Adı, Soyadı:

No:

Ara Sınav – Süre 70 Dak.

(Kopva almadım ve vermedim) (Bosluklarda cevaplavınız)

İmza:

Program Çıktıları ile ilgili sorular: PÇ1: Soru 1, 2, 4 PÇ2: Soru 2, 3, 4

1-a) (ÖÇ 2)<10p> Hızın fazla değişmesinin istenmediği uygulamalara hangi elektrik motor karakteristikleri uygundur (Ailenin adını veriniz, 2 farklı elektrik motoru örnek veriniz)

Ders notlarına bakınız.

b) (ÖÇ 2)<10p> Çıkış gücünün (yaklaşık) sabit kaldığı uygulamalara hangi elektrik motor karakteristikleri uygundur (Ailenin adını veriniz, 2 farklı elektrik motoru örnek veriniz)

Ders notlarına bakınız.

2-(ÖÇ 3)

a) <15p> Şekildeki sistemde motorun sisteme uyguladığı tahrik gücünü bulunuz.

$$F = M \cdot g = (500 + 300 - 650) \cdot 9,81 = 150 \cdot 9,81 = 1471,5 N$$
 yüke uygulanan net kuvvettir.

 $P_L = F.V = 1471,5 \cdot 1,2 = 1765,8 W$ yükün talep ettiği tahrik gücüdür.

$$P_{m_ilk} = \frac{P_L}{n_d} = \frac{1765,8}{0.4} = 4414,5 W$$
 motorun yüke verdiği tahrik gücüdür.

b) <15p> Sistemde karşı ağırlık olmamış olsa, motorun sisteme uygulaması gereken tahrik gücü kaç kat artar dı?

$$F = M \cdot g = (500 + 300 - 0) \cdot 9.81 = 800 \cdot 9.81 = 7848 N$$
 yüke uygulanan net kuvvettir.

 $P_L = F.V = 7848 \cdot 1,2 = 9417,6 W$ yükün talep ettiği tahrik gücüdür.

$$P_{m_son} = \frac{P_L}{\eta_d} = \frac{9417.6}{0.4} = 23544 W$$
 motorun yüke verdiği tahrik gücüdür.

$$\frac{P_{m_son}}{P_{m_ilk}} = \frac{23544}{4414,5} = 5.33 \text{ kat artar}$$

3-a)(ÖÇ 4)<10p> Solda bir motor ve iş makinesinin dış karakteristikleri üst üste verilmiştir. Bu karakteristik üzerinde hangi nokta(ların) kararlı ve hangi nokta(ların) kararsız olduğunu, kararlılık kriterini uygulayarak belirleyip işaretleyiniz.

Ders notlarına bakınız.

b)<5p> Kararsız dediğiniz noktada, geçici olarak yük momenti artıp, kısa bir süre sonra eski değerine geri yeni çalışma noktası ne olur? İlgili noktaları etiketleyerek belirtiniz.

Ders notlarına bakınız.

c)<5p>Kararsız dediğiniz noktada, geçici olarak yük momenti azalıp, kısa bir süre sonra eski değerine geri yeni çalışma noktası ne olur? İlgili noktaları etiketleyerek belirtiniz.

Ders notlarına bakınız.

4-(ÖÇ 3, 5) Bir doğru akım şönt motorunun dış karakteristiği $\omega_m = 157 - 0.5 \cdot T_m$ olarak veriliyor. Bu motor; karakteristiği $T_L = 9.3 \cdot 10^{-4} \cdot \omega^2$ olan bir yükü sürmektedir. a) <10p> Yükün nasıl bir iş makinesine ait olduğunu tahmin ediniz.

 $T_L = 9.3 \cdot 10^{-4} \cdot \omega^2$ açısal hızın karesi ile orantılı moment ihtiyacı olan iş makinesi türü k=2 makinelerdir. Bu tür iş makineleri fan gibi akışkana karşı savurma işi yapan makinelerdir.

b) <10p>Sistemin calısma hızını (rpm) bulunuz.

stemin çalışma nizini (rpm) bulunuz.
$$T_L = T_m \quad \text{ve } \omega_m = \omega \text{ olmalı}$$

$$9.3 \cdot 10^{-4} \cdot \omega^2 = \frac{-\omega + 157}{0.5}$$

$$9.3 \cdot 10^{-4} \cdot \omega^2 - \frac{\omega_m - 157}{0.5} = 0 \text{ denkleminin kökleri } \frac{\omega_1}{\omega_1} = 146.957 \text{ rad/s geçerli kök} ,$$

$$\omega_2 = -2297.49 \text{ geçersiz kök},$$

 $\omega = \frac{2\pi n}{60}$; $n = \frac{\omega \cdot 60}{2\pi} = \frac{146.957 \cdot 60}{2\pi} \cong 1400 \ rpm$ c) <10p>Sistemin toplam atalet momenti 10 kgm² olarak verilmektedir. Sistemin çalışma hızına çıkması için geçen süreye ilişkin denklemi elde ediniz (Çözmeden en sade biçimde elde edip bırakınız).

$$T_{m} - T_{L} = J \cdot \frac{d\omega}{dt}$$

$$\int \frac{J}{(T_{m} - T_{L})} d\omega = \int dt$$

$$t_{yv} = \int_{0}^{\omega_{n}} \frac{10}{\frac{157 - \omega_{m}}{0.5} - 9.3 \cdot 10^{-4} \cdot \omega^{2}} d\omega = \int_{0}^{\omega_{n}} \frac{10}{314 - 2\omega_{m} - 9.3 \cdot 10^{-4} \cdot \omega^{2}} d\omega$$