M.I.T. LAB Assignment - 02 U19CS012

(1) Write a program for one's complement of 8-bit number. Notepad Code:

```
; Q-(1) Write a program for one's complement of 8-bit number
2
3
4
   MVI A,00
    ; Load the Data at Location 3000 to Accumulator
5
    LDA 3000h
                             : [A] <- [3000]
6
   ; CMA -> Complement the Contents of Accumulator
7
                              ; [A] <- Complement([A])
8
   CMA
9
   : Store the Result at Location 3002
   STA 3002h
                             ; [3002] <- [A]
10
11
12
    hlt
```

Registers and Memory:

Eg: (1) Let
$$A = 00H = (0000\ 0000)_2 = \frac{0}{0} \Rightarrow A' = FFH = (1111\ 1111)_2 = \frac{255}{0}$$

⊗ Dat	ta 🔞 S	Stack ©	KeyPad	Memory	I/O Ports
Start 3	3000h				ОК
Addres	ss (Hex)	Address	Data		
3000		12288	0		
3001		12289	0		
3002		12290	255		
3003		12291	0		
3004		12292	0		
3005		12293	0		
3006		12294	0		
3007		12295	0		
3008		12296	0		
3009		12297	0		
300A		12298	0		
300B		12299	0		
300C		12300	0		
300D		12301	0		
Line No	Assem	bler Mess	age		
0	Program	assemble	d successfully		

Eg: (2) Let $A = 96H = (1001\ 0110)_2 = \frac{150}{100} \Rightarrow A' = 69H = (0110\ 1001)_2 = \frac{105}{100}$

(2) Write a program for two's complement of 8-bit number. Notepad Code:

```
; Q-(2) Write a program for two's complement of 8-bit number.
 3
 4
    MVI A,00
 5
    : Load the Data at Location 3000 to Accumulator
 6
    LDA 3000h
                               ; [A] <- [3000]
    ; CMA -> Complement the Contents of Accumulator
 7
 8
    CMA
                               ; [A] <- Complement([A])
 9
    ; Add 01 to One's Complement to Obtain Two's Complement
10
    ADI 01
                              : [A] \leftarrow [A] + 01
    : Store the Result at Location 3004
11
12
    STA 3004h
                              ; [3004] <- Two's_Complement([A])
13
14
    hlt
```

Registers and Memory:

Eg: (1) Let $A = 01H = (0000\ 0001)_2 = \frac{1}{1} \Rightarrow A' + 1 = FFH = (1111\ 1111)_2 = \frac{255}{1}$

Registers	s		Flag
Α	F	F	S 1
BC	00	00	
DE	00	00	Z 0
HL	00	00	16.0
PSW	00	00	AC 0
PC	42	0C	P 1
SP	FF	FF	
Int-Reg	0	0	C 0

& Data	a ⊗⊛S	tack 4	KeyPad	Memory	I/O Ports
Start 3	000h				ОК
Addres	s (Hex)	Address	Data		
3000		12288	1		
3001		12289	0		
3002		12290	0		
3003		12291	0		
3004		12292	255		
3005		12293	0		
3006		12294	0		
3007		12295	0		
3008		12296	0		
3009		12297	0		
300A		12298	0		
300B		12299	0		
300C		12300	0		
300D		12301	0		
Line No	Assemb	oler Mess	age		
0	Program	assembled	d successfully		

Eg: (2) Let $A = 96H = (1001\ 0110)_2 = \frac{150}{100} \Rightarrow A' + 1 = 6AH = (0110\ 1010)_2 = \frac{106}{100}$

Registers Flag					
Α	6	A	5 0		
BC	00	00			
DE	00	00	Z 0		
HL	00	00	AC 0		
PSW	00	00	AC 0		
PC	42	0C	P 1		
SP	FF	FF			
Int-Reg	0	0	C 0		

& Data	a 🍪 Stack 🖳	KeyPad	Memory	I/O Ports
Start 3	000h			OK
Address	s (Hex) Address	Data		
3000	12288	150		
3001	12289	0		
3002	12290	0		
3003	12291	0		
3004	12292	106		
3005	12293	0		
3006	12294	0		
3007	12295	0		
3008	12296	0		
3009	12297	0		
300A	12298	0		
300B	12299	0		
300C	12300	0		
300D	12301	0		
Line No	Assembler Mess	age		
0	Program assembled	d successfully	/	

(3) Write an assembly language program that AND, OR and XOR together the contents of register B, C and E and place the result into memory location 3000H, 3001H and 3002H.

Notepad Code:

28 hlt

```
1 ; Q-(3)
 2 ; 3000H <- (B&C&E), 3001H <- (B|C|E) and 3002H <- (B^C^E)
 3
   MVI A,00
 4
   ; Intialize the Register B with 8-bit [Number 1] at Location 3004h
   LDA 3004h
 5
 6
   MOV B. A
   ; Intialize the Register C with 8-bit [Number 2] at Location 3006h
 7
    LDA 3006h
 8
 9
   MOV C. A
10
   ; Intialize the Register E with 8-bit [Number 3] at Location 3008h
11 LDA 3008h
12 MOV E, A
   ; AND Operation
13
14 MOV A, B
15 ANA C
16 ANA E
17 STA 3000h
18 ; OR Operation
19
   MOV A, B
20
   ORA C
21 ORA E
22
   STA 3001h
23
   ; XOR Operation
24
    MOV A, B
25
   XRA C
26 XRA E
27 STA 3002h
```

Registers and Memory:

Eg: (1) Let

B = 96H = $(1001 \ 0110)_2 = 150$ C = ACH = $(1010 \ 1100)_2 = 172$ E = D2H = $(1101 \ 0010)_2 = 210$

AND = (80)H = $(1000\ 0000)_2$ = $\frac{128}{254}$ OR = (FE)H = $(1111\ 1110)_2$ = $\frac{254}{254}$

 $XOR = (E8)H = (1110\ 1000)_2 = 232$

(4) Write a program to shift 8-bit no by three bits left. Assume data is in register C.

Notepad Code:

```
; Q-(4) Write a program to shift 8-bit no by three bits left. Assume data
 3
    ; is in register C
 4
 5
    MVI A,00
 6; Intialise the Register C with 8-Bit Number at Location 3000h
 7 LDA 3000h
 8 MOV C,A
 9 ; Rotate Accumulator Left [1st Time] [Accumulator has C's Data]
10
    RAL
11 ; Rotate Accumulator Left [2st Time]
12 RAL
13 ; Rotate Accumulator Left [3st Time]
14 RAL
15 ;Store the Results at Location 3002h
16 STA 3002h
17 hlt
```

Registers and Memory:

```
Eg: (1) Let C = 05H = (0000\ 0101)_2 = \frac{5}{5}
Shift Left 1<sup>st</sup> Time = (0000\ 1010)_2 = 10
Shift Left 2<sup>nd</sup> Time = (0001\ 0100)_2 = 20
Shift Left 3<sup>rd</sup> Time = (0010\ 1000)_2 = \frac{40}{5} = \frac{28H}{5}
```


⊗ Data	Stack	№ KeyPad	Memory	I/O Ports
Start 3000h				ОК
Address (He	ex) Address	Data		
3000	12288	5		
3001	12289	0		
3002	12290	40		
3003	12291	0		
3004	12292	0		
3005	12293	0		
3006	12294	0		
3007	12295	0		
3008	12296	0		
3009	12297	0		
300A	12298	0		
300B	12299	0		
300C	12300	0		
300D	12301	0		
Line No Ass	embler Mes	sage		
0 Prog	ram assemble	ed successfull	у	

(5) Write a program to shift 8-bit data four bits right. Assume data is present in register C.

Notepad Code:

```
; Q-(5) Write a program to shift 8-bit no by three bits right. Assume data
2
3
    ; is in register C
4
5
    MVI A,00
    ; Intialise the Register C with 8-Bit Number at Location 3000h
6
7
    LDA 3000h
8
    MOV C.A
   ; Rotate Accumulator Right [1st Time] [Accumulator has C's Data]
9
10
   RAR
11
    ; Rotate Accumulator Right [2st Time]
12
    RAR
13
    ; Rotate Accumulator Right [3st Time]
14
15
   Store the Results at Location 3002h
    STA 3002h
16
```

Registers and Memory:

hlt

17

```
Eg: (1) Let B = 05H = (0100\ 0000)_2 = 64 = 40H
Shift Right 1<sup>st</sup> Time = (0010\ 0000)_2 = 32
Shift Right 2<sup>nd</sup> Time = (0001\ 0000)_2 = 16
Shift Right 3<sup>rd</sup> Time = (0000\ 1000)_2 = 8 = 08H
```


(6) Write a Program to Multiply Two 8-bit Numbers. [Using Repeated Addition Method]

Notepad Code:

```
;Q-(6) Write a Program to Multiply Two 8-bit Numbers.
 1
 2
    ; Adding Number 1 , "Number 2 Times " = Num1 * Num2
 3
 4
    ; Taking 3000h Location in HL Pointer
 5
    LHLD 3000h ; H <- 3001, L <- 3000
 6
 7
    XCHG ; H <- D, L <- E
 8
    ; Intializing the Counter
 9
    MOV C, D; C \leftarrow D
10
    MVI D, 00 ; D <- 00
11
    LXI H, 0000 ; H <- 00, L <- 00
12
13
    loop: DAD D ; HL <- HL+DE
14
15
         DCR C ; C <- C-1
16
17
    JNZ loop ; If Zero Flag=0, goto loop
18
19
    SHLD 3004h ; H <- 3005, L <- 3004
20
    HLT
```

Input:

```
Number 1 [3000H] = 15 = (0F)H

Number 2 [3001H] = 12 = (0C)H = Counter
```

Output:

Output 16 Bit Answer = Register Pair Form: [3005H-3004H] = (00 B4)H = 180

Input:

Number 1 [3000H] = 15 = (0F)H

Number 2 [3001H] = 19 = (13)H = Counter

Output:

Output 16 Bit Answer = Register Pair Form: [3005H-3004H] = (01:29) = (01:1D)H = 285

(7) Write a Program to find Largest of two 8-bit numbers. Notepad Code:

```
;Q-(7) Write a Program to find Largest of two 8-bit numbers.
2
3
4
         MVI A,00h
5
        LDA 3000h ; loads value at Memory Location 3000h
        MOV B, A ; Store it in Reg B
6
                                                     [B <- Num 1]
7
                      ; loads value at Memory Location 3001h [Acc <- Num 2]
         LDA 3001h
8
9
         ; If A>B, then CF = 0 and if A<B, then CF = 1
                      ; Compare B with A
10
         CMP B
11
12
         JNC here ; Jump if Carry flag is Reset (Carry flag = 0)
         MOV A, B ; Num1 is Greater
13
14
    here: STA 3005h ; store result at Memory Location 3005
15
                  ;Terminates the program
16
         HLT
```

Registers and Memory: Input: 5 & 10 Output: 10 [Since 10>5]

SUBMITTED BY: BHAGYA VINOD RANA [U19C5012]