CS 430 Lecture 24 Activities

Relationships between items:

- 1-1 List, Stack, Queue
- 1-N Tree, Hierarchical
- N-N Any graph item can be related to any other item.

Opening Questions

- 1. Give an example NOT discussed in the video lecture of a problem that can be represented by a graph. The connections between airports.
- 2. If there is a path in a graph from a vertex back to itself, that is called a cycle¹.
- 3. Which representation of a graph, adjacency-list and adjacency-matrix, usually uses more memory and why?

Graphs

1. Draw the graph: A directed graph G = (V, E) where $V = \{1, 2, 3, 4, 5, 6\}$ and $E = \{(1, 2), (2, 2), (2, 4), (2, 5), (4, 1), (4, 5), (5, 4), (6, 3)\}$. What is the edge (2, 2) called?

The edge (2,2) is a self-loop.

2. Draw the graph: An undirected graph G = (V, E) where $V = \{1, 2, 3, 4, 5, 6\}$ and $E = \{\{1, 2\}, \{1, 5\}, \{2, 5\}, \{3, 6\}\}$. What is vertex 4 called? What is the difference about how an edge set E is denoted for an undirected graph? Are self-loops allowed in an undirected graph?

¹A path of one edge is called a self-loop.

A vertex that is has no edges (is not connected to anything) is isolated.² The difference between how an edge set E is denoted for an undirected graph versus a directed graph is that the directed graph is a tuple (where order matters) while an undirected graph is a set (where order doesn't matter). Self-loops are not allowed in an undirected graphs.

3. Define these terms:

- Vertex v is adjacent to vertex u in an undirected graph. There is an edge $\{u, v\}$ (which is equivalent to $\{v, u\}$).
- Vertex v is adjacent to vertex u in a directed graph. $(u, v) : u \to v$, which is not the same as (v, u).
- The degree of a vertex in an undirected graph. The number of edges touching the vertex.
- The degree of a vertex in a directed graph. There are two types of degrees.

Out Degree The number of edges leaving the vertex.

In **Degree** The number of edges entering the vertex.

The total degree is the sum of the In Degrees and Out Degrees.

- A path in an undirected graph. Sequences of edges from a vertex to a vertex where the reuse of edges is okay.
- A path in a directed graph. Sequence of edges in order of ordered pairs (following arrows).
- The length of a path. The number of edges on the path.
- v is reachable from u. There is a path from u to v.
- A simple path. A path with no reused vertices OR edges.
- A cycle in an undirected graph. What about a simple cycle? The path from a vertex to itself. A simple cycle is a cycle that doesn't reuse vertices or edges to get back to the original vertex (simple path back to the same vertex).
- A cycle in a directed graph. What about a simple cycle? The path in the ordered direction from a vertex to itself.
- Acyclic graph. No cycles in the graph.
- Connected undirected graph. Every vertex is reachable from every other vertex.
- Connected directed graph. Also known as a strongly connected graph. Every vertex is reachable (along edges in the correct direction) from every other vertex.

²In a directed graph, if the only connection a node has is to itself (a self-loop), then it is still considered isolated.

• Bipartite Graph. Separate the vertices into 2 sets. All edges go between the 2 sets. There are no edges between vertices in the same set.

Graph Implementations

4. What is the adjacency list implementation of these two graphs?

1	$\rightarrow 5 \rightarrow 2$
2	$ \rightarrow 1 \rightarrow 5 \rightarrow 4$
3	$\rightarrow 2 \rightarrow 4$
4	$\rightarrow 2 \rightarrow 3 \rightarrow 5$
5	$\rightarrow 1 \rightarrow 2 \rightarrow 4$

1	$\rightarrow 2 \rightarrow 5$
2	$\rightarrow 4$
3	$\rightarrow 2 \rightarrow 6$
4	$\rightarrow 5 \rightarrow 6$
5	
6	$\rightarrow 4$

No order to the list of vertices.

The arrows are representing a linked list of who the vertex is connected to (NOT a set of edges.)

Memory: O(|V| + |E|). Find if edge exists: O(|V|). Remember, the amount of memory needed for the undirected graph is greater for the undirected graph than the directed graph, since each edge in the undirected graph is represented twice, while each edge in the directed graph is represented once. Find the path using the adjacency list is $O(|V|^2)$.

5. What is the adjacency matrix implementation of the above two graphs? Memory: $O(|V|^2)$

	1	2	3	4	5
1	0	1	0	0	1
_				1	_
		Ĭ.			_
3	U	1	O	1	1
4	0	1	1	0	1
5	1	1	0	1	0
9	1	1	U	1	U

- 6. How do the two implementations handle a weighted graph? Edges have numbers, add weights to the adj list and adj matrix.
- 7. Two different representations of the graph data structure are discussed in the book, adjacency-list and adjacency-matrix. Please briefly discuss the runtime (in terms of |V| and |E| of these graph operations/algorithms using each implementation.) Assume vertices are labeled as integers.
 - What is the worst-case big-O runtime for checking to see if an edge from vertex u to vertex v exists? Adj list: O(V), Adj matrix: O(1)
 - How long does it take to compute the out-degree of every vertex of a directed graph?
 - How long does it take to compute the in-degree of every vertex of a directed graph?

Graph Traversals

A way to search/visit all the vertices in a graph. There is not a unique answer usually.

- Undirected graph if connected, all vertices will be visited.
- Directed graph Must be strongly connected to be able to visit all vertices.

Breadth first - visit vertices one edge from a given (or random) source, two edges from source, etc. Uses a queue and some way to make a vertex (white initially, gray when first visited and put in queue, black when out of queue), label a vertex how far from the source, and label a vertex with how its predecessor vertex was during the traversal.

8. Perform a breadth first search on this graph.

Algorithm 24.1 Breadth-First Search for Graphs

```
1: function BFS(G, s)
        for all vertex u \in V[G] - \{s\} do
 2:
             Color(u) \leftarrow WHITE
                                                                                                             ▶ Unvisited
 3:
             d[u] \leftarrow \infty
 4:
             \pi[u] \leftarrow \text{NIL}
 5:
        end for
 6:
 7:
         Color(s) \leftarrow GRAY
                                                                                    ⊳ First time seen, put in queue
        d[s] \leftarrow 0
                                                                                 \triangleright d is the distance from the start
 8:
        \pi[s] \leftarrow \text{NIL}
                                                                                                \triangleright \pi is the predecessor
 9:
        Q \leftarrow \emptyset
10:
        Enqueue(Q, s)
11:
        while Q \neq \emptyset do
12:
             u \leftarrow \text{Dequeue}(Q)
13:
             for all v \in AdJ(u) do
14:
                 if Color(v) == WHITE then
15:
                      Color(v) \leftarrow GRAY
16:
                      d[v] \leftarrow d[u] + 1
17:
                      \pi[v] \leftarrow u
18:
                      Engueue(Q, v)
19:
                 end if
20:
21:
             end for
             Color(u) \leftarrow BLACK
                                                                                    ▶ Last time seen, out of queue
22:
        end while
23:
24: end function
```