CS224W Project: The Study of Drug-Drug Interaction Learning Through Various Graph Learning Methods

Olivia Hsu

Department of Computer Science Stanford University owhsu@stanford.edu

Chuangi Chen

Department of Computer Science Stanford University cchuanqi@stanford

Abstract

Harm-causing drug-drug interactions constitute an important concern in drug development and postmarketing pharmacovigilance since they expose patients to higher risks and increase public health system costs. Methods to follow-up and discover possible drug-drug interactions are a primary aim of drug safety researchers. These interactions can be represented as an edge prediction task on an undirected, unweighted graph, which can be found in the ogbl-ddi dataset in Open Graph Benchmark. In this work, we implement three recently published graph machine learning frameworks to predict existing, and potentially new, drug-based interactions on the ogbl-ddi dataset. The models we implemented are (1) Adaptive Graph Encoder [Cui et al. (2020)], (2) DeeperGCN [Li et al. (2020)], and (3) Low Rank Graph Attention for Graph Convolutional Networks [Puny et al. (2020)]. For the methods that performed relatively well on ranking unseen drug interaction links, we also performed certain enhancements, like feature augmentation, node embedding exploration, and a parameter ablation study, to improve their performance. This study aims to understand, motivate, and improve-upon existing graph learning models for the purpose of applying them to drug-drug interaction applications specifically.

1 Introduction

Drug-drug interactions (DDIs) are a serious problem in patient safety [Percha and Altman (2013), Becker et al. (2007)]. Co-administration of two or more drugs at the same time can affect the biological action of the implicated drugs. The main types of DDIs include pharmacokinetic and pharmacodynamic interactions [Aronson (2004)]. Pharmacokinetic interactions can affect important drug processes that determine bioavailability, such as absorption, distribution, metabolism and excretion [Aronson (2004)]. Examples of these interactions are: the administration of a medication that increases the motility of the intestine while decreasing the absorption of the other drug, competition for the same plasma protein transporter, inhibition of the action of a metabolizing enzyme or even interaction at excretion level affecting the elimination of one of the drugs [Palleria et al. (2013)]. On the other hand, pharmacodynamic interactions can occur at the pharmacological receptor level with both drugs interacting with the same protein, at the signaling level affecting different signaling pathways, or at the effector levels causing different pharmacological responses. DDIs result in many adverse drug effects (ADEs) that can cause severe injuries to patients and even be responsible for deaths [Lazarou et al. (1998)]. It has been reported that DDIs could be responsible for up to 30% of the adverse effects found in the patients [Pirmohamed and Orme (1998)]. Hospitalizations and emergency department visits because of coadministration of different drugs are estimated around 0.57 and 0.054%, respectively [Becker et al. (2007)].

1.1 Dataset

We conducted link prediction on the Open Graph Benchmark (OGB) Drug-Drug Interation (ogbl-ddi) dataset [Hu et al. (2021)]. The ogbl-ddi dataset is an unweighted, undirected graph, where each node represents an FDA-approved or experimental drug from the DrugBank 5.0 database and each edge represents interactions between the corresponding drugs [Wishart et al. (2018)]. The interaction can be interpreted as the phenomenon where the joint effect of taking two drugs together is considerably different from the expected behavior of taking each drug independently. The ogbl-ddi link prediction task aims to rank true positive drug interactions above approximately 100,000 randomly-sampled negative drug interaction edges using the Hits@20 metric. The statistics of the dataset are shown in Table 1.

Table 1: Dataset Statistics

Dataset	# Nodes	# Edges	# Features	# Classes
ogbl-ddi	4,267	1,334,889	0	0

2 Existing Method and Our Method

2.1 Hypothesis

Since the ogbl-ddi dataset does not have any node level or edge level attributes or adjacency weights (see Table 1), the link prediction task is based solely on the undirected graph structure. To further learn the link and connectivity structure of the graph, we can preprocess the graph to capture node-level properties, such as the clustering coefficient or generalized degree of each node. Additionally, adding these node-level properties should increase the structural information represented at the input of the graph framework through feature augmentation. In addition, utilizing more sophisticated node embeddings that capture neighborhood structure should also increase the predictive power of the graph learning models.

Figure 1: DDI Graph Learning Comparison with Varying Model Inputs

Description: The three models are (1) AGE, (2) DeeperGCN, and (3) LRGA + GCN

2.2 Adaptive Graph Encoder

2.2.1 Motivation

Recently, Graph Neural Networks (GNNs) and Graph Convolutional Networks (GCNs) have made progress towards the task of attributed graph embeddings, the ability to learn node embedding vector representations using both node features and graph topology combined. However, existing GCN methods have three main limitations: (1) The intertwined combination of filters and weight matrices in GCNs negatively affect both the model's performance and robustness, (2) graph convolutional filters in GCNs do not preserve optimal low-pass filtering characteristics even though they are a particular example of a Laplacian smoothing filter, and (3) GCNs usually recover the adjacency matrix or feature matrix of a graph, which is not always the best training objective for certain applications.

Figure 2: Adaptive Graph Encoder [Cui et al. (2020)]

In order to resolve the above issues with GCN learning techniques, Cui et al. (2020) proposes an Adaptive Graph Encoder (AGE) (see Figure 2). The AGE trains on node embeddings that have been transformed by a Laplacian smoothing filter to remove high-frequency noise and uses a dynamic node-pair sampling strategy to train an adaptive encoder. Experimental results demonstrate that their model outperforms state-of-the-art graph embedding methods on 5 networking tasks, therefore, we believed that it would also be promising when applied to the ogbl-ddi dataset. A traditional GCN is a form of the Laplacian smoothing filter where k=1, but in this work the authors improve upon the model by choosing the optimal $k=1/\lambda_{max}$. Through an ablation study, they found that $k=1/\lambda_{max}$ maximizes the low-pass region of the filter while still denoising the high-frequency components of the node attribute vector, where $\lambda_{max} = 3/2$ is approximately equal to largest eigenvalue of the Laplacian for 4 datasets. Next, the paper argues that recovering the similarity matrix is a more accurate optimization objective than recovering the adjacency matrix or node features because similarity matrix recovery captures both node attribute and local graph structure information. The AGE algorithm also dynamically adapts their learning objective by choosing positive and negative samples via thresholding the similarity matrix scores using r_{pos} and r_{neq} , respectively. The encoder is then trained using the cross-entropy loss on the chosen node-pair samples and their corresponding similarity scores. And finally, the r_{pos} and r_{neq} thresholds are updated at regular intervals, t, throughout training to allow for refinement of the training sample region. Cui et al. (2020) showed their results on a link prediction task using the Cora dataset with parameters: t=8, $r_{pos}^{st}/n^2=0.0110$, $r_{neg}^{st}/n^2=0.1$, $r_{pos}^{ed}/n^2=0.0010$, and $r_{neg}^{ed}/n^2=0.5$ where st and ed represent the start and end thresholds respectively.

2.2.2 Limitations

Although we originally believed that the AGE model would work for the ogbl-ddi dataset since it achieved state-of-the-art on the Cora dataset for link prediction, we ran into many limitations for this graph encoding model. One of the main issues is that the ogbl-ddi dataset is inherently attribute-free, which meant that the task of attributed graph embeddings was significantly harder to solve. Since the ogbl-ddi graph did not have any features, we tried using feature augmentation to create graph embeddings. However, this only created about 5-10 node features, which was not enough information to embed into a 500 dimensional embedding space. Another limitation of the AGE model is its scalability to larger datasets. The AGE baseline model in Cui et al. (2020) learns the similarity matrix on the Cora dataset, which only has 2,708 nodes, 5,429 edges, and 1,433 features. However, learning the similarity matrix involved materializing the dense similarity matrix for the ogbl-ddi dataset, which resulted in implementation limitations on the hardware. The last problem we encountered with implementing the AGE model using the ogbl-ddi dataset involved setting the adaptive threshold values for r_{pos} and r_{neg} . Although adaptive thresholding can be beneficial, as stated above and by the authors, it can also be harmful if the thresholds are not properly set and the graph embedding framework does not have enough samples to train and learn from. All of this led to the AGE model performing extremely poorly on the ogbl-ddi dataset (with an average training Hits@20 metric of about 0.00%) and caused us to pivot towards another method instead.

2.3 Deeper Generalized GCN

2.3.1 Motivation

As previously mentioned, GCNs have made significant progress towards the task of learning on graphs. Current GCNs tend to be shallow and usually contain no more than four layers [Zhou et al. (2019)]. Unlike traditional Convolutional Neural Networks (CNNs), stacking increasingly deep layers in GCNs do not improve performance because they provably suffer from oversmoothing and vanishing gradients. Increased GCN layers also worsen the problem of model overfitting. Therefore, Li et al. (2020) proposes a graph learning framework called DeeperGCN that enables deeper GCN layers. DeeperGCN defines a generalized aggregation network's message passing function as:

$$\mathbf{m}_{vu}^{(l)} = \text{ReLU}(\mathbf{h}_u^{(l)} + \mathbb{1}(\mathbf{h}_{e_{vu}}^{(l)}) \cdot \mathbf{h}_{e_{vu}}^{(l)}) + \epsilon, \ u \in \mathcal{N}(v)$$
(1)

$$\mathbf{m}_{\mathbf{u}}^{(1)} = \zeta_x^{(l)}(\{\mathbf{m}_{vu}^{(l)} \mid u \in \mathcal{N}(v)\})$$
 (2)

where the generalized message aggregation function, $\zeta_x^{(l)}$, is parameterized by x and permutation invariant to message ordering. DeeperGCN also enables deep learning by creating a novel DeeperGCN layer architecture that modifies previously defined skip/residual connections and defines a new message normalization layer. The previously defined residual connection in DeepGCN [Zhou et al. (2019)] applies skip connections after the architecture Conv -> Norm -> Act -> Addition, whereas DeeperGCN [Li et al. (2020)] redefines a pre-activation connection as Norm -> Act -> Conv -> Addition for each combined model layer in the framework.

The DeeperGCN Model seemed like a good fit for the ogbl-ddi dataset since Li et al. (2020) showed DeeperGCN's scalability to various large-scale graphs in the OGB dataset suite (ogbn-proteins, ogbn-arxiv, ogbg-ppa, ogbg-molhiv). Since the ogbl-ddi dataset also does not have any node or edge-level attributes, multi-layer GCNs should be better at recovering deeper large-scale graphs structures as long as the oversmoothing and overfitting issues are addressed. The DeeperGCN framework for the DDI application seemed encouraging because the work argued and empirically showed that their generalized convolutional architecture resolved overfitting, oversmoothing, and vanishing gradients. We were also motivated to apply this model to the ogbl-ddi dataset over the previous AGE model because baseline GCN methods [Kipf and Welling (2017)] already achieved extremely high Hits@20 metrics for the ogbl-ddi dataset. Message passing methods and shallow graph neural networks, like GCN and GraphSage [Hamilton et al. (2018)], already performed relatively well at learning the edge structure of the graph.

2.3.2 Limitations

Various implementation and algorithmic limitations arose when applying the DeeperGCN method to the ogbl-ddi dataset. Due to the large number of network layers and parameters in the DeeperGCN method, physical hardware would often run out of memory with any hidden channel size approximately larger than 64. The physical memory limitations resulted in a tradeoff between deeper networks versus wider networks for these large graph learning problems. For the ogbl-ddi dataset, we found that wider networks with more hidden channels are more expressive in representing the edge structure of the graph because the higher dimensionalities preserve enough high-frequency graph structure information. Another limitation of deeper GCN architectures in general is the amount of time it takes to train the given model. Increased model depth leads to an exploding number of parameters and increases the gradient backpropagation computation, leading to a runtime that is over an order of magnitude slower than other models. DeeperGCN was also unable to curb overfitting even with the modified skip connections, message normalization layers, and generalized convolution layers as shown in Table 2. Even though the paper claims that the DeeperGCN framework enables more performant deep GNNs, the method still does not apply well to the ogbl-ddi dataset (see Table 2).

2.4 Low Rank Global Attention on Graph Convolutional Networks

2.4.1 Motivation

Similar to the DeeperGCN reasoning, the Low Rank Global Attention (LRGA) on GCN method was then chosen because of how the algorithm enhances and improves upon traidional GCNs. Since the GraphSage and GCN baselines already performed well on the ogbl-ddi dataset, we looked at methods that further enhanced the link prediction results of graph neural network GNN based methods. Attention mechanisms, first developed in the context of Natural Language Processing [Bahdanau et al. (2016)], has proven to also be a powerful tool in augmenting graph applications. Attention can be intuitively thought of as creating an adaptive importance metric between pairs of inputs, specifically node features in the graph learning context, where global attention creates that metric globally between all pair-wise combinations of inputs. Puny et al. (2020) proposes a low-rank (lower dimensional) MLP-based global attention transformation network that is applied after each GNN layer. The MLP-based global attention module globally aggregates all inputs $\bf X$ into low-dimensional space, κ , via following update rules, where m_1, m_2, m_3, m_4 are MLPs operating on the feature and η is the normalization factor.

$$X^{l+1} \leftarrow [X^l, LRGA(X^l), GNN(X^l)] \tag{3}$$

$$LRGA(X) = \left[\frac{1}{\eta(X)} m_1(X) (m_2(X)^T m_3(X)), m_4(X) \right]$$
 (4)

$$\eta(X) = \frac{1}{n} (\mathbf{1}^T m_1(X)) (m_2(X)^T \mathbf{1})$$
 (5)

The paper also proves that Random Graph Neural Networks (RGNNs) with LRGA are as expressive as the 2-Folklore Weisfeiler-Lehman (2-FWL or 3-WL) algorithm, making them strictly more expressive than vertex coloring (2-WL) which is the provable limit of message-passing GNNs. We reasoned that using LRGA for the ogbl-ddi domain could improve upon multiple GNN architectures, like GraphSage and GCNs, without much computational overhead which was one of our main issues with the DeeperGCN architecture.

2.4.2 Further Improvements

We applied LRGA to various GNNs including GCNs, GraphSage, and DeeperGCN's Generalized Convolutional message passing method (GENConv). Additionally, LRGA was proven in Puny et al. (2020) to be expressive using RGNNs, but the randomness of RGNNs do not include extra graph information in the input node embeddings. Therefore, to further improve LRGA's performance, we decided use global attention on GCNs with Node2Vec embeddings instead. This aligns with our hypothesis since Node2Vec input node embeddings should carry more graph structure information learned from the biased random walks [Grover and Leskovec (2016)]. The biased random walks

allow the embeddings to capture both local and global link structures around each node through a combined breadth first search and depth first search strategy. In addition to capturing neighborhood information from Node2Vec, we passed more graph structure information to the LRGA augmented input by concatenating the Node2Vec embeddings with feature augmentation. The feature properties we included for each node are: node degree, clustering coefficient, pagerank, betweenness centrality, square clustering, etc. This allows for the model to learn the link-structure of the ogbl-ddi dataset using not just random walk information but also information about steady state flow, neighborhood clustering, node connection counts, and more.

3 Experiments

3.1 Method Comparison

3.1.1 Baselines

We compare our performance with the following state of the art baselines: MAD Learning [Luo et al. (2021), GCN [Kipf and Welling (2017)], GraphSage [Hamilton et al. (2018)], and the original LRGA + GCN method from [Puny et al. (2020)]. All baseline code, metrics, and papers can be found on the Open Graph Benchmark ogbl-ddi leaderboard.

3.1.2 Evaluation Protocol

Test results for all methods are reported by the best validation epoch averaged over 10 random seed runs.

3.1.3 Implementation Details

All Methods. The embedding dimension split for all methods that used node embeddings was calculated as:

Node2Vec dim =
$$n_{\text{Node2Vec}} = \text{floor}(\frac{1}{n_{\text{embedding types}}} * (n_{\text{hidden channels}} - n_{\text{augmented features}}))$$
 (6)

Random dim =
$$n_{\text{random}} = n_{\text{hidden channels}} - n_{\text{Node2Vec}} - n_{\text{augmented features}}$$
 (7)

As an example, the LRGA + GCN (random + Node2Vec + aug) method had 5 features and 2 embedding types (random and Node2Vec) with a hidden channel size of 512.

All methods that included feature augmentation had the following 5 node properties, $n_{\rm augmented\ features}=5$, added: pagerank, clustering coefficient, generalized degree, node centrality, and a constant value of 1. For all the non-baseline ablated models in Table 2 an Adam optimizer with a learning rate of 0.005 was run for 200 epochs. We also ran all non-baseline models in Table 2 with a batch size of 64*1024=65536 and a dropout rate of 0.5.

DeeperGCN Only. The DeeperGCN model was run with 2 generalized combined layers each with 2 MLP layers. Each generalized combined layer had a ReLU activation with a layer normalization [Ba et al. (2016)] followed by a generalized convolution layer with a hidden channel size of 64. The generalized convolution layer was implemented with the SoftMax aggregation function.

LRGA Methods Only. We used $\kappa=50$ for all LRGA variant methods, including the baseline from Puny et al. (2020). The LRGA module is implemented according to equations 3, 4, and 5. Each LRGA module contains 4 MLP layers m_1, m_2, m_3, m_4 . Each m_i is a single linear layer with ReLU activation and batch and graph normalization are used at each layer. In Table 2, 'aug' denotes feature augmentation, 'Node2Vec' denotes Node2Vec node embeddings, 'random' denotes random node embeddings, and 'SkipConnect' denotes adding a skip connection between each combined layer. The only difference in parameters among the five LRGA variant methods in Table 2 is the number of hidden channels: 512 for LRGA + GraphSage (Node2Vec), 512 for LRGA + GraphSage (Node2Vec), 512 for LRGA + GCN (random + aug), 1024 for LRGA + GCN (Node2Vec + aug), 512 for LRGA + GCN (random + Node2Vec + aug), and 512 for LRGA + GCN + SkipConnect (Node2Vec + aug).

3.1.4 Benchmark Results

Table 2 summarizes the results of training and evaluating our model according to the evaluation protocol against baseline implementations. We observe that the LRGA + GCN with Node2Vec embeddings and feature augmentation (denoted as 'LRGA + GCN (Node2Vec + aug)' in Table 2) performs the best, supporting our claim that global attention, graph neural networks, random walk embeddings, and feature augmentation combined do a better job of capturing graph structure information. All of our LRGA input modifications perform better than the original result published in [Puny et al. (2020)], which emphasizes the importance of choosing a representative input into the graph network. Even our Our method achieves state-of-the-art performance on the ogbl-ddi dataset.

Table 2: Benchmark Comparison Results

Method (embedding)	Training	Hits@20(%) Validation	Test
MAD Learning ¹ LRGA + GCN (random) ² GraphSAGE GCN		70.10 ± 0.82 66.75 ± 0.58 53.90 ± 4.74 37.07 ± 5.07	67.81 ± 2.94 62.30 ± 9.12 62.62 ± 0.37 55.50 ± 2.08
DeeperGCN (random + aug) LRGA + GraphSage (Node2Vec) LRGA + GCN (random + aug) LRGA + GCN (Node2Vec + aug) ³ LRGA + GCN (random + Node2Vec + aug) LRGA + GCN + SkipConnect (Node2Vec + aug)	$ \begin{vmatrix} 64.71 \pm 1.49 \\ 77.86 \pm 1.02 \\ 79.73 \pm 0.61 \\ \textbf{82.93} \pm \textbf{0.55} \\ 79.64 \pm 0.86 \\ 81.11 \pm 0.93 \end{vmatrix} $	56.92 ± 1.33 68.27 ± 0.96 69.85 ± 0.60 72.25 ± 0.47 69.58 ± 0.90 71.66 ± 1.38	31.52 ± 8.27 61.23 ± 13.62 66.55 ± 8.70 73.85 ± 8.71 70.66 ± 5.88 65.91 ± 11.22

¹ MAD Learning is #1 on the ogbl-ddi leaderboard.

Analysis: LRGA + GCN (random + aug) performs better than LRGA + GCN (random) because of feature augmentation. LRGA + GCN (random + Node2Vec + aug) performs better than LRGA + GCN (random + aug) because of the Node2Vec random walks. LRGA + GCN (Node2Vec + aug) performs better than LRGA + GCN (random + Node2Vec + aug). Lastly, SkipConnect does not improve the performance.

3.2 Parameter Ablation Study

After determining that low rank graph attention on graph convolutional networks with Node2Vec input embeddings and feature augmentation – denoted as LRGA + GCN (Node2Vec + aug) – was the best method, we further conducted a parameter ablation study on this framework. We investigated the affects of certain parameters on the performance of GCNs augmented with LRGA, Node2Vec embeddings, and feature augmentation. Our experimental setup fixed the models baseline parameters to mirror that of the parameters in the original LRGA paper [Puny et al. (2020)], which used parameters denoted by the asterisk (*) in Table 3.

Even though the ablation study swept through many of the parameters, we observed that the hidden channel dimension had the biggest impact on our Node2Vec embedding method. Since the number of hidden channels is directly proportional to the Node2Vec embedding dimension (see Equation 6), the dimensionality directly relates to the information obtained from the Node2Vec random walk algorithm. Intuitively, higher dimensionality can represent more high-frequency graph structures while lower dimensionality results in graph smoothing affects. Although increasing the number of hidden channels tends to improve expressivity, too many hidden channels will not allow the graph learning framework to remove high frequency noise and learn lower-dimensional properties of the graph. The Node2Vec embedding space needs to be large enough to differentiate between node similarities and differences for the 4,267 nodes, which is 4267 * 4267 = 18,207,289 node pairs, in the ogbl-ddi dataset. Unlike the original LRGA + GCN model in Puny et al. (2020), Node2Vec embeddings capture more local and global graph structure information than random embeddings so changes in the embedding space dimensionality should affect our model more. Based on the ablation study, we found that the optimal number of hidden channels was 1024.

² LRGA + GCN (random) is #2 on the ogbl-ddi leaderboard.

³ Our best model beats MAD Learning, achieving state-of-the-art performance.

Table 3: Parameter Ablation Study for Model LRGA + GCN (Node2Vec + augment)

Hits@ Validation	20(%) Test	Hidden Channels	Learning rate	Num layers	Batch size	Dropout
67.28 ± 0.74 $70.13 \pm 0.50*$	60.80 ± 10.45 73.41 ± 7.15	512	0.002 0.005	2 2	65536 65536	0.5 0.5
71.33 ± 0.52 $70.13 \pm 0.50*$	67.96 ± 10.41 73.41 ± 7.15	512	0.005 0.005	2 2	65536 65536	0.2 0.5
$70.13 \pm 0.50*$ 67.28 ± 2.10	73.41 ± 7.15 62.69 ± 5.65	512	0.005 0.005	2 2	65536 100000	0.5 0.5
70.62 ± 1.01 $70.13 \pm 0.50*$	72.91 ± 5.07 73.41 ± 7.15	512	0.005 0.005	2 2	65536 65536	0.45 0.5
67.52 ± 0.75 $70.13 \pm 0.50*$ 65.32 ± 5.56	50.33 ± 13.37 73.41 ± 7.15 64.48 ± 14.18	512 512 512	0.005 0.005 0.005	1 2 3	65536 65536 65536	0.5 0.5 0.5
65.52 ± 0.87 $70.13 \pm 0.50*$	56.22 ± 10.15 73.41 ± 7.15	256 512	0.005 0.005	2 2	65536 65536	0.5 0.5
70.55 ± 0.31 71.54 ± 0.61 71.73 ± 0.65	73.51 ± 8.69 74.24 ± 14.18 73.13 ± 13.79	640 768 800	0.005 0.005 0.005	2 2 2	65536 65536 65536	0.5 0.5 0.5
71.73 ± 0.03 71.81 ± 0.73 72.03 ± 0.59	73.13 ± 13.79 77.94 ± 9.20 74.17 ± 13.97	832 896	0.005 0.005	2 2	65536 65536	0.5 0.5
71.65 ± 0.53 72.25 ± 0.47 70.97 ± 2.76	75.88 ± 10.28 73.85 ± 8.71 66.07 ± 20.60	960 1024 1152	0.005 0.005 0.005	2 2 2	65536 65536 65536	0.5 0.5 0.5

^{*} Denotes the baseline parameters used for our ablation study

Analysis: Extensive parameter searching shows that increasing the number of layers does not necessarily increase the performance. Dropout is not as effective in curbing overfitting of the data. Learning rate and batch size are also not as effective in improving the optimization iterations. Increasing the number of hidden channels improves expressiveness of the model greatly until a certain point.

4 Conclusion

To push state-of-the-art drug-drug interaction predictions, we hypothesized the importance of node neighborhood structure for link prediction learning on an attribute-less network. We explained the motivation behind this hypothesis and how this led us to look at several state-of-the-art models: AGE, DeeperGCN, and LRGA + GCN. We then demonstrated how these various state-of-the-art graph learning methods can still have limitations and fall short of capturing this node structure information. Empirically, we also show the effectiveness of including node information into the input for frameworks to learn on through both a model comparison and a parameter ablation study. This all lead to achieving a new state-of-the-art on the ogbl-ddi dataset in the Open Graph Benchmark.

5 Acknowledgements

We would like to acknowledge Puny et al. (2020), Cui et al. (2020)]), Li et al. (2020), and Fey and Lenssen (2019) for the use of various parts of their code in our implementation.

References

Cui, G.; Zhou, J.; Yang, C.; Liu, Z. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery Data Mining 2020,

Li, G.; Xiong, C.; Thabet, A.; Ghanem, B. DeeperGCN: All You Need to Train Deeper GCNs. 2020.

- Puny, O.; Ben-Hamu, H.; Lipman, Y. Global Attention Improves Graph Networks Generalization. 2020.
- Percha, B.; Altman, R. Trends in pharmacological sciences 2013, 34, 178-84.
- Becker, M.; Kallewaard, M.; Caspers, P.; Visser, L.; Leufkens, H.; Stricker, B. *Pharmacoepidemiology* and *Drug Safety* **2007**, *16*.
- Aronson, J. British journal of clinical pharmacology 2004, 58, 343-4.
- Palleria, C.; Paolo, A. D.; Giofrè, C.; Caglioti, C.; Leuzzi, G.; Siniscalchi, A.; Sarro, G. D.; Gallelli, L. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences 2013, 18, 601 – 610.
- Lazarou, J.; Pomeranz, B.; Corey, P. JAMA 1998, 279, 1200—1205.
- Pirmohamed, M.; Orme, M. Davies's textbook of adverse drug reactions 1998, 888–912.
- Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.; Catasta, M.; Leskovec, J. Open Graph Benchmark: Datasets for Machine Learning on Graphs. 2021.
- Wishart, D. et al. Nucleic acids research 2018, 46.
- Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph Neural Networks: A Review of Methods and Applications. 2019.
- Kipf, T. N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. 2017.
- Hamilton, W. L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. 2018.
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. 2016.
- Grover, A.; Leskovec, J. node2vec: Scalable Feature Learning for Networks. 2016.
- Luo, Y.; Chen, A.; Hui, B.; Yan, K. Memory-Associated Differential Learning. 2021.
- Ba, J. L.; Kiros, J. R.; Hinton, G. E. Layer Normalization. 2016.
- Fey, M.; Lenssen, J. E. Fast Graph Representation Learning with PyTorch Geometric. ICLR Workshop on Representation Learning on Graphs and Manifolds. 2019.