ExoPlex: Build a Planet

Estimate Planetary Properties of the Trappist System

Group 4: Brendan Kirsh, Frank Hegedus, Johnny Kushan, and Alyssa Whalen

Introduction

Goal:

- Build a model planet based on stellar parameters
- Use Exoplex to model planet composition

Use stellar parameters of Trappist 1 to build a planet analogous to Trappist 1f

Background: Trappist 1 System

Trappist 1 (Star)

- Radius: 0.12 R_{sun}

- Mass: 0.09 M_{sun}

- Luminosity: 0.0005 L_{sun}

Trappist 1f (planet)

- 5th planet

Discovered via Transit Method

- Mass: 1.04 M_{Earth}

- Radius: 1.05 R_{Earth}

- Orbital Radius: .0385 AU

Artist representation of the surface of Trappist 1f Credit: NASA JPL-Caltech

Method: ExoPlex

Input:

- Stellar Parameters:
 - [Fe/Mg]
 - [Si/Mg]
- Planet Parameters:
 - Mass

Output:

- Radius
- As a function of radius:
 - Density
 - Pressure
 - Gravity
 - Temperature
- Core Mass Fraction
- Core Radius Fraction
- Core Mantle Boundary

Initial Results: Trappist 1f

ExoPlex Input:

A More Detailed Look

ExoPlex Input:

%run Group_1.py --mass=1.039 --FeMg=1.72 --SiMg=1.124 --wt_frac_0_core=0.255

Stellar Irradiation

- Inputs
 - Orbital Distance: 0.0385 AU
 - Trappist 1 Luminosity: 0.0005 Lsun

$$T_{
m eq} = \left(rac{L\left(1-A_B
ight)}{16\sigma\pi a^2}
ight)^{1/4}$$

- Flux on Trappist 1-f: 463 W/m^2
- Equilibrium Temperature: 212K
 - Earth Teq: 250K

Discussion

- Trappist-1f seems analogous to Earth
 - Similar mineralogy
 - Similar irradiation and equilibrium temperature
 - Similar densities
- Literature suggests atmosphere and high water composition on 1f
- Future: Run Exoplex with alternate parameters

References

"NASA Exoplanet Archive." NASA Exoplanet Archive, https://exoplanetarchive.ipac.caltech.edu/.

https://iopscience.iop.org/article/10.3847/1538-4357/aad95d/pdf