The M4RIE library for dense linear algebra over small fields with even characteristic

Martin R. Albrecht (martinralbrecht@googlemail.com)

POLSYS Team, UPMC, Paris, France

ISSAC 2012, Grenoble, France

Outline

Multiplication

Precomputation Tables

Karatsuba Multiplication

Results

Elimination

The M4RIE Library

- ▶ handles \mathbb{F}_{2^e} for $2 \le e \le 10$; $e \le 16$ planned.
- ► available under the GPL Version 2 or later (GPLv2+)
- ► provides basic arithmetic (addition, equality testing, stacking, augmenting, sub-matrices, randomisation, etc.)
- ► implements asymptotically fast multiplication (this talk)
- ► implements asymptotically fast elimination (this talk)
- ► Linux, Mac OS X (x86 and PPC), OpenSolaris, and Windows (Cygwin)

http://m4ri.sagemath.org

Representation of Elements I

Elements in $\mathbb{F}_{2^e} \cong \mathbb{F}_2[x]/f$ can be written as

$$a_0\alpha^0 + a_1\alpha^1 + \cdots + a_{e-1}\alpha^{e-1}.$$

We identify the bitstring a_0, \ldots, a_{e-1} with

- lacktriangle the element $\sum_{i=0}^{e-1} a_i lpha^i \in \mathbb{F}_{2^e}$ and
- \blacktriangleright the integer $\sum_{i=0}^{e-1} a_i 2^i$.

Representation of Elements II

In the datatype mzed_t we pack several of those bitstrings into one machine word:

$$\textit{a}_{0,0,0}, \dots, \textit{a}_{0,0,e-1}, \ \textit{a}_{0,1,0}, \dots, \textit{a}_{0,1,e-1}, \ \dots, \ \textit{a}_{0,n-1,0}, \dots, \textit{a}_{0,n-1,e-1}.$$

Additions are cheap, scalar multiplications are expensive.

Representation of Elements III

- ▶ Instead of representing matrices over \mathbb{F}_{2^e} as matrices over polynomials we may represent them as polynomials with matrix coefficients.
- ▶ For each degree we store matrices over \mathbb{F}_2 which hold the coefficients for this degree.
- ► The data type mzd_slice_t for matrices over F_{2e} internally stores e-tuples of M4RI matrices, i.e., matrices over F₂.

Additions are cheap, scalar multiplications are expensive.

Representation of Elements IV

$$A = \begin{pmatrix} \alpha^2 + 1 & \alpha \\ \alpha + 1 & 1 \end{pmatrix}$$

$$= \begin{bmatrix} \Box 101 & \Box 010 \\ \Box 011 & \Box 001 \end{bmatrix}$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \end{pmatrix}$$

Figure: 2×2 matrix over \mathbb{F}_8

Outline

Multiplication

Precomputation Tables

Karatsuba Multiplication

Results

Elimination

Outline

Multiplication

Precomputation Tables Karatsuba Multiplication

Results

Elimination

The idea I

```
Input: A - m \times n matrix
Input: B - n \times k matrix

1 begin

2 | for 0 \le i < m do

3 | for 0 \le j < n do

4 | C_j \longleftarrow C_j + A_{j,i} \times B_i;

5 | return C;
```

The idea II

```
Input: A - m \times n matrix
Input: B - n \times k matrix

1 begin

2 | for 0 \le i < m do

3 | for 0 \le j < n do

4 | C_j \longleftarrow C_j + A_{j,i} \times B_i; // cheap

5 | return C;
```

The idea III

```
Input: A - m \times n matrix
Input: B - n \times k matrix

1 begin

2 | for 0 \le i < m do

3 | for 0 \le j < n do

4 | C_j \longleftarrow C_j + A_{j,i} \times B_i; // expensive

5 | return C;
```

The idea IV

```
Input: A - m \times n matrix
Input: B - n \times k matrix

1 begin

2 | for 0 \le i < m do

3 | for 0 \le j < n do

4 | C_j \longleftarrow C_j + A_{j,i} \times B_i; // expensive

5 | return C;
```

But there are only 2^e possible multiples of B_i .

The idea V

```
1 begin
        Input: A - m \times n matrix
        Input: B - n \times k matrix
        for 0 \le i < m do
2
              for 0 < i < 2^e do
3
               T_i \leftarrow j \times B_i; // now this is expensive
4
              for 0 \le i < n do
5
               \begin{array}{c|c} x \longleftarrow A_{j,i}; \\ C_j \longleftarrow C_j + T_x; \end{array}
6
7
        return C;
8
```

 $m \cdot n \cdot k$ additions, $m \cdot 2^e \cdot k$ multiplications.

Optimisation: Computing Precomputation Tables

- Computing precomputation tables naively costs 2^e multiplications, one for each entry.
- \blacktriangleright We can reduce this to e multiplication and 2^e additions, by
 - ▶ computing the *e* products $\alpha^j \cdot B_i$ for $0 \le j < e$
 - ► and forming all linear combinations thereof
- ➤ For the second step we can use Gray codes [Gra53] similar to the "Method of the Four Russians".

 $m \cdot (n+2^e) \cdot k$ additions, $m \cdot e \cdot k$ multiplications.

Optimisation: Multiple Precomputation Tables

Now, that we have eliminated most scalar multiplications,

- ▶ the actual arithmetic is quite cheap compared to memory reads and writes and
- ► the cost of memory accesses greatly depends on where in memory data is located.
 - 1. If our tables T are in cache that is cheap,
 - 2. we have to read/write the row C_j anyway,
 - 3. accessing $A_{j,i}$ does not seem to cost must in practice.
- ► So we try to fill our cache with precomputation code tables.

In our implementation we use 8 such tables.

Strassen-Winograd [Str69] Multiplication

- fastest known pratical algorithm
- ▶ complexity: $\mathcal{O}(n^{\log_2 7})$
- ► The algorithm just described can be used as base case for small dimensions

Outline

Multiplication

Precomputation Tables

Karatsuba Multiplication

Results

Elimination

Karatsuba: the idea

- Consider \mathbb{F}_{2^2} with the primitive polynomial $f = x^2 + x + 1$.
- ▶ We want to compute $C = A \cdot B$.
- ▶ Rewrite A as $A_1x + A_0$ and B as $B_1x + B_0$.
- ► The product is

$$C = A_1 B_1 x^2 + (A_1 B_0 + A_0 B_1) x + A_0 B_0.$$

► Reduction modulo *f* gives

$$C = (A_1B_1 + A_1B_0 + A_0B_1)x + A_0B_0 + A_1B_1.$$

► This last expression can be rewritten as

$$C = ((A_1 + A_0)(B_1 + B_0) + A_0B_0)x + A_0B_0 + A_1B_1.$$

Thus this multiplication costs 3 multiplications and 4 adds over \mathbb{F}_2 .

Implementation

- ▶ We use the M4RI library to provide multiplications and additions over \mathbb{F}_2 .
- ► LinBox now implements a generalisation of this for dense matrices over \mathbb{F}_{p^e} for larger p.

Outline

Multiplication

Precomputation Tables Karatsuba Multiplication Results

Elimination

Results: Multiplication I

e	Magma	GAP	SW-NJ	SW-NJ/	[Mon05]	Bitslice	Bitslice/
	2.15-10	4.4.12		M4RI			M4RI
1	0.100s	0.244s	_	1	1	0.071s	1.0
2	1.220s	12.501s	0.630s	8.8	3	0.224s	3.1
3	2.020s	35.986s	1.480s	20.8	6	0.448s	6.3
4	5.630s	39.330s	1.644s	23.1	9	0.693s	9.7
5	94.740s	86.517s	3.766s	53.0	13	1.005s	14.2
6	89.800s	85.525s	4.339s	61.1	17	1.336s	18.8
7	82.770s	83.597s	6.627s	93.3	22	1.639s	23.1
8	104.680s	83.802s	10.170s	143.2	27	2.140s	30.1

Table: Multiplication of $4,000\times 4,000$ matrices over \mathbb{F}_{2^e} on 2.66 Ghz Intel i7

Results: Multiplication II

	CPU time in seconds								
n	e=2	e = 3	e = 4	e = 5	e = 6	e = 7	e = 8		
1000	0.005	0.011	0.016	0.024	0.033	0.041	0.051		
2000	0.032	0.067	0.100	0.149	0.209	0.245	0.309		
3000	0.102	0.206	0.312	0.453	0.651	0.753	0.951		
4000	0.230	0.468	0.687	1.013	1.475	1.653	2.061		
5000	0.489	0.919	1.322	2.042	2.784	3.168	3.931		
6000	0.872	1.798	2.681	3.895	5.189	6.375	7.885		
7000	1.311	2.682	3.962	5.758	7.549	9.450	12.153		
8000	1.873	3.869	5.611	8.145	10.862	13.617	16.615		
			CPU cycles / n ^{2.807}						
			CPI	J cycles /	/ n ^{2.807}		<u></u>		
n	e = 2	e = 3	CPI e = 4	J cycles $_{/}$ $e=5$	$\begin{array}{c} n^{2.807} \\ e = 6 \end{array}$	e = 7	e = 8		
n 1000	e = 2 0.055	e = 3 0.113				e = 7 0.414	e = 8 0.518		
ļ			e = 4	e=5	e = 6				
1000	0.055	0.113	e = 4 0.169	e = 5 0.247	e = 6 0.336	0.414	0.518		
1000 2000	0.055 0.046	0.113 0.096	e = 4 0.169 0.145	e = 5 0.247 0.215	e = 6 0.336 0.302	0.414 0.354	0.518 0.446		
1000 2000 3000	0.055 0.046 0.047	0.113 0.096 0.095	e = 4 0.169 0.145 0.144	e = 5 0.247 0.215 0.209	e = 6 0.336 0.302 0.301	0.414 0.354 0.348	0.518 0.446 0.439		
1000 2000 3000 4000	0.055 0.046 0.047 0.047	0.113 0.096 0.095 0.096	e = 4 0.169 0.145 0.144 0.141	e = 5 0.247 0.215 0.209 0.208	e = 6 0.336 0.302 0.301 0.304	0.414 0.354 0.348 0.340	0.518 0.446 0.439 0.424		
1000 2000 3000 4000 5000	0.055 0.046 0.047 0.047 0.053	0.113 0.096 0.095 0.096 0.101	e = 4 0.169 0.145 0.144 0.141 0.145	e = 5 0.247 0.215 0.209 0.208 0.224	e = 6 0.336 0.302 0.301 0.304 0.306	0.414 0.354 0.348 0.340 0.348	0.518 0.446 0.439 0.424 0.433		

Table: Multiplication on 2.66 Ghz Intel i7

Results: Multiplication III

Outline

Multiplication

Precomputation Tables Karatsuba Multiplication Results

Elimination

PLE Decomposition I

Definition (PLE)

Let A be a $m \times n$ matrix over a field K. A PLE decomposition of A is a triple of matrices P, L and E such that P is a $m \times m$ permutation matrix, L is a unit lower triangular matrix, and E is a $m \times n$ matrix in row-echelon form, and

$$A = PLE$$
.

PLE decomposition can be in-place, that is L and E are stored in A and P is stored as an m-vector.

PLE Decomposition II

From the PLE decomposition we can

- ▶ read the rank r,
- read the row rank profile (pivots),
- compute the null space,
- ightharpoonup solve y = Ax for x and
- ► compute the (reduced) row echelon form.
- C.-P. Jeannerod, C. Pernet, and A. Storjohann. Rank-profile revealing Gaussian elimination and the CUP matrix decomposition.
 - arXiv:1112.5717, 35 pages, 2012.

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ I

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ II

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ III

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ IV

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ V

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ VI

Ingredients

We need

- 1. efficient matrix-matrix products (DONE),
- 2. an efficient implementation of triangular system solving with matrices (NEXT),
- 3. an efficient PLE base case (NEXT).

Triangular System Solving

Triangular system solving with matrices also reduced to matrix-matrix multiplication, so all we need is an efficient base-case.

For that we use precomputation tables again.

```
1 begin
2 | for m > i \ge 0 do
3 | B_i \leftarrow U_{i,i}^{-1} \cdot B_i;
4 | T \leftarrow \text{MAKETABLE}(B_i);
5 | for 0 \le j < i do
6 | x \leftarrow U_{j,i};
7 | B_j \leftarrow B_j + T_x;
```

Gaussian elimination/PLE base case

```
Input: A - m \times n matrix
 1 begin
        r \leftarrow \overline{0};
        for 0 \le j < n do
 3
             for r < i < m do
                 if A_{i,i} = 0 then continue;
 5
                 rescale row i of A such that A_{i,i} = 1;
 6
                 swap the rows i and r in A;
                 T \leftarrow multiplication table for row r of A;
 8
                 for r + 1 \le k \le m do
                    x \longleftarrow A_{k,j};
10
                  A_k \longleftarrow A_k + T_x;
11
                 r \longleftarrow r + 1;
12
13
             return r;
```

Results: Reduced Row Echelon Forms I

e	Magma	GAP	LinBox	M4RIE	
	2.15-10	4.4.12	(mod <i>p</i>) 1.1.6	6b24b839a46f	
2	6.04s	162.65s	49.52s	3.31s	PLE
3	14.47s	442.52s	49.92s	5.33s	PLE
4	60.37s	502.67s	50.91s	6.33s	PLE
5	659.03s	N/A	51.20s	10.51s	PLE
6	685.46s	N/A	51.61s	13.08s	PLE
7	671.88s	N/A	53.94s	17.29s	PLE
8	840.22s	N/A	64.24s	20.25s	PLE
9	1630.38s	N/A	76.18s	260.77s	Gauss elim.
10	1631.35s	N/A	76.45s	291.30s	Gauss elim.

Table: Elimination of $10,000 \times 10,000$ matrices on 2.66Ghz i7

Results: Reduced Row Echelon Forms II

	CPU time in seconds							
n	e = 2	e = 3	e = 4	e = 5	e = 6	e = 7	e = 8	
1000	0.015	0.024	0.025	0.051	0.058	0.067	0.090	
2000	0.100	0.167	0.177	0.244	0.298	0.349	0.435	
3000	0.310	0.338	0.380	0.647	0.730	0.896	1.089	
4000	0.483	0.691	0.792	1.304	1.558	1.928	2.194	
5000	0.918	1.158	1.327	1.954	2.476	3.063	3.589	
6000	1.123	1.448	1.836	2.995	4.012	4.869	5.691	
7000	1.854	2.279	2.777	4.471	5.738	7.085	8.648	
8000	2.258	2.738	4.032	6.102	8.049	9.835	12.091	
	CPU cycles / n ^{2.807}							
n	e=2	e = 3	e = 4	e = 5	e = 6	e = 7	e = 8	
1000	0.154	0.245	0.253	0.515	0.584	0.678	0.913	
2000	0.144	0.240	0.254	0.351	0.429	0.503	0.625	
3000	0.142	0.156	0.175	0.298	0.336	0.413	0.501	
4000	0.098	0.142	0.162	0.267	0.320	0.396	0.450	
5000	0.100	0.127	0.145	0.214	0.271	0.336	0.394	
6000	0.072	0.095	0.120	0.197	0.264	0.320	0.374	
7000	0.078	0.097	0.118	0.190	0.244	0.302	0.369	
8000	0.066	0.080	0.118	0.179	0.236	0.288	0.354	

Table: Gaussian elimination on 2.66 Ghz Intel i7

Results: Reduced Row Echelon Forms III

Sensitivity to Sparsity

Figure: Gaussian elimination of $10,000\times 10,000$ matrices over \mathbb{F}_{16} on 2.67GHz Intel Core i7 M 620.

Fin

- Frank Gray.
 Pulse code communication, March 1953.
 US Patent No. 2,632,058.
- Peter L. Montgomery.

 Five, six, and seven-term Karatsuba-like formulae.

 IEEE Trans. on Computers, 53(3):362–369, 2005.
- Volker Strassen.
 Gaussian elimination is not optimal.
 Nummerische Mathematik, 13:354–256, 1969.