BUS format

Caltech Bioinformatics Symposium February 14, 2019

The wild west of single-cell RNA-seq

• The good (biology)

- New insights into cell types and heterogeneous tissue
- Avoid Simpson's paradox

The bad (analysis)

- Sampling is sparse and non-uniform
- Geometry and statistics in high dimension

The ugly (informatics)

- Complex protocols -> complicated bioinformatics
- Technology is in flux, software is a mess

The informatics challenges

- Many technologies: 10x Genomics, Cel-seq2, Drop-seq, inDrops, SureCell, SCRB-seq, etc.
- Technologies are changing rapidly: 10x v1, v2, v3 chemistry, Celseq v1, v2, etc.
- Increasingly complex assays: cite-seq/REAP-seq, multiplexing, etc.
- Workflows require numerous software programs: CellRanger, STAR, Seurat, velocyto, etc.
- Numerous languages involved: C/C++, R, python, etc.
- Datasets are large: one single-cell RNA-seq dataset is about 10 times larger than a bulk RNA-seq dataset

barcode error correction

- correct sequencing errors in barcodes

read alignment

- align reads to a reference genome

UMI error correction

- correct sequencing errors in UMIs

cell assignment

 decide which reads are associated with which barcodes

cell filtering

 remove barcodes that correspond to failed cells

technology choice

determine how to extract information from reads

gene counting

- produce cell x gene matrix of read counts

Godot: go out (and) dance our trash (takes forever)

- Godot requires a ton of memory
- Godot will take a day to run
- Godot requires a server
- Want to analyze a different kind of experiment? LOL!
- BUT....

• Godot is open source!!

Proposal

 A new format which decouples technology dependencies from algorithm choices.

• We call this format Barcode, UMI, Set (BUS) format.

Common structure to data

BUS centered workflow

- BUS can be generated with **kallisto** (Bray et al. 2016)
 - kallisto is fast: no sorting or alignment is required
 - kallisto streams bus records directly to disk, no memory overhead
 - Easy to process all technologies. kallisto already supports 10x v1,v2 and v3 chemistry, Drop-seq, inDrops, SureCell, etc.
- BUStools can be used for generic processing of BUS files
- Downstream processing notebooks in Python and R

Example

Example

Example

Downstream analysis in notebooks

BUS notebook review

- Download data
- Download reference transcriptome
- Build kallisto index
- Run kallisto bus
- Sort the bus file and convert to text
- Parse bus file in python
- Collate counts to make cell x gene counts matrix
- Analyze data...

BUS notebook review

Run kallisto bus

```
kallisto bus -i index -o output R1.fastq R2.fastq
```

Sort the bus file and convert to text

```
bustools sort -o output.sorted.bus output/outpus.bus
bustools text -o output.sorted.txt output.sorted.bus
```

- Parse bus file in python
- Collate counts to make cell x gene counts matrix
- Analyze data...
 - Provided in notebooks

In practice...

Running time for 350M reads, 8 threads: 10 minutes of kallisto

Current and future work

- Better algorithms for barcode and UMI correction
- Standardized workflows for popular technologies and assays
- RNA velocity workflows
- Compression of BUS format
- Large-scale processing of publicly available single-cell RNA-seq

