Recursion – A Mathematical Notion

Iterative Definition

 An iterative definition of a function is one that defines all the steps to execute explicitly one by one in order to get the final result

$$- Fact(n) = n * (n-1) * (n-2) * ... * 1$$

- Search for a value in a set of numbers
 - Iterate over all numbers in the set (this is a loop)
 - compare the current number with the value
 - If found, return true
 - Return false

Recursive Definitions (1/3)

Definition

A recursive function is one that is defined by calling itself (one or many times) on a smaller subset of input

Factorial

- Fact(n) = Fact(n-1) * n
- Fact(0) = 1

Fibonacci

- Fib(n) = Fib(n-2) + Fib(n-1)
- Fib(0) = Fib(1) = 1

Recursive Definitions (2/3)

Correctness

- Stems from the axiom of induction (P is a predicate)
 - 1. Base case (P(0) is true)
 - 2. Induction step (P(n) => P(n+1) is true)

Then for all n, P is true!

Recursive Definitions (3/3)

- Properties
 - All recursive definitions must END at some point!
 - There must be a « way out » of the sequence of recursive calls
- Factorial
 - -0! = 1
- Fibonacci
 - Fib(0) = 0, Fib(1) = 1

Factorial Example

Implement Factorial

- Let's have a look at the inner mechanisms!
 - Fact(4)
 - How is a recursive definition executed using a stack?

Fibonacci Example

Implement it

- Is it efficient?
 - Execute Fib(10)!
 - What's going on ?

Why Recursiveness?

- Is it always possible and easy to find an iterative solution?
 - « Towers of Hanoi » problem [next slide]

— Is it easy to define an iterative solution ???

Towers of Hanoi (1/2)

- 3 pegs « A », « B » and « C »
- 5 disks of differing diameters are placed on peg « A » so that a larger disk is always below a smaller one

Goal: Move all disks to « C » using « B » as an auxiliary

Constraints:

- 1. Only the top disk on any peg can be moved
- 2. A larger disk may never rest on a smaller one

Towers of Hanoi (2/2)

- What if we had a solution for moving 4 disks from one peg to another?
- A solution for 5 disks could probably use the solution for 4 disks!
 - Can you find it ?
 - Implement it !
 - void towers(int n, char frompeg, char topeg, char auxpeg)

Recursive Chains (1/3)

- A recursive function need not call itself directly
- « a » calls « b » and « b » calls « a » !

```
a(...) { ... b(...) }
b(...) { ... a(...) }
```

Recursive Definitions (2/3)

- Algebraic expressions
 - 1. An **expression** is a *term* followed by a « + » sign followed by a *term*, or a *term* alone
 - 2. A **term** is a *factor* followed by an asterisk followed by a *factor*, or a *factor* alone
 - 3. A **factor** is either a *letter* or an *expression* enclosed in parentheses

Recursive Definitions (3/3)

- Write a program that reads a character string and then prints « valid » or « invalid »
 - int getsymb(char *str, int length, int *ppos)
 - int expr(char *str, int length, int *ppos)
 - int term(char *str, int length, int *ppos)
 - int factor(char *str, int length, int *ppos)

Recursive vs Iterative

Pros

 Recursive definitions are in general natural expressions of the solution to implement (tower of hanoi, algebraic expressions, factorial, ...)

Cons

- They are less efficient than iterative solutions
 - Memory consumption of stack frames
 - Slower due to function calls and especially unnecessary calls (e.g. fibonacci)

Simulating Recursion (1/3)

- Use of a stack to do the simulation
- What happens when a function is called?
 - 1. Passing arguments
 - 2. Allocating and intializing local variables
 - 3. Transferring control to the function
 - 1. Save the return address
 - Restitute the return value (if any) to the calling function

Simulating Recursion (2/3)

- Each time a recursive function calls itself
 - An entirely new data area (frame) is allocated
 - Arguments
 - Local and temporary variables
 - Return address
 - Return value is in a global variable (register)
- Be careful! This is associated to every function CALL!

Simulating Recursion (3/3)

- Simulation can be used to find an optimized version of the recursive algorithm
 - Removing superfluous variables and stack operations
 - Tail recursion is to be transformed into an iteration
 - This could lead however to adding bugs to the program!
 - A recursive solution could become as efficient as a non recursive one