Chapitre 3

Séquence 1 : Primitives et intégration

Séquence 2 : Calcul d'aires et intégration par parties

Interprétation géométrique d'une intégrale - Intégration par parties .

primitive.

Primitives et calculs d'intégrales

\square Maîtriser la notion de fonction réelle et les opérations sur les fonctions.	
\square Savoir calculer des dérivées de fonctions réelles.	
Objectifs	
$\hfill \square$ Apprendre à calculer une primitive d'une composée usuelle.	
\square Apprendre à calculer des aires.	
$\hfill\Box$ Apprendre à réaliser une intégration par parties.	

Primitives d'une fonction - Intégrale d'une fonction continue - Lien entre intégrale et

3

Notation

Dans ce chapitre, I désigne un intervalle de \mathbb{R} .

1 Primitives d'une fonction

Définition: Primitive d'une fonction

Soit f une fonction définie sur I.

Une **primitive** de f est une fonction $F:I\to\mathbb{R}$ dérivable sur I telle que

$$F' = f \operatorname{sur} I.$$

© Exemples

- ightharpoonup La fonction $F: x \mapsto x$ est une primitive de la fonction $f: x \mapsto 1$ car F'(x) = 1 pour tout $x \in \mathbb{R}$.
- ightharpoonup La fonction $G: x \mapsto x^2$ est une primitive de la fonction $g: x \mapsto 2x$ est car G'(x) = 2x pour tout $x \in \mathbb{R}$.
- Remarque Primitives de fonctions usuelles

Les primitives des fonctions usuelles sont données dans la fiche « Fonctions usuelles ».

S Exercice 1.

Déterminer une primitive des fonctions suivantes :

1) $f_1: x \mapsto x^5$,

 $2) \ f_2: x \mapsto -\sin x,$

3) $f_3: x \mapsto \frac{1}{x},$

4) $f_4: x \mapsto e^x$.

Théorème: Théorème fondamental de l'analyse

 $Toute\ fonction\ continue\ sur\ I\ admet\ une\ primitive\ sur\ I.$

Remarques

- ▷ Il existe des fonctions non continues qui admettent des primitives (elles ne seront pas étudiées dans le cadre de ce cours).
- ▷ Si une fonction admet une primitive, elle en admet une infinité, comme le montre la proposition suivante.

Proposition

Soit f une fonction continue sur I, et soit F une primitive de f sur I. L'ensemble des primitives de f sur I est

$$\{F+k\mid k\in\mathbb{R}\}.$$

Ainsi, une fonction G est une primitive de f si et seulement s'il existe $k \in \mathbb{R}$ tel que

$$G = F + k$$
.

 $D\'{e}monstration$. Il faut prouver chaque implication du « si et seulement si ».

- \triangleright On veut montrer que s'il existe $k \in \mathbb{R}$ tel que G = F + k, alors G est une primitive de f. Supposons donc qu'il existe $k \in \mathbb{R}$ tel que G = F + k, alors G' = (F + k)' = f. D'où, G est une primitive de f.
- \triangleright On veut montrer que si G est une primitive de f, alors il existe $k \in \mathbb{R}$ tel que G = F + k. Soit G une primitive de f sur I. Posons la fonction h = G - F. Alors, sur I, h' = G' - F' = f - f = 0, donc, h est une fonction constante sur I. Ainsi, il existe $k \in \mathbb{R}$ tel que G = F + k.

Ce qui prouve le résultat.

ightharpoonup Les fonctions $F: x \mapsto x, \ G: x \mapsto x+5$ ou encore $H: x \mapsto x-\sqrt{2}$ sont des primitives de $f: x \mapsto 1$ sur \mathbb{R} .

Toutes les primitives de $f: x \mapsto 1$ sont données par $: F: x \mapsto x + k$ où $k \in \mathbb{R}$.

▶ Les fonctions $F: x \mapsto x^2$, $G: x \mapsto x^2 - 12$ ou encore $H: x \mapsto x + \pi$ sont des primitives de $f: x \mapsto 2x$ sur \mathbb{R} .

Toutes les primitives de $f: x \mapsto 2x$ sont données par $: F: x \mapsto x^2 + k$ où $k \in \mathbb{R}$.

Déterminer toutes les primitives des fonctions suivantes :

1) $f_1: x \mapsto x^5$,

 $2) f_2: x \mapsto -\sin x,$

3) $f_3: x \mapsto \frac{1}{x},$

4) $f_4: x \mapsto e^x$.

Proposition

Soient f une fonction continue sur I, $x_0 \in I$ et $a \in \mathbb{R}$. Il existe une et une seule primitive F de f telle que $F(x_0) = a$.

Démonstration. D'après ce qui précède, toutes les primitives de f sont de la forme G = F + k avec $k \in \mathbb{R}$. Or,

$$G(x_0) = a \Leftrightarrow F(x_0) + k = a \Leftrightarrow k = a - F(x_0).$$

4

Ainsi, l'unique primitive G de f telle que $G(x_0) = a$ est la fonction G définie sur I par,

$$\forall x \in I, \quad G(x) = F(x) + (a - F(x_0)). \qquad \Box$$

Exercice 3.

Déterminer la primitive de la fonction $f: x \mapsto x^2$ qui vaut 3 en 1.

Propriétés

Soient $\lambda \in \mathbb{R}$, f et g deux fonctions continues sur I, F une primitive de f sur I et G une primitive de g sur I. Alors

 $\triangleright F + G$ est une primitive de f + g;

 $\triangleright \lambda F$ est une primitive de λf .

© Exemple

Soit la fonction définie sur \mathbb{R}_+^* par $f: x \mapsto x^3 - \frac{\sqrt{2}}{x}$. Les primitives de f sur \mathbb{R} sont les fonctions de la forme :

$$F: x \mapsto \frac{x^4}{4} - \sqrt{2}\ln(x) + k, \quad k \in \mathbb{R}.$$

Exercice 4.

Déterminer toutes les primitives des fonctions suivantes :

1)
$$f_1: x \mapsto x^5 + 4x^3 - 3x$$
,

2)
$$f_2: x \mapsto -\sin x + \frac{1}{3}\cos x$$
,

Propriétés

Soit u une fonction dérivable de I dans un intervalle J et soit f une fonction dérivable sur J.

Alors, la fonction $f \circ u$ est une primitive de $(f' \circ u)u'$ sur I.

 $D\'{e}monstration$. La fonction $f\circ u$ est dérivable sur I car elle est la composée de deux fonctions dérivables.

De plus, pour tout $x \in I$, $(f \circ u)'(x) = (f' \circ u)(x).u'(x)$.

Ainsi, $f \circ u$ est une primitive de $(f' \circ u)u'$.

Plus précisément, si u est une fonction dérivable sur I, le tableau suivant donne des primitives des fonctions composées usuelles :

Propriétés

Fonctions	Primitives	Condition	Fonctions	Primitives	Condition
$u'u^n$	$\frac{u^{n+1}}{n+1}$	$n \in \mathbb{N}$	$\frac{u'}{u^n}$	$-\frac{1}{(n-1)u^{n-1}}$	$u \neq 0$ $n \in \mathbb{N} \setminus \{1\}$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	u > 0	$u'u^{lpha}$	$\frac{u^{\alpha+1}}{\alpha+1}$	$u > 0$ $\alpha \in \mathbb{R} \setminus \{-1\}$
$\frac{u'}{u}$	$\ln u $	$u \neq 0$	$u' e^u$	e^u	_
$u'\cos u$	$\sin u$	_	$u'(1 + \tan^2 u)$ $= \frac{u'}{\cos^2 u}$	$\tan u$	$u \neq \frac{\pi}{2} + k\pi, \\ k \in \mathbb{Z}$
$u'\sin u$	$-\cos u$	_	$\frac{u'}{1+u^2}$	$\arctan u$	_

© Exemple

Une primitive de la fonction

$$x \mapsto \frac{\cos x}{1 + \sin^2 x},$$

 est

 $x \mapsto \arctan(\sin x)$.

Exercice 5.

Déterminer une primitive des fonctions suivantes :

1) $f_1: x \mapsto \cos(3x)$,

2) $f_2: x \mapsto 5e^{2x}$,

3) $f_3: x \mapsto \frac{1}{2x+3}$,

4) $f_4: x \mapsto \sqrt{x-1}$.

2 Intégrale d'une fonction continue

Définition: Intégrale d'une fonction continue

Soient f une fonction continue sur un intervalle I de \mathbb{R} , F une primitive de f sur I et $(a,b)\in I^2$. Alors, l'**intégrale** de a à b de f, notée $\int_a^b f(x)\,dx$, est le réel défini par :

$$\int_a^b f(x) dx := F(b) - F(a).$$

Ce réel est aussi noté $F(b) - F(a) = [F(x)]_a^b$

🔼 Attention

- \triangleright L'intégrale de a à b de f est indépendante du choix de la primitive F.
- \triangleright La variable x dans l'intégrale est appelée la variable d'intégration et est signalée par la notation « dx ». Cette variable est dite muette car elle peut-être remplacée par n'importe quelle lettre:

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(t) \, dt = \int_{a}^{b} f(u) \, du.$$

Cependant, il faut respecter la cohérence de l'utilisation de la variable. Par exemple, si la variable d'intégration est t, la variable x ne doit plus être présente dans f.

• Exemple

Comme $x \mapsto \frac{x^2}{2}$ est une primitive de $x \mapsto x$ sur [1; 3], on a

$$\int_{1}^{3} x \, dx = \left[\frac{x^{2}}{2} \right]_{1}^{3} = \frac{9}{2} - \frac{1}{2} = 4.$$

S Exercice 6.

Calculer les intégrales suivantes

1)
$$\int_{1}^{e} \frac{1}{x} dx$$
,

3)
$$\int_{-1}^{-2} \frac{3}{x^2} dx$$
,

$$2) \int_0^{\pi} \sin x \, dx,$$

4)
$$\int_0^{\ln 3} \exp(3x) \, dx$$
.

Propriétés

Soient f et g deux fonctions continues sur I et soit $(a,b) \in I^2$. Alors,

 \triangleright on a

$$\int_a^a f(x) dx = 0 \qquad et \qquad \int_b^a f(x) dx = -\int_a^b f(x) dx.$$

 \triangleright pour $\lambda \in \mathbb{R}$, on a

$$\int_a^b (\lambda f)(x) dx = \lambda \int_a^b f(x) dx \qquad et \qquad \int_a^b (f+g)(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx.$$

On dit que l'intégrale est linéaire.

Exemple

Les propriétés précédentes permettent d'effectuer le calcul suivant :

$$\int_{1}^{2} (3x^{2} - x) dx = 3 \int_{1}^{2} x^{2} dx - \int_{1}^{2} x dx$$

$$= 3 \int_{1}^{2} x^{2} dx - \int_{1}^{2} x dx$$

$$= 3 \left[\frac{x^{3}}{3} \right]_{1}^{2} - \left[\frac{x^{2}}{2} \right]_{1}^{2}$$

$$= 3 \left(\frac{8}{3} - \frac{1}{3} \right) - \left(2 - \frac{1}{2} \right)$$

$$= \frac{11}{2}.$$

S Exercice 7.

Calculer les intégrales suivantes :

1)
$$\int_{1}^{2} (5x^2 - 2x + 1 + \sqrt{x}) dx$$
,

2)
$$\int_0^{\frac{\pi}{2}} (\cos x + \sin x) \, dx$$
.

Propriété: Relation de Chasles

Soient f une fonction continue sur I et $(a, b, c) \in I^3$. Alors,

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Remarque − Cas particulier

Avec les hypothèses de la propriété précédente, si a<0 et b>0, on a

$$\int_{a}^{b} f(x) dx = \int_{a}^{0} f(x) dx + \int_{0}^{b} f(x) dx.$$

Propriétés

Soient f et g deux fonctions continues sur I, et soit $(a,b) \in I^2$ avec $a \leq b$. Si $f \leq g$ sur I, alors

 $\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$

En particulier, si $f \ge 0$ sur I, alors $\int_a^b f(x) dx \ge 0$.

S Exercice 8.

- 1) Calculer $\int_{1}^{2} \frac{1}{x} dx$.
- 2) En déduire que $\int_1^2 \frac{|\cos x|}{x} dx \le \ln 2$.

Théorème

Soit f une fonction continue et positive sur [a;b], où $(a,b) \in \mathbb{R}^2$ avec $a \leq b$. Si on a

$$\int_a^b f(x) \, dx = 0,$$

alors f = 0 sur [a; b].

3 Lien entre intégrale et primitive

Propriété

Soient $f: I \to \mathbb{R}$ une fonction continue sur I et $a \in I$.

Alors, la fonction $F: I \to \mathbb{R}$ définie par

$$\forall x \in I, \qquad F(x) := \int_a^x f(t) dt$$

est l'unique primitive de f définie sur I qui s'annule en a.

Remarque

En effet, F est dérivable sur I avec F' = f et F(a) = 0.

$\stackrel{{}_{\displaystyle \cancel{ullet}}}{\displaystyle \mathrel{\mathcal{L}}}$ Attention

Pour la fonction $F: x \mapsto \int_a^x f(t) dt$, la variable x est la variable d la fonction et la variable t est la variable d intégration. Elles doivent donc porter deux noms différents.

Exemple

L'unique primitive de la fonction cos qui s'annule en 0 est la fonction F définie par

$$\forall x \in \mathbb{R}, \quad F(x) \coloneqq \int_0^x \cos t \, dt$$
$$= \left[\sin t \right]_0^x$$
$$= \sin x - \sin 0$$
$$= \sin x.$$

On a bien $F(0) = 0 \text{ car } \sin(0) = 0.$

Notation

L'expression d'une primitive d'une fonction f se note souvent $\int f(x) dx$. En particulier, si F est une primitive de f sur I, pour tout $x \in I$, on a

$$\int f(x) dx = F(x) + k, \quad \text{où } k \in \mathbb{R}.$$

Correction des exercices

Correction de l'Exercice 1.

- 1) Une primitive de f_1 est $F_1(x) = \frac{1}{6}x^6$ pour tout $x \in \mathbb{R}$.
- 2) Une primitive de f_2 est $F_2(x) = \cos x$ pour tout $x \in \mathbb{R}$.
- 3) Sur \mathbb{R}_+^* , une primitive de f_3 est $F_3(x) = \ln x$ pour tout $x \in \mathbb{R}_+^*$. Sur \mathbb{R}_-^* , une primitive de f_3 est $F_3(x) = \ln(-x) + k$ pour tout $x \in \mathbb{R}_-^*$.
- 4) Une primitive de f_4 sont de la forme $F_4(x) = e^x$ pour tout $x \in \mathbb{R}$.

Correction de l'Exercice 2.

- 1) Les primitives de f_1 sont de la forme $F_1(x) = \frac{1}{6}x^6 + k$ pour tout $x \in \mathbb{R}$, où $k \in \mathbb{R}$.
- 2) Les primitives de f_2 sont de la forme $F_2(x) = \cos x + k$ pour tout $x \in \mathbb{R}$, où $k \in \mathbb{R}$.
- 3) Sur \mathbb{R}_+^* , les primitives de f_3 sont de la forme $F_3(x) = \ln x + k$ pour tout $x \in \mathbb{R}_+^*$, où $k \in \mathbb{R}$. Sur \mathbb{R}_-^* , les primitives de f_3 sont de la forme $F_3(x) = \ln(-x) + k$ pour tout $x \in \mathbb{R}_-^*$, où $k \in \mathbb{R}$.
- 4) Les primitives de f_4 sont de la forme $F_4(x) = e^x + k$ pour tout $x \in \mathbb{R}$, où $k \in \mathbb{R}$.

Correction de l'Exercice 3.

La primitive de la fonction f qui vaut 3 en 1 est la fonction F définie par

$$F(x) = \frac{1}{3}x^3 + k$$
, pour tout $x \in \mathbb{R}$,

où k est le réel qui vérifie F(1)=3. Or $F(1)=3 \Leftrightarrow k=\frac{8}{3}$. D'où, $F(x)=\frac{1}{3}x^3+\frac{8}{3}$.

Correction de l'Exercice 4.

- 1) Les primitives de f_1 sont de la forme $F_1(x) = \frac{1}{6}x^6 + x^4 \frac{3}{2}x^2 + k$ pour tout $x \in \mathbb{R}$, où $k \in \mathbb{R}$.
- 2) Les primitives de f_2 sont de la forme $F_2(x) = \cos x + \frac{1}{3}\sin x + k$ pour tout $x \in \mathbb{R}$, où $k \in \mathbb{R}$.

Correction de l'Exercice 5.

- 1) Une primitive de f_1 est la fonction F_1 définie par $F_1(x) = \frac{1}{3}\sin(3x)$ pour tout $x \in \mathbb{R}$.
- 2) Une primitive de f_2 est la fonction F_2 définie par $F_2(x) = \frac{5}{2} e^{2x}$ pour tout $x \in \mathbb{R}$.
- 3) Une primitive de f_3 est la fonction F_3 définie par $F_3(x) = \frac{1}{2} \ln |2x + 3|$ pour tout $x \in \mathbb{R} \setminus \{-\frac{3}{2}\}.$
- 4) Une primitive de f_4 est la fonction F_4 définie par $F_4(x) = \frac{(x-1)^{\frac{1}{2}+1}}{\frac{1}{2}+1} = \frac{2}{3}(x-1)\sqrt{x-1}$ pour tout $x \in [1; +\infty[$.

Scorrection de l'Exercice 6.

1)
$$\int_{1}^{e} \frac{1}{x} dx = \left[\ln(x) \right]_{1}^{e} = 1.$$

3)
$$\int_{-1}^{-2} \frac{3}{x^2} dx = \left[-\frac{3}{x} \right]_{-1}^{-2} = -\frac{3}{2}.$$

2)
$$\int_0^{\pi} \sin x \, dx = \left[-\cos(x) \right]_0^{\pi} = 2.$$

4)
$$\int_0^{\ln 3} \exp(3x) \, dx = \left[\frac{\exp(3x)}{3}\right]_0^{\ln 3} = \frac{26}{3}.$$

S Correction de l'Exercice 7.

1) On a

$$\int_{1}^{2} (5x^{2} - 2x + 1 + \sqrt{x}) dx = 5 \int_{1}^{2} x^{2} dx - 2 \int_{1}^{2} x dx + \int_{1}^{2} dx + \int_{1}^{2} \sqrt{x} dx$$
$$= 5 \left[\frac{1}{3} x^{3} \right]_{1}^{2} - 2 \left[\frac{x^{2}}{2} \right]_{1}^{2} + \left[x \right]_{1}^{2} + \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{1}^{2} = 9 + \frac{4\sqrt{2}}{3}.$$

2) On a

$$\int_0^{\frac{\pi}{2}} (\cos x + \sin x) \, dx = [\sin x]_0^{\frac{\pi}{2}} + [-\cos x]_0^{\frac{\pi}{2}}$$

$$= \sin \frac{\pi}{2} - \sin 0 - \cos \frac{\pi}{2} + \cos 0$$

$$= 1 - 0 - 0 + 1$$

$$= 2$$

Correction de l'Exercice 8.

1)
$$\int_{1}^{2} \frac{1}{x} dx = \ln 2 - \ln 1 = \ln 2$$
.

2) Comme
$$\frac{|\cos x|}{x} \le \frac{1}{x}$$
, on a $\int_1^2 \frac{|\cos x|}{x} dx \le \int_1^2 \frac{1}{x} dx$
Et donc $\frac{|\cos x|}{x} \le \ln 2$.

Chapitre 3

Feuille d'exercices de la séquence 1

S Exercice 1.

Déterminer une primitive pour les fonctions suivantes, en précisant leur domaine de définition :

1)
$$f_1: x \mapsto x^3$$

1)
$$f_1: x \mapsto x^3$$
, 2) $f_2: x \mapsto \frac{1}{\sqrt{x}}$, 3) $f_3: x \mapsto \sqrt{x}$, 4) $f_4: x \mapsto \frac{1}{x^2}$,

$$3) \ f_3: x \mapsto \sqrt{x}$$

4)
$$f_4: x \mapsto \frac{1}{x^2}$$

$$5) \ f_5: x \mapsto \cos x$$

6)
$$f_6: x \mapsto \frac{3}{e^x},$$

7)
$$f_7: x \mapsto (x+3)^{83}$$
,

5)
$$f_5: x \mapsto \cos x$$
, **6)** $f_6: x \mapsto \frac{3}{e^x}$, **7)** $f_7: x \mapsto (x+3)^{83}$, **8)** $f_8: x \mapsto \frac{5}{x+3}$.

Exercice 2.

1) Déterminer la primitive de la fonction $x \mapsto x^3$ qui s'annule en 2.

2) Déterminer la primitive de la fonction $x \mapsto e^{2x}$ qui vaut 1 en 1.

Exercice 3.

Calculer les intégrales suivantes :

1)
$$\int_{1}^{2} (x^{2} + 3x) dx$$
, 2) $\int_{1}^{2} \frac{1}{(x+2)^{2}} dx$, 3) $\int_{0}^{\frac{\pi}{2}} \sin(2x) dx$, 4) $\int_{-1}^{0} \frac{1}{1-2x} dx$,

$$2) \int_{1}^{2} \frac{1}{(x+2)^{2}} \, dx$$

3)
$$\int_0^{\frac{\pi}{2}} \sin(2x) \, dx$$
,

4)
$$\int_{-1}^{0} \frac{1}{1 - 2x} \, dx$$

5)
$$\int_0^1 \sqrt{1-x} \, dx$$
,

6)
$$\int_0^1 \exp(2x) \, dx$$
,

5)
$$\int_0^1 \sqrt{1-x} \, dx$$
, 6) $\int_0^1 \exp(2x) \, dx$, 7) $\int_0^{\pi} \cos(x+\pi) \, dx$, 8) $\int_0^1 \frac{x}{1+x^2} \, dx$.

8)
$$\int_0^1 \frac{x}{1+x^2} \, dx$$

Exercice 4.

Déterminer une primitive pour les fonctions suivantes en précisant leur domaine de définition :

1)
$$f_1: x \mapsto x \exp(x^2)$$

1)
$$f_1: x \mapsto x \exp(x^2)$$
, 2) $f_2: x \mapsto \frac{\sin x}{(\cos x)^3}$, 3) $f_3: x \mapsto \frac{x}{3x^2 + 2}$

3)
$$f_3: x \mapsto \frac{x}{3x^2+2}$$

4)
$$f_4: x \mapsto x(x^2-1)^{2022},$$
 5) $f_5: x \mapsto \frac{\sin(\frac{1}{x})}{x^2},$

5)
$$f_5: x \mapsto \frac{\sin(\frac{1}{x})}{x^2}$$
,

$$6) f_6: x \mapsto \tan x.$$

S Exercice 5.

Soient f et g deux fonctions définies sur I, et soit $(a,b) \in I^2$. Considérons des primitives F et G de, respectivement, f et q.

1) Montrer que $\int_a^b f(x) dx = -\int_a^a f(x) dx$.

2) Vérifier que la fonction F+G est une primitive de f+g. En déduire que

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$

13

3) Soit $\lambda \in \mathbb{R}$. Montrer que $\int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$.

4) La fonction FG est-elle une primitive de fg?

S Exercice 6.

- 1) En utilisant la formule d'Euler, linéariser les fonctions suivantes :
 - a) $f_1: x \mapsto \cos^2 x$,
- **b)** $f_2: x \mapsto \sin^3 x$,
- c) $f_3: x \mapsto \sin^4 x$.
- 2) En déduire une primitive pour chacune des fonctions ci-dessus.

Exercice 7.

Sachant que les fonctions sinus et cosinus hyperboliques sont définies par

$$\operatorname{ch} x \coloneqq \frac{\operatorname{e}^x + \operatorname{e}^{-x}}{2} \quad \operatorname{et} \quad \operatorname{sh} x \coloneqq \frac{\operatorname{e}^x - \operatorname{e}^{-x}}{2}.$$

- 1) Montrer qu'une primitive de sh est ch et qu'une primitive de ch est sh.
- 2) En utilisant les définitions des fonctions hyperboliques, simplifier les fonctions suivantes :
 - a) $f_1: x \mapsto \operatorname{sh}^2 x$,
- b) $f_2: x \mapsto \operatorname{ch}^3 x$,
- c) $f_3: x \mapsto \operatorname{sh}^4 x$.
- 3) En déduire une primitive pour chacune des fonctions ci-dessus.

S Exercice 8.

Calculer les intégrales suivantes en utilisant la linéarité de l'intégrale :

1)
$$\int_0^2 (3x^2 - x) dx$$
,

2)
$$\int_{1}^{2} \frac{4-x^{2}}{x} dx$$
,

3)
$$\int_4^1 \frac{x^2+3}{\sqrt{x}} dx$$
,

4)
$$\int_1^2 \frac{(x+1)(4-x)}{\sqrt{x}} dx$$
.

Exercice 9.

Déterminer une expression simplifiée de la fonction F définie sur \mathbb{R}_+ par

$$\forall x \in \mathbb{R}_+, \quad F(x) := \int_0^x \sqrt{1+t} \, dt.$$

Exercice 10.

Soit la fonction F définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad F(x) := \int_0^x e^{t^2} dt.$$

14

- 1) Justifier que F est positive sur \mathbb{R}_+ et négative sur \mathbb{R}_- .
- 2) Montrons que F est croissante sur \mathbb{R} .
 - (a) **Méthode 1**: Étudier le signe de F(y) F(x), pour tout $(x, y) \in \mathbb{R}^2$ tel que x < y.
 - (b) Méthode 2: Calculer la dérivée de F.

S Exercice 11.

Calculer les intégrales suivantes :

1)
$$\int_{2}^{3} \frac{x}{1-x} dx$$

$$2) \int_0^1 \frac{x^2}{1+x^2} \, dx.$$

1)
$$\int_2^3 \frac{x}{1-x} dx$$
, 2) $\int_0^1 \frac{x^2}{1+x^2} dx$, 3) $\int_1^2 \frac{1}{x(1+x)} dx$, 4) $\int_0^1 \frac{1}{1+e^x} dx$,

4)
$$\int_0^1 \frac{1}{1 + e^x} dx$$

$$5) \int_1^e \frac{\ln x}{x} \, dx,$$

$$6) \int_{\frac{1}{2}}^{1} \frac{e^{\frac{1}{x}}}{x^2} dx$$

5)
$$\int_{1}^{e} \frac{\ln x}{x} dx$$
, 6) $\int_{\frac{1}{2}}^{1} \frac{e^{\frac{1}{x}}}{x^{2}} dx$, 7) $\int_{e}^{e^{2}} \frac{1}{x \ln x} dx$, 8) $\int_{-1}^{2} |x| dx$.

8)
$$\int_{-1}^{2} |x| \, dx$$
.

Calcul d'aires et intégration par parties

4 Interprétation géométrique d'une intégrale

Soient a, b deux réels avec $a \le b$, et soit f une fonction définie et continue sur [a;b]. Rappelons que l'intégrale de f sur [a;b] est notée

$$\int_a^b f(x) \, dx.$$

Le symbole \int représente une somme (d'où sa forme en S allongé) et dx représente une quantité infiniment petite. Enfin, f(x) dx est l'aire du rectangle de hauteur f(x) et de largeur dx. Si f est une fonction positive sur [a;b], alors l'intégrale de f entre a et b représente en réalité une somme infinie d'aires de rectangles dont le résultat donne l'aire sous la courbe de f entre a et b.

Enfin, si f est négative sur [a;b], l'intégrale correspond à la valeur opposée de l'aire du domaine situé entre la courbe de f, l'axe des abscisses, et les droites x=a et x=b.

Propriétés

Soit f une fonction continue sur un intervalle I, et soit $(a,b) \in I^2$ avec $a \leq b$. Considérons sa représentation graphique dans un repère orthonormé. Notons par

- \mathcal{A}_{+} l'aire du domaine délimité par l'axe des abscisses, les droites d'équation x=a et x=b, la courbe représentative de f située au-dessus de l'axe des abscisses.
- \mathcal{A}_{-} l'aire du domaine délimité par l'axe des abscisses, les droites d'équation x=a et x=b, la courbe représentative de f située en-dessous de l'axe des abscisses.

Alors

$$\int_a^b f(x) \, dx = \mathcal{A}_+ - \mathcal{A}_-.$$

Dans l'exemple illustré par la figure ci-dessous, on a $A_+ = A_1 + A_3$ et $A_- = A_2$.

Exemple

Soit le domaine D de \mathbb{R}^2 dont voici la représentation graphique :

Le domaine D s'écrit

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le x^2 \}.$$

L'aire \mathcal{A}_D du domaine D est égale à :

$$\mathcal{A}_D = \int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}.$$

SExercice 1.

Soit le domaine D de \mathbb{R}^2 dont voici la représentation graphique :

Déterminer l'aire du domaine D.

5 Intégration par parties

Propriété: Formule d'intégration par parties

Soient u et v deux fonctions continûment dérivables sur I. Alors, pour tout $(a,b) \in I^2$, on a:

$$\int_{a}^{b} u'(x)v(x) \, dx = \left[u(x)v(x) \right]_{a}^{b} - \int_{a}^{b} u(x)v'(x) \, dx,$$

 $o\grave{u} \ \big[u(x)v(x) \big]_a^b \coloneqq u(b)v(b) - u(a)v(a).$

Démonstration. Soit $(a,b) \in I^2$. D'après la formule (uv)' = u'v + uv', on a

$$\int_{a}^{b} (uv)'(x) \, dx = \int_{a}^{b} u'(x)v(x) \, dx + \int_{a}^{b} u(x)v'(x) \, dx.$$

Or une primitive de (uv)' est uv. Ainsi, $\int_a^b (uv)'(x) dx = \left[u(x)v(x)\right]_a^b$ et donc

$$\int_a^b u'(x)v(x) dx = \left[u(x)v(x) \right]_a^b - \int_a^b u(x)v'(x) dx.$$

Pour calculer $\int_a^b f(x) dx$ à l'aide d'une intégration par parties, on procède comme suit :

- 1. Poser une fonction u' continue (choisie de telle sorte qu'une primitive soit connue) et une fonction v dérivable telle que f = u'v.
- 2. Calculer une primitive u de u' et calculer la dérivée v' de v.
- 3. Appliquer la formule d'intégration par parties.

© Exemples

⊳ Soit

$$I := \int_{1}^{3} x \, \mathrm{e}^{x} \, dx.$$

Posons $u': x \mapsto e^x$ et $v: x \mapsto x$. D'où, $u: x \mapsto e^x$ et $v': x \mapsto 1$. Alors, par intégration par parties, on a

$$I = \left[x e^x \right]_1^3 - \int_1^3 1 e^x dx = (3 e^3 - 1 e^1) - \left[e^x \right]_1^3 = (3 e^3 - e) - (e^3 - e^1) = 2 e^3.$$

⊳ Soit

$$J \coloneqq \int_0^{\frac{\pi}{6}} x \cos x \, dx.$$

Posons $u': x \mapsto \cos x$ et $v: x \mapsto x$. D'où, $u: x \mapsto \sin x$ et $v': x \mapsto 1$. Alors, par intégration par parties, on a

$$J = \left[x \sin x \right]_0^{\frac{\pi}{6}} - \int_0^{\frac{\pi}{6}} \sin x \, dx = \left(\frac{\pi}{6} \sin \left(\frac{\pi}{6} \right) - 0 \sin 0 \right) - \left[-\cos x \right]_0^{\frac{\pi}{6}}$$
$$= \frac{\pi}{12} - \left(-\cos \left(\frac{\pi}{6} \right) + \cos 0 \right) = \frac{\pi}{12} + \frac{\sqrt{3} - 2}{2}.$$

Remarques – Conseils d'utilisation

- \triangleright Pour pouvoir appliquer une intégration par parties, il est nécessaire d'apprendre à identifier un produit u'v dans la fonction f de telle sorte qu'il soit facile de déterminer une primitive de la fonction u'.
- ▷ Il est important qu'après application de la formule d'intégration par parties, l'intégrale obtenue ne soit pas plus difficile que l'intégrale de départ.

Exercice 2.

Calculer les intégrales suivantes :

1)
$$I_1 := \int_0^\pi x \sin(2x) \, dx$$
, 2) $I_2 := \int_0^1 x \exp(-3x) \, dx$, 3) $I_3 := \int_1^2 x^2 \ln x \, dx$.

Remarque

Il est possible d'adapter la formule d'intégration par parties pour le calcul d'une primitive

 $\int u'(x)v(x) dx = u(x)v(x) - \int u(x)v'(x) dx.$

Exemple

Déterminons les primitives de $x\mapsto x\,\mathrm{e}^{2x}$. Posons $u':x\mapsto\mathrm{e}^{2x}$ et $v:x\mapsto x$. D'où, $u:x\mapsto\frac12\,\mathrm{e}^{2x}$ et $v':x\mapsto1$. Ainsi, par intégration par parties, pour tout $x\in\mathbb{R}$ $\int x\,\mathrm{e}^{2x}\,dx=\frac12x\,\mathrm{e}^{2x}-\int\frac12\,\mathrm{e}^{2x}\,dx=\frac12x\,\mathrm{e}^{2x}-\int\frac14\,\mathrm{e}^{2x}+k=\frac12\left(x-\frac12\right)\mathrm{e}^{2x}+k,\quad k\in\mathbb{R}.$

$$\int x e^{2x} dx = \frac{1}{2} x e^{2x} - \int \frac{1}{2} e^{2x} dx = \frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} + k = \frac{1}{2} \left(x - \frac{1}{2} \right) e^{2x} + k, \quad k \in \mathbb{R}.$$

Correction des exercices

Scorrection de l'Exercice 1.

On a

$$D = \int_0^1 \sqrt{x} \ dx = \left[\frac{2}{3} x^{\frac{3}{2}} \right]_0^1 = \frac{2}{3}.$$

Correction de l'Exercice 2.

1) Posons $u'(x) = \sin(2x)$ et v(x) = x. D'où, $u(x) = -\frac{1}{2}\cos(2x)$ et v'(x) = 1. Alors, par intégration par parties, on a

$$I_{1} = \left[-\frac{1}{2}x\cos(2x) \right]_{0}^{\pi} - \int_{0}^{\pi} -\frac{1}{2}\cos(2x) dx = -\frac{\pi}{2} + \frac{1}{2} \int_{0}^{\pi} \cos(2x) dx$$
$$= -\frac{\pi}{2} + \frac{1}{2} \left[\frac{1}{2}\sin(2x) \right]_{0}^{\pi} = -\frac{\pi}{2}.$$

2) Posons $u'(x) = e^{-3x}$ et v(x) = x. D'où, $u(x) = -\frac{1}{3}e^{-3x}$ et v'(x) = 1. Alors, par intégration par parties, on a

$$I_2 = \left[-\frac{1}{3}x e^{-3x} \right]_0^1 - \int_0^1 -\frac{1}{3}e^{-3x} dx = -\frac{e^{-3}}{3} + \frac{1}{3} \int_0^1 e^{-3x} dx$$
$$= -\frac{e^{-3}}{3} + \frac{1}{3} \left[-\frac{1}{3}e^{-3x} \right]_0^1 = \frac{1 - 4e^{-3}}{9}.$$

3) Posons $u'(x) = x^2$ et $v(x) = \ln x$. D'où, $u(x) = \frac{x^3}{3}$ et $v'(x) = \frac{1}{x}$. Alors, par intégration par parties, on a

$$I_3 = \left[\frac{x^3}{3}\ln x\right]_1^2 - \int_1^2 \frac{x^3}{3} \frac{1}{x} dx = \frac{8}{3}\ln 2 - \frac{1}{3}\int_1^2 x^2 dx = \frac{8}{3}\ln 2 - \frac{1}{3}\left[\frac{x^3}{3}\right]_1^2 = \frac{8}{3}\ln 2 - \frac{7}{9}.$$

Chapitre 3

Feuille d'exercices de la séquence 2

S Exercice 1.

1) Représenter graphiquement les domaines de \mathbb{R}^2 suivants :

$$D_1 := \{(x, y) \in \mathbb{R}^2 \mid 2 \le x \le 3, 1 \le y \le 5\}$$
 et $D_2 := \{(x, y) \in \mathbb{R}^2 \mid 1 \le x \le 4, 0 \le y \le \frac{1}{x}\}$.

2) En déduire les aires de chacun de ces domaines.

S Exercice 2.

Soient u et v deux fonctions dérivables sur un intervalle I, et soit $(a,b) \in I^2$.

- 1) Donner la dérivée de uv. Puis intégrer le résultat entre a et b.
- 2) En déduire une expression de l'intégrale $\int_a^b u'(x)v(x)\,dx$.

S Exercice 3.

Calculer les intégrales suivantes à l'aide d'une intégration par parties :

1)
$$I_1 := \int_1^e x \ln x \, dx$$
,

2)
$$I_2 := \int_0^1 x \operatorname{ch} x \, dx,$$

3)
$$I_3 := \int_0^1 x \exp(-2x) \, dx$$
,

4)
$$I_4 := \int_0^1 (x+1) \operatorname{sh}(3x) dx,$$

5)
$$I_5 := \int_{-1}^{-e} (2x+1) \ln(-x) dx$$
,

6)
$$I_6 := \int_0^{\frac{\pi}{2}} (3x+1)\cos(3x) \, dx,$$

7)
$$I_7 := \int_0^1 \ln(1+x^2) dx$$
,

8)
$$I_8 := \int_0^1 \ln(x + \sqrt{x^2 + 1}) dx$$
.

SExercice 4.

Soient les réels

$$I := \int_0^{\frac{\pi}{2}} x \cos^2 x \, dx \qquad \text{et} \qquad J := \int_0^{\frac{\pi}{2}} x \sin^2 x \, dx.$$

- 1) Calculer I + J.
- 2) Montrer que $I J = \int_0^{\frac{\pi}{2}} x \cos(2x) dx$. Puis calculer I J à l'aide d'une intégration par parties.
- 3) En déduire les valeurs de I et de J.

S Exercice 5.

Déterminer une primitive pour la fonction ln en utilisant une intégration par parties. Même question pour la fonction arctan.

Exercice 6.

Calculer les intégrales suivantes à l'aide de deux intégrations par parties successives

1)
$$I_1 := \int_1^e (\ln x)^2 dx$$

1)
$$I_1 := \int_1^e (\ln x)^2 dx$$
, 2) $I_2 := \int_0^{\frac{\pi}{2}} x^2 \sin x dx$, 3) $I_3 := \int_0^1 x^2 e^{-2x} dx$.

3)
$$I_3 := \int_0^1 x^2 e^{-2x} dx$$
.

Exercice 7.

Déterminer l'aire des domaines suivants

1)
$$D_1 := \{(x, y) \in \mathbb{R}^2 \mid 1 \le x \le 4, 1 \le y \le \sqrt{x}\},\$$

2)
$$D_2 := \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, x^2 \le y \le x\}.$$

Exercice 8.

Calculer les intégrales suivantes à l'aide de la méthode d'intégration par parties :

1)
$$I_1 := \int_0^1 x \sqrt{1-x} \, dx$$
, 2) $I_2 := \int_0^{\frac{\pi}{2}} e^x \sin x \, dx$, 3) $I_3 := \int_0^{\frac{\pi}{2}} e^{2x} \sin x \, dx$,

$$2) I_2 := \int_0^{\frac{\pi}{2}} e^x \sin x \, dx,$$

$$3) I_3 := \int_0^{\frac{\pi}{2}} e^{2x} \sin x \, dx.$$

4)
$$I_4 := \int_0^{\frac{\pi}{4}} e^{-x} \cos(2x) dx$$
, **5)** $I_5 := \int_1^{e^{\pi}} \cos(\ln x) dx$.

$$5) I_5 := \int_1^{e^{\pi}} \cos(\ln x) dx.$$

Indication : il faudra observer que l'intégrale de départ réapparaît après une ou plusieurs intégrations par parties.

Exercice 9.

Calculer l'intégrale suivante :

$$I \coloneqq \int_0^{\frac{\pi}{2}} x \, \mathrm{e}^x \sin x \, dx.$$

Exercice 10.

Déterminer une primitive, à l'aide d'une ou plusieurs intégrations par parties, pour les fonctions

1)
$$f_1: x \mapsto \left(\frac{x-1}{x^2}\right) e^x$$
, 2) $f_2: x \mapsto \frac{x}{\cos^2 x}$, 3) $f_3: x \mapsto \frac{\ln(1+x)}{x^2}$.

$$2) \ f_2: x \mapsto \frac{x}{\cos^2 x},$$

3)
$$f_3: x \mapsto \frac{\ln(1+x)}{x^2}$$
.

Exercice 11.

En appliquant une intégration par parties, déterminer une primitive de la fonction f définie par

$$f: x \mapsto \frac{1}{(1+x^2)^2}.$$