PSALTer results panel

$$S == \iiint \left(\rho \, \varphi + \, h^{\alpha \beta} \, \mathcal{T}_{\alpha \beta} + \alpha \underbrace{\partial_{\alpha} \varphi \, \partial^{\alpha} \varphi + \frac{1}{2} \, \alpha \underbrace{\partial_{\alpha} h^{\alpha} \, \partial_{\alpha} h^{\alpha} + 2 \, \partial_{\alpha} h^{\alpha \beta} \, \partial_{\chi} h_{\beta}^{\ \chi} - 2 \, \partial^{\beta} h^{\alpha}_{\ \alpha} \, \partial_{\chi} h_{\beta}^{\ \chi} - \partial_{\chi} h_{\alpha \beta} \, \partial^{\chi} h^{\alpha \beta} \right) \right) [t \,, \, x \,, \, y \,, \, z] \, dt \, z \, dy} \, dx \, dt$$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
⁰⁺ _• 𝒯 [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} = 0$	1
1 ⁻ _τ τ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected gauge generators:		4

Massive spectrum

(No particles)

Massless spectrum

Pole residue: $\left| \frac{1}{\frac{\alpha}{2}} > 0 \right|$ Polarisations: 1

Polarisations: 2 Polarisations: 1

Massless particle Massless particle

Polarisations: 2

Unitarity conditions

 $\alpha_{\cdot} < 0 \&\& \alpha_{\cdot} > 0$