Funktionentheorie

Jun.-Prof. Dr. Madeleine Jotz Lean LaTeX-Version von Niklas Sennewald

Sommersemester 2020

Inhaltsverzeichnis

0	\mathbf{Ein}	führung 1		
	0.1	Komplexe Zahlen		
	0.2	Erinnerungen, wichtige Begriffe		
1	Komplexe Ableitung 4			
	1.1	Komplexe Differenzierbarkeit		
	1.2	Der Satz für implizite Funktionen		
	1.3	Komplexe Potenzreihen		
	1.4	Der komplexe Logarithmus		
	1.5	Meromorphe Abbildungen		
	1.6	Uniforme Konvergenz		
2	Komplexe Integration 16			
	2.1	Kurven und Kurvenintegrale		
	2.2	Der Cauchy'sche Integralsatz		
	2.3	Die Cauchy'sche Integralformel		
	2.4	Der Potenzreihenentwicklungssatz		
	2.5	Weitere Eigenschaften		
	2.6	Das Maximumsprinzip		
3	Singularitäten 28			
	3.1	Außerwesentliche Singularitäten		
	3.2	Wesentliche Singularitäten		
	3.3	Laurentzerlegung		
	3.4	Der Residuensatz		
	3.5	Anwendungen des Residuensatzes		

0 Komplexe Zahlen und wichtige Begriffe

0.1 Komplexe Zahlen

- $\mathbb{C} = \mathbb{R} \oplus \mathbb{R}i \text{ mit } i = \sqrt{-1} \text{ (bzw } i^2 = -1).$
- In C addieren und multiplizieren wir wie folgt:

$$(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2)i$$

$$(a_1 + b_1 i) \cdot (a_2 + b_2 i) = a_1 a_2 - b_1 b_2 + (a_1 b_2 + a_2 b_1)i$$

 \mathbb{C} ist ein Körper mit 0 = 0 + 0i, 1 = 1 + 0i und der oben definierten Addition und Multiplikation.

• $\mathbb{C} \cong \mathbb{R}^2$ als \mathbb{R} -Vektorraum. Punkte a+bi aus \mathbb{C} können als Punkte $(a,b) \in \mathbb{R}^2$ visualisiert werden.

$$z = \underbrace{a}_{\Re(z)} + \underbrace{b}_{\Im(z)} i$$

 \rightarrow die x-Achse in \mathbb{R}^2 ist die reelle Achse und die y-Achse ist die imaginäre Achse.

• $\bar{z} = a - bi$ ist die konjugierte Zahl zu $z = a + bi \in \mathbb{C}$. Es gilt:

$$\bar{z}=z, \ \overline{z+w}=\bar{z}+\overline{w}, \ \overline{zw}=\bar{z}\overline{w}, \ z+\bar{z}=2\Re(z), \ z-\bar{z}=2i\Im(z)$$

$$(\bar{z} = z \iff z \in \mathbb{R}, \ \bar{z} = -z \iff z \in \mathbb{R}i)$$

Weiterhin gilt $z\bar{z} = \bar{z}z = a^2 + b^2$. Wir schreiben $|z| = \sqrt{z\bar{z}}$.

• Falls $z = a + bi \neq 0 \exists ! \theta \in (-\pi, \pi]$, sodass $\cos(\theta) = \frac{a}{\sqrt{a^2 + b^2}}$ und $\sin(\theta) = \frac{b}{\sqrt{a^2 + b^2}}$. Dann ist $z = |z| + (\cos(\theta) + i\sin(\theta)) = |z|e^{i\theta}$ per Konstruktion die Polarform der komplexen Zahl z. Multiplikation von komplexen Zahlen in Polarform ist ganz einfach:

$$r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}, \quad \left(r e^{i\theta} \right)^{-1} = \frac{1}{r} e^{-1\theta}$$

sonst: $(a + bi)^{-1} = \frac{1}{a + bi} = \frac{a - bi}{a^2 + b^2}$

• Geometrische Interpretation der Multiplikation: Addition von komplexen Zahlen ist das Gleiche wie die "Vektoraddition" von Vektoren in \mathbb{R}^2 . Multiplizieren von $z \in \mathbb{C}$ mit $re^{i\theta}$ gibt Folgendes: $|z \cdot re^{i\theta}| = |z| \cdot r$, $\arg(z \cdot re^{i\theta}) = \arg(z) + \theta$. Also: Multiplikation mit $re^{i\theta}$ entspricht einer "Drehstreckung" (Winkel θ , Faktor r).

1

- Die Menge $\{z \in \mathbb{C} \mid |z-c| = r, \ c \in \mathbb{C}, r \in \mathbb{R}_{\geq 0}\}$ definiert einen Kreis mit Mittelpunkt c und Radius r. Eine Gleichung der Form $x^2 + y^2 + 2gx + 2fy + h = 0$ $(x, y \in \mathbb{R}, g, f, h \in R \text{ konstant})$ kann geschrieben werden als $z\bar{z} + \alpha z + \bar{\alpha}\bar{z} + h = 0$ mit $\alpha = g if$ und z = x + iy. Allgemeiner betrachten wir eine Gleichung $Az\bar{z} + Bz + \bar{B}z + C = 0$. Die Lösungsmenge $\{z \in \mathbb{C} \mid Az\bar{z} + Bz + \bar{B}z + C = 0\}$ ist
 - i) leer, falls $B\overline{B} AC < 0$
 - ii) ein Kreis mit Mittelpunkt $\frac{-\overline{B}}{A}$ und Radius $\sqrt{\frac{B\overline{B}-AC}{A^2}}$, falls $B\overline{B}-AC\geq 0$.

Falls A=0 ist die Gleichung einfach $Bz+\overline{Bz}+C=0$. Falls $B\neq 0$ ist dies die Gleichung einer Geraden.

Satz 0.1.1

Seien $c, d \in \mathbb{C}$, $c \neq d$, $k \in \mathbb{R}$, k > 0. Die Menge $\{z \mid |z - c| = k|z - d|\}$ ist ein Kreis für $k \neq 1$. Im Falle k = 1 ist die Menge eine Gerade, die senkrecht zum Segment cd durch den Mittelpunkt verläuft.

0.2 Erinnerungen, wichtige Begriffe

- C ist vollständig, das heißt jede Cauchyfolge in C konvergiert.
- $\sum_{n=1}^{\infty} c_n$ definiert eine komplexe Reihe. Falls $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$, sodass

$$\left| \sum_{r=n+1}^{m} c_r \right| < \varepsilon \ \forall \, m > n > N,$$

dann ist die Reihe konvergent.

• Die Topologie von $\mathbb{C} \cong \mathbb{R}^2$ ist die von der Standardnorm $\|\cdot\|^2$ induzierte: $U \subset \mathbb{C}$ ist offen, falls $\forall z \in U \; \exists \, \delta > 0 : B_{\delta}(z) = \{z' \in \mathbb{C} \mid |z' - z| < \delta\} \subseteq U$. $D \subset \mathbb{C}$ ist abgeschlossen, falls $D^c = \mathbb{C} \setminus D$ offen ist. Der Abschluss einer Teilmenge $S \subseteq \mathbb{C}$ ist

$$\bar{S} = \bigcap_{\substack{S \subset D \\ D \text{ abgeschlossen}}} D = \bar{S} = \{ z \in \mathbb{C} \mid \forall \, \delta > 0 : B_{\delta}(z) \cap S \neq 0 \}.$$

Das *Innere* von $S \subseteq \mathbb{C}$ ist

$$S^{\circ} = \bigcup_{\substack{U \subset S \\ U \text{ offen}}} U = \{ z \in \mathbb{C} \mid \exists \, \delta > 0 : B_{\delta}(z) \subseteq S \}.$$

Der Rand von $S \subseteq \mathbb{C}$ ist

$$\partial S = \overline{S} \setminus S^{\circ}.$$

Es gilt: \overline{S} ist abgeschlossen und $S = \overline{S} \iff S$ ist abgeschlossen, S° ist offen und $S = S^{\circ} \iff S$ ist offen.

- $f: \mathbb{C} \to \mathbb{C}$ wird oft geschrieben als $f(z) = \underbrace{u(x,y)}_{\text{reeller Teil}} + i \underbrace{v(x,y)}_{\text{imaginärer Teil}}$ für z = x + iy.
- $f: \mathbb{C} \to \mathbb{C}, \ c, d \in \mathbb{C}.$

$$\lim_{z \to c} f(z) = d \iff \forall \, \varepsilon > 0 \,\, \exists \, \delta > 0 : |z - c| < \delta \,\, \Longrightarrow \,\, |f(z) - d| < \varepsilon$$

Der Limes für $z \to \infty$ ist etwas schwieriger, denn es gibt in $\mathbb C$ "viele Wege ins Unendliche". Man schreibt $\lim_{z \to \infty} f(z) = l$, falls $\forall \, \varepsilon > 0 \, \exists \, k > 0 : |z| > k \implies |f(z) - l| < \varepsilon$, das heißt $\lim_{z \to \infty} f(z) = \lim_{|z| \to \infty} f(z)$, $\lim_{z \to \infty} f(z) = \infty$ falls $\forall \, E > 0 \, \exists \, D > 0 : |z| > D \implies |f(z)| > E$.

- $f, \phi : \mathbb{C} \to \mathbb{C}$
 - $-f(z)=O(\phi(z))$ für $z\to\infty,$ falls $\exists\, K>0, D>0: |z|>D \implies |f(z)|\le K|\phi(z)|$
 - $-f(z)=O(\phi(z))$ für $z\to 0,$ falls $\exists\, K>0, \varepsilon>0: |z|<\varepsilon \implies |f(z)|\le K|\phi(z)|$

3

- $-f(z) = o(\phi(z))$ für $z \to \infty$, falls $\lim_{|z| \to \infty} \frac{f(z)}{\phi(z)} = 0$
- $f(z) = o(\phi(z))$ für $z \to 0$, falls $\lim_{z \to 0} \frac{f(z)}{\phi(z)} = 0$

1 Komplexe Ableitung

1.1 Komplexe Differenzierbarkeit

Definition 1.1.1 (Komplexe Differenzierbarkeit)

Eine komplexe Abbildung $f: U \to \mathbb{C}$, $U \subseteq \mathbb{C}$ ist an der Stelle $c \in U$ differenzierbar, falls $\lim_{z \to c} \frac{f(z) - f(c)}{z - c}$ existiert. Der Limes wird dann f'(c), die Ableitung von f an der Stelle c genannt.

Satz 1.1.2

Wie auch im reellen Fall gelten folgende Regeln:

Seien $f, g: U \to \mathbb{C}, \ U \subseteq \mathbb{C}$ an der Stelle $c \in U$ differenzierbar. Dann gilt:

- i) $f + q: U \to \mathbb{C}$ ist an $c \in U$ differential f = u with f = u is f = u.
- ii) $f \cdot g : U \to \mathbb{C}$ ist an $c \in U$ differenzierbar mit $(f \cdot g)'(c) = f(c)g'(c) + f'(c)g(c)$.
- iii) Falls $g(c') \neq 0 \ \forall \ c' \in U$ gilt, so ist $\frac{f}{g}(c) : U \to \mathbb{C}$ an $c \in U$ differenzierbar mit $\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) g'(c)f(c)}{g^2(c)}$.
- iv) Falls $f(U) \subseteq dom(g)$ gilt und g an f(c) differenzierbar ist, so ist $g \circ f : U \to \mathbb{C}$ an $c \in U$ differenzierbar mit $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

Beispiel 1.1.3: Die komplexe Funktion $f:\mathbb{C}\to\mathbb{C},\ z\mapsto z$ ist differenzierbar, denn $\lim_{z\to c}\frac{f(z)-f(c)}{z-c}=1\ \forall\,c\in\mathbb{C}.$ Somit sind Polynome überall differenzierbare komplexe Funktionen und rationale Funktionen $\frac{p}{q}$ sind differenzierbar, außer an den Nullstellen von q.

Satz 1.1.4 (Cauchy-Riemann-Gleichungen)

Sei $f: \mathbb{C} \supseteq U \to \mathbb{C}$ eine komplexe Funktion, die an der Stelle $c \in U$ komplex differenzierbar ist. Schreibe f(x+iy) = u(x,y) + iv(x,y) und c = a+ib. Dann existieren alle partiellen Ableitungen $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ an der Stelle (a,b) und es gilt

$$\frac{\partial u}{\partial x}(a,b) = \frac{\partial v}{\partial y}(a,b), \quad \frac{\partial v}{\partial x}(a,b) = -\frac{\partial u}{\partial y}(a,b).$$

Beispiel 1.1.5: Sei $f: \mathbb{C} \to \mathbb{C}$, $f(x+iy) = \sqrt{|xy|}$. Dann gilt

- 1. $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$, denn v = 0,
- 2. $\frac{\partial u}{\partial x}(0,0) = \lim_{t \to 0} \frac{u(t,0) u(0,0)}{t} = 0$ und $\frac{\partial u}{\partial y}(0,0) = 0$.

Also gelten die Cauchy-Riemann-Gleichungen an der Stelle $(0,0) \in \mathbb{R}^2$, aber:

4

3. f ist nicht an $0 \in \mathbb{C}$ komplex differenzierbar:

$$\frac{f(z) - f(0)}{z - 0} = \frac{\sqrt{|xy|}}{x + iy} = \frac{\sqrt{|\cos\theta\sin\theta|}}{\cos\theta + i\sin\theta} = \sqrt{|\cos\theta\sin\theta|}e^{-i\theta}$$

Für $\theta = 0$ oder $\frac{\pi}{2}$ wäre das 0, aber für $\theta = \frac{\pi}{4}$ ist das $\frac{\sqrt{2}}{2} \cdot \frac{1}{\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}} = \frac{1}{1+i} = \frac{1-i}{2}$. Also haben wir $\lim_{r \to 0} \frac{f(re^{i\theta}) - f(0)}{re^{i\theta}} = \frac{1-i}{2} \neq 0$ für $\theta = \frac{\pi}{4}$ und f ist nicht differenzierbar an der Stelle 0.

Satz 1.1.6

Sei $B_R(c)$ ein offener Ball in \mathbb{C} . Sei $f: U \to \mathbb{C}$ mit $B_R(c) \subseteq U$, schreibe f(x+iy) = u(x,y) + iv(x,y). Falls

- i) die partiellen Ableitungen $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ existieren und stetig in $B_R(c)$ sind und
- ii) die Cauchy-Riemann-Gleichungen an der Stelle $a+ib \cong (a,b)$ erfüllt sind, dann ist f an der Stelle c differenzierbar.

Satz 1.1.7

Sei $f: U \to \mathbb{C}$ und sei $B \subseteq U$ ein offener Ball. Schreibe f(x+iy) = u(x,y) + iv(x,y). Falls

- i) die partiellen Ableitungen existieren und stetig auf B sind und
- ii) die Cauchy-Riemann-Gleichungen auf B gelten,

dann ist f auf B differenzierbar.

Definition 1.1.8 (Holomorphie)

Sei $U \subseteq \mathbb{C}$ offen. Eine Funktion $f: U \to \mathbb{C}$ heißt holomorph, falls f an jedem $c \in U$ differenzierbar ist. Im Falle $U = \mathbb{C}$ heißt f ganze Funktion.

Beispiel 1.1.9: • Aus Beispiel 1.1.3 folgt, dass Polynome ganze Funktionen sind.

- Die rationale Funktion $f: \mathbb{C} \setminus \{1\} \to \mathbb{C}, \ z \mapsto \frac{z+2i}{z-i}$ ist holomorph auf $C \setminus \{i\}$.
- $f: \mathbb{C} \to \mathbb{C}, \ z \mapsto z^2 = (x + iy)^2 = (x^2 y^2) + i(2xy)$ $\implies u(x, y) = x^2 - y^2, \ v(x, y) = 2xy$

$$\frac{\frac{\partial u}{\partial x}(x,y) = 2x}{\frac{\partial u}{\partial y}(x,y) = -2y}$$

$$\frac{\frac{\partial v}{\partial x}(x,y) = 2y = -\frac{\partial u}{\partial y}}{\frac{\partial v}{\partial y}(x,y) = 2x = \frac{\partial u}{\partial x}}$$
alle stetig auf \mathbb{R}^2

5

Funktionentheorie

also ist f holomorph (also eine ganze Funktion) mit $f'(z) = \frac{\partial u(x,y)}{\partial x} + i \frac{\partial v(x,y)}{\partial x} = 2x + 2iy$.

•
$$f: \mathbb{C} \setminus \{0\} \to \mathbb{C}, \ z \mapsto \frac{1}{z} = \frac{1}{x+iy} \implies u(x,y) = \frac{x}{x^2+y^2}v(x,y) = \frac{-y}{x^2+y^2}$$

$$\frac{\partial u}{\partial x}(x,y) = \frac{x^2+y^2-2x^2}{(x^2+y^2)^2} = \frac{y^2-x^2}{(x^2+y^2)^2} = \frac{\partial v}{\partial y}(x,y)$$

$$\frac{\partial u}{\partial y}(x,y) = \frac{-2xy}{(x^2+y^2)^2} = -\frac{\partial v}{\partial x}(x,y)$$
alle stetig auf $\mathbb{R}^2 \setminus \{0\}$

Also ist f holomorph mit

$$f'(z) = \frac{y^2 - x^2}{(x^2 + y^2)^2} + i \frac{2xy}{(x^2 + y^2)^2} = \frac{y^2 - x^2 + i2xy}{(x^2 + y^2)^2}$$
$$= \frac{-(x - iy)^2}{(x + iy)^2 (x - iy)^2} = \frac{1}{z^2} \quad \forall z \in \{0\}.$$

Also ist eine komplexe Abbildung $f: U \to \mathbb{C}$, $U \subseteq \mathbb{C}$ genau dann an $x+iy = c \in \mathbb{C}$ differenzierbar, wenn $D_{(x,y)}(u,v)$, aufgefasst als Abbildung $\mathbb{C} \to \mathbb{C}$, \mathbb{C} -linear ist. Wir erweitern nun ein Standardergebnis aus der reellen Analysis zum komplexen Fall:

Satz 1.1.10

Sei $f: U \to \mathbb{C}$, $U \subseteq \mathbb{C}$ holomorph auf $B_R(c) \subseteq U$, und sei $f'(z) = 0 \ \forall z \in B_R(c)$. Dann ist f konstant auf $B_R(c)$.

Satz 1.1.11 (Lemma von Goursat)

Sei $f: U \to \mathbb{C}$ auf U holomorph, $c \in U$. Dann gibt es eine Funktion $v: U \to \mathbb{C}$ mit

$$v(z) \xrightarrow{z \to c} 0 \text{ und } f(z) = f(c) + (z - c)f'(c) + (z - c)v(z).$$

Satz 1.1.12

Sei $f: U \to \mathbb{C}$ eine komplexe Funktion, $c \in U$. Falls eine komplexe Zahl A existiert, sodass

$$\frac{f(z) - f(c) - A(z - c)}{z - c} \xrightarrow{z \to c} 0,$$

so ist f an der Stelle c differenzierbar mit f'(c) = A.

Satz 1.1.13

Sei $f: U \to \mathbb{C}$ holomorph mit $U \subseteq \mathbb{C}$ offen und zusammenhängend. Falls |f| auf U konstant ist, dann auch f.

Komplexe Differentialformen und das Wirtinger-Kalkül

In der reellen Analysis beschäftigt man sich mit reellwertigen alternierenden Differentialformen auf offenen Teilmengen $U \subseteq \mathbb{R}^n$. Man kann auch komplexwertige

6

k-Formen betrachten, die lokal von der Gestalt

$$\omega = \sum_{1 \le j_1 < \dots < j_k \le n} a_{j_1, \dots, j_k} \, \mathrm{d}x_{j_1} \wedge \dots \wedge \, \mathrm{d}x_{j_k}$$

sind, mit komplexwertigen Funktionen $a_{j_1,\dots,j_k}:U\to\mathbb{C}$. Das äußere Produkt solcher Formen ist wie im reellen Fall definiert. Wenn man das Differential dauf komplexwertige Formen fortsetzen will, muss man

$$df := d(\Re f) + i d(\Im f) \tag{1}$$

setzen (für $f: U \to C$, $f = \Re f + i\Im f$), und so

$$d\omega = \sum_{1 \le j_1 < \dots < j_k \le n} da_{j_1, \dots, j_k} \wedge dx_{j_1} \wedge \dots \wedge dx_{j_k}.$$

Es gilt $d^2 = 0$ und per Definition ist d kompatibel mit \wedge :

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^{|\omega|} \omega \wedge d\eta.$$

Nun sei $f: U \to \mathbb{C}, U \subseteq \mathbb{C}^n$, und die Form ω soll auch von komplexen Argumenten abhängen. Das heißt ω ist eine Form auf $U \subseteq \mathbb{C}^n$, die wir vermöge der Identifikation $\mathbb{C}^n \cong \mathbb{R}^{2n}, \ z_j = x_j + iy_j, \ j = 1, \ldots, n$ als Form auf $U \subseteq \mathbb{R}^{2n}$ auffassen können. z_j und $\overline{z_j}$ sind dann komplexwertige Funktionen auf \mathbb{R}^{2n} und aus 1 folgt

$$\begin{cases} dz_j = dx_j + i dy_j \\ d\overline{z_j} = dx_j - i dy_j \end{cases}$$
 für $j = 1, \dots, n$.

Umgekehrt gilt dann $dx_j = \frac{dz_j + d\overline{z_j}}{2}$ und $dy_j = \frac{dz_j - d\overline{z_j}}{2}$.

Das heißt, jede komplexwertige k-Differentialform auf $U \subseteq \mathbb{C}^n$ lässt sich ausdrücken als Linearkombination (mit komplexwertigen Koeffizienten) von k-fachen Dachprodukten von $\mathrm{d}z_i$, $\mathrm{d}\overline{z_i}$.

Sei $f:U\to\mathbb{C},U\subseteq\mathbb{C}^n,f=f_{\Re}+if_{\Im}$ stetig differenzierbar. Dann gilt per Definition:

$$\begin{split} \mathrm{d}f &= \mathrm{d}f_{\Re} + i \ \mathrm{d}f_{\Im} \\ &= \sum_{j=1}^{n} \left(\frac{\partial f_{\Re}}{\partial x_{j}} \ \mathrm{d}x_{j} + \frac{\partial f_{\Re}}{\partial y_{j}} \ \mathrm{d}y_{j} \right) + i \sum_{j=1}^{n} \left(\frac{\partial f_{\Im}}{\partial x_{j}} \ \mathrm{d}x_{j} + \frac{\partial f_{\Im}}{\partial y_{j}} \ \mathrm{d}y_{j} \right) \\ &= \sum_{j=1}^{n} \left(\frac{\partial f_{\Re}}{\partial x_{j}} + i \frac{\partial f_{\Im}}{\partial x_{j}} \right) \ \mathrm{d}x_{j} + \sum_{j=1}^{n} \left(\frac{\partial f_{\Re}}{\partial y_{j}} + i \frac{\partial f_{\Im}}{\partial y_{j}} \right) \ \mathrm{d}y_{j}. \end{split}$$

7

Schreibe
$$\frac{\partial f}{\partial x_j} = \frac{\partial f_{\Re}}{\partial x_j} + i \frac{\partial f_{\Im}}{\partial x_j}, \ \frac{\partial f}{\partial y_j} = \frac{\partial f_{\Re}}{\partial y_j} + i \frac{\partial f_{\Im}}{\partial y_j}.$$
 Dann ist
$$\mathrm{d}f = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} \ \mathrm{d}x_j + \frac{\partial f}{\partial y_i} \ \mathrm{d}y_j \right).$$

Setze nun
$$\frac{\partial f}{\partial z_j} = \frac{1}{2} \left(\frac{\partial f}{\partial x_j} - i \frac{\partial f}{\partial y_j} \right),$$
$$\frac{\partial f}{\partial \overline{z_j}} = \frac{1}{2} \left(\frac{\partial f}{\partial x_j} + i \frac{\partial f}{\partial y_j} \right).$$
Dann gilt
$$\frac{\partial f}{\partial x_j} = \frac{\partial f}{\partial z_j} + \frac{\partial f}{\partial \overline{z_j}}$$
$$\frac{\partial f}{\partial y_j} = i \left(\frac{\partial f}{\partial z_j} - \frac{\partial f}{\partial \overline{z_j}} \right).$$

Es gilt dann:

$$df = \sum_{j=1}^{n} \left(\left(\frac{\partial f}{\partial z_j} + \frac{\partial f}{\partial \overline{z_j}} \right) dx_j + i \left(\frac{\partial f}{\partial z_j} - \frac{\partial f}{\partial \overline{z_j}} \right) dy_j \right)$$

$$= \sum_{j=1}^{n} \left(\frac{\partial f}{\partial z_j} (dx_j + i dy_j) + \frac{\partial f}{\partial \overline{z_j}} (dx_j - i dy_j) \right)$$

$$= \sum_{j=1}^{n} \left(\frac{\partial f}{\partial z_j} dz_j + \frac{\partial f}{\partial \overline{z_j}} d\overline{z_j} \right).$$

Außerdem ist

$$\begin{split} \frac{\partial \overline{f}}{\partial z_{j}} &= \frac{1}{2} \left(\frac{\partial \overline{f}}{\partial x_{j}} - i \frac{\partial \overline{f}}{\partial y_{j}} \right) \\ &= \frac{1}{2} \left(\frac{\partial f_{\Re}}{\partial x_{j}} - i \frac{\partial f_{\Im}}{\partial x_{j}} - i \frac{\partial f_{\Re}}{\partial y_{j}} + i^{2} \frac{\partial f_{\Im}}{\partial y_{j}} \right) \\ &= \frac{1}{2} \left(\frac{\partial f_{\Re}}{\partial x_{j}} + i \frac{\partial f_{\Im}}{\partial x_{j}} + i \frac{\partial f_{\Re}}{\partial y_{j}} - \frac{\partial f_{\Im}}{\partial y_{j}} \right) \\ &= \frac{\overline{\partial f}}{\partial \overline{z_{j}}} \end{split}$$

und ähnlich bekommt man

$$\frac{\partial \overline{f}}{\partial \overline{z_j}} = \frac{\overline{\partial f}}{\partial z_j}.$$

Nun gilt

$$\frac{\partial f}{\partial \overline{z_j}} = 0 \iff \frac{1}{2} \left(\frac{\partial f}{\partial x_j} + i \frac{\partial f}{\partial y_j} \right) = 0$$

$$\iff \frac{\partial f_{\Re}}{\partial x_j} + i \frac{\partial f_{\Im}}{\partial x_j} + i \frac{\partial f_{\Re}}{\partial y_j} - \frac{\partial f_{\Im}}{\partial y_j} = 0$$

$$\iff \begin{cases} \frac{\partial f_{\Re}}{\partial x_j} = \frac{\partial f_{\Im}}{\partial y_j} \\ \frac{\partial f_{\Im}}{\partial x_i} = -\frac{\partial f_{\Re}}{\partial y_j} \end{cases}$$

Also insbesondere für n=1: $\mathrm{d} f = \frac{\partial f}{\partial z} \ \mathrm{d} z \iff f$ holomorph.

1.2 Der Satz für implizite Funktionen

Wir wollen hier noch den Satz für implizite Funktionen im komplexen Fall besprechen.

Satz 1.2.1

Sei $f: D \to \mathbb{C}$ eine holomorphe Funktion mit stetiger Ableitung.

- a) In einem Punkt $a \in D$ gelte $f'(a) \neq 0$. Dann existiert eine offene Menge $D_0 \subseteq D$, $a \in D_0$, sodass die Einschränkung $f|_{D_0}$ injektiv ist.
- b) Die Funktion f sei injektiv und es gelte $f'(z) \neq 0$ für alle $z \in D$. Dann ist das Bild f(D) offen. Die Umkehrfunktion $f^{-1}: f(D) \to \mathbb{C}$ ist holomorph und ihre Ableitung ist

$$(f^{-1})'(f(z)) = \frac{1}{f'(z)}, \ z \in D.$$

Konforme Abbildungen

Definition 1.2.2 (Orientierungs- und Winkeltreue)

Eine bijektive \mathbb{R} -lineare Abbildung $T: \mathbb{R}^2 \to \mathbb{R}^2$ heißt

- a) orientierungstreu, falls det(T) > 0,
- b) winkeltreu, wenn für alle $x, y \in \mathbb{R}^2$ gilt $|Tx| \cdot |Ty| \cdot \langle x, y \rangle = |x| \cdot |y| \cdot \langle Tx, Ty \rangle$, wobei $\langle \cdot, \cdot \rangle$ das Standardskalarprodukt auf \mathbb{R} ist.

Definition 1.2.3 (Konformität)

Eine differenzierbare Abbildung $f: D \to D'$, $D, D' \subseteq \mathbb{R}^2$, heißt lokal/infinitessimal konform, falls ihre Jacobimatrix $D_a f$ in jedem Punkt $a \in D$ winkel- und orientierungstreu ist. Falls f auch bijektiv ist, so heißt f (global) konform.

Es folgt sofort:

Satz 1.2.4

 $f: D \to D', \ D, D' \subseteq \mathbb{C}$ offen. f ist genau dann lokal konform, wenn f holomorph ist und $f'(a) \neq 0$ für alle $a \in D$ gilt.

1.3 Komplexe Potenzreihen

Wie im reellen:

- 1. $\sum_{n=0}^{\infty} z_n$ konvergiert zu $S \in \mathbb{C}$, falls $S_m = \sum_{n=0}^{\infty} z_n \stackrel{m \to \infty}{\longrightarrow} S$.
- 2. Falls $\sum_{n=0}^{\infty} z_n$ konvergent ist, dann ist $\lim_{n\to\infty} z_n = 0$.
- 3. $\sum_{n=0}^{\infty} z_n$ ist absolut konvergent, falls $\sum_{n=0}^{\infty} |z_n|$ konvergent ist. Dann ist auch $\sum_{n=0}^{\infty} z_n$ konvergent. Da $\sum_{n=0}^{\infty} |z_n|$ eine reelle Reihe ist, können die üblichen Konvergenztests angewendet werden.
- 4. Wir betrachten hier *Potenzreihen*, also $\sum_{n=0}^{\infty} c_n(z-a_n)^n$ mit $c_n, z, a_n \in \mathbb{C}$.

Satz 1.3.1

Die Potenzreihe $\sum_{n=0}^{\infty} c_n(z-a)^n$ konvergiere für $z-a=d\in\mathbb{C}$. Dann konvergiert sie absolut für alle $z\in B_{|d|}(a)$.

Korollar 1.3.2

Sei $\sum_{n=0}^{\infty} c_n(z-a)^n$ eine komplexe Potenzreihe. Dann gilt genau eine der drei folgenden Aussagen:

- i) die Potenzreihe konvergiert für alle $z \in \mathbb{C}$,
- ii) die Potenzreihe konvergiert nur für z = a,
- iii) $\exists R > 0, R \in \mathbb{R}$, sodass die Reihe absolut für alle $z \in B_R(a)$ konvergiert und für alle z mit |z a| > R divergiert.

Definition 1.3.3 (Konvergenzradius)

Die Zahl R im Korollar 1.3.2 heißt der Konvergenzradius der Potenzreihe $\sum\limits_{n=0}^{\infty}c_{n}(z-a)^{n}$. Im Fall iii) heißt $\left\{z\in\mathbb{C}\ \middle|\ |z-a|=R\right\}$ der Konvergenzkreis der Reihe.

Aus dem reellen Fall bekommt man $R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$

Satz 1.3.4

Sei $\sum_{n=0}^{\infty} c_n(z-a)^n$ eine Potenzreihe mit Konvergenzradius $R \in [0,\infty]$.

i) Falls
$$\lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lambda$$
, gilt $\lambda = R$.

ii) Falls
$$\lim_{n\to\infty} \left| \frac{c_n}{c_{n+1}} \right|^{-\frac{1}{n}} = \lambda$$
, gilt $\lambda = R$.

Satz 1.3.5

Die Potenzreihen $\sum_{n=0}^{\infty} c_n(z-a)^n$ und $\sum_{n=0}^{\infty} nc_n(z-a)^{n-1}$ haben den gleichen Konvergenzradius.

Satz 1.3.6

Sei $\sum_{n=0}^{\infty} c_n(z-a)^n$ eine Potenzreihe mit Konvergenzradius $R \neq 0$, und sei $f: B_R(a) \to \mathbb{C}$, $f(z) = \sum_{n=0}^{\infty} c_n(z-a)^n$. Dann ist f holomorph mit $f'(z) = \sum_{n=0}^{\infty} nc_n(z-a)^{n-1}$.

Beispiel 1.3.7: Betrachte die Reihe $\sum\limits_{i=0}^{\infty}i^2z^{i-1}$ für |z|<1. Da $\sum\limits_{i=0}^{\infty}z^i=\frac{1}{1-z}$ für |z|<1, folgt mit Satz 1.3.6: $\sum\limits_{i=0}^{\infty}iz^{i-1}=\frac{1}{(1-z^2)}$ für |z|<1 und somit $\sum\limits_{i=0}^{\infty}iz^i=\frac{z}{(1-z)^2}$ für |z|<1. Wieder mit Satz 1.3.6 gilt

$$\sum_{i=0}^{\infty} i^2 z^{i-1} = \frac{(1-z)^2 + 2z(1-z)}{(1-z)^4} = \frac{1-z+2z}{(1-z)^3} = \frac{1+z}{(1-z)^3} \text{ für } |z| < 1.$$

Nun können wir mit dem Studium der komplexen Exponentialreihe beginnen.

Lemma 1.3.8

Die Reihe $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ hat den Konvergenzradius $R = \infty$.

Definition 1.3.9 (Komplexe Exponentialfunktion)

Die Funktion $\exp: \mathbb{C} \to \mathbb{C}, z \mapsto \sum_{n=0}^{\infty} \frac{z^n}{n!}$ ist die (komplexe) Exponentialfunktion.

Aus Satz 1.3.6 folgt, dass exp holomorph ist, mit exp' : $\mathbb{C} \to \mathbb{C}$, exp' $(z) = \sum_{n=1}^{\infty} n \cdot \frac{1}{n!} z^{n-1} = \exp(z)$.

Eigenschaften der Exponentialfunktion:

Seien $z, w \in \mathbb{C}$. Da $\sum_{n=0}^{\infty} \frac{z^n}{n!}$, $\sum_{n=0}^{\infty} \frac{w^n}{n!}$ absolut konvergieren, konvergiert auch

$$\exp(z) \cdot \exp(w) = \sum_{n=0}^{\infty} \frac{z^n}{n!} \cdot \sum_{m=0}^{\infty} \frac{w^m}{m!}$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{z^n w^m}{n! m!} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{z^k w^{n-k}}{k! (n-k)!}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} z^k w^{n-k} = \sum_{n=0}^{\infty} \frac{(z+w)^n}{n!}$$

$$= \exp(z+w)$$

Daraus folgt sofort:

$$\exp(z) \cdot \exp(-z) = \exp(0) = \sum_{n=0}^{\infty} \frac{0^n}{n!} = 1 \quad \forall z \in \mathbb{C},$$
$$\exp(-z) = \frac{1}{\exp(z)}, \ \exp(z) \neq 0 \quad \forall z \in \mathbb{C}.$$

In der reellen Analysis setzt man $\exp(1) = e$ und zeigt dann $\exp(q) = e^q \ \forall \ q \in \mathbb{Q}$. Dann setzt man $e^x = \exp(x) \ \forall \ x \in \mathbb{R}$. Hier setzen wir nun auch $\exp(z) = e^z \ \forall \ z \in \mathbb{C}$. Nun setzen wir (wie im reellen Fall):

 $\cos, \sin, \cosh, \sinh : \mathbb{C} \to \mathbb{C},$

•
$$\cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \dots$$

•
$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots$$

•
$$\cosh(z) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$$

•
$$\sinh(z) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$$

Es gilt:

a)
$$\cos(z) + i\sin(z) = e^{iz}$$

b)
$$\cosh(z) + \sinh(z) = e^z$$

c)
$$e^{iz} + e^{-iz} = 2\cos(z) \Longrightarrow \cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

Ähnlich: $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} \Longrightarrow e^{-iz} = \cos(z) - i\sin(z)$

d)
$$\cos^2(z) + \sin^2(z) = 1$$

e) Da
$$\cosh(z) - \sinh(z) = e^{-z}$$
 ist $\cosh(z) = \frac{e^z + e^{-z}}{2}$ und $\sinh(z) = \frac{e^z - e^{-z}}{2}$.

- f) Aus Satz 1.3.6 folgt $\cos'(z) = -\sin(z)$ $\sin'(z) = \cos(z)$ $\cosh'(z) = \sinh(z)$ $\sinh(z)' = \cosh(z)$
- g) $\cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$ $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$
- h) $e^{z+2\pi i} = e^z$ und für $x, y \in \mathbb{R}$ gilt $e^{x+iy} = e^x(\cos(y) + i\sin(y))$ $\implies |e^z| = |e^{x+iy}| = e^x, \quad \arg(e^z) \equiv y \mod 2\pi$

1.4 Der komplexe Logarithmus

Erinnerung: Für reelle Zahlen x, y > 0 gilt $y = e^x \iff x = \log(y)$. Da $e^z = e^{z+2\pi i} \ \forall z \in \mathbb{C}$ ist die Funktion $\exp : z \mapsto e^z$ nicht mehr injektiv!

Definition 1.4.1 (Hauptzweig des Logarithmus)

Der Hauptlogarithmus $\log : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ ist die Abbildung $z \mapsto \log(|z|) + i \arg(z)$.

Es gilt dann sofort $\exp(\log(z)) = z$, $\log(\exp(z)) = x + iy'$ mit $y' \in (-\pi, \pi], y' \equiv y$ mod 2π . Da $e^{z+2k\pi i} = e^z$ könnte der Logarithmus $\log : \mathbb{C} \setminus \{0\} \to \mathbb{R} \times (\alpha, \alpha + 2\pi]i$ definiert sein für jeden Wert von $\alpha \in \mathbb{R}!$ Unsere Definition entspricht der festen Wahl $\alpha = -\pi$, \log ist nur Linksinverse von exp auf $\{z \in \mathbb{C} \mid z = x + iy \text{ mit } y \in (-\pi, \pi)\}$. Wir bekommen:

- $\log(-1) = \log(\cos(\pi) + i\sin(\pi)) = i\pi$
- $\log(-i) = \log\left(\cos\left(\frac{-\pi}{2}\right) + i\sin\left(\frac{-\pi}{2}\right)\right) = -i\frac{\pi}{2}$
- $\log(1+i\sqrt{3}) = \log\left(2\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)\right)$

Satz 1.4.2

Für alle $\alpha \in \mathbb{R}$ ist er entsprechende Zweig $\log : \mathbb{C} \setminus \mathbb{R}_{\geq 0} e^{i\alpha} \to \mathbb{R} + i(\alpha, \alpha + 2\pi)$ des Logarithmus holomorph mit $\log'(z) = \frac{1}{z} \ \forall z \in \mathbb{C} \setminus \{0\}$. Wir können dann $\log' : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ als komplexe Ableitung von \log auffassen. Das folgt daher, dass \log bis auf eine Konstante $2k\pi i$ definiert ist.

Bemerkung: Wir haben in Satz 1.4.2 log auf die offene Teilmenge $\mathbb{C} \setminus \mathbb{R}_{\geq 0} e^{i\alpha}$ von \mathbb{C} definiert. Das war ein Zweig des Logarithmus. Der Hauptzweig ist auf $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$ definiert. Der Hauptzweig von arg ist auch die Funktion $\mathbb{C} \setminus \mathbb{R}_{<0} \to \mathbb{R}, re^{i\theta} \mapsto \theta$. Wir

betrachten auch die Abbildungen

$$z \mapsto z^{\frac{n}{n}} = \left\{ e^{\frac{1}{n}\log(z)} = e^{\frac{hr}{n} + i\frac{\theta + 2k\pi}{n}} \mid k \in \mathbb{Z} \right\}$$
$$= \left\{ r^{\frac{1}{n}} \cdot e^{i\frac{\theta + 2k\pi}{n}} \mid k \in \mathbb{Z} \right\}$$

Wir definieren sie über $\mathbb{C} \setminus \mathbb{R}_{\leq 0} \to \mathbb{C}, re^{i\theta} \mapsto r^{\frac{1}{n}}e^{\frac{i\theta}{n}}$. In allen Beispielen sind 0 und ∞ Verzweigungspunkte der Abbildungen.

1.5 Meromorphe Abbildungen

Definition 1.5.1 (Singularität, Pole, Meromorphie)

Sei $f: U \subseteq \mathbb{C} \to \mathbb{C}$ eine komplexe Abbildung.

- Falls $\lim f(z)$ existiert, aber $\lim f(z) \neq f(c)$ gilt, so sagt man, dass f eine hebbare Singularität an der Stelle c hat.
- Falls $n \ge 1$ $(n \in \mathbb{N})$ existiert, sodass $\lim_{z \to \infty} (z-c)^n f(z)$ existiert (aber $\lim_{z \to \infty} f(z)$ nicht existiert), so ist c ein Pol von f. Die Ordnung des Pols ist dann Ord(c) = $\min_{n \in A}, \ A = \left\{ n \in \mathbb{N} \mid \lim_{z \to c} (z - c)^n f(c) \text{ existiert} \right\}. \text{ Mit } Ord(c) = n \text{ nennt man } c \text{ einen } n\text{-fachen Pol von } f.$
- Falls f überall bis auf Pole holomorph ist, so ist f eine meromorphe Funktion.

1.6Uniforme Konvergenz

Sei $f:S\subset\mathbb{C}\to\mathbb{C}$ eine beschränkte Funktion. Wir definieren die Norm von f als $||f|| = \sup_{z \in S} |f(z)|$. Es gilt $||f|| \ge 0$, $||f|| = 0 \iff f = 0$ und $||f + g|| \le ||f|| + ||g||$.

Definition 1.6.1 (Gleichmäßige Konvergenz)

Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge von Funktionen $f_n:S\to\mathbb{C}$. $(f_n)_{n\in\mathbb{N}}$ konvergiert gleichmäßig gegen f auf S $(f: S \to \mathbb{C})$, falls $\forall \varepsilon > 0 \ \exists N \in N: ||f - f_n|| < \varepsilon \ \forall n \geq N.$ f ist der gleichmäßige Limes von $(f_n)_{n\in\mathbb{N}}$. Daraus folgt $f_n(z) \xrightarrow{n\to\infty} f(z) \ \forall z\in S$, aber die Umkehrung gilt nicht.

Satz 1.6.2

Sei $(f_n)_{n\in\mathbb{N}}, f_n: S \to \mathbb{C}$ eine Folge von Funktionen, die gleichmäßig gegen eine

Funktion $f: S \to \mathbb{C}$ konvergiert. Sei $c \in S$. Falls f_n stetig an der Stelle c ist für alle $n \in \mathbb{N}$, dann ist auch f stetig an der Stelle c.

Definition 1.6.3 (Gleichmäßige Summierung)

Gegeben eine Folge $(f_n)_{n\in\mathbb{N}}$ von Funktionen $f_n:S\to\mathbb{C}$, so kann man die Reihe $\sum\limits_{n=0}^\infty f_n$ von Funktionen definieren. Falls die Folge $(F_n)_{n\in\mathbb{N}}, F_n=\sum\limits_{k=0}^n f_k$ gleichmäßig gegen eine Funktion $F:S\to\mathbb{C}$ konvergiert, so sagt man, dass $\sum\limits_{n=0}^\infty f_n$ gleichmäßig zu F summiert.

Satz 1.6.4 (Weierstraß'scher M-Test)

Sei für alle $n \in \mathbb{N}$ die Funktion $f_n : S \to \mathbb{C}$ so, dass $M_n > 0$ existieren mit $||f_n|| \leq M_n$. Falls $\sum_{n=0}^{\infty} M_n$ konvergiert, so konvergiert auch $\sum_{n=0}^{\infty} f_n$ gleichmäßig auf S.

Korollar 1.6.5

Sei $\sum_{n=0}^{\infty} c_n(z-a)^n$ eine Potenzreihe mit Konvergenzradius R > 0. Für alle $r \in (0,R)$ ist die Reihe gleichmäßig konvergent auf $\overline{B_r(a)}$.

2 Komplexe Integration

2.1 Kurven und Kurvenintegrale

Definition 2.1.1 (Kurve)

Eine Kurve ist eine stetige Abbildung $\gamma : [a, b] \to \mathbb{C}, \ a < b \in \mathbb{R}.$

Definition 2.1.2 (Kurveneigenschaften)

Eine Kurve $\gamma:[a,b]\to\mathbb{C}$ heißt

- geschlossen, falls $\gamma(a) = \gamma(b)$.
- einfach, falls $\gamma|_{[a,b)}$ und $\gamma|_{(a,b]}$ injektiv sind.
- glatt, falls sie stetig differenzierbar ist. Wir schreiben $\dot{\gamma}:[a,b]\to\mathbb{C}$ für die Ableitung.
- stückweise glatt, falls es eine Unterteilung $a=a-0 < a_1 < \cdots < a_n = b$ gibt, sodass die Einschränkungen $\gamma_j = \gamma|_{[a_j,a_{j+1}]}$ glatt sind.
- regulär, falls sie glatt ist und für alle $t \in [a, b]$ gilt $\dot{\gamma}(t) \neq 0$.

Definition 2.1.3 (Bogenlänge)

Sei $\gamma:[a,b]\to\mathbb{C}$ eine Kurve.

• Ist γ glatt, so bezeichnen wir die Bogenlänge mit

$$L(\gamma) = \int_a^b |\dot{\gamma}(t)| \, \mathrm{d}t.$$

• Ist γ stückweise glatt, so bezeichnen wir die Bogenlänge mit

$$L(\gamma) = \sum_{j=0}^{n-1} L(\gamma_j).$$

Definition 2.1.4 (Kurvenintegral)

Sei $\gamma:[a,b]\to\mathbb{C}$ eine glatte Kurve und sei $f:D\to\mathbb{C}$ eine stetige Funktion mit $\gamma(t)\in D\ \forall\,t\in[a,b]$. Dann ist

$$\int_{\gamma} f = \int_{\gamma} f(z) \, dz := \int_{a}^{b} f(\gamma(t)) \cdot \dot{\gamma}(t) \, dt$$

das Kurvenintegral von f längs γ .

Falls γ nur stückweise glatt ist, so existiert eine Zerlegung $a = a_0 < a_1 < \cdots < a_n = b$,

sodass die Einschränkungen $\alpha_j:[a_j,a_{j+1}]\to\mathbb{C}$ glatt sind. Dann ist

$$\int_{\gamma} f = \int_{\gamma} f(z) \, dz := \sum_{j=0}^{n-1} \int_{\alpha_j} f(z) \, dz.$$

Diese Definition hängt nicht von der Wahl der Zerlegung ab.

Satz 2.1.5

Das komplexe Kurvenintegral hat folgende Eigenschaften:

- 1. $\int_{\mathbb{R}} f$ ist \mathbb{C} -linear in f.
- 2. Es gilt die "Standardabschätzung" $|\int_{\gamma} f(z)| dz| \leq C \cdot L(\gamma)$ falls $|f(z)| \leq C \ \forall z \in \gamma[a,b]$.
- 3. Das Kurvenintegral verallgemeinert das gewöhnliche Riemann-Integral: Sei $\gamma:[a,b]\to\mathbb{C}, \gamma(t)=t$. Dann ist für alle $t\in[a,b]\dot{\gamma}(t)=1$ und es gilt für eine stetige Abbildung $f:[a,b]\to\mathbb{C}$:

$$\int_{\gamma} f(z) \, \mathrm{d}z = \int_{a}^{b} f(t) \, \mathrm{d}t.$$

4. Transformationsinvarianz des Kurvenintegrals: Seien $\gamma:[c,d] \to \mathbb{C}$ eine stückweise glatte Kurve, $f:D \to \mathbb{C}$ stetig mit $\gamma[c,d] \subseteq D \subseteq \mathbb{C}$, und $\varphi:[a,b] \to [c,d](a < b,c < d)$ eine stetig differenzierbare Funktion mit $\varphi(a) = c, \varphi(b) = d$. Dann gilt $\int_{\gamma} f = \int_{\gamma \circ \omega} f$.

Satz 2.1.6

Sei $f:[a,b] \to \mathbb{C}$ eine stetige Funktion. Setze $F(t) = \int_a^b f(s) \, ds, F:[a,b] \to \mathbb{C}$. Dann gilt $F'(t) = f(t) \, \forall \, t \in [a,b]$. Ist $\Theta:[a,b] \to \mathbb{C}$ eine Funktion mit $\Theta' = f$, dann gilt

$$\int_{a}^{b} f(s) \, \mathrm{d}s = \Theta(b) - \Theta(a).$$

Korollar 2.1.7

Sei $f: D \to \mathbb{C}$, $D \subseteq \mathbb{C}$ offen, eine stetige Funktion, die eine Stammfunktion $F: D \to \mathbb{C}$ besitzt: F' = f. Dann gilt für jede in D verlaufende glatte Kurve γ :

$$\int_{\gamma} f = F(\gamma(b)) - F(\gamma(a)).$$

Korollar 2.1.8

Wenn eine stetige Funktion $f: D \to \mathbb{C}$ eine Stammfunktion auf D besitzt, so gilt $\int_{\gamma} f = 0$ für jede in D verlaufende geschlossene stückweise glatte Kurve.

Satz 2.1.9

Sei γ eine konvexe, geschlossene, einfache, stückweise glatte Kurve. Sei $f:D\to\mathbb{C}$ eine stetige Funktion für die gilt: Für alle Dreiecke $S:[a,b]\to I(\gamma)$ ist $\int_S f=0$. Dann existiert eine holomorphe Funktion $F: I(\gamma) \to \mathbb{C}$ mit $F'(z) = f(z) \ \forall z \in I(\gamma)$.

Satz 2.1.10

Sei γ eine stückweise glatte Kurve und sei $(f_n)_{n\in\mathbb{N}}$ eine Folge von stetigen Funktionen auf S, mit $\operatorname{im}(\gamma) \subseteq S$ und so, dass $\sum_{n=0}^{\infty} f_n$ gleichmäßig gegen $F: S \to \mathbb{C}$ konvergiert. Dann gilt

$$\int_{\gamma} F = \int_{\gamma} \left(\sum_{n=0}^{\infty} f_n(z) \right) dz = \sum_{n=0}^{\infty} \int_{\gamma} f_n.$$

2.2Der Cauchy'sche Integralsatz

Definition 2.2.1 (Bogenweise zusammenhängend)

Eine Menge $D \subseteq \mathbb{C}$ heißt bogenweise zusammenhängend, falls zu je zwei Punkten $z, w \in D$ eine ganz in D verlaufende, stückweise glatte Kurve existiert, welche z mit w verbindet: $\gamma:[a,b]\to D$ mit $\gamma(a)=z, \gamma(b)=w$.

Bemerkung: Jede bogenweise zusammenhängende Menge $D \subseteq \mathbb{C}$ ist zusammenhängend, denn sie ist wegzusammenhängend. Also ist jede lokal konstante Funktion auf D konstant.

Definition 2.2.2 (Gebiet)

Ein Gebiet ist eine offene, bogenweise zusammenhängende Menge $D \subseteq \mathbb{C}$. Der Begriff des Gebietes ist eine Verallgemeinerung des Begriffs des offenen Intervalls.

Zusammensetzung von Kurven

Seien $\frac{\gamma_1:[a,b]\to\mathbb{C}}{\gamma_2:[b,c]\to\mathbb{C}}$ zwei stückweise glatte Kurven mit der Eigenschaft $\gamma_1(b)=\gamma_2(b)$. Dann wird durch

$$\gamma_1 * \gamma_2 : [a, c] \to \mathbb{C}$$
$$(\gamma_1 * \gamma_2)(t) = \begin{cases} \gamma_1(t) & t \in [a, b] \\ \gamma_2(t) & t \in [b, c] \end{cases}$$

eine stückweise glatte Kurve definiert, die Zusammensetzung von γ_1 und γ_2 . Sei γ : $[a,b] \, \to \, \mathbb{C}$ eine stückweise glatte Kurve. Dann ist die $\mathit{reziproke}$ Kurve $\bar{\gamma}: [a,b] \to \mathbb{C}, \bar{\gamma}(t) = \gamma(a+b-t), \text{ also insbesondere } \bar{\gamma}(a) = \gamma(b), \bar{\gamma}(b) = \gamma(a).$ Es gilt:

$$\int_{\gamma_1 * \gamma_2} f = \int_{\gamma_1} f + \int_{\gamma_2} f$$

für $\gamma_1 : [a, b] \to \mathbb{C}, \gamma_2 : [b, c] \to \mathbb{C}$ mit $\gamma_1(b) = \gamma_2(b)$. Das folgt sofort aus der Definition der Integration entlang stückweise glatten Kurven.

ii)
$$\int_{\bar{\gamma}} f = - \int_{\gamma} f \text{ f\"{u}r } \gamma: [a,b] \to \mathbb{C} \text{ st\"{u}ckweise glatt}.$$

Satz 2.2.3

Sei $D \subseteq \mathbb{C}$ ein Gebiet und $f: D \to \mathbb{C}$ stetig. Dann sind folgende drei Aussagen äquivalent:

- i) f besitzt eine Stammfunktion.
- ii) Das Integral von f über jede in D verlaufende geschlossene Kurve verschwindet.
- iii) Das Integral von f über jede in D verlaufende Kurve hängt nur vom Anfangsund Endpunkt der Kurve ab.

Dreiecksflächen und Dreieckswege

Seien $z_1, z_2, z_3 \in \mathbb{C}$ drei Punkte. Die von z_1, z_2, z_3 aufgespannte Dreiecksfläche ist die Menge

$$\Delta_{z_1,z_2,z_3} = \Delta = \Big\{ z \in \mathbb{C} \ \big| \ z = t_1 z_1 + t_2 z_2 + t_3 z_3, \ 0 \le t_1, t_2, t_3, \ t_1 + t_2 + t_3 = 1 \Big\}.$$

 Δ ist die konvexe Hülle der Punkte z_1, z_2, z_3 . Mit je zwei Punkten $w_1, w_2 \in \Delta$ liegt auch die gerade Verbindungsstrecke zwischen w_1 und w_2 in Δ .

Der *Dreiecksweg* $\langle z_1, z_2, z_3 \rangle$ ist die geschlossene Kurve

$$\gamma = \gamma_1 * \gamma_2 * \gamma_3 : [0,3] \to \Delta
\gamma_1 : [0,1] \to \Delta \qquad \gamma_1(t) = z_1 + t(z_2 - z_1)
\gamma_2 : [1,2] \to \Delta \qquad \gamma_2(t) = z_2 + (t-1)(z_3 - z_2)
\gamma_3 : [2,3] \to \Delta \qquad \gamma_3(t) = z_3 + (t-2)(z_1 - z_3)$$

 $\langle z_1, z_2, z_3 \rangle$ ist eine Parametrisierung des Randes von Δ .

Satz 2.2.4 (Cauchy'scher Integralsatz für Dreieckswege)

Sei $f: D \to \mathbb{C}$, $D \subseteq \mathbb{C}$ offen, eine holomorphe Funktion. Seien $z_1, z_2, z_3 \in D$, sodass

 $\Delta_{z_1,z_2,z_3} \subseteq D$. Dann gilt

$$\int_{\langle z_1, z_2, z_3 \rangle} f = 0.$$

Definition 2.2.5 (Sterngebiet)

Ein Sterngebiet ist eine offene Teilmenge $D \subseteq \mathbb{C}$ mit folgender Eigenschaft: Es existiert ein Punkt $z_* \in D$, sodass mit jedem Punkt $z \in D$ die ganze Verbindungsstrecke zwischen z_* und z in D enthalten sind, das heißt $\{z_*+t(z-z_*)\mid t\in [0,1]\}\subseteq D$. Der Punkt z_* ist nicht eindeutig bestimmt. Er heißt ein Sternmittelpunkt für das

Bemerkung: Ein Sterngebiet ist automatisch bogenweise zusammenhängend.

Beispiel 2.2.6:

Sterngebiet.

- i) Jedes konvexe Gebiet ist sternförmig. Dabei ist jeder Punkt des Gebietes ein Sternmittelpunkt.
- ii) $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$ ist ein Sterngebiet. Die Sternmittelpunkte sind genau alle Punkte $x \in \mathbb{R}, x > 0$.
- iii) Eine offene Kreisscheibe $B_r(c)$, aus der man endlich viele Halbgeraden herausnimmt, deren rückwärtige Verlängerungen durch den Punkt $z_* \in B_r(c)$ gehen, ist ein Sterngebiet mit Sternmittelpunkt z_* .
- iv) $D = \mathbb{C} \setminus \{0\}$ ist *kein* Sterngebiet. Wäre $z_* \in \mathbb{C} \setminus \{0\}$ ein Sternmittelpunkt, so läge das Geradenstück $[-z_*, z_*] \in \mathbb{C} \setminus \{0\}$ \notin
- v) Nach der gleichen Begründung wie in iv) ist für 0 < r < R das Ringgebiet $R = \{z \in \mathbb{C} \mid r < |z| < R\}$ kein Sterngebiet.
- vi) Seien $0 < r < R, \xi \in \mathbb{C}$ mit $|\xi| = 1, z_0 \in \mathbb{C}$ und $\beta \in (0, \pi)$ mit $\cos\left(\frac{\beta}{2}\right) > \frac{r}{R}$. Das Kreisringsegment $\{z = z_0 + \xi \rho e^{i\varphi} \mid r < \rho < R, 0 < \varphi < \beta\}$ ist ein Sterngebiet.

Satz 2.2.7 (Cauchy'scher Integralsatz für Sterngebiete, 1)

Sei $f: D \to \mathbb{C}$ eine holomorphe Funktion auf einem Sterngebiet D. Dann verschwindet das Integral von f längs jeder in D verlaufenden geschlossenen Kurve.

Mit Satz 2.2.3 ist das äquivalent zu:

Satz 2.2.8 (Cauchy'scher Integralsatz für Sterngebiete, 2)

Jede holomorphe Funktion auf einem Sterngebiet D besitzt eine Stammfunktion auf D.

20

Korollar 2.2.9

Jede in einem beliebigen Gebiet $D \subseteq \mathbb{C}$ holomorphe Funktion besitzt wenigstens lokal eine Stammfunktion, das heißt zu jedem Punkt $a \in D$ gibt es eine offene Umgebung $U \subseteq D$ von a, sodass $f|_U$ eine Stammfunktion besitzt.

Satz 2.2.10

Sei $f: D \to \mathbb{C}$ eine stetige Funktion in einem Sterngebiet D mit Mittelpunkt z_* . Wenn f in allen Punkten $z \neq z_*, (z \in D)$ komplex differenzierbar ist besitzt f eine Stammfunktion auf D.

Definition 2.2.11 (Elementargebiet)

Ein Gebiet $D \subseteq \mathbb{C}$ heißt *Elementargebiet*, wenn jede auf D definierte holomorphe Funktion eine Stammfunktion auf D besitzt.

Beispiel 2.2.12: Nach Satz 2.2.8 ist ein Sterngebiet ein Elementargebiet.

Satz 2.2.13

Sei $f:D\to\mathbb{C}$ eine holomorphe Abbildung auf einem Elementargebiet D mit den Eigenschaften

- i) f' ist ebenfalls holomorph.
- ii) $f(z) \neq 0 \ \forall z \in D$.

Dann existiert eine holomorphe Abbildung $h: D \to \mathbb{C}$ mit $f(z) = \exp(h(z)) \ \forall z \in D$.

Bemerkung: In der Situation von 2.2.13 ist die Abbildung h ein holomorpher Zweig des Logarithmus von f.

Korollar 2.2.14

In der Situation von 2.2.13 existiert für jedes $n \in \mathbb{N}$ eine holomorphe Abbildung $H: D \to \mathbb{C}$ mit $H^n = f$.

Beispiel 2.2.15: Die Funktion $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}, \ z \mapsto \frac{1}{z}$ hat keine Stammfunktion auf $\mathbb{C} \setminus \{0\}$. Also ist $\mathbb{C} \setminus \{0\}$ kein Elementargebiet.

Eigenschaften von Elementargebieten:

- 1. Seien D, D' zwei Elementargebiete. Wenn $D \cap D'$ zusammenhängend und nicht leer ist, so ist auch $D \cup D'$ ein Elementargebiet.
- 2. Daraus folgt: geschlitzte Kreisringe sind Elementargebiete.
- 3. Sei $D_1 \subseteq D_2 \subseteq D_3 \subseteq \ldots$ eine aufsteigende Folge von Elementargebieten. Dann ist auch die Vereinigung $D = \bigcup_{n=1}^{\infty} D_n$ ein Elementargebiet.

Proposition 2.2.16

Sei $D \subseteq \mathbb{C}$ ein Elementargebiet und $\varphi : D \to D'$ eine konforme Abbildung. Sei zudem die Ableitung von φ auch holomorph. Dann ist D' ein Elementargebiet.

2.3 Die Cauchy'sche Integralformel

Satz 2.3.1

Sei $f: D \to \mathbb{C}$, $D \subseteq \mathbb{C}$ offen, eine holomorphe Funktion. Seien weiterhin $z_0 \in D$ und r > 0, sodass $\overline{B_r(z_0)} \subseteq D$. Dann gilt für jeden Punkt $z \in B_r(z_0)$:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} \, \mathrm{d}\xi$$

für die Kurve $\gamma:[0,2\pi]\to\mathbb{C},\ \gamma(t)=z_0+re^{it}$

Bemerkung: a) Wir sagen, dass γ die Kreislinie mit Mittelpunkt z_0 und Radius r ist. Es ist eine Parametrisierung des Kreises um z_0 mit Radius r, mit konstanter Geschwindigkeit r.

b) Wenn über eine Kreislinie γ integriert wird, schreiben wir

$$\oint_{\gamma} \text{ für } \int_{\gamma}, \text{ oder auch } \oint_{|\zeta-z_0|=r}.$$

Lemma 2.3.2

Es gilt für $\gamma: [0, 2\pi] \to \mathbb{C}$, $\gamma(t) = z_0 + re^{it}$: $\oint_{\gamma} \frac{d\zeta}{\zeta - a} = 2\pi i$ für alle a mit $|a - z_0| < r$. a liegt im Inneren des Kreises um z_0 mit Radius r.

Korollar 2.3.3 ("Mittelwertgleichung")

Seien $f: D \to \mathbb{C}$ holomorph, $z_0 \in D$ und r > 0, sodass $\overline{B_r(z_0)} \subseteq D$. Dann gilt

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z_0} d\xi$$

$$f\ddot{u}r \, \gamma : [0, 2\pi] \to \mathbb{C}, \ \gamma(t) = z_0 + re^{it}, \ also$$

$$f(z_0) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{rie^{it} f(z_0 + re^{it})}{re^{it}} dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt.$$

Bemerkung (Cauchy'sche Integralformel): Die Werte einer holomorphen Funktion im Inneren einer Kreisscheibe können durch die Werte der Funktion auf dem Rand berechnet werden.

Bemerkung (Leibniz'sche Regel): Sei $f:[a,b] \times D \to \mathbb{C}$ stetig, sodass $\forall t \in [a,b]$ $f_t:D\to\mathbb{C}$, $f_t(z)=f(t,z)$ holomorph ist. Die Ableitung $\frac{\partial f}{\partial z}:[a,b]\times D\to\mathbb{C}$ sei auch stetig. Dann ist die Funktion $g:D\to\mathbb{C}$, $g(z)=\int_a^b f(t,z)$ dt holomorph, und es gilt

$$g'(z) = \int_a^b \frac{\partial f}{\partial z}(t, z) dt.$$

Satz 2.3.4 (Verallgemeinerte Cauchy'sche Integralformel)

Sei $f: D \to \mathbb{C}$ eine holomorphe Abbildung. Dann ist f beliebig oft komplex differenzierbar. Jede Ableitung ist wieder holomorph.

Sei $z_0 \in D$ und r > 0, sodass $\overline{B_r(z_0)} \subseteq D$. $\forall n \in \mathbb{N}, \ \forall z \in B_r(z_0)$ gilt:

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} \, \mathrm{d}\zeta,$$

wobei $\gamma: [0, 2\pi] \to \mathbb{C}, \ \gamma(t) = z_0 + re^{it}$.

Satz 2.3.5 (Satz von Morera)

Sei $D \subset \mathbb{C}$ offen und $f: D \to \mathbb{C}$ stetig. Für jeden Dreiecksweg $\langle z_1, z_2, z_3 \rangle$, für den die jeweilige Dreiecksfläche Δ ganz in D enthalten ist, sei

$$\int_{\langle z_1, z_2, z_3 \rangle} f(\zeta) \, \mathrm{d}\zeta = 0.$$

Dann ist f holomorph.

Satz 2.3.6 (Satz von Liouville)

Jede beschränkte ganze Funktion $f: \mathbb{C} \to \mathbb{C}$ ist konstant.

Satz 2.3.7 (Fundamentalsatz der Algebra)

Jedes nichtkonstante komplexe Polynom besitzt eine Nullstelle.

Korollar 2.3.8

Jedes Polynom $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$, $a_{\nu} \in \mathbb{C}$, vom Grad $n \geq 1$ lässt sich als Produkt von n Linearfaktoren und einer Konstante $C \in \mathbb{C} \setminus \{0\}$ schreiben, d.h.

$$P(z) = C \cdot \prod_{\nu=1}^{n} (z - \alpha_{\nu}).$$

Dabei sind die Zahlen $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ bis auf ihre Reihenfolge eindeutig bestimmt und $C = a_n$.

2.4 Der Potenzreihenentwicklungssatz

Satz 2.4.1

Sei $f: D \to \mathbb{C}$ eine holomorphe Abbildung. Sei $a \in D$ und r > 0, sodass $B_r(a) \subseteq D$. Dann gilt $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n \ \forall z \in B_r(a)$, wobei $a_n = \frac{f^{(n)}(a)}{n!} \ \forall n \in \mathbb{N}$.

Bemerkung:

- 1. Die Formeln $a_n = \frac{f^{(n)}(a)}{n!}$ folgen aus der Potenzreihenentwicklung; für $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ folgt aus Satz 1.3.6. dass die Ableitungen an a $f^{(k)}(a) = k! a_k$ erfüllen, also $a_k = \frac{f^{(k)(a)}}{k!} \ \forall \ k \in \mathbb{N}$.
- 2. Für die Koeffizienten a_n gilt nach Satz 2.3.4

$$a_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{|\zeta - a| = \rho} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta$$

für $0 < \rho < R$.

- 3. Der Satz sagt, dass holomorphe Abbildungen genau die Funktionen sind, welche sich lokal in Potenzreihen mit positivem Konvergenzradius entwickeln lassen! Daher sagt man auch "analytisch" für "holomorph".
- 4. Die Koeffizienten a_n sind die Taylorkoeffizienten von f zur Stelle a, und die Potenzreihe ist die Taylorreihe von f zur Stelle a.
- 5. Sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze Abbildung. Dann ist nach Satz 2.4.1 $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n \ \forall z \in \mathbb{C}$, oder allgemeiner:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n$$

für $a \in \mathbb{C}$ und alle $z \in \mathbb{C}$.

2.5 Weitere Eigenschaften holomorpher Abbildungen

Satz 2.5.1 (Weierstraß, 1841)

Seien $f_0, f_1, f_2, \dots : D \to \mathbb{C}$ holomorphe Abbildungen. Die Folge $(f_n)_{n \in \mathbb{N}}$ konvergiere lokal gleichmäßig gegen $f : D \to \mathbb{C}$. Dann ist f holomorph und $(f'_n)_{n \in \mathbb{N}}$ konvergiert gleichmäßig gegen f'.

Satz 2.5.2

Sei $f: D \to \mathbb{C}$ eine von der Nullfunktion verschiedene holomorphe Funktion, $D \subseteq \mathbb{C}$ ein Gebiet. Die Menge $N(f) = \{z \in D \mid f(z) = 0\}$ ist diskret in D, das heißt, N(f) hat keinen Häufungspunkt in D.

Korollar 2.5.3 (Identitätssatz für holomorphe Funktionen)

Seien $f, g: D \to \mathbb{C}$ zwei holomorphe Funktionen auf einem Gebiet $D \neq \emptyset$. Dann sind die folgenden Aussagen äquivalent:

- i) f = g
- ii) Die Menge $\{z \in D \mid f(z) = g(z)\}$ hat einen Häufungspunkt in D.
- iii) Es gibt einen Punkt $z_0 \in D$ mit $f^{(n)}(z_0) = g^{(n)}(z_0)$ für alle $n \in \mathbb{N}$.

Korollar 2.5.4 (Eindeutigkeit der holomorphen Fortsetzung)

Sei $D \subseteq \mathbb{C}$ ein Gebiet und $M \subseteq D$ eine Menge mit mindestens einem Häufungspunkt in D und $f: M \to \mathbb{C}$ eine Funktion. Existiert eine holomorphe Funktion $\tilde{f}: D \to \mathbb{C}$, welche f fortsetzt, also $\tilde{f}(z) = f(z) \ \forall z \in M$, dann ist \tilde{f} eindeutig bestimmt.

Proposition 2.5.5

Sei $I \subseteq \mathbb{R}$ ein nicht-leeres Intervall. Eine Funktion $f: I \to \mathbb{C}$ besitzt genau dann eine holomorphe Fortsetzung auf einem Gebiet $D \subseteq \mathbb{C}$ mit $I \subset D$, wenn f reell-analytisch ist.

Für ein offenes $D \subseteq \mathbb{C}$ definieren wir nun $\mathcal{O}(D) = \{f : D \to \mathbb{C} \mid f \text{ holomorph}\}.$ Dann ist $\mathcal{O}(D)$ offensichtlich ein kommutativer Ring mit 1.

Proposition 2.5.6

Sei $D \subseteq \mathbb{C}$ ein Gebiet. Dann ist $\mathcal{O}(D)$ ein Integritätsring, also nullteilerfrei.

Korollar 2.5.7

Im Umkehrschluss gilt, dass falls $\mathcal{O}(D)$ ein Integritätsring ist, D ein Gebiet sein muss.

2.6 Das Maximumsprinzip

Satz 2.6.1 (Satz von der Gebietstreue)

Ist f eine nichtkonstante holomorphe Funktion auf einem Gebiet $D \subseteq \mathbb{C}$, dann ist das Bild f(D) offen und zusammenhängend, also ein Gebiet.

Proposition 2.6.2

- Jede nichtkonstante holomorphe Abbildung $f: D \to \mathbb{C}$ mit f(0) = 0 ist in einer kleinen offenen Umgebung von 0 die Zusammensetzung einer konformen Abbildung mit einer n-ten Potenz.
- Die Winkel im Nullpunkt werden ver-n-facht.
- Falls f injektiv in einer Umgebung von $a \in D$ ist, so ist die Ableitung f' in einer Umgebung von a von 0 verschieden.

Korollar 2.6.3

Sei $f: D \to \mathbb{C}$ holomorph auf einem Gebiet $D \subseteq \mathbb{C}$. Gilt $\Re(f) = c$ oder $\Im(f) = c$ oder |f| = c, $c \in \mathbb{R}$, dann ist f selbst konstant.

Satz 2.6.4 (Das Maximumsprinzip)

Sei $D \subseteq \mathbb{C}$ ein Gebiet und $f: D \to \mathbb{C}$ holomorph. Existiert ein $a \in D$ mit $|f(a)| \ge |f(z)| \ \forall z \in D$, dann ist f konstant auf D.

Bemerkung:

- Wir sehen im Beweis, dass es reicht, wenn wir voraussetzen, dass |f| ein lokales Maximum besitzt. Wegen des Identitätssatzes reicht es, f nur lokal zu betrachten.
- Sei $K \subset D$ eine kompakte Teilmenge des Gebietes D und $f: D \to \mathbb{C}$ holomorph. Dann hat $f|_K: D \to \mathbb{C}$ ein Betragsmaximum, da f stetig ist. Aus Satz 2.6.1 folgt dann, dass dieses Betragsmaximum auf dem Rand von K angenommen werden muss.

Korollar 2.6.5 (Minimumsprinzip)

Sei $D \subseteq \mathbb{C}$ ein Gebiet und $f: D \to \mathbb{C}$ nicht-konstant und holomorph. Wenn f in $a \in D$ ein (lokales) Betragsminimum besitzt, dann ist f(a) = 0.

Satz 2.6.6 (Schwarz'sches Lemma)

Sei $f: B_1(0) \to B_1(0)$ eine holomorphe Abbildung mit f(0) = 0. Dann gilt $|f(z)| \le |z| \ \forall z \in B_1(0)$. Danus folgt auch $|f'(0)| \le 1$.

Lemma 2.6.7

Sei $\varphi: B_1(0) \to B_1(0)$ eine bijektive Abbildung, sodass φ und φ^{-1} holomorph sind. Falls $\varphi(0) = 0$ gilt, dann existiert eine komplexe Zahl $\xi \in \mathbb{C}$ mit $|\xi| = 1$, sodass $\varphi(z) = \xi z \ \forall z \in B_1(0)$.

Lemma 2.6.8

Sei $a \in B_1(0)$. Dann ist $\varphi_a : B_1(0) \to B_1(0)$ definiert durch $\varphi_a(z) = \frac{z-a}{\bar{a}z-1}$ bijektiv und holomorph mit

$$i) \varphi_a(a) = 0$$

$$ii) \varphi_a(0) = a$$

$$iii) \varphi_a^{-1} = \varphi_a.$$

Satz 2.6.9

Sei $\varphi: B_1(0) \to B_1(0)$ eine konforme Abbildung. Dann existieren $\xi \in \mathbb{C}$, $|\xi| = 1$ und $a \in B_1(0)$ mit $\varphi(z) = \xi \frac{z-a}{\bar{a}z-1} \ \forall z \in B_1(0)$.

3 Singularitäten holomorpher Abbildungen

Außerwesentliche Singularitäten 3.1

Definition 3.1.1 (Isolierte Singularität)

Sei $D \subset \mathbb{C}$ offen. Sei $f: D \to \mathbb{C}$ holomorph. Sei $a \in \mathbb{C}$ ein Punkt, der nicht zu D gehört, aber so, dass ein r > 0 existiert mit $B_r(a) \setminus \{a\} \subseteq D$. Der Punkt a ist dann

eine isolierte Singularität von f.

Definition 3.1.2 (Hebbare Singularität)

Eine Singularität a einer holomorphen Abbildung $f:D\to\mathbb{C}$ heißt hebbar, falls sich f auf ganz $D \cup \{a\}$ holomorph fortsetzen lässt: $\exists \tilde{f} : D \cup \{a\} \to \mathbb{C}$ holomorph mit $|\tilde{f}|_D = f.$

Satz 3.1.3 (Riemannscher Hebbarkeitssatz)

Sei $f: D \to \mathbb{C}$ eine holomorphe Abbildung. Sei $a \in \mathbb{C}$ eine Singularität von f. Dann ist die Singularität a genau dann hebbar, wenn es eine punktierte Umgebung $B_r(a) \subset D$ von a gibt, in der f beschränkt ist.

Definition 3.1.4 (Außerwesentliche Singularität, Polstelle)

- Eine Singularität a einer holomorphen Abbildung $f:D\to\mathbb{C}$ heißt $au\beta erwesent$ lich, falls es eine ganze Zahl $m \in \mathbb{Z}$ gibt, sodass $q: D \to \mathbb{C}$, $q(z) = (z-a)^m f(z)$ eine hebbare Singularität in a hat.
- Ist a nicht hebbar als Singularität von f, so ist a ein Pol oder eine Polstelle von f.

Proposition 3.1.5

Sei $a \in \mathbb{C}$ eine außerwesentliche Singularität einer holomorphen Abbildung $f: D \to \mathbb{C}$. Wenn f in keiner Umgebung von a identisch verschwindet, so existiert eine kleinste ganze Zahl $k \in \mathbb{Z}$, sodass $z \mapsto (z-a)^k f(z)$ eine hebbare Singularität hat.

Definition 3.1.6 (Ordnung)

Sei $f:D\to\mathbb{C}$ mit einer außerwesentlichen Singularität $a\in\mathbb{C}$ wie in 3.1.5. Sei k die Zahl wie in 3.1.5. Dann ist $-k =: \operatorname{ord}(f, a)$ die Ordnung von f in a.

Proposition 3.1.7

Sei a eine außerwesentliche Singularität einer holomorphen Funktion $f:D\to\mathbb{C}$. Dann gilt, falls f in keiner Umgebung von a identisch verschwindet:

i)
$$\operatorname{ord}(f, a) \geq 0 \iff a \text{ ist hebbar, dabei gilt:}$$

$$\operatorname{ord}(f, a) = 0 \iff a \text{ ist hebbar und } f(a) \neq 0$$

$$\operatorname{ord}(f, a) > 0 \iff a \text{ ist hebbar und } f(a) = 0$$
ii) $\operatorname{ord}(f, a) < 0 \iff a \text{ ist ein Pol}$

Proposition 3.1.8

Sei $a \in \mathbb{C}$ eine außerwesentliche Singularität von zwei holomorphen Abbildungen $f,q:D\to\mathbb{C}$. Dann ist auch a eine außerwesentliche Singularität der Funktion $\alpha f + \beta g$, $f \cdot g$, and $\frac{f}{g}$, falls $g(z) \neq 0 \ \forall z \in D$, $\alpha, \beta \in \mathbb{C}^*$. Außerdem gilt

$$\operatorname{ord}(\alpha f + \beta g, a) \ge \min\{\operatorname{ord}(f, a), \operatorname{ord}(g, a)\}$$
$$\operatorname{ord}(f \cdot g, a) = \operatorname{ord}(f, a) + \operatorname{ord}(g, a)$$
$$\operatorname{ord}\left(\frac{f}{g}, a\right) = \operatorname{ord}(f, a) - \operatorname{ord}(g, a)$$

3.2 Wesentliche Singularitäten

Proposition 3.2.1

Sei $f: D \to \mathbb{C}$ eine holomorphe Abbildung und sei $a \in \mathbb{C}$ eine Polstelle von f. Dann $gilt \lim_{z \to a} |f(z)| = \infty.$

Definition 3.2.2 (Wesentliche Singularität)

Eine Singularität $a \in \mathbb{C}$ einer holomorphen Funktion $f: D \to \mathbb{C}$ heißt wesentlich, falls sie nicht außerwesentlich ist.

Satz 3.2.3 (Satz von Casorati-Weierstraß)

Sei a eine wesentliche Singularität der holomorphen Abbildung $f: D \to \mathbb{C}$. Sei $B_r(a)$ eine beliebige punktierte Umgebung von a. Dann ist das Bild $f\left(B_r(a) \cap D\right)$ dicht in \mathbb{C} , das heißt für alle $b \in \mathbb{C}$ und $\varepsilon > 0$ gilt $f\left(B_r(a) \cap D\right) \cap B_{\varepsilon}(b) \neq \emptyset$.

Satz 3.2.4 (Klassifikation der Singularitäten durch das Abbildungsverhalten)

Sei a eine isolierte Singularität der holomorphen Abbildung $f:D\to\mathbb{C}$. Die Singula $rit \ddot{a}t \ a \in \mathbb{C} \ ist$

- i) $hebbar \iff f$ ist in einer punktierten Umgebung von a beschränkt
- ii) $ein\ Pol \iff \lim_{z\to a} |f(z)| = \infty$

iii) we sentlich \iff in jeder punktierten Umgebung von a kommt f jedem beliebigen Wert $b \in \mathbb{C}$ beliebig nahe

3.3 Laurentzerlegung

Sei im Folgenden $0 \le r < R \le \infty$. Betrachte das Ringgebiet

$$\mathcal{R} := \{ z \in \mathbb{C} \mid r < |z| < R \}$$

und z.B. $g: B_R(0) \to \mathbb{C}$, $h: B_{\frac{1}{r}}(0) \to \mathbb{R}$. Dann ist $\mathbb{C} \setminus \overline{B_r(0)} \to \mathbb{C}$, $z \mapsto h\left(\frac{1}{z}\right)$ holomorph. Setze $f: \mathcal{R} \to \mathbb{C}$, $f(z) = g(z) + h\left(\frac{1}{z}\right)$. f ist holomorph auf \mathcal{R} . Der folgende Satz zeigt, dass jede holomorphe Funktion auf \mathcal{R} sich in dieser Weise zerlegen lässt.

Satz 3.3.1 (Laurentzerlegung)

Sei $0 \le r < R \le \infty$. Jede auf dem Ringgebiet $\mathcal{R} := \{z \in \mathbb{C} \mid r < |z| < R\}$ holomorphe Abbildung kann geschrieben werden als

$$f(z) = g(z) + h\left(\frac{1}{z}\right) \tag{2}$$

mit $g: B_R(0) \to \mathbb{C}$, $h: B_{\frac{1}{r}}(0) \to \mathbb{C}$ holomorph. Fordert man noch h(0) = 0, so ist diese Zerlegung eindeutig bestimmt.

Definition 3.3.2 (Hauptteil, Nebenteil, Laurentzerlegung)

In der Situation von Satz 3.3.1 ist $z \to h\left(\frac{1}{z}\right)$ der Hauptteil der Funktion f. g ist der Nebenteil der Funktion f und 2 ist die Laurentzerlegung der Funktion f.

Lemma 3.3.3

Seien $0 \le r < R \le \infty$, und sei $\mathcal{R} := \{z \in \mathbb{C} \mid r < |z| < R\}$. Sei $G : \mathcal{R} \to \mathbb{C}$ eine holomorphe Abbildung. Sind $P, \rho \in \mathbb{R}$, sodass $r < \rho < P < R$, dann gilt

$$\oint_{|\zeta|=\rho} G(\zeta) \ \mathrm{d}\zeta = \oint_{|\zeta|=P} G(\zeta) \ \mathrm{d}\zeta.$$

Satz 3.3.4 (Laurententwicklung)

Die Funktion $f: \mathcal{R} \to \mathbb{C}$, $\mathcal{R} := \{z \in \mathbb{C} \mid r < |z| < R\}$ sei holomorph. Dann lässt sich f in eine Laurentreihe entwickeln, welche auf \mathcal{R} lokal normal konvergiert:

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - a)^n \quad \forall z \in \mathcal{R}.$$

Außerdem gilt

i) Diese Laurententwicklung ist eindeutig bestimmt:

$$a_n = \frac{1}{2\pi i} \oint_{|\zeta - a| = \rho} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta \quad \forall n \in \mathbb{Z}, r < \rho < R$$

ii) Sei
$$M_{\rho}(f) = \sup \{ |f(\zeta)| \mid |\zeta - a| = \rho \}$$
 für $r < \rho < R$. Dann gilt

$$|a_n| \le \frac{M_\rho(f)}{\rho^n}, \qquad n \in \mathbb{Z}$$

Laurentreihen und Singularitäten holomorpher Abbildungen

Sei $f:D\to\mathbb{C}$ eine holomorphe Abbildung und $a\in\mathbb{C}$ eine Singularität von f. Dann ist f für ein geeignetes r>0 holomorph auf $B_r(a)\subset D$. Nach Satz 3.3.4 besitzt f eine Laurententwicklung auf $B_r(a)$

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - a)^n \quad \forall z \in \dot{B_r(a)}.$$

Satz 3.3.5

In der oben geschilderten Situation ist die Singularität a von f

- i) hebbar $\iff a_n = 0 \ \forall n < 0$,
- ii) ein Pol der Ordnung $k \in \mathbb{N} \iff a_{-k} \neq 0 \text{ und } a_n = 0 \ \forall n < -k$,
- iii) wesentlich $\iff a_n \neq 0$ für unendlich viele n < 0.

Komplexe Fourierreihen

Seien a < b und betrachte $D = \{z \in \mathbb{C} \mid a < \Im(z) < b\}$. Sei $f : D \to \mathbb{C}$ holomorph, sodass $\omega \in \mathbb{R}^*$ mit $f(z+\omega)=f(z)$ für $z\in D,\, f$ hat also die reelle Periode $\omega.$

sodass
$$\omega \in \mathbb{R}^*$$
 mit $f(z + \omega) = f(z)$ für $z \in D$, f hat also die reelle Periode ω
Sei $g: \tilde{D} \to \mathbb{C}, \ g(z) = f(\omega z)$ für $\tilde{D} = \begin{cases} \left\{z \in \mathbb{C} \mid \frac{a}{\omega} < \Im(z) < \frac{b}{\omega}\right\}, & \omega > 0 \\ \left\{z \in \mathbb{C} \mid \frac{b}{\omega} < \Im(z) < \frac{a}{\omega}\right\}, & \omega < 0. \end{cases}$

Es gilt $g(z+1) == f(\omega(z+1)) = f(\omega z + \omega) = f(\omega z) = g(z) \ \forall z \in \tilde{D}$, also hat g die Periode $1 \in \mathbb{R}$. O.B.d.A habe also f die Periode 1.

Lemma 3.3.6 i) Die Abbildung $\phi : \mathbb{C} \to \mathbb{C}, z \mapsto e^{2\pi i z}$ bildet D auf den Kreisring $\mathcal{R} = \left\{ z \in \mathbb{C} \mid \underbrace{e^{-2\pi b}} < |z| < \underbrace{e^{-2\pi a}} \right\} ab.$

ii) Für
$$a = -\infty$$
 ist $\mathcal{R} = \{z \in \mathbb{C} \mid r < |z| < \infty\}$ und für $b = \infty$ ist $\mathcal{R} = \{z \in \mathbb{C} \mid 0 < |z| < R\}$.

Setze $q: \mathcal{R} \to \mathbb{C}, \ w \mapsto f(z)$ für $w = e^{2\pi i z}$.

• g ist wohldefiniert, denn $e^{2\pi iz} = e^{2\pi iz'}$

$$\iff z - z' \in \mathbb{Z}$$

 $\iff f(z') = f(z' + z - z') = f(z).$

• g ist holomorph: Es gilt $\phi'(z) = 2\pi i e^{2\pi i z} \neq 0 \ \forall z \in \mathbb{C}$.

Aus dem Satz für implizite Funktionen folgt, dass $\forall z \in D$ eine offene Umgebung $D_0 \subseteq D$ existiert, sodass $\phi : D_0 \to \phi(D_0) \subseteq \mathcal{R}$ konform ist mit $\phi^{-1} = \phi(D_0) \to D_0$ holomorph.

Sei also $w \in \mathcal{R}$. Wähle $z \in D$ mit $\phi(z) = e^{2\pi i z} = w$, und wähle D_0 wie oben. Dann ist

holomorph.

Die Funktion $g: \mathcal{R} \to \mathbb{C}$ lässt sich dann in eine Laurentreihe entwickeln:

$$g(z) = \sum_{n \in \mathbb{Z}} a_n z^n \qquad \text{für } z \in \mathcal{R}, \text{ mit}$$

$$a_n = \frac{1}{2\pi i} \oint_{|\zeta| = \rho} \frac{g(\zeta)}{\zeta^{n+1}} \, d\zeta$$

$$= \frac{1}{2\pi i} \int_0^1 \frac{2\pi i \rho e^{2\pi i t} \cdot g\left(\rho e^{2\pi i t}\right)}{\rho^{n+1} e^{2\pi i (n+1)t}} \, dt$$

$$= \int_0^1 \frac{g\left(\rho e^{2\pi i t}\right)}{\rho^n e^{2\pi i n t}} \, dt \quad \text{für } r < \rho < R, \ \forall n \in \mathbb{Z}$$

Satz 3.3.7 (Fourierentwicklung)

Sei $D = \{z \in \mathbb{C} \mid a < \Im(z) < b\}$ für $-\infty \le a < b \le \infty$. Sei $f : D \to \mathbb{C}$ holomorph mit der Periode 1, das heißt $f(z) = f(z+1) \ \forall z \in D$. Dann lässt sich f in eine in D lokal normal konvergente komplexe Fourierreihe

$$f(z) = \sum_{n \in \mathbb{Z}} a_n e^{2\pi i n z}$$

entwickeln. Die Fourierkoeffizienten a_n sind eindeutig bestimmt: für jedes $y \in (a,b)$ gilt

$$a_n = \int_0^1 f(x+iy)e^{-2\pi i n(x+iy)} dx.$$

32

3.4 Der Residuensatz

Satz 3.4.1

 $Sei \ \gamma: [a,b] \to \mathbb{C} \ eine \ geschlossene, \ stückweise \ glatte \ Kurve. \ Sei \ \Omega:=\mathbb{C} \setminus \gamma[a,b]. \ Sei$

$$\operatorname{Ind}_{\gamma}: \Omega \to \mathbb{C}, \ z \mapsto \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\zeta - z} \ d\zeta.$$

Dann gilt:

- a) $\operatorname{Ind}_{\gamma}$ ist stetig und nimmt nur Werte in \mathbb{Z} an. Also ist $\operatorname{Ind}_{\gamma}$ auf jeder Zusammenhangskomponente von Ω konstant.
- b) Auf der unbeschränkten Zusammenhangskomponente von Ω ist $\operatorname{Ind}_{\gamma} = 0$.

Insbesondere gilt für $\gamma:[0,1]\to\mathbb{C},\ t\mapsto z_0+re^{2\pi ikt}$ mit $z_0\in\mathbb{C},\ k\in\mathbb{Z}\setminus\{0\}$

$$\operatorname{Ind}_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\zeta - z} \, d\zeta = \begin{cases} 0 & |z - z_0| > r, \\ k & |z - z_0| < r. \end{cases}$$

Definition 3.4.2 (Umlaufzahl)

Sei γ eine geschlossene, stückweise glatte Kurve, deren Bild den Punkt $z \in \mathbb{C}$ nicht enthält. Dann ist Ind $_{\gamma}$ die Umlaufzahl von γ bezüglich z.

Definition 3.4.3 (Residuum)

Sei $f:D\to\mathbb{C},\ D\subset\mathbb{C}$ offen, eine holomorphe Abbildung und $a\in\mathbb{C}$ eine Singularität von f. Sei

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - a)^n, \quad z \in \dot{B_r(a)}$$

die Laurententwicklung von f auf $B_r(a) \subseteq D$. Der Koeffizient

$$a_{-1} = \frac{1}{2\pi i} \oint_{|\zeta - a| = \rho} f(\zeta) \, \mathrm{d}\zeta, \quad 0 < \rho < r$$

dieser Reihe heißt das Residuum von f an der Stelle a und wird Res (f; a) geschrieben.

Beispiel:

a) Falls a eine hebbare Singularität von f ist, ist nach Satz 3.3.5 $a_n = 0$ für alle n < 0, also Res $(f; a) = a_{-1} = 0$.

b) Sei
$$f_n: D_n \to \mathbb{C}, \ z \mapsto z^n \text{ mit } D_n = \begin{cases} \mathbb{C} & n \ge 0, \\ \mathbb{C} \setminus \{0\} & n < 0. \end{cases}$$

$$\operatorname{Res}(f_n; 0) = \frac{1}{2\pi i} \oint_{|\zeta|=1} f(\zeta) \ d\zeta$$

$$= \int_0^1 \left(e^{2\pi i t}\right)^{n+1} \ dt$$

$$= \begin{cases} 1 & n = -1, \\ \left[\frac{1}{2\pi i (n+1)} e^{(2\pi i t)(n+1)}\right]_0^1 = 0 & n \ne -1. \end{cases}$$

Also gilt Res $(f_n; 0) = 0$ für alle $n \leq -2$, obwohl 0 eine Singularität von f_n ist.

Satz 3.4.4 (Der Residuensatz)

Es seien $D \subseteq \mathbb{C}$ ein Elementargebiet und $z_1, \ldots, z_k \in D$ paarweise verschiedene Punkte. Sei $f: D \setminus \{z_1, \ldots, z_k\} \to \mathbb{C}$ eine holomorphe Abbildung. Für eine geschlossene, stückweise glatte Kurve $\gamma: [a, b] \to D \setminus \{z_1, \ldots, z_k\}$ gilt dann

$$\int_{\gamma} f = 2\pi i \sum_{j=1}^{k} \operatorname{Res}(f; z_{j}) \cdot \operatorname{Ind}_{\gamma}(z_{j}).$$

Beispiel:
$$f_n: D_n \to \mathbb{C}, \ z \mapsto z^n \text{ mit } D_n = \begin{cases} \mathbb{C} & n \ge 0, \\ \mathbb{C} \setminus \{0\} & n < 0. \end{cases}$$

$$\oint_{|\zeta|=1} f_n = 2\pi i \operatorname{Res}(f_n; 0)$$

$$= 2\pi i \operatorname{Res}(f_n; 0) \cdot \operatorname{Ind}_{\gamma}(0) \quad \text{da } \operatorname{Ind}_{\gamma}(0) = 1$$

Bemerkung:

a) In Satz 3.4.4 liefern nur die Punkte z_j einen Beitrag, für die Ind $_{\gamma}(z_j) \neq 0$, also die Punkte $z_j \in I(\gamma)$, die von γ umlaufen werden. So gibt etwa im Beispiel oben die Residuenformel

$$\oint_{|\zeta-2|=1} = 2\pi i \operatorname{Res}(f_n; 0) \cdot \operatorname{Ind}_{\gamma}(0)$$
$$= 0 \quad \forall n \in \mathbb{N},$$

denn $\operatorname{Ind}_{\gamma}(0) = 0$ für γ als Kreis mit Radius 1 um den Punkt 2. (Es passt, denn alle Funktionen besitzen auf $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$ eine Stammfunktion und $\gamma[0,1] \subset \mathbb{C} \setminus \mathbb{R}_{\leq 0}$.)

b) Falls f hebbare Singularitäten in z_1, \ldots, z_k besitzt, also falls f auf D holomorph fortsetzbar ist, ist $\int_{\gamma} f = 0$ für alle $\gamma : [a, b] \to D \setminus \{z_1, \ldots, z_k\}$, denn D ist ein

Elementargebiet. Satz 3.4.4 ist also eine Verallgemeinerung des Cauchy'schen Integralsatzes für Elementargebiete.

c) Sei $f: D \to \mathbb{C}$ holomorph, D ein Elementargebiet. Dann ist für alle $a \in D$ die Funktion $h: D \setminus \{a\} \to \mathbb{C}, \ z \mapsto \frac{f(z)}{z-a}$ holomorph und es gilt

Res
$$(h; a) = \frac{1}{2\pi i} \oint_{|\zeta - a| = \rho} h(\zeta) d\zeta$$

= $f(a)$.

Für $\gamma: [\alpha,\beta] \to D \setminus \{a\}$ gilt also nach der Residuenformel

$$\frac{1}{2\pi i} \int_{\gamma} h(\zeta) \, d\zeta = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - a} \, d\zeta$$
$$= \operatorname{Res}(h; a) \operatorname{Ind}_{\gamma}(a)$$
$$= f(a) \operatorname{Ind}_{\gamma}(a).$$

Es gilt also:

$$f(a) \operatorname{Ind}_{\gamma}(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - a} \, d\zeta,$$

und insbesondere für $\operatorname{Ind}_{\gamma}(a) = 1$:

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - a} \, d\zeta.$$

Das sind Verallgemeinerungen der Cauchy'schen Integralformel.

Proposition 3.4.5

Sei D ein Gebiet und $a \in D$. Seien $f, g : D \setminus \{a\} \to \mathbb{C}$ holomorphe Abbildungen mit einer außerwesentlichen Singularität in a. Dann gilt:

- a) Falls ord $(f, a) \ge -1$, so gilt Res $(f; a) = \lim_{z \to a} (z a) f(z)$.
- b) Falls a ein Pol der Ordnung k ist (also ord $(f, a) = -k, k \in \mathbb{N}^*$), so gilt $\operatorname{Res}(f; a) = \frac{\tilde{f}^{(k-1)}(a)}{k-1} \operatorname{mit} \tilde{f}(z) = (z-a)^k f(z)$.
- c) Falls ord $(f, a) \ge 0$ und ord (g, a) = 1, so gilt $\operatorname{Res}\left(\frac{f}{g}; a\right) = \frac{f(a)}{g(a)}$.
- d) Falls $f \neq 0$, so ist für alle $a \in D$: Res $\left(\frac{f'}{f}; a\right) = \operatorname{ord}(f, a)$.
- e) Falls g holomorph auf D ist, gilt $\operatorname{Res}\left(g \cdot \frac{f'}{f}; a\right) = g(a) \operatorname{ord}\left(f, a\right)$.

3.5 Anwendungen des Residuensatzes

Satz 3.5.1

Sei $D \subseteq \mathbb{C}$ ein Elementargebiet, sei f eine in D meromorphe Funktion mit den Nullstellen $a_1, \ldots, a_n \in D$ und den Polstellen $b_1, \ldots, b_m \in D$. Sei $\gamma : [a,b] \to \mathbb{C} \setminus \{a_1, \ldots, a_n, b_1, \ldots, b_m\}$ eine geschlossene, stückweise glatte Kurve. Dann gilt

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} = \sum_{\mu=1}^{n} \operatorname{ord}(f, a_{\mu}) \operatorname{Ind}_{\gamma}(a_{\mu}) + \sum_{\nu=1}^{m} \operatorname{ord}(f, b_{\nu}) \operatorname{Ind}_{\gamma}(b_{\nu}).$$

Satz 3.5.2 (Hurwitz, 1889)

Sei $(f_j)_{j\in\mathbb{N}}$ eine Folge von holomorphen Abbildungen $f_j:D\to\mathbb{C}$ mit einem Gebiet D. Seien die f_j außerdem alle nullstellenfrei.

Falls $(f_j)_{j\in\mathbb{N}}$ lokal gleichmäßig gegen $f:D\to\mathbb{C}$ konvergiert, ist f entweder identisch 0 oder f hat ebenfalls keine Nullstelle in D.

Bemerkung: Nach Satz 2.5.1 ist f holomorph!

Korollar 3.5.3

Sei $D \subseteq \mathbb{C}$ ein Gebiet und sei $(f_n)_{n\in\mathbb{N}}$ eine Folge von injektiven holomorphen Funktionen, die lokal gleichmäßig gegen $f: D \to \mathbb{C}$ konvergiert. Dann ist f entweder konstant oder injektiv.

Korollar 3.5.4 (aus Satz 3.5.1)

Sei $D \subseteq \mathbb{C}$ ein Elementargebiet, $f: D \to \mathbb{C}$ eine meromorphe Funktion mit $S(f) = \{b_1, \ldots, b_m\} \subset D$ und $N(f) = \{a_1, \cdots, a_n\} \subset D$. Seien

$$N(0) = \sum_{\mu=1}^{n} \operatorname{ord}(f, a_{\mu})$$

die Gesamtzahl der Nullstellen und

$$N(\infty) = -\sum_{\nu=1}^{m} \operatorname{ord}(f, b_{\nu})$$

die Gesamtzahl der Polstellen (jeweils mit Vielfachheiten gerechnet). Sei $\gamma:[a,b] \to D \setminus (N(f) \cup S(f))$ eine stückweise glatte, geschlossene Kurve mit $\operatorname{Ind}_{\gamma}(a_{\mu}) = 1 = \operatorname{Ind}_{\gamma}(b_{\nu})$ für $1 \le \mu \le n, \ 1 \le \nu \le m$. Dann gilt

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f}(\zeta) \ d\zeta = N(0) - N(\infty), \quad Anzahl formel f \ddot{u}r \ Null- \ und \ Polstellen.$$

Korollar 3.5.5

 $f:D\to\mathbb{C}$ holomorph, $\gamma:[a,b]\to D$ geschlossene, stückweise stetige Kurve mit

Funktionentheorie

 $f(\gamma(t)) \neq 0$ für alle $t \in [a, b]$. Dann ist

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f}(\zeta) \ d\zeta = \operatorname{Ind}_{f \circ \gamma}(0) \in \mathbb{Z}.$$

In der Situation von Satz 3.5.4 (mit $N(\infty) = 0$ da $S(f) = \emptyset$) ist also $\operatorname{Ind}_{f \circ \gamma}(0) = N(0)$.

Korollar 3.5.6 (aus 3.5.1)

Seien $D \subseteq \mathbb{C}$ ein Elementargebiet, $f: D \to \mathbb{C}$ eine meromorphe Funktion mit $N(f) = \{a_1, \ldots, a_n\}$ und $S(f) = \{b_1, \ldots, b_m\} \in D$.

Sei $g: D \to \mathbb{C}$ holomorph. Dann gilt für jede geschlossene, stückweise stetige Kurve $\gamma: [a,b] \to D \setminus (N(f) \cup S(f)):$

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'g}{f} = \sum_{\mu=1}^{n} \operatorname{ord}(f, a_{\mu}) \operatorname{Ind}_{\gamma}(a_{\mu}) g(a_{\mu}) + \sum_{\nu=1}^{m} \operatorname{ord}(f, b_{\nu}) \operatorname{Ind}_{\gamma}(b_{\nu}) g(b_{\nu}).$$

Anhang

Liste der Definitionen

1.1.1 Definition – Komplexe Differenzierbarkeit
1.1.8 Definition – Holomorphie
1.2.2 Definition – Orientierungs- und Winkeltreue
1.2.3 Definition – Konformität
1.3.3 Definition – Konvergenzradius
1.3.9 Definition – Komplexe Exponential funktion
1.4.1 Definition – Hauptzweig des Logarithmus
1.5.1 Definition – Singularität, Pole, Meromorphie
1.6.1 Definition – Gleichmäßige Konvergenz
1.6.3 Definition – Gleichmäßige Summierung
2.1.1 Definition – Kurve
2.1.2 Definition – Kurveneigenschaften
2.1.3 Definition – Bogenlänge
2.1.4 Definition – Kurvenintegral
2.2.1 Definition – Bogenweise zusammenhängend
2.2.2 Definition – Gebiet
2.2.5 Definition – Sterngebiet
2.2.11Definition – Elementargebiet
3.1.1 Definition – Isolierte Singularität
3.1.2 Definition – Hebbare Singularität
3.1.4 Definition – Außerwesentliche Singularität, Polstelle 28
3.1.6 Definition – Ordnung
3.2.2 Definition – Wesentliche Singularität
3.3.2 Definition – Hauptteil, Nebenteil, Laurentzerlegung
3.4.2 Definition – Umlaufzahl
3.4.3 Definition – Residuum