Ottimizzazione Combinatoria

Corso di Laurea in Informatica

Terza Parte: Programmazione Lineare

Ugo Dal Lago

Anno Accademico 2021-2022

Sezione 1

Geometria Della Programmazione Lineare

La Programmazione Lineare

La Programmazione Lineare

$$\max x + y$$

$$x \ge 0$$

$$x \le 3$$

$$x + 2y \ge 2$$

$$y \le 2$$

$$y \ge 0$$

Restringere lo Spazio di Ricerca

- Lo spazio di ricerca, nei problemi PL, è in linea di principio infinito.
 - ► Ha addirittura la cardinalità del continuo.
- L'esempio precedente ci mostra, però, che lo spazio di ricerca può essere *in qualche caso* ridotto ad un insieme **finito**, ossia l'insieme dei vertici del poliedro che definisce la regione ammissibile.
 - ► Il ragionamento sottostante ha natura essenzialmente geometrica, intuitiva.

Restringere lo Spazio di Ricerca

- Lo spazio di ricerca, nei problemi PL, è in linea di principio infinito.
 - ► Ha addirittura la cardinalità del continuo.
- L'esempio precedente ci mostra, però, che lo spazio di ricerca può essere *in qualche caso* ridotto ad un insieme **finito**, ossia l'insieme dei vertici del poliedro che definisce la regione ammissibile.
 - ▶ Il ragionamento sottostante ha natura essenzialmente geometrica, intuitiva.
- La domanda cui cercheremo di dare una risposta in questa prima sezione è la seguente: è possibile **generalizzare** quest'argomento al caso di problemi in n > 2 variabili.
 - Sarà necessario utilizzare l'algebra lineare in modo non triviale.

Nozioni Preliminari — I

Iperpiano

Insieme $\{x \in \mathbb{R}^n \mid ax = b\}$ delle soluzioni dell'equazione lineare ax = b, dove $a \in \mathbb{R}^n$ e $b \in \mathbb{R}$.

Semispazio

- ▶ Insieme $\{x \in \mathbb{R}^n \mid ax \leq b\}$ delle soluzioni dell'equazione lineare $ax \leq b$, dove $a \in \mathbb{R}^n$ e $b \in \mathbb{R}$;
- ▶ Un iperpiano è il "confine" del corrispondente semispazio.

Poliedro

- ightharpoonup Intersezione P di un numero finito m di semispazi.
- Devono esistere una matrice $A \in \mathbb{R}^{m \times n}$ e un vettore $b \in \mathbb{R}^m$ tali che $P = \{x \mid Ax \leq b\}$.

► Insieme Convesso

▶ Un insieme $C \subseteq \mathbb{R}^n$ tale che tutti i punti che connettono $x, y \in C$ sono anch'essi in C, ossia

$$\forall x, y \in C \quad \forall \alpha \in [0, 1] \qquad \alpha x + (1 - \alpha)y \in C.$$

Semispazi e poliedri sono insiemi convessi.

Nozioni Preliminari — II

- Se consideriamo il poliedro $P = \{x \mid Ax \leq b\}$ (dove $A \in \mathbb{R}^{m \times n}$) e fissiamo un qualunque sottoinsieme I di $\{1, \ldots, m\}$, indichiamo:
 - ▶ Con \overline{I} il complementare $\{1, \ldots, m\} I$ di I.
 - \blacktriangleright Con A_I la sottomatrice di A ottenuta considerando solo le righe con indice in I
 - ightharpoonup Con P_I il poliedro definito come seque:

$$\{x \mid A_I x = b_I \wedge A_{\overline{I}} x \le b_{\overline{I}}\}.$$

Faccia

- Se I è tale che P_I non è vuoto, chiamiamo il poliedro P_I faccia di P.
- ▶ Il numero di facce distinte di un poliedro $\{x \mid Ax \leq b\}$, dove $A \in \mathbb{R}^{m \times n}$, è al più pari a 2^m .
- ightharpoonup P stesso è una faccia, ovvero P_{\emptyset} .
- Le facce proprie (cioè non banali) e massimali sono dette faccette.
- La dimensione di una faccia è la dimensione del più piccolo sottospazio che la contenga.

Vertici

- ▶ Una faccia determinata da una matrice A_I di rango k ha dimensione n-k o inferiore.
 - Può essere inferiore a causa delle equazioni in $A_{\overline{I}}$, che possono contenere un'equazione implicita.
- Le facce determinate da matrici A_I di rango n hanno quindi, necessariamente, dimensione 0 e sono dette **vertici**.
 - Chiaramente, per l'ipotesi sul rango di A_I , l'equazione $A_I x = b_I$ ammette una e una sola soluzione.
 - D'altra parte, le facce sono sempre non-vuote.
- Le facce individuate da sottomatrici A_I di rango n-1 hanno dimensione al più 1 e sono dette **spigoli**.

Soluzioni di Base

- Supponiamo che B sia tale che A_B sia matrice quadrata e invertibile. Allora:
 - \triangleright *B* è detta **base**;
 - $ightharpoonup A_B$ è detta matrice di base;
 - ▶ $x_B = A_B^{-1}b_B$ è detta soluzione di base
- ▶ Una soluzione di base x_B tale che $x_B \in P$ è detta ammissibile, altrimenti non ammissibile.
- ▶ È facile rendersi conto che i vertici di P sono tutte e sole le sue soluzioni di base ammissibili.

Vincoli Attivi

- Se $x \in P$, allora i vincoli che vengono soddisfatti come uguaglianze, sono detti **attivi** in x.
- ▶ Indichiamo con I(x) l'insieme degli indici dei vincoli attivi in x:

$$I(x) = \{i \mid A_i x = b_i\}.$$

Per ogni $J \subseteq I(x)$, l'insieme P_J è una faccia di P, e $P_{I(x)}$ è la faccia minimale tra esse.

Inviluppi Convessi

- ▶ I poliedri possono essere rappresentati per facce, come abbiamo fatto fin'ora, ma anche per punti ossia facendo leva sull'insieme dei vertici.
- ▶ Dato un insieme di punti $X = \{x_1, ..., x_s\} \subseteq \mathbb{R}^n$, l'**inviluppo convesso** di X è definito come l'insieme

$$\operatorname{conv}(X) = \left\{ x = \sum_{i=1}^{s} \lambda_i x_i \mid \sum_{i=1}^{s} \lambda_i = 1 \land \lambda_i \ge 0 \right\}$$

- Si può dimostrare che conv(X) è il più piccolo insieme convesso che contiene tutti i punti di X.
- ightharpoonup conv(X) è un **politopo**, ossia un poliedro limitato, i cui vertici sono tutti in X.
 - Non tutti i poliedri sono politopi, perché i poliedri possono essere illimitati.

Inviluppi Convessi — Esempio

Inviluppi Convessi — Esempio

Inviluppi Convessi — Esempio

Coni Convessi

- ▶ Un insieme $C \subseteq \mathbb{R}^n$ è detto **cono** sse per ogni $x \in C$ e per ogni $\alpha \in \mathbb{R}^+$ vale che $\alpha x \in C$.
- ▶ I coni che siano anche insiemi convessi (detti **coni convessi** sono caratterizzabili equivalentemente come gli insiemi C tali che

$$x, y \in C \land \lambda, \mu \in \mathbb{R} \implies \lambda x + \mu y \in C.$$

Anche per i coni convessi esiste una rappresentazione basata sulle direzioni: dato un insieme $V = \{v_1, \dots, v_t\} \subset \mathbb{R}^n$, il cono finitamente generato da V è

$$\operatorname{cono}(V) = \{ v = \sum_{i=1}^t \nu_i v_i \mid \nu_i \in \mathbb{R}^+ \}$$

ightharpoonup Si può dimostrare che cono(V) è il più piccolo cono convesso che contiene tutti i vettori di V.

Coni Convessi — Esempio

$$X = \{(1,3), (3,1), (2,5), (6,3)\}$$

Coni Convessi — Esempio

Il Teorema di Motzkin

Dati $X, Y \subseteq \mathbb{R}^n$, indichiamo con X + Y il sottoinsieme di \mathbb{R}^n definito ponendo

$$X + Y = \{x + y \mid x \in X \land y \in Y\}$$

Il Teorema di Motzkin

▶ Dati $X, Y \subseteq \mathbb{R}^n$, indichiamo con X + Y il sottoinsieme di \mathbb{R}^n definito ponendo

$$X + Y = \{x + y \mid x \in X \land y \in Y\}$$

Teorema (Motzkin)

 $P \subseteq \mathbb{R}^n$ è un poliedro sse esistono X, V finiti tali che $P = \operatorname{conv}(X) + \operatorname{cono}(V)$

- Nel contesto del Teorema di Motzkin, diremo che P è generato dai punti in X e dalla direzioni in V.
- ightharpoonup Se P è poliedro generato dai punti di X e X è minimale, allora i suoi elementi sono tutti e soli i vertici di P.
- ▶ Analogamente: se P è poliedro generato dalle direzioni in V e V è minimale, allora i suoi elementi sono detti raggi esterni e corrispondono alle direzioni degli spigoli illimitati.

Teorema di Motzin — Esempio

Teorema di Motzin — Esempio

$$\begin{aligned} & \mathsf{conv}(X) + \mathsf{cono}(V) \\ & X = \{(1,1), (1,3), (4,1)\} \\ & V = \{(1,3), (4,1)\} \end{aligned}$$

Due Rappresentazioni

- ▶ Due rappresentazioni:
 - 1. Poliedri come intersezioni di semispazi.
 - 2. Poliedri come somma di un politopo e di un cono.
- ▶ Le due rappresentazioni sono equivalenti (grazie al teorema di Motzkin) ma **non hanno** la stessa dimensione.
 - Prendiamo come controesempio il poliedro definito dall'insieme di vincoli

$$0 \le x_1 \le 1 \qquad 0 \le x_2 \le 1 \qquad \cdots \qquad 0 \le x_n \le 1$$

- ightharpoonup I semispazi coinvolti sono 2n.
- ▶ I vertici sono invece 2^n ; per rendersene conto basta osservare che i poliedri definiti sono gli *ipercubi* in \mathbb{R}^n di lato pari a 1 e con un vertice nell'origine. Tali ipercubi hanno effettivamente 2^n vertici.

Teorema.

Sia $P = \{x \mid Ax \leq b\}$ e siano $x_1, \dots, x_s, v_1, \dots, v_t \in \mathbb{R}^n$ tali che

$$P = \operatorname{conv}(\{x_1, \dots, x_s\}) + \operatorname{cono}(\{v_1, \dots, v_t\})$$

Allora il problema $\max\{cx \mid Ax \leq b\}$ ha ottimo finito sse $cv_j \leq 0$ per ogni $j \in \{1, \ldots, t\}$. In tal caso esiste inoltre un $k \in \{1, \ldots, s\}$ tale che x_k è una soluzione ottima.

Dimostrazione.

Per il Teorema di Decomposizione abbiamo che il problema $\max\{cx \mid Ax \leq b\}$ è equivalente al seguente problema sulle variabili $\lambda_1, \ldots, \lambda_s$ e ν_1, \ldots, ν_t :

$$\max c \left(\sum_{i=1}^{s} \lambda_i x_i + \sum_{j=1}^{t} \nu_j v_j \right) = \max \sum_{i=1}^{s} \lambda_i (cx_i) + \sum_{j=1}^{t} \nu_j (cv_j)$$
$$\sum_{i=1}^{s} \lambda_i = 1; \qquad \lambda_i \ge 0; \qquad \nu_j \ge 0.$$

Tale problema ha ottimo finito sse $cv_i \leq 0$ per ogni $j \in \{1, \ldots, t\}$. Infatti:

- \implies Se fosse $cv_j > 0$ per qualche $j \in \{1, \dots, t\}$, allora si potrebbe pompare ν_j facendo crescere a piacimento la funzione obbiettivo.
- \Leftarrow Supponiamo che $c\nu_j \leq 0$ per ogni $j \in \{1, \ldots, t\}$, e prendiamo un $y \in P$. Abbiamo che, se λ_i e ν_j sono i corrispondenti coefficienti del teorema di decomposizione,

$$cy = \sum_{i=1}^{s} \lambda_i(cx_i) + \sum_{j=1}^{t} \nu_j(cv_j)$$
$$\leq \sum_{i=1}^{s} \lambda_i(cx_i) \leq \sum_{j=1}^{s} \lambda_j(cx_k) = cx_k$$

dove x_k è il vettore tale che $x_k = \max\{cx_i \mid i = 1, ..., s\}$. Quindi x_k è una soluzione ottima finita.

Sezione 2

Dualità, Direzioni Ammissibili e di Crescita

Perché la Dualità?

- ▶ La **teoria della dualità** è una branca dell'algebra lineare che risulta estremamente utile nella costruzione degli algoritmi per PL.
- ▶ In questa parte del corso, daremo solo uno *sguardo* alla teoria della dualità, senza addentrarci troppo nei dettagli.
- La teoria della dualità si basa sulla definizione di un'involuzione (ossia di una funzione inversa di sé stessa) che mappa ogni problema PL nel suo duale:

Perché la Dualità?

- ▶ La **teoria della dualità** è una branca dell'algebra lineare che risulta estremamente utile nella costruzione degli algoritmi per PL.
- ▶ In questa parte del corso, daremo solo uno *sguardo* alla teoria della dualità, senza addentrarci troppo nei dettagli.
- La teoria della dualità si basa sulla definizione di un'involuzione (ossia di una funzione inversa di sé stessa) che mappa ogni problema PL nel suo duale:

Esempio: Problema di Trasporto.

Primale e Duale

- Lavoreremo con **coppie asimmetriche**:
 - $Primale: \max\{cx \mid Ax \leq b\};$
 - $Duale: \min\{yb \mid (yA=c) \land (y \ge 0)\}.$
- Esiste anche il concetto di coppie simmetriche:
 - Primale: $\max\{cx \mid (Ax \leq b) \land (x \geq 0)\};$
- È abbastanza facile dimostrare che il duale del duale è il primale.
 - Ad esempio, nel caso di coppia simmetrica, possiamo esprimere il duale come

$$-\max\{y(-b) \mid (yA \ge c) \land (y \ge 0)\}$$

= -\pmax\{(-b^T)y \| ((-A^T)y \le -c) \le (y \le 0)\}

il cui duale è

$$-\min\{-cx \mid ((x(-A^T) \ge (-b)) \land (x \ge 0)\}\$$

= \max\{cx \left| Ax \leftleq b\rangle \cap (x \ge 0)\}

Teorema Debole di Dualità

Teorema

Se \overline{x} e \overline{y} sono soluzioni ammissibili per il primale e il duale, rispettivamente, allora $c\overline{x} \leq \overline{y}b$.

Dimostrazione.

Dimostriamo il teorema nel caso della coppia asimmetrica:

$$\left. \begin{array}{c} A\overline{x} \leq b \\ \overline{y}A = c, \overline{y} \geq 0 \end{array} \right\} \Longrightarrow \left. \begin{array}{c} \overline{y}A\overline{x} \leq \overline{y}b \\ \overline{y}A\overline{x} = c\overline{x} \end{array} \right\} \Longrightarrow c\overline{x} \leq \overline{y}b$$

e nel caso della coppia simmetrica:

$$\left. \begin{array}{l} A\overline{x} \leq b, \overline{x} \geq 0 \\ \overline{y}A \geq c, \overline{y} \geq 0 \end{array} \right\} \Longrightarrow \left. \begin{array}{l} \overline{y}A\overline{x} \leq \overline{y}b \\ \overline{y}A\overline{x} \geq c\overline{x} \end{array} \right\} \Longrightarrow c\overline{x} \leq \overline{y}b$$

Corollari del Teorema Debole di Dualità

Corollario

Se il primale è illimitato, allora il duale è vuoto.

Dimostrazione.

Se il primale è illimitato, allora per ogni $M \in \mathbb{R}$ esiste una soluzione ammissibile x per il primale con cx > M. Ma quindi, se per assurdo ci fosse y ammissibile per il duale, troveremmo x ammissibile per il primale con cx > yb, in contrasto con il TdD.

Corollario

Se \overline{x} e \overline{y} sono soluzioni ammissibili per il primale e il duale, rispettivamente, e $c\overline{x} = \overline{y}b$, allora \overline{x} e \overline{y} sono soluzioni ottime.

Dimostrazione.

Se $c\overline{x} = \overline{y}b$ e \overline{x} non fosse ottima, troveremmo z ammissibile per il primale con $cz > c\overline{x}$ e quindi con $cz > \overline{y}b$, in contrasto con il TdD.

Direzioni Ammissibili — I

- Data una coppia asimmetrica, consideriamento una soluzione ammissibile \overline{x} per il primale, e chiediamoci se spostandoci lungo una direzione dell'iperspazio a partire da \overline{x} , si resta o meno nella regione ammissibile.
- ▶ Un vettore $\xi \in \mathbb{R}^n$ è detto **Direzione Ammissibile** se esiste $\overline{\lambda} > 0$ tale che $x(\lambda) = \overline{x} + \lambda \xi$ è ammissibile nel primale per ogni $\lambda \in [0, \overline{\lambda}]$.

Direzioni Ammissibili — II

Lemma

Il vettore ξ è direzione ammissibile per \overline{x} sse $A_{I(\overline{x})}\xi \leq 0$.

Dimostrazione.

▶ Un modo equivalente di definire ξ come direzione ammissibile è dire che per ogni $i \in \{1, ..., m\}$,

$$A_i x(\lambda) = A_i \overline{x} + \lambda A_i \xi \le b_i$$

- Osserviamo però che:
 - ▶ Se $i \in I(\overline{x})$, allora $A_i\overline{x} = b_i$, e quindi l'equazione è verificata se e solo se $\lambda A_i\xi \leq 0$.
 - ▶ se $i \notin I(\overline{x})$, allora l'equazione è verificata da qualunque ξ , purché λ sia piccolo a sufficienza.

Direzioni di Crescita

▶ Una direzione $\xi \in \mathbb{R}^n$ è una **direzione di crescita** per \overline{x} se uno spostamento λ lungo ξ fa crescere il valore della funzione obiettivo, ossia se:

$$cx(\lambda) = c\overline{x} + \lambda c\xi > c\overline{x} \iff c\xi > 0$$

- La nozione di direzione di crescita, dunque, non dipende dal punto $\overline{x}!$
- Osserviamo che:
 - ightharpoonup Se c=0, allora la funzione obiettivo vale sempre 0 e quindi tutte le soluzioni ammissibili sono ottime.
 - ▶ Se $c \neq 0$, allora se esiste una direzione ammissibile per \overline{x} che sia anche di crescita, allora \overline{x} non può essere ottimo.

Sezione 3

L'Algoritmo del Simplesso

Algoritmo del Simplesso

- Prima di presentare l'algoritmo, conviene dare uno sguardo alla sua **struttura**.
- ▶ L'algoritmo procede **iterativamente**, visitando successivamente alcuni tra i vertici del poliedro che definisce l'insieme delle soluzioni ammissibili.
- Dato un vertice \overline{x} , si cerca prima di tutto di determinare se tale vertice sia o meno ad una **soluzione ottima**, cercando di determinare se esiste una soluzione \overline{y} per il duale con lo stesso valore della funzione obiettivo.
- Nel caso in cui \overline{x} non sia ottima, si cerca di spostarsi in un altro vertice, seguendo una direzione di crescita, che sia anche ammissibile.
- ▶ Se è possibile spostarsi indefinitamente lungo questa direzione di crescita, allora il problema è illimitato, altrimenti si incontra un'altro vertice, e ci si sposta.

SIMPLESSOPRIMALE(A, b, c, B)

- 1. $N \leftarrow \{1, \dots, m\} B;$
- 2. $\overline{x} \leftarrow A_B^{-1}b_B$;
- 3. $\overline{y}_B \leftarrow cA_B^{-1}$;
- 4. $\overline{y}_N \leftarrow 0$:
- 5. Se $\overline{y}_R \ge 0$, allora termina con successo e restituisci \overline{x} e \overline{y} ;
- 6. $h \leftarrow \min\{i \in B \mid \overline{y}_i < 0\};$
- 7. Sia ξ la colonna di indice h in $-(A_B^{-1})$;
- 8. Se $A_N \xi \leq 0$, allora termina e restituisci ξ : il problema è illimitato;
- 9. $k \leftarrow \arg\min\{\frac{b_i A_i \overline{x}}{A_i \xi} \mid A_i \xi > 0 \land i \in N\};$
- 10. $B \leftarrow B \cup \{k\} \{h\};$
- 11. Torna al punto 1.

Correttezza del Simplesso — I

- L'algoritmo lavora mantenendo i seguenti tre *invarianti*:
 - ightharpoonup B è una base ammissibile;
 - $ightharpoonup \overline{x}$ è soluzione ammissibile per il problema primale

$$\max\{cx \mid Ax \le b\};$$

mentre $\overline{y}A = c$.

- ▶ Questo significa, tra l'altro, che \overline{x} è sempre un vertice.
- Osserviamo che per \overline{y} la condizione $\overline{y}A = c$ vale per come \overline{y}_B e \overline{y}_N vengono inizializzati.
- ightharpoonup Di conseguenza, \overline{y} è soluzione per il duale

$$\max\{yb \mid yA = c, y \ge 0\}$$

sse $\overline{y}_B \geq 0$.

Correttezza del Simplesso — II

- ▶ Se, quindi $\overline{y}_B \ge 0$, allora l'algoritmo correttamente **termina**, restituendo \overline{x} e \overline{y} che sono soluzioni ottime per il primale e per il duale (riga 5.)
- ▶ Se, invece, c'è un elemento di \overline{y} strettamente negativo, allora non vale l'ottimalità. Cerchiamo quindi una direzione ammissibile e di crescita per \overline{x} .
 - ξ, per come definito in riga 7. è sempre direzione di crescita, perché

$$c\xi = c(-A_B^{-1}u_h) = -(cA_B^{-1})u_h = -\overline{y}u_h = -\overline{y}_h > 0$$

dove u_h è un vettore ovunque nullo, tranne nella componente corrispondente a i, in cui vale 1.

 \triangleright ξ , però, potrebbe non essere **direzione ammissibile**, e soprattutto, non sappiamo quale sia il "primo" vertice lungo ξ .

Correttezza del Simplesso — III

- ▶ Il vettore $A_B\xi$ è una delle colonne della matrice identica, cambiata di segno, e quindi $A_B\xi \leq 0$.
- ▶ Se $i \in N$ e $A_i \xi \leq 0$, allora $\overline{x}(\lambda)$ soddisfa l'*i*-esimo vincolo per ogni valore non-negativo di λ .
- ► Se $i \in N$ e $A_i \xi > 0$, allora

$$A_i \overline{x}(\lambda) = A_i \overline{x} + \lambda A_i \xi \le b_i \quad \Leftrightarrow \quad \lambda \le (b_i - A_i \overline{x}) / A_i \xi$$

- ▶ Scegliamo l'indice i che rende tale λ minimo. Chiamiamolo k.
- ▶ Sia $\overline{\lambda}$ il valore min $\{\lambda_i \mid i \in N\}$.

Correttezza del Simplesso — IV

- 1. Se $\bar{\lambda} = +\infty$, ossia se $A_N \xi < 0$, allora il problema è illimitato.
 - ▶ Questo caso è gestito dalla riga 8. dell'Algoritmo.
- 2. Se $0 < \overline{\lambda} < +\infty$, allora $x(\lambda)$ è ammissibile per ogni $\lambda \in [0, \overline{\lambda}]$ e non ammissibile altrimenti. Possiamo quindi spostarci da B a $B \cup \{k\} \{h\}$, che corrisponde ad un altro vertice.
 - ▶ Questo caso è gestito dalle righe 9.-10. dell'Algoritmo.
- 3. Se $\overline{\lambda} = 0$, allora la direzione **non è ammissibile**, ma possiamo comunque effettuare un cambio di base verso $B \cup \{k\} \{h\}$, che ci fa restare sullo stesso vertice.
 - ▶ Questo caso è gestito dalle righe 9.-10. dell'Algoritmo.

Complessità del Simplesso

- Si può dimostrare che ogni base ammissibile viene trattata al più una volta durante l'esecuzione dell'Algoritmo.
- ▶ Di conseguenza, vi saranno al più $\binom{m}{n}$ iterazioni, ovvero un numero che può divenire **esponenziale** in n.
- ► Detto questo:
 - Da un punto di vista *teorico*, la complessità dell'Algoritmo nel caso **medio** è polinomiale.
 - ▶ Da un punto di vista *pratico*, si osserva come il Simplesso sia l'algoritmo più efficiente, e che si comporti **meglio** di altri algoritmi (alcuni dei quali si possono dimostrare essere polinomiali in tempo).

Sezione 4

La Tecnica Branch-and-Bound

- Finora ci siamo occupati della ricerca dell'ottimo in programmi lineari in cui **tutte** le variabili siano reali.
 - L'Algoritmo del Simplesso si basa in modo essenziale su quest'assunzione.
 - Ciò ci permette di costruire tecniche risolutive che, almeno nel caso medio, lavorano in tempo polinomiale.

- Finora ci siamo occupati della ricerca dell'ottimo in programmi lineari in cui **tutte** le variabili siano reali.
 - L'Algoritmo del Simplesso si basa in modo essenziale su quest'assunzione.
 - Ciò ci permette di costruire tecniche risolutive che, almeno nel caso medio, lavorano in tempo polinomiale.
- ➤ Si può fare la stessa cosa in PLI?

- Finora ci siamo occupati della ricerca dell'ottimo in programmi lineari in cui **tutte** le variabili siano reali.
 - L'Algoritmo del Simplesso si basa in modo essenziale su quest'assunzione.
 - Ciò ci permette di costruire tecniche risolutive che, almeno nel caso medio, lavorano in tempo polinomiale.
- ▶ Si può fare la stessa cosa in PLI?
 - La risposta è purtroppo **negativa**.
 - Trovare l'ottimo di un programma lineare intero è, come sappiamo, un problema **NP**-completo. È quindi improbabile che vi siano soluzioni efficienti.

- Finora ci siamo occupati della ricerca dell'ottimo in programmi lineari in cui **tutte** le variabili siano reali.
 - L'Algoritmo del Simplesso si basa in modo essenziale su quest'assunzione.
 - Ciò ci permette di costruire tecniche risolutive che, almeno nel caso medio, lavorano in tempo polinomiale.
- ▶ Si può fare la stessa cosa in PLI?
 - La risposta è purtroppo **negativa**.
 - Trovare l'ottimo di un programma lineare intero è, come sappiamo, un problema **NP**-completo. È quindi improbabile che vi siano soluzioni efficienti.
- ▶ Alla PLI si applica però una tecnica, detta branch-and-bound che, anche se esponenziale in tempo nel caso peggiore, permette in molti casi di evitare l'enumerazione esaustiva.

Due Prerequisiti - I

- ▶ Presenteremo la tecnica del branch-and-bound senza fare esplicito riferimento alla PLI, ma tenendo bene in mente che questa è il caso di studio che abbiamo in mente.
- ▶ Perché la tecnica del branch-and-bound sia applicabile ad una certa classe di problemi di ottimizzazione (che assumiamo di minimo), devono valere due requisiti

1. Rilassamento

- ▶ Deve essere possibile, in ogni momento, passare da un problema \mathbb{P} ad un suo rilassamento $\mathbb{T} = \mathsf{RELAX}(\mathbb{P})$, tipicamente più semplice da risolvere da un punto di vista computazionale.
- ▶ In questo modo si possono facilmente calcolare limitazioni inferiori al valore ottimo di \mathbb{P} .

2. Branching

- Deve esistere un modo per partizionare l'insieme delle soluzioni ammissibili di ℙ ottenendo due sottoproblemi PARTITION(ℙ) = (𝕋, ℚ).
- In questo modo decomponendo un problema complesso in due problemi più semplici.

Due Prerequisiti - II

 $\blacktriangleright\,$ In PLI, questi due prerequisiti sono entrambi soddisfatti.

Due Prerequisiti - II

- ▶ In PLI, questi due prerequisiti sono entrambi soddisfatti.
- ▶ Il **rilassamento** di un PLI si ottiene semplicemente *non* considerando i vincoli di interezza e dà luogo ad un PL:

$$\mathsf{RELAX}(\min\{cx \mid Ax \leq b \land x \in \mathbb{Z}^n\}) = \min\{cx \mid Ax \leq b\}$$

▶ Il **branching** di un PLI si ottiene scegliendo una variabile x_i e un bound n:

PARTITION(min{
$$cx \mid Ax \leq b \land x \in \mathbb{Z}^n$$
}) =
(min{ $cx \mid Ax \leq b \land x_i \leq n \land x \in \mathbb{Z}^n$ },
min{ $cx \mid Ax \leq b \land x_i \geq n + 1 \land x \in \mathbb{Z}^n$ })

In questo senso PARTITION(·) non è una vera e propria funzione, ma ogni strategia di scelta per x_i e n va bene.

BRANCHANDBOUND(\mathbb{P})

- 1. $S \leftarrow \{\mathbb{P}\}; v^* \leftarrow \infty;$
- 2. Se $S = \emptyset$, allora termina e restituisci la soluzione ottima x^* se definita:
- 3. Scegli un problema \mathbb{T} in S; $S \leftarrow S \{\mathbb{T}\}$;
- 4. Se $\mathsf{RELAX}(\mathbb{T})$ è vuoto, allora ritorna al punto 2;
- 5. Se $\mathsf{RELAX}(\mathbb{T})$ è illimitato, allora $S \leftarrow S \cup \{\mathbb{Q}, \mathbb{S}\}$ dove $(\mathbb{Q}, \mathbb{S}) = \mathsf{PARTITION}(\mathbb{T})$ e ritorna al punto 2;
- 6. Siano $x \in v$ la soluzione e il valore ottimo di RELAX(\mathbb{T})
- 7. Se $v \geq v^*$, allora torna al punto 2;
- 8. Se x è soluzione ammissibile per \mathbb{T} e $v < v^*$, allora $v^* \leftarrow v$ e $x^* \leftarrow x$; torna al punto 2;
- 9. Se x non è soluzione ammissibile per \mathbb{T} e $v < v^*$, allora $S \leftarrow S \cup \{\mathbb{Q}, \mathbb{S}\}$ dove $(\mathbb{Q}, \mathbb{S}) = \mathsf{PARTITION}(\mathbb{T})$ e ritorna al punto 2;

Sulla Correttezza

- La correttezza dell'algoritmo di BranchandBound si basa sulle seguenti osservazioni:
 - 1. Se il test dell'istruzione 7 dà esito positivo, allora esiste una soluzione ottima di \mathbb{P} che non sta in \mathbb{T} .
 - 2. Nell'ambito dell'istruzione 9, ogni soluzione ammissibile per \mathbb{T} si trova in \mathbb{Q} oppure in \mathbb{S} .
 - Ogniqualvolta viene eseguita l'istruzione 2, l'ottimo di ℙ è in x* (se definita) oppure è uno tra gli ottimi dei problemi in S.
 - ► Certamente questa condizione vale all'inizio.
 - ▶ Se tale condizione vale e $S \neq \emptyset$, allora si può far vedere che tale condizione continuerà a valere la prossima volta che si torna in linea 2: per convincerci di questa cosa basta una semplice analisi per casi sulla natura di \mathbb{T} .

Sulla Complessità

- ▶ Non si può dire molto sulla complessità di BranchAndBound in senso astratto.
 - Se il problema di partenza è illimitato, la procedura può anche *divergere*!

Sulla Complessità

- ▶ Non si può dire molto sulla complessità di BranchAndBound in senso astratto.
 - ➤ Se il problema di partenza è illimitato, la procedura può anche *divergere*!
- Le procedure $\mathsf{RELAX}(\cdot)$ e $\mathsf{PARTITION}(\cdot)$ hanno molti gradi di libertà. Inoltre la scelta del problema in S è nondeterministica.
 - Risolvere tale nondeterminismo in un modo piuttosto che in un altro può avere un impatto enorme sulle performance dell'algoritmo.
 - ▶ Sperimentalmente, si osserva che trattare S come uno stack (ossia visitare il sottostante albero depth-first) può portare ad un miglioramento delle prestazioni.
 - ▶ Sempre sperimentalmente, si osserva che fare branch in modo da portare v^* a diminuire più possibile è una strategia che paga.