Servizi Applicativi su Internet

SMTP/POP/IMAP

La posta elettronica

Pierluigi Gallo, Domenico Garlisi, Fabrizio Giuliano

E-mail - Indice

UNIVERSITÀ DEGLI STUDI DI PALERMO

- Introduzione
- Formato del messaggio
- Server
- Protocolli
- Comandi SMTP
- MIME
- Sicurezza

- Che cos'è l'e-mail?
 - Tramite la posta elettronica è possibile scambiarsi in tempi estremamente ridotti sia messaggi di puro testo contenente allegati in vario formato
 - Avere un account di posta elettronica vuol dire avere un nome e un indirizzo a cui farvi inviare e da cui spedire posta.
 - Ci sono due principali modi per inviare e ricevere un e-mail: guardarla via web attraverso il vostro browser (Firefox, ...) o scaricarla sulla propria postazione remota attraverso un client di posta elettronica (Thunderbird, ...) in grado di parlare con il server e di recapitarvi le mail sul vostro pc.

- E' necessario che il documento venga opportunamente codificato in caratteri ASCII, a 7 bit
- I messaggi sono costituiti da diverse parti:
 - il mittente
 - Per individuare mittenti e destinatari dei messaggi, si utilizzano gli indirizzi E-mail, che hanno l'aspetto seguente: mario.rossi@libero.it, dove mario.rossi è il nome che identifica l'utente, mentre libero.it identifica l'indirizzo del fornitore del servizio sul quale si trovano le mailbox.
 - Il destinatario
 - La data
 - L'oggetto
 - Il corpo del messaggio

- UNIVERSITÀ DEGLI STUDI DI PALERMO
- Il sistema di posta elettronica e' basato su due server/protocolli
 - SMTP Server (Simple Mail Tranfer Protocol)
 - Gestisce le e-mail da spedire.
 - POP3 Server (Post Office Protocol)
 - Gestisce le e-mail in ricezione.

Per convenzione, ognuno dei protocolli usati usa

una porta specifica:

SMTP usa la porta 25

■ POP3 usa la porta 110

E-mail - Passaggi necessari per l'invio

UNIVERSITÀ DEGLI STUDI DI PALERMO

- Elementi e funzioni coinvolte nello scambio di un messaggio
 - Connessione al server SMTP usando la porta 25.
 - Trasferimento dell'indirizzo del mittente e di quello del destinatario nonchè il titolo del messaggio e il suo contenuto.
 - Il server SMTP prende l'indirizzo del destinatario jsmith@mindspring.com e lo scompone nel nome della mail box jsmith e nel nome del dominio mindspring.com.
 - Se il nome del dominio corrisponde a quello del mittente, il server SMTP trasferisce direttamente il messaggio al POP3 locale usando un piccolo programma chiamato delivery agent.
 - Per risolvere il nome del dominio e stabilire quale sia l'indirizzo IP corrispondente al nome mindspring.com il server deve rivolgersi al server DNS.
 - Nel caso più semplice il server SMTP locale si connetterà direttamente al server SMTP di mindspring.com, altrimenti si connetterà ad un altro SMTP.
 - Alla fine il messaggio verrà recapitato al server POP3 che lo depositerà nella mailbox di ismith.

Email – Protocollo di comunicazione

- Il protocollo di comunicazione per inviare una email e' specificato nella RFC
- in figura si ha una transazione SMTP valida. Le righe inviate dal client sono precedute da "C:", mentre quelle inviate dal server da "S:"

S: 221 Bye

```
S: 220 www.example.com ESMTP Postfix
C: HELO mydomain.com
S: 250 Hello mydomain.com, pleased to meet you
C: MAIL FROM: <sender@mydomain.com>
S: 250 sender@mydomain.com ... Sender ok
C: RCPT TO: <friend@example.com>
S: 250 friend@example.com ... Recipient Ok
C: DATA
S: 354 End data with "." on a line by itself
C: Subject: messaggio di prova
C: From: sender@mvdomain.com
C: To: friend@example.com
C:
C: Ciao,
C: questa è una prova.
S: 250 Ok: queued as 12345
C: QUIT
```


Inviare una mail da telnet

telnet smtp.tiscali.it 25
Trying 213.205.33.13...
Connected to smtp.tiscali.it.
Escape character is '^]'.
220 joe.mail.tiscali.it ESMTP Service ready
250 joe.mail.tiscali.it
250 MAIL FROM:<mittente@tiscali.it> OK
250 RCPT TO:<destinatario@gmail.com> OK
DATA
354 Start mail input; end with <CRLF>.<CRLF>
Subject: mail di prova da telnet

Questo e' il corpo della mail altra riga termino la mail inviando un punto su una nuova riga . 250 <4D08E71A007ED204> Mail accepted

E-mail – Comandi SMTP

- HELO provider.it
 Questo comando serve per salutare il server SMTP il quali ci riconoscerà dal nostro IP
- MAIL FROM: <nick_proprio@provider.it>
 Questo comando serve per indicare l'indirizzo email del mittente.
- RCPT TO: <nick_destinatario@provider.it>
 Questo comando serve per indicare l'indirizzo email del destinatario.
- DATA
 A questo comando segue una riga vuota che va riempita con la prima riga del nostro messaggio
- Per ulteriori informazioni sul protocollo SMTP e su quello POP3, la cosa migliore è fare riferimento ai documenti RFC che spiegano in dettaglio i protocolli, ad esempio:
 - Per SMTP: RFC 5321 (la RFC 2821 e' obsoleta)
 - http://www.ietf.org/rfc/rfc5321.txt
 - Per POP3: RFC 1939 (Standard) Updated byRFC 1957, RFC 2449
 - http://www.ietf.org/rfc/rfc1939.txt

9 UNIVERSITÀ DEGLI STUDI DI PALERMO

10

- Il protocollo IMAP (Internet Message Access Protocol) è un protocollo alternativo al protocollo POP3 ma che offre molte più possibilità :
 - IMAP permette di gestire più accessi simultanei
 - IMAP permette di gestire più caselle postali
 - IMAP permette di smistare la posta secondo più criteri

• MIME (Multipurpose Internet Mail Extensions) è uno standard generico per il formato dei documenti scambiati sulla rete Internet tramite posta elettronica, che rappresenta una estensione del protocollo SMTP.

- Una delle più importanti RFC di riferimento è la numero 2045
 - http://www.faqs.org/rfcs/rfc2045.html

- 12

 UNIVERSITÀ
 DEGLI STUDI
 DI PALERMO
- Specifica un nuovo modo di codifica dei dati accessorio a quello principale, utilizzato per permettere loro di passare attraverso tutti i meccanismi di trasporto della posta elettronica, e di supportare alfabeti relativi a più lingue.
 - La codifica viene definita attraverso un opportuno campo del protocollo e secondo le seguenti tipologie:
 - 7bit, 8bit, binary, quoted-printable, Base64, x-token
- MIME permette di includere molti tipi di file e documenti nei messaggi email.
 - Nello specifico, i messaggio MIME possono contenere
 - testo
 - immaggini
 - audio
 - video
 - altro

- Un documento MIME contiene una testata in cui si trovano i seguenti campi:
 - MIME version
 - Identifica la versione
 - Content-Type
 - Specifica il tipo ed il sottotipo di dati contenuti nel messaggio
 - Content-Transfer-Encoding
 - Specifica un modo di codifica dei dati
 - Content-ID
 - Identifica il messaggio in modo univoco
 - Content-Description
 - Descrizione testuale del contenuto del messaggio

- Tutte le comunicazioni relative ai protocolli precedentemente visti normalmente avvengono in chiaro, attraverso tutti i nodi che attraversano, e senza alcuna protezione, la criticità del servizio di posta elettronica è dovuta a:
 - Protocolli di trasmissione/ricezione
 - Passaggio per diversi server

- IN TRASMISSIONE (SMTP)
- NON prevede NESSUNA forma di autenticazione

- IN RICEZIONE (POP3 e IMAP)
- Sebbene prevede l'autenticazione lo scambio dei messaggi avviene IN CHIARO
 - Facile leggere sia la password che i dati.

- Per risolvere questo problema, si può optare per
 - Scaricare e inviare la posta in maniera cifrata
 - connessioni protette con l'ISP tramite SMTP+SSL e POP+SSI
- Utilizzare protocolli opportuni come:
 - S/MIME
 - Necessita di una Certification Authority
 - PGP
 - Usa un sistema web of trust

Sviluppato da RSA nel 1996, S/MIME (Secure/ Multipurpose Internet Mail Extensions) è ampiamente riconosciuto e utilizzato per la messaggistica.

- La tecnologia si basa sul Public Key Cryptographic Standard (PKCS), che offre interoperabilità per quanto riguarda l'utilizzo della crittografia.
- Due caratteristiche chiave di S/MIME sono:
 - la firma digitale
 - la busta digitale (integrità del messaggio e riservatezza del messaggio).

18

E-mail - S/MIME (2)

- PKCS public key cryptography standards è un insieme di standard per l'implementazione di crittografia a chiave pubblica, abbiamo:
 - PKCS #1: RSA Encryption
 - PKCS #7: Cryptographic Message Syntax
 - PKCS #10: Certification Request Syntax

 S/MIME v3 utilizza CMS (Cryptographic Message Syntax) che è derivato da PKCS #7

E-mail - S/MIME - SERVIZI

19

■ S/MIME offre i seguenti servizi:

- Compressione
- Autenticazione
- Confidenzialità

- Compressione
 - Si attua al fine di risparmiare tempo e spazio per la firma
 - La compressione è effettuata facendo l'hash del messaggio (message digest) utilizzando gli algoritmi: SHA-1 e MD5. Entrambi gli algoritmi prendono in input un messaggio di lunghezza arbitraria e restituiscono in output un messaggio di 128 bit (MD5) oppure 160 bit (SHA-1).

- Autenticazione
 - Il messaggio viene compresso con una funzione hash e fornisce un message digest di lunghezza costante
 - Algoritmi usati: SHA-1 (160) o MD5 (128)
 - Il message digest viene firmato con la chiave privata del mittente
 - Schema di firma usato:
 - RSA per S/MIME v2
 - DSS per S/MIME v3
 - Per poter firmare un messaggio, il mittente deve avere un certificato digitale che stabilisce il legame tra la chiave pubblica e l'identità dell'utente (standard X.509)

- Confidenzialità
 - Il messaggio è cifrato con un algoritmo a chiave privata
 - Algoritmi usati: RC2, DES, EDE-DES
 - La chiave (session key) è generata dal mittente per ogni messaggio
 - La session key è poi cifrata con la chiave pubblica del destinatari
 - Algoritmo usato:
 - RSA per S/MIME v2
 - Diffie-Hellman per S/MIME v3

E-mail - S/MIME compatibilità v2 e v3

 Gli agenti S/MIME v3 dovrebbero cercare di avere la più grande interoperabilità possibile con gli agenti S/MIME v2

 S/MIME v3 prevede tutti gli algoritmi supportati da S/MIME versione 2

E-mail - S/MIME MESSAGGIO

- I messaggi S/MIME sono una combinazione di corpi MIME ed oggetti PKCS
- I dati che devono essere resi sicuri sono sempre entità MIME canoniche
 - Rappresentazione unica e non ambigua dell'entità
- S/MIME fornisce un formato per i dati solo imbustati (solo cifrati), diversi formati per dati solo firmati, e diversi formati per dati firmati e imbustati

S/MIME - Codifica di Trasferimento

25

UNIVERSITÀ
DEGLI STUDI
DI PALERMO

■ Le implementazioni S/MIME devono essere capaci di trattare con oggetti MIME binari

- I dati trasmessi sull'infrastruttura internet standard SMTP o un altro trasporto che è vincolato a testo a 7-bit deve avere una codifica di trasferimento applicata in modo da essere rappresentata come testo a 7-bit
- Le entità come testo ad 8-bit e dati binari possono essere codificati con codifica di trasferimento quoted-printable o base-64

S/MIME - Quoted-printable e Base64

- Quoted-printable
 - Questo valore significa che un'operazione di codifica è stata applicata ai dati in modo da trasformare il messaggio in una sequenza di caratteri ASCII
- base-64
 - Con questa operazione il messaggio viene trasformato in una sequenza di caratteri appartenenti ad un sottogruppo del set di caratteri ASCII (le lettere maiuscole da "A" a "Z", quelle minuscole da "a" a "z", i numeri da "0" a "9", il carattere "+" ed il carattere "\")

S/MIME - Tipi di contenuto PKCS#7

27

UNIVERSITÀ
DEGLI STUDI
DI PALERMO

 Il formato del messaggio PKCS #7 permette una grossa varietà di opzioni sia per il contenuto e che per il supporto degli algoritmi

- PKCS #7 definisce sei tipi di contenuto distinti:
 - signedData
 - envelopedData
 - signedAndEnvelopedData
 - digestedData
 - encryptedData

S/MIME II messaggio in ricezione

28

UNIVERSITÀ
DEGLI STUDI
DI PALERMO

 Quando un messaggio S/MIME è ricevuto i servizi di sicurezza sul messaggio sono rimossi e il risultato è l'entità MIME

 L'entità MIME è tipicamente passata ad un agente MIME, essa è decodificata e presentata all'utente o all'applicazione ricevente

- Pretty Good Privacy (PGP) è un programma di crittografia a chiave pubblica che utilizza dei cifrati con licenza open source per firmare e crittografare i messaggi come:
 - RSA
 - IDFA
 - MD5
- Anche in questo caso vengono garantiti I servizi di:
 - Compressione
 - Autenticazione
 - Confidenzialità

E-mail - PGP

UNIVERSITÀ DEGLI STUDI DI PALERMO

- Autenticazione
- Il sender crea il messaggio
 - Viene usato SHA-1 per generare un hash a 160 bit del messaggio
 - Il messaggio viene firmato con RSA usando la chiave privata del sender e la firma è aggiunta al messaggio
- Il receiver usa RSA con la chiave pubblica del sender per decriptare e recuperare l'hash
- Il receiver verifica il messaggio ricevuto calcolando
- il suo hash e confrontandolo con quello ricevuto

- Confidenzialità
- Il sender genera il messaggio nonché un numero random di dimensione adatta da usare come chiave di sessione
- Il sender cripta il messaggio con la chiave di sessione
- Il sender cripta, RSA, la chiave di sessione con la chiave pubblica del recipient e la aggiunge al messaggio
- Il receiver, usando RSA e la sua chiave privata, recupera la chaive di sessione
- Il receiver decripta il messaggio usando la chiave di sessione

UNIVERSITÀ

E-mail - PGP

Email – PGP – Key management

- PGP, piuttosto che basarsi sulle CA, fa sì che ogni utilizzatore sia la CA di se stesso
- Può firmare le chiavi di utilizzatori che conosce direttamente
- PGP ha diffuso il concetto di "web of trust"

 Possibile avere fiducia alle chiavi firmate da altri se si dispone di una catena di firme fino a questi

 Le raccolte di chiavi (key ring) includono i trust indicators

UNIVERSITÀ DEGLI STUDI

E-mail S/MIME vs PGP

- Sono funzionalmente equivalenti tranne per un aspetto rilevante: il modello di fiducia
 - La differenza fondamentale tra i due sistemi è che mentre PGP utilizza una gestione "utente-centrica" delle chiavi pubbliche (il cosiddetto web of trust), S/MIME impiega una struttura gerarchica di certificazione (le Certification Authorities o CA)
- S/MIME ha un modello di fiducia gerarchico in cui delle "autorità di certificazione" certificano l'identità degli utenti
- PGP adotta un sistema a rete in cui gli utenti si certificano a vicenda

35

 S/MIME e PGP non sono specifiche compatibili fra di loro

- La maggior parte dei prodotti di posta elettronica supporta l'uno o l'altro, ma c'è la tendenza di supportarli entrambi :
 - Si parla anche di unificare i due prodotti in uno standard unico