

CLMSM: A MULTI-TASK LEARNING FRAMEWORK FOR PRE-TRAINING ON PROCEDURAL TEXT

Abhilash Nandy, Manav Nitin Kapadnis, Pawan Goyal, Niloy Ganguly CNeRG Lab, Indian Institute of Technology Kharagpur, India

Background

- In the realm of procedural text, understanding and processing tasks such as entity tracking and action alignment are pivotal.
- Conventional Pre-training such as MLM does not capture temporal information
- Small size of the procedural reasoning benchmark datasets

ENTITY TRACKING

Figure 1: Example Of Entity Tracking Task

Problem Statement

Coming up with Pre-training tasks to solve procedural reasoning tasks.

- Using inter and intra-procedure (stepwise) supervision signals to solve Recipe Alignment and Entity Tracking Tasks
- Fine-tuning of procedural text representation using Contrastive Learning
- Develop understanding of procedural text nature using Mased Step Modelling

Figure 2: Overview of Masked Step Modelling

Dataset Collection

We collected, and preprocessed a corpus of **2.8 Million** recipes after deduplication was carried out.

- Recipe1M+ dataset (Marin et al., 2018)
- RecipeNLG dataset (Bie n et al., 2020)
- Generating personalized recipes from historical user preferences (Majumder et al., 2019)
- Storyboarding of recipes: Grounded contextual generation. (Chandu et al., 2019)

Figure: Modifying a recipe by adding ingredients as a step at the top of the original recipe

Methodology

CLMSM involves using metadata of procedures and a Contrastive Learning strategy to capture global context, while Masked Step Modeling addresses the local context.

Figure: *CLMSM* pre-training framework: Step-Masking and Contrastive Learning objectives are used. MSM Loss obtained by masking step(s) in each recipe is linearly combined with Triplet Loss, and total loss is backpropagated.

Experiments and Results

			TEST	TEST	TEST	AVEDACE	•				
			CAT. 1	CAT. 2	CAT. 3	AVERAGE SCORE					
			SCORE	SCORE	SCORE	26.62					
		Rule-based	57.14	20.33	2.4	26.62					
		Feature-based	58.64	20.82	9.66	29.71					
		ProLocal	62.7	30.5	10.4	34.53					
		ProGlobal	63	36.4	35.9	45.1					
	TEST	EntNet	51.6	18.8	7.8	26.07					
	ACCURACY	QRN	52.4	15.5	10.9	26.27					
NPN-Model	51.3	KG-MRC	62.9	40.0	38.2	47.03		TEST	TEST	TEST	AVERAGE
		NCET	73.7	47.1	41.0	53.93		CAT. 1	CAT. 2	CAT. 3	SCORE
KG-MRC	51.6	DYNAPRO	72.4	49.3	44.5	55.4		SCORE	SCORE	SCORE	
DYNAPRO	62.9	RECIPES _{RB}	71.33	34.11	30.86	45.43	Falcon-7B (1-shot)	50.42	7.11	4.79	20.77
RECIPES _{RB}	63.8	RECIPES _{RL}	74.58	47.53	38.37	53.49	Falcon-7B (3-shot)	50.85	7.73	5.3	21.29
$CLMsm_{RB}(CL)$	65.13	$CLMsm_{RB}(CL)$	67.8	35.62	33.61	45.68	Falcon-7B-Instruct (1-shot)	50.42	5.42	0.38	18.74
$CLMsm_{RB}(MSM)$	65.35	$CLMsm_{RB}(MSM)$	67.09	36.83	34.03	45.98	Falcon-7B-Instruct (3-shot)	48.44	3.15	1.94	17.84
$CLMsm_{RB}(CAS.)$	63.99	$CLMsm_{RB}(CAS.)$	67.94	36.85	35.94	46.91	GPT-3.5 (1-shot)	53.25	24.66	11.37	29.76
,		$CLMsm_{RB}(RS)$	65.4	28.57	38.25	44.07	GPT-3.5 (3-shot) GPT-4 (1-shot)	62.43 57.2	34.66 31.08	15.81 17.03	37.63 35.10
$CLMSM_{RB}(RS)$	63.46	$CLMsm_{RB}(EASY)$	68.22	35.7	32.1	45.34	GPT-4 (1-shot) GPT-4 (3-shot)	73.87	57.7	26.78	52.78
$CLMsm_{RB}(EASY)$	63.68	$CLMSM_{RB}$	69.92	39.35	33.89	47.72	$\frac{\text{CLMsm}_{RB}}{\text{CLMsm}_{RB}}$	69.92	39.35	33.89	47.72
$CLMsm_{RB}$	64.62	$CLMSM_{RL}$	77.26	54.86	38.34	56.82	$CLMSM_{RB}$ $CLMSM_{RL}$	77.26	54.86	38.34	56.82

Table 2: Results when fine-tuned on the NPN-Cooking Table 3: Results when fine-tuned on the ProPara Dataset Table 4: Results on the ProPara Dataset - LLMs vs. Dataset - Baselines and CLMsM Variations vs. CLMsM Variations vs. CLMsM CLMsM CLMsM

Results on Entity Tracking Tasks

	TEST
	ACCURACY
RECIPES _{BERT}	64.22
$CLMSM_{BERT}(CL)$	55.96
$CLMSM_{BERT}(MSM)$	61.47
$CLMSM_{BERT}(CAS.)$	55.96
$CLMSM_{BERT}(RS)$	54.31
$CLMSM_{BERT}(EASY)$	57.06
$CLMSM_{BERT}$	66.97

Table 6: Results when fine-tuned on the ARA Dataset - Baselines vs. CLMSM

Results on Action Alignment across procedures

Qualitative Analysis

- *CLMSM* outperforms various types of baselines (non-neural, LSTM-based, Knowledge Graph-based, transformer-based)
- In-domain pre-training helps in learning temporal entity-based information required for entity tracking. This also shows the out-of-domain adaptation of CLMSM.

Key Insights

- *CLMSM*, a novel pre-training framework specialized for procedural data, that leverages metadata information of procedures and devises a Contrastive Learning strategy to capture global context, and Masked Step Modeling to capture local context.
- CLMSM performs better than best baseline for tracking entities whose locations are implicit in nature, i.e., the location at current step requires retention of knowledge from step far in past.
- Even though *CLMSM* is pre-trained on recipes, it shows improvement on an open-domain procedural task on ProPara Dataset, thus showing its generalizability.

For Further Information