5.2 ANSWERS TO EXERCISES

5.2 Exercise 1

- 1. a) $2Na(s) + 2H_2O(1) \rightarrow 2NaOH + H_2(g)$
 - b) $Mg(s) + H_2O(g) \rightarrow MgO(s) + H_2(g)$
- 2. a) $4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$
 - b) $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$
 - c) $4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$
 - d) $Si(s) + O_2(g) \rightarrow SiO_2(s)$
 - e) $4P(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$
 - f) $S(s) + O_2(g) \rightarrow SO_2(g)$

5.2 Exercise 2

- 1. a) the charges on Mg^{2+} and Al^{3+} are larger than the charge on Na^+ and Mg^{2+} and Al^{3+} are smaller in size than Na^+ so the attraction between Mg^{2+} and O^{2-} , and between Al^{3+} and O^{2-} is greater than the attraction between Na^+ and O^{2-} so more energy is needed to separate the ions
 - b) SiO₂ is giant covalent and much energy is required to break the covalent bonds between Si and O atoms
 - c) P_4O_{10} and SO_2 are simple molecular SiO_2 is giant covalent Less energy is required to break intermolecular forces between P_4O_{10} or SO_2 molecules

Than is required to break covalent bonds between Si and O atoms

- d) The P_4O_{10} molecules are larger than SO_2 molecules so the intermolecular forces between P_4O_{10} molecules are larger than the intermolecular forces between SO_2 molecules so more energy is required to separate P_4O_{10} molecules than SO_2 molecules
- 2. a) i) $Na_2O(s) + H_2O(1) \rightarrow 2NaOH(aq)$ pH 12 14 ii) $MgO(s) + H_2O(1) \rightarrow Mg(OH)_2(s)$ pH 8 - 9
 - iii) $P_4O_{10}(s) + 6H_2O(1) \rightarrow 4H_3PO_4(aq)$ pH 2 4
 - iv) $SO_2(g) + H_2O(1) \rightarrow H_2SO_3(aq)$ pH 2 4
 - v) $SO_3(g) + H_2O(1) \rightarrow H_2SO_4(aq)$ pH 1 3
 - b) i) $Na_2O(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l)$
 - ii) $MgO(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2O(l)$
 - iii) $Al_2O_3(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2O(l)$
 - c) i) $Al_2O_3(s) + 2NaOH(aq) + 3H_2O(l) \rightarrow 2NaAl(OH)_4(aq)$
 - ii) $SiO_2(s) + 2NaOH(aq) \rightarrow Na_2SiO_3(aq) + H_2O(l)$

- iii) $P_4O_{10}(s) + 12NaOH(aq) \rightarrow 4Na_3PO_4(aq) + 6H_2O(l)$
- iv) $SO_2(g) + 2NaOH(aq) \rightarrow Na_2SO_3(aq) + H_2O(1)$
- v) $SO_3(g) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + H_2O(1)$
- d) Na₂O and MgO are basic

they react with water to give solutions with pH greater than 7 and they react with acids.

These oxides are basic because the bonding is ionic.

Al₂O₃ is amphoteric

It reacts with acids and with alkalis

 Al_2O_3 is amphoteric because the bonding is intermediate between ionic and covalent

SiO₂, P₄O₁₀, SO₂ and SO₃ are acidic

They react with water to give solutions with pH less than 7

And they react with alkalis

These oxides are acidic because the bonding is covalent.