Probability and Probability Distributions

Adejumo Ridwan Suleiman

June 26 2022

Section 1

Probability and Probability Distributions

What is probability

- It is simply the study of uncertainty.
- Example the possibility of raining, tossing a coin or rolling a die.
- It is the measuring of how likely an event will occur.
- Mathematically defined as:

 $Probability = \frac{\text{Number of Required outcomes}}{\text{Number of Possible outcomes}}$

Terms in Probability

- Experiment: An uncertain situation e.g tossing a coin
- Outcome: Result of a trial in an experiment.
- Event: One or more outcome from a experiment
- Sample Space: The collection of possible outcomes of an experiment.

Random Variable

- Outcome of an event expressed in numbers
- For example in the coin toss experiment we can either have a head or tail which can be numerically expressed as 1 or 0 respectively.
- Let's call a set containing these two numbers X where; $X = \{1,0\}$.
- X represents the Random Variable
- What's the random variable of a sixed face die?

The Two Coin Toss Experiment

- $S = \{HH,HT,TH,TT\}$ Probability = $\frac{\text{Number of Required outcomes}}{\text{Number of Possible outcomes}}$
- Number of possible outcomes = 4
- Probability of getting a head in both coins is: $= \frac{\text{Number of Required outcomes(HH)}}{\text{Number of Possible outcomes(HH,HT,TH,TT)}} = \frac{1}{4}$
- Probability of getting a head in the first coin and a tail in the second coin:
 - $= \frac{\text{Number of Required outcomes(HT)}}{\text{Number of Possible outcomes(HH,HT,TH,TT)}} = \frac{1}{4}$
- Probability of getting a head and a tail in both coins.

 Number of Populard outcomes (HT TH)
 - $= \frac{\text{Number of Required outcomes(HT,TH)}}{\text{Number of Possible outcomes(HH,HT,TH,TT)}} = \frac{2}{4}$

The Two Die Experiment

		White Die					
		1	2	3	4	5	6
Red Die	1	(1,1)	(2, <mark>1</mark>)	(3, <mark>1</mark>)	(4, <mark>1</mark>)	(5, <mark>1</mark>)	(6, <mark>1</mark>)
	2	(1, <mark>2</mark>)	(2, <mark>2</mark>)	(3, <mark>2</mark>)	(4, <mark>2</mark>)	(5, <mark>2</mark>)	(6, <mark>2</mark>)
	3	(1,3)	(2,3)	(3,3)	(4, 3)	(5, <mark>3</mark>)	(6, <mark>3</mark>)
	4	(1, <mark>4</mark>)	(2, <mark>4</mark>)	(3, <mark>4</mark>)	(4, <mark>4</mark>)	(5, <mark>4</mark>)	(6, <mark>4</mark>)
	5	(1, 5)	(2, 5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)
	6	(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)

Figure 1: Tabular representation of the sample space of rolling two die

More on the Two Die Experiment

- $S = \{(1,1),(1,2),(1,3),\dots,(6,6)\}$ $Probability = \frac{\text{Number of Required outcomes}}{\text{Number of Possible outcomes}}$
- Number of possible outcomes = 36
- Probability of getting a one in both die: $= \frac{\text{Number of Required outcomes}(1,1)}{\text{Number of Possible outcomes}} = \frac{1}{36}$ • Probability of getting a one in the first die and a two in the second
- die: = $\frac{\text{Number of Required outcomes}(1,2)}{\text{Number of Possible outcomes}} = \frac{1}{36}$ Probability of getting a one and a two:
- $\frac{\text{Number of Required outcomes}(1,2) \text{ or } (2,1)}{\text{Number of Possible outcomes}} = \frac{2}{36}$

Bernoulli Distribution

- A single trial with only two possible outcomes is called as binomial distribution.
- Example is a coin tossed once or a fight between me and MayWeather where the probability of him winning is 0.9 and I losing is 0.1.

Binomial Distribution

- Unlike the Bernoulli Distribution, the binomial distribution has n number of trials.
- A distribution is said to be Binomial if the following are satisfied;
 - A trial with two outcomes and repeated n number of trials
 - Each trial is independent
 - A total numbers of n trials are conducted
 - The probability of scuccess and failure is same for all trials.

Normal Distribution

- A distribution is said to be normally distributed if it satisfies the following conditions;
 - The mean, median and mode of the distribution are the same.
 - The curve of the distribution is bell shaped
 - Half of the value are left of the center and the other half at the right.

Central Limit Theorem

 Regardless of the distribution of a variable's population, if we have a sufficiently large sample size, the mean and standard deviation of that variable will be normally distributed.

Challenge

References