EE230:experiment No.6 Non-idealities of opamp measurement

Mudavtah vishnuvardhan,200070044

March 6, 2022

1 Overview of the experiment

1.1 Aim of the experiment

- 1. To measure offset voltage of a non ideal opamp
- 2. To measure bias currents and offset current of non-ideal opamp
- 3. Meaurement of DC open loop gain A_{ol}

1.2 Method

1.2.1 measurement of offset voltage (V_{os})

circuit is connected as shown in figure , now for measurement of v_{os} we use this formula :

$$v_{os} = V_0/(1 + R_2/R_1)$$

For measurement we have done we got values for V_0 as 1.09v, thus

$$v_{os} = 1.08v/(1 + 10k/10) = 1.09mv$$

In the datasheet ,typical value=1mv and max possible value=5mv and hence we can say that our possible value is correct.

measurement of inverting bias current (I_{B-}) 1.2.2

circuit is connected as shown in figure , now for measurement of I_{B-} we use this formula:

 $I_{B-} = V_0/R$

For measurement we have done we got values for V_0 as 3.37v,thus $I_{B-}=3.37/10^7=337nA$

fig4: equivalent circuit for ib- current measurement

1.2.3 measurement of Non-inverting bias current (I_{B+})

circuit is connected as shown in figure , now for measurement of I_{B+} we use this formula :

 $I_{B+} = V_0/R$

For measurement we have done we got values for V_0 as 3.92v, thus

 $I_{B-} = 3.92/10^7 = 392nA$

Typically these values are maximum 800nA as per the dataheet hence, we can conclude that our values match with datasheet.

1.2.4 measurement of Open loop gain (A_{ol})

circuit is connected as shown in figure , now for measurement of A_{ol} we use this formula :

$$A_{ol} = -V' * (R_2 + R_3/R_2 * (V_{oB} - VoA))$$

 V_{oB} and V_{oA} are values obtained when the circuit is in position 1 and 2 respectively.

Values obtained for V' = 1v:

 $V_{oA} = 0.05v, V_{oB} = 0.01v$ which gives us $A_{ol} = 2.5 * 10^5$.

Values obtained for V' = 2v:

 $V_{oA}=0.05v, V_{oB}=-0.04v$ which gives us $A_{ol}=2.22*10^5$.

Values obtained for V' = 3v:

 $V_{oA} = 0.05v, V_{oB} = -0.1v$ which gives us $A_{ol} = 2 * 10^5$.

Theoretically, $A_{ol}=2*10^5$, hence we can say our values almost match the actual values.

2 Experiment completion status

I have completed all sections in Lab only.