Feuille d'exercice n° 06 : Fonctions usuelles

Exercice 1 ()

- 1. Montrer que la composée de deux applications monotones de même sens (resp. de sens contraires) est croissante (resp. décroissante).
- 2. Montrer que la somme de deux applications croissantes est croissante.
- 3. La somme de deux applications monotones est-elle nécessairement monotone?
- 4. Le produit de deux applications croissantes est-il nécessairement une application croissante?

Exercice 2 Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $f \circ f$ est croissante tandis que $f \circ f \circ f$ est strictement décroissante. Montrer que f est strictement décroissante.

Exercice 3 Résoudre dans \mathbb{R}^2 le système $\left\{ \begin{array}{rcl} 2^{3x+2y} & = & 5 \\ 4^{2x} & = & 2^{2y+3} \end{array} \right.$

Exercice 4 Résoudre : $\ln \frac{x+3}{4} = \frac{1}{2}(\ln x + \ln 3)$.

Exercice 5 () Tracer les courbes représentatives des fonctions

$$x \mapsto f(x) = \sin(\operatorname{Arcsin} x), \qquad x \mapsto g(x) = \operatorname{Arcsin}(\sin x).$$

Exercice 6 () Simplifier les expressions suivantes :

$$\arccos\left(\cos\frac{2\pi}{3}\right)$$
; $\arccos\left(\cos\left(-\frac{2\pi}{3}\right)\right)$; $\arccos\left(\cos4\pi\right)$; $\arctan\left(\tan\frac{3\pi}{4}\right)$
 $\tan\left(\arcsin x\right)$; $\sin\left(\arccos x\right)$; $\cos\left(\arctan x\right)$

Exercice 7 (Démontrer les inégalités suivantes :

$$\operatorname{Arcsin} a < \frac{a}{\sqrt{1 - a^2}} \quad \text{si } 0 < a < 1;$$

$$Arctan a > \frac{a}{1+a^2} \text{ si } a > 0.$$

Exercice 8 On donne deux entiers p et q vérifiant 0 .

- 1. Exprimer $\tan(4x)$ en fonction de $\tan(x)$, pour tout $x \in [0, \pi/8[$.
- 2. En déduire la formule de Machin : $\frac{\pi}{4} = 4 \operatorname{Arctan} \frac{1}{5} \operatorname{Arctan} \frac{1}{239}$.

Figure 1 – La statue

Remarque : John Machin a pu calculer 100 décimales de π à la main en 1706 grâce à cette relation.

Exercice 9

Une statue de hauteur s est placée sur un piédestal de hauteur p. À quelle distance doit se placer un observateur (dont la taille est supposée négligeable) pour voir la statue sous un angle maximal (i.e. pour avoir θ maximal avec les notations de la figure 1) ?

Exercice 10 (\circlearrowleft) Sur quelle partie de \mathbb{R} est définie l'équation $\operatorname{Arccos} x = \operatorname{Arcsin}(1-x)$? La résoudre.

Exercice 11 On définit les deux fonctions f et g par $f(x) = \operatorname{Arctan}\left(\frac{1}{2x^2}\right)$ et $g(x) = \operatorname{Arctan}\left(\frac{x}{x+1}\right) - \operatorname{Arctan}\left(\frac{x-1}{x}\right)$.

- 1. Déterminer leurs ensembles de définition.
- 2. Calculer, lorsque cela est possible, leurs dérivées.
- 3. Que peut-on en déduire concernant f(x) et g(x)? Donner le maximum de précisions.
- 4. Tracer les courbes représentatives de f et de g (sur un même schéma).

Exercice 12 ($^{\circ}$) Calculer Arctan $\frac{1}{2}$ + Arctan $\frac{1}{5}$ + Arctan $\frac{1}{8}$.

Exercice 13 (Résoudre : Arcsin $2x = Arcsin x + Arcsin (x\sqrt{2})$.

Exercice 14 Soit la fonction:

$$f:$$
 $\left[\begin{array}{ccc} -\frac{\pi}{2}, \frac{\pi}{2} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \ln\left(\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right) \end{array} \right]$

Montrer que la fonction f est bien définie et que pour tout $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ on a les relations suivantes :

1. th
$$\frac{f(x)}{2} = \tan \frac{x}{2}$$

$$2. \ \text{th} \ f(x) = \sin x$$

3.
$$\operatorname{ch} f(x) = \frac{1}{\cos x}$$

4. $\operatorname{sh} f(x) = \tan x$.

4.
$$\operatorname{sh} f(x) = \tan x$$
.

Calculer, pour $(a, b) \in \mathbb{R}^2$, $n \in \mathbb{N}$, Exercice 15

$$\sum_{k=0}^{n-1} \cosh(a+kb), \qquad \sum_{k=0}^{n-1} \sinh(a+kb).$$

Résoudre : $a \operatorname{ch} x + b \operatorname{sh} x = 0$ où $(a, b) \in \mathbb{R}^2$. Exercice 16

