

CÁLCULO DIFERENCIAL

Centro de Ciencia Básica Universidad Pontificia Bolivariana

Vigilada Mineducación

ENCUENTRO 7.1

Sección 1.5: Funciones logarítmicas

Funciones logarítmicas

Si a > 0 y $a \ne 1$, la función exponencial $f(x) = a^x$ siempre es creciente o decreciente, así que es uno a uno por la prueba de la recta horizontal. Por tanto, tiene una función inversa f^{-1} que se llama la **función logarítmica con base** a y se denota por \log_a . Si utilizamos la formulación de una función inversa dada por $\boxed{3}$,

Fundada en 1936

$$f^{-1}(x) = y \iff f(y) = x,$$

entonces tenemos

6

$$\log_a x = y \iff a^y = x$$

Así, si x > 0, entonces $\log_a x$ es el exponente al que hay que elevar la base a para obtener x. Por ejemplo, el $\log_{10} 0.001 = -3$, ya que $10^{-3} = 0.001$.

$$\log_a(a^x) = x$$
 para toda $x \in \mathbb{R}$ $a^{\log_a x} = x$ para toda $x > 0$

La función logarítmica \log_a tiene dominio $(0, \infty)$ y rango \mathbb{R} . Su gráfica es la reflexión de la gráfica de $y = a^x$ sobre la recta y = x.

La figura 11 muestra el caso en que a > 1. (Las funciones logarítmicas más importantes tienen una base a > 1.) El hecho de que $y = a^x$ sea una función de rápido crecimiento para x > 0 se refleja en el hecho de que $y = \log_a x$ es una función de lento crecimiento para x > 1.

La figura 12 muestra las gráficas de $y = \log_a x$ con varios valores de la base a > 1. Puesto que $\log_a 1 = 0$, las gráficas de todas las funciones logarítmicas pasan por el punto (1, 0).

Logaritmos comunes

Ahora estudiamos logaritmos con base 10.

Fundada en 1936

LOGARITMO COMÚN

El logaritmo común con base 10 se llama **logaritmo común** y se denota omitiendo la base:

$$\log x = \log_{10} x$$

De la definición de logaritmos podemos fácilmente hallar que

$$\log 10 = 1$$
 y $\log 100 = 2$

Leyes de los logaritmos Si x e y son números positivos, entonces

Fundada en 1936

$$1. \log_a(xy) = \log_a x + \log_a y$$

$$2. \log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

3. $\log_a(x^r) = r \log_a x$ (donde r es cualquier número real)

EJEMPLO 6 Use las leyes de los logaritmos para evaluar $\log_2 80 - \log_2 5$.

SOLUCIÓN Con la ley 2, tenemos

Fundada en 1936

$$\log_2 80 - \log_2 5 = \log_2 \left(\frac{80}{5}\right) = \log_2 16 = 4$$

porque $2^4 = 16$.

35-38 Encuentre el valor exacto de cada una de las siguientes expresiones.

35. a)
$$\log_5 125$$

b)
$$\log_3\left(\frac{1}{27}\right)$$

36. a)
$$\ln(1/e)$$

b)
$$\log_3(\frac{1}{27})$$

b) $\log_{10} \sqrt{10}$

37. a)
$$\log_2 6 - \log_2 15 + \log_2 20$$

b) $\log_3 100 - \log_3 18 - \log_3 50$

38. a)
$$e^{-2 \ln 5}$$

b)
$$\ln(\ln e^{e^{10}})$$

Logaritmos naturales

De todas las posibles bases *a* de los logaritmos, veremos en el capítulo 3 que la más conveniente es el número *e*, que se definió en la sección 1.5. Al logaritmo con base *e* se le llama **logaritmo natural** y tiene una notación especial:

Fundada en 1936

$$\log_e x = \ln x$$

Si ponemos a = e y sustituimos \log_e con "ln" en $\boxed{6}$ y $\boxed{7}$, entonces las propiedades que definen la función logaritmo natural se convierten en

$$\ln x = y \iff e^y = x$$

$$\ln(e^x) = x \qquad x \in \mathbb{R}$$
$$e^{\ln x} = x \qquad x > 0$$

$$e^{\ln x} = x \qquad x > 0$$

En particular, si ponemos x = 1, obtenemos

$$\ln e = 1$$

Formación integral para la transformación social y humana

EJEMPLO 10 Hallar el dominio de una función logarítmica

Encuentre el dominio de la función $f(x) = \ln(4 - x^2)$.

Fundada en 1936

SOLUCIÓN Igual que con cualquier función logarítmica, ln x está definida cuando x > 0. Entonces, el dominio de f es

$$\{x \mid 4 - x^2 > 0\} = \{x \mid x^2 < 4\} = \{x \mid |x| < 2\}$$
$$= \{x \mid -2 < x < 2\} = (-2, 2)$$

- **49-50** a) ¿Cuáles son el dominio y el rango de f?
- b) ¿Cuál es la intersección en x de la gráfica?
- c) Trace la gráfica de *f*.

49.
$$f(x) = \ln x + 2$$

50.
$$f(x) = \ln(x - 1) - 1$$

SOLUCIÓN Con las leyes 3 y 1 de los logaritmos, tenemos

$$\ln a + \frac{1}{2} \ln b = \ln a + \ln b^{1/2}$$

$$= \ln a + \ln \sqrt{b}$$

$$= \ln(a\sqrt{b})$$

39-41 Exprese cada una de las siguientes cantidades dadas como un solo logaritmo.

40.
$$\ln(a+b) + \ln(a-b) - 2 \ln c$$

41.
$$\frac{1}{3} \ln(x+2)^3 + \frac{1}{2} \left[\ln x - \ln(x^2+3x+2)^2 \right]$$

Fundada en 1936

Solución 40

$$\ln(a+b) + \ln(a-b) - 2\ln c = \ln(a+b)(a-b) - \ln c^2$$

$$ln\frac{(a+b)(a-b)}{c^2} = ln\frac{(a^2-b^2)}{c^2}$$

Halle una fórmula para la inversa de la función.

23.
$$f(x) = e^{2x-1}$$

25.
$$y = \ln(x + 3)$$

25.
$$y = \ln(x+3)$$
 26. $y = \frac{e^x}{1+2e^x}$

47-48 Haga un bosquejo de la gráfica de cada una de las siguientes funciones. No utilice calculadora. Sólo tiene que usar las gráficas de las figuras 12 y 13 y, si es necesario, las transformaciones de la sección 1.3.

47. a)
$$y = \log_{10}(x + 5)$$

b)
$$y = -\ln x$$

48. a)
$$y = \ln(-x)$$

b)
$$y = \ln |x|$$

¿Verdadero o falso? Discuta cada una de las ecuaciones siguientes y determine si es verdadera para todos los valores posibles de las variables. (Ignore valores de las variables para las que cualquier término no esté definido.)

(a)
$$\log\left(\frac{x}{y}\right) = \frac{\log x}{\log y}$$

(b)
$$\log_2(x - y) = \log_2 x - \log_2 y$$

(c)
$$\log_5\left(\frac{a}{b^2}\right) = \log_5 a - 2\log_5 b$$

(d)
$$\log 2^z = z \log 2$$

(e)
$$(\log P)(\log Q) = \log P + \log Q$$

$$\mathbf{(f)} \ \frac{\log a}{\log b} = \log a - \log b$$

$$(\mathbf{g}) \left(\log_2 7\right)^x = x \log_2 7$$

(h)
$$\log_a a^a = a$$

$$(i) \quad \log(x - y) = \frac{\log x}{\log y}$$

$$(\mathbf{j}) - \ln\left(\frac{1}{A}\right) = \ln A$$

▼ Ecuaciones exponenciales

Una ecuación exponencial es aquella en la que la variable aparece en el exponente. Por ejemplo,

$$2^{x} = 7$$

Fundada en 1936

La variable *x* presenta una dificultad porque está en el exponente. Para resolver esta dificultad, tomamos el logaritmo de cada lado y luego usamos las Leyes de Logaritmos para "bajar *x*" del exponente.

$$2^x = 7$$
 Ecuación dada
 $\ln 2^x = \ln 7$ Tome In de cada lado
 $x \ln 2 = \ln 7$ Ley 3 (bajar exponente)
 $x = \frac{\ln 7}{\ln 2}$ Despeje x
 ≈ 2.807 Calculadora

GUÍAS PARA RESOLVER ECUACIONES EXPONENCIALES

- 1. Aísle la expresión exponencial en un lado de la ecuación.
- 2. Tome el logaritmo de cada lado y a continuación use las Leyes de Logaritmos para "bajar el exponente".
- 3. Despeje la variable.

SOLUCIÓN Tomamos logaritmos naturales de ambos lados de la ecuación y usamos 9 :

Fundada en 1936

$$\ln(e^{5-3x}) = \ln 10$$

$$5 - 3x = \ln 10$$

$$3x = 5 - \ln 10$$

$$x = \frac{1}{3}(5 - \ln 10)$$

Ya que el logaritmo natural se encuentra en las calculadoras científicas, podemos aproximar la solución; para cuatro decimales tenemos: $x \approx 0.8991$.

EJEMPLO 4 Una ecuación exponencial de tipo cuadrático

Resuelva la ecuación $e^{2x} - e^x - 6 = 0$.

Universidad Pontificia Bolivariana

Fundada en 1936

SOLUCIÓN

Para aislar el término exponencial, factorizamos.

$$e^{2x} - e^x - 6 = 0$$
 Ecuación dada
 $(e^x)^2 - e^x - 6 = 0$ Ley de Exponentes
 $(e^x - 3)(e^x + 2) = 0$ Factorice (un cuadrático en e^x)
 $e^x - 3 = 0$ o bien $e^x + 2 = 0$ Propiedad del Producto Cero
 $e^x = 3$ $e^x = -2$

La ecuación $e^x = 3$ lleva a $x = \ln 3$. Pero la ecuación $e^x = -2$ no tiene solución porque $e^x > 0$ para toda x. Entonces, $x = \ln 3 \approx 1.0986$ es la única solución. Es necesario comprobar que esta respuesta satisfaga la ecuación original.

Ecuaciones logarítmicas

Una ecuación logarítmica es aquella en la que aparece un logaritmo de la variable. Por ejemplo,

Fundada en 1936

$$\log_2(x+2) = 5$$

Para despejar x, escribimos la ecuación en forma exponencial

$$x + 2 = 2^5$$

Forma exponencial

$$x = 32 - 2 = 30$$
 Despeje x

Otra forma de ver el primer paso es elevar la base, 2, a cada lado de la ecuación.

$$2^{\log_2(x+2)} = 2^5$$

Eleve 2 a cada lado

$$x + 2 = 2^5$$

Propiedad de logaritmos

$$x = 32 - 2 = 30$$
 Despeje x

GUÍAS PARA RESOLVER ECUACIONES LOGARÍTMICAS

- **1.** Aísle el término logarítmico en un lado de la ecuación; es posible que primero sea necesario combinar los términos logarítmicos.
- **2.** Escriba la ecuación en forma exponencial (o elevar la base a cada lado de la ecuación).
- **3.** Despeje la variable.

EJEMPLO 7 Resolver una ecuación logarítmica

Resuelva la ecuación $4 + 3 \log(2x) = 16$.

SOLUCIÓN Primero aislamos el término logarítmico. Esto nos permite escribir la ecuación en forma exponencial.

Fundada en 1936

$$4+3 \log(2x) = 16$$
 Ecuación dada $3 \log(2x) = 12$ Reste 4 $\log(2x) = 4$ Divida entre 3 $2x = 10^4$ Forma exponencial (o eleve 10 a cada lado) $x = 5000$ Divida entre 2

VERIFIQUE SU RESPUESTA

Si x = 5000, obtenemos

$$4 + 3 \log 2(5000) = 4 + 3 \log 10,000$$

= $4 + 3(4)$
= 16

51-54 Resuelva cada una de las siguientes ecuaciones para x.

51. a)
$$e^{7-4x} = 6$$

b)
$$ln(3x - 10) = 2$$

52. a)
$$ln(x^2 - 1) = 3$$

b)
$$e^{2x} - 3e^x + 2 = 0$$

53. a)
$$2^{x-5} = 3$$

b)
$$\ln x + \ln(x - 1) = 1$$

54. a)
$$ln(ln x) = 1$$

b)
$$e^{ax} = Ce^{bx}$$
, $a \neq b$

Fundada en 1936

55-56 Resuelva cada una de las siguientes desigualdades para x.

55. a)
$$\ln x < 0$$

b)
$$e^x > 5$$

56. a)
$$1 < e^{3x-1} < 2$$

b)
$$1 - 2 \ln x < 3$$

Solución 51a)

$$e^{7-4x} = 6$$

$$lne^{7-4x} = ln6$$
 $7 - 4x = ln6$ $7 - ln6 = 4x$

$$7 - 4x = ln\theta$$

$$7 - ln6 = 42$$

$$\frac{7-ln6}{4} = x$$

Solución 52a)

$$\ln(x^2 - 1) = 3$$

$$x^2 - 1 = e^3$$

$$x^2 = e^3 + 1$$

$$ln(x^2 - 1) = 3$$
 $x^2 - 1 = e^3$ $x^2 = e^3 + 1$ $x = \pm \sqrt{e^3 + 1}$

La siguiente fórmula muestra que los logaritmos de cualquier base pueden expresarse en términos de los logaritmos naturales.

10 Fórmula para el cambio de base Para cualquier número positivo a ($a \neq 1$), tenemos

$$\log_a x = \frac{\ln x}{\ln a}$$

EJEMPLO 10 Evalúe $\log_8 5$ con una precisión de seis decimales.

SOLUCIÓN La fórmula 10 da

$$\log_8 5 = \frac{\ln 5}{\ln 8} \approx 0.773976$$

REFERENCIA

Fundada on 1931

Stewart, J., Cálculo de una variable Trascendentes tempranas, Cengage Learning. Octava edición, 2018.

Stewart, J., Precálculo Matemáticas para el Cálculo, Cengage Learning. Séptima edición.

