

Sumário

- 1. Primitivas
- 2. O Teorema Fundamental do Cálculo

Primitivas

Definição

Definição 1

Uma função F é denominada uma **primitiva** de f no intervalo I se F'(x) = f(x) para todo x em I.

Definição

Definição 1

Uma função F é denominada uma **primitiva** de f no intervalo I se F'(x) = f(x) para todo x em I.

Teorema 1

Se F for uma primitiva de f em um intervalo I, então a primitiva mais geral de f em I é

$$F(x) + C$$

em que C é uma constante arbitrária.

Funções Exponenciais e Logarítmicas

Seja C uma constante qualquer.

Função	Primitiva (Geral)	Justificativa
e^{x}	$e^x + C$	$\frac{d}{dx}(e^x+C)=e^x$
$\frac{1}{x}$	$\ln x + C$	$\frac{d}{dx}(\ln x +C) = \frac{1}{x}$
a ^x In a	$a^{x} + C$	$\frac{d}{dx}(a^x+C)=a^x \ln a$
$\frac{1}{x \ln a}$	$\log_a x + C$	$\frac{d}{dx}(\log_a x + C) = \frac{1}{x \ln a}$

Algumas Funções Trigonométricas

Seja C uma constante qualquer.

Função	Primitiva (Geral)	Justificativa
cos X	$\operatorname{sen} x + C$	$\frac{d}{dx}(\operatorname{sen} x + C) = \cos x$
sen x	$-\cos x + C$	$\frac{d}{dx}(-\cos x + C) = \sin x$
sec ² x	tan x + C	$\frac{d}{dx}(\tan x + C) = \sec^2 x$

Algumas Funções Trigonométricas Inversas

Seja C uma constante qualquer.

Função	Primitiva (Geral)	Justificativa
$\frac{1}{\sqrt{1-x^2}}$	$\operatorname{sen}^{-1} x + C$	$\frac{d}{dx}(\operatorname{sen}^{-1}x+C)=\frac{1}{\sqrt{1-x^2}}$
$-\frac{1}{\sqrt{1-x^2}}$	$\cos^{-1}x + C$	$\frac{d}{dx}(\cos^{-1}x + C) = -\frac{1}{\sqrt{1 - x^2}}$
$\frac{1}{1+x^2}$	$\tan^{-1}x + C$	$\frac{d}{dx}(\tan^{-1}x + C) = \frac{1}{1+x^2}$

O Teorema Fundamental do Cálculo

TFC

Teorema 2

Se f for contínua em [a, b], então

$$\int_{a}^{b} f(x) \mathbf{d}x = F(b) - F(a)$$

onde F é qualquer primitiva de f.

Integral Indefinida

Para identificar a primitiva da função f, usamos a notação

$$F(x) = \int f(x) \mathbf{d}x.$$

Ela é chamada integral indefinida.

$$F(x) = \int f(x) dx$$
 significa $F'(x) = f(x)$

Tabela de Integrais

Do que já vimos até aqui, podemos descrever a seguinte tabela de integrais:

$$\int e^{x} dx = e^{x} + C \qquad \int \cos x dx = \sin x + C \qquad \int \frac{1}{\sqrt{1 - x^{2}}} dx = \sin^{-1}x + C$$

$$\int \frac{1}{x} dx = \ln|x| + C \qquad \int \sin x dx = -\cos x + C \qquad \int -\frac{1}{\sqrt{1 - x^{2}}} dx = \cos^{-1}x + C$$

$$\int a^{x} \ln a dx = a^{x} + C \qquad \int \sec^{2}x dx = \tan x + C \qquad \int \frac{1}{1 + x^{2}} dx = \tan^{-1}x + C$$

$$\int \frac{1}{x \ln a} dx = \log_{a} x + C$$

Exercício: Tabela de Integrais

$$\int \cos x \, dx = \sin x + C$$

$$\int \cosh x \, dx = \underline{\qquad}$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int -\frac{1}{\sqrt{1 - x^2}} \, dx = \cos^{-1} x + C$$

$$\int \sec^2 x \, dx = \tan x + C$$

$$\int \frac{1}{1 + x^2} \, dx = \tan^{-1} x + C$$