

September 23, 2021

September 23, 2021

PREDICT TAXI DEMAND

What's in it?

Company:

- Predicting demand and deploy taxis accordingly there by efficiently making use of resources
- Use the demand prediction model to offer discounts or surcharges, thereby increasing the revenue.

YELLOW TAXI

2015 - Pickup/Drops By Months

GREEN TAXI

What are the options?

Probabilistic Models

- Linear regression
- Multiple Linear Regression.

Machine Learning Models

- Artificial Neural
 Networks
- Decision Tree
- Clustering
- Ensemble Methods

Time Series Models

- Autoregressive(AR)
- Vector AR
- Moving Average(MA)
- ARIMA
- STARIMA

Multiple Regression Model

$$Y = \sum_{i=0}^{n} \beta_i X_i + \epsilon$$

Use MLE(Least Squares Estimation) to determine the coefficients for the explanatory variables.

Step 1: Check Correlation Coefficients

Strong correlation b/w X_i and Y indicates X_i is important Strong correlation b/w X_i and X_j - multicollinearity

Step 2: Stepwise Selection

Step 3: Best Subsets Regression

$$y = b + W^{T}X$$

$$f(x) = \sigma(b + W^{T}X)$$

$$W = \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{n} \end{bmatrix} X = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

ARTIFICIAL NEURAL NETWORK

Pros:

- Fast Predictions
- Good with non-linear data
- Can be used for both regression and classification

Cons:

- Computationally intensive
- Needs lot of training data
- Overfitting and generalization

Decision Trees

Pros:

- Understandability
- Resistant to Outliers

Cons:

- Prone to overfitting
- Needs careful Parameter tuning
- Biased Tree can be created if there is an imbalance

CLUSTERING WITH DYNAMIC TIME WARPING

ENSEMBLE

TIME SERIES

What kind of Forecasting?

- Point forecast
- Interval forecast
- Density forecast

What kind of data needed?

- Data collected at a single point of time
- Observations of data made over time

Identify the patterns in data:

- Horizontal (Stationary)
- Trend
- Seasonal
- Cyclical

