5-§. Chiziqli fazolar

Chiziqli fazo tushunchasi matematikada asosiy tayanch tushunchalardan hisoblanadi. Quyida C bilan kompleks sonlar, R bilan haqiqiy sonlar toʻplamini belgilaymiz.

5.1-ta'rif. Agar elementlari x, y, z, K bo'lgan L to'plamda quyidagi ikki amal aniqlangan bo'lsa:

I. Ixtiyoriy ikkita $x,y \in L$ elementlarga ularning yigʻindisi deb ataluvchi aniq bir $x+y \in L$ element mos qoʻyilgan boʻlib, ixtiyoriy $x,y,z \in L$ elementlar uchun

- 1) x + y = y + x (kommutativlik),
- 2) x+(y+z)=(x+y)+z (assotsiativlik),
- 3) L da shunday θ element mavjud boʻlib, $x + \theta = x$ (nolning mavjudligi),
- 4) shunday $-x \in L$ element mavjud bo'lib, $x + (-x) = \theta$ (qarama-qarshi elementning mavjudligi) aksiomalar bajarilsa;

II. ixtiyoriy $x \in L$ element va ixtiyoriy α son ($\alpha \in R$ yoki $\alpha \in C$) uchun x elementning α songa koʻpaytmasi deb ataluvchi aniq bir $\alpha x \in L$ element mos qoʻyilgan boʻlib, ixtiyoriy $x, y \in L$ va ixtiyoriy α, β sonlar uchun

- 5) $\alpha(\beta x) = (\alpha \beta)x$,
- 6) $1 \cdot x = x$,
- 7) $(\alpha + \beta)x = \alpha x + \beta x$,
- 8) $\alpha(x+y) = \alpha x + \alpha y$

aksiomalar bajarilsa, u holda L toʻplam chiziqli fazo deb ataladi.

Ta'rifda kiritilgan I va II amallar mos ravishda yigʻindi va songa koʻpaytirish amallari deb ataladi.

Ta'rifda foydalanilgan sonlar zahirasiga (haqiqiy sonlar *R* yoki kompleks sonlar *C*) bogʻliq holda chiziqli fazo haqiqiy yoki kompleks chiziqli fazo deb ataladi.

Chiziqli fazolarga misollar keltiramiz.

5.1-misol. L = R haqiqiy sonlar toʻplami odatdagi qoʻshish va koʻpaytirish amallariga nisbatan haqiqiy chiziqli fazo tashkil qiladi. L = C kompleks sonlar

toʻplami ham kompleks sonlarni qoʻshish va koʻpaytirish amallariga nisbatan kompleks chiziqli fazo tashkil qiladi.

5.2. L = $R^n \equiv \{x = (x_1, x_2, K, x_n), x_i \in R, i = 1, 2, K, n\} - n$ ta haqiqiy sonlarning tartiblangan guruhlari toʻplami. Bu yerda elementlarni qoʻshish va songa koʻpaytirish amallari quyidagicha aniqlanadi. Ixtiyoriy $x = (x_1, x_2, K, x_n)$ va $y = (y_1, y_2, K, y_n) \in R^n$ lar uchun

$$x + y = (x_1 + y_1, x_2 + y_2, K, x_n + y_n),$$
 (5.1)

$$\alpha x = (\alpha x_1, \alpha x_2, K, \alpha x_n). \tag{5.2}$$

 R^n - toʻplam (5.1) va (5.2) tengliklar bilan aniqlangan qoʻshish va songa koʻpaytirish amallariga nisbatan haqiqiy chiziqli fazo tashkil qiladi va u n - oʻlchamli haqiqiy chiziqli fazo deb ataladi.

- **5.3.** $L = C^n \equiv \{z = (z_1, z_2, ..., z_n), z_k \in C, k = 1, 2, ..., n\}$. Bu yerda ham elementlarni qoʻshish va songa koʻpaytirish amallari (5.1) va (5.2) tengliklar koʻrinishida aniqlanadi. C^n toʻplam kompleks chiziqli fazo boʻladi va u n oʻlchamli kompleks chiziqli fazo deb ataladi.
- **5.4.** L = C[a,b] [a,b] kesmada aniqlangan uzluksiz funksiyalar toʻplami. Funksiyalarni qoʻshish va funksiyani songa koʻpaytirish amallari mos ravishda

$$(f+g)(x) = f(x) + g(x)$$
 (5.3)

va

$$(\alpha f)(x) = \alpha f(x) \tag{5.4}$$

koʻrinishda aniqlanadi. (5.3) va (5.4) tengliklar bilan aniqlangan qoʻshish va songa koʻpaytirish amallari chiziqli fazoning 1-8 aksiomalarini qanoatlantiradi. Demak, C[a,b] toʻplam chiziqli fazo tashkil qiladi.

5.5.
$$C_2 \equiv \left\{ x = \left(x_1, x_2, K, x_n, K \right) : \sum_{n=1}^{\infty} \left| x_n \right|^2 < \infty \right\}$$
 - kvadrati bilan jamlanuvchi

ketma-ketliklar toʻplami. Bu yerda elementlarni qoʻshish va songa koʻpaytirish amallari quyidagicha aniqlanadi:

$$x + y = (x_1 + y_1, x_2 + y_2, K, x_n + y_n, K),$$
(5.5)

$$\alpha x = \alpha (x_1, x_2, K, x_n, K) = (\alpha x_1, \alpha x_2, K, \alpha x_n, K), \quad \alpha \in C.$$
 (5.6)

Yigʻindi $x + y \in {}^{C}_2$ ekanligi $|a + b|^2 \le 2|a|^2 + 2|b|^2$ tengsizlikdan kelib chiqadi. (5.5) va (5.6) tengliklar bilan aniqlangan qoʻshish va songa koʻpaytirish amallari chiziqli fazoning 1-8 aksiomalarini qanoatlantiradi. Demak, ${}^{C}_2$ toʻplam kompleks chiziqli fazo boʻladi.

- **5.6.** $c_0 \equiv \{x = (x_1, x_2, K, x_n, K): \lim_{n \to \infty} x_n = 0\}$ nolga yaqinlashuvchi ketma-ketliklar toʻplami. Bu toʻplamda ham qoʻshish va songa koʻpaytirish amallari (5.5) va (5.6) tengliklar koʻrinishida aniqlanadi va ular chiziqli fazoning 1-8 aksiomalarini qanoatlantiradi. Demak, c_0 toʻplam chiziqli fazo boʻladi.
- **5.7.** $c = \{x = (x_1, x_2, K, x_n, K) : \lim_{n \to \infty} x_n = a\}$ yaqinlashuvchi ketma-ketliklar toʻplami. Bu toʻplam ham 5.5-misolda kiritilgan qoʻshish va songa koʻpaytirish amallariga nisbatan chiziqli fazo tashkil qiladi.
- **5.8.** L=m barcha chegaralangan ketma-ketliklar toʻplami. Bu toʻplam ham 5.5-misolda kiritilgan qoʻshish va songa koʻpaytirish amallariga nisbatan chiziqli fazo tashkil qiladi.

Endi haqiqiy oʻzgaruvchining funksiyalari nazariyasi fanida xossalari oʻrganilgan Lebeg ma'nosida integrallanuvchi funksiyalar va oʻzgarishi chegaralangan funksiyalar toʻplamini qaraymiz.

5.9. Berilgan [a,b] kesmada Lebeg ma'nosida integrallanuvchi funksiyalar to'plamini $\widetilde{L}_1[a,b]$ simvol bilan belgilaymiz. Bu to'plamda elementlarni qo'shish va elementni songa ko'paytirish amallari (5.3) va (5.4) tengliklar bilan aniqlanadi. $\widetilde{L}_1[a,b]$ to'plam funksiyalarni qo'shish va songa ko'paytirish amallariga nisbatan yopiq. Chunki, integrallanuvchi f va g funksiyalar yig'indisi f+g ham integrallanuvchi va

$$\int_{a}^{b} [f(t) + g(t)] dt = \int_{a}^{b} f(t) dt + \int_{a}^{b} g(t) dt$$

tenglik oʻrinli. Xuddi shunday integrallanuvchi funksiyaning songa koʻpaytmasi yana integrallanuvchi funksiyadir. Funksiyalarni qoʻshish va songa koʻpaytirish amallari esa chiziqli fazo aksiomalarini qanoatlantiradi. Demak, $\widetilde{L}_1[a,b]$ toʻplam chiziqli fazo boʻladi.

5.10. Berilgan [a,b] kesmada p(p>1) -darajasi bilan Lebeg ma'nosida integrallanuvchi funksiyalar toʻplamini $\widetilde{L}_p[a,b]$ simvol bilan belgilaymiz. Bu toʻplamda ham qoʻshish va songa koʻpaytirish amallari (5.3) va (5.4) tengliklar bilan aniqlanadi va $\widetilde{L}_p[a,b]$ toʻplam chiziqli fazo tashkil qiladi. Yigʻindi $f+g\in\widetilde{L}_p[a,b]$ ekanligi Minkovskiy tengsizligi

$$\left(\int_{a}^{b} |f(t) + g(t)|^{p} dt\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} |f(t)|^{p} dt\right)^{\frac{1}{p}} + \left(\int_{a}^{b} |g(t)|^{p} dt\right)^{\frac{1}{p}}$$

dan kelib chiqadi.

- **5.11.** Berilgan [a,b] kesmada aniqlangan va oʻzgarishi chegaralangan funksiyalar toʻplamini V[a,b] bilan belgilaymiz. Bu toʻplamda ham funksiyalarni qoʻshish va songa koʻpaytirish amallari 5.4-misoldagidek kiritiladi. Ishonch hosil qilish mumkinki, V[a,b] toʻplam funksiyalarni qoʻshish va songa koʻpaytirish amallariga nisbatan chiziqli fazo tashkil qiladi. Hosil qilingan fazo oʻzgarishi chegaralangan funksiyalar fazosi deyiladi va V[a,b] simvol bilan belgilanadi.
- **5.2-ta'rif.** Bizga L va L^* chiziqli fazolar berilgan bo'lsin. Agar bu fazolar o'rtasida o'zaro bir qiymatli moslik o'rnatish mumkin bo'lib,

$$x \leftrightarrow x^*$$
 va $y \leftrightarrow y^*$, $(x, y \in L, x^*, y^* \in L^*)$

ekanligidan

$$x + y \leftrightarrow x^* + y^*$$
 va $\alpha x \leftrightarrow \alpha x^*$, $(\alpha - ixtiyoriy son)$

ekanligi kelib chiqsa, u holda L va L^* chiziqli fazolar oʻzaro izomorf fazolar deviladi.

Izomorf fazolarni aynan bitta fazoning har xil koʻrinishi deb qarash mumkin.

5.3-ta'rif. Agar L chiziqli fazoning x_1, x_2, K , x_n elementlar sistemasi uchun hech bo'lmaganda birortasi noldan farqli bo'lgan a_1, a_2, K , a_n sonlar mavjud bo'lib,

$$a_1 x_1 + a_2 x_2 + \Lambda + a_n x_n = 0 (5.7)$$

tenglik bajarilsa, u holda x_1, x_2, K, x_n elementlar sistemasi chiziqli bogʻlangan deyiladi. Aks holda, ya'ni (5.7) tenglikdan

$$a_1 = a_2 = \Lambda = a_n = 0$$

ekanligi kelib chiqsa, x_1, x_2, K, x_n elementlar sistemasi chiziqli bogʻlanmagan yoki chiziqli erkli deyiladi.

Agar x_1, x_2, K, x_n, K cheksiz elementlar sistemasining ixtiyoriy chekli qism sistemasi chiziqli erkli boʻlsa, u holda $\{x_n\}_{n=1}^{\infty}$ sistema chiziqli erkli deyiladi.

- **5.4-ta'rif.** Agar L chiziqli fazoda n elementli chiziqli erkli sistema mavjud bo'lib, bu fazoning ixtiyoriy n+1 ta elementdan iborat sistemasi chiziqli bog'langan bo'lsa, u holda L n o'lchamli chiziqli fazo deyiladi va $\dim L = n$ kabi yoziladi. n o'lchamli L chiziqli fazoning ixtiyoriy n ta elementdan iborat chiziqli erkli sistemasi shu fazoning bazisi deyiladi.
- **5.5-ta'rif.** Agar L chiziqli fazoda ixtiyoriy $n \in N$ uchun n elementli chiziqli erkli sistema mavjud bo'lsa, u holda L cheksiz o'lchamli chiziqli fazo deyiladi va $\dim L = \infty$ ko'rinishda yoziladi.

 R^n va C^n fazolar n o'lchamli chiziqli fazolardir. L = C[a,b] fazodan boshlab 5.4-5.11 misollarda keltirilgan barcha fazolar cheksiz o'lchamli fazolardir. Masalan, C_2 fazoda

$$\{e_n = (0, K_n, 0, 1, 0, K)\}_{n=1}^{\infty}$$
 (5.8)

sistema cheksiz chiziqli erkli sistemaga misol boʻladi.

5.1. Chiziqli fazoning qism fazosi

Bizga L chiziqli fazoning boʻsh boʻlmagan L′ qism toʻplami berilgan boʻlsin.

5.6-ta'rif. Agar L' ning oʻzi L da kiritilgan amallarga nisbatan chiziqli fazoni tashkil qilsa, u holda L' toʻplam L ning qism fazosi deyiladi.

Boshqacha qilib aytganda, agar ixtiyoriy $x, y \in L'$ va $a, b \in C(R)$ sonlar uchun $ax + by \in L'$ boʻlsa, L' qism fazo deyiladi.

Har qanday L chiziqli fazoning faqat nol elementdan iborat $\{\theta\}$ qism fazosi bor. Ikkinchi tomondan, ixtiyoriy L chiziqli fazoni oʻzining qism fazosi sifatida qarash mumkin.

- **5.7-ta'rif.** L chiziqli fazodan farqli va hech bo'lmaganda bitta nolmas elementni saqlovchi qism fazo xos qism fazo deyiladi.
- **5.12-misol.** $c_2 \subset c_0 \subset c \subset m$ fazolarning har biri oʻzidan keyingilari uchun xos qism fazo boʻladi.
- **5.13.** Endi [a,b] kesmada $p(p \ge 1)$ -darajasi bilan integrallanuvchi funksiyalar fazosi $\widetilde{L}_p[a,b]$ ni qaraymiz. Bu fazoning nolga ekvivalent funksiyalaridan tashkil boʻlgan qism toʻplamni $\widetilde{L}_p^{(0)}[a,b]$ koʻrinishda belgilaymiz. Ma'lumki, nolga ekvivalent funksiyalar yigʻindisi yana nolga ekvivalent boʻlgan funksiya boʻladi. Nolga ekvivalent funksiyaning songa koʻpaytmasi ham nolga ekvivalent funksiya boʻladi. Demak, $\widetilde{L}_p^{(0)}[a,b]$ toʻplam $\widetilde{L}_p[a,b]$ fazoning xos qism fazosi boʻladi.
- **5.14.** Oʻzgarishi chegaralangan funksiyalar fazosi V[a,b] ni qaraymiz. Ma'lumki, [a,b] kesmada absolyut uzluksiz funksiyalar toʻplami V[a,b] ning qism toʻplami boʻladi. Absolyut uzluksiz funksiyalar toʻplami funksiyalarni qoʻshish va songa koʻpaytirish amallariga nisbatan yopiq toʻplam. Shuning uchun u V[a,b] fazoning qism fazosi boʻladi va u AC[a,b] simvol bilan belgilanadi.
- **5.15.** V[a,b] fazoda f(a)=0 shartni qanoatlantiruvchi funksiyalar toʻplamini qaraymiz. Bu toʻplam funksiyalarni qoʻshish va songa koʻpaytirish amallariga nisbatan yopiq toʻplamdir. Shuning uchun u V[a,b] fazoning qism fazosi boʻladi va u $V_0[a,b]$ simvol bilan belgilanadi.

5.16. Yana o'zgarishi chegaralangan funksiyalar fazosi V[a,b] ni qaraymiz. Ma'lumki, [a,b] kesmada monoton funksiyalar to'plami V[a,b] ning qism to'plami bo'ladi. Ammo ikki monoton funksiyaning yig'indisi har doim monoton funksiya misolda bo'lavermaydi. Bunga quyidagi ishonch hosil qilish mumkin. $x(t) = t^2 + 1$, y(t) = -2t funksiyalarning har biri [0, 2] kesmada monoton funksiya bo'ladi, ammo ularning yig'indisi $x(t) + y(t) = (t-1)^2$ funksiya [0,2] kesmada monoton emas. Demak, [a,b] kesmada monoton funksiyalar toʻplami V[a,b]fazoning qism fazosi bo'la olmaydi. Demak, chiziqli fazoning har qanday qism to'plami qism fazo tashkil qilavermas ekan.

Bizga L fazoning boʻsh boʻlmagan $\{x_i\}$ qism toʻplami berilgan boʻlsin. U holda L chiziqli fazoda $\{x_i\}$ sistemani oʻzida saqlovchi minimal qism fazo mavjud.

Haqiqatan ham, $\{x_i\}$ sistemani saqlovchi hech boʻlmaganda bitta qism fazo mavjud, bu L ning oʻzi.

Ixtiyoriy sondagi qism fazolarning kesishmasi yana qism fazo boʻladi. Haqiqatan ham, agar

$$L^* = I_i L_i$$

bo'lib $x,y \in L^*$ bo'lsa, u holda ta'rifga ko'ra ixtiyoriy i uchun $x,y \in L_i$ bo'ladi. L_i qism fazo bo'lganligi uchun $\alpha x + \beta y \in L_i$ munosabat barcha α,β sonlar uchun o'rinli. Demak, $\alpha x + \beta y \in L^*$ bo'ladi.

Endi $\{x_i\}$ sistemani saqlovchi L ning barcha qism fazolarini olamiz va ularning kesishmasini qaraymiz hamda uni $L(\{x_i\})$ orqali belgilaymiz. $L(\{x_i\})$ qism fazo $\{x_i\}$ sistemani saqlovchi minimal qism fazo boʻladi. Bu $L(\{x_i\})$ minimal qism fazo $\{x_i\}$ «sistemadan hosil boʻlgan» qism fazo yoki $\{x_i\}$ sistemaning chiziqli qobigʻi deyiladi.