SMA 2305: COMPLEX ANALYSIS

CAT 1 1 HOUR

Briefly explain the following terms

b) Evaluate
$$\frac{1+i}{2-3i} + \frac{4-7i}{3+2i}$$

(4 Marks)

Solve the equation $z^2 - 4z - 53 = 0$ expressing the roots in the form a + ib where $a, b \in R$. Verify that the sum of the roots is 4 and the product is 53. (4 Marks)

d) Simplify
$$\frac{(\cos 3\theta + i \sin 3\theta)(\cos 5\theta - i \sin 5\theta)}{(\cos 2\theta - i \sin 2\theta)(\cos 7\theta + i \sin 7\theta)}$$

(4 Marks)

Let $u(x, y) = e^{-x}(x \sin y - y \cos y)$

(i) Show that
$$u(x, y)$$
 is harmonic

(3 Marks)

(ii) Find
$$v(x, y)$$
 such that $f(x, y) = u(x, y) + v(x, y)$ is analytic (3 Marks)

f) Prove that
$$\sin z = \sin x \cosh y - i \cos x \sinh y$$

(1 Marks)

g) Find the poles of
$$\frac{2z^2 + 5}{z^4 + 16}$$

(4 Marks)

SMA 2305: COMPLEX ANALYSIS

CAT 1 1 HOUR

Briefly explain the following terms

(i) A complex number

(2 Marks)

(2 Marks)

b) Evaluate
$$\frac{1+i}{2-3i} + \frac{4-7i}{3+2i}$$

(4 Marks)

$$2-3i$$
 $3+2i$
c) Solve the equation $z^2-4z-53=0$ expressing the roots in the form $a+ib$ where $a,b\in R$. Verify that the

sum of the roots is 4 and the product is 53. (4 Marks)

d) Simplify
$$\frac{(\cos 3\theta + i \sin 3\theta)(\cos 5\theta - i \sin 5\theta)}{(\cos 2\theta - i \sin 2\theta)(\cos 7\theta + i \sin 7\theta)}$$
 (4 Marks)

Let $u(x, y) = e^{-x} (x \sin y - y \cos y)$

(i) Show that
$$u(x, y)$$
 is harmonic (3 Marks)

(ii) Find
$$v(x, y)$$
 such that $f(x, y) = u(x, y) + v(x, y)$ is analytic (3 Marks)

f) Prove that
$$\sin z = \sin x \cosh y - i \cos x \sinh y$$
 (1 Marks)

g) Find the poles of
$$\frac{2z^2 + 5}{z^4 + 16}$$
 (4 Marks)