Maths Problem Set- Measure Theory

Keshav Choudhary

June 22, 2018

Problem 1

- Consider $A \in \mathcal{G}_1 \implies A$ open on $\mathbb{R} \implies A^c$ is either closed on \mathbb{R} or semi-open on \mathbb{R} . So $A^c \notin \mathcal{G}_1$ as it is not a purely open interval. Hence \mathcal{G}_1 is not a σ algebra nor an algebra.
- Consider $A_n \in \mathcal{G}_2, n \in \mathbb{N}$. Then $\bigcup_{n=1}^{\infty} A_n \notin \mathcal{G}_2$ since \mathcal{G}_2 contains only sets which are finite unions of intervals of the form $(a,b], (-\infty,b], (a,\infty)$. Thus \mathcal{G}_2 is not a σ algebra. Now we check whether \mathcal{G}_2 is an algebra. It is clear that $\phi \in \mathcal{G}_2$. Now consider any interval of the form (a,b]. Then it's complement is of the form $(-\infty,a] \cup (b,\infty)$ which $\in \mathcal{G}_2$. Similarly for any interval of the form $(-\infty,b]$, its complement is of the form (b,∞) which $\in \mathcal{G}_2$. Thus, for all $A \in \mathcal{G}_2$, $A^c \in \mathcal{G}_2$ $\bigcup_{n=1}^{\mathbb{N}} A_n$

•