25. Funktionen von beschränkter Variation

Definition

Sei $f: [a,b] \to \mathbb{R}$ und $Z = \{x_0, \ldots, x_n\} \in \mathfrak{Z}$. $V_f(Z) := \sum_{j=1}^n |f(x_j) - f(x_{j-1})|$ ist die **Variation** von f bezüglich Z.

Beachte: Sind $Z_1, Z_2 \in \mathfrak{Z}$ und $Z_1 \subseteq Z_2 \Longrightarrow V_f(Z_1) \leq V_f(Z_2)$. $M_f = \{V_f(Z) : Z \in \mathfrak{Z}\}$. f heißt von **beschränkter Variation**, in Zeichen: $f \in \mathrm{BV}[a,b] : \iff M_f$ ist nach oben beschränkt. In diesem Fall heißt $V_f[a,b] := \sup M_f$ die **Totalvariation** von f (auf [a,b]).

Beispiel

$$f(x) := \begin{cases} x \cos \frac{\pi}{x}, & x \in (0, 1] \\ 0, & x = 0 \end{cases}$$

 $f \in C[0,1]$. Sei $n \in \mathbb{N}$. $Z_n := \{0, \frac{1}{n}, \frac{1}{n-1}, \frac{1}{n-2}, \dots, \frac{1}{n-(n-1)}\}$. Nachrechnen: $V_f(Z_n) \to \infty$ $(n \to \infty)$. Also: $f \notin BV[0,1]$.

Hilfssatz

Sei $f:[a,b]\to\mathbb{R}$ differenzierbar auf [a,b] und f' sei auf [a,b] beschränkt. Dann ist f auf [a,b] Lipschitzstetig.

Beweis

 $L := \sup\{|f'(x)| : x \in [a, b]\}$. Sei $x, y \in [a, b]$, etwa $x \le y$. $|f(x) - f(y)| = |f'(\xi)(x - y)| = |f'(\xi)||x - y| \le L|x - y|, \xi \in [x, y]$.

Satz 25.1 (Varianzeigenschaften)

- (1) Ist $f \in BV[a, b] \implies f$ ist beschränkt auf [a, b].
- (2) Ist f auf [a, b] Lipschitzstetig $\implies f \in BV[a, b]$.
- (3) Ist f differenzierbar auf [a, b] und f' beschränkt auf $[a, b] \implies f \in BV[a, b]$
- (4) $C^1[a,b] \subseteq BV[a,b]$
- (5) Ist f monoton auf $[a, b] \implies f \in BV[a, b]$ und $V_f[a, b] = |f(b) f(a)|$
- (6) BV[a, b] ist ein reeller Vektorraum
- (7) Ist $c \in (a, b)$, so gilt: $f \in BV[a, b] \iff f \in BV[a, c]$ und $f \in BV[c, b]$. In diesem Fall: $V_f[a, b] = V_f[a, c] + V_f[c, b]$.

Beweis

(1) Sei $x \in [a,b]$ (beliebig, fest). $Z := \{a,x,b\}, \ V_f(Z) = |f(x)-f(a)| + |f(b)-f(x)| \le V_f[a,b] \Longrightarrow |f(x)| = |f(x)-f(a)| + |f(a)| \le |f(x)-f(a)| + |f(a)| \le V_f[a,b] + |f(a)|$

- (2) $\exists L \ge 0 : |f(x) f(y)| \le L|x y| \ \forall x, y \in [a, b]. \ \text{Sei} \ Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}. \ \sum_{j=1}^n |f(x_j) f(x_{j-1})| \le \sum_{j=1}^n L|x_j x_{j-1}| = L \sum_{j=1}^n (x_j x_{j-1}) = L(b-a)$
- (3) folgt aus (2) und dem Hilfssatz
- (4) folgt aus (3)
- (5) f sei wachsend auf [a, b]. Sei $Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}$. $V_f(Z) = \sum_{j=1}^n |f(x_j) f(x_{j-1})| = \sum_{j=1}^n f(x_j) f(x_{j-1}) = f(b) f(a) = |f(b) f(a)|$
- (6) Übung.
- (7) $I := [a, b], I_1 := [a, c], I_2 := [c, b].$
 - "⇒": Sei Z_1 eine Zerlegung von I_1 und Z_2 eine Zerlegung von I_2 . $Z := Z_1 \cup Z_2 \implies Z \in \mathfrak{Z}$ und $V_f(Z_1), V_f(Z_2) \leq V_f(Z_1) + V_f(Z_2) = V_f(Z) \leq V_f[a,b] \implies f \in \mathrm{BV}(I_1)$ und $f \in \mathrm{BV}(I_2)$ und $V_f(I_1) + V_f(I_2) \leq V_f[a,b]$
 - " \Leftarrow ": Sei $Z \in \mathfrak{Z}, \tilde{Z} := Z \cup \{c\}, Z_1 := \tilde{Z} \cap I_1, Z_2 := \tilde{Z} \cap I_2.$ Z_1 und Z_2 sind Zerlegungen von I_1 bzw. I_2 und $V_f(Z) \overset{s.o.}{\leq} V_f(\tilde{Z}) = V_f(Z_1) + V_f(Z_2) \overset{}{\leq} V_f(I_1) + V_f(I_2) \implies f \in \mathrm{BV}[I]$ und $V_f(I) \overset{}{\leq} V_f(I_1) + V_f(I_2)$.

Satz 25.2 (Eigenschaften Funktion von beschränkter Varianz)

- (1) $f \in BV[a,b] \iff \exists f_1, f_2 : [a,b] \to \mathbb{R}$ mit: f_1, f_2 sind wachsend auf [a,b] und $f = f_1 f_2$.
- (2) $BV[a, b] \subseteq R[a, b]$.
- (3) Ist $f \in C^1[a,b] \implies V_f[a,b] = \int_a^b |f'| dx$.

Beweis

- (3) später in allgemeiner Form (Analysis II, §12 od. §13)
- (2) folgt aus (1) und 23.4
- (1) "⇒": $V_f[a,a] := 0$, $f_1(x) := V_f([a,x])$ ($x \in [a,b]$), $f_2 := f_1 f$. Dann: $f = f_1 f_2$. Seien $c,d \in [a,b]$ und c < d. $f_1(d) = V_f[a,d] \stackrel{25.1(7)}{=} V_f[a,c] + V_f[c,d] = f_1(c) + \underbrace{V_f[c,d]}_{\geq 0} \geq f_1(c) \implies f_1 \text{ ist wachsend. } f(d) f(c) \leq |f(d) f(c)| = V_f(\tilde{Z}) \text{ (wobei } \tilde{Z} = \{c,d\})$ $\leq V_f[c,d] = f_1(d) f_1(c) \implies f_2(d) f_2(c) \geq 0 \implies f_2 \text{ ist wachsend.}$ " \Leftarrow ": 25.1(5), (6)