CAPÍTULO 5. INFILTRAÇÃO

5.1. Generalidades

A infiltração é o nome dado ao processo pelo qual a água atravessa a superfície do solo. É um processo de grande importância prática, pois afeta diretamente o escoamento superficial, que é o componente do ciclo hidrólogico responsável pelos processos de erosão e inundações. Após a passagem da água pela superfície do solo, ou seja, cessada a infiltração, a camada superior atinge um "alto" teor de umidade, enquanto que as camadas inferiores apresentam-se ainda com "baixos" teores de umidade. Há então, uma tendência de um movimento descendente da água provocando um molhamento das camadas inferiores, dando origem ao fenômeno que recebe o nome de redistribuição.

O perfil típico de umidade do solo, durante a infiltração, está apresentado esquematicamente na Figura a seguir.

Figura 23 - Perfil de umidade do solo durante a infiltração.

Zona de saturação: corresponde a uma camada de cerca de 1,5 cm e, como sugere o nome, é uma zona em que o solo está saturado, isto é, com um teor de umidade igual ao teor de umidade de saturação.

<u>Zona de transição</u>: é uma zona com espessura em torno de 5 cm, cujo teor de umidade decresce rapidamente com a profundidade.

Zona de transmissão: é a região do perfil através da qual a água é transmitida. Esta zona é caracterizada por uma pequena variação da umidade em relação ao espaço e ao tempo.

<u>Zona de umedecimento</u>: é uma região caracterizada por uma grande redução no teor de umidade com o aumento da profundidade.

<u>Frente de umedecimento</u>: compreende uma pequena região na qual existe um grande gradiente hidráulico, havendo uma variação bastante abrupta da umidade. A frente de umedecimento representa o limite visível da movimentação de água no solo.

5.2. Análise físico-matemática do processo de infiltração da água no solo

O movimento da água em um solo não-saturado pode ser descrito pela equação de Darcy, originalmente deduzida para solos saturados e representada pela equação:

$$q = -K_o \cdot \frac{\partial H}{\partial z}$$

em que:

q = densidade de fluxo, mm.h⁻¹;

K_o = condutividade hidráulica do solo saturado, mm.h⁻¹;

H = potencial total da água no solo, mm; e

z = distância entre os pontos considerados, mm.

A razão entre a taxa de variação do potencial da água no solo, ao longo da distância por ela percorrida $(\partial H/\partial z)$, denomina-se gradiente hidráulico, representando a força responsável pelo escoamento da água no solo. O sinal negativo na equação de Darcy indica que o escoamento se estabelece do maior para o menor potencial.

Na equação de Darcy para solos saturados, evidencia-se que as condições imprescindíveis para que se estabeleça o movimento da água no solo são a existência de uma diferença no potencial entre os pontos considerados e um meio poroso condutivo, isto é, a condutividade hidráulica do solo não pode ser nula. Se ambas as condições não forem satisfeitas, o escoamento da água no solo não ocorrerá.

A relação linear entre a densidade de fluxo e o gradiente hidráulico só é verificada em condições de escoamento laminar, tornando a equação de Darcy válida somente sob esta condição. Outra limitação para o emprego desta equação refere-se à velocidade de escoamento muito baixa, ou seja, um gradiente hidráulico muito pequeno.

A aplicação da equação de Darcy, para condições de solos não-saturados, exige que seja considerada também a variação da condutividade hidráulica com o teor de umidade do solo, tendo esta como limite superior o próprio valor da condutividade hidráulica do solo saturado. Nesse caso, o potencial da água no solo tem dois componentes, o gravitacional e o matricial, sendo representado pela equação:

$$H = \Psi + Z$$

em que:

 Ψ = potencial matricial da água no solo, mm; e

Z = potencial gravitacional da água no solo, mm.

Nessas condições, a equação de Darcy torna-se:

$$q = -K(\theta) \cdot \frac{\partial}{\partial z} (\Psi + Z)$$

em que:

 $K(\theta)$ é a condutividade hidráulica do solo para um teor de umidade θ , mm.h⁻¹.

A taxa de infiltração da água no solo é alta no início do processo de infiltração, particularmente quando o solo está inicialmente muito seco, mas tende a decrescer com o tempo, aproximando-se assintoticamente de um valor constante, denominado taxa de infiltração estável (muito conhecida por velocidade de infiltração básica da água no solo - VIB). Este comportamento pode ser compreendido a partir da aplicação da equação de Darcy às condições de escoamento, em meio não-saturado. No início do processo, a valor da profundidade da frente de umedecimento é pequeno. Desta forma, ter-se-á um valor do gradiente hidráulico muito elevado e, portanto, uma taxa de infiltração alta. Com o tempo, o valor de Z vai aumentando até que o gradiente hidráulico [(Ψ + Z)/Z] vai tendendo a 1 e, conseqüentemente, a taxa de infiltração tende a um valor aproximadamente igual à condutividade hidráulica do solo saturado, a qual aproxima-se da própria VIB.

Um solo mais úmido terá, inicialmente, uma menor taxa de infiltração devido a um menor gradiente hidráulico (menor diferença no potencial matricial da água no solo), e mais rapidamente a taxa de infiltração se tornará constante. A Figura 24 representa a variação da taxa de infiltração e da infiltração acumulada, para um mesmo solo sob duas condições iniciais de umidade, isto é, seco e úmido.

5.3. Grandezas Características

5.3.1. Capacidade de infiltração (CI)

É a quantidade máxima de água que pode infiltrar no solo, em um dado intervalo de tempo, sendo expresso geralmente em mm.h⁻¹. A capacidade de infiltração só é atingida durante uma chuva se houver excesso de precipitação. Caso contrário, a taxa de infiltração da água do solo não é máxima, não se

igualando à capacidade de infiltração. A CI apresenta magnitude alta no início do processo e com o transcorrer do mesmo, esta atinge um valor aproximadamente constante após um longo período de tempo. Da mesma forma como citado anteriormente, este valor é denominado taxa de infiltração estável, comumente conhecido com VIB (Figura 24).

Figura 24 – Velocidade de infiltração e infiltração acumulada em função do tempo para solo inicialmente seco e úmido.

5.3.2. Taxa (velocidade) de Infiltração

A taxa de infiltração é definida como a lâmina de água (volume de água por unidade de área) que atravessa a superfície do solo, por unidade de tempo. A taxa de infiltração pode ser expressa em termos de altura de lâmina d'água ou volume d'água por unidade de tempo (mm.h⁻¹). A equação a seguir, representa a taxa de infiltração de água no solo, correspondendo à variação da infiltração acumulada ao longo do tempo:

$$TI = \frac{dI}{dT}$$

em que:

TI = taxa de infiltração da água no solo, mm.h⁻¹;

I = infiltração acumulada, mm; e

T = tempo, h.

Como foi dito anteriormente, se em um solo com baixa capacidade de infiltração aplicarmos água a uma taxa elevada, a taxa de infiltração será correspondente à capacidade de infiltração daquele solo. Deverá existir empoçamento da água na superfície e o escoamento superficial daquela água aplicada na taxa excedente à capacidade de infiltração do solo poderá ocorrer.

À medida que vai-se adicionando água no solo, a frente de umedecimento vai atingindo uma profundidade cada vez maior, diminuindo a diferença de umidade entre essa frente e a camada superficial, que vai se tornando cada vez mais úmida. Com isto, a TI vai se reduzindo substancialmente até um valor praticamente constante, característico de cada tipo de solo, e que recebe o nome de taxa de infiltração estável ou VIB. Portanto, a TI depende diretamente da textura e estrutura do solo e, para um mesmo solo, depende do teor de umidade na época da chuva ou irrigação, da sua porosidade e da existência de camada menos permeável (camada compactada) ao longo do perfil (Figura 25).

Quando uma precipitação atinge o solo com intensidade menor do que a capacidade de infiltração, toda a água penetra no solo, provocando progressiva diminuição na própria CI. Persistindo a precipitação, a partir de um tempo t=tp, representado na Figura 25, a taxa de infiltração iguala-se à capacidade de infiltração, passando a decrescer com o tempo e tendendo a um valor constante, após grandes períodos de tempo, caracterizado como a condutividade hidráulica do solo saturado (K_0).

Figura 25 – Variação da velocidade de infiltração com o tempo.

A Figura 26 mostra o desenvolvimento típico das curvas representativas da evolução temporal da infiltração real e da capacidade de infiltração com a ocorrência de uma precipitação. A partir do tempo t = A, o solo começa aumentar seu teor de umidade, consequentemente a capacidade de infiltração diminui. No tempo t = B, a velocidade de infiltração iguala-se à capacidade de infiltração, que continua decrescendo. Portanto, a partir desse instante, inicia-se o escoamento superficial. No tempo t = C, a chuva termina, e o solo começa a perder umidade por evaporação/transpiração. A partir deste momento, a capacidade de infiltração começa aumentar até que uma outra precipitação ocorra, quando o processo descrito se repete.

Figura 26 - Curvas de capacidade e velocidade de infiltração.

Portanto.

 $I_p \le CI \rightarrow TI = I_p \rightarrow$ não há escoamento superficial.

 $I_p > CI \rightarrow CI = TI \rightarrow$ há acúmulo de água na superfície e possibilidade de ocorrer escoamento superficial.

5.4. Fatores que Intervém na Capacidade de Infiltração

A infiltração é um processo que depende, em maior ou menor grau, de diversos fatores, dentre os quais destacam-se:

<u>Condição da superfície</u>: a natureza da superfície considerada é fator determinante no processo de infiltração. Áreas urbanizadas apresentam menores velocidades de infiltração que áreas agrícolas, principalmente quando estas têm cobertura vegetal.

<u>Tipo de solo</u>: a textura e a estrutura são propriedades que influenciam expressivamente a infiltração.

Condição do solo: em geral, o preparo do solo tende a aumentar a capacidade de infiltração. No entanto, se as condições de preparo e de manejo do solo forem inadequadas, a sua capacidade de infiltração poderá tornar-se inferior à de um solo sem preparo, principalmente se a cobertura vegetal presente sobre o solo for removida.

<u>Umidade inicial do solo</u>: para um mesmo solo, a capacidade de infiltração será tanto maior quanto mais seco estiver o solo inicialmente.

<u>Carga hidráulica</u>: quanto maior for a carga hidráulica, isto é a espessura da lâmina de água sobre a superfície do solo, maior deverá ser a taxa de infiltração.

<u>Temperatura</u>: a velocidade de infiltração aumenta com a temperatura, devido à diminuição da viscosidade da água.

Presença de fendas, rachaduras e canais biológicos originados por raízes decompostas ou pela fauna do solo: estas formações atuam como caminhos

preferenciais por onde a água se movimenta com pouca resistência e, portanto, aumentam a capacidade de infiltração.

Compactação do solo por máquinas e/ou por animais: o tráfego intensivo de máquinas sobre a superfície do solo, produz uma camada compactada que reduz a capacidade de infiltração do solo. Solos em áreas de pastagem também sofrem intensa compactação pelos cascos dos animais.

Compactação do solo pela ação da chuva: as gotas da chuva, ou irrigação, ao atingirem a superfície do solo podem promover uma compactação desta, reduzindo a capacidade de infiltração. A intensidade dessa ação varia com a quantidade de cobertura vegetal, com a energia cinética da precipitação e com a estabilidade dos agregados do solo.

Cobertura vegetal: O sistema radicular das plantas cria caminhos preferenciais para o movimento da água no solo o que, consequentemente, aumenta a Tl. A presença de cobertura vegetal reduz ainda o impacto das gotas de chuva e promove o estabelecimento de uma camada de matéria orgânica em decomposição que favorece a atividade microbiana, de insetos e de animais o que contribui para formar caminhos preferenciais para o movimento da água no solo. A cobertura vegetal também age no sentido de reduzir a velocidade do escoamento superficial e, portanto, contribui para aumentar o volume de água infiltrada.

5.5. Métodos de Determinação da Capacidade de Infiltração

Os métodos usados para se determinar a capacidade de infiltração da água no solo são:

- infiltrômetro de anel; e
- simuladores de chuva ou infiltrômetro de aspersão.

5.5.1. Infiltrômetro de Anel

Consiste basicamente de dois cilindros concêntricos e um dispositivo de medir volumes da água aduzida ao cilindro interno. Os cilindros apresentam 25 e 50 cm de diâmetro, ambos com 30 cm de altura. Devem ser instalados concentricamente e enterrados 15 cm no solo. Para isso, as bordas inferiores devem ser em bisel a fim de facilitar a penetração no solo (Figura 27).

Figura 27 - Desenho esquemático do infiltrômetro de anel.

A água é colocada, ao mesmo tempo nos dois anéis e, com uma régua graduada, faz-se a leitura da lâmina d'água no cilindro interno ou anota-se o volume de água colocado no anel, com intervalos de tempo pré-determinados. A diferença de leitura entre dois intervalos de tempo, representa a infiltração vertical neste período (Figura 28).

Quando não se dispuser do cilindro externo, pode-se fazer uma bacia em volta do cilindro menor e mantê-la cheia de água enquanto durar o teste. A finalidade do anel externo ou da bacia é evitar que a água do anel interno infiltre lateralmente, mascarando o resultado do teste. A altura da lâmina d'água nos

dois anéis deve ser de 15 cm, permitindo-se uma variação máxima de 2 cm. No início do teste, essa altura pode influenciar nos resultados, entretanto, com o decorrer do tempo, ela passa a não ter efeito.

O teste termina quando a TI permanecer constante. Na prática, considerase que isto ocorra quando TI variar menos que 10% no período de 1 (uma) hora. Neste momento, considera-se que o solo atingiu a chamada taxa de infiltração estável.

Figura 28 - Medida de infiltração com um infiltrômetro de anel.

5.5.2 Simuladores de Chuva

São equipamentos nos quais a água é aplicada por aspersão, com intensidade de precipitação superior à capacidade de infiltração do solo. O objetivo deste teste, portanto, é coletar a lâmina de escoamento superficial originada pela aplicação de uma chuva com intensidade superior à CI do solo. Para isso, a aplicação de água é realizada sobre uma área delimitada com

chapas metálicas tendo, em um dos seus lados, uma abertura a fim de ser possível a coleta do escoamento superficial (Figura 29).

A taxa de infiltração é obtida pela diferença entre a intensidade de precipitação e a taxa de escoamento resultante.

Por não existir o impacto das gotas de chuva contra a superfície do solo, provocando o selamento superficial, o infiltrômetro de anel superestima a taxa de infiltração em relação ao simulador de chuvas. Outro fator que contribui para que os valores de TI sejam diferentes nos dois métodos é a presença da lâmina d'água no infiltrômetro de anel. Essa lâmina provoca um aumento no gradiente de potencial favorecendo o processo de infiltração.

Figura 29 - Infiltrômetro de aspersão pendular (a) e rotativo (b).

5.6. Equações Representativas da Infiltração

A infiltração acumulada d'água no solo (I) pode ser descrita pôr várias equações, sendo que iremos apresentar as duas equações empíricas mais utilizadas:

5.6.1. Equação Potencial (Kostiakov - 1932)

$$I = k \cdot T^a$$

em que:

I = infiltração acumulada (cm);

k = constante dependente do solo;

T = tempo de infiltração (min); e

a = constante dependente do solo, variando de 0 a 1.

Chamada equação de Kostiakov, este tipo de equação descreve bem a infiltração para períodos curtos, comuns na precipitação de lâminas d'água médias e pequenas.

A velocidade de infiltração instantânea (VI) é a derivada da infiltração acumulada, em relação ao tempo :

$$VI = \frac{dI}{dT}$$
, ou seja, $VI = k \cdot a \cdot T^{a-1}$

A equação de Kostiakov possui limitações para períodos longos de infiltração, pois neste caso, a TI tende a zero, à medida que o tempo de infiltração torna-se muito grande. Entretanto, na realidade, TI tende a um valor constante correspondente à VIB, diferente de zero.

A velocidade de infiltração média (Vim) é a divisão de I pelo tempo T:

$$VIm = \frac{I}{T} \qquad VIm = \frac{k \cdot T^{a}}{T} \qquad VIm = k \cdot T^{a-1}$$

A determinação dos coeficientes a e k é feita utilizando-se o método gráfico (uso de papel log-log) ou o método analítico (regressão linear).

a) Método Gráfico

Plota-se os dados de I e T em um papel log-log e traça-se a linha reta de melhor ajuste dos pontos. O ponto de intercessão do prolongamento da reta com o eixo das ordenadas (relativo aos valores do tempo T), será o valor de **k**, e a declividade da reta será o valor de **a** (Figura abaixo).

b) Método Analítico

Como o método da regressão linear só pode ser aplicado para equações lineares, inicialmente a equação de infiltração, que é uma equação exponencial, deverá ser transformada em uma equação linear. Para isso, basta aplicar as operações logarítmicas correspondentes à equação de infiltração. Assim,

$$log I = log k + a log T$$

Dessa forma, verifica-se que essa apresentação da equação de infiltração nada mais é que uma equação da reta do tipo Y = A + B X, em que:

- Y = log I
- A = log k
- B = a
- X = log T

No método da regressão linear, os valores de A e B são determinados pelas seguintes expressões:

$$A = \frac{\sum X \times \sum XY - \sum X^2 \times \sum Y}{(\sum X)^2 - m \times \sum X^2}$$

$$B = \frac{\sum X \times \sum Y - m \times \sum XY}{(\sum X)^2 - m \times \sum X^2}$$

em que:

m é o número de pares de dados I e T.

$$A = log k$$
, $k = antilog A$, então, \longrightarrow $k = 10^A$

$$B = a$$
, então, \longrightarrow \longrightarrow $a = B$

Obtidos os valores de A e B, determina-se k e a, ou seja, retorna-se a equação exponencial de origem. O valor de k é encontrado aplicando o antilog A, e a é o próprio valor de B.

Exemplo: Em um teste de infiltração foram levantados os seguintes dados.

Tac (min)	I (cm)	X = log Tac	Y = log I	X ²	X .Y	
0	0	-	-	0,0000	0,0000	
4	1,5	0,6021	0,1761	0,3625	0,1060	
9	2,7	0,9542	0,4314	0,9106	0,4116	
14	3,7	1,1461	0,5682	1,3136	0,6512	
19	4,8	1,2788	0,6812	1,6352	0,8711	
24	5,6	1,3802	0,7482	1,9050	1,0327	
29	6,6	1,4624	0,8195	2,1386	1,1985	
34	7,6	1,5315	0,8808	2,3454	1,3489	
39	8,6	1,5911	0,9345	2,5315	1,4868	
44	9,4	1,6435	0,9731	2,7009	1,5993	
54	11,0	1,7324	1,0414	3,0012	1,8041	
64	12,9	1,8062	1,1106	3,2623	2,0059	
74	14,4	1,8692	1,1584	3,4940	2,1652	
84	16,2	1,9243	1,2095	3,7029	2,3274	
94	17,8	1,9731	1,2504	3,8932	2,4672	
104	19,4	2,0170	1,2878	4,0684	2,5975	
114	20,9	2,0569	1,3201	4,2309	2,7154	
124	22,5	2,0934	1,3522	4,3824	2,8307	
134	24,0	2,1271	1,3802	4,5246	2,9359	
144	25,5	2,1584	1,4065	4,6585	3,0358	
154	26,8	2,1875	1,4281	4,7852	3,1241	
164	28,4	2,2148	1,4533	4,9055	3,2189	
174	30,0	2,2405	1,4771	5,0201	3,3096	
184	31,6	2,2648	1,4997	5,1294	3,3965	
194	33,2	2,2878	1,5211	5,2340	3,4801	
204	34,8	2,3096	1,5416	5,3344	3,5605	
214	36,4	2,3304	1,5611	5,4308	3,6380	
Total		47,1834	29,2123	90,9012	57,3191	

Número de pares de valores T x I (m) = 26

Calculando os valores de A e B, tem-se:

$$A = \frac{47,1834 \times 57,3191 - 90,9012 \times 29,2123}{(47,1834)^2 - 26 \times 90,9012} = -0,3578$$

$$B = \frac{47,1834 \times 29,2123 - 26 \times 57,3191}{(47,1834)^2 - 26 \times 90,9012} = 0,8163$$

Como: A = log k, k = antilog A, k = antilog (-0.3578), k = 0.4387

Como: B = a, a = 0.8163

A forma final da equação de infiltração será:

$$I = 0.4387 \text{ T}^{0.8163}$$

A forma final da equação de velocidade de infiltração instantânea será:

$$VI = 0.3581 \text{ T}^{-0.1837}$$

A forma final da equação de velocidade de infiltração média será:

$$V Im = 0.4387 T^{-0.1837}$$

5.6.2. Equação Potencial Modificada (Kostiakov-Lewis)

Com o objetivo de solucionar o problema de TI tender a zero para um longo período de tempo, a seguinte equação foi proposta e é muito utilizada:

$$I = k.T^a + VIB.T$$

Neste caso, os parâmetros da equação de infiltração (\underline{k} e \underline{a}) são estimados pelo método da regressão linear, fazendo um arranjo dos termos:

$$log(I-VIB \cdot T) = log k + a \cdot log T$$

Com este arranjo, Y = log . (I - VIB . T), e os outros parâmetros são os mesmos utilizados anteriormente.

Apesar da modificação feita na equação potencial (Kostiakov) visando solucionar o problema de TI tender a zero e não à VIB, essas equações não levam em consideração o teor de umidade inicial do solo. Por isso, o teste de infiltração deve ser realizado quando o solo estiver com um teor de umidade médio. Desta maneira, o problema é parcialmente resolvido.

O solo pode ser classificado de acordo com a velocidade de infiltração básica, conforme abaixo:

Solo de VIB baixa	VIB < 5 mm.h ⁻¹
Solo de VIB média	5 < VIB < 15 mm.h ⁻¹
Solo de VIB alta	15 < VIB < 30 mm.h ⁻¹
Solo de VIB muito alta	VIB > 30 mm.h ⁻¹

5.7. Exercícios

1) Um determinado solo de uma microbacia hidrográfica foi submetido ao teste de Infiltração (Método de Infiltrômetro de Anel) apresentou os seguintes resultados:

HORA	TEMPO (min)	TEMPO ACUMULADO (min)	INFILTRAÇÃO (mm)	INFILTRAÇÃO ACUMULADA (mm)	VELOCIDADE DE INFILTRAÇÃO (mm.min ⁻¹)
08:00			0		,
08:05			9,1		
08:10			6,6		
08:20			8,4		
08:30			5,6		
08:45			7,4		
09:00			6,8		
09:30			12,5		
10:00			11,9		
11:00			17,8		
12:00			16,7		
13:00			15,0		
14:00			14,7		
15:00			14,7		
16:00			14,7		
17:00			14,7		

Pede-se:

- a) apresentar as equações de infiltração (I) e velocidade de infiltração (VI), propostas pelo modelo de Kostiakov;
- b) apresentar as equações de infiltração (I) e velocidade de infiltração (VI), propostas pelo modelo de Kostiakov Lewis (Kostiakov modificada);
- c) apresentar o gráfico Velocidade de Infiltração X Tempo Acumulado;
- d) indicar a Velocidade de Infiltração Básica (VIB) no gráfico Velocidade de Infiltração X Tempo Acumulado;
- e) indicar o valor em mm.min⁻¹, da Velocidade de Infiltração Básica (VIB); e
- f) classifique este solo em relação a velocidade de infiltração básica.

2) Em um teste de infiltração foram levantados os seguintes dados:

Tac (min)	I (mm)	x = log Tac	Y = log I	X ²	X .Y
0	0				
1	26				
2	41				
4	52				
6	60				
11	86				
16	111				
26	138				
36	157				
51	182				
66	212				
96	256				
126	299				
156	326				
186	352				
216	384				
Total					

Determinar os parâmetros k e a da equação de infiltração da água no solo e apresentar a equação potencial.

- 3) Comente sobre os fatores intervenientes sobre o processo de infiltração da água no solo.
- 4) Explique como se pode determinar a Capacidade de Infiltração da água em um solo.

- 5) (Questão 19 Prova de Hidrologia Concurso CPRM 2002 Certo ou Errado)
- a) (item 1) Os dados da tabela abaixo foram coletados por intermédio de um simulador de chuva de 2 m X 4 m, que proporcionou uma precipitação de intensidade constante de 50 mm.h⁻¹. Nessa tabela, apresentam-se o tempo e o volume acumulado, coletado na única seção de saída de escoamento superficial do experimento.

Tempo (min)	0	5	10	20	30	40	50	60	70
Volume									
acumulado (L)	0*	0**	4,3	30,9	72,2	121,5	174,8	231,1	289,0
Tempo (min)	80	90	100	110	120	130	140	150	160
Volume									
acumulado (L)	347,4	406,7	466,3	526,1	586,0	645,9	705,9	765,9	825,9

^{*} início da precipitação.

Com base nessas informações, calcule a lâmina infiltrada após uma hora e após 150 minutos do início da precipitação.

b) (item 4) De acordo com a lei de Darcy, a taxa com que se processa a infiltração de água no solo permanece constante enquanto a intensidade de chuva for baixa, para posteriormente decrescer exponencialmente. A taxa final é denominada capacidade de infiltração do solo.

^{**} início do escoamento superficial.