FERIENKURS ANALYSIS 2 FÜR PHYSIKER

JOHANNES R. KAGER UND JULIAN SIEBER

Aufgabenblatt 2

Aufgabe 1 (*). Bestimmen Sie für die Funktion $f(x,y) = y^4 - 3xy^2 + x^3$

- (a) eine Funktion, deren Graph Tangentialebene an den Graph G_f bei (0,1)
- (b) eine quadratische Funktion, die mit f bis zu den zweiten Ableitungen im Punkt (x_0, y_0) übereinstimmt,
- (c) lokale und globale Extremstellen und Sattelpunkte.

Überlegen Sie sich außerdem, wie Sie das Maximum und Minimum der Funktion für $(x,y) \in [-\frac{5}{2},\frac{5}{2}] \times [-2,2]$ suchen würden. Die Berechnung des Ergebnisses ist nicht notwendig (der ähnliche Ansatz wird Sie in A.3 erneut begegnen).

Aufgabe 2 (**). Bestimmen Sie die globalen Extrema der folgenden Funktionen. Finden Sie dazu jeweils die kritischen Punkte und klassifizieren Sie diese anhand der Hesse Matrix.

- (a) $f(x,y) = x^2 + 2y^2 x$ (b) $f(x,y) = \sin(x) + xy^2$

Aufgabe 3 $(\star\star)$.

(a) We besitzt die Funktion $f:[0,1]\times[0,1]\to\mathbb{R}$ mit

$$f(x_1, x_2) := 3x_1^2 - 2(x_2 + 1)x_1 + 3x_2 - 1$$

globale Extremstellen? (Tipp: denken Sie auch an den Rand der Definitionsmenge!)

(b) Wo besitzt die Funktion $g: \mathbb{R}^2 \to \mathbb{R}$ mit

$$g(x_1, x_2) := x_1^3 e^{x_1 - x_2}$$

globale bzw. lokale Extremstellen?

Geben Sie jeweils an, ob es sich bei den Extremstellen um Maxima, Minima oder Sattelpunkte handelt.

Aufgabe 4 $(\star\star)$. Finden Sie jene Punkte auf der Kreislinie um den Punkt (2,0) mit Radius $\frac{\sqrt{5}}{2}$, welche den weitesten und kürzesten euklidischen Abstand zum Punkt (1,2) haben. Verwenden Sie dafür die Methode der Lagrangschen Multiplikatoren.

Aufgabe 5 $(\star \star \star)$. Sei $A \in \mathbb{R}^{n \times n}$ eine symmetrische Matrix, d.h. $A^T = A$. Bestimmen Sie das Maximum und das Minimum der Funktion $f: \mathbb{R}^n \to \mathbb{R}$ mit $f(x) := x^T \cdot Ax$ auf der Kugeloberfläche $\{x \in \mathbb{R}^n | |x| = 1\}$.

Aufgabe 6 (*). Gegeben sei die Funktion
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f(x) := \begin{pmatrix} x_1 + e^{x_2} \\ x_2 + e^{x_3} \\ x_3 + e^{x_1} \end{pmatrix}$.

- 2
- (a) Für welche $x \in \mathbb{R}^3$ ist $D_f(x)$ invertierbar?
- (b) Ist f injektiv?

Aufgabe 7 (**). Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) := x^2(1-x^2) - y^2$. Wir betrachten die Menge

$$M := \{(x, y) \in \mathbb{R}^2 | f(x, y) = 0\}$$

der Nullstellen von f.

Abbildung 1. Menge M

- (a) Bestimmen Sie grad f. An welchen $(x,y) \in M$ gilt grad f = 0?
- (b) Es sei $a:=(\frac{1}{2},\frac{\sqrt{3}}{4})$. Geben Sie eine offene Umgebung U von a und eine stetig differenzierbare Funktion $g:I\to\mathbb{R}$ mit geeignetem $I\subseteq\mathbb{R}$ an derart, dass gilt:

$$M \cap U = \{(x, g(x)) | x \in I\}.$$

(c) Nun sei b:=(1,0). Geben Sie eine offene Umgebung V von b und eine stetig differenzierbare Funktion $h:J\to\mathbb{R}$ mit geeignetem $J\subseteq\mathbb{R}$ an derart, dass gilt:

$$M \cap V = \{(h(y), y) | y \in J\}.$$

(d) Skizzieren Sie M, U, V sowie die Graphen von g und h. Sie können dazu obige Abbildung als Vorlage nutzen.

Aufgabe 8 (***). Die Abbildung $E:\mathbb{R}^2 \to \mathbb{R}^2$ sei gegeben durch

$$E(x,y) := \begin{pmatrix} e^x \cos y \\ e^x \sin y \end{pmatrix}.$$

- (a) Skizzieren Sie die Bilder der achsenparallelen Geraden unter E und bestimmen Sie die Bildmenge $E(\mathbb{R}^2)$.
- (b) Zeigen Sie, dass $D_E(x,y)$ invertierbar ist für alle $(x,y) \in \mathbb{R}^2$, aber E nicht injektiv ist. Sind damit die Bedingungen des Satzes über die Umkehrfunktion erfüllt?
- (c) Nun seien $a:=(0,\frac{\pi}{3})$ und b:=E(a). Bestimmen Sie die stetige Umkehrabbildung von E, die eine offene Umgebung von b auf eine offene Umgebung von a abbildet.