On the Learning Parity with Noise Problem

Luca Melis

Università degli Studi di Firenze

Århus Universitet

19 Aprile 2013

Advisors:

Prof. Alessandro Piva

Prof. Fabrizio Argenti

Co-advisors:

Dr. Claudio Orlandi

Prof. Ivan Damgård

Scenario

Cryptography schemes

- addresse the security of communication across an insecure medium
- are usually based only on complexity assumptions (standard model)

Near Future:

- Problem: What if someone constructs large quantum computers?
- Cryptography world may fall apart:
 - 1 cryptographic assumptions broken by efficient quantum algorithms
 - 2 proof of security becomes invalid

Post-Quantum cryptography

Schemes that are believed to resist classical computers and quantum computers

- Hash-based cryptography
- Code-based cryptography
- Lattice-based cryptography

Some Issues:

- Efficiency time and space
- Confidence cryptanalysts experience
- Usability infrastructure

Our contribution

- We investigate about the Learning Parity with Noise LPN Problem
- We propose a Threshold Public-Key Encryption scheme based on LPN
- We propose a Commitment protocol based on LPN

- Dimension ℓ (security parameter), $q \gg \ell$, $\tau \in \left(0, \frac{1}{2}\right]$
- Search: find $s \in \mathbb{Z}_2^{\ell}$ given "noisy random inner products"

```
Errors e_i \leftarrow \text{Ber}_{\tau}, i.e. \Pr(e_i = 1) = \tau
```

- **Decision**: distinguish (a_i, b_i) from uniform (a_i, b_i)
- LPN becomes trivial with no error $\tau = 0$ (Gaussian elimination)
- decisional and search LPN are "polinomially equivalent"

- Dimension ℓ (security parameter), $q \gg \ell$, $\tau \in \left(0, \frac{1}{2}\right]$
- Search: find $s \in \mathbb{Z}_2^{\ell}$ given "noisy random inner products"

$$\mathbf{a_1} \xleftarrow{R} \mathbb{Z}_2^{\ell} \quad , \quad \mathbf{b_1} = <\mathbf{a_1} \ , \ \mathbf{s} > \oplus \ e_1$$

Errors
$$e_i \leftarrow \text{Ber}_{\tau}$$
, i.e. $\Pr(e_i = 1) = \tau$

- **Decision**: distinguish (a_i, b_i) from uniform (a_i, b_i)
- LPN becomes trivial with no error $\tau = 0$ (Gaussian elimination)
- decisional and search LPN are "polinomially equivalent"

- Dimension ℓ (security parameter), $q \gg \ell$, $\tau \in \left(0, \frac{1}{2}\right]$
- Search: $\underline{\text{find}} \ s \in \mathbb{Z}_2^{\ell}$ given "noisy random inner products"

$$egin{aligned} oldsymbol{a_1} & \stackrel{R}{\leftarrow} \mathbb{Z}_2^{\ell} &, & oldsymbol{b_1} = < oldsymbol{a_1} \,, \, oldsymbol{s} > \oplus e_1 \ oldsymbol{a_2} & \stackrel{R}{\leftarrow} \mathbb{Z}_2^{\ell} &, & oldsymbol{b_2} = < oldsymbol{a_2} \,, \, oldsymbol{s} > \oplus e_2 \ & & dots \ oldsymbol{a_q} & \stackrel{R}{\leftarrow} \mathbb{Z}_2^{\ell} &, & oldsymbol{b_q} = < oldsymbol{a_q} \,, \, oldsymbol{s} > \oplus e_q \end{aligned}$$

Errors $e_i \leftarrow \text{Ber}_{\tau}$, i.e. $\Pr(e_i = 1) = \tau$

- **Decision**: distinguish (a_i, b_i) from uniform (a_i, b_i)
- LPN becomes trivial with no error $\tau = 0$ (Gaussian elimination)
- decisional and search LPN are "polinomially equivalent"

- Dimension ℓ (security parameter), $q \gg \ell$, $\tau \in \left(0, \frac{1}{2}\right]$
- Search: $\underline{\text{find}} \ s \in \mathbb{Z}_2^{\ell}$ given "noisy random inner products"

$$m{A} = \left(egin{array}{c} m{a_1} \ dots \ m{a_q} \end{array}
ight), m{b} = m{A} \cdot m{s} \oplus m{e}$$

Errors $e_i \leftarrow \mathrm{Ber}_{\tau}$, i.e. $\Pr(e_i = 1) = \tau$

- **Decision**: distinguish (a_i, b_i) from uniform (a_i, b_i)
- LPN becomes trivial with no error $\tau = 0$ (Gaussian elimination)
- decisional and search LPN are "polinomially equivalent"

- Dimension ℓ (security parameter), $q \gg \ell$, $\tau \in \left(0, \frac{1}{2}\right]$
- Search: $\underline{\text{find}} \ s \in \mathbb{Z}_2^{\ell}$ given "noisy random inner products"

$$oldsymbol{A} = \left(egin{array}{c} oldsymbol{a_1} \ dots \ oldsymbol{a_q} \end{array}
ight), oldsymbol{b} = oldsymbol{A} \cdot oldsymbol{s} \oplus oldsymbol{e}$$

Errors $e_i \leftarrow \text{Ber}_{\tau}$, i.e. $\Pr(e_i = 1) = \tau$

- **Decision**: distinguish (a_i, b_i) from uniform (a_i, b_i)
- LPN becomes trivial with no error $\tau = 0$ (Gaussian elimination)
- decisional and search LPN are "polinomially equivalent"

LPN variants

- Ring LPN
- Subspace LPN
- Exact LPN

Hardness of LPN

Breaking the search LPN problem takes time

- $2^{\Theta(\ell/\log \ell)}$ having the same number of samples q
- $2^{\Theta(\ell/\log\log\ell)}$ having $q = poly(\ell)$ samples
- $2^{\Theta(\ell)}$ having $q = \Theta(\ell)$ samples

Interesting features

- Efficiency \Rightarrow suitable for limited computing power devices (e.g. RFID).
- quantum algorithm resistance

Threshold Public-Key Encryption schemes

Scenario

- In public-key cryptography in general, the ability of decrypting or signing is restricted to the owner of the secret key.
- \Rightarrow only one person has all the power

Solution

- Threshold PKE shares trust among a group of users, such that *enough* of them, the *threshold*, is needed to sign or decrypt
- The secret key is split into shares and each share is given to a group of users.

Our contribution

A Threshold Public-Key Encryption scheme which is:

- based on LPN
- secure in the Semi-honest model

Alekhnovich Public Key Encryption scheme

Key Generation

The sender S chooses

- a secret key $s \stackrel{R}{\leftarrow} \mathbb{Z}_2^{\ell}$
- $A \stackrel{R}{\leftarrow} \mathbb{Z}_2^{q \times \ell}$ and the error $e \leftarrow \operatorname{Ber}_{\tau}^q$, where $\tau \in \Theta(\frac{1}{\sqrt{\ell}})$ and computes the pk as $(A, b = As \oplus e)$

Encryption of a message bit $m \in \mathbb{Z}_2$

Sender S

Receiver R

choose a vector
$$\boldsymbol{f} \leftarrow \operatorname{Ber}_{\tau}^{q}$$
compute $\boldsymbol{u} = \boldsymbol{f} \cdot \boldsymbol{A}$

$$c = \langle \boldsymbol{f}, \boldsymbol{b} \rangle \oplus m \qquad (\boldsymbol{u}, c)$$

Decryption

The receiver R computes $d = c \oplus \langle s, u \rangle = \cdots = \langle f, e \rangle \oplus m$

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

- Key Generation
- Key Assembly
- Encryption
- Partial Decryption
- Finish Decryption

Key Generation

- All the receivers share a matrix $m{A} \xleftarrow{R} \mathbb{Z}_2^{q \times \ell}$
- Each receiver R_i indipendently choose a secret key $s_i \xleftarrow{R} \mathbb{Z}_2^{\ell}$ and an error $e_i \leftarrow \operatorname{Ber}_{\tau}^q$
- ullet the public key for $\mathtt{R_i}$ is the pair $(oldsymbol{A}, b_i = oldsymbol{A} s_i \oplus e_i)$

Key Assembly

The combined public key is the pair (A, b), where $b = \bigoplus_{i \in I} b_i$ (I is the users subset)

Encryption Phase

Sender \underline{S}

Receivers R_i, R_j

$$(C_1, c_2) \leftarrow \texttt{ThLPN.Enc}(m, b)$$

Encryption function (Alekhnovich scheme)

$$egin{aligned} C_1 &= F \cdot A, \ & \ c_2 &= F \cdot b \oplus egin{bmatrix} 1 \ \dots \ 1 \end{bmatrix} \cdot m \end{aligned}$$

where
$$F := egin{bmatrix} f_1 \ \dots \ f_a \end{bmatrix}, f_i \leftarrow \operatorname{Ber}_i^i$$

Encryption Phase

Sender \underline{S}

Receivers R_i, R_j

$$(C_1, c_2) \leftarrow \texttt{ThLPN.Enc}(m, b)$$

Encryption function (Alekhnovich scheme)

$$egin{aligned} oldsymbol{C_1} &= oldsymbol{F} \cdot oldsymbol{A}, \ oldsymbol{c_2} &= oldsymbol{F} \cdot oldsymbol{b} \oplus egin{bmatrix} 1 \ \dots \ 1 \end{bmatrix} \cdot m \end{aligned}$$

where
$$m{F} := egin{bmatrix} f_1 \ \dots \ f_q \end{bmatrix}, m{f_i} \leftarrow \mathrm{Ber}_{ au}^q$$

Encryption Phase

Sender S

Receivers R_i, R_j

$$(C_1, c_2) \leftarrow exttt{ThLPN.Enc}(m, m{b}) \hspace{1em} (C_1, c_2)$$

Encryption function (Alekhnovich scheme)

$$C_1 = F \cdot A,$$

$$c_1 = F \cdot b \oplus \begin{bmatrix} 1 \end{bmatrix}$$

$$oldsymbol{c_2} = oldsymbol{F} \cdot oldsymbol{b} \oplus egin{bmatrix} 1 \ \dots \ 1 \end{bmatrix} \cdot m$$

where
$$m{F} := egin{bmatrix} f_1 \ \dots \ f_q \end{bmatrix}, m{f_i} \leftarrow \mathrm{Ber}_{ au}^q$$

Receiver $\underline{\mathtt{R_i}}$

 ${\rm Receiver}\ R_{\tt j}$

$$d_i \leftarrow \texttt{ThLPN.Pdec}(\mathit{C}_1, c_2, s_i)$$

Receiver $\underline{\mathtt{R_i}}$

Receiver R_{j}

$$d_i \leftarrow \texttt{ThLPN.Pdec}(\textit{\textbf{C}}_1,\textit{\textbf{c}}_2,s_i)$$

Partial decryption function (Alekhnovich scheme)

$$d_i = C_1 \cdot s_i \oplus
u_i$$

where $\nu_i \leftarrow \operatorname{Ber}_{\sigma}^q$

Receiver $\underline{\mathtt{R_i}}$

Receiver R_j

$$d_i \leftarrow exttt{ThLPN.Pdec}(\mathit{C}_1, \mathit{c}_2, \mathit{s}_i)$$

Partial decryption function (Alekhnovich scheme)

$$d_i = C_1 \cdot s_i \oplus
u_i$$

where $\nu_i \leftarrow \mathrm{Ber}_{\sigma}^q$

Receiver $\underline{\mathtt{R_i}}$

Receiver R_j

$$d_i \leftarrow exttt{ThLPN.Pdec}(C_1, c_2, s_i) \hspace{0.5cm} \overset{d_i}{\longrightarrow} \hspace{0.5cm}$$

$$d_j \leftarrow \\ \texttt{ThLPN.Pdec}(\mathit{C}_1, \mathit{c}_2, \mathit{s}_j)$$

Partial decryption function (Alekhnovich scheme)

$$d_i = C_1 \cdot s_i \oplus
u_i$$

where $\nu_i \leftarrow \mathrm{Ber}_{\sigma}^q$

Receiver $\underline{R_i}$

Receiver R_j

$$d_i \leftarrow \texttt{ThLPN.Pdec}(C_1, c_2, s_i) \qquad \underbrace{ \qquad \qquad d_i \qquad }_{d_j \leftarrow \qquad \qquad } d_j \leftarrow \\ \qquad \qquad \qquad \qquad d_j \leftarrow \\ \qquad \qquad \qquad \texttt{ThLPN.Pdec}(C_1, c_2, s_j)$$

Partial decryption function (Alekhnovich scheme)

$$d_i = C_1 \cdot s_i \oplus
u_i$$

where $\nu_i \leftarrow \operatorname{Ber}_{\sigma}^q$

Receiver R_i

Receiver R_j

Finish decryption

• Each receiver indipendently computes the vector

$$oldsymbol{d} = oldsymbol{c_2} igoplus_{i \in I} (oldsymbol{d_i}) = oldsymbol{F} \cdot oldsymbol{e} \oplus egin{bmatrix} 1 \ \dots \ 1 \end{bmatrix} \cdot oldsymbol{m} igoplus_{i \in I} (oldsymbol{
u_i}) \,.$$

• the bit in the vector d that is in majority is separately chosen by each receiver as the plaintext m

Protocol Security Analysis

Semi-honest model

We make the following two assumptions:

- 1 The semi-honest party will indeed toss a fair coin
- 2 The semi-honest party will send all messages as instructed by the protocol

Security

- **Encryption:** from the Alekhnovich's scheme security
- Decryption: from the LPN hardness assumption, as each R_i is generating LPN samples

$$d_i = \mathit{C}_1 \cdot s_i \oplus \nu_i$$

Relaxed Semi-honest model

- Semi-honest model not so realistic (replay attacks may occur)
- Problem: if the same message is encrypted multiple times then it is possible to recover information about the secret key from the ciphertexts

Possible solutions

- f 1 implement the receivers as stateful machines (not good in resource-constrained devices)
- 2 make use of pseudorandom functions (i.e. deterministic algorithms that simulate truly random functions, given a "seed")

Commitment Protocols

Commitment protocol

- can be thought as the digital analogue of a sealed envelope
- Commit: the sender S commit to a message m and the receiver R does not learn any information about m (hiding property)
- Open: S can choose to open the commitment and reveal the content m, but no other value (binding property)

Our contribution

We presented a commitment protocol

- based on the commitment protocol by Jain et al
- based on Exact-LPN problem (where $\mathbf{wt}(e) = w$)
- not in a common reference string (CRS) model

The commitment protocol

Setup Phase

In order to commit a message $m \in \mathbb{Z}_2^k$ where $k \in \Theta(\ell + v)$ We let $A' \stackrel{R}{\leftarrow} \mathbb{Z}_2^{k \times \ell}$ and $A'' \stackrel{R}{\leftarrow} \mathbb{Z}_2^{k \times v}$. We state $A = [A' || A''] \in \mathbb{Z}_2^{k \times (\ell + v)}$ as the common reference string (CRS). Finally, we set $w = \lfloor \tau k \rfloor$.

Commitment phase

Sender \underline{S}

Receiver \underline{R}

chooses
$$r \overset{R}{\leftarrow} \mathbb{Z}_2^\ell$$
, $e \in \mathbb{Z}_2^k$ s.t. $wt(e) = w$ computes $c = A(r || m) \oplus e$

Opening phase

computes
$$d = (m', r')$$
 d computes $e' = c \oplus A(r' || m')$ Yes, No accepts iff $wt(e') = w$

Problem

We need a trusted third party for the common matrix $\mathbf{A} = [\mathbf{A'} \| \mathbf{A''}]$

Solution:

Setup phase

Sender $\underline{\mathbf{S}}$ Receiver $\underline{\mathbf{R}}$ chooses $\mathbf{A'} \xleftarrow{R} \mathbb{Z}_2^{k \times \ell}$ $\mathbf{A''}$ chooses $\mathbf{A''} \xleftarrow{R} \mathbb{Z}_2^{k \times v}$

The Commitment and Opening phases are the same as in the original scheme

Theorem

Our commitment scheme is statistically binding and computationally hiding

Proof

Statistically binding

even if ${\tt S}$ is computationally unbounded she cannot cheat with probability greater than 2^{-k}

Computationally hiding

- proof for reduction (single bit message)
- we assume that \mathcal{A} is able to break the commitment scheme

Let B an oracle

where
$$b = \begin{cases} \text{random} & w.p. 1/2 \\ A's \oplus e & w.p. 1/2 \end{cases}$$

case 1)

b is random $\Rightarrow c = b \oplus A''m$ is a one time-pad encryption $\Rightarrow \mathcal{A}$ guesses w.p. $\frac{1}{2}$ Exact-LPN hardness \Rightarrow Hiding commitment

case 2)

b is a Exact-LPN sample $\Rightarrow c$ is a well formed commitment $\Rightarrow \mathcal{A}$ guesses w.p. 1 (by hypothesis)

case 1) and 2)

Let E = the reduction breaks the Exact-LPN problem,

$$\Pr(E) = \Pr(E|\ \boldsymbol{b} = \boldsymbol{A's} \oplus \boldsymbol{e}) \cdot \Pr(\boldsymbol{b} = \boldsymbol{A's} \oplus \boldsymbol{e}) + \Pr(E|\ \boldsymbol{b} \text{ is random}) \cdot \Pr(\boldsymbol{b} \text{ is random})$$
$$= 1 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4} \gg 2^{-k}$$

 ${\it Exact-LPN\ haspordness} \Rightarrow {\it Commitment\ protocol\ computational\ hiding}$

Conclusions and Open Problems

LPN open problems

- relation between standard LPN and some variants
- LPN with noise rate τ imply anything about LPN with $\tau' < \tau$? Is there a threshold?
- how to get some basic primitives from standard LPN?

Our contribution

- study the security of our Threshold Public-Key Encryption scheme in the malicious model
- find statistically hiding commitments
- find efficient statistically binding commitments