Decision Trees

Exercise 1: Decision Trees

Construct by hand decision trees corresponding to each of the following Boolean formulas. The examples $(\mathbf{x},c)\in D$ consist of a feature vector \mathbf{x} where each component corresponds to one of the Boolean variables (A,B,\ldots) used in the formula, and each example corresponds to one interpretation (i.e. assignment of 0/1 to the Boolean variables). The target concept c is the truth value of the formula given that interpretation. Assume the set D contains examples with all possible combinations of attribute values.

Hint: It may be helpful to write out the set D for each formula as a truth table.

(a)
$$A \land \neg B$$
Answer

(c)
$$A \lor (B \land C)$$

Answer

(d) $(A \wedge B) \vee (C \wedge D)$ Answer

Exercise 2: Impurity Functions

Let D be a set of examples over a feature space \mathbf{X} and a set of classes $C = \{c_1, c_2, c_3, c_4\}$, with |D| = 24. Consider the following illustration of two possible decision trees, T_1 and T_2 – the colors represent the classes present in each subset $D(t_i)$ represented by node $t_{i,j}$ of T_i ; the numbers denote how many examples of each class are present.

(a) First, consider only the first split that each of the two trees makes: compute $\Delta\iota(D,\{D(t_{1,1}),D(t_{1,2})\})$ and $\Delta\iota(D,\{D(t_{2,1}),D(t_{2,2})\})$ with (1) the misclassification rate $\iota_{\textit{misclass}}$ and (2) the entropy criterion $\iota_{\textit{entropy}}$ as splitting criterion.

Interpret the results: which of $\{D(t_{1,1}), D(t_{1,2})\}$ or $\{D(t_{2,1}), D(t_{2,2})\}$ is the better first split?

Answer

$$\begin{split} & \Delta \iota_{\textit{misclass}}(D, \{D(t_{1,1}), D(t_{1,2})\}) \\ & = \iota_{\textit{misclass}}(D) - \sum_{l=1}^{2} \frac{|D(t_{1,l})|}{|D|} \cdot \iota_{\textit{misclass}}(D(t_{1,l})) \\ & = (1 - \max\{\frac{6}{24}, \frac{6}{24}, \frac{6}{24}, \frac{6}{24}, \frac{1}{24}, \frac{6}{24}\}) - 2 \cdot \frac{12}{24} \cdot (1 - \max\{\frac{6}{12}, \frac{6}{12}\}) \\ & = (1 - 0.25) - 2 \cdot 0.5 \cdot (1 - 0.5) \\ & = 0.75 - 2 \cdot 0.5 \cdot 0.5 \\ & = 0.25 \\ & \Delta \iota_{\textit{misclass}}(D, \{D(t_{2,1}), D(t_{2,2})\}) \\ & = \iota_{\textit{misclass}}(D) - \sum_{l=1}^{2} \frac{|D(t_{2,l})|}{|D|} \cdot \iota_{\textit{misclass}}(D(t_{2,l})) \\ & = (1 - \max\{\frac{6}{24}, \frac{6}{24}, \frac{6}{24}, \frac{6}{24}\}) - 2 \cdot \frac{12}{24} \cdot (1 - \max\{\frac{6}{12}, \frac{4}{12}, \frac{2}{12}\}) \\ & = (1 - 0.25) - 2 \cdot 0.5 \cdot (1 - 0.5) \\ & = 0.75 - 2 \cdot 0.5 \cdot 0.5 \\ & = 0.25 \\ & \Delta \iota_{\textit{entropy}}(D, \{D(t_{1,1}), D(t_{1,2})\}) \\ & = \iota_{\textit{entropy}}(D, \{D(t_{1,1}), D(t_{1,2})\}) \\ & = \iota_{\textit{entropy}}(D) - \sum_{l=1}^{2} \frac{|D(t_{1,l})|}{|D|} \cdot \iota_{\textit{entropy}}(D(t_{1,l})) \\ & = -4 \cdot \left(\frac{6}{24}\log_2\frac{6}{24}\right) - 2 \cdot \frac{12}{24} \cdot \left(-\left(\frac{6}{12} \cdot \log_2\frac{6}{12}\right) - \left(\frac{6}{12} \cdot \log_2\frac{6}{12}\right)\right) \\ & = 1 \\ \Delta \iota_{\textit{entropy}}(D, \{D(t_{2,1}), D(t_{2,2})\}) \\ & = \iota_{\textit{entropy}}(D, \{D(t_{2,1}), D(t_{2,2})\}) \\ & = \iota_{\textit{entropy}}(D, \sum_{l=1}^{2} \frac{|D(t_{2,l})|}{|D|} \cdot \iota_{\textit{entropy}}(D(t_{2,l})) \\ & = -4 \cdot \left(\frac{6}{24}\log_2\frac{6}{24}\right) - 2 \cdot \frac{12}{24} \cdot \left(-\left(\frac{6}{12} \cdot \log_2\frac{6}{12}\right) - \left(\frac{4}{12} \cdot \log_2\frac{4}{12}\right) - \left(\frac{2}{12} \cdot \log_2\frac{2}{12}\right)\right) \\ & = -4 \cdot \left(\frac{6}{24}\log_2\frac{6}{24}\right) - 2 \cdot \frac{12}{24} \cdot \left(-\left(\frac{6}{12} \cdot \log_2\frac{6}{12}\right) - \left(\frac{4}{12} \cdot \log_2\frac{4}{12}\right) - \left(\frac{2}{12} \cdot \log_2\frac{2}{12}\right)\right) \\ & = -4 \cdot \left(-0.5\right) - 2 \cdot 0.5 \cdot \left(0.5 + 0.528 + 0.431\right) \\ & = 0.541 \end{aligned}$$

With the misclassification rate both splits are identically evaluated. The entropy criterion prefers pure example sets. The split in T_1 gets rated higher. Intuitively, the entropy criterion is right: after the first split in T_1 , there is "less work to do" to purify all example sets.

(b) If we compare T_1 and T_2 in terms of their misclassification rate on D, which one is the better decision tree?

Answer

According to the training set error T_2 , i.e., $Err(T_2, D) = \frac{4}{24}$, is better than T_1 , i.e. $Err(T_1, D) = \frac{5}{24}$.

(c) Assuming the splits shown are the only possibilities, which of T_1 or T_2 would the ID3 algorithm construct, and why?

Answer

ID3 uses information gain (i.e., entropy impurity reduction) as the split criterion. Hence, as the first split, $\{D(t_{1,1}), D(t_{1,2})\}$ would be chosen, and the "less good" decision tree would result; this is because ID3 searches the hypothesis space by greedy local optimization. There is no guarantee to find a globally optimal hypothesis.

Exercise 3 : Decision Trees

Given is the following dataset to classifiy whether a dog is dangerous or well-behaved in character:

3

Color	Fur	Size	Character (C)
brown	ragged	small	well-behaved
black	ragged	big	dangerous
black	smooth	big	dangerous
black	curly	small	well-behaved
white	curly	small	well-behaved
white	smooth	small	dangerous
red	ragged	big	well-behaved

(a) Use the ID3 algorithm with $\iota_{entropy}$ as the impurity function to determine the tree T.

Answer

• Determine $\iota_{\mathit{entropy}}(D)$:

$$\iota_{\textit{entropy}}(D) = -\sum_{i=1}^{k} P(A_i) \cdot \log_2 P(A_i)$$
$$= -\left[\frac{4}{7} \cdot \log_2 \frac{4}{7} + \frac{3}{7} \cdot \log_2 \frac{3}{7}\right]$$
$$\approx 0.985$$

- Determine $\Delta \iota_{\textit{entropy}} = 0.985 \sum_{l=1}^{m} \frac{|D_l|}{|D|} \cdot \iota_{\textit{entropy}}(D_l)$ for each attribute and choose the attribute with maximum delta (i.e., information gain) to split:
 - Attribute *Color*:

Color	well-behaved	dangerous	Probability
brown	1	0	P(brown) = 1/7
black	1	2	P(black) = 3/7
white	1	1	P(white) = 2/7
red	1	0	P(red) = 1/7

$$\Delta \iota_{\textit{entropy}} = 0.985 - \left[\frac{1}{7} \left(-\left(\frac{1}{1} \log_2 \frac{1}{1} + \frac{0}{1} \log_2 \frac{0}{1} \right) \right) + \frac{3}{7} \left(-\left(\frac{1}{3} \log_2 \frac{1}{3} + \frac{2}{3} \log_2 \frac{2}{3} \right) \right) \right. \\ \left. + \frac{2}{7} \left(-\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2} \right) \right) + \frac{1}{7} \left(-\left(\frac{1}{1} \log_2 \frac{1}{1} + \frac{0}{1} \log_2 \frac{0}{1} \right) \right) \right] \\ = 0.985 - \left[0 + \frac{3}{7} \left(-\left(\frac{1}{3} \log_2 \frac{1}{3} + \frac{2}{3} \log_2 \frac{2}{3} \right) \right) + \frac{2}{7} \left(-\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2} \right) \right) + 0 \right] \\ \approx 0.306$$

- Attribute *Fur*:

Fur	well-behaved	dangerous	Probability
ragged	2	1	P(ragged) = 3/7
smooth	0	2	$P(\mathit{smooth}) = 2/7$
curly	2	0	$P(\mathit{curly}) = 2/7$

$$\begin{split} \Delta \iota_{\textit{entropy}} &= 0.985 - \left[\frac{3}{7} \left(-\left(\frac{2}{3} \log_2 \frac{2}{3} + \frac{1}{3} \log_2 \frac{1}{3} \right) \right) + \frac{2}{7} \left(-\left(\frac{0}{2} \log_2 \frac{0}{2} + \frac{2}{2} \log_2 \frac{2}{2} \right) \right) \right. \\ &\quad + \frac{2}{7} \left(-\left(\frac{2}{2} \log_2 \frac{2}{2} + \frac{0}{2} \log_2 \frac{0}{2} \right) \right) \right] \\ &= 0.985 - \left[\frac{3}{7} \left(-\left(\frac{2}{3} \log_2 \frac{2}{3} + \frac{1}{3} \log_2 \frac{1}{3} \right) \right) + 0 + 0 \right] \\ &\approx 0.591 \end{split}$$

- Attribute Size:

		Size	well-behaved	dangerous	Probability	
		small	3	1	P(small) = 4/7	
		big	1	2	P(big) = 3/7	
$\Delta\iota_{\mathit{entropy}}$	=	0.985 -	$\left[\frac{4}{7}\left(-\left(\frac{3}{4}\log_2\right)\right)\right]$	$\frac{3}{4} + \frac{1}{4} \log_2 \frac{1}{4}$	$\left(\frac{1}{4}\right)$ + $\frac{3}{7}\left(-\left(\frac{1}{3}\log \frac{1}{3}\log $	$\left[g_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}\right)\right]$
	\approx	0.128				

 $\Delta \iota_{entropy}$ is maximal for attribute Fur. Generated tree with reduced dataset is pictured below.

				Fu	ır		
Color	Size	Character (C)	ragged	smooth		curly	
brown	small	well-behaved	•	Label: da	ingerous		Label: well-behaved
black	big	dangerous			0		
red	big	well-behaved					

• ID3 is applied recursively to remaining non-terminal nodes. Determine $\iota_{\mathit{entropy}}(D)$ for the reduced dataset:

$$\iota_{\textit{entropy}}(D) = -\sum_{i=1}^{k} P(A_i) \cdot \log_2 P(A_i)$$
$$= -\left[\frac{1}{3} \cdot \log_2 \frac{1}{3} + \frac{2}{3} \cdot \log_2 \frac{2}{3}\right]$$
$$\approx 0.918$$

• Determine $\Delta\iota_{\textit{entropy}} = 0.918 - \sum_{l=1}^m \frac{|D_l|}{|D|} \cdot \iota_{\textit{entropy}}(D_l)$ for each remaining attribute and choose the attribute with maximum delta (i.e., information gain) to split:

 $+\frac{1}{3}\left(-\left(\frac{1}{1}\log_2\frac{1}{1}+\frac{0}{1}\log_2\frac{0}{1}\right)\right)$

- Attribute Color:

5

- Attribute Size:

Size	well-behaved	dangerous	Probability
small	1	0	P(small) = 1/3
big	1	1	P(big) = 2/3

$$\begin{split} \Delta \iota_{\textit{entropy}}(D) &= 0.918 - \left[\frac{1}{3}\left(-\left(\frac{1}{1}\log_2\frac{1}{1} + \frac{0}{1}\log_2\frac{0}{1}\right)\right) + \frac{2}{3}\left(-\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right)\right)\right] \\ &= 0.918 - \left[0 + \frac{2}{3}\left(-\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right)\right)\right] \\ &\approx 0.252 \end{split}$$

 $\Delta \iota_{entropy}$ is maximal for attribute *Color*. As *white* does not occur in the reduced dataset, the most common class of the reduced dataset is chosen as label. Generated tree is pictured below.

(b) Classify the new example (Color=black, Fur=ragged, Size=small) using T.

Answer

- 1. Check attribute fur.
- 2. Fur=ragged \rightarrow Check attribute color.
- 3. color=black → Assign class=dangerous