Solutions to HW,#2

3. (a)
$$f(x) = x^3 + x - 1$$

 $f'(x) = 3x^2 + 1$
 $\vdots \times_{n+1} = x_n - \frac{x_n^3 + x_{n-1}}{3x_n^2 + 1}$

Using
$$X_0 = 1$$
,
 $X_1 = 0.75$
 $X_2 = 0.68604651$
 $X_3 = 0.6823396$
 $X_4 = 0.68232779$
 $X_5 = 0.6823278$

(b)
$$f(x) = x^5 - 3x + 3$$

 $f'(x) = 5x^4 - 3$
 $\vdots \quad x_{n+1} = x_n - \frac{x_n^5 - 3x_n + 3}{5x_n^4 - 3}$

Using
$$X_0 = -1$$
,
 $X_1 = -3.5$
 $X_2 = -2.8152547$
 $X_3 = -2.2835674$
 $X_4 = -1.8906346$
 $X_5 = -1.6363066$
 $X_6 = -1.5199490$
 $X_7 = -1.4966243$
 $X_8 = -1.4957725$
 $X_8 = -1.4957725$

4. (a) For
$$f(x) = x^2 - \alpha$$
,

$$f'(x) = 2x$$

$$= x_n - \frac{x_n^2 - \alpha}{2x_n}$$

$$= \frac{2x_n^2 - x_n^2 + \alpha}{2x_n}$$

$$= \frac{x_n^2 + \alpha}{2x_n}$$

$$= \frac{1}{2} \left(\frac{x_n^2 + \alpha}{x_n} + \frac{\alpha}{x_n} \right)$$

$$= \frac{1}{2} \left(\frac{x_n^2 + \alpha}{x_n} + \frac{\alpha}{x_n} \right)$$

(b)
$$x_0 = 3$$

 $x_1 = 3.1666667$
 $x_2 = 3.1622777$
 $x_3 = 3.16227777$
Absolute error = $|\sqrt{10} - 3.1622777| = 4 \times 10^{-8}$
Percentage error = $|\sqrt{10} - 3.1622777|$ 100

5. (a) To find the fixed-points of
$$f(x) = x \ln(x+1)$$
,

 $x = x \ln(x+1)$
 $x - x \ln(x+1) = 0$
 $x = x \ln(x+1)$

Now,
$$1-\sqrt{5}$$
 is not in the domain of $f(x)$.
So the only fixed-point is $x = \frac{1+\sqrt{5}}{2}$.

6.
$$x^{3}-3x-20=0$$
 $-3x=20-x^{3}$
 $x=\frac{20-x^{3}}{-3}$
 $x=\frac{x^{3}-20}{3}$

Using $x_{n+1}=\frac{x_{n}^{3}-20}{3}$, with $x_{0}=3.5$

produces
 $x_{1}=7.625$
 $x_{2}=141.1074218751$
 $x_{3}=936537.615109$,

and divergent sequence!

$$x^{3} - 3x - 20 = 0$$

$$x^{3} - 3x = 20$$

$$x(x^{2} - 3) = 20$$

$$x = \frac{20}{x^{2} - 3}$$

Using $x_{n+1} = \frac{20}{x^2-3}$ with $x_0 = 3.5$ produces:

$$X_{1} = 2.1621622$$

$$X_{2} = 11.940688$$

$$X_{3} = 0.14328697$$

$$X_{4} = -6.712606$$

$$X_{5} = 0.47552158$$

$$X_{5} = -7.2101194$$

$$X_{4} = 0.4082814$$

on apparently bounded, but oscillatory sequence. Hence it is not convergent!

$$x^{3}-3x-70=0$$
 $x^{3}=3x+20$
 $x=(3x+20)^{1/3}$
 $x=(3x+20)^{1/3}$

>> %Question 7

>> %The bisection method:

·> ·>	bisection	tion metho	a :			
	step	а	b	m	ym	bound
	1.0000	2.0000	3.0000	2.5000	-3.1771	0.5000
	2.0000	2.0000	2.5000	2.2500	0.8511	0.2500
	3.0000	2.2500	2.5000	2.3750	-1.1265	0.1250
	4.0000	2.2500	2.3750	2.3125	-0.1284	0.0625
	5.0000	2.2500	2.3125	2.2812	0.3637	0.0312
	6.0000	2.2812	2.3125	2.2969	0.1183	0.0156
	7.0000	2.2969	2.3125	2.3047	-0.0049	0.0078
	8.0000	2.2969	2.3047	2.3008	0.0567	0.0039
	9.0000	2.3008	2.3047	2.3027	0.0259	0.0020
	10.0000	2.3027	2.3047	2.3037	0.0105	0.0010
	11.0000	2.3037	2.3047	2.3042	0.0028	0.0005
	12.0000	2.3042	2.3047	2.3044	-0.0010	0.0002
	13.0000	2.3042	2.3044	2.3043	0.0009	0.0001
	14.0000	2.3043	2.3044	2.3044	-0.0001	0.0001
	15.0000	2.3043	2.3044	2.3044	0.0004	0.0000
	16.0000	2.3044	2.3044	2.3044	0.0002	0.0000
	17.0000	2.3044	2.3044	2.3044	0.0000	0.0000
	18.0000	2.3044	2.3044	2.3044	-0.0000	0.0000
	19.0000	2.3044	2.3044	2.3044	0.0000	0.0000
	20.0000	2.3044	2.3044	2.3044	-0.0000	0.0000
	21.0000	2.3044	2.3044	2.3044	0.0000	0.0000
	22.0000	2.3044	2.3044	2.3044	0.0000	0.0000
	23.0000	2.3044	2.3044	2.3044	0.0000	0.0000
	24.0000	2.3044	2.3044	2.3044	-0.0000	0.0000
	25.0000	2.3044	2.3044	2.3044	0.0000	0.0000
	26.0000	2.3044	2.3044	2.3044	-0.0000	0.0000
	27.0000	2.3044	2.3044	2.3044	0.0000	0.0000

28.0000 2.3044 2.3044 -0.0000 0.0000

The bisection method has converged in 28 iterations.

The approximate solution is 2.304377477616.

The function value at the approximation is -5.324986673827e-08.

>> %The false position method:

>> falsi(f,2,3,10^-8,100)

step	a a	b	S	У
1.0000	2.0000	3.0000	2.2753	0.4572
2.0000	2.2753	3.0000	2.3018	0.0408
3.0000	2.3018	3.0000	2.3041	0.0036
4.0000	2.3041	3.0000	2.3044	0.0003
5.0000	2.3044	3.0000	2.3044	0.0000
6.0000	2.3044	3.0000	2.3044	0.0000
7.0000	2.3044	3.0000	2.3044	0.0000
8.0000	2.3044	3.0000	2.3044	0.0000
9.0000	2.3044	3.0000	2.3044	0.0000

The regula falsi method has converged in 9 iterations.

The approximate solution is 2.304377474135.

The function value at the approximation is 1.684714590056e-09.

>> %The secant method:

>> secant(f,2,3,10^-8,100)

step	x(k-1)	x(k)	x(k+1)	y(k+1)	Dx(k+1)
1.0000	2.0000	3.0000	2.2753	0.4572	-0.7247
2.0000	3.0000	2.2753	2.3018	0.0408	0.0265
3.0000	2.2753	2.3018	2.3044	-0.0002	0.0026
4.0000	2.3018	2.3044	2.3044	0.0000	-0.0000
5.0000	2.3044	2.3044	2.3044	0.0000	0.0000

The secant method has converged in 5 iterations.

The approximate solution is 2.304377474242.

The function value at the approximation is 1.243449787580e-13.

>> %Newton's method:

>> Newton(f,inline('(89*x^2)/100 - (89*x)/10'),2.5,10^-8,100)

Newtons method has converged in 5 iterations.

The approximate solution is 2.304377474242.

The function value at the approximation is 3.552713678801e-15.

step	X	у
1.0000	2.5000	-3.1771
2.0000	2.3096	-0.0827
3.0000	2.3044	-0.0001
4.0000	2.3044	-0.0000
5.0000	2.3044	0.0000

- >> %The secant method and Newton's method converged most rapidly, followed by >> %the false position method, and then the bisection method.