In each of Problems 7 through 10 follow the procedure illustrated in Example 4 to determine the indicated roots of the given complex number.

7.
$$1^{1/3}$$
 8. $(1-i)^{1/2}$ 9. $1^{1/4}$ 10. $[2(\cos \pi/3 + i \sin \pi/3)]^{1/2}$

In each of Problems 11 through 28 find the general solution of the given differential equation.

11.
$$y''' - y'' - y' + y = 0$$

12. $y''' - 3y'' + 3y' - y = 0$
13. $2y''' - 4y'' - 2y' + 4y = 0$
14. $y^{iv} - 4y''' + 4y'' = 0$
15. $y^{vi} + y = 0$
16. $y^{iv} - 5y'' + 4y = 0$
17. $y^{vi} - 3y^{iv} + 3y'' - y = 0$
18. $y^{vi} - y'' = 0$
19. $y^{v} - 3y^{iv} + 3y''' - 3y'' + 2y' = 0$
20. $y^{iv} - 8y' = 0$
21. $y^{viii} + 8y^{iv} + 16y = 0$
22. $y^{iv} + 2y'' + y = 0$
23. $y''' - 5y'' + 3y' + y = 0$
24. $y''' + 5y'' + 6y' + 2y = 0$
25. $18y''' + 21y'' + 14y' + 4y = 0$
26. $y^{iv} - 7y''' + 6y'' + 30y' - 36y = 0$
27. $12y^{iv} + 31y''' + 75y'' + 37y' + 5y = 0$
28. $y^{iv} + 6y''' + 17y'' + 22y' + 14y = 0$

In each of Problems 29 through 36 find the solution of the given initial value problem and plot its graph. How does the solution behave as $t \to \infty$?

29.
$$y''' + y' = 0;$$
 $y(0) = 0,$ $y'(0) = 1,$ $y''(0) = 2$

▶ 30.
$$y^{iv} + y = 0$$
; $y(0) = 0$, $y'(0) = 0$, $y''(0) = -1$, $y'''(0) = 0$

■ 30.
$$y^{iv} + y = 0$$
; $y(0) = 0$, $y'(0) = 0$, $y''(0) = -1$, $y'''(0) = 0$
■ 31. $y^{iv} - 4y''' + 4y'' = 0$; $y(1) = -1$, $y'(1) = 2$, $y''(1) = 0$, $y'''(1) = 0$

▶ 32.
$$y''' - y'' + y' - y = 0$$
; $y(0) = 2$, $y'(0) = -1$, $y''(0) = -2$

32.
$$y''' - y'' + y' - y = 0$$
; $y(0) = 2$, $y'(0) = -1$, $y''(0) = -2$
33. $2y^{iv} - y''' - 9y'' + 4y' + 4y = 0$; $y(0) = -2$, $y''(0) = 0$, $y''(0) = -2$, $y'''(0) = 0$

▶ 34.
$$4y''' + y' + 5y = 0$$
; $y(0) = 2$, $y'(0) = 1$, $y''(0) = -1$

► 35.
$$6y''' + 5y'' + y' = 0$$
; $y(0) = -2$, $y'(0) = 2$, $y''(0) = 0$

▶ 34.
$$4y''' + y' + 5y = 0$$
; $y(0) = 2$, $y'(0) = 1$, $y''(0) = -1$
▶ 35. $6y''' + 5y'' + y' = 0$; $y(0) = -2$, $y'(0) = 2$, $y''(0) = 0$
▶ 36. $y^{iv} + 6y''' + 17y'' + 22y' + 14y = 0$; $y(0) = 1$, $y'(0) = -2$, $y''(0) = 0$, $y'''(0) = 3$

37. Show that the general solution of $y^{iv} - y = 0$ can be written as

$$y = c_1 \cos t + c_2 \sin t + c_3 \cosh t + c_4 \sinh t$$
.

Determine the solution satisfying the initial conditions y(0) = 0, y'(0) = 0, y''(0) = 1, y'''(0) = 1. Why is it convenient to use the solutions $\cosh t$ and $\sinh t$ rather than e^t and

- 38. Consider the equation $y^{iv} y = 0$.
 - (a) Use Abel's formula [Problem 20(d) of Section 4.1] to find the Wronskian of a fundamental set of solutions of the given equation.
 - (b) Determine the Wronskian of the solutions e^t , e^{-t} , $\cos t$, and $\sin t$.
 - (c) Determine the Wronskian of the solutions $\cosh t$, $\sinh t$, $\cos t$, and $\sin t$.
- 39. Consider the spring-mass system, shown in Figure 4.2.4, consisting of two unit masses suspended from springs with spring constants 3 and 2, respectively. Assume that there is no damping in the system.
 - (a) Show that the displacements u_1 and u_2 of the masses from their respective equilibrium positions satisfy the equations

$$u_1'' + 5u_1 = 2u_2, u_2'' + 2u_2 = 2u_1.$$
 (i)

(b) Solve the first of Eqs. (i) for u_2 and substitute into the second equation, thereby obtaining the following fourth order equation for u_1 :

$$u_1^{\text{iv}} + 7u_1'' + 6u_1 = 0. (ii)$$

Find the general solution of Eq. (ii).