· (Problem 3) if max S exists,
then max 5 - so 6 but loss 6
Tutorial 2: Suprema and Infima
Problem 0 Briefly discuss the difference between supremum and maximum. but wax \ he in \ \
Let $S \subseteq \mathbb{R}$. We call a real number x an $upper bound$ for S if
$(\forall s \in S)[x \geq s].$ S $\neq \emptyset$ and has an upper baind. but max S might not exist, even if sup S exist.
The completeness axiom states that if $S \subseteq \mathbb{R}$ is nonempty and has an upper bound, then it has a least upper bound, called the supremum of S . That is, there is a real number M such that:
$-$ 1. $M \geq s$ for all $s \in S$; \longrightarrow S is an upper band
2. For any upper bound x of S , we have $x \geq M$.
In fact, M is unique (see Problem 2). We use $\sup S$ to denote the 1 supremum of S .
Problem 1 For each of the following sets, find the supremum/infimum or show that it doesn't exist. Which sets have maxima/infima? 1. $(-\infty,0)$ Unit
$\begin{array}{c c} 1. & (-\infty, 0) & 0 & 1 \\ \hline 2. & \mathbb{Q} \cap (-\infty, \sqrt{2}). \end{array}$
$3. \ \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.$
. 0.0
(1) (-0,0) 4/9
(manny)
Sup (-0,0) vg/y) =
inf doesn't exist.
$\max \left(\left(-\infty, 0 \right) \cup \left\{ \mid \right\} \right) = \mid$
has to be in the set itself
NO MINIMUM.
(2) On (-0,5)
mmmy
ration, here
$S_{1p}(\alpha \Lambda(-\alpha, \Sigma_2)) = J_2$.
JZ is an upper bond: 25 Jz for any xt Q 1 (-0, Jz)
J2 is the least upper band:
'
(rationals are dense).
bound regar no ton si U as
max gorant exist!
min doesn't exist

