DIFERENCIAR ENTRE LENGUAJE NUMÉRICO Y ALGEBRAICO

Nombre:	Curso:	Fecha:	

El lenguaje que utilizamos habitualmente se llama **lenguaje usual**, y es con el que escribimos y/o hablamos. También usamos el **lenguaje numérico**, en el que empleamos números y signos aritméticos.

EJEMPLO

Lenguaje usual	Lenguaje numérico
La suma de dos más cuatro es seis.	2 + 4 = 6
Diez menos tres es siete.	10 - 3 = 7
Ocho dividido entre dos es cuatro.	8:2=4
El cuadrado de tres es nueve.	$3^2 = 9$
La mitad de doce es seis.	$\frac{12}{2} = 6$

ACTIVIDADES

- 1 Expresa las siguientes frases con lenguaje numérico.
 - a) El triple de dos es seis.

c) Quince menos ocho es siete.

b) Veinte dividido entre cinco es cuatro.

- d) El cubo de dos es ocho.
- Además del lenguaje escrito y el lenguaje numérico, se utilizan letras, normalmente minúsculas, para designar a un número cualquiera y para sustituir números.
- El lenguaje que utiliza letras en combinación con números y signos se llama **lenguaje algebraico**. La parte de las Matemáticas que estudia la relación entre números, letras y signos se denomina Álgebra.
- Las letras más usuales son: x, y, z, a, b, c, m, n, t, r, s, y representan a cualquier número.

FIEMPI O

EJEIVIPLO		
Lenguaje usual	Lenguaje numérico	
La suma de dos números.	a + b	
Un número aumentado en cuatro unidades.	x + 4	
El triple de un número.	3 · m	

2 Completa la siguiente tabla.

Lenguaje usual	Lenguaje Algebraico
El doble de un número	
Un número disminuido en 3 unidades	
La mitad de un número	
El cuadrado de un número	
El triple de un número	
Un número aumentado en 5 unidades	

OBTENER EL VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA

Nombre: Curso: Fecha:

Una **expresión algebraica** es el conjunto de números y letras combinados con los signos de las operaciones aritméticas: suma, resta, multiplicación, división y potenciación.

EJEMPLO

- El **área de un cuadrado** se obtiene multiplicando la medida de sus lados: $A = I \cdot I = I^2$
- El **perímetro** de un campo de fútbol es la suma de sus lados (bandas): P = x + y + x + y

EJEMPLO

$$a + b$$

$$\frac{x}{3} + 1$$

$$3 \cdot (a+b)$$

$$x^2 + 1$$

$$x + y - 5$$

ACTIVIDADES

Utiliza expresiones algebraicas para expresar las siguientes informaciones.

Expresión escrita	Expresión Algebraica
El doble de la suma de dos números	$2\cdot(x+y)$
El área de un cuadrado de lado x	
El cuadrado de un número más 4 unidades	
El perímetro de un campo de baloncesto (largo <i>b</i> y ancho <i>a</i>)	
El producto de tres números cualesquiera	
La mitad de un número	
El doble de un número más 3 unidades)

2 Inventa frases para estas expresiones algebraicas.

Expresión escrita	Expresión Algebraica
	a + b
	<u>X</u> 4
	m + 2
	3 · (a · b)
	$\frac{x}{3} + 2$
	$2\cdot (x-y)$

OBTENER EL VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA

Nombre: Curso: Fecha:

El **valor numérico** de una expresión algebraica es el número que resulta de **sustituir** las letras por números y realizar las operaciones que se indican.

EJEMPLO

Halla el valor numérico de la expresión $2 \cdot x + 1$, para x = 1.

Primero habrá que sustituir la x de la expresión por el valor que se indica: 1.

$$2 \cdot 1 + 1$$

Realizamos la operación y obtenemos el resultado, el valor numérico:

$$2 \cdot 1 + 1 = 2 + 1 = 3$$

3 Halla el valor numérico de la expresión $3 \cdot x - 5$ cuando x toma los valores.

a)
$$x = 0$$

 $3 \cdot 0 - 5 = 0 - 5 = -5$

c)
$$x = 1$$

e)
$$x = -1$$

b)
$$x = 2$$

d)
$$x = -2$$

f)
$$x = -3$$

4 Calcula el valor de las expresiones para estos valores.

Valor de x	$3 \cdot x - 2$	$x^2 + 1$
<i>x</i> = 1	$3 \cdot 1 - 2 = 3 - 2 = 1$	$1^2 + 1 = 1 + 1 = 2$
x = 2		
x = -1		
x = 0		
x = -2		

Valor de a y b	$5 \cdot a - 2 \cdot b$	$(a+b)^2$
a = 0	$5 \cdot 0 - 2 \cdot 1 = 0 - 2 = -2$	$(0+1)^2=1^2=1$
b = 1	3 0 2 1 0 2 2	(0 1 1)
a = 1		
b=2		
a=-1		
b = -2		
a=2		
b = 3		
a = -2		
b = -3		

REPASO Y APOYO IDENTIFICAR MONOMIOS. REALIZAR SUMAS Y RESTAS CON MONOMIOS

Nombre:	Curso:	Fecha:

MONOMIOS

Un **monomio** es la expresión algebraica más simple y está formada por productos de letras y números.

- Los números se denominan coeficientes.
- Las letras se denominan parte literal.

Ejemplos de monomios: $2 \cdot x$; $5 \cdot x^2$; -x; x; $-3 \cdot y^2$; $3 \cdot a \cdot b$

Monomio	Coeficiente	Parte Literal
2 · x	2	X

Monomio	Coeficiente	Parte Literal
$-3 \cdot a \cdot b$	-3	a·b

REGLAS PARA ESCRIBIR MONOMIOS

- 1.ª El factor 1 no se pone: $1 \cdot x \cdot y$ es igual que $x \cdot y$.
- 2.ª El exponente 1 no se indica:
 - $-3 \cdot x^1 \cdot y^2$ es igual que $-3 \cdot x \cdot y^2$.
- 3.ª El signo de multiplicación no se pone ni entre los números ni entre las letras:
 - $2 \cdot a \cdot b^2$ es igual que $2ab^2$.

ACTIVIDADES

1 Completa las siguientes tablas.

Monomio	Coeficiente	Parte Literal
-5ab	-5	
X ³		,

Monomio	Coeficiente	Parte Literal
4xyz	4	
-3ab²c		,

GRADO DE UN MONOMIO

Los monomios se clasifican por grados. El **grado** de un monomio es el número que resulta de sumar todos los exponentes de la parte literal del monomio.

EJEMPLO

Monomio Grado		Grado	Explicación
	2x	1	El exponente de x es 1.
$-4x^2y \qquad \qquad 3$		3	La suma de los exponentes de x^2y^1 es 3.

2 Completa la siguiente tabla.

Monomio	Coeficiente	Parte Literal	Grado	Explicación del Grado
2x	2	X	1	
$-4a^2bc^3$				
3 <i>x</i> ³				,

Fecha: Nombre: Curso:

MONOMIOS SEMEJANTES

Dos o más monomios son **semejantes** cuando tienen la misma parte literal.

EJEMPLO

Monomios		Parte Literal		¿son semejantes?	
	2 <i>x</i>	3 <i>x</i>	Χ	Х	Sí
	4 <i>x</i> ² <i>y</i>	2xy²	X ² y	Xy ²	No

3 Para cada monomio escribe dos que sean semejantes y sus partes literales.

Monomio	Semejante	Semejante	Parte Literal
3 <i>x</i>			
$-2a^2b$			
$-5x^3$			
$-y^2Z^3$,

SUMA Y RESTA DE MONOMIOS

- La suma o resta de monomios se puede realizar si son semejantes, es decir, si tienen la misma parte literal.
- El resultado es otro monomio que tiene por coeficiente la suma o resta de los coeficientes y la misma parte literal.

Son monomios semejantes. La parte literal es p.

$$3p + 2p = 5p$$

$$\square \square \square \square \square - \square \square = \square \square \square$$

Son monomios semejantes.

$$5p - 2p = 3p$$

La parte literal es p.

Son monomios no semejantes.

$$3p + 2g = 3p + 2g$$

La suma se deja indicada.

4 Escribe dos monomios semejantes y súmalos.

a)
$$x + \dots + \dots =$$

c)
$$+ 2x^3 + \dots =$$

b)
$$+$$
 3 $a =$

d)
$$+$$
 $+$ 3 $xy =$

5 Escribe otro monomio semejante y réstalos.

a)
$$6x - \dots =$$

b)
$$-5x^2 =$$

d)
$$-3xy =$$

COMPRENDER EL SIGNIFICADO DE IGUALDAD, IDENTIDAD Y ECUACIÓN

Nombre:

Curso:

Fecha:

IGUALDAD

Una **igualdad** está formada por dos expresiones separadas por un signo igual (=).

Las igualdades pueden ser:

• Numéricas, si solo aparecen números:

5 + 2 = 7 o verdadera

5 + 2 = 8 o falsa

• Algebraicas, si aparecen números y letras:

10 + x = 13

ACTIVIDADES

Escribe tres igualdades numéricas y otras tres algebraicas.

Numéricas

Algebraicas

2 Indica si las siguientes igualdades son verdaderas o falsas. Razona tus respuestas.

a)
$$(3 \cdot 7) + 21 = 15 + 10$$

b)
$$22 - 10 = 8 \cdot 2$$

c)
$$(6 \cdot 4) - 5 = (7 \cdot 2) + 7$$

d)
$$25:5 = (10 \cdot 5) - (9 \cdot 5)$$

IDENTIDAD

Una **identidad** es una igualdad algebraica (números y letras) que es cierta para cualquier valor de las letras.

EJEMPLO

$$x + x = 2x$$

$$Si x = 1 \rightarrow 1 + 1 = 2 \cdot 1 \rightarrow 2 = 2$$

$$a + b = b + a$$

$$Sia = 1, b = 2 \rightarrow 1 + 2 = 2 + 1 \rightarrow 3 = 3$$

3 Comprueba que las identidades se cumplen; da valores y verifica la igualdad.

a)
$$2x + x = 3x$$

b)
$$a \cdot b = b \cdot a$$

Di si son verdaderas o falsas las siguientes identidades.

a)
$$a + b = b + a$$

c)
$$a - b = b - a$$

e)
$$x + x = x^2$$

b)
$$x + x = 2x$$

d)
$$x \cdot x = x^2$$

f)
$$x \cdot x = 2x$$

Nombre:

Curso:

Fecha:

ECUACIÓN

Una **ecuación** es una igualdad algebraica que no es cierta para todos los valores de las letras.

EJEMPLO

 $\mathbf{x} + \mathbf{2} = \mathbf{8} \rightarrow \text{Solo se cumple cuando } \mathbf{x} \text{ toma el valor } \mathbf{6} \rightarrow \mathbf{6} + \mathbf{2} = \mathbf{8}$

Indica cuáles de las expresiones son igualdades, identidades o ecuaciones.

Expresión	Tipo
6 + 5 = 11	
3 + x = 15	
a+b=b+a	
7 + 3 = 10	
20 - x = 4	
x + x + x = 3x)

6 Halla mentalmente el valor *x* en las siguientes ecuaciones.

Ecuación	Valor de x	Razonamiento
5 + x = 7	x = 2	5 + 2 = 7
11 - x = 6		
9 - x = 1		
10 - x = 3		
x + 1 = 1		
10-2x=4)

7 Completa los huecos para verificar las ecuaciones.

a)
$$+ 5 = 15$$

c)
$$-6 = 11$$

e)
$$+ 8 = 12$$

b)
$$3 - \dots = 3$$

d)
$$17 + \dots = 20$$

f)
$$22 - \dots = 12$$

RESOLVER ECUACIONES SENCILLAS DE PRIMER GRADO

Nombre: Curso:	Fecha:
----------------	--------

LAS ECUACIONES Y SU ESTRUCTURA

Miembros y términos

Una ecuación es una igualdad algebraica que está separada por un signo igual (=).

Este signo diferencia dos partes en la ecuación, llamadas **miembros**, que contienen **términos** formados por números y/o letras.

$$5 + x = 12$$

Incógnitas

La incógnita es el valor que desconocemos y queremos hallar. Es un valor numérico y se representa habitualmente por las letras x, y, z, a, b.

- En la ecuación 5 + x = 12, x es la incógnita, el valor que desconocemos.
- El término *x* tiene grado 1, *x* = *x*¹, por lo que estas ecuaciones se denominan **ecuaciones de primer grado con una incógnita**.

Solución

La solución es el valor numérico que debemos hallar para que se verifique una ecuación.

- En la ecuación 5 + x = 12, x = 7 es la solución de la ecuación.
- Si sustituimos la incógnita por su valor se verifica la ecuación: 5 + 7 = 12.

ACTIVIDADES

1 Completa la siguiente tabla.

Ecuación	Primer miembro	Segundo miembro	Términos	Incógnita	Grado
7 + x = 20					
18 = 2x					
5x = 12 + x					
14 - 3x = 8 + x					

2 Indica la solución de las ecuaciones.

a)
$$7 + x = 20$$

c)
$$3x = 6$$

b)
$$15 - x = 12$$

d)
$$18 = 2x$$

RESOLUCIÓN DE ECUACIONES

Resolución por tanteo

Este método utiliza el razonamiento y la intuición para probar valores numéricos en enunciados sencillos y obtener su solución.

- En la ecuación: x + 5 = 12, la pregunta sería: ¿Qué número sumado a 5 da 12?
- Solución: x = 7, ya que 7 + 5 = 12.

RESOLVER ECUACIONES SENCILLAS DE PRIMER GRADO

Nombre: Curso: Fecha:

3 Completa la tabla.

Ecuación	Pregunta	Solución	Comprobación
x + 8 = 11 ¿Qué número sumado a 8 da 11?		<i>x</i> = 3	3 + 8 = 11
x - 6 = 9			
18 = 2x			
$\chi^2 = 4$			

Calcula la solución por tanteo.

Ecuación	Solución
x + 1 = 7	
14 = 2x	
$\frac{x}{6} = 3$	
$\chi^2 = 9$	

RESOLUCIÓN DE ECUACIONES DE PRIMER GRADO

El objetivo de resolver ecuaciones es encontrar y hallar la incógnita. Para ello, debemos conseguir «dejarla sola», despejarla y encontrar el valor numérico que verifica la igualdad.

- 1.º Eliminamos los paréntesis, si los hubiera.
- 2.º Agrupamos los términos con la incógnita en un miembro y los términos numéricos en el otro.
- 3.º Reducimos los términos semejantes.
- 4.º Despejamos la incógnita y hallamos su valor numérico.

EJEMPLO

Resuelve la ecuación 5 + x = 12.

$$5 + x = 12$$

$$5 + (-5) + x = 12 + (-5)$$

Agrupamos los términos con la incógnita en un miembro y los términos numéricos en el otro.

$$0 + x = 12 - 5$$

Reducimos términos semejantes.

$$x = 7$$

Despejamos y hallamos el valor numérico de la incógnita.

5 Resuelve las siguientes ecuaciones.

a)
$$x + 10 = 16$$

b)
$$12 = 6 + x$$

c)
$$x - 7 = 3$$

$$x + 10 = 16$$

$$x + 10 + (-10) = 16 + (-10)$$

$$x + 0 = 16 - 10$$

$$x = 4$$

270

RESOLVER ECUACIONES SENCILLAS DE PRIMER GRADO

Nombre: Curso: Fecha:

6 Halla la solución de las ecuaciones.

a)
$$4x - 7 = 3 - x$$

$$4x - 7 + 7 = 3 - x + 7$$

$$4x = 10 - x$$

$$4x + (+x) = 10 - x + (+x)$$

$$4x + x = 10$$

$$5x = 10$$

$$\frac{5x}{5} = \frac{10}{5}$$

$$x = 2$$

b)
$$6x - 2x = 8$$

Agrupamos los términos numéricos en un miembro.

Los términos con incógnita en el otro miembro.

Reducimos términos semejantes.

Agrupamos.

Reducimos términos semejantes.

Despejamos la incógnita y hallamos su valor numérico.

c)
$$8x - 5x = 12$$

7 Resuelve estas ecuaciones.

a)
$$3x + 2 + x = 8 + 2x$$

b)
$$x + 8 = 3x - 6$$

c)
$$5x - 3x = 20 + x$$

8 Completa la resolución de las ecuaciones, dando prioridad a las operaciones entre paréntesis.

a)
$$3(x-3) = 5(x-1) - 6x$$

$$3x - 9 = 5x - 5 - 6x$$

b)
$$3x + 8 - 5x - 5 = 2(x + 6) - 7x$$

$$-2x + 3 = 2x + 12 - 7x$$