$$N = \frac{m\acute{e}chantillon}{mentit\acute{e}}$$

Une mole (Na) = 6,02*10²³ entités chimiques

$$n = \frac{N}{Na}$$

 $M = matome \times Na$ avec M (g/mol), matome (gramme) et Na (mol)

Dans des conditions de température et de pression constante : 1 mol de gaz = 22,4L.

$$n = \frac{m}{M}$$
 avec n (mol), m (g) et M (g/mol)

Si espèce est liquide :
$$\rho = \frac{m}{V}$$
 et $m = \rho \times V$ alors $n = \frac{m}{M} = \frac{\rho \times V}{M}$

Gaz :
$$n = \frac{V}{Vm}$$
 avec V (L) Vm = 22,4 mol/L

Concentration en masse :
$$t = \frac{msolut\acute{e}}{Vsolution}$$

Concentration en quantité de matière :
$$C = \frac{n}{Vsolution}$$

Relation en t et C:
$$t = \frac{msolut\acute{e}}{Vsolution}$$
 or $n = \frac{m}{M}$ donc $m = n \times M$

Alors
$$t = \frac{n \times M}{V} = \frac{n}{V} \times M \ alors \ t = C \times M$$

Protocole

Dissolution	Dilution
 Peser le soluté Verser dans la fiole jaugée en rinçant la coupelle Ajouter 2/3 d'eau Agiter Compléter au trait de jauge (ménisque) Agiter 	 Verser la solution mère dans un bécher Prélever un volume d'une solution mère à l'aide d'une pipette jaugée Ajouter 2/3 d'eau Agiter Compléter jusqu'au trait de jauge (ménisque) Agiter

La quantité de matière de la solution mère PRÉLEVÉE est la même que dans la fille. Alors :

$$n$$
mère prélevéee = n fille or $C = \frac{N}{V}$ donc $n = C \times V$

Réducteur = espèce qui perd un/des électrons

Oxydant = espèce qui gagne un/des électrons

Couple oxydant/réducteur = couple formé par un oxydant et un réducteur du même élément. Ex = Fe^{2+}/Fe .

L'échange d'électron entre l'oxydant et le réducteur se nomme le $\frac{1}{2}$ équation électronique.

Red = $Ox + e^{-}$

Ou

 $Ox + e^{-} = Red$

Cette demie équation doit être équilibrée.

Pour équilibre autre que H et O : coefficient

 $O = H_2O$

 $H = H^{+}$

Charges électriques.

Réaction d'oxydo réduction : 2 réactifs de 2 couples s'échangent un même nombre d'électron.

Un subit une oxydation	L'autre une réduction
Red = Ox + e ⁻	Ox + e ⁻ = Red

L'équation d'oxydo-réduction : transfert entre les deux couples. Elle s'obtient en additionnant les deux demi équations électroniques avec les réactifs à gauche.

C4

Si la composition du système évolue au cours du temps c'est qu'il s'est produit une transformation chimique.

Les réactifs réagissent, disparaissent (totalement ou partiellement) et se transforment en produits. L'équation chimique traduit la réaction chimique entre les réactifs pendant la transformation chimique.

 $réactif + réactif \rightarrow produit + produit$

L'avancement est une grandeur notée x et mesurée en mol qui permet de suivre l'évolution des quantités de matière, des réactifs et des produits.

L'avancement dépend des coefficients stœchiométriques.

équation	2C4 H10	+13,020	8 CO2 (5)+	10.H20(5)
état initial : x = 0 mol	3 mol	4 mol	0	0
en cours de transformation : x mol	3-2n	4-132	8x	10x
a state	acure le seache	a ake	Ecur	e la até da als sorries
@ Etal final				
Afon d'édealifier on fait l'Agroble exemple: - si le butane	quels ion	daque à	garait le eadif est	prenser, lenitant:
- si le butane	C, HD	desparant	3 = 2 n	max = 0
				3 = 1,5 -1
- & le tronggène	Oz dospo	uait: 4.	- Banen	=0
ici, Oz est reactif	lemetan	t none	$= \frac{13}{13}$	0,30 mol
sin man = 1,5 mo	e			
02:4-	7/1/1		5 mol	
On wood les 2 é	quations	nathon	etigues ;	jour
Le réactif lemeton			e le just	la valene
de l'avancement	monin	cal est	la plus	getile
		4 4 4	1 1 1	

Doser une espèce chimique = déterminer sa concentration en quantité de matière dans une solution

Dosage par étalonnage : comparer une solution inconnue à d'autres solutions contenant la même espèce d'espèce connue (solutions étalons)

Ex:

- Dosage colorimétrique
- Dosage spectrophotométrique

Dosage par titrage = déterminer une concentration inconnue à partir d'une transformation chimique. Elle doit contenir l'espèce à doser.

$$aA_{(état)} + bB_{(état)} \rightarrow cC_{(état)} + dD_{(état)}$$

A = réactif titré dans la solution à doser.

B = réactif titrant dont on connait la concentration

B est versé jusqu'à ce que A ait totalement réagit.

La réaction doit être rapide et totale.

Avant l'équivalence	À l'équivalence	Après l'équivalence
A est en excès dans le bécher, B est limitant car entièrement consommé.	A et B disparaissent tous les deux	B est en excès dans le bécher et ne peut plus réagir avec A. A est limitant.

L'équivalence correspond à un changement de réactif limitant.

L'équivalence d'un titrage est atteinte lorsque on a réalisé un mélange stœchiométrique des réactifs titrés et titrants : ils sont entièrement consommés

Volume versé du réactif B pour faire disparaitre A = volume équivalent.

Obtenu en lisant la burette graduée.

	А	В	
Coefficient	a	q	
n	N₀(A)	N₀(B)	

On veut doser A, donc n₀(A) est inconnue.
$$n_0(A) = \frac{a \times n_0(B)}{b}$$

Avec
$$n_0(B) = C_b X V_{béq}$$

Concentration réactif titré :
$$Ca = \frac{n_0(A)}{V_a}$$

Incertitude :
$$u=\frac{\sigma_{n-1}}{\sqrt{n}}$$
 avec n nombre de mesures

Résultat à arrondir par excès à 1 chiffre significatif.

Incertitude possible quand:

- Au moment de déterminer le volume équivalent (appréciation du changement de couleur, erreur de lecture du volume sur la burette)
- En utilisant le verrerie (burette/ pipette jaugée mal utilisée)

Il convient d'utiliser rigoureusement le matériel lors du titrage.