

Zadatak Mreža

Simona sanja o nebrojenom bogatstvu. Nudi joj se igranje igre za veliku nagradu.

Simona će biti smještena u ćeliju (0,0) mreže A veličine $N \times M$ ispunjene pozitivnim cijelim brojevima. Mora doći do ćelije (N-1, M-1). Da bi to učinila, dopušteno joj je više puta se kretati iz svoje trenutne ćelije (x,y) u bilo koju drugu ćeliju (x+d,y) ili (x,y+d), tako da je d>0. Za svaki takav potez, Simona će dobiti nagradu u novčićima $|A_{x,y}-A_{x',y'}|-C$, gdje su x',y' njezine nove koordinate, a C konstantni trošak fiksan prije početka putovanja. Imajte na umu da ako izraz $|A_{x,y} - A_{x',y'}| - C$ dobije negativan broj, Simona će izgubiti novčiće. Također imajte na umu da je moguće završiti igru s negativnim brojem novčića.

Pomozite Simoni da odredi maksimalni broj novčića s kojim može završiti igru.

Imajte na umu da je |a| = a ako je $a \ge 0$ i |a| = -a, inače.

🕙 Implementacijski detalji

Trebaš implementirati funkciju max profit:

long long max_profit(int N, int M, int C, std::vector<std::vector<int>> A)

- N, M: dimenzije mreže;
- *C*: fiksna konstanta primjera;
- A: vektor vektora brojeva veličine $N \times M$, koji predstavlja dvodimenzionalnu mrežu (indeksiran po retku pa po stupcu).

Ova funkcija će se pozvati jednom za svaki test i mora vratiti maksimalan broj kovanica s kojima Simona može završiti igru.

🔏 Ograničenja

- $1 \leq N, M$
- $N \cdot M \le 500\ 000$
- $1 \le A_{i,j} \le 1\ 000\ 000\ za\ 0 \le i < N\ i\ 0 \le j < M$
- $0 \le C \le 1\ 000\ 000$

Podzadatak	Bodovi	Potrebni podzadaci	Dodatna ograničenja
0	0	_	Probni primjer.
1	9	_	$N = 1, M \le 200$
2	5	_	$N=1, A_{i,j} \leq A_{i,j+1}$
3	8	_	N=1, C=0
4	10	1	$N = 1, M \le 50\ 000$
5	7	1-4	N = 1
6	15	1	$N, M \le 200$
7	9	2	$A_{i,j} \le A_{i+1,j}, A_{i,j+1}$
8	12	3	C = 0
9	12	0-1, 4, 6	$N \cdot M \le 50~000$
10	13	0 - 9	_

Primjer

Razmotrite sljedeći poziv funkcije:

```
max_profit(5, 6, 4, {{20, 24, 31, 33, 36, 40},

{25, 23, 25, 31, 32, 39},

{31, 26, 21, 24, 31, 35},

{32, 28, 25, 21, 26, 28},

{36, 35, 28, 24, 21, 27}})
```

U ovom slučaju optimalni put je $(0,0) \xrightarrow{7} (0,2) \xrightarrow{2} (1,2) \xrightarrow{10} (1,5) \xrightarrow{8} (4,5)$ i broj sakupljenih novčića na putu je 7+2+10+8=27. Tvoja funkcija mora vratiti 27.

```
max_profit(2, 2, 100, {{1, 2}, {3, 4}})
```

Ovdje tvoja funkcija mora vratiti -197. Primjetite da rješenje može biti negativno.

Ocjenjivač probnih primjera

Input je u formatu:

- linija 1: 3 broja vrijendosti od N, M i C.
- linije 2-(N+1): M brojevi vrijednosti od $A_{i,j}$.

Output je u formatu:

• linija 1: jedan broj - povratna vrijednost funkcije.