Matrices et applications linéaires

#espace_vectoriel

Matrices d'une application linéaire dans des bases

Soit E de base $\mathcal{B}=(e_1,\ldots,e_p)$, soit la famille (u_1,\ldots,u_p) vecteurs de E

• $M_B(u_1, \ldots, u_p)$ matrices dont la j-èm colonne est les coordonnées de u_j dans \mathcal{B} .

Soit
$$f \in \mathcal{L}(E,F)$$
, E de base $\mathcal{B}=(e_1,\ldots,e_p)$, F de base $\mathcal{B}'=(e_1',\ldots,e_p')$

• $M_{BB'}(f)$ matrice dont la j-èm colonne est les coordonnées de $f(e_j)$ dans \mathcal{B}'

Coordonnées de l'image

 $f\in \mathcal{L}(E,F)$, $A=mat_{BB'}(f)$

- $x \in E$ de $coord_B(x) = X_B$
- $ullet y \in F$ de $coord_{B'}(y) = Y_{B'}$
- $y = f(x) \Leftrightarrow Y_{B'} = A X_B$
- Réciproquement : soit $f: E \longrightarrow F$, si $\exists A; f(x)$ de coord $Y_{B'} = A X_B$ alors f est linéaire et $A = mat_B B'(f)$

Matrices de combinaisons linéaires

$$(f,g)\in \mathcal{L}(E,F)^2$$

- $\bullet \ \ mat_{BB'}(f+g) = mat_{BB'}(f) + mat_{BB'}(g)$
- $ullet \ mat_{BB'}(\lambda f) = \lambda mat_{BB'}(f)$
- L'application $mat_{BB'}$ est une isomorphisme.

Matrices de la composé

 $\bullet \ \ mat_{BB''}(f\circ g)=mat_{B'B''}(f)\times mat_{BB'}(g)$

Matrice inversible et isomorphisme

 $f\in \mathcal{L}(E,F)$

- f isomorphisme $\Leftrightarrow A$ inversible $\Rightarrow mat_{B'B}(f^{-1}) = (mat_{BB'}(f))^2$
- Si f endomorphisme de E, f automorphisme $\Leftrightarrow mat_B(f)$ inversible $\Rightarrow mat_B(f^{-1}) = (mat_B(f))^{-1}$

Application linéaire canoniquement associe à une matrice, rang d'une matrice

Tout matrice A peut être associe a une application linéaire. Cette application s'appelle application linéaire canonique associe à A.

Noyau, image et rang

Ces trois caractéristiques sont la même pour la matrice et pour l'application.

- ullet Les colonnes de A engendrent l'image
- A inversible $\Leftrightarrow \ker(A) = 0 \Leftrightarrow$ les colonnes de A engendre l'espace.

Changement de bases

Soit E de base $B=(e_1,\ldots,e_n)$, soit $B'=(u_1,\ldots,u_p)$

• B' base de $E \Leftrightarrow \dim(E) = \dim(B')$ et $mat_B(B')$ inversible.

- $mat_B(u_1, \ldots, u_n) = P_{BB'}$: matrice de passage de B à B'.
- $\bullet \ P_{BB''}=P_{BB'}\times P_{B'B''}$
- $(P_{B'B})^{-1} = P_{BB'}$

Changement sur les coordonnées

- $X_B = P_{BB'}X_{B'}$
- $\bullet \ \ X_{B'} = P_{B'B}X_B$

Changement sur les matrices d'une application

- $ullet f \in \mathcal{L}(E,F) egin{cases} E ext{ de bases } B_1 ext{ et } B_1' & P = P_{B_1B_1'} \ F ext{ de bases } B_2 ext{ et } B_2' & Q = P_{B_2B_2'} \end{cases}$
- ullet $A=mat_{B_1B_2}(f)$ alors $A'=Q^{-1}AP$
- Cas d'endomorphisme : $A' = P^{-1}AP$
- A et A' équivalentes : $A' = Q^{-1}AP$ P et Q inversibles.
- A et A' semblables : $A' = P^{-1}AP$ P inversible.