CSE411: Real-Time and Embedded Systems Design

Spring 2025

Project Description – Idea 1

Advanced Power Window Control System

Project Overview

This project aims to develop an advanced power window control system using the Tiva C Series TM4C123GH6PM microcontroller and FreeRTOS for real-time task management. The system will control a front passenger door window, featuring manual and automatic operation, obstacle detection, window lock functionality, and precise position tracking. The implementation emphasizes safety, reliability, and efficient resource utilization.

Key Features

1. Manual and Automatic Window Operation

- Manual Mode: The window moves up or down while the respective switch is held.
- One-Touch Auto Mode: A short press fully opens or closes the window without requiring continuous input.

2. Obstacle Detection and Safety Measures

- IR sensors detect obstacles during auto-close operation.
- If an obstacle is detected, the window immediately stops and reverses downward for 0.5 seconds to prevent injury or damage.
- Upper and lower limit switches ensure safe operation by preventing over-travel.

3. Position Control with Encoder Feedback

- An incremental encoder provides precise window position feedback.
- Position tracking enables additional features like partial window opening.

4. Window Lock Functionality

- A window lock switch allows the driver to disable passenger-side controls.
- When activated, only the driver can operate the passenger window.
- Status is displayed on an LCD screen

5. Power Management

• The system enters low-power mode when idle, reducing energy consumption and improving efficiency

6. Real-Time Task Scheduling with FreeRTOS

- The system is structured into independent FreeRTOS tasks for:
 - Manual and automatic window control
 - Obstacle detection and response
 - Position tracking and safety monitoring
 - o System status updates (LCD, LED, buzzer alerts)
- Synchronization is handled using semaphores and message queues to ensure reliable task execution.

Hardware Components

- Microcontroller: TM4C123GH6PM (Tiva C Series)
- Motor and Driver: DC motor with an H-bridge motor driver
- Sensors:
 - o IR Sensor for obstacle detection
 - Incremental encoder for position tracking
 - o Limit switches for limits of window
- User Interface:
 - o Push buttons for window control
 - o ON/OFF switch for window lock
 - LCD display for status updates
 - o Buzzer and RGB LED for audible/visual alerts

Project Deliverables

- 1. Hardware Setup: A fully functional prototype with all components integrated.
- 2. Software Implementation: Well-structured, modular FreeRTOS-based firmware.
- 3. Live Demonstration: Showcasing all features in real-time operation.
- 4. Project Report including but not limited to:
 - o System design and architecture
 - FreeRTOS implementation details
 - Challenges and solutions
 - Future improvements

MARKS	ACTIVITIES
2	Manual Mode from both sides
2	Automatic Mode from both sides
2	Obstacle Detection and Jam Protection
2	Encoder feedback
2	Upper/lower limit switches
1	LCD displays window's position accurately
1	Lock switch disables passenger-side control properly
1	Driver retains full control when lock is enabled
1	Sleep mode when idle
1	Tasks are created and scheduled correctly
1	Tasks priorities are assigned properly
1	Semaphores/mutexes for resource management
1	Queues for passing data between tasks
2	Full Technical Report
5	Individual Assessment
25	Total Project

CSE411: Real-Time and Embedded Systems Design Spring 2025

Project Description – Idea 2

Automotive Smart Safety System

(Intelligent Door Lock + Rear Park Assist)

Project Overview

This project integrates two core automotive safety functionalities into a unified embedded system:

- 1. Intelligent Car Door Locking based on motion (speed detection) using a potentiometer
- 2. Rear Parking Assistance System using an ultrasonic sensor for obstacle detection

The system is implemented using the **TM4C123GH6PM microcontroller** and programmed with **FreeRTOS** to handle multiple tasks concurrently. The project simulates real-world automotive safety systems and demonstrates key embedded design principles such as modularity, task scheduling, real-time responsiveness, and sensor interfacing.

System Explanation

- Switches mimic the behavior of the vehicle gear shifter (Park, Drive, Reverse).
- A switch mimics the behavior of the vehicle driver door.
- The system uses a potentiometer to detect the motion of the vehicle and estimate speed. If the calculated speed exceeds a predefined threshold (e.g., 10 km/h), the system automatically **locks the doors**.
- When the **ignition switch** (simulated by a toggle input) is turned off, the doors automatically **unlock**, simulating driver shutdown behavior.
- Two manual pushbuttons allow the driver to lock or unlock the doors at any time, overriding the automatic logic.
- The **LCD display** shows the current system status (e.g., "Doors Locked", "Doors Unlocked", "Speed = X km/h").
- A **buzzer** gives audible alert when the vehicle is moving and driver door is open with message on LCD to indicate door is open.
- the system uses an **HC-SR04 ultrasonic sensor** mounted at the rear (simulated setup) to continuously measure the distance to nearby objects when in **reverse** gear.
- The closer the object is to the vehicle, the faster the **buzzer** beeps, alerting the driver to potential collisions.
- An RGB LED indicates proximity visually:
 - o Green: Safe zone (> 100 cm)
 - o Yellow: Caution zone (30–100 cm)
 - o Red: Danger zone (< 30 cm)
- The LCD display updates in real time to show the exact distance measured by the ultrasonic sensor.
- The entire system runs under **FreeRTOS**, which ensures reliable and deterministic scheduling of:
 - Sensor data acquisition
 - o Event-driven responses (e.g., lock activation, buzzer feedback)
 - o Display updates

Tasks are coordinated using queues for sensor data, and semaphores/mutexes are used to safely access shared resources like the LCD and buzzer. This structure ensures real-time performance and modularity, while teaching students how to design and implement multitasking embedded applications.

Hardware Components

- Microcontroller: TM4C123GH6PM (Tiva C Series)
- Sensors:
 - Potentiometer
 - o HC-SR04 Ultrasonic Sensor
 - o Pushbutton or Limit switch module for vehicle door simulation
- User Interface:
 - Push buttons for manual lock/unlock
 - o Switches to mimic gears.
 - o Ignition Switch
 - o RGB Led
 - o LCD display for status updates
 - o Buzzer for audible alerts

Project Deliverables

- 1. Hardware Setup: A fully functional prototype with all components integrated.
- 2. Software Implementation: Well-structured, modular FreeRTOS-based firmware.
- 3. Live Demonstration: Showcasing all features in real-time operation.
- 4. Project Report including but not limited to:
 - o System design and architecture
 - o FreeRTOS implementation details
 - o Challenges and solutions
 - Future improvements

MARKS	ACTIVITIES
1	Gear shifting operates correctly
2	Vehicle speed is measured accurately
2	Doors automatically lock upon crossing speed threshold
2	Doors automatically unlock when ignition is turned off
2	Manual locking and unlocking work reliably
2	Rear obstacle distance is measured accurately
1	Audible alert varies based on proximity to rear obstacles
1	RGB LED changes behavior based on obstacle distance
1	LCD accurately displays system status
1	Tasks are created and scheduled correctly
1	Tasks priorities are assigned properly
1	Semaphores/mutexes for resource management
1	Queues for passing data between tasks
2	Full Technical Report
5	Individual Assessment
25	Total Project