

European Project n° 613817

2nd Annual Meeting

Valentina Pagani, Tommaso Guarnieri, Ermes Movedi, <u>Livia Paleari</u>, Roberto Confalonieri (University of Milan, Cassandra lab)

November 3-4, 2015

Cold-induced spikelet sterility

- ➤ Rice is very sensitive to cold stress during **reproductive phase**: yield losses up to 30-40% in temperate growing areas (e.g., Northern Italy, North Japan, South Australia)
- Low temperatures cause structural and functional abnormalities in reproductive organs leading to fertilization failure and premature abortion of seeds (Thakur et al., 2010)
- > Two moments of maximum susceptibility:
 - **Booting stage** (microsporogenesis) (e.g., Oliver et al., 2005; Gothandam et al., 2007; Imin et al., 2004; Sakata et al., 2014)
 - Around flowering

 (e.g., De Cruz et al., 2006; Sanchez et al., 2014) (From Bakathi

How it can be modelled?

> WARM approach: only pre-flowering stress is considered

How it can be modelled?

➤ MODEXTREME component: only the stress around anthesis is taken into account

Field experiments

Castello d'Agogna				
Variety group	Variety name	Year	Yield († ha ⁻¹)	HI reduction (%)
Japonica early	Loto	2004	5.66	0
Indica late	Thaibonnet	2004* 2005 2006	7.06	21.4 21.1 18.9
Indica medium	Gladio	2009* 2011*		12 15.1

^{*} Calibration dataset

WARM calibration:

- Phenology calibration (Tbase, Tmax, GDDem-fl, GDDfl-mat)
- **Growth** calibration (RUEmax, RipL0, SLAem, Topt, Tmax,..)

Sample results

Sample results

Results

Conclusions & Perspectives

- Results can be considered as fully satisfactory
- ➤ The MODEXTREME component allowed to greatly improve the simulation of the impact of cold air irruption on rice yields
- Although carefully parameterized, the model likely overestimated the damage
 - A bell-shape function could allow reproducing the heterogeneity of occurrence of pollen germination/fertilization within spikelet/plant/field

Acknowledgement

"The research leading to these results has received funding from the European Community's Seventh Framework Programme – FP7 (KBBE.2013.1.4-09) under Grant Agreement No. 613817, 2013-2016"

