Análisis de presencias con procesos de puntos

Tutorial intermedio de spatstat

Gerardo Martín 2022-06-29

Simulación de presencias

Especificación de un centroide

Código - generando favorabilidad "verdadera"

```
centroide <- global(r, mean)
r.df <- as.data.frame(r, xy = T)
covar <- cov(r.df[, 3:5])
md <- mahalanobis(r.df[, 3:5], center = centroide$mean, cov = head(md)

## 1 2 3 4 5 6
## 5.846738 6.383437 6.443874 7.296541 6.475630 6.066614</pre>
```

Código - viendo la favorabilidad

```
md.r <- rast(data.frame(r.df[, 1:2], md))
md.exp <- exp(-0.5*md.r)
plot(md.exp)</pre>
```


Código - simulando los puntos

```
set.seed(182)
sam <- sample(1:nrow(r.df), 200, prob = exp(-0.5*md))
puntos.2 <- data.frame(r.df[, 1:2][sam,])
puntos.2$x <- puntos.2$x + rnorm(200, 0, 0.05)
puntos.2$y <- puntos.2$y + rnorm(200, 0, 0.05)</pre>
```

Código - favorabilidad y puntos

plot(md.exp); points(puntos.2)

Formateo para spatstat

Cargando las funciones

```
source("Funciones-spatstat/imFromStack.R")
source("Funciones-spatstat/winFromRaster.R")
source("Funciones-spatstat/plotQuantIntens.R")
```

Formateo rápido

Análisis exploratorio

Autocorrelación

```
K <- envelope(puntos.2.ppp, fun = Kest, nsim = 39)
## Generating 39 simulations of CSR ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
## 39.
##
## Done.</pre>
```

K

10

Autocorrelación - notas

- 1. Pareciera que el proceso está levemente autocorrelacionado
- 2. No sabemos de momento si afectará al modelo
- 3. Debemos poner atención al modelo ajustado

Respuestas a variables

Ver archivo de gráficas

```
plotQuantIntens(imList = r.im,
                noCuts = 5,
                Quad = Q,
                p.pp = puntos.2.ppp,
                dir = "",
                name = "Respuestas-centroide")
## pdf
## 2
```

12

Consideraciones para proponer modelos

Curvas con forma de campana ightarrow fórmula cuadrática

Consideraciones para proponer modelos

Ecuación lineal:

$$y = \alpha + \beta_1 x_1 + \dots + \beta_n x_n$$

Ecuación polinomial de 2^o grado

$$y = \alpha + \beta_1 x_1 + \beta_1' x_1^2 + \dots + \beta_n x_n + \beta_n' x_n^2$$

Recordemos que $y = \log \lambda$

¿Qué variables podemos incluir en el mismo modelo?

Regla de oro: Aquellas que no estén correlacionadas

- $\cdot\,$ Que x_1 no sea predictor de x_2
- · No se puede atribuir efecto de x_1 ó x_2 sobre λ
- · Necesitamos medir correlación entre pares de variables (pairs)

Medición de correlación entre covariables

pairs(r)

Variables compatibles

Podemos incluir en el mismo modelo:

- 1. Var.1 y Var.3
- 2. Var.2 y Var.3

Por lo tanto las fórmula polinomial

$$\log \lambda = \alpha + \beta_1 x_1 + \beta_1' + x_1^2 + \beta_2 x_2 + \beta_2' + x_2^2 +$$

En R:

Ajustando los modelos

Comparando los modelos

```
AIC(m1); AIC(m2)
## [1] -509.172
## [1] -521.2113
```

Analizar los efectos estimados

sum.m1 <- summary(m1)</pre>

knitr::kable(sum.m1\$coefs.SE.CI[, 1:5])

	Estimate	S.E.	CI95.lo	CI95.hi	Ztest
(Intercept)	2.7089019	0.1116046	2.4901610	2.9276429	***
Var.1	0.1163265	0.0883434	-0.0568233	0.2894764	
Var.3	-0.2208983	0.1118989	-0.4402161	-0.0015805	*
I(Var.1^2)	-0.3046825	0.0875528	-0.4762828	-0.1330821	***
I(Var.3^2)	-0.5240862	0.1173717	-0.7541304	-0.2940420	***

Diagnóstico - Residuales

```
par(mar = c(2,2,2,2))
diagnose.ppm(m1, main = "", cex.axis = 0.25)
```


Diangnóstico - Residuales

```
par(mar = c(2,2,2,2))
diagnose.ppm(m2, main = "", cex.axis = 0.25)
```


Diagnóstico - Ripley

##

Done.

```
## Generating 39 simulated realisations of fitted Poisson model
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
## 39.
##
## Done.
K2 \leftarrow envelope(m2, fun = Kest, nsim = 39)
## Generating 39 simulated realisations of fitted Poisson model
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
## 39.
```

23

 $K1 \leftarrow envelope(m1, fun = Kest, nsim = 39)$

$$plot(K1, cex = 0.5)$$

$$plot(K2, cex = 0.5)$$

K2

Resumen del análisis

- · AIC menor para m1
- · Residuales dentro de tolerancia para m1
- · Prueba de ripley correcta para ambos modelos
 - No parece necesario modelar autocorrelación (lo haremos a continuación)
- · Evidencia favorece a m1

Revisando la predicción

plot(m1, se = F, main = "")

Guardando los resultados

Modelando los efectos espaciales

Modelos de interacción

- · Estiman efecto aleatorio para puntos cercanos
- · Sirven para procesos de exclusión o agregación moderada
- · Hay varios tipos de interacciones entre puntos

¿Qué es interacción?

Tipos de interacciones

- 0.1 - 0.05

0.01 0.005

0.001

Function	Model
AreaInter	area-interaction process
${ t BadGey}$	multiscale Geyer saturation proce
Concom	connected component interaction
Geyer	Geyer saturation process
Hybrid	hybrid of several interactions
Ord	Ord model, user-supplied potentia
OrdThresh	Ord model, threshold potential
Saturated	saturated model, user-supplied po
${ t SatPiece}$	multiscale saturation process
Triplets	Gever triplet interaction process ³²

Para generar un modelo de interacción

1. Establecer tamaño del búfer

```
rr \leftarrow data.frame(r=seg(1,5,bv=1))
p <- profilepl(rr, Strauss,</pre>
                 puntos.2.ppp \sim Var.1 + Var.3 + I(Var.1^2) + I(Var.1^2)
           covariates = r.im, aic=F, rbord = 0.1)
## comparing 5 models...
## 1, 2, 3, 4,
## 5.
## fitting optimal model...
## done.
```

Para generar un modelo de interacción

Para generar un modelo de interacción

Un radio de tamaño 2 minimiza la pseudo-verosimilitud, de modo que el modelo de interacción con la fórmula de m1 es:

Efectos estimados

```
sum.int <- summary(m1.int)
knitr::kable(sum.int$coefs.SE.CI[, 1:4])</pre>
```

Efectos estimados - comparación

```
coef(m1)
## (Intercept) Var.1 Var.3 I(Var.1^2) I(Var.3^2)
##
     2.7089019
                0.1163265 -0.2208983 -0.3046825
0.5240862
coef(m1.int)
## (Intercept)
                Var.2 Var.3 I(Var.2^2) I(Var.3^2) Inte
## 2.87549775
                0.08478505 -0.00164637 -0.42014097 -
0.52671442
                  NA
```

```
K.int <- envelope(m1.int, Kest, nsim = 39)

## Generating 39 simulated realisations of fitted Gibbs model .

## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1

## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,

## 39.

##
## Done.</pre>
```

plot(K.int)

K.int

Favorabilidad

Poisson

Interacción

Proceso Cox log-Gaussiano

¿Qué es?

- · En MPPs
 - · Intensidad es explicada por covariables si
 - · Covariables rara vez explican puntos agregados
- · Gaussiano = Distribución normal
 - · Efecto aleatorio con distribución normal multivariada

$$\log \lambda_i = \alpha + \beta_1 x_{1.i} + \dots + G(u_i, v_i)$$

- α es el intercepto global - $G(u_i)$ es el intercepto aleatorio para cada píxel - Cuando todas las x=0, la intensidad en el píxel i es $\exp(\alpha+G(u_i))$

¿Con qué se ajusta un LGCP en R?

- · Frecuentista spatstat (rápido poco preciso)
- · Bayesiano
 - · RINLA (moderadamente rápido, moderadamente preciso)
 - lgcp (muuuuy lento, bastante preciso)
- Frecuentista son aproximaciones, y Bayesiano son estimaciones verdaderas

Ajustando un LGCP con spatstat

Ajustando un LGCP con spatstat

sum.lgcp <- summary(m1.lgcp)
knitr::kable(sum.lgcp\$coefs.SE.CI[, 1:4])</pre>

Estimate	S.E.	CI95.lo	CI95.hi
2.8710581	0.3194624	2.2449234	3.4971929
0.1113775	0.0921967	-0.0693247	0.2920797
0.0049808	0.1157026	-0.2217922	0.2317538
-0.4756438	0.1028281	-0.6771832	-0.2741044
-0.5258717	0.1119727	-0.7453342	-0.3064093
	2.8710581 0.1113775 0.0049808 -0.4756438	2.8710581 0.3194624 0.1113775 0.0921967 0.0049808 0.1157026 -0.4756438 0.1028281	2.8710581 0.3194624 2.2449234 0.1113775 0.0921967 -0.0693247 0.0049808 0.1157026 -0.2217922 -0.4756438 0.1028281 -0.6771832

Comparando con MPP

knitr::kable(sum.m1\$coefs.SE.CI[, c(1, 2, 3, 4)])

	Estimate	S.E.	C195.lo	CI95.hi
(Intercept)	2.7089019	0.1116046	2.4901610	2.9276429
Var.1	0.1163265	0.0883434	-0.0568233	0.2894764
Var.3	-0.2208983	0.1118989	-0.4402161	-0.0015805
I(Var.1^2)	-0.3046825	0.0875528	-0.4762828	-0.1330821
I(Var.3^2)	-0.5240862	0.1173717	-0.7541304	-0.2940420

Predicciones

```
par(mfrow = c(1, 3))
plot(m2, se = F, trend = T, main = "Poisson")
plot(m1.int, se = F, trend = T, cif = F, main = "Interacción'
plot(m1.lgcp, what = "intensity", main = "LGCP")
```

Interacción

Poisson

LGCP

```
K.lgcp <- envelope(m1.lgcp, Kest, nsim = 39)

## Generating 39 simulated realisations of fitted cluster model
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
## 39.
##
## Done.</pre>
```

plot(K.lgcp)

K.lgcp

Conclusiones

- · Modelo Poisson
 - · Más simple, y no parece tener problemas
 - · IC de estimaciones más amplios que LGCP
- Interacción
 - · IC más amplios que MPP
- LGCP
 - Función K más cercana a expectativa teórica ### Alternativas de modelación
- · Respuestas bisagra: Regresión por partes
- Respuestas no lineales: Suavizadores GAM
- Interacciones entre variables