

wherein A is

R³, R⁴, R⁵ and R⁶ are each, independently, H, halogen, NO₂,

C₁₋₁₀- alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy,

C₁₋₁₀- alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

C₆₋₁₂ aryl, optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy, or

C₅₋₁₂ hetaryl, optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy,

and either

one of R³, R⁴, R⁵ and R⁶ is -M-L¹; or

two adjacent of R³, R⁴, R⁵ and R⁶ together are an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C₁₋₁₀-alkyl, , halo-substituted C₁₋₁₀-alkyl up to perhaloalkyl, C₁₋₁₀- alkoxy, halo-substituted C₁₋₁₀-alkoxy up to perhaloalkoxy, C₃₋₁₀-cycloalkyl, C₂₋₁₀-alkenyl, C₁₋₁₀- alkanoyl, C₆₋₁₂-aryl, C₅₋₁₂-hetaryl; C₆₋₁₂-aralkyl, C₆₋₁₂-alkaryl, halogen; NR¹R¹; -NO₂; -CF₃; -COOR¹; -NHCOR¹; -CN; -CONR¹R¹; -SO₂R²; -SOR²; -SR²;

in which

R¹ is H or C₁₋₁₀-alkyl, optionally substituted by halogen up to perhaloalkyl and R² is C₁₋₁₀-alkyl, optionally substituted by halogen, up to perhaloalkyl,

$R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are independently H, halogen,

$C_1 - C_{10}$ alkyl, optionally substituted by halogen up to perhaloalkyl,

$C_1 - C_{10}$ alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$, together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl;

M is $-CH_2-$, $-S-$, $-N(CH_3)-$, $-NHC(O)-$, $-CH_2-S-$, $-S-CH_2-$, $-C(O)-$, or $-O-$; and

L^1 is phenyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$, NO_2 or,

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$, or NO_2 ,

naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$ or NO_2 ,

pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$ or NO_2 ,

pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$ or NO_2 ,

pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$ or NO_2 ,

benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$ or NO_2 ,

benzopyridine, optionally substituted by C_{1-10} -alkyl, one C_{1-10} -alkoxy, halogen, OH, $-SCH_3$ or NO_2 ,

or

benzothiazole, optionally substituted by, C_{1-10} alkyl C_{1-10} alkoxy, halogen, OH, $-SCH_3$ or NO_2

b1
or a pharmaceutically acceptable salt thereof.

3. (Amended) A compound according to claim 1, wherein

R^3 is H, halogen or C_{1-10} - alkyl, optionally substituted by halogen, up to perhaloalkyl;

R^4 is H, halogen or NO_2 ;

R^5 is H, halogen or C_{1-10} - alkyl;

R^6 is H, C_{1-10} - alkoxy, thiophene, pyrole or methyl substituted pyrole,

$R^{3'}$ is H, halogen, C_{4-10} -alkyl, or CF_3 and

$R^{6'}$ is H, halogen, CH_3 , CF_3 or $-OCH_3$.

4. (Amended) A compound according to claim 1, wherein

$R^{3'}$ is C_{4-10} -alkyl, Cl, F or CF_3 ;

$R^{4'}$ is H, Cl or F ;

$R^{5'}$ is H, Cl, F or C_{4-10} -alkyl; and

$R^{6'}$ is H or OCH_3 .

5. (Amended) A compound according to claim 4, wherein $R^{3'}$ or $R^{5'}$ is t-butyl.

6. (Amended) A compound according to claim 1, wherein M is $-CH_2-$, $-N(CH_3)-$ or $-NHC(O)-$.

7. (Amended) A compound according to claim 6, wherein L^1 is phenyl or pyridyl.

8. (Amended) A compound according to claim 1, wherein M is $-O-$.

9. (Amended) A compound according to claim 8, wherein L^1 is phenyl, pyridyl pyridone or benzothiazole.

10. (Amended) A compound according to claim 1, wherein M is -S-.

11. (Amended) A compound according to claim 10, wherein L^1 is phenyl or pyridyl.

15. (Amended) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula II:

or a pharmaceutically acceptable salt thereof wherein

A is

B is a substituted or unsubstituted, up to bicyclic aryl or heteroaryl moiety of up to 12 carbon atoms with at least one 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and W_n , wherein n is 0-3 and each W is independently selected from the group consisting of -CN, - CO_2R^7 , - $\text{C}(\text{O})\text{NR}^7\text{R}^7$, - $\text{C}(\text{O})-\text{R}^7$, - NO_2 , - OR^7 , - SR^7 , - NR^7R^7 , - $\text{NR}^7\text{C}(\text{O})\text{OR}^7$, - $\text{NR}^7\text{C}(\text{O})\text{R}^7$, $\text{C}_1\text{-C}_{10}$ alkyl, $\text{C}_2\text{-C}_{10}$ alkenyl, $\text{C}_1\text{-C}_{10}$ alkenoyl, $\text{C}_1\text{-C}_{10}$ alkoxy, $\text{C}_3\text{-C}_{10}$ cycloalkyl, $\text{C}_6\text{-C}_{14}$ aryl, optionally substituted with halogen, $\text{C}_1\text{-C}_{10}$ alkyl, or $\text{C}_1\text{-C}_{10}$ alkoxy; $\text{C}_7\text{-C}_{24}$ alkaryl, optionally substituted with halogen, $\text{C}_1\text{-C}_{10}$ alkyl, or $\text{C}_1\text{-C}_{10}$ alkoxy; $\text{C}_3\text{-C}_{13}$ heteroaryl, optionally substituted with halogen, $\text{C}_1\text{-C}_{10}$ alkyl, or $\text{C}_1\text{-C}_{10}$ alkoxy; $\text{C}_4\text{-C}_{23}$ alkoheteroaryl, optionally substituted with halogen, $\text{C}_1\text{-C}_{10}$

C_{10} alkyl, or C_1-C_{10} alkoxy; substituted C_1-C_{10} alkyl, substituted C_2-C_{10} alkenyl, substituted C_2-C_{10} alkenoyl, substituted C_1-C_{10} alkoxy, substituted C_3-C_{10} cycloalkyl, substituted C_4-C_{23} alkheteroaryl and $-M-L^1$;

wherein if W is a substituted group which does not contain aryl or hetaryl moieties, it is substituted by one or more substituents independently selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)R^7$, $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NR^7R^7$, NO_2 , $-NR^7C(O)R^7$, $-NR^7C(O)OR^7$ and halogen up to per-halo;

wherein each R^7 is independently selected from H, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_3-C_{13} hetaryl, C_7-C_{24} alkaryl, C_4-C_{23} alkheteroaryl, up to per-halosubstituted C_1-C_{10} alkyl, up to per-halo substituted C_2-C_{10} alkenyl, up to per-halosubstituted C_3-C_{10} cycloalkyl, up to per-halosubstituted C_6-C_{14} aryl and up to per-halosubstituted C_3-C_{13} hetaryl,

wherein Q M is -O-, -S-, $-N(R^7)-$, $-(CH_2)_m-$, $-C(O)-$, $-CH(OH)-$, $-(CH_2)_mO-$, $-NR^7C(O)NR^7R^7-$, $-NR^7C(O)-$, $-C(O)NR^7-$, $-(CH_2)_mS-$, $-(CH_2)_mN(R^7)-$, $-O(CH_2)_m-$, $-CHX^a$, $-CX^{a_2}-$, $-S-(CH_2)_m-$ and $-N(R^7)(CH_2)_m-$,

$m = 1-3$, and X^a is halogen; and

L^1 is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1} , wherein $n1$ is 0 to 3 and each Z is independently selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)NR^7R^7$, $-C(O)-NR^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7R^7$, $-NR^7C(O)OR^7$, $-C(O)R^7$, $-NR^7C(O)R^7$, C_1-C_{10} alkyl, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_3-C_{13} hetaryl, C_7-C_{24} alkaryl, C_4-C_{23} alkheteroaryl, substituted C_1-C_{10} alkyl, substituted C_3-C_{10} cycloalkyl, substituted C_7-C_{24} alkaryl and substituted C_4-C_{23} alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NO_2$, $-NR^7R^7$, $-NR^7C(O)R^7$ and $-NR^7C(O)OR^7$,

wherein $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are each independently H, halogen, C_{1-10} -alkyl, optionally substituted by halogen up to perhaloalkyl,

$C_1 - C_{10}$ alkoxy, optionally substituted by halogen up to perhaloalkoxy or two adjacent of R^3 , R^4 , R^5 and R^6 together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl.

16. (Amended) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula IIa:

IIa

wherein A is

20890

R^3 , R^4 , R^5 and R^6 are each independently H, halogen, NO_2 ,
 C_{1-10} -alkyl, optionally substituted by halogen up to perhaloalkyl,
 C_{1-10} -alkoxy, optionally substituted by halogen up to perhaloalkoxy,
 C_{1-10} -alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,
 C_{6-12} aryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy, or
 C_{5-12} hetaryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy,
and either

one of R^3 , R^4 , R^5 and R^6 is $-M-L^1$; or

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5- 12 atoms, optionally substituted by C_{1-10} -alkyl, halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl; C_{6-12} -aryl, C_{5-12} -hetaryl, C_{6-12} -alkaryl, halogen; $-NR^1R^1$; $-NO_2$; $-CF_3$; $-COOR^1$; $-NHCOR^1$; $-CN$; $-CONR^1R^1$; $-SO_2R^2$; $-SOR^2$; $-SR^2$;

in which

R^1 is H or C_{1-10} -alkyl, optionally substituted by halogen, up to perhalo and

R^2 is C_{1-10} -alkyl, optionally substituted by halogen,

R^3 , R^4 , R^5 and R^6 are independently H, halogen,

$C_1 - C_{10}$ alkyl, optionally substituted by halogen up to perhaloalkyl,

30

89

B

C_1-C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of R^3 , R^4 , R^5 and R^6 , together with the base phenyl, form a naphthyl group optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl, halogen up to perhalo;

M is $-CH_2-$, $-S-$, $-N(CH_3)-$, $-NHC(O)-$, $-CH_2-S-$, $-S-CH_2-$, $-C(O)-$, or $-O-$; and

L^1 is phenyl, pyridyl, naphthyl, pyridone, pyrazine, pyrimidine, benzodiazane, benzopyridine or benzothiazole, each optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$, NO_2 or, where Y is phenyl, by

or a pharmaceutically acceptable salt thereof.

17. (Amended) A method according to claim 16, wherein

R^3 is halogen or C_{1-10} -alkyl, optionally substituted by halogen, up to perhaloalkyl;

R^4 is H, halogen or NO_2 ;

R^5 is H, halogen or C_{1-10} -alkyl;

R^6 is H, C_{1-10} -alkoxy, thiophene, pyrole or methylsubstituted pyrole

$R^{3'}$ is H, halogen, C_{4-10} -alkyl, or CF_3 and

$R^{6'}$ is H, halogen, CH_3 , CF_3 or OCH_3 .

18. (Amended) A method according to claim 16, wherein M is -CH₂- , -S-, -N(CH₃)- or -NHC(O)- and L¹ is phenyl or pyridyl.

19. (Amended) A method according to claim 16, wherein M is -O- and L¹ is phenyl, pyridone, pyrimidine, pyridyl or benzothiazole.