## Lead-IQ Data Analysis Report

## Yifan Zhao

## 2022-10-07

In this study, we are interested in the lead-IQ dataset, which is described in detail in the Background/DataInfo.md document.

Let's read in the data first, and take a look at the variables in the dataset.

```
# Read in lead-iq-01.csv
lead_IQ <- read.csv("../DataRaw/lead-iq-01.csv", stringsAsFactors = T)
# Print head and tail of the dataset
kable(head(lead_IQ))</pre>
```

| Smelter | IQ |
|---------|----|
| Far     | 70 |
| Far     | 85 |
| Far     | 86 |
| Far     | 76 |
| Far     | 96 |
| Far     | 94 |
|         |    |

## kable(tail(lead\_IQ))

|     | ${\bf Smelter}$ | IQ |
|-----|-----------------|----|
| 119 | Near            | 95 |
| 120 | Near            | 77 |
| 121 | Near            | 74 |
| 122 | Near            | 96 |
| 123 | Near            | 91 |
| 124 | Near            | 78 |

```
# Check dimensions
dim(lead_IQ)
## [1] 124
# Check variables
summary(lead_IQ)
## Smelter
                    ΙQ
## Far :67
             Min.
                    : 46.00
## Near:57
             1st Qu.: 81.50
##
             Median : 91.00
##
             Mean
                   : 98.34
```

```
## 3rd Qu.: 99.25
## Max. :999.00
```

It will be great to show the IQ levels by location status in a box plot.

boxplot(IQ ~ Smelter, data = lead\_IQ)



Smelter

As we

can see from the figure above, there is an outlier in the Far group.