Характеристика на поле. Прости полета.

Разглеждаме произволно (не непременно числово) поле F с единичен елемент 1_F . Възможни са следните два случая:

1. Ако $m,n\in\mathbb{Z}$ са такива числа, че $m\neq n$, то да имаме $m.1_F\neq n.1$, където $m.1_F$ означава просто $\underbrace{1_F+1_F+\dots+1_F}$. В такъв случай казваме,

че полето F има $xapaктepucmuka\ 0$ и пишем $\operatorname{char} F = 0$.

2. Ако съществуват $m,n\in\mathbb{Z}$, такива че $m\neq n$, но $m.1_F=n.1_F$. Ако без ограничение смятаме, че m>n, то последното равенство ни дава $(m-n).1_F=0_F$ и $m-n\in\mathbb{N}$. Нека p е най-малкато естествено число, за което $p.1_F=0_F$. Тогава казваме, че полето F има xapakmepucmuka p и пишем char F=p.

Примери:

- 1. За числовите полета $F=\mathbb{Q}, \mathbb{R}, \mathbb{C}$ равенството m.1=n.1 за $m,n\in\mathbb{Z}$ е изпълнено единствено при m=n и следователно char F=0.
 - 2. Нека $p \in \mathbb{N}$ е просто число. Тогава пръстенът от класовете остатъци

$$\mathbb{Z}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$$

е поле, в което е изпълнено $p.\overline{1}=\overline{p}=\overline{0},$ а за $k:1\leq k\leq p-1$ имаме, че $k.\overline{1}=\overline{k}\neq\overline{0},$ т.к. $p\nmid k.$ Оттук виждаме, че char $\mathbb{Z}_p=p.$

Твърдение 1. Нека F е произволно поле c характеристика $\operatorname{char} F = p$. Тогава p е просто число.

Доказателство. char F = p означава, че p е най-малкото естествено число, за което $p.1_F = 0_F$. Да допуснем, че p е съставно. Това означава, че

съществуват числа $m, n \in \mathbb{N}$, такива че m < p, n < p и p = mn. Тогава имаме, че $mn.1_F = 0_F$ или $(m.1_F)(n.1_F) = 0_F$. Тъй като F е поле, в него няма делители на нулата и следователно или $m.1_F = 0_F$, или $n.1_F = 0_F$. Но m < p и това би противоречало на минималността на избора на p. Следователно остава да е вярно, че числото p е просто.

Нека F е поле с характеристика char F=p. Ако $a\in F$ и числото $n\in \mathbb{Z}$ е такова, че $p\mid n$, то $n.a=0_F$. Наистина, $p\mid n$ означава, че $\exists m\in \mathbb{Z}$, такива че n=pm. Тогава $n.a=pm.a=mp.1_F.a=m.(p.1_F).a=m.0_F.a=0_F$. По-общо, нека $a\in F$ е ненулев елемент, т.е. $a\neq 0_F$, и $n\in \mathbb{Z}$. Тогава,

- (1) ако char F = 0, то $n.a = 0_F \Leftrightarrow n = 0$;
- (2) ako char F = 0, to $n.a = 0_F \Leftrightarrow p \mid n$.

Твърдение 2. Нека F е поле c характеристика $\operatorname{char} F = p \neq 0$. Тогава за всеки два елемента $a, b \in F$ е изпълнено

$$(a+b)^p = a^p + b^p$$

или по-общо

$$(a+n)^{p^m} = a^{p^m} + b^{p^m}$$

за всяко естествено число $m \in \mathbb{N}$.

Доказателство. Вече видяхме, че ако $c \in F$, а $n \in \mathbb{Z}$ е такова, че $p \mid n$, то $n.c = 0_F$. По формулата за нютонов бином имаме, че

$$(a+b)^p = a^p + \binom{p}{1}a^{p-1}b + \binom{p}{2}a^{p-2}b^2 + \dots + \binom{p}{p-1}ab^{p-1} + b^p.$$

Понеже $\binom{p}{i} = \frac{p!}{i!(p-i)!} = \frac{p(p-1)\dots(p-i+1)}{i!}$ за $i=1,2,\dots,p-1$, то всеки един от биномните коефициенти в горното равенство се дели на p и оттам $\binom{p}{i}a^{p-i}b^i = 0_F$ за $i=1,2,\dots,p-1$. По този начин остана

$$(a+b)^p = a^p + b^p.$$

Останалата част от твърдението се доказва лесно с индукция по m, чиято основа току-що установихме.

Нека F е поле, а $K \subset F$ е неово подмножество, такова че $|K| \geq 2$. Казваме, че K е $no\partial none$ на F, ако за $\forall a,b \in K$ е изпълнено, че a+b,a-b,ab и $ab^{-1}=\frac{a}{b}$ за $b\neq 0_F$ също принадлежат на K. От тази дефиниция лесно следва, че $0_F \in K, 1_F \in K$ и че разглеждано само по себе си K също е поле спрямо операциите, наследени от F. Означаваме $K \leq F$. Друг начин да изкажем същия факт е да заявим, че полето F е разширение на полето K и да запишем $F \geq K$. Ако $K \leq F$, то $\mathrm{char}\, K = \mathrm{char}\, F$.

Нека F е поризволно поле. Ще казваме, че полето F е npocmo, ако F няма никакви подполета освен себе си. (За да няма объркване ще отблежим, че подпръстена $\{0_F\}$ на пръстена F няма как да образува подполе, т.к. се състои само от един елемент.)

Твърдение 3. Полетата \mathbb{Q} и \mathbb{Z}_p , където p е просто число, са прости полета.

Доказателство. Относно \mathbb{Q} : Нека $K \leq \mathbb{Q}$ е подполе на \mathbb{Q} . По дефиниция трябва $|K| \geq 2$ и тогава съществува елемент $a \in K$, който е ненулев. Тогава $a-a=0 \in K$ и $\frac{a}{a}=1 \in K$. Освен това за $\forall n \in \mathbb{N}$ имаме, че $\underbrace{1+1+\dots+1}_{n$ пъти $}=n \in K$ и $\underbrace{0-n=-n \in K}$. По този начин всъщност се

оказва, че $\mathbb{Z}\subseteq K$. Нека $r\in\mathbb{Q}$. Тогава r се записва като $\frac{m}{n}$ за $m,n\in\mathbb{Z},n\neq 0$. Но това означава, че $m,n\in K$, а оттам и $\frac{1}{n}\in K$. Следователно $m\cdot\frac{1}{n}=\frac{m}{n}\in K$, т.е. $r\in K$, което всъщност показва, че $\mathbb{Q}\subseteq K$. Но така $K=\mathbb{Q}$, откъдето следва, че полето \mathbb{Q} е просто, защото съдържа само себе си като подполе.

Относно \mathbb{Z}_p : Нека K е подполе на \mathbb{Z}_p . Тогава $\overline{0}, \overline{1} \in K$. Също така за $\forall k \in \mathbb{N}, 1 \leq k \leq p-1$ имаме, че $\overline{1+\overline{1}+\cdots+\overline{1}} = \overline{k} \in K$. Но това означава всъщност, че $\mathbb{Z}_p \subseteq K$ и така $K = \mathbb{Z}_p$. По този начин се вижда, че \mathbb{Z}_p е просто поле.

Твърдение 4. Всяко поле F съдържа, при това едно единствено просто подполе F_0 .

Доказателство. Ясно е, че всяко поле F, съдържа подполе K, например при K=F имаме тривиалното подполе $F \leq F$. Тогава можем да образуваме F_0 като сечението на всички подполета на F, т.е. $F_0 = \bigcap_{K \leq F} K$.

Тогава F_0 също е подполе на F. Да видим, че F_0 е просто поле. Наистина, ако L е подполе на F_0 , то $L \leq F_0 \leq F$ е подполе и на F и следователно участва в сечението на всички подполета на F, т.е. $F_0 \subseteq L$. Но последното означава, че $F_0 = L$, което доказва, че полето F_0 е просто и като такова е поросто подполе на F. Ще докажем, че F_0 е единственото просто подполе. Нека F_1 е просто подполе на F. Тогава то участва в сечението на всички подполета и следователно $F_1 \supseteq F_0$. Така F_0 е подполе на F_1 , но по предположение то е просто и остава $F_0 = F_1$. Така F_1 е единствено.

Нека R и R' са пръстени. Казваме, че изображението

$$\varphi: R \longrightarrow R'$$

е хомоморфизъм на пръстени, ако е изпълнено $\varphi(x+y) = \varphi(x) + \varphi(y)$ <u>и</u> $\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$.

Свойства:

- 1. $\varphi(0_R) = 0_{R'}$.
- 2. $\varphi(-a) = -\varphi(a)$ за $\forall a \in R$.
- 3. Нека R е пръстен с единица 1_R и φ не е нулевото изображение. Тогава $\varphi(1_R) = 1_{R'}$ и за обратим елемент $a \in R$ е в сила, че $\varphi(a^{-1}) = (\varphi(a))^{-1}$.

Ако хомоморфизмът на пръстени φ е и биекция на R върху R', то φ е изоморфизъм на прсътени, а R и R' са изоморфи пръстени и пишем $R \cong R'$.

Да отбележим, че ако R е област, то за $a,b,c \in R,c \neq 0_R$ е изпълнено $ac = bc \Leftrightarrow a = b$. Наистина, $ac = bc \Leftrightarrow (a - b)c = 0_R$. Т.к. R е област и $c \neq 0_R$, то остава $a - b = 0_R$, което означава, че a = b.

Следващата теорема класифицира простите полета.

Теорема. Нека F е просто поле. Ако $\operatorname{char} F = 0$, то $F \cong \mathbb{Q}$. Ако $\operatorname{char} F = p \neq 0$, то $F \cong \mathbb{Z}_p$.

Доказателство. Нека F е просто поле с $\operatorname{char} F = 0$. Знаем, че

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid n, m \in \mathbb{Z}, n \neq 0 \right\}.$$

Ако $n \in \mathbb{Z}, n \neq 0$, то $n.1_F \neq 0_F$. Разглеждаме подмножеството

$$F_0 = \{(m.1_F)(n.1_F)^{-1} \mid m, n \in \mathbb{Z}, n \neq 0\} \subseteq F.$$

То притежава следните свойства:

- 1. $(m.1_F)(n.1_F)^{-1} = (k.1_F)(l.1_F)^{-1}$ за $k,l \in \mathbb{Z}, l \neq 0 \Leftrightarrow ml = kn$. Наистина, умножаваме двете страни на равенството с $(n.1_F)(l.1_F) \neq 0_F$ и получаваме $(m.1_F)(l.1_F) = (k.1_F)(n.1F)$, т.е. $(ml).1_F = (kn).1_F$. Сега, т.к. char F = 0 имаме, че просто ml = kn.
 - 2. $(m.1_F)(n.1)F)^{-1} \pm (k.1_F)(l.1_F) = [(ml \pm kn).1_F][(nl).1_F]^{-1}$.
 - 3. $(m.1_F)(n.1_F)^{-1} \cdot (k.1_F)(l.1_F)^{-1} = [(mk).1_F][(nl).1_F]^{-1}$.
- 4. Ако $m \neq 0$, то $[(m.1_F)(n.1_F)^{-1}]^{-1} = (n.1_F)(m.1_F)^{-1}$. Наистина, т.к. $m \neq 0$, то $m.1_F \neq 0_F$ и следователно $\exists (m.1_F)^{-1}$. Сега свойството следва от директната проверка, че $(m.1_F)(n.1_F)^{-1} \cdot (n.1_F)(m.1_F)^{-1} = 1_F$.

Свойства 2, 3 и 4 ни дават, че за всеки два елемента $a,b \in F_0$ елементите a+b,a-b,ab и a^{-1} при $a \neq 0_F$ също принадлежат на F_0 . По този начин F_0 е подполе на F, но т.к. F е просто, то $F=F_0$.

Да разгледаме изображението

$$\varphi: F \longrightarrow \mathbb{Q},$$

дефинирано с $\varphi[(m.1_F)(n.1_F)^{-1}] = \frac{m}{n}$. То е коректно зададено, защото ако $(k.1_F)(l.1_F)^{-1} = (m.1_F)(n.1_F)^{-1}$, то свойство 1 ни дава, че kn = lm или $\frac{k}{l} = \frac{m}{n}$. Така $\varphi[(k.1_F)(l.1_F)^{-1}] = \frac{k}{l} = \frac{m}{n} = \varphi[(m.1_F)(n.1_F)^{-1}]$, т.е. на всеки елемент $a \in F$ е съпоставен единствен елемент $\varphi(a) \in \mathbb{Q}$.

Свойства 2 и 3 ни дават, че за $\forall a,b \in F$ е изпълнено $\varphi(a+b) = \varphi(a) + \varphi(b)$ и $\varphi(ab) = \varphi(a)\varphi(b)$, т.е. φ е хомоморфизъм на пръстени.

Освен това φ е биекция на F върху \mathbb{Q} . Наистина, за всяко число $\frac{m}{n} \in \mathbb{Q}$ същесвтува елемент $(m.1_F)(n.1_F)^{-1} \in F$, такъв че $\frac{m}{n} = \varphi[(m.1_F)(n.1)F)^{-1}];$ ако $\varphi[(m.1_F)(n.1_F)^{-1}] = \varphi[(k.1_F)(l.1_F)^{-1}]$, то $\frac{m}{n} = \frac{k}{l}$, т.е. lm = kn и според свойство 1 получаваме, че $(m.1_F)(n.1_F)^{-1} = (k.1_F)(l.1_F)^{-1}$.

Така φ е изоморфизъм на пръстени и $F \cong \mathbb{Q}$.

Нека сега F е просто поле с характеристика char $F=p\neq 0$. Тогава числото p е просто и имаме полето от остатъци

$$\mathbb{Z}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}.$$

Разглеждаме подмножеството

$$F_0 = \{0, 1_F, 2.1_F, \dots, (p-1).1_F\} \subseteq F.$$

Нека $n \in \mathbb{Z}$ е произволно число. Тогава n = pt + r за $t, r \in \mathbb{Z}$ и $0 \le r \le p - 1$ според теоремата за деление с частно исотатък. Сега $n.1_F = t(p.1_F) + r.1_F = t.0_F + r.1_F = r.1_F \in F_0$ (понеже $0 \le r \le p - 1$). По този начин $n.1_F \in F_0$ за $\forall n \in \mathbb{Z}$ и сега следва, че $\forall a, b \in F_0$ е изпълнено $a + b, a - b, ab \in F_0$. Нека $\overline{k} \ne \overline{0}$, т.е. $1 \le k \le p - 1$ і razgledame $k.1_F \in F_0$. Имаме, че (k,p) = 1 и тъждеството на Безу ни дава, че съществуват числа $u, v \in \mathbb{Z}$, такива че uk + vp = 1. Следователно в F имаме, че $(uk + pv).1_F = 1_F$ и разписвайки лявата страна получаваме последователно $(u.1_F)(k.1_F) + (v.1_F)(p.1_F) = (u.1_F)(k.1_F) + 0_F = (u.1_F)(k.1_F) = 1_F$ или с други думи $(k.1_F)^{-1} = (u.1_F) \in F_0$, защото $u \in \mathbb{Z}$. По този начин доказахме, че за всеки ненулев елемент $a \in F_0$ е изпълнено $a^{-1} \in F_0$ и F_0 се оказва подполе на F. Простотата на F обаче води до $F = F_0$.

Да разгледаме изображението

$$\varphi: F \longrightarrow \mathbb{Z}_p,$$

дефинирано с $\varphi(k.1_F) = \overline{k}$. Очевдино е, че φ е хомоморфизъм на пръстени, а и биекция на F върху \mathbb{Z}_p . Така φ е изоморфизъм на пръстени и $F \cong \mathbb{Z}_p$.

Следствие 1. Всяко поле F има, при това единствено просто подполе F_0 , такова че $F_0 \cong \mathbb{Q}$, ако char F = 0 или $F_0 \cong \mathbb{Z}_p$, ако char $F = p \neq 0$.