Kathmandu University MCSC-202 with Python Assignmnet-II

Level: BE/B.Sc. 2nd sem/2nd year *Instructor*: Dr. Samir Shrestha

Course: Numerical Methods (MCSC-202)

Implement the following problems using Python to get the results.

A. Finding Roots of the Equations: Present each iteration result in a table

- 1. Implement the **Bisection Method** to approximate the root of the equation $x^2 = sinx$ by taking the initial guesses a = 0.5 and b = 1.0. (Algorithm: $x_0 = \frac{a+b}{2}$)
- 2. Implement the **Newton-Raphson's Method** to approximate the root of the equation $e^x = 4x$ by taking the initial guess $x_0 = 1.0$ (**Algorithm:** $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$)

B. Interpolation

- 3. Construct the finite difference table of the function $f(x) = e^x$ on the interval $-1 \le x \le 1$ by dividing the interval by equally space points of step-size 0.1
- 4. Estimate the value of the function f(0.21) and f(0.29) applying Newton's forward and backward interpolation polynomials using following table:

X	0.20	0.22	0.24	0.26	0.28	0.30
y	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

5. Estimate y(2) from the following data using Lagrange's formula

X	0	1	3	4	5
y	0	1	81	256	625

C. Numerical Integration

- 6. Implement Trapezoidal-rule to approximate the definite integral $I = \int_0^{\pi} \frac{\sin x}{e^x} dx$ by taking 20-equal divisions of the interval $[0, \pi]$. (Algorithm: $I = \frac{h}{2}[y_0 + 2(y_1 + y_2 + \dots + y_{n-1}) + y_n]$)
- 7. Implement Simpson's 1/3-rule to approximate the definite integral $I = \sqrt{\frac{1}{2\pi}} \int_{-4}^{4} e^{-\frac{x^2}{2}} dx$ by taking 50-equal divisions of the interval [-4,4]. (Algorithm: $I = \frac{h}{3} [y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n]$)

D. Numerical Differential Equations: Present the solution in a table and graph it.

8. Implement **Euler's method** to approximate the solution y(x) of the differential equation $\frac{dy}{dx} = x^2 + x$, y(0) = 1 on the interval [0,2] by diving it into 20- equal sub-intervals. [Algorithm: $y_{i+1} = y_i + hf(x_i, y_i)$]

- 9. Implement **Runge-Kutta 2**nd **order method** to approximate the solution y(x) of the differential equation $\frac{dy}{dx} = x^2 + x$, y(0) = 1 on the interval [0,2] by diving it into 10-equal sub-intervals. [Algorithm: $y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2)$, where $k_1 = hf(x_i, y_i)$ and $k_2 = hf(x_i + h, y_i + k_1)$]
- 10. Implement the Boundary valued second order differential equation y'' 64y' + 10 = 0 by using **finite different method** with boundary conditions y(0) = y(1) = 0 and taking the step size h = 0.1.

E. Curve Fitting

11. Using least square method to fit the straight line $y = a_0 + a_1 x$ to the following data:

X	1	2	3	4	5	6
y	2.4	3.1	3.5	4.2	5.0	6.0

Using this fit estimate the value of y at x = 2.5

12. Using least square method to fit the curve $y = ae^{bx}$ to the following data:

Ī	X	2	4	6	8	10
Ī	y	4.077	11.084	30.128	81.897	222.62

Using this fit estimate the value of y at x = 9