ESERCITAZIONE

ALGORITMI ITERATIVI DI RICOSTRUZIONE DELLE IMMAGINI DI TOMOGRAFIA AD EMISSIONE

Maximum Likelihood Expectation Maximization (MLEM)
Ordered Subset Expectation Maximization (OSEM)

MATERIALE

- Fantoccio cerebrale 2D (111x111 pixel) preparato come file brain.mat
- Funzione MATLAB Calcolo_A.m già utilizzata nell'esercitazione sulle tecniche di ricostruzione analitiche
- Scheletro dell'esercitazione da svolgere con:
 - 1. predisposizione dei parametri base (liberamente modificabili) per ottenere risultati comparabili con quelli qui proposti;
 - 2. implementazione (già sviluppata) della parte di simulazione del sinogramma e delle sorgenti artefattuali di rumore (attenuazione, scattering e conteggi random) come già svolto in una delle esercitazioni precedenti;
 - 3. descrizione del codice da implementare e dei risultati da visualizzare.
- Scheletro della funzione **Calcolo_Hblock.m** con descrizione di quale debba essere la sua struttura e il suo funzionamento.

PUNTI DA SVOLGERE

1. Ricostruzione ML-EM

- (a) Implementare l'algoritmo ML-EM per la ricostruzione del sinogramma rumoroso generato ai punti precedenti.
- (b) Valutare la qualità della ricostruzione a seconda che vengano corretti o meno i disturbi simulati.
- (c) Salvare l'immagine intermedia ricostruita ad ogni iterazione in un vettore 3D (N,N,iter_mlem).

2. Ricostruzione OSEM: calcolo dei blocchi della matrice di sistema

- (a) Creare una funzione esterna (partire dal file Calcolo_Ablock.m fornito) per l'estrazione dei blocchi della matrice di sistema con cui ricostruire i singoli subset del sinogramma.
- (b) La descrizione della funzione è fornita nel file dedicato: è importante assicurarsi che restituisca in output 'nblock' segmenti della matrice di sistema A e, per ciascuno di essi, tenga traccia delle proiezioni che fanno parte del subset a cui è associato un determinato blocco.

3. Ricostruzione OS-EM

- (a) Implementare l'algoritmo OS-EM per la ricostruzione del sinogramma rumoroso generato ai punti precedenti.
- (b) Valutare la qualità della ricostruzione a seconda che vengano corretti o meno i disturbi simulati.
- (c) Salvare l'immagine intermedia ricostruita ad ogni iterazione in un vettore 3D (N,N,iter_osem*nblock).

4. Analisi della relazione tra numero di subset e numero di iterazioni OSEM

(a) Visualizzare il risultato della ricostruzione OSEM usando diverse combinazioni di valori per il numero di subset (fattore di accelerazione) e il numero di iterazioni di ricostruzione.

5. Valutazione dell'accelarazione ottenuta grazie all'algoritmo OS-EM

(a) Misurare i tempi di esecuzione di una ricostruzione ML-EM (totale, non delle singole sub-iterazioni) e di una ricostruzione OS-EM e verificare che ci sia una velocizzazione del processo di ricostruzione a parità di iterazioni utilizzate

NOTA BENE:

- mettersi nella condizione iter_mlem = iter_osem*nblock
- verificare tutte e 3 le combinazioni possibili (es. iter_mlem=40; iter_osem=2 nblock=20; iter_osem=20 nblock=2)
- assicurarsi di misurare l'effettivo tempo di ricostruzione, privo di sovraccarichi legati a salvataggio di ricostruzioni intermedie e visualizzazione degli stessi

FACOLTATIVO

1. Ricostruzione MAP-OSL con prior quadratico - smoothing -

- (a) Partire (a scelta) dal codice MLEM o OSEM precedentemente implementati
- (b) Individuare il punto dell'algoritmo in cui inserire il prior facendo riferimento alle formule discusse a lezione
- (c) Il kernel 3x3 fornito è tale da calcolare dE(f)/df tramite una semplice conv2 (attenzione a cosa è 'f', quale dimensione ha normalmente, quale dimensione deve avere per poter essere convoluta con il kernel, e se è necessario fare un reshape prima di inserire il prior stimato nell'algoritmo di ricostruzione)
- (d) verificare come cambia il comportamento al variare di beta (peso del prior) e come per valori di beta troppo alti il denominatore della MLEM diventa negativo e la ricostruzione non converge più)

RISULTATI ATTESI

Fantoccio

Figura 1: Fantoccio cerebrale

Sinogramma non rumoroso

(a) Sinogramma ideale non rumoroso

Sinogramma rumoroso

(b) Sinogramma con artefatti e rumore Poissoniano

Tabella 1: VALUTAZIONE DELL'ACCELARAZIONE OTTENUTA CON ALGORITMO OS-EM

MLEM 360 iter	3.609439e+00
OSEM 9 subset 40 iter	4.635321e-01
OSEM 40 subset 9 iter	1.287901e-01

Figura 2: Ricostruzione MLEM senza correzioni

Figura 3: Ricostruzione MLEM

OSEM rec iter 2/2 subset 25/25

Figura 4: Ricostruzione OSEM senza correzioni

OSEM rec iter 2/2 subset 25/25

Figura 5: Ricostruzione OSEM

Figura 6: Relazione tra numero di subset e numero di iterazioni di algoritmo OSEM

Sinogramma rumoroso

Figura 7: Riduciamo i conteggi nel sinogramma per enfatizzare l'effetto del prior

Figura 8: Ricostruzione MAP-OSL