

Example 1 (5.75 + 14)

5.75 + 14 = 19.75

IEEE representation of '5.75':

0 10000001 011100000000000000000000

[0-129-0.437500]

IEEE representation of '14':

0 10000010 11000000000000000000000

[0-130-0.750000]

Preliminary exponent: MAX(129, 130) = 130

Example 1 Continue...

SLAMABAR IN TOTAL STATE OF THE STATE OF THE

Mantissa:

- Shift 1.01110... by 130-129=1 bit
- the signs are identical → ADD
- add 0.10111 and 1.11000:

0.10111

+1.11000

10.01111

Normalize exponent and mantissa:

 $1.001111 \times 2(131-127)$

Example 1 Continue...

STAMABAD STAMABAD

IEEE representation of result:

0 10000011 001111000000000000000000

[0-131-0.234375]

Example 2 (5.75 - 14)

5.75 - 14 = -8.25

IEEE representation of '5.75':

0 10000001 011100000000000000000000

[0-129-0.437500]

IEEE representation of '14':

0 10000010 110000000000000000000000

[0-130-0.750000]

Preliminary exponent: MAX(129, 130) = 130

Example 2 Continue...

Mantissa:

- Shift 1.01110... by 130-129=1 bit
- the signs are different \rightarrow SUB

Example 2 Continue...

From 0.10111 subtract 1.11000:

00.10111

2's-complement \rightarrow +1 0. 0 1 0 0

10.11111

sign of difference is negative

2's-complement of result: 0 1. 0 0 0 1

- positive S_a, thus result negative
- no normalization required

Example 2 (5.75 - 14)

STAMABAD.

IEEE representation of result:

[1-130-0.031250]