Appendix A. Proofs

Appendix A.1. Proof of Lemma 3.2

Proof. Given a quadratic surface S denoted by (10), for any point $x \in S$, recall the definitions of $\hat{n}(x)$, $\gamma(x)$, $\gamma^+(x)$, $\gamma^-(x)$, x^+ and x^- in Section 3.2. By (11), $Q(x^+) = 1$ and $Q(x^-) = -1$, which are equivalent to

$$\frac{1}{2}(\boldsymbol{x} + \gamma^{+}(\boldsymbol{x})\hat{\boldsymbol{n}}(\boldsymbol{x}))^{T}\mathbf{W}(\boldsymbol{x} + \gamma^{+}(\boldsymbol{x})\hat{\boldsymbol{n}}(\boldsymbol{x})) + \boldsymbol{b}^{T}(\boldsymbol{x} + \gamma^{+}(\boldsymbol{x})\hat{\boldsymbol{n}}(\boldsymbol{x})) + c - 1 = 0$$

$$\frac{1}{2}(\boldsymbol{x} - \gamma^{-}(\boldsymbol{x})\hat{\boldsymbol{n}}(\boldsymbol{x}))^{T}\mathbf{W}(\boldsymbol{x} - \gamma^{-}(\boldsymbol{x})\hat{\boldsymbol{n}}(\boldsymbol{x})) + \boldsymbol{b}^{T}(\boldsymbol{x} - \gamma^{-}(\boldsymbol{x})\hat{\boldsymbol{n}}(\boldsymbol{x})) + c + 1 = 0$$
(A.1)

With $Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{W}\mathbf{x} + \mathbf{b}^T\mathbf{x} + c = 0$, (A.1) can be simplified as the following:

$$\frac{1}{2}\gamma^{+}(\boldsymbol{x})^{2}\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}\mathbf{W}\hat{\boldsymbol{n}}(\boldsymbol{x}) + \gamma^{+}(\boldsymbol{x})\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}(\mathbf{W}\boldsymbol{x} + \boldsymbol{b}) - 1 = 0$$

$$\frac{1}{2}\gamma^{-}(\boldsymbol{x})^{2}\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}\mathbf{W}\hat{\boldsymbol{n}}(\boldsymbol{x}) - \gamma^{-}(\boldsymbol{x})\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}(\mathbf{W}\boldsymbol{x} + \boldsymbol{b}) + 1 = 0$$
(A.2)

Notice that (A.2) are second order equations with respect to $\gamma^+(x)$ and $\gamma^-(x)$, respectively. Therefore, we will be able to solve out the explicit solutions as the following:

$$\gamma^{+}(\boldsymbol{x}) = \frac{-\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}(\mathbf{W}\boldsymbol{x} + \boldsymbol{b}) \pm \sqrt{\left[\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}(\mathbf{W}\boldsymbol{x} + \boldsymbol{b})\right]^{2} + 2\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}\mathbf{W}\hat{\boldsymbol{n}}(\boldsymbol{x})}}{\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}\mathbf{W}\hat{\boldsymbol{n}}(\boldsymbol{x})}$$
$$\gamma^{-}(\boldsymbol{x}) = \frac{\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}(\mathbf{W}\boldsymbol{x} + \boldsymbol{b}) \pm \sqrt{\left[\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}(\mathbf{W}\boldsymbol{x} + \boldsymbol{b})\right]^{2} - 2\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}\mathbf{W}\hat{\boldsymbol{n}}(\boldsymbol{x})}}{\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}\mathbf{W}\hat{\boldsymbol{n}}(\boldsymbol{x})}$$

By the definition, we have $\hat{\boldsymbol{n}}(\boldsymbol{x})^T(W\boldsymbol{x}+\boldsymbol{b}) = \|\mathbf{W}\boldsymbol{x}+\boldsymbol{b}\|$. Then the above equations can be simplified as the following:

$$\gamma^+(\boldsymbol{x}) = \frac{-\|\mathbf{W}\boldsymbol{x} + \boldsymbol{b}\| \pm \sqrt{\|\mathbf{W}\boldsymbol{x} + \boldsymbol{b}\|^2 + 2\hat{\boldsymbol{n}}(\boldsymbol{x})^T \mathbf{W} \hat{\boldsymbol{n}}(\boldsymbol{x})}}{\hat{\boldsymbol{n}}(\boldsymbol{x})^T \mathbf{W} \hat{\boldsymbol{n}}(\boldsymbol{x})}, \quad \gamma^-(\boldsymbol{x}) = \frac{\|\mathbf{W}\boldsymbol{x} + \boldsymbol{b}\| \pm \sqrt{\|\mathbf{W}\boldsymbol{x} + \boldsymbol{b}\|^2 - 2\hat{\boldsymbol{n}}(\boldsymbol{x})^T \mathbf{W} \hat{\boldsymbol{n}}(\boldsymbol{x})}}{\hat{\boldsymbol{n}}(\boldsymbol{x})^T \mathbf{W} \hat{\boldsymbol{n}}(\boldsymbol{x})}$$

By eliminating two useless roots, we have the explicit solutions of $\gamma^+(x)$ and $\gamma^-(x)$.

$$\gamma^{+}(\boldsymbol{x}) = \frac{-\|\mathbf{W}\boldsymbol{x} + \boldsymbol{b}\| + \sqrt{\|\mathbf{W}\boldsymbol{x} + \boldsymbol{b}\|^{2} + 2\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}\mathbf{W}\hat{\boldsymbol{n}}(\boldsymbol{x})}}{\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}\mathbf{W}\hat{\boldsymbol{n}}(\boldsymbol{x})}$$

$$\gamma^{-}(\boldsymbol{x}) = \frac{\|\mathbf{W}\boldsymbol{x} + \boldsymbol{b}\| - \sqrt{\|\mathbf{W}\boldsymbol{x} + \boldsymbol{b}\|^{2} - 2\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}\mathbf{W}\hat{\boldsymbol{n}}(\boldsymbol{x})}}{\hat{\boldsymbol{n}}(\boldsymbol{x})^{T}\mathbf{W}\hat{\boldsymbol{n}}(\boldsymbol{x})}$$
(A.3)

By (12), there exists an orthonormal matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ such that $\mathbf{W} = \mathbf{U} \mathbf{\Sigma} \mathbf{U}^T$, where $\mathbf{\Sigma}$ is a diagonal matrix of the singular values of \mathbf{W} . Recall that the singular values of \mathbf{W} are in a decreasing order: $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r \geqslant \sigma_{r+1} = \cdots = \sigma_n = 0$. Denote $\mathbf{U} = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n]$. Then $\{\mathbf{u}_i \in \mathbb{R}^n\}_{1 \leqslant i \leqslant n}$ forms an orthonormal basis on \mathbb{R}^n . Hence, there exists $\boldsymbol{\alpha}(\mathbf{x}) = [\alpha_1(\mathbf{x}), \alpha_2(\mathbf{x}), \dots, \alpha_n(\mathbf{x})]^T \in \mathbb{R}^n$ such that

$$\mathbf{W}\mathbf{x} + \mathbf{b} = \sum_{i=1}^{n} \alpha_i(\mathbf{x})\mathbf{u}_i = \mathbf{U}\boldsymbol{\alpha}(\mathbf{x}). \tag{A.4}$$

Taking (A.4) into (A.3) and we have

$$\gamma^{+}(\boldsymbol{x}) = \frac{-\|\mathbf{U}\boldsymbol{\alpha}(\boldsymbol{x})\| + \sqrt{\|\mathbf{U}\boldsymbol{\alpha}(\boldsymbol{x})\|^{2} + 2\frac{\boldsymbol{\alpha}(\boldsymbol{x})^{T}\boldsymbol{\Sigma}\boldsymbol{\alpha}(\boldsymbol{x})}{\boldsymbol{\alpha}(\boldsymbol{x})^{T}\boldsymbol{\alpha}(\boldsymbol{x})}}}{\frac{\boldsymbol{\alpha}(\boldsymbol{x})^{T}\boldsymbol{\Sigma}\boldsymbol{\alpha}(\boldsymbol{x})}{\boldsymbol{\alpha}(\boldsymbol{x})^{T}\boldsymbol{\alpha}(\boldsymbol{x})}}, \quad \gamma^{-}(\boldsymbol{x}) = \frac{\|\mathbf{U}\boldsymbol{\alpha}(\boldsymbol{x})\| - \sqrt{\|\mathbf{U}\boldsymbol{\alpha}(\boldsymbol{x})\|^{2} - 2\frac{\boldsymbol{\alpha}(\boldsymbol{x})^{T}\boldsymbol{\Sigma}\boldsymbol{\alpha}(\boldsymbol{x})}{\boldsymbol{\alpha}(\boldsymbol{x})^{T}\boldsymbol{\alpha}(\boldsymbol{x})}}}{\frac{\boldsymbol{\alpha}(\boldsymbol{x})^{T}\boldsymbol{\Sigma}\boldsymbol{\alpha}(\boldsymbol{x})}{\boldsymbol{\alpha}(\boldsymbol{x})^{T}\boldsymbol{\alpha}(\boldsymbol{x})}}$$

Notice that $\frac{\alpha(\boldsymbol{x})^T \boldsymbol{\Sigma} \alpha(\boldsymbol{x})}{\alpha(\boldsymbol{x})^T \alpha(\boldsymbol{x})}$ is the Rayleigh quotient of $\boldsymbol{\Sigma}$ at $\boldsymbol{\alpha}(\boldsymbol{x})$. Denote $\frac{\alpha(\boldsymbol{x})^T \boldsymbol{\Sigma} \alpha(\boldsymbol{x})}{\alpha(\boldsymbol{x})^T \alpha(\boldsymbol{x})} = R(\boldsymbol{\Sigma}, \boldsymbol{\alpha}(\boldsymbol{x}))$. By Parseval's identity, $\|\mathbf{U}\boldsymbol{\alpha}(\boldsymbol{x})\|_2^2 = \|\boldsymbol{\alpha}(\boldsymbol{x})\|_2^2$. Hence, the G-margin at \boldsymbol{x} can be written as

$$\gamma(\boldsymbol{x}) = \gamma^{+}(\boldsymbol{x}) + \gamma^{-}(\boldsymbol{x}) = \frac{\sqrt{\|\boldsymbol{\alpha}(\boldsymbol{x})\|^{2} + 2R(\boldsymbol{\Sigma}, \boldsymbol{\alpha}(\boldsymbol{x}))} - \sqrt{\|\boldsymbol{\alpha}(\boldsymbol{x})\|^{2} - 2R(\boldsymbol{\Sigma}, \boldsymbol{\alpha}(\boldsymbol{x}))}}{R(\boldsymbol{\Sigma}, \boldsymbol{\alpha}(\boldsymbol{x}))}$$
(A.5)

Notice that inequality $\sqrt{x} - \sqrt{y} \leqslant \sqrt{x-y}$ holds for any $x \geqslant y \geqslant 0$. Therefore, we have the following inequality.

$$\frac{1}{\gamma(\boldsymbol{x})} = \frac{1}{\gamma^{+}(\boldsymbol{x}) + \gamma^{-}(\boldsymbol{x})} \geqslant \frac{\sqrt{R(\boldsymbol{\Sigma}, \boldsymbol{\alpha}(\boldsymbol{x}))}}{2}.$$
 (A.6)

Since Σ is known when S is given, we proved Lemma 3.2.

Appendix A.2. Proof of theorem 4.1

Proof. Assume $(\boldsymbol{v}^*, \boldsymbol{b}^*, q^*, \boldsymbol{\zeta}^*)$ and $(\hat{\boldsymbol{v}}, \hat{\boldsymbol{b}}, \hat{q}, \hat{\boldsymbol{\zeta}})$ are both optimal solutions to problem (DWPSVM"). For a convex program, its optimal solution set is convex. In other words, $(\forall \alpha \in (0,1)) \ \alpha(\boldsymbol{v}^*, \boldsymbol{b}^*, q^*, \boldsymbol{\zeta}^*) + (1 - \alpha)(\hat{\boldsymbol{v}}, \hat{\boldsymbol{b}}, \hat{q}, \hat{\boldsymbol{\zeta}})$ is optimal as well. Denote the optimal value as \bar{z} .

Define function $p: \mathbb{R}^{\frac{l(l+1)+n(n+1)}{2}+N} \to \mathbb{R}$, such that

$$p(\boldsymbol{v}, \boldsymbol{b}, \boldsymbol{\zeta}) \triangleq \frac{1}{2} \boldsymbol{v}^T \mathbf{H} \boldsymbol{v} + \frac{1}{2} \|\boldsymbol{b}\|_2^2 + C \sum_{i=1}^N \zeta_i.$$
 (A.7)

which leads to

$$\bar{z} = \frac{1}{2} \left(\alpha \boldsymbol{v}^* + (1 - \alpha) \hat{\boldsymbol{v}} \right)^T \mathbf{H} \left(\alpha \boldsymbol{v}^* + (1 - \alpha) \hat{\boldsymbol{v}} \right) + \frac{1}{2} \left(\alpha \boldsymbol{b}^* + (1 - \alpha) \hat{\boldsymbol{b}} \right)^T \left(\alpha \boldsymbol{b}^* + (1 - \alpha) \hat{\boldsymbol{b}} \right) + C \sum_{i=1}^N \left(\alpha \zeta_i^* + (1 - \alpha) \hat{\zeta}_i \right) \\
= \frac{\alpha^2}{2} \left(\boldsymbol{v}^{*T} \mathbf{H} \boldsymbol{v}^* + \boldsymbol{b}^{*T} \boldsymbol{b}^* \right) + \frac{(1 - \alpha)^2}{2} \left(\hat{\boldsymbol{v}}^T \mathbf{H} \hat{\boldsymbol{v}} + \hat{\boldsymbol{b}}^T \hat{\boldsymbol{b}} \right) + \alpha (1 - \alpha) \left(\boldsymbol{v}^{*T} \mathbf{H} \hat{\boldsymbol{v}} + \boldsymbol{b}^{*T} \hat{\boldsymbol{b}} \right) + C \sum_{i=1}^N \left(\alpha \zeta_i^* + (1 - \alpha) \hat{\zeta}_i \right) \\
= \alpha p(\boldsymbol{v}^*, \boldsymbol{b}^*, \boldsymbol{\zeta}^*) + (1 - \alpha) p(\hat{\boldsymbol{v}}, \hat{\boldsymbol{b}}, \hat{\boldsymbol{\zeta}}) + \alpha (\alpha - 1) \left((\boldsymbol{v}^* - \hat{\boldsymbol{v}})^T \mathbf{H} (\boldsymbol{v}^* - \hat{\boldsymbol{v}}) + (\boldsymbol{b}^* - \hat{\boldsymbol{b}})^T (\boldsymbol{b}^* - \hat{\boldsymbol{b}}) \right).$$

Since $\bar{z} = p(\boldsymbol{v}^*, \boldsymbol{b}^*, \boldsymbol{\zeta}^*) = p(\hat{\boldsymbol{v}}, \text{ it forces } \hat{\boldsymbol{b}}, \hat{\boldsymbol{\zeta}})$ forces $(\boldsymbol{v}^* - \hat{\boldsymbol{v}})^T \mathbf{H} (\boldsymbol{v}^* - \hat{\boldsymbol{v}}) + (\boldsymbol{b}^* - \hat{\boldsymbol{b}})^T (\boldsymbol{b}^* - \hat{\boldsymbol{b}}) = 0$, which implies $(\boldsymbol{v}^* - \hat{\boldsymbol{v}})^T \mathbf{H} (\boldsymbol{v}^* - \hat{\boldsymbol{v}}) = 0$ due to the positive definiteness of \mathbf{H} and $(\boldsymbol{b}^* - \hat{\boldsymbol{b}})^T (\boldsymbol{b}^* - \hat{\boldsymbol{b}}) = 0$.

In conclusion, $v^* = \hat{v}$ and $b^* = \hat{b}$.