

Master Thesis

Multi-Modal Fake News Detection with Word Embeddings and Deep Graph Learning

February 28, 2023

Reviewers:

Prof. Dr. rer. nat. habil. Gunter Saake Dr. Claudia Krull Presented by:
Saloni Verma
Matr. No. 225871
Data and Knowledge Engineering

Supervisor: MSc. Gabriel Campero Durand

Agenda

Introduction

Explosion of news content online

Washington Post	1200/day
NYTimes.com	150/weekday (250 Sunday) ~65 blogs/day
Germany [28]	5500 (150 EN)

- 68% of Americans get news from social media
- Biased information **amplified** on social media like Twitter [4,27]
 - 70% more likely to be retweeted, spreads ~6x quicker [23]
- Media landscape
 - Old: Newspaper editors, expert fact-checkers
 - Now: Everyone shares without thought

What to believe?

U.S. voting commission vice chair urged new voting restrictions

WASHINGTON (Reuters) - The vice chairman of a voter fraud panel set up by U.S. President Donald Trump began soon after the election to draft legislative changes that would allow states to require voters to prove their citizenship when registering, court

Kansas Secretary of State Kris Kobach, who has been on the panel since its creation in May, exchanged emails on the matter with Trump's transition team the day after the November presidential election, according to records unsealed by a federal judge on

Example of Political News (a) FAKE

CNBC reported the latest FBI developments, including a passage from Comey's letter discuss

(b) REAL news story

What is Fake News?

- False or misleading information presented as news, to damage reputation
- Purpose: alter people's perceptions, attitudes, or beliefs in order to influence behaviour

Туре	Definition	Possible Impact
Misinformation	False information	Unharmful, but misleading
Fake News [33]	Intentionally misleading facts	Racial discrimination, financial loss [24]
Hoax	False news	Public scare [24,25]

.. Conspiracy Theory, Deepfakes and more [26]

Filtering manually is not enough

How to detect?

- Research for labelling **FAKE** and **REAL** news
- Automate this with ML/DeepL models

State-of-the-Art

Dataset: Politifact

Paper	Year	Concept	Accuracy (Text)	Accuracy (Multi-Modality)
Fakeddit [6]	2019	Hybrid models (text+image)	86.44	89.09
XGB-RF [4]	2020	XGB, Random Forest	87.7	86.5
Spotfake+ [7]	2020	Transfer learning for semantic + contextual	74	84.6
MM-RF ^[1]	2021	Random Forest (text+image)	86.24	95.18

Multi-Modality

"Modality" refers to an experience that we perceive [10]

Research Questions

- To what extent can **traditional machine learning** approaches perform (XGBoost, fastText, basic Neural Nets) on the detection of fake news using textual features?
- How does the performance of **node embeddings and graph embeddings** on the **User-Article graph** feature extracted from the dataset compare?
- Does the use of a **Graph Neural Network** contribute to the detection of fake news, compared to the node embedding approach?

Representation Models (Text Embeddings)

FastText FB. 2015

Word2Vec Google, 2013

GloVe Stanford, 2014

SBERT TU Darmstadt, 2019

Representation Models (Graph Embeddings)

Source: Starship-knowledge

Pytorch Big Graph Facebook 2019

Classification Models

- Neural Network (MLP)
- XGBoost (eXtreme Gradient Boosting)
 Gradient-boosted decision tree implementation for speed + performance^[9]

Heterogeneous Graph Neural Network
 Relational Graph Convolution Network^[16]

Dataset Choices

Features	News Content		Social Context		SpatioTemporal			
reatures	Linguistic	Visual	User	Post	Response	Network	Spatial	Temporal
Buzzfeed News y	✓							
Liar	✓							
Buzzface	✓			✓	✓			✓
BS Detector	✓							
CREDBANK	✓		✓				✓	✓
Facebook Hoax	✓		✓	✓				
FakeNewsNet (FNN)	✓	√	√	✓	√	✓	✓	✓

Dataset

FakeNewsNet

12,999 news pieces

FAKE |REAL labelled

Fake: 22% bots

Real: 9% bots

Data Augment using Twitter Developer API

- User-Article graph <u>not</u> fully connected
 - Data decay (Missing tweets, news articles..)
 - Fraction of news articles not found 9%[11]

- Script
 - Map TweetID to its UserID (t2u)
 - Map user's friends/followers if UserID present
- Less sparse data

Dataset: Extracted Features

Design

RQ 1: Machine Learning Approaches

Setup:

Embeddings: FasText 300d / SBERT 768d / Glove 300d

Classifiers: 1. XGB

num boost round=200, early_stopping_rounds→None
Binary Cross Entropy

2. NN Keras Hybrid Neural Network

"Epochs":200, "bs":128', 'lr':1e-3

Dropout, Conv1D, MaxPooling1D
2 LSTM layers Dense

Hyperparameter Evaluation: Activation Function, Dropout, Optimizer

Dataset Statistics

Number of Articles: 1056 (894)

Unique users: 31792

Fake: 411 (138) Real: 483 (179)

Number of Articles: 5323 Number of Tweets: 5135 Number of Retweets: 22140

Unique users: 639764

Fake: 3086 Real: 908

RQ 1: Machine Learning Approaches

Hypotheses:

- 1. Increasing features will increase model performance
- 2. NN would have best performance

Feature	Emb	F1-F	F1	Acc
Title (T)	Gl	.8409	.8462	84.36
Т	SB	.8165	.8360	82.68
Т	FT	.7560	.7917	77.53
T+Article(A)	GI	.8654	.8770	87.15
T+A	SB 🜟	.8764	.8778	87.71
T+A	FT	.7950	.8308	81.46
T+A+T+RT	GI (300d)	.8588	.8723	86.59
T+A+T+RT	FT	.8437	.8632	85.39

Results: XGB

Feature	Emb	F1-F	F1	Acc
Т	Gl	.4861	.8905	81.95
Т	SB	.5856	.9024	84.20
Т	FT	.5122	.8260	89.41
T+A	Gl	.5402	.8989	83.43
T+A	SB	.5856	.5829	84.2
T+A	FT	.8074	.8410	82.58
T+A+T+RT	Gl	.6945	.9232	87.73
T+A+T+RT	FT 🜟	.7014	.9245	87.95

RQ 1: Analysis

Hypotheses:

- Increasing features will increase model performance: GC
- 2. NN would have best performance:

•					
	GC	X	could	not	learr

PF X Title+Article enough to learn underlying patterns PF V

Feature	DS	Model	Emb	F1-F	F1	Acc
T+A		XGB	SB	.8764	.8778	87.71
T+A		NN 🜟	SB	.9142	.9180	91.62
T+A+T+RT		NN	FT	.6449	.9153	86.33
T+A+T+RT		XGB 🜟	GI	.6945	.9232	87.73

Vs. State of the Art

Paper	Accuracy (Text)			
XGB-RF [4] 2020	87.7 4% or 0.4x 1			
Spotfake+ [7] 2020	74 0.18x 1 83.6 0.7x 1			
Fakeddit ^[6] 2019	86.44 0.6x			
MM-RF ^[1] 2021	86.24 ≈ 0.5x ↑			

- Models are significantly dependent on word embeddings used
- NN adapts well to any number of features it is fed → Could be good for generalisation to other datasets and FND tasks

RQ2: Multi-Modal Fake News Detection MoON architecture

Embeddings: SBERT + Pytorch BigGraph

Setup:

- 1. SBERT 128d (Title + Text)
- Create **PBG** Node embeddings for User, Tweet, Retweet relationships
- 3. Concatenate: SBERT + PBG (Fusion) NOVEL
- 4. Classifiers: **XGB** and **NN** Same as RQ1

 MultimodalOnlineNews classifier MoON architecture

9885299118739210	24	96125	171485782	28357	follows
9616358979293593	60	961253	171485782	28357	follows
159717173	96125171	485782	28357	follows	
4737344780	96125171	485782	28357	follows	
87696866	96125171	485782	28357	follows	
3936393793	96125171	485782	28357	follows	
79165215	77516855	44590	70468	follows	
1249663912439623	680	775168	855445907	0468	follows

Snapshot of PBG edges.txt for PF

Dataset	#Nodes	#Edges
Control of the contro	31896	49576
	314,262	308,798

RQ2: Results

Hypothesis: Using 2 modalities (Text+Graph) will give superior model than just text models (RQ1)

Epochs	Model	F1	Acc
200	XGB	91.489	.8764
400	XGB	91.489	.9142
200	NN	94.737	.6449
400	NN	95.531	.6945
600	NN 🜟	96.296	96.089 A96.607

Epochs	Model	F1	Acc
200	XGB	93.250	89.23
400	XGB★	93.266	89.259
600	XGB	89.484	93.405
200	NN	92.754	88.433
400	NN	92.689	88.332
600	NN	92.903	88.658

Results better than RQ1

- Amalgamation of textual and graphical features infuses more details
- MoON model scalable

Results SB+PBG embeddings for all features (T+A+TW+RT) fed through MLP and XGB (MoON)

RQ2: Analysis wrt SOTA

Paper	Accuracy (Text)	Accuracy (Multi-Modal)
Spotfake+ [7]2020	74 83.6	84.6 ~ 12% Î 85.6 ~ 8% Î
Fakeddit ^[6] 2019	86.44	89.09 7% Î
MM-RF ^[1] 2021	86.24	95.18 1% 1
SentimentAware ^[31] 2020	-	F76.32 20% 1 F81.58 8% 1
dEFEND 2019 [19]	-	90.04 6.18% 🕆 80.8 10.39% 🕆
Our Results	91.62 (F91.80) 87.95 (F92.45)	96.08 (F96.29) 5.46% Î 89.25 (F93.26) 1.47% Î

Note: Comparing multi-modality, others show results for text+image modalities

RQ3: Graph Learning Approach

Hypothesis:

1. Graph approach will give superior results than just text models (RQ1)

Embeddings: FT / SB

Setup: Deep Graph Library

sampler = dgl.dataloading.NeighborSampler([0, 10])
batch_size=64

dgl.nn.GraphConv(64, 64, allow_zero_in_degree=True)
I/P, O/P features

- Residual function handles zero degree nodes

Graph Visualised: GC 100 nodes

Node/Relation		
article	19968	894
user, follow, user (user, followed-by, user)	48409	695148
user	31792	639764
user, tweet, article (article, tweeted-by, user)	588	4587

RQ3: Results

Epochs	Emb	F1	Acc
100	FT	90.909	90.503
200	FT	87.50	89.385
400	FT	90.217	89.944
200	SB 🜟	94.737	94.413
400	SB	94.505	94.413

Epochs	Model	F1	Acc
100	FT	89.724	83.225
200	FT	89.752	83.225
400	FT	89.72	83.15
100	SB 🜟	90.949	85.503
200	SB	90.892	85.303
400	SB	90.83	87.414

Comparison wrt. Our Research

RQ	Accuracy (Best)		
RQ1	91.62 3.2% ↑		87.95 2.6%
RQ2	96.08 1.6%		89.25 3.7 %
RQ3	94.413		85.503

- GCN models highly sensitive to size & type of DS, including class imbalance
- Responsive to hyperparameter tuning
- Model marginally outperformed by novel Multi-modal MoON

Results All features (T+A+TW+RT) fed to HetGCN (with Cross Validation)

Takeaways

- RQ1
 - Increasing features generally makes the model learn better
 - XGB outperforms in some cases
 - Models dependent on word embeddings

- RQ2
 - MoON model outperforms all (marginally), adding features enhance pre-trained knowledge of models
 - Scarcity of PF sample having ALL 4 features affects model performance
 - Multi-modal models are capable of capturing underlying data distribution
- RQ3
 - o GCN models **highly sensitive** to class imbalance
 - : some articles/users could be over-represented

Challenges

→ Problem of incremental improvements

Conclusion

- Perils of fake news on social media
- Binary classification problem: REAL or FAKE labels for news online
- Exhaustive number of experiments (Engineering, Enrichment API,..)
- Common assumptions are not always true
- Amalgamation of Text + Relationship features infuses more details → Better model (Unimodal, Multi-modal & Graph)
 - o MoON results best → Multi-modality reliable approach for complex problems like Fake News Detection
 - Scientifically find the right mix of Content and Context
- Future Work

Google Gato

Increasing modalities

Tuning of Transformers Create UI for FND tool + Explanability

References

- 1. Vivek K. Singh, Isha Ghosh, and Darshan Sonagara. Detecting fake news stories via multimodal analysis. Journal of the Association for Information Science and Technology, 72(1):3–17, jan 2021. doi:10.1002/asi.24359. §
- 2. Xichen Zhang, Ali A. Ghorbani, An overview of online fake news: Characterization, detection, and discussion, Information Processing & Management, Volume 57, Issue 2, 2020, 102025, ISSN 0306-4573, https://doi.org/10.1016/i.ipm.2019.03.004. §
- FakeNewsNet:
- 4. Xinyi Zhou and Reza Zafarani. A Survey of Fake News: Fundamental Theories, Detection Methods, and Opportunities. ACM Computing Surveys, 53(5), sep 2020. arXiv:1812.00315, doi:10.1145/3395046.
- Awan Mohanty. Multi layer perceptron (mlp) models on real world banking data. becoming human: Artificial intelligence magazine.
 https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f, May 15 2019. (Accessed on 09/17/2022)
- 6. Kai Nakamura, Sharon Levy, and William Yang Wang. r/Fakeddit: A New Multimodal Benchmark Dataset for Fine-grained Fake News Detection. nov 2019. URL: http://arxiv.org/abs/1911.03854, arXiv:1911.03854.
- 7. Shivangi Singhal, Anubha Kabra, Mohit Sharma, Rajiv Shah, Tanmoy Chakraborty, and Ponnurangam Kumaraguru. Spotfake+: A multimodal framework for fake news detection via transfer learning (student abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 34:13915–13916, 04 2020. doi:10.1609/aaai.v34i10.7230.
- 8. J Keller. 2013. A fake AP tweet sinks the DOWfor an instant. Bloomberg Businessweek (2013)
- 9. Jason Brownie. A gentle introduction to xgboost for applied machine learning. https://machinelearningmastery.com/ gentle-introduction-xgboost-applied-machine-learning/, August 2016. (Accessed on 11/23/2022).
- 10. https://courses.lumenlearning.com/waymaker-psychology/chapter/multi-modal-perception/
- 11. Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. Fake news detection on social media: A data mining perspective. SIGKDD Explor. Newsl., 19(1):22–36, sep 2017. doi:10.1145/3137597.3137600
- 12. Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal Machine Learning: A Survey and Taxonomy. may 2017. URL: http://arxiv.org/ abs/1705.09406, arXiv:1705.09406.
- 13. Hanghang Tong, Jingrui He, Mingjing Li, Changshui Zhang, and Wei-Ying Ma. Graph Based Multi-Modality Learning*. Technical report, 2005
- 14. Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra Lefevre, and Rada Mihalcea. Automatic Detection of Fake News. aug 2017. URL: http://arxiv.org/abs/ 1708.07104, arXiv:1708.07104.
- 15. Karishma Sharma, Feng Qian, He Jiang, Natali Ruchansky, Ming Zhang, and Yan Liu. Combating fake news: A survey on identification and mitigation techniques, apr 2019. arXiv:1901.06437, doi:10.1145/3305260
- 16. Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. CoRR, abs/1609.02907, 2016. URL: http://arxiv.org/abs/1609.02907, arXiv:1609.02907.

References

- 17. Kai Shu, Deepak Mahudeswaran, Suhang Wang, Dongwon Lee, and Huan Liu. FakeNewsNet: A Data Repository with News Content, Social Context, and Spa- tiotemporal Information for Studying Fake News on Social Media. *Big Data*, 8(3):171–188, 2020. arXiv:1809.01286, doi:10.1089/big.2020.0062.
- 18. https://www.politifact.com/factchecks/list/?ruling=true, https://www.eonline.com/
- 19. Kai Shu, Limeng Cui, Suhang Wang, Dongwon Lee, and Huan Liu. defend: Explainable fake news detection. June 2019. URL: dl.acm.org/doi/10.1145/3292500.3330935, doi:doi/10.1145/3292500.3330935.
- 20. Twitter icon: flaticon.com, Bird icon: Clipartmax.com
- 21. Chen, J.; Huang, F.; Peng, J. MSGCN: Multi-Subgraph Based Heterogeneous Graph Convolution Network Embedding. Appl. Sci. 2021, 11, 9832. https://doi.org/10.3390/app11219832
- 22. Image Credits: Reese Witherspoon fashiongoneroque.com, Chris Wallace: nbcnews.com
- 23. Diba Roy Sourush Vosoughi, Sinan Aral. The spread of true and false news on- line. March 2018. (Accessed on 08/11/2022). doi:10.1126/science.aap955
- 24. Nyhan B Flynn DJ and Reifler J. The nature and origins of misperceptions: Understanding false and unsupported beliefs about politics. Political Psychology 38(S1. 2017.
- 25. David M.J.Lazer, Matthew A.Baum, Yochai Benkler, Adam J.Berinsky, KellyM. Greenhill, Filippo Menczer, Miriam J. Metzger, Brendan Nyhan, Gordon Pennycook, David Rothschild, Michael Schudson, Steven A. Sloman, Cass R. Sunstein, Emily A. Thorson, Duncan J. Watts, and Jonathan L. Zittrain. The science of fake news: Addressing fake news requires a multidisciplinary effort. Science, 359(6380):1094–1096, mar 2018. doi:10.1126/science.aao2998.
- 26. Xia Hu and Huan Liu. In Charu C. Aggarwal and ChengXiang Zhai, editors, Mining Text Data. doi:https://doi.org/10.1007/978-1-4614-3223-4
- 27. Kathleen Hall Jamieson, Yu-Gang Jiang Joseph N Cappella Zhiwei Jin, JuanCao, and Yongdong Zhang. News credibility evaluation on microblog with a hierarchical propagation model. page 230–239. Oxford University Press, 2014
- 28. Felix Hamborg, Norman Meuschke, and Bela Gipp. Bias-aware news analysis using matrix-based news aggregation. *International Journal on Digital Libraries*, 21, 06 2020. doi:10.1007/s00799-018-0239-9
- 29. KaiShu and Huan Liu. Detecting fake news on social media. Synthesis Lectures on Data Mining and Knowledge Discovery, 2019.
- 30. Xinyi Zhou, Atishay Jain, Vir V Phoha, and Reza Zafarani. 2019a. Fake News Early Detection: A Theory-driven Model. arXiv preprint arXiv:1904.11679 (2019).
- 31. Limeng Cui, Suhang Wang, and Dongwon Lee. 2020. SAME: sentiment-aware multi-modal embedding for detecting fake news. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM '19). Association for Computing Machinery, New York, NY, USA, 41–48. https://doi.org/10.1145/3341161.3342894
- 32. Machine learning for KPIs prediction: a case study of the overall equipment effectiveness within the automotive industry, 10.1007/s00500-020-05348-y. Choumicha EL Mazgualdi et al.
- 33. Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks, 2019. URL: https://arxiv.org/abs/1908.10084, doi:10. 48550/ARXIV.1908.10084

Thank you!

Let's delve into the questions

