## Common-Emitter Amplifier

(Use Transistor BC-547)

**Objective:** To measure and analyze bias quantities (DC currents and voltages) and small-signal gain of the given common-emitter amplifier circuit.

- 1. Measure all the resistances that you will use in this experiment with a multi-meter (these measured values are to be used in your calculations)
- 2. Measurement of  $\beta$ : Connect the circuit shown in Fig. 1. Adjust the two DC source voltages such that  $I_C$  is approximately 4mA and  $V_{CE}$  is approximately 4V to ensure that the transistor is in active region. (A 20% variation is OK). Compute  $\beta = I_C / I_B$ .



3. Common emitter amplifier: Connect the circuit shown in Fig.2. Measure the following without emitter bypass capacitor  $C_E$ . (i) All DC voltages, (ii) "Mid-band Gain" at 1 kHz, (iii) Frequency response: Here you must measure  $V_o$  and  $V_i$  (small-signal) at each frequency. Ensure that the output does not show any distortion. Adjust the input voltage amplitude so that the output voltage is not more than, say, 1V peak-to-peak. Take measurements in the range 10 Hz to 300 kHz, say 8 to 10 points in each decade. Now, connect  $C_E$  and repeat (2) and (3). You may have to attenuate the input using a voltage divider (say,  $100\Omega$  and  $10k\Omega$ ) to ensure that output is not distorted. Also, increase the input voltage so that you can observe the clipping levels (make sure you use the oscilloscope in DC mode here.)