Inverzija u odnosu na krug

Marija Kostić

1 Definicija i konstrukcija inverzne tačke

Neka je O fiksirana tačka u ravni E^2 i neka je r > 0 fiksiran pozitivan realan broj. Neka je k = k(O, r) krug sa centrom u O poluprečnika r.

Definicija 1. Neka je k(O,r) proizvoljan krug ravni E^2 . Inverzija u odnosu n krug k je preslikavnje

$$\psi_k: E^2 \setminus \{O\} \longrightarrow E^2 \setminus \{O\},$$

koje svakoj tački $P \in E^2 \setminus \{O\}$ (Slika 1) dodeljuje tačku $\psi_k(P) = P'$ na polupravoj OP sa početkom u O takvu da je

$$\overrightarrow{OP} \cdot \overrightarrow{OP'} = r^2. \tag{1}$$

Slika 1: Inverzija u odnosu na krug

Tačku O nazivamo centrom ili $središtem\ inverzije$, duž r nazivamo poluprečnikom, veličinu r^2 nazivamo stepenom, a krug k nazivamo stepenom inverzije ψ_k .

Iz Definicije 1 neposredno sledi da je inverzija u odnosu na krug $k \subset E^2$ bijektivna transformacija. To nije transformacija cele ravni E^2 već samo njenog dela $E^2 \setminus \{O\}$, jer u njoj nije definisana slika tačke O, niti je tačka O slika neke tačke ravni E^2 .

Teorema 1.1. Inverzija u odnosu na krug je involuciona transformacija.

Dokaz. Neka je $\psi_k : E^2 \setminus \{O\} \longrightarrow E^2 \setminus \{O\}$ inverzija u odnosu na krug k(O, r). Ako je $P \in E^2 \setminus \{O\}$ biće $P' = \psi_k(P)$ tačka poluprave OP takva da je $OP \cdot OP' = r^2$. Stoga je i tačka P na polupravoj OP' takva da je $OP' \cdot OP = r^2$, pa je $\psi_k(P') = P$.

Teorema 1.2. U inverziji $\psi_k : E^2 \setminus \{O\} \longrightarrow E^2 \setminus \{O\}$ tačka X je fiksna tačka preslikavanja ako i samo ako je $X \in k$.

Dokaz. Ako je tačka $X \in E^2 \setminus \{O\}$ fiksna tačka, imamo da je $OX \cdot OX = r^2$, pa je OX = r, pa prema tome $X \in k$. Obrnuto, ako je $X \in k$, tačka $X' = \psi_k(X)$ će biti na polupravoj OX tako da važi $OX \cdot OX' = r^2$, OX = r pa prema tome X = X'.

Teorema 1.3. U inverziji $\psi_k : E^2 \setminus \{O\} \longrightarrow E^2 \setminus \{O\}$ tački X koja se nalazi u unutrašnjosti kruga k odgovara tačka X' koja se nalazi izvan kruga k. Obrnuto, tački X koja se nalazi van kruga k odgovara tačka X' koja se nalazi unutar kruga k.

Dokaz. Neka je O središte, a r poluprečnik kruga k. Ako je tačka X u unutrašnjosti kruga k, tada je OX < r, pa iz relacije (1) $OX \cdot OX' = r^2$ sledi da je OX' > r, pa je tačka X' izvan kruga. Obrnuto, ako je tačka X izvan kruga k, tada je OX > r, pa iz relacije (1) $OX \cdot OX' = r^2$ sledi da je OX' < r, pa je tačka X' u unutrašnjosti kruga.

Konstrukcija inverzne tačke

Neka je k = k(O, r) fiksiran krug sa centrom u tački O poluprečnika r i neka je data tačka P van kruga k.Neka su t_1 i t_2 tangente iz tačke P na krug k, a T_1 i T_2 na t_1 i t_2 redom, tačke dodira ovih tangenti sa krugom k. Neka je P' presečna tačka prave T_1T_2 i prave OP(Slika 2).

Slika 2: Konstrukcija inverzne tačke

Stav 1.1. Prava T_1T_2 je normalna na pravu OP.

Dokaz. Kako je $OT_1 = OT_2 = r$ i $PT_1 = PT_2$ kao tangentne duži, to tačke P i O leže na simetrali duži T_1T_2 , odnosno prava PO je normalna na pravu T_1T_2 kao simetrala duži T_1T_2 .

Stav 1.2. Trouglovi OT_1P i $OP'T_1$ su slični.

Dokaz. Iz Stava 1.1 $\triangle OT_1P$ i $\triangle OP'T_1$ su pravougli sa jednim zajedničkim uglom kod temena O, pa je $\triangle OT_1P\cong \triangle OP'T_1$.

Posledica 1. Tačka P' je slika tačke P pri inverziji u odnosu na krug k.

Dokaz. Iz sličnosti koju smo dokazali u Stavu 1.2, dobijamo $OT_1: OP' = OP: OT_1$. Odavde je $OP \cdot OP' = OT_1^2 = r^2$.

Prethodno razmatranje je zapravo analiza i dokaz geometrijskog načina da konstruišemo sliku date tačke pri inverziji. U nastavku ćemo opisati konstrukciju.

Iz Teoreme (1.2) sledi da se tačka koja pripada krugu inverzije slika u sebe tj. fiksna je, pa iz Teoreme (1.3) razlikujemo dva slučaja: kada je tačka koju preslikavamo unutar kruga i kada je tačka koju preslikavamo izvan kruga.

Konstukcija inverzne tačke za tačku unutar kruga

Neka je k = k(O, r) krug sa centrom u tački O poluprečnika r i neka je P tačka unutar kruga k.Konstrukcija inverzne tačke P' se sastoji iz sledećih koraka:

- \bullet Konstruišemo pravu p koja sadrži tačke O i P;
- Konstruišemo normalu n iz tačke P na pravu p;
- Neka je T jedna od tačaka preseka kruga k i prave n;
- Konstruišemo poluprečnik *OT*;
- Konstruišemo tangentu t kruga k iz tačke T normalno na poluprečnik OT;
- Tačka P' će biti presek pravih p i t;

Konstrukcija je data na Slici 3 u delu (3a).

Konstukcija inverzne tačke za tačku izvan kruga

Neka je k = k(O, r) krug sa centrom u tački O poluprečnika r i neka je P tačka van kruga k.Konstrukcija inverzne tačke P' se sastoji iz sledećih koraka:

- Konstruišemo duž *OP*;
- Konstruišemo krug k_1 nad prečnikom OP;
- $\bullet\,$ Neka su T_1 i T_2 presečne tačke krugova k i $k_1;$
- Tačka P' će biti presek duži OP i T_1T_2 ;

Konstrukcija je data na Slici 3 u delu (3b).

(a) Tačka P je unutar kruga k

(b) Tačka P je van kruga k

Slika 3: Konstrukcija slike tačke P pri inverziji u odnosu na krug k

2 Slika prave i kruga pri inverziji

U ovom delu ćemo videti da slika prave u inverziji može biti prava ili krug, kao i da isto važi i za krug.

Sledeće teoreme navodimo bez dokaza.

Neka je k = k(O, r) krug sa centrom u tački O poluprečnika r.

Teorema 2.1. Prava p koja sadrži centar O inverzije ψ_k slika se u sebe samu(Slika 7).

Slika 4

Teorema 2.2. Prava p koja ne sadrži centar O inverzije ψ_k slika se u krug koji prolazi kroz centar inverzije O.

Razlikovaćemo dva slučaja, videti Sliku 5.

- (a) Prava seče krug inverzije
- (b) Prava ne seče krug inverzije

Slika 5

Teorema 2.3. Krug k_1 koji sadrži centar O inverzije ψ_k slika se u pravu koja ne prolazi kroz centar inverzije O.

Slika je ista kao u prethodnoj Teoremi 2.2(Slika 5).

Teorema 2.4. Krug k_1 koji ne sadrži centar O inverzije ψ_k slika se u krug koji ne prolazi kroz centar inverzije O.

Razlikovaćemo dva slučaja, videti Sliku 6.

Slika 6

Centar kruga se pri inverziji ne slika u centar odgovarajućeg kruga. Ipak, važi da prava koja prolazi kroz centar kruga i njegovu sliku pri inverziji, prolazi kroz centar te inverzije, što direktno sledi iz Teoreme 2.4.

Teorema 2.5. Krug k_1 koji je ortogonalan na krug inverzije k slika se u samog sebe pri inverziji ψ_k .

Slika 7

Literatura

- [1] Dragomir Lopandić. Geometrija za III razred usmerenog obrazovanja. Naučna knjiga, 1980.
- [2] Zoran Lučić. *Euklidska i hiperbolička geometrija*. Total Design i Matematički fakultet Beograd, 1997.