Introduction to Computer Science - Homework 4

Rumen Mitov

October 6, 2023

Problem 4.1

Definition 1:

A function, f: $X \to Y$, is injective $\iff \forall x, y \in X \mid f(x) = f(y) \implies x = y$.

Definition 2:

A function, f: $X \to Y$, is surjective $\iff \forall y \in Y, \exists x \in X \mid y = f(x)$.

Definition 3:

A function is bijective if it is injective and surjective.

a)

$$f(x) = x^3$$

Proving injectivity by contrapositive:

$$x \neq y \implies f(x) \neq f(y)$$

Since $x \neq y$, then it follows that $x^3 \neq y^3$, hence contrapositive is true.

 $\therefore f(x)$ is injective.

Proving surjectivity by implications:

We know $f(x) = x^3$ is continuous in the interval $(-\infty, \infty)$.

Hence:

$$\forall y \in \mathbb{R}, \exists x \in \mathbb{R} \mid y = x^3$$

 $\therefore f(x)$ is surjective.

f(x) is injective and surjective, hence it is bijective.

b)

$$f(x) = 2x + 1$$

Proving injectivity by contrapositive:

$$x \neq y \implies f(x) \neq f(y)$$

Since $x \neq y$, then it follows that $2x + 1 \neq 2y + 1$, hence contrapositive is true.

 $\therefore f(x)$ is injective.

Proving surjectivity by implications:

We know f(x) = 2x + 1 is continuous in the interval $(-\infty, \infty)$.

Hence:

$$\forall y \in \mathbb{N}, \exists x \in \mathbb{N} \mid y = 2x + 1$$

 $\therefore f(x)$ is surjective.

f(x) is injective and surjective, hence it is bijective. \blacksquare

 $\mathbf{c})$

$$f(x) = \sin(x)$$

Disproving injectivity by contradiction:

$$\forall x, y \in \mathbb{R} \mid f(x) = f(y) \implies x = y$$

Consider f(x) = f(y) = 0 which holds for $x = 0 \land y = \pi$.

 $\perp x \neq y$

 $\therefore f(x)$ is not injective.

Disproving surjectivity by implication:

$$\forall y \in \mathbb{R}, \exists x \in \mathbb{R} \mid y = f(x)$$

Since $f(x) = \sin(x)$ is bounded by $-1 \le x \le 1$,

that means that $\forall y \in \mathbb{R} \mid y < -1 \lor y > 1, \nexists y = f(x) = \sin(x)$.

 $\therefore f(x)$ is not surjective.

Since f(x) is neither injective nor surjective, it is also not bijective.

Problem 4.2

a)

Show: If $f: X \to Y$ and $g: Y \to Z$ are injective, then $g \circ f$ is injective.

Proof by implication: We know that:

$$f(x) = f(y) \implies x = y$$

We also know that:

$$g(z) = g(w) \implies z = w$$

Hence:

$$g(f(x)) = g(f(y)) \implies f(x) = f(y) \implies x = y$$

 $g \circ f$ is injective.

b)

Show: If $f: X \to Y$ and $g: Y \to Z$ are surjective, then $g \circ f$ is surjective.

Proof by implication:

We know that:

$$\forall y \in Y, \exists x \in X \mid y = f(x)$$

We also know that:

$$\forall z \in Z, \exists w \in Y \mid z = g(w)$$

Hence:

$$\forall c \in Z, \exists b \in Y \land \forall b \in Y, \exists a \in X \mid c = g(b), b = f(a)$$

$$\implies \forall c \in Z, \exists a \in X \mid c = g(f(a))$$

 $g \circ f$ is surjective.

c)

Show: If $f: X \to Y$ and $g: Y \to Z$ are bijective, then $g \circ f$ is bijective.

Proof by implication:

Since f(x) and g(x) are bijective, then they are both injective and surjective.

Hence from proofs in *Problem 4.2 a*) and *Problem 4.2 b*), we know that $(g \circ f)(x)$

will also be injective and surjective.

 $\therefore g \circ f$ is bijective. \blacksquare

Problem 4.3

a)

 $\forall m \in M \mid m$ is a movie that is showing in the cinema $\forall c \in C \mid c$ is a person paying to watch a movie in the cinema $\forall t \in T \mid t$ shows that a person paid to watch a movie $\forall x \in X \mid x$ is a person selling tickets to the movies $\forall k \in K \mid k$ is a person checking that a ticket is valid $\forall d \in D \mid d$ is a drink that is available to thirsty customers $\forall w \in W \mid w$ is someone who serves drinks to customers

b)

 $R\subseteq C\times D\mid (c,d)\in R, \text{ customer getting a drink}$ $R\subseteq W\times D\mid (w,d)\in R, \text{ waiter serving a drink}$ $R\subseteq C\times M\mid (c,m)\in R, \text{ customer watching a movie}$ $R\subseteq X\times T\mid (x,t)\in R, \text{ cashier selling a ticket}$ $R\subseteq K\times T\mid (k,t)\in R, \text{ ticket taker checking a ticket}$

c)

Equivalence:

 $R \subseteq M \times M \mid (m_1, m_2) \in R$, movies are directed by the same director

Partial Order:

 $R \subseteq D \times D \mid (d_1, d_2) \in R$, drinks have the same ingredients

Strict Partial Order:

 $R \subseteq T \times T \mid (t_1, t_2) \in R$, seat number is behind other seat number on tickets

Other:

 $R \subseteq C \times C \mid (c_1, c_2) \in R$, customers are in a monogamous relationship

 $R \subseteq K \times K \mid (k_1, k_2) \in R$, two ticket takers working at the same time

Problem 4.4

c)

Listing 1: Haskell type of zipWith function

$$\mathbf{zipWith} \ :: \ (\mathtt{a} \ {\longrightarrow} \ \mathtt{b} \ {\longrightarrow} \ \mathtt{c}) \ {\longrightarrow} \ [\mathtt{a}] \ {\longrightarrow} \ [\mathtt{b}] \ {\longrightarrow} \ [\mathtt{c}]$$

It takes in a function (which takes in a variable of type \mathbf{a} and type \mathbf{b} , and returns type \mathbf{c}), and two lists that hold elements of type \mathbf{a} and \mathbf{b} . zipWith returns a list of elements of type \mathbf{c} .

d)

Listing 2: Haskell type of isPrefixOf function

 $is Prefix Of \ :: \ Eq \ a \implies [\,a\,] \ -\!\!\!> \ [a\,] \ -\!\!\!> \ Bool$

It takes two lists, which must contain elements of variable type ${\bf a}$ that can be compared with the '==' operator. The function returns a boolean value.