FONCTIONS 3 – FONCTIONS DE RÉFÉRENCE

I) PARITÉ D'UNE FONCTION

1) Fonction paire

Soit f une fonction définie sur un ensemble D.

On dit que f est paire si pour tout x de D :

- \bullet x appartient aussi à D
- $\bullet f(-x) = f(x)$

Interprétation graphique :

Pour tout x de D, les points M(x, f(x)) et M'(-x; f(x)) sont tous deux sur Cf et sont symétriques par rapport à l'axe des ordonnées.

Donc la courbe Cf est symétrique par rapport à l'axe des ordonnées.

Intérêt:

A la symétrie de la courbe correspond une symétrie des variations et des extrema. Si donc une fonction est paire, on peut se contenter de l'étudier sur D⁺, puis en déduire l'étude sur D⁻ par « symétrie ».

2) Fonction impaire

Soit f une fonction définie sur un ensemble D.

On dit que f est impaire si pour tout x de D :

- – x appartient aussi à D
- $\bullet f(-x) = -f(x)$

Interprétation graphique :

Pour tout x de D, les points M(x, f(x)) et M''(-x; -f(x)) sont tous deux sur Cf et sont symétriques par rapport à l'origine du repère.

Donc la courbe Cf est symétrique par rapport à l'origine du repère.

3) Justifier la parité d'une fonction : Les 4 possibilités

Étudier la parité des fonctions ci-dessous :

Ex 1 : Soit f la fonction carrée : $x \mapsto x^2$

La fonction carrée est définie sur IR.

Pour tout x de \mathbb{R} , -x appartient aussi à \mathbb{R}

et
$$f(-x) = (-x)^2 = x^2 = f(x)$$

Bilan : f est paire

Ex 2 : Soit g la fonction définie sur $\mathbb{R}\setminus\{-1;1\}$ par : $x\mapsto \frac{x}{x^2-1}$

Pour tout x de $\mathbb{R}\setminus\{-1;1\}$, -x appartient aussi à $\mathbb{R}\setminus\{-1;1\}$

et
$$g(-x) = \frac{-x}{(-x)^2 - 1} = -\frac{x}{x^2 - 1} = -g(x)$$

Bilan: g est impaire

Ex 3 : Soit *h* la fonction racine : $x \mapsto \sqrt{x}$

La fonction racine est définie sur IR⁺.

On remarque que : 5 appartient à ℝ⁺ mais −5 n'appartient pas à ℝ⁺

Bilan: h est ni paire, ni impaire

Ex 4 : Soit *i* la fonction définie sur \mathbb{R} par : $x \mapsto x + 1$

On remarque que : i(5) = 6 et i(-5) = -4

Ces deux nombres sont ni égaux, ni opposés.

Bilan: i est ni paire, ni impaire

p233:66,67

p234:71

II) FONCTIONS DE RÉFÉRENCES

fonction	Df	parité	variations	courbe
affine $x \mapsto ax + b$	IR	ni paire, ni impaire si a et b sont non nuls,		
carrée $x \mapsto x^2$			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c} \text{cube} \\ x \mapsto x^3 \end{array} $			$\begin{array}{c c} x & -\infty & +\infty \\ \hline x^3 & & & \end{array}$	
inverse $x \mapsto \frac{1}{x}$			$\begin{array}{c c} x & -\infty & +\infty \\ \hline \frac{1}{x} & \end{array}$	
racine carrée $x \mapsto \sqrt{x}$			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

p288:41

p289:54,55

p233:62

p235:83,86

p236:88,89,97

p237:100, 101, 102, 106

comparaison de x, x^2 , x^3 sur \mathbb{R}^+ p232 : 50, 51

symétrie $y = x^2$ et $y = \sqrt{x}$ p179 : 89

modélisation

p292:71

p294:86

p296:95

algo

p269: TP

p294:85

III) VARIATIONS PAR ENCADREMENTS SUCCESSIFS

Exemple:

Étudier les variations sur] $-\infty$; 1] de $f: x \mapsto \frac{1}{2}(x-1)^4$

Rédaction:

Pour tous x_1, x_2 tels que $x_1 < x_2 \le 1$ on a $x_1 - 1 < x_2 - 1 \le 0$

la fonction carrée est strictement décroissante sur IR-

donc
$$(x_1-1)^2 > (x_2-1)^2 \ge 0$$

la fonction carrée est strictement croissante sur IR+

donc
$$(x_1-1)^4 > (x_2-1)^4 \ge 0$$

donc $\frac{1}{2}(x_1-1)^4 > \frac{1}{2}(x_2-1)^4 \ge 0$
donc $f(x_1) > f(x_2)$

donc f est strictement décroissante sur $]-\infty$; 1]

En essayant d'utiliser les 2 méthodes d'étude des variations vues cette année (étude du signe de $f(x_1) - f(x_2)$ et encadrements successifs), déterminer les variations des fonctions suivantes :

f définie sur
$$\mathbb{R}^-$$
 par $x \mapsto \frac{1}{x^2 + 1}$
g définie sur \mathbb{R}^+ par $x \mapsto \frac{x}{x + 1}$

Remarque:

• Si x « apparaît plusieurs fois » dans l'écriture de f(x), soit on transforme l'écriture de f(x) pour pouvoir utiliser cette nouvelle méthode, soit on étudie le signe de $f(x_1) - f(x_2)$.