चित्रण: An Automated Festive Poster Generator with Wishes in Nepali Language

Team members:

Kristina Bhandari (THA077BCT022) Kristina Ghimire (THA077BCT023) Pradeepti Dongol (THA077BCT033) Namita Bhatta (THA077BCT048)

Supervised By:

Er. Saroj Shakya

Department of Electronics and Computer Engineering Institute of Engineering, Thapathali Campus

Objectives

- To analyze input prompt to extract festival themes, then generate concise Nepali short title.
- To generate a Nepali festival-themed image and integrate it with a styled title in Nepali to create a digital poster.

Methodology (System Block Diagram)

Methodology [Cont.] (Text Dataset Preparation)

- Collected manually from different sources such as social media posters, greeting cards, and so on.
- Dataset contains text prompt in English and its corresponding wishes in Nepali font.
- So far, we have collected a dataset comprising 1095 pairs of prompts and wishes, where each prompt and wish is limited to 25 tokens in length.

Methodology [Cont.] (M2M-100 Model)

- Transformer-based model that can directly translate between 100 languages
- Uses 12 encoder layers and 12 decoder layers with 1024 hidden dimensions and 16 attention heads
- Pre-trained on a large-scale multilingual corpus
- Outperforms bilingual models and English-centric models

Methodology [Cont.] (M2M-100 Model)

➤ Inactive translation flow → Active translation flow

Methodology [Cont.] (Title Generation)

- For title generation, a pre-trained M2M-100 model is fine-tuned on our dataset.
- BLEU score, METEOR score, and TER score are used for evaluation.
- The M2M-100 model takes an English prompt and generates festival wishes in the Nepali language.

Results

BLEU Score vs Steps

Loss Plot

BLEU Score Plot

Meteor Score Plot

TER Score Plot

Results [Cont.] (Parameter value selection using Optuna)

Results [Cont.] (Text Generation)

```
Input Text: Create a Holi poster 2070
```

Output: Theme extracted Output: Year corrected Output: Year extracted

Output: ['सम्पूर्ण नेपालीलाई होली २०७० को पावन अवसरमा हार्दिक शुभकामना। यो पर्वले सबैको जीवनमा नयाँ उमंग र उत्साह ल्याओस्।']

Input Text: Wish healthy and happy dashain 2070 to family and friends

Output: Theme extracted

Output: Year corrected

Output: Year extracted

Output: ['परिवार र साथिहरूलाई २०७० को दशैंमा स्वास्थ्य र खुशीको शुभकामना!']

Results Analysis

- On training 1095 text dataset using M2M model, we achieved the maximum of 28.5 BLEU score.
- Training loss decreases faster but evaluation loss almost remains constant after certain steps.
- Obtained an maximum of 33% of Meteor score.
- TER decreased from 76.12 to 63.92.

Results Analysis [Cont.]

- The parameters that minimize evaluation loss were preferred.
- Use of Optuna suggested the following as best parameters to prevent overfitting:
 - Learning Rate: 0.0001753635227822039
 - Weight Decay: 0.19206671304964318

Remaining Tasks

- Increasing the text dataset
- Finetuning M2M model to obtain better scores.
- Image data collection
- Finetuning LDM
- Creating a user-friendly interface

References

- [1] A. Fan et al., "Beyond english-centric multilingual machine translation," Journal of Machine Learning Research, vol. 22, no. 107, pp. 1–48, 2021.
- [2] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, "High-resolution image synthesis with latent diffusion models," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10684–10695.

References

- [1] A. Fan et al., "Beyond english-centric multilingual machine translation," Journal of Machine Learning Research, vol. 22, no. 107, pp. 1–48, 2021.
- [2] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, "High-resolution image synthesis with latent diffusion models," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10684–10695.