Some non-regular languages are:

- Palindromes = $\{w = w^R | w \in \Sigma^*\}$
- Copy Language = $\{ww | w \in \Sigma^*\}$
- $\{a^nb^n|n\geq 0\}$.

Some non-regular languages are:

- Palindromes = $\{w = w^R | w \in \Sigma^*\}$
- Copy Language = $\{ww | w \in \Sigma^*\}$
- $\{a^nb^n|n\geq 0\}$.

- But, $\{a^nb^n|0 \le n \le 5\}$ is regular.
- Every finite language is regular. {Can you prove this?}.
- Σ^* is regular, ϕ is regular, ...

Regular Expressions

REGULAR EXPRESSIONS

In arithmetic, we can use the operations + and \times to build up expressions such as

$$(5+3) \times 4$$
.

Similarly, we can use the regular operations to build up expressions describing languages, which are called *regular expressions*. An example is:

$$(0 \cup 1)0^*$$
.

What are values of these expressions?

Where used

- Very useful to describe a set of strings having certain patterns.
 - In UNIX, rm *.c → removes all files ending with .c
 - Lex, a tool used in compiler generators
 - grep, awk available utilities in UNIX use regular expressions.

Operators

```
    0 means the language {0}
    1 means {1}
    (0 ∪ 1) means {0} ∪ {1}
    0* means {0}*
    (0 ∪ 1)0* actually is shorthand for (0 ∪ 1) ∘ 0*
```

$$(0 \cup 1)0^* = \{0, 1\}\{0\}^*$$

Inductive Definition

DEFINITION 1.52

Say that R is a regular expression if R is

- 1. a for some a in the alphabet Σ ,
- $2. \varepsilon,$
- 3. Ø,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

In items 1 and 2, the regular expressions a and ε represent the languages $\{a\}$ and $\{\varepsilon\}$, respectively. In item 3, the regular expression \emptyset represents the empty language. In items 4, 5, and 6, the expressions represent the languages obtained by taking the union or concatenation of the languages R_1 and R_2 , or the star of the language R_1 , respectively.

Don't confuse between null string and null set

Don't confuse the regular expressions ε and \emptyset . The expression ε represents the language containing a single string—namely, the empty string—whereas \emptyset represents the language that doesn't contain any strings.

Parentheses in an expression may be omitted. If they are, evaluation is done in the precedence order: star, then concatenation, then union.

- Precedence is *, ∘, U
- So, aUb* is different from (aUb)*
 aUb* = (a U (b)*)
- aUb*c is same as aU(b*c)

Many authors use + for U
 So, aUb = a+b But + is overloaded.
 Sipser reserved the + to mean only one thing.

+ (positive closure)

$$R^* = R^0 \cup R^1 \cup R^2 \cup \dots \cup R^i \cup \dots$$

$$R^+ = R^1 \cup R^2 \cup ... \cup R^i \cup ...$$

$$R^+ = RR^*$$

$$R^* = R^+ \cup \epsilon$$

- The value of a regular expression R is nothing but the language represented by R
- When we want to distinguish between R.E. and the language represented by it. We use L(R) to mean language represented by R.

We can write Σ as shorthand for regular expression $(0 \cup 1)$

From the context it should be clear for us by saying Σ do we mean alphabet or the language consisting of all possible strings of length 1.

 Σ^* is a regular expression which is the language of all strings (including ϵ) over the alphabet Σ .

1.
$$0*10* =$$

2.
$$\Sigma^* \mathbf{1} \Sigma^* =$$

3.
$$\Sigma^*$$
001 Σ^*

- 1. $0*10* = \{w | w \text{ contains a single 1} \}.$
- 2. $\Sigma^* \mathbf{1} \Sigma^* = \{ w | w \text{ has at least one 1} \}.$
- 3. $\Sigma^* 001\Sigma^* = \{w \mid w \text{ contains the string 001 as a substring}\}.$

Can you describe the language?

```
\mathbf{1}^*(0\mathbf{1}^+)^* =
(\Sigma\Sigma)^* =
(\Sigma\Sigma\Sigma)^* =
0\mathbf{1} \cup \mathbf{10} =
0\Sigma^*\mathbf{0} \cup \mathbf{1}\Sigma^*\mathbf{1} \cup \mathbf{0} \cup \mathbf{1} =
```

$$(0 \cup \varepsilon)(1 \cup \varepsilon) = 1^*\emptyset = \emptyset^* = 0$$

Can you describe the language?

```
1^*(01^+)^* = \{w | \text{ every 0 in } w \text{ is followed by at least one 1} \}.
(\Sigma\Sigma)^* = \\ (\Sigma\Sigma\Sigma)^* = \\ 01 \cup 10 = \\ 0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \\ \\ (0 \cup \varepsilon)(1 \cup \varepsilon) = \\ 1^*\emptyset = \\ \emptyset^* =
```

Can you describe the language?

```
1^*(01^+)^* = \{w | \text{ every 0 in } w \text{ is followed by at least one 1} \}.
(\Sigma\Sigma)^* = \{w | w \text{ is a string of even length} \}.
(\Sigma\Sigma\Sigma)^* = 01 \cup 10 = 0
0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = 0
(0 \cup \varepsilon)(1 \cup \varepsilon) = 1^*\emptyset = 0
\emptyset^* = 0
```

```
1^*(01^+)^* = \{w | \text{ every 0 in } w \text{ is followed by at least one 1} \}.
(\Sigma\Sigma)^* = \{w | w \text{ is a string of even length} \}.
(\Sigma\Sigma\Sigma)^* = \{w | \text{ the length of } w \text{ is a multiple of 3} \}.
01 \cup 10 = \{01, 10\}.
0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w | w \text{ starts and ends with the same symbol} \}.
```

$$(0 \cup \varepsilon)(1 \cup \varepsilon) = \{\varepsilon, 0, 1, 01\}.$$
$$1^*\emptyset = \emptyset.$$
$$\emptyset^* = \{\varepsilon\}.$$

Understood?

If we let R be any regular expression, we have the following identities. They are good tests of whether you understand the definition.

$$R \cup \emptyset = R$$
.

Adding the empty language to any other language will not change it.

$$R \circ \varepsilon = R$$
.

Joining the empty string to any string will not change it.

Understood?

However, exchanging \emptyset and ε in the preceding identities may cause the equalities to fail.

```
R \cup \varepsilon may not equal R.
For example, if R = 0, then L(R) = \{0\} but L(R \cup \varepsilon) = \{0, \varepsilon\}.
R \circ \emptyset may not equal R.
For example, if R = 0, then L(R) = \{0\} but L(R \circ \emptyset) = \emptyset.
```

Compilers -- Tokens

- Lexical Analysis
 - Automatic tools can be used (like Lex)
 - But , you need to describe what you want.
- For Decimal Numbers:

$$(+ \cup - \cup \varepsilon) (D^+ \cup D^+ \cdot D^* \cup D^* \cdot D^+)$$

where $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the alphabet of decimal digits. Examples of generated strings are: 72, 3.14159, +7., and -.01.

Equivalence of RE with DFA/NFA

- It is somewhat surprising to note that, RE can be used to describe any regular language.
 - This is not true for other higher level languages, like CFL {We can describe a CFL by a CFG, not by an expression}.
- Now, how is that we prove this?

Proof has two directions

- Given RE, show that we can build a DFA/NFA recognizing the language given by the RE.
- Given DFA/NFA, show that we can convert this in to a RE.

To Show

 Given RE, show that we can build a NFA recognizing the language given by the RE.

• We use inductive definition of RE.

Inductive Definition of RE

DEFINITION 1.52

Say that R is a regular expression if R is

- 1. a for some a in the alphabet Σ ,
- 2. ε,
- 3. Ø,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

1. R = a for some $a \in \Sigma$. Then $L(R) = \{a\}$, and the following NFA recognizes L(R).

2. $R = \varepsilon$. Then $L(R) = {\varepsilon}$, and the following NFA recognizes L(R).

3. $R = \emptyset$. Then $L(R) = \emptyset$, and the following NFA recognizes L(R).

One should be able to do these formally !!

- **4.** $R = R_1 \cup R_2$.
- 5. $R = R_1 \circ R_2$.
- **6.** $R = R_1^*$.
- Use the construction proofs.

• Let $L(N_1) = A_1$, and $L(N_2) = A_2$

FIGURE 1.46 Construction of an NFA N to recognize $A_1 \cup A_2$

THEOREM 1.47

The class of regular languages is closed under the concatenation operation.

FIGURE **1.48** Construction of N to recognize $A_1 \circ A_2$

The class of regular languages is closed under the star operation.

FIGURE 1.50 Construction of N to recognize A^*

We convert the regular expression $(ab \cup a)^*$ to an NFA in a sequence of stages.

