

Prompt Gamma Emission Prediction using an LSTM Network

ECMP 2024 | Munich | 13.09.2024

<u>Fan Xiao</u>¹, Michael Kriechbaum², Domagoj Radonic¹, Niklas Wahl^{3,4}, Ahmad Neishabouri^{4,5}, Nikolaos Delopoulos¹, Katia Parodi², Stefanie Corradini¹, Claus Belka^{1,7,8}, Christopher Kurz¹, Guillaume Landry¹, George Dedes²

¹Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany

²Department of Medical Physics, LMU Munich, Munich, Germany

³Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany

⁴National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.

⁵Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany

⁶German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany

⁷Bavarian Cancer Research Center (BZKF), Munich, Germany

Background

Proton therapy & Prompt gamma(PG) imaging

Proton therapy

- Superior dose conformity compared with photon therapy
 - Limited dose range/reduced exposure to normal tissues
- Limitations due to range uncertainty
 - Non-optimal dose coverage of targets/overdose of healthy tissues

Influence of a density heterogeneity to depth dose curves^[1]

Prompt gamma (PG) imaging

- PG signals are highly correlated to proton dose distributions
- Potential for real-time range monitoring

Schematic setup of PG based proton range verification^[2]

- [1] Knopf AC, Lomax A. In vivo proton range verification: a review. *Phys Med Biol*. 2013;58(15):R131-R160.
- [2] Tian, Liheng (2020): A new treatment planning concept accounting for prompt gamma imaging for proton range verification. Dissertation, LMU München

Background & Motivation

Fast calculation of expected PG distributions

The PG fall-off does not explicitly match the therapeutic dose fall-off^[2]

PG emission calculation methods

- MC simulation (slow)
- Analytical dose filtering methods

Fast and accurate prompt gamma calculation

Long short-term memory (LSTM) network-based proton dose calculation^[3]

^[2] Tian, Liheng (2020): A new treatment planning concept accounting for prompt gamma imaging for proton range verification. Dissertation, LMU München

Materials & methods

Patient datasets & MC simulation

Patient datasets

- 33 prostate patients treated at LMU University Hospital
- Planning CT scans (resampled voxel size: 1.5×1.5×1.5 mm³)
- Dataset split: training/validation/testing=20/3/10

Geant4 MC simulation for PG and dose distributions

- Convert CT to relative stopping power (RSP) with respect to water
- Number of histories for each PB: 10M^[4] (20-30 hours)
- Recorded PG threshold: above 3 MeV^[5]
- Angular region: [40°,140°]∪[220°,320°], Δα=16.6°
- PB number simulated per patient: 96
- Cuboid extraction: from patient surface
- Cuboid dimension/resolution: 320×24×24/1x2x2 mm³

MC Dose on RSP

^[4] Souris K, et al (2016). Fast multipurpose Monte Carlo simulation for proton therapy using multi-and many-core CPU architectures, Med Phys.

Materials & methods

LSTM-based PG prediction framework

RP (RSP to PG) model: input RSP, output PG

RDP (RSP and dose to PG) model: input RSP and dose, output PG

Materials & methods Experiments & Metrics

Experiments

SE: single energy; ME: multi-energy

Cuboid Dataset [energy (PB number)]

Model	Training	Validation	Test
RP	150 MeV (1920)	150 MeV (288)	150 MeV (540)
RDP (SE)	150 MeV (1920)	150 MeV (288)	150 MeV (540)
RDP (ME)	150 MeV (1920), 175 MeV (1920), 200 MeV (1920)	125-200 MeV (288×3)	150 MeV (540), 175 MeV (540), 200 MeV (540), 125-210 MeV (540)

Metrics

- Gamma passing rate γ_{pr} (2%/2mm, PG count>10% of the maximum PG count)
- Laterally integrated PG profiles with relative count differences ϵ_{rel} (%)
- Range shift **Δz**^[6] of two laterally integrated PG-depth profiles

Results

RP, RDP (SE) and RDP (ME) model comparison

- The RDP(SE) model has smaller Δz than the RP model in the same test dataset (150 MeV)
- Mean γ_{pr} of RDP model (99.1%) is higher than RP model (98.1%)

Results

LINDUIG. MAXIMILIANS: GLANK OF EXPERIMENTAL PHYSICS UNIVERSITÄT MONCHEN MEDICAL PHYSICS

RDP (ME) model on four test datasets

• The Δz of test cases from RDP(ME) model is all within 1 mm (except for three outliers)

 All computation measurements were carried out on a workstation equipped with an Intel(R) Xeon(R) Gold 6354 3.00 GHz CPU and an NVIDIA RTX A6000 GPU.

Model	Cuboid extraction time (ms)	Model inference time (ms)
RP	55	10
RDP	55x2	11

Conclusions

- A sub-second LSTM-based PG emission prediction method was developed
- Combining RSP and dose improves the accuracy of PG range predictions and helps the model generalize to unseen energies

Outlook

- Extend to more treatment sites and spot sizes
- Validation with PG detection data from experimental PG camera needs to be explored

Thank you for your attention!

Contact: Fan.Xiao@med.uni-muenchen.de