DIGITAL SIGNAL PROCESSING LAB

Fall 2024, 5th Semester Lab Report 9

Submitted by: Hassan Zaib Jadoon

Registration Number: 22PWCSE2144

Section: A

"On my honor, as a student at the University of Engineering and Technology

Peshawar, I have neither given nor received unauthorized assistance on this academic work."

Signature:

Submitted To: Dr. Yasir Saleem Afridi
Department of Computer Systems Engineering
University of Engineering and Technology Peshawar

CSE 402L: Digital Signal Processing

Demonstration of Concepts	Poor (Does not meet expectation (1))	Fair (Meet Expectation (2-3))	Good (Exceeds Expectation (4-5)	Score
	The student failed to demonstrate a clear understanding of the assignment concepts	The student demonstrated a clear understanding of some of the assignment concepts	The student demonstrated a clear understanding of the assignment concepts	30%
Accuracy	The student completed (<50%) tasks and provided MATLAB code and/or Simulink models with errors. Outputs shown are not correct in form of graphs (no labels) and/or tables along with incorrect analysis or remarks.	The student completed partial tasks (50% - <90%) with accurate MATLAB code and/or Simulink models. Correct outputs are shown in form of graphs (without labels) and/or tables along with correct analysis or remarks.	The student completed all required tasks (90%-100%) with accurate MATLAB code and/or Simulink models. Correct outputs are shown in form of labeled graphs and/or tables along with correct analysis or remarks.	
Following Directions	The student clearly failed to follow the verbal and written instructions to successfully complete the lab	The student failed to follow the some of the verbal and written instructions to successfully complete all requirements of the lab	The student followed the verbal and written instructions to successfully complete requirements of the lab	20%
Time Utilization	The student failed to complete even part of the lab in the allotted amount of time	The student failed to complete the entire lab in the allotted amount of time	The student completed the lab in its entirety in the allotted amount of time	20 %

Lab Report: Frequency Division Multiplexing and De-multiplexing

Step 1: Load and Play Voice Signals

```
%% Load and play voice signals
[sig1, fs1] = audioread('beep-02.wav');
[sig2, fs2] = audioread('beep-07a.wav');
[sig3, fs3] = audioread('beep-10.wav');
%% Resample signals to a common sampling rate
common fs = 44100; % Define a common sampling rate
sig1 = resample(sig1, common fs, fs1);
sig2 = resample(sig2, common fs, fs2);
sig3 = resample(sig3, common fs, fs3);
fs1 = common fs; fs2 = common fs; fs3 = common fs;
%% Ensure all signals have the same length
min length = min([length(sig1), length(sig2), length(sig3)]);
sig1 = sig1(1:min length);
sig2 = sig2(1:min length);
sig3 = sig3(1:min length);
%% playback
sound(sig1, fs1); pause(2);
sound(sig2, fs2); pause(2);
sound(sig3, fs3); pause(2);
```

Remarks:

Step II: Plot the spectra of the signals as they arrive (Use fft and dsp.SpectrumAnalyzer for comparison)

Code:

```
%% Spectral analysis
fft_sig1 = abs(fft(sig1));
fft_sig2 = abs(fft(sig2));
fft_sig3 = abs(fft(sig3));
%% plot spectrum
figure; plot(fft_sig1); title('Spectra of Signal 1');
figure; plot(fft_sig2); title('Spectra of Signal 2');
figure; plot(fft_sig3); title('Spectra of Signal 3');
```

Output:

Remarks:

Step III: the signals are passed through a low pass filter and plotted

```
%% Low Pass Filtering
fc = 5000; % Cutoff frequency (Hz)
sig1_filt = lowpass(sig1, fc, fs1);
sig2_filt = lowpass(sig2, fc, fs2);
sig3_filt = lowpass(sig3, fc, fs3);
%% filtered plot
figure; plot(sig1_filt); title('filtered Signal 1');
figure; plot(sig2_filt); title('filtered Signal 2');
figure; plot(sig3_filt); title('filtered Signal 3');
```

Output:

Remarks:

STEP IV: Reproduce the signals after passing them through the filter.

```
%% Modulation
t = (0:length(sig1_filt)-1) / fs1; % Time vector
carrier1 = cos(2*pi*1000*t)';
carrier2 = cos(2*pi*2000*t)';
carrier3 = cos(2*pi*3000*t)';

mod_sig1 = sig1_filt .* carrier1;
mod_sig2 = sig2_filt .* carrier2;
mod_sig3 = sig3_filt .* carrier3;
%% modulated plot
figure; plot(mod_sig1); title('modulated filtered Signal 1');
figure; plot(mod_sig2); title('modulated filtered Signal 2');
figure; plot(mod_sig3); title('modulated filtered Signal 3');
```

Output:

Remarks:

STEP 6: The modulated signals are filtered in the given band and added together

```
%% Multiplexing
mux_sig = mod_sig1 + mod_sig2 + mod_sig3;
figure; plot(mux_sig); title('multiplexed Signal');
```

Output:

Remarks:

STEP 7, some noise is added to the transmitted signal

```
%% Adding noise
noise = 0.01 * randn(size(mux_sig));
noisy_sig = mux_sig +noise;
figure; plot(noisy_sig); title('noisy Signal');
```

Output:

Remarks:

STEP 8, upon arrival each band is filtered

```
%% Demultiplexing and demodulation
demod_sig1 = noisy_sig .* carrier1;
demod_sig2 = noisy_sig .* carrier2;
demod_sig3 = noisy_sig .* carrier3;
%% plot
figure; plot(demod_sig1); title('demod_Signal 1');
figure; plot(demod_sig2); title('demod_Signal 2');
figure; plot(demod_sig3); title('demod_Signal 3');
```

Output:

Remarks:

STEP 9, each recovered band is demodulated to return the signal at the indicated frequency

```
%% Recovered signals
% 1
sound(demod_sig1, fs1); pause(2);
figure; plot(demod_sig3); title('recovered Signal 1');
%% 2
sound(demod_sig2, fs2); pause(2);
figure; plot(demod_sig3); title('recovered Signal 2');
%% 3
sound(demod_sig3, fs3); pause(2);
figure; plot(demod sig3); title('recovered Signal 3');
```

Frequency Division Multiplexing and De-multiplexing | Hassan Zaib Jadoon

Output:

Remarks: