2022年5月23日星期一 18:16

QI cas

(1) Pretin: Yes

By pre-order seque. we can know the root (1st node), then in-order seque shows the left and right sub-tree.

ufe of right of right.

In this voy, we can fininally reconstruct the whole tree

The same as pre+in, we can use post-order sequence to know the root, then use in-order sequence to divide left and right bub-tree.

3) pre+ post ; No

E.g. pre-order: Ab or B?

Mote: pre+post is ok if tree is full tree

b) max Dist (Node) 1

olist And Depth (nodes)

if empty (node):

redarn 0,0

L_odep, L_olist = dist And Depth (node > left)

r_odep, r_odist = dist And Depth (mode-right)

dist = L_odep + r_odep

max_odist = { L_odist, r_odist, odist }

mox_odepth = { L_odepth, r_odepth}

return max_odepth+1, max_odist

return maxdist

22 (a.1) 232 4GB

(a.v) 2 th from 15, 232 address => from size 2 th => 16-bit offset 256 entries=> 8-bit page numbers logic addr. = page numb + Offset = 10+8 = 24-bit

page # offset

(211)(0

by table b)

(EAC3)(b

... phy sical addr. exEAC3ExF7/

(a.4) physical: A89C78C2
20+15et
page #: 111
(bF) 16

logical: 0×6F78C2

- (5) Note: fork() function in Unix.

 1. Copy itself, start a subprocess
 - 2. parent process return supprocess 2D Subprocess return 0;

50 fely x2 10 210 Hello

of block troops:
$$h+b=5+10=15$$
height records

unsolved!

Split A:
ges/A No GINISplitA=
$$\frac{4}{10}(1-0-1)+\frac{6}{10}(1-\frac{5^{2}}{6^{2}})=\frac{1}{6}$$

Co Ψ Co I Gain= $\frac{1}{2}-\frac{1}{6}=\frac{1}{3}$

Split B;

$$\begin{cases} P_{N0} & C_{1} | N | c_{1} | N | c_{2} | C$$

Co: 2 Co: 3 Grain =
$$\frac{1}{2} - \frac{12}{25} = \frac{1}{50}$$

So should use A as the first splitting (= > 50)

 $\varphi()$

•	Threshil	L								
	0.90	•.85	o. 82	0.80	0.75	0.70	0.50	o. Q5	·. 40	0.35
T	7	t	+	+	+	+	+	+	با با	. ,0
+	-	4	+	+	÷	÷	+	ť	7 *	+
-	_	-	+	+	4	+	4	4	ا ب	٣
4	_	-	-	1	+	+	÷	4	<u> </u>	•
÷	~	-		_	+	t	+	į	4	1
_	_	_	_		- 1	+	Ť	· *	+	,
_	J	_	-	-	_	-	4	τ ,	+	i
+	-	-	_	_	_	_	<u>,</u>	4	+	J
_	_	_	-	_	_	_	ر	Ξ	۲	f
_	_	_	_							

TR

- Q5 Q7 (; < 3 > 3; c2>
 - (b) (See book)
 - U) 1. build a B-tree like.

A-G, into R-2 where the heaf or inner holos, complete words, splitted by sub-Then to find bird *, we can the the sub-tree with "bird" root.

Train RoccHIO CC, D) (C) for each Cj & C do D; = {d: <d, c; > GD} # Samples of class; Mi + Dil Ito V(d) # center of Samples
Neturn 1 1/1 - Mi }

Test RoccHO(µ1...p; | d)
return argmin cos(µ;, Vcd) # nearest centor