

Human Resources Analysis

Human Resources Analysis

Team
Mahmoud Ramadan
Marwan Adnan Hamza Abd El Wahab
Mohamed Medhat Elbahrawy
Sara Ahmed Mohamed Taha Samaha

Team actions

Mohamed/ Build Data Model, Data Cleaning, and Preprocessing.

Marawan/Analysis Questions Phase.

Mahmoud/Forecasting Questions Phase.

Sara/Visualization Dashboard and Final Presentation.

1-SQL

Build Data Model

2-Data Cleaning, and Preprocessing

3- Analysis Questions Phase By Python

Who Are The Top 10 Earning Employees?

How Many Employees Are There In Each Department?

```
How Many Employees Are There In Each Department?
      No of employees = employee['Department'].value counts()
      No of employees
    Department
    Technology
                    961
    Sales
                    446
                     63
    Human Resources
   Name: count, dtype: int64
       department = No of employees.index
      No of employees = No of employees.values
       # Creating the bar plot
       plt.bar(department, No of employees)
       plt.title("Number of Employees In Each Category")
       plt.show()
[155]
```


Is There Any Gender Discrimination Regarding The Hiring Process?

Is There Any Gender Discrimination Regarding The Hiring Process?

```
gender counts = employee['Gender'].value counts()
        gender counts
[213]
     Gender
     Female
                          675
    Male
                          651
    Non-Binary
                          124
    Prefer Not To Say
    Name: count, dtype: int64
        gender counts.plot.pie(autopct='%1.1f%%', figsize=(6, 6), startangle=90, colors=['#ff9999','#66b3ff','#99ff99',"#FFFF00"])
        plt.ylabel('')
        plt.title('Gender Distribution of Employees')
        plt.show()
                                                                                                                                      Made With Simplifi
```

What Are The Satisfaction Trends?

```
What Are The Satisfaction Trends?
        avg satisfaction = performance rating[['EnvironmentSatisfaction', 'JobSatisfaction',
                                     'RelationshipSatisfaction', 'WorkLifeBalance',
                                     'SelfRating', 'ManagerRating']].mean()
       avg satisfaction
[274]
    EnvironmentSatisfaction
                               3.872559
    JobSatisfaction
                               3.430616
    RelationshipSatisfaction
                               3.427336
    WorkLifeBalance
                               3.414667
    SelfRating
                               3.984051
    ManagerRating
                               3.473394
    dtype: float64
        performance rating[['EnvironmentSatisfaction', 'JobSatisfaction',
                   'RelationshipSatisfaction', 'WorkLifeBalance',
                   'SelfRating', 'ManagerRating']].boxplot(figsize=(10, 6))
        plt.title('Distribution of Satisfaction Levels')
        plt.ylabel('Satisfaction Score')
        plt.xticks(rotation=45)
       plt.show()
[197]
```


What Is The Correlation Between Satisfaction and Ratings?

Group by Department and calculate average satisfaction levels

Group by Department and calculate average satisfaction levels

satisfaction_by_department = performance_rating.merge(employee, left_on='EmployeeID', right_on='EmpID').groupby('Department')[['EnvironmentSatisfaction', 'JobS satisfaction_by_department

[285]

	EnvironmentSatisfaction	JobSatisfaction	RelationshipSatisfaction
Department			
Human Resources	3.861386	3.435644	3.353135
Sales	3.892508	3.422057	3.451838
Technology	3.863284	3.434578	3.420249

Python

#Merge performance data with employee data and group by Attrition

Correlation between work-life balance and satisfaction levels

Group by TrainingOpportunitiesTaken and calculate average satisfaction

Group by TrainingOpportunitiesTaken and calculate average satisfaction

```
satisfaction_by_training = performance_rating.groupby('TrainingOpportunitiesTaken')[['JobSatisfaction', 'RelationshipSatisfaction']].mean()
satisfaction_by_training

Python

JobSatisfaction RelationshipSatisfaction

TrainingOpportunitiesTaken

3.440135 3.439713

1 3.415680 3.436913

2 3.419255 3.399068

3 3.478333 3.400000
```


Group by Department and calculate average ratings

Group by Department and calculate average ratings

```
rating_by_department = performance_rating.merge(employee, left_on='EmployeeID', right_on='EmpID').groupby('Department')[['SelfRating', 'ManagerRating']].mean(rating_by_department
```

Pythor SalfDating ManaganDating

SelfRating ManagerRating
Department
Human Resources 3.990099 3.442244
Sales 3.973476 3.449977
Technology 3.988959 3.487432

Who Are The Most Performing Employees?

Who Are The Most Performing Employees?

RANDI OSWICK 539998

2217

```
merged_data = performance_rating.merge(employee, left_on='EmployeeID', right_on='EmpID')
top_performing_employees = merged_data.sort_values(by=['ManagerRating', 'SelfRating', 'Salary'], ascending=[False, False, False])
top_performing_employees[['Fullname', 'Salary']].head()

Python

Fullname Salary

1699 NORBIE MOSDILL 547204
3608 NORBIE MOSDILL 547204
2042 RODA COSTIN 546549
1588 LEONIDAS CLARKE-WILLIAMS 542695
```


Distribution of Job Satisfaction Across Departments

Distribution of Job Satisfaction Across Departments

```
    Distribution of Job Satisfaction Across Departments

    education_data = employee.merge_education_level, left_on='Education', right_on='ID'
    plt.figure(figsize=(8, 6))
    sns.barplot(x='Level', y='JobSatisfaction', data=education_data.merge(performance_rating, left_on='EmpID', right_on='EmployeeID'))
    plt.title('Job Satisfaction by Education Level')
    plt.xticks(rotation=45)
    plt.show().

Pytho

P
```


Grouping the data by DistanceFromHome and calculating the average Job Satisfaction

```
# Grouping the data by DistanceFromHome and calculating the average Job Satisfaction
average_satisfaction = merged_data.groupby('DistanceFromHome (KM)')['JobSatisfaction'].mean().reset_index()

# Line plot to show the trend of Job Satisfaction over DistanceFromHome
plt.figure(figsize=(10, 6))
sns.lineplot(x='DistanceFromHome (KM)', y='JobSatisfaction', data=average_satisfaction, marker='o')
plt.title('Average Job Satisfaction by Distance From Home')
plt.xlabel('Distance from Home (KM)')
plt.ylabel('Average Job Satisfaction')
plt.grid(True)
plt.show()
```


Forecasting Questions Phase.

Linear Regression: YearsAtCompany vs YearsSinceLastPromotion

