# **Machine Learning Engineer Nanodegree**

# **Capstone Project**

# **Bank Loan Prediction**

## **Project Overview**

Our objective in this project is helping the Bank to make decisions on loans requests, accepting or rejecting the loan request based on these data which contains more than one hundred thousand rows of the above loan data.

- we will classify these data into two classes :
- 1. loan can be accepted
- 2. loan must be rejected

# **Data Exploration & Visualization**

```
In [1]: # Import libraries
    from IPython.display import display
    from time import time
    from sklearn import preprocessing
    import numpy as np
    import pandas as pd
    pd.set_option('display.max_columns', 999)
    import matplotlib.pyplot as plt
    import seaborn as sns
%matplotlib inline
```

```
from sklearn.model selection import train test split
from sklearn.model selection import KFold
from sklearn.dummy import DummyClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear model import LogisticRegression
from sklearn.metrics import confusion matrix
from sklearn.metrics import classification report
from sklearn.metrics import recall score, precision score, fbeta score, ac
curacy score
from imblearn.under sampling import NearMiss
from sklearn.model selection import GridSearchCV
# Warnings
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
# Import dataset
data = pd.read csv('credit.csv')
# Display first records
data.head()
Using TensorFlow backend.
```

#### Out[1]:

|   | Loan ID                                          | Customer ID                                      | Loan<br>Status | Current<br>Loan<br>Amount | Term          | Credit<br>Score | Annual<br>Income | Years<br>in<br>current<br>job | Home<br>Ownership |
|---|--------------------------------------------------|--------------------------------------------------|----------------|---------------------------|---------------|-----------------|------------------|-------------------------------|-------------------|
| 0 | 14dd8831-<br>6af5-400b-<br>83ec-<br>68e61888a048 | 981165ec-<br>3274-42f5-<br>a3b4-<br>d104041a9ca9 | Fully<br>Paid  | 445412.0                  | Short<br>Term | 709.0           | 1167493.0        | 8 years                       | Home<br>Mortgage  |
| 1 | 4771cc26-<br>131a-45db-<br>b5aa-<br>537ea4ba5342 | 2de017a3-<br>2e01-49cb-<br>a581-<br>08169e83be29 | Fully<br>Paid  | 262328.0                  | Short<br>Term | NaN             | NaN              | 10+<br>years                  | Home<br>Mortgage  |
| 2 | 4eed4e6a-<br>aa2f-4c91-<br>8651-                 | 5efb2b2b-bf11-<br>4dfd-a572-                     | Fully<br>Paid  | 99999999.0                | Short<br>Term | 741.0           | 2231892.0        | 8 years                       | Own Home          |

|         |                                                            | ce984ee8fb26                                                                                                       | 3/61a2694/25                                                                                                                        |                                                                                                |                                                                 |                                                            |                                                          |                                              |                               |                   |
|---------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|-------------------------------|-------------------|
|         |                                                            | Loan ID                                                                                                            | Customer ID                                                                                                                         | Loan<br>Status                                                                                 | Current<br>Loan<br>Amount                                       | Term                                                       | Credit<br>Score                                          | Annual<br>Income                             | Years<br>in<br>current<br>job | Home<br>Ownership |
|         | 3                                                          | 77598f7b-<br>32e7-4e3b-<br>a6e5-<br>06ba0d98fe8a                                                                   | e777faab-<br>98ae-45af-<br>9a86-<br>7ce5b33b1011                                                                                    | Fully<br>Paid                                                                                  | 347666.0                                                        | Long<br>Term                                               | 721.0                                                    | 806949.0                                     | 3 years                       | Own Home          |
|         | 4                                                          | d4062e70-<br>befa-4995-<br>8643-<br>a0de73938182                                                                   | 81536ad9-<br>5ccf-4eb8-<br>befb-<br>47a4d608658e                                                                                    | Fully<br>Paid                                                                                  | 176220.0                                                        | Short<br>Term                                              | NaN                                                      | NaN                                          | 5 years                       | Rent              |
|         | 4                                                          |                                                                                                                    |                                                                                                                                     |                                                                                                |                                                                 |                                                            |                                                          |                                              |                               | <b>&gt;</b>       |
| In [2]: | n_<br>fu<br>ch<br>ch<br># pr<br>pr<br>pr<br>pr<br>pr<br>er | <pre>lly_paid = arged_off = arged_of_pe Display sta int("Total int("Indivi int("Indivi int("Percen centage))</pre> | ata.shape[0  data[data['     data[data['     rcentage = tistics abo     number of r     duals charg     duals fully     tage of Ind | Loan Si<br>'Loan Si<br>charged<br>ut targ<br>ecords:<br>ecords:<br>ed off:<br>paid:<br>ividual | Status'] d_off * 1 get varia {}".for {}".for {}".form Ls charge | == 'C<br>00 /<br>ble (<br>mat(n<br>mat(c<br>at(fu<br>d off | harged<br>n_reco<br>Loan S<br>_recor<br>harged<br>lly_pa | ords<br>(tatus)<br>(ds))<br>(_off))<br>(id)) | hape[0                        |                   |
|         | ax                                                         |                                                                                                                    | tplot(data[                                                                                                                         |                                                                                                |                                                                 |                                                            |                                                          |                                              |                               |                   |
|         | Ind<br>Ind                                                 | dividuals c<br>dividuals f                                                                                         | of records:<br>harged off:<br>ully paid:<br>Individual                                                                              | 22639<br>77361                                                                                 |                                                                 | 22.5                                                       | 232305                                                   | 9474302%                                     | i .                           |                   |



# In [3]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100514 entries, 0 to 100513

Data columns (total 19 columns):

Loan ID
Customer ID
Loan Status
Current Loan Amount
Term
Credit Score
Annual Income
Years in current job
Home Ownership
Purpose
Monthly Debt
Years of Credit History
Months since last delinquent
Number of Open Accounts
Number of Credit Problems

Current Credit Balance

Maximum Open Credit

100000 non-null object 100000 non-null object 100000 non-null object 100000 non-null float64 100000 non-null object 80846 non-null float64 80846 non-null float64 95778 non-null object 100000 non-null object 100000 non-null object 100000 non-null float64 100000 non-null float64 46859 non-null float64 100000 non-null float64 100000 non-null float64 100000 non-null float64 99998 non-null float64

```
Bankruptcies 99796 non-null float64
Tax Liens 99990 non-null float64
dtypes: float64(12), object(7)
```

utypes: Itoato4(12), obje

memory usage: 14.6+ MB

# **Data Preprocessing**

We have some missing values in our dataset.

```
In [4]: # calculate missing values by column
        def missingValues table(df):
                # Total missing values
                missingValues = df.isnull().sum()
                # Percentage of missing values
                missingValues percent = 100 * df.isnull().sum() / len(df)
                # Create table with results
                missingValues table = pd.concat([missingValues, missingValues p
        ercentl, axis=1)
                # Rename the columns
                missingValues table renamed = missingValues table.rename(column
        s = {0 : 'Missing Values', 1 : '% of Total Values'})
                # Sort the table by percentage of missing descending
                missingValues table renamed = missingValues table renamed[
                missingValues table renamed.iloc[:,1] != 0].sort values(
                '% of Total Values', ascending=False).round(1)
                # Print some summary information
                print ("Selected dataframe has " + str(df.shape[1]) + " column
        s.\n"
                    "There are " + str(missingValues table renamed.shape[0]) +
                      " Columns that have missing values.")
```

# # Return the dataframe with missing information return missingValues\_table\_renamed

# In [5]: missingValues\_table(data)

Selected dataframe has 19 columns. There are 19 Columns that have missing values.

# Out[5]:

|                                | Missing Values | % of Total Values |
|--------------------------------|----------------|-------------------|
| Months since last delinquent   | 53655          | 53.4              |
| Credit Score                   | 19668          | 19.6              |
| Annual Income                  | 19668          | 19.6              |
| Years in current job           | 4736           | 4.7               |
| Bankruptcies                   | 718            | 0.7               |
| Tax Liens                      | 524            | 0.5               |
| Maximum Open Credit            | 516            | 0.5               |
| <b>Years of Credit History</b> | 514            | 0.5               |
| <b>Current Credit Balance</b>  | 514            | 0.5               |
| Number of Credit Problems      | 514            | 0.5               |
| Number of Open Accounts        | 514            | 0.5               |
| Loan ID                        | 514            | 0.5               |
| Monthly Debt                   | 514            | 0.5               |
| Customer ID                    | 514            | 0.5               |
| Home Ownership                 | 514            | 0.5               |
| Term                           | 514            | 0.5               |
| <b>Current Loan Amount</b>     | 514            | 0.5               |
| Loan Status                    | 514            | 0.5               |
| Purpose                        | 514            | 0.5               |

As we see there is 514 missing values in all variables, this means there is 514 of all null rows

In [6]: data[data['Loan Status'].isnull() == True]

Out[6]:

|        | Loan<br>ID | Customer<br>ID | Loan<br>Status | Current<br>Loan<br>Amount | Term | Credit<br>Score | Annual<br>Income | Years<br>in<br>current<br>job | Home<br>Ownership | Purpose |
|--------|------------|----------------|----------------|---------------------------|------|-----------------|------------------|-------------------------------|-------------------|---------|
| 100000 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100001 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100002 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100003 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100004 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100005 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100006 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100007 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100008 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100009 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100010 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100011 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100012 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100013 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100014 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100015 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100016 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100017 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |

V----

| 100018         NaN         NaN< |        | Loan<br>ID | Customer<br>ID | Loan<br>Status | Current<br>Loan<br>Amount | Term | Credit<br>Score | Annual<br>Income | rears<br>in<br>current<br>job | Home<br>Ownership | Purpose |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|----------------|----------------|---------------------------|------|-----------------|------------------|-------------------------------|-------------------|---------|
| 100020         NaN         NaN< | 100018 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100021         NaN         NaN< | 100019 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100022         NaN         NaN< | 100020 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100023         NaN         NaN< | 100021 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100024         NaN         NaN< | 100022 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100025         NaN         NaN< | 100023 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100026         NaN         NaN< | 100024 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100027         NaN         NaN< | 100025 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100028         NaN         NaN< | 100026 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100029         NaN         NaN< | 100027 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| <th>100028</th> <th>NaN</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100028 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100484         NaN         NaN< | 100029 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100485         NaN         NaN< |        |            |                |                |                           |      |                 |                  |                               |                   |         |
| 100486         NaN         NaN< | 100484 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100487         NaN         NaN< | 100485 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100488         NaN         NaN< | 100486 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100489         NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100487 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100490         NaN         NaN< | 100488 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100491NaNNaNNaNNaNNaNNaNNaNNaNNaN100492NaNNaNNaNNaNNaNNaNNaNNaNNaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100489 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100492 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100490 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100491 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100492 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100493 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100493 | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |

|          | Loan<br>ID | Customer<br>ID | Loan<br>Status | Current<br>Loan<br>Amount | Term | Credit<br>Score | Annual<br>Income | rears<br>in<br>current<br>job | Home<br>Ownership | Purpose |
|----------|------------|----------------|----------------|---------------------------|------|-----------------|------------------|-------------------------------|-------------------|---------|
| 100494   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100495   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100496   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100497   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100498   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100499   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100500   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100501   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100502   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100503   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100504   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100505   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100506   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100507   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100508   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100509   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100510   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100511   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100512   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 100513   | NaN        | NaN            | NaN            | NaN                       | NaN  | NaN             | NaN              | NaN                           | NaN               | NaN     |
| 514 rows | s × 19 (   | columns        |                |                           |      |                 |                  |                               |                   |         |
|          |            |                |                |                           |      |                 |                  |                               |                   | •       |

In [7]: # Drop these Null rows

data.drop(data.tail(514).index, inplace=True)
missingValues\_table(data)

Selected dataframe has 19 columns. There are 7 Columns that have missing values.

#### Out[7]:

|                              | wiissing values | /0 OI TOLAI VAIUES |
|------------------------------|-----------------|--------------------|
| Months since last delinquent | 53141           | 53.1               |
| Credit Score                 | 19154           | 19.2               |
| Annual Income                | 19154           | 19.2               |
| Years in current job         | 4222            | 4.2                |
| Bankruptcies                 | 204             | 0.2                |
| Tax Liens                    | 10              | 0.0                |
| Maximum Open Credit          | 2               | 0.0                |

**'Months since last delinquent'** Feature has more than 50% of missing values so we should drop it

Missing Values % of Total Values

```
In [8]: data = data.drop(['Months since last delinquent'], axis=1)
```

'Bankruptcies' & 'Tax Liens' & 'Maximum Open Credit' has very small percentage of missing values no problem with drop them

In [11]: for i in data['Maximum Open Credit'][data['Maximum Open Credit'].isnull

```
() == True].index:
    data.drop(labels=i, inplace=True)
missingValues_table(data)
```

Selected dataframe has 18 columns. There are 3 Columns that have missing values.

### Out[11]:

#### Missing Values % of Total Values

| Credit Score         | 19111 | 19.2 |
|----------------------|-------|------|
| Annual Income        | 19111 | 19.2 |
| Years in current job | 4222  | 4.2  |

**Credit Score & Annual Income** Are continues variables, we should describe some statistics to handle thier missing values

```
In [12]: pd.set_option('float_format', '{:.2f}'.format)
  data.describe()
```

#### Out[12]:

|   |       | Current<br>Loan<br>Amount | Credit<br>Score | Annual<br>Income | Monthly<br>Debt | Years of<br>Credit<br>History | Number<br>of Open<br>Accounts | Number<br>of Credit<br>Problems | Curre<br>Cre<br>Balan |
|---|-------|---------------------------|-----------------|------------------|-----------------|-------------------------------|-------------------------------|---------------------------------|-----------------------|
|   | count | 99794.00                  | 80683.00        | 80683.00         | 99794.00        | 99794.00                      | 99794.00                      | 99794.00                        | 99794.                |
|   | mean  | 11757279.22               | 1076.28         | 1378339.05       | 18486.12        | 18.19                         | 11.13                         | 0.17                            | 294660.               |
|   | std   | 31779846.84               | 1475.03         | 1080909.86       | 12172.47        | 7.02                          | 5.01                          | 0.48                            | 376066.               |
|   | min   | 15422.00                  | 585.00          | 76627.00         | 0.00            | 3.60                          | 0.00                          | 0.00                            | 0.                    |
|   | 25%   | 179696.00                 | 705.00          | 849110.00        | 10228.32        | 13.50                         | 8.00                          | 0.00                            | 112769.               |
|   | 50%   | 312477.00                 | 724.00          | 1174371.00       | 16237.21        | 16.90                         | 10.00                         | 0.00                            | 209912.               |
|   | 75%   | 525096.00                 | 741.00          | 1650701.00       | 24025.22        | 21.70                         | 14.00                         | 0.00                            | 368068.               |
|   | max   | 99999999.00               | 7510.00         | 165557393.00     | 435843.28       | 70.50                         | 76.00                         | 15.00                           | 32878968.             |
| 4 |       |                           |                 |                  |                 |                               |                               |                                 | <b>&gt;</b>           |

As we see, some of the **credit score** are just scaled up by 10. , we should rescale them.

```
In [13]: data['Credit Score'] = data['Credit Score'].apply(lambda val: (val /10)
    if val>850 else val)
    data.describe()
```

Out[13]:

|   |      | Current<br>Loan<br>Amount | Credit<br>Score | Annual<br>Income | Monthly<br>Debt | Years of<br>Credit<br>History | Number<br>of Open<br>Accounts | Number<br>of Credit<br>Problems | Curre<br>Cre<br>Balan |
|---|------|---------------------------|-----------------|------------------|-----------------|-------------------------------|-------------------------------|---------------------------------|-----------------------|
| С | ount | 99794.00                  | 80683.00        | 80683.00         | 99794.00        | 99794.00                      | 99794.00                      | 99794.00                        | 99794.                |
| n | nean | 11757279.22               | 716.28          | 1378339.05       | 18486.12        | 18.19                         | 11.13                         | 0.17                            | 294660.               |
|   | std  | 31779846.84               | 28.30           | 1080909.86       | 12172.47        | 7.02                          | 5.01                          | 0.48                            | 376066.               |
|   | min  | 15422.00                  | 585.00          | 76627.00         | 0.00            | 3.60                          | 0.00                          | 0.00                            | 0.                    |
|   | 25%  | 179696.00                 | 703.00          | 849110.00        | 10228.32        | 13.50                         | 8.00                          | 0.00                            | 112769.               |
|   | 50%  | 312477.00                 | 722.00          | 1174371.00       | 16237.21        | 16.90                         | 10.00                         | 0.00                            | 209912.               |
|   | 75%  | 525096.00                 | 738.00          | 1650701.00       | 24025.22        | 21.70                         | 14.00                         | 0.00                            | 368068.               |
|   | max  | 9999999.00                | 751.00          | 165557393.00     | 435843.28       | 70.50                         | 76.00                         | 15.00                           | 32878968.             |
| 4 |      |                           |                 |                  |                 |                               |                               |                                 | <b>+</b>              |

We will use mean to handle mising values of **Credit Score** but Short/Long term is effect on Credit Score, so we will calculate Short/Long term means to assign each's mean to those have same term value

724.6238081178249 695.483727170432

Selected dataframe has 18 columns.

There are 2 Columns that have missing values.

#### Out[15]:

#### Missing Values % of Total Values

| Annual Income        | 19111 | 19.20 |
|----------------------|-------|-------|
| Years in current job | 4222  | 4.20  |

Filling **Annual Income** missing values using the Median value because there is outliers in incomes

> Selected dataframe has 18 columns. There are 1 Columns that have missing values.

#### Out[16]:

#### Missing Values % of Total Values

| Years in current job 4222 4.2 |
|-------------------------------|
|-------------------------------|

i will use mode value to handle Years in current job because its categorical variable

```
In [17]: plt.figure(figsize=(18,6))
    ax = sns.countplot(data['Years in current job'])
    plt.show()
```



In [18]: data.fillna('10+ years', inplace=True)
 missingValues\_table(data)

Selected dataframe has 18 columns. There are 0 Columns that have missing values.

#### Out[18]:

## Missing Values % of Total Values

In [19]: data.head()

Out[19]:

|   | Loan ID                                          | Customer ID                                      | Loan<br>Status | Current<br>Loan<br>Amount | Term          | Credit<br>Score | Annual<br>Income | Years<br>in<br>current<br>job | Ho<br>Owners |
|---|--------------------------------------------------|--------------------------------------------------|----------------|---------------------------|---------------|-----------------|------------------|-------------------------------|--------------|
| 0 | 14dd8831-<br>6af5-400b-<br>83ec-<br>68e61888a048 | 981165ec-<br>3274-42f5-<br>a3b4-<br>d104041a9ca9 | Fully<br>Paid  | 445412.00                 | Short<br>Term | 709.00          | 1167493.00       | 8 years                       | Ho<br>Mortga |
| 1 | 4771cc26-<br>131a-45db-<br>b5aa-<br>537ea4ba5342 | 2de017a3-<br>2e01-49cb-<br>a581-<br>08169e83be29 | Fully<br>Paid  | 262328.00                 | Short<br>Term | 724.62          | 1174371.00       | 10+<br>years                  | Ho<br>Mortga |

|   | Loan ID                                          | Customer ID                                      | Loan<br>Status | Current<br>Loan<br>Amount | Term          | Credit<br>Score | Annual<br>Income | Years<br>in<br>current<br>job | Ho<br>Owners |
|---|--------------------------------------------------|--------------------------------------------------|----------------|---------------------------|---------------|-----------------|------------------|-------------------------------|--------------|
| 2 | 4eed4e6a-<br>aa2f-4c91-<br>8651-<br>ce984ee8fb26 | 5efb2b2b-bf11-<br>4dfd-a572-<br>3761a2694725     | Fully<br>Paid  | 99999999.00               | Short<br>Term | 741.00          | 2231892.00       | 8 years                       | Own Ho       |
| 3 | 77598f7b-<br>32e7-4e3b-<br>a6e5-<br>06ba0d98fe8a | e777faab-<br>98ae-45af-<br>9a86-<br>7ce5b33b1011 | Fully<br>Paid  | 347666.00                 | Long<br>Term  | 721.00          | 806949.00        | 3 years                       | Own Ho       |
| 4 | d4062e70-<br>befa-4995-<br>8643-<br>a0de73938182 | 81536ad9-<br>5ccf-4eb8-<br>befb-<br>47a4d608658e | Fully<br>Paid  | 176220.00                 | Short<br>Term | 724.62          | 1174371.00       | 5 years                       | R            |
| 4 |                                                  |                                                  |                |                           |               |                 |                  |                               | <b>+</b>     |

Some features should dropped from our dataset

- Loan ID & Customer ID : these is only references with no benefits
- Purpose & Number of Open Accounts & Current Credit Balance : Not important in this problem we will not need any of them
- Monthly Debt' & 'Maximum Open Credit if we study this domain and our problem deeply, we covered these 2 features by other features in our data, Monthly Debt related to (Current Loan Amount, Annual Income) & Maximum Open Credit related to (Annual Income, Credit Score)

|   | Loan<br>Status | Current<br>Loan<br>Amount | Term          | Credit<br>Score | Annual<br>Income | Years<br>in<br>current<br>job | Home<br>Ownership | Years<br>of<br>Credit<br>History | Number<br>of Credit<br>Problems | Bankr |
|---|----------------|---------------------------|---------------|-----------------|------------------|-------------------------------|-------------------|----------------------------------|---------------------------------|-------|
| 0 | Fully<br>Paid  | 445412.00                 | Short<br>Term | 709.00          | 1167493.00       | 8 years                       | Home<br>Mortgage  | 17.20                            | 1.00                            |       |
| 1 | Fully<br>Paid  | 262328.00                 | Short<br>Term | 724.62          | 1174371.00       | 10+<br>years                  | Home<br>Mortgage  | 21.10                            | 0.00                            |       |
| 2 | Fully<br>Paid  | 99999999.00               | Short<br>Term | 741.00          | 2231892.00       | 8 years                       | Own Home          | 14.90                            | 1.00                            |       |
| 3 | Fully<br>Paid  | 347666.00                 | Long<br>Term  | 721.00          | 806949.00        | 3 years                       | Own Home          | 12.00                            | 0.00                            |       |
| 4 | Fully<br>Paid  | 176220.00                 | Short<br>Term | 724.62          | 1174371.00       | 5 years                       | Rent              | 6.10                             | 0.00                            |       |
| 4 |                |                           |               |                 |                  |                               |                   |                                  |                                 | •     |

```
In [21]: corr = data.corr()
sns.heatmap(corr)
```

Out[21]: <matplotlib.axes.\_subplots.AxesSubplot at 0x15d83a574e0>



# **One-Hot Encoding**

I will convert all continuous variables to Ordinal variables then apply One-Hot Encoding On all of them, in my openion this technique will be better for our problem we dont have strong corelation between any two variables to keep it as a numirical also this will help us to avoid overfitting.

Moreover, this technique will certainly reduce processing time and cost

#### **Current Loan Amount** with respect to outliers

```
In [22]: meanWithoutOutliers = data[data['Current Loan Amount'] < 999999999.00 ][
    'Current Loan Amount'].mean()
    stdWithoutOutliers = data[data['Current Loan Amount'] < 999999999.00 ][</pre>
```

```
'Current Loan Amount'].std()
         lowrange = meanWithoutOutliers - stdWithoutOutliers
         highrange = meanWithoutOutliers + stdWithoutOutliers
In [23]: data['Current Loan Amount'] = data['Current Loan Amount'].apply(lambda
          x: 'Small Loan' if x<=lowrange else ('Medium Loan' if x>lowrange and x
         < highrange else 'Big Loan'))
         Credit Score Based on Experian's Credit Score Range
In [24]: data['Credit Score'] = data['Credit Score'].apply(lambda val: "Bad" if
         np.isreal(val) and val < 630 else val)
         data['Credit Score'] = data['Credit Score'].apply(lambda val: "Fair" if
          np.isreal(val) and (val >= 630 and val < 690) else val)</pre>
         data['Credit Score'] = data['Credit Score'].apply(lambda val: "Good" if
          np.isreal(val) and (val >= 690 and val < 720) else val)
         data['Credit Score'] = data['Credit Score'].apply(lambda val: "Excellen
         t" if np.isreal(val) and (val >= 720 and val < 850) else val)
         Annual Income with respect to outliers
In [25]: meanWithoutOutliers = data[data['Annual Income'] < 99999999.00 ]['Annual Income']</pre>
         l Income'l.mean()
         stdWithoutOutliers = data[data['Annual Income'] < 99999999.00 ]['Annual</pre>
          Income'l.std()
         poorLine = meanWithoutOutliers - stdWithoutOutliers
         richLine = meanWithoutOutliers + stdWithoutOutliers
In [26]: data['Annual Income'] = data['Annual Income'].apply(lambda x: "Low Inco
         me" if x<=poorLine else ("Average Income" if x>poorLine and x<richLine
         else "High Income"))
         Years in current job to be Employment History
In [27]: data['Years in current job']=data['Years in current job'].str.extract(r
```

```
"(\d+)")
         data['Years in current job'] = data['Years in current job'].astype(floa
         t)
In [28]: data['Employment History'] = data['Years in current job'].apply(lambda
         x: "Junior" if x<4 else ("Semi-Senior" if x>4 and x<8 else "Senior"))
In [29]: data=data.drop(['Years in current job'],axis=1)
         Years of Credit History to be Credit Age
         data['Credit Age'] = data['Years of Credit History'].apply(lambda x: "S
         hort Credit Age" if x<5 else ("Good Credit Age" if x>=5 and x<17 else
         "Exceptional Credit Age"))
In [31]: data = data.drop(['Years of Credit History'],axis= 1)

    Tax Liens

    Bankruptcies

    Number of Credit Problems to be Credit Problems

In [32]: data['Tax Liens'] = data['Tax Liens'].apply(lambda x: "No Tax Lien" if
         x==0 else "Some Tax Liens")
In [33]: data['Bankruptcies'] = data['Bankruptcies'].apply(lambda x: "No Bankrup
         tcies" if x==0 else "Some Bankruptcies")
In [34]: | data['Credit Problems'] = data['Number of Credit Problems'].apply(lambd
         a x: "No Credit Problem" if x==0 else "Some Credit promblem")
In [35]: data = data.drop(['Number of Credit Problems'],axis = 1)
```

Loan Status Because we searching for 'Charged Off', thats will be our Positive class with value

1, when 'Fully Paid' will be negative class with value 0. data['Loan Status'] = data['Loan Status'].apply(lambda x: 1 if x=='Cha In [36]: rged Off' else 0) In [37]: data.head() Out[37]: Current Loan Credit Annual Tax Employment Home Cred Loan Term **Bankruptcies** History Liens **Status** Score Income Ownership **Amount** No Medium Short Home Some Exce Average 0 Good Tax Senior Loan Term Bankruptcies Cre Income Mortgage Lien No Medium Short Average Home No Exce Excellent 1 Tax Senior Term Income Mortgage Bankruptcies Cre Loan Lien No Big Short Loan Term High Income No Excellent 2 Own Home Tax Senior Cre Bankruptcies Lien Νo Medium Long Average Income 3 Excellent Own Home Tax Junior Cre Term Bankruptcies Lien Medium Short Excellent No Average Rent Tax Semi-Senior Income Bankruptcies Cre Lien Visualize all of our variables in The final form and its correlation with Target variable features list = ['Current Loan Amount', 'Term', 'Credit Score', 'Annual In In [38]: come','Home Ownership','Bankruptcies','Tax Liens', 'Employment History','Credit Age','Credit Problems'] for i in range(len(features list)): ax = sns.countplot(data[features\_list[i]], hue=data['Loan Status'])

plt.show()















```
In [39]: y = data['Loan Status']
x = data.drop(['Loan Status'],axis=1)
```

x.head()

## Out[39]:

|   | Current<br>Loan<br>Amount | Term          | Credit<br>Score | Annual<br>Income  | Home<br>Ownership | Bankruptcies         | Tax<br>Liens      | Employment<br>History | Credit Age                |
|---|---------------------------|---------------|-----------------|-------------------|-------------------|----------------------|-------------------|-----------------------|---------------------------|
| 0 | Medium<br>Loan            | Short<br>Term | Good            | Average<br>Income | Home<br>Mortgage  | Some<br>Bankruptcies | No<br>Tax<br>Lien | Senior                | Exceptional<br>Credit Age |
| 1 | Medium<br>Loan            | Short<br>Term | Excellent       | Average<br>Income | Home<br>Mortgage  | No<br>Bankruptcies   | No<br>Tax<br>Lien | Senior                | Exceptional<br>Credit Age |
| 2 | Big<br>Loan               | Short<br>Term | Excellent       | High<br>Income    | Own Home          | No<br>Bankruptcies   | No<br>Tax<br>Lien | Senior                | Good<br>Credit Age        |
| 3 | Medium<br>Loan            | Long<br>Term  | Excellent       | Average<br>Income | Own Home          | No<br>Bankruptcies   | No<br>Tax<br>Lien | Junior                | Good<br>Credit Age        |
| 4 | Medium<br>Loan            | Short<br>Term | Excellent       | Average<br>Income | Rent              | No<br>Bankruptcies   | No<br>Tax<br>Lien | Semi-Senior           | Good<br>Credit Age        |
| 4 |                           |               |                 |                   |                   |                      |                   |                       | <b></b>                   |

### **Apply One-Hot Encoding**

```
In [40]: x = pd.get_dummies(x)
encoded = list(x.columns)
print("{} total features after one-hot encoding.".format(len(encoded)))
display(x.head())
```

28 total features after one-hot encoding.

|   | Current<br>Loan<br>Amount_Big<br>Loan | Current Loan<br>Amount_Medium<br>Loan | Current Loan<br>Amount_Small<br>Loan | Term_Long<br>Term | Term_Short<br>Term | Credit<br>Score_Bad | (<br>Score_Exc |
|---|---------------------------------------|---------------------------------------|--------------------------------------|-------------------|--------------------|---------------------|----------------|
| 0 | 0                                     | 1                                     | 0                                    | 0                 | 1                  | 0                   |                |

|   | Current<br>Loan<br>Amount_Big<br>Loan | Current Loan<br>Amount_Medium<br>Loan | Current Loan<br>Amount_Small<br>Loan | Term_Long<br>Term | Term_Short<br>Term | Credit<br>Score_Bad | (<br>Score_Exc |
|---|---------------------------------------|---------------------------------------|--------------------------------------|-------------------|--------------------|---------------------|----------------|
| 1 | 0                                     | 1                                     | 0                                    | 0                 | 1                  | 0                   |                |
| 2 | 1                                     | 0                                     | 0                                    | 0                 | 1                  | 0                   |                |
| 3 | 0                                     | 1                                     | 0                                    | 1                 | 0                  | 0                   |                |
| 4 | 0                                     | 1                                     | 0                                    | 0                 | 1                  | 0                   |                |
| 4 |                                       |                                       |                                      |                   |                    |                     | <b>&gt;</b>    |

#### Rename features Labels

```
In [41]: x.columns = ['Big Loan', 'Medium Loan', 'Small Loan', 'Long Term', 'Sho
         rt Term', 'Bad Credit Score', 'Excellent Credit Score',
                      'Fair Credit Score', 'Good Credit Score', 'Average Income'
         , 'High Income', 'Low Income', 'HaveMortgage',
                      'Home Mortgage', 'Own Home', 'Rent', 'No Bankruptcies', 'S
         ome Bankruptcies', 'No Tax Lien', 'Some Tax Liens',
                      'Junior', 'Semi-Senior', 'Senior', 'Exceptional Credit Ag
         e', 'Good Credit Age', 'Short Credit Age',
                      'No Credit Problem', 'Some Credit promblems']
         x.head()
```

#### Out[41]:

|   | Big<br>Loan | Medium<br>Loan | Small<br>Loan | Long<br>Term | Short<br>Term | Bad<br>Credit<br>Score | Excellent<br>Credit<br>Score | Fair<br>Credit<br>Score | Good<br>Credit<br>Score | Average<br>Income | High<br>Income | Lo <sup>r</sup><br>Incom |
|---|-------------|----------------|---------------|--------------|---------------|------------------------|------------------------------|-------------------------|-------------------------|-------------------|----------------|--------------------------|
| 0 | 0           | 1              | 0             | 0            | 1             | 0                      | 0                            | 0                       | 1                       | 1                 | 0              |                          |
| 1 | 0           | 1              | 0             | 0            | 1             | 0                      | 1                            | 0                       | 0                       | 1                 | 0              |                          |
| 2 | 1           | 0              | 0             | 0            | 1             | 0                      | 1                            | 0                       | 0                       | 0                 | 1              |                          |
| 3 | 0           | 1              | 0             | 1            | 0             | 0                      | 1                            | 0                       | 0                       | 1                 | 0              |                          |
| 4 | 0           | 1              | 0             | 0            | 1             | 0                      | 1                            | 0                       | 0                       | 1                 | 0              |                          |
| 4 |             |                |               |              |               |                        |                              |                         |                         |                   |                | <b>•</b>                 |

## under\_sampling

one of the common technique to handle imbalanced data, our data is imbalanced

- 75% of our data set is negative while only 25% is positive. What Under\_sampling do?
- removes some of the majority class to be close or equal miniority class to avoid bias to The majority class
- I used under\_sampling because our dataset is big enough so no big problem with reduce it if this will handle imbalance problem.

#### **Splitting data**

Training set has 33880 samples. Testing set has 11294 samples.

# **Benchmark models**

• DummyClassifier \* DummyClassifier with most\_frequent strategy is working same of ZeroR algorithm , I used it because its already implemented in skLearn.

```
In [44]: dClassifier = DummyClassifier(strategy='most_frequent')
    dClassifier.fit(x_train, y_train)
    dPrediction = dClassifier.predict(x_test)
```

```
#print("Score: ",dClassifier.score(x_test, y_test)* 100)
print('Accuracy =',accuracy_score(y_test,dPrediction)*100,'F-Beta =',fb
eta_score(y_test,dPrediction,beta=.5)*100)
```

Accuracy = 49.59270409066761 F-Beta = 55.15292356775705

RandomForest500

```
In [45]: rfClassifier = RandomForestClassifier(n_estimators=500,random_state=12)
    rfClassifier.fit(x_train, y_train)
    rfPrediction = rfClassifier.predict(x_test)
    print('Accuracy =',accuracy_score(y_test,rfPrediction)*100,'F-Beta =',f
    beta_score(y_test,rfPrediction,beta=.5)*100)
```

Accuracy = 58.43810873029928 F-Beta = 58.0841539838854

```
In [46]: rfc_con = confusion_matrix(y_test, rfPrediction)
    sns.heatmap(rfc_con, annot=True, fmt="d")
    plt.show
    # note that confusion_matrix sort values as follows
# | TN | FP |
# | FN | TP |

# as written in confusion_matrix documentation:
# https://scikit-learn.org/stable/modules/generated/sklearn.metrics.con
fusion_matrix.html
```

Out[46]: <function matplotlib.pyplot.show(\*args, \*\*kw)>



# **Model Selection**

- RandomForest
- KNN
- LogisticRegression

```
In [47]: randomForest = RandomForestClassifier(random_state=42)
    randomForest.fit(x_train, y_train)
    randomForestPrediction = randomForest.predict(x_test)
    print('Accuracy =',accuracy_score(y_test,randomForestPrediction)*100,'F
    -Beta =',fbeta_score(y_test,randomForestPrediction,beta=.5)*100)

Accuracy = 58.30529484682132 F-Beta = 57.8397212543554

In [48]: knn = KNeighborsClassifier()
    knn.fit(x_train,y_train)
    knnPrediction = knn.predict(x_test)
    print('Accuracy =',accuracy_score(y_test,knnPrediction)*100,'F-Beta =',
    fbeta_score(y_test,knnPrediction,beta=.5)*100)
```

```
Accuracy = 55.68443421285638 F-Beta = 54.67076827226354
```

```
In [49]: logisticReg = LogisticRegression(random_state=42)
logisticReg.fit(x_train,y_train)
logisticRegPrediction = logisticReg.predict(x_test)
print('Accuracy =',accuracy_score(y_test,logisticRegPrediction)*100,'F-
Beta =',fbeta_score(y_test,logisticRegPrediction,beta=.5)*100)
```

Accuracy = 57.331326367983 F-Beta = 56.25176860573231

As we see **RandomForest** is the best, So i will go with it to next stage.

```
In [50]: rfc_con = confusion_matrix(y_test, randomForestPrediction)
    sns.heatmap(rfc_con, annot=True, fmt="d")
    plt.show
```

Out[50]: <function matplotlib.pyplot.show(\*args, \*\*kw)>



# **Model Tuning**

In [51]: | clf = RandomForestClassifier(random\_state=42)

```
param grid = {'n estimators': [200, 600, 1000],\
                        'max depth': [10, 50, 100],\
                        'min samples split': [2,6]}
         grid obj = GridSearchCV(clf, param grid=param grid, cv=3)
         grid fit = grid obj.fit(x train, y train)
         print("Best parameter: ", grid obj.best params )
         # Get the estimator/ clf
         best clf = grid fit.best estimator
         grid y pred = best clf.predict(x test)
         print("Optimal accuracy score on the testing data: {:.2f}".format(accur
         acy score(y test, grid y pred)*100))
         Best parameter: {'max depth': 10, 'min samples split': 2, 'n estimator
         s': 600}
         Optimal accuracy score on the testing data: 59.12
In [52]: fbeta score(y test, grid y pred,beta=2)*100
Out[52]: 59.75557766093505
         Our model should be high Recall Model because we want to catch any Loan request will not paid
         back .. so beta value should be > .5
In [53]: beta values = [.5,1,2,3,4,5,6,7,8,9]
         for i in range(len(beta values)):
              print(fbeta score(y test, grid y pred,beta=beta values[i])*100)
         58.85852258809533
         59.303657999118556
         59.75557766093505
```

59.9077520346197 59.97063758389262 60.001783643984666 60.019288263091916 60.03005071504285 60.0371216447744 60.04200903303041

# **Final Model**

