LECTURE X NOTES

1. Relevant Probability Background.

1.1. Convergence in probability. Last class we went through the epsilon, delta definition. A more intuitive definition is: A sequence of r.v.'s $X_n \stackrel{p}{\to} X$ if

$$P(|X_n - X| > \delta)$$
 as $n \to \infty$ for any $\delta > 0$

1.2. Convergence in distribution (weak convergence). There are many different ways to define convergence in distribution. One useful definition is a convergence in expectation: A sequence of r.v.'s $X_n \xrightarrow{d} X$ if

$$E[g(X_n)] \to E[g(X)]$$
 for any bounded and continuous g

When $X_n \in \mathbb{R}$, this is equivalent to the CDF definition:

$$Fn(t) \to F(t)$$
at all t s.t. F is continuous

This definition has difficulties in the multivariate case in which there are many ways to define CDF's.

- 1.3. Strength of convergence. Convergence in probability is stronger than convergence in distribution, meaning that $X_n \xrightarrow{p} X \Longrightarrow X_n \xrightarrow{d} X$, but the other implication does not hold. One notable case of the reverse implication is when a sequence of r.v.'s converge to a constant: $X_n \xrightarrow{d} C$.
 - 1.4. Notation.
 - 1.4.1. Big O: Stocastic boundedness: .

$$Xn = O_p(1)$$
 if $P(X_n > M) < \delta$ for any δ

In words, we can make the probability that this sequence goes above some bound M arbitrarily small by increasing n far enough.

2 STAT 201B

1.4.2. Small o: convergence in probability.

$$Xn = o_p(1)$$
 if $X_n \xrightarrow{p} X$

Furthermore,

$$X_n \sim O_p(B_n)$$
 if $\frac{X_n}{B_n} \sim O_p(1)$

and,

$$X_n \sim o_p(B_n) \text{ if } \frac{X_n}{B_n} \sim o_p(1)$$

- 1.5. Continuous Mapping Theorem. Let X_n be a sequence of r.v.'s:
- 1. $X_n \xrightarrow{p} X \implies g(X_n) \xrightarrow{p} g(X)$
- 2. $X_n \xrightarrow{d} X \implies g(X_n) \xrightarrow{d} g(X)$, for any continuous function g.
- 1.6. Slutsky's Theorem. First you consider the joint convergence of two sequences of r.v., then apply continuous mapping theorem.

Let $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} c$. Then:

- 1. $X_n + Y_n \xrightarrow{d} X + c$ 2. $X_n Y_n \xrightarrow{d} cX$
- 1.7. Thm. Delta Method. First is a description of the theorem, and then a more applicable corollary.

Let a_n be a nonneg sequence of scalars, X_n be a nonneg sequence of r.v., and c be a constant $\in \mathbb{R}$

If:

$$a_n(X_n-c) \xrightarrow{d} X$$

Then for any differentiable function g:

$$a_n(g(X_n) - g(c)) \xrightarrow{d} \nabla g(c)^T X$$

SKIPPED A BUNCH OF PROOF

1.7.1. Corollary. Let X_n be asymptotically normal:

$$\sqrt{n}(X_n - c) \xrightarrow{d} N(0, \Sigma)$$

$$\sqrt{n}(g(X_n) - g(c)) \xrightarrow{d} \nabla g(c)^T Z \text{ where Z is } N(0, \Sigma)$$
or $\xrightarrow{d} Z$ where Z is $N(0, \nabla g(c)^T \Sigma \nabla g(c))$

2. Large Sample Theory.

- 2.1. Standard IID Setup.
- 1. $\hat{\theta}_n = \delta(X_1, ..., X_n)$ is an estimator for the true θ^* . Because $\hat{\theta}_n$, depends on samples, it is random. δ is a fixed decision rule that does not depend on number of samples. (An example of δ would be "compute the MLE from the sample").
- 2. $X_i \sim IIDF_{\theta*}$
- 2.2. Consistency. Consistency is an elementary criteria for the correctness of an estimator. Technically, consistency applies to a sequence of estimators (indexed by the sample number n), though some people say consistent estimators for short-hand. Informally, consistency means that the sequence of estimators converges to the right thing; it is asymptotically unbiased. Most statistics deals with only consistent estimators, though there are notable exceptions (which ones?)
 - 2.2.1. Example: Bernoulli Trials. Setup:

$$X_i \sim Bern(p*)$$
 IID

We know the MLE:

$$\hat{p}_{mle} = \delta(X_1, ..., X_n) = \frac{1}{n} \sum X_i$$

By weak law of large numbers (WLLN), we know that the sample mean converges to the expected value of the r.v.:

$$\frac{1}{n}\sum Z_i \xrightarrow{p} p*$$

2.2.2. Example: Sample Max of Uniform. Setup:

$$X_i \sim U(0, \theta*)$$
 IID

MLE:

$$\hat{\theta}_{mle} = max(X_i)$$

$$|\hat{\theta}_{mle} - \theta *| = \theta^* - max(X_i)$$

We want to show, convergence in probability.

$$P(\theta^* - max(X_i) > \delta) \to 0$$

$$= P(\cap(X_i < \theta - \delta))$$
$$= \Pi P(X_i < \theta - \delta)$$
$$= (\frac{\theta d}{\theta})^n$$

which converges to 0.

COMMENT

- 2.3. Uniform Law of Large Numbers (ULLN.
- 2.4. Proof of the Consistency of the MLE. First, we will show that θ^* is the unique maximizer of $E_{\theta^*}[l_{X_i}(\theta)]$.

Proof:

(2.5)

$$(2.1) \qquad \text{Want to show: } E_{\theta^*}[l_{X_i}(\theta)] < E_{\theta^*}[l_{X_i}(\theta^*)] \forall \theta \neq \theta^*$$

$$(2.2) \qquad \qquad \equiv E_{\theta^*}[l_{X_i}(\theta)] - l_{X_i}(\theta^*)] < 0$$

$$(2.3) \qquad \qquad \equiv E_{\theta^*}[\log(\frac{f_{\theta}(X_i)}{f_{\theta^*}(X_i)})] < 0$$

$$(Jensen's Inequality) \qquad \qquad E_{\theta^*}[\log(\frac{f_{\theta}(X_i)}{f_{\theta^*}(X_i)})] < \log E_{\theta^*}[\frac{f_{\theta}(X_i)}{f_{\theta^*}(X_i)}]$$

$$(2.4) \qquad \qquad = \log \int_{\mathcal{X}} \frac{f_{\theta}(X_i)}{f_{\theta^*}(X_i)} f_{\theta^*}(X_i) dX_i = \log \int_{\mathcal{X}} f_{\theta}(X_i) dX_i = \log 1 = 0$$

SCRIBE 1 SCRIBE 2 SCRIBE 3 SCRIBE 3

November 3, 2015

So, $E_{\theta^*}[\log(\frac{f_{\theta}(X_i)}{f_{\theta^*}(X_i)})] < 0$, as desired.