Linear cocycles over hyperbolic systems: periodic data and rigidity

Boris Kalinin

Anosov diffeomorphisms

f – a diffeomorphism of a compact Riemannian manifold \mathcal{M} .

Definition: f is **Anosov** if there exist a continuous invariant decomposition $T\mathcal{M} = E^s \oplus E^u$ and constants K > 0, $\lambda > 0$ such that for all $n \in \mathbb{N}$,

$$||Df^n(v)|| \le Ke^{-\lambda n}||v||$$
 for all $v \in E^s$,
 $||Df^{-n}(v)|| \le Ke^{-\lambda n}||v||$ for all $v \in E^u$.

 E^s and E^u – stable and unstable sub-bundles.

Anosov diffeomorphisms

f – a diffeomorphism of a compact Riemannian manifold \mathcal{M} .

Definition: f is **Anosov** if there exist a continuous invariant decomposition $T\mathcal{M} = E^s \oplus E^u$ and constants K > 0, $\lambda > 0$ such that for all $n \in \mathbb{N}$,

$$||Df^n(v)|| \le Ke^{-\lambda n}||v||$$
 for all $v \in E^s$,
 $||Df^{-n}(v)|| \le Ke^{-\lambda n}||v||$ for all $v \in E^u$.

 E^s and E^u – stable and unstable sub-bundles.

Basic examples: Anosov automorphisms of tori.

A – a hyperbolic matrix in $SL(d,\mathbb{Z})$ (no eigenvalue of modulus 1) $A: \mathbb{R}^d \to \mathbb{R}^d$ projects to an automorphism of $\mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$.

Let $f: \mathcal{M} \to \mathcal{M}$ be a transitive Anosov diffeomorphism.

Anosov Closing Lemma. If $dist(f^n x, x) \le \epsilon$, then there exists $p = f^n p$ such that $dist(f^i p, f^i x) \le C\epsilon$ for i = 0, ..., n.

Let $f: \mathcal{M} \to \mathcal{M}$ be a transitive Anosov diffeomorphism.

Anosov Closing Lemma. If $\operatorname{dist}(f^n x, x) \leq \epsilon$, then there exists $p = f^n p$ such that $\operatorname{dist}(f^i p, f^i x) \leq C \epsilon$ for $i = 0, \dots, n$.

Livšic Theorem. Let $\alpha: \mathcal{M} \to \mathbb{R}$ be a Hölder function. Then

$$\alpha(x) = \varphi(fx) - \varphi(x) \qquad (*)$$

has a Hölder continuous solution φ if and only if whenever $f^np=p$

$$\sum_{i=0}^{n-1} \alpha(f^i p) = 0$$

Moreover, any measurable solution of (*) is Hölder continuous .

Let $f: \mathcal{M} \to \mathcal{M}$ be a transitive Anosov diffeomorphism.

Anosov Closing Lemma. If $\operatorname{dist}(f^n x, x) \leq \epsilon$, then there exists $p = f^n p$ such that $\operatorname{dist}(f^i p, f^i x) \leq C \epsilon$ for $i = 0, \dots, n$.

Livšic Theorem. Let $\alpha: \mathcal{M} \to \mathbb{R}$ be a Hölder function. Then

$$\alpha(x) = \varphi(fx) - \varphi(x) \qquad (*)$$

has a Hölder continuous solution φ if and only if whenever $f^np=p$

$$\sum_{i=0}^{n-1} \alpha(f^i p) = 0$$

Moreover, any measurable solution of (*) is Hölder continuous .

Corollary. f preserves a volume iff $\det Df^n(p) = 1$ for $f^n p = p$.

$$\alpha(x) = \varphi(fx) - \varphi(x) \qquad (*)$$

Corollary. f preserves a volume form if and only if $\det Df^n(p) = 1$ whenever $f^n p = p$.

$$\alpha(x) = \varphi(fx) - \varphi(x) \qquad (*)$$

Corollary. f preserves a volume form if and only if $\det Df^n(p) = 1$ whenever $f^n p = p$.

Fix a volume form ω and let $J_{\omega}(x)$ be the Jacobian of f w.r.t. ω .

If
$$\omega' = \frac{1}{c(x)}\omega$$
 then $J_{\omega'}(x) = c(fx)^{-1}c(x)J_{\omega}(x)$.

$$\alpha(x) = \varphi(fx) - \varphi(x) \qquad (*)$$

Corollary. f preserves a volume form if and only if $\det Df^n(p) = 1$ whenever $f^n p = p$.

Fix a volume form ω and let $J_{\omega}(x)$ be the Jacobian of f w.r.t. ω .

If
$$\omega' = \frac{1}{c(x)}\omega$$
 then $J_{\omega'}(x) = c(fx)^{-1}c(x)J_{\omega}(x)$.

$$f$$
 preserves $\omega' \Leftrightarrow J_{\omega'}(x) = 1$ for all $x \Leftrightarrow J_{\omega}(x) = c(fx) \, c(x)^{-1}$

$$\Leftrightarrow$$
 (*) with $\alpha(x) = \log J_{\omega}$ and $\varphi(x) = \log c(x)$.

$$\alpha(x) = \varphi(fx) - \varphi(x) \qquad (*)$$

Corollary. f preserves a volume form if and only if $\det Df^n(p) = 1$ whenever $f^n p = p$.

Fix a volume form ω and let $J_{\omega}(x)$ be the Jacobian of f w.r.t. ω .

If
$$\omega' = \frac{1}{c(x)}\omega$$
 then $J_{\omega'}(x) = c(fx)^{-1}c(x)J_{\omega}(x)$.

f preserves $\omega' \Leftrightarrow J_{\omega'}(x) = 1$ for all $x \Leftrightarrow J_{\omega}(x) = c(fx) \, c(x)^{-1}$

$$\Leftrightarrow$$
 (*) with $\alpha(x) = \log J_{\omega}$ and $\varphi(x) = \log c(x)$.

A solution exists if and only if

$$0 = \sum_{i=0}^{n-1} \alpha(f^i p) = \log \det Df^n(p) \quad \text{whenever } p = f^n p.$$

 $f: \mathcal{M} \to \mathcal{M}$ a transitive Anosov diffeomorphism;

 $P: \mathcal{E} o \mathcal{M}$ a finite dimensional vector bundle with Hölder continuous Riemannian metric;

- $f: \mathcal{M} \to \mathcal{M}$ a transitive Anosov diffeomorphism;
- $P: \mathcal{E} \to \mathcal{M}$ a finite dimensional vector bundle with Hölder continuous Riemannian metric;
- $F: \mathcal{E} \to \mathcal{E}$ a Hölder continuous linear cocycle over f, i.e.

$$\begin{array}{ccc} \mathcal{E} & \stackrel{F}{\rightarrow} & \mathcal{E} \\ P \downarrow & & P \downarrow \\ \mathcal{M} & \stackrel{f}{\rightarrow} & \mathcal{M} \end{array}$$

and $F_x: \mathcal{E}_x \to \mathcal{E}_{\mathit{fx}}$ is a linear isomorphism which depends Hölder continuously on x.

 $F: \mathcal{E} \to \mathcal{E}$ a Hölder continuous linear cocycle over f.

Example: Derivative cocycle.

The differential Df is a cocycle on the tangent bundle $\mathcal{E} = T\mathcal{M}$. If \mathcal{E}' is a Df-invariant sub-bundle, then $Df|_{\mathcal{E}'}$ is also a cocycle.

 $F: \mathcal{E} \to \mathcal{E}$ a Hölder continuous linear cocycle over f.

Example: Derivative cocycle.

The differential Df is a cocycle on the tangent bundle $\mathcal{E} = T\mathcal{M}$. If \mathcal{E}' is a Df-invariant sub-bundle, then $Df|_{\mathcal{E}'}$ is also a cocycle.

Example: Trivial bundle.

$$\mathcal{E} = \mathcal{M} \times \mathbb{R}^d$$
, so $\mathcal{E}_x = \mathcal{E}_{fx} = \mathbb{R}^d$, $F_x \in GL(d, \mathbb{R})$, and F can be viewed as a Hölder function $F : \mathcal{M} \to GL(d, \mathbb{R})$.

 $F: \mathcal{E} \to \mathcal{E}$ a Hölder continuous linear cocycle over f.

Example: Derivative cocycle.

The differential Df is a cocycle on the tangent bundle $\mathcal{E} = T\mathcal{M}$. If \mathcal{E}' is a Df-invariant sub-bundle, then $Df|_{\mathcal{E}'}$ is also a cocycle.

Example: Trivial bundle.

$$\mathcal{E} = \mathcal{M} \times \mathbb{R}^d$$
, so $\mathcal{E}_x = \mathcal{E}_{fx} = \mathbb{R}^d$, $F_x \in GL(d, \mathbb{R})$, and F can be viewed as a Hölder function $F : \mathcal{M} \to GL(d, \mathbb{R})$.

More generally, let $f:\mathcal{M}\to\mathcal{M}$ be a hyperbolic system: Anosov diffeomorphism, locally maximal hyperbolic set, or a symbolic system such as subshift of finite type.

Periodic data of a cocycle

 $F: \mathcal{E} \to \mathcal{E}$ be a Hölder continuous linear cocycle over f. For a periodic point $p = f^n p$ in \mathcal{M} , consider the return map

$$F_p^n = F_{f^{n-1}p} \circ \cdots \circ F_{fp} \circ F_p : \mathcal{E}_p \to \mathcal{E}_p$$

Question: What can be said about F based on its **periodic data** $\{F_p^n\}$?

Periodic data of a cocycle

 $F: \mathcal{E} \to \mathcal{E}$ be a Hölder continuous linear cocycle over f. For a periodic point $p = f^n p$ in \mathcal{M} , consider the return map

$$F_p^n = F_{f^{n-1}p} \circ \cdots \circ F_{fp} \circ F_p : \mathcal{E}_p \to \mathcal{E}_p$$

Question: What can be said about F based on its **periodic data** $\{F_p^n\}$?

In particular, what can be said about F based on Lyapunov exponents at periodic points?

The Lyapunov exponents of F at a periodic point $p = f^n p$ are given by eigenvalues of F_n^p :

$$\lambda_i^{(p)} = \frac{1}{n} \log |i^{th}|$$
 eigenvalue of F_p^n

Oseledets' Multiplicative Ergodic Theorem (1965)

Let f be an ergodic measure preserving transformation of a Lebesgue probability measure space (X, μ) and let $F: X \to GL(d, \mathbb{R})$ be a measurable cocycle over f.

If $\log \|F_x\|$, $\log \|F_x^{-1}\| \in L^1(X,\mu)$ then there exist numbers $\lambda_1 < \cdots < \lambda_I$, an f-invariant set $\mathcal R$ of full measure, and an F-invariant decomposition of $\mathbb R^d$ for $x \in \mathcal R$

$$\mathbb{R}_{x}^{d}=E_{\lambda_{1}}(x)\oplus\cdots\oplus E_{\lambda_{l}}(x)$$

such that for any nonzero $v \in E_{\lambda_i}(x)$, $\lim_{n \to \pm \infty} \frac{1}{n} \log ||F_x^n v|| = \lambda_i$.

The numbers $\lambda_1, \ldots, \lambda_I$ are called the **Lyapunov exponents** of F.

Periodic approximation of Lyapunov exponents

Theorem (B.K. 2008)

Let $f: \mathcal{M} \to \mathcal{M}$ be a hyperbolic system.

Let $F: \mathcal{E} \to \mathcal{E}$ be a Hölder continuous linear cocycle over f.

Let μ be an ergodic invariant measure for f.

Then the Lyapunov exponents $\lambda_1 \leq ... \leq \lambda_d$ of F with respect to μ (listed with multiplicities) can be approximated by the Lyapunov exponents of F at periodic points.

More precisely, for any $\epsilon > 0$ there exists a periodic point $p \in \mathcal{M}$ for which the Lyapunov exponents $\lambda_1^{(p)} \leq ... \leq \lambda_d^{(p)}$ of F satisfy $|\lambda_i - \lambda_i^{(p)}| < \epsilon$ for i = 1, ..., d.

Uniform growth estimates for cocycles

Corollary

Let F be a Hölder linear cocycle over a hyperbolic system f.

Suppose that for each periodic point $p = f^n p$ the largest Lyapunov exponent of F at p is at most λ .

Then for every $\epsilon > 0$ there exists a constant C_{ϵ} such that for all $x \in M$ and $n \in \mathbb{N}$

$$||F_x^n|| \leq C_\epsilon e^{(\lambda+\epsilon)n}$$

The largest Lyapunov exponents of F with respect to μ :

$$\lambda_{+}(F,\mu) = \lim_{n \to \infty} \frac{1}{n} \log \|F_{x}^{n}\| \qquad \text{for } \mu \text{ a.e. } x \in \mathcal{M}.$$

Conformality

Quasiconformal distortion

$$K_{F}(x,n) = \|F_{x}^{n}\| \cdot \|(F_{x}^{n})^{-1}\| = \frac{\max\{\|F_{x}^{n}(v)\|: v \in \mathcal{E}_{x}, \|v\| = 1\}}{\min\{\|F_{x}^{n}(v)\|: v \in \mathcal{E}_{x}, \|v\| = 1\}}$$

F is **conformal** on \mathcal{E} if $K_F(x, n) = 1$ for all $x \in \mathcal{M}$ and $n \in \mathbb{Z}$.

Conformality

Quasiconformal distortion

$$K_{F}(x,n) = \|F_{x}^{n}\| \cdot \|(F_{x}^{n})^{-1}\| = \frac{\max\{\|F_{x}^{n}(v)\| : v \in \mathcal{E}_{x}, \|v\| = 1\}}{\min\{\|F_{x}^{n}(v)\| : v \in \mathcal{E}_{x}, \|v\| = 1\}}$$

F is **conformal** on \mathcal{E} if $K_F(x, n) = 1$ for all $x \in \mathcal{M}$ and $n \in \mathbb{Z}$.

Three equivalent necessary conditions: whenever $f^n p = p$,

- (1) F_p^n is conformal with respect to an inner product on \mathcal{E}_p ;
- (2) F_p^n is diagonalizable over $\mathbb C$ with eigenvalues equal in modulus;
- (3) $K_F(p, n) \leq C(p)$ for all n such that $f^n p = p$.

Conformality

Quasiconformal distortion

$$K_{F}(x,n) = \|F_{x}^{n}\| \cdot \|(F_{x}^{n})^{-1}\| = \frac{\max\{\|F_{x}^{n}(v)\|: v \in \mathcal{E}_{x}, \|v\| = 1\}}{\min\{\|F_{x}^{n}(v)\|: v \in \mathcal{E}_{x}, \|v\| = 1\}}$$

F is **conformal** on \mathcal{E} if $K_F(x, n) = 1$ for all $x \in \mathcal{M}$ and $n \in \mathbb{Z}$.

Three equivalent necessary conditions: whenever $f^n p = p$,

- (1) F_p^n is conformal with respect to an inner product on \mathcal{E}_p ;
- (2) F_p^n is diagonalizable over $\mathbb C$ with eigenvalues equal in modulus;
- (3) $K_F(p, n) \leq C(p)$ for all n such that $f^n p = p$.

Theorem (B.K., V. Sadovskaya)

Suppose that the fibers of $\mathcal E$ are two-dimensional. If F satisfies (1) or (2) or (3) at each periodic point, then F is **conformal** with respect to a Hölder continuous Riemannian metric on $\mathcal E$.

Conformality in higher dimension

The Theorem does not hold in dimension ≥ 3 :

There exists F such that at every periodic point F_p^n is *isometric* with respect to an inner product on \mathcal{E}_p , but F is not conformal with respect to any continuous metric.

Conformality in higher dimension

The Theorem does not hold in dimension ≥ 3 :

There exists F such that at every periodic point F_p^n is *isometric* with respect to an inner product on \mathcal{E}_p , but F is not conformal with respect to any continuous metric.

Theorem (B.K., V. Sadovskaya)

If there exists a constant C_{per} such that

$$K_F(p, n) \leq C_{per}$$
 whenever $f^n p = p$,

then F is **conformal** with respect to a Hölder continuous Riemannian metric on \mathcal{E} .

Isometries

If F is an **isometry**, then whenever $f^n p = p$,

- (1) F_p^n is an isometry with respect to an inner product on \mathcal{E}_p ;
- (2) F_p^n is diagonalizable over \mathbb{C} , its eigenvalues are of modulus 1;
- (3) $\max\{\|F_p^n\|, \|(F_p^n)^{-1}\|\} \le C'(p)$ for all n such that $f^n p = p$.

Isometries

If F is an **isometry**, then whenever $f^n p = p$,

- (1) F_p^n is an isometry with respect to an inner product on \mathcal{E}_p ;
- (2) F_p^n is diagonalizable over \mathbb{C} , its eigenvalues are of modulus 1;
- (3) $\max\{\|F_p^n\|, \|(F_p^n)^{-1}\|\} \le C'(p)$ for all n such that $f^n p = p$.

Theorem (B.K., V. Sadovskaya)

For two-dimensional fibers: If F satisfies (1) or (2) or (3) at each periodic point, then F is an **isometry** with respect to a Hölder continuous Riemannian metric on \mathcal{E} .

Isometries

If F is an **isometry**, then whenever $f^n p = p$,

- (1) F_p^n is an isometry with respect to an inner product on \mathcal{E}_p ;
- (2) F_p^n is diagonalizable over \mathbb{C} , its eigenvalues are of modulus 1;
- (3) $\max\{\|F_p^n\|, \|(F_p^n)^{-1}\|\} \le C'(p)$ for all n such that $f^n p = p$.

Theorem (B.K., V. Sadovskaya)

For two-dimensional fibers: If F satisfies (1) or (2) or (3) at each periodic point, then F is an **isometry** with respect to a Hölder continuous Riemannian metric on \mathcal{E} .

In general: if there exists a constant C_{per}^{\prime} such that

$$\max\left\{\|F_p^n\|,\|(F_p^n)^{-1}\|\right\}\leq C_{per}'\quad \text{whenever } f^np=p,$$

then F is an isometry.

Example (dim $\mathcal{E}_x \geq 3$)

There exists $F: \mathcal{E} \to \mathcal{E}$ such that whenever $f^n p = p$ F_p^n is **isometric** with respect to an inner product on \mathcal{E}_p , but F is **not conformal** with respect to any continuous metric on \mathcal{E} .

Example (dim $\mathcal{E}_x \geq 3$)

There exists $F: \mathcal{E} \to \mathcal{E}$ such that whenever $f^n p = p$ F_p^n is **isometric** with respect to an inner product on \mathcal{E}_p , but F is **not conformal** with respect to any continuous metric on \mathcal{E} .

Let
$$\mathcal{E} = \mathcal{M} \times \mathbb{R}^3$$
, $F_x = \begin{bmatrix} \cos \alpha(x) & -\sin \alpha(x) & \epsilon \\ \sin \alpha(x) & \cos \alpha(x) & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Example (dim $\mathcal{E}_x \geq 3$)

There exists $F: \mathcal{E} \to \mathcal{E}$ such that whenever $f^n p = p$ F_p^n is **isometric** with respect to an inner product on \mathcal{E}_p , but F is **not conformal** with respect to any continuous metric on \mathcal{E} .

Let
$$\mathcal{E} = \mathcal{M} \times \mathbb{R}^3$$
, $F_x = \begin{bmatrix} \cos \alpha(x) & -\sin \alpha(x) & \epsilon \\ \sin \alpha(x) & \cos \alpha(x) & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Let S be a closed f-invariant set in \mathcal{M} without periodic points;

$$\alpha: \mathcal{M} \to \mathbb{R}$$
, $\alpha(x) = 0$ for $x \in S$ and $0 < \alpha(x) \le \epsilon$ for $x \notin S$

For
$$x \in S$$
, $F_x^n = \begin{bmatrix} 1 & 0 & \mathbf{n}\epsilon \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

For $x \in S$, $F_x^n = \begin{bmatrix} 1 & 0 & \mathbf{n} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $K_F(x, n) \to \infty$ as $n \to \infty \Longrightarrow F$ is not conformal w.r. to any continuous Riemannian metric.

Example (dim $\mathcal{E}_x \geq 3$)

There exists $F: \mathcal{E} \to \mathcal{E}$ such that whenever $f^n p = p$ F_p^n is **isometric** with respect to an inner product on \mathcal{E}_p , but F is **not conformal** with respect to any continuous metric on \mathcal{E} .

Let
$$\mathcal{E} = \mathcal{M} \times \mathbb{R}^3$$
, $F_x = \begin{bmatrix} \cos \alpha(x) & -\sin \alpha(x) & \epsilon \\ \sin \alpha(x) & \cos \alpha(x) & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Let S be a closed f-invariant set in \mathcal{M} without periodic points;

$$\alpha: \mathcal{M} \to \mathbb{R}$$
, $\alpha(x) = 0$ for $x \in S$ and $0 < \alpha(x) \le \epsilon$ for $x \notin S$

For
$$x \in S$$
, $F_x^n = \begin{bmatrix} 1 & 0 & \mathbf{n}_{\epsilon} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $K_F(x, n) \to \infty$ as $n \to \infty \Longrightarrow F$ is not conformal w.r. to any continuous Riemannian metric.

continuous Riemannian metric.

At $p = f^n p$, F_p^n is diagonalizable with eigenvalues of modulus 1.

Local rigidity for Anosov diffeomorphisms

f is an Anosov diffeomorphism and g is its C^1 -small perturbation then $f = h^{-1} \circ g \circ h$, and h is only Hölder continuous in general.

Local rigidity for Anosov diffeomorphisms

f is an Anosov diffeomorphism and g is its C^1 -small perturbation then $f = h^{-1} \circ g \circ h$, and h is only Hölder continuous in general.

If h is smooth, then for any periodic point $p = f^n p$,

$$Df_p^n = (Dh_p)^{-1} \circ Dg_{h(p)}^n \circ Dh_p.$$

Local rigidity for Anosov diffeomorphisms

f is an Anosov diffeomorphism and g is its C^1 -small perturbation then $f = h^{-1} \circ g \circ h$, and h is only Hölder continuous in general.

If h is smooth, then for any periodic point $p = f^n p$,

$$Df_p^n = (Dh_p)^{-1} \circ Dg_{h(p)}^n \circ Dh_p.$$

f is called **locally rigid** if conjugacy Df_p^n and $Dg_{h(p)}^n$ implies smoothness of h for every C^1 -small perturbation g.

Local rigidity for Anosov automorphisms

Question: Is an Anosov diffeomorphism *f* locally rigid?

Yes if dim $E^u = \dim E^s = 1$ (de la Llave),

No in higher dimension (de la Llave).

Question: Is an Anosov diffeomorphism *f* locally rigid?

Yes if dim $E^u = \dim E^s = 1$ (de la Llave),

No in higher dimension (de la Llave).

Yes if $Df^n|_{E^s(p)}$, $Df^n|_{E^u(p)}$ are k(p) Id (de la Llave; B.K, V. Sadovskaya)

Question: Is an Anosov diffeomorphism *f* locally rigid?

Yes if dim $E^u = \dim E^s = 1$ (de la Llave),

No in higher dimension (de la Llave).

Yes if $Df^n|_{E^s(p)}$, $Df^n|_{E^u(p)}$ are k(p) Id (de la Llave; B.K, V. Sadovskaya)

Yes if $Df^n|_{E^s(p)}$ and $Df^n|_{E^u(p)}$ are conformal and dim $E^u = \dim E^s = 2$ (B.K, V. Sadovskaya)

Theorem (Gogolev, B.K., Sadovskaya)

Let $L: \mathbb{T}^d \to \mathbb{T}^d$ be an irreducible Anosov automorphism such that no three of its eigenvalues have the same modulus. Then L is **locally rigid**, more precisely

If g is a C^1 -small perturbation of L with conjugate periodic data, then g is $C^{1+H\"{o}lder}$ conjugate to L.

Theorem (Gogolev, B.K., Sadovskaya)

Let $L: \mathbb{T}^d \to \mathbb{T}^d$ be an irreducible Anosov automorphism such that no three of its eigenvalues have the same modulus. Then L is **locally rigid**, more precisely

If g is a C^1 -small perturbation of L with conjugate periodic data, then g is $C^{1+H\"{o}lder}$ conjugate to L.

Proposition

Toral automorphisms satisfying the assumptions are **generic**: the proportion of matrices L in $SL(d,\mathbb{Z})$ with $||L|| \leq T$ that do **not** satisfy the assumptions can be estimated by $cT^{-\delta}$ for some $\delta > 0$.

Let L be an Anosov automorphism of \mathbb{T}^d . $L \in SL(d,\mathbb{Z})$. Let $1 < \rho_1 < \rho_2 < \cdots < \rho_m$ be the distinct moduli of the unstable eigenvalues of L.

The corresponding splitting: $E^{u,L} = E_1^L \oplus E_2^L \oplus \cdots \oplus E_m^L$

Let L be an Anosov automorphism of \mathbb{T}^d . $L \in SL(d,\mathbb{Z})$.

Let $1<\rho_1<\rho_2<\cdots<\rho_m$ be the distinct moduli of the unstable eigenvalues of L.

The corresponding splitting: $E^{u,L} = E_1^L \oplus E_2^L \oplus \cdots \oplus E_m^L$

For the perturbation g: $E^{u,g} = E_1^g \oplus E_2^g \oplus \cdots \oplus E_m^g$

Let L be an Anosov automorphism of \mathbb{T}^d . $L \in SL(d,\mathbb{Z})$. Let $1 < \rho_1 < \rho_2 < \cdots < \rho_m$ be the distinct moduli of the unstable eigenvalues of L.

The corresponding splitting: $E^{u,L} = E_1^L \oplus E_2^L \oplus \cdots \oplus E_m^L$

For the perturbation g: $E^{u,g} = E_1^g \oplus E_2^g \oplus \cdots \oplus E_m^g$

Since L is irreducible, it is diagonalizable over \mathbb{C} , and hence L is conformal on each E_i^L .

Let L be an Anosov automorphism of \mathbb{T}^d . $L \in SL(d,\mathbb{Z})$. Let $1 < \rho_1 < \rho_2 < \cdots < \rho_m$ be the distinct moduli of the unstable eigenvalues of L.

The corresponding splitting: $E^{u,L} = E_1^L \oplus E_2^L \oplus \cdots \oplus E_m^L$

For the perturbation g: $E^{u,g} = E_1^g \oplus E_2^g \oplus \cdots \oplus E_m^g$

Since L is irreducible, it is diagonalizable over \mathbb{C} , and hence L is conformal on each E_i^L .

As the periodic data are conjugate, the cocycle $Dg|_{E_i^g}$ is conformal at the periodic points. Since dim $E_i^g = \dim E_i^L \leq 2$, the Theorem implies that g is conformal on E_i^g .

Conformality of g allows to establish smoothness of h along E_i^L .

$GL(2,\mathbb{R})$ -valued cocycles with one exponent

Proposition (V. Sadovskaya)

Let $F: \mathcal{M} \to GL(2,\mathbb{R})$ be an orientation-preserving cocycle such that for each $p = f^n p$, the eigenvalues of F_p^n are equal in modulus.

Then, possibly after passing to a double cover, F is conjugate to

$$k(x)\begin{bmatrix} 1 & \beta(x) \\ 0 & 1 \end{bmatrix}$$
 or $k(x)Id$ or $k(x)\begin{bmatrix} \cos \beta(x) & -\sin \beta(x) \\ \sin \beta(x) & \cos \beta(x) \end{bmatrix}$

Structural Theorem

 $F: \mathcal{E} \to \mathcal{E}$ a Hölder continuous linear cocycle, dim $\mathcal{E}_x = d$.

Theorem (B.K, V. Sadovskaya)

Suppose that for each periodic point $p = f^n p$, the eigenvalues of F_p^n are equal in modulus.

Structural Theorem

 $F: \mathcal{E} \to \mathcal{E}$ a Hölder continuous linear cocycle, dim $\mathcal{E}_x = d$.

Theorem (B.K, V. Sadovskaya)

Suppose that for each periodic point $p = f^n p$, the eigenvalues of F_p^n are equal in modulus. Then there exists a flag of Hölder continuous F-invariant sub-bundles

$$\mathcal{E}^1 \subset ... \subset \mathcal{E}^{k-1} \subset \mathcal{E}^k = \mathcal{E}$$

and Hölder continuous Riemannian metrics on \mathcal{E}^1 and on the factor bundles $\mathcal{E}^{i+1}/\mathcal{E}^i$, i=1,...,k-1, such that

- $F|_{\mathcal{E}_1}$ is conformal and
- the factor-maps induced by F on $\mathcal{E}^{i+1}/\mathcal{E}^i$ are conformal.

If the flag is trivial then F is conformal on \mathcal{E} .

Structural Theorem – Special Case

If there are d continuous vector fields which give bases for all \mathcal{E}^i , then F is Hölder cohomologous to a cocycle of the form

$$\begin{bmatrix} A_1(x) & * & \dots & * \\ 0 & A_2(x) & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & A_k(x) \end{bmatrix} \qquad \begin{array}{l} A_i(x) = I_i(x)O_i(x) \\ \text{is a scalar multiple of} \\ \text{an orthogonal matrix.} \end{array}$$

Polynomial growth

Quasiconformal distortion of F

$$K_{F}(x,n) = \|F_{x}^{n}\| \cdot \|(F_{x}^{n})^{-1}\| = \frac{\max\{\|F_{x}^{n}(v)\| \colon v \in \mathcal{E}_{x}, \|v\| = 1\}}{\min\{\|F_{x}^{n}(v)\| \colon v \in \mathcal{E}_{x}, \|v\| = 1\}}$$

Theorem

Suppose that for each periodic point $p = f^n p$, the eigenvalues of F_p^n are equal in modulus.

Then $K_F(x,n) \leq Cn^{2m}$ for all $x \in \mathcal{M}$ and $n \in \mathbb{N}$.

Polynomial growth

Quasiconformal distortion of F

$$K_{F}(x,n) = \|F_{x}^{n}\| \cdot \|(F_{x}^{n})^{-1}\| = \frac{\max\{\|F_{x}^{n}(v)\| \colon v \in \mathcal{E}_{x}, \|v\| = 1\}}{\min\{\|F_{x}^{n}(v)\| \colon v \in \mathcal{E}_{x}, \|v\| = 1\}}$$

Theorem

Suppose that for each periodic point $p = f^n p$, the eigenvalues of F_p^n are equal in modulus.

Then $K_F(x,n) \leq Cn^{2m}$ for all $x \in \mathcal{M}$ and $n \in \mathbb{N}$.

If the eigenvalues of F_p^n are of modulus 1 whenever $p = f^n p$, then $\|\mathbf{F}_{\mathbf{v}}^{\mathbf{n}}\| \leq \mathbf{Cn^m}$ for all $x \in \mathcal{M}$ and $n \in \mathbb{N}$.

 $\mathbf{m} = \text{ the number of non-trivial sub-bundles in the flag } \leq d - 1.$