Introduction to Machine Learning

Kernel Methods

SHENG-JYH WANG

NATIONAL YANG MING CHIAO TUNG UNIVERSITY, TAIWAN SPRING, 2024

Prerequisite Knowledge

Lagrange Multipliers (1/8)

Used to find the stationary points of a function of several variables subject to one or more constraints.

Consider a *D*-dimensional variable **x** with components x_1, \ldots, x_D .

The constraint equation $g(\mathbf{x}) = 0$ then represents a (D-1)-dimensional surface in \mathbf{x} -space.

At any point on the constraint surface, the gradient $\nabla g(x)$ of the constraint function will be orthogonal to the surface.

$$g(\mathbf{x} + \boldsymbol{\epsilon}) \simeq g(\mathbf{x}) + \boldsymbol{\epsilon}^{\mathrm{T}} \nabla g(\mathbf{x}).$$

If $g(\mathbf{x}) = g(\mathbf{x} + \boldsymbol{\epsilon})$ and $\boldsymbol{\epsilon} \to 0$, $\boldsymbol{\epsilon}^{\mathrm{T}} \nabla g(\mathbf{x}) = 0$.

Lagrange Multipliers (2/8)

Equality Constraint

If we seek a point \mathbf{x}^* on the constraint surface $g(\mathbf{x}) = 0$ such that $f(\mathbf{x})$ is maximized. The vector $\nabla f(\mathbf{x})$ will be orthogonal to the constraint surface at \mathbf{x}^* .

(Reference: http://staff.www.ltu.se/~tomas/applmath/chap7en/part7.html)

Lagrange Multipliers (3/8)

$$\nabla f + \lambda \nabla g = 0$$
 where $\lambda \neq 0$.

We can define the *Lagrangian* function:

$$L(\mathbf{x},\lambda) \equiv f(\mathbf{x}) + \lambda g(\mathbf{x}).$$

$$V_{\mathbf{x}}L = 0$$

$$\partial L/\partial \lambda = 0$$

Lagrange Multipliers (4/8)

Example:
$$f(x_1, x_2) = 1 - x_1^2 - x_2^2$$

subject to the constraint $g(x_1, x_2) = x_1 + x_2 - 1 = 0$

$$L(\mathbf{x}, \lambda) = 1 - x_1^2 - x_2^2 + \lambda(x_1 + x_2 - 1)$$

$$-2x_1 + \lambda = 0$$

$$-2x_2 + \lambda = 0$$

$$x_1 + x_2 - 1 = 0.$$

$$(x_1^*, x_2^*) = (\frac{1}{2}, \frac{1}{2}) \qquad \lambda = 1$$

Lagrange Multipliers (5/8)

Inequality Constraint

We consider the problem of maximizing $f(\mathbf{x})$ subject to ar inequality constraint of the form $g(\mathbf{x}) \ge 0$.

- ✓ If the constrained stationary point lies in the region where $g(\mathbf{x}) > 0$, the constraint is said to be *inactive*. The function $g(\mathbf{x})$ plays no role and the stationary condition is simply $\nabla f(\mathbf{x}) = 0$. ($\lambda = 0$)
- ✓ If the constrained stationary point lies on the boundary $g(\mathbf{x}) = 0$, the constraint is said to be *active*. The solution lies on the boundary, is analogous to the equality constraint. $(\lambda > 0)$

Lagrange Multipliers (6/8)

Inactive Constraint

$$\nabla f = \lambda \nabla g$$

Active Constraint

$$\nabla f = -\lambda \nabla g$$

Gradient 方向相反 最大值在Gradient =0

Lagrange Multipliers (7/8)

The solution to problem of maximizing $f(\mathbf{x})$ subject to $g(\mathbf{x}) \geq 0$ is obtained by optimizing the Lagrange function $L(\mathbf{x}, \lambda) \equiv f(\mathbf{x}) + \lambda g(\mathbf{x})$ with respect to \mathbf{x} and λ subject to the conditions

$$g(\mathbf{x}) \geqslant 0$$

$$\lambda \geqslant 0$$

$$\lambda g(\mathbf{x}) = 0$$

Karush-Kuhn-Tucker (KKT) conditions

Remark: If we wish to minimize the function $f(\mathbf{x})$ subject to an inequality constraint $g(\mathbf{x}) \geq 0$, then we minimize the Lagrangian function $L(\mathbf{x}, \lambda)$ $\equiv f(\mathbf{x}) - \lambda g(\mathbf{x})$ with respect to \mathbf{x} , subject to $\lambda \geq 0$.

Lagrange Multipliers (8/8)

Suppose we wish to maximize $f(\mathbf{x})$ subject to $g_j(\mathbf{x}) = 0$ for $j = 1, \ldots, J$, and $h_k(\mathbf{x}) \geq 0$ for $k = 1, \ldots, K$. We introduce Lagrange multipliers $\{\lambda_j\}$ and $\{\mu_k\}$, and optimize the Lagrangian function given by

$$L(\mathbf{x}, \{\lambda_j\}, \{\mu_k\}) = f(\mathbf{x}) + \sum_{j=1}^J \lambda_j g_j(\mathbf{x}) + \sum_{k=1}^K \mu_k h_k(\mathbf{x})$$

subject to $\mu_k \ge 0$ and $\mu_k h_k(\mathbf{x}) = 0$ for k = 1, ..., K.

Kernel Methods

Introduction (1/5)

Recall the linear models for regression

$$\begin{split} p(\mathbf{t}|\mathbf{X},\mathbf{w},\beta) &= \prod_{N}^{N} \mathcal{N}(t_{n}|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_{n}),\beta^{-1}) = N(\mathbf{t}\,|\,\mathbf{\Phi}\mathbf{w},\boldsymbol{\beta}^{-1}\mathbf{I}) \quad \text{Likelihood Function} \\ p(\mathbf{w}) &= \mathcal{N}(\mathbf{w}|\mathbf{m}_{0},\mathbf{S}_{0}) \quad \text{Prior} \\ p(\mathbf{w}|\mathbf{t}) &= \mathcal{N}(\mathbf{w}|\mathbf{m}_{N},\mathbf{S}_{N}) \quad \text{Posterior} \\ \text{where} \quad \mathbf{m}_{N} &= \mathbf{S}_{N}\left(\mathbf{S}_{0}^{-1}\mathbf{m}_{0} + \beta\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}\right) \\ \mathbf{S}_{N}^{-1} &= \mathbf{S}_{0}^{-1} + \beta\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}. \end{split}$$

$$\Rightarrow \quad p(t|\mathbf{x},\mathbf{t},\alpha,\beta) = \mathcal{N}(t|\mathbf{m}_{N}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}),\sigma_{N}^{2}(\mathbf{x})) \qquad \text{Predictive Distribution} \\ \text{where} \quad \sigma_{N}^{2}(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}}\mathbf{S}_{N}\boldsymbol{\phi}(\mathbf{x}) \end{split}$$

Introduction (2/5)

red curve: mean of the predictive distribution red shaded region: one standard deviation span around the mean

Introduction (3/5)

Equivalent Kernel

The predictive mean can be written as

$$y(\mathbf{x}, \mathbf{m}_N) = \mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) = \beta \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t} = \sum_{n=1}^N \beta \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}_n) t_n$$

where
$$\mathbf{S}_N^{-1} = \mathbf{S}_0^{-1} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}$$

$$\Rightarrow y(\mathbf{x}, \mathbf{m}_N) = \sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) t_n \quad \text{where} \quad k(\mathbf{x}, \mathbf{x}') = \beta \phi(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \phi(\mathbf{x}')$$

the **smoother matrix** (or the **equivalent kernel**)

The prediction at x is given by a linear combination of the target values from the training set!

Introduction (4/5)

Remarks:

- 1. Instead of introducing a set of basis functions, we can define a localized kernel directly and use it to make predictions for new input vectors x, given the observed training set.
- 2. It can be shown that

$$\sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) = 1$$

for all values of x.

Introduction (5/5)

- The kernel concept was introduced into the field of pattern recognition by Aizerman et al. (1964)
- Re-introduced into machine learning in the context of large-margin classifiers by Boser et al. (1992)
- The concept of a kernel formulated as an inner product in a feature space allows us to build interesting extensions of many well-known algorithms by making use of the *kernel trick*, also known as *kernel substitution*.

Sparse Kernel Machine

Look for kernel-based algorithms whose predictions for new inputs depend only on the kernel function evaluated at a subset of the training data points.

- ✓ Support Vector Machine (SVM)
- ✓ Relevance Vector Machine (RVM)

Concept of Maximum Margin Classifier

Which cutting line is better?

Here, we aim to choose decision boundary for which the margin is maximized.

Support Vector Machine (1/24)

Training data: N input vectors x_1, \ldots, x_N , with corresponding target values t_1, \ldots, t_N where $t_n \in \{-1, 1\}$.

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) + b$$

Linearly separable training data

There exists at least one choice of the parameters \boldsymbol{w} and \boldsymbol{b} such that

$$y(\mathbf{x}_n) > 0 \text{ for } t_n = +1 \text{ and } y(\mathbf{x}_n) < 0 \text{ for } t_n = -1.$$

Therefore, $t_n y(\mathbf{x}_n) > 0$ for all *training* points.

Support Vector Machine (2/24)

Margin: the smallest distance between the decision boundary and any of the samples.

The distance of a point x_n to the decision surface:

$$\frac{t_n y(\mathbf{x}_n)}{\|\mathbf{w}\|} = \frac{t_n(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b)}{\|\mathbf{w}\|}$$

Support Vector Machine (3/24)

Support Vector Machine (4/24)

Support Vector Machine (5/24)

The maximum margin solution is found by solving

$$\underset{\mathbf{w},b}{\operatorname{arg\,max}} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) \right] \right\}$$

However, direct solution of this optimization problem is very complex!

Note that if $\mathbf{w} \to \kappa \mathbf{w}$ and $b \to \kappa b$, the distance from any point \mathbf{x}_n to the decision surface is unchanged.

Hence, we set

$$t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) = 1$$

for the point that is closest to the surface.

Support Vector Machine (6/24)

$$\underset{\mathbf{w},b}{\operatorname{arg max}} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left\{ t_{n}(\mathbf{w}^{T} \phi(\mathbf{x}_{n}) + b) \right\} \right\}$$

 $\underset{\mathbf{w},b}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{subject to } t_n(w^T \varphi(x_n) + b) \ge 1$

$$y = \mathbf{w}^T \phi(\mathbf{x}) + b$$

Support Vector Machine (7/24)

Support Vector Machine (8/24)

$$\Rightarrow$$
 $t_n \left(\mathbf{w}^T \phi(\mathbf{x}_n) + b \right) \geqslant 1, \quad n = 1, \dots, N.$

The canonical representation of the decision hyperplane.

The optimization problem now becomes

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2$$

$$t_n\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n) + b\right) \geqslant 1, \qquad n = 1, \dots, N.$$

$$n=1,\ldots,N.$$

a quadratic programming problem!

Support Vector Machine (9/24)

Minimize
$$L(\mathbf{w}, b, a) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \{t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) - 1\}$$

KKT Conditions

$$a_n \ge 0$$

$$t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) - 1 \ge 0$$

$$a_n \{t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) - 1\} = 0$$

For those $t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) > 1$, we have $a_n = 0$

Support Vector Machine (10/24)

$$L(\mathbf{w}, b, a) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \{t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) - 1\}$$

Setting
$$\frac{\partial L(\mathbf{w}, b, a)}{\partial \mathbf{w}} = 0$$
 $\frac{\partial L(\mathbf{w}, b, a)}{\partial b} = 0$

Support Vector Machine (11/24)

By eliminating **w** and *b* from $L(\mathbf{w}, b, \mathbf{a})$, we get the *dual representation* of the maximum margin problem in which we maximize

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

subject to

$$a_n \geqslant 0, \qquad n = 1, \dots, N,$$

$$n=1,\ldots,N,$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

Kernel function: $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\mathsf{T}} \phi(\mathbf{x}')$

Support Vector Machine (12/24)

To classify new data points using the trained model, we evaluate the sign of $y(\mathbf{x})$ defined by $y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$.

With
$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \boldsymbol{\phi}(\mathbf{x}_n)$$
, we have

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b.$$

Support Vector Machine (13/24)

Karush-Kuhn-Tucker (KKT) conditions:

$$a_n \geqslant 0$$

$$t_n y(\mathbf{x}_n) - 1 \geqslant 0$$

$$a_n \{t_n y(\mathbf{x}_n) - 1\} = 0.$$

For every data point, either $a_n = 0$ or $t_n y(\mathbf{x}_n) = 1$.

 $\sqrt{a_n} = 0 \implies$ That data point plays no role in making predictions for new data points.

 \checkmark $a_n \ne 0 \Rightarrow$ That data point is called **support vector** and lies on the maximum margin hyperplanes in feature space.

Support Vector Machine (14/24)

For any support vector \mathbf{x}_n , we have

$$t_n \left(\sum_{\substack{l \\ \pm 1}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) + b \right) = 1$$

⇒ The threshold b can be determined by calculating

$$b = \frac{1}{N_{\mathcal{S}}} \sum_{n \in \mathcal{S}} \left(t_n - \sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right)$$

S: the set of indices of the support vectors N_S : the total number of support vectors.

Support Vector Machine (15/24)

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

Ref: C.M. Bishop, Pattern Recognition & Machine Learning

Support Vector Machine (16/24)

The maximum margin classifier can also expressed as the minimization of an error function, with a simple quadratic regularizer:

$$\sum_{n=1}^{N} E_{\infty}(y(\mathbf{x}_n)t_n - 1) + \lambda \|\mathbf{w}\|^2$$

where $E_{\infty}(z)$ is a function that is zero if $z \ge 0$ and ∞ otherwise.

Support Vector Machine (17/24)

Overlapping Class Distributions

Allow data points to be on the "wrong side" of the margin boundary, but with a penalty that increases with the distance from that boundary.

- \Rightarrow Introduce *slack variables*, $\xi_n \ge 0$ where $n = 1, \ldots, N$.
 - $\checkmark \xi_n = 0$ for data points on or inside the correct margin boundary.
 - $\checkmark \xi_n = |t_n y(\mathbf{x}_n)|$ for other points.
 - Data points inside the margin, but on the correct side of the decision boundary. \Rightarrow 0 < ξ_n < 1.
 - ▶ Data points on the decision boundary $y(\mathbf{x}_n) = 0 \Rightarrow \xi_n = 1$.
 - Data points on the wrong side of the decision boundary. $\Rightarrow \xi_n > 1$.

Support Vector Machine (18/24)

Now, we have the classification constraints

$$t_n y(\mathbf{x}_n) \geqslant 1 - \xi_n, \qquad n = 1, \dots, N$$

$$n=1,\ldots,N$$

where $\xi_n \geq 0$.

Wish to minimize

$$C\sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2$$

subject to
$$t_n y(\mathbf{x}_n) \geqslant 1 - \xi_n,$$
 and $\xi_n \geq 0.$

$$n=1,\ldots,N$$

Support Vector Machine (19/24)

The Lagrangian is

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n \{t_n y(\mathbf{x}_n) - 1 + \xi_n\} - \sum_{n=1}^{N} \mu_n \xi_n$$

where $\{a_n \ge 0\}$ and $\{\mu_n \ge 0\}$ are Lagrange multipliers.

$$a_n \geqslant 0$$

$$t_n y(\mathbf{x}_n) - 1 + \xi_n \geqslant 0$$

$$a_n (t_n y(\mathbf{x}_n) - 1 + \xi_n) = 0$$

$$\mu_n \geqslant 0$$

$$\xi_n \geqslant 0$$

$$\mu_n \xi_n = 0 \quad \text{where } n = 1, \dots, N.$$

Support Vector Machine (20/24)

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$

$$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} a_n t_n = 0$$

$$\frac{\partial L}{\partial \xi_n} = 0 \quad \Rightarrow \quad a_n = C - \mu_n.$$

Support Vector Machine (21/24)

Dual representation Maximizing

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

subject to

$$0 \leqslant a_n \leqslant C$$
$$\sum_{n=1}^{N} a_n t_n = 0$$

Support Vector Machine (22/24)

- $\sim a_n$ = 0: such data points do not contribute to the predictive model.
- $< 0 < a_n < C \Rightarrow \mu_n > 0 \Rightarrow \xi_n = 0 \Rightarrow$ such points lie on the margin.
- $\sim a_n = C \Rightarrow$ such points lie inside the margin and can either be correctly classified if $\xi_n \le 1$ or misclassified if $\xi_n > 1$.

$$b = \frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}} \left(t_n - \sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right)$$

M: the set of indices of data points having $0 < a_n < C$.

S: the set of indices of the support vectors

Support Vector Machine (23/24)

v-SVM: An alternative, equivalent formulation of the SVM

$$\text{Maximizing} \qquad \widetilde{L}(\mathbf{a}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

subject to
$$0 \leqslant a_n \leqslant 1/N$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

$$\sum_{n=1}^{N} a_n \geqslant \nu.$$

Support Vector Machine (24/24)

Illustration of the ν -SVM applied to a nonseparable data set in two dimensions. The support vectors are indicated by circles.

Limitations of SVM

- ✓ The outputs of an SVM represent decisions rather than posterior probabilities.
- ✓ The SVM was originally formulated for two classes, and the extension to K > 2 classes is problematic.
- \checkmark The complexity parameter C, or v (and ε in the case of regression), must be found using a hold-out method, such as cross-validation.
- ✓ The kernel functions are required to be positive definite.