Nombres remarquables sur les graphes

Quelques définitions pour commencer

- Un graphe est dit **complet** si toutes les arêtes existent: chaque sommet est relié à tous les autres $=>\frac{n(n-1)}{2}$ arêtes. Le graphe complet de n sommets est noté K_n .
- Une clique est un sous-ensemble de sommets tel que le sous-graphe réduit à ces sommets est complet: un sous ensemble de sommets tous connectés entre eux.
- Une clique est dite **maximale** si quel que soit le sommet rajouté, ce n'est plus une clique. Il est très facile d'obtenir des cliques maximales.
- Une clique est dite **maximum** si elle a la plus grande cardinalité possible. Il est très difficile de trouver une (la) clique maximum (problème NP-difficile)
- On note $\omega(G)$ le nombre de sommets d'une clique maximum de G (la taille de la plus grosse clique de G)

Stable

- Un ensemble **stable** (independent set en Anglais) est un sous-ensemble de sommets absolument pas connectés entre eux (aucune arête entre deux sommets quelconques d'un stable)
- On note $\alpha(G)$ le nombre de sommets d'un stable maximum de G. Ce nombre est appelé **le nombre de stabilité du graphe**. (problème NP-difficile)
- On appelle graphe complémentaire de G que l'on note \overline{G} le graphe avec les mêmes sommets et les arêtes opposées.
- Une clique dans G est un stable dans \overline{G} et vice versa.
- $\bullet \ \alpha(G) \ = \ \omega(\overline{G})$
- \bullet On note Δ le plus grand degré du graphe.

Un petit exemple

Coloration - Nombre chromatique

On parle ici de coloration des sommets. Chaque sommet doit avoir une et une seule couleur.

Problème

Trouver le nombre minimum de couleurs pour colorier les sommets tels que 2 sommets adjacents n'aient pas la même couleur.

Nombre chromatique

Nombre minimum de couleurs pour colorier les sommets d'un graphe G noté $\chi_{\mathbf{v}}(\mathbf{G})$ (problème NP-difficile)

Chaque couleur correspond à un ensemble stable.

Graphe planaire

Un graphe est planaire s'il existe une représentation dans le plan de ce graphe tel qu'aucune arête ne se croise.

Par exemple K_4 est planaire et K_5 ne l'est pas.

Quelques nombres chromatiques

- $\bullet \ \chi_v(K_n) = n$
- Théorème des 4 couleurs: Tout graphe planaire a un nombre chromatique inférieur ou égal à 4.
- Un graphe a un nombre chromatique égal à 2 (il est alors dit biparti) si et seulement si il ne contient pas de cycle de longueur impaire.
- Soit G = (V, E) un graphe de degré maximum Δ . Le nombre chromatique de G, $\chi_v(G)$ est inférieur ou égal à $\Delta + 1$.

$$\chi_v(G) \leq (\Delta+1)$$

Preuve par récurrence:

- Initialisation: Pour n=2, nous avons $\Delta=1$ et $\chi_v(G)=2$.
- Hérédité: Supposons que la propriété est vraie pour n. On veut la montrer pour G = (V, E) avec |V| = n + 1.
 Soit x un sommet de G. Considérons le graphe G' = G {x} dont le degré est au plus Δ. On peut donc le colorier avec au plus Δ + 1 couleurs (d'après l'hyp. de récurrence).
 x est adjacent avec au plus Δ sommets, on peut donc lui attribuer une couleur non utilisée par l'un de ces sommets.

Attacks and the content non-unimage part in decession metas.

Attention, cette borne peut être très imprécise (cf graphe en étoile)

Algorithme de coloriage séquentiel

Méthodes approchées qui donnent une coloration admissible mais pas forcément la meilleure, c'est à dire avec le nombre minimal de couleurs. La plus simple est la suivante:

- Couleurs représentées par des entiers positifs.
- Coloration gloutonne:
 - ▶ On considère les sommets les uns après les autres.
 - ▶ A chaque sommet on attribue la plus petite couleur non attribuée à au moins un de ses voisins.
- Complexité : $O(n \times \Delta)$

Très dépendant de l'ordre des sommets

Algorithme de Welsh - Powell

Trier initialement les sommets par

- Degré décroissant
- En cas d'égalité par numéro croissant
- Tant que tous les sommets ne sont pas colorés faire:
 - ► col++ (nouvelle couleur)
 - ▶ Prendre les sommets dans l'ordre du tri et leur affecter la couleur col si c'est possible (s'ils ne sont pas déjà colorés et s'ils ne sont pas reliés à un sommet de couleur col)

Algorithme DSatur (Brelaz)

DSAT(x) (degré de saturation): nombre de couleurs utilisées dans le voisinage de x (et pas le nombre de voisins colorés).

- Tant que tous les sommets ne sont pas colorés faire:
 - ▶ Choisir le sommet non encore coloré avec
 - 1 Le plus grand degré de saturation
 - 2 En cas d'égalité de plus grand degré
 - 3 En cas d'égalité de plus petit numéro
- Donner la plus petite couleur disponible à ce sommet

Le plus petit exemple où ils se trompent

