## Parallel Programming Assignment 1

Akshay Satam (111481679) Prateek Roy (111481907)

#### **REPORT – ASSIGNMENT 1**

# **Guidelines for running the code:**

## Question1:

## Please use the file matMul.cpp and MatMulRec.cpp to test question 1.

In this file matMul.cpp, we have written different functions for the subparts. Please find the functions for the subparts:

## File matMul.cpp

| Question  | Function    |
|-----------|-------------|
| 1a and 1b | Question 1  |
| 1d and 1e | Question 2  |
| 1i        | Question 1i |

## File MatMulRec.cpp

| Question  | Function                |
|-----------|-------------------------|
| 1g and 1h | Question rec_matrix_mul |
| 1i        | Question 1i             |

You can change the size of the matrix by changing the variable "r"

## **Actual Report:**

#### 1a.

We multiplied the matrices by the given procedures and calculated r to be 10, ie, for r>10, atleast one matrix exceeded 5 minutes. Please find the execution time and the cache misses.

| Multiplication | Time (seconds) |
|----------------|----------------|
| ljk            | 184.06         |
| lkj            | 36.15          |
| Jik            | 182.40         |

| Jki | 187.88 |
|-----|--------|
| Kij | 36.4   |
| Kji | 188.24 |

## 1b.

Here, the value of r is 10. Please find the L1 and L2 cache misses. We tried to find L3 cache misses but we were unable to find them on Stampede.

| Multiplication | L1 cache miss | L2 cache miss |
|----------------|---------------|---------------|
| ljk            | 1073345313    | 1077227238    |
| ikj            | 34098404      | 1217484       |
| Jik            | 1436589870    | 1078533877    |
| Jki            | 2745166278    | 2146832569    |
| Kij            | 34797879      | 2126116       |
| Kji            | 2146162015    | 2146686890    |

#### 1c.

In part 1a, we get the following two matrix multiplications to be the fastest – ikj, kij All the matrix multiplications are serial. Hence, the difference in execution time can be ascribed to the cache mismatches. In these matrix multiplications (ikj and kij), the total cache mismatches for L1 and L2 are lesser as compared to the other multiplications. Hence, the multiplications are faster.

## 1d.

We can parallelize the fastest implementations in 3 ways each. Please find the correct parallel algorithms for the two implementations in part 1a:

```
cilk_for(int i=0;i<n;i++){
 for(int k=0;k< n;k++){
 cilk_{for(int j=0;j< n;j++)}
          (*z)[i][j] = (*z)[i][j] + (*x)[i][k] * (*y)[k][j];
 }
 }
ikj 3:
 for(int i=0;i<n;i++){
 for(int k=0;k< n;k++){
 cilk_{for(int j=0;j< n;j++)}
          (*z)[i][j] = (*z)[i][j] + (*x)[i][k] * (*y)[k][j];
 }
 }
 }
Kij 1:
 for(int k=0;k< n;k++){
 cilk_for(int i=0;i<n;i++){
 cilk_{for(int j=0;j< n;j++)}
          (*z)[i][j] = (*z)[i][j] + (*x)[i][k] * (*y)[k][j];
 }
 }
 }
Kij 2:
 for(int k=0;k< n;k++){
 cilk_for(int i=0;i<n;i++){
 for(int j=0;j<n;j++){
          (*z)[i][j] = (*z)[i][j] + (*x)[i][k] * (*y)[k][j];
 }
Kij 3:
 for(int k=0;k< n;k++){
 for(int i=0;i< n;i++){
 cilk_{for(int j=0;j< n;j++)}
          (*z)[i][j] = (*z)[i][j] + (*x)[i][k] * (*y)[k][j];
 }
 }
```

Please find the running times of each implementation:

| Matrix<br>Multiplication | Execution<br>Time<br>(Seconds) | Execution<br>Time<br>(Seconds) | Execution<br>Time<br>(Seconds) | Execution<br>Time<br>(Seconds) | Execution<br>Time<br>(Seconds) | Execution<br>Time<br>(Seconds) |
|--------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                          | S=4                            | S=5                            | S=6                            | S=7                            | S=8                            | S=9                            |
| ikj 1                    | 0.000194                       | 0.003                          | 0.001                          | 0.002                          | 0.008                          | 0.054                          |
| ikj 2                    | 0.003                          | 0.018                          | 0.006                          | 0.012                          | 0.054                          | 0.387                          |
| ikj 3                    | 0.008                          | 0.048                          | 0.314                          | 1.821                          | 10.707                         | 53.468                         |
| Kij 1                    | 0.079                          | 0.139                          | 0.362                          | 0.517                          | 0.774                          | 1.259                          |
| Kij 2                    | 0.001                          | 0.006                          | 0.014                          | 0.065                          | 0.131                          | 0.325                          |
| Kij 3                    | 0.007                          | 0.050                          | 0.306                          | 2.136                          | 10.521                         | 53.199                         |

**1e.** We varied the no of processors from 1 to 64. The size of "r" was constant, i.e., 10. Please find the results.

| No of cores\Multiplication method | Kij 1   | Kij 2  | Kij 3   | ljk 1  | ljk 2   | ljk 3   |
|-----------------------------------|---------|--------|---------|--------|---------|---------|
| 1                                 | 105.517 | 54.055 | 108.096 | 50.4   | 104.018 | 107.194 |
| 2                                 | 55.514  | 28.057 | 75.997  | 26.413 | 55.02   | 75.162  |
| 4                                 | 28.79   | 14.07  | 69.746  | 13.414 | 28.01   | 68.84   |
| 8                                 | 15.64   | 7.18   | 66.11   | 6.56   | 15.20   | 65.78   |
| 16                                | 9.41    | 4.03   | 69.73   | 3.68   | 8.97    | 70.28   |
| 32                                | 6.02    | 2.16   | 79.86   | 1.84   | 5.50    | 78.90   |
| 64                                | 4.47    | 1.18   | 84.94   | 0.92   | 3.56    | 84.07   |
|                                   |         |        |         |        |         |         |

# 1f. Finding from 1d:

The execution time for every matrix multiplication increases as we increase the size of the matrices. However, the increase is not linear with "s".

Also, there is a peculiar case with multiplications ikj1 and ikj2. The time for multiplication is more when s = 5 than the time when s = 6.

## Finding from 1e:

The multiplication time reduces as we increase the processors. However, the reduction in time is not linear with the number of processors.

## 1g.

We kept the matrix size to be 1024 \* 1024 and varied the M from 2 to 512.

We plotted the timing as follows. We found that the best timing is achieved when M = 7, ie, size of the base-case matrix is  $2^{7} = 128$ .

M = 7

| 2^M | Time (seconds) |
|-----|----------------|
| 1   | 84.79          |
| 2   | 25.53          |
| 3   | 9.79           |
| 4   | 4.51           |
| 5   | 3.06           |
| 6   | 1.99           |
| 7   | 1.66           |
| 8   | 4.00           |
| 9   | 11.9           |

## 1h.

We kept the base-case size of the matrices to be 128 \* 128 and initial matrix size of 1024 X 1024

We increased the processors from 1 to 68 and found these results:

| No of processors | Time (seconds) |
|------------------|----------------|
| 1                | 43.62          |
| 2                | 22.73          |
| 4                | 12.67          |
| 8                | 6.42           |

| 16 | 3.40  |
|----|-------|
| 32 | 2.164 |
| 64 | 1.621 |
| 68 | 1.627 |

Here, we kept on increasing the matrix size and found the execution-times such that the matrix multiplication time did not exceed 1 minute

| N    | Time (seconds) |  |
|------|----------------|--|
| 1024 | 1.627          |  |
| 2048 | 7.33           |  |
| 4096 | 50.023         |  |

## 1i.

We calculated the L1/L2/L3 misses for the fastest algorithm in part 1d (ikj1) and fastest algorithm in part 1g ( with bases case m = 128):

## Part 1d:

| Multiplication | L1 cache misses | L2 cache misses |  |
|----------------|-----------------|-----------------|--|
| lkj1           | 371596          | 31343           |  |

# Part 1g:

| Multiplication           | L1 cache misses | L2 cache misses |
|--------------------------|-----------------|-----------------|
| PAR-REC-MM with base 128 | 3321893         | 320025          |

## **QUESTION 2**

## 2a.

 $GFlops = \frac{(2n^*n^*n)}{(10^*9 * RunTime)}$ 

The base size taken is 128 which gives the best result.

## **DRSteal**

| Size of Matrix (n) | Time (seconds) | GFLOPS |
|--------------------|----------------|--------|
| 1024               | 0.078          | 27.53  |
| 2048               | 0.56           | 30.67  |
| 4096               | 2.07           | 66.39  |

Size greater than 4096 is causing memory limit exceed in stampede 2.

#### **DRShare**

| Size of Matrix (n) | Time (seconds) | GFLOPS  |
|--------------------|----------------|---------|
| 1024               | 0.015          | 143.165 |
| 2048               | 0.09           | 190.88  |
| 4096               | 1.34           | 102.56  |

Size greater than 4096 is causing memory limit exceed in stampede 2.

#### **CShare**

| Size of Matrix (n) | Time (seconds) | GFLOPS  |
|--------------------|----------------|---------|
| 1024               | 0.0045         | 477.218 |
| 2048               | 0.0364         | 471.97  |
| 4096               | 0.2840         | 483.93  |

Size greater than 4096 is causing memory limit exceed in stampede 2.

**Findings**: Here we observe that CShare has the maximum GFlops. This is well evident from the fact that CShare runs most efficiently with least runtime than other two algorithms. The DRSteal takes more time because the random number generator generates a thread queue which has no task in it queue. So there are more fail steal attempts and even these steal attempts takes locks on the threads queue. So DRSteal takes more time than CShare and DRShare.



**2b.**GFlops Cache Misses = (3n\*n\*n)/(TotalCacheMiss)

## **DRSteal**

| Size of Matrix (n) | L1 Cache<br>Miss | L2 Cache<br>Miss | L3 Cache<br>Miss | Total Cache<br>Miss | GFlops<br>Cache Miss |
|--------------------|------------------|------------------|------------------|---------------------|----------------------|
| 1024               | 5070667          | 5316719          | 1366279          | 11753665            | 274.06               |
| 2048               | 19916520         | 59781230         | 32179182         | 111876932           | 230.34               |
| 4096               | 54895625         | 98478451         | 75439852         | 160913928           | 1281.17              |

Size greater than 4096 is causing memory limit exceed in stampede 2.

# **DRShare**

| Size of Matrix | L1 Cache | L2 Cache | L3 Cache | Total Cache | GFlops     |
|----------------|----------|----------|----------|-------------|------------|
| (n)            | Miss     | Miss     | Miss     | Miss        | Cache Miss |

| 1024 | 5106  | 3891  | 2347   | 11344  | 283958.52 |
|------|-------|-------|--------|--------|-----------|
| 2048 | 48968 | 17729 | 12898  | 79595  | 323761.59 |
| 4096 | 85412 | 34469 | 113588 | 233469 | 883022.71 |

Size greater than 4096 is causing memory limit exceed in stampede 2.

#### **CShare**

| Size of Matrix (n) | L1 Cache<br>Miss | L2 Cache<br>Miss | L3 Cache<br>Miss | Total Cache<br>Miss | GFlops<br>Cache Miss |
|--------------------|------------------|------------------|------------------|---------------------|----------------------|
| 1024               | 6601             | 1335             | 673              | 8609                | 374169.52            |
| 2048               | 11502            | 4401             | 2529             | 18432               | 1398101.33           |
| 4096               | 30867            | 25649            | 15538            | 72054               | 2861165.65           |

Size greater than 4096 is causing memory limit exceed in stampede 2.

**Findings:** DRSteal has the most cache misses than other two algorithms. This is also evident from the fact that DRSteal is least efficient and takes maximum runtime. The cache miss in case of CShare is less because, the subtasks are put in near neighborhood of each other in the global queue, and the individual threads executing these tasks pick the task from the queue in FIFO order. So task are executed in kind of sequential manner and so they are less cache misses.

DRSteal has most cache misses because each threads tries to steal from the top(recently added task) and even some thread run tasks from end of their queue(task added first). So at a single instance of time, the data access are random according to the thread scheduling, and thus the cache misses are high.

DRShare has still moderate cache misses because, each thread executes tasks from its own queue from bottom i.e in a fixed order, thus there is sequential data access. But still there are multiple threads running at a single instance and each tries to put task in others queue, so it may happen that some thread have to jump to a new task(data which is not sequential) and execute it. Thus it will incur some cache misses but better than DRSteal where all the execution of tasks are random.



2c)

Efficiency = T1 / (p \* Tp)

T1 = Time taken when there are 1 core = 2.98 seconds

# DRSteal:

| Size of Matrix<br>(n) | No of Cores<br>(p) | Time (seconds) | Efficiency | 1-Efficiency |
|-----------------------|--------------------|----------------|------------|--------------|
| 2048                  | 10                 | 1.79           | 0.16       | 0.84         |
| 2048                  | 20                 | 1.08           | 0.13       | 0.87         |
| 2048                  | 30                 | 0.511          | 0.19       | 0.81         |
| 2048                  | 40                 | 0.52           | 0.14       | 0.86         |
| 2048                  | 68                 | 0.56           | 0.07       | 0.93         |

# DRShare:

| Size of Matrix<br>(n) | No of Cores<br>(p) | Time (seconds) | Efficiency | 1-Efficiency |
|-----------------------|--------------------|----------------|------------|--------------|
| 2048                  | 10                 | 2.09           | 0.14       | 0.86         |
| 2048                  | 20                 | 1.52           | 0.098      | 0.902        |
| 2048                  | 30                 | 1.09           | 0.09       | 0.91         |
| 2048                  | 40                 | 0.84           | 0.08       | 0.92         |
| 2048                  | 68                 | 0.62           | 0.07       | 0.93         |

# **CSHARE:**

| Size of Matrix<br>(n) | No of Cores<br>(p) | Time (seconds) | Efficiency | 1-Efficiency |
|-----------------------|--------------------|----------------|------------|--------------|
| 2048                  | 10                 | 2.58           | 0.115      | 0.885        |
| 2048                  | 20                 | 1.49           | 0.1        | 0.9          |
| 2048                  | 30                 | 0.94           | 0.105      | 0.895        |
| 2048                  | 40                 | 0.72           | 0.103      | 0.897        |
| 2048                  | 68                 | 0.28           | 0.03       | 0.97         |



**Findings:** Efficiency of all the algorithms initially increase with increase in cores. But after 30 cores it decreases a bit. The cause of this behaviour is whenever the number of cores increases, that means there are more number of threads involved and thus more locks for some work queue. Thus due to many locks trying to steal/share work in job queue, the efficiency decreases. Basically many threads are simultaneously trying to enter the critical section and thus many threads go to sleep and hence the efficiency decreases.

2d)

## **DRSteal-MOD**

| Size of Matrix (n) | Time (seconds) | GFLOPS |
|--------------------|----------------|--------|
| 1024               | 0.17           | 12.63  |
| 2048               | 0.67           | 25.64  |
| 4096               | 1.98           | 69.41  |

| Size of Matrix (n) | L1 Cache Miss | L2 Cache Miss | GFlops Cache<br>Miss |
|--------------------|---------------|---------------|----------------------|
| 1024               | 2625304       | 5837165       | 380.64               |
| 2048               | 19723794      | 44653875      | 400.3                |
| 4096               | 205125465     | 565412358     | 267.55               |

#### **DRShare-MOD**

| Size of Matrix (n) | Time (seconds) | GFLOPS  |
|--------------------|----------------|---------|
| 1024               | 0.011          | 195.225 |
| 2048               | 0.075          | 229.06  |
| 4096               | 1.51           | 91.15   |

| Size of Matrix (n) | L1 Cache Miss | L2 Cache Miss | GFlops Cache Miss |
|--------------------|---------------|---------------|-------------------|
| 1024               | 9723          | 14016         | 135710.5          |
| 2048               | 37816         | 19037         | 453270.78         |
| 4096               | 458795        | 25648         | 425557.66         |

In DRShare-MOD, we put the task in the queue of a thread who has minimum task. In DRSteal-MOD, we steal task from the queue of a thread who has least task in its queue. The performance is similar to the original DRShare and DRSteal as in 2a.

**Findings:** DRSteal-MOD has the maximum Cache misses as well as the runtime as compared to DRShare-MOD. But the performance of DRSteal-MOD and DRShare-MOD has improved slightly from DRSteal and DRShare because now we make decision based on where workload is less before stealing or sharing work, and thus evenly distributing the tasks. But we can see the cache misses has increased from the basic versions of these algorithms because again the work is distributed based on even distribution and not based on temporal locality of the tasks thus increasing the cache misses.

#### Q3a.

Probability of stealing from some deque (say deque d) = 1/p

Probability of not stealing from degue d = 1 - 1/p

Probability of not stealing from deque d after pk times =  $(1 - 1/p)^{pk}$ 

We know that  $(1-1/p)^p = 1/e$ 

Hence, Probability of not stealing from deque d after pk times =  $(1/e)^k$ 

Let, k = c \* log p

Hence, Probability of not stealing from deque d after pk times =  $(1/e)^{c^* \log p}$ 

Hence, Probability of not stealing from deque d after pk times = 1/p<sup>c</sup>

Now,  $c = k/\log p$ 

Hence, as we increase k, that it, the number of attempts, the Probability of not stealing from deque d is very low. Hence, the probability of not missing any processor is very high.

Now, let us calculate the value of the number of attempts, which is pk.

Hence, pk = p \* c \* log p

Hence, number of attempts = c \* p log p

Putting c = 2, we get number of attempts = 2 \* p log p

Thus, we have proved that if we do 2 p log p attempts, we will not miss any processor with high probability in p.

#### Q3b.

Even if a thread finds all the deques empty, there may be other threads who are still working on some task. These threads may then put some tasks on their deque. Hence, the thread which previously checked for these deques will think they are empty, even though there is work in the system.

#### Q3c.

Lets say, all threads check for other deques as suggested in part 3a. This will ensure that they check all the deques and will pick up tasks, if found on some deque.

But as proved in part 3b, even if the thread misses work on some deque due to checking earlier than when the work was actually put, the thread which put the work in it's deque will definitely pick it up after it is done with the current task.

Hence, it is guaranteed that all the work in the system will be completed.

#### Q3d.

Referred from: https://www.corelab.ntua.gr/courses/rand-alg/slides/balls-bins.pdf

We have to find a sequence of values  $b_i$  such that the number of enqueues to any queue with i tasks is bounded by  $b_i$  with high probability in n. Now, let us say we know  $b_i$ . Then we will have to calculate  $b_{i+1}$ 

A queue has at least i+1 tasks if there are d attempts to enqueue a queue with i tasks.

Therefore, the probability that a queue has atleast i+1 tasks is at most (b<sub>i</sub> / n)<sup>d</sup>.

Using Chernoff bounds, it follows that  $b_{i+1} \le cn (b_i/n)^d$  for constant c, so by selecting  $j = O(\ln \ln n)$  we are done.

Hence, it is proved that if there is a sequence of p consecutive enqueues each deque undergoes O(ln p / ln ln p) enqueue operations w.h.p. in p.

#### Q3e.

i)

 $F_i$  is the fraction of deque that has received i tasks during the p enqueue attempts. As there are p cores, that means there are p dequeues. So if  $f_i$  is the fraction of deques, that means only  $p^*f_i$  Deques have i tasks in them and their rank is i.

So 
$$f_i = p^*f_i$$
.

Now to add 1 task in each of the dequeue with i tasks, and assuming no two enqueues are occuring at same time,

 $f_{i+1} = (1/p)^p f_i$  as Probability to put a task in a dequeue is 1/p. So total probability to add 1 task to i dequeues is  $p^f f_i$ .

As we can see 
$$(1/p)^p*f \le p*f_i p$$
  
Hence  $f_{i+1} \le f_i$  (Answer)

ii)

We know that if there is a sequence of p consecutive enqueues each deque undergoes O(ln p / ln ln p) enqueue operations w.h.p. in p from 3d.

That means  $f_i \le (\frac{1}{2}^{(2^{(i-1)})})$ .

iii) As each deque undergoes O(ln p / ln ln p) work, then no task can have rank lnp \* (ln ln p)/lnp = ln ln p (Answer)

For question 2, we are running on Login Node and not Compute Node.