

Schletter, Inc.		35° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow	Load, P _g =	30.00 psf	
Sloped Roof Snow	Load, P _s =	14.43 psf	(ASCE 7-05, Eq. 7-2)
	I _s =	1.00	
	$C_s =$	0.64	
	C _e =	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	100 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 15.70 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.200	
Cf+ BOTTOM	=	1.200 2.000 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.700	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.100 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.200	applica analy nom allo canacio.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S $_{\rm s}$ of 1.5	
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of	
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,	
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to	
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .	

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ° 0.56D + 1.25E °

1.2D + 1.6S + 0.8W

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	92.41	<u>6570.54</u>	k
Compressive Load =	<u>2951.53</u>	5044.00	k
Lateral Load =	<u>15.49</u>	<u>4616.60</u>	k
Moment (Weak Axis) =	0.03	0.00	k

5.2 Design of Ballast Foundations

Required Depth =

f'c =

Length =

0.00 ft

2500 psi

8 in

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 168271.7 in-lbs Resisting Force Required = 2549.57 lbs A minimum 132in long x 33in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4249.29 lbs to resist overturning. Minimum Width = 33 in in Weight Provided = 6579.38 lbs Sliding Force = 1109.44 lbs Use a 132in long x 33in wide x 18in tall Friction = 0.4 Weight Required = 2773.61 lbs ballast foundation to resist sliding. Resisting Weight = 6579.38 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 1109.44 lbs Cohesion = 130 psf Use a 132in long x 33in wide x 18in tall 30.25 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3289.69 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure =

 Bearing Pressure

 Ballast Width

 33 in
 34 in
 35 in
 36 in

 P_{ftg} = (145 pcf)(11 ft)(1.5 ft)(2.75 ft) =
 6579 lbs
 6779 lbs
 6978 lbs
 7178 lbs

ASD LC		1.0D	+ 1.0S		1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	33 in	34 in	35 in	36 in	33 in	34 in	35 in	36 in	33 in	34 in	35 in	36 in	33 in	34 in	35 in	36 in
FA	1074 lbs	1074 lbs	1074 lbs	1074 lbs	1088 lbs	1088 lbs	1088 lbs	1088 lbs	1489 lbs	1489 lbs	1489 lbs	1489 lbs	68 lbs	68 lbs	68 lbs	68 lbs
FB	966 lbs	966 lbs	966 lbs	966 lbs	2256 lbs	2256 lbs	2256 lbs	2256 lbs	2298 lbs	2298 lbs	2298 lbs	2298 lbs	-3154 lbs	-3154 lbs	-3154 lbs	-3154 lbs
F _V	173 lbs	173 lbs	173 lbs	173 lbs	2024 lbs	2024 lbs	2024 lbs	2024 lbs	1628 lbs	1628 lbs	1628 lbs	1628 lbs	-2219 lbs	-2219 lbs	-2219 lbs	-2219 lbs
P _{total}	8619 lbs	8819 lbs	9018 lbs	9217 lbs	9923 lbs	10123 lbs	10322 lbs	10521 lbs	10366 lbs	10566 lbs	10765 lbs	10964 lbs	862 lbs	982 lbs	1101 lbs	1221 lbs
M	3192 lbs-ft	3192 lbs-ft	3192 lbs-ft	3192 lbs-ft	3003 lbs-ft	3003 lbs-ft	3003 lbs-ft	3003 lbs-ft	4254 lbs-ft	4254 lbs-ft	4254 lbs-ft	4254 lbs-ft	4418 lbs-ft	4418 lbs-ft	4418 lbs-ft	4418 lbs-ft
е	0.37 ft	0.36 ft	0.35 ft	0.35 ft	0.30 ft	0.30 ft	0.29 ft	0.29 ft	0.41 ft	0.40 ft	0.40 ft	0.39 ft	5.12 ft	4.50 ft	4.01 ft	3.62 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	227.4 psf	227.1 psf	226.8 psf	226.6 psf	273.9 psf	272.2 psf	270.7 psf	269.2 psf	266.0 psf	264.6 psf	263.2 psf	261.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	342.5 psf	338.8 psf	335.3 psf	332.1 psf	382.2 psf	377.4 psf	372.8 psf	368.5 psf	419.4 psf	413.5 psf	407.9 psf	402.6 psf	557.3 psf	231.1 psf	169.2 psf	144.2 psf

Shear key is not required.

Maximum Bearing Pressure = 557 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 33in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 878.8 \text{ ft-lbs}$

Resisting Force Required = 639.13 lbs S.F. = 1.67

Weight Required = 1065.22 lbs Minimum Width = 33 in in Weight Provided = 6579.38 lbs A minimum 132in long x 33in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		33 in			33 in			33 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	255 lbs	621 lbs	255 lbs	655 lbs	1745 lbs	655 lbs	74 lbs	182 lbs	74 lbs		
F _V	2 lbs	0 lbs	2 lbs	6 lbs	0 lbs	6 lbs	1 lbs	0 lbs	1 lbs		
P _{total}	8400 lbs	6579 lbs	8400 lbs	8409 lbs	6579 lbs	8409 lbs	2456 lbs	6579 lbs	2456 lbs		
М	7 lbs-ft	0 lbs-ft	7 lbs-ft	22 lbs-ft	0 lbs-ft	22 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft		
f _{min}	277.2 psf	217.5 psf	277.2 psf	276.4 psf	217.5 psf	276.4 psf	81.1 psf	217.5 psf	81.1 psf		
f _{max}	278.2 psf	217.5 psf	278.2 psf	279.5 psf	217.5 psf	279.5 psf	81.3 psf	217.5 psf	81.3 psf		

Maximum Bearing Pressure = 280 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 33in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 33in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	2.270 k	Maximum Axial Load = 4.331 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>31%</u>	Utilization = <u>58%</u>
Diagonal Strut		
Maximum Axial Load =	2.904 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
1100-00-0	000/	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 53.78 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.076 in Max Drift, Δ_{MAX} = 0.061 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 120 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 331.976 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))} \end{array}$$

Weak Axis:

3.4.14

$$\begin{array}{lll} \mathsf{L_b} & & 120 \\ \mathsf{J} & = & 0.432 \\ & & 211.117 \\ \\ S1 & = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} & = & 0.51461 \\ \\ S2 & = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} & = & 1701.56 \\ \varphi \mathsf{F_L} & = & \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_I} & = & 28.6 \end{array}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.4 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\Phi = 1.3\Phi = 1.3\Phi$$

Sy=

 $M_{max}Wk =$

45.5 mm

0.599 in³

1.152 k-ft

 $M_{max}St =$

Sx =

 $\varphi F_L St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))/(1.6b/t)}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\partial_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

S2 = 141.0

$$\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\varphi F_L = 31.1 \text{ ksi}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$mDbr$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$lx = 984962 \text{ mm}^4$$

$$y = 43.717 \text{ mm}$$

 $Sx = 1.375 \text{ in}^3$

$$M_{max}St = 3.363 \text{ k-ft}$$

Compression

3.4.9

$$b/t = 16.2$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_{L} = 31.09 \text{ ksi}$$

$$\phi F_{L} = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 58.55 \text{ kips}$$

3.4.18

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$mDDT$$
 S2 = 77.3

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k= 33.3 \text{ ksi}$$

$$ly = 923544 \text{ mm}^4$$

$$x = 40 \text{ mm}$$

$$Sy = 1.409 \text{ in}^3$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$
 $J = 0.942$
 38.7028
 $\left(R_B \frac{\theta_{y}}{R_{CM}}\right)^2$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$
 k_*Rn

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$51 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

Cc =

$$\varphi F_L = 1.3 \varphi \varphi F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

0.672 in⁴

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

 $Cc = 27.5$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.57371$$

 $r = 0.81$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$
 $\phi cc = 0.87952$
 $\phi F_L = \phi cc(Bc-Dc^*\lambda)$

 $\phi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$
 0.672 in^4

$$y = 0.672 \text{ in}^4$$

 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$
 $M_{\text{max}}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$\begin{split} \text{h/t} &= 24.5 \\ S1 &= \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr} \\ \text{S1} &= 36.9 \\ \text{m} &= 0.65 \\ \text{C}_0 &= 27.5 \\ \text{Cc} &= 27.5 \\ \text{S2} &= \frac{k_1 Bbr}{mDbr} \\ \text{S2} &= 77.3 \\ \text{\phiF}_L &= 1.3 \text{\phiyFcy} \\ \text{\phiF}_L &= 43.2 \text{ ksi} \end{split}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

28.2 ksi

 $\phi F_l Wk =$

$$Sy = 0.621 \text{ in}^3$$

 $I_{max}Wk = 1.460 \text{ k-ft}$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 78.03 \text{ in}$$

$$J = 0.942$$

121.773

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

$$L_b = 78.03$$

$$J = 0.942$$
121.773

$$\theta_{v}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

S2 = 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used 0.0 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

 $\phi F_L St = 28.2 \text{ ksi}$ $lx = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm y = Sx = 0.621 in³ $M_{max}St = 1.460 \text{ k-ft}$

 $\phi F_L = 43.2 \text{ ksi}$

 $\phi F_l Wk =$ 28.2 ksi $ly = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm x =Sy = 0.621 in³ $M_{max}Wk =$ 1.460 k-ft

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.80509 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.83271 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 8.94465 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phiF}_{L} = & \textbf{\phic}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phiF}_{L} = & \textbf{\phic}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \\ \text{ϕF}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.94 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.21 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-32.97	-32.97	0	0
2	M14	Υ	-32.97	-32.97	0	0
3	M15	Υ	-32.97	-32.97	0	0
4	M16	Υ	-32.97	-32.97	0	0

Member Distributed Loads (BLC 4 : Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-52.543	-52.543	0	0
2	M14	V	-52.543	-52.543	0	0
3	M15	V	-87.571	-87.571	0	0
4	M16	V	-87.571	-87.571	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	118.221	118.221	0	0
2	M14	V	91.95	91.95	0	0
3	M15	V	52.543	52.543	0	0
4	M16	V	52 543	52 543	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
	LATERAL - ASD 1.1785D + 0.65				1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	927.355	2	1190.941	2	.624	1	.002	1	0	1	Ó	1
2		min	-1117.722	3	-1549.984	3	.039	15	0	15	0	1	0	1
3	N7	max	.035	3	921.637	1	68	15	001	15	0	1	0	1
4		min	193	2	45.949	15	-11.918	1	023	1	0	1	0	1
5	N15	max	.234	3	2270.41	1	0	2	0	2	0	1	0	1
6		min	-1.994	2	95.296	15	0	3	0	3	0	1	0	1
7	N16	max	3291.099	2	3880.001	2	0	3	0	3	0	1	0	1
8		min	-3551.227	3	-5054.264	3	0	2	0	11	0	1	0	1
9	N23	max	.035	3	921.637	1	11.918	1	.023	1	0	1	0	1
10		min	193	2	45.949	15	.68	15	.001	15	0	1	0	1
11	N24	max	927.355	2	1190.941	2	039	15	0	15	0	1	0	1
12		min	-1117.722	3	-1549.984	3	624	1	002	1	0	1	0	1
13	Totals:	max	5143.43	2	9760.337	2	0	2						
14		min	-5786.368	3	-7723.773	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	108.804	1	397.339	2	-9.865	15	.002	3	.26	1	0	2
2			min	6.076	15	-692.945	3	-177.817	1	013	2	.015	15	0	3
3		2	max	108.804	1	278.145	2	-7.588	15	.002	3	.085	1	.656	3
4			min	6.076	15	-487.651	3	-136.65	1	013	2	.005	15	375	2
5		3	max	108.804	1	158.95	2	-5.311	15	.002	3	0	3	1.084	3
6			min	6.076	15	-282.358	3	-95.482	1	013	2	044	1	618	2
7		4	max	108.804	1	39.756	2	-3.034	15	.002	3	006	12	1.283	3
8			min	6.076	15	-77.065	3	-54.314	1	013	2	127	1	728	2
9		5	max	108.804	1	128.229	3	757	15	.002	3	009	12	1.255	3
10			min	6.076	15	-79.438	2	-13.147	1	013	2	164	1	706	2
11		6	max	108.804	1	333.522	3	28.021	1	.002	3	009	15	.998	3
12			min	6.076	15	-198.632	2	.652	12	013	2	156	1	552	2
13		7	max	108.804	1	538.815	3	69.188	1	.002	3	006	15	.514	3
14			min	6.076	15	-317.826	2	2.929	12	013	2	102	1	265	2
15		8	max	108.804	1	744.109	3	110.356	1	.002	3	.002	2	.154	2
16			min	6.076	15	-437.02	2	5.206	12	013	2	004	3	199	3
17		9	max	108.804	1	949.402	3	151.524	1	.002	3	.143	1	.706	2
18			min	6.076	15	-556.214	2	7.483	12	013	2	.004	12	-1.14	3
19		10	max	108.804	1	675.408	2	-9.759	12	.013	2	.335	1	1.39	2
20			min	6.076	15	-1154.695	3	-192.691	1	002	3	.014	12	-2.309	3
21		11	max	108.804	1	556.214	2	-7.483	12	.013	2	.143	1	.706	2
22			min	6.076	15	-949.402	3	-151.524	1	002	3	.004	12	-1.14	3
23		12	max	108.804	1	437.02	2	-5.206	12	.013	2	.002	2	.154	2
24			min	6.076	15	-744.109	3	-110.356		002	3	004	3	199	3
25		13	max	108.804	1	317.826	2	-2.929	12	.013	2	006	15	.514	3
26			min	6.076	15	-538.815	3	-69.188	1	002	3	102	1	265	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
27		14	max	108.804	1	198.632	2	652	12	.013	2	009	15	.998	3
28			min	6.076	15	-333.522	3	-28.021	1	002	3	156	1	552	2
29		15	max	108.804	1	79.438	2	13.147	1	.013	2	009	12	1.255	3
30			min	6.076	15	-128.229	3	.757	15	002	3	164	1	706	2
31		16	max	108.804	1	77.065	3	54.314	1	.013	2	006	12	1.283	3
32			min	6.076	15	-39.756	2	3.034	15	002	3	127	1	728	2
33		17	max	108.804	1	282.358	3	95.482	1	.013	2	0	3	1.084	3
34			min	6.076	15	-158.95	2	5.311	15	002	3	044	1	618	2
35		18	max	108.804	1	487.651	3	136.65	1	.013	2	.085	1	.656	3
36			min	6.076	15	-278.145	2	7.588	15	002	3	.005	15	375	2
37		19	max	108.804	1	692.945	3	177.817	1	.013	2	.26	1	0	2
38			min	6.076	15	-397.339	2	9.865	15	002	3	.015	15	0	3
39	M14	1	max	50.432	1	424.208	2	-10.171	15	.009	3	.297	1	0	1
40	IVIIT	<u> </u>	min	2.818	15	-552.412	3	-183.335		01	2	.017	15	0	3
41		2	max	50.432	1	305.014	2	-7.894	15	.009	3	.116	1	.526	3
42			min	2.818	15	-393.822	3	-142.168		01	2	.007	15	405	2
43		3		50.432	1	185.82	2	-5.617	15	.009	3	.002	3	.875	3
44		3	max	2.818		-235.233	3		1	01	2	019	1	678	2
		1	min		15			-101							
45		4	max	50.432	1	66.626	2	-3.34	15	.009	3	005	12	1.048	3
46		-	min	2.818	15	-76.644	3	-59.833	1_	01	2	108	1	818	2
47		5	max	50.432	1	81.946	3	-1.062	15	.009	3	008	12	1.045	3
48			min	2.818	15	-52.568	2	-18.665	1	01	2	152	1_	826	2
49		6	max	50.432	1	240.535	3	22.503	1_	.009	3	008	15	.866	3
50			min	2.818	15	-171.763	2	.362	12	01	2	15	1	701	2
51		7	max	50.432	1_	399.124	3	63.67	1	.009	3	006	15	.511	3
52			min	2.818	15	-290.957	2	2.639	12	01	2	102	1	444	2
53		8	max	50.432	1	557.714	3	104.838	1	.009	3	0	10	0	15
54			min	2.818	15	-410.151	2	4.915	12	01	2	008	1	055	2
55		9	max	50.432	1	716.303	3	146.005	1	.009	3	.131	1	.467	2
56			min	2.818	15	-529.345	2	7.192	12	01	2	.004	12	728	3
57		10	max	50.432	1	648.539	2	-9.469	12	.01	2	.316	1	1.122	2
58			min	2.818	15	-874.892	3	-187.173	1	009	3	.013	12	-1.612	3
59		11	max	50.432	1	529.345	2	-7.192	12	.01	2	.131	1	.467	2
60			min	2.818	15	-716.303	3	-146.005		009	3	.004	12	728	3
61		12	max	50.432	1	410.151	2	-4.915	12	.01	2	0	10	0	15
62			min	2.818	15	-557.714	3	-104.838	1	009	3	008	1	055	2
63		13	max	50.432	1	290.957	2	-2.639	12	.01	2	006	15	.511	3
64		1	min	2.818	15	-399.124	3	-63.67	1	009	3	102	1	444	2
65		14	max	50.432	1	171.763	2	362	12	.01	2	008	15	.866	3
66			min	2.818	15	-240.535	3	-22.503	1	009	3	15	1	701	2
67		15			1	52.568	2	18.665	1	.01	2	008	12	1.045	3
68			min	2.818	15	-81.946	3	1.062	15	009	3	152	1	826	2
69		16	max	50.432	1	76.644	3	59.833	1	.01	2	005	12	1.048	3
70		10	min	2.818	15	-66.626	2	3.34	15	009	3	108	1	818	2
71		17	max	50.432	1	235.233	3	101	1	.01	2	.002	3	.875	3
72		17	min	2.818	15	-185.82	2	5.617	15	009	3	019	1	678	2
		10				393.822		142.168							
73		18	max	50.432	1		3		1	.01	2	.116	1_	.526	3
74		40	min	2.818	15	-305.014	2	7.894	15	009	3	.007	15	405	2
75		19	max	50.432	1	552.412	3	183.335	1	.01	2	.297	1	0	1
76	N44.5	4	min	2.818	15	-424.208	2	10.171	15	009	3	.017	<u>15</u>	0	3
77	M15	1	max	-2.961	15	634.394	2	-10.168	15	.011	2	.297	1_	0	2
78			min	-52.892	1_	-316.106	3	-183.316		008	3	.017	15	0	3
79		2	max	-2.961	15	452.928	2	-7.891	15	.011	2	.116	1	.302	3
80			min	-52.892	1	-227.573	3	-142.148		008	3	.007	15	604	2
81		3	max	-2.961	15	271.462	2	-5.614	15	.011	2	.002	3	.506	3
82			min	-52.892	1	-139.041	3	-100.98	1	008	3	019	1	-1.006	2
83		4	max	-2.961	15	89.996	2	-3.337	15	.011	2	005	12	.611	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-52.892	1	-50.508	3	-59.813	1	008	3	109	1	-1.207	2
85		5	max	-2.961	15	38.024	3	-1.06	15	.011	2	008	12	.618	3
86			min	-52.892	1_	-91.47	2	-18.645	1	008	3	152	1	-1.206	2
87		6	max	-2.961	15	126.557	3	22.522	1	.011	2	008	15	.527	3
88			min	-52.892	1	-272.936	2	.433	12	008	3	15	1	-1.004	2
89		7	max	-2.961	15	215.089	3	63.69	1	.011	2	006	15	.337	3
90			min	-52.892	1	-454.402	2	2.71	12	008	3	102	1	6	2
91		8	max	-2.961	15	303.622	3	104.858	1	.011	2	0	10	.049	3
92			min	-52.892	1	-635.868	2	4.987	12	008	3	008	1	007	9
93		9	max	-2.961	15	392.154	3	146.025	1	.011	2	.131	1	.813	2
94			min	-52.892	1	-817.334	2	7.263	12	008	3	.004	12	338	3
95		10	max	-2.961	15	998.801	2	-9.54	12	.008	3	.316	1	1.822	2
96			min	-52.892	1	-480.686	3	-187.193	1	011	2	.013	12	823	3
97		11	max	-2.961	15	817.334	2	-7.263	12	.008	3	.131	1	.813	2
98			min	-52.892	1	-392.154	3	-146.025	1	011	2	.004	12	338	3
99		12	max	-2.961	15	635.868	2	-4.987	12	.008	3	0	10	.049	3
100			min	-52.892	1	-303.622	3	-104.858	1	011	2	008	1	007	9
101		13	max	-2.961	15	454.402	2	-2.71	12	.008	3	006	15	.337	3
102			min	-52.892	1	-215.089	3	-63.69	1	011	2	102	1	6	2
103		14	max	-2.961	15	272.936	2	433	12	.008	3	008	15	.527	3
104			min	-52.892	1	-126.557	3	-22.522	1	011	2	15	1	-1.004	2
105		15	max	-2.961	15	91.47	2	18.645	1	.008	3	008	12	.618	3
106			min	-52.892	1	-38.024	3	1.06	15	011	2	152	1	-1.206	2
107		16	max	-2.961	15	50.508	3	59.813	1	.008	3	005	12	.611	3
108			min	-52.892	1	-89.996	2	3.337	15	011	2	109	1	-1.207	2
109		17	max	-2.961	15	139.041	3	100.98	1	.008	3	.002	3	.506	3
110			min	-52.892	1	-271.462	2	5.614	15	011	2	019	1	-1.006	2
111		18	max	-2.961	15	227.573	3	142.148	1	.008	3	.116	1	.302	3
112			min	-52.892	1	-452.928	2	7.891	15	011	2	.007	15	604	2
113		19	max	-2.961	15	316.106	3	183.316	1	.008	3	.297	1	0	2
114		10	min	-52.892	1	-634.394	2	10.168	15	011	2	.017	15	0	3
115	M16	1	max	-6.574	15	608.564	2	-9.874	15	.009	2	.262	1	0	2
116	IVITO			-117.639	1	-294.192	3	-178.09	1	011	3	.015	15	0	3
117		2	max	-6.574	15	427.097	2	-7.597	15	.009	2	.087	1	.278	3
118			min	-117.639	1	-205.659	3	-136.923	1	011	3	.005	15	575	2
119		3	max	-6.574	15	245.631	2	-5.32	15	.009	2	0	12	.457	3
120				-117.639	1	-117.127	3	-95.755	1	011	3	043	1	949	2
121		4	max	-6.574	15	64.165	2	-3.043	15	.009	2	006	12	.538	3
122		_		-117.639	1	-28.594	3	-54.588	1	011	3	126	1	-1.121	2
123		5	max	-6.574	15	59.938	3	766	15	.009	2	009	12	.521	3
124				-117 639	1	-117.301	2	-13.42		011	3		1	-1.092	2
125		6	max		15	148.471	3	27.748	1	.009	2	009	15	.405	3
126				-117.639	1	-298.767	2	.888	12	011	3	156	1	861	2
127		7	max	-6.574	15	237.003	3	68.915	1	.009	2	006	15	.191	3
128				-117.639	1	-480.233	2	3.165	12	011	3	102	1	428	2
129		8	max		15	325.535	3	110.083	1	.009	2	0	10	.207	2
130				-117.639	1	-661.699	2	5.442	12	011	3	003	3	122	3
131		9	max		15	414.068	3	151.25	1	.009	2	.142	1	1.043	2
132		9		-117.639	1	-843.165	2	7.719	12	011	3	.005	12	533	3
133		10	max	-6.574		1024.631	2	-9.996	12	.011	3	.333	1	2.08	2
134		10		-117.639	<u>15</u> 1	-502.6	3	-9.996 -192.418		009	2	.015	12	-1.042	3
135		11	max		15	843.165	2	-7.719	12	.011	3	.015	1	1.042	2
136				-117.639	1	-414.068	3	-151.25	1	009	2	.005	12	533	3
137		12		-6.574		661.699		-151.25 -5.442	12	.011	3	.005 0	10	<u>533</u> .207	2
138		12	max	-0.574	<u>15</u> 1	-325.535	3	-5.442 -110.083	1	009	2	003	3	.207 122	3
138		13			15	480.233	2	-3.165	12	.011	3	003 006	15	<u>122</u> .191	3
		13	max								2				2
140			1111111	-117.639	1	-237.003	3	-68.915	1	009		102	1	428	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
141		14	max	-6.574	15	298.767	2	888	12	.011	3	009	15	.405	3
142			min	-117.639	1	-148.471	3	-27.748	1	009	2	156	1	861	2
143		15	max	-6.574	15	117.301	2	13.42	1	.011	3	009	12	.521	3
144			min	-117.639	1	-59.938	3	.766	15	009	2	164	1	-1.092	2
145		16	max	-6.574	15	28.594	3	54.588	1	.011	3	006	12	.538	3
146			min	-117.639	1	-64.165	2	3.043	15	009	2	126	1	-1.121	2
147		17	max	-6.574	15	117.127	3	95.755	1	.011	3	0	12	.457	3
148			min	-117.639	1	-245.631	2	5.32	15	009	2	043	1	949	2
149		18	max	-6.574	15	205.659	3	136.923	1	.011	3	.087	1	.278	3
150			min	-117.639	1	-427.097	2	7.597	15	009	2	.005	15	575	2
151		19	max	-6.574	15	294.192	3	178.09	1	.011	3	.262	1	0	2
152			min	-117.639	1	-608.564	2	9.874	15	009	2	.015	15	0	3
153	M2	1	max	973.395	2	2.017	4	.369	1	0	5	0	3	0	1
154	··· -		min	-1327.477	3	.475	15	.021	15	0	1	0	2	0	1
155		2	max	973.916	2	1.898	4	.369	1	0	5	0	1	0	15
156		_	min	-1327.087	3	.447	15	.021	15	0	1	0	15	0	4
157		3	max	974.436	2	1.78	4	.369	1	0	5	0	1	0	15
158			min	-1326.696	3	.419	15	.021	15	0	1	0	15	001	4
159		4	max	974.957	2	1.661	4	.369	1	0	5	0	1	0	15
160			min	-1326.306	3	.391	15	.021	15	0	1	0	15	002	4
161		5	max	975.478	2	1.542	4	.369	1	0	5	0	1	0	15
162			min	-1325.915	3	.363	15	.021	15	0	1	0	15	003	4
163		6	max	975.998	2	1.423	4	.369	1	0	5	0	1	0	15
164		0	min	-1325.525	3	.335	15	.021	15	0	1	0	15	003	4
165		7	max	976.519	2	1.304	4	.369	1	0	5	0	1	0	15
166		-	min	-1325.134	3	.307	15	.021	15	0	1	0	15	004	4
167		8		977.04		1.185	4	.369	1		5	0	1	0	15
168		0	max min	-1324.744	3	.279	15	.021	15	0	1	0	15	004	4
169		9			_		4		1		5		1		15
		9	max	977.56	3	1.066	12	.369		0	1	.001	15	001	
170		10	min	978.081	2	.248	4	.021 .369	1 <u>5</u>	0	5	.001	1 1	004 001	15
172		10	max	-1323.963	3	.948 .202	12	.021	15	0	1	.001	15	005	4
173		11	min	978.602	2	.841	2	.369	1		5	.001	1	003 001	15
174			max	-1323.572		.156	12	.021	15	0	1	0	15	005	
		12	min	979.123	3		2					_			4
175 176		12	max min	-1323.182	3	.748 .11	12	.369 .021	15	0	5	.001	1 15	001 005	15
		12							1					003	
177 178		13	max	979.643	3	.655 .063	2 12	.369	15	0	5	.002	1 15		15
		14	min	980.164			2		1		5		1	006	15
179		14	max	-1322.401	3	.563	3	.369		0	1	.002	15	001	4
180		15	min			.008		.021	15	0		0		006	
181		15		980.685	2	.47	2	.369	1_15	0	5	.002	1_	001	15
182		10	min		3	061	3	.021	15	0	1	0	15	006	15
183		10	max		2	.377	2	.369	1	0	<u>5</u>	.002	1	001	15
184		17		-1321.62	3	13	3	.021	15	0		0	15	006	4
185		17	max	981.726	2	.285	2	.369	1	0	5	.002	1 1 5	001	12
186		10	min		3	2	3	.021	15	0	1	0	15	006	4
187		18		982.247	2	.192	2	.369	1	0	5	.002	1	001	12
188		40	min	-1320.838	3	269	3	.021	15	0	1	0	15	006	4
189		19		982.767	2	.1	2	.369	1	0	5	.002	1	001	12
190	MO	4	min	-1320.448	3	339	3	.021	15	0	1	0	15	006	4
191	<u>M3</u>	1		787.578	2	7.661	4	.328	1	0	12		1	.006	4
192			min	-920.486	3	1.801	15	.018	15	0	1	0	15	.001	12
193		2	max		2	6.9	4	.328	1	0	12	0	1_	.004	2
194			min		3	1.622	15	.018	15	0	1	0	15	0	3
195		3	max		2	6.139	4	.328	1	0	12	0	1	.001	2
196		A	min		3	1.443	15	.018	15	0	1	0	15	001	3
197		4	max	787.067	2	5.378	4	.328	_ 1	0	12	0	_1_	0	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	. LC
198			min	-920.869	3	1.264	15	.018	15	0	1	0	15	003	3
199		5	max	786.897	2	4.617	4	.328	1	0	12	0	1	0	15
200			min	-920.997	3	1.086	15	.018	15	0	1	0	15	004	4
201		6	max	786.727	2	3.856	4	.328	1	0	12	.001	1	001	15
202			min	-921.125	3	.907	15	.018	15	0	1	0	15	006	4
203		7	max	786.556	2	3.095	4	.328	1	0	12	.001	1	002	15
204			min	-921.253	3	.728	15	.018	15	0	1	0	15	007	4
205		8	max		2	2.334	4	.328	1	0	12	.001	1	002	15
206			min	-921.38	3	.549	15	.018	15	0	1	0	15	008	4
207		9	max	786.215	2	1.573	4	.328	1	0	12	.002	1	002	15
208			min	-921.508	3	.37	15	.018	15	0	1	0	15	009	4
209		10	max		2	.812	4	.328	1	0	12	.002	1	002	15
210		1.0	min	-921.636	3	.173	12	.018	15	0	1	0	15	01	4
211		11	max	785.875	2	.207	2	.328	1	0	12	.002	1	002	15
212			min	-921.764	3	199	3	.018	15	0	1	0	15	01	4
213		12	max	785.704	2	167	15	.328	1	0	12	.002	1	002	15
214		12	min	-921.892	3	71	4	.018	15	0	1	0	15	01	4
215		13	max		2	345	15	.328	1	0	12	.002	1	002	15
216		10	min	-922.019	3	-1.471	4	.018	15	0	1	0	15	009	4
217		14	max	785.364	2	524	15	.328	1	0	12	.002	1	003	15
218		14	min	-922.147	3	-2.232	4	.018	15	0	1	0	15	002	4
219		15	max	785.193	2	703	15	.328	1	0	12	.002	1	002	15
220		15	min	-922.275	3	-2.993	4	.018	15	0	1	0	15	002	4
221		16		785.023	2	882	15	.328	1	0	12	.002	1	008 001	15
222		10	max	-922.403		-3.754	4	.018	15		1		15	001 006	4
223		17	min	784.853	3	-3.734 -1.061	15	.328	1	0	12	.003	1	006 001	15
		17	max		2								15		
224		4.0	min	-922.53	3	-4.515	4	.018	15	0	1	0		004	4
225		18	max		2	-1.24	15	.328	1	0	12	.003	1	0	15
226		40	min	-922.658	3	-5.276	4	.018	15	0	1	0	15	002	4
227		19	max	784.512	2	-1.419	15	.328	1	0	12	.003	1	0	1
228	N 1 4	1	min	-922.786	3	-6.036	4	.018	15	0	1	0	15	0	1
229	M4	1	max		1	0	1	68	15	0	1	.003	1	0	1
230			min	45.024	15	0	1	-12.216	1	0	1	0	15	0	1
231		2	max	918.741	1	0	1	68	15	0	1	.001	1	0	1
232			min	45.076	15	0	1_	-12.216	1	0	1	0	15	0	1
233		3	max	918.912	1	0	1	68	15	0	1	0	3	0	1
234		1	min	45.127	15	0	1	-12.216	1	0	1	0	1	0	1
235		4	max		1	0	1	68	15	0	1	0	15	0	1
236		-	min	45.179	15	0	1	-12.216	1	0	1	001	1	0	1
237		5	max	919.252	1	0	1	68	15	0	1	0	15	0	1
238			min		15	0	1	-12.216	1	0	1	003	1	0	1
239		6	max		1	0	1	68	15	0	1	0	15	0	1
240		-	min		15	0	1	-12.216	1_	0	1	004	1	0	1
241		7		919.593	1	0	1	68	15	0	1	0	15	0	1
242			min	45.333	15	0	1	-12.216	1_	0	1	006	1	0	1
243		8	max		1	0	1	68	15	0	1	0	15	0	1
244			min	45.384	15	0	1_	-12.216	1_	0	1	007	1	0	1
245		9		919.934	1	0	1	68	15	0	1	0	15	0	1
246			min	45.436	15	0	1	-12.216	1_	0	1	008	1	0	1
247		10	max		1	0	1	68	15	0	1	0	15	0	1
248			min	45.487	15	0	1_	-12.216	1_	0	1	01	1_	0	1
249		11		920.274	1	0	1	68	15	0	1	0	15	0	1
250			min		15	0	1	-12.216	1	0	1	011	1	0	1
251		12		920.445	1	0	1	68	15	0	1	0	15	0	1
252			min	45.59	15	0	1	-12.216	1	0	1	013	1	0	1
253		13	max	920.615	1	0	1	68	15	0	1	0	15	0	1
254			min	45.641	15	0	1	-12.216	1	0	1	014	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

055	Member	Sec	I	Axial[lb]						Torque[k-ft]		I' ' -			
255		14	max		1	0	1	68	15	0	<u>1</u> 1	0	<u>15</u>	0	1
256 257		15	min	45.692 920.956	<u>15</u> 1	0	1	-12.216 68	1 15	0	1	016 0	15	0	1
258		13	max	45.744	15	0	1	-12.216	1	0	1	017	1	0	1
259		16	max		1	0	1	68	15	0	1	001	15	0	1
260		10	min	45.795	15	0	1	-12.216	1	0	1	018	1	0	1
261		17	max		1	0	1	68	15	0	1	001	15	0	1
262			min	45.847	15	0	1	-12.216	1	0	1	02	1	0	1
263		18	max		1	0	1	68	15	0	1	001	15	0	1
264			min	45.898	15	0	1	-12.216	1	0	1	021	1	0	1
265		19	max	921.637	1	0	1	68	15	0	1	001	15	0	1
266			min	45.949	15	0	1	-12.216	1	0	1	023	1	0	1
267	M6	1	max	3123.969	2	2.25	2	0	1	0	1	0	1	0	1
268			min		3	.249	12	0	1	0	1	0	1	0	1
269		2	max		2	2.157	2	0	1	0	1	0	1	0	12
270			min	-4330.928	3	.203	12	0	1	0	1	0	1	0	2
271		3		3125.011	2	2.064	2	0	1_	0	_1_	0	1	0	12
272				-4330.538	3	.157	12	0	1	0	1	0	1	002	2
273		4		3125.531	2	1.972	2	0	1	0	1	0	1	0	12
274		_	min	-4330.147	3_	.11	12	0	1_	0	1_	0	1	002	2
275		5		3126.052	2	1.879	2	0	1	0	1	0	1	0	12
276			min	-4329.757	3	.042	3	0	1	0	_1_	0	1	003	2
277		6		3126.573	2	1.787	2	0	1	0	1	0	1	0	12
278		-		-4329.366	3	027	3	0	1	0	1_	0	1	004	2
279		7		3127.093 -4328.976	2	1.694	2	0	1	0	1	0	1	0	12
280		0		3127.614	3	097	3	0	1	0	1	0	1	004	3
281		8		-4328.585	3	1.601 166	3	0	1	0	1	0	1	005	2
283		9		3128.135	2	1.509	2	0	1	0	1	0	1	005 0	3
284		9	min	-4328.195	3	236	3	0	1	0	1	0	1	005	2
285		10		3128.655	2	1.416	2	0	1	0	1	0	1	0	3
286		10	min	-4327.804	3	305	3	0	1	0	1	0	1	006	2
287		11		3129.176	2	1.323	2	0	1	0	1	0	1	0	3
288				-4327.414	3	375	3	0	1	0	1	0	1	006	2
289		12		3129.697	2	1.231	2	0	1	0	1	0	1	0	3
290		·-	min		3	444	3	0	1	0	1	Ö	1	007	2
291		13		3130.218	2	1.138	2	0	1	0	1	0	1	0	3
292				-4326.633	3	514	3	0	1	0	1	0	1	007	2
293		14	max	3130.738	2	1.046	2	0	1	0	1	0	1	0	3
294			min	-4326.242	3	583	3	0	1	0	1	0	1	008	2
295		15	max	3131.259	2	.953	2	0	1	0	1	0	1	0	3
296			min	-4325.852	3	653	3	0	1	0	1	0	1	008	2
297		16	max		2	.86	2	0	1	0	1	0	1	.001	3
298				-4325.461	3	722	3	0	1	0	1	0	1	008	2
299		17	max		2	.768	2	0	1_	0	1	0	1	.001	3
300				-4325.07	3	792	3	0	1_	0	1	0	1	009	2
301		18		3132.821	2_	.675	2	0	1	0	_1_	0	1	.002	3
302		4.0		-4324.68	3	861	3	0	1_	0	1	0	1	009	2
303		19		3133.342	2	.582	2	0	1	0	1_	0	1	.002	3
304	N 47	4		-4324.289	3	93	3	0	1_	0	1	0	1	009	2
305	<u>M7</u>	1		2856.032	2	7.69	4	0	1	0	1	0	1	.009	2
306		2	min	-2902.034	3	1.806	<u>15</u>	0	1	0	1	0	1	002	3
307		2		2855.862 -2902.162	2	6.929	4	0	1	0	1	0	1	.006	2
308		3		2855.692	<u>3</u> 2	1.627 6.168	1 <u>5</u>	0	1	-	1	0	1	003 .004	2
310		3	min		3	1.448	15	0	1	0	1	0	1	005	3
311		4		2855.521	2	5.407	4	0	1	0	1	0	1	.002	2
			max			U.TUI		<u> </u>						.002	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2902.417	3	1.269	15	0	1	0	1	0	1	006	3
313		5	max	2855.351	2	4.646	4	0	1	0	_1_	0	<u>1</u>	0	2
314			min	-2902.545	3	1.09	15	0	1	0	1	0	1_	007	3
315		6	max	2855.181	2	3.885	4	0	1	0	1	0	_1_	001	15
316			min	-2902.673	3	.912	15	0	1	0	1	0	1_	007	3
317		7	max		2	3.124	4	0	1	0	_1_	0	_1_	002	15
318			min	-2902.8	3	.733	15	0	1	0	1	0	1_	008	3
319		8	max	2854.84	2	2.4	2	0	1	0	1	0	_1_	002	15
320			min	-2902.928	3	.449	12	0	1	0	1	0	1	008	4
321		9	max	2854.67	2	1.807	2	0	1	0	_1_	0	_1_	002	15
322			min	-2903.056	3	.153	12	0	1	0	1	0	1_	009	4
323		10	max	2854.499	2	1.214	2	0	1	0	1	0	_1_	002	15
324			min	-2903.184	3	262	3	0	1	0	1	0	1_	01	4
325		11	max	2854.329	2	.621	2	0	1	0	1	0	_1_	002	15
326			min	-2903.311	3	706	3	0	1	0	1	0	1	01	4
327		12		2854.159	2	.028	2	0	1	0	1	0	_1_	002	15
328			min	-2903.439	3	-1.151	3	0	1	0	1	0	1_	01	4
329		13		2853.988	2	341	15	0	1	0	1	0	_1_	002	15
330			min	-2903.567	3	-1.596	3	0	1	0	1	0	1_	009	4
331		14		2853.818	2	52	15	0	1	0	_1_	0	_1_	002	15
332			min	-2903.695	3	-2.202	4	0	1	0	1	0	1_	009	4
333		15		2853.648	2	698	15	0	1_	0	1	0	_1_	002	15
334			min	-2903.823	3	-2.963	4	0	1	0	1	0	1_	007	4
335		16		2853.477	2	877	15	0	1	0	1	0	_1_	001	15
336			min	-2903.95	3	-3.724	4	0	1	0	1	0	1	006	4
337		17		2853.307	2	-1.056	15	0	1	0	1	0	_1_	001	15
338			min	-2904.078	3	-4.485	4	0	1	0	1	0	1_	004	4
339		18		2853.137	2	-1.235	15	0	1	0	1	0	_1_	0	15
340			min	-2904.206	3	-5.246	4	0	1	0	1	0	1_	002	4
341		19		2852.966	2	-1.414	15	0	1	0	1	0	1	0	1
342			min	-2904.334	3	-6.007	4	0	1	0	1	0	1_	0	1
343	<u>M8</u>	1		2267.344	1	0	1	0	1	0	1	0	_1_	0	1
344			min	94.371	15	0	1	0	1	0	1	0	_1_	0	1
345		2		2267.514	1	0	1	0	1	0	1	0	1_	0	1
346			min	94.422	15	0	1	0	1	0	1	0	_1_	0	1
347		3	_	2267.685	1	0	1	0	1	0	1	0	_1_	0	1
348			min	94.474	15	0	1	0	1	0	1	0	1_	0	1
349		4		2267.855	1	0	1	0	1	0	1	0	_1_	0	1
350		<u> </u>	min	94.525	15	0	1	0	1	0	1	0	1_	0	1
351		5		2268.025	1	0	1	0	1	0	1	0	_1_	0	1
352			mın		15	0	1	0	1	0	1	0	1_	0	1
353		6		2268.196	1	0	1	0	1	0	1	0	1	0	1
354		-	min	94.628	15	0	1	0	1	0	1	0	1	0	1
355		7		2268.366		0	1	0	1	0	1	0	1	0	1
356			min		15	0	1	0	1	0	1	0	1_	0	1
357		8		2268.536		0	1	0	1	0	1	0	1	0	1
358			min		15	0	1	0	1	0	1	0	1_	0	1
359		9		2268.707	1	0	1	0	1	0	1	0		0	1
360		40	min		15	0	1	0	1	0	1	0	1_	0	1
361		10		2268.877	1	0	1	0	1	0	1	0	1	0	1
362		4.4	min		15	0	1	0	1	0	1	0	1_	0	1
363		11		2269.048	1	0	1	0	1	0	1	0	1	0	1
364		10	min		15	0	1	0	1	0	1	0	1_	0	1
365		12		2269.218		0	1	0	1	0	1	0	1	0	1
366		40	min	94.936	15	0	1	0	1	0	1	0	1_	0	1
367		13		2269.388		0	1	0	1	0	1	0	1	0	1
368			min	94.988	15	0	1	0	1	0	1	0	_1_	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	2269.559	1	0	1	0	1	0	1	0	1	0	1
370			min	95.039	15	0	1	0	1	0	1	0	1	0	1
371		15	max	2269.729	1	0	1	0	1_	0	1_	0	1	0	1
372			min	95.09	15	0	1	0	1	0	1	0	1	0	1
373		16	max	2269.899	_1_	0	1	0	_1_	0	1_	0	1	0	1
374			min	95.142	15	0	1	0	1_	0	1	0	1	0	1
375		17	max		_1_	0	1	0	_1_	0	_1_	0	1	0	1
376			min	95.193	15	0	1	0	1_	0	1_	0	1	0	1
377		18	max	2270.24	_1_	0	1	0	_1_	0	_1_	0	1	0	1
378			min	95.245	15	0	1	0	1_	0	1_	0	1	0	1
379		19	max	2270.41	_1_	0	1	0	1_	0	1_	0	1	0	1
380			min	95.296	15	0	1	0	_1_	0	1_	0	1	0	1
381	M10	1	max		2	2.017	4	021	<u>15</u>	0	1_	0	2	0	1
382			min	-1327.477	3_	.475	15	369	1_	0	5	0	3	0	1
383		2	max		2	1.898	4	021	<u>15</u>	0	1_	0	15	0	15
384			min	-1327.087	3	.447	15	369	1_	0	5	0	1	0	4
385		3	max		2	1.78	4	021	<u>15</u>	0	1_	0	15	0	15
386		4	min	-1326.696	3	.419	15	369	1_	0	5	0	1_	001	4
387		4	max		2	1.661	4	021	<u>15</u>	0	1_	0	15	0	15
388			min	-1326.306	3	.391	15	369	1_	0	5	0	1	002	4
389		5	max	975.478	2	1.542	<u>4</u> 15	021	<u>15</u>	0	1	0	15	0	15
390		6	min		3	.363		369	15	0	<u>5</u> 1	0	15	003	4
391		0	max	975.998	3	1.423 .335	4 15	021 369	1 <u>1</u>	0	5	0	1	003	15
392		7	min					021	•		<u>ວ</u> 1	0	15		4
393 394			max min	976.519	3	1.304 .307	4 15	021	<u>15</u> 1	0	5	0	1	004	1 <u>5</u>
395		8	max		2	1.185	4	021	15	0	<u> </u>	0	15	004 0	15
396		0	min	-1324.744	3	.279	15	369	1	0	5	0	1	004	4
397		9	max	977.56	2	1.066	4	021	15	0	1	0	15	004 001	15
398		9	min	-1324.353	3	.248	12	369	1	0	5	001	1	004	4
399		10	max		2	.948	4	021	15	0	1	0	15	004	15
400		10	min	-1323.963	3	.202	12	369	1	0	5	001	1	005	4
401		11	max		2	.841	2	021	15	0	1	0	15	001	15
402			min	-1323.572	3	.156	12	369	1	0	5	001	1	005	4
403		12	max		2	.748	2	021	15	0	1	0	15	001	15
404		12	min	-1323.182	3	.11	12	369	1	0	5	001	1	005	4
405		13	max		2	.655	2	021	15	0	1	0	15	001	15
406			min	-1322.791	3	.063	12	369	1	0	5	002	1	006	4
407		14	max	980.164	2	.563	2	021	15	0	1	0	15	001	15
408				-1322.401	3	.008	3	369	1	0	5	002	1	006	4
409		15	max	980.685	2	.47	2	021	15	0	1	0	15	001	15
410				-1322.01	3	061	3	369	1	0	5	002	1	006	4
411		16	max	981.205	2	.377	2	021	15	0	1	0	15	001	15
412			min	-1321.62	3	13	3	369	1	0	5	002	1	006	4
413		17	max		2	.285	2	021	15	0	1_	0	15	001	12
414			min	-1321.229	3	2	3	369	1_	0	5	002	1	006	4
415		18		982.247	2	.192	2	021	15	0	1	0	15	001	12
416			min	-1320.838	3	269	3	369	1_	0	5	002	1	006	4
417		19		982.767	2	1	2	021	15	0	1_	0	15	001	12
418				-1320.448	3	339	3	369	1_	0	5	002	1_	006	4
419	M11	1		787.578	2	7.661	4	018	<u>15</u>	0	1	0	15	.006	4
420		_		-920.486	3_	1.801	15	328	_1_	0	12	0	1_	.001	12
421		2		787.408	2	6.9	4	018	<u>15</u>	0	1_	0	15	.004	2
422		_		-920.614	3	1.622	15	328	1_	0	12	0	1	0	3
423		3		787.238	2	6.139	4	018	<u>15</u>	0	1	0	15	.001	2
424				-920.742	3	1.443	15	328	1_	0	12	0	1	001	3
425		4	max	787.067	2	5.378	4	018	15	0	_1_	0	15	0	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
426			min	-920.869	3	1.264	15	328	1	0	12	0	1	003	3
427		5	max	786.897	2	4.617	4	018	15	0	1	0	15	0	15
428			min	-920.997	3	1.086	15	328	1	0	12	0	1	004	4
429		6	max	786.727	2	3.856	4	018	15	0	1	0	15	001	15
430			min	-921.125	3	.907	15	328	1	0	12	001	1	006	4
431		7	max	786.556	2	3.095	4	018	15	0	1	0	15	002	15
432			min	-921.253	3	.728	15	328	1	0	12	001	1	007	4
433		8	max	786.386	2	2.334	4	018	15	0	1	0	15	002	15
434			min	-921.38	3	.549	15	328	1	0	12	001	1	008	4
435		9	max	786.215	2	1.573	4	018	15	0	1	0	15	002	15
436			min	-921.508	3	.37	15	328	1	0	12	002	1	009	4
437		10	max	786.045	2	.812	4	018	15	0	1	0	15	002	15
438			min	-921.636	3	.173	12	328	1	0	12	002	1	01	4
439		11	max	785.875	2	.207	2	018	15	0	1	0	15	002	15
440			min	-921.764	3	199	3	328	1	0	12	002	1	01	4
441		12	max	785.704	2	167	15	018	15	0	1	0	15	002	15
442			min	-921.892	3	71	4	328	1	0	12	002	1	01	4
443		13	max	785.534	2	345	15	018	15	0	1	0	15	002	15
444			min	-922.019	3	-1.471	4	328	1	0	12	002	1	009	4
445		14	max	785.364	2	524	15	018	15	0	1	0	15	002	15
446			min	-922.147	3	-2.232	4	328	1	0	12	002	1	009	4
447		15	max	785.193	2	703	15	018	15	0	1	0	15	002	15
448			min	-922.275	3	-2.993	4	328	1	0	12	002	1	008	4
449		16	max	785.023	2	882	15	018	15	0	1	0	15	001	15
450			min	-922.403	3	-3.754	4	328	1	0	12	002	1	006	4
451		17	max	784.853	2	-1.061	15	018	15	0	1	0	15	001	15
452			min	-922.53	3	-4.515	4	328	1	0	12	003	1	004	4
453		18	max	784.682	2	-1.24	15	018	15	0	1	0	15	0	15
454			min	-922.658	3	-5.276	4	328	1	0	12	003	1	002	4
455		19	max	784.512	2	-1.419	15	018	15	0	1	0	15	0	1
456			min	-922.786	3	-6.036	4	328	1	0	12	003	1	0	1
457	M12	1	max	918.571	1	0	1	12.216	1	0	1	0	15	0	1
458			min	45.024	15	0	1	.68	15	0	1	003	1	0	1
459		2	max	918.741	1	0	1	12.216	1	0	1	0	15	0	1
460			min	45.076	15	0	1	.68	15	0	1	001	1	0	1
461		3	max	918.912	1	0	1	12.216	1	0	1	0	1	0	1
462			min	45.127	15	0	1	.68	15	0	1	0	3	0	1
463		4	max	919.082	1	0	1	12.216	1	0	1	.001	1	0	1
464			min	45.179	15	0	1	.68	15	0	1	0	15	0	1
465		5	max	919.252	1	0	1	12.216	1	0	1	.003	1	0	1
466			min	45.23	15	0	1	.68	15	0	1	0	15	0	1
467		6	max	919.423	1	0	1	12.216	1	0	1	.004	1	0	1
468			min	45.281	15	0	1	.68	15	0	1	0	15	0	1
469		7	max	919.593	1	0	1	12.216	1	0	1	.006	1	0	1
470			min	45.333	15	0	1	.68	15	0	1	0	15	0	1
471		8	max	919.763	1	0	1	12.216	1	0	1	.007	1	0	1
472			min	45.384	15	0	1	.68	15	0	1	0	15	0	1
473		9	max	919.934	1	0	1	12.216	1	0	1	.008	1	0	1
474			min	45.436	15	0	1	.68	15	0	1	0	15	0	1
475		10	max		1	0	1	12.216	1	0	1	.01	1	0	1
476			min		15	0	1	.68	15	0	1	0	15	0	1
477		11	max		1	0	1	12.216	1	0	1	.011	1	0	1
478			min	45.538	15	0	1	.68	15	0	1	0	15	0	1
479		12	max	920.445	1	0	1	12.216	1	0	1	.013	1	0	1
480			min	45.59	15	0	1	.68	15	0	1	0	15	0	1
481		13		920.615	1	0	1	12.216	1	0	1	.014	1	0	1
482			min	45.641	15	0	1	.68	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	920.785	1	0	1	12.216	1	0	1	.016	1_	0	1
484			min	45.692	15	0	1	.68	15	0	1	0	15	0	1
485		15	max	920.956	1	0	1	12.216	1	0	1	.017	1	0	1
486			min	45.744	15	0	1	.68	15	0	1	0	15	0	1
487		16	max	921.126	1	0	1	12.216	1	0	1	.018	1	0	1
488			min	45.795	15	0	1	.68	15	0	1	.001	15	0	1
489		17	max		1	0	1	12.216	1	0	1	.02	1	0	1
490			min	45.847	15	0	1	.68	15	0	1	.001	15	0	1
491		18	max		1	0	1	12.216	1	0	1	.021	1	0	1
492			min	45.898	15	0	1	.68	15	0	1	.001	15	0	1
493		19	max		1	0	1	12.216	1	0	1	.023	1	0	1
494			min	45.949	15	0	1	.68	15	0	1	.001	15	0	1
495	M1	1	max	177.824	1	692.899	3	-6.076	15	0	2	.26	1	.002	3
496			min	9.865	15	-396.691	2	-108.669	1	0	3	.015	15	013	2
497		2	max	178.646	1	692.019	3	-6.076	15	0	2	.203	1	.196	2
498			min	10.113	15	-397.864	2	-108.669	1	0	3	.011	15	364	3
499		3	max	577.21	3	480.675	2	-6.056	15	0	3	.145	1	.396	2
500			min	-329.759	2	-516.156	3	-108.484	1	0	2	.008	15	714	3
501		4		577.827	3	479.502	2	-6.056	15	0	3	.088	1 1	.143	2
		4	max	-328.938					1		2		15		
502		E	min		2	<u>-517.036</u>	3	-108.484		0		.005		441	3
503		5	max	578.443	3	478.329	2	-6.056	15	0	3	.031	1	003	15
504			min	-328.116	2	-517.916	3	-108.484	1_	0	2	.002	15	168	3
505		6	max	579.059	3	477.155	2	-6.056	15	0	3	001	<u>15</u>	.105	3
506		-	min	-327.294	2	-518.796	3	-108.484	1_	0	2	026	1_	362	2
507		7	max	579.675	3	475.982	2	-6.056	15	0	3	005	<u>15</u>	.379	3
508			min	-326.473	2	-519.676	3	-108.484	1_	0	2	084	1_	614	2
509		8	max	580.291	3	474.809	2	-6.056	15	0	3	008	<u>15</u>	.654	3
510			min	-325.651	2	-520.557	3	-108.484	1_	0	2	141	_1_	864	2
511		9	max		3	52.636	2	-8.873	15	0	9	.083	_1_	.761	3
512			min	-245.273	2	.359	15		1_	0	3	.005	15	991	2
513		10	max	598.14	3	51.463	2	-8.873	15	0	9	0	<u>15</u>	.743	3
514			min	-244.451	2	.005	15	-158.959	1_	0	3	001	_1_	-1.019	2
515		11	max	598.756	3	50.29	2	-8.873	15	0	9	005	<u>15</u>	.725	3
516			min	-243.63	2	-1.426	4	-158.959	1	0	3	085	1_	-1.046	2
517		12	max		3	352.286	3	-5.913	15	0	2	.139	1_	.633	3
518			min	-163.218	2	-583.854	2	-106.119	1	0	3	.008	15	928	2
519		13	max		3	351.405	3	-5.913	15	0	2	.083	_1_	.447	3
520			min	-162.396	2	-585.027	2	-106.119	1	0	3	.005	15	619	2
521		14	max		3	350.525	3	-5.913	15	0	2	.027	_1_	.262	3
522			min	-161.574	2	-586.201	2	-106.119	1	0	3	.002	15	31	2
523		15	max	617.725	3	349.645	3	-5.913	15	0	2	002	15	.077	3
524			min	-160.753	2	-587.374	2	-106.119	1	0	3	029	1	021	1
525		16	max	618.342	3	348.765	3	-5.913	15	0	2	005	15	.309	2
526				-159.931	2	-588.547	2	-106.119	1	0	3	085	1	107	3
527		17	max	618.958	3	347.885	3	-5.913	15	0	2	008	15	.62	2
528			min	-159.11	2	-589.721	2	-106.119	1	0	3	141	1	291	3
529		18	max	-10.122	15	610.282	2	-6.574	15	0	3	011	15	.312	2
530			min	-178.906	1	-293.404	3	-117.769		0	2	2	1	144	3
531		19	max		15	609.108	2	-6.574	15	0	3	015	15	.011	3
532			min		1	-294.284	3	-117.769	1	0	2	262	1	009	2
533	M5	1		385.368	1	2309.219		0	1	0	1	0	<u> </u>	.027	2
534			min	19.521	12	-1346.996	2	0	1	0	1	0	1	003	3
535		2	max		1	2308.339		0	1	0	1	0	1	.738	2
536			min		12	-1348.17	2	0	1	0	1	0	1	-1.222	3
537		3		1852.754	3	1451.449	2	0	1	0	1	0	1	1.416	2
538			min	-1142.917	2	-1655.858	3	0	1	0	1	0	1	-2.392	3
539		4		1853.37	3	1450.276		0	1	0	1	0	1	.65	2
											<u> </u>				

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-1142.095	2	-1656.738	3	0	1	0	1	0	1_	-1.518	3
541		5		1853.986	3	1449.103	2	0	1	0	1	0	_1_	.004	9
542			min	-1141.274	2	-1657.618	3	0	1	0	1	0	_1_	643	3
543		6		1854.602	3	1447.929	2	0	1	0	1	0	_1_	.232	3
544			min	-1140.452	2	-1658.498	3	0	1	0	1	0	1_	879	2
545		7		1855.218	3	1446.756	2	0	1	0	1	0	_1_	1.107	3
546			min	-1139.631	2	-1659.378	3	0	1	0	1	0	<u>1</u>	-1.643	2
547		8		1855.835	3	1445.582	2	0	1_	0	1	0	_1_	1.983	3
548			min	-1138.809	2	-1660.258	3	0	1	0	1	0	1_	-2.406	2
549		9		1884.691	3	176.337	2	0	1	0	1	0	_1_	2.276	3
550			min	-972.122	2	.355	15	0	1	0	1	0	_1_	-2.746	2
551		10		1885.307	3	175.164	2	0	1	0	1	0	_1_	2.212	3
552			min	-971.3	2	0	15	0	1	0	1	0	1_	-2.839	2
553		11		1885.924	3	173.99	2	0	1	0	1	0	_1_	2.148	3
554			min	-970.479	2	-1.3	4	0	1	0	1	0	1_	-2.931	2
555		12	max	1915.004	3	1119.418	3	0	1	0	1	0	_1_	1.89	3
556			min	-803.859	2	-1803.864	2	0	1	0	1	0	1_	-2.628	2
557		13	max	1915.62	3	1118.537	3	0	1	0	1	0	_1_	1.3	3
558			min	-803.037	2	-1805.037	2	0	1	0	1	0	1	-1.676	2
559		14	max	1916.236	3	1117.657	3	0	1	0	1	0	_1_	.71	3
560			min	-802.216	2	-1806.211	2	0	1	0	1	0	1_	723	2
561		15	max	1916.853	3	1116.777	3	0	1	0	1	0	_1_	.231	2
562			min	-801.394	2	-1807.384	2	0	1	0	1	0	1_	003	13
563		16	max	1917.469	3	1115.897	3	0	1	0	1	0	_1_	1.185	2
564			min	-800.573	2	-1808.557	2	0	1	0	1	0	1	469	3
565		17	max	1918.085	3	1115.017	3	0	1	0	1	0	1	2.139	2
566			min	-799.751	2	-1809.731	2	0	1	0	1	0	1	-1.058	3
567		18	max	-20.401	12	2053.461	2	0	1	0	1	0	1_	1.102	2
568			min	-385.67	1	-1004.868	3	0	1	0	1	0	1	553	3
569		19	max	-19.99	12	2052.287	2	0	1	0	1	0	1_	.019	2
570			min	-384.848	1	-1005.748	3	0	1	0	1	0	1	023	3
571	M9	1	max	177.824	1	692.899	3	108.669	1	0	3	015	<u> 15</u>	.002	3
572			min	9.865	15	-396.691	2	6.076	15	0	2	26	1_	013	2
573		2	max	178.646	1	692.019	3	108.669	1	0	3	011	15	.196	2
574			min	10.113	15	-397.864	2	6.076	15	0	2	203	1_	364	3
575		3	max	577.21	3	480.675	2	108.484	1	0	2	008	<u> 15</u>	.396	2
576			min	-329.759	2	-516.156	3	6.056	15	0	3	145	1_	714	3
577		4	max	577.827	3	479.502	2	108.484	1	0	2	005	<u>15</u>	.143	2
578			min	-328.938	2	-517.036	3	6.056	15	0	3	088	1_	441	3
579		5	max	578.443	3	478.329	2	108.484	1	0	2	002	<u> 15</u>	003	15
580			min	-328.116	2	-517.916	3	6.056	15	0	3	031	1_	168	3
581		6	max		3	477.155	2	108.484	1	0	2	.026	1_	.105	3
582			min	-327.294	2	-518.796	3	6.056	15	0	3	.001	15	362	2
583		7		579.675	3	475.982	2	108.484	1	0	2	.084	1_	.379	3
584			min	-326.473	2	-519.676	3	6.056	15	0	3	.005	15	614	2
585		8	max	580.291	3	474.809	2	108.484	1	0	2	.141	1_	.654	3
586			min	-325.651	2	-520.557	3	6.056	15	0	3	.008	15	864	2
587		9		597.524	3	52.636	2	158.959	1	0	3	005	15	.761	3
588				-245.273	2	.359	15		15	0	9	083	1	991	2
589		10		598.14	3	51.463	2	158.959	1	0	3	.001	1_	.743	3
590				-244.451	2	.005	15	8.873	15	0	9	0	15	-1.019	2
591		11	max	598.756	3	50.29	2	158.959	1	0	3	.085	1_	.725	3
592			min	-243.63	2	-1.426	4	8.873	15	0	9	.005	15	-1.046	2
593		12	max	615.877	3	352.286	3	106.119	1	0	3	008	15	.633	3
594			min	-163.218	2	-583.854	2	5.913	15	0	2	139	1	928	2
595		13	max	616.493	3	351.405	3	106.119	1	0	3	005	15	.447	3
596			min	-162.396	2	-585.027	2	5.913	15	0	2	083	1	619	2

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	617.109	3	350.525	3	106.119	1	0	3	002	15	.262	3
598			min	-161.574	2	-586.201	2	5.913	15	0	2	027	1	31	2
599		15	max	617.725	3	349.645	3	106.119	1	0	3	.029	1	.077	3
600			min	-160.753	2	-587.374	2	5.913	15	0	2	.002	15	021	1
601		16	max	618.342	3	348.765	3	106.119	1	0	3	.085	1	.309	2
602			min	-159.931	2	-588.547	2	5.913	15	0	2	.005	15	107	3
603		17	max	618.958	3	347.885	3	106.119	1	0	3	.141	1	.62	2
604			min	-159.11	2	-589.721	2	5.913	15	0	2	.008	15	291	3
605		18	max	-10.122	15	610.282	2	117.769	1	0	2	.2	1	.312	2
606			min	-178.906	1	-293.404	3	6.574	15	0	3	.011	15	144	3
607		19	max	-9.874	15	609.108	2	117.769	1	0	2	.262	1	.011	3
608			min	-178.084	1	-294.284	3	6.574	15	0	3	.015	15	009	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.102	2	.01	3 8.639e-3	2	NC	1_	NC	1
2			min	0	15	019	3	005	2 -2.085e-3	3	NC	1	NC	1
3		2	max	0	1	.309	3	.04	1 9.939e-3	2	NC	5	NC	2
4			min	0	15	068	1	.002	10 -2.251e-3	3	732.949	3	6043.888	1
5		3	max	0	1	.574	3	.097	1 1.124e-2	2	NC	5	NC	3
6			min	0	15	199	2	.006	15 -2.418e-3	3	405.066	3	2474.479	1
7		4	max	0	1	.734	3	.147	1 1.254e-2	2	NC	5	NC	3
8			min	0	15	272	2	.008	15 -2.584e-3	3	318.621	3	1638.724	1
9		5	max	0	1	.771	3	.172	1 1.384e-2	2	NC	5	NC	3
10			min	0	15	275	2	.01	15 -2.75e-3	3	303.747	3	1397.597	1
11		6	max	0	1	.687	3	.166	1 1.514e-2	2	NC	5	NC	5
12			min	0	15	209	2	.01	15 -2.916e-3	3	339.974	3	1450.884	1
13		7	max	0	1	.507	3	.129	1 1.644e-2	2	NC	5	NC	5
14			min	0	15	098	1	.008	15 -3.082e-3	3	456.454	3	1858.144	1
15		8	max	0	1	.278	3	.074	1 1.774e-2	2	NC	4	NC	2
16			min	0	15	0	15	0	10 -3.248e-3	3	807.589	3	3261.378	1
17		9	max	0	1	.179	2	.032	3 1.904e-2	2	NC	4	NC	1
18			min	0	15	.004	15	01	10 -3.414e-3	3	2668.872	3	NC	1
19		10	max	0	1	.236	2	.031	3 2.034e-2	2	NC	3	NC	1
20			min	0	1	023	3	022	2 -3.58e-3	3	1787.596	2	NC	1
21		11	max	0	15	.179	2	.032	3 1.904e-2	2	NC	4	NC	1
22			min	0	1	.004	15	01	10 -3.414e-3	3	2668.872	3	NC	1
23		12	max	0	15	.278	3	.074	1 1.774e-2	2	NC	4	NC	2
24			min	0	1	0	15	0	10 -3.248e-3	3	807.589	3	3261.378	1
25		13	max	0	15	.507	3	.129	1 1.644e-2	2	NC	5	NC	5
26			min	0	1	098	1	.008	15 -3.082e-3	3	456.454	3	1858.144	1
27		14	max	0	15	.687	3	.166	1 1.514e-2	2	NC	5	NC	5
28			min	0	1	209	2	.01	15 -2.916e-3	3	339.974	3	1450.884	1
29		15	max	0	15	.771	3	.172	1 1.384e-2	2	NC	5	NC	3
30			min	0	1	275	2	.01	15 -2.75e-3	3	303.747	3	1397.597	1
31		16	max	0	15	.734	3	.147	1 1.254e-2	2	NC	5	NC	3
32			min	0	1	272	2	.008	15 -2.584e-3	3	318.621	3	1638.724	1
33		17	max	0	15	.574	3	.097	1 1.124e-2	2	NC	5	NC	3
34			min	0	1	199	2	.006	15 -2.418e-3	3	405.066	3	2474.479	1
35		18	max	0	15	.309	3	.04	1 9.939e-3	2	NC	5	NC	2
36			min	0	1	068	1	.002	10 -2.251e-3	3	732.949	3	6043.888	1
37		19	max	0	15	.102	2	.01	3 8.639e-3	2	NC	1	NC	1
38			min	001	1	019	3	005	2 -2.085e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.233	3	.009	3 5.013e-3	2	NC	1	NC	1
40			min	0	15	335	2	005	2 -3.98e-3	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
41		2	max	0	1	.561	3	.028	1	6.005e-3	2	NC To 1 100	5_	NC	2
42			min	0	15	621	2	0	10	-4.85e-3	3	731.423	3_	8885.416	1
43		3	max	0	1	.839	3	.078	1	6.998e-3	2	NC	5_	NC	3
44		4	min	0	15	869	2	.005		-5.721e-3		395.913	3_	3092.458	1_
45		4	max	0	1	1.033	3	.126	1	7.991e-3	2	NC 200 045	<u>15</u>	NC	3
46		-	min	0	15	<u>-1.051</u>	2	.007	15	-6.591e-3	3	300.015	3	1916.94	
47		5	max	0	1	1.125	3	.153	1	8.983e-3	2	NC OCO OO4	15	NC	3
48		6	min	0	15 1	<u>-1.154</u> 1.117	2	.009		-7.461e-3	3	268.921	<u>3</u>	1576.917	1
49 50		0	max	<u> </u>	15	-1.117 -1.178	2	.151 .009	15	9.976e-3 -8.331e-3	3	NC 271.505	<u>15</u> 3	NC 1599.871	3
51		7	min	0	1	1.025	3	.009 .12	1	1.097e-2	2	NC	<u> </u>	NC	5
52		-	max	0	15	-1.134	2	.007	15	-9.201e-3	3	300.478	2	2015.649	1
53		8		0	1	.885	3	.069	1	1.196e-2	2	NC	15	NC	2
54		0	max	0	15	-1.047	2	<u>.009</u>	10	-1.007e-2	3	337.027	2	3488.959	1
55		9		0	1	<u>-1.047</u> .747	3	.029	3	1.295e-2	2	NC	5	NC	1
56		1 9	max min	0	15	956	2	009	10	-1.094e-2	3	386.34	2	NC NC	1
57		10	max	0	1	.683	3	.027	3	1.395e-2	2	NC	5	NC	1
58		10	min	0	1	912	2	02	2	-1.181e-2	3	415.814	2	NC	1
59		11	max	0	15	.747	3	.029	3	1.295e-2	2	NC	5	NC	1
60			min	0	1	956	2	009	10	-1.094e-2	3	386.34	2	NC	1
61		12	max	0	15	.885	3	.069	1	1.196e-2	2	NC	15	NC	2
62		'-	min	0	1	-1.047	2	0	10	-1.007e-2	3	337.027	2	3488.959	1
63		13	max	0	15	1.025	3	.12	1	1.097e-2	2	NC	15	NC	5
64			min	0	1	-1.134	2	.007	_	-9.201e-3	3	300.478	2	2015.649	1
65		14	max	0	15	1.117	3	.151	1	9.976e-3	2	NC	15	NC	3
66			min	0	1	-1.178	2	.009	15	-8.331e-3	3	271.505	3	1599.871	1
67		15	max	0	15	1.125	3	.153	1	8.983e-3	2	NC	15	NC	3
68			min	0	1	-1.154	2	.009		-7.461e-3	3	268.921	3	1576.917	1
69		16	max	0	15	1.033	3	.126	1	7.991e-3	2	NC	15	NC	3
70			min	0	1	-1.051	2	.007	15	-6.591e-3	3	300.015	3	1916.94	1
71		17	max	0	15	.839	3	.078	1	6.998e-3	2	NC	5	NC	3
72			min	0	1	869	2	.005	15	-5.721e-3	3	395.913	3	3092.458	1
73		18	max	0	15	.561	3	.028	1	6.005e-3	2	NC	5	NC	2
74			min	0	1	621	2	0	10	-4.85e-3	3	731.423	3	8885.416	1
75		19	max	0	15	.233	3	.009	3	5.013e-3	2	NC	1_	NC	1
76			min	0	1	335	2	005	2	-3.98e-3	3	NC	1_	NC	1
77	M15	1	max	0	15	.237	3	.008	3	3.526e-3	3	NC	_1_	NC	1
78			min	0	1	334	2	005	2	-5.275e-3	2	NC	1_	NC	1
79		2	max	00	15	.454	3	.028	1	4.304e-3	3	NC	5_	NC	2
80			min	0	1	<u>719</u>	2	0	10	-6.325e-3	2	622.487	2	8842.141	1
81		3	max	0	15	.642	3	.078	1	5.082e-3		NC	5	NC	3
82		-	min	0	1	<u>-1.047</u>	2	.005		-7.375e-3		336.338	2	3083.218	
83		4	max	0	15	.782	3	.126	1	5.86e-3	3_	NC 054 000	<u>15</u>	NC 4040.074	3
84		-	min	0	1	-1.278	2	.007		-8.424e-3		254.069	2	1912.274	1_
85		5	max	0	15	.862	3	.153	1	6.638e-3	3_	NC 000 C40	<u>15</u>	NC	3
86			min	0	1	-1.393	2	.009		-9.474e-3	2	226.618	2	1573.244	1
87		6	max	0	15	.883	3	.151	1	7.416e-3	3	NC	<u>15</u>	NC	3
88		7	min	0	1	<u>-1.391</u>	2	.009		-1.052e-2	2	227.074	<u>2</u>	1595.761	1
89		7	max	0	15	.853	3	.12	1	8.194e-3	3	NC 250 504	<u>15</u> 2	NC	3
90		0	min	0	15	<u>-1.292</u>	3	.007	15	-1.157e-2	2	250.501	15	2008.852	2
91		8	max	<u> </u>	1	.791 -1.136	2	.07 0	10	8.972e-3 -1.262e-2	<u>3</u>	NC 299.214	2	NC 3468.321	1
93		9	min	0	15	<u>-1.136</u> .725	3	.027	3	9.75e-3	3	NC	5	NC	1
94		9	max	0	1	982	2			-1.367e-2	2	370.18	2	NC NC	1
95		10		0	1	962 .692	3	008 .025	3	1.053e-2	3	NC	5	NC NC	1
96		10	max min	0	1	<u>.692</u> 91	2	025 019	2	-1.472e-2	2	416.763	2	NC NC	1
97		11	max	0	1	.725	3	.027	3	9.75e-3	3	NC	5	NC NC	1
וכ		111	πιαх	U		.120	⊥ J	.021	⊥ J	3.10 0 -0	J	INC	J	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
98			min	0	15	982	2	008	10 -1.367e-2	2	370.18	2	NC	1
99		12	max	0	1	.791	3	.07	1 8.972e-3	3	NC	15	NC	2
100			min	0	15	-1.136	2	0	10 -1.262e-2	2	299.214	2	3468.321	1
101		13	max	0	1	.853	3	.12	1 8.194e-3	3	NC	15	NC	3
102			min	0	15	-1.292	2	.007	15 -1.157e-2	2	250.501	2	2008.852	1
103		14	max	0	1	.883	3	.151	1 7.416e-3	3	NC	<u>15</u>	NC	3
104		45	min	0	15	<u>-1.391</u>	2	.009	15 -1.052e-2	2	227.074	2	1595.761	1
105		15	max	0	1	.862	3	.153	1 6.638e-3	3	NC 000 C40	15	NC	3
106		40	min	0	15	-1.393	2	.009	15 -9.474e-3	2	226.618	2	1573.244	1
107		16	max	0	15	.782	3	.126	1 5.86e-3	3	NC 254.000	<u>15</u>	NC	3
108 109		17	min	0	1	<u>-1.278</u> .642	3	<u>.007</u> .078	15 -8.424e-3 1 5.082e-3	2	254.069 NC	<u>2</u> 5	1912.274 NC	3
110		11/	max	0	15	-1.047	2	.078	1 5.082e-3 15 -7.375e-3	2	336.338	2	3083.218	1
111		18		0	1	<u>-1.047</u> .454	3	.028	1 4.304e-3	3	NC	5	NC	2
112		10	max min	0	15	719	2	<u>.026</u>	10 -6.325e-3	2	622.487	2	8842.141	1
113		19	max	0	1	.237	3	.008	3 3.526e-3	3	NC	1	NC	1
114		13	min	0	15	334	2	005	2 -5.275e-3	2	NC	1	NC	1
115	M16	1	max	0	15	.089	2	.007	3 6.149e-3	3	NC	1	NC	1
116	WITO		min	001	1	075	3	004	2 -6.994e-3	2	NC	1	NC	1
117		2	max	0	15	.045	3	.04	1 7.256e-3	3	NC	5	NC	2
118		_	min	0	1	183	2	.002	15 -7.905e-3	2	882.14	2	6083.942	1
119		3	max	0	15	.14	3	.097	1 8.364e-3	3	NC	5	NC	3
120			min	0	1	4	2	.006	15 -8.816e-3	2	490.386	2	2481.342	1
121		4	max	0	15	.19	3	.147	1 9.471e-3	3	NC	5	NC	3
122			min	0	1	526	2	.008	15 -9.727e-3	2	389.978	2	1639.622	1
123		5	max	0	15	.189	3	.172	1 1.058e-2	3	NC	5	NC	3
124			min	0	1	544	2	.01	15 -1.064e-2	2	379.008	2	1395.622	1
125		6	max	0	15	.137	3	.166	1 1.169e-2	3	NC	5	NC	3
126			min	0	1	457	2	.01	15 -1.155e-2	2	439.77	2	1445.279	1
127		7	max	0	15	.047	3	.13	1 1.279e-2	3	NC	5	NC	3
128			min	0	1	286	2	.008	15 -1.246e-2	2	638.998	2	1843.08	1
129		8	max	0	15	.007	9	.075	1 1.39e-2	3	NC	3	NC	3
130			min	0	1	076	2	.002	10 -1.337e-2	2	1452.998	2	3199.394	1
131		9	max	0	15	.113	1	.024	3 1.501e-2	3_	NC	2	NC	1
132			min	0	1	157	3	007	10 -1.428e-2	2	2931.858	3	NC	1
133		10	max	0	1	.197	2	.022	3 1.612e-2	3	NC	4	NC	1
134			min	0	1	2	3	<u>017</u>	2 -1.519e-2	2	1928.024	3	NC	1
135		11	max	0	1	.113	1	.024	3 1.501e-2	3	NC	2	NC	1
136		40	min	0	15	1 <u>57</u>	3	007	10 -1.428e-2	2	2931.858	3	NC	1
137		12	max	0	1	.007	9	.075	1 1.39e-2	3	NC 4.450.000	3	NC 2400 204	3
138		40	min	0	15	076	2	.002	10 -1.337e-2				3199.394	
139		13	max	0	1	.047	3	.13	1 1.279e-2	3	NC can oon	5	NC	3
140		1.1	min	0	15 1	286	3	.008	15 -1.246e-2	2	638.998	2	1843.08	2
141 142		14	max	0 0		.137		.166	1 1.169e-2	3	NC	5	NC 1445.279	3
143		15	min max	0	15	<u>457</u> .189	3	<u>.01</u> .172	15 -1.155e-2 1 1.058e-2	3	439.77 NC	<u>2</u> 5	NC	3
144		10	min	0	15	544	2	.01	15 -1.064e-2	2	379.008	2	1395.622	1
145		16	max	0	1	.19	3	.147	1 9.471e-3	3	NC	5	NC	3
146		10	min	0	15	526	2	.008	15 -9.727e-3	2	389.978	2	1639.622	1
147		17		0	1	.14	3	.008	1 8.364e-3	3	NC	5	NC	3
148		17	max min	0	15	4	2	.006	15 -8.816e-3	2	490.386	2	2481.342	1
149		18	max	0	1	.045	3	.04	1 7.256e-3	3	NC	5	NC	2
150		10	min	0	15	183	2	.002	15 -7.905e-3	2	882.14	2	6083.942	
151		19	max	.001	1	.089	2	.002	3 6.149e-3	3	NC	1	NC	1
152		1.5	min	0	15	075	3	004	2 -6.994e-3	2	NC	1	NC	1
153	M2	1	max	.007	2	.009	2	.008	1 -1.366e-5	15	NC	1	NC	2
154			min	01	3	015	3	0	15 -2.447e-4	1	8138.919		9120.513	
					_	1010			.0 2.1170 7		0.00.010	_	5 1201010	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

155		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
157	155		2	max	.007	2	.008	2	.008	1_	-1.294e-5	15	NC	_1_	NC	2
158																
159			3													
160												•				•
161			4													_
162			_									•		_		
163			5								-1.075e-5					
1646												•		•		
166			6													_
166			_								-1.795e-4	•		_		
168																_
168																
169			8									<u>15</u>				1
170												1_				1
171			9													_
172			10									•		_		
173			10													
174			1.4									•		_		
175			11						_							
176			40									•		_		
177			12													_
178			40													
179			13								-4.923e-6					
180			4.4									•		•		•
181			14													_
182			15											_		
183			15													
184			16									•		_		
185			10													_
186			17									•		_		
187			17													_
188			10													
189			10									1				1
190			10									15				1
191 M3			13			-		•		_						_
192		M3	1			•								_		
193 2 max 0 3 0 15 0 15 2.345e-5 1 NC 1 NC 1 194 min 0 2 002 4 0 1 1.306e-6 15 NC 1 NC 1 195 3 max 0 3 0 15 0 15 4.505e-5 1 NC 1 NC 1 196 min 0 2 004 4 0 1 2.507e-6 15 NC 1 NC 1 197 4 max .001 3 001 15 0 15 6.665e-5 1 NC 1 NC </td <td></td> <td>IVIO</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		IVIO					-									
194			2		-									•		
195 3 max 0 3 0 15 0 15 4.505e-5 1 NC 1 NC 1 196 min 0 2 004 4 0 1 2.507e-6 15 NC 1 NC 1 197 4 max .001 3 001 15 0 15 6.665e-5 1 NC 1 NC 1 198 min 001 2 006 4 0 1 3.709e-6 15 NC 1 NC 1 199 5 max .002 3 002 15 0 1 8.825e-5 1 NC 1 NC 1 200 min 002 2 008 4 0 3 4.91e-6 15 NC 1 NC 1 201 6 max .002 3 002 15																_
196 min 0 2 004 4 0 1 2.507e-6 15 NC 1 NC 1 197 4 max .001 3 001 15 0 15 6.665e-5 1 NC 1 NC 1 198 min 001 2 006 4 0 1 3.709e-6 15 NC 1 NC 1 199 5 max .002 3 002 15 0 1 8.825e-5 1 NC 1 NC 1 200 min 002 2 008 4 0 3 4.91e-6 15 NC 1 NC 1 201 6 max .002 3 002 15 0 1 1.098e-4 1 NC 1 NC 1 202 min 002 2 01 4 0			3								4 505e-5					
197 4 max .001 3 001 15 0 15 6.665e-5 1 NC 1 NC 1 198 min 001 2 006 4 0 1 3.709e-6 15 NC 1 NC 1 199 5 max .002 3 002 15 0 1 8.825e-5 1 NC 1 NC 1 200 min 002 2 008 4 0 3 4.91e-6 15 NC 1 NC 1 201 6 max .002 3 002 15 0 1 1.098e-4 1 NC 1 NC 1 202 min 002 2 01 4 0 12 6.111e-6 15 9246.377 4 NC 1 203 7 max .003 3 003																
198 min 001 2 006 4 0 1 3.709e-6 15 NC 1 NC 1 199 5 max .002 3 002 15 0 1 8.825e-5 1 NC 1 NC 1 200 min 002 2 008 4 0 3 4.91e-6 15 NC 1 NC 1 201 6 max .002 3 002 15 0 1 1.098e-4 1 NC 1 NC 1 202 min 002 2 01 4 0 12 6.111e-6 15 9246.377 4 NC 1 203 7 max .003 3 003 15 0 1 1.314e-4 1 NC 1 NC 1 204 min 002 2 012 4			4													
199 5 max .002 3 002 15 0 1 8.825e-5 1 NC 1 NC 1 200 min 002 2 008 4 0 3 4.91e-6 15 NC 1 NC 1 201 6 max .002 3 002 15 0 1 1.098e-4 1 NC 1 NC 1 202 min 002 2 01 4 0 12 6.111e-6 15 9246.377 4 NC 1 203 7 max .003 3 003 15 0 1 1.314e-4 1 NC 1 NC 1 204 min 002 2 012 4 0 12 7.313e-6 15 7996.285 4 NC 1 205 8 max .003 3 003																
200 min 002 2 008 4 0 3 4.91e-6 15 NC 1 NC 1 201 6 max .002 3 002 15 0 1 1.098e-4 1 NC 1 NC 1 202 min 002 2 01 4 0 12 6.111e-6 15 9246.377 4 NC 1 203 7 max .003 3 003 15 0 1 1.314e-4 1 NC 1 NC 1 204 min 002 2 012 4 0 12 7.313e-6 15 7996.285 4 NC 1 205 8 max .003 3 003 15 0 1 1.53e-4 1 NC 2 NC 1 206 min 003 2 013 4			5											1		
201 6 max .002 3 002 15 0 1 1.098e-4 1 NC 1 NC 1 202 min 002 2 01 4 0 12 6.111e-6 15 9246.377 4 NC 1 203 7 max .003 3 003 15 0 1 1.314e-4 1 NC 1 NC 1 204 min 002 2 012 4 0 12 7.313e-6 15 7996.285 4 NC 1 205 8 max .003 3 003 15 0 1 1.53e-4 1 NC 2 NC 1 206 min 003 2 013 4 0 15 8.514e-6 15 7226.99 4 NC 1 207 9 max .004 3 003 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>										3				1		
202 min 002 2 01 4 0 12 6.111e-6 15 9246.377 4 NC 1 203 7 max .003 3 003 15 0 1 1.314e-4 1 NC 1 NC 1 204 min 002 2 012 4 0 12 7.313e-6 15 7996.285 4 NC 1 205 8 max .003 3 003 15 0 1 1.53e-4 1 NC 2 NC 1 206 min 003 2 013 4 0 15 8.514e-6 15 7226.99 4 NC 1 207 9 max .004 3 003 15 0 1 1.746e-4 1 NC 5 NC 1 208 min 003 2 014 4<			6											1		1
203 7 max .003 3 003 15 0 1 1.314e-4 1 NC 1 NC 1 204 min 002 2 012 4 0 12 7.313e-6 15 7996.285 4 NC 1 205 8 max .003 3 003 15 0 1 1.53e-4 1 NC 2 NC 1 206 min 003 2 013 4 0 15 8.514e-6 15 7226.99 4 NC 1 207 9 max .004 3 003 15 0 1 1.746e-4 1 NC 5 NC 1 208 min 003 2 014 4 0 15 9.715e-6 15 6778.202 4 NC 1 209 10 max .004 3 003												15		4		
204 min 002 2 012 4 0 12 7.313e-6 15 7996.285 4 NC 1 205 8 max .003 3 003 15 0 1 1.53e-4 1 NC 2 NC 1 206 min 003 2 013 4 0 15 8.514e-6 15 7226.99 4 NC 1 207 9 max .004 3 003 15 0 1 1.746e-4 1 NC 5 NC 1 208 min 003 2 014 4 0 15 9.715e-6 15 6778.202 4 NC 1 209 10 max .004 3 003 15 .001 1 1.962e-4 1 NC 5 NC 1 210 min 003 2 014 <			7						0					1		1
205 8 max .003 3 003 15 0 1 1.53e-4 1 NC 2 NC 1 206 min 003 2 013 4 0 15 8.514e-6 15 7226.99 4 NC 1 207 9 max .004 3 003 15 0 1 1.746e-4 1 NC 5 NC 1 208 min 003 2 014 4 0 15 9.715e-6 15 6778.202 4 NC 1 209 10 max .004 3 003 15 .001 1 1.962e-4 1 NC 5 NC 1 210 min 003 2 014 4 0 15 1.092e-5 15 6572.753 4 NC 1																
206 min 003 2 013 4 0 15 8.514e-6 15 7226.99 4 NC 1 207 9 max .004 3 003 15 0 1 1.746e-4 1 NC 5 NC 1 208 min 003 2 014 4 0 15 9.715e-6 15 6778.202 4 NC 1 209 10 max .004 3 003 15 .001 1 1.962e-4 1 NC 5 NC 1 210 min 003 2 014 4 0 15 1.092e-5 15 6572.753 4 NC 1			8					15	0	1				2		1
207 9 max .004 3 003 15 0 1 1.746e-4 1 NC 5 NC 1 208 min 003 2 014 4 0 15 9.715e-6 15 6778.202 4 NC 1 209 10 max .004 3 003 15 .001 1 1.962e-4 1 NC 5 NC 1 210 min 003 2 014 4 0 15 1.092e-5 15 6572.753 4 NC 1																_
208 min 003 2 014 4 0 15 9.715e-6 15 6778.202 4 NC 1 209 10 max .004 3 003 15 .001 1 1.962e-4 1 NC 5 NC 1 210 min 003 2 014 4 0 15 1.092e-5 15 6572.753 4 NC 1			9													
209 10 max .004 3 003 15 .001 1 1.962e-4 1 NC 5 NC 1 210 min 003 2 014 4 0 15 1.092e-5 15 6572.753 4 NC 1										15		15				
210 min003 2014 4 0 15 1.092e-5 15 6572.753 4 NC 1			10						.001					5		
										15		15				
			11			3	003	15	.001	1				5	NC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio	LC		LC
212			min	004	2	014	4	0	15	1.212e-5	15	6580.644	4	NC	1
213		12	max	.005	3	003	15	.002	1	2.394e-4	_1_	NC	5	NC	1
214			min	004	2	014	4	0	15	1.332e-5	15	6807.531	4	NC	1
215		13	max	.005	3	003	15	.002	1	2.61e-4	_1_	NC	2	NC	1
216			min	005	2	<u>013</u>	4	0	15	1.452e-5	15	7298.39	4_	NC	1
217		14	max	.006	3	003	15	.003	1	2.826e-4	1_	NC	1	NC NC	1
218		45	min	005	2	012	4	0	15	1.572e-5		8160.274	4	NC NC	1
219		15	max	.006	3	002	15	.004	1	3.042e-4	1_	NC occo occ	1_	NC NC	1
220		4.0	min	005	2	<u>01</u>	4	0	15	1.692e-5		9628.368	4	NC NC	1
221		16	max	.007	3	002 008	15	.005	15	3.258e-4 1.812e-5	1_	NC NC	<u>1</u> 1	NC NC	1
223		17	min	006 .007	3		15	<u> </u>		3.474e-4	<u>15</u>	NC NC	1	NC NC	1
224		17	max	007 006	2	001 006	4	<u>.006</u>	15	1.933e-5	<u>1</u> 15	NC NC	1	NC NC	1
225		18	max	.008	3	<u>006</u> 0	15	.007	1	3.69e-4	1 <u>1</u>	NC NC	1	NC NC	1
226		10	min	006	2	004	3	<u>.007</u>	15	2.053e-5	15	NC	1	NC	1
227		19	max	.008	3	004	10	.008	1	3.906e-4	1	NC	1	NC	1
228		13	min	007	2	003	3	0	15	2.173e-5	15	NC	1	NC	1
229	M4	1	max	.002	1	.007	2	0	15	1.364e-4	1	NC	1	NC	3
230	IVIT	'	min	0	15	008	3	008	1	7.603e-6	15	NC	1	3090.879	1
231		2	max	.002	1	.006	2	0	15	1.364e-4	1	NC	1	NC	3
232			min	0	15	008	3	007	1	7.603e-6	15	NC	1	3350.655	
233		3	max	.002	1	.006	2	0	15	1.364e-4	1	NC	1	NC	3
234			min	0	15	007	3	007	1	7.603e-6	15	NC	1	3660.504	1
235		4	max	.002	1	.005	2	0	15	1.364e-4	1	NC	1	NC	3
236			min	0	15	007	3	006	1	7.603e-6	15	NC	1	4033.315	1
237		5	max	.002	1	.005	2	0	15	1.364e-4	1	NC	1	NC	2
238			min	0	15	007	3	006	1	7.603e-6	15	NC	1	4486.614	1
239		6	max	.002	1	.005	2	0	15	1.364e-4	1	NC	1	NC	2
240			min	0	15	006	3	005	1	7.603e-6	15	NC	1	5044.709	1
241		7	max	.001	1	.004	2	0	15	1.364e-4	1_	NC	1_	NC	2
242			min	0	15	006	3	004	1	7.603e-6	15	NC	1	5742.102	1
243		8	max	.001	1	.004	2	0	15	1.364e-4	_1_	NC	_1_	NC	2
244			min	0	15	005	3	004	1	7.603e-6	15	NC	1_	6629.105	1
245		9	max	.001	1	.004	2	0	15	1.364e-4	_1_	NC	_1_	NC	2
246			min	0	15	005	3	003	1	7.603e-6	15	NC	_1_	7781.437	1
247		10	max	.001	1	.003	2	0	15	1.364e-4	_1_	NC	_1_	NC	2
248			min	0	15	004	3	003	1	7.603e-6	<u>15</u>	NC	1_	9317.424	1
249		11	max	0	1	.003	2	0	15	1.364e-4	_1_	NC	1_	NC NC	1
250		40	min	0	15	004	3	002	1_	7.603e-6	15	NC	_1_	NC NC	1
251		12	max	0	1	.003	2	0	15	1.364e-4	1_	NC NC	1_	NC NC	1
252		40	min	0	15	003	3	002		7.603e-6			1	NC NC	1
253		13	max	0	1	.002	2	0		1.364e-4	1_	NC NC	1	NC	1
254		1.1	min	0	15	003	2	001	1 1 5	7.603e-6	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
255		14	max	0 0	15	.002	3	0	1	1.364e-4	1_		1	NC NC	1
256 257		15	min	0	1	002 .001	2	<u> </u>	15	7.603e-6 1.364e-4	<u>15</u> 1	NC NC	1	NC NC	1
258		15	max min	0	15	002	3	0	1	7.603e-6	15	NC	1	NC	1
259		16	max	0	1	.002	2	0	15		1	NC	1	NC	1
260		10	min	0	15	001	3	0	1	7.603e-6	15	NC	1	NC	1
261		17	max	0	1	<u>001</u> 0	2	0	15	1.364e-4	1 <u>5</u>	NC NC	1	NC NC	1
262		17	min	0	15	0	3	0	1	7.603e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	1.364e-4	1	NC	1	NC	1
264		10	min	0	15	0	3	0	1	7.603e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.364e-4	1	NC	1	NC	1
266			min	0	1	0	1	0	1	7.603e-6	15	NC	1	NC	1
267	M6	1	max	.023	2	.035	2	0	1	0	1	NC	4	NC	1
268	Ţ		min	032	3	049	3	0	1	0	1	1582.305	3	NC	1
					_		_			_	_	. 0021000	_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio I			1
269		2	max	.022	2	.032	2	0	1	0	1		4	NC	1
270			min	03	3	046	3	0	1	0	1_		3	NC	1
271		3	max	.021	2	.029	2	0	1	0	_1_		4	NC	1
272			min	029	3	043	3	0	1	0	1_		3	NC	1
273		4	max	.019	2	.026	2	0	1_	0	_1_		4	NC	1
274			min	027	3	041	3	0	1	0	1		3	NC	1
275		5	max	.018	2	.023	2	0	1	0	_1_		4	NC	1
276			min	025	3	038	3	0	1	0	1_		3	NC	1
277		6	max	.017	2	.02	2	0	1	0	1_		4	NC	1
278			min	023	3	035	3	0	1	0	1		3	NC	1
279		7	max	.015	2	.017	2	0	1	0	1	NC	1	NC	1
280			min	021	3	032	3	0	1	0	1	2378.034	3	NC	1
281		8	max	.014	2	.015	2	0	1	0	1	NC	1	NC	1
282			min	02	3	03	3	0	1	0	1	2597.893	3	NC	1
283		9	max	.013	2	.012	2	0	1	0	1	NC	1	NC	1
284			min	018	3	027	3	0	1	0	1	2863.201	3	NC	1
285		10	max	.012	2	.01	2	0	1	0	1		1	NC	1
286			min	016	3	024	3	0	1	0	1		3	NC	1
287		11	max	.01	2	.008	2	0	1	0	1		1	NC	1
288			min	014	3	021	3	0	1	0	1		3	NC	1
289		12	max	.009	2	.006	2	0	1	0	1		1	NC	1
290			min	012	3	019	3	0	1	0	1		3	NC	1
291		13	max	.008	2	.004	2	0	1	0	1		1	NC	1
292		10	min	011	3	016	3	0	1	0	1		3	NC	1
293		14	max	.006	2	.003	2	0	1	0	1		1	NC	1
294		17	min	009	3	013	3	0	1	0	1		3	NC	1
295		15	max	.005	2	.002	2	0	1	0	1		1	NC	1
296		13	min	007	3	01	3	0	1	0	1		3	NC	1
297		16	max	.004	2	0	2	0	1	0	1		<u>J</u>	NC	1
298		10	min	00 4	3	008	3	0	1	0	1		3	NC	1
299		17		.003	2	008 0	2	0	1		1		<u>ა</u> 1	NC NC	1
		17	max		3	005			1	0	1		1	NC NC	1
300		10	min	004	2		3	0	1	0			•	NC NC	
301		18	max	.001		0	2	0	1	0	1		1		1
302		40	min	002	3	003	3	0	-	0			•	NC NC	
303		19	max	0	1	0	1	0	1	0	1_		1_	NC NC	1
304	N 47		min	0	1	0	1	0	1	0	1_	110	1	NC NC	1
305	M7	1_	max	0	1	0	1	0	1	0	1		1	NC	1
306			min	0	1	0	1	0	1	0	1_		1_	NC	1
307		2	max	.001	3	0	2	0	1	0	1_	.,,	1_	NC	1
308			min	001	2	003	3	0	1	0	1_	110	1_	NC	1
309		3	max	.003	3	0	2	0	1	0	1	NC	1	NC NC	1
310			min	003	2	006	3	0	1	0	1_		1	NC	1
311		4	max	.004	3	001	15	0	1	0	1		1	NC	1
312			min	004	2	008	3	0	1	0	1_		1	NC	1
313		5	max	.006	3	002	15	0	1	0	1		1_	NC	1
314			min	005	2	01	3	0	1	0	1	110	1	NC	1
315		6	max	.007	3	002	15	0	1	0	1		1	NC	1
316			min	007	2	012	3	0	1	0	1		3	NC	1
317		7	max	.008	3	003	15	0	1	0	1		1	NC	1
318			min	008	2	014	3	0	1	0	1	7855.927	3	NC	1
319		8	max	.01	3	003	15	0	1	0	1		1	NC	1
320			min	01	2	015	3	0	1	0	1		3	NC	1
321		9	max	.011	3	003	15	0	1	0	1		1	NC	1
322			min	011	2	016	3	0	1	0	1		4	NC	1
323		10	max	.013	3	003	15	0	1	0	1		1	NC	1
324			min	012	2	017	3	0	1	0	1		4	NC	1
325		11	max	.014	3	003	15	0	1	0	1		1	NC	1
					. –					·					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
326			min	014	2	017	3	0	1	0	1_	6671.324	4	NC	1
327		12	max	.015	3	003	15	0	1	0	1_	NC	1_	NC	1
328			min	015	2	017	3	0	1	0	1	6897.288	4	NC	1
329		13	max	.017	3	003	15	0	1	0	1	NC	1	NC	1
330			min	016	2	016	3	0	1	0	1	7390.953	4	NC	1
331		14	max	.018	3	003	15	0	1	0	1_	NC	1_	NC	1
332			min	018	2	015	3	0	1	0	1	8260.346	4	NC	1
333		15	max	.02	3	002	15	0	1	0	1	NC	1	NC	1
334			min	019	2	014	3	0	1	0	1	9743.138	4	NC	1
335		16	max	.021	3	002	15	0	1	0	1	NC	1	NC	1
336			min	021	2	013	3	0	1	0	1	NC	1	NC	1
337		17	max	.022	3	0	2	0	1	0	1	NC	1	NC	1
338			min	022	2	011	3	0	1	0	1	NC	1	NC	1
339		18	max	.024	3	0	2	0	1	0	1	NC	1	NC	1
340			min	023	2	01	3	0	1	0	1	NC	1	NC	1
341		19	max	.025	3	.002	2	0	1	0	1	NC	1	NC	1
342			min	025	2	008	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.005	1	.024	2	0	1	0	1	NC	1	NC	1
344			min	0	15	026	3	0	1	0	1	NC	1	NC	1
345		2	max	.005	1	.023	2	0	1	0	1	NC	1	NC	1
346			min	0	15	025	3	0	1	0	1	NC	1	NC	1
347		3	max	.005	1	.022	2	0	1	0	1	NC	1	NC	1
348			min	0	15	023	3	0	1	0	1	NC	1	NC	1
349		4	max	.005	1	.02	2	0	1	0	1	NC	1	NC	1
350			min	0	15	022	3	0	1	0	1	NC	1	NC	1
351		5	max	.004	1	.019	2	0	1	0	1	NC	1	NC	1
352			min	0	15	02	3	0	1	0	1	NC	1	NC	1
353		6	max	.004	1	.018	2	0	1	0	1	NC	1	NC	1
354			min	0	15	019	3	0	1	0	1	NC	1	NC	1
355		7	max	.004	1	.016	2	0	1	0	1	NC	1	NC	1
356			min	0	15	018	3	0	1	Ö	1	NC	1	NC	1
357		8	max	.003	1	.015	2	0	1	0	1	NC	1	NC	1
358			min	0	15	016	3	0	1	0	1	NC	1	NC	1
359		9	max	.003	1	.013	2	0	1	0	1	NC	1	NC	1
360		Ŭ	min	0	15	015	3	0	1	0	1	NC	1	NC	1
361		10	max	.003	1	.012	2	0	1	0	1	NC	1	NC	1
362		10	min	0	15	013	3	0	1	0	1	NC	1	NC	1
363		11	max	.002	1	.011	2	0	1	0	1	NC	1	NC	1
364			min	0	15	012	3	0	1	0	1	NC	1	NC	1
365		12	max	.002	1	.009	2	0	1	0	1	NC	1	NC	1
366		12	min	0	15	01	3	0	1	0	1	NC	1	NC	1
367		13	max	.002	1	.008	2	0	1	0	1	NC		NC	1
368		10	min	0	15	009	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.007	2	0	1	0	1	NC	1	NC	1
370		17	min	0	15	007	3	0	1	0	1	NC	1	NC	1
371		15	max	.001	1	.005	2	0	1	0	1	NC	1	NC	1
372		10	min	0	15	006	3	0	1	0	1	NC	1	NC	1
373		16	max	0	1	.004	2	0	1	0	1	NC	1	NC	1
374		10	min	0	15	004	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.003	2	0	1	0	1	NC NC	1	NC NC	1
376		17	min	0	15	003	3	0	1	0	1	NC NC	1	NC NC	1
		10			1			0	1		1	NC NC	1	NC NC	1
377		18	max	0	15	.001	3	0	1	0	1	NC NC	1	NC NC	1
378		10	min			001			1						•
379		19	max	0	1	0	1	0	_	0	1	NC NC	1	NC NC	1
380	N440	4	min	0	1	0	1	0	1_	0 2 4470 4	1	NC NC	1	NC NC	1
381	M10	1	max	.007	2	.009	2	0	15	2.447e-4	1 1 5	NC	1	NC	2
382			min	01	3	015	3	008	1	1.366e-5	15	8138.919	2	9120.513	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
383		2	max	.007	2	.008	2	0	15	2.317e-4	1_	NC	1_	NC	2
384			min	009	3	01 <u>5</u>	3	008	1	1.294e-5		9511.963	2	9938.823	1
385		3	max	.006	2	.007	2	0	15	2.186e-4	1_	NC		NC NC	1
386		4	min	009	3	014	3	007	1_45	1.221e-5	<u>15</u>	NC NC	1_	NC NC	1
387		4	max	.006	2	.005	2	0 006	15	2.056e-4	1_	NC NC	1	NC NC	1
388		-	min	008	3	014	3		1 1 5	1.148e-5	<u>15</u>	NC NC	_	NC NC	1
389		5	max	.006 008	3	.004 013	3	0 006	1 <u>5</u>	1.925e-4 1.075e-5	<u>1</u> 15	NC NC	1	NC NC	1
391		6	min	.005	2	.003	2	<u>006</u> 0	15	1.795e-4	1 <u>1</u>	NC NC	1	NC NC	1
392		0	max min	007	3	013	3	005	1	1.795e-4 1.002e-5	15	NC NC	1	NC NC	1
393		7	max	.005	2	.002	2	<u>005</u> 0	15	1.664e-4	1	NC	1	NC	1
394			min	007	3	012	3	004	1	9.294e-6	15	NC	1	NC	1
395		8	max	.004	2	0	2	0	15	1.534e-4	1	NC	1	NC	1
396		0	min	006	3	011	3	004	1	8.566e-6	15	NC	1	NC	1
397		9	max	.004	2	0	2	<u>.004</u>	15	1.403e-4	1	NC	1	NC	1
398			min	005	3	011	3	003	1	7.837e-6	15	NC	1	NC	1
399		10	max	.004	2	0	2	0	15	1.273e-4	1	NC	1	NC	1
400			min	005	3	01	3	003	1	7.109e-6	15	NC	1	NC	1
401		11	max	.003	2	001	2	0	15	1.142e-4	1	NC	1	NC	1
402			min	004	3	009	3	002	1	6.38e-6	15	NC	1	NC	1
403		12	max	.003	2	001	15	0	15	1.012e-4	1	NC	1	NC	1
404			min	004	3	008	3	002	1	5.652e-6	15	NC	1	NC	1
405		13	max	.002	2	001	15	0	15	8.81e-5	1	NC	1	NC	1
406			min	003	3	007	3	001	1	4.923e-6	15	NC	1	NC	1
407		14	max	.002	2	001	15	0	15	7.505e-5	1	NC	1	NC	1
408			min	003	3	006	3	0	1	4.195e-6	15	NC	1	NC	1
409		15	max	.002	2	001	15	0	15	6.2e-5	1_	NC	1_	NC	1
410			min	002	3	005	3	0	1	3.467e-6	15	NC	1_	NC	1
411		16	max	.001	2	0	15	0	15	4.895e-5	_1_	NC	_1_	NC	1
412			min	002	3	004	3	0	1	2.738e-6	<u>15</u>	NC	_1_	NC	1
413		17	max	0	2	0	15	0	15	3.59e-5	_1_	NC	1_	NC	1
414		1.0	min	001	3	003	4	0	1	2.01e-6	15	NC	1_	NC	1
415		18	max	0	2	0	15	0	15	2.285e-5	1_	NC		NC NC	1
416		40	min	0	3	001	4	0	1	1.281e-6	<u>15</u>	NC NC	1_	NC NC	1
417		19	max	0	1	0	1	0	1	9.798e-6	1_	NC NC	1_	NC NC	1
418	N 1 4 4	4	min	0	•	0	1	0	1	5.528e-7	15	NC NC	1_	NC NC	1
419	M11	1	max	0	1	0	1	0	1	-1.05e-7	<u>15</u>	NC NC	1	NC NC	1
420		2	min	0	3	<u> </u>	1	0	1	-1.85e-6	1_	NC NC	1	NC NC	1
421 422			max min	<u> </u>	2	002	15	0 0	15	-1.306e-6 -2.345e-5	<u>15</u> 1	NC NC	1	NC NC	1
423		3	max	0	3	<u>002</u> 0	15	0		-2.507e-6			1	NC NC	1
424		<u> </u>	min	0	2	004	4	0		-4.505e-5	1	NC	1	NC	1
425		4	max	.001	3	004 001	15	0	1	-3.709e-6		NC	1	NC	1
426			min	001	2	006	4	0		-6.665e-5	1	NC	1	NC	1
427		5	max	.002	3	002	15	0	3	-4.91e-6	15	NC	1	NC	1
428			min	002	2	008	4	0	1	-8.825e-5	1	NC	1	NC	1
429		6	max	.002	3	002	15	0	12	-6.111e-6		NC	1	NC	1
430			min	002	2	01	4	0	1	-1.098e-4	1	9246.377	4	NC	1
431		7	max	.003	3	003	15	0	12	-7.313e-6		NC	1	NC	1
432			min	002	2	012	4	0	1	-1.314e-4	1	7996.285	4	NC	1
433		8	max	.003	3	003	15	0	15		•	NC	2	NC	1
434			min	003	2	013	4	0	1	-1.53e-4	1	7226.99	4	NC	1
435		9	max	.004	3	003	15	0		-9.715e-6		NC	5	NC	1
436			min	003	2	014	4	0	1	-1.746e-4	1	6778.202	4	NC	1
437		10	max	.004	3	003	15	0	15	-1.092e-5	15	NC	5	NC	1
438			min	003	2	014	4	001	1	-1.962e-4	1	6572.753	4	NC	1
439		11	max	.004	3	003	15	0	15	-1.212e-5	15	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	004	2	014	4	001	1	-2.178e-4	1	6580.644	4	NC	1
441		12	max	.005	3	003	15	0	15		15	NC	5	NC	1
442			min	004	2	014	4	002	1	-2.394e-4	1_	6807.531	4	NC	1
443		13	max	.005	3	003	15	0	15	-1.452e-5	15	NC	2	NC	1
444			min	005	2	013	4	002	1	-2.61e-4	1	7298.39	4	NC	1
445		14	max	.006	3	003	15	0	15		15	NC	1	NC	1
446			min	005	2	012	4	003	1	-2.826e-4	1	8160.274	4	NC	1
447		15	max	.006	3	002	15	0	15	-1.692e-5	15	NC	1	NC	1
448			min	005	2	01	4	004	1	-3.042e-4	1	9628.368	4	NC	1
449		16	max	.007	3	002	15	0	15	-1.812e-5	15	NC	1	NC	1
450			min	006	2	008	4	005	1	-3.258e-4	1	NC	1	NC	1
451		17	max	.007	3	001	15	0	15	-1.933e-5	15	NC	1	NC	1
452			min	006	2	006	4	006	1	-3.474e-4	1	NC	1	NC	1
453		18	max	.008	3	0	15	0	15	-2.053e-5	15	NC	1	NC	1
454			min	006	2	004	3	007	1	-3.69e-4	1	NC	1	NC	1
455		19	max	.008	3	0	10	0	15		15	NC	1	NC	1
456			min	007	2	003	3	008	1	-3.906e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.007	2	.008	1	-7.603e-6	15	NC	1	NC	3
458			min	0	15	008	3	0	15	-1.364e-4	1	NC	1	3090.879	1
459		2	max	.002	1	.006	2	.007	1	-7.603e-6	15	NC	1	NC	3
460			min	0	15	008	3	0	15	-1.364e-4	1	NC	1	3350.655	1
461		3	max	.002	1	.006	2	.007	1	-7.603e-6	15	NC	1	NC	3
462			min	0	15	007	3	0	15	-1.364e-4	1	NC	1	3660.504	1
463		4	max	.002	1	.005	2	.006	1	-7.603e-6	15	NC	1	NC	3
464			min	0	15	007	3	0	15	-1.364e-4	1	NC	1	4033.315	1
465		5	max	.002	1	.005	2	.006	1	-7.603e-6	15	NC	1	NC	2
466			min	0	15	007	3	0	15	-1.364e-4	1	NC	1	4486.614	1
467		6	max	.002	1	.005	2	.005	1	-7.603e-6	15	NC	1	NC	2
468			min	0	15	006	3	0	15		1	NC	1	5044.709	1
469		7	max	.001	1	.004	2	.004	1	-7.603e-6	15	NC	1	NC	2
470			min	0	15	006	3	0	15	-1.364e-4	1	NC	1	5742.102	1
471		8	max	.001	1	.004	2	.004	1	-7.603e-6	15	NC	1	NC	2
472			min	0	15	005	3	0	15	-1.364e-4	1	NC	1	6629.105	1
473		9	max	.001	1	.004	2	.003	1	-7.603e-6	15	NC	1	NC	2
474			min	0	15	005	3	0	15	-1.364e-4	1	NC	1	7781.437	1
475		10	max	.001	1	.003	2	.003	1	-7.603e-6	15	NC	1	NC	2
476			min	0	15	004	3	0	15	-1.364e-4	1	NC	1	9317.424	1
477		11	max	0	1	.003	2	.002	1	-7.603e-6	15	NC	1	NC	1
478			min	0	15	004	3	0	15		1	NC	1	NC	1
479		12	max	0	1	.003	2	.002	1		15	NC	1	NC	1
480			min	0	15	003	3	0	15	-1.364e-4	1	NC	1	NC	1
481		13	max	0	1	.002	2	.001	1	-7.603e-6		NC	1	NC	1
482			min	0	15	003	3	0	15		1	NC	1	NC	1
483		14	max	0	1	.002	2	0	1	-7.603e-6	15	NC	1	NC	1
484			min	0	15	002	3	0	15	-1.364e-4	1	NC	1	NC	1
485		15	max	0	1	.001	2	0	1	-7.603e-6	15	NC	1	NC	1
486			min	0	15	002	3	0	15		1	NC	1	NC	1
487		16	max	0	1	.001	2	0	1	-7.603e-6	15	NC	1	NC	1
488			min	0	15	001	3	0		-1.364e-4	1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-7.603e-6	15	NC	1	NC	1
490			min	0	15	0	3	0	<u> </u>	-1.364e-4	1	NC	1	NC	1
491		18	max	0	1	0	2	0	1	-7.603e-6	15	NC	1	NC	1
492			min	0	15	0	3	0	15	-1.364e-4	1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.603e-6	•	NC	1	NC	1
494			min	0	1	0	1	0	1	-1.364e-4	1	NC	1	NC	1
495	M1	1	max	.01	3	.102	2	.001	1	1.314e-2	2	NC	1	NC	1
496			min	005	2	019	3	0		-2.548e-2	3	NC	1	NC	1
700			111011	.000		.010	J		10	2.0700 Z	U	110		110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		LC
497		2	max	.01	3	.047	2	0	15	6.443e-3	2	NC	4	NC	1
498			min	006	2	005	3	006	1	-1.261e-2	3	2102.219	2	NC	1
499		3	max	.01	3	.016	3	0	15	1.799e-5	10	NC	5	NC	1
500			min	006	2	012	2	008	1	-1.694e-4	1_	1014.228	2	NC	1
501		4	max	.01	3	.05	3	0	15	4.07e-3	2	NC	5	NC NC	1
502		_	min	005	2	078	2	008	1_	-4.804e-3	3	641.184	2	NC NC	1
503		5	max	.009	3	.094	3	0	15	8.153e-3	2	NC 400.00	5	NC NC	1
504			min	005	2	<u>147</u>	2	005	1_1_	-9.473e-3	3	463.33	2	NC NC	1
505		6	max	.009	3	.14	3	0	15	1.224e-2	2	NC 205 274	15	NC NC	1
506		7	min	005	2	214	3	002	1	-1.414e-2	3	365.271 NC	2 15	NC NC	1
507 508			max	.009 005	2	.185 273	2	0	12	1.632e-2 -1.881e-2	3	307.348	2	NC NC	1
509		8	min	.009	3	.222	3	0	1	2.04e-2	2	NC	15	NC NC	1
510		0	max	005	2	32	2	0	15	-2.348e-2	3	273.071	2	NC NC	1
511		9	max	.009	3	.245	3	0	15	2.348e-2	2	9486.925	15	NC	1
512		-	min	005	2	35	2	0	1	-2.372e-2	3	255.222	2	NC	1
513		10	max	.008	3	.254	3	0	1	2.589e-2	2	9284.617	15	NC	1
514		10	min	005	2	36	2	0	12	-2.102e-2	3	250.016	2	NC	1
515		11	max	.008	3	.247	3	0	1	2.831e-2	2	9486.472	15	NC	1
516			min	005	2	35	2	0	15	-1.832e-2	3	256.228	2	NC	1
517		12	max	.008	3	.226	3	0	15	2.758e-2	2	NC	15	NC	1
518		· -	min	005	2	319	2	001	1	-1.547e-2	3	276.142	2	NC	1
519		13	max	.008	3	.193	3	0	15	2.213e-2	2	NC	15	NC	1
520			min	005	2	269	2	0	1	-1.238e-2	3	314.844	2	NC	1
521		14	max	.008	3	.15	3	.002	1	1.667e-2	2	NC	15	NC	1
522			min	005	2	206	2	0	15	-9.291e-3	3	381.323	2	NC	1
523		15	max	.007	3	.102	3	.005	1	1.122e-2	2	NC	5	NC	1
524			min	004	2	138	2	0	15	-6.203e-3	3	496.443	2	NC	1
525		16	max	.007	3	.053	3	.007	1	5.767e-3	2	NC	5	NC	1
526			min	004	2	069	2	0	15	-3.114e-3	3	711.207	2	NC	1
527		17	max	.007	3	.006	3	.008	1	5.376e-4	1	NC	5	NC	1
528			min	004	2	006	2	0	15	-2.584e-5	3	1173.619	2	NC	1
529		18	max	.007	3	.044	2	.006	1	1.058e-2	2	NC	4	NC	1
530			min	004	2	036	3	0	15	-4.65e-3	3	2509.228	2	NC	1
531		19	max	.007	3	.089	2	0	15	2.122e-2	2	NC	1	NC	1
532			min	004	2	075	3	001	1	-9.454e-3	3	NC	1	NC	1
533	<u>M5</u>	1_	max	.031	3	.236	2	0	1	0	1	NC	1	NC NC	1
534			min	022	2	023	3	0	1	0	1	NC	1	NC NC	1
535		2	max	.031	3	.106	2	0	1	0	1	NC	5	NC	1
536			min	022	2	.002	3	0	1	0	1_	889.809	2	NC NC	1
537		3	max	.031	3	.051	3	0	1	0	1	NC	5	NC NC	1
538		1	min	022	2	039	2	0	1	0	1	420.603	2	NC NC	1
539		4	max	.03 021	2	.145	2	0	1	0	<u>1</u> 1	NC 259.058	1 <u>5</u>	NC NC	1
540		-	min			21	3		1	0	1			NC NC	1
541 542		5	max min	.029 021	3	.269 395	2	0	1	0	1	183.258	<u>15</u>	NC NC	1
543		6	max	.029	3	.406	3	0	1	0	+		15	NC	1
544		-	min	02	2	576	2	0	1	0	1	142.181	2	NC	1
545		7	max	.028	3	.539	3	0	1	0	+		15	NC	1
546			min	02	2	741	2	0	1	0	1	118.264	2	NC NC	1
547		8	max	.028	3	.649	3	0	1	0	1		15	NC NC	1
548			min	02	2	872	2	0	1	0	1	104.274	2	NC	1
549		9	max	.027	3	.72	3	0	1	0	1		15	NC	1
550			min	019	2	955	2	0	1	0	1	97.067	2	NC	1
551		10	max	.026	3	.744	3	0	1	0	1		15	NC	1
552		1.0	min	019	2	983	2	0	1	0	1	94.968	2	NC	1
553		11	max	.026	3	.725	3	0	1	0	1		15	NC	1
			max	.020		20									

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
554			min	019	2	955	2	0	1	0	1	97.466	2	NC	1
555		12	max	.025	3	.662	3	0	1	0	1	4324.079	15	NC	1
556			min	018	2	867	2	0	1	0	1	105.575	2	NC	1
557		13	max	.024	3	.562	3	0	1	0	1		15	NC	1
558		1	min	018	2	727	2	0	1	0	1	121.631	2	NC	1
559		14	max	.024	3	.435	3	0	1	0	1		15	NC	1
560			min	018	2	553	2	0	1	0	1	149.753	2	NC	1
561		15	max	.023	3	.294	3	0	1	0	-		15	NC	1
562		13	min	018	2	365	2	0	1	0	1	199.719	2	NC	1
563		16		.022	3	.151	3		1		1	NC	15	NC	1
		10	max		2	181		<u>0</u> 	1	0	1	296.141	2	NC NC	1
564		47	min	017			2		•	_	•				-
565		17	max	.022	3	.017	3	0	1	0	1_	NC 544 COO	5	NC NC	1
566		10	min	017	2	021	2	0	1	0	1_	511.699	2	NC	1
567		18	max	.022	3	.099	2	0	1	0	1_	NC	5	NC	1
568			min	017	2	097	3	0	1	0	1_	1136.139	2	NC	1
569		19	max	.022	3	.197	2	0	1	0	1_	NC	1_	NC	1
570			min	017	2	2	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.01	3	.102	2	0	15	2.548e-2	3	NC	1_	NC	1
572			min	005	2	019	3	001	1	-1.314e-2	2	NC	1	NC	1
573		2	max	.01	3	.047	2	.006	1	1.261e-2	3	NC	4	NC	1
574			min	006	2	005	3	0	15	-6.443e-3	2	2102.219	2	NC	1
575		3	max	.01	3	.016	3	.008	1	1.694e-4	1	NC	5	NC	1
576			min	006	2	012	2	0	15	-1.799e-5	10	1014.228	2	NC	1
577		4	max	.01	3	.05	3	.008	1	4.804e-3	3	NC	5	NC	1
578			min	005	2	078	2	0	15	-4.07e-3	2	641.184	2	NC	1
579		5	max	.009	3	.094	3	.005	1	9.473e-3	3	NC	5	NC	1
580			min	005	2	147	2	0	15	-8.153e-3	2	463.33	2	NC	1
581		6	max	.009	3	.14	3	.002	1	1.414e-2	3		15	NC	1
582		—	min	005	2	214	2	0	15	-1.224e-2	2	365.271	2	NC	1
583		7	max	.009	3	.185	3	0	12	1.881e-2	3	NC	15	NC	1
584		+-	min	005	2	273	2	0	1	-1.632e-2	2	307.348	2	NC	1
585		8	max	.009	3	.222	3	0	15	2.348e-2	3		15	NC	1
586		0		005	2	32	2	0	1	-2.04e-2	2	273.071	2	NC	1
		9	min	.009	3	<u>32</u> .245			1		3			NC NC	1
587		9	max				3	0		2.372e-2			<u>15</u>		
588		40	min	005	2	35	2	0	15	-2.348e-2	2	255.222	2	NC NC	1
589		10	max	.008	3	.254	3	0	12	2.102e-2	3		<u>15</u>	NC NC	1
590			min	005	2	36	2	0	1	-2.589e-2	2	250.016	2	NC	1
591		11	max	.008	3	.247	3	0	15	1.832e-2	3		15	NC	1
592			min	005	2	35	2	0	1	-2.831e-2	2	256.228	2	NC	1
593		12	max	.008	3	.226	3	.001	1	1.547e-2	3	NC	<u>15</u>	NC	1
594			min	005	2	319	2	0		-2.758e-2	2	276.142	2	NC	1
595		13	max	.008	3	.193	3	0	1	1.238e-2	3		15	NC	1
596			min	005	2	269	2	0		-2.213e-2	2	314.844	2	NC	1
597		14	max	.008	3	.15	3	0	15	9.291e-3	3		15	NC	1
598			min	005	2	206	2	002	1	-1.667e-2	2	381.323	2	NC	1
599		15	max	.007	3	.102	3	0	15	6.203e-3	3	NC	5	NC	1
600			min	004	2	138	2	005	1	-1.122e-2	2	496.443	2	NC	1
601		16	max	.007	3	.053	3	0	15	3.114e-3	3	NC	5	NC	1
602			min	004	2	069	2	007	1	-5.767e-3	2	711.207	2	NC	1
603		17	max	.007	3	.006	3	0	15	2.584e-5	3	NC	5	NC	1
604			min	004	2	006	2	008	1	-5.376e-4	1	1173.619	2	NC	1
605		18	max	.007	3	.044	2	<u>.000</u>	15	4.65e-3	3	NC	4	NC	1
606		10	min	004	2	036	3	006	1	-1.058e-2	2	2509.228	2	NC	1
607		19		.007	3	.089	2	.001	1	9.454e-3	3	NC	1	NC NC	1
		19	max										1		1
608			min	004	2	075	3	0	15	-2.122e-2	2	NC		NC	Γ

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Seismic design: No

Load factor source: ACI 318 Section 9.2 Load combination: not set

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2559.0	1783.5	0.0	1783.5
2	2559.0	1783.5	0.0	1783.5
Sum	5118.0	3567.0	0.0	3567.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5118 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{ ext{ed},Na}$ $\Psi_{ ext{g}}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_e)$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	5 (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	$_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ղ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
558.00	648.00	1.000	0.919	1.000	1.000	15593	0.70	8641

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.16	17908		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
710.64	779.34	1.000	1.000	1.000	17908	0.70	22862

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	in <i>kcpNag</i> ; <i>kcpN</i>	$ c_{cbg} = \phi \min k_{cp} $	(A Na / A Na 0) Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{cp})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b} $	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2559	6071	0.42	Pass
Concrete breakout	5118	10231	0.50	Pass
Adhesive	5118	8093	0.63	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1784	3156	0.57	Pass (Governs)
T Concrete breakout x+	3567	8641	0.41	Pass
Concrete breakout y-	1784	22862	0.08	Pass
Pryout	3567	20601	0.17	Pass
Interaction check Nuc	a/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 31-33 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.63 0.57 119.8 % 1.2	Sec. D.7.3	0.63	0.57	119.8 %	1.2	Pass
----------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.