实验4 系统频域特性测试与分析实验报告

一、实验目的

- 1. 学习测量系统(或环节)频率特性曲线的方法和技能。
- 2. 测量模拟系统的开环频率特性曲线(对数幅频曲线和相频曲线)。

二、实验仪器

- 1. GSMT2014 型直流伺服系统控制平台
- 2. PC 机一台 (MATLAB 平台)

三、实验原理

当输入正弦信号时,线性系统的稳态响应具有随频率而变化的特性。当控制系统的输入信号 是其他形式的周期或非周期函数,可以用傅里叶级数展开成正弦波的叠加,此时系统频率特 性定义为系统输出量的傅氏变换与输入量的傅氏变换之比。

系统(或环节)的频率特性 $G(j\omega)$ 是一个复变量,可以表示成以角频率 ω 为参数的幅值和相角:设被测系统的原理方框图如下图所示:

$$R(s)$$
 $G(s)$ $C(s)$

上述系统的开环频率特性为:

$$G(j\omega) = \frac{C(j\omega)}{R(j\omega)} = \left| \frac{C(j\omega)}{R(j\omega)} \right| \le \frac{C(j\omega)}{R(j\omega)}$$

采用对数幅频和相频表示为:

$$20\lg|G(j\omega)| = 20\lg\left|\frac{C(j\omega)}{R(j\omega)}\right| = 20\lg|C(j\omega)| - 20\lg|R(j\omega)|$$

$$\angle G(j\omega) = \angle\frac{C(j\omega)}{R(j\omega)} = \angle C(j\omega) - \angle R(j\omega)$$

将系统产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输入端R(t),然后分别测量相应的输出信号C(t)和输入信号 R(t)的对数幅值和相位。

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频率确定频率特性(或传递函数)。所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。

本实验为测量直流伺服电机控制系统的频率特性,其系统结构图为:

$$\begin{array}{c|c} R(s) & \hline & 10 \\ \hline & & \\ \hline & & \\ \hline \end{array} \qquad \begin{array}{c|c} \hline 1 \\ \hline 0.12S+1 \\ \hline \end{array}$$

开环增益为:

$$G(s) = \frac{C(s)}{R(s)} = \frac{10}{s} \cdot \frac{1}{0.12s + 1}$$

四、实验数据记录与分析

1、编写代码, 画出系统的开环幅频特性曲线和相频特性曲线。

在幅值曲线上选择幅值为 0dB 的点,得到 ω_c =7.49rad/s 在相频曲线上选择 ω_c 对应的点,得到相角裕度 γ =48°

2、分别读取各频率下 C 的波峰值、波谷值,以及 C 与 R 对应的波峰时间,记录入下表:

	ω	0.5	1	2	3	5	10
С	波峰值	20,952	20,543	20.402	19.930	18769	14.865
	波谷值	-18.594	-18.520	-18.211	-17.809	-17.125	-14.260
R	波峰值	1	1	1	1	1 -	1
	波谷值	-	-1	~1	\-1/	-1	-1

注意: n≥3

波峰 第 n+1 周期 40.897 20.433 12.451 2.11 时间 第 n+2 周期 53.439 26.792 13.465 9.000 5.451 2.7 R 第 n 周期 3.439 16.267 7.088 4.713 2.826 1.45	ω		0.5	1	2	3	5	10
时间 第 n+2 周期 53.439 2679V 13.465 9.000 5.451 2.7 R 第 n 周期 343428×10 16:267 7.088 4.713 2-826 1.45	С	第n周期	28.472	20/4.752	1# 7.20	9 4890	2967	1.515
R 第n周期 3547 26.79 7.088 4.713 2.826 1.4		第 n+1 周期	40.897	20.433	1 da	291 6.965	4.721	2.143
		第 n+2 周期	53.439	26.792	13.465	9.000	124.1	2.775
波峰 第 n+1 周期 2043 20433 1021、 6787 4088 20	R	第n周期	343428.2	01 14:207	7.088	4.713	2.826	1.46
	波峰 时间	第 n+1 周期	40		10-201	6787	4.08	2036
时间 第 n+2 周期 第 n+2 周期 26.703 13.31 8.9 21 よいろう スパ		第 n+2 周期	2	3.45 26.703	13.31₺	8.921	5.335	2.608

3、根据采集的实验数据,计算得出系统的幅值和相位,如下表。

 $\phi(\omega) = \omega(t_1 - t_2) \frac{360}{2\pi}$ ($\phi(\omega)$ 为记录三个周期的平均值),R 为输入幅值,C 为输出幅

其和分

值,
$$L = \frac{C}{R}$$
。

注意:

- (1) $t_1 t_2$ 是输入 R 的波峰时间—输出 C 的波峰时间
- (2) C: (波峰的绝对值+波谷的绝对值)/2
- (3) R: (波峰的绝对值+波谷的绝对值)/2

ω	0.5	1	2	3	5	10
20lgC	25.899	25.815	25.714	25.515	25.080	23.294
20lgR	0	0	0	0	0	0
20lgL	25.899	25.815	25.714	25.515	25.080	23.294
φ(ω)	-5.147	-2.559	-13.827	-24.866	-37.147	-59.779

4、由上表中的 20lgL、Φ绘出开环系统的频率特性曲线。

五、思考

1.传递函数概念适用于什么系统?

传递函数概念适用于单输入单输出的线性定常系统。

2.系统输入正弦信号的幅值能太大吗,能太小吗,应该如何选取?

不能太大,输入正弦信号幅值太大可能会超出量程,也可能导致系统不稳定;也不能太小,输入信号幅值太小会使读数不精确。应使输出信号幅值在量程的80%左右。

3.若需要测量系统内部某个环节或闭环系统的频率特性,如何测量?

在该环节或闭环系统前输入正弦信号,在环节或闭环系统后通过示波器等仪器测量输入信号,

根据 $G(j\omega) = \frac{C(j\omega)}{R(j\omega)} = |G(j\omega)| \angle G(j\omega)$, 计算环节或闭环系统的频率特性。