(1 mark)

Ans: A sequence a_n is called a Cauchy sequence if and only if $\forall \varepsilon > 0$, $\exists N_{\varepsilon} \in \mathbb{N}$ (depending on $\varepsilon > 0$) such that $|a_n - a_m| < \varepsilon \forall n, m \ge N_{\varepsilon}$

+1 mark Exact same or re-worded definition

0 marks Otherwise

Q.3) b) Let $\{a_n\}$ be a monotonic sequence with a convergent subsequence then the monotonic sequence $\{a_n\}$ is convergent (2 marks)

Ans: From question, we are given a monotonic sequence $\{a_n\}$ with a convergent subsequence $\{a_{n_k}\}$ and we have to prove that $\{a_n\}$ converges as well. Let $\lim_{k\to\infty} a_{n_k} = L$,

WLOG we assume $\{a_n\}$ is monotonically increasing,

Claim 1: $\{a_{n_k}\}$ is monotonically increasing

Since $\{a_{n_k}\}$ is a subsequence, so $\forall i, j \in \mathbb{N}$ such that j > i, it implies $n_j \geq n_i$ and since $\{a_n\}$ is monotonic, $a_{n_j} \geq a_{n_i}$. Thus taking j = i + 1, $a_{n_{i+1}} \geq a_{n_i} \, \forall \, i \in \mathbb{N}$, which makes $\{a_{n_k}\}$ a monotonically increasing sequence.

 $a_{n_k} \leq L \ \forall \ k \in \mathbb{N}$ (Since a monotonically increasing sequence converges if and only if it is bounded and it converges at its supremum) +0.5 marks

Claim 2: $\forall n \in \mathbb{N}, a_n \leq L$

Since $\{a_{n_k}\}$ is a subsequence of $\{a_n\}$, $n_k \geq k \ \forall \ k \in \mathbb{N}$

- $\implies a_{n_k} \geq a_k \ \forall \ k \in \mathbb{N}$ (Since $\{a_n\}$ is a monotonically increasing sequence)
- $\implies a_k \le a_{n_k} \le L \ \forall \ k \in \mathbb{N}$
- $\implies a_n \le L \ \forall \ n \in \mathbb{N}$

+1 mark

Alternate Claim 2: $\forall n \in \mathbb{N}, a_n \leq L$

Let us assume to the contrary that $\exists u \in \mathbb{N}$ such that $a_u > L$,

- $\implies \forall v \in \mathbb{N} \text{ such that } v \geq u, a_v \geq a_u > L$
- $\implies a_{n_k} \in S = \{a_i \mid i \in \mathbb{N} \text{ such that } i < u\} \ \forall \ k \in \mathbb{N}$

But, S is a finite set (Contradiction)

+1 mark

Claim 3: $\{a_n\}$ is convergent

Since $\forall n \in \mathbb{N}, a_n \leq L$ and $a_n \leq a_{n+1}, a_n$ converges to $\sup\{a_n\}$. +0.5 marks

Hence, if $\{a_n\}$ is a monotonically increasing sequence with a convergent subsequence $\{a_{n_k}\}$ then the sequence $\{a_n\}$ is convergent

Ans: From question, we are given a sequence $\{n + \frac{(-1)^n}{n}\}$ and we have to prove that it is not Cauchy.

Proof 1: If we can show that $\{n + \frac{(-1)^n}{n}\}$ violates the definition of a Cauchy sequence, we are done

Let us assume to the contrary that $a_n = n + \frac{(-1)^n}{n}$ is Cauchy, $\forall \ \varepsilon > 0, \ \exists \ N_{\varepsilon} \in \mathbb{N} \text{ such that } |a_n - a_m| < \varepsilon \ \forall n, m \ge N_{\varepsilon},$

Since $\{\frac{1}{n}\}$ converges to 0, it is also Cauchy,

Taking
$$\varepsilon = \frac{1}{2}$$
, $\exists N_{\frac{1}{2}} \in \mathbb{N}$ such that $|\frac{1}{n} - \frac{1}{m}| \le \frac{1}{2} \ \forall n, m \ge N_{\frac{1}{2}}$ $\implies -|\frac{1}{n} - \frac{1}{m}| \ge -\frac{1}{2} \ \forall n, m \ge N_{\frac{1}{2}}$

+0.5 marks

Thus $\forall m, n \geq N_{\frac{1}{2}}$,

$$|m + \frac{(-1)^m}{m} - n - \frac{(-1)^n}{n}| \ge ||m - n| - |\frac{(-1)^m}{m} - \frac{(-1)^n}{n}|| \ (|a - b| \ge ||a| - |b||)$$

$$\ge ||m - n| - ||\frac{(-1)^m}{m}| - |\frac{(-1)^n}{n}||| \ (|a - b| \ge ||a| - |b||)$$

$$= ||m - n| - |\frac{1}{m} - \frac{1}{n}||$$

$$\ge ||m - n| - \frac{1}{2}|$$

If $m > n \ge N_{\frac{1}{2}}, m - n \ge 1$ and $|m + \frac{(-1)^m}{m} - n - \frac{(-1)^n}{n}| \ge |1 - \frac{1}{2}| \ge \frac{1}{2}$ +1 mark (Contradiction)

Hence, $\{n + \frac{(-1)^n}{n}\}$ is not Cauchy

Proof 2: If $a_n = n + \frac{(-1)^n}{n}$ diverges to $+\infty$ (not convergent), we are done

We first show $\forall n \in \mathbb{N}$,

$$a_{n+1} - a_n = n + 1 + \frac{(-1)^{n+1}}{n+1} - n - \frac{(-1)^n}{n}$$

$$= 1 - \frac{(-1)^n}{n} - \frac{(-1)^n}{n+1}$$

$$= 1 + \frac{1}{n} + \frac{1}{n+1} \ge 0 \text{ (if } n \text{ is odd)}$$

$$= 1 - \frac{1}{n} - \frac{1}{n+1} \ge 1 - \frac{1}{2} - \frac{1}{3} \text{ (if } n \text{ is even } \implies n \ge 2)$$

$$a_{n+1} - a_n \ge 0 \implies a_{n+1} \ge a_n \ \forall \ n \in \mathbb{N}$$
 +0.5 marks

Let G > 0 be an arbitrarily large real number,

$$\exists N = \lfloor G+2 \rfloor \in \mathbb{N}$$
, such that $a_n \geq a_N \geq 2 + \lceil G \rceil - \frac{1}{\lfloor G+2 \rfloor} \geq G \ \forall \ n \geq N$

$$\implies a_n = n + \frac{(-1)^n}{n}$$
 diverges to $+\infty$ +0.5 marks

 $\implies a_n$ is not convergent

$$\implies a_n$$
 is not Cauchy +0.5 marks

Proof 3: If we can show that $\{n-\frac{1}{n}\}$ diverges to $+\infty$, we are done

$$(n + \frac{(-1)^n}{n} \ge n - \frac{1}{n} \text{ for } n \in \mathbb{N})$$
 +0.5 marks

Taking $a_n = n$ which diverges to $+\infty$ and $b_n = \frac{-1}{n}$ which converges to 0,

$$a_n - b_n = n - \frac{1}{n}$$
 diverges to $+\infty$ +0.5 marks

Taking $a_n = n + \frac{(-1)^n}{n}$ and $b_n = n - \frac{1}{n}$ which diverges to $+\infty$ and such that $a_n \ge b_n$

$$\forall n \in \mathbb{N}, a_n = n + \frac{(-1)^n}{n} \text{ diverges to } +\infty$$
 +0.5 marks

 $\implies a_n$ is not convergent

 $\implies a_n$ is not Cauchy

Proof 4: If we can show that $\{n + \frac{(-1)^n}{n}\}$ is unbounded, we are done

Let us assume to the contrary that $\{n + \frac{(-1)^n}{n}\}$ is bounded above by L,

Thus,
$$n + \frac{(-1)^n}{n} \le L \ \forall \ n \in \mathbb{N}$$

But for
$$n = \lceil L + 2 \rceil$$
, $a_n \ge \lceil L \rceil + 2 - \frac{1}{\lceil L + 2 \rceil} \ge L$ (Contradiction) +1 mark

 $\implies a_n$ is not bounded above

$$\implies a_n$$
 is not Cauchy +0.5 marks

Proof 5: Let us assume to the contrary that $a_n = n + \frac{(-1)^n}{n}$ is Cauchy,

$$a_n = n + \frac{(-1)^n}{n}$$
 is Cauchy
$$\implies a_n = n + \frac{(-1)^n}{n}$$
 is convergent

Assume $\lim_{n\to\infty} a_n = L \ (L \in \mathbb{R}),$

Claim:
$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$

 $\frac{1}{n}$ converges to 0

$$\implies \forall \ \varepsilon > 0, \ \exists \ N_{\varepsilon} \in \mathbb{N} \text{ such that } |\frac{1}{n} - 0| < \varepsilon \, \forall \, n \ge N_{\varepsilon}$$

$$\implies \forall \ \varepsilon > 0, \ \exists \ N_{\varepsilon} \in \mathbb{N} \text{ such that } |\frac{(-1)^{n}}{n} - 0| < \varepsilon \, \forall \, n \ge N_{\varepsilon} \text{ (Since } |\frac{(-1)^{n}}{n}| = \frac{1}{n} = |\frac{1}{n}|)$$

$$\implies \frac{(-1)^{n}}{n} \text{ converges to } 0$$
+0.5 marks

Taking
$$a_n = n + \frac{(-1)^n}{n}$$
 with $\lim_{n \to \infty} a_n = L$ and $b_n = \frac{(-1)^n}{n}$ with $\lim_{n \to \infty} b_n = 0$, $a_n - b_n$ converges with limit $\lim_{n \to \infty} a_n - b_n = L - 0 = L$
But, $a_n - b_n = n$ which diverges to $+\infty$ (Contradiction) $+0$

But,
$$a_n - b_n = n$$
 which diverges to $+\infty$ (Contradiction) +0.5 marks

Hence, $\left\{n + \frac{(-1)^n}{n}\right\}$ is not convergent and thus, not a Cauchy sequence. **+0.5 marks**