

# CHEMISTRY Chapter 12



REACCIONES QUÍMICAS





# MOTIVATING





# HELICO THEORY

# ¿Qué entiendes por reacciones químicas?

En una reacción química ocurre ruptura de enlaces en las sustancias iniciales denominadas reactantes y se forman nuevos enlaces que corresponden a nuevas sustancias llamadas productos.





## Ecuación Química





# Evidencias empíricas de una reacción

- ☐ Cambio en la propiedades organolépticas (color, olor, sabor).
- Desprendimiento de gases.
- Variación de temperatura.
- Formación de precipitados.







# Clasificación de las reacciones químicas

- I) Según la naturaleza de los reactantes
  - a) Reacción de adición, combinación, síntesis

$$2H_{2(g)} + O_{2(g)} \xrightarrow{\text{chispas}} 2H_2O_{(I)}$$

b) Reacciones de descomposición



c) Reacción de sustitución o desplazamiento simple

$$Zn + H_2SO_4 \rightarrow ZnSO_4$$

d) Reacción de sustitución doble o metáte





# II) Según la energía involucradaa) Reacción exotérmica

$$N_2 + 3H_2 \rightarrow 2NH_3 + 22 \text{ kcal/mol}$$
  
 $\Delta H = (-)$ 



### b) Reacción endotérmica

CO<sub>2</sub> 393,5 
$$\rightarrow$$
 C<sub>(S)</sub> +O<sub>2(</sub> +  $\downarrow$  KJ/mol  $\rightarrow$  C<sub>+</sub> (+)  $\rightarrow$  C<sub>(S)</sub>  $\rightarrow$  C<sub>(S)</sub> +O<sub>2(</sub>





### III) Según la Reacción de combustión

a) Rxn. combustión completa

- Completa
- C<sub>3</sub>H<sub>8</sub> + 5O<sub>2</sub> → 3CO<sub>2</sub> + 4H<sub>2</sub>O
- ✓ Mayor poder calorífico
- ✓ El oxígeno esta en cantidades adecuadas



Llama no Iuminosa

## b) Rxn. de combustión incomplet

- Incompleta
- C<sub>3</sub>H<sub>8</sub> + 7/2O<sub>2</sub> → 3CO + 4H<sub>2</sub>O
- ✓ Menor poder calorífico
- ✓ El oxígeno esta en cantidades menores



Llama luminosa



## IV) Según por el sentido de reacción

a) Rxn. Irreversible

$$2KCIO_3 \rightarrow 2KCI + O_2$$

- V) Según el número de fases
  - a) Rxn. Homogéneas

$$H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$$

b) Rxn. Reversible o limitada

$$N_2 + 3H_2$$
  
 $2NH_3$ 

b) Rxn. Heterogéneas

$$2Fe_{(s)} + 3O_{2(g)} \rightarrow 2Fe_2O_{3(s)}$$

- VI) Según el número de etapas para obtener una sustancia
  - a) Rxn. Monoetápicas

$$Fe_2O_{3(s)} + 3H_{2(g)} \rightarrow 2Fe_{(s)} + 3H_2O_{(v)}$$

b) Rxn. Polietápicas

$$4FeS_2+11O_2 → 2Fe_2O_3 + 3SO_2$$
  
 $2SO_2 + O_2 → 2SO_3$   
 $SO_3 + H_2O →$   
 $H_2SO_4$ 



# Balanceo de ecuaciones químicas

#### I) Método del tanteo

Sugerencia

| Orden     | 1.0   | 2.°      | 3.° | 4.° |
|-----------|-------|----------|-----|-----|
| Elementos | Metal | No metal | H   | 0   |

#### Balancee la siguiente ecuación química:

$$H_3PO_4 + Ca(OH)_2 \rightarrow$$

$$H_3PO_4$$
  $\stackrel{\bullet}{\longrightarrow}$   $Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 +$ 

2° Balanceamos "P"

$$2H_3PO_4 + 3 Ca(OH)_2 → 1 Ca_3(PO_4)_2$$
  
 $H_2O$ 

$$\square_2 \square_3 PO_4 + 3 Ca(OH)_2 \rightarrow 1 Ca_3 (PO_4)_2 +$$

4° Balanceamos "O" (se verifica que ya está balancead



### II) Método Redox





#### a) Rxn. No Redox

$$1+ 2- 1+ 1+ 1- 1+ 1- 1+ 2-$$
NaOH + HCl  $\rightarrow$  NaCl + H<sub>2</sub>O

#### b) Rxn. Redox



**CHEMISTRY** 



### HELICO PRACTICE

1 Balancee la ecuación química por simple inspección.

C<sub>5</sub>H<sub>12</sub> + O<sub>2</sub> 
$$\rightarrow$$
 CO<sub>2</sub> + H<sub>2</sub>O

Resolución:

$$1 C_5H_{12} & O_25 \rightarrow CO_2 + H_2O$$

Nota: El coeficiente 1 no se coloca, se sobreentiende. Aquí se hace presente para comparar los diversos coeficientes presentes.



2

# ¿Cuál es el coeficiente del agua después de balancear la ecuación química?

Resolución:

$$H_2SO_4 + NaOH \rightarrow Na_2SO_4 + H_2O$$





Calcule la suma de todos los coeficientes después de igualar la ecuación química.

$$H_3PO_4 + Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 +$$

2 
$$H_3PO_4$$
 3  $Ca(OH)_2$   $\rightarrow$   $Ca_3(BO_4)_2$   $\downarrow \uparrow H_2O$ 







Determine el valor de (a+b) – (c+d) después de igualar la ecuación química.

$$a C_2H_5OH + b O_2 \rightarrow c CO_2 + d H_2O$$



$$(a+b) - (c+d) (1+3) - (2+3)$$





# 5 Después de balancear las ecuaciones químicas

I. 
$$1 N_2 + 3 H_2 + NH_3$$

III. 12 C 7+ 
$$H_2$$
 +  $C_6H_5NH_2$ 

Calcule: a + b+ c.

# Resolución:





6 Calcule la suma de los coeficientes del oxígeno después de balancear las ecuaciones químicas.

I. 
$$2 C + 1 O_2$$
 CO

II. 
$$2 N_2 + 3 O_2 2 N_2 O_3$$



$$\Sigma (O_2) = 1 + 3$$



7

### Clasifique las ecuaciones químicas mostradas.

I. 
$$P_4 + H_2 \rightarrow PH_3$$

A + B  $\rightarrow$ 

Adición o Síntesis

II. 
$$KCIO_3 \rightarrow KCI + O_2$$

AB  $\rightarrow$  A +

Descomposición o Análisis

III. 
$$CH_4 + O_2 \rightarrow CO + H_2O$$

$$C_XH_Y + O_2 \rightarrow CO + Combustión$$

$$Incompleta$$



Una reacción exotérmica se caracteriza por liberar energía en forma de calor. Es el caso de la reacción

$$C_2H_{4(g)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 2H_2O_{(g)} + 1141kJ/mol$$

De la que podemos afirmar que:

I. Como toda combustión es exotérmica. (V)

II. Es una combustión incompleta. (F)

$$C_XH_Y + O_2 \rightarrow CO + H_2O$$

III. La entalpia de esta reacción es negativa. (V)

Reaccion exotérmica :  $\triangle H = -1141 \text{KJ/mol}$ 

