IS311 Geographical Information Systems

Dr. Waleed M.Ead

Textbooks

- Chang, Kang-Tsung. Introduction to geographic information systems. McGraw-Hill Science/Engineering/Math, 2015.
- Panigrahi, Narayan. Computing in geographic information systems. CRC Press, 2014.
- Practical part
 - □ Qgis

Geography is the Science of Our World

Increasingly Being Seen as a Framework for

Understanding

Patterns

Relationships

Processes

Conceptualizing

Modeling

Visualizing

... Integrating What We Know

Data - Data - Data We've all "got data"

- Location Data
 - -- How Many -- What Kind -- Where
- Scale of Data
 - -- Local to Global
- Data Presentation
 - -- Words, Charts, Graphs, Tables, or Maps

Exploring data using GIS turns <u>data</u> into <u>information</u> into <u>knowledge</u>

How is information normally 'seen'? ... non-spatially?

Alameda 5,943 3,597 60.5% 408.65 Orange 5,743 3,132 54.5% 203.05 Berkeley 557 352 63.2% 508.68 Placer 129 76 58.9% 55.03 0 0.0% 0.00 Plumas 6 4 66.7% 29.48 Amador 38 20 52.6% 110.47 Riverside 4,233 2,115 50.0% 277.96 Butte 199 121 60.8% Sacramento 2,964 1,775 59.9% 245.06 Calaveras 14 8 57.1% 36.36 San Benito 33 15 45.5% 66.27 Colusa 12 12 100.0% 64.00 San Bernardino 2,758 1,516 55.0% 163.26 Contra Costa 2,108 1,350 64.0% 226.67 San Diego 10,643 6,002 56.4% 365.55 Del Norte 11 50.0% 78.57 San Francisco 24,465 16,644 68.0% 3,052.78 El Dorado 150 95 63.3% 98.10 San Joaquin 777 449 57.8% 137.13 resno 1,122 695 61.9% 139.38 San Luis Obispo 462 207 44.8% 188.42 Glenn 10 6 60.0% 36.90 San Mateo 1,858 1,155 62.2% 254.52 lumboldt 191 113 59.2% 149.69 Santa Barbara 657 453 68.9% 158.62 Imperial 110 56 50.9% 75.71 Santa Clara 3,161 1,855 58.7% Inyo 12 7 58.3% 65.93 Santa Cruz 505 293 58.0% 198.04 Kern 1,048 481 45.9% 159.05 Shasta 124 90 72.6% 74.25 Kings 167 1% 127.29 Sierra 4 4 100.0% 127.39 Lake 130 72 55.4% 233.39 Siskiyou 38 19 50.0% 85.97 Lassen 43 18 41.9% 126.66 Solano 51.5% 302.51 Los Angeles 42,379 26,593 62.8% 428.75 Sonoma 1,628 1,021 62.7% 361.70 Long Beach 3,868 2,333 60.3% Stanislaus 545 306 56.1% 123.47 Pasadena 651 423 65.0% 452.40 Sutter 57 38 66.7% 73.17 Madera 97 51 52.6% 82.84 Tehama 26 11 42.3% 46.26 Marin 1,475 807 54.7% 590.71 Trinity 12 9 75.0% 91.95 Mariposa 12 4 33.3% 74.30 Tulare 249 165 66.3% 67.66 Mendocino 172 112 65.1% 196.35 Tuolumne 59 34 57.6% 111.32 Merced 135 87 64.4% 64.26 Ventura 816 490 60.0% 107.87 Modoc 1 1 100.0% 10.20 Yolo 168 98 58.3% 103.13 Mono 3 3 100.0% 27.52 Yuba 55 36 65.5% 90.61 Monterey 772 438 56.7% 193.34 Unknown 10 6 60.0% Napa 196 127 64.8% 154.33 Nevada 123 64 52.0% 135.02 TOTAL 120,076 73,651 61.3% 349.70 Alameda 5,943 3,597 60.5% 408.65 Orange 5,743 3,132 54.5% 203.05 Berkeley 557 352 63.2% 508.68 Placer 129 76 58.9% 55.03 Alpine 0 0 0.0% 0.00 Plumas 6 4 66.7% 29.48 Amador 38 20 52.6% 110.47 Riverside 4,233 2,115 50.0% 277.96 Butte 199 121 60.8% 97.55 Sacramento 2,964 1,775 59.9% 245.06 Calaveras 14 8 57.1% 36.36 San Benito 33 15 45.5% 66.27 Colusa 12 12 100.0% 64.00 San Bernardino 2,758 1,516 55.0% 163.26 Contra Costa 2,108 1,350 64.0% 226.67 San Diego 10,643 6,002 56.4% 365.55 Del Norte 22 11 50.0% 78.57 San Francisco 24,465 16,644 68.0% 3,052.78 E1 Dorado 150 95 63.3% 98.10 San Joaquin 777 449 57.8% 137.13 Fresno 1,122 695 61.9% 139.38 San Obispo 462 207 44.8% 188.42 Glenn 10 6 60.0% 36.90 San Mateo 1,858 1,155 62.2% 254.52 Humboldt 191 113 59.2% 149.69 Barbara 657 453 68.9% 158.62 Imperial 110 56 50.9% 75.71 Santa Clara 3,161 1,855 58.7% 182.01 Inyo 12 7 58.3% 65.93 Santa Cruz 505 293 58.0% 198.04 Kern 1,048 481 45.9% 159.05 Shasta 124 90 72.6% 74.25 Kings 167 62 37.1% 127.29 Sierra 4 4 100.0% 127.39 Lake 130 72 55.4% 233.39 Siskiyou 38 19 50.0% 85.97 Lassen 43 18 41.9% 126.66 Solano 1,207 622 51.5% 302.51 Los Angeles 42,379 26,593 62.8% 428.75 Sonoma 1,628 1,021 62.7% 361.70 Long Beach 3,868 2,333 60.3% 845.28 Stanislaus 545 306 Alameda 5,943 3,597 60.5% 408.65 Orange 5,743 3,132 54.5% 203.05 Berkeley 557 352 63.2% 508.68 Placer 129 76 58.9% 55.03 Alpine 0 0 0.0% 0.00 Plumas 6 4 66.7% 29.48 Amador 38 20 52.6% 110.47 Riverside 4,233 2,115 50.0% 277.96 Butte 199 121 60.8% 7.55 Sacramento 2,964 1,775 59.9% 245.06 Calaveras 14 8 57.1% 36.36 San Benito 33 15 45.5% 66.27 Colusa 12 12 100.0% 64.00 San Bernardino 2,758 1,516 55.0% 163.26 Contra Costa 2,108 1,350 64.0% 226.67 San Diego 10,643 6,002 56.4% 365.55 Del Norte 11 50.0% 78.57 San Francisco 24,465 16,644 68.0% 3,052.78 El Dorado 150 95 63.3% 98.10 San Joaquin 777 449 57.8% 137.13 1,122 695 61.9% 139.38 San Luis Obispo 462 207 44.8% 188.42 Glenn 10 6 60.0% 36.90 San Mateo 1,858 1,155 62.2% 254.52 191 113 59.2% 149.69 Santa Barbara 657 453 68.9% 158.62 Imperial 110 56 50.9% 75.71 Santa Clara 3,161 1,855 58.7% Invo 12 7 58.3% 65.93 Santa Cruz 505 293 58.0% 198.04 Kern 1.048 481 45.9% 159.05 Shasta 124 90 72.6% 74.25 Kings 167 127.29 Sierra 4 4 100.0% 127.39 Lake 130 72 55.4% 233.39 Siskiyou 38 19 50.0% 85.97 Lassen 43 18 41.9% 126.66 Solano 51.5% 302.51 Los Angeles 42,379 26,593 62.8% 428.75 Sonoma 1,628 1,021 62.7% 361.70 Long Beach 3,868 2,333 60.3% 845.28 Stanislaus 545 306 56.1% 123.47 Pasadena 651 423 65.0% 452.40 Sutter 57 38 66.7% 73.17 Madera 97 51 52.6% 82.84 Tehama 26 11 42.3% 46.26 Marin 1,475 807 54.7% 590.71 Trinity 12 9 75.0% 91.95 Mariposa 12 4 33.3% 74.30 Tulare 249 165 66.3% 67.66 Mendocino 172 112 65.1% 196.35 Tuolumne 59 34 57.6% 111.32 Merced 135 87 64.4% 64.26 Ventura 816 490 60.0% 107.87 Modoc 1 1 100.0% 10.20 Yolo 168 98 58.3% 103.13 Mono 3 3 100.0% 27.52 Yuba 55 36 65.5% 90.61 Monterey 772 438 56.7% 193.34 Unknown 10 6 60.0% Napa 196 127 64.8% 154.33 Nevada 123 64 52.0% 135.02 TOTAL 120,076 73,651 61.3% 349.70 Alameda 5,943 3,597 60.5% 408.65 Orange 5,743 3,132 54.5% 203.05 Berkeley 557 352 63.2% 508.68 Placer 129 76 58.9% 55.03 Alpine 0 0 0.0% 0.00 Plumas 6 4 66.7% 29.48 Amador 38 20 52.6% 110.47 Riverside 4,233 2,115 50.0% 277.96 Butte 199 121 60.8% 97.55 Sacramento 2,964 1,775 59.9% 245.06 Calaveras 14 8 57.1% 36.36 San Benito 33 15 45.5% 66.27 Colusa 12 12 100.0% 64.00 San Bernardino 2,758 1,516 55.0% 163.26 Contra Costa 2,108 1,350 64.0% 226.67 San Diego 10,643 6,002 56.4% 365.55 Del Norte 22 11 50.0% 78.57 San Francisco 24,465 16,644 68.0% 3,052.78 El Dorado 150 95 63.3% 98.10 San Joaquin 777 449 57.8% 137.13 Fresno 1,122 695 61.9% 139.38 San uis Obispo 462 207 44.8% 188.42 Glenn 10 6 60.0% 36.90 San Mateo 1,858 1,155 62.2% 254.52 Humboldt 191 113 59.2% 149.69.

What is GIS?

- A method to visualize, manipulate, analyze, and display spatial data
- "Smart Maps" linking a database to a map

GIS: a formal definition

"A system for capturing, storing, checking, integrating, manipulating, analysing and displaying data which are spatially referenced to the Earth. This is normally considered to involve a spatially referenced computer database and appropriate applications software" Chorley Report, 1987

- What distinguishes GIS from other information systems?
- GIS handles SPATIAL information
 - □ Information referenced by its location in space
- GIS integrates spatial* and other kinds of information within one system: it offers a consistent framework for analysing space
- GIS makes connections between activities based on spatial proximity
- GIS provides the mechanisms for undertaking the manipulation and display of geographic knowledge

Historical Background

- GIS Concept is not new?
 - □ John Snow
- Canadian Efforts
 - □ Roger Tomlinson
- American Efforts
 - ☐ Harvard Laboratory for Computer Graphics and Spatial Analysis
 - ☐ Howard Fisher(1963)
 - □ USA Census
 - □ ESRI
- Sciences
 - Digital cartography and CAD
 - □ Data Base Management Systems

CAD Syst	em

GIS components

Computer hardware / software tools

Specific applications / decision making objectives

Why it is important?

- Helps us to distinguish one place from another & to make decisions for one place appropriate for that location
- Apply general principles to specific conditions of each location
- Allows us to track what's happening at any place
- Helps us to understand how one place differs from another

GIS Method

Traditional Method –

LayerN

F()=Layer1+Layer2+ ... +

Report

Hardware/software functions:

Acquisition & verification Compilation Storage Updating & changing

Management & exchange Manipulation Retrieval & presentation Analysis & combination

Components

Input

Management & Analytical Modules

Output

Data Acquisition

- Geodetic Positioning
- Remote Sensing
- Field Sampling

Analog Data Conversion

- Scan
- Digitize

Management

- Data Storage
- Data Retrieval, Expand

Edit, and Update

- Query

Analytical Modules

- Data Conversion
- Data Manipulation
- Modeling

Data Output

- Visual Presentation
- Analog Map Output
- Reports

The Field of GIS Involves Many:

- Disciplines
- Applications
- Data
- Users

GIS Overlap

GIS Overlap

- Image processing
 - □ Wide range of operations on images captured by video cameras, still cameras, & satellites
 - □ Extraction of information from images
 - □ GIS is analysis of that information
- CAD (computer-assisted drafting)
 - □ Emphasizes design over analysis
 - □ Produce graphic images, not normally tied to external descriptive data files
 - □ Often lacks analytical capabilities of a GIS

- CAC (computer-assisted cartography)
 - Computer system designed to create maps from graphical objects combined with descriptive attributes
 - Purely mapping purposes developed specifically for input, design & output of mappable data
 - Excellent display, but lacks analytical capabilities of a GIS

Many Views of GIS

- Planning system to aid the design of road systems, excavations, or forest harvest operation
- Electronic navigation system for land or sea transport – uses GPS (global positioning system)
- Market analysis determine amount of market within reasonable reach of business (allocation) or analyze existing facilities to determine where best to place a competing or complementary facility (location)

GIS Designated by Applications

- LIS Land Information System
 - Manage land records
- UIS Urban Information System
- NRIS Natural Resources Information System
- AM/FM Automatic Mapping/Facility Management

Socioeconomic Challenges

- Our complex society
- Operation & maintenance
- Environmental & resource management
- Planning & development
- Management & public services
- Safety at sea
- Land transportation
- Military use and Privacy Protection

Why GIS Is *Hot* Application Area for Digital Technology

- About a 20% growth each year in the software industry
- \$500 M total annual sales of GIS software

100

GIS Applications

- Facilities management
- Marketing and retailing
- Environmental
- Transport/vehicle routing
- Health
- Insurance
- and many more . . .

http://grindgis.com/blog/gis-applications-uses#prettyPhoto

<u>Urban Planning, Management & Policy</u>

- Zoning, subdivision planning
- Land acquisition
- Economic development
- Code enforcement
- Housing renovation programs
- Emergency response
- Crime analysis
- Tax assessment

м

Applications

Environmental Science

- Monitoring environmental risk
- Modeling storm water runoff
- Management of watersheds, floodplains, wetlands, forests, aquifers
- Environmental Impact Analysis
- Hazardous or toxic facility siting
- Groundwater modeling and contamination tracking

Political Science

- Redistricting
- Analysis of election results
- Predictive modeling

Civil Engineering/Utility

- Locating underground facilities
- Designing alignment for freeways, transit
- Coordination of infrastructure maintenance

<u>Business</u>

- Demographic Analysis
- Market Penetration/ Share Analysis
- Site Selection

Real Estate

- Neighborhood land prices
- Traffic Impact Analysis
- Determination of Highest and Best Use

Health Care

- Epidemiology
- Needs Analysis
- Service Inventory

100

Applications

Agriculture

- Farm management
- Pest/Disease tracking
- Crop monitoring
- Yield prediction
- Soil analysis (please Visit: http://solim.geography.wisc.edu/

.

Applications

Natural Recourses Management

- Forestry
- Ecology
- Mining
- Petroleum
- Water Resources

Planning and Economic Development

- Land Use/Zoning
- Emergency Preparedness
- Population Forecast
- Market Analysis
- Property Tax Assessment
- Transportation

Week3,Lec3

GIS Tasks

- Input
- Manipulation
- Management
- Query and Analysis
- Visualization

Input

- Before geographic data can be used in a GIS, the data must be converted into a suitable digital format.
- The process of converting data from paper maps into computer files is called <u>digitizing</u>.

Input

- Modern GIS technology can automate this process fully for large projects using scanning technology; smaller jobs may require some manual digitizing (using a digitizing table).
- Today many types of geographic data already exist in GIS-compatible formats.
- These data can be obtained from data suppliers and loaded directly into a GIS.

Manipulation

- It is likely that data types required for a particular GIS project will need to be transformed or manipulated in some way to make them compatible with your system.
- For example, geographic information is available at different scales (detailed street centerline files; less detailed census boundaries; and postal codes at a regional level).

Manipulation

- Before this information can be integrated, it must be transformed to the same scale (degree of detail or accuracy).
- This could be a temporary transformation for display purposes or a permanent one required for analysis.
- GIS technology offers many tools for manipulating spatial data and for weeding out unnecessary data.

Management

- For small GIS projects it may be sufficient to store geographic information as simple files.
- However, when data volumes become large and the number of data users becomes more than a few, it is often best to use a database management system (DBMS) to help store, organize, and manage data.
- A DBMS is nothing more than computer software for managing a database.

Query and Analysis

- Once you have a functioning GIS containing your geographic information, you can begin to ask simple questions such as:
 - Who owns the land parcel on the corner?
 - How far is it between two places?
 - Where is land zoned for industrial use?

Query and Analysis

- Analytical questions such as:
 - Where are all the sites suitable for building new houses?
 - What is the dominant soil type for oak forest?
 - If I build a new highway here, how will traffic be affected?

Visualization

- For many types of geographic operation the end result is best visualized as a map or graph.
- Maps are very efficient at storing and communicating geographic information.

Visualization

- While cartographers have created maps for millennia, GIS provides new and exciting tools to extend the art and science of cartography.
- Map displays can be integrated with reports, threedimensional views, photographic images, and other output such as multimedia.

What Map Data Do I Need?

- If you are unfamiliar with map data, think first about how you want to use map data.
- Many project needs are met with the following common map data types.

Base Map

Include streets and highways; boundaries for census, postal, and political areas; rivers and lakes; parks and landmarks; place names; and raster maps.

Business Map and Data

Include data related to census/demography, consumer products, financial services, health care, real estate, telecommunications, emergency preparedness, crime, advertising, business establishments, and transportation.

Environmental Map and Data

Include data related to the environment, weather, environmental risk, satellite imagery, topography, and natural resources.

General Reference Maps

World and country maps and data that can be a foundation for your database.

Desktop Mapping

- A desktop mapping system uses the map metaphor to organize data and user interaction.
- The focus of such systems is the creation of maps: the map is the database.
- Most desktop mapping systems have more limited data management, spatial analysis, and customization capabilities.
- Desktop mapping systems operate on desktop computers such as PCs and Macintoshes.

CAD

- CAD systems evolved to create designs and plans of buildings and infrastructure.
- These systems require few rules to specify how components can be assembled and very limited analytical capabilities.
- CAD systems have been extended to support maps but typically have limited utility for managing and analyzing large geographic databases.

Remote Sensing and GPS

- Remote sensing is the art and science of making measurements of the earth using sensors such as cameras carried on airplanes, GPS receivers, or other devices.
- These sensors collect data in the form of images and provide specialized capabilities for manipulating, analyzing, and visualizing those images.
- Lacking strong geographic data management and analytical operations, they cannot be called true GISs.

DBMS

- Database management systems specialize in the storage and management of all types of data including geographic data.
- DBMSs are optimized to store and retrieve data and many GISs rely on them for this purpose.
- They do not have the analytic and visualization tools common to GIS.

