Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

Pauta Ayudantía 13 Álgebra Lineal

23 de junio de 2022

Problema 1. Considere $T \in \mathcal{L}(\mathbf{V})$ aplicación lineal y $W \subseteq \mathbf{V}$ subespacio invariante bajo T. Sea $T_{\mathbf{W}} : \mathbf{W} \to \mathbf{W}, \mathbf{w} \mapsto T(\mathbf{w})$ la restricción de T a \mathbf{W} .

- 1. Suponga que T es diagonalizable y denote por $\lambda_1, \ldots, \lambda_m$ sus valores propios distintos. Pruebe que cada $\mathbf{w} \in \mathbf{W}$ admite una única escritura $\mathbf{w} = \mathbf{w}_1 + \ldots + \mathbf{w}_m$, donde $\mathbf{w}_j \in \mathbf{V}_{\lambda_j}$ para cada $1 \leq j \leq m$. Si m = 1, concluya que $T_{\mathbf{W}}$ es diagonalizable.
- 2. Considere ahora $m \geq 2$. Demuestre que para cada $\mathbf{w} \in \mathbf{W}$ se tiene que $(T \lambda_m \operatorname{id}_{\mathbf{V}})(\mathbf{w}) \in \mathbf{W}$, y que $(T \lambda_m \operatorname{id}_{\mathbf{V}})(\mathbf{w}) = \sum_{j=1}^m (\lambda_j \lambda_m) \mathbf{w}_j$ con $\mathbf{w}_j \in \mathbf{V}_{\lambda_j}$.
- 3. Demuestre por inducción en el número de valores propios m que $T_{\mathbf{W}}$ es diagonalizable. Sugerencia: Pruebe que si $\mathbf{w} \in \mathbf{W}$ y $\mathbf{w} = \mathbf{w}_1 + \ldots + \mathbf{w}_m$ entonces $\mathbf{w}_i \in \mathbf{W}$ para todo $i \in \{1, \ldots, m\}$
- 4. Si $T: \mathbf{V} \to \mathbf{V}$ es diagonalizable y \mathbf{W} es invariante por T, demuestre que existe $\mathbf{W}' \subseteq \mathbf{V}$ subespacio tal que $\mathbf{V} = \mathbf{W} \oplus \mathbf{W}'$ y $T(\mathbf{W}') \subseteq \mathbf{W}'$.

Demostración.

- 1. El hecho que T es diagonalizable significa que $\mathbf{V} = \bigoplus_{j=1}^{m} \mathbf{V}_{\lambda_{j}}$. Se tiene directamente entonces que cada $\mathbf{w} \in \mathbf{W}$ se escribe de manera única como $\mathbf{w} = \mathbf{w}_{1} + \ldots + \mathbf{w}_{m}$ con $\mathbf{w}_{j} \in \mathbf{V}_{\lambda_{j}}$. Si m = 1 entonces $\mathbf{V} = \mathbf{V}_{\lambda_{1}}$, es decir, todo vector es propio a λ_{1} , y si consideramos una base $\mathcal{B} = (e_{1}, \ldots, e_{n})$ de \mathbf{W} , entonces $T_{\mathbf{W}}(\mathbf{e}_{j}) = \lambda_{1}\mathbf{e}_{j}$, por lo que $T_{\mathbf{W}}$ posee una base de vectores propios y es entonces diagonalizable.
- 2. Como **W** es invariante, si $\mathbf{w} \in \mathbf{W}$ entonces $T(\mathbf{w}) \in \mathbf{W}$ y luego $(T \lambda_m \operatorname{id}_{\mathbf{V}})(\mathbf{w}) = T(\mathbf{w}) \lambda_m \mathbf{w} \in \mathbf{W}$. De la parte 1. sabemos que $\mathbf{w} = \mathbf{w}_1 + \ldots + \mathbf{w}_m$ con $\mathbf{w}_j \in \mathbf{V}_{\lambda_j}$, y luego

$$(T - \lambda_m \operatorname{id}_V)(\mathbf{w}) = T(\mathbf{w}) - \lambda_m \mathbf{w} = (\lambda_1 \mathbf{w}_1 + \ldots + \lambda_m \mathbf{w}_m) - \lambda_m (\mathbf{w}_1 + \ldots + \mathbf{w}_m)$$
$$= (\lambda_1 - \lambda_m) \mathbf{w}_1 + \ldots + (\lambda_{m-1} - \lambda_m) \mathbf{w}_{m-1}$$

- 3. Considere $\mathcal{B} = (\mathbf{e}_1, \dots, \mathbf{e}_m)$ base de \mathbf{W} . Probamos inductivamente la sugerencia para cada vector base. Si seleccionamos $\mathbf{w} = \mathbf{e}_i$, entonces podemos escribir $\mathbf{w} = \mathbf{w}_1 + \dots + \mathbf{w}_m$ como en la parte 1. y suponer inductivamente que $\mathbf{w}_1, \dots, \mathbf{w}_{m-1} \in \mathbf{W}$. Por la parte 2. $T(\mathbf{w}) \lambda_m \mathbf{w} = (\lambda_1 \lambda_m) \mathbf{w}_1 + \dots + (\lambda_{m-1} \lambda_m) \mathbf{w}_{m-1} \in \mathbf{W}$. Por hipótesis de inducción entonces $(\lambda_i \lambda_m) \mathbf{w}_i \in \mathbf{W}$ para cada $1 \leq i \leq m-1$, y como valores propios son distintos entonces $\mathbf{w}_i \in \mathbf{W}$ para $1 \leq i \leq m-1$. Ahora, tenemos que $\mathbf{w}_m = \mathbf{w} (\mathbf{w}_1 + \dots + \mathbf{w}_{m-1}) \in \mathbf{W}$ de donde se concluye el resultado. Como se dijo al principio el procedimiento anterior se puede llevar a cabo con cualquier vector de la base, por lo que todo vector base puede ser escrito como combinación lineal de vectores propios de $T_{\mathbf{W}}$. Más específicamente, para cada $i \in \{1, \dots, m\}$ podemos escribir $\mathbf{e}_i = \mathbf{w}_{i,1} + \dots + \mathbf{w}_{i,m}$ con $\mathbf{w}_{i,j} \in \mathbf{V}_{\lambda_j} \cap \mathbf{W}$, y por lo anterior el conjunto $\mathcal{C} = (\mathbf{w}_{1,1}, \dots, \mathbf{w}_{1,m}, \dots, \mathbf{w}_{m,1}, \dots \mathbf{w}_{n,m})$ es generador de \mathbf{W} , por lo que podemos extraer una base de vectores propios.
- 4. Notar que si $\mathbf{W} = \{\mathbf{0}\}$ entonces basta considerar $\mathbf{W}' = \mathbf{V}$. Si suponemos que $\mathbf{W} \neq \{\mathbf{0}\}$, de las demostraciones anteriores sabemos que \mathbf{W} posee una base $\mathcal{B} = (\mathbf{e}_1, \dots, \mathbf{e}_m)$ de vectores propios. Podemos agrupar los vectores de \mathcal{B} de acuerdo a su valor propio asociado, para lo cual definimos $\mathcal{B}_j := \mathcal{B} \cap \mathbf{V}_{\lambda_j}$ para cada $j \in \{1, \dots, m\}$. Si definimos $\mathbf{W}_j := \operatorname{span}\{\mathcal{B}_j\} \subseteq \mathbf{W} \cap \mathbf{V}_{\lambda_j}$ tenemos entonces la descomposición $\mathbf{W} = \bigoplus_{j=1}^m \mathbf{W}_j$ (pues los espacios propios son disjuntos entre sí). En cada espacio propio \mathbf{V}_{λ_j} podemos encontrar un complementario (Ayudantía 5) tal que $\mathbf{V}_{\lambda_j} = \mathbf{W}_j \oplus \mathbf{W}_j'$ el cual es invariante pues \mathbf{V}_{λ_j} es invariante. Definimos $\mathbf{W}' := \bigoplus_{j=1}^m \mathbf{W}_j'$ el cual por construcción es invariante y verifica $\mathbf{V} = \mathbf{W} \oplus \mathbf{W}'$.

MAT210 UTFSM

Problema 2. Sea $T: \mathbf{V} \to \mathbf{V}$ una aplicación lineal, V de dimensión finita.

1. Pruebe que si $u, v \in \mathbf{V}$ son vectores propios de T tales que u + v es también vector propio, entonces u, v están asociados al mismo valor propio.

- 2. Demuestre que si todo vector no nulo es vector propio de T, entonces $T = \lambda i d_V$ para algún $\lambda \neq 0$.
- 3. Suponga que T es tal que todo subespacio \mathbf{W} tal que dim $\mathbf{W} = n 1$ es invariante. Pruebe que $T = \lambda i d_V$ para algún $\lambda \neq 0$.
- 4. Suponiendo ahora que dim $V \ge 3$ y que T es tal que todo subespacio W de dim W = 2 es invariante, obtenga la misma conclusión de los puntos anteriores.

Demostración.

1. Dado que u, v, u+v son valores propios, entonces existen $\lambda, \lambda_1, \lambda_2$ tales que $T(u) = \lambda_1 u, T(v) = \lambda_2 v, T(u+v) = \lambda(u+v)$. Por linealidad entonces

$$\lambda(u+v) = \lambda_1 u + \lambda_2 v \quad \Rightarrow \quad (\lambda_1 - \lambda)u = (\lambda - \lambda_2)v$$

Si $\lambda = \lambda_1$ entonces $\lambda_1 = \lambda_2$ y se tiene la conclusión. En caso que $\lambda \neq \lambda_1$ entonces podemos despejar $v = \alpha u$ con $\alpha \neq 0$ y por lo tanto $\lambda_1 u = \alpha \lambda_2 v$ de donde se sigue que $\lambda_1 = \lambda_2$.

- 2. Si todo vector no nulo es vector propio, considerando vectores propios u, v de T, se tiene que u + v es también vector propio, y por el punto anterior se sigue que u, v están asociados a un mismo valor propio. De esta manera vemos que $T(v) = \lambda v$ para todo $v \in \mathbf{V}$.
- 3. Suponemos por contradicción que T no es como en el enunciado. Entonces considerando el enunciado contrarrecíproco del punto anterior existe un vector no nulo $\mathbf{v} \in \mathbf{V}$ el cual no es un vector propio de T. Esto significa que no existe λ tal que $T(\mathbf{v}) = \lambda \mathbf{v}$, así que $\mathbf{v}, T(\mathbf{v})$ son linealmente independientes. Podemos entonces completar en una base $\mathbf{v}, T(\mathbf{v}), \mathbf{v}_3, \ldots, \mathbf{v}_n$ de \mathbf{V} y definir

$$\mathbf{W} := \operatorname{span}\{\mathbf{v}, \mathbf{v}_3, \dots, \mathbf{v}_n\}$$

el cual claramente verifica dim $\mathbf{W} = n-1$ así que por hipótesis es invariante. Entonces $T(\mathbf{v}) \in \mathbf{W}$ lo cual es una contradicción con el hecho que $\mathbf{v}, T(\mathbf{v}), \mathbf{v}_3, \dots, \mathbf{v}_n$ es base.

4. Sea $\mathbf{v}_1, \dots, \mathbf{v}_n$ base de \mathbf{V} . Notar que la hipótesis implica que los subespacios span $\{\mathbf{v}_1, \mathbf{v}_2\}$, span $\{\mathbf{v}_1, \mathbf{v}_3\}$ son ambos invariantes bajo T, lo cual permite deducir que $T(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1$ para cierto λ_1 . Utilizando el mismo argumento para cada vector base tenemos que $T(\mathbf{v}_k) = \lambda_k \mathbf{v}_k$ para cada $k = 1, \dots, n$. Empleando nuevamente la hipótesis podemos afirmar que

$$T(\mathbf{v}_1 - \mathbf{v}_2) \in \operatorname{span}\{\mathbf{v}_1 - \mathbf{v}_2, \mathbf{v}_1 - \mathbf{v}_3\} \Rightarrow \alpha_1(\mathbf{v}_1 - \mathbf{v}_2) + \alpha_2(\mathbf{v}_1 - \mathbf{v}_3) = T(\mathbf{v}_1 - \mathbf{v}_2) = \lambda_1\mathbf{v}_1 - \lambda_2\mathbf{v}_2$$

Podemos escribir entonces

$$(\alpha_1 + \alpha_2 - \lambda_1)\mathbf{v}_1 + (\lambda_2 - \alpha_1)\mathbf{v}_2 - \alpha_2\mathbf{v}_3 = 0$$

y como $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ son linealmente independientes $\alpha_2 = 0, \alpha_1 = \lambda_1 = \lambda_2$. Realizando el mismo procedimiento con cada pareja de vectores podemos notar que $\lambda_k := \lambda$ para todo k, deduciendo que $T = \lambda \operatorname{id}_V$.