Another inequality involving means

Theorem (Jensen)

If f is a convex function on an interval I, $x_1, \ldots, x_n \in I$, $t_1, \ldots, t_n \geqslant 0$, $\sum_{i=1}^n t_i = 1$, then $f\left(\sum_{i=1}^n t_i x_i\right) \leqslant \sum_{i=1}^n t_i f(x_i)$. For concave functions, the inequality is reversed.

Proposition

Suppose
$$r > 1$$
, and $x_1, \ldots, x_n \geqslant 0$. Then $\frac{x_1 + \ldots + x_n}{n} \leqslant \left(\frac{x_1^r + \ldots + x_n^r}{n}\right)^{1/r}$.

If r = 2, we obtain the inequality between arithmetic and quadratic means:

$$\frac{x_1 + \dots + x_n}{n} \leqslant \left(\frac{x_1^2 + \dots + x_n^2}{n}\right)^{1/2}.$$

Proof. On $[0,\infty)$, the function $f(x)=x^r$ is convex, since $f'(x)=rx^{r-1}$ is increasing. Apply Jensen's Inequality with $t_1=\ldots=t_n=\frac{1}{n}$: $\left(\frac{x_1+\ldots+x_n}{n}\right)^r\leqslant \frac{x_1'+\ldots+x_n'}{n}$. Take r-th root of both sides.

Arithmetic versus harmonic means

Proposition (Arithmetic and harmonic means)

If
$$x_1, ..., x_n > 0$$
, then $\frac{x_1 + ... + x_n}{n} \geqslant \frac{n}{1/x_1 + ... + 1/x_n}$.

Proof. $g(x) = \frac{1}{x}$ is convex on $(0, \infty)$ (g'' > 0). Let $y_i = \frac{1}{x_i}$.

Apply Jensen's Inequality with $t_1 = \ldots = t_n = \frac{1}{n}$:

$$\frac{1}{n} \sum_{i=1}^{n} g(y_i) = \frac{1/y_1 + \ldots + 1/y_n}{n} \geqslant g\left(\frac{1}{n} \sum_{i=1}^{n} y_i\right) = \frac{1}{(y_1 + \ldots + y_n)/n}.$$

$$\frac{1/y_1 + \ldots + 1/y_n}{n} = \frac{x_1 + \ldots + x_n}{n}, \ \frac{1}{(y_1 + \ldots + y_n)/n} = \frac{n}{1/x_1 + \ldots + 1/x_n}.$$

Nowhere differentiable functions

Proposition

There exists a bounded uniformly continuous function $f : \mathbb{R} \to \mathbb{R}$, which is differentiable nowhere.

We shall construct a 1-periodic function like this – that is, f(x) = f(x+1), $\forall x \in \mathbb{R}$.

Begin by defining the sawtooth function $s : \mathbb{R} \to \mathbb{R}$: $s(x) = \phi(x - \lfloor x \rfloor)$, where, for $t \in [0,1]$, $\phi(t) = \min\{t, 1-t\}$.

 $f(x) = \sum_{k=0}^{\infty} 8^{-k} s(64^k x)$ has the desired properties

Weierstrass Monster – the proof continues

Want to show:
$$f(x) = \sum_{k=0}^{\infty} 8^{-k} s(64^k x)$$
 is:

- 1-periodic, bounded, uniformly continuous.
- ② Differentiable nowhere.
- (1) $\forall x$, $|8^{-k}s(64^kx)| \leq 2^{-3k-1}$, hence, by Weierstrass M-test (with $M_k = 2^{-3k-1}$, the series converges uniformly on \mathbb{R} .

$$0 \leqslant f(x) \leqslant \sum_{k=0}^{\infty} 2^{-3k-1} = \frac{4}{7}.$$

$$s(x) = s(x+1)$$
, hence, $\forall x$,

$$f(x+1) = \sum_{k=0}^{\infty} 8^{-k} s(64^k x + 64^k) = \sum_{k=0}^{\infty} 8^{-k} s(64^k x) = f(x).$$

- (2) For $x \in \mathbb{R}$, A > 0, and $\delta > 0$, we need to find $y \in \mathbb{R} \setminus \{x\}$ with $|x y| \le \delta$, $|f(x) f(y)| \ge A|x y|$.
- **Lemma.** For $u, v \in \mathbb{R}$, $|s(u) s(v)| \le \max\{|u v|, \frac{1}{2}\}$. Consequently, for $k \ge 0$, $|s(64^k u) s(64^k v)| \le \max\{64^k |u v|, \frac{1}{2}\}$.

Weierstrass Monster – the proof continues

- (2) For $x \in \mathbb{R}$, A > 0, and $\delta > 0$, we need to find $y \in \mathbb{R} \setminus \{x\}$ with $|x-y|<\delta$, $|f(x)-f(y)|\geqslant A|x-y|$.
- Find $n \in \mathbb{N}$ s.t. $A < \frac{8^n}{2}$, $\delta > 64^{-n}$.
- Find $m \in \mathbb{Z}$ s.t. $2 \cdot 64^n x \in [m, m+1]$.
- If $2 \cdot 64^n x \in [m, m+1/2]$, let $y = 2^{-1}64^{-n}(m+1)$.
- If $2 \cdot 64^n x \in (m+1/2, m+1]$, let $y = 2^{-1}64^{-n}m$.
- $2 \cdot 64^n x, 2 \cdot 64^n y \in [m, m+1]$, hence $|x-y| \le 2^{-1}64^{-n} < \delta$. Need to show: $|f(x) - f(y)| \ge \frac{8^n}{2} |x - y|$.
- $2 \cdot 64^n y$ is the endpoint of [m, m+1] which is farthest from $2 \cdot 64^n x$.
- $64^{n}x, 64^{n}y \in \left[\frac{m}{2}, \frac{m+1}{2}\right]$. Thus,
- $|s(64^n x) s(64^n y)| = |64^n x) s(64^n y)| = 64^n |x y|$. Also, $|2 \cdot 64^n x 2 \cdot 64^n y| \ge \frac{1}{2}$, hence $|x y| \ge 4^{-1}64^{-n}$.

Weierstrass Monster – the proof continues

 $|f(x)-f(y)| > (1-\frac{1}{7}-\frac{2}{7})8^n|x-y| > \frac{8^n}{7}|x-y|.$

Remains to show:
$$|f(y) - f(x)| > \frac{8^n}{2} |x - y|$$
. $|f(y) - f(x)| \geqslant 8^{-n} |s(64^n x) - s(64^n y)| - \sum_{i=0}^{n-1} 8^{-i} |s(64^i x) - s(64^i y)| - \sum_{i=n+1}^{n-1} 8^{-i} |s(64^i x) - s(64^i y)|$. For $i < n$, $|s(64^i x) - s(64^i y)| \leqslant 64^i |x - y|$ (Lemma), $\Rightarrow \sum_{i=0}^{n-1} 8^{-i} |s(64^i x) - s(64^i y)| \leqslant \sum_{i=0}^{n-1} 8^i |x - y| < \frac{8^n}{7} |x - y|$. $\sum_{i=n+1}^{\infty} 8^{-i} |s(64^i x) - s(64^i y)| \leqslant \frac{1}{2} \sum_{i=n+1}^{\infty} 8^{-i} = \frac{8^{-n}}{14}$. $|x - y| \geqslant 4^{-1}64^{-n}$, hence $\frac{8^{-n}}{14} \leqslant \frac{2 \cdot 8^n}{7} |x - y|$.

There are many primes

Theorem

Let $p_1 < p_2 < \dots$ be the increasing enumeration of prime numbers. Then $\sum_n \frac{1}{p_n}$ diverges.

Proof. Note that
$$\alpha := \sum_{n=1}^{\infty} \frac{1}{p_n^2} < \sum_{n=1}^{\infty} \frac{1}{(n+1)^2} < \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

Suppose, for the sake of contradiction, that $\sum_{n} \frac{1}{p_n}$ converges. Find $K \in \mathbb{N}$

s.t.
$$\beta := \sum_{n=K+1}^{\infty} \frac{1}{p_n} < 1 - \alpha$$
. Find $N \in \mathbb{N}$ s.t. $N > 2^K/(1 - \alpha - \beta)$.

Let C (B) be the set of all $x \in \{1, ..., N\}$ which are divisible by some p_n with n > K (resp. by p_n^2 for some n), and let $A = \{1, ..., N\} \setminus (B \cup C)$.

 $\{1,\ldots,N\}$ contains no more than N/q numbers divisible by q, hence $|C|\leqslant \sum_{n>K} \frac{N}{p_n}=\beta N$. Likewise, $|B|\leqslant \alpha N$.

Finally, A contains only the numbers of the form $p_1^{r_1} \dots p_K^{r_K}$, with $r_i \in \{0,1\}$. Thus, $|A| \leq 2^K$.

Consequently, $N = |\{1, ..., N\}| \le |A| + |B| + |C| \le 2^K + (\alpha + \beta)N$, which yields the desired contradiction.