Covariance Sensitivity Proofs

March 23, 2020

1 Preliminaries

Definition 1. Let X be a matrix of values and X_i indicate the i^{th} column of the matrix. Denote the sample mean of column X_i as \bar{X}_i , and let n be the size of X_i . Then the covariance matrix of X has ij^{th} element

$$\frac{1}{n-1} \sum_{k=1}^{n} (x_{ki} - \bar{X}_i)(x_{kj} - \bar{X}_j).$$

Lemma 1. Let X be a matrix of values and X_i indicate the i^{th} column of the matrix. Denote the sample mean of column X_i as \bar{X}_i , and let n be the size of X_i . Then, $\forall i$,

$$\sum_{j=1}^{n} (x_{ji} - \bar{X}_i) = 0.$$

Proof.

$$\sum_{j=1}^{n} (x_{ji} - \bar{X}_i) = \sum_{j=1}^{n} x_{ji} - n\bar{X}_i,$$

$$= \sum_{j=1}^{n} x_{ji} - n \left(\frac{1}{n} \sum_{j=1}^{n} x_{ji}\right),$$

$$= 0.$$

Lemma 2. Let X be a matrix and let

$$f_{ij}(X) = \sum_{k=1}^{n} (x_{ki} - \bar{X}_i)(x_{kj} - \bar{X}_j).$$

Note that this is equivalent to the ij^{th} element of the sample covariance matrix for X, without the normalization by n-1. Consider the matrix X' equal to X with a single row

Y added, so that $X'_i = X_i \cup \{y_i\}$. Say X_i has size n. Let \bar{X}_i , \bar{X}_j , \bar{X}'_i , and \bar{X}'_j be the sample means of X_i, X_j, X'_i and X'_j respectively. Then,

$$f_{ij}(X') = f_{ij}(X) + n(\bar{X}_i - \bar{X}_i')(\bar{X}_j - \bar{X}_j') + (y_i - \bar{X}_i)(y_j - \bar{X}_j).$$

Proof. Note that

$$f_{ij}(X') = \sum_{k=1}^{n+1} (x'_{ki} - \bar{X}'_i)(x'_{kj} - \bar{X}'_j),$$

$$= \sum_{k=1}^{n} (x_{ki} - \bar{X}'_i)(x_{kj} - \bar{X}'_j) + (y_i - \bar{X}'_i)(y_j - \bar{X}'_j),$$

$$= \sum_{k=1}^{n} ((x_{ki} - \bar{X}_i) + (\bar{X}_i - \bar{X}'_i)) ((x_{kj} - \bar{X}_j) + (\bar{X}_j - \bar{X}'_j)) + (y_i - \bar{X}'_i)(y_j - \bar{X}'_j),$$

$$= \sum_{k=1}^{n} (x_{ki} - \bar{X}_i)(x_{kj} - \bar{X}_j) + (\bar{X}_j - \bar{X}'_j) \sum_{k=1}^{n} (x_{ki} - \bar{X}_i) + (\bar{X}_i - \bar{X}'_i) \sum_{k=1}^{n} (x_{kj} - \bar{X}_j),$$

$$+ \sum_{k=1}^{n} (\bar{X}_i - \bar{X}'_i)(\bar{X}_j - \bar{X}'_j) + (y_i - \bar{X}'_i)(y_j - \bar{X}'_j),$$

$$= f_{ij}(X) + n(\bar{X}_i - \bar{X}'_i)(\bar{X}_j - \bar{X}'_j) + (y_i - \bar{X}'_i)(y_j - \bar{X}'_j),$$

where the cancellation of the second and third terms in the second-to-last line is due to Lemma 1. \Box

Lemma 3. Let X be a matrix of values and X_i indicate the i^{th} column of the matrix. Let X_i have size n and consider the matrix X' equal to X with a single row Y added, so that $X'_i = X_i \cup \{y_i\}$. Say that the space of datapoints X_i that the elements of X'_i are drawn from is bounded above by M_i and bounded below by m_i . Let \bar{X}_i , \bar{X}_j , \bar{X}'_i , and \bar{X}'_j be the sample means of X_i , X'_j , X'_i and X'_j respectively. Then,

$$n \left| (\bar{X}_i - \bar{X}_i')(\bar{X}_j - \bar{X}_j') \right| \le \frac{n}{(n+1)^2} (M_i - m_i)(M_j - m_j).$$

Proof. Note that

$$n \left| (\bar{X}_i - \bar{X}_i')(\bar{X}_j - \bar{X}_j') \right| = n \left| \left(\frac{1}{n} \sum_{k=1}^n x_{ki} - \frac{1}{n+1} \sum_{k=1}^{n+1} x_{ki}' \right) \left(\frac{1}{n} \sum_{k=1}^n x_{kj} - \frac{1}{n+1} \sum_{k=1}^{n+1} x_{kj}' \right) \right|,$$

$$= n \left| \left(\left(\frac{1}{n} - \frac{1}{n+1} \right) \sum_{k=1}^n x_{ki} - \frac{y_i}{n+1} \right) \left(\left(\frac{1}{n} - \frac{1}{n+1} \right) \sum_{k=1}^n x_{kj} - \frac{y_j}{n+1} \right) \right|,$$

$$= n \left| \left(\frac{1}{n(n+1)} \sum_{k=1}^n x_{ki} - \frac{y_i}{n+1} \right) \left(\frac{1}{n(n+1)} \sum_{k=1}^n x_{kj} - \frac{y_j}{n+1} \right) \right|,$$

$$= \frac{n}{(n+1)^2} \left| \left(\frac{1}{n} \sum_{k=1}^n x_{ki} - \frac{y_i}{n+1} \right) \left(\frac{1}{n} \sum_{k=1}^n x_{kj} - \frac{y_j}{n+1} \right) \right|,$$

$$\leq \frac{n}{(n+1)^2} (M_i - m_i) (M_j - m_j).$$

Lemma 4. Let X be a matrix of values and X_i indicate the i^{th} column of the matrix. Let X_i have size n and consider the matrix X' equal to X with a single row Y added, so that $X'_i = X_i \cup \{y_i\}$. Say that the space of datapoints X_i that the elements of X'_i are drawn from is bounded above by M_i and bounded below by m_i . Let \bar{X}_i , \bar{X}_j , \bar{X}'_i , and \bar{X}'_j be the sample means of X_i, X_j, X'_i and X'_j respectively. Then,

$$|(y_i - \bar{X}_i')(y_j - \bar{X}_j')| \le \frac{n^2}{(n+1)^2} (M_i - m_i)(M_j - m_j).$$

Proof. Note that

$$\begin{aligned} \left| (y_i - \bar{X}_i')(y_j - \bar{X}_j') \right| &= \left| \left(y_i - \frac{y_i + n\bar{X}_i}{n+1} \right) \left(y_j - \frac{y_j + n\bar{X}_j}{n+1} \right) \right|, \\ &= \frac{1}{(n+1)^2} \left| \left((n+1)y_i - y_i - n\bar{X}_i \right) \left((n+1)y_j - y_j - n\bar{X}_j \right) \right|, \\ &= \frac{n^2}{(n+1)^2} \left| (y_i - \bar{X}_i)(y_j - \bar{X}_j) \right|, \\ &\leq \frac{n^2}{(n+1)^2} (M_i - m_i)(M_j - m_j). \end{aligned}$$

2 NEIGHBORING DEFINITION: ADD/DROP ONE

2.1 ℓ_1 -sensitivity

Theorem 1. Let X be a matrix of values and let X_i indicate the i^{th} column of the matrix. Let

$$f_{ij}(X) = \sum_{k=1}^{n} (x_{ki} - \bar{X}_i)(x_{kj} - \bar{X}_j).$$

Say that the space of datapoints \mathcal{X}_i that X_i is drawn from is bounded above by M_i and bounded below by m_i . Then the ℓ_1 -sensitivity in the add/drop-one model of $f(\cdot)$ is bounded above by

$$\frac{n}{(n+1)}(M_i-m_i)(M_j-m_j).$$

Proof. We must consider both adding and removing a row from X. Adding a row:

Let $X_i' = X_i \cup \{y_i\}$. Then, from Lemma 2,

$$|f_{ij}(X') - f_{ij}(X)| = |n(\bar{X}_i - \bar{X}_i')(\bar{X}_j - \bar{X}_j') + (y_i - \bar{X}_i)(y_j - \bar{X}_j)|$$

$$\leq n |(\bar{X}_i - \bar{X}_i')(\bar{X}_j - \bar{X}_j')| + |(y_i - \bar{X}_i)(y_j - \bar{X}_j)|$$

$$\leq \frac{n}{(n+1)^2} (M_i - m_i)(M_j - m_j) + \frac{n^2}{(n+1)^2} (M_i - m_i)(M_j - m_j)$$
(By Lemmas 3 and 4)
$$= \frac{n}{n+1} (M_i - m_i)(M_j - m_j). \tag{2.1}$$

Removing a row:

Let Y be the last row of X, and let $X'_i = X_i \setminus \{y_i\}$. Note that Lemma 2 can be rewritten in this setting by parametrizing n as n-1 and swapping X and X' in its expression:

$$f_{ij}(X) = f_{ij}(X') + (n-1)(\bar{X}_i' - \bar{X}_i)(\bar{X}_j' - \bar{X}_j) + (y_i - \bar{X}_i')(y_j - \bar{X}_j').$$

Lemmas 3 and 4 may be rewritten with the same reparametrization:

$$(n-1) |(\bar{X}_i' - \bar{X}_i)(\bar{X}_j' - \bar{X}_j)| \le \frac{n-1}{n^2} (M_i - m_i)(M_j - m_j),$$

and

$$|(y_i - \bar{X}_i')(y_j - \bar{X}_j')| \le \frac{(n-1)^2}{n^2} (M_i - m_i)(M_j - m_j).$$

Then,

$$\begin{aligned}
\left| f_{ij}(X) - f_{ij}(X') \right| &= \left| (n-1)(\bar{X}_i' - \bar{X}_i)(\bar{X}_j' - \bar{X}_j) + (y_i - \bar{X}_i')(y_j - \bar{X}_j') \right|, \\
&\leq \left| (n-1)(\bar{X}_i' - \bar{X}_i)(\bar{X}_j' - \bar{X}_j) \right| + \left| (y_i - \bar{X}_i')(y_j - \bar{X}_j') \right|, \\
&\leq \frac{n-1}{n^2} (M_i - m_i)(M_j - m_j) + \frac{(n-1)^2}{n^2} (M_i - m_i)(M_j - m_j), \\
&= \frac{n-1}{n} (M_i - m_i)(M_j - m_j).
\end{aligned} \tag{2.2}$$

Note that for any $n \geq 1$,

$$\frac{n}{n+1} > \frac{n-1}{n}.\tag{2.3}$$

So, the worst-case bound always occurs in the "add-one" case, and in general the ℓ_1 sensitivity of $f(\cdot)$ is bounded by

$$\frac{n}{n+1}(M_i-m_i)(M_j-m_j).$$

Corollary 1. Let $X \leftarrow \mathcal{X}$ where \mathcal{X}_i is bounded above by M_i and bounded below by m_i . Then the ℓ_1 -sensitivity in the add/drop-one model of the ij^{th} element of the covariance matrix for X is bounded above by

$$\frac{1}{n+1}(M_i - m_i)(M_j - m_j).$$

Proof. Note that the ij^{th} element of the covariance matrix for X is equal to f(x)/n.

Corollary 2. Let $X \leftarrow \mathcal{X}$ where \mathcal{X}_i is bounded above by M_i and bounded below by m_i . Then the ℓ_1 -sensitivity in the add/drop-one model of the ij^{th} element of a sample covariance matrix for X is bounded above by

$$\frac{n}{n^2 - 1} (M_i - m_i)(M_j - m_j).$$

Proof. Note that the ij^{th} element of the sample covariance of X is equal to f(x)/(n-1), and that $(n-1)(n+1)=n^2-1$.

2.2 ℓ_2 -sensitivity

Theorem 2. Let $X \leftarrow \mathcal{X}$ where \mathcal{X}_i is bounded above by M_i and bounded below by m_i . Then the ℓ_2 -sensitivity in the add/drop-one model of the ij^{th} element of the covariance matrix for X is bounded above by

$$\left(\frac{1}{n+1}(M_i-m_i)(M_j-m_j)\right)^2.$$

Proof. This follows from the bounds in Equations 2.1 and 2.2 and the inequality in Equation 2.3, and a renormalization by n from the definition of covariance.

Corollary 3. Let $X \leftarrow \mathcal{X}$ where \mathcal{X}_i is bounded above by M_i and bounded below by m_i . Then the ℓ_2 -sensitivity in the add/drop-one model of the ij^{th} element of a sample covariance matrix for X is bounded above by

$$\left(\frac{n}{n^2-1}(M_i-m_i)(M_j-m_j)\right)^2.$$

Proof. The logic here is identical to the proof of Theorem 3, with a renormalization by n rather than by n-1.

3 Neighboring Definition: Change One

3.1 ℓ_1 -sensitivity

Theorem 3. Let X be a matrix of values and let X_i indicate the i^{th} column of the matrix. Let

$$f_{ij}(X) = \sum_{k=1}^{n} (x_{ki} - \bar{X}_i)(x_{kj} - \bar{X}_j).$$

Say that the space of datapoints \mathcal{X}_i that X_i is drawn from is bounded above by M_i and bounded below by m_i . Then the ℓ_1 -sensitivity in the change-one model of $f(\cdot)$ is bounded above by

$$\frac{2(n-1)}{n}(M_i - m_i)(M_j - m_j).$$

Proof. Recall from Equation 2.1 that

$$|f_{ij}(X) - f_{ij}(X')| \le \frac{n}{(n+1)} (M_i - m_i)(M_j - m_j).$$

and

$$|f_{ij}(X) - f_{ij}(X'')| \le \frac{n}{(n+1)} (M_i - m_i)(M_j - m_j).$$

Reparametrizing these equations so that n is the size of X' and X'' gives that

$$|f_{ij}(X) - f_{ij}(X')| \le \frac{n-1}{n} (M_i - m_i)(M_j - m_j).$$

and

$$|f_{ij}(X) - f_{ij}(X'')| \le \frac{n-1}{n} (M_i - m_i)(M_j - m_j).$$

It then follows from the triangle inequality that

$$|f_{ij}(X') - f_{ij}(X'')| \le \frac{2(n-1)}{n} (M_i - m_i)(M_j - m_j).$$

Corollary 4. The ℓ_1 -sensitivity in the change-one model of covariance is bounded above by

$$\frac{2(n-1)}{n^2}(M_i - m_i)(M_j - m_j).$$

Proof. Note that the ij^{th} element of the covariance of X is equal to f(x)/n.

Corollary 5. The ℓ_1 -sensitivity in the change-one model of sample covariance is bounded above by

$$\frac{2}{n}(M_i - m_i)(M_j - m_j).$$

Proof. Note that the ij^{th} element of the sample covariance of X is equal to f(x)/(n-1). \square

3.2 ℓ_2 -sensitivity

Theorem 4. The ℓ_2 -sensitivity in the change-one model of covariance is bounded above by

$$\left(\frac{2(n-1)}{n^2}(M_i - m_i)(M_j - m_j)\right)^2$$
.

Proof. This follows from the bounds in the proof of Theorem 3 and a renormalization by n.

Corollary 6. The ℓ_2 -sensitivity in the change-one model of sample covariance is bounded above by

$$\left(\frac{2}{n}(M_i-m_i)(M_j-m_j)\right)^2.$$

Proof. The logic here is identical to the proof of Theorem 4, with a renormalization by n-1 rather than by n.