# GRUPO GPT MASTERS( ALEJANDRO, JULIO, JERÓNIMO, JUAN, GABRIEL) ARQUITECTURA DE COMPUTADORAS

#### EXPLICACIÓN DE LOS CÓDIGOS .hdl

#### MEMORY.HDL

Primero en inicio definimos el chip de la memoria, en donde ponemos una entrada de 16 bits, luego la señal para escribir( booleano 0 o 1) y la dirección en donde leer o escribir. Se hace esto como si fuera una función en donde definimos los parámetros. Se pone la salida que es la lectura, y es de 16 bits pues metemos 16 sacamos 16.

En parts se define la lógica. El primer and es para decodificar la dirección de la memoria, para saber a dónde escribir. Se hace el multiplexor para mandar la señal por un solo canal y al componente correcto, luego llamamos la RAM16K en donde definimos la entrada o datos, llamamos pantalla y teclado.

Se usa ese multiplexor para enviar una de las cuatro entradas que será la salida del CHIP.

### Memory: Implementation



- · An aggregate of three chip-parts: RAM16K, Screen, Keyboard
- Single address space, 0 to 24576 (0x6000)
- · Maps the address input onto the address input of the relevant chip-part.

Esa fase del final es para lo que sirve el MUX4WAY16, pues escoge alguna de las tres salidas de 16 bits porque es lo máximo que puede mostrar.

#### CPU.HDL

Básicamente las PARTS: de este HDL se hacen a partir de este diagrama, en donde el componente principal es la ALU, en donde tenemos que hacer una serie de transformaciones a los adatos , bueno específicamente el dato de la instrucción que tiene una codificación especial que nos ayuda a controlar los distintos chips como los A/D REGISTER, la escritura y la ALU, entonces por eso es que usamos esas compuertas AND y OR para lograr partir los bits de la instrucción.

## CPU implementation: Instruction handling



#### Handling C-instructions: Recap



En esta ultima imagen se basa el funcionamiento del chip.



#### COMPUTER.HDL

Este codigo es mas sencillo, y muestra cómo el computador ejecuta un programa almacenado en la memoria. Con este se implementa la CPU y la MEMORIA, además usamos el ROM32K en donde se guardan las instrucciones para ejecutar.

Por ejemplo en la parte del CPU definimos la entrada salida y las instrucciones del chip, y se relaciona memoria y CPU asignando el PC a MEMORIA ROM.