Chapter 2. Electrostatics

2	Ele	ctrostat	tics	
	2.1	The E	lectric Field	
		2.1.1	Introduction	
		2.1.2	Coulomb's Law	
		2.1.3	The Electric Field	
		2.1.4	Continuous Charge Distributions	
	2.2	Diverg	gence and Curl of Electrostatic Fields	
		2.2.1	Field Lines, Flux, and Gauss's Law	
		2.2.2	The Divergence of E	
		2.2.3	Applications of Gauss's Law	
		2.2.4	The Curl of E	
	2.3	Electri	ic Potential	
		2.3.1	Introduction to Potential	
		2.3.2	Comments on Potential	
		2.3.3	Poisson's Equation and Laplace's Equation	
		2.3.4	The Potential of a Localized Charge Distribution	
		2.3.5	Summary; Electrostatic Boundary Conditions	
	2.4	4 Work and Energy in Electrostatics		
		2.4.1	The Work Done to Move a Charge	
		2.4.2	The Energy of a Point Charge Distribution	
		2.4.3	The Energy of a Continuous Charge Distribution	
		2.4.4	Comments on Electrostatic Energy	
	2.5	Condu		
		2.5.1	Basic Properties	
		2.5.2	Induced Charges	
		2.5.3	Surface Charge and the Force on a Conductor	
		2.5.4	Capacitors	

2.1 The Electric Field

The electromagnetic theory hopes to solve is this:

- → What force do the source charges (q₁, q₂, ...) exert on the test charge (Q)?
- → In general, both the source charges and the test charge are in motion.

To begin with, consider the special case of ELECTROSTATICS

- → All the source charges are STATIONARY
- → The test charge may be MOVING.

The solution to this problem is facilitated by the principle of superposition

- → The interaction between any two charges is **completely unaffected by the others**.
- \rightarrow To determine the force on Q, we can first compute the force F_1 , due to q_1 alone (ignoring all the others); then we compute the force F_2 , due to q_2 alone; and so on.
- \rightarrow Finally, we take the **vector sum** of all these individual forces: $F = F_1 + F_2 + F_3 + ...$

2.1.3 The Electric Field

If we have several point charges q_1, q_2, \ldots, q_n , at distances i_1, i_2, \ldots, i_n from Q, the total force on Q is evidently

$$\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 + \dots = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1 Q}{r_1^2} \hat{\mathbf{i}}_1 + \frac{q_2 Q}{r_2^2} \hat{\mathbf{i}}_2 + \dots \right)$$
$$= \frac{Q}{4\pi\epsilon_0} \left(\frac{q_1 \hat{\mathbf{i}}_1}{r_1^2} + \frac{q_2 \hat{\mathbf{i}}_2}{r_2^2} + \frac{q_3 \hat{\mathbf{i}}_3}{r_3^2} + \dots \right)$$

$$\mathbf{F} = Q\mathbf{E}$$

$$\mathbf{E}(\mathbf{r}) \equiv \frac{1}{4\pi\epsilon_0} \sum_{i=1}^n \frac{q_i}{r_i^2} \hat{\mathbf{z}}_i$$
 The experimental law of Coulomb (1785)

$$dq = \lambda \, dl' \longrightarrow \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_{\mathcal{P}} \frac{\lambda(\mathbf{r}')}{\imath^2} \hat{\mathbf{x}} \, dl'$$

$$dq = \sigma \, da' \longrightarrow \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_{\mathcal{S}} \frac{\sigma(\mathbf{r}')}{r^2} \hat{\mathbf{r}} \, da'$$

$$dq = \rho \, d\tau' \longrightarrow \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi \, \epsilon_0} \int_{\mathcal{V}} \frac{\rho(\mathbf{r}')}{\imath^2} \hat{\mathbf{z}} d\tau'$$

Flux and Gauss's Law

In the case of a point charge q at the origin, the flux of E through a sphere of radius r is

$$\Phi_E \equiv \oint \mathbf{E} \cdot d\mathbf{a} = \int \frac{1}{4\pi \,\epsilon_0} \left(\frac{q}{r^2} \hat{\mathbf{r}} \right) \cdot (r^2 \sin \theta \, d\theta \, d\phi \, \hat{\mathbf{r}}) = \frac{1}{\epsilon_0} q$$

 \rightarrow The flux through any surface enclosing the charge is q/ε_0 .

Now suppose a bunch of charges scattered about.

→ According to the **principle of superposition**, the total field is the (vector) sum of all the individual fields:

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{E}_{i}$$

$$\Phi_{E} \equiv \oint \mathbf{E} \cdot d\mathbf{a} = \sum_{i=1}^{n} \left(\oint \mathbf{E}_{i} \cdot d\mathbf{a} \right) = \sum_{i=1}^{n} \left(\frac{1}{\epsilon_{0}} q_{i} \right) \qquad \oint_{\mathcal{S}} \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_{0}} Q_{\text{enc}}$$

Gauss's Law

By applying the divergence theorem:

$$\oint_{S} \mathbf{E} \cdot d\mathbf{a} = \int_{\mathcal{V}} (\mathbf{\nabla} \cdot \mathbf{E}) \, d\tau$$

$$Q_{\text{enc}} = \int_{\mathcal{V}} \rho \, d\tau$$

$$\int_{\mathcal{V}} (\mathbf{\nabla} \cdot \mathbf{E}) \, d\tau = \int_{\mathcal{V}} \left(\frac{\rho}{\epsilon_{0}}\right) \, d\tau$$

$$\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho$$

Gauss's law in differential form

2.2.2 The Divergence of E

Let's calculate the divergence of E directly from the Coulomb's Law of

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_{\mathcal{V}} \frac{\rho(\mathbf{r}')}{\imath^2} \hat{\imath} d\tau' \longrightarrow \nabla \cdot \mathbf{E} \quad \text{(divergence in terms of } \mathbf{r}\text{)}$$

Since the r-dependence is contained in r = r - r', we have

$$\nabla \cdot \mathbf{E} = \frac{1}{4\pi\epsilon_0} \int \nabla \cdot \left(\frac{\hat{\mathbf{z}}}{\imath^2}\right) \rho(\mathbf{r}') d\tau'$$

$$\nabla \cdot \left(\frac{\hat{\mathbf{z}}}{\imath^2}\right) = 4\pi\delta^3(\mathbf{z})$$

$$\nabla \cdot \mathbf{E} = \frac{1}{4\pi\epsilon_0} \int 4\pi\delta^3(\mathbf{r} - \mathbf{r}') \rho(\mathbf{r}') d\tau' = \frac{1}{\epsilon_0} \rho(\mathbf{r}).$$

$$\nabla \cdot \mathbf{E} = \frac{\rho(r)}{\varepsilon_0}$$

 $\nabla \cdot \mathbf{E} = \frac{\rho(r)}{\varepsilon_0}$ This is Gauss's law in differential form

2.2.4 The Curl of E

Consider the electric field from a point charge **q** at the origin: $\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$

igin:
$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{\alpha}{r^2} \hat{\mathbf{r}}$$

Now let's calculate the line Integral of this field from some point a to some other point b:

$$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l}$$

In spherical coordinates, $d\mathbf{l} = dr \,\hat{\mathbf{r}} + r \,d\theta \,\hat{\boldsymbol{\theta}} + r \sin\theta \,d\phi \,\hat{\boldsymbol{\phi}}$

$$\mathbf{E} \cdot d\mathbf{l} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} dr \longrightarrow \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} = \frac{1}{4\pi\epsilon_0} \int_{\mathbf{a}}^{\mathbf{b}} \frac{q}{r^2} dr = \left. \frac{-1}{4\pi\epsilon_0} \frac{q}{r} \right|_{r_a}^{r_b} = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_a} - \frac{q}{r_b} \right)$$

The integral around a *closed* path is evidently zero (for then $r_a = r_b$):

$$\oint \mathbf{E} \cdot d\mathbf{l} = 0$$
 \Rightarrow Applying Stokes' theorem, $\nabla \times \mathbf{E} = 0$

If we have many charges, the principle of superposition states that the total field is a vector sum of their individual fields: $\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 + \dots$

$$\nabla \times \mathbf{E} = \nabla \times (\mathbf{E}_1 + \mathbf{E}_2 + \ldots) = (\nabla \times \mathbf{E}_1) + (\nabla \times \mathbf{E}_2) + \ldots = 0$$

$$\nabla \times \mathbf{E} = 0$$
 \rightarrow For any static charge distribution whatever

2.3 Electric Potential

We're going to reduce a vector problem (finding **E** from $\nabla \times \mathbf{E} = 0$) down to a much simpler scalar problem.

$$\nabla \times \mathbf{E} = 0 \implies \oint \mathbf{E} \cdot d\mathbf{l} = 0 \Rightarrow$$
 the line integral of E from point a to point b is the same for all paths (independent of path)

Because the line integral of **E** is independent of path, we can define a function called the **Electric Potential**:

$$V(\mathbf{r}) \equiv -\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l}$$
: $\mathbf{0}$ is some standard reference point

→ The potential difference between two points a and b is

$$V(\mathbf{b}) - V(\mathbf{a}) = -\int_{\mathcal{O}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} + \int_{\mathcal{O}}^{\mathbf{a}} \mathbf{E} \cdot d\mathbf{l} = -\int_{\mathcal{O}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} - \int_{\mathbf{a}}^{\mathbf{c}} \mathbf{E} \cdot d\mathbf{l} = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l}$$

→ The fundamental theorem for gradients states that $V(\mathbf{b}) - V(\mathbf{a}) = \int_{-\infty}^{\mathbf{b}} (\nabla V) \cdot d\mathbf{l}$

$$\int_{\mathbf{a}}^{\mathbf{b}} (\nabla V) \cdot d\mathbf{l} = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} \qquad \mathbf{E} = -\nabla V$$

→ The electric field is the gradient of scalar potential

2.3.3 Poisson's Equation and Laplace's Equation

→ What do the fundamental equations for E look like, in terms of *V*?

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \qquad \qquad \mathbf{E} = -\nabla V \qquad \qquad \nabla^2 V = -\frac{\rho}{\epsilon_0} \quad \text{: Poisson's equation}$$

$$\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla V) = -\nabla^2 V \qquad \qquad \nabla^2 V = 0 \qquad \text{: Laplace's equation}$$

- → Gauss's law on E can be converted to Poisson's equation on V
- → It takes only one differential equation (Poisson's) to determine V, because V is a scalar; (for E we needed two, the divergence and the curl.)

For a volume, surface, or line charge →

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}')}{\imath} d\tau' \qquad \frac{1}{4\pi\epsilon_0} \int \frac{\sigma(\mathbf{r}')}{\imath} da' \qquad \frac{1}{4\pi\epsilon_0} \int \frac{\lambda(\mathbf{r}')}{\imath} dl'$$

Electrostatic Boundary Conditions

Notice that the electric field always undergoes a discontinuity when you cross a surface charge σ .

$$\oint_{S} \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} Q_{\text{enc}} = \frac{1}{\epsilon_0} \sigma A$$

As the thickness ε goes to zero,

$$E_{\text{above}}^{\perp} - E_{\text{below}}^{\perp} = \frac{1}{\epsilon_0} \sigma$$

- → The normal component of E is discontinuous by σ/ε_0 at any boundary.
- → If $\sigma = 0$, / e_0 it is continuous: $E_{above}^{\perp} = E_{below}^{\perp}$

$$\oint \mathbf{E} \cdot d\mathbf{l} = 0 \longrightarrow \mathbf{E}_{\text{above}}^{\parallel} = \mathbf{E}_{\text{below}}^{\parallel}$$

- The parallel (tangential) component of E is always continuous.
- The boundary conditions on E into a single formula: $\mathbf{E}_{above} \mathbf{E}_{below} = \frac{\sigma}{n}\hat{\mathbf{n}}$

$$\mathbf{E}_{\text{above}} - \mathbf{E}_{\text{below}} = \frac{\sigma}{\epsilon_0} \hat{\mathbf{n}}$$

→ The potential, meanwhile, is continuous across any boundary:

$$V_{\rm above} - V_{\rm below} = -\int_{a}^{b} \mathbf{E} \cdot d\mathbf{l}$$
 as the path length shrinks to zero $V_{\rm above} = V_{\rm below}$

2.3.5 Summary; Relations of $E - \rho - V$

From just two experimental observations:

- (1) the principle of superposition a broad general rule
- (2) Coulomb's law the fundamental law of electrostatics.

2.4 Work and Energy in Electrostatics

2.4.1 The Work Done to Move a Charge

To move a test charge **Q** from point **a** to point **b**, **how much work** will you have to do?

$$W = \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d\mathbf{l} = -Q \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} = Q[V(\mathbf{b}) - V(\mathbf{a})]$$

$$\mathbf{F} = -Q\mathbf{E} \text{ (in opposite to electric force)}$$

$$q_{1} \bullet \qquad q_{1} \bullet \qquad q_{2} \bullet q_{i} \bullet q_$$

$$V(\mathbf{b}) - V(\mathbf{a}) = \frac{W}{Q}$$

→ The potential difference between points a and b is equal to the work per unit charge required to carry a particle from a to b.

If you want to bring the charge Q in from far away and stick it at point r,

$$V(\mathbf{a}) = V(\infty) = 0$$

$$W = QV(\mathbf{r})$$

→ Potential is potential energy per unit charge (just as the field is the force per unit charge).

2.4.3 The Energy of a Continuous Charge Distribution

$$W = \frac{1}{2} \sum_{i=1}^{n} q_i V(\mathbf{r}_i) \longrightarrow W = \frac{1}{2} \int \rho V \, d\tau \qquad \int \lambda V \, dl \qquad \int \sigma V \, da$$

There is a lovely way to rewrite this result in terms of E.

$$\rho = \epsilon_0 \nabla \cdot \mathbf{E}, \quad \text{so} \quad W = \frac{\epsilon_0}{2} \int (\nabla \cdot \mathbf{E}) V \, d\tau = \frac{\epsilon_0}{2} \left[-\int \mathbf{E} \cdot (\nabla V) \, d\tau + \oint V \mathbf{E} \cdot d\mathbf{a} \right] \quad \text{(Integration by parts)}$$
$$= \frac{\epsilon_0}{2} \left(\int_{\mathcal{V}} E^2 \, d\tau + \oint_{\mathcal{S}} V \mathbf{E} \cdot d\mathbf{a} \right) \longleftrightarrow \nabla V = -\mathbf{E}$$

Note that the energy W can defined, whatever volume you use (as long as it encloses all the charge),

- \rightarrow but the contribution from the volume integral of E^2 goes up,
- \rightarrow that of the surface integral of VE goes down since $E \sim 1/r^2$, $V \sim 1/r$, while da $\sim r^2$.
- → For all space (r goes infinite), the surface integral goes to zero!

$$W = \frac{1}{2} \int \rho V \, d\tau$$

Energy of Continuous Charge Distribution
$$W = \frac{1}{2} \int \rho V d\tau$$
 $W = \frac{\epsilon_0}{2} \int_{\text{all space}} E^2 d\tau$

Example 2.8 Find the energy of a uniformly charged spherical shell of total charge q and radius R.

Solution 1:
$$W = \frac{1}{2} \int \sigma V da$$
 $V = \frac{1}{4\pi \epsilon_0} \frac{q^2}{R} \int \sigma da = \frac{1}{8\pi \epsilon_0} \frac{q^2}{R}$

Solution 2: Inside the sphere
$$\mathbf{E} = 0$$
; outside, $\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$ $W = \frac{\epsilon_0}{2} \int E^2 d\tau = \frac{\epsilon_0}{2(4\pi\epsilon_0)^2} \int_{\text{outside}} \left(\frac{q^2}{r^4}\right) (r^2 \sin\theta \, dr \, d\theta \, d\phi) = \frac{1}{8\pi\epsilon_0} \frac{q^2}{R}$

2.5 Conductors

2.4.1 Basic Properties

(i) E = 0 inside a conductor \rightarrow Why?

Put a conductor into an external electric field $\mathbf{E_o}$. Induced charges produce a field of their own, $\mathbf{E_1}$. $\mathbf{E_1}$ tends to cancel $\mathbf{E_0}$. That's the crucial point. The whole process is practically instantaneous. Outside the conductor the field is not zero.

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$
. $\rightarrow \rho = 0$ because $\mathbf{E} = 0$.

- → There is still charge around,
- → The net charge density in the interior is zero.

(iii) Any net charge resides on the surface

(iv) A conductor is an equipotential

For if a and b are any two points within (or at the surface of) a given conductor

$$V(\mathbf{b}) - V(\mathbf{a}) = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} = 0$$
 (Since $\mathbf{E} = 0$) $V(\mathbf{a}) = V(\mathbf{b})$

(v) E is perpendicular to the surface, just outside a conductor

Otherwise, charge will immediately flow around the surface until it kills off the tangential component.

$$V(\mathbf{b}) - V(\mathbf{a}) = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} = 0$$
 (a and b are outside the surface \rightarrow E normal to the surface)

2.5.2 Induced Charges

If you hold a charge +q near an uncharged conductor, the two will attract one another.

- \rightarrow the negative induced charge is closer to q,
- → There is a net force of attraction

- → the field *in the cavity* will *not* be zero.
- → No external fields penetrate the conductor; they are canceled at the outer surface by the induced charge.
- \rightarrow $q_{\text{induced}} = -q$ since $\oint \mathbf{E} \cdot d\mathbf{a} = 0$ for $\mathbf{E} = 0$ on a Gaussian surface.
- \rightarrow $q_{\text{induced}} = +q$ on the outside, uniformly distributed

+q

Conductor

Example 2.9 What is the field outside the sphere?

The answer is,
$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$$

regardless the shape of the cavity the placement of the charge.

2.5.3 Surface Charge and the Force on a Conductor

Remember that the boundary condition for E at any interface in general was

$$E_{\text{above}}^{\perp} - E_{\text{below}}^{\perp} = \frac{1}{\epsilon_0} \sigma$$
 $\mathbf{E}_{\text{above}}^{\parallel} = \mathbf{E}_{\text{below}}^{\parallel}$ \rightarrow $\mathbf{E}_{\text{above}} - \mathbf{E}_{\text{below}} = \frac{\sigma}{\epsilon_0} \hat{\mathbf{n}}$

In the particular case of a conductor,

The field inside a conductor is zero, $E_{\text{below}} = 0$

(→ Always normal to the surface)

In terms of potential,
$$\mathbf{E} = \frac{\sigma}{\epsilon_0} \hat{\mathbf{n}} \longrightarrow \sigma = -\epsilon_0 \frac{\partial V}{\partial n}$$
 \Rightarrow Surface charge on a conductor can be determined from E or V.

2.5.4 Capacitors

Consider two conductors with +Q and -Q total charges.

Since *V* is constant over a conductor, we can speak unambiguously of the potential difference between them:

$$V = V_{+} - V_{-} = -\int_{(-)}^{(+)} \mathbf{E} \cdot d\mathbf{l}.$$

Since E is given by Coulomb's law: $\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int \frac{\rho}{r^2} \hat{\mathbf{i}} d\tau$

- \rightarrow Doubling Q does double ρ everywhere
- → Therefore, E is proportional to Q, so also is V

$$V \propto Q$$
 : Capacitance (In SI units) C is measured in farads (F) \rightarrow A farad is a coulomb-per-volt.

To "charge up" a capacitor,

→ the work you must do to transport the next piece of charge, dq, on a positive plate q is $dW = \left(\frac{q}{C}\right) dq$

The total work necessary, then, to go from q = 0 to q = Q, is

$$W = \int_0^Q \left(\frac{q}{C}\right) dq = \frac{1}{2} \frac{Q^2}{C} \xrightarrow{Q = CV} W = \frac{1}{2} CV^2$$
: Energy stored in C

Capacitance

Example 2.10 Parallel-plate capacitor

$$\sigma = Q/A$$

$$\mathbf{E} = (1/\epsilon_0) Q/A$$

$$V = E \cdot d = \frac{Q}{A\epsilon_0}d \longrightarrow C = \frac{A\epsilon_0}{d}$$

Example 2.11 Two concentric spherical metal shells

$$\mathbf{E} = \frac{1}{4\pi\,\epsilon_0} \frac{Q}{r^2} \hat{\mathbf{r}}$$

$$V = -\int_{b}^{a} \mathbf{E} \cdot d\mathbf{l} = -\frac{Q}{4\pi\epsilon_{0}} \int_{b}^{a} \frac{1}{r^{2}} dr = \frac{Q}{4\pi\epsilon_{0}} \left(\frac{1}{a} - \frac{1}{b} \right)$$

$$\longrightarrow C = \frac{Q}{V} = 4\pi\epsilon_{0} \frac{ab}{(b-a)}$$

Problem 2.39 Two coaxial metal cylindrical tubes

$$\rho_{l} = \frac{Q}{L} \to E = \frac{Q}{2\pi\varepsilon rL} \hat{r} \to V = -\int_{r=b}^{r=a} \left(\frac{Q}{2\pi\varepsilon rL} \hat{r}\right) \cdot (\hat{r}dr) = \frac{Q}{2\pi\varepsilon L} \ln\left(\frac{b}{a}\right)$$

$$\to C = \frac{Q}{V_{ab}} = \frac{2\pi\varepsilon L}{\ln\left(\frac{b}{a}\right)}$$