





# Bank Customer Churn Prediction

MIS S381N - Data Science Programming Project

Neel Sheth - NDS967 Samarth Mishra - SM79247 Srividya Rayaprolu - LR34488 Tanushree Devi Balaji - TB33857





# **Agenda**

Bank Customer Churn Classification



- **Exploratory Data Analysis**Initial Analysis, Outliers, Feature Creation
- Modelling
  KNN, Naïve Bayes, Logistic Regression, Trees
- Model Selection
  Accuracy Rate Comparison
- Recommendations and Conclusion

# **INTRODUCTION**



### **Overview of Problem Statement**

Proportion of Customers Churned and Retained



A 20% churn rate translates to losing roughly 1.5M euros in bank balance per 100 customers

#### What is Churn Rate?

Measure of waning customer engagement

#### **Objective:**

Identify potential churners early on and formulate a retention strategy

#### Approach:

Build a model to predict churn propensity at a customer granularity





## **Data & Attributes**



# **EXPLORATORY DATA ANALYSIS**



# **Sanity Checks**

|                         |     | df.nunique()    |       |
|-------------------------|-----|-----------------|-------|
|                         |     | RowNumber       | 10000 |
|                         |     | CustomerId      | 10000 |
|                         |     | Surname         | 2932  |
|                         |     | CreditScore     | 460   |
|                         |     | Geography       | 3     |
|                         | 1 / | Gender          | 2     |
| Could be                |     | Age             | 70    |
| bucketed for            | 4   | Tenure          | 11    |
| enhanced<br>readability | × × | Balance         | 6382  |
| Teadability             |     | NumOfProducts   | 4     |
|                         |     | HasCrCard       | 2     |
|                         |     | IsActiveMember  | 2     |
|                         |     | EstimatedSalary | 9999  |
|                         |     | Exited          | 2     |
|                         |     | dtype: int64    |       |
|                         |     |                 |       |

| df.isnull().sum() |   |   |               |
|-------------------|---|---|---------------|
| RowNumber         | 0 |   |               |
| CustomerId        | 0 |   |               |
| Surname           | 0 |   |               |
| CreditScore       | 0 |   |               |
| Geography         | 0 |   |               |
| Gender            | 0 |   |               |
| Age               | 0 |   |               |
| Tenure            | 0 |   | Clean Dataset |
| Balance           | 0 | - | Clean Dalasel |
| NumOfProducts     | 0 |   |               |
| HasCrCard         | 0 |   |               |
| IsActiveMember    | 0 |   |               |
| EstimatedSalary   | 0 |   |               |
| Exited            | 0 |   |               |
| dtype: int64      |   |   |               |
|                   |   |   |               |



### **Feature Creation**

These features would be more meaningful for models like Naïve Bayes that solely rely on categorical inputs

#### **Credit Score Buckets**



Ref: https://www.experian.com

#### **Age Buckets**

| 18 to 25 years | Young Adult      |
|----------------|------------------|
| 26 to 35 years | Adult            |
| 36 to 68 years | Middle Age       |
| 69 to 80 years | Early Retirement |
| Over 81 years  | Old              |

#### % of Credit Card Ownership



#### **Balance Bucket**



#### **Salary Bucket**





#### **Correlation Matrix**



From the correlation matrix, we can see that none of the variables have strong linear relations with the 'exited' variable except age



## **Numerical Variable Summary**

Predictors like Credit Score & Age have outliers which would be handled inherently by the models



## **Categorical Variable Summary**









## **Categorical Variables Contd.**



It's interesting that the lowest churn is when the customer relationship is 7 years old

# **K-NEAREST NEIGHBORS**



## **Picking the Best Features for KNN**



As shown earlier, the lowest correlations with Exited, the y variable, were 'HasCrCard', 'EstimatedSalary', and 'Tenure'. Dropping these improved the performance of the model.



## **Picking optimal K for KNN**







## **KNN Confusion Matrix**



# **LOGISTIC REGRESSION**



## **Logistic Regression**

Simple Linear Logistic Model shows the variable importance as follows:

- Age is a very important Feature Age[Middle Aged] seemed to affect the attrition the most (i.e) middle aged customers tend to exit more.
- Credit Score has a negative weight Lesser the credit score, higher the probability of customer exit.
- Germany is the location with most exits
- Active members don't exit as much as inactive members.





## **Logistic Regression**



True Positive Rate/Sensitivity = 3.67% False Positive Rate = 20.51% Specificity = 98.6%



## **Logistic Regression - Lasso**





- True Positive Rate/Sensitivity = 19.14%
- False Positive Rate = 2.35%
- Specificity = 97.64%
- Accuracy = 81.23%



- Proportion of Credit Cards/Total Number of Products Availed has an impact on the Churn
- Apart from Age and Location, Gender and IsActive Features seem to impact more in this model.

# **NAIVE BAYES**





## **Naive Bayes Overview**



|                                  | Positive class | Negative class | Positive_Negative_Ratio | Importance |
|----------------------------------|----------------|----------------|-------------------------|------------|
| Q("pct_cc_0.25")                 | 0.002357       | 0.000020       | 118.677615              | 4.776411   |
| Q("pct_cc_0.33333333333333333")  | 0.008800       | 0.000556       | 15.823682               | 2.761508   |
| Q("pct_cc_0.5")                  | 0.013593       | 0.042366       | 0.320851                | 1.136780   |
| Q("Age_Bucket_Young Adult")      | 0.002671       | 0.007587       | 0.352098                | 1.043847   |
| Q("Age_Bucket_Adult")            | 0.016657       | 0.044809       | 0.371744                | 0.989549   |
| Q("Age_Bucket_Early Retirement") | 0.000943       | 0.002185       | 0.431555                | 0.840360   |
| Q("Geography_Germany")           | 0.044630       | 0.024073       | 1.853930                | 0.617308   |
| Q("Age_Bucket_Old")              | 0.000079       | 0.000139       | 0.565131                | 0.570697   |
| Q("Age_Bucket_Middle Age")       | 0.090831       | 0.056409       | 1.610227                | 0.476375   |
| Q("IsActiveMember_1")            | 0.038894       | 0.061036       | 0.637221                | 0.450638   |

Key Predictors





## **Top Predictors for Churn=1**

|                                   | Positive class | Negative class | Positive_Negative_Ratio | Importance |
|-----------------------------------|----------------|----------------|-------------------------|------------|
| Q("pct_cc_0.25")                  | 0.002357       | 0.000020       | 118.677615              | 4.776411   |
| Q("pct_cc_0.333333333333333333)   | 0.008800       | 0.000556       | 15.823682               | 2.761508   |
| Q("Geography_Germany")            | 0.044630       | 0.024073       | 1.853930                | 0.617308   |
| Q("Age_Bucket_Middle Age")        | 0.090831       | 0.056409       | 1.610227                | 0.476375   |
| Q("pct_cc_1.0")                   | 0.053115       | 0.035990       | 1.475829                | 0.389220   |
| Q("IsActiveMember_0")             | 0.072052       | 0.050033       | 1.440087                | 0.364704   |
| Q("Gender_Female")                | 0.063330       | 0.047808       | 1.324666                | 0.281161   |
| Q("Balance_Bucket_Above Average") | 0.078337       | 0.062745       | 1.248513                | 0.221953   |
| Q("Tenure_10")                    | 0.006364       | 0.005224       | 1.218363                | 0.197508   |

Owning 3-4 products but with only one credit card is a red flag





## **Top Predictors for Churn=0**

|                                   | Positive class | Negative class | Positive_Negative_Ratio | Importance |
|-----------------------------------|----------------|----------------|-------------------------|------------|
| Q("pct_cc_0.5")                   | 0.013593       | 0.042366       | 0.320851                | 1.136780   |
| Q("Age_Bucket_Young Adult")       | 0.002671       | 0.007587       | 0.352098                | 1.043847   |
| Q("Age_Bucket_Adult")             | 0.016657       | 0.044809       | 0.371744                | 0.989549   |
| Q("Age_Bucket_Early Retirement")  | 0.000943       | 0.002185       | 0.431555                | 0.840360   |
| Q("Age_Bucket_Old")               | 0.000079       | 0.000139       | 0.565131                | 0.570697   |
| Q("IsActiveMember_1")             | 0.038894       | 0.061036       | 0.637221                | 0.450638   |
| Q("Balance_Bucket_Below Average") | 0.032608       | 0.048325       | 0.674767                | 0.393389   |

The more serious users (possibly students or young working professionals) are the ones with 2 products of which 1 is a credit card.





## **DECISION TREES AND ENSEMBLE METHODS**





# Variation of Testing Accuracy with Variation in Number of Trees (from 5 to 400)

#### **Random Forest Classifier**



#### 10 trees seem to be enough for the Random Forest Classifier

#### **Gradient Boosting Classifier**



50 trees seem to be enough for the Gradient Boosting Classifier





# Variation of Testing Accuracy with Variation in Depth of Trees (from 1 to 10)

#### **Random Forest Classifier**



Trees of depth 8 seem to be enough for the Random Forest classifier

#### **Gradient Boosting Classifier**



Trees of depth 2 seem to be enough for the Gradient Boosting classifier



# Optimal Parameters for Number and Depth of Trees and Training/Test Accuracy

**Baseline Accuracy = 79.6%** 

| Model             | Number of<br>Trees | Depth of<br>Tree | Training<br>Accuracy | Test<br>Accuracy |
|-------------------|--------------------|------------------|----------------------|------------------|
| Decision Tree     | -                  | 7                | 87.11%               | 85.90%           |
| Bagging           | 10                 | 8                | 88.47%               | 85.93%           |
| Random Forest     | 10                 | 2                | 87.61%               | 85.93%           |
| Gradient Boosting | 50                 | 2                | 86.23%               | 86.20%           |

**Gradient Boosting** gives the best test accuracy across all models (86.2%)



## Variable Importance (Gradient Boosting)



Age and NumOfProducts are observed to be the most important variables when it comes to feature importance.

EstimatedSalary, HasCrCard and Tenure do not play a major role in determining churned customers



### **Model Selection**

#### **Baseline Accuracy = 79.6%**

Gradient Boosting fetches the best results for test accuracy

| Model               | Test Accuracy |  |  |
|---------------------|---------------|--|--|
| KNN                 | 80.40%        |  |  |
| Logistic Regression | 78.67%        |  |  |
| Naive Bayes         | 82.00%        |  |  |
| Decision Tree       | 85.90%        |  |  |
| Bagging             | 85.93%        |  |  |
| Random Forest       | 85.93%        |  |  |
| Gradient Boosting   | 86.20%        |  |  |

# **INSIGHTS & RECOMMENDATIONS**



### **Recommendations**

The variables that are most meaningful across models are Number of Products and Age.



#### **Caveats**

- While models are good indicators of relative trends, hard to define causal relationships A/B tests required
- The data size is specific to 1 bank and 3 regions higher granularity (product level) + big data = greater generalisation

# **THANK YOU**

# **APPENDIX**



## **Categorical Variables**



## **Logistic Regression with Threshold Optimization**



True Positive Rate/Sensitivity = 66.67% False Positive Rate = 35.10% Specificity = 64.9%

- The optimal threshold achieved is 0.20.
   (Maximizing the difference between True Positive and False Positive Rate)
- If the probability given by the model >
   0.2055 then we classify it as Exit. By reducing the threshold so low, we increase our TPR but our specificity decreases. We may lose precision ultimately.