BECA / Huson / 11.1 IB Math SL 20 September 2017 Name:

Chapter 1 Test: Function Operations

Answer on loose leaf paper in pen, or, for the graphs, on graph paper in pencil. Show working for all problems.

- 1. For the function f(x) = 2x 7
 - (a) What is the value of f(3)?
 - (b) Solve for x if f(x) = 0.
 - (c) Find f(1-x).
 - (d) Find the inverse of f(x), $f^{-1}(x)$.
- 2. For the function $q(x) = x^2 4$ with x > 0
 - (a) What is the value of g(x-3)?
 - (b) Find $g^{-1}(x)$.
- 3. For the functions $f(x) = 2 x^2$ and g(x) = 2x 5
 - (a) What is the value of g(3)?
 - (b) Find $(f \circ g)(3) = 0$.
 - (c) Find $(f \circ g)(x) = 0$.
- 4. Find the inverse of $f(x) = \frac{4x-2}{5}$
- 5. Given that $g(x) = \frac{1}{3}x + 2$
 - (a) Find the inverse of g(x).
 - (b) Graph the function g(x) and its inverse on the same axes, using the scale 1 unit equals 1 cm and labeling the graph following IB conventions.
- 6. For the functions defined by f(x) = 2x and g(x) = x + 4
 - (a) Find an expression for $(f \circ g)(x)$.
 - (b) Find an expression for $(g \circ f)(x)$.
 - (c) Solve $(f \circ g)(x) = (g \circ f)(x)$.
- 7. Write down the domain and range of $f(x) = x^2 6$
- 8. Using a GDC to analyze the function f(x) = (3x+2)/(x+1)
 - (a) Write down the equations for the asymptotes.
 - (b) Write down the domain and range of f(x).

Figure 1: Write down domain and range.

- 9. Write down the domain and range of the function graphed in Figure-1.
- 10. For the function shown in Figure-2
 - (a) Write down the equations for the asymptotes.
 - (b) Write down the domain and range of f(x).

Figure 2: Determine asymptotes.

 $\rm BECA$ / Huson / 11.1 IB Math SL

Name:

20 September 2017

Graph accurately in pencil using a straight edge or smooth curve.

- 11. Given the graph of the function f(x) shown in Figure-3
 - (a) Label the points on the function representing f(-1) = -2 and f(4) = -1
 - (b) Graph the inverse of f(x) on the same axes. Label the inverses of the points named in part (a)
 - (c) Write down the domain and range of f(x).

Figure 3: Label given points and plot inverse.

- 12. Consider the function $f(x) = x^3 4x^2 3x + 18$.
 - (a) Find the values of f(x) for a and b in the table below:

x	-3	-2	-1	0	1	2	3	4	5
f(x)	-36	a	16	b	12	4	0	6	28

(b) Using a scale of 1 cm for each unit on the x-axis and 1 cm for each 5 units on the y-axis, draw the graph of f(x) for $-3 \le x \le 5$. Label it clearly using IB conventions on the graph paper provided (other side).

						+
						+
						+++
						+
						+
						+++
						$\pm \pm \pm$
						\pm
						+
						+
						##
						+
						+++
						\blacksquare
						+
						##
						+
						+
						\blacksquare
						+
						+
						+
						+
						\blacksquare
						+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
						+
						+
						+
						$\pm \pm \pm$
						\pm
						+
						+
						+
						+