
             # Store metrics
             model_performance_Training[name] = {
                 'Accuracy': accuracy,
                  'Precision': precision,
                 'Recall': recall,
                 'F1-Score': f1,
                  'AUC-ROC': auc_roc
             }
             # Print results
             print(f"\n{name} Performance on Training Data:")
             print(f"Accuracy: {accuracy:.4f}")
             print(f"Precision: {precision:.4f}")
             print(f"Recall: {recall:.4f}")
             print(f"F1-Score: {f1:.4f}")
             print(f"AUC-ROC: {auc_roc:.4f}")
             # Confusion Matrix
             cm = confusion_matrix(y_train_resampled, y_pred)
             cm_display = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model.classes_)
             cm_display.plot(cmap='Blues')
             plt.title(f'Confusion Matrix for {name}')
             plt.show()
             # Classification Report
             print(f"\n{name} Classification Report on Training Data:")
             print(classification_report(y_train_resampled, y_pred))
             # ROC Curve
             fpr, tpr, thresholds = roc_curve(y_train_resampled, y_prob)
             roc_auc = auc(fpr, tpr)
             plt.figure()
             plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
             plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
             plt.xlim([0.0, 1.0])
             plt.ylim([0.0, 1.05])
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             plt.title(f'ROC Curve for {name}')
             plt.legend(loc="lower right")
             plt.show()
```

Logistic Regression Performance on Training Data:

Accuracy: 0.8512 Precision: 0.8608 Recall: 0.8379 F1-Score: 0.8492 AUC-ROC: 0.9366

Logistic Regression Classification Report on Training Data:

nrecision recall f1-score support

	precision	recall	†1-score	support
0	0.84	0.86	0.85	4139
1	0.86	0.84	0.85	4139
accuracy			0.85	8278
macro avg	0.85	0.85	0.85	8278
weighted avg	0.85	0.85	0.85	8278

Decision Tree Performance on Training Data:

Accuracy: 0.9984 Precision: 0.9998 Recall: 0.9971 F1-Score: 0.9984 AUC-ROC: 1.0000

Decision	Tree	Classification	on Repor	t on Traini	ng Data:
		precision	recall	f1-score	support
	0	1.00	1.00	1.00	4139
	1	1.00	1.00	1.00	4139
accur	racy			1.00	8278
macro	avg	1.00	1.00	1.00	8278
weighted	avg	1.00	1.00	1.00	8278

Random Forest Performance on Training Data:

Accuracy: 0.9984 Precision: 0.9976 Recall: 0.9993 F1-Score: 0.9984 AUC-ROC: 1.0000

Confusion Matrix for Random Forest 4129 True label - 1000 - 500

Random Forest Classification Report on Training Data:
precision recall f1-score support

0 1.00 1.00 1.00 4139
1 1.00 1.00 1.00 4139

Predicted label

_	1.00	1.00	1.00	4133
accuracy			1.00	8278
macro avg	1.00	1.00	1.00	8278
weighted avg	1 00	1 00	1 00	8278

XGBoost Performance on Training Data:

Accuracy: 0.9452 Precision: 0.9456 Recall: 0.9447 F1-Score: 0.9451 AUC-ROC: 0.9901

${\tt XGBoost\ Classification\ Report\ on\ Training\ Data:}$

support	f1-score	recall	precision	
4139	0.95	0.95	0.94	0
4139	0.95	0.94	0.95	1
8278	0.95			accuracy
8278	0.95	0.95	0.95	macro avg
8278	0.95	0.95	0.95	weighted avg

SVM Performance on Training Data:

Accuracy: 0.8634 Precision: 0.8845 Recall: 0.8360 F1-Score: 0.8595 AUC-ROC: 0.9418

SVM Classification Report on Training Data:

ovir crassificación report on marning baca.							
support	f1-score	recall	precision				
4139	0.87	0.89	0.84	0			
4139	0.86	0.84	0.88	1			
8278	0.86			accuracy			
8278	0.86	0.86	0.86	macro avg			
8278	0.86	0.86	0.86	weighted avg			

KNN Performance on Training Data:

Accuracy: 0.8898 Precision: 0.8846 Recall: 0.8966 F1-Score: 0.8906 AUC-ROC: 0.9614

	ing Data:	on Train	ation Report	KNN Classific
support	f1-score	recall	precision	
4139	0.89	0.88	0.90	0
4139	0.89	0.90	0.88	1
8278	0.89			accuracy
8278	0.89	0.89	0.89	macro avg
8278	0.89	0.89	0.89	weighted avg

Naive Bayes Performance on Training Data:

Accuracy: 0.7661 Precision: 0.7155 Recall: 0.8835 F1-Score: 0.7907 AUC-ROC: 0.8606

Confusion Matrix for Naive Bayes 3500 3000 2685 0 1454 2500 True label 2000 - 1500 482 3657 1 - 1000 500 0 1 Predicted label

Naive Bayes Classification Report on Training Data: precision recall f1-score support 0 0.85 0.65 0.74 4139 0.72 0.79 1 0.88 4139 accuracy 0.77 8278

0.77

0.77

0.76

0.76

8278

8278

0.78

0.78

macro avg

weighted avg

AdaBoost Performance on Training Data:

Accuracy: 0.8287 Precision: 0.8094 Recall: 0.8599 F1-Score: 0.8339 AUC-ROC: 0.9269

AdaBoost	Class	sification	Report on	Training D	ata:
		precision	recall	f1-score	support
	0	0.85	0.80	0.82	4139
	1	0.81	0.86	0.83	4139
accur	acy			0.83	8278
macro	avg	0.83	0.83	0.83	8278
weighted	avg	0.83	0.83	0.83	8278

6.2) Test Data

```
In [31]:
         # Initialize dictionary to store performance metrics
         model_performance_before_HT = {}
         # Evaluate each model
         for name, model in trained_models.items():
             y_pred = model.predict(X_test_scaled)
             y_prob = model.predict_proba(X_test_scaled)[:, 1] # For AUC-ROC
             # Calculate performance metrics
             accuracy = accuracy_score(y_test, y_pred)
             precision = precision_score(y_test, y_pred)
             recall = recall_score(y_test, y_pred)
             f1 = f1_score(y_test, y_pred)
             auc_roc = roc_auc_score(y_test, y_prob)
             # Store metrics
             model_performance_before_HT[name] = {
                 'Accuracy': accuracy,
                  'Precision': precision,
                  'Recall': recall,
                  'F1-Score': f1,
                  'AUC-ROC': auc_roc
```

```
# Print results
print(f"\n{name} Performance on Test Data:")
print(f"Accuracy: {accuracy:.4f}")
print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1-Score: {f1:.4f}")
print(f"AUC-ROC: {auc_roc:.4f}")
# Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
cm_display = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model.classes_)
cm_display.plot(cmap='Blues')
plt.title(f'Confusion Matrix for {name}')
plt.show()
# Classification Report
print(f"\n{name} Classification Report on Test Data:")
print(classification_report(y_test, y_pred))
# ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, y_prob)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title(f'ROC Curve for {name}')
plt.legend(loc="lower right")
plt.show()
```

Logistic Regression Performance on Test Data:

Accuracy: 0.7935 Precision: 0.6084 Recall: 0.6230 F1-Score: 0.6156 AUC-ROC: 0.8399

Logistic Regression Classification Report on Test Data:
precision recall f1-score support

	pr ccision	1 CCGII	11 30010	3uppor c
0	0.86	0.86	0.86	1035
1	0.61	0.62	0.62	374
accuracy			0.79	1409
macro avg	0.74	0.74	0.74	1409
weighted avg	0.80	0.79	0.79	1409

Decision Tree Performance on Test Data:

Accuracy: 0.7466 Precision: 0.5200 Recall: 0.5909 F1-Score: 0.5532 AUC-ROC: 0.6967

Decision Tree Classification Report on Test Data: precision recall f1-score 0 0.84 0.80 0.82 1035 1 0.52 0.59 0.55 374 0.75 accuracy 1409 macro avg 0.68 0.70 0.69 1409 weighted avg 0.76 0.75 1409 0.75

Random Forest Performance on Test Data:

Accuracy: 0.7807 Precision: 0.5953 Recall: 0.5428 F1-Score: 0.5678 AUC-ROC: 0.8216

Confusion Matrix for Random Forest

Random Forest Classification Report on Test Data:

Predicted label

	precision	recall	f1-score	support
0	0.04	0.07	0.05	1025
0	0.84	0.87	0.85	1035
1	0.60	0.54	0.57	374
accuracy			0.78	1409
macro avg	0.72	0.70	0.71	1409
weighted avg	0.77	0.78	0.78	1409

XGBoost Performance on Test Data:

Accuracy: 0.7786 Precision: 0.5856 Recall: 0.5668 F1-Score: 0.5761 AUC-ROC: 0.8259

XGBoost Classification Report on Test Data: precision recall f1-score support 0 0.85 0.86 0.85 1035 1 0.59 0.57 0.58 374 0.78 accuracy 1409 macro avg 0.72 0.71 0.71 1409 weighted avg 0.78 0.78 0.78 1409

SVM Performance on Test Data:

Accuracy: 0.7921 Precision: 0.6160 Recall: 0.5749 F1-Score: 0.5947 AUC-ROC: 0.8111

SVM Classification Report on Test Data:

support	f1-score	recall	precision	
1035	0.86	0.87	0.85	0
374	0.59	0.57	0.62	1
1409	0.79			accuracy
1409	0.73	0.72	0.73	macro avg
1409	0.79	0.79	0.79	weighted avg

KNN Performance on Test Data:

Accuracy: 0.7523 Precision: 0.5309 Recall: 0.5749 F1-Score: 0.5520 AUC-ROC: 0.7790

KNN Classification Report on Test Data:

support	f1-score	recall	precision	
1035	0.83	0.82	0.84	0
374	0.55	0.57	0.53	1
1409	0.75			accuracy
1409	0.69	0.70	0.69	macro avg
1409	0.76	0.75	0.76	weighted avg

Naive Bayes Performance on Test Data:

Accuracy: 0.6891 Precision: 0.4528 Recall: 0.8209 F1-Score: 0.5837 AUC-ROC: 0.8048

Confusion Matrix for Naive Bayes - 600 - 500 - 400 - 300 - 100

1

Naive Bayes Classification Report on Test Data:

0

support	f1-score	recall	precision	
1035	0.75	0.64	0.91	0
374	0.58	0.82	0.45	1
1409	0.69			accuracy
1409	0.67	0.73	0.68	macro avg
1409	0.71	0.69	0.79	weighted avg

Predicted label

AdaBoost Performance on Test Data:

Accuracy: 0.7693 Precision: 0.5518 Recall: 0.6979 F1-Score: 0.6163 AUC-ROC: 0.8322

AdaBoost	Clas	sification	Report on	Test Data:	
		precision	recall	f1-score	support
	0	0.88	0.80	0.84	1035
	1	0.55	0.70	0.62	374
accur	racy			0.77	1409
macro	avg	0.72	0.75	0.73	1409
weighted	avg	0.79	0.77	0.78	1409

6.3) Dataframing the Training and Test data results

```
In [32]: import pandas as pd

# Convert model performance dictionary into DataFrame
performance_df = pd.DataFrame(model_performance_Training).T

# Display the performance metrics for each model
performance_df
```

	Accuracy	Precision	Recall	F1-Score	AUC-ROC
Logistic Regression	0.851172	0.860759	0.837884	0.849167	0.936574
Decision Tree	0.998430	0.999758	0.997101	0.998427	0.999995
Random Forest	0.998430	0.997588	0.999275	0.998431	0.999972
XGBoost	0.945156	0.945586	0.944673	0.945129	0.990100
SVM	0.863373	0.884458	0.835951	0.859521	0.941794
KNN	0.889828	0.884625	0.896593	0.890569	0.961404
Naive Bayes	0.766127	0.715516	0.883547	0.790703	0.860607
AdaBoost	0.828703	0.809416	0.859870	0.833880	0.926943

In [33]: import pandas as pd

Convert model performance dictionary into DataFrame
performance_df = pd.DataFrame(model_performance_before_HT).T

Display the performance metrics for each model
performance_df

Out[33]:

Out[32]:

	Accuracy	Precision	Recall	F1-Score	AUC-ROC
Logistic Regression	0.793471	0.608355	0.622995	0.615588	0.839942
Decision Tree	0.746629	0.520000	0.590909	0.553191	0.696706
Random Forest	0.780696	0.595308	0.542781	0.567832	0.821601
XGBoost	0.778566	0.585635	0.566845	0.576087	0.825922
SVM	0.792051	0.616046	0.574866	0.594744	0.811067
KNN	0.752307	0.530864	0.574866	0.551990	0.778989
Naive Bayes	0.689141	0.452802	0.820856	0.583650	0.804764
AdaBoost	0.769340	0.551797	0.697861	0.616293	0.832168

Model Performance Insights and Tuning Rationale

1. Logistic Regression

Issue: Moderate generalization gap between train and test performance.

Tuning Focus: Improve regularization using C and try different penalty (11, 12) and solver settings to prevent overfitting.

2. Decision Tree

Issue: Extremely high training performance, but significantly lower test scores — classic overfitting. **Tuning Focus:** Prune tree using max_depth , increase min_samples_split and min_samples_leaf to add regularization.

3. Random Forest

Issue: Excellent training performance, but test performance suggests mild overfitting.
Tuning Focus: Control overfitting with max_depth , tune n_estimators , and explore max_features .

4. XGBoost

Issue: Strong performance with minimal overfitting, but room for better generalization.
Tuning Focus: Finely tune learning_rate , max_depth , subsample , and regularization
(reg_alpha , reg_lambda).

5. Support Vector Machine (SVM)

Issue: Good generalization, but slightly underperforming on recall and F1-Score.

Tuning Focus: Try different kernels and adjust C and gamma to balance bias-variance.

6. K-Nearest Neighbors (KNN)

Issue: Reasonable performance but limited generalization and sensitivity to noise.

Tuning Focus: Tune n_neighbors , test distance weighting, and compare distance metrics.

7. Naive Bayes

Issue: Low precision but very high recall on test data, suggesting many false positives.

Tuning Focus: Adjust var_smoothing for better numeric stability and calibration.

8. AdaBoost

Issue: Performs decently on generalization, better than some other models.

Tuning Focus: Optimize n_estimators and learning_rate; optionally experiment with custom base estimators.

7. Hyperparameter Tuning

```
In [34]: # Initialize base models
base_models = {
    'Logistic Regression': LogisticRegression(max_iter=1000),
    'Random Forest': RandomForestClassifier(),
    'Decision Tree': DecisionTreeClassifier(),
    'AdaBoost': AdaBoostClassifier(),
    'Naive Bayes': GaussianNB(),
    'SVM': SVC(probability=True),
    'KNN': KNeighborsClassifier(),
    'XGBoost': XGBClassifier(eval_metric='logloss')
}
```

```
In [35]: # Define hyperparameter grids
   param_grids = {
```

```
},
              'Random Forest': {
                  'n_estimators': [100, 200],
                  'max_depth': [10, 20, None],
                  'min_samples_split': [2, 5, 10],
                  'min_samples_leaf': [1, 2, 4],
                  'max_features': ['sqrt', 'log2']
              },
              'Decision Tree': {
                  'max_depth': [3, 5, 10, None],
                  'min_samples_split': [2, 5, 10],
                  'min_samples_leaf': [1, 2, 5],
                  'criterion': ['gini', 'entropy']
              },
              'AdaBoost': {
                  'n_estimators': [50, 100, 200],
                  'learning_rate': [0.01, 0.1, 1]
             },
              'Naive Bayes': {
                  'var_smoothing': np.logspace(-9, -6, 4)
              'SVM': {
                  'C': [0.1, 1, 10],
                  'kernel': ['linear', 'rbf', 'poly'],
                  'gamma': ['scale', 'auto']
              },
              'KNN': {
                  'n_neighbors': [3, 5, 7, 9],
                  'weights': ['uniform', 'distance'],
                  'metric': ['euclidean', 'manhattan']
              },
              'XGBoost': {
                  'n_estimators': [100, 200],
                  'learning_rate': [0.01, 0.1, 0.3],
                  'max_depth': [3, 5, 10],
                  'subsample': [0.8, 1.0],
                  'colsample_bytree': [0.8, 1.0],
                  'gamma': [0, 1],
                  'reg_alpha': [0, 0.1],
                  'reg_lambda': [1, 10]
             }
         }
In [36]:
         # Tune and store best models
         tuned models = {}
         for name, model in base_models.items():
             print(f"\nTuning {name}...")
              grid = GridSearchCV(model, param_grids[name], cv=5, scoring='f1', n_jobs=-1)
              grid.fit(X_train_scaled, y_train_resampled)
              tuned_models[name] = grid.best_estimator_
              print(f"Best parameters for {name}: {grid.best_params_}")
```

'Logistic Regression': {

'C': [0.01, 0.1, 1, 10], 'penalty': ['l1', 'l2'],

'solver': ['liblinear', 'saga']

```
Tuning Logistic Regression...
        Best parameters for Logistic Regression: {'C': 0.1, 'penalty': 'l2', 'solver': 'liblinear'}
        Tuning Random Forest...
        Best parameters for Random Forest: {'max_depth': 10, 'max_features': 'sqrt', 'min_samples_lea
        f': 1, 'min_samples_split': 2, 'n_estimators': 200}
        Tuning Decision Tree...
        Best parameters for Decision Tree: {'criterion': 'entropy', 'max_depth': 10, 'min_samples_lea
        f': 2, 'min_samples_split': 5}
        Tuning AdaBoost...
        Best parameters for AdaBoost: {'learning_rate': 1, 'n_estimators': 200}
        Tuning Naive Bayes...
        Best parameters for Naive Bayes: {'var_smoothing': 1e-09}
        Tuning SVM...
        Best parameters for SVM: {'C': 0.1, 'gamma': 'auto', 'kernel': 'rbf'}
        Tuning KNN...
        Best parameters for KNN: {'metric': 'euclidean', 'n_neighbors': 7, 'weights': 'uniform'}
        Tuning XGBoost...
        Best parameters for XGBoost: {'colsample_bytree': 0.8, 'gamma': 0, 'learning_rate': 0.01, 'max
        _depth': 10, 'n_estimators': 100, 'reg_alpha': 0.1, 'reg_lambda': 1, 'subsample': 0.8}
In [37]: # Evaluate models on training data
         model_performance = {}
         for name, model in tuned_models.items():
             print(f"\n{name} Performance on Training Data:")
             # Predictions on training data
             y_train_pred = model.predict(X_train_scaled)
             if hasattr(model, "predict_proba"):
                 y_train_prob = model.predict_proba(X_train_scaled)[:, 1]
             else:
                 y_train_prob = y_train_pred
             # Calculate performance metrics
             train_accuracy = accuracy_score(y_train_resampled, y_train_pred)
             train_precision = precision_score(y_train_resampled, y_train_pred)
             train_recall = recall_score(y_train_resampled, y_train_pred)
             train_f1 = f1_score(y_train_resampled, y_train_pred)
             train_auc = roc_auc_score(y_train_resampled, y_train_prob)
             print("Training Data Metrics:")
             print(f" Accuracy: {train_accuracy:.4f}")
             print(f" Precision: {train_precision:.4f}")
             print(f" Recall: {train_recall:.4f}")
             print(f" F1-Score: {train_f1:.4f}")
             print(f" AUC-ROC: {train_auc:.4f}")
             # Store performance metrics
             model_performance[name] = {
                  'Train': {
                     'Accuracy': train_accuracy,
                     'Precision': train_precision,
                     'Recall': train_recall,
                     'F1-Score': train_f1,
                     'AUC-ROC': train_auc
```

```
Logistic Regression Performance on Training Data:
Training Data Metrics:
 Accuracy: 0.8443
  Precision: 0.8375
  Recall: 0.8543
  F1-Score: 0.8458
 AUC-ROC: 0.9303
Random Forest Performance on Training Data:
Training Data Metrics:
 Accuracy: 0.8983
 Precision: 0.8805
 Recall: 0.9217
 F1-Score: 0.9006
 AUC-ROC: 0.9671
Decision Tree Performance on Training Data:
Training Data Metrics:
 Accuracy: 0.8649
 Precision: 0.8625
  Recall: 0.8683
 F1-Score: 0.8654
 AUC-ROC: 0.9480
AdaBoost Performance on Training Data:
Training Data Metrics:
 Accuracy: 0.8566
 Precision: 0.8447
 Recall: 0.8739
  F1-Score: 0.8590
 AUC-ROC: 0.9385
Naive Bayes Performance on Training Data:
Training Data Metrics:
 Accuracy: 0.7661
 Precision: 0.7155
 Recall: 0.8835
  F1-Score: 0.7907
 AUC-ROC: 0.8606
SVM Performance on Training Data:
Training Data Metrics:
 Accuracy: 0.8339
 Precision: 0.8255
 Recall: 0.8468
  F1-Score: 0.8360
 AUC-ROC: 0.9196
KNN Performance on Training Data:
Training Data Metrics:
 Accuracy: 0.8787
 Precision: 0.8679
  Recall: 0.8935
 F1-Score: 0.8805
 AUC-ROC: 0.9560
XGBoost Performance on Training Data:
Training Data Metrics:
 Accuracy: 0.9026
 Precision: 0.8965
  Recall: 0.9104
  F1-Score: 0.9034
```

AUC-ROC: 0.9658

```
In [38]: # Evaluate models on test data
         for name, model in tuned_models.items():
             print(f"\n{name} Performance on Test Data:")
             # Predictions on test data
             y_test_pred = model.predict(X_test_scaled)
             if hasattr(model, "predict_proba"):
                 y_test_prob = model.predict_proba(X_test_scaled)[:, 1]
             else:
                 y_test_prob = y_test_pred
             # Calculate performance metrics
             test_accuracy = accuracy_score(y_test, y_test_pred)
             test_precision = precision_score(y_test, y_test_pred)
             test_recall = recall_score(y_test, y_test_pred)
             test_f1 = f1_score(y_test, y_test_pred)
             test_auc = roc_auc_score(y_test, y_test_prob)
             print("Test Data Metrics:")
             print(f" Accuracy: {test_accuracy:.4f}")
             print(f" Precision: {test_precision:.4f}")
             print(f" Recall: {test_recall:.4f}")
             print(f" F1-Score: {test_f1:.4f}")
             print(f" AUC-ROC: {test_auc:.4f}")
             # Update the performance dictionary with test data
             model_performance[name]['Test'] = {
                 'Accuracy': test_accuracy,
                 'Precision': test_precision,
                 'Recall': test_recall,
                 'F1-Score': test_f1,
                 'AUC-ROC': test_auc
```

```
Logistic Regression Performance on Test Data:
Test Data Metrics:
 Accuracy: 0.7729
 Precision: 0.5619
  Recall: 0.6551
 F1-Score: 0.6049
 AUC-ROC: 0.8350
Random Forest Performance on Test Data:
Test Data Metrics:
 Accuracy: 0.7736
 Precision: 0.5641
 Recall: 0.6471
 F1-Score: 0.6027
 AUC-ROC: 0.8334
Decision Tree Performance on Test Data:
Test Data Metrics:
 Accuracy: 0.7679
 Precision: 0.5561
 Recall: 0.6230
 F1-Score: 0.5876
 AUC-ROC: 0.7967
AdaBoost Performance on Test Data:
Test Data Metrics:
 Accuracy: 0.7771
 Precision: 0.5708
 Recall: 0.6471
 F1-Score: 0.6065
 AUC-ROC: 0.8361
Naive Bayes Performance on Test Data:
Test Data Metrics:
 Accuracy: 0.6891
 Precision: 0.4528
 Recall: 0.8209
 F1-Score: 0.5837
 AUC-ROC: 0.8048
SVM Performance on Test Data:
Test Data Metrics:
 Accuracy: 0.7757
 Precision: 0.5662
 Recall: 0.6631
  F1-Score: 0.6108
 AUC-ROC: 0.8346
KNN Performance on Test Data:
Test Data Metrics:
 Accuracy: 0.7544
 Precision: 0.5337
  Recall: 0.5936
 F1-Score: 0.5620
 AUC-ROC: 0.7933
XGBoost Performance on Test Data:
Test Data Metrics:
 Accuracy: 0.7750
  Precision: 0.5704
  Recall: 0.6176
  F1-Score: 0.5931
  AUC-ROC: 0.8362
```

```
# Convert the model performance dictionary to a flat structure
flattened_performance = []
for model, metrics in model_performance.items():
    for data_type, scores in metrics.items():
        flattened_performance.append({
            'Model': model,
            'Data Type': data_type,
            'Accuracy': scores['Accuracy'],
            'Precision': scores['Precision'],
            'Recall': scores['Recall'],
            'F1-Score': scores['F1-Score'],
            'AUC-ROC': scores['AUC-ROC']
        })
# Convert the list of dictionaries into a Pandas DataFrame
performance_df = pd.DataFrame(flattened_performance)
# Display the DataFrame
performance_df
```

Out[39]:

	Model	Data Type	Accuracy	Precision	Recall	F1-Score	AUC-ROC
0	Logistic Regression	Train	0.844286	0.837518	0.854313	0.845832	0.930255
1	Logistic Regression	Test	0.772889	0.561927	0.655080	0.604938	0.835018
2	Random Forest	Train	0.898285	0.880452	0.921720	0.900614	0.967147
3	Random Forest	Test	0.773598	0.564103	0.647059	0.602740	0.833379
4	Decision Tree	Train	0.864943	0.862491	0.868326	0.865399	0.948046
5	Decision Tree	Test	0.767921	0.556086	0.622995	0.587642	0.796746
6	AdaBoost	Train	0.856608	0.844699	0.873883	0.859043	0.938539
7	AdaBoost	Test	0.777147	0.570755	0.647059	0.606516	0.836059
8	Naive Bayes	Train	0.766127	0.715516	0.883547	0.790703	0.860607
9	Naive Bayes	Test	0.689141	0.452802	0.820856	0.583650	0.804764
10	SVM	Train	0.833897	0.825483	0.846823	0.836017	0.919554
11	SVM	Test	0.775727	0.566210	0.663102	0.610837	0.834621
12	KNN	Train	0.878715	0.867871	0.893453	0.880476	0.956049
13	KNN	Test	0.754436	0.533654	0.593583	0.562025	0.793290
14	XGBoost	Train	0.902633	0.896502	0.910365	0.903380	0.965838
15	XGBoost	Test	0.775018	0.570370	0.617647	0.593068	0.836236

Model Performance Summary

After hyperparameter tuning, we can observe the following key insights across the models based on both training and test data:

1. Logistic Regression:

- **Training:** The model performs well with high accuracy (84.43%) and a good balance of precision, recall, and F1-score.
- **Testing:** Performance drops significantly in terms of precision (56.19%) and recall (65.51%). However, the model still maintains reasonable AUC-ROC (83.5%).

2. Random Forest:

- **Training:** The model performs excellently, with high accuracy (89.20%) and solid metrics across precision, recall, and F1-score.
- **Testing:** While the accuracy is reasonable (77.64%), precision and recall are lower compared to the training set, resulting in a decrease in performance. The AUC-ROC also drops to 83.44%.

3. Decision Tree:

- **Training:** The decision tree achieves good performance with an accuracy of 86.19% and strong precision and recall scores.
- **Testing:** The model's test performance shows a drop in accuracy (76.22%) and a significant decrease in precision and recall, leading to a lower F1-score and AUC-ROC.

4. AdaBoost:

- **Training:** AdaBoost performs well, with an accuracy of 85.66% and strong F1 and recall scores.
- **Testing:** While the test set performance is good (77.71% accuracy), there is a noticeable drop in precision (57.08%) and recall (64.71%), suggesting some misclassifications.

5. Naive Bayes:

- **Training:** Naive Bayes achieves moderate training performance with a recall of 88.35%, but its precision and accuracy are lower compared to other models.
- **Testing:** Test performance drops significantly, with low precision (45.28%) and recall (82.09%), leading to a considerably lower F1-score.

6. **SVM**:

- **Training:** The model performs well in training with 83.39% accuracy and high recall (84.68%).
- **Testing:** On the test set, there is a slight drop in accuracy (77.57%) but precision and recall remain reasonably balanced. The AUC-ROC remains solid at 83.46%.

7. KNN:

- **Training:** KNN performs well with 87.87% accuracy and a high F1-score.
- **Testing:** The test set accuracy drops to 75.44%, and the precision and recall scores are lower, leading to a decline in performance metrics.

8. XGBoost:

- **Training:** XGBoost shows exceptional training performance, with high accuracy (90.26%) and robust precision, recall, and F1-scores.
- **Testing:** The test performance is good (77.50% accuracy), but it suffers from a decrease in precision (57.04%) and recall (61.76%). Despite this, the AUC-ROC score remains strong at 83.62%.

Top Performers:

- **Training:** XGBoost, Random Forest, and Logistic Regression excel in training performance, achieving the highest accuracy and F1-scores.
- **Testing:** Random Forest, AdaBoost, and Logistic Regression are the most consistent across training and testing, with XGBoost performing well but with a slight drop in precision and recall on the test data.

Training vs Testing:

 Most models show a drop in performance from training to testing, with a decrease in accuracy, precision, and recall. This indicates that while these models perform well in training, there may be overfitting, as they struggle to generalize to unseen data.

AUC-ROC Analysis:

 XGBoost, Random Forest, and AdaBoost have the best AUC-ROC scores in both training and testing, indicating that these models are good at distinguishing between the positive and negative classes.

Precision vs Recall:

Many models, such as Logistic Regression, Decision Tree, and KNN, have a trade-off between
precision and recall, especially in the test data. Models like Naive Bayes have a significant drop in
performance, particularly in precision.