Information Retrieval & Text Mining

Text Summarization and Simplification

Dr. Iqra Safdar & Farooq Zaman Information Technology University

Why Text Summarization and Simplification?

- Motivations
 - Long documents are hard to read and time consuming
 - News articles
 - Consume content faster and more efficiently
 - Deaf people
 - Blind people
 - Second language learners
 - People with aphasia

Why Text Summarization and Simplification?

Today we are overwhelmed with huge amount of information

Text Summarization

• The process of automatically producing short textual document (summary) based on information presented in long textual document (original)

(Collins, Augenstein, & Riedel, (Nikolov, Pfeiffer, & Hahnlose

• Select important section from original text while ignoring redundant and extra detailed information

Source Text: Peter and Elizabeth took a taxi to attend the night party in the city.

While in the party, Elizabeth collapsed and was rushed to the hospital.

Summary: Peter

Text Summarization

• The process of automatically producing short textual document (summary) based on information presented in long textual document (original)

(Collins, Augenstein, & Riedel, (Nikolov, Pfeiffer, & Hahnlose

• Select important section from original text while ignoring redundant and extra detailed information

Source Text: Peter and Elizabeth took a taxi to attend the night party in the city.

While in the party, Elizabeth collapsed and was rushed to the hospital.

Summary: Peter and Elizabeth attend party city. Elizabeth rushed hospital.

Text Summarization (Continue)

• Formally:

- Given document d consists of words w represents some information I
- Our goal is to reduce d to d' such that d' consists of w' representing information I'
- Where $w' \subset w$ and $I' \approx I$

Text Summarization

- The process of automatically producing short textual document (summary) based on information presented in long textual document (original)
- Select important section from original text while ignoring redundant and extra detailed information
- Formally:
 - Given document d consists of words w represents some information I
 - Our goal is to reduce d to d' such that d' consists of w' representing information I'
 - Where $w' \subset w$ and $I' \approx I$

Text Summarization (approaches)

Text Summarization (types)

- Extractive Text Summarization:
 - Select important sentences from original text T and place it in summarize version T' without any modification
 - Need sentence scoring
 - i-e $T' \subset T$
- Abstractive Text Summarization:
 - Generate new text T' based on information presented in original text T
 - May or may not contain any section of the original text T
 - i-e $T \cap T' \geq \emptyset$

Extractive Text Summarization

- Steps:
 - Construction of an intermediate representation
 - Topic representation (Signature words)
 - Indicator representation (length of sentence number of key terms)
 - Scoring the sentences (intermediate representation)
 - Selection of a summary
 - Select top K sentences based on computed score

Extractive Text Summarization (cont...)

- Approaches:
 - Topic words (Explanatory words)
 - Number of explanatory words in a sentence
 - Ratio of Explanatory words in a sentence
 - Frequency based approaches (TF-IDF)
 - Latent Semantic Analysis
 - Score Matrix based on TF-IDF
 - Discourse Based Method:
 - Considers connection between sentences
 - Use discourse as atomic unit instead of sentence
 - Indicator representation approaches
 - Represent the text based on a set of features
 - Use these features to directly rank the sentences

Extractive Text Summarization (cont...)

- Approaches:
 - Graph based Methods:
 - Sentences form the vertices
 - Edges between the sentences (similarity between 2 sentences)
 - Cosine similarity with TFIDF
 - Connection to many other sentences in a sub-graph (center of the graph)
 - Independent of language-specific linguistic processing (+)
 - Do not Used syntactic and semantic information (-)
 - Machine Learning:
 - Summarization as a classification problem
 - Naive Bayes
 - Decision trees
 - Support vector machines
 - Hidden Markov models (+)
 - Conditional Random Field (+)

Abstractive Text Summarization

- Approaches:
 - Structure-based approaches
 - Lead and body phrase method
 - Rule-based methods
 - Graph-based methods
 - Ontology-based methods
 - Semantic-based approaches
 - Multimodal semantic model
 - Information item-based methods
 - Semantic Text Representation Model
 - Semantic Graph Model
 - Neural Network Based approaches
 - Encoder decoder RNNs (Generative models)
 - Inspired from Neural Machine Translation

Hybrid Approach

- Combine both Extractive and Abstractive
 - Pointer-generator model
 - Copy words from source texts via a pointer
 - Generate novel words from a vocabulary via a generator
 - Compute the probability of copied word and generated word
 - Use pointing/copying mechanism to generate the output summary

Automated Text Simplification

- Is the process of modifying natural language to achieve reduced complexity and improve readability and understandability
- Approaches
 - Lexical
 - Syntactic
 - Statistical Machine Translation
 - Hybrid Techniques

Lexical Approaches

- The process of:
 - Finding complex terms and replace it with simpler terms
 - Explain complicated words expressions by providing definitions/explanations
- Level of granularity
 - Words level
 - Phrase level
- Steps to lexical simplification:
 - Find the complex terms in the text
 - Generate list of substitutions for each complex term
 - Refine the substitutions in step 2 to retain sense in the given context
 - Rank the remaining substitutions according to simplicity
 - Use the simplest synonym as a replacement for the original term

Syntactic Approaches

- Syntactic simplification:
 - Is the process of identifying grammatical complexities in a text and rewriting these into simpler structures
- Types of syntactic complexity:
 - Long sentences may be split into their component clauses
 - Sentences which use the passive voice can be rewritten
 - Anaphora may be resolved

Explanation Generation Approach

- Explanation generation
 - Is the technique of taking a difficult concept in a text T and augmenting it with extra information λ which puts it into context and improves user understanding
 - i-e $T' = T + \lambda$
 - Where T' is the output generated simplified text

Text Simplification

- The process of substituting difficult complex section of text with easy replacement while maintaining the original meaning of the text
- The simplified document may get increase in length (added explanation)

- Formally:
 - Given document d consists of words w represents some information I
 - enhance d to d' such that d' consists of w' representing information I'
 - Where $w' \supseteq w$ and $I' \approx I$

Text Simplification

• The simplified document may get increase in length (Kriz et al, 2019)

Inhibitory luminopsins: geneticallyencoded bioluminescent opsins for versatile scalable and hardwareindependent optogenetic inhibition

Tools for illuminating brain function make their own light

Input Source

Output summary

Statistical Machine Translation

- Automated Machine Translation
 - Is an established technique in natural language processing
 - Take input text (source language) transform it into intermediate representation
 - Produce output text (target language) from intermediate representation
- Use case (Text Simplification)
 - Input: Complex text
 - Output: Simple text

Text Simplification (use case)

• Neural Text Simplification of Clinical Letter with a Domain Specific Phrase Table

• Input: Clinical prescription contain complex clinical terms

• Output: Patient understandable simple prescription

• Method: Encoder decoder Recurrent Neural Network with Phrase table

Evaluation

- BLEU (bilingual evaluation understudy):
 - Compare the generated output summary with reference summary produce by human
 - Originally developed for Machine translation systems
 - Can only be applied to Extractive summarization (Lexical overlap)
 - Favor Short sentences (-)
- ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
 - Compare an automatically produced summary against a reference (human-produced)
- METEOR (Metric for Evaluation of Translation with Explicit Ordering)
 - Based on the harmonic mean of unigram precision and recall
 - With recall weighted higher than precision
 - Used for measuring fluency of text

Evaluation (cont...)

- Points to be considered for evaluating TS system
 - Readability
 - Is the generated summary readable?
 - Grammaticality and meaning preservation
 - Paragraph A is grammatical?
 - Paragraph B is grammatical?
 - Paragraphs A & B have the same meaning?

References

- [1] Shardlow, M. (2014). A survey of automated text simplification. *International Journal of Advanced Computer Science and Applications*, 4(1), 58-70
- [2] Shardlow, M., & Nawaz, R. (2019, July). Neural Text Simplification of Clinical Letters with a Domain Specific Phrase Table. In Proceedings of the 57th Conference of the Association for Computational Linguistics (pp. 380-389)
- [3] Štajner, S., & Saggion, H. (2018, August). Data-Driven Text Simplification. In Proceedings of the 27th International Conference on Computational Linguistics: Tutorial Abstracts (pp. 19-23).