

图灵机的其他 模型

姚刚

目录

对图灵机的较 小修改

储的图灵机

非确定型图灵机

通用图灵机 线性有界自动

# 第十章 图灵机的其他模型

姚刚

中国科学院信息工程研究所



#### 目录

图灵机的其他 模型

姚刚

目录

对图灵机的较 小修改

储的图灵机 非确定规图3

非确定型图录 机

通用图灵机 线性有界自动 机

- ●对图灵机的较小修改
- ② 具有更复杂存储的图灵机
- 3 非确定型图灵机
- ₫ 通用图灵机
- 5 线性有界自动机



#### 图灵机的定义

图灵机的其他 模型

姚刚

目录 对图灵机的较

小修改 具有更复杂存

具有更复杂存储的图灵机 非确定型图灵

通用图灵机 线性有界自动  $\delta, q_0, \square, F$ )的定义,这并不是唯一可行 的,还存在着若干等价的定义。我们所 能得出的关于图灵机能力的结论在很大 程度上独立于为之选定的特定结构。我 们将介绍几个更加复杂的图灵机, 在某 种意义上讲,它们与标准图灵机的能力 是等价的。



## 较小的改动

图灵机的其他 模型 姚刚

对图灵机的较

先考虑对标准图灵机做较小的改动. 并 探讨这些改动是否导致了一般概念上的 差异。每次改动后,我们要解决一些问 题:新的自动机和改动前的自动机是否 有实质上的区别?一类自动机与另一类 子动机的"实质差别"是什么?有时虽 然定义上有明显的差异, 但是这些差异 不一定能导致令我们感兴趣的结果。我 们需要在一般意义上定义自动机类的等 价性和不等价性。



# 自动机类的等价性

图灵机的其他 模型

姚刚

目录 对图灵机的较

**小修改** 具有更复杂存 储的图灵机

非确定型图灵 机 通用图灵机 定义 (自动机类的等价性)

两个自动机是等价的,如果他们接受同 样的语言。考虑两个自动机类(classes of automata) $C_1$ 和 $C_2$ , 如果对于 $C_1$ 中 的任意自动机 $M_1$ ,存在 $C_2$ 中的自动 机 $M_2$ , 满足 $L(M_1) = L(M_2)$ , 我们就 称 $C_2$ 具有至少和 $C_1$ 相同的能力。如 果对于 $C_2$ 中的任意自动机 $M_2$ , 也都 存在 $C_1$ 中的自动机 $M_1$ ,满足 $L(M_1) =$  $L(M_2)$ , 我们就称 $C_1$ 和 $C_2$  是等价的。



#### 模拟(simulation)

图灵机的其他 模型 姚刚

目录 对图灵机的较 小修改

共有文及示行 储的图灵机 非确定型图灵

非确定型图页机

通用图灵机 线性有界自动

设M是一个自动机。我们称自动机M可 以模拟M的一个计算,如果 $\hat{M}$ 可以按 照如下的方式模拟M的计算。设 $d_0$ .  $d_1, \cdots$  是M计算的瞬时描述序列,即  $d_0 \vdash_M d_1 \vdash_M \cdots \vdash_M d_n \vdash_M \cdots$ , 则称 $\hat{M}$ 模拟这个计算,如果 $\hat{M}$ 可以执 行和M类似的如下计算



# 模拟(续)

图灵机的其他 模型 姚刚

对图灵机的较

 $\hat{d}_0 \stackrel{*}{\vdash}_{\hat{M}} \hat{d}_1 \stackrel{*}{\vdash}_{\hat{M}} \cdots \stackrel{*}{\vdash}_{\hat{M}} \hat{d}_n \stackrel{*}{\vdash}_{\hat{M}} \cdots$ , 其中 $\hat{d}_0, \hat{d}_1, \cdots$ 是瞬时描述,并且每个瞬 时描述都对应于M的唯一一个格局。 换句话说,如果我们知道 M执行的计 算以及初始格局, 我们就能准确地确 定M所执行的计算。



#### 带不动选择的图灵机

图灵机的其他 模型 姚刚

对图灵机的较

在标准图灵机的定义中, 读写头要么向 左移动, 要么向右移动, 而有时为了方 便, 我们引入第三种选择, 即读写头重 写带上单元后位置保持不动。于是, 我 们修改标准图灵机的定义, 得到新的带 不动选择的图灵机(Turing machine with stay-option)的定义。



#### 带不动选择的图灵机

图灵机的其他 模型 姚刚

所 協的图灵机 非磁空刑图 B

非确定型图灵 机

通用图灵机 线性有界自动 将标准图灵机的定义中的转移函数替换为 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ 。这里,S表示读写头的位置保持不动。

#### 定理

带不动选择的图灵机类与标准图灵机类等价。



# 多道图灵机

模型姚刚

图灵机的其他

对图灵机的较 小修改

具有更复杂存储的图灵机 非确定型图灵

机 通用图灵机 线性有界自动

力。

在标准图灵机中, 每个带上的符号可以 是一些符号的组合体, 而不仅仅是单个 符号。如果我们将标准图灵机中带上的 每个单元划分为多个部分, 每个部分都 称为道(track),每个道包含多元组的一 个成员。基于这样的直观认识, 这样的 图灵机有时被称为多道图灵机(Turing machine with multiple track).

这样的改变并没有扩展标准图灵机的能



## 单向无穷带图灵机

图灵机的其他 模型 姚刚

目录 对图灵机的较 小级器

具有更复杂存 储的图灵机 非确定型图灵

机通用图灵机

通用图灵机 线性有界自示

如果将标准图灵机的定义中的带改为单向无穷的,即带存在一个左边界,这样的图灵机称为单向无穷带图灵机(Turing machine with semi-infinite tape)。这一模型与标准图灵机的区别在于: 当读写头位于带的左边界时,不能向左移动。

#### 定理

单向无穷带图灵机类与标准图灵机类等价。



# 离线图灵机

图灵机的其他 模型 姚刚

目录 对图灵机的较

具有更复杂存储的图灵机

机 通用图灵机 线性有界白: 在自动机的一般定义中包含一个输入文件和一个临时存储空间。

如果在标准图灵机中加入输入文件, 我们所得到的就是离线图灵机(off-line Turing machine)。在离线图灵机中,每 一步转换都是由内部状态、从输入文件 当前读到的符号以及读写头所见到的带 上的符号控制的。

#### 定理

离线图灵机类与标准图灵机类等价。



## 具有复杂存储结构的图灵机

图灵机的其他 模型 姚刚

对图灵机的较小修改

储的图灵机 非确定型图灵 机

通用图灵机 线性有界自动 在标准图灵机 $M = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$ 的 定义中,存储装置是如此简单,以至于 人们可能以为通过将存储装置复杂化有 可能增强图灵机的能力。

事实上,将图灵机的存储装置复杂化并没有增强图灵机的能力。



## 多带图灵机

图灵机的其他 模型 姚刚

目求 对图灵机的氧 小修改

具有更复杂存 储的图灵机 非确定型图灵

非确定空图火机 通用图灵机

通用图灵机 线性有界自:

多带图灵机(multitape Turing machine)是 一个有多条带的图灵机, 每一条带都 有一个被独立控制的读写头。多带图 灵机的转移函数不同于标准图灵机, 一般我们如下定义n-带图灵机:M= $(Q, \Sigma, \Gamma, \delta, q_0, \square, F)$ ,  $\not\equiv PQ$ ,  $\Sigma$ ,  $\Gamma$ ,  $q_0$ , 定义与标准图灵机相同, 不同的是转移 函数定义了发生在所有带上的转移:  $\delta: Q \times \Gamma^n \to Q \times \Gamma^n \times \{L, R\}^n$ .



# 定理

图灵机的其他 模型 姚刚

考察转移函数

可图灵机的较小修改 具有更复杂存

D校

储的图灵机 执

型用图灭机 浅性有界自动 几  $\delta(q_0, a, e) = (q_1, x, y, L, R)$ 

执行之前和执行之后的情况。

#### 定理

多带图灵机类与标准图灵机类是等价 的。

考虑语言 $\{a^nb^n\}$ ,试给出识别该语言的多带图灵机。



## 多维图灵机

图灵机的其他 模型 姚刚

储的图灵机

多维图灵机(multidimensional Turing machine)是一种其带在多个维度上都可以 无限扩展的图灵机。在二维图灵机的形 式化定义中, 转移函数具有如下形式:  $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, U, D\},$ 其中, U和D分别表示读写头向上移动 和向下移动。

#### 定理

多维图灵机类与标准图灵机类是等价 的。



#### 引入非确定性

图灵机的其他 模型 姚刚

目录 对图灵机的氧 小修改

具有更复杂存储的图灵机 非确定型图灵

通用图灵机 线性有界自动 机

虽然根据图灵论题似乎可以得出特定的 带结构并不会影响图灵机能力的结论, 但是这一结论对于非确定型图灵机来说 则是不成立的。因为非确定型引入了选 择,从而具有某种非机械化的特性,此 时不能再用图灵论题了。 为了证明非确定型图灵机与标准图灵机 的能力相同, 需要更仔细地考察非确定

性带来的影响。用模拟技术证明非确定

性行为可以通过确定的方式加以处理。



## 非确定型图灵机

图灵机的其他 模型 姚刚

目录

对图灭机的较 小修改

储的图灵机

非确定型图灵 机

通用图灵机

定义 (非确定型图灵机)

非确定型图灵机类似于标准定义中的图 灵机,只是转移函数 $\delta$ 变为

 $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L,R\}}$ .

只要含有非确定性,δ的值域就是一个由可能发生的转移构成的集合。对每一步转移,图灵机都可以从集合中任意选择一个。



## 符号串的接受器

图灵机的其他 模型

姚刚

对图灵机的

具有更复杂存储的图录机

非确定型图灵

通用图灵机

因为非确定性在计算函数中的作用并不明显,所以我们通常将非确定型图灵机 看作符号串的接受器。

非确定型图灵机接受符号串w,如果存在某个可行的迁移序列满足

$$q_0w \stackrel{*}{\vdash} x_1q_fx_2$$
,

其中 $q_f \in F$ 。

#### 例子

图灵机的其他 模型 姚刚

目录

对图灵机的较 小修改

储的图灵机

非确定型图灵 机

通用图灵机

线性有界自动 机 如果一个图灵机有如下转移函数:

$$\delta(q_0, a) = \{(q_1, b, R), (q_2, c, L)\},\$$

那么这个图灵机就是非确定型的。

#### 定理

非确定型图灵机类与确定型图灵机类是等价的。



## 模拟非确定型图灵机

图灵机的其他 模型 姚刚

目录 对图灵机的氧 小修改

储的图灵机 非确定型图灵

非确定型图灵机

通用图灵机 线性有界自动

非确定性可以被看作确定型的回溯算 法。确定型图灵机只要能记录回溯过 程中的状态,就可以模拟非确定型图灵 机。可以换一种观点看非确定性:一个 非确定型图灵机可以被看作是一个可以 在任何必要的时刻都能复制自身的图灵 机。当有多种选择时,图灵机会复制多 个自身, 然后每个图灵机去执行一种可 能的迁移。



## 与图灵论题相悖的论断

图灵机的其他 模型 姚刚

目录 对图灵机的较 小修改 具有更复杂存

非确定型图录机

通用图灵机 线性有界白: "一个标准图灵机是一台服务于特殊目的的计算机,一旦δ确定了,这台机器就被限制于执行某种特定的计算。而数字计算机却是通用的,人们可以对它编程,使其在不同的时间作不同的工作,因此,图灵机与数字计算机是不等价的。"

我们通过设计一台可重编程的图灵机 (reprogrammable Turing machine)来解决这个问题,我们把这类图灵机称为通用图灵机 (universal Turing machine)。



## 建造通用图灵机

图灵机的其他 模型 姚刚

目录 对图灵机的: 小修改

具有更复杂存储的图灵机 非确定型图灵

**通用图灵机** 线性有界自动 机 通用图灵机 $M_u$ 以任意一台图灵机M的描述和符号串w作为输入,并可以模拟M在w上的计算。

为了建造这样的 $M_u$ , 先选择一种图灵

机的标准描述方式。我们不失一般性地假定 $Q = \{q_1, q_2, \dots, q_n\}$ ,其中 $q_1$ 是初态, $q_2$ 是唯一的终态。假设 $\Gamma = \{a_1, a_2, \dots, q_n\}$ 

 $\dots, a_m$ }, 其中 $a_1$ 表示空白符。 然后我们选择一种编码方式,使得 $q_1$ 被 编码为1,  $q_2$ 被编码为11, 以此类推。



# 建造通用图灵机(续)

图灵机的其他 模型 姚刚

目录 对图灵机的等 小修改

具有更复杂存 储的图灵机 非确定型图灵

通用图灵机

类似地, $a_1$ 被编码为1, $a_2$ 被编码为11,以此类推。符号0作为1串之间的分隔符。

有了如上对初态、终态以及空格符的定义,我们就可以用 $\delta$ 完全描述任何一个图灵机了。于是任何一个图灵机都可以被编码为一个有限的 $\{0,1\}^+$ 上的符号串,并且对任给的一个图灵机M的编码,我们都可以按唯一的方式解码。



# 建造通用图灵机(续)

图灵机的其他 模型 姚刚

目录 对图灵机的较 小修改 具有更复杂存 储的图灵机

非确定型图列机

通用图灵机 线性有界自

一个通用图灵机 $M_u$ 包括一个 $\{0,1\}$ 上的字母表和一个多带图灵机结构。

对于任意给定的输入M和w, 1带用于 记录M定义的编码, 2带记录M的带内 容, 3带记录M的内部状态。 $M_u$ 首先查 看2带和3带的内容以决定M的当前格 局. 然后查看1带以决定M 在此格局 下的动作,最后修改2带和3带以反映此 次迁移的结果。



## 通用计算机的模型

图灵机的其他 模型 姚刚

目录 对图灵机的 4 小修改

具有更复杂存 储的图灵机 非确定型图灵

**通用图灵机** 线性有界自动 机 有理由建造一台实际的通用图灵机, 但 这一建造过程并无乐趣。相比之下我们 更喜欢使用图灵假设。我们可以用某种 程序设计语言实现这一点,给出一台通 用图灵机在高级语言上的实现。因此, 我们完全可以期望用一台标准图灵机完 成这样的工作。于是, 我们断言下述图 灵机存在:对于任意给定的一个程序, 它都可以完成此程序规定的计算。这种 图灵机就是通用计算机的模型。



图灵机的其他

模型

# 可数集和不可数集

姚剛 目录 对图灵机的率 小修改

具有更复杂存 诸的图灵机 非确定型图灵

**通用图灵机** 线性有界自动 机 有些集合是有限的, 有些集合是无限 的。对于无限集合, 我们将其划分为可 数集(countable) 和不可数(uncountable) 集。如果一个集合的元素可以一一映射 到正整数集,就称这个集合可数。这也 就是说我们可以按照某种顺序写出这个 集合的元素。如果我们能按照某种方法 顺序地写出集合中的元素, 就证明该集 合是可数的。我们将这类方法称为枚举 过程(enumeration procedure)。



## 枚举过程

图灵机的其他 模型

姚刚

目录 对图灵机的:

具有更复杂存 储的图灵机

a的图灭机 丰确定型图灵 凡

通用图灵机 线性有界自动

#### 定义 (枚举过程)

 $\Diamond S$ 为字母表 $\Sigma$ 上的符号串的集合。则S的枚举过程就是一个执行下列计算步骤的图灵机:

 $q_0\Box \stackrel{*}{\models} q_s x_1 \# s_1 \stackrel{*}{\models} q_s x_2 \# s_2 \stackrel{*}{\models} \cdots$ , 其中, $x_i \in \Gamma - \{\#\}$ , $s_i \in S$ 。用此方

式,S中的每一个符号串s都会在有限步内被产生。状态 $q_s$ 用于表示S的成员

状态。即,每当机器进入状态 $q_s$ 时,#后面的符号串一定是S中的成员。



#### 定理

图灵机的其他 模型

姚刚

日求

对图灵机的较 小修改 目去 更 包 九 右

非确定型图员

非确定型图灵机

通用图灵机 线性有界自动 令 $\Sigma = \{a,b,c\}$ 。找到某种顺序枚举出集合 $S = \Sigma^+$ 中的所有元素,从而证明集合S是可数的。

#### 定理

所有图灵机构成的无穷集合是可数的。



## 受限制的图灵机

图灵机的其他 模型 姚刚

线性有界自动

能力。比如,下推自动机可以看作是有 一条带的非确定型图灵机, 而且这条带 必须以栈的方式使用。有穷自动机可以 看成一个离线自动机, 输入只能从左到 右地读一次,并且不能重写,带上至多 可以使用有限个多余的单元作为工作空 间, 空间长度对所有输入是固定的。

虽然我们不能通过使图灵机的带结构

复杂化而使其功能变强,但是我们可

以通过限制对带的使用而限制图灵机的



#### 一种感兴趣的限制

图灵机的其他 模型

姚刚

目录

对图灵机的報 小修改

储的图灵机非确定型图灵

非确定型图灵 机 通用图录机

週用图灵机 线性有界自动 机 如果我们要求图灵机只能工作于带的输入部分,那么,较长的输入符号串就意味着较多的工作空间。这样的限制定义了一种自动机:线性有界自动机(linear bounded automata, LBA)。

线性有界自动机也有一条无限长的带, 但带上能够使用的部分的长度是输入部 分的函数。



#### 左端标记和右端标记

图灵机的其他 模型

姚刚

线性有界自动

为了限制使用部分的长度, 我们将输入 部分包含在两个特殊的符号之间: 左端 标记(left-end marker)([)和右端标记(rightend marker)(]).

对于一个输入w. 图灵机的初始格局由 瞬时描述 $q_0[w]$ 给出。两个端点标记([和]) 所在的单元不能被重写, 读写头也不能 移动到[的左边或]的右边。



#### 线性有界自动机

图灵机的其他 模型

姚刚

目录

对图灵机的较 小修改

储的图灵机

非确定型图录 机

通用图灵机

线性有界自动

#### 定义 (线性有界自动机)

一个线性有界自动机是一个非确定型 图灵机 $M = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$ , 具有 如非确定型图灵机的定义中所述的限 制,并且字母表∑必须包含两个特殊的 符号"/"和"/",并且 $\delta(q_i,[)$ 只能包 含形如 $(q_i,[,R)$ 的元素,  $\delta(q_i,])$ 只能包含 形如 $(q_i, ], L)$ 的元素。



#### 线性有界自动机接受的语言

图灵机的其他 模型

姚刚

目录

对图灵机的较 小修改

储的图灵机

非确定型图灭 机

通用图灵机 线性有界自动

#### 定义 (线性有界自动机接受的语言)

符号串w被一个线性有界自动机接受,如果对于某个 $q_f \in F$ ,  $x_1, x_2 \in \Gamma^*$ , 存在一个可行的迁移序列

$$q_0[w] \stackrel{*}{\vdash} [x_1q_fx_2]$$
.

被线性有界自动机接受的语言就是所有被接受的符号串构成的集合。

## 例子

图灵机的其他 模型 姚刚

目录 对图灵机的<sup>氧</sup>

具有更复杂存 储的图灵机

非确定型图灵 机

通用图灵机

线性有界自动

#### 注

我们定义的线性有界自动机是非确定型的,这不仅是出于方便的考虑,而且本质上对于讨论线性有界自动机是必需的。

语言 $L = \{a^nb^nc^n : n \ge 1\}$ 被某个线性有界自动机接受。

找到一个线性有界自动机,使其接受语言 $L = \{a^{n!} : n \geq 0\}$ 。



#### 说明

图灵机的其他 模型 姚刚

目录 对图灵机的较 小修改 具有更复杂存

储的图灵机 非确定型图灵 机

通用图灵机 线性有界自动 我们也可以定义确定型的线性有界自动机,但是我们目前还不清楚它是否与非确定型的线性有界自动机等价。

线性有界自动机比下推自动机功能更强大。为此, 我们还需要证明任何上下 文无关语言都可以被线性有界自动机接 受。

我们还需要明确图灵机与线性有界自动机之间的关系。



图灵机的其他 模型

姚刚

目求

对图灵机的较 小修改

储的图灵机

非确定型图员机

通用图灵机

线性有界自动

# 谢谢!

主讲人: 姚刚

电子邮箱: yaogang@iie.ac.cn