

The Need for Geometric Regularization: Theory and Examples in Image Classification and Face/Person Challenges

Guillermo Sapiro Duke University

DNN or kNN:That is the Generalize vs Memorize Question

Guillermo Sapiro Duke University

With Gilad Cohen and Raja Giryes

Train accuracy: 99.90%

Test accuracy: 81.22%

Train accuracy: 99.82%

Test accuracy: 9.86%

Train accuracy:

Test accuracy:

Goal and Challenges

- Explain the excellent generalization of DNNs
- Are DNNs memorizing or generalizing?
- Are DNNs "just" good kNNs?

Contributions

- DNNs are kNNs in a learned feature space
- DNNs both memorize and generalize
 - Memorize the training set and generalize via kNN
- DNNs might be Bayesian optimal

Experimental Study

- CIFAR 10/100 and MNIST
- Wide-Resnet 28-10, LeNet, multilayer perception (MLP)

$$MC \triangleq p(f_{kNN}(s) = l | f_{DNN}(s) = l),$$

$$ME \triangleq p(f_{kNN}(s) = f_{DNN}(s) | f_{DNN}(s) \neq l),$$

$$P_{SAME} \triangleq p(f_{kNN}(s) = f_{DNN}(s))$$

$$= p(f_{kNN}(s) = l | f_{DNN}(s) = l) p(f_{DNN}(s) = l)$$

$$+ p(f_{kNN}(s) = f_{DNN}(s) | f_{DNN}(s) \neq l) p(f_{DNN}(s) \neq l)$$

$$= MC \times acc + ME \times (1 - acc).$$

Experimental Study (cont.)

Accuracy as a Function of Training Step

Accuracy as a Function of Layer

Accuracy as a Function of Layer

MC and ME

P_{SAME}

Training Performance on Random Labels

Discussion

DNN and kNN are "scary" similar

DNNs both memorize and generalize

kNN approach Bayes optimum

$$E^* \le E \le E^* \left(2 - \frac{ME^*}{M-1} \right)$$

Is DNN Bayes optimum?

Regularized Deep Learning with Geometry and Structures

Train accuracy: 99.90%

Test accuracy: 81.22%

Train accuracy: 99.82%

Test accuracy: 9.86%

Train accuracy:

Test accuracy:

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals. Understanding deep learning requires rethinking generalization. International Conference on Learning Representations (ICLR), Besto Paper Award, 2017

Regularizing Deep Learning

Regularizing with data geometry:

- Low-rank subspace.
- Low-dimensional manifold.

Regularizing with structures imposed over and across convolutional filters.

Regularizing with Data Geometry

Low-rank Subspace

9D linear subspace

R. Basri and D. W. Jacobs, "Lambertian reflectance and linear subspaces," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 2, pp. 218-233, Feb 2003.

$$\mathbf{Y} = [\mathbf{Y}_1 \ \mathbf{Y}_2 \ \mathbf{Y}_3]$$

Orthogonal Low-rank Transform

$$\underset{\mathbf{T}}{\arg\min} \sum_{c=1}^{C} ||\mathbf{TY}_c||_* - ||\mathbf{TY}||_*$$

 $|X|_*$ denotes the nuclear norm of the matrix X:

- The sum of the singular values of **A**.
- A good approximation to the matrix rank.

Qiang Qiu, Guillermo Sapiro, "Learning Transformations for Clustering and Classification", Journal of Machine Learning Research (JMLR), 16(Feb):187–225, 22

Orthogonal Low-rank Transform

$$\underset{\mathbf{T}}{\arg\min} \sum_{c=1}^{C} ||\mathbf{T}\mathbf{Y}_c||_* - ||\mathbf{T}\mathbf{Y}||_*$$

Theorem

 $||[\mathbf{A}, \mathbf{B}]||_* \le ||\mathbf{A}||_* + ||\mathbf{B}||_*$, equality is satisfied iff **A** and **B** are orthogonal.

Simultaneously

- reduces intra-class variance
- maximize inter-class margin

Qiang Qiu, Guillermo Sapiro, "Learning Transformations for Clustering and Classification", Journal of Machine Learning Research (JMLR), 16(Feb):187–225, 23

(a) Ground truth. (b) SSC, e=71.25%, t=714.99~sec. (c) LBF, e=76.37%, t=460.76~sec. (d) LSA, e=71.96%, t=22.57~sec. (e) R-SSC, t=67.37%, t=1.83~sec.

Face Clustering

(a) Example illumination conditions

(b) Example subjects

Motion Segmentation

Method	Misclassification (%)
SSC [6]	21.8693
LSA [27]	17.8766
LBF [28]	33.8475
R-SSC	19.0653
R-SSC+RSC	3.902

Qiang Qiu, Guillermo Sapiro, "Learning Transformations for Clustering and Classification", Journal of Machine Learning Research (JMLR), 16(Feb):187–225, 24

José Lezama, Qiang Qiu, Pablo Musé, Guillermo Sapiro, "OLÉ: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for Deep Learning", Computer Vision and Patt. Recn. (CVPR), 2018 https://github.com/jlezama/OrthogonalLowrankEmbedding

Softmax Low-rank

José Lezama, Qiang Qiu, Pablo Musé, Guillermo Sapiro, "OLÉ: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for Deep Learning", Computer Vision and Patt. Recn. (CVPR), 2018 https://github.com/jlezama/OrthogonalLowrankEmbedding

Softmax Low-rank

José Lezama, Qiang Qiu, Pablo Musé, Guillermo Sapiro, "OLÉ: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for Deep Learning", Computer Vision and Patt. Recn. (CVPR), 2018 27 https://github.com/jlezama/OrthogonalLowrankEmbedding

Dataset	Architecture	λ	% Error $(L_o + \lambda \cdot L_s)$	% Error (L_s only)
SVHN	DenseNet-40-12 [11]	1/2	3.62 ± 0.04	3.93 ± 0.08
MNIST	DenseNet-40-12	1/2	0.78 ± 0.04	0.88 ± 0.03
CIFAR10+	DenseNet-40-12	1/8	5.30 ± 0.26	5.54 ± 0.13
CIFAR10+	ResNet-110 [8]	1/4	5.39 ± 0.25	6.05 ± 0.8
CIFAR10+	VGG-19 [29]	1/4	7.13 ± 0.2	7.37 ± 0.11
CIFAR10+	VGG-11	1/2	7.73 ± 0.14	8.06 ± 0.22
CIFAR10	VGG-16 [18]	1/2	7.22 ± 0.14	8.23 ± 0.13
CIFAR100+	PreResNet-110 [9]	1/20	22.8 ± 0.34	23.01 ± 0.19
CIFAR100+	VGG-19	1/10	27.54 ± 0.11	28.04 ± 0.42
CIFAR100	VGG-19	1/10	37.25 ± 0.33	38.15 ± 0.28
FaceScrub-500	VGG-FACE [22]	1/10	1.55 ± 0.02	2.49 ± 0.01
STL-10	CNN-5	1/16	25.42 ± 0.20	28.68 ± 0.67
STL-10+	CNN-5	1/4	16.68 ± 0.24	18.22 ± 0.27

Cross-spectral Face Recognition

Jose Lezama, Qiang Qiu, Guillermo Sapiro, "Not Afraid of the Dark: NIR-VIS Face Recognition via Cross-spectral Hallucination and Low-rank Embedding", Computer Vision and Patt. Recn. (CVPR), 29 2017

Cross-spectral Face Recognition

NIR	Output	RGB
事	1	
		35
*	意	
3		98

	Accuracy (%)
VGG-S	75.04
VGG-S + Hallucination	80.65
VGG-S + Low-rank	89.88
VGG-S + Hallucination + Low-rank	95.72
VGG-face	72.54
VGG-face + Hallucination	83.10
VGG-face + Low-rank	82.26
VGG-face + Hallucination + Low-rank	91.01
COTS	83.84
COTS + Hallucination	93.02
COTS + Low-rank	91.83
COTS + Hallucination + Low-rank	96.41

Jose Lezama, Qiang Qiu, Guillermo Sapiro, "Not Afraid of the Dark: NIR-VIS Face Recognition via Cross-spectral Hallucination and Low-rank Embedding", Computer Vision and Patt. Recn. (CVPR), 30 2017

Image Hashing

We set '1' for the visited nodes, and '0' for the rest, obtaining a (2^d-2)-bit hash code.

- Random class grouping (uniquness)
- Orthogonal Low-rank loss (consistency)
- Near-optimal Code aggregation

	CNN2	
1	Conv+ReLU+MaxPool	$5 \times 5 \times 3 \times 64$
2	Conv+ReLU+MaxPool	$5 \times 5 \times 64 \times 32$
3	FC	output: 256

Train and deploy in parallel!!

Image Hashing

Method	ra	adius = 0		radius ≤ 2		
Method	Precision	Recall	F1	Precision	Recall	F1
KLSH (36-bit) [15]	16.97	3.73	6.11	31.93	8.38	13.28
AGH1 (36-bit) [19]	18.38	56.12	27.69	7.75	82.30	14.16
AGH2 (36-bit) [19]	13.56	57.48	21.94	5.53	89.52	10.41
LDAHash (36-bit) [64]	23.42	0.65	1.26	45.11	10.25	16.71
Proposed (36-bit)	82.17	82.29	82.23	47.58	89.38	62.10
Proposed (48-bit)	90.74	80.42	85.27	81.74	87.41	84.48

~30 microseconds to index a face.

~20 milliseconds to scan one million faces.

Low-dimensional Manifold

< 56 dimensions

$$\min_{\boldsymbol{\theta},\mathcal{M}} \quad J(\boldsymbol{\theta}) + \frac{\lambda}{|\mathcal{M}|} \int_{\mathcal{M}} \dim(\mathcal{M}(\boldsymbol{p})) d\boldsymbol{p}$$
s.t.
$$\{(\boldsymbol{x}_i, f_{\boldsymbol{\theta}}(\boldsymbol{x}_i))\}_{i=1}^N \subset \mathcal{M},$$

Low-dimensional Manifold

Wei Zhu, Qiang Qiu, Jiaji Huang, Robert Calderbank, Guillermo Sapiro, Ingrid Daubechies, "LDMNet: Low Dimensional Manifold Regularized Neural Networks", Computer Vision and Patt. Recn. (CVPR), 2018

Low-dimensional Manifold

Regularizing with Filter Structures

Decompose Filters over Bases

- Reduce parameters and computations (K/L^2) .
- Impose filter regularity by bases truncation.

Decomposed Convolutional Filters

Layer	CNN	DCFNet					
1	conv $3 \times 3 \times 3 \times 64$	3.3×3 basis					
1	CONV 3 × 3 × 3 × 04	conv $1 \times 1 \times 9 \times 64$					
2	Re	eLu					
3	conv $3 \times 3 \times 64 \times 64$	3.3×3 basis					
Э	CONV 3 X 3 X 04 X 04	$conv 1 \times 1 \times 192 \times 64$					
4-5	ReLu, ma	xPool 2 × 2					
C	6 conv $3 \times 3 \times 64 \times 128$	3.3×3 basis					
O		$conv 1 \times 1 \times 192 \times 128$					
7	Re	ReLu					
0	2	3.3×3 basis					
8	$conv \ 3 \times 3 \times 128 \times 128$	$conv 1 \times 1 \times 384 \times 128$					
9-10	ReLu, maxPool 2×2						
(1-31 (CNN layers are identical t	o vgg-face model in [25].)					
32	F V F V F19 V F19	8.5×5 basis					
32	$conv 5 \times 5 \times 512 \times 512$	$conv 1 \times 1 \times 4096 \times 512$					
33-34	ReLu,	dropout					
25	conv. 2 × 2 × 510 × 510	3.3×3 basis					
35	$conv \ 3 \times 3 \times 512 \times 512$	$conv \ 1 \times 1 \times 1536 \times 512$					
36-39	ReLu, dropou	t, FC, softmax					

Decomposed Convolutional Filters

	MNIST conv-2, 5x5							
	fb	rb	# param.	# MFlops				
CNN	10	99	pca-s	pca-f	2.61×10^4	3.37		
K=14	99.47	99.35	99.38	99.41	1.46×10^4	2.40		
K=14 $K=8$	99.48	99.26	99.28	99.45	8.40×10^{3}	1.37		
K=5	99.39	99.28	99.28	99.43	5.28×10^{3}	0.86		
K=3	99.40	98.69	99.19	99.35	3.20×10^{3}	0.51		
11 -0	00.10			onv-3, 5:		0.01		
	fb	rb	pca-s	pca-f	# param.	# MFlops		
CNN		94	.22	1	1.03×10 ⁶	201.64		
K=14	94.63	93.75	94.52	94.42	5.74×10^{5}	121.91		
K=8	94.39	92.05	93.85	94.30	3.30×10^{5}	69.67		
K=5	93.93	91.28	92.34	94.03	2.06×10^{5}	43.55		
K=3	92.84	88.47	91.88	93.10	1.24×10^{5}	26.13		
	I	С	ifar10 c	conv-3, 5				
	fb	rb	pca-s	pca-f	# param.	# MFlops		
CNN		85	.66					
K=14	85.88	84.76	85.27	85.34				
K=8	85.30	81.27	84.70	85.09	(same a	as above)		
K=5	84.35	77.96	83.12	83.94				
K=3	83.12	74.05	80.94	82.91				
		С	ifar10 v	/gg-16, 3	x3			
	fb	$^{\mathrm{rb}}$	pca-s	pca-f	# param.	# MFlops		
CNN		87	.02		1.47×10^{7}	547.20		
K=5	87.79	84.16	87.98	87.60	8.18×10^{6}	311.68		
K=3	88.21	78.46	87.45	87.54	4.91×10^{6}	187.02		
		Accur	racy	# par	am. #	GFlops		
VGG	-face	97.27	7 %	-		-		
CI	CNN		97.65 %					

Qiang Qiu, Xiuyuan Cheng, Robert Calderbank, Guillermo Sapiro, "DCFNet: Deep Neural Network with Decomposed Convolutional Filters", International Conf. on Machine Learning, ICML, 2018

 7.01×10^{6}

10.09

97.32 %

DCFNet

Decomposed Convolutional Filters

Qiang Qiu, Xiuyuan Cheng, Robert Calderbank, Guillermo Sapiro, "DCFNet: Deep Neural Network with Decomposed Convolutional Filters", International Conf. on Machine Learning, ICML, 2018

Structures across Filters

Orientation equivariant learning

Virtual branching

Person Re-Identification

Albert Gong, Qiang Qiu, Guillermo Sapiro, "Virtual CNN Branching: Efficient Feature Ensemble for Person Re-Identification", arXiv:1803.05872, 2018 (High school research)

Person Re-Identification

	S	Single Query			Multi-query		
Method	mAP	Rank-1	Rank-5	mAP	Rank-1	Rank-5	
Gated Siamese CNN [34]	39.95	65.88	-	48.45	76.04	-	
PIE [3]	53.87	78.65	90.26	-	-	-	
JLML [22]	65.5	85.1	-	74.5	89.7	-	
PAN [3]	63.35	82.81	-	71.72	88.18	-	
Res50 + Attribute [21]	64.67	84.29	93.20	-	-	-	
GoogLeNet + DTL [20]	65.5	83.7	-	73.08	89.6	-	
PDC [4]	63.41	84.14	92.73	-	-	-	
SpindleNet [5]	-	76.9	91.5	-	-	-	
TriNet† [17]	69.14	84.92	94.21	76.42	90.53	96.29	
$MobileNet + DML^{\dagger}$ [35]	68.86	87.73	-	77.14	91.66	-	
Baseline	68.3	83.3	93.1	75.8	90.1	95.9	
Human Landmark	70.8	87.9	96.0	79.4	93.5	98.9	
Pose Orientation	71.1	87.7	96.5	79.3	93.3	98.5	

	Labeled			Detected		
Method	mAP	Rank-1	Rank-5	mAP	Rank-1	Rank-5
Gated Siamese CNN [34]	-	-	-	51.25	61.8	80.9
PIE [3]	-	-	-	67.21	61.50	89.30
JLML [22]	-	83.2	98.0	-	80.6	96.9
PAN [3]	35.03	36.86	56.86	34.00	36.29	55.50
GoogLeNet + DTL [20]	-	85.4	-	-	84.1	-
PDC [4]	-	88.70	-	-	78.29	-
SpindleNet [5]	-	-	-	-	88.5	97.8
TriNet† [17]	-	89.63	99.01	-	87.58	98.17
Baseline	93.6	88.2	99.4	92.0	86.4	98.1
Human Landmark	95.5	91.0	99.8	94.7	88.9	99.4
Pose Orientation	95.8	90.9	99.6	94.5	89.3	99.4

Market-1501

CUHK03

Thank you!