Examples on Interpolation and Statistics

X	12	14	16
У	24	37	25

The Lagrange polynomial that passes through the three data points shown in the table is given by: $f(m) = I_{-1}(m) \times 24 + I_{-2}(m) \times 27 + I_{-2}(m) \times 25$ What is the value of $I_{-2}(1)$

$$f(x) \ = \ L_1(x) \ imes 24 \ + \ L_2(x) \ imes 37 \ + \ L_3(x) \ imes \ 25$$
 . What is the value of $L_2(15)$?

- $-\frac{3}{4}$
- $\bigcirc \frac{3}{4}$
- $01\frac{1}{4}$
- Cannot be calculated

X	15	18	22
У	24	37	25

If
$$L_1ig(16ig) \ = \ rac{4}{7}, \ L_2ig(16ig) \ = \ rac{1}{2}, \ L_3ig(16ig) \ = \ -rac{1}{14}$$
 , then $f(16)$ can be estimated as:

- **30.42**
- \bigcirc 30. 21
- \bigcirc 30.6
- Cannot be estimated

x	0	10	15	20	22.5	30
y	0	27.7	36.3	51.5	60.4	89.2

Given the following data points and using Quadratic Lagrange Interpolation to find the value of f(32), which of these data points must be used to have the best estimation:

- \bigcirc (20, 51.5), (30, 89.2)
- \bigcirc (30, 89.2), (22.5, 60.4)
- \bigcirc (22.5, 60.4), (30, 89.2), (20, 51.5)
- Cannot be estimated

For $N\,=\,3$, Lagrange $L_1(x_3)$ can be evaluated as:

 $\bigcirc 1$

$$\bigcirc \frac{x_3 - x_1}{x_1 - x_3} \times \frac{x_3 - x_2}{x_1 - x_3}$$

$$\bigcirc \frac{x_1 - x_3}{x_1 - x_3} \times \frac{x_2 - x_3}{x_1 - x_3}$$

 $\bigcirc 0$

Reading	1	2	3	4	5
<i>X</i> (cm)	49.3	50.1	48.9	49.2	50.2

The table shows the sample data. The standard deviation of the sample data is:

$$\bigcirc \sqrt{\frac{\sum_{i=1}^{5} \left(x_{i} - \bar{x}\right)}{4}}$$

$$\sqrt{\frac{\sum_{i=1}^5 \left(x_i - \bar{x}\right)^2}{4}}$$

$$\sqrt{\frac{\sum_{i=1}^{5} \left(x_{i} - \bar{x}\right)^{2}}{5}}$$

 $\bigcirc \text{ Approximately } 50 \text{ cm}.$

If the mean life of the corona virus is 180 min and the standard deviation is 20 min. Then, 68% of all viruses could be active between ____ min and ____ min.

- $\bigcirc\,170$ and 190
- \bigcirc 160 and 200
- \bigcirc 120 and 240
- \bigcirc 140 and 220

In a population, if the mean is $\mu=125$ and the standard deviation is $\sigma=25$, how common are the values in the range from 75 to 175?

- \bigcirc 86 %
- \bigcirc 95 %
- **99.7%**
- \bigcirc 68 %

For a large population, the probability of a random variable falls below $\mu-2~\sigma$ is:
$\bigcirc0.035$
$\bigcirc0.05$
$\bigcirc0.025$
$\bigcirc0.25$
The annual salary of employees in a company is approximately normally distributed with a mean of $50,000$ and a standard deviation of $20,000$. What is the percentage of people who earn more than $40,000$?
○ 85. 15%
\bigcirc -30.85%
○ 69. 15%
\bigcirc 30. 85 $\%$
What is the area under the curve for a z-score of 1.2 ?
$\bigcirc0.8849$
\bigcirc 0. 8944
○ 0 . 8980
\bigcirc 0. 8997
Let x be a normal random variable with a mean of 50 and a standard deviation of 3 . A z score was calculated for x , and the z score is -1.25 . What is the value of x
\bigcirc 53. 25
\bigcirc 53.75
\bigcirc 46. 25
\bigcirc 46. 4
Suppose X is normally distributed with mean 5 and standard deviation 0.4 . We find $P(X \leq X_0) = P(Z \leq 1.3)$. What is the value of X_0 ?
\bigcirc 5. 52
$\bigcirc0.52$
\bigcirc -5.25
\bigcirc 55. 2%

Suppose X is normally distributed with mean 5. If $P(X \le 6) \ = \ 0.6700$ what is the approximate value of the standard deviation of X ?

- \bigcirc 2. 27
- \bigcirc 27. 3
- $\bigcirc\,32.\,5\%$
- \bigcirc 0.44