Student Information

Full Name : Anıl Eren Göçer

Id Number: 2448397

Question 1

Lemma: $((k \in Z^+) \land (n \in Z^+)) \rightarrow (k^n \in Z^+)$. (The lemma can be used without giving a proof.)

Assume that 1 is not the smallest positive integer, since 1 is positive, by the Well-Ordering Principle, there is a smallest positive integer, say k, and k < 1. If we multiply the inequality

by k,then we get

$$0 < k^2 < k \quad .$$

By the **Lemma**, $k^2 \in \mathbb{Z}^+$, implying that there is an element k^2 which is smaller than k and k is not the smallest integer. Therefore, our assumption has been contradicted.

Hence, 1 is the smallest positive integer.

Question 2

First part of the proof:

For S(1, n):

Basis step: $S(1,1): x_1 = 1$, there is 1 solution which is $x_1 = 1$

Also,
$$f(1,1) = \frac{(1+1-1)!}{1!.(1-1)!} = \frac{1!}{1!.0!} = 1$$
. So, $S(1,1)$ is correct.

Inductive step: Assume S(1,n), i.e $x_1 = n$ has $f(1,n) = \frac{(n+1-1)!}{n! \cdot (1-1)!} = 1$ solutions.

Then, for S(1, n + 1), i.e $x_1 = n + 1$

By assumption, we should have 1 solution since we are just adding 1 on RHS.

Also,
$$f(1, n+1) = \frac{(n+1+1-1)!}{(n+1)!(1-1)!} = \frac{(n+1)!}{(n+1)!} = 1.$$

 \therefore Hence, S(1,n) is true.

For S(m, 1):

Basis step: $S(1,1): x_1 = 1$, there is 1 solution which is $x_1 = 1$

Also,
$$f(1,1) = \frac{(1+1-1)!}{1!.(1-1)!} = \frac{1!}{1!.0!} = 1$$
. So, $S(1,1)$ is correct.

Inductive step: Assume S(m,1), i.e $x_1 + x_2 + \dots + x_m = 1$ has $f(m,1) = \frac{(1+m-1)!}{1! \cdot (m-1)!} = \frac{(m!)!}{(m-1)!} = m$ solutions

Then, for S(m+1,1) i.e $x_1 + x_2 + \dots + x_m + x_{m+1} = 1$:

There are two cases: $x_{m+1} = 0$ and $x_{m+1} = 1$

For $x_{m+1} = 0$: the equation becomes $x_1 + x_2 + \dots + x_m = 1$ and by assumption there are m solutions.

For $x_{m+1} = 1$: There is only 1 solution represented by (m+1)-tuples as $(0,0,0,\ldots,1)$.

Therefore, total number of solutions is m + 1.

Also,
$$f(m+1,1) = \frac{(1+m+1-1)!}{1! \cdot (m+1-1)!} = \frac{(m+1)!}{m!} = m+1$$

 \therefore Hence, S(m,1) is true.

Second part of the proof:

Assume S(m, n + 1) and S(m + 1, n) are true, i.e the numbers of solutions for

$$x_1 + x_2 + \dots + x_m = n + 1$$
 (1)

$$x_1 + x_2 + \dots + x_m + x_{m+1} = n$$
 (2)

are
$$f(m, n+1) = \frac{(n+m)!}{(n+1)!.(m-1)!}$$
 and $f(m+1, n) = \frac{(n+m)!}{n!.m!}$, respectively.

For S(m+1, n+1):

the solutions of the equation

$$x_1 + x_2 + \dots + x_m + x_{m+1} = n+1$$
 (3)

can be divided into two parts: $x_{m+1} = 0$ and $x_{m+1} > 0$.

i) For $x_m + 1 = 0$, equation (3) becomes equation (1), hence number of solutions is

$$f(m, n+1) = \frac{(n+m)!}{(n+1)! \cdot (m-1)!}$$

ii) For $x_m + 1 > 0$, x_{m+1} can be replaced by $x'_{m+1} + 1$. It is guaranteed that $x'_{m+1} \ge 0$ since $x_{m+1} > 0$. Therefore, we will not have any problem with restrictions in the question by doing this replacing.

Now, equation (3) becomes

 $x_1 + x_2 + \dots + x_m + x'_{m+1} = n$, which is in the form consistent with (2)

so, the number of solution is

$$f(m+1,n) = \frac{(n+m)!}{n!.m!}$$

Hence,

... The total number of solution is

$$\frac{(n+m)!}{(n+1)!.(m-1)!} + \frac{(n+m)!}{n!.m!} = \frac{(n+m)!.[(n+1)+m]}{(n+1)!.m!}$$
$$= \frac{[(n+1)+(m+1)-1]!}{(n+1)!.[(m+1)-1]!}$$

Also
$$f(m+1, n+1) = \frac{[(n+1) + (m+1) - 1]!}{(n+1)! \cdot [(m+1) - 1]!}$$

 $\therefore S(m+1, n+1)$ is also true.

Hence, we have proven S(m, n) is true.

Question 3

a.

Count the number of 1×1 squares in the figure = 21.

Each square can contain 4 triangles in the desired orientation and size: $21 \times 4 = 84$.

On the diagonal of the half square we can have another 7 triangles.

Total number of triangles is 84 + 7 = 91.

Hence, there are **91** triangles congruent to the one drawn in the figure, with the same size and of any orientation.

b.

By the Principle of Inclusion - Exclusion, the number of functions from a set with 6 elements to a set with 4 elements is

$$4^{6} - {4 \choose 1} \cdot 3^{6} + {4 \choose 2} \cdot 2^{6} - {4 \choose 3} \cdot 1^{6} = 4916 - 2916 + 384 - 4 = 1560$$

Question 4

a.

Let a_n be the number of strings over the alphabet $\Sigma = \{0, 1, 2\}$ of length n that contain two consecutive symbols that are the same.

Also, say valid string means a string over the alphabet $\Sigma = \{0, 1, 2\}$ of length n that contain two consecutive symbols that are the same.

There a_{n-1} valid strings of length (n-1). We can produce $3.a_{n-1}$ valid strings of length n by placing any of $\{0,1,2\}$ at the end of each valid string of length (n-1).

There are 3^{n-1} - a_{n-1} non-valid strings of length (n - 1). If we put the (n-1)th element again as the nth element at the end of each non-valid strings of length (n - 1), we can produce a valid string of length n. So, we can produce 3^{n-1} - a_{n-1} valid strings of length n.

Therefore,

$$a_n = 3.a_{n-1} + 3^{n-1} - a_{n-1}$$
$$a_n = 2.a_{n-1} + 3^{n-1}$$

Hence, we obtained the above recurrence relation for the number of strings over the alphabet = 0, 1, 2 of length n that contain two consecutive symbols that are the same.

b.

Initial conditions for the recurrence relation are $a_1 = 0$, $a_2 = 3$.

c.

$$a_n = 2.a_{n-1} + 3^{n-1}$$

Find homogeneous solution a_n^h :

Characteristic equation for the recurrence relation: $\alpha-2$. So, $\alpha=2$ is the characteristic root. Therefore, homogeneous solution a_n^h is in the form of A. 2^n where A is a constant.

$$a_n^h = A \cdot 2^n$$

Find particular solution a_n^p :

Non-homogeneity factor is 3^{n-1} , so particular solution a_n^p is in the form of B . 3^n where B is a constant.

$$a_n^p = B . 3^n$$

Now, find the constants A and B using initial conditions.

$$\begin{cases} a_1 = A \cdot 2^1 + B \cdot 3^1 = 2A + 3B = 0 \\ a_2 = A \cdot 2^2 + B \cdot 3^2 = 4A + 9B = 3 \end{cases} \rightarrow A = \frac{-3}{2}, B = 1.$$

We have $a_n=a_n^h+a_n^p$, $a_n^h=\frac{-3}{2}$. 2^n , $a_n^p=1$. 3^n

Thus,

$$a_n = \frac{-3}{2} \cdot 2^n + 1 \cdot 3^n = -3 \cdot 2^{n-1} + 3^n$$

Hence, by solving the recurrence relation we get

$$a_n = -3 \cdot 2^{n-1} + 3^n$$