Exercises from Chapter 3

Wesley Basener

May 24, 2025

Problem 1. Suppose (X, \mathcal{A}) is a measurable space and μ is a non-negative set function that is finitely additive and such that $\mu(\emptyset) = 0$ and $\mu(B)$ is finite for some non-empty $B \in \mathcal{A}$. Suppose that whenever A_i is an increasing sequence of sets in \mathcal{A} , then $\mu(\cup_i A_i) = \lim_i \to \infty \mu(A_i)$. Show that μ is a measure.

Proof. We are given the first requirement for μ to be a measure, namely that $\mu(\emptyset) = 0$. So, we need only show countable additivity. Let $B = \{B_0, B_1, ...\}$ be a countably infinite collection of pairwise disjoint sets in A. Define $A = \{A_0, A_1, ...\}$ to be the set where $A_n = \bigcup_{i=0}^n B_i$. Clearly, A_i is an increasing sequence of sets.

Since μ is finitely additive, we have that $\mu(\bigcup_{i=0}^n B_i) = \sum_{i=0}^n \mu(B_i)$. And, since $\bigcup_{i=0}^n B_i = A_n$, we can conclude

$$\mu(\cup_i B_i) = \mu(\cup_i A_i) = \lim_i \to \infty \mu(A_i) = \lim_n \to \infty \sum_{i=0}^n \mu(B_i) = \sum_{i=0}^\infty \mu(B_i)$$

Problem 3. Let X be an uncountable set and let \mathcal{A} be the collection of subsets A of X such that either A or A^c is countable. Define $\mu(A) = 0$ if A is countable and $\mu(A) = 1$ if A is uncountable. Prove that μ is a measure.

Proof. Although this would need to be proven, we take it as given that A is a σ -algebra on X because this was demonstrated in the book and we are lazy.

Since $\emptyset^c = X$ is uncountable, \emptyset is countable and $\mu(\emptyset) = 0$. Hence, we have the first part of the definition covered.

For countable additivity, let $A = \{A_0, A_1, ...\}$ be any collection of pairwise disjoint elements of \mathcal{A} . If some A_i in A is uncountable, say A_0 , then A_0^c must be countable. And, because A is pairwise disjoint, $\bigcup_{i=1}^{\infty} A_i \subseteq A_0^c$. So must $\{A_1, A_2...\}$ also be countable. Therefore, at most one of the sets in A can be uncountable.

Thus, if A contains only countable sets, $\mu(\cup_i A_i) = 0 = \sum_{i=0}^{\infty} \mu(A_i)$. Otherwise, $\mu(\cup_i A_i) = 1 = \sum_{i=0}^{\infty} \mu(A_i)$. Therefore, μ is countably additive and is a measure.

Problem 5. Prove that if $\mu_1, \mu_2, ...$ are measures on a measurable space and $a_1, a_2, ... \in [0, \infty)$, then $\sum_{n=1}^{\infty} a_n \mu_n$ is also a measure.

Proof. First, we show the measure of the empty set is zero $\sum_{n=1}^{\infty} a_n \mu_n(\emptyset) = \sum_{n=1}^{\infty} 0 = 0$. Next, let A_i be a countable collection of sets, in the given measurable space. Then,

$$\Sigma_{n=1}^{\infty}a_n\mu_n(\cup_i A_i) = \Sigma_{n=1}^{\infty}\Sigma_{i=0}^{\infty}a_n\mu_n(A_i) = \Sigma_{i=1}^{\infty}\Sigma_{n=0}^{\infty}a_n\mu_n(A_i)$$

Therefore, the given function has countable additivity and is thus a measure.

Problem 5. Suppose $\mu_1, \mu_2, ...$ are measures on a measurable space (X, \mathcal{A}) and $\mu_n(A) \uparrow$ for each $A \in \mathcal{A}$. Define $\mu(A) = \lim \mu_n(A)$. Is μ necessarily a measure? If not, give a counterexample. What if $\mu_n(A) \downarrow$ for each $A \in \mathcal{A}$ and $\mu_1(X) < \infty$?