Problem 1

This can be solved using contradiction to check if there are bijections or none. If there is then it is countable, if not then it is not countable a)

give n to be number of natural numbers then greater than zero and then use p as power set of N

$$T \in p(2)|T>0$$

So a) countable

b)

Assuming s is subset of the power of natural number and S is the finite set p(N)=0,1,4,9,...

$$P = \{S \in \wp(N) | S \text{ is a finite set} \}$$

So b) countable

Problem 2

Any real number
$$a \le b$$

 $set[a,b] = \{x \in R \mid a \le x \le b\}$
 $[-1,2] = \{-1,0,1,2\}$ $|[-1,2]| = 4$
 $[0,1] = \{0,\frac{1}{3},\frac{2}{3},1\}$ $|[0,1]| = 4$

Problem 3

 $n \in N$

Substitute 1 in the number in set when it is even or 0 if the number is odd

Problem 4

```
a)higher(Google, Yahoo)
b)higher(Google, Yahoo) \land higher(Google, Facebook)
c) \exists x(\neg link(x,x))
d) \forall x(link(x,Google)V(link(x,Yahoo)) \rightarrow link(x,Facebook)
e) \forall x(link(x,Google))
```

Problem 5

a)	
1)parent(John,Mary)	pre
2)parent(Mary,Tom)	pre
3) $\forall x. \forall y. (parent(x, y) \rightarrow child(y, x))$	pre
Assuming x as Mary	
Assuming y as Tom	
4)parent(Mary, Tom) → child(Tom, Mary)	∀E,3
5)child(Tom, Mary)	→E,2,4
6)∃x.child(x,Mary)	∃1,4
b)	
1)on(a, b)	pre
2)on(b, c)	pre
3)red(a)	pre
4)blue(c)	pre
$5) \forall x. \neg (red(x) \land blue(x))$	pre
Assuming x as a	
6)¬(red(a) ∧ blue(a))	∀E,5
7)red(a) ∧ blue(a)	¬E,6
8)red(a) ∧ ¬red(a)	7
9) $\exists x. \exists y.(on(x, y) \land red(x) \land \neg red(y))$	∃1,1,8