Let $T \in \text{Hom}(V, V)$ be a linear transformation, where V is a finite-dimensional inner product space over \mathbb{F} .

Lemma 0.1

Suppose that $T = T^*$. Show that $\langle Tx, x \rangle \in \mathbb{R}$ for all $x \in V$.

Proof.

Take $x \in V$.

Since $\langle Tx, x \rangle = \langle x, T^*x \rangle$ by definition of an adjoint, then $\langle Tx, x \rangle = \langle x, Tx \rangle$ by assumption.

Moreover, $\langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$ from properties of an inner product, and thus $\langle Tx, x \rangle = \overline{\langle Tx, x \rangle}$, which means that $\langle Tx, x \rangle$ is real for all $x \in V$.

Lemma 0.2

If $\mathbb{F} = \mathbb{C}$ and $\langle Tx, x \rangle = 0$ for all $x \in V$, then $T = \mathbf{0}$.

Proof.

Let $x, y \in V$.

Note the following:

$$T(x+y) = T(x) + T(y) \tag{1}$$

$$T(x+iy) = T(x) + iT(y) \tag{2}$$

Since $\langle T(x+y), x+y \rangle = 0$, while $\langle Tx, x \rangle = 0$ and $\langle Ty, y \rangle = 0$ then

$$\langle T(x+y), x+y \rangle = \langle Tx, x+y \rangle + \langle Ty, x+y \rangle \tag{3}$$

$$= \langle Tx, x \rangle + \langle Tx, y \rangle + \langle Ty, x \rangle + \langle Ty, y \rangle \tag{4}$$

$$= \langle Tx, y \rangle + \langle Ty, x \rangle = 0 \tag{5}$$

Therefore, $\langle Tx, y \rangle = -\langle Ty, x \rangle$

Similarly,

$$\langle T(x+iy), x+iy \rangle = \langle Tx, x+iy \rangle + i \langle Ty, x+iy \rangle$$
 (6)

$$= \langle Tx, x \rangle + \langle Tx, iy \rangle + i \langle Ty, x \rangle + i(-i) \langle Ty, y \rangle \tag{7}$$

$$= \langle Tx, x \rangle - i \langle Tx, y \rangle + i \langle Ty, x \rangle + \langle Ty, y \rangle \tag{8}$$

$$= -i\langle Tx, y \rangle + i\langle Ty, x \rangle = 0 \tag{9}$$

Therefore, $\langle Tx, y \rangle = \langle Ty, x \rangle$.

Hence, by combining two equations above, we obtain that $\langle Tx, y \rangle = 0$, which holds for all $y \in V$. Note that $Tx \in V$, and thus $\langle Tx, Tx \rangle = 0$, which holds if and only if Tx = 0 for all $x \in V$. Therefore, $T = \mathbf{0}$.

Lemma 0.3

If $\mathbb{F} = \mathbb{C}$ and $\langle Tx, x \rangle \in \mathbb{R}$ for all $x \in V$, then $T = T^*$.

Proof.

Take $x \in V$.

Note that, by definition of an adjoint,

$$\langle Tx, x \rangle = \langle x, T^*x \rangle. \tag{10}$$

Moreover, since $\langle Tx, x \rangle \in \mathbb{R}$, then

$$\langle Tx, x \rangle = \overline{\langle x, Tx \rangle} = \langle x, Tx \rangle.$$
 (11)

Therefore, subtracting (11) from (10), we obtain that

$$\langle x, T^*x - Tx \rangle = \langle x, (T^* - T)x \rangle = \langle (T^* - T)^*x, x \rangle = 0.$$
 (12)

Therefore, since $\mathbb{F} = \mathbb{C}$, we get by 0.2, $(T^* - T)^* = \mathbf{0}$.

Then
$$T - T^* = \mathbf{0}$$
, and hence $T = T^*$.

Lemma 0.4

If $\mathbb{F} = \mathbb{R}$, then $\langle Tx, x \rangle = 0$ for all $x \in V$ if and only if $T^* = -T$.

Proof.

Since $\mathbb{F} = \mathbb{R}$, then $\langle Tx, x \rangle = \overline{\langle x, Tx \rangle} = \langle x, Tx \rangle$, and by definition of an adjoint, $\langle Tx, x \rangle = \langle x, T^*x \rangle$. Thus, $\langle x, Tx \rangle = \langle x, T^*x \rangle$.

Suppose first $\langle Tx, x \rangle = 0$. Then $\langle x, Tx \rangle = \langle x, T^*x \rangle = 0$, and thus, summing two equations, we obtain that, for all $x \in V$,

$$\langle x, (T+T^*)x \rangle = 0. (13)$$

Note that this holds for an arbitrary $x \in V$. In particular, (13) holds for $x = (T + T^*x)$, and hence $(T + T^*)x = 0$ for all $x \in \mathbb{R}$, which means that $T + T^* = \mathbf{0}$, and thus $T^* = -T$.

Suppose now $T^* = -T$. Therefore, $T^* + T = \mathbf{0}$, which means that for all $x \in V$, $(T^* + T)x = 0$. Therefore, since $V^{\perp} = \{0\}$, then for all $x \in V$ $\langle (T^* + T)x, x \rangle = 0$. Therefore, $\langle T^*x, x \rangle = -\langle Tx, x \rangle$.

Note that $\langle Tx, x \rangle = \langle x, T^*x \rangle$ by the derivation above, and thus $\langle Tx, x \rangle = -\langle Tx, x \rangle$, which means that $2\langle Tx, x \rangle = 0$ and hence $\langle Tx, x \rangle = 0$.