

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : C12N 15/31, 15/74, 15/62, 15/10, 9/16, 1/19, 1/21, C07K 14/315, 16/12, A61K 31/70, 39/09, G01N 33/53, 33/68, C12Q 1/68		A2	(11) International Publication Number: WO 00/06736 (43) International Publication Date: 10 February 2000 (10.02.00)
(21) International Application Number: PCT/GB99/02444 (22) International Filing Date: 27 July 1999 (27.07.99)		(81) Designated States: CA, CN, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 9816335.5 27 July 1998 (27.07.98) 60/125,163 19 March 1999 (19.03.99)		GB US	Published <i>Without international search report and to be republished upon receipt of that report.</i>
(71) Applicant (for all designated States except US): MICROBIAL TECHNICS LIMITED [GB/GB]; 20 Trumpington Street, Cambridge CB2 1QA (GB).			
(72) Inventors; and (75) Inventors/Applicants (for US only): LE PAGE, Richard, William, Falla [GB/GB]; University of Cambridge, Dept. of Pathology, Tennis Court Road, Cambridge CB2 1QP (GB). WELLS, Jeremy, Mark [GB/GB]; Institute of Food Re- search, Norwich Laboratory, Norwich Research Park, Col- ney, Norwich NR4 7UA (GB). HANNIFFY, Sean, Bosco [IE/GB]; University of Cambridge, Dept. of Pathology, Ten- nis Court Road, Cambridge CB2 1QP (GB).			
(74) Agents: CHAPMAN, Paul, William et al.; Kilburn & Strode, 20 Red Lion Street, London WC1R 4PJ (GB).			
(54) Title: NUCLEIC ACIDS AND PROTEINS FROM GROUP B STREPTOCOCCUS			
(57) Abstract Novel protein antigens from Group B <i>Streptococcus</i> are described, together with nucleic acid sequences encoding them. Their use in vaccines and screening methods is also described.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon	KR	Republic of Korea	PL	Poland		
CN	China	KZ	Kazakhstan	PT	Portugal		
CU	Cuba	LC	Saint Lucia	RO	Romania		
CZ	Czech Republic	LI	Liechtenstein	RU	Russian Federation		
DE	Germany	LK	Sri Lanka	SD	Sudan		
DK	Denmark	LR	Liberia	SE	Sweden		
EE	Estonia			SG	Singapore		

NUCLEIC ACIDS AND PROTEINS FROM GROUP B STREPTOCOCCUS

The present invention relates to proteins derived from *Streptococcus agalactiae*, nucleic acid molecules encoding such proteins, and the use of the proteins as antigens and/or immunogens and in detection/diagnosis. It also relates to a method for the rapid 5 screening of bacterial genomes to isolate and characterise bacterial cell envelope associated or secreted proteins.

The *Group B Streptococcus* (GBS) (*Streptococcus agalactiae*) is an encapsulated bacterium which emerged in the 1970s as a major pathogen of humans causing sepsis 10 and meningitis in neonates as well as adults. The incidence of early onset neonatal infection during the first 5 days of life varies from 0.7 to 3.7 per 1000 live births and causes mortality in about 20% of cases. Between 25-50% of neonates surviving early onset infections frequently suffer neurological sequelae. Late onset neonatal infections occur from 6 days to three months of age at a rate of about 0.5 - 1.0 per 1000 live 15 births.

There is an established association between the colonisation of the maternal genetic tract by GBS at the time of birth and the risk of neonatal sepsis. In humans it has been established that the rectum may act as a reservoir for GBS. Susceptibility in the 20 neonate is correlated with the low concentration or absence of IgG antibodies to the capsular polysaccharides found on GBS causing human disease. In the USA strains isolated from clinical cases usually belong to capsular serotypes Ia, Ib, II, III although serotype V may be of increasing significance. Type VIII GBS is the major cause of neonatal sepsis in Japan.

25

A possible means of prevention involves intra or postpartum administration of antibiotics to the mother but there are concerns that this might lead to the emergence of resistant organisms and in some cases allergic reactions. Vaccination of the adolescent females to induce long lasting maternally derived immunity is one of the 30 most promising approaches to prevent GBS infections in neonates. The capsular

polysaccharide antigens of these organisms have attracted most attention as with regard to vaccine development. Studies in healthy adult volunteers have shown that serotype Ia, II and III polysaccharides are non-toxic and immunogenic in approximately 65%, 95% and 70% of non-immune adults respectively. One of the problems with using capsule antigens as vaccines is that the response rates vary according to pre-immunisation status and the polysaccharide antigen and not all vaccinees produce adequate levels of IgG antibody as indicated in vaccination studies with GBS polysaccharides in human volunteers.

Some people do not respond despite repeated stimuli. These properties are due to the T-independent nature of polysaccharide antigens. One strategy to enhance the immunogenicity of these vaccines is to enhance the T cell dependent properties of polysaccharides by conjugating them to a protein. The use of polysaccharide conjugates looks promising but there are still unresolved questions concerning the nature of the carrier protein. A conjugate vaccine against GBS would require at least 4 different conjugates to be prepared adding to the cost of a vaccine.

Recent evidence also suggests that bacterial surface proteins may be useful to confer immunity. A protein called Rib which is found on most serotype III strains but rarely on serotypes Ia, Ib or II confers immunity to challenge with Rib expressing GBS in animal models (Stalhammar-Carlemalm *et al.*, *Journal of Experimental Medicine* 177:1593-1603 (1993)). Another surface protein of interest as a component of a vaccine is the alpha antigen of the C proteins which protected vaccinated mice against lethal infection with strains expressing alpha protein. The amount of antigen expressed by GBS strains varies markedly.

Approaches to vaccination against GBS infections which rely on the use of capsular polysaccharides have the disadvantage that response rates are likely to vary considerably according to pre-immunisation status and the particular type of polysaccharide antigen used. Results of trials in human volunteers have indicated that

response rates may only be around 65% for some of the key capsule antigens (Larsson *et al.*, *Infection and Immunity* **64**:3518-3523 (1996)). It is also not clear whether all individuals responding to the vaccine would have adequate levels of polysaccharide specific IgG which can cross the placenta and afford immunity to neonates. By 5 conjugating a protein carrier to the polysaccharide antigen it may be possible to convert them to T-cell dependent antigens and enhance their immunogenicity.

Preliminary studies with GBS type III polysaccharide-tetanus toxoid conjugate have been encouraging (Baker *et al.*, *Reviews of Infectious Diseases* **7**:458-467 (1985),
10 Baker *et al.*, *The New England Journal of Medicine* **319**:1180-1185 (1988), Paoletti *et al.*, *Infection and Immunity* **64**:677-679 (1996), Paoletti *et al.*, *Infection and Immunity* **62**:3236-3243 (1994)) but in developed countries the use of tetanus may be disadvantageous since most adults will have been immunised against tetanus within
15 the past five years. Additional boosters with tetanus toxoid may cause adverse reactions (Boyer., *Current Opinions in Pediatrics* **7**:13-18 (1995)). The polysaccharide conjugate vaccines have the disadvantage of being costly to produce and manufacture in comparison with many other kinds of vaccines. There is also the possible risk of problems caused by the cross reactivity between GBS polysaccharides and sialic acid-containing human glycoproteins.
20

An alternative to polysaccharides as antigens is the use of protein antigens derived from GBS. Recent evidence suggest that the GBS surface associated proteins Rib and alpha C protein may be used to confer immunity to GBS infections in experimental model systems (Stalhammar-Carlemalm *et al.*, (1993) [*supra*], Larsson *et al.*, (1996)
25 [*supra*]). However these two proteins are not conserved in all serotypes of GBS which cause disease in humans. Assuming that these antigens would be immunogenic and elicit protective level responses in humans they would not confer protection against all infections as 10% of infectious *Group B streptococci* do not express Rib or C protein alpha.
30

This invention seeks to overcome the problem of vaccination against GBS by using a novel screening method specifically designed to identify those *Group B Streptococcus* genes encoding bacterial cell surface associated or secreted proteins (antigens). The proteins expressed by these genes may be immunogenic, and therefore may be useful
5 in the prevention and treatment of *Group B Streptococcus* infection. For the purposes of this application, the term immunogenic means that these proteins will elicit a protective immune response within a subject. Using this novel screening method a number of genes encoding novel *Group B Streptococcus* proteins have been identified.

10 Thus in a first aspect, the present invention provides a *Group B Streptococcus* protein, having a sequence selected from those shown in figure 1, or fragments or derivatives thereof.

15 It will be apparent to the skilled person that proteins and polypeptides included within this group may be cell surface receptors, adhesion molecules, transport proteins, membrane structural proteins, and/or signalling molecules.

20 Alterations in the amino acid sequence of a protein can occur which do not affect the function of a protein. These include amino acid deletions, insertions and substitutions and can result from alternative splicing and/or the presence of multiple translation start sites and stop sites. Polymorphisms may arise as a result of the infidelity of the translation process. Thus changes in amino acid sequence may be tolerated which do not affect the proteins function.

25 Thus, the present invention includes derivatives or variants of the proteins, polypeptides, and peptides of the present invention which show at least 50% identity to the proteins, polypeptides and peptides described herein. Preferably the degree of sequence identity is at least 60% and preferably it is above 75%. More preferably still is it above 80%, 90% or even 95%.

30

The term identity can be used to describe the similarity between two polypeptide sequences. A software package well known in the art for carrying out this procedure is the CLUSTAL program. It compares the amino acid sequences of two polypeptides and finds the optimal alignment by inserting spaces in either sequence as appropriate.

5 The amino acid identity or similarity (identity plus conservation of amino acid type) for an optimal alignment can also be calculated using a software package such as BLASTx. This program aligns the largest stretch of similar sequence and assigns a value to the fit. For any one pattern comparison several regions of similarity may be found, each having a different score. One skilled in the art will appreciate that two
10 polypeptides of different lengths may be compared over the entire length of the longer fragment. Alternatively small regions may be compared. Normally sequences of the same length are compared for a useful comparison to be made.

15 Manipulation of the DNA encoding the protein is a particularly powerful technique for both modifying proteins and for generating large quantities of protein for purification purposes. This may involve the use of PCR techniques to amplify a desired nucleic acid sequence. Thus the sequence data provided herein can be used to design primers for use in PCR so that a desired sequence can be targeted and then amplified to a high degree.

20 Typically primers will be at least five nucleotides long and will generally be at least ten nucleotides long (e.g. fifteen to twenty-five nucleotides long). In some cases primers of at least thirty or at least thirty-five nucleotides in length may be used.

25 As a further alternative chemical synthesis may be used. This may be automated. Relatively short sequences may be chemically synthesised and ligated together to provide a longer sequence.

Thus in a further aspect, the present invention provides , a nucleic acid molecule comprising or consisting of a sequence which is:

- (i) any of the DNA sequences set out in figure 1 herein or their RNA equivalents;
- (ii) a sequence which is complementary to any of the sequences of (i);
- (iii) a sequence which codes for the same protein or polypeptide, as those sequences of (i) or (ii);
- 5 (iv) a sequence which shows substantial identity with any of those of (i), (ii) and (iii); or
- (v) a sequence which codes for a derivative or fragment of a nucleic acid molecule shown in figure 1.

10 The term identity can also be used to describe the similarity between two individual DNA sequences. The 'bestfit' program (Smith and Waterman, *Advances in applied Mathematics*, 482-489 (1981)) is one example of a type of computer software used to find the best segment of similarity between two nucleic acid sequences, whilst the GAP program enables sequences to be aligned along their whole length and finds the
15 optimal alignment by inserting spaces in either sequence as appropriate.

The term 'RNA equivalent' when used above indicates that a given RNA molecule has a sequence which is complementary to that of a given DNA molecule, allowing for the fact that in RNA 'U' replaces 'T' in the genetic code. The nucleic acid molecule may
20 be in isolated or recombinant form.

The nucleic acid molecule may be in an isolated or recombinant form. DNA constructs can readily be generated using methods well known in the art. These techniques are disclosed, for example in J. Sambrook *et al*, *Molecular Cloning 2nd Edition*, Cold
25 Spring Harbour Laboratory Press (1989). Modifications of DNA constructs and the proteins expressed such as the addition of promoters, enhancers, signal sequences, leader sequences, translation start and stop signals and DNA stability controlling regions, or the addition of fusion partners may then be facilitated.

Normally the DNA construct will be inserted into a vector which may be of phage or plasmid origin. Expression of the protein is achieved by the transformation or transfection of the vector into a host cell which may be of eukaryotic or prokaryotic origin. Such vectors and suitable host cells form yet further aspects of the present invention.

The *Group B Streptococcus* proteins (antigens) described herein can additionally be used to raise antibodies, or to generate affibodies. These can be used to detect *Group B Streptococcus*.

10

Thus in a further aspect the present invention provides, an antibody, affibody, or a derivative thereof which binds to any one or more of the proteins, polypeptides, peptides, fragments or derivatives thereof, as described herein.

15

Antibodies within the scope of the present invention may be monoclonal or polyclonal. Polyclonal antibodies can be raised by stimulating their production in a suitable animal host (e.g. a mouse, rat, guinea pig, rabbit, sheep, goat or monkey) when a protein as described herein, or a homologue, derivative or fragment thereof, is injected into the animal. If desired, an adjuvant may be administered together with the protein. Well-known adjuvants include Freund's adjuvant (complete and incomplete) and aluminium hydroxide. The antibodies can then be purified by virtue of their binding to a protein as described herein.

20

Monoclonal antibodies can be produced from hybridomas. These can be formed by fusing myeloma cells and spleen cells which produce the desired antibody in order to form an immortal cell line. Thus the well-known Kohler & Milstein technique (*Nature* 256 (1975)) or subsequent variations upon this technique can be used.

25

Techniques for producing monoclonal and polyclonal antibodies that bind to a particular polypeptide/protein are now well developed in the art. They are discussed in standard

30

immunology textbooks, for example in Roitt *et al*, *Immunology* second edition (1989), Churchill Livingstone, London.

In addition to whole antibodies, the present invention includes derivatives thereof which
5 are capable of binding to proteins etc as described herein. Thus the present invention includes antibody fragments and synthetic constructs. Examples of antibody fragments and synthetic constructs are given by Dougall *et al* in *Tibtech* **12** 372-379 (September 1994).

10 Antibody fragments include, for example, Fab, F(ab')₂ and Fv fragments. Fab fragments (These are discussed in Roitt *et al* [*supra*]). Fv fragments can be modified to produce a synthetic construct known as a single chain Fv (scFv) molecule. This includes a peptide linker covalently joining V_h and V_l regions, which contributes to the stability of the molecule. Other synthetic constructs that can be used include CDR peptides. These are
15 synthetic peptides comprising antigen-binding determinants. Peptide mimetics may also be used. These molecules are usually conformationally restricted organic rings that mimic the structure of a CDR loop and that include antigen-interactive side chains.

Synthetic constructs include chimaeric molecules. Thus, for example, humanised (or
20 primatised) antibodies or derivatives thereof are within the scope of the present invention. An example of a humanised antibody is an antibody having human framework regions, but rodent hypervariable regions. Ways of producing chimaeric antibodies are discussed for example by Morrison *et al* in *PNAS*, **81**, 6851-6855 (1984) and by Takeda *et al* in *Nature*, **314**, 452-454 (1985).

25 Synthetic constructs also include molecules comprising an additional moiety that provides the molecule with some desirable property in addition to antigen binding. For example the moiety may be a label (e.g. a fluorescent or radioactive label). Alternatively, it may be a pharmaceutically active agent.

Affibodies are proteins which are found to bind to target proteins with a low dissociation constant. They are selected from phage display libraries expressing a segment of the target protein of interest (Nord K, Gunneriusson E, Ringdahl J, Stahl S, Uhlen M, Nygren PA, Department of Biochemistry and Biotechnology, Royal Institute of Technology 5 (KTH), Stockholm, Sweden).

In a further aspect the invention provides an immunogenic composition comprising one or more proteins, polypeptides, peptides, fragments or derivatives thereof, or nucleotide sequences described herein. A composition of this sort may be useful in the 10 treatment or prevention of *Group B Streptococcus* infection in subject. In a preferred aspect of the invention the immunogenic composition is a vaccine.

In other aspects the invention provides:

- 15 i) Use of an immunogenic composition as described herein in the preparation of a medicament for the treatment or prophylaxis of *Group B Streptococcus* infection. Preferably the medicament is a vaccine.
- 20 ii) A method of detection of *Group B Streptococcus* which comprises the step of bringing into contact a sample to be tested with at least one antibody, affibody, or a derivative thereof, as described herein.
- 25 iii) A method of detection of *Group B Streptococcus* which comprises the step of bringing into contact a sample to be tested with at least one protein, polypeptide, peptide, fragments or derivatives as described herein.
- 30 iv) A method of detection of *Group B Streptococcus* which comprises the step of bringing into contact a sample to be tested with at least one nucleic acid molecule as described herein.

- v) A kit for the detection of *Group B Streptococcus* comprising at least one antibody, affibody, or derivatives thereof, described herein.
- vi). A kit for the detection of *Group B Streptococcus* comprising at least one *Group B Streptococcus* protein, polypeptide, peptide, fragment or derivative thereof, as described herein.
- 5 vii) A kit for the detection of *Group B Streptococcus* comprising at least one nucleic acid of the invention.

10

As described previously, the novel proteins described herein are identified and isolated using a novel screening method which specifically identifies those *Group B Streptococcus* genes encoding bacterial cell envelope associated or secreted proteins.

15 The information necessary for the secretion/export of proteins has been extensively studied in bacteria. In the majority of cases, export requires a signal peptide positioned at the N-terminus of the precursor protein to target the precursor to translocation sites on the membrane. During or after translocation, the signal peptide is removed by a signal peptidase. The ultimate destination/localisation of the protein, (whether it be 20 secreted extracellularly or anchored to the bacterium's surface, etc) is determined by sequences other than the leader peptide sequence.

Recently, Poquet *et al.* (*J. Bacteriol.* **180**:1904-1912 (1998)) have described a 25 screening vector incorporating the *nuc* gene lacking its own signal leader as a reporter to identify exported proteins in Gram positive bacteria, and have applied it to *L. lactis*. Staphylococcal nuclease is a naturally secreted heat-stable, monomeric enzyme which has been efficiently expressed and secreted in a range of Gram positive bacteria (Shortle., *Gene* **22**:181-189 (1983), Kovacevic *et al.*, *J. Bacteriol.* **162**:521-528 (1985), Miller *et al.*, *J. Bacteriol.* **169**:3508-3514 (1987), Liebl *et al.*, *J. Bacteriol.*

174:1854-1861(1992), Le Loir *et al.*, *J. Bacteriol.* 176:5135-5139 (1994), Poquet *et al.*, 1998 [*supra*]). The screening vector (pFUN) contains the pAM β 1 replicon which functions in a broad host range of Gram-positive bacteria in addition to the ColE1 replicon that promotes replication in *Escherichia coli* and certain other Gram
5 negative bacteria. Unique cloning sites present in the vector can be used to generate transcriptional and translational fusions between cloned genomic DNA fragments and the open reading frame of the truncated *nuc* gene devoid of its own signal secretion leader. The *nuc* gene makes an ideal reporter gene because the secretion of nuclease can readily be detected using a simple and sensitive plate test: Recombinant colonies
10 secreting the nuclease develop a pink halo whereas control colonies remain white (Shortle, 1983 [*supra*], Le Loir *et al.*, 1994 [*supra*]).

A direct screen to identify and isolate DNA encoding bacterial cell envelope associated or secreted proteins (antigens).in pathogenic bacteria has been developed by
15 the present inventors which utilises a vector-system (pTREP1 expression vector) in *Lactococcus lactis* that specifically detects DNA sequences which are adjacent to, and associated with DNA encoding surface proteins from *Group B Streptococcus*. The screening vector also incorporates the *nuc* gene encoding the *Staphylococcal* nuclease as a reporter gene.
20

Only the part of the *nuc* gene encoding the mature nuclease protein (minus its signal peptide sequence) is cloned into the pTREP1 expression vector in *L. lactis*. In this form, the *nuc*-encoded nuclease cannot be secreted even when expressed intracellularly. The reporter vector is then randomly combined with appropriately
25 digested genomic DNA from *Group B Streptococcus*, cloned into *L. lactis* and used as a screening system for sequences permitting the export of nuclease. In this way gene/partial gene sequences encoding exported proteins from *Group B Streptococcus* are isolated. Once a partial gene sequence is obtained, full length sequences encoding exported proteins can readily be obtained using techniques well known in the art.

In possessing a promoter, the pTREP1-*nuc* vectors differ from the pFUN vector described by Poquet *et al.* (1998) [*supra*], which was used to identify *L. lactis* exported proteins by screening directly for *Nuc* activity directly in *L. lactis*. As the 5 pFUN vector does not contain a promoter upstream of the *nuc* open reading frame the cloned genomic DNA fragment must also provide the signals for transcription in addition to those elements required for translation initiation and secretion of *Nuc*. This limitation may prevent the isolation of genes that are distant from a promoter for example genes which are within polycistronic operons. Additionally there can be no 10 guarantee that promoters derived from other species of bacteria will be recognised and functional in *L. lactis*. Certain promoters may be under stringent regulation in the natural host but not in *L. lactis*. In contrast, the presence of the P1 promoter in the pTREP1-*nuc* series of vectors ensures that promoterless DNA fragments (or DNA 15 fragments containing promoter sequences not active in *L. lactis*) may still be transcribed. Thus yet another advantage of this invention is that genes missed in other screening methods may be identified.

Hence in a further aspect the present invention provides a method of screening for 20 DNA encoding bacterial cell wall associated or surface antigens in gram positive bacteria comprising the steps of:

- combining a reporter vector including the nucleotide sequence encoding the mature from of the staphylcoccus nuclease gene and an upstream promoter region with DNA from a gram positive bacteria.
- transforming the resultant vector into *Lactococcus lactis* cells.
- assaying for the secretion of *staphlycoccus* nuclease protein in the 25 transformed cells.

Preferably, the reporter vector is one of the pTREP1-*nuc* vectors shown in figure 4.

In another aspect, the present invention provides a vector as shown in figure 4 for use in screening for DNA encoding exported or surface antigens in gram positive bacteria. Examples of gram positive bacteria which may be screened include *Group B Streptococcus*, *Streptococcus pneumoniae*, *Staphylococcus aureus* or pathogenic 5 *Group A Streptococci*.

Given that the inventors have identified a group of important proteins, such proteins are potential targets for anti-microbial therapy. It is necessary, however, to determine whether each individual protein is essential for the organism's viability.

10 Thus, the present invention also provides a method of determining whether a protein or polypeptide as described herein represents a potential anti-microbial target which comprises inactivating said protein and determining whether *Group B Streptococcus* is still viable.

15 A suitable method for inactivating the protein is to effect selected gene knockouts, ie prevent expression of the protein and determine whether this results in a lethal change. Suitable methods for carrying out such gene knockouts are described in Li *et al* , *P.N.A.S.*, **94**:13251-13256 (1997) and Kolkman *et al*

20 In a final aspect the present invention provides the use of an agent capable of antagonising, inhibiting or otherwise interfering with the function or expression of a protein or polypeptide of the invention in the manufacture of a medicament for use in the treatment or prophylaxis of *Group B Streptococcus* infection.

25 The invention will now be described by means of the following example which should not in any way be construed as limiting. The examples refer to the figures in which

Fig 1: (A) Shows a number of full length nucleotide sequences encoding antigenic *Group B Streptococcus* proteins. (B) Shows the corresponding amino acid sequences.

5 Fig 2: Shows a number of oligonucleotide primers used in the screening process

nucS1 primer designed to amplify a mature form of the nuc A gene

nucS2- primer designed to amplify a mature form of the nuc A gene.

nucS3 primer designed to amplify a mature form of the nuc A gene

10 **nucR** primer designed to amplify a mature form of the nuc A gene

nucseq primer designed to sequence DNA cloned into the pTREP-Nuc vector

pTREPF nucleic acid sequence containing recognition site for ECORV. Used for cloning fragments into pTREX7.

15 **pTREPR** nucleic acid sequence containing recognition site for BAMH1. Used for cloning fragments into pTREX7.

PUCF forward sequencing primer, enables direct sequencing of cloned DNA fragments.

VR example of gene specific primer used to obtain further antigen DNA sequence by the method of DNA walking.

20 **V1** example of gene specific primer used to obtain further antigen DNA sequence by the method of DNA walking.

V2 example of gene specific primer used to obtain further antigen DNA sequence by the method of DNA walking.

25

Fig 3: (i) Schematic presentation of the nucleotide sequence of the unique gene cloning site immediately upstream of the mature *nuc* gene in pTREP1-*nuc1*, pTREP1-*nuc2* and pTREP1-*nuc3*. Each of the pTREP-*nuc* vectors contain an

EcoRV (a SmaI site in pTREP1-*nuc*2) cleavage site which allows cloning of genomic DNA fragments in 3 different frames with respect to the mature *nuc* gene.

(ii) A physical and genetic summary map of the pTREP1-*nuc* vectors. The expression cassette incorporating *nuc*, the macrolides, lincosamides and streptogramin B (MLS) resistance determinant, and the replicon (rep) *Ori-pAMβ1* are depicted (not drawn to scale).

(iii) Schematic presentation of the expression cassette showing the various sequence elements involved in gene expression and location of unique restriction endonuclease sites (not drawn to scale).

Fig 4: Shows the results of various DNA vaccine trials;

Fig 5: Shows the results of a second group of DNA vaccine trials;

Figs 6-11: Show various Southern Blot analyses of different Group B streptococcus strains.

Example 1

Thus far more than 100 gene/partial gene sequences putatively encoding exported proteins in *S. agalactiae* have been identified using the nuclease screening system of the invention. These have been further analysed to remove artifacts. The nucleotide sequences of genes identified using the screening system has been characterised using a number of parameters described below. All of these sequences are novel in that they have not been described previously.

1. All putative surface proteins are analysed for leader/signal peptide sequences. Bacterial signal peptide sequences share a common design. They are characterised by a short positively charged N-terminus (N region) immediately preceding a stretch of hydrophobic residues (central portion-h region) followed by a

more polar C-terminal portion which contains the cleavage site (c-region). Computer software is used to perform hydropathy profiling of putative proteins (Marcks, *Nuc. Acid. Res.*, **16**:1829-1836 (1988)) which is used to identify the distinctive hydrophobic portion (h-region) typical of leader peptide sequences. In addition, the presence/absence of a potential ribosomal binding site (Shine-Dalgarno sequence required for translation) is also noted.

5 2. All putative surface protein sequences are used to search the OWL sequence database which includes a translation of the GENBANK and SWISSPROT database.. This allows identification of similar sequences which may have been previously characterised not only at the sequence level but at a functional level. It may also provide information indicating that these proteins are indeed surface related and not artifacts.

10 3. Putative *S. agalactiae* surface proteins are also be assessed for their novelty. Some of the identified proteins may or may not possess a typical leader peptide sequence and may not show homology with any DNA/protein sequences in the database. Indeed these proteins may indicate the primary advantage of our screening method, i.e. isolating atypical surface-related proteins, which would have been missed in all previously described screening protocols.

15 20 The construction of three reporter vectors and their use in *L. lactis* to identify and isolate genomic DNA fragments from pathogenic bacteria encoding secreted or surface associated proteins is now described.

25 **Construction of the pTREP1-nuc series of reporter vectors**

(a) **Construction of expression plasmid pTREP1**

30 The pTREP1 plasmid is a high-copy number (40-80 per cell) theta-replicating gram positive plasmid, which is a derivative of the pTREX plasmid which is itself a derivative of the the previously published pIL253 plasmid. pIL253 incorporates the

broad Gram-positive host range replicon of pAM β 1 (Simon and Chopin, 1988) and is non-mobilisable by the *L lactis* sex-factor. pIL253 also lacks the *tra* function which is necessary for transfer or efficient mobilisation by conjugative parent plasmids exemplified by pIL501. The Enterococcal pAM β 1 replicon has previously been transferred to various species including *Streptococcus*, *Lactobacillus* and *Bacillus* species as well as *Clostridium acetobutylicum*, (LeBlanc *et al.*, *Proceedings of the National Academy of Science USA* 75:3484-3487 (1978)) indicating the potential broad host range utility. The pTREP1 plasmid represents a constitutive transcription vector.

10

The pTREX vector was constructed as follows. An artificial DNA fragment containing a putative RNA stabilising sequence, a translation initiation region (TIR), a multiple cloning site for insertion of the target genes and a transcription terminator was created by annealing 2 complementary oligonucleotides and extending with Tfl DNA polymerase. The sense and anti-sense oligonucleotides contained the recognition sites for NheI and BamHI at their 5' ends respectively to facilitate cloning. This fragment was cloned between the XbaI and BamHI sites in pUC19NT7, a derivative of pUC19 which contains the T7 expression cassette from pLET1 (Wells *et al.*, *J. Appl. Bacteriol.* 74:629-636 (1993)) cloned between the EcoRI and HindIII sites. The resulting construct was designated pUCLEX. The complete expression cassette of pUCLEX was then removed by cutting with HindIII and blunting followed by cutting with EcoRI before cloning into EcoRI and SacI (blunted) sites of pIL253 to generate the vector pTREX (Wells and Schofield, *In Current advances in metabolism, genetics and applications-NATO ASI Series. H* 98:37-62. (1996)). The putative RNA stabilising sequence and TIR are derived from the *Escherichia coli* T7 bacteriophage sequence and modified at one nucleotide position to enhance the complementarity of the Shine Dalgarno (SD) motif to the ribosomal 16s RNA of *Lactococcus lactis* (Schofield *et al.* pers. coms. University of Cambridge Dept. Pathology.).

A *Lactococcus lactis* MG1363 chromosomal DNA fragment exhibiting promoter activity which was subsequently designated P7 was cloned between the EcoRI and BglII sites present in the expression cassette, creating pTREX7. This active promoter region had been previously isolated using the promoter probe vector pSB292
5 (Waterfield *et al.*, *Gene* **165**:9-15 (1995)). The promoter fragment was amplified by PCR using the Vent DNA polymerase according to the manufacturer.

The pTREP1 vector was then constructed as follows. An artificial DNA fragment which included a transcription terminator, the forward pUC sequencing primer, a
10 promoter multiple cloning site region and a universal translation stop sequence was created by annealing two overlapping partially complementary synthetic oligonucleotides together and extending with sequenase according to manufacturers instructions. The sense and anti-sense (pTREP_F and pTREP_R) oligonucleotides contained the recognition sites for EcoRV and BamHI at their 5' ends respectively to facilitate cloning into pTREX7. The transcription terminator was that of the *Bacillus penicillinase* gene, which has been shown to be effective in *Lactococcus* (Jos *et al.*, *Applied and Environmental Microbiology* **50**:540-542 (1985)). This was considered necessary as expression of target genes in the pTREX vectors was observed to be leaky and is thought to be the result of cryptic promoter activity in the origin region
15 (Schofield *et al.* pers. coms. University of Cambridge Dept. Pathology.). The forward pUC primer sequencing was included to enable direct sequencing of cloned DNA fragments. The translation stop sequence which encodes a stop codon in 3 different frames was included to prevent translational fusions between vector genes and cloned DNA fragments. The pTREX7 vector was first digested with EcoRI and blunted using
20 the 5' - 3' polymerase activity of T4 DNA polymerase (NEB) according to manufacturer's instructions. The EcoRI digested and blunt ended pTREX7 vector was then digested with Bgl II thus removing the P7 promoter. The artificial DNA fragment derived from the annealed synthetic oligonucleotides was then digested with EcoRV
25 and Bam HI and cloned into the EcoRI(blunted)-Bgl II digested pTREX7 vector to

generate pTREP. A *Lactococcus lactis* MG1363 chromosomal promoter designated P1 was then cloned between the EcoRI and BglII sites present in the pTREP expression cassette forming pTREP1. This promoter was also isolated using the promoter probe vector pSB292 and characterised by Waterfield *et al.*, (1995) [*supra*]. The P1 promoter fragment was originally amplified by PCR using vent DNA polymerase according to manufacturers instructions and cloned into the pTREX as an EcoRI-BglII DNA fragment. The EcoRI-BglII P1 promoter containing fragment was removed from pTREX1 by restriction enzyme digestion and used for cloning into pTREP (Schofield *et al.* pers. coms. University of Cambridge, Dept. Pathology.).

10

(b) PCR amplification of the *S. aureus nuc* gene.

The nucleotide sequence of the *S. aureus nuc* gene (EMBL database accession number V01281) was used to design synthetic oligonucleotide primers for PCR amplification.

15

The primers were designed to amplify the mature form of the *nuc* gene designated *nucA* which is generated by proteolytic cleavage of the N-terminal 19 to 21 amino acids of the secreted propeptide designated Snase B (Shortle, 1983 [*supra*]). Three sense primers (*nucS1*, *nucS2* and *nucS3*, shown in figure 3) were designed, each one having a blunt-ended restriction endonuclease cleavage site for EcoRV or SmaI in a different reading frame with respect to the *nuc* gene. Additionally BglII and BamHI were incorporated at the 5' ends of the sense and anti-sense primers respectively to facilitate cloning into BamHI and BglII cut pTREP1. The sequences of all the primers are given in figure 3. Three *nuc* gene DNA fragments encoding the mature form of the nuclease gene (*NucA*) were amplified by PCR using each of the sense primers combined with the anti-sense primer. The *nuc* gene fragments were amplified by PCR using *S. aureus* genomic DNA template, Vent DNA Polymerase (NEB) and the conditions recommended by the manufacturer. An initial denaturation step at 93°C for 2 min was followed by 30 cycles of denaturation at 93°C for 45 sec, annealing at 50°C for 45 seconds, and extension 73°C for 1 minute and then a final 5 min extension step

20

25

at 73°C. The PCR amplified products were purified using a Wizard clean up column (Promega) to remove unincorporated nucleotides and primers.

(c) Construction of the pTREP1-nuc vectors

5

The purified *nuc* gene fragments described in section b were digested with Bgl II and BamHI using standard conditions and ligated to BamHI and BglII cut and dephosphorylated pTREP1 to generate the pTREP1-*nuc*1, pTREP1-*nuc*2 and pTREP1-*nuc*3 series of reporter vectors. These vectors are described in figure 4.

10 General molecular biology techniques were carried out using the reagents and buffers supplied by the manufacturer or using standard techniques (Sambrook and Maniatis, Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbour (1989)). In each of the pTREP1-*nuc* vectors the expression cassette comprises a transcription terminator, lactococcal promoter P1, unique cloning sites
15 (BglIII, EcoRV or SmaI) followed by the mature form of the *nuc* gene and a second transcription terminator. Note that the sequences required for translation and secretion of the *nuc* gene were deliberately excluded in this construction. Such elements can only be provided by appropriately digested foreign DNA fragments (representing the target bacterium) which can be cloned into the unique restriction sites present
20 immediately upstream of the *nuc* gene.

(d) Screening for secreted proteins in Group B Streptococcus.

Genomic DNA isolated from and *Group B Streptococcus* (*S. agalactiae*) was digested with the restriction enzyme Tru9I. This enzyme which recognises the sequence 5'-
25 TTAA -3' was used because it cuts A/T rich genomes efficiently and can generate random genomic DNA fragments within the preferred size range (usually averaging 0.5 - 1.0 kb). This size range was preferred because there is an increased probability that the P1 promoter can be utilised to transcribe a novel gene sequence. However, the P1 promoter may not be necessary in all cases as it is possible that many Streptococcal
30 promoters are recognised in *L. lactis*. DNA fragments of different size ranges were

purified from partial Tru9I digests of *S. agalactiae* genomic DNA. As the Tru 9I restriction enzyme generates staggered ends the DNA fragments had to be made blunt ended before ligation to the EcoRV or SmaI cut pTREP1-*nuc* vectors. This was achieved by the partial fill-in enzyme reaction using the 5'-3' polymerase activity of Klenow enzyme. Briefly Tru9I digested DNA was dissolved in a solution (usually between 10-20 µl in total) supplemented with T4 DNA ligase buffer (New England Biolabs; NEB) (1X) and 33 µM of each of the required dNTPs, in this case dATP and dTTP. Klenow enzyme was added (1 unit Klenow enzyme (NEB) per µg of DNA) and the reaction incubated at 25°C for 15 minutes. The reaction was stopped by incubating the mix at 75°C for 20 minutes. EcoRV or SmaI digested pTREP-*nuc* plasmid DNA was then added (usually between 200-400 ng). The mix was then supplemented with 400 units of T4 DNA ligase (NEB) and T4 DNA ligase buffer (1X) and incubated overnight at 16°C. The ligation mix was precipitated directly in 100% Ethanol and 1/10 volume of 3M sodium acetate (pH 5.2) and used to transform *L. lactis* MG1363 (Gasson, *J. Bacteriol.* **154**:1-9 (1983)). Alternatively, the gene cloning site of the pTREP-*nuc* vectors also contains a BglII site which can be used to clone for example Sau3AI digested genomic DNA fragments.

L. lactis transformant colonies were grown on brain heart infusion agar and nuclease secreting (*Nuc*⁺) clones were detected by a toluidine blue-DNA-agar overlay (0.05 M Tris pH 9.0, 10 g of agar per litre, 10 g of NaCl per liter, 0.1 mM CaCl₂, 0.03% wt/vol. salmon sperm DNA and 90 mg of Toluidine blue O dye) essentially as described by Shortle, 1983 [*supra*], and Le Loir *et al.*, 1994 [*supra*]). The plates were then incubated at 37°C for up to 2 hours. Nuclease secreting clones develop an easily identifiable pink halo. Plasmid DNA was isolated from *Nuc*⁺ recombinant *L. lactis* clones and DNA inserts were sequenced on one strand using the *NucSeq* sequencing primer described in figure 3, which sequences directly through the DNA insert.

Whilst the example described above related specifically to *Group B Streptococcus*, it will be apparent to one skilled in the art that the same screening technique may be used to detect exported and secreted proteins in other gram positive bacteria, for example *Streptococcus pneumoniae*.

5 **Example 2; Screening Group B Streptococcal derived genes in DNA vaccination experiments.**

pcDNA3.1+ as a DNA vaccine vector

The commercially available pcDNA3.1+ plasmid (Invitrogen), referred to as
10 pcDNA3.1 henceforth, was used as a vector in all DNA immunisation experiments involving gene targets derived using the LEEP system. pcDNA 3.1 is designed for high-level stable and transient expression in mammalian cells and has been used widely and successfully as a host vector to test candidate genes from a variety of pathogens in DNA vaccination experiments (Zhang *et al.*, 1997; Kurar and Splitter,
15 1997; Anderson *et al.*, 1996).

The vector possesses a multiple cloning site which facilitates the cloning of multiple gene targets downstream of the human cytomegalovirus (CMV) immediate-early promoter/enhancer which permits efficient, high-level expression of the target gene in
20 a wide variety of mammalian cells and cell types including both muscle and immune cells. This is important for optimal immune response as it remains unknown as to which cell types are most important in generating a protective response *in vivo*. The plasmid also contains the ColE1 origin of replication which allows convenient high-copy number replication and growth in *E. coli* and the ampicillin resistance gene (B-lactamase) for selection in *E. coli*. In addition pcDNA 3.1 possesses a T7
25 promoter/priming site upstream of the MCS which allows for *in vitro* transcription of a cloned gene in the sense orientation.

30 **Preparation of DNA vaccines**

Oligonucleotide primers were designed for each individual gene of interest derived using the LEEP system. Each gene was examined thoroughly, and where possible, primers were designed such that they targeted that portion of the gene thought to

encode only the mature portion of the protein (**APPENDIX I**). It was hoped that expressing those sequences that encode only the mature portion of a target gene protein, would facilitate its correct folding when expressed in mammalian cells. For example, in the majority of cases primers were designed such that putative N-terminal signal peptide sequences would not be included in the final amplification product to be cloned into the pcDNA3.1 expression vector. The signal peptide directs the polypeptide precursor to the cell membrane via the protein export pathway where it is normally cleaved off by signal peptidase I (or signal peptidase II if a lipoprotein). Hence the signal peptide does not make up any part of the mature protein whether it be displayed on the bacterium's surface or secreted. Where a N-terminal leader peptide sequence was not immediately obvious, primers were designed to target the whole of the gene sequence for cloning and ultimately, expression in pcDNA3.1.

All forward and reverse oligonucleotide primers incorporated appropriate restriction enzyme sites to facilitate cloning into the pcDNA3.1 MCS region. All forward primers were also designed to include the conserved Kozak nucleotide sequence 5'-gccacc-3' immediately upstream of an 'atg' translation initiation codon in frame with the target gene insert. The Kozak sequence facilitates the recognition of initiator sequences by eukaryotic ribosomes. Typically, a forward primer incorporating a BamH1 restriction enzyme site the primer would begin with the sequence 5'-cgggatccgcaccatg-3', followed by a sequence homologous to the 5' end of that part of a gene being amplified. All reverse primers incorporated a Not I restriction enzyme site sequence 5'-ttgcggccgc-3'. All gene-specific forward and reverse primers were designed with compatible melting temperatures to facilitate their amplification.

All gene targets were amplified by PCR from *S. agalactiae* genomic DNA template using Vent DNA polymerase (NEB) or rTth DNA polymerase (PE Applied Biosystems) using conditions recommended by the manufacturer. A typical amplification reaction involved an initial denaturation step at 95°C for 2 minutes followed by 35 cycles of denaturation at 95°C for 30 seconds, annealing at the appropriate melting temperature for 30 seconds, and extension at 72°C for 1 minute (1 minute per kilobase of DNA being amplified). This was followed by a final extension period at 72°C for 10 minutes. All PCR amplified products were extracted once with phenol chloroform (2:1:1) and once with chloroform (1:1) and ethanol precipitated.

Specific DNA fragments were isolated from agarose gels using the QIAquick Gel Extraction Kit (Qiagen). The purified amplification gene DNA fragments were digested with the appropriate restriction enzymes and cloned into the pcDNA3.1 plasmid vector using *E. coli* as a host. Successful cloning and maintenance of genes was confirmed by restriction mapping and by DNA sequencing. Recombinant plasmid DNA was isolated on a large scale (>1.5 mg) using Plasmid Mega Kits (Qiagen).

It was decided to include the *S. agalactiae rib* gene as a positive control in at least one trial of DNA immunisation experiments. Rabbit antiserum against the Rib protein (Stalhammar-Carleman *et al.*, 1993) and highly purified preparations of the Rib protein itself (Larsson *et al.*, 1999; Larsson *et al.*, 1996) have been shown to confer protection against lethal infection with strains expressing the antigen. All serotype III strains have been shown to express the Rib antigen and Southern blot analysis performed in the laboratory has confirmed that *S. agalactiae* serotype III (strain 97/0099) does contain the *rib* gene, hence the *rib* gene as part of a DNA vaccine would represent a potential positive control for all DNA immunisation experiments. Oligonucleotide primers were designed (**Appendix I**) that targeted only the mature portion of the *rib* gene and which included appropriate restriction enzyme sites for cloning into pcDNA3.1. *rib* was amplified using rTth DNA polymerase (PE Applied Biosystems) using conditions recommended by the manufacturer. Conditions for cloning were similar to that described previously.

Preparation of a *S. agalactiae* standard inoculum

Strain validation

S. agalactiae serotype III (strain 97/0099) is a recent clinical isolate derived from the cerebral spinal fluid of a new born baby suffering from meningitis. This haemolytic strain of Group B Streptococcus was epidemiologically tested and validated at the Respiratory and Systemic Infection Laboratory, PHLS Central Public health

laboratory, 61 Collindale Avenue, London NW9 5HT. The strain was subcultured only twice prior to its arrival in the laboratory. Upon its arrival on a agar slope, a sweep of 4-5 colonies was immediately used to inoculate a Todd Hewitt/5% horse blood broth which was incubated overnight statically at 37 °C. 0.5 ml aliquots of this overnight culture were then used to make 20% glycerol stocks of the bacterium for long term

storage at -70 °C. Glyerol stocks were streaked on Todd Hewitt/5% horse blood agar plates to confirm viability.

5 ***In vivo* passaging of Group B Streptococcus**

A frozen culture (described under strain validation) of *S. agalactiae* serotype III (strain 97/0099) was streaked to single colonies on Todd-Hewitt/5% blood agar plates which were incubated overnight at 37°C. A sweep of 4-5 colonies was used to inoculate a Todd Hewitt/5% horse blood broth which was again incubated overnight. A 0.5 ml aliquot from this overnight culture was used to inoculate a 50 ml Todd Hewitt broth (1:100 dilution) which was incubated at 37 °C. 10-fold serial dilutions of the overnight culture were made (since virulence of this strain was unknown) and each were passaged intra-peritoneally (IP) in CBA/ca mice in duplicate. Viable counts were performed on the various inocula used in the passage. Groups of mice were challenged with various concentrations of the pathogen ranging from 10^8 to 10^4 colony forming units (cfu). Mice that developed symptoms were terminally anaesthetized and cardiac punctures were performed (Only mice that had been challenged with the highest doses, i.e. 1×10^8 cfu, developed symptoms). The retrieved unclotted blood was used to inoculate directly a 50ml serum broth (Todd Hewitt/20% inactivated foetal calf serum). The culture was constantly monitored and allowed to grow to late logarithmic phase. The presence of blood in the medium interfered with OD₆₀₀ readings as it was being increasingly lysed with increasing growth of the bacterium, hence the requirement to constantly monitor the culture. Upon reaching late logarithmic phase/early stationary phase, the culture was transferred to a fresh 50 ml tube in order to exclude dead bacterial cells and remaining blood cells which would have sedimented at the bottom of the tube. 0.5 ml aliquots were then transferred to sterile cryovials, frozen in liquid nitrogen and stored at -70 °C. A viable count was carried out on a single standard inoculum aliquot in order to determine bacterial numbers. This was determined to be approximately 5×10^8 cfu per ml.

30 **Intra-peritoneal Challenge and virulence testing of Group B Streptococcus standard inoculum**

To determine if the standard inoculum was suitably virulent for use in a vaccine trial, challenges were carried out using a dose range. Frozen standard inoculum strain

aliquots were allowed to thaw at room temperature. From viable count data the number of cfu per ml was already known for the standard inoculum. Initially, serial dilutions of the standard inoculum were made in Todd Hewitt broth and mice were challenged intra-peritoneally with doses ranging from 1×10^8 to 1×10^4 cfu in a 500 µl volume of Todd Hewitt broth. The survival times of mouse groups injected with different doses of the bacterium were compared. The standard inoculum was determined to be suitably virulent and a dose of 1×10^6 cfu was considered close to optimal for further use in vaccine trials. Further optimisation was carried out by comparing mice challenged with doses ranging between 5×10^5 and 5×10^6 cfu. The optimal dose was estimated to be approximately 2.5×10^6 cfu. This represented a 100% lethal dose and was repeatedly consistent with end-points as determined by survival times being clustered within a narrow time-range. Throughout all these experiments, challenged mice were constantly monitored to clarify symptoms, stages of symptom development as well as calculating survival times.

15

Vaccine trials

Vaccine trials in mice were accomplished by the administration of DNA to 6 week old CBA/ca mice (Harlan, UK). Mice to be vaccinated were divided into groups of six and each group were immunised with recombinant pcDNA3.1 plasmid DNA containing a specific target-gene sequence derived using the LEEP system. A total of 100 µg of DNA in Dulbecco's PBS (Sigma) was injected intramuscularly into the tibialis anterior muscle of both hind legs. Four weeks later this procedure was repeated using the same amount of DNA. For comparison, control mice groups were included in all vaccine trials. These control groups were either not DNA-vaccinated or were immunised with non-recombinant pcDNA3.1 plasmid DNA only, using the same time course described above. Four weeks after the second immunisation, all mice groups were challenged intra-peritoneally with a lethal dose of *S. agalactiae* serotype III (strain 97/0099). The actual number of bacteria administered was determined by plating serial dilutions of the inoculum on Todd-Hewitt/5% blood agar plates. All mice were killed 3 or 4 days after infection. During the infection process, challenged mice were monitored for the development of symptoms associated with the onset of *S. agalactiae* induced-disease. Typical symptoms in an appropriate order included piloerection, an increasingly hunched posture, discharge from eyes, increased lethargy and reluctance to move which was often the result of apparent paralysis in the lower body/hind leg region. The

latter symptoms usually coincided with the development of a moribund state at which stage the mice were culled to prevent further suffering. These mice were deemed to be very close to death, and the time of culling was used to determine a survival time for statistical analysis. Where mice were found dead, a survival time was calculated by averaging the time when a particular mouse was last observed alive and the time when found dead, in order to determine a more accurate time of death.

Interpretation of Results

A positive result was taken as any DNA sequence that was cloned and used in

challenge experiments as described above and gave protection against that challenge. DNA sequences were determined to be protective;

-if that DNA sequence gave statistically significant protection (to a 95% confidence level ($p>0.05$) as determined using the Mann-Whitney U test.

-if that DNA sequence was marginal or non-significant using Mann-Whitney but showed some protective features. For example, one or more outlying mice may survive for significantly longer time periods when compared with control mice. Alternatively, the time to first death may also be prolonged when compared to counterpart mice in control groups.

It is acceptable to allow marginal or non-significant results to be considered as potential positives when it is possible that the clarity of some results may be affected by problems associated with the administration of the DNA vaccine. Indeed, much varied survival times may reflect different levels of immune response between different members of a given group.

Results

Statistical analysis of survival times - LEEP DNA immunisation and GBS challenge Trial 1 (Figure 4a)

Mean Survival Times (hours)

	pcDNA3.1	17(ID-8)	18(ID-9)	20(ID-25)	rib
1	26.833	14.916	27.750	30.500	88.666

2	42.333	94.000 (T)	34.333	33.333	28.166
3	47.916	45.166	41.083	34.083	37.250
4	28.333	30.750	47.083	23.500	37.250
5	42.333	74.666	94.000 (T)	94.000 (T)	94.000 (T)
6	25.333	25.000	26.166	30.500	45.750
Mean	37.549	51.899	48.849	43.083	57.066
sd	9.3943	32.214	26.257	28.768	31.556
p value 1		0.4049	0.4049	0.5000	0.1481
p value 2	> 39.0	> 39.0	> 39.0	> 39.0	

(T) - terminated at conclusion of experiment but showing symptoms of infection.

5 p value 1 refers to statistical significance when compared to pcDNA3.1 controls.

 p value 2 refers to statistical significance when compared to rib positive control.

10

All DNA vaccine's showed a pattern of protection similar to that obtained with the rib DNA vaccine, which was initially used as a positive control.

15

17 (ID-8)

Mice immunised with the '17 (ID-8)' DNA vaccine did not show significantly longer survival times when compared with the unvaccinated control group. However, there are two outlying mice one of which survived the term of the experiment despite developing symptoms. The group also exhibited a much wider range of survival times reflected by a mean survival value which is approximately 14 hours higher than that demonstrated by the unvaccinated control group.

25

18 (ID-9)

5 Mice immunised with the '18 (ID-9)' DNA vaccine did not show significantly longer survival times when compared with the unvaccinated control group. However, there is one outlying mouse which survived the term of the experiment despite developing symptoms.

20 (ID-25)

10 Mice immunised with the '20 (ID-25)' DNA vaccine did not show significantly longer survival times when compared with the unvaccinated control group. However, there was one outlying mouse which survived the term of the experiment despite developing symptoms.

15 **Statistical analysis of survival times - LEEP DNA immunisation and GBS challenge Trial 2 (Figure 4b)**

	Mean Survival Times (hours)			
	pcDNA	UnVacc	22(ID-10)	28(ID-13)
1	45.000	27.916	44.666	72.000 (T)
2	37.333	45.083	51.416	33.000
3	37.333	37.583	40.791	36.083
4	35.291	24.583	44.666	72.000 (T)
5	24.333	37.583	36.916	49.166
6	45.000	33.166	57.833	36.083
Mean	35.858	34.549	43.691	52.449
sd	7.4342	8.2567	5.3825	18.850
p value 1		> 39.0	0.1137	0.2340
p value 2	0.4679		0.0323	0.1137

20 (**T**) - terminated at conclusion of experiment but showing symptoms of infection.

p value 1 refers to statistical significance when compared to pcDNA3.1 controls.

p value 2 refers to statistical significance when compared to unvaccinated controls.

5 There was no significant difference in the survival times exhibited by the pcDNA3.1 and unvaccinated control groups. This is confirmed by their very similar mean survival times of 35.858 hours (pcDNA3.1) and 34.166 hours (Unvaccinated).

10

22 (ID-10)

15 Mice immunised with the '22 (ID-10)' DNA vaccine exhibited significantly longer survival times when compared with the unvaccinated control group but not when compared with the pcDNA3.1 control group. In addition, the time to first death in this group was prolonged by approximately 12 hours when compared to the pcDNA3.1 and unvaccinated control groups. The mean survival time of 43.691 hours is also considerably higher than that determined for both control groups.

20

28 (ID-13)

25 Mice immunised with the '28 (ID-13)' DNA vaccine did not show significantly longer survival times when compared with the pcDNA3.1 and unvaccinated control groups. However there are three outlying mice, two of which survived the term of the experiment despite showing symptoms. In addition, the time to first death in this group was prolonged by approximately 9 hours when compared to the pcDNA3.1 and unvaccinated control groups. The mean survival time of 52.449 hours is also considerably higher than that determined for both control groups, as well demonstrating a wider range of survival times.

30

Statistical analysis of survival times - LEEP DNA immunisation and GBS challenge Trial 3 (Figure 4c)

35

	Mean Survival Times (hours)				
	UnVacc.	70(ID-42)	94(ID-48)	86(ID-47)	51(ID-37)
1	27.583	25.166	34.666	32.416	43.749
2	27.583	42.666	49.500	32.416	38.333
3	24.583	34.666	27.000	42.500	50.666
4	22.250	42.666	30.500	34.500	45.166
5	35.916	30.583	30.500	34.500	69.082
6	22.250	25.166	42.666	42.500	31.166
Mean	27.583	35.149	34.433	35.266	49.399
sd	5.1691	7.6444	8.8495	4.1758	11.846
p value		0.0628	0.0321	0.0153	0.0041

5 **p value** refers to statistical significance when compared to unvaccinated controls.

70 (ID-42)

10 Mice immunised with the '70 (ID-42)' DNA vaccine, marginally did not show significantly longer survival times when compared with the unvaccinated control group. However, the first death in this group is prolonged (by approximately 3 hours) when compared with the unvaccinated group. In addition, the group has a mean survival time
 15 which is approximately 8 hours longer than the unvaccinated group.

94 (ID-48)

20 Mice immunised with the '94 (ID-48)' DNA vaccine exhibited significantly longer survival times when compared with the unvaccinated control group.

86 (ID-47)

Mice immunised with the '86 (ID-47)' DNA vaccine exhibited significantly longer survival times when compared with the unvaccinated control group.

5

51 (ID-37)

Mice immunised with the '51 (ID-37)' DNA vaccine exhibited significantly longer survival times when compared with the unvaccinated control group.

10

Statistical analysis of survival times - LEEP DNA immunisation and GBS challenge Trial 4 (Figure 4d)

15

	Mean Survival Times (hours)	
	UnVacc	9(ID-6)
1	32.666	35.250
2	21.666	30.958
3	23.916	69.333
4	22.999	52.333
5	25.916	44.916
6	35.916	47.083
Mean	25.432	46.041
sd	4.3291	16.096
p value		0.0101

(T) - terminated at conclusion of experiment but showing symptoms of infection.

20

p value refers to statistical significance when compared to unvaccinated controls

9 (ID-6)

Mice immunised with the '39(ID-6)' DNA vaccine showed significantly longer survival times when compared with the control group.

5

Statistical analysis of survival times - LEEP DNA immunisation and GBS challenge Trial 6 (Figure 4e)

10

	Mean Survival Times (hours)				
	pcDNA	UnVacc	32 (ID-15)	39(ID-17)	57(40)
1	33.541	36.000	25.041	52.333	28.333
2	36.750	29.999	30.458	44.750	32.708
3	36.750	32.749	44.833	44.750	36.083
4	36.750	44.500	30.458	36.250	40.333
5	29.000	28.333	64.833	36.250	72.000 (T)
6	30.750	31.666	72.000 (T)	28.583	33.750
Mean	34.558	34.316	39.124	44.016	38.103
sd	3.4036	6.3921	16.140	13.833	12.986
p value 1		> 39.0	0.4043	0.1867	0.4044
p value 2	0.2862		0.2873	0.0458	0.2113

15 (T) - terminated at conclusion of experiment but showing symptoms of infection.

p value 1 refers to statistical significance when compared to pcDNA3.1 controls

p value 2 refers to statistical significance when compared to unvaccinated controls.

20

There was no significant difference in the survival times exhibited by the pcDNA3.1 and unvaccinated control groups. This is confirmed by their

very similar mean survival times of 34.558 hours (pcDNA3.1) and 34.316 hours (Unvaccinated).

5 **32 (ID-15)**

Mice immunised with the '32 (ID-15)' DNA vaccine did not show significantly longer survival times when compared with the pcDNA3.1 and unvaccinated control groups. However, the '32 (ID-15)' group has 10 two outlying mice one of which survived the term of the experiment despite showing symptoms. This group also exhibits a wide range of survival times.

15 **39 (ID-17)**

Mice immunised with the '39 (ID-17)' DNA vaccine exhibited significantly longer survival times when compared with the unvaccinated control group but was not significant when compared with the pcDNA3.1 control group. The group has a considerably higher mean 20 survival time of 44.016 hours than that determined for either of the control groups.

25 **57 (ID-40)**

Mice immunised with the '32 (ID-15)' DNA vaccine did not show significantly longer survival times when compared with the pcDNA3.1 and unvaccinated control groups. However, the '32 (ID-15)' group has one outlying mouse which survived the term of the experiment despite showing symptoms.

30

SURVIVAL DATA-SET B

Statistical analysis of survival times - LEEP DNA immunisation and GBS challenge Trial 2 (Figure 5a)

35

	Mean Survival Times (hours)		
	pcDNA	UnVacc	13(ID-72)
1	45.000	27.916	69.166
2	37.333	45.083	36.333
3	37.333	37.583	43.916
4	35.291	24.583	32.166
5	24.333	37.583	36.333
6	45.000	33.166	43.916
Mean	35.858	34.549	43.582
sd	7.4342	8.2567	14.917
p value 1		> 39.0	0.4679
p value 2	0.4679		0.1880

5 **p value 1** refers to statistical significance when compared to pcDNA3.1 controls.

10 **p value 2** refers to statistical significance when compared to unvaccinated controls.

15 There was no significant difference in the survival times exhibited by the pcDNA3.1 and unvaccinated control groups. This is confirmed by their very similar mean survival times of 35.858 hours (pcDNA3.1) and 34.166 hours (Unvaccinated).

20

13 (ID-72)

Mice immunised with the '13 (ID-72)' DNA vaccine did not show significantly longer survival times when compared with the pcDNA3.1 and unvaccinated control groups. However, there is one outlying mouse which survived approximately 24 hours longer than the longest surviving mice in the pcDNA3.1 and unvaccinated control groups respectively. In addition, the time to first death in this group was prolonged when

compared to the pcDNA3.1 and unvaccinated control groups. The mean survival time of 43.582 hours is considerably higher than that determined for both control groups.

5

10

Statistical analysis of survival times - LEEP DNA immunisation and GBS challenge Trial 3 (Figure 5b)

	Mean Survival Times (hours)		
	UnVacc	3-60(ID-65)	3-5(ID-66)
1	27.583	54.416	42.916
2	27.583	31.000	42.916
3	24.583	43.000	32.874
4	22.250	34.916	42.916
5	35.916	38.958	27.333
6	22.250	34.916	30.916
Mean	27.583	40.458	37.791
sd	5.1691	8.9959	7.2860
p value		0.0098	0.0215

15

p value refers to statistical significance when compared to unvaccinated controls.

20

3-60 (ID-65)

Mice immunised with the '3-60 (ID-65)' DNA vaccine exhibited significantly longer survival times when compared with the unvaccinated control group.

5 **3-5 (ID-66)**

Mice immunised with the '3-5 (ID-66)' DNA vaccine exhibited significantly longer survival times when compared with the unvaccinated control group.

Statistical analysis of survival times - LEEP DNA immunisation and GBS challenge Trial 4 (Figure 5c)

	Mean Survival Times (hours)			
	UnVacc	3-40(ID-67)	3-30(ID-68)	3-38(ID-69)
1	32.666	79.750	35.500	68.583
2	21.666	35.833	28.333	29.916
3	23.916	30.500	31.208	29.916
4	22.999	22.708	98.000 (T)	31.041
5	25.916	28.583	73.500	32.166
6	35.916	40.791	32.333	29.916
Mean	25.432	39.474	53.308	38.324
sd	4.3291	22.998	30.961	16.940
p value		0.1149	0.0463	0.1132

5

(T) - terminated at conclusion of experiment but showing symptoms of infection.

10 **p value** refers to statistical significance when compared to unvaccinated controls

3-40 (ID-67)

15 Mice immunised with the '3-40 (ID-67)' DNA vaccine did not show significantly longer survival times when compared with the unvaccinated control group. However, there is one outlying mouse which survived approximately 43 hours longer than the longest surviving mice in the unvaccinated control group.

20 3-30 (ID-68)

Mice immunised with the '3-30 (ID-68)' DNA vaccine exhibited significantly longer survival times when compared with the unvaccinated control group.

3-38 (ID-69)

Mice immunised with the '2-19 (ID-73)' DNA vaccine did not show significantly longer survival times when compared with the unvaccinated control group. However, there was one outlying mouse which survived approximately 32 hours longer than the longest surviving mice in the unvaccinated control group. In addition, the time to first death was prolonged (by approximately 8 hours) when compared to the unvaccinated controls.

Statistical analysis of survival times - LEEP DNA immunisation and GBS challenge Trial 5 (Figure 5d)

	Mean Survival Times (hours)				
	UnVacc	141(ID-70)	3-20(ID-71)	2-19(ID-73)	3-6(ID-74)
1	27.833	47.500	36.166	36.166	44.666
2	45.666	52.833	44.833	49.833	36.000
3	45.666	49.333	26.750	55.833	75.416
4	34.333	46.250	36.166	68.583	36.000
5	34.333	47.500	55.916	33.333	55.916
6	45.666	36.500	44.833	30.583	36.000
Mean	37.566	48.683	37.234	48.749	49.599
sd	7.8558	2.5672	8.4103	14.497	16.587
p value		0.0101	0.5000	0.2336	0.1854

15

p value - refers to statistical significance when compared to unvaccinated controls.

20

141 (ID-70)

Mice immunised with the '141 (ID-70)' DNA vaccine exhibited significantly longer survival times when compared with the unvaccinated control group.

3-20 (ID-71)

Mice immunised with the '3-20 (ID-71)' DNA vaccine did not show significantly longer survival times when compared with the unvaccinated control group. However, there is one outlying mouse which survived approximately 10 hours longer than the longest surviving mice in the unvaccinated control group.

2-19 (ID-73)

Mice immunised with the '2-19 (ID-73)' DNA vaccine did not show significantly longer survival times when compared with the unvaccinated control group. However, there are three outlying mouse which survived approximately 4, 10 and 23 hours longer than the longest surviving mice in the unvaccinated control group. This is reflected in the higher mean survival time of 48.749 hours and a much wider range of survival times.

3-6 (ID-74)

Mice immunised with the '3-6 (ID-74)' DNA vaccine did not show significantly longer survival times when compared with the unvaccinated control group. However, there are three outlying mouse which survived approximately 4, 10 and 23 hours longer than the longest surviving mice in the unvaccinated control group. This is reflected in the higher mean survival time of 49.599 hours and a much wider range of survival times.

Statistical analysis of survival times - LEEP DNA immunisation and GBS challenge Trial 6 (Figure 5e)

30

	Mean Survival Times (hours)			
	pcDNA3.1	UnVacc.	3-51(ID-75)	3-56 (ID-76)

1	33.541	36.000	36.333	46.583
2	36.750	29.999	30.291	29.833
3	36.750	32.749	32.000	40.166
4	36.750	44.500	52.333	46.583
5	29.000	28.333	72.000 (T)	46.583
6	30.750	31.666	40.499	---
Mean	34.558	34.316	44.591	40.791
sd	3.4036	6.3921	16.615	7.9070
p value 1		> 39.0	0.1876	0.0386
p value 2	0.2862		0.0867	0.0587

(T) - terminated at conclusion of experiment but showing symptoms of infection.

- 5 **p value 1** refers to statistical significance when compared to pcDNA3.1 controls
- p value 2** refers to statistical significance when compared to unvaccinated controls.
- 10 There was no significant difference in the survival times exhibited by the pcDNA3.1 and unvaccinated control groups. This is confirmed by their very similar mean survival times of 34.558 hours (pcDNA3.1) and 34.316 hours (Unvaccinated).
- 15 **3-51 (ID-75)**
- Mice immunised with the '3-51 (ID-75)' DNA vaccine did not show significantly longer survival times when compared with the pcDNA3.1 control group but was relatively close to significant when compared with the unvaccinated control group. The '3-51' group has two outlying mouse one of which survived the term of the experiment despite developing symptoms. The mean survival time of 44.499 hours is considerably higher than that determined for both control groups and the group also demonstrates as a much wider range of survival times.

3-56 (ID-76)

Mice immunised with the '3-56 (ID-76)' DNA vaccine exhibited significantly longer survival times when compared with the pcDNA3.1 control group but were marginally not significant when compared with unvaccinated control group.

Example 3: Conservation and variability of candidate vaccine antigen genes among different isolates of Group B Streptococci

An initial Southern blot analysis was carried out to determine cross-serotype conservation of novel Group B Streptococcal genes isolated using the LEEP system. Analysing the serotype distribution of a target gene will also determine their potential use as antigen components in a GBS vaccine. The Group B Streptococcal strains whose DNA was analysed as part of this study are listed in **APPENDIX II**.

Amplification and labelling of specific target genes as DNA probes for Southern blot analysis.

Oligonucleotide primers were designed for each individual gene of interest derived using the LEEP system. Primers were designed to target the whole of the gene being investigated (All primers are listed in **APPENDIX III**). Specific gene targets were amplified by PCR using Vent DNA polymerase (NEB) according to the manufacturers instructions. Typical reactions were carried out in a 100 µl volume containing 50 ng of GBS template DNA, a one tenth volume of enzyme reaction buffer, 1 µM of each primer, 250 µM of each dNTP and 2 units of Vent DNA polymerase. A typical reaction contained an initial 2 minute denaturation at 95°C, followed by 35 cycles of denaturation at 95°C for 30 seconds, annealing at the appropriate melting temperature for 30 seconds, and extension at 72°C for 1 minute (1 minute per kilobase of DNA being amplified). The annealing temperature was determined by the lower melting temperature of the two oligonucleotide primers. The reaction was concluded with a final extension period of 10 minutes at 72°C.

All PCR amplified products were extracted once with phenol chloroform (2:1:1) and once with chloroform (1:1) and ethanol precipitated. Specific DNA fragments were isolated from agarose gels using the QIAquick Gel Extraction Kit (Qiagen). For use as DNA probes, purified amplified gene DNA fragments were labelled with digoxigenin using the DIG Nucleic Acid Labelling Kit (Boehringer Mannheim) according to the manufacturer's instructions.

Southern blot hybridisation analysis of Group B Streptococcal genomic DNA

Genomic DNA had previously been isolated from all strains of Group B Streptococci which were investigated for conservation of LEEP-derived gene targets. Appropriate DNA concentrations were digested using either *Hin* DIII, *Eco* RI or *Bgl* II restriction enzymes (NEB) according to manufacturer instructions and analysed by agarose gel electrophoresis. Following agarose gel electrophoresis of DNA samples, the gel was denatured in 0.25M HCl for 20 minutes and DNA was transferred onto HybondTM N⁺ membrane (Amersham) by overnight capillary blotting. The method is essentially as described in Sambrook *et al.* (1989) using Whatman 3MM wicks on a platform over a reservoir of 0.4M NaOH. After transfer, the filter was washed briefly in 2x SSC and stored at 4 °C in Saran wrap (Dow chemical company).

Filters were prehybridised, hybridised with the digoxigenin labelled DNA probes and washed using conditions recommended by Boehringer Mannheim when using their DIG Nucleic Acid Detection Kit. Filters were prehybridised at 68°C for one hour in hybridisation buffer (1% w/v supplied blocking reagent, 5x SSC, 0.1% v/v N-lauryl sarcosine, 0.02% v/v sodium dodecyl sulphate[SDS]). The digoxigenin labelled DNA probe was denatured at 99.9°C for 10 minutes before being added to the hybridisation buffer. Hybridisation was allowed to proceed overnight in a rotating Hybaid tube in a Hybaid Mini-hybridisation oven. Unbound probe was removed by washing the filter twice with 2x SSC- 0.1% SDS for 5 minutes at room temperature. For increased stringency filters were then washed twice with 0.1x SSC-0.1% SDS for 15 minutes at 68°C. The DIG Nucleic Acid Detection Kit (Boehringer Mannheim) was used to immunologically detect specifically bound digoxigenin labelled DNA probes.

Results of Southern blot analysis

All genomic digests and their corresponding Southern blots followed an identical lane order as described in Table I.

5

Table I

	1 kb molecula r Weight Marker	515	A909	SB35	H36B	18RS21	1954/92
	Ia	Ia	Ib	Ib	II	II	

	118/158	97/0057	BM110	BS30	M781	97/0099	3139
	II	II	III	III	III	III	IV

	1169-NT	GBS 6	7271	JM9	Group A Streptococcu s	<i>Streptococcus</i> <i>pneumoniae</i>
	V	VI	VII	VIII	-	14

For comparative purposes, it was decided to analyse the serotype distribution of the GBS *rib* gene, which encodes the known protective immunogen Rib. Rib has previously been shown to be present in serotype III and some strains of serotype II but not in serotypes Ia or Ib (Stalhammar-Carlemalm *et al.*, 1993). Confirmation of this pattern would not only give increased confidence in interpreting subsequent results, it would also determine if a *rib* gene homologue was present in the remaining GBS

serotypes being investigated here. Primers designed for the amplification of *rib* and its subsequent cloning into pcDNA3.1 (**Appendix I**), were used to generate a *rib* gene probe for Southern blot analysis.

5 **Southern blot analysis - *rib* (Figure 6)**

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10

Genomic DNA from each strain was digested completely with *Hin* DIII (NEB) and electrophoresed at 40 Volts for 6 hours in 0.8% agarose, transferred onto Hybond N⁺ (Amersham) membrane by Southern blot and hybridised with the digoxigenin-labelled *rib* gene probe. Specifically bound DNA probe was identified using the DIG Nucleic Acid Detection Kit (Boehringer Mannheim).

15 Comment

The Southern blot analysis described in Figure 7 indicates that the *rib* gene is not conserved across all GBS serotypes. *rib* appears to be absent from all serotype Ia and Ib strains (lanes 2 to 5) and from strains 118/158 and 97/0057 of serotype II (lanes 8 and 9). However, *rib* would appear to present in strains 18RS21 and 1954/92 of serotype II (lanes 6 and 7) and in all strains of serotype III (lanes 10 to 13). This is in agreement with previously published data (Stalhammar-Carlemalm *et al.*, 1993). *rib* would also appear to be present in strains representing serotypes VII and VII (lanes 17 and 18) but was absent from strains representing serotypes IV, V and V (lanes 14 to 16) as well as the control strains (lanes 19 and 20). The *rib* gene probe did hybridise with lower intensity to genomic DNA fragments from strains representing serotypes Ia, Ib, IV, VI, VII and serotype II strains 118/158 and 97/0057. This may indicate the presence of a gene in these strains with a lower level of homology to *rib*. These hybridising DNA fragments may contain a homologue of the GBS *bca* gene encoding the Ca protein antigen which has been shown to be closely homologous to the Rib protein (Wastfelt *et al.*, 1996). If this is the case, it would be in agreement with previous work which showed all strains of serotypes Ia, Ib, II and III to be positive for one the two proteins (Stalhammar-Carlemalm *et al.*, 1993). However, the apparent

20

25

30

variable distribution of the *rib* gene amongst different GBS serotypes, makes it a less than ideal candidate for use in a GBS vaccine that is cross-protective against all serotypes.

5 **Southern blot analysis - 4 (ID-1) (photograph 7)**

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10 Genomic DNA from each strain was digested completely with *Hin* DIII (NEB) and electrophoresed at 40 Volts for 6 hours in 0.8% agarose, transferred onto Hybond N⁺ (Amersham) membrane by Southern blot and hybridised with the digoxigenin-labelled 4 (ID-1) gene probe. Specifically bound DNA probe was identified using the DIG Nucleic Acid Detection Kit (Boehringer Mannheim).

15

Comment

20 The Southern blot analysis described in Figure 7 indicates that gene 4 (ID-1) is conserved across all GBS serotypes. The gene probe hybridised specifically to a *Hin* DIII-digested genomic DNA fragment of approximately 3.5 kb in DNA digests from all GBS representatives. but was absent from both the control strains (lanes 19 and 20).

25 **Southern blot analysis - 5 (ID-2) (Figure 8)**

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

30 Genomic DNA from each strain was digested completely with *Eco* RI (NEB) and electrophoresed at 40 Volts for 6 hours in 0.8% agarose, transferred onto Hybond N⁺ (Amersham) membrane by Southern blot and hybridised with the digoxigenin-labelled 5 (ID-2) gene probe. Specifically bound DNA probe was identified using the DIG Nucleic Acid Detection Kit (Boehringer Mannheim).

Comment

The Southern blot analysis described in Figure 7 indicates that gene 4 (ID-1) is conserved across all GBS serotypes. The gene probe hybridised specifically to a *Eco* RI-digested genomic DNA fragment of approximately 6.2 kb in DNA digests from all GBS representatives. but was absent from both the control strains (lanes 19 and 20).

5

Southern blot analysis - 15 (ID-7) (Figure 9)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10

Genomic DNA from each strain was digested completely with *Eco* RI (NEB) and electrophoresed at 40 Volts for 6 hours in 0.8% agarose, transferred onto Hybond N⁺ (Amersham) membrane by Southern blot and hybridised with the digoxigenin-labelled 15 (ID-7) gene probe. Specifically bound DNA probe was identified using the DIG 15 Nucleic Acid Detection Kit (Boehringer Mannheim).

15

Comment

The Southern blot analysis described in Figure 7 indicates that gene 15 (ID-7) is conserved across all GBS serotypes. The gene probe hybridised specifically to a *Eco* RI-digested genomic DNA fragment of approximately 6.2 kb in DNA digests from all GBS representatives. but was absent from both the control strains (lanes 19 and 20).

20

The gene probe hybridised specifically with *Eco* RI -digested DNA fragments ranging from approximately 3.5 kb to 5.2 kb in size.

25

Southern blot analysis - 17 (ID-8) (Figure 10)**Figure 5**

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

30

Genomic DNA from each strain was digested completely with *Hin* DIII (NEB) and electrophoresed at 40 Volts for 6 hours in 0.8% agarose, transferred onto Hybond N⁺ (Amersham) membrane by Southern blot and hybridised with the digoxigenin-labelled

17 (ID-8) gene probe. Specifically bound DNA probe was identified using the DIG Nucleic Acid Detection Kit (Boehringer Mannheim).

Comment

5 The Southern blot analysis described in Figure 7 indicates that gene 17 (ID-8) is conserved across all GBS serotypes. The gene probe hybridised specifically to a *Hin* DIII-digested genomic DNA fragment of approximately 2.3 kb in DNA digests from all GBS representatives, but was absent from both the control strains (lanes 19 and 20).

10

Southern blot analysis - 22 (ID-10) (Figure 11)

Figure 6

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20

Genomic DNA from each strain was digested completely with *Bgl* II (NEB) and electrophoresed at 40 Volts for 6 hours in 0.8% agarose, transferred onto Hybond N⁺ (Amersham) membrane by Southern blot and hybridised with the digoxigenin-labelled 22 (ID-10) gene probe. Specifically bound DNA probe was identified using the DIG Nucleic Acid Detection Kit (Boehringer Mannheim).

Comment

25

The Southern blot analysis described in Figure 7 indicates that gene 22 (ID-10) is conserved across all GBS serotypes. The gene probe hybridised specifically to a *Bgl* II-digested genomic DNA fragment of approximately 3.1 kb in DNA digests from all GBS representatives except serotype Ib strain H36B, where the gene probe hybridised specifically to a *Bgl* II-digested genomic DNA fragment. Gene 22 (ID-10) was absent from both the control strains (lanes 19 and 20).

30

Conclusion

The Southern blot analyses described here, represents a preliminary investigation into the conservation level of LEEP-derived genes amongst different GBS serotypes. Initial results indicate that the genes 4 (ID-1), 5 (ID-2), 15 (ID-7), 17(ID-8) and 22

(ID-10) are present in all GBS serotypes and thus represent potential candidate genes for use in a GBS vaccine. Similar analyses are being currently carried out for each of the genes contained in this patent.

APPENDIX I**ID-8 (17)**

Forward Primer

5' - cgggatccgccaccatgACCACTTCTCAAGCTGTTTAGC - 3'

Reverse Primer

5' - ttcgccgcACGATTATCAACAAAGTTCTG - 3'**ID-9 (18)**

Forward Primer

5' - cggatccgcaccatgGCTACTCATATTGGAAGTTACCAGC - 3'

Reverse Primer

5' - ttcgccgcAGGGTTATTGTTGAAGTGTCTG - 3'**ID-10 (22)**

Forward Primer

5' - cggatccgcaccatgTATCTATATCATTACCAATGCC - 3'

Reverse Primer

5' - ttcgccgcTTTATGTATAGAACAGCAGTCCC - 3'

20

ID-13 (28)

Forward Primer

5' - cggatccgcaccatgAAAGGAAGAACAAACCTATTGTTAG - 3'

Reverse Primer

25

5' - ttcgccgcAAGAGCAAATTCGTATCCTC - 3'**ID-15 (32)**

Forward Primer

5' - cggatccgcaccATGATTGTTGGACACGGAATTG - 3'

30

Reverse Primer

5' - ttcgccgcTTTTCTCCTCCAAAATAACACTAGC - 3'**ID-17 (39)**

Forward Primer

5' - cggatccgcaccatgGCGACTAAAGAGTTAGGTGTTAG -3'

Reverse Primer

5' - ttcgccgcgcTATAGTTAGTTCAACTTGTCTAGATG -3'

5 ID-25 (20)

Forward Primer

5' - cggatccgcaccatgTATACGAGTTACAACCAAATCATG -3'

Reverse Primer

5' - ttcgccgcgcGTCAGCTCGTACTGTTTTTAGC -3'

10

ID-37 (51)

Forward Primer

5' - cggatccgcaccatgTGTCAAATGAATAGTGAACATAAAAAG -3'

Reverse Primer

15

5' - ttcgccgcgcCTCAAATAATTACCTCCAATTG -3'

ID-40 (51)

Forward Primer

5' - cggatccgcaccatgGCTCCATTGAAATTAAAGATTG -3'

20

Reverse Primer

5' - ttcgccgcgcTGATTTACCAGTTGGAAGAGTTC -3'

ID-42 (70)

Forward Primer

25

5' - cggatccgcaccATGAATACTATTATAATACATTGAGAACAG -3'

Reverse Primer

5' - ttcgccgcgcTTCTTGTTCCAACTTCTGG -3'

ID-47 (86)

30

Forward Primer

5' - cggatccgcaccATGATAGAGTGGATTCAAACACATTTAC -3'

Reverse Primer

5' - ttcgccgcgcTTTATGACTCAAGCGACGTGTTA -3'

ID-48 94

Forward Primer

5' - cggatccgcaccATGGAGTTAGTAATTAGAGATATTGTAAG

Reverse Primer

5' - ttcgccgcCTTGTCAATTACATCTCCCTCAACID-67 (3-40)

Forward Primer

5' - cggatccgcaccatgGCTAGTTTGTCAATGAATCATAATGAC -3'

10 Reverse Primer

5' - ttcgccgcGTTATTTGCTCGTTAGCTAAATC -3'ID-68 (3-30)

Forward Primer

15 5' - cggatccgcaccatgGCTCTAGTTTTATGGTTCAAGC -3'

Reverse Primer

5' - ttcgccgcGAAGGCACCGCCACCTCC -3'ID-69 (3-38)

20 Forward Primer

5' - cggatccgcaccatgGGTGAAACCCAAGATAACCAATCAAGC -3'

Reverse Primer

5' - ttcgccgcAACACCTGGTGGCGTTGG -3'25 ID-70 (141)

Forward Primer

5' - cggatccgcaccATGGCTGGGAATCGTAATAACG -3'

Reverse Primer

5' - ttcgccgcAGCCGTCTCTAACACAGGCTTG -3'

30

ID-71 (3-20)

Forward Primer

5' - cggatccgcaccatgCTTCCAACGCAGCCGAAAAC -3'

Reverse Primer

5' - ttgcggccgcATTTAGTGTATTCTCCTGTTGCATAATCC -3'

ID-72 (13)

Forward Primer

5 5' - cgggatccaccatgTACACGCATATTGTTGAAAAAAAG -3'

Reverse Primer

5' - ttgcggccgcAAATAATTCTTTGGTTGTTG -3'

ID-73 (2-19)

10 Forward Primer

5' - cgatccgccaccatgAGTAATCAAGAAGTTCAGCAAGC -3'

Reverse Primer

5' - ttgcggccgcCCATTGTGGAATATCAGCTGAAG -3'

15 ID-74 (3-6)

Forward Primer

5' - cgatccgccaccatgGTGCAGGCAGTGGTACCGCT -3'

Reverse Primer

20 5' - ttgcggccgcGCGATTGTAACAAATTCTCAG -3'

ID-75 (3-51)

Forward Primer

5' - cgggatccaccatgGCTGCCGAGAAGGATAAAG -3'

25 Reverse Primer

5' - ttgcggccgcATTATTAGCTGCTTTTAATGG -3'

ID-76 (3-56)

Forward Primer

30 5' - cgggatccaccatgTGTCAGGTTGTTATGCAAGTTTC -3'

Reverse Primer

5' - ttgcggccgcTTTACTAATTGATAAAGAGCAACTTCG -3'

rib (control)

Forward primer

5' - ggggtaccggccaccATGGCTGAAGTAATTTCAGGAAGT -3'

Reverse primer

5' - cggaattccgTTAATCCTCTTTTTCTTAGAACAGAT

APPENDIX II

Listed below are the details (serotype and strain designation) of Group B Streptococcus strains whose DNA was analysed for gene conservation

5

	SEROTYPE	STRAIN
10	Ia	515
	Ia	A909
15	Ib	SB35
	Ib	H36B
20	II	18RS21
	II	1954/92
25	II	118/158
	II	97/0057
30	III	BM110
	III	BS30
35	III	M781
	III	97/0099
40	IV	3139
	V	1169/NT
45	VI	GBS VI
	VII	7271
50	VIII	JM9

25 A group A Streptococcal strain (serotype M1, strain NCTC8198) and *Streptococcus pneumoniae* (serotype 14) were also included in the analysis for control purposes.

APPENDIX III**ID-1 (4)**

forward primer

5' - atggaaaaaaaaacttggaaaaaaaaattac -3'

reverse primer

5' - ctattttgttttagcgatgtctttatc -3'

ID-2 (5)

10 forward primer

5' - atgtcaaaacaaaaagtaacggcaac -3'

reverse primer

5' - ttatttatggccaataaccataagttaattg

ID-6 (9)

forward primer

5' - atgaaaaaaagttttttctcatggctatg -3'

reverse primer

5' - ttacttcaactgttgatagaggcacttcc - 3'

20

ID-7 (15)

forward primer

5' - ttgttcaattttataggtttagaacttgg -3'

reverse primer

25

5' - ttaatttcattgcgtctcaaacc -3'

ID-8 (17)

forward primer

5' - atgacaaaaaaaaacttattattgttatattag -3'

30

reverse primer

5' - ttaacgattatcaacaaagttctgtac -3'

ID-10 (22)

forward primer

5' - atgatacgcagtttaagagaa -3'
reverse primer
5' - ttatttatgtatagaaacagcagtccc -3'

5 **References**

- Anderson, R., Gao, X.-M., Papakonstantinopoulou, A., Roberts, M. and Dougan, G. (1996) Immune response in mice following immunisation with DNA encoding fragment C of tetanus toxin. *Infection and Immunity*, **64**, 3168-3173.
- Kurar, E. and Splitter, G.A. (1997) Nucleic acid vaccination of *Brucella abortus* ribosomal L7/L12 gene elicits immune response. *Vaccine*, **15**, 1851-57.
- Larsson, C., Stalhammar-Carlemalm, M., and Lindahl, G. 1996. Experimental vaccination against Group B Streptococcus, an encapsulated bacterium, with highly purified preparations of cell surface proteins Rib and . *Infect. Immun.* **64**: 3518-3523
- Larsson, C., Stalhammar-Carlemalm, M., and Lindahl, G. 1999. Protection against experimental infection with Group B Streptococcus by immunization with a bivalent protein vaccine. *Vaccine*. **17**:454-458
- Stalhammar-Carlemalm, M., Stenberg, L., and Lindahl, G. 1993. Protein Rib: a novel Group B Streptococcal protein that confers protective immunity and is expressed by most strains causing invasive infections: *J. Exp. Med.* **177**: 1593-1603
- Wastfelt, M., Stalhammar-Carlemalm, M., (1996) Identification of a family of Streptococcal surface proteins with extremely repetitive structure. *J. Biol. Chem.* **271**: 18892-18897.
- Zhang, D., Yang, X., Berry, J. Shen, C., McClarty, G. and Brunham, R.C. (1997) DNA vaccination with the major outer-membrane protein genes induces acquired immunity to *Chlamydia trachomatis* (mouse pneumonitis) infection. *Infection and Immunity*, **176**, 1035-40.

Claims:

1. A *Group B Streptococcus* protein having a sequence selected from those described in fig 1, or fragments or derivatives thereof.

5

2. A *Group B Streptococcus* polypeptide or peptide having a sequence selected from those described in fig 2, or fragments or derivatives thereof.

10 3. Derivatives or variants of the proteins, polypeptides, and peptides as claimed in claims 1 and 2 which show at least 50% identity to those proteins, polypeptides and peptides claimed in claims 1 and 2.

4. A nucleic molecule comprising or consisting of a sequence which is:

15 (i) any of the DNA sequences set out in figure 1 and figure 2 herein or their RNA equivalents;

(ii) a sequence which is complementary to any of the sequences of (i);

(iii) a sequence which codes for the same protein or polypeptide, as those sequences of (i) or (ii);

20 (iv) a sequence which shows substantial identity with any of those of (i), (ii) and (iii); or

(v) a sequence which codes for a derivative, or fragment of a nucleic acid molecule shown in figure 1 or figure 2.

25 5. A vector comprising DNA encoding for the expression of any one or more proteins, polypeptides, peptides, fragments or derivatives thereof, as claimed in claims 1 to 3.

30 6. A vector as claimed in claim 5 further comprising DNA encoding any one or more of the following: promoters, enhancers, signal sequences, leader sequences,

translation start and stop signals, DNA stability controlling regions, or a fusion partner.

7. The use of a vector as claimed in claims 5 and 6 in the transformation or
5 transfection of a prokaryotic or eukaryotic host.
8. A host cell suitable for the transformation of vector as claimed in claims 5 and
6.
- 10 9. An antibody, an affibody, or a derivative thereof which binds to one or more of
the proteins, polypeptides, peptides, fragments or derivatives thereof, as claimed in
any one of claims 1 to 3.
- 15 10. An immunogenic composition comprising one or more of the proteins,
polypeptides, peptides, fragments or derivatives thereof, or nucleic acid sequences as
claimed in any one or more of claims 1-3 and claim 4.
11. An immunogenic composition as claimed in claim 10 which is a vaccine.
- 20 12. Use of an immunogenic composition as a claimed in claim 10 in the
preparation of a medicament for the treatment or prophylaxis of *Group B*
Streptococcus infection.
- 25 13. A method of detection of *Group B Streptococcus* which comprises the step of
bringing into contact a sample to be tested with at least one antibody, affibody, or a
derivative thereof, as described herein.
- 30 14. A method of detection of *Group B Streptococcus* which comprises the step of
bringing into contact a sample to be tested with at least one protein, polypeptide,
peptide, fragments or derivatives as described herein.

15. A method of detection of *Group B Streptococcus* which comprises the step of bringing into contact a sample to be tested with at least one nucleic acid molecule as described herein.

5

16. A kit for the detection of *Group B Streptococcus* comprising at least one antibody, affibody, or derivatives thereof as claimed in claim 9.

17. A kit for the detection of *Group B Streptococcus* comprising at least one *Group B Streptococcus* protein, polypeptide, peptide, fragment or derivative thereof as claimed in claims 1 to 3.

18. A kit for the detection of *Group B Streptococcus* comprising at least one nucleic acid molecule as claimed in claim 4.

15

19. A method of screening for DNA encoding bacterial cell envelope associated or surface antigens in gram positive bacteria comprising the steps of:

- combining a reporter vector including the nucleotide sequence encoding the mature form of the staphylcoccus nuclease gene and an upstream promoter region with DNA from a gram positive bacteria.
- transforming the resultant vector into *Lactococcus lactis* cells.
- assaying for the secretion of staphlycoccus nuclease protein in the transformed cells.

25

20. A method as claimed in claim 19 wherein the reporter vector is one of the pTREP1-nuc vectors shown in figure 4.

30

21. A method as claimed in claim 19 or claim 20 wherein the gram positive bacteria is *Group B Streptococcus*, *Streptococcus Pneumoniae*, *Staphylcoccus aureus* or *pathogenic group A streptococci*.

22. A vector as shown in figure 4 for use in screening for DNA encoding bacterial cell envelope associated or secreted antigens in gram positive bacteria.

5 23. A method of determining whether a protein, polypeptide, peptide, fragment or derivative thereof as claimed in claims 1 to 3 represents a potential anti-microbial target which comprises inactivating said protein and determining whether *Group B Streptococcus* is still viable.

ID-1

FIG. 1

Clone 4

ATGGAAAAAAACTTGGAAAAATTACTTGTAGTACTGCTGCTTTAGTAGT
TGCAGGAGGAGCAATTGCTGCTACTCACTCTAACAGATTCAAAAGCGTCTATAAAGCAATTGTT
AAAAAAATTCGAGAAGGAAAACAAAGGCAGTTACTGTAAAAATGATTGAGTCTAATG
ACTCCAAAGCTCAAGAAAACGTAAAAAAAGACCCAAGCAAGGCAGCCGATGTATT
CTCACTTCCACATGACCAACTGGTCAATTAGTAGAATCTGGTGTATCCAAGAAA
TTCCAGAGCAATACTCAAAAGAAATTGCTAAAAACGACACTAAACAATCACTTAC
TGGTGCACAATATAAAGGGAAAACTTATGCATTCCCATTGGTATTGAATCTCAAG
TTCTTATTATAATAAAACAAAGTTAATGCTGACGACGTTAAATCATACGAAACA
ATTACAAGCAAAGGGAAATTCGTCAACAGCTAAAGCAGCTAACATATGTA
CAGGTCCCTTTCTGTAGGCGACACTTATTGGTAAATCTGGTGAAGATG
CTAAAGGCACTAACTGGGTAATGAAGCAGGTGTTCTGCTTAAATGGATTGCA
GATCAAAGAAAAATGATGGTTTGTCACCTGACAGCTGAAAATACAATGTCTAA
ATTGGCGATGGTCTGTCATGCTTGTAAAGTGGACCATGGGATTACGACGCTG
CTAAAAAAAGCTGCGGTGAAGATAAAATCGGTGTTGCTGTTACCCAACAATGAAA
ATCGGTGACAAAGAAGTTCAACAAAAGCATTCTGGCGTTAAACTTATGCCGT
TAACCAAGCACCTGCTGGTCAAACACTAAACGAATCTCAGCTAGCTACAAACTCG
CTGCATATCTAACTAATGCTGAAAGTCAAAAAATTCAATTGCAAAACGTCAATC
GTTCTGCTAACTCATCAATTCAATCTCTGATAGCGTCAAAAGATGAACCTGC
AAAAGCAGTTATCGAAATGGTAGCTCAGATAAAATACAACGGTTATGCCTAAG
TTGAGTCAAATGTCAACATTCTGGACAGAAAGTGTGCTATTCTAGCGATACTTA
CAGTGGTAAAATCAAATCTAGCGATTACCTTAAACGTCTAAACAAATTGATAAAG
ACATCGCTAAAACAAAATAG

MEKNTWKKLLVSTAALSVVAGGAIAATHNSNVDAASKTIKLWVPTDSKASYKAIVK
KFEKENKGTVKMIESNDSKAQENVKKDPSKAADVFSLPHDQLGQLVESGVIQEIEPQ
YSKEIAKNDTKQSLTGAQYKGKTYAFPFGIESQVLYYNKTFLTADDVKSYETITSKGK
FGQQLKAANSYVTGPLFLSVGDTLFGKSGEDAKGTNWGNEAGVSVLKWIADQKKND
GFVNLTAENTMSKFGDGSVHAFESGPWDYDAAKKAVGEDKIGVAVYPTMKIGDKEV
QQKAFLGVKLYAVNQAPAGSNTRKISASYKLAAYLTNAESQKIQFEKRHIVPANSIQS
SDSVQKDELAKAVIEMGSSDKYTTVMPKLSQMSTFWTESAAILSDTYSGKIKSSDY
LKRLKQFDKDIAKTKZ

ID-2

Clone 5

ATGTCAAAACAAAAAGTAACGGCAACTTGTGTTATCCACTTAGTCTTATCGCT
ATCATCACCTTAGTGACCTTAGCAGAAACTATTAAATCCAGAAACAAGCCTGACAA
TGGCAACAGCATCAACAGAAAGTTCTTCTGAAGCAGAGAAAACAGGAAAAACACA
ACCTACAGATTCAAGAAACTGCTCACCTCAGCCGAAGGAAGTATCTAACAGAA
AAAACAGAGATTGGTACGACAGAGACATCATCAAGCAATGAATCATCATCAAGTT
CATCACATCAATCTTCTTCAACGAAGATGCTAAAACATCTGATTCTGCTTCAACA
GCATCTACTCCTAGCACTAATACTACAAACAGTAGTCAGCAGACAGTAAGCCAG
GTCAATCAACAAAGACTGAATTAAAACCTGAGCCTACCTTACCATAGTAGAGCCT
AAAATAACTCCGCTCCGTCAGATAGAAAGTGTTCAGACAAATCAGAACATGCTTC
TGTTCTGCTTATCCTTGATGATAACTTATTATCAACACCCGATTCAACCAGTGAC
AGCAACGCCATTCTACGTAGAACACTGGTCTGGTCAGGATGCCTACTCTCACTATT
TATTGTCACATCGTTACGGTATCAAAGCTGAACAATTAGATGGGTACTTAAAATCT
TTAGGGATTCAATATGATTCTAACATCGTATCAATGGTGCTAAGTTATTACAATGGGA
AAAAGATAGTGGTTAGATGTCCGTGCTATTGTAGCTATTGCTGTCCTGAAAGTTC
ATTGGGAACTCAAGGAGTGGCTAAAATGCCAGGTGCTAATATGTTGGTTATGGTG
CCTTGATCATGACTCTAGCCATGCTAGTGCTTATAATGATGAAGAACATTATG
TTGTTGACAAAAAAATACAATTATTAACAAACAACACTCTAGCTTGAAATCCAAGA
TTTGAAAGCACAGAAATTATCTTCTGGACAACCTTAATACAGTTACTGAGGGTGGTG
TTTATTATACAGATAACTCTGGAACTGGTAAACGTCGTGCCAGATTATGGAAGAT
TTAGACCGCTGGATTGATCAACATGGAGGGACACCAGAAATTCTGCTGCCCTGAA
AGCTTATCGACAGCAAGTTAGCAGATTACCAAGTGGTTTAGCTTATCAACAG
CGGTTAACACAGCTAGCTATTGCATCAACTTATCCATGGGGTGAATGTACATGG
TATGTCTTAAACCGCGCTAAAGAGTTAGGTTATACATTGATCCATTATGGTAAT
GGTGGAGATTGGCAACATAAGGCTGGCTTGAAACAAACACATTCAACAAAAGTAG
GCTATGCTGTATCATTTCACCAGGACAAGCTGGTCTGATGGCACTTACGGTCAC
GTAGCTATTGTTGAAGAAGTTAAAAAGATGGTTAGTTCTCATTCAAGAACATCAA
TGCAATGGGACGTGGTATTGTCTTACCGTACTTTAGTTAGTCAGCACAGCTGCAC
AATTAACCTATGGTATTGGCCATAAATAA

MSKQKVATLLLSTLVLSSPLVTLAETINPETS LT MATA STESS SEA KQE KT QPT DS
ETASPSAEGSISTEKTEIGTTETSSNESSSSSHQSSNEDAKTSDSASTASTPSTNTTNS
SQADSKPGQSTKTELKPETPLPLVEPKITPAPSQIESVQTQNQNASVPALSFDDNL LSTPIS
PVTATPFYVEHWSGQDAYSHYLLSHRYGIKA EQLDGYLKSLGIQYDSNRINGAKLLQ
WEKDSGLDVRAIV AIAVLESSLGTQGVAKMPGANMFGYGA FDHDSSHASA YNDEEAI
MLLT KNTI IKNNNSSFEI QDLKAQKLSSGQLNTVTEGGVYYTDNSGTGKRR AQIMEDL
DRWIDQHGGTPEIPAALKALSTASLADLPSGFSLSTA VNTASYI ASTYPWGECTWYVF
NRAKELGYTFDPFMGN GGDWQHKAGFETTHSPKVG YAVSFSPGQAGADGTYGHVAI
VEEVKKDGSVLISESNAMGRGIVSYRTFSSAQAAQLTYGIGHKZ

FIG. 1 CONT'D

ID-3

Clone 6

GTGCATATGTTACAAAACATTGGACAAACAGGCATTCAAGCAACTCGAATTGCTTT
 AGGTTGTATGAGAATGAGTGACTTGAAAGGAAAACAAGCTGAAGAAGTAGTTGGA
 ACAGCATTAGATTGGGTATTATAAATAATAAAAGTCAAGAAGAAAGTGTCTCTGGCGT
 CAAAGTACTAAATCATTGTATTCAAGAACAGAAATTGCTTCTTTCAAGAGA
 TTAATCAGATGACTTCGTGAAGAACATGCGGACCATGACTTATGATGTCATGTT
 GATCCTTAGTTCTTCTTTATAGGTGCCTCCTACGTATTAACATTGGCTATGGGA
 GCTTTATGATTCAAAAGGTCAAGTTACTGTTGGTACTGGTAACATTGTGACG
 TATTAGATATGTTGGTATGCCCTGATGGCGATTGGTTCTTGTCAATATGGTA
 CAGCGTGGTAGTGTCTTATAACCGTATTAATAGTCTACTGAGCAAGAACATCGGA
 TATAACTGATCCTTAAATCCTATCAAACCTGTTGTCAATGGAACATTAAGATA
 TGATATTGATTCTTAGATACGACAATGAGGAAACCTAGCCGATATTCAATTAC
 CTTAGAAAAAGGTCAAACCTTAGGTTGGTAGGTCAAACGGGATCAGGGAAAGACA
 AGTCTTATTAAGTTATTGCTACGTGAACATGATGTGACTCAGGGAAAATTACTTT
 AAATAAACATGATATACGTGATTATCGATTGTCTGAGTTACGTCAACTAACATCGTT
 ATGTTCTCAAGATCAGTTTATTGCTACCGTATTAGAAAATGTTGCTTGG
 GAAATCCAACCTATCTATCAATGCTGTCAAAGAACAGCAACTAAATTGGCACATGTT
 TACGATGACATTGAACAGATGCCAGCAGGATTGAGACTCTAATTGGAGAAAAAG
 GAGTCTCATTATCTGGTGGACAAAAACAAAGGATTGCGATGAGTCGTGCCATGATT
 TTAGATCCAGATATTCTTATTGGATGATTCTCTATCAGCAGTGGACGCTAAACG
 GAACATGCTATTGTTGAGAATCTAAACGAATCGTCAAGGGAAATGACTATT
 TTTCAGCACATCGTTATCAGCTGTTGCACGCAGACCTTATCTTAGTTATGCGAG
 ACGGCAGAGTCATTGAGCGAGGTCAACATCAAGAGTTGCTAAATAAGGTGGTTG
 GTATGCTGAAACGTATGCCTCACAGCAATTAGAAATGGAGGAAGCATTGATGAA
 GTCTAA

MHMLQNIGQTGIQATRIALGCMRMSDLKGKQAEEVVGTLADLGIINNKVQESVSGVK
 VTKSLCYQEQEIASFQEINQMFTVKNMRTMTYDVMFDPLVLLFIGASYVLTLMGAF
 MISKGQVTVGDLVTFTYLDMLVWPLMAIGFLNMVQRGSVSYNRINSLLEQESDITD
 PLNPIKPVVNGLRYDIDFFRYDNEETLADIHFTLEKGQTLGLVGQTGSGKTSLIKLLR
 EHDVTQGKITLNKHDIRDYRLSELRLQLIGYVPQDQFLFATSILENVRFGNPTLSINA
 VKEATKLAHVYDDIEQMPAGFETLIGEKGVSLGGQKQRIAMSRAMILDPDILILDDSLSAV
 DAKTEHAIVENLKTNRQGKSTIISAHRLSAVVHDLILVMRDGRVIERGQHQELLNK
 GWYAETYASQQLEMEMEAFDEVZ

ID-4

Clone 6b

TTGATGAAGTCTAATCAATGGCAAGTCTTAAGAGATTAATCTCCTATTACGCCCT
 TATAAAATGGTTACAGTATTAGCTCTATCTCTTATTGTTGACGACTGTTAAA

FIG. 1 CONT'D

AATATTATTCTTAAATTGCTTCACATTATTGATCACTATCTGACAAATGTTAAT
CAAACAGCAGTCTTATTAGGGATATTATTCAATGTATGTCTGCAGACCTTA
ATTCAATATTGGGAATCTCTTTGCGCGTGTCTTATAGTATTGTTAGAGAT
ATTCGTAGAGATGCTTGCTAATATGGAAAGGCTAGGCATGTCTTATTGATAG
GACACCAGGAGCTATTGTGTCACGTATTACTAACAGGACTCGTCGCTCTTGT
ATATGTTTCGGGTATTATCAAGTTATCTGGCGATATTATTACAGTTAC
TCTGTACACTATGTTGATGCTAGACATTAAACTAACAGGACTCGTCGCTCTTGT
ACCTGTTATCTTATATTAGTGAATGTCTATCGGAAAAAAATCAGTCAGTGCATTGC
TAAAACGAGAAGTTACTTAGTGAATCAACAGTAAATTATCAGGAAGTATTGAAG
GAATTGCATTGTACAGGCTTGGTCAAGAAGAGCGCTGAAGACTGAATTGAG
GAAATTAAACAAAGAGCATGTTGTATGCCAATCGTTATGGCTCTGATAGTCT
CTTCTTAAGACCGCGATGTCTTTAAAACCTCAGCATATGCTGTTATGTC
TTATTGGATTACAGGAGTTAAAGGAGGTCTACGGCAGGATTAAATGTATGCTT
TTATTCACTACGTTAACGTTATTCAGCAGGGCGTGTGTTGATCTGATTGAT
GAAACAGGTTTGAACCAAGCCAAAAAAATACAGAAGCT

MKSQNQWQVFKRLISYLRYKWFTVLALSLLLTVVKNIPLIASHFIDHYLTNVNQTA
VLILVGYYSMYVLQTLIQYFGNLFFARVSYIVRDIRRDAFANMERLGMSYFDRTPAG
SIVSRITNDTEAISDMFSGILSSFISAIFIFTVLYTMLMLDIKLTGLVALLPVIFLVNVY
RKKSVTVIKTRSLSDINSKLSGSIEGIRIVQAFQERLKTEFEEINKEHVYVANRSM
ALDSLFLRPAMSLKLLAYAVLMSYFGFTGVKGGLTAGLMYAFIQYVNRLFDPLIEVT
QNFSTLQTSMSAGRVDLIDETGFEP SQKNTEA

ID-5

Clone 7

ATGAAAAGAAAAGACTTATTGGTATAAACAAACTCAATACACGAT
TAGAAAGTTAAGTGTGGAGTAGCTTCAGTTGCAACAGGGGTATGTA
TTTTCTTCATAGTCCACAGGTATTGCTGAAGAAGTAAGTGTCTC
CTGCAACTACAGCGATTGCAAAGTCGAATATTAACTCAGGTTGACAAC
CGGCAATCTACTAATTAAAAGATGACATAAAACTCAAACCTGAGAC
GGTTGTGACACCCCTCAGATATGCCGGATACCAAGCAATTAGTATCAG
ATGAAAACGTACACTCAAAAAGGAGTGACAGAGCCGGATAAGGCGAC
AAGCCTGCTGAAGAAAATAAGGCTCTGTTCAAGATAAAAATACCT
TAGATTAAAAGTGGCACCATCTACATTGAAAATACCTCCGACAAA
ACTTCTCAAGCTATAGGTGCTCCAAGTCCGACCTTGAAAGTTGCTAAT
CAAGCTCCACAGATTGAAAATGGTTACTTAGGTTACATCTTAAAGA
ATTGCCTCAAGGTCTACCTGTAGAAAGCACTGGGCTTGGATATGGG
GAGATGTTGATCAACCGTCTAGTAATTGCCAAATGGTGCTATCCCT
ATGACTAATGCTAAGAAAGATGATTACGGTTATTATGTTGATTAA
ATTATCTGAAAACAACGAAAACAAATCTTTTAATTAAATAACA
AAGCAGGAACAAATTAAAGCGCGATCATATTCCATTATTACGA

FIG. 1 CONT'D

CCTGAGATGAACCAAGTTGGATTGATGAAAAGTACGGTATAACATAC
TTATCAGCCCCCAAAGAAGGGTATGTCCGTATTAACATTGAGTT
ATCTGGTAACTATGACCACTTATCAGCATGGCTCTTAAAGATGTTGC
AACCCCCCTCAACAACTTGGCCAGATGGTAGTAATTTGTGAATCAAG
GAATGAGTGGAGGTATATTGATGTACCACTGAAAACATAATGCCAAA
GAGATTGGTTTCTAATCTTAGATGAAAGTAAGACAGGAGATGCAGT
GAAAGTTCAACCCAACGACTATGTTTAGAGATTAGCTAACCAT
ACCAAATTGTAAAAGATAAGGATCCAAAGGTTATAATAATCCT
TATTACATTGATCAAGTGCAGCTAAAGGATGCTAACAAACTGATT
AACAAAGTATTCAAGCAAGTTTACAACACTAGATGGGTAGATAAAA
CTGAAATTAAAAGAATTGAAAGTGACAGATAAAAATCAAAATGCT
ATACAAATTCTGATATCACTCTCGATACTAGTAAATCTCTTTAATA
ATCAAAGGCACCTTAATCCTAAACAAGGTCAATTCAATATATCTTAT
AATGGTAACAATGTCACGACAAGGCAATCTGGAAATTAAAGACCA
ACTTTATGTTAGTGGAAATTAGGTGCAGTCTCAATCAAGATGG
TTCAAAAGTTGAAGCCAGCCTCTGGTCACCGAGTGCTGATAGTGTCA
CTATGATTATTATGACAAAGATAATCAAAACAGGGTTGAGCGACT
ACCCCCCTGTGAAAAATAATAAAGGTGTTGGCAGACGATACTTGA
TACTAAATTAGGTATTAAAAACTATACTGGTTACTATTATCTTACGA
AATAAAAAGAGGTAAAGGATAAGGTTAAGATTAGTCCTATGCAA
AGTCATTAGCAGAGTGGGATAGTAATACTGTTAATGACGATATAAAA
ACGGCTAAAGCAGCTTGTAAATCCAAGTCACCTGGACCTAAAAA
TTAAGTTGCTAAATTGCTAATTAAAGGAAACAAGATGCTGT
TATATACGAAGCACATGTAAGAGACTTCACCTCTGATCAATCTTGG
ACGGAAAATTAAAAATCAACTTGGTACCTTGCAGCCTTCAAG
AAACTAGATTATTACAGAAATTAGGAGTTACACACATTAGCTTT
ACCGTATTGAGTTATTGTTATGTTAATGAAATGGATAAGTCACGCTC
AACAGCTTACACTCCTCAGACAATAATTACAATTGGGCTATGACC
CACAGAGCTATTGCTCTTCTGGAAATGTATTAGAGAAACCAAAA
GATCCATCAGCACGTATCGCCGAATTAAACAATTACATGATAT
TCATAAACGTGGCATGGGGTTATACTTGATGTCGTCTATAATCACA
CTGCAAAAATTCTCTTGTGAGGATATAGAACCTAATTATTACACT
TTATGAATGAAGATGGTTACCAAGAGAAAAGTTGGAGGGGGACGT
TTAGGAACCACTCATGCAATGAGTCGTGTTGGTTGATTCCATT
AAATATCTTACAAGTGAATTAAAGTTGATGGTTCCGTTGATATG
ATGGGAGATCATGATGCCGCTGCGATTGAATTAGCTTATAAAGAAGC
TAAAGCTATTAACTCTAATATGATTATGATTGGTAGGGCTGGAGGAA
CATTCCAAGGCATCAAGGTAAAGCCGTTAAACCAAGCTGACCAAGAT
TGGATGAAGTCAACCGATACAGTTGGCGTCTTCAGATGATATTG
AATAGCTTGAATCTGGTTCCAAATGAAGGTACTCCAGCTTCATC
ACAGGTGGCCCACAATCTTACAAGGTATTAAAGGATATCAAAGC
ACAACCTGGAAATTGAAAGCAGATTGCCAGGGAGATGTGGTGCAGT
ATATTGCTGCACATGATAACCTTACCTGATGATGTGATTGCAAAAT
CAATTAAAGACCTAAGGTAGCTGAAGAAGATATTGATAGACGT

FIG. 1 CONT'D

CTCGCGTTAGGAAATGTAATGATTAAACATCTCAAGGGACAGCATT
CATTCAATTCTGGTCAAGAGTATGGCGTACGAAGCGTTACTAACCC
TGATTACATGACAAAAGTTCAGATGACAAATTGCCTAATAAAGCAA
CACTTATTGAAGCTGTTAAGAATACCCATATTTATTGATTGATTCA
ATGATTCTTCAGATGCCATTAAATCATTTGATTGGGCAGCAGCCACAG
ATAATAACAAACACCCAATTCAACGAAAACACAGGCCTACAGCA
GGTTTAATCACATTAAGGCCTAACAGATGCTTCCGAAATTGAG
CAAAGCAGAAATTGATCGTGAGGTTAGCTGATTACAGAGGTAGGTC
AAGGTGATATTAAAGAAAAAGATTGGTTATTGCTTACCAAACAATA
GATTCTAAAGGCGATATTACGCAGTATTGTTAATGCTGATAGTAA
AGCTAGAAACGTTTACTAGGTAAAAATATAAACACCTTTAAAAG
GGCAAGTAATTGTTGATGCTGATCAAGCGGGGATTAAACCAATCTCA
ACTCCTAGAGGTGTTCATTTGAAAAAGATAGTTGCTGATTGATCCA
TTAACAGCAATTGTTGATTAAAGTTGCAAGCAGATTATCCCAAAACACAATCTTCAAGGGAT
CTAAAACGGTAGAAAAAGTAAATAGAATAGCTAATAAGACCTCAAT
AACTCCTGTAGTTCTAATAAGACCGATTCACTATCTGACAAATGAAG
CTAATTGCCAAAAACTGGAGATAAGTCATCAAAAATACTAAGTGT
GTAGGAATAAGCATTCTAGCAAGTCTACTGCTCTAGGTCTCT
TTAAAGAGGAATCGCACTTAA

MKRKDLFGDKQTQYTIRKLSVGVASVATGVCIFLHSPQVF
AEEVSVSPA
TTAIKSNIQVDNRQSTNLKDDINSNSETVVTPSDMPDTKQLV
SDETDT
QKGVT
EPDKATS
LLEENKG
PVSDKNT
LDLK
VAPSTL
QNTPD
KTSQA
IGA
PSPL
TKVAN
QAPQI
ENGYF
RLHL
KELPQ
GHPVE
STGL
WIWGD
VDPSSN
WPNGA
IPMTNA
KKDDY
GYYDF
KLSEK
QRKQI
SFLIN
NKAGT
NLSGDH
HIPLL
RPEMN
QVWIDE
KYGIHTY
QPLKE
GYVRIN
YLSSSG
NYDHLS
AWL
FKDV
ATPSTT
WPDSNF
VNQGLY
GRYIDV
PLKTN
AKEIGFL
IDESKT
GD
AVKV
QPNDY
VFRDL
LANHN
QIFV
KDKDP
KVYN
NPYYIDQ
VQLKD
AQQT
DLTSI
QASF
FTLDG
VVDK
TEIL
KELK
VTDK
KNQN
QNAIQ
ISDIT
LDT
SKSL
IIKG
DFNP
KQGHF
NISYNG
NNVTR
QSWEF
KDQLY
AYSGNL
GA
VLNQDG
SKV
EASL
WSPS
ADS
VTM
IIYDK
DNQN
RN
VV
ATTPL
VKNN
KG
VWQT
ILD
TKLG
IKN
YT
GYY
LY
YE
IKRG
DKV
KILD
PY
AKSL
AE
WDS
NT
VN
DD
DI
KT
AK
AA
F
VN
PSQL
GP
KNL
SF
AKIA
NFK
KG
QDA
VI
YEA
H
V
RD
FT
SD
Q
SLDG
KL
N
QL
GT
FA
AF
SE
KL
DY
LQ
KL
GV
THI
QL
LP
V
SY
FY
VN
EM
DK
RS
STA
Y
TSS
D
NN
Y
NW
GY
DP
QSY
F
ALSG
MY
SE
KP
KD
PS
AR
IA
EL
K
QL
I
HD
IH
K
RGM
G
V
ILD
V
YN
W
H
TAK
TYL
F
D
IE
P
N
YY
H
FM
N
EDG
SP
RES
F
GG
G
RL
GT
THAM
S
RR
VL
V
DS
IK
YL
T
SE
FK
V
DG
F
RF
D
MM
G
DH
AAA
IEL
A
Y
KE
AK
A
IN
PN
M
IM
EG
W
RT
F
Q
GD
Q
GK
PV
K
PA
D
Q
DW
MK
S
DT
V
GV
F
S
DD
I
RNS
L
K
SG
FP
NEG
TPA
FIT
GGP
Q
SQL
Q
GIF
K
NIKA
Q
PGN
FEAD
SP
GD
VV
QY
IA
AH
D
N
LT
LHD
VI
AK
SI
NK
DP
K
VA
EE
DI
H
RRL
RL
GN
VM
IL
TS
SQ
GT
AF
IHS
G
Q
EY
G
RT
K
RLL
NP
D
YM
TK
VS
DD
KL
PN
K
AT
L
IE
A
V
KEY
PY
FI
H
DS
S
D
A
I
N
H
FD
W
AA
A
T
D
NN
KH
PI
ST
KT
Q
AY
TAG
L
I
T
L
R
R
S
T
D
A
F
R
K
L
S
K
A
E
I
D
R
E
V
S
L
I
T
E
V
G
Q
G
D
I
K
D
L

FIG. 1 CONT'D

VIA YQTIDS KGDIYAVFVNADSKARNVLLGEKYKHLKGQVIVDADQA
 GIKPISTPRGVHFEKDSLIDPLTAIVIKVGKVAPSPKEELQADYPKTQSFK
 GSKTVEKVNRIANKTSITPVVSNKTDSYLTNEANLPKTGDKSSKILSVVG
 ISILASLLALLGLSLKRNR*

ID-6

Clone 9

ATGAAAAAAAGTTTTTCTATGGCTATGGTGTGAGTTAGTAATGATAGCAGG
 GTGTGATAAGTCAGCAAACCCAAACAGCCTACGCAAGGCATGTCAGTTGTAACC
 AGCTTTACCCAATGTATGCGATGACAAAAGAAGTATCTGGAGACCTAAATGATGT
 GAGGATGATCCAATCAGGTGCAGGCATTCTTGAACCGTCTGTAATGATG
 TGGCAGCTATTATGACGCCGATTGTTACCATCACATACCTAGAACAGCTT
 GGGCAAGGGATCTAGACCTAATTAAAAAAATCAAAGGTTAATGTTGAAGC
 GTCAAAACCTCTGACACTAGATAGACTAAAGGGCTAGAACAGATATGGAAGTCACA
 CAAGGCATTGACCCCTGCGACACTTATGACCCACATACCTGGACGGATCCCCTTT
 AGCTGGTGAGGAAGCTGTTAATATCGCTAAAGAGCTAGGACATTGGATCCTAAAC
 ACAAAAGACAGTTACACTAAAAAGGCTAAGGCTTCAAAAAGAACAGAGCAACT
 AACTGAAGAACACTCAAAATTAAAAAGGTGCGCTCAAAACATTGTGACG
 CAACACACGGCATTCTTATCTGGCTAAACGATTGGCTTGAACAACTTGGTAT
 CTCGGGTATTCTCCAGAGCAAGAGCCCTCTCGCCAATTGAAAGAAATTCAAG
 ACTTTGTTAAAGAACATACAACGTCAAGACTATTGAGAACAGACATCTAGAGC
 AAAATTGCTCATGCTATTGCGAAATCAACAGGAGCTAAAGTAAAGAACATTAAGTC
 CACTGAAAGCTGCTCCAAGCGAAACAAAGACATATCTAGAAAATCTTAGAGC
 AAAATTGGAAGTGCTCTATCAACAGTTGAAGTAA

MKKVFFLMAMVVSLVMIAGCDKSANPKQPTQGMSVVTFSYPMYAMTKEVSGDLND
 VRMIQSGAGIHSFEPSVNDVAIYDADLFVYQSHTLEAWARDLDPNLKSKVNVFEAS
 KPLTLDRVKGLEDMEVTQGIDPATLYDPHTWTDPVLAGEEAVNIAKELGHLDPKHDK
 SYTKKAKAFKKEAEQLTEEYTQKFKKVRSKTFVTQHTAFSYLAKRFLKQLGISGISPE
 QEPSPRQLKEIQDFVKEYNVKTIFAEDNVNPKIAHAIKSTGAKVKTLSPLEAPSGNK
 TYLENLRANLEVLYQQLK*

ID-7

Clone 15

TTGTTCAATAAAATAGGTTTAGAACTTGGAAATCAGGAAAGCTTG
 GCTTTATATGGGAGTGCAGGATCAACTATTATTTAGGATCAAGTCC
 TGTATCTGCTATGGATAGTGTGGAAATCAAAGTCAAGGTAATGTTT
 AGAGCGTCGCCAACGTGATGCGGAAAACAAAAGTCAGGGTAATGTT
 TTAGAGCGTCGCCAACGTGATGCGGAAAACAAGAGCCAAGGCAATG
 TTTAGAGCGTCGTCAACGCGATGTTGAGAATAAGAGCCAAGGCAAT

FIG. 1 CONT'D

GTTCAGAGCGTCGTCACGTGATGCGGAAAACAAAAGTCAGGGCA
ATGTTCTAGAGCGCCGCCAACGTGATGCGGATAACAAGAGCCAAGTA
GGTCAACTTATAGGGAAAAATCCACTTTCAAAGCCAAGTGTATCT
AGAGAAAATAATCACTCTAGTCAAGGTGACTCTAACAAACAGTCATT
CTCTAAAAAAGTATCTCAGGTTACTAATGTAGCTAATAGACCGATGT
TAACTAATAATTCTAGAACAAATTCACTGATAAAATAATTACCTAAA
ACAGGTGGTGATCAAAATGTCACTTAAACTTGTAGGTTGGTTA
ATTTGTTAACAGTCGCTGCAGGTTGAGACGCAATGAAAATTAA

MFNKIGFRWKSGKLWLYMVLGSTIILGSSPVSAMDSVGNQSQGNVL
ERRQRDAENKSQGNVLERRQRDAENKSQGNVLERRQRDVENKSQGNV
LERRQRDAENKSQGNVLERRQRDADNKSQVGQLIGKNPLFSKPTVSREN
NHSSQGDSNKQSFSKKVSQVTNVANRPMLTNNSRTISVINKLPKTGGDQ
NVIFKLVGFGLILLTSRCGLRRNEN*

ID-8

Clone 17

ATGACAAAAAAACTTATTATTGCTATATTGACTATGCACTATCTAACCACTTCT
CAAGCTTTAGCTAAAGAAAAATCACAAACTGTTACCATAAAAACAACATTCT
GGTCTATATTAAAAAGAAAAAGAGACAAGCCGGATAATAAAAGCAAATCAG
CGAGACACTAAAGTTCTTAAAACCCAAAAAGTAGTTGATATGGGAG
CTTGAGATACTATCACAGCTTAGGAGCTGAAAAATCTGTTATTGGTATCCGAAG
GCTAAAATGCTCTAAGTTATTGCCAATAACGTCAAATCTGTTATAAGCTAA
GAGATACCAAGACGTAGGAAGTCTCTCGAACCAAACCTTGAAGCTATTGCTCGTA
TGCAACCTGATGTGGTTCTAGGAGCACGTATGGCTCTGTTGATAATATTGAA
AAATTAAAGGAGGCTGCACCTAAAGCAGCATTAGTATATGCTGGAGTCACCAA
AAAAAGTATTGACAAAGGAGTTGCTGAGCGTGTACAATGTTAGGAAAATCTC
GACCAAAATAAAAGGACAAACCTTAAATAAAGATATCGCACAGCTGTTCTTA
AATTGAGAAAATATTGAGAAAAAGGTAAACCTACAGCTCTATTGTAATGGC
AAACAGCGGTGAACCTTAACCTCAATCACCTCTGGTCTGGTTGGATTTC
TGTAGGTGGATTAAAGCAGTCAATGAAAATGAAAACATAAGTTACATGGTACTC
CCGTATCTTATGAATACATCGCTGAAAAAAATCCTAACTATCTCTTGTAGATC
GTGGAGCGACTATTGGACAAGGAGCTTCATAAAAGAACTTTAATAACGATGTT
ATTAAAGCAACTGATGCTGTCAAAACAAACGTGTTCATGAGGTAGATGGAAAAG
ATTGGTATATCAATTCAAGGCGGAAGCCGAGTAACACTCCGTATGATTAAAGATGTA
CAGAACTTGTGATAATCGTTAA

MTKKLIAILALCTILTSQAVLAKEKSQTVTIKNNYSVYIKKEKRDKPDN
KKQISETLKVKPKVVVFDMGALDTIALGAEKSVIGIPKAKNALSL
PNNVKSVYKAKRYQDVGSLEPNFEAIARMQPDVFLGARMASVDNIE
KLKEAAPKAALVYAGVDSKKVFDKGVAERVTMLGKIFDQNKKAKTFN
KDIAQAVLKLQKTIKKGKPTALFVMANSSELLTQSPSGRFGWIFSVGG

FIG. 1 CONT'D

FKA VNENEK LSSH GTPV SYE YIA EKN PNY LFV LDRGATIG QGASS KEL FN
NDVIK ATDAV KNK RVHEVDGKD WYINS GGS RVT LRM IKDV QNF VDNR
*

ID-9

Clone 18

GTGAAGAAAACATATGGTTATATCGGCTCAGTGCTGCTATTACTAGCTACTCAT
ATTGGAAGTTACCAGCTTGGTAAGCATCATATGGGTCTAGCAACAAAGGACAATC
AGATTGCCTATATTGATGATAGCAAAGGTAAAGGTAAGGCTAAAGCCCTAAAACAAACAA
AACGATGGATCAAATCAGTGTGAAGAAGGCATCTCTGCTGAACAGATCGTAGTC
AAAATTACTGACCAAGGTTATGTTACCTCACACGGTACCATTATCATTAA
GGGAAAGTTCCCTATGATGCGATTATTAGTGAAGAGTTGTTGATGACGGATCCTAA
TTACCATTAAACAATCAGACGTTATCAATGAAATCTTAGACGGTTACGTTATTA
AAGTCAATGGCAACTATTATGTTACCTCAAGCCAGGTAGTAAGCGAAAAACATT
CGAACCAAAACAACAAATTGCTGAGCAAGTAGCCAAAGGAACTAAAGAAGCTAAA
GAAAAAAGGTTAGCTCAAGTGGCCATCTCAGTAAAGAAGAAGTTGCGGCAGTC
ATGAAGCAAAAGACAAGGACGCTATACTACAGACGATGGCTATATTAGTCC
GACAGATATCATTGATGATTAGGAGATGCTTATTAGTACCTCATGGTAATCACT
ATCATTATATTCTAAAAAGATTGCTCTCCAAGTGAAGCTAGCTGCTGCACAAGCC
TACTGGAGTCAAAACAAGGTCGAGGTGCTAGACCGCTCTGATTACGCCCGACAC
CAGCCCCAGGTCTAGGAAAGCCCCATTCTGATGTGACGCCCTAACCCCTGGACA
AGGTCACTAGCCAGATAACGGGGTTATCATCCAGCGCCTCTAGGCCAAATGATG
CGTCACAAAACAACACCAAAAGAGATGAGTTAAAGGAAAAACCTTAAGGAAC
TTAGATCATCTACACCGTCTTGATTTGAAATACCGTCATGTGGAAGAAGATGGT
TGATTGAAACCGACTCAAGTGAATCAAACGCTTTGGGTATGTGGTGCCT
CATGGAGATCATTATCATATTATCCCAAGAAGTCAGTTATCACCTCTGAAATGGA
ATTAGCAGATCGATACTTAGCCGGCCAAACTGATGACAACGACTCAGGTTAGATC
ACTCAAAACCATCAGATAAAGAAGTGAACACATACCTTCTTGGTCATCGCATCAA
GCTTACGGAAAAGGCTAGATGGTAAACCATATGATACGAGTGATGCTTATGTTT
TAGTAAAGAATCCATTCACTAGTGGATAAATCAGGAGTTACAGCTAACACCGA
GATCATTCCACTATATAGGATTGGAGAACTTGAACAAATATGAGTTGGATGAGGT
CGCTAAGTGGTGAAAGCAAAAGGTCAAGCTGATGAGCTTGTGCTGCTTGGATC
AGGAACAAGGCAAAGAAAAACACTCTTGACACTAAAAAGTGAAGTCGCAAAGT
AACAAAAGATGGTAAAGTGGCTATATTGCCAAAAGATGGCAAGGACTATTTC
TATGCTCGTTATCAACTTGATTGACTCAGATTGCCCTTGCCGAACAAGAACTAATG
CTTAAAGATAAGAAGCATTACCGTTATGACATTGTTGATACAGGCATTGAGGCCACG
ACTTGCTGTAGATGTGTCAGTCTGCCGATGCATGCTGGTAATGCTACTTACGATA
CTGGAAAGTTGCTTGTATCCCACATATTGATCATATCCATGTCGTTCCGTATTCAT
GGTTGACGCGCAATCAGATTGCAACAAATCAAGTATGTGATGCAACACCCCGAAGT
TCGTCCGGATGTATGGTCTAAGCCAGGGCATGAAGAGTCAGGTTCGGTATTCAA
ATGTTACGCCCTTGATAAACGTGCT

FIG. 1 CONT'D

GGTATGCCAAACTGGCAAATTATCCATTCTGCTGAAGAAGTTCAAAAAGCCCTAGC
 AGAAGGTCGTTTGCAAGCACAGACGGCTATATTCGATCCACGAGATGTTGG
 CAAAAGAAACTTTGTATGGAAAGATGGCTCCTTAGCATCCCAAGAGCAGATGGC
 AGTTCATGAGAACCATTAATAAAATCCGATCTATCCCAAGCTGAGTGGCAACAAGC
 TCAAGAGTTATTGGCAAAGAAAAATGCTGGTATGCTACTGATAACGGATAAACCT
 GAAGAAAAGCAACAGGCAGATAAGAGCAATGAAAACCAACAGCCAAGTGAAGCC
 AGTAAAGAAGAAAAAGAATCAGATGACTTATAGACAGTTACCAGACTATGGTC
 TAGATAGAGCAACCCCTAGAAGATCATATCAATCAATTAGCACAAAAAGCTAATAT
 CGATCCTAAGTATCTCATTTCCAACCAGAAGGTGTCCAATTTATAATAAAAATG
 GTGAATTGGTAACTTATGATATCAAGACACTCAACAAATAACCCCTAA

MKKTYGYIGSVAILLATHIGSYQLGKHHMGLATKDNQIAYIDDSKGKVAPKTNKT
 MDQISAEEGISAEQIVVKITDQGYVTSHGDHYHFYNGKVPYDAIISEELLMTDPNYHFK
 QSDVINEILDGYVIKVNGNYYVYLPGSKRKNIRTKQQIAEQVAKGTKEAKEKGLAQV
 AHLSEEVAAVNEAKRQGRYTTDDGYIFSPTDIIDDLGDAYLVPHGNHYHYIPKKDLS
 PSELAAAQAYWSQKQGRGARPSDYRPTPAPGRRKAPIPDVTPNPQGHQPDNGGYHP
 APPRPNDASQNKHQRDEFKGKTFKELLDHLHRLDLKYRHVEEDGLIFEPTQVIKSNF
 GYVVPHGDHYHIIPRSQLSLEMEADRYLAGQTDDNDSGSDHSKPSDKEVTHFLGH
 RIKAYGKGLDGKPYDTSDAYVFSKESIHSVDKSGVTAKHGDHFHYIGFGELEQYELDE
 VANWVKAKGQADELVAALDQEQQKEKPLFDTKKVSRKVTKDGVGYIMPKDGDKY
 FYARYQLDLTQIAFAEQEMLKDKKHYRYDIVDTGIEPRLAVDVSSLPMHAGNATYD
 TGSSFVIPHDHIVVVPYSWLTRNQIATIKYVMQHPEVRPDVWSKPGHEESGSVIPNVTP
 LDKRAGMPNWQIIHSAEEVQKALAEGRFAAPDGYIFDPRDVLAKEFVWKDGSFSIPR
 ADGSSLRTINKSDLSQAEWQQAQUELLAKKNAGDATDTDKPEEKQQADKSNNENQQPSE
 ASKEEKESDDFIDSPLDYGLDRATLEDHNQLAQKANIDPKYLIFQPEGVQFYNKNGEL
 VTYDIKTLQQINP*

ID-10

Clone 22

ATGATACGCCAGTTTAAGAGAACACTGATTGGTATATTTATATCATGATG
 TTTGCTTATTTTATTAGTTCTATCTATATCATTACCAATGCCCTATTGTTTA
 ATTCCTAGGTTAAATGTTATTGTTACTAGGAATTAGTATTGGCAATACAGTC
 GTTACAGGAAAAAAATGTTACATCTCAAATATTTAATAGTAGTCAGGACCCCTCT
 TTCGAACCTAACCGAGTGATTACGCTTATTAAATTACACAATTAGAACAGCT
 AGAGAACGCAAAAGTTCTGAAACAATTGAACAAACCAATCATGTTGCACTTA
 TGATAAAGATGTGGTCGCACCAATGAAAGTCCATTGGCAGCTATTCTATTAAATG
 GCCCAGACAAATCATCTGATCCTAAGGAAGTTGAACAACAATTATTGAAATTGCA
 ACATTATCTGAAACGTTAGCATTTGAAATTAGACAATATCGTGACGATT
 TCGTTTGAAAGCTGTTAGCCTAGAGAAGTAGTAGTAGAAATTATAAAATCGTATA
 AGGTTATTGTCTATCCAAAAGCTTATCTATCATAATTGAAGGCATAATATCTGG
 AAAACAGACAAAAAGTGGTTAACTTTGCTTTCACAGGTGCTAGATAATGCCAT

FIG. 1 CONT'D

AAAATATTCTAACCTGAGTCAAAGATAATAAGCATAGGAGAAGAGAGTATT
AGAATACAAGACTACGGTATCGGCATACTCGAAGAGGGATATCCCTAGACTTTGA
AGATGGCTTACGGGTTACAACGGTCATGAGCACCAAAAGGCAACAGGCATGGGG
TTATATATGACAAAAGAAGTCTTATCTAGTCTGAATTGTCCATTCGGTGGATAGC
AAAATTAATTATGGGACTGCTGTTCTATACATAAATAA

MIRQFLREHLIWIYILYIMMFVLFFISFYLYHLPMPYLNFNSLGLNVIVLLGISIWQYSRYR
KKMLHLKYFNSSQDPSFELQPSDYAYFNIITQLEAREAQKVSETIEQTNHVALMIKMW
SHQMVKVPLAAISLMAQTNHLDPEVEQQLKLQHYLETLLAFLKFRQYRDDFRFEAV
SLREVVVEIIKSYKVICLSKLSIIEGDNIWKTDKWLTFAISQVLDNAIKYSNPESKIIIS
IGEESIRIQDYGIGILEEDIPRLFEDGFTGYNGHEHQKATGMGLYMTKEVLSSLNLSISV
DSKINYGTAVSIHKZ

ID-11

Clone 23

ATGACTTATCAAAAAACAGTTGTTGGCTGGTGATTATTCTACATTAGACAAATT
GAAACCACATTAATCTCTGTCTATCATGAGAATCTCAATTTCATTT
AATCAAGATATTCTCAAGAATGGTTTAGCTATGAAAGATAGGGTGGACAAAC
TGGAAATCAAATTCAAGGATGTAAGCTCTCCATGATCACTATCCCCAAAATGGG
AAAATAAAAGCTTAATCATATTAAATTATATGACCTATGCTCGTTATTCATACCTC
AGTACATCTCAGCTGATACAGTTATATCTTGAUTCTGACTTAGTTGTTACTACTA
ATTAGATAACCTCTTCAAATTCACTAGACAATGCATATTAGCTGCAGTTCCAG
CTCTTTGGGCTTGGATATGGGTTAATGCTGGAGTAATGGTAATTAAACAACCAA
CGTTGGCGACAAGAAAATGACTATTAAATTGAAAAAAATCAAAGGAAA
TTGAGAATGCCAACGAAGGGGATCAAACAATTCTTAATCGCATGTTGAAAATCAG
GTAATTATTAGATGATACCTACAATTCAAATTGGTTGATATGGGAGCTGCT
ATCGATGGGCATAAATTATTTGACATCCCATTACCCACTCCCCAAAATTATT
CACTACATTGGGAATCAAACCTTGGCAAACATTATCAAATATGAGACTCCGTGA
GGTATGGTGGCACTATAATTACTTGAATGGTCAAGTATCATATCTAGTAAAAAG
TATTGGTTAGACCACCCAATTAAAACACAAAATTATCGTCTCAATTCTTATTG
CTACAACCTCTGATTGTATACCATCTATCTCAGAATTAGTCACTGCCCTCCAGATT
GTCTATTACATTGCATGCACCAACAGTTATGTCTGA

MTYQKTVVLAGDYSYIRQIETTLKSLCVYHENLSIFNQDIPQEWFAMKDRVQQTG
NQIQDVKLFHDHLSPKWENKLNHINYMTYARYFIPQYISADTVLYLSDLVVTTNLD
NLFQISLDNAYLAAPALFGLGYGFNAVMVINNQRWRQENMTIKLIEKNQKEIENAN
EGDQTILNRMFENQVIYLDDTYNFQIGFDMGAAIDGHKFIFDIPPLPKIIHYISGIKPW
QLSNMRLREVWWHYNLLEWSSISSKKVFGLDHPIKTQNYRLNFLIATSDCIPSISEL
VTALPDCLFHIACTNSYV*

ID-12

FIG. 1 CONT'D

Clone 27

GTGAAGAAAACATATTGTTATCGGCTCAGTGCTGCTATTTACTAGCTACTCAT
ATTGGAAGTTACCAGCTTGGTAAGCATCATATGGGCTAGCAACAAAGGACAATC
AGATTGCCTATATTGATGATAGCAAAGGTAAAGGTAAAAGCCCTAAAACAAACAA
AACGATGGATCAAATCAGTGTGAAGAAGGCATCTGCTGAACAGATCGTAGTC
AAAATTACTGACCAAGGTTATGTTACCTCACACGGTGACCATTATCATTAA
GGGAAAGTTCTTATGATGCGATTATTAGTGAAGAGTTGTTGATGACGGATCTAA
TTACCATTTAAACAATCAGACGTTATCAATGAAATCTTAGACGGTTACGTTATTAA
AAGTCAATGGCAACTATTATGTTACCTCAAGCCAGGTAGTAAGCGAAAAACATT
CGAACCAAACAACAAATTGCTGAGCAAGTAGCCAAGGAACAAAGAAGCTAAA
GAAAAAGGTTAGCTCAAGTGGCCCCTCAGTAAAGAAGAAGTTGCGGCAGTCA
ATGAAGCAAAAGACAAGGACGCTATACTACAGACGATGGCTATATTAA
GACAGATATCATTGATGATTAGGAGATGCTTATTAGTACCTCATGGTAATCACT
ATCATTATATTCTAAAAAGATTGCTCCAAGTGAGCTAGCTGCTGCACAAGCC
TACTGGAGTCAAAACAAGGTCGAGGTGCTAGACCGTCTGATTACCGCCCGACAC
CAGCCCCAGGTCGTAGGAAAGCCCCACTTCCTGATGTGACGCCAACCCCTGGACAA
GGTCATCAGCCAGATAACGGTGGTTATCATCCAGCGCCTCTAGGCCAAATGATGC
GTCACAAAACAACACCAAGAGATGAGTTAAAGGAAAACCTTAAGGAACCTTAA
TTAGATCAACTACACCGTCTGATTGAAATACCGTATGTGGAAGAAGATGGTT
GATTTTGAAACGACTCAAGTGATCAAATCAAACGCTTGGGTATGTGGTGCCTC
ATGGAGATCATTATCATATTATCCAAAGAAGTCAGTTATCACCTCTGAAATGGAA
TTAGCAGATCGATACTAACCGGCAAACGTGA

MKKTYCYIGSVAAILLATHIGSYQLGKHHMLATKDQNQIAYIDDSKGKVKA
PKTNKT
MDQISAEEGISAEQIVVKITDQGYVTSHGDHYHFYNGKVPYDAIISEELLMTDP
NYHFK
QSDVINEILDGYVIKVNGNYYVYLPGSKRKNIRTKQQIAEQVAKGTKEAKEKGLAQV
AHLSKEEVAAVNNEAKRQGRYTTDDGYIFSPTDIIDDLGDAYLVPHGNHYHYIPKK
DLS
PSELAAAQAYWSQKQGRGARPSDYRPTPAPGRRKAPLPDVTPNPGQGHQPDNGGYHP
APPRPNDA
SQNKHQRDEFKGKTFKELLDQLHRLDLKYRHVEEDGLIFEPTQVIKSNAF
GYVVPHGDHYHIIPRSQLSLE
MELADRYLTRPN*

ID-13

Clone 28

ATGGTAAATGATATATTAGAAAGAATGTATAAAGAGAAATATTCCAAAATCTTACCT
TACATCCGTCCCATTAGTTATTCTCAAAAAGGAAGAACACCTATTGTTAGTAT
GACTGGTGGTCAACAAATAGATGGAGTGAAATTACACAGATATGAGGACTAT
ATGAAATTACTCAGTCAAGGTAAAGGATATCGCAGAGTTATCAAAAATATTCTAA
AGAAGAGTTGGCAAATCTAGGCATTAATATTATCAATCCAATGATATAGAAAGG
ACTGAGGAAAGAACTTTGATGAAATTATCAGTTGGTTCCAACCCCTATGCAAC
AAGACCAATTCAAGAAAGGCACACTATTCAATTAGAGCCAACAGATTTCACCA

FIG. 1 CONT'D

GAGGATAAAGAAAAGAATTGAAGAAGCTGCAGCTAAGGACTAAGCGAAATCGAC
CTTATTGATTAGTTGACCTATATGATATTAAATTAGACAATACAAGCGTCAATCGC
CATATTGTGGGGTTATTGACTAATAACACCCAAGTAACATACTATTTCCAAGAAC
ATTAATAAGGAGTTGCTGTCAATGGCTCACGCCCTAGATAACGTACAACAGGCCT
TTATTAAATTATTAAGTGAAGAGGAGATACGAAAATTGCTTTAA

MVNDILERMYKENIPKSYLTSVPLVISQKGRRTYSFSMTGGQQIDGVKFTQIYEDYMK
LLSQGKDIAELYQKYSKEELANLGINIYQSNDIERTEERTFDEIISWVSNPYATRPIQERH
TIQLEPTRFSLEDKKRIEEAAQGLSEIDLIDLVLDYDINLDNTSVNRHIVGLTNNTQV
TYYFQEQLNKELLSMAHALDNVQQAFIKLLSEEIRKFAL*

ID-14

Clone 31

ATGAATAAAAGAAGAAAATTATCAAAATTGAATGTAAAAAAACAACATTAGCTT
ATGGAGCTATCACTTAGTAGCCCTTTTCATGTATTTGGCTGTAACGGTCATCT
TTAAAAGTTCACAGTTACTACTGAATCTTGTCAAAAGCAGATAAAGTTCGCGTA
GCCAAAAAAATCAAAATGACTAAGGCGACATCTAAATCAAAGTAGAAGATGTAA
AACAGGCTCCAAAACCTCTCAGGCATCTAATGAAGCCCCAAAATCAAGTTCTCAA
TCTACAGAAGCTAATTCTCAGCAACAAGTTACTGCGAGTGAAGAGGCGGCTGTAG
AACAAAGCAGTTGTAACAGAAAATACCCCTGCTACCAGTCAGGCACAACAAACTTA
TGCTGTTACTGAGACAACCTACAAACCTGCTAACACCCAGACAAGTGGCCAAGTAT
TGAGCAATGAAACTGCAGGGCGCGATCTGCTGCTGCAGCACAAATGGC
TGCTGCAACAGGAGTCCTCAGTCTACTGGAAACATATTATTGCCCGTGAATCAA
ATGGTAATCCTAATGTTGCTAATGCCCTCAGGGAGCTTCAGGACTTTCAAACGAT
GCCAGGTTGGGTTCAACAGCTACAGTTCAGGATCAAGTTAA

MNKRRKLSKLNVKQHLAYGAILVALFSCILAVTVIFKSSQVTTESLSKADKVRVAK
KSKMTKATSKSKVEDVKQAPKPSQASNEAPKSSQSTEANSQQVTASEEEAVEQAV
VTENTPATSAQQTYAVTETTYKPAQHQTSQVLSNGNTAGAVGSAAAQMAAATG
VPQSTWEHIIARESNGNPNVANASGASGLFQTMPGWGSTATVQDQVNSAIKAYRAQG
LSAWGY*

ID-15

Clone 32

ATGATTGTTGGACACGGAATTGATTACAAGAGATAGAGGCGATTACTAAAGCAT
ATGAGCGTAATCACGTTGAGAACCGCGTTGACCGAACAGAATTGCTTCTT
TTAAAGGAATTCCAATCCAAGCGTCAGATGTCTTTAACAGGGCGATGGC
AGCAAAAGAGGCTTATAGCAAAGCACTGGAACAGGAATTGGAAAGTTAATT
CATGATATCGAAATTATCGGATGATAAAGGAGCGCCTTGATTACAAAAGAAC

FIG. 1 CONT'D

GTTTAATGGAAAATCTTTGTTCAATATCTCATAGTGGTAATTATGCACAAGCTAG
TGTTATTTGGAGGAAGAAAAATGA

MIVGHGIDLQEIEAITKAYERNQRFAERVLTEQELLLFKGISNPKRQMSFLTGRWAAKE
AYSKALGTGIGKVNFHIEILSDDKGAPLITKEPFNGKSFVSHSGNYAQASVILEEK*

ID-16

Clone 35

ATGATTTTGTACAGTGGGGACACATGAACACAGCAGTTCAACCGTCTTATTAAAGA
AGTTGATAGATTAAGGGACAGGTGCTATTGATCAAGAAGTGTTCATTCAAACG
GGTTACTCAGACTTCGAACCTCAGAATTGTCAGTGGTCAAAATTCTCTCATATGAT
GATATGAACCTTACATGAAAGAAGCTGAGATTGTTATCACACATGGCGGCCAGC
GACGTTATGTCAGTTATTCTTAGGGAAATTACCAAGTTGTTCTAGGAGAAA
GCAGTTGGTGAACATATCAATGATCATCAAATACAATTAAAAAAATTGCC
ACCTGTATCCCTGGCTGGATTGAAGATGTAGATGGACTTGCAGAACGTTGAAA
AGGAATATAGCTACAGAAAAATATCAGGGAAATAATGATATGTTTGTCAAAATT
AGAAAAAAATTATAGGTGAAATATGA

MIFVTVGTHEQQFNRLIKEVDRLKGTGAIDQEVIQTGYSDFEPQNCQWSKFLSYDDM
NSYMKEAEIVITHGGPATFMSVISLGKLPPVVPRRKQFGEHINDHQIQFLKKIAHYPL
AWIEDVDGLAEALKRIATEKYQGNNDMFCHKLEKIIGEI*

ID-17

Clone39

TTGGAAGACAAATTATTCAACAAACATTATAGGCATTACTATTTAAACTTATT
GTTTATATGGTCTATTATTGTTCACCGTTATCATAGCTTTATTGCGACTAAAGAG
TTAGGTGTTAGCACTAGCCAAGCAGGATTAGCAACGGGGATTATATTGTTAGGGAC
TTGATTGCTCGTCTATATTGTAAGCAATTAGAAGTTCTAGGACGTAAGTTAGT
TTACGTGGAGGGCTATTTTACTTACTAACAACTTAGCTTATTATATGCC
AAGTATCGGAGTAATGTATTAGTCGTTCTAAATGGTTTGGTTATGGCGTCGT
GTCAACAGCAACTAATACTATTGTAACAGCCTATATACCAGCTGATAAAAGAGGTG
AGGGGATTAACCTTACGGTCTATCAACAAGTTAGCCGAGCTATTGGCCTTTG
TAGGAACATTATGCTAGACAAACCTCATATTAACTTAAATGGTTATTGTATTAT
GTAGTATTAAATTGCGATTGTTAGTGGAGCATTGTTCCCAGTCAAAAATA
TTACTTAAATCCAGAACAGTTAGCTAAATCAAAATCATGGACTATTGATAGTTC
ATTGAGAAAAAAAGCAATTATCACAATTATTGCAATTGTTATGGGTATCTCCTAT
GCTTCCGTGTTAGGTTCCAAAAATTATACAAACAGAAATTAAATTGATGACAGT
AGGAGCTTATTCTTATTGTTATGCACCTGTCATCACTTAACCAGACCACATCTAT
GGGAAGATTAATGGACGCTAAGGGAGATAAGTGGGTGCTTATCCAAGTTATCTGT
TCTTAACTTGGACTTGCTTATTAGGGAGTGCTATGGGAAGTGTACCTACCTTC

FIG. 1 CONT'D

TATCAGGTGCTTGATTGGTTGGTATGGCACCTTATGTCTTGTGCCAAGCAG
 CATCAATCAAAGGTGTTGAGGAACATCGTTCAATAACAGCCATGTCAACTTACATG
 ATAGGTCTGATTAGGGTAGGTGCTGGACCTTACATTTGGGACTTGTAAAGAT
 GGTTTCTGGAGCTGGTGTGCAATCCTTAGAGAATTATTCTGGATAGCAGCGATT
 ATTCCCTGTTGTTGTGGTATTCTATATTCTAAAATCATCTAGACAAGTTGAAACT
 AAAACTATA
 TAA

MEDKLFNKHFIGITILNFIVYMYYLFTVIIAFIATKELGVSTSQAGLATGIYIVGTLIARL
 IFGKQLEVLGRKLVLRGGAIFYLLTLAYFYMP SIGVMYLVRFLNGFGYGVVSTATNTI
 VTAYIPADKRGEGINFYGLSTSLAAIGPFVGTFMLDNLHINFKMIVLCSILIAIVLG
 AFVFPVKNITLNPEQLAKSKSWTIDSFIEKKAIFITIIAFLMGISYASVLGFQKLYTTEINL
 MTVGAYFFIVYALVITLTRPSMGRMDAKGDKWVLYPSYLFGLALLGSAMGSVT
 YLLSGALIGFGYGTFMSCGQAASIKGVEEHRFNTAMSTYMIGLDLGLGAGPYILGLVK
 DGFLGAGVQSFRELFWIAAIIPVVC GILYFLKSSRQVETKTIZ

ID-18

Clone 47

ATGAATAGTGAACCTAAAAGTCAGTCACAGAAGTAAAAAATAGCAAGCAATCAG
 AAGTGAAGAAAGATAAAAAAATGACAAAAAAGAACATTAGCCTATCTCAAAG
 AGCATGAGCAAGAAATCATAGATTATGAAAATTACATAACAACCAATTGAGTC
 CGTTCAATTGATTGGTCAAGTGTAAAAGTAGAACAAAGCGGGAAATGGAACCTCA
 CAAGGGGGTGATTATAATCTTCACTGAGAGGAAAGTTAACATCTACAAAATTCA
 AAAATTAAAGTTGATTTTATTAGCTCATAAAAATGATATCCAAATATCAAAT
 CAATGGGAATGCTAAATAAGCCATATACATAAAAATGGTATTGGCACATTAT
 GAATAG

MILGGCQMNSEPQSNEVKNSQSEVKDKKMTKKEQLAYLKEHEQEIIDYVKLHN
 NQIESVQFDWSSVKVEQSGNGTPQGGDYNLSLRGKFNLQNSKLIVDFYLAHKNDIPN
 IKSMGMLNKPYIHKNGIWHIYEZ

ID-19

Clone 102

ATGAAAAAAGATTGATTATCAAAGTTATTAAAATGATTGTTATTGTTTTA
 ATTAGTGTAGCAGCTAGTTTATTTCACGTTGCCAAGTCGAGATGATAAA
 TCCTTATTCAAATGGTCAACGTAAGCCTGGAAACTCTTATATGCTTATGATAAA
 TCCTTGATAAGCTATTAAAGCAAAAATAGAAATGACAAACCAAAATATAAAGC
 AAGTTGCTTGGTATGTTCTGCTGCTAAGAAAACTCATAAGACAGTTGTTGTCGTT
 ATGGTTTGCAGATAGCAAAGAGAATATGAAGGCATATGGTTGGCTGTTCTAG
 TTAGGATACAATGTTCTATGCCTGACAACATTGCACATGGTAAAGTCATGGCA

FIG. 1 CONT'D

GTTGATAGGCTATGGCTGGAACGACCGCGAGAACATTATCAAATGGACAGAAATG
 ATAGTGGATAAGAACATCCATCAAGCCAATTACTTATTGGTGTTCATGGTGG
 AGCAACAGTCATGGCTAGGGTAAAAAATTACCTAGTCAGGTTGTTAATAT
 CATTGAAGATTGTGGTTATTCTAGTGTGTTGGGATGAATTAAAATTCAAGGCTAAAG
 AGATGTATGGTTACCGCCTCCCCTTATGAAGTTCAACAATTCTAAAAA
 TCAGAGCAGGTTTCGTATGGACAAGCAAGTAGTGTGAAACAATTGAAAAAGAA
 TAATTACCGCCCTCTTATTGTTGATAAGGATAATTGTTCCAACAAGTAT
 GGTATGACAACATAAAGCTACAGCAGGTAAGAAAGAGCTTATATTGAAAAA
 GGGGCAAAACATGCGAAATCTTGAAACAGAGCCAGAAAATATGAGAACGTA
 TCTCTAGTTTGAAAAAATATGAAAAATAA

MKKIRLSKFIKMIVVILFISVAASFYFFHVAQVRDDKSFISNGQRKPGNSLYAYDKSFD
 KLLKQKIEMTNQNIKVWVPAAKKTHKTVVVHGAFANSKENMKAYGWLHKLG
 YNVLMPDΝΙAHGESHGQLIGYGWNDRENIKWTMIVDKNPSSQITLFGVSMGGATV
 MMASGEKLPSQVVNIEDCGYSSVWDELKFQAKEMYGLPAFPLLYEVSTISKIRAGFSY
 GQASSVEQLKKNNLPALFIHGDKDNFVPTSMVYDNYKATAGKKELYIVKGAKHAKSF
 ETEPEKYEKRISSFLKKYEK*

ID-20

Clone 120

TTGAGGAGTAATATGGTAAAGACAGCAGTTAATGGCGACATACAATGGCGAAA
 AATTATATCTGAACAACTTGATTCAATTGCCAACAGACATTAAAACCAGATTAT
 GTATTATTGAGGGATGATTGTTCAACGGATGAAACAGTCATGTCGTCATAACTA
 TATCGAAAACATGAGTTAGAAGGCTGGAAAATTGTTAAAACGACAAAAACTTA
 GGCTGGCGTTAAATTTCGTCAATTACTTATTGATGTTAGCCTATGAGGTTGAC
 TATGTCTTTTAGTGTCAAGATGATATTGGTATCTTGATAAAAACGAACGACA
 GTTTGCCATTATGTCAGATAACCCTCAAATTGAGGTTTGAGTGCAGACGTTGATA
 TCAAAACGATGTCAGAGCCAGTGTCCACATTCTAACCTTCTTAGTG
 ATAGAACAGTCAGTATCCTAAAGTATGATTATCAAACATTCCGCCCCGGATGG
 ACCATTGCTATGAAGAGAGATTGCGCAAGCTATCGCTTGA

MRSNMVKAVLMATYNGEKFISEQLDSIRQQTLKPDYVLLRDDCSTDENVVVNNYI
 AKHELEGWKIVKNDKNLGWRNLFRQLLIDVLAYEVDYVFFSDQDDIWYLDKNERQF
 AIMSDNPQIEVLSADVDIKTMSSTEASVPHFLTSSSDRISQYPKVYDYQTFRPGWTIAM
 KRDFFAQIAZ

ID-21

Clone 143

ATGATTCATGAGATTACGATTGTCAATTATTGAAAAAGGAAGTTACGTTATT
 GAATTATATTAAATGCTGAGGGCGAGAGAGTAGTTATTATAATCATAGATTGTCC

FIG. 1 CONT'D

GTAGTGTAGTCCATTATCGTCTATTGATTTACTTGCACAAGAAGTAC
 CTCACTTGCATGATTACATCTATAATGCAAGAGATGATCACTACGATACTTGGAAAG
 TTTAAAGAATTAAAGGAGTCAAACCATCCAGTCCTTGGCATTCTCTGAAAGGTG
 GCACGATAGTCGCTTGACTTCTAAAAGCCTGCAGAATGTTACAATTAAACCGACC
 TTGATGAAGAAGTGAATCGACCATCATTCAATTAAAGACAGTCGAAAAATCAGTC
 AGAAATCCTTGGCTCACCTGATTAAACCTTGTGAGCAAGAACTATATCGTAC
 AACTCAATTTCCTCTCAAGCATTAGACCAAGATTATCTTCTGGCAAAGGTAAT
 TGGTGTGAGTATGATACTGTTAATTTCACTACGATAACGGTTAACAGCTTATTAT
 AAAGATACTTGAGTAA

MIHEIHDCQFIEKGSYVYLNYYINAEGERVVIIIDFVRSPILYRLFMILLAQEVPHLHD
 YIYNARDDHYDTWKFKELKESNHPVLLAFSERWHDSRLTSKSLAECLQLTDLDEEVKS
 TIIQLRQFEKSVRNPLAHLIKPFDEQELYRTTQFSSQAFLDQIIFLAKVIGVEYDTVNFHY
 DTVNKLIKILE*

ID-22

Clone 1

ATGGTAAAAGTTCAAATTAGGGTATCCACGTCTGGTGAACAGCGCGAATGGAA
 GCAAGCGATCGAAGCTTCTGGGCAGGGAATCTGAACAAAAAGATTAGAAAAAA
 CAACTAAAACAATTACGTATCAATCATTAAAGAAACAAAAGAGGCAGGTATTG
 ACCTTATTCCAGTGGGGGATTTCTTGTATGATCATGTTGGATTGTCAATTCA
 ATTCAATGTAATCCAAAGCGTTCGATGAGTATGAGAGGAATTAGACCTTATT
 TTGCTATTGCAAGAGGTGACAAAGATAATGTCGCATCATCTATGAAAAAGTGGTT
 AATACCAACTACCAACTACATAGTCCCAGAATGGAGGTTGAGACTAAACCTCACTT
 GCAGAATAATTACTACTGATCTTATCTAGAAGCTAGGGAAGTAGTTGGTGATA
 AAGCAAAGCCGGTTATC

MEEIMVKVSNLGYPRLGEQREWQIAIEAFWAGNLEQKDLEKQLKQLRINHLKKQKE
 AGIDLIPVGDFSCYDHVLDSLQFNVIPKRFDEYERNLDLYFAIARGDKDNVASSMKK
 WFNTNYHYIVPEWEVETKPHLQNNYLLDLYLEAREVVGDAKPVI

ID-23

Clone 2

ATGGTGTACTTTATTGCTAATGGTAGCCAAGTCAAGTTGATGGTTACATGGCTG
 TTTATAACGATACTGACAAAATAAAATGTTACCAAGATATGGAGGAAGGAGAAAG
 TTATCAAGTTAA

MVLLLLLMVAKSSLMVTWLFITILTKIKCYQIWRKEKVIKL

ID-24

FIG. 1 CONT'D

Clone 14

ATGAACAAAAAAATTCCGGGATCGGCTGGCTCGATTGCAGTACT
TAGTTAGCTGCATGTGGACATCGTGGTGCCTCTAAATCTGGTGGTAA
ATCAGATAGCTGAAGGTTGCAATGGTAACAGATAACCGGTGGTGTG
ATGATAAATCATTAAACCAATCTGGTGGGAGGTATGCAAGCTTGG
GGCAAGAAGAACATGGCCTAAAAAGGAGCTGGTTTGACTATTCCA
ATCGGCAAGTGAATCTGATTATGCAACTAACTTAGATAACAGCTGTGT
CTAGTGGTTATAAATTGATTTCGGTATTGGATTTCCTCATGATG
CTATTGATAAAGCAGCAGACAATAACAAAGATGTTAATTACGTAC
GTTGATGATGTTATTAAAGGGAAAGATAATGTTGCAAGTGTGCTTT
GCGGATAATGAATCAGCTTACTTAGCAGGTATTGCAGCCGCTAAAAC
TACCAAAACAAAAACAGTTGGCTTGTAGGTGGTATGGAATCTGAGG
TTATTACCGTTTGAAAAAGGTTGAAAGCAGGTGTCAAATCAGTTG
ATAAAATCAATTAAAATTAAAGTTGACTATGCTGGTCATTGGTGTGAT
GCTGCTAAGGGTAAGACAATTGCAGCCGCACAATATGCTCTGGCGC
AGATATT

MNKKISIGLASIAVLSAACGHRGASKSGGKSDSLKVAMVTDGGVD
DKSFNQSGWEGMQAWGKKNGLKKGAGFDYFQSASESDYATNLDTAVS
SGYKLIFGIGFSLHDAIDKAADNNKDNYVIVDDVIKGKDGVASVVFAD
NESAYLAGIAAAKTTKTKTVGFVGGMESEVIRFEKGFEAGVKSVDKSI
KIKVDYAGSGFDAAKGKTIAAAQYASGADI

ID-25

Clone 20

ATGTTACATTCTAAAAAAATACATTCTATCGCTTATTGCCGTTCTC
TCTTAGCAACATATACGAGTTACAACCAAATCATGTAGCGGCTGA
ACAATCACAAAAACATCAACTGTTATGAGTCAAAAAAACTATTG
AACATAAGTTAAAAGTTGCAGATAAAAGAAGCTGCTCCTCTACGCT
AAAATCGACCATAATCCAACGACATATTGAAGTCAAAAAAAGCAAAAG
ATTAAAAGTTATTGAATTGTATATTAAACAAAGATATCAACCAACTA
GAGAAGCAAAATAAACGTCTACTAACTAAATTCTATACATTCTATTGA
TAATCAAACATGGGATAGCACAAGTGAAGTCAAAAAAATTGATTGATA
AGACAACCCTATCCACTAACGAAAAAGATAGATTAAAATTATTTT
GAACAACGTGCTTACCTTGAGACAAGGTTGAACGACCGCTATCAAAA
ATTGATAACTCTATTGAAAACAAAATAAAGAAACTAAAAATATTAA
CGTCAAAATAGAAAAAATCTATCAAAAACATGGTATTACAAAAGA
GGTATTAAAACTTACTATGCTAAAAAAACAGTACGAGCTGACTGA

FIG. 1 CONT'D

MLHSKKIHSLSLIAVSLATYSLQPNVAAEQSQKTSTVLMQSQTIEHK
LKVADKEAAPLYAKIDHIQRHIEVKKAKDLKVIELYINKDINQLEKQNK
RLLTKFYTSIDNQTWDSTSEVKKLIDKTLSTNEKDRKLKYFEQRAYLET
RLNDRYQKFDNSIENQNKEKILTSKIEKIYQKHGKTVKEVLKTYYAKKTV
RAD*

ID-26

Clone 25

Clone 25 (partial sequence)

CTGAATTCCCAAAAACGCTACAATCAAACCTGGTATCCTACTTATGGTTTCTGAT
ACTTATGCATTGTTACTAAAGAGTTGCCAGACAGAATAAAATCACCAAGAT
CTCTGATCTCAAAAGTTATCAACAACTATGAAGGCAGGGGTGATAGTCATGGA
TGAATCGCGAGGGAGATGGATACACTGATTCGCTAAAACATACGGTTTGAATT
TCACATATTTACCCATGCAAATTGGCTTAGTCTATGATGCGGTTGAAAGTAACAA
AATGCAATCTGTATTAGGCTACTCCACTGACGGTCGTATTCGAGCTATGATTAG
AAATTAAAGGGATGATAAAAAATTCTTCCTCCTTATGAAGCCTATGGTTGTCA
ACAATTCTATCATCAAAAAAGATCCTAAACTAAAAAAATTACTCCATCGACTCGAT
GGTAAAATCAATTAAAAACGATGCAAAACCTTAATTATATGGTAGATGATAAAACT
TTAGAACAGCTTGGCGTAATCATGGTCATAGCTGTTCTGTGAAATTGTTATCCG
CTCACAAATTCCACACAACATACGAGCCGGAAGCATAA

LNSQKRYNQTWYPTYGFSDTYAFMVTKEFARQNKITKISDLKKLSTTMKAGVDSSWM
NREGDGTYDFAKTYGFESHIYPMQIGLVYDAVESNKMQSVLGYSTDGRISSYDLEILR
DDKKFFPPYEASMVNNSIKKDPKLKLLHRLDGKINLKTMQNLNYMVDDKLLEAW
RNHGHSCFLCEIVRSQFHHTYEPEA*

ID-29

Clone 37

ATGAAAAAAATTACTTCCCTAACATGTCTAACATGATGTCTTATGT
TTAGTGGCATGTTACTAACAGCAAGCAATGTCGTCTAACAGCAAGCAATGTC
GTCTAACAGCAAATTAAAGATAAGAATAGTAAAGAAAAGGTGATTACT
GTTGCAACTTACAGCAAACCTACATCTACCTTTAGATTGATTAAA
GATAATGTAAAAGAAAAAGGATATACTTAAAGGTTGTCATGGTCTC
TGACTATATTCAAGGCTAACATTGCTTGTAGAAAACAAAGAACATGATG
CTAACCTTTACAACATGAATTTCATGAGTATCTTAATAAGGAAA

FIG. 1 CONT'D

ATGATGGTCATCTAGTGTCAATTACACCAATTATCATTCAATTGGCTG
 GTTTTATGGTCAACATTGAAAAAATTGCCGAGCTAAAGACGGT
 GCTAAGGTAGCGATTCCGTCTGATCCTGCCAATATGACTAGAGCTCT
 GCTATTATTGCAAGAAAAGAACTTATCACCTAAAGAACACGTCCA
 AAAAGACCAAGGCTATCGAAGATATTACTAACCTAAAAAATT
 CGAATTGAACCTGTAGCATTACTAACCTCAATCAGGCCTATTTGAA
 TATGACCTTGTCTTAATTCCCTGGATATGTGACAAAAATCAATCTA
 GTTCCTAAAAGGGATAGATTATTATGAGAAAAAACAGATATCCG
 TTTGCAGGTGCCTGGTAGCTCGTGAAGATAATAAAATAGTGATA
 AAATAAAAGTACTTAAAGAAGTACTAACAGTAAAGAGATTGTCA
 CTATATCACTAAGGAGATTCCAAGTGAAGCAGACGTTGCGTTCTAG

MKKLLSLTCLIMMSLCLVACTKQAMSSKQIKDKNSKEKVITV
 ATYSKPSTFLDLIKDNVKEKGYTLKVVMVSDYIQANIALENKEHDANL
 LQHEFFMSIFNKENDGHLVSITPIYHSLAGFYQQLKNIAELKDGAIVAI
 PSDPANMTRALLLQEKKLITLKNTSKTKAIEDIITNPKKLRIEPVALLN
 LNQAYFEYDLVFNFPGYVTKINLVPKRDRLLYEKKPDIFRAGALVARED
 NKNSDKIKVLKEVLTTSKEIRHYITKEIPSEADVAF*

ID-30

Clone 38

CTGTTGGCTAAGGAAACCACTATGTCTGCTCTTGGTATCAAAATTCTGCAGAAC
 CAAGGCTTATATTACAAGGTATAATGTTGCTAAAATGAAGTTAGATGATTGGT
 TACAAAAGCCCAGTAAAAACCATATTCAATTATCTTAGATTAGATGAAACAGTT
 TTAGATAATAGCCCATATCAAGCAAAGAATATTAAAGATGGCTCTAGTTCACGCC
 AGAGAGTTGGGATAAATGGGTGCAAAAGAAATCAGCTAAGGCTGTTGGGCC
 AAAGAATTGGTGAAGTATGCTAATGAAAAGGGAAATAAAATTATTATGTCTCAGA
 TCGTACAGATGCTCAAGTTGATGCGACTAAAGAAAATTAGAGAAGGAAGGTATA
 CCTGTTCAAGGGAAAGACCACCTGCTTCTTAAAGGAATGAAATCTAAAGA
 GAGTCGCCGTCAAGGAGTTCAAAAGATACCAATTAAATTATGCTTTGGAGATA
 ATTAGTTGATTTGCTGATTTCTAAATCATCTAGTACAGATAGAGAACAACTAC
 TAACTAAACTTCAAAGTGAGTTGGTAGTAAATTATTGTTCCCAAATCCTATGT
 ACGGTTCTGGAAAGTGCTATTATCAAGGAAAACATCTGGATGTTCAAAAACAA
 TTGAAAGAACGACAAAAATGTTGCATTGTTGATGATTAA

MAKLTVKDVDLKGKKVLVRDFNVPLKDGVTNDNRITAALPTKYIIEQGGRAILFSH
 LGRVKEEADKEGKSLAPVAADLAALKLGQDVVFPGVTRGAKLEEAINALEDGQVLLVE
 NTRFEDVDGKESKNDEELGKYWASLDGIFVNDAFGTAHRAHASNVGISSNVEKAV
 AGFLLENEIAYIQEAVETPERPFVAILGGSKVSDKIGVIENLLEKADKVLIGGGMTYTFY
 KAQGIEIGTYLEKEDKLDVAKDSZ

ID-31

FIG. 1 CONT'D

Clone 41

ATGGATAATAAAGGTAAATAACGCCAATGTGATTGATGCAATCGCTGAGGGTGCAA
GCACAGGTGCACAAATGGCTTCTCAATTGGTGCTAGTTGATTGCCTTGTGGTT
TAGTTCTTGATTAA

MDNKGNNANVIDAIAEGASTGAQMAFSIGASLIAFVGLVSLI

ID-32

Clone 42

ATGAAAAAGAAAAACAAATCCTCTAACATTGCTATAATTGCAATCTT
TTTGCTATTATGCTTGTCAATTCTATTGGTCAATTATTAGTT
TTGGTTAGTCCTATTAAACCTACTTGATGCATATCCCAGTTATT
TTGCATCTATAGCCTATGGACCTCGTATTGGTGCAACTCTAGGCGCCT
TAATGGGGGGATCAGCGTAGCTAACAGCAGCATTGTTCTATTACCA
ACGAGTTACCTCTCACCTTGTGAAAATGGTAATTTCGATTACCA
CTAATTATTGCACCTGTACCACGTATTCTAACGGGATTATTCCCTAT
TTCGTTACAAATTACTACACAACCGCTTGGTTGGCTATCTCAGGT
GCTATAGGCTCTAACAAACACAGTATTGTTATCTGGAATT
ATCTTTTCAAGTACTTATAATGGGAATATCAAGCTAACGCTCGCT
GGGATTATTCATCTAACCTAGCTGAGATGGTATTGCAGCTATC
ATTGTATATCTAACGTACCTCGTATTCTCAATTAAACATTAA

MKKKNKSSNIAIIIAIFFAIMLVIHFLSSFIFSWLVPIKPTLMHIPVIIASIAY
GPRIGATLGMGGISVANSSIVLLPTSYLFSPFVENGNFYSLIIALVPRILI
GIIPYFVYKLLHNRFGLAISGAIGSLNTVFVLSGIFIFFSSTYNGNIKML
AGIISNSLAEMVIAAIIVYLTDPRLNIKH*

ID-33

Clone 43

TTGAATATGACATTACAAGACGAAATCAAAAAACGCCGTACTTGTGCCATCATCTC
TCACCCGGATGCTGGTAAGACGACTATTACTGAGCAATTATTATATTGGTGGTG
AAATTAGAGAAGCAGGGACAGTAAAGGGAAAAATCAGGTACTTGTCAAAGTC
CGACTGGATGGATATTGAAAAGCAACGGGTATCTCTGTTACTTCATCTGTTATGC
AATTGATTACGCGGGTAAACGTGTTAA

MNMTLQDEIKKRRTFAIISHPDAGKTTITEQLLYFGGEIREAGTVKGKSGTFAKSDW
MDIEKQRGISVTSSVMQFDYAG

FIG. 1 CONT'D

KRV

ID-34

Clone 44

ATGGCAGATAAAAACAGAACATTAAACTGTAGGTGCAGGATCTTC
TAGCACACAAGAAAAAATTGAAAAGCCTGCTTTGTTATGCAAG
ATGCGTGGCGTCGCTTGAAAAAAAACAAATTAGCAGTAGTTCACTC
TATTATTAGCTCTTACTTACTTTGTTAGCCTCAAATTATTTG
TAACTCAGAAGGATGCTAATGGGTTGATTGAAAGTAACGACA
TATCGCAACTTACCACTAAATTGAGTTCAAACCTCCTTTGGAAT
GGTAGCATTAAATCCATCA

MADKNRTFKLVGAGSSSTQEKIEKPALSFMQDAWRRLKKNKLAVVSLY
LLALLLTFSLASNLFVTQKDANGFDSKKVTTYRNLPPKLSSNLPFWNGSI
NPS

ID-35

Clone 46

ATGAAAAGAAAACAGTTATAAAATTAGGAATTGCAACCTACTAACGGTTATTC
GCTTACACACCAATAAACCTAGCTACAAATCATAACCACAGAAAATTGTTACTG
CTCAAGAGTATAAAACAAAGAGAATGGTACTTACCTTTAA

MKRKQFIKLGIAITLLTVISLYTPINLATNHTENIVTAQEYKTKENILFLL

ID-36

Clone 50

ATGTTTATAATCCTTACTTTTATTGTTACTAATTACAATTGCTGTATTTCTTAG
CTAAGAAAAAATGGCAATTACCGACATTACTTCATTGGTTGCTATTATCTATA
ACCAAGGGCTGTGGGAACAGTTGATTAAT

MFYNPLLIVLITIAVFFLAKKWQLPTFTFIGLLFIYNQGLWEQLIN

FIG. 1 CONT'D

ID-37

Clone 51/52

GTGGTGCAAATAATGAAAAACATATAAAAGTATCATACCAATAGT
TCTTATTGGTATGATACTAGGAGGCTGTCAAATGAATAGTGAACATA
AAAGTCAGTATAATGAAACAAAAAGTAGCAAGCAATCAGAAGTGA
GAAAGATAAAAAAAATGACAAAAAGAACAAATTAGCTTATCTCAAA
GAGCATGAACAAGAAATAATTGATTTGATTCAGAATAAAAAA
GATAGAATCTGTACAAATTGATTGGAATGATGTTCGATGGAGTAAAG
GGGGAAATGGTACACCTCAAGGAGGAGAGGGGATTTACTTTT
GGGGAGATTAATAATGATTCTGAATCAAGTTGGAGAGTTGATATTGA
TATAGAAAAAGGACGGCTAGACCTAAAAAATATGTATTAGGACAA
CCTATACGAATTGGAGGTAAATTATTGAGTAA

MVQIMKKHIKSIPIVLIGMILGGCQMNSEHKSQYNETKSSKQSEVKDK
KMTKKEQLAYLKEHEQEIIDFVKSQNKIESVQIDWNDVRWSKGNGT
PQGGGEGLLFGEINNDSESSWRVDIDIEKGRDLKNMYLGQPIRIGGKLF
E*

ID-38

Clone 53

ATGGAATTTGGCTTATAATGCTTCACAGCAATCGGTGTTCTATT
CCGCACGGTAATCATTCCACTTTATTCACTATAAGGATATGTCTCCA
TTAGAGTTAGAACACAAGGATGGTGGCAGAGCATAGAGGACATC
ATATTGATGCATTAGGGAAAAAGATTCTACAGAGAAACCAAAGCA
TATTCTCATGAACCTAATAAGGAACCTCACACAGAGGAAGAACACC
ATGCAGTAACACCGAAAGACCAACGTAAGGCAAACCAAATAGCCA
GATTGTCTACAGTGTCAAGAAATTGAAGAGGCAAAAAAGCTGGT
AAATACACAACATCTGATGGTTACATTGATGCTAAAGATATTAA
AAAAGATACAGGTACAGGTTATGTCATTCCACATATGACACATGAGC
ATTGGGTACCAAGAAAGATTATCAGAGTCGGATTAAAAGCAGCT
CAAGAATTCTTCAGGAAAATCTGAAGCAAATCAAGACAAACCAA
AACAGGTAAAACAGCTCAAGAAATCTATGAGGCAATTGAAACCAAA
GCAATTGTTAACCTGAAGATTATTATTTGGAATTGACAAAGCGAC
AGACTATAAGAATGGTACATTGTAATTCTCATAAAGATCATTACC
ATTATGTGGAATTAAAATGGTTGATGAAGAAAAAGATCTTAGCT
GATTCAAGATAAGACATATTCTTAGAAGACTATTAGCTACGGCTAA
ATATTACATGATGCACCCAGAAAAACGTCTAAAGTTGAAGGATGGG
GTAAAGATGCTGAAATTATAAGGAAAAGGACTCTAATAAAGCAGA
TAAACCAAGTCCTGCACCAACTGATAATAATCAACATCAAATTCTA

FIG. 1 CONT'D

GTGACAAAAACTTAAGTGCTGCAGAAGTATTCAAACAAGCAAAACC
AGAAAAAAATTGTACCGCTTGATAAAATTGCTGCTCACATGGCATATG
CAGTTGGATTGAAAGATGATCAATTGATTGTTCCATCATGATCATT
ATCATAATGTTCCATGGCATGGTTGACAAGGGTGGTTATGGAAA
GCACCAAGGCTATAACATTACAACAACCTCTCAACAATTAAATA
CTACATGGAACATCCTAATGAATTACCAAAAGAAAAGGGTTGGGGA
CACGACAGTGATCATAACAAAGGCTAAATAAGACAATAAGCCA
AAAATTATGCTCCAGATGAAGAACCTGAAGATTCAAGGAAAGTAAC
CACAACTATGGTTTATGATGTTAATAAAGGTTCAAGCGAAGAAGA
ACCAGAAAAACAAGAAGATGAATCAGAGCTAGATGAATATGAAC
GGAATGGCACAAAACGCTAAGAAATATGGTATGGATAGACAATCTT
TGAAAAGCAACTCATCCAATTATCAAATAATAGTGTAAAGTTTG
AAAGC

MEFLAYNAFTAIGVSIPHGNHFIFIYKDMSPLEATRMVAEHRGHHI
DALGKKDSTEKPKHISHEPNKEPTEEEHHAUTPKDQRKGKPNSQIVYS
AQEIEEAKKAGKYTTSDGYIFDAKDIKKDTGTGYVIPHMTHEHWVPKK
DLSESELKAAQEFLSGKSEANQDKPKTGKTAQEYEAIEPKAIVKPEDLL
FGIAQATDYKNGTVIPHKDHYHYVELKWFDEEKDLLADSDKTYSL
YLATAKYMMHPEKRPKVEGWGKDAEIYKEKDSNKADKPSAPTDNK
STSNSSDKNLSAAEVFKQAKPEKIVPLDKIAAHMAYAVGFEDDQLIVPH
HDHYHNVPMAWFDKGGLWKAPEGYTLQQLFSTIKYYMEHPNELPKEK
GWGHDSDHNKGSNKDNCNKNYAPDEEEPDSGVTHNYGFYDVNKGS
DEEEPEKQEDESELDEYELGMAQNAKKYGMDRQSFEKQLIQLSNKYSV
SFES

ID-39 (Same as ID-76)

Clone 56

ATGAGGAAACGTTTCTTGCTAAATTATTGTTGTTACTTTATT
TCTTTTCTTATTCTTTCCGCTTTAAGGCCAAAGATTGTCAGGT
TGTTTATGCAAGTTCAAGGAGATCATTGGGACATTGTAACGCATT
TGATTTCCGTATTACATCGCTTGATCTCATTAAAGGTAAGAAAA
TCAACTTACTTATAGGTTGACAATTGCTAACAGTAAAGCCTACAC
TGAGGATTGGAGTGATAAAGGCCAATTGTTGCTCGTTAATAC
TCAAAACCACATGGAGGATTGCAACAATTGCCTCAAACATT
TAAAAAAATCATGGATACTATGCCATTCAAGGATGAAGGATATT
ATTACTTCAGTAGAAGGGTACTCAAACACTTATCCAGAATT
ACTACAGGCGACTGGCAATTAGAACGGCTTCGATGAGGAGACAAG
CGATGTGGTGAAGTGGATATTAAATCAGGATGTAAGGATGAGTATG
TGATCATCCAAGGTTTCTGGAGATCGTTACGTATCTCACTGAAG
ATTCCGGTCGAGAATTATTCCATTATCCTGAAAAAACCCATTGGTC
ACGCTATTGGAGTGGCGTTACTTAATCAGACTTGTTCGTATTG

FIG. 1 CONT'D

GGTGGCGATCAGAAAAAGCAGAATTAAAGGCTTTCACTTGAGAT
GGGCACTGGTTTCAGAATTAGTAGATGCAAAAGCAGCTCTAGTAA
TGTCTAGCTTTGAAAAAGATGGAAAAGCTTATCTTTCTCAGCCAA
TAACGGACGTGGCGAAGTTGCTCTTATCAATTAGTAAAATAA

MRKRFSLNFIVVTIFFFFILFPLFKAKDCQVYASFQGDHWDICNAFDF
PYLHRFDLIKGKENQLYFIGCTIANSKAYTEDWSDKGRIFVARFNTQNHT
LEGLQQLPQTLLKNHGYYAIQDEGYSLITSVEGVLKLTYPFSTTGDWQ
LERLFDEETSDDVVVKVDINQDGKDEYVIIQGFHGDRRLIFTEDFGRELFHY
PEKTPFGHAIWSGRLLNQTCFVFGWRSEKAELRLFHVFDGHLVSELVDA
KAASSNVLAFAEKDGKAYLFSANNRGEVALYQLVK*

ID-40

Clone 57

ATGAAGCACAGTTAAAAGCTTTACGCTTGCTTACTCTCAATATTCTTGTGTTGGTGGAAAGGTCAGTCAGAGACTGTGAATATTGTTCT
GATACAGCATAACGCTCCATTGAATTAAAGATTCTGATCAAACCTTAAAGGAATCGATGTTGACATCGTTAACGAAGTCGCTAACCGTGCTGG
CTGGAATGTTAACATGACGTATCCAGGTTGATGCCGCAGTTAACGCTGTTCAATCTGACAGGCAGATGCGCTAACGCCGGAACACTACTGTT
ACTGAAGCACGTTAAAAGCTTTAACATCTGACAGGCAGATGCGCTAACGCCGGAACACTACTGTT
ACTTCCGTTATTCTTATACAAAAATAATAAAAGTCACAAACTAC
AAACAACAAAAAGGAAAAGTAGTCGGGTGAAAAATGGAACAGCTGCTCAAAGCTTCTAGAACGAAATAACAGCCTGATTCTGG
TTCTATTACGCCCTATGGACGATCAACCAGTTGTGCAATTGCGAT
AAATCAAGGAAAAGCTACGCCATTAAACATGGAAGGCGAACAGCAGTT
GGTAGCTTGCATTGCTGTCAAAAAAGGTAGTGGACACGATAATCT
AATTAAAGAATTAAACACAGCTTGCACAAATGAAATCAGATGGCA
CTTATAATGACATCATGGATAAAATGGCTTGGAAAAGACGCTACAAAA
ACAAGCGGCAAAGCAACAGGTAATGCCAATGAAAAGCAACTCCTG
TAAAGCCAAGTTAAAAATTGTTCTGATTCTCATTGCAACCATTG
AATATCAAAACGGTAAAGGGAAATATACTGGTTTGATATGGAATT
ATCACGAAAATTGCTAAACAGCAAGGTTAAACTTGATATCTCAAA
TCCAGGTTTGATGCCGCTTAAATGCTGTCCAATCTGGCAAGCTG
CGGTGTTATTGCAGGAGCCACAATCACAGAACGCCAAAAATCT
TTGATTTCTGATCCTTATTACACATCTAGCGTTATCTAGCGGTTAA
AAAAGGAAGCAATGTCAAATCATACCAAGATTAAAAGGAAAAACA
GTTGGTGCTAAAAATGGTACTGCCTCATATACTGGTTATCAGACCAC
GCAGATAAGTACAACATCATGTTAAAGCATTGATGAAGCATTAC
AATGTATGATAGTATGAACTCAGGTTCAATTGATGCTCTAATGGATG
ACGAAGCCGTTCTGCTTACGCTTAAATCAAGGTCGTAATTGAA
ACACCTATCAAAGGTAAAAATCAGGCGATATCGGATTGCACTGAA

FIG. 1 CONT'D

AAAAGGGGCAAATCCAGAATTAAATTAAAATGTTAACAAACGGTCTG
 CTTCACTAAAAATCGGGTGAGTACGATAAACTGTTAAAAAATAC
 CTTCCACAGCCAGCACTTCTTCAAACGATAAAGCTGCTAAACCTGT
 AGATGAATCAACTATTTAGGGTTAATTCTAATAACTACAAACAATT
 GCTATCTGGTATTGGAACTAACTTAACGTTAACCTTATCTCGTTGC
 GATTGCTATGGTTATTGGTATTATCTTGGTATGATGAGCGTATCACC
 AAGTAATACTCTCCGCACAATTCAATGATTTGTTGATATTGTCCG
 TGGTATTCCACTCATGATTGTGCCGCTTTATTTCTGGGTATTCCCT
 AATTAAATCGAAAGCATCACAGGTACCCAAGTCCAATTAAATGACTT
 CGTTGCTGCTACTATCGCTCTTCTTAAATGGTGGTGCACATTGC
 TGAAATTGTACGTGGTGGTATTGAAGCTGTTCTTCTGGTCAAATGGA
 AGCAAGTCGCAGCTTAGGTATTCTACGGCAAAACTATGCAAAAGG
 TTATCTTACCTCAAGCAGTACGCCATTGTTACCAAAACTTATCAACC
 AATTGTCACTCTCATTAAAGGATAACAACAATTGTATCAGCAATCGGA
 CTTGTGGAACCTTCCAAACTGGTAAATCATAA

MKHKLKAFTLALLSIFFVFGGKVS AETVNIVSDTAYAPFEFKDSDQTYK
 GIDVDIVNEVAKRAGWNVNMTYPGFDAAVNAVQSGQADALMAGTV
 TEARKKVFNFSDTYYDTSVILYTKNNNKVTNYKQLKGKVGVKNGTA
 AQSFLEENKS KYGYKVKTFDTSLMNNSLDSGIY AAMDDQPVVQFAI
 NQGKAYAINMEGEAVGSFAFAVKKGS HDNLIKEFNTAFAQMKSDGTY
 NDIMDKWLGKD ATKTSGKATGNANEKA TPVKPSYKIVSDSSFAPFEYQ
 NGKGKYTGFD MELITKIAKQQGFKL DISNPGFDA ALNAVQSGQADGVIA
 GATITEARQKIFDFSDPYTSSVILA VKKGSNVKSY QDLKGKTVGAKNG
 TAS YTWLSDHADK NYHVKA FDEASTMYDSMNSGSIDALMDDEAVLA
 YAINQGRKFETPIKGEKSGDIGFAVKKGANPELIKMFNNGLASLKKSEY
 DKLVKKYLSTASTSSNDKA AKPVDESTILGLISNNYKQLLSIGTTLSLT
 ISFAIAMVIGIIFGMMSVSPSNTLRTISMIFV DIVRGIPLMIVAAFIFWGIPN
 LIESITGHQSPINDFVAATIALSLNGGAYIAEIVRGGIEAVPSGQM EASRSL
 GISYGKTMQKVILPQAVRLMLPNFINQFVISLKDTTIVSAIGLVELFQTGK
 S*

ID-41

Clone 58

TTGGAAGGTTACTTATTGCATTGATTCCATGTTGGTGGGAAGTATTGGATT
 GTTAGTAATAAAATTGGAGGGCGTCAAATCAACAAACATTGGAATGACTTAGG
 AGCATTGCTATTGCGATTACGTATGTTATTAA

MEGLLIALIPMFAWGSIGFVS N KIGGRPNQQTFGMTLGALLFAIIVCLF

FIG. 1 CONT'D

ID-42

Clone 70

ATGAATACTATTATAATACATTGAGAACAGATAAAGGTTATAAAAGT
 TTATGAGGGGTATTATGAAATTACTGGTGAAGAATGTGAAGAAG
 CCTAGACCTTGTGATTCCAAGAATATTGTATTGCAGATAACAGATA
 CTTGTGGCTACACTTTTACTCAATGAAGATGGAACAGTTATGATG
 ATGTGACTTCTACAAATTGATGATAAAATTGGTTGGCTAGTCATA
 AAGCTTGGATTCTTATTAGACAACATCAATTTGACTATACCGTAA
 CAGATATTCTGACGAGTATAAAATGCTGCAAATTGAAGGAAGATAT
 TCGGGAGAAAATTGCTCAGTCATTTATGAATATGATATTCAACACTT
 AATTTCGTACTCTCGCATAGAGATGGACTTCATCAAAGGTGAGGA
 AAGGTTATCTTGGCGTAGATTGGTTCTGGAGAATTGGCTATCA
 ATTTCCTACCATCTCTATTGGCTACTTTGGATGTCGATGTCTGT
 GAAGGTATAGCAGAGTGTGGGGATGAACCTGATAGATATTAAAGGTT
 TGAAGTGGGACAACCCATTACTGATATTCAACAAAGAAGAATATT
 CTTATATGAAATAGGTTATTCTTGGAACTAGATTCAACAAAGGAA
 GAATTAGAGGTCGCGATAGCTTGTAGAGCACATCAGATCAGAAC
 AGTTAAAAGTGTGGATTCTCAACGAAGGAAAAACTCGCTTCAGGAA
 CACCAGTGTATTGATGACCAAATTGGTGGAAAGATTGGATAG
 CAGACGAGAAACACTCTCGAAAATTACCTAGGTTGATGATTGTT
 AACCAAACATATGCTCATTCAAGGAGTTACTTGTAAACAGAAGATGG
 CCAAATTGAAAACACAATCAAGCCATTATTGATCCCAGAAAGTT
 GGAACAAAGAATGA

MNTIYNTLRTDKGYKVYEGLYEITGEECEEALDLVIPKNIVFADTDTCG
 YTFLLNEDGTVYDDVTFYKFDDKYWLASHKALDSYLDNINFDTYTVTDIS
 DEYKMLQIEGRYSGEIAQSFYEYDISTLNFRTRIEMDFIKGEERLSWRRF
 GFSGEFGYQFFLPSSIFATFVSDVCEGIAECGDELDRLRFEVGQPITDIY
 QQEEYSLYEIGYSWNLDFTKEEFRGRDSLLEHIRSATVKSVGfstKEKLA
 SGTPVLFDDQIVGKIFWIADEKHSSENYLGLMIVNQTYAHSGVTFVTED
 GQILKTQSSPYCIPESWNKE*

ID-43

Clone 78/94

ATGGAGTTAGTAATTAGAGATATTGTAAGCGGTTTCAAGAACAGA
 GGTCTTGAGAGGAGCAAGTTACCGATTTCAGGTAAAATAACAG
 GGGTCTTAGGTAGGAATGGTGTGGAAAACAACTTATTAAATA
 CTTATGGGATCTGCACTGACAACGGGACCATTTGTTATTGAAG
 GATAATCACGAGTATCCTTACCGATAAGGATATTGGTATTGTTAT

FIG. 1 CONT'D

TCCGAAAAC TAC CTT CCAGA ATTT TA ACAGGGT ATGA ATT GT AAA
 ATTTACATGGATTACATCCTCAGATGATTAATGACAATAGATGA
 TTATTTAGATTTATGGAAATAGGACAAACAGAGCGTCATAGAATTA
 TCAAAGGATATTCTGATGGAATGAAGAGTAAGCTCTCATTAATTGC
 CTGATGATTCTAACGCCAAAGTAATTTACTAGATGAGGCCACTGAC
 TGCAGTTGATGTTGTATCAAGTATTGCAATAAAACGCCTTTGTTGGA
 ATTAAGTGAGGATCATATTATTATATTATCAACTCATATAATGCCCT
 AGCAGAAGATCTATGTGATATTGTTGCTGTATTAGACAAAGGAAAAC
 TCCAAACATTAGATATTGATCGTAAACATGAACAATT CGAAGAGCGT
 CTTCTCAAGTGTGAAGGGAGATGAATATGACAAGTAA

MELVIRDIRKRFQETEVLRGASYRFYSGKITGVLRNGAGKTLFNILYG
 DLAADNGTICLLKDNHEYPLTDKDIGIVYSENYLPEFLTGYEFVKFYMD
 LHPSDLMTIDDYLDFMEIQTERHRIIKGYS DGMKS KLSLICLMISKPK
 VILLDEPLTAVDVVSSIAKRLLELSEDHIILSTHIMALAEDLCDIVAVL
 DKGKLQTLIDRKHEQFEERLLQVLKGDEYDK*

ID-44

Clone 80

TTGTTTATGAGATATACAAATGAAATTTGAAGCCTTGCAAGACCT
 CGAAAACCTGAAGGTGTGGATAAAAAATCCGCTTATATTGTTGGTTC
 TGGTTAGCAGGATTAGCTGCCGCTGTCTTTAATACGTGACGGTCA
 AATGGATGGTCAACGTATT CATATTGAAAGAACTACCTCTTCTGG
 AGGATCACTGACGGTGTCAAACGACCTGATATCGGTTTGT AACGC
 GTGGTGGTCGTGAAATGAAAATCACTCGAATGTATGTGGGATATG
 TACCGTTCCATCCCCCTCTCGAAGTTCCAGATGCTTCTTATCTAGAT
 GAATT TTATTGGCTTGACAAGGATGATCCAAATT CATCTAACTGTCGC
 CTCATT CATAAACAGGGGAATCGCTTAGAATCTGATGGT GATT TAC
 ACTCGGAACACATCCAAGAGTTAGTTAAGCTAGTCATGGAGACTG
 AAGAGTCTTAGGTGCTAAGACGATTGAAGAAGTTTTCAAAAGAA
 TTTTGAAAGTAATTGGACTTATTGGCTACTATGTTGCCTTG
 AGAAATGGCATT CAGCATTGAAATCGCTCGATATGCTATCGCTT
 ATCCATCATATTGGTGGTCTGCCTGATTCACTTCATTAAAATTAAAT
 AAATATAATCAATATGATTCTATGGTGAACCAATCATCAGTTATT
 GAGTCTCATATGTAGATGTTCAATTGATAGCAAGGTAACATAAT
 CTCCGTAGACTTT

MFMRYTNGNFEAFARPRKPEGVDKKSAYIVGSGLAGLAAVFLIRDQQ
 MDGQRIHIFEELPLSGGSLDGVKRPDIFVTRGGREMEMHFECMWDMY
 RSIPSLEVPDASYLDEFYWLKDPPNSNCRLIHKQGNRLES DGDFTLGT
 HSKE LVKLVMETEESLGAKTIEEVFSKEFFESNFWTYWATMFAFEKWH S

FIG. 1 CONT'D

AIEMRRYAMRFIHHIGGLPDFTSKFNKYNQYDSMVVKPIISYLESHNVDV
QFDISKVTNISVDF

ID-45

Clone 81

TTGTTGGCTTCTTATTTATCGTCCGTTGTCAAAATCGCTTCGCTAA
GGAGGAGCAATATGAAAAAAATTACTTAGATGGCTCCTCCTGTACTT
TTCATTATTATCCTTATAGGAATGACTATCTTAGGTAAAGTCCTATATC
AATAAAGTAACAGCTCACAAAATAAACTCTATAACTCTCGAATGAC
TCCTACTATTAACTTCAGGATCCAGTGCTACTCAAGAACGATTAA
CAGCATGTTAGCACAGCTCAACCAAATGGGAGAAAAACATAGCGTTT
TAAAGTTAACTGTCAAAAAAGACAATAGCATTATCTACAATGGACAA
ATTAGCGGCAATGACCACAAACCCCTACATTGTCATTGGATTGAAAAA
TAATGAAGATGGTTATAGTAACATCAAAAAACAAACAAAATGGCTA
CAGATTGCTATGAATGATCTTCAGAAGAAATATAAATTAAACGTTT
TAACGCTATCGGTCAATTCAAATGGTGGCTTATCATGGACTATTTCT
AGAAGATTATTACGACTCTGATGAATTGATATGAAATCATTGTTAA
CAATGGGAACACCTTTAACTTGAAGAAAGTAACACACCTCAAATCAT
ACTCAAATGCTAAAGATTAACTCAGTAATAAAGGAATATTCCATC
AACTCTCATGGTATAACAATTGGCAGGAACTAATTCATATGATGGTG
ATAAAAATTGTTCCATTGCTAGTGTGGAGACTGGTAAATATATTCC
AAGAAACCGCTAAACACTATACCCAACTAACAGTAACGGTAATAAT
GCTACACATTCTGACTTGCCTGATAATCCTGAAGTTATCCAATATGTC
GCAGAAAAAAATTCTTAAAAATGAGAAAGGTAAATTACCAAAACCTC
ACTAA

MLASLFIVRLSKSLRNSMKLLRWLPPVLFIILIGMTILGKSYINKVT
AHKIKLYNSRMTPTILISGSATQERFNSMLAQLNQMGEKHSVLKLTVK
KDNSIIYNGQISGNDHKPYIVIGFENNEDGYSNIKKQTKWLIQIAMNDLQK
KYKFKRFNAIGHNSNGGLSWTIFLEDYYDSDEFDMKSLLTMGTPFNFEES
NTSNHTQMLKDLISNKGNIPSSLMVYNLAGTNSYDGDKIVPFASVETGK
YIFQETAKHYTQLTVTGNNAHSSDLPDNPEVIQVAEKILKNEKGKLPK
PH

*

ID-46

Clone 83

TTGAAATTAGGTATTACAACATTCGGAGAGACAACAATCCTGAAGAAACAAACC
AAAGCTATTACACATCCTGAGAGGGATTGCCAATTAGTTGCTGAGATTGAAC
TAGCTGATCAAGTTGGTTAGATGTATATGGTATTGGAGAGCACCATCGTGAAGATTG

FIG. 1 CONT'D

GGTCTCTGCACCGAAATTATCCTAGCAGCAGGAGCGGTTAGAACTAATAATATCC
 GTTTATCTAGTCAGTAACGATTCTCTTCCAATGATCCTATTGCGGTCTATCAGC
 AATTTCAACGATTGACGCACCTTCAAATGGTAGAGCAGAAATTATGGCAGGGCGT
 GGTCCTTATTGAGTCTTCCATTGTTGGATACGATTAGCGGATTATGATGAT
 TTATTAAATGAAAAATGGATATGTTAGCAATTAACTCAGCGACAAATCTGA
 TTGGAAAGGTCAATTGACACAAACAGTTAATGAGCGACCAATTATCCAAGAGCAT
 TACAAAGACAGTTATCAATATGGGTGGCACACAGGAGGAAATGTTGATTCTACAATT
 CGTATTGCAGAACAGGTTGCCAATTGTTATGCAACTATTGGTGGGAATCCAA
 AGCCTTCGTCAATTGGTCCATTAAAGAAGTTGGTAAGTCCGTATGGACA
 CAAACCAGGAACAACACTAAAGTTGCTGCTCACTCTGGGGATGGATTGAAGAGGA
 TAATCAAACCGCTATTGACCGTTATTTTCCCTACGAAACAGACCGTCGATAATAT
 TGCTAAGGGACGCCCTCATTGGTCTGAAATGACTAAAGAGCAGTATTACGTTCAA
 TAGGTCCAGAAGGTGCTATTTTAGGAAATCCTGAAGTGGTGCACATAAAATT
 ATAGGACTTGGTGA

MKLGITTGETTILEETNQSYPERIRQLVAEIELADQVGLDVYIGEHREDFAVSAP
 EIILAAGAVRTNNIRLSSAVTILSSNDPIRVYQQFSTIDALSNRAEIMAGRGSFIESFPLF
 GYDLADYDDLFNEKMDMLLAINSATNLWKGLTQTVNERPIYPRALQRQLSIWVAT
 GGNVDSTIRIAEQGLIVYATIGGNPKAFRQLVHIYKEVGKSVMDTNQEQLKVAAHSW
 GWIEEDNQTAIDRYFFPTKQTVDNIAKGRPHWSEMTKEQYLRSIGPEGAIFVGNPEVV
 AHKIIGLW

ID-47

Clone 86

ATGATAGAGTGGATTCAAACACATTACCAAATGTATATCAAATGGG
 TTGGGAAGGTGCTTACGGCTGGCAGACAGCTATTGTACAAACCCCTT
 ATATGACTTTGGTCGTTCTTATTGGAGGTTAACGGATTGCTAATA
 GAGGTTATTCTCTGTTAACAGCTTCTGAGGAGTTATTGCTAATA
 ATTAGTATTGGAGTTAGATAAAAGTTGTTCTGTTAGAGCTC
 TGCCCTTCATTATTCTCTGCTTGATTGCGCCAGTAACCTCGCGTAAT
 TGTAGGAACACACTGGTCAACCAGCAGCTTGGTACCTCTTCTT
 GGCAGTTCCCATTGGCTCGTCAAGTTCAAGTTAGCTGA
 ACTTGATGGTGGAGTTATTGAGGCTGCACAAGCCTCAGGTGGAACAC
 TTTGGGATATTATTGTAGTTATCTCGTGAAGGTCTACCAGATTAA
 TTCGAGTATCAACGGTTACTTGATTCTTCTGAGGTGAAACAGCTA
 TGGCTGGCGCTATTGGTGCAGGAGGATTGGTTCTGTTGCTATTACTA
 AAGGATATAACTATTCTCGTGTGATATTACTTAGTGTGAAACAGCTA
 TGATTTATTATTAATTCTTATCCAATTAGGTGATTGGTAAAC
 ACGTCGCTTGAGTCATAAAATAA

MIEWIQTHLPNVYQMGWEGAYGWQTAIVQTLYMTFWSFLIGGLMGLL
 GGLFLVLTSPRGVIANKLVFGVLVDKVSVFRALPFIILLALIAPVTRVIVG

FIG. 1 CONT'D

TTLGSPAALVPLSLAVFPFFARQVQVLAELDGGVIEAAQASGGTLWDII
 VVYLREGLPDLIRVSTVTLISLVGETAMAGAIGAGGLGSVAITKGYNYSR
 DDITLVATILILLIIFIQFLGDFLTRRLSHK*

ID-48 (same as ID-43)

ID-49

Clone 96

TTGGCAGTTAGTTTCACTGAAGTATTGGTGGGATTCTGCTTTTTA
 TTATGATTATCAATATTCCATTGCTCCTTCTTGCTACTTGCGCTTAGG
 TAAACAAACCTTTAAAAACTGTCTATGGTCTTGGATTTCCTGT
 TTTTATTAAAGTTAACACAAAAGTGTACCAACTTGACCCACAACACTCACT
 CCTCGCAGCACTTTGGAGGTGTTATTGTAGGATGTGGTTGGGGAT
 TGTTTTGGAGCGACTCTCAACTGGTGGAACGGGGATTATCATTCA
 ATTCTTAGGAAAATATACTCCTATAAGCCTGGACAAGGGTTATAT
 TGATTGATGGACTTGTACAATTGGTTCTAGCTTGACAGTG
 ATACGGTTATGTTCTATTATTGGTTGATAACTATTAGTTATATT
 TAATGCTATCCAAACTGGATTACAACCTTAAGCACTGTCTTAATCGT
 TTCTCAAGAGCACCAAAAAATAAGACATATATCAATACTGTCGCAG
 ATAGAGGAGTAACAGAAATTCCCGTTAAAGGGGGATTCTGGAACT
 AATCAAATCATGCTTATGACAACATTGCTGGTTATGAGTTGCTAAA
 TTACAAGAGGCAATAGCAGAAATTGACGAAACAGCCTTCATAACAGT
 AACTCCAACATCACAAGCTCTGGACGTGGATTAGTCTTCAAAAAAA
 ATCATGGACGTCTGATGAAGACATTCTATGCCAATGTAA

MAVSFHEVFGWDSAFFIMIINIPLLLKYFGLGKQTFLKTVYGSWIFPVFI
 KLTQSVPTLTHNSLLAALFGGVIVGCGLGIVFWSDSSTGGTGIQFLGKY
 TPISLGQQVILIDGLVTIVGFLAFDSDTVMFSIIGLITISYIINAIQTGFTTLST
 VLIVSQEHQKIKTYINTVADRGVTEIPVKGGYSGTNQIMLMTTIAGYEFA
 KLQEALAEIDETAFITVTPTSQASGRGFSLQKNHGRLEDILMPM*

ID-50

Clone 99

ATGAAAGAAAAACAGTCGAAAAGGCTTATTATATACTACTGATTGTTCCATTAT
 CTTTATAAGTGTCTACATACAGTATTAGCCAGCCTCTAAACTACTCCACCAAA
 AGAATTAGTTATTCTAAGTCCAAATAGTCAAGCCATTAAACAGGAACGATTCCAG
 CTTTGAGGAAAAATACGGTATAAAAGTTAACAGGTTATTCAAGGTGGGACAGGGCA
 ACTAATAGATAGATTAAGTAAGGAGGGTAAGCAGTTGAAGGCAGATTTCTTG
 GAGGAAATTATACGCAATTGAAAGTCATAAGGCATTGTTGAGTCTTACGTATCA

FIG. 1 CONT'D

AAGAATGTTCATACTGTTATTCCAGACTATATCCATCCGAGTGATACGGCGACACC
TTATACTATAAAATGGGAGTGTCTGATTGTAATAACGAATTAGCTAAGGGACTTA
CCATCAAGAGTTATGAAGATTATTACAGCCTCCTAAAAGGTAAAATTGCCTT
GCAGATCCTCTAGAGTCGACCTGCAAGCATGCAAGCTGGCGTAA

MKEKQSKRLIYILLIVPIIFISVFTYSISQPSKLLPPKELVILSPNSQAILTGTIPAFEEKYGI
KVKLIQGGTQLIDRLSKEGKQLKADIFFGGNYTFESHKALFESYVSKNVHTVIPDYI
HPSDTATPYTINGSVLIVNNELAKGLTIKYEDLLQPSLKGKIAFADPLESTCKHASLA

ID-51

Clone 103

CCTCCTATCAAATGATGACAAACGTGAGAGGTACATGGAACAAATGCTCTTAAAA
TTGAAAATGCAACCTGGCAGCGTGTGGTAAGAGCACTTTATCGTAAATACAATAAG
GAATTTTTACATATCCAGCCAAAACAAACACCACGCTTTGAATCAGGATT
GGCATATCACACGGCAACAATGGTTGCTTGGCAGATAGTATCGGAGATATCTATC
CAGAACTTAATAAAAGTTGATGTTGCTGGTATTATGCTACATGATTAGCCAAG
GTCATAGAGTTATCGGGCCTGATAATACAGAATATACTATTGAGGTAATCTTAT
CGGTATATTCACTTATTGATGAGGAATTAA

LLSNDDKRERYMEQMLFKIENATWQRVVRALYRKYNKEFFTYPAAKTNHHAFESGL
AYHTATMVLADSIGDIYPELNKSLMFAGIMLHDLAKVIELSGPDNTEYTIRGNLIGHIS
LIDEEL

ID-52

Clone 104

ATGAAAAAAAAAAATTATCCGATTCACTAGTTAGTTGGTGTCTACTT
GCGATACTATGCTTAGTCTTTGCTTATTGAAGCCTAACAGTC
CAATCATCATCTAAAAGTTGAGGAATGAGGATATAAAAAGACATC
CTCTAAAAAGAAATAAGAAATTACGATTACCAAGCTGTATCATCAA
AAGATTGGAACITGATTGGTCAATCGTACCAATAACATGAAGAA
TTAAGTCCAGATGTGGTGCCTGTTGAAAATATTATTGGATAAACGT
ATTACGAAGCAAGCTACTCAGTTAGAGGCTGCTAGAGCAATTGA
TTCACGAGAACATTAAATTGGGTTATCGTAGTGTGCCTATCAGGA
GAAGTTGTTCAATTCTTATGTTACTCAAGAGATGACTAGTAACCTAA
TTGACGAGGGACAAGCAGAAAAGTTGGTAAAACCTACTCTCAGC
CTGCAGGTGCTAGTGAACACCAAGACTGGATTAGCGATGGATATGAGT
ACTGTAGATTCTTGAATGAGAGCGATCCTAGAGTAGTCAGTCAGTT
GAAAAAGATAGCTCCACAATATGGTTGTCTACGGTTCCGGATG
GTAAAACAGCAGAAACAGGGTAGGTTATGAAGATTGGCATTACCG

FIG. 1 CONT'D

CTATGTTGGGGTAGAGTCTGCAAAATATGGTCAAACATCATTAA
CATTAGAAGAACATAACTTATTAAAGGAGAACCAATGA

MKKNKIIRFSLVGVLLAILCFSLFALLKPNQQSSQKLRNEDIKKTSSQK
RNKKLRLPAVSSKDWNLILVNRDHKHEELSPDVVPVENIYLDKRITKQA
TQFLEAARAIDSREHLISGYRSVAYQEKLNFNSYVTQEMTSNPNLTRGQA
EKLVKTYSQPAGASEHQTGLAMDMSTVDSLNESDPRVVSQQLKIAPOQY
GFVLRFPDGKTAETGVGYEDWHYRYVGVESAKYMVKHHTLEEYITLL
KENNQ*

ID- 53

Clone 106

CTGTTATGTGGATTCTTCATCAATT CCTGTG TCAATTCCGGGGGG
TATGGTATAATAACAGTTATGAAAAAATAAAAAAATCTTATTGGGAC
TGGCCTTGCTGGTGTGGTTACTGGCAGCTGCTGGTTATACCCCTAAC
TAAAAAAAGTAACAGATTATAAACGT CAGCAAATCACTCAGACCTTAA
GAGAACTTTTAGTCAGATGGGTGATATT CAGGTATTTATTTAATG
AATTGAAATCTGATATTAAAATGACCAGTGGTGGTCTTGTCTTGGAA
GATGGCAGAATTTCGAATTCAATTACGTCAAGGTGTTCTTGATTAT
GTGGAGGTGAGCAAATGA

LLCGFLPSIPVSNSGGYGIITVMKNKKILFGTGLAGVGLAAAGYTLKK
VTDYKRQQITQTLRELFSQMGDIQVFYFNEFESDIKMTSGGLVLEDGRIF
EFIYRQGVLDYVEVSK*

ID-54

Clone 108

ATGTATCAAACTCAGACAAATAAGGAAAAATTGTTTATTTGAAATTATTATC
CCAGTATTGATTATCAATTGCTAATTTCAGCTACTTTATTGATT CGGTATGA
CTGGACAGTATAGTCAGCTACATTGGCAGGTGTCACTGCTAGTAATTATGG
ACTCCGTTTCGCTTATTAGTAGGTATGATT CAGCATTAGTACCAAGTAGTTGGT
CAACATTGGTAGAGGAAATAAGAACAAATTGCACAGAACATTCAATTCT
ATATTAGGTTGATACTGTCCTAA

MYQTQTNKEKFVLFLKL FIPVLIYQFANFSATFIDS VMTGQYSQLHLAGVSTASNLWTP
FFALLVGMISALVPVVGQHLGRGNKEQIRTEFHQFLYLGLLISL

ID-55

FIG. 1 CONT'D

Clone 112

CTGCTTTTAGCTAACCTTCTAATTATGGTATAATTGTATGGATT
 GTTAGCTAGAATGGAGAAGATGATGCAAGATGTTTCAATTATAGGA
 AGTAGAGGGTGCAGCTCGTACGGTGGTTGAAACTTTGTTCA
 GAATTGATTAATCATCAAAAAAGTTCCGACATAAAATACCATGTTGC
 ATGCCTTAGTGATAAAGAACATCATACTCATTAACTTGCTGACGC
 TGATTGTTTACTATAAAATCCTCCCCAATTAGGCCAGCACGTGTGAT
 TGCTTATGATATTATGCCATTAAATTATGCCCTGACTTGGTTAAGAC
 ACATGATTAAAAGAGCCTATTTTATTTAGGAAATACAATTGG
 TGCCTTATTGGCATTGGCAATAAAATACATAAGTCGGTGGCTT
 ATTGTATGTTAACCGGATGGTTAGAGTGGAAAGCGATCAAAGTGGT
 CTCGTCCCACACAGCGTTATTAATAACGCCAAAAATGTATGACT
 AAAAATGCAGACCTAATTATTCTGATAATATTGGTATTGAAAATTA
 CATTCAATCTACCTACTCTAATGTGAAGACAAGGTTATTGCTTACGG
 TACAGAGATTAACTTAGGAAATTATCGTCAGATGATCCACGTGTCA
 AACAGTTGTTAAAAAATGGAATTAAAGTCTAAGGTTACTATCTA
 ATCGTGGTCGATTGTCCTGAAAACAATTATGAAACGGCTATTAG
 GGAGTTCATGGCTTCAGACTAACGCGTATTAGTTATTATCTGTAA
 CCATCAAATAACCCCTACTTGAAAAGTTGCTTAAAGACAAACC
 TTCAACAAAGATAAAAGAGTTAAGTTGTTAGGTACGCTCTATGAAAAA
 GATCTGCTGGATTATGTCGTCAACAAGCCTTGCTTATATTGAGGG
 CATGAAGTTGGCGGTACTAACCTCAGGACTGCTTGAGGCTTAGCTAA
 TACTGATTGAATCTTGTCTAGATGTTGATTCAACAAATCAGTAGC
 AGGTCTCTCAAGTTTACTGGACTAAAAAAGAGGGGGATTAGCTA
 AGCTT

MLFLANFSNLWYNCMDCLARMEKMMQDVFIIGSRGLPARYGGFETFVS
 ELINHQKSSDIKYHVAALSDKEHHHTHFNFADADCFTINPPQLGPARIAY
 DIMAINYALDLVKTHDLKEPIFYILGNTIGAFIWHFANKIHKVGGLLYVN
 PDGLEWKRSKWSRPTQRYLKYAEKCMTKNADLIISDNIGIENYIQSTYSN
 VKTRFIAYGTEINSRKLSDDPRVKQLFKKWNISKGYYLIVGRFVPENN
 YETAIREFMASDTKRDLVIICNHQNNPYFEKLSLKTNLQQDKRVKFVGT
 LYEKDLLDYVRQQAFAYIHGHEVGGTNPGLEALANTDNLVLDVDFN
 KSVAGLSSFYWTKEGDLAKL

ID-56

Clone 120

TTGAGGAGTAATATGGTAAAGACAGCAGTTTAATGGCGACATACAA
 TGGCGAAAAAATTATATCTGAACAACATTGATTCAATTGCCAACAGA
 CATTAAAACCAGATTATGTATTATTGAGGGATGATTGTTCAACGGAT
GAAACAGTCAATGTCGTCAATAACTATATCGCAAAACATGAGTTAGA

FIG. 1 CONT'D

AGGCTGGAAAATTGTTAAAAACGACAAAAACTAGGCTGGCGTTAA
 ATTTCGTCATTACTTATTGATGTGTTAGCCTATGAGGTTGACTATG
 TCTTTTTAGTGATCAAGATGATATTGGTATCTGATAAAAACGAAC
 GACAGTTGCCATTATGTCAGATAACCCTCAAATTGAGGTTTGAGTG
 CAGACGTTGATATCAAAACGATGTCTACAGAAGCCAGTGTCCACAT
 TTTCTAACCTTTCTTAGTGATAGAATCAGTCAGTATCCTAAAGTA
 TATGATTATCAAACATTCCGTCCCGATGGACCATTGCTATGAAGAG
 AGATTGCGCAAGCTATCGCTTGA

MRSNMVKTAVLMATYNGEKFISEQLDSIRQQLKPDYVLLRDDCSTDET
 VNVVNYYIAKHELEGWKIVKNDKNLGWRLNFRQLLIDVLAYEVVDYVFF
 SDQDDIWYLDKNERQFAIMSDNPQIEVLSADVDIKTMSTEASVPHFLTFS
 SSDRISQYPKVYDYQTFRPGWTIAMKRDFQAQIA*

ID-57

Clone 123

GTGATTATGGATAAGTCTATTCTAAAGCAACTGCTAACGTTATCA
 CTGTACTACCGTATTTAACGTTTAATACTGATGGCATCGAAAAAA
 GCTAGTTCAAACAAATTGCAGATGCCCTAGGTATCGATTCTGCTACT
 GTTCGACGTGATTTCTTATTTGGTGAACCTAGGACGCCGTGGTTTT
 GGTTATGATGTCAAAAAACTTATGAACCTTGCAGAAATATTGAA
 CGATCATTCTACAACAAATGTTATGCTGGTGGGGTGTGAAATATCG
 GTAGAGCTCTTGCAATTATGTTCCACGATCGCAATAAAATGCAA
 ATTCAATGGCTTGATTAGATAGCAATGATTAGTTGGTAAAACA
 ACCGAGGATGGAATTCTGTCTACGGTATTCGACTATCAATGACCA
 TTTAATAGATAGTGATATTGAAACTGCTATCCTAACAGTACCTAGTAC
 AGAAGCCCAAGAAGTTGCTGACATCTTAGTCAAAGCAGGTATAAAA
 GGCATCTTGAGTTCTCCAGTTAACATTACCAAAAGATATC
 ATTGTTCACTATGTAGATTAAACAGCGAATTACAAACTTACTTTAT
 TTCATGAACCAGCAGCGATAA

MIMDKSIPKATAKRLSLYYRIFKRFNTDGIEKASSKQIADALGIDSATVRR
 DFSYFGEGLRRGFGYDVKKLMNFFAEILNDHSTTNVMLVGCGNIGRALL
 HYRFHDRNKMQISMAFDLDSNDLVGKTTEDGIPVYGISTINDHLIDSIE
 TAILTVPSTEAQEVADILVKAGIKGILSFSPVHLTPKDIIVQYVDLTSELQ
 TLLYFMNQQR*

ID-58

Clone 125

FIG. 1 CONT'D

ATGGGTGCTAAAGGAGCAGATGTCATTCTCGTTTATCACACTCTGGCATTGGAGA
TGATCGATATGAAGAAGGTGAAGAAAACGTTGGCTATCAAATTGCCAGCATCAAG
GGAGTGGATGCCGTTACGGGACACTCACACGCTGAATTCCATCAGGTAAACGG
TACTGGCTTCTATGAAAAATACACTGGAGTTGATGGTATCAATGGAAAAATAATG
GAACACCTGTTACAATGGCAGGCAAGTACGGGGATCACCTTGGTATTATTGATTAA
GGACTTAGTTACTAATGGAAAATGGCAAGTCTCCGAAAGCAGTGCTAAAATCC
GTAAAAATTGATATGAACCAACACTGCTGACGAGCGTATCATTGCATTGGCTAACAG
GAAGCACACGATGGCACTATCAACTATGTTGCCAACAAAGTAGGTACAACAACTG
CGCCAATTACAAGTTACTTGCACTAGTTAA

MGAKGADVLVLSHSGIGDDRYEEGEENVGYQIASIKGVDAVTGHSHAEFPSGNGTGFYEKYTGVDGINGKINGTPVTMAGKYGDHLGIIDLGLSYTNGKWQVSESSAKIRKIDMNSTTADERIIALAKEAHDTINYVRQQVGTTTAPITSYFALV

ID-59

Clone 135

MSIRFQISLKYDKIKQIVSDCLSLFFREVFMNTNTIKKVVATGIGAALIJJGMI V

ID-60

Clone 145

ATGAAACATTAAAATTCAATCGGTCTCGACATTATTGGTCCTGTTATGATTGGA
CCATCAAGTAGTCATACTGCAGGAGCTGTCCGCATTGGTAAAGTTGTCCATTCTAT
TTTGTTGAAACCTAGTGAAGTAACCTTCATTATACAATTCTTGCTAAAACCTA
CCAAGGACACGGTACTGATAAAAGCATTGGTTGCAGGGATTCTAGGAATGGATACA
GATAATCCAGATATTAA

MKHLKFQSVDIIGPVMIGPSSHTAGAVRIGKVVHSIFGEPSEVTFHLYNSFAKTYQGHGTDKALVAGILGMDDNDNPDI

ID-61

Clone 147

FIG. 1 CONT'D

GTGTCAGAAGGTGTTAACATGTTCTAAAAGAAGATGACGTAGAGACTTTCTCA
TATCCTGACAAATTCAATTAGCCAATTATGGCACAATTGATTGTGTCATAAGGA
AATGATTAA

ID-62

Clone 150

ATGACCTACAAAGATTACACAGGTTAGATCGGACTGAACCTTGAGTAAAGTGC
TCATATGATGTCCGACAAACGTTAA

MTYKDYTGLDRTELLSKVRHMMSDKRF

ID-63

Clone S2

CTGAGTTGGGTCTTGGAAACGGCCTGTCAATCATACTAGCTATCAAGGAGACTAA
AATGTATTTAGAACAACTAAAAGAGGTAATCCTTAA

MSWVLETVLSIILAIKETKMYLEQLKEVNPL

ID-67

Clone 3-40

GTGAAAAAAAAATTAGTCTCATCACTTCTAAAGTGTCTCTAATCATT
ATTGTTAGCTTGCTGGAGCATTGCTAGTTGTCAATGAATCAT
AATGACAATATTCAAATGGTGGTGTCACTAAAAGTAGTAAAGTAAA
TTATAATAACATAACGCCCTACAACAAAAGCTGTTAAAAAGGTACAAA
ATAGTGTGTTCTGTTATCAATTATAACAAACAAGAGAGTCGTTCTG
ACCTATCAGACTCTATAGTCATTGGTAATCAGGGGGCAACA
CTGATAAGGGCTTACAAGTTACGGTGAAGGCTCTGGAGTCATCTAT
AAAAAAAGATGGTAAAAATGCCATTGTTGTCATAATAACCACGTCA
TGATGGGGCTAAACAAATTGAAATTCAACTAGCTGATGGCTAAAAG
CAGTTGGAAACTTGTGGTCAGATACCTACTCTGATTAGCCGTCG
TCAAAATTCCATCAGATAAAGTTCAAATATTGAGAATTGCTGATT
CATCAAAACTCAACATTGGTGAAGACTGCTATAGCGATCGGAAGCCCT
CTTGGAACTGAGTATGCAAATTCTGTAACTCAAGGTATTGTATCTAGT
TAAAAAAAGAACTGTAACAATGACTAATGAAGAAGGACAAACAGTT
CTACAAATGCTATCCAGACGGATGCTGCTATCAATCCTGGTAATTCA
GGTGGAGCACTTATCAATATTGAAGGACAGGTTATTGGAATTAATT
TAGTAAAATTCTTCTACATCAAACCTCAGGACAATCGTCAG

FIG. 1 CONT'D

GAAATAGCGTTGAAGGTATGGGATTGCCATTCCCTCAAATGATGTT
 GTTAAGATTATCAATCAACTTGAGAGTAACGGACAAGTAGAGAGACC
 TGCTCTAGGTATTCTATGGCTGGATTAAGTAATTACCATCCGATGT
 TATTAGTAAACTGAAAATCCCAAGTAATGTTACTAATGGTATTGTAG
 TAGCATCTATCCAATCTGGCATGCCAGCTCAAGGCAAACATAAAGAAA
 TACGATGTCATTACTAAAGTTGACGATAAAGAAGTAGCATCTCCAAG
 TGATTTACAAAGTTACTCTATGCCACCAGTAGGGGATTCCATAA
 CAGAACCTTTATCGTGGTAAAAATAAACAAACAGTCACTATAAAA
 CTTACTAAAACAGTAAAGATTAGCTAAACAAACGAGCAAATAACTA
 A

MKKKLVSSLKCSLIIIVSFAGGAASFVMNHNDNIPNGGVTKTSKVNY
 NNITPTTKAVKKVQNSVSVINYKQQESRSDLSDFYSHFFGNQGGNTDK
 GLQVYGEHSGVIYKKDGKNAYVVTNNHVIDGAKQIEIQLADGSKAVGK
 LVGSDTYSDLAVVKIPSVDKVSNIAEFADSSKLNIGETALAIGSPLGTEYAN
 SVTQGIVSSLKRTVTMTNEEGQTVSTNAIQTDAAINPGNSGGALINIEGQ
 VIGINSSKISSTSNTSGQSSGNSVEGMGFAIPSNDVVKIINQLESNGQVE
 RPALGISMAGLSNLPSDVISKLKIPSNVTNGIVVASIQSGMPAQGKLKKY
 DVITKVDDKEVASPSDLQSLLYGHQVGDSITVTFYRGENKQTVTIKLTKT
 SKDLAKQRANN*

ID-68

Clone 3-30

ATGTTAAAATGGTATACAAACAAAGGAGGGAGGGATGATAATGAAGA
 AATGTTTTGGCTATTGTTAGCTCTAGTTTATGGTTCACT
 TCAAGCAGATGAGGTGGACTATAACATTCCCTCATTATGAGGGTAATC
 TAACTATTACAATGATAATAGTGCTGATTACAGAGAAGGTTACTT
 ACCAATTGATTGCTCCTATAATGGACAGTATGTCACGTTAGGTACG
 GCGGGTAAGTTATCTGACAATTGATATTAAATAATAAGCCACAGGT
 TGAAGTTCAATTAAATGGTAAAGTAAGGAAAGTTAGTTACCAAGATAG
 AAGATTGGAGGATGGCTACCGTTGAAAGTGTAAATGGTGGTGA
 GCAGGTGATACTGTTAAAGTCATGTTCACTGGAAACTAAAAAAATGT
 TCTATTATGCATAAGGATGTTGGTGAACCTAACTGGATTCCCTATTAG
 CGACTGGATAAAACGTTAGAGAAAGTAGATTTGGATATCAACTG
 ACAAAAAGGTTGCTCTTCTGCTTTGGGGCACTGGTTATCTTA
 AAAACTCCTCTAAATAAGACAAAATAATACTGTTACCAATTGACA
 GCTTTAATGTAACAAACGATTAGAATTCTATGGTTATTGGGATAG
 ATCTTATTAAATCTACCTACAAACAGTAAAATAATTACAAGAAAAA
 AAATTGAACATCAAGAGAAGATAATAGAGCGTCATGGTTTATCCTA
 AGTTCTGTTAAGGATATTACCTCATTCTTATTATTGTGACAC
 TATTCTCAATTAGGGTGTCTGTTAGAAAAAAAGTTAATAAAAT

FIG. 1 CONT'D

ACGGGCAATTCCCTAAGGATCATCATTATGAAGCACCTGAGGCAC
 CTTTCAACCATTAGAGTTAACTCAAAGCATTATAGTATGAGCTTAAA
 AATTTCAAGATGAGGAGAAGAAAAACTCACCTTATCAGTCAGAACAA
 ACTCATACAGTCAATTCTATTAGACTTGATTGATAGAAAAGTATTGA
 ATTATGATGATAACTTGTATCTCTAGCTAACTTAGATAGAGCTCTG
 ATGCAGAAATAGATTATAGAGTTGCTTGCAGGATTCTACGAGTT
 TGAAGCCAGATCAACTCTTCTAATTACCAATTAGTTATAAAGAAA
 CACTACGTGAACTGAAAAAGCAGCACAAAGGCTCAGATCTGCAAAAT
 CAAATGAGACGCCGAGGAAGTAATGCCTTATCAAGAATTACGCGTCT
 CACAAGGTTGATTCTAAAGACAATATAAACTCTCTAGAAGAGTCTAAAGAA
 GAATTTCATCCCCTATCGTAAAATGTCTCAGAAGAGTCTAAAGAA
 TTATCTAGGTTAAAAAGATTCACTTACCTATCACCTCTTATTCCTTG
 TTGTTATAATTATACGCTTTAAATTATTTACCTATTCTGTAT
 CTATCTCTTATTGTTGGTGTATCCTGTTGAATAAAATCATT
 ATGATGACAAGAAAAATAAGTAACGGTTATATTGTAACGAGATGG
 AGCAAGTCGTGTCTACCAATGGACTAGTTAGGAACATGCTAAGGG
 ATATCAAATCGTTGATCGTCAGAGTTAGAAAGTATCGTATTATGG
 AATCGAATATTGGTTACGCTACTTATTGGCTACGCTGACCGTGT
 GAGAAAGTACTCAGAGTGAACCAAATAGATATTCCAGAAAGATTGC
 AAACATTGATAGTCATCGATTGCGATTCACTGAAATCTAGTAA
 TCATTTTCAACGATAACTGAAGATGTTAGTCACGCTTCTAATT
 TGTTAATTCAAGGCGGTTCTCAGGTGGTTCTCAGGCGCGGAGGCG
 CGGGAGGTGGCGGTGCCTCTAA

MLKWYTNKGGRMIMKKCFLAICLALSFFMVSQADEVDYNIPHYEGNL
 TIHNDNSADFTEKVTVQFDSSYNGQYVTLGTAGKLSDFDINNKPQVEV
 SINGKVRKVSYQIEDLEDGYRLKVFNGGEAGDTVKVNQWKLKNVLF
 MHKDVGELNWIPISDWDKTLEKVDWFISTDKKVALSRLWGHLGYLKTP
 PKIRQNNNRYHLTAFNVNKRLEFHGYWDRSYFNLPTNSKNNYKKIEH
 QEKKIERHGFIISFLRILLPSFFIIVTLFISIRVFLFRKKVNKYGQFPKDHH
 YEAPEDLSPLETQSIYSMSFKNFQDEEKKTHLISQEQLIQSILDLIDRKV
 LNYDDNLLSLANLDRASDAEIDFIEFAFADSTSLKPDQLFSNYQFSYKET
 LRELKKQHKASDLQNQMRRRGSNALSRITRLTRLISKDNINSRRKG
 PYRKMSSEESKELSLRKRFSYLSPLISFVVIYTLFLNYFTYFCIYLLLFGVI
 LLLNKIIFMTRKISNGYIVTEDGASRVYQWTSFRNMLRDIKSFDRSELE
 SIVLWNRILVYATLFGYADRVEKVLRVNQDIPERFANIDSHRFAISVNQS
 SNHFSTITEDVSHASNFSVNSGGSSGGFSGGGGGGGAF*

ID-69

Clone 3-38

ATGATGATTGTGAATAATGGTTACTAGAAGGGAGAAAAATGAAAAA
AGAGACAAAAAAATGGAGAGGGTTACTAGTTACTAATCCTG

FIG. 1 CONT'D

TCCCCAATTCCATTGGTATATTGGTACAAGGTGAAACCCAAGATA
CAATCAAGCACTTGGAAAAGTAATTGTTAAAAAACGGGAGACA
GCTACACCATTAGGCAAAGCGACTTTGTGTTAAAAATGACA
TAAGTCAGAAACAAGTCACGAAACGGTAGAGGGTTCTGGAGAAG
ACCTTGAAAACATAAAACCTGGAGACTACACATTAAAGAGAAGAAA
CAGCACCAATTGGTATAAAAAACTGATAAAACCTGGAAAGTTAAA
GTTGCAGATAACGGAGCAACAATAATCGAGGGTATGGATGCAGATA
AAGCAGAGAAACGAAAAGAAGTTGAATGCCAATATCCAAAATC
AGCTATTTATGAGGATACAAAAGAAAATTACCCATTAGTTAATGTAG
AGGGTTCAAAGTTGGTGAACAAATACAAAGCATTGAATCCAATAAAT
GGAAAAGATGGTCGAAGAGAGATTGCTGAAGGTTGGTTATCAAAAA
AAAATCCAGGGGTCATGATCTCGATAAGAATAAATATAAAATTGAA
TTAACTGTTGAGGGTAAAACACTGTTGAAACGAAAGAACTTAATCA
ACCACTAGATGTCGTTGCTATTAGATAATTCAAATAGTATGAATA
ATGAAAGAGCCAATAATTCTCAAAGAGCATTAAAGCTGGGGAAAGC
AGTTGAAAAGCTGATTGATAAAATTACATCAAATAAAGACAATAGA
GTAGCTCTGTGACATATGCCTCAACCATTGATGGTACTGAAGCG
ACCGTATCAAAGGGAGTTGCCGATCAAATGGTAAAGCGCTGAATG
ATAGTGTATCATGGGATTATCATAAAACTACTTTACAGCAACTACA
CATATTACAGTTATTAAATTAAACAAATGATGCTAACGAAGTTAA
TATTCTAAAGTCAGAATTCAAAGGAAGCGGAGCATATAATGGG
GATCGCACGCTCTATCAATTGGTGCACATTACTCAAAGCTCTA
ATGAAAGCAAATGAAATTAGAGACACAAAGTTCTAATGCTAGAAA
AAAACTTATTTTACGTAACTGATGGTGTCCCTACGATGTCTTATGC
CATAAATTAAATCCTTATATATCAACATCTTACCAAACCAAGTTAA
TTCTTTTAAATAAAATACCAGATAGAAGTGGTATTCTCCAAGAGG
ATTTTATAATCAATGGTGTGATTCAAATAGTAAAAGGAGATGGA
GAGAGTTAAACTGTTCGGATAGAAAAGTTCTGTTACTGGAGG
AACGACACAAGCAGCTATCGAGTACCGCAAAATCAACTCTCTGTA
TGAGTAATGAGGGATATGCAATTAAATAGTGGATATATTATCTCTATT
GGAGAGATTACAACGGGTCTATCCATTGATCCTAACGACAAGAAA
GTTCTGCAACGAAACAAATCAAACACTCATGGTGAGCCAACACATT
ATACTTAATGGAAATATAAGACCTAAAGGTTATGACATTAACTGT
TGGGATTGGTGTAAACGGAGATCCTGGTGCAACTCCTCTGAAGCTG
AGAAATTATGCAATCAATATCAAGTAAAACAGAAAATTATACTTAAT
GTTGATGATCAAATAAAATTATGATGAGCTAAATAACTTTAA
AACAAATTGTTGAGGAAAACATTCTATTGTTGATGGAAATGTGACTG
ATCCTATGGGAGAGATGATTGAATTCAAATTAAAAATGGTCAAAGT
TTTACACATGATGATTACGTTGGTGGAAATGATGGCAGTCAATTAA
AAAAATGGTGTGGCTTGGTGGACCAAACAGTGTGATGGGGAAATT
AAAAGATGTTACAGTGAATTGATAAGACATCTCAAACCATCAAAA
TCAATCATTTGAACCTAGGAAGTGGACAAAAAGTAGTTCTTACCTAT
GATGTACGTTAAAAGATAACTATATAAGTAACAAATTACAATAC
AAATAATCGTACAACGCTAAGTCCGAAGAGTGGAAAAAGAACCAAAT

FIG. 1 CONT'D

ACTATTCGTATTCCCAATTCCAAAATTCTGATGTTCTGAGTTT
CCGGTACTAACCATCAGTAATCAGAAGAAAATGGGTGAGGTTGAATT
TATTAAGTTAATAAAGACAAACATTCTCAGAACATCGCTTTGGGAGCTA
AGTTCAACTCAGATAGAAAAAGATTTCTGGGTATAAGCAATT
GTTCCAGAGGGAAAGTGATGTTACAACAAAGAACATGATGGTAAAATT
TTTAAAGCACTCAAGATGTTAACTATAAATTATGAAATTCAA
GTCCAGATGGCTATAGAGGTTAAAACGAAACCTGTTGTGACATT
ACAATTCAAAATGGAGAAGTTACGAACCTGAAAGCAGATCCAAATG
CTAATAAAAATCAAATCGGGTATCTTGAAGGAAATGGTAAACATCTT
ATTACCAACACTCCCCAACGCCACCAGGTGTTTCTAAACAGGG
GGGAATTGGTACAATTGTCTATATTAGTTGGTTCTACTTTATGAT
ACTTACCAATTGTTCTTCCCGTAAACAATTGTAA

MMIVNNNGYLEGRKMKKRQKIWRGLSVTLLILSQIPFGILVQGETQDTNQ
ALGKIVVKKTGDNATPLGKATFVLKNDNDKSETSHEVVEGSGEATFENI
KPGDYLREETAPIGYKKTDKTWKVKVADNGATIIEGMDADKAERKE
VLNAQYPKSAYIEDTKENYPLVNVEGSKVGEQYKALNPINGKDGRREIA
EGWLSKKNPVGVDLDDKNKYKIELTVEGKTTVETKELNQPLDVVLLDN
SNSMNNEARRANSQRALKAGEAVEKLIDKITSNKDNRVALVTYASTIFDG
TEATVSKGVADQNGKALNDSVSDYHKTTFATTHNYSYLNLTNDAN
EVNILKSRIPKAEAHINGDRTLYQFGATFTQKALMKANEILETQSSNARK
KLIFHVTDGVPTMSYAINFNPyISTSYQNQFNSFLNKIPDRSGILQEDFIIN
GDDYQIVKGDGESFKLFSDRKVPVTGGTTQAAVRVPQNQLSVMNSEGY
AINSGYIYLWWRDYNWWVYPFDPKTKVSATKQIKTHGEPTTYFNGNIR
PKGYDIFTVGIGVNGDGPATPLEAEKFMQSISSKTCENYTNVDDTNKIYDE
LNKYFKTIVEEKHSIVDGNVTDPGMEMIEFQLKNGQSFTHDDYVLVGND
GSQLKNGVALGGPNSDGGILKDVTVTYDKTSQTICKINHLNLGSGQKVVL
TYDVRLKDNYISNKFYNTNNRTTSPKSEKEPNTIRDPIPCKIRDVREFPV
LTISNQKKMGEVEFIKVNKDKHSESLLGAKFQLQIEKDFSGYKQFVPEGS
DVTTKNDGKIYFKALQDGNYKLYEISSPDGYIEVTKPVVTFIQNGETV
NLKADPNANKNQIGYLENGKHLITNTPKRPPGVFPKTGGIGITIVYILVG
STFMILTICSFRRKQL*

ID-70

Clone 141

ATGAATAGAAAAGTTGAGGAAAAAAATGGCTGGGAATCGTAATAACG
ATATGAATGTCTATTGTCATTGGCAAAAGCCAAGATGAAGTA
AAAAAAAATTATTGCAGGTAAATGGTGTTCATTGTAATGAATGTGTG
GCCTTATCACAAGAAATTATTAAGGAAGAATTAGCTGAGGAAGTACT

FIG. 1 CONT'D

GGCTCATTAGCAGAAGTACCAAAACCTAACGAACTATTAGAAATAT
TAAATCAATATGTTGAGGGCAAGATCGTCTAACGTGCTTAGCA
GTTGCTGTCTACAATCATTACAAGCGTGTAGTTACCGAGAGTAGT
GACGATGATGATGAGATTGCAAAAATCCAACATTGATGATTGGTCC
AACTGGCTCAGGAAAAACCTCTTAGCACAAACACTGGCTAAAAGCC
TTAATGTACCGTTGCTATTGCAGATGCGACTTCATTGACCGAAGCAG
GATACGTTGGAGAAGATGTTGAGAATATTCTCTAAATTGATTCAA
GCTGCTGATTATAATGTCGAACGTGCTGAGCGTGGTATTATCTACGTT
GATGAAATAGATAAAATTGCTAAGAAAGGCAGAAATGTTCTATCAC
ACGTGATGTGCTGGTGAAGGTGTACAGCAAGCCCTCTAAATTAA
TTGAGGGTACGGTAGCAAGTGTCCCCCACAGGGTGGCGTAAACAT
CCTAACCAAGAAATGATTCAAATTAAATACCAAGAACATCCTTTATT
GTCGGTGGTGTCTTGATGGTATTGAAGACCTTGTGAAGCAACGTTA
GGCGAAAAAGTTATTGGTTGGACAGACAAGCCGTAAGATTGATGA
CAACGCTTCTATATGCAAGAGATAATTCTGAGGATATTCAAAGT
TTGGACTGATTCCAGAGTTATTGGCCGTTACCAAGTAGTTGCAGCGT
TAGAACTTCTACTGCAGAAGATCTGGTTCGTATTCTGACAGAACCA
CGCAATGCTTGGTTAAACAATACCAAAACCTTATTATCTTATGATGGT
GTAGAATTGGAATTGACCAGGATGCTCTATTGGCTATCGCTGATAA
GGCTATCGAGCGCAAGACTGGTGCACGTGGTTACGTTCTATTATTG
AAGAAACGATGCTTGATATCATGTTGAAATTCCAAGCCAAGAAAGAT
GTAACAAAAGTTCGTATCACAAAGGCTGCTGTTGAGGGTACTGACAA
GCCTGTTTAGAGACGGCTTAG

MNRKVEEKMAGNRNNDMVYCSFCGKSQDEVKKIIAGNGVFICNECV
ALSQEIIKEELAEEVLAHLAEVPKP KELLEILNQYVGQDRAKRALAVA
VYNHYKRVSYTESSDDDVLQKSNILMIGPTSGKTFLAQTLAKSLNVP
FAIADATSLTEAGYVGEDVENILLKLIQAADYNVERAERGIYVDEIDKIA
KKGENVSITRDVS GEGVQQALLKIIEGTVASVPPQGGRKHPNQEMIQINT
KNILFIVGGAFDGIEDLVKQRLGEKVIGFGQTSRKIDDNASYMQEIISEDI
QKFGLIPEFIGRLPVVAALELLTAEDLVRILTEPRNALVKQYQTLLSYDG
VELEFDQDALLAIADKAIERKTGARGLRSIIETMLDIMFEIPSQEDVTKV
RITKAAVEGTDKPVLETA*

ID-71

Clone 3-20

ATGAAAAGATTACATAAACTGTTATAACCGTAATTGCTACATTAGG
TATGTTGGGGGTAAATGACCTTGCTTCCAACGCAGCCGAAACG
TAACGCCGATAGTACATGCTGATGTCAATTCATCTGTTGATACGAGC
CAGGAATTTCAAAATAATTAAAAAATGCTATTGGTAACCTACCATT
TCAATATGTTAATGGTATTATGAATTAAATAATACTCAGACAAATT
AAATGCTGATGTCAATGTTAAAGCGTATGTTCAAAATACAATTGACA

FIG. 1 CONT'D

ATCAACAAAGACTATCAACTGCTAATGCAATGCTTGATAGAACATT
CGTCAATATCAAATCGCAGAGATAACCTCTTCCCAGTCAGAAATTG
GAAACCATTAGGGTGGCATCAAGTAGCTACTAATGACCATTATGGGC
ATGCAGTCGACAAGGGGCATTTAATTGCCTATGCTTAGCTGGAAAT
TTCAAAGGTTGGGATGCTTCCGTGTCAAATCCTCAAAATGTTGTACAC
CAAACAGCTATTCCAACCAATCAAATCAAAAAATCAATCGTGGACAA
AAATTATTATGAAAGCTTAGTCGTAAGGGGGTGAACCAAAACAAAC
GTGTTCGTTACCGTGTAACTCCATTGTACCGTAATGATACTGATTAG
TTCCATTGCAATGCACCTAGAAGCTAAATCACAAAGATGGCACATTA
GAATTAAATGTTGCTATTCCAAACACACAAGCATCATAACTATGGAT
TTATGCAACAGGAGAAATAACACTAAATTAA

MKRLHKLFITVIATLGMLGVMTFGLPTQPQNVTPIVHADVNSSVDTSQEFQNNLKNAIGNLPFQYVNGIYELNNNQTNLNADVNVKAYVQNTIDNQQRLSTANAMLDRTIRQYQNRRDTTLPDANWKPLGWHQVATNDHYGHAVDKGHLIAYALAGNFKGWDASVSNPQNVVTQTAHSNQSNSQKINRGQNYYESLVRKAVDQNKRVRVRTPLYRNDTDLVPFAMHLEAKSQDGTLEFNVAIPNTQASYTMDYATGEITLN*

ID-72

Clone 13

ATGAAAAAACTATCGAAAACCTATTGTACTACTACTTCTAATCTTTTT
GCCATTATGGGAGCATATGCTTACACGCATATTGTTGAAAAAAAG
ATCCCTAACTAGCAATACTATTGAAAAAACTCTACCTGTGGTAAATC
AGATTAAGCCTCAAACCATTAAAGAATACCAAAATTACTTAACTAAG
GTAGCTAACGTAATGTTCTCCTGTAGACATTCCCTCAGGCATTAAAT
AATGAAAAGGTAGAAATTACTGCTACTGATGGCATGCAAACATTCAC
TTGGAATGATAAAAATAATCCTAAGCAAAAGGTTATCTTCTATGTTC
ATGGAGGATCATATATCCATCAAGCTTCCGAATTACAATATATTTTG
TCAATAAAACTAGCTAAAAAATTAGATGCAAAAGTTGTCTTCCTATTT
ACCCTAAAGCTCCTACATATAATTATAGTGATGCTATCCCCAAAATT
AAAAATTATACCAAAATACATTAGCTAGCGTCACATCTCACAAACAG
ATTATCCTAGTAGGTGAAAGTGCAGGCGGAGGCCTGCTTAGGTAT
TGCTGATAACCTTGACGGAGCATATCAAACAAACCAAAAGAAATTAT
TTTAA

MKNYRKLVLLLIFFAIFMGAYAYTHIVEKRSLTSNTIEKTLPVVNQIKP
QTKEYQNYLTVAKRNVLPDIPQALNNEKVEITATDGMQFTWNDK
NNPKQKVIFYVHGGSYIHQAELQYIFVNKLAKKLDAKVVFPPIYPKAPT
YNYSDAIPKIKKLYQNTLASVTSHKQIILVGESAGGGLALGIADNLARSIS
NNOKKLE*

FIG. 1 CONT'D

ID-73

Clone 2-19

TTGATTCTAATAACCTCCTATGGGATAATATCTTATCACAAAAATTG
AGGAATTATTATGAAGTAAACATATTGTCTAGGATTAGCCTTA
ACAACACTTTAGGAGTCACATTAGTAATCAAGAACAGTTAGCAAG
CTCAACTTCAGTAAAGTGTAAAGTGGTATGACCTTTCTGA
CACTGAAAAAGCACGTTGGATAAAATTGAAAAGCTAGTAGGTGAT
AAAGCTAAAATCAAATTACAGAATTACAGATTATACACAACCAA
TCAAGCGACAGCCAATAAGGATGTGGATTAATGCCTTCACATT
ACAATTCTTAGAAAAGCTGGAATAAGGAAAATAAGAAAAACTTAATT
CCACTTGAAAAGACTTACTTAGCTCCAATTGTATCTATTCTGAGAAG
GTAAAATCTCTAAAAATTGAAAAAGGAGCCACTATTGCAATTCC
AAATGATGCAACAAATGGTAGCCGTGCATTGTATGTCCTTCAGTCAG
CAGGTTAATCAAATTGAATGTTCTGGTAAGAAGGTTGCAACAGTT
GCTAATATCACATCTAATAAAAAGGATATTAAATTACAGGAGTTAGA
TGCAGTCAAACACCACGTGCACTCAAAGATGTAGATGCAGCTATT
TTAATAATACATACATTGAGCAAGCTAATTAAAACCTTCAGATGCT
ATCTTGTTGAGAAATCAGATAAAAATTCAAAACAATGGATTAATAT
CATTGCGGGACGTAAAAATTGGAAAAAGCAAAAGAACGCTAAAGCT
ATCCAAGCTATCTGGATGCTTACACAGATGAAGTGAAAAAGT
TATCAAAGATACTCAGCTGATATTCCACAATGGTAA

MILITSYGIISLSQKLREFIMKLKHIVLGLALTLLGVTFSNQEVSASSTSS
KVVKGVMFTSDTEKARWDKIEKLVGDKA
KIKFTEFTDYTQPNQATAN
KDVDINA
FQHYNFL
ENWNKENKKNL
IPEKTYL
APIRUYSEKV
KSLK
KL
KKGATIAIPND
ATNGSRALY
VLQSAGLI
KLN
VSGKK
VATV
ANITSNK
DI
NIQELDASQ
TPRALKD
VDAII
NNTYIEQ
ANLK
PSDAIF
VEKSD
KNSK
QW
INIIAGR
KNWKK
QKNA
KAIQ
AILDAY
HTDEV
KKVI
KDT
SADIP
QW*

ID-74

Clone 3-6

ATGTCAAATCAATATGATTATCGTTATTGGTGGAGGTAGTGCAGG
CAGTGGTACCGCTAATAGGGCAGCCATGTATGGAGCAAAAGTCCTGT
TAATTGAAGGTGGACAAGTAGGTGGA
ACTTGTGTTA
ACTTAGGTTGT
GTACCTAAGAAAATCATGTGGTATGGTGCACAAGTTCTGAGACACT
CCATAAGTATAGTCAGGTATGGTTTGAGCCA
ATAATCTTAGTT
TGATT
TTACTCTAAAAGCTAATCGCGATGCTTACGTGCAGCGGTC
TAGACAGTCGTATGCCGCTA
ATTGAGCGTA
ATGGGGTC
GAAAAGA

FIG. 1 CONT'D

TTGATGGATTGCTCGTTTATTGATAACCATACTATTGAAGTGAATG
 GTCAGCAATATAAAGCTCCTCACATTACTATTGCAACAGGTGGACAC
 CCTCTTACCTGATATTATTGGAAGTGAACCTGGTGAGACTTCTGAT
 GATTTTTGGATGGAGACCTTACCAAATTCTATATTGATTGTTGGG
 GCGGGCTATATCGCGCAGAACCTGCTGGAGTGGTAATGAATTAGG
 CGTTGAAACCCATCTGCATTAGAAAAGACCATATTCTACGCGGAT
 TTGATGACATGGTAACAAGTGAGGTTATGGCTGAAATGGAGAAATCA
 GGTATCTCTTACATGCTAACCATGTACCTAAATCTCTAAACGCGAT
 GAAGGTGGCAAGTTGATTGAAAGCTGAAAATGGGAAAACGCTTGT
 CGTTGATCGTGTAAATATGGGCTATCGGCCGTGGACCAAATGTAGACA
 TGGGACTTGAAAATACCGATATTGTTAAATGATAAAGATTATATC
 AAAACAGATGAATTGAGAATACTTCTGTAGATGGCGTGTATGCTAT
 TGGAGATGTTAATGGGAAAATTGCCTTGACACCGGTAGCAATTGCAG
 CAGGTCGTCGCTTATCAGAAAGACTTTAATCATAAAGATAACGAA
 AAATTAGATTACCATATGTACCTTCAGTTATTTTACTCACCCGTAA
 ATTGGGACGGTAGGACTTCAGAAGCAGCAGCTATCGAGCAATTGG
 AAAAGATAATATCAAAGTCTATACATCAACTTTACCTCTATGTATAC
 GGCTGTTACCAAGTAATGCCAAGCAGTTAAGATGAAGCTCATAACCC
 TAGGAAAAGAGGAAAAAGTTATTGGGCTTATGGTGTGGTTATGGT
 ATTGATGAAATGATTCAAGGTTTCAGTTGCTATCAAAATGGGGC
 TACTAAAGCAGACTTGATGATACTGTTGCTATTCACCCAACGGATC
 TGAGGAATTGTTACAATGCGCTAA

MSNQYDYIVIGGGSAGSGTANRAAMYGAKVLLIEGGQVGGTCVNLGC
 VPKKIMWYGAQVSETLHKYSSGYGFEANNLSFDFTTLKANRDAYVQRS
 RQSYAANFERNGVEKIDGFARFIDNHTIEVNGQQYKAPHITIATGGHPLY
 PDIIGSELGETSDDFFGWETLPNSILIVGAGYIAAEALAGVVNELGVETHLA
 FRKDHLRGFDDMVTSVMAEMEKSGISLHANHVPKSLKRDEGGKLIFE
 AENGKTLVVDRVIWAIGRGPVDMGLENTDIVLNDKDYIKTDEFENTSV
 DGVY AIGDVNGKIALTPV AIAAGRRLSERLFNHKDNEKLDYHNVPSVIF
 THPVIGTVGLSEAAAIEQFGKDNIKVYTSTFTSMYAVTSNRQAVKMCLI
 TLGKEEKVIGLHGVGYGYGIDEMIQGFSVAIKMGATKADFDDTVAIHPTGS
 EEFVTMR*

ID-75

Clone 3-51

ATGAGTATCAAAAAAAAGTGTGATTGGTTTGCCTCGAAGCTGCAGC
 ATTATCAATGTTGCTGTAGACAGTAGTCAATCTGTTATGGCTGC

FIG. 1 CONT'D

CGAGAAGGATAAAAGTCGAAATTACGTGGTGGGCTTTCCAACCTTA
 CTCAGAAAAGGCTAAGGATGGAGTAGGTACTTATGAGAAAAAAAGT
 CATCAAGGCTTTGAAAAGAAAAATCCTAATATAAAAGTAAAACCTAG
 AGACAATTGATTCACATCTGGACCTGAAAAAAATCACTACAGCAATT
 GAAGCAGGGACAGCACCTGATGTGCTTTGATGCACCAGGGCGAAT
 TATTCAATATGGTAAAATGGTAAATTAGCAGATTGAATGATTATT
 TACAGACCAATTATTAAAGGATGTCAATAATAAGAACATCATTCAAG
 CTTCTAAGTCTGGCGATAAAGCCTACATGTATCCAATAAGTCTGCC
 CATTATATGGCGTTCAATAAAAAAAATGCTTAAAGATGCAGGAGTT
 TTGAAACTTGTAAAAGAAGGTTGGACTACTAGTGATTTGAAAAAGT
 ACTAAAAGCACTAAAAAAATAAAGGCTATACACCAGGTTCATCTTG
 CAAACGGCAAGGAGGAGATCAAGGACCACGTGCATTTGCTAAT
 CTTATAGTGCTCCAATAACAGATAAAGAAGTACAAAATATACCAC
 TGACACTAAAAATTCTGTAAAATCAATGAAAAAAATAGTTGAATGGA
 TTAAGAAAGGCTACTTGATGAATGGGCTCAGTATGATGGCTCAGCT
 GACATTAAAACCTCGCCAATGGACAAACTGCTTCACTATCCTATG
 GGCTCCAGCTCAACCAAAACTCAAGCAAAATTATTAGAGTCAAGTA
 AAGTGGATTACCTGAAGTGCCATTCCCACAGAAGATGGAAAACCA
 GATTAGAATACCTTGTAAATGGTTTGGGTCTTAATAATAAAAGAT
 GAAAACAAAGTAAAAGCCTCTAAGAAATTACACTTTATTGCTGA
 TGATAAAAAATGGGGACCAAAAGATGTTACGTACAGGTGCTTCC
 CAGTTAGAACATCATTGGGATCTTATAAAGGTGATAAACGTATG
 ATGAAGATTCAAAATGGACTCAATATTACCTATTACACAC
 TATCGATGGATTCTGAAATGAGAACCTTATGGTCCCAATGGTCA
 ATCTGTATCCAATGGTGTGAAAAACCAGCAGATGCTTGAAGACT
 TTACTCAAAAGCAAATGATACCATTAAAAAGCAGCTAAATAA

MSIKSVIGFCLEAAALSMFACVDSSQSVMMAEKDKVEITWWAFPTFTQ
 EKAKDGVGTYEKVKAFEKKNPNIVKLETIDFTSGPEKITTAIEAGTAP
 DVLFDAPGRIIQYKGNGKLADLNDLFTDQFIKDVNPKNIQASKSGDKA
 YMYPISAPFYMAFNKKMLKDAGVLKLVEGWTSDFEKVLKALKNK
 GYTPGSFFANGQGGDQGPRAFFANLYSAPITDKEVTKYTTDTKNSVKSM
 KKIVEWIKKGYLMNGSQYDGSADIQNFAANGQTAFTILWAPAQPKTQAK
 LLESSKVDYLEVPFPSEDGKPDELEYLVNGFAVFNNKDENKVASKKFIT
 FIADDKKWGPKDVRTGAFPVRTSGDLYKGDKRMMKISKWTQYYSPY
 YNTIDGFSEMRTLWFPMVQSVSNGDEKPADALKDFTQKANDTIKKAAK
*

ID-76 (Same as ID-39)

Clone 3-56

ATGAGGAAACGTTTCTTGCTAAATTATTGTTACTTTATT
TCTTTTCTTATTCTTTCCGCTTTAAGGCCAAAGATTGTCAGGT

FIG. 1 CONT'D

TGTTTATGCAAGTTCAAGGAGATCATTGGACATTGTAACGCATT
TGATTTCCGTATTACATCGCTTGATCTCATTAAAGTAAAGAAAA
TCAACTTACTTATAGGTTACAATTGCTAACAGTAAAGCCTACAC
TGAGGATTGGAGTGATAAAGGCCGAATTTGTTGCTCGTTAATAC
TCAAAACCATACTGGAAAGGATTGCAACAATTGCCTCAAACTTAT
TAAAAAAATCATGGATACTATGCCATTAGGATGAAGGATATTCACTG
ATTACTTCAGTAGAAGGGTACTCAAACACTTATCCAGAATTTCT
ACTACAGCGACTGGCAATTAGAACGGCTTTCGATGAGGAGACAAG
CGATGTGGTAAAGTGGATATTAATCAGGATGGTAAGGATGAGTATG
TGATCATCCAAGGTTTATGGAGATCGTTACGTATCTTCACTGAAG
ATTCGGTCGAGAATTATTCCATTATCCTGAAAAACCCCATTGGTC
ACGCTATTGGAGTGGCGTTACTTAATCAGACTGTTCGTATTG
GGTGGCGATCAGAAAAAGCAGAATTAGGCTTTCACTTGTAGAT
GGGCACTGGTTCAAGAATTAGTAGATGCAAAAGCAGCTCTAGTAA
TGTCTAGCTTTGAAAAAGATGGAAAAGCTTATCTTCTCAGCCAA
TAACGGACGTGGCGAAGTTGCTTTATCAATTAGTAAAATAA

MRKRFSLNFIVVTIFFFFFILFPLFKAKDCQVYASFQGDHWDICNAFDF
PYLHRFDLIKGENQLYFIGCTIANSKAYTEDWSDKGRIFVARFNTQNHT
LEGLQQLPQTLLKNHGYYAIQDEGYSLITSVEGVLKLTYPFSTTGDWQ
LERLFDEETSDVVVKVDINQDGKDEYVIIQGFHGDRRLRIFTEDFGRELFHY
PEKTPFGHAIWSGRLLNQTCFVFGWRSEKAELRLFHVTDGHLVSELVDA
KAASSNVLAFAEKDGKAYLFSANNRGEVALYQLVK*

FIG. 1 CONT'D

nucS1

Bgl II Eco RV
5'-cgagatctgatatctcacaaacagataacggcgtaaatag -3'

nucS2

Bgl II Sma I
5'-gaagatcttccccgggatcacaaacagataacggcgtaaatag -3'

nucS3

Bgl II Eco RV
5'-cgagatctgatattccatcacaaacagataacggcgtaaatag -3'

nucR

Bam HI
5'-cgggatccttatggacctgaaatcagcgttgtc -3'

NucSeq

5'-ggatgctttgttcaggtgtatc -3'

pTREP_F

5'-catgatatcggtacctcaagctcatatcattgtccggcaatggtggtggctttttgttttagcggataa
caattcacac -3'

pTREP_R

5'-gcggatccccccgggcttaattaatgtttaaacactagtcgaagatctcgcaatttcctgtgtgaaatt
gttatccgcta -3'

pUC_F

5'-cgccagggtttcccagtcacgac -3'

v_R

5'-tcagggggggcggagcctatg -3'

v₁

5'-tcgtatgtgtgaaattgtg -3'

v₂

5'-tccggctcgatgtgtgaaattg -3'

FIG. 2

pTREP-Nuc vectors allow cloning of genomic DNA into each frame with respect to the nuclease gene

(i)

```

pTREP1-nucl (EcoRV) AAGTATCAGATCT--GATATC--TCACAAACAGATAACGGCGTAAAT Frame=+1
          :::::::::::::::   ▲   ::::::::::::::::::::::::
          :::::::::::::::   ::::::::::::::::::::::::
pTREP1-nuc2 (Sma I) AAGTATCAGATCTCCCCGGGA-TCACAAACAGATAACGGCGTAAAT Frame=+2
          :::::::::::::::   ▲   ::::::::::::::::::::::::
          :::::::::::::::   ::::::::::::::::::::::::
pTREP1-nuc3 (EcoRV) AAGTATCAGATCT--GATATCCCATCACAAACAGATAACGGCGTAAAT Frame=+3
          :::::::::::::::   ▲   ::::::::::::::::::::::::
          :::::::::::::::   ::::::::::::::::::::::::
Nuclease Gene                                     TCACAAACAGATAACGGCGTAAAT

Cloning site is indicated by a ▲

```


FIG. 3

GBS Vaccination - Trial 3

FIG. 4c

GBS Vaccination - Trial 4

FIG. 4d

GBS Vaccination - Trial 6

FIG. 4e

GBS Vaccination - Trial 2

FIG. 5a

FIG. 5b

FIG. 5c

FIG. 5d

FIG. 5e

55 / 60

FIG. 6

56 / 60

FIG. 7

57 / 60

FIG. 8

58 / 60

FIG. 9

59 / 60

FIG. 10

60 / 60

FIG. 11

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : C12N 15/31, 15/74, 15/62, 15/10, 9/16, 1/19, 1/21, C07K 14/315, 16/12, A61K 31/70, 39/09, G01N 33/53, 33/68, C12Q 1/68		A3	(11) International Publication Number: WO 00/06736 (43) International Publication Date: 10 February 2000 (10.02.00)
<p>(21) International Application Number: PCT/GB99/02444</p> <p>(22) International Filing Date: 27 July 1999 (27.07.99)</p> <p>(30) Priority Data: 9816335.5 27 July 1998 (27.07.98) GB 60/125,163 19 March 1999 (19.03.99) US</p> <p>(71) Applicant (<i>for all designated States except US</i>): MICROBIAL TECHNICS LIMITED [GB/GB]; 20 Trumpington Street, Cambridge CB2 1QA (GB).</p> <p>(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): LE PAGE, Richard, William, Falla [GB/GB]; University of Cambridge, Dept. of Pathology, Tennis Court Road, Cambridge CB2 1QP (GB). WELLS, Jeremy, Mark [GB/GB]; Institute of Food Re- search, Norwich Laboratory, Norwich Research Park, Col- ney, Norwich NR4 7UA (GB). HANNIFFY, Sean, Bosco [IE/GB]; University of Cambridge, Dept. of Pathology, Ten- nis Court Road, Cambridge CB2 1QP (GB).</p> <p>(74) Agents: CHAPMAN, Paul, William et al.; Kilburn & Strode, 20 Red Lion Street, London WC1R 4PJ (GB).</p>		<p>(81) Designated States: CA, CN, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p> <p>Published <i>With international search report.</i></p> <p>(88) Date of publication of the international search report: 22 June 2000 (22.06.00)</p>	
<p>(54) Title: NUCLEIC ACIDS AND PROTEINS FROM GROUP B STREPTOCOCCUS</p> <p>(57) Abstract</p> <p>Novel protein antigens from Group B <i>Streptococcus</i> are described, together with nucleic acid sequences encoding them. Their use in vaccines and screening methods is also described.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon			PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakhstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 99/02444

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C12N15/31	C12N15/74	C12N15/62	C12N15/10	C12N9/16
	C12N1/19	C12N1/21	C07K14/315	C07K16/12	A61K31/70
	A61K39/09	G01N33/53	G01N33/68	C12Q1/68	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C07K A61K G01N C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE TREMBL E.M.B.L. Databases Accession Number: Q54914, 1 November 1996 (1996-11-01) PODBIELSKI A ET AL: "ORF 1 AND ORF2 5' REGION" XP002133342 97.2% identity in 141 aa overlap with SeqIdNo.12 abstract --- -/-/	3,4

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

17 March 2000

Date of mailing of the international search report

11.04.00

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentdaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Lonnoy, O

INTERNATIONAL SEARCH REPORT

National Application No PCT/GB 99/02444
--

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>WO 98 18930 A (HUMAN GENOME SCIENCES INC ;CHOI GIL H (US); HROMOCKYJ ALEX (US); J) 7 May 1998 (1998-05-07) SP0020: 51.9% identity in 262 aa overlap with SeqIdNo.133 -& DATABASE GENESEQ E.M.B.L. Databases Accession Number: W55078, 2 October 1998 (1998-10-02) CHOI G ET AL: "Streptococcus pneumoniae SP0020 protein" XP002133369 51.9% identity in 262 aa overlap with SeqIdNo.133 abstract</p> <p>---</p>	3-18,23
P,X	<p>WO 99 16882 A (MEDIMMUNE INC) 8 April 1999 (1999-04-08) -& DATABASE GENESEQ E.M.B.L. Databases Accession Number: Y05766, 8 April 1999 (1999-04-08) LUTTICKEN R ET AL : "Streptococcal adhesion mediator protein Lmb" XP002133343 99.7% identity in 306 aa overlap with SeqIdNo.12 abstract</p> <p>---</p>	1-18,23
A	<p>WO 94 10317 A (GEN HOSPITAL CORP ;BRIGHAM & WOMENS HOSPITAL (US)) 11 May 1994 (1994-05-11) figure 6</p> <p>---</p>	1-18,23
A	<p>MICHEL J L ET AL: "Cloned alpha and beta C-protein antigens of group B Streptococci elicit protective immunity" INFECTION AND IMMUNITY, US, AMERICAN SOCIETY FOR MICROBIOLOGY. WASHINGTON, vol. 59, no. 6, June 1991 (1991-06), page 2023-2028-2028 XP002107260 ISSN: 0019-9567 the whole document</p> <p>---</p>	1-18,23
A	<p>LACHENAUER C S ET AL: "Cloning and expression in Escherichia coli of a protective surface protein from type V group B Streptococci" ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, US, SPRING ST., NY, vol. 418, no. 418, 9 December 1997 (1997-12-09), page 615-618-618 XP002107261 ISSN: 0065-2598 the whole document</p> <p>---</p>	1-18,23
	-/-	

INTERNATIONAL SEARCH REPORT

national Application No PCT/GB 99/02444
--

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>DATABASE SWISSPROT E.M.B.L. Databases Accession Number: P29850, 1 April 1993 (1993-04-01) PUYET A ET AL: " MALTPOSE/MALTODEXTRIN-BINDING PROTEIN PRECURSOR" XP002125784 30.7% identity in 407aa overlap with SeqIDNo.2 abstract</p> <p>---</p>	1
A	<p>LARSSON C ET AL: "Experimental vaccination against group B streptococcus, an encapsulated bacterium, with highly purified preparations of cell surface proteins Rib and alpha" INFECT. IMMUN., vol. 64, no. 9, September 1996 (1996-09), pages 3518-3523, XP002125783 cited in the application</p> <p>---</p>	
A	<p>WO 95 06732 A (MASURE H ROBERT ; TUOMANEN ELAINE (US); PEARCE BARBARA J (US); UNIV) 9 March 1995 (1995-03-09)</p> <p>---</p>	
A	<p>DATABASE SWISSPROT E.M.B.L. Databases Accession Number: P42422, 1 November 1995 (1995-11-01) YOSHIDA K ET AL: "Hypothetical sensor-like Histidine Kinase in IDH 3' region" XP002133344 30.6% identity in 320 aa overlap with SeqIdNo.20 abstract</p> <p>---</p>	
A	<p>DATABASE SWISSPROT E.M.B.L. Databases Accession Number: P39845, 1 February 1995 (1995-02-01) TOGNONI A ET AL: "Peptide Synthetase 1" XP002133345 29.3% identity in 133 aa overlap with seqIdNo.26 abstract</p> <p>---</p> <p>-/-</p>	

INTERNATIONAL SEARCH REPORT

national Application No
PCT/GB 99/02444

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>DATABASE TREMBL E.M.B.L. databases Accession Number: P94374, 1 May 1997 (1997-05-01) YOSHIDA K ET AL: "HOMOLOGOUS TO MANY ATP-BINDING TRANSPORT PROTEINS" XP002133346 30.2% identity in 235 aa overlap with SeqIdNo.82 abstract</p> <p>---</p>	
A	<p>WO 98 23631 A (KNOWLES DAVID JUSTIN CHARLES ;LONETTO MICHAEL ARTHUR (GB); SMITHKL) 4 June 1998 (1998-06-04) -& DATABASE GENESEQ E.M.B.L. Databases Accession Number: W62662, 9 November 1998 (1998-11-09) BLACK M ET AL: "Streptococcus pneumoniae polypeptide" XP002133370 38.8% identity in 85 aa overlap with SeqIdNo.123 abstract</p> <p>---</p>	
A	<p>WO 98 18931 A (DOUGHERTY BRIAN A ;HUMAN GENOME SCIENCES INC (US); ROSEN CRAIG A () 7 May 1998 (1998-05-07) -& DATABASE GENESEQ E.M.B.L. Databases Accession Number: V52187, 7 May 1998 (1998-05-07) BARASH S ET AL: "Streptococcus pneumoniae genome fragment SEQ ID NO:54" XP002133371 61.8% identity in 2138 bp overlap with SeqIdNo.124 abstract</p> <p>---</p>	
T	<p>WO 99 42588 A (BIOCHEM VACCINS INC ;BRODEUR BERNARD R (CA); CHARLEBOIS ISABELLE () 26 August 1999 (1999-08-26)</p> <p>-----</p>	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/GB 99/02444

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

1-18 and 23 (all partially) as relating to inventions 1, 6, 10, 13, 35, 41, 62, 63 and 67

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Invention 1: claims 1-18 and 23 (all partially)

A Group B Streptococcus protein having a sequence as depicted in SeqIdNo.2, a fragment, derivative or variant of said protein; a nucleic acid molecule comprising or consisting of SeqIdNo.1, a nucleic acid molecule complementary to said sequence, a nucleic acid molecule encoding for the a derivative or fragment of said protein; a vector comprising said nucleic acid molecule and afferent recombinant DNA practices; an antibody to said protein; an immunogenic composition comprising said protein or said nucleic acid and applications thereof; a method or kit of detection of Group B Streptococcus comprising said protein, said antibody, or said nucleic acid molecule; a method of determining whether said protein represents a potential antimicrobial target which comprises inactivating said protein and determining whether Group B Streptococcus is still viable.

2. Inventions 2-69: claims 1-18 and 23 (all partially)

Idem as subject 1 but limited to each of the polynucleotide and polypeptide sequences as depicted in SeqIdNo:3-137, wherein invention 2 is limited to SeqIdNo:3 and SeqIdNo:4, invention 3 is limited to SeqIdNo:5 and SeqIdNo:6, ..., invention 58 is limited to SeqIdNo:115, ..., and invention 69 is limited to SeqIdNo:136 and 137.

3. Inventions 70: claims 19-22 (all totally)

A method for screening for DNA encoding bacterial cell envelope associated or surface antigens in gram positive bacteria comprising a reporter vector including the nucleotide sequence encoding the mature form of the staphylococcus nuclease gene and an upstream promoter region with DNA from a gram positive bacterium; said method wherein the reporter vector is one of the pTREP1-nuc vectors; said method wherein the gram positive bacterium is Group B Streptococcus, Streptococcus pneumoniae, Staphylococcus aureus or pathogenic group A streptococci; said vector which is one of the pTREP1-nuc vectors

For the sake of conciseness, the first and 70th subject-matters are explicitly defined, the other subject-matters are defined by analogy to the subject-matter of invention 1.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 99/02444

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9818930 A	07-05-1998	AU 5194598 A AU 6909098 A EP 0942983 A EP 0941335 A WO 9818931 A		22-05-1998 22-05-1998 22-09-1999 15-09-1999 07-05-1998
WO 9916882 A	08-04-1999	AU 9507698 A		23-04-1999
WO 9410317 A	11-05-1994	AU 5626998 A AU 689452 B AU 5665494 A CA 2146926 A EP 0669985 A FI 951979 A HU 70981 A JP 8505282 T NO 951629 A NZ 258684 A PL 308555 A US 5648241 A US 5847081 A US 5820860 A US 5858362 A US 5908629 A US 5968521 A US 5843444 A ZA 9308171 A		07-05-1998 02-04-1998 24-05-1994 11-05-1994 06-09-1995 29-06-1995 28-11-1995 11-06-1996 03-07-1995 24-04-1997 21-08-1995 15-07-1997 08-12-1998 13-10-1998 12-01-1999 01-06-1999 19-10-1999 01-12-1998 07-03-1995
WO 9506732 A	09-03-1995	US 5928900 A AU 709405 B AU 7680994 A CA 2170726 A EP 0721506 A FI 960977 A JP 9504686 T NO 960839 A NZ 273497 A US 5981229 A		27-07-1999 26-08-1999 22-03-1995 09-03-1995 17-07-1996 30-04-1996 13-05-1997 19-04-1996 25-03-1999 09-11-1999
WO 9823631 A	04-06-1998	NONE		
WO 9818931 A	07-05-1998	AU 5194598 A AU 6909098 A EP 0942983 A EP 0941335 A WO 9818930 A		22-05-1998 22-05-1998 22-09-1999 15-09-1999 07-05-1998
WO 9942588 A	26-08-1999	AU 2505999 A		06-09-1999