Elementary Linear Algebra Reference

Nathan Warner

Computer Science Northern Illinois University United States

Contents

1	Solutions to linear systems	2
2	Linearity	3
3	Transpose	4
4	Matrix algebra	5

Solutions to linear systems

- Possible solutions to a linear system of two unknowns: The linear system can have a unique solution, no solution, or infinitely many solutions.
- Does the solution set form a line, plane, hyperplane, or something else?: The formation of the solution set depends on the number of free variables,
 - No free variables (one unique solution): Intersects at a point
 - One free variable (Uncountable solutions): Solution set is a line (1-dimensional subspace)
 - Two free variable (Uncountable solutions): Solution set forms a plane (2-dimensional subspace)
 - Three free variable (Uncountable solutions): Solution set is a three dimensional subspace (In \mathbb{R}^3 it would be the whole space)
 - k free variables: Solution set is a k-dimensional subspace in \mathbb{R}^n

Note: A k-dimensional subspace in \mathbb{R}^n means that the solution set spans a k-dimensional space within the n-dimensional ambient space \mathbb{R}^n .

• Determine if three planes intersect at a unique point: For this, we find all three normal vectors $\vec{\mathbf{n}}_1$, $\vec{\mathbf{n}}_2$, and $\vec{\mathbf{n}}_3$. Then we find the triple scalar product, that is

$$\vec{\mathbf{n}}_1 \cdot (\vec{\mathbf{n}}_2 \times \vec{\mathbf{n}}_3).$$

If this value is non-zero, we have intersection at a unique point. If the value is zero, we either have no intersection, or intersection at a line.

Linearity

- The properties of linear equations: A function $f: \mathbb{R}^n \to \mathbb{R}$ representing a linear equation is linear, meaning it satisfies the following properties for all vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and all scalars $c \in \mathbb{R}$:
 - Additivity: $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$
 - Homogeneity of Degree 1: $f(c\mathbf{x}) = cf(\mathbf{x})$

It follows from this that $f(c\mathbf{x})$, when c=0 implies $f(0\mathbf{x})=0$ $f(\mathbf{x})=0$. Thus, we add the property

- Scale by zero: f(0) = 0

These properties define a linear function and imply that the graph of a linear equation is a straight line (in 2D) or a plane (in 3D).

Matrix algebra

Transpose