BIO 226, Spring 2015: Lab 1

Contrasts in SAS

Yoonyoung Park

February 3, 2015

Outline

- Guinea pigs ANOVA example
- How to change the reference level for class variables.
- Writing hypotheses in terms of β 's.
- Writing contrasts.
- Testing contrasts in SAS.

Example: Dosages of four cardiotoxic drugs at death of infused guinea pigs

- Evaluating potencies of four cardiac treatments
- Observe dosage at which animals (guinea pigs) die for each treatment
- 10 guinea pigs per treatment (40 observations in all)

Example: Dosages of four cardiotoxic drugs at death of infused guinea pigs

Assess any differences in toxicity of four treatments, i.e. differences in mean dosage required to kill animal

$$\bar{y}_1 = 25.9$$
, $\bar{y}_2 = 22.2$, $\bar{y}_3 = 20.0$, $\bar{y}_4 = 19.6$

SAS Syntax for One-Way ANOVA

```
DATA toxic;
INFILE 'tox.txt';
INPUT y drug;
RUN;

PROC GLM DATA=toxic;
CLASS drug;
MODEL y=drug / solution;
RUN;
```

5/26

SAS Syntax for One-Way ANOVA

				Standard		
Paramete	•	Estimate		Error	t Value	Pr > t
Intercept	t	19.60000000	В	0.98728021	19.85	<.0001
DRUG	1	6.30000000	В	1.39622507	4.51	<.0001
DRUG	2	2.60000000	В	1.39622507	1.86	0.0708
DRUG	3	0.40000000	В	1.39622507	0.29	0.7761
DRUG	4	0.00000000	В			

Changing the reference level

```
proc sort data=toxic; by descending drug; run;

PROC GLM DATA=toxic order=data;
CLASS drug;
MODEL y=drug / solution;
RUN;
```

Recall from Lecture: SAS Syntax for One-Way ANOVA

The GLM Procedure

Class Level Information

Class Levels Values
DRUG 4 1 2 3 4

Dependent Variable: Y

Sum of

Source DF Squares Mean Square F Value Pr > FModel 3 249.8750000 83.2916667 8.55 0.0002 Error 36 350.9000000 9.7472222

Corrected Total 39 600.7750000

R-Square Coeff Var Root MSE Y Mean 0.415921 14.23970 3.122054 21.92500

Recall from Lecture: SAS Syntax for One-Way ANOVA

				Standard		
Paramet	er	Estimate		Error	t Value	Pr > t
Interce	pt	25.90000000	В	0.98728021	26.23	<.0001
DRUG	4	-6.30000000	В	1.39622507	-4.51	<.0001
DRUG	3	-5.90000000	В	1.39622507	-4.23	0.0002
DRUG	2	-3.70000000	В	1.39622507	-2.65	0.0119
DRUG	1	0.00000000	В			

The model

The model

$$Y_i = \beta_1 + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i4} + \varepsilon_i$$

$$\mu_1 = \beta_1$$

$$\mu_2 = \beta_1 + \beta_2$$

$$\mu_3 = \beta_1 + \beta_3$$

$$\mu_4 = \beta_1 + \beta_4$$

11/26

 H_0 : Drug 2 is as potent as drug 3.

How would we write that hypothesis in terms of the β 's?

$$\mu_1 = \beta_1$$
 $\mu_2 = \beta_1 + \beta_2$
 $\mu_3 = \beta_1 + \beta_3$
 $\mu_4 = \beta_1 + \beta_4$

 H_0 : Drug 2 is as potent as drug 3.

How would we write that hypothesis in terms of the β 's?

$$\beta_2 = \beta_3$$

$$\mu_1 = \beta_1$$

$$\mu_2 = \beta_1 + \beta_2$$

$$\mu_3 = \beta_1 + \beta_3$$

 $\mu_4 = \beta_1 + \beta_4$

13/26

 H_0 : Drug 2 is as potent as drug 3.

$$H_0$$
: $\beta_2 = \beta_3$

$$H_0$$
: $\beta_2 - \beta_3 = 0$

$$\begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix} = 0 * \beta_1 + 1 * \beta_2 + -1 * \beta_3 + 0 * \beta_4$$
$$= \beta_2 - \beta_3$$

14/26

 H_0 : Drug 2 is as potent as drug 3.

$$H_0$$
: $\beta_2 = \beta_3$

$$H_0$$
: $\beta_2 - \beta_3 = 0$

$$\underbrace{\begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix}}_{\mathbf{L}} \underbrace{\begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix}}_{\beta} = 0 * \beta_1 + 1 * \beta_2 + -1 * \beta_3 + 0 * \beta_4$$
$$= \beta_2 - \beta_3$$

$$H_0$$
: $\mathbf{L}\boldsymbol{\beta} = 0$

 H_0 : Drugs 2, 3 and 4 are equally potent.

How would we write that hypothesis in terms of the β 's?

$$\mu_1 = \beta_1$$
 $\mu_2 = \beta_1 + \beta_2$
 $\mu_3 = \beta_1 + \beta_3$
 $\mu_4 = \beta_1 + \beta_4$

 H_0 : Drugs 2, 3 and 4 are equally potent.

How would we write that hypothesis in terms of the β 's?

$$\beta_2=\beta_3=\beta_4$$

$$\mu_1 = \beta_1$$

$$\mu_2 = \beta_1 + \beta_2$$

$$\mu_3 = \beta_1 + \beta_3$$

 $\mu_4 = \beta_1 + \beta_4$

 H_0 : Drugs 2, 3 and 4 are equally potent.

$$H_0$$
: $\beta_2 = \beta_3 = \beta_4$

$$H_0$$
: $\beta_2 = \beta_3$ and $\beta_3 = \beta_4$

$$H_0$$
: $\beta_2 - \beta_3 = 0$ and $\beta_3 - \beta_4 = 0$

$$\underbrace{\begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}}_{\mathbf{L}} \underbrace{\begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix}}_{\beta} = \begin{bmatrix} 0 * \beta_1 + 1 * \beta_2 + -1 * \beta_3 + 0 * \beta_4 \\ 0 * \beta_1 + 0 * \beta_2 + 1 * \beta_3 + -1 * \beta_4 \end{bmatrix} \\
= \begin{bmatrix} \beta_2 - \beta_3 \\ \beta_3 - \beta_4 \end{bmatrix}$$

 H_0 : **L** $\beta = 0$

 H_0 : All 4 drugs are equally potent.

$$H_0$$
: $\beta_2 = \beta_3 = \beta_4 = 0$

$$H_0$$
: $\beta_2 = 0$ and $\beta_3 = 0$ and $\beta_4 = 0$

$$\underbrace{\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{\mathbf{L}} \underbrace{\begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix}}_{\boldsymbol{\beta}} = \begin{bmatrix} 0 * \beta_1 + 1 * \beta_2 + 0 * \beta_3 + 0 * \beta_4 \\ 0 * \beta_1 + 0 * \beta_2 + 1 * \beta_3 + 0 * \beta_4 \\ 0 * \beta_1 + 0 * \beta_2 + 0 * \beta_3 + 1 * \beta_4 \end{bmatrix} \\
= \begin{bmatrix} \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix}$$

 H_0 : **L** $\beta = 0$

How to test these Hypotheses

We know that the least squares (LS) estimate $\widehat{\beta}$, which is also the maximum likelihood (ML) estimator, has distribution

$$\widehat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \operatorname{Cov}(\widehat{\boldsymbol{\beta}})\right)$$

(see Lecture 2 slide 22)

$$\mathbf{L}\widehat{\boldsymbol{\beta}} \sim N\left(\mathbf{L}\boldsymbol{\beta}, \mathbf{L}\operatorname{Cov}(\widehat{\boldsymbol{\beta}})\mathbf{L}'\right)$$

Thus, we can perform inference to test H_0 : $\mathbf{L}\boldsymbol{\beta} = 0$. Luckily, SAS does this for us!

20 / 26

CONTRAST 'label' effect values / E;

label - identifies the contrast on the output.

effect - the variable in the model

values - the L matrix

 ${\sf E}$ - displays the ${\bf L}$ matrix. This option is useful in confirming the ordering of parameters for specifying.

```
H_0: Drug 2 is as potent as drug 3.
```

$$H_0$$
: $\beta_2 - \beta_3 = 0$

```
PROC GLM DATA=toxic order=data;
```

CLASS drug;

MODEL y=drug / solution;

CONTRAST 'Drug 2 vs Drug 3' DRUG 0 -1 1 0 / E;

RUN;

 H_0 : Drug 2 is as potent as drug 3.

$$H_0: \beta_2 - \beta_3 = 0$$

 ${\sf E}$ - displays the ${\sf L}$ matrix. This option is useful in confirming the ordering of parameters for specifying .

Coefficients for Contrast Drug 2 vs Drug 3

		Row 1
Interce	ept	0
DRUG	4	0
DRUG	3	-1
DRUG	2	1
DRUG	1	A

 H_0 : Drug 2 is as potent as drug 3.

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
Drug 2 vs Drug 3	1	24.20000000	24.20000000	2.48	0.1238

```
H_0: Drugs 2, 3 and 4 are equally potent.

PROC GLM DATA=toxic order=data;

CLASS drug;

MODEL y=drug / solution;

CONTRAST 'Drug 2 vs Drug 3 vs Drug 4' DRUG 0 -1 1 0,

DRUG -1 1 0 0 / E;

RUN;
```

 H_0 : Drugs 2, 3 and 4 are equally potent.

 ${\sf E}$ - displays the displays the ${\bf L}$ matrix. This option is useful in confirming the ordering of parameters for specifying .

Coefficients for Contrast Drug 2 vs Drug 3 vs Drug 4

		Row 1	Row 2
Intercept		0	Θ
DRUG	4	0	-1
DRUG	3	-1	1
DRUG	2	1	0
DRUG	1	Θ	Θ

 H_0 : Drugs 2, 3 and 4 are equally potent.

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
Drug 2 vs Drug 3 vs Drug 4	2	39.2000	19.600000	2.01	0.1486