Ćwiczenie 16

BADANIE PROSTOWNIKÓW NIESTEROWANYCH

1. Wiadomości ogólne

Prostowniki są to urządzenia przetwarzające prąd przemienny na jednokierunkowy.

Prostowniki stosowane są m.in. do ładowania akumulatorów, w trakcji elektrycznej, w galwanotechnice, do zasilania urządzeń elektronicznych itp.

Podstawowe elementy składowe prostownika:

- transformator,
- zawory prostownicze,
- filtry.

1.1. Transformator

Transformator w układzie prostowniczym dopasowuje napięcie sieci zasilającej prądu przemiennego do wymaganej wartości na odbiorniku przyłączonym do prostownika.

Transformator odizolowując obwód odbiornika od sieci prądu przemiennego zmniejsza również zagrożenie porażenia prądem elektrycznym.

1.2. Zawory prostownicze

W układach prostowniczych są obecnie powszechnie stosowane diody krzemowe typu BY o napięciach do 2000 V i prądach do kilkuset amperów.

Ważniejsze parametry diody prostowniczej:

- prąd przewodzenia I_D,
- napięcie wsteczne U_w,
- spadek napięcia na diodzie ΔU ,
- temperatura pracy diody ϑ ,
- gęstość prądu w złączu j.

<u>Prąd przewodzenia</u> jest to wartość średnia przy przewodzeniu półokresowym:

$$I_{D} = \frac{1}{T} \int_{0}^{T/2} i dt = \frac{1}{\pi} I_{m}, \qquad (16.1)$$

gdzie:
$$i = I_m \sin \omega t$$
. (16.2)

<u>Napięcie wsteczne</u> jest to największa wartość napięcia szczytowego odkładającego się na diodzie dla polaryzacji zaporowej, w czasie gdy prądu nie przewodzi.

Dioda dla polaryzacji przewodzenia wykazuje bardzo małą rezystancję i napięcie zasilające odkłada się na odbiorniku, dla polaryzacji zaporowej - bardzo dużą rezystancję i napięcie zasilające odkłada się na diodzie.

<u>Spadek napięcia</u> na diodzie dla polaryzacji przewodzenia jest praktycznie stały niezależny od natężenia przepływającego prądu i dla diod krzemowych wynosi $\Delta U \approx 0.6~V$.

<u>Gęstość prądu</u> w złączu diody krzemowej jest bardzo duża i wynosi od 80÷200 A/cm² w zależności od wykonania i przeznaczenia.

Diody krzemowe mogą pracować w bardzo szerokim przedziale zmian temperatury otoczenia od -60 °C do +140 °C.

Oznaczenie diody oraz jej charakterystykę napięciowo-prądową przedstawia rys. 16.1.

Rys. 16.1. Dioda prostownicza: a) symbol diody, b) charakterystyka napięciowo-prądowa diody

1.3 Filtry

W układach prostowniczych jako filtry stosuje się kondensatory włączone równolegle do odbiornika oraz dławiki włączone szeregowo z odbiornikiem (rys. 16.2).

Rys. 16.2. Sposób włączania filtrów LC w układach prostowniczych

Oba elementy L i C mają zdolności magazynowania energii elektrycznej przy narastaniu napięcia i oddawaniu jej do odbiornika przy opadaniu dodatniej półfali napięcia, przy czym w przypadku dławika (połączenie szeregowe) przepływ prądu przez diodę przedłuża się na część ujemnego półokresu napięcia zasilającego.

Skuteczność działania filtra jest charakteryzowana współczynnikiem tętnień, który wyraża się zależnością:

$$k_{T} = \frac{U_{T}}{U_{0}}, \qquad (16.3)$$

gdzie: U₀ - wartość średnia napięcia na odbiorniku, U_T - napięcie tętnień,

$$U_{\rm T} = \sqrt{U_{\rm 0sk}^2 - U_{\rm 0}^2} \,, \tag{16.4}$$

gdzie: U_{0sk} - wartość skuteczna napięcia na odbiorniku.

Tętnienia napięcia na odbiorniku są tym mniejsze im większa jest wartość L i C w stosunku do rezystancji odbiornika R. Ponadto dławik dla wyższych harmonicznych ma działanie tłumiące ($X_L = 2\pi f L$), natomiast dla składowej stałej przedstawia sobą tylko rezystancję.

1.4. Układy prostownicze i podstawowe zależności

Dla ustalenia związków między wielkościami przed i za prostownikiem, na podstawie badań laboratoryjnych, konieczna jest znajomość przyrządów mierzących te wielkości.

Przed prostownikiem, do pomiarów napięcia i prądu stosuje się mierniki elektromagnetyczne, które reagują i są wyskalowane w wartościach skutecznych. Za prostownikiem, do pomiarów napięcia i prądu stosuje się mierniki magnetoelektryczne, które reagują i są wyskalowane w wartościach średnich.

W przypadku określania współczynnika tętnień napięcia na odbiorniku, na wyjściu prostownika włącza się woltomierz elektromagnetyczny.

Do pomiarów mocy przed i za prostownikiem stosuje się watomierze ferrodynamiczne, których wskazania są proporcjonalne do iloczynu wartości skutecznych napięcia i prądu.

Prostowanie jednopołówkowe.

Rys. 16.3. Prostowanie jednopołówkowe, a) schemat elektryczny prostownika, b) przebiegi czasowe napięcia i prądu przed prostownikiem, c) przebiegi czasowe napięcia i prądu za prostownikiem

Zależności napięciowe:

$$U_1 = \frac{U_m}{\sqrt{2}}, \quad U_0 = \frac{1}{\pi} U_m, \quad U_{0sk} = \frac{U_m}{2}.$$
 (16.5)

Współczynnik napięciowy prostowania:

$$k_u = \frac{U_0}{U_1} = \frac{\sqrt{2}}{\pi} \approx 0.45$$
. (16.6)

Zależności prądowe:

$$I_1 = \frac{I_m}{2}, \quad I_0 = \frac{1}{\pi} I_m, \quad I_{0sk} = \frac{I_m}{2}.$$
 (16.7)

Napięcie tętnień i współczynnik tętnień:

$$U_{T} = \sqrt{U_{0sk}^{2} - U_{0}^{2}} = \sqrt{\left(\frac{U_{m}}{2}\right)^{2} - \left(\frac{U_{m}}{\pi}\right)^{2}} = 0.387U_{m},$$
 (16.8)

$$k_{\rm T} = \frac{U_{\rm T}}{U_{\rm 0}} = \frac{0.387U_{\rm m}}{U_{\rm m}/\pi} = 1.21.$$
 (16.9)

Moc na wyjściu prostownika na podstawie danych wartości U₀ i I₀:

$$P_0 = U_{0sk} \cdot I_{osk} = \frac{U_m}{2} \cdot \frac{I_m}{2} = \frac{\pi^2}{4} U_0 I_0 = 2,46 U_0 I_0.$$
 (16.10)

Moc na wejściu prostownika na podstawie danych wartości U₁ i I₁:

$$P_{1} = \frac{U_{m}}{2} \cdot I_{1} = \frac{\sqrt{2}U_{1}}{2} \cdot I_{1} = 0,707U_{1}I_{1}.$$
 (16.11)

Napięcie U_1 ma przebieg sinusoidalny, natomiast prąd I_1 płynie tylko w dodatniej połówce tego napięcia (rys. 16.3b) stąd w drugiej połówce napięcia U_1 , wartość chwilowa mocy p_1 jest równa zeru:

$$p_1 = u_1 \cdot i_1 = u_1 \cdot 0 = 0. \tag{16.12}$$

Dobór diody pod względem napięciowym.

Dla prostownika bez filtra pojemnościowego:

$$U_D \ge U_w = U_m = \sqrt{2}U_1 = \pi U_0$$
. (16.13)

Dla prostownika z filtrem pojemnościowym:

$$U_D \ge U_w = U_m + U_C = 2U_m = 2\sqrt{2}U_1$$
 (16.14)

Dla kierunku zaporowego, napięcie na diodzie jest sumą napięcia na kondensatorze, na którym może być napięcie równe amplitudzie napięcia zasilającego (np. w przypadku przerwy w odbiorniku) i amplitudy ujemnej połówki napięcia zasilającego U_1 .

Dobór diody pod względem prądowym;

$$I_{D} \ge I_{0}. \tag{16.15}$$

Prostowanie dwupołówkowe.

Rys. 16.4. Prostownik czterozaworowy mostkowy (Gretza):
a) schemat elektryczny prostownika, b) przebiegi czasowe napięcia i prądu przed prostownikiem, c) przebiegi czasowe napięcia i prądu za prostownikiem

Zależności napięciowe:

$$U_1 = \frac{U_m}{\sqrt{2}}, \quad U_0 = \frac{2}{\pi} U_m, \quad U_{0sk} = \frac{U_m}{\sqrt{2}}.$$
 (16.16)

Współczynnik napięciowy prostowania:

$$k_u = \frac{U_0}{U_1} = \frac{2\sqrt{2}}{\pi} \approx 0.9$$
. (16.17)

Zależności prądowe:

$$I_1 = \frac{I_m}{\sqrt{2}}, \quad I_0 = \frac{2}{\pi} I_m, \quad I_{0sk} = \frac{I_m}{\sqrt{2}}.$$
 (16.18)

Napięcie tętnień i współczynnik tętnień:

$$U_{T} = \sqrt{U_{0sk}^{2} - U_{0}^{2}} = \sqrt{\left(\frac{U_{m}}{\sqrt{2}}\right)^{2} - \left(\frac{2}{\pi}U_{m}\right)^{2}} = 0,306U_{m},$$
(16.19)

$$k_{\rm T} = \frac{U_{\rm T}}{U_0} = \frac{0,306U_{\rm m}}{2/\pi U_{\rm m}} = 0,48$$
 (16.20)

Moc na wyjściu prostownika na podstawie danych wartości $\,{\rm U}_0\,\,{\rm i}\,\,{\rm I}_0\!:$

$$P_0 = U_{0sk} \cdot I_{osk} = \frac{U_m}{\sqrt{2}} \cdot \frac{I_m}{\sqrt{2}} = 1,23 U_0 I_0.$$
 (16.21)

Moc na wejściu prostownika na podstawie danych wartości U₁ i I₁:

$$P_1 = U_1 \cdot I_1, \tag{16.22}$$

gdyż, w obu połówkach napięcia występuje przepływ prądu.

Dobór diody pod względem prądowym:

$$I_{\rm D} \ge \frac{1}{2} I_{\rm 0} \,.$$
 (16.23)

Dobór diody pod względem napięciowym:

$$U_{\rm D} \ge U_{\rm w} = \sqrt{2}U_{\rm I},$$
 (16.24)

bez i z filtrem pojemnościowym na wyjściu prostownika.

2. Wykonanie ćwiczenia

Część praktyczna ćwiczenia obejmuje

- badanie prostownika dwupołówkowego:
 - a) z filtrem pojemnościowym C,
 - b) bez filtra pojemnościowego C,
- badanie prostownika jednopołówkowego:
 - c) z filtrem pojemnościowym C,
 - d) bez filtra pojemnościowego C.

Rys. 16.5. Schemat układu pomiarowego do badania prostowników

Zestawić układ pomiarowy przedstawiony na rys. 16.5.

Badania wykonać dla jednej wartości napięcia U_1 zasilającego prostownik dla obu układów prostowniczych (wartość napięcia U_1 poda prowadzący zajęcia). Obciążenie prostowników zmieniać rezystorem R_0 od wartości $I_0 = 0$ (wyłącznik Q_2 - wyłączony) do wartości $I_{0\,\text{max}}$ (wartość $I_{0\,\text{max}}$ ustalić wspólnie z prowadzącym zajęcia). Wyniki pomiarów (po 6÷7 punktów dla każdego przypadku) i obliczeń zestawić w tabelach 16.1÷16.4. W obliczeniach napięcia tętnień U_T i współczynnika tętnień k_T korzystać z zależności podanych w p. 1.3 ($U_{0\text{sk}}$ - wskazania woltomierza V_2), natomiast sprawność prostownika obliczać z zależności:

$$\eta = \frac{P_0}{P_1} \cdot 100\% \ . \tag{16.25}$$

Dla obu układów prostowniczych należy:

- 1. Narysować charakterystyki $U_0=f(I_0)$ oraz $k_T=f(I_0)$ oddzielnie dla obu układów prostowniczych.
- 2. Omówić wpływ układu zaworów, filtra pojemnościowego i stopnia obciążenia prostownika na wartość współczynnika tętnień k_T.

- 3. Dla stanów jałowych prostowników ($I_0 = 0$) przeprowadzić dyskusję wskazań woltomierzy V_1 i V_0 .
- 4. Dla wszystkich przypadków określić wartości napięć wstecznych.
- 5. Dla wybranego obciążenia ($I_0 \neq 0$) w obu układach prostowniczych przy pracy bez filtrów C, przeprowadzić dyskusję wskazań woltomierzy i amperomierzy oraz ustalić związki mocy P_0 ze wskazaniami V_0 i I_0 a także P_1 ze wskazaniami V_1 i I_1 i porównać je z tymi związkami podanymi w p. 1.4.

Przebiegi czasowe napięć.

Przeprowadzić obserwację na ekranie oscyloskopu przebiegów napięć przed i za prostownikiem oraz na diodzie dla stanu jałowego i wybranego obciążenia, z filtrem C i bez filtra C. W sprawozdaniu zamieścić obserwowane przebiegi i przeprowadzić dyskusję ich kształtów.

Tabela 16.1.

		Prostowanie dwupołówkowe z kondensatorem C												
Lp.	U_1	I_1	P_1	U_0	I_0	P_0	U_2	U ₀ /U ₁	I_0/I_1	η	U_{T}	k_{T}		
	V	A	W	V	A	W	V	-	-	%	V	-		
1														
7														

Tabela 16.2.

		Prostowanie dwupołówkowe bez kondensatora C											
Lp.	U_1	I_1	P_1	U_0	I_0	P_0	U_2	U ₀ /U ₁	I_0/I_1	η	U_{T}	k_{T}	
	V	A	W	V	A	W	V	-	-	%	V	-	
1													
7													

Tabela 16.3.

		Prostowanie jednopołówkowe z kondensatorem C												
Lp.	U_1	I_1	P_1	U_0	I_0	P_0	U_2	U ₀ /U ₁	I_0/I_1	η	U_{T}	k_{T}		
	V	A	W	V	A	W	V	-	-	%	V	-		
1														
7														

Tabela 16.4.

		Prostowanie jednopołówkowe bez kondensatora C												
Lp.	U_1	I_1	P_1	U_0	I_0	P_0	U_2	U ₀ /U ₁	I_0/I_1	η	U_{T}	k_{T}		
	V	A	W	V	A	W	V	-	-	%	V	ı		
1														
7														

3. Wykaz przyrządów i aparatów

Należy zgodnie z wytycznymi podanymi w części ogólnej skryptu podać wszystkie przyrządy pomiarowe, urządzenia i aparaty wykorzystywane w ćwiczeniu.

Zagadnienia do samodzielnego opracowania

- 1. Ważniejsze parametry diody prostowniczej.
- 2. Rola transformatora w układzie prostowniczym.
- 3. Współczynnik napięciowy prostowania prostownika jednopołówkowego.
- 4. Współczynnik napięciowy prostowania prostownika dwupołówkowego
- 5. Współczynnik tętnień układu prostowniczego jednopołówkowego bez filtrów na wyjściu.
- 6. Współczynnik tętnień układu prostowniczego dwupołówkowego pracującego bez filtra pojemnościowego.

- 7. Zależności między wskazaniami amperomierzy: elektromagnetycznego przed prostownikiem i magnetoelektrycznego za prostownikiem, dla obu układów prostowniczych pracujących bez filtrów pojemnościowych i obciążonych rezystancyjnie.
- 8. Ustalenie mocy czynnej traconej w odbiorniku rezystancyjnym na podstawie pomiarów napięcia i prądu miernikami magnetoelektrycznymi na wyjściu prostownika dwupołówkowego pracującego bez filtrów.
- 9. Ustalenie mocy czynnej pobieranej z sieci przez prostownik jednopołówkowy, obciążony rezystorem, na podstawie pomiarów napięcia i prądu miernikami elektro-magnetycznymi na wejściu prostownika.
- 10. Dobór diody pod względem napięciowym w prostowniku jednopołówkowym, bez i z filtrem pojemnościowym, przy zadanej wartości napięcia na wejściu.
- 11. Dobór diody pod względem prądowym w prostownikach jedno i dwupołówkowych.

Literatura:

- [1] Koziej E., Sochoń B.: Elektrotechnika i elektronika. PWN, Warszawa 1982.
- [2] Michałowski K., Przyjałkowski A.: Elektrotechnika z elektroniką. WNT, Warszawa 1978.
- [3] Polowczyk W.: Elementy i przyrządy półprzewodnikowe powszechnego zastosowania. WKiŁ, Warszawa 1986.
- [4] Wawszczak J., Walusiak S., Rutka Z.: Laboratorium elektrotechniki i elektroniki. Skrypt Politechniki Lubelskiej. Lublin 1989.
- [5] Horowitz P., Hill W.: Sztuka elektroniki. Wydawnictwa Komunikacji i Łączności. Warszawa 1996.