

Práctica 8: Dinámica por métodos numéricos

Teoría de Mecanismos

Ejercicio 11

Los datos de movimiento de este mecanismo fueron registrados por un sistema de adquisición. El fichero principal de esta práctica los carga, y reproduce el movimiento original mediante el mecanismo rojo de la simulación.

- 1 Descargar el fichero **simulacion_dinámica.zip** y descomprimilro.
- 2 Desde Matlab, abrir el archivo **DinamicaPC.m**, de dicha carpeta, y ejecutarlo.
- Repetir las simulaciones con diferentes tiempos de paso y coeficientes de fricción e interpretar los resultados. Restablecer los valores originales.
- 4 Crear un archivo nuevo de tipo "function" que se llame matriz_masas2.m y guardarlo en la misma carpeta. La estructura de este archivo será la que se muestra a continuación:

```
function M = matriz_masas2( datos )
M=zeros(5,5)
M2=zeros(4,4); M3=zeros(4,4); M4=zeros(4,4);
...
end
```

Ejercicio 11 (cont.)

Definir los valores de M2, M3 y M4 en base a los valores correspondientes:

La matriz de masas de un elemento e se define como:

$$\mathsf{M}_e = \iint_{P \in e} \mathsf{T}_P^\top \mathsf{T}_P dm$$

Para el caso plano y sólidos definidos con 2 puntos en coordenadas naturales:

$$\mathbf{M}_{e} = \begin{bmatrix} M + a - 2b_{x} & 0 & b_{x} - a & -b_{y} \\ \sim & M + a - 2b_{x} & b_{y} & b_{x} - a \\ \sim & \sim & a & 0 \\ \sim & \sim & \sim & a \end{bmatrix}_{4 \times 4}$$

con:

- M: Masa total. $a = \frac{I_i}{L_{ij}^2}$, $b_x = M \frac{e_{xg}}{L_{ij}}$, $b_y = M \frac{e_{yg}}{L_{ij}}$.
- I_i: Momento polar de inercia (sobre z) en el punto i (¡¡no en g!!).
- $({}^ex_g, {}^ey_g)$: Coordenadas locales del centro de masas.

```
%% Definición matrices de masas:
M2=[m2+a2-2*bx2, 0, bx2-a2, -by2;...
0, m2+a2-2*bx2, by2, bx2-a2;...
bx2-a2, by2, a2, 0;...
-by2, bx2-a2, 0, a2;
];
```

м3...

Los datos necesarios para calcular los valores **M**, a, etc. se obtienen de la variable estructura de entrada "datos" como se muestra a continuación

```
% Cuerpo 1 = tierra
% Disco 1 (cuerpo 2) (masa concentrada en
el centro i):
m2=datos.mA1;
r2=0.275/2; % radio disco
L2=datos.LA1; % disancia 02A
(longitud entre los puntos i y j)
xg2=0; % coordenadas relativas
yg2=0; % coordenadas relativas
```

Ejercicio 11 (cont.)

6 Ensamblar la matriz de masas del mecanismo, M

Ejercicio 11 (cont.)

7 Desde el script principal, DinamicaPC.m, llamar ahora a la función que hemos creado, en lugar de la función original:

```
%datos.M = matriz_masas(datos);
datos.M = matriz_masas2(datos);
```

8 Comprobar que se cumple la conservación de la energía y la conservación de la energía:

9 Enviar el archivo matriz_masas2.m al profesor José Luis Torres.

Esquema Simulación dinámica

