Лабораторная работа №4

Ишков Денис Олегович, ИУ5-24М, 2021г.

Тема: Создание рекомендательной модели

Цель: Изучение разработки рекомендательных моделей.

Требования к отчету: Отчет по лабораторной работе должен содержать:

- титульный лист;
- описание задания;
- текст программы;
- экранные формы с примерами выполнения программы.

Задание:

- Выбрать произвольный набор данных (датасет), предназначенный для построения рекомендательных моделей.
- Опираясь на материалы лекции, сформировать рекомендации для одного пользователя (объекта) двумя произвольными способами.
- Сравнить полученные рекомендации (если это возможно, то с применением метрик).

Датасет

Игры Steam

https://www.kaggle.com/tamber/steam-video-games/data (https://www.kaggle.com/tamber/steam-video-games/data)

In [1]:

загрузка датасета

```
!pip install wldhx.yadisk-direct
!curl -L $(yadisk-direct https://disk.yandex.ru/d/pImR-9hIQst3fg) -o steam.csv
Collecting wldhx.yadisk-direct
 Downloading wldhx.yadisk_direct-0.0.6-py3-none-any.whl (4.5 kB)
Requirement already satisfied: requests in /opt/conda/lib/python3.7/site-p
ackages (from wldhx.yadisk-direct) (2.25.1)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/pyt
hon3.7/site-packages (from requests->wldhx.yadisk-direct) (1.26.4)
Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/si
te-packages (from requests->wldhx.yadisk-direct) (2.10)
Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python
3.7/site-packages (from requests->wldhx.yadisk-direct) (4.0.0)
Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python
3.7/site-packages (from requests->wldhx.yadisk-direct) (2020.12.5)
Installing collected packages: wldhx.yadisk-direct
Successfully installed wldhx.yadisk-direct-0.0.6
            % Received % Xferd Average Speed
 % Total
                                                        Time
                                                                 Time Cu
rrent
                                Dload Upload
                                                Total
                                                        Spent
                                                                 Left Sp
eed
 0
                                           0 --:--
                                                       0:00:01 --:--
100 8748k 100 8748k
                       0
                                           0 0:00:06 0:00:06 --:-- 1
                             0 1278k
804k
```

Импорт нужных библиотек

In [2]:

```
import nltk
import spacy
import numpy as np
from tqdm.notebook import tqdm
nltk.download('punkt')
from nltk import tokenize
import re
import pandas as pd
from sklearn.model_selection import train_test_split
import nltk
import string
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import SnowballStemmer
from sklearn.pipeline import Pipeline
from sklearn.linear model import LogisticRegression
from sklearn.naive_bayes import ComplementNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics import precision_score, recall_score, precision_recall_curve, clas
sification_report
from matplotlib import pyplot as plt
from sklearn.metrics import plot precision recall curve
import numpy as np
from sklearn.model_selection import GridSearchCV
```

[nltk_data] Downloading package punkt to /usr/share/nltk_data...
[nltk_data] Package punkt is already up-to-date!

Анализ и обработка выбросов в данных

```
In [3]:
```

```
df = pd.read_csv("steam.csv", sep=",", header=None, index_col=False)
df.columns = ['user_id', 'game', 'behaviour', 'hours', ' ']
print(df.info())
print(df.user_id.unique().size, df.game.unique().size)
df.head()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 5 columns):
   Column
               Non-Null Count
                                Dtype
   user id 200000 non-null int64
 0
 1
    game
               200000 non-null object
    behaviour 200000 non-null object
 2
 3
    hours
               200000 non-null float64
 4
               200000 non-null int64
dtypes: float64(1), int64(2), object(2)
memory usage: 7.6+ MB
None
```

Out[3]:

12393 5155

	user_id	game	behaviour	hours	
0	151603712	The Elder Scrolls V Skyrim	purchase	1.0	0
1	151603712	The Elder Scrolls V Skyrim	play	273.0	0
2	151603712	Fallout 4	purchase	1.0	0
3	151603712	Fallout 4	play	87.0	0
4	151603712	Spore	purchase	1.0	0

In [4]:

```
df['game_id'] = df.game.factorize(sort=True)[0]
df[df.game_id==0]
```

Out[4]:

	user_id	game	behaviour	hours		game_id
63500	46055854	007 Legends	purchase	1.0	0	0
63501	46055854	007 Legends	play	0.7	0	0

In [5]:

```
ndf = df[df.behaviour=='play'].copy()
ndf.shape
```

Out[5]:

(70489, 6)

Составление матрицы оценок

```
In [6]:
```

```
ndf[ndf.user_id==ndf.user_id.unique()[-1]]
```

Out[6]:

	user_id	game	behaviour	hours		game_id
199969	128470551	The Binding of Isaac Rebirth	play	291.0	0	4314
199971	128470551	Path of Exile	play	42.0	0	3114
199973	128470551	Arma 2 DayZ Mod	play	22.0	0	324
199975	128470551	Antichamber	play	16.8	0	292
199977	128470551	Risk of Rain	play	15.4	0	3555
199979	128470551	OlliOlli	play	10.8	0	3001
199981	128470551	Hammerwatch	play	9.1	0	2087
199983	128470551	Torchlight II	play	2.9	0	4658
199985	128470551	Nether	play	2.8	0	2916
199987	128470551	Rogue Legacy	play	2.6	0	3576
199989	128470551	Mortal Kombat Komplete Edition	play	2.5	0	2778
199991	128470551	Fallen Earth	play	2.4	0	1662
199993	128470551	Magic Duels	play	2.2	0	2602
199995	128470551	Titan Souls	play	1.5	0	4585
199997	128470551	Grand Theft Auto Vice City	play	1.5	0	1979
199999	128470551	RUSH	play	1.4	0	3413

In [7]:

```
ndf['user_id_'] = ndf.user_id.factorize(sort=True)[0]
```

In [8]:

```
user_item = np.zeros((ndf.user_id_.max()+1, ndf.game_id.max()+1,))
for user_id in tqdm(ndf.user_id_.unique()):
    pndf = ndf[ndf.user_id_==user_id].copy()
    hrs = np.log(pndf.hours.values)
    for i, game_id in enumerate(pndf.game_id.to_list()):
        user_item[user_id][game_id] = hrs[i]
# normalization
mean_vector = np.mean(user_item, axis=0)
std_vector = np.std(user_item, axis=0) + 1e-9
user_item -= np.mean(user_item, axis=0)
user_item /= std_vector
user_item.shape
```

Out[8]:

(11350, 5155)

```
In [10]:
    user_item.max()

Out[10]:
106.53168384357583

In [ ]:
    from scipy.sparse import csr_matrix
    sparse = csr_matrix(user_item)

In [11]:
    np.where(user_item[0] > 0)[0].shape

Out[11]:
    (976,)
```

Метод пользователь-пользователь

In [24]:

```
from sklearn.metrics.pairwise import cosine similarity, euclidean distances, manhattan
distances
def get_top_games(user_id, k=15, top_n=5,
                 rates_matrix=user_item, exclude_played=True,
                 verbose=True):
    goods_score = rates_matrix[np.argsort(cosine_similarity(rates_matrix[user_id:user_i
d+1],
                                                           rates_matrix))[0, -k-1:-1]
[::-1]].mean(axis=0)
    goods = np.where(goods_score>0)[0]
    if exclude played:
        indexes = list(set(goods).difference(np.where(rates_matrix[user_id]>0)[0]))
        indexes = list(goods)
    count = 1
    results = []
    for index in sorted(indexes, key=lambda x: -goods score[x]):
        if verbose:
           print(goods_score[index], ndf[ndf.game_id==index].game.iloc[0])
       count += 1
        results.append(index)
        if count > top n:
           break
    if verbose:
        print('-'*50)
    return results
get_top_games(0, 15, 5, exclude_played=False)
get_top_games(0, 15, 5, exclude_played=True)
6.599803094437032 Cities Skylines
2.1542405144013883 Deus Ex Human Revolution
0.5087139251983651 Fallout
0.3444463355920516 Alien Swarm
0.3078075587381963 Fallout 4
_____
0.5087139251983651 Fallout
0.3078075587381963 Fallout 4
0.2583905455835915 F.E.A.R. 3
0.2528486561522048 Counter-Strike Source
0.20817456181103064 Team Fortress 2
______
Out[24]:
[1671, 1678, 1591, 984, 4257]
```

In [37]:

```
# Проверка на отложенной выборке

uid = 1

n = 15

K = 10

print(np.argsort(user_item[uid])[::-1][:K])

print(user_item[uid, np.argsort(user_item[uid])[::-1][:K]])

print(np.percentile(user_item[uid, user_item[uid]>0], 50))

goods = get_top_games(uid, n, K, verbose=False, exclude_played=False)

print(goods)

print(user_item[uid, goods])

[1663 4545 743 3544 442 736 736 737 740 978]
```

```
[4663 4545 743 3544 442 736 726 737 740 978]

[25.03365756 24.82684366 22.82779402 17.87924762 12.78805697 9.36332888 8.80903683 7.57280814 7.32021499 6.98103241]

0.009386877786615625

[743, 4663, 4545, 737, 727, 736, 726, 741, 4024, 1894]

[22.82779402 25.03365756 24.82684366 7.57280814 5.28532037 9.36332888 8.80903683 4.40606757 -0.05968664 -0.20549455]
```

```
In [61]:
```

```
def p K(scores):
    return (scores > 0).sum()/scores.size
def ap K(scores):
    return (np.cumsum(scores > 0)/np.arange(1, scores.size+1)).sum()/scores.size
def map_K(matrix, K, count=1000):
    ap = []
    ids = np.random.permutation(np.arange(matrix.shape[0]))[:count]
    for uid in tqdm(ids):
        goods = get_top_games(uid, 15, K, rates_matrix=matrix,
                              verbose=False, exclude played=False)
        ap.append(ap_K(matrix[uid, goods]))
    return np.mean(ap), ap
map_5, aps = map_K(user_item, 5, count=250)
print('map@5: ', map_5)
map_10, aps = map_K(user_item, 10, count=250)
print('map@10: ', map_10)
map_25, aps = map_K(user_item, 25, count=250)
print('map@25: ', map_25)
plt.hist(aps, bins=15)
```

```
map@5: 0.8377733333333335
```

map@10: 0.8078209523809523

map@25: 0.7547852234850416

Out[61]:

Метод на основе сингулярного разложения

In [62]:

```
%%time
U, S, VT = np.linalg.svd(user_item.T)
V = VT.T
```

CPU times: user 8min 28s, sys: 27.1 s, total: 8min 55s Wall time: 2min 19s

In [63]:

```
Sigma = np.diag(S)
Sigma.shape
```

Out[63]:

(5155, 5155)

In [176]:

```
# Используем 50 первых сингулярных значения
r = 50
Ur = U[:, :r]
Sr = Sigma[:r, :r]
Vr = V[:, :r]
```

In [195]:

```
def get top games svd(user id, k=15, top n=5,
                  rates_matrix=user_item, exclude_played=True,
                  verbose=True):
    # Вычисляем косинусную близость между текущим пользователем
    # и остальными пользователями
   test_user_result = np.mat(rates_matrix[user_id:user_id+1]) * Ur * np.linalg.inv(Sr)
    test_user_result = np.array(test_user_result[0,:])
    cos_sim = cosine_similarity(Vr, test_user_result.reshape(1, -1))
    # Преобразуем размерность массива
    cos sim list = cos sim.reshape(-1, cos sim.shape[0])[0]
    # Находим наиболее близкого пользователя
    recommended user id = np.argsort(-cos sim list)[1:k+1]
    goods_score = rates_matrix[recommended_user_id].mean(axis=0)
    goods = np.where(goods_score>0)[0]
    if exclude_played:
        indexes = list(set(goods).difference(np.where(rates matrix[user id]>0)[0]))
    else:
        indexes = list(goods)
    count = 1
    results = []
    for index in sorted(indexes, key=lambda x: -goods_score[x]):
        if verbose:
            print(goods score[index], ndf[ndf.game id==index].game.iloc[0])
        count += 1
        results.append(index)
        if count > top_n:
            break
    if verbose:
        print('-'*50)
    return results
get_top_games_svd(1, 15, 10, exclude_played=False)
get_top_games_svd(1, 15, 10, exclude_played=True)
```

- 8.499555713752548 Call of Duty Ghosts
- 7.093351136032569 FIFA Manager 11
- 7.093350779897767 Kings of Kung Fu
- 6.217725798087599 Call of Duty Black Ops II
- 5.708438581580046 Act of Aggression
- 5.343728421991114 Empire Total War
- 5.033951082394444 R.U.S.E
- 4.8218532854862675 Call of Duty Advanced Warfare
- 4.578137919157043 Silent Hunter 5 Battle of the Atlantic
- 4.457495346219281 Napoleon Total War

- 8.499555713752548 Call of Duty Ghosts
- 7.093351136032569 FIFA Manager 11
- 7.093350779897767 Kings of Kung Fu
- 6.217725798087599 Call of Duty Black Ops II
- 5.708438581580046 Act of Aggression
- 5.343728421991114 Empire Total War
- 5.033951082394444 R.U.S.E
- 4.8218532854862675 Call of Duty Advanced Warfare
- 4.578137919157043 Silent Hunter 5 Battle of the Atlantic
- 4.457495346219281 Napoleon Total War

Out[195]:

[734, 1608, 2408, 730, 104, 1499, 3355, 724, 3838, 2896]

In [193]:

map@5: 0.677894666666666

map@10: 0.6755319206349206

map@25: 0.7006449681622653

Out[193]:

Выводы

	KNN	SVD
map@5	0.8377	0.6779
map@10	0.8078	0.6755
map@25	0.7548	0.7006
скорость, рек/с	2.28	94.29

SVD разложение уступает по качеству методу рекомендаций пользователь-пользователь на \sim 15%, однако быстрее последнего в \sim 40 раз