A PYTHON PROGRAM TO IMPLEMENT KNN MODEL

Ex.No.:9A

Date of Experiment: 17/10/2024

AIM:-

To implement a python program using a KNN Algorithm in a model.

ALGORITHM:-

Step1: Import all the other necessary libraries(numpy as np, matplotlib.pyplot as plt and sklearn.tree,pandas as pd and seaborn as sns).

Step2: Select the number K of the neighbors.

Step3: Calculate the Euclidean distance of K number of neighbors of data points.

Step4: Take the K nearest neighbors as per the calculated Euclidean distance.

Step5: Among these k neighbors, count the number of the data points in each category.

Step6: Assign the new data points to that category for which the number of the neighbor is maximum.

Step7: Plot the graph "X" and "y" the values tested and predicted using seaborn.scatterplot() function.

Step8: Print the confusion matrix of the model to know the accuracy of the model with support values for each class.

IMPLEMENTATION:-

import numpy as np import matplotlib.pyplot as plt import pandas as pd

dataset = pd.read_csv('../input/mall-customers/Mall_Customers.csv')

X = dataset.iloc[:,[3,4]].values

print(dataset)

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
	11.1				
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

[200 rows x 5 columns]

```
from sklearn.cluster import KMeans
```

wcss =[]

for i in range (1,11):

kmeans = KMeans($n_{clusters} = i$, init = 'k-means++', max_iter =300, $n_{init} = 10$, random_state = 0)

kmeans.fit(X)

wcss.append(kmeans.inertia_)

Plot the graph to visualize the Elbow Method to find the optimal number of cluster plt.plot(range(1,11),wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()

kmeans=KMeans(n_clusters= 5, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)

```
y_kmeans
array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,
     4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2,
     1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
     0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
     0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
     0, 2], dtype=int32)
type(y_kmeans)
numpy.ndarray
y_kmeans
 array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,
     4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1,
```

y kmeans = kmeans.fit predict(X)

 $plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1')$

0, 2], dtype=int32)

 <matplotlib.collections.PathCollection at 0x7f2c79858c90>

 $plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')$

<matplotlib.collections.PathCollection at 0x7f2c95155bd0>

 $plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3')$

<matplotlib.collections.PathCollection at 0x7f2c95063490>

 $plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')$

<matplotlib.collections.PathCollection at 0x7f2c94feb890>

 $plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')$

<matplotlib.collections.PathCollection at 0x7f2c94f756d0>

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids')

<matplotlib.collections.PathCollection at 0x7f2c94f75650>

plt.title('Clusters of customers')
plt.xlabel('Annual Income (k\$)')
plt.ylabel('Spending Score (1-100)')

plt.legend() plt.show()


```
 plt.scatter(X[y\_kmeans == 0, 0], X[y\_kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1') \\ plt.scatter(X[y\_kmeans == 1, 0], X[y\_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2') \\ plt.scatter(X[y\_kmeans == 2, 0], X[y\_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3') \\ plt.scatter(X[y\_kmeans == 3, 0], X[y\_kmeans == 3, 1], s = 100, c = 'royan', label = 'Cluster 4') \\ plt.scatter(X[y\_kmeans == 4, 0], X[y\_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5') \\ plt.scatter(kmeans.cluster\_centers\_[:, 0], kmeans.cluster\_centers\_[:, 1], s = 300, c = 'yellow', label = 'Centroids') \\ plt.title('Clusters of customers') \\ plt.vlabel('Annual Income (k$)') \\ plt.ylabel('Spending Score (1-100)') \\ plt.legend() \\ plt.show()
```


RESULT:-

Thus the python program to implement KNN model has been successfully implemented and the results have been verified and analyzed.