# Systeem- en Regeltechniek EE2S21

# **Bond Graphs + Block Diagrams**

Lecture 3

Dimitri Jeltsema & Bart De Schutter

February 17, 2015



# **Constitutive relationships**





#### Classical force-voltage or mass-inductance analogy:





|             |                 |                           | Gen.               | Gen.                  |
|-------------|-----------------|---------------------------|--------------------|-----------------------|
|             | Effort          | Flow                      | Position           | Momentum              |
|             | e               | f                         | q                  | p                     |
| Electric    | voltage u [V]   | current i [A]             | charge $q$ [C]     | flux $\phi$ [Vs]      |
| Translation | force $F$ [N]   | velocity v [m/s]          | displ. $x$ [m]     | mom. $p$ [Ns]         |
| Rotation    | torque          | angular vel.              | angl. displ.       | rot. mom.             |
|             | τ [Nm]          | $\omega$ [rad/s]          | heta [rad]         | $L\left[Nms ight]$    |
| Hydraulic   | pressure        | vol. flow                 | volume             | press. mom.           |
|             | $p$ [N/m $^2$ ] | $Q$ [ $\mathrm{m}^3$ /s]  | $V$ [ ${ m m}^3$ ] | $\Gamma$ [Ns/m $^2$ ] |
| Thermo-     | temp.           | entropy flow              | entropy            | -                     |
| dynamic     | <i>T</i> [K]    | $f_T$ [WK <sup>-1</sup> ] | S [J/K]            |                       |



#### **Generalized Elements:**

- "I" elements:  $f = \hat{f}(p)$  or  $p = \hat{p}(f)$   $\Rightarrow$  masses, inductors, etc.
- "C" elements:  $e = \hat{e}(q)$  or  $q = \hat{q}(e)$   $\Rightarrow$  springs, capacitors, etc.
- "R" elements:  $e = \hat{e}(f)$  or  $f = \hat{f}(e)$   $\Rightarrow$  dampers, resistors, etc.
- "S" elements:  $e = \hat{e}(f)$  or  $f = \hat{f}(e)$   $\Rightarrow$  supplied forces, voltage source, etc.
- "TF" and "GY" elements:  $e_1 = \hat{e}_1(f_1)$  and  $f_2 = \hat{f}_2(e_2)$   $\Rightarrow$  transformers and gyrators.



# **Generalized Dynamical Relationships:**

• 
$$f(t) = \frac{dq(t)}{dt}$$
, or  $q(t) = q(t_0) + \int_{t_0}^t f(\tau)d\tau$ 

• 
$$e(t) = \frac{dp(t)}{dt}$$
, or  $p(t) = p(t_0) + \int_{t_0}^t e(\tau)d\tau$ 

Note: Generalized component relationships follow in similar way. Generalized interconnective relationships are called **junctions** (treated later with **bond graphs**).

**TU**Delft

### Four Element Quadrangle:



"M" stands for generalized memristor:  $p = \hat{p}(q)$  or  $q = \hat{q}(p)$ .



## **Bond graphs I**

- Language for physical modeling that explicitly shows the interconnection of the physical elements and the energy that is exchanged between them ⇒ power flow.
- Power = effort  $\times$  flow. (voltage  $\times$  current or force  $\times$  velocity)
- In terms of **effort** variable e, flow variable f



Very powerful to connect different engineering domains.

**TU**Delft

## **Bond graphs II**

• Linear I-element: 
$$\frac{e}{f}$$
  $I:I_i$ 

$$f(t) = f(0) + \frac{1}{I_i} \int_0^t e(\tau) d\tau$$

• Linear C-element:  $\frac{e}{f}$   $C:C_i$ 

$$e(t) = e(0) + \frac{1}{C_i} \int_0^t f(\tau) d\tau$$

• Linear R-element:  $\frac{e}{f}$   $R:R_i$ 

$$e(t) = R_i f(t)$$
, or  $f(t) = \frac{1}{R_i} e(t)$ 

**TU**Delft

# **Bond graphs III**

• S-elements:

- Effort source: 
$$S_e:e_{S_i}$$
  $\xrightarrow{e}$   $f$ 

- Flow source: 
$$S_f: f_{S_i} \frac{e}{f}$$

Next: interconnection structure...

February 17, 2015

# **Bond graphs IV**

Interconnection in bond graphs ⇒ **Junction structure** 

**1-Junction** (or flow junction):

$$\sum_{k=1}^{m} e_{ik} = \sum_{k=1}^{n} e_{ok}$$

$$f_{i1} = \dots = f_{im} = f_{o1} = \dots = f_{on}$$



⇒ e.g., Kirchhoff's voltage law (KVL)

# **Bond graphs V**

#### **0-Junction** (or effort junction):

$$\sum_{k=1}^{m} f_{ik} = \sum_{k=1}^{n} f_{ok}$$

$$e_{i1} = \cdots = e_{im} = e_{o1} = \cdots = e_{on}$$



⇒ e.g., Kirchhoff's current law (KCL)

Note: Power continuity for both junction structures (verify!)

## **Simplifications of the Bond Graphs**

$$\frac{e}{f_1} \quad 0 \quad \frac{e}{f_2} \quad = \quad \frac{e}{f_1 = f_2}$$

$$\frac{e}{f} \quad 1 \quad \frac{e_2}{f} \quad = \quad \frac{e \cdot 1 = e_2}{f}$$

$$\frac{e}{f} \quad f_2 \quad e \mid f_5 \quad e^{f_2} \quad e^{f_5} \quad \text{Similar}$$

$$\frac{e}{f_1} \quad 0 \quad \frac{e}{f_4} \quad 0 \quad \frac{e}{f_7} \quad = \quad \frac{e}{f_1} \quad 0 \quad \frac{e}{f_7} \quad \text{for 1}$$

$$\frac{e}{f_3} \quad e \mid f_6 \quad e^{f_6} \quad \text{junction}$$

## Systematic procedures I

#### **Electrical domain:**

- 0-junction at every well-defined potential
- 1-junction with every I, C, R, or S element
- use grounded points that have zero-voltage to remove bonds
- use simplification rules.



# Systematic procedures II

#### **Mechanical domain:**

- 1-junction at every "fixed" speed
- 0-junction to make speed difference, and additionally 1-junction to use the speed difference as a "fixed" speed
- introduce the elements
- use simplification rules
- use zero velocity points to remove bonds.

**T**UDelft

### **Example: Electrical and Mechanical System**



Draw the bond graphs...







































## Systematic procedures (Recall)

#### **Mechanical domain:**

- 1-junction at every "fixed" speed
- 0-junction to make speed difference, and additionally 1-junction to use the speed difference as a "fixed" speed
- introduce the elements
- use simplification rules
- use zero velocity points to remove bonds.

**T**UDelft

























#### Hey, Wait a Minute...



Mechanical System:  $S_e:\tau_{\text{in}} \longrightarrow 1 \longrightarrow 0 \longrightarrow R:B$  C:1/K

⇒ When two systems from a different domain possess the same bond graph structure, they are analogues.

**TU**Delft

## **State Equations**

Step 1: Add all the effort and flow variables to the bond graph:





## **State Equations**

Step 2: Write the relations associated to the junctions:





## **State Equations**

Step 3: Choose the state variables:

$$au_J = J \dot{\omega}_J \Rightarrow \boxed{\omega_J}$$

$$\omega_{\!K} = rac{\dot{ au}_{\!K}}{K} \Rightarrow lacksquare au_{\!K}$$



Step 4: Write the remaining constitutive relationships:

$$au_B = B\omega_B$$
 or  $\omega_B = rac{ au_B}{B}$ 

Step 5: Combine the previous steps:

$$egin{aligned} \omega_K + \omega_B &= \omega_J \Rightarrow \omega_K = rac{\dot{ au}_K}{K} = \omega_J - \omega_B = \omega_J - rac{ au_B}{B} = \omega_J - rac{ au_K}{B} \ au_{ ext{in}} - au_J = au_K \Rightarrow au_J = J \dot{\omega}_J = au_{ ext{in}} - au_K \end{aligned}$$

## **State Equations**

Step 6: Write the equations in the form  $\dot{x} = f(x, u)$ :

$$J\dot{\omega}_{\!J}= au_{\!\mathsf{in}}- au_{\!K}\Rightarrow\dot{\omega}_{\!J}=rac{ au_{\!\mathsf{in}}- au_{\!K}}{J}=f_1( au_{\!K}, au_{\!\mathsf{in}})$$

$$\frac{\dot{\tau}_K}{K} = \omega_J - \frac{\tau_K}{B} \Rightarrow \dot{\tau}_K = K\left(\omega_J - \frac{\tau_K}{B}\right) = f_2(\omega_J, \tau_K)$$

or, in case the system is LTI:

$$egin{bmatrix} \dot{a}_{J} \ \dot{a}_{K} \end{bmatrix} = egin{bmatrix} 0 & -rac{1}{J} \ K & -rac{K}{R} \end{bmatrix} egin{bmatrix} \omega_{J} \ au_{K} \end{bmatrix} + egin{bmatrix} rac{1}{J} \ 0 \end{bmatrix} au_{\mathsf{in}} \end{split}$$

which is in the form  $\dot{x} = Ax + Bu$ .

**TU**Delft

#### **Transformers I**

Ideal transformer "TF":  $e_2 = ne_1$  and  $f_2 = \frac{1}{n}f_1$ 

$$rac{e_1}{f_1}$$
  $rac{e_2}{f_2}$ 

with 
$$e_1 f_1 = e_2 f_2$$
.

#### **Transformers II**

One domain: e.g., ideal el. transformer, or different domains: e.g., a transformer from mech. to hydr. domain:



or from mech. translation to rotation domain:

**TU**Delft

# **Gyrator I**

Ideal Gyrator "GY":  $e_2 = rf_1$  and  $f_2 = \frac{1}{r}e_1$ 

$$\begin{array}{c|c} e_1 & e_2 \\ \hline f_1 & f_2 \end{array}$$

with 
$$e_1 f_1 = e_2 f_2$$
.

## **Gyrator II**

Between **different domains**, e.g., a gyrator from electrical domain to mechanical rotation domain (motor, or, if the domains are reversed: a generator):



From mech. rot. to hydr. domain: pump. Reverse: turbine.

**Note:** the power continuity for both TF and GY!

**TU**Delft

## **Example: DC motor**



- Two states corresponding to storage elements L and J  $\Rightarrow$  order 2
- Two dissipative elements
- One gyrator
- One source



**T**UDelft

# How to implement this all in a computer???



#### **Towards Simulation**

- Bond graph simulation tools: 20sim, Dimola, etc.
- However, we use Matlab
- Matlab contains a nice package called Simulink
- Block oriented simulation package
- Graphical implementation of DV's
- You don't have to worry about the sequence/iterations
- States are determined in an 'instantaneous' manner
- Build your model using basic blocks, like scaling, integration, differentiation, summation, subtraction, products, etc.

**T**UDelft

# **Primitive Operators**

scaling operator

$$u(t)$$
  $a$   $y(t)$ 

differential operator

$$u(t)$$
  $\frac{d}{dt}$   $y(t)$ 

integral operator

$$\begin{array}{c|c}
u(t) & & y(t) \\
\hline
 & y(0)
\end{array}$$

### **Primitive Operators**



a) addition



c) multiplication



b) subtraction



## **Example**

For the mechanical rotational system we found using the bond graph:

the element relationships:

$$\omega_J(t) = rac{1}{J} \int_0^t au_J(s) ds + \omega_J(0),$$
 $\omega_B(t) = rac{1}{B} au_B(t),$ 
 $au_K(t) = K \int_0^t \omega_K(s) ds + au_K(0),$ 

and the interconnection structure

$$au_{J}(t) = au_{ ext{in}}(t) - au_{K}(t)$$
 $\omega_{K}(t) = \omega_{J}(t) - \omega_{B}(t)$ 

**TU**Delft

# **Example**





# **Example**



