- 1. Sean u = (-1, 1), v = (2, 3), w = (-2, 1). Grafique los siguientes conjuntos:
 - (a) $\{\lambda u + (1 \lambda)v \mid 0 \le \lambda \le 1\}$
 - (b) $\{x_1u + x_2v \mid 0 \le x_1, x_2 \le 1\}$
 - (c) $\{x_1u + x_2v + x_3w \mid 0 \le x_1, x_2, x_3\}$
 - (d) $\{x_1u + x_2v + x_3w \mid x_1 + x_2 + x_3 = 1, 0 \le x_1, x_2, x_3\}$
- 2. Sean $v_1=(3,5,2),\ v_2=(-7,-1,0),\ v_3=(2,2,1),$ determine si es que existen a,b,c tales que $av_1+bv_2+cv_3=0.$
- 3. Sean $v_1 = u_1 + 3u_2$ y $v_2 = -u_1 + u_2$ vectores en \mathbb{R}^3 . Demuestre que existen escalares a, b, c, d tales que $u_1 = av_1 + bv_2$ y $u_2 = cv_1 + dv_2$
- 4. Explique la diferencia entre $\{v_1, v_2\}$ y $\langle v_1, v_2 \rangle$
- 5. Demuestre que si $u_1=2v_1+3v_2$ y $u_2=-v_1+3v_2$ entonces se cumple que $\langle u_1,u_2\rangle=\langle v_1,v_2\rangle$
- 6. Demuestre que $\langle \langle v_1, v_2 \rangle \rangle = \langle v_1, v_2 \rangle$
- 7. Sean $\{u_1, u_2, u_3\}$ un conjunto de vectores L.I. Además sean

$$v_1 = u_1 + 2u_2 + 3u_3$$
$$v_2 = u_1 - 2u_2 + 3u_3$$
$$v_3 = 3u_2 + \alpha u_3$$

Determine los valores de α tales que $\{v_1, v_2, v_3\}$ es un conjunto L.I.