大连理工大学

姓 名:

学号:_____

课程名称: <u>微积分2</u> 试卷: <u>A</u> 考试形式: <u>闭卷</u>

授课院(系): _数学科学学院_ 考试日期: _2019年5月14日 试卷共 __6_ 页

院 系:_____

____级 ____班

题 号	_	=	三	四	五.	六	七		总分
标准分	30	20	10	10	10	10	10		100
得 分									

教 师:_____

得 分 一、填空题 (每题 6 分, 共 30 分)

 \vdots 2. 极限 $\lim_{\substack{x \to \infty \\ y \to 1}} \left(1 + \frac{1}{xy} \right)^{\frac{x^3y}{x^2 + y^2}} = \underline{\qquad}$, 级数 $\sum_{n=0}^{\infty} \frac{1}{2^n(n+1)}$ 的和为 _____.

3. 曲线 Γ : $\begin{cases} x^2 + y^2 + z^2 = 6 \\ x + y + z = 0 \end{cases}$ 在点 M(1, -2, 1) 处的切线方程为 ______

法平面方程为______

4. 函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在 A(1,0,1) 点处的梯度 **grad** $u|_A =$ _______. 沿 A 点指向 B(3,-2,2) 点方向的方向导数为 ______.

5. 设函数 $f(x) = \begin{cases} x, & 0 \le x \le \frac{1}{2} \\ 2(1-x), & \frac{1}{2} < x \le 1 \end{cases}$,而 $S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x$,其中

 $a_n = 2 \int_0^1 f(x) \cos n\pi x \, dx \ (n = 0, 1, 2 \cdots), \ \mathbb{M} \ S(-\frac{5}{2}) = \underline{\qquad}, \ S(9) = \underline{\qquad}.$

二、 单项选择题 (每题 4 分, 共 20 分)

- 1. 级数 $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} \frac{1}{\sqrt{n+1}} \right) \sin(n+k) (k)$ 为常数) 的敛散性为()
 - (A) 发散

(B) 敛散性与 k 有关

(C) 绝对收敛

- (D) 条件收敛
- 2. 设 $z = \begin{cases} xy \sin \frac{1}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$, 则该函数在 (0, 0) 点 (0, 0)
 - (A) 不连续

- (C) 连续且偏导数存在但不可微 (D) 可微
- 3. 二元函数 f(x,y) 在点 (0,0) 处可微的一个充分条件是 ()
 - (A) $\lim_{\substack{x \to 0 \\ y \to 0}} [f(x, y) f(0, 0)] = 0$
 - (B) $\lim_{x\to 0} \frac{f(x,0) f(0,0)}{x} = 0$, $\mathbb{H} \lim_{y\to 0} \frac{f(0,y) f(0,0)}{y} = 0$
 - (C) $\lim_{\substack{x\to 0\\x\to 0}} \frac{f(x,y) f(0,0)}{\sqrt{x^2 + y^2}} = 0$
 - (D) $\lim_{x \to 0} [f'_x(x,0) f'_x(0,0)] = 0$, $\lim_{y \to 0} [f'_y(0,y) f'_y(0,0)] = 0$
- 4. 设有命题
- (1) 若 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} a_n$ 收敛.
- (2) 若正项级数 $\sum_{n=1}^{\infty} a_n$ 满足 $\frac{a_{n+1}}{a_n} < 1 \ (n=1,2\cdots), \ \bigcup_{n=1}^{\infty} a_n$ 收敛.
- (3) 若 $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$, 则级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 同敛散.
- (4) 若 $a_n \le b_n \le c_n$ $(n = 1, 2 \cdots)$ 且 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} c_n$ 都收敛, 则 $\sum_{n=1}^{\infty} b_n$ 收敛.

则上述命题中正确的个数为()

- (A) 0 (B) 1 (C) 2 (D) 3

- 5. 幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n(3^n + (-2)^n)}$ 的收敛域为 ()

- (A) [-3,3) (B) (-3,3] (C) (-2,2) (D) [-2,2]

[得] 三、 (10分) 设
$$z = f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^k}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 其中 $k \geq 0$,

k 为何值时, f(x,y) 在 (0,0) 可微, k 为何值时, f(x,y) 在 (0,0) 不可微?

四、 (10分) 求二元函数 $z = f(x,y) = x^2y(4-x-y)$ 在由直线 x+y=6, x 轴和 y 轴所围成的闭区域 D 上的极值、最大值和最小值.

一得分分。 五、
$$(10分)$$
 设函数 $z=z(x,y)$ 具有二阶连续偏导数, 变换
$$\begin{cases} u=x+ay\\ v=x+by \end{cases}$$

可把方程
$$3\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = 0$$
 简化为 $\frac{\partial^2 z}{\partial u \partial v} = 0$, 求常数 a, b .

 得分 七、 (10分) 将函数 $f(x)=\arctan\frac{1-2x}{1+2x}$ 展开成 x 的幂级数,并求级数 $\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}$ 的和.