DEPARTMENT OF MATHEMATICS UNIVERSITY OF KANSA	6 AS	(30)
Practice Final Exam	7	(30)
MATH 122 Spring 2014	8	(30)
Your Name:	9	(30)
KUID Number:	10	(30)
1 (10)	11	(30)
2 (10)	12	(30)
3 (10)	13	(30)
4 (10)	14	(30)
5 (10)		
	15	(30)
	Total	(350)

0.

Multiple Choice Questions (10 points each)

- (1) Find a unit vector orthogonal to both $\mathbf{i} \mathbf{j} + 2\mathbf{k}$ and $-\mathbf{i} + \mathbf{k}$.

 - (A) $\frac{1}{\sqrt{11}} < -1, 3, -1 >$ (B) $\frac{1}{\sqrt{11}} < -1, -3, -1 >$ (C) $\frac{1}{\sqrt{11}} < 1, 3, -1 >$

 - (D) $\frac{1}{\sqrt{11}} < -1, 3, 1 >$
- (2) Find the volume of the parallelepiped spanned by the vectors <1,1,-2>, <3,-2,1>, <0,1,-5>.
 - (A) 18
 - (B) 7
 - (C) 4
 - (D) 23
- (3) Find the acceleration vector of a particle with position function
 - $\vec{r}(t) = \langle t \ln(t), t, e^{-t} \rangle$ at t = 1.
 - $(A) < 0, 0, e^{-1} >$
 - (B) < 1, 0, e >
 - (C) < 1, 0, e^{-1} >
 - (D) $< 0, 1, e^{-1} >$
- (4) Find the equation of the tangent plane to the surface xy + yz + zx = 3 at the point (1, 1, 1).
 - (A) x + y + z = 1
 - (B) x + yz + z = 3
 - (C) x + y + z = 3
 - (D) 2x + 2y + 2z = 3
- (5) (A)
 - (B) 1.07
 - (C)
 - (D) 1.04

"Show Your Work" Questions (30 points each)

(6) Find the plane that contains the line x = 1 + t, y = 2 - t, z = 4 - 3t and is parallel to the plane 3x - 7z = 12.

(7) An athlete throws a shot at an angle of 45^{o} at an initial speed of $v_{0} = 43 ft/sec$. It leaves his hand at 7ft above the ground. How high does the shot go? How far is the shot landing? Assume that $g = 33 ft/sec^{2}$.

- (8) Let C be the curve with equations $x=2-t^3, y=2t-1, z=\ln(t)$.

 Find the point where C intersects the xz plane.

 - Find the equations of the tangent line at the point (1, 1, 0).
 - Find the equation of the normal plane at the point (1, 1, 0).

(9) Find the extreme values of the function $f(x,y) = 2x^2 + 3y^2 - 4x - 5$ on the region $D: x^2 + y^2 \le 16$.

(10) Let
$$u(x,y) = f(x^2 + 1/y)$$
. Show that u satisfies
$$u_x + 2xy^2u_y = 0.$$

(11) For the function $f(x,y,z) = x^2 e^{yz^2}$, compute the gradient. When is the directional derivative of f at the point <1,1,1> a maximum? When is it a minimum?

(12) Compute

$$\int_{D} \cos(y^2) dx dy,$$
 where $D = \{(x, y) : 0 \le x \le 1, x \le y \le 1\}.$

(13) Find the volume of the solid bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and y + z = 3.

(14) Lamina occupies the part of the disk $x^2 + y^2 \le 1$ in the first quadrant. Find its center of mass, if the density is proportional to the square of its distance from the origin.

(15) Evaluate

$$\int \int \int_E x^2 dx dy dz,$$

where E is the region bounded by the hemispheres $y = \sqrt{9 - x^2 - z^2}$ and $y = \sqrt{16 - x^2 - z^2}$.