Digital Electronic Circuits Section 1 (EE, IE)

Lecture 14[#]

*Class 13 was on discussion related to Term Paper.

It has no distributable Lecture 13 slides but only email instruction.

Decoder

A decoder decodes input bit pattern by appropriate logic and activates the output when specific combination is present.

BCD-to-Decimal Decoder

IC 7445: BCD-to-Decimal Decoder / Driver

Open collector output SN7445 can sink up to 80 mA (SN7404, standard inverter sinks 16 mA max.)

```
DCBA: LLLL, 0: L, 1-9: H

DCBA: LLLH, 0: H, 1: L, 2-9: H

DCBA: LLHL, 0-1: H, 2: L, 3-9: H

...

DCBA: HLLH, 0-8: H, 9: L

----

DCBA: HLHL, 0-9: H,
```

DCBA: HHHH, 0-9: H

Decoder / Driver driving LED

If LED drop = 1.6 V Resistance = 330 Ω V_{CE(Sat.)} = 0.1 V

LED current = (5 - 1.6 - 0.1) / 330= 10 mA

BCD-to-7 Segment Decoder / Driver

Encoder

An encoder converts an active input signal to a coded output signal.

A decimal-to-BCD encoder

Only one of the 0 to 9 input is to remain connected

0: DCBA = 0000

1: *DCBA* = 0001

2: *DCBA* = 0010

•••

1 & 2: *DCBA* = 0011

1 & 3: *DCBA* = 0011

Concept of Priority Encoder

D_3	D ₂	D_1	D_0	C_1	C_0
1	X	Χ	X	1	1
0	1	Χ	X	1	0
0	0	1	X	0	1
0	0	0	1	0	0

$$C_1 = D_3 + D_2$$

$$C_0 = D_3 + D_2'.D_1$$

$$(D_1 \text{ if not } D_2, \text{ due to priority})$$

Also, from Karnaugh Map

In a different context, in $Y = D_1 + D_1' \cdot D_0$ which of D_1 , D_0 is of higher priority?

Priority Encoder: Decimal-to-BCD

Part 2

Exclusive-OR Gate

A	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

$$Y = A'.B + A.B' = A \oplus B$$

$$A \oplus 0 = A$$

 $A \oplus 1 = A'$

Multi-input Exclusive-OR

If A = 1, $Y = (B \oplus C \oplus D)'$

Α	В	С	D	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1

Y	D	C	В	A
1	0	0	0	1
0	1	0	0	1
0	0	1	0	1
1	1	1	0	1
0	0	0	1	1
1	1	0	1	1
1	0	1	1	1
0	1	1	1	1

• This happens for any number of inputs e.g. **2,3,4,**5,6,7, ...

If
$$A = 0$$
, $Y = B \oplus C \oplus D$

$$A \oplus 0 = A$$

$$A \oplus 1 = A'$$

Even Parity and Odd Parity

Even Parity: In the input bits, there is even number of 1s.

Example: For, 4-bit input: 1001, 1100, 1111

8-bit input: 11000101, 01111011

16-bit input: 1011001110110011

Odd Parity: In the input bits, there is odd number of 1s.

Example: For, 4-bit input: 0001, 1101, 1110

8-bit input: 11000001, 01011011

16-bit input: 1011001010110011

• Prior information about parity (even or odd) in the message can help in detecting **1-bit error**.

TI's DS90C031,DS90C032 line transmitter, receiver under test condition gives bit error rate (BER) less than 1 per 10¹² bits.

Parity Generation

9-bit number with even-parity

9-bit number with odd-parity

- The aim here is to add a parity bit with the message so that message and parity bit together make it of a predefined parity (even or odd).
- The message is random i.e. can be of even or odd parity.

Example: Instead of 8 bits (message), 9 bits (message + parity bit) sent.

Parity Checking

For 9-bit data received with pre-defined parity (even or odd).

parity checking

Odd parity checking by Ex-OR, Odd parity generation by Ex-NOR (i.e. EX-OR then NOT)

Similarly, for Even Parity.

IC 74180

9-bit (8 data bits, 1 parity bit) parity generator / checker.

	Inputs			Outputs	
Σ of H's at	Even	Odd	Σ even	Σ odd	
X_7 to X_0					
Even	H	L	H	L	
Odd	H	L	L	H	
Even	L	H	L	H	
Odd	L	H	H	L	
X	H	H	L	L	
X	L	L	H	H	

- For 9-bit parity checking even / odd input can be used as 9th bit.
- It can also be used for cascading to work on larger number of bits.

Example with IC 74180

14 *V_{CC}*

13 X_0

12 *X*₁

11 X₂

10 X_3

9 X₄

8 X₅

Higher Order from Lower Order

Lower order from Higher Order: Connect unused inputs to GND.

16-bit parity checking by cascading two 74180

Part 3

Working of an odometer

Binary system

Concept of place value

1010 in binary: $1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$

12 in octal: $1 \times 8^1 + 2 \times 8^0$

Base or radix –
$$r$$

 $d_i = \{0,1, ..., r - 1\}$

$$d_{n} \dots d_{1}d_{0} \cdot d_{-1}d_{-2} \dots d_{-m}$$

$$= d_{n} \times r^{n} + \dots + d_{1} \times r^{1} + d_{0} \times r^{0} + d_{-1} \times r^{-1} + d_{-2} \times r^{-2} + \dots + d_{-m} \times r^{-m}$$

Binary to Decimal Conversion

$$(1010.101)_{2}$$
= $(1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3})_{10}$
= $(8 + 2 + 0.5 + 0.125)_{10}$
= $(10.625)_{10}$

Binary Number	Decimal Value
1	20 = 1
10	$2^1 = 2$
100	2 ² = 4
1000	$2^3 = 8$
10000	24 = 16
10000 0000	2 ⁸ = 256
100 0000 0000	$2^{10} = 1024 (1 K)$
1000 0000 0000	2 ¹¹ = 2048 (2 K)
10000 0000 0000 0000 0000	2 ²⁰ = 1024 K (1 M)

Binary	Decimal
11	3
111	7
1111	15
1111 1111	255

Decimal to Binary Conversion

Conversion of $(10)_{10}$

Number	Divide by	Quotient	Remainder	
10	2	5	0 (LSB)	
5	2	2	1	5
2	2	1	0	7
1	2	0	1 (MSB)	

Number	Multiplied by	Carry	Fraction
0.625	2	1 (MSB)	0.25
0.25	2	0 101	0.5
0.5	2	1 (LSB)	0

Conversion of $(0.625)_{10}$

Fraction

 $(0.625)_{10} = (0.101)_{2}$

Integer

$$(10)_{10} = (1010)_2$$

More Example

• Convert (23.6)₁₀ to binary

No.	÷	Quot.	Remainder
23	2	11	1
11	2	5	1
5	2	2	1
2	2	1	0
1	2	0	1

Conversion of 23

Integer part

 $(23.6)_{10} = (10111.10011)_2$

(fractional part truncated at 5 bits)

No.	Х	Carry	Fraction
0.6	2	1	0.2
0.2	2	0	0.4
0.4	2	0	0.8
0.8	2	1	0.6
0.6	2	1	0.2
0.2		🕇	•••

Conversion of 0.6

Fractional part

Octal and Hexadecimal Representation

Octal: Base - 8

Valid digits: 0,1,2,3,4,5,6,7

Octal: 35.6
Binary: 011101.110 = 11101.11

= 001101110.101100

Hexadecimal: Base – 16

Valid digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

16² 16¹ 16⁰ 16⁻¹ 16⁻²

$$h_2 \mid h_1 \mid h_0 \mid h_{-1} \mid h_{-2}$$

Hexadecimal point

Hex: 3D.6 Binary: 00111101.0110 = 111101.011

Binary: 1101110.101101 Hex: 6E.B4 = 01101110.10110100

Similar to binary

Octal / Hex to Decimal: Using base 8 / 16

Decimal to Octal / Hex:

Int.: Division by 8 / 16 Frac.: Multi. by 8 / 16

Fixed-point Representation

- In practice, fixed number of bits are available to represent a binary number.
- In fixed-point representation, (i) width and (ii) position of binary point are defined.
- Similar to integer representation which is a special case where no bit assigned after binary point.

Consider 8 bits stored in memory is: 10011110.

```
When represented as fixed(8,3), it is 10011.110 = (1 \times 2^4 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2})_{10} = (19.75)_{10} When represented as fixed(8,4), it is 1001.1110 = (1 \times 2^3 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3})_{10} = (9.875)_{10} When represented as fixed(8,2), it is 100111.10 = (1 \times 2^5 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1})_{10} = (39.5)_{10}
```

Note that, one left shift of binary point is division by 2 and one right shift is multiplication by 2.

Due to similarity, integer arithmetic circuit can be used directly here.

Floating Point Representation

For fixed(8,4), precision is $2^{-4} = 0.0625$; range is 0000.0000 to 1111.1111 i.e. 0 to 15.9375 For fixed(8,3), precision is $2^{-3} = 0.125$; range is 00000.000 to 11111.111 i.e. 0 to 31.875

fixed(8,4) has better precision over fixed(8,3) but lower range.

If a and b are the bits before and after binary point, respectively then the range is $2^a - 2^{-b}$.

In floating-point representation, the binary point is not fixed.

Gap between consecutive numbers is high for larger numbers, small for smaller numbers.

M: Mantissa

E: Exponent

Number = $M \times 2^{E}$

Normalized representation: $1101.01 = (1.10101) \times 2^3$

01110101

References:

- ☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &
- **Applications 8e, McGraw Hill**
- ☐ Technical documents from http://www.ti.com accessed on Oct. 08, 2018