

Sunbeam Institute of Information Technology Pune and Karad

Module – Data Structures and Algorithms

Trainer - Devendra Dhande

Email – <u>devendra.dhande@sunbeaminfo.com</u>

Algorithm analysis

- it is done for efficiency measurement and also known as time/space complexity
- It is done to finding time and space requirements of the algorithm
 - 1. Time time required to execute the algorithm (ns, us, ms....)
 - 2. Space space required to execute the algorithm inside memory (bytes, kb, mb. --)
- finding exact time and space of the algorithm is not possible because it depends on few external factors like
 - time is dependent on type of machine (CPU), number of processes running at that time
 - space is dependent on type of machine (architecture), data types
- Approximate time and space analysis of the algorithm is always done
- Mathematical approach is used to find time and space requirements of the algorithm and it is known as "Asymptotic analysis"
- Asymptotic analysis also tells about behaviour of the algorithm for different input or for change in sequence of input
- This behaviour of the algorithm is observed in three different cases
 - 1. Best case
 - 2. Average case
 - 3. Worst case

- time is directly proportional to number of iterations of the loops used in an algorithm
- To find time complexity/requirement of the algorithm count number of iterations of the loops

1. Print 1D array on console

E

No. of loop iterations =
$$n$$

Time $\propto n$
 $T(n) = O(n)$

2. Print 2D array on console

Iterations of outer loop = M
Iterations of inner loop = N
Total iteration = m * n
Time < m * n

$$T(m,n) = O(m*n)$$

Time
$$< n^2$$

$$T(n) = O(n^2)$$

3. Add two numbers

int sum(int
$$N1$$
, int $N2$) \leq int $s = N1 + N2$; return s ;

- time will be constant irrespective of values of ni fn2

- constant time requirement

4. Print table of given number

Z

No. of iterations of loop = 10
-irrespective of value of num, loop
will iterate constant number of times
- constant time requirement.

5. Print binary of decimal number

wid printBinary (int n)
$$\xi$$

while (n>0) ξ

sysout (n7.2);

 $n = n/2$;

$$n = n, n/2, n/4, n/8$$
 $n = n/0, n/1, n/2$
 2

A for $n = 1$, last time loop will be executed.

 $n/itr = 1$
 $n = 2$
 $n = 2$

Time complexities : O(1), O(log n), O(n), O(n log n), $O(n^2)$, $O(n^3)$,, $O(2^n)$,

Modification: + or - : time complexity is in terms of n

Modification: * or / : time complexity is in terms of log n

for (i=0; i < n; i+t)
$$\rightarrow 0$$
 (n)

for (i=n; i>0; i--) $\rightarrow 0$ (n)

for (i=0; i\rightarrow 0 (n)

for (i=1; i<=10; i+t) $\rightarrow 0$ (1)

for (i=n; i>0; i/=2) $\rightarrow 0$ (logn)

for (i=1; i\rightarrow 0 (logn)

 $n=9$
 $i/=2 \rightarrow 9,4,2,1$
 $i*=2 \rightarrow 1,2,4,8$

for
$$(i=0; i < n; i+1)$$
 $\xrightarrow{\text{for}(j=0; j < n; j+1)}$ $\xrightarrow{\text{for}(p)}$

for (i=0; i\rightarrow n = 2n
$$O(n)$$

for (j=0; j\rightarrow n

$$for(i=0;i < n;j++) \rightarrow n$$
 $for(j=n;j>0;j+2) \rightarrow logn$
 $for(j=n;j>0;j+2) \rightarrow logn$

Space complexity

Finding approximate space requirement of the algorithm to execute inside memory

Algorithm analysis

Iterative -loops are used int fact (int num) & int f=1; for (inti=1; ix=num; i++) 1= # 7 3 refurn f; Time < No. of itemations Time of n T(n) = O(n)AS(n) = O(1)

```
Recursive
   - recursion is used
int rfact (int num) &
 if ( Num ==1)
    return i;
return num * rfact (num-1);
Time & No. of recursive calls
    Time & N
       T(n)=O(n)
     AS(n) = O(n)
```


Searching algorithms analysis

- Time is directly proportional to number of comparisons
- For searching and sorting algorithms, count number of comparisons done

1. Linear search

- Best case Key is found at first few locations $\rightarrow O(1)$
- Average case key is found at middle few locations $\rightarrow \mathcal{O}(N)$
- Worst case Kep is not found or found at last few locations -> O(n)

2. Binary search

- Best case Keg is found at first few levels -> O(1)
 Average case Keg is found at middle few levels -> O(log n)
 - Worst case key is found at last level or not found -> O(log n)

levels = log N

Selection sort

- 1. Select one position of the array
- 2. Find smallest element out of remaining elements
- 3. Swap selected position element and smallest element
- 4. Repeat above steps until array is sorted (N-1)

Mathematical Polynomial	M	n2
Highest degree - degree of polynomial	1	1
- while writing time complexity consider	10	100
only highest degree term because it	100	10000
is highest growing term in the	1000	1000000
polynomial		

No. of elements = n	n=	6	
No. of passes=n-1	Pass 1 2	comp 5 4 3	n-1 n-2
	3 4 5	3 2 1	, ,
Total comps = 1+2+	†	- ('n-	1)
$=\frac{n(n+1)}{2}$		n	
Time $\leq \frac{1}{2}(n^2$	Fn)		
Best of T(n) = O(n ²			

Selection sort

Bubble sort

- 1. Compare all pairs of consecutive elements of the array one by one
- 2. If right element is less than left element, swap both
- 3. Repeat above steps until array is sorted

$$N=6$$
 $j < N-1$
 $i \quad j \quad j$
 $1 \quad 0-4 \quad 0-4$
 $2 \quad 0-4 \quad 0-4$
 $3 \quad 0-4 \quad 0-2$
 $4 \quad 0-4 \quad 0-1$
 $5 \quad 0-4 \quad 0-0$
 $5 \quad 0-4 \quad 0-0$
 $6 \quad 0-4 \quad 0-1$
 $7 \quad 0-4 \quad 0-1$
 $9 \quad 0-4$

Bubble sort

Insertion sort

- 1. Pick one element of the array (start from 2nd index)
- 2. Compare picked element with all its left neighbours one by one
- 3. If left neighbour is greater, move it one position ahead
- 4. Insert picked element at its appropriate position
- 5. Repeat above steps until array is sorted

No. of elements =
$$n = 6$$

No. of elements = $n = 1$

No. of passes = $n = 1$
 $n = 6$

pass comps

 $n = 6$
 $n = 6$

pass comps

 $n = 6$
 $n = 6$

Total comps =
$$1+2+3$$
...+ $(n+1)$

$$= \frac{n(n+1)}{2}$$
Time $\propto \frac{1}{2}(n^2+n)$
Avg 2 $T(n) = O(n^2)$
Worst

Insertion sort

Linear queue

- linear data structure which stores similar type of data.

- date is inserted from one end (rear)

- data is removed from another end (front)

- works on principle of "FIFO"/
"First In First Out"

10 20 30 -1 0 1 2 3 Operations:

() Push / add / insert / Enqueue:

- reposition rear (inc)

- add value at rear index

2) Pop/delete/remove/Dequeue:
- reposition front (inc)

- read/return data of fronty)
index

All operations of queue are performed in O(1) time complexity.

Linear queue - Conditions

- if rear reaches last index of array and few initial elements are deleted, then still will not be able to use those empty locations. This will lead to poor memory utilization
- solution for this is circular queue

Thank you!!!

Devendra Dhande

devendra.dhande@sunbeaminfo.com