Package 'ukghg'

March 30, 2020

Walch 50, 2020	
Title Greenhouse Gas Fluxes from the UK	
Version 0.7.1	
Description Spatio-temporal predictions of UK GHG emissions.	
Depends R (>= 3.2.0), raster	
Imports mgcv, shiny	
Suggests ncdf4, testthat, knitr, covr	
License MIT + file LICENSE	
BugReports https://github.com/NERC-CEH/ukghg/issues	
LazyData true	
VignetteBuilder knitr	
RoxygenNote 7.1.0	
ByteCompile true	
R topics documented:	
6 616	1 2 3
Index	4
ukghg-package Generate maps of GHG fluxes for the UK.	_

Description

ukghg allows you to produce maps of GHG fluxes for the UK and write these to netCDF files.

2 calcFlux

Details

The only function you're likely to need from **ukghg** is calcFlux. Refer to the vignettes for details of how to use it - use vignette().

Author(s)

Maintainer: Peter Levy <plevy@ceh.ac.uk> (ORCID) [copyright holder]

See Also

Useful links:

• Report bugs at https://github.com/NERC-CEH/ukghg/issues

calcFlux

A high-level function for calculating a sequence of maps of GHG flux

Description

This function calculates greenhouse gas fluxes from the UK, based on a spatio-temporal model and the national GHG inventory data.

Usage

```
calcFlux(
   ghgName = c("ch4", "co2", "n2o", "c2h6", "voc"),
   datect = datect,
   proj = c("OSGB", "LonLat"),
   res = c("1", "20", "100"),
   unitType = c("mol", "g"),
   unitSIprefix = c("peta", "tera", "giga", "mega", "kilo", "none", "milli", "micro",
        "nano", "pico"),
   writeNetCDF = FALSE,
   sectorList = 1:10,
   includeBio = TRUE,
   timeScales = c(TRUE, TRUE, TRUE),
   beta_df = data.frame(sector = 1:10, beta_year = rep(1, 10), beta_yday = rep(1, 10),
        beta_wday = rep(1, 10), beta_hour = rep(1, 10))
)
```

Arguments

ghgName	Greenhouse gas: one of "ch4", "co2", "n2o", "c2h6" or "voc". Defaults to "ch4".
datect	A vector of timestamps in POSIXct format.
proj	Geographic projection for the gridded data, either "OSGB" or "LonLat". Defaults to OSGB.
res	Resolution for the gridded data, either 1, 20 or 100 km. Defaults to "1km". Not yet implemented for LonLat.
unitType	Either molar ("mol") or mass-based ("g").
unitSIprefix	Any standard SI prefix for the output units, from "peta" to "pico".

runShinyApp 3

writeNetCDF	Write NetCDF output files. Defaults to FALSE.
sectorList	A vector of sector numbers for which alpha values should be returned, e.g. $c(1,3,7)$. Defaults to all.
includeBio	A logical for whether biogenic fluxes should be calculated as well as anthropogenic sectors 1-10. Defaults to TRUE.
timeScales	A vector of logicals for including variation at inter-annual, seasonal, intra-weekly, and diurnal time scales (i.e. the POSIXIt variables year, yday, wday, and hour. Defaults to TRUE for all four.
beta_df	A data frame of beta parameters, used in calibration of the model. Defaults to a dataframe with beta = 1 for all parameters.

Value

total A vector of total flux

s_ghgTotal A RasterStack of total flux

ls_ghgByTimeBySector A list of RasterStacks of ghg fluxes where the z dimension corresponds to sector, one per timestep

ls_ghgBySectorByTime A list of RasterStacks of ghg fluxes where the z dimension corresponds to timestep, one per sector

Examples

```
startDate <- as.POSIXct(strptime("01/06/2006", "%d/%m/%Y"), tz = "UTC")
endDate <- as.POSIXct(strptime("02/06/2006", "%d/%m/%Y"), tz = "UTC")
nTimes <- 2
# create a sequence of timestamps
datect <- seq(startDate, endDate, length = nTimes)
# calculate fluxes for these times
myFlux <- calcFlux("ch4", datect, proj = "OSGB", res = "100", "mol", "nano")</pre>
```

runShinyApp

Launches the shiny app for the ukghg package

Description

This function provides a web browser interface to calculate greenhouse gas fluxes from the UK, based on a spatio-temporal model and the national GHG inventory data.

Usage

runShinyApp()

Value

shiny application object

Index

```
*Topic app
runShinyApp, 3
*Topic shiny
runShinyApp, 3
*Topic units
calcFlux, 2
calcFlux, 2, 2
runShinyApp, 3
ukghg (ukghg-package), 1
ukghg-package, 1
```