

ME613 - Análise de Regressão

Parte 4

Benilton S Carvalho - 1S2020

Transformações

Transformações: relações não lineares

Transformações: relações não lineares

- · Linearizar uma relação linear, em casos que a suposição de normalidade dos erros com variância constante é adequada .
- · Tentar encontrar transformação em X.
- · Avaliar os gráficos de resíduo para decidir qual a melhor transformação.

X: número de dias de treinamento recebido.

Y: performance nas vendas.

	Parte 1	Parte 2			
Days	Performance	Days	Performance		
0.5	42.5	1.5	99.6		
0.5	50.6	2.0	105.3		
1.0	68.5	2.0	111.8		
1.0	80.7	2.5	112.3		
1.5	89.0	2.5	125.7		

$$\hat{Y} = 34.945 + 35.77X$$

Gráfico de resíduos: e_i versus \hat{Y}_i .

$$\hat{Y} = -10.33 + 83.45\sqrt{X}$$

Gráfico de resíduos: e_i versus \hat{Y}_i usando $\sqrt{\text{Treinamento}}$ no modelo.

Transformações: não normalidade e variância não constante

Transformações: não normalidade e variância não constante

- · Tentar encontrar transformação em Y.
- · Pode ser combinada com uma transformação também em X.

X: Idade

Y: nível de poliamina no plasma

Parte 1		Parte 2		Parte 3		Parte 4	
Idade	Poliamina	Idade	Poliamina	Idade	Poliamina	Idade	Poliamina
0	13.44	1	10.28	2	8.88	4	5.10
0	12.84	1	8.96	3	7.94	4	5.67
0	11.91	1	8.59	3	6.01	4	5.75
0	20.09	2	9.83	3	5.14	4	6.23
0	15.60	2	9.00	3	6.90	NA	NA
1	10.11	2	8.65	3	6.77	NA	NA
1	11.38	2	7.85	4	4.86	NA	NA

$$\hat{Y} = 13.4752 - 2.182X$$

Gráfico de resíduos: e_i versus \hat{Y}_i .

Gráfico de resíduos: e_i versus X_i .

$$Y' = \log_{10} Y$$

$$\hat{Y}' = 1.13 - 0.1X$$

Gráfico de resíduos: e_i versus $\hat{Y'}_i$ usando Y' no modelo.

Gráfico de resíduos: e_i versus X_i .

Algumas transformações em Y

- · $\log_e(Y)$: para estabilizar a variância quando esta tende a crescer à medida que Y cresce.
- · \sqrt{Y} : estabilizar a variância quando esta é proporcional à média dos Y's.
- · $\frac{1}{Y}$: estabilizar a variância, minimizando o efeito de valores muito altos de Y.
- · Y^2 : estabilizar a variância quando esta tende a decrescer com a média de Y's.
- · $\arcsin \sqrt{Y}$: estabilizar a variância quando os dados são proporções.
- etc...

Transformações de Box-Cox

- Muitas vezes é difícil determinar, através de gráficos, qual a melhor transformação a ser feita.
- · O procedimento de Box-Cox identifica automaticamente uma transformação:

$$Y' = Y^{\lambda}$$

em que λ é um parâmetro a ser determinado a partir dos dados.

Modelo com dados transformados:

$$Y_i^{\lambda} = \beta_0 + \beta_1 X_i + \varepsilon_i$$

· O procedimento de Box-Cox utiliza o método de máxima verossimilhança para estimar λ .

Agradecimento

Slides criados por Samara F Kiihl / IMECC / UNICAMP

Leitura

- Applied Linear Statistical Models: 3.8-3.11.
- · Weisberg Applied Linear Regression: Capítulo 8.
- Faraway Linear Models with R: Capítulo 9.

"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."

