

BIOLOGY Chapter 17

5TO

SECONDARY

SISTEMA CIRCULATORIO
ANIMAL Y HUMANO

LOS LATÍDOS DEL CORAZÓN DE UNA BALLENA

A mayor tamaño, menor ritmo cardíaco Lo lógico sería pensar que los animales más grandes, tendrían también un ritmo cardíaco más elevado, pero el sistema circulatorio funciona al revés. Una ballena azul tiene un ritmo cardíaco promedio de 5 latidos por minutos, mientras que el de una musaraña es de mil latidos por minutos. Los seres humanos, tenemos un ritmo cardíaco de 75 latidos por minuto en promedio, cuando estamos en reposo. Al hacer actividad física. este sube.

CIRCULACIÓN ANIMAL

CIRCULACIÓN NO ESPECIALIZADA (SIN SISTEMA)

Por difusión

En una esponja.

En un celentéreo (tipo pólipo).

Por medio del tubo digestivo

intestino ramificado

En un platelminto.

CIRCULACIÓN ANIMAL

	ÓRGANO BOMBEADOR	CORAZÓN NEUROGÉNICO	EN INVERTEBRADOS	
		CORAZÓN MIOGÉNICO	EN VERTEBRADOS	
	VASOS CONDUCTORES	HEMOLINFÁTICOS VENAS	EN SISTEMA CIRCULATORIO ABIERTO Y CERRADO EN INVERTEBRADOS	
		CAPILARES VENAS	SOLO CERRADO EN VERTEBRADOS	
	FLUIDO	HEMOLINFA	EN INVERTEBRADOS	
		SANGRE	EN VERTEBRADOS	
	PRINCIPALES PIGMENTOS	HEMOCIANINA(AZUL) CONTIENE COBRE	EN INVERTEBRADOS	
		HEMOGLOBINA(ROJO) CONTIENE HIERRO	EN VERTEBRADOS	

CIRCULACIÓN ANIMAL

CIRCULACIÓN ESPECIALIZADA (CON SISTEMA)

HEMOLINFA A PRESIÓN BAJA

SISTEMA CIRCULATORIO ABIERTO (LAGUNAR)

CORAZÓN (bomba absorbente e impelente)

LAGUNA TISULAR O
HEMOCELE

Esquema general de circulación abierta.

CORAZÓN TUBULAR DORSAL CON OSTIOLOS

TRANSPORTE DE
NUTRIENTES
PRINCIPALMENTE (NO
TRANSPORTA GASES)

MOLUSCOS CEFALÓPODOS

CORAZÓN SISTÉMICO

CIRCULACIÓN EN VERTEBRADOS

Ventrículo derecho

Aparato circulatorio doble y completo

Circulación cerrada, doble y completa

Ventrículo izquierdo

Órganos

CIRCULACIÓN EN VERTEBRADOS

VERTEBRADOS	CIRCULACIÓN	CORAZÓN	GLÓBULOS ROJOS	CARACTERÍSTIC AS
PECES	cerrada, simple y completa	laurícula l ventrículo	con núcleo	Aorta ventral y aorta dorsal
ANFIBIOS	cerrada , doble e incompleta	2 aurículas 1 ventrículo	con núcleo	mezcla de sangre en ventrículo
REPTILES	cerrada, doble e incompleta	2a y 1v (tabique incompleto)	con núcleo	mezcla de sangre en ventrículo.
AVES	cerrada, doble y completa	2 aurículas 2ventrículos	con núcleo	arco aórtico derecho
MAMÍFEROS	cerrada, doble y completa	2 aurículas 2ventrículos	sin núcleo	arco aórtico izquierdo

ANATOMOFISIOLOGÍA

- CORAZÓN
 - Morfología y estructura
 - Histología
 - Fisiología
 - Regulación
- VASOS SANGUÍNEOS
 - Arterias
 - Capilares
 - Venas
 - Presión arterial

回<

- FORMA Y ORIENTACIÓN
- El corazón tiene forma de pirámide triangular o cono, cuyo vértice se dirige hacia abajo, hacia la izquierda y hacia delante, y la base se dirige hacia la derecha, hacia arriba y un poco hacia atrás.

01

01

- Pericarpio: doble capa serosa, envuelve externamente el corazón.
- Endocardio: Endotelio simple, tapiza el corazón por dentro.
- Miocardio: Formado por tejido muscular cardíaco. autoexcitable; no tiene estimulación por el sistema nervioso.

01

CORAZÓN

FISIOLOGÍA CARDIACA

FISIOLOGÍA CARDIACA

- El corazón es autoexcitable gracias al tejido nodal, formado por células musculares modificadas y capaces de generar impulsos.
- Nódulo sinoatrial (SA): Inicia cada ciclo cardiaco.
- Nódulo auriculoventricular (AV): Capta la estimulación del SA y la transmite al siguiente.
- Fascículo de His: distribuye la señal a los ventrículos. Se ramifica formando la red de Purkinje.

FISIOLOGÍA CARDIACA: ELECTROCARDIOGR

- Registra la a divida del corazón.
- Se utiliza para medir el ritmo y la regularidad de los latidos, el tamaño y posición de las aurículas y ventrículos, cualquier daño al corazón y los efectos que sobre él tienen las drogas. Es el registro de la actividad eléctrica del corazón

Las principales ondas del electrocardiograma son:

- Onda P: Representa la activación auricular, es decir la llegada de la corriente eléctrica a las aurículas(despolarización auricular).
- Complejo QRS: Representa la activación ventricular, es decir la despolarización de los ventrículos (llegada del estímulo eléctrico a los ventrículos).
- Onda T: Es una onda que representa repolarización de los ventrículo

- Cerrada: La sangre no sale de los vasos.
- Doble: La sangre pasa dos veces por el corazón. Hay dos circuitos.
- Completa: La sangre oxigenada y la desoxigenada no se mezclan.
 - La parte derecha del corazón sólo bombea sangre hipo-oxigenada
 - La izquierda bombea sólo sangre oxigenada.

- Circulación menor: Entre el corazón y los pulmones.
 - La sangre hipo -oxigenada sale del ventrículo derecho, va a los pulmones por las arterias pulmonares, se oxigena y regresa por las venas pulmonares hasta la aurícula izquierda.
- Circulación mayor: Entre el corazón y los demás órganos y tejidos.
 - La sangre oxigenada sale del ventrículo izquierdo por la arteria aorta, lleva a los órganos oxígeno y nutrientes, y vuelve al corazón por las venas, que confluyen en las venas cavas, hasta la aurícula derecha.

VASOS SANGUÍNEOS: TÚNICAS

La túnica íntima es la más interna, más próxima a la sangre, y está formada por un epitelio simple plano (endotelio), una lámina basal y una capa de tejido conectivo laxo. La túnica media está formada sobre todo por fibras de músculo liso. La túnica adventicia es la capa más externa y está formada por tejido conectivo

VASOS SANGUÍNEOS:

- Llevan la sangre desde el corazón a los tejidos.
- Histología:
 - Túnica adventicia, externa, de tejido conjuntivo.
 - Túnica media, de fibra muscular lisa.
 - Túnica interna, de endotelio.

VASOS SANGUÍNEOS: VENAS

- Devuelven la sangre desde los tejidos hasta el corazón.
- Histología:
 - Túnica adventicia, más gruesa que en arterias.
 - Túnica media, más delgada que en las arterias.
 - Túnica interna.
 - Tienen válvulas que evitan el retroceso de la sangre

VASOS SANGUÍNEOS: PRINCIPALES ARTERIAS Y VENAS

BIOLOGY HELICOPRÁCTICE

5TO

SECONDARY

- 1. ¿Qué tipo de circulación presentan los mamíferos y aves? Cerrada, doble y completa
- 2. ¿Qué tipo de circulación presentan los anfibios y reptiles? Cerrada, doble e incompleta
- 3. Mencione los vasos sanguíneos.

Arteria, CAPILARES y VENAS

5. ¿En qué consiste la circulación simple y doble?

La circulación simple ocurre cuando el fluido circulante pasa una sola veZ por el corazón, mientras que la doble involucra que el fluido circulante pase dos veces por el corazón.

- 6. Relacione los tipos de circulación.
- a. Abierta (D) Peces
- b. Sin circulación (C) Mamíferos
- c. Doble (B) Esponja de mar
- d. Simple (A) Artrópodos
- 7. EN LA ARRITMIA EL COMPLEJO QRS ESTÁ ALTERADO, LA FALLA PODRÍA ESTAR A NIVEL DEL ?
- 8. EN QUE CONSISTE LA ATEROMATOSIS CORONARIA?