

National University of Computer & Emerging Sciences, Islamabad

FAST School of Computing

Fall-2025

Islamabad Campus

Al1003 - Mathematical Foundation of Al

Homework 2

Subspaces, Span & Projections

Part A — Span & Subspaces

1. Topic Space in NLP (5 pts)

Suppose we have two "topic vectors" in a document embedding space:

$$t_1 = (1,2,1), t_2 = (0,1,1).$$

Do $\{t_1, t_2\}$ span all of \mathbb{R}^3 ?

- o What is the dimension of their span?
- o Interpret: If document embeddings live in this span, what does it mean about the diversity of topics?

2. Subspace of Neutral Sentiment (5 pts)

Define a subspace of \mathbb{R}^3 :

$$W = \{(x, y, z) \colon x + y + z = 0\}.$$

- \circ Show W is a subspace.
- o Give a basis for W.
- O AI interpretation: If (x, y, z) = scores for (positive, neutral, negative), explain why this subspace represents a "balanced sentiment" space.

Part B — Orthogonal Projections

3. Semantic Similarity (5 pts)

Consider word embeddings:

$$q = (2,1), d = (1,1).$$

- \circ Compute the projection of q onto the line spanned by d.
- o Interpret: Why does cosine similarity relate to this projection?
- \circ If q is a query and d a document, what does projection tell us about relevance?

4. Regression as Projection (10 pts)

Suppose we fit a linear regression model with feature matrix

$$X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, y = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}.$$

- Compute the projection matrix $P = X(X^TX)^{-1}X^T$.
- Find the projected vector $\hat{y} = Py$.
- Verify that residuals $y \hat{y}$ are orthogonal to the columns of X.
- AI interpretation: Explain why this "projection property" guarantees the regression line is the **best fit**.

Part C — AI Application Question

5. Recommender System Subspaces (5 pts)

In a recommender system, user preferences are stored as vectors in a high-dimensional space (movies × genres). Low-rank methods project users into a lower-dimensional subspace of "latent tastes."

- Explain why using the span of a few eigenvectors (latent factors) gives a compact representation of users.
- What does projecting a new user vector onto this subspace achieve?

Grading (30 pts total)

Part A: 10 ptsPart B: 15 pts

• Part C: 5 pts