CS2023 - Data Structures and Algorithms Take Home Assignment

Week 3 - Recursion

By: Sajeev Kugarajah (210554M)

Question 1

Please write pseudo codes to solve the following problems.

Note: Your solutions must be recursive

1. Calculating the n^{th} factorial of a number.

```
FUNCTION Factorial(n):

IF n = 0 THEN:

RETURN 1

ELSE:

RETURN n*Factorial(n-1)

END IF

BEGIN

INPUT num

fact <- Factorial(num)

OUTPUT fact

END
```

2. Searching for an element in an array.

```
FUNCTION Linear_Search(Array, Item, Index=0):

IF Index >= size of Array:

RETURN -1

ELSE IF Array[Index] == Item:

RETURN Index

ELSE:

Linear_Search(Array, Item, Index+1)

END IF

BEGIN

INPUT array,item

index <- Linear_Search(array, item)

OUTPUT index

END
```

3. Checking whether a given string is a palindrome.

```
FUNCTION Pallindrome_Checker(String, FirstIndex, LastIndex):

IF LastIndex - FirstIndex <= 0:

RETURN TRUE

ELSE IF String[FirstIndex] == String[LastIndex]:

RETURN Pallindrome_Checker(String, FirstIndex+1, LastIndex-1)

ELSE:

RETURN FALSE

END IF

BEGIN

INPUT string

size <- string size

is_pallindrome <- Pallindrome_Checker(string, 0, size-1)

OUTPUT is_pallindrome

END
```

Question 2

Comment on the time complexities of the above algorithms. *Note: Just stating the complexities is fine, no need to explain*

```
    T(n) = O(n)
    a) worst case T(n) = O(n)
    b) best case T(n) = O(1)
    c) average case T(n) = O(n)
    a) worst case T(n) = O(n)
    b) best case T(n) = O(1)
    c) average case T(n) = O(n)
```

Question 3

T(n) = O(n)

Analyze the worst case time complexity of the Merge algorithm.

Note: Do not just state the worst case complexity, you are required to explain how you arrived at the answer.

Line No	Code	Cost	Times
1	MERGE(A, p, q, r)	T(n)	1
2	n1 ← q − p + 1	C1	1
3	n2 ← r – q	C2	1
4		-	-
5	for i ← 0 to n1-1	C3	n1 + 1
6	$L[i] \leftarrow A[p+i]$	C4	n1
7	for j ← 0 to n2-1	C5	n2 + 1
8	$R[j] \leftarrow A[(q+1)+j]$	C6	n2
9	L[n1] ← infinity	C7	1
10	R[n2] ← infinity	C8	1
11	i ← 0	C9	1
12	j ← 0	C10	1
13	for k ← p to r	C11	n + 1
14	if $L[i] \le R[j]$	C12	n
15	$A[k] \leftarrow L[i]$	C13	n/2
16	l ← i+1	C14	n/2
17	else		
18	$A[k] \leftarrow R[j]$	C15	n/2
19	j ← j+1	C16	n/2

$$T(n) = C1 + C2 + C3(n1 + 1) + C4.n1 + C5(n2 + 1) + C6.n2 + C7 + C8 + C9 + C10 + C11(n + 1) + C12.n + (C13 + C14 + C15 + C16).n/2$$

$$T(n) = (C1 + C2 + C3 + C5 + C7 + C8 + C9 + C10 + C11) + C3.n1 + C4.n1 + C5.n2 + C6.n2 + C11.n + C12.n + (C13 + C14 + C15 + C16).n/2$$

$$C3 = C5 \mid C4 = C6 \mid C13 = C15 \mid C14 = C16 \mid n1 + n2 = n$$

$$T(n) = (C1 + C2 + 2.C3 + C7 + C8 + C9 + C10 + C11) + C3(n1 + n2) + C4(n1 + n2) + C11.n + C12.n + (2.C13 + 2.C14).n/2$$

$$T(n) = (C1 + C2 + 2.C3 + C7 + C8 + C9 + C10 + C11) + C3.n + C4.n + C11.n + C12.n + (C13 + C14).n$$

T(n) = (C1 + C2 + 2.C3 + C7 + C8 + C9 + C10 + C11) + (C3 + C4 + C11 + C12 + C13 + C14).n