## Math 143 Quiz 3

Names: \_\_\_\_\_

**1.** Euler's amazing formula is  $e^{it} = \cos t + i \sin t$ . Use this to explain why this identity is true:

$$(\cos t + i\sin t)^n = \cos(nt) + i\sin(nt).$$

**2.** Use Euler's formula to expand both sides of the equation  $e^{(a+b)i}=e^{ai}e^{bi}$  in terms of sines and cosines. Compare the real and imaginary components to explain why these two identities are true:

$$\cos(a+b) = \cos a \cos b - \sin a \sin b,$$

$$\sin(a+b) = \cos a \sin b + \cos b \sin a.$$

**3.** Find the equation of the line tangent to the curve  $\begin{cases} x = \cos(2t) + t, \\ y = \sin(2t) + t, \end{cases}$  for  $t \in \mathbb{R}$  at the point  $(1 + \pi, \pi)$ .



**4.** Find the values of t for which there are vertical tangent lines in the graph in question **3**.