1-3	why semptics? - prove that two programs do the same thing - one program matches math
	context [your program / fon] Bicom [X + 2] = Bicom [X << 1]
	tb,byBi,r. (BL . b) rb (BL . b') [context, left]
	(b & Br) ro (b' & Br) (context, right)
	context-compatible closure of a relation
	= context-compat of the single-step refl + transitive closure of -> symmetry of ->>
	eval_ $(x:stx) = {y sit. x \rightarrow y y and y is a result}$
	a result is a subset of stx $B = T \mid F \mid (B \circ B)$ $R = T \mid F$

```
2-1 interpreter : programs in A that tell you
                   what B programs do
       Small-step: simulate B in math
                        P -> p' -> ... -> aus
       big-step : defines in math the meaning
                        p V ans (p >> ans)
       denotational : compiler (in math) from B to math
                        c (P) = math-thing
    1) employ profesors 2) answers gs foor programmers
    qu's what can programs do? (what's possible)
    gz: did I/we do the right thing?

P eval (p) = ans is ans right?

L will vary program give an ans? always?

L the same ans?
     Deterministic: P >> v => Here's exactly one path
                            from p to v
     Function: 度(evalr(Bo)=R, 人 evalr(Bo)=Rz
                W=(1+1)+(2+3)
     eval_{\Gamma}(B) = \begin{cases} F & \text{if } B = r & F \\ T & \text{if } B = r & T \end{cases}
                                          L= 2+(2+2) (1+1)+4
  M = N (= J. M=N (reci)
             7 z. N=rM (sym)
               3. M -> N (85.)
               Y_{i}(L_{i}, M=rL_{i}, L=rN) (trans)
```

2-2	Bo ->> R, Bo ->> RZ
	$R \in \{F, T\}$ $R \rightarrow \times \times \times = R$, (only recl)
	-Church-Rosser Property: Konsistency:
	Ym, N, IC M=rN, exists L, M->>rL
	proof, and N ->> L.
	Induction on M=rN.
	(sis) case M=>7N, L=N,
	(sym) case M=rN recause N=rM,
	IH: (exists L. N=>> L and M=>> L)
	exact IH.
	(rell) case M=rN because M=N. L=N.
	(trans) ease M=rN because M=rLa and Lo=rN,
	CIH: (3 LI, M->> LI and Lo >> Li)
	IHz: (FLz. Lo >>> Lz and N >>> Lz)
обителей дорогия и потражения по потражения по потражения по потражения по потражения по потражения по потраже	
	m=r/Lo=r W
	W = r Lo = r W
	1/4
	apply Diamore Property
	Li.
	13/2
	ans is L3!

2-3 Diamond property called Church-Rosser Property	1
If L >>> M and L >>> - N, Hen I L'.	
m >> r L' and N >> r L',	
217	(base)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(refl)
D > C b' 3 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	X-7rZ and
case rell, L'=M (B.b) = (B.b) (B.b) (Compat, let	Zary (hars)
case base. Alexander comparting	
LrM and LrN	
-> contradiction!	
case trans.	
case compat, left:	
$L = (B_n \cdot b_n) b_m \Rightarrow_r b_m L = (B_n \cdot b_n)$	bn >rbn'
$M = (B_m * b_m') \qquad N = (Bn * b_n')$	
$Bm = B_n$ $bm = bn$	
b > r b'm n b > r b'n	
IH: Fb1, b'm > rb, 1 b'n > rb,	
case compatright:	
smilar	
W=LB itt W ->>L B	
b sym doesn't matter	
77r + sym	
YBOEB, ∃ ROER, eval (Bo) = Ro TY	(Ro. eal(B) \$Ro
interp: B > Proof > normal math	
> constructive	
L gove an	itness