Supporting the Encouragement of Forum Participation

Aashna Garg Stanford University aashna94@stanford.edu Andreas Paepcke Stanford University paepcke@cs.stanford.edu

ABSTRACT

Abstract goes here

1. INTRODUCTION

2. INTRODUCTION

3. FROM POSTS TO CONNECTION GRAPH

Social networks are most simply modeled by considering each participant as a node, and interactions initiated by participants as out-directed links. In this case all nodes are of one type, and links are unidirectional. Multiple interaction initiations by one person are captured by weighting the corresponding outgoing links. Many graph analysis tools operate on models of this type, and this is the approach we chose.

However, other strategies exist to cover different goals. For example, [1] additionally consider linkages between forum post topics to include communication content in the model. When networks operate on particular platforms, such as underground forums, which include private 'buddy' connections, such facilities may need to be modeled [2].

For the purpose of identifying candidate time points for encouraging online conversation participation our chosen model suffices. We are not in this work considering additional measures, such as content quality, for which a richer model would be required.

Many measures are used to quantify various aspects of social graphs [?]. Not all are meaningful in the context of education-related forum interactions. We focus here on two measures: *out-degree*, and *page rank*. Figure 1 illustrates.

Figure 1: Example social graph induced by forum posts.

Nodes A, B, C, D, and E represent students. The link from

A to B is marked with the number 3, because A commented three times on one of more of B's posts. The number of outgoing links is the node's out-degree. For example, the out-degree of A is 4.

The number of incoming links is called the node's in-degree. Node C's in-degree is 1. Node E has no links entering or exiting. The respective student has not participated in the forum.

Analogous to Web pages, each node can be assigned a page rank. The intuition in this context is that student S_1 's presence in the forum is more 'important' than student S_2 's if the node representing S_1 has higher page rank than the node that represents S_2 . In our context the intuition behind page rank is that a node N is more important (has higher page rank) the more other important nodes comment on N's posts. Imagine a scenario in which student S_1 posts an interesting question, to which many students comment with their opinion, creating a long thread. The node representing S_1 would experience an increase of its page rank with every incoming comment. Node B in Figure ?? is an example for this situation. Its in-degree is 4. If B were to comment on one of D's posts, then D's page rank would increase more than if the low-page-rank node C commented on D.

In terms of evaluating a student's participation in the forum, a high page rank, and high out-degree are positive. Low values are less positive. We chose these two values because of their relatively straight-forward meanings when applied to forum posts, and for their relevance to our goal of identifying potential intervention times.

Some of the fifteen other measures we computed, such as betweenness are meaningful for forum scenarios as well, but their usefulness depends on one's analysis goals. For example, [3] include several of those measures for the purpose of prediction analysis. For evaluation contribution quality the contents of posts would need to be considered: students who persistently post irrelevant contents contribute less positively to the forum than constructively participating students. However, for our purposes the two measures of page rank and out-degree provide strong enough signals.

4. ANALYSIS PROCEDURE

We computed our chosen social graph measures for 39 offerings of seven residential courses, and for one MOOC. Table 1 summarizes these data sources. We recomputed the measurements of the second of t

sures for every week throughout the quarter of each offering. In order to establish values against which to compare each student's measures during those weekly checkpoints we each time computed the two measures for (i) the average of the ten students who overall contributed the maximum number of posts, and (ii) for the median number of contributions at each checkpoint.

Figure 2: A MOOC forum post comparison: Women's Global Health.

5. CONCLUSION AND FUTURE WORK

Here is an example chart of the correct size.

- Consider student post content quality
- Consider consistency: contribute throughout course
- Consider influence on others
- Draw instructor attention to dense topic clusters, which might indicate confusion, or student excitement to harness.

6. REFERENCES

- [1] T. Anwar and M. Abulaish. Modeling a web forum ecosystem into an enriched social graph. In M. Atzmueller, A. Chin, D. Helic, and A. Hotho, editors, Ubiquitous Social Media Analysis: Third International Workshops, MUSE 2012, Bristol, UK, September 24, 2012, and MSM 2012, Milwaukee, WI, USA, June 25, 2012, Revised Selected Papers, pages 152–172. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
- [2] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G. M. Voelker. An analysis of underground forums. In *Proceedings of the 2011 ACM SIGCOMM* Conference on Internet Measurement Conference, IMC '11, pages 71–80, New York, NY, USA, 2011. ACM.
- [3] D. Yang, T. Sinha, D. Adamson, and C. P. Rosé. Turn on, tune in, drop out: Anticipating student dropouts in massive open online courses. In *Proceedings of the 2013* NIPS Data-driven education workshop, volume 11, page 14, 2013.

Figure 3: Wrong numbers, just an example. See $\mbox{\sc /tmp/fo-rumPromptsTableauChartsSample.twb}$

Topic	Offerings	Num-Students	Num-Active-Students	Encouragement
Computational	5	120		
Biology				
Artificial Intelligence	7	340		
Machine Learning	7	640		
Computer Vision	5	144		
Decision Analysis	4	232		
Audio Signal Processing	6	21		
Political Methodology	5	23		

Table 1: Summary of Examined Courses

Course	Offering	Nodes	Edges	Weighted OutDeg	Density	Active Participants	Largest SCC	Largest WCC
Artificial Intelligence	FALL12	192	414	893	0.011289267015706806	106	52	105
	FALL13	278	1396	4629	0.018128457522790433	195	130	194
	FALL14	435	1423	4352	0.007537475501880396	291	149	290
	FALL15	494	2114	4220	0.008680227640406993	357	197	352
	FALL16	782	3699	7286	0.006056567257532641	529	332	529
	SUMMER13	137	320	917	0.017174753112924	81	39	76
Machine Learning	FALL11	356	601	1237	0.004755499287862003	166	60	164
	FALL12	581	1306	2663	0.0038756009258709718	283	120	282
	FALL13	776	1823	4649	0.003031260392417692	383	158	375
	FALL14	820	1943	3610	0.002893177283421186	449	168	446
	FALL15	827	2413	5553	0.0035324153640305545	489	219	489
	FALL16	803	1510	3140	0.002344698651875914	393	153	386
	SPRING16	331	657	1548	0.006014831090359792	189	65	187
Computer Vision	FALL11	59	84	248	0.024547048509643482	29	12	29
	FALL12	120	195	528	0.01365546218487395	62	16	62
	SPRING16	208	1018	3722	0.023643626904496468	150	93	150
	WINTER14	152	601	1618	0.026185081910073196	101	63	100
	WINTER15	180	702	1639	0.021787709497206705	125	87	125
Decision Analysis	FALL15	176	265	445	0.008603896103896103	100	10	95
	FALL16	156	373	1185	0.015425971877584781	104	44	104
Computational Molecular Biology	FALL11	96	348	653	0.038157894736842106	61	38	61
	FALL12	101	289	657	0.028613861386138615	67	41	67
	FALL13	123	490	1279	0.03265360522457684	80	52	80
	FALL14	140	527	1122	0.02708119218910586	103	66	103
	FALL15	147	396	797	0.018451216102879506	93	45	92
	FALL16	120	384	886	0.02689075630252101	86	54	86

Table 2: Summary of Examined Courses