1 translation, rotation, scaling

We consider a left-handed coordinate system.

$$v' = v * M$$

 \bullet v': output vertex

• v : input vertex

• M: matrix (translation, rotation, scaling, ...)

1.1 translation matrix

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ tx & ty & tz & 1 \end{bmatrix}$$

1.2 scaling matrix

$$S = \begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1.3 rotation matrix around x-axis

$$R_x = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(n) & \sin(n) & 0 \\ 0 & -\sin(n) & \cos(n) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1.4 rotation matrix around y-axis

$$R_y = \begin{bmatrix} \cos(n) & 0 & -\sin(n) & 0 \\ 0 & 1 & 0 & 0 \\ \sin(n) & 0 & \cos(n) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1.5 rotation matrix around z-axis

$$R_z = \begin{bmatrix} \cos(n) & \sin(n) & 0 & 0 \\ -\sin(n) & \cos(n) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1

2 camera and clip space

2.1 translation matrix

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -x & -y & -z & 1 \end{bmatrix}$$

(x, y, z): camera position

2.2 rotation matrix

$$R = \begin{bmatrix} r.x & u.x & f.x & 0 \\ r.y & u.y & f.y & 0 \\ r.z & u.z & f.z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• r.x : x coordinates of r vector

• r : right camera orientation (1,0,0,1)

• u : up camera orientation (0, 1, 0, 1)

• f: forward camera orientation (0,0,1,1)

2.3 camera matrix

$$CM = T * R$$

2.4 projection matrix

$$P = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & 0\\ 0 & \frac{2}{top - bottom} & 0 & 0\\ 0 & 0 & \frac{far + near}{far - near} & 1\\ 0 & 0 & \frac{-2.near.far}{far - near} & 0 \end{bmatrix}$$

2

• $h_{fov} = \pi/3$

• $v_{fov} = h_{fov} * \frac{height_{screen}}{width_{screen}}$

• near plane = 0.1

• far plane = 100

• right = $tan(h_{fov}/2)$

• left = - right

• top = $tan(v_{fov}/2)$

• bottom = - top

3 normalized clipping space (NDC) projection

$$v_p = v * CM * P$$

$$v_{pn} = v_p / v_p.w$$

- $\bullet v : vertex$
- v_p : vertex projected
- \bullet v_{pn} : vertex projected and normalized

if one of the x,y,z coordinates of the v_{pn} is outside [-1,1], then the vertex is off screen and must not be rendered.

4 screen projection

4.1 screen matrix

$$SC = \begin{bmatrix} \frac{width_{screen}}{2} & 0 & 0 & 0\\ 0 & -\frac{height_{screen}}{2} & 0 & 0\\ 0 & 0 & 1 & 0\\ \frac{width_{screen}}{2} & \frac{height_{screen}}{2} & 0 & 1 \end{bmatrix}$$

$$v_s = v_{pn} * SC$$