Assignment: Principal Component Analysis

Standardize the Data

```
std_TRUNC_IMP_MORTDUE std_TRUNC_IMP_VALUE std_TRUNC_IMP_YOJ \
               -1.187821
                                   -1.218785
                                                        0.243923
1
               -0.055078
                                    -0.636046
                                                       -0.241631
2
               -1.504630
                                    -1.661666
                                                      -0.657820
3
               -0.184108
                                    -0.222713
                                                       -0.241631
4
                0.656126
                                    0.228887
                                                      -0.796550
   std_TRUNC_IMP_DEROG std_TRUNC_IMP_DELINQ std_TRUNC_IMP_CLAGE \
            -0.329584
0
                                  -0.418963
                                                        -1.067294
1
            -0.329584
                                   1.837718
                                                        -0.718939
2
            -0.329584
                                  -0.418963
                                                       -0.368469
            -0.329584
                                  -0.418963
                                                        -0.064081
4
            -0.329584
                                  -0.418963
                                                        -1.080400
   std_TRUNC_IMP_NINQ std_TRUNC_IMP_CLNO std_TRUNC_IMP_DEBTINC
0
                             -1.247113
           -0.081701
                                                        0.141543
            -0.791521
                                -0.736029
                                                        0.141543
2
            -0.081701
                                -1.144896
                                                        0.141543
3
            -0.081701
                                -0.122729
                                                        0.141543
4
            -0.791521
                                -0.736029
                                                        0.141543
       std_TRUNC_IMP_MORTDUE std_TRUNC_IMP_VALUE std_TRUNC_IMP_YOJ \
               5.960000e+03
                                     5960.000000
                                                       5.960000e+03
count
mean
               -3.814995e-17
                                        0.000000
                                                       1.192186e-16
std
               1.000084e+00
                                        1.000084
                                                       1.000084e+00
min
               -1.797780e+00
                                       -1.834256
                                                      -1.212739e+00
25%
               -6.167719e-01
                                       -0.673946
                                                      -7.965498e-01
50%
               -1.841083e-01
                                       -0.222713
                                                      -2.416307e-01
75%
                4.100674e-01
                                        0.367847
                                                       4.520181e-01
max
                3.292580e+00
                                        3.405910
                                                       3.087884e+00
       std_TRUNC_IMP_DEROG std_TRUNC_IMP_DELINQ std_TRUNC_IMP_CLAGE \
              5.960000e+03
                                5.960000e+03
                                                      5.960000e+03
count
mean
              7.749208e-18
                                  -2.861246e-17
                                                       -2.956621e-16
std
              1.000084e+00
                                   1.000084e+00
                                                        1.000084e+00
min
             -3.295844e-01
                                  -4.189627e-01
                                                       -2.264132e+00
25%
             -3.295844e-01
                                  -4.189627e-01
                                                       -7.755283e-01
50%
             -3.295844e-01
                                  -4.189627e-01
                                                       -6.408111e-02
75%
             -3.295844e-01
                                  -4.189627e-01
                                                        6.166882e-01
max
              4.817114e+00
                                   4.094399e+00
                                                        3.189491e+00
       std TRUNC IMP NINQ std TRUNC IMP CLNO std TRUNC IMP DEBTINC
            5.960000e+03
                               5.960000e+03
                                                     5.960000e+03
count
mean
            -5.484055e-17
                                -1.907497e-17
                                                      -3.051996e-16
std
            1.000084e+00
                                1.000084e+00
                                                      1.000084e+00
min
            -7.915210e-01
                               -2.167063e+00
                                                      -5.016046e+00
25%
            -7.915210e-01
                               -6.338123e-01
                                                      -4.683220e-01
50%
            -8.170078e-02
                               -1.227287e-01
                                                       1.415426e-01
75%
             6.281194e-01
                                4.905717e-01
                                                       6.125221e-01
max
             3.467400e+00
                                 3.045990e+00
                                                       3.477551e+00
```

The missing values in the numerical data were imputed. The data was also truncated to remove outliers and then standardized. The values are all within -5 and 5.

Principal Component Analysis

```
Eigen Values
[2.16999301 1.43739568 1.24532789 0.98605536 0.83760722 0.81452937 0.74040446 0.61242042 0.15777691]
```

```
2.17 variation= 24 %
                      total= 24 %
1.44 variation= 15 %
                      total= 40 %
1.25 variation= 13 %
                      total= 53 %
0.99 variation= 10 %
                      total= 64
0.84 variation= 9 %
                     total= 74 %
0.81 variation= 9 %
                     total= 83 %
                     total= 91 %
0.74 variation= 8 %
0.61 variation= 6 %
                     total= 98 %
0.16 variation= 1 %
                     total= 100 %
```

PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9 has as much information as 2.17, 1.44, 1.25, 0.99, 0.84, 0.81, 0.74, 0.61, 0.16 variables respectively. PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9 has 24%, 15%, 13%, 10%, 9%, 9%, 8%, 6%, 1% of the total information.

With PC1 and PC2, we can get 40% of the total information. With PC1, PC2, and PC3, we can get 53% of the total information. With PC1, PC2, PC3, PC4, and PC5, we can get 74% of the total information. With PC1, PC2, PC3, PC4, PC5, PC6, and PC7, we can get 91% of the total information.

Scree Plot

This plot shows the eigenvalues of each principal component. In the plot, we can see that PC1 has as much information as approximately 2.20 variables. From the analysis, we know that is true and the more exact value is 2.17 variables worth of information for PC1. The plot as well as the analysis shows that around PC4 is when the principal components start to have less than 1 variable's worth of information. The plot starts to flatten out at PC5.

This scree plot looks at the percentage of the total information that each principal component has. This plot also starts to flatten out at PC5.

This scree plot looks at the running total percentage of information.

After looking at the scree plots, I decided to use PC1, PC2, PC3, PC4, and PC5 to get 74% of the total information.

Principal Components with its Weight Values

	PC1	PC2	PC3	PC4	PC5
TRUNC_IMP_MORTDUE	0.599264	-0.048214	-0.233698	0.196359	0.104302
TRUNC_IMP_VALUE	0.595345	-0.107601	-0.178048	0.196608	0.156791
TRUNC_IMP_YOJ	0.012565	-0.266796	0.552498	-0.271267	0.460117
TRUNC_IMP_DEROG	-0.028194	0.520258	0.200053	0.425923	0.236893
TRUNC_IMP_DELINQ	0.062710	0.378211	0.489581	0.309360	-0.372277
TRUNC_IMP_CLAGE	0.245347	-0.316222	0.480113	-0.114906	-0.055883
TRUNC_IMP_NINQ	0.061608	0.519724	-0.062358	-0.357743	0.592034
TRUNC_IMP_CLNO	0.420290	0.159582	0.288644	-0.139703	-0.164546
TRUNC IMP DEBTINC	0.202304	0.325006	-0.104911	-0.641396	-0.421212

The weights of each principal component in each variable are shown in the figure above. PC1 is made up of larger TRUNC_IMP_MORTDUE, TRUNC_IMP_VALUE, so it looks at larger values in TRUNC_IMP_MORTDUE and TRUNC_IMP_VALUE. PC2 has a larger TRUNC_IMP_NINQ and TRUNC_IMP_DEROG component, so PC2 looks at larger values in those two variables. PC3 has a larger TRUC_IMP_YOJ component. PC4 has a larger TRUNC_IMP_DEBTINC component, and it looks at smaller debt to income ratios due to the negative sign. PC5 has a larger TRUNC_IMP_NINQ component.

Principal Components with Target and Categorical Variables Dataframe

1	PC_1 -2.2137380.796038	0.40365	6 -0.5238 4 0.3032	38 -0.5 82 0.7	737 <u>1</u> 2 35630	-1.345805	TARGET_BAD_FLAG 1	١
2	-2.464173	0.03427	3 -0.5041	38 -0.5	12960	-0.541261	1	
3	-0.306641 -	-0.22840	0 -0.3978	17 -0.3	21428	-0.171620	1	
4	-0.092079 -	-0.31485	3 -1.6018	87 0.5	39274	-0.531030	0	
0	TARGET_LOS	_	REASON HomeImp	JOB Other				
0								
1]	1109.0	HomeImp	Other				
2		767.0	HomeImp	Other				
3	1	1425.0	NaN	NaN				
4		NaN	HomeImp	Office				

Scatter plot with PC 1 and PC 2 and values of TARGET FLAG

```
c for Name, Group in X_PCA.groupby(TARGET_FLAG):
    plt.scatter(Group.PC_1, Group.PC_2, label=Name)
plt.xlabel("PC_1")
plt.ylabel("PC_2")
plt.legend()
plt.show()
```

The plot shows that if the PC_1 value is greater than 5, then the loan will most likely not default. If the PC_2 value is larger than 4, then the loan is more likely to default. If the PC_2 value is less than -2, then the loan will more likely not default.