APELLIDO: DOCENTE: DOCENTE:

Segundo Parcial de MATEMATICA DISCRETA

Tema 07

1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	5.1	5.2	Nota

PARA APROBAR ES NECESARIO TENER 6 ITEMS CORRECTOS. DESARROLLE TODO EN TINTA, LETRA CLARA Y JUSTIFICANDO. TIEMPO: 2 HORAS

Ejercicio nº1 Considere el semigrupo (Z₁₈, ·)

- 1,1) Haga la tabla de $INV(Z_{18})$, indique si es un grupo y si es cíclico. Justifique.
- 1.2) Considere el subgrupo H generado por el 17, indique si es subgrupo normal y si corresponde, halle el grupo cociente.

<u>Ejercicio nº2</u> Dada la relación de recurrencia: $a_{n+1} = 4$ $a_n - 4$ a_{n-1} ;:

- 2.1) Con a_0 = 1 y a_2 = 8 , resuelva la relación de recurrencia.
- 2.2) ¿Es $a_{n1} = 5 \cdot 2^n$ es una solución particular de la ecuación dada? V/F

Ejercicio nº3

- 3.1) Sabiendo que G = (V, A, φ) es un grafo que tiene 40 aristas, 10 vértices de grado 4, 6 de grado 3, 6 de grado 1 y el resto de grado 2, halle la cantidad total de vértices.
- 3.2) Dada la expresión en notación polaca inversa: $8, 4, /, 2, 3, ^, +, 9, 6, 5, 1, •, +, -, •$ (^ es potencia)

Halle el árbol correspondiente, indique su altura, si es balanceado, y calcule el resultado de la expresión.

Ejercicio $n^{\circ}4$ Sea la gramática: G = ({ S, X, Y } , { a,b,c } , P , S) siendo el conjunto de producciones:

P:
$$\{ S \rightarrow a S \mid abX; X \rightarrow caY \mid bY; Y \rightarrow bY \mid \lambda \}$$

- 4.1) Indique el tipo de gramática.
- 4.2) Halle el lenguaje L(G) y si es posible, diseñe un autómata finito que reconozca dicho lenguaje. Sino indique que tipo de máquina se necesita para poder reconocerlo. Justifique.

Ejercicio nº5

Indique el valor de verdad de las siguientes proposiciones, justificando o demostrando.

- 5.1) Sabiendo que x = 3 es solución principal de $a \equiv b$ (n) y = mcd(a,n) es divisor de b, entonces podemos asegurar que x = 3 + (n/d) también es solución.
- 5.2) Sabiendo que a \equiv b (n) y c \equiv d (n) entonces (a+c) \equiv (b+d) (n)