ANLT 207

3

Time Series Analysis

Assignment #1

1 Assume the AR(p) model: $y_t = a_0 + \sum_{i=1}^p a_i y_{t-i} + e_t$ 10 pts.

Given the coefficients below, are each of the combinations stationary? If so, to what value do they converge? (Take values out to 4 decimal places)

	a ₀	a_{1}	a ₂	a ₃	Stationary?	If yes, converges to?
а	0.5	-1	0	0		
b	0.5	-1	-0.5	0		
С	0.5	-1	0.5	0		
d	0.5	0	1	0		
е	0.5	1.5	-0.8	0		
f	0.5	1.5	0.8	0		
g	0.5	-0.5	0.5	0.5		
h	0.5	-0.5	0.5	-0.5		
i	0.5	-1	0	0.5		
j	0.5	1	-1	0.8		

- For an AR(1) model, what is the contribution to y_t from y_{t-5} if $a_1 = 0.2$?
 - Plot the first 12 psi-weights given the following AR(3) coefficients: 10 pts.

5 pts.

a ₀	a_1	a ₂	a ₃
0.3	0.8	-0.4	0.3

Ψ_0	
Ψ_1	
Ψ_2	
Ψ_3	
Ψ_4	
Ψ_5	
Ψ_6	
Ψ_7	
Ψ ₈	
Ψ_9	
Ψ ₁₀	
Ψ ₁₁	
Ψ ₁₂	