-Matice

Vlastnosti soucinu:

- (AB)C = A(BC)
- (A+B)C = AC+BC
- AI = A = IA
- (aA)B = A(aB) = a(AB)
- $A^{m*n} B^{k*p} AB n==k, m*p$
- $(A+B)^2=A^2+AB+BA+B^2$

Transpozice:

- $(aA)^T = aA^T$
- $(A^T)^T = A$
- $(A+B)^{T} = A^{T}+B^{T}$
- $(AB)^T=B^TA^T$

Hodnost (rank):

 $rank A = rank(A^T)$

 $rank(AA^{T}) = rank A$

rank $A \leq \min(m, n)$

rank(AB) ≤ min(rank A, rank B)

Inverze:

 $AA^{-1}=I=A^{-1}A$

(A-1)-1=A

(AB) -1=B-1A-1

(aA) -1=a-1A-1

 $(A^T)^{-1}=(A^{-1})^T$

Determinant:

Det I = 1

Det(AB) = det(A)*det(B)

 $Det(A^{-1}) = det(A)^{-1}$

Det AT=det A

Det A = 0 if A singularni

Prohozeni sloupcu → - det

Vlastni cisla:

Determinant s -λ na diagonale

Matice* vlastní vektor = nulovy vektor

Linearita

Span(x,y)(linearni obal)==mnozina vsech linearnich kombinaci vektoru x,y.

Baze lin. pod. X je lin. nezavisla mnozina

Vektoru, jejiz span je X

Pro podprostory X, $Y \subseteq R^n$ plati:

 $X \subseteq Y \rightarrow \dim X \leq \dim Y$

 $X \subseteq Y$ a dim $X = \dim Y \rightarrow X = Y$

Prostor obrazu:

Rng $A^{m*n} = \{Ax \mid x \in R^n\} \subseteq R^m$

Ekvivalentni tvrzeni pro Am*n:

 $Rng A = R^m$

soustava Ax = y ma reseni pro kazde y

Rank A = m

Zobrazeni f(x) = Ax je surjektivni

Radky matice A jsou lin. nezavisle

Matice A ma pravou inverzi (AA-1 = I)

Matice AA^T je regularni

Pro libovolne matice A,B plati:

 $Rng(AB) \subseteq rng A$

rng(AB) = rng A if radky B jsou lin. nezavisle

nulovy prostor:

null $A^{m*n} = \{x \in R^n \mid Ax = 0 \} \subseteq R^n$

Ekvivalentni tvrzeni:

Null $A = \{0\}$

Soustava Ax = 0

Rank A = n

Zobrazeni f(x) = Ax je injektivni

Sloupce matice A jsou lin. nezavisle

Matice A ma levou inverzi ($A^{-1}A = I$)

Matice A^TA je regularni

Pro libovolne A,B plati:

null(AB) ⊇ null B

null(AB) = null B if sloupce A jsou lin. nezavisle

Vety:

rank A = dim rng A = dim rng(A^T) = rank(A^T). dim rng A + dim null A = n

Affini podprostor

If X lin. podprostor, pak X + y aff. Podportor If X aff. Podprosotr, pak X – y lin. podprostor If X aff. Podporostor, $x,y \in X$, pak A-x = A-y

Ortogonalita

 $||x+y|| \le ||x|| + ||y||$ trojuh. nerovnost Cos a = $x^{T}y/(||x||^{*}||y||)$ uhel 2 vektoru $X^{\perp} = \{y \in \mathbb{R}^n \mid y \perp X \}$ ortogonalni doplnek Vektor \perp na podprostor if \perp na vekt. Baze

Podprostory jsou ⊥ if každý vekt. x ⊥ y

Vety:

 $\dim X + \dim X^{\perp} = n$

 $X \perp Y \text{ a dim } X + \text{dim } Y = n \rightarrow Y = X^{\perp}$

 $(X^{\perp})^{\perp} = X$

 $(rng A)^{\perp} = null(A^{T})$

 $(null A)^{\perp} = rng(A^{T})$

 $Rng(A^{T}A)=rng(A^{T})$

null(ATA)=null A

Ortogonalni matice Um*n

Je ctvercova, ortonormalni sloupce

If det U = 1, pak rotacni

If det U = -1, pak rotacni a reflexni

 $U^{T}U = I \leftarrow \rightarrow U^{T} = U^{-1} \leftarrow \rightarrow UU^{T} = I$

QR rozklad matice Am*n

A = QR, Q^{m*m} ortogonalni, R^{m*n} hor. Trojuhelnikova

Ortogonalni projekce vekt. z

 $x = UU^Tz$

 $P = UU^T$ projektor na X, I – P je na X[⊥]

Nejmensi ctverce

A⁺= (A^TA)⁻¹A^T preur. Pseudoinverze

 $A^+=A^T(AA^T)^{-1}$ nedour. pseudoinverze

Orto projekce na obecnou bazy: P = AA+

Reseni Ax = b jako $x = A^+b$ nebo $A \setminus x = b$, $x = A^{-1}b$

Spektralni rozklad

 $rank \Lambda = rank A$

 $A = V\Lambda V^{-1}$ if V ortogonalni, pak V^{T}

Kvadraticka forma! Symet. matice

Definitni

A positivne [negativne] v bode 0 ostre min [max]

Semidefinitni

A positivne [negativne] v bode 0 min [max]

<u>Indefinitni</u>

Nemá ani min ani max

Definitnost minory:

Pos def. If všechny vudci hlavni minory jsou kladne Pos semidef. Pokud jsou hlavni minory nezaporne

Neg. def/semidef if -A pos def/semidef Definitnost vl. cisla:

Pos [neg] def. If všechny vl. Cisla kladna [zaporna] Pos [neg] semidef. If všechny vl. Cisla nezap [nekla] Indefinitni if jedno zaporne jedno kladne

Doplneni na ctverec $x^{T}Ax + b^{T}x + c = (x - x_0)^{T}A(x - x_0) + y_0$

 $b = -2Ax_0$

 $c = x^{\mathsf{T}_0} A x^0 + y^0$

Pouziti spektralniho rozkladu VAV

Stopa je soucet diagonalnich prvku matice A Tr(A)

Vlastnosti stopy

Tr(A+B) = tr A + tr B

Tr(aA) = a tr A

 $Tr(A^T) = tr A$ Tr(AB) = tr(BA)

Tr(A) = soucet vlastnich cisel

Uloha na nejmensi stopu

 $min\{x^TAx \mid x \in R \text{ n , } x^Tx = 1\} = \lambda_1$

prolozeni bodu podprostorem

hledame lin. Podprostor dimenze k

 $A^{T}A = V\Lambda V^{T}$, kde vl. Cisla a vek jsou vzestupne serazeny Poslednich k sloup. V ie baze min. sum ctvercu k bodum Prvnich n-k sloupcu V je ortonorm. Bazi ortog. Doplnku tohoto podprostoru

u aff podprostoru posuneme body a o jejich -teziste

singularni rozklad SVD

 $A = USV^{T}$, matice S^{m*n} je diagonalni, U^{m*m} a V^{n*n} ortog. Rank A = rank S, pokud není ctvercova, pak posled. m – p sloupce U/n – p sloupcu V je nulovych $A^{T}A = VS^{T}U^{T}USV^{T} = VS^{T}SV^{T}$

Nelinearni funkce

 $AA^T = USV^TVS^TU^T = USS^TU^T$

G(x, y) = f(x) if f je spojina v x, pak g je spojita v x, y Pokud f, g spojite, pak f+g, f-g,f*g jsou spojite Pokud f a g spojite, pak slozena funkce je taky spojita Funkce $f_1..f_m$ spojite, pak $f(x)=(f_1(x)..f_m(x))$ také spojite

Derivace

Lim(a->0) = (f(x+a)-f(x))/a

Pro f: $R \rightarrow R$ je f' (x) skalar Pro f: $R \rightarrow R^m$ je f'(x) sloupcovy vektor

Pro f: $R^n \rightarrow R$ je f' (x) radkovy vektor

 $\begin{array}{c} g\circ f\colon R^n{\to}R^l, \ f\colon R^n{\to}\ R^m, \ g\colon R^m{\to}R^l, \ (g\circ f)'(x)=g'\ (f(x))f'(x)\\ \text{zobrazen\'i} & |\ (\text{tot\'aln\'i})\ \text{derivace} \end{array}$ f(x) = xf'(x) = I

f(x) = Ax + bf'(x) = A $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$ $f'(\mathbf{x}) = \mathbf{a}^T$ $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$ $f'(\mathbf{x}) = 2\mathbf{x}^T$ $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ $f'(\mathbf{x}) = \mathbf{x}^T (\mathbf{A} + \mathbf{A}^T)$ $\mathbf{f}'(\mathbf{x}) = \mathbf{A}\mathbf{g}'(\mathbf{x})$ f(x) = Ag(x) $f'(\mathbf{x}) = \mathbf{x}^T / \|\mathbf{x}\|$ $f(\mathbf{x}) = ||\mathbf{x}||$ $f(\mathbf{x}) = \mathbf{g}(\mathbf{x})^T \mathbf{g}(\mathbf{x})$ $f'(\mathbf{x}) = 2\mathbf{g}(\mathbf{x})^T \mathbf{g}'(\mathbf{x})$ $f(\mathbf{x}) = \mathbf{g}(\mathbf{x})^T \mathbf{h}(\mathbf{x}) | f'(\mathbf{x}) = \mathbf{g}(\mathbf{x})^T \mathbf{h}'(\mathbf{x}) + \mathbf{h}(\mathbf{x})^T \mathbf{g}'(\mathbf{x})$

poznámka $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}$

 $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m, \ \mathbf{A} \in \mathbb{R}^{m \times n}, \ \mathbf{b} \in \mathbb{R}^m$

 $f \colon \mathbb{R}^n \to \mathbb{R}, \ \mathbf{a} \in \mathbb{R}^n$

 $f: \mathbb{R}^n \to \mathbb{R}$

 $f: \mathbb{R}^n \to \mathbb{R}, \ \mathbf{A} \in \mathbb{R}^{n \times n}$

 $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m, \ \mathbf{g} \colon \mathbb{R}^n \to \mathbb{R}^l, \ \mathbf{A} \in \mathbb{R}^{m \times l}$

 $f: \mathbb{R}^n \to \mathbb{R}$

 $f: \mathbb{R}^n \to \mathbb{R}, \ \mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$

 $f: \mathbb{R}^n \to \mathbb{R}, \ \mathbf{g}, \mathbf{h}: \mathbb{R}^n \to \mathbb{R}^m$ Smerova derivace f(x) ve smeru v je rovna f'(x)*v Gradient je sloupcovy vektor parc. der. ∇ (f) = f'(x)^T Směr. der. je nejvet. ve smeru ∇ (f)/|| ∇ (f)|| (nej. rust)

Tayloruv polynom

 $T_0(y) = f(x), T_1(y) = f(x) + f'(x) (y - x)$

 $T_2(y) = f(x) + f'(x) (y - x) + \frac{1}{2} f''(x) (y - x)^2$

 $T_2(y) = f(x) + f'(x) (y - x) + \frac{1}{2}*(y - x) T f''(x) (y - x).$

Vnitřek a hranice množ. a - vnitřní

c – hraniřní (1,1) – hraniční

b - hraniční

Lokální extrémy funkce na množnině

v bodě x^* fce f na X ma glob. i lok. min. $f(x^*) = 2$ v bodě x fce f na X ma lok. min.

f'(x) = 0, pak x je stac. Bod, if f''(x) < 0 [>0] pak max [min] vice promennych: if hessova matice:

positivne [neg] definitni, pak x je ostre min [max] semidefinitni, pak x MUZE, ale nemusi byt extrem

indefinitni není extrem (sedlovy bod) <mark>iteracni</mark> metody (!SESTUPNY SMĚR V)

obecne x_{k+1}=x_k+a_kv_k.

gradientni: $v_k = -\nabla f(x_k)$ vždy sestupny, pomala konverg.

Newton: (koren) $v_k = f'(x_k)^{-1}f(x_k)$, rychle konv.

Newton: (extr) $v_k = f''(x_k)^{-1}f'(x_k)^T$ nutno presny zacatek Gauss-N: $v_k = -g'(x_k)^+g(x_k)$, $g'(x_k)^+$ zavorka vlevo

Netreba 2. derivaci Levengerg-Marguardt

 $V_k = (g'(x_k)^T g'(x_k) + \mu_k I)^{-1} g'(x_k) T g(x_k)$ Pokud iterace snizi, μ_k zmensime, jinak zvetsime a znova

Lagrangeova fce

 $L(x,\lambda) = f(x) + \lambda^{\mathsf{T}} g(x) = f(x) + \lambda 1 g 1(x) + \cdots + \lambda_{\mathsf{m}} g_{\mathsf{m}}(x)$

 $L(x, y, \lambda) = x + y + \lambda(1 - x^2 - y^2).$ $\partial L(x, y, \lambda)/\partial x = 1 - 2\lambda x$ = 0.

 $\partial L(x, y, \lambda)/\partial y = 1 - 2\lambda y$ = 0. $\partial L(x, y, \lambda)/\partial \lambda = 1 - x^2 - y^2 = 0.$

Linearni programovani

Transformace LP

Max fce c^Tx nahradime minimalizaci fce −c^Tx Nerovnost $a^Tx \le b$ nahradime nerovnosti $-a^Tx \ge -b$ Rovn. $a^Tx = b$ nahradime dvema nerovn. $a^Tx \ge b$, $-a^Tx \ge -b$ Rovnicovy tvar:

nerovnost a^Tx≥ b na 2 omezeni: a^Tx-u=b, u≥0. u je slackova promenna, x∈R na 2 nezaporne promenne x+≥0. x - ≥0

minimax maximin; min max[max min]{x,y}

minmax: min $z \rightarrow x$, $y \le z$; maxmin: max $z \rightarrow x$, $y \ge z$ vektorove normy $\|\mathbf{x}\|_1 = |x_1| + \cdots + |x_n|$. manhattska norma $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + \cdots + x_n^2} = \sqrt{\mathbf{x}^T \mathbf{x}}$. euklidovska, max-norma $\|\mathbf{x}\|_{\infty}$ $\max\{|x_1|,\ldots,|x_n|\}$

Relaxovaná vs. původní úloha

 $\min \{ \, \mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in [0,1]^n, \, \, \mathbf{A} \mathbf{x} \geq \mathbf{b} \, \} \, \leq \, \min \{ \, \mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in \{0,1\}^n, \, \, \mathbf{A} \mathbf{x} \geq \mathbf{b} \, \}$

konvexni mnoziny a mnohosteny

konvexni komb. Vekt x,y je jejich lin. Komb. Ax+by Takova, ze a+b=1, a,b ≥0, konvexni obal vektoru x, y je mnozina všech konvex. Kombinaci

Vážený součet $\alpha_1\mathbf{x}_1+\cdots+\alpha_k\mathbf{x}_k$ vektorů $\mathbf{x}_1,\ldots,\mathbf{x}_k\in\mathbb{R}^n$ se nazývá jejich

$$\begin{split} & \text{lineární kombinace}, & \text{ jestliže} & \alpha_1, \dots, \alpha_k \in \mathbb{R}. \\ & \text{afinní kombinace}, & \text{ jestliže} & \alpha_1, \dots, \alpha_k \in \mathbb{R}, & \alpha_1 + \dots + \alpha_k = 1. \end{split}$$

nezáporná kombinace, jestliže $\alpha_1,\dots,\alpha_k\in\mathbb{R},$ $\alpha_1,\dots,\alpha_k\geq 0$ konvexní kombinace, jestliže $\alpha_1,\dots,\alpha_k\in\mathbb{R},$ $\alpha_1+\dots+\alpha_k=1,$ $\alpha_1,\dots,\alpha_k\geq 0$

Množina, která je uzavřená vůči

lineárním kombinacím, se nazývá lineární podprostor.
afinním kombinacím, se nazývá afinní podprostor.
nezáporným kombinacím, se nazývá konvexní kužel.
konvexním kombinacím, se nazývá konvexní množina.

Priklady konv. Mnohostenu: prazdna mnozina, cely prostor Rⁿ, poloprostory a jejich pruniky

Konv. Mnoziny co nejsou mnohosteny:

Koule v R^n pro $n \ge 2$ je prunikem NEkonecne mnoha poloprostoru, otevreny poloprostor { $x \in R^n \mid a^Tx > b$ }, Interval [0, 1)

Extremalni body (x)

 $x_1, x_2 \in X, x = 1/2 (x^1 + x^2) \Longrightarrow x^1 = x^2.$

Pro každy bod x mnohostěnu jsou ekvivalentní tvrzení:

-Bod x je extremální bod mnohostěnu.

-Existuje I⊆{1..m} tak, že Alx = bI a sloupce AI jsou LNZ

Ekvivalentni tvrzeni pro neprazdny mnohosten:

Mnohosten ma aspon jeden extremalni bod.

Mnohosten neobsahuje primku.

Steny mnohostenu

Je-li H opěrná nadrovina konvexní množiny X, pak každý extremální bod množiny $X \cap H$ je extremální bod X. $X \cap H$ je stena S mnohostenu, dimS=0 vrchol, dim 1 hrana (Dim X)-1 = faseta (vlevo hrana)

Veta 12.5: Mnohosten neobsahujici primku. If lin. Fce ma min na tomto mnohostenu, pak tato fce nabyva minima aspon v jednom z jeho extremalnich bodu.

Konstrukce dualni ulohy

K úloze LP v obecném tvaru (viz §11.1) se duální úloha získá dle tohoto postupu:

min	$\sum_{j \in J} c_j x_j$	max	$\sum_{i \in I} b_i y_i$	
za podm.	$\sum_{j \in J} a_{ij}x_j = b_i$	za podm.	$y_i \in \mathbb{R}$,	$i \in I_0$
	$\sum_{j \in J} a_{ij} x_j \ge b_i$		$y_i \geq 0$,	$i \in I_+$
	$\sum_{j \in J} a_{ij} x_j \le b_i$		$y_i \leq 0$,	$i \in I$
	$x_j \in \mathbb{R}$		$\sum_{i \in I} a_{ij} y_i = c_j,$	$j \in J_0$
	$x_j \ge 0$		$\sum_{i \in I} a_{ij} y_i \le c_j,$	$j\in J_+$
	$x_j \le 0$		$\sum_{i \in I} a_{ij} y_i \ge c_j,$	$j\in J$

Veta o komplementarite, $c^Tx = b^Ty$ prave tehdy, když

$$\sum_{j \in J} a_{ij} x_j = b_i \quad \text{nebo} \quad y_i = 0 \qquad \forall i \in I,$$

$$x_j = 0 \quad \text{nebo} \quad \sum_{i \in I} a_{ij} y_j = c_j \qquad \forall j \in J.$$

O slabe dualite:x reseni, y dualni reseni, pak $c^Tx \ge b^Ty$ O silne: Prim. Uloha ma opt. Reseni, prave když dualni ma opt. Reseni. Ma-li prim. Uloha opt. Reseni x, a dualni uloha ma opt. Reseni y, pak $c^Tx = b^Ty$

$\{\mathbf{b}^T\mathbf{y}\mid\mathbf{y}\geq0,\;\mathbf{A}^T\mathbf{y}\leq\mathbf{c}\}$	$\left\{ \left. \mathbf{c}^{T}\mathbf{x}\mid\mathbf{A}\mathbf{x}\geq\mathbf{b},\;\mathbf{x}\geq0\right. \right\}$	
společná optim	$\mathbf{r}^{T}\mathbf{v} = \mathbf{v}^{T}\mathbf{b}$	

spoiecne optimum $\mathbf{c}^{T} \mathbf{x} = \mathbf{y}^{T} \mathbf{b}$							
primární/duální	má optimum	neomezená	nepřípustná				
má optimum	ano	ne	ne				
neomezená	ne	ne	ano				
nepřípustná	ne	ano	ano				

Konvexni funkce

Fce je konvexni na X, if: $\mathbf{x} \in X$, $\mathbf{y} \in X$, $0 \le \alpha \le 1 \implies f((1-\alpha)\mathbf{x} + \alpha\mathbf{y}) \le (1-\alpha)f(\mathbf{x}) + \alpha f(\mathbf{y})$.

Konkavni if -f je konvexni na mnoz. X

Epigraf funkce je mnozina { $(x, y) \in \mathbb{R}^{n+1} \mid f(x) \le y$ } Subkontura vysky y je mnozina { $x \in \mathbb{R}^n \mid f(x) \le y$ } Veta 15.1. Funkce je konvexni, prave kdyz jeji epigraf je konvexni mnozina