Cuing Infants in: From Universal to Language-specific Cues in Word Segmentation

Constantine Lignos and Charles Yang

University of Pennsylvania

Department of Computer and Information Science
Institute for Research in Cognitive Science

ICIS 2012

6/8/2012

Towards understanding language acquisition

Provides:

 Naturalistic error patterns over time

Risks:

- Over/undersampling
- Limited data

Provides:

 Testing ground for articulated models

Risks:

- Relevance to acquisition
- Cognit. plausibility
- Narrow scope and strong assumptions

Provides:

Fine-grained information about performance

Risks:

Effect validity and relevance to acquisition

Linguistic Representation

Experimental

Observational

Computational

Provides:

- Target of acquisition
- Cross-linguistic perspective

Risks:

Psychological reality of representations

I. Modeling infant word segmentation

Our modeling goal:

- Interest: how we can explain the behavior of children as they learn to segment words
- Word segmentation is not an end in itself: provides useful units (Peters, 1983) for learning and understanding
 - Lexicon, morphosyntax, phonology

Build the *simplest* model that:

- Aligns with infants' capabilities
- Replicates infants' behavior in a principled fashion
- Performs well at the task

Developmental patterns in segmentation

- Undersegmentation at younger ages (Brown, 1973; Clark, 1977; Peters, 1977, 1983)
- Oversegmentation at older ages (Peters, 1983)
- With time, attending to multiple cues, most popularly:
 - Words in isolation not sufficient (Aslin et al., 1996), but probably helpful (Brent and Siskind, 2001; Lew-Williams et al., 2011, this session; Johnson, this session)
 - Bootstrapping from known words (Bortfeld et al., 2005; Dahan and Brent, 1999)
 - Dominant stress patterns (Jusczyk et al., 1999)
 - More easily identify novel words at beginning and ends of utterances at 8 months (Seidl & Johnson, 2006)

Modeling development

- One perspective: simple, language- (possibly domain-) general system fuels early lexicon growth
 - AKA "proto-lexicon", "initial cohort"
 - Possibly TPs (Saffran et al. 1996 et seq.) or chunking (Hewlett & Cohen, 2011; Perruchet & Vintner, 1998)
- With good lexical candidates, more rich language-specific cues can be learned:
 - Stress patterns
 - Morphology
 - Phonotactics

Modeling assumptions

- Learner is given syllabified input
 - As with artificial language learning (Saffran et al, 1996 et seq.)
 - Younger infants treat syllables holistically (Bertoncini and Mehler, 1981; Bijeljac-Babic et al., 1993; Jusczyk and Derrah, 1987)
- Able to map acoustic signal to strong/weak stress on syllables (Johnson & Jusczyk, 2001)

Overview of our algorithm

- Segmenter has a lexicon of potential words it builds over time
 - Starts empty, words are added based on segmentation of each utterance
 - Each word has a score
- Operates online
 - Processes one utterance at a time
 - Cannot remember previous utterances or how it segmented them, only lexicon
- Operates left-to-right in each utterance to insert word boundaries between syllables

Model in a nutshell

- 1. Use utterance boundaries to help find initial words.
- Bootstrap from known words.
- 3. Reward the words that appear to lead to better segmentations, penalize the ones that lead us astray.

- We'll (quickly) work through some examples
 - Orthography for easy reading, input is syllabified phonemes from CHILDES (Brown's Adam, Eve, and Sarah):

```
B.IHO.G|D.R.AH1.M
HH.AO1.R.S
DH.OWO.Z|AAO.R|CH.EH1|K.ERO.Z
```

In the beginning...

- Just add whole utterances to the lexicon
- Gets words in isolation for free, but often more than one word

Lexicon: bigdrum

Treat everything as word, add to lexicon

Subtractive Segmentation

- Use words in the lexicon to break up the utterance
- Increase word's score when it is used
- Add new words to lexicon

Lexicon: mommy's tea

Treat remainder as word.

Either:

- 1. Always add to lexicon
- 2. Add to lexicon only if it touches utterance end (*Trust*).

(Lignos, 2011)

Multiple hypotheses

- For multiple possible subtractions two options:
 - Greedy approach (Lignos and Yang, 2010)
 - Pursue two hypotheses (beam search)
- Two hypotheses allow for *penalization*: reduce score of word that started losing hypothesis

Lexicon: a is is that ...

Predictions

- Default assumption of utterance = word → infants will start with oversized units and words in isolation
- Rich-get-richer scoring As the learner is exposed to more data, learner will tend to use high-frequency elements (Frank, this session)
- Penalization

 Use of collocations will decrease with time

Results are true to predictions (Lignos, 2011; Lignos and Yang, to appear) and match developmental patterns (Brown, 1973; Clark, 1977; Peters, 1977, 1983)

III. Moving forward in development

Learning from the lexicon

- The learner's lexicon may be imperfect, but we can still learn from it
- Most relevant to segmentation:
 - Stress pattern
 - Morphology
 - Word length (Lew-Williams and Saffran, 2011)
 - Phonotactics
 - Maybe learn TPs from lexicon instead of utterance?

Stress pattern learning

- Identification of stress pattern in the language
 - Multisyllabic words in the learner's acquired lexicon have stressinitial rate of 70.3%
 - Taking advantage of this bias in learning reduces errors by 37.0%
- How does this bias affect the learner?
 - Hypothesis: learner commits to bias as soon as it is reliable, thus higher initial stress rate → faster adoption of bias
 - Hungarian (stress-initial by rule): word segmentation errors are rare (MacWhinney, 1976; Peters, 1983)
 - English (generally stress-initial, ~80%): children develop reliable bias and apply it readily (*TARis* for *guiTAR is, NAna for baNAna*)
 - French (arguably no word-level stress): Delayed competence compared to other languages (Nazzi et al., 2006)

Morphological learning

- Other modeling work has identified importance of morphology in segmentation (Berg-Kirkpatrick et al., 2010; Johnson, 2008)
 - But no cognitively plausible mechanism for using it
- Segmentation output given to simple MDL-based incremental learner
- Findings:
 - Initial lexicon of high-enough quality to learn frequent suffixes
 - Acquisition order similar to that observed by Brown (1973)

Predicted order	Suffix	Example
1	-ıŋ	bake-ing
2	-z	happen-s
3	-d	happen-ed
4	- > -	bake-er
5	-t	check-ed
6	-ən	broke-en
7	-i:	prett-y

Future work

- Feedback of other levels (morphology, stress, etc.) into segmentation
 - Previous work (Johnson, 2008)
- Understanding role of phonotactic learning
 - Adriaans and Kager, 2010; Gorman, 2012
- Evaluation in (many!) more languages
 - "Correct" segmentation is less trivial

Conclusions

- A simple, language-independent model provides a strong starting point for learning language-specific segmentation strategies
- By using combinations of simple learning mechanisms, we can explore the interplay of learning at various levels of representation
- We've just scratched the surface so far. Ask: how can computational modeling help further understanding of this problem?

Thanks to:
Mitch Marcus
NSF IGERT #50504487

Constantine Lignos

lignos@cis.upenn.edu

http://www.seas.upenn.edu/~lignos
Code/data:

https://github.com/ConstantineLignos/
WordSegmentation