This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

AMENDMENTS TO THE CLAIMS

I.

2

6

13

1

Please amend Claims 1,5, 11, 12, 31 and 37 as follows:

- 1 (Currently amended) A triple-junction solar cell comprising:
 - a first cell layer comprising a germanium (Ge) substrate having a first and second
- diffusion regions doped with an n-type dopants, wherein the second diffusion
- 4 region diffuses deeper into the Ge substrate than the first diffusion region,
- 5 wherein the n-type dopants in the germanium/substrate first diffusion region
 - includes phosphorus (P) atoms having the highest dopant concentration and the
 - n-type dopants in the second diffusion region includes arsenic (As) atoms
 - having the highest dopant concentration;
 - a nucleation layer disposed over the Ge substrate of the first cell layer;
 - a second cell layer comprising one of gallium arsenide (GaAs) and indium gallium
 - arsenide (InGaAs) disposed over the nucleation layer; and
 - a third fourth cell layer comprising indium gallium phosphide (InGaP) disposed over
 - the second cell layer.
 - 2. (Original) The triple-junction solar cell as recited in Claim 1 wherein the
- 2 nucleation layer comprises a material having a lattice parameter substantially
- 3 equal to the lattice parameter of the germanium substrate.
 - 3. (Original) The triple-junction solar cell as recited in Claim 1 wherein the
- nucleation layer comprises InGaP.

1

1	4. (Original) The triple-junction solar cell as recited in Claim 1 wherein the
2	nucleation layer has a thickness substantially equal to 350 Å or less.
1	5. (Currently amended) The triple-junction solar cell as recited in Claim 1, wherein
2	the triple-junction solar cell is capable of absorbing radiation ranging from
3	approximately ultraviolet (UV) radiation to radiation having a wavelength of
74	approximately 1800 nm.
7	
1	Claims 6-7. (Cancelled).
1	8. (Original) The triple-junction solar cell as recited in Claim 1 wherein the junction
2	depth in the first cell layer is substantially between 0.3 μm and 0.7 μm.
1	9. (Original) The triple-junction solar cell as recited in Claim 1 wherein the first cell
2	layer comprises a two-step/diffusion profile capable of optimizing current and
3	voltage generated therefrom.
1	10. (Original) The triple-junction solar cell as recited in Claim 1 having 1 sun AM0
2	efficiencies in excess of 26%.
1	11. (Currently amended) A triple-junction solar cell comprising:
2	a dual-junction structure comprising a first junction and a second junction;
3	a third junction having a p-type substrate, wherein the third junction doped with

4	arsenic (As) and phosphorus (P), wherein the p-type substrate includes a first
5	and second diffusion sublayers, wherein at least a portion of the second
6	diffusion sublayer is deeper into the p-type substrate than the first diffusion
7	sublayer, wherein the P atoms have higher concentration compared to As in the
8	first diffusion sublayer and the As atoms have a higher concentration compared
9	to P in the second diffusion sublayer; and
10(a nucleation layer disposed between the dual-junction structure and the third junction
11)00	and comprising a material that shares a substantially similar lattice parameter
$\frac{12}{2}$	with the p-type substrate of the third junction, wherein the nucleation layer
	serves to control the diffusion depth of the third junction.
$\bigcap_1 \mathcal{N}_{\bigcup_1}$	12. (Previously amended) The triple-junction solar cell as recited in Claim 11
\bigcup_{2}^{r}	wherein the p-type substrate of the third junction is germanium (Ge) and the
3	nucleation layer comprises indium gallium phosphide (InGaP).
1	13. (Original) The triple-junction solar cell as recited in Claim 11 wherein the
2	nucleation layer has a thickness substantially equal to 350 Å or less.
1	Claims 14-15. (Cancelled).
1	16. (Original) The triple-junction solar cell as recited in Claim 11 wherein the
2	junction depth of the third junction is substantially between 0.3 μm and 0.7
3	μm.

1	17. (Original) The triple-junction solar cell as recited in claim 11 wherein the third
2		junction comprises a two-step diffusion profile dapable of optimizing current
3		and voltage generated from the third junction.
1	18. (Original) The triple-junction solar cell as recited in Claim 11 having 1 sun AM0
$\int_{1}^{2} \int_{0}^{2}$		efficiencies in excess of 26%. Original) The triple-junction solar cell as recited in Claim 11 capable of
1 \) /19. (¹	Original) The triple-junction solar cell astrected in Claim 11 capable of
PS/	4.	absorbing radiation ranging from approximately ultraviolet (UV) radiation to
3	d	radiation having a wavelength of approximately 1800 nm.
~ 4	770	
(101	20. (Currently amended) A method for/controlling the diffusion of a dopant into a
2		substrate during a subsequent device process during the fabrication of a multi-
3		layer semiconductor structure, the method comprising:
4	(a)	disposing a nucleation layer over the substrate;
5	(b)	performing the subsequent/device process to form an overlying device layer
6		containing the dopant, wherein the dopants include phosphorus (P) and arsenic
7		(As), wherein the nucleation layer serves as a diffusion barrier to the dopant in
8		the overlying device layer such that diffusion of the dopant into the substrate is
9		limited by increasing the thickness of the nucleation layer, wherein the
10		performing the subsequent device process further includes diffusing P atoms to
11		a shallow diffusion region and diffusing As atoms to a deep diffusion region of

12	the substrate.
1	21. (Original) The method as recited in Claim 20 wherein the nucleation layer
2	comprises a material that shares an identical lattice parameter with the
3	substrate.
- 1	
	22. (Original) The method as recited in Claim 20 wherein the substrate is germanium
2	(Ge) and the nucleation layer comprises In GaP.
150	23. (Original) The method as recited in Claim 20 wherein the nucleation layer has a
* J	thickness substantially equal to 350 Å/or less.
mto	
1	Claims 24-25. (Cancelled).
1	26. (Previously amended) The method as recited in Claim 20 wherein a two-step
2	diffusion profile is achieved in an n-p junction formed in the substrate.
1	27. (Original) The method as recited in Claim 20 wherein the subsequent device
2	process includes metal organic chemical vapor deposition (MOCVD).
1	28. (Original) The method as fecited in Claim 20 wherein the nucleation layer also
2	serves as a source of the dopant for forming an n-p junction in the substrate.

1	29. (C	Original) The method as recited in Claim 20 wherein diffusion of the dopant into
2		the substrate primarily involves solid state diffusion.
1	30. (0	Original) The method as recited in Claim 29 wherein diffusion of the dopant into
2		the substrate also involves gas phase diffusion during oxide desorption.
م ام		
15W)	31 .	(Currently amended) A method for fabricating a multi-layer semiconductor
1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1>	structure, the method comprising:
	(a)	preparing a germanium (Ge) substrate layer for doping by a dopant, wherein
		the dopants include phosphorus (P) atoms and arsenic (As) atoms;
5 MTO	(b)	disposing a nucleation layer over the germanium substrate layer;
6	(c)	disposing a middle layer comprising [gallium arsenide (GaAs)] the As atoms
7		over the nucleation layer, wherein the disposing a nucleation layer further
8		includes controlling diffusion of the P atoms into a first diffusion sublayer and
9		diffusion of the As atoms into a second diffusion sublayer, wherein the first
10		diffusion sublayer is substantially adjacent to the nucleation layer and the
11		second diffusion sublayer s adjacent to the first diffusion sublayer; and
12	(d)	disposing a top layer comprising indium gallium phosphide (InGaP) over the
13		second tunnel junction, wherein the nucleation layer serves as a diffusion
14		barrier such that diffusion of the dopant into the germanium substrate can be
15		limited by increasing the thickness of the nucleation layer.

1	32.	The method as recited in Claim 31 wherein the nucleation layer comprises a
2		material having a lattice parameter substantially equal to the lattice parameter
2		material having a fattice parameter substantianty equal to the fattice parameter
3		of the germanium substrate.
1	33.	The method as recited in Claim 31 wherein the nycleation layer comprises
25,, 6	1	InGaP.
Just	1	
$\frac{1}{2}$	3 <i>/</i> 4.	The method as recited in Claim 31 wherein the nucleation layer has a thickness
2/10		substantially equal to 350 Å or less upon completion of said step (b).
W 10		
y W,		
Ч	Claim	s 35-36. (Cancelled).
1	37.	(Currently amended) The method as recited in Claim 31wherein a junction
2		depth in the germanium substrate layer is substantially between 0.3 μm and 0.7
3		μm upon completion of said steps (a) through (g) (d).
		pan upon compression or outer stops (a) amough (g) <u>ter</u> .
	Please	add following new claims:
1	38.	(New) A multi-junction solar cell comprising:
2	a p-typ	pe germanium (Ge) substrate having a first surface, wherein the p-type Ge
3		substrate further includes a diffusion portion having a first diffusion sublayer
4		situated adjacent to the first surface of the p-type Ge substrate and a second

5		diffusion sublayer situated adjacent to the first diffusion sublayer;		
6	a n	a nucleation layer disposed over the first surface of the p-type Ge substrate, wherein		
7		the nucleation layer provides n-type phosphorus (P) atoms to the first diffusion		
8		sublayer; and		
9	a l	ayer including arsenic (As) atoms disposed over the nucleation layer, wherein the		
10	c h	layer provides n-type As atoms to the second diffusion sublayer in response to		
11	Jul 1	the thickness of nucleation layer.		
	39	(New) The multi-junction solar cell of claim 38, further comprising a second		
12		surface situated at the bottom of the multi-junction solar cell.		
Cr	1 40	(New) The multi-junction solar cell of claim 38, wherein the first diffusion		
2		sublayer includes the P atoms and As atoms.		
1	41	(New) The multi-junction solar cell of claim 40, wherein the P atoms in the		
2		first diffusion sublayer has the highest dopant concentration.		
2		inst diffusion subtayer has the highest dopart concentration.		
1	42	(New) The multi-junction solar cell of claim 41, wherein the second diffusion		
2		sublayer includes the P atoms and As atoms.		
1	43	(New) The multi-junction solar cell of claim 42, wherein the As atoms in the		
2		second diffusion/sublayer has the highest dopant concentration.		

1	44.	(New) A multi-junction solar cell comprising:
2	a p-typ	pe substrate having a first surface, wherein the p-type substrate further includes a
3		diffusion portion having a first diffusion region situated adjacent to the first
4		surface of the p-type substrate and a second diffusion region, which includes a
5		part of all of the first diffusion region, wherein the second diffusion region
6 (b	diffuses deeper into the substrate than the first diffusion region;
7	a nucl	eation layer disposed over the first surface of the p-type substrate, wherein the
8	$_{A}$ CI)	nucleation layer provides n-type/phosphorus (P) atoms to the first diffusion
9	10	region; and
104	a layer	including arsenic (As) atoms disposed over the nucleation layer, wherein the
1()	V_{i}	layer of GaAs provides n-type As atoms to the second diffusion region in
12		response to the thickness of nucleation layer.
1	45.	(New) The multi-junction solar cell of claim 44, further comprising a second
2		surface situated at the bottom of the multi-junction solar cell.
1	46.	(New) The multi-junction solar cell of claim 44, wherein the first diffusion
2		region includes the patoms and As atoms; wherein the P atoms in the first
3		diffusion region has the highest dopant concentration.
1	47.	(New) The multi-junction solar cell of claim 46, wherein the second diffusion
2		region includes the P atoms and As atoms, wherein the As atoms in the second

3		diffusion region has the highest dopant concentration.
1	48.	(New) The multi-junction solar cell of claim 44, wherein the p-type substrate
2		is a p-type germanium substrate.
1 C.h	49.	(New) A multi-junction solar cell comprising:
2 700	a subs	trate having a first surface, wherein the substrate further includes a diffusion
3	(1)	portion having a first diffusion region situated adjacent to the first surface of
4		the substrate and a second diffusion region, which includes a part of all of the
5		first diffusion region, wherein the second diffusion region diffuses deeper into
Ceny,		the substrate than the first diffusion region;
7	a nucl	eation layer disposed over the first surface of the substrate, wherein the
8		nucleation layer provides diffusion dopants of phosphorus (P) atoms to the first
9	,	diffusion region; and
10	a laye	r having arsenic (As) atoms disposed over the nucleation layer, wherein the layer
11		provides diffusion dopants of As atoms into the second diffusion region in
12		response to the thickness of nucleation layer.
1	50.	(New) The multi-junction solar cell of claim 49, further comprising a second
2		surface situated at the bottom of the multi-junction solar cell.
1	51.	(New) The multi-junction solar cell of claim 49, wherein the first diffusion
2		region includes the P atoms and As atoms; wherein the P atoms in the first
		1

diffusion region has the highest dopant concentration.

1 50 52.

(New) The multi-junction solar cell of claim 49, wherein the second diffusion region includes the P atoms and As atoms, wherein the As atoms in the second diffusion region has the highest dopant concentration.

 C_{2}^{1} d_{51}

(New) The multi-junction solar cell of claim 49, wherein the p-type substrate is a p-type germanium substrate.