Московский государственный технический университет имени Н.Э. Баумана

Факультет «Радиоэлектроника и лазерная техника» Кафедра «Технологии приборостроения»

ПРЕДДИПЛОМНАЯ ПРАКТИКА

Моделирование термической деградации гетероструктуры

Выполнил:

Руководитель:

ПРОХОРОВ М. РЛ6-82 к.т.н. доц. ДАНИЛОВ И.И.

Содержание

Вв	едени	ie		3
1	Теоретическая часть			4
	1.1	1.1 Деградация приборов на основе гетероструктур		4
	1.2	Диффузия		
		1.2.1	Законы Фика	4
		1.2.2	Коэффициент диффузии	5
	1.3	Токог	перенос через ГС	6
		1.3.1	Уравнение Шредингера	6
2	Математический аппарат для моделирования			8
	2.1	Метод	д конечных разностей	8
	2.2	Метод	д конечных разностей для решения одномерного	
	нестационарного уравнения диффузии			
		2.2.1	Коэффициент диффузии не зависит от концентрации	9
		2.2.2	Коэффициент диффузии зависит от концентрации	9
	2.3	Метод	д конечных разностей для расчета токоперенос через	
		гетер	оструктуру	10
3	Моделирование деградации РТГС на основе $Al_xGa_{1-x}As$			11
	3.1	Дифф	рузионное расплытие активной области	12
		3.1.1	Вывод	14
За	Заключение			
Список использованных источников				16

Введение

В отчете рассматривается процесс моделирования деградации гетероструктур под действием температуры средствами среды MATLAB. Моделирование термической деградации гетероструктур состоит из двух частей:

- а) Моделирование процессов структурной деградации гетероструктуры;
 - б) Моделирование устройства на основе гетероструры.

Цель практики:

- а) Изучение математического аппарата для моделирования процесса термической деградации;
 - б) Изучение процессов деградации гетероструктур.

Задача практики:

- а) Моделирование процессов термической диффузии;
- б) Моделирование токопереноса;
- в) Моделирование термической деградации ВАХ РТГС на основе AlGaAs.

Индивидуальное задание: Разработка алгоритма и программы, позволящей:

- а) Моделирование диффузии в твердых растворов в гетероструктурах;
- б) Моделирование расплытия потенциального рельефа гетероструктуры;
 - в) Моделирование основных параметров РТГС на основе AlGaAs.

1 Теоретическая часть

1.1 Деградация приборов на основе гетероструктур

Деградация — процесс ухудшения характеристик какого-либо объекта с течением времени.

Деградация параметров гетероструктуры во времени связана с диффузионным размытие ГП и ГС в целом. Зонная структура ГС определяет режим работы, а зонная структура ГС зависит от химического состава, поэтому диффузионное размытие изменяет зонную диаграмму и режимы работы прибора на основе ГС.

Факторы влияющие на диффузионное размытие:

- Градиент температуры;
- Градиент концентрации;
- Градиент давления;
- Наличие деффектов;
- и т.д...

Диффузионное размытие под действием градиента концентрации описывается с помощью законов Фика.

1.2 Диффузия

Диффузия — это обусловленный хаотическим тепловым движением перенос атомов, он может стать направленным под действием градиента концентрации или температуры.

1.2.1 Законы Фика

Первый закон Фика говорит, что плотность потока вещества пропорциональна коэффициенту диффузии (D) и градиенту концентрации (C). Является стационарным уравнением.

$$\overline{J} = -D\nabla C; \tag{1.1}$$

$$\overline{J}_x = -\overline{e}_x D_x \frac{\delta}{\delta x} C_x. \tag{1.2}$$

(1.3)

Второй закон Фика связывает пространственное и временное изменения концентрации.

$$\frac{\delta}{\delta t}C = -\nabla(D\nabla C); \tag{1.4}$$

$$\frac{\delta}{\delta t}C = -\nabla(D\nabla C); \qquad (1.4)$$

$$\frac{\delta}{\delta t}C_x = -\frac{\delta}{\delta x}D_x \frac{\delta}{\delta x}C_x. \qquad (1.5)$$

Коэффициент диффузии 1.2.2

Коэффициент диффузии (D) — макроскопическая величина, которая определяется экспериментально. Коэффициент диффузии зависит от температуры (T) по закону Аррениуса:

$$D = D_0 \exp\left[-\frac{E_a}{k_B T}\right],\tag{1.6}$$

где D_0 — предэкспоненциальный множитель.

Коэффициент (D_0) и энергия активации (E_a) не зависят от температуры.

Основным механизмом диффузии Al и Si в GaAs является диффузия по вакансиям галлия (V_{Ga}) . Это связано с тем, что атомы Al и Si имеют сходные массы и размеры.

C учетом эффекта уровня Φ ерми коэффициент диффузии Al и Siв GaAs получен в работах [1], [2], [3]:

$$D_{Al,Si} = D_{i-GaAs} \left(\frac{N_D}{n_i}\right)^3 = D_0 \exp\left[-\frac{3.5}{k_B T}\right] \left(\frac{n}{n_i}\right)^3,$$
 (1.7)

где n — концентрация донорной примеси (Si);

 n_i — концентрация собственных носителей заряда.

Концентрация собственных носителей заряда:

$$n_i = \sqrt{N_c N_v} \exp\left[-\frac{E_g}{2k_B T}\right]; \tag{1.8}$$

$$N_c = 2\left[\frac{2\pi m_e^* k_B T}{h^2}\right]^{\frac{3}{2}};\tag{1.9}$$

$$N_v = 2 \left[\frac{2\pi m_h^* k_B T}{h^2} \right]^{\frac{3}{2}}, \tag{1.10}$$

где E_g — ширина запрещенной зоны (33) п/п.

1.3 Токоперенос через ГС

Один из способов расчета плотности тока через гетероструктуру — это формула Цу-Есаки:

$$J(V) = \frac{2mek_BT}{(2\pi)^2\hbar^3} \int_0^\infty T(E)D(E)dE, \qquad (1.11)$$

$$D(E) = \ln \frac{1 + \exp \frac{E_F - E}{k_B T}}{1 + \exp \frac{E_F - E - eV}{k_B T}}.$$
 (1.12)

Коэффициент прозрачности гетероструктуры определяется как отношение потока вероятности прошедших через структуру электронов в правом резервуаре к падающим на неё электронам в левом резервуаре. Поток вероятности находится из формулы:

$$\overline{j} = \frac{i\hbar}{2m} (\psi \nabla \psi^* - \psi^* \nabla \psi). \tag{1.13}$$

Будем рассматривать электроны, приходящие из левого контакта. Левому контакту соответствуют волновые функции ψ_L , а в правому — ψ_R .

$$\psi_L = \exp[ik_L z]; \tag{1.14}$$

$$\psi_R = T_L \psi_L = T_L \exp[ik_L z]. \tag{1.15}$$

Тогда коэффициент туннельной прозрачности:

$$T(E) = |T_L|^2 \frac{|k_R|m_L}{|k_L|m_R}. (1.16)$$

1.3.1 Уравнение Шредингера

Для нахождения волновых функций необходимо решить уравнение Шредингера. Для твердого тела уравнение Шредингера имеет вид:

$$-\frac{\hbar}{2} \left[\left(\frac{1}{m} \sum_{i} \Delta_{i} + \sum_{i} \frac{\Delta_{i}}{M_{i}} \right) + \frac{1}{2} \sum_{i,j \neq i} \frac{e^{2}}{k_{k} |\overline{r_{i}} - \overline{r_{j}}|} + \frac{1}{2} \sum_{i,j \neq i} \frac{Z_{i} Z_{j} e^{2}}{k_{k} |\overline{R_{i}} - \overline{R_{j}}|} - \frac{1}{2} \sum_{i,j \neq i} \frac{Z_{i} e^{2}}{k_{k} |\overline{R_{i}} - \overline{r_{j}}|} \right] \psi = E \psi.$$

Ряд приближений упрощает полное уравнение Шредингера для твердого тела:

- а) Атомные остовы находятся в состоянии покоя;
- б) Электрон движется, не взаимодействуя с другими электронами, в некотором эффективном поле, создаваемым остальными электронами;
- в) Движение электрона в периодическом потенциале заменяется на эффективную массу.

Упрощенное уравнение Шредингера:

$$-\frac{\hbar^2}{2m}\Delta\psi + U\psi = E\psi, \qquad (1.17)$$

Одномерное ур. Шредингера:

$$-\frac{\hbar^2}{2m}\frac{d^2}{dz^2}\psi(z) + U(z)\psi(z) = E\psi(z). \tag{1.18}$$

Для решения уравнения на границе гетероперехода рассматриваются условия непрерывности волновой функции и непрерывности потока плотности вероятности — эти условия так же называются условием Бастарда:

$$\begin{cases} \psi_I = \psi_{II}; \\ \frac{1}{m_I} \frac{d}{dz} \psi_I = \frac{1}{m_{II}} \frac{d}{dz} \psi_{II}. \end{cases}$$
 (1.19)

Учтем эффективную массу в ур. 1.18:

$$-\frac{\hbar^2}{2}\frac{d}{dz}\frac{1}{m(z)}\frac{d}{dz}\psi(z) + U(z)\psi(z) = E\psi(z).$$
 (1.20)

В случае произвольного потенциального рельефа для решения уравнения Шредингера применяются численные методы.

2 Математический аппарат для моделирования

2.1 Метод конечных разностей

Суть метода конечных разностей заключается в аппроксимации дифференциальных операторов отношением конечных разностей. Так например производную некоторой функции y(x) в точке x_0 $(\dot{y}(x_0))$ можно представить [4]:

$$\dot{y}_{+}(x_0) = \frac{d}{dx}y(x_0) = \frac{y(x_0 + \Delta x) - y(x_0)}{\Delta x};$$
(2.1)

$$\dot{y}_{-}(x_0) = \frac{d}{dx}y(x_0) = \frac{y(x_0) - y(x_0 - \Delta x)}{\Delta x};$$
(2.2)

$$\dot{y}_{-}(x_0) = \dot{y}_{+}(x_0) = \frac{d}{dx}y(x_0), \tag{2.3}$$

где \dot{y}_{-} — производная слева;

 \dot{y}_{+} — производная справа;

 Δx — приращение аргумента (шаг сетки).

 Δx — это шаг нашей конечно-разностной схемы (аппроксимации). Если шаг сетки постоянен, то говорят о регулярной сетке, иначе о нерегулярной. Мы будем рассматривать только регулярные сетки. Далее вместо Δx будет использовать Δ .

Из выше сказанного можно найти трехточечную аппроксимацию второй производной y(x):

$$\frac{d^2}{dx^2}y(x_0) = \frac{\dot{y}_+ - \dot{y}_-}{\Delta} = \frac{y(x_0 + \Delta) - 2y(x_0) + y(x_0 - \Delta)}{\Delta^2}.$$
 (2.4)

Для связи конечно-разностной схемы по времени и координате для нестационарного уравнения диффузии (1.4) воспользуемся двухточечной апроксимацией первой производной по времени и трехточечной апроксимацие второй производной по координате:

$$\frac{C_i^{j+1} - C_i^j}{\Delta t} = \frac{C_{i-1}^j - 2C_i^j + C_{i+1}^j}{\Delta^2},\tag{2.5}$$

где C_i^j — значение функции в точке i, в момент времени j;

 Δt — шаг сетки по времени;

 Δx — шаг сетки по координате.

2.2 Метод конечных разностей для решения одномерного нестационарного уравнения диффузии

2.2.1 Коэффициент диффузии не зависит от концентрации

«Закрытая система» — концентрация на границе не изменяется $(J_0^i=0,\ J_{N+1}^i=0)$:

$$\begin{cases}
C_1^{i+1} = (1-\lambda)C_1^i + \lambda C_2^i; \\
C_j^{i+1} = \lambda C_{j-1}^i + (1-2\lambda)C_j^i + \lambda C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = (1-\lambda)C_N^i + \lambda C_{N-1}^i; \\
\lambda = D\frac{\Delta t}{\Delta x^2}.
\end{cases} (2.6)$$

«Открытая система» — поток частиц подходящий к границе равен потоку уходящих частиц $(J_0^i=J_1^i,\,J_N^i=J_{N+1}^i)$:

$$\begin{cases}
C_1^{i+1} = C_1^i; \\
C_j^{i+1} = \lambda C_{j-1}^i + (1-2\lambda)C_j^i + \lambda C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = C_N^i; \\
\lambda = D_{\Delta x^2}^{\Delta t}.
\end{cases} (2.7)$$

2.2.2 Коэффициент диффузии зависит от концентрации

Проводя рассуждения аналогичные предыдущему параграфу получит конечно-разностную схему для открытой схемы:

$$\begin{cases}
C_1^{i+1} = C_1^i; \\
C_j^{i+1} = \lambda_-^i C_{j-1}^i + (1 - \lambda_+^i - \lambda_-^i) C_j^i + \lambda_+^i C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = C_N^i; \\
\lambda_+^i = D_{j+\frac{\Delta t}{\Delta x^2}}^i; \\
\lambda_-^i = D_{j-\frac{\Delta t}{\Delta x^2}}^i.
\end{cases} (2.8)$$

2.3 Метод конечных разностей для расчета токоперенос через гетероструктуру

Конечно-разностная схема уравнения Шредингера (1.20) для ГС на рис.2.1 [6]:

$$\psi_{i-1} \frac{m_{i+1}^*}{m_{i-1}^*} + \psi_i \left(\frac{2\Delta^2 m_{i+1}^*}{\hbar^2} (E - U_i) - \frac{m_{i+1}^*}{m_{i-1}^*} - 1 \right) + \psi_{i+1} = 0, \tag{2.9}$$

где m_i^* — эффективная масса в точке i;

 ψ_i — волновая функция в точке i;

E — энергия электрона;

 U_{i} — потенциальная энергия в точке i;

 Δ — шаг сетки.

Рисунок 2.1 — Схема модели РТГС

Данное схема подходит для любой внутренней точки гетероструктуры, но не подходит для граничных точек. Граничные условия, для «левых» и «правых» электронов получаются из граничного условия Бастарда и вида волных функций в резервуарах:

$$\begin{cases} (ik_L - 1)\psi_1 + \psi_2 = 2ik_L \Delta; \\ \psi_{N-1} + (ik_R \Delta - 1)\psi_N = 0; \end{cases}$$
 (2.10)

$$\begin{cases} (ik_L - 1)\psi_1 + \psi_2 = 2ik_L \Delta; \\ \psi_{N-1} + (ik_R \Delta - 1)\psi_N = 0; \end{cases}$$
 (2.11)

3 Моделирование деградации РТГС на основе $Al_xGa_{1-x}As$

На основе выше исследованных параметров и полученных моделей получим модель деградации РГТС на основе AlGaAs.

В схема исследуемой на диффузионное расплытие модели приведена на рис.3.1

Рисунок 3.1 — Стуктура РТГС для моделирования диффузии

В данной модели возможны:

- Диффузия Al из барьеров в яму;
- Диффузия Si из приконтактных областей в активную область.

Рассмотрим диффузионное расплытие активной области и проникновение легирующий примеси отдельно.

Размеры нашей модели:

- Спейсер: a = 10 монослоев;
- Барьер: b=6 монослоев;
- Яма: a = 6 монослоев;

Рисунок 3.2 — Размеры РТГС

3.1 Диффузионное расплытие активной области

Диффузионное расплытие активной области в случаи чистых полупроводников подчиняется (1.6). Коэффициент диффузии постоянен и скорость ухода части Al с границ активной области равен скорости их прихода – это соответствует конечно-разностной схеме (2.7).

Температуру ГС (T) выберем равной $800\,K$. Время воздействия: 1, 5, 10 лет.

Рисунок 3.3 — Расплытие потенциального рельефа чистого $Al_xGa_{1-x}As$

В процессе деградации ГС уменьшается ширина и глубина ПЯ (рис. 3.3).

Как видно из рис. 3.4 в результате деградации увеличивается пиковое напряжение и величина пикового тока, что соответствует ранее полученным результатам.

Так как невозможно получить чистный полупроводник, в нем всегда присутствует донорная примесь, которая увеличивает скорость диффузии, что соответствует (1.7).

Аналогичный результат деградации (рис. 3.5) был получен при меньшей температуре T=650K и концентрации донорной примеси (N_D) $10^{22}\,1/m^3$.

Рисунок 3.4 — Деградация тока через РГТС на основе чистого $Al_x Ga_{1-x} As$

Рисунок 3.5 — Расплытие потенциального рельефа $Al_xGa_{1-x}As$ при наличии донорной примеси $N_D=10^{22}\ 1/m^3$

Рисунок 3.6 — Деградация тока через РГТС на основе $Al_xGa_{1-x}As$ при наличии донорной примеси $N_D=10^{22}\ 1/m^3$

3.1.1 Вывод

В процессе деградации преобладающими факторами деградации ВАХ РТГС являются: уменьшение глубины и ширины ПЯ, которые увеличивают пиковое напряжение и пиковый ток.

Наличие донорной примеси ускоряет процесс деградации ГС. При это из-за сильно экспоненциальной зависимости коэффициента диффузии скорость диффузии при комнатных температурах не существенна (T=300K).

Заключение

В работе был рассмотрен математический аппарат для моделирования физических процессов, таких как:

- Токоперенос;
- Не стационарное уравнение диффузии.

Была написана программа, моделирующая термическую деградацию ВАХ РТГС на основе AlGaAs, состоящая из двух частей:

- а) Моделирование термической диффузии под действием градиента концентрации;
 - б) Моделирование ВАХ деградированной РТГС.

Список использованных источников

- 1. *Макеев*, *М.О.* Оценка стойкости к диффузионной деструкции наноразмерных AlAs/GaAs резонансно-туннельных гетероструктур методом ИК-спектральной эллипсометрии / М.О. Макеев, Ю.А. Иванов, С.А. Мешков // Физика и техника полупроводников. 2016.
- 2. *Макеев*, *Мстислав Олегович*. Разработка конструкторско-технологических методов и средств повышения надёжности смесителей радиосигналов на основе резонансно-туннельных диодов: автореф. дис. канд. техн. наук: 05.11.14 / Мстислав Олегович Макеев. М., 2014. 17 с.
- 3. Diffusion in GaAs and Related Compounds: Resent Developments / U. Gosele, T. Y. Tan, M. Schultz et al. // Deffect and Diffusion Forum. 1997. Pp. 143–147.
- 4. *Самарский*, *А.* А. Введение в численные методы / А. А. Самарский. М.: Наука, 1987. 288 с.
- 5. Becker, T. W. Numerical Modeling of Earth Systems / T. W. Becker, J. P. Kaus. California: USC, 2016.-222 pp.
- 6. *Москалюк*, *В. А.* Сверхбыстродействующие приборы электроники / В. А. Москалюк, В. И. Тимофеев, А. В. Федяй. К.: НТУУ «КПИ», 2012.-479 с.