

INF1600 Architecture des micro-ordinateurs

TP2

Groupe 02 (B2)

Soumis par:

Charles de Lafontaine - 2076524 Geneviève Pelletier-Mc Duff - 2088742

Barème de correction

TP 2			/4,00
Exercice 1			
	Calcul_1.s	/0,5	
	Calcul_2.s	/0,5	
	Calcul_3.s	/1,00	
Exercice 2			
	Question 3.1	/1,00	
	Question 3.2	/1,00	

Exercice 2 : Architecture IA-32

3.1 Conditions d'états

Tableau I. Bits d'états du registre RFLAGS suite à la comparaison entre différentes valeurs des variables a et b (cmp a, b).

a	b	Zero Flag (ZF)	Sign Flag (SF)	Carry Flag (CF)	Overflow Flag (OF)
0xFFFFFFFC	0xFFFFFFFC	1	0	0	0
0x00000004	0xFFFFFFFC	0	1	0	0
0xFFFFFFF	0x00000001	0	0	1	0
0x00000002	0x80000000	0	0	0	1
0x7FFFFFFF	0x80000000	0	0	0	1
0x80000000	0x7FFFFFFF	0	1	1	1
0x00000001	0x7FFFFFFF	0	0	0	0
0x80000000	0x80000000	1	0	0	0
0x7FFFFFFF	0xFFFFFFF	0	1	0	0

3.2 Assembleur et langage C

En considérant les fonctions suivantes en C, nous pouvons préciser que celle qui correspond à au code assembleur est la seconde (#2).

```
3
           1
                          int fun2(int i, int j){
                                                          int fun3(int i, int j){
int fun1(int i, int j){
   if (i+3 != j)
                             if (i+3 != j)
                                                             if (i+3 <= j)
      return i+3:
                                return i;
                                                                return i;
                                                             else
      return j*16;
                                return j*4;
                                                                return j >> 2;
}
                          }
                                                          }
```

```
pushl %ebp
         %esp, %ebp
  movl
         8(%ebp), %eax
  movl
         12(%ebp), %ecx
  movl
         3(%eax), %edx
  leal
         %ecx, %edx
  cmpl
  jne
         (, %ecx, 4), %eax
   leal
L4:
   popl %ebp
   ret
```

La première version de la fonction fun1 peut être facilement éliminée en considérant ce qu'elle retourne à la suite de la première condition. À vrai dire, cette dernière retourne i+3 à suite à la condition if (i+3!=j). Or, selon le code en assembleur, la ligne jne L4 saute à l'étiquette L4 (à la fin du programme) si le registre $ext{\%}ext{}$ n'est pas égal au registre $ext{\%}edt{}$ via la comparaison $ext{}$ comple $ext{\%}ext{}$ Ainsi, dans le cas où cette condition $ext{}$ if $ext{}$ le respectée, le registre $ext{}$ possède la valeur de $ext{}$ le $ext{}$ soit premier paramètre de la fonction $ext{}$ fun1 (correspondant à $ext{}$ $ext{}$ int $ext{}$ i). La fonction retournerait donc $ext{}$ et non $ext{}$ i + 3.

Enfin, la troisième version de la fonction fun1 peut, elle aussi, être éliminée en considérant la condition if $(i + 3 \le j)$. En effet, la ligne jne L4 stipule que le programme sautera à l'étiquette L4 si les deux termes de la comparaison antérieure n'étaient pas égaux (dans notre cas, que le registre $ext{\%}ext{c}x$ ne soit pas égal au registre $ext{\%}ext{d}x$). Il ne s'agit donc pas de l'opérateur $ext{w}$ plus petit ou égal $ext{(}\le x$) », mais de l'opérateur $ext{w}$ pas égal $ext{(}!=x$) ».

En tenant compte de ce qui précède, nous pouvons déduire que la traduction du code assembleur en code C correspond à la deuxième version de la fonction fun1.