Spectral Triplet for Storyworlds — A Decoder & Evaluation Framework

Authors: Patrick Dugan, et al. Draft: v0.1 (2025-09-24)

Abstract

We propose a non-commutative geometric formalism for narrative environments ("storyworlds") that simultaneously (i) yields a principled decoder from authored structure to latent manifold and (ii) defines concrete evaluation tasks for long-horizon reasoning and interpretability. Modeling a storyworld as a spectral triplet $\mathbf{S}=(\mathcal{A},\mathcal{H},D)$, where \mathcal{A} is a narrative algebra, \mathcal{H} a Hilbert space of states, and D a Dirac-like narrative operator, we derive a spectral metric, operator recovery objectives, and hermeneutic probes that bridge quantitative and qualitative assessment. The framework generalizes rotary/phase encodings from positional to semantic modes, enabling Fourier/QFT-style analysis of motifs and authorial "voice." We release a minimal synthetic suite and scoring rubric covering compression, operator identification, spectral reconstruction, long-horizon consistency, and interpretive essays.

1. Introduction

LLMs increasingly accept long contexts, but raw window size poorly predicts quality on narrative coherence, authorial voice, and long-horizon constraints. We argue for **structure-aware evaluation**: treat storyworlds as formal objects with an intrinsic geometry that models can compress, reconstruct, and interpret. Our contribution:

- 1. Formalism: a spectral triplet for storyworlds that induces distances, resonances, and dynamics.
- 2. **Decoder:** a pathway from authored JSON (variables, gates, effects) to a low-dimensional Hilbert manifold with interpretable motif probes.
- 3. **Benchmark:** five tasks—Compression, Operator Recovery, Spectral Reconstruction, Long-Horizon Consistency, and Hermeneutic Essay—with clear metrics and a minimal synthetic suite.

We position this work as complementary to scaling context windows: models that succeed must internalize operator algebra and semantic phase, not merely attend across more tokens.

2. Background & Related Work (brief)

Non-commutative geometry: Spectral triples $(\mathcal{A},\mathcal{H},D)$ reconstruct geometry from operator spectra. **Mechanistic interpretability & SAEs:** Sparse features provide "confessions" of hidden concepts; our motif probes play an analogous role for narrative.

Long-context evals: Retrieval-heavy benchmarks test access, not semantics; we test manifold recovery and

meaning.

Narrative engines: Formal storyworlds (encounters, variables, gates) offer a natural ground truth for causal structure. Foundational precedents include Chris Crawford's *On Interactive Storytelling* and Mateas & Stern's *Façade* (interactive drama), which formalize encounters, gating/logics, and drama management.

3. Formalism: Spectral Triplet for Storyworlds

We model a storyworld as $\mathbf{S} = (\mathcal{A}, \mathcal{H}, D)$.

3.1 Narrative Algebra ${\cal A}$

Let variables $\mathcal{V}=\{v_1,\ldots,v_m\}$ and encounters $\mathcal{E}=\{e_i\}$ have gate predicates $g_i:\mathbb{R}^m\to\{0,1\}$ and effects $f_i:\mathbb{R}^m\to\mathbb{R}^m$.

 ${\cal A}$ is the unital *-algebra generated by projections P_i (gates), effect operators U_i (updates), and motif probes M_k (linear/composite observables). Non-commutativity U_iU_j / U_jU_i =aptures order-sensitive causality.

3.2 Hilbert Space ${\cal H}$

Embed state $x \in \mathbb{R}^m$ via $\phi(x) \in \mathbb{C}^d$ learned by PCA/SAE; complete spans to obtain \mathcal{H} with inner product $\langle \cdot, \cdot \rangle$. Characters and spools define subspaces.

3.3 Narrative Dirac D

D is self-adjoint and (i) induces Connes' spectral metric

$$d(\omega_x,\omega_y) = \sup_{\|[D,a]\| \leq 1} |\omega_x(a) - \omega_y(a)|, \quad \omega_x(a) = \langle \phi(x), a \, \phi(x)
angle,$$

(ii) parameterizes local dynamics via generators H_i with $U_i=\exp(i\Delta t H_i)$. The spectrum $\{(\lambda_k,\psi_k)\}$ encodes motif resonances; energies $E_k=\langle \psi_k,M\,\psi_k\rangle$.

4. Decoder & Spectral Analysis

- 1. **State embedding:** learn ϕ on rollouts across spools; target $d \in [128, 512]$.
- 2. **Operator identification:** regress \hat{H}_i from observed state deltas; validate commutators and gate F1.
- 3. **Dirac fitting:** choose \hat{D} to align empirical distances with the spectral metric under a budget $\|[\hat{D},a]\|\leq 1$.
- 4. **Motif probes:** train linear/composite M_k for interpretable axes (e.g., betrayal, redemption, debt relief).
- 5. **Spectral tuples:** report $\{\hat{\lambda}_k\}$, energies, and phase relations; compare to ground truth or curator labels.

5. Evaluation Protocol

We propose five tasks with standardized metrics.

Task A — Compression

Reconstruct states from $\phi(x)$.

Metrics: MSE \downarrow , cosine@k \uparrow , sparsity (L0/L1) \uparrow , CKA vs baseline \uparrow .

Task B — Operator Recovery

Estimate $\hat{U}_ipprox e^{i\Delta t\hat{H}_i}$ and gates \hat{P}_i from trajectories.

Metrics: next-state NRMSE \downarrow , commutator error \downarrow , gate F1 \uparrow .

Task C — Spectral Reconstruction

Match spectra and motif energies.

Metrics: Wasserstein(λ) \downarrow , motif $R^2 \uparrow$, distance correlation on Connes pairs \uparrow .

Task D — Long-Horizon Consistency

Roll out plans under motif constraints; measure spectral drift.

Metrics: spectral drift \downarrow , failure@N \downarrow , constraint satisfaction \uparrow .

Task E — Hermeneutic Essay

Write 500–1000 words mapping spectra to themes and authorial intent.

Metrics: expert rubric (argument, evidence, alignment), citation rate to modes, retrieval of planted motifs.

6. Minimal Synthetic Suite

- Variables x = (Trust, Debt, Resolve).
- Encounters: Betrayal (Trust ↓ , Resolve ↑), Atonement (Debt ↓ , Trust ↑), Temptation (phase shift on Trust).
- ullet Gates as half-spaces; block-circulant D with modes aligned to encounters.
- Release JSON + 10k rollouts; publish planted spectra and probes.
- Baselines: random features vs. SAE + linear probes.

7. Experiments (planned)

- 1. **Ablations:** embedding dim, probe types, noise on gates/effects.
- 2. **Model classes:** GPT-x, Qwen-x, recurrent/state models, kernel/log(n) attention, Power-Attention-style.
- 3. **Data regimes:** synthetic → curated human storyworlds (Crawfordian), varying motif density and deception.
- 4. **Generalization:** train on spools A,B; test on held-out spool C.

8. Discussion

Our spectral view elevates semantic phase and operator algebra to first-class citizens. Unlike window-size stress tests, these tasks reward models that internalize narrative geometry. The Connes metric supplies a principled distance; commutators diagnose causal order sensitivity.

9. Limitations

- ullet Fitting D may be underdetermined without curated constraints.
- Human rubric for essays introduces subjectivity; we mitigate with planted motifs and citations.
- Synthetic suites risk over-regularity; we plan diverse human-authored worlds.

10. Ethics & Broader Impact

Interpretability gains can improve safety (detecting incoherent or manipulative arcs) but also enable persuasive systems. We recommend disclosure policies and caps on motif-targeted manipulation in deployed agents.

11. Conclusion

We introduced a spectral triplet formalism and a companion benchmark that jointly test compression, operator learning, spectral recovery, long-horizon coherence, and hermeneutic skill. We invite contributions of open storyworlds and will maintain a leaderboard with standardized reports.

A. Notation (quick reference)

- ${\mathcal A}$: narrative algebra (gates P_i , effects U_i , probes M_k).
- \mathcal{H} : Hilbert space of embedded states $\phi(x)$.
- D : narrative Dirac; [D,a] commutator; Connes distance d .
- Spectral data: (λ_k,ψ_k) , energies E_k .

References

[1] A. Connes. *Noncommutative Geometry* (and spectral triples background). [2] Sparse Autoencoders for Interpretable Features (representative SAE literature). [3] Long-Context Language Model Evaluations (representative benchmarks). [4] Formal Storyworld Engines and Encounter Grammars (representative foundations). [5] Chris Crawford. *On Interactive Storytelling*, 2nd ed., 2013. [6] Michael Mateas and Andrew Stern. *Façade*: An Experiment in Building a Fully-Realized Interactive Drama, 2005 (project & papers).