CSPs

Constraint Satisfaction Problems (CSPs)

- Assigning valid values to a set of variables
 - \circ "Valid" \rightarrow all constraints are met
- "Identification" problem, not search problem
 - Don't care about path to goal
 - Caveat: this is just a naming technicality; we often formulate
 CSPs as search problems

Formulation

- Variables: $X_1, ..., X_N$, each able to take on one single value
- **Domain:** set of all possible values a variable can take on, $\{x_1, ..., x_d\}$
- **Constraints:** restrictions on which values a variable can take
 - Can be restrictions on a single variable (unary constraint)
 - Can be restrictions on relationships between multiple variables (binary / higher-order)

How to solve?

1. Backtracking:

- a. Pick an arbitrary variable order (ex. $A \rightarrow B \rightarrow C$)
- b. At each iteration, pick the next unassigned variable and attempt to assign it a value
- c. If no values exist that don't violate constraints, backtrack previously assigned variables (i.e. try new assignments)
- d. Akin to DFS

Performance Improvements

- Filtering: pruning domains of unassigned variables ahead of time
 - **Forward checking:** whenever X is assigned, prune domains of all variables Y that have constraints with X
 - **Arc consistency:** make "arcs" (two directed edges) between any two variables that have constraints with each other
 - For each arc $Y \rightarrow Z$, if an assignment Y = y results in no possible assignments for Z, prune y from Y's domain
 - IF we prune something from Y, add to the queue all arcs of the form $X \rightarrow Y$ (if needed)
 - IF pruning something from Y leaves an empty domain, backtrack

Performance Improvements

- **Heuristics:** determining optimal order of assignment
 - Minimum remaining values (MRV): choose <u>variable</u> with smallest domain to assign next
 - Least constraining value (LCV): choose <u>value</u> that will result in fewest prunes
 - Min-conflicts: choose <u>value</u> that violates the fewest constraints