Ch 6 : Fonction exponentielle de base a

I. <u>Définition et propriétés</u>

1) <u>Définition et premières propriétés</u>

On considère la suite géométrique de raison a définie par $u_n = a^n$.

Elle est définie pour tout entier naturel n. En prolongeant son ensemble de définition pour tout réel strictement positif, on définit la fonction exponentielle de base a.

Ainsi par exemple:

Pour une suite géométrique de raison a=2 et de premier terme 1, on a par exemple : $u_4=2^4$.

Pour la fonction correspondante, on a : $f(4)=2^4$ mais on a également : $f(1,3)=2^{1,3}$.

Et de façon générale, $f(x)=2^x$ pour tout réel x positif.

La fonction f est appelée fonction exponentielle de base 2.

Propriété:
$$a^{-x} = \frac{1}{a^x}$$

L'ensemble de définition des fonctions exponentielles peut ainsi être étendu aux valeurs de x négatives.

<u>Définition</u>: La fonction $x \mapsto a^x$ définie sur \mathbb{R} , avec a>0, s'appelle fonction exponentielle de base a.

Exemple:

La fonction exponentielle de base 1,2 est définie sur R par $x \longmapsto 1,2^x$

Remarque: Avec la calculatrice, il est possible de calculer des valeurs d'une fonction exponentielle.

1.2 5

2.48832 1.2⁻² .6944444444 1.2^{2.3}

Propriété: La fonction exponentielle de base a est strictement positive sur \mathbb{R} .

2) Propriétés algébriques

<u>Propriétés</u>:

a)
$$a^0 = 1$$
 et $a^1 = a$

b)
$$a^{x+y} = a^x \times a^y$$

c)
$$a^{x-y} = \frac{a^x}{a^y}$$

d)
$$(a^x)^n = a^{nx}$$
, avec n un entier relatif.

 $\underline{\text{M\'ethode}}$: Simplifier une expression

Simplifier les expressions suivantes :

$$A = 4^{-3} \times 4^{-5} B = \frac{3^{3} \times 3^{-2,5}}{9^{5}} C = (4,8^{-2,1})^{3} \times 4,8^{6,2}$$

II. Variations des fonctions exponentielles

1) Sens de variation de $x \rightarrow a^x$:

<u>Propriétés</u>:

0 <a<1< th=""><th colspan="3">a>1</th></a<1<>	a>1		
$x \rightarrow a^x$ est strictement décroissante sur \mathbb{R}	$x \rightarrow a^x$ est strictement croissante sur \mathbb{R}		
	1		
	→		

Remarques:

- Si a=1 alors la fonction exponentielle est constante. En effet, dans ce cas, $a^x=1^x=1$
- Quelle que soit la valeur de a, la fonction exponentielle passe par le point (0 ; 1). En effet, $a^0=1$.

2) Sens de variation de $x \rightarrow ka^x$:

<u>Propriétés</u>: Soient k réel et a réel strictement positif:

- Si k>0 et 0< a<1 alors $f(x)=ka^x$ est strictement décroissante sur $\mathbb R$ et a>1 alors $f(x)=ka^x$ est strictement croissante sur $\mathbb R$
- Si k < 0 et 0 < a < 1 alors $f(x) = ka^x$ est strictement croissante sur \mathbb{R} et a > 1 alors $f(x) = ka^x$ est strictement décroissante sur \mathbb{R}

Méthode: Utiliser une fonction exponentielle

Suite à une infection, le nombre de bactéries contenues dans un organisme en fonction du temps (en heures) peut être modélisé par la fonction f définie sur [0; 10] par $f(x) = 50000 \times 1,15^x$.

- a) À l'aide de la calculatrice, donner un arrondi au millier près du nombre de bactéries après 3h puis 5h30.
- b) Déterminer les variations de f sur [0; 10].
- c) À l'aide de la calculatrice, déterminer au bout de combien de temps le nombre de bactéries a doublé ?

III. Taux d'évolution moyen

Méthode : Calculer un taux d'évolution moyen_

Entre 2012 et 2015, le prix du gaz a augmenté de 25 %. Calculer le taux d'évolution moyen annuel.

On note t le taux d'évolution moyen annuel.

Le coefficient multiplicateur correspondant à une augmentation sur un an est égal à :

$$1 + \frac{t}{100}$$

Le coefficient multiplicateur correspondant à une augmentation sur trois ans (de 2012 à 2015) est égal à :

$$\left(1 + \frac{t}{100}\right) \times \left(1 + \frac{t}{100}\right) \times \left(1 + \frac{t}{100}\right) = \left(1 + \frac{t}{100}\right)^3$$

Or, sur trois années, le prix a augmenté de 25 % donc ce coefficient multiplicateur est également égal à : 1,25.

On a donc :

$$\left(1 + \frac{t}{100}\right)^{3} = 1,25$$

$$1 + \frac{t}{100} = 1,25^{\frac{1}{3}}$$

$$\frac{t}{100} = 1,25^{\frac{1}{3}} - 1$$

$$t = 100 \times \left(1,25^{\frac{1}{3}} - 1\right)$$

$$t \approx 7,72\%$$

Propriété: Si $x^n = a$ alors $x = a^{\frac{1}{n}}$

Le taux d'évolution moyen annuel est environ égal 7,72%.

Remarque : $a^{\frac{1}{n}}$ est appelé la racine n-ième de a.

On peut également noté $\sqrt[n]{a}$.

On a par exemple : Si $x^2=a$ alors $x=\sqrt[2]{a}=\sqrt{a}$!