

BY M.J.PASSLAR

COMPUTERONIC - TEHRAN - IRAN

2022

CHAPTER 2 : OVER VIEW

Learning methods ...

Unsupervised learning

Most common in problem with limit known labels

- Dimension reduction
- clustering

Self-supervised learning

Most common in auto encoders

• Auto encoders

Reinforcement learning

Most common in Reinforcement clustering

Reinforcement clustering

Supervised learning method

Unsupervised learning method

Supervised vs unsupervised

Unsupervised

Supervised

Auto encoder learning method(Self- Supervised method)

reinforcement learning method

Test and Evaluation methods

Evaluation Methods ...

Simple hold-out validation

- Simplest method
- Useful for large data sets
- Trained model is not valid
- May overfitting happened

K-fold validation

- Use for small data sets
- Trained model is valid (most the time)

K-fold validation with shuffling

- Most valid method
- Use in final NN validation
- Use K-fold method but with shuffled data

Data post-processing ...

Vectorization

- · Convert all data and labels to Tensor
- · Choice validation method and spilt data

Normalization

- · Normalize all data to
- · Make all data homogenous (all data should have same range)

Handling missing data

- · Replace missing data with ZERO
- · Train and test data both should have some missing data

Feature engineering

- · Making problem easier
- · -> less recourses + less data needed

Feature engineering

Under-fit, fir & Over-fit

How to prevent over-fitting?

The best solution is to train network with bigger dataset

Indirect method to make more data:

- Reduce network size
 - Change system memories capacity
- Adding weight regularization factor
 - (1 method)
 - (2 method
- Use dropout method
 - Make some weighted zero

Changing network size

Smaller network

Bigger network

Add L1 & L2 regularization to network

Add dropout to network

How networks calculate weight? (activation functions)

V	
V	
V	
V	

Problem type	Last-layer activation	Loss function
Binary classification	sigmoid	binary_crossentropy
Multiclass, single-label classification	softmax	categorical_crossentropy
Multiclass, multilabel classification	sigmoid	binary_crossentropy
Regression to arbitrary values	None	mse
Regression to values between 0 and 1	sigmoid	mse or binary_crossentropy

Activation function

a mathematical function that converts a vector of numbers into a vector of probabilities

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Classification Vs Regression problems

Mse, Binary crossentropy and categorical crossentropy

Deep learning problem work-flow

