Amortized analysis

Petr Kurapov

Fall 2024

Amortized complexity

- Worst-case complexity too pessimistic
- "Online" algorithms, ie. std::vector
- Pushing n+1 elements to a vector of size n: each push costs $\Theta(1)$, last takes $\Theta(n) \to \operatorname{average} \frac{\Theta(n) + n\Theta(1)}{n+1} = \Theta(1)$

Amortized complexity

- Total expense per operation over an operation sequence: $\frac{T(n)}{n}$
- Permit rare expensive operations while guaranteeing total cost (asymptotic worst-case)
- Amortized analysis:
 - Aggregate analysis (upper bound for T(n) for a sequence of n operations, analyze average worst-case time)
 - Accounting method (assign credit for ops for latter use, may differ from operations' actual cost)
 - Potential method (immediate cost + potential change)

Accounting method

• c_i - true cost, c_i' - charge for operation : $\sum_{i=1}^n c_i \leq \sum_{i=1}^n c_i'$

•
$$c_i = \begin{cases} i, if \ i-1 = 2^k \\ 1 \end{cases}$$

i	1	2	3	4	5	6	7	8	9	10
Capacity	1	2	4	4	8	8	8	8	16	16
Cost	1	2	3	1	5	1	1	1	9	1
Charge										
Balance										

Accounting method

• c_i - true cost, c_i' - charge for operation : $\sum_{i=1}^n c_i \leq \sum_{i=1}^n c_i'$

•
$$c_i = \begin{cases} i, & \text{if } i - 1 = 2^k \\ 1 \end{cases}$$

i	1	2	3	4	5	6	7	8	9	10
Capacity	1	2	4	4	8	8	8	8	16	16
Cost	1	2	3	1	5	1	1	1	9	1
Charge	3	3	3	3	3	3	3	3	3	3
Balance	3-1=2	3	3	5	3	5	7	9	3	4

1 – immediate insertion, 1 – to move inserted element the first time array is growing, 1 – donated to element $i-2^k$ to move it

Accounting method

• c_i - true cost, c_i' - charge for operation : $\sum_{i=1}^n c_i \leq \sum_{i=1}^n c_i'$

1 – immediate insertion, 1 – to move inserted element the first time array is growing, 1 – donated to element $i - 2^k$ to move it

Potential method

- Potential function Φ : $\Phi(h_0)=0$, $\forall h_k$: $\Phi(h_k)\geq 0$. h_k data structure state
- Analogues to the balance in accounting method but is a function of the current data structure state.
- Amortized operation time is actual cost + potential change:

•
$$c' = c + \Phi(h') - \Phi(h)$$

$$(c_0 + \Phi(h_1) - \Phi(h_0)) + (c_1 + \Phi(h_2) - \Phi(h_1))$$

= $c_0 + c_1 + \Phi(h_2) - \Phi(h_0) = c_0 + c_1 + \Phi(h_2)$

Potential method

- For vector: $\Phi(h) = 2n m$, n number of elements, m capacity.
- 2 cases:
- n < m, cost = 1 (n++); potential change $(2(n+1) m) (2n m) = 2 \rightarrow$ amortized time 1 + 2 = 3
- n=m, cost=n+1; potential change $(2(n+1)-2n)-(2n-n)=2-n \rightarrow$ amortized time n+1+(2-n)=3

Example: Priority queue

- Set of elements, each associated with a key. Supports:
- Inserting new elements
- Get element with max key
- Pop max
- Increase element's key
- Merge*
- Delete*

Priority queue

• Why use?

Priority queue

- Why use?
- Resource allocation scheduling
- Minimum spanning tree (Prim's algorithm)
- Real-time Optimally Adapting Meshes (ROAM) triangulation
- Dijkstra and A* algorithms

•

- Insert
- Get max
- Pop max
- Increase key
- Merge*
- Delete*

- Insert
- Get max
- Pop max
- Increase key
- Merge*
- Delete*

Method	complexity
Insert	
Get max	
Pop max	
Increase key	
Merge*	

Method	complexity
Insert	$\Theta(\log n)$
Get max	
Pop max	
Increase key	
Merge*	

Method	complexity
Insert	$\Theta(\log n)$
Get max	$\Theta(1)$
Pop max	
Increase key	
Merge*	

Method	complexity
Insert	$\Theta(\log n)$
Get max	$\Theta(1)$
Pop max	$\Theta(\log n)$
Increase key	
Merge*	

Method	complexity
Insert	$\Theta(\log n)$
Get max	$\Theta(1)$
Pop max	$\Theta(\log n)$
Increase key	$\Theta(\log n)$
Merge*	

Method	complexity
Insert	$\Theta(\log n)$
Get max	$\Theta(1)$
Pop max	$\Theta(\log n)$
Increase key	$\Theta(\log n)$
Merge*	$\Theta(n)$

Fibonacci heap

Min-heaps, each node has parent & child pointers + doubly linked list of siblings

Fibonacci heap

```
struct Node {
   unsigned degree;
   Node* child;
   Node* p;
   bool mark;
   // right & left
};
```


Fibonacci heap

- Insert
- Get min
- Pop min
- Increase key
- Merge

Fibonacci heap: insert

```
void insert(List H, T x)
  n = Node(x);
  if (Min == nullptr)
     Min = n;
  else {
     H.insert(n);
     updateMin(n);
```


Lazy consolidation later

Method	complexity
Insert	$\Theta(?)$

Fibonacci heap: insert

```
void insert(List H, T x)
  n = Node(x);
  if (Min == nullptr)
     Min = n;
  else {
     H.insert(n);
     updateMin(n);
```


Lazy consolidation later

Method	complexity
Insert	Θ(1)

Fibonacci heap: insert

```
void insert(List H, T x)
  n = Node(x);
  if (Min == nullptr)
     Min = n;
  else {
     H.insert(n);
     updateMin(n);
```


- Lazy consolidation later
- Same for melding just unify the root list

Fibonacci heap: get min

Trivial

• The structure stores pointer

Method	complexity
Get min	$\Theta(1)$

Idea:

Create a list of children nodes

Remove min node from root list

- Consolidate root list until the heap is dense
 - Meld roots of same degree
 - Stop when roots have different degrees

Idea:

- Create a list of children nodes
- Remove min node from root list
- Consolidate root list until the heap is dense
 - Meld roots of same degree
 - Stop when roots have different degrees

```
Node* pop(List H)
  z = Min; // check if null
  for (x : children(z)) {
     H.append(x);
     x.p = nullptr;
  H.remove(z); // check if empty
  Min = z.right;
  consolidate(H);
  return z;
```

Consolidation:

- Find 2 roots of same degree (x.key < y.key)
- Link x&y: remove y from root list, add it to x's children
 - X.degree++
 - Unmark Y

```
Node* pop(List H)
  z = Min; // check if null
  for (x : children(z)) {
     H.append(x);
     x.p = nullptr;
  H.remove(z); // check if empty
  Min = z.right;
  consolidate(H);
  return z;
```


Idea:

- If the change did not break heap property – no structural changes required
- Otherwise, we cut out the node from its parent and make it a root node (mark parent, unmark node)
- If parent was marked do cascade cut

35 -> 5

Idea:

- If the change did not break heap property – no structural changes required
- Otherwise, we cut out the node from its parent and make it a root node (mark parent, unmark node)
- If parent was marked do cascade cut

Idea:

- If the change did not break heap property – no structural changes required
- Otherwise, we cut out the node from its parent and make it a root node (mark parent, unmark node)
- If parent was marked do cascade cut

Idea:

- If the change did not break heap property – no structural changes required
- Otherwise, we cut out the node from its parent and make it a root node (mark parent, unmark node)
- If parent was marked do cascade cut

Potential method:

$$\Phi(h) = trees(h) + 2 * marks(h) = t(h) + 2m(h). \Phi(h_0) = 0.$$

- Insert
- Actual cost $\Theta(1)$
- Potential change: $\Phi(h) = t(h) + 2m(h)$, $\Delta \Phi = 1$
- Trivial.

- Decrease key
- Actual cost: $\Theta(?)$

35 -> 5

- Decrease key
- Actual cost: $\Theta(cuts)$
- t(h') = t(h) + cuts

- Decrease key
- Actual cost: $\Theta(cuts)$
- t(h') = t(h) + cuts
- $m(h') \leq m(h) cuts + 2$

- Decrease key
- Actual cost: $\Theta(cuts)$
- t(h') = t(h) + cuts
- $m(h') \leq m(h) cuts + 2$
- $\Delta \Phi \le cuts + 2(-cust + 2) = 4 cuts = \Theta(1) cuts$
- Amortized cost: $\Theta(1)$

$$\Phi(h) = t(h) + 2m(h)$$

1 - for paying the cut, <math>1 - for t(h) increase

- Pop min
- Actual cost: ?

- Pop min
- Actual cost:
 - Meld min's children into root
 - Update min
 - Consolidate trees

- Pop min
- Actual cost:
 - Meld min's children into root
 - $\Theta(rank(h))$
 - Update min
 - $\Theta(rank(h)) + \Theta(t(h))$
 - Consolidate trees
 - $\Theta(rank(h)) + \Theta(t(h))$
- Potential change:
 - $t(h') \leq rank(h) + 1$
 - $\Delta \Phi = rank(h) + 1 t(h)$

• Amortized cost: $\Theta(rank(h))$

- Pop min
- $\Theta(rank(h))$

- Pop min
- $\Theta(rank(h))$
- $F_k \ge \varphi^k$, $\varphi = (1 + \sqrt{5})/2$
- $rank(h) \le \log_{\varphi} n$

Amortized cost: $\Theta(rank(h)) = \Theta(\log(n))$

Summary

Fibonacci heap

Ordinary heap

Method	complexity
Insert	$\Theta(1)$
Get min	$\Theta(1)$
Pop min	$\Theta(\log n)^+$
Decrease key	$\Theta(1)^+$
Merge*	$\Theta(1)$

Method	complexity
Insert	$\Theta(\log n)$
Get max	$\Theta(1)$
Pop max	$\Theta(\log n)$
Increase key	$\Theta(\log n)$
Merge*	$\Theta(n)$

Resources

- Introduction to Algorithms, Thomas H. Cormen, chapters 17,19.
- Classic: https://link.springer.com/content/pdf/10.1007/BF01683268.pdf
- Comparative study for parallel and sequential priority queues: https://dl.acm.org/doi/pdf/10.1145/249204.249205

BACKUP

• Max-Heap:

New node

1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

• Max-Heap:

Push back

1	2	3	4	5	6	7	8	9	10	11
16	14	10	8	7	9	3	2	4	1	17

- Push back
- Bubble it up, comparing to parent

- Push back
- Bubble it up, comparing to parent
- Until in place
- Complexity?

- Push back
- Bubble it up, comparing to parent
- Until in place
- Complexity: $\Theta(\log n)$

• Max-Heap:

• Let's pop largest (min) element

1	2	3	4	5	6	7	8	9	10	11
17	16	10	8	14	9	3	2	4	1	7

- Let's pop largest (min) element
- Swap last with root

1	2	3	4	5	6	7	8	9	10	11
7	16	10	8	14	9	3	2	4	1	17

- Let's pop largest (min) element
- Swap last with root
- Push down swapping with largest child

1	2	3	4	5	6	7	8	9	10	11
7	16	10	8	14	9	3	2	4	1	17

- Let's pop largest (min) element
- Swap last with root
- Push down swapping with largest child

1	2	3	4	5	6	7	8	9	10	11
16	7	10	8	14	9	3	2	4	1	17

- Let's pop largest (min) element
- Swap last with root
- Push down swapping with largest child
- Complexity?

1	2	3	4	5	6	7	8	9	10	11
16	14	10	8	7	9	3	2	4	1	17

- Let's pop largest (min) element
- Swap last with root
- Push down swapping with largest child
- Complexity: $\Theta(\log n)$

1	2	3	4	5	6	7	8	9	10	11
16	14	10	8	7	9	3	2	4	1	17