

Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Academic year 2022-2023 (Even Sem)

DEPARTMENT OF

INFORMATION SCIENCE & ENGINEERING

Date	22 nd August 2023	Maximum Marks	50					
Course Code	21IS44	Duration	90 Mins					
Sem IV Semester CIE - II								
THEORY OF COMPUTATION								

Sl. No.	Questions	M	ВТ	СО
1.a	Define PDA and instantaneous description (ID). Construct PDA to recognize set of all palindromes over $\Sigma = \{a,b\}$. Show sequence of IDs in processing 'abba'.	08	L4	CO 1
1.b	Identify the language the CFG generates? S -> aaS bbS Saa Sbb abSab abSba baSab baSab	02	L3	CO 1
2,2	List the steps to convert the given CFG to equivalent PDA by empty stack. Convert the CFG below to its equivalent PDA using the steps given by you. $I \rightarrow a \mid b \mid I_a \mid I_b \mid I_0 \mid I_1$ $E \rightarrow I \mid E * E \mid E + E \mid (E)$	05	L3	CO 3
2.b	Summarize the languages accepted by PDA with an example for each.	05	L2	CO 1
3.a	How to find an equivalent CFG from a given PDA? Convert the following PDA to a grammar: $P = (\{p,q\}, \{0,1\}, \{X,Z\}, \delta, p, z, \Phi)$ where δ is given by: $\delta(p,0,Z) = \{(p,XZ)\}$ $\delta(p,0,X) = \{(p,XX)\}$ $\delta(p,1,X) = \{(q,\varepsilon)\}$ $\delta(q,1,X) = \{(q,\varepsilon)\}$ $\delta(q,\varepsilon,X) = \{(q,\varepsilon)\}$ $\delta(q,\varepsilon,Z) = \{(q,\varepsilon)\}$	06	L3	CO 3
3.b	Simplify the following grammar:	04	L3	CO 1
4.a	Define DPDA. Construct DPDA equivalent to the DFA whose transition table is as below. Here A is Start state and B is final state.	04	L3	CO 1

Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Academic year 2022-2023 (Even Sem)

4.b	Define GNF grammar. Given below a CFG G, find a CFG G in GNF generating $L(G)$ – {	06	L3	CO 2
5.a	If L_1 is CFL and L_2 is regular language, then prove that L_1 L_2 is a CFL.	05	L2	CO 2
5.b	Construct the parse tree, LMD and RMD for the string aabbabab where the	05	L2	CO
	grammar G is given by			1

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Particulars		CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Distribution	Test	Max Marks	28	11	11			15	27	8		
