PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C07K 14/435, C12N 1/00, 1/15, 1/21,
5/10, 15/12, 15/63

(11) International Publication Number: WO 00/34320

(43) International Publication Date: 15 June 2000 (15.06.00)

(21) International Application Number: PCT/US99/29393

(22) International Filing Date: 10 December 1999 (10.12.99)

(30) Priority Data:

09/210,330 11 December 1998 (11.12.98) US

Not furnished 9 December 1999 (09.12.99) US

(71) Applicant: CLONTECH LABORATORIES, INC. [US/US]; 1020 East Meadow Drive, Palo Alto, CA 94303 (US).

(72) Inventors: LUKYANOY, Sergey Anatolievich; ul. Golubinskaya 13/1-161, Moscow (RU). FRADKOV, Arcady Fedorovich; ul. Dnepropetrovskaya, 35/2-14, Moscow, 113570 (RU). LABAS, Yulii Aleksandrovich; ul. Generala Tyuleneva, 35-416, Moscow, 117465 (RU). MATZ, Mikhail Vladimirovich; ul. Teplii stan, 7/2-28, Moscow, 117465 (RU). FANG, Yu; 583 Enos Street, Fremont, CA 94539 (US). CHEN, Ying; 680 Garland Avenue, #6, Sunnyvale, CA 94086 (US). HU, Lanrong; Apartment #2, 1281 Ayala Drive, Sunnyvale, CA 94086 (US). DING, Li; 1352 Norman Drive, Sunnyvale, CA 94087 (US).

(74) Agent: ADLER, Benjamin, A.; McGregor & Adler, 8011 Candle Lane, Houston, TX 77071 (US).

(81) Designated States: JP, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: FLUORESCENT PROTEINS FROM NON-BIOLUMINISCENT SPECIES OF CLASS ANTHOZOA, GENES ENCODING SUCH PROTEINS AND USES THEREOF

(57) Abstract

The present invention is directed to novel fluorescent proteins from non-bioluminiscent organisms from the Class Anthozoa. Also disclosed are cDNAs encoding the fluorescent proteins.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
	AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
	AΤ	Austria	FR	France	LU	Luxembourg	SN	Senegal .
	ΑŪ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
	AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
	BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
	BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
	BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
	BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
	BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
	BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
	BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
ı	BY	Belarus	ES	Iceland	MW	Malawi	US	United States of America
	CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
	CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
	CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
	CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
	CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
	CM	Cameroon		Republic of Korea	PL	Poland		
	CN	China	KR	Republic of Korea	PT	Portugal		
	CU	Cuba	KZ	Kazakstan	RO	Romania		
	CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
	DE	Germany	LI	Liechtenstein	SD	Sudan		
	DK	Denmark	LK	Sri Lanka	SE	Sweden		
	EE	Estonia	LR	Liberia	SG	Singapore		

FLUORESCENT PROTEINS FROM NON-BIOLUMINESCENT SPECIES OF CLASS ANTHOZOA, GENES ENCODING SUCH PROTEINS AND USES THEREOF

10

20

25

5

BACKGROUND OF THE INVENTION

Cross-reference to Related Application

This is a divisional application of U.S.S.N. 09/210,330 filed on December 11, 1998.

Field of the Invention

This invention relates to the field of molecular biology.

More specifically, this invention relates to novel fluorescent proteins,

cDNAs encoding the proteins and uses thereof.

Description of the Related Art

Fluorescence labeling is a particularly useful tool for marking a protein, cell, or organism of interest. Traditionally, a protein of interest is purified, then covalently conjugated to a fluorophore derivative. For *in vivo* studies, the protein-dye complex is then inserted into cells of interest using micropipetting or a method of reversible permeabilization. The dye attachment and insertion steps, however, make the process laborious and difficult to control. An

alternative method of labeling proteins of interest is to concatenate or fuse the gene expressing the protein of interest to a gene expressing a marker, then express the fusion product. Typical markers for this method of protein labeling include β -galactosidase, firefly luciferase and bacterial luciferase. These markers, however, require exogenous substrates or cofactors and are therefore of limited use for *in vivo* studies.

5

10

15

20

25

A marker that does not require an exogenous cofactor or substrate is the green fluorescent protein (GFP) of the jellyfish Aequorea victoria, a protein with an excitation maximum at 395 nm, a second excitation peak at 475 nm and an emission maximum at 510 nm. GFP is a 238-amino acid protein, with amino acids 65-67 involved in the formation of the chromophore.

Uses of GFP for the study of gene expression and protein localization are discussed in detail by Chalfie et al. in Science 263 (1994), 802-805, and Heim et al. in Proc. Nat. Acad. Sci. 91 (1994), 12501-12504. Additionally, Rizzuto et al. in Curr. Biology 5 (1995), 635-642, discuss the use of wild-type GFP as a tool for visualizing subcellular organelles in cells, while Kaether and Gerdes in Febs Letters 369 (1995), 267-271, report the visualization of protein transport along the secretory pathway using wild-type GFP. The expression of GFP in plant cells is discussed by Hu and Cheng in Febs Letters 369 (1995), 331-334, while GFP expression in Drosophila embryos is described by Davis et al. in Dev. Biology 170 (1995), 726-729.

Crystallographic structures of wild-type GFP and the mutant GFP S65T reveal that the GFP tertiary structure resembles a barrel (Ormö et al., Science 273 (1996), 1392-1395; Yang, et al., Nature Biotechnol 14 (1996), 1246-1251). The barrel consists of beta sheets in a compact structure, where, in the center, an alpha helix containing

the chromophore is shielded by the barrel. The compact structure makes GFP very stable under diverse and/or harsh conditions such as protease treatment, making GFP an extremely useful reporter in general. However, the stability of GFP makes it sub-optimal for determining short-term or repetitive events.

A great deal of research is being performed to improve the properties of GFP and to produce GFP reagents useful and optimized for a variety of research purposes. New versions of GFP have been developed, such as a "humanized" GFP DNA, the protein product of which has increased synthesis in mammalian cells (Haas, et al., Current Biology 6 (1996), 315-324; Yang, et al., Nucleic Acids Research 24 (1996), 4592-4593). One such humanized protein is "enhanced green fluorescent protein" (EGFP). Other mutations to GFP have resulted in blue-, cyan- and yellow-green light emitting versions. Despite the great utility of GFP, however, other fluorescent proteins with properties similar to or different from GFP would be useful in the art. Novel fluorescent proteins result in possible new colors, or produce pH-dependent fluorescence. Other benefits of novel fluorescent proteins include fluorescence resonance energy transfer (FRET) possibilities based on new spectra and better suitability for larger excitation.

The prior art is deficient in novel fluorescent proteins wherein the DNA coding sequences are known. The present invention fulfills this long-standing need in the art.

25

5

10

15

20

SUMMARY OF THE INVENTION

The present invention is directed to DNA sequences encoding fluorescent proteins selected from the group consisting of:

(a) an isolated DNA from an organism from the Class Anthozoa which encodes a fluorescent protein; (b) an isolated DNA which hybridizes to the isolated DNA of (a) and which encodes a fluorescent protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to the degeneracy of the genetic code and that encodes a fluorescent protein. Preferably, the DNA is isolated from a non-bioluminescent organism from Class Anthozoa. More preferably, the DNA has the sequence selected from the group consisting of SEQ ID Nos. 55, 57 and 61, and the fluorescent protein has the amino acid sequence shown in SEQ ID No. 56.

In another embodiment of the present invention, there is provided a vector capable of expressing the DNA of the present invention in a recombinant cell comprising the DNA and regulatory elements necessary for expression of the DNA in the cell. Preferably, the DNA encodes a fluorescent protein having the amino acid sequence shown in SEQ ID No. 56.

10

15

20

25

In still another embodiment of the present invention, there is provided a host cell transfected with a vector of the present invention, such that the host cell expresses a fluorescent protein. Preferably, the cell is selected from the group consisting of bacterial cells, mammalian cells, plant cells and insect cells.

The present invention is also directed to an isolated and purified fluorescent protein coded for by DNA selected from the group consisting of: (a) isolated DNA from an organism from Class Anthozoa which encodes a fluorescent protein; (b) isolated DNA which hybridizes to the isolated DNA of (a) and which encodes a fluorescent protein; and (c) isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to the degeneracy of the genetic code, and which

encodes a fluorescent protein. Preferably, the protein has the amino acid sequence shown in SEQ ID No. 56.

The present invention is also directed to a DNA sequence encoding a fluorescent protein selected from the group consisting of: (a) an isolated DNA which encodes a fluorescent protein, wherein the DNA is from an organism from Class Anthozoa and wherein the organism does not exhibit bioluminescence; (b) an isolated DNA which hybridizes to isolated DNA of (a) and which encodes a fluorescent protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein. Preferably, the organism is from Sub-class Zoantharia, Order Actiniaria. More preferably, the organism is from Sub-order Endomyaria. Even more preferably, the organism is from Family Actiniidae, Genus Anemonia. Even more preferably, the organism is Anemonia majano. Most particularly, the present invention is drawn to a novel fluorescent protein from Anemonia majano, amFP486.

10

15

20

25

The present invention is further directed to an amino acid sequence which can be used as a basis for designing an oligonucleotide probe for identification of a DNA encoding a fluorescent protein by means of hybridizaton, wherein the amino acid sequence is selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12, 14. Preferably, such an oligonucleotide has a nucleotide sequence selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15, 16.

Other and further aspects, features, and advantages of the present invention will be apparent from the following description of the presently preferred embodiments of the invention given for the purpose of disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the modified strategy of 3'-RACE used to isolate the target fragments. Sequences of the oligonucleotides used are shown in Table 2. Dp1 and Dp2 are the degenerate primers used in the first and second PCR, respectively (see Tables 3 and 4 for the sequences of degenerate primers). In the case of Anemonia majano, the first degenerate primer used was NGH (SEQ ID No. 4), and the second degenerate primer used was GNG(b) (SEQ ID No. 10).

Figure 2 shows the excitation and emission—spectrum of the novel fluorescent protein from Anemonia majano, amFP486.

10

15

20

25

Figure 3 shows transient expression of pCNFPMut32-N1 and pECFP-N1 in 293 cells, respectively. PCNFPMut32-N1 (Figure 3A) shows brighter fluorescent intensity and less photobleaching compared to pECFP-N1 (Figure 3B). pCNFPMut32-N1 is constructed by amplifying Mut32 DNA and then inserting the amplified product into EGFP-N1 backbone.

Figure 4 shows that fusion protein PKC-γ-CNFP translocated from cytosol to the plasma membrane when cells were treated with PMA (Phorbol 12-Myristate 13-Acetate). Figure 4A shows the result from control (without the treatment) and Figure 4B shows the result from PMA-treated cells.

shows functional analysis of destabilized 5 Figure amFP486. Figure 5A shows that expression of pCNFP-MODCd1 in HEK 293 cells exhibited purple fluorescence (pseudocolor). However, the actual color should be cyan (control). Figure 5B shows that transient pCNFP-MODCd1 demonstrates 50% decreased of transfection fluorescent intensity after 4-hour treatment with protein synthesis

inhibitor cycloheximide. pCNFP-MODCd1 is constructed using Mut32 DNA clone.

Figure 6 shows histogram of wildtype amFP486. The fluorescent intensity of the transfected cells was analyzed on FACS using FL1 (510/30) detecting channel. Five samples (A-E) were analyzed in parallel. Geo Mean = geometric mean for data points.

Figure 7 shows histogram of Mut15. Same method as in Figure 5 was used. Five samples (A-E) were analyzed in parallel.

Figure 8 shows histogram of Mut32. Same method as in 10 Figure 5 was used. Five samples (A-E) were analyzed in parallel.

Figure 9 shows the expression of fusion protein Mut15-mdm2 in HEK293 cells.

Figure 10 shows the spectrum of wildtype amFP486. EX = 458 nm, EM = 492 nm, both slits = 2.5 nm.

Figure 11 shows the spectrum of Mut15.

Figure 12 shows the spectrum of Mut32.

Figure 13 shows the spectra of wildtype and mutant amFP486 on the same graph.

20

25

15

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the term "GFP" refers to the basic green fluorescent protein from Aequorea victoria, including prior art versions of GFP engineered to provide greater fluorescence or fluoresce in different colors. The sequence of Aequorea victoria GFP (SEQ ID No. 54) has been disclosed in Prasher et al., Gene 111 (1992), 229-33.

As used herein, the term "EGFP" refers to mutant variant of GFP having two amino acid substitutions: F64L and S65T (Heim et al.,

Nature 373 (1995), 663-664). The term "humanized" refers to changes made to the GFP nucleic acid sequence to optimize the codons for expression of the protein in human cells (Yang et al., *Nucleic Acids Research* 24 (1996), 4592-4593).

As used herein, the term "CFP" refers to cyan fluorescent protein, and the term "ECFP" refers to enhanced cyan fluorescent protein.

5

10

15

20

25

As used herein, the term "NFP" refers to novel fluorescent protein, and the term "CNFP" refers to cyan novel fluorescent protein. Specifically, "CNFP" refers to amFP486.—

In accordance with the present invention there may be molecular biology, microbiology, and conventional employed within the skill of the art. Such DNA techniques recombinant techniques are explained fully in the literature. See, e.g., Maniatis, Fritsch & Sambrook, "Molecular Cloning: A Laboratory Manual (1982); "DNA Cloning: A Practical Approach," Volumes I and II (D.N. Glover ed. 1985); "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" (B.D. Hames & S.J. Higgins eds. (1985)); "Transcription and Translation" (B.D. Hames & S.J. Higgins eds. (1984)); "Animal Cell Culture" (R.I. Freshney, ed. (1986)); "Immobilized Cells and Enzymes" (IRL Press, (1986)); B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

A "vector" is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "DNA molecule" refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in either single stranded form or a double-stranded helix. This term refers only to the primary and secondary structure of the molecule, and does not

limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes.

A DNA "coding sequence" is a DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and synthetic DNA sequences. A polyadenylation signal and transcription termination sequence may be located 3' to the coding sequence.

5

10

15

25

As used herein, the term "hybridization" refers to the process of association of two nucleic acid strands to form an antiparallel duplex stabilized by means of hydrogen bonding between residues of the opposite nucleic acid strands.

The term "oligonucleotide" refers to a short (under 100 bases in length) nucleic acid molecule.

20 "DNA regulatory sequences", as used herein, are transcriptional and translational control sequences, such as promoters, enhancers, polyadenylation signals, terminators, and the like, that provide for and/or regulate expression of a coding sequence in a host cell.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5'

to include the minimum number of bases or elements direction) detectable levels transcription at initiate necessary to sequence will be found the promoter Within background. as well as protein binding domains initiation site, transcription responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Various promoters, including inducible promoters, may be used to drive the various vectors of the present invention.

5

10

15

20

25

As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence.

"transfected" "transformed" or been A cell has exogenous or heterologous DNA when such DNA has been introduced The transforming DNA may or may not be integrated inside the cell. (covalently linked) into the genome of the cell. In prokaryotes, yeast, and mammalian cells for example, the transforming DNA may be maintained on an episomal element such as a plasmid. With respect to cells, a stably transformed cell is one in which the eukaryotic transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

A "heterologous" region of the DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when

the heterologous region encodes a mammalian gene, the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. In another example, heterologous DNA includes coding sequence in a construct where portions of genes from two different sources have been brought together so as to produce a fusion protein product. Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

As used herein, the term "reporter gene" refers to a coding sequence attached to heterologous promoter or enhancer elements and whose product may be assayed easily and quantifiably when the construct is introduced into tissues or cells.

10

15

20

25

The amino acids described herein are preferred to be in the "L" isomeric form. The amino acid sequences are given in one-letter code (A: alanine; C: cysteine; D: aspartic acid; E: gluetamic acid; F: phenylalanine; G: glycine; H: histidine; I: isoleucine; K: lysine; L: leucine; M: metionine; N: asparagine; P: proline; Q: gluetamine; R: arginine; S: serine; T: threonine; V: valine; W: tryptophane; Y: tyrosine; X: any residue). NH₂ refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxy terminus of a polypeptide. In keeping with standard polypeptide nomenclature, J Biol. Chem., 243 (1969), 3552-59 is used.

The present invention is directed to an isolated DNA selected from the group consisting of: (a) isolated DNA from an organism from the Class Anthozoa which encodes a fluorescent protein; (b) isolated DNA which hybridizes to isolated DNA of (a) and which encodes a fluorescent protein; and (c) isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to the

degeneracy of the genetic code, and which encodes a fluorescent protein. Preferably, the DNA has the sequence selected from the group consisting of SEQ ID Nos. 55, 57 and 61, and the fluorescent protein has the amino acid sequence shown in SEQ ID No. 56. More preferably, the DNA is amFP486, Mut15 or Mut32, or humanized version.

5

20

25

In another embodiment of the present invention, there is provided a vector capable of expressing the DNA of the present invention in a recombinant cell comprising the DNA and regulatory elements necessary for expression of the DNA in the cell. Specifically, the DNA encodes a fluorescent protein having the amino acid sequence shown in SEQ ID No. 56. Preferably, the vector is constructed by amplifying the DNA and then inserting the amplified DNA into EGFP-N1 backbone, or by fusing different mouse ODC degradation domains such as d1, d2 and d376 to the C-terminal of the DNA and then inserting the fusion DNA into EGFP-N1 backbone.

In still another embodiment of the present invention, there is provided a host cell transfected with the vector of the present invention, which expresses a fluorescent protein of the present invention. Preferably, the cell is selected from the group consisting of bacterial cells, mammalian cells, plant cells and insect cells. A representative example of mammalian cell is HEK 293 cell and an example of bacterial cell is an *E. coli* cell.

The present invention is also directed to a DNA sequence encoding a fluorescent protein selected from the group consisting of:

(a) an isolated DNA which encodes a fluorescent protein, wherein the DNA is from an organism from Class Anthozoa and wherein the organism does not exhibit bioluminescence; (b) an isolated DNA which hybridizes to isolated DNA of (a) and which encodes a fluorescent protein; and (c) an isolated DNA differing from the isolated DNAs of

(a) and (b) in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein. Preferably, the organism is from Sub-class Zoantharia, Order Actiniaria. More preferably, the organism is from Sub-order Endomyaria. Even more preferably, the organism is from Family Actiniidae, Genus Anemonia. Most preferably, the organism is Anemonia majano.

5

10

15

20

25

The present invention is also directed to an isolated and purified fluorescent protein coded for by DNA selected from the group consisting of: (a) an isolated protein encoded by a DNA which encodes a fluorescent protein wherein the DNA is from an organism from Class Anthozoa and wherein the organism does not exhibit bioluminescence; (b) an isolated protein encoded by a DNA which hybridizes to isolated DNA of (a); and (c) an isolated protein encoded by a DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to degeneracy of the genetic code. Preferably, the isolated and purified fluorescent protein is amFP486.

The present invention is further directed to an amino acid sequence which can be used as a basis for designing an oligonucleotide probe for identification of a DNA encoding a fluorescent protein by means of hybridizaton, wherein the amino acid sequence is selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12, 14. Preferably, such an oligonucleotide has a nucleotide sequence selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15, 16 and is used as a primer in polymerase chain reaction. Alternatively, it can be used as a probe for hybridization screening of the cloned genomic or cDNA library.

The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion.

EXAMPLE 1

5 Biological Material

Novel fluorescent proteins were identified from several genera of Anthozoa which do not exhibit any bioluminescence but have fluorescent color as observed under usual white light or ultraviolet light. Six species were chosen (see Table 1).

10

TABLE 1

Anthozoa Species Used in This Study

Species	Area of Origination	Fluorescent Color
Anemonia majano	Western Pacific	bright green tentacle tips
Clavularia sp.	Western Pacific	bright green tentacles and oral disk
Zoanthus sp.	Western Pacific	green-yellow tentacles and oral disk
Discosoma sp. "red"	Western Pacific	orange-red spots oral disk
Discosoma striata	Western Pacific	blue-green stripes on oral disk
Discosoma sp. "magenta"	Western Pacific	faintly purple oral disk
Discosoma sp. "green"	Western Pacific	green spots on oral disk
Anemonia sulcata	Mediterranean	purple tentacle tips

EXAMPLE 2

cDNA Preparation

5

10

15

Total RNA was isolated from the species of interest according to the protocol of Chomczynski and Sacchi (Chomczynski P., et al., Anal. Biochem. 162 (1987), 156-159). First-strand cDNA was synthetized starting with 1-3 µg of total RNA using SMART PCR cDNA synthesis kit (CLONTECH) according to the provided protocol with the only alteration being that the "cDNA synthesis primer" provided in the kit was replaced by the primer TN3 (5'- CGCAGTCGACCG(T)₁₃, SEQ ID No. 1) (Table 2). Amplified cDNA samples were then prepared as described in the protocol provided except the two primers used for PCR were the TS primer (5'-AAGCAGTGGTATCAACGCAGAGT, SEQ ID No. 2) (Table 2) and the TN3 primer (Table 2), both in 0.1 µM concentration. Twenty to twenty-five PCR cycles were performed to amplify a cDNA sample. The amplified cDNA was diluted 20-fold in water and 1 µl of this dilution was used in subsequent procedures.

TABLE 2

Oligos Used in cDNA Synthesis and RACE

5 TN3: 5'-CGCAGTCGACCG(T)₁₃

(SEQ ID No. 1)

T7-TN3: 5'-GTAATACGACTCACTATAGGGCCGCAGTCGACCG(T)₁₃ (SEQ ID No. 17)

TS-primer: 5'-AAGCAGTGGTATCAACGCAGAGT

(SEQ ID No. 2)

T7-TS:
15 5'-GTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT
(SEQ ID No. 18)

T7: 5'-GTAATACGACTCACTATAGGGC (SEQ ID No. 19)

TS-oligo 5'-AAGCAGTGGTATCAACGCAGAGTACGCrGrGG (SEQ ID No. 53)

25

20

10

EXAMPLE 3

Oligo Design

To isolate fragments of novel fluorescent protein cDNAs,

5 PCR using degenerate primers was performed. Degenerate primers were designed to match the sequence of the mRNAs in regions that were predicted to be the most invariant in the family of fluorescent proteins. Four such stretches were chosen (Table 3) and variants of degenerate primers were designed. All such primers were directed to the 3'-end of mRNA. All oligos were gel-purified before use. Table 2 shows the oligos used in cDNA synthesis and RACE.

TABLE 3

Key Amino Acid Stretches and Corresponding Degenerate Primers Used for Isolation of Fluorescent Proteins

Stretch Position	Amino Acid		
according to	Sequence of	Degenerated Primer Name	
A. victoria GFP (7)	the Key Stretch	and Sequence	
20-25	GXVNGH	NGH: 5'- GA(C,T) GGC TGC	
20 23	(SEQ ID No. 3)	GT(A,T,G,C) $AA(T,C)$ $GG(A,T,G)$	
	(0-2-2-3)	CA (SEQ ID No. 4)	
31-35	GEGEG	GEGa: 5'- GTT ACA GGT GA(A,G)	
	(SEQ ID No. 5)	GG(A,C) GA(A,G) GG	
		(SEQ ID No. 6)	
		GEGb: 5'- GTT ACA GGT GA(A,G)	
		GG(T,G) GA(A,G) GG	
		(SEQ ID No. 7)	
	GEGNG	GNGa: 5'- GTT ACA GGT GA(A,G)	
	(SEQ ID No. 8)	GG(A,C) $AA(C,T)$ GG	
		(SEQ ID No. 9)	
		GNGb: 5'- GTT ACA GGT GA(A,G)	
		GG(T,G) $AA(C,T)$ GG	
		(SEQ ID No. 10)	
127-131	GMNFP	NFP: 5' TTC CA(C,T) GGT	
	(SEQ ID No. 11)	(G,A)TG $AA(C,T)$ $TT(C,T)$ CC	
	GVNFP	(SEQ ID NO. 13)	
10110	(SEQ ID No. 12)	DVIVA TA COTA COCA (CALA) (CATA)	
134-137			
	(SEQ ID No. 14)	GGT CC(A,T,G,C) GT(A,C) ATG	
		(SEQ ID NO. 15)	
		PVMb: 5' CCT GCC (G,A)A(C,T)	
		GGT CC(A,T,G,C) GT(G,T) ATG	
		(SEQ ID NO. 16)	

EXAMPLE 4

Isolation of 3'-cDNA Fragments of nFPs

5

10

15

The modified strategy of 3'-RACE was used to isolate the target fragments (see Figure 1). The RACE strategy involved two consecutive PCR steps. The first PCR step involved a first degenerate primer (Table 4) and the T7-TN3 primer (SEQ ID No. 17) which has a 3' portion identical to the TN3 primer used for cDNA synthesis (for sequence of T7-TN3, Table 2). The reason for substituting the longer T7-TN3 primer in this PCR step was that background _amplification which occurred when using the shorter TN3 primer was suppressed effectively, particularly when the T7-TN3 primer was used at a low concentration (0.1 _M) (Frohman et al., (1998) PNAS USA, 85, 8998-9002). The second PCR step involved the TN3 primer (SEQ ID No. 1, Table 2) and a second degenerate primer (Table 4).

TABLE 4

Combinations of Degenerate Primers for First and Second PCR Resulting in Specific Amplification of 3'-Fragments of nFP cDNA

T	
First	Second Degenerate Primer
Degenerate	_
Primer	
NGH	GNGb
(SEQ ID No. 4)	(SEQ ID No. 10)
NGH	GEGa
(SEQ ID No. 4)	(SEQ ID No. 6)
NGH	GEGa
(SEQ ID No. 4)	(SEQ ID No. 6)
NGH	GEGa (SEQ ID No. 6),
(SEQ ID No. 4)	NFP (SEQ ID No. 13) or
	PVMb (SEQ ID No. 16)
NGH	NFP
(SEQ ID No. 4)	(SEQ ID No. 13)
NGH	GEGa (SEQ ID No. 6)
(SEQ ID No. 4)	or NFP (SEQ ID No. 13)
	Degenerate Primer NGH (SEQ ID No. 4) NGH (SEQ ID No. 4)

5

The first PCR reaction was performed as follows: 1 μl of 20-fold dilution of the amplified cDNA sample was added into the reaction mixture containing 1X Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 μM dNTPs, 0.3 μM of first degenerate

primer (Table 4) and 0.1 µM of T7-TN3 (SEQ ID No. 17) primer in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C, 1 min.; 72°C, 40 sec; 24 cycles for 95°C, 10 sec.; 62°C, 30 sec.; 72°C, 40 The reaction was then diluted 20-fold in water and 1 ul of this dilution was added to a second PCR reaction, which contained Advantage KlenTaq Polymerase Mix with the buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.3 µM of the second degenerate primer (Table 4) and 0.1 µM of TN3 primer. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C (for GEG/GNG or PVM) or 52°C (for NFP), 1 min.; 72°C, 40 sec; 13 cycles for 95°C, 10sec.; 62°C (for GEG/GNG or PVM) or 58°C (for NFP), 30 sec.; 72°C, 40 sec. The product of PCR was PCR-Script vector cloned into (Stratagene) according to the manufacturer's protocol.

5

10

15

20

25

Different combinations of degenerate primers were tried in the first and second PCR reactions on the DNA from each species until a combination of primers found that specific was resulted in amplification--meaning that a pronounced band of expected (about 650-800 bp for NGH and GEG/GNG and 350-500 bp for NFP and PVM--sometimes accompanied by a few minor bands) was detected on agarose gel after two PCR reactions. The primer combinations choice for different species of the Class Anthozoa are listed in Table 4. Some other primer combinations also resulted in amplification of fragments of correct size, but the sequence of these fragments showed no homology to the other fluorescent proteins identified Aeguorea victoria GFP.

5

10

15

20

25

EXAMPLE 5

Obtaining Full-Length cDNA Copies

of novel Upon sequencing the obtained 3'-fragments protein cDNAs, two nested 5'-directed primers were fluorescent synthesized for cDNA (Table 5), and the 5' ends of the cDNAs were then amplified using two consecutive PCRs. In the next PCR reaction, the novel approach of "step-out PCR" was used to suppress background The step-out reaction mixture contained 1x Advantage amplification. KlenTaq Polymerase Mix using buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.2 µM of the first gene-specific primer (see Table 5), 0.02 μM of the T7-TS primer (SEQ ID No. 18), 0.1 μM of T7 primer (SEQ ID No. 19) and 1 µl of the 20-fold dilution of the amplified cDNA sample in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was diluted 50-fold in water and one µl of this dilution was added to the second (nested) PCR. The reaction contained 1X Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 μM dNTPs, 0.2 μM of the second gene-specific primer and 0.1 μM of TS primer (SEQ ID No. 2) in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 12 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was then cloned into pAtlas vector (CLONTECH) according to the manufacturer's protocol.

TABLE 5

Gene-Specific Primers Used for 5'-RACE

Species	First Primer	Second (Nested) Primer
Anemonia	5'-GAAATAGTCAGGCATACTGGT	5'-GTCAGGCATAC
majano	(SEQ ID No. 20)	TGGTAGGAT
		(SEQ ID No. 21)
Clavularia	5'-CTTGAAATAGTCTGCTATATC	5'-TCTGCTATATC
sp.	- (SEQ ID No. 22)	GTCTGGGT
		(SEQ ID No. 23)
Zoanthus	5'-	5'-GTCTACTATGTCTT
sp.	GTTCTTGAAATAGTCTACTATGT	GAGGAT
	(SEQ ID No. 24)	(SEQ ID No. 25)
Discosoma	5'-CAAGCAAATGGCAAAGGTC	5'-CGGTATTGTGGCC
sp. "red"	(SEQ ID No. 26)	TTCGTA
		(SEQ ID No. 27)
Discosoma	5'-TTGTCTTCTTCTGCACAAC	5'-CTGCACAACGG
striata	(SEQ ID No. 28)	GTCCAT
		(SEQ ID No. 29)
Anemonia	5'-CCTCTATCTTCATTTCCTGC	5'-TATCTTCATTTCCT
sulcata	(SEQ ID No. 30)	GCGTAC
		(SEQ ID No. 31)
Discosoma	5'-TTCAGCACCCCATCACGAG	5'-ACGCTCAGAGCTG
sp.	(SEQ ID No. 32)	GGTTCC
"magenta"		(SEQ ID No. 33)
Discosoma	5'-CCCTCAGCAATCCATCACGTTC	5'-ATTATCTCAGTGGA
sp. "green"	(SEQ ID No. 34)	TGGTTC
		(SEQ ID No. 35)

EXAMPLE 6

Expression of NFPs in E.coli

5

10

15

20

25

To prepare a DNA construct for novel fluorescent protein expression, two primers were synthesized for each cDNA: a 5'-directed "downstream" primer with the annealing site located in the 3'-UTR of the cDNA and a 3'-directed "upstream" primer corresponding to the site of translation start site (not including the first ATG codon) (Table Primers with SEQ ID Nos. 36 and 37 were the primers used to prepare the am486 DNA. Both primers had 5'-heels coding for a site for a restriction endonuclease; in addition, the upstream primer was designed so as to allow the cloning of the PCR product into the pQE30 vector (Qiagen) in such a way that resulted in the fusion of reading frames of the vector-encoded 6xHis-tag and NFP. The PCR was performed as follows: 1 µl of the 20-fold dilution of the amplified cDNA sample was added to a mixture containing 1x Advantage KlenTag Polymerase Mix with buffer provided by the manufacturer (CLONTECH), 200 μM dNTPs, 0.2 μM of upstream primer and 0.2 μM of downstream primer, in a final total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 23-27 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of this amplification step was purified by phenol-chlorophorm extraction and ethanol precipitation and then cloned into pQE30 vector using restriction endonucleases corresponding to the primers' sequence according to standard protocols.

All plasmids were amplified in XL-1 blue *E. coli* and purified by plasmid DNA miniprep kits (CLONTECH). The recombinant clones were selected by colony color, and grown in 3 ml of LB medium

(supplemented with 100 μ g/ml of ampicillin) at 37°C overnight. 100 μ l of the overnight culture was transferred into 200 ml of fresh IB medium containing 100 μ g/ml of ampicillin and grown at 37°C, 200 rpm up to OD₆₀₀ 0.6-0.7. 1 mM IPTG was then added to the culture and incubation was allowed to proceed at 37°C for another 16 hours. The cells were harvested and recombinant protein, which incorporated 6x His tags on the N-terminus, was purified using TALONTM metal-affinity resin according to the manufacturer's protocol (CLONTECH).

5

TABLE 6

Primers Used to Obtain Full Coding Region of nFPs for Cloning into Expression Construct

Species	Upstream Primer	Downstream Primer
Anemonia majano	5' -acatggatccgctctttcaaaca agtttatc (SEQ ID No. 36) BamHI	5'-tagtactcgagcttattcgta tttcagtgaaatc (SEQ ID No. 37) XhoI
Clavularia sp.	L: 5'-acatggatccaacattttttga gaaacg (SEQ ID No. 38) BamHI S: 5'-acatggatccaaagctctaacc accatg (SEQ ID No. 39) BamHI	5'-tagtactcgagcaacacaa accetcagacaa (SEQ ID No. 40) XhoI
Zoanthus sp.	5'- acatggatccgctcagtcaaag cacggt (SEQ ID No. 41) BamHI	5'-tagtactcgaggttggaactacat tcttatca (SEQ ID No. 42) XhoI
Discosoma sp. "red"	5'- acatggatccaggtcttccaagaat gttatc (SEQ ID No. 43) BamHI	5'-tagtactcgaggagccaagttc agcctta (SEQ ID No. 44) XhoI
Discosoma striata	5'- acatggatccagttggtccaagagtgtg (SEQ ID No. 45) BamHI	5'-tagcgagctctatcatgcctc gtcacct (SEQ ID No. 46) SacI
Anemonia sulcata	5'- acatggatccgcttcctttttaaagaagact (SEQ ID No. 47) BamHI	5'-tagtactcgagtccttgggagc ggcttg (SEQ ID No. 48) XhoI
Discosoma sp. "magenta"	5'- acatggatccagttgttccaagaatgtgat (SEQ ID No. 49) BamHI	5'-tagtactcgaggccattacg ctaatc (SEQ ID No. 50) XhoI
Discosoma sp. "green"	5'-acatggatccagtgcacttaaagaagaaatg (SEQ ID No. 51)	5'-tagtactcgagattcggtttaat gccttg (SEQ ID No. 52)

EXAMPLE 7

Novel Fluorescent Proteins and cDNAs Encoding the Proteins

One of the full-length cDNAs encoding novel fluorescent proteins is described herein (amFP486). The nucleic acid sequence and deduced amino acid sequence are SEQ ID Nos. 55 and 56, respectively. The spectral properties of amFP486 are listed in Table 7, and the emission and excitation spectrum for amFP486 is shown in Figure 2.

10

5

TABLE 7

Spectral Properties of the Isolated amFP486

15	Species:	Anemonia majano	Max. Extinction Coefficient:	40,000
	nFP Name:	amFP486	Quantum Yield	0.24
	Absorbance Max. (nm):	458	Relative Brightness:*	0.43
20	Emission Max. (nm):	486		

*relative brightness is extinction coefficient multiplied by quantum yield divided by the same value for A. victoria GFP.

25

EXAMPLE 8

Construction of amFP486 Mutants

Two mutants of amFP486 were generated, Mut15 and 30 Mut32. Mut15 has the nucleic acid sequence shown in SEQ ID No. 57. Compared with wildtype amFP486, Mut15 has the following point

mutations: A to G at position 101 (numbered from beginning of ATG); T to C at position 129; AAA to TTG at positions 202-204; C to T at position 240. Table 8 lists the spectral properties of Mut15 and Mut32.

5	TABLE 8				
	Spectral Properties of the Isolated Mut15 and Mut32				
	Species:	Anemonia majano	Max. Extinction Coefficient:	53,400	
10	nFP Name:	Mut15	Quantum Yield	0.32	
	Absorbance Max. (nm):	460	Relative Brightness:*	0.78	
	Emission Max. (nm):	485			
15					
	Species:	Anemonia majano	Max. Extinction Coefficient:	36,000	
	nFP Name:	Mut32	Quantum Yield	0.42	
20	Absorbance Max. (nm):	466	Relative Brightness:*	0.69	
	Emission Max. (nm):	488			

25 *relative brightness is extinction coefficient multiplied by quantum yield divided by the same value for A. victoria GFP.

EXAMPLE 9

30 Construction and Functional Analysis of Vectors

Mut32 DNA was amplified via PCR and reconstructed to EGFP-N1 backbone with BamHI and NotI restriction enzyme sites. This

vector has the same multiple cloning sites as EGFP-N1. The nucleic acid sequence of the vector (pCNFPMut32-N1) is shown in SEQ ID No. 58.

Functional test of the generated vectors was performed by transient transfection in 293 cells. After 24-hour expression, brighter fluorescent intensity and less photobleaching of pCNFPMut32-N1 were observed by microscopy when compared with pECFP-N1 side by side (Figures 3A and 3B).

Mut32 has fast folding and bright fluorescent intensity, which makes it useful for number of applications. Some fusion proteins were tested, such as PKC-gamma-CNFP. PKC was observed to translocate from cytosol to the plasma membrane when cells were treated with PMA (phorbol 12-myristate 13-acetate). Figure 4 shows control and PMA-treated cells.

15

20

25 .

10

5

EXAMPLE 10

Generation of Destabilized amFP486 Vectors as Transcription Reporters

Since amFP486 is very stable, it is necessary to generate destabilized versions of amFP486 in order to observe the rapid turnover of the protein. By using the same technology for destabilized EGFP, three destabilized amFP486 vectors were constructed by fusing different mouse ODC degradation domains such as d1, d2 and d376 to the C-terminal of wild type amFP486. The sequences for vectors pCNFP-MODCd1 and pCNFP-MODCd2 are shown in SEQ ID No. 59 and SEQ ID No. 60, respectively. The vectors were constructed in EGFP-N1 backbone.

Vectors of pCRE-d1CNFP and pNF-κB-d1CNFP were constructed by placing d1CNFP downstream of cAMP response element

(CRE) or NF-κB response element, respectively. Expression of d1CNFP is up-regulated upon activation of these response elements.

EXAMPLE 11

Functional Analysis of Destabilized amFP486

5

10

15

20

25

Functional test of the destabilized amFP486 was performed by transient transfection in 293 cells. After 24-hour expression, the fluorescent intensity was decreased gradually from d2, d1 and d376 because of the fusion with different mouse ODC degradation domains. After 4-hour treatment with protein synthesis inhibitor cycloheximide, d2 fluorescent intensity did not change very much; however, d1 fluorescent intensity decreased further 50% of its original intensity (Figures 5A and 5B). The half-life of d1 is around 4 hours.

MODCd1 is a valuable tool for application as a transcription reporter. However, compared with EGFP-d1 (1-hour half-life), pCNFP-MODCd1 half-life (4 hours) is still long, so further mutagenesis for MODC degradation domain is still needed for shorter half-life version.

Functional test of vectors pCRE-d1CNFP and pNF-κB-d1CNFP was performed by transient transfection in HEK 293 cells. 16 hours post transfection, 10 μm forskolin was added to induce CRE and 100 ng/ml TNF-alpha was added to induce NF-κB for 6 hours. Expression of d1CNFP was analysed using FACS Calibur. Up to 7 fold increase of fluorescence in forskolin induced CRE activation and 4 fold increase of fluorescence in TNF-alpha induced NF-KB activation was observed (data not shown).

EXAMPLE 12

Construction and Functional Test for Humanized Mut32 (phCNFP-N1)

5

10

15

20

25

Since mammalian expression is a very popular tool, human favored codon version is needed for better expression in mammalian To generate humanized Mut32, the Mut 32 sequence was first changed to human favored codon and 23 oligos (12F and 11R) were designed. Next, four rounds of PCR amplification were performed, each round for 20 cycles. PCR cycle was designed as follows: 94°C for 1 min; 94°C for 1 min; 40°C for 1 min; and 72°C for 1 min. The four rounds were: for 1st round, mixing 2 µl each of every 4 oligos (60 bp), 5 µl buffer, 1 µl pfu, 1 µl dNTP to make total volume of 50 µl. After 20 cycles of PCR, 5 sets of 150 bp and 1 set of 4 last oligos of 90 bp products were obtained. For 2nd round, mixing new crude PCR products 10 μl each, 5 μl buffer, 1 μl pfu, 1 μl dNTP to make total volume of 50 ul. After 20 cycles of PCR, 2 sets of 270 bp and 1set of 210 bp PCR For 3rd round, mixing new crude PCR products were obtained. After 20 cycles of PCR, 1 set of 510 bp and 1 set of 450 bp products. products were obtained. For 4th round, mixing new crude products. After 20 cycles of PCR, final PCR product (690 bp) was obtained. Further PCR amplification was performed using 1F and 11R primers.

As a result, humanized Mut32 was generated, having the sequence shown in SEQ ID No. 61. This humanized Mut32 was constituted into EGFP-N1 backbone.

EXAMPLE 13

Expression of Wildtype and Mutant amFP486 in Mammalian Cells

The original plasmid amFP486 DNAs (wildtype, Mut15 and Mut32 in pQE30) were used to construct N1 version of amFP486 wildtype, Mut15 and Mut32 as described in Example 9. The DNAs were inserted into *E.coli* DH5α. HEK 293 cells were transferred with each of the three N1 constructs using Calcium Phosphate method (Clontech product #K2051-1).

The fluorescent intensity of the transfected cells was analyzed on FACS using FL1 (510/30) detecting channel. Five samples were analyzed in parallel for each construct. The histograms of all the analysis are shown in Figures 6-8.

The M1 gate is set as shown on the histograms. The mean value of FL1 fluorescent intensity of the M1 population of each sample is summarized in Table 9. It shows that the average of the mean value of each construct (Wildtype, Mut15, and Mut32) has no significant difference.

15

5

10

TABLE 9

FL1 Fluorescent Intensity of M1 Population

Sample	Wildtype	Mut15	Mut32
#	(Figure 6A-6E)	(Figure 7A-7E)	(Figure 8A-8E)
1	82.84	106.95	84.51
2	77.52	108.73	91.41
3	111.85	97.08	91.30
4	113.06	90.16	98.16
5	104.95	86.34	111.44
Mean	98.04	97.85	95.36

5

10

15

20

EXAMPLE 14

Generation and Expression of Fusion Protein Mut15-mdm2

The Mut15-mdm2 fusion was generated by the following steps: first, mdm2 DNA was obtained by amplifying human Marathon cDNA library (Burke's Lymphoma) using primers ATGTGCAATACCAACATGTCTGTACC (SEQ ID No. 62) and CTAGGGGA AATAAGTTAGCAC (SEQ ID No. 63); secondly, the purified PCR product was then amplified with primers GGAATTCCAGCCATGGTGTG CAATACCAACATGTCTGTACC (SEQ ID No. 64) and TCCCCCGGGGGGAA ATAAGTTAGCAC (SEQ ID No. 65) in order to add Kozac sequence and restriction sites; thirdly, the purified PCR product from step 2 was digested with EcoR I and Sma I and inserted into EcoR I and SmaI of NFP1Mut15-N1 vector (this vector was generated using BamH I and Not I sites of the pEGFP-N1 backbone).

The generated Mut15-mdm2 fusion was then expressed in HEK293 cells. Figure 9 shows the results.

EXAMPLE 15

Comparison of the Protein Fluorescent Intensity

5

10

15

20

25

amFP486 wildtype, Mut15 and Mut32 POE30 transformed into DH5a. The bacteria grew in the presence of 1 mM IPTG overnight to induce the protein expression. Cells were lysed in 100 mM Tris, pH8.0 by sonication. Cell lysate was collected after centrifuge at 3000 rpm for 15 minutes at room temperature. proteins were purified with TALON Metal Affinity Resin. Briefly, after the protein was absorbed on the resin, the beads were washed in stepwise with first wash, then first elution (50 mM imidazole) and second elution (200 mM imidazole) in 100 mM Tris-HCl, pH 8.0. protein is found mostly in the second step elution. It was found that Mut32 has the highest bacterial expression level, while Mut15 has the lowest.

Samples of each elution fraction were run on SDS-PAGE to check the purity of the proteins. Both wildtype amFP486 and Mut32 show a single band, while Mut15 has two more minor bands with higher molecular weight (data not shown).

The protein concentration (fractionII-2) was checked and measured by Bradford assay (Bio-Rad standard assay) using BSA as a standard. The spectra are shown in Figures 10-13. The fluorescence intensity (fraction II-2) was determined with LS50B Luminescence Spectrometer LS50B. EX = 458 nm, EM = 492 nm, both slits = 2.5 nm. Table 10 shows the protein concentration, relative fluorescent (FL)

intensity and intensity/µg protein in 700 µl volume. It shows that Mut32 is as bright as wildtype, while Mut15 is worse than the wildtype.

TABLE 10

5

10

15

20

*** **********************************	Protein	Relative FL	Intensity/µg Protein
	Concentration	Intensity	in 700 µl Volume
Wildtype II-2	1.26 μg/5 μl	37.805/5 μ1	30.00
Mut15II-2	0.64 μg/5 μl	10.152/5 μ1	15.86
Mut32II-2	6.17 μg/5 μl	186.474/5 μ1	30.22

Any patents or publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. These patents and publications are incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.

One skilled in the art will appreciate readily that the present invention is adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those objects and ends inherent therein. The present examples, along with the methods, procedures, treatments, molecules, and specific compounds described herein, are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes to the methods and compounds, and other uses, will occur to those skilled in the art and are encompassed within the spirit of the invention as defined by the scope of the claims.

WHAT IS CLAIMED IS:

5

10

25

1. A DNA sequence encoding a fluorescent protein selected from the group consisting of:

- (a) an isolated DNA which encodes a fluorescent protein, wherein said DNA is from an organism from a Class Anthozoa and wherein said organism does not exhibit bioluminescence;
- (b) an isolated DNA which hybridizes to isolated DNA of
 (a) above and which encodes a fluorescent protein; and
- (c) an isolated DNA differing from the isolated DNAs of

 (a) and (b) above in codon sequence due to degeneracy of the genetic

 code and which encodes a fluorescent protein.
- 2. The DNA sequence of claim 1, wherein said organism
 15 is from Sub-class Zoantharia.
 - 3. The DNA sequence of claim 2, wherein said organism is from Order Actiniaria.
- 20 4. The DNA sequence of claim 3, wherein said organism is from Sub-order Endomyaria.
 - 5. The DNA sequence of claim 4, wherein said organism is from Family Actiniidae.
 - 6. The DNA sequence of claim 5, wherein said organism is from Genus Anemonia.

7. The DNA sequence of claim 6, wherein said organism is Anemonia majano.

- 8. A DNA sequence encoding a fluorescent protein 5 selected from the group consisting of:
 - (a) an isolated DNA which encodes a fluorescent protein having a nucleotide sequence selected from the group consisting of SEQ ID Nos. 55, 57, and 61;
- (b) an isolated DNA which hybridizes to isolated DNA of 10 (a) above and which encodes a fluorescent protein; and
 - (c) an isolated DNA differing from the isolated DNAs of (a) and (b) above in codon sequence due to degeneracy of the genetic code, and which encodes a fluorescent protein.
- 9. The DNA sequence of claim 8, wherein said DNA encodes a fluorescent protein having an amino acid sequence shown in SEQ ID No. 56.
- 10. The DNA sequence of claim 8, wherein said DNA is selected from the group consisting of amFP486, Mut15 and Mut32.
 - 11. The DNA sequence of claim 8, wherein said DNA is humanized DNA.
- 12. A vector capable of expressing the DNA sequence of claim 1 in a recombinant cell, wherein said vector comprising said DNA and regulatory elements necessary for expression of the DNA in the cell.

13. The vector of claim 12, wherein said DNA encodes a fluorescent protein having the amino acid sequence shown in SEQ ID No. 56.

- 5 14. The vector of claim 12, wherein said vector is constructed by amplifying said DNA and then inserting the amplified DNA into EGFP-N1 backbone.
- 15. The vector of claim 14, wherein said DNA is selected 10 from the group consisting of amFP486, Mut15 and Mut32.
 - 16. The vector of claim 14, wherein said DNA is humanized DNA.
- 17. The vector of claim 12, wherein said vector is constructed by fusing different mouse ODC degradation domains to the C-terminal of said DNA and then inserting the fusion DNA into EGFP-N1 backbone.
- 20 18. The vector of claim 17, wherein said mouse ODC degradation domains are selected from the group consisting of d1, d2 and d376.
- 19. The vector of claim 17, wherein said DNA is selected 25 from the group consisting of non-humanized and humanized DNA.
 - 20. A host cell transfected with the vector of claim 12, wherein said cell is capable of expressing a fluorescent protein.

21. The host cell of claim 20, wherein said cell is selected from the group consisting of bacterial cells, mammalian cells, plant cell, yeast and insect cells.

- 5 22. The host cell of claim 21, wherein said mammalian cell is HEK 293 cell.
 - 23. The host cell of claim 21, wherein said bacterial cell is an E. coli cell.

_10

- 24. An isolated and purified fluorescent protein coded for by DNA selected from the group consisting of:
- (a) an isolated DNA which encodes a fluorescent protein from an organism from Class Anthozoa, wherein said organism does not exhibit bioluminescence;
- (b) an isolated DNA which hybridizes to isolated DNA of (a) above and which encodes a fluorescent protein; and
- (c) an isolated DNA differing from the isolated DNAs of
 (a) and (b) above in codon sequence due to degeneracy of the genetic
 code and which encodes a fluorescent protein.
 - 25. The isolated and purified fluorescent protein of claim 24, wherein said organism is from Sub-class Zoantharia.
- 26. The isolated and purified fluorescent protein of claim 25, wherein said organism is from Order Actiniaria.
 - 27. The isolated and purified fluorescent protein of claim26, wherein said organism is from Sub-order Endomyaria.

28. The isolated and purified fluorescent protein of claim 27, wherein said organism is from Family Actiniidae.

- 29. The isolated and purified fluorescent protein of claim 28, wherein said organism is from Genus Anemonia.
- 30. The isolated and purified fluorescent protein of claim 29, wherein said organism is Anemonia majano.

10

5

- 31. An isolated and purified fluorescent protein coded for by DNA selected from the group consisting of:
- (a) isolated DNA which encodes a fluorescent protein having an amino acid sequence shown in SEQ ID No. 56;

(b) isolated DNA which hybridizes to isolated DNA of (a) above and which encodes a fluorescent protein; and

(c) isolated DNA differing from said isolated DNAs of (a) and (b) above in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein.

20

- 32. The isolated and purified fluorescent protein of claim 31, wherein said protein is amFP486.
- 33. An amino acid sequence which can be used as a basis for designing an oligonucleotide probe for identification of a DNA encoding a fluorescent protein by means of hybridizaton, wherein said sequence is selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12, 14.

34. The amino acid sequence of claim 26, wherein said oligonucleotide has a nucleotide sequence selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15, 16.

			٠.	-	:	
	. •					
						,
•						
				·		
						ν.

Figure 2

Traci Yerby,12/9/99 12:.. PM -0800,NFP1 Data

Date: Thu, 09 Dec 1999 12:17:31 -0800

From: "Traci Yerby" <TRYERBY@CLONTECH.COM>

To: <baadler@flash.net>
Subject: NFP1 Data
Mime-Version: 1.0

Hi Ben,

This should be the last of it.

Data for PMA treated cells (FIG 8)

Traci

Content-Type: application/octet-stream; name="PKCr-NCFP.psd" Content-Disposition: attachment; filename="PKCr-NCFP.psd"

PKCgamma-NCFP translocation

Fig. 4A

Fig.4B

control-

PMA treated

Figure 5A

PCNFP-MUDE 11

control

picture 2

providence people . Hould be one

		 • • • •	. î	,	,
·					
					٠
	_	·	-		

Figure 5.B

PCNFD-MUDGILI 4h + cyclotherini.Le

prentación propieto de servicio

	_	 -		,
		· •		
•				
_				
,				
		·		

File: nfp1/wt-1.015

Acquisition Dat : 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	5.19	2.13
M1	3.07	82.84	66.13

File: nfp1/wt-2.016

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
Al!	100.00	5.49	2.17
M1	3.73	77.52	62.95

File: nfp1/wt-3.017

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
Ali	100.00	7.75	2.31
M1	4.57	111.85	80.87

\mathfrak{D} .		
8	nfp1/wt-4.018	
Counts 5		
S ₂	M1	\exists

File: nfp1/wt-4.018

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	8.56	2.43
M1	5.16	113.06	82.26

File: nfp1/wt-5.019

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	6.41	2.22
M1	3.61	104.95	77.54

Figure 6

			4
·	*	:	
			•
,			
			•
			,

File: nfp1/m15-1.009

Acquisition bate: 12-Aug-99

Marker	% Total	Mean	Geo M an
	100.00	5.74	
M1	2.94	106.95	80.29

File: nfp1/m15-2.010

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
	100.00	6.57	2.24
M1	3.66	108.73	78.64

File: nfp1/m15-3.011

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
	100.00	6.26	4
- M1	3.70	97.08	73.22

File: nfp1/m15-4.012

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	6.83	2.28
M1	4.65	90.16	69.85

File: nfp1/m15-5.013

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	6.32	2.31
M1	4.16	86.34	67.43

Figure 7

* .			. ~ -	-	 :	į	4
•							
							•
	·						
	·						

File: nFP1/m32-1.003

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	5.55	2.08
M1	3.51	84.51	67.46

File: nFP1/m32-2.004

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	6.30	2.13
M1	4.09	91.41	69.57

File: nFP1/m32-3.005

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	6.44	2.20
M1	4.16	91.30	70.91

File: nFP1/m32-4.006

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	7.64	2.21
M1	5.15	98.16	71.62

File: nFP1/m32-5.007

Acquisition Date: 12-Aug-99

Marker	% Total	Mean.	Geo Mean
All	100.00	10.07	12.41
M1	6.74	111.44	78.24

Figure 8

	 		:	, .
•				_
		·		
		·		

Fusion Molmiz-nffimmtis

Figure 9

	 	. ·	:	
•				
			·	
				·
·				•

Date: 9/8/99

Time: 12:01:36 PM

Figure 10

. •		·	. :	
				·
	_			
	_			
÷				

Detail 9.8/99

Time: 12:05:19 PM

Figure 11

Date: 9/8/99

Time: 12:09:58 PM

Figure 12

		· -		, .
	 		- - - - -	
_				
		·		
		·		

14/14

Date: 9/8/99

Time: 11:44:24 AM

--- NF115EX.SP - 9/8/99

---- NF132EM.SP - 9/8/99

- NF132EX.SP - 9/8/99

---- NF115EM.SP - 9/8/99

----- NF1WDPEM.SP - 9/8/99

----- NF1WDPEX.SP - 9/8/99

Figure B

	 . 2 -		ı
•			
·			•
		·	

.

SEQUENCE LISTING

		photomer hising
	<110>	Lukyanov, Sergey A.
		Labas, Yulii A.
		Matz, Mikhail V.
5		Fradkov, Arcady F.
		Chen, Ying
		Hu, Lanrong
		Ding, Li
		Fang, Yu
10	<120>	Fluorescent proteins from non-bioluminescent
		species of Class Anthozoa, genes encoding such
		proteins and uses thereof
	<130>	D6196D1/PCT
	<141>	1999-12-09
15	<150>	09/210,330
	<151>	1998-12-11
	<160>	65
	<210>	1
20	<211>	25
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
25	<223>	primer TN3 used in cDNA synthesis and RACE
	<400>	1
	cacaatcaac	cgttttttt ttttt 25
	<210>	2
30	<211>	23
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
35	<223>	primer TS used in cDNA synthesis and RACE
	<400>	2
	224424	atcaacgcag agt 23
	aaycagtggt	accaacycay ayr 23

.

```
3
         <210>
                    6
         <211>
         <212>
                    PRT
                    Aequorea victoria
5
         <213>
         <220>
                    21
         <222>
                    amino acid sequence of a key stretch on which
         <223>
                                                 Xaa
                                                           position
                                                                      21
                             NGH
                                   is
                                       based;
                                                      at
                    primer
10
    represents
                    unknown
                    3
         <400>
    Gly Xaa Val Asn Gly His
                     5
15
                    4
         <210>
                    20
         <211>
         <212>
                    DNA
                    artificial sequence
         <213>
20
         <220>
                    primer_bind
         <221>
                    12
         <222>
                    primer NGH used for isolation of fluorescent
         <223>
                    protein; n at position 12 represents any of the
                    four bases
25
         <400>
                                                         20
    gayggctgcg tnaayggdca
         <210>
                    5
                    5
30
         <211>
         <212>
                    PRT
                    Aequorea victoria
          <213>
          <220>
                    31...35
          <222>
                    amino acid sequence of a key stretch on which
35
          <223>
                    primers GEGa and GEGb are based
                    5
          <400>
```

<u>.</u>		÷	,
			•
			_
			·
		•	

PCT/US99/29393 WO 00/34320 Gly Glu Gly Glu Gly

```
5
          <210>
                     6
          <211>
                     20
 5
          <212>
                     DNA
                     artificial sequence
          <213>
          <220>
          <221>
                    primer_bind
10
          <223>
                    primer GEGa used for isolation of fluorescent
                    protein
                     6
          <400>
                                                         20
    gttacaggtg arggmgargg
                     7
15
         <210>
         <211>
                     20
         <212>
                    DNA
         <213>
                     artificial sequence
         <220>
                    primer_bind
20
         <221>
                    primer GEGb used for isolation of fluorescent
          <223>
                    protein
                     7
          <400>
                                                          20
    gttacaggtg arggkgargg
25
                     8
         <210>
                     5
         <211>
         <212>
                    PRT
         <213>
                    Aequorea victoria
30
         <220>
                     31...35
         <222>
                    amino acid sequence of a key stretch on which
         <223>
                    primers GNGa and GNGb are based
                     8
         <400>
```

35 Gly Glu Gly Asn Gly

				,
·	 •		:	
		_		
		_		
		,		
	•			

	WO 00/34320	.		PCT/US99/2939
	<210>	9		
	<211>	20	•	
	<212>	DNA		
	<213>	artificial sequence		
5	<220>			
	<221>	primer_bind		
	<223>	primer GNGa used for	isolation of	fluorescent
		protein		
	<400>	9		
10	gttacaggtg arg	gmaaygg		20
	<210>	10		
	<211>	20		
	<212>	DNA		
15	<213>	artificial sequence		
	<220>			
	<221>	primer_bind		
	<223>	primer GNGb used for	isolation of	fluorescent
		protein		
20	<400>	10		
	gttacaggtg arg	gkaaygg		20
	<210>	11		
	<211>	5		
25	<212>	PRT		
	<213>	Aequorea victoria		
	<220>			
	<222>	127131		
	<223>	amino acid sequence	of a key stre	tch on which
30		primer NFP is based		
	<400>	11		
	Gly Met Asn Ph	ne Pro		
	-	5		
35	<210>	12		
	<211>	5		
	<212>	PRT		

	<u>.</u> -			-	 :			•
							_	
							٠	
								-

	WO 00/34320	PCT/US99/29393
	<213>	Aequorea victoria
•	<220>	·
	<222>	127131
	<223>	amino acid sequence of a key stretch on which
5		primer NFP is based
	<400>	12
	Gly Val Asn Phe	e Pro
		5
10	<210>	13
	<211>	20
	<212>	DNA
	<213>	artificial sequence
	<220>	
15	<221>	primer_bind
	<223>	primer NFP used for isolation of fluorescent
		protein
	<400>	13
	ttccayggtr tgaa	ayttycc / 20
20		
	<210>	14
	<211>	4
	<212>	PRT
	<213>	Aequorea victoria
25	<220>	
	<222>	134137
	<223>	amino acid sequence of a key stretch on which
		primers PVMa and PVMb are based
	<400>	14
30	Gly Pro Val Met	E Company of the Comp
	<210>	15
	<211>	21
35	<212>	DNA
	<213>	artificial sequence

-			•
			٠
_			
	·		
			,
		,	

	WO 00/3432	0 PCT/US99/29393
•	<220>	
	<221>	primer_bind
	<222>	15
	<223>	primer PVMa used for isolation of fluorescent
5		protein; n at position 15 represents any of the
		four bases
	<400>	15
	cctgccrayg	gtccngtmat g 21
10	<210>	16
	<211>	21
	<212>	DNA
	<213>	artificial sequence
	<220>	
15	<221>	primer_bind
	<222>	15
	<223>	primer PVMb used for isolation of fluorescent
		protein; n at position 15 represents any of the
		four bases
20	<400>	16
	cctgccrayg	gtccngtkat g 21
	<210>	17
	<211>	47
25	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	primer T7-TN3 used in cDNA synthesis and RACE
30	<400>	17
	gtaatacgac 47	tcactatagg gccgcagtcg accgtttttt ttttttt
	<210>	18
35	<211>	
	<212>	
	<213>	

	· -	•	-	· · · · · · · · · · · · · · · · · · ·		
						-
					,	

```
PCT/US99/29393
       WO 00/34320
         <220>
                    primer_bind
         <221>
                    primer T7-TS used in cDNA synthesis and RACE
         <223>
                    18
         <400>
    gtaatacgac tcactatagg gcaagcagtg gtatcaacgc agagt
5
    45
                    19
         <210>
                    22
         <211>
                    DNA
10
         <212>
                    artificial sequence
         <213>
         <220>
                    primer_bind
         <221>
                    primer T7 used in cDNA synthesis and RACE
         <223>
15
         <400>
                                                        22
    gtaatacgac tcactatagg gc
                     20
          <210>
                     21
          <211>
                    DNA
20
          <212>
                     artificial sequence
          <213>
          <220>
                     primer_bind
          <221>
                     gene-specific primer used for 5'-RACE for
          <223>
                     Anemonia majano
25
                     20
          <400>
                                                           21
    gaaatagtca ggcatactgg t
                     21
          <210>
                     20
30
          <211>
          <212>
                     DNA
                     artificial sequence
          <213>
          <220>
                     primer_bind
          <221>
                     gene-specific primer used for 5'-RACE for
35
          <223>
                     Anemonia majano
```

			_
	, 	÷	
			-
			•
			-
•			

WO 00/34320 21 <400> 20 gtcaggcata ctggtaggat <210> 22 5 21 <211> <212> DNA artificial sequence <213> <220> primer_bind <221> gene-specific primer used for 5'-RACE for 10 <223> Clavularia sp. 22 <400> 21 cttgaaatag tctgctatat c 23 15 <210> 19 <211> DNA <212> artificial sequence <213> <220> 20 <221> primer_bind gene-specific primer used for 5'-RACE for <223> Clavularia sp. 23 <400> 19 tctgctatat cgtctgggt 25 24 <210> <211> 23 <212> DNA artificial sequence <213> 30 <220> primer_bind <221> gene-specific primer used for 5'-RACE for <223> Zoanthus sp. 24 <400>

PCT/US99/29393

gttcttgaaa tagtctacta tgt

35

•		
	<210>	25
	<211>	20
	<212>	DNA
5	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for
		Zoanthus sp.
10	<400>	25
	gtctactatg	tcttgaggat 20
	J	
_	<210>	26
	<211>	19
15	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for
20		Discosoma sp. "red"
	<400>	26
	caagcaaatg	gcaaaggtc 19
	<210>	27
25	<211>	19
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
30	<223>	gene-specific primer used for 5'-RACE for
		Discosoma sp. "red"
	<400>	27
	cggtattgtg	gccttcgta 19
		•
35	<210>	28
55	<211>	
	\411 <i>\</i>	

	. ·	- -	-	 , t		, ,
		·				
					_	

	WO 00/3432	0			.:	PCT/US99/29393
•	<212>	DNA				
	<213>	artificial sequence		•		
	<220>					
	<221>	primer_bind				
5	<223>	gene-specific primer	used	for	5'-RACE	for
		Discosoma striata				
	<400>	28				
	ttgtcttctt	ctgcacaac			19	
10	<210>	29				
	<211>					
	<212>					
	<213>	artificial sequence				
	<220>	1. day 3				
15	<221>	-		£	E/ DACE	Eam
	<223>		usea	ior	5 - RACE	LOI
	.400	Discosoma striata				
	<400>	29				•
	ctgcacaacg	ggtccat			17	
20						
	<210>					
	<211>				•	
	<212>					
	<213>	artificial sequence				
25	<220>					
	<221>			c	E (DAGE	£
	<223>	_	usea	ior	5 - RACE	IOF
	.400	Anemonia sulcata				
	<400>	30				
30	cctctatctt	catttcctgc			20	
	<210>	31				
	<211>	20				
	<212>	DNA				
35	<213>	artificial sequence				
	<220>					
	<221>	primer_bind				

		,			
		*		. '	
					-
	·				
					٠
·					,

	WO 00/34320	PCT/US99/29393
	<223>	gene-specific primer used for 5'-RACE for
•		Anemonia sulcata
	<400>	31
	tatcttcatt	tcctgcgtac 20
_		
5	0.1.0	22
	<210>	
	<211>	
	<212>	DNA artificial sequence
10		arcificial sequence
10	<220> <221>	primer_bind
	<221>	
	<223>	Discosoma sp. "magenta"
	<400>	32
	<4002	
15	ttcagcaccc	catcacgag 19
	<210>	
	<211>	
	<212>	
20	<213>	
	<220>	
	<221>	
	<223>	Discosoma sp. "magenta"
25	<400>	33
23		10
	acgctcagag	ctgggttcc 19
		24
	<210>	
••	<211>	
30	<212>	
	<213>	artificial sequence
	<220>	nuimor bind
	<221>	7. C. T. D.CD. S.
25	<223>	Discosoma sp. "green"
35	-400-	
	<400>	Ja

				, <u>-</u>		
•			-		:	
		_				
	·					
						q
						•

	ccctcagcaa	tccatcacgt tc	22	
	010	25	•	
	<210> <211>			
_				
5	<212>		20	
	<213>		nce	
	<220>			
	<221>	_	imer used for 5'-RACE	for
10	<223>	Discosoma sp. "g		
10	.400	35	1 6611	
	<400>	35		
	attatctcag	tggatggttc	20	
	<210>			
15	<211>			
	<212>			
	<213>	artificial seque	nce	
	<220>			
	<221>	-		
20	<223>		used to obtain full c	oding region
		of nFPs from Ane	monia majano	
	<400>	36		
	acatggatcc	gctctttcaa acaagttta	. c 31	
25	<210>	37		
	<211>	34		
	<212>			
	<213>		nce	
	<220>			
30	<221>			
	<223>	downstream prime	r used to obtain full	coding
		region of nFPs f	rom <i>Anemonia majano</i>	
	<400>	37		
	tagtagtgga	gcttattcgt atttcagtga	a aatc 34	
35	cagtactcga	accorded a goodageg		
55	<210>	38		
	<211>			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~ ~		

	WO 00/3432	PCT/US99/29393
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
5	<223>	upstream primer used to obtain full coding region
		of nFPs from <i>Clavularia sp</i> .
	<400>	38
	acatggatcc	aacatttttt tgagaaacg 29
10	<210>	39
	<211>	28
	<212>	DNA
	<213>	artificial sequence
	<220>	
15	<221>	_
	<223>	
	•	of nFPs from <i>Clavularia sp</i> .
	<400>	39
	acatggatcc	aaagctctaa ccaccatg 28
20		
	<210>	40
	<211>	31
	<212>	DNA
	<213>	artificial sequence
25	<220>	
	<221>	_
	<223>	downstream primer used to obtain full coding
		region of nFPs from Clavularia sp.
	<400>	40
30	tagtactcga	gcaacacaaa ccctcagaca a 31
	<210>	41
	<211>	28
	<212>	DNA
35	<213>	artificial sequence
	<220>	

	. *	= -	 · -	Ī	' '
- .					
					•
		,			

	WO 00/34320	0	PCT/US99/29393
	<221>	primer_bind	
•	<223>		in full coding region
		of nFPs from Zoanthus sp.	
	<400>	41	
5	acatogatoc	gctcagtcaa agcacggt	28
3	acacggacco		
	<210>	42	
	<211>	32	
	<212>	DNA	
10	<213>	artificial sequence	
,	<220>		
	<221>		
	<223>		
		region of nFPs from Zoanthus	sp.
15	<400>	42	
	tagtactcga	ggttggaact acattcttat ca	32
	<210>	43	
	<211>	31	
20	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	-	
	<223>		
25		of nFPs from <i>Discosoma sp.</i> ":	red"
	<400>	43	
	acatggatcc	aggtcttcca agaatgttat c	31
	<210>	44	
30	<211>	29	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	_	•
35	<223>		
		region of nFPs from <i>Discosom</i>	a sp. "red"
	<400>	44	

			-	 · -	ī	
						,
		•				
	-					

-	tagtactcga	ggagccaagt tcagcctta	29
	<210>	45	·
	<211>		
5	<212>		
3	<213>		
	<220>	_	
	<221>	primer_bind	
	<223>	-	to obtain full coding region
10	. ——	of nFPs from <i>Discosc</i>	
	<400>	45	
		agttggtcca agagtgtg	28
		-	
	<210>	46	
15	<211>	28	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>		
20	<223>		ed to obtain full coding
		region of nFPs from	Discosoma striata
	<400>	46	
	tagcgagctc	tatcatgcct cgtcacct	28
25	<210>	47	•
	<211>	31	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
30	<221>	primer_bind	
	<223>	upstream primer used	to obtain full coding region
	•	of nFPs from Anemon	ia sulcata
	<400>	47	
	acatggatcc	gcttcctttt taaagaagac t	31
35			
	<210>	48	
	<211>	28	

	_		ż	-	• -	_		, ,
•	•					•		
						•		
							•	
								·
		,						

	WO 00/34320	. .	PCT/US99/29393
	<212>	DNA	
•	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
5	<223>	downstream primer used	to obtain full coding
		region of nFPs from An	emonia sulcata
	<400>	48	
	tagtagtega gtg	cttggga gcggcttg	28
	cagcaccega geo	, , , , , , , , , , , , , , , , , , , ,	
10	<210>	49	
	<211>	30	
	<212>	DNA	
_	<213>	artificial sequence	
	<220>		
15	<221>	primer_bind	
	<223>		o obtain full coding region
		of nFPs from Discosoma	sp. "magenta"
	<400>	49	
	acatggatcc ag	tgttcca agaatgtgat	30
20			
	<210>	50	
	<211>	26	
	<212>	DNA	
	<213>	artificial sequence	
25	<220>		
	<221>	primer_bind	
	<223>		to obtain full coding
		region of nFPs from Di	scosoma sp. "magenta"
	<400>	50	
30	tagtactcga gg	ccattacg ctaatc	26
	<210>	51	
	<211>	31	
	<212>	DNA	
35	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	

			-			· •
		 		·:		
					_	
						. •
,						
·						

	WO 00/34320		1 -	PCT/US99/29393							
	<223>	upstream primer used to	obtain full	coding region							
•		of nFPs from Discosoma s	sp. "green"								
	<400>	51									
	acatggatcc a	gtgcactta aagaagaaat g	31								
5											
J	<210>	52									
	<211>	29									
	<212>	DNA									
	<213>	artificial sequence									
10	<220>										
10	<221>	primer_bind									
	<223>	downstream primer used t	o obtain ful	l coding							
		_	region of nFPs from Discosoma sp. "green"								
	<400>	52									
15	tagtactcga g	atteggttt aatgeettg	29								
	<210>	53									
	<211>	33									
	<212>	DNA									
20	<213>	artificial sequence									
	<220>										
	<221>	primer_bind									
	<223>	TS-oligo used in cDNA sy	nthesis and	RACE							
	<400>	53									
25	aagcagtggt a	tcaacgcag agtacgcrgr grg	3	33							
	<210>	54									
	<211>	238									
	<212>	PRT									
30	<213>	Aequorea victoria									
	<220>										
	<223>	amino acid sequence of G	FP								
	<400>	54									
	Met Ser Lys	Gly Glu Glu Leu Phe Thr Gly	Val Val Pro	Ile Leu							
35		5 10		15							
	Val Glu Leu	Asp Gly Asp Val Asn Gly His	Lys Phe Ser	Val Ser							

WO 00/34320					, <u>-</u> -			_	· -				PCT/US99/29393		
		•			20					25					30
•	Glv	Glu	Gly	Glu	Gly	Asp	Ala	Thr	Tyr	Gly	Lys	Leu	Thr	Leu	Lys
	U-1		- 4		35					40					45
	Phe	Ile	Cys	Thr	Thr	Gly	Lys	Leu	Pro	Val	Pro	Trp	Pro	Thr	Leu
5					50					55					60
	Val	Thr	Thr	Phe	Ser	Tyr	Gly	Val	Gln	Cys	Phe	Ser	Arg	Tyr	Pro
					65					70					75
	Asp	His	Met	Lys	Gln	His	Asp	Phe	Phe	Lys	Ser	Ala	Met	Pro	
					80					85					90
10	Gly	Tyr	Val	Gln	Glu	Arg	Thr	Ile	Phe		Lys	Asp	Asp	Gly	
					95					100			_,	_	105
	Tyr	Lys	Thr	Arg		Glu	Val	Lys	Phe		Gly	Asp	Thr	Leu	
					110				_	115	_	~ 1	3	01. .	120
	Asn	Arg	Ile	Glu		Lys	Gly	Ile	Asp		гÀг	GIU	Asp	GIY	135
15					125	.	Q1	m	7 ~~	130	7 an	Sor	ніс	Δan	
	Ile	Leu	GIY	His		ьeu	GIU	TAT	ASII	145	ASII	261	1113	21311	150
	m	Ile	Mot	7.1.	140	Taze	Gln	Lvs	Asn		Ile	Lvs	Val	Asn	
	TYI	тте	Mec	Ala	155	כעם	0111	_, _		160					165
20	Tage	Ile	Ara	His		Ile	Glu	Asp	Gly		Val	Gln	Leu	Ala	Asp
20	цуs	110	1119		170			_	_	175					180
	His	Tyr	Gln	Gln	Asn	Thr	Pro	Ile	Gly	Asp	Gly	Pro	Val	Leu	Leu
		-			185					190					195
	Pro	Asp	Asn	His	Tyr	Leu	Ser	Thr	Gln	Ser	Ala	Leu	Ser	Lys	Asp
25					200					205					210
	Pro	Asn	Glu	Lys	Arg	Asp	His	Met	Val		Leu	Glu	Phe	Val	
					215					220					225
	Ala	Ala	Gly	Ile			Gly	Met	Asp		Leu	Tyr	Lys		
					230					235					
30															
	<210> <211>			55											
				NA											
					Anemonia majano									•	
35	<213> <220>			111											
33		<221>			CDS										
			23>			A sec	quen	ce of	E wil	ld ty	уре а	amFP4	186		
			00>		55		_								
		_													

```
gggagttcat tttggtcggc gacgtagtgg actacgaaaa ctcaactcga 50
    ctttcgttca gttttgagaa acaagcgatt tgattcgaca tggctctttc 100
    aaacaagttt atcggagatg acatgaaaat gacctaccat atggatggct 150
    qtgtcaatgg gcattacttt accgtcaaag gtgaaggcaa cgggaagcca 200
    tacgaaggga cgcagacttc gacttttaaa gtcaccatgg ccaacggtgg 250
    gccccttgca ttctcctttg acatactatc tacagtgttc aaatatggaa 300
    atcgatgctt tactgcgtat cctaccagta tgcccgacta tttcaaacaa 350
    gcatttcctg acggaatgtc atatgaaagg acttttacct atgaagatgg 400
    aggagttgct acagccagtt gggaaataag ccttaaaggc aactgctttg 450
    agcacaaatc cacgtttcat ggagtgaact ttcctgctga tggacctgtg 500
10
    atggcgaaga agacaactgg ttgggaccca tcttttgaga aaatgactgt 550
    ctgcgatgga atattgaagg gtgatgtcac cgcgttcctc atgctgcaag 600
    gaggtggcaa ttacagatgc caattccaca cttcttacaa gacaaaaaaa 650
    ccggtgacga tgccaccaaa ccatgtggtg gaacatcgca ttgcgaggac 700
    cgaccttgac aaaggtggca acagtgttca gctgacggag cacgctgttg 750
15
    cacatataac ctctgttgtc cctttctgag caaaaagttc gttttagacc 800
    ccgatttcac tgaaatacga ataaggttgg cagaataata aagccgcaca 850
                                                            862
    tttgaaataa tc
                    56
20
         <210>
         <211>
                    229
                    PRT
         <212>
                    Anemonia majano
         <213>
         <220>
                    amino acid sequence of wild type amFP486
25
         <223>
                    56
         <400>
    Met Ala Leu Ser Asn Lys Phe Ile Gly Asp Asp Met Lys Met Thr
                                                             15
                    5
                                         10
    Tyr His Met Asp Gly Cys Val Asn Gly His Tyr Phe Thr Val Lys
                                                             30
                                         25
30
                    20
    Gly Glu Gly Asn Gly Lys Pro Tyr Glu Gly Thr Gln Thr Ser Thr
                                         40
                                                             45
                     35
    Phe Lys Val Thr Met Ala Asn Gly Gly Pro Leu Ala Phe Ser Phe
                                                              60
                                         55
                     50
    Asp Ile Leu Ser Thr Val Phe Lys Tyr Gly Asn Arg Cys Phe Thr
35
                                                              75
                                         70
                     65
    Ala Tyr Pro Thr Ser Met Pro Asp Tyr Phe Lys Gln Ala Phe Pro
```

				:	•
	_				
					,
			•		

```
85
                                                              90
                     80
    Asp Gly Met Ser Tyr Glu Arg Thr Phe Thr Tyr Glu Asp Gly Gly
                     95
                                          100
    Val Ala Thr Ala Ser Trp Glu Ile Ser Leu Lys Gly Asn Cys Phe
                                          115
                                                              120
                     110
5
    Glu His Lys Ser Thr Phe His Gly Val Asn Phe Pro Ala Asp Gly
                                          130
                                                              135
                     125
    Pro Val Met Ala Lys Lys Thr Thr Gly Trp Asp Pro Ser Phe Glu
                                         145
                     140
    Lys Met Thr Val Cys Asp Gly Ile Leu Lys Gly Asp Val Thr Ala
10
                     155
                                          160
                                                              165
    Phe Leu Met Leu Gln Gly Gly Gly Asn Tyr Arg Cys Gln Phe His
                                          175
                                                              180
                     170
    Thr Ser Tyr Lys Thr Lys Lys Pro Val Thr Met Pro Pro Asn His
                                          190
                                                              195
                     185
15
    Val Val Glu His Arg Ile Ala Arg Thr Asp Leu Asp Lys Gly Gly
                                         205
                     200
    Asn Ser Val Gln Leu Thr Glu His Ala Val Ala His Ile Thr Ser
                                                              225
                                         220
                     215
20
    Val Val Pro Phe
                    57
         <210>
                    690
         <211>
25
         <212>
                    DNA
                    artificial sequence
         <213>
         <220>
         <223>
                    nucleotide sequence of Mut15
                    57
         <400>
    atggctcttt caaacaagtt tatcggagat gacatgaaaa tgacctacca
30
    tatggatggc tgtgtcaatg ggcattactt taccgtcaaa ggtgaaggca 100
    gcgggaagcc atacgaaggg acgcagacct cgacttttaa agtcaccatg 150
    gccaacggtg ggccccttgc attctccttt gacatactat ctacagtgtt 200
    cttgtatgga aatcgatgct ttactgcgta tcctaccagt atgcccgact 250
    atttcaaaca agcatttcct gacggaatgt catatgaaag gacttttacc 300
35
    tatgaagatg gaggagttgc tacagccagt tgggaaataa gccttaaagg 350
    caactgcttt gagcacaaat ccacgtttca tggagtgaac tttcctgctg 400
```

	 	:	
			·
-			
			٠

atggacctgt gatggcgaag aagacaactg gttgggaccc atcttttgag 450

```
aaaatgactg tctgcgatgg aatattgaag ggtgatgtca ccgcgttcct 500
    catgctgcaa ggaggtggca attacagatg ccaattccac acttcttaca 550
    agacaaaaaa accggtgacg atgccaccaa accatgtggt ggaacatcgc 600
    attgcgagga ccgaccttga caaaggtggc aacagtgttc agctgacgga 650
5
                                                            690
    gcacgctgtt gcacatataa cctctgttgt ccctttctga
                    58
         <210>
         <211>
                    4695
10
                    DNA
         <212>
                    artificial sequence
         <213>
         <220>
                    nucleic acid sequence of vector pCNFPMut32-N1
         <223>
                    58
         <400>
                                                              50
    tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
15
    tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg
                                                             100
                                                             150
    cccaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt
                                                             200
    aacgccaata gggactttcc attgacgtca atgggtggag tatttacggt
    aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc
                                                             250
    cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
                                                             300
20
    catgacetta tgggaettte etaettggea gtacatetae gtattagtea
                                                             350
    tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga
                                                              400
    tagcggtttg actcacgggg atttccaagt ctccacccca ttgacgtcaa
                                                              450
    tgggagtttg ttttggcacc aaaatcaacg ggactttcca aaatgtcgta
                                                              500
    acaactccgc cccattgacg caaatgggcg gtaggcgtgt acggtgggag 550
25
    gtctatataa gcagagctgg tttagtgaac cgtcagatcc gctagcgcta
                                                             600
    ccggactcag atctcgagct caagcttcga attctgcagt cgacggtacc
                                                              650
    gcgggcccgg gatccggtac catggctctt tcaaacaagt ttatcggaga
                                                             700
    tgacatgaaa atgacctacc atatggatgg ctgtgtcaat gggcattact
                                                             750
    ttaccgtcaa aggtgaaggc aacgggaagc catacgaagg gacgcagact
                                                              800
30
    tcgactttta aagtcaccat ggccaacggt gggccccttg cattctcctt
                                                              850
    tgacatacta tctacagtgt tcaaatatgg aaatcgatgc tttactgcgt
                                                              900
    atcctaccag catgcccgac tatttcaaac aagcatttcc tgacggaatg
                                                              950
    tcatatgaaa ggacttttac ctatgaagat ggaggagttg ctacagccag 1000
    ttgggaaata agccttaaag gcaactgctt tgagcacaaa tccacgtttc 1050
35
    atggagtgaa ctttcctgct gatggacctg tgatggcgaa gaagacaact 1100
    ggttgggacc catcttttga gaaaatgact gtctgcgatg gaatattgaa 1150
```

	. .	 .:	•
			•

```
gggtgatgtc accgcgttcc tcatgctgca aggaggtggc aattacagat 1200
    gccaattcca cacttcttac aagacaaaaa aaccggtgac gatgccacca 1250
    aaccatgtgg tggaacatcg cattgcgagg accgaccttg acaaaggtgg 1300
    caacagtgtt cagctgacgg agcacgctgt tgcacatata acctctgttg 1350
5
    tecetttetg ageggeegeg actetagate ataateagee ataceacatt 1400
    tgtagaggtt ttacttgctt taaaaaacct cccacacctc cccctgaacc 1450
    tgaaacataa aatgaatgca attgttgttg ttaacttgtt tattgcagct 1500
    tataatggtt acaaataaag caatagcatc acaaatttca caaataaagc 1550
    attttttca ctgcattcta gttgtggttt gtccaaactc atcaatgtat 1600
    cttaaggcgt aaattgtaag cgttaatatt ttgttaaaat tcgcgttaaa 1650
10
    tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa 1700
    tcccttataa atcaaaagaa tagaccgaga tagggttgag tgttgttcca 1750
    gtttggaaca agagtccact attaaagaac gtggactcca acgtcaaagg 1800
    gcgaaaaacc gtctatcagg gcgatggccc actacgtgaa ccatcaccct 1850
15
    aatcaagttt tttggggtcg aggtgccgta aagcactaaa tcggaaccct 1900
    aaagggagee eeegatttag agettgaegg ggaaageegg egaaegtgge 1950
    gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa 2000
    gtgtageggt caegetgege gtaaceacea caeeegeege gettaatgeg 2050
    ccgctacagg gcgcgtcagg tggcactttt cggggaaatg tgcgcggaac 2100
20
    ccctatttgt ttatttttct aaatacattc aaatatgtat ccgctcatga 2150
    gacaataacc ctgataaatg cttcaataat attgaaaaag gaagagtcct 2200
    gaggcggaaa gaaccagctg tggaatgtgt gtcagttagg gtgtggaaag 2250
    tccccaggct ccccagcagg cagaagtatg caaagcatgc atctcaatta 2300
    gtcagcaacc aggtgtggaa agtccccagg ctccccagca ggcagaagta 2350
25
    tgcaaagcat gcatctcaat tagtcagcaa ccatagtccc gcccctaact 2400
    ccgcccatcc cgcccctaac tccgcccagt tccgcccatt ctccgcccca 2450
    tggctgacta atttttttta tttatgcaga ggccgaggcc gcctcggcct 2500
    ctgagctatt ccagaagtag tgaggaggct tttttggagg cctaggcttt 2550
    tgcaaagatc gatcaagaga caggatgagg atcgtttcgc atgattgaac 2600
30
    aagatggatt gcacgcaggt tctccggccg cttgggtgga gaggctattc 2650
    ggctatgact gggcacaaca gacaatcggc tgctctgatg ccgccgtgtt 2700
    ccggctgtca gcgcaggggc gcccggttct ttttgtcaag accgacctgt 2750
    ccggtgccct gaatgaactg caagacgagg cagcgcggct atcgtggctg 2800
    gccacgacgg gcgttccttg cgcagctgtg ctcgacgttg tcactgaagc 2850
35
    gggaagggac tggctgctat tgggcgaagt gccggggcag gatctcctgt 2900
    catctcacct tgctcctgcc gagaaagtat ccatcatggc tgatgcaatg 2950
    eggeggetge atacgettga teeggetace tgeceatteg accaceaage 3000
    gaaacatege ategagegag caegtaeteg gatggaagee ggtettgteg 3050
```

```
atcaggatga tctggacgaa gagcatcagg ggctcgcgcc agccgaactg 3100
    ttcgccaggc tcaaggcgag catgcccgac ggcgaggatc tcgtcgtgac 3150
    ccatggcgat gcctgcttgc cgaatatcat ggtggaaaat ggccgctttt 3200
    ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac 3250
    atagcgttgg ctacccgtga tattgctgaa gagcttggcg gcgaatgggc 3300
5
    tgaccgcttc ctcgtgcttt acggtatcgc cgctcccgat tcgcagcgca 3350
    tcgccttcta tcgccttctt gacgagttct tctgagcggg actctggggt 3400
    tcgaaatgac cgaccaagcg acgcccaacc tgccatcacg agatttcgat 3450
    tccaccgccg ccttctatga aaggttgggc ttcggaatcg ttttccggga 3500
    cgccggctgg atgatcctcc agcgcgggga tctcatgctg gagttcttcg 3550
10
    cccaccctag ggggaggcta actgaaacac ggaaggagac aataccggaa 3600
    ggaacccgcg ctatgacggc aataaaaaga cagaataaaa cgcacggtgt 3650
    tgggtcgttt gttcataaac gcggggttcg gtcccagggc tggcactctg 3700
    togatacccc accgagaccc cattggggcc aatacgcccg cgtttcttcc 3750
    ttttccccac cccaccccc aagttcgggt gaaggcccag ggctcgcagc 3800
15
    caacgtcggg gcggcaggcc ctgccatagc ctcaggttac tcatatatac 3850
    tttagattga tttaaaactt catttttaat ttaaaaggat ctaggtgaag 3900
    atcetttttg ataateteat gaccaaaate cettaaegtg agttttegtt 3950
    ccactgagcg tcagaccccg tagaaaagat caaaggatct tcttgagatc 4000
    ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaa accaccgcta 4050
20
    ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc tttttccgaa 4100
    ggtaactggc ttcagcagag cgcagatacc aaatactgtc cttctagtgt 4150
    agccgtagtt aggccaccac ttcaagaact ctgtagcacc gcctacatac 4200
    ctcgctctgc taatcctgtt accagtggct gctgccagtg gcgataagtc 4250
    gtgtcttacc gggttggact caagacgata gttaccggat aaggcgcagc 4300
25
    ggtcgggctg aacggggggt tcgtgcacac agcccagctt ggagcgaacg 4350
    acctacaccg aactgagata cctacagcgt gagctatgag aaagcgccac 4400
    gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg 4450
    gaacaggaga gcgcacgagg gagcttccag ggggaaacgc ctggtatctt 4500
    tatagtcctg tcgggtttcg ccacctctga cttgagcgtc gatttttgtg 4550
30
    atgctcgtca ggggggcgga gcctatggaa aaacgccagc aacgcggcct 4600
    ttttacggtt cctggccttt tgctggcctt ttgctcacat gttctttcct 4650
                                                            4695
    gcgttatccc ctgattctgt ggataaccgt attaccgcca tgcat
                    59
35
         <210>
                    4821
          <211>
                    DNA
          <212>
```

```
artificial sequence
         <213>
         <220>
                   nucleic acid sequence of vector pCNFP-MODCd1
         <223>
         <400>
    tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
                                                              50
5
    tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg
                                                             100
    cccaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt
                                                             150
    aacgccaata gggactttcc attgacgtca atgggtggag tatttacggt
                                                             200
    aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc
                                                             250
    cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
                                                             300
10
    catgacctta tgggactttc ctacttggca gtacatctac gtattagtca
                                                             350
    tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga
                                                             400
    tagcggtttg actcacgggg atttccaagt ctccacccca ttgacgtcaa
                                                             450
    tgggagtttg ttttggcacc aaaatcaacg ggactttcca aaatgtcgta
                                                             500
    acaactccgc cccattgacg caaatgggcg gtaggcgtgt acggtgggag
                                                             550
15
    gtctatataa gcagagctgg tttagtgaac cgtcagatcc gctagcgcta
                                                             600
    ccggactcag atctcgagct caagcttcga attctgcagt cgacggtacc
                                                             650
                                                             700
    gcgggcccgg gatccggtac catggctctt tcaaacaagt ttatcggaga
                                                             750
    tgacatgaaa atgacctacc atatggatgg ctgtgtcaat gggcattact
    ttaccgtcaa aggtgaaggc aacgggaagc catacgaagg gacgcagact
                                                             800
20
    tcgactttta aagtcaccat ggccaacggt gggccccttg cattctcctt
                                                             850
    tgacatacta tctacagtgt tcaaatatgg aaatcgatgc tttactgcgt
                                                             900
    atcctaccag catgcccgac tatttcaaac aagcatttcc tgacggaatg
                                                             950
    tcatatgaaa ggacttttac ctatgaagat ggaggagttg ctacagccag 1000
    ttgggaaata agccttaaag gcaactgctt tgagcacaaa tccacgtttc 1050
25
    atggagtgaa ctttcctgct gatggacctg tgatggcgaa gaagacaact 1100
    ggttgggacc catcttttga gaaaatgact gtctgcgatg gaatattgaa 1150
    gggtgatgtc accgcgttcc tcatgctgca aggaggtggc aattacagat 1200
    gccaattcca cacttcttac aagacaaaaa aaccggtgac gatgccacca 1250
    aaccatgtgg tggaacatcg cattgcgagg accgaccttg acaaaggtgg 1300
30
    caacagtgtt cagctgacgg agcacgctgt tgcacatata acctctgttg 1350
    tccctttcaa gcttagccat ggcttcccgc cggcggtggc ggcgcaggat 1400
    gatggcacgc tgcccatgtc ttgtgcccag gagagcggga tggaccgtca 1450
    ccctgcagcc tgtgcttctg ctaggatcaa tgtgtaggcg gccgcgactc 1500
    tagatcataa tcagccatac cacatttgta gaggttttac ttgctttaaa 1550
35
    aaacctccca cacctcccc tgaacctgaa acataaaatg aatgcaattg 1600
    ttgttgttaa cttgtttatt gcagcttata atggttacaa ataaagcaat 1650
    agcatcacaa atttcacaaa taaagcattt ttttcactgc attctagttg 1700
```

	tggtttgtcc	aaactcatca	atgtatctta	aggcgtaaat	tgtaagcgtt	1750
			gttaaatttt			
	taaccaatag	gccgaaatcg	gcaaaatccc	ttataaatca	aaagaataga	1850
	ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	1900
5	aagaacgtgg	actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	1950
	tggcccacta	cgtgaaccat	caccctaatc	aagtttttg	gggtcgaggt	2000
	gccgtaaagc	actaaatcgg	aaccctaaag	ggagcccccg	atttagagct	2050
	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	agaaagcgaa	2100
	aggagcgggc	gctagggcgc	tggcaagtgt	agcggtcacg	ctgcgcgtaa	2150
10	ccaccacacc	cgccgcgctt	aatgcgccgc	tacagggcgc	gtcaggtggc	2200
	acttttcggg	gaaatgtgcg	cggaacccct	atttgtttat	ttttctaaat	2250
	acattcaaat	atgtatccgc	tcatgagaca	ataaccctga	taaatgcttc	2300
	aataatattg	aaaaaggaag	agtcctgagg	cggaaagaac	cagctgtgga	2350
	atgtgtgtca	gttagggtgt	ggaaagtccc	caggctcccc	agcaggcaga	2400
15	agtatgcaaa	gcatgcatct	caattagtca	gcaaccaggt	gtggaaagtc	2450
	cccaggctcc	ccagcaggca	gaagtatgca	aagcatgcat	ctcaattagt	2500
	cagcaaccat	agtcccgccc	ctaactccgc	ccatcccgcc	cctaactccg	2550
	cccagttccg	cccattctcc	gccccatggc	tgactaattt	tttttattta	2600
	tgcagaggcc	gaggccgcct	cggcctctga	gctattccag	aagtagtgag	2650
20	gaggcttttt	tggaggccta	ggcttttgca	aagatcgatc	aagagacagg	2700
	atgaggatcg	tttcgcatga	ttgaacaaga	tggattgcac	gcaggttctc	2750
	cggccgcttg	ggtggagagg	ctattcggct	atgactgggc	acaacagaca	2800
	atcggctgct	ctgatgccgc	cgtgttccgg	ctgtcagcgc	aggggcgccc	2850
	ggttcttttt	gtcaagaccg	acctgtccgg	tgccctgaat	gaactgcaag	2900
25	acgaggcagc	gcggctatcg	tggctggcca	cgacgggcgt	tccttgcgca	2950
	gctgtgctcg	acgttgtcac	tgaagcggga	agggactggc	tgctattggg	3000
	cgaagtgccg	gggcaggatc	tcctgtcatc	tcaccttgct	cctgccgaga	3050
	aagtatccat	catggctgat	gcaatgcggc	ggctgcatac	gcttgatccg	3100
	gctacctgcc	cattcgacca	ccaagcgaaa	catcgcatcg	agcgagcacg	3150
30	tactcggatg	gaagccggtc	ttgtcgatca	ggatgatctg	gacgaagagc	3200
	atcaggggct	cgcgccagcc	gaactgttcg	ccaggctcaa	ggcgagcatg	3250
	cccgacggcg	aggatctcgt	cgtgacccat	ggcgatgcct	gcttgccgaa	3300
	tatcatggtg	gaaaatggcc	gcttttctgg	attcatcgac	tgtggccggc	3350
	tgggtgtggc	ggaccgctat	caggacatag	cgttggctac	ccgtgatatt	3400
35	gctgaagagc	ttggcggcga	atgggctgac	cgcttcctcg	tgctttacgg	3450
	tatcgccgct	cccgattcgc	agcgcatcgc	cttctatcgc	cttcttgacg	3500
	agttcttctg	agcgggactc	tggggttcga	aatgaccgac	caagcgacgc	3550
	ccaacctgcc	atcacgagat	ttcgattcca	ccgccgcctt	ctatgaaagg	3600

	•	-	- -	· .	L
					٠
_					
					,
					•
			·		

```
ttgggetteg gaategtttt cegggaegee ggetggatga teeteeageg 3650
    cggggatete atgetggagt tettegecea ceetaggggg aggetaactg 3700
    aaacacggaa ggagacaata ccggaaggaa cccgcgctat gacggcaata 3750
    aaaagacaga ataaaacgca cggtgttggg tcgtttgttc ataaacgcgg 3800
    ggttcggtcc cagggctggc actctgtcga taccccaccg agaccccatt 3850
5
    tcgggtgaag gcccagggct cgcagccaac gtcggggcgg caggccctgc 3950
    catagectca ggttactcat atatacttta gattgattta aaacttcatt 4000
    tttaatttaa aaggatctag gtgaagatcc tttttgataa tctcatgacc 4050
    aaaatccctt aacgtgagtt ttcgttccac tgagcgtcag accccgtaga 4100
10
    aaagatcaaa ggatcttctt gagatccttt ttttctgcgc gtaatctgct 4150
    gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg tttgccggat 4200
    caagagctac caactctttt teegaaggta aetggettea geagagegea 4350
    gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca 4300
    agaactctgt agcaccgcct acatacctcg ctctgctaat cctgttacca 4350
15
    gtggctgctg ccagtggcga taagtcgtgt cttaccgggt tggactcaag 4400
    acgatagtta ccggataagg cgcagcggtc gggctgaacg gggggttcgt 4450
    gcacacagec cagettggag cgaacgacet acacegaact gagataceta 4500
    cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga 4550
    caggtatccg gtaagcggca gggtcggaac aggagagcgc acgagggagc 4600
20
    ttccaggggg aaacgcctgg tatctttata gtcctgtcgg gtttcgccac 4650
    ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg ggcggagcct 4700
    atggaaaaac gccagcaacg cggccttttt acggttcctg gccttttgct 4750
    ggccttttgc tcacatgttc tttcctgcgt tatcccctga ttctgtggat 4800
                                                          4821
    aaccgtatta ccgccatgca t
25
         <210>
                   60
                   4621
         <211>
         <212>
                   DNA
                   artificial sequence
30
         <213>
         <220>
                   nucleic acid sequence of vector pCNFP-MODCd2
         <223>
                   60
         <400>
    tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
                                                             50
    tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg
                                                           100
35
    cccaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt
                                                            150
    aacgccaata gggactttcc attgacgtca atgggtggag tatttacggt
                                                           200
```

	. -	-	 	:	
•					
			·		
					·
					•
					•
		•			

```
aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc
                                                             250
    cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
                                                             300
    catgacetta tgggaettte etaettggea gtacatetae gtattagtea
                                                             350
    tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga
                                                             400
    tagcggtttg actcacgggg atttccaagt ctccacccca ttgacgtcaa
                                                             450
5
    tgggagtttg ttttggcacc aaaatcaacg ggactttcca aaatgtcgta
                                                             500
                                                             550
    acaactccgc cccattgacg caaatgggcg gtaggcgtgt acggtgggag
    gtctatataa gcagagctgg tttagtgaac cgtcagatcc gctagcgcta
                                                             600
    ccggactcag atctcgagct caagcttcga attctgcagt cgacggtacc
                                                             650
    gcgggcccgg gatccggtac catggctctt tcaaacaagt ttatcggaga
                                                             700
10
    tgacatgaaa atgacctacc atatggatgg ctgtgtcaat gggcattact
                                                             750
    ttaccgtcaa aggtgaaggc aacgggaagc catacgaagg gacgcagact
                                                             800
                                                             850
    tcgactttta aagtcaccat ggccaacggt gggccccttg cattctcctt
                                                             900
    tgacatacta tctacagtgt tcaaatatgg aaatcgatgc tttactgcgt
    atcctaccag catgcccgac tatttcaaac aagcatttcc tgacggaatg
                                                             950
15
    tcatatgaaa ggacttttac ctatgaagat ggaggagttg ctacagccag 1000
    ttgggaaata agccttaaag gcaactgctt tgagcacaaa tccacgtttc 1050
    atggagtgaa ctttcctgct gatggacctg tgatggcgaa gaagacaact 1100
    ggttgggacc catcttttga gaaaatgact gtctgcgatg gaatattgaa 1150
    gggtgatgtc accgcgttcc tcatgctgca aggaggtggc aattacagat 1200
20
    gccaattcca cacttcttac aagacaaaaa aaccggtgac gatgccacca 1250
    aaccatgtgg tggaacatcg cattgcgagg accgaccttg acaaaggtgg 1300
    caacagtgtt cagctgacgg agcacgctgt tgcacatata acctctgttg 1350
    tccctttcaa gcttagccat ggcttcccgc cggaggtgga ggagcaggat 1400
    gatggcacgc tgcccatgtc ttgtgcccag gagagcggga tggaccgtca 1450.
25
    ccctgcagcc tgtgcttctg ctaggatcaa tgtgtaggcg gccgcgactc 1500
    tagatcataa tcagccatac cacatttgta gaggttttac ttgctttaaa 1550
    aaacctccca cacctccccc tgaacctgaa acataaaatg aatgcaattg 1600
    ttgttgttaa cttgtttatt gcagcttata atggttacaa ataaagcaat 1650
    agcatcacaa atttcacaaa taaagcattt ttttcactgc attctagttg 1700
30
    tggtttgtcc aaactcatca atgtatctta aggcgtaaat tgtaagcgtt 1750
    aatattttgt taaaattcgc gttaaatttt tgttaaatca gctcattttt 1800
    taaccaatag gccgaaatcg gcaaaatccc ttataaatca aaagaataga 1850
    ccgagatagg gttgagtgtt gttccagttt ggaacaagag tccactatta 1900
    aagaacgtgg actccaacgt caaagggcga aaaaccgtct atcagggcga 1950
35
    tggcccacta cgtgaaccat caccctaatc aagttttttg gggtcgaggt 2000
    gccgtaaagc actaaatcgg aaccctaaag ggagcccccg atttagagct 2050
    tgacggggaa agccggcgaa cgtggcgaga aaggaaggga agaaagcgaa 2100
```

	. ·		 . ·	• •	. i	ı
		·				
				·		
						·
						a
						a
·						

```
aggagcgggc gctagggcgc tggcaagtgt agcggtcacg ctgcgcgtaa 2150
    ccaccacacc cgccgcgtt aatgcgccgc tacagggcgc gtcaggtggc 2200
    acttttcggg gaaatgtgcg cggaacccct atttgtttat ttttctaaat 2250
    acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc 2300
    aataatattq aaaaaggaag agtcctgagg cggaaagaac cagctgtgga 2350
    atgtgtgtca gttagggtgt ggaaagtccc caggctcccc agcaggcaga 2400
    agtatgcaaa gcatgcatct caattagtca gcaaccaggt gtggaaagtc 2450
    cccaggctcc ccagcaggca gaagtatgca aagcatgcat ctcaattagt 2500
    cagcaaccat agtcccgcc ctaactccgc ccatcccgcc cctaactccg 2550
    cccagttccg cccattctcc gccccatggc tgactaattt tttttattta 2600
10
    tgcagaggcc gaggccgcct cggcctctga gctattccag aagtagtgag 2650
    gaggettttt tggaggeeta ggettttgea aagategate aagagacagg 2700
    atgaggateg tttegeatga ttgaacaaga tggattgeac geaggttete 2750
    cggccgcttg ggtggagagg ctattcggct atgactgggc acaacagaca 2800
15
    ateggetget etgatgeege egtgtteegg etgteagege aggggegeee 2850
    ggttcttttt gtcaagaccg acctgtccgg tgccctgaat gaactgcaag 2900
    acgaggcagc gcggctatcg tggctggcca cgacgggcgt tccttgcgca 2950
    gctgtgctcg acgttgtcac tgaagcggga agggactggc tgctattggg 3000
    cgaagtgccg gggcaggatc tectgtcatc teacettgct cetgecgaga 3050
20
    aagtateeat eatggetgat geaatgegge ggetgeatae gettgateeg 3100
    tactcggatg gaagccggtc ttgtcgatca ggatgatctg gacgaagagc 3200
    atcagggget egegeeagee gaactgtteg eeaggeteaa ggegageatg 3250
    cccgacggcg aggatctcgt cgtgacccat ggcgatgcct gcttgccgaa 3300
25
    tatcatggtg gaaaatggcc gcttttctgg attcatcgac tgtggccggc 3350
    tgggtgtggc ggaccgctat caggacatag cgttggctac ccgtgatatt 3400
    gctgaagage ttggcggcga atgggctgac cgcttcctcg tgctttacgg 3450
    tategeeget ecegattege agegeatege ettetatege ettettgaeg 3500
    agttettetg agegggaete tggggttega aatgaeegae caagegaege 3550
30
    ccaacctgcc atcacgagat ttcgattcca ccgccgcctt ctatgaaagg 3600
    ttgggetteg gaategtttt eegggaegee ggetggatga teeteeageg 3650
    eggggatete atgetggagt tettegeeea eeetaggggg aggetaaetg 3700
    aaacacggaa ggagacaata ccggaaggaa cccgcgctat gacggcaata 3750
    aaaaqacaga ataaaacgca cggtgttggg tcgtttgttc ataaacgcgg 3800
    ggttcggtcc cagggctggc actctgtcga taccccaccg agaccccatt 3850
35
    tegggtgaag geceaggget egeageeaae gteggggegg caggeeetge 3950
    catageetea ggttaeteat atataettta gattgattta aaaetteatt 4000
```

	,					
				٠.		•
			 -		:	
•						
		•				
		•				
			•			

```
tttaatttaa aaggatctag gtgaagatcc tttttgataa tctcatgacc 4050
    aaaatccctt aacgtgagtt ttcgttccac tgagcgtcag accccgtaga 4100
    aaagatcaaa ggatcttctt gagatccttt ttttctgcgc gtaatctgct 4150
    gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg tttgccggat 4200
    caagagctac caactctttt tccgaaggta actggcttca gcagagcgca 4250
5
    gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca 4300
    agaactctgt agcaccgcct acatacctcg ctctgctaat cctgttacca 4350
    gtggctgctg ccagtggcga taagtcgtgt cttaccgggt tggactcaag 4400
    acgatagtta ccggataagg cgcagcggtc gggctgaacg gggggttcgt 4450
    gcacacagcc cagcttggag cgaacgacct acaccgaact gagataccta 4500
10
    cagcgtgage tatgagaaag cgccacgett cccgaaggga gaaaggcgga 4550
    caggtatccg gtaagcggca gggtcggaac aggagagcgc acgagggagc 4400
    ttccaggggg aaacgcctgg tatctttata gtcctgtcgg gtttcgccac 4450 -
    ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg ggcggagcct 4500
    atggaaaaac gccagcaacg cggccttttt acggttcctg gccttttgct 4550
15
    ggccttttgc tcacatgttc tttcctgcgt tatcccctga ttctgtggat 4600
                                                            4621
    aaccgtatta ccgccatgca t
                    61
         <210>
                    690
20
         <211>
         <212>
                    DNA
                    artificial sequence
         <213>
         <220>
                    nucleic acid sequence of humanized Mut32
         <223>
25
         <400>
    atggccctgt ccaacaagtt catcggcgac gacatgaaga tgacctacca
    catggacggc tgcgtgaacg gccactactt caccgtgaag ggcgagggca 100
    acggcaagcc ctacgagggc acccagacct ccaccttcaa ggtgaccatg 150
    gccaacggcg gccccctggc cttctccttc gacatcctgt ccaccgtgtt 200
    caagtacggc aaccgctgct tcaccgccta ccccaccagc atgcccgact 250
30
    acttcaagca ggccttcccc gacggcatgt cctacgagag aaccttcacc 300
    tacgaggacg gcggcgtggc caccgccagc tgggagatca gcctgaaggg 350
    caactgcttc gagcacaagt ccaccttcca cggcgtgaac ttccccgccg 400
    acggccccgt gatggccaag aagaccaccg gctgggaccc ctccttcgag 450
    aagatgaccg tgtgcgacgg catcttgaag ggcgacgtga ccgccttcct 500
35
    gatgctgcag ggcggcggca actacagatg ccagttccac acctcctaca 550
    agaccaagaa gcccgtgacc atgcccccca accacgtggt ggagcaccgc 600
```

	atcgccagaa	ccgacctgga caagggcggc aacagcgtgc agctgaccga 650
	gcacgccgtg	gcccacatca cctccgtggt gcccttctga 690
	<210>	62
5	<211>	
	<212>	
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
10	<223>	primer used to amplify human Marathon cDNA
		library (Burke's Lymphoma) to obtain mdm2 DNA
	<400>	62
	atgtggaata	ccaacatgtc tgtacc 26
	acgogodaoa	
15	<210>	63
	<211>	21
	<212>	DNA
	<213>	artificial sequence
	<220>	
20	<221>	primer_bind
	<223>	-
		library (Burke's Lymphoma) to obtain mdm2 DNA
	<400>	63
	ctaggggaaa	taagttagca c 21
25		
	<210>	64
	<211>	31
	<212>	DNA
	<213>	artificial sequence
30	<220>	
	<221>	-
	<223>	_
		restriction sites
	<400>	64
35	ggaattccag	ccatggtgtg caataccaac atgtctgtac c 31

. •	·	 . :	•
	_		
•			

.

	WO 00/34320		PCT/US99/29393
	<210>	65	
	<211>	26	
	<212>	DNA	
	<213>	artificial sequence	
5	<220>		
	<221>	primer_bind	
	<223>	PCR primer used to add Kozac sequence restriction sites	and
	<400>	65	
10	tcccccgggg	ggaaataagt tagcac	26

		. - -	. f	, 4. =
•				,
				•
	_			·
				4
				•

•

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/29393

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :(IPC 7): C07K 14/435; C12N 1/00, 1/15, 1/21, 5/10, 15/12, 15/63 US CL :Please See Extra Sheet.							
According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIELDS SEARCHED							
Minimum d	ocumentation searched (classification system followed	d by classification symbols)					
U.S. :	435/320.1, 252.3, 252.33, 325, 410, 254.11, 348, 369	, 69.1; 530/350; 536/23.5					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Electronic d	lata base consulted during the international search (na	ame of data base and, where practicable	, search terms used)				
	e Extra Sheet.	•					
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
****	The coguence diskette submitted with	he description was defectives	****				
	The sequence diskette submitted with thus the doscuments listed below were	-					
	search. No SEQ ID NOs. could be se	, ,					
	•						
X, P	<u> </u>	ns from nonbioluminescent	1-34				
	Anthozoa species. October 1999. Na 17, No. 10, pages 969-973, entire doc						
	17, 140. 10, pages 303-373, entire doc	ument.					
X, P	DE 197 18 640 A1 (WIEDENMANN) 22 July 1999, entire 24-29, 30 document						
X Further documents are listed in the continuation of Box C. See patent family annex.							
1	ecial categories of cited documents: cument defining the general state of the art which is not considered	"T" later document published after the integration and not in conflict with the app the principle or theory underlying the	lication but cited to understand				
to	be of particular relevance	*X* document particular relevance; th	e claimed invention cannot be				
·L· do	rlier document published on or after the international filing date scument which may throw doubts on priority claim(s) or which is	come lered novel or cannot be consider when the document is taken alone	ered to involve an inventive step				
cit	ted to stablish the publication date of another citation or other ecial reason (as specified)	"Y" document of particular relevance; the	e claimed invention cannot be				
"O" document referring to an oral disclosure, use, exhibition or other means		considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a nerson skilled in the art					
	ocument published prior to the international filing date but later than e priority date claimed	"&" document member of the same patent family					
Date of the	actual completion of the international search	Date of mailing of the international search report					
24 FEBR	UARY 2000	17 MAR 2000					
Name and	mailing address of the ISA/US oner of Patents and Trademarks	Authorized officer					
Box PCT Washington, D.C. 20231		GABRIELE ELISABETH BUGAISKY					
Facsimile No. (703) 305-3230		Telephone No. (703) 308-0196					

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/29393

		PC1/US99/2939	· 3		
C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the releva	nt passages	Relevant to claim No		
x	ANDERLUH et al. Cloning, sequencing and expression equinatoxin II. 1996. Biochemical and Biophysical Re Communications. Volume 220, No. 2, pages 437-442, edocument.	1-5, 8, 12, 20-21, 23-28, 31			
(MACEK et al. Intrinsic tryptophan fluorescence of equ a pore-forming polypeptide from the sea anemone, Actin L, monitors its interaction with lipid membranes. 1995. Journal of Biochemistry, Volume 234, pages 329-335, edocument.	24-28, 31 1-5, 8, 12, 20-21, 23			
		·			
	·				
			,		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/29393

A. CLASSIFICATION OF SUBJECT MATTER: US CL :

435/320.1, 252.3, 252.33, 325, 410, 254.11, 348, 369, 69.1; 530/350; 536/23.5

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

dialog files 155, 5, 434, 33, 357, 35(Medline, Biosis, Scisearch, Oceanic Abs., Derwent Biotech. Abs., Dissertation Abs.); STN-CAS files Registry, CAPLUS; WEST files USPT, Derwent WPI search terms: fluoresc?, Bioluminesc?, Protein, anthozo?, Zoanth?, Corralimorph?, Discosom?, Coral?, Alga, algae, discosom?, Cnidar?, Invert?, Rhodact?, Actinodisc?, Magenta, clavularia, zoanthus, anemonia, majano, anemon?, Zoanthar?, Actiniar?, Zoanthid?, Stolonif?, Alcyonar?, malsnkfig/sqsp, amfp486, striata, sulcata, Endomyar?

			 · -	;		~ ()
•	. •					
					,	