Roll No.	
Roll No.	

Indian Institute of Information Technology Ranchi

Department of Electronics & Communication Engineering B. Tech Mid Semester Examination - Spring Semester 2022-23

Semester: Sixth Course Instructor: Dr. Rashmi Panda
Course Code: EC-3006 Course Name: Digital Signal Processing

QUESTION PAPER

Duration: 2 hrs.

Instructions:

Max Marks: 60

- (1). Number in [] indicates marks.
- (2). Any missing data can be assumed suitably.
- (3). Symbols have their usual meaning.

Answer All Questions

Section A

		5,000,000	
1/	(a)	What is/are the condition for a system to be linear?	[2]
	(p)	The impulse response $h(n)$ of an LTI system is given by $h(n) = u(n+4) + u(n-2) - 2u(n-8)$, where $u(n)$ is the step sequence. Comment on the stability and causality of the system.	
	(c)	What is twiddle factor? State the symmetry and periodicity property of twiddle factor with example.	
	(d)	Two discrete time system with impulse response $h_1(n) = \delta(n-2)$ and $h_2(n) = \delta(n-3)$ are connected in cascade. What is the overall impulse response of the cascaded system?	
	(e)		
	(P)		
,	(g)	Find the 4-point DFT of the sequence $x(n) = \{1,0,-1,0\}$	[2] [2]
	(h)	What is meant by region of convergence (ROC) of Z transform? Explain its significance in stability of a system.	
	(1)		
	(j)	For the given sequence $x(n) = \{1, 0, -1, 0\}$. Find out (i) $x(n-2)$ and (ii) $x((-n-2))_4$	[2]
		Section B	
,2.	(a)	Find out the Z transform and ROC of the following sequences	[10]
		(i) $x(n) = -n \ a^n \ u(-n-1)$	
		(ii) $x(n) = (0.4)^n u(n) + (0.3)^n u(n-4)$	
/	(b)	Find out the inverse Z transform of $X(z) = \frac{z(z^2 - 4z + 5)}{(z - 3)(z - 1)(z - 2)}$ using any one method of your	[10]
		choice for ROC (i) $2 < z < 3$ (ii) $ z > 3$ (iii) $ z < 1$	
3.^	(a)	Perform linear convolution of finite duration sequences $h(n) = \{1,1,2\}$ and	[10]
		$x(n) = \{1,-1,1,2,1,0,1,-4,3,2,1\}$ by using overlap-save method (Use N=5).	
	(b)	Check whether the given systems are linear, time variant (i) $y(n) = x(4n+1)$	[10]
		(ii) $y(n) = x(n)u(n)$	
		(iii) $y(n) = x(n) + nx(n+1)$	
		(iv) $y(n) = \log_{10} x(n)$	
		(iii) $y(n) = x(n) + n x(n+1)$ (iv) $y(n) = \log_{10} x(n)$ (v) $y(n) = x^2(n)$	
		966	