15.6: Applications of Double & Triple Integrals

These are applications for <u>double integrals</u> and <u>triple integrals</u>.

Physics Definitions

(mass)

$$dm = \sigma dA$$
 (2 dimensions)
 $dm = \rho dV$ (3 dimensions)

(moment)

$$dM = r dm$$

(moment of inertia)

$$dI = r^2 dm$$

Rest of these formulas can essentially be defined by these relationships.

Mass and First Moments

In three dimensions

Mass:

$$M = \iiint_D
ho \, dV$$

First moments about the coordinate planes:

$$egin{aligned} M_{yz} &= \iiint_D x
ho \, dV \ M_{xz} &= \iiint_D y
ho \, dV \ M_{xy} &= \iiint_D z
ho \, dV \end{aligned}$$

Center of mass:

$$egin{aligned} ar{x} &= rac{M_{yz}}{M} \ ar{y} &= rac{M_{xz}}{M} \ ar{z} &= rac{M_{xy}}{M} \end{aligned}$$

When density of solid object is constant ($\rho = 1$), the center of mass is called the **centroid** of the object.

In two dimensions

Mass:

$$M=\iint_D \sigma\,dA$$

First moments about the coordinate axes:

$$M_y = \iint_D x \sigma \, dA \ M_x = \iint_D y \sigma \, dA$$

Center of mass:

$$ar{x} = rac{M_y}{M} \ ar{y} = rac{M_x}{M}$$

Moments of Inertia

In three dimensions

$$I=\iiint r^2
ho \, dV$$

(Around x-axis, r^2 is (y^2+z^2) , etc etc)

In two dimensions

$$I=\iint r^2\sigma\,dA$$

About origin:

$$I_O = \iint (x^2+y^2)\sigma\,dA = I_x + I_y$$

Joint Probability Density

Joint probability density function f is a function that satisfies:

1.
$$f(x,y) \geq 0$$

2.
$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)\,dx\,dy=1$$

1.
$$f(x,y)\geq 0$$

2. $\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)\,dx\,dy=1$
3. $P((X,Y)\in R)=\iint_Rf(x,y)\,dx\,dy$

#week8