This is my capstone project for the Udacity Machine Learning Nanodegree.

Import the libraries needed.

```
In [1]: import pandas as pd
import numpy as np
import keras as kr
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
from os import listdir
```

Using TensorFlow backend.

Get the data.

```
In [2]: directory = 'sandp500/individual_stocks_5yr'
    #directory = '/OneDrive/Documents/Projects/MachineLearning/Udacity/Capstone/sa
    ndp500/individual_stocks_5yr'
    dir_listing = listdir(directory)

In [3]: symbols_list = []
    for symbol in dir_listing:
        symb = symbol.split('_')[0]
        symbols_list.append(symb)
    print(len(symbols_list))
    print(symbols_list[0])

504
    AAL

In [4]: csv_file = '{}/{}_data.csv'.format(directory, symbols_list[0])
```

Since we already know the name of the specific stock we are trying to get from the name of the file, we can drop that column in the dataframe.

```
In [5]: dataset = pd.read_csv(csv_file)
In [6]: dataset = dataset.assign(trading_date = pd.to_datetime(dataset['Date']))
```

```
In [7]: # below code is copied from: https://machinelearningmastery.com/multivariate-t
        ime-series-forecasting-lstms-keras/
        # convert series to supervised learning
        def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):
                n_vars = 1 if type(data) is list else data.shape[1]
                df = pd.DataFrame(data)
                cols, names = list(), list()
                # input sequence (t-n, ... t-1)
                for i in range(n_in, 0, -1):
                        cols.append(df.shift(i))
                        names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]
                # forecast sequence (t, t+1, ... t+n)
                for i in range(0, n out):
                        cols.append(df.shift(-i))
                        if i == 0:
                                 names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
                        else:
                                 names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_
        vars)]
                # put it all together
                agg = pd.concat(cols, axis=1)
                agg.columns = names
                # drop rows with NaN values
                if dropnan:
                        agg.dropna(inplace=True)
                return agg
```

In [8]:		dataset			
---------	--	---------	--	--	--

Out[8]:

	Date	Open	High	Low	Close	Volume	Name	trading_date
0	2013-12-09	23.85	25.44	23.45	24.60	43197268	AAL	2013-12-09
1	2013-12-10	24.50	25.17	24.41	24.88	18660625	AAL	2013-12-10
2	2013-12-11	25.48	27.20	25.37	25.99	38843371	AAL	2013-12-11
3	2013-12-12	26.20	26.71	25.45	25.45	19981824	AAL	2013-12-12
4	2013-12-13	25.75	26.30	25.52	26.23	12192421	AAL	2013-12-13
5	2013-12-16	26.63	26.77	26.35	26.61	13190945	AAL	2013-12-16
6	2013-12-17	26.48	26.59	25.95	26.10	11413199	AAL	2013-12-17
7	2013-12-18	25.99	26.23	25.55	26.23	9994162	AAL	2013-12-18
8	2013-12-19	26.12	26.49	25.82	26.12	6916497	AAL	2013-12-19
9	2013-12-20	26.18	26.49	26.14	26.33	8530924	AAL	2013-12-20
10	2013-12-23	26.29	26.49	26.05	26.18	5403084	AAL	2013-12-23
11	2013-12-24	26.00	26.26	26.00	26.25	2652974	AAL	2013-12-24
12	2013-12-26	26.12	26.36	25.98	26.13	4226639	AAL	2013-12-26
13	2013-12-27	25.95	26.10	24.91	24.94	13227018	AAL	2013-12-27
14	2013-12-30	24.87	25.25	24.65	24.78	8841369	AAL	2013-12-30
15	2013-12-31	24.74	25.25	24.63	25.25	7168395	AAL	2013-12-31
16	2014-01-02	25.07	25.82	25.06	25.36	8998943	AAL	2014-01-02
17	2014-01-03	25.75	26.75	25.51	26.54	13836062	AAL	2014-01-03
18	2014-01-06	26.62	27.20	26.60	27.03	11272273	AAL	2014-01-06
19	2014-01-07	27.20	27.40	26.67	26.90	11288775	AAL	2014-01-07
20	2014-01-08	26.37	27.68	26.35	27.63	15736891	AAL	2014-01-08
21	2014-01-09	28.24	29.60	28.20	29.42	26056445	AAL	2014-01-09
22	2014-01-10	29.05	29.83	28.75	29.35	12824160	AAL	2014-01-10
23	2014-01-13	29.18	29.53	28.58	28.65	10591701	AAL	2014-01-13
24	2014-01-14	28.75	29.04	28.71	28.87	10601529	AAL	2014-01-14
25	2014-01-15	28.90	29.44	28.70	28.84	11192558	AAL	2014-01-15
26	2014-01-16	28.94	29.39	28.70	29.34	7034698	AAL	2014-01-16
27	2014-01-17	29.30	30.02	29.17	30.02	18304949	AAL	2014-01-17
28	2014-01-21	30.66	30.80	30.20	30.66	10612821	AAL	2014-01-21
29	2014-01-22	30.71	31.24	30.65	31.20	7583631	AAL	2014-01-22
896	2017-06-30	49.92	50.51	49.60	50.32	6618701	AAL	2017-06-30

	Date	Open	High	Low	Close	Volume	Name	trading_date
897	2017-07-03	50.78	51.28	50.37	50.39	2906524	AAL	2017-07-03
898	2017-07-05	50.44	51.54	50.18	51.26	5157516	AAL	2017-07-05
899	2017-07-06	50.97	52.58	50.86	52.05	7021422	AAL	2017-07-06
900	2017-07-07	52.30	53.38	52.18	53.03	6596952	AAL	2017-07-07
901	2017-07-10	52.98	53.16	52.23	52.66	4600014	AAL	2017-07-10
902	2017-07-11	52.58	52.66	51.47	51.61	4545699	AAL	2017-07-11
903	2017-07-12	53.12	53.82	52.45	53.80	8348363	AAL	2017-07-12
904	2017-07-13	53.40	54.48	53.15	53.81	5346686	AAL	2017-07-13
905	2017-07-14	53.80	54.28	53.34	54.22	4537895	AAL	2017-07-14
906	2017-07-17	54.21	54.28	53.85	53.87	3727804	AAL	2017-07-17
907	2017-07-18	53.83	53.84	53.02	53.15	4101431	AAL	2017-07-18
908	2017-07-19	52.26	53.19	51.78	52.61	5774713	AAL	2017-07-19
909	2017-07-20	52.72	52.78	52.10	52.34	4836234	AAL	2017-07-20
910	2017-07-21	52.13	52.55	51.45	51.91	4544423	AAL	2017-07-21
911	2017-07-24	51.79	52.03	51.24	51.28	4876393	AAL	2017-07-24
912	2017-07-25	51.50	51.90	50.54	50.61	4484890	AAL	2017-07-25
913	2017-07-26	50.63	51.16	50.01	51.01	4776112	AAL	2017-07-26
914	2017-07-27	50.34	50.34	48.75	50.00	10260337	AAL	2017-07-27
915	2017-07-28	49.02	50.67	48.73	50.49	9153445	AAL	2017-07-28
916	2017-07-31	50.85	51.23	50.04	50.44	6062854	AAL	2017-07-31
917	2017-08-01	51.13	52.00	50.32	51.06	5045298	AAL	2017-08-01
918	2017-08-02	50.89	51.18	49.90	50.45	4679746	AAL	2017-08-02
919	2017-08-03	50.56	51.20	50.36	50.55	3231366	AAL	2017-08-03
920	2017-08-04	50.67	50.92	50.39	50.80	2993515	AAL	2017-08-04
921	2017-08-07	50.82	51.13	50.46	50.58	3016726	AAL	2017-08-07
922	2017-08-08	50.68	50.78	49.89	50.00	4274416	AAL	2017-08-08
923	2017-08-09	49.74	49.92	49.23	49.40	5020809	AAL	2017-08-09
924	2017-08-10	49.03	49.34	48.19	48.55	5441375	AAL	2017-08-10
925	2017-08-11	48.50	48.78	47.44	48.35	5610688	AAL	2017-08-11

```
#read_csv('pollution.csv', header=0, index_col=0)
         dataset = dataset.drop('Name', 1)
         dataset = dataset.drop('Date', 1)
         dataset.set_index(['trading_date'], inplace=True)
         values = dataset.values
                                                  Traceback (most recent call last)
         NameError
         <ipython-input-1-96b402d84e02> in <module>()
               1 # load dataset
               2 #read_csv('pollution.csv', header=0, index_col=0)
         ----> 3 dataset = dataset.drop('Name', 1)
               4 dataset = dataset.drop('Date', 1)
               5 dataset.set_index(['trading_date'], inplace=True)
         NameError: name 'dataset' is not defined
In [10]:
        # integer encode direction
         encoder = LabelEncoder()
         values[:,4] = encoder.fit_transform(values[:,4])
         # ensure all data is float
         values = values.astype('float32')
         # normalize features
         scaler = MinMaxScaler(feature range=(0, 1))
         scaled = scaler.fit_transform(values)
         # frame as supervised learning
         reframed = series_to_supervised(scaled, 1, 1)
         # drop columns we don't want to predict
         reframed.drop(reframed.columns[[5, 6, 7, 9]], axis=1, inplace=True)
         print(reframed.head())
            var1(t-1) var2(t-1) var3(t-1) var4(t-1) var5(t-1)
                                                                   var4(t)
                                                        0.997838 0.008986
            0.000000
                      0.008701
                                 0.000000 0.000000
         1
            0.020287 0.000000 0.030563 0.008986
                                                        0.934054 0.044608
         2
         3
            0.050874 0.065421 0.061127 0.044608
                                                        0.992432 0.027279
            0.073346 0.049629
                                  0.063674
                                             0.027279
                                                        0.948108 0.052311
            0.059301
                       0.036416
                                  0.065903 0.052311
                                                        0.753514 0.064506
In [11]:
        values = reframed.values
         train len = int(len(values) * 0.80)
         test_len = len(values) - train_len
In [14]: print(train_len)
         print(test_len)
         740
         185
In [12]: train = values[0:train len]
         test = values[train len:]
```

In [1]: # Load dataset

```
In [16]:
         print("Train")
         print(train)
         print("Test")
         print(test)
         Train
         [[ 0.
                                                            0.99783784 0.00898588]
                        0.00870132 0.
                                                0.
          [ 0.0202871
                        0.
                                    0.03056347 0.00898588
                                                            0.93405408
                                                                        0.04460847]
          [ 0.05087388  0.06542063  0.06112701  0.04460847
                                                            0.99243248 0.0272786 ]
          . . . ,
          [ 0.58863914  0.5871737
                                    0.59535176  0.56803596  0.47027028  0.58825421]
          [ 0.56866407  0.57299387  0.58038837
                                                0.58825421
                                                                        0.60333776]
                                                            0.24108109
          [ 0.59800243  0.59426367
                                    0.6217764
                                                0.60333776
                                                            0.37513515
                                                                        0.64698339]]
         Test
         [[ 0.66011226  0.64808249  0.64119703  0.64698339  0.80216217  0.63703477]
          [ 0.64950061  0.63261354  0.65202159
                                                0.63703477
                                                            0.19351351
                                                                        0.68132234]
          0.64107358 0.66645181 0.65584201 0.68132234
                                                            0.45297298 0.695122 ]
          ...,
          [ 0.83739066  0.82533026  0.84176999
                                                0.81514776
                                                            0.04108108 0.79589236]
          [ 0.80805242  0.79761517  0.82075769
                                                0.79589236
                                                            0.08972973 0.7686137 ]
          [ 0.78589249  0.77892363  0.78764719  0.7686137
                                                            0.12
                                                                        0.76219511]]
In [22]: X_train = train[:, :-1]
         y_train = train[:, -1]
         X test = test[:, :-1]
         y_test = test[:, -1]
         # reshape
         X train = X train.reshape((X train.shape[0], 1, X train.shape[1]))
         X_test = X_test.reshape((X_test.shape[0], 1, X_test.shape[1]))
         print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)
         (740, 1, 5) (740,) (185, 1, 5) (185,)
In [35]:
         from keras.models import Sequential
         from keras.layers import Dense
         from keras.layers import LSTM
         from numpy import concatenate
         from sklearn.metrics import mean squared error
         rnn_model = Sequential()
In [25]:
         rnn_model.add(LSTM(50, input_shape=(X_train.shape[1], X_train.shape[2])))
         rnn model.add(Dense(1))
         rnn_model.compile(loss='mae', optimizer='adam')
```

In [27]: history = rnn_model.fit(X_train, y_train, epochs=50, batch_size=72, validation
 _data=(X_test, y_test), verbose=2, shuffle=False)

```
Train on 740 samples, validate on 185 samples
Epoch 1/50
0s - loss: 0.0518 - val loss: 0.0630
Epoch 2/50
0s - loss: 0.0478 - val_loss: 0.0566
Epoch 3/50
0s - loss: 0.0440 - val loss: 0.0488
Epoch 4/50
0s - loss: 0.0405 - val loss: 0.0424
Epoch 5/50
0s - loss: 0.0374 - val_loss: 0.0362
Epoch 6/50
0s - loss: 0.0347 - val_loss: 0.0304
Epoch 7/50
0s - loss: 0.0324 - val_loss: 0.0264
Epoch 8/50
0s - loss: 0.0306 - val loss: 0.0247
Epoch 9/50
0s - loss: 0.0291 - val_loss: 0.0234
Epoch 10/50
0s - loss: 0.0281 - val loss: 0.0231
Epoch 11/50
0s - loss: 0.0275 - val loss: 0.0225
Epoch 12/50
0s - loss: 0.0270 - val_loss: 0.0223
Epoch 13/50
0s - loss: 0.0266 - val loss: 0.0224
Epoch 14/50
0s - loss: 0.0264 - val loss: 0.0224
Epoch 15/50
0s - loss: 0.0263 - val_loss: 0.0224
Epoch 16/50
0s - loss: 0.0261 - val loss: 0.0224
Epoch 17/50
0s - loss: 0.0260 - val_loss: 0.0227
Epoch 18/50
0s - loss: 0.0260 - val loss: 0.0225
Epoch 19/50
0s - loss: 0.0259 - val loss: 0.0227
Epoch 20/50
0s - loss: 0.0259 - val_loss: 0.0226
Epoch 21/50
0s - loss: 0.0259 - val_loss: 0.0229
Epoch 22/50
0s - loss: 0.0258 - val loss: 0.0227
Epoch 23/50
0s - loss: 0.0258 - val_loss: 0.0231
Epoch 24/50
0s - loss: 0.0258 - val_loss: 0.0228
Epoch 25/50
0s - loss: 0.0258 - val loss: 0.0231
Epoch 26/50
0s - loss: 0.0257 - val_loss: 0.0229
Epoch 27/50
0s - loss: 0.0257 - val_loss: 0.0232
Epoch 28/50
```

0s - loss: 0.0257 - val_loss: 0.0230

```
Epoch 29/50
0s - loss: 0.0257 - val_loss: 0.0232
Epoch 30/50
0s - loss: 0.0257 - val_loss: 0.0230
Epoch 31/50
0s - loss: 0.0257 - val_loss: 0.0232
Epoch 32/50
0s - loss: 0.0256 - val_loss: 0.0230
Epoch 33/50
0s - loss: 0.0256 - val loss: 0.0233
Epoch 34/50
0s - loss: 0.0256 - val_loss: 0.0230
Epoch 35/50
0s - loss: 0.0256 - val_loss: 0.0233
Epoch 36/50
0s - loss: 0.0256 - val loss: 0.0230
Epoch 37/50
0s - loss: 0.0256 - val_loss: 0.0233
Epoch 38/50
0s - loss: 0.0256 - val_loss: 0.0229
Epoch 39/50
0s - loss: 0.0256 - val loss: 0.0235
Epoch 40/50
0s - loss: 0.0255 - val_loss: 0.0229
Epoch 41/50
0s - loss: 0.0255 - val_loss: 0.0234
Epoch 42/50
0s - loss: 0.0255 - val_loss: 0.0229
Epoch 43/50
0s - loss: 0.0255 - val_loss: 0.0235
Epoch 44/50
0s - loss: 0.0255 - val_loss: 0.0229
Epoch 45/50
0s - loss: 0.0255 - val_loss: 0.0235
Epoch 46/50
0s - loss: 0.0254 - val_loss: 0.0230
Epoch 47/50
0s - loss: 0.0254 - val_loss: 0.0234
Epoch 48/50
0s - loss: 0.0254 - val_loss: 0.0229
Epoch 49/50
0s - loss: 0.0254 - val_loss: 0.0235
Epoch 50/50
0s - loss: 0.0254 - val loss: 0.0228
```

```
plt.plot(history.history['loss'], label='train')
In [30]:
          plt.plot(history.history['val_loss'], label='test')
          plt.legend()
         plt.show()
          0.065
                                                        train
          0.060
                                                        test
          0.055
          0.050
          0.045
          0.040
          0.035
          0.030
          0.025
                 Ó
                         10
                                  20
                                          30
                                                   40
                                                           50
In [32]:
         yhat = rnn_model.predict(X_test)
         X_test = X_test.reshape((X_test.shape[0], X_test.shape[2]))
          inv_yhat = concatenate((yhat, X_test[:, 1:]), axis=1)
          inv_yhat = scaler.inverse_transform(inv_yhat)
          inv_yhat = inv_yhat[:,0]
In [34]: y_test = y_test.reshape((len(y_test), 1))
         inv_y = concatenate((y_test, X_test[:,1:]), axis=1)
         inv_y = scaler.inverse_transform(inv_y)
          inv_y = inv_y[:, 0]
In [ ]: rmse = sqrt(mean)
```

l;asjfsdlk f

In []:

This code is for comparing the different columns of the raw data.

```
In [ ]: df[['Open', 'High', 'Low', 'Close']].plot()
    plt.show()
    df['Volume'].plot()
    plt.show()
```

The following is graphing a few of the graphs with the opening price and the volume on one graph to compare with two different axis'. I thought to do this as a comparison between the opening price (which all the raw data features follow roughly the same line) and the volume feature. Since the volume feature is important. [http://www.investopedia.com/terms/v/volume.asp (http://www.investopedia.com/terms/v/volume.asp)]

```
In [ ]: def getting preprocessed data(symbol):
                csv_file = '{}/{}_data.csv'.format(directory, symbol)
                df = pd.read csv(csv file)
                df = df.drop('Name', 1)
                df.set_index('Date', inplace=True)
                # below was found at https://stackoverflow.com/questions/29314033/pyth
        on-pandas-dataframe-remove-empty-cells
                df['Open'].replace('', np.nan, inplace=True)
                df.dropna(subset=['Open'], inplace=True)
                return df
        def plotting_stocks(symbols_list, amount_of_stocks=0):
            if amount_of_stocks == 0:
                amount of stocks = len(symbols list)
            for symbol in symbols_list[:amount_of_stocks]:
                fig, ax = plt.subplots()
                fig.subplots_adjust(right=0.7)
                df = getting_preprocessed_data(symbol)
                print(symbol)
                df.Open.plot(ax=ax, style='b-', figsize=(20,10))
                # same ax as above since it's automatically added on the right
                df.Volume.plot(ax=ax, style='r-', secondary_y=True, figsize=(20,10))
                # add Legend --> take advantage of pandas providing us access
                # to the line associated with the right part of the axis
                #ax.legend([ax.get lines()[0], ax.get lines()[0]], ['Open','Volume'],
         bbox to anchor=(1.5, 0.5)
                plt.show()
                #below is the Daily Returns calculation to put into the Sharpe Ratio.
                df preprocessed = df.assign(Daily Returns = np.divide((df.Open - df.Cl
        ose), df.Close) * 100)
                #Below is the calculation for the Sharpe Ratio column.
                df_preprocessed = df_preprocessed.assign(Sharpe_Ratio = np.divide((df_
        preprocessed.Daily_Returns - 0.046), np.std(np.array([df_preprocessed.Open, df
        _preprocessed.High, df_preprocessed.Low, df_preprocessed.Close]))))
                #Below is the rate of change (momentum) for the specific stock.
                df preprocessed = df preprocessed.assign(Rate of Change = (np.divide(d
        f preprocessed.Close, df preprocessed.Open) - 1) * 100)
                #df.plot.scatter(x='Open', y='Volume', label="AAL")
                log df = np.log(df)
                log df.plot.scatter(x='Volume', y='Open', label="AAL", figsize=(20,10
        ))
                plt.show()
                df_preprocessed.plot.scatter(x='Open', y='Sharpe_Ratio', label="Sharpe
         Ratio Open", figsize=(20,10))
                plt.show()
                df_preprocessed.plot.scatter(x='Volume',y='Sharpe_Ratio', label="Sharp
        e Ratio Close", figsize=(20,10), use index=True)
                plt.show()
```

```
In [ ]: # printing out the first four stocks to get an idea of how each stock is indiv
    idually represented.
    plotting_stocks(symbols_list, 10)
```

```
df.plot.scatter(x='Open', y='Volume', label="AAL")
log df = np.log(df) log df.plot.scatter(x='Volume', y='Open', label="AAL", figsize=(20,10)) plt.show()
log_df.plot.scatter(x='Volume', y='Close', label="AAL", figsize=(20,10)) plt.show()
log df.plot(x=log df.index, y='Open', label="AAL", figsize=(20,10), use index=True, style='.') plt.show()
    In [ ]: #below is the Daily Returns calculation to put into the Sharpe Ratio.
             df_preprocessed = df.assign(Daily_Returns = np.divide((df.Open - df.Close), df
             .Close) * 100)
    In [ ]: #Below is the calculation for the Sharpe Ratio column.
             df_preprocessed = df_preprocessed.assign(Sharpe_Ratio = np.divide((df_preproce
             ssed.Daily Returns - 0.046), np.std(np.array([df preprocessed.Open, df preproc
             essed.High, df_preprocessed.Low, df_preprocessed.Close]), ddof=1)))
    In [ ]:
            #Below is the rate of change for the specific stock.
             df_preprocessed = df_preprocessed.assign(Rate_of_Change = (np.divide(df_prepro
             cessed.Close, df preprocessed.Open) - 1) * 100)
    In [ ]: df_preprocessed.plot.scatter(x='Volume', y='Sharpe_Ratio', label="AAL", figsiz
             e=(20,10)
             plt.show()
    In [ ]: from IPython.display import display
             display(df_preprocessed.head(n=1))
    In [ ]: # I am using some of the techniques I learned from previous projects. The bel
             ow is from the Finding Donors Project.
             closing = df preprocessed['Close'].astype(int)
             features = df preprocessed.drop('Close', axis = 1)
             #closing_raw
             #features raw
```

```
In [ ]: from sklearn.model_selection import train_test_split
    from sklearn.svm import SVC
    from sklearn.metrics import accuracy_score

        X_train, X_test, y_train, y_test = train_test_split(features, closing, test_si
        ze=0.2, random_state=0)
        print("Training set has {} samples.".format(X_train.shape[0]))

In [ ]: clf = SVC(random_state=2)
        learner = clf.fit(X_train, y_train)

In [ ]: pred = clf.predict(X_test)
        accuracy = accuracy_score(y_test, pred)*100
        print("Accuracy is: {:.4f}%".format(accuracy))
```

This next section will be the creation of the RNN-LSTM model.

Some information gathered from https://machinelearningmastery.com (https://machine

From my research and many hours of trial and error I have discovered that the preprocessing needs to be different for the RNN-LSTM as compared to the SVC. https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/)

In []:

kaldkfjasdfklj

```
In [ ]: features_rnn = np.array(features)
    closing_rnn = np.array(closing)

    features_train_len = int(len(features_rnn) * 0.80)
        features_test_len = int(len(features_rnn) - features_train_len)

        X_train = features_rnn[0:features_train_len]
        X_test = features_rnn[features_test_len:len(features_rnn)]

        y_train = closing_rnn[0:features_train_len]
        y_test = closing_rnn[features_test_len:len(closing_rnn)]

In [ ]: X_train = X_train.reshape(1, features_train_len, 7)
        y_train = y_train.reshape(1, features_train_len, 1)
```

```
In [ ]: from keras.models import Sequential
    from keras.layers import Dense
    from keras.layers import LSTM

In [ ]: rnn_model = Sequential()
    rnn_model.add(LSTM(32, input_shape=(740, 7)))
    rnn_model.add(Dense(1))

In [ ]: rnn_model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metric
    s=['accuracy'])

In [ ]: rnn_model.fit(X_train, y_train, epochs=100)
```