Алгоритм обучения методом градиентного спуска

Шаг 1. Подготовить обучающую выборку, каждый элемент которой будет состоять из пар $(X, D)_m$ (m=1,...q) — обучающего вектора $X_m = (x_1,...,x_n)$ (i=1,...,n) с вектором желаемых значений $D_m = (d_1,...,d_k)$ (j=1,...,k) выходов персептрона.

Шаг 2. Генератором случайных чисел всем синаптическим весам $w_{i,j}$ и нейронным смещениям $w_{0,j}$ ($i=0,...,n;\ j=1,...,k$) присваиваются некоторые малые случайные значения.

Шаг 3. Общей ошибке $E_{oбщ}$, вычисляемой на всех обучающих образах и всем значениям коррекции синаптических весов $\Delta w_{i,j}$ присвоить нулевое значение.

$$E_{\text{общ}} = 0 \tag{1.1}$$

$$\Delta w_{i,i} = 0 \tag{1.2}$$

Шаг 4. Из обучающей выборки $(X, D)_I, ..., (X, D)_q$, взять следующий по счету вектор $X_m = (x_I, ..., x_n)$ и подать его на входы персептрона $x_I, ..., x_n$. Сигналам нейронных входов смещения x_0 присваиваются единичные значения: $x_0 = I$.

Шаг 5. Для каждого j-го нейрона вычислить взвешенную сумму входных сигналов net_i и выходной сигнал y_i на основании функции активации f:

$$net_j = \sum_{i=0}^n x_i w_{i,j} \tag{1.3}$$

$$y_j = f(net_j) (1.4)$$

Шаг 6. Вычислить ошибку E для текущего обучающего вектора и сложить полученное значение с общей ошибкой $E_{oбщ}$:

$$E = \sum_{j=1}^{k} \frac{1}{2} (d_j - y_j)^2$$
 (1.5)

где d_j – желаемое, а y_j - фактическое значение выхода j-го нейрона в соответствии с поданным m-ым входным вектором X_m из пары $(X, D)_m$, k – количество выходов (классов) персептрона.

$$E_{\text{общ}} = E_{\text{общ}} + \frac{E}{q'},\tag{1.6}$$

где q – количество обучающих векторов.

Шаг 7. Посчитать величину коррекции синаптических весов j-го нейрона и

нейронных смещений и запомнить их (накопление изменений):

$$\Delta w_{i,j}(t+1) = \Delta w_{i,j}(t) - \eta \delta_i x_i, \tag{1.7}$$

где η — коэффициент скорости обучения.

$$\delta_i = -(d_i - y_i) \cdot f'(net_i) \tag{1.8}$$

Шаги 4-7 выполняются последовательно для каждого входного образа, на котором обучается персептрон.

Шаг 8. После подачи последнего обучающего вектора (завершения эпохи), проверить критерий останова обучения, если он выполняется, то завершить обучение. В противном случае – выполнить шаг 9, после чего вернуться к шагу 3.

Шаг 9. Произвести коррекцию синаптических весов j-го нейрона и нейронных смещений по сохраненным (накопленным) значениям $\Delta w_{i,j}$:

$$w_{i,j}(t+1) = w_{i,j}(t) + \Delta w_{i,j}(t+1)$$
(1.9)

где t – номер итерации.

Шаги 5 и 9 повторяются для всех нейронов персептронного слоя при подаче конкретного образа.

Критерии останова алгоритма обучения могут быть следующими:

1) Значение общей ошибки $E_{oбщ}$, вычисляемое на основании всех q обучающих векторов

$$E_{\text{общ}} = \sum_{m=1}^{q} \frac{1}{q} \sum_{j=1}^{k} \frac{1}{2} (d_j - y_j)^2 = \frac{1}{2q} \sum_{m=1}^{q} \sum_{j=1}^{k} (d_j - y_j)^2$$
(1.10)

не превышает заданного заранее установленного порогового значения $E_{\Pi OPO\Gamma}$, близкого к нулю: $E_{\text{общ}} < E_{\text{порог}}$.

- 2) Превышен установленный лимит количества эпох самый широко используемый критерий останова, но необходимо знать достаточное количество эпох для обучения, что возможно путем экспериментов.
- 3) Значение $E_{oбщ}$ меняется незначительно на протяжении нескольких эпох.