DISTORÇÃO DO SINAL

Existem alguns fatores que causam a distorção do sinal transmitido em um meio físico: banda passante limitada, ruídos, atenuação e ecos.

Ruídos

O ruído é um dos maiores limitadores do desempenho de um canal de comunicações. Corresponde à interferência de sinais indesejáveis no sinal original. Como já foi visto, a quantidade de ruído é medida utilizando-se a relação entre a potência do sinal e a potência do ruído, conhecida como S/N. Normalmente, usa-se o valor de $10\log_{10}(S/N)$. Esta unidade é conhecida como decibel (dB). Podem-se classificar os ruídos em térmicos, de intermodulação, "crosstalk" (linha-cruzada) e ruído impulsivo.

Relembrando, uma razão de 10 corresponde a 10dB, uma razão de 100 corresponde a 20dB e 1000 corresponde a 30dB.

Ruído térmico

É aquele provocado pela agitação dos elétrons nos condutores e que está presente em todos os dispositivos eletrônicos e meios de comunicação relacionados. É um tipo de ruído branco, porque ocorre em todas as freqüências do espectro. Ocorre em todas as freqüências do espectro e sua quantidade depende da temperatura.

Ruído de intermodulação

Este ruído ocorre quando se multiplexa sinais em um mesmo meio. Assim, um sinal interfere no outro devido a defeitos em componentes do sistema ou sinais com potência muito alta.

Crosstalk

Este ruído é conhecido comumente como "linha cruzada". Isto é causado por condutores próximos que induzem sinais entre si.

Ruído impulsivo

É um ruído não contínuo, imprevisível que ocorre no sinal. Há uma causa externa ao meio de comunicação que ocorre de maneira aleatória. São pulsos irregulares e de grande amplitude, geralmente causados por distúrbios elétricos externos ou falhas no equipamento. É a maior causa de erros na transmissão de dados.

Um bom meio de transmissão é aquele que é o bastante imune a interferências.

Atenuação

A potência de um sinal cai com a distância, em qualquer meio físico. Esta atenuação ocorre devido a perdas de energia por calor e por radiação. Quanto maiores as freqüências transmitidas, maiores as perdas. Para transmissões analógicas utilizam-se amplificadores para recuperar a potência do sinal original. Já em transmissões digitais, utilizam-se regeneradores.

A atenuação é medida em dB, também.

Ecos

Ecos causam efeitos similares aos dos ruídos. Sempre que houver mudança de impedância de uma linha, sinais são refletidos. Para evitar que haja estas mudanças de impedância deve-se tomar especial cuidado com os terminadores e os conectores das redes.

A impedância é um parâmetro físico do cabo. Depende do tamanho dos condutores, da distância entre os condutores e propriedades do material isolante. Para que um cabo funcione bem é necessário que esta impedância se mantenha constante por todo o comprimento do mesmo, uma vez que uma modificação da impedância corresponde a uma reflexão do sinal.

Pequenas alterações na impedância característica podem ser causadas por:

- conexões;
- voltas no cabo;
- ângulos muito pequenos.

Grandes descontinuidades na impedância característica podem ser causadas por:

- contatos elétricos pobres;
- terminações erradas;
- cabos e conectores de tipos diferentes;
- problemas no padrão do cabo.

Medidas para evitar os problemas com descontinuidade de impedância:

- em cabos coaxiais, utilizar um terminador com resistência igual à impedância característica do cabo;
- nunca misturar cabos com impedâncias diferentes;

- quando desenrolar pares para instalar conectores, fazer estas seções o menor possível;
- nunca dobrar muito o cabo;
- manipular o cabo sempre com cuidado.