Capítulo VII

Complexidade Amortizada

(Amortized Analysis)

Complexidade Amortizada

Objetivo: analisar o custo de uma sequência de operações numa estrutura de dados (ED), no pior caso.

Interesse: mostrar que, embora alguma operação possa ser "cara", o custo total da sequência de operações é "baixo".

Não é a complexidade no caso esperado (que indica o custo médio, considerando todas as distribuições da entrada).

Não envolve probabilidades.

Pilha com MultiDesempilha

```
void push( E element ); // Pior caso: \Theta(1).
E pop();
                           // Pior caso: \Theta(1).
void multiPop( int k ) // Pior caso:
                        //\ s é o número de elementos na pilha.
  while (!this.isEmpty() && k > 0)
     E element = this.pop();
     k−−;
```

Pilha com MultiDesempilha

```
void push( E element ); // Pior caso: \Theta(1).
                             // Pior caso: \Theta(1).
E pop();
void multiPop(int k) // Pior caso: \Theta(\min(s,k)), onde
                            //s é o número de elementos na pilha.
   while (!this.isEmpty() && k > 0)
      E element = this.pop();
      k--;
```

Qual é a complexidade (no pior caso) de uma sequência de n operações de push, pop e multiPop, numa pilha inicialmente vazia?

Contador Binário

```
void increment( int[] counter ) // Pior caso:
                                 //c é a capacidade do vetor.
   int pos = 0;
   while (pos < counter.length && counter[pos] == 1)
      counter[pos] = 0;
      pos++;
   if ( pos < counter.length )</pre>
      counter[pos] = 1;
```

Contador Binário

```
void increment(int[] counter) // Pior caso: \Theta(c), onde
                                  //\ c é a capacidade do vetor.
   int pos = 0;
   while (pos < counter.length && counter[pos] == 1)
      counter[pos] = 0;
      pos++;
   if ( pos < counter.length )</pre>
      counter[pos] = 1;
```

Qual é a complexidade (no pior caso) de uma sequência de n operações de increment, num contador inicialmente a zero?

Tabela Dinâmica

```
// int currentSize, E[] table (preenchida de 0 a currentSize -1).
void insert( E element ) // Pior caso:
                             //s é o número de elementos na tabela.
  if ( table == null )
      table = new E[1];
   else if ( currentSize == table.length )
      E[] newTable = new E[2 * currentSize];
      System.arraycopy(table, 0, newTable, 0, currentSize);
      table = newTable;
   table[currentSize++] = element;
```

Tabela Dinâmica

```
// int currentSize, E[] table (preenchida de 0 a currentSize -1).
void insert( E element ) // Pior caso: \Theta(s), onde
                             //s é o número de elementos na tabela.
   if ( table == null )
      table = new E[1];
   else if ( currentSize == table.length )
      E[] newTable = new E[2 * currentSize];
      System.arraycopy(table, 0, newTable, 0, currentSize);
      table = newTable;
   table[ currentSize++ ] = element;
Qual é a complexidade (no pior caso) de uma sequência de n operações
de insert, numa tabela inicialmente vazia?
```

Métodos Existentes

- Há três métodos (com algumas variantes).
 - Agregação.
 - Contabilidade.
 - Potencial: é o mais versátil e o único que será estudado.
- Em todos os métodos, calcula-se um majorante do custo total da sequência de operações.
 - A esse majorante, chama-se custo total amortizado.
- Ao verdadeiro custo total, chama-se custo total real.
- O custo total amortizado nunca é inferior ao custo total real.

Ideia Geral do Método do Potencial

- Define-se uma função potencial Φ , que atribui a cada ED D um número real $\Phi(D)$.
- Prova-se que a função potencial Φ verifica algumas propriedades.
- Sejam:
 - D uma estrutura de dados,
 - -c o custo real da operação efetuada sobre D e
 - -D' a estrutura de dados resultante.
 - O custo amortizado da operação, que se denota por \widehat{c} , é:

$$\widehat{c} = c + \Phi(D') - \Phi(D).$$

 O custo amortizado de uma operação pode ser superior, igual ou inferior ao custo real da operação.

Justificação do Método do Potencial (1)

- Para cada i = 1, 2, ..., n, sejam:
 - $-D_0$ a ED inicial;
 - $-D_i$ a ED depois da operação i; e
 - $-c_i$ o custo real da operação i.

Então:

- o custo amortizado da operação i é

$$\widehat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1});$$

- o **custo total amortizado** (da sequência de n operações) é

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))$$
$$= (\sum_{i=1}^{n} c_{i}) + \Phi(D_{n}) - \Phi(D_{0}).$$

Justificação do Método do Potencial (2)

• É necessário garantir que o custo total amortizado nunca é inferior ao custo total real. Como o custo total amortizado é

$$\left(\sum_{i=1}^{n} c_i\right) + \Phi(D_n) - \Phi(D_0),$$

basta assegurar que, para qualquer i = 1, 2, ..., n:

$$\Phi(D_i) \geq \Phi(D_0)$$
.

(P1)
$$\Phi(D_0) = 0$$
; e

(P2) $\Phi(D_i) \geq 0$, para qualquer $i \geq 1$.

Aplicação do Método do Potencial

- Define-se uma função potencial Φ , que atribui a cada ED D um número real $\Phi(D)$.
- Prova-se que a função potencial Φ é válida, i.e., que Φ verifica as propriedades:
 - (P1) $\Phi(D_0) = 0$, onde D_0 é a ED inicial (acabada de criar); e
 - (P2) $\Phi(D) \geq 0$, para qualquer ED D (podendo-se excluir D_0).
- ullet Calcula-se o custo amortizado \widehat{c} de cada operação com a equação:

$$\hat{c} = c + \Phi(D') - \Phi(D)$$

onde c é o custo real da operação, D é a estrutura de dados **antes** da operação e D' é a estrutura de dados **depois** da operação.

Pilha com MultiDesempilha

```
void push( E element ); // Pior caso: \Theta(1).
                             // Pior caso: \Theta(1).
E pop();
void multiPop(int k) // Pior caso: \Theta(\min(s,k)), onde
                            //s é o número de elementos na pilha.
   while (!this.isEmpty() && k > 0)
      E element = this.pop();
      k--;
```

Qual é a complexidade (no pior caso) de uma sequência de n operações de push, pop e multiPop, numa pilha inicialmente vazia?

Potencial — Pilha (1)

Seja P uma pilha qualquer e seja s o número de elementos em P.

$$\Phi(P) = s.$$

- (P1) $\Phi(P_0) = 0$, onde P_0 é a pilha inicial, porque P_0 é uma pilha vazia (tem zero elementos).
- (P2) $\Phi(P) \ge 0$, para qualquer pilha P, porque o número de elementos em P não pode ser negativo.

Portanto, o custo total amortizado nunca será inferior ao custo total real.

O custo amortizado de uma operação é $\hat{c} = c + \Delta \Phi$.

Potencial — Pilha (2)

Seja P uma pilha qualquer e seja s o número de elementos em P.

$$\Phi(P) = s.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
	c	$\Phi(P') - \Phi(P)$	$\hat{c} = c + \Delta \Phi$
push	1		
pop	1		
multiPop k	min(k,s)		

Notação: s antes / s' depois da operação

Potencial — Pilha (3)

Seja P uma pilha qualquer e seja s o número de elementos em P.

$$\Phi(P) = s.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
	c	$\Phi(P') - \Phi(P)$	$\hat{c} = c + \Delta \Phi$
push	1	(s+1)-s=1	1+1=2 $O(1)$
pop	1		
multiPop k	min(k,s)		

Notação: s antes / s' depois da operação

Potencial — Pilha (4)

Seja P uma pilha qualquer e seja s o número de elementos em P.

$$\Phi(P) = s.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
	c	$\Phi(P') - \Phi(P)$	$\hat{c} = c + \Delta \Phi$
push	1	(s+1)-s=1	2 O(1)
pop	1	(s-1)-s=-1	0 O(1)
multiPop k	min(k,s)		

Notação: s antes / s' depois da operação

Potencial — Pilha (5)

Seja P uma pilha qualquer e seja s o número de elementos em P.

$$\Phi(P) = s.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
	c	$\Phi(P') - \Phi(P)$	$\widehat{c} = c + \Delta \Phi$
push	1	(s+1)-s=1	2 O(1)
pop	1	(s-1)-s=-1	0 $O(1)$
multiPop k	min(k,s)	$-\min(k,s)$	0 O(1)

Notação: s antes / s' depois da operação

Diferença de Potencial de multiPop k:

$$s' - s = (s - \min(k, s)) - s = -\min(k, s)$$

Potencial — Pilha (6)

Seja P uma pilha qualquer e seja s o número de elementos em P.

$$\Phi(P) = s.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
	c	$\Phi(P') - \Phi(P)$	$\hat{c} = c + \Delta \Phi$
push	1	(s+1)-s=1	2 O(1)
pop	1	(s-1)-s=-1	0 O(1)
multiPop k	min(k,s)	$-\min(k,s)$	0 O(1)

Notação: s antes / s' depois da operação

Conclusões: A complexidade amortizada do push, do pop e do multiPop é O(1). A complexidade de uma sequência de n operações de push, pop e multiPop, numa pilha inicialmente vazia, é O(n).

Contador Binário

```
void increment(int[] counter) // Pior caso: \Theta(c), onde
                                  //\ c é a capacidade do vetor.
   int pos = 0;
   while (pos < counter.length && counter[pos] == 1)
      counter[pos] = 0;
      pos++;
   if ( pos < counter.length )</pre>
      counter[pos] = 1;
```

Qual é a complexidade (no pior caso) de uma sequência de n operações de increment, num contador inicialmente a zero?

Potencial — Contador (1)

Seja C um contador qualquer e seja u o número de UNS em C.

$$\Phi(C) = u.$$

- (P1) $\Phi(C_0) = 0$, onde C_0 é o contador inicial, porque C_0 só tem ZEROS.
- (P2) $\Phi(C) \ge 0$, para qualquer contador C, porque o número de UNS em C não pode ser negativo.

Portanto, o custo total amortizado nunca será inferior ao custo total real.

O custo amortizado de uma operação é $\hat{c} = c + \Delta \Phi$.

Potencial — Contador (2)

Seja C um contador qualquer e seja u o número de UNS em C.

$$\Phi(C) = u.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
increment	c	$\Phi(C') - \Phi(C)$	$\hat{c} = c + \Delta \Phi$
incrementa	k+1		
anula	ig k		

k é o número de UNS que passam a ZERO

Notação: u antes / u' depois da operação

Potencial — Contador (3)

Seja C um contador qualquer e seja u o número de UNS em C.

$$\Phi(C) = u.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
increment	c	$\Phi(C') - \Phi(C)$	$\hat{c} = c + \Delta \Phi$
incrementa	k+1	-k+1	2
anula	k		

k é o número de UNS que passam a ZERO

Notação: u antes / u' depois da operação

Diferença de Potencial quando incrementa:

$$u'-u = (u-k+1)-u = -k+1$$

Potencial — Contador (4)

Seja C um contador qualquer e seja u o número de UNS em C.

$$\Phi(C) = u.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
increment	c	$\Phi(C') - \Phi(C)$	$\hat{c} = c + \Delta \Phi$
incrementa	k+1	-k+1	2)
anula	ig k	-k	$\left.\begin{array}{c} O(1) \end{array}\right\}$

k é o número de UNS que passam a ZERO

Notação: u antes / u' depois da operação

Diferença de Potencial quando anula:

$$u'-u = (u-k)-u = -k$$

Potencial — Contador (5)

Seja C um contador qualquer e seja u o número de UNS em C.

$$\Phi(C) = u.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
increment	c	$\Phi(C') - \Phi(C)$	$\hat{c} = c + \Delta \Phi$
incrementa	k+1	-k+1	2)
anula	ig k	-k	$\left.\begin{array}{c} O(1) \end{array}\right\}$

k é o número de UNS que passam a ZERO

Notação: u antes / u' depois da operação

Conclusões: A complexidade amortizada do increment é O(1). A complexidade de uma sequência de n operações de increment, num contador inicialmente a zero, é O(n).

Contador — Exemplo

	Estado do	Custo Re	Custo Real		izado
	Contador	da Operação	Total	da Operação	Total
	000				
incr.	001	1	1	2	2
incr.	010	2	3	2	4
incr.	011	1	4	2	6
incr.	100	3	7	2	8
incr.	101	1	8	2	10
incr.	110	2	10	2	12
incr.	111	1	11	2	14
incr.	000	3	14	0	14
incr.	001	1	15	2	16

O custo total amortizado nunca é inferior ao custo total real.

Tabela Dinâmica

```
// int currentSize, E[] table (preenchida de 0 a currentSize -1).
void insert( E element ) // Pior caso: \Theta(s), onde
                             //s é o número de elementos na tabela.
   if ( table == null )
      table = new E[1];
   else if ( currentSize == table.length )
      E[] newTable = new E[2 * currentSize];
      System.arraycopy(table, 0, newTable, 0, currentSize);
      table = newTable;
   table[ currentSize++ ] = element;
Qual é a complexidade (no pior caso) de uma sequência de n operações
de insert, numa tabela inicialmente vazia?
```

Potencial — Tabela (1)

Seja T uma tabela qualquer e sejam s o número de elementos em T e l a capacidade de T.

$$\Phi(T) = 2s - l.$$

- (P1) $\Phi(T_0) = 0$, onde T_0 é a tabela inicial, porque T_0 tem 0 elementos e capacidade 0.
- (P2) $\Phi(T) \ge 0$, para qualquer tabela T exceto a inicial. Como o fator de ocupação da tabela é superior a 0.5,

$$egin{array}{lll} s &>& rac{1}{2} \, l \ &2 \, s &>& l \ & \Phi(T) &>& 0 \, . \end{array}$$

Potencial — Tabela (2)

Seja T uma tabela qualquer e sejam s o número de elementos em T e l a capacidade de T.

$$\Phi(T) = 2s - l.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
insert	c	$\Phi(T') - \Phi(T)$	$\hat{c} = c + \Delta \Phi$
não expande	1		
expande	s+1		

Notação: (s,l) antes / (s',l') depois da operação

Potencial — Tabela (3)

Seja T uma tabela qualquer e sejam s o número de elementos em T e l a capacidade de T.

$$\Phi(T) = 2s - l.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
insert	c	$\Phi(T') - \Phi(T)$	$\hat{c} = c + \Delta \Phi$
não expande	1	2	3
expande	s+1		

Notação: (s,l) antes / (s',l') depois da operação

Diferença de Potencial quando não expande:

$$(2s'-l')-(2s-l) = (2(s+1)-l)-(2s-l)$$
$$= 2s+2-l-2s+l = 2$$

Potencial — Tabela (4)

Seja T uma tabela qualquer e sejam s o número de elementos em T e l a capacidade de T.

$$\Phi(T) = 2s - l.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
insert	c	$\Phi(T') - \Phi(T)$	$\hat{c} = c + \Delta \Phi$
não expande	1	2	3
expande	s+1	2-s	$\left.\begin{array}{c} O(1) \end{array}\right.$

Notação: (s,l) antes / (s',l') depois da operação

Diferença de Potencial quando expande (e s = l):

$$(2s'-l') - (2s-l) = (2(s+1)-2l) - (2s-l)$$
$$= 2s+2-2l-2s+l = 2-l = 2-s$$

Potencial — Tabela (5)

Seja T uma tabela qualquer e sejam s o número de elementos em T e l a capacidade de T.

$$\Phi(T) = 2s - l.$$

Operação	Custo Real	Dif. de Potencial	Custo Amortizado
insert	c	$\Phi(T') - \Phi(T)$	$\hat{c} = c + \Delta \Phi$
não expande	1	2	3
expande	s+1	2-s	$\left.\begin{array}{c} O(1) \end{array}\right.$

Notação: (s,l) antes / (s',l') depois da operação

Conclusões: A complexidade amortizada do insert é O(1). A complexidade de uma sequência de n operações de insert, numa tabela inicialmente vazia, é O(n).

Complexidade no PIOR CASO de

U operações de **reunião** e R operações de **representante** (com n elementos)

Reunião por **Nível** (código Altura) ou Tamanho $\Theta(1)$ Representante com Compressão do Caminho $O(\log n)$ $O(k \alpha(k,n))$ se $k = U + R \ge n$ [Tarjan 75].

Complexidade no PIOR CASO de

U operações de **reunião** e R operações de **representante** (com n elementos)

Reunião por **Nível** (código Altura) ou Tamanho
$$\Theta(1)$$
 Representante com Compressão do Caminho $O(\log n)$ $O(k \alpha(k,n))$ se $k = U + R \ge n$ [Tarjan 75].

Resultados: a complexidade amortizada do find (com compressão do caminho) e do union (por nível ou por tamanho) é $O(\alpha(k,n))$, se se realizarem $k \geq n$ operações.

A complexidade de uma sequência de k operações de find (com compressão do caminho) e union (por nível ou por tamanho), numa partição com n elementos, acabada de criar, é $O(k \alpha(k,n))$, se $k \ge n$.