姓名:王博奕

系級:財金四

學號: B07302230

Homework 6

1. Diversification and correlation

i. Calculate E(r), var(r) for each asset.

State of Economy	Prob.	GE	HP	Pfizer	Apple	Ford
Recession	0.1	8%	-22%	28%	10%	-13%
Below Average	0.2	6%	-2%	14.70%	-10%	1%
Average	0.4	8%	20%	0%	7%	15%
Above Average	0.2	6%	35%	-10%	45%	29%
Boom	0.1	8%	50%	-20%	30%	43%
E(r)		7.20%	17.40%	1.74%	13.80%	15.00%
Var(r)		0.000096	0.040144	0.01785904	0.035416	0.02352
stdev		0.00979796	0.20035968	0.133637719	0.18819139	0.15336232

▲ 計算表格

其中, $E(r) = \sum_{i=1}^n x_i p_i \cdot Var(r) = \sum_{i=1}^n [x_i - E(x)]^2 p_i$,這裡我是使用矩陣 運算 mmult 來獲得E(r)的數據的。觀察數據可以發現 HP 同時擁有最大的E(r)和Var(r)。而最小的E(r)和Var(r)分別是 Pfizer 和 GE。

ii. Calculate correlation of coefficient, r, for any two assets in the above table.

$$Cov(x,y) = E\left((x - \mu_x)(y - \mu_y)\right) = E(xy) - \mu_x \mu_y$$
$$\rho(x,y) = \frac{Cov(x,y)}{\sigma_x \sigma_y}$$

根據以上公式我們依序在 excel 建構出E(xy)、 $\mu_x\mu_y$ 、 $\sigma_x\sigma_y$ 的矩陣,最後再得到 Correlation matrix。結果如下圖:

$\rho(x,y)$	GE	HP	Pfizer	Apple	Ford
GE					
HP	0.03667639				
Pfizer	-0.0372696	-0.999999619			
Apple	-0.16053	0.697184093	-0.697477963		
Ford	0	0.993243081	-0.993218336	0.727613723	

▲ Correlation matrix

iii. Please draw two assets portfolio diagram for any two assets.

此處將使用下列公式來計算 $Var(r) = w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \sigma_A \sigma_B \rho$ 。使用這公式的好處是接下來可以看在不同相關係數下圖形的變化。

W_HP	W_Apple	Var(rp)	stdev(rp)	E(rp)
1	0	0.040144	0.200359677	17.40%
0.9	0.1	0.03760264	0.193914002	17.04%
0.8	0.2	0.03552096	0.188470051	16.68%
0.7	0.3	0.03389896	0.184116702	16.32%
0.6	0.4	0.03273664	0.180932695	15.96%
0.5	0.5	0.032034	0.178980446	15.60%
0.4	0.6	0.03179104	0.178300421	15.24%
0.3	0.7	0.03200776	0.178907127	14.88%
0.2	0.8	0.03268416	0.18078761	14.52%
0.1	0.9	0.03382024	0.1839028	14.16%
0	1	0.035416	0.188191392	13.80%

▲ 計算表格

▲ Two assets portfolio diagram (HP & Apple) / stdev (x-axis) & E(r) (y-axis)

iv. Prove the statement, "Lower correlation between two assets may have better diversification effect", based on your answers in 1, 2, and 3.

觀察下面三個圖形,可以發現在不同相關係數下有各自不同的樣態。就 $\rho = -1$ 來看,他的分散程度最好,在最極端的情形甚至可以無風險地賺取利 潤;相反,當 $\rho = 1$ 時,圖形為一斜直線,代表當報酬增加時就必須提高風險,完全沒有分散風險之效果。

▲ 在不同相關係數下的風險報酬關係 / stdev (x-axis) & E(r) (y-axis)

2. Portfolio

i. Construct the portfolio frontier for these four stocks.

此處將使用 Excel 中的 SOLVER 製作 portfolio frontier,為此,我們必須先做一個變動項以方便之後的作業。值得注意的是 Var(r)與E(r)必須與Variance/Covariance matrix 有函數上的相關,因此我們在這使用的是矩陣乘法。

Wa		Wb	Wc	Wd	Var(r)	Stdev	E(r)	sum
	0	0.195122	0.463414	0.341463	0.032439	0.180108	0.099756	1

▲ 為了操作 SOLVER 而產生的變動項

製作完變動項後,即可以用 SOLVER 來得到自己想要的E(r)。至於 Set Objective 要設定為最小的Var(r)。我這裡從最小的E(r)到最大的E(r)共取了 11 個點來製圖。

E(r)	Wa	Wb	Wc	Wd	Var(r)	Stdev	E(r)
0.07	0	0	0	1	0.07	0.264575	0.07
0.076	0.091111	0.144446	0	0.764443	0.051594	0.227143	0.076
0.082	0.208417	0.157915	0	0.633668	0.046094	0.214695	0.082
0.088	0.159114	0.047583	0.159474	0.633828	0.043018	0.207407	0.088
0.094	0.202914	0.048075	0.222893	0.526119	0.039246	0.198106	0.094
0.1	0.241936	0.048387	0.290323	0.419355	0.037417	0.193434	0.1
0.106	0.37521	0.170334	0.258934	0.195522	0.040706	0.201757	0.106
0.112	0.372971	0.168094	0.361173	0.097761	0.042774	0.206818	0.112
0.118	0.387097	0.077419	0.464516	0.070968	0.04558	0.213496	0.118
0.124	0.270787	0.06584	0.663372	0	0.046924	0.216618	0.124
0.13	0	0	1	0	0.05	0.223607	0.13

▲ 不同E(r)下所帶出不同的權重、標準差與變異數

 \triangle The relationship between stdev (x-axis) & E(r) (y-axis)

ii. Find out the minimum variance portfolio.

這裡就簡單的在之前所製作好的變動項上操作 SOLVER,條件設定就是將 Var(r) 設為最小。

E(r)	Wa	Wb	Wc	Wd	Var(r)	Stdev	E(r)
MVP	0	0.195122	0.463414	0.341463	0.032439	0.180108	0.099756

▲ Minimum Variance Portfolio (MVP)

iii. Draw the efficient frontier.

Efficient frontier 的製作方法就將第一小題所畫的圖配合上 MVP,再去除掉那些同樣風險但報酬較低的點就好。

iv. If there exists a risk free rate, rf=0.02, and according to the Two-Fund separation theorem, investors will have a straight line portfolio frontier. Find out the line.

根據定義:Sharpe ratio = $\frac{R_p - R_f}{\sigma_p}$,可以得知 Sharpe ratio 即為斜率。為了使 資產配置線切在圖形上,必須使斜率最大化,得到的線叫做最佳資本配置線。 我們可以很簡單地利用 SOLVER 得到 Sharpe ratio 的最大值,最後得到一個方 程式:y = 0.504x + 0.02,其中 $y = E(R_c)$ 、 $x = \sigma_c$ 。我們在平面上任取兩點即 可畫出該方程式,而切點就叫做切線投資組合 (tangency portfolio)。

v. Mr. Smith's utility function is U = E(r) - 2.1(s2). Please find out his optimal portfolio. Draw the graph below.

此處 Mr. Smith 的 optimal portfolio 的限制式y=0.504x+0.02,而目標函數為 $U=y-2.1x^2$,目的為最大化。把 y 帶入可得: $-2.1x^2+0.504x+0.02$ 。根據二次函數極值公式可知頂點 x 發生在 $-\frac{b}{2a}=\frac{0.504}{4.2}=0.12$,因此y = 0.504*0.12 + 0.02=0.08048,最後可以得到 U 的最大值為 0.5024。最後再找點極可以畫出效用函數,而 optimal portfolio 為 $s^2=0.12$,E(r) = 0.8048。

▲ 效用函數的點(左)效用函數與最佳資本配置線(右)

vi. What are the key factors affecting Mr. Smith's portfolio choice?

觀察效用函數可以發現主要是由兩個元素所組成一報酬與風險。其中報酬是效用的加項、風險是回報的減項,因此主要是這兩項影響 Mr. Smith 的投資組合的選擇。另外,風險的係數是大於 1 的數字,可知這個效用函數較受風險所影響,他可能是屬於風險較趨避的人。