TD 2: Architecture des ordinateurs 2020/2021

Question 1 Classez les mémoires suivantes par taille, par rapidité : RAM, registres, disques durs, cache L, Cdrom.

<u>Question 2</u> Supposons qu'un livre contienne 500 pages de 80 lignes de 100 caractères chacune (ponctuations et blancs compris). Combien de caractères composent ce livre ? Sachant qu'un octet représente un caractère, combien de livres faut-il pour avoir l'équivalent de 30 Go ? Enfin l'épaisseur de ce livre est de 2cm, quelle hauteur de livres obtient-on avec 30 Go ?

Question 3 Additionnez les entiers positifs suivants directement en binaire, indiquez les cas qui produisent un overflow de la représentation 8 bits : (Overflow : dépassement de capacité)

• $(00101001)_2 + (11001010)_2 / (10101011)_2 + (11001010)_2 / (11111111)_2 + (11111111)_2$ Question 4 sur combien de bits faut-il coder l'addition et la multiplication d'un entier x codé en n bits et un entier y codé en m bits, pour éviter un over-flow?

<u>Question 5</u> On dispose d'une mémoire RAM dont le boîtier comporte un bus d'adresse de 16 entrées et un bus de données de 8 entrées.

- 1. Quelle est la taille des registres RM et RA?
- 2. Quel est le nombre de cases adressables dans cette mémoire ?
- 3. Quel est le nombre de bits constituant un mot mémoire si la taille d'une case est de 4 bits? (1 mot mémoire = 2 x taille de la case mémoire)
- 4. Quelle est la taille de cette mémoire en octets pour chacun des cas suivants :
 - a. La taille d'une case mémoire est de 1 bit,
 - **b.** La taille d'une case mémoire est de 2 bits,
 - c. La taille d'une case mémoire est de 4 bits,
- 5. Pour des cases mémoire de 2 bits.
 - a. Quelle est la taille maximum de cette mémoire en octets ?
- **b**. Quelle est l'adresse en décimal et en hexadécimal du **15**ème **mot mémoire** ? (la numérotation commence de zéro)
- c. Calculer l'adresse en décimal puis en hexadécimal du $9^{\text{ème}}$ élément d'un tableau dont l'adresse du premier élément est $(34)_{10} = (0022)_{16}$, et dont tous les éléments sont composés de 6 bits ;
- d. Calculer le nombre d'éléments de ce tableau sachant que l'adresse de son dernier élément $est (91)_{10} = (005B)_{16}$;
 - e. Quelle est la taille de ce tableau en octets?
- f. combien de tableaux on peut charger dans cette mémoire si la capacité de chaque tableau est de 10 élément, chaque élément est de 4 bits, la case mémoire est de 2 bits, la première adresse est 0 et la dernière adresse est 100, donner l'adresse de chaque tableau

<u>Question 6</u> Sachant que la taille du bus d'adresse d'un processeur est de 20 bit, combien de segments peut-il gérer ? Quelle est la taille de ces segments ? Justifier votre réponse. (Le registre segment est à 16 bits)

Question 7 Le programme suivant réalise une temporisation. Pour ce faire, il décrémente un registre 16 bits, *i.e.* de 0100H (fixé au départ) à 0. Pour chacune des lignes du programme, on donne la durée d'exécution d'une instruction complète en microcycle (μ c). Le processeur travaille à une fréquence de 10 MHz, c'est-à-dire que chacune des opérations élémentaires est effectuée en 1 μ c de 100 ns (rappel 1 ns = 10^{-9} s) . Calculer le temps de ce programme en micro-cycle et en nanoseconde Modifier la valeur initiale de tempo pour que l'ensemble de la temporisation atteigne une durée 1ms

Data Tempo Data	SEGMENT DW	CS : Code, DS : Data
Code Debut :	VOM	Nombre de μ c AX , Data 10 DS , AX 2
Boucle :		AX , Tempo 10 AX , -1 4 Boucle 16
	MOV INT	AH , 4CH 4 21H 52
Code	ENDS END	Debut

<u>Question 8</u> Donner la définition du registre d'état et citer 4 indicateurs d'état en précisant leur fonction