```
In [1]: import itertools
         import pandas as pd
         # The new library!
         from thefuzz import fuzz, process
In [2]: df1 = pd.read_csv('companies_1.csv')
         df2 = pd.read_csv('companies_2.csv')
In [6]: type(df1['CLIENT'].values)
Out[6]: numpy.ndarray
In [4]: df2.head()
Out[4]:
                                         Firm Name
          0 AAA Northern California, Nevada & Utah Auto Ex...
          1
                             ACCO Engineered Systems
                          Adams County Retirement Plan
          2
                                  Adidas America, Inc.
          3
                                  Adobe Systems, Inc.
```

Data Preprocessing

■ 1. Create the df dataframe containing the product of the two CSVs

```
In [12]: df = pd.DataFrame(
   itertools.product(df1['CLIENT'].values, df2['Firm Name']),
      columns=['CSV 1', 'CSV2'])
```

In [18]: df		
Out[18]:	CSV 1	CSV2
	Adobe Systems, Inc.	AAA Northern California, Nevada & Utah Auto Ex
	1 Adobe Systems, Inc.	ACCO Engineered Systems
	2 Adobe Systems, Inc.	Adams County Retirement Plan
	3 Adobe Systems, Inc.	Adidas America, Inc.
	4 Adobe Systems, Inc.	Adobe Systems, Inc.
9788	3 WRS	Yakima Valley Memorial Hospital Association
9788	wrs	Yokohama Tire Corporation
9788	5 WRS	Yuma Regional Medical Center
9788	6 WRS	Zions Bancorporation
9788	7 WRS	Zoological Society of San Diego

Calculating the Levenshtein distance

97888 rows × 2 columns

Now, we will learn how to calculate the Levenshtein distance between two strings. Here we will user partial_ratio function from the fuzz module to compute the "ratio" between two strings. The result is a number between 0 and 100, with 100 indicating a "perfect" match. Please note that partial_ratio gives ratio of the shortest string length to the longest string length. For example, if the first string is ABC and the second string is ABDC, then the ratio will be 4/5 = 0.80.

```
In [14]: fuzz.partial_ratio("Apple", "Apple Inc.")
Out[14]: 100
In [15]: fuzz.partial_ratio("Microsoft", "Apple Inc.")
Out[15]: 18
In [16]: fuzz.partial_ratio("Microsoft", "MSFT")
Out[16]: 40
```

If we have list of strings, we can calculate the Levenshtein distance between each pair of strings in the list.

```
In [20]: A = ["Apple", "Alphabet", "Microsoft"]
B = ["MSFT", "Alphabet/Google", "Apple inc."]
```

Below, we combined the two list A and B into a list of tuples companies using product function from itertools module.

Then, we calculated the partial ratio for each pair of strings in the list companies using partial ratio function from fuzz.

```
In [21]: companies = list(itertools.product(A, B))
           companies
Out[21]: [('Apple', 'MSFT'),
             ('Apple', 'Alphabet/Google'),
('Apple', 'Apple inc.'),
             ('Alphabet', 'MSFT'),
('Alphabet', 'Alphabet/Google'),
('Alphabet', 'Apple inc.'),
             ('Microsoft', 'MSFT'),
('Microsoft', 'Alphabet/Google'),
('Microsoft', 'Apple inc.')]
In [22]: for c1, c2 in companies:
                 ratio = fuzz.partial ratio(c1, c2)
                print(f"{c1} > {c2}: {ratio}")
           Apple > MSFT: 0
           Apple > Alphabet/Google: 57
           Apple > Apple inc.: 100
           Alphabet > MSFT: 0
           Alphabet > Alphabet/Google: 100
           Alphabet > Apple inc.: 46
           Microsoft > MSFT: 40
           Microsoft > Alphabet/Google: 29
           Microsoft > Apple inc.: 31
```

You will see the greater the ratio, the more similar the strings are.

2. Create a new column Ratio Score that contains the distance for all the rows in df

```
In [20]: score = [fuzz.partial_ratio(c1, c2) for c1, c2 in df.values]
score[:10]
Out[20]: [32, 64, 41, 50, 100, 59, 29, 35, 54, 60]
```

```
In [22]: df['Ratio Score'] = score
         df
```

0ι	ut	[22]	:

Ratio Score	CSV2	CSV 1	
32	AAA Northern California, Nevada & Utah Auto Ex	Adobe Systems, Inc.	0
64	ACCO Engineered Systems	Adobe Systems, Inc.	1
41	Adams County Retirement Plan	Adobe Systems, Inc.	2
50	Adidas America, Inc.	Adobe Systems, Inc.	3
100	Adobe Systems, Inc.	Adobe Systems, Inc.	4
0	Yakima Valley Memorial Hospital Association	WRS	97883
0	Yokohama Tire Corporation	WRS	97884
33	Yuma Regional Medical Center	WRS	97885
0	Zions Bancorporation	WRS	97886
33	Zoological Society of San Diego	WRS	97887
		0 1	07000

97888 rows × 3 columns

3. How many rows have a Ratio score of 90 or more?

```
In [24]: # Try your code here
         filt = df['Ratio Score'] >= 90
         df[filt].shape
```

Out[24]: (135, 3)

4. What's the corresponding company in CSV2 to AECOM in CSV1?

```
In [26]: # Try your code here
          filt1 = df['CSV 1'] == 'AECOM'
          filt2 = df['Ratio Score'] >= 80
          df[filt1&filt2]
Out[26]:
                 CSV<sub>1</sub>
                                           CSV2 Ratio Score
           742 AECOM AECOM Technology Corporation
                                                        100
In [27]: df.query("`CSV 1` == 'AECOM' and `Ratio Score` > 80")
Out[27]:
                 CSV<sub>1</sub>
                                           CSV2 Ratio Score
           742 AECOM AECOM Technology Corporation
                                                        100
```

5. What's the corresponding CSV2 company of Starbucks?

```
In [28]: # Try your code here
filt1 = df['CSV 1'] == 'Starbucks'
filt2 = df['Ratio Score'] >= 80
df[filt1&filt2]
Out[28]: CSV1 CSV2 Ratio Score
```

77948 Starbucks Starbucks Corporation 100

6. Is there a matching company for Pinnacle West Capital Corporation?

```
In [29]: # Try your code here
filt1 = df['CSV 1'] == 'Pinnacle West Capital Corporation'
filt2 = df['Ratio Score'] >= 80
df[filt1&filt2]
```

```
Out [29]:
                                                CSV<sub>1</sub>
                                                                        CSV2 Ratio Score
              61128 Pinnacle West Capital Corporation
                                                            Avista Corporation
                                                                                         88
              61130 Pinnacle West Capital Corporation
                                                              Ball Corporation
                                                                                         93
              61266 Pinnacle West Capital Corporation Huntsman Corporation
                                                                                         80
              61328 Pinnacle West Capital Corporation
                                                            RAND Corporation
                                                                                         86
              61336 Pinnacle West Capital Corporation
                                                           Rogers Corporation
                                                                                         80
```

▼ 7. How many matching companies are there for County of Los Angeles Deferred Compensation Program?

In [31]: # Try your code here pd.options.display.max_colwidth = None filt1 = df['CSV 1'] == 'County of Los Angeles Deferred Compensation Prog filt2 = df['Ratio Score'] >= 80 df[filt1&filt2]

Out[31]:

	CSV 1	CSV2	Ratio Score
26206	County of Los Angeles Deferred Compensation Program	City of Los Angeles Deferred Compensation	95
26227	County of Los Angeles Deferred Compensation Program	County of Los Angeles Deferred Compensation Program	100
26229	County of Los Angeles Deferred Compensation Program	County of Riverside Deferred Compensation Program	82
26230	County of Los Angeles Deferred Compensation Program	County of San Diego Deferred Compensation Program	82
26233	County of Los Angeles Deferred Compensation Program	County of Weld	83
26330	County of Los Angeles Deferred Compensation Program	King County Deferred Compensation Program	85
26352	County of Los Angeles Deferred Compensation Program	Marin County Deferred Compensation Program	83

8. Is there a matching company for The Queens Health Systems?

In [32]: # Try your code here filt1 = df['CSV 1'] == 'The Queens Health Systems' filt2 = df['Ratio Score'] >= 80 df[filt1&filt2]

Out[32]:

	CSV 1	CSV2	Ratio Score
84113	The Queens Health Systems	Legacy Health System	80
84149	The Queens Health Systems	Renown Health System	84
84220	The Queens Health Systems	The Queen's Health Systems	96

```
In [36]: filt = df['Ratio Score'] > 90
df.loc[filt, 'Ratio Score'].plot(kind='hist')
```

Out[36]: <Axes: ylabel='Frequency'>


```
In [38]: filt1 = df['Ratio Score'] > 90
filt2 = df['Ratio Score'] < 97
df[filt1&filt2].sort_values(by='Ratio Score')</pre>
```

Out[38]:

	CSV 1	CSV2	Ratio Score
66888	Sacramento City Employees Retirement System	Seattle City Employees Retirement System	91
25652	Contra Costa County Employees Retirement Association	San Diego County Employees Retirement Association	91
25658	Contra Costa County Employees Retirement Association	San Mateo County Employees Retirement Association	91
25690	Contra Costa County Employees Retirement Association	Stanislaus County Employees Retirement Association	91
67596	Safeway, Inc.	Safeway Inc.	92
7333	Arizona State Retirement System	Utah State Retirement Systems	93
11546	Ball Corporation	First American Financial Corporation	93
25403	Contra Costa County Employees Retirement Association	Alameda County Employees Retirement Association	93
25540	Contra Costa County Employees Retirement Association	Fresno County Employees Retirement Association	93
66859	Sacramento City Employees Retirement System	Sacramento County Employees Retirement System	93
61130	Pinnacle West Capital Corporation	Ball Corporation	93
89466	UnionBanCal Corporation	Ball Corporation	93
47671	Maricopa County Community College District	Kern Community College District	93
92706	University of Utah	University of the Pacific	94
36967	Hawaii DC	Hawaii Deferred Compensation Fund	94
25718	Contra Costa County Employees Retirement Association	Tulare County Employees Retirement Association	94
25681	Contra Costa County Employees Retirement Association	Sonoma County Employees Retirement Association	94
25592	Contra Costa County Employees Retirement Association	Kern County Employees' Retirement Association	94
25617	Contra Costa County Employees Retirement Association	Marin County Employees Retirement Association	95
41775	Jack in the Box, Inc.	Jack in the Box Inc.	95
26206	County of Los Angeles Deferred Compensation Program	City of Los Angeles Deferred Compensation	95
63526	Presbytherian	Presbyterian Healthcare Services	96
84220	The Queens Health Systems	The Queen's Health Systems	96

▼ The End!