Does $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ diverge, converge absolutely, or converge conditionally?

Solution

$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \text{ is a p-series with } p = \frac{3}{2}. \text{ Since } p > 1, \text{ the series } \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \text{ converges by the p-series test.}$$
 Since $\sum |a_n| = \sum a_n$, the series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ converges absolutely.

Other solution

You can also use the Integral Test, but when the p-test works, why work more?