$\ensuremath{\mathrm{CSC412/2506}}$ Winter 2020: Probabilistic Learning and Reasoning

Tianyu Du

February 8, 2020

${\bf Contents}$

1	Introduction	2
2	Probabilistic Models	2
3	Directed Graphical Models	2
4	Exact Inference	2
	4.1 Variable Elimination	2
	4.2 Intermediate Factors	2
	4.3 Sum-Product Inference	3
	4.4 Complexity of Variable Elimination Ordering	3
5	Message passing, Hidden Markov Models, and Sampling	4
6	Sampling and Monte Carlo Methods	4

1 Introduction

2 Probabilistic Models

3 Directed Graphical Models

4 Exact Inference

Notation 4.1. Let X denote the set of all random variables in the model, and

- 1. X_E = The observed evidence;
- 2. X_F = The unobserved variable we want to infer;
- 3. $X_R = X \{X_F, X_E\}$ = Remaining variables, extraneous to query.

The model defines the joint distribution of all random variables:

$$p(X_E, X_F, X_R) \tag{4.1}$$

Definition 4.1. The joint distribution over evidence and subject of inference is

$$p(X_F, X_E) = \sum_{X_R} p(X_F, X_E, X_R)$$
(4.2)

Definition 4.2. The conditional probability distribution for inference given evidence is

$$p(X_F|X_E) = \frac{p(X_F, X_E)}{p(X_E)} = \frac{p(X_F, X_E)}{\sum_{X_F} p(X_F, X_E)}$$
(4.3)

Definition 4.3. The distribution of evidence can be computed as

$$p(X_E) = \sum_{X_F, X_R} p(X_F, X_E, X_R)$$
 (4.4)

4.1 Variable Elimination

4.2 Intermediate Factors

$$p(A, B, C) = \sum_{X} p(X)p(A|X)p(B|A)p(C|B, X)$$
(4.5)

$$= p(B|A) \underbrace{\sum_{X} p(X)p(A|X)p(C|B,X)}_{\text{unnormalized}}$$
(4.6)

Definition 4.4. A factor ϕ describes the local relation between random variables, meanwhile, $\int d\phi$ is <u>not</u> necessarily one.

Remark 4.1. Let $X_{\ell} \subseteq X$ be a group of local random variables, then $p(X_{\ell})$ is automatically a factor $\phi(X_{\ell})$.

$$p(A, B, C) = \sum_{X} \underbrace{p(X)p(A|X)p(B|A)p(C|B, X)}_{\text{from graphical representation}} \tag{4.7}$$

$$= \sum_{X} \underbrace{\phi(X)\phi(A,X)\phi(A,B)\phi(X,B,C)}_{\text{factor representation}}$$
(4.8)

$$= \phi(A, B) \sum_{X} \phi(X)\phi(A, X)\phi(X, B, C) \tag{4.9}$$

$$= \phi(A, B) \underbrace{\tau(A, B, C)}_{\text{another factor}}$$
(4.10)

4.3 Sum-Product Inference

Theorem 4.1. Consider a graphical model with random variables $X = Y \cup Z$. For an random variable Y in a directed or undirected model, P(Y) can be computed using the **sum-product**

$$\tau(Y) = \sum_{z} \prod_{\phi \in \Phi} \phi(Scope[\phi] \cap Z, Scope[\phi] \cap Y)$$
 (4.11)

where Φ is a set of factors.

Remark 4.2. For directed models.

$$\Phi = \{\phi_{x_i}\}_{i=1}^{N} = \{p(x_i | \text{ parents } (x_i))\}_{i=1}^{N}$$
(4.12)

4.4 Complexity of Variable Elimination Ordering

Theorem 4.2. The complexity of the variable elimination algorithm is

$$\mathcal{O}(mk^{N_{max}})\tag{4.13}$$

where

- (i) m is the number of initial factors $|\Phi|$;
- (ii) k is the number of states each random variable takes, assumed to be equal;
- (iii) N_i is the number of random variables within each summation;
- (iv) $N_{max} = \max_i N_i$.

- 5 Message passing, Hidden Markov Models, and Sampling
- 6 Sampling and Monte Carlo Methods