

线代和数论 数论和线代

菜汪酱

2024年2月19日

١

前言

- 线代好好讲要一个学期
- 而且我线代很差
- 线性代数在 OI 中的应用郭雨豪.pdf

高斯消元

- m 个方程 n 个未知数。
- 第 i 个方程形如 $\sum_{j=1}^{n} a_{i,j} x_j = b_i$
- 非齐次线性方程组。齐次就是后面是 0。
- 可以证明经过一下的操作得到的方程组和原来的方程组同解:
 - 某一个方程乘上一个非零数
 - 某一个方程加到另一个方程
- 高斯消元就是用这两条去得到解。

线性基

- 没有回代的高斯消元。
- 得到一组线性无关向量。
- 加入一个新的向量时看是否能用之前的向量线性表出。
- 比较多的是数域为 ℤ[2]

线性基题目

• 异或最大值。

线性基题目

• 最大 XOR 和路径

行列式

$$\sum_{p} (-1)^{\sigma(p)} \prod_{i=1}^{n} A_{i,p_i}$$

其中 $\sigma(p)$ 定义为排列 p 的逆序对的个数。

- 满足线性性、自反性。
- 用这两条搞高斯消元就能得到行列式了。

lgv 引理

- 有一个 DAG, 每条边上有权, $\omega(P)$ 表示 P 这条路径上所有 边权的乘积。
- e(u,v) 表示所有 $u \to v$ 的路径权值的和,即 $e(u,v) = \sum_{P:u\to v} \omega(P)$
- 有两个大小都为 n 的数组 A,B 表示起点和终点。一组不相交路径 S 满足 S_i 是 $A_i \to B_{\sigma(S)_i}$ 的路径, $\forall i \neq j, S_i \cap S_j = \varnothing$ 。
- $sgn(\sigma)$ 表示排列 σ 的逆序对个数。

Igv 引理

 $M = \begin{bmatrix} e(A_1, B_1) & e(A_1, B_2) & \cdots & e(A_1, B_n) \\ e(A_2, B_1) & e(A_2, B_2) & \cdots & e(A_2, B_n) \\ \vdots & \vdots & \ddots & \vdots \\ e(A_n, B_1) & e(A_n, B_2) & \cdots & e(A_n, B_n) \end{bmatrix}$

lgv 题目

- 给定一个 $n \times m$ 的矩阵 A, 问有多少填数的方案满足
 - $1 \leq A_{i,j} \leq v$
 - $\forall 2 \leq i \leq n, 1 \leq j \leq m, A_{i-1,j} \leq A_{i,j}$
 - $\forall 1 \leq i \leq n, 2 \leq j \leq m, A_{i,j-1} \leq A_{i,j}$
- 答案对质数取模。
- $n, m \le 10^6, v \le 100$.
- 5min.

一些简单的记号

- gcd(a, b) 表示 a, b 的最大公约数
- lcm(a, b) 表示 a, b 的最大公倍数
- $a \perp b$ 表示 gcd(a, b) = 1
- a|b 表示 $b \mod a = 0$
- [p] 表示 p 成立为 1 否则为 0

一些基础知识

- 裴蜀定理: a, b 是不全为零的整数, 存在整数 x, y 使得 $ax + by = \gcd(a, b)$ 。
- 费马小定理: 若 p 为素数, gcd(a, p) = 1, 则有 $a^{p-1} \equiv 1$ (mod p)。
- 欧拉定理: 若 gcd(a, m) = 1, 则 $a^{\varphi(m)} \equiv 1 \pmod{m}$ 。
- 扩展欧拉定理:

$$a^b \equiv \begin{cases} a^{b \bmod \varphi(m)} & , a \perp b \\ a^b & , a \not\perp b, b < \varphi(m) \\ a^{(b \bmod \varphi(m)) + \varphi(m)} & , a \not\perp b, b \ge \varphi(m) \end{cases}$$

P4139 上帝与集合的正确用法

• 计算:

$$2^{2^{2^{2^{\cdots}}}} \mod p$$

- $T \le 10^3, p \le 10^7$.
- 1s, 125MB.
- 1min.

P4139 上帝与集合的正确用法

考虑

$$2^{2^{2^{2^{\cdots}}}} \bmod p = 2^{2^{2^{2^{\cdots}}} \bmod \varphi(p) + \varphi(p)} \bmod p$$

- 递归求解即可。
- 次数是 $O(\log p)$ 的。

Miller Rabin

- 二次探测: 如果 p 是一个素数, 0 < x < p, $x^2 \equiv 1 \pmod{p}$ 的解为 x = 1 或 x = p 1。
- 如果 $a^{(p-1)/2^t} \equiv 1 \pmod{p}$ 但是 $a^{(p-1)/2^{t+1}}$ 不是 1 或 p-1 那么就一定不是质数。
- 对于 $[1,2^{32})$ 范围内的数, 选取 $a = \{2,7,61\}$
- 对于 [1,264) 范围内的数, 选取前 12 个质数。
- 如果你坚信不会被卡,那么少选几个也没关系。

数论函数

- 你有一个函数 f(i)
- 定义域是 N⁺
- 也可以看作是一个序列
- 积性函数: $\forall a \perp b, f(a)f(b) = f(ab)$
- 完全积性函数: $\forall a, b, f(a)f(b) = f(ab)$
- 一些常见的积性函数:
 - 单位函数: $\epsilon(n) = [n = 1]$.
 - 恒等函数: $id_k(n) = n^k$ 。 $id_1(n)$ 也记作 id(n)。
 - 常数函数: I(n) = 1。
 - 除数函数: $\sigma_k(n) = \sum_{d|n} d^k$ 。 $\sigma_0(n)$ 也记作 d(n), $\sigma_1(n)$ 也记作 $\sigma(n)$ 。
 - 欧拉函数: $\varphi(n) = \sum_{i=1}^{n} [i \perp n]$ 。
 - 莫比乌斯函数: $\mu(n) = \begin{cases} 0 & \exists d > 1, d^2 | n \\ (-1)^{n \text{th} \text{fb} \text{BBP} \wedge \text{bb}} & \text{otherwise} \end{cases}$

狄利克雷卷积

- $h = f * g \iff h(i) = \sum_{j|i} f(j)g\left(\frac{i}{j}\right)$
- 暴力求前 n 项时间复杂度是 $\mathcal{O}(n \log n)$ 。
- 交换律: f*g=g*f
- 结合律: (f * g) * h = f * (g * h)
- 分配律: (f+g)*h = f*h+g*h
- 等式的性质: $f = g \iff f * h = g * h \ (h(1) \neq 0)$
- 单位元: $f * \epsilon = f$
- 逆元: 对于 $f(1) \neq 0$,存在逆元满足 $f * g = \epsilon$ 。逆元唯一。

$$g(x) = \left(\epsilon(x) - \sum_{d|x,d\neq 1} f(d)g\left(\frac{x}{d}\right)\right) / f(1)$$

几个例子

- d = I * I
- $\sigma = id *I$
- $\epsilon = \mu * I$
- $id = \varphi * I$
- $\varphi = \mu * id$

积性函数的性质

- 两个积性函数的狄利克雷卷积也是积性函数。(5min)
- 对于 *h* = *f* * *q*:

$$h(a)h(b) = \left(\sum_{d_1|a} f(d_1)g\left(\frac{a}{d_1}\right)\right) \left(\sum_{d_2|b} f(d_2)g\left(\frac{b}{d_2}\right)\right)$$
$$= \sum_{d|ab} f(d)g\left(\frac{ab}{d}\right)$$
$$= h(ab)$$

积性函数的性质

- 积性函数的逆也是积性函数(5min)
- 对于 $f * g = \epsilon$, 不妨假设 f(1) = 1, 显然 g(1) = 1, 因此如果 a 或 b 中有一个 1 一定成立。接下来假设 a, b > 1:

$$g(ab) = -\sum_{d_1|a, d_2|b, d_1 d_2 \neq 1} f(d_1 d_2) g\left(\frac{ab}{d_1 d_2}\right)$$

$$= -\sum_{d_1|a, d_2|b, d_1 d_2 \neq 1} f(d_1) f(d_2) g\left(\frac{a}{d_1}\right) g\left(\frac{b}{d_2}\right)$$

$$= f(1) f(1) g(a) g(b) - \left(\sum_{d_1|a} f(d_1) g\left(\frac{n}{d_1}\right)\right) \left(\sum_{d_2|b} f(d_2) g\left(\frac{b}{d_2}\right)\right)$$

$$= g(a) g(b)$$

狄利克雷前缀和

- 就是求 g = f * I
- 也就是 $g_j = \sum_{i|j} a_i$
- $i = \prod p_k^{\alpha_k}, j = \prod p_k^{\beta_k}, i$ 能贡献到 j 当且仅当 $\forall k, \alpha_k \leq \beta_k$ 。

Algorithm: 狄利克雷前缀和

$$\begin{array}{c|cccc} \mathbf{1} & \mathbf{for} & \underline{p} \in \mathbb{P}, \underline{p} \leq \underline{n} & \mathbf{do} \\ \mathbf{2} & & \mathbf{for} & \underline{i \leftarrow 1} & \mathbf{to} & \boxed{\frac{n}{p}} & \mathbf{do} \\ \mathbf{3} & & & f_{p \times i} \leftarrow f_{p \times i} + f_{i} \\ \mathbf{4} & & \mathbf{end} \end{array}$$

- 5 end
- 时间复杂度 $\mathcal{O}(n \log \log n)$ 。
- 倒着做就是狄利克雷差分。也就是乘 μ。

莫比乌斯反演

• 简单证明一下 $\mu * I = \epsilon$

$$(\mu * I)(n) = (\mu * I)(p_1^{\alpha_1} \dots p_k^{\alpha_k}) = \sum_{d|n} \mu(d)$$

$$= \sum_{d|p_1 \dots p_k} \mu(d) = \sum_{i=0}^k \binom{k}{i} (-1)^i$$

$$= \epsilon(n)$$

- 实际使用中用得更多的是 $[\gcd(i,j)=1]=\sum_{d|i,j}\mu(d)$
- 拿刚刚的 $\varphi = \mu * id$ 举个例子

莫比乌斯反演

 $\varphi(n) = \sum_{i=1}^{n} [\gcd(i, n) = 1] = \sum_{i=1}^{n} \sum_{d|i, d|n} \mu(d)$ $= \sum_{d|n} \mu(d) \sum_{i=1}^{n} [d|i] = \sum_{d|n} \mu(d) \operatorname{id} \left(\frac{n}{d}\right)$ $= (\mu * \operatorname{id})(n)$

• 两边同乘 I 可以得到 $\varphi * I = id$ 。

CF585E Present for Vitalik the Philatelist

- 有一个长度为 n 的数组 a
- 求有多少二元组 (x, S) 满足:
 - $1 \le x \le n, S \subseteq \{1, 2, \dots, n\}, S \ne \emptyset$
 - $\gcd_{i \in S} a_i \neq 1$
 - $\gcd_{i \in S \cup \{x\}} a_i = 1$
- 对 998244353 取模。
- $n \le 5 \times 10^5, 2 \le a_i \le 10^7$
- 5s, 256MB.
- 5min

CF585E Present for Vitalik the Philatelist

- 一个想法是枚举 $\gcd_{i \in S} a_i = x$,设这个的方案数是 g_x ,然后 f_x 表示与 x 互质的数的个数,那么就是要求 $\sum_{i>1} f_i \times g_i$ 。
- 然后考虑 f_x 怎么求, 记 c_i 表示值为 i 的个数:

$$f_x = \sum [\gcd(i, x) = 1] c_i = \sum_{d|x} \mu(d) \left(\sum_{d|i} c_i\right)$$

- 然后后面一项就相当于对 c_i 求狄利克雷后缀和,不妨记为 s_i ,然后再求狄利克雷前缀和。
- 然后再考虑 g_x 怎么求,设 g_x' 表示 \gcd 是 x 的倍数的集合个数,那么显然 $g_x' = \sum_{d|x} g_d = 2^{s_x} 1$,那么这个就反着来搞一下狄利克雷差分即可。
- 复杂度 $\mathcal{O}(n + W \log \log W)$.

数论分块

- $\left|\frac{n}{i}\right|$ 只有 $\leq 2\sqrt{n}$ 种取值
- $i \le \sqrt{n}$ 只有 \sqrt{n} 个, $i \ge \sqrt{n}$ 值 $\le \sqrt{n}$ 。
- 计算 $\sum_{i=1}^n f(i) \left\lfloor \frac{n}{i} \right\rfloor$, 如果能 $\mathcal{O}(1)$ 计算 f(i) 前缀和 s(i):

Algorithm: 简单数论分块

- 1 $l \leftarrow 1$;
- 2 $r \leftarrow 1$;
- 3 $result \leftarrow 0$;
- 4 while $\underline{l \leq n}$ do
- 5 $r \leftarrow \lfloor n/\lfloor n/i \rfloor$;
- 6 $result \leftarrow result + [s(r) s(l-1)] \times \lfloor n/l \rfloor;$
- 7 $l \leftarrow r+1;$
- 8 end
- 时间复杂度 $\mathcal{O}(\sqrt{n})$ 。

P2522 [HAOI2011] Problem b

• T 组询问。每次给出 l₁, r₁, l₂, r₂, k, 计算:

$$\sum_{i=l_1}^{r_1} \sum_{j=l_2}^{r_2} [\gcd(i,j) = k]$$

- $1 \le T, l_1, r_1, l_2, r_2, k \le 5 \times 10^4$.
- 2.5s, 250MB.
- 5min.

P2522 [HAOI2011] Problem b

• 首先变成 4 次

$$\sum_{i=1}^{n} \sum_{j=1}^{m} [\gcd(i,j) = k]$$

• 然后就相当于

$$\sum_{i=1}^{\left\lfloor \frac{n}{k} \right\rfloor} \sum_{j=1}^{\left\lfloor \frac{m}{k} \right\rfloor} [\gcd(i,j) = 1]$$

• 然后直接上莫反:

$$\sum_{i=1}^{\left\lfloor \frac{n}{k} \right\rfloor} \sum_{j=1}^{\left\lfloor \frac{m}{k} \right\rfloor} \sum_{d|i,d|j} \mu(d)$$

P2522 [HAOI2011] Problem b

• 交换求和顺序

$$\sum_{d=1}^{\min\left(\left\lfloor\frac{n}{k}\right\rfloor,\left\lfloor\frac{m}{k}\right\rfloor\right)}\mu(d)\sum_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}[d|i]\sum_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}[d|j]$$

● 后面两个 ∑ 其实是没有必要的:

$$\sum_{d=1}^{\min(\left\lfloor \frac{n}{k} \right\rfloor, \left\lfloor \frac{m}{k} \right\rfloor)} \mu(d) \left\lfloor \frac{n}{dk} \right\rfloor \left\lfloor \frac{m}{dk} \right\rfloor$$

• 使用整除分块, 单次复杂度 $\mathcal{O}(\sqrt{n})$ 。

埃氏筛法

• 代码很好写。

Algorithm: 埃氏筛

- 8 end
- 时间复杂度 O(n log log n)。
- 实际表现还是不错的。

埃氏筛法

• 切比雪夫素数定理: $\pi(n)$ 表示 $\leq n$ 的质数数量, 那么

$$\exists 0 < A < B, \text{s.t.} \frac{Ax}{\log x} < \pi(x) < \frac{Bx}{\log x}$$

- 也就是说 $\pi(n) = \mathcal{O}\left(\frac{n}{\log n}\right)$ 。
- 换句话说就是 $p_i = \mathcal{O}(i \log i)$ 。
- 然后就能说明复杂度了:

$$\sum_{i=1}^{\pi(n)} \frac{1}{i \log i} = \mathcal{O}\left(\int_{1}^{\pi(n)} \frac{1}{x \log x} dx\right) = \mathcal{O}(\log \log n)$$

线性筛

Algorithm: 线性筛

```
1 npr \leftarrow [1 \dots n]; pr \leftarrow [1 \dots n]; tot \leftarrow 0;
 2 for i \leftarrow 2 to n do
         if not npr[i] then
              tot \leftarrow tot + 1; pr[tot] \leftarrow i;
 4
 5
         end
         i \leftarrow 1:
 6
         while j \leq tot and i \times pr[j] \leq n do
              npr[i \times pr[j]] \leftarrow 1;
 8
              if i \mod pr[j] = 0 then
 9
                   break:
10
              end
11
              j \leftarrow j + 1;
12
13
         end
```

线性筛

- 如果 $i \mod pr_j = 0$, 那么对于 k > j, $i \times pr_k$ 会被 $(i \times pr_k/pr_j) \times pr_j$ 筛掉, 也就没有必要继续跑了。
- 时间复杂度 O(n)。
- 实际上也求出了每个数的最小质因子。

常见积性函数的筛法

- 对于 id_k , 用快速幂算 $id_k(p)$, 其他数的值都能 O(1) 得到。
- 对于 φ , 如果 $i \mod p \neq 0$, 那么 $\varphi(i \times p) = \varphi(i) \times (p-1)$, 否则 $\varphi(i \times p) = \varphi(i) \times p$
- 对于 μ , $i \mod p \neq 0$, 那么 $\mu(i \times p) = -\mu(i)$, 否则 $\mu(i \times p) = 0$

一般积性函数的筛法

- 如果能 $\mathcal{O}(n)$ 求出所有 $f(p^c)$ 那么就能做。
- 刚才已经求出最小质因子 mn。
- 记录一个 pw_i 表示 $\max_{mn^{\alpha}|i} \alpha$, 这个也可以 $\mathcal{O}(n)$ 求出。
- 然后就 $f(i) = f(i/pw_i)f(pw_i)$ 就行了。
- 以刚才的 $g = f * id_2 * I$ 为例 $(f(x) = x\mu(x))$ 。
- 那么 $g(p^c) = \sum_{i=0}^c p^{2i} p \sum_{i=0}^{c-1} p^{2i} = ((p^{2(c+1)} 1) p(p^{2c} 1))/(p^2 1)$ 。

杜教筛

- 记 $S(f, n) = \sum_{i=1}^{n} f(i)$, 也就是前缀和。
- 以下讨论的数论函数满足 f(1) = 1。
- 我们想要求 S(f,n), 考虑另一个数论函数满足 f*g=h:

$$S(h, n) = \sum_{i=1}^{n} \sum_{d|i} g(d) f\left(\frac{i}{d}\right)$$
$$= \sum_{d=1}^{n} g(d) \sum_{i=1}^{\left\lfloor \frac{n}{d} \right\rfloor} f(i)$$
$$= \sum_{d=1}^{n} g(d) S\left(f, \left\lfloor \frac{n}{d} \right\rfloor\right)$$

杜教筛

• 把 S(f, n) 单独提出来:

$$S(f, n) = S(h, n) - \sum_{d=2}^{n} g(d)S\left(f, \left\lfloor \frac{n}{d} \right\rfloor\right)$$

- 我们把计算所有 $S(f, \lfloor \frac{n}{d} \rfloor)$ 的值叫做块筛。
- 做的时候需要求出 f 的块筛,显然需要有 h 的块筛,然后 跑整除分块的时候发现还要 g 的块筛。
- 如果已经求出了 g,h 的块筛, 就能 $\mathcal{O}\left(n^{\frac{3}{4}}\right)$ 计算 f 的块筛。
- 这个 $n^{\frac{3}{4}}$ 是怎么来的呢?

$$O\left(\sum_{i=1}^{\sqrt{n}} \sqrt{i} + \sqrt{\frac{n}{i}}\right) = O\left(\int_{1}^{\sqrt{n}} \left(\sqrt{i} + \sqrt{\frac{n}{i}}\right) di\right) = O\left(n^{\frac{3}{4}}\right)$$

杜教筛

• 假设我们用线性筛求出了 S(i) 的前 k 项, 那么还能进一步优化:

$$\mathcal{O}\left(k + \sum_{i=1}^{\lfloor n/k \rfloor} \sqrt{\frac{n}{i}}\right) = \mathcal{O}\left(k + \frac{n}{\sqrt{k}}\right)$$

- 当 $k = \mathcal{O}(n^{\frac{2}{3}})$ 时取最小值 $\mathcal{O}(n^{\frac{2}{3}})$ 。
- 数论函数点乘: $f \cdot g \iff (f \cdot g)(n) = f(n)g(n)$ 。
- 拆点乘: 如果 c 是完全积性函数, 那么 $(a \cdot c) * (b \cdot c) = (a * b) \cdot c$ 。

杜教筛例题

- 计算 $f = \mu$ 的块筛。
- 选取 g = I, 那么 $f * g = \epsilon$ 。
- 计算 $f = \varphi$ 的块筛。
- 选取 g = I, 那么 f * g = id。
- 计算 $f = id_k \cdot \varphi$ 的块筛。
- 选取 $g = \mathrm{id}_k$,那么 $f * g = (\varphi * I) \cdot \mathrm{id}_k = \mathrm{id} \cdot \mathrm{id}_k = \mathrm{id}_{k+1}$ 。
- 计算 $f = id_k \cdot \mu$ 的块筛。
- 选取 $g = \mathrm{id}_k$, 那么 $f * g = \epsilon$ 。

Thanks!