

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

PRÁCTICA 1 - Números reales

1. Sean $a,b,c \in \mathbb{R}$. Utilizando los axiomas de cuerpo, demostrar las siguientes propiedades de los números reales.

-a-
$$-a = (-1) \cdot a$$
.

-b- El número 0 no tiene recíproco, y
$$1^{-1} = 1$$
.

-c-
$$\frac{a}{1} = a$$
; y si $a \neq 0$, $\frac{1}{a} = a^{-1}$.

-d- Si
$$b \neq 0$$
 y $d \neq 0$ entonces:

(i)
$$(b \ d)^{-1} = b^{-1}d^{-1}$$
.

$$(\mathbf{a}) \ \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{b \ d}.$$

$$(\mathbf{a}) \ \frac{a}{b} \cdot \frac{c}{d} = \frac{a}{b} \frac{c}{d}.$$

$$(iii) \frac{a}{b} \cdot \frac{c}{d} = \frac{a}{b} \frac{c}{d}.$$

-e- Si
$$a \neq 0$$
 y $b \neq 0$, entonces $\left(\frac{a}{b}\right)^{-1} = \frac{a^{-1}}{b^{-1}}$.

- -f- Si ab = 0, entonces a = 0 o b = 0.
- 2. Sean $a, b, c, d \in \mathbb{R}$. Utilizando los axiomas de orden, demostrar las siguientes propiedades de los números reales.

-a- Si
$$a < b$$
, entonces $a + c < b + c$.

-b- Si
$$a < b$$
 y $c < d$ entonces $a + c < b + d$.

-c- Si
$$a < b$$
 y $c > 0$, entonces $ac < bc$.

-d- Si
$$a < b$$
 y $c < 0$, entonces $ac > bc$.

-e- Si
$$a \neq 0$$
, entonces $a^2 > 0$ (a^2 indica el producto aa).

-f-
$$1 > 0$$
. Es decir, $1 \in \mathbb{R}^+$.

-g- Si
$$a < b$$
, entonces $-b < -a$.

-h- Si
$$a < 0$$
 entonces $-a > 0$.

-i- ab > 0 si y solo si a y b son los dos positivos o los dos negativos.

-j-
$$a > 0$$
 si y solo si $\frac{1}{a} > 0$.

-k- Si
$$0 < a < b$$
, entonces $0 < \frac{1}{b} < \frac{1}{a}$.

-l- Si ab < 0, entonces o bien a es positivo y b negativo o bien a es negativo y b positivo.

3. Resolver cada una de las siguientes inecuaciones o sistema de inecuaciones. Proporcionar el conjunto solución tanto en forma de intervalo como gráficamente.

(a).
$$4x > 8$$

(i).
$$-19 \le 3x - 5 \le -9$$

(b).
$$6y < 18$$

(k).
$$-16 < 3t + 2 < -11$$

(j).
$$-19 \le 3x - 5 \le -9$$

(k). $-16 < 3t + 2 < -11$
(p).
$$\begin{cases} 5x + \frac{1}{4} \ge 0, \\ 2x - 10 < 0, \\ 7x - 14 \le 0. \end{cases}$$

(c).
$$2m \le -6$$

(I).
$$-4 \le \frac{2x-5}{6} \le 5$$

$$\begin{cases} 2x - 10 & < & 0 \\ 7x - 14 & \le & 0 \end{cases}$$

(d).
$$-r < -7$$

(I).
$$-4 \le \frac{2\pi}{6} \le 5$$

(m). $(x-3)\sqrt{x+1} \ge 0$

(a).
$$\frac{5}{3} + \frac{3}{3} < 0$$

(e).
$$3r + 1 > 16$$

(n).
$$3x < \frac{1+6x}{2} < \frac{9x-8}{3}$$

(q).
$$\frac{5}{x+3} + \frac{3}{x-1} < 0$$

(f).
$$2m - 5 \ge 15$$

(r).
$$\frac{4x-3}{3-x} > 0$$

(g).
$$-3(z-6) > 2z-5$$

(h). $-2(y+4) \le 6y+8$

(i). -3 < x - 5 < 6

(ii).
$$3x < \frac{2}{2} < \frac{3}{3}$$

(iii). $x \le x + 1 \le x + 5$
(iv). $\frac{4x - 3}{3 - x} > 0$
(v). $\frac{4x - 3}{3 - x} > 0$
(v). $\frac{4x - 3}{3 - x} > 0$
(v). $\frac{4x - 3}{3 - x} > 0$

(s).
$$\frac{4-9x}{5x+7} \le 3$$

- 4. -a- ¿A qué distancia está 7 de 4? ¿Y -3 de -19? ¿Y -24 de 49?
 - -b- Encontrar gráfica y analíticamente los puntos que distan al 3 en menos de 2.
 - -c- Encontrar gráfica y analíticamente los puntos que distan al -1 en menos de 4.
 - -d- Encontrar gráfica y analíticamente los puntos que distan al 0 en más de 1.
- 5. Representar en la recta numérica los siguientes conjuntos. Decidir si cada uno está acotado inferior y/o superiormente. Indicar en cada caso (si es posible) el ínfimo, supremo, mínimo y/o máximo.

(a).
$$|x| = 4$$
.

(e).
$$|x+2| \ge 1$$
.

(h).
$$\frac{3}{|3x+1|} \le 2$$
.

(b).
$$|x-1| < 1$$
.

(f).
$$|x-3| < 7$$
.

(c).
$$|x+1| > 1$$
.
(d). $|x-4| < 1$.

(g).
$$|x^2 - 3x - 2| \le 2$$
.

(i).
$$\frac{|5x-5|}{|x+1|} \le 0.$$

6. Dados los siguientes conjuntos.

$$\mathsf{A} = \{1, 2, 3, 4, 5\}$$

$$\mathsf{A} = \{1, 2, 3, 4, 5\} \qquad \qquad \mathsf{D} = \{x \in \mathbb{R} \, / \, x = 2k, \, k \in \mathbb{N}\}\$$

$$\mathsf{G} = \left\{ x \in \mathbb{R} \, / \, x = 1 - \frac{1}{k}, \ k \in \mathbb{N} \right\}$$

$$\mathsf{B} = \{ x \in \mathbb{R} \, / \, -3 \leq x \leq 6 \} \qquad \mathsf{E} = \, \mathbb{Z} - \mathbb{N}$$

$$E = \mathbb{Z} - \mathbb{N}$$

$$H = \mathbb{R} - \mathbb{Z}$$

$$C = [2, 8)$$

$$\mathsf{F} = \, \{0\}$$

$$I = \emptyset$$

- -a- Decidir si cada uno de los conjuntos está acotado, acotado superiormente o acotado inferior-
- En los casos en que los conjuntos están acotados superior y/o inferiormente, determinar el supremo y/o ínfimo;
- Establecer si los supremos e ínfimos obtenidos en el ítem anterior son máximos y mínimos, respectivamente, del conjunto considerado.
- 7. Sea A un conjunto no vacío de números reales. Probar que A está acotado si y sólo si existe un número real positivo L tal que |x| < L para todo $x \in A$.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

- 8. Demostrar que si α y β son dos números reales tales que ambos son mínimo del mismo conjunto A, entonces $\alpha = \beta$.
- 9. Sea A un conjunto no vacío de números reales. Se define el conjunto siguiente

$$-A = \{x \in \mathbb{R} : -x \in A\}.$$

- -a- Siendo A_1 , A_2 y A_3 los conjuntos encontrados en los ejercicios 5(a), 5(b) y 5(c), hallar los conjuntos $-A_1$, $-A_2$ y $-A_3$.
- -b- Mostrar que -A es un conjunto no vacío y que -(-A) = A.
- -c- Hallar las condiciones bajo las cuales se tiene que -A = A.
- -d- Mostrar que si A es un conjunto acotado superiormente (inferiormente) entonces -A es un conjunto acotado inferiormente (superiormente).
- -e- Mostrar que si A posee supremo entonces -A posee ínfimo y se verifica que $\inf(-A) = -\sup(A)$, y análogamente, si A posee ínfimo entonces -A posee supremo y se verifica que $\sup(-A) = -\inf(A)$.
- -f- Utilizar los resultados de los ítems anteriores para mostrar que todo conjunto no vacío de números reales acotado inferiormente posee ínfimo.
- 10. Si A es un conjunto no vacío de números reales y c es un número real, se define el conjunto

$$cA = \{cx : x \in A\}.$$

- -a- Si $A = \{x \in \mathbb{R} : x \ge 2\}$ y B = [-1, 2), determinar 2A y -3B. Analizar las cotas superiores e inferiores de estos conjuntos.
- -b- Conjeturar las relaciones entre $\sup(A)$, $\inf(A)$, $\sup(c|A)$ e $\inf(c|A)$.
- 11. Si A y B son dos conjuntos no vacíos de números reales tales que

$$a \in A \land b \in B \Rightarrow a \leq b$$
.

- -a- Demostrar que el conjunto A es acotado superiormente y el conjunto B es acotado inferiormente.
- -b- ¿Existe alguna relación entre el $\sup(A)$ y el $\inf(B)$? Hacer una conjetura sobre tal relación.
- -c- Demostrar lo conjeturado en el ítem anterior.
- 12. Probar que:
 - -a- si $|x|<\frac{1}{n}$, $\forall n\in\mathbb{N}$ entonces x=0.
 - -b- si $|x|<\varepsilon$, $\forall \varepsilon>0$ entonces x=0.