1. Функции, заданные неявно

1.1. Основные понятия

$$f(x,y) = 0; (1)$$

 $D_f = \{(x,y) \in \mathbf{E}^2 : f(x,y) = 0\}$ - график уравнения 1. $D_f \leftrightarrow Ox$

1.1.1. Примеры

1.
$$x^2+y^2-1=0$$
 $f_x=2x;\ f_y=2y$ Точку $(0,1),\$ например, нельзя рассматривать как $y{=}f(x),$ но можно как $x{=}f(y)$

2.
$$(x-y)(x+y-1)=0$$
 $f_x=(x+y-1)+(x-y); \ f_y=-(x+y-1)+(x-y)$ $(\frac{1}{2};\frac{1}{2})$ - особая точка, где обе 0. Ни по Ох, ни по Оу нет биекции.

1.2. Теорема о неявно заданной функции

Достаточное условие, при котором уравнение 1 локально определеяет у как f(x) и у обладает некоторыми дифф. свойствами.

Теорема 1. *Если*

- 1. $f(x_0,y_0)=0$
- 2. в некоторой $u(x_0,y_0)$ функция f обладает непрерывной частной производной
- 3. $f_y(x_0, y_0) \neq 0$,

То $\exists \Pi = \{(x,y) : |x-x_0| \le r_1, |y-y_0| \le r_2\} \in U(x_0,y_0)$ в пределах которого уравнение 1 определяет у как функцию переменной $x \ (y=f(x)),$ которая непрерывно дифференцируема на (x_0-r_1,x_0+r_1) и $y'=-\frac{f_x(x,y)}{f_y(x,y)}|_{y=f(x)}$

Доказательство. І. Существование неявно заданной функции

$$3\Rightarrow \Pi$$
усть $f_y(x_0,y_0)>0$ $\to_{(2)}\exists \Pi_1=\{(x,y):|x-x_0|\leq r,|y-y_0|\leq r_2\}\in U(x_0,y_0)$ такой, что $\forall (x.y)\in \Pi_1\Rightarrow f_y(x,y)>0$ $\psi=f(x_0,y),\; \psi(y_0)=0,\; \psi$ - возрастает на $[y_0-r_2,y_0+r_2]$

$$\psi'(y) = f_y(x_0, y) > 0, \ \forall y \in [y_0 - r_2, y_0 + r_2] \Rightarrow \psi(y_0 - r_2) < 0, \ \psi(y_0 + r_2) > 0$$

 $f(x_0, y_0 - r_2) < 0, \ f(x_0, y_0 + r_2) > 0$

$$\exists r_1 \in (0,r): f(x,y_0-r_2) < 0, f(x,y_0+r_2) > 0, \forall x \in [x_0-r,x_0+r]$$

$$\Pi = \{(x,y) : |x - x_0| \le r_1, |y - y_0| \le r_2\} \in U(x_0, y_0)$$

Покажем, что в П1 определяет у как функцию от х

$$\overline{x} \in [x_0 - r_1, x_0 + r_1]$$

$$\phi(y) = f(\overline{x}, y), \ \phi(y_0 - r_2) < 0 \ \phi(y_0 + r_2) > 0$$

 $\phi(y)$ непрерывна на $[y_0-r_2;y_0+r_2]\Rightarrow$ по теореме о промежуточном значении $\exists \overline{y}\in (y_0-r_2;y_0+r_2):\phi(\overline{y})=0$ и эта точна единственная.

$$\phi'(y) = f_y(\overline{x},y) > 0$$
 в $\Pi_1 \subset \Pi$

$$f(\overline{x},\overline{y}) = 0 \ y = f(x)$$

II.

$$\Pi_1 = \{(x,y) : |x - x_0| < r_1, |y - y_0| < r_2\}$$

$$(x_0,y_0)\in\Pi,\ f(x_0,y_0)=0,\ (x_0+\Delta x,y_0+\Delta y)\in\Pi\ \text{if}\ f(x_0+\Delta x,y_0+\Delta y)=0;$$

$$\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = 0;$$

$$\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) + f(x_0, y_0 + \Delta y) - f(x_0, y_0) = 0;$$

$$\exists \Theta_1, \Theta_2 : 0 < \Theta_I < 1 : \Delta f = f_x(x_0 + \Theta_1 \Delta x, y_0 + \Delta y) \Delta x + f_y(x_0 + \Delta x, y_0 + \Theta_2 \Delta y) \Delta y = 0;$$

$$\Delta y = -\frac{f_x(x_0 + \Theta_1 \Delta x, y_0 + \Delta y)}{f_y(x_0 + \Delta x, y_0 + \Theta_2 \Delta y)} \Delta x \Rightarrow |Deltay| \le \frac{M}{m} |\Delta x| / \frac{1}{m} |\Delta x| = \frac{1}{m} |\Delta x| / \frac{1}{m} |\Delta x| = \frac{1}{m} |\Delta x| + \frac{1}{m} |\Delta x| = \frac{1}$$

 \Rightarrow при $\Delta x\to 0, \Delta y\to 0$ f_y непрерывно в Π - компакт $\Rightarrow \exists m>0: f_y(x,y)\geq m; \ \exists M>0: |f_y(x,y)|\leq M$ на Π

$$\frac{\Delta y}{\Delta x} = -\frac{f_x(x_0 + \Theta_1 \Delta x, y_0 + \Delta y)}{f_y(x_0, y_0 + \Theta_2 \Delta y)}; \quad f'(x_0) = -\frac{f_x(x_0, f(x_0))}{f_y(x_0, f(x_0))}; \quad y_0 = -f(x_0);$$

В силу произвольности (x_0,y_0) производная существует на всем (x_0-r_1,x_0+r_1)

Замечание

Теорема остается справедливой, если в
$$f(x,y)=0, \ x=(x_1,x_2,\ldots,x_m)$$
 $\Pi=\{(x_1,x_2,\ldots,x_m,y):|x_i-x_i^0|_{i=\overline{1,m}}\leq r_i,|y-y_0|\leq\rho\}$

1.3. Неявные функции, определяемые системой уравнений

$$\begin{cases} f_1(x_1, \dots, x_n, y_1, \dots y_n) = 0 \\ f_2(x_1, \dots, x_n, y_1, \dots y_n) = 0 \\ & \dots \\ f_n(x_1, \dots, x_n, y_1, \dots y_n) = 0 \end{cases}$$

$$x^{0} \in \mathbb{E}^{m}, y^{0} \in \mathbb{E}^{n}; \ \Pi(x^{0}) = \{x \in \mathbb{E}^{m} : |x_{i} - x_{i}^{0}| \le r_{i}, i = \overline{1,m}\}$$

$$\Pi(y^0) = \{ y \in \mathbb{E}^n : |y_i - y_i^0| \le \rho_i, i = \overline{1,n} \}$$

$$\Pi = \Pi(x^0) \times \Pi(y_0) = \{(x,y) \in \mathbb{E}^n + m : x \in \Pi(x^0), y \in \Pi(y^0)\}$$

Система определяет в $\Pi y_1, \dots, y_n$ как неявные функции переменных $x_1, \dots x_m$, если $\forall x \in \Pi(x^0)$ ставится в соответствие такое $y \in \Pi(x^0)$, что $f_i(x,y) = 0$, $i \in \overline{1,n}$

Теорема 2. $\Pi ycmb$

1.
$$f_i(x^0, y^0) = 0, i \in \overline{1, n}$$

2. Функции $f_i, i \in \overline{1,n}$ обладают в некоторой окрестности $U(x^0, y^0)$ непрерывностью частных производных по переменным $x_j, j \in \overline{1,m}$ и $y_i, i \in \overline{1,n}$

3.
$$\begin{vmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_n} \\ & \cdots & \\ \frac{\partial f_n}{\partial y_1} & \cdots & \frac{\partial f_n}{\partial y_n} \end{vmatrix} (x^0, y^0) \neq 0$$

Тогда $\exists \Pi = \Pi(x^0) \times | pi(y^0) \in U$, в пределах которого система определяет переменные y_1, \ldots, y_n как неявно заданные функции переменных x_1, \ldots, x_m и эти функции $y_i = f_i(x)$ обладают непрерывными частными производными в $\Pi(x^0)$ и $y_i^0 = f'^i(x^0), \overline{1,n}$