Aymptotic (Large Sample) Theory

A random sequence A_n is:

(a)
$$o_p(1)$$
 if $A_n \stackrel{p}{\to} 0$ (1)

(b)
$$o_p(B_n)$$
 if $A_n/B_n \stackrel{p}{\to} 0$ (2)

(c)
$$O_p(1)$$
 if $\forall \epsilon > 0, \exists M : \lim_{n \to \infty} \mathbb{P}(|A_n| > M) < \epsilon$ (3)

(d)
$$O_p(B_n)$$
 if $A_n/B_n = O_p(1)$ (4)

If
$$Y_n \rightsquigarrow Y \Longrightarrow Y_n = O_p(1)$$

If $\sqrt{n}(Y_n - c) \rightsquigarrow Y \Longrightarrow Y_n = O_p(1/\sqrt{n})$

Distances Between Distributions

For distributions P and Q with pdfs p and q:

(a)
$$V(P,Q) = \sup_{A} |P(A) - Q(A)|$$
 total variation distance (5)

(b)
$$K(P,Q) = \int p\log(p/q)$$
 Kullback-Leibler divergence (6)

(c)
$$d_2(P,Q) = \int (p-q)^2 \mathbf{L_2} \text{ distance}$$
 (7)

A model is **identifiable** if: $\theta_1 \neq \theta_2 \implies K(\theta_1, \theta_2) > 0$.

Consistency

 $\hat{\theta}_n = T(X^n)$ is **consistent** for θ if $\hat{\theta}_n \xrightarrow{p} \theta$ (ie if $\hat{\theta}_n - \theta = o_p(1)$).

To show consistency, can show: $\operatorname{Bias}^2(\hat{\theta}_n) + \operatorname{Var}(\hat{\theta}_n) \to 0$.

The MLE is consistent under regularity conditions.

MLE not consistent when number of params (or support?) grows.

Score and Fisher Information

The score function is $S(\theta) = \frac{\partial}{\partial \theta} l(\theta) = \frac{\partial}{\partial \theta} \sum_{i=1}^{n} \log p(x_i | \theta)$. The **Fisher information** is defined as

$$I_n(\theta) = \mathbb{E}_{\theta} \left[S(\theta)^2 \right] = \operatorname{Var}_{\theta} \left[S(\theta) \right] = -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta^2} l(\theta) \right]$$
 (8)

and
$$I_n(\theta) = -n\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2} \log p(X_1; \theta)\right] = nI_1(\theta).$$

The observed information $\hat{I}_n(\theta) = -\sum_i \frac{\partial^2}{\partial \theta^2} \log p(X_i; \theta)$.

Vector case: $S(\theta) = \left[\frac{\partial l(\theta)}{\partial \theta_i}\right]_{i=1,...,K} \quad I_{ij} = -\mathbb{E}_{\theta} \left[\frac{\partial^2 l(\theta)}{\partial \theta_i \partial \theta_j}\right]_{i,j=1,...,K}$

Efficiency and Robustness

For an estimator $\hat{\theta}_n(X^n)$ of θ , where $X^n \stackrel{\text{iid}}{\sim} p(x|\theta)$:

If
$$\sqrt{n}(\hat{\theta}_n - \theta) \rightsquigarrow \mathcal{N}(0, v^2)$$
, then v^2 is the **asymptotic-Var** $(\hat{\theta}_n)$.
E.g. for $\hat{\theta}_n = \overline{X}_n$: $v^2 = \sigma^2 = \text{Var}(X_i) = \lim_{n \to \infty} n \text{Var}(\overline{X}_n)$.
In general, asymptotic-Var $(\hat{\theta}_n)$ $v^2 \neq \lim_{n \to \infty} n \text{Var}(\hat{\theta}_n)$.

We will use approx: $Var(\hat{\theta}_n) \approx v^2/n$.

For param $\tau(\theta)$, $v(\theta) = \frac{|\tau'(\theta)|^2}{I_1(\theta)}$ is the **Cramer-Rao lower bound**. for most estimators $v^2 \ge v(\theta)$.

If $\sqrt{n}(\hat{\theta}_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, v(\theta))$ (ie if $v^2 = v(\theta)$) $\Longrightarrow \hat{\theta}_n$ efficient. usually, $\sqrt{n}(\tau(\hat{\theta}_{\text{mle}}) - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, v(\theta)) \implies \text{MLE efficient.}$

The standard error of efficient $\hat{\theta}_n$ is $se = \sqrt{\operatorname{Var}(\hat{\theta}_n)} \approx \sqrt{\frac{1}{I_n(\theta)}}$.

The estimated standard error of efficient $\hat{\theta}_n$ is $\hat{se} \approx \sqrt{\frac{1}{I_n(\hat{\theta}_n)}}$.

For efficient $\hat{\theta}_n$, $\hat{\tau} = \tau(\hat{\theta}_n)$, $se \approx \sqrt{\frac{|\tau'(\theta)|^2}{I_n(\theta)}}$, and $\hat{se} \approx \sqrt{\frac{|\tau'(\hat{\theta}_n)|^2}{I_n(\hat{\theta}_n)}}$.

In general, asymptotic normality is when:

$$\frac{\hat{\theta}_{n} - \mathbb{E}(\hat{\theta}_{n})}{\sqrt{\operatorname{Var}(\hat{\theta}_{n})}} \rightsquigarrow \mathcal{N}(0,1) \implies \hat{\theta}_{n} \rightsquigarrow \mathcal{N}(\mathbb{E}(\hat{\theta}_{n}), \operatorname{Var}(\hat{\theta}_{n})).$$

If $\sqrt{n}(W_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, \sigma_W^2)$ and $\sqrt{n}(V_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, \sigma_V^2)$ \implies asymptotic relative efficiency ARE $(V_n, W_n) = \sigma_W^2/\sigma_V^2$. Often there is a tradeoff between efficiency and robustness. (?)

Hypothesis Testing

Null hypothesis $H_0: \theta \in \Theta_0$, alternative $H_1: \theta \in \Theta_1$.

Type I error: If H_0 true but we reject H_0 .

To construct a test:

1. Choose a test statistic $W = W(X_1, \ldots, X_n)$

(9)2. Choose a rejection region R

3. If $W \in R$, reject H_0 otherwise retain H_0

For rejection region R, the **power function** $\beta(\theta) = \mathbb{P}_{\theta}(X^n \in R)$. Want level- α test ($\sup_{\theta \in \Theta_0} \beta(\theta) \leq \alpha$) that maximizes $\beta(\theta \in \Theta_1)$. A level- α test with power fn β is **uniformly most powerful** if: $\beta(\theta) \ge \beta'(\theta) \ \forall \theta \in \Theta_1 \ \forall \beta' \ne \beta.$

Neyman-Pearson Test

For simple $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$, reject H_0 if $\frac{L(\theta_1)}{L(\theta_2)} > k$. where k chosen s.t. $\mathbb{P}(\frac{L(\theta_1)}{L(\theta_2)} > k) = \alpha$.

Wald Test

For $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$, reject $H_0: f\left|\frac{\theta_n - \theta_0}{se}\right| > z_{\alpha/2}$. where $z_{\alpha/2}$ is the inverse standard-normal CDF of $1-\frac{\alpha}{2}$. and $\hat{\theta}_n$ is an unbiased estimator for θ .

and $se = \sqrt{\operatorname{Var}(\hat{\theta}_n)}$. Can also use $\hat{se} =_{\operatorname{eg.}} \sqrt{S_n^2/n}$. and if $\hat{\theta}_n$ efficient, can approx: $se \approx \sqrt{\frac{1}{I_n(\theta)}}$ or $\hat{se} \approx \sqrt{\frac{1}{I_n(\theta)}}$.

Likelihood Ratio Test

For $H_0: \theta \in \Theta_0$ and $H_1: \theta \notin \Theta_0$, reject H_0 if $\lambda(x^n) = \frac{L(\theta_0)}{L(\hat{\theta})} \leq c$. where $L(\hat{\theta}_0) = \sup_{\theta \in \Theta_0} L(\theta)$ and $L(\hat{\theta}) = \sup_{\theta \in \Theta} L(\theta)$.

and c chosen s.t. $\mathbb{P}(\lambda(x^n) \leq c) = \alpha$.

Thm: under $H_0: \theta = \theta_0 \implies W_n = -2\log\lambda(X^n) \rightsquigarrow \chi_1^2$ \implies reject H_0 if $W_n > \chi^2_{1,\alpha}$.

Also: for $\theta = (\theta_1, \dots, \theta_k)$, if H_0 fixes some of the parameters \implies $-2\log\lambda(X^n) \rightsquigarrow \chi^2_{\nu}$, where $\nu = \dim(\Theta) - \dim(\Theta_0)$.

P-Values

The **p-value** $p(x^n)$ is the smallest α -level s.t. we reject H_0 .

Thm: For a test of the form: reject H_0 when $W(x^n) > c$,

 $\implies p(x^n) = \sup_{n \in \mathbb{N}} \mathbb{P}_{\theta}(W(X^n) \ge W(x^n)) = \sup_{n \in \mathbb{N}} [1 - F(W(x^n)|\theta)].$

Thm: Under $H_0: \theta = \theta_0, \ p(x^n) \sim \text{Unif}(0,1).$

Permutation Test

 $X^n \sim F, Y^m \sim G, H_0 : F = G, H_1 : F \neq G$

Let $Z = (X^n, Y^m)$ and L = (1, ..., 1, 2, ..., 2).

Let W = g(L, Z) = |(ave of 1 labeled pts) - (ave of 2 labeled pts)|. Let $p = \frac{1}{N!} \sum_{\pi} \mathbb{I}(g(L_{\pi}, Z) > g(L, Z)) \implies \text{reject } H_0 \text{ when } p < \alpha.$

Confidence Intervals

We want a $1 - \alpha$ confidence interval $C_n = [L(X^n), U(X^n)]$ s.t. $\mathbb{P}_{\theta}\left(L(X^n) \le \theta \le U(X^n)\right) \ge 1 - \alpha, \quad \forall \theta \in \Theta.$

Generally, a $1 - \alpha$ confidence set C_n is a random set $C_n \subset \Theta$ s.t. $\inf_{\theta \in \Theta} \mathbb{P}_{\theta} (\theta \in C_n(X^n)) \ge 1 - \alpha.$

Using Probability Inequalities

Prob inequalities give (for eg.) $\mathbb{P}(|\hat{\theta}_n - \theta| > \epsilon) \leq g(\exp^{-f(\epsilon)}) = \alpha$. solving for ϵ : $\mathbb{P}(|\hat{\theta}_n - \theta| > \tilde{f}(\alpha)) \le \alpha \Rightarrow C_n = (\hat{\theta} - \tilde{f}(\alpha), \hat{\theta} + \tilde{f}(\alpha))$.

Inverting a Test

In level- α tests $\mathbb{P}_{\theta_0}(T(x^n) \in R) = \alpha \Rightarrow \text{let } C_n = \{\theta : T(x^n) \in A(\theta)\}.$ where $A(\theta) = \{T(x^n) \notin R \text{ s.t. } \theta = \theta_0\}$ (accept region if θ is null). For Wald: $C_n = W_n \pm (z_{\alpha/2} \times se) = W_n \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

For LRT: $C_n = \{\theta : \frac{L(\theta)}{L(\hat{\theta})} > c\}$ (for test where reject H_0 if $\frac{L(\theta_0)}{L(\hat{\theta})} \le c$).

Pivots

 $Q(X^n, \theta)$ a **pivot** if the distribution of Q does not depend on θ . Find a, b s.t. $\mathbb{P}_{\theta}(a \leq Q(X^n, \theta) \leq b) \geq 1 - \alpha, \forall \theta$.

$$\implies C_n = \{\theta : a \le Q(X^n, \theta) \le b\} \ge 1 - \alpha\}.$$

Random Samples

For $X_1, \ldots, X_n \sim F$ a **statistic** is any $T = g(X_1, \ldots, X_n)$. E.g. \overline{X}_n , $S_n = \sum_i (X_i - \overline{X}_n)^2 / (n-1), (X_{(1)}, \dots, X_{(n)})$

Notes: $\mathbb{E}(\overline{X}_n) = \mathbb{E}(X_i)$, $Var(\overline{X}_n) = Var(X_i)/n$, $\mathbb{E}(S_n)^2 =$ $\operatorname{Var}(X_i), \ X_{1,\dots,n} \sim \operatorname{Bern}(p) \implies \sum_i X_i \sim \operatorname{Bin}(n,p), \ X_{1,\dots,n} \sim$ $\operatorname{Exp}(\beta) \Longrightarrow \sum_{i} X_{i} \sim \Gamma(n,\beta), X_{1,\dots,n} \sim \mathcal{N}(0,1) \Longrightarrow \sum_{i} X_{i}^{2} \sim \chi_{n}.$ **Thm.** 1: $X_{1},\dots,X_{n} \sim \mathcal{N}(\mu,\sigma^{2}) \Longrightarrow \overline{X}_{n} \sim \mathcal{N}(\mu,\sigma^{2}/n).$

Convergence

 X, X_1, X_2, \dots random variables.

(1) X_n converges almost surely $X_n \xrightarrow{a.s.} X$ if $\forall \epsilon > 0$

$$\mathbb{P}(\lim_{n \to \infty} |X_n - X| < \epsilon) = 1 \tag{10}$$

(2) X_n converges in probability $X_n \xrightarrow{p} X$ if $\forall \epsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| < \epsilon) = 1 \tag{11}$$

(3) X_n converges in quadratic mean $X_n \xrightarrow{qm} X$ if

$$\lim_{n \to \infty} \mathbb{E}[(X_n - X)^2] = 0 \tag{12}$$

(4) X_n converges in distribution $X_n \rightsquigarrow X$ if

$$\lim_{n \to \infty} F_{X_n}(t) = F_X(t) \tag{13}$$

 $\forall t$ on which F_X is continuous.

Thm 7: Conv. a.s. and in q.m. imply conv. in prob. All three imply conv. in distribution. Conv. in distribution to a point-mass also implies conv. in prob.

Thm 10a: X, X_n, Y, Y_n random variables. Then

(a)
$$X_n \xrightarrow{p} X, Y_n \xrightarrow{p} Y \Longrightarrow X_n + Y_n \xrightarrow{p} X + Y$$
 (14)

(b)
$$X_n \xrightarrow{p} X, Y_n \xrightarrow{p} Y \Longrightarrow X_n Y_n \xrightarrow{p} XY$$
 (15)

(c)
$$X_n \xrightarrow{qm} X, Y_n \xrightarrow{qm} Y \Longrightarrow X_n + Y_n \xrightarrow{qm} X + Y$$
 (16)

Thm 10b (Slutzky's Thm): X, X_n, Y_n random variables. Then

(a)
$$X_n \rightsquigarrow X, Y_n \rightsquigarrow c \implies X_n + Y_n \rightsquigarrow X + c$$
 (17)

(b)
$$X_n \rightsquigarrow X, Y_n \rightsquigarrow c \implies X_n Y_n \rightsquigarrow cX$$
 (18)

Thm 12 (Law of Large Numbers): X_1, \ldots, X_n iid, $\mathbb{E}(X_i) = \mu$

Thm 14 (CLT):
$$X_1, ..., X_n$$
 iid, $\mathbb{E}(X_i) = \mu \operatorname{Var}(X_i) = \sigma^2$
 $\implies \sqrt{n}(\overline{X}_n - \mu)/\sigma \rightsquigarrow \mathcal{N}(0, 1)$

$$\implies \frac{\sqrt{n}(X_n - \mu)/\sigma}{X_n} \rightsquigarrow \mathcal{N}(0, 1)$$

$$\implies \overline{X}_n \rightsquigarrow \mathcal{N}(\mu, \sigma^2/n)$$

$$\implies \sqrt{n}(\overline{X}_n - \mu)/S_n \rightsquigarrow \mathcal{N}(0,1)$$

Thm 18 (delta method): If
$$\sqrt{n}(Y_n - \mu)/\sigma \sim \mathcal{N}(0,1)$$
, $g'(\mu) \neq 0$
 $\implies \sqrt{n}(g(Y_n) - g(\mu))/|g'(\mu)|\sigma \sim \mathcal{N}(0,1)$

$$ie Y_n \approx \mathcal{N}(\mu, \sigma^2/n) \implies g(Y_n) \approx \mathcal{N}(0, 1)$$

Distributions

Discrete distributions:

(a) Bernoulli
$$f(x|p) = p^x (1-p)^{1-x}, x \in \{0,1\}$$
 (19)

(b) Binomial
$$f(x|n,p) = \binom{n}{x} p^x (1-p)^{n-x}, x \in \{0,1,\ldots,n\}$$
 (20)

(c) Poisson
$$f(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x \in \{0, 1, 2, \ldots\}$$
 (21)

Continuous distributions:

(a) Uniform
$$f(x|a,b) = \frac{1}{b-a}, \quad x \in [a,b]$$
 (22)

(b) Normal
$$f(x|\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}, x \in \mathbb{R}$$
 (23)

(c) Gamma
$$f(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, x \in \mathbb{R}_+, \alpha \beta > 0$$
 (24)

Expected Values

The **mean** or **expected value** of g(X) is

$$\mathbb{E}(g(X)) = \int g(x)dF(x) = \int g(x)dP(x) \tag{25}$$

Related properties and definitions:

$$(a) \mu = \mathbb{E}(X) \tag{26}$$

(b)
$$\mathbb{E}(\sum_{i} c_{i} g_{i}(X_{i})) = \sum_{i} c_{i} \mathbb{E}(g_{i}(X_{i}))$$
 (27)

(c)
$$\mathbb{E}\left(\prod_{i} X_{i}\right) = \prod_{i} \mathbb{E}(X_{i}), \quad X_{1}, \dots, X_{n} \text{ indep't}$$
 (28)

(d)
$$Var(X) = \sigma^2 = \mathbb{E}((X - \mu)^2)$$
 is the variance of X (29)

(e)
$$Var(X) = \mathbb{E}(X^2) - \mu^2$$
 (30)

(f)
$$Var\left(\sum_{i} a_{i} X_{i}\right) = \sum_{i} a_{i}^{2} Var(X_{i}), \quad X_{1}, \dots, X_{n} \text{ indep't} \quad (31)$$

(g)
$$Cov(X,Y) = \mathbb{E}((X - \mu_X)(Y - \mu_Y))$$
 is the **covariance** (32)

(h)
$$Cov(X,Y) = \mathbb{E}(XY) - \mu_x \mu_Y$$
 (33)

(i)
$$\rho(X,Y) = Cov(X,Y)/\sigma_x\sigma_y$$
, $-1 \le \rho(X,Y) \le 1$ (34)

The **conditional expectation** of Y given X is the random variable $g(X) = \mathbb{E}(Y|X)$, where

$$\mathbb{E}(Y|X=x) = \int yf(y|x)dy \tag{35}$$

and
$$f(y|x) = f_{X,Y}(x,y)/f_X(x)$$
 (36)

The Law of Total/Iterated Expectation is

$$\mathbb{E}(Y) = \mathbb{E}[\mathbb{E}(Y|X)] \tag{37}$$

The Law of Total Variance is

$$Var(Y) = Var[\mathbb{E}(Y|X)] + \mathbb{E}[Var(Y|X)]$$
(38)

The Law of Total Covariance is

$$Cov(X,Y) = \mathbb{E}(Cov(X,Y|Z)) + Cov(\mathbb{E}(X|Z), \mathbb{E}(Y|Z))$$
(39)