# Санкт-Петербургский Политехнический Университет имени Петра Великого Институт Прикладной Математики и Механики

## Кафедра "Прикладная Математика"

# Отчет по лабораторным работам №5-8 по дисциплине "Математическая Статистика"

Выполнил студент: Тырыкин Я. А. группа 5030102/80401 Проверил: к.ф.-м.н., доцент Баженов А. Н.

# Содержание

| 1 | Пос | становка задачи                                             | 5  |
|---|-----|-------------------------------------------------------------|----|
|   | 1.1 | Лабораторная работа №5                                      | 5  |
| 2 | Teo | рия                                                         | 5  |
|   | 2.1 | Двумерное нормальное распределение                          | 5  |
|   | 2.2 | Корреляционный момент (ковариация) и коэффициент корреляции | 5  |
|   | 2.3 | Выборочные коэффициенты корреляции                          | 6  |
|   |     | 2.3.1 Выборочный коэффициент корреляции Пирсона             | 6  |
|   |     | 2.3.2 Выборочный квадрантный коэффициент корреляции         | 6  |
|   |     | 2.3.3 Выборочный коэффициент ранговой корреляции Спирмена   | 6  |
|   | 2.4 | Эллипсы рассеивания                                         | 6  |
| 3 | Mo, | дульная структура программы                                 | 7  |
| 4 | Рез | ультаты                                                     | 7  |
|   | 4.1 | Выборочные коэффициенты корреляции                          | 7  |
|   | 4.2 | Эллипсы рассеивания                                         | 9  |
| 5 | Обо | суждение                                                    | 10 |
|   | 5.1 | Выборочные коэффициенты корреляции и эллипсы рассеивания    |    |
| 6 | Pec | урсы                                                        | 10 |

# Список иллюстраций

| 1 | Двумерное нормальное распределение, $n=20$                      | 9  |
|---|-----------------------------------------------------------------|----|
| 2 | Двумерное нормальное распределение, $n=60$                      | 9  |
| 3 | Двумерное нормальное распределение, $n = 100 \dots \dots \dots$ | 10 |

# Список таблиц

| 1 | Двумерное нормальное распределение, $n=20$  | 7 |
|---|---------------------------------------------|---|
| 2 | Двумерное нормальное распределение, $n=60$  | 8 |
| 3 | Двумерное нормальное распределение, $n=100$ | 8 |
| 4 | Смесь нормальных распределений              | g |

## 1 Постановка задачи

#### 1.1 Лабораторная работа №5

Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения  $N(x, y, 0, 0, 1, 1, \rho)$ 

Коэффициент корреляции  $\rho$  Коэффициент корреляции

Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадрантного коэффициента корреляции.

Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9N(x, y, 0, 0, 1, 1, 0.9) + 0.1N(x, y, 0, 0, 10, 10, -0.9).$$

Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

# 2 Теория

#### 2.1 Двумерное нормальное распределение

Двумерная случайная величина (X,Y) называется распределённой нормально (или просто нормальной), если её плотность вероятности определена формулой

$$N(x, y, \overline{x}, \overline{y}, \sigma_x, \sigma_y, \rho) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times \exp\left(\frac{1}{2(1-\rho^2)}\left[\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho\frac{(x-\overline{x})(y-\overline{y})}{\sigma_x\sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2}\right]\right)$$
(1)

Компоненты X,Y двумерной нормальной случайной величины также распределены нормально с математическими ожиданиями  $\overline{x},\overline{y}$  и средними квадратическими отклонениями  $\sigma_x,\sigma_y$  соответственно.

Параметр  $\rho$  называется коэффициентом корреляции.

# 2.2 Корреляционный момент (ковариация) и коэффициент корреляции

**Корреляционный момент**, иначе ковариация, двух случайных величин X и Y:

$$K = cov(X, Y) = M[(X - \overline{x})(Y - \overline{y})]. \tag{2}$$

**Коэффициент корреляции**  $\rho$  двух случайных величин X и Y:

$$\rho = \frac{K}{\sigma_x \sigma_y} \tag{3}$$

#### 2.3 Выборочные коэффициенты корреляции

#### 2.3.1 Выборочный коэффициент корреляции Пирсона

Выборочный коэффициент корреляции Пирсона:

$$r = \frac{\frac{1}{n} \sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\frac{1}{n^2} \sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} = \frac{K}{s_X s_Y}$$
(4)

где  $K, s_X^2, s_Y^2$ — выборочные ковариация и дисперсии случайных величин X и Y.

#### 2.3.2 Выборочный квадрантный коэффициент корреляции

Выборочный квадрантный коэффициент корреляции

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n} \tag{5}$$

где  $n_1$ ,  $n_2$ ,  $n_3$  и  $n_4$ — количества точек с координатами  $(x_i, y_i)$ , попавшими соответственно в I, II, III и IV квадранты декартовой системы с осями x' = x - medx, y' = y - medy и с центром в точке с координатами (medx, medy).

#### 2.3.3 Выборочный коэффициент ранговой корреляции Спирмена

Обозначим ранги, соотвествующие значениям переменной X, через u, а ранги, соотвествующие значениям переменной Y- через v.

Выборочный коэффициент ранговой корреляции Спирмена:

$$r_S = \frac{\frac{1}{n} \sum (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{\frac{1}{n^2} \sum (u_i - \overline{u})^2 \sum (v_i - \overline{v})^2}}$$
(6)

где  $\overline{u} = \overline{v} = \frac{1+2+\ldots+n}{n} = \frac{n+1}{2}$  - среднее значение рангов.

#### 2.4 Эллипсы рассеивания

Уравнение проекции эллипса рассеивания на плоскость xOy:

$$\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\overline{x})(y-\overline{y})}{\sigma_x \sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2} = const$$
 (7)

Центр эллипса (7) находится в точке с координатами  $(\overline{x}, \overline{y})$ ; оси симметрии эллипса составляют с осью Ox углы, определяемые уравнением

$$tg \ 2\alpha = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2} \tag{8}$$

# 3 Модульная структура программы

Лабораторная работа выполнена с применением средств языка Python версии 3.7 в среде разработки PyCharm IDE (в частности, с применением встроенных методов библиотеки SciPy и MatPlotLib). Исходной код лабораторной работы находится по ссылке в приложении к отчёту.

# 4 Результаты

## 4.1 Выборочные коэффициенты корреляции

| $\rho = 0 \ (3)$ | r(4)   | $r_s$ (6) | $r_Q(5)$ |
|------------------|--------|-----------|----------|
| E(z)             | -0.002 | -0.005    | 0.02     |
| $E(z^2)$         | 0.05   | 0.05      | 0.05     |
| D(z)             | 0.05   | 0.06      | 0.05     |
|                  |        |           |          |
| $\rho = 0.5$     | r      | $r_s$     | $r_Q$    |
| E(z)             | 0.24   | 0.22      | 0.32     |
| $E(z^2)$         | 0.16   | 0.15      | 0.17     |
| D(z)             | -0.08  | -0.07     | 0.14     |
|                  |        |           |          |
| $\rho = 0.9$     | r      | $r_s$     | $r_Q$    |
| E(z)             | 0.46   | 0.43      | 0.7      |
| $E(z^2)$         | 0.37   | 0.35      | 0.52     |
| D(z)             | -0.08  | -0.08     | 0.03     |

Таблица 1: Двумерное нормальное распределение, n=20

| 5)<br>01<br>2<br>2 |
|--------------------|
| 2                  |
|                    |
| 2                  |
|                    |
|                    |
| )                  |
| 3                  |
| 3                  |
| 2                  |
|                    |
| )                  |
| 7                  |
| 5                  |
| )9                 |
|                    |

Таблица 2: Двумерное нормальное распределение, n=60

| $\rho = 0 \ (3)$ | r(4)  | $r_s$ (6) | $r_Q(5)$ |
|------------------|-------|-----------|----------|
| E(z)             | 0.39  | 0.37      | 0.006    |
| $E(z^2)$         | 0.31  | 0.3       | 0.01     |
| D(z)             | -0.07 | -0.07     | 0.01     |
|                  |       |           |          |
| $\rho = 0.5$     | r     | $r_s$     | $r_Q$    |
| E(z)             | 0.4   | 0.39      | 0.34     |
| $E(z^2)$         | 0.3   | 0.29      | 0.12     |
| D(z)             | -0.1  | -0.09     | 0.01     |
|                  |       |           |          |
| $\rho = 0.9$     | r     | $r_s$     | $r_Q$    |
| E(z)             | 0.46  | 0.44      | 0.7      |
| $E(z^2)$         | 0.36  | 0.34      | 0.47     |
| D(z)             | -0.09 | -0.09     | 0.01     |

Таблица 3: Двумерное нормальное распределение, n=100

|                  | I     | 1         |          |
|------------------|-------|-----------|----------|
| $\rho = 0 \ (3)$ | r(4)  | $r_s$ (6) | $r_Q(5)$ |
| E(z)             | -0.5  | 0.43      | 0.51     |
| $E(z^2)$         | 0.5   | 0.26      | 0.3      |
| D(z)             | 0.3   | 0.06      | 0.04     |
|                  |       |           |          |
| $\rho = 0.5$     | r     | $r_s$     | $r_Q$    |
| E(z)             | -0.65 | 0.47      | 0.56     |
| $E(z^2)$         | 0.49  | 0.25      | 0.32     |
| D(z)             | 0.05  | -0.03     | 0.01     |
|                  |       |           |          |
| $\rho = 0.9$     | r     | $r_s$     | $r_Q$    |
| E(z)             | -0.69 | 0.47      | 0.56     |
| $E(z^2)$         | 0.51  | 0.24      | 0.323    |
| D(z)             | 0.03  | 0.02      | 0.007    |

Таблица 4: Смесь нормальных распределений

## 4.2 Эллипсы рассеивания



Рис. 1: Двумерное нормальное распределение, n=20



Рис. 2: Двумерное нормальное распределение, n=60



Рис. 3: Двумерное нормальное распределение, n=100

# 5 Обсуждение

## 5.1 Выборочные коэффициенты корреляции и эллипсы рассеивания

Сравним дисперсии выборочных коэффициентов корреляции:

- Для двумерного нормального распределения дисперсии выборочных коэффициентов корреляции упорядочены следующим образом:  $r_Q > r_s > r$ .
- Для смеси нормальных распределений дисперсии выборочных коэффициентов корреляции упорядочены следующим образом:  $r_Q < r_s < r$ .

Процент попавших элементов выборки в эллипс рассеивания (95%-ная доверительная область) примерно равен его теоретическому значению (95%).

## 6 Ресурсы

Код программы, реализующей отрисовку обозначенных распределений:

https://github.com/YaroslavAggressive/Mathematical-statistics-lab-works