Introduction mathématique aux sciences de la vie

Séance d'exercices du 06/10/25

Liens:

• Vers les slides: QR-code

• Vers le pdf (après le scan du QR-code): Ouvrir le PDF

Remédiations

Cette semaine:

- 1. Aujourd'hui: séance Q/R pour les BIOMED.
- 2. Mardi matin: séance Q/R pour les BIOL.
- 3. Mardi après midi: séance Q/R pour les PHARMA.

1.2 Produits scalaire et vectoriel

Rappels

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs:

- Produit scalaire: $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| ||\overrightarrow{v}|| \cos(\theta)$, où θ est l'angle entre les deux vecteurs. (Définition indépendante du nombre de composantes)
- ullet En 2D: $\overrightarrow{u}\cdot\overrightarrow{v}=u_1v_1+u_2v_2$, où $\overrightarrow{u}=(u_1,u_2)$ et $\overrightarrow{v}=(v_1,v_2)$.
- En 2D: $\|\overrightarrow{u}\| = \sqrt{u_1^2 + u_2^2}$.

Rappels

- En 3D: $\overrightarrow{u}\cdot\overrightarrow{v}=u_1v_1+u_2v_2+u_3v_3$, où $\overrightarrow{u}=(u_1,u_2,u_3)$ et $\overrightarrow{v}=(v_1,v_2,v_3)$.
- En 3D: $\|\overrightarrow{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2}$.
- Ces liens entre composantes, norme et angle permettent de résoudre plein d'exercices.

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan ou de l'espace muni d'un repère orthonormé où θ est l'angle entre \overrightarrow{u} et \overrightarrow{v} . Calculez $\overrightarrow{u} \cdot \overrightarrow{v}$ si

$$ullet \|\overrightarrow{u}\| = 3$$
, $\|\overrightarrow{v}\| = 5$ et $heta = 60^\circ$

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan ou de l'espace muni d'un repère orthonormé où θ est l'angle entre \overrightarrow{u} et \overrightarrow{v} . Calculez $\overrightarrow{u} \cdot \overrightarrow{v}$ si

$$\|\overrightarrow{u}\| = rac{1}{\sqrt{3}}$$
, $\|\overrightarrow{v}\| = 3$ et $heta = rac{5\pi}{6}$

$$\overrightarrow{u}\cdot\overrightarrow{v}=rac{1}{\sqrt{3}}3\cos(5\pi/6)=-3/2$$

$$\|\overrightarrow{u}\| = rac{3}{2}$$
, $\|\overrightarrow{v}\| = 4$ et $heta = rac{\pi}{4}$

$$\overrightarrow{u}\cdot\overrightarrow{v}=rac{3}{2}4\cos(\pi/4)=3\sqrt{2}$$

$$ullet \|\overrightarrow{u}\| = rac{1}{3}$$
, $\|\overrightarrow{v}\| = 2$ et $heta = rac{\pi}{2}$

$$\overrightarrow{u}\cdot\overrightarrow{v}=rac{1}{3}2\cos(\pi/2)=0$$

$$ullet$$
 $\|\overrightarrow{u}\|=4$, $\|\overrightarrow{v}\|=1$ et $heta=135^\circ$

$$\overrightarrow{u}\cdot\overrightarrow{v}=4\cos(3\pi/4)=-2\sqrt{2}$$

Soient A, B, C et D quatre points du plan ou de l'espace muni d'un repère orthonormé. Calculez $\overrightarrow{AB} \cdot \overrightarrow{CD}$ si

$$\stackrel{\longrightarrow}{AB}=(-5;1) ext{ et } \overrightarrow{CD}=(-3;2)$$

$$\overrightarrow{AB} \cdot \overrightarrow{CD} = 15 + 2 = 17$$

$$ullet A=(3;4)$$
 , $B=(-2;1)$, $C=(4;-2)$ et $D=(-1;-3)$

$$\overrightarrow{AB} \cdot \overrightarrow{CD} = (-5; -3) \cdot (-5; -1) = 25 + 3 = 28$$

Soient A, B, C et D quatre points du plan ou de l'espace muni d'un repère orthonormé. Calculez $\overrightarrow{AB} \cdot \overrightarrow{CD}$ si

$$\stackrel{\longrightarrow}{AB}=(4;1;-2) ext{ et } \overrightarrow{CD}=(-3;-1;2)$$

$$\overrightarrow{AB} \cdot \overrightarrow{CD} = -12 - 1 - 4 = -17$$

$$ullet$$
 $A=(3;0;4)$, $B=(-2;1;1)$, $C=(4;-2;-3)$ et $D=(-1;-3;2)$

$$\overrightarrow{AB} \cdot \overrightarrow{CD} = (-5; 1; -3) \cdot (-5; -1; 5) = 25 - 1 - 15 = 9$$

Rappel: produit vectoriel

Soit $\overrightarrow{u}=(u_1,u_2,u_3)$ et $\overrightarrow{v}=(v_1,v_2,v_3)$. Le produit vectoriel de ces deux vecteurs $\overrightarrow{u}\wedge\overrightarrow{v}$ a les composantes suivantes:

$$egin{aligned} \overrightarrow{u} \wedge \overrightarrow{v} &= egin{array}{cccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \ u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ \end{array} \ &= egin{array}{ccccc} u_2 & u_3 \ v_2 & v_3 \ \end{array} igg| \cdot \overrightarrow{i} + egin{array}{cccc} u_1 & u_3 \ v_1 & v_3 \ \end{array} igg| \cdot \overrightarrow{j} + egin{array}{cccc} u_1 & u_2 \ v_1 & v_2 \ \end{array} igg| \cdot \overrightarrow{k} \end{aligned}$$

Ce vecteur est perpendiculaire à \overrightarrow{u} et \overrightarrow{v} et est de norme $\|\overrightarrow{u}\wedge\overrightarrow{v}\|=\|\overrightarrow{u}\|\|\overrightarrow{v}\|\sin(\theta)$. Son sens est donné par la règle de la main droite.

Rappel: produit vectoriel

$$\overrightarrow{u}=(2;1;1)$$
 et $\overrightarrow{v}=(1;2;1)$

•
$$\overrightarrow{u} = (1;0;2) \text{ et } \overrightarrow{v} = (0;1;-1)$$
 $\rightarrow \|\overrightarrow{u}\| = \sqrt{5} \text{ et } \|\overrightarrow{v}\| = \sqrt{2}$
 $\rightarrow \overrightarrow{u} \cdot \overrightarrow{v} = -2$
 $\rightarrow \theta = \arccos\left(\frac{-2}{\sqrt{10}}\right) \simeq 2,25 \text{ rad}$
 $\rightarrow \overrightarrow{u} \wedge \overrightarrow{v} = (-2;1;1)$

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace muni d'un repère orthonormé où θ est l'angle entre \overrightarrow{u} et \overrightarrow{v} . Déterminez la norme de \overrightarrow{u} et de \overrightarrow{v} , leur produit scalaire, leur produit vectoriel et l'amplitude de θ si

$$\overrightarrow{u}=(12;27;6) ext{ et } \overrightarrow{v}=(2;9/2;1)$$

Attention!: $\overrightarrow{u}=6\overrightarrow{v}$

•
$$\|\overrightarrow{u}\|=3\sqrt{101}$$
 et $\|\overrightarrow{v}\|=\sqrt{101}/2$

$$\overrightarrow{u} \cdot \overrightarrow{v} = 303/2$$

•
$$\theta = 0$$
rad

$$\overrightarrow{u}\wedge\overrightarrow{v}=(0;0;0)$$

$$\overrightarrow{u}=(2;1;1) ext{ et } \overrightarrow{v}=(13;26;13)$$

Attention!: $\overrightarrow{v}=13(1;2;1)$

$$ullet$$
 $\|\overrightarrow{u}\| = \sqrt{6}$ et $\|\overrightarrow{v}\| = 13\sqrt{6}$

$$\overrightarrow{u}\cdot\overrightarrow{v}=13(2+2+1)=65$$

$$ullet heta = rccosigg(rac{5}{6}igg) \simeq 0.58 {
m rad}$$

$$\stackrel{ullet}{u}\wedge\stackrel{ullet}{v}=13(2;1;1)\wedge(1;2;1)=13(-1;-1;3)$$

$$\overrightarrow{u}=(1;-1;2)$$
 et $\overrightarrow{v}=(3;1;-1)$

$$ightarrow$$
 $\|\overrightarrow{u}\| = \sqrt{6}$ et $\|\overrightarrow{v}\| = \sqrt{11}$

$$\rightarrow \overrightarrow{u} \cdot \overrightarrow{v} = 0$$

$$\theta = \arccos(0) = \pi/2\text{rad}$$

$$ightarrow \stackrel{
ightarrow}{u} \wedge \stackrel{
ightarrow}{v} = (-1;7;4)$$

•
$$\overrightarrow{u} = (-1; 2; 1)$$
 et $\overrightarrow{v} = (4; -1; -2)$
 $\overrightarrow{u} = (-1; 2; 1)$ et $\overrightarrow{v} = (4; -1; -2)$
 $\overrightarrow{u} = (-1; 2; 1)$ et $\overrightarrow{v} = (4; -1; -2)$
 $\overrightarrow{u} = (-1; 2; 1)$ et $\overrightarrow{v} = (4; -1; -2)$
 $\overrightarrow{u} = (-1; 2; 1)$ et $\overrightarrow{v} = (4; -1; -2)$
 $\overrightarrow{u} = (-1; 2; 1)$ et $\overrightarrow{v} = (4; -1; -2)$
 $\overrightarrow{u} = (-1; 2; 1)$ et $\overrightarrow{v} = (4; -1; -2)$
 $\overrightarrow{u} = (-1; 2; 1)$ et $\overrightarrow{v} = (4; -1; -2)$
 $\overrightarrow{u} = (-1; 2; 1)$ et $\overrightarrow{v} = (4; -1; -2)$
 $\overrightarrow{u} = (-1; 2; 1)$ et $\overrightarrow{v} = (4; -1; -2)$
 $\overrightarrow{u} = (-1; 2; 1)$ et $\overrightarrow{v} = (4; -1; -2)$
 $\overrightarrow{u} = (-1; 2; 1)$ et $\overrightarrow{v} = (-3; 2; -7)$

•
$$\overrightarrow{u} = (2; -1; 2)$$
 et $\overrightarrow{v} = (-3; 7; 1)$
 $\rightarrow \|\overrightarrow{u}\| = 3$ et $\|\overrightarrow{v}\| = \sqrt{59}$
 $\rightarrow \overrightarrow{u} \cdot \overrightarrow{v} = -11$
 $\rightarrow \theta = \arccos\left(\frac{-11}{3\sqrt{59}}\right) \simeq 2.07 \text{rad}$
 $\rightarrow \overrightarrow{u} \wedge \overrightarrow{v} = (-15; -8; 11)$

$$\overrightarrow{u}=(1;0;0)$$
 et $\overrightarrow{v}=(0;1;0)$

$$ightarrow \|\overrightarrow{u}\| = 1$$
 et $\|\overrightarrow{v}\| = 1$

$$\rightarrow \overrightarrow{u} \cdot \overrightarrow{v} = 0$$

$$\theta = \arccos(0) = \pi/2\text{rad}$$

$$ightarrow \overrightarrow{u} \wedge \overrightarrow{v} = (0;0;1)$$

Considérons les vecteurs \overrightarrow{u} et \overrightarrow{v} tels que $\|\overrightarrow{u}\|=5$, $\|\overrightarrow{v}\|=2$ et $\overrightarrow{u}\cdot\overrightarrow{v}=10$. Montrez que la norme du vecteur $\overrightarrow{w_1}=2\overrightarrow{u}+3\overrightarrow{v}$ est égale à 16 et que celle du $\overrightarrow{w_2}=2\overrightarrow{u}-3\overrightarrow{v}$ est égale à 4

Considérons les vecteurs \overrightarrow{u} et \overrightarrow{v} tels que $\|\overrightarrow{u}\|=1$, $\|\overrightarrow{v}\|=3$ et $\overrightarrow{u}\cdot\overrightarrow{v}=-2$. Montrez que la norme du vecteur $\overrightarrow{w_1}=2\overrightarrow{u}+3\overrightarrow{v}$ est égale à $\sqrt{61}$ et que celle du $\overrightarrow{w_2}=2\overrightarrow{u}-3\overrightarrow{v}$ est égale à $\sqrt{109}$.

Exercice supplémentaire

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace muni d'un repère orthonormé. Calculez, via les composantes, $(\overrightarrow{u} \land \overrightarrow{v}) \cdot \overrightarrow{u}$ et $(\overrightarrow{u} \land \overrightarrow{v}) \cdot \overrightarrow{v}$. Qu'en conclure sur le vecteur $\overrightarrow{u} \land \overrightarrow{v}$ par rapport aux vecteurs \overrightarrow{u} et \overrightarrow{v} ?

1.3 Décomposition

Figure 7

Figure 8

Figure 9

FIGURE 10

FIGURE 11

FIGURE 12

Figure 13

Figure 14

On donne les vecteurs suivants $\overrightarrow{u}=(73\ 123\ 416;146\ 246\ 832)$ et $\overrightarrow{v}=(-79\ 035\ 264;39\ 517\ 632)$, deux vecteurs du plan muni d'un repère orthonormé. utiliser de calculatrice, démontrez que les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux.