Raport Zadanie 4

Badanie, strojenie i porównanie wyników metaheurystyk EA, TS i SA w rozwiązywaniu TSP

Ernest Przybył

Ustawienia eksperymentu

Przestrzeń poszukiwań

Algorytm Generyczny	
Liczność populacji osobników	10, 30, 50, 70, 100, 200
Prawd. krzyżowania	$f(x) = x * 0.05 x \in [0; 20]$
Prawd. mutacji	$f(x) = x * 0.05 x \in [0; 20]$
Strategia wyboru rodziców	Turniej o wielkości w %: 0,03; 0,06; 0,09 0,12;
	0,15; 0,18; 0,21; 0,24; 0,27; 0,3 + ruletka o
	potędze 3; 4; 5; 7
Krzyżowanie	Ordered; Cycle
Mutacja	Swap(1); Inverse
Pokolenia	Easy, medium: 400; hard: 1_200

Symulowane wyżarzanie	
Temperatura startowa	$f(x) = x * 10 x \in [0; 100] \cup f(x) = x *$
	200 [5; 100]
Min temperatura	0
Stratega chłodzenia	Exponencjalne z podstawami: $f(x) = x *$
	$0,0001 x \in [0;1000]$
Pokolenia	Easy, med.: 3_000; hard: 6_000

Tabu search	
Wielkość sąsiedztwa	2;4;6;8;10;12;14;16;18;20;50;60;70;80;90;100;120;140;160;180;
Rozmiar tabu	[5; 10; 15; 20; 25; 30; 40; 50] + $f(x) = x * 60 x \in [0; 50]$
Pokolenia	Easy, med.: 3_000; hard: 6_000

Wnioski z doboru parametrów:

- Aby zaoszczędzić czas i zwiększyć precyzję wyników następnym razem eksperyment podziali bym na 2 lub 3 etapy w których zaczynał bym od stosunkowo małej ilości dużych kroków, a następnie odpalał eksperymenty o mniejszych krokach zawężone do pewnego obiecującego obszaru.
- Może warto by było dobierać początkowe parametry zgodnie z ciągiem Fibonacciego , aby najpierw określić ich rząd wielkości.

Wybrane wyniki eksperymentu

Tabela wyników:

instancja	Opt.	Alg. Lo	osowy	[10k]		Alg. Zachłanny [10k]				Alg. EA	\	Alg. T	S			Alg. SA					
	wyni																				
	k								!												
		best	wors	avg	std	best	wors	avg	std	best	worst	avg	std	best	wors	avg	st	best	wors	avg	st
			t				t								t		d		t		d
Easy_0			- 14508		2167		- 12229														
		-26358	7	-66827	6	-25529	8	-61057	19710	3144	3144	3144	0	-23034	-23034	-23034	0	-23034	-23034	-23034	0
Medium			-																		
0		26257	10685 3	-14237	1836 1	26317	-54509	-7811	12147	48125	35729	40077	3874	32070	30429	31324	513	32068	31757	31856	109
Medium																					
1		73674	-8107	45002	1250 0	74706	23242	48648	8631	104661	95884	101047	2690	81409	80372	80960	393	82046	81338	81656	193
Medium_																					
2		12370	58369	10103 9	9495	12537 3	90612	10366 5	6149	159483	151736	157151	2430	13126 7	12932 4	13075 8	644	13193 7	13072 8	13146 7	470
Hard 2		-	-	-	3433	3	-		0143	133403	131730	13,131	2430	,			0.14	,	3		470
Hard_3		10537	54407	27832	6004	11151	45261		13455				8235	18275	18095	18187		18275	18095	18187	
		7	3	8	6	7	9	-72894	9	944941	681482	873517	9	9	3	8	695	9	3	8	695
Hard_4			- 28742		5048	24042	- 23736		11270	129530	111137	122854	4883	32592	32393	32490		32742	32364	32554	
		78223	2	-77611	5	9	7	84981	1	0	2	3	0	7	7	6	660	0	6	3	956

WYKRESY

Wnioski i obserwacje:

Zachłanny i losowy

- o Pomimo iż, alg. **Zachłanny** zwykle tylko niewiele "podwoził" **algorytm losowy** wyniki przedstawione w tabelce nie pozwalają powiedzieć, że jest on lepszy od algorytmu zachłannego. Jednak mimo to jest on o wiele lepszy ponieważ uruchamiając go dla **każdego miasta** możemy mieć gwarancję, że osiągniemy wartość z okolic best.
- o Pomimo losowego wyboru miasta początkowego alg. Zachłanny stawał się coraz lepszy względem losowego w miarę rośnięcia problemu.

• EA

- o EA rozbijał banki w przypadkach najprawdopodobniej znajdując optimum dla trasy. Niestety nie udało mi się potwierdzić tej informacji
- Dla większych problemów EA coraz bardziej wyprzedza pozostałe metody
- o EA ma mniejszą efektywność ponieważ dla małych przestrzeni poszukiwań dawał gorsze wyniki
- EA jest o wiele bardziej podatny na niewłaściwe parametry, o ile zmiana parametrów w TS i SA dawała stosunkowo niewielkie uzyski o tyle w EA było w ręcz przeciwnie.

• TS i SA

- Oba algorytmy miały podobną skuteczność choć SA systematycznie nieco wyprzedzał TS
- o Efektywność SA wydaje się być lepsza niż SA
- Zauważyłem, że początkowe ułożenie miast w plikach nie jest przypadkowe ponieważ dawało ono bardzo dobre początkowe wyniki.