Quantum Field Theory on a Highly Symmetric Lattice

Marco Aliberti

Università degli Studi di Torino

July 6, 2023

Why Lattice Quantum Chromodynamics?

In quantum field theory scattering amplitudes in the form

$$\langle f|i
angle = \int_{\phi_i}^{\phi_f} \mathcal{D}\left[\phi
ight] \mathrm{e}^{-S\left[\phi
ight]}$$

need to be evaluated.

Why Lattice Quantum Chromodynamics?

In quantum field theory scattering amplitudes in the form

$$\langle f|i
angle = \int_{\phi_i}^{\phi_f} \mathcal{D}\left[\phi
ight] \mathrm{e}^{-S\left[\phi
ight]}$$

need to be evaluated. There are two possible approaches:

Perturbative

Why Lattice Quantum Chromodynamics?

In quantum field theory scattering amplitudes in the form

$$\langle f|i
angle = \int_{\phi_i}^{\phi_f} \mathcal{D}\left[\phi
ight] \mathrm{e}^{-S\left[\phi
ight]}$$

need to be evaluated. There are two possible approaches:

Perturbative

Non-Perturbative

Perturbative

• Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops

Perturbative

- Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops
- UV divergencies need to be eliminated

Perturbative

- Straightforward series expansion in powers of small g ⇔
 Feynman diagrams with n loops
- UV divergencies need to be eliminated
- Fails predicting quantities with essential singularities as $g \to 0$

Perturbative

- Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops
- UV divergencies need to be eliminated
- Fails predicting quantities with essential singularities as $g \to 0$

Non-Perturbative

No straightforward approach

Perturbative

- Straightforward series expansion in powers of small g ⇔
 Feynman diagrams with n loops
- UV divergencies need to be eliminated
- Fails predicting quantities with essential singularities as g o 0

- No straightforward approach
- Can have a natural cut-off for high momenta ⇒ No UV divergencies

Perturbative

- Straightforward series expansion in powers of small g ⇔
 Feynman diagrams with n loops
- UV divergencies need to be eliminated
- Fails predicting quantities with essential singularities as $g \to 0$

- No straightforward approach
- Can have a natural cut-off for high momenta ⇒ No UV divergencies
- ullet Can predict quantities with essential singularities as g o 0

Definition: Lattice Λ

$$\Lambda = \{ \sum_{i=1}^n a_i e_i \mid a_i \in \mathbb{Z} \}, \{ e_i \} \text{ basis of } \mathbb{R}^n$$

Hypercubic lattice: $\{e_i\}$ is the canonical basis of \mathbb{R}^n , a is called *lattice spacing*.

Figure: Example of a cubic lattice in \mathbb{R}^3 .

Definition: Lattice Λ

$$\Lambda = \{\sum_{i=1}^n a_i e_i \mid a_i \in \mathbb{Z}\}, \{e_i\}$$
 basis of \mathbb{R}^n

Hypercubic lattice: $\{e_i\}$ is the canonical basis of \mathbb{R}^n , a is called *lattice spacing*. Basic idea: fields can take values only in given parts of the lattice, $x \to n \in \Lambda$.

Figure: Example of a cubic lattice in \mathbb{R}^3 .

Definition: Lattice Λ

$$\Lambda = \{\sum_{i=1}^n a_i e_i \mid a_i \in \mathbb{Z}\}, \{e_i\}$$
 basis of \mathbb{R}^n

Hypercubic lattice: $\{e_i\}$ is the canonical basis of \mathbb{R}^n , a is called *lattice spacing*. Basic idea: fields can take values only in given parts of the lattice, $x \to n \in \Lambda$. Examples:

• Scalar fields $\Phi(x) \to \Phi(n)$ on sites

Figure: Example of a cubic lattice in \mathbb{R}^3 .

Definition: Lattice Λ

$$\Lambda = \{ \sum_{i=1}^n a_i e_i \mid a_i \in \mathbb{Z} \}, \{ e_i \} \text{ basis of } \mathbb{R}^n$$

Hypercubic lattice: $\{e_i\}$ is the canonical basis of \mathbb{R}^n , a is called *lattice spacing*. Basic idea: fields can take values only in given parts of the lattice, $x \to n \in \Lambda$. Examples:

- Scalar fields $\Phi(x) \to \Phi(n)$ on sites
- Vector fields $A_{\mu}(x) o A_{\mu}(n)$ on links

Figure: Example of a cubic lattice in \mathbb{R}^3 .

Definition: Lattice Λ

$$\Lambda = \{\sum_{i=1}^n a_i e_i \mid a_i \in \mathbb{Z}\}, \{e_i\}$$
 basis of \mathbb{R}^n

Hypercubic lattice: $\{e_i\}$ is the canonical basis of \mathbb{R}^n , a is called *lattice spacing*. Basic idea: fields can take values only in given parts of the lattice, $x \to n \in \Lambda$. Examples:

- Scalar fields $\Phi(x) \to \Phi(n)$ on sites
- Vector fields $A_{\mu}(x) \to A_{\mu}(n)$ on links
- Object with k indices on k-symplexes

Figure: Example of a cubic lattice in \mathbb{R}^3 .

Definition: Lattice Λ

$$\Lambda = \{ \sum_{i=1}^n a_i e_i \mid a_i \in \mathbb{Z} \}, \{ e_i \} \text{ basis of } \mathbb{R}^n$$

Hypercubic lattice: $\{e_i\}$ is the canonical basis of \mathbb{R}^n , a is called *lattice spacing*. Basic idea: fields can take values only in given parts of the lattice, $x \to n \in \Lambda$. Examples:

- Scalar fields $\Phi(x) \to \Phi(n)$ on sites
- Vector fields $A_{\mu}(x) \to A_{\mu}(n)$ on links
- Object with k indices on k-symplexes

Attention!

Spinorial fields are trickier.

Figure: Example of a cubic lattice in \mathbb{R}^3 .