

6-1장

6.1.1 LeNet-5

합성곱과 다운 샘플링(풀링)을 반복적으로 거치면서 마지막에 FC layer에서 분류를 수행한 다.

c1: 5x5 합성곱

s2: 다운 샘플링하여 14x14로 줄인다.

c3: 5x5 합성곱

s4: 다운 샘플링하여 5x5로 줄인다.

c5: 5x5 합성곱

f6: 완전연결층으로 84개에 연결

출력: 분류

Layer		Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	32x32	-	-	-
1	Convolution	6	28x28	5x5	1	tanh
2	Average Pooling	6	14x14	2x2	2	tanh
3	Convolution	16	10x10	5x5	1	tanh
4	Average Pooling	16	5x5	2x2	2	tanh
5	Convolution	120	1x1	5x5	1	tanh
6	FC	-	84	-	-	tanh
Output	FC	_	10			softmax

activation 함수는 relu등으로 해도 됨

6.1.2 AlexNet

imagenet 화상 인식 대회에서 우승한 cnn구조

합성곱 층 5개+FC layer 3개+마지막은 softmax

GPU 두 개를 기반으로 한 병렬 구조이다. (활성화 함수로는 렐루를 이용)

GPU-1에서는 주로 컬러와 상관없는 정보를 추출, GPU-2에서는 주로 컬러와 관련된 정보를 추출하기 위한 커널이 학습된다.

6.1.3 VGGNet

합성곱층의 파라미터 수를 줄이고 훈련 시간을 개선하고자 탄생함.

- → 네트워크를 깊게 만드는 것이 성능에 어떤 영향을 미치는지 확인하고자 만들어짐
- → 깊이의 영향만을 확인하고자 필터 사이즈를 가장 작은 3x3으로 고정함.

네트워크 계층의 총 개수에 따라 VGG16, VGG19등으로 나타난다. 활성화 함수로는 ReLU를 이용함.

VGG 11의 구조

6.1.4 GoogLeNet

깊고 넓은 신경망을 위해 인셉션 모듈을 추가함, 빽빽하게 연결된 신경망 대신 관련성이 높은 노드끼리 연결하는 방식(희소 연결-sparse connectivity)

*인셉션 모듈: 특징을 휴율적으로 추출하기 위해 1x1, 3x3, 5x5의 합성곱 연산을 각각 수행함

- 1x1 합성곱
- 1x1 합성곱 + 3x3 합성곱
- 1x1 합성곱 + 5x5 합성곱
- 3x3 max pooling+1x1 합성곱 (3x3 maxpooling은 입력과 출력의 높이와 너비가 같아 야 하므로 패딩을 추가한다.)

6.1.5 ResNet

깊어진 신경망을 효과적으로 학습하기 위해 레지듀얼(residual)개념을 고안함.

네트워크의 깊이가 깊을수록 무조건 성능이 좋은 것이 아니다.

residual block: 기울기가 잘 전파될 수 있도록 shortcut을 만들어 준다. 층이 152개로 구성 되어 Googlenet(22층)에 비해 기울기 소멸 문제가 발생할 수 있기 떄문이다.

블록: 합성곱층을 하나의 블록으로 묶은 것.

bottleneck block(병목 블록): 계층의 깊이가 깊어질수록 파라미터가 무제한으로 커지는 것을 해결하고자 도입.

병목 블록을 사용하면 깊이가 깊어졌음에도 파라미터 수는 감소한다.

ex) ResNet50에서는 3x3합성곱 앞뒤로 1x1합성곱층이 붙어 있다.

