Konzeptbeschreibung

Team: TimeFlippers/NR. 2

Mitglied 1: Simon Draxl, 11830761

Mitglied 2: Calvin Gehrer, 11832080

Mitglied 3: Florian Gerhold, 11830663

Mitglied 4: Anna-Lena Hetzenauer, 11816161

Mitglied 5: Isabella Schmut, 11832184

Proseminargruppe: 2

Datum: 19.03.2020

1. Systemüberblick

Bei dieser IoT-basierten Software handelt es sich um eine webbasierte Anwendung für die Analyse der Produktivität von Mitarbeitern in der Softwareentwicklung. Sie eignet sich für Unternehmen, welche ihre Leistungen auf eine kreative Weise steigern wollen. Die Produktivität wird mit Hilfe von TimeFlip Würfeln gemessen, von denen jeder Mitarbeiter einen bekommt.

Die Würfel bieten einen unkomplizierten Weg, die Aktivitäten aufzuzeichnen. Für die Mitarbeiter entsteht kein zusätzlicher Aufwand, da sie nur den Würfel auf eine der zwölf darauf abgebildeten Tätigkeiten drehen müssen.

Bei einer Unachtsamkeit kann der Mitarbeiter die falsch erfassten Daten noch bis zu 2 Wochen mühelos selbst korrigieren. Wenn an anderer Stelle Veränderungen oder Korrekturen notwendig sind, ist man durch ein Audit-Log in der Lage, besondere Umstände zu erklären.

Die aufgezeichneten Daten werden dann automatisch ins zentrale Backend geladen und von selbst zusammengefügt.

Die Daten können von Teamleitern oder Abteilungsleitern in einer übersichtlichen Webanwendung ausgelesen werden. Die Daten liegen sowohl tabellarisch, als auch in aufschlussreichen Diagrammen und Visualisierungen vor. Um Dispute innerhalb eines Teams zu verhindern und um Mitarbeiter zu schützen, sieht der Teamleiter die Daten des gesamten Teams und nicht die, der einzelnen Teammitglieder. Dasselbe gilt für Abteilungen.

In der Webanwendung haben Mitarbeiter die Möglichkeit, auf eine einfache Art und Weise ihre Urlaubstage anzugeben. Dadurch wirkt sich der Urlaub auch nicht negativ auf die Produktivität ihres Teams aus.

Wenn die Benutzer wollen, können sie sich für E-Mail-Benachrichtigungen anmelden. Diese liefern regelmäßig personalisierte Produktivitätsauswertungen, mit denen man sich selbst motivieren oder Verbesserungspotenzial finden kann.

Zudem gibt es noch ein Dashboard, welches jeder Benutzer einsehen kann. Besondere Leistungen oder eine hohe Produktivität werden dort mit diversen Badges belohnt, um die Motivation der Mitarbeiter zu steigern.

2. Use Cases

2.1 Akteure

Mitarbeiter:

Mitarbeiter sind Anwender des Systems und bekommen für die Produktivitätsanalyse jeweils einen TimeFlip Würfel zur Verfügung gestellt. Sie haben Zugriff auf persönliche Daten und Statistiken und können weitere beruflich-administrative Aktionen tätigen.

Teamleiter:

Teamleiter haben zusätzlich Einsicht in Daten und Statistiken des gesamten Teams.

Abteilungsleiter/Manager:

Abteilungsleiter und höheres Management sind zusätzlich berechtigt, Daten und Statistiken der gesamten Abteilung abzurufen.

Admin:

Admins sind zuständig für die Verwaltung aller Benutzer des Systems sowie für die Einrichtung der einzelnen TimeFlip Würfel und Minirechner.

TimeFlip Würfel:

Für die Aufzeichnung der Zeitdaten werden TimeFlip Würfel verwendet. Diese müssen immer so gedreht und platziert werden, das die aktuelle Tätigkeit nach oben Zeigt. Die Aufzeichnungen werden gespeichert und an den zugehörigen Minirechner übertragen.

Minirechner (Raspberry Pi):

Zeitaufzeichnungen der Mitarbeiter werden von den Minirechnern angefragt und letztendlich an den zentralen Backend Server weitergeleitet.

2.2 Use Case Diagramm

2.3 Use Cases

2.3.1 Mitarbeiter

Anwendungsfall: Einsicht in persönliche Daten

Initiator: Mitarbeiter

Vorbedingung: Mitarbeiter ist eingeloggt

Basisablauf:

- Mitarbeiter klickt im Menü auf "Profil"

- Profil mit den persönlichen Daten des Mitarbeiters wird angezeigt

Involvierte Klassen: User, Employee

Anwendungsfall: Einsicht in eigene Statistiken

Initiator: Mitarbeiter

Vorbedingung: Mitarbeiter ist eingeloggt

Basisablauf:

- Mitarbeiter klickt im Menü auf "Meine Statistiken"

- Statistiken des eingeloggten Mitarbeiters werden angezeigt

Involvierte Klassen: User, Employee

Anwendungsfall: Erfasste Daten korrigieren

Initiator: Mitarbeiter

Vorbedingung: Mitarbeiter ist eingeloggt und Zeitaufzeichnungen sind verfügbar

Basisablauf:

- Mitarbeiter klickt im Menü auf "Meine Statistiken"

- Statistiken werden angezeigt
- Mitarbeiter klickt auf "Meine Zeitaufzeichnungen"
- Zeitaufzeichnungen werden in einer Tabelle angezeigt
- Tabelleneinträge können nun erstellt, verändert oder gelöscht werden

Involvierte Klassen: User, Employee

Anwendungsfall: Urlaub im System eintragen

Initiator: Mitarbeiter

Vorbedingung: Mitarbeiter ist eingeloggt und es stehen noch Urlaubstage zur Verfügung Basisablauf:

- Mitarbeiter klickt im Menü auf "Profil"

- Profil wird angezeigt
- Mitarbeiter klickt bei Kalender auf "Urlaub eintragen"
- Ein Pop-Up öffnet sich und die Urlaubsdaten können eingetragen werden
- Bei Bestätigung der Eingabe erscheint eine Benachrichtigung über Erfolg oder Misserfolg der Aktion

Involvierte Klassen: User, Employee, Vacation, VacationService

Anwendungsfall: E-Mail Benachrichtigungen abonnieren

Initiator: Mitarbeiter

Vorbedingung: Mitarbeiter ist eingeloggt und Benachrichtigungen sind nicht abonniert

Basisablauf:

- Mitarbeiter klickt im Menü auf "Profil"
- Profil wird angezeigt
- Im Profil erscheint eine Unterkategorie "E-Mail Benachrichtigungen", in der sich eine Checkbox befindet
- Ist die Checkbox aktiviert, erscheint die Option, das Intervall der Benachrichtigungen einzurichten

Involvierte Klassen: User, Employee, Email, EmailService

Anwendungsfall: eigene Badges abrufen

Initiator: Mitarbeiter

Vorbedingung: Mitarbeiter ist eingeloggt

Basisablauf:

- Mitarbeiter klickt im Menü auf "Meine Statistiken"
- Statistiken werden angezeigt
- Mitarbeiter klickt auf "Meine Badges"
- Liste der verliehenen Badges erscheint

Involvierte Klassen: User, Employee, Badge, BadgeEnum

Anwendungsfall: Produktivitäts-Dashboard abrufen (Überblick Firma)

Initiator: Mitarbeiter

Vorbedingung: Mitarbeiter ist eingeloggt

Basisablauf:

- Sobald der Mitarbeiter eingeloggt ist, erscheint auf der Startseite der Anwendung eine Ansicht mit Verschiedenen Produktivitäts-Dashboards

Involvierte Klassen: User, Employee

2.3.2 Teamleiter

Anwendungsfall: Team Statistiken abfragen

Inititator: Teamleiter

Vorbedingung: Teamleiter ist mit der Berechtigung "Teamleiter" oder höher eingeloggt

Basisablauf:

- Teamleiter klickt im Menü auf "Team Statistiken"
- Team Statistiken werden angezeigt

Involvierte Klassen: User, TeamLeader, Team

2.3.3 Abteilungsleiter/Manager

Anwendungsfall: Abteilung Statistiken abfragen

Inititator: Abteilungsleiter

Vorbedingung: Abteilungsleiter/Manager ist mit der Berechtigung "Abteilungsleiter" oder "Manager" eingeloggt

Basisablauf:

- Abteilungsleiter klickt im Menü auf "Abteilungs Statistiken"
- Abteilungs Statistiken werden angezeigt

Involvierte Klassen: User, HeadOfDepartment, Manager, Department

2.3.4 Admin

Anwendungsfall: Benutzer verwalten

Initiator: Admin

Vorbedingung: Admin ist mit der Berechtigung "Admin" eingeloggt

Basisablauf:

- Admin klickt im Menü auf "Benutzer"

- Liste aller registrierten Systembenutzer wird ausgegeben
- Admin kann neue Benutzer erstellen, bestehende Benutzer verwalten und bei Bedarf auch löschen

Involvierte Klassen: User, Admin

Anwendungsfall: TimeFlip Würfel einrichten

Initiator: Admin

Vorbedingung: Admin ist mit der Bereichtigung Admin eingeloggt

Basisablauf:

- Admin klickt im Menü auf "TimeFlip Würfel"
- Liste aller aktiven TimeFlip Würfel wird ausgegeben
- Admin kann dem System nun neue TimeFlip Würfel hinzufügen/löschen
- Admin kann im gleichen Kontext Mitarbeitern TimeFlip Würfel zuweisen und die Kalibrierung der Würfel vornehmen

Involvierte Klassen: Admin, User, TimeFlip, Task TaskEnum

Anwendungsfall: Minirechner einrichten

Initiator: Admin

Vorbedingung: Admin ist mit der Bereichtigung Admin eingeloggt

Basisablauf:

- Admin klickt im Menü auf "Minirechnerl"
- Liste aller aktiven Minirechner wird ausgegeben
- Admin kann dem System nun neue Minirechner hinzufügen/löschen, sowie deren Raumzuteilung und justierung der Übertragungsparameter zum zentralen Backend einstellen

Involvierte Klassen: Admin, Server, RaspberryPi

2.3.5 TimeFlip Würfel

Anwendungsfall: Zeitdaten erfassen Initiator: Mitarbeiter, TimeFlip Würfel

Vorbedingung: TimeFlip Würfel ist aktiviert und einem Mitarbeiter zugeordnet

Basisablauf:

- Mitarbeiter dreht den Würfel, sodass die aktuell ausgeführte Tätigkeit nach oben zeigt
- Zeitdaten werden aufgenommen und im Onboard-Speicher gesichert

Involvierte Klassen: User, Mitarbeiter, TimeFlip, Task

Anwendungsfall: Kommunikation mit Minirechner

Initiator: TimeFlip Würfel

Vorbedingung: Zeitdaten wurden erfasst

Basisablauf:

- Zu einem festgelegten Zeitpunkt stellt der TimeFlip Würfel automatisch eine Verbindung zum Minirechner des gleichen Raumes her
- Die Kommunikation erfolgt mittels Bluetooth LE
- Wird eine Verbindung erfolgreich hergestellt, so können die Zeitaufzeichnungen der TimeFlip Würfel an den Minirechner übertragen werden

Involvierte Klassen: TimeFLip, RaspberryPi

2.3.6 Minirechner (RaspberryPi)

Anwendungsfall: Kommunikation mit Backend Server

Initiator: Minirechner (Raspberry Pi)

Vorbedingung: Zeitdaten wurden erfolgreich vom TimeFlip Würfel auf den Minirechner

übertragen

Basisablauf:

- Raspberry Pi nimmt Verbindung zum zentralen Backend Server auf
- Verbindung erfolgt über eine Webschnttstelle
- Wird die Verbindung erfolgreich aufgebaut, so können die Daten aller TimeFlip Würfel gesammelt an das zentrale Backend übermittelt werden

Involvierte Klassen: RaspberryPi, Server

3. Klassendiagramm

User + Roles: Der User kann eine oder mehrere Rollen haben. Jeder User besitzt einen TimeFlip und kann seine eigenen Daten und Statistiken, die daraus berechnet werden, einsehen. Je nach Rolle hat der User verschiedene Sichten auf die Daten und Statistiken anderer Mitarbeiter. Employees sind einem Team zugeteilt, von dem jeder einen Teamleiter hat. Jeder User ist ebenfalls einem Department zugeteilt, von dem jeder Department einen Head of Department besitzt.

E-Mail: Jeder User besitzt eine E-Mail-Adresse. Wenn sich ein User für den E-Mailservice einschreibt, kann er festlegen in welchem Intervall er E-Mails erhält.

Vacation: Weiters kann sich jeder User einen Urlaub eintragen, wobei er eine fixe Anzahl von Urlaubstagen nicht überschreiten darf.

TimeFlip: Der Time Flip jedes Users, besitzt eine Liste von Aufgaben (Tasks) des Users, die über ein fest Enum definiert wird. Diese Aufgaben werden in einer Liste im Time Flip gespeichert und die gesammelten Daten werden an den Raspberry Pi gesendet.

RaspberryPi: Pro Raum sammelt ein Raspberry Pi alle Daten von allen Time Flips, die sich in diesem Raum befinden. Der Raspberry Pi sendet diese Daten dann weiter zum zentralen Server auf dem Auch die restlichen Daten der Angestellten des Unternehmens gespeichert sind.

Badges: Wenn die Auswertung eines Time Flip Würfels ergibt, dass ein User sich in einem Gebiet besonders hervorgetan hat, erhält er dafür Auszeichnungen, sogenannte Badges.

4. SW-Architektur

4.1 Komponentendiagramm

4.2 Technologien

4.2.1 Java

Java ist eine objektorientierte, systemunabhängige Programmiersprache und Laufzeitumgebung. Da sie sehr schnell, sicher und zuverlässig ist, findet man sie von Spielkonsolen bis zu Internet in den verschiedensten Anwendungen.

4.2.2 Spring

Spring ist ein quelloffenes Framework für die Java Plattform und wird oft für Web-Anwendungen verwendet. Spring soll vor allem die Entwicklung mit Java vereinfachen und gute Programmierpraktiken fördern.

4.2.3 Java Server Faces

JSF ist ein Framework-Standard zur Entwicklung von grafischen Benutzeroberflächen für Webanwendungen mit Java. Mit JSF kann man einfach Komponenten für Benutzerschnittstellen in Webseiten einbinden und die Navigation definieren.

4.2.4 Prime Faces

Prime Faces ist eine Open-Source-Komponentenbibliothek für Benutzeroberflächen für JSF-basierte Anwendungen.

4.2.5 Maven

Maven ist ein Build-Management-Tool, das auf Java basiert. Mit ihm werden vor allem Java-Programme standardisiert erstellt und verwaltet um die eigene Konfiguration zu minimieren.

4.2.6 MySQL

MySQL ist eine quelloffene relationale Datenbank. Das Programm wird häufig für die Datenspeicherung für Webservices verwendet. Der grundsätzliche Aufbau des Speichersystems sieht einen Server vor, dem die externen Clients wiederum Anfragen schicken. Nahezu alle Betriebssysteme sind dafür kompatibel.

4.2.7 Plain Java

Ein Plain Old Java Object oder POJO bezeichnet ein reguläres Java Objekt, wessen Aufbau nicht durch Konventionen oder Frameworks bestimmt wird. Es erweitert keine Klasse, implementiert kein Interface und beinhaltet auch keine Annotationen.

4.2.8 Tiny B

Eine moderne und Bluetooth LE API, die für das Vernetzen mit Hilfe von verschiedensten Programmiersprachen wie C oder Java verwendet wird.

4.2.9 JUnit

JUnit ist ein Framework, das zum Testen von Java Programmen eingesetzt wird. Meist werden nur einzelne Klassen oder Methoden (daher das Unit im Namen) getestet. Ein solcher Test kennt nur zwei Ausgänge, ist er grün, gelingt er, ansonsten ist er rot.

4.2.10 Raspberry Pi

Ein Einplatinencomputer, der aus einem SoC (System of a Chip) und einer ARM GPU besteht. Meist wird er mit einem Linux Betriebssystem, dem Raspian betrieben.

5. GUI Prototyp

Employee

Figure 1: Award Winners

Figure 2: Data

Figure 3: Received Awards

Figure 4: Holliday

Figure 5: Email

Team Leader

In addition to all the functionalities of Employee, Team Leader has following:

Figure 6: Data Team

Department Leader

In addition to all the functionalities of Team Leader, the Department leader can have a look at the data of several teams and data of Department

Figure 7: Data Teams

Figure 8: Data Department

6. Projektplan

Die Verantwortlichkeiten werden mittels Git-Issues an die einzelnen Teammitglieder verteilt. Jeder Issue beschreibt einen Teil einer Funktionalität. Die einzelnen Funktionalitäten werden in einem eigenen Branch, abhängig von der Komplexität, von einem oder mehreren Teammitgliedern entwickelt.