Generic ZCL

by

Rishabh Sheth (EC-96)

at Volansys Technology PVT. LTD.

Internal Guide:

Dr. Vinay Thumar

External Guide:

Mr. Kewal Agola

Company Profile

- Volansys Technology PVT. LTD.
- One stop solution enabler
- Offerings
 - Hardware Design & Development
 - Software Development
 - Quality Engineering (QA)
 - Embedded Design & Development
- IoT expert

Industry Training

- 2 ¹/₂ Month employee training
- Aim is to provide bridge between College and Industry
- Topic Includes
 - Linux Essential
 - Data structure
 - Advance C programming
- Helped lot in final project

Linux Essential

- Vim
- SSH, SAMBA, FTP
- OS programming Semaphore, Mutex, Thread etc..
- System Calls & Socket programming
- GIT

Data structure & Algorithms

- Data structure
 - Array
 - Structure
 - Link list
- Algorithms
 - Stack vs. Queue
 - Bubble short
 - Quick short
 - Binary Tree

Advance C programming

- Valgrind
 - Memory management tool
 - Memory leak
 - Segmentation fault
- Mega Exercise Railway Ticket Reservation System
- SRS System Requirement Specification
- SDS Software Design Specification
- Doxygen A unique code documentation tool

Project - Generic ZigBee Cluster Library

Tries to solve compatibility issues with various IoT products by making a universal library which ideally supports all ZigBee platform.

What Is ZigBee?

- Open global standard for wireless technology
- Developed and managed by ZigBee Alliance
- Operates on the IEEE 802.15.4 specification
- Used to create Personal Area Networks (PAN)
- Advantage
 - Low data transfer rate
 - Energy efficiency
 - Secure networking
 - Operates on 2.4Ghz universal free band

ZigBee Architecture

ZigBee Architecture

MAC & PHY Layer in ZigBee

- IEEE 802.15.4 is a technical standard
- The physical layer performs modulation on outgoing signals and demodulation on incoming signals. It transmits information and receives information from a source.
- The MAC enables the transmission by CSMA/CA. Transmit beacon frames for synchronization.

Basic Radio Characteristics

1E-1

1E-2

Frequency Band	License Required?	Geographic Region	Data Rate	Channel Number(s)
868.3 MHz	No	Europe	20kbps	0
902-928 MHz	No	Americas	40kbps	1-10
2405-2480 MHz	No	Worldwide	250kbps	11-26

ZigBee Device Types

- ZigBee Coordinator (ZC)
 - One required for each ZB network.
 - Initiates network formation.
- ZigBee Router (ZR)
 - Participates in multi hop routing of messages.

- ZigBee End Device (ZED)
 - Does not allow association or routing.
 - Enables very low cost solutions

ZigBee Network Topologies

NWK Layer

- Located between the MAC layer and APS.
- It provides the following functions:
 - Starting a network
 - Managing end devices joining or leaving a network
 - Route discovery
 - Neighbour discovery

Fig: The NWK Layer Reference Model

APS Layer

- In the application layer services are provided by two entities:
 - The APS data entity (APSDE) provide a data service to the network layer and both ZDO and application objects to enable the transport of application PDUs between two or more devices
 - The APS management entity (APSME) provide a management service to allow an application to interact with stack.
- ZDO: Endpoint address 0 on each node is reserved for a special application called the ZDO (ZigBee Device Objects).
 - This application has a number of roles, including defining the type of node (Coordinator, Router or End Device), initializing the node and participating in network creation.

ZigBee Cluster Library

- The ZCL is a repository for cluster functionality.
- As a consequence, it will be a working library with regular updates as new functionality is added.
- The ZCL consists of the a set of elements that apply across the entire library (such as frame structures, attribute access commands and data types), and a number of sets of clusters.

ZCL – Frame Formats

• The ZCL frame format is composed of a ZCL header and a ZCL payload.

Variable	8	8	0/16	Bits: 8	
Frame payload	Command	Transaction	Manufacturer	Frame	
	identifier	sequence	code	control	
		number			
ZCL Payload	ZCL header				

Application Layer

- Application profiles define what messages are sent over the air for a given application
- Devices with the same application profiles interoperate end to end
- ZigBee publishes a set of public profiles, but vendors may create manufacturer specific ones as well

Implementation

- Simulation of ZigBee IoT device
- Star Topology used
- ZCL, ZDO and APS made as per ZigBee Specification
- Network layer is replaced by Socket Programming
- Terminal based End user application

Data Flow Diagram

Starting Server

Starting Client

Communication Between Server and Client

Hardware Interface

- BeagleBone Black embedded board
 - 1Ghz ARM cortex A8 processor
 - USB, Ethernet, HDMI port
 - 64 GPIO
 - Debian Linux

Client - BBB connected to Server LED is Off

Client - BBB connected to Server & LED is On

Conclusion

- ZigBee is one of the <u>best choice available in market for IoT</u>.
- ZigBee has good documentation for each layer but it <u>clearly</u> not define relation between two layers
- Part of <u>ZCL</u> and other layer in ZigBee specification <u>implemented successfully</u>
- Because time and resources are major constrain project is still in simulation so it needs to be test on real ZigBee device

Thank You

THE END