MATHS4-CUPGE 2

Ahmad Karfoul

Ce module

- Partie 1 (20h CM, 16h TD, 4h TP)
 - Probabilités : 10h CM+8h TD+2hTP (A. Karfoul + V. Boussot)
 - > Statistiques: 10h CM+8h TD+2hTP (B. Uguen)
- II. Partie 2 (4h CM, 8h TD, 4hTP) (J. Coloigner)
 - Méthodes numériques : interpolation polynomiale, calcul intégral et calcul matriciel
- III. Partie 3 (10 CM, 8h TD, 2h TP) (A. Karfoul+V. Boussot)
 - Equations différentielles

Sommaire

- I. Introduction
- II. Espaces Probabilisés
- III. Modèles d'urnes
- IV. Variables aléatoires discrètes
- V. Lois fondamentales : loi Binomiale, loi de Poisson, loi multinomiale
- VI. Indépendance statistique
- VII. Moments statistiques
- VIII. Probabilité conditionnelle : cas discret
- IX. Fonctions caractéristiques

I. Introduction: historique

- L'origine de la probabilité se trouve dans les jeux de hasard.
- Le mot hasard est une traduction espagnole du mot arabe « az-zahr » qui signifie «dé à jouer ».
- La mathématisation de la théorie de probabilité date du 17^{ième} siècle grâce à Pascal et Fermat.

Pascal

Fermat

I. Introduction: historique

 Après les travaux de Pascal et Fermat et à partir du 18^{ième} siècle, de nombreux mathématiciens se sont intéressés à la théorie de la probabilité.

Poincaré

Borel

Kolmogorov

 C'est Kolmogorov qui est considéré comme le fondateur de la théorie axiomatique moderne des probabilités en 1933.

I. Introduction: quelques définitions

- Une expérience : une activité dont les résultats sont observables (ex. lancer un dé).
- O **Une expérience aléatoire :** une expérience dont le résultat ne peut être annoncé avec certitude, c'est-a-dire avant la réalisation de cette expérience.

EX. : Lancer un dé équilibré (même probabilité de chute).

- Un essai: une réalisation d'une expérience (répétition de l'expérience).
- Une éventualité (possibilité): Le résultat issue d'un essai.

EX. Lancer un dé : une éventualité = 1 ou 2 ou 3 ou ou 6

 \circ L'espace fondamental Ω : (parfois appelé l'univers de possibilités/espace fondamental) est un ensemble de toutes les éventualités/résultats possibles de l'expérience aléatoire.

EX. : Lancer deux fois une pièce équilibrée (pile (p) et face (f) équiprobables).

$$\Omega = \{(p,p),(p,f),(f,p),(f,f)\}$$

I. Introduction: quelques définitions

Remarque 1 : La notion d'éventualité est directement liée à ce qui intéresse l'examinateur.

EX. Lancer un dé:

- ✓ Si on est intéressé par le résultat de la face supérieur, alors $\Omega = \{1,2,3,4,5,6\}$.
- ✓ Si on est intéressé par la parité de la face supérieure, alors $\Omega = \{Pair, Impair\}$.
- \circ Remarque 2 : L'univers Ω n'est pas nécessairement dénombrable (fini ou infini).
- Remarque 3 : Une expérience aléatoire est dite discrète si l'espace fondamental est dénombrable (fini ou infini). Par contre elle est continue si l'espace fondamental est infini non dénombrable (ex. R³).
- O **Un évènement :** Un ensemble de résultats ou un sous-ensemble de l'espace fondamental Ω (partie de Ω).

EX. : Lancer deux fois une pièce équilibrée et considérer l'évènement A qui consiste à «observer une face lors du premier jet».

L'espace fondamental :
$$\Omega = \big\{ (p,p), (p,f), (f,p), (f,f) \big\}$$
 $\Rightarrow A = \big\{ (f,f), (f,p) \big\} \Rightarrow A \subset \Omega$ $B = \big\{ (f,p) \big\}$ est un évènement élémentaire

II. Espaces probabilisés: quelques définitions

- O Soit A un évènement $A \subset \Omega$. L'évènement A se réalise si et seulement si le résultat de l'expérience aléatoire est un élément λ de A.
- \circ L'espace fondamental Ω contient toutes les possibilités $\rightarrow \Omega$ est l'évènement certain.
- \circ L'ensemble \emptyset ne contient aucune possibilité $\rightarrow \emptyset$ est l'évènement impossible.
- \circ **L'évènement contraire :** On dit que l'évènement $A \subseteq \Omega$ admet un évènement contraire à lui que l'on note \overline{A} si $\overline{A} = \Omega \setminus A$ (l'ensemble des éléments appartenant à Ω et non à A).
- Soient A et B deux évènements tels que $A, B \subset \Omega$:
 - \triangleright l'évènement $A \cap B \subset \Omega$ est réalisé si A et B se réalisent.
 - \triangleright l'évènement $A \cup B \subset \Omega$ est réalisé si $A \circ u B$ se réalise.
 - \triangleright Si $A \cap B = \emptyset$, on dit alors que $A \operatorname{et} B$ sont des évènements incompatibles (disjoints).

II. Espaces probabilisés: quelques définitions

 Remarque 4: Les opérations sur les ensembles s'interprètent, en termes d'évènement, comme indiqué ci-dessous :

Ensemble	Évènement
L'espace fondamental Ω	Évènement certain
L'ensemble vide Ø	Évènement impossible
Un singleton $\{\lambda\}$ où $\lambda\in\Omega$	Un évènement élémentaire
Un sous-ensemble A de Ω	Un évènement
$\lambda \in \mathcal{A}$	λ est une réalisation possible de A
$A \subset B$	Si A est réalisé alors B l'est
Le complementaire $\overline{A} = \Omega \setminus A$	Évènement contraire de A
$A \cap B$	Réalisation simultanée de A et B
$A \cup B$	Réalisation de A ou B
$A \cap B = \emptyset$	Les évènements A et B sont incompatibles
$\left(oldsymbol{\mathcal{A}}_{i}^{} ight)_{i \in I}$ une partition dénombrable de Ω	$(A_i)_{i \in I}$ est un système complet d'évènements

II. Espaces probabilisés: les tribus

- O **Une tribu**: On appelle tribu sur Ω toute partie \mathcal{F} de $\mathcal{P}(\Omega)$ (l'ensemble des parties de Ω) telle que :
 - 1. $\Omega \in \mathbf{F}$
 - 2. $\forall A \in F$, $\overline{A} \in F$ (stable par passage au complémentaire)
 - **3.** Si $(A_{n\in\mathbb{N}})$ est une suite d'éléments de \mathcal{F} , alors $\bigcup_{n\in \mathbb{N}} A_n \in \mathcal{F}$ (stable par union dénombrable)
- Remarque 5 : A partir de la définition précédente, une tribu est stable par intersection dénombrable. Justification?

Formule de **De Morgan:**
$$\bigcap_{n \in \mathbb{N}} A_n \equiv \overline{\bigcup_{n \in \mathbb{N}} \overline{A}_n}$$

EX. : Donner une tribu associée a l'expérience aléatoire définie par « lancer une seule fois une pièce équilibrée ».

• l'espace fondamental : $\Omega = \{p, f\}$ • Une tribu $\mathcal{F} = \{\emptyset, \{p\}, \{f\}, \{p, f\}\}$

II. Espaces probabilisés: les tribus

- Remarque 6: Pour n'oublier aucun évènement et dans le cas où Ω est un ensemble fini, on prend $\mathcal{F} = \mathcal{P}(\Omega)$.
- o **Remarque 7:** Si une expérience aléatoire comporte *n* possibilités, alors il existe 2ⁿ évènements.
- Remarque 8 : Si Ω contient au moins deux évènements, alors $\mathcal{F} = \{\emptyset, A, \overline{A}, \Omega\}$, $A, \overline{A} \subset \Omega$ est la plus petite tribu de Ω contenant A. On dit alors que \mathcal{F} est une tribu engendrée par A.
- O Dans le cas où Ω représente un ensemble non-dénombrable (ex. $\Omega \in \mathbb{R}^+$) et pour ne pas oublier un évènement, la tribu sur Ω doit contenir au moins les intervalles inclus dans \mathbb{R}^+ . Il faut donc considérer la plus petite tribu sur Ω engendrée par les intervalles de \mathbb{R}^+ . Cette tribu doit contenir toutes les intervalles qui peuvent être obtenues par une suite d'intersection ou unions dénombrable et passage au complémentaire à partir des intervalles de \mathbb{R}^+ . Cette tribu est en réalité engendrée par les ouverts de \mathbb{R}^+ .
- O Une tribu \mathcal{F} engendrée par les ouverts de \mathbb{R}^+ est appelée une tribu Borélienne de \mathbb{R}^+ $\mathcal{F}=\mathcal{B}(\mathbb{R}^+)$

II. Espaces probabilisés: les tribus Boréliennes

Définition: Une tribu Borélienne de \mathbb{R}^d , notée $\mathcal{B}(\mathbb{R}^d)$, est la tribu engendrée par les ouverts de \mathbb{R}^d . Tout élément de cette tribu est noté comme Borélien de \mathbb{R}^d .

- o **Proposition :** Une tribu Borélienne de \mathbb{R}^d est la tribu engendrée par le pavé $]-\infty,a_1]\times]-\infty,a_2]\times\cdots]-\infty,a_d]$
- O Définition: Si \mathcal{F} est une tribu sur Ω , on dit alors que le couple (Ω , \mathcal{F}) est un espace probabilisable (espace mesurable)
- o **Théorème:** Si (Ω, \mathcal{F}) est un espace probabilisable, on a alors :
 - 1. $\emptyset \in \mathbf{F}$
 - 2. Si $A,B \subset F \Rightarrow A \cup B, A \cap B, A \setminus B$ sont aussi dans F
 - 3. Si $(A_{n\in\mathbb{N}})$ est une suite d'éléments de \mathcal{F} , alors $\bigcap_{n\in\mathbb{N}} \mathcal{F}(\mathcal{F})$ est stable par intersection dénombrable)

II. Espaces probabilisés: la mesure de probabilité

- O **Définition : Une probabilité** ou mesure de probabilité sur l'espace probabilisable $(Ω, \mathcal{F})$ est toute application $P: F \rightarrow [0,1]$ telle que :
 - 1. $P(\Omega) = 1$
 - 2. Pour toute suite $(A_n)_{n \in \bullet}$ d'évènements deux à deux incompatibles dans \mathcal{F} $(A_n \cap A_m = \phi, \forall n, m \in \mathbb{N}, n \neq m)$, la série $\sum_{n \in \mathbb{N}} P(A_n)$ est convergente et vérifie:

$$P(\cup_{n\in\mathbb{N}} A_n) = \sum_{n\in\mathbb{N}} P(A_n)$$

- o Remarque 9 : L'axiome 2 de la définition précédente est appelée propriété de 6 -additivité
- o **Définition : Un espace probabilisé (\Omega, \mathcal{F}, P)** est un espace probabilisable (Ω , \mathcal{F}) muni d'une mesure de probabilité P (mesure la capacité d'un évènement à se produire).
- O Question: Pourquoi dit-on rien sur la probabilité de \emptyset (l'évènement impossible) et celle de \overline{A} (l'évènement complémentaire) dans la définition précédente???

II. Espaces probabilisés: la mesure de probabilité

Proposition:

Soit (Ω, \mathcal{F}, P) un espace probabilisé. Alors pour tout A, B et $A_n \in \mathcal{F}$ on a :

- 1. $P(\emptyset) = 0$
- 2. Si $A \subset B \Rightarrow P(A) \leq P(B)$ (P est une fonction croissante) et $P(B \setminus A) = P(B) P(A)$
- 3. $P(\Omega \setminus A) = 1 P(A)$
- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 5. Si A et B sont deux évènements incompatibles, alors $P(A \cup B) = P(A) + P(B)$
- 6. Si $(A_k)_{1 \le k \le n}$ est une suite d'évènements deux a deux incompatibles, on a alors

$$P(\bigcup_{k=1}^{n} A_{k}) = \sum_{k=1}^{n} P(A_{k})$$

7. Si $(A_n)_{n\in\mathbb{N}}$ est un système complet d'évènements, alors $\sum_{n\in\mathbb{N}} P(A_n) = 1$

II. Espaces probabilisés: la mesure de probabilité

8. Si $(A_k)_{1 \le k \le n}$ est un système complet d'évènements, on a alors pour tout A dans \mathcal{F}

$$P(A) = \sum_{k=1}^{n} P(A \cap A_k)$$

9. Si $(A_n)_{n\in\mathbb{N}}$ est une suite croissante d'évènements dans \mathcal{F} $(A_n \subset A_{n+1}, \forall n \in \mathbb{N})$

$$P(\bigcup_{n\in\mathbb{N}} A_n) = \lim_{n\to+\infty} P(A_n)$$

10. Si $(A_n)_{n\in\mathbb{N}}$ est une suite décroissante d'évènements dans \mathcal{F} $(A_{n+1}\subset A_n, \forall n\in\mathbb{N})$

$$P(\cap_{n\in\mathbb{N}} A_n) = \lim_{n\to+\infty} P(A_n)$$

II. Espaces probabilisés: loi de probabilité discrète

- \circ Soit Ω un univers dénombrable (fini ou infini) \rightarrow Ω = {x_n ; n ∈ I}.
- Soit $(P_n)_{n \in I}$ une suite de nombres vérifiant $\sum_{n \in I} P_n = 1$, $P_n \ge 0 \implies P_n \in [0,1]$.
- \rightarrow On peut construire une mesure de probabilité sur la tribu $\mathcal{F}(\Omega)$ en prenant comme évènement élémentaire $\{x_n\}$ auquel on associe la probabilité $P_n = P(\{x_n\})$.
- \rightarrow La probabilité d'un évènement $A \subset \Omega$ peut s'écrire comme

$$P(A) = \sum_{n \in I, x_n \in A} P(x_n)$$

→ La propriété de δ-additivité est vérifiée par construction et on a bien

$$P(\Omega) = \sum_{n \in I, x_n \in \Omega} P_n = 1$$

 \rightarrow On a bien définit une probabilité sur $\mathcal{F}(\Omega)$ appelée loi de probabilité discrète sur Ω .

II. Système complet d'évènement

Définition: Soit (Ω, \mathcal{F}, P) un espace probabilisé et soit $(A_n)_{n \in \mathbb{N}}$ une suite (finie ou infinie dénombrable) d'évènements de \mathcal{F} . On dit que les A_n forment un **système complet d'évènements** si :

- 1. Les A_n sont deux à deux incompatibles
- 2. $\bigcup_{n\in\mathbb{N}} A_n = \Omega$

Ex. Dans une urne, on a des cubes et des boules rouges et verts. On tire un des ces objets :Soit

- 1. A_1 ="L'objet tiré est un cube" et A_2 ="L'objet tiré est une boule". Alors (A_1,A_2) est un système complet d'événements.
- 2. Soit B_1 ="L'objet tiré est rouge" et B_2 ="L'objet tiré est vert". Alors (B_1 , B_2) est un système complet d'événements.
- 3. Soit C_1 ="L'objet tiré est une boule rouge", C_2 ="L'objet tiré est un cube rouge" et C_3 ="L'objet tiré est vert". Alors, (C_1, C_2, C_3) est un système complet d'événements.

III. Probabilité conditionnelle et formule de Bayes

Considérons une expérience aléatoire schématisée par un espace probabilisé (Ω, \mathcal{F}, P) . Intéressons nous maintenant à la probabilité pour que «un évènement A se produise sachant qu'un autre évènement B s'est déjà produit». Autrement dit, la probabilité conditionnelle de A sachant que B est réalisée, qu'on la note P(A|B) ou $P_B(A)$.

Définition : Soit (\Omega, \mathcal{F} ,P) un espace probabilisé et soit B un élément de \mathcal{F} tel que P(B) > 0. La probabilité conditionnelle d'un évènement A sachant B est définie par :

$$P(A \mid B) = P_B(A) = \frac{P(B \cap A)}{P(B)}$$

III. Probabilité conditionnelle

☐ L'arbre pondéré

Dans un arbre pondéré:

➤ la probabilité de l'événement correspondant à un chemin est le produit des probabilités des branches composant ce chemin (règle de produit)

La somme des probabilité des branches issues d'un même nœud est égale à 1 (règle de

la somme)

1er niveau 2ème nivea Evénement (correspondant au chemin parcouru)

