MA0505 - Análisis I

Lección VII: Arzelà-Ascoli

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

El Teorema de Arzelà-Ascoli

El Espacio de Funciones Continuas

Sea (X, d) un espacio métrico y K ⊆ X un compacto.
 Definimos

$$C(K,\mathbb{R}) = \{ f : K \to \mathbb{R}, f \text{ continua} \}$$

y
$$d_{\infty}(f,g) = \sup_{x \in K} \{ |f(x) - g(x)| \}$$
 para $f,g \in \mathcal{C}(K,\mathbb{R})$.

• Sabemos que $(\mathcal{C}(K,\mathbb{R}),d_{\infty})$ es un espacio métrico. La convergencia en este espacio, es la convergencia uniforme de funciones continuas.

Compacidad en este Espacio

- Vamos a analizar la compacidad en estos espacios. Tomemos $C \subseteq \mathcal{C}(K, \mathbb{R})$ un compacto.
- Si $\{f_n\}_{n=1}^{\infty} \subseteq C$ vamos a probar que dados $\varepsilon > 0$ y $x_0 \in K$, existe un $\delta > 0$ tal que

$$d(x_0, y) < \delta \Rightarrow |f_n(y) - f_n(x_0)| < \varepsilon$$

para $n \ge 1$.

Probamos esto...

• Asumamos por el contrario que no, entonces existe un $\varepsilon > 0$ y $x_0 \in K$ tales que para $n \in \mathbb{N}$ existen y_n, k_n que satisfacen

$$d(x_0,y_n)<\frac{1}{n} \wedge |f_{k_n}(x_0)-f_{k_n}(y_n)|\geqslant \varepsilon.$$

- Como C es compacto, existe $\{f_{m_n}\}_{n=1}^{\infty}$ subsucesión de $\{f_{K_n}\}_{n=1}^{\infty}$ que converge uniformemente a $f: K \to \mathbb{R}$ continua.
- Al ser f continua y $y_n \xrightarrow[n \to \infty]{} x_0$ existe un n_0 tal que

$$n \geqslant n_0 \Rightarrow |f(x_n) - f(x_0)| < \frac{\varepsilon}{3}.$$

Terminamos la Prueba...

De esta manera

$$|f_{m_n}(x_n) - f_{m_n}(x_0)|$$

$$\leq |f_{m_n}(x_n) - f(x_n)| + |f(x_n) - f(x_0)| + |f_{m_n}(x_0) - f(x_0)|$$

$$\leq \frac{\varepsilon}{3} + 2d_{\infty}(f_{m_n}, f)$$

y esto resulta ser una contradicción.

Equicontinuidad

Definición

Sea $\{f_{\alpha}\}_{{\alpha}\in\Omega}$ una familia de funciones $f_{\alpha}:X\to Y$ con $(X,d),(Y,\rho)$ espacios métricos.

Diremos que $\{f_{\alpha}\}_{{\alpha}\in\Omega}$ es equicontinua en x_0 si para ${\varepsilon}>0$, existe ${\delta}>0$ que satisface

$$d(x_0, y) < \delta \Rightarrow \rho(f_\alpha(y), f_\alpha(x_0)) < \varepsilon$$

si $\alpha \in \Omega$.

La familia entera es equicontinua si lo es en todos los puntos.

Un Lema Útil

Lema

Sea $\{f_n\}_{n=1}^{\infty}$, $f_n: X \to Y$ una familia equicontinua. Sea $K \subseteq X$ un compacto tal que $f_n(x) \xrightarrow[n \to \infty]{} f_0(x)$ con f_0 continua en K. Entonces $\{f_n\}_{n=1}^{\infty}$ converge uniformemente a f_0 en K.

Probamos el Lema

• Dado $x \in K$ y $\varepsilon > 0$, existe $\delta_x > 0$ tal que

$$y \in B(x, \delta_x) \Rightarrow \rho(f_n(x), f_n(y)) < \frac{\varepsilon}{3}$$

para $n \ge 0$.

• Al ser K compacto, existen x_1, \ldots, x_m tales que

$$K\subseteq \bigcup_{m=1}^{\infty} B(x_i,\delta_{x_i}).$$

• Tome $n_0 \in \mathbb{N}$ tal que para $1 \leqslant i \leqslant m$ valga

$$\rho(f_n(x_i),f_0(x_i))<\frac{\varepsilon}{3}.$$

Terminamos la Prueba

Sea $y \in K$, entonces existe $1 \leqslant i \leqslant m$ tal que $y \in B(x_i, \delta_{x_i})$ y así

$$\rho(f_n(y), f_0(y))$$

$$\leq \rho(f_n(y), f_n(x_i)) + \rho(f_n(x_i), f_0(x_i)) + \rho(f_0(x_i), f_0(y))$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}.$$

En esencia, este lema nos dice que la equicontinuidad nos permite pasar de convergencia puntual a uniforme. ¿Qué hacemos si no tenemos de antemano que f es continua?

Solventando el Problema

Lema

Sea $f_n: X \to Y$ una sucesión equicontinua con Y completo. Suponga que además $\{f_n\}_{n=1}^{\infty}$ converge para $x \in D \subseteq X$ con D denso en X.

Entonces f_n converge en X y su límite es continuo.

Probamos el Lema

Sea $x \in X$ vamos a probar que $\{f_n(x)\}_{n=1}^{\infty}$ es de Cauchy.

• Por equicontinuidad existe $\delta > 0$ tal que para $n \ge 1$ vale

$$d(x,y) < \delta \Rightarrow \rho(f_n(x),f_n(y)) < \frac{\varepsilon}{3}.$$

• Sea $y \in B(x, \delta) \cap D$, así existe n_0 tal que

$$n, m \geqslant n_0 \Rightarrow \rho(f_n(y), f_m(y)) < \frac{\varepsilon}{3}.$$

Terminamos la Prueba

Así, cuando $n, m \ge 0$ vale que

$$\rho(f_n(x), f_m(x))$$

$$\leq \rho(f_n(x), f_n(y)) + \rho(f_n(y), f_m(y)) + \rho(f_m(y), f_m(x)) < \varepsilon.$$

Sea $f(x) = \lim_{n \to \infty} f_n(x)$, note que

$$\rho(f(x),f(y))\leqslant \lim_{n\to\infty}\rho(f_n(x),f_n(y))\leqslant \frac{\varepsilon}{3}$$

cuando $d(x, y) < \delta$.

Observación

El resultado es válido siempre que $\overline{\{f_n(x)\}_{n=1}^{\infty}}$ sea completo. Por ejemplo, cuando el conjunto es compacto.

Otro Lema, pero de Ejercicio

Lema

Sea $f_n: X \to Y$ una familia equicontinua $y K \subseteq X$ compacto. Asuma que $\{f_n(x)\}_{n=1}^{\infty}$ converge para $x \in K$ a $f_0: X \to Y$. Entonces f_n converge uniformemente en K.

Ejercicio

¡Pruebe el lema!

El Teorema de Arzelà-Ascoli

Teorema

Sea $\{f_n\}_{n=1}^{\infty}$ una familia equicontinua con $f_n: X \to Y$ y X separable. Supongamos que $\overline{\{f_n(x)\}_{n=1}^{\infty}}$ es compacto. Entonces existe una subsucesión de $\{f_n\}_{n=1}^{\infty}$ que converge puntualmente a una función continua $f: X \to Y$ y la convergencia es uniforme para cada compacto $K \subset X$.

La Prueba del Teorema

- Sea $\{x_n\}_{n=1}^{\infty} = D \subseteq X$ denso, que existe por separabilidad.
- Sabemos que $\overline{\{f_n(x_1): n \geqslant 1\}}$ es compacto.
- Entonces existe una subsucesión $f_{n_k}^1$ tal que $\{f_{n_k}^1(x_1)\}_{k=1}^{\infty}$ converge.
- De igual forma $\{f_{n_k}^1(x_2): n \ge 1\}$ es compacto. ¿Por qué?
- Entonces existe una subsucesión $f_{n_k}^2$ de $f_{n_k}^1$ que satisface que $\{f_{n_k}^2(x_2)\}_{k=1}^{\infty}$ converge.

Continuamos la Prueba

- Iterando, dado $f_{n_k}^m$ tal que $\{f_{n_k}^m(x_m)\}_{k=1}^\infty$ converge, existe una subsucesión $f_{n_k}^{m+1}$ que satisface que $\{f_{n_k}^{m+1}(x_{m+1})\}_{k=1}^\infty$ converge.
- Por construcción $\{f_{n_k}^m(x_\ell)\}_{k=1}^{\infty}$ convergencia para $1 \le \ell \le m$.
- Dado que para $\ell \leqslant m$, $\{f_{n_m}^m\}_{m=\ell}^{\infty}$ es una subsucesión de $f_{n_k}^{\ell}$, tenemos que $\{f_{n_m}^m(x_i)\}_{m=1}^{\infty}$ converge para $1 \leqslant i \leqslant \ell$.

Terminamos la Prueba

Por lo tanto $\{f_{n_m}^m\}_{m=1}^{\infty}$ converge para todos los puntos de D. Por los resultados anteriores, $\{f_{n_m}^m\}_{m=1}^{\infty}$ converge en X a una función continua y la convergencia es uniforme en compactos.

Un Corolario

Corolario

Sea $\{f_n\}_{n=1}^{\infty}$ una familia equicontinua de funciones $f_n: X \to \mathbb{R}$ con X separable. Si D es denso y numerable y $\{f_n(x)\}_{n=1}^{\infty}$ es acotado, entonces existe una subsucesión $\{f_{n_k}\}_{k=1}^{\infty}$ que converge a una función continua $f: X \to \mathbb{R}$ y la convergencia es uniforme en compactos.

Note que $\overline{\{f_n(x)\}_{n=1}^{\infty}}$ es compacto.

Compactos de $C(K, \mathbb{R})$

Lema

Sea $X = \mathcal{C}(K, \mathbb{R})$. Entonces $C \subseteq X$ es compacto en (X, d_{∞}) si y sólo si C es cerrado, acotado y equicontinuo.

Ya vimos que los compactos de $\mathcal{C}(K,\mathbb{R})$ cumplen lo pedido. Vamos a probar la otra dirección a continuación.

Prueba del Lema

Sea $\{f_n\}_{n=1}^{\infty} \subseteq C$.

• Como C es acotado, existe $M \ge 0$ que satisface

$$d_{\infty}(f_n,0)\leqslant M$$

con 0 la función idénticamente cero. Es decir $||f_n||_{\infty} \leq M$ para $n \geq 1$.

• Por el corolario 1 anterior, existe $\{f_{n_k}\}_{k=1}^{\infty}$ que converge a $f: K \to \mathbb{R}$ continua con $f \in C$.

Un Ejemplo

Si

$$f_n(x) = \begin{cases} 0, \ 0 \leqslant x \leqslant 1 - \frac{1}{n}. \\ nx - n + 1, \ 1 - \frac{1}{n} \leqslant x \leqslant 1. \end{cases}$$

Podemos probar que

- $||f_n||_{\infty} \leq 1$.
- f_n es continua.

Es decir, $f_n \in \mathcal{C}([0,1],\mathbb{R})$ y $f_n \in \overline{B(0,1)}$. Y ahora,

$$|f_n(x) - f_n(1)| = |nx - n + 1 - 1| = n|x - 1|.$$

Finalmente

$$|f_n(x) - f_n(1)| < \varepsilon$$

$$\iff n|x - 1| < \varepsilon$$

$$\iff |x - 1| < \frac{\varepsilon}{n}$$

Así esta sucesión no es equicontinua y por tanto $\overline{B(0,1)}$ no es compacta en $\mathcal{C}([0,1],\mathbb{R})$.

Resumen

- La definición 1 de equicontinuidad.
- El primer lema 1 sobre convergencia uniforme.
- Qué pasaba en el caso no continuo. 2
- El teorema 2 de Arzelà-Ascoli.
- Un corolario 1 al teorema de Arzelà-Ascoli.

Ejercicios

- Lista 7
 - A probar el lema 3

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.