Homework #3

Eric Tao Math 233: Homework #3

March 12, 2023

Question 1. Let u be a harmonic function on a region Ω . What can we say about the set of points such that $\nabla u = 0$, that is, the set of points where $u_x = u_y = 0$?

Solution. Recall that if u is a real harmonic function, then we may identify it as the real part of a holomorphic function f(x,y) = u(x,y) + iv(x,y) locally. Suppose $u_x = u_y = 0$. Then, by the Cauchy-Riemann equations, we have that at these points, $v_x = v_y = 0$. Further, identifying $f'(z) = \partial f(z)$ for $\partial = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$, we have that:

$$f'(z) = \partial f(z) = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (u + iv) = \frac{1}{2} \left[(u_x + v_y) + i(v_x - u_y) \right]$$

So, we have that at points where $u_x = u_y = 0$, we have that f'(z) = 0. But, since f is holomorphic on this neighborhood, so is f'. Therefore, $\{(x,y) : \nabla u(x,y) = 0\}$ is either all of the neighborhood, or has no limit points. Since Ω is a region, we can always patch our entire region with overlapping neighborhoods, so this extends to all of Ω .

Now, if u is a complex-valued harmonic function, we simply identify it as u = w + iv, where w, v are the real and imaginary portions. It should be clear that if u is harmonic, so must w, v as:

$$u_{xx} + u_{yy} = w_{xx} + iv_{xx} + w_{yy} + v_{yy} = (w_{xx} + w_{yy}) + i(v_{xx} + v_{yy}) = 0 \implies w_{xx} + w_{yy} = 0, v_{xx} + v_{yy} = 0$$

Then, suppose $u_x = u_y = 0$. At such points, we would have that $u_x = w_x + iv_x = 0, u_y = w_y + iv_y = 0 \implies w_x = w_y = 0, v_x = v_y = 0$. But, by the previous work, since v, w are real harmonic functions, they either have no limit points, or are the full space. It should be clear then, that the set of points where $\nabla u = 0$ is simply the union of these sets. It too may only be the full space or not have limit points, as if it did, then we could construct a subsequence of points coming from either the set where $\nabla v = 0$, or $\nabla w = 0$, which would imply that the original set had a limit point, a contradiction.

Question 2. Let u, v be real harmonic functions on a plane region Ω . Under what conditions is uv harmonic?

Further, show that u^2 may not be harmonic on Ω , unless u is constant.

Further, for which $f \in \mathcal{H}(\Omega)$ is $|f|^2$ harmonic?

Solution. We start by proving that if we take the Laplacian of uv, $\Delta(uv)$, then this is equal to $2\nabla u \cdot \nabla v$:

$$\Delta(uv) = (uv)_{xx} + (uv)_{yy} = (u_xv + uv_x)_x + (u_yv + uv_y)_y = u_{xx}v + u_xv_x + u_xv_x + uv_{xx} + u_yv_y + u_y$$

Because u, v are harmonic, we know that $u_{xx} + u_{yy} = 0, v_{xx} + v_{yy} = 0$, so:

$$= v(u_{xx} + v_{xx}) + 2u_xv_x + u(v_{xx} + v_{yy}) + 2u_yv_y = 2(u_xv_x + u_yv_y) = 2\langle u_x, u_y \rangle \cdot \langle v_x, v_y \rangle = 2\nabla u \cdot \nabla v$$

Here, it should be clear then that if u^2 is not constant, then u^2 is not harmonic. We have that $\Delta(u^2) = \Delta(uu) = 2\nabla u \cdot \nabla u = 2|\nabla u|^2$. So, suppose u is harmonic, then for $\Delta(u^2) = 0$, this implies that $|\nabla u| = 0$ for all $z \in \Omega$. However, this implies immediately that u is constant, and we have the contrapositive.

Now, of course, if u or v is constant, suppose u = a is constant, then of course uv = av is harmonic, being a scalar multiple of a harmonic function. So, assume u, v both non-constant.

Define the set $A = \{z \in \Omega : \nabla u(z) = 0 \text{ or } \nabla v(z) = 0\}$. By the first problem, we know that neither of those sets have limit points in Ω . Since both of those are closed conditions, A is the union of two closed sets, and thus closed. Thus, consider $\Omega' = \Omega \setminus A$.

This is an open set, of course, being open minus closed, or equivalently, open intersect open. Further, it must be connected, since the points of A have no limit points, and are at most countable. Suppose $x, y \in \Omega'$, and consider a path between them in Ω . This may have at most countably many disconnections when we move to Ω' . Since A has no limit points, we may restrict down into a small enough punctured disk around any connection and take a path there - this punctured disk must be completely contained within Ω' due to A having no limit points. Since we have merely countably many of these issues, we are assured that we can patch this. Finally, this must be dense because let U be any open set in Ω . Choose any $a \in U$. There exists a disk $D(a,r) \subset U$, with uncountable cardinality. But, A is merely countable, thus $D(a,r) \setminus A \neq \emptyset$. Thus, since $A \cup \Omega' = \Omega$, we must have that $D(a,r) \cap \Omega' \neq \emptyset$. Thus, we have that Ω' is a region.

Now, we have that since $\Delta(uv) = 0$, we must have that $u_xv_x + u_yv_y = 0 \implies u_xv_x = -u_yv_y$. Since we wish uv to be harmonic, this must hold for all $z \in \Omega'$, which leads us to two cases, since $u_x, u_y, v_x, v_y \neq 0$ on Ω' :

Case 1:

$$\begin{cases} v_x = -\lambda u_y \\ v_y = \lambda u_x \end{cases}$$

It should be clear that due to the definition of Ω' , that $\lambda \neq 0$. In particular, since u, v are harmonic on Ω , they are continuous on all of Ω , with continuous first derivatives. Thus, these must actually hold for all of Ω , since u_x, u_y, v_x, v_y . Thus, we can say that the function

$$f = \lambda u + iv$$

is holomorphic, since these are exactly the Cauchy-Riemann equations for $u' = \lambda u, v' = v$. Thus, in this case, uv is harmonic if we may find a λ such that u, v are real and imaginary parts of a holomorphic function.

Case 2:

$$\begin{cases} u_x = -\lambda u_y \\ v_y = \lambda v_x \end{cases}$$

Consider the first equation. This implies that $u_{xx} = -\lambda u_{yx}$ and $u_{yy} = -\frac{1}{\lambda}u_{xy}$. Thus, in such a case, since u is harmonic, we must have that:

$$u_{xx} + u_{yy} = 0 \implies -\lambda u_{yx} - \frac{1}{\lambda} u_{xy} = 0 \implies u_{xy} = 0$$

Similarly:

$$v_{xx} + v_{yy} = 0 \implies \lambda v_{yx} + \frac{1}{\lambda} v_{xy} = 0 \implies v_{xy} = 0$$

However, since $u_x, u_y \neq 0$ on Ω' , this implies that $u_x = f(x)$ since $u_{xy} = 0$ and $u_y = g(y)$ since $u_{yx} = 0$. Then, we must have that u = F(x) + G(y) for F' = f, G' = g, and due to harmonicity, we further have that f'(x) + g'(y) = 0. This can only be true on all of Ω' if f', g' are constant, which implies that F, G are at most quadratics. However, since we started with $u_x = -\lambda u_y$, this implies that $F'(x) = -\lambda G'(y)$, and if F, G are polynomials, this implies then that F', G' are constants and thus F, G are linear. Thus, we have that:

$$u = -\lambda ax + ay + b$$

Running through the same logic with v, we see that:

$$v = cx + \lambda cy + d$$

However, here, we notice that:

$$\begin{cases} u_x = -\lambda a \\ u_y = a \\ v_x = c \\ v_y = \lambda c \end{cases}$$

Choosing $\lambda' = -\frac{c}{a}$, we see that:

$$\begin{cases} -\lambda' u_y = \frac{c}{a} a = c = v_x \\ \lambda' u_x = -\frac{c}{a} \cdot -\lambda a = \lambda c = v_y \end{cases}$$

and thus we are back in case 1. Thus, in either case, we see that uv is harmonic for u, v non-constant if there exists a $\lambda \neq 0$ such that $\lambda u + iv$ is holomorphic.

Now, let $f \in \mathcal{H}(\Omega)$, and consider $|f|^2$. Explicitly taking derivatives:

$$\frac{\partial^2}{\partial x^2} |f|^2 = \frac{\partial^2}{\partial x^2} (u^2 + v^2) = \frac{\partial}{\partial x} (2uu_x + 2vv_x) = 2(u_x^2 + uu_{xx} + v_x^2 + vv_{xx})$$

Of course then, the same equation will hold for the y, just switching the labels. Thus:

$$2(u_x^2 + uu_{xx} + v_x^2 + vv_{xx}) + 2(u_y^2 + uu_{yy} + v_y^2 + vv_{yy}) = 2(u(u_{xx} + u_{yy}) + u_x^2 + u_y^2 + v(v_{xx} + v_{yy}) + v_x^2 + v_y^2) = 2(u_x^2 + uu_{yy} + v_y^2 + vv_{yy}) = 2(u_x^2 + uu_{yy} + vv_{yy} + vv_$$

where we've used the fact that because u, v come from the real, imaginary parts of a holomorphic function, u, v are harmonic.

Now, applying the Cauchy-Riemann equations, we obtain:

$$2(u_x^2 + u_y^2 + v_x^2 + v_y^2) = 2(2v_x^2 + 2v_y^2) = 4(v_x^2 + v_y^2) = 4(u_x^2 + u_y^2)$$

However, since u is a real-valued function, so must be u_x, u_y . Then, since $u_x^2, u_y^2 \ge 0$, for this to be harmonic, we must have $u_x, u_y = 0$. But that implies that u and thus v, are constants. Thus, we have that $|f|^2$ is harmonic iff f is constant.

Question 3. Suppose f is a complex function on a region Ω , and both f, f^2 are harmonic on Ω . Prove that either f, \overline{f} must be holomorphic on Ω .

Solution. It is clear that if $f = a \in \mathbb{C}$, that is, constant, then f, f^2 are harmonic and f, \overline{f} are both holomorphic. Thus, we restrict ourselves to f non-constant.

Question 4. Let Ω be a region, and $f_n \in \mathcal{H}(\Omega)$ for all n. Set $u_n = \Re(f_n)$, and suppose u_n converges uniformly on compact subsets of Ω and that there exists $z \in \Omega$ such that $f_n(z)$ converges. Prove that $f_n(z)$ converges uniformly on compact subsets of Ω .

Solution. \Box

Question 5. Let Ω be a region, K a compact subset of Ω , and fix some $z_0 \in \Omega$. Let u be any positive harmonic function. Prove that there exists $\alpha, \beta > 0$ such that

$$\alpha u(z_0) \le u(z) \le \beta u(z_0)$$

for all $z \in K$.

Solution. \Box