

Introduction to Deep Learning (I2DL)

Exercise 4: Simple Classifier

Today's Outline

- The Pillars of Deep Learning
- Exercise 4: Simple Classifier
 - Housing Dataset
 - Submission 2
- Backpropagation
- Outlook: Lecture 5 + Exercise 5

Data Dataset Dataloader

Model Network Loss/Objective

Solver Optimizer Training Loop **Validation**

Exercise 3: Dataset and Dataloader

Exercise 4: Simple

Classifier

Exercise 5: Simple

Network

Exercise 6:

Hyperparameter Tuning

Goal: Exercise 4

- Goal: Trainings process
- Skip: Model Pillar
- Simplified Model: Classifier which is a 1-Layer Neural Network

Goals: Exercises 5++

- Ex 3 + 4: Dataloading and Trainings process
- Ex 5++: Expand the exercises to more interesting model architectures

Data Dataset Dataloader

Model Network Loss/Objective

X Can be implemented once and used in multiple projects

Exercise 4: Simple Classifier

Overview Exercise 4

- One Notebook
 - Logistic regression model

Fixed Deadline: Dec 02, 2020 15.59

- Submission 2
 - Several implementation tasks in the notebook
 - Submission file creation in Notebook

Housing Dataset

- Housing Dataset: Data of ~1400 houses including 81 features like Neighborhood, GrLivArea, YearBuilt, etc.
- X Simplified model: 1 input feature to predict the house price

housing_train

ld	Neighborhood	BldgType	HouseStyle	YearBuilt	YearRemodAdd	RoofStyle	CentralAir	GrLivArea	FullBath	HalfBath	Fireplaces	PoolArea	Fence	SalePrice
1	CollgCr	1Fam	2Story	2003	2003	Gable	Y	1710	2	1	0	0	NA	208500
2	Veenker	1Fam	1Story	1976	1976	Gable	Y	1262	2	0	1	0	NA	181500
3	CollgCr	1Fam	2Story	2001	2002	Gable	Υ	1786	2	1	1	0	NA	223500
4	Crawfor	1Fam	2Story	1915	1970	Gable	Υ	1717	1	0	1	0	NA	140000
5	NoRidge	1Fam	2Story	2000	2000	Gable	Υ	2198	2	1	1	0	NA	250000
6	Mitchel	1Fam	1.5Fin	1993	1995	Gable	Υ	1362	1	1	0	0	MnPrv	143000
7	Somerst	1Fam	1Story	2004	2005	Gable	Υ	1694	2	0	1	0	NA	307000
8	NWAmes	1Fam	2Story	1973	1973	Gable	Υ	2090	2	1	2	0	NA	200000

Submission 4 - Classifying House Prices

Expensive y = 1

Low-priced y = 0

3rd Pillar of Deep Learning

Training Data

Validation Data

Backpropagation

Forward pass

 \times Binary Cross Entropy Loss: $L(y, \hat{y}) = y \cdot log(\hat{y}) + (1-y) \cdot log(1-\hat{y})$

Backpropagation

Forward pass

X Optimization with gradient descent:

$$\theta_{t+1} = \theta_t - \lambda \cdot \nabla_{\theta} \mathbf{L}$$

Backpropagation

Model

- Input: $X \in \mathbb{R}^{N \times D + 1}$ representing our data with N samples and D+1 feature dimensions
- Output: Binary labels given by $y \in \mathbb{R}^{N \times 1}$
- Model: Classifier of the form $y = \sigma(X \cdot w)$
- Sigmoid function: $\sigma:\mathbb{R}\to [0,1]$ with $\sigma(t)=\frac{1}{1+e^{-t}}$
- Weights of the Classifier: $w = (w_1, w_2, \dots, w_{D+1}) \top \in \mathbb{R}^{D+1}$

One sample

Sample

 $x = (x_1, x_2, \dots, x_{D+1})$

Forward Pass

for the model

Input Data X

$$X \in \mathbb{R}^{N \times D + 1}$$

$$X = \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,D+1} \\ x_{2,1} & x_{2,2} & \dots & x_{2,D+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \dots & x_{N,D+1} \end{pmatrix}$$

N samples

Forward Pass

Sample $x_i = (x_{i1}, x_{i2}, \dots, x_{i,D+1})$

Forward Pass

Backward Pass

Sample
$$x = (x_1, x_2, \dots, x_{D+1})$$

Backward Pass

Backward Pass

- Backward Pass: Derivative of function with respect to weights $w = (w_1, w_2, \dots, w_{D+1})$ of our Classifier
- Attention: Make sure you understand the dimensions here
- Step 1: Forward + Backward Pass for one sample
- Step 2: Forward + Backward Pass for N samples

Outlook

Upcoming Lectures

Next lecture:

Lecture 5: Stochastic Gradient

Descent

Next Thursday:

Exercise 5: Two-layer Neural Network (with Andreas)

See you next week ©