(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-232398

(43)公開日 平成5年(1993)9月10日

(51)Int.Cl.*

識別記号 庁内整理番号

G 0 2 B 27/00 G 0 1 N 15/10 E 9120-2K 2107-2 J FΙ

技術表示箇所

審査請求 未請求 請求項の数3(全 4 頁)

(21)出願番号

特願平4-36262

(22)出顧日

平成 4年(1992) 2月24日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 井阪 和夫

東京都大田区下丸子3丁目30番2号キャノ

ン株式会社内

(74)代理人 弁理士 丸島 儀一

(54) 【発明の名称 】 光学トラップ方法

(57)【要約】

【目的】 放射圧が斥力として作用する粒子を簡単な方法によって光学的にトラップすることができる手法の提供を目的とする。

【構成】 ガウス強度分布のレーザビーム1をビームスプリッタ機能を持った光学素子2で3分割して、放射圧が斥力として作用する粒子の周囲にこれら3本のレーザービームを収束させる。ここで粒子が移動しようとしてもレーザビームの放射圧を受けて押し戻されるため、該位置に粒子が光学的にトラップされることになる。

【特許請求の範囲】

J

【請求項1】 放射圧が斥力として作用する粒子の周囲 に、強度分布を持った複数本の光ビームを収束させるこ とによって該粒子を光学的にトラップすることを特徴と する光学トラップ方法。

【請求項2】 前記複数本の光ビームの収束位置を同時 に移動させることでトラップした粒子を搬送する請求項 1の光学トラップ方法。

【請求項3】 前記光ビームはレーザビームである請求 項1又は2記載の光学トラップ方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は媒質中に浮遊する粒子を 光学的にトラップする光学トラップの技術分野に関す る.

[00021

【従来の技術】球形の微粒子にレーザビームを集光する と光の運動量が変化するが、この時、運動量保存の法則 に従って微粒子に放射圧 (光圧)が働く。この力は、微 粒子が照射レーザ光の波長に対して透明で且つその屈折 20 率が周囲の媒質よりも高い場合に、レーザの焦点位置の 方向を向き、それが重力等の外力とつり合った状態にな ると微粒子がトラップ (捕捉) される。この現象を利用 した傲粒子操作法がレーザトラッピング (レーザ捕捉) ある。このレーザトラッピングの技術は、例えば細胞な どを扱う医療分野などでの応用が期待されている。 [00031

【発明が解決しようとしている課題】しかしながら微粒 子が周囲よりも屈折率が低かったり、光を反射あるいは 吸収する性質のものであると、放射圧がレーザ光から遠 30 ざかる方向すなわち斥力として働くため、単純な構成で はこの微粒子をトラップできなかった。例えば、溶媒と して一般的に使われる水は屈折率が低いため、水滴を他 の液体中でトラップすることは困難である。又、光を反 射する金属微粒子や光を吸収するカーボン微粒子等もレ ーザビームにはね飛ばされてしまいトラップできない。 このような制約は、レーザトラッピングを極微化学に応 用する上で大きな問題となる。

【0004】そこで上述のような性質の微粒子をトラッ プするために、微粒子を取り囲むように集光レーザビー ムを円環状に走査することによって、微粒子が全ての方 向から斥力を受けて光の輪の中に閉じ込められるように した方法が提案されている。[新技術事業団創造科学技 術研究報告会Symposia′91 (Tokyo)講 演要旨集PART4 P. 16]

【0005】しかしながらこの方法では、レーザビーム をガルバノミラー等により常時回転させる機構が必要で あり、装置構成の複雑さや耐久性の面から好ましいもの ではない。又、微粒子の比重や大きさによってレーザビ

くトラップすることは難しい。更には上記方法によって トラップした微粒子を所望の方向に移動搬送させたい場 合、非常に複雑な装置構成を要する。

2

【0006】本発明は上記課題を解決すべくなされたも ので、放射圧が斥力として作用する粒子を簡単な方法に よって光学的にトラップすることができる手法の提供を 目的とする。

[00071

【課題を解決するための手段】上記課題を解決する本発 10 明の光学トラップ方法は、放射圧が斥力として作用する 粒子の周囲に、強度分布を持った複数本の光ビームを収 束させることによって該粒子を光学的にトラップするこ とを特徴とするものである。

[0008] 【実施例】

<実施例1>図1は本発明の第1実施例を説明するため の図面である。図示されていないレーザ光源 (例えばH e – N e レーザ)から発したガウス強度分布を有するレ ーザビーム1はビーム分割機能を持った光学素子2に入 射する。この光学素子2は薄い円柱形状をなし、一方の 面が中央部を中心に斜めに3方向に削られ、円柱の一方 の面を三角錐にした形状を有する。光学素子2の作用に よって入射したレーザビームは3本の光束に分割される が、これらは集光レンズ3により焦点面4に光束1-1,1-2,1-3と分かれて集光される。

【0009】図面右側は焦点面4の拡大図を示す。 微粒 子5は周囲の媒体よりも屈折率が低い、あるいは光を反 射又は吸収する性質を有するもの、すなわち放射圧が斥 力として作用する微粒子である。3本のレーザ光束1-1.1-2.1-3の収束位置に囲まれた位置にある微 粒子5は、仮に外側に動こうとしてもレーザ光束の放射 圧が斥力として作用するために押し戻されて中心部から 移動できず、レーザ光束に囲まれた位置にトラップされ ることになる。

【0010】<実施例2>図2は本発明の第2実施例を 説明するための図面である。本実施例ではレーザビーム を移動させることによって微粒子を搬送することができ る。レーザ光源6から発したレーザビームは、光ピック アップ8を介して光分割機能を持った佴光変換素子9に 入射する。なお、この偏光変換素子9の詳細については 特開平3-191318号公報に記載されている。

【0011】偏光変換素子9に入射したレーザビーム7 は、偏光ビームスプリッタ9-1によってS波(反 射)、P波(透過)の2つに分離される。反射されたS 波はくさび形光学素子9-2により光軸が僅かに曲げら れる。そして入/4板9-3を通過し、ミラー9-4で 反射された後、再び入/4板9-3を通過すると位相が A/2変化してP波となる。このP波はビームスプリッ! タター1を透過して、ミラーター5にて反射され偏光変 ームの回転半径を適度に調整する必要があり、安定性高 50 換素子9の下面から射出する。一方、レーザビーム7が

ر.

入射してビームスプリッタ9-1を透過したP波は、そのまま偏光変換素子9の下面から射出する。これらの射出した2本の光束は、レンズ10にて集光されて焦点面に7-1、7-2として集光される。

【0012】このような光学構成において、不図示の駆動機構によって光ピックアップ8を光軸と直交する矢印方向に移動させると、2本のレーザビーム7-1、7-2は矢印11-1のように移動する。するとこれに伴ってレーザビームの放射圧の斥力によって微粒子を押し進めるようにして、矢印11-2のように微粒子5を移動 10させることができる。

【0013】〈実施例3〉図3は本発明の第3実施例を説明するための図面であり、先の図2と同一の符号は同一の部材を表す。図2の構成との違いは2つのレーザ光源を使用して厳粒子の周囲に4本のビームを照射することである。2つのレーザ光源6-1、6-2を図のように配置し、図2と同様の光学系によって4本のレーザビーム6-1-1、6-1-2、6-2-1、6-2-2を得る。焦点面上に集光されるこれらのレーザビームによって微粒子5がトラップされる。

【0014】本実施例では微粒子5を周囲の四方にレーザビームを収束照射して、微粒子をその内部にトラップするため、光ピックアップ8を光軸垂直方向あるいは光軸方向の任意の方向に移動させてレーザビームの収束位置を三次元的に移動させることで、三次元の任意の方向へ微粒子5を搬送することが可能となる。又、2つのレーザ光源6-1,6-2のオンオフ制御により微粒子のトラップ及び解除を自由に行なうことができる。

【0015】<実施例4>次に本発明の第4実施例を説明する。前述の各実施例は1個の殴粒子を対象とするも30のであったが、本実施例では2個の微粒子を個別に移動させ、例えば2個の微粒子同士を付着融合させることができる。

【0016】1本のレーザビームを4分割するために、図4に示すような片関が四角錐の光学素子10を用意して図1と同様に構成する。更に光軸上の光源側に光ビックアップ8を設ける。光ビックアップ8は光軸方向に動かすことができる。同様の光学系を図4に示すように光軸上に対称になるようにもう1台配置し、同一光軸上で各々計2個の微粒子を独立にトラップ及び移動させるこ 40とができる。

【0017】このように構成において2つの光ピックアップ8を光軸方向に沿って動かせば、レーザの収束位置を光軸方向に移動させることができ、そこにトラップさ

れる微粒子をそれぞれ移動させることができる。図5は その様子を示すもので、(a)の状態から(b)の状態 に移行させることで2個の微粒子同士を付着融合させて いる。

【0018】〈実施例5〉次に本発明の第5実施例を説明する。本実施例では図6に示すように4分割の光学素子10の手前に4分割の光学シャッタ11を設ける。該光学シャッタ11はPLZT光学シャッタであり、四角錐の4面に対応するように放射状に4分割された円形形状を有し、独立に焦点面上の4つのビームをオン、オフすることができる。このような光学系を図6のように2つ並べて配置する。各光ピックアップ8は光軸と直交する面内で動かすことができる。

【0019】図7は制御方法を示したもので、2個の微粒子同士を付着させる場合の様子を時系列的な変化として示した。(a)の状態では各微粒子の周囲に4つのビームを照射して微粒子同士が接近するように移動させる。2個の微粒子同士が近づいたら、光学シャッタ11を制御して(b)のように各々のレーザービームのうち相手粒子に近い側のビームのみ照射をオフにする。これ

により(c)のように安定して2個の敵粒子同志を付着させることができる。

[0020]

【発明の効果】本発明によれば、放射圧が斥力として作用する微粒子を簡単な方法によって光学的にトラップすることができる。

【図面の簡単な説明】

- 【図1】第1実施例を説明するための図である。
- 【図2】第2実施例を説明するための図である。
- 【図3】第3実施例を説明するための図である。
- 【図4】第4実施例を説明するための図である。
- 【図5】第4実施例を説明するための図である。
- 【図6】第5実施例を説明するための図である。
- 【図7】第5実施例を説明するための図である。 【符号の説明】
- 1 レーザビーム
- 2 光学素子
- 3 レンズ
- 6 レーザ光源
- 8 光ピックアップ
- 9 個光変換素子
- 10 光学素子
- 11 4分割光学シャッタ

JPAB

CLIPPEDIMAGE= JP405232398A

PAT-NO: JP405232398A

DOCUMENT-IDENTIFIER: JP 05232398 A
TITLE: OPTICAL TRAPPING METHOD
PUBN-DATE: September 10, 1993

INVENTOR-INFORMATION:

NAME

ISAKA, KAZUO

ASSIGNEE-INFORMATION:

NAME

COUNTRY N/A

CANON INC

APPL-NO: JP04036262

APPL-DATE: February 24, 1992

INT-CL_(IPC): G02B027/00; G01N015/10

ABSTRACT:

PURPOSE: To provide a technique which can optically trap such a particle on which a radiation pressure acts as a repulsive force by the simple method.

CONSTITUTION: A laser beam 1 having a gauss intensity distribution is trisected by an optical element 2 having a beam splitter function. Three pieces of these laser beams are converged around the particle on which the radiation pressure acts as a repulsive force. Even if the particle tends to move at this time, the particle is pushed back by receiving the radiation pressure of the laser beams and, therefore, the particle is optically trapped in this position.

COPYRIGHT: (C)1993,JPO&Japio