Solution

To find the vertex, we look at the coefficients in the function $\mathsf{j}(\mathsf{z}) = \mathsf{az}^2 + \mathsf{bz} + \mathsf{c}$ in this equation, a = 3 and b = 9

The first coordinate of the vertex has the formula: $\frac{-b}{2a}$ now, plugging into formula to get:

 $\frac{-b}{2a} = -\frac{9}{2(3)} = -\frac{3}{2}$

$$\frac{3}{2(3)} = -\frac{3}{2}$$
second coordinate of the vertex is $1(-\frac{3}{2}) = 3(-\frac{3}{2})^2 + 9(-\frac{3}{2}) - 7$

The second coordinate of the vertex is $j(-\frac{3}{2}) = 3(-\frac{3}{2})^2 + 9(-\frac{3}{2}) - 7$

Therefore, the vertex of the graph of f is $(-\frac{3}{2}, -\frac{55}{4})$