Peptide Computing and Binding-Blocking Automata

M. Sakthi Balan

Theoretical Computer Science Lab
Department of Computer Science and Engg.
Indian Institute of Technology
Chennai – 600036.

Email: sakthi@cs.iitm.ernet.in

URL: www.cs.iitm.ernet.in/theory/sakthi

Organization

- DNA Computing
- Peptide Computing
- Solving Hamiltonian Path Problem
- Solving Exact 3- Cover Set Problem
- Solving Satisfiability Problem
- Binding-Blocking Automata (BBA)
- Normal Forms of BBA
- Conclusion

"....It seems that progress in electronic hardware (and the corresponding software engineering) is not enough; for instance, the miniaturization is approaching the quantum boundary, where physical processes obey laws based on probabilities and nondeterminism, something almost completely absent in the operation of "classical" computers. So, new breakthrough is needed...."

Computing with Cells and Atoms –

Cristian S. Calude and Gh. Paun

Natural Computing

Biological Computing

• Quantum Computing

Biological Computing

DNA Computing

Peptide Computing

- Uses DNA strands and Watson-Crick Complementarity as operation
- Highly non-deterministic
- Massive parallelism
- Solves NP- Complete Problems quite efficiently

Peptide Computing

- Uses peptides and antibodies
- Operation binding of antibodies to epitopes in peptides
- Epitope The site in peptide recognized by antibody
- Highly non-deterministic
- Massive parallelism

Peptide Computing Contd..

- Peptides sequence of amino acids
- Twenty amino acids. Example –
 Glycine, Valine
- Connected by covalent bonds

- Antibodies recognizes epitopes by binding to it
- Binding of antibodies to epitopes has associated power called *affinity*
- Higher priority to the antibody with larger affinity power

Computing DNA Vs Peptide

- Four building blocks Adenine (A), Guanine(G), Cytosine (C), Thiamine (T) Only one reverse complement -Watson-Crick Complement Complement (A) = Tand Complement (G)
- Twenty building blocks (20 amino acids)
- Example: Glycine,
 Valine
- Different antibodies can recognize different epitopes
- Binding affinity of

TCS Lab, ITAM tibodies can be

 $= \mathbf{C}$

Peptide Computing Model

- Peptides represent sample space of the problem
- Antibodies are used to select the correct solution of the problem (i.e. peptides)

Definition

• For finite sequence $M = m_1, m_2, ..., m_n$ the doubly duplicated sequence is

$$MM = m_1, m_2, m_2, \dots, m_n, m_n$$

• Doubly duplicated permutation of a finite set S is

 $\{m \ m \ / \ m \ \text{is a permutation of the set } S\}$

Hamiltonian Path Problem

- G = (V, E) is a directed graph
- $V = \{v_1, v_2, \dots, v_n\}$ is the vertex set
- $E = \{e_{ij} \mid v_i \text{ is adjacent to } v_j\}$ is the edge set
- v_1 source vertex, v_n end vertex
- Problem Test whether there exists a Hamiltonian path between v_1 and

 \mathcal{V}_{i}

TCS Lab, IITM

TCS Lab, IITM

Peptides Formation

- Each vertex v_i has a corresponding epitope ep_i
- Each peptide has ep_1 on one extreme and ep_n on the other extreme
- All doubly duplicated permutations of

 $\{ep_2, \dots, ep_{n-1}\}\$ are formed in each of the peptide in between ep_1 and ep_n

Antibody Formation

- Form antibodies A_{ij} site = $ep_i ep_j$ s.t. v_j is adj. to v_i
- Form antibodies B_{ij} site = $ep_i ep_j$ s.t. v_j is not adj. to v_i
- Form antibody C site is whole of peptide
- Affinity(B_{ij}) > Affinity(C)
- Affinity(C) > Affinity(A_{ij})

Peptide Solution Space

- 1. Take all the peptides in an aqueous solution
- 2. Add antibodies Aij
- 3. Add antibodies B_{ij}
- 4. Add labeled antibody C
- 5. If fluorescence is detected answer is yes or else the answer is no

Peptides with Antibodies

Peptide with Antibodies

TCS Lab, IITM

Complexity

- Number of peptides = (n-2)!
- Length of peptides = O(n)
- Number of antibodies = $O(n^2)$
- Number of Bio-steps is constant

Exact Cover by 3-Sets Problem

- Instance: A finite set $X = \{x_1, x_2, ..., x_n\}$, n = 3q and a collection C of 3-elements subsets of X
- Question Does C contain an Exact Cover for X

Peptide Formation

- For each x_i a specific epitope ep_i is chosen
- For every permutation of the set $\{ep_i\}$ a peptide is chosen s.t. every subsequence of $ep_i ep_j ep_k$ is followed by the epitope ep_{ijk}

Example

$$X = \{x_1, x_2, ..., x_9\}$$

For permutation

$$x_1, x_7, x_9, x_2, x_6, x_4, x_3, x_5, x_8$$

Antibody Formation

- Form antibodies A_{ijk} , site = $ep_i ep_j ep_k$ if $\{x_i, x_j, x_k\}$ is in C
- Form antibodies B_{ijk} , site = $ep_i ep_j ep_k$ if $\{x_i, x_j, x_k\}$ is not in C
- Form colored antibody C, site is whole of peptide
- Affinity(B_{ijk}) > Affinity(C)
- Affinity(C) > Affinity(A_{ijk})
 TCS Lab, IITM

Algorithm

- Take all the antibodies in an aqueous solution.
- Add antibodies Aijk
- Add antibodies Bijk
- Add antibody C
- If fluorescence is detected the answer is yes otherwise no

Complexity

- Number of peptides = n!
- Length of peptides = O(n)
- Number of Antibodies = $O(n^3)$
- Number of Bio-steps is constant

Satisfiability Problem

Problem: Let F be a formula over n variables. Does there exists an assignment of truth value to every variable in F such that F becomes true.

Satisfiability Problem (Contd..)

- Let F be a formula in conjunctive normal form.
- There are n variables in F.
- To find an assignment such that F is true.
- $N = 2^n$ assignments possible.

Example

- Let $F = (v_1 \text{ or } \neg v_2)$ and $\neg v_2$ and $(v_1 \text{ or } v_2)$
- Assignments are (F,F), (F,T), (T,F), and (T,T)
- (T,F) satisfies F

- For each assignment prepare a peptide and different antibodies binding to overlapping epitopes.
- Binding affinities are C > A > B.

Peptide Formation (Contd..)

- Prepare partial solutions $G_1, G_2, ...$, G_k where G_i contains antibody A if C_i is true under corresponding assignment X
- $G_1 = \{A_1, A_3, A_4\}, G_2 = \{A_1, A_3\}, G_3 = \{A_2, A_3, A_4\}$

3.

Algorithm

- 1. Let m = k
- 2. The antibody set G_k is added. The antibodies A of G_k bind to their epitopes.
- 3. Antibodies B are added. Antibodies B bind to all free binding sites for B.
- 4. Antibodies C are added.
- 5. Antibodies C are removed by adding epitope C in excess
- 6. All remaining anithodies are covalently attached to their epitopes.
- 7. Let m = m 1. If m > 0 go to (2)
- 8. Add labeled antibodies A or B
- 9. Fluorescence is detected.

Peptide Computing is Computationally Complete

A Turing Machine can be

simulated by a Peptide System

Assumptions

- Turing Machine halts when it reaches a final state
- Let s(n) be the space complexity of the Turing Machine
- Assume that s(n) is a priori known

Universality Result

- Turing machine, $M = (Q, \Sigma, \delta, s_0, F)$
- $Q = \{q_1, q_2, ..., q_m\}$
- $\Sigma = \{a_1, a_2, ..., a_l\}$
- B is the blank symbol

Universality Result Contd..

• Form s(n) epitopes,

$$E_Q = \{ ep_i^Q / 1 < i < s(n) \}$$

• Form s(n) epitopes,

$$E_{\Sigma} = \{ ep_i^{\Sigma} / 1 < i < s(n) \}$$

Universality Result Contd..

• Form s(n)*m antibodies,

$$A_Q = \{A_i^q / 1 < i < s(n), q Q\}$$

- Form s(n)*l antibodies, $A_{\Sigma} = \{A_i^a / 1 < i < s(n), a \sum U\{b\}\}$
- The antibodies A_{if}^{q} are labeled

Universality Result Contd..

Peptide without antibodies

Initial Configuration of Peptide

Simulating the Right Move

• M moves from $a_i q a_j a_j$ to $a_i a_j q' a_j$

- Add excess of free epitopes ep_k^{Σ} and ep_k^{Q}
- Add antibodies $A_{k j}^{a}$ and $A_{k+1}^{q'}$
- k is the position of the head prior to the right move

Simulating the Right Move Contd..

Simulating the Left Move

• M moves from $a_i q a_j a_j$ to $q'a_i a_j a_j$

- Add excess of free epitopes ep_k^{Σ} and ep_k^{Q}
- Add antibodies $A_{k j}^{a}$ and $A_{k-1}^{q'}$
- k is the position of the head prior to the right move

Complexity

- Peptide system takes O(t(n)) time
- Length of the peptide is O(s(n))
- Number of peptide is one
- Amount of antibodies is O(m.s(n) + l.(s(n)))

Binding-Blocking Automata