

Department of Electrical and Computer Engineering Final Learn, Spring 2019

Semiconductor Devices Technology (EEE 313.01/ETE 411.01/EEE 410.01/ETE 443.01)

Time: 70 minutes Full marks: 30

There are three questions. Attempt answers to all. Individual marks are indicated at the right margin.

I (a) How built in voltage V_b is related to diode on current? If V_b of a diode is higher or lower, how does it impact the magnitude of diode on current?

(b) A which proportion at T = 300 K has the following parameters: $N_A = 4 \times 10^{11}$ cm⁻¹, $N_B = 7 \times 10^{10}$ cm⁻¹, $N_B = 15$ cm⁻¹/s, $\tau_{ab} = 7.9 \times 10^{11}$ s and $\tau_{pb} = 3.8 \times 10^{11}$ s. The cross sectional area is A = 4×10^{11} cm⁻¹ and the forward bias voltage is $V_a = 0.6$ V. Calculate the total current I_{main} (A) in the p-n junction diode. Value of m at T = 300 K is 1.5×10^{10} cm⁻³.

[4+6=10]

Useful equations:

$$\begin{split} J_{Diode} &= q \left(\frac{D_p p_{nn}}{t_p} + \frac{D_n n_{pin}}{t_n} \right) \left(exp^{\left(\frac{p}{p_T} \right)} - 1 \right) \ \, (A/cm^2) \quad L_p^2 = D_p \tau_{p0} \\ L_n^2 &= D_n \tau_{n0} \qquad v_T = \frac{kT}{q} \quad V_{bi} = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right) \end{split}$$

(a) At flat band voltage V_{rn}, is the surface band bending ψ_i = 0 or <0 or >0. Explain.

(b) How can you achieve a low enhancement mode $V_T \ge 0$ for an n-MOS capacitor? (Hint: write the V_T equation and identify the parameters that affect V_T).

(e) For a n-MOS silicon capacitor, at T = 300 K, the substrate doping is N_A = 3.2× 10¹⁶/cm³.

(i) What is bulk potential, on?

(ii) At inversion condition what is ψ_i? (Hint: φ_i is total band bending at the surface).

(iii) For $\phi_m = 4.45$ eV and $\chi = 4.01$ eV (for silicon), what is the flatband voltage $V_{FB} = \phi_{ms}$?

(iv) Find the maximum depletion width x_{d1} (μm) at the inversion condition of the surface. Value of n_c at T = 300 K is 1.5×10¹⁶ cm⁻³. [2+2+1.5 x4=10]

Useful equations:

$$x_{dT} = \left(\frac{2\epsilon_1 \, \psi_2}{q N_A}\right)^{1/2} \qquad \qquad \epsilon_9 = 11.7 \, \epsilon_0 \qquad \varphi_B = \frac{kT}{q} \ln \left(\frac{N_A}{n_1}\right)$$

3. (a) Suppose for a n-channel MOSFET, drain current at a particular V_T is in the linear mode operation. Consider two cases: (i) high V_{gs}, low V_{ds} and (ii) high V_{gs}, high V_{ds}? Which case will produce higher value of drain current? Explain. (Hint: use the MOSFET drain current equation for linear mode).
(b) An ideal n-channel MOSFET has the following parameters: V_T = 0.42 V, μ_s = 730 cm²/V-s, t_{os} = 10.4 nm, W= 11 μm and L = 1.2 μm. Find the drain current I_{ds} for this MOSFET when

[3+2+2.5x2 =10]

(ii)
$$V_{as} = 1.6 \text{ V}$$
 and $V_{ds} = 0.4 \text{ V}$.

(iii)
$$V_{gs} = 1.8 \text{ V}$$
 and $V_{ds} = 2.4 \text{ V}$.

Department of Electrical and Computer Engineering

Final Exam, Spring 2019

Semiconductor Devices Technology (EEE 313.02/ETE 411.02/EEE 410.02/ETE 443.02)

Time: 70 minutes

Full marks: 30

There are three questions. Attempt answers to all, Individual marks are indicated at the right margin.

I (a) Using the diode current equation, show that for a p-n junction diode, electron current density is enhanced if p-side doping is lower than n-side doping. Explain. Why D_n is higher than D_p?

(b) A silicon pn junction at T = 300 K has the following parameters: $N_A = 5 \times 10^{15}$ cm⁻³, $N_D = 7.5 \times 10^{16}$ cm⁻³. cm⁻³, $D_0 = 24$ cm²/s, $D_0 = 14$ cm²/s, $\tau_{n0} = 7.8 \times 10^{-7}$ s and $\tau_{p0} = 3.7 \times 10^{-7}$ s. The cross sectional area is $A = 4.5 \times 10^{-1}$ s. 4.5×10^{-3} cm² and the forward bias voltage is $V_a = 0.6$ V. Calculate the total current I_{dlode} (A) in the p-n junction diode. Value of n_i at T = 300 K is $1.5 \times 10^{10} \text{ cm}^{-3}$. [4+6=10]

Useful equations:

$$\begin{split} J_{Diode} &= q \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) \left(exp^{\left(\frac{V_a}{V_T} \right)} - 1 \right) \ (\text{A/cm}^2) \quad L_p^2 &= D_p \tau_{p0} \\ L_n^2 &= D_n \tau_{n0} \qquad v_T = \frac{kT}{q} \quad V_{bi} = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right) \end{split}$$

2. (a) If at the threshold of inversion, electron concentration at the surface is $n_s = N_A$ which is at the bulk for n-MOS capacitor, then at (i) depletion and (ii) moderate inversion, comment whether ns >NA or ns

(b) How can you achieve a low depletion mode V_T <0 for an n-MOS capacitor ? (Hint: write the V_T equation and identify the parameters that affect V_{T}).

(c) For a n-MOS silicon capacitor, at T = 300 K, the substrate doping is $N_A = 3.5 \times 10^{16} / \text{cm}^3$.

(i) What is bulk potential, φ_B?

(ii) At inversion condition what is ψ_s ? (Hint: φ_s is total band bending at the surface).

(iii) For $\phi_m = 4.49$ eV and $\chi = 4.01$ eV (for silicon), what is the flatband voltage $V_{FB} = \phi_{ms}$?

(iv) Find the maximum depletion width x_{dT} (μm) at the inversion condition of the surface. Value of n_i [2+2+1.5 x4=10]at T = 300 K is 1.5×10^{10} cm⁻³.

Useful equations:

seful equations:
$$x_{dT} = \left(\frac{2\varepsilon_s \, \psi_s}{q N_A}\right)^{1/2} \qquad \qquad \varepsilon_s = 11.7 \, \varepsilon_0 \qquad \varphi_B = \frac{kT}{q} \ln \left(\frac{N_A}{n_i}\right) \qquad \qquad 0' \quad 5^{\circ} \mathcal{S}^{\circ}$$

3. (a) Suppose for a n-channel MOSFET, drain current at a particular V_T is in the saturation mode of operation. Consider two cases: (i) high V_{ds} (sat) and (ii) low V_{ds} (sat). Comment whether drain current for case (i) is higher or lower than case (ii). Explain. (Hint: use the MOSFET drain current equation for saturation mode).

(b) An ideal n-channel MOSFET has the following parameters: $V_T = 0.44 \text{ V}$, $\mu_n = 725 \text{ cm}^2/\text{V-s}$, $t_{ox} = 10.7 \text{ m}^2/\text{V-s}$ nm, W= 11.3 μ m and L = 1.3 μ m. Find the drain current I_{ds} for this MOSFET when

(i)
$$V_{gs} = 0.22 \text{ V}$$
 and $V_{ds} = 0.14 \text{ V}$.

[3+2+2.5x2=10]

(ii)
$$V_{gs} = 1.4 \text{ V}$$
 and $V_{ds} = 0.45 \text{ V}$.

(iii)
$$V_{gs} = 1.75 \text{ V}$$
 and $V_{ds} = 2.4 \text{ V}$.

Make sure to apply the above bias conditions to determine cut-off, linear case and saturation case for calculation of drain current.

$$I_{ds} = \mu_n c_{ox} \frac{w}{L} \left\{ (V_{gs} - V_T) V_{ds} - \frac{V_{ds}^2}{2} \right\}$$

$$I_{ds} = \mu_n c_{ox} \frac{w}{L} \frac{(v_{gs} - v_T)^2}{2}$$

Department of Electrical and Computer Engineering

Final Exam, Summer 2017

Semiconductor Devices Technology (EEE 313.01/ETE 411.01/EEE 410.01/ETE 443.01)

Time: 70 minutes

Full marks: 30

There are three questions, Attempt answers to all, Individual marks are indicated at the right margin,

1. A silicon pn junction at T = 300 K has the following parameters: $N_A = 5 \times 10^{16}$ cm⁻³, $N_D = 3 \times 10^{17}$ cm⁻³, $D_n = 22 \text{ cm}^2/\text{s}$, $D_p = 15 \text{ cm}^2/\text{s}$, $\tau_{n0} = 5.5 \times 10^{-7} \text{ s}$ and $\tau_{p0} = 2.2 \times 10^{-7} \text{ s}$. The cross sectional area is $A = 2.2 \times 10^{-7} \text{ s}$. 3×10^{-4} cm² and the forward bias voltage is $V_a = 0.69$ V. Calculate the total current I_{diode} (A) in the p-n junction diode. Value of n_i at T = 300 K is $1.5 \times 10^{10} \text{ cm}^{-3}$.

Useful equations:

$$\begin{split} J_{D\,Total} &= q \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) \left(exp^{\left(\frac{V_a}{V_T} \right)} - 1 \right) \ \, (\text{A/cm}^2) \quad L_p^2 &= D_p \tau_{p0} \\ L_n^2 &= D_n \tau_{n0} \qquad \text{v}_T = \frac{kT}{q} \end{split}$$

- 2. For a p-substrate silicon MOS capacitor, at T = 300 K, the substrate doping is $N_A = 7 \times 10^{16} / cm^3$.
 - (a) What is bulk potential, φ_B?
 - (b) At inversion condition what is φ_s ? (Hint: φ_s is total band bending at the surface).
 - (c) For $\phi_m = 4.28$ eV and $\chi = 4.01$ eV (for silicon), what is the flatband voltage $V_{FB} = \phi_{ms}$?
 - (d) Find the maximum depletion width x_{at} (μm) at the inversion condition of the surface. Value of n_i $[5 \times 2 = 10]$ at T = 300 K is 1.5×10^{10} cm⁻³.

Useful equations:

$$x_{dT} = \left(\frac{2\varepsilon_s \varphi_s}{qN_A}\right)^{1/2}$$
 $\varepsilon_s = 11.7 \ \varepsilon_o \qquad \varphi_B = \frac{\kappa T}{q} \ln\left(\frac{N_A}{n_t}\right)$

3. An ideal n-channel MOSFET has the following parameters: $V_T = 0.42 \text{ V}$, $\mu_n = 560 \text{ cm}^2/\text{V-s}$, $t_{ox} = 10$ nm, W= 10 μ m and L = 0.8 μ m. Find the drain current I_{ds} for this MOSFET when

$$_{1}$$
 W= 10 μ m and L = 0.8 μ m. Find the drain current $_{1}$ for this MOSPET when
$$(a) V_{gs} = 0.9 \text{ V} \text{ and } V_{ds} = 0.2 \text{ V}.$$

$$(b) V_{re} = 1.6 \text{ V} \text{ and } V_{re} = 1.5 \text{ V}.$$

$$(3.5)$$

(a)
$$V_{gs} = 0.9 \text{ V}$$
 and $V_{ds} = 0.2 \text{ V}$.
(b) $V_{gs} = 1.6 \text{ V}$ and $V_{ds} = 1.5 \text{ V}$.
(c) $V_{re} = 0.1 \text{ V}$ and $V_{te} = 0.2 \text{ V}$.

(b)
$$V_{gs} = 1.6 \text{ V}$$
 and $V_{ds} = 1.5 \text{ V}$.
(c) $V_{gs} = 0.1 \text{ V}$ and $V_{ds} = 0.2 \text{ V}$.

Make sure to apply the above bias conditions to determine cut-off, linear case and saturation case for calculation of drain current.

$$I_{ds} = \mu_n c_{ox} \frac{w}{L} \left\{ (V_{gs} - V_T) V_{ds} - \frac{V_{ds}^2}{2} \right\} \qquad I_{ds} = \mu_n c_{ox} \frac{w}{L} \frac{(V_{gs} - V_T)^2}{2}$$

Department of Electrical and Computer Engineering

Final Exam, Fall 2017

Semiconductor Devices Technology (EEE 313.01/ETE 411.01/EEE 410.01/ETE 443.01)

Full marks: 30 Time: 70 minutes

There are three questions. Attempt answers to all. Individual marks are indicated at the right margin.

1. A silicon pn junction at T = 300 K has the following parameters: $N_A = 7 \times 10^{16}$ cm⁻³, $N_D = 1.5 \times 10^{17}$ cm⁻³, $D_n = 20$ cm²/s, $D_p = 13$ cm²/s, $\tau_{m0} = 5.6 \times 10^{-7}$ s and $\tau_{p0} = 1.9 \times 10^{-7}$ s. The cross sectional area is $A = 1.9 \times 10^{-7}$ s. 3×10^{-4} cm² and the forward bias voltage is $V_a = 0.15$ V. For recombination current calculation, $\tau_{n0r} = 7$ $\times 10^{-4}$ s, $\tau_{p0r} = 7 \times 10^{-4}$ s. Calculate the total current I_{diode} (A) in the p-n junction diode. Value of n_i at T =300 K is 1.5×10¹⁰ cm⁻³.

Useful equations:

$$\begin{split} J_{D \, Total} &= q \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) \left(exp^{\left(\frac{V_a}{V_T} \right)} - 1 \right) \ \, (A/cm^2) \quad L_p^2 = D_p \tau_{p0} \\ L_n^2 &= D_n \tau_{n0} \qquad v_T = \frac{kT}{q} \qquad W = \sqrt{\left\{ \frac{2\varepsilon_s (V_{bi} - V_a)}{q} \left[\frac{N_A + N_D}{N_A N_D} \right] \right\}} \\ V_{bi} &= \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right) \qquad J_{rec} = \frac{qW n_i}{\tau_{p0r} + \tau_{n0r}} exp^{\left(\frac{V_a}{2V_T} \right)} \quad J_{diode} = J_{D \, Total} + J_{rec} \end{split}$$

- 2. For a p-substrate silicon MOS capacitor, at T = 300 K, the substrate doping is $N_A = 5 \times 10^{16} / \text{cm}^3$.
 - (a) What is bulk potential, φ_B?
 - (b) At inversion condition what is φ_s ? (Hint: φ_s is total band bending at the surface).
 - (c) For $\phi_m = 4.7$ eV and $\chi = 4.01$ eV (for silicon), what is the flatband voltage $V_{FB} = \phi_{ms}$?
 - (d) Find the maximum depletion width x_{dT} (μm) at the inversion condition of the surface. Value of n_i $[4 \times 2.5 = 10]$ at T = 300 K is 1.5×10^{10} cm⁻³.

Useful equations:

$$x_{dT} = \left(\frac{2\varepsilon_s \varphi_s}{qN_A}\right)^{1/2}$$
 $\varepsilon_s = 11.7 \ \varepsilon_o \qquad \varphi_B = \frac{kT}{q} \ln\left(\frac{N_A}{n_i}\right)$

3. An ideal n-channel MOSFET has the following parameters: $V_T = 0.48 \text{ V}$, $\mu_n = 580 \text{ cm}^2/\text{V-s}$, $t_{ox} = 10$ nm, W= 10 μ m and L = 0.8 μ m. Find the drain current I_{ds} for this MOSFET when [3.5]

(a) $V_{gs} = 1.1 \text{ V}$ and $V_{ds} = 0.3 \text{ V}$.

[3.5]

(b) $V_{gs} = 1.4 \text{ V}$ and $V_{ds} = 1.8 \text{ V}$.

(c) $V_{gs} = 0.1 \text{ V}$ and $V_{ds} = 0.2 \text{ V}$.

[3.0]

Department of Electrical and Computer Engineering Final Exam, Fall 2018

Semiconductor Devices Technology (EEE 313.01/ETE 411.01/EEE 410.01/ETE 443.01)

Time: 70 minutes

There are three questions. Attempt answers to all. Individual marks are indicated at the right margin.

- -1 (a) There are two p-n junction diodes A and B. Diode A has high p-side and n-side doping but diode B has low p-side and n-side doping. For both diodes, comment on the electric field E_{max} at x = 0 (whether E_{max} higher or lower). Plot E(x) versus x for both diodes where E(x) is electric field in the depletion
 - (b) A silicon pn junction at T = 300 K has the following parameters: $N_A = 2 \times 10^{15}$ cm⁻³, $N_D = 5 \times 10^{16}$ cm⁻³, $D_n = 26 \text{ cm}^2/\text{s}$, $D_p = 16 \text{ cm}^2/\text{s}$, $\tau_{n0} = 8.2 \times 10^{-7} \text{ s}$ and $\tau_{p0} = 3.4 \times 10^{-7} \text{ s}$. The cross sectional area is $A = 10^{-7} \text{ s}$. 3.2×10^{-3} cm² and the forward bias voltage is $V_a = 0.6$ V. Calculate the total current I_{diode} (A) in the p-n junction diode. Value of n_i at T = 300 K is $1.5 \times 10^{10} \text{ cm}^{-3}$.

[4+6=10]

Useful equations:

$$\begin{split} J_{Diode} &= q \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) \left(exp^{\left(\frac{V_a}{V_T} \right)} - 1 \right) \ (\text{A/cm}^2) \quad L_p^2 &= D_p \tau_{p0} \\ L_n^2 &= D_n \tau_{n0} \qquad v_T = \frac{kT}{q} \qquad V_{bi} = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right) \end{split}$$

- -2. (a) For a p-substrate MOS capacitor, suppose V_{FB} = -3 V and V_G = -3 V. What is the value of surface band bending o.?
- (b) Suppose we have an enhancement mode (V_T>0) MOS-capacitor and a depletion mode (V_T<0) capacitor. We would like to reduce inversion charge formation at V_G = -1 V. Which capacitor type will allow that? Explain.
- (c) For a p-substrate silicon MOS capacitor, at T = 300 K, the substrate doping is $N_A = 1.3 \times 10^{16} / \text{cm}^3$.
 - (i) What is bulk potential, φ_B?
 - (ii) At inversion condition what is φ_s ? (Hint: φ_s is total band bending at the surface).
 - (iii) For $\phi_m = 4.35$ eV and $\chi = 4.01$ eV (for silicon), what is the flatband voltage $V_{FB} = \phi_{ms}$?
 - (iv) Find the maximum depletion width x_{dT} (μm) at the inversion condition of the surface. Value of n₁ at T = 300 K is $1.5 \times 10^{10} \text{ cm}^{-3}$. [2+2+1.5 x4=10]

$$x_{dT} = \left(\frac{2\varepsilon_s \varphi_s}{qN_A}\right)^{1/2} \qquad \qquad \varepsilon_s = 11.7 \, \varepsilon_o \qquad \varphi_B = \frac{kT}{q} \ln \left(\frac{N_A}{n_i}\right)$$

- 3. (a) Suppose for a n-channel MOSFETs, drain current is measured by saturation current. If Vgs, W and L are fixed for this device, how can you increase lds(sat) for this device? Consider all parameters that are essential for computation of Ids(sat).
- (b) An ideal n-channel MOSFET has the following parameters: $V_T = 0.4 \text{ V}$, $\mu_n = 740 \text{ cm}^2/\text{V-s}$, $t_{ex} = 10.9 \text{ m}^2/\text{V-s}$ nm, W= 9 μ m and L = 0.9 μ m. Find the drain current I_{ds} for this MOSFET when

(i)
$$V_{gs} = 0.2 \text{ V}$$
 and $V_{ds} = 0.15 \text{ V}$.
(ii) $V_{gs} = 1.5 \text{ V}$ and $V_{ds} = 0.4 \text{ V}$.
(iii) $V_{gs} = 1.8 \text{ V}$ and $V_{ds} = 2.2 \text{ V}$.

$$[3+2+2.5x2=10]$$

(ii)
$$V_{gs} = 1.5 \text{ V}$$
 and $V_{ds} = 0.4 \text{ V}$.

(iii)
$$V_{ps} = 1.8 \text{ V}$$
 and $V_{de} = 2.2 \text{ V}$

Make sure to apply the above bias conditions to determine cut-off, linear case and saturation case for calculation of drain current.

$$I_{ds} = \mu_n c_{ox} \frac{w}{L} \left\{ \left(V_{gs} - V_T \right) V_{ds} - \frac{v_{ds}^2}{2} \right\} \qquad I_{ds} = \mu_n c_{ox} \frac{w}{L} \frac{\left(v_{gs} - v_T \right)^2}{2}$$