Análisis cualitativo de sistemas dinámicos con origen biológico

Bartolomé Ortiz Viso

Trabajo Fin de Grado Grado en Matemáticas Universidad de Granada

Septiembre, 2017

Esquema

- Introducción
 - Osciladores fisiológicos
- Poincaré-Bendixson
 - Aplicación directa
- Teoría de Bifurcaciones
 - Bifurcaciones 1-D
 - Bifurcaciones 2-D
- 4 Análisis numérico
 - Ejemplos
- Conclusiones

Osciladores fisiológicos

Oscilador de Van der Pol

Este oscilador fue descrito originalmente por Balthasar Van der Pol en 1927 debido al descubrimiento de lo que el denominó: oscilaciones de relajación.

$$x'' - \alpha(1 - x^2)x' + x = 0, \ (\alpha > 0).$$

En estas condiciones, fijando el parámetro como $\alpha=1$, y transformando la ecuación llegamos a:

$$\begin{cases} x' = -y - \frac{x^3}{3} + x \\ y' = x \end{cases}.$$

Poincaré-Bendixson

Theorem (Poincaré-Bendixson)

Sea C^+ una semiórbita positiva contenida en un subconjunto cerrado K de D. Si $L(C^+)$ esta formado únicamente por puntos regulares entonces se da alguna de las siguientes situaciones:

- C⁺ es una órbita periódica,
- L(C⁺) es una órbita periódica.

Es decir, o nuestra solución se acercará indefinidamente a una órbita periódica o será una órbita periódica.

Comportamiento

Figure: Diagrama de fase de nuestro oscilador. Se puede intuir la aparición del ciclo límite

Figure: Diagrama de los vectores alrededor de la nulclina según el estudio.

Comportamiento

Figure: Comportamiento del oscilador de Van der Pol con $\alpha = 1.0$.

Ahora bien, ¿y si en los sistemas que estudiamos no fijamos con anterioridad el parámetro?

Teoría de bifurcaciones

Sea nuestro sistema a estudiar de la forma

$$x' = f(x, \alpha)$$

donde $x \in \mathbb{R}^n$ corresponde a nuestras variables y $\alpha \in \mathbb{R}^n$ corresponde a los parámetros que aparecen en nuestro sistema.

Equivalencia topológica entre dos sistemas dinámicos

Un sistema dinámico $\{T,\mathbb{R}^n,\phi(t)\}$ es considerado topológicamente equivalente o equivalente a un sistema dinámico $\{T,\mathbb{R}^n,\psi(t)\}$ si existe un homeomorfismo $h:\mathbb{R}^n\to\mathbb{R}^n$ que lleva las órbitas del primero en las de el segundo, preservando la dirección del tiempo.

Bifurcación

La aparición de un diagrama de fases no equivalente topológicamente bajo la variación de α es lo que denominamos bifurcación.

Gusanos de las píceas

Modelo

Modelo tratado por Ludwig en 1978, que modeliza la dinámica de una población de gusanos en un bosque

$$\frac{dx}{d\tau} = rx(1 - \frac{x}{k}) - \frac{x^2}{1 + x^2}.$$

Los puntos fijos, que vendrán dados por la ecuación:

$$0 = \frac{dx}{d\tau} = rx\left(1 - \frac{x}{k}\right) - \frac{x^2}{1 + x^2} \Leftrightarrow$$
$$\Leftrightarrow \begin{cases} r\left(1 - \frac{x}{k}\right) = \frac{x}{1 + x^2}, \\ x = 0. \end{cases}$$

Gusanos de las píceas

Bifurcacion en 1-D

Theorem (Forma normal de la bifurcación fold)

Supongamos el sistema 1-dimensional:

$$x' = f(x, \alpha),$$

con f derivable y un punto fijo en x=0 cuando a=0. Supongamos además que verifica: $f_x(0,0)=0$, $f_{xx}(0,0)\neq 0$) y $f_\alpha(0,0)\neq 0$ Entonces nuestro sistema tiene una bifurcación fold y su forma normal puede escribirse como:

$$x' = \alpha + x^2.$$

Sel'kov

Modelo

Propuesto por Sel'kov en 1986, modeliza las fluctuciones de las sustancias que interviene en la glicólisis celular.

$$\begin{cases} x' = -x + ay + x^2y = f(x, y) \\ y' = b - ay - x^2y = g(x, y). \end{cases}$$

Sel'kov

Theorem (Criterio Bifurcación Hopf)

Consideremos el sistema:

$$\begin{cases} x' = f(x, y, \alpha) \\ y' = g(x, y, \alpha) \end{cases}.$$

Donde α es nuestro parámetro. Supongamos que tenemos un punto fijo $(x,y)=(x_0,y_0)$ y supongamos que los valores propios del sistema linealizado en un entorno del punto son: $\lambda_{1,2}=a(\alpha)\pm ib(\alpha)$. Supongamos ahora que para un valor de $\alpha=\alpha_0$ se verifican:

1
$$a(\alpha) = 0$$
, $b(\alpha) = \omega \neq 0$ donde $sgn(\omega) = sgn[(g_x(x_0, y_0, \alpha_0))]$

$$a_{\alpha}(\alpha_0) \neq 0$$

$$\delta = \frac{1}{16}(f_{xxx} + f_{xyy} + g_{xxy} + g_{yyy}) + \frac{1}{16\omega}(f_{xy}(f_{xx} + f_{yy}) - g_{xy}(g_{xx} + g_{yy}) - f_{xx}g_{xx} + f_{yy}g_{yy})$$

Métodos numéricos

Nuestro problema consiste en encontrar los puntos de equilibrio de un sistema, mientras modificamos el parámetro. Es decir:

Dado

$$x' = f(x, \alpha), \ x \in \mathbb{R}^n, \ \alpha \in \mathbb{R}.$$

Resolver

$$f(x,\alpha)=0.$$

Mientras variamos el parámetro.

Pasos:

- Cálculo de soluciones iniciales.
- Método de continuación.
 - Predictores
 - Correctores.
 - Tamaño de paso.
- Test de bifurcaciones.

Diagrama 1-D

Figure: Diagrama de bifurcaciones para el modelo de gusanos de las píceas, ejes:

x-r

Diagrama 2-D

Figure: Diagrama de bifurcaciones para el modelo Van der Pol modificado, ejes:

Conclusiones

La diversidad en matemática aplicada.

Estamos ante una rama que une la matemática con nuestra realidad y, recurre a todas las demás ramas de la matemática para proveerse de multitud de herramientas.

② El arte de encontrar parámetros.

La matemática aplicada debe nutrirse de esfuerzo, ensayos, errores y tiempo para que podamos obtener resultados. Ha sido un refrescante contacto con la vida real, en la que a menudo no se buscan soluciones exactas (porque no suelen encontrarse) y en la que las respuestas (que ya no son blanco o negro) deben estar sometidas a constante revisión.

3 El software matemático.

La eterna lucha entre software de pago y software libre.