CNN Shape vs Texture

Присяжнюк Артем

Shape hypothesis: Интуиция

- Слой сопоставляет некоторой категории определенные формы
- Первые слои находят простые формы
- Средние слои находят сложные формы, состоящие из простых
- Последние слои находят формы объектов

Texture hypothesis: Интуиция

Текстура влияет на решение слоя больше, чем форма

(a) Texture image 81.4% Indian elephant

10.3% indri

8.2% black swan

(b) Content image

71.1% tabby cat 17.3% grey fox 3.3% Siamese cat

(c) Texture-shape cue conflict

63.9% Indian elephant

26.4% indri

9.6% black swan

Эксперимент: Датасет

Эксперимент: Style Transfer

Эксперимент: Stylized-ImageNet

Эксперимент: Результаты

Красные - люди

Фиолетовые - AlexNet

Синие - VGG-16

Бирюзовые - GoogLeNet

Серые - ResNet-50

architecture	$IN{\rightarrow}IN$	$IN \rightarrow SIN$	$SIN{\rightarrow}SIN$	$SIN{\rightarrow}IN$
ResNet-50	92.9	16.4	79.0	82.6
BagNet-33 (mod. ResNet-50)	86.4	4.2	48.9	53.0
BagNet-17 (mod. ResNet-50)	80.3	2.5	29.3	32.6
BagNet-9 (mod. ResNet-50)	70.0	1.4	10.0	10.9

Изменения: Результаты

Красные - люди

Золотые - Stylized-ImageNet

Серые - ImageNet

name	training	fine-tuning	top-1 IN accuracy (%)	top-5 IN accuracy (%)	Pascal VOC mAP50 (%)
vanilla ResNet	IN	-	76.13	92.86	70.7
	SIN	-	60.18	82.62	70.6
	SIN+IN	-	74.59	92.14	74.0
Shape-ResNet	SIN+IN	IN	76.72	93.28	75.1

Устойчивость к искажениям

Устойчивость к искажениям

Итоги

- Обучение на ImageNet → texture bias
- Решение Stylized-ImageNet (SIN)
- Обучение на SIN → устойчивость к искажениям
- Лучший вариант Shape-ResNet
 - Обучение на SIN + IN
 - Fine-tuning на IN

Сравнение моделей

CONVOLUTIONAL NEURAL NETWORKS			
MODEL	TOP-1(%)	MCE(%)	#PARAMS(M)
RESNET-50	76.02	65.54	26
ALEXNET	56.44	83.18	61
GOOGLENET	71.70	68.82	7
VGG-16	69.63	75.10	138

CONVOLUTIONAL NEURAL NETWORKS			
MODEL	SHAPE BIAS (%)	# PARAMS (M)	
RESNET-50	26.17	26	
ALEXNET	29.80	61	
GOOGLENET	28.52	7	
VGG-16	16.12	138	

MODEL	TOP-1(%)	MCE(%)	#PARAMS(M)
VIT_BASE	75.73	58.55	86
VIT_LARGE	79.16	49.02	304
DEIT_BASE	81.84	42.30	86
DEIT_BASE-DIST.	83.16	41.19	87
DEIT_SMALL	79.68	47.79	22
DEIT_SMALL-DIST.	81.05	46.25	22
DEIT_TINY	71.92	60.08	5
DEIT_TINY-DIST.	74.38	57.45	6
CAIT_S24	83.28	40.59	47
CAIT_XXS24	78.38	49.28	11
SWIN-T_TINY	80.85	50.70	28
SWIN-T_SMALL	82.96	45.51	50
SWIN-T_BASE	84.90	38.52	88
SWIN-T_LARGE	85.92	34.63	197

MODEL	SHAPE BIAS (%)	# PARAMS (M)	
VIT_BASE	49.10	86	
VIT_LARGE	55.35	304	
DEIT_BASE	42.32	86	
DEIT_BASE-DIST.	39.62	87	
DEIT_SMALL	38.26	22	
DEIT_SMALL-DIST.	36.65	22	
DEIT_TINY	29.37	5	
DEIT_TINY-DIST.	31.06	6	
CAIT_S24	38.65	47	
CAIT_XXS24	34.24	11	
SWIN-T_TINY	25.21	28	
SWIN-T_SMALL	27.43	50	
SWIN-T_BASE	36.39	88	
SWIN-T_LARGE	40.20	197	