Problem analysis of Greedy Algorithm (2)

YAO ZHAO

Nesting boxes

- A **d-dimensional** box with dimensions $(x_1, x_2, ..., x_d)$ **nests** within another box with dimensions $(y_1, y_2, ..., y_d)$ if there exists a permutation π on $\{1, 2, ..., d\}$ such that $x_{\pi(1)} < y_1, x_{\pi(2)} < y_2, ..., x_{\pi(d)} < y_d$.
- ▶ (1) Argue that the nesting relation is transitive.
- ▶ (2) Describe an efficient method to determine whether one *d*-dimensional box nests inside another.
- (3) Suppose that you are given a set of n d-dimensional boxes $\{B_1, B_2, ... B_n\}$. Give an efficient algorithm to find the longest sequence $\langle B_{i1}, B_{i2}, ... B_{ik} \rangle$ of boxes such that B_{ij} nests within B_{ij+1} for j=1,2,...k-1. Express the running time of your algorithm in terms of n and d.

Question 1: Argue that the nesting relation is transitive

Suppose that box $\mathbf{x}=(x_1,x_2,...,x_d)$ nests with box $\mathbf{y}=(y_1,y_2,...,y_d)$ and box y nests with box $\mathbf{z}=(z_1,z_2,...,z_d)$ Then there exist permutations π and σ such that $x_{\pi(1)} < y_1, x_{\pi(2)} < y_2,...,x_{\pi(d)} < y_d$ and $y_{\sigma(1)} < z_1, y_{\sigma(2)} < z_2,...,y_{\sigma(d)} < z_d$. This implies $x_{\pi(\sigma(1))} < z_1, x_{\pi(\sigma(2))} < z_2,...,x_{\pi(\sigma(d))} < z_d$, so x nests with z and the nesting relation is transitive.

Sample:

Question 2: Describe an efficient method to determine whether one d-dimensional box nests inside another

▶ Box x nests inside box y if and only if the increasing sequence of dimensions of x is component-wise strictly less than the increasing sequence of dimensions of y. Thus, it will suffice to sort both sequences of dimensions and compare them. Sorting both length d sequences is done in $O(d \log d)$, and comparing their elements is done in O(d), so the total time is $O(d \log d)$.

Question 2:proof

Pf. Box x nests inside box y if and only if the increasing sequence of dimensions of x is component-wise strictly less than the increasing sequence of dimensions of y.

the increasing sequence dimensions of x is component-wise strictly less than the increasing sequence of dimensions of y.

By the definition of Nesting Box x nests inside box y

of

be

of

the increasing sequence dimensions of xmust Box x nests inside box ycomponent-wise strictly less than the increasing sequence dimensions of y.

▶ Claim. the increasing sequence of dimensions of x must be component-wise strictly less than the increasing sequence of dimensions of y if Box x nests inside box y.

Pf. (by induction)

- ▶ Base: let dimension = 1, if Box x nests inside box y, $x_1 < y_1$
- Induction: Suppose that dimension = d, if Box x nests inside box y, there is an increasing permutations π for x and an increasing permutations σ for y, satisfy $x_{\pi(1)} < y_{\sigma(1)}, x_{\pi(2)} < y_{\sigma(2)}, ..., x_{\pi(d)} < y_{\sigma(d)}$
- When dimension =d+1, if Box x nests inside box y, according the definition, there exist permutations λ :
- $x_{\lambda(1)} < y_1, x_{\lambda(2)} < y_2, \dots, x_{\lambda(d)} < y_{d}, x_{\lambda(d+1)} < y_{d+1}$ -----(1)

Observe(1), the first d terms, $x_{\lambda(1)} < y_1, x_{\lambda(2)} < y_2, ..., x_{\lambda(d)} < y_d$. The first d terms satisfy the nested relationship of d dimensions, so for the first d terms, there will exist permutations π , σ

- $x_{\pi(1)} \le x_{\pi(2)} \le \dots \le x_{\pi(d)}$ -----(2)
- $y_{\sigma(1)} \le y_{\sigma(2)} \le ... \le y_{\sigma(d)}$ -----(3)
- $x_{\pi(1)} < y_{\sigma(1)}, x_{\pi(2)} < y_{\sigma(2)}, \dots, x_{\pi(d)} < y_{\sigma(d)}$ -----(4)

▶ Pf. (continue)

 $x_{\lambda(d+1)}$ is inserted into Formula (2) (let the insertion position be j), thereby having a new permutation π' such that the x sequence remains increasing.

Then insert y_{d+1} into Formula (3) (let the insertion position be k), a new permutation σ' is created so that y sequence remains increasing.

$$x_{\lambda(d+1)} = x_{\pi'(j)} < y_{d+1} = y_{\sigma'(k)}$$
 (5)

There are 3 cases:

- $\begin{aligned} & \quad \text{$j < k$: $x_{\pi'(1)} < y_{\sigma'(1)}, x_{\pi'(2)} < y_{\sigma'(2)}, \dots x_{\pi'(j)} < x_{\pi'(j+1)} < y_{\sigma'(j)}, x_{\pi'(j+1)} < x_{\pi'(j+2)} < y_{\sigma'(j+1)}, \\ & \quad \dots x_{\pi'(k-1)} < x_{\pi'(k)} < y_{\sigma'(k)}, \quad x_{\pi'(k)} < y_{\pi'(k-1)} < y_{\sigma'(k)}, x_{\pi'(k+1)} < x_{\pi'(k+1)}, x_{\pi'(d+1)} < y_{\sigma'(d+1)} \end{aligned} \\ & \quad \text{So, for any $1 \le i \le d+1$, $$x_{\pi'(i)} < y_{\sigma'(i)}$, the claim is true.}$
- j = k:

the insertion position: we have $x_{\lambda(d+1)} < y_{d+1}$ (see formula(1)), so $x_{\lambda(d+1)} = x_{\pi'(j)} < y_{d+1} = y_{\sigma'(k)}$ (Formula(5)) = $y_{\sigma'(j)}$ (j=k)

The other positions hasn't changed, for any $1 \le i \le d+1$, $x_{\pi'(i)} < y_{\sigma'(i)}$, the claim is true.

So, for any $1 \le i \le d+1$, $x_{\pi'(i)} < y_{\sigma'(i)}$, the claim is true.

Sample:

	1	2	3	4
X	21	23	25	27
У	31	33	35	37
	1	2	3	4
Χ	21	23	25	27
У	31	33	35	37
	1	2	3	4
Χ	21	23	25	27
У	31	33	35	37

Question 3: Suppose that you are given a set of n d-dimensional boxes $\{B_1, B_2, \dots B_n\}$. Give an efficient algorithm to find the longest sequence $\langle B_{i1}, B_{i2}, \dots B_{ik} \rangle$ of boxes such that B_{ij} nests within B_{ij+1} for $j=1,2,\dots k-1$. Express the running time of your algorithm in terms of n and d.

We will create a nesting-graph G with vertices $B_1, B_2, ... B_n$ as follows. For each pair of boxes B_i, B_j , we decide if one nests inside the other. If B_i nests in B_j , draw an arrow from B_i to B_j . If B_j nests in B_i , draw an arrow from B_j to B_i . If neither nests, draw no arrow. To determine the arrows efficiently, after sorting each list of dimensions in $O(nd \log d)$ we compare all pairs of boxes using the algorithm from part (2) in $O(n^2d)$. By part (1), the resulted graph is acyclic, which allows us to easily find the longest chain in it in $O(n^2)$ in a bottom-up manner. This chain is our answer. Thus, the total time is $O(nd * max(\log d, n))$.

Sample:

8 boxes

Node 1

1 2 5 10 20 30

Node 2

3 7 9 11 15 23

Node 3

4 14 24 34 40 50

Node 4

9 10 11 12 13 14

Create a nesting-graph

We will create a nesting-graph G with vertices $B_1, B_2, ... B_n$ as follows. For each pair of boxes B_i, B_j , we decide if one nests inside the other. If B_i nests in B_j , draw an arrow from B_i to B_j . If B_j nests in B_i , draw an arrow from B_i to B_i . If neither nests, draw no arrow.

Find the longest chain in the DAG in $\mathcal{O}(n^2)$ in a bottom-up manner

	1	2	3	4	5	6	7	8
1	0	0	1	0	1	1	0	1
2	0	0	1	0	1	1	0	1
3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	1	0	0
5	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0
7	1	1	1	1	1	1	0	1
8	0	0	0	0	0	0	0	0

the longest chain:4

The following are the possible chain: $7 \rightarrow 1 \rightarrow 5 \rightarrow 8$ or $7 \rightarrow 1 \rightarrow 5 \rightarrow 6$ or $7 \rightarrow 2 \rightarrow 5 \rightarrow 6$ or $7 \rightarrow 2 \rightarrow 5 \rightarrow 8$

A Task-scheduling Problem

- Given n unit-time tasks with start times, end times and profits for a single processor, we obtain a profit of v_i if the i^{th} task is finished between s_i and t_i , and we obtain no profit if a task misses its end time or starts before its start time.
- ▶ Return the maximum profit you can take while ensuring there are no two tasks scheduled in the same timeslot.
- $n \le 5000$, $1 \le s_i \le t_i \le 10^8$, $1 \le v_i \le 10^8$

Sample Input	Sample Output	Explanation			
4 1 1 2 2 2 2 2	6	Time slot:	1	2	3
222			1	3	4
131		Profit:	2	3	1

End time weight

Start time End time weight

Difference?

Judgment: Greedy algorithm can be used to solve this problem?

Claim 1 and proof

Claim 1: Sort tasks by profit so that $v_1 \ge v_2 \ge ... \ge v_n$, consider each task in turn. Let the previously selected tasks set be S. If the current task a_i can be added to S to ensure that every task matches to a timeslot successfully, then select a_i , otherwise do not select a_i . This greedy strategy is bound to result in the maximum profit.

Proof:

- 1. Let the i^{th} task be a_i and the optimal task set of the previous i-1 tasks be S.
- 2. If a_i can be added to S to ensure that every task in S matches a timeslot, then the i^{th} task must be selected, otherwise the total profit will not be optimal.
- 3. If after joining a_i , some tasks in S incur conflicts, that means at least one task in S can't be selected. As $v_1 \ge v_2 \ge ... \ge v_i$, a_i has the least profit, and the original tasks in S has no conflict, so do not select a_i .
- 4. Every selection can guarantee that the obtained set *S* is optimal, so the result is optimal.

which timeslot would you place the elected tasks in?

$$1 \le s_i \le t_i \le 10^8$$

How to choose the timeslot since the time range is too large?

Algorithm 1: Brute force

- Since each task can only one timeslot in the specified interval, the tasks are sorted according to their profits. For each task a_i , which is judged whether it conflicts with the previously selected tasks. If no conflict, enumeration its no-conflict timeslots. Let \mathbf{Max} {Ti}- \mathbf{min} {Si}+1=L, there are at most L choices for each task, and at least 1 choice. After enumerating all possible options, get the maximum profit.
- $ightharpoonup O(L^{n-1})$
- L Possible range: ≤ 10⁸,
- **▶** low efficiency

A huge number of timeslots in the interval are redundant

How to identify and remove redundant timeslots?

Active Timeslots

Initially, all time slots are marked black. Then, for each task a_i (s_i , t_i , v_i), find the smallest k, where $k \ge s_i$ and the time slot k is black, and then mark the time slot k as white. Finally, we get exactly n time slots marked white, and these n time slots are useful time slots. Call them "active timeslots".

Algorithm of Finding all Active Timeslots of all tasks

```
S \leftarrow \emptyset

Sort the tasks by start time so that s_1 \le s_2 \le s_3 \dots \le s_n

x \leftarrow 0

For i=1 to n {

x \leftarrow \max(x+1, s_i);

add x to S

}
```

Claim 2 and proof

Claim 2. Suppose an active timeslots set T and a task set S, if each task in S can schedule no conflict on T, there must be such a greedy strategy: scan each timeslot in T from front to rear, for each timeslot, if there are some tasks whose $s_i \le$ the timeslot $\le t_i$ and haven't be scheduled, select the task with the smallest t_i .

Proof: Suppose that there is no conflict match M between S and T. Now scan the first active timeslot ts_1 in T:

- (1) If ts_1 is idle and if there are some tasks whose $s_i \le ts_1 \le t_i$, we can make the task with the smallest t matches ts_1 . The operation will not affect the other match relations.
- (2) If ts_1 is idle and no tasks whose $s_i \le ts_1 \le t_i$, make no change.
- (3) If ts_1 is occupied by a task a_x but a_y with the smallest t for ts_1 , swap the task a_x and a_y , assume the timeslot of a_y is ts_y ,

We have:

$$s_y \le t s_y \le t_y$$
 $s_x \le t s_1 \le t_x$ $t_y < t_x$

So, $s_x \le ts1 < ts_y \le t_y < t_x$, the task a_x can be arrange to timeslot ts_y .

Repeat the swap operations on the remaining active time slots, the greedy strategy can generate a no-conflict match between S and T.

Claim 3 and proof

Claim 3. The maximum profit of scheduling the tasks only on the "active timeslots" is the same as that scheduling the tasks on all timeslots.

Proof: by induction

- Base: let n=1, for the task (s_1,t_1,v_1) , according the algorithm of p.9, the active timeslot is s_1 , can finish the task at s_1 , obtain the maximum profit v_1 .
- Induction: Suppose that n=m, for the first m tasks, according the algorithm of p.9, get m "active timeslots" (let the m "active timeslots" set T), let tasks set S be the optimal task set on T, and the S also the optimal task set on all timeslots.

When n = m + 1, now consider the task a_{m+1} , there are 3 cases:

- ullet The optimal task set of the first m+1 tasks doesn't include the task a_{m+1}
- ullet Need to delete a task in ${\it S}$ to free its timeslot for the task a_{m+1}
- Add the task a_{m+1} to the optimal task set S without deleting the previously selected tasks

Claim 3 proof: case 1

• Case 1: The optimal task set of the first m+1 tasks doesn't include the task a_{m+1}

Since there are m+1 tasks, only one newly added active timeslot, no previous active timeslots will be affected. The optimal solution of the first m+1 tasks is equal to the optimal solution of the first m tasks. So, the optimal solution of the first m+1 tasks can only be related to the first m+1 active timeslots.

Claim 3 proof: case 2

• Need to delete a task in S to free its timeslot for the task a_{m+1}

the task a_{m+1} oy replaces the task in the **previous active timeslot**, **the newly added active timeslot does not affect the previous active timeslot**. Therefore, The selected active timeslots of the first m+1 tasks is equal to that of the first m tasks. So, the optimal solution of the first m+1 tasks is only related to the first m+1 active timeslots.

Claim 3 proof: case 3

- Add the task a_{m+1} to the optimal task set S without deleting the previously selected tasks
- 1. We known that tasks set S is the optimal task set on the m active timeslots set T. According to the greedy strategy of claim 2, the only matching relation R of the tasks in S and the first M active points can be obtained.
- 2. Under the current matching relation R, add the m+1 active timeslot.
- 3. Try to add the task a_{m+1} , according to the greedy strategy of claim 2, try to find a timeslot for the task a_{m+1} .

```
Enumerate each timeslot ts_i from the s_{m+1} to \infty\{ If ts_i is idle, a_{m+1} can match the ts_i, return ts_i Else if ts_i \longleftrightarrow a_k\{ if T_k > T_{m+1} swap a_{m+1} and a_k }
```

From above finding algorithm, the returned ts must be the s_{m+1} or the first idle timeslot $s_{m+1} + j(j)$ depends on the number of conflicts).

The returned ts must be either an active timeslot in T, or the m+1 active timeslot, So, the optimal solution of the first m+1 tasks is only related to the first m+1 active timeslots.

Algorithm 2: Complete Bipartite Graph + KM

- According Claim 3, create a N*N complete bipartite G:
 - add vertices $x_1, x_2, ... x_n$ for each task;
 - add vertices $y_1, y_2, ... y_n$ for each active timeslot;
 - $i,j \in [1,n]$, add edge (x_i,y_j) , if $s_i \le y_j \le t_i$, the weight of edge (x_i,y_j) is v_i , otherwise, the weight is 0.
- In a complete bipartite graph G, using Hungarian algorithm (also called the Kuhn-Munkres algorithm) to find the maximum-weight matching.
- $O(n^3)$

See: https://brilliant.org/wiki/hungarian-matching/

Algorithm 3: Bipartite Graph + Greedy+ Augmenting path

- According Claim 3, create a bipartite G:
 - add vertices $x_1, x_2, ... x_n$ for each task;
 - add vertices $y_1, y_2, ... y_n$ for each active timeslot;
 - $i, j \in [1, n]$, if $s_i \le y_j \le t_i$, add a edge (x_i, y_j) , the weight of edge (x_i, y_j) is v_i .
- ▶ Sort tasks by v_i so that $v_1 \ge v_2 \ge v_3 \dots \ge v_n$ $S \leftarrow \emptyset$ for each task a_i { if (AugmentingPath(x_i, S, G) = true){ add x_i to S }//else don't select the task a_i ,see Claim1 }

 $O(n^3)$

Matching Algorithms for Bipartite Graphs.pdf

Finding Augmenting path Demo

First: DFS from A, find X

Result: A→X

Second: reverse the edge (A, X), DFS from B, find a augmenting path: X

 $\rightarrow A \rightarrow Z$

Result: B \rightarrow X A \rightarrow Z

Third: reverse the edge (A,Z) and (B,X),DFS from C, find a augmenting path:

 $C \rightarrow Z \rightarrow A \rightarrow X \rightarrow B \rightarrow Y$

Result: A \rightarrow X B \rightarrow Y C \rightarrow Z

Algorithm 4: Greedy + Heap

- ▶ According Claim 1 and Claim 2, consider the following algorithm:
 - Sort tasks by v_i so that $v_1 \ge v_2 \ge v_3 \dots \ge v_n$ S←ø $T \leftarrow n$ active timeslots for each task a_i { add a_i to Sflag = CheckByClaim2(S, T)if (flag == false){ remove a_i from S
- When realizing CheckByClaim2(S, T), can using Heap to select the smallest t_i task of all tasks satisfy $s_i \le ts_i \le t_i$ ($ts_i \in T$)

Algorithm 5: Greedy + Linear Match

- ▶ According **Claim 1 and Claim 2**, consider the following algorithm:
- Sort tasks by v_i so that $v1 \ge v2 \ge v3 \dots \ge vn$ $S \leftarrow \emptyset$ $T \leftarrow n$ active timeslots and $ts_1 \le ts_2 \le ts_3 \dots \le ts_n$ for each task a_i { if (LinearMatch(a_i , s_i) == true) { add a_i to S }

Algorithm 5: How to Linear Match

```
LinearMatch(a_i, x){
   if (x>t_i) return false
   if x is idle{
      x matches a_i
       return true
   a_i = getTaskOf(x)
   if (Ti > Tj){
       return LinearMatch(a_i, next active timeslot of x)
   }else{
       if LinearMatch(a_i, next active timeslot of x){
            x matches a_i
            return true
   return false
```

Algorithm 5 Demo

Sample Input	Sample Output
4	8
113	
122	
1 3 1	
1 2 4	

Task 1, matches active timeslot 1.

Result:

Task1(1,2,4) $\leftarrow \rightarrow$ active timeslot 1

Task2(1,1,3), try active timeslot 1, but 1 matches task1, conflict.

Observe $t_2 < t_1$

Then try to place Task1 on timeslot2, $t_2 \le 2$ and timeslot2 is idle, successful.

Result:

Task1(1,2,4) $\leftarrow \rightarrow$ active timeslot 2 Task1(1,1,3) $\leftarrow \rightarrow$ active timeslot 1

Task3(1,2,2), try active timeslot 1, but 1 matched task2, conflict.

Observe $t_3 > t_1$

Then try to place Task3 to next active timeslot

Try active timeslot 2, but 2 matched task1, conflict again. Observe $t_3 \ge t_2$

Try active timeslot 3, observe $t_3 < 3$, failed. Don't select task 3

Result:

Task1(1,2,4) $\leftarrow \rightarrow$ active timeslot 2 Task1(1,1,3) $\leftarrow \rightarrow$ active timeslot 1

Task4(1,3,1), try active timeslot 1, but 1 matched task2, conflict.

$$t_4 = 3 > t_1 = 1$$

Try active timeslot 2, but 2 matched task1, conflict. $t_4=3>t_2=2$

Try active timeslot 3, 3 is idle, 3 can match task 4

Result:

Task1(1,2,4) $\leftarrow \rightarrow$ active timeslot 2 Task2(1,1,3) $\leftarrow \rightarrow$ active timeslot 1 Task4(1,3,1) $\leftarrow \rightarrow$ active timeslot 3

