Geometric Algebra

Geometric product: $ab = a \cdot b + a \wedge b$ $a \cdot b$: scalar part, $a \wedge b$: Bivector Orthonormal base: $\{e_i\}$ Products: e_{ij} : \pm 1 (signature of e_i) $j \neq k \rightarrow e_j e_k = -e_k e_j \rightarrow e_{jk} = -e_{kj}$

Euclidean space (0,3): $e_{ii} = 1$ $\{e_i\} = \{e_1, e_2, e_3\}$ Trivector (pseudoscalar) $i_{(3)} = e_{123} = e_1 e_2 e_3$ $a = a_1 e_1 + a_2 e_2 + a_3 e_3$, $b = b_1 e_1 + b_2 e_2 + b_3 e_3$ **Euclidean Cross Product**: $a \times b = -i_{(3)} (a \wedge b)$ $a \wedge b = a_1b_2e_1e_2 + a_1b_3e_1e_3 + a_2b_1e_2e_1 + a_2b_3e_2e_3 + a_3b_1e_3e_1 + a_3b_2e_3e_2 =$ $= a_1b_2e_{12} - a_1b_3e_{31} - a_2b_1e_{12} + a_2b_3e_{23} + a_3b_4e_{31} - a_3b_2e_{23} =$ = $(a_1b_2 - a_2b_1)e_{12} + (a_2b_3 - a_3b_2)e_{23} + (a_3b_1 - a_1b_3)e_{31}$ $a \times b = -e_{123} [(a_1b_2 - a_2b_1)e_{12} + (a_2b_3 - a_3b_2)e_{23} + (a_3b_1 - a_1b_3)e_{31}] =$ = -[(a_1b_2 - a_2b_1) $e_{123}e_{12}$ + (a_2b_3 - a_3b_2) $e_{123}e_{23}$ + (a_3b_1 - a_1b_3) $e_{123}e_{31}$] = = -[$(a_1b_2 - a_2b_1) e_{12312} + (a_2b_3 - a_3b_2) e_{12323} + (a_3b_1 - a_1b_3) e_{12331}$] = $= -[(a_1b_2 - a_2b_1)e_{11232} + (a_2b_3 - a_3b_2)e_{12323} + (a_3b_1 - a_4b_3)e_{12433}] =$ = -[(a_1b_2 - a_2b_1)(- e_{11223}) + (a_2b_3 - a_3b_2)(- e_{12233}) + (a_3b_1 - a_1b_3)(- e_{11233})] = $= -[(a_1b_2 - a_2b_1)(-e_3) + (a_2b_3 - a_3b_2)(-e_1) + (a_3b_1 - a_1b_3)(-e_2)] =$ $= -[(a_1b_2 - a_2b_1)(-e_3) + (a_3b_1 - a_4b_3)(-e_2) + (a_2b_3 - a_3b_2)(-e_1)] =$ = $(a_1b_2 - a_2b_1)(e_3) + (a_3b_1 - a_1b_3)(e_2) + (a_2b_3 - a_3b_2)(e_1)$ $\overrightarrow{a} \times \overrightarrow{b} = \begin{bmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{bmatrix} -e_1 & -e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$