Esercitazione di Laboratorio:

Circuiti con diodi

Coa Giulio Licastro Dario

Montano Alessandra

6 Novembre 2019

1 Scopo dell'esperienza

.

2 Strumentazione utilizzata

La strumentazione usata durante l'esercitazione è:

Strumento	Marca e Modello	Caratteristiche
Multimetro	Agilent 34401A	
Oscilloscopio	Rigol DS1054Z	4 canali,
		$B = 50 \mathrm{MHz},$
		$f_{\rm c} = 1 {\rm G} \frac{{\rm Sa}}{\rm s}$
		$R_{\rm i} = 1 {\rm M}\Omega$
		$C_{\rm i}$ = 13 pF,
		12 Mbps di profondità di memoria
Generatore di segnali	Rigol DG1022	2 canali,
		$f_{\rm uscita} = 20 \mathrm{MHz},$
		$Z_{ m uscita}$ = 50Ω
Sonda	Rigol PVP215	$B = 35 \mathrm{MHz},$
		$V_{\text{nominale}} = 300 \text{V},$
		$L_{\rm cavo} = 1.2 \mathrm{m},$
		$R_{\rm s} = 1 {\rm M}\Omega,$
		Intervallo di compensazione: $10 \div 25 \mathrm{pF}$
Cavi coassiali		Capacità dell'ordine dei $80 \div 100 \mathrm{p} \frac{\mathrm{F}}{\mathrm{m}}$
Connettori		111
Breadboard		
Diodo zener		
Diodo		
Condensatori		$C_1 = 10 \mathrm{nF},$
		$C_2 = 100 \mathrm{nF},$
		$C_3 = 1 \mu\text{F}$

3 Premesse teoriche

3.1 Incertezza sulla misura dell'oscilloscopio

La misura del valore di un segnale tramite l'oscilloscopio (sia esso l'ampiezza, la frequenza, il periodo, etc.) presenta un'incertezza che dipende, principalmente, da due fattori:

- l'incertezza strumentale introdotta dall'oscilloscopio (ricavabile dal manuale).
- l'incertezza di lettura dovuta all'errore del posizionamento dei cursori.

Quest'ultima incertezza deriva dal fatto che il segnale visualizzato non ha uno spessore nullo sullo schermo.

3.2 Sonda

La sonda è un particolare cavo coassiale che presenta un'estremità capace di effettuare delle misurazioni.

Quando si usano dei classici cavi coassiali BNC-BNC al fine di collegare il circuito, su cui effettuare le misure, all'oscilloscopio, si sta inserendo in parallelo al circuito un condensatore di capacità (C_c) pari a quella del cavo.

Figure 1: Circuito analizzato collegato all'oscilloscopio tramite un cavo coassiale BNC-BNC.

In questo caso, l'oscilloscopio si comporta, in ingresso, come un filtro passa-basso con una frequenza di taglio $(f = \frac{1}{2\pi R_i | C_s + C_i|})$. L'uso di una sonda per misurare delle grandezze in un circuito, si può vedere come l'inserimento di un condensatore in serie al circuito.

Figure 2: Circuito analizzato collegato all'oscilloscopio tramite una sonda.

L'introduzione di questo condensatore comporta un calo della capacità equivalenti vista all'ingresso del circuito $(\frac{C_s(C_c+C_i)}{C_s+C_c+C_i} \ll C_c + C_i)$, ovvero una riduzione della frequenza del polo $(f_{\text{polo}} = \frac{1}{2\pi R_i(C_s+C_i)})$; ciò porta ad una perdita d'informazioni in bassa frequenza.

Al fine di evitare tale perdita d'informazioni, si pone, in parallelo al condensatore, una resistenza.

Figure 3: Circuito analizzato collegato all'oscilloscopio tramite una sonda.

Tale resistenza comporta la presenza di uno zero, oltre al polo precedentemente detto.

Figure 4: Diagramma di Bode della funzione di trasferimento del circuito.

A seconda dell'elevata o della bassa compensazione della sonda, il segnale sarà distorto verso l'alto o verso il basso.

(b) Sonda sovracompensata.

Figure 5: Visualizzazione del segnale al variare della compensazione della sonda.

La sonda risulta compensata quando la frequenza del polo coincide con la frequenza dello zero; ciò avviene quando $R_{\rm s}C_{\rm s}=R_{\rm i}(C_{\rm c}+C_{\rm i})$. La sonda presenta un opportuno trimmer che influenza il valore di $R_{\rm s}$ e permette la compensazione. Al fine di verificare se la sonda è compensata si esegue un confronto con un segnale noto.

Figure 6: Sonda compensata.

3.3 Other

.

4 Esperienza in laboratorio

4.1 Caratteristiche statiche

4.2 Raddrizzatore a semplice semionda

.

4.3 Rivelatore di picco

.

Circuito per la protezione da scariche elettrostatiche 4.4 Risultati 5 5.1Caratteristiche statiche Raddrizzatore a semplice semionda 5.2Rivelatore di picco 5.35.4Circuito per la protezione da scariche elettrostatiche Conclusioni 6 Caratteristiche statiche Raddrizzatore a semplice semionda 6.26.3 Rivelatore di picco Circuito per la protezione da scariche elettrostatiche 6.4