

COMP0130: Robotic Vision and Navigation

Lecture 06D: Inference and Optimization

Structure

- Motivation
- The Problem with Means
- Maximum Aposteriori Estimation
- Optimization Algorithms
- Approximate Covariance Calculations

Motivation

- The factor graph stores the entire probability density in a single equation
- Theoretically, we can ask any question we like of it and compute the answer
- In robotics, we are often interested in computing a point estimate which we can use in control

≜UCL

Expected Values

- Motivation
- Expected Values
- Maximum Aposteriori Estimation
- Optimization Algorithms
- Approximate Covariance Calculations

Computing the Mean

Suppose we want to compute the mean of the jth state

• The mean is given by
$$\mathbb{E}\left[\mathbf{x}_j\right] = \int \mathbf{x}_j f\left(\mathbf{x}_j|\mathbb{I}_k\right) \mathrm{d}\mathbf{x}_j$$

To do this, we have to marginalize

UCL

Computing the Mean

UCL

Marginalization

- Marginalization is the "proper" way to remove variables from a graph
- We do this by integrating all the other variables out

$$f(\mathbf{x}_{j}^{j}|\mathbb{I}_{k}) = \int \underline{f(\mathbf{x}_{1:k}|\mathbb{I}_{k})} d\mathbf{x}_{1:k\setminus j}$$

$$\frac{1:k \setminus j}{\uparrow} = \begin{bmatrix} 1, 2, \cdots, j-1, j+1, \cdots, k \end{bmatrix}$$

Computed Expected Values

 More generally, we can specify any kind of function,

$$\mathbb{E}\left[\mathbf{b}\left[\mathbf{x}_{1:k}\right]\right] = \int \mathbf{b}\left[\mathbf{x}_{1:k}\right] f\left(\mathbf{x}_{1:k}|\mathbb{I}_{k}\right) d\mathbf{x}_{1:k}$$

 This can be used to compute things like covariances and cross correlations as well

Computing the Mean

- However, performing the marginalization is awful
- We have to do all the integration work we were desperately trying to avoid
- Therefore, we need to look at other approaches

Structure

- Motivation
- The Problem with Means
- Maximum Aposteriori Estimation MAP
- Optimization Algorithms
- Approximate Covariance Calculations

Maximum Aposteriori Estimation

- The problem with estimating the mean is that we have to integrate over the entire distribution, which we can't do in practice
- An alternative idea is to just extract information directly from the distribution without integration
- One particularly easy approach is to do peak finding

Maximum Aposteriori Estimation

Define the output estimate to be

$$\mathcal{I}^{\mathbf{x}^*} = \arg\max_{\mathbf{x}} f(\mathbf{x})$$

MAP of a Gaussian PDF

MAP of a Rayleigh PDF

Maximum Aposteriori Estimation

Define the output estimate to be

$$\mathbf{x}^* = \arg\max_{\mathbf{x}} f(\mathbf{x})$$

- Advantages:
 - We do not need to know the normalization constant (no integration!)
 - The estimate itself is often pretty sensible

Normalization Constant not Required

Suppose we have the solution

The value is the same as

is the same as
$$\mathbf{x}^* = \arg \max_{\mathbf{x}} cf(\mathbf{x})$$

$$c > 0$$

$$c = \int f(2) dx$$

UCL

MAP Estimates Tend to be Sensible

Computing the MAP Estimate

We want to compute the maximum of the function

• We want to compute the maximum of the function
$$f'\left(\mathbf{x}_{1:k}|\mathbb{I}_{k}\right) = f\left(\mathbf{x}_{0}\right) \prod_{i=1}^{k} f\left(\mathbf{x}_{i}|\mathbf{x}_{i-1},\mathbf{u}_{i}\right) \\ \times \prod_{i=1}^{k} L\left(\mathbf{x}_{i};\mathbf{z}_{i}\right)$$

Computing the MAP Estimate

- Just directly optimizing this can lead to numerical over or underflow issues
- However, the form of this function is the product of terms, each of which is non-negative
- Therefore, we can take the log of the distribution

- The log of a function has the property that it is asymptotically increasing
- Therefore,

$$\mathbf{x}^* = \arg\max_{\mathbf{x}} f'(\mathbf{x})$$

$$= \arg\max_{\mathbf{x}} \ln f'(\mathbf{x})$$

Computing the MAP Estimate

Substituting,

$$\ln f'(\mathbf{x}_{0:k}|\mathbb{I}_k) = \ln f(\mathbf{x}_0) + \sum_{i=1}^k \ln f(\mathbf{x}_i|\mathbf{x}_{i-1},\mathbf{u}_i) + \sum_{i=1}^k \ln L(\mathbf{x}_i;\mathbf{z}_i)$$

State Transition Probabilities and Likelihoods

 We now need to substitute for the expressions for the transition density and likelihood functions

$$f(\mathbf{x}_{k}|\mathbf{x}_{k-1},\mathbf{u}_{k}) = f_{\mathbf{v}}(\mathbf{v}_{k} \stackrel{\mathscr{U}}{=} \mathbf{e}[\mathbf{x}_{k},\mathbf{x}_{k-1},\mathbf{u}_{k}])$$
$$f(\mathbf{z}_{k}|\mathbf{x}_{k}) = f_{\mathbf{w}}(\mathbf{w}_{k} = \mathbf{l}[\mathbf{x}_{k},\mathbf{z}_{k}])$$

Linear Case

· For the sensor likelihood equations, these are

$$L(\mathbf{x}_k; \mathbf{z}_k) \otimes \exp \left\{ -\frac{1}{2} \mathbf{1} [\mathbf{x}_k, \mathbf{z}_k]^{\top} \mathbf{R}_k^{-1} \mathbf{1} [\mathbf{x}_k, \mathbf{z}_k] \right\}$$

Taking logs,

$$\ln L(\mathbf{x}_k; \mathbf{z}_k) = -\frac{1}{2} \mathbf{l} \left[\mathbf{x}_k, \mathbf{z}_k \right]^{\top} \mathbf{R}_k^{-1} \mathbf{l} \left[\mathbf{x}_k, \mathbf{z}_k \right] \mathbf{C}$$

UCL

Linear Case

 For the state transition equations, we can substitute for the inverse process model to get

$$f(\mathbf{x}_{k}|\mathbf{x}_{k-1},\mathbf{u}_{k}) \bigcirc \exp \left\{-\frac{1}{2}\mathbf{e}\left[\mathbf{x}_{k},\mathbf{x}_{k-1},\mathbf{u}_{k}\right]^{\top}\mathbf{Q}_{k}^{-1}\mathbf{e}\left[\mathbf{x}_{k},\mathbf{x}_{k-1},\mathbf{u}_{k}\right]\right\}$$
• Taking logs,
$$e^{-\mathbf{x}_{k}} - \mathbf{x}_{k}$$

$$\ln f\left(\mathbf{x}_{k}|\mathbf{x}_{k-1},\mathbf{u}_{k}\right) = -\frac{1}{2}\mathbf{e}\left[\mathbf{x}_{k},\mathbf{x}_{k-1},\mathbf{u}_{k}\right]^{\top}\mathbf{Q}_{k}^{-1}\mathbf{e}\left[\mathbf{x}_{k},\mathbf{x}_{k-1},\mathbf{u}_{k}\right] + \left(\mathbf{d}\right)$$

Putting Everything Together

Substituting Everything together, we get:

$$\ln f'\left(\mathbf{x}_{1:k}|\mathbb{I}_{k}\right) = \underbrace{-\frac{1}{2}\sum_{i=1}^{k}\mathbf{e}\left[\mathbf{x}_{k},\mathbf{x}_{k-1},\mathbf{u}_{k}\right]^{\top}\mathbf{Q}_{k}^{-1}\mathbf{e}\left[\mathbf{x}_{k},\mathbf{x}_{k-1},\mathbf{u}_{k}\right]}^{k}$$

$$\underbrace{\left(-\frac{1}{2}\sum_{i=1}^{k}\mathbf{l}\left[\mathbf{x}_{k},\mathbf{z}_{k}\right]^{\top}\mathbf{R}_{k}^{-1}\mathbf{l}\left[\mathbf{x}_{k},\mathbf{z}_{k}\right] + e}\right)}$$

Need for Optimization

We want to compute the solution

$$\mathbf{x}^* = \arg\max_{\mathbf{x}} \ln f'(\mathbf{x})$$

- However, the solution includes lots of –ve signs which is a bit inconvenient
- We can flip signs and scale to find

$$\mathbf{x}^* = \arg \underbrace{\min}_{\mathbf{x}} \underbrace{2 \ln f'(\mathbf{x})}^{\mathsf{T}}$$

Putting Everything Together

Therefore, the goal is to compute

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} c\left(\mathbf{x}_{1:k} | \mathbb{I}_k\right)$$

where

$$c\left(\mathbf{x}_{1:k}|\mathbb{I}_{k}\right) = \sum_{i=1}^{k} \mathbf{e}\left[\mathbf{x}_{k}, \mathbf{x}_{k-1}, \mathbf{u}_{k}\right]^{\top} \mathbf{Q}_{k}^{-1} \mathbf{e}\left[\mathbf{x}_{k}, \mathbf{x}_{k-1}, \mathbf{u}_{k}\right] + \sum_{i=1}^{k} \mathbf{l}\left[\mathbf{x}_{k}, \mathbf{z}_{k}\right]^{\top} \mathbf{R}_{k}^{-1} \mathbf{l}\left[\mathbf{x}_{k}, \mathbf{z}_{k}\right]$$

Optimization Algorithms

- Motivation
- Interpreting the Graph
- Maximum Likelihood Estimation
- Optimization
- Approximate Covariance Calculations

Need for Optimization

- The MAP estimate is computed from an optimization process
- If the system is completely linear, you can show that the MAP estimate can be solved directly using matrix inverses
- However, in general the system is not linear
- Therefore, we are solving a nonlinear least squares estimation

Nonlinear Least Squares Optimization

- Nonlinear systems rarely have a closed form solution
- Rather, we use an iterative approach which converges to the minimum

Iterative Nonlinear Optimization

Nonlinear Least Squares Optimization

- Nonlinear systems rarely have a closed form solution
- Rather, we use an iterative approach which converges to the minimum
- Since we clearly need more notation, we will write a solution in the optimizer as

UCL

Iterative Nonlinear Optimization

$$\mathbf{X}_{k}^{0} \leftarrow \text{Initial value}$$

$$c^{0} \leftarrow c\left(\mathbf{X}_{k}^{0}\right) \leftarrow$$

$$i \leftarrow 1$$

$$\mathbf{repeat}$$

$$\mathbf{v}_{k}^{i} \leftarrow \text{Step direction}$$

$$\mu_{k}^{i} \leftarrow \text{Step length}$$

$$\mathbf{X}_{k}^{i} = \mathbf{X}_{k}^{i-1} + \mu_{k}^{i} \mathbf{v}_{k}^{i}$$

$$\rightarrow c^{i} \leftarrow c\left(\mathbf{X}_{k}^{i}\right)$$

$$i \leftarrow i + 1$$

$$\mathbf{until} |c^{i} - c^{i-1}| \leq \epsilon_{c} \text{ or } |\mathbf{X}_{k}^{i} - \mathbf{X}_{k}^{i-1}| \leq \epsilon_{X}$$

UCL

Gradient Descent Optimization

- Chooses the direction in which the cost function will fall the fastest
- The direction of greatest descent is the negative of the gradient of the cost function

$$\mathbf{X}_{k}^{(i+1)} = \mathbf{X}_{k}^{(i)} - \mathbf{J}(\mathbf{X}_{k}^{i})$$

$$\mathbf{J} = \mathbf{\nabla} c\left(\mathbf{X}_k^i\right) = \begin{bmatrix} \frac{\partial c(\mathbf{X}_k^i)}{\partial x_1} & \dots & \frac{\partial c(\mathbf{X}_k^i)}{\partial x_n} \end{bmatrix}^{\top}$$

Gradient Descent (Ascent!) at Work

From https://www.youtube.com/watch?v=L2W5SfGu09M

Effect of the Update

$$\mathbf{X}_k^i$$

$$c\left(\mathbf{X}_{k}^{i}\right)$$

$$c\left(\mathbf{X}_{k}^{i}-\mathbf{J}\right)$$

Good Step Size

≜UCL

Bad Step Size

Scaling the Step Size

- We could try just changing the optimization direction to find somewhere "better"
- However most approaches assume that we simply made our step size "too big"
- Therefore, take the scaled step

$$\mathbf{X}_{k}^{i+1} = \mathbf{X}_{k}^{i} - \mu_{k}^{i} \mathbf{J} \left(\mathbf{X}_{k}^{i} \right)$$

$$0 < \mu_{k}^{i} \stackrel{\text{for } \mathbf{J}}{\leq} \mathbf{\hat{\mathbf{J}}}^{\mathsf{J}}$$

Scaled Step Size

 We take a step along the gradient and change the step size

$$\mathbf{X}_k^i$$

$$c\left(\mathbf{X}_{k}^{i}\right)$$

$$c\left(\mathbf{X}_{k}^{i}-\mu_{k}^{i}\mathbf{J}\right)$$

Choosing the Step Size

- The optimal solution is exact line search
- The step size is given by the solution

$$\underset{\mu_{k}^{i}}{\arg\min} c\left(\mathbf{X}_{k}^{i} - \mu_{k}^{i}\mathbf{J}\right)$$

However, the actual cost function is completely arbitrary

Choosing the Step Size

 Most versions use some kind of backtracking line search

Choosing the Step Size

• In the next step, scale the step size up by a factor β and do the search again

$$\begin{array}{ccc} \lambda & & \downarrow \\ \alpha^2 \mu_k^i & & \beta \alpha^2 \mu_k^i \end{array}$$

Newton-Raphson

- Gradient descent can find the local minimum
- However, its convergence can be very slow
- There are lots of variants of nonlinear optimization algorithms which have been derived

UCL

Newton's Method

- The idea is to approximate the function by a quadratric and pick the step to optimize it
- The quadratic approximation is obtained from Taylor's series,

$$f(x + \delta x) \approx f(x) + f'(x)\delta x + \frac{1}{2}f''(x)\delta x^{2}$$

Newton's Method

Taking derivatives with respect to the step size,

$$\frac{\mathrm{d}f(x+\delta x)}{\mathrm{d}\delta x} = f'(x) + f''(x)\delta x$$

Since the left hand side is 0,

$$\delta x = -\frac{f'(x)}{f''(x)} \stackrel{\checkmark}{\checkmark}$$

Trajectory Taken by Newton's Method

UCL

Newton's Method

The multi-dimensional version is

$$\mathbf{X}_{k}^{i+1} = \mathbf{X}_{k}^{i} - \gamma \left[\mathbf{H} c \left(\mathbf{X}_{k}^{i} \right) \right]^{-1} \mathbf{\nabla} c \left(\mathbf{X}_{k}^{i} \right)$$

$$\mathbf{H}c\left(\mathbf{X}_{k}^{i}\right)=% \mathbf{H}c\left(\mathbf{X}_{k}^{i}\right)$$

$$\begin{bmatrix} \frac{\partial^2 c(\mathbf{X}_k^i)}{\partial x_1^2} & \cdots & \frac{\partial^2 c(\mathbf{X}_k^i)}{\partial x_1 x_n} \end{bmatrix}^{\mathsf{T}}$$

$$\vdots & \ddots & \vdots$$

$$\frac{\partial^2 c(\mathbf{X}_k^i)}{\partial x_n x_1} & \cdots & \frac{\partial^2 c(\mathbf{X}_k^i)}{\partial x_n^2} \end{bmatrix}$$

Issues with Newton's Method

 It requires the calculation of the Hessian which can be very expensive to compute

The method blows up if the Hessian is non

positive definite

UCL

Non-Positiveness with the Hessian

- The easiest way to see this is with the scalar case
- We computed the turning point value

If this is negative we have found a local maximum!

Gauss-Newton

• This uses an approximate value for the Hessian,
$$\mathbf{X}_{k}^{i+1} = \mathbf{X}_{k}^{i} - \gamma \left(\mathbf{\nabla} c \left(\mathbf{X}_{k}^{i} \right)^{\top} \mathbf{\nabla} c \left(\mathbf{X}_{k}^{i} \right) \right)^{-1} \mathbf{\nabla} c \left(\mathbf{X}_{k}^{i} \right)$$

- The approximate value is the "square" of the Jacobian
- You don't have to compute second derivatives
- This is guaranteed to be positive semidefininte

Limitations with Gauss-Newton

- Gauss Newton is not guaranteed to find a local minimum
- We also have the problem that if the Jacobian is nearly singular, the step might be very inaccurately calculated, if it can be calculated at all
- Levenberg-Martquardt attempts to combine the "slow and safe" approach from Gradient Descent with "faster and less safe" ness from Gauss Newton

UCL

Levenberg-Marquardt

The method introduces a damping factor:

$$\mathbf{X}_{k}^{i+1} = \mathbf{X}_{k}^{i} \qquad \qquad \lambda > 0$$

$$-\left(\mathbf{\nabla} c\left(\mathbf{X}_{k}^{i}\right)^{\top} \mathbf{\nabla} c\left(\mathbf{X}_{k}^{i}\right) + \lambda \mathbf{I}\right)^{-1} \mathbf{\nabla} c\left(\mathbf{X}_{k}^{i}\right)$$

 The damping factor is chosen dynamically, like the step size, to give the best result

Levenberg-Marquardt Pseudo-Code

From "HESSIAN MATRIX VS. GAUSS—NEWTON HESSIAN MATRIX", P. Chen, 2011

Challenge Optimization Problem

1020

Convexity and Optimization

 Gradient descent approaches are guaranteed to work only if the function is convex:

Gradient Ascent and non-Convex Functions

Addressing Issues of Non-Convexity

- Almost any real system is non-convex
- However, they have a "basin of attraction" for the solution
- The rule-of-thumb is to try to compute an initial solution which is as close as possible to the optimum
- There are new "certifiable" SLAM algorithms, but the maths is rather challenging

Approximate Covariance Calculations

- Motivation
- Interpreting the Graph
- Maximum Likelihood Estimation
- Optimization Algorithms
- Approximate Covariance Calculations

Computing the Covariance

- The covariance of a state estimate is never used when computing the MAP estimate
- However, in many cases we would like to estimate the covariance of the state estimate to determine things such as whether we have collected enough measurements, or to perform data association
- Computing it properly is challenging because we'd like to compute the expectation of a squared function

UCL

Computing the Covariance

Laplace Approximation

- The distribution around the MAP estimate is approximated by a Gaussian
- The mean of the Gaussian is the MAP estimate
- The covariance of the Gaussian is given by the local curvature of the distribution

The Laplace Approximation

The Laplace Approximation in a Graph

- For the graph, it turns out the curvature is actually given by the inverse of the Hessian
- Using various approximations, its value is given by

Sing various approximations, its value is give
$$\frac{\nabla c(\mathbf{X}_k^*)^\top \nabla c(\mathbf{X}_k^*)}{(\widehat{\mathbf{X}}_k^*)} \stackrel{-1}{\xrightarrow{\uparrow}} \frac{\lambda^\top}{\uparrow}$$

 This value was actually worked out as part of the Levenberg-Marquardt update step

Summary

- To extract a point estimate from the graph, we use maximum aposterior (MAP) estimates
- These do not require calculation of the normalization constant and tend to put the estimate in the cerreet place
- Computing the MAP estimate is a weighted nonlinear least squares estimation problem
- Recursive solutions exist to compute it

