Aplicación de la descomposición en valores singulares al análisis de datos

David Moreno Maldonado

Tutora: Amparo Baíllo Moreno

Trabajo de Fin de Grado Doble Grado en Ingeniería Informática y Matemáticas Universidad Autónoma de Madrid

2 Junio, 2020

- Introducción
 - Objetivos del Trabajo de Fin de Grado
 - Notación: Descomposición en valores singulares
- Componentes principales
 - Base teórica
 - Aplicación a medidas biométricas de diferentes tipos aves
 - Aplicación a medidas de células relacionadas con el cáncer de mama
- Correlaciones canónicas
 - Base teórica
 - Aplicación a índices de nivel educativo y libertad de las mujeres de diferentes países
- 4 Aproximación y compleción de matrices
 - Base teórica
 - Aplicación de la compleción de matrices

- Nuestra capacidad de recolectar y almacenar grandes cantidades de datos observados ha aumentado enormemente.
- Reducir la dimensión de los datos puede facilitar el análisis de la información muestral.
- La descomposición en valores singulares (SVD) es una técnica que permite resumir y comprimir la información contenida en la matriz de datos.
- Las técnicas estudiadas que hacen uso de la SVD son:
 - Componentes principales.
 - Correlaciones canónicas.
 - Aproximación y compleción de matrices.
- Se ha estudiado la base teórica detrás de cada una de las técnicas y, después, se han aplicado en datos reales y actuales.

Definición

La descomposición en valores singulares (SVD) de una matriz \mathbf{A} de dimensiones $m \times n$ es la factorización

$$A = UDV'$$

donde:

- **U** es una matriz $m \times n$ ortogonal ($\mathbf{U}'\mathbf{U} = \mathbf{I}_n$) cuyas columnas $\mathbf{u}_i \in \mathbb{R}^m$ son los autovectores ortonormales de \mathbf{AA}' ;
- **V** es una matriz $n \times n$ ortogonal (**V**'**V** = **I**_n) cuyas columnas $\mathbf{v}_i \in \mathbb{R}^n$ son los autovectores ortonormales de **A**'**A**;
- **D** es $n \times n$ y diagonal, cuyos componentes de la diagonal $\sigma_1 \ge \sigma_2 \ge \cdots \ge 0$ son los valores singulares de la matriz.

Los valores singulares de **A** que son no nulos coinciden con la raíz cuadrada de los autovalores no nulos de **A'A** o **AA'**.

Componentes principales

Definición

Las componentes principales de una matriz de datos \mathbf{X} con n observaciones p-variantes son las combinaciones lineales incorreladas $\mathbf{Y}_1 = \mathbf{X}\mathbf{t}_1, \dots, \mathbf{Y}_p = \mathbf{X}\mathbf{t}_p$ tales que la varianza muestral de cada \mathbf{Y}_i es máxima condicionado a $\mathbf{t}_i'\mathbf{t}_i = 1$ y a que $cov(\mathbf{Y}_i, \mathbf{Y}_i) = 0$ para todo j < i

Utilizamos la descomposición espectral, un caso particular de la SVD para matrices simétricas, para determinar de las componentes principales.

Teorema

Dada la matriz de covarianzas muestral S de la matriz de datos X, si obtenemos su descomposición espectral S = UDU', las componentes principales de X son las combinaciones lineales Y = XUD.

Descripción de los datos

- Se disponen un total de 413 observaciones de diferentes tipos de aves.
- Las medidas disponibles se corresponden a la longitud y el diámetro de estos huesos:
 - Húmero
 - Cúbito
 - Fémur
 - Tibiotarso
 - Tarsometatarso

Resultados longitudes de los huesos

Criterio del porcentaje: Dados los porcentajes acumulados que cada componente principal \mathbf{Y}_i explica de la variabilidad total, $P_i = 100 \frac{\sigma_1 + \cdots + \sigma_m}{\sigma_1 + \cdots + \sigma_p}$; podemos especificar un porcentaje r y tomar las m primeras componentes principales tal que $P_m > r$

Variable	CP1	CP2	CP3	CP4	CP5
Húmero	0.602	-0.200	0.472	-0.266	-0.551
Cúbito	0.649	-0.434	-0.369	0.304	0.403
Fémur	0.187	0.257	-0.674	-0.649	-0.154
Tibiotarso	0.375	0.668	0.351	-0.117	0.525
Tarsometatarso	0.202	0.509	-0.250	0.635	-0.484
Porcentaje de variación Porcentaje acumulado	89.81% 89.81%	7.98% 97.79%	1.19% 98.99%	0.68% 99.68%	0.31% 100%

Descripción de los datos

Imágenes digitalizadas de biopsias de senos. Las medidas tomadas se corresponden con el núcleo celular y son las siguientes:

- Radio: Media de las distancias del centro al perímetro.
- Textura: Desviación estándar de la escala de grises de la imagen.
- Perímetro.
- Área.
- Suavidad: Variación local de la longitud del radio.

- Compacidad: $\frac{\mathrm{perimetro}^2}{\mathrm{area}-1}$.
- Concavidad: Agudeza de las porciones cóncavas del contorno.
- Puntos de concavidad: Número de porciones cóncavas del contorno.
- Simetría.
- Dimensión fractal.

Aplicación de la transformación por componentes principales de células malignas.

Correlaciones canónicas (1/2)

Sean **X** e **Y** dos matrices $n \times p$ y $n \times q$, respectivamente, de observaciones de dos vectores en una muestra de n individuos. Existen $m = \min(p, q)$ pares de vectores canónicos $\mathbf{a}_1, \mathbf{b}_1, \dots, \mathbf{a}_m, \mathbf{b}_m$ que proporcionan:

$$U_1 = \mathbf{X}\mathbf{a}_1, \quad V_1 = \mathbf{Y}\mathbf{b}_1, \quad r_1 = \operatorname{cor}(U_1, V_1)$$
 $\vdots \quad \vdots \quad \vdots$
 $U_m = \mathbf{X}\mathbf{a}_m, \quad V_m = \mathbf{Y}\mathbf{b}_m, \quad r_m = \operatorname{cor}(U_m, V_m)$

de tal manera que cada r_i es máxima en cada caso y $cor(U_i, U_j) = 0$ y $cor(V_i, V_j) = 0$ para todo j < i. Cada par de U_i y V_i definen las i-ésimas variables canónicas y cada r_i es la i-ésima correlación canónica.

Correlaciones canónicas (2/2)

Denotamos \mathbf{S}_{11} y \mathbf{S}_{22} las matrices de covarianzas muestrales de \mathbf{X} e \mathbf{Y} , respectivamente. Y las matrices de covarianzas cruzadas $\mathbf{S}_{12} = \mathbf{S}'_{21}$. Consideramos la matriz $p \times q$:

$$\mathbf{Q} = \mathbf{S}_{11}^{-1/2} \mathbf{S}_{12} \mathbf{S}_{22}^{-1/2},$$

Sea $\mathbf{Q} = \mathbf{U}\mathbf{D}\mathbf{V}'$ la descomposición en valores singulares de esta matriz.

Teorema

Los vectores canónicos y correlaciones canónicas son

$$\mathbf{a}_i = \mathbf{S}_{11}^{-1/2} \mathbf{u}_i, \ \mathbf{b}_i = \mathbf{S}_{22}^{-1/2} \mathbf{u}_i, \ r_i = \sigma_i,$$

donde \mathbf{u}_i son las columnas de \mathbf{U} y $\mathbf{D} = diag(\sigma_1, \sigma_2, ...)$ con $\sigma_i \geq \sigma_{i+1}$ para todo i.

Índices sobre el nivel educativo

- ALF-JOVEN = Ratio de alfabetismo en mujeres jóvenes (% de mujeres entre 15 y 24 años).
- ALF-ADULTA = Ratio de alfabetismo en mujeres adultas (% de mujeres mayores de 15 años).
- EST-PROF-PRIM = Ratio estudiante-profesor en educación primaria.
- EST-PROF-SEC = Ratio estudiante-profesor en educación secundaria.
- INSC-PRIM = Porcentaje de inscripción femenino en educación primaria.
- INST-SEC = Porcentaje de inscripción femenino en educación secundaria.
- PROFESORAS = Porcentaje de profesoras en la educación secundaria.

Índices sobre los derechos y libertades de las mujeres

Indican el porcentaje de mujeres que creen que está justificado que su marido la golpee si:

- Ella discute con él. (DISCUTIR)
- A ella se le quema la comida.(COMIDA)
- Ella desatiende a los hijos. (HIJOS)
- Ella sale de casa sin consultárselo. (SALIR)
- Ella se niega a mantener relaciones sexuales con él. (RELACIONES)

Resultados de la aplicación de correlaciones canónicas

Variable	CC1	CC2
ALF-JOVEN	-0.023	-0.030
ALF-ADULTA	0.009	0.019
EST-PROF-PRIM	0.006	-0.010
EST-PROF-SEC	0.004	0.007
INSC-PRIM	-0.002	0.011
INSC-SEC	0.008	0.000
PROFESORAS	-0.001	0.006
DISCUTIR	-0.027	-0.028
COMIDA	0.032	0.010
HIJOS	-0.031	0.001
SALIR	0.040	0.024
RELACIONES	-0.002	-0.019
Correlación canónica	0.928	0.856

Problema aproximación de matrices

Sea una matriz ${\bf A}$ de dimensiones $m \times n$, el problema de optimización para aproximarla es

$$\hat{\mathbf{A}} = \underset{\mathbf{M} \in \mathbb{R}^{m \times n}}{\min} \|\mathbf{A} - \mathbf{M}\|^2 \text{ sujeto a } \Phi(\mathbf{M}) \leq c,$$

donde la función Φ sirve para establecer una restricción que hace que la matriz $\hat{\bf A}$ tenga muchos ceros (sparse).

Teorema de la aproximación

Teorema

Dada una matriz \mathbf{A} de dimensiones $m \times n$, la matriz de rango menor o igual que k (expresada en la forma $\sum_{i=1}^k \mathbf{x}_i \mathbf{y}_i'$) que mejor aproxima a \mathbf{A} , en el sentido de que minimiza el error de aproximación

$$\left|\left|\mathbf{A} - \sum_{i=1}^k \mathbf{x}_i \mathbf{y}_i'\right|\right|$$

donde $||\mathbf{A}||$ es la norma de Frobenius de \mathbf{A} , viene dada por los k primeros términos de la SVD de la matriz \mathbf{A} , \mathbf{A}_k .

Resolvemos el problema de la aproximación tomando:

$$\mathbf{M} = \mathbf{A}_k, \ \Phi(\mathbf{M}) = \operatorname{rank}(\mathbf{M}) \ \mathrm{y} \ c = k \leq \operatorname{rank}(\mathbf{A})$$

Problema de compleción de matrices

Sea **A** la matriz con datos en un subconjunto $\Omega \subset \{1,\ldots,m\} \times \{1,\ldots,n\}$ y **M** una aproximación, el problema de optimización para la compleción de matrices es

$$\min_{\mathsf{rank}(\mathsf{M}) \leq r} \sum_{(i,j) \in \Omega} (a_{ij} - m_{ij})^2.$$

- El problema es no convexo y las soluciones globales no son posibles de manera general.
- Existen heurísticas que permiten encontrar mínimos locales de manera efectiva utilizando una estimación inicial.

Algoritmo iterativo del paquete SoftImpute de R para compleción de matrices

Sea $\mathbf{A}=(a_{ij})$ la matriz con datos observados en un subconjunto $\Omega\subset\{1,\ldots,m\}\times\{1,\ldots,n\},\ \mathbf{M}=(m_{ij})$ una estimación inicial de los valores faltantes de \mathbf{A} y $P_{\Omega}(\mathbf{A})$ la matriz con los valores de Ω mantenidos como en \mathbf{A} y el resto igualados a 0. El algoritmo seguido es:

- **2** Hallamos la SVD $\mathbf{Z} = \mathbf{UDV}'$
- **3** Obtenemos la matriz \mathbf{D}_k , igual a la matriz \mathbf{D} , pero igualando a cero todos los valores singulares que no sean los k primeros.
- **3** Construimos $\mathbf{Z}_k = \mathbf{U}\mathbf{D}_k\mathbf{V}'$
- **5** Actualizamos la matriz $\mathbf{M} = \mathbf{Z}_k$

Datos de películas utilizados

Pulp fiction	Los juegos del hambre	Interestellar	El corredor del laberinto		El viaje de Chihiro	Seven
4	3	5	2	4		5
4	2	5	2	5	4	4
5	3	5	3	4	4	4
3	3	5	2	4	5	4
4	3	1	1	3	4	N/A
4	3	N/A	N/A	3	4	4
5	2	5	2	4	5	5
4	3	5	3	4	3	3
5	3	4	1	3	4	4
4	2	5	4	N/A	5	N/A
4	4	4	4	4	4	4
5	4	5	N/A	5	5	5
5	1	4	N/A	4	N/A	4

Resultados de la aplicación de SoftImpute

Rango máximo	Iteraciones hasta convergencia	Diferencia total	Diferencia media	Diferencia mínima	Diferencia máxima
1	6	8.505	1.063	0.288	1.891
2	12	17.157	2.145	0.254	6.112
3	26	19.073	2.384	0.052	7.626
4	24	29.593	3.699	0.248	6.662
5	50	27.593	3.449	1.234	6.491
6	15	30.165	3.771	0.661	6.542

Aproximación y compleción de matrices

Aplicación de la compleción de matrices

Muchas gracias.