5.1
$$t_{ox} = 2 \sim 10 \text{ nm}$$

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$

$$\epsilon_{ox} = 34.5 \text{ pF/m}$$

$$C_{ox}^{-1} = 58 \sim 290 \text{ m}^2/\text{F}\left(\frac{\mu \text{m}^2}{\text{pF}}\right)$$

For 10 pF:

Area =
$$580 \sim 2900 \; (\mu m^2)$$

so

$$d = 24 \sim 54 \, \mu \text{m}$$

5.2
$$C_{ox} = 9 \text{ fF/}\mu\text{m}^2$$
, $V_{OV} = 0.2 \text{ V}$

$$L = 0.36 \,\mu\text{m}, V_{DS} = 0 \,\text{V}$$

$$W = 3.6 \,\mu\text{m}$$

$$Q = C_{ox}.W.L.V_{OV} = 2.33 \text{ fC}$$

5.3
$$k'_n = \mu_n C_{ox}$$

$$\begin{split} &=\frac{m^2}{V\cdot s}\;\frac{F}{m^2}=\frac{F}{V\cdot s}=\frac{C/V}{V\cdot s}=\frac{C}{s}\;\frac{1}{V^2}\\ &=\frac{A}{V^2} \end{split}$$

Since $k_n = k'_n W/L$ and W/L is dimensionless, k_n has the same dimensions as k'_n ; that is, A/V^2 .

5.4 With v_{DS} small, compared to V_{OV} , Eq. (5.13a) applies:

$$r_{DS} = \frac{1}{(\mu_n C_{ox}) \left(\frac{W}{L}\right) (V_{OV})}$$

- (a) V_{OV} is doubled $\rightarrow r_{DS}$ is halved. factor = 0.5
- (b) W is doubled $\rightarrow r_{DS}$ is halved. factor = 0.5
- (c) W and L are doubled $\rightarrow r_{DS}$ is unchanged. factor = 1.0
- (d) If oxide thickness t_{ox} is halved, and

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$

then C_{ox} is doubled. If W and L are also halved, r_{DS} is halved, factor = 0.5.

5.5 The transistor size will be minimized if W/L is minimized. To start with, we minimize L by using the smallest feature size,

$$L = 0.18 \mu m$$

$$r_{DS} = \frac{1}{k'_n (W/L) (v_{GS} - V_t)}$$

$$r_{DS} = \frac{1}{k'_n (W/L) v_{OV}}$$

Two conditions need to met for v_{OV} and r_{DS}

Condition 1:

$$r_{DS,1} = \frac{1}{400 \times 10^{-6} (W/L) v_{OV,1}}$$

$$= 250 \Rightarrow (W/L) v_{OV.1} = 10$$

Condition 2:

$$r_{DS,2} = \frac{1}{400 \times 10^{-6} (W/L) v_{OV,2}}$$

$$= 1000 \Rightarrow (W/L) v_{OV,2} = 2.5$$

If condition 1 is met, condition 2 will be met since the over-drive voltage can always be reduced to satisfy this requirement. For condition 1, we want to decrease W/L as much as possible (so long as it is greater than or equal to 1), while still meeting all of the other constraints. This requires our using the largest possible $v_{GS,1}$ voltage.

$$v_{GS,I} = 1.8 \text{ V so } v_{OV,I} = 1.8 - 0.5 = 1.3 \text{ V}, \text{ and}$$

$$W/L = \frac{10}{v_{OV,1}} = \frac{10}{1.3} = 7.69$$

Condition 2 now can be used to find $v_{GS,2}$

$$v_{OV,2} = \frac{2.5}{W/L} = \frac{2.5}{7.69} = 0.325$$

$$\Rightarrow v_{GS,2} = 0.825 \text{ V} \Rightarrow 0.825 \text{ V} \leq v_{GS} \leq 1.8 \text{ V}$$

5.6
$$k_n = 5 \text{ mA/V}^2$$
, $V_{tn} = 0.5 \text{ V}$,

small v_{DS}

$$i_D = k_n (v_{GS} - V_t) v_{DS} = k_n v_{OV} v_{DS}$$

$$g_{DS} = \frac{1}{r_{DS}} = k_n v_{OV}$$

This table belongs to Exercise 5.6.

V_{GS} (V)	(V)	g _{DS} (mA/V)	r_{DS} (Ω)
0.5	0	0	∞
1.0	0.5	2.5	400
1.5	1.0	5.0	200
2.0	1.5	7.5	133
2.5	2.0	10	100

5.7
$$t_{ox} = 4 \text{ nm}, V_t = 0.5 \text{ V}$$

 $L_{\min} = 0.18 \,\mu\text{m}$, small v_{DS} ,

$$k'_n = 400 \,\mu\text{A/V}^2, 0 < v_{GS} < 1.8 \,\text{V}.$$

$$r_{DS}^{-1} = k'_n W/L (v_{GS} - V_t) \le 1 \text{ mA/V} = \frac{1}{1 \text{ k}\Omega}$$

$$W \leq 0.35 \,\mu\text{m}$$

 $r_{ds} = \frac{1}{0} \Rightarrow \infty$

$$5.8 \ r_{ds} = 1 / \frac{\partial i_D}{\partial v_{DS}} \Big|_{v_{DS} = v_{DS}}$$

$$= \left[\frac{\partial}{\partial v_{DS}} \left(k_n \left(V_{OV} v_{DS} - \frac{1}{2} v_{DS}^2 \right) \right) \right]^{-1}$$

$$= \left[k_n \left(\frac{\partial}{\partial v_{DS}} \right) (v_{OV} v_{DS}) - 1 / 2 \frac{\partial}{\partial v_{DS}} (v_{DS}^2) \right]^{-1}$$

$$= \left[k_n \left(V_{OV} - \frac{1}{2} \cdot 2 V_{DS} \right) \right]^{-1}$$

$$= \frac{1}{k_n (V_{OV} - V_{DS})}$$
If $V_{DS} = 0 \Rightarrow r_{ds} = \frac{1}{k_n V_{OV}}$
If $V_{DS} = 0.2 V_{OV} \Rightarrow r_{ds} = \frac{1.25}{V_{OV}}$
If $V_{DS} = 0.5 V_{OV} \Rightarrow r_{ds} = \frac{1}{k_n (V_{OV} - 0.5 V_{OV})}$

$$= 1 / k_n (0.5 V_{OV}) = \frac{2}{k_n V_{OV}}$$
If $V_{DS} = 0.8 V_{OV} \Rightarrow r_{ds} = \frac{1}{k_n (V_{OV} - 0.8 V_{OV})}$

$$= 1 / k_n (0.2 V_{OV}) = \frac{5}{k_n V_{OV}}$$
If $V_{DS} = V_{OV}$,

5.9
$$V_{DS \text{ sat}} = V_{OV}$$

$$V_{OV} = V_{GS} - V_t = 1 - 0.5 = 0.5 \text{ V}$$

$$\Rightarrow V_{DS \text{ sat}} = 0.5 \text{ V}$$

In saturation:

$$i_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) V_{OV}^2 = \frac{1}{2} k_n V_{OV}^2$$

$$i_D = \frac{1}{2} \times \frac{4 \text{ mA}}{V^2} \times (0.5 \text{ V})^2$$

$$i_D = 0.5 \text{ mA}$$

5.10
$$L_{\min} = 0.25 \ \mu \text{m}$$

 $t_{ox} = 6 \text{ nm}$

$$\mu_n = 460 \frac{\text{cm}^2}{\text{V} \cdot \text{s}} = 460 \times 10^{-4} \frac{\text{m}^2}{\text{V} \cdot \text{s}}$$

(a)
$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} = \frac{34.5 \text{ pF/m}}{6 \text{ nm}}$$

$$= 5.75 \times 10^{-3} \; \frac{F}{m^2} \left(\frac{pF}{\mu m^2} \right)$$

$$k'_n = \mu_n C_{ox} = 265 \, \mu \text{A/V}^2$$

(b) For
$$\frac{W}{L} = \frac{20}{0.25}$$
, $k_n = 21.2 \text{ mA/V}^2$

∴ 0.5 mA =
$$I_D = \frac{1}{2} k_n V_{OV}^2$$

$$V_{OV} = 0.22 \text{ V}$$

$$V_{GS} = 0.72 \text{ V}$$

$$V_{DS} > 0.22 \text{ V}$$

(c)
$$g_{DS} = \frac{1}{100 \Omega} = k_n V_{OV}$$

$$\therefore V_{OV} = 0.47 \text{ V}.$$

$$V_{GS} = 0.97 \text{ V}.$$

5.11
$$V_{tp} = -0.7 \text{ V}$$

(a)
$$|V_{SG}| = |V_{tp}| + |V_{OV}|$$

$$= 0.7 + 0.4 = 1.1 \text{ V}$$

$$\Rightarrow V_G = -1.1 \text{ V}$$

(b) For the *p*-channel transistor to operate in saturation, the drain voltage must not exceed the gate voltage by more than $|V_{tp}|$. Thus

$$v_{D\text{max}} = -1.1 + 0.7 = -0.4 \text{ V}$$

Put differently, V_{SD} must be at least equal to $|V_{OV}|$, which in this case is 0.4 V. Thus $v_{Dmax} = -0.4$ V.

(c) In (b), the transistor is operating in saturation, thus

$$I_D = \frac{1}{2} k_p |V_{OV}|^2$$

$$0.5 = \frac{1}{2} \times k_p \times 0.4^2$$

$$\Rightarrow k_p = 6.25 \text{ mA/V}^2$$

For $V_D = -20$ mV, the transistor will be operating in the triode region. Thus

$$I_D = k_p \left[v_{SD} |V_{OV}| - \frac{1}{2} v_{SD}^2 \right]$$
$$= 6.25 \left[0.02 \times 0.4 - \frac{1}{2} (0.02)^2 \right]$$
$$= 0.05 \text{ mA}$$

For $V_D = -2$ V, the transistor will be operating in saturation thus

$$I_D = \frac{1}{2}k_p|V_{OV}|^2 = \frac{1}{2} \times 6.25 \times 0.4^2 = 0.5 \text{ mA}$$

5.12
$$i_D = \frac{1}{2} k'_n \frac{W}{L} |V_{OV}|^2$$
 $k'_n = \mu_n C_{ox}$

For equal drain currents:

$$\mu_{n}C_{ox}\frac{W_{n}}{L} = \mu_{p}C_{ox}\frac{W_{p}}{L}$$

$$\frac{W_{p}}{W_{n}} = \frac{\mu_{n}}{\mu_{p}} = \frac{1}{0.4} = 2.5$$

5.13 For small
$$v_{DS}$$
, $i_D \simeq k'_n \frac{W}{L_1} (V_{GS} - V_t) V_{DS}$,

$$r_{DS} = \frac{V_{DS}}{i_D} = \frac{1}{k'_n \frac{W}{L} (V_{GS} - V_t)}$$
$$= \frac{1}{100 \times 10^{-6} \times 20 \times (5 - 0.7)}$$

 $V_{DS} = r_{DS} \times i_D = 116.3 \text{ mV}$

For the same performance of a *p*-channel device:

$$\frac{W_p}{W_n} = \frac{\mu_n}{\mu_p} = 2.5 \Rightarrow \frac{W_p}{L} = \frac{W_n}{L} \times 2.5$$
$$= 20 \times 2.5 \Rightarrow \frac{W_p}{L} = 50$$

5.14
$$t_{ox} = 6 \text{ nm}, \mu_n = 460 \text{ cm}^2/\text{V} \cdot \text{s}, V_t = 0.5 \text{ V}, \text{ and } W/L = 10.$$

$$k_n = \mu_n C_{ox} \frac{W}{L} = 460 \times 10^{-4} \times \frac{3.45 \times 10^{-11}}{6 \times 10^{-9}} \times 10$$

 $= 2.645 \text{ mA/V}^2$

 $r_{DS} = 116.3 \ \Omega$

(a)
$$v_{GS} = 2.5 \text{ V}$$
 and $v_{DS} = 1 \text{ V}$
 $v_{OV} = v_{GS} - V_t = 2 \text{ V}$

Thus $v_{DS} < v_{OV} \Rightarrow$ triode region,

$$I_D = k_n \left[v_{DS} v_{OV} - \frac{1}{2} v_{DS}^2 \right]$$

= 2.645 $\left[1 \times 2 - \frac{1}{2} \times 1 \right] = 4 \text{ mA}$

(b)
$$v_{GS} = 2 \text{ V}$$
 and $v_{DS} = 1.5 \text{ V}$
 $v_{OV} = v_{GS} - V_t = 2 - 0.5 = 1.5 \text{ V}$

Thus, $v_{DS} = v_{OV} \Rightarrow$ saturation region,

$$i_D = \frac{1}{2}k_n v_{OV}^2 = \frac{1}{2} \times 2.645 \times 1.5^2$$

= 3 mA

(c)
$$v_{GS} = 2.5 \text{ V}$$
 and $v_{DS} = 0.2 \text{ V}$

$$v_{OV} = 2.5 - 0.5 = 2 \text{ V}$$

Thus, $v_{DS} < v_{OV} \Rightarrow$ triode region,

$$i_D = k_n \left[v_{DS} v_{OV} - \frac{1}{2} v_{DS}^2 \right]$$

= 2.645[0.2 × 2 - $\frac{1}{2}$ 0.2²] = 1 mA

(d)
$$v_{GS} = v_{DS} = 2.5 \text{ V}$$

$$v_{OV} = 2.5 - 0.5 = 2 \text{ V}$$

Thus, $v_{DS} > v_{OV} \Rightarrow$ saturation region,

$$i_D = \frac{1}{2} k_n v_{OV}^2$$

= $\frac{1}{2} \times 2.645 \times 2^2 = 5.3 \text{ mA}$

5.15 See Table on next page.

5.16
$$i_D = k_n \left[v_{OV} v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

$$\frac{i_D}{k_B} = v_{OV} v_{DS} - \frac{1}{2} v_{DS}^2$$
 (1)

Figure 1 shows graphs for i_D/k_n versus v_{DS} for various values of v_{OV} . Since the right-hand side of Eq. (1) does not have any MOSFET parameters, these graphs apply for any n-channel MOSFET with the assumption that $\lambda=0$. They also apply to p-channel devices with v_{DS} replaced by v_{SD} , k_n by k_p , and v_{OV} with $|v_{OV}|$. The slope of each graph at $v_{DS}=0$ is found by differentiating Eq. (1) relative to v_{DS} with $v_{OV}=V_{OV}$ and then substituting $v_{DS}=0$. The result is

$$\left. \frac{d(i_D/k_n)}{dv_{DS}} \right|_{v_{DS}=0, \ v_{OV}=V_{OV}} = V_{OV}$$

Figure 1 shows the tangent at $v_{DS} = 0$ for the graph corresponding to $v_{OV} = V_{OV3}$. Observe that it intersects the horizontal line $i_D/k_n = \frac{1}{2}V_{OV3}^2$ at

 $v_{DS} = \frac{1}{2}V_{OV3}$. Finally, observe that the curve representing the boundary between the triode region and the saturation region has the equation

$$i_D/k_n = \frac{1}{2}v_{DS}^2$$

$$v_{DS} = v_{GS}$$

$$i_D = \frac{1}{2}k_n(v_{DS} - V_t)^2$$

$$\sqrt{2i_D} + V_t$$

5.27
$$V_{DS} = V_D - V_S$$
 $V_{GS} = V_G - V_S$
 $V_{OV} = V_{GS} - V_t = V_{GS} - 1.0$

According to Table 5.1, three regions are possible.

Case	V_S	V_G	V_D	V_{GS}	V_{OV}	V_{DS}	Region of operation
a	+1.0	+1.0	+2.0	0	-1.0	+1.0	Cutoff
b	+1.0	+2.5	+2.0	+1.5	+0.5	+1.0	Sat.
c	+1.0	+2.5	+1.5	+1.5	+0.5	+0.5	Sat.
d	+1.0	+1.5	0	+0.5	-0.5	-1.0	Sat.*
e	0	+2.5	1.0	+2.5	+1.5	+1.0	Triode
f	+1.0	+1.0	+1.0	0	-1.0	0	Cutoff
g	-1.0	0	0	+1.0	0	+1.0	Sat.
h	-1.5	0	0	+1.5	+0.5	+1.5	Sat.
i	-1.0	0	+1.0	+1.0	0	+2.0	Sat.
j	+0.5	+2.0	+0.5	+1.5	+0.5	0	Triode

^{*} With the source and drain interchanged.

5.28 The cutoff–saturation boundary is determined by $v_{GS} = V_t$, thus $v_{GS} = 0.4$ V at the boundary.

The saturation–triode boundary is determined by $v_{GD} = V_t$, and $v_{DS} = V_{DD} = 1$ V, and since $v_{GS} = v_{GD} + v_{DS}$, one has $v_{GS} = 0.4 + 1.0 = 1.4$ V at the boundary.

5.29 (a) Let Q_1 have a ratio (W/L) and Q_2 have a ratio 1.03 (W/L). Thus

$$\begin{split} I_{D1} &= \frac{1}{2} k_n' \bigg(\frac{W}{L} \bigg) (1 - V_t)^2 \\ I_{D2} &= \frac{1}{2} k_n' \bigg(\frac{W}{L} \bigg) \times 1.03 \times (1 - V_t)^2 \end{split}$$

Thus,

$$\frac{I_{D2}}{I_{D1}} = 1.03$$

That is, a 3% mismatch in the W/L ratios results in a 3% mismatch in the drain currents.

(b) Let Q_1 have a threshold voltage $V_t = 0.6$ V and Q_2 have a threshold voltage $V_t + \Delta V_t = 0.6 + 0.01 = 0.61$ V.

Thus

$$I_{D1} = \frac{1}{2}k'_n \left(\frac{W}{L}\right) (1 - 0.6)^2$$

$$I_{D2} = \frac{1}{2}k'_n \left(\frac{W}{L}\right)(1 - 0.61)^2$$

and

$$\frac{I_{D2}}{I_{D1}} = \frac{(1 - 0.61)^2}{(1 - 0.6)^2} = 0.95$$

That is, a 10-mV mismatch in the threshold voltage results in a 5% mismatch in drain currents.

5.30

5.38

$$k_p = k_p' \left(\frac{W}{L}\right) = 100 \text{ } \mu\text{A/V}^2$$

 $V_{tp} = -1 \text{ } V \quad \lambda = -0.02 \text{ } V^{-1}$
 $V_G = 0, \quad V_S = +5 \text{ } V \Rightarrow V_{SG} = 5 \text{ } V$
 $|V_{OV}| = V_{SG} - |V_{tp}| = 5 - 1 = 4$

• For $v_D = +4$ V, $v_{SD} = 1$ V $< |V_{OV}| \Rightarrow$ triode-region operation,

$$i_D = k_p \left[v_{SD} |V_{OV}| - \frac{1}{2} v_{SD}^2 \right]$$

= $100 \left(1 \times 4 - \frac{1}{2} \times 1 \right) = 350 \ \mu\text{A}$

• For $v_D = +2$ V, $v_{SD} = 3$ V $< |V_{OV}| \Rightarrow$ triode-region operation,

$$i_D = k_p \left[v_{SD} |V_{OV}| - \frac{1}{2} v_{SD}^2 \right]$$

= $100 \left(3 \times 4 - \frac{1}{2} \times 9 \right) = 750 \ \mu\text{A}$

• For $v_D = +1$ V, $v_{SD} = 4$ V = $|V_{OV}| \Rightarrow$ saturation-mode operation,

$$i_D = \frac{1}{2} k_p |V_{OV}|^2 (1 + |\lambda| v_{SD})$$

= $\frac{1}{2} \times 100 \times 16(1 + 0.02 \times 4) = 864 \,\mu\text{A}$

• For $v_D = 0$ V, $v_{SD} = 5$ V > $|V_{OV}| \Rightarrow$ saturation-mode operation,

$$i_D = \frac{1}{2} \times 100 \times 16(1 + 0.02 \times 5) = 880 \,\mu\text{A}$$

• For $v_D = -5$ V, $v_{SD} = 10$ V > $|V_{OV}| \Rightarrow$ saturation-mode operation,

$$i_D = \frac{1}{2} \times 100 \times 16(1 + 0.02 \times 10) = 960 \,\mu\text{A}$$

5.39
$$V_{tp} = 0.8 \text{ V}, \quad |V_A| = 40 \text{ V}$$

$$|v_{GS}| = 3 \text{ V}, \quad |v_{DS}| = 4 \text{ V}$$

$$i_D = 3 \text{ mA}$$

$$|V_{OV}| = |v_{GS}| - |V_{tp}| = 2.2 \text{ V}$$

 $|v_{DS}| > |V_{OV}| \Rightarrow \text{ saturation mode}$

$$v_{GS} = -3 \text{ V}$$

$$v_{SG} = +3 \text{ V}$$

$$v_{DS} = -4 \text{ V}$$

$$v_{SD} = 4 \text{ V}$$

$$V_{tp} = -0.8 \text{ V}$$

$$V_A = -40 \text{ V}$$

$$\lambda = -0.025 \text{ V}^{-1}$$

$$i_D = \frac{1}{2} k_p (v_{GS} - V_{tp})^2 (1 + \lambda v_{DS})$$

$$3 = \frac{1}{2} k_p [-3 - (-0.8)]^2 (1 - 0.025 \times -4)$$

$$\Rightarrow k_p = 1.137 \text{ mA/V}^2$$

5.40 PMOS with $V_{tp} = -1 \text{ V}$

Case	V_S	V_G	V_D	V_{SG}	$ V_{OV} $	V_{SD}	Region of operation
a	+2	+2	0	0	0	2	Cutoff
b	+2	+1	0	+1	0	2	Cutoff–Sat.
c	+2	0	0	+2	1	2	Sat.
d	+2	0	+1	+2	1	1	Sat-Triode
e	+2	0	+1.5	+2	1	0.5	Triode
f	+2	0	+2	+2	1	0	Triode

5.41

$$V_{tp} = -0.5 \text{ V}$$

$$v_G = +3 \text{ V} \rightarrow 0 \text{ V}$$

As v_G reaches +2.5 V, the transistor begins to conduct and enters the saturation region, since v_{DG} will be negative. The transistor continues to operate in the saturation region until v_G reaches 0.5 V, at which point v_{DG} will be 0.5 V, which is equal to $|V_{tp}|$, and the transistor enters the triode region. As v_G goes below 0.5 V, the transistor continues to operate in the triode region.

5.42 Case a, assume, sat,

$$\frac{(1 - V_t)^2}{(1.5 - V_t)^2} = \frac{100}{400} \Rightarrow V_t = 0.5,$$

$$V_{GD} \leq V_t$$

∴ sat;

Case b — same procedure, except use V_{SG} and V_{SD} .