Séries de fonctions

Exercice 0.1

Etudier la convergence uniforme des séries de fonctions suivantes dont le terme général est:

(1)
$$f_n(x) = \frac{\sin(n^2 x)}{n^2}; \quad x \in \mathbb{R}$$
 (2) $f_n(x) = \frac{x}{n^{\alpha}(1 + nx^2)}; \quad x \in [a, b]; \quad a, b, \alpha > 0$

(3)
$$f_n(x) = \frac{\cos(nx+n)}{1+nx+n}$$
; $x \in [0,1]$ (4) $f_n(x) = (-1)^n \frac{\sin(x+n)}{x+n}$; $x \in \mathbb{R}_+, n \ge 1$

Corrigé:

1.
$$f_n(x) = \frac{\sin(n^2 x)}{n^2}$$
; $x \in \mathbb{R}$

Pour tout $x \in \mathbb{R}$ on a $|f_n(x)| \leq \frac{1}{n^2}$, alors $\sum f_n$ converge normalement donc uniformement

sur IR.
2.
$$f_n(x) = \frac{x}{n^{\alpha}(1 + nx^2)}; \quad x \in [a, b]; \ a, b, \alpha > 0$$

Pour tout $x \in [a, b]$ on a $|f_n(x)| \le \frac{b}{a^2 n^{\alpha+1}}$ et $\sum \frac{1}{n^{\alpha+1}}$ est une série de Riemann convergente si $\alpha > 0$, alors $\sum f_n$ converge normalement donc uniformement sur [a, b] pour tout $\alpha > 0$.

3. $f_n(x) = \frac{\cos(nx + n)}{1 + nx + n}$; $x \in [0, 1]$

3.
$$f_n(x) = \frac{\cos(nx+n)}{1+nx+n}$$
; $x \in [0,1]$

 $f_n(x) = \frac{1}{1 + nx + n}; \quad x \in [0, 1]$ On pose $f_n(x) = v_n(x)w_n(x)$ tel que $v_n(x) = \frac{1}{1 + nx + n}$ et $w_n(x) = \cos(nx + n)$. Vérifions les hypothèses du théorème d'Abel pour la convergence uniforme.

(a) Pour tout $x \in [0,1]$ et $n \in \mathbb{N}$ on a $v_n(x) \ge 0$ et la suite $(v_n(x))_n$ est décroissante. $\lim_{n \to +\infty} v_n(x) = 0$, donc la suite de fonctions $(v_n(x))$ converge simplement vers 0.

 $|v_n(x)| \leq \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$, donc la suite de fonctions $(v_n(x))$ converge uniformement vers

(b) Pour $x \in [0,1]$: $\frac{1}{2} \le \frac{x+1}{2} \le 1$ et $\sin \frac{1}{2} \le \sin(\frac{x+1}{2}) \le \sin 1$ car la fonction sin est croissante sur [0,1].

Donc
$$\forall x \in [0, 1]$$
 on a $\left| \sum_{k=0}^{n} w_k(x) \right| = \left| \sum_{k=0}^{n} \cos(k(x+1)) \right| \le \frac{1}{\sin(\frac{x+1}{2})} \le \frac{1}{\sin(\frac{1}{2})} = M$

Alors la série de fonctions $\sum f_n$ est uniformement convergente sur [0,1].

4.
$$f_n(x) = (-1)^n \frac{\sin(x+n)}{x+n}; \quad x \in \mathbb{R}_+, n \ge 1$$

On pose $f_n(x) = v_n(x)w_n(x)$ tel que $v_n(x) = \frac{1}{x+n}$ et $w_n(x) = (-1)^n \sin(x+n)$. Vérifions les hypothèses du théorème d'Abel pour la convergence uniforme.

(a) Pour tout $x \in \mathbb{R}_+$ et $n \in \mathbb{N}^*$ on a $v_n(x) \geq 0$ et la suite $(v_n(x))_n$ est décroissante. $\lim_{n \to +\infty} v_n(x) = 0$, donc la suite de fonctions $(v_n(x))$ converge simplement vers 0.

1

 $|v_n(x)| \leq \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$, donc la suite de fonctions $(v_n(x))$ converge uniformement vers

(b) Montrons qu'il existe
$$M>0$$
 tel que $\Big|\sum_{k=1}^n w_k(x)\Big|\leq M.$

$$\left| \sum_{k=1}^{n} w_{k}(x) \right| = \left| \sum_{k=1}^{n} (-1)^{k} \sin(x+k) \right|$$

$$= \left| \mathcal{I}m \left(\sum_{k=1}^{n} (-1)^{k} e^{i(x+k)} \right) \right|$$

$$\leq \left| \sum_{k=1}^{n} (-1)^{k} e^{i(x+k)} \right|$$

$$= \left| e^{ix} \right| \left| \sum_{k=1}^{n} (-1)^{k} e^{ik} \right|$$

$$= \left| -e^{i} \frac{1 - (-e^{i})^{n}}{1 + e^{i}} \right|$$

$$\leq \frac{2}{|1 + e^{i}|} = M.$$

On peut calculer M explicitement $:M = \frac{2}{|1+e^i|} = \frac{1}{\sqrt{2+2\cos 1}} = \frac{1}{|\cos \frac{1}{2}|}.$

Exercice 0.2

Soit la série $\sum_{n=0}^{+\infty} x^n (1-x^2)$

- 1. Montrer qu'elle converge simplement dans [-1, 1].
- 2. Trouver la somme $S(x) = \sum_{n=0}^{+\infty} x^n (1-x^2)$. Y-a-t-il convergence uniforme dans [-1,1]?
- 3. Montrer que la série est uniformement convergente dans [-1,0] mais n'est pas normalement convergente.
- 4. Montrer que la série converge normalement dans [0, a] avec 0 < a < 1.

Corrigé:

- 1. Convergence simple

 - $x = \pm 1$, $f_n(x) = 0 \Longrightarrow \sum f_n$ converge. $x \in]-1,1[, \sum f_n$ est une série géométrique de raison x, donc elle converge puisque |x| < 1.

Alors $\forall x \in [-1, 1]$, la série de fonctions $\sum f_n$ converge simplement.

$$S(x) = \begin{cases} 0 & si \ x = 1; \\ \frac{1 - x^2}{1 - x} = 1 + x \quad si \ x \in [-1, 1[.]] \end{cases}$$

Les fonctions f_n sont continues sur [-1,1] pour tout $n \in \mathbb{IN}$, mais la somme S(x) n'est pas continue en x=1, donc la suite de fonction $\sum f_n$ ne converge pas uniformement sur [-1,1].

3. Convergence uniforme dans [-1,0]: Soit $(S_n(x))_n$ la suite des sommes partielles de la série de fonction $\sum f_n$ telle que

$$S_n = (1 - x^2) \frac{1 - x^{n+1}}{1 - x} = (1 + x)(1 - x^{n+1})$$

Calculons $\sup_{x \in [-1,0]} |S_n(x) - S(x)|.$

$$|S_n(x) - S(x)| = |(1+x)(1-x^{n+1}) - (1+x)| = (1+x)|x|^{n+1}$$

On pose

$$\varphi_n(x) = (1+x)|x|^{n+1} = (-1)^{n+1}(1+x)x^{n+1} \quad (\operatorname{car}|x| = -x)$$

le calcul de la dérivée de φ_n donne

$$\varphi'_n(x) = (-1)^{n+1} x^n ((n+1) + (n+2)x)$$

$$\varphi'_n(x) = 0 \Longrightarrow x = 0 \lor x = -\frac{n+1}{n+2}$$

On remarque que $\forall n \in \mathbb{N}, (-1)^{n+1}x^n \leq 0$

x	-1	$-\frac{n+1}{n+2}$		0
$\varphi'_n(x)$	+	0	_	0
$arphi_n$	0	$\varphi_n(-\frac{n+1}{n+2})$	(5)	→ 0

$$\sup_{x \in [-1,0]} |S_n(x) - S(x)| = \varphi_n\left(-\frac{n+1}{n+2}\right) = \frac{(n+1)^{n+1}}{(n+2)^{n+2}} \xrightarrow[n \to +\infty]{} 0.$$

Alors la suite des sommes partielles $(S_n(x))_n$ converge uniformement vers S(x) dans [-1,0], d'où la convergence uniforme de la série de fonctions $\sum f_n$ dans [-1,0].

• Convergence normale dans [-1,0]:

$$\overline{\text{Calculons} \sup_{x \in [-1,0]} |f_n(x)|} = \sup_{x \in [-1,0]} |x^n (1-x^2)| = \sup_{x \in [-1,0]} [(1-x^2)|x|^n].$$

On pose

$$\psi_n(x) = (1 - x^2)|x|^n = (-1)^n(1 - x^2)x^n$$

le calcul de la dérivée de ψ_n donne

$$\psi'_n(x) = (-1)^n x^{n-1} (n - (n+2)x^2)$$

$$\psi'_n(x) = 0 \Longrightarrow x = 0 \lor x = -\sqrt{\frac{n}{n+2}}$$

x	$-1 \qquad \qquad -\sqrt{\frac{n}{n+2}}$	0	
$\psi_n'(x)$	+ 0 -	0	
ψ_n	$0 \longrightarrow \psi_n(-\sqrt{\frac{n}{n+2}}) \longrightarrow 0$		

$$\sup_{x \in [-1,0]} |f_n(x)| = \psi(-\sqrt{\frac{n}{n+2}}) = \frac{2}{n+2} \left(\frac{n}{n+2}\right)^{\frac{n}{2}} \sim_{\infty} \frac{2}{en}$$

La série $\sum \frac{2}{e^n}$ diverge alors la série de fonctions $\sum f_n$ ne converge pas normalement dans

4. Convergence normale dans
$$[0, a]$$
 avec $0 < a < 1$:
$$\overline{\psi_n} \text{ est croissante sur } [0, a] \text{ alors } \sup_{x \in [0, a]} |f_n(x)| = \psi_n(a) = (1 - a^2)a^n = u_n.$$

La série numérique $\sum u_n$ est une série géométrique convergente, alors la série de fonctions $\sum f_n$ converge normalement dans [0,a].

Exercice 0.3

On considère la série de fonctions $\sum f_n$ définie par

$$f_n(x) = \frac{x^n}{3^n} \cos(n\pi x^2).$$

- 1. Déterminer le domaine de convergence uniforme de la série $\sum f_n$.
- 2. On pose $f(x) = \sum_{n=0}^{+\infty} f_n(x)$. Calcular $\lim_{x \to 1} f(x)$.

Corrigé:

- 1. Etudions la convergence uniforme :
 - Si |x| < a avec 0 < a < 3 on a $|f_n(x)| \le \left(\frac{a}{3}\right)^n = u_n$. $\sum u_n$ est une série géométrique convergente, alors la série $\sum f_n$ converge normalemnet donc uniformement sur [-a,a]
 - Si $|x| \geq 3$, le terme général $f_n(x)$ ne tend pas vers 0 quand n tend vers l'infini, alors la série $\sum f_n$ est divergente.
- 2. Pour tout $x \in [-a, a]$ avec 0 < a < 3 et $n \in \mathbb{N}$, les fonction f_n sont continues et la série $\sum f_n$ converge uniformement donc sa somme est une fonction continue sur [-a,a] avec 0 < a < 3. On a

$$\lim_{x \to 1} \sum_{n=0}^{+\infty} \frac{x^n}{3^n} \cos(n\pi x^2) = \sum_{n=0}^{+\infty} \lim_{x \to 1} \frac{x^n}{3^n} \cos(n\pi x^2)$$
$$= \sum_{n=0}^{+\infty} \frac{\cos(n\pi)}{3^n}$$
$$= \sum_{n=0}^{+\infty} \frac{(-1)^n}{3^n} = \frac{3}{4}.$$

Exercice 0.4

On considère la série de fonctions $\sum f_n$ définie par :

$$f_n(x) = \frac{\arctan(nx)}{n^2}, \quad x \in \mathbb{R}, \quad n \in \mathbb{N}^*,$$

- 1. Montrer que la série $\sum f_n$ converge uniformement sur \mathbb{R} .
- 2. On pose $f(x) = \sum_{n=1}^{+\infty} f_n(x)$. Montrer que f est une fonction continue sur \mathbb{R} .

- 3. Etudier la convergence normale de la série dérivée $\sum f'_n$ sur \mathbb{R} puis sur $[a, +\infty[$ avec
- 4. Montrer que f est dérivable sur \mathbb{R}^* mais pas en 0.

Corrigé:

1. Pour tout $x \in \mathbb{R}$, on a

$$\left| f_n(x) \right| \le \frac{\pi}{2n^2} = u_n,$$

or $\sum u_n$ est une série de Riemann convergente, alors la série $\sum f_n$ converge normalement sur IR, par conséquent elle converge uniformement sur IR.

- 2. On a
 - $\forall n \in \mathbb{N}^*$, les fonctions f_n sont définies et continues sur \mathbb{R} .
 - La série de fonctions $\sum f_n$ est uniformement convergente sur IR.

Alors f est continue sur \mathbb{R} .

3. Pour $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$, on a

$$f'_n(x) = \frac{1}{n(1+n^2x^2)}.$$

On remarque que f'_n est paire sur \mathbb{R} , étudions donc la convergence normale sur

On a $f'_n(0) = \frac{1}{n}$ et $\sum f'_n(0)$ diverge. $f''_n(x) = \frac{-2nx}{(1+n^2x^2)^2} < 0 \text{ donc } f'_n \text{ est décroissante sur }]0, +\infty[, \text{ par conséquent }]0, +\infty[]$

$$\sup_{x \in]0,+\infty[} \left| f'_n(x) \right| = f'_n(0) = \frac{1}{n}.$$

 $\sum \frac{1}{n}$ diverge alors la série $\sum f'_n$ ne converge pas normalement sur $]0, +\infty[$ et par parité sur

 $\begin{array}{c} \circ \text{ Convergence normale sur } [a,+\infty[,\,a>0:\\ \hline \text{Pour tout } n\in \mathbb{IN}^* \text{ et } x\geq a, \text{ on a} \end{array}$

$$\left| f'_n(x) \right| \le \frac{1}{n(1+n^2a^2)} \sim \frac{1}{a^2n^3} = v_n.$$

 $\sum v_n$ est une série de Riemann convergente alors la série $\sum f'_n$ converge normalement sur $[a, +\infty[$.

4. Montrons que f est dérivable sur \mathbb{R}^* :

On remarque que chaque fonction f_n est impaire alors f est aussi une fonction impaire.

- $\sum f_n$ converge uniformement sur IR donc simplement sur IR et par suite sur $[a, +\infty[$.
- ∀n ∈ IN*, f_n est dérivable avec f'_n(x) = 1/n(1 + n²x²).
 La série ∑ f'_n converge normalement donc uniformement sur [a, +∞[

Par suite la fonction f est dérivable sur $[a, +\infty[$, où $a \ge 0$. Puisque a est arbitraire on en déduit que f est dérivable sur \mathbb{R}_+^* . Par imparité, elle l'est sur \mathbb{R}^* . On a pour tout $x \in \mathbb{R}^*$

$$f'(x) = \sum_{n=1}^{+\infty} f'_n(x).$$

Comme les fonctions f'_n sont positives et continue en 0, alors

$$\lim_{x \to 0^+} f'(x) = \sum_{n=1}^{+\infty} \lim_{x \to 0^+} f'_n(x) = +\infty.$$

5

On en déduit que $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = +\infty$, La fonction f n'est pas dérivable en 0.

Exercice 0.5

On considère la série de fonctions $\sum f_n$ définie par :

$$f_n(x) = ne^{-nx}, \quad x \in \mathbb{R}, \quad n \in \mathbb{N}^*,$$

- 1. Etudier la convergence simple de la série en précisant le domaine de convergence Δ .
- 2. La convergence est-elle uniforme dans Δ ?
- 3. Montrer que la série est uniformement convergente dans $[a, +\infty[$, a > 0.

4. Posons
$$f(x) = \sum_{n=1}^{+\infty} ne^{-nx}$$
. Calcular $\int_{\alpha}^{\beta} f(x)dx$ avec $a < \alpha < \beta$.

Corrigé:

1. Convergence simple :

La série de fonctions $\sum f_n$ est une série à termes positifs. Appliquons le critère de D'Alem-

$$\lim_{n \longrightarrow +\infty} \frac{f_{n+1}(x)}{f_n(x)} = \lim_{n \longrightarrow +\infty} \frac{n+1}{n} e^{-x} = e^{-x}$$
• Si $x > 0$, la série $\sum f_n$ converge simplement.

- Si x < 0, la série $\sum f_n$ diverge.
- $\bullet\,$ Si x=0, Le thèorème de D'Alembert ne permet pas de conclure. Dans ce cas

$$f_n(x) = n \to 0 \text{ quand } n \longrightarrow +\infty.$$

Alors $\sum f_n$ diverge. On conclut que $\sum f_n$ converge simplement dans $\Delta = \mathbb{R}_+^*$

2. Convergence uniforme dans Δ :

On a
$$\lim_{n \to +\infty} f_n(x) = 0$$
 alors $f_n \xrightarrow{CS} 0$.
On pose $x_n = \frac{1}{n}$, alors
$$f_n(x_n) = ne^{-1} \to 0 \text{ quand } n \to +\infty,$$

$$f_n(x_n) = ne^{-1} \to 0 \text{ quand } n \longrightarrow +\infty,$$

par conséquent la suite de fonction $(f_n(x))$ ne converge pas uniformement vers 0 dans Δ . Donc $\sum f_n$ ne converge pas uniformement dans Δ .

3. Convergence uniforme dans $[a, +\infty[$:

Convergence uniforme dans $[a, +\infty[$. Etudions la convergence normale de $\sum f_n$ dans $[a, +\infty[$, en calculant $\sup_{x \in [a, +\infty[} (f_n(x))$.

On a $f'_n(x) = -n^2 e^{-nx}$. La dérivée est négative, alors f_n est décroissante sur $[a, +\infty[$ et

$$\sup_{x \in [a, +\infty[} (f_n(x)) = f_n(a) = ne^{-na}.$$

x	a	$+\infty$
$f'_n(x)$	_	
f_n	$f_n(a)$	0

 $\sum f_n(a)$ est une série numérique convergente (critère de D'Alembert), alors $\sum f_n$ converge normalement donc uniformement dans $[a, +\infty[$.

4. Puisque $\sum f_n$ converge uniformement dans $[a, +\infty[$ alors on a

$$\int_{\alpha}^{\beta} f(x) dx = \sum_{n=1}^{+\infty} \int_{\alpha}^{\beta} ne^{-nx} dx$$

$$= \sum_{n=1}^{+\infty} \left[-e^{-nx} \right]_{\alpha}^{\beta}$$

$$= \left(\sum_{n=1}^{+\infty} e^{-n\alpha} \right) - \left(\sum_{n=1}^{+\infty} e^{-n\beta} \right)$$

$$= \frac{e^{-\alpha}}{1 - e^{\alpha}} - \frac{e^{-\beta}}{1 - e^{\beta}}.$$

Exercice 0.6

Soit la série de fonctions de terme général

$$f_n(x) = \frac{(-1)^n}{1+nx}, \ x \in \mathbb{R}^+, \ n \in \mathbb{N}.$$

- 1. Etudier la convergence simple et préciser le domaine de convergence Δ .
- 2. La convergence est-elle uniforme dans Δ .
- 3. Etudier la convergence uniforme dans $[a, +\infty[$, a > 0.

4. On pose
$$f(x) = \sum_{n=0}^{+\infty} f_n(x)$$
.

a. Justifier que f est continue sur $]0, +\infty[$.

- b. Calculer $\lim_{x \to +\infty} f(x)$.
- c. Montrer que f est de classe C^1 dans $]0, +\infty[$.

Corrigé:

- 1. Convergence simple :
 - Si x = 0: $f_n(0) = (-1)^n$. La série $\sum f_n$ diverge.
 - Si $x>0:\sum f_n$ est une série alternée convergente.

On conclut que $\sum f_n$ converge simplement pour tout $x \in \Delta =]0, +\infty[$.

1. Convergence uniforme dans Δ :

On a
$$\lim_{n \to +\infty} f_n(x) = 0$$
, donc $f_n(x) \xrightarrow{CS} 0$.

On pose $x_n = \frac{1}{n}$, on a alors

$$f_n(x_n) = \frac{(-1)^n}{2} \nrightarrow 0$$
 quand n tend vers $+\infty$.

D'où $\sum f_n$ ne converge pas uniformement dans Δ .

3. Convergence uniforme dans $[a,+\infty[$:

La série $\sum f_n$ converge uniformement dans $[a, +\infty[$ car la suite des restes $R_n = \sum_{n=0}^{+\infty} f_n(x)$ converge uniformement vers 0 dans $[a, +\infty[$, en effet

$$|R_n| \le |f_{n+1}(x)| = \frac{1}{1+nx} \le \frac{1}{na} \xrightarrow[n \to +\infty]{} 0$$

(On peut appliquer le théorème d'Abel pour montrer la convergence uniforme dans $[a, +\infty[)$.

4.
$$f(x) = \sum_{n=0}^{+\infty} f_n(x)$$
.

- a. La série $\sum f_n$ converge uniformement dans $[a, +\infty[$. Comme les fonctions f_n sont continues sur $[a, +\infty[$, il en est de même pour f. Puisque a est arbitraire, f est continue dans $[0, +\infty[$.
- b. Puisque la convergence est uniforme dans $[a, +\infty[$, on peut permuter les limites.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to +\infty} f_n(x)$$

$$= \lim_{x \to +\infty} f_0(x) + \lim_{x \to +\infty} f_1(x) + \dots + \lim_{x \to +\infty} f_n(x) + \dots$$

$$= 1$$

c. La série $\sum f_n$ converge simplement dans $]0, +\infty[$, chaque fonction f_n est de classe \mathcal{C}^1 dans ce même intervalle, avec

$$f'_n(x) = (-1)^{n+1} \frac{n}{(1+nx)^2}.$$

La série $\sum f'_n$ converge uniformement dans $[a, +\infty[$ car la suite des restes $R_n = \sum_{k=n+1}^{+\infty} f'_n(x)$ converge uniformement vers 0 dans $[a, +\infty[$. On conclut donc que f est de classe \mathcal{C}^1 dans $[a, +\infty[$. Comme a est arbitraire, f est de classe \mathcal{C}^1 dans $[0, +\infty[$.