CS 583: PROBABILISTIC GRAPHICAL MODELS

MARKOV NETWORKS

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION FOR MARKOV NETWORKS

- There are distributions that cannot be represented Bayesian networks (and vice versa)
- Guaranteeing acyclicity can be hard

AN EXAMPLE

- We'd like a graph where
 - $A \perp C \mid B, D$
 - $B \perp D \mid A, C$
- (A, B), (B, C), (C, D), and (D, A) are correlated but no causal direction exists
- Alice and Charles pair and Bob and Debbie pair do not talk to each other directly
- Alice and Bob, Bob and Charles, and Alice and Debbie pairs agree most of the time, and Charles and Debbie pair disagrees most of the time

EXAMPLE

GRAPHS

- Structure
- Parameters
- The joint distribution
- Independencies

BAYESIAN NETWORKS

- Structure
 - Directed acyclic graph
- Parameters
 - Conditional probability distributions
- The joint distribution
 - $P(X) = \prod P(X_i \mid Pa(X_i))$
- Independencies
 - $X_i \perp ND(X_i) \mid Pa(X_i)$
 - D-separation

MARKOV NETWORKS

- Structure
 - ?
- Parameters
 - ?
- The joint distribution
 - ?
- Independencies
 - ?

MARKOV NETWORKS

- Structure
 - Undirected graphs
- Parameters
 - ?
- The joint distribution
 - ?
- Independencies
 - ?

Independencies in Markov networks

- 1. Separation
 - $\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z} \text{ if } \mathbf{X} \text{ and } \mathbf{Y} \text{ are separated in } \mathcal{H} \text{ given } \mathbf{Z}$
- 2. Pairwise independencies
 - $X \perp Y \mid X \setminus \{X, Y\}$
- 3. Local independencies
 - $X \perp X \setminus MB(X) \mid MB(X)$, where MB stands for Markov Blanket. *Markov Blanket* of a variable X in a Markov network \mathcal{H} is its neighbors.

MARKOV NETWORKS

- Structure
 - Undirected graphs
- Parameters
 - ?
- The joint distribution
 - ?
- Independencies
 - Separation
 - Pairwise independencies
 - Local independencies

MARKOV NETWORKS

- Structure
 - Undirected graphs
- Parameters
 - Conditional Probability Distributions?
- The joint distribution
 - ?
- Independencies
 - Separation
 - Pairwise independencies
 - Local independencies

CONDITIONED ON THE NEIGHBORS?

• Consider the simple graph of A - B

MARGINALS ON THE (MAXIMAL) CLIQUES?

- Consider the simple graph of A B
- o Can we say
 - P(A, B) = P(A, B)?
- Now consider A B C
- o Can we say
 - P(A, B, C) = P(A, B) P(B, C)?
- o How would you parameterize Markov Networks?

PARAMETERIZATION

- Parameterization is perhaps the least intuitive concept about MNs
- Bayesian networks
 - $P(X_i \mid Pa(X_i))$
- Markov networks
 - Cannot use probability distributions directly, but
 - MNs provide more flexibility in the parameterization

FACTORS

- Let **D** be a set of random variables
- **Definition:** A *factor* ϕ is a function from Val(**D**) to R.
- A factor is nonnegative if all entries are nonnegative
- The *scope* of factor, denoted as, $Scope[\phi]$, is the set of variables **D** it is associated with

AN EXAMPLE

- \circ Structure: A B C
- Factors: $\phi(A, B)$ and $\phi(B, C)$
- Remember the factors are functions from D to R.
- o How can we represent the joint P(A, B, C) using factors?

GIBBS DISTRIBUTION

• **Definition:** A distribution P is a *Gibbs* distribution parameterized by a set of factors $\Phi = \{\phi(\mathbf{D}_1), ..., \phi(\mathbf{D}_k)\}$ if it is defined as follows:

$$P(X_1, ..., X_n) = \frac{1}{Z} \prod_{i=1}^k \phi(\mathbf{D}_i)$$

What is Z?

 $\phi(D_i)$ are factors, but what are D_i ?

Can you relate this to Bayesian Network parameterization?

MARKOV NETWORK FACTORIZATION

- We say that a distribution P with $\Phi = {\phi(\mathbf{D}_1), ..., \phi(\mathbf{D}_k)}$ factorizes over a Markov network \mathcal{H} if each \mathbf{D}_i (i=1, ..., k) is a complete subgraph of \mathcal{H}
- The factors $\phi(\mathbf{D}_i)$ are called the *clique potentials*
- $oldsymbol{\circ}$ $oldsymbol{\mathbf{D}}_i$ can be maximal cliques but they do not have to be

A-B-C b,B,C

$\frac{1}{2}$ $\beta(A,B)$ $\beta(B,C)$

EXAMPLE

Α	В	φ(A,B)
Т	Т	0.5
Т	F	0.1
F	Т	0.1
F	F	0.3

Α	В	P(A,B)
Т	Т	0.33
Т	F	0.15
F	Т	0.07
F	F	0.46

Α	P(A)
Т	0.48
F	0.52

Α	В	С	$\phi(A,B)*\phi(B,C)$ P(A,B,C)
T	Т	Т	0.05 0.11
Т	Т	F	0.10 0.22
T	F	Т	0.06 0.13
T	F	F	0.01 0.02
F	Т	Т	0.01 0.02
F	Т	F	0.02 0.04
F	F	Т	0.18 0.39
F	F	<u>F</u>	0.03 0.07
		Z	0.46 1.00

Is
$$\phi(A, B) = P(A, B)$$
?

What is the most likely assignment to A, B according to $\phi(A, B)$? How about P(A, B)?

С	P(C)
Т	0.65
F	0.35

EXAMPLE

Α	В	φ(A,B)
Т	T	5
Т	F	1
F	Т	1
F	F	3

В	С	φ(B,C)
Т	Т	1
Т	F	2
F	Т	6
F	F	1

Α	В	P(A,B)	В	С	P(B,C)
Т	Т	0.33	Т	Т	0.13
Т	F	0.15	Т	F	0.26
F	Т	0.07	F	Т	0.52
F	F	0.46	F	F	0.09

Α	В	С	φ(A,B)*φ(B,C))	P(A,B,C)
Т	Т	Т		5	0.11
Т	T	F		10	0.22
Т	F	Т		6	0.13
Т	F	F		1	0.02
F	Т	Т		1	0.02
F	Т	F		2	0.04
F	F	Т		18	0.39
F	F	<u>F</u>		3	0.07
		Z		46	1.00

Multiplied all the factors by 10. What changed?

A P(A)			
Т	0.48		
F	0.52		

MARKOV NETWORKS

- Structure
 - Undirected graphs
- Parameters
 - Factors
- The joint distribution
 - $P(X) = 1/Z \prod \phi(\mathbf{D}_i)$
- Independencies
 - Separation
 - Pairwise independencies
 - Local independencies

PARAMETERIZATION

- Factors over maximal cliques
- Pairwise Markov random fields
 - Factors over nodes, and
 - Factors over connected pairs (i.e., edges)
- Pairwise Markov random fields do not introduce additional independencies, however,
 - The number of parameters is quadratic instead of exponential, but, of course,
 - The sets of distributions that can be represented over maximal cliques and pairwise interactions are not the same

FACTOR GRAPHS

- **Definition**: A factor graph \mathcal{F} is an undirected graph containing two types of nodes
 - Random variables (ovals)
 - Factor nodes (squares).
- \circ \mathcal{F} contains edges between ovals and squares.
- \mathcal{F} is parameterized by a set of factors, where each factor node (square) is associated with precisely one factor whose scope is the square's neighbor ovals.

FACTOR GRAPH EXAMPLE

o Markov network as a clique over three variables,

How would you represent a pairwise MRF with factors over the nodes and edges?

LOG-LINEAR MODELS

$$\phi(\mathbf{D}) = e^{(-\varepsilon(\mathbf{D}))}$$

 $\varepsilon(\mathbf{D}) = -\ln(\phi(\mathbf{D}))$ is often called the *energy function*.

In statistical physics, the probability of a physical state depends inversely on its energy.

Log-linear models guarantee that the factors are positive, in turn guaranteeing that the probability is positive.

LOG-LINEAR MODELS

$$P(X_{1}, ..., X_{n}) = \frac{1}{Z} \prod_{i=1}^{k} \phi_{i}(\mathbf{D}_{i})$$

$$= \frac{1}{Z} \prod_{i=1}^{k} e^{(-\varepsilon_{i}(\mathbf{D}_{i}))}$$

$$= \frac{1}{Z} e^{-\sum_{i=1}^{k} \varepsilon_{i}(\mathbf{D}_{i})}$$

LOG-LINEAR EXAMPLE

Α	В	φ(A,B)	ε(A,B)	B	С	φ(B,C)	ε(B,C)
Т	Т	5	-1.61	Т	Т	1	0.00
Т	F	1	0.00	Т	F	2	-0.69
F	Т	1	0.00	F	Т	6	-1.79
F	F	3	-1.10	F	F	1	0.00

			I .	I .	l .	I .
A	В	С	φ(A,B)*φ(B,C)	$\varepsilon(A,B)+\varepsilon(B,C)$	$\exp(-\Sigma \epsilon i)$	P(A,B,C)
Т	Т	Т	5.00	-1.61	5.00	0.11
Т	Т	F	10.00	-2.30	10.00	0.22
Т	F	T	6.00	-1.79	6.00	0.13
Т	F	F	1.00	0.00	1.00	0.02
F	Т	T	1.00	0.00	1.00	0.02
F	Т	F	2.00	-0.69	2.00	0.04
F	F	Т	18.00	-2.89	18.00	0.39
F	F	F	3.00	-1.10	3.00	0.07
		Z	46.00		46.00	1.00

FEATURES

- **Definition**: A *feature* $f(\mathbf{D})$, is a function from \mathbf{D} to \mathbf{R} .
- Features provide an easy mechanism for specifying certain types of interactions more compactly.
- An important useful function is the indicator function.
 - Given a predicate, the indicator function is
 - 1 if the predicate is true, and
 - 0 otherwise.
- Example indicator functions?

LOG-LINEAR MODEL

- A distribution is a log-linear model over a Markov network \mathcal{H} is it is associated with
 - A set of features $\mathcal{F} = \{f_1(\mathbf{D}_1), ..., f_k(\mathbf{D}_k)\}\$, where each \mathbf{D} is a complete subgraph in \mathcal{H} ,
 - A set of weights $w_1, ..., w_k$

$$P(X_1, ..., X_n) = \frac{1}{Z} e^{\left[-\sum_{i=1}^k w_i f_i(\mathbf{D}_i)\right]}$$

It is possible to have several features over the same scope.

Features are especially useful for domains where variables have huge domains.

THREE DIFFERENT PARAMETERIZATIONS

- 1. Undirected graph
- 2. Factor graph
- 3. Features

- Factor graph is finer grained than the undirected graph representation and it is at least as rich
- Feature representation is finer grained than the factor graph representation and it is at least as rich
- o Which representation to use?
- UGs are good for discussing independencies, factor graphs are well suited for inference, and features are well suited for learning.

ISING MODELS

Pairlia MRF

- One of the earliest types of Markov network models
- Arose in statistical physics as a model for the energy of a physical system involving a system of interacting atoms
- Each random variable X_i is binary with $\{+1, -1\}$.

• Edges:
$$\varepsilon(x_i, x_j) = -w_{ij}x_ix_j$$

Nodes: $\varepsilon(x_i) = -u_i x_i$

トごくの

Xi+X

- ullet Depending on the weights, w_{ij} , the model prefers various configurations
 - $w_{ii} > 0$: x_i and x_i are preferred to have the same value
 - Ferromagnetic
 - w_{ij} <0: x_i and x_j are preferred to have different values
 - Antiferromagnetic
 - w_{ii} =0: x_i and x_i are non-interacting

METRIC MRFS

- Nodes X_1 through X_n , related by a set of edges, \mathcal{E} , and each X_i can take a label from $\mathcal{V} = \{v_1, ..., v_K\}$
- Each node has its own preferences among the possible labels
 - Node potentials
- We also want smoothness over the graph; the neighboring nodes should take similar labels.
 - Edge potentials
- \circ Objective: MAP assignment to ${\mathcal X}$
 - So, we can drop 1/Z

METRIC MRFS

$$E(x_1, ..., x_n) = \sum_{i} \varepsilon_i(x_i) + \sum_{(i,j)\in\mathcal{E}} \varepsilon_{i,j}(x_i, x_j)$$

$$\underset{x_1,\dots,x_n}{\operatorname{arg\,min}} E(x_1,\dots,x_n)$$

$$\varepsilon_{i,j}(x_i, x_j) = \begin{cases} 0 & x_i = x_j \\ \lambda_{i,j} & x_i \neq x_j \end{cases}$$

 $\lambda_{i,j} \ge 0$. The lowest energy, 0, is obtained when two neighboring nodes take the same value, and a higher energy when they do not.

METRIC MRFS

- We may want a more general distance function between labels in the case of multiclass case
 - Maybe some labels are more similar than others
- **Definition**: A function, μ : $\mathcal{V} \times \mathcal{V} \to [0, \infty]$, is a *metric* if it satisfies
 - Reflexivity
 - $\mu(v_k, v_l)=0$, if and only if k=l
 - Symmetry
 - $\bullet \ \mu(v_k, v_l) = \mu(v_l, v_k)$
 - Triangle inequality
 - $\mu(v_k, v_l) + \mu(v_l, v_m) \ge \mu(v_k, v_m)$
- Metric MRF: $\varepsilon(v_k, v_l) = \mu(v_k, v_l)$

CRFs

• **Definition**: A conditional random field is an undirected graph \mathcal{H} whose nodes correspond to $\mathbf{X} \cup \mathbf{Y}$; \mathcal{H} is parameterized by a set of factors $\phi_i(\mathbf{D}_i)$, where $\mathbf{D}_i \not\subset \mathbf{X}$. The network encodes the following distribution:

$$P(\mathbf{Y} | \mathbf{X}) = \frac{1}{Z(\mathbf{X})} \prod_{i} \phi_{i}(\mathbf{D}_{i})$$

$$Z(\mathbf{X}) = \Sigma_{\mathbf{Y}} \Pi_i \phi(\mathbf{D}_i)$$

Why do we want P(Y|X) and not necessarily P(Y,X)? Why does Z have X as an argument?

MRFs for Vision (Box 4.B)

- Tasks
 - Image segmentation, noise removal, object recognition, etc.
- Typically, pairwise MRFs are used
 - Variables are pixels and edges exist between adjacent pixels
- Image denoising
 - Restore the true value of all the pixels
 - Node potential: penalizes large deviations from the observed pixel value
 - Edge potential: prefers continuity in the predicted pixel values
 - Don't want to smooth too much to allow object boundaries

IMAGE SEGMENTATION EXAMPLE

(a)

(b)

(c)

(d)

CRFs for text analysis (<u>Box 4.E</u>)

- Tasks: Part-of-speech tagging, identifying named entities, structured information extraction
- Target: Y, the labels for each word (or a phrase)
- o Input: X, the text
- Features: Capture often domain knowledge about interactions
 - Within target variables, and
 - Between the target variables and the input
 - (No features between solely input variables)

NAMED ENTITY RECOGNITION (BOX 4.E)

- Task: Identify named entities such as people, places, organizations, etc.
- Entities span multiple words and entities might not be apparent from individual words
 - "Chicago" is a location, "Chicago Tribune" is an organization
- Given text of length T, words X_t , $1 \le t \le T$, define target variables Y_t .
- Y_t represents B-PERSON, I-PERSON, B-LOC., I-LOC., B-ORG., I-ORG., and OTHER.

NAMED ENTITY RECOGNITION (BOX 4.E)

- A common structure is a linear-chain CRF
- Factors
 - $\phi_t(Y_t, Y_{t+1})$: Dependency between neighboring target variables
 - $\phi_t(Y_t, X_1, ..., X_T)$: Dependency between a target and its context
- Rather than a table, represent it as a log-linear model with features
 - Thousands of features that encode domain knowledge
- More details in the book; highly recommend to read it
- Software many implementations out there in Java, Matlab, C++, ...

FROM DISTRIBUTIONS TO GRAPHS

- Task: Given a P, find a Markov network structure \mathcal{H} that is a minimal I-Map for P
- Procedure 1: Pairwise independencies
 - Add edges between X and Y, if P does not entail $X \perp Y \mid X \setminus \{X, Y\}$
- Procedure 2: Local independencies
 - Add edges between X and all $Y \in MB_p(X)$
- **Theorems**: Let P be a positive distribution and \mathcal{H} be the structure constructed through above procedures. Then \mathcal{H} is a unique minimal I-Map for P.

41

BAYESIAN NETWORKS & MARKOV NETWORKS

- We've said that the set of distributions that can be represented using BNs and MNs are different.
- Can we go from a BN to a MN and/or vice versa?

BNS TO MNS

• **Proposition:** Let \mathcal{B} be a Bayesian network over \mathcal{X} . Then $P_{\mathcal{B}}(\mathcal{X})$ is a Gibbs distribution defined by the factors $\Phi = {\phi(X_i)}$ for $X_i \in \mathcal{X}$, where $\phi(X_i) = P_{\mathcal{B}}(X_i \mid \operatorname{Parents}(X_i))$. The partition function Z is 1.

BNS TO MNS

- Given a Bayesian network structure G, find a Markov network structure H that is a minimal I-Map for G.
- **Definition**: *Moralized graph*: The moral graph M[G] of a Bayesian network structure G over X is an undirected graph over X that contains an undirected edge between X and Y if
 - There is a directed edge between X and Y in \mathcal{G} , or
 - X and Y are both parents of the same node in G
- Moralized: Parents of a node are married by adding an edge between them

BNS TO MNS

- **Proposition**: Let \mathcal{G} be any Bayesian network. The moralized graph $\mathcal{M}[\mathcal{G}]$ is a minimal I-Map for \mathcal{G} .
- Does moralization cause loss of independencies? If so, when?
- **Proposition**: Let \mathcal{G} be any moral Bayesian network. The moralized graph $\mathcal{M}[\mathcal{G}]$ is a P-Map for \mathcal{G} .

MNS TO BNS

- Given a Markov network structure \mathcal{H} , find a Bayesian network structure \mathcal{G} that is a minimal I-Map for \mathcal{H} .
- Use one of the two algorithms we discussed earlier
 - Alg. 1: Pick an order of the variables
 - Alg. 2: Start with a fully connected graph

MNs to BNs

47

MNS TO BNS

- **Theorem:** Let \mathcal{H} be a Markov network structure and let \mathcal{G} be any Bayesian network structure that is a minimal I-Map for \mathcal{H} . Then, \mathcal{G} can have no immoralities.
- **Definition**: *Chordal graph*: A graph where the longest minimal loop is a triangle. Also called *triangulated*.
- Corollary: Let \mathcal{H} be a Markov network structure and let \mathcal{G} be any Bayesian network structure that is a minimal I-Map for \mathcal{H} . Then, \mathcal{G} is necessarily chordal.

MNS TO BNS

- **Theorem**: Let \mathcal{H} be a nonchordal Markov network. Then, there is no Bayesian network \mathcal{G} which is a perfect map for \mathcal{H} .
- **Theorem**: Let \mathcal{H} be a chordal Markov network. Then, there is a Bayesian network \mathcal{G} which is a perfect map for \mathcal{H} .