(19) World Intellectual Property Organization

International Bureau

28 DEC 2004

I JEGGE BUILDER IN DEUTS HICH DEUTS EINE KEITS FOL IN BEITE DEUTS HELDE HEID BEGER GEDL EICHED BESCHICH FEBE

(43) International Publication Date 8 January 2004 (08.01.2004)

PCT

(10) International Publication Number WO 2004/002879 A1

- (51) International Patent Classification⁷: C01B 3/02, C01C 1/04, B01F 5/04, C01B 3/52
- (21) International Application Number:

PCT/EP2003/005049

(22) International Filing Date:

14 May 2003 (14.05.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 02014421.8

28 June 2002 (28.06.2002) EF

- (71) Applicant (for all designated States except US): AMMONIA CASALE S.A. [CH/CH]; Via Sorengo, 7, CH-6900 Lugano-Besso (CH).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): DEBERNARDI, Sergio [CH/CH]; Via Somaini, 7, CH-6900 Lugano (CH).
- (74) Agent: ZARDI, Marco; M. Zardi & Co. S.A., Via Pioda, 6, CH-6900 Lugano (CH).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, -MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR AMMONIA SYNTHESIS GAS PRODUCTION

(57) Abstract: Method for ammonia production through a catalytic reaction of pressurised synthesis gas in an appropriate compressor with many stages (1, 2), each of which is equipped with an inlet and outlet (la, 2a, lb, 2b) for said synthesis gas said method including a purification step through liquid ammonia of said synthesis gas from water and carbon dioxide contained in it.

METHOD AND APPARATUS FOR AMMONIA SYNTHESIS GAS PRODUCTION

DESCRIPTION

Field of application

- The present invention refers, in its most general aspect, to a method and relative apparatus for ammonia production through a catalytic reaction of synthesis gas, comprising hydrogen and nitrogen, previously pressurised in a suitable compressor with two or more stages.
- In particular this invention concerns a method of the aforementioned type in which a purification step of the synthesis gas is provided for through separation of water and carbon dioxide contained therein, carried out in correspondence with an intermediate stage of said compressor.

More specifically, the present invention refers to a method of the considered type, in which the synthesis gas is collected when exiting from a predetermined stage of said compressor, is purified and cooled at a predetermined temperature, through washing with substantially anhydrous liquid ammonia, and then is fed again into a stage of said compressor, after the one from which it was collected.

Prior Art

20

It is known how in recent times, with regard to the production of ammonia, substantial resources have been devoted to the innovation of plants and processes with the main intention of reducing the recognisedly high operating and investment costs, the main one of which consists of its energy consumption.

15

30

It is also known that, still for the aforementioned purpose, special attention has been devoted to the feeding of the synthesis gas to the reactor, making allowance for the fact that the performances of the reactor are so strongly influenced by the ammonia content in the gas fed to the ammonia converter and by the purity of such gas, namely by the amount of oxide compounds like $\rm H_2O$ and $\rm CO_2$ present therein, insomuch that said "impurities" must be practically eliminated from the gas (feeding gas plus recycled gas).

For such a purification, the methods most widely adopted by the prior art are based upon the use of recycled liquid ammonia for a washing step and concurrent rapid cooling of the synthesis gas, which is then sent to the reactor. But besides the substantial operating costs the chilling unit and the recondensation of the ammonia vaporised there, the aforementioned methods involve increased costs for the necessary subsequent step of heating the purified gas to the predetermined temperature of entry into the reactor.

To reduce if not actually avoid such a dissipation of energy, in the most common purification systems, units based upon the use of molecular screens have been used; however, compared to a recognisedly high efficiency, said systems still involve very high operating and investment costs.

Recently it has been suggested to subject the synthesis gas to a washing with liquid ammonia carried out between the first and second stage of the two stage compressor provided for the necessary compression of the gas itself (from 80 to 150 bar loop pressure), otherwise between the second and the third stage of a three stage compressor (from 150 to

250 bar loop pressure). In the jargon of the field, these compression stages are indicated as compression stages of the "make-up" synthesis gas, with which is associated the final compression stage, known as the recycling stage since it is used for the compression and recycling into the reactor of the unreacted gases coming from the synthesis section as well as of the compressed make-up gas.

In particular, in patent PCT WO 01/66465 is described a purification method of the aforementioned type carried out through a plate column fed in countercurrent with liquid ammonia and with a continuous flow of synthesis gas coming from the first stage of a chosen compressor, and where the purified gas is then directly sent to the suction of the second stage of the same compressor.

15 Although advantageous for some aspects, the purification method according to the prior art has different recognised technical drawbacks. Firstly, the synthesis gas crossing the washing column for its purification undergoes predetermined pressure drop. This pressure drop must be necessarily recovered downstream of such washing with the 20 consequent energy consumptions of the compressor. Moreover, this type of purification causes an appreciable evaporation of the liquid washing ammonia that is thus absorbed by the flow of synthesis gas and thus inevitably recycled in the reactor at the expense of the conversion yield thereof. A 25 reduction in the conversion yield of the reactor has, moreover, as a consequence, an increase in the amount of unreacted substances that have to be separated from the flow of ammonia produced and to be recycled to the reactor, with consequent overloads at the sections intended for such 30 operations and high energy consumptions.

10

15

20

Summary of the invention

The problem at the base of the present invention is that of providing a method for synthesis ammonia production of the type considered above, in which the purification system of the synthesis gas has functional characteristics so as to overcome the drawbacks quoted above with reference to the prior art and in particular so as to allow a substantial energy saving compared to the methods used up to now.

This problem is solved according to the invention by a method for ammonia production through a catalytic reaction of pressurised synthesis gas in an appropriate compressor with many stages, each of which is equipped with an inlet and outlet for said synthesis gas, which method includes a purification step of said synthesis gas from water and carbon dioxide contained in it through liquid ammonia, characterised in that said purification comprises the operating steps of:

- arranging a gas-liquid mixer in fluid communication, on one side with the outlet of a first stage of said compressor or with the outlet of an intermediate stage thereof and, on the other side, with the inlet of a stage immediately following said first stage or said intermediate stage, said mixer having a portion of reduced cross section, extending for a prearranged axial length,
- 25 axially feeding into said mixer a flow of synthesis gas outbound from said first stage or from said intermediate stage at the same time as a flow of liquid ammonia, said flows being coaxial and in co-current,
- separating substantially anhydrous synthesis gas from the 30 mixture of said flows outbound from said mixer and sending

15

said gas into said stage following said first stage or said intermediate stage.

Advantageously, said flow of synthesis gas is cooled to a temperature of between +8°/-20°C, before being fed into said mixer.

The characteristics and advantages of the method of the present invention shall become clearer from the following description of an example embodiment thereof, made with reference to the attached drawings given for indicating and not limiting purposes.

Brief description of the drawings

- Figure 1 represents schematically a plant for ammonia production comprising an apparatus for the compression and purification of the synthesis gas provided for in the method for ammonia production of the present invention;
- Figure 2 represents an enlarged cross-section view of a detail of the plant for the production of ammonia of figure 1.

Detailed description

20 With reference to the figures, a plant for the production of ammonia is globally schematically indicated with P, comprising an apparatus for carrying out the method of the present invention, which comprises a compressor with many stages, of which just the longitudinal axis A is shown, and where with 1 and 2 two subsequent stages thereof are schematically indicated, aligned and adjacent on said axis A. Preferably, but not for limiting purposes, such a compressor is a two stage compressor, of which one is for

30

what is known as make-up gas compression and a final stage for what is known as recycling compression.

The stage 1 has an inlet 1a (or suction end) in fluid communication with a source 3 of synthesis gas through a line 4 and has an outlet 1b (or discharge end) in fluid communication with a first gas-liquid separator 5, through a line 6 and a cooling group 7.

The stage 2 has a first inlet 2a in fluid communication with the head 8a of a second gas-liquid separator 8, through a respective line 9, and a second inlet 2b in fluid communication with the head 10a of a third gas-liquid separator 10, through a line 11 and a cooling group 12. The outlet 2c of said stage 2 is in fluid communication with the head 13a of an ammonia synthesis reactor 13, through a line 14 and a respective cooling group 15.

In accordance with a characteristic of the present invention, the apparatus of fig. 1 comprises a mixer 16, in fluid communication, on one side, with said separator 8, through a line 17 and, on the other side, with the head 5a of the separator 5, through a line 18 and respective cooling group 19.

It should be noted that, in the exemplified case of a twostage synthesis gas compressor, said mixer 16 is positioned between the first and second stage. Moreover, it is preferably arranged in a substantially horizontal position with respect to the ground of the plant P.

The synthesis gas coming out from the first compression stage 1 is fed to the cooling group 7 and then to the separator 5, where most of the water is separated from the gas and is discharged through the duct 20.

30

The flow of said synthesis gas, thus dehydrated, is sent to the cooling group 19. Advantageously, upstream of the inlet into such a group 19, to the synthesis gas is added a flow of (pressurised) liquid ammonia, with a low flow rate, taken downstream of the separator 10 and recycled through the line 21. This happens for the purpose of avoiding the freezing in the subsequent low temperature cooling group 19.

The amount of liquid ammonia is such as to ensure, after cooling, a concentration of ammonia in liquid phase of between 25% and 50%, the rest being water.

Coming out from the cooling group 19, the synthesis gas is cooled to $+8^{\circ}/-20^{\circ}$ C and in such a condition is fed axially into the mixer 16.

At the same time as the synthesis gas, into said mixer is fed (injected), through a line 21a, a flow of (pressurised) liquid ammonia, the flow rate of which is calculated to carry out an effective "washing" of said gas, so as to free it from the water contained in it. This flow 21a of liquid ammonia comes from the recycling line 21, quoted previously.

Advantageously, said flow 21a of liquid ammonia is fed into the mixer 16 coaxially and in co-current with the synthesis gas. The temperature of the synthesis gas is thus preferably lowered to -20°/-27°C.

In accordance with a characteristic of the present invention, a portion 16a of predetermined axial length of the aforementioned mixer 16, has a reduced cross-section. In the portion 16a, the flows of liquid ammonia and of reactant gases are advantageously accelerated and mixed

10

30

together (mixing zone). Preferably, the portion with a reduced cross-section 16a is followed by a second portion 16b with a constant cross-section, of a predetermined axial length, for spreading such flows. The portion 16b in turn goes into a third portion with a predetermined axial length, 16c, with an increasing cross-section, so as to slow down the speed of the fluids once mixed.

Depending upon the operating conditions, particularly satisfactory results in terms of purification of the reactant gases have been obtained with an axial length of the first mixing portion 16a, for example, of between 0.5 and 1 m. In these cases, the axial length of the second portion 16b with a constant section was between 0.6 and 1.2 m.

Moreover, according to a particularly preferred embodiment of the present invention represented in figure 2, the feeding into the mixer 16 of the flow of liquid ammonia is carried out through a suitable distributor nozzle 23 arranged inside the portion 16a of the mixer and connected to the line 21a. The line 21a is in turn arranged inside the line 18 for feeding the flow of reactant gases, connected with the free end of the portion 16a of the mixer.

The end part 23a of the nozzle 23 is equipped with appropriate openings or slits (not represented) which are suitably sized so as to allow the flow of liquid ammonia to come out in the form of a plurality of high-speed jets.

In other words, thanks to the jet 23 it is possible to advantageously exploit the pressure of the flow of liquid ammonia coming from the recycling line 21 to obtain high-

ι,

15

20

25

speed jets which promote the washing of the flow of reactant gases and at the same time create a compression of such flow of reactant gases inside the mixer 16.

Advantageously, thanks to the aforementioned characteristics of the present invention, it is possible to obtain not just a reduction in the pressure drop of the flow of reactant gases during the washing (purification) step thereof with liquid ammonia, but even an increase in the pressure of such a flow, with the consequent substantial energy savings for the subsequent compression of the synthesis gas with respect to the prior art.

In the subsequent separator 8, the liquid ammonia and the water are separated from the synthesis gas and are discharged through the duct 22, whereas said dehydrated synthesis gases, coming out from the head 8a of the separator 8, are fed into (2a) the second stage 2 of the compressor, at a temperature of -20°/-27°C.

Thanks to this low temperature of the gas entring the compressor, the power required from it is substantially reduced, whereas the its efficiency increases.

Moreover, the technical measure of using low temperature cooling (19) before the mixer 16 gives the advantage of reducing the amount of evaporated ammonia in the synthesis gas, and consequently further reducing the compression energy and at the same time improving the conversion yield of the synthesis reactor with respect to the prior art, with all of the advantages that it brings.

The synthesis gas, compressed to the predetermined value in the second stage of the compressor, is fed to the synthesis reactor 13, after being heatedin 15. From the reactor 13,

the gaseous mixture comprising ammonia and unreacted gases is progressively cooled through a plurality of cooling groups (15, 12) and is fed to the separator 10. From this separator, the liquid ammonia thus obtained is sent for storage, whereas the gas, coming out from the head 10a thereof, is recycled into the second stage 2 of the compressor.

The finding thus conceived is susceptible to variants and modifications all of which are covered by the extent of protection defined by the following claims.

25

CLAIMS

- 1. Method for ammonia production through a catalytic reaction of pressurised synthesis gas in an appropriate compressor with many stages (1, 2), each of which is equipped with an inlet and outlet (1a, 2a, 1b, 2b, 2c) for said synthesis gas, which method includes a purification step through liquid ammonia of said synthesis gas from water and carbon dioxide contained in it, characterised in that said purification comprises the operating steps of:
- arranging a gas-liquid mixer (16) in fluid communication, on one side with the outlet (1b) of a first stage (1) of said compressor or with the outlet of an intermediate stage thereof and, on the other side, with the inlet (2b) of a stage (2) immediately following said first stage (1) or said intermediate stage, said mixter (16) having a portion of reduced cross section, extending for a prearranged axial length,
 - axially feeding into said mixer (16) a flow of synthesis gas outbound from said first stage (1) or from said intermediate stage at the same time as a flow of liquid ammonia, said flows being coaxial and in co-current,
 - separating substantially anhydrous synthesis gas from the mixture of said flows outbound from said mixer (16) and sending said gas into said stage (2) following said first stage (1) or said intermediate stage.
 - 2. Method according to claim 1, characterised in that said flow of synthesis gas is cooled to a temperature of between +8°/-20°C, before being fed into said mixer (16).

- 3. Method according to claim 2, characterised in that said cooling is carried out through a flow of liquid ammonia.
- 4. Method according to claim 3, characterised in that said cooling is carried out upstream of the inlet of said coaxial flows of synthesis gas and of liquid ammonia in said mixer (16).
 - 5. Method according to claim 1, characterised in that said flow of liquid ammonia is fed into said mixer (16) in the form of a plurality of high speed jets.
- 10 6. Method according to claim 5, characterised in that said flow of liquid ammonia is fed into said mixer (16) making it pass through a nozzle (23) equipped with appropriate suitably sized openings or slits.
- 7. Apparatus for carrying out the method of claims 1 to 6,

 15 comprising a compressor with many stages (1, 2), each of

 which is equipped with an inlet and an outlet (1a, 2a, 1b,

 2b, 2c), characterised in that it comprises a gas-liquid

 mixer (16) in fluid communication, on one side with the

 outlet (1b) of a first stage (1) of said compressor or with

 20 the outlet of an intermediate stage thereof and, on the

 other side, with the inlet (2b) of a stage (2) immediately

 following said first stage (1) or said intermediate stage,

 said mixer (16) having a portion (16a) of reduced cross
 section, extending for a prearranged axial length.
- 8. Apparatus according to claim 7, characterised in that a gas-liquid separator (8) is placed between said mixer (16) and said subsequent stage (2) of said compressor.

- 9. Apparatus according to claim 8, characterised in that at least one cooling group (19) is placed between said mixer (16) and said first stage (1) of said compressor.
- 10. Apparatus according to claim 7, characterised in that it comprises a nozzle (23) equipped with appropriate suitably sized openings or slits in fluid communication on one side with said portion (16a) of reduced cross-section of said mixer (16) and on the opposite side with a line (21a) for feeding a flow of liquid ammonia into said mixer 10 (16).

Fig. 2

INTERNATIONAL SEARCH REPURI

interconal Application No PCT/E 05049

Relevant to claim No.

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C0183/02 C01C1/04

C. DOCUMENTS CONSIDERED TO BE RELEVANT

04 B01F5/04

C01B3/52

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ll} \mbox{Minimum documentation searched} & \mbox{(classification system followed by classification symbols)} \\ \mbox{IPC 7} & \mbox{C01B} & \mbox{C01C} & \mbox{B01F} \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, API Data, WPI Data, PAJ, INSPEC, COMPENDEX

Citation of document, with indication, where appropriate, of the relevant passages

X	H. BENDIX, L LENZ: "Results and experiences on revamping of large ammonia single-line plants" MEETING OF AMERICAN INSTITUTE OF ENGINEERS, 1989, pages 221-233, XP008010918 page 227, right-hand column, last paragraph	CHEMICAL	1-4,7	
X	WO 01 66465 A (PROCESS MAN ENTPR; MOORE DEWEY OREN (US)) 13 September 2001 (2001-09-13) cited in the application the whole document	LTD	7	
А	IDEM	-/	1	
X Furt	ther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.	
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the International filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another		 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention 		
O docum other	on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or means tent published prior to the international filing date but than the priority date claimed	cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *&* document member of the same patent family		
Date of the	actual completion of the international search	Date of mailing of the international se	arch report	
7	August 2003	14/08/2003		

Authorized officer

Van Der Poel, W.

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/EP 05049

		PCT/EP	05049
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	US 1 815 243 A (DE JAHN FREDRIK W) 21 July 1931 (1931-07-21) claims; figures		1,7
A	US 1 830 167 A (CLEVELAND JONES LOUIS) 3 November 1931 (1931-11-03) the whole document		1,7
A	US 3 349 569 A (NEBGEN WILLIAM H) 31 October 1967 (1967-10-31) claims		1,7
A	WO 99 13963 A (HANSSEN PER HENNING ;NILSEN FINN PATRICK (NO); LINGA HARALD (NO);) 25 March 1999 (1999-03-25) figure 6		1,7
	·		

IN INTERNATIONAL SEARCH REPORT

Information on patent family members

Interior nel Application No
PCT/EP 05049

				PUI/ER	05049
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0166465	Α	13-09-2001	AU	4539001 A	17-09-2001
			CA	2391500 A1	13-09-2001
			CN	1407950 T	02-04-2003
			EP	1259462 A1	27-11-2002
			WO	0166465 A1	13-09-2001
US 1815243	A	21-07-1931	GB	215789 A	23-10-1924
US 1830167	A	03-11-1931	NONE		
US 3349569	Α	31-10-1967	DE	1592323 A1	10-12-1970
•			FR	1507465 A	29-12-1967
			GB	1130462 A	16-10-1968
			JP	49036115 B	27-09-1974
			NL	6700122 A	15-08-1967
WO 9913963	Α	25-03-1999	AU AU	749450 B2 9086498 A	27-06-2002 05-04-1999
			AU	9086598 A	05-04-1999
			AU	9086698 A	05-04-1999
			AU	9087198 A	05-04-1999
			AU	9087398 A	05-04-1999
			AŬ	9087498 A	05-04-1999
			AÜ	9087698 A	05-04-1999
			AU	750865 B2	01-08-2002
			ΑU	9087898 A	05-04-1999
			CA	2303374 A1	25-03-1999
			CA	2303376 A1	25-03-1999
			CA	2303554 A1	25-03-1999
			CA	2303779 A1	25-03-1999
			CA	2303780 A1	25-03-1999 25-03-1999
			CA EP	2304226 A1 1021234 A1	26-07-2000
			EP	1021234 A1 1021235 A1	26-07-2000
			EP	1021235 A1 1021236 A1	26-07-2000
			ËP	1021237 A1	26-07-2000
			EP.	1024880 A1	09-08-2000
			ĒΡ	1021238 A1	26-07-2000
			WO	9913962 A1	25-03-1999
			WO	9913963 A1	25-03-1999
			WO	9913964 A1	25-03-1999
			MO	9913965 A1	25-03-1999
			MO	9913966 A1	25-03-1999
			WO	9913967 A1	25-03-1999
			WO	9913968 A1	25-03-1999
			WO NO	9913969 A1	25-03-1999 12-05-2000
			NO NO	20001310 A 20001311 A	12-05-2000
			NO	20001311 A 20001312 A	12-05-2000
			NO	20001312 A 20001313 A	12-05-2000
			NO	20001313 A 20001314 A	11-05-2000
			NO	20001315 A	11-05-2000
			ÜS	6284023 B1	04-09-2001
			US	6284024 B1	04-09-2001
			US	6280505 B1	28-08-2001