USB Malware Detection by Utilizing USB Usage Patterns

Hessam Mohammadmoradi and Omprakash Gnawali Networked Systems Laboratory, Computer Science Department University of Houston

Overview

There are many devices which use USB port for communication and this popularity seems very interesting to hackers.

- Most of protection products need detailed specification of malware to be able to detect it.
- We analyze how students use USB devices in a school environment.
- We proposed effective approach to detect malware infected devices (90% accuracy) utilizing collected usage data.

"BadUSB"

- ✓ "BadUSB" is one of the most recent USB Malwares
- √ There is no effective solution against "BadUSB"
- ✓ Our approach can detect infected USB devices .

"BadUSB" modifies USB firmware

In Our Research

- We analyze how USB devices are used in an operational academic lab.
- Our results provide general insight about USB device's popularity and usage pattern.
- We analyzed USB malware behavior (propagation speed, final infected set) using on our collected data.
- ✓ We extracted reliable facts about USB devices that can be utilized by other researchers

Dataset

Collected Attributes

- Device Type: Based on USB class code there are different device types such as Mass Storage and Human Interface Devices.
- ✓ Serial Number
- ✓ Last Plug/UnPlug Time
- √ VendorID/ProductID
- √ USBClass/SubClass/Protocol
- ✓ IP and MAC Addresses
- ✓ UserID

Data Collection Process

- ✓ Lightweight Java Application
- ✓ Fetch Windows registry file (Windows keeps track of devices connected to USB ports in registry file)
- Extract information regarding devices connected to USB port
- Send information to central database over the Internet

Summary of Dataset

- We monitored 57 desktop computers located in 2 academic labs
- ✓ Host operating systems were Windows 7 & 8
- ✓ Sampling rate was 1 sample per minute
- ✓ Monitoring process started by November 2013 and ended by December 2014

Insights

Initial Infected Set Analysis

√ Malware propagation speed considering different number of initial infected systems

- Early Propagation Stages: Propagation speed is independent of initial infected nodes
- Later Propagation Stages: Initial number of infected nodes increases speed of propagation and size of final infected set

"BadUSB" Detection

- ✓ Use collected properties as feature list
- ✓ Apply machine learning to classify USB devices
- Detect abnormal instances

USB Identification using Neural Networks

- √ 90.99 % Correctly Classified USBs
- √ 0.003 Mean Absolute Error
- √ 8122 Total Number of Instances

Outdated Drivers

√ 75 % of Desktops with Windows 8 and 25% of Windows 7 use outdated drivers

We would like to thank Tom Cumpain for logistics support.