DS2 HW4 REGRESSION TREE

Siyan Chen 4/21/2019

```
data(Prostate)
head(Prostate)
##
        lcavol lweight age
                                lbph svi
                                              1cp gleason pgg45
                                                                     lpsa
## 1 -0.5798185 2.769459 50 -1.386294 0 -1.386294
                                                             0 -0.4307829
## 2 -0.9942523 3.319626 58 -1.386294 0 -1.386294
                                                       6
                                                             0 -0.1625189
## 3 -0.5108256 2.691243 74 -1.386294 0 -1.386294
                                                      7
                                                            20 -0.1625189
## 4 -1.2039728 3.282789 58 -1.386294 0 -1.386294
                                                       6
                                                            0 -0.1625189
## 5 0.7514161 3.432373 62 -1.386294 0 -1.386294
                                                       6
                                                            0 0.3715636
## 6 -1.0498221 3.228826 50 -1.386294 0 -1.386294
                                                             0 0.7654678
set.seed(1)
rowtrain = createDataPartition(y = Prostate$lpsa,
                            p = 0.75,
                            list = FALSE)
ctr1 = trainControl(method = "cv")
```

1a) Fit a regression tree with lpsaas the response; Use cross-validation to determine the optimal tree size. Which tree size corresponds to the lowest cross-validation error? Is this the same as the tree size obtained using the 1 SE rule?

cp_table = printcp(tree1)### cross validation built in rpart; large cp give smaller tree

```
##
## Regression tree:
## rpart(formula = lpsa ~ ., data = Prostate)
## Variables actually used in tree construction:
## [1] lcavol lweight pgg45
## Root node error: 127.92/97 = 1.3187
##
## n= 97
##
           CP nsplit rel error xerror
##
## 1 0.347108
                       1.00000 1.01687 0.163742
## 2 0.184647
                   1
                       0.65289 0.89137 0.112926
## 3 0.059316
                       0.46824 0.81363 0.111838
                   2
## 4 0.034756
                   3
                       0.40893 0.70667 0.092263
## 5 0.034609
                       0.37417 0.70171 0.090879
                   4
## 6 0.021564
                   5
                       0.33956 0.69128 0.090257
## 7 0.021470
                       0.31800 0.67139 0.080849
                   6
## 8 0.010000
                       0.29653 0.64826 0.080048
plotcp(tree1)
```



```
### tree by minimium cross validation error
minerror = which.min(cp_table[,4])
tree2 = prune(tree1, cp = cp_table[minerror,1])
### 1SE rule- simplest model with error smaller than the line
tree3 = prune(tree1, cp = cp_table[cp_table[,4] < cp_table[minerror,4] + cp_table[minerror,5],1][1])
# split 3
rpart.plot(tree3)</pre>
```


According to the plot. the optimal tree size is 7+1=8 by cross validation. According to 1SE rule, the optimal split is 3. Therefore, the tree size are different.

2 Create a plot of the final tree you choose. Pick one of the terminal nodes, and interpret the information displayed.

rpart.plot(tree2)

(c) Perform bagging and report the variable importance.

(d) Perform random forests and report the variable importance.

(e) Perform boosting and report the variable importance.

Relative influence

var rel.inf
lcavol lcavol 46.491222
lweight lweight 20.369375
age age 8.239670

```
## 1cp 1cp 6.957807
## pgg45 pgg45 5.685430
## 1bph 1bph 5.463286
## svi svi 5.195660
## gleason gleason 1.597550
```

(f) Which of the above models will you select to predict PSA level? Explain

```
resamp = resamples(list(rpart = rpart.fit, bagging = bagging.fit, rf = rf.fit, gbm = gbm.fit))
summary(resamp)
##
## Call:
## summary.resamples(object = resamp)
##
## Models: rpart, bagging, rf, gbm
## Number of resamples: 10
##
## MAE
##
                Min.
                       1st Qu.
                                   Median
                                               Mean
                                                      3rd Qu.
                                                                    Max. NA's
           0.6029257 0.6833061 0.7132861 0.7481058 0.7878006 1.0108929
## bagging 0.4132455 0.5733499 0.6171783 0.6242907 0.6717655 0.8203720
                                                                            0
           0.3207104 0.4336260 0.6678633 0.6367605 0.7578791 1.0413658
                                                                            0
           0.4073739 0.5278648 0.5467414 0.5822022 0.6558448 0.8031722
##
  gbm
                                                                            0
##
## RMSE
                       1st Qu.
                                   Median
                                               Mean
                                                      3rd Qu.
##
                Min.
           0.6940977 0.7916380 0.8659767 0.8688293 0.9202064 1.1161271
## rpart
## bagging 0.5690718 0.6507318 0.7658300 0.7552480 0.8558485 0.9142573
           0.3852574 0.5493899 0.8002497 0.7591698 0.9212254 1.1998445
## rf
                                                                            0
## gbm
           0.4994624 0.6739685 0.7284938 0.7322453 0.7914498 0.9575104
                                                                            0
##
## Rsquared
                                    Median
##
                 Min.
                        1st Qu.
                                                Mean
                                                       3rd Qu.
                                                                     Max. NA's
           0.10742511 0.4435906 0.5507225 0.4869429 0.5676906 0.6732530
## rpart
## bagging 0.30582778 0.5199532 0.6269879 0.6297696 0.7633807 0.9030913
                                                                             0
## rf
           0.05163731 0.4903155 0.6836592 0.5723541 0.7337990 0.8431251
                                                                             0
           0.18153923\ 0.4188219\ 0.6308190\ 0.5685605\ 0.7310841\ 0.7685486
## gbm
                                                                             0
```

Problem 2

```
data(OJ)
head(OJ)
     Purchase WeekofPurchase StoreID PriceCH PriceMM DiscCH DiscMM SpecialCH
## 1
            CH
                           237
                                      1
                                            1.75
                                                     1.99
                                                             0.00
                                                                      0.0
                                                                                   0
## 2
            CH
                           239
                                                     1.99
                                                             0.00
                                                                      0.3
                                                                                   0
                                      1
                                            1.75
## 3
            CH
                           245
                                            1.86
                                                     2.09
                                                             0.17
                                                                      0.0
                                                                                   0
                                      1
            MM
                           227
## 4
                                      1
                                            1.69
                                                     1.69
                                                             0.00
                                                                      0.0
                                                                                   0
## 5
            CH
                           228
                                      7
                                            1.69
                                                     1.69
                                                             0.00
                                                                      0.0
                                                                                   0
            CH
                                      7
                                                             0.00
                                                                                   0
## 6
                           230
                                            1.69
                                                     1.99
                                                                      0.0
```

```
SpecialMM LoyalCH SalePriceMM SalePriceCH PriceDiff Store7 PctDiscMM
## 1
            0 0.500000
                               1.99
                                           1.75
                                                     0.24
                                                              No 0.000000
             1 0.600000
                                                    -0.06
                                                              No 0.150754
## 2
                               1.69
                                           1.75
## 3
             0 0.680000
                               2.09
                                           1.69
                                                     0.40
                                                              No 0.000000
## 4
             0 0.400000
                               1.69
                                           1.69
                                                     0.00
                                                              No 0.000000
## 5
             0 0.956535
                               1.69
                                           1.69
                                                     0.00
                                                             Yes 0.000000
             1 0.965228
                               1.99
                                           1.69
                                                     0.30
                                                             Yes 0.000000
    PctDiscCH ListPriceDiff STORE
##
## 1
     0.000000
                        0.24
## 2 0.000000
                        0.24
                                 1
## 3 0.091398
                        0.23
                                 1
## 4 0.000000
                        0.00
                                 1
## 5 0.000000
                        0.00
                                 0
## 6 0.000000
                        0.30
                                 0
levels(OJ$Purchase)
## [1] "CH" "MM"
rowtrain2 = createDataPartition(y = OJ$Purchase,
                                p = 800/1070,
                                list = FALSE)
```

(a) Fit a classification tree to the training set, with Purchaseas the response and theother variables as predictors. Use cross-validation to determine the tree size and create a plot of the final tree. Predict the response on the test data. What is the test classification error rate?

plot of final tree
rpart.plot(rpart.fit2\$finalModel)


```
### predict
pred = predict(rpart.fit2, newdata = OJ[-rowtrain2,])
### test classification error rate
mean(pred != OJ[-rowtrain2,]$Purchase)
```

[1] 0.1821561

According to cross validation, the optimal tree size is 11.

(b) Perform random forests on the training set and report variable importance. What is the test error rate?


```
### VARIABLE IMPORTANCE
rf2.final.imp = ranger(Purchase~., OJ[rowtrain2,],
                        mtry = 9,
                        min.node.size = 45,
                         splitrule = "gini",
                        importance = "permutation",
                        scale.permutation.importance = TRUE)
barplot(sort(ranger::importance(rf2.final.imp), decreasing = FALSE),
        las = 2, hori = TRUE, cex.names = 0.7,
        col = colorRampPalette(colors = c("cyan","blue"))(8))
   LoyalCH
   PriceDiff
SalePriceMM
ListPriceDiff
kofPurchase
   STORE
 SpecialCH
   StoreID
PctDiscMM
   DiscMM
 PctDiscCH
  PriceMM
   DiscCH
SalePriceCH
    Store7
   PriceCH
 SpecialMM
                         20
            0
### test error rate
pred_rf = predict(rf.fit2, newdata = OJ[-rowtrain2,])
mean(pred_rf!= OJ[-rowtrain2,]$Purchase)
```

[1] 0.1710037

(c) Perform boosting on the training set and report variable importance. What is thetest error rate?

var rel.inf ## LoyalCH LoyalCH 75.00017781 ## PriceDiff PriceDiff 10.26319526

```
## WeekofPurchase WeekofPurchase 3.16546239
## SalePriceMM
                    SalePriceMM 2.47592453
## ListPriceDiff ListPriceDiff 2.04450990
## STORE
                          STORE 1.56394329
## SpecialCH
                      SpecialCH 1.46930112
## StoreID
                        StoreID 1.17043846
## PriceMM
                        PriceMM 0.59068255
## PriceCH
                        PriceCH 0.50269348
## DiscCH
                         DiscCH 0.47539396
## DiscMM
                         DiscMM 0.45799764
## SalePriceCH
                    SalePriceCH 0.38504642
## SpecialMM
                      SpecialMM 0.16546476
## PctDiscMM
                      PctDiscMM 0.12021707
## PctDiscCH
                      PctDiscCH 0.07733877
## Store7Yes
                      Store7Yes 0.07221257
### test error rate
pred_gbm2 = predict(gbm2.fit, newdata = OJ[-rowtrain2,])
mean(pred_gbm2!=0J[-rowtrain2,]$Purchase)
```

[1] 0.1710037