Equações a Diferenças Pedro H A Konzen 23 de Janeiro de 2024

Licença

CA 94042, USA.

ii

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View,

Prefácio

Nestas notas de aula são abordados tópicos introdutórios sobre equações a diferenças. Como ferramenta computacional de apoio, exemplos de aplicação de códigos Python são apresentados, mais especificamente, códigos com suporte da biblioteca de matemática simbólica SymPy.

Agradeço a todos e todas que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. :)

Pedro H A Konzen

iii

50

Conteúdo

	Capa	i
	Licença	ii
	Prefácio	iii
	Sumário	iv
	1 Introdução	1
	1.1 Equações a diferenças	1
	2 Equações de ordem 1	8
	2.1 Equações lineares	
	2.1.1 Equação homogênea	
	2.1.2 Equação não homogênea	
	2.1.3 Somas definidas	
	2.2 Estudo assintótico de equações lineares	
	2.3 Alguns aspectos sobre equações não lineares	
	2.3.1 Solução	
	2.3.2 Pontos de equilíbrio	25
	3 Equações de ordem 2 ou mais alta	29
	3.1 Equações lineares de ordem 2	
	3.1.1 Caso de raízes reais distintas	
	3.1.2 Caso de raízes reais duplas	
	3.1.3 Caso de raízes complexas	32
	Respostas dos Exercícios	36

iv

Capítulo 1

Introdução

Neste capítulo, introduzimos conceitos e definições elementares sobre **equa- ções a diferenças**. Por exemplo, definimos tais equações, apresentamos alguns exemplos de modelagem matemática e problemas relacionados.

1.1 Equações a diferenças

[YouTube] | [Vídeo] | [Áudio] |[Contatar]

Equações a diferenças são aquelas que podem ser escritas na seguinte forma

$$f(y(n+k), y(n+k-1), \dots, y(n); n) = 0,$$
 (1.1)

onde $n=0,1,2,\ldots,\,k\geq 0$ número natural e $y:n\mapsto y(n)$ é função discreta (incógnita).

Exemplo 1.1.1. Vejamos os seguintes exemplos.

a) Modelo de juros compostos

$$y(n+1) = (1+r)y(n) (1.2)$$

Esta equação a diferenças modela uma aplicação corrigida a juros compostos com taxa r por período de tempo n (dia, mês, ano, etc.). Mais especificamente, seja y(0) o valor da aplicação inicial, então

$$y(1) = (1+r)y(0) (1.3)$$

1

é o valor corrigido a taxa r no primeiro período (dia, mês, ano). No segundo período, o valor corrigido é

$$y(2) = (1+r)y(1) \tag{1.4}$$

e assim por diante.

b) Equação logística

 $y(n+1) = ry(n)\left(1 - \frac{y(n)}{K}\right),\tag{1.5}$

onde y(n) representa o tamanho da população no período n, r é a taxa de crescimento e K um limiar de saturação.

c) Sequência de Fibonacci

$$y(n+2) = y(n+1) + y(n), (1.6)$$

onde y(0) = 1 e y(1) = 1.

Uma equação a diferenças (1.1) é dita ser de **ordem** k (ou de k-ésima ordem). É dita ser **linear** quando f é função linear nas variáveis dependentes $y(n+k), y(n+k-1), \ldots, y(n)$, noutro caso é dita ser **não linear**.

Exemplo 1.1.2. No Exemplo 1.1.1, temos

- a) O modelo de juros compostos é dado por equação a diferenças de primeira ordem e linear.
- A equação logística é uma equação a diferenças de primeira ordem e não linear.
- c) A sequência equação de Fibonacci é descrita por uma equação a diferenças de segunda ordem e linear.

A **solução** de uma equação a diferenças (1.1) é uma sequência de números $(y(n))_{n=0}^{\infty} = (y(0), y(1), \dots, y(n), \dots)$ que satisfazem a equação.

Exemplo 1.1.3. Vamos calcular os primeiros quatro valores da solução de

$$y(n+1) = 2y(n) - 1, (1.7)$$

¹Fibonacci, c. 1170 - c. 1240, matemático italiano. Fonte: Wikipedia.

$$y(0) = 0. (1.8)$$

Para tanto, podemos fazer o seguinte procedimento iterativo. Tendo o valor inicial y(0) = 0, temos

$$y(1) = 2y(0) - 1$$

$$= 2 \cdot 0 - 1$$
(1.9)
(1.10)

$$= -1. \tag{1.11}$$

Calculado y(1) = -1, temos

$$y(2) = 2y(1) - 1 \tag{1.12}$$

$$= 2 \cdot (-1) - 1 \tag{1.13}$$

$$= -3. (1.14)$$

Então, seguimos

$$y(3) = 2y(2) - 1 \tag{1.15}$$

$$= 2 \cdot (-3) - 1 \tag{1.16}$$

$$= -7. \tag{1.17}$$

$$y(4) = 2y(3) - 1 (1.18)$$

$$= 2 \cdot (-7) - 1 \tag{1.19}$$

$$=-15.$$
 (1.20)

Com estes cálculos, podemos concluir que a solução da equação a diferenças é uma sequência da forma

$$(y(n))_{n=0}^{\infty} = (0, -1, -3, -7, -15, \ldots).$$
 (1.21)

Podemos ilustrar a solução conforme feito na figura abaixo.

Figura 1.1: Esboço do gráfica da solução da equação a diferenças discutida no Exemplo 1.1.3.

Para algumas equações a diferenças, é possível escrever a **solução** como uma **forma fechada**

$$y(n) = g(n), (1.22)$$

onde $n=0,1,\ldots$ e $g:n\mapsto g(n)$ é a função discreta que representa a solução.

Exemplo 1.1.4. Vamos encontrar a solução para o modelo de juros compostos

$$y(n+1) = (1+r)y(n), \quad n \ge 0.$$
(1.23)

A partir do valor inicial y(0), temos

$$y(1) = (1+r)y(0) (1.24)$$

$$y(2) = (1+r)y(1) (1.25)$$

$$= (1+r)(1+r)y(0) (1.26)$$

$$= (1+r)^2 y(0) (1.27)$$

$$y(3) = (1+r)y(2) (1.28)$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

00

-25

300 -

350

-400

-450

00

550

-600

 $= (1+r)(1+r)^2 y(0)$ (1.29)

$$= (1+r)^3 y(0) (1.30)$$

 $\vdots \tag{1.31}$

Com isso, podemos inferir que a solução é dada por

$$y(n) = (1+r)^n y(0), (1.32)$$

onde o valor inicial y(0) é arbitrário.

Exercícios resolvidos

[Vídeo] | [Áudio] | [Contatar]

ER 1.1.1. Calcule y(10), sendo que

$$y(n+1) = 1,05y(n), \quad n \ge 0, y(0) = 1000.$$
 (1.33)

Solução. Observamos que

$$y(1) = 1,05y(0) (1.34)$$

$$y(2) = 1,05y(1) (1.35)$$

$$= 1,05 \cdot 1,05y(0) \tag{1.36}$$

$$=1,05^2y(0) (1.37)$$

$$y(3) = 1,05y(2) (1.38)$$

$$=1,05\cdot 1,05^2y(0) \tag{1.39}$$

$$=1,05^3y(0) (1.40)$$

$$\vdots (1.41)$$

Com isso, temos que a solução da equação a diferenças é

$$y(n) = 1,05^n y(0). (1.42)$$

Portanto,

$$y(10) = 1,05^{10}y(0) (1.43)$$

$$=1,05^{10}\cdot 1000\tag{1.44}$$

$$\approx 1628, 89. \tag{1.45}$$

 \Diamond

ER 1.1.2. Uma semente plantada produz uma flor com uma semente no final do primeiro ano e uma flor com duas sementes no final de cada ano consecutivo. Supondo que cada semente é plantada tão logo é produzida, escreva a equação de diferenças que modela o número de flores y(n) no final do n-ésimo ano.

Solução. No final do ano $n+2 \ge 0$, o número de flores é igual a

$$y(n+2) = 2u(n+2) + 3d(n+2), (1.46)$$

onde u(n+2) é o número de flores plantadas a um ano e d(n+2) é o número de flores plantas há pelo menos dois anos. Ainda, temos

$$u(n+2) = u(n+1) + 2d(n+1)$$
(1.47)

е

$$d(n+2) = u(n+1) + d(n+1). (1.48)$$

Com isso, temos

$$y(n+2) = 2\left[u(n+1) + 2d(n-1)\right] + 3\left[u(n+1) + d(n-1)\right]$$
 (1.49)

$$= 2y(n+1) + u(n+1) + d(n+1)$$
(1.50)

$$= 2y(n+1) + \underbrace{u(n) + 2d(n)}_{u(n+1)} + \underbrace{u(n) + d(n)}_{d(n+1)}$$
(1.51)

$$= 2y(n+1) + 2u(n) + 3d(n)$$
(1.52)

$$= 2y(n) + y(n). (1.53)$$

Desta forma, concluímos que o número de plantas é modelado pela seguinte equação a diferenças de segunda ordem e linear

$$y(n+2) = 2y(n+1) + y(n+2). (1.54)$$

 \Diamond

Exercícios

[Vídeo] | [Áudio] | [Contatar]

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

рı

.00 -

6

-350

400

450

55

Exercício 1.1.1. Classifique as seguintes equações a diferenças quanto a ordem e linearidade.

a)
$$y(n+1) - \sqrt{2}y(n) = 1$$

b)
$$ny(n+1) = y(n) \ln(n+1)$$

c)
$$y(n) = y(n+1) + 2y(n+2) - 1$$

d)
$$y(n+1) - [1 - y(n)][1 + y(n)] = 0$$

e)
$$y(n+2) = n\sqrt{y(n)}$$

Exercício 1.1.2. Para cada uma das seguintes equações a diferenças, calcule y(3).

a)
$$y(n+1) - \sqrt{2}y(n) = 1$$
, $y(0) = 1$

b)
$$ny(n+1) = y(n)\ln(n+1)$$
, $y(1) = 1$

Exercício 1.1.3. Para cada uma das seguintes equações a diferenças, calcule y(4).

a)
$$y(n) = y(n+1) + 2y(n+2) - 1$$
, $y(0) = 1, y(1) = 0$

b)
$$y(n+2) = n\sqrt{y(n)}, \quad y(0) = 1, y(1) = 1$$

Exercício 1.1.4. Encontre a equação a diferenças que modela o saldo devedor anual de uma cliente de cartão de crédito com taxa de juros de 200% a.a. (ao ano), considerando uma dívida inicial no valor de y(0) reais e que o cartão não está mais em uso.

Exercício 1.1.5. Considere uma espécie de seres vivos monogâmicos que após um mês de vida entram na fase reprodutiva. Durante a fase reprodutiva, cada casal produz um novo casal por mês. Desconsiderando outros fatores (por exemplo, mortalidade, perda de fertilidade, etc.), encontre a equação a diferenças que modela o número de casais no *n*-ésimo mês.

Capítulo 2

Equações de ordem 1

Neste capítulo, discutimos de forma introdutória sobre **equações a diferenças de primeira ordem**. Tais equações podem ser escritas na forma

$$f(y(n+1), y(n); n) = 0, (2.1)$$

onde $n=0,1,\ldots$ e $y:n\mapsto y(n)$ é função discreta (incógnita).

2.1 Equações lineares

Nesta seção, discutimos sobre equações a diferenças de ordem 1 e lineares. Tais equações podem ser escritas na seguinte forma

$$y(n+1) = a(n)y(n) + g(n),$$
 (2.2)

onde $n = n_0, n_0 + 1, \ldots$, sendo n_0 um número inteiro, $a : n \mapsto a(n)$ e $g : n \mapsto g(n)$ é o termo fonte. A equação é dita ser **homogênea** quando $g \equiv 0$ e, caso contrário, é dita ser **não homogênea**.

2.1.1 Equação homogênea

[YouTube] | [Vídeo] | [Áudio] | [Contatar]

A solução de uma equação a diferenças de ordem 1, linear e homogênea

$$y(n+1) = a(n)y(n), \quad n \ge n_0,$$
 (2.3)

8

pode ser obtida por iterações diretas. Para $n \ge n_0$, temos

$$y(n+1) = a(n)y(n) \tag{2.4}$$

$$= a(n)a(n-1)y(n-1)$$
 (2.5)

$$= a(n)a(n-1)a(n-2)y(n-2)$$
(2.6)

$$\vdots \qquad (2.7)$$

$$= a(n)a(n-1)\cdots a(n_0)y(n_0).$$
 (2.8)

Ou seja, dado o valor inicial $y(n_0)$, temos a solução¹

$$y(n) = a(n_0)a(n_0 + 1) \cdots a(n-1)y(n_0). \tag{2.9}$$

A fim de termos uma notação mais prática, vamos usar a notação de produtório $\!\!^2$

$$\prod_{i=n_0}^{n-1} a(n) = a(n_0)a(n_0+1)\cdots a(n-1).$$
(2.10)

Com esta notação, a solução de (2.3) pode ser escrita como segue

$$y(n) = \left[\prod_{i=n_0}^{n-1} a(i)\right] y(n_0), \tag{2.11}$$

assumindo a notação de que $\prod_{i=n+1}^{n} a(i) = 1$.

Exemplo 2.1.1. Vamos calcular a solução de

$$y(n+1) = 2y(n), \quad n \ge 0.$$
 (2.12)

a) Por iterações diretas.

Comparando com (2.3), temos a(n)=2 para todo n. Calculando a solução por iterações diretas, temos

$$y(n+1) = 2y(n) (2.13)$$

$$=2\cdot 2y(n-1)\tag{2.14}$$

$$=2^2y(n-1) (2.15)$$

 $^1\mathrm{A}$ demonstração por ser feita por indução matemática.

²Veja mais em Wiki: Produtório.

$$=2^2 \cdot 2y(n-2)$$

(2.16)

 $=2^3y(n-2)$

(2.17)

$$=2^{n+1}y(0)$$

(2.18)

ou, equivalentemente, temos a solução

$$y(n) = 2^n y(0).$$

(2.19)

b) Por (2.11).

$$y(n) = \left[\prod_{i=0}^{n-1} 2\right] y(0)$$

(2.20)

$$= (\underbrace{2 \cdot 2 \cdot \dots \cdot 2}_{\text{n vezes}}) y(0)$$

(2.21)

(2.22)

A solução vale para qualquer valor inicial y(0).

No Python, podemos computar a solução da equação a diferenças (2.12) com os seguintes comandos:

1 In : from sympy import *

2

In : n = symbols('n', integer=true)

3 In : y = symbols('y', cls=Function) 4 In : ead = Eq(y(n+1), 2*y(n))

5

In : rsolve(ead, y(n))

6 Out: 2**n*C0

Equação não homogênea 2.1.2

[YouTube] | [Vídeo] | [Áudio] | [Contatar]

A solução de uma equação a diferenças de ordem 1, linear e não homogênea

 $y(n+1) = a(n)y(n) + q(n), \quad n > n_0,$

(2.23)

pode ser obtida por iterações diretas.

Vejamos, para $n \ge n_0$ temos

$$y(n+1) = a(n)y(n) + g(n)$$
(2.24)

$$= a(n) \left[a(n-1)y(n-1) + g(n-1) \right] + g(n) \tag{2.25}$$

$$= a(n)a(n-1)y(n-1) + a(n)g(n-1) + g(n)$$
(2.26)

$$= a(n)a(n-1)[a(n-2)y(n-2) + g(n-2)]$$

$$+a(n)g(n-1) + g(n)$$
 (2.27)

$$= a(n)a(n-1)a(n-2)y(n-2)$$

$$+a(n)a(n-1)g(n-2) + a(n)g(n-1) + g(n)$$
(2.28)

$$= a(n)a(n-1)\cdots a(n_0)y(n_0)$$

$$+a(n_0+1)a(n_0+2)\cdots a(n)g(n_0)$$

$$+a(n_0+2)a(n_0+3)\cdots a(n)g(n_0+1)$$

$$+\cdots + \frac{a(n)g(n-1) + g(n)}{2a}$$
(2.29)

Logo, podemos inferir que a solução é dada por³

$$y(n) = a(n_0)a(n_0 + 1) \cdots a(n - 1)y(n_0)$$

$$+a(n_0 + 1)a(n_0 + 2) \cdots a(n - 1)g(n_0)$$

$$+a(n_0 + 2)a(n_0 + 3) \cdots a(n - 1)g(n_0 + 1)$$

$$+ \cdots + a(n - 1)g(n - 2) + g(n - 1)$$
(2.30)

Aqui, por maior praticidade, vamos empregar a notação de somatório⁴

$$\sum_{i=n_0}^{n} a(i) = a(n_0) + a(n_0 + 1) + \dots + a(n).$$
(2.31)

Com isso, a solução de (2.23) pode ser escrita como segue

$$y(n) = \left[\prod_{i=n_0}^{n-1} a(i)\right] y(n_0)$$

$$+ \sum_{i=n_0}^{n-1} \left[\prod_{j=i+1}^{n-1} a(j)\right] g(i).$$
(2.32)

No último termo, consideramos a notação $\sum_{i=i+1}^{i} a(i) = 0$.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

³A demonstração por ser feita por indução matemática.

⁴Veja mais em Wiki: Somatório

Exemplo 2.1.2. Vamos calcular a solução de

$$y(n+1) = 2y(n) - 1, \quad n \ge 0. \tag{2.33}$$

Comparando com (2.23), temos a(n) = 2 e g(n) = -1 para todo n.

1. Cálculo por iterações diretas.

Calculando a solução por iterações diretas, temos

$$y(n+1) = 2y(n) - 1 (2.34)$$

$$= 2 \cdot [2y(n-1) - 1] - 1 \tag{2.35}$$

$$=2^{2}y(n-1)-2-1 (2.36)$$

$$= 2^{2} \cdot [2y(n-2) - 1] - 2 - 1 \tag{2.37}$$

$$=2^{3}y(n-2)-2^{2}-2-1 (2.38)$$

. . .

$$=2^{n+1}y(0)-\sum_{i=0}^{n}2^{i}$$
(2.39)

Logo, temos

$$y(n) = 2^{n}y(0) - \sum_{i=0}^{n-1} 2^{i}.$$
(2.40)

Este último termo, é a soma dos termos da **progressão geométrica**⁵ de razão q = 2 e termo inicial 1 (veja Subseção 2.1.3), i.e.

$$\sum_{i=0}^{n-1} q^i = \frac{1-q^n}{1-q}. (2.41)$$

Portanto, a solução (2.23) é

$$y(n) = 2^{n}y(0) - \frac{1-2^{n}}{1-2}$$
(2.42)

$$=2^{n}y(0)-2^{n}+1. (2.43)$$

 $^{^5\}mathrm{Veja}$ mais em Wiki: Progressão geométrica.

2. Cálculo por (2.32).

$$y(n) = \left[\prod_{i=n_0}^{n-1} a(i)\right] y(n_0)$$
 (2.44)

$$+\sum_{i=n_0}^{n-1} \left[\prod_{j=i+1}^{n-1} a(j) \right] g(i) \tag{2.45}$$

$$= \left[\prod_{i=0}^{n-1} 2\right] y(0) \tag{2.46}$$

$$+\sum_{i=0}^{n-1} \left[\prod_{j=i+1}^{n-1} 2 \right] (-1) \tag{2.47}$$

$$= 2^{n}y(0) - \sum_{i=0}^{n-1} 2^{n-1-i}$$
 (2.48)

$$= 2^{n} y(0) - 2^{n-1} \sum_{i=0}^{n-1} 2^{-i}$$
 (2.49)

Este último somatório é a soma dos termos da progressão geométrica de razão q=1/2 e termo inicial 1 ((veja Subseção 2.1.3), equação (2.60)). Logo,

$$\sum_{i=0}^{n-1} 2^{-i} = \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} \tag{2.50}$$

$$= 2\left(1 - 2^{-n}\right). (2.51)$$

Retornando a (2.49), temos

$$y(n) = 2^{n}y(0) - 2^{n-1} \cdot 2 \cdot \left(1 - 2^{-n}\right)$$
(2.52)

$$=2^{n}y(0)-2^{n}+1. (2.53)$$

A solução vale para qualquer valor inicial y(0).

No Python, podemos computar a solução da equação a diferenças (2.12) com os seguintes comandos:

1 In : from sympy import st

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

In: n = symbols('n', integer=true)
In: y = symbols('y', cls=Function)
In: ead = Eq(y(n+1),2*y(n)-1)
In: rsolve(ead, y(n))
Out: 2**n*CO + 1

Observamos que esta solução é equivalente à (2.53), pois

$$y(n) = 2^{n}y(0) - 2^{n} + 1$$

$$= 2^{n} [y(0) - 1] + 1,$$
(2.54)
$$(2.55)$$

onde y(0) é um valor inicial arbitrário.

2.1.3 Somas definidas

[Vídeo] | [Áudio] | [Contatar]

Seguem algumas somas definidas que podem ser úteis na resolução de equações a diferenças.

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \tag{2.56}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \tag{2.57}$$

$$\sum_{k=1}^{n} k^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2 \tag{2.58}$$

$$\sum_{k=1}^{n} k^4 = \frac{n(6n^4 + 15n^3 + 10n^2 - 1)}{30} \tag{2.59}$$

$$\sum_{k=0}^{n-1} q^k = \frac{(1-q^n)}{1-q}, \quad q \neq 1$$
 (2.60)

$$\sum_{k=1}^{n} kq^k = \frac{(q-1)(n+1)q^{n+1} - q^{n+2} + q}{(q-1)^2}$$
(2.61)

Exercícios resolvidos

[Vídeo] | [Áudio] | [Contatar]

ER 2.1.1. Calcule a solução da equação à diferenças

$$y(n+1) = \frac{1}{2}y(n), \quad n \ge 0, \tag{2.62}$$

$$y(0) = 1. (2.63)$$

Solução. De (2.11), temos

 $y(n) = \left[\prod_{i=0}^{n-1} \frac{1}{2} \right] y(0) \tag{2.64}$

$$= \left(\frac{1}{2}\right)^n \cdot 1 \tag{2.65}$$

$$=2^{-n}$$
. (2.66)

No Python, podemos computar a solução deste exercício com os seguintes comandos:

1 In : from sympy import *

In : n = symbols('n', integer=true)

3 In : y = symbols('y', cls=Function)

4 In : ead = Eq(y(n+1),S(1)/2*y(n))

5 In : $rsolve(ead, y(n), \{y(0):1\})$

6 Out: 0.5**n

 \Diamond

ER 2.1.2. Calcule a solução de

$$y(n+1) = 2y(n) + \left(\frac{1}{2}\right)^n, \quad n \ge 0,$$
 (2.67)

$$y(0) = 0. (2.68)$$

Solução. De (2.32), temos

$$y(n) = \left[\prod_{i=0}^{n-1} 2\right] y(0) + \sum_{i=0}^{n-1} \left[\prod_{j=i+1}^{n-1} 2\right] \cdot \left(\frac{1}{2}\right)^{i}$$
(2.69)

$$= \sum_{i=0}^{n-1} 2^{n-1} \cdot 2^{-2i}$$

 $=\sum_{i=0}^{n-1} 2^{n-1-i} \cdot 2^{-i}$

$$= 2^{n-1} \sum_{i=0}^{n-1} \left(\frac{1}{4}\right)^{i}$$
$$= 2^{n-1} \cdot \frac{\left[1 - \left(\frac{1}{4}\right)^{n}\right]}{1 - \frac{1}{2}}$$

$$= 2^{n-1} \cdot \frac{4}{3} \cdot \left(1 - \frac{1}{4^n}\right)$$

$$= \frac{4}{3} \left(2^{n-1} - \frac{2^{n-1}}{4^n} \right)$$

$$= \frac{4}{3} \left(2^{n-1} - 2^{n-1} 2^{-2n} \right)$$

$$=\frac{1}{3}\left(2^{n-1}-2^{-n-1}\right)$$

$$=\frac{4}{3}\left(2^{n-1}-2^{-n-1}\right)$$

$$= \frac{2}{3} \left(2^n - 2^{-n} \right).$$

 \Diamond

No Python, podemos computar a solução deste exercício com os seguintes comandos:

In : from sympy import * 1

In : n = symbols('n', integer=true)

In : y = symbols('y', cls=Function)

In : ead = Eq(y(n+1), 2*y(n)+(1/2)**n)4

5 In : $rsolve(ead, y(n), \{y(0):0\})$ Out: 2*2**n/3 - 2*2**(-n)/36

Exercícios

[Vídeo] | [Áudio] | [Contatar]

Exercício 2.1.1. Calcule a solução de

$$y(n+1) = 3y(n), \quad n \ge 0.$$
 (2.79)

17

Exercício 2.1.2. Calcule a solução de

$$y(n+1) = \frac{1}{3}y(n), \quad n \ge 0,$$
(2.80)

$$y(0) = -1. (2.81)$$

Exercício 2.1.3. Considere um empréstimo de \$100 a uma taxa mensal de 1%. Considerando y(0) = 100, qual o valor de y(n) no n-ésimo mês? Modele o problema como uma equação à diferenças e calcule sua solução. Então, calcule o valor da dívida no 36° mês.

Exercício 2.1.4. Calcule a solução de

$$y(n+1) = 3y(n) - 3, \quad n \ge 0,$$
 (2.82)

$$y(0) = 2. (2.83)$$

Exercício 2.1.5. Calcule a solução de

$$y(n+1) = ny(n) + n!, \quad n \ge 0,$$
(2.84)

$$y(0) = 1. (2.85)$$

Exercício 2.1.6. Calcule a solução de

$$y(n+1) = 2y(n) + 2^n, \quad n \ge 0,$$
(2.86)

$$y(0) = 2. (2.87)$$

Exercício 2.1.7. Considere um empréstimo de \$100 a uma taxa mensal de 1% e com parcelas mensais fixas de \$1. Considerando y(0) = 100, qual o valor de y(n) no n-ésimo mês? Modele o problema como uma equação à diferenças e calcule sua solução.

Exercício 2.1.8. Calcule a solução de

$$y(n+1) = ay(n) + b, \quad n \ge 0,$$
 (2.88)

onde a e b são constantes com $a \neq 1$.

2.2 Estudo assintótico de equações lineares

[Vídeo] | [Áudio] | [Contatar]

Nesta seção, vamos introduzir aspectos básicos sobre o comportamento assintótico de soluções de equações a diferenças de primeira ordem e lineares.

Seja

$$y(n+1) = f(y(n), n), \quad n \ge n_0, \tag{2.89}$$

uma equação a diferenças com valor inicial $y(n_0)$. Dizemos que y^* é **ponto** de equilíbrio da equação, quando y^* é tal que

$$f(y^*, n) = y^*, (2.90)$$

para todo $n \ge n_0$. Neste caso, ao escolhermos $y(n_0) = y^*$, então a solução de equação a diferenças (2.89) é

$$y(n) = y^*. (2.91)$$

Exemplo 2.2.1. Vamos calcular o(s) ponto(s) de equilíbrio de

$$y(n+1) = \frac{4}{3}y(n) - 1, \quad n \ge 0.$$
(2.92)

Neste caso, por comparação com (2.89), temos $f(y(n), n) = \frac{4}{3}y(n) - 1$. Para calcularmos o(s) ponto(s) de equilíbrio, resolvemos

$$f(y^*, n) = y^* (2.93)$$

$$\frac{4}{3}y^* - 1 = y^* \tag{2.94}$$

$$\left(\frac{4}{3} - 1\right)y^* = 1\tag{2.95}$$

$$\frac{1}{3}y^* = 1\tag{2.96}$$

$$y^* = 3. (2.97)$$

Com isso, concluímos que $y^* = 3$ é o único ponto de equilíbrio de (2.92).

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

рı

+++15

200 -

60 + +

0

 $\frac{1}{50}$

400

-450-

 -50°

-550-

-600

Notamos que, de fato, ao escolhermos y(0) = 3, temos

$$y(1) = \frac{4}{3}y(0) - 1 = 3 \tag{2.98}$$

$$y(2) = \frac{4}{3}y(1) - 1 = 3 \tag{2.99}$$

$$y(3) = \frac{4}{3}y(1) - 1 = 3 \tag{2.100}$$

$$\vdots \qquad (2.101)$$

$$y(n) = 3.$$
 (2.102)

Seja a equação a diferenças de primeira ordem, linear e com coeficientes constantes

$$y(n+1) = ay(n) + b, \quad n \ge n_0,$$
 (2.103)

Se a=1 e b=0, então todo número real y^* é ponto de equilíbrio de (2.103). Agora, se a=1 e $b\neq 0$, então (2.103) não tem ponto de equilíbrio. Por fim, se $a\neq 1$, então

$$y^* = \frac{b}{1-a} \tag{2.104}$$

é o único ponto de equilíbrio de (2.103). Este é o caso do Exemplo 2.2.1.

Um ponto de equilíbrio é um **atrator global** quando

$$\lim_{n \to \infty} y(n) = y^*, \tag{2.105}$$

para qualquer valor inicial $y(n_0)$. Neste caso, também dizemos que y^* é um ponto de equilíbrio assintoticamente globalmente estável.

Uma equação a diferenças da forma

$$y(n+1) = ay(n), \quad n \ge n_0,$$
 (2.106)

 $\operatorname{com} -1 < a < 1,$ tem $y^* = 0$ como atrator global. De fato, a solução desta equação a diferenças é

$$y(n) = \left[\prod_{i=n_0}^{n-1} a\right] y(n_0) \tag{2.107}$$

$$= a^{n-n_0} y(n_0). (2.108)$$

Logo, temos

$$\lim_{n \to \infty} y(n) = \lim_{n \to \infty} a^{n-n_0} y(n_0)$$

$$= 0.$$
(2.109)

Exemplo 2.2.2. Para a equação a diferenças

$$y(n+1) = \frac{1}{2}y(n), \quad n \ge 0,$$
 (2.111)

temos que $y^* = 0$ é um ponto de equilíbrio assintoticamente globalmente estável.

Um equação a diferenças da forma

$$y(n+1) = ay(n) + b, \quad n \ge n_0,$$
 (2.112)

com -1 < a < 1, tem

$$y^* = \frac{b}{1-a} \tag{2.113}$$

como ponto de equilíbrio assintoticamente globalmente estável. De fato, a solução desta equação é

$$y(n) = \left[\prod_{i=n_0}^{n-1} a\right] y(n_0) + \sum_{i=n_0}^{n-1} \left[\prod_{j=i+1}^{n-1} a\right] b$$
(2.114)

$$= a^{n-n_0}y(n_0) + \sum_{i=n_0}^{n-1} a^{n-1-i}b$$
(2.115)

$$= a^{n-n_0}y(n_0) + a^{n-1}b\sum_{i=n_0}^{n-1}a^{-i}$$
(2.116)

$$= a^{n-n_0}y(n_0) + a^{n-1}b \sum_{j=0}^{n-n_0-1} a^{-j-n_0}$$
(2.117)

$$= a^{n-n_0}y(n_0) + a^{n-n_0-1}b \sum_{j=0}^{n-n_0-1} a^{-j}$$
(2.118)

$$= a^{n-n_0}y(n_0) + a^{n-n_0-1}b\frac{(1-a^{-(n-n_0)})}{1-a^{-1}}$$
(2.119)

$$= a^{n-n_0}y(n_0) + a^{n-n_0-1}b\frac{\frac{a^{n-n_0-1}}{a^{n-n_0}}}{\frac{a-1}{a}}$$
(2.120)

$$= a^{n-n_0}y(n_0) + b\frac{1 - a^{n-n_0}}{1 - a}$$
(2.121)

$$= \left(y(n_0) - \frac{b}{1-a}\right)a^{n-n_0} + \frac{b}{1-a}.$$
 (2.122)

Observamos que esta última equação, confirma que

$$y^* = \frac{b}{1-a} \tag{2.123}$$

é ponto de equilíbrio de (2.112) e é assintoticamente globalmente estável, pois

$$\lim_{n \to \infty} y(n) = \lim_{n \to \infty} \left[\left(y(n_0) - \frac{b}{1-a} \right) a^{n-n\sigma} + \frac{b}{1-a} \right]$$

$$(2.124)$$

$$=\frac{b}{1-a}. (2.125)$$

Exemplo 2.2.3. A equação a diferenças

$$y(n+1) = 4y(n) - 1, \quad n \ge 0, \tag{2.126}$$

tem $y^* = 1/3$ como ponto de equilíbrio, o qual não é um atrator global. De fato, para qualquer escolha de $y(0) \neq y^*$, temos

$$y(n) = \underbrace{\left(y(0) - \frac{1}{3}\right)}_{\neq 0} 4^n + \frac{1}{3}.$$
 (2.127)

Logo, vemos que $y(n) \to \pm \infty$ quando $n \to \infty$, onde o sinal é igual ao do termo y(0) - 1/3.

Observamos as seguintes computações no Python:

Ou seja, y(30) = -21.0 computando por iterações recorrentes, enquanto que o valor esperado é y(30) = 1/3, sendo este um ponto de equilíbrio da equação a diferenças.

O que está ocorrendo nestas computações é um fenômeno conhecido como cancelamento catastrófico em máquina. No computador, o valor inicial y(0)=1/3 é computado com um pequeno erro de arredondamento. Do que vimos acima, se $y(0) \neq 1/3$, então $y(n) \to \pm \infty$ quando $n \to \infty$.

No Python, podemos fazer as computações exatas na aritmética dos números racionais. Para tanto, podemos usar o seguinte código:

Exercícios resolvidos

[Vídeo] | [Áudio] | [Contatar]

ER 2.2.1. Calcule os pontos de equilíbrio de

$$y(n+1) = ny(n), \quad n \ge 0.$$
 (2.128)

Solução. Temos que y^* é ponto de equilíbrio da equações a diferenças, quando

$$y^* = ny^* \tag{2.129}$$

 $(1-n)y^* = 0 (2.130)$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

pt

-150

00

50 —

350

400

 $\frac{1}{50}$

500

50

-600

para todo $n \ge 0$. Logo, $y^* = 0$ é ponto de equilíbrio da equação a diferenças.

 \Diamond

ER 2.2.2. Verifique se $y^* = 0$ é ponto de equilíbrio assintoticamente globalmente estável de

$$y(n+1) = \frac{1}{n+1}y(n), \quad n \ge 0.$$
 (2.131)

Solução. Primeiramente, confirmamos que $y^* = 0$ é ponto de equilíbrio, pois

$$\frac{1}{n+1}y^* = 0 = y^*, \quad n \ge 0. \tag{2.132}$$

Por fim, a solução da equação a diferenças é

$$y(n) = \left[\prod_{i=0}^{n-1} \frac{1}{i+1}\right] y(0)$$

$$= \frac{1}{n!} y(0).$$
(2.133)

Daí, vemos que

$$\lim_{n \to \infty} \frac{1}{n!} y(0) = 0 = y^*. \tag{2.135}$$

Logo, concluímos que $y^* = 0$ é ponto de equilíbrio assintoticamente globalmente estável da equação a diferenças dada.

 \Diamond

Exercícios

[Vídeo] | [Áudio] | [Contatar]

Exercício 2.2.1. Calcule o ponto de equilíbrio de

$$y(n+1) = -y(n) + 1 (2.136)$$

Exercício 2.2.2. O ponto de equilíbrio da equação a diferenças do Exercício 2.2.1 é um atrator global? Justifique sua resposta.

Exercício 2.2.3. Encontre o ponto de equilíbrio de

$$y(n+1) = \frac{1}{2}y(n) + \frac{1}{2}, \quad n \ge 2,$$
 (2.137)

e diga se ele é um atrator global. Justifique sua resposta.

Exercício 2.2.4. Encontre o ponto de equilíbrio de

$$y(n+1) = 2y(n) + 1, \quad n \ge 2,$$
 (2.138)

e diga se ele é assintoticamente globalmente estável. Justifique sua resposta.

Exercício 2.2.5. Considere um financiamento de valor \$100 com taxa de juros 1% a.m. e amortizações fixas mensais de valor \$a. O valor devido y(n+1) no n+1-ésimo mês pode ser modelado pela seguinte equações a diferenças

$$y(n+1) = 1,01y(n) - a, \quad n \ge 0,$$
(2.139)

com valor inicial y(0) = 100. Calcule o valor a mínimo a ser amortizado mensalmente de forma que o valor devido permaneça sempre constante.

2.3 Alguns aspectos sobre equações não lineares

O estudo de equações a diferenças não lineares é bastante amplo, podendo chegar ao estado da arte. Nesta seção, vamos abordar alguns conceitos fundamentais para a análise de equações de primeira ordem e não lineares, i.e. equações da forma

$$f(y(n+1), y(n); n) = 0, \quad n \ge n_0 \ge 0,$$
 (2.140)

onde f é uma função não linear nas incógnitas y(n+1) ou y(n).

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

pь

2.3.1 Solução

[Vídeo] | [Áudio] | [Contatar]

A variedade de formas que uma equação a diferenças não linear pode ter é enorme e não existem formas fechadas para a solução da grande maioria delas. No entanto, sempre pode-se buscar calcular a solução por iteração direta, i.e.

 $y(n_0) = \text{valor inicial},$ (2.141)

$$f(y(n+1), y(n); n) = 0, \ n = n_0, n_0 + 1, n_0 + 2, \dots$$
 (2.142)

Exemplo 2.3.1. Vamos calcular a solução da seguinte equação a diferenças não linear

$$y(n+1) = y^2(n), \quad n \ge 0.$$
 (2.143)

A partir do valor inicial y(0) e por iterações diretas, temos

 $y(1) = y^2(0), (2.144)$

 $y(2) = [y(1)]^2 (2.145)$

 $= \left[y^2(0) \right]^2 \tag{2.146}$

 $=y^{2^2}(0), (2.147)$

 $y(3) = [y(2)]^2 (2.148)$

 $= \left[y^{2^2}(0) \right]^2 \tag{2.149}$

 $=y^{2^3}(0) (2.150)$

 $\vdots (2.151)$

Disso, podemos inferir que a solução de $2.143\ \acute{\rm e}$

$$y(n) = y^{2^n}(0). (2.152)$$

2.3.2 Pontos de equilíbrio

[Vídeo] | [Áudio] | [Contatar]

Introduzimos pontos de equilíbrio na Seção 2.2 e, aqui, vamos estudá-los no contexto de equação a diferenças de primeira ordem e não lineares. Um dos primeiros aspectos a serem notados é que equação não lineares podem ter vários pontos de equilíbrio, ter somente um ou não ter.

Exemplo 2.3.2. (Ponto de equilíbrio) Vejamos os seguintes casos:

a)
$$y(n+1) = y(n)^2 + 1, n \ge 0$$

Se y^* é ponto de equilíbrio, então

$$y^* = (y^*)^2 + 1 (2.153)$$

$$(y^*)^2 - y^* + 1 = 0, (2.154)$$

a qual não admite solução real. Ou seja, a equação a diferenças deste item não tem ponto de equilíbrio.

b)
$$y(n+1) = y(n)^2, n \ge 0$$

$$y^* = (y^*)^2 (2.155)$$

$$(y^*)^2 - y^* = 0 (2.156)$$

$$y^* (y^* - 1) = 0, (2.157)$$

Neste caso, a equação a diferenças tem dois pontos de equilíbrio, a saber, $y_1^*=0$ e $y_2^*=1$.

c)
$$[y(n+1)-1] \cdot [y(n)-1] = 0, n \ge 0$$

$$(y^* - 1) \cdot (y^* - 1) = 0 \tag{2.158}$$

$$(y^* - 1)^2 = 0 (2.159)$$

$$y^* = 1 (2.160)$$

Concluímos que esta equação tem $y^*=1$ como seu único ponto de equilíbrio.

d)
$$y(n+1) = y(n)\cos(y(n)), n \ge 0$$

$$y^* = y^* \cos(y^*) \tag{2.161}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

þг

$$[\cos(y^*) - 1]y^* = 0 (2.162)$$

$$\cos(y^*) = 1 \tag{2.163}$$

Disso, temos que $y^*=2k\pi,\,k\in\mathbb{Z},$ são pontos de equilíbrio da equação a diferenças dada.

Equações a diferenças não lineares podem ter pontos de equilíbrio eventuais. Mais especificamente, uma equação a diferenças

$$f(y(n+1), y(n); n) = 0, \quad n \ge n_0,$$
 (2.164)

tem y^* como **ponto de equilíbrio eventual** quando existe $n_1 > n_0$ tal que

$$y(n) = y^*, \quad n \ge n_1. \tag{2.165}$$

Exemplo 2.3.3. (Ponto de equilíbrio eventual) A equação a diferenças

$$y(n+1) = |2y(n) - 2|, \quad n \ge 0, \tag{2.166}$$

$$y(0) = 1, (2.167)$$

tem $y^*=2$ como ponto de equilíbrio eventual. De fato, por iterações diretas temos

$$y(1) = |2y(0) - 2| \tag{2.168}$$

$$= |2 \cdot 1 - 2| = 0 \tag{2.169}$$

$$y(2) = |2y(1) - 2| \tag{2.170}$$

$$= |2 \cdot 0 - 2| = 2 \tag{2.171}$$

$$y(3) = |2y(2) - 2| \tag{2.172}$$

$$= |2 \cdot 2 - 2| = 2 \tag{2.173}$$

$$\vdots \qquad (2.174)$$

$$y(n) = 2, \quad n \ge 2. \tag{2.175}$$

Um ponto de equilíbrio y^* de (2.164) é dito ser **estável** quando, para cada $\epsilon > 0$ existe $\delta > 0$ tal que

$$|y(0) - y^*| < \delta \Rightarrow |y(n) - y^*| < \epsilon,$$
 (2.176)

para todo n > 0. Em outras palavras, para todo n, a solução y(n) está arbitráriamente próxima de y^* para toda escolha de valor inicial $y(0) \neq y^*$ suficientemente próximo de y^* . Quando este não é o caso, y^* é dito ser ponto de equilíbrio **instável**.

Exemplo 2.3.4. Vamos estudar os pontos de equilíbrio de

$$y(n+1) = (y^{2}(n) - 1)^{2} + 1, \quad n \ge 0.$$
(2.177)

Vamos calcular os pontos de equilíbrio.

$$y^* = \left[(y^*)^2 - 1 \right]^2 + 1 \tag{2.178}$$

$$y^* = (y^*)^2 - 2y^* + 2 (2.179)$$

$$(y^*)^2 - 3y^* + 2 = 0 (2.180)$$

$$y_1^* = 1, \quad y_2^* = 2 \tag{2.181}$$

Tomamos o ponto de equilíbrio $y^*=1$. Seja $\epsilon>0$ e escolhemos $0<\delta<1$ tal que $\delta<\epsilon$. Então, para qualquer valor inicial

$$y(0) = 1 \pm \delta \tag{2.182}$$

temos

$$y(1) = (y(0) - 1)^{2} + 1 (2.183)$$

$$= \delta^2 + 1 < 1 + \epsilon \tag{2.184}$$

Exercícios resolvidos

[Vídeo] | [Áudio] | [Contatar]

Em construção ...

Exercícios

[Vídeo] | [Áudio] | [Contatar]

Em construção ...

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350

500 550

Capítulo 3

Equações de ordem 2 ou mais alta

Neste capítulo, temos uma rápida introdução a equações a diferenças de ordem 2 ou mais alta.

3.1 Equações lineares de ordem 2

[YouTube] | [Vídeo] | [Áudio] | [Contatar]

Aqui, vamos considerar equações lineares de ordem 2 com coeficientes constantes e homogêneas, i.e. equações da forma

$$y(n+2) + p_1 y(n+1) + p_2 y(n) = 0, (3.1)$$

onde $p_1, p_2 \in \mathbb{R}$.

A ideia para resolver uma tal equação é de buscar por soluções da forma

$$y(n) = \lambda^n, \tag{3.2}$$

onde λ é um escalar não nulo (número real ou complexo). Substituindo em (3.1), obtemos

$$\lambda^{n+2} + p_1 \lambda^{n+1} + p_2 \lambda^n = 0 (3.3)$$

$$\lambda^n \left(\lambda^2 + p_1 \lambda + p_2 \right) = 0. \tag{3.4}$$

Ou seja, λ deve satisfazer a equação característica

$$\lambda^2 + p_1\lambda + p_2 = 0. \tag{3.5}$$

3.1.1 Caso de raízes reais distintas

[Vídeo] | [Áudio] | [Contatar]

Aqui, vamos encontrar a solução geral para (3.1) quando a equação característica associada (3.5) tem raízes reais distintas. As raízes podem ser obtidas da fórmula de Bhaskara, i.e.

$$\lambda_1, \lambda_2 = \frac{-p_1 \pm \sqrt{p_1^2 - 4p_2}}{2},\tag{3.6}$$

onde $p_1^2 - 4p_2 > 0$. Com isso, temos as soluções

$$y_1(n) = \lambda_1^n, \tag{3.7}$$

$$y_2(n) = \lambda_2^n. \tag{3.8}$$

Estas são chamadas de **soluções fundamentais**, pois pode-se mostrar que qualquer solução da equação a diferenças (3.1) pode ser escrita como combinação linear de $y_1(n)$ e $y_2(n)$. Ou seja, a solução geral de (3.1) é

$$y(n) = c_1 \underbrace{\lambda_1^n}_{y_1(n)} + c_2 \underbrace{\lambda_2^n}_{y_2(n)}, \tag{3.9}$$

onde c_1 e c_2 são constantes indeterminadas.

Exemplo 3.1.1. Vamos encontrar a solução geral de

$$y(n+2) - 4y(n) = 0. (3.10)$$

Para tanto, resolvemos a equação característica associada

$$\lambda^2 - 4 = 0 \tag{3.11}$$

$$\lambda^2 = 4 \tag{3.12}$$

$$\lambda = \pm 2 \tag{3.13}$$

Com isso, temos as soluções fundamentais $y_1(n) = (-2)^n$ e $y_2(n) = 2^n$. A solução geral é

$$y(n) = c_1 \cdot (-2)^n + c_2 \cdot 2^n. \tag{3.14}$$

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

pt

3.1.2 Caso de raízes reais duplas

[Vídeo] | [Áudio] | [Contatar]

Agora, vamos encontrar a solução geral para (3.1) quando a equação característica associada (3.5) tem raízes reais duplas, i.e.

$$\lambda_{1,2} = -\frac{p_1}{2}.\tag{3.15}$$

Neste caso, múltiplos de

$$y_1(n) = \lambda_{1,2}^n \tag{3.16}$$

não nos fornecem todas as soluções possíveis da equação a diferenças. Entretanto, temos que

$$y_2(n) = n\lambda_{1,2}^{n-1},\tag{3.17}$$

também é solução. De fato, substituindo em (3.1), obtemos

$$y_2(n+2) + p_1 y_2(n+1) + p_2 y_2(n) = 0 (3.18)$$

$$(n+2)\lambda_{1,2}^{n+1} + p_1 \cdot (n+1)\lambda_{1,2}^n + p_2 \cdot n\lambda_{1,2}^{n-1} = 0$$
(3.19)

$$n\lambda_{1,2}^{-1}\left(\underbrace{\lambda_{1,2}^{n+2} + p_1 \cdot \lambda_{1,2}^{n+1} + p_2\lambda_{1,2}^n}_{=0}\right) + 2\lambda_{1,2}^{n+1} + p_1\lambda_{1,2}^n = 0$$
(3.20)

$$2\left(-\frac{p_1}{2}\right)^{n+1} + p_1\left(-\frac{p_1}{2}\right)^n = 0 {3.21}$$

$$(-1)^{n+1}\frac{p_1^{n+1}}{2^n} + (-1)^n \frac{p_1^{n+1}}{2^n} = 0 (3.22)$$

$$0 = 0.$$
 (3.23)

Com isso, temos que a **solução geral** da equação a diferenças é dada por

$$y(n) = c_1 \lambda_{1,2}^n + c_2 n \lambda_{1,2}^{n-1}. \tag{3.24}$$

Exemplo 3.1.2. Vamos encontrar a solução geral de

$$y(n+2) + 4y(n+1) + 4y(n) = 0. (3.25)$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

Começamos encontrando as soluções da equação característica associada

$$\lambda^2 + 4\lambda + 4 = 0 \tag{3.26}$$

$$(\lambda + 2)^2 = 0 \tag{3.27}$$

$$\lambda_{1,2} = -2.$$
 (3.28)

Desta forma, temos as soluções fundamentais

$$y_1(n) = (-2)^n (3.29)$$

$$y_2(n) = n \cdot (-2)^{n-1} \tag{3.30}$$

e a solução geral

$$y(n) = c_1 \cdot (-2)^n + c_2 \cdot n \cdot (-2)^{n-1}$$
(3.31)

$$y(n) = c_1 \cdot (-2)^n + c_2 \cdot n \cdot \frac{(-2)^n}{-2}$$
(3.32)

$$y(n) = c_1 \cdot (-2)^n + c_2 \cdot n \cdot (-2)^n \tag{3.33}$$

$$y(n) = (-2)^n \cdot (c_1 + c_2 \cdot n) \tag{3.34}$$

3.1.3 Caso de raízes complexas

[Vídeo] | [Áudio] | [Contatar]

Agora, vamos encontrar a solução geral para (3.1) quando a equação característica associada (3.5) tem raízes complexas, i.e.

$$\lambda_{1,2} = \alpha \pm i\beta. \tag{3.35}$$

Neste caso, temos a solução geral

$$y(n) = c_1(\alpha - i\beta)^n + c_2(\alpha + i\beta)^n.$$
 (3.36)

Exemplo 3.1.3. Vamos encontrar a solução geral de

$$y(n+2) + 4y(n) = 0. (3.37)$$

Resolvemos a equação característica associada.

$$\lambda^2 + 4 = 0 \tag{3.38}$$

$$\lambda^2 = -4 \tag{3.39}$$

$$\lambda_{1,2} = \pm 2i \tag{3.40}$$

Com isso, temos a solução geral

$$y(n) = c_1 \cdot (-2i)^n + c_2 \cdot (2i)^n. \tag{3.41}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Pь

Exercícios resolvidos

[Vídeo] | [Áudio] | [Contatar]

ER 3.1.1. A sequência de Fibonacci¹

 $1, 1, 2, 3, 5, 8, 13, \dots$ (3.42)

tem valores iniciais y(1) = 1, y(2) = 1 e os demais valores y(n + 2) = y(n + 1) + y(n). Logo, a sequência é solução da equação a diferenças

$$y(n+2) - y(n+1) - y(n) = 0, \quad n \ge 1,$$
(3.43)

$$y(1) = 1, \quad y(2) = 1.$$
 (3.44)

Resolva esta equação a diferença de forma a obter uma forma fechada para y(n), i.e. o n-ésimo valor na sequência de Fibonacci.

Solução. A equação a diferenças

$$y(n+2) - y(n+1) - y(n) = 0 (3.45)$$

é linear e com coeficientes constantes. Desta forma, temos a equação característica associada

$$\lambda^2 - \lambda - 1 = 0 \tag{3.46}$$

a qual tem raízes reais distintas

$$\lambda_1 = \frac{1 - \sqrt{5}}{2},$$

$$\lambda_2 = \frac{1 + \sqrt{5}}{2}.$$

Logo, a solução geral desta equação é

$$y(n) = c_1 \left(\frac{1 - \sqrt{5}}{2}\right)^n + c_2 \left(\frac{1 + \sqrt{5}}{2}\right)^n, \quad n \ge 1.$$
 (3.47)

Agora, aplicando os valores iniciais y(1) = 1 e y(2) = 2, obtemos

$$y(1) = 1 \Rightarrow c_1 \left(\frac{1 - \sqrt{5}}{2}\right) + c_2 \left(\frac{1 + \sqrt{5}}{2}\right) = 1$$

 $^{^{1}\}mathrm{Leonardo}$ Fibonacci, c.1170 - c1250, matemático italiano. Fonte: Wikipédia.

$$y(2) = 1 \Rightarrow c_1 \left(\frac{1 - \sqrt{5}}{2}\right)^2 + c_2 \left(\frac{1 + \sqrt{5}}{2}\right)^2 = 1$$

Resolvendo, obtemos

$$c_1 = -\frac{1}{\sqrt{5}},\tag{3.48}$$

$$c_2 = \frac{1}{\sqrt{5}}. (3.49)$$

Concluímos que a solução é

$$y(n) = -\frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n + \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n, \quad n \ge 1.$$
 (3.50)

 \Diamond

ER 3.1.2. Entre a solução da seguinte equações a diferenças

$$y(n+2) - 2y(n+1) + y(n) = 0, \quad n \ge 0,$$
(3.51)

$$y(0) = 1, \quad y(1) = 1.$$
 (3.52)

Solução. Trata-se de uma equação a diferenças de ordem 2 com coeficientes constantes e homogênea. A equação característica associada é

$$\lambda^2 - 2\lambda + 1 = 0 \tag{3.53}$$

com raízes reais duplas $\lambda_{1,2}=1$. Assim sendo, a solução geral é

$$y(n) = c_1 \cdot 1^n + c_2 \cdot n \cdot 1^n \tag{3.54}$$

$$= c_1 + c_2 \cdot n. (3.55)$$

Aplicando os valores iniciais, obtemos

$$y(0) = 1 \Rightarrow c_1 = 1 \tag{3.56}$$

$$y(1) = 1 \Rightarrow 1 + c_2 = 1 \tag{3.57}$$

Logo, temos $c_1=1$ e $c_2=0$. Concluímos que a solução é a sequência constante

$$y(n) = 1. (3.58)$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

 \Diamond

650

ER 3.1.3. Resolva a seguinte equação a diferenças

$$y(n+2) - 2y(n+1) + 2 = 0. (3.59)$$

1

Solução. Sendo a equação a diferenças linear homogênea com coeficientes constantes, resolvemos a equação característica

$$\lambda^2 - 2\lambda + 2 = 0 \tag{3.60}$$

$$\lambda_{1,2} = \frac{2 \pm \sqrt{2^2 - 4 \cdot 2}}{2} \tag{3.61}$$

$$\lambda_{1,2} = 1 \pm i \tag{3.62}$$

Sendo estas as raízes, temos a solução geral

$$y(n) = c_1(1-i)^n + c_2(1+i)^n. (3.63)$$

 \Diamond

Exercícios

[Vídeo] | [Áudio] | [Contatar]

Exercício 3.1.1. Calcule a solução geral de

$$y(n+2) - 5y(n+1) + 6y(n) = 0 (3.64)$$

o O

Exercício 3.1.2. Calcule a solução geral de

$$y(n+2) - 4y(n+1) + 4y(n) = 0 (3.65)$$

50

Exercício 3.1.3. Calcule a solução geral de

$$y(n+2) + 4y(n+1) + 13y(n) = 0 (3.66)$$

200

Exercício 3.1.4. Resolva

$$y(n+2) - 2y(n+1) - 8y(n) = 0, \quad n \ge 0,$$
(3.67)

$$y(0) = 2, \quad y(1) = -1.$$
 (3.68)

ģ0

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

Resposta dos Exercícios

Exercício 1.1.1. a) ordem 1, linear; b) ordem 1, linear; c) ordem 2, linear; d) ordem 1, não linear; e) ordem 2, não linear;

Exercício 1.1.2. a) $y(3) = 3 + 3\sqrt{2}$; b) $y(3) = \frac{1}{2}\ln(2)\ln(3)$

Exercício 1.1.3. a) y(4) = 1; b) y(4) = 0

Exercício 1.1.4. y(n+1) = 3y(n).

Exercício 1.1.5. Sequência de Fibonacci

Exercício 2.1.1. $y(n) = 3^n y(0)$

Exercício 2.1.2. $y(n) = -\frac{1}{3^n}$

Exercício 2.1.3. $y(n+1) = 1,01 \cdot y(n), \ y(0) = 100; \ y(n) = 100 \cdot 1,01^n; \ y(36) \approx 143,08$

Exercício 2.1.4. $y(n) = \frac{1}{2}(3^n + 3)$

Exercício 2.1.5. y(n) = n!

Exercício 2.1.6.
$$y(n) = 2^n \left(\frac{n}{2} + 2\right)$$

Exercício 2.1.7.
$$y(n+1) = 1,01 \cdot y(n) - 1, \ y(0) = 100; \ y(n) = 100;$$

Exercício 2.1.8.
$$y(n) = \left(y(0) - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}$$

Exercício 2.2.1. 1/2

Exercício 2.2.2. não

Exercício 2.2.3. $y^* = 1$; atrator global

Exercício 2.2.4. $y^* = -1$; não é assintoticamente globalmente estável

Exercício 2.2.5. a=1

Exercício 3.1.1. $y(n) = c_1 \cdot 2^n + c_2 \cdot 3^n$

Exercício 3.1.2. $y(n) = 2^n(c_1 + c_2 \cdot n)$

Exercício 3.1.3. $y(n) = c_1(-2-3i)^n + c_2(-2+3i)^n$

Exercício 3.1.4. $y(n) = \frac{3}{2}(-2)^n + \frac{1}{2}4^n$

Bibliografia

- [1] W. Boyce and R. DiPrima. Equações diferenciais elementares e problemas de valores de contorno. LTC, 10. edition, 2017.
- [2] S. Elaydi. An introduction to difference equations. Springer, 3. edition, 2005.