⑩ 日本国特許庁(JP)

①実用新案出願公告

@実用新案公報(Y2)

昭62-40621

@Int_Cl.4

識別記号

庁内整理番号

200公告 昭和62年(1987)10月17日

A 63 H

3/36 9/00 6822-2C 6822-2C

(全6頁)

合成樹脂製人形部材 ❷考案の名称

> ②実 顧 昭59-188595

開 昭61-163694 69公

20出 顧 昭59(1984)12月11日 ❷昭61(1986)10月9日

60考 寒 者 佐 70考案者

安太 正利

幹夫

東京都葛飾区青戸4丁目19番16号 株式会社タカラ内 東京都萬飾区青戸4丁目19番16号 株式会社タカラ内

桜 井

東京都萬飾区青戸4丁目19番16号

株式会社タカラ 勿出 願 人

弁理士 瀬川 の代 理 人 審査官 砂 Ш 克

麼

早期審查対象出願

60参考文献 特開 昭56-85382(JP, A) 実公 昭2-11755(JP, Y1)

1

砂実用新案登録請求の範囲

弾性合成樹脂から成り、且つ中間に関節部を有 するとともに、内部に芯金と合成樹脂製骨材とか ら成る下記構成の芯材を埋設したことを特徴とす る合成樹脂製人形部材。

- (4) 上記芯金は上記骨材の一方の端部においてそ の端面から一側面にかけて開口形成された保持 **満に係合されていること。**
- (ロ) 上記芯金は人形部材の中間関節部に設けら 一端にわたつて設けられていること。
- い 上記骨材の保持溝の側面開口部は上記関節部 の所定の折り曲げ方向に対し略直角をなす方向 に開口形成されていること。

考案の詳細な説明

考案の利用分野

この考案は弾性合成樹脂から成り、且つ中間に 関節部を有するとともに、内部に芯材を埋設した 合成樹脂製人形部材に関する。

従来技術とその問題点

一般に、男女児の成長過程における情操や知育 を目的とした人形の部材は塩化ビニル樹脂から構 成されている場合が多い。しかしながら、合成樹 脂単味ではその材質の硬軟により成形された部材 してしまう。このため、肘部、膝部等の関節部の 2

曲げが不自然となり、リアル性に欠け、人形にも 人間と同じく身体各部が屈伸するほか、その曲げ 状態を保持する基本的動作機能が望まれている。

- これを解決するものとして、人形部材内に芯金 5 を埋設し、芯金によつて樹脂部分の原形復元力を 抑えて成形体の関節部の曲げ状態を保持させるこ とも考えられたが、これには次のような問題があ つた。すなわち、芯金を埋設した人形部材を製造 する最も現実的な成形法として、スラツシュ成形 れ、上記骨材は中間関節部近傍から人形部材の 10 法があるが、該成形法による人形部材には次のよ うな欠点があつた。
 - (1) 人形部材は内部が中空になるので、芯金位置 がずれやすく、芯金を成形体の中心に保持でき ない。このため、曲げ伸ばしが関節部の中心か らずれて偏る傾向を避けることができない。
 - (2) 中空状の人形部材は曲げたときに曲げ部分が 不自然に変形する。
 - (3) 上記成形法では成形体は金型内から工具で挟 んで強制的に引抜いて取出すので、人形部材の 寸法が全て異なる。このため、腕、脚等のよう 20 に対をなす部材では、あらためて近似するグル ープ別に仕分けしなければならず、その作業は 煩わしい。

このため、芯金入り人形部材を射出成形法によ は曲げにくいか、曲げてもすぐに元の形状に復元 25 つて行なうことも考えられたが、この成形法を実 行するには、次のような技術的にかなり困難な問 3

顕点があつた。

- (1) 芯金を金型の中心位置に保持させることが技 術的に困難である。すなわち、射出成形法にお いては、溶融樹脂を金型内に射出する際にかな りの樹脂流圧が生じるが、この樹脂流圧に抗し 5 て芯金を同じ位置に強固に保持させるには金型 内にどのように、どのような手段によつて芯金 を固定したらよいかが問題である。仮にこれを ピン等で保持しようとすれば、技術的には可能 残つてしまうので商品価値が損なわれてしま ゥ.
- (2) 塩化ビニル樹脂は熱収縮率が大きいので、成 形後に寸法縮み(5~20%)が生じ、成形部材 率が小さいので、成形後に芯金が成形部材から 突き出る可能性がある。これをどのように解消 するかも重要な問題点である。

以上のように、芯金の保持、安全性等、芯とな 出成形法によつて芯金入り人形部材を成形するこ とは不可能であると考えられていた。

さらに、芯金入り人形部材には上述のような成 形上の問題点のほか、後加工の良し悪しに拘ら ず、芯金の端部が人形部材から突出する危険が常 25 に内在している。玩具の安全性は製造メーカーに とつて至上の課題であるから、このような危険は 確実に回避されなければならない。

考宏の目的

埋設するとともに、芯材の製作も楽な合成樹脂製 人形部材を提供することをその目的とする。 考案の構成

上記目的を達成するため、この考案に係る合成 樹脂製人形部材は、弾性合成樹脂から成り、且つ 35 を採用し、その一端4は屈曲し、ほぼ中間部に蛇 中間に関節部を有するとともに、内部に芯金と合 成樹脂骨材とから成る下記構成の芯材を埋設した ことを特徴とする。

- (4) 上記芯金は上記骨材の一方の端部においてそ 溝に係合されていること。
- (ロ) 上記芯金は人形部材の中間関節部に設けら れ、上記骨材は中間関節部近傍から人形部材の 一端にわたつて設けられていること。

17 上記骨材の保持構の側面開口部は上記関節部 の所定の折り曲げ方向に対し略直角をなす方向 に開口形成されていること。

考案の作用、効果

上述のように、この考案に係る合成樹脂製人形 部材によれば、まず、芯材は芯金と合成樹脂製骨 材とからなり、骨材は人形部材の端部に設けられ ているので、上記構成の芯材を合成樹脂製人形部 材の内部に埋設した場合、その端部から芯金が突 であるが、成形後に人形部材にピンの抜き穴が 10 出することがなく、したがつて非常に安全であ

次に、芯金は骨材の一方の端面から一側面にわ たつてかけて開口形成された保持溝に係合される 構成であるから、芯材の製作にあたつては、芯金 の寸法がバラつく。しかも、金属製芯金は収縮 15 と骨材とを個別に形成しておき、芯金を骨材の保 持溝に係合すればよく、低いコストで楽に製作す ることができる。

さらに、骨材の保持溝の側面開口部の開口方向 と人形部材の関節部の所定の折り曲げ方向とは略 る部材に基本的に困難な点が多いため、従来は射 20 直角をなすように形成されているので、関節部を 折り曲げたときに芯金が保持溝から外れることが 防止され、人形部材の安全性を永く維持すること ができる。

実施例

以下、図面とともにこの考案の実施例を人形の 脚部材の例について説明する。

図において、符号Aは人形脚部材である。この 脚部材Aは主に弾性を有する塩化ビニル樹脂から 成り、内部に芯材1を埋設している。芯材1は第 この考案は上記問題点を解消し、安全な芯材を 30 2図に示すように、金属製芯金2と合成樹脂製骨 材3とを接続して成る複合芯材である。

> 芯金2はこの例においてはスプリングバツクが 小さく、機械的強度が高く、熱伝導性の良いもの が好ましく、この例では特殊アルミ合金製のもの 行部5が形成され、さらには他端部には鈎形折曲 げ部6が形成されている。

骨材 3 は塩化ビニル樹脂よりも熱変形温度が高 く、しかも機械的強度に優れるものが好ましく、 の端面から一側面にかけて開口形成された保持 40 この例ではポリアセタール樹脂によつて射出成形 されたものを採用した。骨材3は芯金保持部7と 芯部 8 とから構成されている。芯金保持部 7 には 上面及び一方の側面に開口する芯金保持溝 9 が形 成されている。 骸保持隣9の側面開口部9 a の相

5

対する内壁には互いの間隔が芯金2の径よりもや や小さくなるように設定された突片10,10が 向きあいに設けられている。また、同じ内壁は下 部において連結片12によつて連結され、該連結 片12によつて保持隣9の下端部には芯金2の折 5 曲げ部6を受ける受孔13が開口形成されてい る。この受孔13の大きさは芯金2の径よりもや や大きい。そして、保持溝9における上記受孔1 3に対する反対側は開放されている。芯部 8 は板 状に形成され、その上部両側には補強リブ14,10 れにより、芯材1は成形空間Sの中心位置に保持 14が形成されているとともに、下部には薄肉の 折り取り部15が形成されている。また、芯金保 持部7及び芯部8の相対する両側には外側方に各 一対の突起状の間隔保持突部 1 6 , 1 6 が突出形 成されている。これらの保持突部は必ずしも一対 15 り曲げ方向とは略直角をなすようにセットする。 ずつ設ける必要はなく、また同じ方向を向く必要 もない。

上記芯金2と骨材3と連結部材3aから芯材1 を構成するときは、第2図に示すように、芯金2 の下端の鈎形折曲げ部6を骨材3の保持溝9の側20下端部において金型20,21に保持され、しか 面開口部 9 a から斜めに挿入し、さらに、向きあ い突片10,10の間から保持溝9内にこじ入れ ると、該芯金2は連結片12に当接する部分を中 心に回動して向きあい突片10,10間の間隔は 骨材3の弾性によつて拡開するため、芯金2は保 25 つてこれを緩和するため、他の部分に対する樹脂 持溝9内に保持されるとともに、同時にその下端 の折曲げ部6は骨材3の受孔13内に嵌入され る。これにより、保持溝りの上方開口部から抜け 出すことはなく、また、保持溝9内の芯金2は側 面開口部において向きあい突片10,10の抵抗 30 a,21aとの間隔を良好に保持する。したがつ を受けるから、簡単には外れない。このように、 芯材1は芯金2と骨材3とを個別に形成してお き、芯金2を骨材3の保持溝9に係合することに よつて組立てられるので、低いコストで楽に製作 することができる。これに対し、従来も例えば特 35 は保持突部 1 6 · 1 6 と金型内壁 2 0 a · 2 1 a 開昭56-853382号公報に示されるように、芯金と 合成樹脂製骨材とを一体に成形してなる芯材が提 案されていたが、この場合は大きな金型を必要と することになるため、コストが高くなる欠点があ

次に、上記構成の芯材1を有する脚部材Aは、 射出成形によつて成形することができる。

まず、第4図に示すように、射出成形用金型2 0,21には人形の脚部材用成形空間Sが形成さ 6

れているとともに、上端部には一方の金型20に 差込み孔22が形成され、下端部には両金型2 B. 21の合せ目に挟持部23が形成されてい

次に、上記芯材1を金型20,21にセットす る場合は、芯金2の端部4を上記金型20の内壁 20 aに開口形成した差込み孔22に差込み保持 する一方、骨材3の芯部8の先端8aを金型2 0.21の合せ目挟持部23間に挟持させる。こ 固定される。芯材 1 のセットに要する時間は5秒 程度に行なうことができ、作業は非常に楽であ る。なお、このとき骨材3の保持溝9の側面開口 部9aの開口方向と人形部材の関節部の所定の折

次に、通常の射出成形法に従つて上記金型2 0, 2 1内に170°~180℃の溶融塩化ビニル樹脂 を射出する。その際、成形空間S内の芯材1には かなりの樹脂流圧が加わる。しかし、芯材1は上 6樹脂流入側の端部屈曲部4は樹脂流に対して直 角に保持されているため、流圧に十分に抗し得 る。しかも芯金2には蛇行部5が形成されている ため、この蛇行部5が樹脂流圧に対する抵抗とな 流圧は緩和される。

また、骨材3に作用する樹脂流圧に対しては、 間隔保持突部16,16の先端が金型内壁20 a. 21 aに接触して常に骨材3と金型内壁20 て、芯材1の位置が樹脂流圧によつてほとんどず れることはない。

間隔保持突部 1 6 , 1 6 の金型内壁 2 0 a , 2 1 a に対する接触は点接触であるため、溶融樹脂 との間にもまわりこむ。また、骨材3は成形温度 が高いので溶融樹脂の注入によつてなんら変形し ない。さらに、芯材1のうち芯金2は熱伝導性の 良い特殊アルミ合金であるから、まわりの溶融樹 40 脂との間に温度差が生じない。同様に、骨材 3 は 熱変形温度が高いので溶融樹脂の注入によつてな んら変形しない。

上記射出成形工程に要する時間は50~60秒であ る。

次に、成形終了後、金型20,21を外して人 形部材を取出す。これによつて内部に芯材 1 が埋 設された人形の脚部材25を得ることができる。 その際、脚部材25の一端屈曲部4から芯金2の 端部が突出するとともに、脚先端側の端部から骨 5 材3の先端8aが突出している。芯金2の先端4 は人形組立時に図示しない胴体部に連結する際、 **鼤胴体部内に納まり、外部に露出しないので、切** 断処理をしなくても安全である。骨材先端部8a は脚部材25のゲートカット時に、折り取り部1 10 内部から折り取ることができるから、人形部材は 5から折り取ればよい。折り取り部15は脚部材 25の内部に設けられているので、折り取られた 残部の先端は人形部材25の内部に残り、外部に 突出しないので、安全である。この成形部材取出 し及び骨材処理工程は10秒もあれば十分に行なう 15 し能力が非常に高い。一秒間隔で90度の曲げテス ことができる。

ところで、成形終了後は脚部材25における塩 化ビニル樹脂は収縮する。しかしながら、脚部材 25のうち骨材3が埋設されている部分は樹脂部 めに、その分相対的に樹脂分が少なくなり、収縮 度合も小さくなるほか、芯金保持部7と芯部8と の間には脚部材 2 5 の長手方向に対して垂直な壁 が形成され、この壁が樹脂の収縮を阻止するの で、この部分の長手方向における樹脂の収縮は最 25 成り、上述の連結部30 a と同じ外形の簡部31 小限に抑えられる。また、脚部材25のうち芯金 2が埋設されている部分は、芯金2のほぼ中間部 に脚部材25の長手方向に対して蛇行する蛇行部 5が形成され、該蛇行部5がこの方向における樹 脂収縮を抑える。さらに、連結部30aの内側に 30 る芯金挿通孔36が形成されている。 凹部29を形成しておけば、この部分には樹脂材 がないので、収縮が防止される。したがつて、脚 部材25の寸法精度を非常に高くすることができ る。加えて、芯金2の先端折曲げ部6と骨材3の 受孔13との間にクリアランスが形成されている 35 連結部材30を装着する。そして、一方の金型2 から、成形時の成形熱による熱伝導率、熱収縮率 の違いによる歪みが吸収され、脚部材 2 5 に割れ 等が生じるおそれがない。

このようにして得られた脚部材25には芯金2 が埋設されているので、これを曲げることによつ 40 て芯材1の芯金2も曲がるが、芯金2は脚部材2 5の中心に保持されているため、曲げ、戻し方向 が不自然に偏らない。そして、骨材3の保持隣9 の側面開口部9 a の開口方向と人形部材の関節部

の所定の折り曲げ方向とは略直角をなすように形 成されているので、関節部を折り曲げたときに芯 金2が保持溝9から外れることが防止され、人形 部材の安全性を永く維持することができる。

また、差込み孔22内に差込まれた芯材1の芯 金側端部4は脚部材基部の連結部30mから突出 するが、眩端部は人形胴体部に取付け時に퇂胴体 部内に納められてしまうから、安全性になんら支 障は生じない。骨材8の突出端部8 a は人形部材 全く安全である。

芯材1は芯金2として特殊アルミ合金を採用 し、しかも芯金2先端の屈曲部を骨材3の受孔1 3に引掛ける構成にしているため、繰返し曲げ戻 トの結果、従来のスチール芯では10~15回で使用 不能となつたが、この実施例の芯金2ではその10 ~12倍の曲げ性能が確かめられた。

なお、上記芯材1の芯金側端部には予め第2図 分に対して骨材3の部分の占める割合が大きいた 20 に示すような脚の基部に設けられる連結部を構成 する連結部材30を装着しておいてもよい。

> 連結部材30は人形胴体部に嵌込んで脚部材A を回動自在に連結するための連結部を構成する部 材で、上記骨材3と同じポリアセタール樹脂から と板状部32とを備え、板状部32には芯金保持 隣33及び保持片34と間隔保持突部35とが形 成されている。また、簡部31の中心には該簡部 31端において閉じ、板状部32の外側に開口す

> 上記構成の芯材1を金型20,21の成形空間 S内にセットする前に、挿通孔36に芯金2の屈 曲端部4を挿通し、芯金上部を板状部32の保持 溝33及び保持片34に保持させることによつて 0には連結部材30の差込み部(図示せず)を形 成しておき、芯材セツト時に上記連結部材30を 差込み部に差込めばよい。この場合、連結部材3 0は間隔保持突部35によつても保持される。

そして、このようにして成形された人形部材は 第5図に示されるように、芯金側端部4は連結部 材30に埋設されているので、外部に露出するこ とがなく、たとえ人形が破損して脚部材の基部が 外部に露出しても安全である。

なお、上述の実施例は人形の脚部材に関するも のであるが、腕、首付き胴体部材等の人形部材に も適用することができる。

図面の簡単な説明

部、第2図は上記人形部材の芯材の斜視図、第3 図は上記芯材の組立説明図、第4図は上記芯材を 金型にセットした状態を示す金型の縦断面図であ り、第5図a, bは他の人形部材の側面図であ 10

符号、S……成形空間、1……芯材、2……芯 金、3 ……骨材、4 ……屈曲部、5 ……蛇行部、 6 ……折曲げ部、7 ……芯金保持部、8 ……芯 第1図a, bはこの考案に係る人形部材の側面 5 部、9……保持溝、13……受孔、15……折り 取り部、16……間隔保持突部、20.21…… 金型、22……差込み孔、23……挟持部、30 ……連結部材。

第1図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потигр.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.