Investigating Effects of Insulin Estimation on Future Insulin Sensors' Design and Implication for AP Diabetes Management

Varuni Sarwal^{1,2}; Kelilah L. Wolkowicz¹, PhD; Sunil Deshpande¹, PhD; Joseph Wang, PhD³; Jordan E. Pinsker, MD⁴; Lori M. Laffel, MD, MPH⁵; Mary-Elizabeth Patti, MD, FACP⁵; Francis J. Doyle III¹, PhD; Eyal Dassau^{1,4,5}, PhD

Background and Aims:

Incorporation of an insulin sensor may help to improve performance of future AP algorithms by reducing severe hypoglycemic events. Optimal insulin measurement intervals were identified for a feedback-based threshold suspend safety-layer.

Method:

Personalized Kalman filter-estimated plasma insulin concentration (EPIC) measurements were used to supplement a zone model predictive control algorithm. Insulin delivery was suspended when both CGM was <140 mg/dL and EPIC values were greater than a personalized threshold based on fasting basal insulin concentrations. EPIC measurements occurred at 5-, 30-, 60-, 120-, and 180-minute intervals. Using the UVA/Padova Simulator, the controller was evaluated across ten *in-silico* subjects for three 8-hour, 50-gram carbohydrate scenarios: 1) sixty-minute exercise, induced via increasing glucose uptake rates, one hour after an announced meal, 2) meal size overestimation by 35% with carbohydrate ratio underestimated by 25%, and 3) announced meal (baseline).

Results:

Implementing the EPIC safety-layer, the mean percent time below 70 mg/dL decreased: from $8.09\pm9.08\%$ to $2.47\pm5.24\%$ for 5-minute, $7.07\pm7.75\%$ for 30-minute, $7.57\pm8.28\%$ for 60-minute, and $7.59\pm8.26\%$ for 120- through 180-minute intervals (scenario 1); from $5.07\pm5.33\%$ to $0.00\pm0.00\%$ for 5- through 30-minute, $0.87\pm2.76\%$ for 60-minute, $2.12\pm4.65\%$ for 120-minute, and $3.16\pm5.38\%$ for 180-minute intervals (scenario 2); and from $0.69\pm2.17\%$ to $0.00\pm0.00\%$ for 30- through 120-minute, while remaining at $0.69\pm2.17\%$ for 180-minute intervals (scenario 3). Infrequent measurements of 30- to 120- minutes resulted in slight performance degradation with increasing sample time.

¹ Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

² Indian Institute of Technology Delhi, New Delhi, India

³ Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA

⁴ Sansum Diabetes Research Institute, Santa Barbara, CA, USA

⁵ Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA

Table 1: Glycemic control without insulin information compared with various EPIC safety-layer measurement intervals. Data are shown as mean \pm standard deviation. *Indicates a p-value < 0.05.

1 Meal Scenario (8 hours)	EPIC Measurement Interval (min)	Time above 180 mg/dL (%)	p-value	Time between 70-180 mg/dL (%)	p-value	Time below 70 mg/dL (%)	p-value	Time below 63 mg/dL (%)	p-value	Time below 54 mg/dL (%)	p-value
Scenario 1: Exercise (60 minutes)	No EPIC	$\textbf{0.35} \pm \textbf{0.92}$	-	91.97 ± 9.12	-	$\textbf{8.09} \pm \textbf{9.08}$	-	$\textbf{5.65} \pm \textbf{7.51}$	-	$\textbf{1.35} \pm \textbf{2.63}$	-
	5	$\textbf{0.46} \pm \textbf{1.13}$	0.177	97.21 ± 5.02	0.063	2.47 ± 5.24	0.047*	$\textbf{1.68} \pm \textbf{3.56}$	0.085	$\textbf{0.48} \pm \textbf{1.51}$	0.111
	30	0.39 ± 0.99	0.168	93.01 ± 7.61	0.132	7.07 ± 7.75	0.034*	$\textbf{2.99} \pm \textbf{5.12}$	0.185	1.00 ± 2.46	0.175
	60	0.35 ± 0.92	NaN	92.54 ± 8.27	0.343	$\textbf{7.57} \pm \textbf{8.28}$	0.112	$\textbf{3.82} \pm \textbf{6.21}$	0.343	1.35 ± 2.63	NaN
	120	0.35 ± 0.92	NaN	92.54 ± 8.27	0.343	$\textbf{7.59} \pm \textbf{8.26}$	0.119	$\textbf{3.82} \pm \textbf{6.21}$	0.343	1.35 ± 2.63	NaN
	180	$\textbf{0.35} \pm \textbf{0.92}$	NaN	92.54 ± 8.27	0.343	$\textbf{7.59} \pm \textbf{8.26}$	0.119	$\textbf{3.82} \pm \textbf{6.21}$	0.343	$\textbf{1.35} \pm \textbf{2.63}$	NaN
Scenario 2: Overestimated Meal (35%) with Underestimated Carb Ratio (25%)	No EPIC	$\textbf{0.00} \pm \textbf{0.00}$	-	95.92 ± 5.17	-	5.07 ± 5.33	-	$\textbf{1.08} \pm \textbf{3.20}$	-	$\textbf{0.00} \pm \textbf{0.00}$	-
	5	0.00 ± 0.00	NaN	100.00 ± 0.00	0.0344*	$\textbf{0.00} \pm \textbf{0.00}$	0.015*	$\textbf{0.00} \pm \textbf{0.00}$	0.314	0.00 ± 0.00	NaN
	30	0.00 ± 0.00	NaN	100.00 ± 0.00	0.0344*	$\textbf{0.00} \pm \textbf{0.00}$	0.015*	$\textbf{0.00} \pm \textbf{0.00}$	0.314	0.00 ± 0.00	NaN
	60	0.00 ± 0.00	NaN	99.25 ± 2.37	0.0248*	$\textbf{0.87} \pm \textbf{2.76}$	0.011*	$\textbf{0.00} \pm \textbf{0.00}$	0.314	0.00 ± 0.00	NaN
	120	0.00 ± 0.00	NaN	98.02 ± 4.37	0.090	$\textbf{2.12} \pm \textbf{4.65}$	0.047*	$\textbf{0.83} \pm \textbf{2.42}$	0.343	$\textbf{0.00} \pm \textbf{0.00}$	NaN
	180	0.00 ± 0.00	NaN	97.11 ± 5.04	0.123	$\textbf{3.16} \pm \textbf{5.38}$	0.066	$\boldsymbol{1.08 \pm 3.20}$	NaN	$\textbf{0.00} \pm \textbf{0.00}$	NaN
Scenario 3: Announced Meal (Baseline)	No EPIC	$\textbf{1.72} \pm \textbf{3.65}$	-	97.88 ± 3.52	-	$\textbf{0.69} \pm \textbf{2.17}$	-	$\textbf{0.00} \pm \textbf{0.00}$	-	$\textbf{0.00} \pm \textbf{0.00}$	-
	5	$\textbf{2.18} \pm \textbf{4.62}$	0.176	97.92 ± 4.41	0.931	$\textbf{0.00} \pm \textbf{0.00}$	0.343	$\textbf{0.00} \pm \textbf{0.00}$	NaN	$\textbf{0.00} \pm \textbf{0.00}$	NaN
	30	$\textbf{1.87} \pm \textbf{3.96}$	0.209	98.25 ± 3.70	0.521	$\textbf{0.00} \pm \textbf{0.00}$	0.343	$\textbf{0.00} \pm \textbf{0.00}$	NaN	$\textbf{0.00} \pm \textbf{0.00}$	NaN
	60	1.72 ± 3.65	NaN	98.42 ± 3.34	0.343	0.00 ± 0.00	0.343	0.00 ± 0.00	NaN	0.00 ± 0.00	NaN
	120	1.72 ± 3.65	NaN	98.42 ± 3.34	0.343	$\textbf{0.00} \pm \textbf{0.00}$	0.343	$\textbf{0.00} \pm \textbf{0.00}$	NaN	0.00 ± 0.00	NaN
	180	$\textbf{1.72} \pm \textbf{3.65}$	NaN	97.86± 3.52	Na N	$\textbf{0.69} \pm \textbf{2.17}$	NaN	$\textbf{0.00} \pm \textbf{0.00}$	NaN	$\textbf{0.00} \pm \textbf{0.00}$	NaN

Conclusion:

The EPIC safety-layer *in-silico* prevented severe hypoglycemia during challenging scenarios without significant rebound hyperglycemia. Future insulin sensors could potentially be designed utilizing 30- to 120-minute measurement intervals.