Конспекты

ПО

электродинамике

2015б

 Φ ТШ -2014

Содержание

1	Список опытных фактов	1	
2	верхности		
3			
	3.1 Связь поля с потенциалом	5 6	
4	Уравнения электростатики	10	
5	Применение уравнений электростатики	12	
6	Электрический диполь 6.1 Энергия диполя во внешнем поле	16 17 18	
7	Изолированный проводник. Поле внутри и вне его	20	
\mathbf{C}_1	писок иллюстраций	22	
П	редметный указатель	23	

1 Список опытных фактов

- 1. Существует электрическое взаимодействие, обусловленное зарядами между телами.
- 2. Заряды существуют двух знаков: положительные и отрицательные. Заряды одного знака отталкиваются, разных притягиваются.
- 3. Сила взаимодействия между точечными зарядами (электрическая сила) обратно пропорциональна квадрату расстояния между ними.

Рассмотрим два точечных заряда q_1 и q_2 . Тогда:

$$F\sim q_1,\quad F\sim q_2,\quad F\sim rac{1}{r^2},\,\,$$
откуда $F\sim rac{q_1q_2}{r^2}.$

Рис. 1: Два точечных заряда, q_1 и q_2

4. [Закон Кулона] В системе СИ сила F равна

$$F = k \frac{q_1 q_2}{r^2},\tag{1}$$

где
$$k = 9 \times 10^9 \frac{\mathrm{H} \cdot \mathrm{m}^2}{\mathrm{K} \mathrm{n}^2}$$
, а $[q] = \mathrm{K} \mathrm{л}$ (кулон).

Два единичных заряда на расстоянии 1 м будут взаимодействовать с силой $F=9\times 10^9\,\mathrm{H}$. Для измерения заряда те должны в первую очередь сохраняться.

5. **[Закон сохранения электрического заряда]** В замкнутой системе суммарный заряд сохраняется:

$$q_{\Sigma} = \sum_{i} q_{i} = \text{const.}$$

6. **[Принцип суперпозиции]** Сила, действующая на данный электрический заряд q, равна векторной сумме всех сил, действующих в системе:

$$\mathbf{F} = \sum_{i} \mathbf{F}_{i} = \sum_{i} k \frac{qq_{i}\mathbf{r}_{i}}{r_{i}^{3}} \tag{2}$$

Рис. 2: Система зарядов

7. **[Дискретность электрического заряда]** Существует элементарный заряд $\bar{e}=1,6\times 10^{-19}\,\mathrm{K}$ л. Заряд любой частицы является кратным элементарному:

$$q = n\bar{e}, \quad n \in \mathbb{Z}.$$

Заряд электрона равен $q_{\rm эл}=-\bar{e}$, протона $q_{\rm пp}=+\bar{e}$.

2 Электрическое поле. Напряженность электрического поля.

Сила \mathbf{F} , действующая на заряд q, всегда пропорциональна его величине, поэтому (2) можно записать в виде

$$\mathbf{F} = q\mathbf{E},\tag{3}$$

где вектор ${\bf E}$ называют вектором напряженности электрического поля . Это аналог формулы ${\bf F}=m{\bf g}.~{\bf E}$ и ${\bf g}$ являются характеристиками данной точки пространства.

$$[E] = \frac{\mathrm{H}}{\mathrm{K}\pi},$$

$$\mathbf{F} = q \sum_{i} \frac{q_i \mathbf{r}_i}{r_i^3} = q \sum_{i} \mathbf{E}_i = q \mathbf{E}.$$

Поле в данной точке есть суперпозиция полей, порождаемых всеми зарядами в системе.

$$\mathbf{E} = \sum_i \mathbf{E}_i,$$

$$\mathbf{E}_i = k \frac{q_i \mathbf{r}_i}{r_i^3}, \quad E_i = k \frac{q_i}{r_i^2}.$$

Электрическое поле создается зарядами и действует на заряды. Заряды не действуют друг на друга и взаимодействуют посредством полей, которые создают.

3 Потенциалы. Силовые линии и эквипотенциальные поверхности

Покажем, что электрическая сила консервативна . В силу принципа суперпозиции

$$\mathbf{E} = \sum_i \mathbf{E}_i,$$

откуда

$$A = \sum_{i} A_{i}.$$

Поле электрического заряда центрально симметричное , следовательно работа электрических сил по замкнутому контуру равна нулю:

$$\oint \mathbf{F} \cdot \mathbf{dl} = q \oint \mathbf{E} \cdot \mathbf{dl} = 0.$$

Если есть консервативная сила, то есть и потенциальная энергия . Например, силе $\mathbf{F}_{\text{грав}} = G \frac{m_1 m_2 \mathbf{r}}{r^3}$ соответствует потенциальная энергия $E = -G \frac{m_1 m_2}{r}$. Рассуждая аналогично, определим потенциальную энергию электрического поля, порождаемого зарядом:

$$E_{\pi} = +k \frac{q_1 q_2}{r}.\tag{4}$$

В соответствии с принципом суперпозиции

$$E_{\pi} = \sum_{i} E_{i} = \sum_{i} k \frac{qq_{i}}{r_{i}} = q \sum_{i} k \frac{q_{i}}{r_{i}}.$$

Скалярную величину $\varphi = \frac{E_{\Pi}}{q}$ назовем электрическим потенциалом точки .

$$[\varphi] = \frac{\Pi \mathbf{x}}{K \pi} = \mathbf{B}$$
 (вольт).

Для потенциала также выполняется принцип суперпозиции:

$$\varphi = \sum_{i} \varphi_i = \sum_{i} k \frac{q_i}{r_i}.$$

Потенциал действует на заряды и создается зарядами. Знак потенциала соответствует знаку зарада, его породившего.

Пусть заряд q передвигается в электрическом поле из точки 1 в 2. Тогда работа электрической силы запишется как

$$A = E_{\Pi_1} - E_{\Pi_2} = q\varphi_1 - q\varphi_2 = q(\varphi_1 - \varphi_2).$$

Назовем величину $U = \varphi_1 - \varphi_2$ напряжением и запишем работу A в виде

$$A = qU. (5)$$

Заряд q называется npoбным, если он достаточно мал, чтобы в условии данной задачи не менять распределение и картину поля от всех остальных зарядов.

Для визуального представления полей использутся силовые линии — воображаемые линии, в каждой своей точке сонаправленные с вектором напряженности электрического поля в этой точке. Густота — величина $\Gamma = \frac{N}{S}$ — это отношение числа N силовых линий, проходящих через единицу площади S, к S; иначе говоря, густота — это «плотность» силовых линий.

Эквипотенциальная поверхность — это множество точек пространства, имеющих одинаковый потенциал.

3.1 Связь поля с потенциалом

Мы показали, что работа по перемещению заряда q в электрическом поле равна

$$A = q (\varphi_1 - \varphi_2).$$

С другой стороны,

$$A = \int_{1}^{2} \mathbf{F} \cdot \mathbf{dl} = q \int_{1}^{2} \mathbf{E} \cdot \mathbf{dl},$$

тогда

$$(\varphi_1 - \varphi_2) = \int_1^2 \mathbf{E} \cdot \mathbf{dl} = \int_1^2 E \cos \alpha \, dl = \int_1^2 E_l \, dl.$$

При малых l верно, что

$$-d\varphi = E_l dl,$$

откуда

$$E_l = -\frac{d\varphi}{dl}. (6)$$

В пространстве соответственно имеем

$$E_x = -\frac{d\varphi}{dx}, \quad E_y = -\frac{d\varphi}{dy}, \quad E_z = -\frac{d\varphi}{dz},$$

что также можно записать в виде

$$\mathbf{E} = -\mathbf{grad}\,\varphi.$$

Все эти соображения наводят на новую размерность напряженности E:

 $[E] = \frac{\mathrm{B}}{\mathrm{M}}.$

3.2 Свойства силовых линий и эквипотенциальных поверхностей

- 1. Силовые линии не пересекаются.
- 2. Электрическое поле перпендикулярно эквипотенциальной поверхности. Возьмем пробный заряд и перенесем его вдоль эквипотенциальной поверхности. Запишем работу, совершенную полем:

$$A = qE dl \cos \alpha = -q d\varphi = 0, \quad E \cos \alpha = 0,$$

следовательно, вектор напряженности перпендикулярен эквипотенциальной поверхности, а при перемещении заряда вдоль нее поле не совершает работу.

- 3. Силовое поле направлено в сторону уменьшения потенциала.
- 4. Силовая линия не пересекает эквипотенциальную поверхность дважды.
- 5. В точках пересечения эквипотенциальных поверхностей поле равно нулю; иначе говоря, поле равно нулю там, куда нельзя провести перпендикуляр.
- 6. В силу центральной симметрии поля, порождаемого точечным зарядом, эквипотенциальные поверхности имеют форму сферы.

7. Силовые линии не могут начинаться в пространстве нигде, кроме как в точках положительных зарядов, и заканчиваться нигде, кроме как в точках отрицательных.

Рис. 3: Положительный заряд, его поле и эквипотенциальные поверхности

Рис. 4: Отрицательный заряд, его поле и эквипотенциальные поверхности

Рис. 5: Система из двух равных по модулю противоположных зарядов, картина поля и эквипотенциальные поверхности

Рис. 6: Система из двух одинаковых зарядов, картина поля и эквипотенциальные поверхности

Рис. 7: Система из двух противоположных зарядов, картина поля и эквипотенциальные поверхности

Рис. 8: Система из двух зарядов одного знака, картина поля и эквипотенциальные поверхности

4 Уравнения электростатики

Закон Кулона и принцип суперпозиции позволяет подсчитать поле и силу в любой точке пространства. Альтернативный способ сделать это — уравнения Максвелла.

Вспомним, что электрическое поле центрально симметрично и консервативно:

$$A = \oint \mathbf{Fdl} = q \oint E_l \, dl = 0,$$

тогда запишем равенство, называемое вторым уравнением Максвел- Λa :

$$\oint E_l \, dl = 0.$$
(7)

Циркуляция электростатического поля равна нулю, что отражает консервативность этого поля. Это значит, что замкнутых силовых линий нет.

Докажем формулу Гаусса-Остроградского (первое уравнение Максвелла) .

Из каждой замкнутой поверхности выходит число силовых линий, пропорциональное суммарному заряду:

$$N \sim q_{\Sigma}$$
.

Тогда

$$\Gamma = \frac{dN}{dS} \sim E, \quad E \, dS \sim dN.$$

Величину

$$\mathbf{d}\Phi_E = \mathbf{E}\,dS$$

назовем потоком электрического поля. Для произвольной поверхности поток электрического поля сквозь нее равен

$$\Phi_E = \int_S E_n \, dS. \tag{8}$$

Таким образом мы определили понятие, аналогичное интуитивному понятию густоты. Теперь

$$N \sim \oint E \, dS \sim q_{\Sigma}.$$
 (9)

Поток электрического поля через замкнутую поверхность пропорционален суммарному заряду внутри поверхности. \Box

Поток считается положительным, если поле идет наружу.

Запишем (9) с коэффициентом пропорциональности:

$$\oint E_n \, dS = \frac{q}{\varepsilon_0},\tag{10}$$

где ε_0 – величина, называемая диэлектрической проницаемостию вакуума . Пропорцию (9) можно записать в таком виде, поскольку $E \sim \frac{1}{R^2}, \, S \sim R^2, \,$ а тогда $ES = \mathrm{const} \sim q.$

Рассмотрим теперь простую сферическую поверхность с зарядом внутри. Тогда

$$\Phi_E = 4\pi R^2 E = \frac{q}{\varepsilon_0},$$

откуда

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{R^2}.$$

Ho
$$E=krac{q}{R^2}$$
, значит,

$$k = \frac{1}{4\pi\varepsilon_0}. (11)$$

Отсюда
$$\varepsilon_0 = 8,85 \times 10^{-12} \frac{\mathrm{K} \pi^2}{\mathrm{H} \cdot \mathrm{m}}.$$

5 Применение уравнений электростатики

Мы записали два уравнения:

$$\oint E_n \, dS = \frac{q_{\Sigma}}{\varepsilon_0},\tag{12}$$

$$\oint E_l \, dl = 0.$$
(13)

Сформулируем *принцип симметрии*: если некоторая система зарядов переходит сама в себя при некотором преобразовании симметрии (поворот, сдвиг, отражение), то картина создаваемого поля переходит сам а в себя при этом преобразовании.

Рассмотрим равномерно заряженную сферу радиуса R. При повороте вокруг прямой r вектор \mathbf{E} переходит сам в себя. В каждой точке сферы радиуса r поле нормально и равно E, а

$$\oint E_n dS = E \cdot 4\pi r^2 = \frac{q(r)}{\varepsilon_0},\tag{14}$$

где q(r) – заряд внутри сферы радиуса r с центром в той же точке. Отсюда

$$E = \frac{1}{4\pi r^2} \frac{q(r)}{\varepsilon_0}. (15)$$

Если r < R, то поле E равно нулю, так как q(r) = 0. При $r \geqslant R$ q(r) = q. Окончательно

$$E(r) = \begin{cases} 0, & 0 \leqslant r < R, \\ k \frac{q}{r^2}, & r \geqslant R. \end{cases}$$
 (16)

Для поля однородно заряженного шара запишем снова: $E(r) = k \frac{q(r)}{r^2}$. В силу распределения заряда запишем

$$\frac{q(r)}{q} = \frac{V(r)}{V} = \frac{r^3}{R^3},$$

откуда

$$q(r) = q\frac{r^3}{R^3},$$

a

$$E(r) = \begin{cases} kq\frac{r}{R^3}, & 0 \leqslant r < R, \\ k\frac{q}{r^2}, & r \geqslant R. \end{cases}$$
 (17)

Рис. 9: График поля в зависимости от расстояния E=E(r) для однородно заряженной сферы

Найдем зависимость потенциала от расстояния $\varphi = \varphi(r)$ для обоих случаев. Перепишем (6) как $d\varphi = -E\,dr$, откуда

$$\varphi(r) = -\int E \, dr. \tag{18}$$

Проинтегрируем функцию E=E(r) для сферы, получим

$$\varphi(r) = \begin{cases} C_1, & 0 \leqslant r < R, \\ k \frac{q}{r} + C_2, & r \geqslant R. \end{cases}$$
 (19)

Выясним характер констант интегрирования C_1 и C_2 . Положим C_2 равной нулю и сформулируем принцип: если в любой точке простарнства поле конечно, то потенциал непрерывен в этой точке. В самом деле, если потенциал в этой точке непрерывен, то за конечное время поле может совершить бесконечную работу при переносе заряда через эту точку, что обязательно чему-то там противоречит. Тогда,

$$\varphi(R) = \lim_{r \to R^{-}} \varphi(r) = C_1.$$

Окончательно

$$\varphi(r) = \begin{cases} k \frac{q}{R}, & 0 \leqslant r < R, \\ k \frac{q}{r}, & r \geqslant R. \end{cases}$$
 (20)

Рис. 10: График поля в зависимости от расстояния E=E(r) для однородно заряженного шара

Проделаем то же для шара:

$$\varphi(r) = \begin{cases} -kq\frac{r^2}{2R^3} + C_1, & 0 \leqslant r < R, \\ k\frac{q}{r} + C_2, & r \geqslant R. \end{cases}$$
 (21)

 $C_2 = 0$. В силу непрерывности

$$\varphi(R) = k \frac{q}{R} = C_1 - kq \frac{R^2}{2R^3}, \quad C_1 = \frac{3}{2} k \frac{q}{R}.$$

Окончательно

$$\varphi(r) = \begin{cases} -\frac{1}{2}kq\frac{r^2}{R^3} + \frac{3}{2}k\frac{q}{R}, & 0 \leqslant r < R, \\ k\frac{q}{r}, & r \geqslant R. \end{cases}$$
 (22)

Заметим, что график этой функции гладок в точке R в силу её дифференцируемости в этой точке.

Рис. 11: График потенциала в зависимости от расстояния $\varphi=\varphi(r)$ для однородно заряженной сферы

Рис. 12: График потенциала в зависимости от расстояния $\varphi=\varphi(r)$ для однородно заряженного шара

6 Электрический диполь

Пусть сумма всех зарядов в системе равна нулю:

$$\sum q_i = 0.$$

Тогда сумма всех положительных зарядов по модулю равна сумме всех отрицательных зарядов:

$$\sum_{(+)} q_i = +q, \quad \sum_{(-)} q_i = -q.$$

Рассмотрим центр заряда (аналог центра масс) (рис. 6):

$$\mathbf{R}_{(+)} = \frac{\sum_{(+)} q_i \mathbf{r}_i}{\sum_{(+)} q_i}, \quad \mathbf{R}_{(-)} = \frac{\sum_{(-)} q_i \mathbf{r}_i}{\sum_{(-)} q_i}.$$

Полезная характеристика диполя – дипольный момент:

Рис. 13: Электрический диполь

$$\mathbf{d} = q\mathbf{r}.\tag{23}$$

$$\mathbf{d} = q(\mathbf{R}_{(+)} - \mathbf{R}_{(-)}) = \sum_{(+)} q_i \mathbf{r}_i + \sum_{(-)} q_k \mathbf{r}_k = \sum_{\text{по всем}} q_i \mathbf{r}_i.$$
 (24)

Рассмотрим диполь во внешнем постоянном электрическом поле. Запишем момент сил, действующий на диполь (рис. 6):

$$M = 2F \cdot \frac{l}{2} \sin \alpha = Fl \sin \alpha = qEl \sin \alpha = dE \sin \alpha,$$

Рис. 14: Электрический диполь во внешнем постоянном электрическом поле

откуда
$$\mathbf{M} = \mathbf{d} \times \mathbf{E}$$
. (25)

На каждый диполь в электрическом поле действует момент сил, который ориентирует диполь сонаправленно с полем.

6.1 Энергия диполя во внешнем поле

Рис. 15: Электрический диполь во внешнем постоянном электрическом поле

Полная потенциальная энергия диполя во внешнем поле (рис. 6.1):

$$E_{\pi} = +q\varphi_2 + (-q)\varphi_1 = q(\varphi_2 - \varphi_1) = -qEx = -qEl\cos\alpha = -Ed\cos\alpha.$$

$$E_{\pi} = -\mathbf{E} \cdot \mathbf{d}. \tag{26}$$

Если диполь сонаправлен с полем, то он обладает наименьшей энергией:

$$\mathbf{d} \uparrow \uparrow \mathbf{E}, \quad E_{\pi} = -Ed.$$

Таким образом, сонаправленное положение диполя с внешним полем – наиболее выгодное.

6.2 Электрическое поле диполя

Рис. 16: Точка 1 на расстоянии R от центра диполя

Найдем поле, создаваемое диполем в точках 1 и 2 на расстоянии R от центра диполя, если $l \ll R$, где l – длина диполя (рис. 6.2). Тогда

$$E_{1} = k \frac{q}{(R - l/2)^{2}} - k \frac{q}{(R + l/2)^{2}} = \frac{kq \left[(R + l/2)^{2} - (R - l/2)^{2} \right]}{(R + l/2)^{2}(R - l/2)^{2}} = \frac{2kqRl}{\left(R^{2} - \left(\frac{l}{2} \right)^{2} \right)^{2}}.$$

Пренебрегая длиной диполя по сравнению с R, напишем

$$E_1 \simeq \frac{2kqRl}{R^4} = \frac{2kql}{R^3},$$

$$E_1 \simeq \frac{2kd}{R^3} \tag{27}$$

Поступим аналогично для точки 2:

Рис. 17: Точка 2 на расстоянии R от центра диполя

$$E_2 = 2E\cos\varphi = -2k\frac{q}{r^2} \cdot \frac{l/2}{r} = -\frac{kd}{r^3} = -\frac{kd}{\left(R^2 + \left(\frac{l}{2}\right)^2\right)^{3/2}},$$

$$E_2 \simeq -\frac{kd}{R^3}.$$
(28)

Без доказательства приведем общую формулу:

$$\mathbf{E} = k \frac{3(\mathbf{d} \cdot \mathbf{n})\mathbf{n} - \mathbf{d}}{R^3}$$
 (верно при $l \ll R$). (29)

Этой формулой описывается вся картина поля, создаваемого дипо-

Рис. 18: Поле диполя в точке на расстоянии R

лем. Заметим, что оно спадает как $\frac{1}{R^3}$.

7 Изолированный проводник. Поле внутри и вне его

Проводник – вещество, в котором есть достаточно свободных зарядов.

Возьмем изолированный проводник (в том смысле, что электроны его не покидают) и поместим его во внешнее поле. Поскольку заряды свободны, то они начнут перемещаться по проводнику. Проводник в результате поляризуется и сам создает поле. Поток зарядов в нем прекратится, когда внутреннее поле скомпенсирует внешнее. Таким образом, проводником будем называть вещество, в котором всегда достаточно заряда, чтобы скомпенсировать внутри себя любое внешнее поле:

$$\mathbf{E}_{\text{внутр}} = \mathbf{E}_{\text{внешн}} + \mathbf{E}_{\text{комп}} = 0, \quad \mathbf{F} = q\mathbf{E} = 0.$$

По крайней мере один электрон оторвется от каждого атома. Между тем, телефон А. М. несет заряд в 100000 кулон.

В проводнике происходит поляризация, и, спустя малое время релаксации, любое поле внутри проводника оказывается скомпенсированным. Итак, основное свойство проводника –

$$\mathbf{E}_{\text{внутр}} = 0. \tag{30}$$

Следствия:

1. Проводник – эквипотенциальный объем. Для любых двух точек 1 и 2 в проводнике имеем:

$$\varphi_1 - \varphi_2 = \int_1^2 E_l \, dl = 0, \quad \varphi_1 = \varphi_2.$$

- 2. Поле вне проводника перпендикулярно его поверхности (потому что он эквипотенциальный объем).
- 3. Заряд в веществе проводника находится только на его поверхности, а внутри проводника заряда нет. Действительно, рассмотрим объем внутри проводника и запишем для него первое уравнение Максвелла:

$$0 = \oint E_n \, dS = \frac{q}{\varepsilon_0},$$

откуда q=0.

4. Если внутри проводника есть полость, то поле этой полости никак не зависит от внешних зарядов и полей. Если в самой полости нет заряда, то поле в ней равно нулю.

Список иллюстраций

1	Два точечных заряда, q_1 и q_2	1
2	Система зарядов	2
3	Положительный заряд, его поле и эквипотенциальные	
	поверхности	7
4	Отрицательный заряд, его поле и эквипотенциальные	
	поверхности	7
5	Система из двух равных по модулю противоположных	
	зарядов, картина поля и эквипотенциальные поверхности	8
6	Система из двух одинаковых зарядов, картина поля и	
	эквипотенциальные поверхности	8
7	Система из двух противоположных зарядов, картина	
	поля и эквипотенциальные поверхности	9
8	Система из двух зарядов одного знака, картина поля	
	и эквипотенциальные поверхности	9
9	График поля в зависимости от расстояния $E=E(r)$	
	для однородно заряженной сферы	3
10	График поля в зависимости от расстояния $E=E(r)$	
	для однородно заряженного шара	4
11	График потенциала в зависимости от расстояния $arphi =$	
	= arphi(r) для однородно заряженной сферы	5
12	График потенциала в зависимости от расстояния $arphi =$	
	=arphi(r) для однородно заряженного шара	5
13	Электрический диполь	6
14	Электрический диполь во внешнем постоянном элек-	
	трическом поле	7
15	Электрический диполь во внешнем постоянном элек-	
	- P	7
16	1 1 1 ri	8
17	1 1 11	9
18	Поле диполя в точке на расстоянии R	9

Предметный указатель

Центр	электрического поля, 10, 11	
масс, 16	Поверхность	
заряда, 16	эквипотенциальная, 5, 6	
Циркуляция, 10	сферическая, 11	
Диэлектрическая проницаемость	замкнутая, 10, 11	
вакуума, 11	Принцип	
Диполь, 18	непрерывности потенциала, 13	
электрический, 16, 17	симметрии, 12	
Дискретность, 2	суперпозиции, 2-4, 10	
Эквипотенциал, 5, 20	Проводник, 20	
Электрон, 20	изолированный, 20	
Энергия	Работа, 4-6	
диполя, 18	Размерность, 6	
потенциальная, 4	Релаксация, 20	
Формула	Сфера	
Гаусса-Остроградского, 10	заряженная, 12	
Градиент, 6	Сила	
Густота, 5, 10	электрическая, 4	
Линия	взаимодействия	
силовая, 5–7, 10	между точечными зарядами,	
Момент	1	
дипольный, 16	Симметрия	
сил, 16, 17	центральная, 6	
Напряжение, 5	Система, 16	
Поле, 10, 12, 20	замкнутая, 1	
центрально симметричное, 4, 10 Уравнение		
электрическое, 3, 5, 6, 10, 16,	Максвелла, 10	
17	первое, 10, 20	
консервативное, 10	второе, 10	
постоянное, 16	Вектор	
внешнее, 20	напряженности электрическо-	
внутреннее, 20	го поля, 3, 5, 6	
Поляризация, 20	Закон	
Потенциал, 4	Кулона, 1, 10	
Поток	Заряд, 1, 4, 10, 13, 16, 20	

пробный, 5, 6 свободный, 20 точечный, 6