Introduction to R Workshop (Session 2)

Dr Carlos Moreno-Garcia School of Computing Robert Gordon University

Data Visualisation

- Exploratory data analysis.
- Understand data properties.
- Find patterns in data.
- Suggest modelling strategies.
- Verify analysis.
- Communicate results.

Data Types

- Nominal: Categorical data.
 - e.g. gender (Factors)

- Ordinal: Categorical with a logical order.
 - e.g. marks (Ordered Factors)

- Quantitative: Numeric.
 - e.g. physical measurements

Plotting Systems in R: Base

- "Artist's palette" model.
- Start with blank canvas and build up from there.
- Start with plot function (or similar).
- Use annotation functions to add/modify (text, lines, points, axis).

Pros

 Convenient, mirrors how we think of building plots and analysing data.

Cons

- Can't go back once plot has started (i.e. to adjust margins).
- Need to plan in advance.
- Difficult to "translate" to others once a new plot has been created (no graphical "language"). Plot is just a series of R commands.

Histogram of mtcars\$mpg

Plotting Systems in R: Lattice

 Plots are created with a single function call (xyplot, bwplot, etc.)

Pros

- Most useful for conditioning types of plots: Looking at how y changes with x across levels of z.
- Things like margins/spacing set automatically because entire plot is specified at once.
- Good for putting many plots on a screen.

Cons

- Sometimes awkward to specify an entire plot in a single function call.
- Annotation in plot is not intuitive.
- Use of panel functions and subscripts difficult to wield and requires intense preparation.
- Cannot "add" to the plot once it's created.

Plotting Systems in R: ggplot

 A graphical module that you can install in R.

Pros

- Split the difference between base and lattice.
- Automatically deals with spacing, text, titles but also allows you to annotate by "adding".
- Superficial similarity to lattice but generally easier/more intuitive to use.
- Default mode makes many choices for you (but you can customize).

ggplot syntax

- Install the "tidyverse" package
 - install.packages('tidyverse')
- Import the ggplot library
 - library(ggplot2)
- Initialise a ggplot object
 - ggplot(data, aes(x,y,...))
 - data is a data frame
 - aes() specifies the options that apply to all layers of the plot
- Add a geometry layer
 - + geom_<geometry_type>() e.g. histogram, scatterplot, etc.
- Add other layers
 - + labs, + facet_wrap, etc.

Exploring a Single Variable

Exploring a Single Variable

 Useful for understanding the distribution (spread) of values of a variable.

 Can reveal any skewness in the data.

 Can help to identify out-of-range values. > hist(census\$age)

> boxplot(census\$age)

> barplot(table(census\$sex))

> pie(table(census\$marital.stat))

Histograms in ggplot

> ggplot(data=census, aes(x=age)) + geom_histogram()

Histograms in ggplot

> ggplot(data=census, aes(x=age)) + geom_histogram(aes(fill=..count..))

Boxplots in ggplot

> $ggplot(data=census, aes(y=age, x="")) + geom_boxplot() + labs(x="Age")$

Bar plots in ggplot

> ggplot(census, aes(sex)) + geom_bar()

Pie charts in ggplot

Exploring Multiple Variables

Boxplots in ggplot

```
> ggplot(data=census, aes(y=age, x=sex)) +
+ geom_boxplot()
909
```

SCX

Facets in ggplot

```
> ggplot(data=census, aes(x=age)) +
   geom_histogram(aes(fill=..count..)) +
   facet_wrap(~sex)
```

Frequency polygons in ggplot

```
> ggplot(data=census, aes(x=age)) +
+ geom_freqpoly(aes(color=sex))
```

> ggplot(census, aes(age, income)) + geom_point()


```
> ggplot(census, aes(age, income)) +
   geom_point(aes(color=sex), size=3) +
   scale_x_continuous(breaks=seq(0,150,10))
```

```
> ggplot(census, aes(age, income)) +
+ geom_point(aes(color=sex, shape=marital.stat), size=3)
+ scale_x_continuous(breaks=seq(0,150,10))
```

```
> ggplot(iris, aes(Sepal.Length, Sepal.Width)) +
    geom_point(aes(color=Species, size=Petal.Width))
```


Saving Plots as Images

 Plots can be saved in a variety of formats using functions with names that correspond to the extensions of the formats.

• For example the function pdf() saves a plot as a pdf.

 Functions for other formats include postscript(), bmp(), jpeg(), png() and tiff().

```
> jpeg(filename = "C:/r/scatterplot.jpg")
> hist(census$age)
> dev.off()
```