Morning.

Equivalence of states

equivalent states

$$\forall w \in \Sigma^*, \hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$$

notice

We never mentioned $\hat{\delta}(p, w) = \hat{\delta}(q, w)$

distinguishable states

$$\exists w \in \Sigma^*, \hat{\delta}(p, w) \in F \Leftrightarrow \neg \hat{\delta}(q, w) \in F$$

Table-filling algorithm

- Basis If p is accepting and q is not accepting, then p and q are distinguishable.
- Induction Let $r = \delta(p, a)$, $s = \delta(q, a)$, r and s are distinguishable. Then p and q are distinguishable.
- Example

0														
1	×	×												
00			×											
01	×	×		×										
10	×	×	×	×	×									
11	×	×	×	×	×	×								
000			×		×	×	×							
001	×	×		×		×	×	×						
010	×	×			×		×	×	×					
100			×		×	×	×		×	×				
011	×	×	×	×	×	×		×	×	×	×			
101	×	×	×	×	×	×		×	×	×	×			
110	×	×	×	×	×	×		×	×	×	×			
111	×	×	×	×	×	×		×	×	×	×			
	3	0	1	00	01	10	11	000	001	010	100	011	101	110

Minimization of DFA's

- what is minimization of DFA
- algorithm for minimization
- > partition remaining states into equivalent blocks
- > take blocks as states
- minimum-state DFA for a regular language is unique

Left/Right Most Derivations

L=
$$\{a^{2n}b^m \mid n \ge 0, m \ge 0\}$$

 $S \to AB$, $A \to \varepsilon |aaA$, $B \to \varepsilon |Bb$
for $w = aabb$:
 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aaBbb \Rightarrow aabb$

Left most:

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaBb \Rightarrow aaBbb \Rightarrow aabb$$

Right most:

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow ABbb \Rightarrow Abb \Rightarrow aaAbb \Rightarrow aabb$$

Parse Tree

Let G = (V, T, S, P) be a CFG. A tree is a parse tree for G if:

- 1. Each interior node is labeled by a variable in V
- 2. Each leaf is labeled by a symbol in $T \cup \{\epsilon\}$. Any ϵ -labeled leaf is the only child of its parent.
- 3. If an interior node is labeled A, and its children (from left to right) labeled $x_1, x_2, ..., x_k$,

Then $A \rightarrow x_1, x_2, ..., x_k \in P$.

Parse Tree

Example L={
$$w \mid w \in \{0,1\}^*$$
 and $w = w^R$ }
 $5 \to \varepsilon \mid 0 \mid 1 \mid 0.50 \mid 1.51$

Ambiguity

$$G = (\{E, I\}, \{a, b, (,), +, *\}, E, P)$$

$$E \rightarrow I \mid E + E \mid E * E \mid (E), \quad I \rightarrow a \mid b$$

Derivation for w = a + a * a:

$$E \Rightarrow E*E \Rightarrow E+E*E \Rightarrow I+E*E \Rightarrow a+E*E \stackrel{*}{\Rightarrow} a+a*a$$

$$E \Rightarrow E + E \Rightarrow I + E \Rightarrow a + E \Rightarrow a + E \Rightarrow a + a * a$$

Ambiguity

parse-tree for w = a + a * a:

Removing Ambiguity

$$E \rightarrow I \mid E+E \mid E*E \mid (E), I \rightarrow a \mid b$$

$$E \rightarrow T|E+T, T \rightarrow F|T*F, F \rightarrow I|(E), I \rightarrow a|b|Ia|Ib$$

Left most derivation for w = a + a * a:

$$E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T \Rightarrow I+T \Rightarrow a+T \Rightarrow a+T*F$$

$$\Rightarrow$$
a+F*F \Rightarrow a+I*F \Rightarrow a+a*F \Rightarrow a+a*I \Rightarrow a+a*a

$$E \Rightarrow T \Rightarrow T * T \Rightarrow (E) * T \Rightarrow (E+T) * T \Rightarrow (a+a) * a$$

Inherent Ambiguity

What is inherent ambiguity

A CFL L is said to be inherently ambiguous if all grammars that generate it is ambiguous.

Example Let
$$L=\{ w \mid w \in \{0,1\}^* \text{ and } n_0(w) = n_1(w) \}$$

L is not inherently ambiguous, because there is an unambiguous CFG:

$$S \rightarrow \epsilon \mid 0.51 \mid 1.50 \mid 0.511.50 \mid 1.500.51$$

Example

$$L=\{a^nb^nc^md^m \mid n\geq 1, m\geq 1\}\cup \{a^nb^mc^md^n \mid n\geq 1, m\geq 1\}$$

The CFG for L is:

$$S \rightarrow AB \mid C$$
, $A \rightarrow aAb \mid ab$, $B \rightarrow cBd \mid cd$
 $C \rightarrow aCd \mid aDd$, $D \rightarrow bDc \mid bc$

Let w= abcd, there are two left most derivations

$$S \Rightarrow AB \Rightarrow abB \Rightarrow abcd$$

$$S \Rightarrow C \Rightarrow aDd \Rightarrow abcd$$

Simplification of CFG

Why & what:

S
$$\rightarrow$$
A | B, A \rightarrow 1CA | 1DE | ϵ , B \rightarrow 1CB | 1DF, C \rightarrow 1CC | 1DG | 0G, D \rightarrow 1CD | 1DH | 0H, E \rightarrow 0A, F \rightarrow 0B, G \rightarrow ϕ , H \rightarrow 1

- \triangleright ε -productions
- > unit productions
- > useless symbols and productions

Example $G: S \rightarrow A \mid B$, $A \rightarrow 1CA \mid 1DE \mid \varepsilon$ $B \rightarrow 1CB \mid 1DF$, $C \rightarrow 1CC \mid 1DG \mid 0G$, $D \rightarrow 1CD \mid 1DH \mid 0H$, $E \rightarrow 0A$, $F \rightarrow 0B$, $G \rightarrow \phi$, $H \rightarrow 1$

• eliminating ε -productions

the only one : $A\rightarrow \epsilon$ $S\rightarrow A\mid B,\ A\rightarrow 1CA\mid 1C\mid 1DE,\ B\rightarrow 1CB\mid 1DF,$ $C\rightarrow 1CC\mid 1DG\mid 0G,\ D\rightarrow 1CD\mid 1DH\mid 0H,$ $E\rightarrow 0A\mid 0,\ F\rightarrow 0B,\ G\rightarrow \phi,\ H\rightarrow 1$ $S \rightarrow A \mid B$, $A \rightarrow 1CA \mid 1C \mid 1DE$, $B \rightarrow 1CB \mid 1DF$, $C \rightarrow 1CC \mid 1DG \mid 0G$, $D \rightarrow 1CD \mid 1DH \mid 0H$, $E \rightarrow 0A \mid 0$, $F \rightarrow 0B$, $G \rightarrow \phi$, $H \rightarrow 1$

• eliminating unit productions the only two : $S \rightarrow A$ and $S \rightarrow B$ $S \rightarrow 1CA \mid 1C \mid 1DE \mid 1CB \mid 1DF$,

 $A \rightarrow 1CA \mid 1C \mid 1DE, B \rightarrow 1CB \mid 1DF,$ $C \rightarrow 1CC \mid 1DG \mid 0G, D \rightarrow 1CD \mid 1DH \mid 0H,$ $E \rightarrow 0A \mid 0, F \rightarrow 0B, G \rightarrow \emptyset, H \rightarrow 1$

$$S\rightarrow 1CA \mid 1C \mid 1DE \mid 1CB \mid 1DF$$
,
 $A\rightarrow 1CA \mid 1C \mid 1DE$, $B\rightarrow 1CB \mid 1DF$,
 $C\rightarrow 1CC \mid 1DG \mid 0G$, $D\rightarrow 1CD \mid 1DH \mid 0H$,
 $E\rightarrow 0A \mid 0$, $F\rightarrow 0B$, $G\rightarrow \phi$, $H\rightarrow 1$

eliminating useless symbols and productions

$$S\rightarrow 1DE, A\rightarrow 1DE, D\rightarrow 1DH \mid OH, E\rightarrow 0A \mid O, H\rightarrow 1$$

Chomsky Normal Form(CNF)

- 1. $A \rightarrow BC$:
- 2. $A \rightarrow a$.

 $S\rightarrow 1DE, A\rightarrow 1DE, D\rightarrow 1DH \mid OH, E\rightarrow 0A \mid O, H\rightarrow 1$

Chomsky normal form:

$$S \rightarrow IE$$
, $A \rightarrow IE$, $D \rightarrow IH|EH$, $E \rightarrow EA|0$, $I \rightarrow HD$, $H \rightarrow 1$

$$D\rightarrow IH|FH, E\rightarrow FA|0, F\rightarrow 0$$

Automata

Languages

Grammars

Good good Study day Up