Cadeias de Markov

2024-2025

Problema Exemplo 1

- Suponhamos que em cada dia que têm aulas de MPEI acordam e decidem se vêm ou não à aula
- Se vieram à aula anterior, a probabilidade de virem é 70%
- se faltaram à anterior, essa probabilidade é 80%
- Algumas questões:
 - Se vieram à aula esta segunda, qual a probabilidade de virem na aula de SEGUNDA da próxima semana ?
 - Assumindo que o semestre tem duração infinita (que horror!), qual a percentagem aproximada de aulas a que estariam presentes ?

Problema Exemplo 2

- Dividir a turma em 3 grupos A, B e C no início do semestre
- No final de cada aula:
 - 1/3 do grupo A vai para o B e outro 1/3 do grupo
 A vai para o grupo C
 - ¼ do grupo B vai para A e ¼ de B vai para C
 - −½ do grupo C vai para o grupo B

Como ficarão os grupos ao fim de n aulas ?

Exemplo 3 – "Pub Crawl"

Bares junto a uma conhecida Universidade:

Muitas áreas de aplicação

 Muitas vezes estamos interessados na transição de algo entre certos estados

Exemplos:

- Movimento de pessoas entre regiões
- Estado do tempo
- Movimento entre as posições num jogo de Monopólio
- Pontuação ao longo de um jogo
- Estado de Filas de atendimento

Processos estocásticos

Estendem o conceito de variável aleatória

 O processo estocástico mapeia o evento para números diferentes em tempos diferentes

- O que implica que em lugar de termos um número X(s) temos X(t,s)
 - Sendo $t \in T$ geralmente um conjunto de tempos

Processos estocásticos

• 3 realizações de um processo estocástico

- Se fixarmos s, X(t) é uma função real do tempo
 - X(t,s) pode então ser vista como uma colecção de funções no tempo
- Se fixarmos t temos uma função X(s) que depende apenas de s, ou seja uma variável aleatória
- Um nome alternativo é processos aleatórios

Classificação de processos estocásticos

- Podem ser classificados segundo t e os valores que pode assumir (estados do processo)
- Quanto ao tempo
 - Tempo contínuo:
 - Se tempo é um intervalo contínuo
 - Tempo discreto:
 - Se o tempo é um conjunto contável
 - Também chamada sequência aleatória e representada por X[n]
- Quanto ao conjunto de estados (E):
 - Contínuo
 - Discreto

Definição

 Um processo de Markov (de 1º ordem) é um processo estocástico em que a probabilidade de o sistema estar num estado específico num determinado período de observação depende apenas do seu estado no período de observação imediatamente precedente

O futuro apenas depende do presente e não do passado

Tipos de processos de Markov

Discretas/contínuas

		Espaço de estados	
		Discreto	Contínuo
Tempo	Discreto	Cadeia de Markov tempo discreto	Processo de Markov em tempo discreto
	Contínuo	Cadeia de Markov tempo contínuo	Processo de Markov em tempo contínuo

 Focaremos a nossa atenção em cadeias de Markov de tempo discreto

Cadeias de Markov discretas

• X_n : estado após n transições

Pertence a um conjunto finito,

• Em geral {1, 2, ..., m}

 $-X_0$ é dado ou aleatório

Questões comuns relativas a cadeias de Markov

 Qual a probabilidade de transição entre dois estados em n observações ?

Existe algum equilíbrio ?

Existe uma estabilidade a longo prazo ?

Propriedade de Markov

Probabilidade de transição do estado i para o estado j:

•
$$p_{ji} = P(X_{n+1} = j | X_n = i, X_{n-1} = x_{n-1}, ..., X_0 = x_0)$$

$$=P(X_{n+1}=j|X_n=i)$$

- Quando estas probabilidades p_{ji} não dependem de n a cadeia diz-se homogénea
 - Focaremos a nossa atenção neste tipo de cadeias de Markov

Especificação de uma cadeia

Identificar os estados possíveis

Identificar as transições possíveis

Identificar as probabilidades de transição

Aplicando ao exemplo 1 – faltar ou não faltar à aula

Estados ?

Transições ?

Probabilidades de transição ?

Aplicando ao exemplo 1 – faltar ou não faltar à aula

- Estados ?
 - 2: {faltar, não faltar}

 Probabilidades de transição ?

- Transições ?
 - Faltar-> não faltar
 - Não faltar -> faltar
 - Faltar -> faltar
 - Não faltar -> não faltar

- Faltar-> não faltar : 0,8
- Não faltar -> faltar : 0,3
- Faltar -> faltar : 0,2
- Não faltar -> não faltar: 0,7

Matriz de transição

- É usual representar as probabilidades de transição através de uma matriz, chamada de matriz de transição
- Tendo o sistema n estados possíveis, para cada par i, j fazemos t_{ji} igual à probabilidade de mudar do estado i para o estado j.
- A matriz T cujo valor na posição linha = j, coluna = i é t_{ji} é a matriz de transição

— Nota: Alguns autores adoptam t_{ij} como a probabilidade de mudar do estado i para o estado j MPEI 2024-2025 LEI/LECI 17

•
$$T = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix}$$

• Considerando estado 1 "não faltar", temos

•
$$T = \begin{cases} n\tilde{a}o \ faltar \rightarrow \begin{pmatrix} 0.7 & 0.8 \\ 0.3 & 0.2 \end{pmatrix}$$

$$A \quad B \quad C \\ T = \frac{A}{B} \quad ? \quad ? \quad ? \\ C \quad ? \quad ? \quad ? \quad ?$$

$$A B C$$
 $T = A 1/3$
 $B 1/3$
 $C 1/3$

Futuro Estado

$$T = \begin{bmatrix} A & B & C \\ A & 1/3 & 1/4 & 0 \\ B & 1/3 & 1/2 & 1/2 \\ C & 1/3 & 1/4 & 1/2 \end{bmatrix}$$

Futuro Estado

Matriz T é estocástica

 A matriz de transição reflecte propriedades importantes das probabilidades:

- Todas as entradas são não-negativas
- Os valores em cada COLUNA somados dão sempre resultado 1
- Devido a estas propriedades a matriz é denominada de matriz estocástica

Representação gráfica da cadeia

Apropriada e possível para número de estados pequeno

- Nós: representam todos os estados
- Setas: para todas as transições permitidas (one-step)
 - Ou seja, seta entre i e j apenas de $p_{ii}>0$

Representação gráfica da cadeia

• Exemplo:

Simulação / Visualização dinâmica

- Estão disponíveis online formas de visualizar as transições entre estados ao longo do tempo ...
- Um desses exemplos é Markov Chains A visual explanation by <u>Victor Powell</u>
 - http://setosa.io/blog/2014/07/26/markovchains/index.html

Que inclui:

- http://setosa.io/markov/index.html#%7B%22tm%22%3A% 5B%5B0.5%2C0.5%5D%2C%5B0.5%2C0.5%5D%5D%7D
- Para usar precisamos apenas de introduzir a matriz T
 - Que define o número de estados, quais as transições possíveis e as probabilidades associadas a essas transições

Estado da cadeia num determinado instante

• O estado de uma cadeia de Markov com n estados no tempo (time step) k é dado pelo vector estado

$$\mathbf{x}^{(k)} = \begin{pmatrix} p_1^{(k)} \\ p_2^{(k)} \\ p_n^{(k)} \end{pmatrix}$$

• Onde $p_j^{(k)}$ é a probabilidade de o sistema estar no estado j no instante de tempo k

Vector estado/probabilidade

- Considerando o exemplo 1:
 - Suponhamos que após 10 aulas a probabilidade de faltar e não faltar são iguais
 - Então o vector representativo do estado (state vector) seria:

$$\mathbf{x}^{(10)} = \begin{pmatrix} 0,5\\0,5 \end{pmatrix}$$

- Também se designa por vector de probabilidade
 - Todos elementos não-negativos
 - Soma dos elementos igual a um

Exemplo 2

- Supondo que começávamos com:
 - 20 estudantes no grupo A e
 - 10 estudantes nos outros dois grupos

O vector relativo ao estado inicial seria:

$$\mathbf{x}^{(0)} = \begin{pmatrix} 0,5\\0,25\\0,25 \end{pmatrix}$$

Vector estado após uma transição

• Como obter $\mathbf{x}^{(k+1)}$?

• O vector de estado $\mathbf{x}^{(k+1)}$ no período de observação k+1 pode ser determinado a partir do vector $\mathbf{x}^{(k)}$ através de:

$$\mathbf{x}^{(k+1)} = T\mathbf{x}^{(k)}$$

- Que resulta da probabilidade condicional:
- P(estado j em t = k + 1)

$$= \sum_{i=1}^{n} P(transição do estado i para o j)P(estado i em t = k)$$

Exemplo de aplicação – Exemplo 1

 De que forma depende a probabilidade de ir à aula seguinte da probabilidade de estar na aula actual ?

Estado após múltiplas transições

- Ataquemos agora problemas do "tipo":
 - Qual a probabilidade de transição entre dois estados em n observações/transições?
- Exemplo 1:
 - Qual a probabilidade dos que estiveram na aula de uma segunda virem à aula na segunda seguinte
 - Assumindo as probabilidades do nosso exemplo!
 - Tendo em conta que temos aulas segunda e quarta (TP1).

Probabilidade em n transições

- Definindo a transição em n passos p_{ji}^{n} como a probabilidade de um processo no estado i se encontrar no estado j após n transições adicionais. Ou seja:
- $p_{ji}^n = P(X_{n+k} = j | X_k = i), n \ge 0, i, j \ge 0$
- Obviamente $p_{ji}^{\ 1} = p_{ji}$
- E para n > 1?

p_{ji}^{n}

• É fácil de compreender se tivermos em conta que $p_{ki}^{n}p_{jk}^{m}$ representa a probabilidade de:

- O processo ir do estado i para o estado j° em n+m transições..

– Através de um caminho que o leva ao estado k na transição n

• Logo, somando para todos os estados intermédios k obtém-se a probabilidade de estar no estado j ao fim de n+m transições

Equações de Chapman-Kolmogorov

 As equações de Chapman-Kolmogorov permitem calcular estas probabilidades

$$p_{ji}^{n+m} = \sum_{k} p_{ki}^{n} p_{jk}^{m} \quad \forall n, m \geq 0, \forall i, j$$

Em termos de matrizes

 Se usarmos T⁽ⁿ⁾ para representar a matriz com as probabilidades de n transições, a equação anterior transforma-se em:

$$\mathbf{T}^{(n+m)} = \mathbf{T}^{(n)} \cdot \mathbf{T}^{(m)}$$

Em que o "." significa multiplicação de matrizes

Desta equação obtém-se facilmente:

$$T^{(2)} = T^{(1+1)} = T \cdot T = T^2$$

- E por indução $\mathbf{T}^{(n)} = \mathbf{T}^{(n-1+1)} = \mathbf{T}^{n-1}$, $\mathbf{T} = \mathbf{T}^n$
 - Ou seja, a matriz de transição relativa a n transições pode ser obtida multiplicando T por si própria n vezes

Aplicação ao Exemplo 1

 Voltando a uma questão colocada no início da aula ...

- Se vieram à aula esta segunda, qual a probabilidade de virem na aula de SEGUNDA da próxima semana ?
- Solução:
- Temos $\mathbf{x}^{(0)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, si
- Pretendemos $x^{(2)}$

, significando "não faltar"

, 0= "esta segunda"

• • •

•
$$\mathbf{x}^{(2)} = T\mathbf{x}^{(1)} = T(T\mathbf{x}^{(0)}) = T^2\mathbf{x}^{(0)}$$

$$=\begin{pmatrix} 0.7 & 0.8 \\ 0.3 & 0.2 \end{pmatrix}^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.7 & 0.8 \\ 0.3 & 0.2 \end{pmatrix} \begin{pmatrix} 0.7 \\ 0.3 \end{pmatrix} = \begin{pmatrix} 0.73 \\ 0.27 \end{pmatrix}$$

 Ou seja probabilidade igual a 0.73 de virem na próxima Segunda

Terminologia

Tipos de estados

Acessibilidade de um estado

 Possibilidade de ir do estado i para o estado j (existe caminho na cadeia de i para j).

Estados comunicantes

 Dois estados comunicam se ambos são acessíveis a partir do outro.

 Um sistema é não redutível (irreducible) se todos os estados comunicam

 Classe: conjunto de estados que comunicam entre si

Estado recorrente

- Um estado s_i é um **estado recorrente** se o sistema puder sempre voltar a ele
 - depois de sair dele

De uma forma mais formal:

```
s_i é um estado recorrente se, para todos os estados s_j, a existência de um inteiro r_j tal que p_{ji}^{(r_j)} > 0 implica que existe um inteiro r_i tal que p_{ij}^{(r_i)} > 0
```

Um estado não recorrente é transiente

Estados recorrentes?

Os 3 estados são recorrentes

Estado transiente

- Um estado é transiente se existe um outro estado qualquer para o qual o processo de Markov pode transitar, mas do qual o processo não pode retornar
- Ou seja, se existe um estado s_j e um inteiro l tal que $p_{ji}^{(l)} \neq 0$ e $p_{ij}^{(r)} = 0$ para r = 0,1,2,...
- A probabilidade destes estados tende para zero quando n tende para infinito
 - Pois apenas são visitados um número finito de vezes

Estado periódico

 Um estado é periódico se apenas se pode regressar a ele após um número fixo de transições superior a 1 (ou múltiplos desse número)

Formalizando:

– Um estado recorrente s_i diz-se **periódico** se existe um inteiro c>1 tal que $p_{ii}^{(r)}$ é igual a zero para todos os valores de r excepto r=c,2c,3c,...

Estado periódico

(1) (1) (1) (1)

Todos estados visitados em múltiplos de 3 iterações

Todos estados visitados em múltiplos de 3 iterações

- Um estado não periódico é aperiódico
 - Como era de esperar!

Assuntos principais até ao momento

- Noção de processo estocástico
- Cadeias de Markov
- Propriedade de Markov
- Matriz de transição T
- Representação gráfica
- $\mathbf{T}^{(n)}$

Demos

Wolfram:

- Finite-State, Discrete-Time Markov Chains
 - http://demonstrations.wolfram.com/ATwoStateDiscret eTimeMarkovChain/

 http://demonstrations.wolfram.com/FiniteStateDiscret eTimeMarkovChains/

Continuamos para a semana...

O que acontece ao fim de muitas transições?

Potências de T quando $n \to \infty$

- Exemplo 2 (3 grupos de alunos):
- Vejamos o comportamento de T^n ao aumentar n...

$$T = \begin{pmatrix} 0.333333 & 0.25 & 0. \\ 0.333333 & 0.5 & 0.5 \\ 0.333333 & 0.25 & 0.5 \end{pmatrix}$$

$$T^{4} = \begin{pmatrix} 0.17554 & 0.177662 & 0.175347 \\ 0.470679 & 0.469329 & 0.472222 \\ 0.353781 & 0.353009 & 0.352431 \end{pmatrix}$$

$$T^{2} = \begin{pmatrix} 0.194444 & 0.208333 & 0.125 \\ 0.444444 & 0.458333 & 0.5 \\ 0.361111 & 0.333333 & 0.375 \end{pmatrix}$$

$$T^{5} = \begin{pmatrix} 0.176183 & 0.176553 & 0.176505 \\ 0.470743 & 0.47039 & 0.470775 \\ 0.353074 & 0.353057 & 0.35272 \end{pmatrix}$$

$$T^{6} = \begin{pmatrix} 0.176414 & 0.176448 & 0.176529 \\ 0.470636 & 0.470575 & 0.470583 \\ 0.35295 & 0.352977 & 0.352889 \end{pmatrix}$$

Continuando... (em Matlab)

```
% n =10
```

Tn =

0.1765 0.1765 0.1765

0.4706 0.4706 0.4706

0.3529 0.3529 0.3529

% n=100

Tn =

0.1765 0.1765 0.1765

0.4706 0.4706 0.4706

0.3529 0.3529 0.3529

Exemplo 1 (faltar/não faltar)

```
T=[0.7 \ 0.8]
   0.30.2
Tn= T;
pij= Tn(:);
for n=2:10
  Tn = T*Tn;
  pij=[ pij Tn(:)];
  plot(pij')
  drawnow
end
Tn
```


Questões?

• Converge ?

• Para quê?

Equilíbrio

- As cadeias dos nossos exemplos atingem um equilíbrio.
- Quando isso acontece a probabilidade de qualquer estado torna-se constante
 - independentemente do passo (step) e das condições iniciais
- Para analisar essa situação é necessário considerar um certo tipo de cadeias de Markov...

$$\lim_{n\to\infty}T^n$$

- Se T é a matriz de transição de um processo de Markov regular então:
- $\lim_{n\to\infty} T^n$ é a matriz:

$$A = \begin{bmatrix} u_1 & u_1 & \cdots & u_1 \\ u_2 & u_2 & \cdots & u_2 \\ \vdots & \vdots & \ddots & \vdots \\ u_N & u_N & \cdots & u_N \end{bmatrix}$$

Com todas as colunas idênticas

 Cada coluna u é um vetor probabilidade em que todas as componentes são positivas

Vector estado estacionário (steady-stade vector)

- Sendo T uma matriz de transição regular e A e $\mathbf u$ o resultado de $\lim_{n\to\infty}T^n$ (slide anterior), demonstra-se que:
- a) Para qualquer vector de probabilidade \mathbf{x} , $T^n \mathbf{x} \rightarrow \mathbf{u}$ quando $n \rightarrow \infty$ Sendo \mathbf{u} o vector estado estacionário (steady-state vector)
- b) \mathbf{u} é o único vector de probabilidade que satisfaz a equação matricial $\mathbf{T}\mathbf{u}=\mathbf{u}$
- c) $\lim_{\substack{n\to\infty\\ \text{visitas ao estado } i \text{ em } n}} \left(\frac{\eta(i,n)}{n}\right) = u(i)$, em que $\eta(i,n)$ é o número de visitas ao estado i em n passos (transições)

Cálculo do vector estado estacionário

- Sabemos que o vector correspondente ao estado estacionário é único.
- Usamos a equação que ele satisfaz para o calcular: $T\mathbf{u} = \mathbf{u}$

• Ou, na forma matricial, $(\mathbf{T} - \mathbf{I})\mathbf{u} = 0$

Exemplo 1 (aulas)

• Tu = u

$$\bullet \begin{bmatrix} 0,7 & 0,8 \\ 0,3 & 0,2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\begin{cases}
\frac{7}{10}u_1 + \frac{8}{10}u_2 = u_1 \\
\frac{3}{10}u_1 + \frac{2}{10}u_2 = u_2
\end{cases} = \begin{cases}
\frac{-3}{10}u_1 + \frac{8}{10}u_2 = 0 \\
\frac{3}{10}u_1 + \frac{-8}{10}u_2 = 0 \\
u_1 + u_2 = 1
\end{cases}$$

• ...

Em Matlab

```
Uma possível solução:
% matriz de transição
T=[7 8; 3 2]/10
% (T-I)u aumentado com
u1+u2
M=[T-eye(2);
 ones(1,2)]
%
x=[0\ 0\ 1]'
% resolver para obter u
u=M\x
```

Resultado:

0.7273

0.2727

Ou seja aprox. 72 % de probabilidade de não faltarem

Cadeias com estados absorventes

Estado absorvente

- Um estado absorvente é um estado do qual não é possível sair
 - ou seja transitar para outro estado

- Os estados 0 e 4 são absorventes
- Uma cadeia é absorvente se tiver pelo menos um estado absorvente

Exemplo: http://demonstrations.wolfram.com/AbsorbingMarkovChain/

63

7/11/2024 MPEI 2024-2025 LEI/LECI

Forma canónica da Matriz de Transição

- Se numa matriz de transição agruparmos todos os estados absorventes obtemos a denominada forma canónica (standard form)
- O mais usual é colocar primeiro os não absorventes e depois os absorventes
- A forma canónica é muito útil para determinar as matrizes em situações limite de cadeias de Markov absorventes
 - Como veremos...

Forma canónica

 Rearranjar os estados da matriz T por forma a que os estados transientes apareçam primeiro

QeR

 A sub-matriz Q descreve probabilidades de transição de estados não-absorventes para estados não-absorventes

 R contém as probabilidades de transição de não-absorventes para absorventes

Exemplo

Diagrama de transição

- Matriz de transição (não canónica):
 - Estados 0, 1, 2 ...

$$T = \begin{bmatrix} 1 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1 \end{bmatrix}$$

Forma canónica

$$T = \begin{bmatrix} 1 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 1 \end{bmatrix}$$

27/11/2024

MPEI 2024-2025 LEI/LECI

68

Situação limite

Situação limite

 Como é óbvio a cadeia irá acabar por ficar indefinidamente num dos estados absorventes!

- Mas mesmo assim existem questões relevantes:
 - Qual o estado absovervente mais provável quando temos vários ?
 - Dado um estado inicial, qual o número esperado de transições até ocorrer absorção ?
 - Dado um estado inicial, qual a probabilidade de ser absorvido por um estado absorvente em particular ?

Potências de T

 Multiplicando repetidamente a matriz de transição na sua forma canónica vê-se que:

$$T^n = \begin{bmatrix} Q^n & 0 \\ X & I \end{bmatrix}$$

• A expressão exacta de X não tem interesse, mas Q e Q^n são importantes

Q^n

• A matriz Q^n representa a probabilidade de permanecer em estados não-absorventes após n passos

• $Q^n \to 0$ quando $n \to \infty$

Matriz fundamental

Multiplicando verifica-se que

$$(I-Q)(I+Q+Q^2+\cdots+Q^n) = I-Q^{n+1}$$

• Fazendo $n \to \infty$ temos

$$(I - Q)(I + Q + Q^2 + \cdots) = I$$

– porque Q^n → 0

Isto mostra que

$$(I - Q)^{-1} = I + Q + Q^2 + Q^3 + \cdots$$

Matriz Fundamental

$$F = (I - Q)^{-1}$$

é a matriz fundamental do percurso aleatório

Interpretação de F

• Sejam $X_k(ji)$ as variáveis aleatórias definidas por:

•
$$X_k(ji) = \begin{cases} 1, se \ estiver \ em \ j \ ap\'os \ k \ passos, \\ partindo \ de \ i \\ 0, caso \ contr\'ario \end{cases}$$

- A soma $X_0(ji) + X_1(ji) + \cdots + X_n(ji)$ representa o número de visitas ao estado j, partindo do estado i, ao fim de n passos.
- O seu valor médio é dado por

$$E[X_0(ji) + X_1(ji) + \dots + X_n(ji)] = \sum_{k=0}^{n} E[X_k(ji)]$$

Lembrar média de soma de variáveis!

Interpretação de F (continuação)

- Mas $E[X_k(ji)] = 1 \times p + 0 \times (1 p)$ como em qualquer variável de Bernoulli
- E p designa a probabilidade de atingir o estado j após k passos, partindo de i
 - Ou seja exactamente o valor da coluna i e linha j de Q^k .
- Logo:

$$E[X_0(ji) + X_1(ji) + \dots + X_n(ji)] = \sum_{k=0}^{n} Q^k(ji)$$

Interpretação de F (continuação)

- Os elementos de $I+Q+Q^2+Q^3+\cdots+Q^n$ exprimem portanto o número médio de visitas ao estado j partindo do estado i em n passos
- Logo, a matriz fundamental F que é o limite dessa quantidade quando $n \to \infty$ representa o número médio de visitas a cada estado antes da absorção
- F_{ji} dá-nos o valor esperado para o número de vezes que um processo se encontra no estado s_j se começou no estado s_i
 - Antes de ser absorvido

Aplicando ao nosso exemplo

$$\bullet \quad Q = \begin{bmatrix} 0 & 1/2 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 \end{bmatrix}$$

•
$$F = (I - Q)^{-1} = \begin{bmatrix} 3/2 & 1 & 1/2 \\ 1 & 2 & 1 \\ 1/2 & 1 & 3/2 \end{bmatrix}$$

Tempo médio até à absorção

- O tempo médio até à absorção será a soma do número médio de visitas a todos os estados transientes até à absorção
- Ou seja a soma da coluna i de F

$$t_i = \sum_j F_{ji}$$

Na forma matricial pode obter-se o vector t usando

$$t = F' \mathbf{1}$$

- Em que:
 - 1 é uma vector coluna com uns

Tempo médio até absorção

- A soma da coluna i de F representa:
 - O valor esperado do número de vezes que a cadeia passa por um qualquer estado transiente partindo do estado inicial i antes da absorção
 - Valor esperado do tempo necessário até absorção partindo do estado i
- O vetor t contém os tempos médios até à absorção partindo dos vários estados transientes

Aplicando ao Exemplo: Tempo até absorção

•
$$t = F' \ 1$$

$$= \begin{pmatrix} 3/2 & 1 & 1/2 \\ 1 & 2 & 1 \\ 1/2 & 1 & 3/2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}.$$

Probabilidades de absorção

• As probabilidades de absorção b_{ji} no estado s_j se se iniciar no estado s_i podem ser obtidas através de:

$$B = R F$$

• Em que B é uma matriz a \mathbf{x} \mathbf{t} com entradas b_{ii}

Aplicação ao nosso exemplo

Relembremos que temos:

$$T = \begin{bmatrix} 0 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1/2 & 0 & 1 \end{bmatrix} \quad eF = \begin{bmatrix} 3/2 & 1 & 1/2 \\ 1 & 2 & 1 \\ 1/2 & 1 & 3/2 \end{bmatrix}$$

• E portanto
$$R = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 0 & 1/2 \end{bmatrix}$$

• Multiplicando R e F obtemos
$$B = {0 \atop 4} \begin{bmatrix} 3/4 & 1/2 & 1/4 \\ 1/4 & 1/2 & 3/4 \end{bmatrix}$$