Análisis Funcional: Taller 1

10 de abril de 2025

Universidad Nacional de Colombia

Oscar Guillermo Riaño Castañeda

Andrés David Cadena Simons acadenas@unal.edu.co

Problema 1:

Sea $(E, \lVert \cdot \rVert)$ un espacio vectorial normado. Defina

$$\mathcal{K} = \{ x \in E : ||x|| = 1 \}.$$

Demuestre que E es de Banach si y solamente si K es completo.

Solución:

Supongamos que E es de Banach y veamos que K es completo.

Razonemos por contradicción.

Suponga $\{x_n\} \subset \mathcal{K}$ sucesión de Cauchy que converge a $x \notin \mathcal{K}$ cuando $n \to \infty$, es decir, $||x|| \neq 1$.

Primero, note que como $\{x_n\}$ es una sucesión de Cauchy, dado $\epsilon > 0$ existe N > 0 tal que si n > N, entonces

$$||x - x_n|| < \epsilon.$$

Suponga $\epsilon < |||x|| - 1|$, luego sabemos que existe N > 0 tal que si n > N se satisface que

$$|||x|| - 1| \le |||x|| - ||x_n|||,$$

 $\le ||x - x_n||,$
 $< \epsilon,$
 $< |||x|| - 1|.$

Lo cual es una contradicción, luego $x \in \mathcal{K}$ y por ende \mathcal{K} es completo.

Por otro lado, supongamos que \mathcal{K} es completo y veamos que esto implica que E es de Banach. Primero, recuerde que $0 \in E$, por lo que si tomamos $\{x_k\} \subset E$ sucesión de Cauchy obviaremos el caso en el que esta converge a 0.

De nuevo, razonemos por contradicción.

Suponga que E no es de Banach, entonces existe $\{x_n\} \subset E$ sucesión de Cauchy tal que $x_n \to x$ con $x \notin E$ cuando $n \to \infty$.

Ahora, como $\{x_n\}$ es de Cauchy, entonces se tiene que dado $\epsilon>0$ existe N>0 tal que si n,m>N entonces

$$||x_n - x_m|| < \epsilon.$$

Siendo así, suponga ϵ_0 tal que se obtiene un $N_0>0$ adecuado que le satisface que existe $m>N_0$ que cumpla que $x_m=0$, luego

$$||x_n - x_m|| = ||x_n|| < \epsilon_0.$$

Tome $\{x_k\}$ como esa subsucesión que le satisface que $||x_k|| < \epsilon_0$.

Note que $\{\|x_k\|\}\subset\mathbb{R}$ es una sucesión acotada en un compacto, luego sabemos que existe una subsucesión convergente, con la intención de no saturar la notación la tomaremos indexada

por k y convergente a algún $l \in \mathbb{R}$. Ahora suponga $\{y_k\} = \left\{\frac{x_k}{\|x_k\|}\right\} \subset \mathcal{K}$ y note que como \mathcal{K} es completo, entonces existe $y \in \mathcal{K}$ tal que $y_k \to y \in \mathcal{K}$ cuando $k \to \infty$, luego

$$y = \lim_{k \to \infty} \frac{x_k}{\|x_k\|},$$
$$= \frac{x}{l}.$$

De lo que se puede concluir que ly=x, luego como $(E,\|\cdot\|)$ es un espacio vectorial, entonces $ly \in E$, luego $x \in E$, lo que es una contradicción, pues desde un principio establecimos que $x \notin E$. Luego podemos concluir que $x \in E$ y por ende que E es un espacio de Banach.

Problema 2:

Sea $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ espacios vectoriales normados. Considere $T: E \to F$ una transformación lineal. Muestre que las siguientes afirmaciones son equivalentes:

- (I) T es continua.
- (II) T es continua en cero.
- (III) Tes acotada. Es decir, existe M>0tal que para todo $x\in E,$

$$\|Tx\|_F \le M \, \|x\|_E \, .$$

(IV) Si $\overline{B(0,1)} = \{x \in E : ||x|| \le 1\}$, entonces la imagen directa $T\left(\overline{B(0,1)}\right)$ es un conjunto acotado de F.

Solución:

Solución

Problema 3:

Demuestre que si $T \in L(E, F)^1$, entonces

(I) $||Tx||_F \le ||T|| ||x||_E$, para todo $x \in E$.

$$\text{(II)} \ \|T\| = \sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Tx\|_f}{\|x\|_E}.$$

(III)
$$||T|| = \sup_{\substack{x \in E \\ ||x||_F = 1}} ||Tx||_F.$$

 $\text{(IV) } \left\|T\right\| = \inf\{M>0: \left\|Tx\right\|_F \leq M \left\|x\right\|_E, \text{ para todo } x \in E\}.$

Solución:

(I) Note que como T es un operador lineal, podemos obviar el caso en el que x=0, pues $\|Tx\|_F = 0 \leq 0 = \|T\| \, \|x\|_E.$

Ahora, con el fin de simplificar la idea, si tomamos $x \neq 0$, entonces podemos reescribir

Siendo así, note que dado y por propiedades del supremo se satisface que

$$\begin{split} \|Ty\|_F &\leq \sup_{\substack{y \in E \\ \|y\|_E \leq 1}} \|Ty\|_F & \text{Reescribiendo la norma y multiplicando a la derecha por } \|y\|_E = 1, \\ \|Ty\|_F &\leq \|T\| \, \|y\|_E & \text{Reescribiendo } y = \frac{x}{\|x\|_E} \text{ y usando la linealidad de la norma y el operador,} \\ \|Tx\|_F &\leq \frac{1}{\|T\| \|x\|_F} \|Tx\|_F \|x\|_F & \text{Reescribiendo } y = \frac{x}{\|x\|_E} \text{ y usando la linealidad de la norma y el operador,} \end{split}$$

$$||Ty||_F \le ||T|| \, ||y||_E$$
 Reescribiendo $y = \frac{x}{||x||_F}$ y usando la linealidad de la norma y el operado

$$\frac{1}{\left\Vert x\right\Vert _{E}}\left\Vert Tx\right\Vert _{E}\leq\frac{1}{\left\Vert x\right\Vert _{E}}\left\Vert T\right\Vert \left\Vert x\right\Vert _{E},$$

Lo que implica que $||Tx||_F \le ||T|| \, ||x||_E$, luego como se toma y arbitrario se extiende el resultado a todo $x \in E$ y por ende se concluye el resultado.

(II) Note que por la linealidad de la norma y el operador podemos asegurar que

$$\begin{split} \sup_{\substack{x \in E \\ x \neq 0}} & \frac{\|Tx\|_F}{\|x\|_E} = \sup_{\substack{x \in E \\ x \neq 0}} \left\| T \frac{x}{\|x\|_E} \right\|_F, \\ &= \sup_{\substack{x \in E \\ x \neq 0}} \|Ty\|_F & \text{como } y \text{ es unitario y distinto de } 0, \\ &\leq \sup_{\substack{x \in E \\ \|x\| \leq 1}} \|Tx\|_F, \\ &\leq \|T\|. \end{split}$$

¹Recuerde que L(E,F) denota el conjunto de operadores lineales de E en F. Dado $T \in L(E,F)$ definimos la norma de Tcomo $\|T\| = \sup_{\substack{x \in E \\ \|x\|_E \leq 1}} \|Tx\|_F.$

Por otro lado veamos que si asumimos que $||x|| \le 1$, entonces

$$\begin{split} \|T\| &= \sup_{\substack{x \in E \\ \|x\|_E \leq 1}} \|Tx\|_F \,, \\ &\leq \sup_{\substack{x \in E \\ \|x\|_E \leq 1}} \frac{\|Tx\|_F}{\|x\|_E}, \\ &\leq \sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Tx\|_F}{\|x\|_E}. \end{split}$$

Ya que $\{x \in E : ||x||_E \le 1\} \subset E$ y omitimos el caso en el que x = 0 ya que Tx = 0 y por ende no es el supremo del conjunto a menos de que T sea el operador nulo.

(III) Note que si usamos la linealidad del operador y de la norma podemos ver que

$$\sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Tx\|_F}{\|x\|_E} = \sup_{\substack{x \in E \\ \|x\| = 1}} \|Tx\|_F$$

luego usando (II) podemos afirmar que

$$||T|| = \sup_{\substack{x \in E \\ ||x|| = 1}} ||Tx||_F.$$

(IV) Note que el conjunto de los M que satisfacen la condición del conjunto no son afectados cuando se divide por la norma de x en ambos lados de la desigualdad, es decir, podemos suponer que los x dados en la condición del conjunto son unitarios. Luego la condición se transforma en ver el menor de los M>0 que satisface $\|Tx\|_F\leq M$ para todo $x\in E$ que satisface $\|x\|_E=1$, luego por (III) podemos afirmar que este M es precisamente $\|T\|$.

Problema 4:

Sean $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ espacios vectoriales normales. Suponga que F es un espacio de Banach. Muestre que L(E, F) es un espacio de Banach con la norma usual de L(E, F). En particular, $E^* = L(E, \mathbb{R})$, $E^{**} = L(E^*, \mathbb{R})$ son espacios de Banach.

Solución:

Dado $T \in L(E, F)$ definimos la norma de L(E, F) como

$$||T|| = \sup_{\substack{x \in E \\ ||x||_E = 1}} ||Tx||_F.$$

Suponga $\{T_n\} \subset L(E,F)$ sucesión de Cauchy y veamos que esta converge a $T \in L(E,F)$. Note que como $\{T_n\}$ es sucesión de Cauchy, entonces se cumple que dado $\epsilon > 0$ existe N > 0 tal que si n, m > N, entonces

$$||T_n - T_m|| < \epsilon$$

Pero note que dado $x \in E$ (distinto del nulo) podemos tomar ϵ de la forma $\frac{\epsilon}{\|x\|_E} > 0$ que nos permite afirmar que

$$||T_n x - T_m x||_F \le ||T_n - T_m|| ||x||_E,$$

$$< \frac{\epsilon}{||x||_E} ||x||_E,$$

$$< \epsilon.$$

Luego $\{T_nx\}\subset F$ es una sucesión de Cauchy, luego como F es Banach, podemos afirmar que $T_nx\to g_x\in F$ cuando $n\to\infty$.

Siendo así, dado x podemos definir un g_x de la forma anterior, por lo que vamos a definir $T: E \to F$ como $Tx = g_x$, luego podemos afirmar que $T_n \to T$ cuando $n \to \infty$. Ahora, veamos que $T \in L(E, F)$.

Sea α un escalar y $x, y \in E$, entonces

$$T(\alpha x + y) = \lim_{n \to \infty} T_n(\alpha x + y),$$

$$= \lim_{n \to \infty} \alpha T_n(x) + T_n(y),$$

$$= \alpha \lim_{n \to \infty} T_n(x) + \lim_{n \to \infty} T_n(y),$$

$$= \alpha Tx + Ty.$$

Luego $T \in L(E, F)$ lo que concluye el resultado esperado.

Problema 5:

Sean E y F espacios vectoriales normados. Suponga que E es de dimensión finita (F no necesariamente de dimensión finita).

- (I) Muestre que todas las normas asignadas a E son equivalentes².
- (II) Muestre que toda transformación lineal $T: E \to F$ es continua.
- (III) De un ejemplo donde se verifique que (II) puede ser falsa si E es de dimensión infinita.

Solución:

(I) Suponga $\|\cdot\|_1$ y $\|\cdot\|_2$ normas de E espacio vectorial de dimensión finita. En particular, como E es de dimensión finita sabemos que existe una base $\mathcal{B} = \{e_1, e_2, \cdot, e_n\} \subset E$ tal que si tomamos $x \in E$, entonces

$$x = \sum_{i=1}^{n} x_i e_i, \qquad \text{con } x_i \text{ escalares de } E.$$

Ahora, fijemos $\|x\|_1$ como $\|e_i\|_1=1,$ luego

$$||x||_1 = \sum_{i=1}^n |x_i|$$

Además, note que en general para $||x||_2$ se tiene que

$$||x||_{2} = \left\| \sum_{i=1}^{n} x_{i} e_{i} \right\|_{2},$$

$$\leq \sum_{i=1}^{n} ||x_{i} e_{i}||_{2},$$

$$\leq \sum_{i=1}^{n} ||x_{i}|| ||e_{i}||_{2},$$

$$\leq \max_{i=1,\cdot,n} ||e_{i}||_{2} \sum_{i=1}^{n} ||x_{i}||,$$

$$\leq c_{2} ||x||_{1}.$$

Por otro lado, queremos ver que existe $c_1 > 0$ tal que $c_1 ||x||_1 \le ||x||_2$ para todo $x \in E$, en particular, note que si definimos $A = \{x \in E : ||x||_1\}$, nos queda que $c_1 \le ||x||_2$ para todo $x \in A$.

Note que como A es cerrado y acotado (en $\|\cdot\|_1$) y E es de dimensión finita, entonces A

²Sean $\|\cdot\|_1$ y $\|\cdot\|_2$ dos normas sobre E. Recordemos que dos normas son equivalentes si existen constantes positivas c_1 y c_2 , tales que c_1 $\|x\|_1 \le \|x\|_2 \le c_2$ $\|x\|_1$, para todo $x \in E$.

es compacto, además, veamos que $\|x\|_2$ es continua en la topología de $\|\cdot\|_1.$ Note que dado $\epsilon>0$ existe $\delta=\frac{\epsilon}{c_2}>0$ tal que si

$$||x - y||_1 < \delta$$

entonces

$$|||x||_2 - ||y||_2| < |||x - y||_2|,$$

 $< c_2 ||x - y||_1,$
 $< c_2 \frac{\epsilon}{c_2},$
 $< \epsilon.$

Luego, como $\|\cdot\|_2$ es continua en $\|\cdot\|_1$, como A es compacto, entonces $\|x\|_2$ alcanza su mínimo en A, es decir, existe $z \in A$ tal que $\|z\|_2 \le \|x\|_2$ para todo $x \in A$, luego podemos definir $c_1 = \|z\|_2$, por lo que podemos concluir que existen constantes $c_1, c_2 > 0$ tales que

$$c_1 \|x\| \le \|x\|_2 \le c_2 \|x\|_1$$
 para todo $x \in E$.

Ahora, note que esto nos permite concluir que dadas 2 normas cualesquiera estas con equivalentes, ya que mediante $||x||_1$ se puede realizar el siguiente cálculo.

Suponga c_{21} y c_{22} las constantes respectivas a la equivalencia entre una norma $||x||_1$ y la norma $||x||_2$ y por otro lado suponga c_{31} y c_{32} las constantes respectivas a la equivalencia entre la norma $||x||_1$ y la norma $||x||_3$, veamos que podemos concluir que $||x||_2$ y $||x||_3$ son equivalentes

$$||x||_{2} \le c_{22} ||x||_{1} \le \frac{c_{22}}{c_{31}} ||x||_{3},$$

por otro lado

$$||x||_3 \le c_{32} ||x||_1 \le \frac{c_{32}}{c_{21}} ||x||_2$$

de lo que se puede concluir que

$$\frac{c_{31}}{c_{22}} \|x\|_2 \le \|x\|_3 \le \frac{c_{32}}{c_{21}} \|x\|_3,$$

es decir, las normas $\|\cdot\|_2$ y $\|\cdot\|_3$ son equivalentes, luego como estas son arbitrarias se puede concluir que todas las normas asignadas a E son equivalentes.

(II) Suponga $T: E \to F$ transformación lineal.

Note que como E es de dimensión finita, podemos asumir que existe una base $\mathcal{B} := \{e_1, e_2, \cdot, e_n\}$, luego dado $x \in E$ lo podemos expresar de la forma

$$x = \sum_{i=1}^{n} x_i e_i.$$

Ahora, note que como T es una transformación lineal entonces se cumple que

$$\begin{split} \|Tx\|_{F} &= \left\| T \left(\sum_{i=1}^{n} x_{i} e_{i} \right) \right\|_{F}, \\ &\leq \sum_{i=1}^{n} \left| x_{i} \right| \left\| T e_{i} \right\|_{F}, \\ &\leq \sum_{i=1}^{n} \left| x_{i} \right| \max_{i=1,\cdots,n} \left\| T e_{i} \right\|_{F}, \\ &\leq \max_{i=1,\cdots,n} \left\| T e_{i} \right\|_{F} \left\| x \right\|_{E}, \\ &\leq M \left\| x \right\|_{F}. \end{split}$$

Si tomamos $M = \max_{i=1,\dots,n} \|Te_i\|_F$, luego $\|Tx\|_F \leq M \|x\|_E$ y por ende el operador es continuo, luego como se tomó T arbitrario se concluye que toda transformación lineal de E a F con E de dimensión finita es continua.

(III) Suponga $T:(C[0,2],\|\cdot\|_1\to (C[0,2],\|\cdot\|_\infty))$ tal que Tf=f. Suponga

$$f_k(x) = \begin{cases} 0, & \text{si } x \in [0, \frac{2k-1}{2k}] \cup [\frac{2k+1}{2k}, 2], \\ 2k^2x - 2a^2 + a, & \text{si } x \in [\frac{2k-1}{2k}, 1], \\ -2k^2x + 2a^2 + a, & \text{si } x \in [1, \frac{2k+1}{2k}]. \end{cases}$$

Se puede verificar que $||f_k||_1 = 1$, no obstante note que $f_k(1) = k$, por lo que funciona como ejemplo para verificar que

$$\sup_{\substack{f \in C[0,1] \\ \|f\|_1 = 1}} \|f\|_{\infty} = \infty.$$

Con la intención de ser gráfico con el ejercicio veamos la gráfica para algunos valores de k.

Problema 6:

Considere $E = c_0$ donde

$$c_0 = \{u = \{u_n\}_{n \ge 1} : \text{ tales que } u_n \in \mathbb{R}, n \ge 1, \lim_{n \to \infty} u_n = 0\}.$$

Es decir, c_0 es el conjunto de las secuencias reales que tienden a 0. Dotamos a este espacio con la norma $\|u\|_{l^{\infty}} = \sup_{n \in \mathbb{Z}^+} |u_n|$. Considere el funcional $f: E \to \mathbb{R}$ dado por

$$f(u) = \sum_{n=1}^{\infty} \frac{1}{2^n} u_n.$$

- (I) Muestre que $f \in E^*$ y calcule $||f||_{E^*}$.
- (II) ¿Es posible encontrar $u \in E$ tal que ||u|| = 1 y $f(u) = ||f||_{E^*}$?

Solución:

Solución