Конспект по матанализу II семестр Современное программирование, факультет математики и компьютерных наук, СПбГУ (лекции Бахрева Федора Львовича)

Тамарин Вячеслав

13 марта 2020 г.

Оглавление

1	Интергирование		
	1.1		
		1.1.1 Фо	ррмула Тейлора с остаточным членом в интегральной форме
		1.1.2 Te	орема о среднем
	1.2	Приближенное вычисление интеграла	
		1.2.1 C _E	войства
	1.3	В Вычисление площадей и объемов	
		1.3.1 Π_{J}	пощади
		1.3.2 O	бъемы
1.4 Кривые в \mathbb{R}^n и их площади		Кривые в	з \mathbb{R}^n и их площади $\dots\dots\dots$
		1.4.1 По	оговорим о длине
		1.4.2 Ba	ажные частные случаи общей формулы
2	Дис	Дифференциальное исчисление функций многих вещественных переменных 2.1 Нормированные пространства	
	2.1		
			оодолжение примеров
	2.2		
			инейные и полилинейные непрерывные отображения (операторы)
			остранство линейных непрерывных операторов

ОГЛАВЛЕНИЕ

Глава 1

Интергирование

1.1

Лекция 1

14 feb

1.1.1 Формула Тейлора с остаточным членом в интегральной форме

$$f(x) = T_{n,x_0} f(x) + R_{n,x_0} f(x),$$

где

$$T_{n,x_0}f(x) = \sum_{i=0}^{n} \frac{1}{i!} f^{(i)}(x) (x - x_0)^i,$$

а R_{n,x_0} — остаток.

Theorem 1 (Формула Тейлора с остатком в интегральной форме). $f \in C^{n+1}(\langle a,b \rangle), \ x,x_0 \in (a,b).$ Тогда остаток в формуле Тейлора представим в виде

$$R_{n,x_0} = \frac{1}{n!} \int_{x_0}^{x} f^{(n+1)}(t)(x-t)^n dt.$$

Доказательство. Индукция по n.

База: n = 1. По формуле Ньютона-Лейбница:

$$R_{0,x_0}f(x) = f(x) - f(x_0) = \int_{x_0}^x f'(t)dt.$$

Переход: $n-1 \to n$.

$$R_{n-1,x_0}f(x) = \frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(x-t)^{n-1} dt =$$

$$= \frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(t) d\left(\frac{(x-t)^n}{n}\right) =$$

$$= \underbrace{-\frac{1}{n!} f^{(n)}(t)(x-t)^n \Big|_{x_0}^x}_{n!} + \underbrace{\frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt}_{R_{n,x_0}f(x)}$$

1.1.2 Теорема о среднем

Theorem 2 (Хитрая теорема о среднем). $f,g \in C[a,b], g \geqslant 0$. Тогда

$$\exists c \in (a,b): \int_a^b f(x)g(x)dx = f(c)\int_a^b g(x)dx.$$

Доказательство. Найдем максимум и минимум f на [a,b].

$$m \leqslant f(x) \leqslant M$$
.

Тогда

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x).$$

Так как интеграл монотонен

$$\begin{split} m \int_a^b g(x) dx &\leqslant \int_a^b f(x) d(x) dx \leqslant M \int_a^b g(x) dx \\ m &\leqslant \frac{\int_a^b f(x) g(x) dx}{\int_a^b g(x) dx} \leqslant M. \end{split}$$

По теореме Больцано-Коши о промежуточном значении

$$\exists c \in (a,b) : f(c) = \frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx}.$$

Corollary. Если $|f^{(n+1)}| \leq M$, то существует понятно какая оценка сверху для $|R_{n,x_0}f(x)|$.

Theorem 3. Формула Тейлора с остатком в форме Лагранжа следует из формулы Тейлора с остатком в интегральной форме.

Доказательство. Запишем остаток в форме Лагранжа:

$$R_{n,x_0}f(x) = \frac{f^{(n+1)}(\Theta)}{(n+1)!}(x-x_0)^{n+1}, \quad \Theta$$
 лежит между x, x_0 .

По прошлой теореме 2, где $g(t) = (x-t)^n$, получаем, что

$$\frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt = \frac{1}{n!} \cdot f^{(n+1)}(\Theta) \int_{x_0}^x (x-t)^n dt = \frac{1}{n!} \cdot f^{(n+1)}(\Theta) \cdot \left(-\frac{((x-t)^n)^{n+1}}{n+1}\right) \Big|_{x_0}^x.$$

1.2 Приближенное вычисление интеграла

Definition 1: Дробление

Пусть $\tau = \{x_0, \dots, x_n\}, \ a < x_0 < \dots < x_n < b.$ Тогда τ называется дроблением отрезка [a,b]. Мелкость дробления —

$$|\tau| = \max_{0 \le i \le n-1} (x_{i+1} - x_i).$$

Оснащение дробления —

$$\theta = \{t_1, \dots t_n\}, \quad t_j \in [x_{j-1}, x_j].$$

Лекция 2

21 feb

1.2.1 Свойства

Property.

1 $c \in (a,b)$:

$$\int_{a}^{\to b} f dx = \int_{a}^{c} f dx + \int_{c}^{\to b}.$$

2 $\int_a^{\to b} f dx - cxo \partial umcs \Longrightarrow \lim_{A \to b} \int_A^{\to b} f = 0$

2' Если $\int_A^{\to b} f \not\to_{A\to b-} \Longrightarrow \int_a^{\to b}$ расходится (необходимое условие сходимости несобственного интеграла).

линейность $f,g-\phi y$ нкции на $[a,b),\ \alpha,\beta\in\mathbb{R}$

$$\int_a^{\to b}, \ \int_a^{\to b} g \ cxo \partial smcs \implies \int_a^{\to b} (\alpha f + \beta g) = \alpha \int_a^{\to b} + \beta \int_a^{\to b} g.$$

монотонность $f \leqslant g, \int_a^{\to b} f + \int_a^{\to b} g \ cxodsmcs.$

$$\int_{a}^{\to b} f \leqslant \int_{a}^{\to b} g.$$

Definition 2: Абсолютная сходимость

 Γ оворят, что $\int_a^{\to b} f$ сходится абсолютно, $ecnu\ cxodumc$ я $\int_a^{\to b} |f|$.

 $\mathit{Ecnu}\,\int_a^{ o b} f$ сходится абсолютно, то $\int_a^{ o b} f$ сходится и верно неравенство

$$\left| \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f|.$$

Доказательство. Воспользуемся критерием Больцано-Коши:

$$\int_{a}^{\to b} |f| \,\operatorname{сходится} \implies \forall \varepsilon > 0 \,\, \exists \delta \in (a,b) : \forall B_1, B_2 \in (\delta,b) : \int_{B_1}^{B_2} |f| dx < \varepsilon \Longrightarrow \left| \int_{B_1}^{B_2} f dx \right| < \varepsilon.$$

Для любого B:

$$\left| \int_{a}^{B} \right| \leqslant \int_{a}^{B} |f| dx.$$

Definition 3: Условная сходимость

 $\int_a^{ o b} f$ называется условно сходящимся, если $\int_a^{ o b} f$ сходится, а $\int_a^{ o b} |f|$ расходится.

интегрирование по частям $f,g\in C^1[a,b)$

$$\int_{a}^{\to b} fg' = fg \Big|_{a}^{\to b} - \int_{a}^{\to b} f'g, \quad fg \Big|_{a}^{\to b} = \lim_{x \to b-} f(x)g(x) - f(a)g(a).$$

Если два предела из трех существуют, то существует третий и верно это равенство.

замена переменной $\varphi: [\alpha, \beta) \to [a, b), \ \varphi \in C^1[\alpha, \beta), f \in C[a, b).$ Если существует предел, обозначим его так: $\exists \lim_{x \to \beta^-} \varphi(x) = \varphi(\beta^-).$

$$\int_{\alpha}^{\rightarrow beta} f(\varphi(x))\varphi'(x)dx = \int_{\varphi(\alpha)}^{\varphi(\beta-)} f(y)dy.$$

Доказательство. $D \in [\alpha, \beta)$.

$$\Phi(\gamma) = \int_{\alpha}^{\gamma} f(\varphi(x)) \varphi'(x) dx.$$

 $c \in [a, b)$

$$F(c) = \int_{\varphi(\alpha)}^{c} f(y)dy.$$

Обычная формула замены перменной: $\Phi = F(\varphi(x))$.

Пусть $\exists \int_{\varphi(\alpha)}^{\varphi(\beta-)} f(y) dy.$ Возьмем любую последовательность $\{\gamma_n\} \subset [\alpha,\beta), \gamma_n \to \beta-.$

$$\Phi(\gamma_n) = F(\varphi(\gamma_n)).$$

$$\int_{\alpha}^{\gamma_n} f \circ \varphi' = \int_{\varphi(\alpha)}^{\varphi(\gamma_n)} \to \int_{\varphi(\alpha)}^{\varphi(\beta)}.$$

 \sqsubseteq Пусть $\exists \int_{\alpha}^{\rightarrow \beta} (f \circ g) \varphi'$. Надо проверить, что $\exists \int_{\varphi(\alpha)}^{\varphi(\beta-)} f$.

- 1. $\varphi(\beta -) < b$ очевидно.
- 2. $\varphi(\beta-) = b \ \{c_n\} \subset [\varphi(\alpha), b), \ c_n \to b \ \exists \gamma_{n \in [\alpha, \beta)} : \varphi(\gamma_n) = c_n.$ Существует подпоследовательность, стремящаяся либо к β , либо к числу меньшему β .
 - $\{\gamma_{n_k}\} \to \beta$

$$\int_{\alpha}^{\gamma_{n_k}} = \int_{\varphi(\gamma)}^{\varphi(\gamma_{n_k} = c_{n_k})}.$$

• $\{\gamma_{n_k}\} \to \tilde{\beta} < \beta$

$$\varphi(\gamma_{n_k}) \to \varphi(\beta) \in [a, b) < b.$$

Но должно быть равно b. Противоречие.

Значит $\gamma_n \to b$.

$$\int_{alpha}^{\varphi(\gamma_n)} (f \circ g) \varphi' = \int_{phi(alpha)}^{phi(\gamma_n)} f = \int_{\varphi(\alpha)}^{c_n} f.$$

Theorem 4 (Признаки сравнения). Пусть $0 \leqslant f \leqslant g, f,g \in C[a,b)$. Тогда

- 1. если $\int_a^{\to b} g$ сходится, то $\int_a^{\to b} f$ сходится,
- 2. $ecnu \int_a^{\to b} g \ pacxodumcs, \ mo \int_a^{\to b} f \ pacxodumcs.$

Доказательство.

- 1. Используем критерий Коши $\forall \varepsilon > 0 \ \exists \delta \in (a,b): \forall B_1,B_2 \in (\delta,b): \ \int_{B_1}^{B_2} g < \varepsilon \Longrightarrow \int_{B_1}^{B_2} f < \varepsilon$
- 2. Аналогично

Theorem 5 (Признаки Абеля и Дирихле). $f \in C[a,b), g \in C^1[a,b), g$ монотонна.

Признак Дирихле *Если* f имеет ограниченную первообразную на $[a,b), g \to 0$, то $\int^{tb} fg$ cxo-dumcs.

Признак Абеля Eсли $\int_a^{\to b} f$ сходится, g ограничена, то $\int_a^{\to b} f g$ сходится.

Доказательство. F — первообразная f. $F(B) = \int_a^B f$

$$\int_{a}^{\to b} fg dx = \int_{a}^{\to b} g dF = Fg \Big|_{a}^{\to b} - \int_{a}^{\to b} Fg' dx.$$

признак Даламбера $\lim_{B \to b-} F(B)g(B) = 0$

признак Абеля $\exists \lim F, \exists \lim g$

Теперь про интеграл. Пусть $M = \max F$, он существует, так как F ограничена в любом случае.

$$\int_{a}^{\to b} Fg'dx \leqslant M \cdot \int_{a}^{\to b} |g|dx = M \cdot \left| \int_{a}^{\to b} g'dx \right| = M \cdot |g(b-) - g(a)|.$$

Example 1.

$$\int_0^{\frac{1}{2}} x^{\alpha} |\ln x|^{\beta}.$$

Рассмотрим случай $\alpha>1$. Метод удавливания логарифма: $\varepsilon>0:\alpha-\varepsilon>-1,$

$$|x^{\alpha}|\ln x|^{\beta} = x^{\alpha-\varepsilon}x^{\varepsilon}|\ln x|^{\beta} \underset{x\to 0}{\longrightarrow} 0 \leqslant Cx^{\alpha-\varepsilon}.$$

Тогда $\int_0^{\frac{1}{2}} x^{\alpha-\varepsilon} dx$ сходится. Если $\alpha < -1$,

$$\varepsilon > 0 \ \alpha + \varepsilon < -1.$$

$$x^{\alpha} |\ln x|^b = x^{\varepsilon + \alpha} \underbrace{x^{-\varepsilon} |\ln x|^{\beta}}_{\to \infty}.$$

Тогда $\int_0^{\frac{1}{2}} x^{\alpha+\varepsilon} dx$ расходится.

Если $\alpha = -1$, сделаем замену:

$$\int_0^{\frac{1}{2}} \frac{|\ln x|^{\beta}}{x} dx = -\int_0^{\frac{1}{2}} |\ln x|^{\beta} d(f(x)) = \int_{-\ln \frac{1}{2}}^{\infty} y^{\beta} dy.$$

Тоже сходтся.

Example 2.

$$\int_{10}^{+\infty} \frac{\sin x}{s^{\alpha}} dx, \quad \int_{10}^{+\infty} \frac{\cos 7x}{x^{\alpha}} dx.$$

 $\alpha > 0$.

$$\int_{10}^{+\infty} \frac{|\sin x|}{x^{\alpha}} dx \, \operatorname{сходится, \, так \, как \, сходится} \, \int_{10}^{+\infty} \frac{dx}{x^{\alpha}}.$$

 $2. \ 0 < lpha \leqslant 1.$ По признаку Дирихле: $f(x) = \sin x$ – ограничена первообразная, $g(x) = \frac{1}{x^{lpha}}$ – убывает.

Значит

$$\int_{10}^{+\infty} \frac{\sin x}{x^{\alpha}} dx \, \text{сходится.}$$

Example 3 (Более общий вид).

$$\int_{10}^{+\infty} f(x) \sin \lambda x dx, \quad \int_{10}^{+\infty} f(x) \cos \lambda x dx, \quad \lambda \in \mathbb{R} \setminus \{0\}.$$

 $f \in C^1[0,+\infty), f$ монотонна.

Если при $x \to +\infty$ $f \to 0$, то интегралы сходятся,

Если при $x \to +\infty$ $f \not\to 0$, то интегралы расходятся.

Remark.

$$\int_{10}^{+\infty} f(x) dx \ \text{сходится} \ \neq f \to 0, \ \text{при} \ x \to +\infty.$$

ГЛАВА 1. ИНТЕРГИРОВАНИЕ

Practice.

$$\int_{10}^{+\infty} f(x)dx$$
 сходится, $f \in C[10, +\infty)$.

Следует ли из этого, что

$$\int_{10}^{+\infty} (f(x))^3 dx$$
 сходится?

1.3 Вычисление площадей и объемов

1.3.1 Площади

- 1. $f \in C[a,b], f \geqslant 0, P_f = \{(x,y) \mid x \in [a,b], y \in [0,f(x)]\}$. Тогда $S(P_f) = \int_a^b f(x) dx$
- 2. Криволинейная трапеция. $f,g\in C[a,b],\ f\geqslant g,\ T_{f,g}=\{(x,y)\mid xin[a,b],y\in [g(x),f(x)]\}.$ Тогда $S(T_{f,g})=\int_a^b f(x)-g(x)dx$

Corollary (Принцип Кавальери). Если есть две фигуры на плоскости расположенные в одной полосе и длина всех сечений прямыми, параллельными полосе, равны, то их площади равны. Сейчас мы можем доказать его только для случаев, когда все границы фигур — графики функции.

3. Площадь криволинейного сектора в полярных координатах. $f: [\alpha, \beta] \to \mathbb{R}, \ \beta - \alpha \leqslant 2\pi, \ f \geqslant 0,$ g непрерывна.

$$\tilde{P}_f = \{(r, \varphi) \in \mathbb{R}^2 \mid \varphi \in [a, b], \ r \in [0, f(\varphi)]\}.$$

Пусть τ — дробление $[\alpha, \beta]$, $\tau = \{\gamma_j\}_{j=0}^n$, $\alpha = \gamma_0 < \gamma_1 < \dots \gamma_n = \beta$. Пусть $M_j = \max_{[\gamma_j, \gamma_{j+1}]}, m_j = \max_{[\gamma_j, \gamma_{j+1}]}, m_j = \beta$

Рис. 1.1: sector

$$\min_{[\gamma_j,\gamma_{j+1}]}$$

$$\sum \frac{m_j^2}{2} (\gamma_j - \gamma_{j+1}) \leqslant S(\tilde{P}_f) \leqslant \sum \frac{M_j^2}{2(\gamma_j - \gamma_{j+1})}.$$

ГЛАВА 1. ИНТЕРГИРОВАНИЕ

Крайние стремятся к $\frac{1}{2}\int_{\alpha}^{\beta}f^{2}(\varphi)d\varphi$. Значит

$$S(\tilde{P}_f)\frac{1}{2}\int_a^b fst(\varphi)d\varphi.$$

4. Площадь фигуры, ограниченной праметрически заданной кривой. $x,y:\mathbb{R}to\mathbb{R}.\ \forall t:x(t+T)=x(t),y(t+T)=y(T).\ x,y\in C^1(\mathbb{R})$

$$S = \int_{A}^{B} (f(x) - g(x))dx.$$

$$\int_{A}^{B} g(x)dx = \int_{t \in [b, a+T]}^{a+T} y(f)x'(t)dt$$

$$\int_{dx=x'(t)dt}^{dx=x'(t)dt} g(x'(t)) = y(t)$$

$$\int_{A}^{B} f(x)dx = \int_{t \in [a,b]}^{a+T} y(t)x'(t)dt$$

$$S = \int_{A}^{B} (f(x) - g(x))dx = -\int_{a}^{a+T} y(t)x'(t)dt = \int_{a}^{a+T} y'(t)x(t)dt.$$

1.3.2 Объемы

- 1. Аксиомы и свойства такие же как и у площади. Можно определить псевдообъем.
- 2. Фигура $T \subset \mathbb{R}^3, \ T \subset \{(x,y,z) \in \mathbb{R}^3 \mid x \in [a,b]\}.$

Definition 4

Сечение $T(x) = \{(y, z) \in \mathbb{R}^2 \mid (x, y, z) \in T\}.$

 $\forall x: T(x)$ имеет площадь, а

$$V(T) = \int_{a}^{b} S(T(x))dx.$$

3. Дополнительное ограничение не T:

$$\forall \Delta \subset [a,b] \ \exists x_*, x^* \in \Delta : \forall x \in \Delta \ T(x_*) \subset T(x) \subset T(x^*).$$

Example 4. T — тело вращения, $f \in C[a,b], f \geqslant 0$.

$$T = \{(x, y, z) \mid \sqrt{y^2 + z^2} \leqslant f(x)\}.$$

Доказательство формулы. Постулируем объем цилиндра: с произвольным основанием V=SH. Рассмотрим тело T и au дробление отрезка [a,b] . Поместим его между двумя цилиндрами.

Рис. 1.2: cilinder

$$\sum (x_j - x_{j-1}) S(T(x_* \Delta_j)) \leqslant V \leqslant (x_j - x_{j-1}) S(T(x^* \Delta_j)).$$

Обе суммы стремятся к $\int_a^b S(T(x)) dx$ как интегральные суммы.

Example 5 (Интеграл Эйлера-Пуассона).

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$

$$T=\{0\leqslant y\leqslant e^{-(x^2+y^2)}\}$$

$$T(x) = \{(y, z) \in \mathbb{R}^2 \mid 0 \leqslant y \leqslant e^{-(x^2 + z^2)}\}.$$

Посчитаем площадь сечения

$$S(T(x)) = \int_{-\infty}^{\infty} e^{-(x^2 + z^2)} dz = e^{-(x^2)} int_{-\infty}^{\infty} e^{-y^2} = Ie^{-x^2}.$$

Рис. 1.3: Интеграл Эйлера-Пуассона

Лекция 3

$$\int_{-\infty}^{\infty} e^{-x^2} dx = I.$$

Получили, что $V=I^2$.

$$V = \int_0^1 S(y)dy = \pi \int_0^1 r(y)^2 dy = .$$

Где $r(y) = \sqrt{-\ln y}$. Подставляем:

$$= -\pi \int_0^1 \ln y \, dy = -\pi (y \ln y - y) \Big|_0^1 = \pi.$$

ГЛАВА 1. ИНТЕРГИРОВАНИЕ

Кривые в \mathbb{R}^n и их площади 1.4

Definition 5: Путь

Путь в \mathbb{R}^n — отображение $\gamma:[a,b]\to\mathbb{R}^n,\ \gamma\in C[a,b].$

Можно разложить по координатам

$$\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t)), \ \gamma_i$$
 — координатные отображения для γ .

Начало пути — $\gamma(a)$, конец пути — $\gamma(b)$.

Hосители пути — $\gamma([a,b])$.

 γ замкнут, если $\gamma(a) = \gamma(b)$.

 $\gamma \in C^n[a,b] \iff \forall i: \gamma_i \in C^r[a,b] \iff \gamma - r$ -гладкий путь. γ^{-1} — противоположный путь, если $\gamma^{-1}(t) = \gamma(a-b-t), \ \forall t \in [a,b]$.

Note. Разные пути могут иметь один общий носитель.

Definition 6

Два пути $\gamma:[a,b]\to\mathbb{R}^n$ и $\tilde{\gamma}:[c,d]\to\mathbb{R}^n$ эквивалентны, если существует строго возрастающая

$$\varphi:[a,b]\to [c,d]:\gamma=\tilde{\gamma}\circ\varphi.$$

Statement. Это отношение эквивалентности.

Definition 7: Кривая

Кривая в \mathbb{R}^n — класс эквивалентности путей. Параметризация кривой — путь, представляющий кривую.

Example 6.

$$\gamma_1: [0,\pi] \to \mathbb{R}^2 \quad \gamma_1(t) = (\cos t, \sin t_0).$$

$$\gamma_2: [-1,1] \to \mathbb{R}^2 \quad \gamma_2(t) = (-t, \sqrt{1-t^2}).$$

Можно определить:

начало кривой

- конец кривой
- простота
- замкнутость
- ullet кривя r-гладкая, если у нее есть хотя бы одна гладкая параметризация.

1.4.1 Поговорим о длине

Ожидаемые свойства:

• $\gamma: [a,b] \to \mathbb{R}^n, c \in (a,b).$

$$\gamma = \gamma \mid_{[a,c]}, \quad \gamma = \gamma \mid_{[c,b]} \Longrightarrow l(\gamma) = l(\gamma) + l(\gamma).$$

- независимость от параметризации
- $l(\gamma) \geqslant |\gamma(a) \gamma(b)|$
- $l(\gamma) \geqslant \sum_{1}^{m} |\gamma(x_i) \gamma(x_{j-1})|$, где \forall дробления [a,b] $\tau = \{x_i\}$

Definition 8: Длина пути

$$\gamma:[a,b] \to \mathbb{R}^n$$
 — путь. $l(\gamma) = \sup_{\tau} l_{\tau},$ где

$$l_{\tau} = \sum_{j=1}^{m} |\gamma(x_j) - \gamma(x_{j-1})|, \ \tau = \{x_j\}_{j=0}^{m}.$$

Practice. Придумать пример бесконечно длинного пути.

Definition 9

Если путь имеет конечную длину, он называется спрямляемым.

Definition 10

Длина крвивой — длина любой из ее параметризаций.

Property.

$$\boxed{1.} \ \gamma \sim \tilde{\gamma} \Longrightarrow l(\gamma) = l(\tilde{\gamma})$$

 $\lfloor 2. \rfloor$ Аддитивность

$$\gamma: [a, b], c \in (ab)$$
 $\gamma = \gamma \mid_{[a, c]}, \gamma \gamma \mid_{[c, b]}.$

Тогда $l(\gamma) = l(\gamma) + l(\gamma)$.

Доказательство.

 $1 \Longrightarrow 2$ τ — дробление [a,b].

$$\tau^{l} (\tau \cap [a, c] \cup \{c\})$$
$$\tau^{r} = (\tau \cap [c, b] \cup \{c\})$$

$$l(\gamma) = \sum_{j=1}^{n} |\gamma(x_j) - \gamma(x_{j-1})| \leqslant l_{\tau^l}(\gamma^l) - l_{tau^r}(\gamma^r) \leqslant l(\gamma^l) - l(\gamma^r).$$

 $\boxed{2\Longrightarrow 1}$ au^l — дробление [a,b], au^r — дробление [c,d]. $au= au^l\cup au^r.$

$$l(\gamma) \leqslant l_{\tau}(\gamma) = l_{\tau^l}(\gamma^l) + l_{\tau^r}(\gamma^r)$$

$$\sup_{l} l(\gamma) \geqslant l(\gamma^{l}) + l_{\tau^{r}}(\gamma^{r}) \qquad \forall \tau^{l}$$

$$\sup_{\tau^{l}} l(\gamma) \geqslant l(\gamma^{l}) + l_{\tau^{r}}(\gamma^{r}) \qquad \forall \tau^{l}$$

$$\sup_{\tau^{r}} l(\gamma) \geqslant l(\gamma^{l}) + l_{\tau^{r}}(\gamma^{r}) \qquad \forall \tau^{r}$$

Theorem 6 (Длина гладкого пути). $\gamma:[a,b]\to\mathbb{R}^n$ — гладкий путь. Тогда γ обязательно спр u

$$l(\gamma) = \int_{a}^{b} |\gamma'(t)| dt.$$

$$\gamma'(t) = (\gamma'_1(t), \dots, \gamma'_n(\tau)).$$

$$|\gamma'(t)| = \sqrt{|\gamma'_1(t)|^2 + \dots + \gamma'_n(t)|^2}.$$

Доказательство. 1. $\Delta \subset [a,b]$ — отрезок. Пусть $m_j(\Delta) = \min_{t \in \Delta} |\gamma'_j(t)|, M_j(\Delta) = \max_{t \in \Delta} |\gamma'_j(t)|.$

$$m(\Delta) = \sqrt{\sum_{j=1}^{n} (m_j(\Delta))^2}, \qquad M(\Delta) = \sqrt{\sum_{j=1}^{n} (M_j(\Delta))^2}.$$

Для всех $\Delta \subset [a,b]$ чему равно $l(\gamma \mid_{\Delta})$?

Пусть $\tau = \{x_j\}_{j=0}^m$. Тогда

$$l_{\tau} = \sum_{j=1}^{m} \sqrt{\sum_{k=1}^{n} |\gamma_k(x_j) - \gamma_k(x_{j-1})|^2}.$$

По теореме Лагранжа результат равен

$$l_{\tau} = \sum_{j=1}^{m} \sqrt{\sum_{k=1}^{n} |\gamma'_{k}(...)|^{2} \cdot |x_{j} - x_{j-1}|} =$$

$$= \sum_{j=1}^{m} (x_{j} - x_{j-1}) \sqrt{\sum_{k=1}^{n} |\gamma'_{k}(...)|^{2}}$$

Выражение под корнем не превосходит $M(\Delta)$ и не менее $m(\Delta)$

$$|\Delta| m(\Delta) \le l(\gamma |_{\Delta} \le |\Delta| M(\Delta).$$

2.

$$\int_{\Delta} |\gamma'_k(t)| dt = \int_{\Delta} \sqrt{|\gamma'_1(t)| sr + \dots + |\gamma'_n(t)|} dt.$$

$$m(\Delta) \leqslant \max \sqrt{\dots} \leqslant M(\Delta).$$

$$|\Delta| m(\Delta) \leqslant \int_{\Delta} |\gamma'(t)| dt \leqslant |\Delta| M(\Delta).$$

3.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : s, t \in [a, b], \ |s - t| < \delta \quad \forall j \in [1, k] : \left| \gamma'_j(s) - \gamma'_j(t) \right| < \varepsilon.$$
$$|\Delta| < \delta \Longrightarrow M(\Delta) - m(\Delta) = \sqrt{\sum M_j(\Delta)^2} - \sqrt{\sum m_j(\Delta)^2} \leqslant \sum |M_j(\Delta) - m_j(\Delta) \leqslant \varepsilon n|$$

4. Теперь возьмем дробление [a, b] на кусочки длиной меньше δ .

$$[a, b] = \Delta_1 \cup \ldots \cup \Delta_k, \quad |\Delta_i| < \delta.$$

Запишем два неравенства

$$m(\Delta_j)|\Delta_j| \leqslant l(\gamma \mid_{\Delta_j} \leqslant M(\Delta_j)|\Delta_j|.$$

$$m(\Delta_j)|\Delta_j| \leqslant \int_{\Delta_j} |\gamma'| \leqslant M(\Delta_j)|\Delta_j|.$$

$$\sum_{j=1}^k m(\Delta_j)|\Delta_j| \leqslant l(\gamma) \leqslant \sum_{j=1}^k M_{j=1}^k M(\Delta_j)|\Delta_j|.$$

$$\sum_{j=1}^k m(\Delta_j)|\Delta_j| \leqslant \int_a^b |\gamma'| \leqslant \sum_{j=1}^k M_{j=1}^k M(\Delta_j)|\Delta_j|.$$

$$\sum_{j=1}^{k} M(\gamma_j) |\Delta_j| - \sum_{j=1}^{k} m(\Delta_j) |\Delta_j| \leqslant \varepsilon n \cdot \sum_{j=1}^{k} |\Delta_i| = \varepsilon n(b-a).$$

1. Тогда

$$l(\gamma) = \int_0^{2\pi} 1dt = 2\pi.$$

1.4.2 Важные частные случаи общей формулы

1. $\gamma(t) = (x(t), y(t), z(t))$ — путь в \mathbb{R}^3 .

$$l(\gamma) = \int_a^b \sqrt{|x'(t)|^2 + |y'(t)|^2 + |z'(t)|^2}.$$

2. Длина графика функции. $f \in C^1[a,b], \, \Gamma_f = \{(x,f(t)) \mid x \in [a,b]\}.$

$$l(\Gamma_f) = \int_a^b \sqrt{1 + (f'(t))^2} dx.$$

3. Длина кривой в полярных координатах $r: [\alpha, \beta] \to \mathbb{R}_+, \ \{(r(\varphi), \varphi)\} = \{(r(\varphi)\cos\varphi, r(\varphi)\sin\varphi)\}$

$$l(\gamma) = \int_{\alpha h}^{\beta} \sqrt{r^2 + (r')^2} d\varphi.$$

 $Remark. \ \gamma: [a,b] \to \mathbb{R}^m, \ \Delta \subset [a,b]$ — отрезок.

$$l(\gamma \mid_{\Delta}) = \int_{\Delta} \underbrace{\left| \gamma'(t) \right| dt}_{\text{Дифференциал дуги}}.$$

Если f задана на носителе пути γ получаем «неравномерную длину»: $\int_a^b f(t) \, |\gamma'(t)| \, dt$

Глава 2

Дифференциальное исчисление функций многих вещественных переменных

2.1 Нормированные пространства

Example 8. \mathbb{R}^m , \mathbb{C}^m .

$$||x||_p = \left(\sum_{j=1}^m |x_j|^2\right)^{\frac{1}{p}}, \quad p \geqslant 1.$$

Если $p = +\infty$, $||x||_{+\infty} = \max_{1 \leq j \leq m}$.

Note. Все нормы в \mathbb{R}^m эквивалентны.

Example 9. (K, ρ) — метрический компакт. Рассмотрим множество $C(K) = \{f : K \to \mathbb{R} \mid f$ — непрервна $\}$, оно линейно над \mathbb{R}^m . Норма:

$$||f||_{\infty} = ||f||_{C(K)} = \max_{x \in K} |f(x)|.$$

Theorem 7. C(K) – nonho.

Доказательство. Рассмотрим фундментальную последовательность функций $|f_n| \subset C(K)$. Возьмем $x \in K : \{f_n(x)\}_{n=1}^{\infty} \subset \mathbb{R}$ — фундаментальна. Следовательно,

$$\exists \lim_{n \to \infty} f_n(x) =: f(x).$$

Последовательность фундаментальны, значит

$$\forall \varepsilon > 0 \ \exists N : \forall k, n > N : ||f_k - f_n|| < \varepsilon \ \forall x \in K \ |f_k(x) - f_n(x)| < \varepsilon.$$

Устремим $k \to \infty$. $f_k(x) \to f(x)$

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall x \in K : |f(x) - f_n(x)| \leq \varepsilon.$$

Возьмем $n_0 > N$. f_{n_0} — равномерно непрерывна, тогда

$$\forall \varepsilon \ \exists \delta > 0 \ \forall x_1, x_2 : \rho(x_1, x_2) < \delta \Longrightarrow |f_{n_0}(x_1) - f_{n_0}(x_2)| < \varepsilon.$$

$$|f(x_1) - f(x_2)| \le |(x_1) - f_{n_0}(x_1)| + |f_{n_0}(x_1) - f_{n_0}(x_2)| |f_{n_0}(x_1 - f(x_2))| \le 3\varepsilon.$$

Следовательно, $f \in C(K)$. Докажем сходимость по норме:

$$\forall \varepsilon > 0 \; \exists N > 0 \; \forall n > N : \underbrace{\forall x \in K \; |f(x) - f_{n_0}(x)| \leqslant \varepsilon}_{\max_{x \in K} |f - f_n| \leqslant \varepsilon}.$$

Example 10. (K, ρ) — метрический компакт. Рассмотрим множество $l_{\infty}(K) = \{f : K \to \mathbb{R} \mid f$ — ограничена $\}$, оно линейно над \mathbb{R}^m . Норма:

$$||f||_{\infty} = \sup_{x \in K} |f(x)|.$$

Theorem 8. $l_{\infty}(X)$ — полно.

Доказательство. Аналогично.

Note. $C(K) \subset l_{\infty}(K)$ — замкнутое подпространство.

Note. Замкнутое подпространство полного пространства полно.

Example 11.
$$K = [a, b], C^1(K) = C^1[a, b].$$

$$C^1[a,b] = \left\{ f: [a,b] o \mathbb{R} \mid f$$
 дифференцируема на $[a,b], f' \in C[a,b]
ight\}.$

Определим норму $\varphi_3(t) = \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |f'(x)|.$

Theorem 9. $(C^{1}[a,b], \varphi_{3})$ полно.

Доказательство. $\{f_n\} \subset C^1[a,b]$ фундаментальна. Так как $\varphi_3(f_n - f_k) \to_{n,kro\infty} 0$, $\varphi_1(f_n - f_k) \to 0$ и $\varphi_2(f_n - f_k) \to 0$. Тогда $||f_n - f_k|| \to 0$ и $||f_n' - f_k'|| \to 0$. Получаем, что $\{f_n\}$ фундаментальна в C[a,b] и $\{f_n'\}$ фундаментальна в C[a,b].

Докажем два пункта:

- 1. $f \in C^1$, тое есть $\exists g = f'$.
- 2. $f_3(f_n f) \to 0$

Докажем, что $f(a) - \left(\int_a^b g(t)dt + f(a) \right) \to 0.$

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N : \max |f_n - f| < \varepsilon \wedge \max |f'_n - g| < \varepsilon.$$

Перепишем модуль разности

$$= \left| f_n(x) - \left(\int_a^x f'_n(t)dt + f(a) \right) + (f(x) - f_n(x)) - \int_a^x \left(g(t) - f'_n(t) \right) dt - (f_n(a) - f(a)) \right| \le$$

$$\le |f(x) - f_n(x)| + \int_a^x \left| g(x) - f'_n(t) \right| dt + |f_n(a) - f(a)| < \varepsilon (b - a + 2)$$

Проверили первый пункт. Второй следует из того, что $f_n \to f \wedge f'_n \to g$.

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

6 march

Remark. $||f_n - f|| \to 0$, $f_n \in C(K) \Longrightarrow f \in C(k)$.

$$x_k \to x_0 \Longrightarrow f(x_k) \to f(x_0).$$

$$\lim_{k \to \infty} \lim_{n \to \infty} f_n(x_k) = \lim_{n \to \infty} \lim_{k \to \infty} (x_k) = f(n).$$

Remark. Из того, что $\|f_n-f\|_{\infty}\to 0$ и $\|f'_n-g\|$, следует f'=g. То есть

$$\left(\lim_{n\to\infty} f_n\right)' = \lim_{n\to\infty} f_n'.$$

Practice. $\varphi_4(t) = |f(a)| + \max_{x \in [a,b]} |f'(x)|$

Лекция 4

Продолжение примеров

1. $C_p[a,b] = \{ f \in C[a,b] \}$

$$||f||_{C_p[a,b]} = ||f||_p = \left(\int_a^b |f(x)| \, dx\right)^{\frac{1}{p}}, \quad p \geqslant 1.$$

Это норма:

- Не меньше нуля
- $||f|| = 0 \iff f = 0$
- $\|\lambda f\| = |\lambda| \cdot \|f\|$
- Неравенство треугольника $||f|| + ||g|| \ge ||f + g||$ (сейчас доказывать не будем)

Эта норма не полная. Но есть процедура пополнения.

Theorem 10 (без доказательства)). (X, ρ) — метрическое пространство. Тогда $\exists ! (Y, \tilde{\rho})$ полное метрическое пространство, такое что

- (a) $X \subset Y$
- (b) $\rho = \tilde{\rho} \mid_{X \times X}$ (c) Y = dX

Такое пространство пополняется до $L_p(a, b)$.

2. $l_p = \{x = (x_1, \ldots) \mid x_j \in \mathbb{R}, \exists \lim_{n \to \infty} \sum_{j=1}^n |x_j|^p \},$ $p\geqslant 1$ Такое пространство тоже нормировано:

$$||x||_{\rho} = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{\frac{1}{p}}.$$

 $Practice. l_p$ полно

Note. В бесконечномерных нормированных пространствах компактность не равносильна замкнутости и конечности. Верно только в правую сторону.

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

• l_p . Возьмем шар $B = \{x \in l_p \mid ||x|| \le 1\}$

$$e^{1} = (1, 0, 0, ...)$$

 $e^{2} = (0, 1, 0, 0, ...)$
 \vdots
 $e^{k} = (\underbrace{0, ...0}_{k-1}, 1, 0, ...)$

Practice. Проверить не компактность $B = \{ f \in C[a,b] \mid ||f|| = 1 \}$ в C[a,b].

2.2 Сжимающие отображения

Definition 11

(X,
ho) — метрическое пространство. U:X o X. U называется сжимающим отображением, если

$$\forall \gamma < 1 \ \forall x_1, x_2 \in X \colon \rho(U(x_1), U(x_2)) \leqslant \gamma \rho(x_1, x_2).$$

Theorem 11 (Принцип сжимающих отображений). (X, ρ) *полно*.

- 1. U-cжимающее отображение $\Longrightarrow \exists !x_* \colon U(x_1)=x_*-$ неподвижная точка
- 2. Если $\exists N \colon U^N$ сжимающее отображение $\Longrightarrow \exists !x_* \colon U(x_* = x_*)$

Доказательство.

1. Рассмотрим траекторию точки x_1 .

$$x_1, x_2 = U(x_1), x_3 = U(x_2), \dots x_n = U(x_{n-1}).$$

$$\rho(x_{n+1}, x_n) \leqslant \gamma \rho(x_n, x_{n-1}) \leqslant$$

$$\gamma^2 \rho(x_{n-1}, x_{n-2}) \leqslant$$

$$\dots$$

$$\leqslant \gamma^{n-1} \rho(x_2, x_1) = \gamma^{n-1} d$$

Тогда по неравенству треугольника

$$\forall m > n \colon \rho(x_n, x_m) \leqslant \sum_{k=n-1}^{\infty} \gamma^k d = \gamma^{n-1} d(1 + \gamma + \ldots) = \frac{\gamma^{n-1} d}{1 - \gamma} \longrightarrow 0.$$

Следовательно, $\{x_n\}$ фундаментальна. Так как наше пространство полно, существует предел этой последовательности. $U(x_n) = x_{n+1}$. Первое стремиться к $U(x_*)$, второе — к x_* .

Единственность следует из того, что иначе мы можем уменьшить расстояние между двумя фиксированными неподвижными точками.

2. $\exists x_*$, посмотрим на $U^N(x_*)$. Посмотрим на последовательное применение U несколько раз. На N-ом шаге мы придем в x_* .

Единственность уже доказали.

Example 12 (Обыкновенная линейное дифференциальное уравнение первого порядка).

$$f'(x) + a(x) \cdot f(x) = b(x),$$
 $a, b \in C[0, 1],$ $f(0) = c$

Задача: найти $f \in C^1[0,1]$. То есть доказать, что оно существует и единственна.

$$f(x) = c + \int_0^x (b(t) - a(t)f(t)) dt.$$

Заведем отображение $U: C[0,1] \to C[0,1]$, что $(U(f))(x) = c + \int_0^x (b(t) - a(t)f(t)) dt$. Хотим найти неподвижную точку отображения U (то есть такую f).

Пусть $(U_0(f))(x) = -\int_0^x a(t)f(t)dt$. Правда ли, что

1.
$$U^n(f) - U^n(g) = U_0^n(f) - U_0^n(g) = U_0^n(f - g)$$

2. $\exists n : U_0^n$ — сжимающее отображение из C[0,1] в C[0,1].

Проверим

1. При n = 1, очевидно.

$$U^{n}(f) - U^{n}(g) = U\left(U^{n-1}(f)\right) - U\left(U^{n-1}(g)\right) =$$

$$= U_{0}\left(U_{0}^{n-1}(f)\right) - U_{0}(U_{0}^{n-1}(g)) =$$

$$= U_{0}\left(U^{n-1}(f) - U^{n-1}(g)\right) =$$

$$= U_{0}\left(U_{0}^{n-1}(f) - U_{0}^{n-1}(g)\right) =$$

$$= U_{0}^{n}(f) - U_{0}^{n}(g)$$

2. $||U_0^n(f-g)||_{\infty} \leq \gamma ||f-g||$

Оценим

Пусть f - g = h. $||U_0^n(h)||_{\infty} = \gamma ||h||$. Пусть $M = \max|a|, ||h||_{\infty} |h(x)|$.

$$(U_0^1(h))(x) = -\int_0^x a(t_1)h(t_1)dt_1$$

$$(U_0^2(h))(x) = (-1)^2 \int_0^x a(t_2) \left(\int_0^{t_2} a(t_1)h(t_1)dt_1\right) dt_2$$

$$\vdots$$

$$(U_0^n(h))(x) = (-1)^n \int_0^x a(t_n) \int_0^{t_n} (\dots) dt_n$$

J0

$$|(U_0^n(h))(x)| \leqslant M^n \cdot ||h||_{\infty} \int_0^x \int_0^{t_n} \int_0^{t_{n-1}} \dots \int_0^{t_1} dt_1 dt_2 \dots dt_n = M^n \cdot ||h||_{\infty} \frac{x^n}{n!}.$$

$$||U_0^n(h)||_{\infty} \leqslant \left(M^n \frac{x^n}{n!}\right) ||h||_{\infty}.$$

Выражение в скобках стремиться к нулю при $n \to \infty$. Значит, U_0^n сжимающее.

Note. На самом деле мы сейчас посчитали объем обрезанного куба.

$$f\in C[0,1].$$
 Так как $f(x)=c+\int_0^x (b(t)-a(t)f(t))dt,\,f\in C^1[a,b]$

Practice. X полно, $U: X \to X$, $\forall x, y : \rho(U(x), U(y)) < \rho(x, y)$.

- 1. Верно ли, что U сжимающее?
- 2. Верно ли, что обязательно есть неподвижная точка?

2.2.1 Линейные и полилинейные непрерывные отображения (операторы)

Definition 12: Линейное отображение

X,Y — линейные пространства над одним полем скаляров (либо $\mathbb{R},$ либо \mathbb{C}). $U:X \to Y$ называется линейным, если

- 1. $\forall x_1, x_2 \in X : U(x_1 + x_2) = U(x_1) + U(x_2)$
- 2. $\forall x \in X, \ \lambda \text{скаляр} \colon U(\lambda x) = \lambda U(x)$

Note. Для экономии университетского мела не пишут скобки у линейный отображений: $U(x_1) = Ux_1$ Designation. Hom(X,Y) — множество всех линейных отображений из X в Y.

Definition 13

 $X_1, \dots X_n$ — линейные пространства, Y — линейное пространство над одним скаляром. $U: X_1 \times X_2 \times \dots \times X_n \to Y$ — полилинейное отображение, если оно линейно по каждому из аргументов.

Designation. $\operatorname{Poly}(X_1, \dots X_n, Y)$ — множество всех полилинейных отображений.

Definition 14

Если Y — поле скаляров, линейное отображение $U: X \to Y$ называется линейным функционалом.

Example 13.
$$X = \{x = (x_1, \ldots) \mid x_j \in \mathbb{R}, \text{ лишь конечное число отлично от нуля}\}$$
 $U: X \to X, x \mapsto (x_1, 2x_2, 3x_3, \ldots)$

Example 14 (δ -функция). $\delta:C[-1,1]\to\mathbb{R},\ \delta(f)=f(0)$.

Example 15.
$$U:C[a,b]\to\mathbb{R},\ Uf=\int_a^b f(x)dx$$

Example 16.
$$U:C[a,b]\to\mathbb{R},\ Uf(x)=\int_a^x f(t)dt$$

Example 17.
$$U \in \text{Poly}(\underbrace{\mathbb{R}, \mathbb{R}, \dots \mathbb{R}}_{n}; \mathbb{R}), \ U(x_{1}, \dots x_{n}) = x_{1}x_{2}x_{3}\dots x_{n}$$

Example 18.
$$U \in \text{Poly}(\mathbb{R}^n, \mathbb{R}^n; \mathbb{R}), \ U(x, y) = (x, y)$$

Example 19. $U \in \text{Poly}(\mathbb{R}^3, \mathbb{R}^3; \mathbb{R}^3), U(x, y) - [x, y]$ — векторное произведение.

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

Example 20. Определитель, все возможные формы объема.

Example 21. $U_j \in \text{Hom}(X,Y)$. Можно сделать из этого полилинейное $U \in \text{Poly}(X_1,X_2,\dots,X_n;Y)$, $U(x_1,\dots x_n) = U_1x_1 + U_2x_2 + \dots U_nx_n$.

Example 22. $U: C^{1}[a,b] \to C[a,b], \ Uf = f'$

Theorem 12 (Эквивалентные условия непрерывности линейного отображения). X, Y - линей-ный нормированные пространства с одним полем скаляров, $U \in \text{Hom}(X,Y)$. Следующие утверждения эквивалентны:

- 1. U непрерывно
- 2. U непрерывно в θ
- 3. $\exists C \ \forall x \in X \colon ||Ux||_Y \leqslant C||x||_X$

Definition 15

U — непрерывное линейное отображение (оператор) из X в Y.

$$||U|| = \inf\{C \mid x \in X, ||Ux|| \leqslant C||x||\}.$$

 $\|U\|$ — операторная норма.

Note. Если U — разрывное отображение, считаем, что $||U|| = \infty$.

Note.

$$||U|| = \sup_{x \neq 0} \frac{||Ux||}{||x||}.$$

Example 23. Нормы в прошлых примерах

- 13 $||U|| = \infty$
- 14 ||U|| = 1
- 15 ||U|| = b a
- **16** ||U|| = b a
- **22** ||U|| = 1

Theorem 13 (Условие непрерывности полилинейного отображения). $U \in Poly(X_1, ... X_m; Y)$, X_i, Y — линейные нормированные пространства. Следующие утверждения эквивалентны:

- 1. U непрерывно
- 2. U непрерывно в 0
- 3. $\exists C \ \forall x_1 \in X_1, x_2 \in X_2, \dots x_n \in X_n : \|U(x_1, \dots x_n)\| \leqslant X \|x_1\| \cdot \dots \cdot \|x_n\|$

Note. В прямом произведении есть норма (Например, такая)

$$||(x_1, \dots x_n)|| = \max\{||x_1||_{X_1}, \dots ||x_n||_{X_n}\}.$$

Definition 16: Норма полилинейного отображения

$$||U|| = \inf \{ C \mid \forall x_1 \in X_1, \dots x_n \in X_n \mid ||U(x_1, \dots x_n)| < C||x_1|| \cdot \dots ||x_n|| \}.$$

Theorem 14 (эквивалентные способы вычисления оперератора). $U - \lambda u = \lambda u = 0$ отображение $X \to Y$. Тогда

$$||U|| = \sup_{x \neq 0} \frac{||U||}{||x||} = \sup_{||x|| = 1} ||Ux|| = \sup_{||x|| \leqslant 1} ||Ux|| = \sup_{||x|| < 1} ||Ux||.$$

Доказательство. Обозначим супремумы за A, B, C, D. Очевидно, что $C \geqslant B$ и $C \geqslant D$

$$C = \sup_{\|x\| \le 1} \|Ux\| \le \sup_{\|x\| \le 1} \frac{\|Ux\|}{\|X\|} \le \sup_{x \ne 0} \frac{\|Ux\|}{\|x\|} = A.$$

Докажем, что $B\geqslant A.\ x\neq 0,\ \tilde{x}=\frac{x}{\|x\|}.$

$$\frac{\|Ux\|}{\|x\|} = \|Ux\| \leqslant B.$$

Значит, $\sup_{x\neq 0} \frac{\|Ux\|}{\|x\|} \leqslant B$. Теперь докажем, что $D\geqslant A$.

$$x \neq 0, \ \varepsilon > 0 \colon \tilde{x} = \frac{x}{\|x\|} (1 - e\varepsilon), \quad \|\tilde{x}\| = 1 - \varepsilon < 1.$$

$$\begin{cases} \|U\tilde{x}\| \leqslant D \\ \|U\tilde{x}\| = \frac{1-\varepsilon}{\|x\|} \|Ux\| \end{cases} \implies \frac{\|Ux\|}{\|x\|} \leqslant \frac{D}{1-\varepsilon} \to 0.$$

Следовательно,

$$\frac{\|Ux\|}{\|x\|} \leqslant D \Longrightarrow \sup_{x \neq} \frac{\|Ux\|}{\|x\|} \leqslant D.$$

Remark. В конечномерных пространствах все линейные и полилинейные отображения непрерывны.

Theorem 15 (эквивалентные способы вычисления нормы полилинейного оператора). $U: X_1 \times$ $\ldots \times X_n \to Y$.

$$||U|| = \sup_{x_j \neq 0} \frac{||U(x_1, \dots x_n)||}{||x_1|| \dots ||x_n||} || = \sup_{||x_j| = 1, ||||U(x_1, \dots x_n)||} = \sup_{||x_j|| < 1} = \sup_{||x_j|| \le 1}.$$

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ

2.2.2 Пространство линейных непрерывных операторов

Theorem 16 (О свойствах операторной нормы). $U_1, U_2, U_3: X \to Y$ — линейные непрерывные операторы, λ — скаляр. Тогда

1.
$$||U_1 + U_2|| \le ||U_1|| + ||U_2||$$

2.
$$\|\lambda U\| = |\lambda| \|U\|$$

3.
$$||U|| = 0 \iff U = 0$$

4. $U:X \to Y, V:Y \to Z$ — линейные отображения.

$$||VU|| \leqslant ||V|| \cdot ||U||$$

$$VU = V \circ U$$

$$VUx = V(U(x))$$

Designation. $L(X,Y) \subset \text{Hom}(X,Y)$ — пространство линейных операторов.