Chi Han

email: hanchi@umich.edu homepage: suzutsuki-ch.github.io

EDUCATION

- University of Michigan Ann Arbor (2020-2024, overall GPA: 3.803)
 - B.S. Honors Physics (major GPA: 3.920)
 - B.S. Honors Astronomy and Astrophysics (major GPA: 3.754)
 - B.S. Mathematical Physics (major GPA: 3.725)

RESEARCH INTERESTS

I am broadly interested in topics within cosmology and stellar astrophysics, and I enjoy applying computational methods to my studies. During my PhD, I hope to work with data from surveys and contribute to simulation projects. In cosmology, I aim to delve into the study of structure formation and the expansion of the universe, as well as explore the physics of various dark matter models. In stellar astrophysics, I hope to focus on dynamics in many-body systems and study stellar rotation through simulations. Additionally, I am interested in various astronomical imaging techniques.

Research Experience

- Anisotropic Distribution of Subhaloes: Coherent Accretion and Internal Orbits (SU 2023) Instructors: Prof. Camille Avestruz, Dr. Kuan Wang
 - Processed data from IllustrisTNG Simulation to study the orbit of subhalos before and after their accretion.
 - Verified the coherent accretion of subhalos from cosmic filaments using spherical KDE.
 - Clustered subhalo orbits after accretion using machine learning methods to unveil the relation between orbit modes and subhalo properties.
- Isochrone Fitting Model for Binary Systems in the ARMADA Survey (FA 2022 WN 2023)
 Instructors: Prof. John Monnier, Dr. Tyler Gardner
 - Used the Python package isochrones to construct an isochrone fitting model for approximately 70 targets in the ARMADA survey.
 - Applied MCMC techniques to investigate the correlations between parameters used for fitting. Used the HD6456 system for a detailed study and discovered degeneracy caused by varying metallicity.
- Effect on Isochrone Fitting of Binary Systems from Stellar Rotation (SU 2023) Instructors: Prof. John Monnier, Dr. Tyler Gardner
 - Inspected the distribution of the difference between photometric and dynamic masses of binary systems consisting of rapidly rotating A-stars using isochrone fitting.
 - The study potentially leads to methods for rotation correction in isochrone fitting.
- Constructing the Metallicity Map of the Milky Way based on Open Cluster Orbits (SU 2023)
 Instructors: Prof. John Monnier, Dr. Tyler Gardner
 - Applied classical techniques in machined learning such as random forest to make a metallicity map of the Milky Way with open cluster orbit. Used GALPY to obtain the birth position of over 1000 open clusters in the Gaia catalog.
 - Cross-checked with existing studies on Milky Way metallicity to verify the metallicity predicted with the machine learning algorithm.

- Late Time Swift Observations of the Relativistic TDE Candidate AT2022cmc (WN 2022) Instructors: Prof. Jon Miller, Dr. Mark Reynolds
 - Used NASA's HEASARC Xspec to process optical, spectral, and time series data from the Swift Observatory.

POSTERS AND PUBLICATIONS

- Anisotropic Distribution of Subhaloes: Coherent Accretion and Internal Orbits* Chi Han, Kuan Wang, Camille Avestruz (Univ. Michigan)
- Poster The ARMADA Survey: Photometric Mass and Age for Intermediate Mass Binary Systems Chi Han, John Monnier, Colton Peterson (Univ. Michigan), Tyler Gardner (Univ. Exeter)
- ATEL 15439 LATE TIME SWIFT OBSERVATIONS OF THE RELATIVISTIC TDE CANDIDATE AT 2022CMC C. Han, M. T. Reynolds, J. M. Miller, B. Gediman, Y. Hemrattaphan, M. K. Zak (Univ. Michigan)

TEACHING AND OUTREACH

- Telescope Operator (2022)
 - Operate the 0.4m Cassegrain Reflector at Angell Hall for public events and introductory astronomy classes.
- Contributed LATEX Lecture Note for Future Teaching Physics 406 (Statistical Mechanics, WN 2023)
- Learning Assistant Physics 104 (Programming for Introductory Science Courses, FA 2023)
 - Participate in lectures and hold office hours to answer questions on scientific programming with python.
- Member of Student Astronomical Society at University of Michigan (2021)

Relevant Elective Coursework

- Astronomy: ASTRO 406 (Computational Astrophysics)
- Physics: PHYS 457[†] (Particle Physics and Cosmology); PHYS 526 (Cosmology); PHYS 535* (General Relativity)
- Math: MATH 454 (Partial Differential Equation); MATH 556 (Applied Functional Analysis); MATH 572[†] (Numerical Differential Equation)

^{*} indicates in progress

^{*} in progress, † will take next semester