Lesson 9

Digital Logic

Junying Chen

Chapter 3 :: Topics

- Introduction
- Latches and Flip-Flops
- Synchronous Logic Design
- Finite State Machines
- Timing of Sequential Logic
- Parallelism

Introduction

- Outputs of sequential logic depend on current and prior input values – it has memory.
- Some definitions:
 - State: all the information about a circuit necessary to explain its future behavior
 - Latches and flip-flops: state elements that store one bit of state
 - Synchronous sequential circuits: combinational logic followed by a bank of flip-flops

Sequential Circuits

- Give sequence to events
- Have memory (short-term)
- Use feedback from output to input to store information

State Elements

- The state of a circuit influences its future behavior
- State elements store state
 - Bistable circuit
 - SR Latch
 - D Latch
 - D Flip-flop

Bistable Circuit

- Fundamental building block of other state elements
- Two outputs: Q, \overline{Q}
- No inputs

Bistable Circuit Analysis

Consider the two possible cases:

$$-Q = 0$$
:
then $\overline{Q} = 1$, $Q = 0$ (consistent)

$$-Q = 1$$
:
then $Q = 0$, $Q = 1$ (consistent)

- Stores 1 bit of state in the state variable, Q (or \overline{Q})
- But there are no inputs to control the state

SR (Set/Reset) Latch

SR Latch

• Consider the four possible cases:

$$-S = 1, R = 0$$

$$-S = 0, R = 1$$

$$-S = 0, R = 0$$

$$-S = 1, R = 1$$

SR Latch Analysis

$$-S = 1, R = 0$$
:
then $Q = 1$ and $\overline{Q} = 0$

$$-S = 0, R = 1$$
:
then $Q = 0$ and $\overline{Q} = 1$

DENTIA

SR Latch Analysis

$$-S = 1$$
, $R = 0$:
then $Q = 1$ and $\overline{Q} = 0$
Set the output

$$-S = 0$$
, $R = 1$:
then $Q = 0$ and $\overline{Q} = 1$
 $Reset$ the output

SR Latch Analysis

$$-S = 0$$
, $R = 0$:
then $Q = Q_{prev}$

$$Q_{prev} = 0$$

$$Q_{prev} = 1$$

$$-S = 1, R = 1$$
:
then $Q = 0, \bar{Q} = 0$

SR Latch Analysis

$$-S = 0, R = 0$$
:
then $Q = Q_{prev}$

Memory!

$$Q_{prev} = 0$$

$$Q_{prev} = 1$$

$$-S = 1, R = 1$$
:
then $Q = 0, \overline{Q} = 0$
Invalid State

$$\overline{Q} \neq \text{NOT } Q$$

SR Latch Symbol

- SR stands for Set/Reset Latch
 - Stores one bit of state (Q)
- Control what value is being stored with *S*, *R* inputs
 - **−Set:** Make the output 1

$$(S = 1, R = 0, Q = 1)$$

– Reset: Make the output 0

$$(S = 0, R = 1, Q = 0)$$

SR Latch Symbol

• Must do something to avoid invalid state (when S = R = 1)

D Latch

- Two inputs: *CLK*, *D*
 - CLK: controls when the output changes
 - -D (the data input): controls what the output changes to
- Function
 - When CLK = 1,D passes through to Q (transparent)
 - When CLK = 0,Q holds its previous value (opaque)
- Avoids invalid case when

D Latch Internal Circuit

CLK	D	D	S	R	Q	Q
0	X					
1	0					
1	1					

D Latch Internal Circuit

CLK	D	D	S	R	Q	Q
0	X	X	0	0	Q_{pre}	$\overline{\mathcal{Q}_{prev}}$
1	0	1	0	1	0	1
1	1	0	1	0	1	0

CENTIA

D Flip-Flop

- Inputs: CLK, D
- Function
 - Samples D on rising edge of CLK
 - When *CLK* rises from 0 to 1, *D* passes through to *Q*
 - Otherwise, Q holds its previous value
 - Q changes only on rising edge of CLK
- Called edge-triggered
- Activated on the clock edge

D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
 - L1 is transparent
 - L2 is opaque
 - D passes through to N1
- When CLK = 1
 - L2 is transparent
 - L1 is opaque
 - − N1 passes through to *Q*
- Thus, on the edge of the clock (when *CLK* rises from $0\rightarrow 1$)
 - D passes through to Q

D

D Latch vs. D Flip-Flop

CLK

Q (latch)

Q (flop)

D Latch vs. D Flip-Flop

Registers

Enabled Flip-Flops

- Inputs: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored
- Function
 - **E**N = 1: D passes through to Q on the clock edge
 - -EN = 0: the flip-flop retains its previous state

Internal Circuit

Resettable Flip-Flops

- Inputs: CLK, D, Reset
- Function:
 - **Reset** = 1: Q is forced to 0
 - **Reset** = **0**: flip-flop behaves as ordinary D flip-flop

Symbols

Resettable Flip-Flops

- Two types:
- Synchronous: resets at the clock edge only
- Asynchronous: resets immediately when Reset is asserted
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop?

Resettable Flip-Flops

- Two types:
- Synchronous: resets at the clock edge only
- Asynchronous: resets immediately when *Reset* is asserted
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop?

Internal Circuit

Settable Flip-Flops

Inputs: CLK, D, Set

Function:

- **Set** = **1**: **Q** is set to 1
- **Set** = **0**: the flip-flop behaves as ordinary D flip-flop

Symbols

Sequential Logic

- Sequential circuits: all circuits that aren't combinational
- A problematic circuit:

Sequential Logic

- Sequential circuits: all circuits that aren't combinational
- A problematic circuit:

- No inputs and 1-3 outputs
- Astable circuit, oscillates
- Period depends on inverter delay
- It has a *cyclic path*: output fed back to input

