Machlearn Assignment 5

Abhishek Sau

26/04/2021

Hierarchical Clustering

5

6

8

10

NA

70

25

25

3

1

The dataset "Cereals.csv" includes nutritional information, store display, and consumer ratings for 77 breakfast cereals. Data Preprocessing. Remove all cereals with missing values.

```
setwd("D:\\Study\\Assignments\\MachLearn\\MachLearnAssignment5_Hierarchical")
cereals_df<- read.csv("Cereals.csv")</pre>
str(cereals_df)
  'data.frame':
                     77 obs. of 16 variables:
                     "100%_Bran" "100%_Natural_Bran" "All-Bran" "All-Bran_with_Extra_Fiber" ...
##
              : chr
                      "N" "Q" "K" "K" ...
##
    $ mfr
              : chr
                      "C" "C" "C" "C" ...
##
              : chr
    $ type
##
    $ calories: int
                     70 120 70 50 110 110 110 130 90 90 ...
##
    $ protein : int
                     4 3 4 4 2 2 2 3 2 3 ...
                     1 5 1 0 2 2 0 2 1 0 ...
##
    $ fat
              : int
##
    $ sodium : int
                     130 15 260 140 200 180 125 210 200 210 ...
##
    $ fiber
              : num
                     10 2 9 14 1 1.5 1 2 4 5 ...
##
    $ carbo
              : num
                     5 8 7 8 14 10.5 11 18 15 13 ...
    $ sugars : int
                     6 8 5 0 8 10 14 8 6 5 ...
                     280 135 320 330 NA 70 30 100 125 190 ...
##
    $ potass
              : int
                     25 0 25 25 25 25 25 25 25 ...
    $ vitamins: int
   $ shelf
                     3 3 3 3 3 1 2 3 1 3 ...
              : int
                     1 1 1 1 1 1 1 1.33 1 1 ...
    $ weight : num
                     0.33 1 0.33 0.5 0.75 0.75 1 0.75 0.67 0.67 ...
##
    $ cups
              : num
    $ rating : num
                     68.4 34 59.4 93.7 34.4 ...
head(cereals df)
##
                           name mfr type calories protein fat sodium fiber carbo
                      100%_Bran
## 1
                                       C
                                                70
                                                                  130
                                                                       10.0
                                  N
                                                             1
                                                                               5.0
## 2
             100%_Natural_Bran
                                       C
                                                             5
                                               120
                                                                    15
                                                                         2.0
                                                                               8.0
## 3
                       All-Bran
                                  K
                                       С
                                                70
                                                         4
                                                             1
                                                                  260
                                                                         9.0
                                                                               7.0
## 4 All-Bran_with_Extra_Fiber
                                       С
                                                50
                                                             0
                                                                  140
                                                                        14.0
                                                                               8.0
## 5
                Almond_Delight
                                       С
                                                         2
                                                             2
                                                                  200
                                                                              14.0
                                  R
                                               110
                                                                         1.0
       Apple_Cinnamon_Cheerios
## 6
                                  G
                                               110
                                                                  180
                                                                         1.5
                                                                              10.5
     sugars potass vitamins shelf weight cups
##
                                                  rating
## 1
          6
               280
                          25
                                 3
                                        1 0.33 68.40297
## 2
          8
               135
                           0
                                 3
                                        1 1.00 33.98368
## 3
          5
               320
                          25
                                 3
                                        1 0.33 59.42551
               330
## 4
          0
                          25
                                 3
                                        1 0.50 93.70491
```

1 0.75 34.38484

1 0.75 29.50954

```
library(DataExplorer)
## Warning: package 'DataExplorer' was built under R version 4.0.4
introduce(cereals_df) #No. of missing values
    rows columns discrete_columns continuous_columns all_missing_columns
   total_missing_values complete_rows total_observations memory_usage
## 1
                                  74
                                                  1232
cereals_df1<-na.omit(cereals_df) #dataset with omitted rows with missing values</pre>
Apply hierarchical clustering to the data using Euclidean distance to the normalized measurements.
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.0 --
## v ggplot2 3.3.3
                    v purrr
                               0.3.4
## v tibble 3.0.5 v dplyr
                              1.0.3
                   v stringr 1.4.0
## v tidyr 1.1.2
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(factoextra)
## Warning: package 'factoextra' was built under R version 4.0.4
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(dendextend)
## Warning: package 'dendextend' was built under R version 4.0.4
##
## -----
## Welcome to dendextend version 1.14.0
## Type citation('dendextend') for how to cite the package.
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
##
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
## Or contact: <tal.galili@gmail.com>
##
## To suppress this message use: suppressPackageStartupMessages(library(dendextend))
## -----
##
## Attaching package: 'dendextend'
## The following object is masked from 'package:stats':
##
##
      cutree
library(cluster)
library(fastDummies)
```

```
#Identifying categorical and numeric variables
cereals_df1$name<-as.factor(cereals_df1$name)</pre>
cereals_df1$mfr<-as.factor(cereals_df1$mfr)</pre>
cereals_df1$type<-as.factor(cereals_df1$type)</pre>
cereals_df1$shelf <- as.factor(cereals_df1$shelf)</pre>
#creating dummy variables
vaar <- colnames(cereals_df1)</pre>
num_var <- c("calories", "protein", "fat", "sodium", "fiber", "carbo", "sugars", "potass", "vitamins", "weigh</pre>
cat_var<-cereals_df1[which(colnames(cereals_df1) %in% c('name','mfr','type','shelf'))]</pre>
cat_var<-data.frame(apply((cereals_df1[which(colnames(cereals_df1) %in% c('name', 'mfr', 'type', 'shelf'))</pre>
dummy_vars <- fastDummies::dummy_columns(cat_var %>% select(-name))
num_vars <- cereals_df1[,c(4:12, 14:16)]</pre>
cereals_df2 <-cbind(cereals_df1$name,dummy_vars,num_vars) %>% select(-c(mfr, type, shelf))
Normalizing the data set
cereals_df2[,c(2:25)] <- scale(cereals_df2[,c(2:25)], scale = TRUE, center = TRUE)</pre>
Q1. Use Agnes to compare the clustering from single linkage, complete linkage, average linkage, and Ward.
Choose the best method.
hc1 <- agnes(cereals_df2, method = "complete")</pre>
hc2 <- agnes(cereals_df2, method = "average")</pre>
hc3 <- agnes(cereals_df2, method = "single")</pre>
hc4 <- agnes(cereals_df2, method = "ward")</pre>
ac \leftarrow c(hc1$ac,hc2$ac,hc3$ac, hc4$ac)
ac_method <- c(hc1$method,hc2$method,hc3$method, hc4$method)</pre>
ac_df <- data.frame(ac_method, ac)</pre>
ac df
     ac_method
                        aс
## 1 complete 0.9357221
## 2
      average 0.8777588
## 3
        single 0.7192344
## 4
          ward 0.9787001
pltree(hc4, cex = 0.6, hang = -1, main = "Dendrogram based on ward", labels = cereals_df2$`cereals_df1$
```

Dendrogram based on ward

As per the above table, ward method has the highest agglomerative coefficient, i.e closest to one. Hence, it gives the best clusters.

Q2. How many clusters would you choose?

```
fviz_nbclust(cereals_df2, hcut, method = "wss")+
geom_vline(xintercept = 2, linetype = 5)
```

```
## Warning in stats::dist(x): NAs introduced by coercion
## Warning in stats::dist(x, method = method, ...): NAs introduced by coercion
## Warning in stats::dist(x, method = method, ...): NAs introduced by coercion
## Warning in stats::dist(x, method = method, ...): NAs introduced by coercion
## Warning in stats::dist(x, method = method, ...): NAs introduced by coercion
## Warning in stats::dist(x, method = method, ...): NAs introduced by coercion
## Warning in stats::dist(x, method = method, ...): NAs introduced by coercion
## Warning in stats::dist(x, method = method, ...): NAs introduced by coercion
## Warning in stats::dist(x, method = method, ...): NAs introduced by coercion
## Warning in stats::dist(x, method = method, ...): NAs introduced by coercion
## Warning in stats::dist(x, method = method, ...): NAs introduced by coercion
```


fviz_nbclust(cereals_df2, hcut, method = "silhouette")

```
## Warning in stats::dist(x): NAs introduced by coercion
```

Optimal number of clusters


```
cereals_df2<- cereals_df2 %>% mutate(cluster= cutree(hc4, k=2))
```

As per the dendogram, I will choose 2 clusters.

Q3. Comment on the structure of the clusters and on their stability.

library(caret)

```
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
## lift
set.seed(12)

split_index <- createDataPartition(cereals_df2$rating, p=0.6, times = 1, list = FALSE)

cereal_part1 <- cereals_df2[split_index,]
cereal_part2 <- cereals_df2[-split_index,]

centroid1<- cereal_part1 %>% select_if(is.numeric) %>% filter(cluster==1) %>% colMeans()
centroid2 <- cereal_part1 %>% select_if(is.numeric) %>% filter(cluster==2) %>% colMeans()
centroid <- rbind(centroid1, centroid2)</pre>
```

```
cluster_B <- data.frame(data=seq(1,nrow(cereal_part2),1),clusterB = rep(0,nrow(cereal_part2)))
for(x in 1:nrow(cereal_part2))
{ cluster_B$clusterB <- which.min(as.matrix(get_dist(as.data.frame(rbind(centroid[,-25],cereal_part2[x,cluster_B <- cluster_B %>% mutate(orig_clusters = cereal_part2$cluster)
mean(cluster_B$clusterB==cluster_B$orig_clusters)
```

[1] 0.3928571

Answer: The clusters are not stable as per the comparision.

Q4. The elementary public schools would like to choose a set of cereals to include in their daily cafeterias. Every day a different cereal is offered, but all cereals should support a healthy diet. For this goal, you are requested to find a cluster of "healthy cereals." Should the data be normalized? If not, how should they be used in the cluster analysis?

```
healthy_cereals <- data.frame(cereals_df2 %>% filter(cluster==2) %>% select_if(is.numeric) %>% colMeans
```

Cluster 2 has cereals those are rich in protein, Vitamin, Carbs as well as low in sugar and sodium. Hence, Cereals in cluster 2 can be included to support a healthy diet