Q1. Define Artificial Intelligence (AI) with examples.

Definition:

Artificial Intelligence (AI) is the branch of computer science that focuses on creating **machines and systems capable of simulating human intelligence**. It enables computers to **think**, **learn**, **reason**, **and make decisions** similar to human beings.

Key Features of AI:

- 1. Learning Ability to improve performance from experience (Machine Learning).
- 2. **Reasoning** Drawing logical conclusions from given information.
- 3. **Problem-Solving** Identifying problems and applying strategies to solve them.
- 4. **Perception** Recognizing objects, images, and speech from the environment.
- 5. Language Understanding Processing human language (Natural Language Processing).

Examples of AI in real life:

- Siri / Alexa / Google Assistant Voice-based personal assistants.
- Google Maps Provides real-time navigation using Al and GPS.
- Self-Driving Cars Autonomous vehicles like Tesla.
- Spam Filters Automatically detect junk emails.

Q2. Brief History of Al.

The development of AI took place in several stages:

- 1. **1950 Turing Test**
 - $\circ\quad$ Alan Turing introduced the idea of a machine that can "think" like humans.
 - Proposed the Turing Test to check machine intelligence.

2. 1956 - Birth of Al

- o John McCarthy coined the term "Artificial Intelligence" at the Dartmouth Conference.
- $\circ\quad$ This marks the official beginning of AI research.

3. **1960s-70s - Expert Systems**

- o Al research focused on **expert systems** (software mimicking human experts).
- o Example: **DENDRAL** (chemical analysis) and **MYCIN** (medical diagnosis).

4. 1980s - Rise of Machine Learning

o Introduction of algorithms that allowed computers to "learn" from data.

5. 1997 - Deep Blue vs. Kasparov

- o IBM's Deep Blue defeated world chess champion Garry Kasparov, a landmark event.
- 6. 2010s Deep Learning & Big Data

- o Al became mainstream due to availability of large datasets and powerful GPUs.
- o Applications: Self-driving cars, speech recognition, chatbots, recommendation systems.
- **Today, Al is rapidly evolving** with applications in every field including healthcare, business, robotics, and entertainment.

Q3. Applications of Al in Real Life.

Artificial Intelligence is applied in almost all sectors. Some major applications:

1. Healthcare

- o Disease diagnosis using Al-powered tools.
- Robotic surgeries and drug discovery.
- Example: IBM Watson for cancer diagnosis.

2. Business

- o Al chatbots for customer support.
- o Fraud detection in banking and finance.
- o Predictive analytics for sales forecasting.

3. Education

- o Personalized learning platforms (adaptive learning).
- Al tutors and assessment tools.
- o Example: Duolingo language learning app.

4. Transport

- o Self-driving cars (Tesla, Waymo).
- o Smart traffic management systems.

5. Entertainment

- o Recommendation engines (Netflix, Spotify, YouTube).
- o Al in video games and animation.
- Al applications make life easier, faster, and more efficient.

Q4. Ethical Considerations in Al.

Al also raises several ethical issues:

1. Bias in Algorithms

- o Al systems may learn human biases from training data.
- o Example: Al hiring tools showing gender/racial bias.

2. Job Displacement

- o Automation may replace human workers in industries.
- o Example: Robots replacing factory workers.

3. Privacy Concerns

- o Al requires massive amounts of personal data.
- Leads to risks of data misuse and surveillance.

4. Military & Surveillance Misuse

- o Al can be used in autonomous weapons (killer drones).
- o Raises concerns about global security and human rights.
- **Solution**: Need for **ethical Al policies**, transparency, and regulations.

Q5. Overview of Al Technologies and Techniques.

Al uses different technologies to function effectively. Major ones are:

1. Machine Learning (ML)

- o Enables systems to learn from past data and improve automatically.
- Types:
 - Supervised Learning: Learns from labeled data (e.g., spam detection).
 - Unsupervised Learning: Finds patterns in unlabeled data (e.g., clustering).
 - Reinforcement Learning: Learns by reward and punishment (e.g., training robots, AlphaGo).

2. Deep Learning (DL)

- o A subset of ML that uses neural networks with multiple layers.
- o Useful in image recognition, speech recognition, and natural language tasks.
- Example: Face ID on smartphones.

3. Natural Language Processing (NLP)

- Enables machines to understand, process, and respond to human language.
- o Example: Chatbots, Google Translate, sentiment analysis.

4. Expert Systems

- o Al systems designed to mimic decision-making of human experts.
- o Example: Medical diagnostic systems.

5. Robotics

- o Integration of AI into robots for physical tasks.
- o Example: Industrial robots, humanoid robots like Sophia.
- ← These techniques are the backbone of AI and are used across industries to develop smart solutions.

Unit 2: Computer Vision

1. Introduction to Computer Vision

Computer Vision (CV) is a field of Artificial Intelligence that focuses on enabling machines to "see," interpret, and understand visual data (images, videos, live camera feeds) in a way similar to the human visual system.

- Unlike human vision, which is based on biological eyes and the brain, computer vision relies on **digital image processing**, **pattern recognition**, and machine learning algorithms.
- CV allows machines to extract meaningful information such as detecting objects, recognizing faces, identifying patterns, or even making decisions based on visual input.
- For example:
 - o Face unlock on smartphones uses CV to identify facial features and compare them with stored data.
 - **Google Lens** can recognize objects, text, and landmarks in real time.

← Thus, Computer Vision bridges the gap between the visual world and machine understanding, making it one of the most impactful fields of Al today.

2. Basic Techniques of Computer Vision

Computer Vision works through a series of techniques that allow machines to process and interpret images. Some of the most common techniques include:

1. Image Preprocessing

- Images often contain noise, distortions, or irrelevant details.
- Preprocessing techniques such as filtering, blurring, normalization, and resizing are applied to clean and standardize images before further analysis.
- Example: Resizing an image to 224x224 pixels before feeding it into a deep learning model.

2. Edge Detection

- Used to identify object boundaries within an image.
- o Algorithms like **Canny** and **Sobel operators** highlight sharp changes in pixel intensity to detect edges.
- o Example: Detecting road lane boundaries in self-driving cars.

3. Feature Extraction

- o Identifying important details in an image such as corners, textures, and shapes.
- o Techniques like SIFT (Scale Invariant Feature Transform) and SURF (Speeded-Up Robust Features) are used.
- o Example: Detecting and matching key points in two images for image stitching (panoramas).

4. Object Detection

- o Involves locating and classifying multiple objects in an image or video.
- Modern approaches include YOLO (You Only Look Once) and R-CNN (Region-based Convolutional Neural Networks).
- o Example: Detecting pedestrians, vehicles, and traffic signals in autonomous driving.
- These techniques form the backbone of computer vision applications.

3. Applications of Computer Vision

Computer Vision is applied in multiple real-world domains:

1. Healthcare

- Used for analyzing **X-rays, MRIs, CT scans** to detect tumors, fractures, or abnormalities.
- o Al-assisted diagnostics can speed up detection and reduce human error.

2. Security and Surveillance

- Face recognition systems in CCTV cameras are used for crime detection, border control, and access control.
- o Example: Airports use CV for passenger identification.

3. Self-Driving Cars

- o CV enables autonomous vehicles to detect lanes, traffic signs, pedestrians, and other vehicles.
- Tesla and Waymo use CV as a core technology.

4. Retail Industry

- Automated checkout stores like Amazon Go use CV to detect items picked by customers and automatically bill them without cashiers.
- Thus, CV impacts healthcare, security, transportation, and commerce significantly.

4. Computer Vision Libraries and Tools

There are several libraries and frameworks that support CV development:

1. OpenCV (Open Source Computer Vision Library)

- The most popular CV library used for image processing, object detection, and real-time vision applications.
- o Provides functions for filtering, edge detection, face recognition, etc.

2. TensorFlow & PyTorch

- o Deep learning frameworks widely used for building advanced vision models like CNNs (Convolutional Neural Networks).
- o TensorFlow is backed by Google, PyTorch by Facebook.

3. **Keras**

- o A high-level deep learning framework built on top of TensorFlow.
- o Makes it easier to build and train image recognition models with few lines of code.

4. Scikit-Image

- Python library used for scientific image analysis.
- o Provides algorithms for segmentation, feature extraction, and color analysis.

5. Ethical Considerations in Computer Vision

Like AI in general, Computer Vision raises serious ethical concerns:

1. Privacy Issues

o CCTV surveillance and face recognition systems can monitor individuals without their consent, raising privacy violations.

2. Misuse of Face Recognition

- o Authoritarian governments can misuse CV to track and suppress citizens.
- o Example: Mass surveillance in public spaces.

3. Bias in Datasets

- o If training datasets are not diverse, CV models may be biased against race, gender, or ethnicity.
- o Example: Some face recognition systems misidentify people of color more frequently.

4. Deepfakes

- o CV is used to create highly realistic fake videos/images, leading to misinformation, identity theft, and political manipulation.