Please enter a positive integer:

5 1. 1 (=2) 2. 2 (=2) 3. 4 (=2) 4. 8 (=2) 5. 16 (=2)

line #	power of 2
1	2°
2	21
3	2
U	2
aunt	2 count-1
<i>\{</i>	
n	2001
`	-

n = 5 court = 12-48 corrpsacr= 1248 16

Place enter a positive integer **** **** **** ****

line	# of
1	<u> </u>
2	\bigcap
()	(
	ί,
à	\wedge

7	7		
line	# of stars		
1	1		
2	2		
3	3		
, (}		
K	k		
;	1		
,	h		

line	1 # of	401
numba	spaces	stars
1	N-1	1
2	10-2	2
3	N-3	3
	(ĺ
,	ţ	(
K	n-K	K
(?	
n	6	

Please outer a sequence of positive integers. End by typing -1; 29 Sum is _61 Average is _ Number of avers is

curr Ekm = \$1829, sum = \$\$82,5185 scn Endorsg = tatse true

The pigeonhole principle:

If you split (k+1) objects into k

boxes, then there will be a box

with >1 object in it

O O O O K=

Ex1: Number the popk 1,2,3,... ai = # of guests

oi = person i speaks to a: is in the to 3 by the pigeonlok principk ove get that there would be two guests who speak to the same number of people

Ex 25 Take:

a,=5

az = 55 az = 555

au = 5555

as = 55555

a6 = 555555

07 = 555555

az= 55555555

Consider the remainders such one leaves, when Livided by Z. The possible remaindes are: 0-6 (7 pussible remainders)

By the pigeontok principle us at that there are two numbers with the same remains Assume ai >a; and both how the same RM. a:= K. 7+ a= k=7+1

Look at ai-ai:

a:-aj=(k,-k).7

1) ai-a; is a multiple of 7

2) 555...5 => ai-a; has
5...5 => anly 55 and

58 ÷ 7 = 8(2) 58 = 8 · 7 + 2

Ex3! Look at the following 90 numbers! 1) U5 numbers: ana,....aus 2) cet numbers: a.+9, a.+9, ---, aus+9 Note that: 1) and ___, and are in the range 1-80 2) 0,49,0,49,..., Ous49 are in the range 10-89 Att 90 numbers an in the range 1-89
By the pigeonhole principle we get that two numbers are
since all ais are different = 3 ai +9 an different There 185its is ai = aj +9 => ai -aj = 9