

Hi3559AV100 Demo 单板使用指南

文档版本 00B01

发布日期 2018-01-02

版权所有 © 深圳市海思半导体有限公司 2018。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任 何形式传播。

商标声明

(上) 、HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不 做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用 指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为电气生产中心 邮编: 518129

网址: http://www.hisilicon.com

客户服务电话: +86-755-28788858

客户服务传真: +86-755-28357515

客户服务邮箱: support@hisilicon.com

前言

概述

本文档主要介绍 Hi3559AV100 单板基本功能和硬件特性、多功能硬件配置、软件调试操作使用方法。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3559A	V100

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 单板硬件开发工程师

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

文档版本 00B01 (2018-01-02)

第1次临时版本发布。

目 录

則	介 音	iv
	概述	
1		
	1.1 简介	
	1.2 功能特性	1
	1.3 产品交付件清单	2
	1.4 相关组件	2
2	硬件介绍	3
	2.1 结构与接口	3
	2.2 GPIO 分配	6
	2.3 Sensor 配置管脚说明	8
	2.4 I2C 地址的分配	12
	2.5 单板多功能操作补充说明	13
	2.5.1 PCIe/USB.	13
3	操作指南	16
	3.1 注意事项	16
	3.2 单板配置	16

插图目录

图 2-1	单板接口结构示意图(正面)	3
	单板的接口结构示意图(反面)	
	电阻 R316 的位置(反面)	
	电阻 R328、R329 的位置(正面)	
	电阻 R567、R569 的位置(正面)	
	电阻 R247、R255 的位置	
图 3-2	电阻 R256、R257 的位置	18

表格目录

表 1-1 Hi3559AV100 DMEB 存储器参数表	2
表 2-1 单板接口说明	
表 2-2 GPIO 分配	
表 2-3 Sensor 配置管脚说明	
表 2-4 I2C11 设备的地址列表	
表 2-5 PCIe 功能的相关设置	
表 2-3 PCIe 功能的相关以直	
表 3-1 启动介质选择	17

1 概述

1.1 简介

Hi3559AV100 DMEB 是针对海思 Hi3559AV100 媒体处理芯片开发的演示评估板,用于给客户展示 Hi3559AV100 芯片强大的多媒体功能和丰富的外围接口,同时为客户提供基于 Hi3559AV100 芯片的硬件设计参考,缩短客户产品的开发周期。

Hi3559AV100 DMEB 通过串口和网口线与 PC 连接,组成一个基本开发系统。为实现 更完整的开发系统或演示环境,需增加如下设备或部件:

- 显示器
- 音频源及音箱
- USB 2.0/USB3.0 Device 设备
- Real View -ICE 仿真器
- U 盘、TF Card 等存储设备

□ 说明

海思公司提供成熟的 Hi-Boot 程序 (即 U-Boot),可以脱离仿真器,通过网络 TFTP 的方式进行软件调试。

1.2 功能特性

Hi3559AV100 DMEB 包含以下功能特性:

- 通过两个 90pin BTB 连接器(位号 J1, J2)可以扩展 sensor 输入接口;
- 支持1个RJ45网络接口,支持100/1000M bits全双工或半双工模式;
- 支持 1 个 USB3.0 接口;
- 支持 1 个 micro USB 接口;
- 支持1个PCIE2.0接口;
- 支持1个HDMI接口:
- 支持 1 个 RS232 调试串口, 1200~115200bit/s 波特率;
- 支持2个 Micro SD 卡接口;
- 支持1个JTAG调试口;

• 支持模拟音频输入输出接口;

表1-1 Hi3559AV100 DMEB 存储器参数表

存储器	数据位宽	频率	容量
SPI Nand Flash	1/2/4bit	单沿 100MHz 双沿 100MHz	2Gbit
eMMC	8bit	200MHz	8GB
DDR	64bit	1333MHz	单颗 8Gb 总 32Gb

1.3 产品交付件清单

Hi3559AV100 DMEB 交付件主要包括以下物品:

- Hi3559ADMEB。
- 电源适配器,规格:输入100VAC~240VAC,50Hz;输出12VDC,2A。
- IMX334 sensor 板 1 块。

1.4 相关组件

以下所列组件不包含在 HI3559ADMEB 的交付清单之内,但它们是用户程序调试过程中必备的。

- 网线
- 电视机、音响和摄像头等音视频接收设备
- 串口线

2 硬件介绍

2.1 结构与接口

图2-1 单板接口结构示意图(正面)

图2-2 单板的接口结构示意图(反面)

表2-1 单板接口说明

序号	描述
1	单板总电源接口,12V@2A 或以上
2	菜单键,接到 GPIO14_6 0:按键按下; 1:按键未按下。
3	升级键,接到 GPIO0_0/UPDATE_MODE_N。 0: 按键按下; 1: 按键未按下。
4	开机键,接到 PWR_BUTTON0。 0:按键按下; 1:按键未按下。 开机:按 200 毫秒或以上(默认),关机:长按 10 秒。
5	系统复位键。复位:按键按下。
6	sensor 接口 1
7	sensor 接口 2
8	USB 3.0 port 1,向下兼容 USB 2.0 port 1
9	PCIe X1 接口

序号	描述			
10	USB2.0 port0,Micro 座子			
11	芯片的 HDMI 输出			
12	SD 卡 0, 支持 SD3.0			
13	SD 卡 1, 仅支持 SD2.0			
14	音频输入接口 0,AC_IN0L/AC_IN0P、AC_IN0R/AC_IN0N。			
15	音频输入接口 1,AC_IN1L/AC_IN1P、AC_IN1L/AC_IN1N。			
16	音频输出接口,连接到 AC_OUTL/R 管脚,经过功放输出音频			
17	拨码开关 SW1, 启动介质拨码开关,详情见 3.2 章节的表 3-1			
18	拨码开关 SW2			
	SW2.1: Uart0 和 CAN0 功能选择。			
	0: CAN0;			
	1: Uart0.			
	SW2.2: Uart1 和 CAN1 功能选择。			
	0: CAN1;			
	1: Uartl.			
	SW2.3: Jtag 和 I2S 的功能选择。			
	0: Jtag;			
	1: I2S。 SW2.4: 上电自动开机功能的开启/关闭。			
	0: 开启上电自动开机功能的开启/天内。			
	1: 关闭上电自动开机功能;			
19	CAN接口			
	J34: CAN0 接口,			
	J35: CAN1 接口。			
20	千兆网口			
21	Uart0,使用时无需外接串口转接板,可直接与PC 连接			
22	Jtag 接口,可直接外接 Jtag 设备,使用该功能时,需拨码 SW2.3=0			
23	预留的 12V 电源接口,可作为 12V 风扇的电源接口			
24	SDIO2 Wifi 扣板接口			
25	屏幕扣板接口,包含信号: MIPI TX, 6/8bit LCD, 触摸屏控制信号 (I2C、RESET、INT)。通过扩展,可对接以上规格的屏幕。			
26	SensorHub 资源扣板接口,包含 sensorHub 的 I2C、SPI、PWM 等资源接			

序号	描述
	П
27	Iris 接口
28	电源接口,仅用于测试
	J36.2: DVDD_GPU;
	J36.3: DVDD_MEDIA。
29	SensorHub 的 uart0,使用时需外接串口转接板
30	UART1 接口,使用时需外接串口转接板
31	UART2 接口,使用时需外接串口转接板
32	UART3 接口,使用时需外接串口转接板
33	UART4 接口,使用时需外接串口转接板
34	I2S 信号接口。
	使用时需拨码 SW2.3=1。

2.2 GPIO 分配

表2-2 GPIO 分配

管脚名	GPIO	用途	单板 处理
UPDATE_MODE_N/GPIO0_ 0	GPIO0_0	UPDATE_MODE_N,外接按键: 0: 按键按下; 1: 按键不按下。	1
GPIO0_2	GPIO0_2	LCD_RST,外接屏幕连接器 J18	ı
FLASH_TRIG0/GPIO17_5	GPIO17_5	CANbus0 收发器的模式控制信号: 0: Normal mode; 1: Silent mode。	-
SHUTTER_TRIG0/GPIO17_6	GPIO17_6	CANBUS1 收发器的模式控制信号: 0: Normal mode; 1: Silent mode。	-
IR_IN/GPIO16_7/VI1_DATA 9	GPIO16_7	TP_INT,外接屏幕连接器 J18	-

管脚名	GPIO	用途	单板 处理
LSADC_CH0/GPIO14_6	GPIO14_6	GPIO/ADC,外接连接器。	-
LSADC_CH1/GPIO14_7	GPIO14_7	音频功放的 MUTE 控制信号,默 认下拉。	-
SHUB_I2C1_SCL/SHUB_GP IO1_3	SHUB_GPI O1_3	micro USB2.0 的 ID。预留该管脚,用于外接 hub 扣板连接器	-
SHUB_PWM_OUT2/SHUB_ GPIO3_2/SHUB_SPI2_SDI	SHUB_G PIO3_2	PCIe 的复位信号	-
SHUB_PWM_OUT3/SHUB_ GPIO3_3/SHUB_SPI2_CSN	SHUB_G PIO3_3	PWM,DC IRIS 的控制信号	-
SHUB_PWM_OUT4/SHUB_ GPIO3_4/SHUB_SPI0_CSN1/ SHUB_I2C6_SCL	SHUB_G PIO3_4	ICR 控制信号	-
SHUB_PWM_OUT5/SHUB_ GPIO3_5/SHUB_SPI0_CSN2/ SHUB_I2C6_SDA	SHUB_G PIO3_5	ICR 控制信号	-
SHUB_PWM_OUT6/SHUB_ GPIO3_6/SHUB_SPI1_CSN1/ SHUB_I2C7_SCL	SHUB_G PIO3_6	LED D8 灯的控制信号: 0: 灯 灭; 1: 灯亮。	-
SHUB_LSADC1_CH1/SHUB _GPIO4_1	SHUB_G PIO4_1	HOST_WAKEUP_BT,外接 wifi 扣板连接器	-
SHUB_UART0_RTSN/SHUB _GPIO1_4/SHUB_UART4_R XD/SHUB_I2C6_SCL	SHUB_G PIO1_4	LSCK(镜头控制),预留 SHUB_UART4_RXD 管脚,用于 外接串口转接板	-
SHUB_UART0_CTSN/SHUB _GPIO1_6/SHUB_UART4_T XD/SHUB_I2C6_SDA	SHUB_G PIO1_6	LSDIO(镜头控制),预留 SHUB_UART4_TXD 管脚,用于 外接串口转接板	-
SHUB_UART1_RXD/SHUB_ GPIO2_1	SHUB_G PIO2_1	LSL2B(镜头控制),预留 SHUB_UART1_RXD 管脚,用于 外接串口转接板	-
SHUB_UART1_TXD/SHUB_ GPIO2_3	SHUB_G PIO2_3	LSB2L(镜头控制),预留 SHUB_UART4_TXD 管脚,用于 外接串口转接板	-
SHUB_UART1_RTSN/SHUB _GPIO2_0/SHUB_UART5_R XD/SHUB_I2C7_SCL	SHUB_G PIO2_0	LSRST(镜头控制),预留 SHUB_UART5_RXD 管脚,用于 外接串口转接板	-
SHUB_UART1_CTSN/SHUB _GPIO2_2/SHUB_UART5_T XD/SHUB_I2C7_SDA	SHUB_G PIO2_2	LSDET(镜头控制),预留 SHUB_UART5_TXD 管脚,用于 外接串口转接板	-

管脚名	GPIO	用途	单板 处理
SHUB_UART2_RXD/SHUB_ GPIO2_5	SHUB_G PIO2_5	LSLDP(镜头控制),预留 SHUB_UART2_RXD 管脚,用于 外接串口转接板	ı
SHUB_UART2_TXD/SHUB_ GPIO2_7	SHUB_G PIO2_7	LSB2A(镜头控制),预留 SHUB_UART2_TXD 管脚,用于 外接串口转接板	1
SHUB_UART2_RTSN/SHUB _GPIO2_4/SHUB_UART6_R XD/J44SHUB_CANBUS_RX	SHUB_G PIO2_4	LCD 的流控信号,外接 LCD 屏幕连接器 J18。	-
SHUB_UART2_CTSN/SHUB _GPIO2_6/SHUB_UART6_T XD/SHUB_CANBUS_TX	SHUB_G PIO2_6	MFTS 电源的使能。	-

2.3 Sensor 配置管脚说明

表2-3 Sensor 配置管脚说明

应用场景	管脚	信号说明
单 Sensor 场景	SENSOR_CLK0_A	SENSOR 工作时钟
	SENSOR_RSTN0	SENSOR 复位信号
	SENSOR_HS0	SENSOR 行同步信号(仅限于从模式 SENSOR)
	SENSOR_VS0	SENSOR 场同步信号(仅限于从模式 SENSOR)
	SPI0_CSN	SENSOR SPI/I2C 配置信号
	SPI0_SDI	
	SPI0_SCLK/I2C0_SCL	
	SPI0_SDO/I2C0_SDA	
双路 Sensor 场景	SENSOR_CLK0_A	SENSOR0 工作时钟
	SENSOR_RSTN0	SENSOR0 复位信号
	SENSOR_HS0	SENSOR0 行同步信号(仅限于从模式 SENSOR)
	SENSOR_VS0	SENSOR0 场同步信号(仅限于从模式 SENSOR)
	SPI0_CSN	SENSOR0 SPI/I2C 配置信号
	SPI0_SDI	

应用场景	管脚	信号说明	
	SPI0_SCLK/I2C0_SCL		
	SPI0_SDO/I2C0_SDA		
	SENSOR_CLK0_B	SENSOR1 工作时钟	
	SENSOR_RSTN1	SENSOR1 复位信号	
	SENSOR_HS1	SENSOR1 行同步信号(仅限于从模式 SENSOR)	
	SENSOR_VS1	SENSOR1 场同步信号(仅限于从模式 SENSOR)	
	SPI1_CSN	SENSOR1 SPI/I2C 配置信号	
	SPI1_SDI		
	SPI1_SCLK/I2C1_SCL		
	SPI1_SDO/I2C1_SDA		
4 路 Sensor 场景	SENSOR_CLK0_A	SENSOR0 工作时钟	
	SENSOR_RSTN0	SENSOR0 复位信号	
	SENSOR_HS0	SENSOR0 行同步信号(仅限于从模式 SENSOR)	
	SENSOR_VS0	SENSOR0 场同步信号(仅限于从模式 SENSOR)	
	SPI0_CSN	SENSOR0 SPI/I2C 配置信号	
	SPI0_SDI		
	SPI0_SCLK/I2C0_SCL		
	SPI0_SDO/I2C0_SDA		
	SENSOR_CLK0_B	SENSOR1 工作时钟	
	SENSOR_RSTN1	SENSOR1 复位信号	
	SENSOR_HS1	SENSOR1 行同步信号(仅限于从模式 SENSOR)	
	SENSOR_VS1	SENSOR1 场同步信号(仅限于从模式 SENSOR)	
	SPI1_CSN	SENSOR1 SPI/I2C 配置信号	
	SPI1_SDI		
	SPI1_SCLK/I2C1_SCL		
	SPI1_SDO/I2C1_SDA		
	SENSOR_CLK1_A	SENSOR2 工作时钟	
	SENSOR_RSTN2	SENSOR2/3 复位信号	
	SENSOR_HS2	SENSOR2/3 行同步信号(仅限于从模式 SENSOR)	

应用场景	管脚	信号说明	
	SENSOR_VS2	SENSOR2/3 场同步信号(仅限于从模式 SENSOR)	
	SPI2_CSN0	SENSOR2 SPI/I2C 配置信号	
	SPI2_SDI		
	SPI2_SCLK/I2C2_SCL		
	SPI2_SDO/I2C2_SDA		
	SENSOR_CLK1_B	SENSOR3 工作时钟	
	SPI3_CSN0	SENSOR3 SPI/I2C 配置信号	
	SPI3_SDI		
	SPI3_SCLK/I2C3_SCL		
	SPI3_SDO/I2C3_SDA		
6 路 Sensor 场景	SENSOR_CLK0_A	SENSOR0 工作时钟	
	SENSOR_CLK0_B	SENSOR1 工作时钟	
	SENSOR_RSTN0	SENSOR0/1 复位信号	
	SENSOR_HS0	SENSOR0/1 行同步信号	
	SENSOR_VS0	SENSOR0/1 场同步信号	
	SPI0_CSN	SENSOR0 SPI 配置信号	
	SPI0_SDI		
	SPI0_SCLK/I2C0_SCL		
	SPI0_SDO/I2C0_SDA		
	SPI1_CSN	SENSOR1 SPI 配置信号	
	SPI1_SDI		
	SPI1_SCLK/I2C1_SCL		
	SPI1_SDO/I2C1_SDA		
	SENSOR_CLK1_A	SENSOR2 工作时钟	
	SENSOR_CLK1_B	SENSOR3 工作时钟	
	SENSOR_RSTN1	SENSOR2/3 复位信号	
	SENSOR_HS1	SENSOR2/3 行同步信号	
	SENSOR_VS1	SENSOR2/3 场同步信号	
	I2C2_SCL	SENSOR2 I2C 配置信号	
	I2C2_SDA		

应用场景	管脚	信号说明
	I2C6_SCL	SENSOR3 I2C 配置信号
	I2C6_SDA	
	SENSOR_CLK2_A	SENSOR4 工作时钟
	SENSOR_CLK2_B	SENSOR5 工作时钟
	SENSOR_RSTN2	SENSOR4/5 复位信号
	SENSOR_HS2	SENSOR4/5 行同步信号
	SENSOR_VS2	SENSOR4/5 场同步信号
	I2C3_SCL	SENSOR4 I2C 配置信号
	I2C3_SDA	
	I2C7_SCL	SENSOR5 I2C 配置信号
	I2C7_SDA	
8 路 Sensor 场景	SENSOR_CLK0_A	SENSOR0 工作时钟
	SENSOR_CLK0_B	SENSOR1 工作时钟
	SENSOR_RSTN0	SENSOR0/1 复位信号
	SENSOR_HS0	SENSOR0/1 行同步信号
	SENSOR_VS0	SENSOR0/1 场同步信号
	I2C0_SCL	SENSOR0 I2C 配置信号
	I2C0_SDA	
	I2C4_SCL	SENSOR1 I2C 配置信号
	I2C4_SDA	
	SENSOR_CLK1_A	SENSOR2 工作时钟
	SENSOR_CLK1_B	SENSOR3 工作时钟
	SENSOR_RSTN1	SENSOR2/3 复位信号
	SENSOR_HS1	SENSOR2/3 行同步信号
	SENSOR_VS1	SENSOR2/3 场同步信号
	I2C1_SCL	SENSOR2 I2C 配置信号
	I2C1_SDA	
	I2C5_SCL	SENSOR3 I2C 配置信号
	I2C5_SDA	

应用场景	管脚	信号说明
	SENSOR_CLK2_A	SENSOR4 工作时钟
	SENSOR_CLK2_B	SENSOR5 工作时钟
	SENSOR_RSTN2	SENSOR4/5 复位信号
	SENSOR_HS2	SENSOR4/5 行同步信号
	SENSOR_VS2	SENSOR4/5 场同步信号
	I2C2_SCL	SENSOR4 配置信号
	I2C2_SDA	
	I2C6_SCL	SENSOR5 配置信号
	I2C6_SDA	
	SENSOR_CLK3_A	SENSOR6 工作时钟
8路输入	SENSOR_CLK3_B	SENSOR7 工作时钟
	SENSOR_RSTN3	SENSOR6/7 复位信号
	SENSOR_HS3	SENSOR6/7 行同步信号
	SENSOR_VS3	SENSOR6/7 场同步信号
	I2C3_SCL	SENSOR6 配置信号
	I2C3_SDA	
	I2C7_SCL	SENSOR7 配置信号
	I2C7_SDA	

2.4 I2C 地址的分配

Hi3559AV100 有 12 组 I2C 管脚, 其中:

- I2C0 到 I2C7 外接 sensor。
- I2C8/I2C9/I2C10 和 SPI4 复用,默认是 SPI4 功能,这些管脚外接屏的转接板。
- I2C11: 功耗测试的 INA220A、陀螺仪。

表2-4 I2C11 设备的地址列表

I2C11 外设名称	I2C11 外设地址
用于监测 DVDD 电压的 INA220	0x49
用于监测 GPU 电压的 INA220	0x4a

I2C11 外设名称	I2C11 外设地址
用于监测 CPU 电压的 INA220	0x4c
用于监测 MEDIA 电压的 INA220	0x4f
用于监测 1.2V 电压(包含 SOC 和 DDR 颗粒)的 INA220	0x4e
陀螺仪 1	0x68
陀螺仪 2 (预留,用于测试)	0x69

2.5 单板多功能操作补充说明

2.5.1 PCIe/USB

表2-5 PCIe 功能的相关设置

功能	状态设置	含义	备注
PCIE_CLK_REQ_N	0: 内部配置下拉, R316 (R0402 4.7K) 上拉; 1: 关闭内部的下拉, R316 (R0402 4.7K) 上 拉;	PCIe 参考时钟请求。 0: 不关参考时钟; 1: 关参考时钟 (default)。	R316 的位置详情见图 2-3。
PCIE_REFCLK_SEL	0: R328 (R0402-4.7K) 焊接, R329 NC; 1: R328 NC, R329 (R0402 1K) 焊接;	PCIe PHY 参考时钟选择。 0: 内部 CRG 时钟 (default); 1: 外部时钟输入。	R328、R329 的位 置详情见图 2-4。
PCIE_DEEMPH_SEL	0: R569 焊接 R0402- 4.7K, R567 NC; 1: R567 NC, R569 焊接 R0402-1K;	PCIe PHY 去加重参数选 择。 0: -3.5dB(default); 1: -6dB。	R567、R569 的位 置详情见图 2-5。

□ 说明

当使用 USB3.0 功能时,需要设置 PCIE REFCLK SEL。

图2-3 电阻 R316 的位置(反面)

图2-4 电阻 R328、R329 的位置(正面)

图2-5 电阻 R567、R569 的位置(正面)

2.5.2 单板上电自动开机

上电自动开机功能的开启/关闭,通过拨码开关 SW2.4 的状态设置。

0: 开关上电自动开机功能; 1: 关闭上电自动开机功能。

3 操作指南

3.1 注意事项

单板适用于实验室或者工程开发环境。在开始操作之前,请先阅读以下注意事项。

- 任何情况下均不能对单板进行热插拔操作。
- 在拆封单板包装与安装之前,为避免静电释放(ESD)对单板硬件造成损伤,需 采取必要的防静电措施。
- 手持单板时请拿单板的边沿,不要触碰到单板上的外露金属部分,以免静电对单板元器件造成损坏。
- 请将单板放置于干燥的平面上,并保证它们远离热源、电磁干扰源与辐射源、电磁辐射敏感设备(如:医疗设备)等。
- 请对照图 2-1 熟悉单板的结构布局,确保能够在单板上辨认出可操作部件,如电源、连接器以及指示灯的位置。

3.2 单板配置

DMEB 板的配置有 2 个拨码开关/电阻选焊。拨码/电阻开关的默认状态如表 3-1 所示。

(1) 启动介质选择,上电时,由如下信号的状态选择。

{BOOT_SEL[1:0], SFC_EMMC_BOOT_MODE, SFC_DEVICE_MODE}={拨码开关 SW1[2:1], 电阻 R247/R255 选焊, 电阻 R256/R257 选焊}。

其中 BOOT_SEL[1:0]由拨码开关 SW1[2:1]设置, SFC_EMMC_BOOT_MODE, SFC_DEVICE_MODE 的状态分别通过电阻 R247/R255 和 R256/R257 来选择。

表3-1 启动介质选择

BOOT_SEL [1:0]	SFC_EMMC _BOOT_MODE	SFC_DEVICE_M ODE	MODE
00	0	0	SPI NOR Flash 3Byte
00	1	0	SPI NOR Flash 4Byte

BOOT_SEL [1:0]	SFC_EMMC _BOOT_MODE	SFC_DEVICE_M ODE	MODE
00	0	1	SPI Nand Flash 1 wire (default)
00	1	1	SPI Nand Flash 4 wire
01	-	-	Parallel Nand Flash
10	0	-	eMMC 4 bit MODE
10	1	-	eMMC 8 bit MODE
11	-	-	UFS

□ 说明

BOOT SEL[1:0]由拨码开关 SW1[2:1]设置。

SFC_EMMC_BOOT_MODE 的"0"和"1", 通过电阻 R247/R255 设置:

- "0": 电阻 R247 不焊接, 电阻 R255 焊接 0402 封装的 4.7 电阻 (default);
- "1": 电阻 R247 焊接 0402 封装的 4.7K 电阻, 电阻 R255 不焊接。

SFC_DEVICE_MODE 的"0"和"1", 通过电阻电阻 R256/R257 设置:

- "0": 电阻 R256 不焊接, 电阻 R257 焊接 0402 封装的 0ohm 电阻;
- "1": 电阻 R256 焊接 0402 封装的 0ohm 电阻, 电阻 R257 不焊接 (default)。

图3-1 电阻 R247、R255 的位置

图3-2 电阻 R256、R257 的位置

(2) BOOTROM 串口通信模式使能

BOOTROM 串口通信模式使能由 BOOT_SEL2 的状态决定,该状态由拨码开关 SW1.3 设置:

- 0: 直接从启动介质启动;
- 1: 进入串口烧写 Flash 模式 (default)。

(3) 启动 CPU 选择

启动 CPU 选择取决于信号上电时 BOOT_SEL3 的状态,该状态由拨码开关 SW1.4 设置。

- 0: 从 A53MP Core0 启动;
- 1: 从 A53UP 启动。