Class2_prat Page 1 of 1

Python Course - Practical Class 2:

Scientific Libraries and Data Manipulation

Exercice #1 - Querying Databases

Consider the star Helvetios:

- \rightarrow How many $mag_V < 6$ stars can you find within 1 degree of the star?
- \rightarrow How many of these stars are of the G spectral type?
- → are there any ESPRESSO@VLT observations of Helvetios in 2019?

Exercice #2 - Data fitting

Consider the data from file $class2_prat_data.txt$. Using the Numpy/Scipy libraries: \rightarrow load the data from the file and assign the first column to an array X e the second to an array Y. \rightarrow fit a linear function to the data. \rightarrow fit a quadratic function to the data. \rightarrow fit a sinusoidal function to the data. \rightarrow which function fits better the data? (you can plot the data and the fits, see below)

TIP: to make scatter plot of a (X,Y) data set, you can use:

```
import matplotlib.pyplot as mplt
mplt.plot(X,Y,'k',color= color, marker = marker)
```

where 'color' represents the color of thew marker symbol and marker the symbol to be used ('o' for a circle; '.' for a point)

Exercice # 3 - Array/Matrix operations

 \rightarrow Create an array A with 4 x 4 elements, and shuffle its values. \rightarrow Create an array B with 2 x 4 elements, with all values set to one. \rightarrow Create an array C with 4 x 2 elements, with arbitrary values and transpose it. \rightarrow Concatenate array B with the transposed of C into array D. \rightarrow Compute the cross-product of array D with array A and store it into array E. \rightarrow Calculate the median, mean and standard deviation values of array E