Nanophotonic Computational Design

Jesse Lu

February 25, 2013

Introduction

- As information grows, optical networks needed
 - across continents
 - within a datacenter
 - between chips and on-chip

• On-chip optical components are currently designed by tuning a small number of design parameters

 On-chip optical components are currently designed by tuning a small number of design parameters

• What happens when we use the *full* parameter space for nanophotonic design?

• The full parameter space is *vast*

- ullet Include/exclude per pixel gives us $2^{(15^2)}=2^{225}$ possibilities
 - A virtually uncountable number
 - Can only be leveraged computationally

• Our work: Software to design 3D linear nanophotonic devices using the full available parameter space

- Our work: Software to design 3D linear nanophotonic devices using the full available parameter space
- Many of these devices are
 - Completely novel (no previously known designs)
 - Extremely compact (footprints of a few vacuum wavelengths)
 - High efficiency (> 80% transmission)

Developed by

- applying (convex) optimization techniques (math)
- to the area of nanophotonics (physics)
- and implementing in software (programming)

- Developed by
 - applying (convex) optimization techniques (math)
 - to the area of nanophotonics (physics)
 - and implementing in software (programming)
- Physics Advisory:

CONTAINS INVOLVED MATHEMATICAL CONTENT

- Developed by
 - applying (convex) optimization techniques (math)
 - to the area of nanophotonics (physics)
 - and implementing in software (programming)
- Physics Advisory:

CONTAINS INVOLVED MATHEMATICAL CONTENT

• Math Advisory:

CONTAINS INVOLVED NANOPHOTONIC CONTENT

Given a field, can we find its structure?

Given a field, can we find its structure?

ullet Equivalently, find ϵ (structure) given E (field)

$$\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J$$

Given a field, can we find its structure?

• Equivalently, find ϵ (structure) given E (field)

$$\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J$$

• If possible, we can design *any* nanophotonic/optical component!

ullet Answer: Yes, given E we can solve for ϵ (trivial!)

$$\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J$$

• Answer: Yes, given E we can solve for ϵ (trivial!)

$$\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J$$
$$\omega^2 \epsilon E = \nabla \times \mu_0^{-1} \nabla \times E + i\omega J$$

• Answer: Yes, given E we can solve for ϵ (trivial!)

$$\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J$$

$$\omega^2 \epsilon E = \nabla \times \mu_0^{-1} \nabla \times E + i\omega J$$

$$\omega^2 E \epsilon = \nabla \times \mu_0^{-1} \nabla \times E + i\omega J$$

• Answer: Yes, given E we can solve for ϵ (trivial!)

$$\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J$$

$$\omega^2 \epsilon E = \nabla \times \mu_0^{-1} \nabla \times E + i\omega J$$

$$\omega^2 E \epsilon = \nabla \times \mu_0^{-1} \nabla \times E + i\omega J$$

$$\epsilon = (\nabla \times \mu_0^{-1} \nabla \times E + i\omega J)/\omega^2 E$$

• Solving for ϵ actually way faster than simulation (solving for E)!

- Obvious and well-known from a mathematical perspective
 - Pre-requisite (200-level) class in optimization curriculum
 - Not yet taught (I think) in optics/photonics at Stanford

- Obvious and well-known from a mathematical perspective
 - Pre-requisite (200-level) class in optimization curriculum
 - Not yet taught (I think) in optics/photonics at Stanford

$$\underbrace{\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J}_{\text{physics}} \quad \longrightarrow \quad \underbrace{A(z)x = b}_{\text{linear algebra}}$$

- Obvious and well-known from a mathematical perspective
 - Pre-requisite (200-level) class in optimization curriculum
 - Not yet taught (I think) in optics/photonics at Stanford

$$\underbrace{\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J}_{\text{physics}} \quad \longrightarrow \quad \underbrace{A(z)x = b}_{\text{linear algebra}}$$

$$E \to x$$

$$\epsilon \to z$$

$$\nabla \times \mu_0^{-1} \nabla \times -\omega^2 \epsilon \to A(z)$$

$$-i\omega J \to b$$

- Obvious and well-known from a mathematical perspective
 - Pre-requisite (200-level) class in optimization curriculum
 - Not yet taught (I think) in optics/photonics at Stanford

$$\underbrace{\nabla \times \mu_0^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J}_{\text{physics}} \quad \longrightarrow \quad \underbrace{A(z)x = b}_{\text{linear algebra}}$$

$$E \to x$$

$$\epsilon \to z$$

$$\nabla \times \mu_0^{-1} \nabla \times -\omega^2 \epsilon \to A(z)$$

$$-i\omega J \to b$$

• Key: If A(z) is linear in z then A(z)x = b is as well!

Direct design of nanophotonic devices

- Let's try it already!
 - Choose x (field)
 - Solve for z (structure) by minimizing the *physics residual*, A(z)x-b

Direct design of nanophotonic devices

- Let's try it already!
 - Choose x (field)
 - Solve for z (structure) by minimizing the *physics residual*, A(z)x-b

$$\underset{z}{\mathsf{minimize}} \quad \|A(z)x - b\|^2$$

Direct design of nanophotonic devices

- Let's try it already!
 - Choose x (field)
 - Solve for z (structure) by minimizing the *physics residual*, A(z)x-b

$$\underset{z}{\mathsf{minimize}} \quad \|A(z)x - b\|^2$$

ullet Global minimum where A(z)x-b=0 can be computed in one step

$$\epsilon = (\nabla \times \mu_0^{-1} \nabla \times E + i\omega J) / \omega^2 E$$

where $\epsilon \rightarrow z$

- ullet Choose canonical 1D cavity field for x
- ullet Solve for z (structure) and check design fidelity with simulation

- ullet Choose canonical 1D cavity field for x
- ullet Solve for z (structure) and check design fidelity with simulation

• Result

- Perfect performance
- But unmanufacturable structure (z not well-behaved)

Direct design with regularization

• Direct design "works" but not practical

$$\underset{z}{\mathsf{minimize}} \quad \|A(z)x - b\|^2$$

ullet So, let's add a regularization term to z and solve the following instead

minimize
$$||A(z)x - b||^2 + \eta ||z - z_0||^2$$

- $\|z z_0\|^2$ term keeps z close to z_0
- η controls the strength of the regularization
- Solution can still be computed in one step

ullet Unfortunately, regularization on z decreases performance

minimize
$$||A(z)x - b||^2 + \eta ||z - z_0||^2$$

• Decreased performance a result of non-zero physics residual at optimum

• How to overcome the apparent trade-off between manufacturability (z) and performance (x)?

- How to overcome the apparent trade-off between manufacturability (z) and performance (x)?
- Realized that there do exist some x (fields) which result from manufacturable z (structures)
 - These can be produced via simulation
 - However, it's not useful to ask the user to choose such x

- How to overcome the apparent trade-off between manufacturability (z) and performance (x)?
- Realized that there do exist some x (fields) which result from manufacturable z (structures)
 - These can be produced via simulation
 - However, it's not useful to ask the user to choose such \boldsymbol{x}
- ullet Therefore, a *useful* tool would optimize for both x and z

Iterative design of nanophotonic devices

• New algorithm: Iteratively solve for x (field) and z (structure)

$$\begin{aligned} & \underset{z}{\text{minimize}} & & \|A(z)x - b\|^2 + \eta_0 \|z - z_{\text{prev}}\|^2 \\ & \underset{x}{\text{minimize}} & & \|A(z)x - b\|^2 + \eta_1 \|x - x_{\text{prev}}\|^2 \end{aligned}$$

- Takes advantage of the bi-linearity of the physics residual
 - Jointly solving for x and z is a non-convex problem

More concisely, we iteratively solve the following

- Design process now consists of multiple computational steps
 - η_0, η_1 gradually decreased to bring physics residual toward 0

- ullet Iterative strategy produces z (structure) that
 - is better behaved
 - more accurately produces x

Iterative design with hard constraints on \boldsymbol{z}

• We can also put hard limits on z (structure)

$$\begin{aligned} & \text{minimize} & & \|A(z)x - b\|^2 + \eta_1 \|x - x_{\text{prev}}\|^2 \\ & \text{subject to} & & z_{\min} \leq z \leq z_{\max} \end{aligned}$$

- $z_{\min} \le z \le z_{\max}$ constraint better represents manufacturability constraint
 - Corresponds to a minimum and maximum allowable permittivity (ϵ)

- Well-behaved, manufacturable z (structure)
- ullet Final x (field) accurately reproduced
- ullet Majority of elements of z are fortuitously at one limit or the other!

• Can be used to create 2D resonators

• 3D resonators can be designed using a "2.5D" approximation

Objective-first design of linear devices

- ullet Next realization: for linear components, only certain elements of x (field) matter
 - Specifically, the elements of x at the input/output ports

minimize
$$\|A(z)x - b\|^2$$
 subject to $x_{\text{boundary}} - \hat{x}_{\text{boundary}} = 0$
$$z_{\min} \leq z \leq z_{\max}$$

• Instead of regularization term, we force the elements of x at the boundary to be equal to the ideal case (\hat{x})

• Called *objective-first* design because the design objective is prioritized above the physics residual

$$\begin{aligned} & \text{minimize} & & \|A(z)x - b\|^2 \\ & \text{subject to} & & x_{\text{boundary}} - \hat{x}_{\text{boundary}} = 0 \\ & & z_{\text{min}} \leq z \leq z_{\text{max}} \end{aligned}$$

• Applied to the design of 2D waveguide mode couplers

- Produced designs which exhibited
 - High efficiency ($\sim 98\%$)
 - Small device footprints (1.5-4 square vacuum wavelengths)

• Coupler to wide, low-index waveguide

• Coupler from fundamental to second-order waveguide mode

Design of 3D linear nanophotonic devices

• Finally, enough understanding to tackle the real design problem

Design of 3D linear nanophotonic devices

- Finally, enough understanding to tackle the *real* design problem
- Goal: Software to design all linear nanophotonic devices

Design of 3D linear nanophotonic devices

- Finally, enough understanding to tackle the *real* design problem
- Goal: Software to design all linear nanophotonic devices
 - Fully three-dimensional (no approximations)
 - Multi-mode
 - Discrete, planar, manufacturable structure

- ullet Problem: Did not know how to solve A(z)x-b=0 (simulation) in 3D
 - Millions of variables
 - Famously ill-conditioned
 - No known commercial solvers that can handle arbitrary structures

- ullet Problem: Did not know how to solve A(z)x-b=0 (simulation) in 3D
 - Millions of variables
 - Famously ill-conditioned
 - No known commercial solvers that can handle arbitrary structures

Fortunately, Wonseok had already solved this problem

Maxwell: Light-simulation supercomputer

- Partnered with Wonseok to develop a cloud-based electromagnetic solver using Amazon Web Services
 - GPU-accelerated implementation of Wonseok's algorithm
 - Cluster scales automatically to tens of nodes

Maxwell:

Your light-simulation supercomputer.

Maxwell supercharges your Matlab installation with the power of Amazon's Elastic Compute Cloud to enable it to solve full 3D electromagnetic simulations.

Scalable

- Far outstrips computing clusters such as Teragrid
- Can perform multiple solves in parallel, on a single Matlab instance
- All computation is performed externally (in the cloud)
- Easy to use
 - Installs with a single Matlab command
 - Solves completed with a single Matlab command: maxwell(...);
- The key technological enabler in achieving 3D design

3D design: problem statement

minimize
$$\sum_i^M \|A_i(z)x_i - b_i\|^2$$
 subject to
$$\alpha_{ij} \leq |c_{ij}^\dagger x_i| \leq \beta_{ij}, \quad \text{for } i=1,\ldots,M \text{ and } j=1,\ldots,N_i$$

$$z_{\min} \leq z \leq z_{\max}$$

- ullet M modes with N_i monitored output modes each
 - $-b_i$ is the input excitation for each mode
 - $|c_{ij}^{\dagger}x_i|$ is the field overlap with output mode c_{ij}
 - α_{ij} and β_{ij} is the design range for the overlap