Законы сохранения в механике сплошной среды

Верещагин Антон Сергеевич канд. физ.-мат. наук, старший преподаватель

Кафедра аэрофизики и газовой динамики

25 февраля 2020 г.

Аннотация

Траектрория движения сплошной среды. Формула Эйлера. Законы сохранения параметров сплошной среды в интегральной и дифференциальной форме.

Траектории движения точек и теорема об определителе

Иллюстрация перемещения сплошной среды ω_0 , ω_t – положение части сплошной среды в начальный момент времени и момент t.

$$\vec{r}_0 = \xi^1 \vec{e}_1 + \xi^2 \vec{e}_2 + \xi^3 \vec{e}_3,$$
$$\vec{r} = x^1 \vec{e}_1 + x^2 \vec{e}_2 + x^3 \vec{e}_3.$$

Траектории движения Траектории движения жидких частиц задаются функцией

$$\vec{x} = \vec{x}(t, \xi_1, \xi_2, \xi_3),$$

где $\vec{\xi}$, \vec{x} – лагранжевы и эйлеровы координаты частицы.

Определение траекторий по заданному полю движения

Поле скоростей

Поле скоростей частиц сплошной среды в эйлеровой систем координат задаётся функцией $\vec{v}(t,x_1,x_2,x_3)$. В лагранжевой системе координат скорость определяется соотношением

$$\vec{v}(t,\vec{\xi}) = \frac{\partial \vec{x}(t,\vec{\xi})}{\partial t}.$$

Задача определения траекторий движения по заданному полю скоростей

По заданному полю скоростей $\vec{v}(t,\vec{x})$ требуется найти траектории движения частиц $x^i = x^i(t,\vec{\xi})$ с лагранжевыми координатами $(\vec{\xi})$:

$$\frac{\partial x^i}{\partial t} = v^i(t, \vec{x}), \quad x^i|_{t=0} = \xi^i \quad (i = 1, 2, 3).$$

Уравнения для нахождения матрицы Якоби

Матричное уравнение на матрицу Якоби Дифференцируя уравнения для нахождения траекторий по ξ^{j} получим

$$\frac{\partial}{\partial t} \frac{\partial x^i}{\partial \xi^j} = \frac{\partial v^i}{\partial x^k} \frac{\partial x^k}{\partial \xi^j}, \quad \left. \frac{\partial x^i}{\partial \xi^j} \right|_{t=0} = \delta^i_j.$$

Тогда матрица Якоби $y_{ij}=\frac{\partial x^i}{\partial \xi^j}$ удовлетворяет дифференциальному уравнению

$$\frac{\partial Y}{\partial t} = AY, \quad Y|_{t=0} = E,$$

где A — матрица, составленная из производных $\frac{\partial v^t}{\partial x^j}$, E — единичная матрица.

Геометрический смысл определителя

Сопутствующий базис

$$\vec{b}_i = \frac{\partial \vec{r}}{\partial \xi^i} = \frac{\partial x^j}{\partial \xi^i} \vec{e}_j.$$

Элементарный объем

$$\Delta(t, \vec{\xi}) = \begin{vmatrix} \frac{\partial x^1}{\partial \xi^1} & \frac{\partial x^2}{\partial \xi^1} & \frac{\partial x^3}{\partial \xi^1} \\ \frac{\partial x^1}{\partial \xi^2} & \frac{\partial x^2}{\partial \xi^2} & \frac{\partial x^3}{\partial \xi^2} \\ \frac{\partial x^1}{\partial \xi^3} & \frac{\partial x^2}{\partial \xi^3} & \frac{\partial x^3}{\partial \xi^3} \end{vmatrix} =$$

$$= \vec{b}_1 \cdot (\vec{b}_2 \times \vec{b}_3).$$

Дифференцирование определителя матрицы Якоби

Обозначим $\Delta(t, \vec{\xi}) = \det Y(t, \vec{\xi})$, тогда из определения определителя, как суммы произведений его элементов и правила дифференцирования произведения, имеем

$$\Delta'(t) = \frac{\partial}{\partial t} \begin{vmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \\ y_{31} & y_{32} & y_{33} \end{vmatrix} =$$

$$= \begin{vmatrix} y'_{11} & y'_{12} & y'_{13} \\ y_{21} & y_{22} & y_{23} \\ y_{31} & y_{32} & y_{33} \end{vmatrix} + \begin{vmatrix} y_{11} & y_{12} & y_{13} \\ y'_{21} & y'_{22} & y'_{23} \\ y_{31} & y_{32} & y_{33} \end{vmatrix} + \begin{vmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \\ y_{31} & y_{32} & y_{33} \end{vmatrix}.$$

Дифференцирование определителя матрицы Якоби

Из матричного уравнения $\frac{dY}{dt} = AY$ следует, что

$$y'_{1j} = a_{11}y_{1j} + a_{12}y_{2j} + a_{13}y_{3j},$$

поэтому

$$(y'_{11}, y'_{12}, y'_{13}) = a_{11}(y_{11}, y_{12}, y_{13}) + a_{12}(y_{21}, y_{22}, y_{23}) + a_{13}(y_{31}, y_{32}, y_{33}).$$

Отсюда, вычитая из первой строки с производными линейную комбинацию остальных строк, получаем

$$\begin{vmatrix} y'_{11} & y'_{12} & y'_{13} \\ y_{21} & y_{22} & y_{23} \\ y_{31} & y_{32} & y_{33} \end{vmatrix} = \begin{vmatrix} a_{11}y_{11} & a_{11}y_{12} & a_{11}y_{13} \\ y_{21} & y_{22} & y_{23} \\ y_{31} & y_{32} & y_{33} \end{vmatrix} = a_{11}\Delta(t).$$

Дифференцирование определителя матрицы Якоби

По аналогии можно получить, что

$$\begin{vmatrix} y_{11} & y_{12} & y_{13} \\ y'_{21} & y'_{22} & y'_{23} \\ y_{31} & y_{32} & y_{33} \end{vmatrix} = a_{22}\Delta(t), \quad \begin{vmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \\ y'_{31} & y'_{32} & y'_{33} \end{vmatrix} = a_{33}\Delta(t).$$

Таким образом,

$$\Delta'(t) = (a_{11} + a_{22} + a_{33})\Delta(t) = \operatorname{tr} A \Delta(t).$$

Правило дифференцирования определителя матрицы Якоби или формула Эйлера

$$\frac{\partial}{\partial t} \left| \frac{\partial x^i}{\partial \xi^j} \right| = \left| \frac{\partial x^i}{\partial \xi^j} \right| \left(\frac{\partial v^1}{\partial x^1} + \frac{\partial v^2}{\partial x^2} + \frac{\partial v^3}{\partial x^3} \right) = \left| \frac{\partial x^i}{\partial \xi^j} \right| \operatorname{div} \vec{v}.$$

Закон дифференцирования интеграла, зависящего от времени

Упрощения

$$\frac{d}{dt} \int_{\omega_{t}} F(t, \vec{x}) d\vec{x} = \frac{d}{dt} \int_{\omega_{0}} F(t, \vec{\xi}) \Delta(t, \vec{\xi}) d\vec{\xi} = \int_{\omega_{0}} \frac{\partial}{\partial t} (F(t, \vec{\xi}) \Delta(t, \vec{\xi})) d\vec{\xi} =
= \int_{\omega_{0}} \left(\frac{\partial F(t, \vec{\xi})}{\partial t} \Delta(t, \vec{\xi}) + F(t, \vec{\xi}) \frac{\partial \Delta(t, \vec{\xi})}{\partial t} \right) d\vec{\xi} =
= \int_{\omega_{0}} \left(\frac{\partial F(t, \vec{\xi})}{\partial t} + F(t, \vec{\xi}) \operatorname{div}_{\xi} \vec{v}(t, \vec{\xi}) \right) \Delta(t, \vec{\xi}) d\vec{\xi} =
= \int_{\omega_{0}} \left(\frac{\partial F(t, \vec{x})}{\partial t} + \frac{\partial F(t, \vec{x})}{\partial x^{i}} v^{i}(t, \vec{x}) + F(t, \vec{x}) \operatorname{div}_{x} \vec{v}(t, \vec{x}) \right) d\vec{x}.$$

Закон дифференцирования интеграла, зависящего от времени

Окончательный вид

$$\frac{d}{dt} \int_{\omega_t} F(t, \vec{x}) d\vec{x} = \int_{\omega_t} \left(\frac{dF(t, \vec{x})}{dt} + F(t, \vec{x}) \operatorname{div}_x \vec{v}(t, \vec{x}) \right) d\vec{x},$$

где d/dt — оператор полного дифференцирования в правой части равенства задаётся формулой

$$\frac{d}{dt} = \frac{\partial}{\partial t} + (\vec{v} \cdot \nabla).$$

Упрощения

Легко показать, что для $F = F(t, \vec{x}), \vec{v} = \vec{v}(t, \vec{x})$

$$\frac{dF}{dt} + F\operatorname{div}\vec{v} = \frac{\partial F}{\partial t} + \operatorname{div}(F\vec{v}).$$

Закон сохранения массы сплошной среды

Дифференциальная форма Консервативная

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \vec{v}) = 0$$

Интегральный вид ЗСМ

$$\frac{d}{dt}\int\limits_{\omega_t}\rho(t,\vec{x})d\vec{x}=0,$$

где $\rho(t, \vec{x})$ – плотность жидкой частицы в точке \vec{r} в момент времени t.

Неконсервативаня

$$\frac{d\rho}{dt} + \rho \operatorname{div} \vec{v} = 0$$

Закон сохранения импульса сплошной среды

Интегральная форма

$$\int \frac{d}{dt} \int \limits_{\omega_t}
ho ec{v} \, dec{x} = \int \limits_{S_t} ec{\sigma}_n dS + \int \limits_{\omega_t}
ho ec{f} \, dec{x},$$

где $\rho(t,\vec{x})$, $\vec{v}(t,\vec{x})$ — плотность и скорость материальной точки сплошной среды; $\vec{\sigma}_n(t,\vec{x})$ — напряжение, возникающее на поверхности объема ω_t , обозначенной s_t , на площадке с внешней единичной нормалью \vec{n} ; $\vec{f}(t,\vec{x})$ — массовая сила, действующая на сплошную среду.

Дифференциальная форма

Консервативная

Неконсервативаня

$$\frac{\partial \rho \vec{v}}{\partial t} + \operatorname{div}(\rho \vec{v} \otimes \vec{v} - \sigma) = \rho \vec{f} \qquad \qquad \rho \frac{d\vec{v}}{dt} - \operatorname{div} \sigma = \rho \vec{f}$$

Закон сохранения момента импульса сплошной среды

Интегральная форма

$$egin{aligned} rac{d}{dt} \int\limits_{\omega_t} \left(
ho ec{v} imes ec{x} +
ho ec{k}
ight) dec{x} &= \int\limits_{s_t} ec{\sigma}_n imes ec{x} dS + \int\limits_{\omega_t}
ho ec{f} imes ec{x} dec{x} + \\ &+ \int\limits_{\omega_t}
ho ec{h} dec{x} + \int\limits_{\omega_t} ec{M}_n dS, \end{aligned}$$

где $\rho(t,\vec{x}),\ \vec{v}(t,\vec{x})$ — плотность и скорость материальной точки сплошной среды; $\vec{\sigma}_n(t,\vec{x})$ — напряжение, возникающее на поверхности объема ω_t , обозначенной s_t , на площадке с внешней единичной нормалью $\vec{n};\ \vec{f}(t,\vec{x})$ — массовая сила, действующая на сплошную среду; \vec{k} — плотность собственного момента количества движения; $\vec{h},\ \vec{M}_n$ — плотность массовых и поверхностных пар.

Предположения

$$\vec{k} = \vec{h} = \vec{0}, \quad \vec{M}_n = \vec{0}.$$

Следствия закона сохранения момента импульса

Дифференциальная форма

$$\frac{d}{dt} (\rho \vec{v} \times \vec{x}) + (\rho \vec{v} \operatorname{div} \vec{v}) \times \vec{x} - \operatorname{div} (\sigma \times \vec{x}) = \rho \vec{f} \times \vec{x}.$$

Упрощения

$$\frac{d}{dt}\left(\rho\vec{v}\times\vec{x}\right) = \frac{d}{dt}(\rho\vec{v})\times\vec{x} + \rho\vec{v}\times\frac{d\vec{x}}{dt} = \frac{d(\rho\vec{v})}{dt}\times\vec{x}.$$

$$\operatorname{div}\left(\sigma\times\vec{x}\right) = \frac{\partial}{\partial x_{i}}(\vec{\sigma}_{i}\times\vec{x}) = \frac{\partial\vec{\sigma}_{i}}{\partial x_{i}}\times\vec{x} + \vec{\sigma}_{i}\times\frac{\partial\vec{x}}{\partial x_{i}} = \operatorname{div}\sigma\times\vec{x} + \vec{\sigma}_{i}\times\vec{e}_{i}.$$

Упрощение закона сохранения момента импульса Умножая векторно закон сохранения импульса на \vec{x} и вычитая из дифференциальной формы с учётом проделанных операций, имеем

$$\vec{\sigma}_1 \times \vec{e}_1 + \vec{\sigma}_2 \times \vec{e}_2 + \vec{\sigma}_3 \times \vec{e}_3 = \vec{0}.$$

Следствия закона сохранения момента импульса

Упростим равенство

$$\vec{\sigma}_1 \times \vec{e}_1 + \vec{\sigma}_2 \times \vec{e}_2 + \vec{\sigma}_3 \times \vec{e}_3 = \vec{0}.$$

$$\begin{array}{rcl} \sigma_{1j}\vec{e}_{j}\times\vec{e}_{1} & = & -\sigma_{12}\vec{e}_{3}+\sigma_{13}\vec{e}_{2} \\ \sigma_{2j}\vec{e}_{j}\times\vec{e}_{2} & = & \sigma_{21}\vec{e}_{3}-\sigma_{23}\vec{e}_{1} \\ + & \sigma_{3j}\vec{e}_{j}\times\vec{e}_{3} & = & -\sigma_{31}\vec{e}_{2}+\sigma_{32}\vec{e}_{1} \\ \hline \vec{\sigma}_{i}\times\vec{e}_{i} & = & (\sigma_{32}-\sigma_{23})\vec{e}_{1}+ \\ & & +(\sigma_{13}-\sigma_{31})\vec{e}_{2}+ \\ & & +(\sigma_{21}-\sigma_{12})\vec{e}_{3}. \end{array}$$

$$\vec{e}_1 \times \vec{e}_2 = \vec{e}_3,$$

 $\vec{e}_2 \times \vec{e}_3 = \vec{e}_1,$
 $\vec{e}_3 \times \vec{e}_1 = \vec{e}_2.$

Симметричность тензора напряжений

При отсутствии собственного момента количества движения среды и массовых и поверхностных пар имеет место симметричность тензора напряжений

$$\sigma_{ij}=\sigma_{ji}$$
.

Закон сохранения энергии сплошной среды

Интегральная форма

$$\frac{d}{dt}\int\limits_{\omega_t}\rho\left(\varepsilon+\frac{\vec{v}^2}{2}\right)\,d\vec{x}=\int\limits_{s_t}(\vec{\sigma}_n\cdot\vec{v})\,dS-\int\limits_{s_t}(\vec{q}\cdot\vec{n})\,dS+\int\limits_{\omega_t}\rho\vec{f}\cdot\vec{v}\,d\vec{x},$$

где $\varepsilon(t,\vec{x})$ — внутренняя энергия единицы массы частицы сплошной среды; $\vec{q}(t,\vec{x})$ — закон перетока тепла в сплошной среде. Пренебрегаем работой массовых и поверхностных пар сил и массовым притоком тепла.

Дифференциальная форма Консервативная

$$\frac{\partial}{\partial t} \left[\rho \left(\varepsilon + \frac{\vec{v}^2}{2} \right) \right] + \mathrm{div} \left[\rho \left(\varepsilon + \frac{\vec{v}^2}{2} \right) \vec{v} - \sigma \cdot \vec{v} + \vec{q} \right] = \rho \vec{f} \cdot \vec{v} s$$

Закон динамики кинетической энергии

Умножив закон сохранения массы в недивиргентной форме на $\frac{v^2}{2}$, а уравнение закона сохранения импульса скалярно на вектор \vec{v} , получим

$$\frac{\vec{v}^2}{2}\frac{d\rho}{dt} = -\frac{\rho\vec{v}^2}{2}\operatorname{div}\vec{v} \quad \text{if} \quad \rho\vec{v}\cdot\frac{d\vec{v}}{dt} = \operatorname{div}\sigma\cdot\vec{v} + \rho\vec{f}\cdot\vec{v}.$$

Тогда

$$\frac{d}{dt}\frac{\rho\vec{v}^2}{2} = \frac{d}{dt}\frac{\rho\vec{v}\cdot\vec{v}}{2} = \rho\vec{v}\cdot\frac{d\vec{v}}{dt} + \frac{\vec{v}^2}{2}\frac{d\rho}{dt} = \operatorname{div}\sigma\cdot\vec{v} + \rho\vec{f}\cdot\vec{v} - \frac{\rho\vec{v}^2}{2}\operatorname{div}\vec{v}.$$

Или

$$\frac{d}{dt}\left(\frac{\rho\vec{v}^2}{2}\right) + \frac{\rho\vec{v}^2}{2}\operatorname{div}\vec{v} - \operatorname{div}\sigma\cdot\vec{v} = \rho\vec{f}\cdot\vec{v}$$

Работа поверхностных сил

Рассмотрим слагаемое, связанное с работой поверхностных сил

$$\operatorname{div}(\sigma \cdot \vec{v}) = \operatorname{div} \sigma \cdot \vec{v} + \sigma_{ij} \frac{\partial v_i}{\partial x_j}.$$

Используя разложение тензора на симметричную и несимметричную составляющие

$$\frac{\partial v_j}{\partial x_k} = \frac{1}{2} \left(\frac{\partial v_j}{\partial x_k} + \frac{\partial v_k}{\partial x_j} \right) + \frac{1}{2} \left(\frac{\partial v_j}{\partial x_k} - \frac{\partial v_k}{\partial x_j} \right) = e_{jk} + \omega_{jk},$$

получим

$$\operatorname{div}(\sigma \cdot \vec{v}) = \operatorname{div} \sigma \cdot \vec{v} + \sigma_{ij} e_{ij}.$$

где e_{ij} , ω_{ij} – компоненты тензоров скоростей деформаций и вихря. Слагаемое $\sigma_{ij}\omega_{ij}$ равно 0, т.к. это свёртка симметричного и антисимметричного тензоров.

Неконсервативная форма закона сохранения энергии

Вычитая из уравнения закона сохранения уравнения соотношение динамики кинетической энергии, полученное соотношение из предыдущего слайда и закон сохранения массы, умноженный на ε , получим

$$\rho \frac{d\varepsilon}{dt} = \sigma_{ij} e_{ij} - \operatorname{div} \vec{q}.$$

Литература

- *Годунов С. К.* Обыкновенные дифференциальные уравнения с постоянными коэффициентами: Учебное пособие. Новосибирск: Изд-во Новосиб. ун-та, 1994. Т.1.: Краевые задачи.
- *Овсянников Л. В.* Лекции по основам газовой динамики. Москва-Ижевск:Институт компьютерных исследований, 2003.