TD6 structures algébriques pour l'informatique

Exercice 1

- 1. Soit G un groupe fini d'ordre 60. Quels sont les ordres possibles pour les sous-groupes de G?
- 2. Soit G un groupe fini contenant un élément d'ordre 5 et un élément d'ordre 7. Pourquoi a–t–on $|G| \geq 35$?

Exercice 2. Prouver ou prouver la négation de chacune des assertions suivantes:

- 1. Tout sous–groupe de \mathbb{Z} est d'ordre fini.
- 2. Tout sous-groupe de \mathbb{Z} est d'indice fini.

EXERCICE 3 . Décrire les éléments inversibles de $\mathbb{Z}/30\mathbb{Z}$.

Exercice 4 . On désigne par ϕ la fonction indicatrice d'Euler.

- 1. Soit n = pq avec p et q deux nombres premiers distincts. Calculer alors $\phi(n)$.

 Indication: On rappelle que les seuls nombres qui ne sont pas premiers avec n sont des multiples de p ou des multiples de q.
- 2. Soit p un nombre premier. Calculer $\phi(p^e)$, où e est un entier positif.

 Indication: On rappelle que les seuls nombres qui ne sont pas premiers avec p^e sont des multiples de p.

Exercice 5

Soit G un groupe et $a \in G$. On rappelle que si il existe $k \in \mathbb{N}^*$ tel que $a^k = 1_G$, alors le plus petit entier $k \geq 1$ vérifiant $a^k = 1_G$ est appelé l'ordre de a. Il est noté ord(a). Si aucun $k \geq 1$ ne vérifie $a^k = 1_G$, alors on dit que a est d'ordre infini. Montrer que ord(a) est l'ordre (ou encore le cardinal) du sous-groupe engendré par $\{a\}$.

EXERCICE 6 . Soit G un groupe cyclique d'ordre n (i.e. $\exists a \in G$, tel que G est le groupe engendré par $\{a\}$ et |G|=n). Montrer que pour tout d diviseur de n, G possède un sous-groupe d'ordre d. Indication. Si G est engendré par a et n=dk, considérer le groupe engendré par a^k .

EXERCICE 7. Montrer que tout sous-groupe H d'un groupe cyclique G est lui-même cyclique. Indication. Soit a un générateur de G. Considérer le plus petit entier positif k, tel que $a^k \in H$.

EXERCICE 8. Soit (G, .) un groupe et $a \in G$ un élément d'ordre n.

- 1. Montrer que $a^m = 1$ si et seulement si n divise m.
- 2. On suppose qu'il existe deux entiers p et t tels que n=pt. Montrer que $ord(a^t)=p$.

 Indication. Remarquer que $(a^t)^p=1_G$. Puis, montrer qu'aucune puissance plus petite de a^t n'est égale à 1_G .
- 3. Soit p un diviseur premier de n. Supposons qu'il existe $x \in G$ tel que $x^p = a$. Montrer que ord(x) = pn.

EXERCICE 9. Soit (G, .) un groupe et $H \leq G$. Montrer que si [G: H] = 2, alors gH = Hg.

EXERCICE 10. Soit (G, .) un groupe fini avec |G| = 2n.

- 1. Combien existe-t-il d'éléments d'ordre 1 dans G?
- 2. Soit $x \in G$. Montrer que $x = x^{-1} \iff ord(x) \le 2$.
- 3. Déduire en regroupant les éléments de G par paires (élément, élément symétrique) que le nombre d'éléments d'ordre 2 dans G est impair.
- 4. En déduire que G contient un sous-groupe d'ordre 2.

EXERCICE 11. Soit G un groupe et H un sous-groupe de G. On suppose que pour tout $h \in H$ et pour tout $g \in G$, $ghg^{-1} \in H$. Montrer alors que les classes à gauche selon H et les classes à droite selon H coïncident.

EXERCICE 12. On admet que si a et b sont deux nombres entiers premiers entre eux, alors $\phi(ab) = \phi(a) * \phi(b)$.

- 1. Soit $n=p_1^{e_1}p_2^{e_2}\dots p_k^{e_k}$, la décomposition de $n\in\mathbb{N}^*$ en produit de facteurs premiers. Calculer $\phi(n)$.
- 2. Calculer $\phi(12)$ et $\phi(100)$.

EXERCICE 13 . Soit H et K deux sous-groupes d'un groupe fini G avec ord(H) et ord(K) premiers entre eux. Montrer que $H \cap K = \{1_G\}$. Indication. Si $x \in H \cap K$ alors $x^{ord(H)} = 1_G = x^{ord(K)}$.