FCC TEST REPORT(WIFI)

for

WorldBuy SAS

GSM Mobile Phone

Model Number: CUBE X4

FCC ID: 2ACTLCUBEX4

Prepared for: WorldBuy SAS

Address : CRA 42H #92-45 APTO 301, Barranquilla, Colombia

Prepared by: Keyway Testing Technology Co., Ltd.

Address : Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

Tel: 86-769-8718 2258 Fax: 86-769-8718 1058

Report No. : 14KWE07172302R Date of Test : Jul. 15~22, 2014 Date of Report : Jul. 23, 2014

TABLE OF CONTENTS

Te	est F	Report Declaration	Page
1.	TE	EST SUMMARY	4
2.	G	SENERAL PRODUCT INFORMATION	5
	2.1.		
	2.2.		
	2.3.		
	2.4.		6
	2.5.	3 - 7 - 11 - 1 - 3 - 7 - 1	
3.	TI	EST SITES	7
	3.1.		
	3.2.		
4.	TI	EST SET-UP AND OPERATION MODES	9
	4.1.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9
	4.2.		
	4.3.		
	4.4.	1	
	4.5.	The state of the s	
5.		MISSION TEST RESULTS	
	5.1.		
	5.2.		
6.		BAND EDGE COMPLIANCE TEST	
	6.1.		
	6.2.	•	
7.	6[DB OCCUPY BANDWIDTH	
	7.1.		
	7.2.		
	7.3.		
8.		OUTPUT POWER TEST	
	8.1.		
	8.2.	·	
_	8.3.		
9.		POWER SPECTRAL DENSITY TEST	_
	9.1.		
	9.2.	·	
4.0	9.3.		
10		ANTENNA REQUIREMENTS	
	10.1		
	10.2		
11		PHOTOGRAPHS OF TEST SET-UP	
12)	PHOTOGRAPHS OF THE FUT	40

Keyway Testing Technology Co., Ltd.

Applicant: WorldBuy SAS

Address: CRA 42H #92-45 APTO 301, Barranquilla, Colombia

Manufacturer: Shenzhen Leed Electronic Co.,LTD

Address: Room 29A1, Block A, Zhonghangbeiyuan Building, Zhenhua Road,

Futian District Shenzhen China

E.U.T: GSM Mobile Phone

Model Number: CUBE X4

Trade Name: WorldBuy Serial No.: -----

Date of Receipt: Jul. 15, 2014 **Date of Test:** Jul. 15~22, 2014

Test Specification: FCC Part 15, Subpart C: Oct. 1, 2013

ANSI C63.4:2009

KDB558074 D01 DTS Meas Guidance v03r02

Test Result: The equipment under test was found to be compliance with the

requirements of the standards applied.

Issue Date: Jul. 23, 2014

Tested by:

Reviewed by:

Approved by:

Andy Gao / Engineer

Jade Yang/ Supervisor

Chris Du / Manager

Other Aspects:

None.

Abbreviations: OK/P=passed

fail/F=failed

n.a/N=not applicable

E.U.T=equipment under tested

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Keyway Testing Technology Co., Ltd.

1.TEST SUMMARY

Test Items	Test Requirement	Result
Conducted Emissions	15.207	PASS
	15.205(a)	
Radiated Emissions	15.209	PASS
	15.247(d)	
6dB Bandwidth	15.247(a)(2)	PASS
Power density	15.247(e)	PASS
Maximum Output Power	15.247(b)(3)	PASS
Emissions from out of band	15.247(d)	PASS
Antenna Requirement	15.203	PASS

2.GENERAL PRODUCT INFORMATION

2.1. Product Function

Refer to Technical Construction Form and User Manual.

2.2. Description of Device (EUT)

Product Name:	GSM Mobile Phone				
Model No.:	CUBE X4				
	Bluetooth:2402~2480MHz				
	WIFI:2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))				
	2422MHz~2452MHz (802.11n(H40))				
	GSM 850MHz:				
Operation Frequency:	Tx: 824.20 - 848.80MHz (at intervals of 200kHz); Rx: 869.20 - 893.80MHz (at intervals of 200kHz)				
	GSM 1900MHz:				
	Tx: 1850.20 - 1909.80MHz (at intervals of 200kHz);				
	Rx: 1930.20 - 1989.80MHz (at intervals of 200kHz)				
	Bluetooth:79 Channels				
Channel numbers:	WIFI:11 Channel for 802.11b/g/n(HT20),				
	7 Channel for 802.11n(HT40)				
Channel separation:	Bluetooth:1M WIFI:5M				
	Bluetooth: GFSK				
Modulation technology:	WIFI DBPSK/ DQPSK/CCK/BPSK/ QPSK/ 16QAM/ 64QAM				
	GSM/GPRS Mode with GMSK Modulation				
	EGPRS Mode with 8DPSK Modulation				
Antenna Type:	Integral Antenna				
	1dBi (BT),				
Antenna gain:	0.5dBi (WIFI)				
	OdBi (GSM),				
Dawar armah u	DC 5V from adapter				
Power supply:	Rechargeable lithium-ion battery 3.7V				
Multislot Class:	12				
EGPRS Class:	12				

2.3. Difference between Model Numbers

None.

2.4. Independent Operation Modes

The basic operation modes are:

2.4.1. EUT work continues TX mode and frequency as below:

	Channel	Frequency
802.11b	Low	2412MHz
802.110	Middle	2437MHz
	High	2462MHz
	Low	2412MHz
802.11g	Middle	2437MHz
	High	2462MHz
	Low	2412MHz
802.11n(HT20)	Middle	2437MHz
	High	2462MHz
	Low	2422MHz
802.11 n(HT40)	Middle	2437MHz
	High	2452MHz

Remark: According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1MHz for 802.11b,54MHz for 802.11g,MCSOMbps for 802.11n(H20), MCS11Mbps for 802.11n(H40).

2.5. Test Supporting System

2.5.1. AC Adapter:

Provide: Keyway

M/N: JK060500550V FCC Approve: FCC VOC

3. TEST SITES

3.1. Test Facilities

Lab Qualifications: 944 Shielded Room built by ETS-Lindgren, USA

Date of completion: March 28, 2011

966 Chamber built by ETS-Lindgren, USA

Date of completion: March 28, 2011

Certificated by TUV Rheinland, Germany.

Registration No.: UA 50207153 Date of registration: July 13, 2011

Certificated by UL, USA

Registration No.: 100567-237

Date of registration: September 1, 2011

Certificated by Intertek

Registration No.: 2011-RTL-L1-31 Date of registration: October 11, 2011

Certificated by Industry Canada

Registration No.: 9868A

Date of registration: December 8, 2011

Certificated by FCC, USA Registration No.: 370994

Date of registration: February 21, 2012

Certificated by CNAS China Registration No.: CNAS L5783 Date of registration: August 8, 2012

Name of Firm : Keyway Testing Technology Co., Ltd.

Site Location : Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

3.2. List of Test and Measurement Instruments

3.2.1. For conducted emission at the mains terminals test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	de&Schwarz ESCI		Apr. 27,14	Apr. 27,15
Artificial Mains Network	Rohde&Schwarz	ENV216	101315	Apr. 27,14	Apr. 27,15
Artificial Mains Network (AUX)	Rohde&Schwarz	ENV216	101314	Apr. 27,14	Apr. 27,15
RF Cable	FUJIKURA	3D-2W	944 Cable	Apr. 27,14	Apr. 27,15

3.2.2. For radiated emission test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	Apr. 27,14	Apr. 27,15
System Simulator	Agilent	E5515C	GB43130245	Apr. 30,14	Apr. 30,15
Power Splitter	Weinschel	1506A	NW425	Apr. 30,14	Apr. 30,15
Bilog Antenna	ETS-LINDGREEN	3142D	135452	Apr. 27,14	Apr. 27,15
Loop antenna	teseq	HLA6120	22032	Apr. 30,14	Apr. 30,15
Spectrum Analyzer	Agilent	E4411B	MY4511304	Apr. 27,14	Apr. 27,15
3m Semi-anechoic Chamber	ETS-LINDGREEN	966	KW01	Apr. 27,14	Apr. 27,15
Signal Amplifier	SONOMA	310	187016	Apr. 27,14	Apr. 27,15
Signal Amplifier	Agilent	8449B	3008A00251	Apr. 27,14	Apr. 27,15
RF Cable	IMRO	IMRO-400	966 Cable 1#	N/A	N/A
MULTI-DEVICE Controller	ETS-LINDGREEN	2090	126913	N/A	N/A
Horn Antenna	DAZE	ZN30701	11003	Apr. 27,14	Apr. 27,15
Horn Antenna	SCHWARZBECK	BBHA9170	9170-068	Apr. 27,14	Apr. 27,15
Spectrum Analyzer	Agilent	8593E	3911A04271	Apr. 27,14	Apr. 27,15
Spectrum Analyzer	Agilent	E4408B	MY44211125	Apr. 30,14	Apr. 30,15
Signal Amplifier	DAZE	ZN3380C	11001	Apr. 27,14	Apr. 27,15
High Pass filter	Micro	HPM50111	324216	Apr. 30,14	Apr. 30,15
Filter	COM-MW	ZBSF-C836.5-25-X	KW032	Apr. 30,14	Apr. 30,15
Filter	COM-MW	ZBSF-C1747.5-75-X2	KW035	Apr. 30,14	Apr. 30,15
Filter	COM-MW	ZBSF-C1880-60-X2	KW037	Apr. 30,14	Apr. 30,15
DC Power Supply	LongWei	PS-305D	010964729	Apr. 27,14	Apr. 27,15
Constant temperature and humidity box	GF	GTH-800-40-1P	MAA9906-005	Apr. 27,14	Apr. 27,15
Universal radio communication tester	Rohde&Schwarz	CMU200	3215420	Apr. 27,14	Apr. 27,15
Splitter	Agilent	11636B	0025164	Apr. 27,14	Apr. 27,15

4. TEST SET-UP AND OPERATION MODES

4.1. Principle of Configuration Selection

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

4.2. Block Diagram of Test Set-up

System Diagram of Connections between EUT and Simulators

(EUT: GSM Mobile Phone)

- 4.3. Test Operation Mode and Test Software None.
- 4.4. Special Accessories and Auxiliary Equipment None.
- 4.5. Countermeasures to Achieve EMC Compliance None.

5. EMISSION TEST RESULTS

5.1. Conducted Emission at the Mains Terminals Test

5.1.1. Limit 15.207 limits

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBµV)
	Quasi-peak	Average
0.15-0.5 0.5-5 5-30	66 to 56 56 60	56 to 46 46 50

5.1.2. Test Setup

The EUT was put on a wooden table which was 0.8 m high above the ground and connected to the AC mains through the Artificial Mains Network (AMN). Where the mains cable supplied by the manufacture was longer than 0.8 m, the excess was folded back and forth parallel to the cable at the centre so as to form a bundle no longer than 0.4 m.

The EUT was kept 0.4 m from any other earthed conducting surface. Both sides of AC line were checked to find out the maximum conducted emission levels according to the test procedure during the conducted emission test.

The frequency range from 150 kHz to 30 MHz was investigated.

The bandwidth of the test receiver was set at 9 kHz.

Pretest for all mode, The test data of the worst case condition(s) was reported on the following page.

5.1.3. Test Mode

Set EUT in TX mode.

Test Data

Line

			Limit	Over	
	Freq	Level	Line	Limit	Remark
9	MHz	dBuV	dBuV	dB	-
1	0.162	52.17	55.34	-3.17	Average
2	0.162	57.64	65.34	-7.70	QP
3	0.217	49.63	52.92	-3.29	Average
4	0.217	53.64	62.92	-9.28	QP
5	0.329	46.01	49.49	-3.48	Average
6	0.329	47.52	59.49	-11.97	QP
7	0.654	42.88	46.00	-3.12	Average
8	0.654	47.68	56.00	-8.32	QP
9	8.367	46.02	50.00	-3.98	Average
10	8.367	51.65	60.00	-8.35	QP
11	22.298	45.89	50.00	-4.11	Average
12	22.298	51.68	60.00	-8.32	QP

Neutral

			Limit	Over	
	Freq	Level	Line	Limit	Remark
9	MHz	dBuV	dBuV	dB	
1	0.166	51.85	55.16	-3.31	Average
2	0.166	57.62	65.16	-7.54	QP
3	0.214	49.27	53.05	-3.78	Average
4	0.214	52.67	63.05	-10.38	QP
5	0.277	47.32	50.92	-3.60	Average
6	0.277	51.34	60.92	-9.58	QP
7	0.489	42.69	46.19	-3.50	Average
8	0.489	46.31	56.19	-9.88	QP
9	8.020	46.45	50.00	-3.55	Average
10	8.020	53.14	60.00	-6.86	QP
11	13.695	43.61	50.00	-6.39	Average
12	13.695	49.68	60.00	-10.32	QP

5.2. Radiated Emission Test

5.2.1. Limit 15.209 limits

FREQUENCY	DISTANCE	FIELD STREN	NGTHS LIMIT	
MHz	Meters	$\mu V/m$	dB(μV)/m	
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46.0	
960 ~ 1000	3	500	54.0	
Above 1000	3	74.0 dB(μV	V)/m (Peak)	
		$54.0 \text{ dB}(\mu\text{V})/\text{m} \text{ (Average)}$		

5.2.2. Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

5.2.3. Test setup

The EUT was placed on a turn table which was 0.8 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

The EUT was tested in the Chamber Site. It was pre-scanned with a Peak detector from the spectrum, and all the final readings from the test receiver were measured with the Quasi-Peak detector below 1GHz.

The bandwidth of the EMI test receiver is set at 120kHz for frequency range from 30MHz to 1000 MHz.

The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure above 1GHz.

The frequency range from 30MHz to 10th harmonic (25GHz) are checked. and no any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Notes: 1. Emission Level = Antenna Factor + Cable Loss + Meter Reading-Preamp Factor.

- 2. Measurement Uncertainty: ±3.2 dB at a level of confidence of 95%.
- 3. For emissions above 1GHz, if peak level comply with average limit, then the average level is deemed to comply with average limit.
- 4. For emissions below 1GHz, pretest for all mode, The test data of the worst case condition(s) was reported on the following pages.

Below 1GHz WIFI Mode Horizontal polarizations

		Preamp	Read	Cable.	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
7	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	,
1	61.04	31.34	50.81	0.75	7.32	27.54	40.00	-12.46	QP
2	146.40	31.23	47.51	1.22	8.78	26.28	43.50	-17.22	QP
3	284.14	30.94	40.05	1.87	13.29	24.27	46.00	-21.73	QP
4	350.10	30.66	40.37	2.10	15.51	27.32	46.00	-18.68	QP
5	534.40	30.77	35.48	3.03	19.31	27.05	46.00	-18.95	QP
6	709.00	30.66	36.08	3.88	22.15	31.45	46.00	-14.55	QP

WIFI Mode Vertical polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	.
1	31.94	31.40	41.03	0.56	17.66	27.85	40.00	-12.15	QP
2	131.85	31.20	46.94	1.12	8.32	25.18	43.50	-18.32	QP
3	216.24	31.02	42.07	1.53	11.78	24.36	46.00	-21.64	QP
4	340.40	30.71	35.78	2.10	15.12	22.29	46.00	-23.71	QP
5	699.30	30.67	32.09	3.88	21.90	27.20	46.00	-18.80	QP
6	898.15	30.07	33.01	4.84	23.96	31.74	46.00	-14.26	QP

Above 1GHz

802.11b 2412MHz Horizontal polarizations

		Preamp			Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	-
1	4824.00	27.50	31.47	12.01	32.99	48.97	74.00	-25.03	Peak
2	7236.00	27.95	22.13	16.61	37.30	48.09	74.00	-25.91	Peak
3	9517.00	28.61	20.09	16.92	38.01	46.41	74.00	-27.59	Peak
4	11812.00	28.98	17.02	17.33	39.59	44.96	74.00	-29.04	Peak
5	13376.00	29.27	13.64	18.65	42.44	45.46	74.00	-28.54	Peak
6	14549.00	29.48	15.14	19.71	40.39	45.76	74.00	-28.24	Peak

802.11b 2412MHz Vertical polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	, , , , , ,
1	4824.00	27.50	31.41	12.01	32.99	48.91	74.00	-25.09	Peak
2	7236.00	27.95	21.63	16.61	37.30	47.59	74.00	-26.41	Peak
3	8752.00	28.32	23.66	16.83	37.10	49.27	74.00	-24.73	Peak
4	11081.00	28.91	19.36	17.18	39.57	47.20	74.00	-26.80	Peak
5	13104.00	29.22	18.19	18.34	41.18	48.49	74.00	-25.51	Peak
6	14056.00	29.41	14.45	19.40	43.20	47.64	74.00	-26.36	Peak

802.11b 2437MHz Horizontal polarizations

		Preamp	Read	CableA	ntenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	O TS - 1 0
1	4874.00	27.53	30.95	12.14	33.11	48.67	74.00	-25.33	Peak
2	7311.00	27.96	21.20	16.62	37.32	47.18	74.00	-26.82	Peak
3	8480.00	28.24	18.35	16.76	36.79	43.66	74.00	-30.34	Peak
4	10350.00	28.84	18.40	17.04	38.96	45.56	74.00	-28.44	Peak
5	12118.00	29.02	16.96	17.47	39.42	44.83	74.00	-29.17	Peak
6	13376.00	29.27	13.48	18.65	42.44	45.30	74.00	-28.70	Peak

802.11b 2437MHz Vertical polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	4874.00	27.53	31.06	12.14	33.11	48.78	74.00	-25.22	Peak
2	7311.00	27.96	21.93	16.62	37.32	47.91	74.00	-26.09	Peak
3	9517.00	28.61	20.65	16.92	38.01	46.97	74.00	-27.03	Peak
4	10962.00	28.90	19.99	17.16	39.48	47.73	74.00	-26.27	Peak
5	11914.00	28.99	19.77	17.35	39.49	47.62	74.00	-26.38	Peak
6	12985.00	29.20	18.09	18.20	40.66	47.75	74.00	-26.25	Peak

802.11b 2462MHz Horizontal polarizations

		Preamp	Read	Cable	intenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	-
1	4924.00	27.56	31.10	12.28	33.23	49.05	74.00	-24.95	Peak
2	7386.00	27.98	22.07	16.62	37.36	48.07	74.00	-25.93	Peak
3	8293.00	28.19	20.74	16.72	36.63	45.90	74.00	-28.10	Peak
4	10469.00	28.85	17.18	17.06	39.15	44.54	74.00	-29.46	Peak
5	12271.00	29.05	19.61	17.59	39.46	47.61	74.00	-26.39	Peak
6	13206.00	29.24	17.37	18.44	41.65	48.22	74.00	-25.78	Peak

802.11b 2462MHz Vertical polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	-
1	4924.00	27.56	30.77	12.28	33.23	48.72	74.00	-25.28	Peak
2	7386.00	27.98	22.14	16.62	37.36	48.14	74.00	-25.86	Peak
3	9840.00	28.74	18.56	16.95	38.28	45.05	74.00	-28.95	Peak
4	11982.00	29.00	18.16	17.36	39.42	45.94	74.00	-28.06	Peak
5	12730.00	29.15	15.87	17.99	40.06	44.77	74.00	-29.23	Peak
6	14056.00	29.41	12.56	19.40	43.20	45.75	74.00	-28.25	Peak

802.11g 2412MHz Horizontal polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	(3 - 1
1	4824.00	27.50	30.69	12.01	32.99	48.19	74.00	-25.81	Peak
2	7236.00	27.95	22.22	16.61	37.30	48.18	74.00	-25.82	Peak
3	9092.00	28.43	19.03	16.89	37.50	44.99	74.00	-29.01	Peak
4	11387.00	28.94	18.96	17.24	39.81	47.07	74.00	-26.93	Peak
5	12730.00	29.15	18.29	17.99	40.06	47.19	74.00	-26.81	Peak
6	13903.00	29.38	13.36	19.24	43.40	46.62	74.00	-27.38	Peak

802.11g 2412MHz Vertical polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	-
1	4824.00	27.50	30.84	12.01	32.99	48.34	74.00	-25.66	Peak
2	7236.00	27.95	22.13	16.61	37.30	48.09	74.00	-25.91	Peak
3	8905.00	28.37	20.47	16.86	37.28	46.24	74.00	-27.76	Peak
4	10588.00	28.86	18.95	17.08	39.25	46.42	74.00	-27.58	Peak
5	12339.00	29.07	18.68	17.65	39.47	46.73	74.00	-27.27	Peak
6	14923.00	29.54	19.70	19.95	38.85	48.96	74.00	-25.04	Peak

802.11g 2437MHz Horizontal polarizations

	Freq	Preamp Factor	Read Level		intenna Factor	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	——dB	-
1	4874.00	27.53	30.59	12.14	33.11	48.31	74.00	-25.69	Peak
2	7311.00	27.96	22.07	16.62	37.32	48.05	74.00	-25.95	Peak
3	8633.00	28.29	21.63	16.80	36.96	47.10	74.00	-26.90	Peak
4	9551.00	28.62	20.71	16.93	38.04	47.06	74.00	-26.94	Peak
5	11421.00	28.94	19.81	17.25	39.83	47.95	74.00	-26.05	Peak
6	14566.00	29.48	17.05	19.72	40.32	47.61	74.00	-26.39	Peak

802.11g 2437MHz Vertical polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	4874.00	27.53	29.56	12.14	33.11	47.28	74.00	-26.72	Peak
2	7311.00	27.96	21.71	16.62	37.32	47.69	74.00	-26.31	Peak
3	9704.00	28.68	20.32	16.94	38.17	46.75	74.00	-27.25	Peak
4	11234.00	28.92	19.11	17.21	39.69	47.09	74.00	-26.91	Peak
5	12764.00	29.15	16.72	18.02	40.14	45.73	74.00	-28.27	Peak
6	14107.00	29.42	15.07	19.43	42.90	47.98	74.00	-26.02	Peak

802.11g 2462MHz Horizontal polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	.
1	4924.00	27.56	29.72	12.28	33.23	47.67	74.00	-26.33	Peak
2	7386.00	27.98	21.11	16.62	37.36	47.11	74.00	-26.89	Peak
3	9058.00	28.42	21.73	16.88	37.46	47.65	74.00	-26.35	Peak
4	11421.00	28.94	18.81	17.25	39.83	46.95	74.00	-27.05	Peak
5	13835.00	29.37	14.52	19.16	43.33	47.64	74.00	-26.36	Peak
6	15059.00	29.56	18.45	20.03	38.49	47.41	74.00	-26.59	Peak

802.11g 2462MHz Vertical polarizations

		Preamp Factor			Antenna Factor	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	——dB	-
1	4924.00	27.56	28.41	12.28	33.23	46.36	74.00	-27.64	Peak
2	7386.00	27.98	20.81	16.62	37.36	46.81	74.00	-27.19	Peak
3	9925.00	28.77	16.19	16.96	38.34	42.72	74.00	-31.28	Peak
4	11591.00	28.96	14.85	17.29	39.81	42.99	74.00	-31.01	Peak
5	13121.00	29.22	14.41	18.36	41.26	44.81	74.00	-29.19	Peak
6	14413.00	29.46	15.03	19.63	41.10	46.30	74.00	-27.70	Peak

802.11n(HT20) 2412MHz Horizontal polarizations

		Preamp	Read	Cablei	Intenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	·
1	4824.00	27.50	27.58	12.01	32.99	45.08	74.00	-28.92	Peak
2	7236.00	27.95	19.15	16.61	37.30	45.11	74.00	-28.89	Peak
3	9211.00	28.48	19.35	16.90	37.65	45.42	74.00	-28.58	Peak
4	10469.00	28.85	19.00	17.06	39.15	46.36	74.00	-27.64	Peak
5	12305.00	29.06	17.42	17.62	39.46	45.44	74.00	-28.56	Peak
6	13937.00	29.39	13.58	19.29	43.43	46.91	74.00	-27.09	Peak

802.11n(HT20) 2412MHz Vertical polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	-
1	4824.00	27.50	28.34	12.01	32.99	45.84	74.00	-28.16	Peak
2	7236.00	27.95	20.12	16.61	37.30	46.08	74.00	-27.92	Peak
3	9313.00	28.52	18.93	16.91	37.77	45.09	74.00	-28.91	Peak
4	11149.00	28.92	17.60	17.20	39.62	45.50	74.00	-28.50	Peak
5	12917.00	29.18	16.43	18.14	40.50	45.89	74.00	-28.11	Peak
6	14209.00	29.43	12.44	19.49	42.30	44.80	74.00	-29.20	Peak

802.11n(HT20) 2437MHz Horizontal polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	4874.00	27.53	27.92	12.14	33.11	45.64	74.00	-28.36	Peak
2	7311.00	27.96	20.23	16.62	37.32	46.21	74.00	-27.79	Peak
3	9313.00	28.52	18.93	16.91	37.77	45.09	74.00	-28.91	Peak
4	10656.00	28.87	16.67	17.10	39.29	44.19	74.00	-29.81	Peak
5	12594.00	29.12	15.43	17.87	39.74	43.92	74.00	-30.08	Peak
6	13835.00	29.37	9.87	19.16	43.33	42.99	74.00	-31.01	Peak

802.11n(HT20)2437MHz Vertical polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	.
1	4874.00	27.53	27.45	12.14	33.11	45.17	74.00	-28.83	Peak
2	7311.00	27.96	20.22	16.62	37.32	46.20	74.00	-27.80	Peak
3	9398.00	28.56	17.87	16.91	37.88	44.10	74.00	-29.90	Peak
4	11489.00	28.95	16.70	17.26	39.89	44.90	74.00	-29.10	Peak
5	12917.00	29.18	17.52	18.14	40.50	46.98	74.00	-27.02	Peak
6	14583.00	29.49	16.13	19.73	40.25	46.62	74.00	-27.38	Peak

802.11n(HT20) 2462MHz Horizontal polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	-
1	4924.00	27.56	26.31	12.28	33.23	44.26	74.00	-29.74	Peak
2	7386.00	27.98	19.08	16.62	37.36	45.08	74.00	-28.92	Peak
3	9092.00	28.43	17.28	16.89	37.50	43.24	74.00	-30.76	Peak
4	12084.00	29.02	15.30	17.44	39.42	43.14	74.00	-30.86	Peak
5	14209.00	29.43	12.95	19.49	42.30	45.31	74.00	-28.69	Peak
6	15841.00	29.68	15.26	20.54	39.71	45.83	74.00	-28.17	Peak

802.11n(HT20) 2462MHz Vertical polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	-
1	4924.00	27.56	26.36	12.28	33.23	44.31	74.00	-29.69	Peak
2	7386.00	27.98	19.21	16.62	37.36	45.21	74.00	-28.79	Peak
3	9398.00	28.56	16.62	16.91	37.88	42.85	74.00	-31.15	Peak
4	11149.00	28.92	14.60	17.20	39.62	42.50	74.00	-31.50	Peak
5	13342.00	29.27	11.18	18.61	42.29	42.81	74.00	-31.19	Peak
6	13954.00	29.39	9.68	19.31	43.45	43.05	74.00	-30.95	Peak

802.11n(HT40) 2422MHz Horizontal polarizations

		Preamp	Read	Cablei	lntenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	0 18 1 0
1	4844.00	27.51	27.37	12.05	33.03	44.94	74.00	-29.06	Peak
2	7266.00	27.95	19.20	16.61	37.31	45.17	74.00	-28.83	Peak
3	8956.00	28.38	17.62	16.87	37.34	43.45	74.00	-30.55	Peak
4	10316.00	28.83	16.57	17.03	38.91	43.68	74.00	-30.32	Peak
5	12458.00	29.09	15.73	17.76	39.49	43.89	74.00	-30.11	Peak
6	14022.00	29.40	12.30	19.38	43.40	45.68	74.00	-28.32	Peak

802.11n(HT40) 2422MHz Vertical polarizations

		Preamp	Read	Cable	intenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	o lia
1	4844.00	27.51	26.02	12.05	33.03	43.59	74.00	-30.41	Peak
2	7266.00	27.95	18.84	16.61	37.31	44.81	74.00	-29.19	Peak
3	8667.00	28.30	15.91	16.81	37.00	41.42	74.00	-32.58	Peak
4	11234.00	28.92	14.57	17.21	39.69	42.55	74.00	-31.45	Peak
5	13631.00	29.33	11.32	18.94	43.13	44.06	74.00	-29.94	Peak
6	15059.00	29.56	13.80	20.03	38.49	42.76	74.00	-31.24	Peak

802.11n(HT40) 2437MHz Horizontal polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	-
1	4874.00	27.53	26.89	12.14	33.11	44.61	74.00	-29.39	Peak
2	7311.00	27.96	18.80	16.62	37.32	44.78	74.00	-29.22	Peak
3	9262.00	28.50	15.34	16.90	37.71	41.45	74.00	-32.55	Peak
4	11387.00	28.94	14.23	17.24	39.81	42.34	74.00	-31.66	Peak
5	12900.00	29.18	13.16	18.12	40.46	42.56	74.00	-31.44	Peak
6	13988.00	29.40	9.21	19.35	43.48	42.64	74.00	-31.36	Peak

802.11n(HT40)2437MHz Vertical polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	S T - 1
1	4874.00	27.53	25.60	12.14	33.11	43.32	74.00	-30.68	Peak
2	7311.00	27.96	18.18	16.62	37.32	44.16	74.00	-29.84	Peak
3	9585.00	28.63	14.01	16.93	38.07	40.38	74.00	-33.62	Peak
4	11489.00	28.95	14.70	17.26	39.89	42.90	74.00	-31.10	Peak
5	13495.00	29.30	11.18	18.77	43.00	43.65	74.00	-30.35	Peak
6	14022.00	29.40	10.30	19.38	43.40	43.68	74.00	-30.32	Peak

802.11n(HT40) 2452MHz Horizontal polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	(*
1	4904.00	27.55	27.31	12.23	33.19	45.18	74.00	-28.82	Peak
2	7356.00	27.97	18.34	16.62	37.34	44.33	74.00	-29.67	Peak
3	9857.00	28.74	16.36	16.95	38.29	42.86	74.00	-31.14	Peak
4	12917.00	29.18	13.52	18.14	40.50	42.98	74.00	-31.02	Peak
5	14005.00	29.40	11.75	19.37	43.50	45.22	74.00	-28.78	Peak
6	15705.00	29.66	14.31	20.44	39.19	44.28	74.00	-29.72	Peak

802.11n(HT40) 2452MHz Vertical polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	,
1	4904.00	27.55	27.35	12.23	33.19	45.22	74.00	-28.78	Peak
2	7356.00	27.97	19.01	16.62	37.34	45.00	74.00	-29.00	Peak
3	9092.00	28.43	17.28	16.89	37.50	43.24	74.00	-30.76	Peak
4	10843.00	28.88	16.55	17.13	39.41	44.21	74.00	-29.79	Peak
5	13104.00	29.22	13.57	18.34	41.18	43.87	74.00	-30.13	Peak
6	15450.00	29.62	13.50	20.28	38.41	42.57	74.00	-31.43	Peak

For conducted test 802.11b 2412MHz

802.11b 2437MHz

802.11b 2462MHz

802.11g 2412MHz

802.11g 2437MHz

802.11g 2462MHz

802.11n(HT20) 2412MHz

802.11n(HT20) 2437MHz

802.11n(HT20) 2462MHz

802.11n(HT40) 2422MHz

802.11n(HT40) 2437MHz

802.11n(HT40) 2452MHz

6. BAND EDGE COMPLIANCE TEST

6.1. Limits

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

6.2. Test setup

The EUT was placed on a turn table which was 0.8 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure.

Note: If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

Test plot as follows:

Test mode:802.11b **RBM 100 kHs** **VBM 300 k

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Page 28 of 44

For radiated test as follows:

	Frequency (MHz)	Antenna polarization (H/V)	Emission (dBuV/m) PK	Band ed (dBu'	•	Result Pass
	<2400	Н	46.22	74.00	54.00	Pass
802.11b	<2400	V	45.02	74.00	54.00	Pass
002.110	>2483.5	Н	45.20	74.00	54.00	Pass
	>2483.5	V	45.03	74.00	54.00	Pass
	<2400	Н	44.75	74.00	54.00	Pass
802.11g	<2400	V	44.42	74.00	54.00	Pass
002.119	>2483.5	Н	44.29	74.00	54.00	Pass
	>2483.5	V	44.42	74.00	54.00	Pass
	<2400	Н	45.12	74.00	54.00	Pass
802.11n(HT20)	<2400	V	44.04	74.00	54.00	Pass
002.1111(11120)	>2483.5	Н	44.53	74.00	54.00	Pass
	>2483.5	V	43.66	74.00	54.00	Pass
	<2400	Н	44.94	74.00	54.00	Pass
802.11n(HT40)	<2400	V	45.45	74.00	54.00	Pass
002.1111(11140)	>2483.5	Н	44.14	74.00	54.00	Pass
	>2483.5	V	44.52	74.00	54.00	Pass

7. 6DB OCCUPY BANDWIDTH

7.1. Limits

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz Test data:

7.2. Test setup

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the RBW =100kHz.
- 3. Set the VBW = 300 RBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Measure and record the result in the test report.

7.3. Test result

	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result
	2412	9.33	>0.5	Pass
802.11b	2437	9.16	>0.5	Pass
	2462	9.54	>0.5	Pass
	2412	16.56	>0.5	Pass
802.11g	2437	16.55	>0.5	Pass
	2462	16.57	>0.5	Pass
	2412	17.77	>0.5	Pass
802.11n(HT20)	2437	17.78	>0.5	Pass
	2462	17.78	>0.5	Pass
	2422	35.58	>0.5	Pass
802.11n(HT40)	2437	35.35	>0.5	Pass
	2452	35.35	>0.5	Pass

Test plot as follows:

802.11b 2412MHz

802.11b 2437MHz

802.11b 2462MHz

802.11g 2412MHz

802.11g 2437MHz

802.11g 2462MHz

802.11n (HT20) 2412MHz

802.11n (HT20) 2437MHz

802.11n(HT20) 2462MHz

802.11 n (HT40) 2422MHz

802.11 n (HT40) 2437MHz

802.11 n (HT40)2452MHz

8. OUTPUT POWER TEST

8.1. Limits

For systems using digital modulation in the 2400~2483.5MHz, The Peak out put Power shall not exceed 1W(30dBm)

8.2. Test setup

The Transmitter output (antenna port) was connected to the power meter.

Turn on the EUT and power meter and then record the average power value.

Repeat above procedures on all channels needed to be tested.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

8.3. Test result

	Channel Frequency (MHz)	Average output Power(dBm)	Limit (dBm)	Result
	2412	9.37	30	Pass
802.11b	2437	9.19	30	Pass
	2462	9.23	30	Pass
	2412	6.26	30	Pass
802.11g	2437	6.18	30	Pass
	2462	6.49	30	Pass
	2412	6.27	30	Pass
802.11n(HT20)	2437	6.36	30	Pass
	2462	6.34	30	Pass
	2422	4.48	30	Pass
802.11n(HT40)	2437	4.53	30	Pass
	2452	4.49	30	Pass

9. POWER SPECTRAL DENSITY TEST

9.1. Limits

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

9.2. Test setup

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW =100kHz.
- 4. Set the VBW = 300 RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.

9.3. Test result

	Channel Frequency (MHz)	Power density (dBm/100KHz)	Limit (dBm/3KHz)	Result
802.11b	2412	4.51	8	Pass
	2437	4.01	8	Pass
	2462	4.70	8	Pass
	2412	-1.41	8	Pass
802.11g	2437	-0.93	8	Pass
	2462	-1.25	8	Pass
000 11=	2412	-3.61	8	Pass
802.11n (HT20)	2437	-3.21	8	Pass
(1120)	2462	-3.44	8	Pass
000 11=	2422	-8.53	8	Pass
802.11n (HT40)	2437	-8.38	8	Pass
(11140)	2452	-8.40	8	Pass

Test plot as follows:

802.11b 2412MHz

802.11b 2437MHz

802.11b 2462MHz

802.11g 2412MHz

802.11g 2437MHz

802.11g 2462MHz

802.11n (HT20) 2412MHz

802.11n (HT20) 2437MHz

802.11n(HT20) 2462MHz

802.11 n (HT40) 2422MHz

802.11 n (HT40) 2437MHz

802.11 n (HT40)2452MHz

10. ANTENNA REQUIREMENTS

10.1. Limits

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

10.2. Result

The antennas used for this product are integral Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 0.5dBi.

11. PHOTOGRAPHS OF TEST SET-UP

12. PHOTOGRAPHS OF THE EUT

END.