

planetmath.org

Math for the people, by the people.

least and greatest zero

Canonical name LeastAndGreatestZero Date of creation 2013-03-22 16:33:22 Last modified on 2013-03-22 16:33:22

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 6

Author pahio (2872) Entry type Theorem Classification msc 26A15

Synonym zeroes of continuous function

Related topic ZeroesOfAnalyticFunctionsAreIsolated

Theorem. If a real function f is continuous on the interval [a, b] and has zeroes on this interval, then f has a least zero and a greatest zero.

Proof. If f(a) = 0 then the assertion concerning the least zero is true. Let's assume therefore, that $f(a) \neq 0$.

The set $A = \{x \in [a, b]: f(x) = 0\}$ is bounded from below since all numbers of A are greater than a. Let the http://planetmath.org/InfimumAndSupremumForRealNumber of A be ξ . Let us make the antithesis, that $f(\xi) \neq 0$. Then, by the continuity of f, there is a positive number δ such that

$$f(x) \neq 0$$
 always when $|x - \xi| < \delta$.

Chose a number x_1 between ξ and $\xi+\delta$; then $f(x_1) \neq 0$, but this number x_1 is not a lower bound of A. Therefore there exists a member a_1 of A which is less than x_1 ($\xi < a_1 < x_1$). Now $|a_1 - \xi| < |x_1 - \xi| < \delta$, whence this member of A ought to satisfy that $f(a_1) = 0$. This a contradiction. Thus the antithesis is wrong, and $f(\xi) = 0$.

This that $\xi \in A$ and ξ is the least number of A.

Analogically one shows that the supremum of A is the greatest zero of f on the interval.