Semantics and Verification 2012

Lecture 1

Lecturer (1-8): Jiri Srba srba@cs.aau.dk Lecturer (9-15): Kim G. Larsen kgl@cs.aau.dk

Focus of the Course

- Study of mathematical models for the formal description and analysis of programs.
- Particular focus on parallel and reactive systems.
- Verification tools and implementation techniques underlying them.

Overview of the Course

- Transition systems and CCS.
- Strong and weak bisimilarity, bisimulation games.
- Hennessy-Milner logic and bisimulation.
- Tarski's fixed-point theorem.
- Hennessy-Milner logic with recursively defined formulae.
- Tined CCS.
- Timed automata and their semantics.
- Binary decision diagrams and their use in verification.
- Two mini projects.

Mini Projects

- Verification of Alternating Bit Protocol in CWB.
- Verification of a surprize real-time puzzle in UPPAAL.
- Pensum dispensation.

Lectures

- Ask questions.
- Take your own notes.
- Read the recommended literature as soon as possible after the lecture.

Tutorials

- Regularly before each lecture.
- Supervised peer learning.
- Work in groups of 2 or 3 people.
- Print out the exercise list, bring literature and your notes.
- Feedback from teaching assistant on your request.
- Star exercises (*) (part of the exam).

Exam

- Individual and oral.
- Preparation time (solving one selected star exercise).
- Pensum dispensation.

Literature

- Book "Reactive Systems: Modelling, Specification and Verification" by L. Aceto, A. Ingólfsdóttir, K.G. Larsen and J. Srba. Available in the local bookshop at Fredrik Bajersvej 7B. http:www.cs.aau.dk/rsbook
- On-line literature.

Hints

- Check regularly the course web-page.
- Attend and actively participate during tutorials.
- Take your own notes.

Aims of the Course

Present a general theory of reactive systems and its applications.

- Design.
- Specification.
- Verification (possibly automatic and compositional).

- Give the students practice in modelling parallel systems in a formal framework.
- ② Give the students skills in analyzing behaviours of reactive systems.
- Introduce algorithms and tools based on the modelling formalisms.

Classical View

Characterization of a Classical Program

Program transforms an input into an output.

Denotational semantics:
a meaning of a program is a partial function

$$states \hookrightarrow states$$

- Nontermination is bad!
- In case of termination, the result is unique.

Is this all we need?

Reactive systems

What about:

- Operating systems?
- Communication protocols?
- Control programs?
- Mobile phones?
- Vending machines?

Reactive systems

Characterization of a Reactive System

Reactive System is a system that computes by reacting to stimuli from its environment.

Key Issues:

- communication and interaction
- parallelism

Nontermination is good!

The result (if any) does not have to be unique.

Analysis of Reactive Systems

Questions

- How can we develop (design) a system that "works"?
- How do we analyze (verify) such a system?

Fact of Life

Even short parallel programs may be hard to analyze.

The Need for a Theory

Conclusion

We need formal/systematic methods (tools), otherwise ...

- Intel's Pentium-II bug in floating-point division unit
- Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer
- Mars Pathfinder
- ...

Classical vs. Reactive Computing

	Classical	Reactive/Parallel
interaction	no	yes
nontermination	undesirable	often desirable
unique result	yes	no
semantics	$states \hookrightarrow states$?

How to Model Reactive Systems

Question

What is the most abstract view of a reactive system (process)?

Answer

A process performs an action and becomes another process.

Labelled Transition System

Definition

A labelled transition system (LTS) is a triple $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ where

- Proc is a set of states (or processes),
- Act is a set of labels (or actions), and
- for every $a \in Act$, $\stackrel{a}{\longrightarrow} \subseteq Proc \times Proc$ is a binary relation on states called the transition relation.

We will use the infix notation $s \xrightarrow{a} s'$ meaning that $(s, s') \in \xrightarrow{a}$.

Sometimes we distinguish the initial (or start) state.

Sequencing, Nondeterminism and Parallelism

LTS explicitly focuses on interaction.

LTS can also describe:

- sequencing (a; b)
- choice (nondeterminism) (a + b)
- limited notion of parallelism (by using interleaving) (a|b)

Binary Relations

Definition

A binary relation R on a set A is a subset of $A \times A$.

$$R \subseteq A \times A$$

Sometimes we write x R y instead of $(x, y) \in R$.

Properties

- R is reflexive if $(x,x) \in R$ for all $x \in A$
- R is symmetric if $(x, y) \in R$ implies that $(y, x) \in R$ for all $x, y \in A$
- R is transitive if $(x, y) \in R$ and $(y, z) \in R$ implies that $(x, z) \in R$ for all $x, y, z \in A$

Closures

Let R, R' and R'' be binary relations on a set A.

Reflexive Closure

R' is the reflexive closure of R if and only if

- \bullet $R \subseteq R'$,
- \bigcirc R' is reflexive, and
- **3** R' is the *smallest* relation that satisfies the two conditions above, i.e., for any relation R'': if $R \subset R''$ and R'' is reflexive, then $R' \subset R''$.

Closures

Let R, R' and R'' be binary relations on a set A.

Symmetric Closure

R' is the symmetric closure of R if and only if

- $\mathbf{O} R \subseteq R'$
- \bigcirc R' is symmetric, and
- ③ R' is the *smallest* relation that satisfies the two conditions above, i.e., for any relation R'': if $R \subseteq R''$ and R'' is symmetric, then $R' \subseteq R''$.

Closures

Let R, R' and R'' be binary relations on a set A.

Transitive Closure

R' is the transitive closure of R if and only if

- $\mathbf{O} R \subseteq R'$
- \bigcirc R' is transitive, and
- **3** R' is the *smallest* relation that satisfies the two conditions above, i.e., for any relation R'': if $R \subseteq R''$ and R'' is transitive, then $R' \subseteq R''$.

Labelled Transition Systems – Notation

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

- we extend $\stackrel{a}{\longrightarrow}$ to the elements of Act^*
- $\bullet \ \longrightarrow = \bigcup_{a \in Act} \stackrel{a}{\longrightarrow}$
- $\bullet \longrightarrow^*$ is the reflexive and transitive closure of \longrightarrow
- $s \xrightarrow{a}$ and $s \xrightarrow{a}$
- reachable states

How to Describe LTS?

Calculus of Communicating Systems

CCS

Process algebra called "Calculus of Communicating Systems".

Insight of Robin Milner (1989)

Concurrent (parallel) processes have an algebraic structure.

$$P_1$$
 op P_2 \Rightarrow P_1 op P_2

Process Algebra

Basic Principle

- Define a few atomic processes (modelling the simplest process behaviour).
- Oefine compositionally new operations (building more complex process behaviour from simple ones).

Example

- lacktriangledown atomic instruction: assignment (e.g. x:=2 and x:=x+2)
- 2 new operators:
 - sequential composition $(P_1; P_2)$
 - parallel composition $(P_1 \parallel P_2)$

Now e.g. $(x:=1 \parallel x:=2)$; x:=x+2; $(x:=x-1 \parallel x:=x+5)$ is a process.

CCS Basics (Sequential Fragment)

- Nil (or 0) process (the only atomic process)
- action prefixing (a.P)
- names and recursive definitions $\stackrel{\text{def}}{=}$
- nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the operations above.