Rec'd PCT/PTO 1 6 DEC 2004 PCT/JP03/07721

JAPAN PATENT OFFICE

18.06.03

10/518472

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 8月19日

REC'D 08 AUG 2003

出 Application Number:

人

特願2002-237974

WIPO

[ST. 10/C]:

[JP2002-237974]

出 願 Applicant(s):

1;

エーザイ株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 7月25日

BEST AVAILABLE COPY

【書類名】

特許願

【整理番号】

EP01TH0801

【提出日】

平成14年 8月19日

【あて先】

特許庁長官 殿

【国際特許分類】

A61K 48/00

【発明者】

【住所又は居所】

千葉県千葉市中央区千葉寺町883-7エクセル千葉寺

1 0 3

【氏名】

伊藤 昌史

【発明者】

【住所又は居所】

千葉市中央区葛城2-4-22

【氏名】

齋藤 康

【特許出願人】

【識別番号】

000000217

【氏名又は名称】 エーザイ株式会社

【代表者】

内藤 晴夫

【先の出願に基づく優先権主張】

【出願番号】

特願2002-177648

【出願日】

平成14年 6月18日

【手数料の表示】

【予納台帳番号】

004983

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】明細書

【発明の名称】遺伝子治療用初代培養脂肪細胞

【特許請求の範囲】

【請求項1】細胞外に分泌する蛋白質をコードする外来遺伝子を安定に保持する、初代培養の遺伝子治療用脂肪細胞。

【請求項2】以下の工程、

- (1)脂肪細胞を初代培養する工程、
- (2)細胞外に分泌する蛋白質をコードする外来遺伝子を導入し、安定に保持させる工程、

を含んでなる遺伝子治療用脂肪細胞を作製する方法。

【請求項3】外来遺伝子をレトロウイルスベクターにより導入する、請求項2 に記載の方法。

【請求項4】請求項2あるいは請求項3に記載の方法により作製された遺伝子 治療用脂肪細胞。

【発明の詳細な説明】

【発明の属する技術的な分野】

本発明は、外来遺伝子を導入した初代培養の遺伝子治療用脂肪細胞に関する。

[0001]

【従来の技術】

現在行われている遺伝子治療(豊岡ら、Folia Pharmacol. Jpn. 116:158-162, 2000)は、(1)治療用遺伝子をコードするウイルスベクター・naked plasmid等を直接患者に投与して遺伝子導入する方法(in vivo)、(2)患者から細胞を一旦取り出し、その細胞に遺伝子を導入して患者に戻す方法(ex vivo)、の2種類に大別することができる。

このうちでex vivoの方法では、採取が比較的に容易である点から血液系の細胞(抹消血リンパ球、骨髄細胞)を使った例が大多数を占め(谷ら、最新医学,56:258-267,2001)、また、血液系以外の細胞では肝臓細胞に遺伝子導入し戻す方法が行われている(Raper SE et. al., Cell Transplant 2(5):381-400,1993)。

[0002]

【発明が解決しようとする課題】

本発明の課題は、ex vivoの遺伝子治療に適した細胞を見出すことにある。

[0003]

【課題を解決するための手段】

本発明者らは、ex vivoの遺伝子治療に脂肪細胞を用いることを考えた。脂肪細胞を用いる利点として、以下の点が挙げられる。

- (1)皮下にあるために採取が容易であり、更に形成外科・美容整形分野等で摘出に関する技術が発達しつつある。
- (2),移植後に局所に生着すると予想されるため、移植細胞を取り出したい場合でも対応可能である。
- (3)大きくその重量を変動させる臓器であり、摘出/移植による人体への影響が少ない。
- (4)脂肪細胞は余分なもの・邪魔なものという認識が強く、採取の同意を得やすいと予想される。
- (5)脂肪細胞から分泌される液性因子が複数報告され、脂肪細胞がホルモン産生・分泌臓器としての機能を有している。
- (6)In vitroでも活発に増殖するため、遺伝子導入などの操作に適している。
- (7)血管新生因子を産生するので、移植後の高い生着が期待できる。

本発明者らは、初代培養した脂肪細胞に効率よく遺伝子を導入する方法を考案 し、更に導入した遺伝子が移植後も機能していることを確認して、脂肪細胞が遺 伝子治療に有効に活用できることを見出した。

[0004]

すなわち本発明は、

1. 細胞外に分泌する蛋白質をコードする外来遺伝子を安定に保持する、初代培養の遺伝子治療用脂肪細胞。

ここで外来遺伝子とは、初代培養脂肪細胞が産生していない蛋白質をコードする遺伝子を言う。また初代培養の細胞とは、生体から取り出された組織から培養された細胞で、株化していない細胞を言う。また脂肪細胞とは成熟脂肪細胞なら

また遺伝子治療用細胞とは、ある特定の蛋白質を産生する細胞を移入して疾患を治療するために用いる細胞を言う。好ましくは、ある特定の蛋白質は、その不足あるいは欠如により疾患が引き起こされる蛋白質(補充療法:例えばインスリンの不足により起きる糖尿病、血液凝固因子の欠損により起こる血友病等)、ないしはある病態の発症・悪性化をきたす因子を中和しうる作用を有する因子(中和療法:例えば腫瘍壊死因子-a(TNF-a)が亢進する慢性関節リュウマチにおける人工可溶化受容体による中和)であることが好ましい。

[0005]

- 2. 以下の工程、
- (1)脂肪細胞を初代培養する工程、
- (2)細胞外に分泌する蛋白質をコードする外来遺伝子を導入、好ましくはレトロウイルスベクターにより導入し、安定に保持させる工程、

を含んでなる遺伝子治療用脂肪細胞を作製する方法、

3.2に記載の方法により作製された遺伝子治療用脂肪細胞、に関する。

[0006]

【発明の実施の形態】

以下に本発明の実施の形態について説明する。

1. 初代培養の脂肪細胞を採取する方法

脂肪組織は杉原らの報告(Sugihara H. et. al, Differentiation, 31:42-49, 1989)に記載の方法により採取できる。具体的には脂肪組織、好ましくは移植レシピエント自身の皮下脂肪組織、副睾丸周囲・腸間膜などの内臓脂肪組織、より脂肪組織を無菌的に摘出し、例えばPBSで洗浄した後、ハサミあるいは手術用ナイフを用いて細切する。この細切組織を適量の、好ましくは1~3 mg/mlのコラゲナーゼを含む培地で37℃、適当な時間、好ましくは20~60分間震盪消化した後、遠心により沈査と浮遊層に分離する。

浮遊層を、好ましくは更に1~2回の遠心により洗浄した後、培地を充満した培養フラスコに加える。泡を除き、通常の培養面が天上になるようにCO₂インキュ

[0007]

2. 脂肪細胞への遺伝子導入

遺伝子導入は、遺伝子導入試薬 (Fugene 6: Roche社製、Lipofectamin: Invit rogen社製、Cellphect transfection kit(リン酸-カルシウム法): Amersham社製など)、電気的穿孔法 (エレクトロポレーション法、Chen H. et. al., J Biol. Chem. 1997:272(12), 8026-31)、ウイルスベクター (Kay MA., et. al., Nat Med 2001, 7, 33-40) により行うことが出来る。好ましくはウイルスベクターによる導入であり、更に好ましくはレトロウイルスベクター (Arai T. et. al., J Virol , 1998: 72, pp1115-21など)による導入である。

具体的には、パッケージ細胞、例えば293-EBNA細胞(Invitrogen社製)に、導入したい遺伝子を挿入したプラスミド、例えばpBabe CL-SEAP-IRES-GFPを、遺伝子導入試薬等を使って遺伝子導入し、適当な期間、好ましくは1~3日間培養後、上清中に産生された組換えウイルスを集めて、導入したい脂肪細胞に感染させる。

遺伝子導入した脂肪細胞は、場合によっては3-isobutyl-1-methylxanthine (IBMX)、Dexamethasone、インスリンを含む培地で培養し成熟脂肪細胞とすることも許される。

[0008]

3. 脂肪細胞の移植

遺伝子導入した脂肪細胞は、適当な細胞濃度、好ましくは0.5~2 x 10⁷/ml、レトロウイルスベクターで導入した場合は0.5~5 x 10⁶/mlに調整し、単体のまま、ないしは効果的な媒体、好ましくはコラーゲンなどの細胞外基質を含む溶液などと混合し、皮下組織や脂肪組織、好ましくは皮下脂肪組織内に注入する。脂肪組織への注入は切開して脂肪組織を露出させて行っても良い。

[0009]

【発明の効果】

[0010]

【実施例】

以下に、具体的な例をもって本発明を示すが、本発明はこれに限られるものではない。

[実施例1] マウス脂肪細胞の初代培養

3週例のICR系雄性マウスあるいは5週例のC57BL/6雄性マウス(いずれもチャールズリバー)をジエチルエーテルで麻酔し、心臓からの全採血により脱血死させた。ついで、両後肢付け根に存在する皮下脂肪、および副睾丸周囲に存在する脂肪を無菌的に摘出した。摘出した組織をPBSで洗浄した後、ハサミあるいは手術用ナイフを用いて細切し、この細切組織を $1\sim3$ mg/mlのコラゲナーゼ(S1 fruction/新田ゼラチン)を含む培地(DMEM- high glucose/SIGMA, 10% FBS)で37℃、20-60分間震盪消化した後、遠心(300g、5min.)により沈査と浮遊層に分離した。

浮遊層はさらに1~2回の遠心によりコラゲナーゼを洗浄後、培地を充満したT-25フラスコ(IWAKI)に加えた。泡を除き、通常の培養面が天上になるように CO_2 インキュベータで37 \mathbb{C} 、 $5%CO_2$ で培養した(天井培養)。10~14日間培養後、トリプシン処理により天井面に接着した細胞を回収し、通常通りの培養系に移した。以後、1:3~1:4のratioで継代培養をおこなった。

[0011]

[実施例2] 初代培養脂肪細胞へのアルカリフォスファターゼ遺伝子の一過性導入と、導入脂肪細胞のマウスへの移入

初代培養脂肪細胞を用いた遺伝子治療のモデル系として、耐熱性分泌型アルカリフォスファターゼ(以下AP称す)の遺伝子を一過性に導入した初代培養脂肪細胞をマウスに移植し、血中でのAP活性の推移を検討した。導入したAPは耐熱型で、熱処理後することにより、容易に内在性APと区別することができる。

(1). アルカリフォスファターゼ遺伝子の一過性に導入した初代培養脂肪細胞の作製

APを発現するplasmid (pcDNA3.1-SEAPmh、図1) は、pSEAP2-basic vector (Clontech社製) を制限酵素Hind III-Xba Iで二重消化して得られるAP (SEAP) 配列を、哺乳類細胞発現用ベクターであるpcDNA3.1MH-AのHind III-Xba I部位に挿入して構築した。pcDNA3.1-SEAPmhはCMVプロモーター (pCMV) の支配下に、C末端にc-myc antigenとHis-6(MH)のtagをもつAPを発現する。

10cm dishへの遺伝子導入あたり 500μ 1のFBS-free DMEM培地と 15μ 1のFugene 6試薬(Roche社製)を混合し、ついでpcDNA3.1-SEAPmh 5μ gを加え、室温にて15分間静置した。この混合液を、10cm dish で $70\sim80\%$ confluentに培養した初代培養細胞に加え、 $C0_2$ インキュベーター内で24時間培養した。

[0012]

(2). アルカリフォスファターゼ遺伝子を導入した初代培養脂肪細胞のマウスへの移入

遺伝子導入した細胞をトリプシン処理により回収し、PBSで2回遠心洗浄後 1×10^7 cells/mlになるようにPBSに懸濁した。動物(ICR系ヌードマウス、術時5週齢)は、ペントバルビタールナトリウム(ネンブタール)50 mg/kgの腹腔内投与により麻酔した。術部付近を希釈ヒビテン液(住友製薬社製)にて消毒後、右後肢付け根付近の皮膚を $3\sim5$ mm程度切開し、皮下脂肪を露出させた。調製した細胞懸濁液0.5 ml(0.5×10^7 cells/head)を1 mlシリンジにて準備し、22G注射針を用いて皮下脂肪内に注入した。切開した皮膚を縫合し、術部を手術用イソジン(明治製菓社製)で消毒した。

移植前(0日)、及び移植後4日、7日、14日、21日にマウスを麻酔し、ヘパリンコートのキャピラリー(Dramond)を用いて眼底静脈叢より採血した。全血から2000 g、15分間の遠心によりplasmaを得た。このplasma中の耐熱性AP活性を、AP測定キット(SEAP reporter gene assay kit, Roche社製)により測定した。AP活性測定の方法は、添付されたマニュアルに従った。耐熱性AP測定キット(Roche)に添付された標準品を、ほぼ同週齢の対照マウスのplasmaで希釈して同時に測定を行い、得られた検量線から濃度を求めた。

[0013]

その結果、図2のように、移植後4日目をピークとし14日間に渡って血中への

7/

耐熱性APの活性が確認された。活性のピークでは50 ng/mlに相当するAP活性が測定され、移植した脂肪細胞は、遺伝子治療用として充分な量の蛋白質を産生し得ることが確認された。

また図2には、1µgの精製APを同部位に注入した場合の血中濃度推移も示した。精製APを投与した場合は、血中AP活性は投与後すみやかに消失した。遺伝子導入した脂肪細胞を移植する遺伝子治療は、蛋白質製剤を直接投与する場合と比較して、血中濃度を持続的に保つことができるという点で明らかな利点を有していた。

[0014]

[実施例3] アルカリフォスファターゼを安定に発現する脂肪細胞の作製と、該脂肪細胞のマウスへの移入

血中濃度を、より長期に亘って安定に保つために、APを安定に発現する脂肪細胞の作製を試みた。

(1). レトロウイルスベクターの作製

pBabePuro (Morgenstern, J.P. et al. Nucleic Acids Res. vol.18 3587-359 6 (1990)) を基として、そこからSV40プロモーターとネオマイシン耐性遺伝子をSalI-ClaIにより切り出した後Klenow fragmentにより平滑化し、そこへpIRES2-EGFPよりHincII-HincIIにより切り出した脳心筋炎ウイルス (encephalomyocard itis virus (EMCV)) のIRES (internal ribosome entry site) とGFP (green f luorescent protein) に置換するとともに、さらにそのLTR (long terminal repeat) から外来遺伝子挿入部分(マルチクローニングサイト)までの部分(SspI-BamHI)をIMGENEX社より購入したpCLXSNの相当する配列(SspI-BamHI)と置換することによりpBabeCLXI2Gを作製した。pBabeCLXI2GをHpa I消化後BAP (TOYOBO社製) 処理し、pcDNA3.1-SEAPmhをHind III/Pme Iで二重消化して得られるAP配列をKlenow fragment (TOYOBO社製) により平滑末端とした断片を挿入してpBabeCL (SEAPmh) I2Gを得た。

また文献(Goto M. et al. Mol. Pharmacol. vol. 49 860-873 (1996)に記載のpT K-PLAPからHindIII, BglIIを用いて切り出した分泌性アルカリフォスファターゼ (以下PLAP) DNA断片をKlenow fragmentによる平滑処理後、pBabeCLXI2GのIRES-

GFPの部分をIRES-ピューロマイシン耐性遺伝子に置換したpBabeCLXIPベクターの HpaI部位に挿入しpBabeCL (PLAP) IPを得た。

またpEGFP-N2からNotI-NcoIにより切り出し平滑化したGFP断片をHpaIにより切断したpBabeCLXIPベクターに挿入したpBabeCL(GFP)IPもあわせて作成した。

 500μ lのserum-free DMEM培地にplasmid導入試薬TransIT (Mirus社製) 30μ l を混合し室温にて5分間放置した(DMEM/TransIT混合液)。また別のtubeにpCAL G 3.3μ g、pCLAmpho 3.3μ g(以上RetroMax system/IMGENEX)及びパッケージシグナルおよび導入遺伝子を含むベクター(pBabeCL(GFP)IP、あるいはpBabeCL(SEAPmh)I2G、pBabeCL(PLAP)IPなど) 3.3μ gの合計 9.9μ gを混合した(plasmid液)。DMEM/TransIT混合液にplasmid液を加えよく混合した後に、さらに室温にて1.5分放置し、前日に2x106cells / 10cm dishで用意し一晩培養した293-EBNA細胞(Invitrogen社製)に添加した。

添加 8 時間後に培地を交換し、さらに2日間培養後に培養上清を回収した。回収した培養上清は、夾雑物を除去するため遠心(2000g、5 min)ないしは0.45 μm シリンジフィルター(ミリポア社製)により濾過し、この上清をウィルス液として使用した(それぞれ、MLV(VSV)/pBabeCL(GFP)IP、MLV(VSV)/pBabeCL(SEAPmh)I 2G、MLV(VSV)/pBabeCL(PLAP)IP)。図 3 にそれぞれのベクターの構造を示した

. [0015]

(2).脂肪細胞への遺伝子導入

遺伝子導入に用いる脂肪細胞は、導入前日に $1 \times 10^5/10$ cm dishで準備した。 一晩培養後培地をすて、 $4 \mu g/ml$ polybrene液を5 mlとウィルス液5mlを添加することによりウィルスベクターを導入した。導入8時間後に培地を交換しさらに培養および継代培養を行った。Puror選択を導入した細胞に対しては、 $1 \mu g/ml$ のpuromycin(SIGMA社製)を培地に添加することにより導入細胞の選択を行った。

[0016]

(3).脂肪細胞の分化誘導

6wellプレートに 5×10^4 /wellでまいたGFP導入細胞を5日間培養した。培地を刺激培地(0.5 mM IBMX, 0.25μ M dexamethasone, 10μ g/ml Insulinを添加し

9/

図4-Aに示す通り、細胞を分化誘導することにより脂肪滴を豊富に含む成熟脂肪細胞が観察された。この時GFPの発現を確認したところ、脂肪滴を含む細胞が全てGFP陽性であったことから(図4-B)、レトロウィルスベクターを用いることにより初代培養脂肪細胞に対し高い効率で遺伝子導入が可能であることが示された。

また、非導入細胞(control)およびLTR-PLAPmh-IRES-GFP(SEAPmh-I2G)、LTR-PLAP-IRES-puror(PLAP-IP)をそれぞれ導入した初代培養脂肪細胞を、10 cm dishを用いて1:3ないしは1:4の希釈により4度の継代培養を行い、各段階でconfluentの細胞に対し、培地(10ml)を交換後17時間の培養を行って、上清中のAP活性を検討した。図5に示す通り、AP遺伝子を導入した2つの初代培養脂肪細胞において、4回の継代をとおして発現量の減弱は認められなかった。本ウィルスベクターにより導入遺伝子を安定に発現する初代培養脂肪細胞の作製が可能であることが示された。

[0017]

[実施例4] アルカリフォスファターゼを安定に発現する初代脂肪細胞のマウスへの移入

実施例3に記載の方法によりウィルスベクター(MLV (VSV) /pBabeCL (PLAP) IP)を導入した細胞1 x 10^6 個を、 300μ 1のマトリゲル(Becton Dickinson)に 氷冷下で懸濁し、 8 週齢のC57BL/6マウスの背部皮下に注入した。経時的に眼底静脈叢より血液を採取し、遠心により血漿を得て、この血漿をPBS-にて40倍に希釈しAP活性を測定した。

その結果図6に示す通り、4週間に渡り血中へのAPの分泌が確認され、レトロウィルスベクターにより遺伝子を導入した脂肪細胞が、マウスに移植した後も、安定してAPを発現することが認められた。

[0018]

[実施例 5] 血中遺伝子産物濃度の人為的コントロール

マウスへ移入した脂肪細胞が産生する遺伝子産物の血中濃度を、より安定に保持させることが移植法の改良により可能であり、また血中濃度を減少させることが移入した脂肪細胞を除去することにより可能であることが確認されて、遺伝子産物の血中濃度が人為的にコントロール可能であることが示された。

SEAPないしはGFPを遺伝子導入した細胞を、実施例3の(3)に記載の分化誘導刺激培地にて3日間培養後、トリプシン処理により回収し、PBSで2回遠心洗浄した。この細胞を氷冷下にて1 x 10^6 cells/ 150μ 1になるようにマトリゲル(BD社)に懸濁した。さらに移植細胞への血管新生を誘導する目的で、マトリゲルにbasic FGF(Genzyme Techene社)を終濃度 1μ g/mlとなるように加えた。

ペントバルビタールナトリウム(ネンブタール)により麻酔したICR系ヌードマウス(術時5週齢)に対し、調製した細胞懸濁液0.15 ml(1 x 10⁶ cells/head)を背部皮下に注入した。以後経時的に眼底静脈叢より採血し、plasma中の耐熱性AP活性を、AP測定キット(SEAP reporter gene assay kit, Roche社製)により測定した。

その結果、移植後2ヶ月に渡って血中AP活性が認められ、実施例3の(3)では移植40日後ではピーク時の1/10以下にまで低下していたAP活性が、今回は約1/4の低下に止まった(図7)。成熟脂肪細胞への分化誘導や、マトリゲルへのbasic FGF添加等の移植法の改良により、遺伝子産物のより安定な血中への供給が可能となった。

[0019]

同実験において、移植後一ヶ月の時点で各群1例ずつ移植細胞をマトリゲルごと摘出した。GFP遺伝子を導入した脂肪細胞を移植した個体から摘出したマトリゲル中には、GFP陽性細胞が認められ、その細胞は脂肪滴を含んでいた。これによりGFP遺伝子を導入し移植した初代培養脂肪細胞が脂肪細胞として生着したことが示された。

またSEAP遺伝子を導入した脂肪細胞を移植した個体から同様の摘出術を行った ところ、血中AP活性は速やかに消失した(図7)。この結果は、移植マウスの血 中APが移植脂肪細胞由来であることを示すと共に、遺伝子導入した脂肪細胞を移 植した後、遺伝子産物が過剰ないしは危険となった場合に、摘出により遺伝子産 物の供給を止めることが可能であることを示している。

以上の検討により、遺伝子産物の血中濃度をより安定に保持させること、及び血中濃度を減少させることが可能であり、血中遺伝子産物濃度が人為的にコントロールできることが示された。

[0020]

【図面の簡単な説明】

- 【図1】初代培養脂肪細胞への導入に用いたプラスミド、pcDNA3.1-SEAP-mhの構造。*は終止コドンを、pSV40-neorはSV40プロモータおよびネオマイシン耐性遺伝子を示す。
- 【図2】APを一過性に導入した初代培養細胞移植マウスにおける血中AP活性。 マウスより経時的に採取したplasmaを用いてAP活性を測定した。
- 【図3】レトロウィルスベクターの構造。それぞれのベクターの導入により、A:GFPとpuror (puromycin耐性遺伝子)、B:APとGFP、C:APとpuror、を発現する。LTR:moloney murine leukemia virusのlomg terminal repeat配列、IRES:internal ribosomal entry site、PLAP:後藤ら (Mol. Pharmacol.:1996, 49,860-873) により構築されたAP配列。
- 【図4】GFP導入細胞の分化誘導像。遺伝子導入13日後に分化誘導を開始し、さらに3週間経過後に写真を撮影した。A:光学顕微鏡写真、B:Aと同一視野のGFP蛍光写真。脂肪滴を含む細胞にGFPの蛍光が観察される。
- 【図5】SEAPmh-I2G及びPLAP-IPウィルスベクター(図3参照)導入初代培養 脂肪細胞の継代培養における発現の変動。
- 【図6】アルカリフォスファターゼ遺伝子を導入した初代培養脂肪細胞を移植 したマウスの、血中アルカリフォスファターゼ濃度の推移。
- 【図7】成熟脂肪細胞への分化誘導・マトリゲルへのbasic FGF添加等、改良 法により初代培養脂肪細胞を移植したマウス、及び移植したマトリゲルを摘出し たマウスの血中アルカリフォスファターゼ濃度の推移。

【書類名】図面

【図1】

【図2】

APを一過性に導入した初代培養細胞移植マウス における血中AP活性

【図3】

[図5]

【図6】

レトロウィルスベクターによりAP遺伝子を導入した 初代培養脂肪細胞移植マウスの血中AP活性

【図7】

マトリゲルとbFGFを用いた細胞移植マウス、 及び移植片摘出マウス血中SEAPの推移

【書類名】要約書

【要約】

【課題】従来ex vivoの遺伝子治療に用いられてきた骨髄細胞や肝臓細胞に代わる、遺伝子治療に適した細胞を見出すことにある。

【解決手段】採取及び移植が容易で移植後に取り除くことも可能な、ex vivo での遺伝子治療に適した初代培養脂肪細胞に、外来遺伝子を導入する方法、特にレトロウイルスベクターを用いる方法が確立され、細胞外に分泌する蛋白質をコードする外来遺伝子を安定に保持する、初代培養遺伝子治療用脂肪細胞が確立された。

【選択図】なし

ページ: 1/E

認定・付加情報

特許出願の番号 特願2002-237974

受付番号 50201220359

書類名 特許願

担当官 藤居 建次 1409

作成日 平成14年 8月23日

<認定情報・付加情報>

【特許出願人】 申請人

【識別番号】 000000217

【住所又は居所】 東京都文京区小石川4丁目6番10号

【氏名又は名称】 エーザイ株式会社

特願2002-237974

出願人履歴情報

識別番号

[000000217]

1. 変更年月日 [変更理由]

1990年 8月29日

住所

新規登録

東京都文京区小石川4丁目6番10号

エーザイ株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.