Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни
«Алгоритми та структури даних-1.
Основи алгоритмізації»
«Дослідження арифметичних циклічних алгоритмів»

Варіант <u>25</u>

Виконав	П-15, Плугатирьов Дмитро Валерійович	
студент	(шифр, прізвище, ім'я, по батькові)	
Перевірив	Вєчерковська А.С.	
	(прізвище, ім'я, по батькові)	

Лабораторна робота № 4

Дослідження арифметичних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 25

Завдання

25. Нехай
$$\upsilon_1=\upsilon_2=0,\ \upsilon_3=1.5,\ \upsilon_i=\frac{i+1}{i^2+1}\upsilon_{i-1}-\upsilon_{i-2}\upsilon_{i-3},\ i=4,\ 5,\ \dots$$
. Для заданого натурального числа $n\ (n\ge 4)$ знайти υ_n .

1. Постановка задачі

Знайти член послідовності з необхідним індексом, величину якого користувач вводить самостійно. Знаходження цього члену відбувається завдяки циклічному розрахунку кожного з членів послідовності до останнього включно. Присвоєння отриманого значення на ітерації циклу до змінної та переприсвоєння вже існуючих відбувається почергово: таким чином, щоб кожне нове розраховане значення на кожній ітерації циклу було присвоєне до змінної-поточного члена, та до найстарішого члена - значення члену більшого на одиницю за індексом.

Результатом виконання програми ϵ значення шуканого члена послідовності зі встановленим заздалегідь індексом. Якщо значення надто велике - до останнього члена послідовності присвоюється 0.

2. Побудова математичної моделі

Змінна	Tun	Ім'я	Призначення
Кінцевий індекс	Цілочисельний	n	Початкові дані
Член, індекс	Дійсний	v1	Початкові дані
якого менший на			
1 за поточний			
Член, індекс	Дійсний	v2	Початкові дані
якого менший на			
2 за поточний			
Член, індекс	Дійсний	v3	Початкові дані
якого менший на			
3 за поточний			
Шуканий член	Дійсний	vn	Результат
Поточний член	Дійсний	V	Проміжні дані
Лічильник в	Цілочисельний	i	Початкові дані
циклі			

Дія pow(x, n) означає піднесення числа x до степеня n.

3. Розв'язання

Програмні специфікації записати у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначити основні дії
- *Крок* 2. Перевірити введений користувачем індекс на достовірність умовам задачі.
- *Крок 3*. Знайти потрібний член послідовності за допомогою арифметичного циклу.
- *Крок 4.* Перевірити належність значення результату до обраного типу даних: вивести останній член послідовності, якщо належить, інакше ні.

4. Псевдокод

Крок 1

початок

знайти потрібний член послідовності за допомогою арифметичного циклу

перевірити належність значення результату до обраного типу даних: вивести останній член послідовності, якщо належить, інакше ні

кінець

Крок 2

початок

введення п

$$v3 := 0$$

 $v2 := 0$
 $v1 := 1.5$

повторити

$$v1 = v$$

все повторити

перевірити належність значення результату до обраного типу даних: вивести останній член послідовності, якщо належить, інакше ні

кінець

Крок 3

початок

введення п

$$v3 = 0$$

$$v2 = 0$$

$$v1 = 1.5$$

повторити

для і від 4 до п

$$v := ((i + 1) / (pow(i, 2) + 1)) * v1 - v2 * v3$$

$$v3 = v2$$

$$v2 = v1$$

$$v1 := v$$

все повторити

T0

вивести vn

все якщо

кінець

Блок-схема

Крок 1

5. Тестування

Блок	Дія 1	Дія 2
Дія	Початок	Початок
1	n := 3	n ≔ 123
2	-	v := 0.4411764706, i := 4
3	-	v := 0.1018099547, i := 5
4-121	-	•••
122	-	v := 5.60175e-200, i := 123
123	-	vn := 5.60175e-200
	Кінець	Кінець

6. Висновок

В даній лабораторній роботі я дослідив особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. Під час виконання даного завдання мені довелося скористатися арифметичним циклом, що закріпило мої знання з цієї теми.