Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Фундаментальные науки»

КАФЕДРА «Вычислительная математика и математическая физика» (ФН-11)

РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе на тему:

Дифференциальная геометрия и основы тензорного исчисления.

Дисциплина: Дифференциальная геом	етрия и основы тенз	ворного исчисления
Студент	 (Подпись, дата)	А.А. Юн (И.О.Фамилия)
Руководитель курсовой работы	(Подпись, дата)	Е.В. Осипов(И.О.Фамилия)

СПИСОК ИСПОЛНИТЕЛЕЙ

Руководитель курсовой		Е.В. Осипов
работы	подпись, дата	
Исполнитель _	подпись, дата	А.А. Юн
Нормоконтролер _	полпись, лата	С.С. Кудрявцева

РЕФЕРАТ

Отчет 32 с., 5 источников.

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ, РИМАНОВЫ ПРОСТРАНСТВА, ГАУССОВА КРИВИЗНА, СКАЛЯРНАЯ КРИВИЗНА, ГОСТ 7.32-2017.

Цель работы — исследование гуассовых и скалярных кривизн однополостного гиперболоида и мнимого однополосного гиперболоида.

В результате работы был произведена устная защита курсовой работы, а также выполнен письменный отчет в соответствии со стандартами оформления научно-технической документации.

ВВЕДЕНИЕ	5
1 Римановы пространства	6
1.1 Элементарное многообразие	6
1.2 Касательное пространство	
1.3 Определение риманова пространства	9
2 Свойства римановых пространств	10
2.1 Коэффициенты связанности в \mathbb{V}^n	10
2.2 Определение аффинной связности	10
2.3 Тензоры в элементарном многообразии	11
2.4 Определение тензора в римановом пространстве	12
2.5 Ковариантное дифференцирование тензоров в \mathbb{V}^n	13
2.6 Ковариантное дифференцирование тензоров в \mathbb{L}^n	13
2.7 Риманово пространство с аффинной связностью	14
2.8 Тензор Римана-Кристоффеля	14
2.9 Тензор Риччи	16
2.10 Тензор Эйнштейна	17
3 Практическая часть	18
3.1 Гауссова кривизна однополостного гиперболоида	18
3.2 Гауссова кривизна мнимого однополостного гиперболоида	23
3.3 Скалярная кривизна однополостного гиперболоида	27
3.4 Пределы изменения гауссовой кривизны однополостного гиперболо	ида.28
ЗАКЛЮЧЕНИЕ	30
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	31
ПРИЛОЖЕНИЕ А	32

ВВЕДЕНИЕ

Курсовая работа — вид учебной работы обучающегося, в которой присутствуют элементы самостоятельного научного исследования. Работа рассчитана на закрепление и применение полученных навыков в процессе учёбы.

Целью курсовой работы является исследование гуассовых и скалярных кривизн однополостного гиперболоида и мнимого однополосного гиперболоида .

Задачами курсовой работы являются:

- ознакомление с римановыми пространствами;
- нахождение гауссовых кривизн;
- нахождение скалярной кривизны;
- нахождение пределов изменения экстремумов гауссовой крвизны.

1 Римановы пространства

В механике и особенно в релятивистской физике тензоры широко применяют в n-мерных римановых пространствах, являющихся более общими, чем евклидовы [1]. Дадим определение этих пространств, а затем покажем, как конструируются тензоры в них. Начнём с основополагающего понятия римановых пространств - элементарного многообразия.

1.1 Элементарное многообразие

Определение 1. Элементарным n-мерным многообразием называют такое множество M^n , каждой точке которого взаимнооднозначно поставлен в соответствие упорядоченный набор чисел $(X_1...X_n)$ из некоторой связной области $\mathcal{D} \in \mathbb{R}^n$, т.е, задано биективное отображение $\varphi: M^n \longrightarrow \mathcal{D} \in \mathbb{R}^n$.

Координатами точки $\mathcal{M} \in M^n$ в системе координат \mathcal{D} называют координаты $X^i \in \mathbb{R}^n$ ее образа $\varphi(\mathcal{M})$, изменяющиеся в области $\mathcal{D} \in \mathbb{R}^n$. Если для множества M^n имеется другое биективное отображение $\varphi': M^n \longrightarrow \mathcal{D} \in \mathbb{R}^n$, то координаты точки \mathcal{M} в системах координат \mathcal{D} и \mathcal{D}' , связаны соотношениями:

$$X^{\prime i} = X^{\prime i}(X^j), \quad i, j = 1 \dots n, \tag{1}$$

которые предполагают достаточное число раз дифференцируемыми и невырожденными, т.е. $\det\left(\frac{\partial X^{\prime i}}{\partial X^{j}}\right) \neq 0, \forall X^{i} \in \mathcal{D}$. Введём обозначения для якобиевых матриц преобразования, а также для их производных:

$$Q^{i}_{j} \equiv \left(\frac{\partial X^{\prime i}}{\partial X^{j}}\right), \quad P^{i}_{j} \equiv \left(\frac{\partial X^{i}}{\partial X^{\prime j}}\right), \quad P^{i}_{jk} \equiv \frac{\partial^{2} X^{i}}{\partial X^{\prime j} \partial X^{\prime k}},$$
 (2)

и кроме того будем использовать обозначения для частных производ-

ных:

$$\frac{\partial f}{\partial X^i} \equiv f_{,i}, \quad \frac{\partial f}{\partial X'^i} \equiv f_{|i} = P^j_{i} f_{,i}. \tag{3}$$

Примером двумерного (n=2) элементарного многообразия M^2 являются поверхности в \mathbb{R}^3 , на которых определены криволинейные координаты X_1, X_2 и которые заданы тремя функциями:

$$x^{i} = x^{i}(X^{1}, X^{2}), \quad i = 1, 2, 3.$$
 (4)

1.2 Касательное пространство

Определение 2. Кривой \mathcal{L} в многообразии M^n называют отображение $\mathcal{L}: [\xi_1, \xi_2] \in \mathbb{R}^1 \longrightarrow M^n$, которое записывают в виде функции:

$$X^{i} = X^{i}(\xi) \quad \forall \xi \in [\xi_{1}, \xi_{2}], \quad X^{i} \in M^{n}. \tag{5}$$

Здесь X^i - координаты точки $\mathcal{M} \in M^n, [\xi_1, \xi_2]$ - некоторый отрезок из $\mathbb{R}^1, (\xi_1 < \xi_2)$, а функции (5) предполагаем непрерывно дифференцируемыми, по крайней мере, два раза.

Зафиксировав значение параметра $\xi \in [\xi_1, \xi_2]$, получим некоторую точку $\mathcal{M} \in \mathcal{L}$, в ней можно вычислить производные от функций (5):

$$a^i = \frac{\mathrm{d}X^i}{\mathrm{d}\xi}.\tag{6}$$

Определение 3. Упорядоченный набор $(a_1 \dots a_n)$ производных (6) называют компонентами касательного вектора a^i в точке $\mathcal M$ кривой $\mathcal L$ в M^n .

Если перейти к координатам X'^i той же точки $\mathcal{M} \in \mathcal{L}$, то согласно (1)

получаем, что компоненты касательного вектора a'^i в этой системе координат будут иметь вид: $a'^i=\frac{\mathrm{d} X'^i}{\mathrm{d} \xi}$ и связаны с a^i тензорным законом:

$$a^{\prime i} = Q^i{}_i a^j. (7)$$

Поскольку через фиксированную точку $\mathcal{M} \in M^n$ можно провести различные кривые \mathcal{L} , то, вообще говоря, в каждой точке \mathcal{M} имеется множество упорядоченных наборов $(a_1 \dots A_n)$. Определим операции с этими наборами.

Пусть имеется две кривые \mathcal{L}_1 и \mathcal{L}_2 , заданные в виде функций $X_1^i(\xi), X_2^i(\xi)$, проходящие через точку \mathcal{L} , тогда можно построить два набора компонент касательных векторов $a_1^i = \frac{\mathrm{d} X_1^i}{\mathrm{d} \xi}$ и $a_2^i = \frac{\mathrm{d} X_2^i}{\mathrm{d} \xi}$.

Суммой компонент двух касательных векторов назовём набор

$$a_1^i + a_2^i = \frac{\mathrm{d}X_1^i + X_2^i}{\mathrm{d}\xi},$$
 (8)

который представляет собой компоненты касательного вектора к кривой $(X_1^i + X_2^i)(\xi)$ в данной точке $\mathcal{M}.$

Аналогично определяем произведение компонент i на вещественное число λ :

$$\lambda a^i = \lambda \frac{\mathrm{d}X^i}{\mathrm{d}\xi} = \frac{\mathrm{d}\lambda X^i}{\mathrm{d}\xi}.$$
 (9)

Поскольку набор чисел $(a_1...a_n)$ является элементом пространства \mathbb{R} , то, выбрав базис e_i в этом пространстве, можно построить сам касательный вектор a в точке \mathcal{M} кривой $\mathcal{L}: a=a^ie_i=a'^ie'_i$, где $e'_i=P^j_ie_j$ - новый базис.

Определение 4. Касательным пространством в данной точке \mathcal{M} элементарного многообразия M^n называют множество касательных векторов $=a^ie_i$, построенных ко всевозможным кривым \mathcal{L} , проходящим через данную точку.

Теорема 1. Касательное пространство в любой точке $\mathcal{M} \in M^n$ является n-мерным линейным пространством, которое обозначают как $T_{\mathcal{M}}M^n$,

а векторы e, образуют базис в нем.

1.3 Определение риманова пространства

Определение 5. Элементарное n-мерное многообразие M^n называют римановым пространством \mathbb{V}^n , если в каждой точке $\mathcal{M} \in M^n$ с координатами X^i задана матрица g_{ij} n-го порядка, которая является

- 1) симметричной,
- 2) невырожденной: $\det(\tilde{g}_{ij}) \neq 0$, $\forall X^i$,
- 3) компоненты её являются непрерывно-дифференцируемыми функциями,
- 4) при переходе к другим координатам X'^l преобразуется по тензорному закону:

$$g_{ij} = Q_i^k Q_j^l g_{kl}^l. (10)$$

Двумерные поверхности в \mathbb{R}^3 , очевидно, можно рассматривать как двумерные римановы пространства \mathbb{V}^2 с метрической матрицей \tilde{g}_{IJ} .

Расстояние в римановом пространстве вводят для бесконечно близких точек \mathcal{M} и \mathcal{M}' , имеющих кординаты X^i и $X^i + dX^i$, и определяют его как

$$ds^2 = \varkappa q_{ij} dX^i dX^j, \tag{11}$$

где κ – знаковое число, которое выбирают так, чтобы форма (11) была положительной.

Риманово пространство называют собственно римановым, если метрическая матрица $g_{ij}, \forall X^i \in \mathcal{D}$ является положительно-определённой, в противном случае говорят о псевдоримановых пространствах.

2 Свойства римановых пространств

Рассмотрим некоторые свойства римановых пространств, которые понадобятся нам для введения тензора Эйнштейна, чтобы указать связь римановых пространств с общей теорией относительности.

2.1 Коэффициенты связанности в \mathbb{V}^n

Поскольку в каждой точке $\mathcal{M}(X^i) \in \mathbb{V}^n$ введена метрическая матрица $g_{ij(X^i)}$ компоненты которой, согласно п.3 определения 5, являются непрерывно дифференцируемыми функциями, то можно вычислить производные $\frac{\partial g_{ij}}{\partial X^k}$ и образовать из них следующие объекты:

$$\Gamma_{ijk} = \frac{1}{2}(g_{ik,j} + g_{jk,i} - g_{ij,k}). \tag{12}$$

Определение 6. Функции Γ_{ijk} определённые по формулам (12), называют коэффициентами связности первого рода в \mathbb{V}^n . Коэффициенты связности второго рода вводим с помощью обратной матрицы g^{ij} :

$$\Gamma_{ij}^m = g^{mp} \Gamma_{ijp}. \tag{13}$$

2.2 Определение аффинной связности

Определение 7. Элементарное n-мерное многообразие M^n называют пространством аффинной связности \mathbb{L}^n , если в каждой точке $\mathcal{M} \in M^n$ с координатами X^i задана система функций Γ^m_{ij} , которые

- 1) являются непрерывно-дифференцируемыми функциями,
- 2) при переходе к другим координатам X'^i преобразуются следующим

образом:

$$\Gamma_{ij}^{\prime m} = P_i^l P_j^q Q_r^m \Gamma_{lq}^{r} + Q_r^m P_{ij}^r.$$
 (14)

Функции Γ_{ij}^{m} , заданные в \mathbb{L}^{n} , называют коэффициентами аффинной связности (или просто аффинной связностью).

2.3 Тензоры в элементарном многообразии

Построим в каждой точке $\mathcal{M} \in M^n$ множество наборов касательных векторов:

$$(a_1b^{(1)}a_2b^{(2)}\dots a_nb^{(n)} \equiv (a_ib^{(i)}), \tag{15}$$

где $a_i \in T_{\mathcal{M}} M^n$, $b^{(i)} T_{\mathcal{M}}^* M^n$, и введём на этом множестве операции сложения и умножения на вещественное число s:

$$(a_i b^{(i)}) + (a_i c^{(i)}) = (a_i (b^{(i)} + c^{(i)})),$$
(16)

$$(a_i b^{(i)}) + (d_i b^{(i)}) = ((a_i + d_i))b^{(i)}), \tag{17}$$

$$s(a_i b^{(i)}) = ((sa_i)b^{(i)}) = (a_i(sb^{(i)})).$$
(18)

Определение 8. Тензорным касательным пространством $\mathcal{T}_n^{(pq)}(T_{\mathcal{M}}M^n)$ типа pq, где p+q=2, в точке \mathcal{M} элементарного многообразия M^n называют тензорное произведение касательного пространства $T_{\mathcal{M}}M^n$ на себя:

$$\mathcal{T}_{n}^{(pq)}\left(T_{\mathcal{M}}M^{n}\right) = T_{\mathcal{M}}M^{n} \otimes T_{\mathcal{M}}M^{n} \quad \forall \mathcal{M} \in M^{n}, \quad p+q=2, \tag{19}$$

где тензорное произведение вводится как фактор-пространство n-ой степе-

ни декартова квадрата

$$T_{\mathcal{M}}M^n \otimes T_{\mathcal{M}}M^n = [(T_{\mathcal{M}}M^n \times T_{\mathcal{M}}M^n)^n] \tag{20}$$

Базисные диады в $\mathcal{T}_n^{(pq)}(T_{\mathcal{M}}M^n)$ введём как

$$e_j \otimes e_k = [e_i(\delta_j^i e_k)], \tag{21}$$

где $[\]$ – классы эквивалентности соответствующих наборов касательных векторов. Очевидно, что если рассматриваемое многообразие M^2 является поверхностью $\Sigma \in \mathbb{R}^3$, то базисные диады совпадают с соответствующими диадами $\rho_I \otimes \rho_K$.

Определение 9. Тензором второго ранга $A(\mathcal{M})$ типа (pq) в точке $\mathcal{M}\in M^n$ называют элемент тензорного произведения касательного пространства $\mathcal{T}_n^{(pq)}(T_{\mathcal{M}}M^n), p+q=2.$

Тензор k—го ранга $^kA(\mathcal{M})$ введём как

$${}^{k}A = A_{i_{1}\dots i_{p}}{}^{j_{1}\dots j_{q}}e^{i_{1}}\otimes \dots \otimes e^{i_{p}}\otimes e_{j_{1}}\otimes \dots \otimes e_{j_{q}}, \quad p+q=k.$$
 (22)

2.4 Определение тензора в римановом пространстве

Если в многообразии M^n введена метрическая матрица g_{ij} то оно становится римановым пространством \mathbb{V} , а касательное пространство в каждой точке $\mathcal{M} \in \mathbb{V}^n$ - евклидовым (или псевдоевклидовым) $T\mathcal{M}\mathbb{V}^n$. Тогда используя соглашение о совпадении пространств $T_{\mathcal{M}}^*\mathbb{V}^n$ и $T_{\mathcal{M}}V^n$, можно говорить о тензорном касательном пространстве $\mathcal{T}_n^{(k)}(T_{\mathcal{M}}\mathbb{V}^n)$, заданном на римановом пространстве \mathbb{V}^n .

2.5 Ковариантное дифференцирование тензоров в \mathbb{V}^n

Рассмотрим в \mathbb{V}^n произвольное поле тензора k-го ранга:

$${}^{k}\Omega\left(X^{i}\right) = \Omega^{i_{1}\dots i_{p}}{}_{j_{1}\dots j_{q}}\mathbf{e}_{i_{1}}\otimes\dots\otimes\mathbf{e}_{i_{p}}\otimes\mathbf{e}^{j_{1}}\otimes\dots\otimes\mathbf{e}^{j_{q}}, \quad p+q=k,$$
 (23)

причём его компоненты $\Omega^{i_1...i_p}$ будем считать непрерывно дифференцируемыми функциями координат X^i точки $\mathcal{M}\in\mathbb{V}^n$

Определение 10. Ковариантной производной от компонент тензора $\Omega^{i_1...i_p}_{\ \ j_1...j_q}$ k-го ранга $^k\Omega$, определённого в \mathbb{V}^n , называют следующий объект:

$$\nabla_{i}\Omega^{i_{1}...i_{p}}{}_{j_{1}...j_{q}} = \frac{\partial}{\partial X^{i}}\Omega^{i_{1}...i_{p}}{}_{j_{1}...j_{q}} + \sum_{s=1}^{p} \Gamma^{i_{s}}{}_{mi}\Omega^{i_{1}...i_{p}=m...i_{p}}{}_{j_{1}...j_{q}} + \dots$$

$$\dots - \sum_{s=1}^{q} \Gamma^{m}{}_{j_{s}i}\Omega^{i_{1}...i_{p}}{}_{j_{1}...j_{q}=m...i_{q}}, p+q=k. \quad (24)$$

2.6 Ковариантное дифференцирование тензоров в \mathbb{L}^n

Наличие связанности Γ^m_{ij} в \mathbb{L}^n означает, что в этом пространстве определена операция ковариантного дифференцирования.

Определение 11. Ковариантной производной от компонент тензора ${}^kA\in\mathcal{T}_n^{pq}(T_\mathcal{M}\mathbb{L}^n),\ k=p+q,$ (или иначе ковариантной производной относительно связности Γ^m_{ij}) называют следующий объект:

$$\nabla_{i}^{*} A^{i_{1} \dots i_{p}}_{j_{1} \dots j_{q}} + \sum_{s=1}^{p} \Gamma_{mi}^{i_{s}} A^{i_{1} \dots i_{s} = m \dots i_{p}}_{mi} - \sum_{s=1}^{q} \Gamma_{i,i}^{m} A^{i_{1} \dots i_{p}}_{j_{1} \dots j_{s} = m \dots j_{q}}.$$
 (25)

Теорема 2. Ковариантная производная от компонент тензора k—го ранга является компонентами тензора (k+1)—го ранга $\nabla \otimes^k A$ в \mathbb{L}^n , называемого

градиентом тензора:

$$\overset{*}{\nabla} \otimes {}^{k}A = A^{i_{1}\dots i_{p}}{}_{j_{1}\dots j_{q}} e^{i} \otimes e_{i_{1}} \otimes \dots \otimes e_{i_{p}} \otimes e^{j_{1}} \otimes \dots e^{j_{q}}, \qquad p+q=k. \quad (26)$$

2.7 Риманово пространство с аффинной связностью

В римановом пространстве \mathbb{V}^n у нас была определена метрика g_{ij} (ей соответствовала вполне определённая связность Γ^m_{ij}). Можно однако построить такое пространство, в котором будет одновременно определена и метрика g_{ij} , и некоторая «самостоятельная» связность Γ^m_{ij} , для которой уже не имеют места соотношения (12).

Определение 12. Элементарное n-мерное многообразие M^n называют римановым пространством аффинной связностью \mathbb{W}^n , если в каждой точке $\mathcal{M} \in M^n$ с координатами x^i заданы две системы функций g_{ij} и Γ^m_{ij} , вообще говоря, не связанные никакими соотношениями и удовлетворяющие свойствам 1-4 из определения 5 и 1,2 из определения 7 соответственно.

Поскольку в \mathbb{W}^n определена метрическая матрица g_{ij} , то можно образовать из неё символы Γ^m_{ij} по формуле (13)

$$\Gamma_{ij}^{m} = \frac{1}{2}g^{mk}(g_{ik,j} + g_{jk,i} - g_{ij,k}). \tag{27}$$

Символы Γ^m_{ij} уже не являются связностью: $\Gamma^*_{ij} \neq \Gamma^m_{ij}$.

2.8 Тензор Римана-Кристоффеля

Рассмотрим в точке $\mathcal{M} \in \mathbb{L}^n$ произвольный вектор $b = b^k e_k$ из $T_{\mathbb{L}^n}$ и вычислим его ковариантную производную относительно связности Γ^m_{ij} :

$$\overset{*}{\nabla_i}b^k = \frac{\partial b^k}{\partial X^i} + \overset{*}{\Gamma^k_{si}}b^s. \tag{28}$$

Вычислим вторую ковариантную производную:

$$\nabla_{j}^{*}\nabla_{i}^{*}b^{k} = \frac{\partial}{\partial X^{j}} + \Gamma_{mj}^{k}\nabla_{i}^{*}b^{m} - \Gamma_{ij}^{m}\nabla_{m}^{*}b^{k} = \frac{\partial^{2}b^{k}}{\partial X^{j}\partial X^{i}} + \frac{\partial\Gamma_{si}^{k}}{\partial X^{j}}b^{s} + \Gamma_{si}^{k}\frac{\partial b^{s}}{\partial X^{j}} + \Gamma_{mj}^{k}(\frac{\partial b^{m}}{\partial X^{i}} + \Gamma_{mj}^{k}b^{s}) - \Gamma_{ij}^{m}(\frac{\partial b^{k}}{\partial X^{m}} + \Gamma_{sm}^{k}b^{s}).$$

$$(29)$$

Поменяем теперь индексы i и j и образуем разность:

$$\nabla_{j}^{*} \nabla_{i}^{*} b^{k} - \nabla_{i}^{*} \nabla_{j}^{*} b^{k} = \left(\frac{\partial \Gamma_{si}^{k}}{\partial X^{j}} - \frac{\partial \Gamma_{sj}^{k}}{\partial X^{i}} + \Gamma_{mj}^{k} \Gamma_{si}^{m} - \Gamma_{mi}^{k} \Gamma_{sj}^{m}\right) b^{s} - \left(\Gamma_{ij}^{m} - \Gamma_{ji}^{m}\right) \nabla_{m}^{*} b^{k}. \tag{30}$$

Коэффициенты, стоящие в первой скобке, обозначим следующим образом:

$$R_{jis}^{*k} = \Gamma_{si,j}^{k} - \Gamma_{sj,i}^{k} + \Gamma_{si}^{m} \Gamma_{mj}^{k} + \Gamma_{sj}^{m} \Gamma_{mi}^{k}.$$
(31)

Здесь, как и ранее, $\Gamma^k_{si,j} = \partial \Gamma^k_{si} / \partial X^j$.

Теорема 3. Система коэффициентов $R_{jis}^{\ k}$, образованная по формуле (31), представляет собой компоненты тензора R четвёртого ранга из пространства $\mathcal{T}_n^{(31)}(T_{\mathcal{M}}\mathbb{L}^n)$:

$$\overset{4}{R} = R_{jis}^{\ \ k} e^j \otimes e^i \otimes e^s \otimes e_k \tag{32}$$

Определение 13. Тензор (32) называют тензором кривизны пространства \mathbb{L}^n относительно связности Γ^m_{ij} (или тензором Римана-Кристоффеля).

2.9 Тензор Риччи

В пространстве \mathbb{W}^n из тензора Римана-Кристоффеля можно образовать несколько тензоров второго ранга. Свёртка транспонированного тензора Римана-Кристоффеля 4R с метрическим тензором образует тензор второго ранга:

$$\overset{*}{\mathcal{R}} = {}^{4}R^{(2314)} \cdot \cdot E, \tag{33}$$

называемый тензором Риччи. Компоненты этого тензора имеют следующий вид:

$$\mathcal{R} = R_{ji}^* e^j \otimes R_{i_1 i_2 i_3 i_4} e^{i_2} \otimes e^{i_3} \otimes e^{i_1} \otimes e^{i_4} \cdot \cdot e^{i_4} \cdot \cdot e^k \otimes e_k =
= R_{i_1 i_2 i_3 i_4} \delta_k^{i_1} g^{i_4 k} e^{i_2} \otimes e^{i_3} = R_{kji}^{k} e^j \otimes e^i,$$
(34)

то есть

$${\stackrel{*}{R}}_{ji} = R_{kji}^{\ \ k} = R_{nji}^{\ \ k} \delta_k^n. \tag{35}$$

Подставляя в (35) выражение (31) для компонент тензора Римана-Кристоффеля, получаем:

$$\overset{*}{R}_{ji} = \frac{\partial \Gamma_{ij}^{k}}{\partial X^{k}} - \frac{\partial \Gamma_{ik}^{k}}{\partial X^{j}} + \Gamma_{ij}^{n} \Gamma_{nk}^{k} - \Gamma_{ik}^{n} \Gamma_{nj}^{k}. \tag{36}$$

Аналогичным образом можно ввести тензор Риччи относительно символов Γ_{ij}^k :

$$R_{ji} = R_{kji}^{\quad k} = R_{nji}^{\quad k} \delta_k^n, \tag{37}$$

$$R_{ji} = \Gamma_{ij,k}^k - \Gamma_{ik,j}^k + \Gamma_{ij}^m \Gamma_{mk}^k - \Gamma_{ik}^m \Gamma_{kj}^k.$$
(38)

2.10 Тензор Эйнштейна

Тензоры Эйнштейна $\overset{*}{G}$ и G образуются из тензоров Риччи $\overset{*}{\mathcal{R}}$ и \mathcal{R} следующим образом:

$$\overset{*}{G} = \overset{*}{\mathcal{R}} - \frac{1}{2} \overset{*}{\mathcal{R}} E, \qquad G = \mathcal{R} - \frac{1}{2} \mathcal{R} E, \tag{39}$$

где $\mathcal{R}=\stackrel{*}{R}\cdot\cdot E$ и $\mathcal{R}=R\cdot\cdot E$ – свертки тензоров Риччи с метрическим тензором.

Тензор Эйнштейна играет важную роль в общей теории относительности (см., например, [2], [3], [4]).

3 Практическая часть

3.1 Гауссова кривизна однополостного гиперболоида

Рассмотрим однополостный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1. {(40)}$$

Определение. Пусть ω -открытая область в двумерном пространстве \mathbb{R}^2 , тогда поверхностью \sum в трехмерном пространстве \mathbb{R}^3 называют отображение $\sum : \omega \to \mathbb{R}^3$, которое задаст с помощью вектор-функции $x = x(X^1, X^2), \quad (X^1, X^2) \in \omega \subset \mathbb{R}^2$ или с помощью трех числовых функций $x^i = x^i(X^1, X^2), i = 1,2,3$, зависящих от двух аргументов X^1 и X^2 .

Зададим поверхность с трех числовых функций $x^i = x^i(X^1, X^2)$, i = 1,2,3, зависящих от двух аргументов X^1 и X^2 .

Пусть $X^1 = u$, $X^2 = v$, тогда гиперболоид задается следующими тремя функциями:

$$\begin{cases} x = a \cdot chu \cdot cosv, \\ y = b \cdot chu \cdot sinv, \\ x = c \cdot shu. \end{cases}$$
(41)

Введем два локальных вектора базиса $\rho_i = \frac{\partial x}{\partial X^i}$ на поверхности:

$$\overline{\rho}_{1} = \frac{\partial x}{\partial X^{1}} = \frac{\partial x}{\partial X^{1}} \cdot \overline{e}_{1} + \frac{\partial y}{\partial X^{1}} \cdot \overline{e}_{2} + \frac{\partial z}{\partial X^{1}} \cdot \overline{e}_{3} = (42)$$

$$= a \cdot shu \cdot cosv \cdot \overline{e}_{1} + b \cdot shu \cdot sinv \cdot \overline{e}_{2} + c \cdot chu \cdot \overline{e}_{3},$$

$$\overline{\rho}_{2} = \frac{\partial x}{\partial X^{2}} = \frac{\partial x}{\partial X^{2}} \cdot \overline{e}_{1} + \frac{\partial y}{\partial X^{2}} \cdot \overline{e}_{2} + \frac{\partial z}{\partial X^{2}} \cdot \overline{e}_{3} =$$

$$= -a \cdot chu \cdot sinv \cdot \overline{e}_{1} + b \cdot chu \cdot cosv \cdot \overline{e}_{2}.$$

$$(43)$$

Введем метрическую матрицу поверхности:

$$g_{ij} = \rho_i \cdot \rho_j, \tag{44}$$

$$g_{11} = \rho_1 \cdot \rho_1 = a^2 \cdot sh^2 u \cdot cos^2 v + b^2 \cdot sh^2 u \cdot sin^2 v + c^2 \cdot ch^2 u,$$
 (45)

$$g_{12} = \rho_1 \cdot \rho_2 = -a^2 \cdot shu \cdot chu \cdot cosv \cdot sinv +$$

$$+b^2 \cdot shu \cdot chu \cdot cosv \cdot sinv,$$

$$(46)$$

$$g_{21} = \rho_2 \cdot \rho_1 = -a^2 \cdot shu \cdot chu \cdot cosv \cdot sinv +$$

$$+b^2 \cdot shu \cdot chu \cdot cosv \cdot sinv,$$

$$(47)$$

$$g_{22} = \rho_2 \cdot \rho_2 = a^2 \cdot ch^2 u \cdot sin^2 v + b^2 \cdot ch^2 u \cdot cos^2 v$$
. (48)

Определитель метрической матрицы g_{ij} :

$$g = det(g_{ij}) = g_{11} \cdot g_{22} - g_{12}^2 =$$

$$= (((c^2(-a^2 + b^2))cos^2v + a^2(b^2 + c^2))ch^2u - a^2 \cdot b^2)ch^2u.$$
(49)

Обозначим вторую производную от радиус-вектора как:

$$\rho_{ij} = \frac{\partial \rho_i}{\partial X^j} = \frac{\partial^2 x}{\partial X^i \partial X^j},\tag{50}$$

$$\overline{\rho}_{11} = \frac{\partial \rho_1}{\partial X^1} = \frac{\partial^2 x}{\partial X^1 \partial X^1} = \frac{\partial^2 x}{\partial X^1 \partial X^1} \cdot \overline{e}_1 + \frac{\partial^2 y}{\partial X^1 \partial X^1} \cdot \overline{e}_2 + \frac{\partial^2 z}{\partial X^1 \partial X^1} \cdot \overline{e}_3 = (51)$$

 $= a \cdot chu \cdot cosv \cdot \overline{e}_1 + b \cdot chu \cdot sinv \cdot \overline{e}_2 + c \cdot shu \cdot \overline{e}_3,$

$$\overline{\rho}_{12} = \frac{\partial \rho_1}{\partial X^2} = \frac{\partial^2 x}{\partial X^1 \partial X^2} = \frac{\partial^2 x}{\partial X^1 \partial X^2} \cdot \overline{e}_1 + \frac{\partial^2 y}{\partial X^1 \partial X^2} \cdot \overline{e}_2 + \frac{\partial^2 z}{\partial X^1 \partial X^2} \cdot \overline{e}_3 = (52)$$

$$= -a \cdot shu \cdot sinv \cdot \overline{e}_1 + b \cdot shu \cdot cosv \cdot \overline{e}_2,$$

$$\overline{\rho}_{21} = \frac{\partial \rho_2}{\partial X^1} = \frac{\partial^2 x}{\partial X^2 \partial X^1} = \frac{\partial^2 x}{\partial X^2 \partial X^1} \cdot \overline{e}_1 + \frac{\partial^2 y}{\partial X^2 \partial X^1} \cdot \overline{e}_2 + \frac{\partial^2 z}{\partial X^2 \partial X^1} \cdot \overline{e}_3 = (53)$$

$$= -a \cdot shu \cdot sinv \cdot \overline{e}_1 + b \cdot shu \cdot cosv \cdot \overline{e}_2,$$

$$\overline{\rho}_{22} = \frac{\partial \rho_2}{\partial X^2} = \frac{\partial^2 x}{\partial X^2 \partial X^2} = \frac{\partial^2 x}{\partial X^2 \partial X^2} \cdot \overline{e}_1 + \frac{\partial^2 y}{\partial X^2 \partial X^2} \cdot \overline{e}_2 + \frac{\partial^2 z}{\partial X^2 \partial X^2} \cdot \overline{e}_3 = (54)$$

$$= -a \cdot chu \cdot cosv \cdot \overline{e}_1 - b \cdot chu \cdot sinv \cdot \overline{e}_2.$$

Найдем коэффициенты b_{ij} второй квадратичной формы по формуле:

$$b_{ij} = \frac{1}{\sqrt{g}} \rho_{ij} \cdot \rho_1 \times \rho_2, \tag{55}$$

$$b_{11} = \frac{1}{\sqrt{g}} \rho_{11} \cdot \rho_1 \times \rho_2 = \tag{56}$$

$$= -\frac{a \cdot b \cdot c \cdot chu}{\sqrt{(((c^2(-a^2 + b^2))cos^2v + a^2(b^2 + a^2))ch^2u - a^2 \cdot b^2)ch^2u}},$$

$$b_{12} = \frac{1}{\sqrt{g}} \rho_{12} \cdot \rho_1 \times \rho_2 = b_{21} = \frac{1}{\sqrt{g}} \rho_{21} \cdot \rho_1 \times \rho_2 = 0, \tag{57}$$

$$b_{22} = \frac{1}{\sqrt{g}} \rho_{22} \cdot \rho_1 \times \rho_2 = \tag{58}$$

$$= \frac{a \cdot b \cdot c \cdot ch^3 u}{\sqrt{(((c^2(-a^2+b^2))cos^2v + a^2(b^2+a^2))ch^2u - a^2 \cdot b^2)ch^2u}} \,.$$

Если известны коэффициенты квадратичных форм g_{ij} и b_{ij} в каком-либо базисе ρ^i , то собственные значения k_i тензора B находим из характеристического уравнения:

$$det(b_{ii} - k_i \cdot g_{ii}) = 0, \ i = 1,2; \tag{59}$$

или в матричной записи

$$\begin{vmatrix} b_{11} - k_i \cdot g_{11} & b_{12} - k_i \cdot g_{12} \\ b_{12} - k_i \cdot g_{12} & b_{22} - k_i \cdot g_{22} \end{vmatrix} = 0.$$
 (60)

Определение. Собственные значения k_i тензора B k_1 и k_2 называют главными кривизнами поверхности.

Раскроем определитель (60) и получим квадратное уравнение:

$$k_i^2(g_{11} \cdot g_{22} - g_{12}^2) - k_i(b_{11} \cdot g_{22} + b_{22} \cdot g_{11}) + b_{11} \cdot b_{22} = 0.$$
 (61)

Решим квадратное уравнение (61):

$$D = (b_{11} \cdot g_{22} + b_{22} \cdot g_{11})^2 - 4 \cdot (g_{11} \cdot g_{22} - g_{12}^2)b_{11} \cdot b_{22} =$$

$$= \frac{(ch^4u \cdot b^2(((a^2 - b^2)cos^2v + b^2 + c^2)^2ch^4u - 2((a^2 + b^2 + 2c^2)cos^2v - b^2)ch^2u - }{(((-a^2c^2 + b^2c^2)cos^2v + a^2(b^2 + c^2))ch^2u - b^2)}$$
(62)

$$\frac{-b^2-c^2)(a-b)(a+b)ch^2u+(a-b)^2(a+b)^2)c^2a^2)}{-a^2b^2)}.$$

Получаем главные кривизны:

$$k_1 = \frac{b_{11} \cdot g_{22} + b_{22} \cdot g_{11} + \sqrt{D}}{2(g_{11} \cdot g_{22} - g_{12}^2)},\tag{63}$$

$$k_2 = \frac{b_{11} \cdot g_{22} + b_{22} \cdot g_{11} - \sqrt{D}}{2(g_{11} \cdot g_{22} - g_{12}^2)}.$$
 (64)

Определение. Произведение главных криивизн называется полной или гауссовой кривизной:

$$K = k_1 \cdot k_2 = -\frac{a^2 b^2 c^2}{(((-a^2 c^2 + b^2 c^2) cos^2 v + a^2 (b^2 + c^2)) ch^2 u - a^2 b^2)^2}$$
 (65)

ИЛИ

$$K = \det \frac{b_{ij}}{g_{ij}} = \frac{b}{g} = \frac{b_{11} \cdot b_{22}}{g} =$$
 (66)

$$= -\frac{a^2b^2c^2}{(((-a^2c^2+b^2c^2)cos^2v+a^2(b^2+c^2))ch^2u-a^2b^2)^2}.$$

Перейдем к декартовой системе координат и получим гауссову кривизну гиперболоида:

$$K = -\frac{1}{a^2b^2c^2\left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)^2}.$$
 (67)

3.2 Гауссова кривизна мнимого однополостного гиперболоида

Рассмотрим мнимый однополостный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1. ag{68}$$

Пусть $X^1 = u$, $X^2 = v$, тогда гиперболоид задается следующими тремя функциями:

$$\begin{cases} x = a \cdot shu \cdot cosv, \\ y = b \cdot shu \cdot sinv, \\ z = c \cdot chu. \end{cases}$$
 (69)

Введем два локальных вектора базиса $\rho_i = \frac{\partial x}{\partial X^i}$ на поверхности:

$$\overline{\rho}_{1} = \frac{\partial x}{\partial X^{1}} = \frac{\partial x}{\partial X^{1}} \cdot \overline{e}_{1} + \frac{\partial y}{\partial X^{1}} \cdot \overline{e}_{2} + \frac{\partial z}{\partial X^{1}} \cdot \overline{e}_{3} = (70)$$

$$= a \cdot chu \cdot cosv \cdot \overline{e}_{1} + b \cdot chu \cdot sinv \cdot \overline{e}_{2} + c \cdot shu \cdot \overline{e}_{3},$$

$$\overline{\rho}_{2} = \frac{\partial x}{\partial X^{2}} = \frac{\partial x}{\partial X^{2}} \cdot \overline{e}_{1} + \frac{\partial y}{\partial X^{2}} \cdot \overline{e}_{2} + \frac{\partial z}{\partial X^{2}} \cdot \overline{e}_{3} =$$

$$= -a \cdot shu \cdot sinv \cdot \overline{e}_{1} + b \cdot shu \cdot cosv \cdot \overline{e}_{2}.$$

$$(71)$$

Введем метрическую матрицу поверхности:

$$g_{ij} = \rho_i \cdot \rho_j, \tag{72}$$

$$g_{11} = \rho_1 \cdot \rho_1 = a^2 \cdot ch^2 u \cdot cos^2 v + b^2 \cdot ch^2 u \cdot sin^2 v + c^2 \cdot sh^2 u, \tag{73}$$

$$g_{12} = \rho_1 \cdot \rho_2 = -a^2 \cdot shu \cdot chu \cdot cosv \cdot sinv +$$

$$+b^2 \cdot shu \cdot chu \cdot cosv \cdot sinv,$$
(74)

$$g_{21} = \rho_2 \cdot \rho_1 = -a^2 \cdot shu \cdot chu \cdot cosv \cdot sinv +$$

$$+b^2 \cdot shu \cdot chu \cdot cosv \cdot sinv,$$
(75)

$$g_{22} = \rho_2 \cdot \rho_2 = a^2 \cdot sh^2 u \cdot sin^2 v + b^2 \cdot sh^2 u \cdot cos^2 v$$
. (76)

Определитель метрической матрицы g_{ii} :

$$g = det(g_{ij}) = g_{11} \cdot g_{22} - g_{12}^{2} =$$

$$= (((c^{2}(-a^{2} + b^{2}))cos^{2}v + a^{2}(b^{2} + c^{2}))ch^{2}u + c^{2}((a^{2} - b^{2})cos^{2}v - a^{2}))sh^{2}u.$$
(77)

Обозначим вторую производную от радиус-вектора как:

$$\rho_{ij} = \frac{\partial \rho_i}{\partial X^j} = \frac{\partial^2 x}{\partial X^i \partial X^j},\tag{78}$$

$$\overline{\rho}_{11} = \frac{\partial \rho_1}{\partial X^1} = \frac{\partial^2 x}{\partial X^1 \partial X^1} = \frac{\partial^2 x}{\partial X^1 \partial X^1} \cdot \overline{e}_1 + \frac{\partial^2 y}{\partial X^1 \partial X^1} \cdot \overline{e}_2 + \frac{\partial^2 z}{\partial X^1 \partial X^1} \cdot \overline{e}_3 = (79)$$

$$= a \cdot shu \cdot cosv \cdot \overline{e}_1 + b \cdot shu \cdot sinv \cdot \overline{e}_2 + c \cdot chu \cdot \overline{e}_3,$$

$$\overline{\rho}_{12} = \frac{\partial \rho_1}{\partial X^2} = \frac{\partial^2 x}{\partial X^1 \partial X^2} = \frac{\partial^2 x}{\partial X^1 \partial X^2} \cdot \overline{e}_1 + \frac{\partial^2 y}{\partial X^1 \partial X^2} \cdot \overline{e}_2 + \frac{\partial^2 z}{\partial X^1 \partial X^2} \cdot \overline{e}_3 = (80)$$
$$= -a \cdot chu \cdot sinv \cdot \overline{e}_1 + b \cdot chu \cdot cosv \cdot \overline{e}_2,$$

$$\overline{\rho}_{21} = \frac{\partial \rho_2}{\partial X^1} = \frac{\partial^2 x}{\partial X^2 \partial X^1} = \frac{\partial^2 x}{\partial X^2 \partial X^1} \cdot \overline{e}_1 + \frac{\partial^2 y}{\partial X^2 \partial X^1} \cdot \overline{e}_2 + \frac{\partial^2 z}{\partial X^2 \partial X^1} \cdot \overline{e}_3 = (81)$$

 $= -a \cdot chu \cdot sinv \cdot \overline{e}_1 + b \cdot chu \cdot cosv \cdot \overline{e}_2,$

$$\overline{\rho}_{22} = \frac{\partial \rho_2}{\partial X^2} = \frac{\partial^2 x}{\partial X^2 \partial X^2} = \frac{\partial^2 x}{\partial X^2 \partial X^2} \cdot \overline{e}_1 + \frac{\partial^2 y}{\partial X^2 \partial X^2} \cdot \overline{e}_2 + \frac{\partial^2 z}{\partial X^2 \partial X^2} \cdot \overline{e}_3 = (82)$$

$$= -a \cdot shu \cdot cosv \cdot \overline{e}_1 - b \cdot shu \cdot sinv \cdot \overline{e}_2.$$

Найдем коэффициенты b_{ij} второй квадратичной формы по формуле

$$b_{ij} = \frac{1}{\sqrt{g}} \rho_{ij} \cdot \rho_1 \times \rho_2, \tag{83}$$

$$b_{11} = \frac{1}{\sqrt{g}} \rho_{11} \cdot \rho_1 \times \rho_2 = \tag{84}$$

$$=\frac{a\cdot b\cdot c\cdot shu}{\sqrt{(((c^2(-a^2+b^2))cos^2v+a^2(b^2+c^2))ch^2u+c^2((a^2-b^2)cos^2v-a^2))sh^2u}},$$

$$b_{12} = \frac{1}{\sqrt{g}} \rho_{12} \cdot \rho_1 \times \rho_2 = b_{21} = \frac{1}{\sqrt{g}} \rho_{21} \cdot \rho_1 \times \rho_2 = 0, \tag{85}$$

$$b_{22} = \frac{1}{\sqrt{g}} \rho_{22} \cdot \rho_1 \times \rho_2 = \tag{86}$$

$$=\frac{a\cdot b\cdot c\cdot sh^3u}{\sqrt{(((c^2(-a^2+b^2))cos^2v+a^2(b^2+c^2))ch^2u+c^2((a^2-b^2)cos^2v-a^2))sh^2u}}\,.$$

Раскроем определитель (60) и получим квадратное уравнение (61). Решим квадратное уравнение (61):

$$D = (b_{11} \cdot g_{22} + b_{22} \cdot g_{11})^2 - 4 \cdot (g_{11} \cdot g_{22} - g_{12}^2)b_{11} \cdot b_{22} = \frac{(a^2c^2(((a^2 - b^2)cos^2v + b^2 + c^2)^2ch^4u + (-2(a - b)^2(a + b)^2cos^4v + 2(a - b)^2(a + b)^2cos^4v + 2(a - b)^2(a + b)^2cos^2v + a^2(b^2 + c^2))ch^2u + \frac{(b^2c^2)cos^2v - 2(b^2 + c^2)(a^2 + c^2))ch^2u + ((a^2 - b^2)cos^2u - a^2 - c^2)^2)sh^4b^2)}{+c^2((a^2 - b^2)cos^2v - a^2)}.$$

Получаем главные кривизны (63), (64), с помощью которых по формуле (65) и (66) получаем гауссову кривизну:

$$K = k_1 \cdot k_2 = \frac{a^2 b^2 c^2}{(((-a^2 + b^2)c^2 cos^2 u + a^2 (b^2 + c^2))ch^2 u + c^2 ((a^2 - b^2)cos^2 v - a^2))^2}$$
(88)

ИЛИ

$$K = \det \frac{b_{ij}}{g_{ij}} = \frac{b}{g} = \frac{b_{11} \cdot b_{22}}{g} =$$
 (89)

$$=\frac{a^2b^2c^2}{(((-a^2+b^2)c^2cos^2u+a^2(b^2+c^2))ch^2u+c^2((a^2-b^2)cos^2v-a^2))^2}.$$

Перейдем к декартовой системе координат:

$$K = \frac{1}{a^2 b^2 c^2 \left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)^2}.$$
 (90)

3.3 Скалярная кривизна однополостного гиперболоида

Символы Кристоффеля второго рода вычислим по следующей формуле:

$$\Gamma_{ij}^{m} = \frac{1}{2} g^{mk} \left(\frac{\partial g_{ik}}{\partial X^{j}} + \frac{\partial g_{jk}}{\partial X^{i}} - \frac{\partial g_{ij}}{\partial X^{k}} \right). \tag{91}$$

Получаем ненулевые символы Кристоффеля:

$$\Gamma_{11}^{1} = \frac{shu \cdot chu(cos^{2}v(-a^{2}c^{2} + b^{2}c^{2}) + a^{2}(b^{2} + c^{2}))}{((-a^{2}c^{2} + b^{2}c^{2})cos^{2}v + a^{2}(b^{2} + c^{2}))ch^{2}u - a^{2}b^{2}},$$
(92)

$$\Gamma_{22}^{1} = -\frac{shu \cdot chu \cdot a^{2}b^{2}}{((-a^{2}c^{2} + b^{2}c^{2})cos^{2}v + a^{2}(b^{2} + c^{2}))ch^{2}u - a^{2}b^{2}},$$
 (93)

$$\Gamma_{11}^{2} = \frac{(-a^{2}c^{2} + b^{2}c^{2})sinv \cdot cosv}{((-a^{2}c^{2} + b^{2}c^{2})cos^{2}v + a^{2}(b^{2} + c^{2}))ch^{2}u - a^{2}b^{2}},\tag{94}$$

$$\Gamma_{12}^2 = \Gamma_{21}^2 = \frac{shu}{chu},\tag{95}$$

$$\Gamma_{22}^{2} = \frac{(a^{2}c^{2} - b^{2}c^{2})ch^{2}u \cdot sinv \cdot cosv}{((-a^{2}c^{2} + b^{2}c^{2})cos^{2}v + a^{2}(b^{2} + c^{2}))ch^{2}u - a^{2}b^{2}}.$$
 (96)

Вычислим скалярную кривизну по формуле:

$$R = g^{ij}R_{ji} = g^{ij}\left(\frac{\partial\Gamma_{ij}^k}{\partial X^k} - \frac{\partial\Gamma_{ik}^k}{\partial X^j} + \Gamma_{ik}^n\Gamma_{nk}^k - \Gamma_{ik}^n\Gamma_{nj}^k\right) = \tag{97}$$

$$=-\frac{2a^2b^2c^2}{(((-a^2c^2+b^2c^2)cos^2v+a^2(b^2+c^2))ch^2u-a^2b^2)^2}\,.$$

Перейдем к декартовой системе координат:

$$K = -\frac{2}{a^2b^2c^2\left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)^2}.$$
 (98)

Получили, что скалярная кривизна равна двум гауссовым кривизнам.

3.4 Пределы изменения гауссовой кривизны однополостного гиперболоида

Найдем условные экстремумы гауссовой кривизны с помощью функции Лагранжа[5]:

$$F(x,y,z) = -\frac{1}{a^2b^2c^2\left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)^2} + \lambda\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1\right). \tag{99}$$

Определим стационарные точки из системы:

$$\begin{cases} \frac{\partial F}{\partial x} = \frac{4x}{a^6 b^2 c^2 \left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)^3} + \frac{2\lambda x}{a^2} = 0, \\ \frac{\partial F}{\partial y} = \frac{4y}{a^2 b^6 c^2 \left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)^3} + \frac{2\lambda y}{b^2} = 0, \\ \frac{\partial F}{\partial z} = \frac{4z}{a^2 b^2 c^6 \left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)^3} - \frac{2\lambda z}{c^2} = 0, \\ \varphi(x, y, x) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1 = 0. \end{cases}$$

$$(100)$$

Получили стационарные точки, которые находятся на границах гиперолоида:

$$\begin{cases} x = a, y = 0, z = 0, \\ x = -a, y = 0, z = 0, \\ x = 0, y = b, z = 0, \\ x = 0, y = -b, z = 0, \\ x = 0, y = 0, z = ic, \\ x = 0, y = 0, z = -ic. \end{cases}$$
(101)

Значения гауссовой кривизны в этих точках:

$$K\Big|_{x=\pm a} = -\frac{a^2}{b^2 c^2},$$

$$K\Big|_{y=\pm b} = -\frac{b^2}{a^2 c^2},$$

$$K\Big|_{z=\pm ic} = -\frac{c^2}{a^2 b^2}.$$
(102)

ЗАКЛЮЧЕНИЕ

В заключение хотелось бы сказать, что в ходе курсовой работы было проведено исследование гуассовых и скалярных кривизн однополосного гиперболоида и мнимого однополостного гиперболоида .

Также были решены следующие задачи:

- ознакомление с римановыми пространствами;
- нахождение гауссовых кривизн;
- нахождение скалярной кривизны;
- нахождение пределов изменения экстремумов гауссовой крвизны.

В результате исследований гауссова кривизна однополостного гиперболоида получилась отрицательной, что и требовалось получить. Скалярная кривизна равна двум гауссовым кривизнам. Максимальное и минимальное значения гауссовой кривизны достигаются на концах однополостного гиперболоида.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Димитриенко Ю.И. Тензорное исчисление: Учеб.пособие для вузов. М.:Высш, шк., 2001, 575 с.
 - 2. Петров А.З. Пространства Эйнштейна. М.: Физматгиз, 1961, 464 с.
- 3. Рашевский П.К. Риманова геометрия и тензорный анализ. М.: Наука, 1967, 664 с.
 - 4. Шипов Г.И. Теория физического вакуума. НТ-Центр, 1993, 362 с.
- 5. Функции нескольких переменных : методические указания к выполнению домашних заданий по курсу «Линейная алгебра и функции нескольких переменных» / С.Н. Ефремова, А.В. Косова, Т.А. Ласковая. М. : Издательство МГТУ Н.Э. Баумана, 2015. 48 с.

приложение а