```
In [33]:
         Thống kê suy diễn
Out[33]: '\nThống kê suy diễn\n'
 In [34]:
         import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
 In [35]:
         #Doc File dulieutuyensinh
         df = pd.read csv('../data/dulieuxettuyendaihoc.csv',header=0,delimiter=',',encoding='utf-8')
 In [36]:
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 100 entries, 0 to 99
         Data columns (total 16 columns):
          # Column
                            Non-Null Count Dtype
                          -----
            MSSV
          0
                            100 non-null object
            T1
                          100 non-null float64
          1
            T2
                          100 non-null
                                       float64
          3 T3
                          100 non-null float64
          4 T4
                          100 non-null float64
          5 T5
                          100 non-null float64
          6
            T6
                          100 non-null float64
          7
            GT
                          100 non-null object
          8 DT
                          3 non-null
                                       float64
                           100 non-null object
          9 KV
          10 NGONNGU
                                100 non-null float64
          11 TOANLOGICPHANTICH 100 non-null float64
          12 GIAIQUYETVANDE
                                     100 non-null float64
          13 KT
                           100 non-null object
          14 NGAYTHI
                               100 non-null object
          15 DINHHUONGNGHENGHIEP 100 non-null object
         dtypes: float64(10), object(6)
         memory usage: 12.6+ KB
 In [37]:
         df.head(5)
C
                                                                                                    GIAIQU
```

Out[37]:		MSSV	T1	T2	Т3	T4	T5	Т6	GT	DT	ΚV	NGONNGU	TOANLOGICPHANTICH	
	0	SV001	7.2	8.4	7.4	7.2	7.4	6.9	F	NaN	2NT	3.25	3.25	
	1	SV002	5.4	6.3	4.3	4.9	3.0	4.0	М	NaN	1	6.00	4.00	
	2	SV003	5.6	5.0	2.8	6.1	4.8	5.7	M	NaN	1	5.00	6.75	
	3	SV004	6.6	5.1	5.9	4.1	6.1	7.4	М	NaN	1	4.25	4.25	

M NaN 2NT

4.25

Loading [MathJax]/extensions/Safe.js

SV005 6.0 5.4 7.6 4.4 6.8 8.0

4.50

In [38]: df.describe()

Out[38]:

	T1	T2	Т3	T4	Т5	Т6	DT	NGONNG
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.0000	3.000000	100.00000
mean	5.946000	6.374000	6.383000	6.291000	6.717000	6.9370	2.666667	3.74000
std	1.608338	1.561443	1.574484	1.469563	1.478059	1.3632	2.886751	1.4244(
min	2.400000	2.800000	2.300000	2.900000	3.000000	3.7000	1.000000	1.00000
25%	5.000000	5.300000	5.175000	5.300000	5.800000	6.0000	1.000000	2.50000
50%	5.850000	6.250000	6.650000	6.350000	6.800000	7.1000	1.000000	3.62500
75%	7.200000	7.525000	7.500000	7.600000	7.800000	8.0000	3.500000	4.75000
max	9.300000	9.600000	9.500000	9.400000	9.500000	9.5000	6.000000	7.00000
4								

In [39]:

#Đổi tên cột

'GIAIQUYETVANDE':'UNGXU',

'DINHHUONGNGHENGHIEP':'HUONGNGHIEP'},inplace=True)

In [40]: df

df.head(5)

Out[40]:

	T5	T6	GT	DT	KV	KT	NGONNGU	LOGIC	UNGXU	NGAYTHI	HUONGNGHIEP
C	7.4	6.9	F	NaN	2NT	A1	3.25	3.25	4.50	12/7/2018	No
1	3.0	4.0	М	NaN	1	С	6.00	4.00	3.50	12/7/2018	Yes
2	4.8	5.7	М	NaN	1	С	5.00	6.75	4.00	12/7/2018	No
3	6.1	7.4	М	NaN	1	D1	4.25	4.25	5.25	12/7/2018	No
4	6.8	8.0	М	NaN	2NT	Α	4.25	4.50	5.00	12/7/2018	No

In [41]:

Phân tích suy diễn (inferrential statistics)

Lý do tại sao cần suy diễn: Kết luận dựa trên dữ liệu sample (mẫu) nhưng kết luận thì được hiểu là áp dụng cl Câu hỏi đặt ra: Kết luân trên mẫu đó có phù hợp với tổng thể hay không

Khi phân tích suy diễn cần lưu ý:

- 1. Xác định giả thuyết H0
- 2. Các giả định hay các điều kiện về dữ liệu và môi trường để áp dụng kiểm điểm
- Lưu ý về giả định phân phối của biến số: normal, student, poison, chi-square...
- 3. Thiết lập mức tin cây và sai lầm (alpha): 90% 10%, 95% 5% và 99% 1%
- 4. Quy tắc suy diễn:
- 4.1 Nếu p-value < alpha => reject H0
- 4.2 Nếu p-value > alpha => accecpt H0
- 5. Kết luận của suy diễn chỉ cho chúng ta biết là có đủ dữ kiện để kết luận cho tổng thể hay không (còn gọi là ý nghĩa thống kê)
- Out[41]: '\nPhân tích suy diễn (inferrential statistics)\nLý do tại sao cần suy diễn: Kết luận dựa trên dữ liệu sample (mẫu) nhưng kết luận thì được hiểu là áp dụng cho tổng thể\nCâu hỏi đặt ra: Kết luận trên mẫu đó có phù hợp với tổng thể hay không\n\nKhi phân tích suy diễn cần lưu ý:\n1. Xác định giả thuyết H0\n2. Các giả định hay các điều kiện về dữ liệu và môi trường để áp dụng kiểm điểm \n- Lưu ý về giả định phân phối của biến số: normal, student, poison, chi-square...\n3. Thiết lập mức tin cậy và sai lầm (alpha): 90% 10%, 9 5% 5% và 99% 1%\n4. Quy tắc suy diễn: \n4.1 Nếu p-value < alpha => reject H0\n4.2 Nếu p-value > al pha => accept H0\n5. Kết luận của suy diễn chỉ cho chúng ta biết là có đủ dữ kiện để kết luận cho tổng th ể hay không\n (còn gọi là ý nghĩa thống kê)\n'
- In [42]:

 ""

 ONE SAMPLE T-TEST

 Mục đích: Kiểm định trung bình của 1 biến số (định lượng) co bằng một giá trị

 n < 30

 ""

 # H0: mean = X
- Out[42]: '\nONE SAMPLE T-TEST\nMục đích: Kiểm định trung bình của 1 biến số (định lượng) co bằng một giá tr i\nn < 30\n\n'
- In [43]: #Là phần mềm nguồn mở miễn phí của Python cho toán học, khoa học và kỹ thuật . Thư viện SciPy được xây

#SciPy là thư viện cơ sở. Nó được xây dựng trên phần mở rộng NumPy. Không cần nhập NumPy nếu bạn đã # ho hoạt động của các hàm NumPy. SciPy và NumPy cùng là sự lựa chọn tốt nhất cho các hoạt động khoa h #stats: Các hàm và phân phối thống kê

import scipy.stats as stats

•

```
# câu 1: Hãy kiểm ta xem LOGIC thí sinh khối C có bằng 4.0
 In [44]:
         dfKhoiC = df.loc[df]'KT'] == 'C']
         dfKhoiC['LOGIC']
Out[44]: 1
             4.00
         2
             6.75
         6 6.75
         22 3.50
         23 5.25
         24 2.25
         25 2.00
         26 4.50
         27 5.00
         95 1.50
         96 3.75
         97 8.00
         98 3.50
         99 2.50
         Name: LOGIC, dtype: float64
 In [45]: |\#V\acute{o}i| one sample T-test thì giả thiết G0: muy = 4.0
          # Mặc đinh mức tin cây là 95% và mức sai lầm là 5%
         stats.ttest lsamp(dfKhoiC['LOGIC'],popmean=4.0)
Out[45]: TtestResult(statistic=0.44599723713991907, pvalue=0.6629370899710998, df=13)
 In [46]: #4. Quy tắc suy diễn:
          #4.1 Nếu p-value < alpha => reject H0
         #4.2 Néu p-value > alpha => accecpt H0
         #5. Kết luận của suy diễn chỉ cho chúng ta biết là có đủ dữ kiện để kết luận cho tổng thể hay không (còn gọi l
         # Kết luân:
         # Do alpha = 0.05 và p-value = 0.66...
         # Suy ra đủ dữ liệu để nói rằng trung bình môn thi LOGIC bằng 4.0
         # hay nói cách khác là chấp nhân H0 ở mức sai lầm 5%
Out[46]: \n# Kết luận:\n# Do alpha = 0.05 và p-value = 0.66...\n# Suy ra đủ dữ liệu để nói rằng trung bình môn thi
         LOGIC bằng 4.0\n# hay nói cách khác là chấp nhận H0 ở mức sai lầm 5%\n'
         # Điểm trung bình có môn thi UNGXU của khối thi C có bằng 5.0 hay không
 In [47]:
         stats.ttest lsamp(dfKhoiC['UNGXU'],popmean=5)
         # KÉt luân :
         # do anpha = 0.05 và p-value =0.4581953822944209
          # Suy ra đủ dữ liệu để nói rằng trung bình môn thi UNGXU = 5.0
          # hay nói cách khác là chập nhân G0 ở mức sai lầmm 5%
Out[47]: TtestResult(statistic=-0.7645471693105148, pvalue=0.4581953822944209, df=13)
```

```
# Tự nghiên cứu cách thiết lập mức tin cậy hoặc sai lầm trong đoạn code trên
 In [48]:
 In [49]:
          # Bài tập tương tự: Hẫy kiểm tra xem có phải điểm NGONNGU của thí sinh thi khối C
          # là 5.5 hay không với mức sai lầm là 10%
          dfKhoiC = df.loc[df['KT'] == 'C']
          dfKhoiC['NGONNGU']
Out[49]: 1
              6.00
          2
             5.00
          6 6.50
          22 5.00
          23 6.75
          24 7.00
          25 4.75
          26 5.25
          27 5.25
          95 5.25
          96 5.25
          97 7.00
          98 5.00
          99 5.25
          Name: NGONNGU, dtype: float64
 In [50]: \# V \acute{o}i one sample T-test thì giả thiết G0: muy = 5.5
          # Mặc định mức tin cậy là 90% và mức sai lầm là 10%
          stats.ttest lsamp(dfKhoiC['NGONNGU'],popmean=5.5)
          #statistic = 7403 cho chúng ta biết mức sai lệch của trung bình mẫu từ giả thuyết.
Out[50]: TtestResult(statistic=0.7403728818402906, pvalue=0.47223461312805337, df=13)
          # Điểm trung bình có môn thi UNGXU của khối thi C có bằng 7.5 hay không, mức tin cây 95%
 In [51]:
          stats.ttest 1samp(dfKhoiC['UNGXU'],popmean=7.5)
Out[51]: TtestResult(statistic=-11.468207539657708, pvalue=3.5923185367668785e-08, df=13)
 In [52]:
          #KÊt luân :
          # do anpha = 0.05 và p-value =3.5923185367668785e-08 (P-VALUE>ANPHA)
          # Suy ra đủ dữ liệu để nói rằng trung bình môn thi ngonngu = 5.5
          # hay nói cách khác là châp nhân G0 ở mức sai lầmm 10%
          \#N\acute{e}u \ p-value < alpha => reject H0
          \# N\acute{e}u \ p-value > alpha => accept H0
          #Do p-value=0.47 >alpha --> Chấp nhân H0 nghĩa là trung bình môn thi NGONNGU=5.5
```

```
# TWO SAMPLE T-TEST
 In [53]:
          # Muc đích: Kiểm tra xem trung bình của 2 biến số (đinh lương)có bằng nhau không
          #The sample size < 30:
          #H0:delta\ mean=0
         # Câu 2: Kiểm tra xem trung bình điểm thi LOGIC và trung bình điểm thi UNGXU của thí sinh thi khối C có
 In [54]:
          #H0: mean\ LOGIC - mean\ UNGXU = 0
         dfKhoiC = df.loc[df['KT'] == 'C']
         stats.ttest ind(dfKhoiC['LOGIC'],dfKhoiC['UNGXU'],equal var=True)
Out[54]: TtestResult(statistic=-1.0329196014245297, pvalue=0.3111543826061086, df=26.0)
         # Kết luân: Do alpha = 0.05 và p-value = 0.3111543826061086
 In [55]:
          # Suy ra đủ dữ liệu để nói rằng trung bình LOGIC bằng trung bình UNGXU hay nói cách khác là chấp nhận
In [56]:
         #Kiểm tra xem trung bình ĐIỂM UNGXU có bằng trung bình NGONNGU cho thí sinh thi khối C hay không
         dfKhoiC1 = df.loc[df]'KT'] == 'C'
         stats.ttest ind(dfKhoiC1['UNGXU'],dfKhoiC1['NGONNGU'],equal var=True)
Out[56]: TtestResult(statistic=-2.6321295849540447, pvalue=0.014085909192033959, df=26.0)
 In [57]:
         \# K \hat{e} t \ lu \hat{a} n: Do alpha = 0.01 và p-value = 0.014
          # Suy ra đủ dữ liệu để nói rằng trung bình UNGXU bằng trung bình NGONNGU hay nói cách khác là chấp r
         # ONE SAMPLE Z-TEST
 In [58]:
         # Mục đích: kiểm định trung bình của một biến số (định lượng)
          #H0L mean = x
          \# n > 30 \text{ DÙNG Z TEST. N LÀ SỐ MẪU}
 In [59]:
         from statsmodels.stats.weightstats import ztest as ztest
          #PIP INSTALL STATSMODELS
         # Hãy kiểm tra xem trung bình điểm toán học kì 2 lớp 12 có bằng 8.0
 In [60]:
          #Kiểm định Z (tiếng Anh: Z-Test) là một hình thức kiểm định thống kê được sử dụng để xác định xem hai giá
          #Z-Test là một kiểm định thống kê được dùng để xác định xem liệu hai số bình quân của hai tổng thể có khác
          #Nó chỉ được sử dung khi có đô lệch chuẩn đã biết và cỡ mẫu lớn (n>30).
         ztest(df['T6'],value=8.0)
Out[60]: (-7.797828845339864, 6.298135014120743e-15)
         #Kết luận: điểm trung bình không bằng 8 VÌ P-VALUE=6.298135014120743e-15<0
In [61]:
         # TWO SAMPLE Z-TEST
 In [62]:
         # Twong tự n > 30
          #H0: u1 = u2 both population means are equal
```

```
In [63]: # Câu 4: Hãy kiểm tra xem điểm trung bình toán học kì 1 và học kì 2 năm lớp 12 có bằng nhau không ztest(df['T5'],df['T6'],value=0)
```

Out[63]: (-1.094138573502891, 0.273894207026412)

In [64]: #Đủ dữ kiện kết luận trung bình 2 học kì có bằng nhau

In [65]: # Tương tự kiểm tra trung bình LOGIC và UNGXU có bằng nhau không ztest(df['LOGIC'],df['UNGXU'],value=0) # Nhỏ hơn => bác bỏ

Out[65]: (-4.172765180703833, 3.009250404643791e-05)

In [66]: # Twong tự kiểm tra trung bình LOGIC và NGONNGU có bằng nhau không với mức tin cậy 95% ztest(df['LOGIC'],df['NGONNGU'],value=0) #P-VALUE =0.0037259661678783573>0 CHẤP NHẬN GIẢ THIẾT

Out[66]: (2.9004757923795, 0.0037259661678783573)

In [67]: ztest(df['NGONNGU'],df['UNGXU'],value=0) #BÁC BỞ VÌ P-VALUE =1.2511643846506845e-10<0

Out[67]: (-6.432991757573295, 1.2511643846506845e-10)

In [68]:

Kiểm định tương quan giữa 2 biến định lượng

H0: r = 0

"

from scipy.stats.stats import pearsonr

C:\Users\Lan Anh\AppData\Local\Temp\ipykernel_404\242169006.py:5: DeprecationWarning: Please use `pearsonr` from the `scipy.stats` namespace, the `scipy.stats.stats` namespace is deprecated. from scipy.stats.stats import pearsonr

In [69]: # Câu 5: Kiểm tra xem điểm toán hk1 và hk2 năm lớp 12 có tương quan không pearsonr(df['T5'],df['T6'])
Bác bỏ H0: r= 0 do pvalue < 5% => r =! 0 => 2 biến không tương quan (pvalue thì tương quan trên tổng # statistic là gtri tương quan trên mẫu, nhìn lên sẽ biết tương quan mạnh hay YÉU

Out[69]: PearsonRResult(statistic=0.7786831657869808, pvalue=1.4846407216274206e-21)

In [70]: # Kết luận: đủ dữ liệu để nói rằng T5 và T6 có tương quan với nhau với mức sai lầm là 5%

Kết luận trên mẫu: tương quan thuận, mức độ tương quan rất cao: r = 0.7786831657869809

Suy diễn trên tổng thể: Đủ dữ liệu để nói rằng T5 và T6 có tương quan với nhau với mức sai lầm là 5%

Với p-value = 1.4846407216273482e

""

Out[70]: '\nKết luận trên mẫu: tương quan thuận, mức độ tương quan rất cao: r = 0.7786831657869809\nSuy diễn tr ên tổng thể: Đủ dữ liệu để nói rằng T5 và T6 có tương quan với nhau với mức sai lầm là 5%\nVới p-value = 1.4846407216273482e\n'

```
In [71]: "

Dịnh tính: Fisher (<30)

Chi square (>30)

Cà 2 H0: độc lập

"

Dịnh lượng:

one sample t-test và one sample z-test => biến định lượng (H0; muy = alpha)

two sample t-test và two sample z-test => kiểm tra 2 biến định lượng có bằng nhau không (H0: denta muy = 0)

kiểm định Pearson kiểm tra xem 2 biến định lượng có tương quan không (H0: n=0)

"
```

- Out[71]: '\nĐịnh lượng:\none sample t-test và one sample z-test => biến định lượng (H0; muy = alpha)\ntwo sample t-test và two sample z-test => kiểm tra 2 biến định lượng có bằng nhau không (H0: denta muy = 0)\n\nkiề m định Pearson kiểm tra xem 2 biến định lượng có tương quan không (H0: n=0)\n'
- In [72]: #Sinh viên làm tương tự cho T5 và LOGIC có tương quan hay không pearsonr(df['T5'],df['LOGIC']) # statis: quá thấp, còn pvalue > 0.05 nên chấp nhận H0: r=0 => trên tổng thể không tương quan
- Out[72]: PearsonRResult(statistic=0.1846466122601273, pvalue=0.06590059130545516)
- In [73]: #Fisher Test
 #Mục đích: Kiểm tra sự độc lập của 2 biến định tính dạng nhị phân 2x2
 #Ho: Không có sự khác biệt giữa 2 biến định tính
 import scipy.stats as stats
- In [74]: # Hãy kiểm tra xem có sự phụ thuộc nào giữa việc sinh viên có định hướng nghề nghiệp và giới tính # khi thí sinh đăng ký dự thi hay không crosdata = pd.crosstab(df['GT'],[df['HUONGNGHIEP']],rownames=['GT'],colnames=['HUONGNGHIEP']) crosdata
- Out[74]: HUONGNGHIEP No Yes

GT F 23 25 M 32 20

In [75]: odd_ratio, p_value = stats.fisher_exact(crosdata)
print('odd ratio is: ' + str(odd_ratio))
print('p_value is: ' + str(p_value))

odd ratio is: 0.575 p value is: 0.22763927303454412

In [76]: #Kết luận: Chấp nhận Ho vì p_value = 0.22763 > alpha = 0.05 #Tức là, đủ dữ liệu để nói rằng giới tính và việc định hướng nghề nghiệp là không có quan hệ gì cả ở mức sa

```
In [77]:
          # Chi-Square Test
          # Mục đích: Kiểm tra sự độc lập của 2 biến định tính
          #Ho: Không có sự khác biệt giữa 2 biến định tính
          from scipy.stats import chi2 contingency
          # Hãy kiểm tra xem có sự phụ thuộc nào giữa khối thi và khu vực thi đăng ký dự thi hay không
 In [78]:
          crosdata = pd.crosstab(df['KV'],[df['KT']],rownames=['KV'],colnames=['KT'])
          crosdata
Out[78]:
            ΚT
                  A A1 B C D1
            ΚV
                 29
                           8
                                  13
              1
                       2
                              8
              2
                  9
                           0
                              2
                       0
                                   8
           2NT
                 11
 In [79]: stat, p, dof, excepted = chi2 contingency(crosdata)
          # interpret p-value
          alpha = 0.05
          print("p value is " + str(p))
          if p <= alpha:
            print ('Dependent (Reject H0)')
          else:
            print ('Independent (H0 holds true)')
          # Có quan hệ giữa khối thi và khu vực thi đăng ký dự thi
          \# K\acute{e}t \ lu\acute{q}n: p-value = 0.02 < alpha = 0.05
          # Tức là: không đủ dữ liệu để nói rằng KV và KT là độc lập hay có sự quan hệ giữa KT và KV
          p value is 0.02012461887796485
          Dependent (Reject H0)
          # GT và KT có mối quan hệ hay không
 In [80]:
          crosdata = pd.crosstab(df['GT'],[df['KT']],rownames=['GT'],colnames=['KT'])
          crosdata
Out[80]:
           ΚT
                 A A1 B C D1
           GT
```

15

M 34

5 4 8 16

1 5 6

```
In [81]: stat, p, dof, excepted = chi2_contingency(crosdata)

# interpret p-value
alpha = 0.05
print("p value is " + str(p))
if p <= alpha:
    print ('Dependent (Reject H0) => có quan hệ với nhau')
else:
    print ('Independent (H0 holds true) => Độc lập với nhau')
```

p value is 0.005044752209452435 Dependent (Reject H0) => có quan hệ với nhau

In [82]: # ONE WAY ANOVA

Kiểm định ANOVA ONE WAY

Yêu cầu:

1. Biến định lượng trên nhóm định tính

2. Các biến định lượng trên từng nhóm theo phân phối chuẩn

#3. H0: Giá trị trung bình dữ liệu định lượng trên từng nhóm định tính là bằng nhau

In [83]: # Điểm toán học kì 2 lớp 12 có phụ thuộc vào giới tính hay không

import statsmodels.api as sm

from statsmodels.formula.api import ols

```
In [84]: model = ols('T6 ~ GT', data=df).fit()
aov_table = sm.stats.anova_lm(model,typ = 1)
aov_table
```

Out[84]:

	df	sum_sq	mean_sq	F	PR(>F)
GT	1.0	1.55201	1.55201	0.833769	0.363426
Residual	98.0	182.42109	1.86144	NaN	NaN

In [85]:

```
Trả lời:

H0: mean (nhóm GT) bằng nhau
p-value = 0.363426 > 0.05 => chấp thuận
Không phụ thuộc
```

Out[85]: '\nTrå lời:\n H0: mean (nhóm GT) bằng nhau\n p-value = 0.363426 > 0.05 => chấp thuận\n Không p hu thuộc\n'

```
In [86]: # Diểm LOGIC có phụ thuộc vào KV hay không
model = ols('LOGIC ~ KV', data=df).fit()
aov_table = sm.stats.anova_lm(model,typ = 1)
aov_table
# Ko phụ thuộc
```

Out[86]:

```
        KV
        2.0
        6.053398
        3.026699
        2.790934
        0.066299

        Residual
        97.0
        105.194102
        1.084475
        NaN
        NaN
```

```
In [87]: # Diểm UNGXU có phụ thuộc khối thi hay không model = ols('UNGXU ~ KT', data=df).fit() aov_table = sm.stats.anova_lm(model,typ = 1) aov_table # p_value = 0.46041 => chấp nhân => không phụ thuộc
```

Out[87]:

	df	sum_sq	mean_sq	F	PR(>F)
КТ	4.0	3.967636	0.991909	0.911814	0.46041
Residual	95.0	103.344864	1.087841	NaN	NaN

In [88]:

Two way anova

Kiểm định ANOVA two WAY

Yêu cầu:

1. Biến định lượng trên nhóm định tính

2. Các biến định lương trên từng nhóm theo phân phối chuẩn

#3. H0: Trung bình các cột dữ liệu bằng nhau

"

Out[88]: '\nTwo way anova \n# Kiểm định ANOVA two WAY\n# Yêu cầu:\n# 1. Biến định lượng trên nhóm định tí nh\n# 2. Các biến định lượng trên từng nhóm theo phân phối chuẩn\n# 3. H0: Trung bình các cột dữ liệu b ằng nhau\n'

```
# Hãy cho biết điểm LOGIC có phụ thuộc vào loại GT trên từng nhóm KV hay không
 In [89]:
         # Performing two-way anova
         model = ols('LOGIC \sim GT + KV + GT:KV', data=df).fit()
         result = sm.stats.anova lm(model,type = 2)
         # Print the result
         print(result)
         \# Chấp nhân Ho=> k phu thuộc (p-value = 0.052602)
         \# B\acute{a}c \ b\acute{o} \ H0 => phu \ thu\^{o}c \ (pvalue = 0.019173)
         # GT:KV bác bỏ -> k phụ thuộc -> tuy nhiên điểm LOGIC trên từng nhóm GT xét theo từng KV nữa thì nó độ
         Kết luận khác
         p-value = 0.052602 -> LOGIC độc lập theo nhóm GT
         p-value = 0.0.019173 -> LOGIC phụ thuộc theo nhóm KV
         p-value = 0.576510 -> LOGIC độc lập theo nhóm GT trên từng loại KV
                                            F PR(>F)
                 df sum sq mean sq
                  1.0 3.998401 3.998401 3.853364 0.052602
         GT
         KV
                  2.0 8.561314 4.280657 4.125382 0.019173
         GT:KV
                    2.0 1.149707 0.574854 0.554002 0.576510
         Residual 94.0 97.538077 1.037639
                                                         NaN
                                                NaN
Out[89]: \\nKét luân khác \np-value = 0.052602 -> LOGIC đôc lâp theo nhóm GT\np-value = 0.0.019173 -> LOGI
```

C phụ thuộc theo nhóm KV\np-value = 0.576510 -> LOGIC độc lập theo nhóm GT trên từng loại KV\n'

```
In [90]:
        # Phân tích xem NGONNGU có phụ thuộc theo nhóm KV trên từng nhóm KT hay không
        from statsmodels.formula.api import ols
        model = ols("NGONNGU \sim KV + KT + KV:KT", data=df).fit()
        result = sm.stats.anova lm(model,type = 2)
        print(result)
        Kết luận
        Tất cả đều phụ thuộc
```

```
sum sq mean sq
                                     PR(>F)
KV
       2.0 4.237274 2.118637 1.416009 2.482173e-01
KT
       4.0 65.431143 16.357786 10.932867 3.150065e-07
         8.0 1.486487 0.185811 0.124188 9.981082e-01
KV:KT
Residual 87.0 130.169640 1.496203
                                    NaN
                                             NaN
```

Out[90]: '\nKết luận \nTất cả đều phụ thuộc\n'