MATB42: Assignment #4

1. (For this question assume that all curves are of class C^k , some $k \geq 3$).

A curve $\gamma:[a,b]\to\mathbb{R}^n$ is called regular if $\gamma'(t)\neq 0$ for any t. For a regular curve γ , the vector $T=\frac{\gamma'(t)}{\|\gamma'(t)\|}$ is called the *unit tangent vector* to the curve.

(a) If $\gamma : [a, b] \to \mathbb{R}^3$ is a regular curve, show that $T'(t) \cdot T(t) = 0$. (see page 235, #16(a))

$$\|\mathbf{T}(t)\|^{2} = T_{1}^{2} + T_{2}^{2} + T_{3}^{2} = 1$$

$$\frac{d}{dt}\|\mathbf{T}(t)\|^{2} = 2T_{1}T_{1}' + 2T_{2}T_{2}' + T_{3}T_{3}' = \frac{d}{dt}1$$

$$2(\mathbf{T}'(t) \cdot \mathbf{T}(t)) = 2(T_{1}'T_{1} + T_{2}'T_{2} + T_{3}'T_{3}) = 0$$

A curve $\gamma(s)$ is said to be parameterized by arclength (or have unit speed) if $\|\gamma'(s)\| = 1$. The curvature κ at a point $\gamma(s)$ of a unit speed curve is defined by $\kappa = \|T'(s)\|$

- (b) (i) If $\gamma : [a, b] \to \mathbb{R}^3$ is a unit speed curve, show that its length is b a. The length of γ is $\int_{\gamma} d\mathbf{s} = \int_a^b \|\gamma'(t)\| dt$, but $\|\gamma'(t)\|$ is 1 since γ has unit speed. Therefore, the integral is just b - a.
 - (ii) Show that $\sigma(t) = \frac{1}{\sqrt{2}}(\cos t, \sin t, t)$ is a unit speed curve and compute its curvature. (see page 235, #17)

$$\frac{d}{dt}\boldsymbol{\sigma}(t) = \frac{1}{\sqrt{2}} \left(\frac{d}{dt}\cos t, \frac{d}{dt}\sin t, \frac{d}{dt}t\right)$$

$$= \frac{1}{\sqrt{2}} (-\sin t, \cos t, 1)$$

$$\implies \left\|\frac{d}{dt}\boldsymbol{\sigma}(t)\right\| = \frac{\sqrt{\sin^2 t + \cos^2 t + 1}}{\sqrt{2}}$$

$$= \frac{\sqrt{2}}{\sqrt{2}} = 1 \quad \text{So } \boldsymbol{\sigma}(t) \text{ is in fact a unit curve.}$$

Since $\sigma(t)$ has unit speed, T(t) is just $\sigma'(t)$, so T'(t) is $\sigma^{(2)}(t)$.

$$T'(t) = \sigma^{(2)}(t)$$

$$= \frac{1}{\sqrt{2}} \left(\frac{d}{dt} - \sin t, \frac{d}{dt} \cos t, \frac{d}{dt} 1 \right)$$

$$= \frac{1}{\sqrt{2}} (-\cos t, -\sin t, 0)$$

$$\implies ||T'(t)|| = \frac{1}{\sqrt{2}} = \kappa$$

If $T'(t) \neq 0$, $N(t) = \frac{T'(t)}{\|T'(t)\|}$ is perpendicular to T'(t) (by part (a)); N is called the *principal normal vector*. The vector B, defined by $B = T \times N$, is called the *binormal vector*.

(c) Show the following about the T, N and B system

(i)
$$\frac{d\mathbf{B}}{dt} \cdot \mathbf{B} = 0$$
 (ii) $\frac{d\mathbf{B}}{dt} \cdot \mathbf{T} = 0$ (iii) $\frac{d\mathbf{B}}{dt}$ is a scalar multiple of \mathbf{N} . (see page 235, #20)

- (i) $\frac{d}{dt} \boldsymbol{B} \cdot \boldsymbol{B} = \frac{d}{dt} \|\boldsymbol{B}\|^2$, but the norm of \boldsymbol{N} and \boldsymbol{T} are 1, so $\|\boldsymbol{B}\|^2 = 1$ which means that $\frac{d}{dt} 1 = 0$
- (ii) Because **B** is the cross product of **T** along with N, $B \cdot T$ must be 0, so $\frac{d}{dt}0 = 0$
- (iii) From the last two parts, $\frac{d}{dt}\boldsymbol{B}$ is orthogonal to both \boldsymbol{B} and \boldsymbol{T} . Since there are only 3 dimensions for \mathbb{R}^3 , anything orthogonal to both of these must be parallel to each other. We know that \boldsymbol{N} is orthogonal to \boldsymbol{T} by (a), and by definition it is orthogonal to \boldsymbol{B} so both are parallel, i.e. they are scalar multiples.

If $\gamma(s)$ is a unit speed curve we can define the tortion τ by $\frac{dB}{ds} = -\tau N$.

(d) Compute the torsion of $\sigma(t) = \frac{1}{\sqrt{2}}(\cos t, \sin t, t)$. (see page 235, #21(c))

$$T(t) = \frac{1}{\sqrt{2}}(-\sin t, \cos t, 1)$$

 $N(t) = (-\cos t, \sin t, 0)B(t)$ = $(0 - \sin t, -\cos t - 0, -\sin^2 t + \cos^2 t)$

2. Sketch the following vector fields including a few flow lines.

(a)
$$\mathbf{F}(x,y) = (1,x^2)$$
 (b) $\mathbf{F}(x,y) = (x^2,x)$ (c) $\mathbf{F}(x,y) = (y,-2x)$

(a)
$$\gamma(t) = (x(t), y(t))$$
$$\gamma'(t) = (x'(t), y'(t))$$
$$\Rightarrow \frac{\frac{dy(t)}{dt}}{\frac{dx(t)}{dt}} = \frac{y'(t)}{x'(t)} = \frac{dy}{dx}$$
$$dy = x^2, dx = 3$$
$$\Rightarrow \frac{dy}{dx} = x^2$$
$$\Rightarrow y = \frac{x^3}{3} + c$$

(b) $\mathbf{F}(x,y) = (x^2,x)$

$$dy = x, dx = x^{2}$$

$$\implies \frac{dy}{dx} = \frac{1}{x}$$

$$\implies y = \ln|x| + c \quad x \neq 0$$

(c) $\mathbf{F}(x,y) = (y, -2x)$

$$dy = -2x, dx = y$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2x}{y}$$

$$\Rightarrow y dy = -2x dx$$

$$\Rightarrow \frac{y^2}{2} + x^2 = c$$

3. Show that the curve $c(t)=(t^2,2t-1,\sqrt{t}),\ t>0$ is a flow line of the velocity vector field F(x,y,z)=(y+1,2,1/2z)

$$\begin{split} \boldsymbol{c}'(t) &= \left(2t, 2, \frac{1}{2\sqrt{t}}\right) \\ \boldsymbol{F}(\boldsymbol{c}(t)) &= \left(2t - 1 + 1, 2, \frac{1}{2\sqrt{t}}\right) = \left(2t, 2, \frac{1}{2\sqrt{t}}\right) = \boldsymbol{c}'(t) \end{split}$$

Therefore, c is a flow line of F.

4. Find the work done by the force field F(x, y, z) = (xy, yz, zx) in moving a particle along the twisted cubic, $\gamma(t) = (t, t^2, t^3)$, from t = 0 to t = 1.

$$\int_{\gamma} \mathbf{F} \cdot ds = \int_{0}^{1} \mathbf{F}(\gamma(t)) \cdot \gamma'(t) dt$$

$$= \int_{0}^{1} (t)(t^{2})(1) + (t^{2})(t^{3})(2t) + (t^{3})(t)(3t^{2})dt$$

$$= \int_{0}^{1} t^{3} + 2t^{6} + 3t^{6}dt$$

$$= \int_{0}^{1} t^{3} + 5t^{6}$$

$$= \frac{1}{4} \left[t^{4} \right]_{0}^{1} + \frac{5}{7} \left[t^{7} \right]_{0}^{1}$$

$$= \frac{1}{4} + \frac{5}{7} = \frac{27}{28}$$

5. Evaluate each of the following integrals:

(a)
$$\int_{\gamma} xy \ dx + y^2 dy, \quad \gamma(t) = (\cos t, \sin t), 0 \le t \le \frac{\pi}{2}.$$

$$\int_{\gamma} \omega \cdot ds = \int_{0}^{\frac{\pi}{2}} \sin t \cos t (-\sin t) + \sin^{2} t \cos t \, dt$$

(b)
$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{s}$$
, $\mathbf{F}(x, y, z) = (y, z, x)$, $\gamma(t) = \left(t, -2t^2, \frac{1}{3}t^3\right)$, $0 \le t \le 1$.

$$\begin{split} \int_{\gamma} \boldsymbol{F} \cdot ds &= \int_{0}^{1} \boldsymbol{F}(\gamma(t)) \cdot \gamma'(t) \ dt \\ &= \int_{0}^{1} (-2t^{2})(1) + (\frac{1}{3}t^{3})(-4t) + (t)(t^{2})dt \\ &= \int_{0}^{1} -2t^{2} - \frac{4}{3}t^{4} + t^{3}dt \\ &= -\frac{2}{3} \left[t^{3} \right]_{0}^{1} - \frac{4}{15} \left[t^{5} \right]_{0}^{1} + \frac{1}{4} \left[t^{4} \right]_{0}^{1} \\ &= -\frac{10}{15} - \frac{4}{15} + \frac{1}{4} = -\frac{56}{60} + \frac{15}{60} = -\frac{41}{60} \end{split}$$

(c)
$$\int_{\gamma} z \ dx - xyz \ dy + 2x^2 \ dz$$
, γ is the parabola $z = x^2, y = 0$, from (-1,0,1) to (1,0,1).

Can parameterize γ by $\gamma(t) = (t, 0, t^2), -1 \le t \le 1$, as on the parabola y is constant 0, x goes from $-1 \to 1$ and z goes from $1 \to 0 \to 1$.

$$\begin{split} \int_{\gamma} \omega \cdot ds &= \int_{-1}^{1} (t^2)(1) - (t)(0)(t^2)(0) + 2(t)^2(2t) \ dt \\ &= \int_{-1}^{1} t^2 + 4t^3 \ dt \\ &= \frac{2}{3} \Big[t^3 \Big]_{0}^{1} \quad \text{Exploiting even/odd} \\ &= \frac{2}{3} \end{split}$$

(d)
$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{s}$$
, $\mathbf{F}(x, y, z) = (2xy, x^2 + e^z, ye^z)$, γ consists of straight line segments joining, in order, the points $(1,1,0)$, $(2,0,5)$ and $(0,3,0)$.

Note: By inspection $g = x^2y + ye^z$ is a potential function for \boldsymbol{F} . Also, straight line segments, being linear functions are smooth. Furthermore, F(x,y,z) is smooth since polynomials and exponential functions are each smooth. Therefore, GFTC applies, and $\int_{\gamma} \boldsymbol{F} \cdot d\boldsymbol{s} = g(0,3,0) - g(1,1,0) = ((0)^2(3) + (3)e^{(0)}) - ((1)^2(1) + (1)e^{(0)}) = 3 - 2 = 1.$

- 6. (a) Let $\mathbf{F}(x,y) = (y,-x)$. Find $\int_{\gamma} \mathbf{F} \cdot d\mathbf{s}$ from (1,0) to (0,-1) along
 - (i) the straight line segment joining these points Parameterize the path as $t \mapsto (1-t,-t)$ where $0 \le t \le 1$.

$$\int_{\gamma} \mathbf{F} \cdot ds = \int_0^1 \mathbf{F}(\gamma(t)) \cdot \gamma'(t) dt$$
$$= \int_0^1 -(-t)(-1) + (1-t)(-1) dt$$
$$= \int_0^1 -1 dt = -1$$

(ii) three-quarters of the unit circle centered at the origin traced in the counter-clockwise direction. Parameterize the path as $t \mapsto (\sin -t, \cos -t) = (-\sin t, \cos t)$ where $0 \le t \le \frac{3\pi}{2}$. Using -t since it is counter-clockwise

$$\int_{\gamma} \mathbf{F} \cdot ds = \int_{0}^{\frac{3\pi}{2}} \mathbf{F}(\gamma(t)) \cdot \gamma'(t) dt$$

$$= \int_{0}^{\frac{3\pi}{2}} (\cos t)(-\cos t) - (-\sin t)(-\sin t) dt$$

$$= \int_{0}^{\frac{3\pi}{2}} -1 dt = -\frac{3\pi}{2}$$

(b) Can your answers for part (a) help you determine if the 1-form $\omega = y \, dx - x \, dy$ is exact? Explain. Yes, we can determine that it is not exact. If ω were to be exact then \boldsymbol{F} would be conservative implying that the line integral would be independent of path. Since the integrals are different, this is evidently not the case.

- 7. Let c be the curve obtained by intersecting the cylinder $y^2 + z^2 = 4$ and the surface x = yz in \mathbb{R}^3 .
 - (a) Give a parametrization, $\gamma(t)$, of the curve c.

= 0

The cylinder simply describes a circle of radius 2 in 2 dimensions, so y and z can be parameterized as $t \mapsto (2\sin t, 2\cos t)$. To add the additional constraint of the surface, just check what x is, given the y and z. $x = (2\sin t)(2\cos t) = 4\sin t\cos t$.

Given these conditions, $\gamma(t)$ is given by $(4\sin t\cos t, 2\sin t, 2\cos t), 0 \le t \le 2\pi$.

(b) Evaluate
$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$$
, where $\mathbf{F}(x, y, z) = (2xy, 4y, x^2)$.

$$\begin{split} \int_{\gamma} \boldsymbol{F} \cdot ds &= \int_{0}^{2\pi} \boldsymbol{F}(\gamma(t)) \cdot \gamma'(t) \ dt \\ &= \int_{0}^{2\pi} 2(4 \sin t \cos t)(2 \sin t)(4(\cos^{2}t - \sin^{2}t)) + 4(2 \sin t)(2 \cos t) + (4 \cos t \sin t)^{2}(-2 \sin t) \ dt \\ &= \int_{0}^{2\pi} 16 \sin^{2}t \cos t(\cos^{2}t - \sin^{2}t) + 8 \sin t \cos t - 32 \cos^{2}t \sin^{3}t \ dt \\ &= \int_{0}^{2\pi} 16 \sin^{2}t \cos^{3}t - 16 \sin^{4}t \cos t + 8 \sin t \cos t - 32 \cos^{2}t \sin^{3}t \ dt \\ &= \int_{0}^{2\pi} 16 \sin^{2}t (1 - \sin^{2}t) \cos t - 16 \sin^{4}t \cos t + 8 \sin t \cos t \ dt - 32 \int_{0}^{2\pi} \cos^{2}t (1 - \cos^{2}t) \sin t \ dt \\ \text{Let } u = \sin t, \ du = \cos t \\ &= \int_{0}^{2\pi} 16 u^{2}(1 - u^{2}) - 16 u^{4} + 8 u \ du - 32 \int_{0}^{2\pi} \cos^{2}t (1 - \cos^{2}t) \sin t \ dt \\ &= -32 \int_{0}^{2\pi} \cos^{2}t (1 - \cos^{2}t) \sin t \ dt \\ \text{Let } u = \cos t, \ du = - \sin t \\ &= 32 \int_{0}^{1} u^{2} (1 - u^{2}) \ du \end{split}$$