SI231b: Matrix Computations

Lecture 6: Solution of Special Linear Systems

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Sept. 24, 2020

Outline

- Computing LU Factorization via Recursion
- ► LDL^T Factorization for Symmetric Systems
- ► LDL^T Factorization with Symmetric Pivoting
- ► Cholesky Factorization for SPD Systems
- ► Banded Matrices Factorization
- ► Floating Point Arithmetic
- ► Condition of Systems of Equations

MIT Lab, Yue Qiu

LU Factorization Through Recursion

An Alternative Approach

For $A \in \mathbb{R}^{n \times n}$, and a permutation matrix P_1

$$\mathsf{P}_1\mathsf{A} = \left[\begin{array}{c|c} a_{11}^{(0)} & \mathsf{v}^T \\ \hline u & \mathsf{A}_1' \end{array} \right] = \underbrace{\left[\begin{array}{c|c} 1 & 0 \\ \hline 1/a_{11}^{(0)}\mathsf{u} & \mathsf{I}_{n-1} \end{array} \right]}_{\mathsf{L}_1} \underbrace{\left[\begin{array}{c|c} a_{11}^{(0)} & \mathsf{v}^T \\ \hline 0 & \mathsf{A}_1' - 1/a_{11}^{(0)}\mathsf{u}\mathsf{v}^T \end{array} \right]}_{\mathsf{U}_1}$$

Then repeat the above procedure to $A_1' - 1/a_{11}^{(0)}uv^T$, i.e.,

$$\begin{aligned} \mathsf{P}_2'\left(\mathsf{A}_1' - 1/a_{11}^{(0)}\mathsf{uv}^T\right) &= \left[\begin{array}{c|c} a_{22}^{(1)} & \mathsf{w}^T \\ \hline \mathsf{s} & \mathsf{A}_2' \end{array}\right] \\ &= \left[\begin{array}{c|c} 1 & 0 \\ \hline 1/a_{22}^{(1)}\mathsf{s} & \mathsf{I}_{n-2} \end{array}\right] \left[\begin{array}{c|c} a_{22}^{(1)} & \mathsf{w}^T \\ \hline 0 & \mathsf{A}_2' - 1/a_{22}^{(1)}\mathsf{s}\mathsf{w}^T \end{array}\right] \end{aligned}$$

Denote $P_2 = \begin{bmatrix} 1 & \\ & P'_2 \end{bmatrix}$, we obtain (next page)

LU Factorization Through Recursion

$$\mathsf{P}_2\mathsf{P}_1\mathsf{A} = \underbrace{\left[\begin{array}{ccc} 1 & & & \\ & 1 & & \\ \frac{1}{a_{11}^{(0)}}\mathsf{P}_2'\mathsf{u} & \frac{1}{a_{22}^{(1)}}\mathsf{s} & \mathsf{I}_{n-2} \end{array} \right]}_{\mathsf{L}_2} \underbrace{\left[\begin{array}{ccc} a_{11}^{(0)} & & \mathsf{v}^T \\ & a_{22}^{(1)} & \mathsf{w}^T \\ & & A_2' - \frac{1}{a_{22}^{(1)}}\mathsf{s}\mathsf{w}^T \end{array} \right]}_{\mathsf{U}_2}$$

- following the above notations, $L = L_{n-1}$, $U = U_{n-1}$
- $ightharpoonup P_k$ only acts on the first (k-1) columns of L_k
- ▶ algorithm style, suitable for computer implementation

Remark:

- Gaussian elimination tells why you can perform an LU factorization, and when does it exist
- ► the recursive approach tells how you can compute the LU factorization on a modern computer

LDL^T Factorization

LDL^T: LDU Factorization for Symmetric Matrices

Theorem

If $A \in \mathbb{R}^{n \times n}$ is symmetric, and every principal sub-matrix $A_{\{1,\dots,k\}}$ satisfies

$$\det(\mathsf{A}_{\{1,\ldots,k\}})\neq 0,$$

for $k=1,2,\cdots,n-1$, then there exists a lower-triangular matrix L with unit entries and a diagonal matrix

$$D = \operatorname{diag}(d_1, d_2, \cdots, d_n),$$

where $d_i \neq 0$ for $i = 1, 2, \dots, n$, such that $A = LDL^T$. The factorization is unique.

Proof: making use of the LU factorization

Computational complexity: not surprisingly $\mathcal{O}\left(\frac{n^3}{3}\right)$

MIT Lab, Yue Qiu Si231b: Matrix Computations, ShanghaiTech Sept. 24, 2020

LDL^T Factorization with Symmetric Pivoting

Symmetry is preferred

If A is symmetric, and P_1 is a permutation matrix

- ► P₁A is not symmetric
- \triangleright P₁AP₁^T is symmetric

Consider the following

$$\begin{aligned} \mathsf{P}_1 \mathsf{A} \mathsf{P}_1^{\mathsf{T}} &= \begin{bmatrix} \alpha & \mathsf{v}^{\mathsf{T}} \\ \mathsf{v} & \mathsf{A}_1 \end{bmatrix} \\ &= \begin{bmatrix} 1 \\ 1/\alpha \mathsf{v} & \mathsf{I}_{n-1} \end{bmatrix} \begin{bmatrix} \alpha & \\ & \tilde{\mathsf{A}}_1 \end{bmatrix} \begin{bmatrix} 1 & 1/\alpha \mathsf{v}^{\mathsf{T}} \\ & \mathsf{I}_{n-1} \end{bmatrix}, \end{aligned}$$

with $\tilde{A}_1 = A_1 - 1/\alpha vv^T$ also symmetric.

Note: with symmetric pivoting, α is some diagonal entry a_{ii} , why?

When the procedure terminates, $PAP^{T} = LDL^{T}$ where

$$P = P_{n-1} \cdots P_2 P_1$$

Symmetric Positive Definite Systems

Symmetric Positive Definite (SPD)

 $M = M^T \in \mathbb{R}^{n \times n}$ is SPD iff (if and only if)

$$x^T M x > 0, \quad \forall x \in \mathbb{R}^n \backslash 0$$

Properties of SPD Matrices:

- ► real positive eigenvalues
- positive diagonal entries
- ▶ all principle sub-matrices are SPD
- ▶ $A \in \mathbb{R}^{n \times n}$ is SPD and $X \in \mathbb{R}^{n \times r}$ has full rank, then $X^T A X$ is also SPD

MIT Lab, Yue Qiu

Cholesky Factorization

Recursive Factorization

For an SPD matrix $A \in \mathbb{R}^{n \times n}$,

$$\begin{split} A &= \begin{bmatrix} a_{11} & w^T \\ w & A_1 \end{bmatrix} \\ &= \underbrace{\begin{bmatrix} \sqrt{a_{11}} & \\ 1/\sqrt{a_{11}}w & I_{n-1} \end{bmatrix}}_{L_1} \underbrace{\begin{bmatrix} 1 & \\ & A_1 - 1/a_{11}ww^T \end{bmatrix}}_{D_1} \underbrace{\begin{bmatrix} \sqrt{a_{11}} & 1/\sqrt{a_{11}}w^T \\ & I_{n-1} \end{bmatrix}}_{L_1^T} \end{split}$$

Require: the (1, 1) entry of $(A_1 - 1/a_{11}ww^T)$ should be positive to continue.

Note: $(A_1 - 1/a_{11}ww^T)$ is a principle sub-matrix of $L_1^{-1}AL_1^{-T}$.

Following the same principle, when the procedure terminates,

- ightharpoonup L_n = L, D_n = I_n
- $ightharpoonup A = LL^T$: Cholesky factorization
- $\triangleright \mathcal{O}\left(\frac{1}{3}n^3\right)$ flops, half of LU factorization

Banded Matrices Factorization

Banded Matrix

For matrix $A \in \mathbb{R}^{n \times n}$, A is called to have

- ▶ upper bandwidth q if $a_{ij} = 0$ whenever j > i + q;
- lower bandwidth p if $a_{ij} = 0$ whenever i > j + p.

Example: discretization of the Laplace operator in \mathbb{R}^2

$$\Delta = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Banded LU Factorization

- L inheritates the lower bandwidth of A
- ▶ U inheritates the upper bandwidth of A

Theorem

Suppose $A \in \mathbb{R}^{n \times n}$ has an LU factorization A = LU. If A has upper bandwidth q and lower bandwidth p, then U has upper bandwidth q and L has lower bandwidth p.

Proof: cf. Theorem 4.3.1 in [Golub and van Loan]

Cholesky factor of the discretized Laplace operator

Banded LU Factorization with Partial Pivoting

For a nonsingular banded matrix $A \in \mathbb{R}^{n \times n}$ with upper bandwidth q and lower bandwidth p, after performing the LU factorization with partial pivoting using Gaussian elimination,

- ▶ the upper bandwidth of U is p + q
- ▶ the lower bandwidth of L is complicated to analyze

Cf. Theorem 4.3.2 in [Golub and van Loan] for details.

Note:

- computational cost of LU factorization for banded matrices is huge
 - banded matrices are often huge (big n)
 - LU factorization costs $\mathcal{O}\left(\frac{2n^3}{3}\right)$ flops, not affordable for large n

Floating Point Arithmetic

IEEE Standard for Floating-Point Arithmetic (IEEE 754)

- ▶ single format, 32 bit
- double format, 64 bit

Take the double format for example,

- ▶ 1 bit for sign;
- ▶ 52 bits for the mantissa;
- ▶ 11 bits for the exponent;

IEEE standard stipulates that each arithmetic operation be correctly rounded, meaning that the computed result is the rounded version of the exact result.

Finite Precision

Machine Precision

Resolution is traditionally summarized by a number known as machine epsilon, i.e., ε_m

$$arepsilon_m = rac{1}{2} imes ext{(gap between 1 and next largest floating point number)}$$

- $\varepsilon_m \approx 5.96 \times 10^{-8}$ for single format
- $\varepsilon_m \approx 1.11 \times 10^{-16}$ for double format

Try the eps command in Matlab to get ε_m

Property

$$\forall x \in \mathbb{R}$$
, there exists $x' \in \mathbb{F}$, such that $|x - x'| < \varepsilon_m |x|$

where \mathbb{F} represents the set of floating point numbers. Or equivalently,

$$\forall x \in \mathbb{R}$$
, there exists ε with $|\varepsilon| \leq \varepsilon_m$, such that $f(x) = x(1+\varepsilon)$

✓ □ → ✓ □

Condition of Linear Systems of Equations

Matrix Condition Number

Consider solving the linear equation Ax = b using direct methods, such as LUP/Cholesky factorization, which can be represented by

$$(A + \sigma A)(x + \sigma x) = b.$$

Making use of Ax = b and dropping out the product $\sigma A \sigma x$, we obtain

$$\frac{|\sigma x|}{|x|} / \frac{\|\sigma A\|}{\|A\|} \le \|A\| \|A^{-1}\|$$

where $\|A\|\|A^{-1}\|$ defines the condition number of the matrix A and is often denoted by $\kappa(A)$.

The linear equation Ax = b is

- well-conditioned if small σA leads to small σx (small $\kappa(A)$)
- \blacktriangleright ill-conditioned if small σA leads to large σx (large $\kappa(A)$)

Note: here the meaning of "small" and "large" depends on the application.

Readings

You are supposed to read

Gene H. Golub and Charles F. Van Loan. Matrix Computations, Johns Hopkins University Press, 2013.

Chapter 2.6 - 2.7, Chapter 4.1 - 4.4

Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra, SIAM, 1997.

Lecture 12 - 13, 23