Wykład - Analiza matematyczna II

(nieoficjalny) Skrypt wykładu Krzysztofa Michalika

17 kwietnia 2023

Spis treści

	0.1 Mały wstęp	2
1	Całki niewłaściwe I rodzaju	2
	Twierdzenie(kryterium porównawcze)	4
	Twierdzenie(kryterium ilorazowe)	6
	Wartość główna całki niewłaściwej I rodzaju	8
2	Całki niewłaściwe II rodzaju	9
	Zbieżność bezwzględna całek niewłaściwych	.1
3	Szeregi liczbowe 1	2
	Obliczanie sum szeregów	4
	Własności szeregów zbieżnych	.5
	Popularne kryteria zbieżności szeregów	7
	Twierdzenie (kryterium porównawcze)	8
	Twierdzenie (kryterium ilorazowe)	20
		21
		22
		23
		24
		26
4	Szeregi potęgowe 2	8
	9 1 1 0	29
	9 - 19 1	29
	v i	32
5	Funkcje wielu zmiennych 3	9
	· · · · · · · · · · · · · · · · · · ·	13
		4
	· · · · · · · · · · · · · · · · · · ·	15
		16
	e, e · ·	18
		[9

Ciągłość funkcji wielu zmiennych .														51
Ekstrema funkcji dwóch zmiennych												 		52

0.1 Mały wstęp

Skrypt jest w większości przepisywany ze zdjęć zrobionych w wordzie z dysku ale w przypadku jakichś braków wykorzystywana jest prezka dr. Michalika.

W skrypcie mogą pojawić się błędy stąd najlepiej przed nauką pobrać z dysku najbardziej aktualną wersję zamieszczoną w folderze

Semestr II -> Analiza Matematyczna2 -> Michalik wykłady -> Skrypt_Wykład.pdf.

Data którą można zobaczyć na samym górze jest datą ostatniej aktualizacji skryptu.

Wszelkie uwagi, błędy (na pewno jakieś są) można pisać priv na discordzie :

Tomasz Strzelba#1454

Miłej nauki!

1 Całki niewłaściwe I rodzaju

Ustalamy liczbę $a \in \mathbb{R}$. Niech f będzie funkcją całkowalną na każdym przedziale w postaci [a,T] gdzie T>a. Definiujemy całkę niewłaściwą pierwszego rodzaju z f na półprostej $[a,\infty]$ jako

$$\int_{a}^{\infty} f(x) dx = \lim_{T \to \infty} \int_{a}^{T} f(x) dx$$
, gdy granica po prawej stronie istnieje

Analogicznie, gdy f jest całkowalna na każdym przedziale postaci [T, b], gdzie T < b. Definiujemy całkę niewłaściwą pierwszego rodzaju z f na półprostej $[-\infty, b]$ jako

$$\int\limits_{-\infty}^b f(x)\,dx = \lim_{T\to -\infty}\int\limits_T^b f(x)\,dx$$
, gdy granica po prawej stronie istnieje

Terminologia dotycząca takich całek jest taka, jak dla ciągów. Są 3 przypadki :

- 1. Granica z prawej strony jest liczbą. Wtedy mówimy, że całka jest zbieżna.
- 2. Granica z prawej strony jest równa ∞ lub $-\infty$. Wtedy mówimy, że całka jest <u>rozbieżna</u> (odpowiednio do ∞ lub $-\infty$).
- 3. Granica z prawej strony nie istnieje. Wtedy mówimy, że całka jest <u>rozbieżna</u>.

Analogicznie dla
$$\int_{\infty}^{b} f(x) dx$$

Przykłady :

- --*y* -----*y* -

$$\int_{0}^{\infty} \sin x \, dx = \lim_{T \to \infty} \int_{0}^{T} \sin x \, dx = \lim_{T \to \infty} [-\cos x]_{0}^{T} = \lim_{T \to \infty} (-\cos T - (-\cos 0)) = \lim_{T \to \infty} (1 - \cos T)$$

Granica ta nie istnieje więc całka jest rozbieżna.

$$\int\limits_{-\infty}^{0} 2^x \, dx = \lim_{T \to -\infty} \int\limits_{T}^{0} 2^x \, dx = \lim_{T \to -\infty} \left[\frac{2^x}{\ln 2} \right]_{T}^{0} = \lim_{T \to -\infty} \left(\frac{1}{\ln 2} - \frac{2^T}{\ln 2} \right) = \frac{1}{\ln 2}$$

Całka jest zbieżna do $\frac{1}{\ln 2}$.

Pozostaje przypadek p = 1. Wtedy

$$\int \frac{1}{x} \, dx = \ln\lvert x \rvert + C, \quad \int\limits_a^T \frac{1}{x} \, dx = [\ln\lvert x \rvert]_a^T = \ln\lvert T \rvert - \ln\lvert a \rvert, \quad \int\limits_a^\infty \frac{1}{x} \, dx = \lim_{T \to \infty} (\ln\lvert T \rvert - \ln\lvert a \rvert) = \infty$$

Udowodniliśmy zatem ważny wynik

Twierdzenie

Gdy a > 0 to całka $\int_{a}^{\infty} \frac{1}{x^{p}} dx$ jest skończona dla p > 1 oraz nieskończona dla $p \leqslant 1$.

Podobnie można łatwo pokazać poniższy wynik

Twierdzenie

Gdy $a \in \mathbb{R}$ i A>0 to całka $\int\limits_a^\infty A^x\,dx$ jest skończona dla 0< A<1 oraz nieskończona dla $A\geqslant 1$

Gdy
$$\int f(x) dx = F(x) + C$$
 to

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} F(T) - \lim_{S \to \infty} F(S)$$

przy czym przynajmniej jedna z granic z prawej strony nie istnieje lub zachodzi przypadek $\infty - \infty$ to $\int_{-\infty}^{\infty} f(x) dx$ jest rozbieżna, a w pozostałych przypadkach całka ma wartość wynikającą z arytmetyki granic.

W przypadku kiedy całki nie da się obliczyć w sposób dokładny można to zrobić w sposób przybliżony, pod warunkiem , że wiemy, że jest zbieżna.

Kryteria zbieżności to twierdzenia opisujące warunki dostateczne zbieżności lub rozbieżności danej klasy całek. Najczęściej mają postać implikacji ale NIE równoważności.

Oznacza to zwykle własności postaci

warunek zachodzi ⇒ całka jest zbieżna/rozbieżna

warunek nie zachodzi ⇒ nic nie wiemy o zbieżności/rozbieżności całki

Popularne kryteria zbieżności całek z ∞

0. Warunek konieczny zbieżności całki

Jeżeli całka $\int f(x) \, dx$ jest zbieżna to $\lim_{x \to \infty} f(x)$ jest równa 0 lub nie istnieje.

Transpozycja twierdzenia daje następujący wynik:

Jeżeli $\lim_{x\to\infty} f(x)$ istnieje i jest różna od 0 to całka $\int f(x) \, dx$ nie jest zbieżna, przy czym

• gdy
$$\lim_{x \to \infty} f(x) > 0$$
 to $\int_{a}^{\infty} f(x) dx = \infty$,

• gdy
$$\lim_{x \to \infty} f(x) < 0$$
 to $\int_{a}^{\infty} f(x) dx = -\infty$,

Uwaga. Warunek konieczny to tylko implikacja! Jeżeli $\lim_{x\to\infty} f(x)$ jest równa 0 lub nie istnieje to jeszcze NIC NIE WIEMY o całce,

Na przykład całki $\int_{-\infty}^{\infty} \frac{1}{x^p} dx$, a > 0, mają $\lim_{x \to \infty} \frac{1}{x^p} = 0$ dla wszystkich p > 0 ale niektóre z tych całek są zbieżne, a niektóre rozbieżne

Ważna klasa całek - całki z funkcji nieujemnych

$$\int_{a}^{\infty} f(x) \, dx, \ f \geqslant 0$$

Wtedy $\int_a^t f(x) dx = F(T) - F(a)$ jest funkcją niemalejącą zmiennej T zatem całka $\int_a^\infty f(x) dx = \int_a^\infty f(x) dx$ $\lim_{T\to\infty}\int\limits_{-\infty}^T f(x)\,dx$ zawsze istnieje. Może być to liczba lub
 $\infty.$

Zatem brak zbieżności takich całek oznacza rozbieżność do ∞ .

Dla całek z funkcji nieujemnych mamy dwa kolejne kryteria zbieżności.

- 1. Kryterium porównawcze
- 2. Kryterium ilorazowe

Twierdzenie (kryterium porównawcze)

Dane są dwie całki $\int_{-\infty}^{\infty} f(x) dx$ oraz $\int_{-\infty}^{\infty} g(x) dx$. Wtedy zachodzą następujące własności

4

- 1. (Przypadek zbieżności). Gdy $\forall x \geqslant x_0 \geqslant a \ 0 \leqslant f(x) \leqslant g(x)$ i $\int\limits_a^\infty g(x)\,dx$ jest zbieżna to $\int\limits_a^\infty f(x)\,dx$ też jest zbieżna. Ponadto $0 \leqslant \int\limits_a^\infty f(x)\,dx \leqslant \int\limits_a^\infty g(x)\,dx$
- 2. (Przypadek rozbieżności) Gdy $\forall x \geqslant x_0 \geqslant a \ 0 \leqslant g(x) \leqslant f(x)$ i $\int_a^\infty g(x) \, dx$ jest rozbieżna (więc równa ∞) to $\int_a^\infty f(x) \, dx$ też jest rozbieżna (do ∞).
- 3. (Przypadek wątpliwy) Gdy $\forall x \ge x_0 \ge a \ 0 \le f(x) \le g(x)$ ale $\int_a^\infty g(x) \, dx$ jest rozbieżna to NIC NIE WIEMY o zbieżności $\int_a^\infty f(x) \, dx$.
- 4. (Przypadek wątpliwy) Gdy $\forall x \ge x_0 \ge a \ 0 \le g(x) \le f(x)$ ale $\int_a^\infty g(x) \, dx$ jest zbieżna to NIC NIE WIEMY o zbieżności $\int_a^\infty f(x) \, dx$.

Uwagi:

- $\int_{a}^{\infty} f(x) dx$ jest całką z zadania, $\int_{a}^{\infty} g(x) dx$ tworzymy sami.
- Porównujemy najczęściej z całkami $\int_a^\infty A^x\,dx$ lub $\int_a^\infty \frac{1}{x^p}\,dx$. Wtedy f często ma postać ułamków i możemy spróbować wziąć g jako :

C - iloraz najwyższych potęg z licznika i mianownika f

- ullet Trzeba uważać aby nierówność między f i g była prawdziwa i nie zapomnieć przypadku wątpliwego, bo wtedy **trzeba zaczynać od nowa**.
- ullet Warto sprawdzić opisany wyżej iloraz najwyższych potęg i na tej podstawie przewidzieć czy chcemy udowodnić zbieżność czy rozbieżność. To pomaga skonstruować odpowiednią nierówność między f i g.

Popularny błąd - odpowiedź na podstawie przypadku wątpliwego

Na przykład dla całki $\int_{1}^{\infty} \frac{1}{x + \sqrt{x}} dx$:

"Mamy $0 \leqslant \frac{1}{x+\sqrt{x}} \leqslant \frac{1}{x}$ i całka $\int\limits_{1}^{\infty} \frac{1}{x} \, dx$ jest rozbieżna zatem całka $\int\limits_{1}^{\infty} \frac{1}{x+\sqrt{x}} \, dx$ jest rozbieżna."

GAME OVER... To jest przypadek nr 3 (wątpliwy)

Przykład

$$\int_{1}^{\infty} \frac{2x-3}{x^3-1} \, dx$$

Przewidywanie zbieżności/rozbieżności Najwyższe potęgi sugerują, że mając

$$\frac{x}{x^3} = \frac{1}{x^2}$$
, a $\int_{4}^{\infty} \frac{1}{x^2} dx < \infty$, bo $2 > 1$

Dowodzimy zbieżność. Trzeba mieć

$$0 \leqslant \frac{2x-3}{x^3-1} \leqslant g(x) = C \cdot \frac{x}{x^3}$$

Jak w twierdzeniu o 3 ciągach

$$0 \leqslant \frac{2x}{x^3 - \frac{1}{2}x^3} = 4 \cdot \frac{x}{x^3} = 4 \cdot \frac{1}{x^2}$$
$$\int_{4}^{\infty} \frac{4}{x^2} dx = 4 \int_{4}^{\infty} \frac{1}{x^2} dx < \infty \quad \left(\frac{1}{2}x^3 > 1 \text{ dla } x \geqslant 4\right)$$

Twierdzenie(kryterium ilorazowe)

Dane są dwie całki $\int_{a}^{\infty} f(x) dx$ oraz $\int_{a}^{\infty} g(x) dx$. Ponadto

$$\forall x \geqslant x_0 \geqslant a \quad f(x), g(x) > 0$$

Jeżeli istnieje granica $\lim_{x\to\infty}\frac{f(x)}{g(x)}$ i jest <u>liczbą dodatnią</u> to wtedy obie całki są zbieżne albo obie rozbieżne do ∞ .

Uwagi

- Funkcję g tworzymy podobnie jak dla kryterium porównawczego
- Nie ma problemu z nierównościami :) ale za to trzeba umieć liczyć granice
- Granica nie może być ani 0 ani ∞ : $\lim_{x\to\infty} \frac{f(x)}{g(x)} \in (0,\infty)$
- Rozwiązanie **musi zawierać wniosek** "granica ilorazu jest liczbą dodatnią więc obie całki są zbieżne lub obie rozbieżne" bez tego będzie niepełne.

6

• Kryterium zwykle jest wygodniejsze niż porównawcze ale są przykłady, które "idą" z porównawczego ale nie z ilorazowego, bo granica ilorazu nie istnieje

Np.
$$\int_{1}^{\infty} \frac{2 + \sin x}{x} \, dx$$

Przykłady

Poprzedni przykład raz jeszcze

$$\int_{4}^{\infty} \frac{2x - 3}{x^3 - 1} dx$$

$$f(x) = \frac{2x - 3}{x^3 - 1}, \quad x \geqslant 4$$

$$g(x) = \frac{x}{x^3} = \frac{1}{x^2} > 0$$

$$\lim_{x \to \infty} = \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^2(2x - 3)}{x^3 - 1} = 2$$

Obie całki zbieżne lub obie rozbieżne do ∞

Przykłady o postaci funkcji złożonej $\int\limits_a^\infty f(g(x))\,dx$ gdzie $\lim\limits_{x\to\infty}g(x)=0^+$ oraz $\lim\limits_{x\to0^+}f(x)=0^+$

Nową całką jest całka z funkcji wewnętrznej $\int_{a}^{\infty} g(x) dx$

Liczymy granicę

$$\lim_{x \to \infty} \frac{f(g(x))}{g(x)} = \lim_{t = g(x) \to 0^+} \frac{f(t)}{t} \begin{bmatrix} 0\\0 \end{bmatrix}$$

przy użyciu granic podstawowych lub reguły de l'Hospitala.

Na przykład
$$\int\limits_{1}^{\infty} \left(2^{\frac{1}{\sqrt{x}}}-1\right)\,dx$$

$$\int\limits_{1}^{\infty} \left(2^{\frac{1}{\sqrt{x}}}-1\right)\,dx$$

$$g(x)=\frac{1}{\sqrt{x}}>0$$

$$f(x)=2^{x}-1>0$$

$$\lim_{x\to\infty}\frac{2^{\frac{1}{\sqrt{x}}}-1}{\frac{1}{t\sqrt{x}}}=\lim_{t\to 0^{+}}\frac{2^{t}-1}{t}\left[\frac{0}{0}\right]=\ln 2\in(0,\infty)$$

Obie całki zbieżne lub obie rozbieżne

$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx = \int_{1}^{\infty} \frac{1}{x^{\frac{1}{2}}} dx = \infty \quad \text{bo} \quad \frac{1}{2} \leqslant 1$$

Wartość główna całki niewłaściwej I rodzaju

Całka $\int_{-\infty}^{\infty} x \, dx$ jest rozbiezna, gdyż jako suma całek prowadzi do symbolu $\infty - \infty$:

$$\int_{-\infty}^{\infty} x \, dx = \int_{-\infty}^{0} x \, dx + \int_{0}^{\infty} x \, dx = -\infty + \infty$$

Intuicyjnie oczekwialibyśmy jednak, że jest ona równa 0 - funkcja podcałkowa jest nieparzysta czyli mamy "tyle funkcji na + co na -", a więc wszystko powinno się wzajemnie zrównoważyć. Aby taka całka miała sens trzeba nieco zmodyfikować jej definicję i wprowadzić pojęcie wartości głównej całki niewłaściwej (obustronnej).

Definicja. Wartość główna całki $\int_{-\infty}^{\infty} f(x) dx$ to wielkość

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} \int_{-T}^{T} f(x) dx$$

o ile powyższa granica istnieje.

Oznacza to, że przybliżamy całkę po \mathbb{R} całkami po przedziale symetrycznym względem 0. P.V. jest skrótem od angielskiego "Principal Value".

Na przykład

P.V.
$$\int_{-\infty}^{\infty} x \, dx = \lim_{T \to \infty} \int_{-T}^{T} x \, dx = \lim_{T \to \infty} 0 = 0$$

Zauważmy, że gdy $\int f(x) dx = F(x) + C$ to

$$P.V. \int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} \int_{-T}^{T} f(x) dx = \lim_{T \to \infty} (F(T) - F(-T))$$

Jeżeli teraz ma sens wyrażenie $\lim_{T\to\infty}F(T)-\lim_{T\to\infty}F(-T)$ to biorąc $S=-T\to-\infty$ dostajemy

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} (F(T) - F(-T)) = \lim_{T \to \infty} F(T) - \lim_{T \to \infty} F(-T) =$$
$$= \lim_{T \to \infty} F(T) - \lim_{S \to -\infty} F(S) = \int_{-\infty}^{\infty} f(x) dx$$

Udowodniliśmy zatem poniższe twierdzenie.

Jeżeli całka $\int_{-\infty}^{\infty} f(x) dx$ istnieje w zwykłym sensie (jako suma odpowiednich całek jednostronnych jest liegba lub jedna z pieskończoności) to również jej wartość główna jetnieje i jest równa

nych jest liczbą lub jedną z nieskończoności) to również jej wartość główna istnieje i jest równa tej całce.

Natomiast może się zdarzyć, że wartość główna całki istnieje ale sama całka jest rozbieżna (był przykład).

W szczególności gdy funkcja jest na \mathbb{R} ciągła i nieparzysta to wartość główna całki z tej funkcji jest zawsze 0 niezależnie od zbieżności samej całki.

2 Całki niewłaściwe II rodzaju

Ustalamy liczby $a, b \in \mathbb{R}$, a < b. Niech f będzie funkcją całkowalną na każdym przedziale postaci [a, T], gdzie a < T < b. Definiujemy <u>całkę niewłaściwą drugiego rodzaju</u> z f na przedziale [a, b) jako

$$\int_{a}^{b} f(x) dx = \lim_{T \to b^{+}} \int_{a}^{T} f(x) dx, \quad \text{gdy granica po prawej stronie istnieje.}$$

Analogicznie, gdy f jest całkowalna na każdym przedziale postaci [T, b], gdzie a < T < b. to definiujemy całkę niewłaściwą pierwszego rodzaju z f na przedziale (a, b] jako

$$\int_{a}^{b} f(x) dx = \lim_{T \to a^{+}} \int_{T}^{b} f(x) dx, \quad \text{gdy granica po prawej stronie istnieje.}$$

Terminologia dotycząca takich całek jest taka, jak dla całek niewłaściwych 1 rodzaju. Są 3 przypadki :

- 1. Granica z prawej strony jest liczbą. Wtedy całka jest zbieżna (do tej granicy).
- 2. Granica z prawej strony jest równa ∞ lub $-\infty$. Wtedy całka jest <u>rozbieżna</u> do ∞ lub $-\infty$.
- 3. Granica z prawej strony nie istnieje. Wtedy mówimy, że całka jest rozbieżna.

Interpretacja geometryczna.

Podobnie jak dla zwykłej całki oznaczonej, jeżeli $f \ge 0$ na (a,b] lub [a,b) to całka niewłaściwa 2 rodzaju $\int\limits_a^b f(x)\,dx$ daje pole obszaru ograniczonego osią X, wykresem f oraz prostymi x=a oraz x=b.

Najczęściej definiujemy tego typu całkę w przypadku gdy f ma asymptotę pionową x=a lub x=b. Wtedy ten obszar nie jest ograniczony z góry bądź z dołu.

Na przykład

$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx = \lim_{T \to 0^{+}} \int_{T}^{1} \frac{1}{\sqrt{x}} dx \lim_{T \to 0^{+}} [2\sqrt{x}]_{T}^{1} = \lim_{T \to 0^{+}} (2 - 2\sqrt{T}) = 2$$

Całka jest zbieżna do 2.

Wersja całki obustronnej

Ustalamy liczby $a, b, c \in \mathbb{R}$, a < c < b. Niech f będzie funkcją całkowalną na każdym przedziale postaci [a, T], T < c, oraz [T, b], T > c. Definiujemy całkę niewłaściwą 2 rodzaju z f na zbiorze $[a, c) \cup (c, b]$ jako sumę dwóch całek niewłaściwych. tzn.

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

przy czym gdy przynajmniej jedna z całek z prawej strony nie istnieje lub zachodzi przypadek $\infty - \infty$ to $\int_a^b f(x) \, dx$ jest rozbieżna, a w pozostałych przypadkach całka ma wartość wynikającą z arytmetyki granic.

Najczęściej takie całki pojawiają się, gdy f ma asymptotę w x = c.

Twierdzenie

Istnieją podstawienia, które każdą całkę niewłaściwą 2 rodzaju sprowadzają do przypadku całki niewłaściwej 1 rodzaju.

W szczególności

 \bullet dla całki (a,b]możemy wziąć $t=\frac{1}{x-a}$ co daje $x=a+\frac{1}{t}$ oraz

$$\int_{a}^{b} f(x) dx = \int_{C}^{\infty} \frac{1}{t^{2}} f\left(a + \frac{1}{t}\right) dt \quad , \text{ gdzie} \quad C = \frac{1}{b - a}$$

 \bullet dla całki na [a,b)możemy wziąć $t=\frac{1}{b-x}$ co daje $t=b-\frac{1}{t}$ oraz

$$\int\limits_{a}^{b}f(x)\,dx=\int\limits_{C}^{\infty}\frac{1}{t^{2}}f\left(b-\frac{1}{t}\right)dt\quad\text{, gdzie}\quad C=\frac{1}{b-a}$$

Na przykład dla p > 0 biorąc $t = \frac{1}{x}$ mamy

$$\int_{0}^{b} \frac{1}{x^{p}} dx = \int_{\frac{1}{b}}^{\infty} \frac{1}{t^{2}} \cdot \frac{1}{\left(\frac{1}{t}\right)^{p}} dt = \int_{\frac{1}{b}}^{\infty} \frac{1}{t^{2-p}} dt$$

Podstawienie to oznacza też, że mamy analogiczne kryteria zbieżności dla całek 2 rodzaju - porównawcze i ilorazowe, przy czym dla kryterium ilorazowego liczymy granicę ilorazu funkcji w odpowiednim końcu zadanego przedziału.

Na koniec, wartość główna całki $\int\limits_a^b f(x)\,dx$ na $[a,c)\cup(c,b]$ to wielkość

P.V.
$$\int_{a}^{b} f(x) dx = \lim_{T \to 0^{+}} \left(\int_{a}^{c-T} f(x) dx + \int_{c+T}^{b} f(x) dx \right)$$

o ile powyższa granica istnieje.

Oznacza to, że odpowiednie końce przedziałów całkowania są w jednakowej odległości od c i zbiegają do c.

Zbieżność bezwzględna całek niewłaściwych

Definicja. Całka $\int_{a}^{\infty} f(x) dx$ jest zbieżna bezwzględnie, gdy zbieżna jest całka $\int_{a}^{\infty} |f(x)| dx$. Analogiczne definicje mamy dla pozostałych całek 1 rodzaju oraz dla całek 2 rodzaju.

Uwagi

- Gdy f jest nieujemna to mamy $\int_{a}^{\infty} f(x) dx = \int_{a}^{\infty} |f(x)| dx$ i definicja nie wnosi nic nowego. Sytuacja się zmienia, gdy są przedziały na którym f ma różne znaki.
- Nierówność $\left|\int_{a}^{T} f(x) dx\right| \le \int_{a}^{T} |f(x)| dx$ daje $\left|\int_{a}^{\infty} f(x) dx\right| \le \int_{a}^{\infty} |f(x)| dx$ ale gdy są przedziały na którym f ma różne znaki to równość nie zachodzi. Zatem, ogólnie, $\left|\int_{a}^{\infty} f(x) dx\right|$ i $\int_{a}^{\infty} |f(x)| dx$ to nie to samo.

Twierdzenie

Jeżeli całka niewłaściwa jest bezwzględnie zbieżna to jest zbieżna (w zwykłym sensie). Transpozycja tego twierdzenia daje warunek równoważny :

Jeżeli całka $\int_{a}^{\infty} f(x) dx$ nie jest zbieżna to również nie jest zbieżna bezwzględnie, co oznacza $\int_{a}^{\infty} |f(x)| dx = \infty$.

Analogicznie dla pozostałych typów całek niewłaściwych.

Twierdzenie odwrotne nie jest prawdziwe. Są całki zbieżne ale nie bezwzględnie, np. $\int_{1}^{\infty} \frac{\sin x}{x} dx$. Takie całki to tzw. całki zbieżne warunkowo.

Są więc 3 możliwe sytuacje - 3 rozłączne podzbiory całek niewłaściwych:

Przykład

Całka $\int_{1}^{\infty} \frac{\sin x}{\sqrt[3]{x^4}} dx$ jest zbieżna bezwzględnie, bo biorąc $\int_{1}^{\infty} \left| \frac{\sin x}{\sqrt[3]{x^4}} \right| dx$ i używając kryterium porównawczego mamy

$$0 \leqslant \left| \frac{\sin x}{\sqrt[3]{x^4}} \right| = \frac{|\sin x|}{x^{\frac{4}{3}}} \leqslant \frac{1}{x^{\frac{4}{3}}}$$

a całka $\int\limits_{1}^{\infty} \frac{1}{x^{\frac{4}{3}}} \, dx$ jest zbieżna bo $\frac{4}{3} > 1$. Zatem $\int\limits_{1}^{\infty} \left| \frac{\sin x}{\sqrt[3]{x^4}} \right| \, dx$ jest zbieżna, a stąd $\int\limits_{1}^{\infty} \frac{\sin x}{\sqrt[3]{x^4}} \, dx$ też jest zbieżna.

3 Szeregi liczbowe

Dany jest ciąg liczbowy $a_1, a_2, ..., a_n, ...$ Tworzymy jego ciąg sum częściowych:

$$S_1 = a_1, \quad S_2 = a_1 + a_2, \quad S_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^{n} a_k$$

Jeżeli istnieje granica $S=\lim_{n\to\infty}S_n$ (skończona lub nieskończona) to oznaczamy ją symbolem $\sum_{k=1}^\infty a_k.$

W ogólnym przypadku możemy wziąć ciąg, który zaczyna się od dowolnej liczby całkowitej $n_0: a_{n_0}, a_{n_0+1}, ..., a_n, ...$ i jego sum częściowych

$$S_n = a_{n_0}, \quad S_{n_0+1} = a_{n_0} + a_{n_0+1}, \quad S_n = a_{n_0} + a_{n_0+1} + \dots + a_n = \sum_{k=n_0}^n a_k, \quad n \geqslant n_0$$

$$S = \lim_{n \to \infty} S_n$$
 jest oznaczana przez $\sum_{k=n_0}^{\infty} a_k$.

Definicja. Dla ustalonego $n_0 \in \mathbb{Z}$ obiekt $\sum_{k=n_0}^{\infty} a_k$ nazywamy <u>szeregiem liczbowym</u>, a wartość S (gdy istnieje) jego <u>sumą</u>, oznaczaną także przez $\sum_{k=n_0}^{\infty} a_k$. Mamy wtedy

$$S_n = a_{n_0}, \ S_{n_0+1} = a_{n_0} + a_{n_0+1}. \ S_n = a_{n_0} + a_{n_0+1} + \dots + a_n + \dots = \sum_{k=n_0}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=n_0}^n a_k = \lim_{n \to \infty} S_n$$
gdzie

- S_n to n ta suma szeregu,
- a_n to n ty wyraz szeregu.

Terminologia dotycząca sumy S jest taka, jak dla ciągów. Są 3 przypadki :

- 1. S jest liczbą. Wtedy dany szereg jest zbieżny (do S).
- 2. $S = \infty$ lub $S = -\infty$. Wtedy dany szereg jest <u>rozbieżny</u> (do ∞ lub $-\infty$).
- 3. $S = \lim_{n \to \infty} S_n$ nie istnieje. Wtedy dany szereg jest <u>rozbieżny</u>.

Przykłady

$$\frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n}} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^{n}} - \text{szereg zbieżny do } 1$$

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots = \sum_{n=2}^{\infty} \frac{1}{n} - \text{szereg rozbieżny do } \infty$$

$$1 - 1 + 1 - 1 + 1 - 1 + \dots = \sum_{n=0}^{\infty} (-1)^{n} - \text{szereg rozbieżny}$$

Uwaga. Każdy szereg zaczynający się od indeksu $n_0 \in \mathbb{Z}$ można przekształcić tak, by zaczynał się od indeksu 1. Wynika to z równości

$$\sum_{n=n_0}^{\infty} a_n = \sum_{n=1}^{\infty} a_{n+n_0-1}$$

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots = \sum_{n=2}^{\infty} \frac{1}{n} = \sum_{n=2}^{\infty} a_n = \sum_{n=1}^{\infty} a_{n+1} = \sum_{n=1}^{\infty} \frac{1}{n+1}$$

Obliczanie sum szeregów

Jest to zadanie trudne, a najczęściej niemożliwe, gdyż trudno jest znaleźć bezpośredni wzór na sumy częściowe S_n .

Niektóre przypadki szczególne.

- 1. Ciąg geometryczny i szereg geometryczny.
 - $a_n = a_1 \cdot q^{n-1}$, gdzie q jest ilorazem ciągu (czyli $a_{n+1} = a_n \cdot q, \ n \geqslant 1$). Wtedy

$$S_n = a_1 + a_2 + \dots + a_n = a_1 \cdot \frac{1 - q^n}{1 - q}, q \neq 1 \text{ oraz } S_n = na_1, q = 1$$

To oznacza, że dla $a_1 \neq 0$,

- szereg jest zbieżny dla -1 < q < 1 i jego suma jest $S = \frac{a_1}{1-a}$
- szereg jest rozbieżny do ∞ lub $-\infty$ dla $q \ge 1$, znak zależy od znaku a_1 ,
- szereg jest rozbieżny (suma nie istnieje) dla $q \leq -1$

Stąd np.

$$\frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1 \text{ , bo tutaj } a_1 = q = \frac{1}{2}$$

2. Szeregi o wyrazie ogólnym postaci

$$a_n = f(n+1) - f(n)$$
 lub $a_n = f(n) - f(n+1)$, gdzie f jest pewną funkcją.

W bardziej ogólnej postaci

$$a_n = f(n+k) - f(n)$$
 lub $a_n = f(n) - f(n+k)$, gdzie $k \in \mathbb{N}^+$ to tzw. krok.

Takie szeregi to tzw. szeregi teleskopowe (telescoping series).

Przykłady

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) - \text{tutaj } f(x) = \frac{1}{x}$$

$$\sum_{n=1}^{\infty} \left(\sqrt{n+1} - \sqrt{n} \right) - \text{tutaj } f(x) = \sqrt{x}$$

$$\sum_{n=1}^{\infty} \left(\operatorname{arctg}(n) - \operatorname{arctg}(n+2) \right) - \operatorname{tutaj} f(x) = \operatorname{arctg} x$$

Dla takich szeregów łatwo wyznacza się wzór na S_n . Wyrazy wewnętrzne się upraszczają i zostaje:

suma k pierwszych wartości, f suma k ostatnich wartości f (lub na odwrót)

Na przykład dla $\sum_{n=1}^{\infty} (f(n) - f(n+1)))$ mamy

$$S_n = f(1) - f(2) + f(2) - f(3) + f(3) - f(4) + \dots + f(n) - f(n+1) = f(1) - f(n+1)$$

Jeżeli istnieje granica $G = \lim_{x \to \infty} f(x)$ to mamy

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} (f(1) - f(n+1)) = f(1) - G$$

Przykład. Wyznaczyć sumę $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$

Wyraz ogólny nie ma postaci różnicy więc trzeba ją stworzyć. Używając rozkładu na ułamki proste dostajemy

$$\frac{1}{n^2+n} = \frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} = \dots = \frac{1}{n} - \frac{1}{n+1}$$

Zatem

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

I to daje

$$S_n = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = \frac{1}{1} - \frac{1}{n+1}$$

$$\lim_{n \to \infty} S_n = 1 = \sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

Własności szeregów zbieżnych

Twierdzenie

Jeżeli szeregi $\sum_{n=n_0}^{\infty} a_n$ oraz $\sum_{n=n_0}^{\infty} b_n$ są zbieżne to zbieżne są szeregi $\sum_{n=n_0}^{\infty} (a_n + b_n)$ oraz $\sum_{n=n_0}^{\infty} (c \cdot a_n), c \in \mathbb{R}$.

Ponadto

•
$$\sum_{n=n_0}^{\infty} (a_n \pm b_n) = \sum_{n=n_0}^{\infty} a_n \pm \sum_{n=n_0}^{\infty} b_n$$

$$\bullet \sum_{n=n_0}^{\infty} (c \cdot a_n) = c \sum_{n=n_0}^{\infty} a_n$$

Prawdziwe są także analogiczne twierdzenia prowadzące do arytmetyki granic nieskończonych, gdy nie pojawiają się symbole nieoznaczone. Na przykład gdy $\sum_{n=n_0}^{\infty}a_n=\infty$ oraz $\sum_{n=n_0}^{\infty}b_n=b\in\mathbb{R}$ to

$$\sum_{n=n_0}^{\infty} (a_n \pm b_n) = \sum_{n=n_0}^{\infty} a_n \pm \sum_{n=n_0}^{\infty} b_n = \infty$$

Natomiast gdy $\sum_{n=n_0}^{\infty}a_n=\sum_{n=n_0}^{\infty}b_n=\infty$ to $\sum_{n=n_0}^{\infty}(a_n-b_n)$ może być zarówno zbieżny jak i rozbieżny i nie ma sensu równość

$$\sum_{n=n_0}^{\infty} (a_n - b_n) = \sum_{n=n_0}^{\infty} a_n - \sum_{n=n_0}^{\infty} b_n$$

Twierdzenie

Zmiana wartości n_0 nie wpływa na zbieżność/rozbieżność szeregu $\sum_{n=n_0}^{\infty} a_n$. Może mieć wpływ na wartość jego sumy.

Stąd wynika np., że szeregi $\sum_{n=1}^{\infty} a_n$ i $\sum_{n=100}^{\infty} a_n$ są albo oba zbieżne albo oba rozbieżne do ∞ lub $-\infty$ albo oba rozbieżne.

To też oznacza, że na podstawie kilku pierwszych wyrazów ciągu/szeregu

NIC NIE MOŻNA POWIEDZIEĆ o jego zbieżności

Popularny błąd

"Liczymy wartości a_1, a_2, a_3, a_4, a_5 . Wychodzi ciąg malejący i dodatni. Zatem szereg jest zbieżny". GAME OVER...

Twierdzenie

Dla ustalonego $n_0 \in \mathbb{N}^+$ i $p \in \mathbb{R}$ szereg $\sum_{n=n_0}^{\infty} \frac{1}{n^p}$ jest zbieżny dla p > 1 i rozbieżny do ∞ dla $p \le 1$.

W przypadku kiedy sumy szeregu nie da się wyznaczyć w sposób dokładny można to zrobić w sposób przybliżony, pod warunkiem, że wiemy, że szereg jest zbiezny.

Kryteria zbieżności to twierdzenia opisujące warunki dostateczne zbieżności lub rozbieżności danej klasy szeregów. Najczęściej mają postać implikacji ale **NIE** równoważności.

Oznacza to zwykle własności postaci

warunek zachodzi ⇒ szereg jest zbieżny/rozbieżny,

warunek nie zachodzi ⇒ nic nie wiemy o zbieżności/rozbieżności szeregu

Popularne kryteria zbieżności szeregów

0. Warunek konieczny zbieżności szeregów

Twierdzenie

Jeżeli szereg $\sum_{n=n_0}^{\infty} a_n$ jest zbieżny to $\lim_{n\to\infty} a_n = 0$.

Dowód

Dla $n \ge n_0 + 1$ mamy $S_n = a_{n_0} + a_{n_0+1} + \dots + a_{n-1} + a_n$ oraz $S_{n-1} = a_{n_0} + a_{n_0+1} + \dots + a_{n-1}$, Stad

$$S_n - S_{n-1} = a_n$$

Jeżeli szereg $\sum_{n=n_0}^{\infty} a_n$ jest zbieżny to $\lim_{n\to\infty} S_n = \lim_{n\to\infty} S_{n-1} = S \in \mathbb{R}$. To daje $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (S_n - S_{n-1}) = \lim_{n\to\infty} S_n - \lim_{n\to\infty} S_{n-1} = S - S = 0$

Transpozycja tego twierdzenia daje warunek równoważny do zastosowania praktycznego: Jeżeli $\lim_{n\to\infty}a_n\neq 0$ to szereg $\sum_{n=n_0}^{\infty}a_n$ nie jest zbiezny przy czym

• gdy
$$\lim_{n\to\infty} a_n > 0$$
 to $\sum_{n=n_0}^{\infty} a_n = \infty$

• gdy
$$\lim_{n\to\infty} a_n < 0$$
 to $\sum_{n=n_0}^{\infty} a_n = -\infty$

Uwaga. To jest tylko implikacja!

Jeżeli $\lim_{n\to\infty} a_n = 0$ to jeszcze **NIC NIE WIEMY** o szeregu.

Na przykład szeregi $\sum_{n=n_0}^{\infty}\frac{1}{n^p}$ mają $\lim_{n\to\infty}\frac{1}{n^p}=0$ dla wszystkich p>0ale niektóre z tych szeregów są zbieżne, a niektóre rozbieżne.

Popularny błąd

" $\lim_{n\to\infty} a_n = 0$ zatem szereg jest zbieżny". GAME OVER...

Szeregi o wyrazach nieujemnych

$$\sum_{n=n_0}^{\infty} a_n, \ a_n \geqslant 0$$

Wtedy $S_n = a_{n_0} + a_{n_0+1} + ... + a_{n-1} + a_n$ jest ciągiem niemalejącym zatem suma szeregu $\sum_{n=n_0}^{\infty} a_n = \lim_{n\to\infty} S_n$ zawsze istnieje. Może być to liczba lub ∞ .

Podobnie dla szeregów o wyrazach niedodatnich $\sum_{n=n_0}^{\infty} a_n$, $a_n \leq 0$, suma zawsze istnieje i rozbieżność oznacza rozbieżność do $-\infty$.

Przykład. Następujące szeregi nie są zbieżne

$$\sum_{n=1}^{\infty} 1, \quad \sum_{n=1}^{\infty} (n^2 + 2n), \quad \sum_{n=1}^{\infty} \frac{n+1}{n+2}, \quad \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n, \quad \sum_{n=1}^{\infty} (-1)^n, \quad \sum_{n=1}^{\infty} \sin n$$

Dla szeregów o wyrazach nieujemnych mamy dwa kolejne kryteria zbieżności.

- 1. Kryterium porównawcze
- 2. Kryterium ilorazowe

Twierdzenie (kryterium porównawcze)

Dane są dwa szeregi $\sum_{n=n_0}^{\infty} a_n$ oraz $\sum_{n=n_0}^{\infty} b_n$. Wtedy zachodzą nastepujące własności.

- 1. (Przypadek zbieżności) Gdy $\forall n \geqslant k \geqslant n_0 \quad 0 \leqslant a_n \leqslant b_n$ i $\sum_{n=n_0}^{\infty} b_n$ jest zbieżny to $\sum_{n=n_0}^{\infty} a_n$ też jest zbieżny. Ponadto $0 \leqslant \sum_{n=n_0}^{\infty} a_n \leqslant \sum_{n=n_0}^{\infty} b_n$
- 2. (Przypadek rozbieżności) Gdy $\forall n \geqslant k \geqslant n_0 \quad 0 \leqslant b_n \leqslant a_n$ i $\sum_{n=n_0}^{\infty} b_n$ jest rozbieżny to $\sum_{n=n_0}^{\infty} a_n$ też jest rozbieżny. Ponadto $\sum_{n=n_0}^{\infty} a_n = \sum_{n=n_0}^{\infty} b_n = \infty$
- 3. (Przypadek wątpliwy). Gdy $\forall n \geqslant k \geqslant n_0 \quad 0 \leqslant a_n \leqslant b_n$ ale $\sum_{n=n_0}^{\infty} b_n$ jest rozbieżny to **NIC NIE WIEMY** o zbieżności $\sum_{n=n_0}^{\infty} a_n$
- 4. (Przypadek wątpliwy). Gdy $\forall n \geqslant k \geqslant n_0 \quad 0 \leqslant b_n \leqslant a_n$ ale $\sum_{n=n_0}^{\infty} b_n$ jest zbieżny to **NIC NIE WIEMY** o zbieżności $\sum_{n=n_0}^{\infty} a_n$

Uwagi

$$\bullet \sum_{n=n_0}^{\infty} a_n$$
jest szeregiem z zadania, $\sum_{n=n_0}^{\infty} b_n$ tworzymy sami

- Porównujemy najczęściej z szeregiem geometrycznym $\sum_{n=n_0}^{\infty} q^n$ lub z szeregami $\sum_{n=n_0}^{\infty} \frac{1}{n^p}$. Wtedy a_n często ma postać ułamków i możemy spróbować wziąć b_n jako
 - $C \cdot iloraz$ najwyższych potęg z licznika i mianownika a_n
- Trzeba uważać aby nierówność między a_n i b_n była prawdziwa i nie zapomnieć o dolnym ograniczeniu (0). Ma być tak jak w twierdzeniu o trzech ciągach
- Kryterium nie zawsze jest wygodne w użyciu i trzeba uważać, by nie dostać przypadku wątpliwego, bo wtedy trzeba zaczynać od nowa
- Warto sprawdzić opisany wyżej iloraz najwyższych potęg i na tej podstawie przewidzieć czy chcemy udowodnić zbieżność czy rozbieżność. To pomaga skonstruować odpowiednią nierówność między a_n i b_n .

Popularny błąd: odpowiedź na podstawie przypadku wątpliwego

Na przykład dla szeregu $\sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n}}$:

"Mamy $0 \le \frac{1}{n+\sqrt{n}} \le \frac{1}{n}$ i szereg $\sum_{n=1}^{\infty} \frac{1}{n}$ jest rozbieżny zatem szereg $\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$ jest rozbieżny".

GAME OVER... To jest przypadek nr 3 (wątpliwy)

Przykład

$$\sum_{n=4}^{\infty} \frac{2n-3}{n^3-1}$$

Przewidywanie zbieżności/rozbieżności:

Iloraz najwyższych potęg licznika i mianownika to $\frac{n}{n^3} = \frac{1}{n^2}$, a szereg $\sum_{n=4}^{\infty} \frac{1}{n^2}$ jest zbieżny, bo 2 > 1. Zatem chcemy udowodnić zbieżność (przypadek 1).

Potrzebujemy więc $\sum_{n=4}^{\infty} b_n$ i nierówności $0 \leqslant \frac{2n-3}{n^3-1} \leqslant b_n$.

Chcemy zwiększyć wyrażenie $\frac{2n-3}{n^3-1}$ ale tak, by **zostały najwyższe potęgi**.

Można zwiększyć <u>licznik</u> oraz zmniejszyć mianownik.

Zwiększamy licznik poprzez wyrzucenie 3.

Zmniejszamy mianownik poprzez zastąpienie 1 czymś większym : wyrażeniem z najwyższą potęgą. Nie można jednak wziąć całego n^3 , bo będzie 0 w mianowniku.

Wygrywa wzięcie $C \cdot n^3$ np. $\frac{1}{2}n^3$, bo dla $n \ge 4$ mamy $\frac{1}{2}n^3 \ge 1$. To wszystko daje dla $n \ge 4$

$$0 \leqslant \frac{2n-3}{n^3-1} \leqslant \frac{2n}{n^3 - \frac{1}{2}n^3}$$

Czyli

$$b_n = \frac{2n}{n^3 - \frac{1}{2}n^3} = 4 \cdot \frac{1}{n^2}$$

DZIURA W SKRYPCIE

Twierdzenie (kryterium ilorazowe)

Dane są dwa szeregi $\sum_{n=n_0}^{\infty} a_n$ oraz $\sum_{n=n_0}^{\infty} b_n$. Ponadto $\forall n \ge n_0 \ a_n, b_n > 0$.

Jeżeli istnieje granica $\lim_{n\to\infty} \frac{a_n}{b_n}$ i jest **liczbą dodatnią** to wtedy oba szeregi są zbieżne albo oba rozbieżne do ∞ .

Uwagi

- Ciąg b_n tworzymy podobnie jak dla kryterium porównawczego.
- Nie ma problemu z nierównościami :) ale za to trzeba umieć liczyć granice.
- Granica nie może być ani 0 ani ∞ : $\lim_{n\to\infty} \frac{a_n}{b_n} = L \in (0,\infty)$.

Nie wystarczy warunek L > 0 bo ∞ także jest > 0.

- Rozwiązanie musi zawierać wniosek "granica ilorazu jest liczbą dodatnią więc oba szeregi są zbieżne lub oba rozbieżne" - bez tego będzie niepełne
- Kryterium zwykle jest wygodniejsze niż porównawcze ale są przykłady, które pójdą z porównawczego ale nie z ilorazowego, bo granica ilorazu nie istnieje

$$Np. \sum_{n=1}^{\infty} \frac{2 + \sin n}{n}.$$

Przykłady

Poprzedni przykład raz jeszcze

$$\sum_{n=4}^{\infty} \frac{2n-3}{n^3-1}$$

Bierzemy $b_n = \frac{n}{n^3} = \frac{1}{n^2}$

$$\frac{a_n}{b_n} = \frac{\frac{2n-3}{n^3-1}}{\frac{1}{n^2}} = \frac{2n^3-3n^2}{n^3-1} = \frac{2-\frac{3}{n}}{1-\frac{1}{n^3}}$$

20

Stąd $\lim_{n\to\infty}\frac{a_n}{b_n}=2$ - liczba dodatnia. Zatem oba szeregi są zbieżne lub oba są rozbieżne.

Dalej już analiza $\sum_{n=4}^{\infty} \frac{1}{n^2}$ i wniosek jak w kryterium porównawczym :

$$\sum_{n=4}^{\infty} b_n = \sum_{n=4}^{\infty} \frac{1}{n^2} \text{ jest zbieżny bo } 2 > 1. \text{ Zatem } \sum_{n=4}^{\infty} \frac{2n-3}{n^3-1} \text{ też jest zbieżny.}$$

Przykłady o postaci funkcji złożonej $\sum_{n=n_0}^{\infty} f(b_n)$,

gdzie $\lim_{n\to\infty} b_n = 0^+$ oraz $\lim_{x\to 0^+} f(x) = 0^+$.

Nowym szeregiem jest szereg z funkcji wewnętrznej $\sum_{n=n_0}^{\infty} b_n$.

Liczymy granicę

$$\lim_{n \to \infty} \frac{f(b_n)}{b_n} = \lim_{x = b \to 0^+} \frac{f(x)}{x} \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

przy użyciu granic podstawowych lub reguły de l'Hospitala.

Na przykład

$$\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right)$$

Mamy

$$\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right) = \sum_{n=1}^{\infty} \left(2^{\frac{1}{n}} - 1 \right)$$

Więc bierzemy $b_n = \frac{1}{n} > 0$. Liczymy granicę

$$\lim_{n \to \infty} \frac{2^{\frac{1}{n}} - 1}{\frac{1}{n}} = \lim_{x = \frac{1}{n} \to 0^+} \frac{2^x - 1}{x} = \ln 2$$

Jest to liczba dodatnia więc oba szeregi są zbieżne lub oba są rozbieżne.

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty \text{ wiec } \sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right) = \infty.$$

- 3. Kryterium Cauchy'ego.
- 4. Kryterium d'Alemberta

Działają dla szeregów o dowolnych wyrazach. Teza obu kryteriów jest taka sama ale liczymy granice innych wyrażeń.

Twierdzenie (kryterium Cauchy'ego)

Dany jest szereg $\sum_{n=n_0}^{\infty} a_n$ taki, że istnieje granica $q = \lim_{n \to \infty} \sqrt[n]{|a_n|}$. Wtedy

- 1. Gdy $0 \le q < 1$ to szereg jest zbieżny.
- 2. Gdy q > 1 to szereg jest rozbieżny
- 3. (Przypadek wątpliwy). Gdy q = 1 to NIC NIE WIEMY o zbieżności szeregu.

Uwagi

- Do wyznaczenia q przydają się następujące właśności granic
 - a) Gdy $\lim_{n\to\infty} a_n$ jest **liczbą dodatnią** to $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$.
 - b) $\forall p \in \mathbb{R} \lim_{n \to \infty} \sqrt[n]{n^p} = 1.$
- q nie może być ujemne. q ujemne zwykle oznacza brak modułu na a_n .

Twierdzenie (kryterium d'Alemberta)

Dany jest szereg $\sum_{n=n_0}^{\infty} a_n$, $a_n \neq 0$, taki, że istnieje granica $q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. Wtedy

- 1. Gdy $0 \le q < 1$ to szereg jest zbieżny.
- 2. Gdy q > 1 to szereg jest rozbieżny
- 3. (Przypadek wątpliwy). Gdy q = 1 to NIC NIE WIEMY o zbieżności szeregu.
- q nie może być ujemne. q ujemne zwykle oznacza brak modułu na a_n .
- \bullet W obu kryteriach szerergi $\sum_{n=n_0}^{\infty}\frac{1}{n^p}$ pokazują, że q=1nic nie daje.

Przykłady

$$\sum_{n=1}^{\infty} \frac{20^n}{n!}$$

$$20^{n+1}$$

Tutaj $a_n = \frac{20^n}{n!} > 0$ oraz $a_{n+1} = \frac{20^{n+1}}{(n+1)!}$. Zatem z kryterium d'Alemberta

$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{20^{n+1}}{(n+1)!}}{\frac{20^n}{n!}}$$

$$\sum_{n=1}^{\infty} \left(2 \arcsin \frac{1-n}{2n+1} \right)^n$$

Tutaj chcemy użyć kryterium Cauchy'ego.

$$\sqrt[n]{|a_n|} = \sqrt[n]{\left|\left(2\arcsin\frac{1-n}{2n+1}\right)^n\right|} = \sqrt[n]{\left|2\arcsin\frac{1-n}{2n+1}\right|^n} = \left|2\arcsin\frac{1-n}{2n+1}\right| = \left|2\arcsin\frac{\frac{1}{n}-1}{2+\frac{1}{n}}\right|$$

Stąd

$$q = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \left| 2\arcsin\left(-\frac{1}{2}\right) \right| = \left| 2\left(-\frac{\pi}{6}\right) \right| = \frac{\pi}{3}$$

q > 1 więc szereg jest rozbieżny.

Twierdzenie (kryterium całkowe)

Dany jest szereg $\sum_{n=n_0}^{\infty} a_n$. Jeżeli na $[x_0,\infty),\ x_0\geqslant n_0$ istnieje funkcja f taka, że

- $f(n) = a_n, n \geqslant x_0,$
- f jest nieujemna na $[x_0, \infty)$,
- f jest nierosnąca na $[x_0, \infty)$,

to całka niewłaściwa $\int_{x_0}^{\infty} f(x) dx$ i szereg $\sum_{n=n_0}^{\infty} a_n$ są jednocześnie skończone lub jednocześnie rozbieżne do ∞ .

Uwagi do kryterium

- Najczęściej $x_0 = n_0$.
- \bullet Kryterium jest ważne z punktu widzenia teorii, gdyż wiele innych własności szeregów z niego wynika. Na przykład, gdy $x_0=n_0$ to

$$\int_{n_0}^{\infty} f(x) dx \leqslant \sum_{n=n_0}^{\infty} a_n \leqslant a_{n_0} + \int_{n_0}^{\infty} f(x) dx$$

To pozwala oszacować sumę szeregu.

- Sens użycia kryterium: nie umiemy policzyć sumy szeregu ale umiemy **obliczyć** całkę $\int\limits_{x_0}^{\infty} f(x)\,dx = \lim_{T\to\infty} \int\limits_{x_0}^{T} f(x)\,dx.$ Stosujemy to kryterium tylko wtedy, gdy zamierzamy liczyć tę całkę.
- Z praktycznego punktu widzenia kryterium jest najczęściej **najmniej wygodnie** do zastosowania. Opłaca się je stosować głównie wtedy, gdy szereg zawiera wyrażenie $\ln n$.

Przykład

Dla ustalonego $n_0 \in \mathbb{N}^+$ i p > 0 dowodzimy znany już wynik dla szeregu $\sum_{n=n_0}^{\infty} \frac{1}{n^p}$ zbieżny dla p > 1 oraz rozbieżny do ∞ dla $p \le 1$.

Tutaj bierzemy po prostu $f(x) = \frac{1}{x^p}, x \in [n_0, \infty).$

Dla p > 0 f jest malejąca i nieujemna oraz $f(n) = \frac{1}{n^p}$

Spełnione są wiec warunki użycia kryterium. Liczymy całkę $\int_{-\infty}^{\infty} \frac{1}{x^p} dx$.

Było to już robione wcześniej i wiemy, że dla p>1 jest liczbą, a dla $p\leqslant 1$ jest równa ∞ . Stąd szereg jest zbieżny dla p>1 oraz rozbieżny do ∞ dla $0< p\leqslant 1$. Dla $p\leqslant 0$ szereg jest

rozbieżny, bo nie spełnia warunku koniecznego zbieżności.

Uwaga do szeregów z wyrażeniem $\ln n$.

Dla dowolnego p>0 funkcja $\frac{\ln x}{x^p},\ x\geqslant 2$, ma zbiór wartości $\left(0,\frac{1}{p\cdot e}\right]$. Zatem

$$\frac{\ln x}{x^p} \leqslant \frac{1}{p \cdot e} \Leftrightarrow \ln x \leqslant \frac{1}{p \cdot e} x^p$$

a stąd

$$\ln n \leqslant \frac{1}{p \cdot e} n^p$$

Z oszacowaniem dolnym jest gorzej, bo nie ma pojedynczej funkcji elementarnej mniejszej od $\ln x$ i pozostaje oszacowanie przez stałą np.

$$\ln n \geqslant \frac{1}{2}, \quad n \geqslant 2$$

To daje oszacowanie dla dowolnego p > 0:

$$\frac{1}{2} \leqslant \ln n \leqslant C \cdot n^p, \quad n \geqslant 2$$

Tutaj $C = \frac{1}{p \cdot e}$, a dla $p \ge \frac{1}{e}$ wystarczy wziąć C = 1.

Często to oszacowanie pozwala uniknąć kryterium całkowego i zastąpienie go porównawczym, potrzeba tylko wziąć odpowiednio małe p.

Przykład

Dla szeregu $\sum_{n=2}^{\infty} \frac{\ln n}{n\sqrt[5]{n}}$ z kryterium porównawczego mamy

$$0<\frac{\ln n}{n\sqrt[5]{n}}\leqslant \frac{Cn^p}{n\sqrt[5]{n}}=\frac{Cn^p}{n\cdot n^{0,2}}=\frac{C}{n^{1,2-p}}$$

Wystarczy teraz wziąć p < 0, 2 czyli np. p = 0, 1 i zbadać szereg

$$\sum_{n=2}^{\infty} \frac{C}{n^{1,2-0,1}} = C \sum_{n=2}^{\infty} \frac{C}{n^{1,1}} - \text{zbieżny, bo } 1, 1 > 1$$

Zatem wyjściowy szereg jest zbieżny

Zbieżność bezwzględna szeregów

Definicja. Szereg $\sum_{n=n_0}^{\infty} a_n$ jest <u>zbieżny bezwzględnie</u>, gdy zbieżny jest szereg $\sum_{n=n_0}^{\infty} |a_n|$.

Uwagi

• Gdy wszystkie wyrazy a_n są nieujemne to mamy $\sum_{n=n_0}^{\infty} a_n = \sum_{n=n_0}^{\infty} |a_n|$ i definicja nie wnosi nic nowego. Sytuacja się zmienia gdy szereg ma zarówno wyrazy dodatnie jak i ujemne.

• Z nierówności $|S_n| = |a_{n_0} + a_{n_0+1} + ... + a_n| \le |a_{n_0}| + |a_{n_0+1}| + ... + |a_n|$ wynika nierówność $\left| \sum_{n=n_0}^{\infty} a_n \right| \le \sum_{n=n_0}^{\infty} |a_n| \text{ ale równość nie musi zachodzić.}$

Np. dla
$$a_n = \left(-\frac{1}{2}\right)^n$$
 mamy $\left|\sum_{n=0}^{\infty} a_n\right| = \frac{2}{3}$ ale $\sum_{n=0}^{\infty} |a_n| = 2$

Zatem
$$\left| \sum_{n=n_0}^{\infty} a_n \right|$$
 i $\sum_{n=n_0}^{\infty} |a_n|$ to nie to samo.

Twierdzenie

Jeżeli szereg jest bezwzględnie zbieżny to jest zbieżny (w zwykłym sensie).

Transpozycja tego twierdzenia daje warunek równoważny:

Jeżeli szereg $\sum_{n=n_0}^{\infty} a_n$ nie jest zbieżny to również nie jest zbieżny bezwzględnie, co oznacza

$$\sum_{n=n_0}^{\infty} |a_n| = \infty.$$

Twierdzenie odwrotne nie jest prawdziwe. Są szeregi zbieżne ale nie bezwzględnie, np. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$. Takie szeregi to tzw. szeregi <u>zbieżne warunkowo</u>.

Przykład

Szereg $\sum_{n=1}^{\infty} \frac{\sin n}{\sqrt[3]{n^4}}$ jest zbieżny bezwzględnie, bo biorąc $\sum_{n=1}^{\infty} \left| \frac{\sin n}{\sqrt[3]{n^4}} \right|$ i używając kryterium porównwawczego mamy

$$0 \leqslant \left| \frac{\sin n}{\sqrt[3]{n^4}} \right| = \frac{|\sin n|}{n^{\frac{4}{3}}} \leqslant \frac{1}{n^{\frac{4}{3}}}$$

a szereg $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{4}{3}}}$ jest zbieżny, bo $\frac{4}{3} > 1$.

Zatem $\sum_{n=1}^{\infty} \left| \frac{\sin n}{\sqrt[3]{n^4}} \right|$, a stąd $\sum_{n=1}^{\infty} \frac{\sin n}{\sqrt[3]{n^4}}$ też jest zbieżny.

Szeregi naprzemienne

Są to szeregi, w których na zmianę dodajemy i odejmujemy wyrazy dodatnie: $a_{n_0}-a_{n_0+1}+a_{n_0+2}-a_{n_0+3}+\dots$ lub $-a_{n_0}+a_{n_0+1}-a_{n_0+2}+a_{n_0+3}+\dots$ gdzie $a_n>0$.

Postać ogólna:

$$\sum_{n=n_0}^{\infty} (-1)^n \cdot a_n \text{ lub } \sum_{n=n_0}^{\infty} (-1)^{n+1} \cdot a_n$$

Przykłady

$$\sqrt{2} - \sqrt{3} + \sqrt{4} - \sqrt{5} + \dots = \sum_{n=2}^{\infty} (-1)^n \sqrt{n}$$
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

Definicja

Szereg naprzemienny $\sum_{n=n_0}^{\infty} (-1)^n \cdot a_n$ lub $\sum_{n=n_0}^{\infty} (-1)^{n+1} \cdot a_n$ nazywany jest <u>szeregiem Leibnitza</u>, jeżeli a_n jest ciągiem nierosnącym i zbieżnym do 0.

jeżeli a_n jest ciągiem nierosnącym i zbieżnym do 0. Na przykład $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}$ jest szeregiem Leibnitza, bo tutaj $a_n=\frac{1}{n}$ jest malejący i zbieżny do 0.

Twierdzenie (Leibnitz)

Każdy szereg Leibnitza jest zbieżny.

Uwagi

- Twierdzenie to daje tylko zbieżność warunkową, nie gwarantuje bezwględnej
- Gdy ciąg a_n nie dąży do 0 to szereg naprzemienny $\sum_{n=n_0}^{\infty} (-1)^n \cdot a_n$ jest rozbieżny, gdyż $(-1)^n a_n$ też nie dąży do 0. Wynika to z twierdzenia

$$\lim_{n \to \infty} a_n = 0 \Leftrightarrow \lim_{n \to \infty} (-1)^n a_n = 0 \Leftrightarrow \lim_{n \to \infty} |a_n| = 0$$

- Wystarczy, by ciąg a_n był nierosnący dla $\forall n \ge k \ge n_0$.
- Gdy ciąg a_n zbiega do 0 ale nie jest nierosnący to **NIC NIE WIEMY** o zbieżności szeregu.
- Do badania czy a_n jest nierosnący można próbować rozszerzyć a_n do funkcji f tak by $f(n) = a_n$. Potem pochodna itd. Gdy szereg naprzemienny jest zbieżny bezwzględnie to tw. Leibnitza nie jest potrzebne.

Popularny błąd: opisowanie "badanie" monotoniczności ciągu, bez obliczeń.

Na przykład dla ciągu $a_n=\frac{n}{1000n+1}$: "Ciąg a_n jest malejący, bo mianownik szybciej rośnie niż licznik."

Takie "rozwiązanie" jest jak **pisanie bajek** — nie musi mieć GAME OVER... nic wspólnego z prawdą.

Dla powyższego ciągu mianownik rzeczywiście szybciej rośnie niż licznik (i to 1000 razy!), a mimo to ciag ten jest rosnacy.

Przykład

$$\sum_{n=2}^{\infty} \frac{(-1)^n \cdot \ln n}{n}$$

Tutaj $a_n = \frac{\ln n}{n}$. Rozszerzamy go do funkcji $f(x) = \frac{\ln x}{x}, \ x \geqslant 2$.

$$f'(x) = \frac{1 - \ln x}{r^2} < 0 \Leftrightarrow x > e \approx 2,72$$

Zatem f jest malejąca dla $x \in (e, \infty)$ czyli a_n jest malejący dla $n \ge 3$. Ponadto

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln x}{x} = \left[\frac{\infty}{\infty}\right] [H] = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0$$

Zatem $\lim_{n\to\infty}a_n=0$. Mamy więc szereg naprzemienny, który z tw. Leibnitza jest zbieżny.

Nie jest jednak zbieżny bezwzględnie bo dla $\sum_{n=2}^{\infty} \left| \frac{(-1)^n \cdot \ln n}{n} \right| = \sum_{n=2}^{\infty} \frac{\ln n}{n}$ mamy z kryterium

porównawczego $0 < \frac{0,5}{n} < \frac{\ln n}{n},$ a szereg $\sum_{n=2}^{\infty} \frac{0,5}{n}$ jest rozbieżny.

Jest to więc szereg zbieżny warunkowo.

Podsumowanie: które kryterium zbieżności kiedy?

- P porównawcze
- I ilorazowe
- C Cauchy'ego
- A d'Alemberta
- \int całkowe
- ZB zbieżność bezwględna
- L twierdzenie Leibnitza

Wyrażenia występujące w a_n	Sugerowane kryterium dla $\sum_{n=0}^{\infty} a_n$
\mathbf{w} yrazema występujące w a_n	Sugerowane kryterium dia $\sum_{n=n_0} a_n$
Tylko potęgi n lub pierwiastki z potęg n	P I ale NIGDY C A
Te same najwyższe potęgi a_n w liczniku i mianowniku	P I ale NIGDY C A
$\underline{\text{R\'o}\textsc{zne}}$ najwyższe potęgi a_n w $\underline{\textsc{liczniku}}$ i mianowniku	P I C A
funkcja złożona $f(b_n), b_n \to 0$	I P
n!	A P
n - ta sama potęga: $()^n$	С
Ciągi bez granicy, np. $\sin n$	P (+ inne, gdy trzeba)
$\ln n$	P J
$(-1)^n$ i ogólne a_n , o różnych znakach	ZB (+ inne, gdy trzeba) L

Przykłady do samodzielnego policzenia:

$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 3}}{n^3 + 2} \qquad \sum_{n=1}^{\infty} \frac{n^3 + 5}{n!} \qquad \sum_{n=1}^{\infty} \frac{2^n + 3^n}{n^2 \cdot 3^n + 1}$$

$$\sum_{n=1}^{\infty} \frac{2^n + 7 \cdot 3^n}{5^n - 4^n} \qquad \sum_{n=1}^{\infty} \left(\frac{2n + 3}{3n + 2}\right)^n \qquad \sum_{n=1}^{\infty} \arctan \frac{1}{\sqrt{n}}$$

$$\sum_{n=1}^{\infty} \frac{3 + \cos(n^2)}{\sqrt[3]{n}} \qquad \sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{n^2 + 2} \qquad \sum_{n=1}^{\infty} \frac{\cos(n^2)}{2^n}$$

4 Szeregi potęgowe

Definicja

Szereg potęgowy zmiennej x to szereg postaci

$$c_0 + c_1(x - x_0) + c_2(x - x_0)^2 + \dots + c_n(x - x_0)^n + \dots$$

gdzie $x_0 \in \mathbb{R}$ to tzw. środek/centrum a $c_1, c_2, ..., c_n, ...$ to współczynniki szeregu.

Dla $x \neq x_0$ mamy zapis sumy jako $\sum_{n=0}^{\infty} c_n (x-x_0)^n$. Dla $x = x_0$ przyjmujemy $\sum_{n=0}^{\infty} c_n (x-x_0)^n = c_0$

i wtedy wyjściowa suma jest równa $\sum_{n=0}^{\infty} c_n (x-x_0)^n$ dla wszystkich x

Gdy $x_0 = 0$ to szereg nazywamy szeregiem Maclaurina.

Przykłady

$$1 + x + x^2 + x^3 + \dots + x^n + \dots = \sum_{n=0}^{\infty} x^n$$

Jest to szereg geometryczny o ilorazie x. Tutaj $\forall n \in \mathbb{N} \quad c_n = 1 \text{ oraz } x_0 = 0$.

$$(x-1) - \frac{(x-1)^3}{3} + \frac{(x-1)^5}{5} - \frac{(x-1)^7}{7} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \cdot (x-1)^{2n+1}$$

Tutaj
$$x_0 = 1$$
 oraz $c_{2n+1} = \frac{(-1)^n}{2n+1}$, $c_{2n} = 0$

Uwaga. Indeks współcznynnika musi się zgadzać (być równy) z wykładnikiem potęgi o podstawie $x - x_0$.

Zbieżność szeregów potęgowych

Szereg $\sum_{n=0}^{\infty} c_n (x-x_0)^n$ jest zawsze zbieżny dla $x=x_0$ i wtedy jego suma to c_0 . Dla pozostałych $x \neq x_0$ szereg może być zbieżny lub nie. Są 3 przypadki

- 1. Szereg jest zbieżny tylko dla $x=x_0$ np. $\sum_{n=0}^{\infty} n! x^n$ zbieżny tylko dla x=0. Jest to szereg bezużyteczny w praktyce.
- 2. Szereg jest bezwzględnie zbieżny dla wszystkich x, np. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Jest to najlepsza sytuacja.
- 3. Szereg jest bezwzględnie zbieżny na przedziale otwartym postaci $(x_0 R, x_0 + R)$ oraz być może – zbieżny także na końcach tego przedziału. Dla pozostałych x nie jest zbieżny.

Np.
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 jest zbieżny dla $x \in [-1, 1)$.

Liczbę R>0 nazywamy promieniem zbieżności szeregu potęgowego, a zbiór x dla których szereg jest zbieżny – przedziałem zbieżności szeregu.

R – połowa długości przedziału zbieżności.

Aby mieć promień zbieżności dla wszystkich szeregów definiujemy dodatkowo R=0 dla szeregów z przypadku 1 oraz $R = \infty$ dla szeregów z przypadku 2.

Wyznaczanie promienia zbieżności i przedziału zbieżności

Szereg jest zbieżny dla $x = x_0$ i pytanie co dla pozostałych x.

Metoda jak najbardziej ogólna, działająca dla wszystkich typów szeregów potęgowych :

dla szeregu $\sum_{n=0}^{\infty} c_n (x-x_0)^n$ przyjmujemy $a_n = c_n (x-x_0)^n$, $x \neq x_0$. Zmienna x staje się

Ponieważ a_n zawiera n – tą potęgę więc korzystamy z kryterium Cauchy'ego lub d'Alemberta. Liczymy

$$q = q(x) = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 lub $q = q(x) = \lim_{n \to \infty} \sqrt[n]{|a_n|}$

W zdecydowanej większości przypadków granica ta istnieje i prowadzi do najczęstszych sytuacji

- 1. q nie zależy od x i jest > 1. Wtedy szereg jest zbieżny tylko dla $x = x_0$.
- 2. q nie zależy od x i jest < 1. Wtedy szereg jest zbieżny dla wszystkich x.
- 3. q zależy od x. Wtedy mamy zbieżność dla q < 1 i rozbieżność dla q > 1 oraz
 - $q < 1 \Leftrightarrow |x x_0| < R \Leftrightarrow x \in (x_0 R, x_0 + R)$ "wstępny" przedział zbieżności, R – promień zbieżności
 - $q > 1 \Leftrightarrow |x x_0| > R \Leftrightarrow x \in (-\infty, x_0 R) \cup (x_0 + R, \infty)$ rozbieżność poza głównym przedziałem
 - $q = 1 \Leftrightarrow |x x_0| = R \Leftrightarrow x = x_0 \pm R$ przypadek "wątpliwy" na końcach przedziału. Dla tych x trzeba użyć **innego kryterium**

Zastosowanie metody w praktyce

- \bullet Liczymy qi rozwiązujemy nierówność q<1. Dostajemy wstępny (otwarty) przedział zbieżności.
- Zbieżność na końcach analizujemy osobno wstawiamy każdy z końców i dostajemy szereg liczbowy, który analizujemy ale **NIGDY** z kryterium Cauchy'ego lub d'Alemberta bo **ZAWSZE wyjdzie** q=1.

Popularny błąd:

" … wstępny przedział zbieżności to (-1,1).

Badam zbieżność dla x = 1 z kryterium d'Alemberta"

STRATA CZASU I ENERGII. Będzie przypadek wątpliwy i q=1 a jeżeli przypadkiem wyjdzie $q \neq 1$ to na pewno gdzieś jest błąd.

Przykłady

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Tutaj $a_n = \frac{x^n}{n!}$ oraz $x_0 = 0$. Używamy kryterium d'Alemberta $a_{n+1} = \frac{x^{n+1}}{(n+1)!}$ oraz dla $x \neq 0$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \left| \frac{x}{n+1} \right|$$

Stad

$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0 < 1$$

Szereg jest więc zbieżny dla wszystkich $x \in \mathbb{R}$

Kolejny przykład

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{\sqrt{n}}$$

Tutaj $a_n = \frac{(x-1)^n}{\sqrt{n}}$ oraz $x_0 = 1$. Korzystając z kryterium Cauchy'ego mamy dla $x \neq 1$

$$\sqrt[n]{|a_n|} = \sqrt[n]{\left|\frac{(x-1)^n}{\sqrt{n}}\right|} = \sqrt[n]{\frac{|(x-1)^n|}{\sqrt{n}}} = \frac{\sqrt[n]{|x-1|^n}}{\sqrt[n]{\sqrt{n}}} = \frac{|x-1|}{\sqrt[n]{n^{\frac{1}{2}}}}$$

Stad

$$q = \lim_{n \to \infty} \sqrt[n]{|a_n|} = |x - 1|$$

Teraz

$$q < 1 \Leftrightarrow |x - 1| < 1 \Leftrightarrow x \in (0, 2)$$

Zatem wstępny przedział zbieżności to (0,2), a R=1. Badamy zbieżność na końcach tego przedziału.

$$x = 2 \text{ daje } \sum_{n=1}^{\infty} \frac{(2-1)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}} - \text{rozbieżny bo } \frac{1}{2} \leqslant 1.$$

$$x = 0 \text{ daje } \sum_{n=1}^{\infty} \frac{(0-1)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{\sqrt{n}} - \text{zbieżny z twierdzeniem Leibnitza, bo jest naprzemienny a ciąg } \frac{1}{\sqrt{n}} \text{ jest malejący i dąży do } 0.$$

Zatem przedział zbieżności tego szeregu to [0, 2).

Twierdzenie

Gdy szereg $\sum_{n=0}^{\infty} c_n (x-x_0)^n$ ma wszystkie współczynnki $c_n \neq 0$ i istnieje granica $q = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$ lub $q = \lim_{n \to \infty} \sqrt[n]{|c_n|}$ to promień zbieżności wynosi

- $R = \frac{1}{q}$ gdy q jest liczbą dodatnią,
- R = 0, gdy $q = \infty$,
- $R = \infty$, gdy q = 0.

Uwaga. Twierdzenie to bywa źle stosowane.

Nie można go bezpośrednio stosować do np. szeregów potęgowych gdzie występują tylko potęgi parzyste lub tylko potęgi nieparzyste, bo wtedy q nie istnieje.

Popularny błąd:

"Dla szeregu
$$\sum_{n=0}^{\infty} \frac{1}{2^n} \cdot x^{2n+1}$$
 mamy $\lim_{n \to \infty} \sqrt[n]{|c_n|} = \lim_{n \to \infty} \sqrt[n]{\left|\frac{1}{2^n}\right|}$ Stad $R = 2$, $x \in (-2, 2)$ "

Źle jest wyznaczony c_n . Tutaj $\frac{1}{2^n} = c_{2n+1}$ ale $c_{2n} = 0$ i $\lim_{n \to \infty} \sqrt[n]{|c_n|}$ nie istnieje.

Ten szereg jest szeregiem geometrycznym o ilorazie $\frac{x^2}{2}$ i jest zbieżny dla $x \in (-\sqrt{2}, \sqrt{2})$ czyli $R = \sqrt{2}$.

Definicja

Jeżeli szereg $\sum_{n=0}^{\infty} c_n(x-x_0)^n$ jest zbieżny przynajmniej na (x_0-R,x_0+R) , R>0 to jego sumę $f(x)=\sum_{n=0}^{\infty} c_n(x-x_0)^n$ nazywamy rzeczywistą <u>funkcją analityczną</u>, a szereg – szeregiem Taylora.

Własności szeregów potęgowych

1. Gdy

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n \ x \in (x_0 - R, x_0 + R)$$

to f ma pochodne dowolnego rzędu w x_0 oraz

$$c_0 = f(x_0), \ c_1 = \frac{f'(x_0)}{1!}, \ c_2 = \frac{f''(x_0)}{2!}, ..., c_n = \frac{f^{(n)}(x_0)}{n!}$$

Stąd wynikają rozwinięcia popularnych funkcji w szereg Maclaurina $(x_0 = 0)$.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, \ x \in \mathbb{R}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, \ x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, \ x \in \mathbb{R}$$

$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, \ x \in (-1,1]$$

$$(1+x)^p = \sum_{n=0}^{\infty} \binom{p}{n} x^n = 1 + px + \frac{p(p-1)}{2!} x^2 + \frac{p(p-1)(p-2)}{3!} x^3 + \dots, \ x \in (-1,1)$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots, \ x \in [-1,1]$$

$$\operatorname{arctg} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, \ x \in [-1,1]$$

2. Jeżeli mamy dwa szeregi o tym samym środku i przedziałach zbieżności ${\cal I}_1$ i ${\cal I}_2$:

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n, \ x \in I_1 \text{ oraz } \sum_{n=0}^{\infty} d_n (x - x_0)^n, \ x \in I_2$$
to

- dla dowolnego $c \in \mathbb{R}$ zachodzi $c \cdot \sum_{n=0}^{\infty} c_n (x x_0)^n = \sum_{n=0}^{\infty} c \cdot c_n (x x_0)^n$
- dla $x \in I_1 \cap I_2$ mamy

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n \pm \sum_{n=0}^{\infty} d_n (x - x_0)^n = \sum_{n=0}^{\infty} (c_n \pm d_n) (x - x_0)^n$$

Mamy

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \ x \in \mathbb{R}$$

$$arc \operatorname{tg} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}, \ x \in [-1, 1]$$

Stąd

$$x\cos x = x\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \sum_{n=0}^{\infty} x \cdot \frac{(-1)^n x^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!}$$

oraz dla $x \in \mathbb{R} \cap [-1, 1] = [-1, 1]$

$$x\cos x + \arctan tg \, x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!} + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} \left(\frac{(-1)^n}{(2n)!} + \frac{(-1)^n}{2n+1} \right) x^{2n+1}$$

3. W miejsce x w szeregu Maclaurina można podstawić wyrażenie potęgowe ax^k , $k \in \mathbb{N}^+$. Daje to nowy szereg nowej funkcji z nowym przedziałem zbieżności. Ten nowy przedział można wyznaczyć na podstawie przedziału zbieżności wyjściowego szeregu

Przykłady

a) Szereg Maclaurina dla funkcji $\ln(1+3x)$.

Używamy rozwinięcia

$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \ x \in (-1,1]$$

Aby dostać $\ln(1+3x)$ w miejsce x trzeba wstawić 3x(x:=3x). To daje

$$\ln(1+3x) = \sum_{n=0}^{\infty} \frac{(-1)^n (3x)^{n+1}}{n+1}, \ 3x \in (-1,1]$$

Po uproszczeniu

$$\ln(1+3x) = \sum_{n=0}^{\infty} \frac{(-1)^n \cdot 3^{n+1}}{n+1} x^{n+1}$$

$$3x \in (-1,1] \Leftrightarrow -1 < 3x \leqslant 1 \Leftrightarrow -\frac{1}{3} < x \leqslant \frac{1}{3} \Leftrightarrow x \in \left(-\frac{1}{3},\frac{1}{3}\right]$$

b) Szereg Maclaurina dla funkcji sinh $x = \frac{e^x - e^{-x}}{2}$

Używamy rozwinięcia

$$e^x = \sum_{n=0}^{\infty} = \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, \ x \in \mathbb{R}$$

Wstawiając x := (-x) dostajemy

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}, \ x \in \mathbb{R}$$

To daje

$$\sin h = \frac{e^x - e^{-x}}{2} = \frac{1}{2}e^x - \frac{1}{2}e^{-x} = \frac{1}{2}\sum_{n=0}^{\infty} \frac{x^n}{n!} - \frac{1}{2}\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} =$$

$$= \sum_{n=0}^{\infty} \frac{1}{2n!} x^n - \sum_{n=0}^{\infty} \frac{(-1)^n}{2n!} x^n = \sum_{n=0}^{\infty} \left(\frac{1}{2n!} - \frac{(-1)^n}{2n!}\right) x^n = \sum_{n=0}^{\infty} \left(\frac{1 - (-1)^n}{2n!}\right) x^n$$

Współczynnikiem tego szeregu jest więc

$$c_n = \frac{1 - (-1)^n}{2n!} = \begin{cases} 0, & n = 2k, & k \in \mathbb{N} \\ \frac{1}{n!} = \frac{1}{(2k+1)!}, & n = 2k+1, & k \in \mathbb{N} \end{cases}$$

Stad

$$\sinh x = \sum_{n=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots, \ x \in \mathbb{R}$$

c) Szereg Maclaurina dla funkcji
 $\frac{x}{3+x^4}$

W przypadku funkcji wymiernej **zawsze** korzystamy z szeregu geometrycznego

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots, \ x \in (-1,1)$$

Doprowadzamy wyrażenie do postaci **stała** $\cdot \frac{1}{1 - \text{"coś"}}$ i za x wstawiamy to "coś".

Zatem

$$\frac{x}{3+x^4} = \frac{x}{3} \cdot \frac{1}{1+\frac{x^4}{3}} = \frac{x}{3} \cdot \frac{1}{1-\left(-\frac{x^4}{3}\right)}$$

Czyli "coś" = $-\frac{x^4}{3}$ i to daje

$$\frac{x}{3+x^4} = \frac{x}{3} \sum_{n=0}^{\infty} \left(-\frac{x^4}{3} \right)^n = \frac{x}{3} \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} x^{4n} = \sum_{n=0}^{\infty} \frac{x}{3} \cdot \frac{(-1)^n}{3^n} x^{4n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} x^{4n+1} = \sum_{n=0}^{\infty} \frac{x}{3^n} \cdot \frac{(-1)^n}{3^n} x^{4n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} x^{4n+1} = \sum_{n=0}^{\infty} \frac{x}{3^n} \cdot \frac{(-1)^n}{3^n} x^{4n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} x^{4n+1} = \sum_{n=0}^{\infty} \frac{x}{3^n} \cdot \frac{(-1)^n}{3^n} x^{4n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} x^{4n} = \sum_{n=0}^{$$

Przedział zbieżności wynika z warunku

$$-1 < -\frac{x^4}{3} < 1 \Leftrightarrow -3 < x^4 < 3 \Leftrightarrow -3 < x^4 \land x^4 < 3$$

Pierwsza z tych nierówności jest zawsze prawdziwa. Rozwiązanie drugiej daje $-\sqrt[4]{3} < x < \sqrt[4]{3}$. Czyli przedział zbieżności to $(-\sqrt[4]{3}, \sqrt[4]{3})$.

4. Gdy $f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$, $x \in (x_0 - R, x_0 + R)$ to f ma pochodną dowolnego rzędu i zachodzi wzór

$$f'(x) = \left(\sum_{n=0}^{\infty} c_n (x - x_0)^n\right) = \sum_{n=0}^{\infty} \left(c_n (x - x_0)^n\right) = \sum_{n=0}^{\infty} c_n n(x - x_0)^{n-1} = \sum_{n=1}^{\infty} c_n n(x - x_0)^{n-1}$$

Jest to rozszerzenie wzoru "pochodna sumy = suma pochodnych" na nieskończoną ilość składników

Przykład

Znaleźć szereg Maclaurina dla funkcji $f(x) = \frac{1}{(x+1)^2}$

Używamy rozwinięcia
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \ x \in (-1,1).$$

Mamy

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n$$
$$\left(\frac{1}{1+x}\right) = -\frac{1}{(1+x)^2} = \sum_{n=1}^{\infty} ((-1)^n n x^{n-1}) = \sum_{n=1}^{\infty} (-1)^n n x^{n-1}$$

Stad

$$\frac{1}{(1+x)^2} = -\sum_{n=1}^{\infty} (-1)^n nx^{n-1} = \sum_{n=1}^{\infty} (-1)^{n-1} nx^{n-1} = 1 - 2x + 3x^2 - 4x^3 + \dots, \ x \in (-1,1)$$

5. Gdy

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n, \ x \in (x_0 - R, x_0 + R)$$

to dla $a, b \in (x_0 - R, x_0 + R)$ mamy

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \left(\sum_{n=0}^{\infty} c_n (x - x_0)^n \right) dx = \sum_{n=0}^{\infty} \int_{a}^{b} c_n (x - x_0)^n dx =$$

$$\sum_{n=0}^{\infty} c_n \left[\frac{(x-x_0)^{n+1}}{n+1} \right]_a^b = \sum_{n=0}^{\infty} c_n \frac{(b-x_0)^{n+1} - (a-x_0)^{n+1}}{n+1}$$

Jest to rozszerzenie wzoru "całka sumy = suma całek" na nieskończoną ilość składników W szczególności biorąc $a=x_0,\ b=x,\ F(x)=\int f(x)\,dx$ oraz przyjmując

$$\int (x - x_0)^n dx = \frac{(x - x_0)^{n+1}}{n+1} \quad \text{(stała całkowania} = 0)$$

Dostajemy ten wzór z całką nieoznaczoną

$$F(x) = \int f(x) dx = F(x) + \sum_{n=0}^{\infty} c_n \int (x - x_0)^n dx$$
, a więc

$$F(x) = F(x_0) + \sum_{n=0}^{\infty} c_n \frac{(x-x_0)^{n+1}}{n+1}, \ x \in (x_0 - R, x_0 + R)$$

Przykład

Wyprowadzić wzór na szereg Maclaurina dla arc tg x na przedziale (-1,1).

Mamy $\int \frac{1}{1+x^2} dx = \arctan \operatorname{tg} x + C$. Wystarczy zatem rozwinąć w szereg funkcję $\frac{1}{1+x^2}$, a potem obliczyć całkę.

Korzystając z rozwinięcia $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \ x \in (-1,1)$

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

Przedział zbieżności: $x^2 \in (-1,1) \Leftrightarrow x \in (-1,1)$.

Zatem

$$\operatorname{arc} \operatorname{tg} x = \int \frac{1}{1+x^2} \, dx = \operatorname{arc} \operatorname{tg} 0 + \sum_{n=0}^{\infty} \int (-1)^n x^{2n} \, dx = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \ x \in (-1,1)$$

6. Twierdzenie Abela o rozszerzaniu szeregu na końce przedziału zbieżności

Niech

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n, \ x \in (x_0 - R, x_0 + R)$$

Jeżeli

- \bullet szereg jest zbieżny również dla $x=x_0+R$
- f jest ciągła dla $x = x_0 + R$

to wzór zachodzi także dla $\boldsymbol{x} = \boldsymbol{x}_0 + \boldsymbol{R}$ czyli

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n, \ x \in (x_0 - R, x_0 + R]$$

Analogicznie dla $x = x_0 - R$

Przykład

Pokazaliśmy, że arc tg
$$x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \ x \in (-1,1)$$

Teraz

- dla x=1 mamy $\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{2n+1}=\sum_{n=0}^{\infty}(-1)^n\frac{1}{2n+1}$ zbieżny bo Leibnitza
- arc tg x jest ciagła w x = 1

Analogicznie dla x = -1.

Zatem rozwinięcie jest prawdziwe również dla $x \pm 1$ czyli

$$arc \operatorname{tg} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \ x \in [-1, 1]$$

Inne zastosowania szeregów potęgowych:

- przybliżanie funkcji bierzemy rozwinięcie do ustalonej potęgi,
- obliczanie całek nieelementarnych w przybliżeniu,
- wyznaczanie sum niektórych szeregów oraz wartości pochodnych wysokiego rzędu.

Przykłady

Jaka jest siedemdziesiąta piąta pochodna $\operatorname{arc} \operatorname{tg} x \le x = 0$?

Niech $f(x) = \operatorname{arc} \operatorname{tg} x$.

Bierzemy rozwinięcie f ze środkiem (koniecznie) w 0:

$$\operatorname{arctg} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \ x \in [-1, 1]$$

Ogólny wzór daje

$$c_n = \frac{f^{(n)}(0)}{n!}$$
 czyli $c_{75} = \frac{f^{(75)}(0)}{75!} \Leftrightarrow f^{(75)}(0) = 75! \cdot c_{75}$

Pozostaje wyznaczyć c_{75} . Jest to współczynnik przy x_{75} co oznacza, że

$$c_{75}x^{75} = (-1)^n \frac{x^{2n+1}}{2n+1}$$

Stad

$$n = 37, \ c_{75} = \frac{(-1)^{37}}{2 \cdot 37 + 1} = -\frac{1}{75}$$

Oraz

$$f^{(75)}(0) = 75! \cdot \left(-\frac{1}{75}\right) = -74!$$

Wyznaczyć sumę $\sum_{n=1}^{\infty} \frac{n}{2^{n+1}}$

Jest to szereg zbieżny na podstawie np. kryterium d'Alemberta.

Zapisujemy sume tak, by potega była w iloczynie:

$$\sum_{n=1}^{\infty} \frac{n}{2^{n+1}} = \sum_{n=1}^{\infty} n \cdot \left(\frac{1}{2}\right)^{n+1}$$

Biorąc $x=\frac{1}{2}$ mamy szereg potęgowy $\sum_{n=1}^{\infty}n\cdot x^{n+1}$

Dla $x \in (-1,1)$ jest on zbieżny. Wyznaczamy jego sumę przez różniczkowanie lub całkowanie.

- Pochodna $(n \cdot x^{n+1}) = n(n+1)x^n$ pogarsza się wzór.
- Całka $\int n \cdot x^{n+1} dx = \frac{n}{n+2} x^{n+2}$. Jest lepiej ale problem w tym, że n+2 nie uprościło n z licznika.

Stad drugie pytanie:

Jaką wziąć potęgę nx^p aby po scałkowaniu uprościł się współczynnik n?

Potrzeba

$$x^{n-1}$$
, bo $\int nx^{n-1} dx = \frac{n}{n}x^n + C = x^n + C$

Zatem bierzemy

$$f(x) = \sum_{n=1}^{\infty} nx^{n-1}, \ x \in (-1,1)$$

Całkując obie strony mamy

$$F(x) = \int f(x) dx = F(0) + \sum_{n=1}^{\infty} x^n$$

Szereg $\sum_{n=1}^{\infty} x^n$ jest szeregiem geometrycznym o sumie $\frac{x}{1-x}$, $x \in (-1,1)$.

Stąd aby odzyskać f liczymy pochodną obu stron:

$$F(x) = f(x) = \left(\frac{x}{1-x}\right) = \frac{1}{(1-x)^2}$$

Czyli

$$\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$$

I na koniec

$$\sum_{n=1}^{\infty} nx^{n+1} = \sum_{n=1}^{\infty} nx^{n-1} \cdot x^2 = x^2 \sum_{n=1}^{\infty} nx^{n-1} = \frac{x^2}{(1-x)^2}$$

Dla $x = \frac{1}{2}$ to daje

$$\sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^{n+1} = 1 = \sum_{n=1}^{\infty} \frac{n}{2^{n+1}}$$

5 Funkcje wielu zmiennych

Na początek kilka definicji dotyczących zbiorów w \mathbb{R}^n .

• Otoczenie punktu $P = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ to n – wymiarowa kula otwarta o środku w P i promieniu r > 0, tzn. zbiór

$$K(P,r) = \{Q = (y_1, y_2, ..., y_n) \in \mathbb{R}^n : |PQ|^2 = (x_1 - y_1)^2 + (x_2 - y_2)^2 + ... + (x_n - y_n)^2 < r^2\}$$

Dla n=2 jest to koło o środku w P bez brzegowego okręgu.

Dla n=3 jest to kula o środku w P bez brzegowej sfery.

- Sąsiedztwo punktu $x_0 \in \mathbb{R}^n$ to zbiór postaci $S = S(P, r) = K(P, r) \setminus P$
- Zbiór $A \subset \mathbb{R}^n$ jest zbiorem <u>otwartym,</u> gdy każdy punkt z A posiada pewne otoczenie zawarte w A, tzn.

$$\forall P \in A \ \exists K(P,r) \quad P \in K(P,r) \subset A$$

• Zbiór $A \subset \mathbb{R}^n$ jest zbiorem domkniętym, gdy jego dopełnienie $A = \mathbb{R}^n \backslash A$ jest zbiorem otwartym.

Definicja

Funkcja wielu zmiennych ma postać

$$f:D\to\mathbb{R}$$

gdzie $D \subset \mathbb{R}^n$ jest dziedziną f.

Zatem dla $(x_1, x_2, ..., x_n) \in D$ $f(x_1, x_2, ..., x_n) \in \mathbb{R}$

Gdy mamy funkcje dwóch zmiennych to zwykle piszemy z = f(x, y) a dla trzech zmiennych t = f(x, y, z).

Będziemy analizować głównie funkcje dwóch zmiennych z = f(x, y).

Dla takich funkcji można narysować wykres – gdy D jest otwarty to wykresem jest powierzchnia w 3 wymiarach dana wzorem (x, y, f(x, y)), gdzie $(x, y) \in D_f$.

Wykres funkcji $f(x,y) = x^3 + 3xy^2 - 51x - 24y$, $-5 \leqslant x \leqslant 5$, $-5 \leqslant y \leqslant 5$

Wykresy niektórych popularnych funkcji

- z = Ax + By + C płaszczyzna o wektorze normalnym $\vec{n} = [A, B, -1]$ i przechodząca przez punkt (0, 0, C).
- $z = z_0 + \sqrt{r^2 (x x_0)^2 (y y_0)^2}$ górna półsfera o środku w (x_0, y_0, z_0) i promieniu r > 0. Np. $z = 3 + \sqrt{7 x^2 (y 1)^2}$: $S(0, 1, 3), r = \sqrt{7}$ $z = z_0 \sqrt{r^2 (x x_0)^2 (y y_0)^2}$ analogiczna półsfera ale dolna.

Obie pochodzą z równania całej sfery: $(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2$.

• $z = z_0 + a\sqrt{r^2 - (x - x_0)^2 - (y - y_0)^2}$, $a \neq 0$ – powierzchnia stożkowa o wierzchołku w $P = (x_0, y_0, z_0)$ i osi symetrii równoległej do osi Z.

a > 0 – wierzchołek w dół, a < 0 – wierzchołek w górę.

 $|a|=\operatorname{tg}\alpha$, gdzie α jest kątem między prostą będącą tworzącą stożka

Powierzchnia stożkowa i półsfera są szczególnymi przypadkami tzw. powierzchni obrotowych w \mathbb{R}^3 .

Powierzchnią obrotową w \mathbb{R}^3 wokół osi Z będziemy nazywali zbiór wszystkich możliwych punktów (x,y,z) taki, że podstawienie $r=\sqrt{x^2+y^2}$ wyznacza zbiór z jako współrzędne wszystkich par (z,r) tworzących pewną krzywą na płaszczyźnie, przy czym zbiór wszystkich $r\geqslant 0$ jest zbiorem otwartym.

Zatem jeżeli ta powierzchnia jest dana przez pewne równanie postaci

$$F(x, y, z) = 0$$

to podstawienie $r=\sqrt{x^2+y^2}$ usuwa wszystkie x i y i prowadzi do równania zależnego tylko od z oraz r.

W szczególności gdy mamy z = f(x, y) i podstawienie r powoduje, że f zależy tylko od r to wykresem f jest powierzchnia obrotowa wokół osi Z.

Geometryczne własności takiej powierzchni

- ullet Niepuste przecięcie powierzchni z dowolną płaszczyzną prostopadłą do osi Z jest punktem, okręgiem lub sumą tych zbiorów.
- \bullet Niepuste przecięcie powierzchni z dowolną płaszczyzną zawierającą ośZjest krzywą o tym samym kształcie.

Na przykład dla powierzchni stożkowej $z=a\sqrt{x^2+y^2},\ a>0$, przecięcie płaszczyzną prostopadłą do osi Z jest okręgiem lub wierzchołkiem, a przecięcie płaszczyzną zawierającą oś Z jest sumą dwóch półprostych wychodzących z wierzchołka.

Sposób rysowania takich powierzchni opiera się na spotstrzeżeniu, że dla x=0 i $y\geqslant 0$ mamy $r=\sqrt{y^2}=y\geqslant 0$. Zatem rysujemy w płaszczyźnie YZ wykres odpowiedniej krzywej dla $y\geqslant 0$, a następnie obracamy go wokół osi Z. Tworzy to żądaną powierzchnię obrotową.

Poprzedni przykład raz jeszcze: $z=a\sqrt{x^2+y^2},\ a>0.$

Tutaj dla $r=\sqrt{x^2+y^2}\geqslant 0$ mamy z=ar. Zatem biorąc $r=y\geqslant 0$ w płaszczyźnie YZ dostajemy wykres funkcji liniowej $z=f(0,y)=ay,\ y\geqslant 0$. Jest to półprosta

Rozszerzanie powyższego przypadku – powierzchnia obrotowa wokół osi równoległej do osi Z. Jeżeli dla pewnych $x_0, y_0 \in \mathbb{R}$ podstawienie $r = \sqrt{(x-x_0)^2 + (y-y_0)^2}$ usuwa wszystkie x i y i prowadzi do równania zależnego tylko od z oraz r to dana powierzchnia jest powierzchnią obrotową wokół prostej $L: x = x_0, \ y = y_0, \ z \in \mathbb{R}$.

Jest to zatem przypadek powiercz
hni opisanej poprzednio (czyli dla $x_0 = y_0 = 0$) ale przesunięty następnie o wektor
 $\vec{v} = [x_0, y_0, 0]$.

Przykład

Powierzchnia dana równaniem $z = (x + 2)^2 + (y - 1)^2$ Tutaj mamy $x_0 = -2$ oraz $y_0 = 1$ i podstawienie $r = \sqrt{(x + 2)^2 + (y - 1)^2}$ daje równanie $z = r^2$, $r \ge 0$. Zatem biorąc $r = y \ge 0$ w płaszczyźnie YZ dostajemy wykres funkcji $z = f(0, y) = y^2$, $y \ge 0$. Jest to prawa gałąź paraboli.

Obracając ją następnie wokół osi Z dostajemy powierzchnię zwaną paraboloidą.

Na koniec przesuwamy powyższą powierzchnię o wektor $\vec{v} = [x_0, y_0, 0] = [-2, 1, 0]$ i to daje naszą powierzchnię.

Inny typ powierzchni – tzw. powierzchnie walcowe

Powierzchnia jest nazywana powierzchnią walcową równoległą do osi Z jeżeli z faktu, że punkt (x_0, y_0, z_0) należy do powierzchni wynika, że dla dowolnego z każdy punkt postaci (x_0, y_0, z_0) też należy do tej powierzchni.

To oznacza, że jeżeli taka powierzchnia jest dana przez pewne wyrażenie to równanie to nie zawiera zmiennej z.

Geometrycznie – niepuste przecięcie powierzchni z dowolną płaszczyzną równoległą do osi Z daje krzywą o tym samym kształcie.

Stąd sposób tworzenia wykresów takich powierzchni – rysujemy w płaszczyźnie XY (czyli dla z=0) krzywą zadaną wyjściową relacją, a potem wykres tej krzywej przesuwamy wzdłuż osi Z i to generuje daną powierzchnię.

Dwa pozostałe przypadki są analogiczne:

- ullet gdy relacja definiująca powierzchnię nie zawiera x to rysujemy odpowiednią krzywą w płaszczyźnie YZ, a potem jej wykres przesuwamy wzdłuż osi X,
- \bullet gdy relacja definiująca powierzchnię nie zawiera y to rysujemy odpowiednią krzywą w płaszczyźnie XZ, a potem jej wykres przesuwamy wzdłuż osi Y.

Stąd prosta reguła – odpowiednią krzywą przesuwamy zawsze wzdłuż tej osi, która odpowiada zmiennej **nieobecnej** w równaniu.

Przykład

Powierzchnia o równaniu $x^2 + y^2 = 1$.

Nie występuje z, a więc jest to powierzchnia walcowa równoległa do osi Z.

Wyznaczamy krzywą daną powyższą relacją w płaszczyźnie XY – jest to okrąg o środku w układzie współrzędnych i promieniu równym 1.

Po przesunięciu tego okręgu wzdłuż osi Z zostaje wygenerowana powierzchnia – jest to powierzchnia boczna walca o nieskończonej długości. Stąd bierze się nazwa tego typu krzywych.

Definicja

Poziomica funkcji z = f(x, y) na wysokości h to zbiór

$$D_h = \{(x, y) : f(x, y) = h\}$$

Jest to rzut na płaszczyznę XY zbioru – najczęściej krzywej – będącego przekrojem wykresu f płaszczyzną o równaniu z=h.

Interpretacja geograficzna

Jeśli płaszczyzna XY jest "mapą" i wyznacza "poziom morza", z – wysokością nad "poziomem morza", a wykres f jest "rzeźbą terenu" to poziomica jest krzywą na "mapie" która łączy punkty odpowiadające tej samej "wysokości" h.

Na podstawie zagęszczenia poziomic dla odpowiednio dobranych h możemy przewidzieć kształt wykresu f – czy jest stromy czy płaski.

Pochodne cząstkowe pierwszego rzędu funkcji wielu zmiennych

Są to pochodne danej funkcji liczone względem jednej zmiennej, a pozostałe zmienne są stałe i przyjmują rolę parametrów.

Oznaczenie dla f = f(x, y):

$$\frac{\partial f}{\partial x}$$
 lub f_x – pochodna po x $\frac{\partial f}{\partial y}$ lub f_y – pochodna po y

Formalna definicja:

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

Dla funkcji n zmiennych $f = f(x_1, x_2, ..., x_n)$:

$$\frac{\partial f}{\partial x_i}(x_1, x_2, ..., x_n) = \lim_{h \to 0} \frac{f(x_1, x_2, ..., x_{i-1}, x_i + h, x_{i+1}, ..., x_n) - f(x_1, x_2, ..., x_i, ..., x_n)}{h}$$

Interpretacja geometryczna dla funkcji 2 zmiennych

Wykres każdej funkcji f dwóch zmiennych można przeciąć płaszczyzną równoległą do osi Z. Powstaje wtedy pewna krzywa, która jest częścią wspólną wykresu f oraz płaszczyzny. Jest to szczególny przypadek tzw. funkcji warunkowej o której wkrótce powiemy więcej.

Gdy taka krzywa jest regularna to możemy liczyć dla niej pochodną. Gdy płaszczyzna przekroju przechodzi przez punkt $P=(x_0,y_0,f(x_0,y_0))$ to pochodna tej krzywej jest równa

- $\frac{\partial f}{\partial x}(x_0, y_0)$, gdy płaszczyzna jest $\parallel XZ$,
- $\frac{\partial f}{\partial y}(x_0, y_0)$, gdy płaszczyzna jest $\parallel YZ$.

Sposób wyznaczania pochodnych cząstkowych w praktyce

Ponieważ tylko jedna zmienna jest w użyciu, a pozostałe stają się parametrami to korzystamy z reguł różniczkowania funkcji 1 zmiennej.

Pamiętać należy, że dla wybranej zmiennej dowolne wyrażenie z każdą inną zmienną **staje się stałą** i jej pochodna po wybranej zmiennej jest **równa 0**. Czyli np.

$$\frac{\partial}{\partial y}(4x^2 + 3\sin x + 5) = 0, \quad \frac{\partial}{\partial x}(ye^{z+2y}) = 0$$
 itd.

Przykład

$$f(x,y) = x\sin(xy^3)$$

Wtedy różniczkując po x mamy pochodną iloczynu:

$$\frac{\partial f}{\partial x} = f_x = ((x)_x \cdot \sin(xy^3))_y = x \cdot (\sin(xy^3))_y = x \cdot \cos(xy^3) \cdot 3y^2x$$

Pochodne drugiego rzędu

Mając pochodne 1 rzędu definiujemy pochodne drugiego rzędu jako pochodne pierwszego rzędu z pochodnych pierwszego rzędu. W szczególności, dla f=f(x,y) mamy 4 pochodne drugiego rzędu.

Pochodne jednorodne po danej zmiennej:

•
$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$
 – dwukrotne różniczkowanie f po x ,

•
$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$
 – dwukrotne różniczkowanie f po y ,

•
$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$
 – różniczkowanie wpierw po x , potem po y ,

•
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$
 – różniczkowanie wpierw po y , potem po x ,

Inne oznaczenia to f_{xx} , f_{yy} , f_{xy} , f_{yx} , gdzie indeks dolny oznacza zmienne, po których kolejno różniczkujemy.

W przypadku pochodnych mieszanych f_{xy}, f_{yx} , trzeba ustalić kolejność różniczkowania.

Przyjmujemy naturalną kolejność, wtedy mamy $f_{xy} = (f_x)_y$ oraz $f_{yx} = (f_y)_x$

co oznacza, że
$$\frac{\partial^2 f}{\partial y \partial x} = f_{xy}$$
 i $\frac{\partial^2 f}{\partial x \partial y} = f_{yx}$.

Dla funkcji n zmiennych $f = f(x_1, x_2, ..., x_n)$:

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) = (f_{x_i})_{x_j} = f_{x_i x_j}$$

Przykład

$$f(x,y) = \frac{2^y}{x+1}$$
Tutaj $f_x = -\frac{2^y}{(x+1)^2}$, $f_y = \frac{2^y \ln 2}{x+1}$ oraz
$$f_{xx} = (f_x)_x = \left(-\frac{2^y}{(x+1)^2}\right)_x = -2^y \left(\frac{1}{(x+1)^2}\right)_x = 2^y \cdot \frac{2}{(x+1)^3}$$

$$f_{yy} = (f_y)_y = \left(\frac{2^y \ln 2}{x+1}\right)_y = \frac{\ln 2}{x+1} \cdot (2^y)_y = \frac{2^y \cdot (\ln 2)^2}{x+1}$$

$$f_{xy} = (f_x)_y = \left(-\frac{2^y}{(x+1)^2}\right)_y = \left(\frac{-1}{(x+1)^2}\right) \cdot (2^y)_y = -\frac{2^y \ln 2}{(x+1)^2}$$

$$f_{yx} = (f_y)_x = \left(\frac{2^y \ln 2}{x+1}\right)_x = 2^y \ln 2 \left(\frac{1}{(x+1)^2}\right) = 2^y \ln 2 \left(\frac{-1}{(x+1)^2}\right) = -\frac{2^y \ln 2}{(x+1)^2}$$

Otrzymaliśmy $f_{xy} = f_{yx}$.

Jest to szczególny przypadek znanego twierdzenia.

Twierdzenie Schwarza o pochodnych mieszanych

Gdy pochodne mieszane drugiego rzędu są funkcjami ciągłymi w danym punkcie to są w tym punkcie równe.

W praktyce dla funkcji regularnych warunek ciągłości drugiego rzędu występuje zawsze na całych dziedzinach stąd prawie zawsze zobaczymy równość wzorów pochodnych mieszanych.

Zbieżność w \mathbb{R}^k i granice funkcji wielu zmiennych

Rozpatrujemy ciąg wielu punktów $P_n = (x_n, y_n) \in \mathbb{R}^2$.

Równoważnie możemy myśleć o wektorach $\vec{v} \in \mathbb{R}^2$ biorąc wektory pozycyjne punktów P_n czyli $\vec{v} = \vec{OP}_n$.

Niech teraz $P_0=(x_0,y_0)\in\mathbb{R}^2$. Mówimy, że $P_n\to P_0$, gdy odległość między P_n i P_0 zbiega 0. Formalnie

$$\lim_{n \to \infty} P_n = P_0 \iff \lim_{n \to \infty} |\overrightarrow{P_0 P_n}| = 0 \iff \lim_{n \to \infty} \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} = 0$$

Podobnie, gdy

$$P_n = (x_n, y_n, z_n) \in \mathbb{R}^3$$
 i $P_0 = (x_0, y_0, z_0) \in \mathbb{R}^3$

To definiujemy

$$\lim_{n \to \infty} P_n = P_0 \iff \lim_{n \to \infty} |\overrightarrow{P_0 P_n}| = 0 \iff \lim_{n \to \infty} \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2 + (z_n - z_0)^2} = 0$$

Analogicznie rozszerzamy tę definicję na przypadek k – wymiarowy.

Poniższe twierdzenie pokazuje, że zbieżność $P_n \to P_0$ może być zdefiniowana w równoważny sposób.

Twierdzenie (zbieżność po współrzędnych)

Gdy

$$P_n = (x_n, y_n) \in \mathbb{R}^2$$
 i $P_0 = (x_0, y_0) \in \mathbb{R}^2$

to mamy równoważność

$$\lim_{n \to \infty} P_n = P_0 \iff \lim_{n \to \infty} x_n = x_0 \land \lim_{n \to \infty} y_n = y_0$$

Dowód

Implikacja ← wynika bezpośrednio z arytmetyki granic :

Jeżeli $\lim_{n\to\infty} x_n = x_0 \wedge \lim_{n\to\infty} y_n = y_0$ to

$$\lim_{n \to \infty} |\overrightarrow{P_0 P_n}| = \lim_{n \to \infty} \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} = \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} = 0$$

Zatem

$$\lim_{n\to\infty} P_n = P_0$$

Implikacja \Rightarrow wynika z kolei z twierdzenia o 3 funkcjach. Mamy bowiem

$$0 \le |x_n - x_0| = \sqrt{(x_n - x_0)^2} \le \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} = |\overrightarrow{P_0 P_n}|$$

Teraz, gdy $\lim_{n\to\infty} P_n = P_0$ to $\lim_{n\to\infty} |\overrightarrow{P_0P_n}| = 0$ i z twierdzenia o 3 ciągach dostajemy $\lim_{n\to\infty} |x_n - x_0| = 0$ a to daje $\lim_{n\to\infty} (x_n - x_0) = 0 \Leftrightarrow \lim_{n\to\infty} x_n = x_0$

Analogicznie otrzymujemy $\lim_{n\to\infty} y_n = y_0$

Jak łatwo zauważyć, twierdzenie ma analogiczną postać w przypadku wyższych wymiarów.

Definicja granicy funkcji dwóch zmiennych w punkcie

 $\lim_{\substack{(x,y)\to(x_0,y_0)\\n\to\infty}}f(x,y)=L \Leftrightarrow \text{dla dowolnych ciągów punktów }(x_n,y_n)\neq(x_0,y_0)\text{ i takich, że }\lim_{n\to\infty}(x_n,y_n)=(x_0,y_0)\text{ zachodzi równość }\lim_{n\to\infty}f(x_n,y_n)=L.$

Definicja jest analogiczna w przypadku funkcji większej ilości zmiennych.

Równoważny zapis tej granicy, zgodny ze znaczeniem twierdzenia o zbieżności po współrzędnych to

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = L$$

Twierdzenie o granicach znane dla funkcji jednej zmiennej (arytmetyka granic, symbole nieoznaczone itd.) pozostają prawdziwe.

Główny problem – nie da się bezpośrednio zastosować niektórych popularnych technik, np. reguły de l'Hospitala.

Popularne techniki liczenia granic funkcji wielu zmiennych

1. Twierdzenie o 3 funkcjach. Jeżeli dla wszystkich punktów $P \in \mathbb{R}^k$ z pewnego sąsiedztwa punktu $P_0 \in \mathbb{R}^k$ zachodzi nierówność

$$d(P) \leqslant f(P) \leqslant g(P)$$
 i $\lim_{P \to P_0} d(P) = \lim_{P \to P_0} g(P) = L$ to $\lim_{P \to P_0} f(P) = L$

2. Sprowadzenie granicy do przypadku jednej zmiennej.

Jeżeli istnieje nowa zmienna t=t(P) takie, że f(P)=g(t) oraz $\lim_{P\to P_0}t=t_0$ i $\lim_{t\to t_0}g(t)=L$ to $\lim_{P\to P_0}f(P)=L$

3. COŚ O BRAKU GRANICY XD $\lim_{P \to P_0} f(P)$ nie istnieje

Przypadek 3 jest szczególnie częsty, gdy pojawia się symbol nieoznaczony.

W przypadku funkcji dwóch zmiennych najczęściej wybiera się ciągi punktów P_n i Q_n z dwóch różnych krzywych.

P jest wtedy z wykresu jakiejś krzywej: y = g(x) lub x = g(y).

Q jest z wykresu innej krzywej: y = h(x) lub x = h(y).

Obie krzywe muszą spotykać się w punkcie granicznym P_0 .

Wtedy granice $\lim_{P\to P_0} f(P)$ i $\lim_{Q\to P_0} f(Q)$ stają się granicami funkcji jednej zmiennej.

Przykłady

$$\lim_{\substack{x \to 0 \\ y \to 0}} (x^2 + 4y^2) \cos\left(x - 5y + \frac{2}{x}\right)$$

Wiemy, że $x^2 + 4y^2 \ge 0$ oraz $-1 \le \cos\left(x - 5y\frac{2}{x}\right) \le 1$, a stąd

$$-(x^2 + 4y^2) \leqslant (x^2 + 4y^2)\cos\left(x - 5y + \frac{2}{x}\right) \leqslant x^2 + 4y^2$$

Ponieważ

$$\lim_{\substack{x \to 0 \\ y \to 0}} (x^2 + 4y^2) = 0 = \lim_{\substack{x \to 0 \\ y \to 0}} (-(x^2 + 4y^2))$$

z twiedzenia o 3 ciągach otrzymujemy

$$\lim_{\substack{x \to 0 \\ y \to 0}} (x^2 + 4y^2) \cos\left(x - 5y + \frac{2}{x}\right) = 0$$

$$\lim_{\substack{x \to 1 \\ y \to 1 \\ z \to 0}} \frac{2x - y + z - 1 - \ln(2x - y + z)}{(2x - y + z - 1)^2}$$

Tutaj możemy podstawić t = 2x - y + z. Wtedy $\lim_{\substack{x \to 1 \\ y \to 1 \\ z \to 0}} t = 1$

i mamy

$$\lim_{\substack{x \to 1 \\ y \to 1 \\ y \to 0}} \frac{2x - y + z - 1 - \ln(2x - y + z)}{(2x - y + z - 1)^2} = \lim_{t \to 1} \frac{t - 1 - \ln t}{(t - 1)^2} \left[\frac{0}{0} \right] \stackrel{[H]}{=} \frac{1}{2}$$

$$\lim_{\substack{x\to 0\\y\to 0}} \frac{\operatorname{tg}(x^2 - y^2)}{x - y}$$

Tutaj znów jest granica typu $\frac{0}{0}$. Po podstawieniu $t=x^2-y^2$ mamy granicę podstawową $\lim_{t\to 0}\frac{\operatorname{tg} t}{t}=1.$

Stąd wniosek, że trzeba nasze wyrażenie rozbić na iloczyn: $\lim_{\substack{x\to 0\\y\to 0}} \frac{\operatorname{tg}(x^2-y^2)}{x^2-y^2} \cdot \frac{x^2-y^2}{x-y}$

Mamy wtedy

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\operatorname{tg}(x^2 - y^2)}{x^2 - y^2} = \lim_{t \to 0} \frac{\operatorname{tg} t}{t} = 1$$

Oraz

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 - y^2}{x - y} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{(x - y)(x + y)}{x - y} = \lim_{\substack{x \to 0 \\ y \to 0}} (x + y) = 0$$

Stad

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\operatorname{tg}(x^2 - y^2)}{x - y} = 1 \cdot 0 = 0$$

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x}{y}$$

Tutaj wykażemy brak granicy

Rozpatrujemy 2 krzywe przechodzące przez (0,0). Na przykład y=x oraz y=2x.

Biorac y = x mamy

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x}{y} = \lim_{x \to 0} \frac{x}{x} = 1$$

Natomiast dla y = 2x mamy

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x}{y} = \lim_{x \to 0} \frac{x}{2x} = \frac{1}{2} \neq 1$$

Zatem granica nie istnieje

Ciagłość funkcji wielu zmiennych

Definicja jest analogiczna jak dla funkcji jednej zmiennej – granica funkcji jest równa wartości. Formalnie,

f jest ciągła w punkcie $P_0 \in D_f$, gdy $\lim_{P \to P_0} f(P) = f(P_0)$, f jest ciągła na zbiorze $A \subset D_f$ jeżeli jest ciągła we wszystkich punktach z A.

Twierdzenia dotyczące arytmetyki funkcji ciągłych są analogiczne jak w przypadku jednej zmiennej.

Przykład

Wyznaczyć zbiór punktów ciągłości funkcji

$$f(x,y) = \begin{cases} 2x + y + 1, & x \ge 0 \\ 2y + x, & x < 0 \end{cases}$$

Tutaj rozpatrujemy dwa obszary – dane warunkami $x \ge 0$ oraz x < 0.

Brzegiem obu obszarów jest prosta x = 0 (oś Y).

W punktach (x, y), x > 0, funkcja jest ciągła, bo jest równa elementarnej na zbiorze otwartym. Podobnie dla x < 0..

Pozostaje zbadać ciągłość w punktach brzegowych czyli w $P_0 = (0, y_0)$.

Ze względu na warunek definiujący zbiór, dla takich punktów zbieżności trzeba rozpatrzeć 2 możliwe typy punktów

$$P = (x, y) \rightarrow P_0$$
 dla $x \ge 0$ oraz $x < 0$

Dla $x \ge 0$ mamy

$$\lim_{\substack{x \to 0 \\ y \to y_0}} f(x, y) = \lim_{\substack{x \to 0 \\ y \to y_0}} (2x + y - 1) = y_0 - 1$$

Dla x < 0 mamy

$$\lim_{\substack{x \to 0 \\ y \to y_0}} f(x, y) = \lim_{\substack{x \to 0 \\ y \to y_0}} (2y + x) = 2y_0$$

Ponadto $f(0, y_0) = y_0 - 1$

Stąd ciągłość w $P_0=(0,y_0)$ ma miejsce, gdy $y_0-1=2y_0$, a więc dla $y_0=-1$. Wtedy dla dowolnego ciągu punktów $P=(x,y)\to(0,-1)$ mamy

$$\lim_{\substack{x \to 0 \\ y \to -1}} f(x, y) = f(0, -1) = -2$$

Zatem zbiorem punktów ciągłości f jest zbiór

$$D = \{(x, y) : x \neq 0\} \cup \{(0, -1)\}\$$

Interpretacja geometryczna wykresu – składa się z dwóch osobnych ukośnych półpłaszczyzn, które spotykają się w punkcie (0, -1).

Ekstrema funkcji dwóch zmiennych

Definicja

f ma w $P = (x_0, y_0) \in D_f$ minimum lokalne gdy $f(x_0, y_0)$ jest najmniejszą wartością f na pewnym kole o środku w P.

f ma w $P=(x_0,y_0)\in D_f$ minimum lokalne gdy $f(x_0,y_0)$ jest największą wartością f na pewnym kole o środku w P.

Gdy ta wartość jest najmniejsza/największa na całej dziedzinie f to mówimy o ekstremum (minimum, maksimum) globalnym.

Na przykład funkcja $f(x,y) = x^4 + y^6$ ma w (0,0) minimum i jest ono globalne, bo

$$f(0,0) = 0$$

a dla dowolnego $(x, y) \neq (0, 0)$ mamy $f(x, y) = x^4 + y^6 > 0$.

Wyznaczenie ekstremów z definicji rzadko kiedy się udaje, najczęściej szukamy ich z użyciem pochodnych cząstkowych.

Daje się to robić dla funkcji regularnych: na badanym zbiorze **pochodne pierwszego i drugiego rzędu istnieją i są ciągłe**.

Warunek konieczny istnienia ekstremum: tzw. punkt stacjonarny czyli $P = (x_0, y_0)$ taki, że

$$\begin{cases} f_x(x_0, y_0) = 0 \\ f_y(x_0, y_0) = 0 \end{cases}$$

To jeszcze nie wystarcza! To tylko mówi, że płaszczyzna styczna (gdy istnieje) jest równoległa do płaszczyzny XY.

Warunek dostateczny. Liczymy w P specjalny wyznacznik – tzw. hesjan.

$$W = H(P) = H(x_0, y_0) = \begin{vmatrix} f_{xx}(x_0, y_0), & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{vmatrix}$$

Interpretacja: H to "wykrywacz" ekstremum: mówi czy ekstremum jest czy nie.

Twierdzenie

Jeżeli w pewnym otoczeniu $P = (x_0, y_0)$ pochodne pierwszego i drugiego rzędu funkcji f istnieją i są ciągłe oraz $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$ to zachodzą poniższe własności.

- Gdy $H(x_0, y_0) > 0$ to **jest ekstremum**. Wtedy gdy $f_{xx}(x_0, y_0) > 0$ to jest minimum, a gdy $f_{xx}(x_0, y_0) < 0$ to jest maksimum.
- Gdy $H(x_0, y_0) < 0$ to nie ma ekstremum.
- Gdy $H(x_0, y_0) = 0$ to **nic nie wiemy** metoda nie działa.

Uwaga

Można udowodnić, że gdy $H(x_0, y_0) > 0$ to $f_{xx}(x_0, y_0)$ oraz $f_{yy}(x_0, y_0)$ są jednocześnie obie dodatnie lub obie ujemne.

Zatem przy sprawdzaniu typu ekstremum (minimum/maksimum) możemy patrzeć na dowolną z tych pochodnych.

Przykłady

1.
$$f(x,y) = 2x^2 + 3y^2$$

Mamy
$$D_f = \mathbb{R}^2$$
 oraz

$$f_x = 4x, \quad f_y = 6y$$

Stad

$$f_x = f_y = 0 \iff x = y = 0$$
 czyli punkt standardowy to $P = (0,0)$

Teraz

$$f_{xx} = 4$$
, $f_{yy} = 6$, $f_{xy} = f_{yx} = 0$

To daje

$$W = H(0,0) = \begin{vmatrix} 4 & 0 \\ 0 & 6 \end{vmatrix} = 24 > 0$$
 – jest ekstremum

 $f_{xx}(0,0) = 4 > 0$ więc w (0,0) jest minimum f(0,0) = 0.

2. $f(x,y) = (x^2 - y^2)e^x$

Mamy $D_f = \mathbb{R}^2$ oraz

$$f_x = 2xe^x + (x^2 - y^2)e^x = e^x(x^2 - y^2 + 2x)$$
$$f_y = -2ye^x$$

Stad

$$f_x = f_y = 0 \Leftrightarrow \begin{cases} [flalign]x^2 - y^2 + 2x = 0\\ y = 0 \end{cases}$$