Analysis of Derivative Instruments

Financial Engineering Project 2019-03-05

Dobosiewicz, Klaudia Horzela, Joachim Ibia, Vincent Kryvyy, Taras Zokirkhonov, Fazliddinkhuja

Agenda

Foreign Exchange forward

Generic Forward contract

- The simplest OTC-traded derivative
- One counterparty, after negotiation, is obliged to buy a particular asset at a particular moment at agreed in advance price from the second counterparty
- Things to agree on:
 - Base instrument (stock, FX rate, interest rate, etc.)
 - Notional
 - Price
 - Date of settlement
 - Type of delivery
 - Physical delivery
 - Cash settled (non deliverable forward)

FX Forward: Mechanics

Source: Investopedia.com

Payoff

Formula

$$V_T = S_T - F_0$$

- For long position
- S_T the value of the FX spot rate at maturity
- F_0 agreed exchange rate
- $-V_T$ for short position (Bartkowiak & Echaust, 2014)

Profile

Valuation – discrete compounding

$$V_t^{long} = \frac{S_t}{1+r_F\tau} - \frac{F_0}{1+r\tau}$$
 ; $V_t^{short} = -V_t$

- S_t FX spot rate,
- F_0 FX forward rate,
- r_F foreign simply-compounded interest rate,
- r domestic simply-compounded interest rate,
- τ time remaining to maturity, $\tau = T t$,
- t current moment, $t \in [0, T]$,
- *T* moment of contract settlement (Bartkowiak & Echaust, 2014)

Valuation – continuous compounding

• Long position:

$$V_t = S_t e^{-\tilde{r}_F \tau} - F_0 e^{-\tilde{r}\tau}$$

- \tilde{r}_F foreign continuously-compounded interest rate,
- \tilde{r} domestic continuously-compounded interest rate
- Short position:

$$V_t^{short} = -V_t$$

Interest Rate Swap

Mechanics

- Interest Rate Swap (IRS) is an exchange of interest rate cash flows
- Depending on perspective:
 - Receiver receives fixed rate (sells IRS)
 - Payer pays fixed rate (buys IRS)
- IRS is basically a portfolio of FRA contracts with the same fixed rate

Typical IRS

Source: own research

Payoff

Long position

Payer

Pay Fixed rate

Receive Float rate

Float > Fixed $\rightarrow V_T^{long} > 0$

Short position

Receiver

Receive Fixed rate

Pay Float rate

Float < Fixed $\rightarrow V_T^{short} > 0$

Valuation – bond method

- $V_t^{long} = \tilde{P}_t \bar{P}_t$
- $V_t^{short} = \bar{P}_t \tilde{P}_t$
- \tilde{P}_t price of a bond with a floating rate,
- \bar{P}_t price of a bond with fixed rate.

Valuation – forward rates method

•
$$V_t^{long} = N\left(\left(\frac{c}{m} - \frac{r_{IRS}}{m}\right)e^{-\tilde{s}_{t_1}t_1} + \left(\frac{f_{t_1,t_2}}{m} - \frac{r_{IRS}}{m}\right)e^{-\tilde{s}_{t_2}t_2} + \dots + \left(\frac{f_{t_{k-1},t_k}}{m} - \frac{r_{IRS}}{m}\right)e^{-\tilde{s}_{t_k}t_k}\right)$$

- $V_t^{short} = -V_t^{long}$
- *N* notional amount,
- c floating interest rate used only in situation when the derivative lives for some time, and it has not price equal to zero,
- m number of payments per year,
- r_{IRS} fixed rate,
- \tilde{s}_{tk} continuously compounded spot rate at time t for the k^{th} (last) cash flow,
- f_{t_{k-1},t_k} forward rate at time t for the maturity < k-1, k>.

Cross-currency Interest Rate Swap

Mechanics

- Hedges both FX and interest rate risks
- Initial capital exchange in two currencies at the current exchange rate.
- Periodic interest exchange payments on swap nominal amounts (possible interest rates: fixed-fixed, fixedvariable, variable-variable).
- Final equity exchange at the exchange rate starting from the swap date.

Source: (Bartkowiak & Echaust, 2014)

Payoff

For A

$$CF_A - CF_B \cdot F_A > 0$$

$$V_A > 0$$

For B

$$CF_B - CF_A \cdot F_B > 0$$

$$V_B > 0$$

Valuation – bond method

$$V_t = S_t \cdot P_t^f - P_t^d$$

(for the counterparty paying in domestic currency)

$$V_t = P_t^d - S_t \cdot P_t^f$$

(for the counterparty paying in foreign currency)

- P_t^d domestic bond price
- P_t^f foreign bond price
- S_t FX rate

Valuation – forward rate method (two fixed legs example)

$$V_{A} = (CF_{A} - CF_{B} \cdot F_{A_{1}}) \cdot e^{-\tilde{s}_{A_{1}} \cdot 1} + (CF_{A} - CF_{B} \cdot F_{A_{2}}) \cdot e^{-\tilde{s}_{A_{2}} \cdot 2} + \cdots + (CF_{A} + N_{A}) - (CF_{B} + N_{B}) \cdot F_{A_{M}} \cdot e^{-\tilde{s}_{A_{M}} \cdot M}$$

- $F_{A_t} = C_A \backslash C_B \cdot e^{(\tilde{s}_{A_t} \tilde{s}_{B_t})}$
- $CF_A = N_A \cdot r_{IRS_A}$
- $CF_B = N_B \cdot r_{IRS_B}$
- *M* moment of the last cash flow

Source: own research, (Bartkowiak & Echaust, 2014)

Valuation – forward rate method (two fixed legs example)

- V_A value of CIRS for counterparty A
- C_A/C_B current exchange rate (eg. PLN/EUR)
- \tilde{S}_{A_t} , \tilde{S}_{B_t} spot rates of counterparties A and B at time t
- F_{A_t} forward exchange rate at time t
- CF_A , CF_B cash flows of counterparty A and B
- N_A , N_B total swap amounts of counterparties A and B
- r_{IRS} fixed rate

Source: own research, (Bartkowiak & Echaust, 2014)

References

• Bartkowiak, M. & Echaust, K. (2014). *INSTRUMENTY POCHODNE Wprowadzenie do inżynierii finansowej.* Poznan: Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu.