

Dinaminis Programavimas: Teorija ir Praktika

Šiandien nagrinėsime dinaminio programavimo (DP) principus ir jų pritaikymą praktikoje. Palyginsime rekursijos ir DP metodus, spręsime klasikines užduotis.

by Andrej Gorbatniov

Praktinė dalis – Dinaminis programavimas veiksme

Palyginimas

Palyginsime rekursijos ir DP sprendimų efektyvumą.

Pritaikymas

Pritaikysime DP "Climbing stairs" užduočiai.

Kuprinės problema

Susipažinsime su klasikine Kuprinės problema.

Darbo metodika

Užduotys

2 pagrindinės užduotys ir papildomas pavyzdys.

Įrankiai

Python arba C++ kalba

Darbo stilius

Individualus darbas, tačiau diskusijos skatinamos.

Užduotis 1 – Fibonačio funkcija

Užduoties aprašymas

- Parašyk Fibonačio funkciją su rekursija
- Patobulink naudodamas memoizaciją
- Implementuok bottom-up versiją

Diskusijos klausimai

- Kuri versija veikia greičiau?
- Kiek kartų kviečiama funkcija?
- Ką galima optimizuoti toliau?

Fibonačio funkcijos pavyzdys

Rekursija

```
def fibonacci(n): # Rekursija
if n <= 1:
   return n
return fibonacci(n-1) + fibonacci(n-2)</pre>
```


Memoizacija

```
def fibonacci_memo(n, memo={}): # Memoizacija
 if n in memo:
      return memo[n]
 if n <= 1:
      return n
 memo[n] = fibonacci_memo(n-1, memo) + fibonacci_memo(n-2, memo)
      return memo[n]</pre>
```


Užduotis 1 – Atlikimo instrukcija

Pasirink parametrą

Naudok n = 30 (arba daugiau)

Matuok laiką

Naudok time modulį arba paprastą print

Stebėk kvietimus

Jrašyk print() kiekvienam kvietimui

Diskutuok

Aptark, ką pakeistum kode

Užduotis 2 – Laiptelių uždavinys

Užduotis

Kiek skirtingų būdų užlipti n laiptelių, jei vienu žingsniu galima užlipti 1 arba 2 laiptelius?

Pavyzdys

n=3: 1+1+1, 1+2, 2+1. Iš viso 3 būdai.

Tikslas

Parašyti funkciją climb_stairs(n) naudojant bottom-up DP.

Užduotis 2 – Pagalba ir lentelės idėja

1

n=0

1

n=1

2

3

n=2

n=3

6 Made with Gamma

Kuprinės problema

Kuprinė = 10 kg

Daiktai:

- A: 3 kg, 6 taškai
- B: 4 kg, 7 taškai
- C: 5 kg, 10 taškų

Ką pasirinktum?

Situacija

Kuprinė su talpa **W** ir **n** daiktų su skirtingais svoriais ir vertėmis.

Sprendimas

Kiekvienas daiktas gali būti **paimtas** arba **nepaimtas**.

DP metodas

DP lentelė: ašių reikšmės yra talpa ir daiktų indeksai.

Tikslas

Maksimizuoti vertę neviršijant svorio limito.