SML Assignment 1

Dongju Ma A1942340

June 29, 2025 Trimester 2

Question 1a: Closed Form of Linear Regression: derivation

$$\nabla_W(J(W)) = \frac{\partial}{\partial W} \frac{1}{2m} ||\hat{Y} - Y||_2^2 = \frac{\partial}{\partial W} \frac{1}{2m} (XW - Y)^T (XW - Y).$$

Denote that $X \in \mathbb{R}^{m \times n}, Y \in \mathbb{R}^{m \times 1}$ and $W \in \mathbb{R}^{n \times 1}$,

hence $(W^T X^T Y)^T = Y^T X W = W^T X^T Y$ due to each term is scalar.

Using the identify $(AB)^T = B^T A^T$ and expanding J(W)

$$J(W) = \frac{1}{2m} (XW - Y)^T (XW - Y)$$

= $\frac{1}{2m} (W^T X^T - Y^T) (XW - Y)$
= $\frac{1}{2m} (W^T X^T XW - 2W^T X^T Y + Y^T Y)$.

Apply partial derivatives to J(W)

$$\begin{split} \nabla_W(J(W)) &= \frac{\partial}{\partial W} \frac{1}{2m} (W^T X^T X W - 2W^T X^T Y + Y^T Y) \\ &= \frac{1}{2m} \left(\frac{\partial}{\partial W} W^T X^T X W - \frac{\partial}{\partial W} 2W^T X^T Y \right) \\ &= \frac{1}{2m} (2X^T X W - 2X^T Y) \\ &= \frac{1}{m} (X^T X W - X^T Y) \end{split}$$

To minimize J(W), we should compare $\nabla_W(J(W))$ to 0, therefore

$$\nabla_W(J(W)) = 0 \quad \Rightarrow \quad X^T X W = X^T Y$$

multiply both sides of the equation by $(X^TX)^{-1}$, thus

$$W = (X^T X)^{-1} X^T Y$$

Question 1b: Matrix Alignment Verification

Given that $X \in \mathbb{R}^{5\times 3}$ and $Y \in \mathbb{R}^{5\times 1}$, we can compute the dimension of W by the following steps, Since

$$W = (X^T X)^{-1} X^T Y,$$

$$X^{T} \in \mathbb{R}^{3 \times 5} \Rightarrow X^{T}X \in \mathbb{R}^{3 \times 3} \Rightarrow (X^{T}X)^{-1} \in \mathbb{R}^{3 \times 3}$$
$$\Rightarrow (X^{T}X)^{-1}X^{T} \in \mathbb{R}^{3 \times 5}$$
$$\Rightarrow (X^{T}X)^{-1}X^{T}Y = W \in \mathbb{R}^{3 \times 1}$$

Thus \hat{Y} has the dimension of that

$$\hat{Y} = XW \Rightarrow \hat{Y} \in \mathbb{R}^{5 \times 1}$$

Which makes \hat{Y} has the same dimension with Y, the alignment is correct.

Question 4a: Machine Learning Matrix Operations

• $\langle \mathbf{w}, \mathbf{x}_i \rangle$ Using the definiation of inner products, $\langle \mathbf{w}, \mathbf{x}_i \rangle = \mathbf{x}_i^{\top} \cdot \mathbf{w} = \sum_j^d \mathbf{x}_{ij} \mathbf{w}_j$, hence that,

$$\sum_i \langle \mathbf{w}, \mathbf{x}_i
angle = \sum_i \mathbf{x}_i^{ op} \mathbf{w},$$

which is equivelent to Eq1.

• $(\sum_{i} \mathbf{x}_{i})\mathbf{w}$ As $\mathbf{x}_{i} \in \mathbb{R}^{d \times 1}$, therefore $\sum_{i} \mathbf{x}_{i} \in \mathbb{R}^{d \times 1}$.

Thus $\sum_i \mathbf{x}_i$ cannot dot with \mathbf{w} due to that $\sum_i \mathbf{x}_i$ has a dimension of d rows and 1 column which is the same with \mathbf{w} , hence $(\sum_i \mathbf{x}_i)\mathbf{w}$ is not equivelent to Eq1.

• $\sum_{i} \operatorname{Tr}(\mathbf{x}_{i} \mathbf{w}^{\top})$ Given that $\mathbf{x}_{i} \in \mathbb{R}^{d \times 1}$, $\mathbf{w} \in \mathbb{R}^{d \times 1}$, therefore $\mathbf{x}_{i}^{\top} \mathbf{w}$ is scalar, which means that

$$\mathbf{x}_i^{ op}\mathbf{w} = \mathbf{w}^{ op}\mathbf{x}_i$$

Using the identify of trace, $\operatorname{Tr}(\mathbf{x}_i \mathbf{w}^{\top}) = \operatorname{Tr}(\mathbf{w}^{\top} \mathbf{x}_i)$, which is equivelent to $\mathbf{w}^{\top} \mathbf{x}_i$. Therefore

$$\sum_{i} \operatorname{Tr}(\mathbf{x}_{i} \mathbf{w}^{\top}) = \sum_{i} \operatorname{Tr}(\mathbf{w}^{\top} \mathbf{x}_{i}) = \sum_{i} \mathbf{w}^{\top} \mathbf{x}_{i} = \sum_{i} \mathbf{x}_{i}^{\top} \mathbf{w},$$

which is equivelent to Eq1.

• $\mathbf{w}^T \sum_i \mathbf{x}_i$ As $\mathbf{x}_i^T \mathbf{w}$ is scalar, therefore

$$\sum_{i} \mathbf{x}_{i}^{\top} \mathbf{w} = \sum_{i} \mathbf{w}^{\top} \mathbf{x}_{i}.$$

Using the identify of sum,

$$\sum_{i} \mathbf{w}^{\top} \mathbf{x}_{i} = \mathbf{w}^{\top} \sum_{i} \mathbf{x}_{i},$$

which means $\mathbf{w}^{\top} \sum_{i} \mathbf{x}_{i}$ is equivelent to Eq1.