Real Variables: Problem Set VI

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set VI of Real Variables 2015 at NYU.

1 Solutions

Question 9.10.

Solution. Let $\{X_n,\rho_n\}_{n=1}^\infty$ be a countable collection of metric spaces. We now define $(\prod_{n=1}^\infty X_n,p_*)=(X,p_*)$ such that for $x,y\in X$,

$$p_*(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)}.$$

First, we can show that p_* is well-defined via comparison test with the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$, as $0 \le \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)} \le 1$ for all n.

As $p_n(x_n,y_n) \geq 0$ for all n, we have $p_*(x,y) \geq 0$ for all $x,y \in X$. If $p_*(x,y) = 0$, then $p_n(x_n,y_n) = 0$ for all n. As each p_n is a metric space $x_n = y_n$ for all n. Therefore, x = y. If x = y, then $x_n = y_n$ for all n. As each p_n is a metric space, $p_n(x_n,y_n) = 0$ for all n. Therefore, $p_*(x,y) = 0$.

Since $p_n(x_n, y_n) = p_n(y_n, x_n)$ for all n, for $x, y \in X$, we

$$p_*(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)}$$
$$= \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{p_n(y_n, x_n)}{1 + p_n(y_n, x_n)}$$
$$= p_*(y, x).$$

Let $x, y, z \in X$. By the problem 6 and the triangle inequality of each metric space X_n , we have

$$\frac{p_n(x_n, z_n)}{1 + p_n(x_n, z_n)} \le \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)} + \frac{p_n(y_n, z_n)}{1 + p_n(y_n, z_n)}$$

Question 9.20.

Solution.

Question 9.32.

Solution.