## К- и т-ЧАСТИЦЫ

Недавно опубликовано сообщение о наблюдении в фотоэмульсиях космических частиц с массой  $\sim 1200~m_e$  (К-частицы); получены также новые подтверждения существования  $\tau$ -мезонов (масса  $\sim 1000~m_e$ ).

В работах использовались фотоэмульсии Ильфорд G-5 толщиной 400 µ. Пластинки экспонировались на высоте 3300 м (Юнгфрау), под 30 см Рb.

## К-частицы

Автор 1 изучал распределение по энергиям электронов, возникающих при распаде  $\mu$ -мезонов ( $\mu$ - $\rightarrow$  е-распад). В одном случае энергия распадного электрона оказалась аномально большой и равной  $\sim$  240 M эв. Это побудило автора подробно изучить данный случай распада и произвести специальное измерение масс частиц.

На рис. 1 представлена микрофотография распада: первичная частица  $K_1$  останавливается в эмульсии; в месте её остановки (точка P) берёт начало след слабо ионизующей частицы. Длина следа первичной частицы в эмульсии более 4000  $\mu$ . Для определения массы измерялись средние углы многократного рассеяния и расстояния между зёрнами в зависимости от остаточного пробега частицы. Определение массы из этих



Рис. 1.

данных производилось различными независимыми методами, разработанными ранее <sup>2, 3, 4</sup>. Среднее значение массы оказалось равным

$$m_{K_e} = (1320 \pm 170) m_e$$
.

Вторичная, слабо ионизующая частица оставляет в эмульсии след длиной 2200  $\mu$ . Плотность зёрен и величина p  $\beta$  (оценённая из среднего угла многократного рассеяния) таковы, что частице следует приписать значение массы, меньшее  $400~m_e$ .

Другой случай распада тяжёлой частицы приведён на микрофотографии рис. 2. Здесь наблюдаются два последовательных распада в точке P и в точке Q. На первый взгляд может показаться, что это обычный  $\pi \to \mu \to e$ -распад. Как известно, при распаде остановившегося  $\pi$ -мезона возникают  $\mu$ -мезоны с пробегом  $\sim 590~\mu$ . Измеренный же пробег оказался равным  $1098~\mu$ . Предположение, что здесь имеет место распад  $\pi$ -мезона налету маловероятно, так как распадный  $\mu$ -мезон вылетает почти в противоположную сторону.

Поэтому автор специально измерял массы первичной и вторичной частиц (теми же методами, что и в первом случае). Длина следа первичной частицы в эмульсии  $\sim 5800~\mu$ , и её масса оказалась равной

$$m_{K_2} = (1125 \pm 140) m_e$$
.

Масса вторичной частицы равна  $200-300~m_e$ , т. е. это либо  $\pi$ -, либо  $\mu$ -мезон; вероятнее, однако, что вторичная частица  $\mu$ -мезон, так как в конце пробега (точка Q) она даёт распадную частицу — скорее всего электрон; вылет же электронов непосредственно при распаде  $\pi$ -мезонов никем не наблюдался.

Точность определения масс недостаточна для утверждения, что в обоих рассмотренных случаях имеет место распад тяжёлых частиц одинаковой массы, т. е. что  $m_{K_1} = m_{K_2}$ . Если частицы  $K_1$  и  $K_2$  одинаковые, то их распад должен сопровождаться вылетом по крайней мере двух нейтральных частиц (так как энергия распадных  $\mu$ -мезонов в обоих случаях различна). Если же  $K_1$  и  $K_2$ — разные, то возможно, что K-распад сопровождается вылетом одной нейтральной частицы; тогда массу её легко оценить, зная массу и импульс заряженных частиц. Для случая  $K_2$  масса нейтральной частицы оказывается равной  $900 \pm 130 \ m_e$ . В случае  $K_1$  неточность определения импульса вторичной частицы столь велика, что данные не противоречат вылету любой из нейтральных частиц  $\nu$  (нейтрино),  $\pi_0$  или  $V_0$  ( $800 \ m_e$ ).

Неточность определения масс такова, что нельзя также категорически утверждать, что масса K-частиц не равна массе  $\tau$ -мезона (см. дальше). Экспериментальные данные, всё же, повидимому, противогечат предположению о равенстве этих масс.

Кроме случаев  $K_1$  и  $K_2$  наблюдались ещё две K-частицы, но их массы не могли быть точно оценены из-за неудачных геометрических

Для выяснения природы и точного определения массы К-частиц необходимы дальнейшие исследования.

## т-мезон

В 1949 и 1950 гг. впервые описаны случаи  $^{5, 6}$ , когда заряженная кормическая частица с массой  $\sim 1000~m_e$  останавливается в фотоэмульсии и распадается на три заряженные частицы, вероятнее всего,  $\pi$ -мезоны.

сии и распадается на три заряженные частицы, вероятнее всего, π-мезоны. Последние работы <sup>7,8</sup> дают новые доказательства существования таких тяжёлых частиц (так называемых τ-мезонов).



Рис. 2.

На микрофотографии рис. З приведён случай, описанный в работе T Первичная частица  $\tau$  останавливается в точке P. Из этой точки расходятся следы трёх новых частиц a, b, c; концы следов находятся вне эмульсии.

Длина следа первичной частицы т в эмульсии 2070  $\mu$ . Масса её, определённая из измерений средних углов многократного рассеяния в зависимости от остаточного пробега, оказалась равной  $(1015\pm280)\,m_e$ . Более точное значение массы  $(1000\pm180)\,m_e$  получено при использовании измерений просветов между зёрнами эмульсии.

Длина следов вторичных частиц а, b, c в эмульсии 6400 µ, 120 µ и 490 µ соответственно. Как и в предыдущих работах, первоначальные направления движения вторичных частиц компланарны в пределах ощибок эксперимента; поэтому с большой вероятностью можно считать, что наблюдаемые три частицы являются единственными продуктами распада т-мезона. Авторам удалось оценить кинетические энергии вторичных частиц и отсюда независимым способом — массу первичного т-мезона.

Большая длина следа a позволила оценить массу частицы (по плотности зёрен и параметру рассеяния), оказавшуюся равной ( $285 \pm 20$ )  $m_e$ . Вероятнее всего, что это— $\pi$ -мезон. Определение его энергии производи-

лось следующим методом:

измерялись средние углы рассеяния и плотность зёрен для различных участков вдоль траектории a; из сравнения этих данных с подобными данными для  $\mu$ -мезонов и протонов можно было заключить, что пробег частицы вне эмульсии составляет около  $400\,\mu$  и, следовательно, полный её пробег равен  $(6800 \pm 200)\,\mu$ .

Используя соотношение пробег—энергия для протонов  $^{9, 10}$ , легко было определить энергию частицы с массой  $274\,m_e$  (наиболее точное значение массы  $\pi$ -мезона), имеющей пробег  $6800\,\mu$ . Получено значение энергии  $(19,0 \div 0.4)\,$  Мэв, что соответствует импульсу  $75,4\,$   $\frac{M$ эв}{}.

Импульсы частиц b и c определяются из условия, что сумма импульсов всех трёх частиц равна нулю. Импульс b равен (85,8  $\pm$  1)  $\frac{M \ni b}{c}$ ,

импульс c (98,3  $\pm$  1)  $\frac{M \ni s}{c}$ . По импульсам и плотности зёрен траектории оценена масса частиц  $m_b = (240 \pm 30) \; m_e$  и  $m_c = (280 \pm 15) \; m_e$ .

Авторы указывают, что условия наблюдения следа b таковы, что значение  $m_b$  следует считать заниженным и, следовательно, полученное значение масс согласуется с представлением, что первичная частица распадается на три  $\pi$ -мезона.

Независимое определение относительной величины масс вторичных частиц на основе измерений углов между траекториями и плотности зёрен также привело к заключению об их равенстве в пределах ошибок измерений.

Кинетические энергии b и c (определённые по импульсу и массе) равны  $(24,2\pm2,0)$  Мэв и  $(32,0\pm2,0)$  Мэв соответственно, а полная энергия трёх вылетевших частиц равна  $(75,2\pm5,0)$  Мэв.

Результаты определения кинетических энергий вторичных частиц

сведены в таблице (см. на стр. 136)

Здесь случаи 1 и 2 взяты из работ $^{5,6}$ , но пересчитаны с учётом более точного значения  $m_{\pi}=274~m_e$ .

Масса первичной частицы, оценённая исходя из принятой схемы распада на три  $\pi$ -мезона и полученного значения их общей кинетической энергии (73,5  $\pm$  4) Мэв, равна  $m_{\tau}=(966\pm8)~m_e$ .

Такое же значение общей кинетической энергии вторичных частиц  $(73.5 \pm 7)$  *Мэв* и массы  $m_{\tau}$  получено в последней работе  $^8$ .



Рис. 3.

Вся совокупность приведённых данных подтверждает высказанную точку зрения на природу распада. Нельзя, однако, категорически утверждать, что при распаде не возникает нейтрино или учизлучение слабой

| Общая кинетическая | энергия (в | <i>Мэв</i> ) рас | падных частиц |
|--------------------|------------|------------------|---------------|
| (предполагается,   | что все тр | и частицы        | π-мезоны)     |

| №<br>случая | Частица <i>а</i>                                                                           | Частица <i>в</i>                           | Частица с                                  | Общая кине-<br>тическая энер-<br>гия           |
|-------------|--------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------------|
| 1 2 3       | $   \begin{array}{c}     1,04 \pm 0,10 \\     50 \pm 7,5 \\     19 \pm 0,4   \end{array} $ | 31 ± 4<br>13 ± 2<br>24,2 ± 2<br>среднее в: | $33 \pm 4$ $22 \pm 3$ $32 \pm 2$ ввешенное | $65 \pm 8$ $85 \pm 15$ $75 \pm 5$ $73,5 \pm 4$ |

энергии. Нейтрино с энергией 10~M9s вызвало бы отклонение от компланарности следов трёх заряженных частиц на  $\sim 3^\circ$ , что находится на пределе точности измерений углов в опытах.

В работах  $^{1,7}$  зарегистрировано четыре K-частицы и один  $\tau$ -мезон в том же объёме эмульсии, в котором зарегистрировано  $750\,\pi$ -мезонов. Следовательно,  $\frac{N_{K,\;\tau}}{N_{\pi}}=\frac{1}{150}$ , где  $N_{K,\;\tau}$  — общее количество K- и  $\tau$ -частиц,

а  $N_{\pi}$  — количество  $\pi$ -частиц.

пропорционально Е.

Допустим, во-первых, что при энергиях протонов E>10 Бэв такая же часть энергии идёт на образование  $\pi$ -мезонов и что при этом, кроме  $\pi$ -мезонов, рождаются ещё K-,  $\tau$ -мезоны; во-вторых, что энергия поровну распределяется между  $\pi$ -частицами, с одной стороны, и K-,  $\tau$ -частицами — с другой; в-третьих, что в системе центра инерции взаимодействующих ядерных частиц рождённые K- и  $\tau$ -частицы имеют распределение по скоростям и углам, подобное тому, которое найдено для  $\pi$ -мезонов; зная распределение по энергиям быстрых протонов и нейтронов на данной высоте ( $\sim 3300$  м), можно вычислить ожидаемое отно-

шение  $\frac{N_{K,\,\, au}}{N_\pi}$ . Оно оказывается равным  $\frac{1}{7\,\, au}$ , т. е. величиной того же порядка, что и наблюдённое. (Расхождение в два раза с наблюдённым отношением вполне может быть объяснено за счёт того, что K-частицы весьма трудно идентифицировать на фоне  $\mu$ -мезонов, которых почти в тысячу раз больше; часть K-частиц, таким образом, может ускользнуть от наблюдения.)

Авторы рассматривают это как подтверждение гипотезы о том, что в ядерных превращениях, вызванных нуклеонами с энергией > 10 Бэв.

значительная часть энергии идёт на образование K- и  $\tau$ -частиц.

Из постулированного распределения по скоростям и количеству наблюдённых в опыте K- и  $\tau$ -частиц (5 частиц) делается заключение о том, что время жизни их не меньше  $10^{-9}$  сек.

О знаке заряда K- и  $\tau$ -частиц заключение сделать пока невозможно. Очевидно, что частота регистрации К- и т-частиц должна возрасти на больших высотах, где имеется большее количество протонов и нейтронов с энергией > 10~ Бэв; наблюдения имеет смысл производить на малых широтах (меньше  $40^\circ$ ), так как снижается фон от посторонних частиц, генерированных протонами меньших энергий (в малых широтах из-за магнитного поля Земли в атмосферу попадают протоны с энергией, большей  $\sim 5~ E38$ ).

В работах<sup>6,8</sup> пластинки экспонировались подо льдом, и автор 8 считает, что из водородосодержащих веществ наблюдается больший выход т-частиц, чем из других элементов.

В настоящее время можно, повидимому, считать установленным существование космических частиц с массой  $\sim 1000~m_e$ , распадающихся на три заряженные частицы (повидимому,  $\pi$ -мезоны). Для всестороннего изучения природы этих тяжёлых частиц необходимы дальнейшие исследования.

Что касается К-частиц, то полученные данные об их существовании следует рассматривать как предварительные, нуждающиеся в подтверждении и уточнении.

М. Д.

## ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1. O'Ceallaigh C., Phil. Mag. 42, 1032 (1951).

2. Hodgson, Phil. Mag. 41, 725 (1950).

- 3. Меноп a. Rochat; ссылка в на неопубликованную работу.
- 4. Perkins, cf. Lattes, Occhialini a. Powell, Proc. Phys. Soc. **61**, 178 (1948).
- 5. Brown, Camerini, Fowler, Muirhead, Powell a. Ritson, Nature, **163**, 82 (1949). 6. Harding, Phil. Mag. **41**, 405 (1950).
- 7. Fowler, Menon, Powell a. Rochat, Phil. Mag. 42, 1040 (1951).

- 8. Hodgson, Phil. Mag. 42, 1060 (1951).
  9. Lattes, Fowler a. Cuer, Proc. Phys. Soc. 59, 883 (1947).
  10. Brander, Smith, Barkas a. Бізпор, Phys. Rev. 77, 462 (1950).
  11. Сатегіпі и др., 1951 г.; ссылка в т на неопубликованную работу.