COM1009 Introduction to Algorithms and Data Structures

Topic 05: HeapSort

Essential Reading: Sections 6.1-6.4

► Aims of this lecture

- To introduce heaps, a type of binary tree
 - How to re-arrange input data into a heap
 - How to remove the largest element easily
- Switching viewpoints: array or binary tree?
- To introduce the HeapSort algorithm (fast and in-place)
 - arrange the data as a heap, then keep removing the largest entry until everything's dealt with

►Max-Heaps

- A (max-)heap is a binary tree of objects with keys that can be compared
- No parent is smaller than its children

https://xkcd.com/835/

heap of presents

[Min-heaps are similar, except no parent is bigger than its children.]

Heap examples

Binary tree: each object has at most 2 objects directly underneath it Max-Heap property: No key is smaller than the keys underneath it

► Watch the Sorting Algorithm Demos

Storing a binary tree in an array

 Elements are arranged row by row from left to right (the last level may be incomplete)

Navigate through the "tree" using these operations:

Parent
$$(i) = \lfloor \frac{i}{2} \rfloor$$
 ("floor of $i/2$ "), Left $(i) = 2i$, Right $(i) = 2i + 1$

► Heap Properties

- Max-heap property: parents are never smaller than their children: $A[Parent(i)] \ge A[i]$
- In a max-heap, the root always stores a largest element.
 - The root is the first entry in the array version of the heap

Procedures

- 1. Max-Heapify: key to maintaining the max-heap property.
- 2. Build-Max-Heap: produces a max-heap from an unordered array.
- 3. Heapsort: sorts an array in place.
- New variable A.heap-size indicates how many elements of A are stored in a heap: $0 \le A.heap$ -size $\le A.length$.
 - Decreasing A.heap-size by 1 effectively removes the last element from the heap (we imagine a heap without it)
- There are analogous operations for min-heaps: Min-Heapify and Build-Min-Heap.

Max-Heapify(A, i)

- Assumes subtrees Left(i) and Right(i) are max-heaps, but max-heap property might be violated in root of subtree at i.
 - "Subtree x": the part of the tree including x and everything below.

 Lets the value at A[i] "float down" if necessary, to restore max-heap property at i

• At the end of Max-Heapify the subtree at *i* is a max-heap.

► Max-Heapify: informal and in pseudocode

- Compare A[i] with all existing children
- If largest child is larger than A[i], swap and recurse on child


```
Max-Heapify(A, i)
```

```
1: l = Left(i)
```

2: r = Right(i)

3: if $l \leq A$.heap-size and A[l] > A[i] then

4: largest = l

5: **else**

6: largest = i

7: if $r \leq A$.heap-size and A[r] > A[largest] then

8: largest = r

9: if largest $\neq i$ then

10: exchange A[i] with A[largest]

11: Max-Heapify(A, largest)

► Max-Heapify: Example

- Compare A[i] with all existing children
- If largest child is larger than A[i], swap and recurse on child

Runtime of Max-Heapify

- Define the height of a node as the longest number of simple downward edges from the node to a leaf.
- Leaf: a node without children.
- Max-Heapify takes constant time, $\Theta(1)$, on each level.
- Runtime of Max-Heapify on a node of height h is O(h).
- It's not $\Omega(h)$ as Max-Heapify may stop early, e.g. if heap-property holds at i.
- For leaves h = 0 and the time is O(1). COM1009 Introduction to Algorithms and Data Structures

► Turning the initial data into a heap

- Think of the initial array as a binary tree
- Use Max-Heapify repeatedly to make the tree into a heap.
 - Start at the last entry in the tree and work leftwards
- Note: roughly half the nodes those in in $A\left[\left(\left\lfloor \frac{n}{2}\right\rfloor+1\right),\ldots,n\right]$ are leaves, so they're already max-heaps.

Build-Max-Heap(A)

- 1: A.heap-size = A.length
- 2: for $i = \lfloor A. \text{length}/2 \rfloor$ downto 1 do
- 3: MAX-HEAPIFY(A, i)

▶ Correctness of Build-Max-Heap

Build-Max-Heap(A)

- 1: A.heap-size = A.length
- 2: for $i = \lfloor A. \text{length}/2 \rfloor$ downto 1 do
- 3: MAX-HEAPIFY(A, i)
- **Loop invariant:** At the start of each iteration of the for loop, each node i + 1, i + 2, ..., n is the root of a max-heap.
- Initialisation: true for leaves $\left\lfloor \frac{n}{2} \right\rfloor + 1, \dots, n$.
- Maintenance: by loop invariant, all children of i are roots of max-heaps (as their numbers are larger than i).
 Then Max-Heapify(A, i) turns the subtree at i into a max-heap.
- **Termination:** the loop terminates at i = 0, hence node 1 is the root of a max-heap.

Bounding the height of a heap

- The height of the heap (= height of the root) is at most *log n*.
- Proof: the number n of elements in a heap of height h is
 - Doubling on each level
 - At least 1 node on the last level
 - Hence in total at least

$$1 + 2 + 4 + \dots + 2^{h-1} + 1 = 2^h$$

(we used
$$\sum_{i=0}^{k-1} 2^i = 2^k - 1$$
)

• So size and height are related as $n \ge 2^h \Leftrightarrow \log n \ge h$

► Runtime of Build-Max-Heap

- Just seen: the height of the root is at most log n.
 - So all nodes have height at most log n.
 - Max-Heapify does O(h) work at height h (and less at lower heights)
 - So every call to Max-Heapify takes time $O(\log n)$.
- Build-Max-Heap calls Max-Heapify O(n) times.
- Total time is at most $O(n) \cdot O(\log n) = O(n \log n)$.
 - The time can be improved to O(n) since most nodes have small height. See the book!
 - $O(n \log n)$ is sufficient for us, though.

► HeapSort

- Ideas:
 - 1. Build a max-heap, such that the root contains largest element.
 - 2. Swap the root with the last element of the heap/array.
 - 3. Discard the last element from the heap by reducing heap.size. (We simply imagine a smaller heap.)
 - 4. Call Max-Heapify(A, 1) to restore heap property at the root.

```
HEAPSORT(A)Runtime: O(n.log n) + O(n)O(log n) = O(n.log n)1: BUILD-MAX-HEAP(A)O(n log n)2: for i = A.length downto 2 doDo the following O(n) times:3: exchange A[1] with A[i]O(1)4: A.heap-size = A.heap-size -1O(1)5: MAX-HEAPIFY(A, 1)O(log n)
```

►Summary

- HeapSort sorts in place in time $O(n \log n)$.
 - Building a Heap in time O(n).
 - Extracting the largest element and restoring the heap-property in total time $O(n \log n)$.
- The use of appropriate data structures can speed up computation (in contrast to SelectionSort).
 - The heap "memorises" information about comparisons of elements.
 - The heap is imaginary, no objects/pointers required!
- Outlook for later: heaps also play a role in Priority Queues.