BABII

LANDASAN TEORI

2.1. Kajian Teori

2.1.1 Pengertian Sistem Pengambilan Keputusan

Sistem Pengambilan Keputusan (SPK) atau *Decision Support System (DSS)* adalah sistem informasi berbasis komputer yang dirancang untuk membantu pengambil keputusan dalam situasi yang semi terstruktur atau tidak terstruktur. SPK menyediakan informasi, model, dan alat analisis yang memungkinkan manajer untuk membuat keputusan yang lebih baik. Komponen SPK terdiri dari:

- Subsistem Manajemen Data meliputi basis data yang berisi informasi relevan yang dikelola oleh sistem manajemen basis data (DBMS). Subsistem ini memungkinkan pengambilan dan ekstraksi data yang cepat dan mudah.
- 2. Subsistem Manajemen Model berisi model-model keputusan seperti model finansial, statistik, dan manajemen. Subsistem ini menyediakan kemampuan analisis yang diperlukan untuk mendukung pengambilan keputusan.
- 3. Subsistem Dialog (Antarmuka Pengguna), memungkinkan interaksi antara pengguna dan sistem. Antarmuka pengguna yang mudah digunakan akan meningkatkan efektivitas SPK dengan menyediakan dukungan grafis dan bahasa yang mudah dipahami.

Tahapan Proses Pengambilan Keputusan sebagai berikut:

- Fase intelegensi yaitu proses identifikasi situasi, peluang, dan masalah yang dihadapi. Aktivitas ini meliputi pengumpulan data dan pengenalan masalah.
- 2. Fase desain pengembangan dan analisis merupakan tindakan yang perlu dilakukan. Ini termasuk pemahaman masalah dan pengujian solusi yang mungkin.

- 3. Fase evaluasi dan pemilihan solusi terbaik dari alternatif yang ada. Pada tahap ini, keputusan nyata diambil dan komitmen untuk tindakan tertentu dibuat.
- 4. Fase implementasi pengendalian perubahan dan penerapan solusi yang dipilih. Fase ini memastikan bahwa solusi bekerja sesuai harapan.

Kelebihan dan kekurangan sistem pengambilan keputusan

1. Kelebihan

- a. Meningkatkan efektivitas penentuan keputusan membantu manajer dalam membuat keputusan yang lebih baik dengan menyediakan informasi dan analisis yang relevan.
- Dukungan untuk penentuan keputusan kompleks yang memungkinkan analisis masalah yang kompleks dan tidak terstruktur.
- c. Adaptabilitas dapat disesuaikan dengan berbagai situasi dan kebutuhan organisasi.

2. Kekurangan

- a. Kompleksitas komputasi memerlukan sumber daya komputasi yang signifikan untuk mengelola data dan model.
- b. Ketergantungan pada data keputusan yang dihasilkan sangat bergantung pada kualitas dan ketersediaan data

2.1.2 Penentuan Prioritas Pemeriksaan di Inspektorat Daerah

Penentuan prioritas pemeriksaan di Inspektorat Daerah merupakan proses strategis dalam merencanakan kegiatan pengawasan. Proses ini bertujuan untuk memilih objek pemeriksaan berdasarkan tingkat urgensi, potensi risiko, dan dampaknya terhadap penyelenggaraan pemerintahan daerah. Jumlah obyek pemeriksaan tidak sebanding dengan jumlah APIP yang terbatas menjadi hambatan dalam penyelenggaraan pengawasan oleh karena itu, diperlukan sistem yang mampu memfasilitasi pemilihan entitas pemeriksaan

secara objektif dan terstruktur agar APIP fokus terhadap obyek pemeriksaan yang dianggap paling "rawan" atau berisiko tinggi terhadap pelanggaran dan penyimpangan. Proses ini harus melalui beberapa tahapan. Terdapat banyak faktor penentu prioritas yang bersifat kualitatif, seperti besarnya anggaran, banyaknya laporan masyarakat, kompleksitas kegiatan, dan hasil temuan tahun sebelumnya. Indikator – indikator ini tidak memungkinkan jika harus ditakar menggunakan logika biner (iya atau tidak). Hal ini sering membuat proses penentuan prioritas jadi subjektif, tergantung intuisi atau pengalaman APIP. Belum lagi jika ada tekanan dari luar atau intervensi, proses menjadi rumit dan tidak objektif. Oleh karena itu, dibutuhkan solusi yang mampu mengakomodasi penilaian yang bersifat "abu-abu" atau ambigu. Salah satu pendekatan yang sesuai untuk kondisi ini adalah metode fuzzy logic. Fuzzy logic merupakan metode pengambilan keputusan berbasis logika yang bisa memproses data kualitatif menjadi keputusan kuantitatif, dengan mempertimbangkan nilai-nilai yang tidak pasti seperti "tinggi", "rendah", atau "sedang". Dengan fuzzy logic, kita bisa membuat aturan-aturan keputusan yang lebih fleksibel dan masuk akal dalam konteks realita, misalnya: "Jika nilai anggaran tinggi dan laporan masyarakat banyak, maka prioritas pemeriksaan sangat tinggi."

Implementasi sistem ini dalam bentuk aplikasi berbasis web akan memudahkan proses penentuan prioritas menjadi lebih transparan, cepat, dan efisien. Sistem dapat diakses dari mana saja, memungkinkan sinkronisasi data secara real-time, serta mendukung akuntabilitas karena setiap pengambilan keputusan terekam dengan jelas. Web-based system juga lebih mudah untuk diintegrasikan dengan database pemerintahan yang sudah ada, sekaligus memberikan antarmuka pengguna yang mudah digunakan oleh APIP. Implementasi sistem pengambilan keputusan ini bukan hanya solusi teknologi, tetapi juga bentuk perwujudan pengawasan yang adaptif dan modern.

Beberapa penelitian sebelumnya telah menunjukkan efektivitas logika fuzzy dalam mendukung proses pengambilan keputusan di lingkungan pemerintahan. Misalnya, penelitian oleh Martha Oktriani mengembangkan aplikasi pendukung keputusan menggunakan logika fuzzy untuk menentukan prioritas pemeriksaan, yang menunjukkan bahwa pendekatan ini dapat meningkatkan objektivitas dan efisiensi pemeriksaan serta mengurangi risiko bias dalam penentuan prioritas (J.P., R.W., & Oktriani, 2008). Penelitian lainnya oleh Meliya Ningrum, Sutarman, dan Rachmad Sitepu menerapkan metode TOPSIS fuzzy dalam menentukan prioritas kawasan perumahan, yang juga menunjukkan efektivitas logika fuzzy dalam pengambilan keputusan berbasis multi-kriteria (Ningrum, Sutarman, & Sitepu, 2012).

2.1.3 Fuzzy Logic

Logika fuzzy merupakan bentuk logika multivalued yang memungkinkan nilai kebenaran suatu variabel berada dalam rentang kontinu antara 0 hingga 1. Berbeda dengan logika biner yang hanya mengenal dua nilai diskrit, yaitu 0 (false) dan 1 (true), logika fuzzy memperkenalkan konsep nilai antara (intermediate values) yang mencerminkan ketidakpastian dan ketidaktepatan dalam penilaian terhadap suatu kondisi. Konsep ini pertama kali diperkenalkan oleh Lotfi A. Zadeh pada tahun 1965 melalui teori himpunan fuzzy (fuzzy sets), yang dirancang untuk memodelkan proses penalaran manusia secara lebih realistis.Dalam bidang kecerdasan buatan (Artificial Intelligence), logika fuzzy digunakan untuk merepresentasikan dan meniru cara berpikir manusia yang tidak selalu bersifat pasti. Pendekatan ini dikembangkan dengan berbasis bahasa alami (natural language), sehingga mampu menjembatani antara bahasa manusia yang cenderung subjektif dan penuh makna dengan bahasa mesin yang bersifat eksak. Logika fuzzy sangat sesuai untuk diterapkan

dalam permasalahan yang mengandung unsur ketidakpastian, ambiguitas, dan informasi yang tidak lengkap.Penerapan logika fuzzy dalam kehidupan sehari-hari cukup luas, di antaranya pada sistem pengaturan suhu otomatis pada pendingin ruangan (AC), pengendalian kecepatan mesin cuci, serta sistem navigasi kendaraan. Dalam konteks tersebut, logika fuzzy memberikan kemampuan kepada sistem untuk mengambil keputusan secara lebih fleksibel dan adaptif terhadap dinamika lingkungan dan kondisi input yang tidak pasti.

1. Perbandingan *Logika Fuzzy* dan Logika Boolean

Logika Boolean beroperasi dengan dua nilai kebenaran diskret, yaitu 0 (salah) dan 1 (benar). Sebaliknya, logika fuzzy mengizinkan nilai kebenaran berada dalam rentang kontinu antara 0 hingga 1, sehingga mampu merepresentasikan derajat kebenaran secara lebih realistis dalam konteks permasalahan dunia nyata. Sebagai ilustrasi, dalam logika Boolean, individu dengan tinggi badan 1,7 meter diklasifikasikan secara tegas sebagai "tinggi" (1) atau "tidak tinggi" (0). Namun, dalam pendekatan logika fuzzy, individu tersebut dapat memiliki derajat keanggotaan sebesar 0,8 dalam himpunan "tinggi", yang menunjukkan bahwa individu tersebut tergolong cukup tinggi meskipun tidak secara mutlak. Perbedaan fundamental ini menjadikan logika fuzzy lebih adaptif dan sesuai untuk menangani permasalahan yang bersifat ambigu, tidak pasti, atau mengandung tingkat ketidaktepatan yang tinggi, sebagaimana dideskripsikan pada gambar berikut:

Gambar 2.1 Perbedaan Boolean dan Fuzzy

2. Kelebihan dan Kekurangan Logika Fuzzy

a. Kelebihan

Fleksibilitas tinggi mampu menangani data yang tidak pasti, tidak lengkap, atau ambigu. Penalaran mirip manusia meniru cara manusia membuat keputusan berdasarkan informasi yang tidak pasti. Integrasi mudah dapat diintegrasikan dengan sistem lain seperti kontrol PID atau jaringan saraf tiruan. Efisiensi data membutuhkan lebih sedikit data untuk membuat keputusan dibandingkan metode lain.

b. Kekurangan

Desain sistem yang kompleks membutuhkan keahlian khusus untuk merancang sistem fuzzy yang efektif. Kurangnya standarisasi tidak ada standar universal untuk implementasi logika fuzzy, sehingga bisa bervariasi antara aplikasi. Kesulitan dalam validasi sulit untuk memverifikasi dan memvalidasi sistem fuzzy secara formal.

3. Arsitektur Logika Fuzzy

Arsitektur logika fuzzy terdiri dari empat bagian utama ditunjukkan pada Gambar 2.2:

Rule Base

Puzzifier

Intelligence

Gambar 2.2 Arsitektur Logika Fuzzy

Arsitektur *Fuzzy Logic* memiliki 4 (empat) bagian utama yang akan kita bahas masing-masingnya berikut di bawah

a. Rule Base

Berisi semua aturan dan kondisi "if-else" untuk mengontrol pengambilan keputusan. Namun, seiring perkembangan modern, jumlah aturan dalam rule-base yang digunakan logika fuzzy telah banyak berkurang.

b. Fuzzification

Fuzzifikasi adalah komponen kedua dalam arsitektur logika fuzzy dan berguna untuk membantu mengubah input. Komponen ini membantu dalam mengkonversi angka ekstrem ke himpunan fuzzy. Masukan yang ekstrem diukur oleh sensor dan diteruskan ke sistem kontrol untuk diproses. Modul ini digunakan untuk mengubah input sistem dan juga membantu dalam membagi sinyal input menjadi lima state Large positive, Medium positive, Small, Medium negative, Large negative

c. Inference Engine

Komponen ketiga ini membantu dalam menentukan tingkat kesesuaian antara input fuzzy dan aturan fuzzy. Berdasarkan persentase itu diputuskan aturan mana yang perlu diterapkan. Setelah itu, untuk mengembangkan tindakan kontrol, aturan yang diterapkan digabungkan.

d. Defuzzifikasi

Defuzzifikasi adalah kebalikan dari proses fuzzification. Di sini, nilai fuzzy diubah menjadi nilai ekstrim melalui pemetaan (mapping). Akan ada beberapa metode defuzzifikasi untuk melakukan ini, tetapi pemilihan metode yang terbaik didasarkan sesuai input. Metode yang digunakan untuk defuzzifikasi yakni metode rata-rata (average) dan metode titik tengah (center of area) yang digunakan untuk membantu pengambilan keputusan yang tepat.

Metode *fuzzy logic* digunakan dalam sistem ini untuk menangani ketidakpastian dan kompleksitas dalam penilaian risiko kegiatan pemerintahan daerah. Variabel input fuzzy terdiri dari dua komponen utama, yaitu nilai risiko inheren dan nilai faktor risiko. Nilai risiko inheren diperoleh dari hasil perhitungan antara bobot risiko inheren terhadap skala tingkat risiko. Sementara itu, nilai faktor risiko merupakan gabungan dari beberapa indikator seperti: besaran anggaran, sektor unggulan, temuan fraud dan kasus hukum, isu terkini, hasil audit terakhir, pengalaman APIP, serta permintaan kepala daerah, yang seluruhnya telah dikonversi dalam bentuk skala nilai dan dikalkulasikan menggunakan bobot masing-masing. Setiap variabel input tersebut dimodelkan dalam bentuk fuzzy set dengan fungsi keanggotaan berbentuk segitiga (*triangular*) dan trapesium (*trapezoidal*) untuk memetakan nilai-nilai kuantitatif menjadi nilai linguistik.

2.1.4 Website

World Wide Web yang biasa dikenal dengan web adalah layanan yang menyajikan informasi menggunakan konsep hyperlink (tautan) memfasilitasi pekerjaan pengguna internet (istilah ini merujuk pada pengguna komputer yang menjelajah atau mencari informasi di internet). Fungsionalitas ini telah menjadikan web sebagai layanan yang tumbuh paling cepat. Web memungkinkan kita untuk menyorot (menggarisbawahi) kata atau gambar dalam dokumen untuk ditautkan atau diarahkan ke media lain seperti dokumen frasa klip video atau file audio. Web dapat menautkan dari mana saja dalam dokumen atau gambar ke mana saja di dokumen lain (Susilo, 2018). Web adalah ruang yang dapat menampung informasi di internet dalam browser, dengan menambahkan kemampuan untuk memproses beberapa data dan kode yang biasa dikenal sebagai beacon (pemisah) dan kemampuan untuk melompat (*link*) dari halaman satu ke halaman lain. (Fitriani, Nurmiati dan Utomo, 2016). Sistem pendukung keputusan ini dirancang berbasis web agar memudahkan akses penggunanya.

2.1.5 UML

UML (*Unified Modeling Language*) adalah sekumpulan simbol dan diagram yang digunakan untuk memodelkan perangkat lunak. Dengan menggunakan UML, desain perangkat lunak dapat direpresentasikan dalam bentuk visual, sehingga memudahkan pemahaman dan komunikasi antara pengembang dan pemangku kepentingan. Diagram-diagram ini kemudian dapat diterjemahkan menjadi kode program. Salah satu diagram yang umum digunakan adalah diagram kelas (*class diagram*), yang menggambarkan struktur sistem dan hubungan antar kelas. Implementasi kode dari diagram UML, termasuk diagram kelas, dapat dilakukan dengan berbagai bahasa pemrograman, asalkan bahasa tersebut mendukung paradigma pemrograman berorientasi objek (OOP). OOP memungkinkan pengembang untuk mengorganisir kode dalam bentuk objek, yang memudahkan pemeliharaan dan pengembangan perangkat lunak secara berkelanjutan. (Ir. M. Farid Azis, 2015).

A. Use Case Diagram

Use Case Diagram adalah sebuah model yang digunakan untuk merancang sistem informasi. Use case menggambarkan hubungan antara satu atau lebih peran dengan sistem informasi yang sedang dirancang. Selain itu, use case juga berguna untuk mengidentifikasi fungsi-fungsi yang ada dalam suatu sistem.(Huda, 2010). Tabel berikut menyajkan ringkasan simbol – simbol utama dalam Use Case Diagram beserta keterangannya:

Tabel 2. 1 *Use Case Diagram*

NO	Simbol	Nama	Keterangan	
1			Menspesifikasikan himpuan	
	\cap	Actor	peran yang pengguna	
	\vdash	Menspesifikasikan him peran yang pengguna mainkan ketika berinter dengan use case. Hubungan dimana perubahan yang terjadi pada suatu elemen man (independent) akan mempengaruhi elemen yang bergantung padan elemen yang tidak man (not independent). Hubungan dimana obje anak (descendent) berb		
	\wedge		dengan <i>use case</i> . Hubungan dimana perubahan yang terjadi	
2			Hubungan dimana	
			perubahan yang terjadi pada suatu elemen mandiri	
			pada suatu elemen mandiri	
	·····>	Dependency	(independent) akan mempengaruhi elemen yang bergantung padanya	
			elemen yang tidak mandiri	
			(not independent).	
3			Hubungan dimana objek	
		Generalizat	anak (descendent) berbagi	
	←	ion	anak (<i>descendent</i>) berbagi perilaku dari struktur data	
			perilaku dari struktur data objek yang ada di atasnya.	
4			Menspesifikasikan bahwa	
		Include	use case sumber secara	
			eksplisit.	
5			Menspesifikasikan bahwa	
			use case target memperluas	
		Extend	perilaku dari <i>use case</i>	
	├		sumber pada suatu titik	
			yang diberikan.	

NO	Simbol	Nama	Keterangan
6		Association	menghubungkan antara objek satu dengan objek lainya.
7		Use Case	Deskripsi dari urutan aksi- aksi yang ditampilkan sistem yang menghasilkan suatu hasil yang terukur bagi suatu aktor.

Use Case Diagram digunakan untuk memodelkan hubungan antara aktor (dalam hal ini adalah Aparat Pengawasan Intern Pemerintah atau APIP) dan fungsi-fungsi utama dalam sistem. Dalam konteks sistem ini, Use Case Diagram menggambarkan sejumlah skenario interaksi, antara lain:

- a. APIP mengakses website,
- b. APIP menginput data risiko inheren dan tujuh indikator faktor risiko,
- c. APIP dapat menambahkan indikator prioritas khusus berdasarkan permintaan kepala daerah,
- d. Sistem menghasilkan dan menampilkan rekomendasi prioritas pemeriksaan berdasarkan hasil perhitungan fuzzy logic.

Use Case Diagram ini merepresentasikan kebutuhan fungsional sistem serta batasan-batasan interaksi antara pengguna dan aplikasi, yang menjadi dasar dalam pengembangan antarmuka pengguna dan fungsionalitas sistem.

B. Sequence Diagram

Diagram urutan (*sequence diagram*) menjelaskan karakteristik objek dalam *use case* dengan memilih objek yang aktif serta pesan yang dikirim dan diterima di antara objek-objek

tersebut. Oleh karena itu, untuk menggambar diagram urutan, penting untuk mengetahui objek-objek yang terlibat dalam sebuah *use case* beserta metode-metode yang dimiliki oleh kelas yang diinstansiasi menjadi objek tersebut. Diagram urutan memerlukan desain yang terdapat dalam *use case* (Huda, 2010).Simbol – simbol utama dalam *Sequence Diagram* beserta keterangannya disajikan dalam tabel sebagai berikut:

Tabel 2. 2 Sequence Diagram

No	Simbol	Nama	Keterangan
1		LifeLine	Objek yang merepresentasikan entitas atau antarmuka yang berinteraksi satu sama lain.
2		Object Message	Spesifikasi dari komunikasi antar objek yang memuat informasi- informasi tentang aktivitas yang terjadi
3		Message to self	Menggambarkan pesan/hubungan objek itu sendiri yang menunjukan urutan kejadian yang terjadi

Sequence Diagram digunakan untuk menggambarkan interaksi antar objek atau komponen dalam sistem secara kronologis. Dalam pengembangan sistem ini, Sequence Diagram merepresentasikan urutan proses sebagai berikut:

a. APIP melakukan login ke sistem → sistem melakukan validasi kredensial pengguna.

- b. APIP menginput data risiko → sistem menyimpan data dan menginisiasi proses fuzzyfikasi.
- c. Sistem melakukan penghitungan terhadap nilai risiko inheren dan faktor risiko berdasarkan data input.
- d. Sistem mengombinasikan nilai-nilai tersebut untuk menghasilkan total skor risiko.
- e. Sistem menentukan rekomendasi tingkat prioritas pemeriksaan berdasarkan hasil defuzzifikasi.
- f. Jika indikator permintaan kepala daerah aktif, sistem secara otomatis menetapkan prioritas pemeriksaan tertinggi tanpa mempertimbangkan perhitungan fuzzy lainnya.
- g. Hasil rekomendasi ditampilkan kembali ke pengguna melalui antarmuka sistem.

Sequence Diagram ini berguna untuk memodelkan dinamika proses dalam sistem, serta menunjukkan bagaimana data diproses dan ditransmisikan antara komponen-komponen sistem secara real time.

C. Activity Diagram

Diagram aktivitas (activity diagram) adalah metode untuk menggambarkan logika prosedural dalam proses bisnis dan alur kerja dalam berbagai kasus atau insiden. Diagram aktivitas memiliki fungsi dengan flowchart, yang mirip namun perbedaannya terletak pada bahwa diagram aktivitas menggambarkan rangkaian aktivitas dari awal hingga akhir, sementara *flowchart* menggambarkan mekanisme menyesuaikan logika sesuai dengan algoritmanya (Huda, 2010). Adapun simbol – simbol Activity Diagram dan keterangannya adalah sebagai berikut:

Tabel 2.3 Activity Diagram

No	Simbol	Nama	Keterangan
1			Memperlihatkan bagaimana
		Activity	masing-masing kelas
			antarmuka saling
			berinteraksi satu sama lain
2			Asosiasi percabangan,
			dimana lebih dari satu
		Decision	aktivitas digabungkan
			menjadi satu.
3			Asosiasi penggabungan,
	\longrightarrow	Join	dimana satu aktivitas lebih
	\longrightarrow		dari satu.
4			Status awal aktivitas sistem,
		Initial	sebuah diagram aktivitas
		node	memiliki sebuah status
			awal.
5			Status akhir yang dilakukan
		Activity	sistem, sebuah diagram
		final node	aktivitas memiliki sebuah
			status satu.
6			Memisahkan organisasi
			bisnis yang bertanggung
		Swimlane	jawab terhadap aktivitas
			yang terjadi.

Activity Diagram digunakan untuk menggambarkan alur aktivitas atau proses bisnis yang terjadi dalam sistem dari perspektif pengguna. Dalam sistem pendukung keputusan ini, Activity Diagram memvisualisasikan urutan aktivitas sebagai berikut:

a. Pengguna (APIP) mengakses website.

- b. Setelah berhasil masuk, APIP mengakses halaman input data risiko.
- c. APIP menginput nilai risiko inheren berdasarkan parameter kemungkinan dan dampak.
- d. Selanjutnya, APIP mengisi tujuh indikator faktor risiko sesuai dengan kriteria yang berlaku.
- e. Bila terdapat perintah khusus dari kepala daerah, APIP dapat mengaktifkan indikator prioritas override.
- f. Seluruh data yang telah dimasukkan akan diproses oleh sistem menggunakan metode fuzzy logic, yang mencakup tahapan fuzzifikasi, inferensi, dan defuzzifikasi.
- g. Hasil akhir berupa rekomendasi tingkat prioritas pemeriksaan ditampilkan kepada APIP untuk dijadikan acuan dalam pengambilan keputusan.

Activity Diagram ini berperan dalam menjelaskan alur proses secara sistematis, sehingga mempermudah pengembang dalam merancang logika sistem yang sesuai dengan kebutuhan organisasi.

2.1.6 Implementasi Sistem

A. Xampp

XAMPP adalah perangkat lunak gratis yang mendukung berbagai sistem operasi dan merupakan gabungan dari beberapa program. Fungsinya sebagai server mandiri (*localhost*) meliputi program Apache HTTP Server, basis data MySQL, serta penerjemah untuk bahasa pemrograman PHP dan Perl. Nama XAMPP adalah akronim dari X (empat sistem operasi apapun), Apache, MySQL, PHP, dan Perl. Program ini dirilis di bawah GNU (*General Public License*) dan bersifat gratis, menyediakan web server yang mudah digunakan untuk menyajikan halaman web yang dinamis (V.Palit, 2015).

B. Database

Basis data (*database*) adalah sekumpulan informasi yang disimpan dalam komputer secara teratur, sehingga dapat diakses melalui program komputer untuk mendapatkan informasi dari basis data tersebut. Perangkat lunak yang digunakan untuk mengelola dan menjalankan query basis data dikenal sebagai sistem manajemen basis data (DBMS).(Saputra dkk., 2012)

Beberapa manfaat dari penggunaan database antara lain:

- Kecepatan dan Kemudahan (Speed)
 Memungkinkan akses cepat dan efisien terhadap data.
- Efisiensi Ruang Penyimpanan (Space)
 Mengoptimalkan penggunaan ruang penyimpanan dengan menyimpan data dalam format yang efisien.
- Keakuratan (*Accuracy*)
 Menyediakan data yang konsisten dan akurat.
- Kelengkapan (*Completeness*)
 Menyediakan akses lengkap ke data yang diperlukan.
- Keamanan (Security)
 Melindungi data dari akses yang tidak sah dan upaya manipulasi.
- Pemusatan Kontrol Data
 Memudahkan pengelolaan dan kontrol data secara terpusat.

C. Vs Code (Visual Studio Code)

Vscode adalah salah satu editor teks dan integrated development environment (IDE) untuk berbagai bahasa pemrograman dikembangkan oleh Microsoft dan bisa digunakan pada sistem operasi windows, macOS, dan Linux. Vscode menyediakan berbagai fitur yang membantu pengembang membuat kode dengan efisien, seperti syntax highlighting, autocomplete, dan debugging. Vscode juga memiliki integrasi

dengan berbagai pustaka dan platform, seperti git, github, dan azure sehingga mudah digunakan dalam lingkungan yang beragam (Surya Ningsih dkk., 2022).

D. Laravel

Laravel adalah salah satu framework berbasis PHP yang sifatnya open source dengan menggunakan konsep *model-view-controller*. Laravel sendiri berada di bawah lisensi *MIT license* dengan menggunakan github sebagai tempat berbagi code. Adapun beberapa konsep dasar pada laravel (Ambriani & Nurhidayat, 2020)

1. Artisan

Artisan merupakan command-line interface (CLI) yang menyediakan berbagai perintah untuk memfasilitasi pengembangan dan pembuatan aplikasi, seperti php artisan serve untuk menjalankan server lokal.

2. Routing

Routing merupakan proses yang menentukan bagaimana permintaan HTTP ditangani oleh aplikasi. Routing di Laravel biasanya didefinisikan dalam file web.php di folder routes.

3. Controller

Controller mengambil permintaan, menginisialisasi, dan memanggil model untuk disampaikan ke view. Controller bisa dibuat secara manual atau dengan perintah php artisan make:controller

4. View (Blade Templating)

Blade adalah engine template bawaan Laravel yang memudahkan proses pembuatan tampilan. Dapat membuat template master dan inheritance dengan kode @extends dan @section.

5. Middleware

Middleware menengahi antara permintaan yang masuk dan controller yang dituju. Middleware dapat dibuat menggunakan perintah php artisan make:middleware.

6. Session

Session merupakan mekanisme penyimpanan data pada server yang dapat digunakan di berbagai halaman.

7. Migration

Migration fitur untuk mengatur versi kontrol sistem dalam basis data. Membuat atau mengelola tabel data dapat dilakukan dengan lebih mudah melalui migration.

8. Model

Model merupakan bagian dari MVC yang berhubungan langsung dengan database. Membuat model dapat dilakukan dengan perintah php artisan make:model.

2.2. Kajian Pustaka

Dalam penyusunan penelitian ini, terdapat beberapa hasil penelitian terdahulu yang relevan dengan penelitian ini. Penelitian terdahulu ini menjadi rujukan peneliti dalam melakukan penelitian ini. Adapun penelitian – penelitian yang dijadikan referensi dalam penelitian ini adalah sebagai berikut:

Tabel 2.4 Matriks Kajian Pustaka

No	Judul	Peneliti, Media Publikasi, dan Tahun	Hasil Penelitian	Kelemahan Penelitian	Perbandingan
1	Sistem Pendukung	Nurul Fauziah dan	Penelitian ini berhasil	Terdapat beberapa kelemahan,	Sistem pengambilan keputusan
	Keputusan	Yusra Fernando, Jurnal	menerapkan metode Simple	seperti ketergantungan pada	penentuan prioritas pemeriksaan
	Menentukan	Ilmiah Teknik	Additive Weighting (SAW)	penetapan bobot kriteria yang	di Inspektorat Daerah
	Prioritas Pasien	Informatika dan Sistem	untuk menentukan prioritas	dapat mempengaruhi hasil	menggunakan metode Fuzzy
	Binaan Yayasan	Informasi, 2024,	pasien di Yayasan Gerbang	akhir, serta proses normalisasi	Logic, terdapat perbedaan
	Gerbang Kebaikan		Kebaikan Indonesia	yang menunjukkan bahwa	signifikan dalam pendekatan.
	Indonesia		(YGKI), dengan hasil	tanpa normalisasi, akurasi	Metode SAW lebih sederhana
	Menggunakan		menunjukkan bahwa Pasien	lebih tinggi. Selain itu, kriteria	dan langsung, memberikan bobot
	Metode SAW		2 memiliki skor tertinggi	yang digunakan mungkin tidak	pada kriteria dan menghitung
			(0,7375) dan	mencakup semua aspek	skor akhir berdasarkan
			direkomendasikan sebagai	penting dalam penentuan	normalisasi, sementara Fuzzy
			pasien prioritas untuk	prioritas pasien.	Logic menangani ketidakpastian
			mendapatkan		dan ambiguitas dalam data,
			pendampingan. Tingkat		memungkinkan penilaian yang
			akurasi penelitian ini juga		lebih fleksibel
			baik, dengan rata-rata di		
			atas 80% dan akurasi		
			tertinggi mencapai 90%.		

No	Judul	Peneliti, Media Publikasi, dan Tahun	Hasil Penelitian	Kelemahan Penelitian	Perbandingan
2	Sistem Pendukung	Agusta Praba Ristadi	Penelitian ini menghasilkan	Penelitian ini menggunakan	MOORA berfokus pada optimasi
	Keputusan	Pinem, Henny	model sistem pendukung	data sekunder yang mungkin	berdasarkan rasio analisis untuk
	Penentuan Lokasi	Indriyawati, Basworo	keputusan untuk penentuan	tidak sepenuhnya akurat atau	menentukan alternatif terbaik dari
	Industri Berbasis	Ardi Pramono,Jurnal	lokasi industri	terkini.	beberapa pilihan, sedangkan
	Spasial	Teknik Informatika	menggunakan metode	Kriteria yang digunakan dalam	Fuzzy Logic lebih berorientasi
	Menggunakan	dan Sistem Informasi,	MOORA berbasis data	penelitian ini terbatas dan	pada penanganan ketidakpastian
	Metode MOORA	2020	spasial.	tidak mencakup semua aspek	dan ambiguitas dalam
			Nilai korelasi Spearman	yang mungkin relevan, seperti	pengambilan keputusan.
			Rank yang dihasilkan	jaringan listrik dan	
			adalah 0,9, menunjukkan	komunikasi.	
			bahwa metode MOORA	Nilai Yi yang dihasilkan	
			dapat memberikan hasil	memiliki nilai minus, yang	
			yang sesuai dengan	menunjukkan bahwa jumlah	
			kenyataan dalam penentuan	kriteria dengan kategori cost	
			prioritas lokasi industri.	lebih banyak daripada kategori	
				benefit.	
3	Sistem Penunjang	Maya Arfan, Rahman	Penelitian ini menghasilkan	Ketergantungan pada data	Penelitian ini menggunakan AHP
	Keputusan	Takdir, Roviana H.	sistem yang dapat	yang akurat dan relevan untuk	dan TOPSIS, sedangkan sistem di
	Penentuan Prioritas	Dai, Mohammad	memberikan nilai antara	penilaian kriteria., Proses	Inspektorat Daerah menggunakan

No	Judul	Peneliti, Media Publikasi, dan Tahun	Hasil Penelitian	Kelemahan Penelitian	Perbandingan
	Pembangunan Desa	Ramdhan Arif	kriteria dan kriteria, yang	pengambilan keputusan yang	Fuzzy Logic.
	Dengan Metode	Kaluku,Jurnal Sistem	menjadi patokan penilaian	mungkin masih dipengaruhi	
	AHP - TOPSIS	Informasi, 2023	antar alternatif dan kriteria.	oleh subjektivitas dalam	
			Sistem ini memungkinkan	penilaian kriteria.	
			pengambilan keputusan		
			yang lebih komprehensif		
			dalam menentukan prioritas		
			pembangunan desa dengan		
			menggunakan metode AHP		
			dan TOPSIS.		
4	Sistem Pendukung	Arifin Tua Purba, Heru	Penelitian ini menghasilkan	Ketergantungan pada data	K-Means dan ELECTRE
	Keputusan	Sugara, Hengki	sistem pendukung	peminjaman yang mungkin	berfokus pada pengelompokan
	Penentuan Prioritas	Mangiring Parulian	keputusan berbasis web	tidak selalu mencerminkan	dan penilaian alternatif
	Pengadaan Buku	Simarmata, Doris	yang dapat	kebutuhan aktual pengguna.	berdasarkan kriteria yang terukur,
	Perpustakaan	Yolanda Saragih,	mengelompokkan buku	Proses manual dalam	sedangkan Fuzzy Logic
	Menggunakan	Erikson Damanik,	berdasarkan jumlah	pengumpulan data yang dapat	menangani ketidakpastian dan
	Metode K-Means	Jurnal TEKINKOM,	peminjaman dan	menyebabkan kesalahan atau	ambiguitas dalam penilaian.
	dan ELECTRE	Volume 6, Nomor 1,	memberikan rekomendasi	ketidakakuratan.	
		Juni 2023	prioritas pengadaan buku	Keterbatasan dalam jumlah	

No	Judul	Peneliti, Media Publikasi, dan Tahun	Hasil Penelitian	Kelemahan Penelitian	Perbandingan
			yang tepat untuk	kriteria yang digunakan untuk	
			perpustakaan Sekolah	menentukan prioritas	
			Tinggi Akuntansi dan	pengadaan buku.	
			Manajemen Indonesia		
			(STAMI). Sistem ini		
			menggunakan metode K-		
			Means untuk		
			pengelompokan dan metode		
			ELECTRE untuk penentuan		
			prioritas.		
5	Sistem Pendukung	Yayan Eryk Setiawan,	penggunaan logika fuzzy	platform yang digunakan	sistem pengambilan keputusan
	Pengambilan	BAREKENG: Jurnal	Tahani dalam sistem	masih berbasis Microsoft	penentuan prioritas pemeriksaan
	Keputusan	Ilmu Matematika dan	pendukung keputusan	Excel, sehingga sistem bersifat	di Inspektorat Daerah berbasis
	Rekrutmen Guru	Terapan, 2020	rekrutmen guru mampu	statis, terbatas untuk pengguna	web yang menggunakan metode
	Menggunakan		memberikan hasil yang	tunggal, dan tidak dapat	fuzzy logic, sistem rekrutmen
	Logika Fuzzy		lebih objektif, adil, dan	berjalan secara otomatis atau	guru yang masih berbasis Excel
	Tahani		akurat dibandingkan	terintegrasi dengan sistem	jelas memiliki keterbatasan
			metode rata-rata nilai.	digital lainnya. Selain itu,	dalam hal skalabilitas, efisiensi,
			Keputusan diambil	tidak adanya antarmuka	dan kemudahan akses.

No	Judul	Peneliti, Media Publikasi, dan Tahun	Hasil Penelitian	Kelemahan Penelitian	Perbandingan
			berdasarkan empat kriteria	pengguna berbasis web	
			utama kompetensi guru,	membatasi aksesibilitas,	
			yaitu kepribadian, sosial,	fleksibilitas, serta efisiensi	
			pedagogik, dan profesional.	dalam penggunaan sistem di	
			Dengan menggunakan	lingkungan kerja yang	
			derajat keanggotaan fuzzy	membutuhkan pemrosesan	
			dan proses defuzzifikasi,	data secara cepat dan	
			sistem berhasil memberikan	terdistribusi.	
			rekomendasi yang		
			mempertimbangkan setiap		
			aspek secara proporsional.		
			Implementasi sistem ini		
			juga mampu mengurangi		
			subjektivitas dalam proses		
			seleksi dan memberikan		
			dasar yang kuat dalam		
			pengambilan keputusan.		

No	Judul	Peneliti, Media Publikasi, dan Tahun	Hasil Penelitian	Kelemahan Penelitian	Perbandingan
6	Implementasi Fuzzy	Junaidi, Jurnal	Penelitian ini menghasilkan	Keterbatasan penelitian ini	Meskipun sama-sama
	Logic dengan	Information System,	sebuah sistem berbasis	terletak pada penggunaan	menggunakan metode Mamdani,
	Metode Mamdani	Universitas	logika fuzzy dengan metode	perangkat lunak MATLAB	penelitian ini lebih berfokus pada
	untuk SPK Kinerja	Krisnadwipayana, Mei	Mamdani untuk	secara eksklusif, serta belum	penilaian individu (dosen),
	Dosen	2023	mengevaluasi kinerja dosen	diterapkannya sistem ini	sementara sistem yang
			berdasarkan tiga kriteria	dalam skala organisasi yang	dikembangkan menitikberatkan
			utama, yaitu pengajaran,	lebih luas.	pada evaluasi risiko
			penelitian, dan pengabdian		kelembagaan. Kompleksitas dan
			kepada masyarakat.		keragaman variabel input pada
					sistem Inspektorat Daerah jauh
					lebih tinggi.
7	Sistem Pendukung	Awaliah Nur Ajny,	Penelitian ini menghasilkan	Keterbatasan dalam jumlah	AHP berfokus pada perbandingan
	Keputusan	JURSISTEKNI (Jurnal	sistem pengukung	kriteria yang digunakan, yang	berpasangan dan pengurutan
	Pemilihan Lisptik	Sistem Informasi dan	keputusan yang	mungkin tidak mencakup	alternatif berdasarkan kriteria
	dengan Metode	Teknologi Informasi),	mempermudah pengguna	semua aspek penting dalam	yang telah ditentukan, sedangkan
	Analytical	Vol w, No. 3,	dalam memilih merek	pemilihan lipstik.	Fuzzy Logic lebih fleksibel
	Hierarchy Process	September 2020	lipstik berdasarkan kriteria		dalam menangani ketidakpastian
	(AHP)		yang diinginkan. Hasil		dan ambiguitas dalam penilaian.
			perhitungan AHP		

No	Judul	Peneliti, Media Publikasi, dan Tahun	Hasil Penelitian	Kelemahan Penelitian	Perbandingan
			menunjukan bahwa kriteria yang paling pentin dalam pemilihan.		
8	Sistem Pendukung Keputusan Penentuan Pilihan Kejuruan di SMK Menggunakan Fuzzy Tsukamoto	Theresia Satri Ina, Fajar Hariadi, dan Raynesta Mikaela Indri Malo, Jurnal Minfo Polgan, Juli 2023	Sistem ini mengotomatisasi proses penentuan jurusan siswa berdasarkan tujuh variabel nilai akademik dan minat, dengan penerapan metode fuzzy Tsukamoto. Akurasi sistem mencapai 60% dibandingkan hasil seleksi manual sekolah.	Kelemahan utama sistem adalah tingkat akurasi yang masih rendah serta kompleksitas tinggi pada penentuan aturan (rule base) dengan total 128 aturan, yang menimbulkan potensi bias.	Berbeda dengan metode Tsukamoto yang menuntut fungsi keanggotaan monoton, sistem Inspektorat menggunakan Mamdani yang lebih fleksibel untuk menangani output linguistik. Selain itu, sistem yang dikembangkan bersifat strategis karena berkaitan langsung dengan proses pengawasan pemerintahan daerah.

Dari kedelapan penelitian yang ditinjau, belum terdapat penelitian yang secara khusus menerapkan *fuzzy logic* untuk penentuan prioritas pemeriksaan di Lingkungan Inspektorat Daerah. Oleh karena itu, penelitian ini mengisi gap tersebut.