Задание 7.1. Шпилька и гайки. Шпилькой в технике называют стержень, по всей длине которого нарезана резьба (рис. 1).

Предложите и опишите, как измерить без использования линейки:

- 1. шаг h резьбы шпильки (шагом резьбы называется расстояние между ее соседними витками);
- 2. среднюю толщину H одной гайки (рис. 2);
- 3. площадь S поперечного сечения шестигранного прутка, из которого изготавливаются гайки (рис.3);
- внешний диаметр D резьбы шпильки;
- 5. массу m гайки, считая, что диаметр отверстия в ней d = 0.9D. Проведите измерения и определите параметры h, H, S, D, m. Полученные результаты занесите в таблицу (указав единицы

Рис. 2

1	h =
2	H =
3	S =
4	D =
5	m =

Оборудование: шпилька длиной L = 300 мм, гайки (40 шт.), две скрепки, три нитки, лист бумаги.

Рис. 3

Примечания.

измерения)

- 1. Плотность стали $\rho = 7~800~\text{кг/м}^3$.
- 2. Площадь круга диаметром D равна $S=\pi D^2/4$, длина окружности $L=\pi D$, где число $\pi = 3.14$.
- 3. В работе можно использовать любое количество гаек, ниток и скрепок в зависимости от выбранного метода решения каждого пункта задания.

В работе рекомендуется использовать шпильку и гайки с резьбой М6 и одинаковым шагом (необходимо убедиться, что гайки легко накручиваются на шпильку, но не болтаются).

Следует учитывать тот факт, что при кустарном производстве шпилек и гаек параметры их резьбы могут отличаться от стандартов метрической резьбы, а толщины и массы гаек могут варьироваться в широком диапазоне. В связи с этим, членам жюри регионального этапа олимпиады им. Максвелла необходимо до начала олимпиады определить значения искомых величин посредством их прямых измерений.

Лист белой бумаги формата А5.

Возможное решение (Кармазин С.).

1. Посчитаем количество N витков резьбы на шпильке с помощью скользящей по ней прижатой скрепки (рис. 4). Допустимой ошибкой при счете можно считать ± 2 витка. Шаг резьбы h = L/N = 300/300 = 1 мм (по ГОСТу шаг стандартной резьбы M6 равен h = 1 мм).

Примечание: Здесь и далее приводятся численные значения, полученные на авторском оборудовании при подготовке данной задачи.

- 2. Среднюю толщину H гаек можно определить методом рядов. Например, выстроив цепочку из гаек (N>10), поставленных на одну из боковых граней (рис. 5) или навинтив их непосредственно на шпильку. Авторский результат: H=4,85 мм.
- 3. Для определения площади шестигранника можно выложить 36 гаек плотной упаковкой в 6 рядов по 6 штук в каждом на листе А5 и измерить стороны получившегося прямоугольника (рис. 4). При этом следует обратить внимание, что площадь выступов получившейся фигуры с одной стороны компенсируется площадью углублений с противоположной стороны этого прямоугольника. Окончательно получаем $S = 87 \text{ мм}^2$.
- 4. Внешний диаметр резьбы на шпильке определяем, прокатывая шпильку по поверхности бумаги не менее чем на k = 10 оборотов и измеряя пройденное ей расстояние l. $D = l/(\pi k) = 5.86$ мм.

Рис. 4

Рис. 5

Рис. 6

5. Для вычисления массы гайки необходимо вычислить ее объем, оставшийся после высверливания отверстия и нарезания резьбы. По условию задачи диаметр высверленного в гайке отверстия $d=0.9D=5.27\,$ мм. Будем считать, что диаметр резьбы в самой «глубокой» ее части совпадает с внешним диаметром резьбы шпильки $D=5.86\,$ мм.

Для расчета объема металла, вынутого из гайки в процессе ее производства, будем считать, что из гайки вынут цилиндр с диаметром, равным среднему арифметическому значению внутреннего и внешнего диаметра резьбы в гайке $D_I = (d+D)/2 = 5,57$ мм. Объем такого цилиндра равен $V_I = H\pi D_1^2/4 = 118$ мм 3 . Объем заготовки до высверливания отверстия и нарезания резьбы равен $V_0 = SH = 422$ мм 3 . Окончательно, объем гайки $V = V_0 - V_1 = 304$ мм 3 . Масса гайки равна $M = \rho V = 2,4$ г. Непосредственное измерение среднего значения массы гайки на весах дает результат $M_{\rm cp} = 2,1$ г. Отличие расчетного значения массы от измеренного на 15% может быть связано, например, с тем, что при расчете не учитывались фаски (закругление краев гайки).

Критерии оценивания

1)	Найден шаг резьбы h		2 балла
	отличие менее чем на 5%	2 балла	
	отличие менее чем на 10%	1 балл	
2)	Определена толщина H гайки		2 балла
	отличие менее чем на 5%	2 балла	
	отличие менее чем на 10%	1 балл	
3)	Определен внешний диаметр D резьбы на стрежне		2 балла
	отличие менее чем на 10%	2 балла	
	отличие менее чем на 20%	1 балл	
4)	Определена площадь S шестигранного прутка		2 балла
	отличие менее чем на 10%	2 балла	
	отличие менее чем на 20%	1 балл	
5)	Определена масса т одной гайки		2 балла
	отличие менее чем на 15%	2 балла	
	отличие менее чем на 25%	1 балл	

Задание 7.2. Сколько рублей весит конфета. Экспериментатор Глюк исследовал падение с фиксированной высоты (около 2-х метров) различных грузов, привязанных к системе из трех воздушных шариков (рис. 1). Анализируя результаты эксперимента, он обнаружил любопытный характер зависимости квадрата времени падения от величины, обратной массе всей падающей системы.

Соберите установку Глюка. В качестве грузов можете использовать выданные монеты, помещенные в мешочек, привязанный к шарикам.

Рис. 1

- Снимите зависимость времени падения системы от ее массы. Результаты занесите в таблицу. Каждое измерение повторите **не менее** трёх раз и усредните. При этом, имейте ввиду, что масса шарика $m \approx 3$ г, а масса одной монеты тоже $m \approx 3$ г. Для увеличения точности исследований постарайтесь отпускать систему с как можно большей (но одинаковой) высоты (например, с высоты своего роста, стоя на стуле).
- Постройте график полученной зависимости в осях, предложенных Глюком.
- Проведя дополнительное измерение с помощью построенного графика определите массу выданной конфеты. После завершения всех измерений, конфету нужно съесть!

Примечание: не следует надувать шарики слишком сильно, так как если даже один из шариков лопнет в ходе эксперимента, то все измерения придется начинать сначала.

Приборы и оборудование: секундомер, 5 воздушных шариков (из них 2 запасных), конфета, полиэтиленовый мешочек (гриппер 6 х 8 см), комплект монет (10 шт. номиналом 1 рубль), нитки, миллиметровая бумага (формат А5) для построения графика.

<i>m</i> ,				
1/ <i>m</i> ,				
t_1 ,				
t_2 ,				
t_3 ,				
$t_{ m cpeдh}$,				
t^2 средн,				

- в мешочке необходимо заранее сделать сквозное отверстие, например, дыроколом, для упрощения его подвешивания к шарикам.
- шарики в надутом состоянии должны иметь форму близкую к сферической с диаметром в несильно надутом состоянии около 20-25 см.
- секундомеры следует заранее подготовить и перевести в необходимый режим. Допускается дополнительно инструктировать детей о работе с секундомером.
- выдавать дополнительные шарики и листы миллиметровой бумаги взамен испорченных можно, для этого необходимо заготовить их резерв!
- гриппер 6 x 8 полиэтиленовый мешочек с застежкой zip-lock.
- масса конфеты 10 20 г. Конфета должна быть в обёртке без указания массы.

Возможное решение (Замятнин М., Слободянин В.).

Собираем предложенную конструкцию и измеряем время падения с максимально возможной одинаковой высоты, например, отпуская систему с вытянутой руки, стоя на стуле. Время падения фиксируем по моменту касания пола грузом. Результаты заносим в таблицу и строим график экспериментальной зависимости в предложенных Глюком координатах. Для авторской установки он имеет вид, представленный на рис. 2.

Рис. 2

Экспериментальные точки хорошо ложатся на прямую линию. Это позволяет, для системы с конфетой, по времени падения определить ее массу.

Критерии оценивания

1) Снята зависимость времени падения системы от ее массы (таблица 1) 4 балла

 7 и более точек
 4 балла

 5-6 точек
 2 балла

 3 и менее точек
 0 баллов

2) Построен график в осях, предложенных Глюком 4 балла

график занимает не менее 80% площади листа 1 балл

постоянная цена деления из разрешенных рядов:

целые, четные, кратные 5 1 балл подписаны оси и указаны единицы измерения 1 балл проведена прямая, а не ломаная 1 балл

3) Определена масса выданной конфеты 2 балла

попадание в $\pm 10\%$ 2 балла попадание в $\pm 20\%$ 1 балл

Задание 8.1. Шпилька и гайки. Шпилькой в технике называют стержень, по всей длине которого нарезана резьба (рис. 1).

Предложите и опишите, как измерить без использования линейки:

- 1. шаг h резьбы шпильки (шагом резьбы называется расстояние между ее соседними витками);
- 2. среднюю толщину H одной гайки (рис. 2);
- 3. площадь S поперечного сечения шестигранного прутка, из которого изготавливаются гайки (рис.3);
- 4. отношение массы шпильки к массе одной гайки: $\alpha = m_{\text{ии}}/m_{\text{г}}$, используя шпильку в качестве рычага;
- 5. среднюю массу $m_{\Gamma 1}$ одной гайки и массу шпильки $m_{\text{ш}1}$ по отдельности, исходя из их геометрических размеров.

Проведите измерения и определите параметры h, H, S, m_{r1}, m_{uu1} и отношение масс шпильки и гайки $\beta = m_{\text{ml}}/m_{\text{rl}}$ на основании результатов, полученных в пункте 5.

Полученные результаты занесите в таблицу (указав единицы измерения):

1	h =
2	H =
3	S =
4	α =
5	$m_{\text{III}} =$
6	$m_{\Gamma^1} =$
7	$\beta =$

Рис. 1

Рис. 2

Рис. 3

Оборудование: Шпилька длиной L = 300 мм, гайки (40 шт.), две скрепки, три нитки, лист бумаги.

Примечания.

- 1. Плотность стали $\rho = 7~800~\text{кг/м}^3$.
- 2. Площадь круга диаметром D равна $S=\pi D^2/4$, длина окружности $L=\pi D$, где число $\pi = 3.14$.
- 3. Внешний диаметр резьбы M6 на стержне равен D = 6 мм, а внутренний диаметр резьбы в гайке d = 5 мм.
- 4. В работе можно использовать любое количество гаек, ниток и скрепок в зависимости от выбранного метода решения каждого пункта задания.

В работе рекомендуется использовать шпильку и гайки с резьбой М6 и одинаковым шагом (необходимо убедиться, что гайки легко накручиваются на шпильку, но не болтаются). Следует учитывать тот факт, что при кустарном производстве шпилек и гаек параметры их резьбы могут отличаться от стандартов метрической резьбы, а толщины и массы гаек могут варьироваться в широком диапазоне. В связи с этим, членам жюри регионального этапа олимпиады им. Максвелла необходимо до начала олимпиады определить значения искомых величин посредством их прямых измерений. Лист белой бумаги формата А5.

Возможное решение (Кармазин С.).

1. Посчитаем количество N витков резьбы на шпильке с помощью скользящей по ней прижатой скрепки (рис.4). Допустимой ошибкой при счете можно считать ± 2 витка. Шаг резьбы h = L/N = 300/300 = 1 мм (по ГОСТу шаг стандартной резьбы M6 равен h = 1 мм).

Примечание: Здесь и далее приводятся численные значения, полученные на авторском оборудовании при подготовке данной задачи.

- 2. Среднюю толщину гаек H можно определить методом рядов. Например, выстроив цепочку из гаек (N>10), поставленных на одну из боковых граней (рис. 5) или навинтив их непосредственно на шпильку. Авторский результат: H=4,85 мм.
- 3. Для определения площади шестигранника можно выложить 36 гаек плотной упаковкой в 6 рядов по 6 штук в каждом на листе A5 и измерить стороны получившегося прямоугольника (рис. 6). При этом следует обратить внимание, что площадь выступов получившейся фигуры с одной стороны компенсируется площадью углублений с противоположной стороны этого прямоугольника. Окончательно получаем S=87 мм².
- 4. Накрутим на один край шпильки 4 6 гаек. С помощью нити уравновешиваем получившуюся систему и применив правило моментов определяем α.
- 5. Внешний диаметр резьбы на шпильке определяем, прокатывая шпильку по поверхности бумаги не менее чем на k=10 оборотов и измеряя пройденное ей расстояние l. $D=l/(\pi k)=5,86$ мм.

Рис. 4

Рис. 5

Рис. 6

6. Для вычисления массы гайки необходимо вычислить ее объем, оставшийся после высверливания отверстия и нарезания резьбы. По условию задачи диаметр высверленного в гайке отверстия d=0.9D=5.27 мм. Будем считать, что диаметр резьбы в самой «глубокой» ее части совпадает с внешним диаметром шпильки $D=5.86\,$ мм. Для расчета объема металла, вынутого из гайки в процессе ее производства, будем считать, что из гайки вынут цилиндр с диаметром, равным среднему арифметическому значению внутреннего и внешнего диаметра резьбы в гайке $D_1=(d+D)/2=5.57\,$ мм. Объем такого цилиндра равен $V_1=H\pi D_1^{-2}/4=118\,$ мм 3 . Объем заготовки до высверливания отверстия и нарезания резьбы $V_0=SH=422\,$ мм 3 . Окончательно, объем гайки $V=V_0-V_1=304\,$ мм 3 . Масса гайки равна $m_{\rm rl}=\rho V=2.4\,$ г. Непосредственное измерение среднего значения массы гайки на весах дает результат $m_{\rm cp}=2.1\,$ г. Отличие расчетного значения массы от измеренного на 15% может быть связано, например, с тем, что при расчете не учитывались фаски (закругление краев гайки). Массу шпильки $m_{\rm ml}$ определяем по её объему и плотности.

Критерии оценивания

1. Найден шаг резьбы h				
отличие менее чем на 5%	1 балл			
2. Определена толщина Н гайки				
отличие менее чем на 5%	2 балла			
отличие менее чем на 10%	1 балл			
3. Методом рычага определено отношение $\alpha=m_{ ext{\tiny III}}/m_{ ext{\tiny \Gamma}}$		1 балл		
отличие менее чем на 10%	1 балл			
4. Определена площадь <i>S</i> шестигранного прутка				
отличие менее чем на 10%	2 балла			
отличие менее чем на 20%	1 балл			
5. Найдена средняя масса $m_{\Gamma 1}$ одной гайки и масса шпильки				
$m_{\mathrm{m}1}$ по отдельности, исходя из их геометрических размеров				
отличие менее чем на 10%	2 балла			
отличие менее чем на 20%	1 балл			
6. Определено отношение $\beta=m_{ m ml}/m_{ m rl}$				
отличие менее чем на 10%	2 балла			
отличие менее чем на 20%	1 балл			

8.2. Исследуем шприц (1). Определите плотность неизвестной жидкости и среднюю плотность материала, из которого изготовлен шприц.

Приборы и оборудование: шприц (5 мл), пластиковая бутылка (1,5 л с отрезанным верхом) на 3/4 заполненная водой, стаканчик с неизвестной жидкостью, заглушка для шприца (деревянная зубочистка (её можно ломать)), электронные весы, салфетки для поддержания порядка, поднос.

Примечание: Во избежание выливания жидкости из шприца, рекомендуется пользоваться заглушкой, вставляемой в шприц.

Плотность воды $\rho_0 = 1~000~\text{кг/м}^3$.

- 1. Электронные весы, рассчитанные на взвешивание грузов массой до 200 г или 300 г с точностью измерения ± 0.01 г.
- 2. В качестве неизвестной жидкости лучше всего использовать концентрированный раствор поваренной соли или сахарного сиропа с плотностью $1\ 100-1\ 200\ \text{кг/m}^3$. Жидкость можно слегка подкрасить зеленкой или медным купоросом.

Возможное решение (Замятнин М.). Измеряем на весах массу m пустого шприца. Заполняем его неизвестной жидкостью и вновь измеряем массу. Находим плотность неизвестной жидкости. Она составляет $\rho_1 = 1~150~{\rm kr/m}^3$. Отливаем маленькими порциями жидкость обратно в стаканчик, до тех пор, пока шприц не начнет плавать, полностью погрузившись в воду. Измеряем остаточный объем V неизвестной жидкости в шприце, и рассчитываем среднюю плотность материала шприца:

$$\rho = \frac{m\rho_0}{m + V(\rho_1 - \rho_0)}.$$

Критерии оценивания.

1)	Определена масса шприца		1 балл
2)	2) Метод определения плотности неизвестной жидкости		
3)	3) Результаты измерений и воспроизводимость (например, таблица)		
4)	4) Найдена плотность неизвестной жидкости		
	отличие менее чем на 10%	2 балла	
	отличие менее чем на 15%	1 балл	
5)	Метод определения плотности шприца		2 балла
6)	6) Результаты измерений и воспроизводимость (например, таблица)		
7)	Найдена средняя плотность материала шприца		2 балла
	отличие менее чем на 10%	2 балла	
	отличие менее чем на 15%	1 балл	