Révision 1 – Résolution des problèmes de statique – Statique 2D

l'Ingénieur

TD 01

Modélisation d'un hayon de coffre électrique

Concours Centrale Supelec TSI 2013

Savoirs et compétences :

Mise en situation

Le PCS (Power Closure System), conçu par Valéo, est un système d'ouverture et de fermeture automatique de hayon de coffre automobile. Le système étant symétrique, les deux vérins sont ramenées dans le plan d'évolution de la porte de coffre et leur action mécanique s'exerçant sur la porte de coffre est supposée identique.

On donne un diagramme d'exigence partiel du système étudié.

Objectif

- Déterminer les caractéristiques du vérin répondant au cahier des charges : longueur du vérin en position coffre ouvert et coffre fermé, course du vérin, raideur du ressort équipant le vérin.
- Déterminer le couple moteur maximal nécessaire pour le maintien en position du hayon.
- Déterminer le courant de pincement afin que l'effort de pincement soit inférieure à 40 N pendant 10 ms.

Le repère $(B; \overrightarrow{x_t}, \overrightarrow{y_t}, \overrightarrow{z_0})$ est lié à la Terre. L'accélération de la pesanteur s'écrit $\overrightarrow{g} = -g \overrightarrow{y_t}$ avec $g = 9.81 \,\mathrm{m \, s^{-2}}$. La structure du véhicule et la porte de coffre sont en liaison pivot d'axe $(B, \overrightarrow{z_0})$.

Le repère $(B; \overrightarrow{x_p}, \overrightarrow{y_p}, \overrightarrow{z_0})$ est lié à la porte de coffre S_1 de masse M = 30 kg. Le repère $(B; \overrightarrow{x_v}, \overrightarrow{y_v}, \overrightarrow{z_0})$ est lié au corps du vérin. La sortie de tige par rapport au corps du

vérin S_3 se fait dans la direction du vecteur $\overrightarrow{x_v}$. Les liaisons entre le corps du vérin S_3 et le bâti S_0 ainsi qu'entre la tige du vérin S_2 et la porte de coffre S_1 sont des liaisons rotules de centres respectifs A et C. Le point D représente l'extrémité de la porte du coffre. La hauteur du point Dpar rapport au sol suivant la verticale est de 0,7 m en position coffre fermé et de 1,8 m en position coffre ouvert.

Caractéristiques géométriques du vérin

Le centre d'inertie du coffre est situé en G tel que $\overrightarrow{BG} = \lambda \overrightarrow{x_n}$ avec $\lambda = 0.6$ m.

 $\overrightarrow{AB} = -a\overrightarrow{x_0} + b\overrightarrow{y_0}, \overrightarrow{AC} = L\overrightarrow{x_v}, \overrightarrow{BC} = c\overrightarrow{x_p}, \overrightarrow{BD} = d\overrightarrow{x_p}$ avec $a = 0.55 \,\mathrm{m}$, $b = 0.14 \,\mathrm{m}$, $c = 0.14 \,\mathrm{m}$ et $d = 1 \,\mathrm{m}$. L'angle formé entre $\overrightarrow{x_0}$ et l'horizontale $\overrightarrow{x_t}$ est $\theta_0 = 42^\circ$.

Question 1 Déterminer l'angle d'ouverture maximal.

Question 2 Déterminer la longueur du vérin L en fonction de l'angle d'ouverture du coffre θ .

On donne la courbe donnant l'évolution de la course du vérin en fonction de l'ouverture du hayon.

Question 3 Déterminer les valeurs extrêmes de L, ainsi que la course du vérin.

Dimensionnement des caractéristiques du ressort

Les vérins utilisés sont constitués d'un moteur à courant continu, d'un réducteur à engrenage, d'une vis à billes et d'un ressort. Ce dernier permet d'assurer l'équilibre de la porte de coffre en cas de panne des vérins électriques.

On suppose dans un premier temps que le coffre est à l'équilibre.

Question 4 Déterminer l'effort F exercé par chacun des vérins sur la porte de coffre en fonction de θ , α et des constantes du problème.

En exploitant les équations obtenues à partir de l'écriture de la fermeture géométrique obtenue précédemment, on montre que la relation entre θ et α s'écrit : $b + c \sin \theta$

$$\tan \alpha = \frac{1}{-a + c \cos \theta}$$
.

 $\frac{a}{-a+c\cos\theta}.$ On déduit de la question précédente le tracé de l'évolution de l'effort F nécessaire au maintien en équilibre du coffre en fonction de la longueur *L* du vérin.

On choisit d'utiliser un ressort précontraint au sein du vérin de manière à assister l'ouverture du coffre et à assurer l'équilibre du coffre sur une plage de fonctionnement maximale. On estime que les forces de frottement maximales au sein du vérin (essentiellement dues à la friction dans la vis) sont de l'ordre de $F_{\text{frot}} = 100 \,\text{N}$.

La figure précédente représente la force que doit exercer le vérin sur la porte de coffre pour assurer l'équilibre de cette dernière en fonction de la longueur du vérin. Les courbes en pointillés représentent la force du vérin $\pm 100 \, \text{N}$.

Question 5 Déterminer la raideur k du ressort et sa longueur à vide L_0 de manière à obtenir une situation d'équilibre sur la plus grande plage de fonctionnement. Préciser votre démarche.

La figure suivante représente l'évolution du couple moteur dans un vérin lors des phases d'ouverture et de fermeture du coffre.

Question 6 Déterminer le couple moteur maximal en phase d'ouverture puis en phase de fermeture.

Réglage de la fonction sécurité des personnes

Pour limiter le risque d'accident lié au pincement d'un utilisateur, il est nécessaire de limiter le couple du moteur à courant continu durant la phase de fermeture du hayon.

On envisage la présence d'un obstacle empêchant la fermeture du coffre. On modélise l'action de l'obstacle sur la porte de coffre par un glisseur s'appliquant en D et s'exprimant $F_{\text{pinc}} = F_{\text{pinc}} \overrightarrow{y_p}$.

On cherche à déterminer l'accroissement de couple moteur en cas de présence d'obstacle. On suppose ainsi que la porte de coffre est en équilibre sous l'effet du poids et de l'action des vérins. On ajoute ainsi l'effort de pincement $F_{\rm pinc}$ en D et on cherche l'accroissement d'effort $\Delta F \vec{x}_{\nu}$ qu'exercent chacun des vérins en C sur la porte en la supposant en équilibre.

On donne la relation entre le couple moteur et la force fournie par le vérin en régime quasi-statique : $C_m = \rho F$ avec $\rho = 7.89 \times 10^{-5}$ m.

Question 7 Déterminer l'expression littérale puis la valeur numérique de ΔF l'accroissement de la force qu'exerce chacun des vérins sur la porte de hayon.

La constante de couple du moteur est donnée par $K_t = 9.5 \times 10^{-3} \,\mathrm{NmA}^{-1}$.

Question 8 En déduire la valeur numérique de l'accroissement ΔC_m de couple moteur en fonction de la présence d'un obstacle. Déterminer l'intensité maximale du courant dans le moteur lors d'un pincement.

Synthèse

été déterminés.

Question 9 Réaliser un poster permettant de synthétiser comment les caractéristiques des composants ont

Industrielles de

Révision 1 – Résolution des problèmes de statique – Statique 2D

l'Ingénieur

Sciences

TD 01

Modélisation d'un hayon de coffre électrique

Concours Centrale Supelec TSI 2013

Savoirs et compétences :

Mise en situation

Caractéristiques géométriques du vérin

Question 1 Déterminer l'angle d'ouverture maximal.

Correction

Question 2 Déterminer la longueur du vérin L en fonction de l'angle d'ouverture du coffre θ .

Correction

La longueur du vérin est donnée par la valeur de L. En réalisant la fermeture géométrique, on a $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} =$ $\overrightarrow{0} \Leftrightarrow -a\overrightarrow{x_0} + b\overrightarrow{y_0} + c\overrightarrow{x_p} - L\overrightarrow{x_v} = \overrightarrow{0}$. En projetant l'équation vectorielle dans \mathcal{R}_0 , on a :

$$\begin{cases} -a + c \cos \theta - L \cos \alpha = 0 \\ b + c \sin \theta - L \sin \alpha = 0 \end{cases}$$

On a donc $L^2 = (-a + c \cos \theta)^2 + (b + c \sin \theta)^2$.

Question 3 Déterminer les valeurs extrêmes de L, ainsi que la course du vérin.

Correction

La longueur du vérin varie de 43,3 cm à 56,5 cm soit une course de 13,2 cm.

Dimensionnement des caractéristiques du ressort

Question 4 Déterminer l'effort F exercé par chacun des vérins sur la porte de coffre en fonction de θ , α et des constantes du problème.

Correction

On isole le corps et le piston du vérin. L'ensemble est soumis à deux actions mécaniques (liaisons sphériques en A et C). D'après le PFS, cette action mécanique est donc suivant Ces deux actions mécaniques sont donc de même direction (le vecteur $\overrightarrow{x_v}$), de même norme et de sens opposé.

On isole le hayon h.

On réalise le BAME:

- action mécanique du vérin $v : \{\mathcal{T}(v \to h)\} = \left\{\begin{array}{c} F_v \overrightarrow{x_v} \\ \overrightarrow{0} \end{array}\right\}_C$;
- action de la pesanteur : $\{\mathcal{T}(\text{pes} \to h)\} = \left\{\begin{array}{c} -Mg\overrightarrow{y_t} \\ \overrightarrow{0} \end{array}\right\}_G$;
- action de la pivot en $B : \{ \mathcal{T}(0 \to h) \}$.

On cherche à connaître l'action du vérin en fonction des actions de pesanteur. On réalise donc le théorème du moment statique en B en projection sur $\overrightarrow{z_0}$:

$$(\overrightarrow{0} + \overrightarrow{BC} \wedge F_{v} \overrightarrow{x_{v}} + \overrightarrow{0} + \overrightarrow{BG} \wedge -Mg \overrightarrow{y_{t}}) \cdot \overrightarrow{z_{0}} = \overrightarrow{0} \Rightarrow (c \overrightarrow{x_{p}} \wedge F_{v} \overrightarrow{x_{v}} + \lambda \overrightarrow{x_{p}} \wedge -Mg \overrightarrow{y_{t}}) \cdot \overrightarrow{z_{0}} = \overrightarrow{0}$$

Question 5 Déterminer la raideur k du ressort et sa longueur à vide L_0 de manière à obtenir une situation d'équilibre sur la plus grande plage de fonctionnement. Préciser votre démarche.

courbes. Elle est d'environ
$$k = \frac{100}{0,06} \simeq 1667 \,\mathrm{N}\,\mathrm{m}^{-1}$$
.

En phase de fermeture, lorsque le vérin est déployé, la précharge permettant d'assurer l'équilibre est d'environ 500 N. L'écrasement est donc de 300 mm environ.

Question 6 Déterminer le couple moteur maximal en phase d'ouverture puis en phase de fermeture.

Correction

En phase d'ouverture, le couple maximal est de 4×10^{-3} Nm. En phase de fermeture il est de 3.5×10^{-3} Nm.

Réglage de la fonction sécurité des personnes

Question 7 Déterminer l'expression littérale puis la valeur numérique de ΔF l'accroissement de la force qu'exerce chacun des vérins sur la porte de hayon.

Correction

On isole le hayon et on réalise le BAME. Le théorème du moment statique en B en projection sur $\overrightarrow{z_0}$: $(\overrightarrow{0} + \overrightarrow{BC} \wedge -2\Delta F \overrightarrow{x_v} + \overrightarrow{0} + \overrightarrow{BD} \wedge F_{\text{pinc}} \overrightarrow{y_0}) \cdot \overrightarrow{z_0} = \overrightarrow{0} \Rightarrow (c \overrightarrow{x_0} \wedge -2\Delta F \overrightarrow{x_v} + d \overrightarrow{x_0} \wedge F_{\text{pinc}} \overrightarrow{y_0}) \cdot \overrightarrow{z_0} = \overrightarrow{0} \Rightarrow -c2\Delta F \sin \alpha + dF_{\text{pinc}} = 0 \Rightarrow \Delta F = \frac{dF_{\text{pinc}}}{c2\sin\alpha}.$ $AN: \text{Pour } \theta = 0, \tan\alpha = \frac{b}{-a+c} = \frac{0,14}{-0,55+0,14} = -0,34 \Rightarrow \alpha \simeq -18,8^{\circ}. \Rightarrow \Delta F = \frac{40}{2 \cdot 0,14\sin\alpha} = -443 \text{ N}.$

La constante de couple du moteur est donnée par $K_t = 9.5 \times 10^{-3} \,\mathrm{NmA^{-1}}$.

Question 8 En déduire la valeur numérique de l'accroissement ΔC_m de couple moteur en fonction de la présence d'un obstacle. Déterminer l'intensité maximale du courant dans le moteur lors d'un pincement.

Correction

Correction
On a $|\Delta C_m| = \rho |\Delta F|$ avec $\rho = 7.89 \times 10^{-5}$ m. En conséquence : $|\Delta C_m| = 443 \cdot 7.89 \cdot 10^{-5} = 35$ mNm.

En fin de fermeture, $C_m = 2.5 \times 10^{-3}$ Nm. En conséquence $I_{\text{max}} = \frac{C_{\text{max}}}{K_t} = \frac{C_m + \Delta C_m}{K_t} = \frac{2.5 \cdot 10^{-3} + 35 \cdot 10^{-3}}{9.5 \cdot 10^{-3}} = \frac{10.5 \cdot 10^{-3}}{10.5 \cdot 10^{-3}} = \frac{10.5 \cdot 10^{-3}}{10.5$ 3,95A.

Synthèse

Question 9 Réaliser un poster permettant de synthétiser comment les caractéristiques des composants ont été déterminés.

Révision 1 – Résolution des problèmes de statique – Statique 2D

Industrielles de

l'Ingénieur

Sciences

TD *

Dépose de bagage automatique dans les aéroports (DBA) *

Concours Centrale Supelec TSI 2018

Savoirs et compétences :

- Res2.C18: principe fondamental de la statique;
- Res2.C19: équilibre d'un solide, d'un ensemble de solides;
- Res2.C20: théorème des actions réciproques.

Mise en situation

Le processus d'enregistrement des passagers dans les aéroports est en train de vivre une mutation en évoluant de la « banque d'enregistrement » classique vers une idée de « dépose bagages » automatisée. Cette évolution a été justifiée pour fluidifier le trafic passager notamment sur les destinations avec des fréquences très importantes, par exemple certains vols Paris-Province.

Le système DBA est constitué par un basculeur actionné par un dispositif bielle-manivelle et une machine asynchrone.

Recherche de la vitesse de rotation maximale

Objectif Le bagage et le chariot sont animés par un dispositif bielle-manivelle et une machine asynchrone triphasée avec un réducteur entraînant la manivelle. L'objectif est de déterminer la vitesse de rotation maximale de la machine asynchrone triphasée actionnant le basculeur en accord avec l'exigence 1.4 (le basculement du bagage doit se faire en 8 s).

Pour dimensionner correctement la machine asynchrone, la première étape est le calcul de la vitesse maximale de l'arbre moteur. On choisit comme loi de mouvement de rotation du moteur une loi en trapèze. On donne ainsi le profil de vitesse de rotation ω_r de l'arbre de sortie du réducteur par rapport au bâti.

Le rapport de réduction entre l'arbre moteur de vitesse de rotation et l'arbre de sortie de réducteur est noté $k=\frac{\omega_r}{\omega_{\mathrm{mot}}}=\frac{1}{107,7}$. Compte tenu du temps de basculement du bagage de 8 s, les valeurs des temps sont les suivantes : $t_1=0.5\,\mathrm{s},\ t_2=2.5\,\mathrm{s},\ t_3=3\,\mathrm{s},\ t_4=5\,\mathrm{s},\ t_5=5.5\,\mathrm{s},\ t_6=7.5\,\mathrm{s},\ t_7=8\,\mathrm{s}$. L'arbre de sortie du motoréducteur doit faire un demi-tour entre 0 et t_3 , puis un demi-tour entre t_4 et t_7 .

Question 1 Déterminer ω_{max} en fonction des différents t_i . Faire l'application numérique.

Question 2 En déduire la vitesse de rotation de l'arbre moteur maximale $\omega_{mot \, max}$. Faire l'application numérique et donner le résultat en $tr \cdot min^{-1}$.

Recherche du couple moteur maximal en vue du dimensionnement de la machine asynchrone

Objectif La seconde étape du dimensionnement consiste à rechercher le couple moteur maximal en accord avec l'exigence 1.2 (la masse du bagage pouvant être manœuvré par le système est de 50 kg).

Pour calculer le couple moteur maximal, on se place dans un cas quasi-statique et on néglige tous les effets dynamiques. Compte tenu de la construction du mécanisme (non linéaire), le couple moteur est variable et on le calcule dans une position particulière correspondant au couple maximal.

On note:

- S_0 le bâti;
- S₁ l'ensemble constitué par le chariot, le bagage et

les galets, dont le centre de gravité est noté G et la masse est notée $m = 80 \,\mathrm{kg}$;

- S_2 la bielle DB de direction $\overrightarrow{x_2}$;
- S_3 l'arbre de sortie de réducteur et la manivelle $E\overrightarrow{D} = R\overrightarrow{x_3}$ avec R = 86 mm.

Le mouvement est considéré comme plan. On néglige toutes les masses sauf celle de l'ensemble S_1 . Toutes les liaisons sont parfaites. Le référentiel lié au solide S_0 est considéré galiléen. On note l'accélération de la pesanteur $\overrightarrow{g} = -g \overrightarrow{y_0}$ avec $g = 9.81 \,\mathrm{m \, s^{-2}}$.

Les liaisons entre S_0 et S_1 sont des liaisons sphère-plan de normales $(A_1, \overrightarrow{x_{11}})$ et $(A_2, \overrightarrow{x_{12}})$. On note I le point d'intersection des normales $(A_1, \overrightarrow{x_{11}})$ et $(A_2, \overrightarrow{x_{12}})$. On note $\overrightarrow{IB} = L_2 \overrightarrow{x_{12}}$ et $\overrightarrow{IG} = x_G \overrightarrow{x_0} + y_G \overrightarrow{y_0}$.

On note les angles α_i formés entre les vecteurs \overrightarrow{x}_0 et $\overrightarrow{x}_i: \alpha_i = (\overrightarrow{x_0}, \overrightarrow{x_i}) \text{ avec } i \in \{2; 3; 11; 12\}.$

La liaison entre S_1 et S_2 est une liaison pivot d'axe

La liaison entre S_2 et S_3 est une liaison pivot d'axe

La liaison entre S_0 et S_3 est une liaison pivot d'axe $(Es, \overrightarrow{z_0}).$

Question 3 Déterminer la forme des torseurs $\{\mathcal{T}(S_0 \to S_1)\}_1$ au point A_1 et $\{\mathcal{T}(S_0 \to S_1)\}_2$ au point A_2 des actions mécaniques des rampes du bâti So s'appliquant sur le chariot S_1 . Ces torseurs sont-ils des glisseurs?

Question 4 *La somme des torseurs* $\{\mathcal{T}(S_0 \to S_1)\}_1$ et $\{\mathcal{T}(S_0 \to S_1)\}_2$ est-elle un glisseur? Si oui, déterminer un point de son support.

Question 5 Déterminer la forme du torseur $\{\mathcal{T}(S_2 \to S_1)\}\$ de l'action mécanique de la bielle S_2 sur l'ensemble S_1 au point B. On notera F_B la norme de la résultante de ce torseur.

Question 6 En isolant S_1 , et en ramenant les moments en I, déterminer l'expression de F_B en fonction de la masse m de S_1 , des angles α_i et des constantes du problème.

Question 7 On note C_{red} le couple exercé par l'arbre de sortie de réducteur sur la manivelle S₃. Montrer que $C_{red} - RF_B \sin(\alpha_3 - \alpha_2) = 0$.

Dans la configuration choisie, on a $x_G = 506 \,\mathrm{mm}$, $L_2 = 140$ mm, $\alpha_3 = 91^\circ$, $\alpha_{12} = 108^\circ$ et $\alpha_2 = 3^\circ$ (on montre par une simulation numérique que cette position conduit au couple maximal).

Question 8 En déduire l'expression du couple C_{red} qu'exerce le réducteur sur la manivelle S₃ en fonction du poids du chariot, des angles α_i et des constantes du problème. Faire l'application numérique.

Question 9 En déduire la valeur numérique C_m du couple qu'exerce l'arbre de la machine asynchrone sur l'arbre d'entrée du réducteur (on supposera le rendement du réducteur égal à 1).

Éléments de corrigé

- 1. $1.26 \, \text{rad s}^{-1}$.
- $2. 1292 \, \text{tr} \, \text{min}^{-1}$
- 3. Oui.

- $F_B = \frac{1}{L_2 \sin(\alpha_{12} \alpha_2)}.$ $C_{\text{red}} RF_B \sin(\alpha_3 \alpha_2) = \frac{1}{L_2 \sin(\alpha_{12} \alpha_2)}.$
- 8. 252 Nm.
- 9. 2,34 Nm.

Révision 1 – Résolution des problèmes de statique – Statique 2D

Industrielles de

l'Ingénieur

Sciences

Dépose de bagage automatique dans les aéroports (DBA) **

Concours Centrale Supelec TSI 2018

Savoirs et compétences :

- Res2.C18: principe fondamental de la statique;
- Res2.C19: équilibre d'un solide, d'un ensemble de solides;
- Res2.C20: théorème des actions réciproques.

Mise en situation

Le processus d'enregistrement des passagers dans les aéroports est en train de vivre une mutation en évoluant de la « banque d'enregistrement » classique vers une idée de « dépose bagages » automatisée. Cette évolution a été justifiée pour fluidifier le trafic passager notamment sur les destinations avec des fréquences très importantes, par exemple certains vols Paris-Province.

Le système DBA est constitué par un basculeur actionné par un dispositif bielle-manivelle et une machine asynchrone.

Recherche de la vitesse de rotation maximale

Objectif Le bagage et le chariot sont animés par un dispositif bielle-manivelle et une machine asynchrone triphasée avec un réducteur entraînant la manivelle. L'objectif est de déterminer la vitesse de rotation maximale de la machine asynchrone triphasée actionnant le basculeur en accord avec l'exigence 1.4 (le basculement du bagage doit se faire en 8 s).

Pour dimensionner correctement la machine asynchrone, la première étape est le calcul de la vitesse maximale de l'arbre moteur. On choisit comme loi de mouvement de rotation du moteur une loi en trapèze. On donne ainsi le profil de vitesse de rotation ω_r de l'arbre de sortie du réducteur par rapport au bâti.

Le rapport de réduction entre l'arbre moteur de vitesse de rotation et l'arbre de sortie de réducteur est noté $k=\frac{\omega_r}{\omega_{\mathrm{mot}}}=\frac{1}{107,7}$. Compte tenu du temps de basculement du bagage de 8 s, les valeurs des temps sont les suivantes : $t_1=0.5\,\mathrm{s},\ t_2=2.5\,\mathrm{s},\ t_3=3\,\mathrm{s},\ t_4=5\,\mathrm{s},\ t_5=5.5\,\mathrm{s},\ t_6=7.5\,\mathrm{s},\ t_7=8\,\mathrm{s}$. L'arbre de sortie du motoréducteur doit faire un demi-tour entre 0 et t_3 , puis un demi-tour entre t_4 et t_7 .

Question 1 Déterminer ω_{max} en fonction des différents t_i . Faire l'application numérique.

Question 2 En déduire la vitesse de rotation de l'arbre moteur maximale $\omega_{mot \, max}$. Faire l'application numérique et donner le résultat en $tr \cdot min^{-1}$.

Recherche du couple moteur maximal en vue du dimensionnement de la machine asynchrone

Objectif La seconde étape du dimensionnement consiste à rechercher le couple moteur maximal en accord avec l'exigence 1.2 (la masse du bagage pouvant être manœuvré par le système est de 50 kg).

Pour calculer le couple moteur maximal, on se place dans un cas quasi-statique et on néglige tous les effets dynamiques. Compte tenu de la construction du mécanisme (non linéaire), le couple moteur est variable et on le calcule dans une position particulière correspondant au couple maximal.

On note:

- S_0 le bâti;
- S₁ l'ensemble constitué par le chariot, le bagage et

les galets, dont le centre de gravité est noté G et la masse est notée $m = 80 \,\mathrm{kg}$;

- S_2 la bielle DB de direction $\overrightarrow{x_2}$;
- S_3 l'arbre de sortie de réducteur et la manivelle $\overrightarrow{ED} = R \overrightarrow{x_3}$ avec R = 86 mm.

Le mouvement est considéré comme plan. On néglige toutes les masses sauf celle de l'ensemble S_1 . Toutes les liaisons sont parfaites. Le référentiel lié au solide S_0 est considéré galiléen. On note l'accélération de la pesanteur $\overrightarrow{g} = -g \overrightarrow{y_0}$ avec $g = 9.81 \,\mathrm{m \, s^{-2}}$.

 $\overrightarrow{g} = -g \overrightarrow{y_0}$ avec $g = 9.81 \,\mathrm{m \, s^{-2}}$. Les liaisons entre S_0 et S_1 sont des liaisons sphèreplan de normales $(A_1, \overrightarrow{x_{11}})$ et $(A_2, \overrightarrow{x_{12}})$. On note I le point d'intersection des normales $(A_1, \overrightarrow{x_{11}})$ et $(A_2, \overrightarrow{x_{12}})$. On note $\overrightarrow{IB} = I_{22} \overrightarrow{x_{12}}$ et $\overrightarrow{IG} = x_C \overrightarrow{x_0} + y_C \overrightarrow{y_0}$.

 $\overrightarrow{IB} = L_2 \overrightarrow{x_{12}}$ et $\overrightarrow{IG} = x_G \overrightarrow{x_0} + y_G \overrightarrow{y_0}$. On note les angles α_i formés entre les vecteurs \overrightarrow{x}_0 et $\overrightarrow{x}_i : \alpha_i = (\overrightarrow{x_0}, \overrightarrow{x_i})$ avec $i \in \{2; 3; 11; 12\}$.

La liaison entre S_1 et S_2 est une liaison pivot d'axe $(B, \overrightarrow{z_0})$.

La liaison entre S_2 et S_3 est une liaison pivot d'axe $(D, \overrightarrow{z_0})$.

La liaison entre S_0 et S_3 est une liaison pivot d'axe $(Es, \overrightarrow{z_0})$.

Question 3 On note C_{red} le couple exercé par l'arbre de sortie de réducteur sur la manivelle S_3 . Montrer que $C_{red} - RF_B \sin(\alpha_3 - \alpha_2) = 0$.

Dans la configuration choisie, on a $x_G = 506 \,\mathrm{mm}$, $L_2 = 140 \,\mathrm{mm}$, $\alpha_3 = 91^\circ$, $\alpha_{12} = 108^\circ$ et $\alpha_2 = 3^\circ$ (on montre par une simulation numérique que cette position conduit au couple maximal).

Question 4 En déduire la valeur numérique C_m du couple qu'exerce l'arbre de la machine asynchrone sur l'arbre d'entrée du réducteur (on supposera le rendement du réducteur égal à 1).

Révision 1 – Résolution des problèmes de statique – Statique 2D

l'Ingénieur

Colle *

Dépose de bagage automatique dans les aéroports (DBA) *

Concours Centrale Supelec TSI 2018

Savoirs et compétences :

- Res2.C18: principe fondamental de la statique;
- Res2.C19: équilibre d'un solide, d'un ensemble de solides;
- Res2.C20: théorème des actions réciproques.

Mise en situation

Le processus d'enregistrement des passagers dans les aéroports est en train de vivre une mutation en évoluant de la « banque d'enregistrement » classique vers une idée de « dépose bagages » automatisée. Cette évolution a été justifiée pour fluidifier le trafic passager notamment sur les destinations avec des fréquences très importantes, par exemple certains vols Paris-Province.

Le système DBA est constitué par un basculeur actionné par un dispositif bielle-manivelle et une machine asynchrone.

Recherche de la vitesse de rotation maximale

Objectif Le bagage et le chariot sont animés par un dispositif bielle-manivelle et une machine asynchrone triphasée avec un réducteur entraînant la manivelle. L'objectif est de déterminer la vitesse de rotation maximale de la machine asynchrone triphasée actionnant le basculeur en accord avec l'exigence 1.4 (le basculement du bagage doit se faire en 8 s).

Pour dimensionner correctement la machine asynchrone, la première étape est le calcul de la vitesse maximale de l'arbre moteur. On choisit comme loi de mouvement de rotation du moteur une loi en trapèze. On donne ainsi le profil de vitesse de rotation ω_r de l'arbre de sortie du réducteur par rapport au bâti.

Le rapport de réduction entre l'arbre moteur de vitesse de rotation et l'arbre de sortie de réducteur est noté $k=\frac{\omega_r}{\omega_{\mathrm{mot}}}=\frac{1}{107,7}$. Compte tenu du temps de basculement du bagage de 8 s, les valeurs des temps sont les suivantes : $t_1=0.5\,\mathrm{s},\ t_2=2.5\,\mathrm{s},\ t_3=3\,\mathrm{s},\ t_4=5\,\mathrm{s},\ t_5=5.5\,\mathrm{s},\ t_6=7.5\,\mathrm{s},\ t_7=8\,\mathrm{s}$. L'arbre de sortie du motoréducteur doit faire un demi-tour entre 0 et t_3 , puis un demi-tour entre t_4 et t_7 .

Question 1 Déterminer ω_{max} en fonction des différents t_i . Faire l'application numérique.

Question 2 En déduire la vitesse de rotation de l'arbre moteur maximale $\omega_{mot \, max}$. Faire l'application numérique et donner le résultat en $tr \cdot min^{-1}$.

Recherche du couple moteur maximal en vue du dimensionnement de la machine asynchrone

Objectif La seconde étape du dimensionnement consiste à rechercher le couple moteur maximal en accord avec l'exigence 1.2 (la masse du bagage pouvant être manœuvré par le système est de 50 kg).

Pour calculer le couple moteur maximal, on se place dans un cas quasi-statique et on néglige tous les effets dynamiques. Compte tenu de la construction du mécanisme (non linéaire), le couple moteur est variable et on le calcule dans une position particulière correspondant au couple maximal.

On note:

- S_0 le bâti;
- S₁ l'ensemble constitué par le chariot, le bagage et

les galets, dont le centre de gravité est noté G et la masse est notée $m = 80 \,\mathrm{kg}$;

- S_2 la bielle DB de direction $\overrightarrow{x_2}$;
- S_3 l'arbre de sortie de réducteur et la manivelle $\overrightarrow{ED} = R \overrightarrow{x_3}$ avec R = 86 mm.

Le mouvement est considéré comme plan. On néglige toutes les masses sauf celle de l'ensemble S_1 . Toutes les liaisons sont parfaites. Le référentiel lié au solide S_0 est considéré galiléen. On note l'accélération de la pesanteur $\overrightarrow{g} = -g \overrightarrow{y_0}$ avec $g = 9.81 \, \mathrm{m \, s^{-2}}$.

Les liaisons entre S_0 et S_1 sont des liaisons sphèreplan de normales $(A_1, \overrightarrow{x_{11}})$ et $(A_2, \overrightarrow{x_{12}})$. On note I le point d'intersection des normales $(A_1, \overrightarrow{x_{11}})$ et $(A_2, \overrightarrow{x_{12}})$. On note $\overrightarrow{IB} = L_2 \overrightarrow{x_{12}}$ et $\overrightarrow{IG} = x_G \overrightarrow{x_0} + y_G \overrightarrow{y_0}$.

On note les angles α_i formés entre les vecteurs \overrightarrow{x}_0 et $\overrightarrow{x}_i : \alpha_i = (\overrightarrow{x}_0, \overrightarrow{x}_i)$ avec $i \in \{2; 3; 11; 12\}$.

La liaison entre S_1 et S_2 est une liaison pivot d'axe $(B, \overrightarrow{z_0})$.

La liaison entre S_2 et S_3 est une liaison pivot d'axe $(D, \overrightarrow{z_0})$.

La liaison entre S_0 et S_3 est une liaison pivot d'axe $(Es, \overrightarrow{z_0})$.

Question 3 Déterminer la forme des torseurs $\{\mathcal{T}(S_0 \to S_1)\}_1$ au point A_1 et $\{\mathcal{T}(S_0 \to S_1)\}_2$ au point A_2 des actions mécaniques des rampes du bâti S_0 s'appliquant sur le chariot S_1 . Ces torseurs sont-ils des glisseurs?

Question 4 La somme des torseurs $\{\mathcal{T}(S_0 \to S_1)\}_1$ et $\{\mathcal{T}(S_0 \to S_1)\}_2$ est-elle un glisseur? Si oui, déterminer un point de son support.

Question 5 Déterminer la forme du torseur $\{\mathcal{T}(S_2 \to S_1)\}$ de l'action mécanique de la bielle S_2 sur l'ensemble S_1 au point B. On notera F_B la norme de la résultante de ce torseur.

Question 6 En isolant S_1 , et en ramenant les moments en I, déterminer l'expression de F_B en fonction de la masse m de S_1 , des angles α_i et des constantes du problème.

Question 7 On note C_{red} le couple exercé par l'arbre de sortie de réducteur sur la manivelle S_3 . Montrer que $C_{red} - RF_B \sin(\alpha_3 - \alpha_2) = 0$.

Dans la configuration choisie, on a $x_G = 506\,\mathrm{mm}$, $L_2 = 140\,\mathrm{mm}$, $\alpha_3 = 91^\circ$, $\alpha_{12} = 108^\circ$ et $\alpha_2 = 3^\circ$ (on montre par une simulation numérique que cette position conduit au couple maximal).

Question 8 En déduire l'expression du couple C_{red} qu'exerce le réducteur sur la manivelle S_3 en fonction du poids du chariot, des angles α_i et des constantes du problème. Faire l'application numérique.

Question 9 En déduire la valeur numérique C_m du couple qu'exerce l'arbre de la machine asynchrone sur l'arbre d'entrée du réducteur (on supposera le rendement du réducteur égal à 1).

Révision 1 – Résolution des problèmes de statique – Statique 2D

l'Ingénieur

Colle **

Dépose de bagage automatique dans les aéroports (DBA) **

Concours Centrale Supelec TSI 2018

Savoirs et compétences :

- Res2.C18: principe fondamental de la statique;
- Res2.C19: équilibre d'un solide, d'un ensemble de solides;
- Res2.C20: théorème des actions réciproques.

Mise en situation

Le processus d'enregistrement des passagers dans les aéroports est en train de vivre une mutation en évoluant de la « banque d'enregistrement » classique vers une idée de « dépose bagages » automatisée. Cette évolution a été justifiée pour fluidifier le trafic passager notamment sur les destinations avec des fréquences très importantes, par exemple certains vols Paris-Province.

Le système DBA est constitué par un basculeur actionné par un dispositif bielle-manivelle et une machine asynchrone.

Recherche de la vitesse de rotation maximale

Objectif Le bagage et le chariot sont animés par un dispositif bielle-manivelle et une machine asynchrone triphasée avec un réducteur entraînant la manivelle. L'objectif est de déterminer la vitesse de rotation maximale de la machine asynchrone triphasée actionnant le basculeur en accord avec l'exigence 1.4 (le basculement du bagage doit se faire en 8 s).

Pour dimensionner correctement la machine asynchrone, la première étape est le calcul de la vitesse maximale de l'arbre moteur. On choisit comme loi de mouvement de rotation du moteur une loi en trapèze. On donne ainsi le profil de vitesse de rotation ω_r de l'arbre de sortie du réducteur par rapport au bâti.

Le rapport de réduction entre l'arbre moteur de vitesse de rotation et l'arbre de sortie de réducteur est noté $\frac{\omega_r}{\omega_{\text{mot}}} = \frac{1}{107,7}$. Compte tenu du temps de basculement du bagage de 8 s, les valeurs des temps sont les suivantes: $t_1 = 0.5 \,\text{s}$, $t_2 = 2.5 \,\text{s}$, $t_3 = 3 \,\text{s}$, $t_4 = 5 \,\text{s}$, $t_5 = 5.5 \,\text{s}$, $t_6 = 7,5 \,\mathrm{s},\ t_7 = 8 \,\mathrm{s}.$ L'arbre de sortie du motoréducteur doit faire un demi-tour entre 0 et t_3 , puis un demi-tour entre t_4 et t_7 .

Question 1 Déterminer ω_{max} en fonction des différents t_i . Faire l'application numérique.

Question 2 En déduire la vitesse de rotation de l'arbre moteur maximale $\omega_{mot \, max}$. Faire l'application nu*mérique et donner le résultat en tr*· min^{-1} .

Recherche du couple moteur maximal en vue du dimensionnement de la machine asynchrone

Objectif La seconde étape du dimensionnement consiste à rechercher le couple moteur maximal en accord avec l'exigence 1.2 (la masse du bagage pouvant être manœuvré par le système est de 50 kg).

Pour calculer le couple moteur maximal, on se place dans un cas quasi-statique et on néglige tous les effets dynamiques. Compte tenu de la construction du mécanisme (non linéaire), le couple moteur est variable et on le calcule dans une position particulière correspondant au couple maximal.

On note:

- S_0 le bâti;
- S₁ l'ensemble constitué par le chariot, le bagage et

les galets, dont le centre de gravité est noté G et la masse est notée $m = 80 \,\mathrm{kg}$;

- S_2 la bielle DB de direction $\overrightarrow{x_2}$;
- S_3 l'arbre de sortie de réducteur et la manivelle $\overrightarrow{ED} = R \overrightarrow{x_3}$ avec R = 86 mm.

Le mouvement est considéré comme plan. On néglige toutes les masses sauf celle de l'ensemble S_1 . Toutes les liaisons sont parfaites. Le référentiel lié au solide S_0 est considéré galiléen. On note l'accélération de la pesanteur $\overrightarrow{g} = -g \overrightarrow{y_0}$ avec $g = 9.81 \,\mathrm{m \, s^{-2}}$.

 $\overrightarrow{g} = -g \overrightarrow{y_0}$ avec $g = 9.81 \,\mathrm{m \, s^{-2}}$. Les liaisons entre S_0 et S_1 sont des liaisons sphèreplan de normales $(A_1, \overrightarrow{x_{11}})$ et $(A_2, \overrightarrow{x_{12}})$. On note I le point d'intersection des normales $(A_1, \overrightarrow{x_{11}})$ et $(A_2, \overrightarrow{x_{12}})$. On note $\overrightarrow{IB} = I_{22} \overrightarrow{x_{12}}$ et $\overrightarrow{IG} = x_C \overrightarrow{x_0} + y_C \overrightarrow{y_0}$.

 $\overrightarrow{IB} = L_2 \overrightarrow{x_{12}}$ et $\overrightarrow{IG} = x_G \overrightarrow{x_0} + y_G \overrightarrow{y_0}$. On note les angles α_i formés entre les vecteurs \overrightarrow{x}_0 et $\overrightarrow{x}_i : \alpha_i = (\overrightarrow{x_0}, \overrightarrow{x_i})$ avec $i \in \{2; 3; 11; 12\}$.

La liaison entre S_1 et S_2 est une liaison pivot d'axe $(B, \overrightarrow{z_0})$.

La liaison entre S_2 et S_3 est une liaison pivot d'axe $(D, \overrightarrow{z_0})$.

La liaison entre S_0 et S_3 est une liaison pivot d'axe $(Es, \overrightarrow{z_0})$.

Question 3 On note C_{red} le couple exercé par l'arbre de sortie de réducteur sur la manivelle S_3 . Montrer que $C_{red} - RF_B \sin(\alpha_3 - \alpha_2) = 0$.

Dans la configuration choisie, on a $x_G = 506 \,\mathrm{mm}$, $L_2 = 140 \,\mathrm{mm}$, $\alpha_3 = 91^\circ$, $\alpha_{12} = 108^\circ$ et $\alpha_2 = 3^\circ$ (on montre par une simulation numérique que cette position conduit au couple maximal).

Question 4 En déduire la valeur numérique C_m du couple qu'exerce l'arbre de la machine asynchrone sur l'arbre d'entrée du réducteur (on supposera le rendement du réducteur égal à 1).

Révision 1 – Résolution des problèmes de statique – Statique 2D

Sciences Industrielles de l'Ingénieur

Corrigé **

Dépose de bagage automatique dans les aéroports (DBA) **

Concours Centrale Supelec TSI 2018

Savoirs et compétences :

- Res2.C18: principe fondamental de la statique;
- Res2.C19: équilibre d'un solide, d'un ensemble de solides;
- Res2.C20: théorème des actions réciproques.

Mise en situation

Recherche de la vitesse de rotation maximale

Objectif Le bagage et le chariot sont animés par un dispositif bielle-manivelle et une machine asynchrone triphasée avec un réducteur entraînant la manivelle. L'objectif est de déterminer la vitesse de rotation maximale de la machine asynchrone triphasée actionnant le basculeur en accord avec l'exigence 1.4 (le basculement du bagage doit se faire en 8 s).

Question 1 Déterminer ω_{max} en fonction des différents t_i . Faire l'application numérique.

Correction En calculant l'aire sous la courbe (l'intégrale de la vitesse est la position) et sachant que le réducteur doit faire un demi-tour (π rad), on a : $\pi = \frac{1}{2}t_1\omega_{\max} + \frac{1}{2}(t_3 - t_2)\omega_{\max} + (t_2 - t_1)\omega_{\max} = \left(\frac{1}{2}t_1 + \frac{1}{2}(t_3 - t_2) + (t_2 - t_1)\right)\omega_{\max}$. On a donc $\omega_{\max} = \frac{\pi}{-\frac{1}{2}t_1 + \frac{1}{2}t_2 + \frac{1}{2}t_3} = \frac{\pi}{-\frac{1}{2}0.5 + \frac{1}{2}2.5 + \frac{1}{2}3} = \frac{\pi}{2.5} = 1,26 \, \text{rad} \, \text{s}^{-1}$.

Question 2 En déduire la vitesse de rotation de l'arbre moteur maximale $\omega_{mot max}$. Faire l'application numérique et donner le résultat en $tr \cdot min^{-1}$.

Correction $\omega_{\text{mot max}} = 107, 7 \times 1, 26 = 135 \,\text{rad s}^{-1} = 1292 \,\text{tr min}^{-1}$.

Recherche du couple moteur maximal en vue du dimensionnement de la machine asynchrone

Objectif La seconde étape du dimensionnement consiste à rechercher le couple moteur maximal en accord avec l'exigence 1.2 (la masse du bagage pouvant être manœuvré par le système est de 50 kg).

Correction $\{\mathcal{T}(S_0 \to S_1)\}_1 = \left\{\begin{array}{c} F_1 \overrightarrow{x_{11}} \\ \overrightarrow{0} \end{array}\right\}_{A_1} \text{ et } \{\mathcal{T}(S_0 \to S_1)\}_2 = \left\{\begin{array}{c} F_2 \overrightarrow{x_{12}} \\ \overrightarrow{0} \end{array}\right\}_{A_2}. \text{ Ces torseurs sont des glisseurs (il existed)}$ un point où le moment est nul, ici les droites (A_i, I)).

 $\textbf{Correction} \quad \text{On a } \{\mathscr{T}(S_0 \to S_1)\} = \{\mathscr{T}(S_0 \to S_1)\}_1 + \{\mathscr{T}(S_0 \to S_1)\}_2 = \left\{\begin{array}{c} F_1 \overrightarrow{x_{11}} + F_2 \overrightarrow{x_{12}} \\ \overrightarrow{0} \end{array}\right\}_T. \text{ Ce torseur est un glisseur}$ dont le point I appartient au support.

Correction On prendra F_B comme valeur algébrique et pas comme norme de la résultante. On isole la bielle S_2 , elle est soumise à deux glisseurs. D'après le PFS, ces glisseurs sont de même norme, de même direction (la droite (DB)) et de sens opposés. On a $\{\mathcal{T}(S_2 \to S_1)\} = \left\{\begin{array}{c} F_B \overrightarrow{x_2} \\ \overrightarrow{0} \end{array}\right\}_B$.

Correction On isole S_1 .

On réalise le BAME :

Off realise to BANE:
•
$$\{\mathcal{T}(S_2 \to S_1)\} = \left\{ \begin{array}{c} F_B \overrightarrow{x_2} \\ \overrightarrow{0} \end{array} \right\}_B$$

$$= \left\{ \begin{array}{c} F_B \overrightarrow{x_2} \\ L_2 F_B \sin(\alpha_{12} - \alpha_2) \overrightarrow{z} \end{array} \right\}_I (\overrightarrow{IB} \wedge F_B \overrightarrow{x_2} = L_2 \overrightarrow{x_{12}} \wedge F_B \overrightarrow{x_2} = L_2 F_B \sin(\alpha_{12} - \alpha_2) \overrightarrow{z});$$

•
$$\{\mathcal{T}(S_0 \to S_1)\} = \left\{\begin{array}{c} E_1 \xrightarrow{Z_1} & F_2 \xrightarrow{T_1} \\ 0 & \end{array}\right\}_T$$

•
$$\{\mathcal{T}(\text{pes} \to S_1)\} = \left\{\begin{array}{c} -mg\overrightarrow{y_0} \\ \overrightarrow{0} \end{array}\right\}_G$$

= $\left\{\begin{array}{c} -mg\overrightarrow{y_0} \\ -mgx_G\overrightarrow{z_0} \end{array}\right\}_I (\overrightarrow{IG} \wedge -mg\overrightarrow{y_0} = \left(x_G\overrightarrow{x_0} + y_G\overrightarrow{y_0}\right) \wedge -mg\overrightarrow{y_0} = -mgx_G\overrightarrow{z_0}).$

En appliquant le TMS en I en projection sur $\overrightarrow{z_0}$, on a : $L_2F_B\sin(\alpha_{12}-\alpha_2)-mg\,x_G=0$ soit $F_B=\frac{mg\,x_G}{L_2\sin(\alpha_{12}-\alpha_2)}$

Question 3 On note C_{red} le couple exercé par l'arbre de sortie de réducteur sur la manivelle S_3 . Montrer que $C_{red} - RF_B \sin(\alpha_3 - \alpha_2) = 0$.

Correction En isolant 2, on montre que $\{\mathcal{T}(2 \to 3)\} = \{\mathcal{T}(1 \to 2)\}$.

On isole 3.

On fait le BAME:

•
$$\{\mathscr{T}(2 \to 3)\} = -\{\mathscr{T}(2 \to 1)\} = \left\{\begin{array}{c} -F_B \overrightarrow{x_2} \\ \overrightarrow{0} \end{array}\right\}_D \text{ et on a } \overrightarrow{\mathscr{M}(E, 2 \to 3)} = \overrightarrow{\mathscr{M}(D, 2 \to 3)} + \overrightarrow{ED} \wedge -F_B \overrightarrow{x_2} = R \overrightarrow{x_3} \wedge -F_B \overrightarrow{x_2}$$

$$= -RF_B \sin(\alpha_3 - \alpha_2);$$

$$= -RF_B \sin(\alpha_3 - \alpha_2);$$
• $\{\mathcal{T}(\text{r\'ed} \to 3)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_{\text{red}} \overrightarrow{z_0} \end{array}\right\}_E;$

• $\{\mathcal{T}(0 \to 3)\}\ \text{avec}\ \overrightarrow{\mathcal{M}(E, 0 \to 3)} \cdot \overrightarrow{z_0} = 0.$

On applique le TMS en E en projection sur $\overrightarrow{z_0}$: $C_{\text{red}} - RF_B \sin(\alpha_3 - \alpha_2) = 0$.

Dans la configuration choisie, on a $x_G = 506$ mm, $L_2 = 140$ mm, $\alpha_3 = 91^\circ$, $\alpha_{12} = 108^\circ$ et $\alpha_2 = 3^\circ$ (on montre par une simulation numérique que cette position conduit au couple maximal).

Correction On a
$$C_{\text{red}} = RF_B \sin(\alpha_3 - \alpha_2) = \frac{Rmg \, x_G \sin(\alpha_3 - \alpha_2)}{L_2 \sin(\alpha_{12} - \alpha_2)} \simeq 252 \, \text{Nm}.$$

Question 4 En déduire la valeur numérique C_m du couple qu'exerce l'arbre de la machine asynchrone sur l'arbre d'entrée du réducteur (on supposera le rendement du réducteur égal à 1).

Correction Le couple moteur est alors de 2,34 Nm.

Révision 1 - Résolution des problèmes de statique - Statique 2D

l'Ingénieur

Interface maître et esclave d'un robot *

CCP PSI 2015

Savoirs et compétences :

- Res2.C18: principe fondamental de la statique;
- Res2.C19: équilibre d'un solide, d'un ensemble de solides;
- Res2.C20: théorème des actions réciproques.

Mise en situation

La téléopération consiste à mettre en relation deux manipulateurs appelés communément maître et esclave. Le manipulateur maître permet au chirurgien de donner sa consigne de déplacement à l'aide d'un levier de commande tandis que l'esclave l'exécute au contact de l'environnement (l'organe à opérer). Les deux sous-systèmes échangent des informations de déplacement et d'effort au travers d'un ou plusieurs canaux de communication. Un retour visuel est également mis en place en parallèle à ce dispositif.

Modélisation de l'interface maître

Ce mécanisme est constitué de 4 barres reliées par des liaisons pivots.

Objectif Vérifier que l'exigence « Linéarité couple/effort » (id 1.3.2.2) peut être satisfaite par le mécanisme de HOEKEN.

- Solide S_0 , repère $\mathcal{R}_0(A; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}), \overrightarrow{AB} = L_0 \overrightarrow{x_0}$ avec $L_0 = 50 \, \text{mm}$.
- Solide S_1 , repère $\mathcal{R}_1(B; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}), \overrightarrow{BC} = L_1 \overrightarrow{x_1}$ avec $L_1 = 25 \,\mathrm{mm}, \; \theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}).$
- Solide S_2 , repère $\mathcal{R}_2(A; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0}), \overrightarrow{AD} = L_2 \overrightarrow{x_2}$ avec $L_2 = 62.5 \,\mathrm{mm}, \; \theta_2 = (\overrightarrow{x_0}, \overrightarrow{x_2}) = (\overrightarrow{y_0}, \overrightarrow{y_2}).$
- Solide S_3 , repère $\mathcal{R}_3(C; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_0})$, $\overrightarrow{ED} = \overrightarrow{DC} =$ $L_2 \overrightarrow{x_3}$ avec $\theta_3 = (\overrightarrow{x_0}, \overrightarrow{x_3}) = (\overrightarrow{y_0}, \overrightarrow{y_3})$.
- On notera $\{\mathscr{T}(S_i \to S_j)\} = \left\{\begin{array}{cc} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \end{array}\right\}$

pression l'expression au point P, en projection dans la base \mathcal{B}_0 , du torseur de l'action mécanique exercée par le solide S_i sur le solide S_i ; toutes les inconnues seront exprimées dans la base \mathcal{B}_0 .

- L'action mécanique exercée par le moteur sur S_1 sera modélisée par un couple $C_m(t)\overrightarrow{z_0}$.
- L'action mécanique exercée par l'opérateur sur S₃ sera modélisée par une force $F(t)\overrightarrow{x_0}$ appliquée au point E.
- L'accélération de la pesanteur sera négligée.
- · Les inerties des solides en mouvement et les frottements dans les guidages seront négligés.

Question 1 Réaliser le graphe d'analyse du mécanisme (liaisons et efforts).

Question 2 #CCINP Déterminer les équations al-

gébriques issues du développement des 4 relations suivantes:

- théorème du moment statique en B appliqué à l'équilibre de S_1 , en projection sur $\overrightarrow{z_0}$;
- théorème du moment statique en A appliqué à l'équilibre de S_2 , en projection sur $\overrightarrow{z_0}$;
- théorème du moment statique en D appliqué à *l'équilibre de* S_3 , *en projection sur* $\overrightarrow{z_0}$;
- théorème de la résultante statique appliqué à l'équilibre de S_3 , en projection sur $\overrightarrow{y_2}$.

Montrer que

$$C_m = \frac{L_1 F}{\sin(\theta_2 - \theta_3)} (\sin \theta_1 \sin(\theta_2 + \theta_3) - 2\cos \theta_1 \sin \theta_2 \sin \theta_3)$$

Cette relation n'étant pas linéaire, on propose d'analyser les résultats d'une simulation numérique en traçant le couple moteur/effort opérateur en fonction de l'abscisse du point E Q6.

(a) Rapport couple/effort

(b) $X_E \in [-60 \,\mathrm{mm}, 40 \,\mathrm{mm}]$

Question 3 Retrouver ces graphes en utilsant Py- $C_m = \frac{L_1 F}{\sin(\theta_2 - \theta_3)} (\sin \theta_1 \sin(\theta_2 + \theta_3) - 2\cos \theta_1 \sin \theta_2 \sin \theta_3)$ **Question 3** Retrouver ces graphes en utilsant Python. J'ai pas essayé, mais si eux ont réussi, pourquoi pas vous? Il faut peut-être utiliser le premier devoir de vacances.

> Question 4 Déterminer, à partir de la figure précédente, sur quel intervalle de l'abscisse X_E l'exigence « Linéarité couple/effort » (id 1.3.2.2) est satisfaite. (On ajoute que la course sur X_E doit être supérieure à 50 mm.)

Révision 1 - Résolution des problèmes de statique - Statique 2D

l'Ingénieur

Interface maître et esclave d'un robot **

CCP PSI 2015

Savoirs et compétences :

- Res2.C18: principe fondamental de la statique;
- Res2.C19: équilibre d'un solide, d'un ensemble de solides;
- Res2.C20: théorème des actions réciproques.

Mise en situation

La téléopération consiste à mettre en relation deux manipulateurs appelés communément maître et esclave. Le manipulateur maître permet au chirurgien de donner sa consigne de déplacement à l'aide d'un levier de commande tandis que l'esclave l'exécute au contact de l'environnement (l'organe à opérer). Les deux sous-systèmes échangent des informations de déplacement et d'effort au travers d'un ou plusieurs canaux de communication. Un retour visuel est également mis en place en parallèle à ce dispositif.

Modélisation de l'interface maître

Ce mécanisme est constitué de 4 barres reliées par des liaisons pivots.

Objectif Vérifier que l'exigence « Linéarité couple/effort » (id 1.3.2.2) peut être satisfaite par le mécanisme de HOEKEN.

- Solide S_0 , repère $\mathcal{R}_0(A; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}), \overrightarrow{AB} = L_0 \overrightarrow{x_0}$ avec $L_0 = 50 \, \text{mm}$.
- Solide S_1 , repère $\mathcal{R}_1(B; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}), \overrightarrow{BC} = L_1 \overrightarrow{x_1}$ avec $L_1 = 25 \,\mathrm{mm}, \; \theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}).$
- Solide S_2 , repère $\mathcal{R}_2(A; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0}), \overrightarrow{AD} = L_2 \overrightarrow{x_2}$ avec $L_2 = 62.5 \,\mathrm{mm}, \; \theta_2 = (\overrightarrow{x_0}, \overrightarrow{x_2}) = (\overrightarrow{y_0}, \overrightarrow{y_2}).$
- Solide S_3 , repère $\mathcal{R}_3(C; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_0})$, $\overrightarrow{ED} = \overrightarrow{DC} =$ $L_2 \overrightarrow{x_3}$ avec $\theta_3 = (\overrightarrow{x_0}, \overrightarrow{x_3}) = (\overrightarrow{y_0}, \overrightarrow{y_3})$.
- On notera $\{\mathscr{T}(S_i \to S_j)\} = \left\{\begin{array}{cc} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \end{array}\right\}$

pression l'expression au point P, en projection dans la base \mathcal{B}_0 , du torseur de l'action mécanique exercée par le solide S_i sur le solide S_i ; toutes les inconnues seront exprimées dans la base \mathcal{B}_0 .

- L'action mécanique exercée par le moteur sur S_1 sera modélisée par un couple $C_m(t)\overrightarrow{z_0}$.
- L'action mécanique exercée par l'opérateur sur S₃ sera modélisée par une force $F(t)\overrightarrow{x_0}$ appliquée au point E.
- L'accélération de la pesanteur sera négligée.
- · Les inerties des solides en mouvement et les frottements dans les guidages seront négligés.

Question 1 Réaliser le graphe d'analyse du mécanisme (liaisons et efforts).

Question 2 #CCMP Proposer une démarche per-

mettant d'exprimer le couple moteur en fonction de l'effort de l'opérateur et des parmètres géométriques.

Question 3 #CCMP Mettre en œuvre cette démarche et montrer que

$$C_m = \frac{L_1 F}{\sin(\theta_2 - \theta_3)} (\sin \theta_1 \sin(\theta_2 + \theta_3) - 2\cos \theta_1 \sin \theta_2 \sin \theta_3).$$

Cette relation n'étant pas linéaire, on propose d'analyser les résultats d'une simulation numérique en traçant le couple moteur/effort opérateur en fonction de l'abscisse du point E Q6.

(a) Rapport couple/effort

Question 4 Retrouver ces graphes en utilsant Python. J'ai pas essayé, mais si eux ont réussi, pourquoi pas vous? Il faut peut-être utiliser le premier devoir de vacances.

Question 5 Déterminer, à partir de la figure précédente, sur quel intervalle de l'abscisse X_E l'exigence « Linéarité couple/effort » (id 1.3.2.2) est satisfaite. (On ajoute que la course sur X_E doit être supérieure à 50 mm.)

Révision 1 - Résolution des problèmes de statique - Statique 2D

l'Ingénieur

PSI* - MP

Colle *

Interface maître et esclave d'un robot *

CCP PSI 2015

Savoirs et compétences :

- Res2.C18: principe fondamental de la statique;
- Res2.C19: équilibre d'un solide, d'un ensemble de solides;
- Res2.C20: théorème des actions réciproques.

Mise en situation

La téléopération consiste à mettre en relation deux manipulateurs appelés communément maître et esclave. Le manipulateur maître permet au chirurgien de donner sa consigne de déplacement à l'aide d'un levier de commande tandis que l'esclave l'exécute au contact de l'environnement (l'organe à opérer). Les deux sous-systèmes échangent des informations de déplacement et d'effort au travers d'un ou plusieurs canaux de communication. Un retour visuel est également mis en place en parallèle à ce dispositif.

Modélisation de l'interface maître

Ce mécanisme est constitué de 4 barres reliées par des liaisons pivots.

Objectif Vérifier que l'exigence « Linéarité couple/effort » (id 1.3.2.2) peut être satisfaite par le mécanisme de HOEKEN.

- Solide S_0 , repère $\mathcal{R}_0(A; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}), \overrightarrow{AB} = L_0 \overrightarrow{x_0}$ avec $L_0 = 50 \, \text{mm}$.
- Solide S_1 , repère $\mathcal{R}_1(B; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}), \overrightarrow{BC} = L_1 \overrightarrow{x_1}$ avec $L_1 = 25 \,\mathrm{mm}, \; \theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}).$
- Solide S_2 , repère $\mathcal{R}_2(A; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0}), \overrightarrow{AD} = L_2 \overrightarrow{x_2}$ avec $L_2 = 62.5 \,\mathrm{mm}, \; \theta_2 = (\overrightarrow{x_0}, \overrightarrow{x_2}) = (\overrightarrow{y_0}, \overrightarrow{y_2}).$
- Solide S_3 , repère $\mathcal{R}_3(C; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_0})$, $\overrightarrow{ED} = \overrightarrow{DC} =$ $L_2 \overrightarrow{x_3}$ avec $\theta_3 = (\overrightarrow{x_0}, \overrightarrow{x_3}) = (\overrightarrow{y_0}, \overrightarrow{y_3})$.
- On notera $\{\mathscr{T}(S_i \to S_j)\} = \left\{\begin{array}{cc} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \end{array}\right\}$

pression l'expression au point P, en projection dans la base \mathcal{B}_0 , du torseur de l'action mécanique exercée par le solide S_i sur le solide S_i ; toutes les inconnues seront exprimées dans la base \mathcal{B}_0 .

- L'action mécanique exercée par le moteur sur S_1 sera modélisée par un couple $C_m(t)\overrightarrow{z_0}$.
- L'action mécanique exercée par l'opérateur sur S₃ sera modélisée par une force $F(t)\overrightarrow{x_0}$ appliquée au point E.
- L'accélération de la pesanteur sera négligée.
- · Les inerties des solides en mouvement et les frottements dans les guidages seront négligés.

Question 1 Réaliser le graphe d'analyse du mécanisme (liaisons et efforts).

Question 2 #CCINP Déterminer les équations al-

gébriques issues du développement des 4 relations suivantes:

- théorème du moment statique en B appliqué à l'équilibre de S_1 , en projection sur $\overrightarrow{z_0}$;
- théorème du moment statique en A appliqué à l'équilibre de S_2 , en projection sur $\overrightarrow{z_0}$;
- théorème du moment statique en D appliqué à *l'équilibre de* S_3 , *en projection sur* $\overrightarrow{z_0}$;
- théorème de la résultante statique appliqué à l'équilibre de S_3 , en projection sur $\overrightarrow{y_2}$.

Montrer que

$$C_m = \frac{L_1 F}{\sin(\theta_2 - \theta_3)} (\sin \theta_1 \sin(\theta_2 + \theta_3) - 2\cos \theta_1 \sin \theta_2 \sin \theta_3)$$

Cette relation n'étant pas linéaire, on propose d'analyser les résultats d'une simulation numérique en traçant le couple moteur/effort opérateur en fonction de l'abscisse du point E Q6.

(a) Rapport couple/effort

(b) $X_E \in [-60 \,\mathrm{mm}, 40 \,\mathrm{mm}]$

Question 3 Retrouver ces graphes en utilsant Py- $C_m = \frac{L_1 F}{\sin(\theta_2 - \theta_3)} (\sin \theta_1 \sin(\theta_2 + \theta_3) - 2\cos \theta_1 \sin \theta_2 \sin \theta_3)$ **Question 3** Retrouver ces graphes en utilsant Python. J'ai pas essayé, mais si eux ont réussi, pourquoi pas vous? Il faut peut-être utiliser le premier devoir de vacances.

> Question 4 Déterminer, à partir de la figure précédente, sur quel intervalle de l'abscisse X_E l'exigence « Linéarité couple/effort » (id 1.3.2.2) est satisfaite. (On ajoute que la course sur X_E doit être supérieure à 50 mm.)

PSI* - MP

Révision 1 - Résolution des problèmes de statique - Statique 2D

Colle **

Interface maître et esclave d'un robot **

CCP PSI 2015

Savoirs et compétences :

- Res2.C18: principe fondamental de la statique;
- Res2.C19: équilibre d'un solide, d'un ensemble de solides;
- Res2.C20: théorème des actions réciproques.

Mise en situation

La téléopération consiste à mettre en relation deux manipulateurs appelés communément maître et esclave. Le manipulateur maître permet au chirurgien de donner sa consigne de déplacement à l'aide d'un levier de commande tandis que l'esclave l'exécute au contact de l'environnement (l'organe à opérer). Les deux sous-systèmes échangent des informations de déplacement et d'effort au travers d'un ou plusieurs canaux de communication. Un retour visuel est également mis en place en parallèle à ce dispositif.

Modélisation de l'interface maître

Ce mécanisme est constitué de 4 barres reliées par des liaisons pivots.

Objectif Vérifier que l'exigence « Linéarité couple/effort » (id 1.3.2.2) peut être satisfaite par le mécanisme de HOEKEN.

- Solide S_0 , repère $\mathcal{R}_0(A; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}), \overrightarrow{AB} = L_0 \overrightarrow{x_0}$ avec $L_0 = 50 \, \text{mm}$.
- Solide S_1 , repère $\mathcal{R}_1(B; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}), \overrightarrow{BC} = L_1 \overrightarrow{x_1}$ avec $L_1 = 25 \,\mathrm{mm}, \; \theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}).$
- Solide S_2 , repère $\mathcal{R}_2(A; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0}), \overrightarrow{AD} = L_2 \overrightarrow{x_2}$ avec $L_2 = 62.5 \,\mathrm{mm}, \; \theta_2 = (\overrightarrow{x_0}, \overrightarrow{x_2}) = (\overrightarrow{y_0}, \overrightarrow{y_2}).$
- Solide S_3 , repère $\mathcal{R}_3(C; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_0})$, $\overrightarrow{ED} = \overrightarrow{DC} =$ $L_2 \overrightarrow{x_3}$ avec $\theta_3 = (\overrightarrow{x_0}, \overrightarrow{x_3}) = (\overrightarrow{y_0}, \overrightarrow{y_3})$.
- On notera $\{\mathscr{T}(S_i \to S_j)\} = \left\{\begin{array}{cc} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \end{array}\right\}$

pression l'expression au point P, en projection dans la base \mathcal{B}_0 , du torseur de l'action mécanique exercée par le solide S_i sur le solide S_i ; toutes les inconnues seront exprimées dans la base \mathcal{B}_0 .

- L'action mécanique exercée par le moteur sur S_1 sera modélisée par un couple $C_m(t)\overrightarrow{z_0}$.
- L'action mécanique exercée par l'opérateur sur S₃ sera modélisée par une force $F(t)\overrightarrow{x_0}$ appliquée au point E.
- L'accélération de la pesanteur sera négligée.
- · Les inerties des solides en mouvement et les frottements dans les guidages seront négligés.

Question 1 Réaliser le graphe d'analyse du mécanisme (liaisons et efforts).

Question 2 #CCMP Proposer une démarche per-

mettant d'exprimer le couple moteur en fonction de l'effort de l'opérateur et des parmètres géométriques.

Question 3 #CCMP Mettre en œuvre cette démarche et montrer que

$$C_m = \frac{L_1 F}{\sin(\theta_2 - \theta_3)} (\sin \theta_1 \sin(\theta_2 + \theta_3) - 2\cos \theta_1 \sin \theta_2 \sin \theta_3).$$

Cette relation n'étant pas linéaire, on propose d'analyser les résultats d'une simulation numérique en traçant le couple moteur/effort opérateur en fonction de l'abscisse du point E Q6.

(a) Rapport couple/effort

Question 4 Retrouver ces graphes en utilsant Python. J'ai pas essayé, mais si eux ont réussi, pourquoi pas vous? Il faut peut-être utiliser le premier devoir de vacances.

Question 5 Déterminer, à partir de la figure précédente, sur quel intervalle de l'abscisse X_E l'exigence « Linéarité couple/effort » (id 1.3.2.2) est satisfaite. (On ajoute que la course sur X_E doit être supérieure à 50 mm.)

Sciences

l'Ingénieur

Industrielles de

Révision 1 – Résolution des problèmes de statique – Statique 2D

Corrigé **

Interface maître et esclave d'un robot **

CCP PSI 2015

Savoirs et compétences :

- Res2.C18: principe fondamental de la statique;
- Res2.C19: équilibre d'un solide, d'un ensemble de solides;
- Res2.C20: théorème des actions réciproques.

Mise en situation

Modélisation de l'interface maître

Question 1 Réaliser le graphe d'analyse du mécanisme (liaisons et efforts).

Question 2 #CCMP Proposer une démarche permettant d'exprimer le couple moteur en fonction de l'effort de l'opérateur et des parmètres géométriques.

PSI_{*} – MP

Correction

- On commence par isoler le solide S_2 soumis à deux forces. D'après le PFS, on a donc $\{\mathscr{T}(0 \to 2)\} = -\{\mathscr{T}(3 \to 2)\} = \begin{cases} F_{23}\overrightarrow{x_2} \\ \overrightarrow{0} \end{cases}_{D}$.
- Le solide S_1 est en rotation d'axe $(B, \overline{z_0})$. On réalise un TMS en B.
- On isole S₃. Pour ne pas introduire les inconnues de liaison en D, on réalise un TMS en D.

XP: à ce stade il manque une équation, on verra laquelle à la question suivante.

Question 3 #CCMP Mettre en œuvre cette démarche et montrer que

$$C_m = \frac{L_1 F}{\sin(\theta_2 - \theta_3)} (\sin \theta_1 \sin(\theta_2 + \theta_3) - 2\cos \theta_1 \sin \theta_2 \sin \theta_3).$$

Correction

Après avoir isolé S_2 , on a vu que $\{\mathcal{T}(2 \to 3)\} = \left\{\begin{array}{c} F_{23} \overrightarrow{x_2} \\ \overrightarrow{0} \end{array}\right\}_D$.

On isole S_1 .

On réalise le BAME.

- Action de la liaison pivot.
- Action du couple moteur.
- Action de S_3 sur $S_1 : \{ \mathcal{T}(0 \to 1) \} = \left\{ \begin{array}{c} X_{31} \overrightarrow{x_0} + Y_{31} \overrightarrow{y_0} \\ \overrightarrow{0} \end{array} \right\}_C$.

On applique le TMS en B en projection sur $\overrightarrow{z_0}$ et on a :

$$C_m + \overrightarrow{BC} \wedge \left(X_{31} \overrightarrow{x_0} + Y_{31} \overrightarrow{y_0} \right) \cdot \overrightarrow{z_0} = 0$$

$$\Leftrightarrow C_m + L_1 \overrightarrow{x_1} \wedge \left(X_{31} \overrightarrow{x_0} + Y_{31} \overrightarrow{y_0} \right) \cdot \overrightarrow{z_0} = 0$$

$$\Leftrightarrow C_m + L_1 (-X_{31} \sin \theta_1 + Y_{31} \cos \theta_1) = 0$$

On isole S_3 .

On réalise le BAME.

- Action de la liaison pivot en *C* (1 sur 3).
- Action de la liaison pivot en *D* (2 sur 3).
- Action de l'opérateur en *E* .

On applique le TMS en B en projection sur $\overrightarrow{z_0}$ et on a :

$$\overrightarrow{DC} \wedge - \left(X_{31}\overrightarrow{x_0} + Y_{31}\overrightarrow{y_0}\right) + \left(\overrightarrow{DE} \wedge F(t)\overrightarrow{x_0}\right) \cdot \overrightarrow{z_0} = 0$$

$$\Leftrightarrow \left(L_2\overrightarrow{x_3} \wedge - \left(X_{31}\overrightarrow{x_0} + Y_{31}\overrightarrow{y_0}\right)\right) \cdot \overrightarrow{z_0} - \left(L_2\overrightarrow{x_3} \wedge F(t)\overrightarrow{x_0}\right) \cdot \overrightarrow{z_0} = 0$$

$$\Leftrightarrow L_2(X_{31}\sin\theta_3 - Y_{31}\cos\theta_3) + L_2F(t)\sin\theta_3 = 0$$

À ce stade, il manque une équation pour éliminer X_{31} ou Y_{31} . Il faut donc une équation de la résultante. Pour ne pas faire apparaître F_{23} , on peut isoler S_3 et réaliser un théorème de la résultante statique suivant $\overrightarrow{y_2}$: $\left(-\left(X_{31}\overrightarrow{x_0}+Y_{31}\overrightarrow{y_0}\right)+F_{23}\overrightarrow{x_2}+F(t)\overrightarrow{x_0}\right)\cdot\overrightarrow{y_2}=0$

$$\Leftrightarrow -(-X_{31}\sin\theta_{2} + Y_{31}\cos\theta_{2}) - F(t)\sin\theta_{2} = 0$$

$$\Leftrightarrow X_{31}\sin\theta_{2} - Y_{31}\cos\theta_{2} - F(t)\sin\theta_{2} = 0.$$
On a donc:
$$\begin{cases} C_{m} + L_{1}(-X_{31}\sin\theta_{1} + Y_{31}\cos\theta_{1}) = 0 \\ L_{2}(X_{31}\sin\theta_{3} - Y_{31}\cos\theta_{3}) + L_{2}F(t)\sin\theta_{3} = 0 \\ X_{31}\sin\theta_{2} - Y_{31}\cos\theta_{2} - F(t)\sin\theta_{2} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} C_{m} + L_{1}(-X_{31}\sin\theta_{1} + Y_{31}\cos\theta_{1}) = 0 \\ X_{31}\sin\theta_{3} - Y_{31}\cos\theta_{3} + F(t)\sin\theta_{3} = 0 \\ X_{31} = \frac{Y_{31}\cos\theta_{2} + F(t)\sin\theta_{2}}{\sin\theta_{2}} \end{cases}$$

$$\Leftrightarrow \begin{cases} C_{m} + L_{1}(-X_{31}\sin\theta_{1} + Y_{31}\cos\theta_{1}) = 0 \\ Y_{31}\cos\theta_{2}\sin\theta_{3} + F(t)\sin\theta_{2}\sin\theta_{3} - Y_{31}\cos\theta_{3}\sin\theta_{2} + F(t)\sin\theta_{3}\sin\theta_{2} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} C_{m} + L_{1}(-X_{31}\sin\theta_{1} + Y_{31}\cos\theta_{1}) = 0 \\ Y_{31}\cos\theta_{2}\sin\theta_{3} + F(t)\sin\theta_{2}\sin\theta_{3} - Y_{31}\cos\theta_{3}\sin\theta_{2} + F(t)\sin\theta_{3}\sin\theta_{2} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} C_{m} + L_{1}(-X_{31}\sin\theta_{1} + Y_{31}\cos\theta_{1}) = 0 \\ Y_{31}\cos\theta_{2}\sin\theta_{3} + F(t)\sin\theta_{2}\sin\theta_{3} - Y_{31}\cos\theta_{3}\sin\theta_{2} + F(t)\sin\theta_{3}\sin\theta_{2} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} C_{m} + L_{1}(-X_{31}\sin\theta_{1} + Y_{31}\cos\theta_{1}) = 0 \\ Y_{31}\cos\theta_{2} + F(t)\sin\theta_{2}\sin\theta_{3} - Y_{31}\cos\theta_{3}\sin\theta_{2} + F(t)\sin\theta_{3}\sin\theta_{2} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} C_m + L_1(-X_{31}\sin\theta_1 + Y_{31}\cos\theta_1) = 0 \\ Y_{31} = -2F(t)\frac{\sin\theta_2\sin\theta_3}{\sin(\theta_3 - \theta_2)} \\ X_{31} = \frac{Y_{31}\cos\theta_2 + F(t)\sin\theta_2}{\sin\theta_2} \\ \sin\theta_2 \\ \frac{C_m + L_1(-X_{31}\sin\theta_1 + Y_{31}\cos\theta_1) = 0}{\sin\theta_2\sin\theta_3} \\ Y_{31} = -2F(t)\frac{\sin\theta_2\sin\theta_3}{\sin(\theta_3 - \theta_2)} \\ X_{31} = \frac{Y_{31}\cos\theta_2 + F(t)\sin\theta_2}{\sin\theta_2} \\ \frac{C_m + L_1(-X_{31}\sin\theta_1 + Y_{31}\cos\theta_1) = 0}{\sin\theta_2} \\ \Leftrightarrow \begin{cases} C_m + L_1(-X_{31}\sin\theta_1 + Y_{31}\cos\theta_1) = 0 \\ Y_{31} = -2F(t)\frac{\sin\theta_2\sin\theta_3}{\sin(\theta_3 - \theta_2)} \\ X_{31} = -2F(t)\frac{\sin\theta_2\sin\theta_3}{\sin(\theta_3 - \theta_2)} \\ \frac{\sin\theta_2\sin\theta_3}{\sin(\theta_3 - \theta_2)} \frac{\cos\theta_2}{\sin\theta_2} + F(t) = F(t)\left(-2\frac{\cos\theta_2\sin\theta_3}{\sin(\theta_3 - \theta_2)} + 1\right) \\ \text{On a donc } C_m = L_1X_{31}\sin\theta_1 - L_1Y_{31}\cos\theta_1 = -2F(t)\frac{\sin\theta_2\sin\theta_3}{\sin(\theta_3 - \theta_2)} L_1\sin\theta_1 + 2F(t)\frac{\sin\theta_2\sin\theta_3}{\sin(\theta_3 - \theta_2)} L_1\cos\theta_1 \\ = 2F(t)L_1\frac{\sin\theta_2\sin\theta_3}{\sin(\theta_3 - \theta_2)}(-\sin\theta_1 + \cos\theta_1) \\ \mathbf{XP} : \mathbf{je} \ \mathbf{ne} \ \mathbf{trouve} \ \mathbf{pas} \ \mathbf{la} \ \mathbf{même} \ \mathbf{expression} \ \mathbf{que} \ \mathbf{dans} \ \mathbf{le} \ \mathbf{sujet}, \mathbf{je} \ \mathbf{n'ai} \ \mathbf{pas} \ \mathbf{eu} \ \mathbf{le} \ \mathbf{temps} \ \mathbf{de} \ \mathbf{comprendre} \ \mathbf{pourquoi.} \end{cases}$$

Cette relation n'étant pas linéaire, on propose d'analyser les résultats d'une simulation numérique en traçant le couple moteur/effort opérateur en fonction de l'abscisse du point E Q6.

Question 4 Retrouver ces graphes en utilsant Python. J'ai pas essayé, mais si eux ont réussi, pourquoi pas vous? Il faut peut-être utiliser le premier devoir de vacances.

Correction

Question 5 Déterminer, à partir de la figure précédente, sur quel intervalle de l'abscisse X_E l'exigence « Linéarité couple/effort » (id 1.3.2.2) est satisfaite. (On ajoute que la course sur X_E doit être supérieure à 50 mm.)

Correction

Pour un rapport C_m/F de 33,25 mm, la fourchette de 1 % est comprise entre 32,9175 mm et 33,5825 mm. La course de X_E est donc de 20-(-36)=56 mm. L'exigence est vérifiée.