MAT2040 Linear Algebra Midterm Exam

SSE, CUHK(SZ)

October 31, 2021

Seat No.: Student ID:	
Seat No.: Student ID:	
DEAU INO	

- i. The exam contains 9 questions.
- ii. Put answers in the space after each question. Ask for additional sheets if needed.
- iii. Unless otherwise specified, be sure to give **full explanations** for your answers. The **correct reasoning** alone is worth **more credit** than the correct answer by itself.
- iv. A table of notations is given in the first page, which you can checkout before the exam.

Table 1: Table of Notations

\mathbb{R}	the set of real numbers
	without otherwise specified, all matrices have entries from \mathbb{R}
\mathbb{R}^n	the set of all (column) vectors of n entries from \mathbb{R}
	the n -dimensional Euclidean vector spaces
0	the zero vector or the all zero matrix, whose size is implied in the context or
	specified in the subscript
$oldsymbol{I}_n$	the $n \times n$ identity matrix
$oldsymbol{A}^{ ext{T}}$	the transpose of matrix \boldsymbol{A}
$\operatorname{Col} \boldsymbol{A}, \operatorname{Col} (\boldsymbol{A})$	the column space of matrix \boldsymbol{A}
$\text{Null}(\boldsymbol{A})$	the null space of matrix \boldsymbol{A}
$\dim V, \dim(V)$	the dimension of a vector space V
$[\mathbf{x}]_{\mathcal{B}}$	the coordinate vector of \mathbf{x} with respect to the basis \mathcal{B}
C[a,b]	the set of all the continuous functions defined on the closed interval $[a, b]$

1. Consider the following vectors:

$$m{a}_1 = \left[egin{array}{c} 2 \\ -3 \\ 31 \\ -23 \end{array}
ight], m{a}_2 = \left[egin{array}{c} -1 \\ 2 \\ -19 \\ 14 \end{array}
ight], m{a}_3 = \left[egin{array}{c} 0 \\ 0 \\ 3 \\ -2 \end{array}
ight], m{a}_4 = \left[egin{array}{c} 0 \\ 0 \\ -4 \\ 3 \end{array}
ight].$$

- (a) (5 points) Are the above vectors linearly dependent?
- (b) (3 points) Compute Span $\{a_1, a_2, a_3, a_4\}$.
- 2. (a) (6 points) Find the inverse of the following matrix

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{array} \right].$$

(b) (4 points) Let $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$. $\mathbf{C} = \begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix}$. Find the elementary matrices $\mathbf{E_1}, \mathbf{E_2}$ such that $\mathbf{C} = \mathbf{E_2} \mathbf{E_1} \mathbf{A}$.

3. Consider the following 3×3 matrix:

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{array} \right].$$

Find the bases of the following subspaces:

- (a) $(4 \text{ points}) \operatorname{Col}(\mathbf{A})$
- (b) $(4 \text{ points}) \text{ Null}(\mathbf{A})$
- (c) (4 points) $Row(\mathbf{A})$

4. (Block matrix multiplication and inverse)

Let **P** be a matrix with the following partition

$$\mathbf{P} = \left[\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{O} \end{array} \right]$$

where A, B, C are given matrices, and B, C are invertible matrices, O is a zero matrix.

- (a) Show that P is invertible and find P^{-1} . (8 points)
- (b) Using the results in (a) to find the inverse of the following matrix (6 points)

$$\mathbf{P} = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 3 & 4 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \end{bmatrix}$$

5. Suppose $\mathbf{A}\mathbf{x} = \mathbf{b}$ is the given linear system, where

$$\mathbf{A} = \begin{bmatrix} 5 & -3 & 4 \\ -15 & 12 & -13 \\ -5 & 9 & -5 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix}.$$

- (a) (5 points) Find the **LU** decomposition of **A**.
- (b) (4 points) Using the results of (a), solve for \mathbf{y} by using $\mathbf{L}\mathbf{y} = \mathbf{b}$ first, and then solve for \mathbf{x} by using $\mathbf{U}\mathbf{x} = \mathbf{y}$.
- 6. Consider the following system of linear equations with the unknown variables (x_1, x_2, x_3) and the parameter λ :

$$\lambda x_1 + x_2 + x_3 = 1, (1)$$

$$x_1 + \lambda x_2 + x_3 = \lambda, \tag{2}$$

$$x_1 + x_2 + \lambda x_3 = \lambda^2. \tag{3}$$

Find the condition of λ for each of the following statements to hold true.

- (a) (3 points) The system has a unique solution.
- (b) (3 points) The system has no solution.
- (c) (5 points) The system has infinitely many solutions and write down the solution in terms of parametric vector form.
- 7. (Vector Space) Find a basis and the dimension for the following vector spaces.
 - (a) The space of all polynomials in the form of $ax^3 + 2bx^2 + cx + 2a + 3b + c$, where $a, b, c \in \mathbb{R}$. (4 points)
 - (b) V is the subspace of \mathbb{R}^4 given by all solutions to the linear system. (4 points)

$$x_1 - 2x_3 + 3x_4 = 0$$

$$x_2 + 2x_3 - x_4 = 0$$

- (c) Let $\mathcal{U} = \{1 2t + t^2, 3 5t + 4t^2, 2t + 3t^2\}$ and $\mathcal{V} = \{1, t, t^2\}$ be two bases for P_2 . Find the transition matrix corresponding to the coordinate change from basis \mathcal{U} to \mathcal{V} . (4 points)
- 8. State your answer. No justification are required.
 - (a) True or False: If **A** is $m \times n$ (m < n) matrix, then the linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has infinitely many solutions. (3 points)
 - (b) True or False: Let $\mathbf{P} = {\mathbf{A} \in \mathbb{R}^{\mathbf{n} \times \mathbf{n}} | \mathbf{A} \text{ is invertible}}$, then \mathbf{P} is a vector space. (3 points)

- (c) True or False: For two $n \times n$ matrices **A** and **B**, if **AB** is nonsingular, then both **A**, **B** must be nonsingular. (3 points)
- (d) True or False: The solution set of $\mathbf{A}\mathbf{x} = \mathbf{b}$ (**A** is $m \times n$ matrix, **b** is a column vector and $\mathbf{b} \neq \mathbf{0}$) is a vector space. (3 points)
- 9. (a) Let $\mathbf{A} \in \mathbb{R}^{\mathbf{m} \times \mathbf{n}}$, show that $\text{Null}(\mathbf{A}^{\mathbf{T}}\mathbf{A}) = \text{Null}(\mathbf{A})$ and $\text{rank}(\mathbf{A}^{\mathbf{T}}\mathbf{A}) = \text{rank}(\mathbf{A})$. (6 points)
 - (b) Let \mathbf{A}, \mathbf{B} be two square matrices satisfying $\mathbf{I} + \mathbf{A}\mathbf{B} = \mathbf{B}$, show that $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}$. (6 points)