

GRUNDLAGEN DER ELEKTROTECHNIK ET1

Teil 1: Von Einheiten bis Wirkungsgrad

1 GRUNDLEGENDE BEGRIFFE

- 1.1 Einheiten
- 1.2 Gleichungen
- 1.3 Elektrische Ladung
- 1.4 Elektrisches Feld
- 1.5 Elektrische Spannung
- 1.6 Elektrischer Strom
- 1.7 Elektrischer Widerstand
- 1.8 Arbeit, Leistung und Wirkungsgrad

ELEKTRISCHE SPANNUNG U

Spannung ist ein Maß für die Arbeit, die man aufwendet, wenn eine Ladung in einem elektrischen Feld bewegt wird.

Für ein konstantes elektrisches Feld *E* gilt:

$$W = F \cdot s = Q \cdot E \cdot s$$
 $[w] = A_5 \cdot V \cdot m = VA_5 = J$
 $\phi = W / Q$ heißt elektrisches Potential $U_{12} = \phi_1 - \phi_2$ ist die Potentialdifferenz und heißt **Spannung**

$$U_{12} = \frac{W_{12}}{Q}$$
 mit $[W]/[Q] = 1 Ws/As = 1 VAs/As = 1 Volt = 1 V$

ELEKTRISCHER STROM *I*

Elektrischer Strom ist bewegte Ladung

Strom wird angegeben als Ladungsmenge pro Zeit:

$$I = \frac{\Delta Q}{\Delta t}$$
 $\frac{A_s}{s}$ mit $[I] = 1$ Ampere = 1 A

ELEKTRISCHE SPANNUNG

Aufgabe: Bestimmen Sie die folgenden Spannungen.

1)
$$U_{12} = \begin{cases} 1 & 0 \\ 1 & 0 \end{cases} = 100$$

2)
$$U_{23}^{-1} = \langle 0 - \phi_3 \rangle = -18 V$$

3)
$$U_{31} = \phi_3 - \phi_4 = 8$$

4)
$$U_{12}^{31} + U_{23} + U_{31} = \emptyset$$

Endergebnis für Klicker-Abfrage:

a)
$$U_{12} + U_{23} + U_{31} = 2V$$

b)
$$U_{12} + U_{23} + U_{31} = 8 V$$

c)
$$U_{12} + U_{23} + U_{31} = 0 V$$

1 GRUNDLEGENDE BEGRIFFE

- 1.1 Einheiten
- 1.2 Gleichungen
- 1.3 Elektrische Ladung
- 1.4 Elektrisches Feld
- 1.5 Elektrische Spannung
- 1.6 Elektrischer Strom
- 1.7 Elektrischer Widerstand
- 1.8 Arbeit, Leistung und Wirkungsgrad

GLEICHSTROM UND MOMENTAN-STROM

Gleichstrom:

(DC – direct current)

$$I = const.$$

$$I = \frac{\Delta Q}{\Delta t}$$

Zeitabhängiger Strom:

(AC – alternating current)

$$i = f(t)$$

$$i = \frac{dQ}{dt} \quad \Leftrightarrow \quad Q = \int_{0}^{t} idt$$

STROMDICHTE J

Frage:

Was passiert mit dem Strom, wenn ein Draht dünner wird?

$$J = \frac{I}{A}$$

$$mit [J] = 1 A/m^2$$

33

BEISPIEL STROMDICHTE

Aufgabe

Beim Starten des Autos fließt I = 120 A.

Die Stromdichte darf höchstens $4 A/mm^2$ betragen.

Welchen Durchmesser muss ein rundes Kabel mindestens haben?

$$J = \frac{T}{A} \Rightarrow 4A / mm^2 \leq \frac{120A}{A}$$

BEISPIELE FÜR LADUNGSTRANSPORT

Ladungsträger

Elektronen

· Tonen

· Elektronen Löcher

· Elekh. Ionen

Medium

Metall

Elektroly +

Halbleiter

Plas mu

Anwendung

Kupferleiter

galvanik

Doden Transistoren

Halbleile lechnologie
obst lächen veredelung

HAW Hamburg
Fakultät TI

1 GRUNDLEGENDE BEGRIFFE

- 1.1 Einheiten
- 1.2 Gleichungen
- 1.3 Elektrische Ladung
- 1.4 Elektrisches Feld
- 1.5 Elektrische Spannung
- 1.6 Elektrischer Strom
- 1.7 Elektrischer Widerstand
- 1.8 Arbeit, Leistung und Wirkungsgrad

ELEKTRISCHER WIDERSTAND R

Aufgabe:

Vergleichen Sie den elektrischen Strom mit Wasser.

Wie können Sie den "Wasserstrom" reduzieren?

ANALOGIE ELEKTRISCHER STROM UND WASSER

Ladungsmenge

Strom: Ladung pro Zeit

Spannung: Potentialdifferenz

Widerstand

ELEKTRISCHER WIDERSTAND R

Im allgemeinen gilt:

- ein Leiter hat einen elektrischen Widerstand
- je höher die Spannung desto höher der Strom

Elektrischer Widerstand

•
$$[R] = 1 V/A = 1 \Omega \text{ (Ohm)}$$

$$R = U/I$$

Elektrischer Leitwert

$$G = I / U$$

• [G] = 1 A/V = 1Siemens = 1 S oder (US: 1 mho)

SPEZIFISCHER WIDERSTAND P Meins Tho

Frage: Wovon hängt der Widerstand eines Leiters ab?

· Material · Quershuitts fläche

. Lange

materialabhängige Komponente wird zusammengefasst zu dem **spezifischen Widerstand** ho (rho)

⇒ spezifischer Widerstand ist von der Geometrie unabhängig

SPEZIFISCHER WIDERSTAND ho

Der spezifische Widerstand ρ ist eine Materialkonstante:

$$R = \rho \cdot \frac{M}{A}$$

$$\exists [s] = \Omega m$$

$$mit [\rho] = 1 \Omega m$$

Kehrwert heißt spez. Leitfähigkeit σ

mit
$$[\sigma] = \frac{1}{2} = 5 \cdot \frac{1}{2}$$

Beispiele

 $ρ_{CU}$ = 0.0167 Ω mm²/m $ρ_{FE}$ = 0.0971 Ω mm²/m $ρ_{Konstantan}$ = 0.5 Ω mm²/m

(55% Cu, 44% Ni, 1% Mn)

 $\rho_{Graphit}$ = 8 Ω mm²/m

 $\rho_{Silizium} = 2 \ 300 \ 000 \ 000 \ \Omega \ \text{mm}^2/\text{m}$

AUFGABE DRAHTWIDERSTAND

Ein Drahtwiderstand mit

 $R = 10 \Omega$ besteht aus einem Konstantandraht mit

 $\rho = 0.5 \,\Omega \,\mathrm{mm^2}$ / m. Der Drahtquerschnitt ist $A = 0.025 \,\mathrm{mm^2}$.

Wie lang ist der Draht?

Lösung:

a) 50 cm

b) 0,5 m 🗸

c) 1,50 m

OHMSCHES GESETZ

Bei einem metallischen Leiter und konstanter Temperatur ist der Widerstand *R* konstant.

⇒ Spannung proportional zum Strom

Ohmsches Gesetz: $U = R \cdot I \text{ mit } R = const.$

Nur wenn *R* konstant ist, spricht man von einem **ohmschen Widerstand.**

⇔ lineare Kennlinie

FRAGE: WELCHER WIDERSTAND IST GRÖßER?

AUFGABE: WIDERSTANDSBERECHNUNG

Sie haben ein 5V Ausgangssignal am Rechner und wollen damit eine Leuchtdiode (LED) versorgen. Der maximal zulässige Strom für die Leuchtdiode ist $I_{max} = 15 \, mA$.

Wählen Sie den Vorwiderstand so, dass auch ohne LED der Strom I_{max} niemals überschritten wird. Wie hoch ist der entsprechende Leitwert G?

A.
$$R = 333 \Omega \text{ und } G = 3 mS$$

B.
$$R = 333 \, m\Omega \text{ und } G = 3 \, mS$$

C.
$$R = 3 k\Omega$$
 und $G = 333 S$

NICHT-OHMSCHE WIDERSTÄNDE

PTC: R = f(T)

(Metall)

Varistor VDR: R = f(U)

MDR: R=f(B)

speziell: GMR

(Giant magneto resistance)

LDR:

R = f(Light intensity)

Variabel: Potentiometer

BEISPIEL VARISTOR

Voltage Dependent Resistor VDR

Schaltzeichen VDR

hohe Spannung

→ Widerstand bricht zusammen

Anwendung:

Schutz elektronischer Schaltungen vor Überspannung

Beispiel:

Schutz von Telefonleitungen gegen Überspannung durch Blitzschlag

BESCHREIBUNG EINES NICHTLINEAREN WIDERSTANDES

$$R_{AP} = \frac{U_{AP}}{I_{AP}}$$

$$\left. r_d = \frac{dU}{dI} \right|_{I = I_{AP}}$$

GLEICHSTROM- UND DIFFERENTIELLER WIDERSTAND

Bei nichtlinearen Widerständen gibt man den Widerstand für einen bestimmte Spannungs-Strom-Punkt an

⇒ **Arbeitspunkt** AP (operating point OP)

Gleichstromwiderstand im AP

$$R_{AP} = \frac{U_{AP}}{I_{AP}}$$

Differentieller Widerstand im AP

$$\left. r_d = \frac{dU}{dI} \right|_{I = I_{AP}}$$

AUFGABE: VARISTOR

Im Arbeitspunkt $U_{AP}=10~V$ habe ein VDR einen Gleichstromwiderstand von $R_{AP}=200~\Omega$ und einen differentiellen Widerstand von $r_d=5~\Omega$.

- a) Bestimmen Sie den Strom I im Arbeitspunkt.
- b) Welcher Strom I_1 fließt bei einer höheren Spannung von $U_1=10.5\ V$?

$$A. I_{AP} = 2 A$$

$$B. I_{AP} = 48,8 \, mA$$

C.
$$I_{AP} = 50 \, mA$$

$$D. I_1 = 100 \, mA$$

$$E. I_1 = 150 \, mA$$

TEMPERATURABHÄNGIGKEIT DES WIDERSTANDS

Niedrige Temperatur Hohe Temperatur → Atomschwingungen → Widerstandserhöhung

TEMPERATURKOEFFIZIENT α

typischer Temperaturverlauf:

⇒ Näherung durch: eine Gerade

wobei:

R₂₀ : Widerstand bei 20°C

 α_{20} : Temperaturkoeffizient für 20°C

 $\Delta \theta = 9 - 20^{\circ} C \text{ mit}$

9 : Temperatur in °C

$$\alpha = TK = \frac{\Delta R}{\Delta T} \frac{1}{R_{20}}$$

 α : relative Widerstandsänderung bei 1 K Temperaturänderung

TEMPERATURKOEFFIZIENT WOLFRAM

AUFGABE: TEMPERATURABHÄNGIGKEIT

Ein Wolfram-Glühfaden einer herkömmlichen Glühlampe erreicht eine Betriebstemperatur von $2550^{\circ}C$. Der Temperaturkoeffizient von Wolfram kann über den Temperaturbereich $20 \dots 2550 \,^{\circ}C$ als näherungsweise konstant mit $5,6\cdot 10^{-3}~K^{-1}$ angenommen werden.

Bei Betriebstemperatur hat eine 100~W Glühbirne mit Wolfram-Faden einen Widerstand von $R_{2550^{\circ}C} = 530~\Omega$. Wie groß ist der Widerstand im kalten Zustand bei $20^{\circ}C$ und um welchen Faktor ist der Einschaltstrom größer als im

Betrieb der Glühbirne.

Antwort:

- A) 43,9 Ω und 15-facher Einschaltstrom
- B) 43,9 Ω und 10-facher Einschaltstrom
- C) 34,9 Ω und 15-facher Einschaltstrom

TEMPERATURKOEFFIZIENT

Wir unterscheiden:

PTC: Positive Temperature Coefficient mit a > 0 bei Metallen

NTC: Negative Temperature Coefficient mit a < 0 bei Halbleitern

(Bei Bedarf: zur näherungsweisen Berechnung siehe Skript)

WICHTIGE TEMPERATURKOEFFIZIENTEN

AUFBAU VON WIDERSTÄNDEN

Kohleschichtwiderstand

Metallfilmwiderstand

SMD-Widerstand

(surface mounted)

Drahtwiderstand

1 GRUNDLEGENDE BEGRIFFE

- 1.1 Einheiten
- 1.2 Gleichungen
- 1.3 Elektrische Ladung
- 1.4 Elektrisches Feld
- 1.5 Elektrische Spannung
- 1.6 Elektrischer Strom
- 1.7 Elektrischer Widerstand
- 1.8 Arbeit, Leistung und Wirkungsgrad

ELEKTRISCHE LEISTUNG UND ARBEIT

Ein Strom I durch einen Widerstand R verrichtet bei einem Spannungsabfall U in der Zeit Δt elektrische Arbeit W:

$$W = U \cdot I \cdot \Delta t$$
 mit $[W] = 1 VAs = 1 Ws = 1 Joule = 1 J$

Die Menge der Energie pro Zeiteinheit, die umgeformt wird, bezeichnet man als **elektrische Leistung** *P*

$$P = \frac{W}{\Delta t} = U \cdot I \qquad \qquad \text{mit } [P] = 1 VA = 1 Watt = 1 W$$

MOMENTANLEISTUNG UND MITTELWERT

Bei zeitlich veränderlichen Größen u(t), i(t) gilt:

Momentanleistung
$$p(t) = u \cdot i$$

arithmetischer Mittelwert der Leistung (oder mittlere Leistung)

WIRKUNGSGRAD η

Wenn Energie umgewandelt wird, entstehen stets Verluste

Das Verhältnis von Nutzleistung zu Eingangsleistung heißt: Elektrischer Wirkungsgrad η (eta)

HAW Hamburg

Technik und Informatik

AUFGABE ZUR LEISTUNG

Wie groß ist der Strom, der durch eine 100 W-Lampe bei einer Gleichspannung von 230 V fließt?

- A. kann nur bei Wechselspannung berechnet werden
- B. 0,343 *A*
- C. 434 mA
- D. hängt von der Größe der Glühbirne ab

WAS SIE MITNEHMEN SOLLEN... (1)

SI Einheiten und SI Präfix

Einheiten

Ladung

Spannung

Strom

Stromdichte

Widerstand

ohmscher Widerstand?

Leitwert

Spezifischer Widerstand

Spezifischer Leitwert

Gleichstromwiderstand

Differentieller Widerstand

MKSA, pico = 10^{-12} , ...

Hilfe bei Fehlersuche

Quelle des elektrischen Feldes

$$U = W / Q$$

$$I = \Delta Q / \Delta t$$

$$J = I/A$$

$$R = U/I$$

R = const., Ohmsches Gesetz

$$G = 1/R$$

$$R = \rho l/A$$

$$\sigma = 1/\rho$$

$$R = U / I \text{ im AP}$$

$$r_d = dU / dI \text{ im AP}$$

WAS SIE MITNEHMEN SOLLEN ... (2)

Temperaturkoeffizient

Temperaturempfindlichkeit

Arbeit

Leistung

Wirkungsgrad

•
$$R = R_0 (1 + a \Delta \theta)$$

•
$$E = dR / d\vartheta$$

•
$$W = U I \Delta t$$

•
$$P = UI$$

•
$$\eta = P_{out}/P_{in}$$