La table de vérité

Pour prouver qu'une formule est satisfaisable ou non, qu'une formule est valide ou non, qu'un ensemble est consistent ou non,... etc.

La table de vérité

Pour prouver qu'une formule est satisfaisable ou non, qu'une formule est valide ou non, qu'un ensemble est consistent ou non,... etc.

Inconvénients

Bien qu'il soit possible d'énumérer toutes les valuations pour établir une tables de vérité, la méthode est coûteuse en espace et en temps :

• n variables dans les formules $\implies 2^n$ lignes.

La table de vérité

Pour prouver qu'une formule est satisfaisable ou non, qu'une formule est valide ou non, qu'un ensemble est consistent ou non,... etc.

Inconvénients

Bien qu'il soit possible d'énumérer toutes les valuations pour établir une tables de vérité, la méthode est coûteuse en espace et en temps :

- n variables dans les formules \implies 2^n lignes.
- formules complexes \Longrightarrow un grand nombre de colonnes.

Une preuve courte est préférable à une longue liste de valuations.

Une preuve courte est préférable à une longue liste de valuations.

Comment prouver

- La satisfisabilité d'une formule
- La validité d'une formule
- La compatibilité d'un ensemble de formules
- Une formule est conséquence d'un ensemble de formules

\bigcirc Solution!

Une preuve courte est préférable à une longue liste de valuations.

? Comment prouver

- La satisfisabilité d'une formule
- La validité d'une formule
- La compatibilité d'un ensemble de formules
- Une formule est conséquence d'un ensemble de formules

Tableaux sémantiques

Algorithme pour établir la satisfaisabilité/validité de formules de la logique propositionnelle.

Algorithme pour établir la satisfaisabilité/validité de formules de la logique propositionnelle.

-`@`-Le principe est très simple :

Pour prouver la satisfaisabilité d'une formule de la logique propositionnelle, on cherche systématiquement un modèle pour cette formule :

On suppose que φ est Vrai est on cherche un modèle v

Rappel:

Une formule propositionnelle φ est un littéral si et seulement si

• elle est une proposition ou la négation d'une proposition.

Deux formules φ et $\neg \varphi$ sont des formules *complémentaires*.

Exemple 1 : $\varphi = a \wedge (\neg b \vee \neg a)$

Exemple 1 :
$$\varphi = a \land (\neg b \lor \neg a)$$

 $\{a \land (\neg b \lor \neg a)\}$

Exemple 1 :
$$\varphi = a \land (\neg b \lor \neg a)$$

 $\{a \land (\neg b \lor \neg a)\}$
 \downarrow
 $\{a \ , \neg b \lor \neg a\}$

Exemple 1:
$$\varphi = a \land (\neg b \lor \neg a)$$

 $\{a \land (\neg b \lor \neg a)\}$
 $\{a , \neg b \lor \neg a\}$
 $\{a , \neg b\}$

Exemple 1 :
$$\varphi = a \land (\neg b \lor \neg a)$$

$$\{a \land (\neg b \lor \neg a)\}$$

$$\{a , \neg b \lor \neg a\}$$

$$\{a , \neg b\}$$

$$\{a , \neg a\}$$

Exemple 1:
$$\varphi = a \land (\neg b \lor \neg a)$$

$$\{a \land (\neg b \lor \neg a)\}$$

$$\{a , \neg b \lor \neg a\}$$

$$\{a , \neg b\}$$

$$\{a , \neg a\}$$

$$v(a) = 1 , v(b) = 0$$

Exemple 1:
$$\varphi = a \land (\neg b \lor \neg a)$$

$$\{a \land (\neg b \lor \neg a)\}$$

$$\{a , \neg b \lor \neg a\}$$

$$\{a , \neg b\}$$

$$\{a , \neg a\}$$

$$v(a) = 1 , v(b) = 0$$

Donc, $a \wedge (\neg b \vee \neg a)$ est satisfaisable

Preuve de satisfaisabilité :

Le problème de preuve de satisfaisabilité de φ a été réduit à un problème de satisfaisabilité d'un ensemble de littéraux.

Preuve de satisfaisabilité :

Le problème de preuve de satisfaisabilité de φ a été réduit à un problème de satisfaisabilité d'un ensemble de littéraux.

Définiton :

Un ensemble de littéraux est satisfaisable ssi il ne contient pas deux littéraux complémentaires.

Par exemple:

$$\{p , \neg q\} \qquad \{p , \neg p\}$$

Preuve de satisfaisabilité :

Le problème de preuve de satisfaisabilité de φ a été réduit à un problème de satisfaisabilité d'un ensemble de littéraux.

Définiton :

Un ensemble de littéraux est satisfaisable ssi il ne contient pas deux littéraux complémentaires.

Par exemple:

$$\{p, \neg q\} \qquad \{p, \neg p\}$$

Exemple 2: $\varphi = (a \lor b) \land (\neg a \land \neg b)$

Exemple 2:
$$\varphi = (a \lor b) \land (\neg a \land \neg b)$$

 $\{(a \lor b) \land (\neg a \land \neg b)\}$

Exemple 2:
$$\varphi = (a \lor b) \land (\neg a \land \neg b)$$

 $\{(a \lor b) \land (\neg a \land \neg b)\}$
 \downarrow
 $\{a \lor b, \neg a \land \neg b\}$

Exemple 2 :
$$\varphi = (a \lor b) \land (\neg a \land \neg b)$$

 $\{(a \lor b) \land (\neg a \land \neg b)\}$
 \downarrow
 $\{a \lor b , \neg a \land \neg b\}$
 \downarrow
 $\{a \lor b , \neg a , \neg b\}$

Exemple 2:
$$\varphi = (a \lor b) \land (\neg a \land \neg b)$$

$$\{(a \lor b) \land (\neg a \land \neg b)\}$$

$$\{a \lor b, \neg a \land \neg b\}$$

$$\{a \lor b, \neg a, \neg b\}$$

$$\{a, \neg a, \neg b\}$$

Exemple 2:
$$\varphi = (a \lor b) \land (\neg a \land \neg b)$$

$$\{(a \lor b) \land (\neg a \land \neg b)\}$$

$$\downarrow$$

$$\{a \lor b, \neg a \land \neg b\}$$

$$\downarrow$$

$$\{a \lor b, \neg a, \neg b\}$$

$$\{a, \neg a, \neg b\}$$

Exemple 2:
$$\varphi = (a \lor b) \land (\neg a \land \neg b)$$

$$\{(a \lor b) \land (\neg a \land \neg b)\}$$

$$\downarrow$$

$$\{a \lor b, \neg a \land \neg b\}$$

$$\downarrow$$

$$\{a \lor b, \neg a, \neg b\}$$

$$\{a, \neg a, \neg b\}$$

Donc, $\varphi = (a \lor b) \land (\neg a \land \neg b)$ est non satisfaisable

Exemple 3 : $\varphi = (a \lor (b \land c))$

Exemple 3 :
$$\varphi = (a \lor (b \land c))$$

$$\{(a \lor (b \land c))\}$$

$$\{a\}$$

Exemple 3 :
$$\varphi = (a \lor (b \land c))$$

$$\{(a \lor (b \land c))\}$$

$$\{a\}$$

$$\{b \land c\}$$

Exemple 3 :
$$\varphi = (a \lor (b \land c))$$
 { $(a \lor (b \land c))$ } { $b \land c$ }

Exemple 4 : $\varphi = ((a \land b) \Rightarrow c)$

Exemple 4 :
$$\varphi = ((a \land b) \Rightarrow c)$$
 $\{\varphi = ((a \land b) \Rightarrow c)\}$ $\{\neg(a \land b)\}$

Exemple 4 :
$$\varphi = ((a \land b) \Rightarrow c)$$
 $\{\varphi = ((a \land b) \Rightarrow c)\}$ $\{\neg(a \land b)\}$

Exemple 4 :
$$\varphi = ((a \land b) \Rightarrow c)$$
 $\{\varphi = ((a \land b) \Rightarrow c)\}$ $\{\neg(a \land b)\}$

Exemple 4 :
$$\varphi = ((a \land b) \Rightarrow c)$$
 $\{\varphi = ((a \land b) \Rightarrow c)\}$ $\{\neg(a \land b)\}$ $\{c\}$

Exemple 4:
$$\varphi = ((a \land b) \Rightarrow c)$$
 $\{\varphi = ((a \land b) \Rightarrow c)\}$ $\{c\}$ $\{\neg a\}$ $\{\neg b\}$ $\{c\}$ $v_1 : 0 \ 0 \ 1 \ v_2 : 0 \ 1 \ 1 \ v_3 : 1 \ 0 \ 1 \ v_4 : 1 \ 1 \ 1$

a	b	\mathbf{c}
0	0	0
0	0	1
0	1	0
0	1	1
	0 0 0	0 0 0 0 0 1

Quand on sélectionne une conjonction, on a une seule branche. On appelle ce type de règles, les $\alpha\text{-}r\`{e}gles$

Quand on sélectionne une disjonction, on a une deux branche. On appelle ce type de règles, les $\beta\text{-}r\`{e}gles$

$\{\alpha\}$	$\{\alpha_1, \alpha_2\}$
$\{\neg\neg\varphi\}$	$\{arphi\}$

$\{\alpha\}$	$\{\alpha_1, \alpha_2\}$
$\{\neg\neg\varphi\}$	$\{arphi\}$
$\{\varphi_1 \wedge \varphi_2\}$	$\{\varphi_1, \varphi_2\}$

$\{\alpha\}$	$\{\alpha_1, \alpha_2\}$
$\{\neg\neg\varphi\}$	$\{arphi\}$
$\{\varphi_1 \wedge \varphi_2\}$	$\{\varphi_1, \varphi_2\}$
$\{\neg(\varphi_1\vee\varphi_2)\}$	$\{\neg\varphi_1\ ,\neg\varphi_2\}$

$\{\alpha\}$	$\{\alpha_1, \alpha_2\}$
$\{\neg\neg\varphi\}$	$\{arphi\}$
$\{\varphi_1 \wedge \varphi_2\}$	$\{\varphi_1, \varphi_2\}$
$\{\neg(\varphi_1\vee\varphi_2)\}$	$\{\neg \varphi_1 \ , \ \neg \varphi_2\}$
$\{\neg(\varphi_1\Rightarrow\varphi_2)\}$	$\{\varphi_1, \neg \varphi_2\}$

$\{\alpha\}$	$\{\alpha_1, \alpha_2\}$
$\{\neg\neg\varphi\}$	$\{arphi\}$
$\{\varphi_1 \wedge \varphi_2\}$	$\{\varphi_1\;,\varphi_2\}$
$\{\neg(\varphi_1\vee\varphi_2)\}$	$\{\neg\varphi_1\ ,\neg\varphi_2\}$
$\{\neg(\varphi_1\Rightarrow\varphi_2)\}$	$\{\varphi_1, \neg \varphi_2\}$
$\{\varphi_1 \Leftrightarrow \varphi_2\}$	$\{\varphi_1 \Rightarrow \varphi_2 , \varphi_2 \Rightarrow \varphi_1\}$

$\{\alpha\}$	$\{\alpha_1, \alpha_2\}$
$\{\neg\neg\varphi\}$	$\{arphi\}$
$\{\varphi_1 \wedge \varphi_2\}$	$\{\varphi_1, \varphi_2\}$
$\{\neg(\varphi_1\vee\varphi_2)\}$	$\{\neg \varphi_1 , \neg \varphi_2\}$
$\{\neg(\varphi_1\Rightarrow\varphi_2)\}$	$\{\varphi_1, \neg \varphi_2\}$
$\{\varphi_1 \Leftrightarrow \varphi_2\}$	$ \{ \varphi_1 \Rightarrow \varphi_2 , \varphi_2 \Rightarrow \varphi_1 \} $

Table : α -règles

Remarque:

Toutes les formules α peuvent être considérées comme équivalentes à des conjonctions.

Par exemple : $\neg(\varphi_1 \lor \varphi_2)$ est équivalente à $\neg\varphi_1 \land \neg\varphi_2$

$\{\beta\}$	$\{\beta_1\}$, $\{\beta_2\}$
$\{\varphi_1 \vee \varphi_2\}$	$\{\varphi_1\}\;,\{\varphi_2\}$

$\{\beta\}$	$\{\beta_1\}$, $\{\beta_2\}$
$\{\varphi_1 \vee \varphi_2\}$	$\{arphi_1\}\;,\{arphi_2\}$
$\{\neg(\varphi_1 \land \varphi_2)\}$	$\{\neg \varphi_1\}$, $\{\neg \varphi_2\}$

$\{\beta\}$	$\{\beta_1\}$, $\{\beta_2\}$
$\{\varphi_1 \vee \varphi_2\}$	$\{arphi_1\}\;,\{arphi_2\}$
$\{\neg(\varphi_1 \land \varphi_2)\}$	$\{\neg \varphi_1\}$, $\{\neg \varphi_2\}$
$\{\varphi_1 \Rightarrow \varphi_2\}$	$\{\neg \varphi_1\}$, $\{\varphi_2\}$

$\{\beta\}$	$\{\beta_1\}$, $\{\beta_2\}$
$\{\varphi_1 \vee \varphi_2\}$	$\{arphi_1\}\;,\{arphi_2\}$
$\{\neg(\varphi_1 \land \varphi_2)\}$	$\{\neg \varphi_1\} \ , \ \{\neg \varphi_2\}$
$\{\varphi_1 \Rightarrow \varphi_2\}$	$\{\neg \varphi_1\}$, $\{\varphi_2\}$
$\{\neg(\varphi_1 \Leftrightarrow \varphi_2)\}$	$\{\neg(\varphi_1\Rightarrow\varphi_2)\}\ , \{\neg(\varphi_2\Rightarrow\varphi_1)\}$

$\{\beta\}$	$\{\beta_1\}$, $\{\beta_2\}$
$\{\varphi_1 \vee \varphi_2\}$	$\{\varphi_1\}$, $\{\varphi_2\}$
$\{\neg(\varphi_1 \land \varphi_2)\}$	$\{\neg \varphi_1\}$, $\{\neg \varphi_2\}$
$\{\varphi_1 \Rightarrow \varphi_2\}$	$\{\neg \varphi_1\}$, $\{\varphi_2\}$
$\{\neg(\varphi_1 \Leftrightarrow \varphi_2)\}$	$\{\neg(\varphi_1\Rightarrow\varphi_2)\}\ , \{\neg(\varphi_2\Rightarrow\varphi_1)\}$

Table : β -règles

Remarque:

Toutes les formules β peuvent être considérées comme équivalentes à des disjonctions. Par exemple : $\neg(\varphi_1 \land \varphi_2)$ est équivalente à $\neg\varphi_1 \lor \neg\varphi_2$

- Un arbre représentant le tableau sémantique d'une formule φ sera noté par T_{φ} .
- \bullet l, m, n représentent des nœuds d'un arbre.
- Lab(l) dénote l'étiquette du nœud l, c'est un ensemble de formules.
- Status(l) est le statut du nœud l:
 - — pour tout nœud qui n'est pas une feuille, et
 - $Status(l) \in \{ouvert, ferm\'e\}$ si l est une feuille.
- \bullet *R* dénote un ensemble de nœuds.


```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```

```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R:
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R:
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l):
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                               4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                               4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                               4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\}:
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```



```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                  Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\}:
                                                                              4日 > 4周 > 4 至 > 4 至 >
```

```
R \leftarrow \{l\}:
Lab(l) \leftarrow \{\varphi\};
tant que R \neq \emptyset faire
      Choisir l \in R;
      si Lab(l) est un ensemble de littéraux alors
             si Lab(l) contient une paire de littéraux complémentaires alors
                   Status(l) \leftarrow ferm\acute{e}
             sinon
              Status(l) \leftarrow ouvert
            R \leftarrow R \setminus \{l\};
      sinon
             Choisir \psi \in Lab(l);
             si \psi est une \alpha-formule alors
                   Créer un fils du noeud l, soit m;
                  R \leftarrow (R \setminus \{l\}) \cup \{m\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\alpha_1, \alpha_2\};
            si \psi est une \beta-formule alors
                   Créer deux fils du noeud l, soit m et n;
                   R \leftarrow (R \setminus \{l\}) \cup \{m, n\};
                   Lab(m) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_1\};
                   Lab(n) \leftarrow (Lab(l) \setminus \{\psi\}) \cup \{\beta_2\};
                                                                              4日 > 4周 > 4 至 > 4 至 >
```


-Notations:

• Un tableau dont la construction est terminée est appelé un *tableau complet*.

Notations:

- Un tableau dont la construction est terminée est appelé un tableau complet.
- Un tableau fermé est un tableau complet dont toutes les feuilles sont étiquettées avec fermé.

Notations:

- Un tableau dont la construction est terminée est appelé un tableau complet.
- Un tableau fermé est un tableau complet dont toutes les feuilles sont étiquettées avec fermé.

- Un tableau dont la construction est terminée est appelé un *tableau complet*.
- Un tableau **fermé** est un tableau complet dont toutes les feuilles sont étiquettées avec fermé. C'est un tableau **ouvert** sinon.

Si T_φ est le tableau complet de la formule φ :

 $\bullet \ \varphi$ est non satisfaisable $ssi \ T_{\varphi}$ est fermé.

Si T_{φ} est le tableau complet de la formule φ :

- φ est non satisfaisable $ssi~T_{\varphi}$ est fermé.
- $\bullet \varphi$ est satisfaisable ssi

Si T_{φ} est le tableau complet de la formule φ :

- φ est non satisfaisable $ssi~T_{\varphi}$ est fermé.
- $\bullet \varphi$ est satisfaisable ssi

PDéfinition

Si T_{φ} est le tableau complet de la formule φ :

- φ est non satisfaisable $ssi~T_{\varphi}$ est fermé.
- φ est satisfaisable $ssiT_{\varphi}$ est ouvert.
- φ est valide ssi

? Question:

Si toutes les feuilles de T_{φ} sont ouvertes, est-ce que cela signifie de φ est valide?

PDéfinition

Si T_{φ} est le tableau complet de la formule φ :

- φ est non satisfaisable $ssi~T_{\varphi}$ est fermé.
- φ est satisfaisable $ssiT_{\varphi}$ est ouvert.
- φ est valide ssi

? Question:

Si toutes les feuilles de T_{φ} sont ouvertes, est-ce que cela signifie de φ est valide?

PDéfinition

Si T_{φ} est le tableau complet de la formule φ :

- φ est non satisfaisable $ssi~T_{\varphi}$ est fermé.
- φ est satisfaisable $ssiT_{\varphi}$ est ouvert.
- φ est valide ssi $T_{\neg \varphi}$ est fermé.

PDéfinition

Si T_{φ} est le tableau complet de la formule φ :

- φ est non satisfaisable $ssi~T_{\varphi}$ est fermé.
- φ est satisfaisable $ssiT_{\varphi}$ est ouvert.
- φ est valide ssi $T_{\neg \varphi}$ est fermé.

? Question:

Si toutes les feuilles de T_{φ} sont ouvertes, est-ce que cela signifie de φ est valide?

Rappel

• La formule φ est est valide $ssi \neg \varphi$ est non satisfaisable.

Rappel

• La formule φ est est valide $ssi \neg \varphi$ est non satisfaisable.

• Prouver que φ est valide revient à prouver que $\neg \varphi$ est non satisfaisable.

Rappel

• La formule φ est est valide $ssi \neg \varphi$ est non satisfaisable.

• Prouver que φ est valide revient à prouver que $\neg \varphi$ est non satisfaisable.

Rappel

- La formule φ est est valide $ssi \neg \varphi$ est non satisfaisable.
- Prouver que φ est valide revient à prouver que $\neg \varphi$ est non satisfaisable.

? Validité

$$\bullet \psi = \neg \varphi$$

Rappel

- La formule φ est est valide $ssi \neg \varphi$ est non satisfaisable.
- Prouver que φ est valide revient à prouver que $\neg \varphi$ est non satisfaisable.

? Validité

- 2 Algorithme des tableaux sémantiques précédent pour ψ

Rappel

- La formule φ est est valide $ssi \neg \varphi$ est non satisfaisable.
- Prouver que φ est valide revient à prouver que $\neg \varphi$ est non satisfaisable.

? Validité

- $\bullet \psi = \neg \varphi$
- 2 Algorithme des tableaux sémantiques précédent pour ψ
- \bullet Si ψ est non satisfaisable alors φ est valide, sinon φ est non valide.

Exemple: $\varphi = (a \lor \neg a)$ est valide?

Exemple: $\varphi = (a \lor \neg a)$ est valide?

On pose $\psi = \neg \varphi$

Exemple : $\varphi = (a \lor \neg a)$ est valide? On pose $\psi = \neg \varphi$ $\{\neg(a \lor \neg a)\}$

Exemple : $\varphi = (a \lor \neg a)$ est valide? On pose $\psi = \neg \varphi$ $\{\neg(a \lor \neg a)\}$

Exemple: $\varphi = (a \lor \neg a)$ est valide? On pose $\psi = \neg \varphi$

Exemple : $\varphi = (a \lor \neg a)$ est valide?

On pose
$$\psi = \neg \varphi$$

Exemple: $\varphi = (a \lor \neg a)$ est valide?

On pose $\psi = \neg \varphi$

 ψ est non satisfaisable. Donc, φ est valide.

Exemple: $\varphi = (a \land \neg b)$ est valide?

Exemple: $\varphi = (a \land \neg b)$ est valide?

On pose $\psi = \neg \varphi$

Exemple :
$$\varphi = (a \land \neg b)$$
 est valide?
On pose $\psi = \neg \varphi$ $\{\neg(a \land \neg b)\}$

Exemple: $\varphi = (a \land \neg b)$ est valide?

On pose
$$\psi = \neg \varphi$$

$$\{\neg(a \land \neg b)\}$$

$$\{\neg a\}$$

Exemple: $\varphi = (a \land \neg b)$ est valide?

On pose $\psi = \neg \varphi$

Exemple: $\varphi = (a \land \neg b)$ est valide?

On pose $\psi = \neg \varphi$

Exemple: $\varphi = (a \land \neg b)$ est valide?

On pose $\psi = \neg \varphi$

 ψ est satisfaisable. Donc, φ est non valide.

Rappel

Un ensemble de formule Γ est **satisfaisable** s'il admet au moins un modèle :

• S'il existe une valuation v telle que $v \models \varphi$ pour toute $\varphi \in \Gamma$

Rappel

Un ensemble de formule Γ est satisfaisable s'il admet au moins un modèle :

- S'il existe une valuation v telle que $v \models \varphi$ pour toute $\varphi \in \Gamma$
- Si $\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n$ est satisfaisable.

Rappel

Un ensemble de formule Γ est satisfaisable s'il admet au moins un modèle :

- S'il existe une valuation v telle que $v \models \varphi$ pour toute $\varphi \in \Gamma$
- Si $\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n$ est satisfaisable.

Rappel

Un ensemble de formule Γ est **satisfaisable** s'il admet au moins un modèle :

- S'il existe une valuation v telle que $v \models \varphi$ pour toute $\varphi \in \Gamma$
- Si $\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n$ est satisfaisable.

?
$$\Sigma = \{\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n\}$$
 est satisfaisable

$$\bullet \quad \psi = \varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n$$

Rappel

Un ensemble de formule Γ est satisfaisable s'il admet au moins un modèle:

- S'il existe une valuation v telle que $v \models \varphi$ pour toute $\varphi \in \Gamma$
- Si $\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n$ est satisfaisable.

$$\sum \Sigma = \{\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n\} \text{ est satisfaisable }$$

- $\bullet \quad \psi = \varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n$
- 2 Algorithme des tableaux sémantiques précédent pour ψ

Rappel

Un ensemble de formule Γ est satisfaisable s'il admet au moins un modèle :

- S'il existe une valuation v telle que $v \models \varphi$ pour toute $\varphi \in \Gamma$
- Si $\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n$ est satisfaisable.

$\Sigma = \{\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n\}$ est satisfaisable

- $\bullet \quad \psi = \varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n$
- 2 Algorithme des tableaux sémantiques précédent pour ψ
- 3 Si ψ est satisfaisable alors Σ est compbatible, sinon Σ est contradictoire.

