

CSGE602040 - Struktur Data dan Algoritma Semester Gasal - 2019/2020 WS 6 - Jumat

Deadline: Jumat, 29 November 2019, 18.00 WIB

Jualan Permen

Deskripsi

Namron ★ membuka sebuah toko permen. Di dalam tokonya terdapat sebuah rak yang terdiri dari N buah laci. Laci-laci dinomori dari 0 sampai N - 1 dimulai dari kiri. Sebuah laci dapat menampung permen sebanyak-banyaknya. Tetapi dalam sebuah laci hanya dapat menyimpan permen-permen dengan jenis yang sama.

Namron \bigstar tidak menaruh permen-permennya secara acak. Setiap mendapat sebuah permen dengan jenis yang belum ia miliki sebelumnya, Namron \bigstar akan memilih nomor laci berdasarkan fungsi f(jenis, N). Apabila pada laci tersebut sudah **terdapat** atau **pernah ditempati** jenis permen yang berbeda, Namron \bigstar memilih laci dengan nomor $(f(jenis, N) + 1) \mod N$. Jika di laci tersebut juga tidak bisa dipilih, Namron \bigstar akan mencari i terkecil sehingga $(f(jenis, N) + i^2) \mod N$ dapat ditempati. Namun apabila Namron \bigstar menerima permen dengan jenis yang sudah ada, ia akan mencari laci di mana permen tersebut berada dan menaruhnya di laci tersebut.

Fungsi f(jenis, N) yang digunakan Namron \bigstar didefinisikan sebagai berikut: $f(jenis, N) = (jenis[0] \times 31^0 + jenis[1] \times 31^1 + jenis[2] \times 31^2 + ... + jenis[s-1] \times 31^{s-1}) \ mod \ N$ yang mana s adalah banyak karakter dari jenis dan jenis[i] adalah urutan karakter ke-i jenis permen tersebut. Urutan alfabet 'a' adalah 1, 'b' adalah 2, dan seterusnya hingga urutan alfabet 'z' adalah 26.

Dalam menjalankan tokonya, terdapat tiga jenis operasi yang dilakukan.

- 1. Menambahkan stok permen dengan jenis **type** sebanyak **add**.
- 2. Melihat stok permen dengan jenis type.
- 3. Mengurangi stok permen dengan jenis **type** sebanyak **sub**.

Karena Anda adalah sahabat baik Namron ★, anda diminta membantunya membuatkan suatu program untuk mendukung proses operasional toko.

Masukan

Baris pertama berisi dua buah bilangan bulat **N** dan **Q**, yang menyatakan banyak laci dan banyak operasi yang dilakukan dalam toko.

Q baris berikutnya berisi operasi-operasi dengan format berikut.

- 1. "INC type add", yang berarti menambahkan stok permen dengan jenis type sebanyak add.
- 2. "GET **type**", yang berarti melihat stok permen.
- 3. "DEC type sub", yang berarti mengurangkan stok permen dengan jenis type sebanyak sub.

Keluaran

Keluaran terdiri dari **Q** baris, yang isinya tergantung dari jenis operasi yang dilakukan.

1. Untuk operasi **INC**, keluarkan sebuah bilangan yang menyatakan nomor laci tempat permen dengan jenis **type** disimpan.

- 2. Untuk operasi **GET**, keluarkan sebuah bilangan yang menyatakan stok permen dengan jenis **type**.
- 3. Untuk operasi **DEC**, keluarkan sebuah bilangan yang menyatakan nomor laci tempat permen dengan jenis **type** disimpan.

Jika saat operasi "GET **type**" atau "DEC **type sub**" Namron ★ belum pernah menyimpan permen dengan jenis **type**, keluarkan "not found".

Batasan

```
1 \le N \le 10^7

1 \le Q \le min(N, 100.000)

5 \le M \le 10.000

1 \le add \le 1.000

0 \le sub \le 1.000

1 \le |Type| \le 100
```

Untuk testcase 1-13:

1 ≤ |Type| ≤ 5

Type hanya terdiri dari satu kata dan berisi huruf kecil.

Dijamin saat operasi "DEC **type sub**" dilakukan, apabila terdapat permen dengan jenis **type**, stok yang ada lebih besar atau sama dengan **sub**.

Contoh Masukan 1

```
5 6
INC apel 10
INC nanas 7
DEC apel 10
GET apel
INC melon 3
INC jeruk 4
```

Contoh Keluaran 1

Penjelasan

1. $f(apel, 5) = 1 \times 31^0 + 16 \times 31^1 + 5 \times 31^2 + 12 \times 31^3 \mod 5 = 4$ Karena sebelumnya belum ada laci yang menyimpan "apel", maka Namron \bigstar akan menyimpannya di laci dengan nomor f(apel, 5) = 4. Laci nomor 4 kosong dan belum pernah ditempati permen jenis lain sehingga sepuluh permen "apel" disimpan di laci nomor 4.

2. $f(nanas, 5) = 14 \times 31^0 + 1 \times 31^1 + 14 \times 31^2 + 1 \times 31^3 + 19 \times 31^4 \mod 5 = 4$

Karena sebelumnya belum ada laci yang menyimpan "nanas", maka Namron ★ akan menyimpannya di laci dengan nomor f(nanas, 5) = 4. Akan tetapi, sudah ada permen "apel" di laci nomor 4 sehingga Namron ★ memilih laci nomor f(nanas, 5) + 1 mod 5 = 0 yang masih kosong dan belum pernah ditempati permen lain. Tujuh permen "nanas" disimpan di laci nomor 0.

- 3. Ada laci yang menyimpan permen "apel" yaitu laci nomor 4. Namron ★ berhasil mengeluarkan 10 permen "apel" dari laci tersebut.
- 4. Sudah ada laci yang menyimpan "apel" sebelumnya yaitu laci nomor 4. Jumlah stok permen "apel" sekarang adalah 0.
- 5. f(melon, 5) = 13 × 31⁰ + 5 × 31¹ + 12 × 31² + 15 × 31³ + 14 × 31⁴ mod 5 = 4

 Karena sebelumnya belum ada laci yang menyimpan "melon", maka Namron ★ akan menyimpannya di laci dengan nomor f(melon, 5) = 4. Akan tetapi, permen "apel" sudah pernah menempati laci nomor 4 dan terdapat permen "nanas" di laci nomor f(melon, 5) + 1 mod 5 = 0. Sehingga, Namron ★ mencari ke laci nomor f(melon, 5) + 2² mod 5 = 3 yang kosong dan belum pernah ditempati permen lain. Namron ★ pun menyimpan tiga permen "melon" di laci nomor 3.
- 6. $f(jeruk, 5) = 10 \times 31^0 + 5 \times 31^1 + 18 \times 31^2 + 21 \times 31^3 + 11 \times 31^4 \mod 5 = 0$ Karena sebelumnya belum ada laci yang menyimpan "jeruk", maka Namron ★ akan menyimpannya di laci dengan nomor f(jeruk, 5) = 0. Akan tetapi, sudah ada permen "nanas" di laci nomor 0 sehingga Namron ★ memilih laci nomor f(jeruk, 5) + 1 mod 5 = 1 yang masih kosong dan belum pernah ditempati permen lain. Empat permen "jeruk" disimpan di laci nomor 1.

Contoh Masukan 2

```
8 8
INC soogus 5
INC bigbabel 6
INC bigbabel 8
GET bigbabel
DEC bigbabel 14
DEC meentoz 5
INC meentoz 8
GET meentoz
```

Contoh Keluaran 2

```
6
7
7
14
7
not found
2
```

Penjelasan

- 1. $f(soogus, 8) = 19 \times 31^0 + 15 \times 31^1 + 15 \times 31^2 + 7 \times 31^3 + 21 \times 31^4 + 19 \times 31^5 \mod 8 = 6$ Karena sebelumnya belum ada laci yang menyimpan "soogus", maka Namron \bigstar akan menyimpannya di laci dengan nomor f(soogus, 8) = 6. Laci nomor 6 kosong dan belum pernah ditempati permen jenis lain sehingga lima permen "soogus" disimpan di laci nomor 6.
- 2. f(bigbabel, 8) = 2 × 31⁰ + 9 × 31¹ + 7 × 31² + 2 × 31³ + 1 × 31⁴ + 2 × 31⁵ + 5 × 31⁶ + 12 × 31⁷ mod 8 = 6 Karena sebelumnya belum ada laci yang menyimpan "bigbabel", maka Namron ★ akan menyimpannya di laci dengan nomor f(bigbabel, 8) = 6. Akan tetapi, sudah ada permen "soogus" di laci nomor 6 sehingga Namron ★ memilih laci nomor f(bigbabel, 8) + 1 mod 8 = 7 yang masih kosong dan belum pernah ditempati permen lain. Enam permen "bigbabel" disimpan di laci nomor 7.
- 3. Sudah ada laci yang menyimpan "bigbabel" sebelumnya yaitu laci nomor 7. Delapan permen "bigbabel" ditambahkan di laci nomor 7.
- 4. Permen "bigbabel" tersimpan di laci nomor 7. Jumlah permen "bigbabel" yang tersimpan sekarang adalah 6 + 8 = 14.
- 5. Ada laci yang menyimpan permen "bigbabel" yaitu laci nomor 7. Namron ★ berhasil mengeluarkan 14 permen "bigbabel dari laci tersebut.
- 6. Tidak ada laci yang berisi permen "meentoz", program mengeluarkan output "not found".
- 7. f(meentoz, 8) = 13 × 31⁰ + 5 × 31¹ + 5 × 31² + 14 × 31³ + 20 × 31⁴ + 15 × 31⁵ + 26 × 31⁶ mod 8 = 6

 Karena sebelumnya belum ada laci yang menyimpan "meentoz", maka Namron ★ akan menyimpannya di laci dengan nomor f(meentoz, 8) = 6. Akan tetapi, sudah ada permen "soogus" di laci nomor 6 dan "meentoz" di laci nomor f(bigbabel, 8) + 1 mod 8 = 7. Sehingga, Namron ★ mencari ke laci nomor f(meentoz, 8) + 2² mod 8 = 2 yang kosong dan belum pernah ditempati permen lain. Namron ★ pun menyimpan delapan permen "meentoz" di laci nomor 2.
- 8. Permen "meentoz" tersimpan di laci nomor 2. Jumlah permen "bigbabel" yang tersimpan sekarang adalah 8.

Catatan

Perhatikan kemungkinan program Anda mengalami *overflow*. Variable int pada java hanya dapat menyimpan nilai hingga 2.147.483.647.

Untuk menghindari overflow, ingat kembali sifat berikut ini.

 $a * b \mod M = (a \mod M * b \mod M) \mod M$

 $a + b \mod M = (a \mod M + b \mod M) \mod M$