MEMS1045 Automatic control

Lecture 11

Frequency response 1

Objectives

- Explain the concept of frequency response
- Determine frequency response from transfer functions
- Represent the frequency response graphically using Bode diagrams
- Sketch the Bode diagrams from transfer functions
- Represent the frequency response graphically using Nichols chart and Nyquist diagram

Sinusoidal signal

Consider the sinusoidal input:

- **At** t < 0: x(t) = 0;
- Input frequency ω (rad/s) = $2\pi f$; where f = frequency in cycles/sec (Hz)
- $\Rightarrow \text{ Period } T = \frac{1}{f} = \left(\frac{2\pi}{\omega}\right) \text{ sec.}$
- Sinusoids can be represented as rotating phasors using complex numbers $Ae^{j\omega t} = |A| \not \Delta$

Frequency response

In the steady state, a sine input will generate a sine output

- ❖ Output signal will oscillate at the same frequency as input signal
- ❖ The magnitude of the output signal is different from the input signal
- The magnitude (or amplitude) ratio is defined ed as $M = \frac{B}{A}$
- **\Leftrightarrow** There is a phase shift (or difference) ϕ between the input and output signals

Note:

- \triangleright Only 2 parameters are needed to describe the frequency response: amplitude ratio M and phase difference ϕ
- ➤ Linear system can be represented using transfer functions

Frequency response

Given the transfer function, to determine the amplitude ratio and phase shift:

Substitute $s = j\omega$ into the transfer function G(s)

Note: $s = j\omega$ is a complex variable with $\omega =$ input signal frequency

 \clubsuit The amplitude ratio is the magnitude of the complex function $G(j\omega)$, i.e.

$$M = |G(j\omega)|$$

The phase shift is the phase angle of the complex function $G(j\omega)$, i.e.

$$\emptyset = \not \Delta G(j\omega)$$

Note: for complex numbers $z_1 = a_1 + b_1 j = M_1 e^{j\phi_1}$, $z_1 = a_2 + b_2 j = M_2 e^{j\phi_2}$, ... $z = \frac{z_1 z_2}{z_2 z_4} = \frac{M_1 M_2}{M_2 M_4} e^{j(\phi_1 + \phi_2 - \phi_3 - \phi_4)} = |z| e^{j\phi}$

Example 1

Find the steady state response for y(t) for input $f(t) = 5\sin(0.2t)$ given the transfer function

$$G(s) = \frac{Y(s)}{F(s)} = \frac{20}{(10s+1)(4s+1)}$$

Note: input signal frequency is $\omega = 0.2$ and system is stable;

Substitute $s = j\omega = 0.2j$ into the transfer function G(s)

$$G(j\omega) = \frac{Y(j\omega)}{F(j\omega)} = \frac{20}{(2j+1)(0.8j+1)}$$

$$|G(j\omega)| = \frac{|Y(j\omega)|}{|F(j\omega)|} = \frac{20}{(\sqrt{4+1})(\sqrt{0.64+1})} = 7$$

$$\angle G(j\omega) = 0 - \tan^{-1}(2/1) - \tan^{-1}(0.8) = -102.1^{\circ} \text{ or } -1.78 \text{ rad.}$$

$$|Y(j\omega)| = 7|F(j\omega)| = 7(5) = 35$$
Output signal is $|Y(j\omega)| \sin(\omega t + \emptyset) = 35 \sin(0.2t - 1.78)$

Graphical representation

Consider a system given by transfer function G(s)

- * The frequency response is described by amplitude ratio $M = |G(j\omega)|$ and phase shift $\emptyset = \angle G(j\omega)$
- ❖ There are three graphical methods of representing the system frequency response:
- 1) Bode diagram separately plot $20 \log |G(j\omega)|$ vs. ω and plot ϕ vs. ω
- 2) Nichols chart plot $20 \log |G(j\omega)|$ vs. $\angle G(j\omega)$
- 3) Nyquist (or polar) diagram plot (M, ϕ) as ω changes

Bode diagram

Sketch the Bode diagram for the following system:

$$G(s) = \frac{1}{s+2}$$

$$G(j\omega) = \frac{1}{2 + j\omega}$$

$$G(j\omega) = \frac{1 \angle 0^0}{\sqrt{4 + \omega^2} \angle \tan^{-1}(\omega/2)}$$

$$|G(j\omega)| = \frac{1}{\sqrt{4 + \omega^2}}$$

$$20 \log|G(j\omega)| = 20 \log \frac{1}{\sqrt{4 + \omega^2}}$$

 $\angle G(j\omega) = -\tan^{-1}(\omega/2)$

ω	$20\log G(j\omega) $	$\angle G(j\omega)$
0	-6.02	0
1	-6.99	-26.57 ⁰
5	-14.6	-68.2 ⁰
10	-20.17	-78.69^{0}
50	-33.99	-87.71 ⁰
∞	0	-90 ⁰

Bode diagram

The four different factors that may occur in a transfer function are:

- 1) Constant gain, i.e. *K*
- 2) Poles (or zeros) at the origin, i.e. s
- 3) Poles (or zeros) on the real axis; i.e. (Ts + 1)
- 4) Complex conjugate poles (or zeros), i.e. $(s^2 + 2\zeta\omega_n s + \omega_n^2)$ Given $G(s) = \frac{G_1(s)G_2(s)}{G_3(s)G_4(s)}$
- Amplitude ratio $(M, db) = 20 \log |G(s)| = 20 \log \left\{ \frac{|G_1(s)||G_2(s)|}{|G_3(s)||G_4(s)|} \right\}$ $(M, db) = 20 \log |G_1(s)| + 20 \log |G_2(s)| - 20 \log |G_3(s)| - 20 \log |G_4(s)|$
- Phase shift $\emptyset = \angle G(j\omega) = \phi_1 + \phi_2 \phi_3 \phi_4$
- ❖ We will determine the logarithmic magnitude plot and phase angle for the four factors and then use them to approximate the Bode diagram for any general form of a transfer function

- 1) Constant gain G(s) = K, or $G(j\omega) = K \not= 0$
- $(M, db) = 20 \log |K| = \text{constant}$
- $\Phi = 0$
- The log-magnitude curve for a constant gain K is a horizontal straight line at the magnitude of $20 \log(K)$ decibels.
- The phase angle of the gain *K* is zero.
- The effect of varying the gain *K* in the transfer function is that it raises or lowers the log-magnitude curve of the transfer function by the corresponding constant amount, but it has no effect on the phase curve.

If K = 5, then $20 \log(5) = 14$ db and $\phi = 0$

- 2) Poles (or zeros) at the origin:
- For pole $G(s) = \frac{1}{s}$, or $G(j\omega) = \frac{1}{j\omega} = \frac{140}{\omega 490^{\circ}}$ $(M, db) = 20 \log|1| - 20 \log|\omega| = -20 \log(\omega)$ $\phi = -90^{\circ}$
- For zero G(s) = s, or $G(j\omega) = j\omega = \omega 490^{\circ}$ $(M, db) = 20 \log |\omega|$ $\phi = 90^{\circ}$
- The factor $s^{\pm k}$ has a magnitude diagram which is a straight line with slope equal to $\pm 20k$ [dB/decade] and constant phase, equal to $\pm k\pi/2$. This line crosses the horizontal axis (0[dB]) at $\omega = 1$

$$G(s) = \frac{1}{s}$$

- 3) Poles (or zeros) on the real axis; i.e. (Ts + 1):
- For pole $G(s) = \frac{1}{Ts+1}$, or $G(j\omega) = \frac{1}{j\omega T+1} = \frac{1 \pm 0}{\sqrt{1+\omega^2 T^2} \pm \tan^{-1}(\omega T)}$ $(M, \text{db}) = 20 \log|1| - 20 \log\left|\sqrt{1+\omega^2 T^2}\right| = -20 \log(\sqrt{1+\omega^2 T^2})$ $\phi = -\tan^{-1}(\omega T)$

As $\omega \to 0$, $(M, \mathrm{db}) \to 0$ and $\varphi \to 0$;

At $\omega = \left(\frac{1}{T}\right)$, $\phi = -45^{\circ}$ with slope $\approx -45 \text{deg/decade}$;

As $\omega \to \infty$, $\phi \to -90^{\circ}$; $(M, db) \approx -20 \log(\omega T)$;

We can approximate the amplitude ratio as

 $(M, \mathrm{db}) \approx -20 \log \omega - 20 \log T$; after $\omega = \frac{1}{T}$ it has -20db/decade slope.

- 3) Poles (or zeros) on the real axis; i.e. (Ts + 1):
- For zero G(s) = Ts + 1, or $G(j\omega) = j\omega T + 1 = \sqrt{1 + \omega^2 T^2} tan^{-1}(\omega T)$

$$(M, db) = 20 \log \left| \sqrt{1 + \omega^2 T^2} \right|$$
$$\phi = \tan^{-1}(\omega T)$$

As $\omega \to 0$, $(M, \mathrm{db}) \to 0$ and $\varphi \to 0$;

At $\omega = \left(\frac{1}{T}\right)$, $\phi = 45^{\circ}$ with slope $\approx 45 \text{deg/decade}$;

As $\omega \to \infty$, $\phi \to 90^{\circ}$ and $(M, \text{db}) \approx 20 \log(\omega T)$;

We can approximate the amplitude ratio as

 $(M, \mathrm{db}) \approx 20 \log \omega + 20 \log T$; after $\omega = \frac{1}{T}$ it has 20db/decade slope

4) Complex conjugate poles (or zeros), i.e. $(s^2 + 2\zeta\omega_n s + \omega_n^2)$:

$$(M, db) = -20 \log \left| \sqrt{\left\{ 1 - \left(\frac{\omega}{\omega_n} \right)^2 \right\}^2 + \left\{ 2\zeta \frac{\omega}{\omega_n} \right\}^2} \right|$$

$$\phi = -\tan^{-1} \left\{ \frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2} \right\}$$

As $\omega \to 0$, $(M, db) \to 0$ and $\phi \to 0$;

At $\omega = \omega_n$, $(M, \mathrm{db}) = -20 \log(2\zeta)$ and $\varphi = -90^\circ$; slope \approx -90deg/decade

As
$$\omega \to \infty$$
, $(M, \mathrm{db}) \approx -20 \log \left(\frac{\omega}{\omega_n}\right)^2 = -40 \log \omega + 40 \log \omega_n$ and $\phi \to -180^\circ$;

Note after $\omega = \omega_n$ it has -40db/decade slope

- 4) Complex conjugate poles (or zeros), i.e. $(s^2 + 2\zeta\omega_n s + \omega_n^2)$:
- For zero $G(s) = \frac{s^2 + 2\zeta\omega_n s + \omega_n^2}{\omega_n^2}$, or $G(j\omega) = 1 \left(\frac{\omega}{\omega_n}\right)^2 + 2\zeta\left(\frac{\omega}{\omega_n}\right)j$

$$(M, db) = 20 \log \left| \sqrt{\left\{ 1 - \left(\frac{\omega}{\omega_n} \right)^2 \right\}^2 + \left\{ 2\zeta \frac{\omega}{\omega_n} \right\}^2} \right|$$

$$\phi = \tan^{-1} \left\{ \frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2} \right\}$$

As $\omega \to 0$, $(M, db) \to 0$ and $\phi \to 0$;

At $\omega = \omega_n$, $(M, db) = 20 \log(2\zeta)$ and $\phi = 90^\circ$; slope $\approx 90 \deg/\deg$

As
$$\omega \to \infty$$
, $(M, \mathrm{db}) \approx 20 \log \left(\frac{\omega}{\omega_n}\right)^2 = 40 \log \omega - 40 \log \omega_n$ and $\phi \to -180^\circ$;

Note after $\omega = \omega_n$ it has 40db/decade slope

Resonance frequency $\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$ At resonance $M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$

Complex Zero

Complex Pole

Example 2

Sketch the Bode diagram for the transfer function

$$G(s) = \frac{2500(s+10)}{s(s+2)(s^2+30s+2500)}$$

Reformat the transfer function:

$$G(s) = \frac{5(0.1s+1)}{s(0.5s+1)\left(\frac{1}{50^2}s^2 + \frac{0.6}{50}s + 1\right)}$$

$$G(j\omega) = \frac{5(0.1\omega j + 1)}{j\omega(0.5j\omega + 1)\left(0.6\left(\frac{\omega}{50}\right)j + 1 - \left(\frac{\omega}{50}\right)^2\right)}$$

Factors:

- ❖ Gain K = 5 or $20 \log 5 = 14$ db
- \clubsuit Zero at $\omega = 10$
- Pole at origin and pole at $\omega = 2$
- A pair of complex pole at $\omega_n = 50$

Nichols chart

Closed-loop frequency response for unity feedback can be obtained (read section 10.9 if interested in the construction of these circles)

٧

Nichols chart

Sketch the Nichols chart for the following system:

$$G(s) = \frac{1}{s(s+1)(s+3)}$$

ω	$ G(j\omega) _{db}$	$\angle G(j\omega)$
0.01	30.4	-90.7°
0.1	10.4	-97.6°
0.5	-4.6	-126°
1	-13	-153°
2	-24.1	-187°

$$G(j\omega) = \frac{1}{(j\omega)(j\omega+1)(j\omega+3)}$$

$$G(j\omega) = \frac{1\angle 0^0}{\omega(\sqrt{1+\omega^2})(\sqrt{9+\omega^2})\angle 90^0 + \tan^{-1}\omega + \angle \tan^{-1}(\omega/3)}$$

ω	$ G(j\omega) _{db}$	$\angle G(j\omega)$
0.01	30.4	-90.7°
0.1	10.4	-97.6°
0.5	-4.6	-126°
1	-13	-153°
2	-24.1	-187°

Phase angle

Nyquist diagram

Sketch the Nyquist diagram for the following system:

$$G(s) = \frac{1}{0.2s + 1}$$

$$G(j\omega) = \frac{1}{1 + j\omega 0.2}$$

$$G(j\omega) = \frac{1 \angle 0^{0}}{\sqrt{1 + \omega^{2} 0.04} \angle \tan^{-1} \omega 0.2}$$

$$|G(j\omega)| = \frac{1}{\sqrt{1 + \omega^{2} 0.04}}$$

$$\angle G(j\omega) = -\tan^{-1}(\omega 0.2)$$

ω	$ G(j\omega) $	$\angle G(j\omega)$
0	1	0
1	0.96	-11.31 ⁰
5	0.5	-45 ⁰
10	0.2	-63.43 ⁰
30	0.02	-80.54 ⁰
∞	0	-90 ⁰

