

RIP140	X84373	nuclear receptor or nuclear receptor transcriptional coupling
TRIP1	L38810	nuclear receptor or nuclear receptor transcriptional coupling
TIF2	X97674	nuclear receptor or nuclear receptor transcriptional coupling
Smad3	AB004924	nuclear receptor or nuclear receptor transcriptional coupling
efp	D21205	nuclear receptor or nuclear receptor transcriptional coupling
lactoferrin	X53961	nuclear receptor or nuclear receptor transcriptional coupling
progesteron receptor	M15716	nuclear receptor or nuclear receptor transcriptional coupling
cathepsin G	J04990	nuclear receptor or nuclear receptor transcriptional coupling
pS2 protein	X52003	nuclear receptor or nuclear receptor transcriptional coupling
prolactin	E02152	nuclear receptor or nuclear receptor transcriptional coupling
ARA70	L49399	nuclear receptor or nuclear receptor transcriptional coupling
vitamin D receptor	J03258	nuclear receptor or nuclear receptor transcriptional coupling
p38	L35253	kinase-type signal transduction
p38 gamma	U66243	kinase-type signal transduction
JNK1	L26318	kinase-type signal transduction
JNK2	U09759	kinase-type signal transduction
JNK3	AA992006	kinase-type signal transduction
ERK1	M76585	kinase-type signal transduction
BMKa,b,g	U29725– U29727	kinase-type signal transduction
DAX1	U31929	gonad differentiation
SOX9	Z46629	gonad differentiation

WT1	X51630	gonad differentiation
SRY	L10101	gonad differentiation
Ad4BP/SF-1	D84206- D84209	gonad differentiation
EMX2	X68880	gonad differentiation
c-Fos	K00650/ M16287	oncogenes & tumor suppressors
c-Myc	J00120/ K01908	oncogenes & tumor suppressors
Bcl-2	M13994- M13995	oncogenes & tumor suppressors
Bax a,b,g	L22473- L22475	oncogenes & tumor suppressors
Bax d	U19599	oncogenes & tumor suppressors
Bcl-x	U72398	oncogenes & tumor suppressors
NGF receptor	M14764	receptor-type kinase
FGF receptor	M34641	receptor-type kinase
VEGF receptor	AF016050	receptor-type kinase
PDGF receptor	M21616	receptor-type kinase
CSF1 receptor	M33208- M33210	receptor-type kinase
EGF receptor	M29366	receptor-type kinase
insulin receptor	M10051	receptor-type kinase

The genes that are potentially influenced by endocrine disruptors are further exemplified by the gene

for estrogen receptor, which is known to bind diethylstilbestrol, bisphenol-A, 17 β -estradiol and the like, as well as genes involved in the signal transduction pathway for the estrogen receptor.

5 A gene that is influenced by an endocrine disruptor can be detected as follows.

As used herein, a DNA array refers to a support onto which a gene or a DNA fragment derived from the gene is immobilized and includes, for example, a so-called DNA chip. Any supports which can be used for hybridization may be used. A slide glass, a silicone chip, a nitrocellulose or nylon membrane or the like is usually used. For example, the gene or a DNA fragment thereof to be immobilized onto the support can be prepared as follows. A primer pair for 10 PCR amplification which is optimal for the method of the present invention can be prepared based on a base sequence identified by a GenBank accession no. assigned to a gene to be immobilized or the product of the gene using a primer analysis/construction software such as OligoTM Primer Analysis Software (Takara Shuzo). A PCR-amplified fragment of interest can be obtained by using the primer pair and a genomic DNA, a genomic DNA library or a cDNA library as a template according to a standard protocol attached to a commercially available PCR kit. The resulting DNA fragment 15 can be purified using, for example, Microcon-100 (Takara 20 25)