

# **DIGITAL SIMULATION OF BEAS SUTLEJ SYSTEM**

**A Thesis Submitted  
In Partial Fulfilment of the Requirements  
for the Degree of  
MASTER OF TECHNOLOGY**

**by  
VIJENDRA SINGH**

**to the**

**DEPARTMENT OF CIVIL ENGINEERING  
INDIAN INSTITUTE OF TECHNOLOGY KANPUR  
NOVEMBER 1978**

DEDICATED

TO

MY PARENTS

CENTRAL LIBRARY  
Acc. No. A 56884.

- 9 FEB 1979

C6-1978-m-SIN-DIG

CERTIFICATE

This is to certify that the thesis "Digital Simulation of Beas-Sutlej System" submitted by Shri Vijendra Singh in partial fulfilment of the requirements for the degree of Master of Technology of the Indian Institute of Technology, Kanpur, is a record of bonafide research work carried out by him under my supervision and guidance. The work embodied in this thesis has not been submitted elsewhere for a degree.



Dated November , 1978

(S. Ramaseshan)  
Professor  
Civil Engineering Deptt.

**POST GRADUATE OFFICE**

This thesis has been approved  
for the award of the Degree of  
Master of Technology (M.Tech.)  
in accordance with the  
regulations of the Indian  
Institute of Technology ~~Kanpur~~  
Dated. 14.12.78 R

## ACKNOWLEDGEMENTS

I wish to express my deep sense of gratitude to my thesis supervisor Dr. S. Ramaseshan, Professor, Civil Engineering Department, Indian Institute of Technology, Kanpur for his invaluable guidance, help, counsel and encouragement. He had very kindly spared time to solve my difficulties at various stages to bring this thesis to this shape. It has been a stimulating and rewarding experience for me to work with him.

I am deeply indebted to Er. H.C. Dhawan, Member(Irrigation), Er.R.K. Bhasin(Executive Engineer), Er.I.D. Sharma(A.D.E.), and Er. Inder Sain (A.D.E.) of Bhakra Beas Management Board Nangal Township, Er. R.N. Bansal (Director Dams) and Er. J.R. Garg (A.D.E.) of Beas Design Organization Nangal Township for their advices, helpful suggestions in collection of needed data of Bhakra-Beas system for this study. I am grateful, too to my other colleagues and friends particularly Sri Kripal Singh with whom I had many useful discussions.

Last but not the least I am very thankful to my wife Smt. Manju Singh for her whole hearted co-operation, patience and encouragement throughout the preparation of this thesis.

Vijendra Singh

## TABLE OF CONTENTS

|                                                   | Page      |
|---------------------------------------------------|-----------|
| List of Tables                                    | vi        |
| List of Figures                                   | vii       |
| List of Symbols, Abbreviations, or Nomenclature   | viii      |
| Synopsis                                          | xi        |
| <b>1. INTRODUCTION</b>                            | <b>1</b>  |
| 1.1. General                                      | 1         |
| 1.1.1. Water resources planning                   | 1         |
| 1.1.2. Simulation analysis                        | 3         |
| 1.1.3 Planning models of TWDB                     | 7         |
| 1.1.4 SIMYLD II programme                         | 10        |
| 1.2 Statement of Problem                          | 10        |
| 1.3 Objective of the Study                        | 11        |
| 1.4 Scope of the Study                            | 11        |
| 1.5 Significance of the Study                     | 12        |
| 1.6 Organization of the Study                     | 13        |
| <b>2. RIVER BASIN SIMULATION MODEL, SIMYLD II</b> | <b>14</b> |
| 2.1 Introduction                                  | 14        |
| 2.2 Model Description                             | 14        |
| 2.2.1 Purpose                                     | 14        |
| 2.2.2 Concepts                                    | 15        |
| 2.2.3 Assumptions                                 | 22        |
| 2.2.4 Steps                                       | 22        |
| 2.2.5 Programme description                       | 25        |
| 2.3 Capabilities and Limitations                  | 29        |
| <b>3. IMPLEMENTATION OF SIMYLD-II PROGRAMME</b>   | <b>32</b> |
| 3.1 General                                       | 32        |
| 3.2 Modification due to Computer System           | 32        |
| 3.3 Validation of the Original Programme          | 34        |
| 3.4 Additions and Alterations                     | 34        |
| 3.4.1. Water Year                                 | 34        |

|        |                                                    |    |
|--------|----------------------------------------------------|----|
| 3.4.2  | Canal system                                       | 34 |
| 3.4.3  | System state                                       | 35 |
| 3.4.4  | Energy                                             | 37 |
| 3.5    | Details of Results from the Computer Programme     | 38 |
| 3.6    | Conclusion                                         | 39 |
| 4.     | SIMULATION OF BEAS SUTLEJ SYSTEM                   | 40 |
| 4.1    | System Description                                 | 40 |
| 4.2    | Node Link Representation of Bhakra-Beas-<br>System | 42 |
| 4.3    | Data Used in Simulation Analysis                   | 45 |
| 4.3.1  | Irrigation demand                                  | 45 |
| 4.3.2  | Power demand                                       | 47 |
| 4.3.3  | Inflow data                                        | 48 |
| 4.3.4  | Evaporation rates                                  | 48 |
| 4.3.5  | Elevation area capacity curves                     | 55 |
| 4.3.6  | Data for energy generation                         | 55 |
| 4.3.7. | Link Capacities                                    | 57 |
| 4.4    | Study of Planned Operation                         | 59 |
| 4.4.1  | Planned operation                                  | 59 |
| 4.4.2  | Value judgements                                   | 59 |
| 4.4.3  | Results and conclusions                            | 64 |
| 4.5    | Improvements in Reservoir Operation                | 65 |
| 4.5.1  | Modification of the rule curve                     | 65 |
| 4.5.2  | Ranking of priorities                              | 66 |
| 4.5.3  | Evaluation of system performance                   | 68 |
| 4.5.4  | Discussion of results                              | 73 |
| 4.6    | Conclusions                                        | 75 |
| 5.     | SUMMARY AND CONCLUSIONS                            | 81 |
| 5.1    | Summary                                            | 81 |
| 5.2    | Conclusions                                        | 82 |
| 5.3    | Suggestions for Future Study                       | 83 |
|        | LIST OF REFERENCES                                 | 84 |

## LIST OF TABLES

| Table<br>No. |                                                           | Page |
|--------------|-----------------------------------------------------------|------|
| 2.1          | Arc Types and Definitions of Their Upper and Lower Bounds | 20   |
| 4.1          | Water Power Study for Dry Year                            | 49   |
| 4.2          | Water Power Study for Dependable Year                     | 51   |
| 4.3.         | Water Power Study for Average Year                        | 53   |
| 4.4          | Elevation-Area-Capacity of Bhakra and Pong Reservoirs     | 56   |
| 4.5          | Head-Efficiency Relationships                             | 58   |
| 4.6          | Rule Curves                                               | 61   |
| 4.7          | Priority Ranks for Irrigation and Power Demands           | 62   |
| 4.8          | Priority ranks for Rule Curves                            | 63   |
| 4.9          | Modified Rule Curves                                      | 67   |
| 4.10         | Power Demand at Bhakra                                    | 69   |
| 4.11         | Modified Priority Ranks                                   | 70   |
| 4.12         | Planned Energy Generation                                 | 72   |
| 4.13         | Results for Simulation Run No.I                           | 77   |
| 4.14         | Results for Simulation Run No.II                          | 78   |
| 4.15         | Results for Simulation Run No.III                         | 79   |
| 4.16         | Results for Simulation Run No.IV                          | 80   |

## LIST OF FIGURES

| Figure<br>No. |                                                       | Page |
|---------------|-------------------------------------------------------|------|
| 1.1           | Steps in Simulation                                   | 5    |
| 1.2           | Procedural Planning Steps for Project II              | 8    |
| 2.1           | Node Arc Configuration as a Network Flow Problem      | 21   |
| 2.2           | Organization of SIMYLD II                             | 27   |
| 4.1           | Interconnected System of Rivers Ravi, Beas and Sutlej | 43   |
| 4.2           | Node Link Representation of Bhakra Beas System        | 46   |

## LIST OF SYMBOLS, ABBREVIATIONS, OR NOMENCLATURE

## Symbols

|           |                                                                                                                                                                        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A_{RC}$  | Total number of arcs in the network                                                                                                                                    |
| $C_{ij}$  | Cost of flow from node $i$ to node $j$ for time $\Delta t$                                                                                                             |
| $H$       | Net head                                                                                                                                                               |
| $i$       | Index for node                                                                                                                                                         |
| $j$       | Index for node                                                                                                                                                         |
| $L_{ij}$  | Lower bound of the arc from node $i$ to node $j$                                                                                                                       |
| $L_B$     | Lower limit of average state                                                                                                                                           |
| $n$       | Number of nodes                                                                                                                                                        |
| $N$       | Number of reservoirs used in identifying the state of the system                                                                                                       |
| $N_D$     | Number of demand nodes                                                                                                                                                 |
| $N_L$     | Number of river reaches and canals                                                                                                                                     |
| $N_N$     | Number of reservoirs and nonstorage junctions                                                                                                                          |
| $N_S$     | Number of spill nodes                                                                                                                                                  |
| $q_{ij}$  | Flow from node $i$ to node $j$ for time $\Delta t$                                                                                                                     |
| $R$       | Total water available for storage or use                                                                                                                               |
| $S$       | Shortage                                                                                                                                                               |
| $S_i$     | Capacity of the $i$ th reservoir                                                                                                                                       |
| $S_{i,t}$ | Desired storage for $i$ th reservoir in $t$ th time period                                                                                                             |
| $t$       | Period under consideration                                                                                                                                             |
| $U_{ij}$  | Upper bound of the arc from node $i$ to node $j$                                                                                                                       |
| $U_B$     | Upper limit of average state                                                                                                                                           |
| $W$       | Total storage capacity of reservoirs defining the state of the system;<br>Total desired storage in an average year in the reservoirs defining the state of the system. |

|             |                                                                                   |
|-------------|-----------------------------------------------------------------------------------|
| $X_{i,t}$   | End of month storage for the $i$ th reservoir in the $t^{\text{th}}$ time frame   |
| $X_1$       | Fraction of $W$ to define $L_B$ lower limit of average state                      |
| $X_2$       | Fraction of $W$ to define $U_B$ upper limit of average state                      |
| $Y_{i,t+1}$ | Unregulated inflows to the $i$ th reservoir in the $(t+1)^{\text{th}}$ time frame |
| $Z$         | Objective function                                                                |
| $\Delta t$  | Time interval                                                                     |
| $\eta$      | Efficiency                                                                        |

#### Abbreviations

|         |                                 |
|---------|---------------------------------|
| BBDO    | Bhakra Beas Design Organization |
| BBMB    | Bhakra Beas Management Board    |
| BBS     | Bhakra Beas System              |
| BDO     | Beas Design Organization        |
| BMB     | Bhakra Management Board         |
| BSL     | Beas Sutlej Link                |
| CS      | Cusecs                          |
| m.a.f.  | Million acre feet               |
| m.cu.m. | Million cubic meters            |
| MBL     | Madopur Beas Link               |
| MW      | Megawatts                       |
| TAF     | Thousand acre feet              |
| TWDB    | Texas Water Development Board   |
| WJC     | Western Jamuna Canal            |

## Nomenclature

|            |                                                                 |
|------------|-----------------------------------------------------------------|
| Cumec day  | One cubic meter per second flowing per one day<br>(86400 cu.m.) |
| Kharif     | Monsoon season, June-October                                    |
| Non-Kharif | Non monsoon season, November-May                                |
| Rabi       | Dry season, November-February                                   |
| Water Year | June 1, to May 31.                                              |

## SYNOPSIS

"Digital Simulation of Beas Sutlej System" - a thesis submitted in partial fulfilment of the requirements for the Degree of Master of Technology by Vijendra Singh to the Department of Civil Engineering, Indian Institute of Technology, Kanpur, November 1978.

Water resources systems are generally large and complex. They consist of multiple units and serve multiple purposes. The multiple purposes are not wholly complementary. Several general or problem specific simulation models and computer programmes have been developed for analysing water resources systems. SIMYLD II is a computer programme developed by Texas Water Development Board for simulating the hydrologic operation of a system of interconnected reservoirs within a basin or a multibasin water resources system. The study consists in implementing the SIMYLD II programme, validating it with available data and adapting it for the operation of Bhakra Beas system.

The original SIMYLD II programme was implemented in IBM 7044-1401 system at I.I.T. Kanpur and was adapted to meet the requirements of Bhakra Beas system.

Using 13 years of historical data, the Bhakra Beas system was simulated using the modified SIMYLD II model. The criteria for defining wet, average and dry years; the rule curves for operation in wet, average and dry years; and

the relative weightages for meeting different demands and for maintaining the rule curves are derived from simulation analysis. Results indicate that by using these criteria, the benefit from the operation of the system can be greatly increased. Further improvement of the model is also possible.

## 1. INTRODUCTION

### 1.1 General

#### 1.1.1 Water resources planning

Water resources systems are generally large and complex. They consist of multiple units and they serve multiple purposes. The multiple purposes are not wholly complementary. Water resources systems are designed to serve several socio-economic objectives like national and regional economic development, income distribution, preservation and enhancement of Environmental quality and social well being (Maass et al., 1962, United States Water Resources Council, 1973). They are also affected by economic and hydrologic uncertainties.

The conventional practice in planning, design and operation of water resources projects has been to consider a set of demands and to satisfy them by river basin development. Such a development includes the purposes it is to serve, the physical means for meeting these purposes, the sizes of needed facilities and the levels of output. Based on experience, a few alternatives are proposed, analysed and evaluated through incremental analysis before a final design is adopted.

Planning can be defined as the orderly consideration of a project from the original statement of purpose through the evaluation of alternatives to the final decision on a course of action. It is the basis for decision to proceed with a proposed project and is clearly the most important aspect of

the total engineering for the project. The planning for an entire river basin involves a much more complex planning effort than that for a single project, but the difficulties in arriving at the correct decision may be just as great for the smaller project.

Hufschmidt considers the field level planning of water resources systems to consist of four hierarchical steps, viz. (Cole, 1975).

- i) Definition of project objectives and agreement of these with policy makers;
- ii) Securing staff and scheduling their tasks;
- iii) Data assembly on the physical variables (hydrology, water quality), human requirements (water supply, land use, recreation); and economic quantities (construction and operation costs, explicit benefits); and
- iv) Formulation of system design via (a) screening of alternative configurations and (b) detailed analysis of remaining components.

Planning may deal with modification to and operation of an existing system, or the design of an essentially new system involving the operating variables also. The latter is naturally more complicated. The two parts of step iv imply that initially a large number of alternatives are to be considered, and so relatively crude models are used to essentially eliminates trivial and inferior alternatives and isolate better alternatives. This is generally done by programming models.

Once better alternatives are identified, it may be possible to consider more detailed models of the system and arrive at the "best" one. This may involve stochastic programming and simulation models.

Wiener (1972) considers the role of planner and system analyst in the socio-economic development process in an underdeveloped country where water is used as a critical input for economic development and progress. He deems it necessary to consider the implementation phase also in planning particularly in the case of underdeveloped countries. He also indicates the limitations and opportunities in the application of system analysis and operations research techniques in water resources planning.

### 1.1.2 Simulation analysis

To simulate means to duplicate the essence of a system or activity without attaining reality itself. Simulation has been used traditionally in engineering. The use of conceptual system models, scale models, analogues and laboratory experimentation are but some of the general simulation techniques traditionally used in engineering. Simulation has been used for a number of purposes including the analysis of the system to estimate the parameters and the behaviour of the system that is existing or is yet to be; the effect of the environment on the system design; the demonstration of the performance of a new complex system, and for giving training in the control of complex systems.

Digital simulation is the numerical simulation of the process in a digital computer. A behaviour model of the physical components of a water resources system is formulated in terms of the components, parameters, variables and relationships among them to study the processes as they evolve in time through the several components of the system when subjected to a series of hydrologic inputs and human interventions in terms of design, construction and operation of the system. When the mathematical model for a process has been decided upon, the various elements of the process can be represented on the computer so that outputs from one part of a system constitute inputs to one or more elements of the system or to itself. The system is simulated for a set of design and operating parameters, and the effect of changes in these parameters on the system response is investigated.

The simulation of any system involve generally a number of steps which can be represented as follows (Fig.1.1):

- i) Formulation of the problem : The problem is to be formulated in analytic terms. This involves the definition of the objective, their priorities, the approach to optimization, the identification of the system and its environment and the structure of the system.
- ii) Analysis of data : The historical data for the inputs, the components of the system, and the outputs are collected.



FIG. 1.1 STEPS IN SIMULATION

- iii) Formulation of system model : Initially component models are formulated; from the data of the previous step, parameter values are estimated for the component models; and the models are validated. A flow diagram for the system indicating the sequence of the modifications of the inputs by the system is prepared.
- iv) Estimation of parameters and validation of system model: The parameters of the system are estimated, the system is analysed or numerically simulated and from the responses of the system for hypothetical or historical inputs as per record and from the results of simulation, the formulated system model is validated.
- v) Sampling for design variables : A set of feasible and preferred design and operating parameters are chosen.
- vi) Simulation of the process : The system is digitally simulated using historical or generated data as the case may be.
- vii) System utility : The measure of system response in achieving the goals for the system parameters assumed in each case is evaluated.

The results of simulation are also analysed to determine whether the system design can be improved with reference to the achievement of the goals. The parameter values are modified, and steps vi and vii are repeated until the "best" of the alternatives considered is identified.

viii) "Reporting of results The results of the study, the conclusions drawn and the recommended system design are reported in the final step for implementation.

### 1.1.3 Planning models of TWDB

Several general or problem specific simulation models and computer programmes have been developed for analysing water resources systems. Important references include Maass et. al. (1962), Hufschmidt and Fiering (1966), Lucia et al (1971), U.S. Army Corps of Engineers Hydrologic Engineering Centre (1968), and Texas Water Development Board (1972, 1972a, 1974). The general approach to simulation may be based on heuristic criteria as in the case of Maass et.al.(1962), Hufschmidt and Fiering (1966) or may use an imbedded optimisation technique as in the case of Texas Water Resources Board (1972),

Texas Water Development Board (TWDB) began in 1967 long range programme of applied research in water resources system simulation and optimization. The objective was to develop a set of generalised computer oriented planning tools for use in detailed planning, design and management of water resources systems such as the Texas Water System as proposed in the Texas Water Plan. Project II refers to the second phase of a three phase research project leading towards the development of a computer oriented planning system for use in planning of large, multibasin systems of reservoirs and connecting river reaches and pumped canals. The six planning steps of project II are shown in Fig. 1.2. They include :



Step two requires the use of Ten data preparation programmes.

### 3.1.2 PROCEDURAL PLANNING STEPS FOR PROJECT II

Step 1 : Identification of objectives and goals - This step outlines the problem to be solved, specifies in general the magnitude and location of demands to be met and the priorities associated with meeting each of the specified demands, identifies the sources of the water to be considered, and identifies the criterion to be used in optimising the selection of an implementation plan.

Step 2 : Data base development - In this step both historical and stochastically generated hydrologic data sets are developed concurrent with the economic and physical data.

Step 3 : Plan development - This step analyses each of the individual river basins to determine their firm yield characteristics and the location of possible attractive basin import and export points.

Step 4 : Plan improvement - This step improves those plans such that minimum - cost plans are developed at each of several points on a prespecified demand - build up curve.

Step 5 : Plan optimisation - It optimises the staging plan over the time period when demands for water are increasing. This implies finding the minimum - expected cost plan that meets the demands specified with an optimal level of shortages.

Step 6 : Final plan selection - This is the final step in the planning procedure and involves testing the sensitivity of the cost and physical response of the simulated prototype to variation in all of the important parameters used by the models.

#### 1.1.4 SIMYLD II programme

SIMYLD II is a computer programme designed to simulate the hydrologic operation of a system of interconnected reservoirs within a basin or a multibasin water resources system. The inputs to the model are physical description of the system to simulate operating criteria and monthly inflows, monthly demands and monthly evaporation rates. The output consists of monthly end of month reservoir storages, monthly flows in the system's river reaches and canals, and annual end period of simulation summaries. The main attributes of the model are simplicity in set up and use, generality in application, and speed of computation. Other models are more comprehensive and naturally much more complicated. Since SIMYLD II is used in earlier steps in decision making than the other models (Fig. 1.2) and it is also useful in identifying surplus and deficits, it is proposed to implement SIMYLD II at IBM 7044-1401 system at I.I.T.Kanpur and test it for field data of a river basin.

#### 1.2 Statement of Problem

It is proposed to implement SIMYLD II programme developed by the TWDB, validate the programme using the test data given in the TWDB report publication on the model (TWDB, 1972), adapt the simulation programme if necessary to meet the requirement of water resources systems in India, and test and validate the adapted model using some data for an Indian river basin.

### 1.3 Objective of the Study

The major objective of the study is to implement and adapt the SIMYLD II programme of TWDB to suit requirement of a river basin in India, identify the limitations and capabilities of such a model and hence develop knowhow for more comprehensive development planning models.

### 1.4 Scope of the Study

The scope of the study is limited by i) available data for real systems; ii) time availability for the study; iii) limited interactions with field engineers and planners; and iv) limitations in the IBM 7044-1401 computer system at I.I.T. Kanpur.

Hence the scope is limited to the following :

- i) Because of the limited capacity of the IBM 7044-1401 system, simulation is limited to 13 nodes, 20 links and 13 years.
- ii) The data were available for Bhakra-Beas system for a number of years and because of the limitation in time, computer capacity and computer availability, the studies are limited to the following :
  - a) While Bhakra Beas Management Board (BBMB) adopt a ten daily operation of the system, only monthly operation is considered in this study;
  - b) Only 13 years of data values are used in this study;
  - c) Because of limitation of the data availability and non avoidable lumping of demands and supplies in the model,

certain assumptions were made with reference to allocation of demands for different sources and for the lumping of demands at nodes;

- d) The demands are defined by BBMB for dry, dependable and average years. The inflows in the system may be dry, average or wet. Certain reasonable assumptions were made to link the demands to the inflows and these are considered in great detail in Chapter 4; and
- e) Because of the limitations of the study, model needs further modification as indicated in Chapter 5.

#### 1.5 Significance of the Study

As the remaining available uncommitted supplies of water and land resources diminish and demands for them increase, the objectives of water resources planning broaden the physical facilities required become more complex, and the limitations under which they must be implemented become more stringent. There exists an urgent need to develop techniques which can enhance the capability of the planners to make an intelligent and comprehensive evaluation of alternatives. Because costs of construction, operation, and maintenance of water resources facilities are likely to be large, a means must be found for analysing alternative solutions to water problem. Planners have been turning to sophisticated mathematical techniques applied on digital computers of increasing speed and accuracy. This study will lead to a better understanding of the problems in managing our scarce national water resource and towards a

better tool in the design of optimum water resources systems in India.

#### 1.6 Organization of the Study

The study is reported in the following sequence :

- i) Chapter 2 discusses the River basin simulation Model SIMYLD II and indicates the capabilities and limitations of the original programme;
- ii) Implementation of programme SIMYLD II is discussed in Chapter 3. Modifications, additions and alterations in the programme on IBM 7044-1401 systems to suit Indian conditions are also described;
- iii) Chapter 4 discusses the use of the adaptations of SIMYLD II in the simulation of Beas-Sutlej System. System description and input data required by the model are described briefly. A comparison is made in study of planned operation and improvements in operation. Results obtained and tentative conclusions are also discussed; and
- iv) Summary, conclusions and suggestions for future study are presented in Chapter 5.

## 2. RIVER BASIN SIMULATION MODEL, SIMYLD II

### 2.1 Introduction

SIMYLD II is a computer programme developed by TWDB designed to simulate the operation of the system of interconnected reservoirs within a basin or a multibasin water resources system. The description of the model and its various details have been taken from several publications of the TWDB (particularly TWDB, 1972).

### 2.2 Model Description

#### 2.2.1 Purpose

The purpose of SIMYLD-II is to provide the water resource planner with a tool for analysing water storage and water transfer within a multireservoir or multibasin system. The model has the following uses to the planner :

- i) It simulates the movement of water in a system of reservoirs, rivers, and conduits on a monthly basis while trying to meet a set of specified demands in a given order of priority. If a shortage occurs (i.e., not all demands can be met for a particular time period) during the operation, they are spatially located at the lowest priority demand nodes;
- ii) It determines the firm yield of a reservoir within a water resources system. Firm yield is defined as the maximum demand at a reservoir that can be met with 'acceptable' shortages;

- iii) The model is designed to provide the user with flexibility in selecting operating rules for each reservoir. The operating rules are formulated as the percentage of the reservoir capacity (either total or conservation) that is desired to be held in storage at the end of each month. In addition to it, priority ranking, used to determine the allocation of water between meeting demands and maintaining storage is assigned to each storage reservoir;
- iv) The model can analyse either static or dynamic system operation, in that both constant or time-variable demands can be analysed; and
- v) The user can analyse the operation of the system under the expected ultimate demands for any selected hydrologic sequence.

The model is designed to simulate both small scale systems, such as two or three reservoirs within one river basin, and large scale systems, such as the proposed Texas Water System.

#### 2.2.2 Concepts

The concept behind SIMYLD-II is that the physical water resource system can be transformed into a capacitated network flow problem. While making this transformation, the physical elements of the real system are represented as a combination of two possible network components -- nodes and links.

As the nomenclature implies, a node is a connection and/or branching point within the network. Therefore, a node is similar to a reservoir or non-storage junction (i.e. canal junctions, major river intersections, etc.) in the physical system. Along with this, a node is a network component which is considered to have the capacity to store a finite and bounded amount of the material moving in the network. In the case of SIMYLD-II, reservoirs are represented by nodes which have a storage capacity as well as the ability to serve as branching points. A nonstorage capacitated junction is treated similar to a capacitated junction (reservoirs) except that its storage capacity is always zero. Demands placed on the system must be located at nodal points.

The transfer of water among the various network nodes is fulfilled by transfer components called links. A link is a river reach, canal, or closed conduit with a specified direction of flow and a fixed maximum and minimum capacity. The physical system and its basic time step operation, in this case a month, is formulated as the network flow problem. The network flow problem is nothing more than a mathematical representation of the physical system. This mathematical representation is accomplished as follows :

- i) Reservoirs and nonstorage junctions are represented by nodes;
- ii) River reaches and pumped canals are represented by links; and

iii) Additional information needed to describe the system, such as inflows, demands, spill points, and starting conditions are specified by the user.

An initial step in the application of SIMYLD-II is the construction of the node-link diagram describing the physical system. In designing the node-link diagram, the physical system elements are represented by diagram elements in the following manner :

- (i) Reservoirs are represented by triangles ;
- (ii) Non-storage junctions or branching points are represented by circles ;
- (iii) River reaches are represented by <sup>Solid</sup> dashed lines showing the directions of flow ; and
- (iv) Canals or closed conduits are represented by ~~solid~~ dashed lines showing the direction of flow.

In order to make the node-link diagram conform to the requirements of SIMYLD-II, the following rules for designing the diagram should be followed :

- i) Water can enter or leave the system only at node points (either storage or non-storage nodes). Inflows (over land flow, tributaries, etc.), link losses (evaporation, seepage, etc.) and demands can be lumped at the closest node. If more detail is required, additional non-storage nodes can be inserted at critical locations ;

- ii) The numbering system used to describe the nodes consists of numbering all nodal reservoirs consecutively followed by numbering all non-storage nodes ; and
- iii) Number all river reaches consecutively followed by all canals and/or conduits in the same manner as described above. Figure 2.1 shows this node arc configuration formulated as a network flow problem.

Once the node-link diagram is complete, all nodes, links, and other information must be described in terms of directed, capacitated arcs and nodes. Within the typical network there are seven types of nodes. These are :

- i) Reservoir nodes ;
- ii) Non-storage nodes ;
- iii) Initial storage and inflow nodes ;
- iv) Demand nodes ;
- v) Spill nodes ;
- vi) Final storage nodes ; and
- vii) Net balance nodes

Connecting these seven types of nodes are seven types of arcs. Flows in these arcs are constrained to be within specified upper and lower limits. The seven types of arcs are :

- i) Physical system link arcs ( river reaches, pumped canals, etc.) ;
- ii) Initial storage and inflow arcs ;

- iii) End of month desired storage arcs (operating rules);
- iv) Balance of final storage and maximum reservoir capacity arcs ;
- v) Demand arcs ;
- vi) Spill arcs ; and
- vii) Net balance arcs.

Table 2.1. shows the arc types and their upper and lower bound constraints. The total number of arcs in any network is given by :

$$\text{ARCS} = N_L + 3(N_N) + N_D + N_S + 4 \quad \dots \quad (2.1)$$

Where

- $N_L$  = number of river reaches and canals,
- $N_N$  = number of reservoirs and non-storage junctions,
- $N_D$  = number of demand nodes,
- $N_S$  = number of spill nodes, and
- 4 = number of balance arcs.

Cost per unit of flow is associated with each arc in the network. These unit cost coefficients are used to find the minimum cost solution to the network flow problem. As input to the model, the user selects priorities for meeting demands and satisfying final end-of month storage requirements in the reservoirs. These priorities are then converted into the above mentioned costs by the programme. Demand arc and desired storage arc costs are expressed as negative costs (analogous to benefits). The more negative

TABLE 2.1 ARC TYPES AND DEFINITIONS OF THEIR UPPER AND LOWER BOUNDS (TWDB, 1972)

| Arc Type                              | Lower Bound                                                        | Upper Bound                                                        |
|---------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| 1. Physical system link               |                                                                    |                                                                    |
| a. River Reach                        | Minimum River Capacity+<br>(User Specified)                        | Maximum River Capacity                                             |
| b. Canal, Pipe line                   | Minimum Canal Capacity+<br>(User Specified)                        | Maximum Canal Capacity                                             |
| 2. Initial Storage and Inflow         | Previous End-of-Month Storage Plus Current Monthly Inflows         | Previous End-of-Month Storage Plus Current Monthly Inflows         |
| 3. Final Desired Storage              | Reservoir Minimum Pool<br>(User Specified)                         | Percent of maximum Capacity Desired (monthly operating rules)      |
| 4. Final Storage Balance              | Zero                                                               | Balance Between Maximum Capacity and Upper Bound of 3.             |
| 5. Demand Arc                         | Zero                                                               | Demand at Node.                                                    |
| 6. Spill Arc                          | Zero                                                               | System Capacity Multiplied by 10                                   |
| 7. Net Balance                        |                                                                    |                                                                    |
| a. Total Initial Storage Plus Inflows | $\Sigma$ Initial Storages                                          | $\Sigma$ Initial Storages                                          |
| b. Total Final Storage Arc            | $\Sigma$ Final Storage Balance Plus $\Sigma$ Final Desired Storage | $\Sigma$ Final Storage Balance plus $\Sigma$ Final Desired Storage |
| c. Total Demands                      | Zero                                                               | $\Sigma$ Demands                                                   |
| d. Total Spills                       | Zero                                                               | $\Sigma$ Spills                                                    |

\* Should be zero unless minimum flow is required. However a minimum flow requirement may cause infeasible solutions.



FIG. 2) NODE ARC CONFIGURATION AS A NETWORK FLOW PROBLEM

the number, the higher the priority for meeting the upper constraint ( demand or storage). Physical system link and spill costs, on the other hand, are positive costs. The effect is to meet demands and desired storage in the order of the priorities while minimising the canal pumping and spills from the system. It may be noted that high rank indicates the lower priority and vice-versa.

#### 2.2.3 Assumptions

- i) Evaporation losses for all reservoirs are calculated by the product of the monthly evaporation rate and the average monthly reservoir surface area ;
- ii) Demands for water are known for the month being simulated ;
- iii) Unregulated inflows to the system are known for the month being simulated ;
- iv) Reservoir storage contents are allowed to fluctuate between the maximum and minimum capacities specified by the user ;
- v) Spills occur only at specified nodes and are the most expensive alternative ; and
- vi) The flow in all links ranges between the maximum and minimum capacity specified by the user.

#### 2.2.4 Steps

The procedure adopted in the programme makes use of the following four steps in moving from a known set of state variables at the beginning of a time step to the solution

for the required set of state variables at the end of the time step. The four solution steps are summarized as follows:

- i) The present status of the network is evaluated and all system elements are given an appropriate parametric description ;
- ii) All specified hydraulic and hydrologic inputs and demands are accounted for, and the mass balance for the entire network system is determined. Bounds are placed on system demands, spills and storage levels.
- iii) The flows necessary to meet the levels required by (Eq. 2.3), and at the same time minimise the system's total cost of water transport, are determined through the application of an optimisation procedure.

The mathematical formulation of the directed capacitated network problem is as follows :

MINIMISE :

$$Z = \sum_{ij} q_{ij} C_{ij} \quad \dots \quad (2.2)$$

Subject to :

$$\sum_i q_{ij} - \sum_i q_{ji} = 0, \quad j = 1, \dots, n \quad \dots \quad (2.3)$$

$$L_{ij} \leq q_{ij} \leq U_{ij}, \quad \text{all } i, j \quad \dots \quad (2.4)$$

where

$q_{ij}$  = Flow from node  $i$  to node  $j$  for time  $\Delta t$ ;

$C_{ij}$  = Cost of flow from node  $i$  to node  $j$  for time  $\Delta t$ ;

$L_{ij}$  = Lower bound of the arc from node i to node j; and

$U_{ij}$  = Upper bound of the arc from node i to node j

The first set of constraints (Eq. 2.3) satisfies continuity of mass at all nodes in the network. Eq. 2.4 describes the upper and lower limits on flow in all arcs in the network. The objective function to be minimised is expressed by Eq. 2.2.

iv) All necessary state variables have now been determined, and the status of the system at the conclusion of the current time step becomes the status at the beginning of the next time step.

This procedure is repeated in a step-wise fashion until a specified simulation interval has been spanned.

In SIMYLD-II the optimal allocation of network flows is accomplished through the application of the "Out-of-Kilter Algorithm" (Ford and Fulkerson, 1962). This procedure finds the minimum total cost of water circulation within the network system subject to flow constraints placed on the system arcs. If we define the amount of water flowing in arc  $(i,j)$ , from node i to node j, as  $q_{ij}$ , and the unit cost of moving water in this link as  $C_{ij}$ , then the algorithm minimizes the objective function  $\gamma = \sum C_{ij} q_{ij}$  for all i and j in the system. This is accomplished subject to the flow constraints given in Eqs. 2.3 and 2.4. The 'Out-of-Kilter Algorithm' requires

the objective function and all constraints to be linear and therefore, SIMYLD-II can be considered to be a linear programming formulation.

#### 2.2.5 Programme description

SIMYLD-II consists of a main programme and eleven subroutines, all of which are written in Fortran IV programming language . Fig.2.2 shows the organization of the code the subroutine names and calling programme.

The following is a description of the important features of each of the subroutines.

##### SIMYLD-II (Main Programme)

The main programme is the control point for calling subroutines. The Fortran logical unit requirements are read in and their values are kept throughout programme execution.

##### Subroutine ADJUST

This subroutine is used to adjust the annual demands in the firm yield calculations. This adjustment is based on the greatest shortage incurred during the period of operation. When the shortage demand ratio is within the user specified tolerance, or the preset value of 10 percent, it returns to subroutine OPRATE with input = 0 value.

### Subroutine CARDS

Subroutine CARDS reads all input from Cards except for the monthly variable data( inflows, demands, and evaporation rates ).

### Subroutine DATA 1

This subroutine is called only if variable monthly data ( inflows, demands, and evaporation rates ) are being read from cards. The data cards are read, rearranged, and a temporary scratch file is written for use by the programme.

### ENTRY DATA 2

This entry point within subroutine DATA 1, permits the programme to read one year of monthly data during simulation. The temporary scratch file is written from a previous call to DATA 1 or is created in advance.

### ENTRY RULE

This entry point is where the monthly operating rule criteria is set. The preselected subsystem of reservoirs is analysed to determine if it falls in the average, dry, or wet state and the appropriate operating rule is passed on to OPRATE.

### Subroutine OPRATE

This is the major subroutine in the programme and is where the yearly and monthly loops are set and all calls to operating parts of the model take place. The arc

SIMYLD II  
MAIN PROGRAM



FIG. 2.2 ORGANIZATION OF SIMYLD II

bounds and unit flow costs are calculated in this routine. This subroutine also controls the calls to ADJUST and DATA 2 for iteration if the model is operating in the firm yield mode. Upon return from the network flow algorithm, initial arrays and yearly total summaries are set up. Based on an input operation, selected years are passed on to OUT 2 for printing.

#### Subroutine AREA

This subroutine performs a linear interpolation to determine reservoir surface area as a function of volume. The user is permitted to input up to 18 matched points per reservoir to describe the area - capacity relationship of each reservoir in the system.

#### Subroutine OUT 2

OUT 2 prints detailed monthly system operation for selected years. At the end of each simulation year, OPRATE determines if the year should be printed and issues a call to OUT 2. Detailed monthly information for each node and link is printed including beginning and ending storages, inflows, demand, spills, transfer amounts, etc.

#### Subroutine OUT 1

This subroutine provides a complete printing of the input variables that control the simulation. These variables have been read previously by subroutine CARDS.

### Subroutine OUT 3

Subroutine OUT 3 is an output subroutine called from SIMYLD-II ( Main Programme ) after the simulation is completed. This subroutine prints summaries of the annual operation of each node for each year in the simulation period. In addition, simulation period totals and maximum and average flows in each link are printed.

### Subroutine SETNET

This subroutine is called to set up the basic network system. The configuration is determined by the number of nodes and physical links which are joined to mass balance nodes by artificial links as described previously.

### Subroutine SUPERKIL

This subroutine finds the minimum cost flow in the network. As described previously, costs are determined from the ranking priorities supplied by the user. The routine is called by OPRATE for every month of simulation where the bounds and priorities have been assigned.

### Subroutine RIGHT Entry LEFT

This subroutine and entry point are intimately related to the operation of the subroutine SUPERKIL.

## 2.3 Capabilities and Limitations

SIMYLD-II is capable of simulating the operation of a system of interconnected reservoirs and non-storage

junctions with a maximum of 30 nodes ( reservoirs and non-storage junctions) interconnected by a maximum of 45 links. The maximum simulation period, using monthly intervals is 30 years.

Unit identifications have been purposely deleted from output files so that the model can use acre-feet, thousands of acre-feet, metric system units, etc. as units of flow and storage as required by the user.

The model allows for three sets of operating policies to guide the model through corresponding hydrologic states. These hydrologic states are determined by the programme each month from the value of storages and inflows in a specified group of reservoirs.

The model accepts card input for the monthly data for a system consisting of upto 20 nodes and for a simulation period of less than 21 years. For larger systems or longer simulation periods, a binary tape must be prepared.

In some cases, the algorithm in SIMYLD-II causes the simulation to be terminated due to infeasibility in solving the network problem. In almost every case, these infeasibilities are caused by in proper specifications by the user. The most common are :

- i)      Improper system configuration ;
- ii)     The user has not allowed an adequate number of spill nodes ;

- iii) A minimum canal capacity is too binding ;
- iv) An unregulated inflow occurs where there is no possible way to reallocate the water in the system, that is, no spill node has been provided, and
- v) Basic data problems

Most of the above problems, can be readily avoided by carefully examining the schematic diagram and verifying that the data are correct.

### 3. IMPLEMENTATION OF SIMYLD-II PROGRAMME

#### 3.1 General

SIMYLD-II is a fairly lengthy programme involving around 1400 FORTRAN Cards. Available core memory in IBM 7044 at I.I.T. Kanpur is less than 32 K. words. This is not adequate for the original SIMYLD-II programme. Two compilers are available for IBM- 7044 viz. (i) WATFOR, (ii) FORTRAN IV. WATFOR Compiler gives an extensive diagnostic report but memory availability is less and diagnostic checking is slow. Due to memory problem, and even for debugging purpose, the whole programme could not be run at a time. Main programme and each subroutine were fed separately on WATFOR compiler for correcting the syntax errors.

#### 3.2 Modification due to Computer System

SIMYLD-II was developed by Carles D. Puentes of the Systems Engineering Division of the Texas Water Development Board on a third generation Computer System. This is to be implemented in the IBM 7044-1401 system at I.I.T. Kanpur using Fortran IV compiler. While correcting the syntax errors of main and subroutine programmes, problems arose :

- i) The notation for continuity card is changed from A, B, C etc. to 1, 2, 3 etc. to suit the computer system ;
- ii) Entry statements were used in the original programmes e.g. ENTRY DATA 2 and ENTRY RULE in Subroutine DATA 1 and ENTRY LEFT and ENTRY DUMPO in subroutine RIGHT. Since entry

statements are inadmissible in the IBM 7044- 1401 system, the following modifications were made to the programme :

- a) Since ENTRY DATA 2 and ENTRY RULE which occur in subroutine DATA 1, are called only once each and that too in subroutine OP RATE, those were incorporated in subroutine OP RATE itself ;
- b) ENTRY LEFT and ENTRY DUMPO have been implemented as separate subroutines ;
- iii) Some read cards had to be changed to suit the computer e.g. READ(KIN, 11, END = 22) ( TITLE (I), I=1,20) was chaged to  
ASSIGN 22 TO LOC  
CALL FXMSET (LOC, IFLAG,-7,38)  
READ (KIN,11) ( TITLE (I), I = 1,20)
- iv) After removing the syntax errors, the complete programme was fed and it was found to result in large memory overflow. The original programme is capable of simulating the monthly operation of a system of interconnected reservoirs and non-storage junctions with a maximum of 30 nodes and 45 links over a period of 30 years. In order to reduce the memory requirements to the capacity of IBM 7044-1401 system, it was necessary to reduce the dimension of the variables. It was found that a system with 13 nodes and 20 links can be simulated using monthly intervals over a period of 13 years.

### 3.3 Validation of the Original Programme

The original publication describing SIMYLD-II (TWDB 1972) gave the test data for a hypothetical system and the programme was run using the test data. The results from the simulation run agreed with the results given in the original publication and thus the programme implementation was validated.

### 3.4 Additions and Alterations

#### 3.4.1 Water year

In the original programme the water year is counted from first January to thirty first December. In this study, the water year is modified to begin on June 1st of one year and ends on the thirty first May of the next year.

#### 3.4.2 Canal system

SIMYLD-II considers man made and pumped canals which are costly. Hence these are to be avoided and so the original programme minimized pumpage cost for canal flow. In certain systems e.g., Bhakra Beas System, diversion may be preferable because of an existing high head reservoir and resultant flow through an additional power plant. Furthermore the unit cost of flow in the river reach and canal were taken as one in both the cases. In the revised programme, the cost of the river reach is kept as one while for the canal it is ten and the programme was modified so that it may not

minimize canal diversion. This requires identification of some river reaches where diversion is undesirable as canals and vice versa.

### 3.4.3 System state

The operation of the system depends upon whether storage and inflow in a given month indicate the water available to be below, at or above average conditions referred to respectively as dry, average and wet states. The states are determined as follows :

A specific group of reservoirs are used to identify the system state.

Let

- $S'_i$  = capacity of the  $i^{\text{th}}$  reservoir
- $N$  = number of reservoirs used in identifying the state of the system
- $\leq$  the number of reservoirs in the system
- $t$  = the period under consideration
- $x_{i,t}$  = end-of-month storage for the  $i^{\text{th}}$  reservoir in the  $t^{\text{th}}$  time frame
- $y_{i,t+1}$  = Unregulated inflows to the  $i^{\text{th}}$  reservoir in the  $(t+1)^{\text{th}}$  time frame
- $w$  = total storage capacity of reservoirs defining the state
- =  $\sum_{i=1}^N S'_i$

$$R = \sum_{i=1}^N X_{i,t} + \sum_{i=1}^N Y_{i,t+1} \dots \quad (3.1)$$

Let  $X_1$  and  $X_2$  be fractions of the subsystem maximum capacity used to determine the limits of the hydrologic state with  $X_1 \leq X_2$ . Define

$$L_B = X_1 \cdot W \text{ and}$$

$$U_B = X_2 \cdot W$$

where the hydrologic state is determined by

$$R < L_B = \text{DRY}$$

$$L_B \leq R \leq U_B = \text{AVERAGE ,and}$$

$$R > U_B = \text{WET}$$

Associated with each one of these hydrologic states there is a corresponding set of operating rules and ranking priorities for meeting demands.

Based on input parameters supplied by the user for the operation of reservoirs and priorities, the programme optimises the reservoir releases.

In SIMYLD-II the decision about the states were made monthly but in India with a highly seasonal inflow, the state of the system does not generally vary in the non-monsoon season. For example the decision concerning the Bhakra Beas System are generally modified month after month ( or every ten days ) in the filling season but may be considered as constant in the nonfilling season. Hence the programme

has been modified to define and evaluate the state in the months of June, July, August and September and use the state in September for all subsequent months until next June.

As rule curve values change from month to month, it was necessary to define W in terms of desired storage in an average year rather than the total storage. Hence W was redefined as

$$W = \sum_{i=1}^N S_{i,t} \text{ where } S_{i,t} \text{ is the desired storage}$$

for  $i^{th}$  reservoir in  $t^{th}$  time period for an average year as per the rule curve.

#### 3.4.4 Energy

SIMYLD-II programme was developed to consider the demand for water, say for irrigation, water supply, etc. While irrigation is the major purpose of Beas Sutlej system, the energy needs are also important and it is necessary to keep track of the energy generation from month to month as well as seasonal and annual deficits in energy. Subroutine ENERGY is added to suit the specific requirement of the Beas Sutlej system and using the specific 'Elevation-Efficiency - Storage' relationship of the system. It may be noted that for other systems the subroutines will need modification.

### 3.5. Details of Results from the Computer Programme

The output from SIMYLD II consists of three subreports as follows :

#### Sub-Report 1

This sub-report contains the information supplied by the user for the simulation and includes the number and description of the nodes, links and configuration of the system.

#### Sub-Report 2

This sub-report gives details information on the nodes and links on the monthly basis and this includes initial storage, unregulated inflow, upstream spills, demand, surface area, evaporation rates, evaporation losses, downstream spills, shortages, pumped into, pumped out, system loss, end of month storage and operating rules for each storage reservoir, demand, storage, and unregulated inflow for each non-storage nodes, and actual flows in each link and the annual average. This is repeated for every year.

#### Sub-Report 3

This sub-report provides a series of summaries for the period of simulation and also for every year of simulation for each node and for each link.

### 3.6 Conclusion

It is possible to implement the original SIMYLD-II in IBM-7044 system and adapt the programme suitably through modifications and additions in order that Bhakra Beas System can be simulated. Final results considered in Chapter-4 indicate that further modifications should be made in the programme in order that it is more realistic. However the experience with SIMYLD-II indicates that when a large number of computer programmes are available for simulation of water resource systems, it may be easier to adapt some of the existing programmes than to write a new programme particularly when the systems are complex and not well understood.

#### 4. SIMULATION OF BEAS SUTLEJ SYSTEM

4.1 System Description (Bhalla and Bansal, 1975, ,Mehendiratta and Hoon 1973 a, Harbans Singh, 1964; BBDO, 1964).

The Beas Sutlej system (Shown in Fig. 4.1) has been chosen for the study. The river Sutlej, which originates in the regions of Mansrover in Tibet, enters Indian territory near Shipki and after flowing for a length of about 200 miles, it emerges in the plains of Punjab at Bhakra. Total catchment area of Sutlej above Bhakra Dam is about 21,960 sq.miles and of this 14,305 sq.miles lie in Tibet and only 7655 sq.miles lie in India.

The Sutlej catchment is affected by summer rainfall as well as winter rainfall. The period of south west monsoon rainfall extends from June to September, and winter rainfall extends from December to February. Rainfall in the catchment varies over the basin with an annual average of around 875 mm. Govindsagar, the reservoir formed by the Bhakra dam has a gross capacity of 7.644 m.a.f. and a live storage capacity of 5.932 m.a.f. above a dead storage of 1462 ft. It covers an area of 41,000 acres. The total runoff at Bhakra for a dependable year works out to 11.128 m.a.f. and that for a mean year to 13.329 m.a.f.

Water from Govindsagar can be passed through turbines of two power houses, one on the right bank and the other on the left bank at the foot of the Bhakra dam. Both the power

houses have 5 turbines each. Each of the generators in the right bank power house has a maximum capacity of 120 M.W. whereas each of the left bank generators has a maximum capacity of 90 M.W.

About 11 kms. downstream of Bhakra dam is Nangal reservoir formed by the 95 ft. high Nangal Dam. Part of the water from Nangal is released to Nangal hydel channel with a length of 40.07 miles and a carrying capacity of 12,633 cusecs. The remainder of the water is released to Sutlej. The Nangal hydel channel supplies water to two power houses on its path at Ganguwal and Kotla with a total installed capacity of 154 M.W. Water from the Nangal hydel channel is then divided between the Bhakra main canal and the Sirhind Canal.

Downstream of Nangal, there are head works at two places on the river Sutlej at Rupar and Harike. At Rupar water is diverted to Bist Doab and Sirhind Canals.

The Beas river takes off from the lower ranges of Shiwaliks and joins the river Sutlej at Harike. The total length of its course upto its confluence with River Sutlej is about 247 miles and the length upto Beas Dam at Pong is 143 miles. The catchment area of river Beas upto Pong is approximately 4,850 sq.miles. The average rainfall in the catchment is 1,778 mm. For a mean year the discharge at Mandi Plain varies from 5,328 cusecs minimum in the dry season to 65,350 cusecs during monsoon, with an annual average runoff of

13.01 m.a.f. For a dependable year, the runoff is 10.00 m.a.f.

Beas project has been undertaken for harnessing the water and power resources of the Beas river by means of storage and diversion works. It consists of (i) Beas-Sutlej link, which comprises a diversion dam at Pandoh across the Beas in the Kulu Valley to transfer 3.83 m.a.f. of water to the Bhakra reservoir through tunnels and open conduits capable of passing a maximum discharge of 7500 cusecs and (ii) Pong dam which provides for a storage dam at Pong with a maximum height of 432 ft, a gross storage of 6.952 m.a.f. and a live storage capacity of 5.908 m.a.f. The power plant has 4 units with an installed capacity of 60 M.W. each with provision for two additional units in future. The water released from Pong dam and utilised for generation of power will be used for irrigation through the Beas Canal system from the Harike head works. Water from the Ravi river is transferred by diversion at Madhopur head works through Madhopur Beas link (maximum capacity 10,000 cusecs) to the Beas river. This can be diverted at Harike to irrigate Beas command. The interconnected system of the Beas, Sutlej and Ravi rivers is shown in Fig. 4.1.

#### 4.2 Node Link Representation of Bhakra-Beas System

For the consideration of the study the Beas-Sutlej system may be considered to consist of the following :



FIG. 4-1 INTER CONNECTED SYSTEM OF RIVERS RAVI, BEAS AND SUTLEJ  
(BHALLA AND BANSAL 1975)

Two reservoirs at Bhakra (1) and Pong (2) and diversion point without storage at Pandoh (3) and five control points without storage at Dehar (4), Nangal (5), Rupar (6), Harike(7) and Mukerian (8). It may be noted that Nangal reservoir has a small storage capacity with reference to releases in a month and it is used for within the week and within the day balancing of demand and inflow. Hence the fluctuation of storage at Nangal is ignored in the study, and Nangal is treated as a control point without storage.

The number within the brackets is the serial number of the node with reservoir numbered first and other nodes later. The numbering of the river reaches and canals were done initially by treating the diversion canal as a canal and river reaches as river reaches. However because of the formulation of the original programme which minimises canal diversion, this formulation resulted in large diversion through Pong and small diversion through Dehar and Bhakra.

The inflow in river Beas may be diverted through Beas-Sutlej link for augmenting storage at Bhakra and hence to generate power at Dehar and Bhakra or permit to flow through Beas river to Pong, but diversion is always preferable and so flow from Pandoh to Pong is desirable only if the inflow at Pandoh is larger than the capacity of Beas-Sutlej link canal or when there is no storage available in Bhakra. Hence for the system model used in the study, Beas-Sutlej link is considered

as a river reach with a high priority and Beas river between Pandoh and Pong is considered as a canal section with a low priority and is numbered last as shown in Fig. 4.2.

#### 4.3 Data Used in Simulation Analysis

Simulation analysis of Bhakra Beas system needs extensive details of data concerning the reservoir, canals, power houses, demands, inflow and priorities. Those have been obtained from Bhakra Beas Management Board (BBMB) and from a number of publications (BBDO, 1964) and include the water power studies of BBMB for cycle point 1921-22 to 1959-60. A brief description of the data used in the study are given in the following subsection.

##### 4.3.1. Irrigation demand

The irrigated area served consists of parts of Punjab, Haryana and Rajasthan. The main crops grown in this region are bajra, cotton, maize, rice, jowar, sugarcane, oil seeds, pulses, potatoes and fodder during rabi season.

Beas Design Organization (B.D.O.) has estimated the demands for various command areas of the Beas-Sutlej system for dry, dependable and average years. A part of the demand is met from outside the basin including western Jamuna canal and the planned operation of the system for dry, dependable and average years are given in Tables 4.1, 4.2 and 4.3.

The requirements are low in the months from December to April except in the latter half of February and in March



FIG. 4.2 NODE LINK REPRESENTATION OF BHAKRA BEAS SYSTEM

when water is required for maturing of rabi crops. The requirements are high in the months from September to November owing to water required for maturing of Kharif crops and preparation and sowing of Rabi crops. Rabi crop requirements are less than Kharif crop requirements. In the months of May and June, the requirements are again high due to preparation and sowing of Kharif crops. In the monsoon season also the requirements are quite high as the areas where such water is to be utilized, have low rainfall.

In the absence of additional prior information, the year is identified in this study as dry, dependable or average and the net corresponding B.D.O. demands were used in simulation analysis.

#### 4.3.2 Power demand

The releases from the reservoir were originally planned to be made mainly in the interest of irrigation. Water is released in the interest of power from Bhakra reservoir only. These releases were to be in addition to those made in the interest of irrigation. Only 0.154 m.a.f. was earmarked for releases to be made to firm up power generation from Bhakra for average year while 1.084 m.a.f. and 1.099 m.a.f. was planned to be released in the interest of power for dry and dependable years respectively. The details of releases in the interest of power are also given in Tables 4.1 to 4.3.

#### 4.3.3. Inflow data

The Beas-Sutlej system receives inflows from Sutlej at Bhakra, from Beas at Pandoh and Pong, and from Ravi-Beas diversion and Beas inflows at Mukerian. Inflow data for river Sutlej at Bhakra and for river Beas at Pandoh and Pong are available for ten daily periods for a large number of years.

In this study monthly data for only 13 years from June 1961 to May 1974 were used to derive the Sutlej inflow at Bhakra, Beas inflow at Pandoh and the additional inflow between Pandoh and Pong lumped as Pong inflows.

Rivers Ravi and Beas are interlinked through M.B. link of 10,000 cs capacity. B.D.O. recommended inflow at Mukerian through M.B. link for dry and dependable years as 1.442 m.a.f. and for the average year as 1.949 m.a.f. Details for monthly values are shown in Tables 4.1 to 4.3.

#### 4.3.4. Evaporation rates

Evaporation occurs from the reservoir, channels and irrigation areas. Evaporation from irrigated areas is included in irrigation demands, but the losses from reservoir storage due to evaporation constitute a consumptive use and are not available for other uses. Hence they are to be estimated for Bhakra and Pong reservoirs. Mehndiratta and Hoon (1973) measured the pan evaporation at Bhakra from April 1966 to March 1971 and estimated the evaporation rates from inflow, outflow and storage data. They estimated an average pan

TABLE 4.1. WATER POWER STUDY FOR DRY YEAR

## DEHAR POWER PLANT

| Period         | Inflow of River Beas at Pandoh for diversion to B.S.L. (CS) | Supply diverted through B.S.L. limited to 7500 C.S.Q' | Tailrace Elevation (ft) | Gross head available (2760 - Col. 7) (ft) | Head loss in tunnel $0.762 \times 10^{-6} \times Q^2$ (ft) | Head loss in Penstock (ft) | Total head loss (ft) | Mean head (ft) 2760 - Col. 8 - average tailrace Elevation 'H' | Efficiency 'e' | Power in M.W Q.H.e / 1800 | Inflow of River Beas at Pong (CS) | Supply diverted to B.S.L as in Col 3 (CS) | Inflow of River Beas at Pong after diversion at Pandoh (Col 13 - Col 14) | Requirements of Punjab Canals at Harlike (CS) |    |
|----------------|-------------------------------------------------------------|-------------------------------------------------------|-------------------------|-------------------------------------------|------------------------------------------------------------|----------------------------|----------------------|---------------------------------------------------------------|----------------|---------------------------|-----------------------------------|-------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|----|
| 1              | 2                                                           | 3                                                     | 4                       | 5                                         | 6                                                          | 7                          | 8                    | 9                                                             | 10             | 11                        | 12                                | 13                                        | 14                                                                       | 15                                            | 16 |
| July           | 18827                                                       | 7500                                                  | 1650                    | 43                                        | 25                                                         | 68                         |                      | 1042                                                          | ↑              | 530                       | 28314                             | 7500                                      | 20814                                                                    | 7007                                          |    |
| August         | 15131                                                       | 7500                                                  | 1650                    | 43                                        | 25                                                         | 68                         |                      | 1042                                                          |                | 530                       | 22007                             | 7500                                      | 14507                                                                    | 7007                                          |    |
| Sept 110 11567 | 7500                                                        | 1650                                                  | 43                      | 25                                        | 68                                                         |                            | 1042                 |                                                               | 530            | 18120                     | 7500                              | 10620                                     | 7154                                                                     |                                               |    |
| 11-20 9164     | 1500                                                        | 1650                                                  | 43                      | 25                                        | 68                                                         |                            | 1042                 |                                                               | 530            | 13590                     | 7500                              | 6090                                      | 7154                                                                     |                                               |    |
| Sept 2130 6326 | 6326                                                        | 1650                                                  |                         | 30                                        | 22                                                         | 52                         |                      | 1058                                                          |                | 455                       | 11018                             | 6326                                      | 4692                                                                     | 7154                                          |    |
| Oct. 4450      | 4450                                                        | 1650                                                  |                         | 15                                        | 16                                                         | 31                         |                      | 1079                                                          |                | 327                       | 7684                              | 4450                                      | 3234                                                                     | 4602                                          |    |
| Nov. 3113      | 3113                                                        | 1650                                                  |                         | 7                                         | 15                                                         | 22                         |                      | 1088                                                          |                | 230                       | 4156                              | 3113                                      | 1643                                                                     | 4602                                          |    |
| Dec. 2175      | 2175                                                        | 1650                                                  | 1110                    | 4                                         | 15                                                         | 19                         |                      | 1091                                                          | 0.8            | 161                       | 3715                              | 2175                                      | 1540                                                                     | 3217                                          |    |
| Jan.           | 1796                                                        | 1796                                                  | 1650                    | 2                                         | 15                                                         | 17                         |                      | 1093                                                          |                | 133                       | 2622                              | 1796                                      | 826                                                                      | 2557                                          |    |
| Feb.           | 1928                                                        | 1928                                                  | 1650                    | 3                                         | 15                                                         | 18                         |                      | 1092                                                          |                | 143                       | 3193                              | 1928                                      | 1265                                                                     | 3379                                          |    |
| Mar.           | 2809                                                        | 2809                                                  | 1650                    | 6                                         | 15                                                         | 21                         |                      | 1089                                                          |                | 208                       | 4108                              | 2809                                      | 1299                                                                     | 3835                                          |    |
| Apr.           | 3519                                                        | 3519                                                  | 1650                    | 9                                         | 15                                                         | 24                         |                      | 1086                                                          |                | 260                       | 4194                              | 3519                                      | 675                                                                      | 3469                                          |    |
| May            | 7144                                                        | 7144                                                  | 1650                    | 39                                        | 24                                                         | 63                         |                      | 1047                                                          |                | 509                       | 8090                              | 7144                                      | 946                                                                      | 6790                                          |    |
| June 1-10      | 9440                                                        | 7500                                                  | 1650                    | 43                                        | 25                                                         | 68                         |                      | 1042                                                          |                | 530                       | 11680                             | 7500                                      | 4180                                                                     | 6790                                          |    |
| 11-20          | 11484                                                       | 7500                                                  | 1650                    | 43                                        | 25                                                         | 68                         |                      | 1042                                                          |                | 530                       | 12611                             | 7500                                      | 5111                                                                     | 6790                                          |    |
| 21-30          | 16634                                                       | 1500                                                  | 1650                    | 43                                        | 25                                                         | 68                         |                      | 1042                                                          | ↓              | 530                       | 15118                             | 7500                                      | 7618                                                                     | 6790                                          |    |
| M.A.F          |                                                             | 3.611                                                 |                         |                                           |                                                            |                            |                      |                                                               |                |                           | 7104                              |                                           | 3.653                                                                    | 3.681                                         |    |

PONG BEACH

**Supply delivered to  
Punjab Canals at Harlike  
after applying R.F.  
depletion period at 50%**  
(c.s.)

**Requirement of  
Rajasthan  
canals at Harlike  
(c.s.)**

**Supply delivered to  
Raj. Canals at Harlike  
after applying R.F.  
depletion period at 30%  
(c.s.)**

**Total supply to  
Punjab Ray. Canals  
at Harlike  
(col.17+col.19) (c.s.)**

**Releases made  
at Chaktra (Col. 21)  
between which (c.s.)  
Col. 19 & Col. 20  
losses between  
Chaktra & Harlike  
(c.s.)**

**Net Supply delivered  
at Harlike from  
Chaktra (Col. 21+Col. 22)  
(c.s.)**

**Net Supply available  
through Pong  
at Harlike (c.s.)**

**Releases made in  
the interest of  
Pong (c.s.)**

**Gross up loss  
between Pong &  
Mandi Phanschi  
cusecs**

**Total releases at  
Pong (Q.  
Col.20-(Col.23+Col.24  
+ Col.26) (c.s.)**

**Storage or  
with drawal in  
acre feet (r.a.f.)**

**Losses in Pong  
Reservoir in  
acre feet**

**Net storage in  
Pong Reservoir  
in r.a.f.**

**Reservoir  
Elevation  
(ft.)**

**Gross head  
(ft.)**

**Col.32 Col.33**

| 12   | 13    | 14    | 15    | 16    | 17    | 18    | 19   | 20    | 21   | 22    | 23    | 24     | 25    | 26    | 27    | 28   | 29   | 30  | 31 | 32 | 33 | 34 |
|------|-------|-------|-------|-------|-------|-------|------|-------|------|-------|-------|--------|-------|-------|-------|------|------|-----|----|----|----|----|
| 1007 | 13136 | 13140 | 10147 | -     | -     | -     | -    | 9000  | -    | +1500 | 9647  | +11167 | +692  | 15000 | 1721  | 1289 | 1088 | 201 |    |    |    |    |
| 7076 | 16146 | 16140 | 20247 | -     | -     | -     | -    | 9500  | -    | +1500 | 9647  | +4860  | +301  | 15000 | 2007  | 1298 | 1088 | 210 |    |    |    |    |
| 5723 | 14824 | 14835 | 17605 | 6453  | -     | -     | -    | 6453  | 24   | +1500 | 20370 | +250   | +5    | 5000  | 2007  | 1298 | 1086 | 210 |    |    |    |    |
| 3547 | 34816 | 34812 | 10621 | -     | -     | -     | -    | -     | -    | +1500 | 8528  | -2438  | -49   | 5000  | 1953  | 1297 | 1087 | 210 |    |    |    |    |
| 3534 | 21926 | 6084  | 21641 | -     | -     | -     | -    | -     | -    | +1500 | 10141 | -5449  | -109  | 5000  | 1839  | 1293 | 1088 | 209 |    |    |    |    |
| 4361 | 18382 | 1163  | 9562  | -     | -     | -     | -    | -     | -    | +1000 | 8362  | -5128  | -318  | 23600 | 1508  | 1281 | 1097 | 194 |    |    |    |    |
| 3301 | 12780 | 6856  | 1091  | -     | -     | -     | -    | -     | -    | +500  | 6657  | -5014  | -301  | 10500 | 1197  | 1268 | 1087 | 181 |    |    |    |    |
| 1008 | 8676  | 5371  | 4919  | 8341  | 668   | 2673  | -    | -     | -    | +500  | 1806  | -266   | -16   | 10500 | 1170  | 1266 | 1085 | 131 |    |    |    |    |
| 1218 | 8660  | 3291  | 4509  | 2721  | 148   | 2573  | -    | -     | +500 | 1196  | -670  | -42    | 10500 | 1118  | 1264  | 1085 | 179  |     |    |    |    |    |
| 1039 | 9460  | 3572  | 5261  | 3429  | -     | 3429  | -    | -     | +500 | 1332  | -67   | -4     | 10500 | 1104  | 1263  | 1085 | 178  |     |    |    |    |    |
| 1917 | 14525 | 5520  | 7337  | 5048  | -     | 5048  | -    | -     | +500 | 1899  | -600  | -37    | 13000 | 1054  | 1261  | 1085 | 176  |     |    |    |    |    |
| 1734 | 5800  | 9261  | 3936  | 1726  | -     | 1726  | 2212 | -     | -    | +675  | +40   | -      | -     | 15000 | 1079  | 1262 | 1085 | 177 |    |    |    |    |
| 3395 | 7552  | 2210  | 6265  | 5611  | -     | 5611  | 453  | -     | +500 | 1268  | -322  | -20    | 15000 | 1044  | 1260  | 1085 | 175  |     |    |    |    |    |
| 4074 | 15126 | 8077  | 12091 | 7234  | -     | 7294  | 1357 | -     | +500 | 3930  | +250  | +5     | 5000  | 1044  | 1260  | 1085 | 175  |     |    |    |    |    |
| 4700 | 15398 | 11935 | 16635 | 10241 | -     | 10241 | 2033 | -     | +500 | 4861  | +250  | +5     | 5000  | 1044  | 1260  | 1086 | 174  |     |    |    |    |    |
| 6200 | 15398 | 12542 | 17742 | 8296  | -     | 8896  | 2477 | -     | +500 | 7269  | +349  | +7     | 5000  | 1046  | 1260  | 1087 | 173  |     |    |    |    |    |
| 8859 |       |       |       |       | 0.051 | 1.447 |      | 1.022 |      |       |       |        |       |       | 0.093 |      |      |     |    |    |    |    |

c.s = cusecs

MAF = Million Acre Feet

T.A.F = T

| Losses<br>in Penstock<br>(ft.) | Net<br>head<br>(ft.) | Mean<br>head (ft.)<br>$c_H$ | Efficiency<br>(e) | Power in M.W.<br>Q.H.C/11800 | Period     |
|--------------------------------|----------------------|-----------------------------|-------------------|------------------------------|------------|
| 35                             | 36                   | 37                          | 38                | 39                           | 40         |
| 1                              | -                    | -                           | -                 | -                            | -          |
| 10                             | 191                  | 179.0                       | 0.83              | 122                          | July       |
| 10                             | 200                  | 195.5                       | 0.84              | 135                          | Aug        |
| 10                             | 200                  | 200.0                       | 0.85              | 150                          | Sept. 1-10 |
| 8                              | 202                  | 201.0                       | 0.85              | 124                          | 11-20      |
| 10                             | 195                  | 198.5                       | 0.85              | 145                          | Sept 21-30 |
| 8                              | 186                  | 190.5                       | 0.84              | 114                          | Oct.       |
| 6                              | 175                  | 180.5                       | 0.83              | 85                           | Nov.       |
| 6                              | 175                  | 175.0                       | 0.82              | 22                           | Dec.       |
| 6                              | 173                  | 174.0                       | 0.82              | 18                           | Jan.       |
| 6                              | 172                  | 172.5                       | 0.81              | 16                           | Feb.       |
| 6                              | 170                  | 171.0                       | 0.81              | 22                           | Mar.       |
| 6                              | 171                  | 170.5                       | 0.81              | -                            | Apr        |
| 6                              | 169                  | 170.0                       | 0.81              | 15                           | May.       |
| 6                              | 169                  | 169.0                       | 0.81              | 46                           | Junel-10   |
| 6                              | 168                  | 168.5                       | 0.81              | 56                           | 11-20      |
| 6                              | 167                  | 167.5                       | 0.81              | 84                           | 21-30      |
|                                |                      |                             |                   |                              | M.A.F.     |

ousand Acre Feet

Contd-Sheet 1 of 1

# BHAKRA

| Period     | INFLOW in River Sutlej at Bhakra (CS) | Supplies delivered through BSL limits to 7500 cusecs Col. 3 of Sheet 2 of F1) | Total inflow at Bhakra (Col. 2 + Col. 3) | Requirements of Rajasthan canals at Rupnar (CS) | Supplies delivered to Rajasthani canals after applying Res. factor during depletion period & 30% (CS) | Dalhi drinking water subbing (CS) | Total requirements of Punjab canals at Rupnar (CS) | Supplies delivered to PB. canals after applying Res. factor during depletion period @ 50% (CS) | Total supplies delivered to both Rajasthan and Punjab canals at Rupnar (Col. 6 + Col. 7 + Col. 9) | Contribution from Jammu (CS) | Gain or loss between Bhakra and Rupnar (CS) | Releases made at Bhakra for Rupnar canals (Col. 10 + Col. 11) if (CS) | Supplies released at Bhakra for Harake canals (CS) | Releases in the interest of power (CS) | Total releases made at Bhakra (Col. 13 + Col. 14 + Col. 15) (CS) |
|------------|---------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|------------------------------------------------------------------|
| 1          | 2                                     | 3                                                                             | 4                                        | 5                                               | 6                                                                                                     | 7                                 | 8                                                  | 9                                                                                              | 10                                                                                                | 11                           | 12                                          | 13                                                                    | 14                                                 | 15                                     | 16                                                               |
| JULY       | 37430                                 | 7500                                                                          | 44930                                    | 420                                             | 420                                                                                                   | 325                               | 22493                                              | 22493                                                                                          | 23238                                                                                             | 2067                         | +1000                                       | 20171                                                                 | -                                                  | -                                      | 20171                                                            |
| AUG.       | 36658                                 | 7500                                                                          | 44158                                    | 420                                             | 420                                                                                                   | 325                               | 22493                                              | 22493                                                                                          | 23238                                                                                             | 3595                         | +1000                                       | 18643                                                                 | -                                                  | -                                      | 18643                                                            |
| SEP. 1-10  | 24305                                 | 7500                                                                          | 31805                                    | 540                                             | 432                                                                                                   | 325                               | 26355                                              | 21084                                                                                          | 21516                                                                                             | 1615                         | -                                           | 19901                                                                 | 6453                                               | -                                      | 26354                                                            |
| 11-20      | 14661                                 | 7500                                                                          | 22161                                    | 540                                             | 205                                                                                                   | 325                               | 26355                                              | 13177                                                                                          | 13707                                                                                             | -                            | -                                           | 13707                                                                 | -                                                  | -                                      | 13707                                                            |
| SEP. 21-30 | 11301                                 | 6326                                                                          | 17627                                    | 540                                             | 205                                                                                                   | 325                               | 26355                                              | 13177                                                                                          | 13707                                                                                             | -                            | -                                           | 13707                                                                 | -                                                  | -                                      | 13707                                                            |
| OCT.       | 6513                                  | 4450                                                                          | 10963                                    | 480                                             | 182                                                                                                   | 325                               | 26624                                              | 13312                                                                                          | 13819                                                                                             | -                            | -                                           | 13819                                                                 | -                                                  | -                                      | 13819                                                            |
| NOV.       | 4597                                  | 3113                                                                          | 7710                                     | 480                                             | 182                                                                                                   | 325                               | 24043                                              | 12021                                                                                          | 12528                                                                                             | -                            | -                                           | 12538                                                                 | -                                                  | -                                      | 12538                                                            |
| DEC.       | 3808                                  | 2175                                                                          | 5983                                     | 336                                             | 128                                                                                                   | 325                               | 16421                                              | 8210                                                                                           | 8663                                                                                              | -                            | +100                                        | 8563                                                                  | 3341                                               | 1540                                   | 13444                                                            |
| JAN.       | 3272                                  | 1796                                                                          | 5068                                     | 270                                             | 103                                                                                                   | 325                               | 13261                                              | 6630                                                                                           | 7058                                                                                              | -                            | +200                                        | 6858                                                                  | 2721                                               | 5881                                   | 15460                                                            |
| FEB.       | 2980                                  | 1928                                                                          | 4908                                     | 366                                             | 139                                                                                                   | 325                               | 17708                                              | 8854                                                                                           | 9318                                                                                              | -                            | +400                                        | 8918                                                                  | 3429                                               | 4165                                   | 16512                                                            |
| MAR.       | 3345                                  | 2809                                                                          | 6154                                     | 420                                             | 160                                                                                                   | 325                               | 20056                                              | 10028                                                                                          | 10513                                                                                             | -                            | +200                                        | 10313                                                                 | 5048                                               | -                                      | 15361                                                            |
| APR.       | 4683                                  | 3519                                                                          | 8202                                     | 300                                             | 114                                                                                                   | 325                               | 13088                                              | 6544                                                                                           | 6983                                                                                              | -                            | -300                                        | 7283                                                                  | 1726                                               | 6520                                   | 15529                                                            |
| MAY        | 10409                                 | 7144                                                                          | 17553                                    | 480                                             | 182                                                                                                   | 325                               | 26068                                              | 13034                                                                                          | 13541                                                                                             | -                            | -600                                        | 14141                                                                 | 5611                                               | -                                      | 19752                                                            |
| JUNE 1-10  | 16154                                 | 7500                                                                          | 23654                                    | 480                                             | 182                                                                                                   | 325                               | 26499                                              | 13250                                                                                          | 13757                                                                                             | -                            | -600                                        | 14357                                                                 | 7294                                               | -                                      | 21651                                                            |
| 11-20      | 18566                                 | 7500                                                                          | 26066                                    | 480                                             | 480                                                                                                   | 325                               | 26499                                              | 15900                                                                                          | 16705                                                                                             | -                            | -600                                        | 17305                                                                 | 10241                                              | -                                      | 27546                                                            |
| 21-30      | 29300                                 | 7500                                                                          | 36800                                    | 480                                             | 480                                                                                                   | 325                               | 26499                                              | 26499                                                                                          | 27304                                                                                             | -                            | -600                                        | 27904                                                                 | 8896                                               | -                                      | 36800                                                            |
| M.A.F      | 9.299                                 | 3.611                                                                         | 12.910                                   | 0.304                                           |                                                                                                       |                                   | 15.533                                             |                                                                                                |                                                                                                   | 0.384                        | 0.086                                       |                                                                       |                                                    | 1.08                                   |                                                                  |

CS = Cusecs

| Storage or<br>Withdrawal in<br>Cusecs<br>(Col. 4 - Col. 16) | Storage or<br>withdrawal<br>in T.A.F.<br>(Col. 18) | Losses in<br>Reservoir<br>(acre feet)<br>(Col. 19) | Net Storage<br>in T.A.F.<br>(Col. 20) | Reservoir<br>Elevation<br>(ft.)<br>(Col. 21) | Tailrace<br>Elevation<br>(ft.)<br>(Col. 22) | Mean Head (ft.)<br>(H)<br>(Col. 23) | Net Head (ft.)<br>(Col. 24 - H)<br>(Col. 25) | Efficiency<br>(e)<br>(Col. 26) | Power in M.W.<br>at Bhatra<br>(Col. 27)<br>(M.W.) | Power at Debar<br>power plant<br>(Col. 28 of Sheet 1 of 2)<br>(M.W.) | Power at Pong<br>power plant<br>(Col. 29 of Sheet 1 of 2)<br>(M.W.) | Power at Nangal<br>canal<br>power houses<br>(M.W.)<br>(Col. 30) | Total<br>Power<br>(Col. 31) | Period |            |
|-------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------------|-------------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------|--------|------------|
| 17                                                          | 18                                                 | 19                                                 | 20                                    | 21                                           | 22                                          | 23                                  | 24                                           | 25                             | 26                                                | 27                                                                   | 28                                                                  | 29                                                              | 30                          | 31     | 32         |
|                                                             |                                                    |                                                    | 1699                                  | 1462                                         |                                             |                                     |                                              |                                |                                                   |                                                                      |                                                                     |                                                                 |                             |        |            |
| + 24759                                                     | + 1532                                             | 10000                                              | 3221                                  | 1550                                         | 1174                                        |                                     | 332.0                                        | 328.0                          | 0.82                                              | 452                                                                  | 530                                                                 | 122                                                             |                             | 1258   | July       |
| + 25515                                                     | + 1580                                             | 10000                                              | 4791                                  | 1612                                         | 1173                                        |                                     | 408.0                                        | 404.0                          | 0.84                                              | 535                                                                  | 530                                                                 | 135                                                             |                             | 1354   | Aug.       |
| + 5451                                                      | + 109                                              | 4000                                               | 4896                                  | 1615                                         | 1176                                        |                                     | 437.5                                        | 433.5                          | 0.85                                              | 825                                                                  | 530                                                                 | 150                                                             |                             | 1659   | Sept. 1-10 |
| + 8454                                                      | + 169                                              | 3000                                               | 5062                                  | 1621                                         | 1171                                        |                                     | 447.0                                        | 443.0                          | 0.85                                              | 439                                                                  | 530                                                                 | 124                                                             |                             | 1247   | 11-20      |
| + 3920                                                      | + 78                                               | 3000                                               | 5137                                  | 1623                                         | 1171                                        |                                     | 451.0                                        | 447.0                          | 0.85                                              | 443                                                                  | 455                                                                 | 145                                                             |                             | 1197   | Sept 21-30 |
| - 2856                                                      | - 177                                              | 8000                                               | 4952                                  | 1617                                         | 1171                                        |                                     | 449.0                                        | 445.0                          | 0.85                                              | 444                                                                  | 327                                                                 | 114                                                             |                             | 1039   | Oct.       |
| - 4828                                                      | - 290                                              | 6000                                               | 4656                                  | 1607                                         | 1171                                        |                                     | 441.0                                        | 437.0                          | 0.85                                              | 396                                                                  | 230                                                                 | 85                                                              |                             | 865    | Nov.       |
| - 7461                                                      | - 463                                              | 6000                                               | 4187                                  | 1590                                         | 1171                                        |                                     | 427.5                                        | 423.5                          | 0.85                                              | 411                                                                  | 161                                                                 | 22                                                              |                             | 748    | Dec.       |
| - 10392                                                     | - 644                                              | 6000                                               | 3537                                  | 1564                                         | 1172                                        |                                     | 405.0                                        | 401.0                          | 0.84                                              | 443                                                                  | 133                                                                 | 18                                                              | M.W.                        | 748    | Jan.       |
| - 11604                                                     | - 650                                              | 6000                                               | 2881                                  | 1534                                         | 1172                                        |                                     | 377.0                                        | 373.0                          | 0.83                                              | 435                                                                  | 143                                                                 | 16                                                              |                             | 748    | Feb.       |
| - 9307                                                      | - 577                                              | 8000                                               | 2295                                  | 1503                                         | 1172                                        |                                     | 346.5                                        | 342.5                          | 0.82                                              | 367                                                                  | 208                                                                 | 22                                                              |                             | 751    | Mar.       |
| - 7327                                                      | - 440                                              | 10000                                              | 1846                                  | 1473                                         | 1172                                        |                                     | 316.0                                        | 312.0                          | 0.81                                              | 334                                                                  | 260                                                                 | -                                                               |                             | 748    | APR.       |
| - 2199                                                      | - 186                                              | 10000                                              | 1700                                  | 1462                                         | 1174                                        |                                     | 293.5                                        | 289.5                          | 0.80                                              | 391                                                                  | 509                                                                 | 15                                                              |                             | 1069   | May        |
| + 2003                                                      | + 40                                               | 4000                                               | 1736                                  | 1465                                         | 1174                                        |                                     | 291.0                                        | 287.0                          | 0.80                                              | 423                                                                  | 530                                                                 | 46                                                              |                             | 1153   | June 1-10  |
| - 1480                                                      | - 30                                               | 3000                                               | 1703                                  | 1462                                         | 1176                                        |                                     | 286.0                                        | 282.0                          | 0.80                                              | 528                                                                  | 530                                                                 | 56                                                              |                             | 1268   | 11-20      |
| -                                                           | -                                                  | 3000                                               | 1700                                  | 1462                                         | 1179                                        |                                     | 283.0                                        | 279.0                          | 0.80                                              | 698                                                                  | 530                                                                 | 84                                                              | ↓                           | 1466   | 21-30      |

M.A.F. = MILLION Acre Feet.

T.A.F. = Thousand Acre Feet.

TABLE 4-2 WATER POWER STUDY FOR DEPENDABLE YEAR

## DEHAR POWER PLANT

| PERIOD    | INFLOW OF RIVER BEAS AT PANDOH<br>FOR DIVERSION<br>TO B.S.L. (C.S.) | SUPPLY<br>DIVERTED THROUGH<br>B.S.L. LIMITED<br>TO 7500 C.S.Q.<br>TAILRACE | ELEVATION<br>(ft) | GROSS HEAD<br>AVAILABLE<br>ON (2760 - COL. 4)<br>(ft) |    | HEAD<br>LOSS IN TUNNEL<br>0.762 X 10 <sup>-6</sup> X Q <sup>2</sup><br>(ft) | HEAD LOSS<br>IN OPEN STOCK<br>(ft) | TOTAL<br>HEAD LOSS<br>(ft) | MEAN HEAD<br>(ft) | POWER IN M.W.<br>H.E.<br>GEN. | INFLOW OF RIVER BEAS<br>AT PONG<br>(C.S.) | SUPPLY DIVERTED<br>TO B.S.L. AS<br>IN COL. 3 | INFLOW OF RIVER BEAS<br>AT PANDOH<br>(C.S.) | REQUIREMENT OF PUNJAB<br>CANALS AT HARIBALLA<br>(C.S.) |  |
|-----------|---------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------|-------------------------------------------------------|----|-----------------------------------------------------------------------------|------------------------------------|----------------------------|-------------------|-------------------------------|-------------------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------------------------------|--|
|           |                                                                     |                                                                            |                   | B                                                     | C  |                                                                             |                                    |                            |                   |                               |                                           |                                              |                                             |                                                        |  |
| JULY      | 12087                                                               | 7500                                                                       | 1650              | 110                                                   | 43 | 7                                                                           | 68                                 | 1042                       | 1042              | 530                           | 3034                                      | 150                                          | 2344                                        | 727                                                    |  |
| AUG.      | 21258                                                               | 7500                                                                       | 1650              | 110                                                   | 43 | 20                                                                          | 58                                 | 1042                       | 1042              | 530                           | 5224                                      | 7500                                         | 42724                                       | 700                                                    |  |
| SEP 1-10  | 14920                                                               | 750                                                                        | 1650              | 1110                                                  | 43 | 14                                                                          | 58                                 | 1042                       | 1042              | 130                           | 11840                                     | 7500                                         | 24340                                       | 7154                                                   |  |
| 11-20     | 11160                                                               | 7500                                                                       | 1654              | 1106                                                  | 43 | 32                                                                          | 58                                 | 1030                       | 1042              | 529                           | 11401                                     | 7500                                         | 13951                                       | 7154                                                   |  |
| SEP 21-30 | 8857                                                                | 7500                                                                       | 1655              | 1105                                                  | 43 | 25                                                                          | 68                                 | 1037                       | 1037              | 527                           | 13926                                     | 7500                                         | 6426                                        | 7154                                                   |  |
| OCT.      | 5040                                                                | 5040                                                                       | 1650              | 1110                                                  | 19 | 18                                                                          | 37                                 | 1073                       | 1070.5            | 366                           | 8055                                      | 5040                                         | 3015                                        | 4602                                                   |  |
| NOV.      | 2667                                                                | 2667                                                                       | 1650              | 1110                                                  | 5  | 15                                                                          | 20                                 | 1090                       | 1090              | 197                           | 4743                                      | 2667                                         | 2076                                        | 4602                                                   |  |
| DEC.      | 2111                                                                | 2111                                                                       | 1650              | 1110                                                  | 3  | 15                                                                          | 18                                 | 1092                       | 1092              | 157                           | 4108                                      | 2111                                         | 1957                                        | 3217                                                   |  |
| JAN.      | 1912                                                                | 1912                                                                       | 1650              | 1110                                                  | 3  | 15                                                                          | 18                                 | 1092                       | 1092              | 142                           | 3939                                      | 1912                                         | 2027                                        | 2557                                                   |  |
| FEB.      | 1956                                                                | 1956                                                                       | 1650              | 1110                                                  | 3  | 15                                                                          | 18                                 | 1092                       | 1092              | 145                           | 4133                                      | 1956                                         | 2177                                        | 3379                                                   |  |
| MAR.      | 2930                                                                | 2930                                                                       | 1650              | 1110                                                  | 7  | 15                                                                          | 22                                 | 1088                       | 1088              | 216                           | 5065                                      | 2930                                         | 2135                                        | 3835                                                   |  |
| APR.      | 5194                                                                | 5194                                                                       | 1650              | 110                                                   | 21 | 18                                                                          | 39                                 | 1071                       | 1071              | 379                           | 6837                                      | 5199                                         | 1638                                        | 3469                                                   |  |
| MAY       | 7564                                                                | 7500                                                                       | 1650              | 1110                                                  | 43 | 25                                                                          | 68                                 | 1042                       | 1042              | 530                           | 9326                                      | 7500                                         | 1826                                        | 6790                                                   |  |
| JUNE      | 110 9333                                                            | 7500                                                                       | 1650              | 1110                                                  | 43 | 25                                                                          | 68                                 | 1042                       | 1042              | 530                           | 10122                                     | 7500                                         | 2622                                        | 6790                                                   |  |
| JULY      | 1072                                                                | 7500                                                                       | 1650              | 1110                                                  | 43 | 25                                                                          | 68                                 | 1042                       | 1042              | 530                           | 13231                                     | 7500                                         | 5731                                        | 6790                                                   |  |
| JL-30     | 13866                                                               | 7500                                                                       | 1650              | 1110                                                  | 43 | 25                                                                          | 68                                 | 1042                       | 1042              | 530                           | 15363                                     | 7500                                         | 7863                                        | 6790                                                   |  |
| MAF.      | 5.77                                                                | 3.62                                                                       |                   |                                                       |    |                                                                             |                                    |                            |                   |                               | 997                                       |                                              | 635                                         | 368                                                    |  |

## RIVER BEAS

PUNAR-ANALYSIS OF THE  
AFTER-AIMPLIANCE R.F. DURING  
DEFERRED ON REFLUX. 5.  
S.J. 6/

**REQUIREMENTS OF RAILROADS.**

| PUNJAB CANALS & HAFRAN                              |     |     |      |     |     |      |     |     |      |     |     | AFTER APPLYING R.F. DURN<br>DEPLETION PERIOD AT<br>JULY 67 |      |      |     |     |
|-----------------------------------------------------|-----|-----|------|-----|-----|------|-----|-----|------|-----|-----|------------------------------------------------------------|------|------|-----|-----|
| DECOMMISSIONS OF PASSES AND<br>ANALYSIS OF RESERVES |     |     |      |     |     |      |     |     |      |     |     | ANALYSIS OF RESERVES                                       |      |      |     |     |
| C.S.                                                |     |     | C.S. |     |     | C.S. |     |     | C.S. |     |     | C.S.                                                       |      |      |     |     |
| 1                                                   | 2   | 3   | 4    | 5   | 6   | 7    | 8   | 9   | 10   | 11  | 12  | 13                                                         | 14   | 15   | 16  | 17  |
| 007                                                 | 314 | —   | —    | —   | —   | —    | —   | —   | —    | —   | —   | —                                                          | 1297 | 1088 | 208 | 208 |
| 7                                                   | 10  | 10  | 10   | 10  | 10  | 10   | 10  | 10  | 10   | 10  | 10  | 10                                                         | 343  | 328  | 258 | 258 |
| 14                                                  | 14  | 14  | 14   | 14  | 14  | 14   | 14  | 14  | 14   | 14  | 14  | 14                                                         | 1345 | 108  | 264 | 264 |
| 21                                                  | 21  | 21  | 21   | 21  | 21  | 21   | 21  | 21  | 21   | 21  | 21  | 21                                                         | 30   | 30   | 30  | 30  |
| 28                                                  | 28  | 28  | 28   | 28  | 28  | 28   | 28  | 28  | 28   | 28  | 28  | 28                                                         | 1297 | 1088 | 208 | 208 |
| 35                                                  | 35  | 35  | 35   | 35  | 35  | 35   | 35  | 35  | 35   | 35  | 35  | 35                                                         | 343  | 328  | 258 | 258 |
| 42                                                  | 42  | 42  | 42   | 42  | 42  | 42   | 42  | 42  | 42   | 42  | 42  | 42                                                         | 1345 | 108  | 264 | 264 |
| 49                                                  | 49  | 49  | 49   | 49  | 49  | 49   | 49  | 49  | 49   | 49  | 49  | 49                                                         | 30   | 30   | 30  | 30  |
| 56                                                  | 56  | 56  | 56   | 56  | 56  | 56   | 56  | 56  | 56   | 56  | 56  | 56                                                         | 1297 | 1088 | 208 | 208 |
| 63                                                  | 63  | 63  | 63   | 63  | 63  | 63   | 63  | 63  | 63   | 63  | 63  | 63                                                         | 343  | 328  | 258 | 258 |
| 70                                                  | 70  | 70  | 70   | 70  | 70  | 70   | 70  | 70  | 70   | 70  | 70  | 70                                                         | 1345 | 108  | 264 | 264 |
| 77                                                  | 77  | 77  | 77   | 77  | 77  | 77   | 77  | 77  | 77   | 77  | 77  | 77                                                         | 30   | 30   | 30  | 30  |
| 84                                                  | 84  | 84  | 84   | 84  | 84  | 84   | 84  | 84  | 84   | 84  | 84  | 84                                                         | 1297 | 1088 | 208 | 208 |
| 91                                                  | 91  | 91  | 91   | 91  | 91  | 91   | 91  | 91  | 91   | 91  | 91  | 91                                                         | 343  | 328  | 258 | 258 |
| 98                                                  | 98  | 98  | 98   | 98  | 98  | 98   | 98  | 98  | 98   | 98  | 98  | 98                                                         | 1345 | 108  | 264 | 264 |
| 105                                                 | 105 | 105 | 105  | 105 | 105 | 105  | 105 | 105 | 105  | 105 | 105 | 105                                                        | 30   | 30   | 30  | 30  |
| 112                                                 | 112 | 112 | 112  | 112 | 112 | 112  | 112 | 112 | 112  | 112 | 112 | 112                                                        | 1297 | 1088 | 208 | 208 |
| 119                                                 | 119 | 119 | 119  | 119 | 119 | 119  | 119 | 119 | 119  | 119 | 119 | 119                                                        | 343  | 328  | 258 | 258 |
| 126                                                 | 126 | 126 | 126  | 126 | 126 | 126  | 126 | 126 | 126  | 126 | 126 | 126                                                        | 1345 | 108  | 264 | 264 |
| 133                                                 | 133 | 133 | 133  | 133 | 133 | 133  | 133 | 133 | 133  | 133 | 133 | 133                                                        | 30   | 30   | 30  | 30  |
| 140                                                 | 140 | 140 | 140  | 140 | 140 | 140  | 140 | 140 | 140  | 140 | 140 | 140                                                        | 1297 | 1088 | 208 | 208 |
| 147                                                 | 147 | 147 | 147  | 147 | 147 | 147  | 147 | 147 | 147  | 147 | 147 | 147                                                        | 343  | 328  | 258 | 258 |
| 154                                                 | 154 | 154 | 154  | 154 | 154 | 154  | 154 | 154 | 154  | 154 | 154 | 154                                                        | 1345 | 108  | 264 | 264 |
| 161                                                 | 161 | 161 | 161  | 161 | 161 | 161  | 161 | 161 | 161  | 161 | 161 | 161                                                        | 30   | 30   | 30  | 30  |
| 168                                                 | 168 | 168 | 168  | 168 | 168 | 168  | 168 | 168 | 168  | 168 | 168 | 168                                                        | 1297 | 1088 | 208 | 208 |
| 175                                                 | 175 | 175 | 175  | 175 | 175 | 175  | 175 | 175 | 175  | 175 | 175 | 175                                                        | 343  | 328  | 258 | 258 |
| 182                                                 | 182 | 182 | 182  | 182 | 182 | 182  | 182 | 182 | 182  | 182 | 182 | 182                                                        | 1345 | 108  | 264 | 264 |
| 189                                                 | 189 | 189 | 189  | 189 | 189 | 189  | 189 | 189 | 189  | 189 | 189 | 189                                                        | 30   | 30   | 30  | 30  |
| 196                                                 | 196 | 196 | 196  | 196 | 196 | 196  | 196 | 196 | 196  | 196 | 196 | 196                                                        | 1297 | 1088 | 208 | 208 |
| 203                                                 | 203 | 203 | 203  | 203 | 203 | 203  | 203 | 203 | 203  | 203 | 203 | 203                                                        | 343  | 328  | 258 | 258 |
| 210                                                 | 210 | 210 | 210  | 210 | 210 | 210  | 210 | 210 | 210  | 210 | 210 | 210                                                        | 1345 | 108  | 264 | 264 |
| 217                                                 | 217 | 217 | 217  | 217 | 217 | 217  | 217 | 217 | 217  | 217 | 217 | 217                                                        | 30   | 30   | 30  | 30  |
| 224                                                 | 224 | 224 | 224  | 224 | 224 | 224  | 224 | 224 | 224  | 224 | 224 | 224                                                        | 1297 | 1088 | 208 | 208 |
| 231                                                 | 231 | 231 | 231  | 231 | 231 | 231  | 231 | 231 | 231  | 231 | 231 | 231                                                        | 343  | 328  | 258 | 258 |
| 238                                                 | 238 | 238 | 238  | 238 | 238 | 238  | 238 | 238 | 238  | 238 | 238 | 238                                                        | 1345 | 108  | 264 | 264 |
| 245                                                 | 245 | 245 | 245  | 245 | 245 | 245  | 245 | 245 | 245  | 245 | 245 | 245                                                        | 30   | 30   | 30  | 30  |
| 252                                                 | 252 | 252 | 252  | 252 | 252 | 252  | 252 | 252 | 252  | 252 | 252 | 252                                                        | 1297 | 1088 | 208 | 208 |
| 259                                                 | 259 | 259 | 259  | 259 | 259 | 259  | 259 | 259 | 259  | 259 | 259 | 259                                                        | 343  | 328  | 258 | 258 |
| 266                                                 | 266 | 266 | 266  | 266 | 266 | 266  | 266 | 266 | 266  | 266 | 266 | 266                                                        | 1345 | 108  | 264 | 264 |
| 273                                                 | 273 | 273 | 273  | 273 | 273 | 273  | 273 | 273 | 273  | 273 | 273 | 273                                                        | 30   | 30   | 30  | 30  |
| 280                                                 | 280 | 280 | 280  | 280 | 280 | 280  | 280 | 280 | 280  | 280 | 280 | 280                                                        | 1297 | 1088 | 208 | 208 |
| 287                                                 | 287 | 287 | 287  | 287 | 287 | 287  | 287 | 287 | 287  | 287 | 287 | 287                                                        | 343  | 328  | 258 | 258 |
| 294                                                 | 294 | 294 | 294  | 294 | 294 | 294  | 294 | 294 | 294  | 294 | 294 | 294                                                        | 1345 | 108  | 264 | 264 |
| 301                                                 | 301 | 301 | 301  | 301 | 301 | 301  | 301 | 301 | 301  | 301 | 301 | 301                                                        | 30   | 30   | 30  | 30  |
| 308                                                 | 308 | 308 | 308  | 308 | 308 | 308  | 308 | 308 | 308  | 308 | 308 | 308                                                        | 1297 | 1088 | 208 | 208 |
| 315                                                 | 315 | 315 | 315  | 315 | 315 | 315  | 315 | 315 | 315  | 315 | 315 | 315                                                        | 343  | 328  | 258 | 258 |
| 322                                                 | 322 | 322 | 322  | 322 | 322 | 322  | 322 | 322 | 322  | 322 | 322 | 322                                                        | 1345 | 108  | 264 | 264 |
| 329                                                 | 329 | 329 | 329  | 329 | 329 | 329  | 329 | 329 | 329  | 329 | 329 | 329                                                        | 30   | 30   | 30  | 30  |
| 336                                                 | 336 | 336 | 336  | 336 | 336 | 336  | 336 | 336 | 336  | 336 | 336 | 336                                                        | 1297 | 1088 | 208 | 208 |
| 343                                                 | 343 | 343 | 343  | 343 | 343 | 343  | 343 | 343 | 343  | 343 | 343 | 343                                                        | 343  | 328  | 258 | 258 |
| 350                                                 | 350 | 350 | 350  | 350 | 350 | 350  | 350 | 350 | 350  | 350 | 350 | 350                                                        | 1345 | 108  | 264 | 264 |
| 357                                                 | 357 | 357 | 357  | 357 | 357 | 357  | 357 | 357 | 357  | 357 | 357 | 357                                                        | 30   | 30   | 30  | 30  |
| 364                                                 | 364 | 364 | 364  | 364 | 364 | 364  | 364 | 364 | 364  | 364 | 364 | 364                                                        | 1297 | 1088 | 208 | 208 |
| 371                                                 | 371 | 371 | 371  | 371 | 371 | 371  | 371 | 371 | 371  | 371 | 371 | 371                                                        | 343  | 328  | 258 | 258 |
| 378                                                 | 378 | 378 | 378  | 378 | 378 | 378  | 378 | 378 | 378  | 378 | 378 | 378                                                        | 1345 | 108  | 264 | 264 |
| 385                                                 | 385 | 385 | 385  | 385 | 385 | 385  | 385 | 385 | 385  | 385 | 385 | 385                                                        | 30   | 30   | 30  | 30  |
| 392                                                 | 392 | 392 | 392  | 392 | 392 | 392  | 392 | 392 | 392  | 392 | 392 | 392                                                        | 1297 | 1088 | 208 | 208 |
| 399                                                 | 399 | 399 | 399  | 399 | 399 | 399  | 399 | 399 | 399  | 399 | 399 | 399                                                        | 343  | 328  | 258 | 258 |
| 406                                                 | 406 | 406 |      |     |     |      |     |     |      |     |     |                                                            |      |      |     |     |

CS = CUSECS

M.A.F. = MILLEAGE AVERAGE FEET.

~~T A E = THOUSAND ACRE FEET~~

| LOSS IN PEEPSTOCK<br>(FT.) | FALL HEAD<br>(FT.) | MEAN HEAD (FT.)<br>H | EFFICIENCY<br>% | POWER IN M.W.<br>S.H.E / 11800 | PERIOD    |
|----------------------------|--------------------|----------------------|-----------------|--------------------------------|-----------|
| 35                         | 36                 | 37                   | 60              | 15                             | APR.      |
| 0                          | 99                 | 83.5                 | 0.83            | 123                            | JULY      |
| 10                         | 245                | 222.7                | 0.85            | 153                            | AUG.      |
| 10                         | 244                | 244.5                | 0.84            | 315                            | SEPT. 115 |
| 0                          | 244                | 244.0                | 0.84            | 251                            | 11-10     |
| 10                         | 239                | 241.5                | 0.84            | 297                            | SEP 21-30 |
| 10                         | 225                | 232                  | 0.84            | 234                            | OCT       |
| 10                         | 215                | 220                  | 0.85            | 173                            | NOV       |
| 6                          | 216                | 215.5                | 0.85            | 75                             | DEC.      |
| 3                          | 212                | 214                  | 0.85            | 74                             | JAN       |
| 6                          | 208                | 210                  | 0.85            | 73                             | FEB.      |
| 8                          | 192                | 200                  | 0.85            | 123                            | MAR.      |
| 6                          | 197                | 194.5                | 0.84            | 16                             | APR.      |
| 10                         | 166                | 181.5                | 0.83            | 124                            | MAY       |
| 6                          | 167                | 167                  | 0.81            | 35                             | JUN 10    |
| 6                          | 168                | 168                  | 0.81            | 64                             | 11-20     |
| 7                          | 166                | 167                  | 0.81            | 87                             | 21-30     |
|                            |                    |                      |                 | 14,000,000 P.U.R.              |           |
|                            |                    |                      |                 | CENTRAL PLANT                  |           |

Am. No. A 56884\*

TABLE 4.2

## BHAKRA

| PERIOD      | INFLOW IN RIVER<br>SUTLEJ BHAKRA<br>(C.S.) | SUPPLIES DIVERTED<br>THROUGH B.S.L. LIMITED<br>TO 7500 C.S. (COL 3<br>OF SHEET 1 OF 2) | TOTAL INFLOW AT<br>BHAKRA<br>(COL 2 + COL 3)<br>(C.S.) | REQUIREMENTS OF<br>RAJASTHAN CANALS<br>AT RUPAR<br>(C.S.) | SUPPLIES DELIVERED<br>AT RAJ.CANALS AFTER<br>APPLYING RES.FACTOR<br>DURING DEPLETION<br>PERIOD @ 64.3 (C.S.) | DELHI DRINKING<br>WATER SUPPLYING<br>(C.S.) | TOTAL REQUIREMENTS<br>OF PUNJAB CANALS<br>AT RUPAR<br>(C.S.) | SUPPLIES DELIVERED<br>TO PB.CANALS AFTER<br>APPLYING RES.FACTOR<br>DURING DEPLETION<br>PERIOD @ 70.6 (C.S.) | TOTAL SUPPLIES DELIV-<br>ERED TO BOTH PAGA,<br>HAN AND PUNJAB<br>CANALS AT RUPAR<br>(C.S.) | CONTRIBUTION<br>FROM JAMUNA<br>(C.S.) | GAIN OR LOSS<br>BETWEEN BHAKRA<br>AND RUPAR<br>(C.S.) | RELEASES MADE AT<br>BHAKRA FOR RUPAR<br>CANALS<br>(C.S.) | SUPPLIES RELEASED<br>AT BHAKRA FOR<br>HARKE CANALS<br>(C.S.) | RELEASES IN THE<br>INTEREST OF<br>POWER (C.S.) | TOTAL RELEASES<br>MADE AT BHAKRA<br>(C.S.) |
|-------------|--------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|--------------------------------------------|
|             |                                            |                                                                                        |                                                        |                                                           |                                                                                                              |                                             |                                                              |                                                                                                             |                                                                                            |                                       |                                                       |                                                          |                                                              |                                                |                                            |
| JULY        | 43557                                      | 7500                                                                                   | 51057                                                  | 420                                                       | 420                                                                                                          | 325                                         | 22493                                                        | 22493                                                                                                       | 23238                                                                                      | 2067                                  | +1000                                                 | 20.71                                                    | —                                                            | —                                              | 10171                                      |
| AUG.        | 45694                                      | 7500                                                                                   | 53154                                                  | 420                                                       | 420                                                                                                          | 325                                         | 22493                                                        | 22493                                                                                                       | 23238                                                                                      | 3595                                  | +1000                                                 | 18.13                                                    | —                                                            | —                                              | 18.143                                     |
| SEPT. 1-10  | 28991                                      | 7500                                                                                   | 36497                                                  | 540                                                       | 540                                                                                                          | 325                                         | 26355                                                        | 26355                                                                                                       | 27220                                                                                      | 1615                                  | —                                                     | 25.51                                                    | —                                                            | —                                              | 25.605                                     |
| 11-20       | 20559                                      | 7500                                                                                   | 28059                                                  | 540                                                       | 347                                                                                                          | 325                                         | 26355                                                        | 18607                                                                                                       | 19279                                                                                      | —                                     | —                                                     | 19279                                                    | —                                                            | —                                              | 19.676                                     |
| SEPT. 21-30 | 12930                                      | 7500                                                                                   | 20430                                                  | 540                                                       | 347                                                                                                          | 325                                         | 26355                                                        | 18607                                                                                                       | 19279                                                                                      | —                                     | —                                                     | 19279                                                    | —                                                            | —                                              | 18.279                                     |
| OCT.        | 8259                                       | 5040                                                                                   | 13299                                                  | 480                                                       | 309                                                                                                          | 325                                         | 26624                                                        | 18797                                                                                                       | 19431                                                                                      | —                                     | —                                                     | 19431                                                    | —                                                            | —                                              | 19.431                                     |
| NOV.        | 5432                                       | 2667                                                                                   | 8099                                                   | 480                                                       | 309                                                                                                          | 325                                         | 24043                                                        | 16974                                                                                                       | 17608                                                                                      | —                                     | —                                                     | 17608                                                    | —                                                            | —                                              | 17.608                                     |
| DEC.        | 4339                                       | 2111                                                                                   | 6450                                                   | 336                                                       | 216                                                                                                          | 325                                         | 16421                                                        | 11595                                                                                                       | 12136                                                                                      | —                                     | +190                                                  | 12036                                                    | 334                                                          | 1573                                           | 15.950                                     |
| JAN.        | 3864                                       | 1912                                                                                   | 5776                                                   | 270                                                       | 174                                                                                                          | 325                                         | 13261                                                        | 3382                                                                                                        | 9861                                                                                       | —                                     | —                                                     | 9861                                                     | 422                                                          | 4.612                                          | 8.940                                      |
| FEB.        | 3841                                       | 1956                                                                                   | 5797                                                   | 366                                                       | 235                                                                                                          | 325                                         | 17708                                                        | 12502                                                                                                       | 13062                                                                                      | —                                     | —                                                     | 13062                                                    | 422                                                          | 4.612                                          | 8.940                                      |
| MAR.        | 4382                                       | 2930                                                                                   | 7312                                                   | 421                                                       | 171                                                                                                          | 325                                         | 20056                                                        | 141                                                                                                         | 14755                                                                                      | —                                     | —                                                     | 14755                                                    | 422                                                          | 4.612                                          | 8.940                                      |
| APR.        | 5741                                       | 5199                                                                                   | 16540                                                  | 300                                                       | 153                                                                                                          | 325                                         | 1128                                                         | —                                                                                                           | —                                                                                          | —                                     | —                                                     | —                                                        | 153                                                          | 1.63                                           | 4.612                                      |
| MAY         | 11100                                      | 7500                                                                                   | 18600                                                  | 420                                                       | 309                                                                                                          | 325                                         | 26068                                                        | 18454                                                                                                       | 19038                                                                                      | —                                     | -600                                                  | 19638                                                    | —                                                            | —                                              | 19.638                                     |
| JUNE 1-10   | 18516                                      | 7500                                                                                   | 26016                                                  | 480                                                       | 309                                                                                                          | 325                                         | 26499                                                        | 18708                                                                                                       | 19342                                                                                      | —                                     | -600                                                  | 19342                                                    | 6153                                                         | —                                              | 26.095                                     |
| 11-20       | 24985                                      | 7500                                                                                   | 32485                                                  | 480                                                       | 480                                                                                                          | 325                                         | 26499                                                        | 20289                                                                                                       | 21644                                                                                      | —                                     | -600                                                  | 22244                                                    | 10091                                                        | —                                              | 32.335                                     |
| 21-30       | 30298                                      | 7500                                                                                   | 37798                                                  | 480                                                       | 480                                                                                                          | 325                                         | 26499                                                        | 26499                                                                                                       | 27304                                                                                      | —                                     | -600                                                  | 27904                                                    | 9744                                                         | —                                              | 37.648                                     |
| M.A.F       | 11.125                                     | 3.62                                                                                   | 14.74                                                  | 0.304                                                     | 0.225                                                                                                        | 0.237                                       | 15.533                                                       | —                                                                                                           | —                                                                                          | 0.384                                 | 0.086                                                 | 12.130                                                   | —                                                            | 1.099                                          | —                                          |

C.S. = CUSECS

M.A.F = MILLION ACRE FEET

| T.A.F.<br>(CS)<br>WITHDRAWAL<br>IN<br>THOUSANDS<br>(COL. 10) | LOSS IN<br>STORAGE OR<br>WITHDRAWAL<br>IN THE RIVER<br>(ACRE FEET)<br>(COL. 9) | NET STORAGE<br>IN ACRE FEET<br>(COL. 8) | RESERVOIR<br>ELEVATION<br>(FEET)<br>(COL. 21) | TAILRACE<br>ELEVATION<br>(FEET)<br>(COL. 20) | GROSS HEAD<br>(ft.)<br>(COL. 23) | NET HEAD (ft.)<br>(COL. 23 - 4)<br>(COL. 24) | NET HEAD (ft.)<br>(ft.)<br>(COL. 25) | EFFICIENCY<br>(E)<br>(COL. 26) | POWER IN M.W.<br>AT BHAKRA<br>Q.H.E / 11800<br>(COL. 27) | POWER AT DEHAR<br>POWER PLANT (COL. 12)<br>OF SHEET 1 OF 2<br>(M.W.)<br>(COL. 28) | POWER AT PONG<br>POWER PLANT<br>(COL. 39 OF SHEET<br>1 OF 2)<br>(M.W.)<br>(COL. 29) | POWER AT NANGAL<br>CANAL<br>POWER HOUSES<br>(M.W.)<br>(COL. 30) | TOTAL<br>(COL. 31) | PERIOD<br>(COL. 32) |
|--------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------|--------------------------------------|--------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------|---------------------|
|                                                              |                                                                                |                                         |                                               |                                              |                                  |                                              |                                      |                                |                                                          |                                                                                   |                                                                                     |                                                                 |                    |                     |
| -106                                                         | +194932                                                                        | 10000                                   | 387643                                        | 1563                                         | 1170                             | 393                                          | 23                                   | 0.81                           | 171                                                      | 730                                                                               | 117                                                                                 | 1278                                                            | JULY               |                     |
| -108                                                         | +214262                                                                        | 10000                                   | 4004494                                       | 1639                                         | 1170                             | 410                                          | 23                                   | 0.85                           | 164                                                      | 730                                                                               | 117                                                                                 | 1411                                                            | AUG.               |                     |
| -108                                                         | +217842                                                                        | 4000                                    | 4222434                                       | 1645                                         | 1172                             | 473                                          | 23                                   | 0.84                           | 167                                                      | 851                                                                               | 117                                                                                 | 151                                                             | SEPT 1-10          |                     |
| -108                                                         | +217840                                                                        | 4000                                    | 4222434                                       | 1649                                         | 1170                             | 478                                          | 23                                   | 0.84                           | 165                                                      | 851                                                                               | 117                                                                                 | 1581                                                            | 11-20              |                     |
| -111                                                         | +235723                                                                        | 3000                                    | 5450284                                       | 1656                                         | 1170                             | 480                                          | 23                                   | 0.83                           | 161                                                      | 521                                                                               | 117                                                                                 | 1611                                                            | SEPT 21-30         |                     |
| -632                                                         | +380484                                                                        | 8000                                    | 4221876                                       | 1639                                         | 1170                             | 469                                          | 465                                  | 0.84                           | 485                                                      | 366                                                                               | 114                                                                                 | 1478                                                            | OCT                |                     |
| -9509                                                        | +570140                                                                        | 6000                                    | 5450330                                       | 1621                                         | 1170                             | 451                                          | 447                                  | 0.84                           | 501                                                      | 197                                                                               | 173                                                                                 | 1095                                                            | NOV.               |                     |
| -10500                                                       | +651000                                                                        | 5000                                    | 4793330                                       | 1599                                         | 1169                             | 430                                          | 426                                  | 0.85                           | 534                                                      | 147                                                                               | 178                                                                                 | 920                                                             | DEC.               |                     |
| -1034                                                        | +755088                                                                        | 6000                                    | 3092212                                       | 1574                                         | 120                              | 518                                          | 394                                  | 40                             | 0.85                                                     | 550                                                                               | 142                                                                                 | 174                                                             | 920                | JAN.                |
| -1116                                                        | +222165                                                                        | 10000                                   | 421513                                        | 1530                                         | 120                              | 547                                          | 384                                  | 575                            | 0.84                                                     | 112                                                                               | 13                                                                                  | 151                                                             | FEB.               |                     |
| -1138                                                        | +27161                                                                         | 8000                                    | 42158                                         | 1494                                         | 120                              | 504                                          | 321                                  | 452                            | 0.71                                                     | 47                                                                                | 15                                                                                  | 151                                                             | MAR.               |                     |
| -119                                                         | +464497                                                                        | 10000                                   | 4012466                                       | 1469                                         | 120                              | 518                                          | 264                                  | 51                             | 0.71                                                     | 472                                                                               | 38                                                                                  | 151                                                             | APR.               |                     |
| -138                                                         | +54356                                                                         | 10000                                   | 1994103                                       | 1483                                         | 1170                             | 263                                          | 183                                  | 283                            | 0.87                                                     | 388                                                                               | 124                                                                                 | 1191                                                            | MAY                |                     |
| -79                                                          | +1080                                                                          | 4000                                    | 1987522                                       | 1483                                         | 1173                             | 250                                          | 285                                  | 287                            | 0.86                                                     | 509                                                                               | 530                                                                                 | 86                                                              | 1275               | JUNE 1-10           |
| +151                                                         | +3000                                                                          | 3000                                    | 1971507                                       | 1462                                         | 1174                             | 286                                          | 282                                  | 284                            | 0.81                                                     | 620                                                                               | 530                                                                                 | 54                                                              | 1368               | 11-20               |
| +150                                                         | +3000                                                                          | 3000                                    | 1971500                                       | 1462                                         | 1175                             | 287                                          | 283                                  | 283.5                          | 0.80                                                     | 728                                                                               | 530                                                                                 | 87                                                              | 1485               | 21-30               |

T.A.F. = THOUSAND ACRE FEET

Sheet 2 of 2

TABLE 4.3 WATER POWER STUDY FOR AVERAGE YEAR

## DEHAR POWER PLANT

| Period     | Inflow of River Beas at Pongat for diversion to H.S.L. (c.s) | Supply diverted through B.S.L. limited to 1000 ccs | Balance utilization (ft) | Gross head available (c/s) (ft) | Head loss in tunnel & 76.2 x Q <sup>2</sup> (ft) | Head loss in penstock (ft) | Total head loss (ft) | Net head (ft) (Col.5 - Col.8) | Main head (ft) 276.6 Col.8 + elevation of tailrace (ft) | Efficiency (%) | Flow in M.W.H Q.H. (ft) | Inflow of River Beas at Pong (c.s) | Supply diverted to H.S.L. in col.3 (c.s) | Inflow of River Beas at Pongat for diversion at Parkot (col.13 - Col.14) | Requirements of Punjab Canals at Hanika (c.s) |
|------------|--------------------------------------------------------------|----------------------------------------------------|--------------------------|---------------------------------|--------------------------------------------------|----------------------------|----------------------|-------------------------------|---------------------------------------------------------|----------------|-------------------------|------------------------------------|------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|
| 1          | 2                                                            | 3                                                  | 4                        | 5                               | 6                                                | 7                          | 8                    | 9                             | 10                                                      | 11             | 12                      | 13                                 | 14                                       | 15                                                                       | 16                                            |
| Jan.       | 2234                                                         | 7500                                               | 1650                     | 1110                            | 43                                               | 25                         | 68                   | 1042                          | 1042                                                    | ↑              | 530                     | 40202                              | 7500                                     | 32702                                                                    | 7007                                          |
| Feb. 1-15  | 24400                                                        | 7500                                               | 1675                     | 1085                            | 43                                               | 25                         | 68                   | 1017                          | 1030                                                    |                | 523                     | 62120                              | 7500                                     | 54620                                                                    | 7007                                          |
| S.-Pf 1-10 | 17058                                                        | 7500                                               | 1684                     | 1076                            | 43                                               | 25                         | 68                   | 1008                          | 1013                                                    |                | 515                     | 45862                              | 7500                                     | 38362                                                                    | 7154                                          |
| 11-20      | 14081                                                        | 7500                                               | 1687                     | 1073                            | 43                                               | 25                         | 68                   | 1005                          | 1007                                                    |                | 512                     | 32845                              | 7500                                     | 25345                                                                    | 7154                                          |
| Sept. 1-10 | 12072                                                        | 7500                                               | 1688                     | 1072                            | 43                                               | 25                         | 68                   | 1004                          | 1005                                                    |                | 511                     | 22345                              | 7500                                     | 14845                                                                    | 7154                                          |
|            | 6454                                                         | 6454                                               | 1673                     | 1087                            | 32                                               | 22                         | 54                   | 1033                          | 1019                                                    |                | 449                     | 13049                              | 6454                                     | 6595                                                                     | 4602                                          |
| Oct.       | 3077                                                         | 3077                                               | 1650                     | 1110                            | 7                                                | 15                         | 22                   | 1088                          | 1051                                                    | 0.8            | 225                     | 5831                               | 3077                                     | 2754                                                                     | 4602                                          |
| Dec.       | 2259                                                         | 2259                                               | 1650                     | 1110                            | 4                                                | 15                         | 19                   | 1091                          | 1091                                                    |                | 157                     | 4851                               | 2259                                     | 2592                                                                     | 3217                                          |
| Jan.       | 2039                                                         | 2039                                               | 1650                     | 1110                            | 3                                                | 15                         | 18                   | 1092                          | 1092                                                    |                | 151                     | 5077                               | 2039                                     | 3038                                                                     | 2557                                          |
| Feb.       | 2259                                                         | 2259                                               | 1650                     | 1110                            | 4                                                | 15                         | 19                   | 1091                          | 1091                                                    |                | 167                     | 5774                               | 2259                                     | 3515                                                                     | 3379                                          |
| Mar.       | 3402                                                         | 3402                                               | 1650                     | 1110                            | 9                                                | 15                         | 24                   | 1086                          | 1086                                                    |                | 250                     | 6688                               | 3402                                     | 3286                                                                     | 3835                                          |
| APR        | 5671                                                         | 5671                                               | 1650                     | 1110                            | 25                                               | 20                         | 45                   | 1065                          | 1055                                                    |                | 410                     | 8496                               | 5671                                     | 2825                                                                     | 3469                                          |
| May        | 8852                                                         | 7500                                               | 1650                     | 1110                            | 43                                               | 25                         | 68                   | 1042                          | 1042                                                    |                | 530                     | 10934                              | 7500                                     | 3434                                                                     | 6790                                          |
| June 1-10  | 11344                                                        | 7500                                               | 1650                     | 1110                            | 43                                               | 25                         | 68                   | 1042                          | 1042                                                    |                | 530                     | 13330                              | 7500                                     | 5830                                                                     | 6790                                          |
| 11-20      | 12928                                                        | 7500                                               | 1650                     | 1110                            | 43                                               | 25                         | 68                   | 1042                          | 1042                                                    |                | 530                     | 14774                              | 7500                                     | 7274                                                                     | 6790                                          |
| 21-30      | 16081                                                        | 7500                                               | 1650                     | 1110                            | 43                                               | 25                         | 68                   | 1042                          | 1042                                                    | ↑              | 530                     | 19015                              | 7500                                     | 11515                                                                    | 6790                                          |
| M.A.F.     | 6.65                                                         | 3.823                                              |                          |                                 |                                                  |                            |                      |                               |                                                         |                |                         | 13.008                             |                                          | 9.18                                                                     | 3681                                          |

| RIVER BEAS     |                         |                         |                                                    |                                                    |                                                                                                               |                                                    |                                          |                                              |                                                                |                                                                |                                                     |                                                      |                                                                             |                                       |                                                         |                                             |                                               |                                 |                                |
|----------------|-------------------------|-------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|---------------------------------------------|-----------------------------------------------|---------------------------------|--------------------------------|
| Number of days | Total Canals at Hariske | Total Canals at Hariske | Total Supply to Punjab & Raj. Canals<br>at Hariske | Total Supply to Punjab & Raj. Canals<br>at Hariske | Supply delivered to<br>Punjab & Raj. Canals<br>after applying R.F.<br>during depletion<br>of available (C.S.) | Total Supply to Punjab & Raj. Canals<br>at Hariske | Releases made out<br>of available (C.S.) | Losses between<br>Bhakra & Hariske<br>(C.S.) | Net Supplies delivered<br>at Hariske from<br>Shakargarh (C.S.) | Net Supply available<br>through M.B. Link<br>at Hariske (C.S.) | Releases made in<br>the interest of<br>power (C.S.) | Gain or loss<br>between Pong &<br>Mandi Plain (C.S.) | Total releases<br>at Pong ('Q'<br>Col 20-(Col 23+Col 24<br>+ Col 26) (C.S.) | Storage or<br>withdrawal in<br>cusecs | Storage or<br>withdrawal in those<br>acre feet (T.A.F.) | Losses in Pong<br>Reservoir in<br>acre feet | Net storage in<br>Pong Reservoir<br>in T.A.F. | Reservoir<br>Elevation<br>(ft.) | Tailrace<br>Elevation<br>(ft.) |
| 17             | 18                      | 19                      | 20                                                 | 21                                                 | 22                                                                                                            | 23                                                 | 24                                       | 25                                           | 26                                                             | 27                                                             | 28                                                  | 29                                                   | 30                                                                          | 31                                    | 32                                                      | 33                                          |                                               |                                 |                                |
| 7007           | 13140                   | 13140                   | 20147                                              | -                                                  | -                                                                                                             | 9000                                               | -                                        | +2500                                        | 8647                                                           | +24055                                                         | + 1491                                              | 15000                                                | 2426                                                                        | 1312                                  | 1087                                                    |                                             |                                               |                                 |                                |
| 7027           | 13140                   | 13140                   | 20147                                              | -                                                  | -                                                                                                             | 9000                                               | -                                        | +2500                                        | 8647                                                           | +45973                                                         | + 2850                                              | 15000                                                | 5262                                                                        | 1372                                  | 1087                                                    |                                             |                                               |                                 |                                |
| 715            | 14854                   | 14854                   | 22008                                              | -                                                  | -                                                                                                             | 6199                                               | -                                        | +2000                                        | 13809                                                          | +24553                                                         | + 491                                               | 5000                                                 | 5748                                                                        | 1383                                  | 1089                                                    |                                             |                                               |                                 |                                |
| 7150           | 16976                   | 16976                   | 24130                                              | -                                                  | -                                                                                                             | 3199                                               | -                                        | +2000                                        | 18931                                                          | 6414                                                           | + 128                                               | 5000                                                 | 5871                                                                        | 1388                                  | 1092                                                    |                                             |                                               |                                 |                                |
| 7154           | 21220                   | 21220                   | 28374                                              | -                                                  | -                                                                                                             | 626                                                | -                                        | +2000                                        | 25748                                                          | -10903                                                         | - 218                                               | 5000                                                 | 5649                                                                        | 1381                                  | 1094                                                    |                                             |                                               |                                 |                                |
| 4502           | 18582                   | 8582                    | 23184                                              | -                                                  | -                                                                                                             | -                                                  | -                                        | +1000                                        | 22184                                                          | -15589                                                         | - 967                                               | 13500                                                | 4668                                                                        | 1360                                  | 1093                                                    |                                             |                                               |                                 |                                |
| 4302           | 1770                    | 780                     | 1382                                               | -                                                  | -                                                                                                             | -                                                  | -                                        | + 500                                        | 16882                                                          | -14128                                                         | - 848                                               | 10500                                                | 3810                                                                        | 1342                                  | 1091                                                    |                                             |                                               |                                 |                                |
| 3217           | 82                      | 8670                    | 12081                                              | -                                                  | -                                                                                                             | -                                                  | -                                        | + 500                                        | 1587                                                           | -8995                                                          | - 558                                               | 10500                                                | 3242                                                                        | 1330                                  | 1089                                                    |                                             |                                               |                                 |                                |
| 2857           | 9360                    | 8660                    | 11217                                              | 9094                                               | 1619                                                                                                          | 7275                                               | -                                        | + 500                                        | 3442                                                           | +404                                                           | - 25                                                | 10500                                                | 3206                                                                        | 1329                                  | 1085                                                    |                                             |                                               |                                 |                                |
| 3110           | 9400                    | 9400                    | 12719                                              | 2851                                               | 190                                                                                                           | 2661                                               | -                                        | + 500                                        | 9618                                                           | -6103                                                          | + 342                                               | 10500                                                | 2854                                                                        | 1322                                  | 1088                                                    |                                             |                                               |                                 |                                |
| 3435           | 14525                   | 14525                   | 18360                                              | -                                                  | -                                                                                                             | 843                                                | -                                        | + 500                                        | 17017                                                          | -13731                                                         | - 851                                               | 13000                                                | 1989                                                                        | 1303                                  | 1091                                                    |                                             |                                               |                                 |                                |
| 3469           | 5800                    | 5800                    | 9269                                               | 5612                                               | -                                                                                                             | 5612                                               | 3657                                     | -                                            | -                                                              | + 2825                                                         | + 169                                               | 15000                                                | 2144                                                                        | 1306                                  | 1085                                                    |                                             |                                               |                                 |                                |
| 5790           | 552                     | 7552                    | 4342                                               | -                                                  | -                                                                                                             | 2128                                               | -                                        | - 500                                        | 12714                                                          | +9280                                                          | - 575                                               | 15000                                                | 1554                                                                        | 1288                                  | 1089                                                    |                                             |                                               |                                 |                                |
| 6720           | 5126                    | 21916                   | -                                                  | -                                                  | -                                                                                                             | 2914                                               | -                                        | - 500                                        | 19502                                                          | -13672                                                         | - 273                                               | 5000                                                 | 1275                                                                        | 1277                                  | 1092                                                    |                                             |                                               |                                 |                                |
| 5030           | 5398                    | 13443                   | 19373                                              | 9453                                               | -                                                                                                             | 9453                                               | 3393                                     | -                                            | - 500                                                          | 7024                                                           | + 250                                               | + 5                                                  | 5000                                                                        | 950                                   | 1250                                                    | 1087                                        |                                               |                                 |                                |
| 4700           | 15398                   | 15398                   | 21188                                              | 6255                                               | -                                                                                                             | 6255                                               | 5168                                     | -                                            | - 500                                                          | 11265                                                          | + 250                                               | + 5                                                  | 5000                                                                        | 950                                   | 1260                                                    | 1088                                        |                                               |                                 |                                |
| 8858           |                         |                         |                                                    | 0123                                               |                                                                                                               | 1.946                                              |                                          | 0.582                                        |                                                                |                                                                |                                                     |                                                      | 0.093                                                                       |                                       |                                                         |                                             |                                               |                                 |                                |

CS = Cusecs

MAF = Million Acre Feet.

T.A.F. = The

51  
63

| Gross head<br>(ft.)<br>col. 32 - col. 33 | Loses<br>in Penstock<br>(ft.) | NET<br>head<br>(ft.) | Mean<br>head (ft.)<br>$\frac{H}{4}$ | Efficiency<br>'e' | Power in M.W.<br>Q.H.e./11000 | Period     |
|------------------------------------------|-------------------------------|----------------------|-------------------------------------|-------------------|-------------------------------|------------|
| 34                                       | 35                            | 36                   | 37                                  | 38                | 39                            | 40         |
| 225                                      | 8                             | 217                  | 190                                 | 0.84              | 117                           | July       |
| 285                                      | 8                             | 277                  | 247                                 | 0.84              | 152                           | Aug        |
| 294                                      | 10                            | 284                  | 280                                 | 0.82              | 269                           | Sept 1-10  |
| 296                                      | 10                            | 286                  | 285                                 | 0.82              | 375                           | 11-20      |
| 287                                      | 10                            | 277                  | 282                                 | 0.82              | 505                           | Sept 21-30 |
| 267                                      | 10                            | 257                  | 267                                 | 0.83              | 416                           | Oct.       |
| 251                                      | 10                            | 241                  | 249                                 | 0.84              | 300                           | Nov        |
| 241                                      | 10                            | 231                  | 236                                 | 0.84              | 194                           | Dec.       |
| 244                                      | 5                             | 238                  | 235                                 | 0.84              | 57                            | Jan        |
| 234                                      | 10                            | 224                  | 231                                 | 0.84              | 159                           | Feb        |
| 212                                      | 10                            | 202                  | 213                                 | 0.85              | 261                           | Mar        |
| 221                                      | -                             | 221                  | 211                                 | 0.85              | -                             | APR        |
| 199                                      | 10                            | 189                  | 205                                 | 0.85              | 188                           | May        |
| 185                                      | 10                            | 175                  | 182                                 | 0.83              | 250                           | June 1-10  |
| 173                                      | 6                             | 167                  | 177                                 | 0.81              | 83                            | 11-20      |
| 172                                      | 10                            | 162                  | 164                                 | 0.81              | 127                           | 21-30      |
|                                          |                               |                      |                                     |                   |                               | M.A.F      |

Sand Acre Feet

Sect 10F3

M.A.F = 1

SUPPLIES RELEASED  
AT BHAKRA FOR  
HARIKE CANALS  
(CCS)

14

RELEASES IN THE  
INTEREST OF POWER  
(CCS)

15

9094  
2851

5612 2575

9453  
6255

0.154

TABLE 4.3 CONTD...

## BHAKRA

| PERIOD     | INFLOW IN RIVER<br>SUTLEJ AT BHAKRA<br>(CCS) |      | SUPPLIES DIVERTED<br>THROUGH R.S. LIMITED<br>TO 7500 CS (COL 3<br>OF SHEET 1 OF 3) |       | TOTAL INFLOW AT<br>BHAKRA<br>(COL 2 + COL 3) |     | REQUIREMENT OF<br>RAJASTHAN CANALS<br>AT RUPAR (CCS) |       | SUPPLIES DELIVERED<br>TO RAJ. CANALS AFTER<br>APPLYING RESFACTOR<br>DURING DEPLETION<br>PERIOD @ 100% CCS) |       | SUPPLIES DELIVERED<br>TO PB. CANAL AFTER<br>APPLYING RESFACTOR<br>DURING DEPLETION<br>PERIOD @ 100% CCS) |       | SUPPLIES DELIVERED<br>TO RAJASTHAN AND PUNJAB<br>CANALS SAT RUPAR (CS)<br>(COL 6 + COL 9) |      | CONTRIBUTION<br>FROM JAMUNA<br>(CCS) |   | GAIN OR LOSS<br>BETWEEN BHAKRA<br>AND RUPAR<br>(CCS) |   | RELEASES MADE AT<br>BHAKRA FOR RUPAR<br>CANALS<br>(COL 12 - COL 13) |   | SUPPLIES RELEASED<br>AT BHAKRA FOR<br>HARIKE CANALS<br>(CCS) |  | RELEASES IN THE<br>INTEREST OF POWER<br>(CCS) |  |
|------------|----------------------------------------------|------|------------------------------------------------------------------------------------|-------|----------------------------------------------|-----|------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------|------|--------------------------------------|---|------------------------------------------------------|---|---------------------------------------------------------------------|---|--------------------------------------------------------------|--|-----------------------------------------------|--|
|            | 1                                            | 2    | 3                                                                                  | 4     | 5                                            | 6   | 7                                                    | 8     | 9                                                                                                          | 10    | 11                                                                                                       | 12    | 13                                                                                        | 14   | 15                                   |   |                                                      |   |                                                                     |   |                                                              |  |                                               |  |
| JULY       | 49981                                        | 7500 | 57481                                                                              | 420   | 420                                          | 325 | 22493                                                | 22493 | 23238                                                                                                      | 2201  | +1500                                                                                                    | 19537 | —                                                                                         | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| AUGUST     | 53263                                        | 7500 | 60763                                                                              | 420   | 420                                          | 325 | 22493                                                | 22493 | 23238                                                                                                      | 3595  | +1500                                                                                                    | 18143 | —                                                                                         | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| SER. 1-10  | 33944                                        | 7500 | 41444                                                                              | 540   | 540                                          | 325 | 26355                                                | 26355 | 27220                                                                                                      | 4045  | +500                                                                                                     | 22675 | —                                                                                         | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| II-20      | 24909                                        | 7500 | 32409                                                                              | 540   | 540                                          | 325 | 26355                                                | 26355 | 27220                                                                                                      | 1615  | +500                                                                                                     | 25105 | —                                                                                         | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| SEP. 21-30 | 19246                                        | 7500 | 26746                                                                              | 540   | 540                                          | 325 | 26355                                                | 26355 | 27220                                                                                                      | 1517  | -500                                                                                                     | 25203 | —                                                                                         | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| OCT.       | 10878                                        | 6454 | 17332                                                                              | 480   | 480                                          | 325 | 26624                                                | 26624 | 27429                                                                                                      | —     | —                                                                                                        | 27429 | —                                                                                         | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| NOV.       | 6208                                         | 3077 | 9235                                                                               | 480   | 480                                          | 325 | 24043                                                | 24043 | 24848                                                                                                      | —     | —                                                                                                        | 24848 | —                                                                                         | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| DEC        | 4738                                         | 2259 | 6997                                                                               | 336   | 336                                          | 325 | 16420                                                | 16420 | 17081                                                                                                      | —     | +100                                                                                                     | 16981 | —                                                                                         | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| JAN.       | 4328                                         | 2039 | 6367                                                                               | 270   | 270                                          | 325 | 13261                                                | 13261 | 13856                                                                                                      | —     | +200                                                                                                     | 13656 | 9094                                                                                      | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| FEB.       | 4400                                         | 2259 | 6659                                                                               | 366   | 366                                          | 325 | 17708                                                | 17708 | 18399                                                                                                      | —     | +400                                                                                                     | 17999 | 2851                                                                                      | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| MAR.       | 4786                                         | 3402 | 8188                                                                               | 420   | 420                                          | 325 | 20056                                                | 20056 | 20801                                                                                                      | —     | +200                                                                                                     | 20601 | —                                                                                         | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| APR.       | 6923                                         | 5671 | 12594                                                                              | 300   | 300                                          | 325 | 13088                                                | 13088 | 13713                                                                                                      | —     | -300                                                                                                     | 14013 | 5612                                                                                      | 2575 | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| MAY        | 15472                                        | 7500 | 22972                                                                              | 480   | 480                                          | 325 | 26068                                                | 26068 | 26873                                                                                                      | —     | -600                                                                                                     | 27473 | —                                                                                         | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| JUNE-10    | 23910                                        | 7500 | 31410                                                                              | 480   | 480                                          | 325 | 26499                                                | 26499 | 27304                                                                                                      | —     | -600                                                                                                     | 27904 | —                                                                                         | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| II-20      | 30007                                        | 7500 | 37507                                                                              | 480   | 480                                          | 325 | 26499                                                | 26499 | 27304                                                                                                      | —     | -600                                                                                                     | 27904 | 9453                                                                                      | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| 21-30      | 38045                                        | 7500 | 45545                                                                              | 480   | 480                                          | 325 | 26499                                                | 26499 | 27304                                                                                                      | —     | -600                                                                                                     | 27904 | 6255                                                                                      | —    | —                                    | — | —                                                    | — | —                                                                   | — | —                                                            |  |                                               |  |
| M.A.F.     | 13.329                                       |      |                                                                                    | 0.304 |                                              |     | 15.533                                               |       |                                                                                                            | 0.503 |                                                                                                          |       | 0.154                                                                                     |      |                                      |   |                                                      |   |                                                                     |   |                                                              |  |                                               |  |

CS = CUSECS

M.A.F. =

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 | 526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 | 576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 | 676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 |
<th rowspan="2
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |

coefficient of 0.7 for Bhakra reservoir. Using meteorological data and normal meterological condition, the average monthly evaporation rates have been calculated. The average annual evaporation is around 5 ft. (4.80 ft) and the monthly values from June to May are 0.73, 0.43, 0.32, 0.39, 0.34, 0.25, 0.17 0.16, 0.21, 0.37, 0.63, 0.84 ft respectively. These evaporation rates were used for Pong reservoir also.

#### 4.3.5 Elevation area capacity curves

Elevation area capacity relationships for Bhakra and Pong reservoirs were obtained in tabular and graphical form from B.D.O. and B.B.M.B. These were defined by sixteen matched points per reservoir and are shown in Table 4.4. For intermediate values linear interpolation was adopted. These data were used to define minimum storage, the maximum capacity of the reservoir and also the rule curve.

#### 4.3.6 Data for energy generation

Power is generated in the system at Bhakra, Pong, Dehar and Nangal including Ganguwal and Kotla power houses. Rajendra Nagar and other small systems in tributaries are ignored in the study.

The energy generated at Nangal is assumed to be constant (154 MW) as in the B.D.O. studies. Dehar is a constant head power plant and hence the head and efficiency at Dehar are assumed as constant and energy generation are directly

TABLE 4.4 ELEVATION-AREA-CAPACITY OF BHAKRA AND PONG RESERVOIRS

| Point | Bhakra Reservoir       |                     |                            | Pong Reservoir         |                     |                            |
|-------|------------------------|---------------------|----------------------------|------------------------|---------------------|----------------------------|
|       | Elevation<br>in<br>Ft. | Area<br>in<br>Acres | Capacity<br>in<br>Acre Ft. | Elevation<br>in<br>Ft. | Area<br>in<br>Acres | Capacity<br>in<br>Acre Ft. |
| 1     | 1400                   | 9550                | 1037156                    | 1260                   | 19182               | 1044000                    |
| 2     | 1420                   | 9830                | 1232568                    | 1270                   | 22041               | 1250000                    |
| 3     | 1440                   | 11620               | 1448854                    | 1280                   | 25089               | 1484000                    |
| 4     | 1460                   | 11880               | 1685808                    | 1290                   | 28784               | 1754000                    |
| 5     | 1480                   | 14890               | 1955734                    | 1300                   | 32337               | 2060000                    |
| 6     | 1500                   | 15970               | 2266902                    | 1310                   | 35686               | 2402000                    |
| 7     | 1520                   | 18820               | 2617696                    | 1320                   | 38960               | 2776000                    |
| 8     | 1540                   | 20870               | 3017898                    | 1330                   | 42251               | 3180000                    |
| 9     | 1560                   | 23130               | 3461558                    | 1340                   | 45821               | 3620000                    |
| 10    | 1580                   | 25370               | 3950592                    | 1350                   | 49336               | 4096000                    |
| 11    | 1600                   | 28050               | 4489236                    | 1360                   | 52792               | 4606000                    |
| 12    | 1620                   | 30830               | 5082934                    | 1370                   | 55744               | 5150000                    |
| 13    | 1640                   | 34000               | 5736628                    | 1380                   | 58629               | 5722000                    |
| 14    | 1660                   | 37050               | 6453038                    | 1390                   | 61612               | 6324000                    |
| 15    | 1680                   | 40150               | 7231460                    | 1400                   | 64404               | 6952000                    |
| 16    | 1700                   | 43400               | 8074112                    | 1410                   | 67048               | 7610000                    |

related to their discharge in Beas-Sutlej link.

For Bhakra and Pong reservoir, the head on the turbine depends upon the reservoir storage and downstream releases and the efficiency of the system depends upon the net heads and these vary from month to month. B.D.O. has considered the details of planned storage and releases for estimating the net head and efficiencies for dry, dependable and average years (Tables 4.1 to 4.3).

From a comparison of the heads, losses and efficiencies in dry, dependable and average years in the B.D.O. studies, it is concluded that, for the purpose of the study, head loss may be considered as constant equal to 4 ft and 8 ft for Bhakra and Pong power plants. Efficiencies may be considered to vary piecewise linearly as the function of the net head. The efficiency ( $\eta$ ) net head(H) relationship adopted in this study are indicated in Table 4.5. It is possible to use a better procedure for estimating the energy generated more accurately.

#### 4.3.7. Link capacities

The capacity of Beas Sutlej link is assumed to be 7500 cusecs in BBMB studies. The capacity of the river Sutlej and Beas are considered to 50,000 cusecs each. The lower limit for link flows is assumed to be zero.

TABLE 4.5 HEAD-EFFICIENCY RELATIONSHIPS

| Bhakra Power Plant |            | Pong Power Plant |            |
|--------------------|------------|------------------|------------|
| Head<br>Ft.        | Efficiency | Head<br>Ft.      | Efficiency |
| Below 300          | 0.80       | Below 170        | 0.81       |
| 300                | 0.80       | 170              | 0.81       |
| 325                | 0.81       | 180              | 0.83       |
| 350                | 0.82       | 190              | 0.84       |
| 375                | 0.83       | 200              | 0.85       |
| 400                | 0.84       | 215              | 0.85       |
| 425                | 0.85       | 241              | 0.838      |
| 450                | 0.84       | 267              | 0.826      |
| 475                | 0.83       | 280              | 0.82       |
| above 475          | 0.83       | above 280        | 0.82       |

#### 4.4 Study of Planned Operation

##### 4.4.1 Planned operation

The planned operation for dry, dependable and average years are given in Tables 4.1 to 4.3. It is proposed to study the planned operation of the system in order that the characteristic of the system can be understood and improvement can be made in the operation of the system. The following additional assumptions were made for studying the planned operation.

- i) Only Bhakra is considered as spill reservoir, and
- ii) The irrigation demands were initially taken as average year demands. However because the inflow in large number of years were much less than the average demand, it was decided to modify the demand in the 5th year as a dry year demand.

B.D.O. has suggested rule curves for dry, dependable and average years while the study required rule curves for dry, average and wet states. The rule curve for average and dry states were adopted from B.D.O. studies and rule curve for wet states was estimated from these two and used in the study. These are indicated in Table 4.6.

##### 4.4.2. Value judgements

It is necessary to define the relative priorities between and among storages and demands. From a consideration of the characteristics of the system, the following general conclusions were derived :

- i) Storage in Bhakra reservoir is much more valuable than in Pong reservoir because of its high head and its ability to supply irrigation water to all demand nodes;
- ii) Demand at Nangal is more valuable than that of Rupar and Harike because of power generation benefits;
- iii) Releases in the interest of power from Bhakra have a lower priority;
- iv) Storage is more valuable in a dry year than in wet or average years; and
- v) Diversion through Dehar should have greater priority than diversion through Pong.

Using some priority ranks for average, dry and wet years and keeping in mind the above priorities several sets of ranks for meeting the irrigation demands were used and tested. From the results, the values shown in Table 4.7 were adopted for subsequent studies.

In order to consider the effect of relative priorities between the storages and for different hydrologic states, sixteen sets of priority ranks (Table 4.8) were used along with the planned operation and these constitute the simulation study of the planned operation of the system. The value of  $X_1$  and  $X_2$  which define the hydrologic state of the system were varied between 0.7 <sup>to</sup> 1.0 for  $X_1$  and 1.0 to 1.2 for  $X_2$  respectively. The results of simulation include the details of monthly, annual and total period summaries of the process.

TABLE 4.6 RULE CURVES<sup>+</sup>

1. Bhakra Reservoir

| Hydrologic State | June   | July   | Aug.   | Sept.  | Oct.   | Nov.   | Dec.   | Jan.   | Feb.   | Mar.   | April  | May |
|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----|
| Average          | 0.2873 | 0.5937 | 0.9381 | 1.0000 | 0.9260 | 0.8032 | 0.7213 | 0.5877 | 0.4829 | 0.3812 | 0.3045 | 0.2 |
| Dry              | 0.2224 | 0.4213 | 0.6267 | 0.6720 | 0.6478 | 0.6091 | 0.5477 | 0.4626 | 0.3768 | 0.3003 | 0.2415 | 0.2 |
| Wet              | 0.2873 | 0.6297 | 0.9750 | 1.0000 | 0.9327 | 0.8166 | 0.7414 | 0.6145 | 0.5164 | 0.4214 | 0.3514 | 0.2 |

2. Pong Reservoir

| Hydrologic State | June   | July   | Aug.   | Sept.  | Oct.   | Nov.   | Dec.   | Jan.   | Feb.   | Mar.   | Apr.   | Ma  |
|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----|
| Average          | 0.1367 | 0.3491 | 0.7568 | 0.8125 | 0.6714 | 0.5480 | 0.4662 | 0.4611 | 0.4105 | 0.2862 | 0.3083 | 0.2 |
| Dry              | 0.1504 | 0.2475 | 0.2887 | 0.2645 | 0.2169 | 0.1722 | 0.1682 | 0.1608 | 0.1588 | 0.1516 | 0.1552 | 0.1 |
| Wet              | 0.1367 | 0.3769 | 0.7600 | 0.8125 | 0.6781 | 0.5614 | 0.4863 | 0.4879 | 0.4440 | 0.3264 | 0.3477 | 0.2 |

+ Desired end of month storage level as a ratio of full capacity.

Maximum Capacity = 7.644 m.a.f.

TABLE 4.7 PRIORITY RANKS FOR IRRIGATION AND POWER DEMANDS

| Hydrolo-<br>gic State | Name of Node |      |        |       |        |       |        |               |
|-----------------------|--------------|------|--------|-------|--------|-------|--------|---------------|
|                       | Bakra        | Pong | Pandoh | Dehar | Nangal | Rupar | Harike | Muke-<br>rian |
| Average               | 14           | 20   | 20     | 8     | 10     | 12    | 16     | 20            |
| Dry                   | 14           | 20   | 20     | 8     | 10     | 12    | 16     | 20            |
| Wet                   | 14           | 20   | 20     | 8     | 10     | 12    | 16     | 20            |

TABLE 4.8 PRIORITY RANKS FOR RULE CURVES

| Reservoir | Hydrologic State | Simulation Runs |    |    |    |    |    |    |    |    |    |    |    |     |    |    |
|-----------|------------------|-----------------|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|
|           |                  | 1               | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13  | 14 | 15 |
| Bhakra    | Average          | 10              | 6  | 20 | 14 | 20 | 25 | 30 | 20 | 6  | 15 | 10 | 14 | 8   | 16 | 12 |
|           | Dry              | 8               | 4  | 18 | 12 | 15 | 25 | 25 | 18 | 4  | 10 | 8  | 12 | 6   | 12 | 8  |
|           | Wet              | 12              | 8  | 22 | 16 | 20 | 25 | 30 | 22 | 8  | 15 | 12 | 16 | 8   | 16 | 12 |
| Pong      | Average          | 14              | 25 | 18 | 14 | 50 | 60 | 50 | 25 | 14 | 22 | 25 | 25 | 120 | 35 | 10 |
|           | Dry              | 12              | 25 | 18 | 12 | 25 | 40 | 50 | 25 | 12 | 15 | 25 | 20 | 100 | 25 | 6  |
|           | Wet              | 16              | 25 | 18 | 16 | 50 | 60 | 50 | 25 | 16 | 22 | 25 | 25 | 120 | 35 | 10 |

#### 4.4.3 Results and conclusions

- i) Various values of  $X_1$  and  $X_2$  to define the hydrologic states of the system were tried and finally it was concluded that values of  $X_1 = 0.90$  and  $X_2 = 1.10$  was seen reasonable for the Beas-Sutlej system;
- ii) Initially Bhakra reservoir alone was taken as spill reservoir. For some of the cases considered, Pong reservoir became full after about sixth year and because of the limit of the capacity of Beas-Sutlej link and no spill permitted at Pong there is no feasible solution and this indicated that Pong should also be considered as a spill reservoir;
- iii) The assumed demand for the simulation are much larger than the inflows and in large number of years, there is scarcity particularly from March to June and these occurred at Rupar and Harike which had the lowest priority. This indicated that in order to keep the deficit within limits, it is necessary to reduce the demands in some of the years. The inflows in 8th, 10th and 12th years are less by around five million acre ft each than the average year demands, and so the demand in these years are to be reduced to atleast dependable year demands;
- iv) Variation of the priority ranking between storages for different hydrologic states indicated that :
  - a) Priority of storage at Pong should be less than that of Bhakra;

- b) Priority for storage at Bhakra should be lower than that for demands and can at best be equal to that for the lowest priority demand;
- c) Priority for storage in average and wet years should be the same. The priority for storages in a dry year may be slightly higher in order to avoid the large deficit at the end of water year or in the beginning of next water year; and
- v) It is necessary to modify the rule curves for a better operation.

#### 4.5 Improvements in Reservoir Operation

The simulation study of planned operation of Beas - Sutlej system indicate that the operation of the system can be improved significantly by modifying the rule curves and improving the value judgement for demands and storage under improved operating rule curve.

##### 4.5.1 Modification of the rule curve

The planned operation of B.D.O. adopted in the study is indicated in Table 4.6. It shows that planned storage at the end of May and June as well as other months are different for the three states. The storage at the end of May is influenced by the inflows in the previous year and it should reflect the desirability of carryover in wet years and depletion in dry years, but in June, the state depends very much on the carry-over of the previous year and the inflow and

demand in a year may differ very much from the end of the year storage. It is hence not possible to adopt different initially desirable storages at the end of June.

Using the general criteria that planned end of June storage should be the same in each reservoir for all states; the end of the year storage should reflect the possibilities of carry over and depletion; the reservoir fills up rapidly in the months of June to September and depletes from October to May or June, several modifications for the desired monthly storage levels for the different states in the two reservoirs were tried and the following rule curves are considered to be an improvement over the planned operation of B.D.O. (Table 4.9). It may be seen that the reservoir fills up quicker in an average year than in dry year and in turn it fills up quicker in a wet year than in an average year. The end of year storage in a dry year is less than that in an average year which in turn is less than that in a wet year. The general trend of the rule curve is similar to that of the planned operation except for some further modification in the end of month storages for August and April.

#### 4.5.2 Ranking of priorities

Simulation of the planned studies as well as the improved operation indicate diversion through Pong from Harike while storage and capacity were available through Dehar and Bhakra. In order to eliminate this problem, the priority for

TABLE 4.9 MODIFIED RULE CURVES<sup>+</sup>

## 1. Bhakra Reservoir Max. Capacity = 7.644 m.a.f.

| Hydrologic State | June  | July  | Aug.  | Sept. | Oct.  | Nov.  | Dec.  | Jan.  | Feb.  | March | April | May   |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Average          | .3438 | .5642 | .9086 | .9795 | .8965 | .7737 | .6918 | .5582 | .4534 | .3517 | .2950 | .2578 |
| Dry              | .3438 | .4567 | .6621 | .7074 | .6832 | .6445 | .5831 | .4980 | .4122 | .3357 | .2769 | .2578 |
| Wet              | .3438 | .5997 | .9750 | .9900 | .9032 | .7871 | .7119 | .5850 | .4869 | .3919 | .3419 | .2908 |

| Hydrologic State | June  | July         | Aug.  | Sept. | Oct.  | Nov.  | Dec.  | Jan.  | Feb.  | Mar.  | April | May  |
|------------------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Average          | .1367 | .3491        | .7568 | .8125 | .6714 | .5480 | .4662 | .4611 | .4105 | .2862 | .2483 | .223 |
| Dry              | .1367 | <b>.2338</b> | .2750 | .2508 | .2032 | .1585 | .1545 | .1471 | .1451 | .1379 | .1370 | .136 |
| Wet              | .1367 | .3769        | .7600 | .8125 | .6781 | .5614 | .4863 | .4879 | .4440 | .3264 | .2877 | .277 |

+ Desired end of month storage level as a ratio of full capacity.

demand at Harike was reduced by changing the rank from 16 to 25.

In order to study the priority in meeting the demand at Bhakra exclusively in the interest of power, four simulation runs were done with changing demands as indicated in Table 4.10 and with the priorities as indicated in Table 4.11.

#### 4.5.3 Evaluation of system performance

The planned operation as per B.D.O. meets the specified irrigation and power demands. The planned energy generation in the components as well as the total system are taken from Tables 4.1 to 4.3 and are shown in Table 4.12.

Energy generated as well as the irrigation deficits vary over the months and over the years. For the purpose of the study the following details of the performance of the system are considered important (Tables 4.13 to 4.16).

- i) Total annual and monthly irrigation deficits;
- ii) Power generation at (Bakra and Dehar), Pong, and the total power generation of the system in Kharif season and non-kharif season and water year respectively;
- iii) The surplus or deficit of power in each of the sub-systems in Kharif season, non-kharif season and water year respectively, in comparison to planned values;
- iv) An earlier study (Rao, 1976) of the system indicated that :

TABLE 4.10 POWER DEMAND AT BHAKRA

| Years                       | Simulation Runs |            |     |     |
|-----------------------------|-----------------|------------|-----|-----|
|                             | I               | II         | III | IV  |
| 1, 2, 3, 4, 6, 7, 9, 11, 13 | Average         | Average    | Nil | Nil |
|                             | Dry             | Dry        | Nil | Dry |
| 8, 10, 12                   | Dependable      | Dependable | Nil | Nil |

(Values as specified by B.D.O.)

TABLE 4.11 MODIFIED PRIORITY RANKS

| Item      | Hydrologic State | Simulation Run |    |     |    |
|-----------|------------------|----------------|----|-----|----|
|           |                  | I              | II | III | IV |
| Demand at | Average          | 35             | 26 | 35  | 60 |
|           | Dry              | 35             | 26 | 35  | 60 |
|           | Wet              | 35             | 26 | 35  | 60 |
| Bhakra    | Average          | 30             | 30 | 30  | 30 |
|           | Dry              | 30             | 25 | 30  | 30 |
|           | Wet              | 30             | 30 | 30  | 30 |
| Storage   | Average          | 50             | 50 | 50  | 50 |
|           | Dry              | 50             | 25 | 50  | 50 |
|           | Wet              | 50             | 50 | 50  | 50 |
| Pong      | Average          | 50             | 50 | 50  | 50 |
|           | Dry              | 50             | 25 | 50  | 50 |
|           | Wet              | 50             | 50 | 50  | 50 |

- 1) Conjunctive use of surface and ground water resources is necessary;
- 2) Since excess energy is available in Kharif season, this may be used for pumping ground water to meet part of the irrigation demand and to this extent, the surface water releases may be reduced. The earlier study indicated that in Bhakra reservoir in Kharif season about 1500 acre ft. per month of water is required to generate 1 MW of power and this will pump 6000 acre ft. of ground water. Hence 1 MW of excess energy indicates a potential for saving 4500 acre ft of water from Bhakra releases and thus augmenting storage;
- 3) The amount of water saved indicated in column 25 of Tables 4.13 to 4.16 increases the head and energy generated in the subsequent period and this is not taken into account in this study.

Yet this amount of water is available for irrigation and this may meet partly or completely the irrigation deficits in the water year. Net water deficit, if any, in the water year is indicated in column 26 of Tables 4.13 to 4.16.

- 4) This deficit may be met by diverting energy from outside the system and the amount of energy in MW months required for meeting these deficits are indicated in column 27 of Tables 4.13 to 4.16.

TABLE 4.12 PLANNED ENERGY<sup>+</sup> GENERATION

| Hydrologic State | Total inflow<br>in Acre Ft. | In Kharif Season |      |               | In Non Kharif Season |      |               | In the Water Year |       |               |       |
|------------------|-----------------------------|------------------|------|---------------|----------------------|------|---------------|-------------------|-------|---------------|-------|
|                  |                             | Bhakra + Dehar   | Pong | Total + Dehar | Bhakra + Dehar       | Pong | Total + Dehar | Bhakra + Dehar    | Pong  | Total + Dehar |       |
| Average          | 28288760                    | 6102             | 1221 | 8093          | 6168                 | -    | 1159          | 8405              | 12270 | 2380          | 16498 |
| Dry              | 17844884                    | 4972             | 573  | 6315          | 4421                 | -    | 178           | 5677              | 9393  | 751           | 11992 |
| Dehondale<br>Wet | 22971018                    | 5513             | 877  | 7160          | 5155                 | -    | 658           | 6891              | 10668 | 1535          | 14051 |

+ Includes energy generated at Nengal

++ Energy is in M.W.months

#### 4.5.4 Discussion of results

A comparison of the generated energy in simulation runs with planned demand indicates that surplus energy is generated even in a dry year during the Kharif period and there is a deficit of energy during rabi season in average and dry years. Rao (1976) has suggested the use of surplus energy in Kharif to pump ground water by tube wells and hence reduce the surface water releases in Kharif for meeting irrigation demands. This will result in a higher storage during and at the end of filling period. It will also lead the availability of larger amount of water and energy in the depletion period.

Results of simulation run I indicate that irrigation and energy deficits are eliminated in a number of years and are otherwise reduced in other years. For example the irrigation deficits in years 2nd, 6th, 11th and 13th are eliminated and the irrigation deficits in years 3, 7, 9<sup>th</sup> and 10<sup>th</sup> are reduced. It is also seen that 20 to 24 MW months of energy will be required to eliminate the deficits in years 7 and 10 respectively. The energy requirements in years 3rd and 9th are of a much higher order, viz, 136 and 483 MW months. If energy of these magnitudes is available from outside the system, it is possible to eliminate irrigation deficits even in these years provided that adequate tube wells are also available.

Simulation Run II assumes a higher priority for maintaining storage in dry years in comparison to wet years. The results indicate that the operation is similar upto 6th year and then differs from 7th year onwards, while the variations are erratic from 8th to 11th year. The energy deficit is much larger in the 12th year in Kharif period and the energy surplus is smaller in the 13th year in simulation Run II in comparison to simulation Run I. Furthermore the amount of energy to be imported from outside for meeting the irrigation deficits is also larger in 7th, 9th, 10th and 12th years in simulation Run II. It is also seen that surpluses and deficits of energy are generally smaller in simulation Run II than those in simulation Run I.

Simulation Run III eliminates release from Bhakra on consideration of power. Simulation Run IV considers power demand at Bhakra only for the dry year 5th with the lowest priority. The results indicate that -

- i) The fluctuation in energy is larger for Run III than Run IV;
- ii) There is energy deficit in the 5th year in rabi season in Run III even though there is a surplus in an entire year;
- iii) The energy generation in Run III is smaller than that of Run IV by 126 MW months;
- iv) There is a large system loss in month 3rd of 6th year for Run III which is absent in Run IV; and

v) The irrigation deficit for 6th year is smaller for Run III than for Run IV and comparable in other years.

From the above results it is generally seen that energy releases from Bhakra need not be specified. Depending upon the relative value of irrigation deficit versus energy, at best those may be specified for dry years. In the absence of such value systems, it is inferred that Simulation Run IV is preferable.

#### 4.6 Conclusions

The study indicates the following :

- i) Rule curves and priorities are given in Tables 4.9 and 4.11;
- ii) Irrigation demands and priorities are indicated in Tables 4.1 to 4.3 and 4.7; and
- iii) Power demands and priorities as indicated for Simulation Run IV in Tables 4.10 and 4.11 lead to an improved operation of the system.

Further improvement of the system performance is possible by modification of the simulation programme in the following respects :

- i) Incorporation of better algorithm for estimating the energy generation in the system;
- ii) In some time periods diversion through Pong are indicated while capacity through Dehar and at Bhakra are available.

In these cases it is necessary to divert flow through Dehar even though the out of Kilter algorithm indicates diversion through Pong;

- iii) Incorporation of subroutine to determine energy surpluses if any during kharif period; utilization of available tube wells for pumping ground water during this period to the extent necessary in conjunction with surface water releases, and modifications in SIMYLD II programme for correcting releases and storages appropriately; and
- iv) Incorporation of flow and demand forecasting as well as suitable flexible control rules for the rule curves.

TABLE 4.13 RESULTS FOR SIMULATION RUN NO. I

77

| YEAR | TOTAL INFLOW<br>ACRE FT. | HYDROLOGIC STATE | IRRIGATION DEMAND<br>ACRE FT. | POWER * GENERATED               |                                                                 |                   |                 |       |                   |                     |       |                   |             |       |                   | SURPLUS (+) OR DEFICIT (-)   |       |                   |                                  |       |                   |                                  |       |                   |         |       |  | ACRE FT WATER THAT CAN BE STORED BY SURPLUS ENERGY IN KHARIF (ACRE FT.) | IRRIGATION DEFICIT AFTER USING SURPLUS ENERGY (ACRE FT.) | ADDITIONAL POWER REQUIRED TO MEET DEFICIT |  |  |  |  |  |  |
|------|--------------------------|------------------|-------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------|-----------------|-------|-------------------|---------------------|-------|-------------------|-------------|-------|-------------------|------------------------------|-------|-------------------|----------------------------------|-------|-------------------|----------------------------------|-------|-------------------|---------|-------|--|-------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|
|      |                          |                  |                               | IRRIGATION DEFICIT JULY TO JUNE |                                                                 |                   | POWER IN KHARIF |       |                   | POWER IN NON KHARIF |       |                   | TOTAL POWER |       |                   | SURPLUS OR DEFICIT IN KHARIF |       |                   | SURPLUS OR DEFICIT IN NON KHARIF |       |                   | SURPLUS OR DEFICIT IN WHOLE YEAR |       |                   |         |       |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
|      |                          |                  |                               | AMOUNT IN ACRE FT.              | DETAILS                                                         | BHAKRA<br>+ DEHAR | PONG            | TOTAL | BHAKRA<br>+ DEHAR | PONG                | TOTAL | BHAKRA<br>+ DEHAR | PONG        | TOTAL | BHAKRA<br>+ DEHAR | PONG                         | TOTAL | BHAKRA<br>+ DEHAR | PONG                             | TOTAL | BHAKRA<br>+ DEHAR | PONG                             | TOTAL | BHAKRA<br>+ DEHAR | PONG    | TOTAL |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 1    | 2                        | 3                | 4                             | 5                               | 6                                                               | 7                 | 8               | 9     | 10                | 11                  | 12    | 13                | 14          | 15    | 16                | 17                           | 18    | 19                | 20                               | 21    | 22                | 23                               | 24    | 25                | 26      | 27    |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 1    | 3077823                  | WET              | 27869452                      |                                 | NIL                                                             | 6566              | 1202            | 8538  | 6206              | 1493                | 8777  | 12772             | 2695        | 17315 | +464              | -19                          | +445  | +38               | +334                             | +372  | +502              | +315                             | +817  | 2002500           | NIL     | NIL   |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 2    | 25108895                 | AVRG.            | 21869452                      | 922286                          | MAY                                                             | 6536              | 1296            | 8602  | 6016              | 831                 | 7925  | 12552             | 2127        | 16527 | +434              | +75                          | +509  | -152              | -328                             | -480  | +282              | -253                             | +29   | 2290500           | NIL     | NIL   |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 3    | 26838606                 | AVRG.            | 27869452                      | 1615422                         | 49629 (MAR)<br>177398 (APR)<br>1039675 (MAY)<br>348720 (JUNE)   | 6263              | 1238            | 8271  | 6148              | 768                 | 7994  | 12411             | 2006        | 16265 | +161              | +17                          | +178  | -20               | -391                             | -411  | +141              | -374                             | -233  | 801000            | 814422  | 136   |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 4    | 29491541                 | WET              | 27869452                      | NIL                             | NIL                                                             | 6377              | 1127            | 8274  | 6424              | 1312                | 8814  | 12801             | 2439        | 17088 | +275              | -94                          | +181  | +256              | +153                             | +409  | +531              | +59                              | +590  | 814500            | NIL     | NIL   |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 5    | 17897513                 | DRY              | 16757756                      | NIL                             | NIL                                                             | 5330              | 767             | 6867  | 4534              | 307                 | 5919  | 4864              | 1074        | 12786 | +358              | +194                         | +552  | +113              | +129                             | +242  | +471              | +323                             | +794  | 2484000           | NIL     | NIL   |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 6    | 24735381                 | WET              | 27869452                      | 2314795                         | 44840 (APR)<br>1624150 (MAY)<br>241744 (JUNE)                   | 7124              | 1025            | 8919  | 5224              | 844                 | 7146  | 12348             | 1869        | 16065 | +1022             | -196                         | +826  | -944              | -315                             | -1259 | +78               | -511                             | -A33  | 3717000           | NIL     | NIL   |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 7    | 27359591                 | WET              | 27869452                      | 511751                          | 511751 (MAY)                                                    | 6179              | 1234            | 8183  | 6464              | 867                 | 8409  | 12643             | 2101        | 16592 | +77               | +13                          | +90   | +296              | -292                             | +4    | +373              | +279                             | +94   | 405000            | 106751  | 18    |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 8    | 21858098                 | DEP.             | 21550876                      | NIL                             | NIL                                                             | 5823              | 879             | 7472  | 5784              | 221                 | 7083  | 11607             | 1100        | 14555 | +310              | +2                           | +312  | +629              | -437                             | +192  | +939              | -435                             | +504  | 1404000           | NIL     | NIL   |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 9    | 24800488                 | WET              | 27869452                      | 3709257                         | 1421913 (MAR)<br>464307 (APR)<br>1316451 (MAY)<br>506586 (JUNE) | 6349              | 1155            | 8274  | 5518              | 423                 | 7019  | 11867             | 1578        | 15293 | +247              | -66                          | +181  | -650              | -736                             | -1386 | -403              | -802                             | -1205 | 814500            | 2894757 | 483   |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 10   | 21161026                 | DEP.             | 21550876                      | 567754                          | MAY                                                             | 5532              | 961             | 7262  | 5055              | 705                 | 6878  | 10591             | 1666        | 1411  | +19               | +84                          | +105  | +105              | +916                             | -52   | -81               | +131                             | +50   | 463500            | 104254  | 17    |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 11   | 27003028                 | WET              | 27869452                      | 1217976                         | 4504 (APR)<br>1100179 (MAY)<br>113293 (JUNE)                    | 6080              | 1420            | 8270  | 5931              | 866                 | 7875  | 12011             | 2286        | 16145 | -22               | +199                         | +177  | -237              | -293                             | -530  | -259              | -94                              | -353  | 796500            | 421476  | 70    |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 12   | 23406570                 | DEP.             | 21550876                      | NIL                             | NIL                                                             | 5520              | 830             | 7120  | 5842              | 333                 | 7253  | 11362             | 1163        | 14373 | +7                | -47                          | -40   | +687              | +325                             | +362  | +694              | -372                             | +322  | NIL               | NIL     | NIL   |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |
| 13   | 22755685                 | WET              | 27869452                      | 1504738                         | MAY                                                             | 6771              | 1025            | 8566  | 5522              | 909                 | 7509  | 12293             | 1934        | 16075 | +669              | -196                         | +475  | -646              | -250                             | -896  | +23               | +446                             | -423  | 2128500           | NIL     | NIL   |  |                                                                         |                                                          |                                           |  |  |  |  |  |  |

\* POWER IS IN M.W. MONTHS.

TABLE 4.14 RESULTS FOR SIMULATION RUN NO. II

| C<br>E<br>N<br>T<br>R<br>A<br>L<br>P<br>O<br>W<br>E<br>R<br>S<br>Y<br>S<br>T<br>E<br>M | TOTAL<br>INFLOW<br>ACRE<br>FT | HYDROLOGIC<br>STATE | IRRIGATION<br>DEMAND<br>JULY TO JUNE<br>ACRE<br>FT | POWER <sup>X</sup> GENERATED |                                                             |       |                        |      |       |                      |      |       | SURPLUS (+) OR DEFICIT (-)      |       |       |                                     |      |       |                                     |       |       | ACRE FT WATER<br>THAT CAN BE<br>STORED BY SURPLUS<br>ENERGY IN KHARIF | IRRIGATION DEFICIT<br>AFTER USING<br>SURPLUS ENERGY<br>ACRE FT. | ADDITIONAL<br>POWER REQUIRED<br>TO MEET DEFICIT |         |     |  |
|----------------------------------------------------------------------------------------|-------------------------------|---------------------|----------------------------------------------------|------------------------------|-------------------------------------------------------------|-------|------------------------|------|-------|----------------------|------|-------|---------------------------------|-------|-------|-------------------------------------|------|-------|-------------------------------------|-------|-------|-----------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|---------|-----|--|
|                                                                                        |                               |                     |                                                    | POWER IN<br>KHARIF           |                                                             |       | POWER IN<br>NON KHARIF |      |       | TOTAL<br>POWER       |      |       | SURPLUS OR DEFICIT<br>IN KHARIF |       |       | SURPLUS OR DEFICIT<br>IN NON KHARIF |      |       | SURPLUS OR DEFICIT<br>IN WHOLE YEAR |       |       |                                                                       |                                                                 |                                                 |         |     |  |
|                                                                                        |                               |                     |                                                    | BHAKRA<br>+<br>DEHAR         | PONG                                                        | TOTAL | BHAKRA<br>+<br>DEHAR   | PONG | TOTAL | BHAKRA<br>+<br>DEHAR | PONG | TOTAL | BHAKRA<br>+<br>DEHAR            | PONG  | TOTAL | BHAKRA<br>+<br>DEHAR                | PONG | TOTAL | BHAKRA<br>+<br>DEHAR                | PONG  | TOTAL |                                                                       |                                                                 |                                                 |         |     |  |
| 1                                                                                      | 2                             | 3                   | 4                                                  | 5                            | 6                                                           | 7     | 8                      | 9    | 10    | 11                   | 12   | 13    | 14                              | 15    | 16    | 17                                  | 18   | 19    | 20                                  | 21    | 22    | 23                                                                    | 24                                                              | 25                                              | 26      | 27  |  |
| 1                                                                                      | 30778231                      | WET                 | 27869452                                           | NIL                          | NIL                                                         | 6566  | 1202                   | 8538 | 6206  | 1493                 | 8777 | 12772 | 2695                            | 17315 | +464  | -19                                 | +445 | +38   | +334                                | +372  | +502  | +315                                                                  | +817                                                            | 2002500                                         | NIL     | NIL |  |
| 2                                                                                      | 25100895                      | AVRG.               | 27869452                                           | 1031438                      | MAY                                                         | 6536  | 1296                   | 8602 | 6006  | 831                  | 7915 | 12542 | 2127                            | 16517 | +434  | +75                                 | +504 | -162  | -328                                | -490  | +272  | -253                                                                  | +19                                                             | 2290500                                         | NIL     | NIL |  |
| 3                                                                                      | 26838606                      | AVRG.               | 27869452                                           | 1615422                      | 49629(MAR)<br>177348(APR)<br>1039675(MAY)<br>348720(JUN)    | 6263  | 1238                   | 8271 | 6148  | 768                  | 7944 | 12411 | 2006                            | 16265 | +161  | +17                                 | +178 | -20   | -391                                | -411  | +141  | -374                                                                  | -233                                                            | 801000                                          | 814422  | 136 |  |
| 4                                                                                      | 19491541                      | WET                 | 21869452                                           | NIL                          | NIL                                                         | 6377  | 1127                   | 8274 | 6424  | 1512                 | 6814 | 12801 | 2439                            | 17088 | +275  | -94                                 | +181 | +256  | +153                                | +404  | +531  | +59                                                                   | +590                                                            | 814500                                          | NIL     | NIL |  |
| 5                                                                                      | 17841518                      | DRY                 | 16751756                                           | NIL                          | NIL                                                         | 5530  | 167                    | 6867 | 4534  | 307                  | 5919 | 9864  | 1074                            | 12786 | +358  | +194                                | +552 | +113  | +1X9                                | +742  | +471  | +323                                                                  | +794                                                            | 2484000                                         | NIL     | NIL |  |
| 6                                                                                      | 24735381                      | WET                 | 27869452                                           | 1314295                      | 448401(APR)<br>1624150(MAY)<br>241744(JUN)                  | 7124  | 1025                   | 8919 | 5224  | 844                  | 7146 | 12348 | 1864                            | 16065 | +1022 | -196                                | +826 | -944  | -315                                | -1259 | +78   | -511                                                                  | -433                                                            | 3717000                                         | NIL     | NIL |  |
| 7                                                                                      | 27559591                      | WET                 | 27869452                                           | 665324                       | MAY                                                         | 6119  | 1234                   | 8103 | 6452  | 861                  | 8397 | 12631 | 2101                            | 16580 | +77   | +13                                 | +90  | +284  | -192                                | -08   | +361  | -279                                                                  | +82                                                             | 405000                                          | 260329  | 44  |  |
| 8                                                                                      | 21858098                      | DEF                 | 21550876                                           | 657921                       | 324104(MAR)<br>71803(APR)<br>261414(MAY)                    | 5825  | 879                    | 7472 | 5713  | 224                  | 7015 | 11536 | 1103                            | 14487 | +310  | +2                                  | +312 | +558  | -434                                | +124  | +868  | -431                                                                  | +436                                                            | 1404000                                         | NIL     | NIL |  |
| 9                                                                                      | 24800488                      | WET                 | 27869452                                           | 3796513                      | 1509170(MAR)<br>464306(APR)<br>1316451(MAY)<br>5065866(JUN) | 6301  | 1159                   | 8230 | 5513  | 400                  | 6991 | 11814 | 1559                            | 15221 | +199  | -62                                 | +137 | -655  | -759                                | -1414 | -456  | -821                                                                  | -1277                                                           | 616500                                          | 3180013 | 530 |  |
| 10                                                                                     | 211614                        | DEF                 | 21550876                                           | 616102                       | MAY                                                         | 5532  | 961                    | 7263 | 5055  | 696                  | 6829 | 10587 | 1657                            | 14092 | +19   | +84                                 | +103 | -100  | +38                                 | -62   | -81   | +122                                                                  | +41                                                             | 463500                                          | 152602  | 25  |  |
| 11                                                                                     | 27003028                      | WET                 | 27869452                                           | 1213473                      | 1100180(MAY)<br>113293(JUN)                                 | 6080  | 1428                   | 8278 | 5934  | 880                  | 7892 | 12014 | 2308                            | 16170 | -22   | +207                                | +185 | -234  | -279                                | -513  | -256  | -72                                                                   | -328                                                            | 832500                                          | 380973  | 63  |  |
| 12                                                                                     | 23406570                      | DEF                 | 21550876                                           | 923464                       | 280277(OCT)<br>269666(DEC)<br>373526(DEC)                   | 5520  | 774                    | 7064 | 5782  | 399                  | 7259 | 11302 | 1173                            | 14323 | +7    | -103                                | -96  | +627  | -259                                | +368  | +634  | -362                                                                  | +272                                                            | 00                                              | 925469  | 154 |  |
| 13                                                                                     | 2755685                       | WET                 | 27869452                                           | 1466896                      | MAY                                                         | 6923  | 1011                   | 8704 | 5577  | 945                  | 7600 | 12500 | 1958                            | 16304 | +821  | -210                                | +611 | -591  | 214                                 | -800  | +230  | -424                                                                  | -194                                                            | 2741500                                         | NIL     | NIL |  |

\* POWER IS IN M.W. MONTHS.

TABLE 4.15 RESULTS FOR SIMULATION RUN NO III

| S<br>E<br>T<br>I<br>D<br>E<br>N<br>O | TOTAL<br>LOW<br>F.<br>S.<br>W.<br>Y. | HYDROLOGIC<br>STATE | IRRIGATION<br>DEMAND<br>ACRE FT. | POWER* GENERATED                   |                                                            |                      |      |       |                      |                    |       |                      |                        |       |                      | SURPLUS (+) OR DEFICIT (-) |       |                      |                                 |       |                      |                                     |       |         |                                     |     |  | ACRE FT. WATER<br>THAT CAN BE<br>STORED BY SURPLUS<br>ENERGY IN KHARIF<br>(ACRE FT.) | IRRIGATION DEFIC<br>T ADDITIONAL<br>AFTER USING SURPLUS REQUIRE<br>MENT | SET 1 |
|--------------------------------------|--------------------------------------|---------------------|----------------------------------|------------------------------------|------------------------------------------------------------|----------------------|------|-------|----------------------|--------------------|-------|----------------------|------------------------|-------|----------------------|----------------------------|-------|----------------------|---------------------------------|-------|----------------------|-------------------------------------|-------|---------|-------------------------------------|-----|--|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------|
|                                      |                                      |                     |                                  | IRRIGATION DEFICIT<br>JULY TO JUNE |                                                            |                      |      |       |                      | POWER IN<br>KHARIF |       |                      | POWER IN<br>NON KHARIF |       |                      | TOTAL<br>POWER             |       |                      | SURPLUS OR DEFICIT<br>IN KHARIF |       |                      | SURPLUS OR DEFICIT<br>IN NON KHARIF |       |         | SURPLUS OR DEFICIT<br>IN WHOLE YEAR |     |  |                                                                                      |                                                                         |       |
|                                      |                                      |                     |                                  | AMOUNT IN<br>ACRE FT.              | DETAILS                                                    | BHAKRA<br>+<br>DEHAR | PONG | TOTAL | BHAKRA<br>+<br>DEHAR | PONG               | TOTAL | BHAKRA<br>+<br>DEHAR | PONG                   | TOTAL | BHAKRA<br>+<br>DEHAR | PONG                       | TOTAL | BHAKRA<br>+<br>DEHAR | PONG                            | TOTAL | BHAKRA<br>+<br>DEHAR | PONG                                | TOTAL |         |                                     |     |  |                                                                                      |                                                                         |       |
| 2                                    | 3                                    | 4                   | 5                                | 6                                  | 7                                                          | 8                    | 9    | 10    | 11                   | 12                 | 13    | 14                   | 15                     | 16    | 17                   | 18                         | 19    | 20                   | 21                              | 22    | 23                   | 24                                  | 25    | 26      | 27                                  | 28  |  |                                                                                      |                                                                         |       |
| 1                                    | 34778231                             | Wet                 | 27869452                         | NIL                                | NIL                                                        | 6566                 | 1202 | 8538  | 6156                 | 1492               | 8726  | 12722                | 2694                   | 17264 | +464                 | -19                        | +445  | -12                  | +333                            | +321  | +452                 | +314                                | +766  | 2002500 | NIL                                 | NIL |  |                                                                                      |                                                                         |       |
| 2                                    | 2546895                              | AVRG.               | 27869452                         | 773271                             | MAY                                                        | 6631                 | 1271 | 8672  | 6038                 | 878                | 7994  | 12669                | 2149                   | 16666 | +529                 | +50                        | +579  | -130                 | -281                            | -411  | +399                 | -231                                | +168  | 2605500 | NIL                                 | NIL |  |                                                                                      |                                                                         |       |
| 3                                    | 26838606                             | AVRG.               | 27869452                         | 1615424                            | 49631(MAR)<br>1773981(APR)<br>1039675(MAY)<br>348720(JUNE) | 6263                 | 1238 | 8271  | 6148                 | 768                | 7994  | 12411                | 2006                   | 16265 | +101                 | +17                        | +178  | +20                  | -391                            | -411  | +141                 | -374                                | -233  | 801000  | 814424                              | 136 |  |                                                                                      |                                                                         |       |
| 4                                    | 26450511                             | Wet                 | 27869452                         | NIL                                | NIL                                                        | 6488                 | 1127 | 8385  | 6382                 | 1312               | 8772  | 12870                | 2439                   | 17157 | +386                 | -44                        | +292  | +214                 | +153                            | +367  | +600                 | +59                                 | +659  | 1314000 | NIL                                 | NIL |  |                                                                                      |                                                                         |       |
| 5                                    | 17891516                             | Dry                 | 16757756                         | NIL                                | NIL                                                        | 5415                 | 743  | 6928  | 4112                 | 341                | 5531  | 9527                 | 1084                   | 12459 | +443                 | +170                       | +613  | -309                 | +163                            | -146  | -134                 | +333                                | +467  | 2758500 | NIL                                 | NIL |  |                                                                                      |                                                                         |       |
| 6                                    | 24735301                             | Wet                 | 27869452                         | 1615632                            | 1573886(MAY)<br>241746(JUNE)                               | 6934                 | 988  | 8692  | 5300                 | 1053               | 7431  | 12234                | 2041                   | 16123 | +832                 | -233                       | +599  | -868                 | -106                            | -974  | -36                  | -339                                | -375  | 2695500 | NIL                                 | NIL |  |                                                                                      |                                                                         |       |
| 7                                    | 22321531                             | Wet                 | 27869452                         | 511751                             | MAY                                                        | 6179                 | 1234 | 8183  | 6464                 | 867                | 8409  | 12643                | 2101                   | 16592 | +77                  | +13                        | +90   | +296                 | -292                            | +4    | +373                 | -279                                | +94   | 405000  | 106751                              | 13  |  |                                                                                      |                                                                         |       |
| 8                                    | 21858010                             | Dep.                | 21550816                         | NIL                                | NIL                                                        | 5823                 | 879  | 7472  | 5744                 | 221                | 7043  | 11567                | 1100                   | 14515 | +310                 | +2                         | +312  | +589                 | -437                            | +152  | +899                 | -435                                | +464  | 1464000 | NIL                                 | NIL |  |                                                                                      |                                                                         |       |
| 9                                    | 20460488                             | Wet                 | 27869452                         | 3684727                            | 1397383(MAR)<br>464307(APR)<br>131645(MAY)<br>506586(JUNE) | 6350                 | 1159 | 8279  | 5520                 | 429                | 7027  | 11870                | 1588                   | 15306 | +248                 | -62                        | +186  | -648                 | -730                            | -1378 | -400                 | -792                                | -192  | 837000  | 284747                              | 475 |  |                                                                                      |                                                                         |       |
| 10                                   | 21150010                             | W.P.                | 21550816                         | NIL                                | NIL                                                        | 5532                 | 961  | 7263  | 5011                 | 697                | 6786  | 10543                | 1658                   | 14049 | +101                 | +84                        | +103  | -144                 | +39                             | -105  | -155                 | +123                                | -2    | 463500  | NIL                                 | NIL |  |                                                                                      |                                                                         |       |
| 11                                   | 193020                               | W.T.                | 27869452                         | 779970                             | 666673(MAY)<br>113297(JUNE)                                | 6364                 | 1338 | 8477  | 6014                 | 989                | 8086  | 12388                | 2327                   | 16563 | +267                 | +117                       | +384  | -149                 | -170                            | -319  | +118                 | -53                                 | +65   | 1728000 | NIL                                 | NIL |  |                                                                                      |                                                                         |       |
| 12                                   | 190570                               | Dep.                | 21550876                         | NIL                                | NIL                                                        | 5570                 | 830  | 7120  | 5775                 | 333                | 7186  | 11295                | 1163                   | 14306 | +7                   | -47                        | -40   | +620                 | -325                            | +795  | +627                 | -372                                | +255  | NIL     | NIL                                 | NIL |  |                                                                                      |                                                                         |       |
| 13                                   | 15155685                             | Wet                 | 27869452                         | 1504739                            | MAY                                                        | 6809                 | 1025 | 8604  | 5522                 | 909                | 7509  | 12331                | 1934                   | 16113 | +707                 | -196                       | +511  | -646                 | -250                            | -890  | +61                  | -446                                | -385  | 2299500 | NIL                                 | NIL |  |                                                                                      |                                                                         |       |

TABLE 1.16 RESULTS FOR SIMULATION RUN NO. IV

&lt;-- POWER GENERATED --&gt; &lt;-- SURPLUS (+) OR DEFICIT (-) --&gt;

| TOTAL INFLOW<br>ACRE FT. | HYDROLOGIC STATE | IRRIGATION DEMAND<br>JULY TO JUNE | POWER IN KHARIF    |                                                                 |                | POWER IN NON KHARIF |       |                | TOTAL POWER |       |                | SURPLUS OR DEFICIT IN KHARIF |       |                | SURPLUS OR DEFICIT IN NON KHARIF |       |                | SURPLUS OR DEFICIT IN WHOLE YEAR |       |                | ACRE FT WATER THAT CAN BE STORED BY SURPLUS ENERGY IN KHARIF | IRRIGATION DEFICIT AFTER USING SURPLUS ENERGY (ACRE FT) | ADDITIONAL POWER REQUIRED TO MEET DEFICIT |         |     |
|--------------------------|------------------|-----------------------------------|--------------------|-----------------------------------------------------------------|----------------|---------------------|-------|----------------|-------------|-------|----------------|------------------------------|-------|----------------|----------------------------------|-------|----------------|----------------------------------|-------|----------------|--------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|---------|-----|
|                          |                  |                                   | AMOUNT IN ACRE FT. | DETAILS                                                         | BHAKRA + DEHAR | PONG                | TOTAL | BHAKRA + DEHAR | PONG        | TOTAL | BHAKRA + DEHAR | PONG                         | TOTAL | BHAKRA + DEHAR | PONG                             | TOTAL | BHAKRA + DEHAR | PONG                             | TOTAL | BHAKRA + DEHAR | PONG                                                         | TOTAL                                                   |                                           |         |     |
| 2                        | 3                | 4                                 | 5                  | 6                                                               | 7              | 8                   | 9     | 10             | 11          | 12    | 13             | 14                           | 15    | 16             | 17                               | 18    | 19             | 20                               | 21    | 22             | 23                                                           | 24                                                      | 25                                        | 26      | 27  |
| 1 30778231               | WET              | 27869452                          | NIL                | NIL                                                             | 65.66          | 1202                | 8538  | 6156           | 1493        | 8727  | 12722          | 2695                         | 17265 | +464           | -19                              | +445  | -12            | +334                             | +322  | +452           | +315                                                         | +767                                                    | 2002500                                   | NIL     | NIL |
| 2 25108895               | AVRG             | 27869452                          | 773271             | MAY                                                             | 6632           | 1271                | 8673  | 6038           | 878         | 7994  | 12670          | 2149                         | 16667 | +530           | +50                              | +580  | -130           | -281                             | -411  | +400           | -231                                                         | +169                                                    | 2610000                                   | NIL     | NIL |
| 3 26838606               | AVRG             | 27869452                          | 1615424            | 49631 (MAR)<br>1773986 (APR)<br>1639675 (MAY)<br>348720 (JUNE)  | 6263           | 1238                | 8271  | 6148           | 768         | 7994  | 12411          | 2006                         | 16265 | +161           | +17                              | +178  | +20            | -391                             | -411  | +141           | -374                                                         | -233                                                    | 801000                                    | 814422  | 136 |
| 4 29491541               | WET              | 27869452                          | NIL                | NIL                                                             | 6377           | 1127                | 8274  | 6382           | 1312        | 8772  | 12759          | 2439                         | 17046 | +275           | -94                              | +181  | +214           | +153                             | +367  | +489           | +59                                                          | +548                                                    | 814500                                    | NIL     | NIL |
| 5 17697518               | DRY              | 16757756                          | NIL                | NIL                                                             | 5415           | 743                 | 6928  | 4501           | 341         | 5920  | 9916           | 1084                         | 12848 | +443           | +170                             | +613  | +80            | +163                             | +243  | +523           | +333                                                         | +856                                                    | 2758500                                   | NIL     | NIL |
| 6 24735381               | WET              | 27869452                          | 2169624            | 303729 (APR)<br>1624151 (MAY)<br>241744 (JUN)                   | 7098           | 1013                | 8881  | 5233           | 889         | 7200  | 12331          | 1902                         | 16084 | +996           | -208                             | +788  | -935           | -270                             | -1205 | +61            | -478                                                         | -417                                                    | 3546000                                   | NIL     | NIL |
| 7 27359591               | WET              | 27869452                          | 511751             | MAY                                                             | 6179           | 1234                | 8183  | 6464           | 847         | 8409  | 12643          | 2101                         | 16592 | +77            | +13                              | +90   | +296           | -292                             | +4    | +373           | -279                                                         | +94                                                     | 405000                                    | 106751  | 18  |
| 8 21858098               | DEP              | 21550876                          | NIL                | NIL                                                             | 5823           | 879                 | 7472  | 5744           | 221         | 7043  | 11567          | 1100                         | 14515 | +30            | +2                               | +312  | +587           | -437                             | +152  | +892           | -437                                                         | +464                                                    | 1404000                                   | NIL     | NIL |
| 9 24800488               | WET              | 27869452                          | 3684723            | 1397382 (MAR)<br>464307 (APR)<br>1316447 (MAY)<br>506536 (JUNE) | 6350           | 1159                | 8279  | 5520           | 430         | 7028  | 11810          | 1589                         | 15307 | +248           | -62                              | +186  | -648           | -729                             | -1377 | -400           | -791                                                         | -1191                                                   | 837000                                    | 2847723 | 475 |
| 10 21781026              | DEP              | 21550876                          | NIL                | NIL                                                             | 5332           | 961                 | 7883  | 5011           | 696         | 6785  | 10543          | 1657                         | 14046 | +19            | +84                              | +103  | -144           | +38                              | -106  | -125           | +120                                                         | -3                                                      | 463500                                    | NIL     | NIL |
| 11 21003028              | WET              | 27869452                          | 779920             | 666673 (MAY)<br>113297 (JUNE)                                   | 6368           | 1338                | 8476  | 6019           | 989         | 8086  | 12367          | 2327                         | 16542 | +266           | +17                              | +363  | -149           | -170                             | -119  | +177           | -53                                                          | +64                                                     | 1723500                                   | NIL     | NIL |
| 12 23406570              | DEP              | 21550876                          | NIL                | NIL                                                             | 5520           | 830                 | 7120  | 5775           | 333         | 7186  | 11295          | 1163                         | 14306 | +7             | -47                              | -48   | +620           | -325                             | +295  | +627           | -374                                                         | +265                                                    | NIL                                       | NIL     | NIL |
| 13 25755685              | WET              | 27869452                          | 1504739            | MAY                                                             | 6809           | 1025                | 8604  | 5522           | 909         | 7509  | 12331          | 1934                         | 16113 | +707           | -196                             | +501  | -646           | -250                             | -896  | +61            | -446                                                         | -985                                                    | 2299500                                   | NIL     | NIL |

\* POWER IS IN M.W. MONTHS

## 5. SUMMARY AND CONCLUSIONS

### 5.1. Summary

Water resources systems are generally large and complex. They consist of multiple units and serve multiple purposes. The multiple purposes are not wholly complementary. Several general or problem specific simulation models and computer programmes have been developed for analysing water resources systems. SIMYLD II is a computer programme developed by Texas Water Development Board for simulating the hydrologic operation of a system of interconnected reservoirs within a basin or a multibasin water resources system. The study consists in implementing the SIMYLD II programme, validating it with available data and adapting it for the operation of Bhakra Beas system.

The original SIMYLD II programme was implemented in IBM 7044-1401 system at I.I.T. Kanpur and was adapted to meet the requirements of Bhakra Beas system.

Using 13 years of historical data, the Bhakra Beas system was simulated using the modified SIMYLD II model. The criteria for defining wet, average and dry years, the rule curves for operation in wet, average and dry years and the relative weightages for meeting different demands and for maintaining the rule curves are derived from simulation analysis. Results indicate that by using these

criteria the benefit from the operation of the system can be greatly increased. Further improvement of the model is also possible.

#### 5.2. Conclusions

The following conclusions emerge from the study :

- i) The original SIMYLD II programme can be implemented in IBM 7044-1401 system with minor modifications due to computer system and by limiting the dimensions of the problem to consider 13 nodes, 20 links and 13 years of monthly data.
- ii) The programme needed additions and alterations
  - a) because of difference in the water year b) because of gravity canal rather than pumped canal c) because of differing climate and the corresponding need for defining the state of the system to suit the climate and d) incorporation of energy developed from the system.
- iii) Simulation of Bhakra Beas system indicates that it is possible to derive improved rule curves for the operation of the system in wet, average and dry years and the corresponding priorities between demands and maintaining the rule curves.
- iv) Differing rule curves for wet, average and dry years incorporate the utility of carry over from wet years to dry years.

v) When a large number of computer programmes are available for simulation of water resources systems, it may be easier to adapt an existing programme than to write a new programme.

vi) Further modifications for optimization of the system and short term planning are possible.

### 5.3 Suggestions for Future Study

i) The present study is limited to the consideration of simulation of 13 years operation of Bhakra Beas system. Study of a longer period incorporating heuristic criteria to avoid diversion through Pong when diversion through Dehar is possible, and conjunctive integrated operation of the surface water-ground water system and with the additional details, will lead to better operation of the system.

ii) Simulation analysis using generated data for stream flow and irrigation and energy requirements, as part of a more comprehensive system planning study is also needed.

## LIST OF REFERENCES

1. Bhakra and Beas Design Organization, Integrated Water and Power Studies for Ravi, Beas and Sutlej Rivers, New Delhi, Aug., 1964.
2. Bhakra Beas Management Board, Background Note, Symposium on "Hydrology of Flow Control with Special Reference to Sutlej and Beas Rivers", Nangal, 1976.
3. Bhalla, B.S., and Bansal, R.N., "Additional Firm Power without Cost by Judicious Operation of Reservoirs of Interconnected System", Irrigation and Power, Vol.32, No.1, Jan., 1975, pp. 15-19.
4. Cole, J.A., "Control Rules for Multiple Use Reservoirs and Multireservoir Systems", Systems Analysis of Hydrologic Problems, Proc. 2nd Intl. Seminar for Hydrol. Prof., Logan, Utah, 1974, pp. 343-378.
5. Ford, L.R., J.R., and Fulkerson, D.R., Flows in Networks, Princeton University Press, 1962.
6. Hall, W.A., and Dracup, J.A., Water Resources Engineering, McGraw Hill Book Company, New York, N.Y., 1970.
7. Harbans Singh, "Firming up of Hydro Power by Tubewells and Apportionment of Costs- General Principles and Their Application to Bhakra Power System," Irrigation and Power, Vol.21, No.3, Jul., 1964, pp. 471-480.

3. Hufschmidt, M.M. and Fiering, M.B., Simulation Techniques for Design of Water Resource Systems, Harvard University Press, Cambridge, 1966.

9. Hydrologic Engineering Center, Simulation of Flood Control and Conservation Systems, HEC-5C, Users Manual U.S. Army Corps of Engineers, Davis, CA, 1974.

10. Lamba, S.S., and Prem, K.S., "Integrated Development of Rivers Sutlej, Beas and Ravi for Optimum Utility of Water in North-Western Areas of India", Proc. of IWRA Second World Congress on Water Resources, New Delhi, India, Reprint Vol.III, Dec., 1975, pp. 79-87.

11. Lucia et.al., Systems Analysis in Water Resources Planning, Rept. No. PB 204374, NTIS, Springfield, Va, 1971.

12. Maass, Arthur, et.al., Design of Water Resource Systems, Harvard University Press, Cambridge, Massachusetts, 1962.

13. Mehndiratta, K.R., and Hoon, R.N., "Evaporation Losses from the Bhakra Reservoir and Reservoir Effect on the Local Climatic Conditions" Irrigation and Power, Vol.30, No.3, July, 1973, pp. 227-236.

14. Mehndiratta, K.R., and Hoon, R.N., "Regulation of Supplies from the Bhakra Reservoir" Irrigation and Power, Vol.30, No.4, Oct., 1973 a, p.p. 349-356.

15. Ramaseshan, S., "Water Resources Systems Planning and Simulation Techniques", Notes of Lectures, Refresher Course on Systems Engineering, Central Water Commission, New Delhi, 1978.

6. Rao, P.S., "Multiobjective Analysis of Punjab Water Resources System," Ph.D. Thesis, Indian Institute of Technology, Kanpur, India, 1976.
17. Texas Water Development Board, Economic Optimization and Simulation Techniques for Management of Regional Water Resource Systems, River Basin Simulation Model SIMYLD-II Program Description, Austin, Texas, July, 1972.
18. Texas Water Development Board, Stochastic Optimization and Simulation Techniques, Report 131, Austin, Texas, Mar., 1972a.
19. Texas Water Development Board, Economic Optimization and Simulation Techniques for Management of Regional Water Resource Systems, Report 179, Austin, Texas, Feb., 1974.
20. Texas Water Development Board, Analytical Techniques for Planning Complex Water Resource Systems, Report 183, Austin, Texas, Apr., 1974a.
21. United States Water Resources Council, Water and Related Land Resources : Establishment of Principles and Standards for Planning, U.S. Federal Register, 38.174, 10 Sept., 1973, pp.24778-24869.
22. Wiener, A., The Role of Water in Development, McGraw Hill, 1972.