1. Beta estimation by Crq package

Table 1: Crq package : $t_0 = 0$

		11	0 - 0 -	
censor	$beta_0$	SE of beta_0	$beta_1$	SE of beta_1
0	1.610455	0.049229	1.610170	0.070169
10	1.608405	0.049771	1.610681	0.074529
20	1.608687	0.050528	1.611160	0.078895
30	1.607888	0.052733	1.610848	0.083490

Table 2: Crq package : $t_0 = 1$

		1 1	0 0	
censor	${ m beta}_0$	SE of beta_0	${ m beta}_1$	SE of beta_1
0	1.410957	0.060226	1.765767	0.081595
10	1.410412	0.063148	1.768108	0.084102
20	1.409670	0.061315	1.769146	0.086037
30	1.411209	0.062798	1.766898	0.090479

Table 3: Crq package : $t_0=2$

censor	$beta_0$	SE of beta_0	$beta_1$	SE of beta_1		
0	1.216830	0.072801	1.921299	0.090084		
10	1.218930	0.073440	1.920919	0.095223		
20	1.222597	0.073871	1.915380	0.096553		
30	1.217517	0.076336	1.921629	0.101341		

Table 4: Crq package : $t_0 = 3$

censor	beta_0	SE of beta_0	beta_1	SE of beta_1
0	1.036904	0.088606	2.062028	0.104314
10	1.039064	0.088503	2.058303	0.108975
20	1.038134	0.089743	2.061438	0.111909
30	1.039584	0.091888	2.057640	0.116058

2. Beta estimation by Induced smoothing

Table 5: Induced smoothing : $t_0 = 0$

censor	beta_0	SE of beta_0	beta_1	SE of beta_1
0	1.609493	0.048045	1.609246	0.067972
10	1.607763	0.048612	1.609151	0.072098
20	1.607752	0.049450	1.605103	0.076145
30	1.607501	0.052454	1.562273	0.085670

Table 6: Induced smoothing : $t_0 = 1$

censor	beta_0	SE of beta_0	beta_1	SE of beta_1
0	1.410384	0.059021	1.765001	0.079478
10	1.409675	0.061952	1.766502	0.081790
20	1.408274	0.061209	1.763318	0.084713
30	1.410266	0.062772	1.717680	0.093599

Table 7: Induced smoothing : $t_0=2$

censor	$beta_0$	SE of beta_0	${ m beta}_{-}1$	SE of beta_1			
0	1.216323	0.071720	1.920473	0.087771			
10	1.218205	0.072725	1.919083	0.093558			
20	1.221771	0.073281	1.909147	0.095250			
30	1.216690	0.076166	1.870722	0.103752			

Table 8: Induced smoothing: $t_0 = 3$

	Table 6. Induced smoothing : $t_0 = 9$				
censor	${ m beta_0}$	SE of beta_0	$beta_1$	SE of beta_1	
0	1.035844	0.086697	2.061238	0.101661	
10	1.038255	0.087379	2.057229	0.106179	
20	1.037339	0.089408	2.054720	0.110730	
30	1.038794	0.092145	2.004346	0.121277	

3. Variance estimation (β_0) (True,MB,ISMB,Crq)

Table 9: Standard error of β_0 at $t_0 = 0$

			/- 00	
censor	true	MB	ISMB	Crq
0	0.048045	0.050190	0.050366	0.050085
10	0.048612	0.051099	0.051313	0.051293
20	0.049450	0.052017	0.052160	0.051595
30	0.052454	0.052886	0.053148	0.052038

Table 10: Standard error of β_0 at $t_0=1$

censor	true	MB	ISMB	Crq
0	0.059021	0.061433	0.061537	0.060359
10	0.061952	0.062251	0.062590	0.062448
20	0.061209	0.063383	0.063966	0.063758
30	0.062772	0.065034	0.065464	0.063660

Table 11: Standard error of β_0 at $t_0 = 2$

censor	true	MB	ISMB	Crq
0	0.071720	0.073750	0.074034	0.071971
10	0.072725	0.074419	0.074838	0.073333
20	0.073281	0.076474	0.077134	0.074009
30	0.076166	0.078534	0.079325	0.075584

Table 12: Standard error of β_0 at $t_0 = 3$

censor	true	MB	ISMB	Crq
0	0.086697	0.088429	0.090179	0.087240
10	0.087379	0.089940	0.090915	0.086585
20	0.089408	0.091913	0.093356	0.089823
30	0.092145	0.094119	0.096332	0.091394

4. Variance estimation (β_1) (True,MB,ISMB,Crq)

Table 13: Standard error of β_1 at $t_0 = 0$

			/ + '	
censor	true	MB	ISMB	Crq
0	0.067972	0.070131	0.070294	0.076693
10	0.072098	0.074835	0.075104	0.079775
20	0.076145	0.082432	0.082646	0.082993
30	0.085670	0.097206	0.097771	0.087719

Table 14: Standard error of β_1 at $t_0=1$

censor	true	MB	ISMB	Crq
0	0.079478	0.080297	0.080442	0.085618
10	0.081790	0.084511	0.084899	0.089852
20	0.084713	0.091624	0.092111	0.092999
30	0.093599	0.107305	0.107938	0.097305

Table 15: Standard error of β_1 at $t_0 = 2$

censor	true	MB	ISMB	Crq
0	0.087771	0.091129	0.091381	0.094412
10	0.093558	0.095056	0.095277	0.096362
20	0.095250	0.103423	0.104030	0.100689
30	0.103752	0.119838	0.121189	0.105700

Table 16: Standard error of β_1 at $t_0 = 3$

censor	true	MB	ISMB	Crq
0	0.101661	0.104508	0.105964	0.107971
10	0.106179	0.109331	0.110150	0.111604
20	0.110730	0.117133	0.118430	0.116934
30	0.121277	0.133500	0.135604	0.122790

5. Coverage of parameter

Table 17: Coverage of β_0 30% 0% 10% 20% t0=0 0.934 0.936 0.938 0.931 0.9330.9240.933 0.933 t0=1t0=20.9250.9220.9270.923 $t0=3 \quad 0.913$ 0.919 0.9120.912

Table 18: Coverage of β_1				
	0%	10%	20%	30%
t0=0	0.944	0.949	0.953	0.934
t0=1	0.942	0.945	0.956	0.923
t0=2	0.955	0.938	0.951	0.930
t0 = 3	0.927	0.940	0.942	0.928