Index by	Sh
Encoding	Pseud

SIMD&FP **SME SVE Instructions** Instructions **Instructions**

SQDECD (vector)

Base

Instructions

Signed saturating decrement vector by multiple of 64-bit predicate constraint element count

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The results are saturated to the 64-bit signed integer range. The named predicate constraint limits the number of active elements in a single predicate to:

- A fixed number (VL1 to VL256)
- The largest power of two (POW2)
- The largest multiple of three or four (MUL3 or MUL4)
- All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than Undefined Instruction exception.

```
3130292827262524
                                212019181716151413121110 9 8 7 6 5 4 3 2 1 0
                   23
                           22
0 0 0 0 0 1 0 0
                   1
                           1
                               |1 0| imm4 |1 1 0 0|1|0| pattern
                size<1>size<0>
```

```
SQDECD <Zdn>.D{, <pattern>{, MUL #<imm>}}
```

```
if ! <a href="HaveSVE">HaveSME</a>() then UNDEFINED;
constant integer esize = 64;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
```

Assembler Symbols

< 7.dn >

Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern>

Is the optional pattern specifier, defaulting to ALL, encoded in "pattern":

pattern	<pre><pattern></pattern></pre>
00000	POW2
00001	VL1
00010	VL2
00011	VL3
00100	VL4
00101	VL5
00110	VL6
00111	VL7
01000	VL8
01001	VL16
01010	VL32
01011	VL64
01100	VL128
01101	VL256
0111x	#uimm5
101x1	#uimm5
10110	#uimm5
1x0x1	#uimm5
1x010	#uimm5
1xx00	#uimm5
11101	MUL4
11110	MUL3
11111	ALL

<imm>

Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

```
CheckSVEEnabled();
constant integer VL = CurrentVL;
constant integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn, VL];
bits(VL) result;

for e = 0 to elements-1
   integer element1 = Int(Elem[operand1, e, esize], unsigned);
   (Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize,
Z[dn, VL] = result;
```

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction must conform to all of the

following requirements, otherwise the behavior of the ${\tt MOVPRFX}$ and this instruction is unpredictable:

- The MOVPRFX instruction must be unpredicated.
- The MOVPRFX instruction must specify the same destination register as this instruction.
- The destination register must not refer to architectural register state referenced by any other source operand register of this instruction.

Internal version only: is a v33.64, AdvSIMD v29.12, pseudocode no_diffs_2023_09_RC2, sve v2023-06_rel ; Build timestamp: 2023-09-18T17:56

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Sh Pseu