Yi Sun Math 154 Solutions

Problem Set 7 Solutions

Note: Thanks to Kevin Lee for some of the solutions.

1. (a) Integrating the density function over the domain and transforming to polar coordinates, we find that

$$\int_{A} f(x,y) dx dy = C \int_{0}^{2\pi} \int_{0}^{1} \left(1 - (r\cos\theta)^{2} - (r\sin\theta)^{2} \right) r dr d\theta = 2C\pi \int_{0}^{1} \left(1 - r^{2} \right) r dr = 2C\pi \left(\frac{1}{2} - \frac{1}{4} \right) = \frac{\pi}{2}C = 1.$$

Thus we find $C = 2/\pi$.

- (b) Note that R represents the distance of the dart from the bullseye. We can use the same integration formula as before, but integrating r only until the desired radius to get the distribution function. This gives us $F_R(x) = \frac{2}{\pi} 2\pi \int_0^x r r^3 dr = 4\left(\frac{x^2}{2} \frac{x^4}{4}\right) = 2x^2 x^4$. The density function is $f_R(x) = F'_R(x) = 4x 4x^3$. (Note that both these values are only for the range [0, 1]; outside this range they are 0.)
- **2. First solution:** We have $\mathbb{E}\left(X^4\right) = \int_{-\infty}^{\infty} x^4 f_X\left(x\right) dx = \int_{-\infty}^{\infty} \frac{x^4}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx$. If we let $G\left(x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^4 e^{-k\frac{x^2}{2}} dx$, then note that

$$\begin{split} G\left(x\right)^2 &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (xy)^4 \, e^{-k\frac{x^2+y^2}{2}} dx dy = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{\infty} r^8 2^{-4} \sin^4\left(2\theta\right) \, e^{-k\frac{r^2}{2}} r \, dr d\theta \\ &= \frac{1}{2^5\pi} \left(\int_{0}^{2\pi} \sin^4\left(2\theta\right) d\theta \right) \left(\int_{0}^{\infty} r^9 e^{-k\frac{r^2}{2}} dr \right) = \frac{3}{2^7} \int_{0}^{\infty} r^9 e^{-k\frac{r^2}{2}} dr = \frac{3}{2^7} \frac{384}{k^5} = \frac{9}{k^5}, \end{split}$$

where the last integral is by repeated integration by parts. Thus, we find $\mathbb{E}\left(X^4\right) = \frac{1}{\sigma}G\left(\frac{1}{\sigma^2}\right) = 3\sigma^4$.

Second solution: Recall from class that $G(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-k\frac{x^2}{2}} dx = k^{-1/2}$. Then, we may compute

$$G''(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\frac{-x^2}{2}\right)^2 e^{-k\frac{x^2}{2}} dx = \frac{3}{4} k^{-5/2},$$

which means that $\mathbb{E}(X^4) = \frac{1}{\sigma}(4G''(1/\sigma^2)) = 3\sigma^4$.

3. First, we calculate the variance. Notice that

$$\mathbb{E}\left(X^2\right) = \int_{-\infty}^{\infty} \frac{x^2}{2} \lambda e^{-\lambda |x|} dx = \int_{0}^{\infty} x^2 \lambda e^{-\lambda x} dx = \int_{0}^{\infty} \frac{u^2}{\lambda^2} \lambda e^{-u} \frac{1}{\lambda} du = \frac{\Gamma\left(3\right)}{\lambda^2} = \frac{2}{\lambda^2},$$

where we've made the substitution $u = \lambda x$. Thus, the variance is $\mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{2}{\lambda^2}$ and $\sigma^2 = \frac{2}{\lambda^2} \implies \lambda = \sqrt{2}\sigma^{-1}$. We can then calculate

$$\mathbb{E}\left(X^{4}\right) = \int_{-\infty}^{\infty} \frac{x^{4}}{2} \lambda e^{-\lambda|x|} dx = \int_{0}^{\infty} x^{4} \lambda e^{-\lambda x} dx = \frac{\Gamma\left(5\right)}{\lambda^{4}} = \frac{24}{\lambda^{4}}$$

using the same trick. Substituting our value for λ gives us $6\sigma^4$.

4. We instead compute the probability that all of the angles are less than $x\pi$. This means that we can never travel more than x along the circle (which we will assume has circumference 1) before we hit the next point. Picking an arbitrary starting point (at location 0), the next point P_1 must be within x after and the previous point P_2 must be within x before. Thus, if we have a square of the possible positions of P_1 and P_2 , we get an $x \times x$ square. However, we also have the additional constraints that P_2 comes after P_1 and that they are within x of each other. This is represented by two diagonal lines with intercepts 0 and x respectively. However since P_1 and P_2 are symmetric, we

Yi Sun Math 154 Solutions

can mirror the entire valid region along the diagonal. Thus, we simply need to find the area between the diagonals with intercepts $\pm x$ in the two $x \times x$ squares. Clearly if $x > \frac{1}{2}$, then the squares actually overlap. Thus, the total area is actually everything except the $(1-x) \times (1-x)$ squares in the opposite corners and the $(1-x) \times (1-x)$ square partitioned off by the diagonals. Otherwise, if $x < \frac{1}{3}$ then the area is 0, and if $\frac{1}{3} \le x \le \frac{1}{2}$ then the two triangles compose a $(3x-1) \times (3x-1)$ square. Since this is the complement probability, subtracting from 1 gives us the desired function $b(x) = \begin{cases} 1 - (3x-1)^2 & \frac{1}{3} \le x \le \frac{1}{2} \\ 3(1-x)^2 & \frac{1}{2} < x \le 1 \end{cases}$.

To compute the density, we differentiate 1 - b(x) to get $f_X(x) = \begin{cases} 18x - 6 & \frac{1}{3} \le x \le \frac{1}{2} \\ 6 - 6x & \frac{1}{2} < x \le 1 \end{cases}$. The expected value is given by the formula $\int_{1/3}^{1/2} 18x^2 - 6x \, dx + \int_{1/2}^1 6x - 6x^2 \, dx = \frac{1}{9} + \frac{1}{2} = \frac{11}{18}$. Of course, each of these values is for our adjusted degrees. In terms of actual radians, the density function is actually $f_X(x) = \begin{cases} 18\frac{x}{\pi} - 6 & \frac{\pi}{3} \le x \le \frac{\pi}{2} \\ 6 - 6\frac{x}{\pi} & \frac{\pi}{2} \le x \le \pi \end{cases}$ and the expected value is $\frac{11\pi}{18}$.

5. (a) Recall that $f_{Y|X}(y,x) = \frac{f(x,y)}{f_X(x)}$. The marginal distribution function is then

$$f_X(x) = \int_x^\infty f(x, y) dy = \int_x^\infty \lambda^2 e^{-\lambda y} dy = \lambda e^{-\lambda x}.$$

Thus, $f_{Y|X}(y,x) = \lambda e^{-\lambda(y-x)}$. The expectation is then

$$\int_{x}^{\infty} y \lambda e^{-\lambda(y-x)} dy = \int_{0}^{\infty} (y+x) \lambda e^{-\lambda y} dy = \frac{1}{\lambda} + x$$

because the latter part is just the PDF of an exponential distribution.

(b) Now, we have

$$f_X = \int_0^\infty x e^{-x(y+1)} dy = -e^{-x(y+1)}|_0^\infty = e^{-x}.$$

Thus, $f_{Y|X}(y,x) = xe^{-xy}$. The expectation is

$$\int_{0}^{\infty} yxe^{-xy}dy = -ye^{-xy}|_{0}^{\infty} + \int_{0}^{\infty} e^{-xy}dy = \frac{1}{x}$$

via integration by parts.

6. (a) Since X and Y are uniformly distributed, we see that f(x,y) = C for some constant C. Integrating, we find that $\int_A f(x,y) dx dy = \int_0^1 \int_0^y C dy dx = C/2 = 1$. So we see that f(x,y) = C = 2. (b) Note that $\mathbb{P}(X > 1/2 \cap Y > 1/2) = 0$, but $\mathbb{P}(X > 1/2), \mathbb{P}(Y > 1/2) \neq 0$.

(c) As noted in the course notes, the inverse transformation is $x = \frac{u+v}{2}$ and $y = \frac{u-v}{2}$. This gives a Jacobian of $\frac{1}{2}$. Thus, the density function is $\frac{1}{2} \int_{-\infty}^{\infty} f\left(\frac{u+v}{2}, \frac{u-v}{2}\right) dv = \frac{1}{2} \int_{-u}^{u} 2 dv = 2u$. Now, notice that $\mathbb{P}(U < .1), \mathbb{P}(V > .1) > 0$, but $\mathbb{P}(U < .1 \cap V > .1) = 0$, so U and V are not independent.

(d) For a given v, u must be in the range (|v|, 1). Thus, we have that $f_{U|V}(u, v) = \frac{1}{1-|v|}$ on the range (|v|, 1) and 0 elsewhere.

(e) The inverse transformation is $x = \frac{u}{v+1}$ and $y = \frac{uv}{v+1}$. This gives us a Jacobian of $\frac{u}{(v+1)^2}$. We can simply integrate $\int_{-\infty}^{\infty} \frac{u}{(v+1)^2} f\left(\frac{u}{v+1}, \frac{uv}{v+1}\right) dv = \int_{0}^{\infty} \frac{2u}{(v+1)^2} dv = 2u \int_{1}^{\infty} \frac{1}{v^2} = 2u$. For independence, we may compute $F_V(v) = \int_0^v \int_0^1 f_{U,V}(u,v) du dv = \int_0^v \frac{dv}{(v+1)^2} = \frac{v}{v+1}$, so we see that $F_{U,V}(u,v) = F_U(u) F_V(v)$.