Examenul de bacalaureat 2012 Proba E.c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$\lg 100 + \lg \frac{1}{10} = \lg 10 =$	3 p
	=1	2 p
2.	f(-1) = 3, f(0) = 2, f(1) = 1	3 p
	$Im f = \{1, 2, 3\}$	2 p
3.	$x_{v} = -\frac{b}{2a} = -1$	2p
	$y_v = -\frac{\Delta}{4a} = -2$	3 p
4.	$3^{2x+1} = 3^2$	2p
	$3^{2x+1} = 3^2$ $2x+1=2 \Leftrightarrow x = \frac{1}{2}$	3 p
	$AB = \sqrt{(2-1)^2 + (0-2)^2} =$	3 p
	$=\sqrt{5}$	2 p
6.	$\sin 10^{\circ} = \cos 80^{\circ}$	2p
	$\sin^2 80^\circ + \cos^2 80^\circ = 1$	3 p

SUBIECTUL al II-lea (30 de puncte)

a)	$x \circ y = xy - \frac{1}{3}x - \frac{1}{3}y + \frac{1}{9} + \frac{3}{9} =$	1p
	$=x\left(y-\frac{1}{3}\right)-\frac{1}{3}\left(y-\frac{1}{3}\right)+\frac{1}{3}=$	2 p
	$= \left(x - \frac{1}{3}\right) \left(y - \frac{1}{3}\right) + \frac{1}{3} \text{ pentru orice } x, y \in M$	2 p
b)	$x \circ y = xy - \frac{1}{3}x - \frac{1}{3}y + \frac{4}{9}$	2p
	$y \circ x = yx - \frac{1}{3}y - \frac{1}{3}x + \frac{4}{9}$	2 p
	Finalizare	1 p
c)	$(x \circ y) \circ z = \left(x - \frac{1}{3}\right)\left(y - \frac{1}{3}\right)\left(z - \frac{1}{3}\right) + \frac{1}{3}$, pentru orice $x, y, z \in M$	2p
	$x \circ (y \circ z) = \left(x - \frac{1}{3}\right)\left(y - \frac{1}{3}\right)\left(z - \frac{1}{3}\right) + \frac{1}{3}$, pentru orice $x, y, z \in M$	2 p
	Finalizare	1p

	·	
d)	$x \circ e = e \circ x$, pentru orice $x \in M$	1p
	$x \circ e = x \Rightarrow xe - \frac{1}{3}x - \frac{1}{3}e + \frac{4}{9} = x \Rightarrow \left(x - \frac{1}{3}\right) \cdot e = \frac{4}{3} \cdot \left(x - \frac{1}{3}\right)$, pentru orice $x \in M$	3p
	$e = \frac{4}{3}$	1p
e)	$x \circ x = \frac{4}{9} \Rightarrow x^2 - \frac{2}{3}x = 0$	2p
	$x = 0 \text{sau } x = \frac{2}{3}$	2p
	Finalizare: $x = \frac{2}{3}$	1p
f)	$\left(a+\frac{1}{3}\right)\circ 3=\frac{8a+1}{3}$	2p
	$\left(a+\frac{1}{3}\right)\circ 3\circ \left(a+\frac{1}{3}\right) = \left(\frac{8a+1}{3}\right)\circ \left(a+\frac{1}{3}\right) = \frac{8a^2+1}{3}, \text{ pentru orice } a\in M$	3р

SUBIECTUL al III-lea (30 de puncte)

a) $A(2) = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$ $2p$ $det(A(2)) = 6$ $3p$ b) $det(A(m)) = m^3 - 1 + 1 - m + m - m = 2p$ $= m^3 - m$ $2p$ $m(m-1)(m+1) = 0 \Rightarrow m^3 - m = 0$ $m(m-1)(m+1) = 0 \Rightarrow m = -1, m = 0, m = 1$ d) $m = 3 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 3y - z = 1 \\ -x + y + 3z = 1 \end{cases}$ $2p$ $verificare: (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \text{ este soluție a sistemului}$ $3p$ e) $m = 2 \Rightarrow \begin{cases} 2x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ $2p$ $x = \frac{1}{2}, y = \frac{1}{2}, z = \frac{1}{2}$ $4p$ f) $m = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$ $2p$ Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuație se obține $0 = 1$, imposibil, deci sistemul (S) nu are soluții pentru	DCD.	iECTUL al III-lea (30 de puncio	<u>-) </u>
b) $\det(A(m)) = m^3 - 1 + 1 - m + m - m = 2p$ $= m^3 - m$ 2p $d(x) = m + m - m = 2p$ $m(m-1)(m+1) = 0 \Rightarrow m = -1, m = 0, m = 1$ 2p $m = 3 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 3y - z = 1 \\ -x + y + 3z = 1 \end{cases}$ 2p $m = 2 \Rightarrow \begin{cases} 2x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 2 \Rightarrow \begin{cases} 2x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 2x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \end{cases}$ 2p $m = 0 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 2y - z = 1 \end{cases}$ 2p	a)	$A(2) = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$	2p
c) $\det(A(m)) = 0 \Rightarrow m^3 - m = 0$ $\det(A(m)) = 0 \Rightarrow m^3 - m = 0$ $\det(M(m)) = 0 \Rightarrow m = -1, m = 0, m = 1$ d) $\tan 3 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 3y - z = 1 \\ -x + y + 3z = 1 \end{cases}$ $\cot 3x + y - z = 1$ $\cot 3x + y + y - z = 1$ $\cot 3x + y + y + y + y + y + y + y + y + y + $		$\det(A(2)) = 6$	3 p
c) $\det(A(m)) = 0 \Rightarrow m^3 - m = 0$ $m(m-1)(m+1) = 0 \Rightarrow m = -1, m = 0, m = 1$ 2p $m = 3 \Rightarrow \begin{cases} 3x + y - z = 1 \\ -x + y + 3z = 1 \end{cases}$ 2p $\text{Verificare: } \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \text{ este soluție a sistemului}$ 3p $m = 2 \Rightarrow \begin{cases} 2x + y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ $x = \frac{1}{2}, y = \frac{1}{2}, z = \frac{1}{2}$ 4p $m = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$ Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuatie se obține $0 = 1$, imposibil, deci sistemul (S) nu are soluții pentru	b)	$\det(A(m)) = m^3 - 1 + 1 - m + m - m =$	2p
c) $\det(A(m)) = 0 \Rightarrow m^3 - m = 0$ $2p$ $m(m-1)(m+1) = 0 \Rightarrow m = -1, m = 0, m = 1$ d) $m = 3 \Rightarrow \begin{cases} 3x + y - z = 1 \\ x + 3y - z = 1 \\ -x + y + 3z = 1 \end{cases}$ $2p$ Verificare: $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ este soluție a sistemului e) $m = 2 \Rightarrow \begin{cases} 2x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ $2p$ f) $m = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$ $2p$ Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuatie se obține $0 = 1$, imposibil, deci sistemul (S) nu are soluții pentru		$=m^3-m$	3 p
d)	c)		_
$m = 3 \Rightarrow \begin{cases} x + 3y - z = 1 \\ -x + y + 3z = 1 \end{cases}$ $\text{Verificare: } \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \text{ este soluție a sistemului}$ \mathbf{e} $m = 2 \Rightarrow \begin{cases} 2x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ $x = \frac{1}{2}, y = \frac{1}{2}, z = \frac{1}{2}$ $m = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$ $\text{Scăzând primele 2 ecuații se obține } y = x$ $\text{Înlocuind în a treia ecuatie se obține } 0 = 1, imposibil, deci sistemul (S) nu are soluții pentru$		$m(m-1)(m+1) = 0 \Rightarrow m = -1, m = 0, m = 1$	3p
Verificare: $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ este soluție a sistemului appearate est soluție a sistemului by $m = 2 \Rightarrow \begin{cases} 2x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ $x = \frac{1}{2}, y = \frac{1}{2}, z = \frac{1}{2}$ f) $m = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$ Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuatie se obține $0 = 1$, imposibil, deci sistemul (S) nu are soluții pentru	d)	$\int 3x + y - z = 1$	
Verificare: $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ este soluție a sistemului appearate est soluție a sistemului by $m = 2 \Rightarrow \begin{cases} 2x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ $x = \frac{1}{2}, y = \frac{1}{2}, z = \frac{1}{2}$ f) $m = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$ Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuatie se obține $0 = 1$, imposibil, deci sistemul (S) nu are soluții pentru		$m=3 \Rightarrow \begin{cases} x+3y-z=1 \end{cases}$	2 p
e) $m = 2 \Rightarrow \begin{cases} 2x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$ 1p $x = \frac{1}{2}, y = \frac{1}{2}, z = \frac{1}{2}$ 4p f) $m = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$ Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuatie se obtine $0 = 1$, imposibil, deci sistemul (S) nu are solutii pentru		$\left(-x+y+3z=1\right)$	
f) $x = \frac{1}{2}, y = \frac{1}{2}, z = \frac{1}{2}$ $m = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$ Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuatie se obtine $0 = 1$, imposibil, deci sistemul (S) nu are solutii pentru			3p
$x = \frac{1}{2}, y = \frac{1}{2}, z = \frac{1}{2}$ $m = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$ Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuatie se obtine $0 = 1$, imposibil, deci sistemul (S) nu are solutii pentru	e)	$\int 2x + y - z = \overline{1}$	
$x = \frac{1}{2}, y = \frac{1}{2}, z = \frac{1}{2}$ $m = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$ Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuatie se obtine $0 = 1$, imposibil, deci sistemul (S) nu are solutii pentru		$m=2 \Rightarrow \begin{cases} x+2y-z=1 \end{cases}$	
$m = 0 \Rightarrow \begin{cases} x - z = 1 \\ -x + y = 1 \end{cases}$ Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuatie se obtine $0 = 1$, imposibil, deci sistemul (S) nu are solutii pentru		-x + y + 2z = 1	lp
$m = 0 \Rightarrow \begin{cases} x - z = 1 \\ -x + y = 1 \end{cases}$ Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuatie se obtine $0 = 1$, imposibil, deci sistemul (S) nu are solutii pentru		$x = \frac{1}{2}, \ y = \frac{1}{2}, \ z = \frac{1}{2}$	4 p
$m = 0 \Rightarrow \begin{cases} x - z = 1 \\ -x + y = 1 \end{cases}$ Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuatie se obtine $0 = 1$, imposibil, deci sistemul (S) nu are solutii pentru	f)	y-z=1	
Scăzând primele 2 ecuații se obține $y = x$ Înlocuind în a treia ecuație se obține $0 = 1$, imposibil, deci sistemul (S) nu are soluții pentru		$m=0 \Rightarrow \begin{cases} x-z=1 \end{cases}$	1p
Înlocuind în a treia ecuație se obține $0=1$, imposibil, deci sistemul (S) nu are soluții pentru		-x+y=1	
Înlocuind în a treia ecuație se obține 0=1, imposibil, deci sistemul (S) nu are soluții pentru			2p
m=0			2p