ELL201 LAB PROJECT SERIAL GENERATOR

Aditya Agrawal 2021AM10198

21 April 2023

Contents

1	Aim	2
2	State Diagram	2
3	State Table	2
4	Karnaugh Maps	3
5	Verilog Code	5
6	Test Bench Waveforms	6

Aim 1

To design a sequence generator that generates the serial sequence:

 $X_3 = 9 \Rightarrow X_3 \% 8 = 1$ $X_4 = 8, \Rightarrow X_4 \% 8 = 0$ ∴ Serial Sequence : $\{0,0,1,0,0,0\}$

2 State Diagram

State diagram of Mealy FSM after reduction

Here, 000 is the idle state. Since there are 6 states after reduction, we will need $\geq log_26$, i.e., 3 flip-flops for the generator.

3 State Table

Current State			Input	Output	Next State			D Flip-Flop		
Q_{2_n}	Q_{1_n}	Q_{0_n}	X	Y	$Q_{2_{n+1}}$	$Q_{1_{n+1}}$	$Q_{0_{n+1}}$	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	0	1
0	0	1	0	0	0	1	0	0	1	0
0	0	1	1	0	0	1	0	0	1	0
0	1	0	0	1	0	1	1	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	0	1	0	0	1	0	0
0	1	1	1	0	1	0	0	1	0	0
1	0	0	0	0	1	0	1	1	0	1
1	0	0	1	0	1	0	1	1	0	1
1	0	1	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

4 Karnaugh Maps

K-Map for D_0

K-Map for D_1

K-Map for D_2

K-Map for Y

		$Q_{0_n}X$						
		00	01	11	10			
	00	0	0	0	0			
$Q_{2_n}Q_{1_n}$	01	1	1	0	0			
$Q_2 Q_1 $	11	0	0	0	0			
	10	0	0	0	0			

Here, Q_0 is the LSB and Q_2 is the MSB. The states are represented by

Here, D_0 is the LSB and D_2 is the MSB.

There, D_0 is the LSB and D_2 is the MI $D_0 = Q_2 Q_1' Q_0' + Q_2' Q_1 Q_0' + Q_2' Q_0' X$ $D_1 = Q_2' Q_1' Q_0 + Q_2' Q_1 Q_0'$ $D_2 = Q_2' Q_1 Q_0 + Q_2 Q_1' Q_0'$ $Y = Q_2' Q_1 Q_0'$

5 Verilog Code

```
module OIO(input d,input clk,output reg out);
always@(posedge clk)
begin
if (d==0) begin
out<=0;
end else if (d==1) begin
out<=1;
end
end
end
endmodule</pre>
```

Figure 1: Positive edge triggered D Flip-Flop

```
module fsm;
reg clk;
reg dc,db,da,x;
wire [2:0] q;
wire out;
    assign out = ~q[2] & q[1] & ~q[0];
    OIO df1(dc,clk,q[2]);
    OIO df2(db,clk,q[1]);
    OIO df3(da,clk,q[0]);
    always @(posedge clk) begin
    dc = (((q[2])&&(~q[0]))||((~q[2])&&(~q[0])));
    db = (((q[1])&&(~q[0]))||((~q[2])&&(~q[1])&&(q[0])));
    da = ((~q[0])&&(x||q[2]||q[1]));
end
initial begin
    $dumpfile("fsm.vcd");
$dumpvars(0,fsm);

$monitor($time," %b Input = %b Output = %b State = %b
    %b %b",clk,x,out,q[2],q[1],q[0]);
    x = 0;
    dc = 0;
    db = 0;
    da = 0;
    clk = 1;
    #7
    x = 1;
    #8
    x = 0;
#20
    $finish;
end
always #2 clk = ~clk;
endmodule
```

Figure 2: Mealy Implementation using 3 D Flip-Flops

```
0 1 Input = 0 Output = 0 State = 0 0 0
# KERNEL:
# KERNEL:
                             2 0 Input = 0 Output = 0 State = 0 0 0
# KERNEL:
                             4 1 Input = 0 Output = 0 State = 0 0 0
                             6 0 Input = 0 Output = 0 State = 0 0 0
# KERNEL:
# KERNEL:
                             7 \text{ O Input} = 1 \text{ Output} = 0 \text{ State} = 0 \text{ O}
# KERNEL:
                             8 1 Input = 1 Output = 0 State = 0 0 0
                            10 0 Input = 1 Output = 0 State = 0 0 0
# KERNEL:
# KERNEL:
                            12 1 Input = 1 Output = 0 State = 0 0 1
# KERNEL:
                            14 0 Input = 1 Output = 0 State = 0 0 1
# KERNEL:
                            15 0 Input = 0 Output = 0 State = 0 0 1
# KERNEL:
                            16 1 Input = 0 Output = 0 State = 0 0 1
                            18 0 Input = 0 Output = 0 State = 0 0 1
# KERNEL:
                            20 1 Input = 0 Output = 1 State = 0 1 0
# KERNEL:
# KERNEL:
                            22 0 Input = 0 Output = 1 State = 0 1 0
# KERNEL:
                            24 1 Input = 0 Output = 1 State = 0 1 0
                            26 0 Input = 0 Output = 1 State = 0 1 0
# KERNEL:
# KERNEL:
                            28 1 Input = 0 Output = 0 State = 0 1 1
# KERNEL:
                            30 0 Input = 0 Output = 0 State = 0 1 1
                            32 1 Input = 0 Output = 0 State = 0 1 1
# KERNEL:
# KERNEL:
                            34 0 Input = 0 Output = 0 State = 0 1 1
# KERNEL:
                            35 0 Input = 1 Output = 0 State = 0 1 1
# KERNEL:
                            36 1 Input = 1 Output = 0 State = 1 0 0
# KERNEL:
                            38 0 Input = 1 Output = 0 State = 1 0 0
                            40 1 Input = 1 Output = 0 State = 1 0 0
# KERNEI:
# KERNEL:
                            42 0 Input = 1 Output = 0 State = 1 0 0
# KERNEL:
                            43 0 Input = 0 Output = 0 State = 1 0 0
                            44 1 Input = 0 Output = 0 State = 1 0 1
# KERNEL:
                            46 0 Input = 0 Output = 0 State = 1 0 1
# KERNEL:
# KERNEL:
                             48 1 Input = 0 Output = 0 State = 1 0 1
# KERNEL:
                            50 0 Input = 0 Output = 0 State = 1 0 1
                            52 1 Input = 0 Output = 0 State = 0 0 0
# KERNEL:
```

Figure 3: Output

6 Test Bench Waveforms

Figure 4: Generated Waveform