Cuerpo Rígido: ángulos y velocidades de Euler

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

23 de abril de 2025

Agenda

- Definiciones
- Desplazamiento general del cuerpo rígido
- Velocidades en un cuerpo rígido
- Precesión, nutación y rotación
- \bigcirc Matrices de Rotación y el grupo $\mathbf{O}(n)$
- o Transformaciones entre el sistema Centro de Masa y Laboratorio
 - Rotaciones de Euler
 - Matrices de Euler
- $m{O}$ Velocidad $m{\Omega}$, ángulos y velocidades de Euler
 - ullet Velocidades Angulares Ω y $\tilde{\Omega}$
 - Productos escalares
 - Vectores unitarios
- Recapitulando
- Para la discusión

Definiciones

• Un cuerpo rígido es un sistema de partículas cuyas distancias relativas son fijas

Definiciones

- Un cuerpo rígido es un sistema de partículas cuyas distancias relativas son fijas
- Su movimiento se describe en términos de la posición de su centro de masa y de la orientación relativa del cuerpo en el espacio respecto al centro de masa.

Definiciones

- Un cuerpo rígido es un sistema de partículas cuyas distancias relativas son fijas
- Su movimiento se describe en términos de la posición de su centro de masa y de la orientación relativa del cuerpo en el espacio respecto al centro de masa.

- Esto requiere de dos sistemas de coordenadas:
 - Un sistema inercial o de laboratorio, denotado por (x, y, z) y con origen en un punto fijo O
 - Un sistema en movimiento, fijo en el cuerpo, con origen en el centro de masa (CM), identificado por (x_1, x_2, x_3)

- Un desplazamiento general del cuerpo rígido se representa como la suma de dos movimientos:
 - Translación del centro de masa, sin cambiar la orientación relativa entre (x, y, z) y (x_1, x_2, x_3) .

- Un desplazamiento general del cuerpo rígido se representa como la suma de dos movimientos:
 - Translación del centro de masa, sin cambiar la orientación relativa entre (x, y, z) y (x_1, x_2, x_3) .
 - Rotación de las coordenadas (x_1, x_2, x_3) alrededor de un eje que pasa por el centro de masa.
- La posición $\bf R$ de un punto P del cuerpo rígido con respecto al sistema de referencia del laboratorio (x,y,z) es $\bf R=\bf R_{\rm cm}+\bf r$

- Un desplazamiento general del cuerpo rígido se representa como la suma de dos movimientos:
 - Translación del centro de masa, sin cambiar la orientación relativa entre (x, y, z) y (x_1, x_2, x_3) .
 - Rotación de las coordenadas (x_1, x_2, x_3) alrededor de un eje que pasa por el centro de masa.
- La posición $\bf R$ de un punto P del cuerpo rígido con respecto al sistema de referencia del laboratorio (x,y,z) es $\bf R=\bf R_{\rm cm}+\bf r$
- ullet Un desplazamiento infinitesimal de P será $d{f R}=d{f R}_{
 m cm}+d{f r}$

- Un desplazamiento general del cuerpo rígido se representa como la suma de dos movimientos:
 - Translación del centro de masa, sin cambiar la orientación relativa entre (x, y, z) y (x_1, x_2, x_3) .
 - Rotación de las coordenadas (x_1, x_2, x_3) alrededor de un eje que pasa por el centro de masa.
- La posición $\bf R$ de un punto P del cuerpo rígido con respecto al sistema de referencia del laboratorio (x,y,z) es $\bf R=\bf R_{\rm cm}+\bf r$
- Un desplazamiento infinitesimal de P será $d\mathbf{R} = d\mathbf{R}_{\rm cm} + d\mathbf{r}$

 Un cambio infinitesimal dr sólo puede deberse a un cambio de dirección del vector r, no a un cambio de su magnitud

• Si θ el ángulo entre la dirección $d\phi$ y el vector \mathbf{r} , entonces el vector $d\mathbf{r}$ es perpendicular al plano $(d\phi, \mathbf{r})$.

- Si θ el ángulo entre la dirección $d\phi$ y el vector \mathbf{r} , entonces el vector $d\mathbf{r}$ es perpendicular al plano $(d\phi, \mathbf{r})$.
- Su magnitud es $d\mathbf{r} = (r \operatorname{sen} \theta) d\phi$ y su dirección $d\mathbf{r} = d\phi \times \mathbf{r}$

- Si θ el ángulo entre la dirección $d\phi$ y el vector \mathbf{r} , entonces el vector $d\mathbf{r}$ es perpendicular al plano $(d\phi, \mathbf{r})$.
- Su magnitud es $d\mathbf{r} = (r \operatorname{sen} \theta) d\phi$ y su dirección $d\mathbf{r} = d\phi \times \mathbf{r}$
- La velocidad de P, es $\mathbf{v}_P = \mathbf{v}_{\mathrm{cm}} + \mathbf{\Omega} \times \mathbf{r} \Leftrightarrow \frac{d\mathbf{R}}{dt} = \frac{d\mathbf{R}_{\mathrm{cm}}}{dt} + \frac{d\phi}{dt} \times \mathbf{r}$

- Si θ el ángulo entre la dirección $d\phi$ y el vector \mathbf{r} , entonces el vector $d\mathbf{r}$ es perpendicular al plano $(d\phi, \mathbf{r})$.
- Su magnitud es $d\mathbf{r} = (\mathbf{r} \operatorname{sen} \theta) d\phi$ y su dirección $d\mathbf{r} = d\phi \times \mathbf{r}$
- La velocidad de P, es $\mathbf{v}_P = \mathbf{v}_{\mathrm{cm}} + \mathbf{\Omega} \times \mathbf{r} \Leftrightarrow \frac{d\mathbf{R}}{dt} = \frac{d\mathbf{R}_{\mathrm{cm}}}{dt} + \frac{d\phi}{dt} \times \mathbf{r}$

• $\mathbf{v}_P = \frac{d\mathbf{R}}{dt}$: velocidad de P en el laboratorio (x,y,z), $\mathbf{v}_{\rm cm} = \frac{d\mathbf{R}_{\rm cm}}{dt}$ velocidad de traslación del centro de masa en (x,y,z), $\Omega = \frac{d\phi}{dt}$: velocidad angular instantánea de rotación.

- Si θ el ángulo entre la dirección $d\phi$ y el vector \mathbf{r} , entonces el vector $d\mathbf{r}$ es perpendicular al plano $(d\phi, \mathbf{r})$.
- Su magnitud es $d\mathbf{r} = (\mathbf{r} \operatorname{sen} \theta) d\phi$ y su dirección $d\mathbf{r} = d\phi \times \mathbf{r}$
- La velocidad de P, es $\mathbf{v}_P = \mathbf{v}_{\mathrm{cm}} + \mathbf{\Omega} \times \mathbf{r} \Leftrightarrow \frac{d\mathbf{R}}{dt} = \frac{d\mathbf{R}_{\mathrm{cm}}}{dt} + \frac{d\phi}{dt} \times \mathbf{r}$

- $\mathbf{v}_P = \frac{d\mathbf{R}}{dt}$: velocidad de P en el laboratorio (x, y, z), $\mathbf{v}_{\rm cm} = \frac{d\mathbf{R}_{\rm cm}}{dt}$ velocidad de traslación del centro de masa en (x, y, z), $\Omega = \frac{d\phi}{dt}$: velocidad angular instantánea de rotación.
- ullet La dirección de la velocidad angular instantánea $oldsymbol{\Omega}$ es la misma que la del vector $d\phi$

Precesión, nutación y rotación

- Distinguiremos tres movimientos en un cuerpo rígido
 - precesión: rotación alrededor de un eje fijo en el laboratorio,

Precesión, nutación y rotación

- Distinguiremos tres movimientos en un cuerpo rígido
 - precesión: rotación alrededor de un eje fijo en el laboratorio,
 - nutación: inclinación con respecto al eje fijo y

- Angulo Euler de precesión, $\phi \in [0, 2\pi]$: ángulo de rotación con respecto al eje z, sobre el plano (x, y),
 - Angulo Euler de nutación, $\theta \in [0, \pi]$: ángulo de rotación con respecto a la línea nodal N, medido desde z hasta x_3 .

Precesión, nutación y rotación

- Distinguiremos tres movimientos en un cuerpo rígido
 - precesión: rotación alrededor de un eje fijo en el laboratorio,
 - nutación: inclinación con respecto al eje fijo y
 - rotación: rotación del cuerpo sobre sí mismo.

- Angulo Euler de precesión, $\phi \in [0, 2\pi]$: ángulo de rotación con respecto al eje z, sobre el plano (x, y),
 - Angulo Euler de nutación, $\theta \in [0, \pi]$: ángulo de rotación con respecto a la línea nodal N, medido desde z hasta x_3 .
 - Angulo Euler de rotación, $\psi \in [0, 2\pi]$: ángulo de rotación con respecto al eje x_3 , sobre el plano (x_1, x_2) , medido desde N a x_1 .

Matrices de Rotación y el grupo O(n)

En general

$$\begin{vmatrix} x_1' = x_1 \cos \phi + x_2 \sin \phi \\ x_2' = -x_1 \sin \phi + x_2 \cos \phi \end{vmatrix} \Leftrightarrow \begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Matrices de Rotación y el grupo O(n)

- En general
 - $\begin{aligned} x_1' &= x_1 \cos \phi + x_2 \sin \phi \\ x_2' &= -x_1 \sin \phi + x_2 \cos \phi \end{aligned} \Leftrightarrow \begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
- Es decir, $\mathbf{r}' = \mathbb{A}_{\phi}\mathbf{r}$, con \mathbb{A}_{ϕ} operadores ortogonales (Unitarios). $\mathbb{A}_{-\phi} = \mathbb{A}_{\phi}^{T}$ y $\mathbb{A}_{\phi}\mathbb{A}_{\phi}^{T} = \mathbb{I}$. Además $\mathbb{A}_{\phi}\mathbb{B}_{\gamma} = \mathbb{C}_{\phi\gamma}$, con $\mathbb{C}_{\phi\gamma}^{T} = \mathbb{C}_{\phi\gamma}^{-1}$

Matrices de Rotación y el grupo O(n)

En general

$$\begin{aligned} x_1' &= x_1 \cos \phi + x_2 \sin \phi \\ x_2' &= -x_1 \sin \phi + x_2 \cos \phi \end{aligned} \Leftrightarrow \begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

- Es decir, $\mathbf{r}' = \mathbb{A}_{\phi}\mathbf{r}$, con \mathbb{A}_{ϕ} operadores ortogonales (Unitarios). $\mathbb{A}_{-\phi} = \mathbb{A}_{\phi}^{\mathcal{T}}$ y $\mathbb{A}_{\phi}\mathbb{A}_{\phi}^{\mathcal{T}} = \mathbb{I}$. Además $\mathbb{A}_{\phi}\mathbb{B}_{\gamma} = \mathbb{C}_{\phi\gamma}$, con $\mathbb{C}_{\phi\gamma}^{\mathcal{T}} = \mathbb{C}_{\phi\gamma}^{-1}$
- Los operadores ortogonales, \mathbb{A}_{ϕ} , forman el grupo $\mathbf{O}(n)$
 - Cerrado \mathbb{A}_ϕ ortogonal y \mathbb{B}_γ ortogonal, $\mathbb{A}_\phi \mathbb{B}_\gamma = \mathbb{C}_{\phi\gamma}$ ortogonal
 - Inverso $\forall \mathbb{A}_{\phi} \quad \exists ! \ \mathbb{A}_{-\phi} \ni \mathbb{A}_{\phi} \mathbb{A}_{-\phi} \equiv \mathbb{A}_{\phi} \mathbb{A}_{\phi}^{-1} \equiv \mathbb{A}_{\phi} \mathbb{A}_{\phi}^{T} = \mathbb{I}$
 - Neutro $\exists ! \ \mathbb{I} \ \ni \mathbb{A}_{\phi} \mathbb{I} = \mathbb{I} \mathbb{A}_{\phi} = \mathbb{A}_{\phi}$
 - Asociativa $(\mathbb{A}_{\phi}\mathbb{B}_{\gamma})\mathbb{D}_{\theta} = \mathbb{A}_{\phi}(\mathbb{B}_{\gamma}\mathbb{D}_{\theta})$

Del sistema Centro de Masa al Laboratorio 1/2

• La transformación entre el sistema Centro de Masa y Laboratorio se construye concatenando tres transformaciones lineales independiente, cada una siguiendo un ángulo de Euler (ϕ, θ, ψ) .

Del sistema Centro de Masa al Laboratorio 1/2

- La transformación entre el sistema Centro de Masa y Laboratorio se construye concatenando tres transformaciones lineales independiente, cada una siguiendo un ángulo de Euler (ϕ, θ, ψ) .
- Si r^j son las componentes del vector posición de un punto en respecto sistema laboratorio, S_{xyz} y \tilde{r}^i las de un punto respecto al sistema centro de masa, $\tilde{S}_{x_1x_2x_3}$, tendremos un par de transformaciones tales que $\tilde{r}^i = \tilde{U}^i_i \, r^j \, y \, r^j = U^j_i \, \tilde{r}^i$. Además, $\tilde{U}^i_k \, U^k_i = \delta^i_i \Leftrightarrow \tilde{U}^i_k = (U^i_k)^{-1}$

Del sistema Centro de Masa al Laboratorio 1/2

- La transformación entre el sistema Centro de Masa y Laboratorio se construye concatenando tres transformaciones lineales independiente, cada una siguiendo un ángulo de Euler (ϕ, θ, ψ) .
- Si r^j son las componentes del vector posición de un punto en respecto sistema laboratorio, S_{xyz} y \tilde{r}^i las de un punto respecto al sistema centro de masa, $\tilde{S}_{x_1x_2x_3}$, tendremos un par de transformaciones tales que $\tilde{r}^i = \tilde{U}^i_j \, r^j \, y \, r^j = U^j_i \, \tilde{r}^i$. Además, $\tilde{U}^i_k \, U^k_j = \delta^i_j \Leftrightarrow \tilde{U}^i_k = (U^i_k)^{-1}$
- Rotamos tres veces \tilde{S}_{x_1,x_2,x_3} respecto a $S_{x,y,z}$.

$$\begin{split} \tilde{U}^i_j(\phi) &= \left(\begin{array}{cccc} \cos\phi & & \sin\phi & 0 \\ -\sin\phi & & \cos\phi & 0 \\ 0 & 0 & 1 \end{array} \right), \ \tilde{U}^i_j(\theta) = \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & \cos\theta & & \sin\theta \\ 0 & -\sin\theta & & \cos\theta \end{array} \right) \\ \tilde{U}^i_j(\psi) &= \left(\begin{array}{cccc} \cos\psi & & \sin\psi & 0 \\ -\sin\psi & & \cos\psi & 0 \\ 0 & & & 1 \end{array} \right) \ . \end{split}$$

• En general componemos las tres rotaciones como $\tilde{\mathbb{U}}_{\psi\theta\phi} = \tilde{\mathbb{U}}_{\psi}\tilde{\mathbb{U}}_{\theta}\tilde{\mathbb{U}}_{\phi}$

$$\tilde{\mathbb{U}}_{\psi\theta\phi} = \begin{pmatrix} \cos\psi\cos\phi - \sin\psi\cos\theta & \cos\psi\sin\phi & \cos\psi\cos\phi & \cos\phi & \sin\psi\sin\theta \\ -\sin\psi\cos\phi - \cos\psi\cos\theta & \sin\phi & -\sin\psi\sin\phi + \cos\psi\cos\phi & \cos\phi & \cos\psi\sin\theta \\ -\sin\theta\sin\phi & -\sin\psi\cos\phi & -\sin\theta\cos\phi & \cos\phi \end{pmatrix}$$

ullet En general componemos las tres rotaciones como $\tilde{\mathbb{U}}_{\psi\theta\phi}=\tilde{\mathbb{U}}_\psi\tilde{\mathbb{U}}_\theta\tilde{\mathbb{U}}_\phi$

$$\tilde{\mathbb{U}}_{\psi\theta\phi} = \begin{pmatrix} \cos\psi\cos\phi - \sin\psi\cos\theta\sin\phi & \cos\psi\sin\phi - \sin\psi\cos\theta\cos\phi & \sin\psi\sin\phi \\ -\sin\psi\cos\phi - \cos\psi\cos\theta\sin\phi & -\sin\psi\sin\phi + \cos\psi\cos\theta\cos\phi & \cos\psi\sin\theta \\ \sin\theta\sin\phi & -\sin\psi\sin\phi - \sin\theta\cos\phi & \cos\phi & \cos\psi\sin\theta \end{pmatrix}$$

• Como tenemos $\tilde{\mathbb{U}}_{\psi\theta\phi} = \tilde{\mathbb{U}}_{\psi}\tilde{\mathbb{U}}_{\theta}\tilde{\mathbb{U}}_{\phi}$ también tendremos $\tilde{\mathbb{U}}_{\psi\theta\phi}^{-1} \equiv \mathbb{U}_{\phi\theta\psi} = \mathbb{U}_{-\phi}\mathbb{U}_{-\theta}\mathbb{U}_{-\psi}$.

ullet En general componemos las tres rotaciones como $ilde{\mathbb{U}}_{\psi\theta\phi}= ilde{\mathbb{U}}_{\psi} ilde{\mathbb{U}}_{\theta} ilde{\mathbb{U}}_{\phi}$

$$\tilde{\mathbb{U}}_{\psi\theta\phi} = \begin{pmatrix} \cos\psi\cos\phi - \sin\psi\cos\theta & \sin\phi & \cos\psi\sin\phi + \sin\psi\cos\theta & \cos\phi & \sin\psi\sin\theta \\ -\sin\psi\cos\phi - \cos\psi\cos\phi & -\sin\psi\sin\phi + \cos\psi\cos\theta & \cos\phi & \sin\psi\sin\theta \\ -\sin\psi\cos\phi & -\sin\psi\sin\phi + \cos\psi\cos\phi & \cos\psi\sin\theta \\ -\sin\phi\sin\phi & -\sin\phi\cos\phi & \cos\phi & \cos\phi \end{pmatrix}$$

- Como tenemos $\tilde{\mathbb{U}}_{\psi\theta\phi} = \tilde{\mathbb{U}}_{\psi}\tilde{\mathbb{U}}_{\theta}\tilde{\mathbb{U}}_{\phi}$ también tendremos $\tilde{\mathbb{U}}_{\psi\theta\phi}^{-1} \equiv \mathbb{U}_{\phi\theta\psi} = \mathbb{U}_{-\phi}\mathbb{U}_{-\theta}\mathbb{U}_{-\psi}$.
- $\bullet \ \ \mathsf{Por} \ \mathsf{lo} \ \ \mathsf{tanto} \ \ \tilde{\mathbb{U}}_{-\phi} = \left(\begin{array}{ccc} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{array} \right), \ \tilde{\mathbb{U}}_{-\theta} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{array} \right)$

$$\tilde{\mathbb{U}}_{-\psi} = \left(\begin{array}{ccc} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{array} \right) \; .$$

- En general componemos las tres rotaciones como $\tilde{\mathbb{U}}_{\psi\theta\phi} = \tilde{\mathbb{U}}_{\psi}\tilde{\mathbb{U}}_{\theta}\tilde{\mathbb{U}}_{\phi}$
 - $\tilde{\mathbb{U}}_{\psi\,\theta\,\phi} = \begin{pmatrix} \cos\psi\cos\phi \sin\psi\cos\theta & \sin\phi & \cos\psi\sin\phi + \sin\psi\cos\theta & \cos\phi & \sin\psi\sin\theta \\ -\sin\psi\cos\phi \cos\psi\cos\phi & -\sin\psi\sin\theta & -\sin\psi\cos\phi & \cos\phi & \cos\psi\sin\theta \\ \sin\theta\sin\phi & -\sin\psi\cos\phi & -\sin\psi\cos\phi & \cos\phi & \cos\phi \end{pmatrix}$
- Como tenemos $\tilde{\mathbb{U}}_{\psi\theta\phi} = \tilde{\mathbb{U}}_{\psi}\tilde{\mathbb{U}}_{\theta}\tilde{\mathbb{U}}_{\phi}$ también tendremos $\tilde{\mathbb{U}}_{\psi\theta\phi}^{-1} \equiv \mathbb{U}_{\phi\theta\psi} = \mathbb{U}_{-\phi}\mathbb{U}_{-\theta}\mathbb{U}_{-\psi}$.
- $\begin{array}{c} \bullet \hspace{0.5cm} \text{Por lo tanto} \hspace{0.1cm} \tilde{\mathbb{U}}_{-\phi} = \left(\begin{array}{ccc} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{array} \right), \\ \tilde{\mathbb{U}}_{-\theta} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{array} \right) \\ \tilde{\mathbb{U}}_{-\psi} = \left(\begin{array}{ccc} \cos\psi & -\sin\psi & 0 \\ \sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{array} \right). \\ \end{array}$
- Finalmente tenemos que las matricies de rotación son matrices ortogonales. Esto es que la traspuesta es la inversa $\tilde{\mathbb{U}}_{\psi\theta\phi}^{-1}=\tilde{\mathbb{U}}_{\psi\theta\phi}^T$ y eso se ve claramente en las matrices arriba. Además la inversa de una multiplicación de matrices invierte el orden.

• En general componemos las tres rotaciones como $\tilde{\mathbb{U}}_{\psi\theta\phi} = \tilde{\mathbb{U}}_{\psi}\tilde{\mathbb{U}}_{\theta}\tilde{\mathbb{U}}_{\phi}$

$$\tilde{\mathbb{U}}_{\psi\theta\phi} = \begin{pmatrix} \cos\psi\cos\phi - \sin\psi\cos\theta & \sin\phi & \cos\psi\sin\theta & \cos\psi\sin\theta \\ -\sin\psi\cos\phi - \cos\psi\cos\theta & \sin\phi & -\sin\psi\cos\theta\cos\phi & \cos\psi\sin\theta \\ -\sin\theta\sin\phi & -\sin\psi\sin\phi & -\sin\theta\cos\phi & \cos\psi\sin\theta \end{pmatrix}$$

- Como tenemos $\tilde{\mathbb{U}}_{\psi\theta\phi} = \tilde{\mathbb{U}}_{\psi}\tilde{\mathbb{U}}_{\theta}\tilde{\mathbb{U}}_{\phi}$ también tendremos $\tilde{\mathbb{U}}_{\psi\theta\phi}^{-1} \equiv \mathbb{U}_{\phi\theta\psi} = \mathbb{U}_{-\phi}\mathbb{U}_{-\theta}\mathbb{U}_{-\psi}$.
- $\begin{array}{c} \bullet \hspace{0.5cm} \text{Por lo tanto} \hspace{0.1cm} \tilde{\mathbb{U}}_{-\phi} = \left(\begin{array}{ccc} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{array} \right), \\ \tilde{\mathbb{U}}_{-\theta} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{array} \right) \\ \tilde{\mathbb{U}}_{-\psi} = \left(\begin{array}{ccc} \cos\psi & -\sin\psi & 0 \\ \sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{array} \right). \\ \end{array}$
- Finalmente tenemos que las matricies de rotación son matrices ortogonales. Esto es que la traspuesta es la inversa $\tilde{\mathbb{U}}_{\psi\theta\phi}^{-1}=\tilde{\mathbb{U}}_{\psi\theta\phi}^{T}$ y eso se ve claramente en las matrices arriba. Además la inversa de una multiplicación de matrices invierte el orden.

$$\bullet \quad \tilde{\mathbb{U}}^{-1} = \tilde{\mathbb{U}}^T = \mathbb{U} = \begin{pmatrix} \cos \psi \cos \phi - \sin \psi \cos \theta \sin \phi & -\sin \psi \cos \phi - \cos \psi \cos \theta \sin \phi & \sin \theta \sin \phi \\ \cos \psi \sin \phi + \sin \psi \cos \theta \cos \phi & -\sin \psi \sin \phi + \cos \psi \cos \theta \cos \phi & -\sin \theta \cos \phi \\ \sin \psi \sin \theta & \cos \psi \sin \theta & \cos \phi & \cos \theta \end{pmatrix}$$

Componentes y velocidades angulares

En general $\mathbf{\Omega} = \dot{\theta}\hat{\dot{\theta}} + \dot{\phi}\hat{\dot{\phi}} + \dot{\psi}\hat{\dot{\psi}}$, donde $\hat{\dot{\theta}}$, $\hat{\dot{\phi}}$ y $\hat{\psi}$ son vectores unitarios en las direcciones de esas velocidades.

- Las velocidades angulares $\dot{\phi}, \dot{\theta}$ y $\dot{\psi}$ pueden expresarse en términos de sus proyecciones sobre los ejes (x_1, x_2, x_3) del sistema CM como
 - $\dot{\psi}_1 = 0$, $\dot{\psi}_2 = 0$ y $\dot{\psi}_3 = \dot{\psi}$;
 - $\dot{\theta}_1 = \dot{\theta}\cos\psi$, $\dot{\theta}_2 = -\dot{\theta}\sin\psi$ y $\dot{\theta}_3 = 0$, ya que $\dot{\theta}$ es perpendicular a x_3
 - $\dot{\phi}_1 = (\dot{\phi} \operatorname{sen} \theta) \operatorname{sen} \psi$, $\dot{\phi}_2 = (\dot{\phi} \operatorname{sen} \theta) \cos \psi$ y $\dot{\phi}_3 = \dot{\phi} \cos \theta$

- Las velocidades angulares $\dot{\phi}, \dot{\theta}$ y $\dot{\psi}$ pueden expresarse en términos de sus proyecciones sobre los ejes (x_1, x_2, x_3) del sistema CM como
 - $\dot{\psi}_1 = 0$, $\dot{\psi}_2 = 0$ y $\dot{\psi}_3 = \dot{\psi}$;
 - $\dot{\theta}_1 = \dot{\theta}\cos\psi$, $\dot{\theta}_2 = -\dot{\theta}\sin\psi$ y $\dot{\theta}_3 = 0$, ya que $\dot{\theta}$ es perpendicular a x_3
 - $\dot{\phi}_1 = (\dot{\phi} \operatorname{sen} \theta) \operatorname{sen} \psi$, $\dot{\phi}_2 = (\dot{\phi} \operatorname{sen} \theta) \cos \psi$ y $\dot{\phi}_3 = \dot{\phi} \cos \theta$
- ullet La velocidad angular instantánea Ω es una combinación de rotaciones asociadas a los tres ángulos de Euler.

- Las velocidades angulares $\dot{\phi}, \dot{\theta}$ y $\dot{\psi}$ pueden expresarse en términos de sus proyecciones sobre los ejes (x_1, x_2, x_3) del sistema CM como
 - $\dot{\psi}_1 = 0$, $\dot{\psi}_2 = 0$ y $\dot{\psi}_3 = \dot{\psi}$;
 - $\dot{\theta}_1 = \dot{\theta}\cos\psi$, $\dot{\theta}_2 = -\dot{\theta}\sin\psi$ y $\dot{\theta}_3 = 0$, ya que $\dot{\theta}$ es perpendicular a x_3
 - $\dot{\phi}_1 = (\dot{\phi} \operatorname{sen} \theta) \operatorname{sen} \psi$, $\dot{\phi}_2 = (\dot{\phi} \operatorname{sen} \theta) \cos \psi$ y $\dot{\phi}_3 = \dot{\phi} \cos \theta$
- ullet La velocidad angular instantánea Ω es una combinación de rotaciones asociadas a los tres ángulos de Euler.
- Las componentes del vector $\mathbf{\Omega} = \left(\tilde{\Omega}_1, \tilde{\Omega}_2, \tilde{\Omega}_3\right)$ se expresan en términos de los ángulos de (θ, ϕ, ψ) y de sus velocidades angulares $(\dot{\theta}, \dot{\phi}, \dot{\psi})$.

- Las velocidades angulares $\dot{\phi}, \dot{\theta}$ y $\dot{\psi}$ pueden expresarse en términos de sus proyecciones sobre los ejes (x_1, x_2, x_3) del sistema CM como
 - $\dot{\psi}_1 = 0$, $\dot{\psi}_2 = 0$ y $\dot{\psi}_3 = \dot{\psi}$;
 - $\dot{\theta}_1 = \dot{\theta}\cos\psi$, $\dot{\theta}_2 = -\dot{\theta}\sin\psi$ y $\dot{\theta}_3 = 0$, ya que $\dot{\theta}$ es perpendicular a x_3
 - $\dot{\phi}_1 = (\dot{\phi} \operatorname{sen} \theta) \operatorname{sen} \psi$, $\dot{\phi}_2 = (\dot{\phi} \operatorname{sen} \theta) \cos \psi$ y $\dot{\phi}_3 = \dot{\phi} \cos \theta$
- La velocidad angular instantánea Ω es una combinación de rotaciones asociadas a los tres ángulos de Euler.
- Las componentes del vector $\mathbf{\Omega} = \left(\tilde{\Omega}_1, \tilde{\Omega}_2, \tilde{\Omega}_3\right)$ se expresan en términos de los ángulos de (θ, ϕ, ψ) y de sus velocidades angulares $(\dot{\theta}, \dot{\phi}, \dot{\psi})$.
- Para cada componente $\tilde{\Omega}_i$, respecto al sistema centro de masa, tenemos $\tilde{\Omega}_i = \dot{\theta}_i + \dot{\phi}_i + \dot{\psi}_i, \quad i=1,2,3.$

$$\tilde{\Omega}_1 = \dot{\phi} \operatorname{sen} \, \theta \operatorname{sen} \, \psi + \dot{\theta} \cos \psi$$

$$ilde{\Omega}_2 = \dot{\phi} \operatorname{sen} \, heta \cos \psi - \dot{ heta} \operatorname{sen} \, \psi$$

$$\tilde{\Omega}_3 = \dot{\psi} + \dot{\phi}\cos\theta$$

Velocidades Angulares $oldsymbol{\Omega}$ y $oldsymbol{ ilde{\Omega}}$

• Las matrices de Euler, $\tilde{\mathbb{U}}_{\psi\theta\phi}$, nos permiten calcular las componentes de la velocidad angular respecto al sistema laboratorio $\Omega^1, \Omega^2, \Omega^3$ a partir de las componentes respecto al sistema CM $\tilde{\Omega}^1, \tilde{\Omega}^2, \tilde{\Omega}^3$.

Velocidades Angulares $oldsymbol{\Omega}$ y $oldsymbol{ ilde{\Omega}}$

• Las matrices de Euler, $\tilde{\mathbb{U}}_{\psi\theta\phi}$, nos permiten calcular las componentes de la velocidad angular respecto al sistema laboratorio $\Omega^1,\Omega^2,\Omega^3$ a partir de las componentes respecto al sistema CM $\tilde{\Omega}^1,\tilde{\Omega}^2,\tilde{\Omega}^3$.

Velocidades Angulares $oldsymbol{\Omega}$ y $oldsymbol{ ilde{\Omega}}$

• Las matrices de Euler, $\tilde{\mathbb{U}}_{\psi\theta\phi}$, nos permiten calcular las componentes de la velocidad angular respecto al sistema laboratorio $\Omega^1,\Omega^2,\Omega^3$ a partir de las componentes respecto al sistema CM $\tilde{\Omega}^1,\tilde{\Omega}^2,\tilde{\Omega}^3$.

• Dado que para el centro de masa

$$\tilde{\Omega}^1 = \dot{\phi} \operatorname{sen} \, \theta \operatorname{sen} \, \psi + \dot{\theta} \cos \psi$$

$$\tilde{\Omega}^2 = \dot{\phi} \operatorname{sen} \, \theta \cos \psi - \dot{\theta} \operatorname{sen} \, \psi$$

$$\tilde{\Omega}^3 = \dot{\psi} + \dot{\phi}\cos\theta$$

Velocidades Angulares $oldsymbol{\Omega}$ y $ilde{oldsymbol{\Omega}}$

• Las matrices de Euler, $\tilde{\mathbb{U}}_{\psi\theta\phi}$, nos permiten calcular las componentes de la velocidad angular respecto al sistema laboratorio $\Omega^1,\Omega^2,\Omega^3$ a partir de las componentes respecto al sistema CM $\tilde{\Omega}^1,\tilde{\Omega}^2,\tilde{\Omega}^3$.

• Dado que para el centro de masa

$$\tilde{\Omega}^1 = \dot{\phi} \operatorname{sen} \, \theta \operatorname{sen} \, \psi + \dot{\theta} \cos \psi$$

$$\tilde{\Omega}^2 = \dot{\phi} \operatorname{sen} \, \theta \cos \psi - \dot{\theta} \operatorname{sen} \, \psi$$

$$\tilde{\Omega}^3 = \dot{\psi} + \dot{\phi}\cos\theta$$

Tendremos para el sistema laboratorio

$$\Omega^1 = \dot{ heta}\cos\phi + \dot{\psi}\sin\phi\sin\theta$$

$$\Omega^2 = \dot{ heta} \mathop{
m sen} \phi - \dot{\psi} \mathop{
m cos} \phi \mathop{
m sen} heta$$

$$\Omega^3 = \dot{\phi} + \dot{\psi}\cos\theta$$

• En general tenemos que $\mathbf{\Omega} = \Omega^1 \hat{\mathbf{x}} + \Omega^2 \hat{\mathbf{y}} + \Omega^3 \hat{\mathbf{z}} = \tilde{\Omega}^1 \hat{\mathbf{x}}_1 + \tilde{\Omega}^2 \hat{\mathbf{x}}_2 + \tilde{\Omega}^3 \hat{\mathbf{x}}_3$

- En general tenemos que $\mathbf{\Omega} = \Omega^1 \hat{\mathbf{x}} + \Omega^2 \hat{\mathbf{y}} + \Omega^3 \hat{\mathbf{z}} = \tilde{\Omega}^1 \hat{\mathbf{x}}_1 + \tilde{\Omega}^2 \hat{\mathbf{x}}_2 + \tilde{\Omega}^3 \hat{\mathbf{x}}_3$
- Por lo tanto

$$\begin{split} &\Omega^1 = \boldsymbol{\hat{x}} \cdot \boldsymbol{\hat{x}_1} \tilde{\Omega}^1 + \boldsymbol{\hat{x}} \cdot \boldsymbol{\hat{x}_2} \tilde{\Omega}^2 + \boldsymbol{\hat{x}} \cdot \boldsymbol{\hat{x}_3} \tilde{\Omega}^3 \\ &\Omega^2 = \boldsymbol{\hat{y}} \cdot \boldsymbol{\hat{x}_1} \tilde{\Omega}^1 + \boldsymbol{\hat{y}} \cdot \boldsymbol{\hat{x}_2} \tilde{\Omega}^2 + \boldsymbol{\hat{y}} \cdot \boldsymbol{\hat{x}_3} \tilde{\Omega}^3 \\ &\Omega^3 = \boldsymbol{\hat{z}} \cdot \boldsymbol{\hat{x}_1} \tilde{\Omega}^1 + \boldsymbol{\hat{z}} \cdot \boldsymbol{\hat{x}_2} \tilde{\Omega}^2 + \boldsymbol{\hat{z}} \cdot \boldsymbol{\hat{x}_3} \tilde{\Omega}^3 \end{split}$$

- En general tenemos que $\mathbf{\Omega} = \Omega^1 \hat{\mathbf{x}} + \Omega^2 \hat{\mathbf{y}} + \Omega^3 \hat{\mathbf{z}} = \tilde{\Omega}^1 \hat{\mathbf{x}}_1 + \tilde{\Omega}^2 \hat{\mathbf{x}}_2 + \tilde{\Omega}^3 \hat{\mathbf{x}}_3$
- Por lo tanto

$$\begin{split} &\Omega^1 = \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_1 \tilde{\Omega}^1 + \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_2 \tilde{\Omega}^2 + \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_3 \tilde{\Omega}^3 \\ &\Omega^2 = \hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_1 \tilde{\Omega}^1 + \hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_2 \tilde{\Omega}^2 + \hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_3 \tilde{\Omega}^3 \\ &\Omega^3 = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_1 \tilde{\Omega}^1 + \hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_2 \tilde{\Omega}^2 + \hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_3 \tilde{\Omega}^3 \end{split}$$

$$\bullet \quad \begin{pmatrix} \Omega^1 \\ \Omega^2 \\ \Omega^3 \end{pmatrix} = \begin{pmatrix} \cos \psi \cos \phi - \sin \psi \cos \theta \sin \phi & - \sin \psi \cos \phi - \cos \psi \cos \theta \sin \phi & \sin \theta \sin \phi \\ \cos \psi \sin \phi + \sin \psi \cos \theta \cos \phi & - \sin \psi \sin \phi + \cos \psi \cos \theta \cos \phi & - \sin \theta \cos \phi \\ \sin \psi \sin \phi & \cos \psi \sin \theta & \cos \phi & \cos \phi \end{pmatrix} \begin{pmatrix} \tilde{\Omega}^1 \\ \tilde{\Omega}^2 \\ \tilde{\Omega}^3 \end{pmatrix}$$

- En general tenemos que $\mathbf{\Omega} = \Omega^1 \hat{\mathbf{x}} + \Omega^2 \hat{\mathbf{y}} + \Omega^3 \hat{\mathbf{z}} = \tilde{\Omega}^1 \hat{\mathbf{x}}_1 + \tilde{\Omega}^2 \hat{\mathbf{x}}_2 + \tilde{\Omega}^3 \hat{\mathbf{x}}_3$
- Por lo tanto

$$\begin{split} &\Omega^{1} = \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_{1} \tilde{\Omega}^{1} + \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_{2} \tilde{\Omega}^{2} + \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_{3} \tilde{\Omega}^{3} \\ &\Omega^{2} = \hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_{1} \tilde{\Omega}^{1} + \hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_{2} \tilde{\Omega}^{2} + \hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_{3} \tilde{\Omega}^{3} \\ &\Omega^{3} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_{1} \tilde{\Omega}^{1} + \hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_{2} \tilde{\Omega}^{2} + \hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_{3} \tilde{\Omega}^{3} \end{split}$$

- Identificando en la matriz tendremos

$$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_1 = \cos \psi \cos \phi - \sin \psi \cos \theta \sin \phi;$$

$$\hat{\mathbf{x}}\cdot\hat{\mathbf{x}_2}=-\sec\eta\psi\cos\phi-\cos\psi\cos\theta\sin\phi;~~\hat{\mathbf{x}}\cdot\hat{\mathbf{x}_3}=\sin\theta\sin\phi$$
 ;

$$\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_1 = \cos \psi \sin \phi + \sin \psi \cos \theta \cos \phi;$$

$$\mathbf{\hat{y}}\cdot\mathbf{\hat{x}_2} = -\sin\psi\sin\phi + \cos\psi\cos\theta\cos\phi; \quad \mathbf{\hat{y}}\cdot\mathbf{\hat{x}_3} = -\sin\theta\cos\phi;$$

$$\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_1 = \sin \psi \sin \theta$$
; $\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_2 = \cos \psi \sin \theta$; $\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_3 = \cos \theta$.

Vectores unitarios

• Más aún si $\hat{\mathbf{x}}_1 = \alpha \hat{\mathbf{x}} + \beta \hat{\mathbf{y}} + \gamma \hat{\mathbf{z}}$ y al proyectarla tendremos que $\hat{\mathbf{x}}_1 = (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_1)\hat{\mathbf{x}} + (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_1)\hat{\mathbf{y}} + (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_1)\hat{\mathbf{z}}$. Por lo tanto expresamos $\hat{\mathbf{x}}_1 = (\cos \psi \cos \phi - \sin \psi \cos \theta \sin \phi)\hat{\mathbf{x}} + (\cos \psi \sin \phi + \sin \psi \cos \theta \cos \phi)\hat{\mathbf{y}} + (\sin \psi \sin \theta)\hat{\mathbf{z}}$

Vectores unitarios

- Más aún si $\hat{\mathbf{x}}_1 = \alpha \hat{\mathbf{x}} + \beta \hat{\mathbf{y}} + \gamma \hat{\mathbf{z}}$ y al proyectarla tendremos que $\hat{\mathbf{x}}_1 = (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_1)\hat{\mathbf{x}} + (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_1)\hat{\mathbf{y}} + (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_1)\hat{\mathbf{z}}$. Por lo tanto expresamos $\hat{\mathbf{x}}_1 = (\cos \psi \cos \phi \sin \psi \cos \theta \sin \phi)\hat{\mathbf{x}} + (\cos \psi \sin \phi + \sin \psi \cos \theta \cos \phi)\hat{\mathbf{y}} + (\sin \psi \sin \theta)\hat{\mathbf{z}}$
- Del mismo modo $\hat{\mathbf{x}}_2 = (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_2)\hat{\mathbf{x}} + (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_2)\hat{\mathbf{y}} + (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_2)\hat{\mathbf{z}}$. Con lo cual $\hat{\mathbf{x}}_2 = (-\sin\psi\cos\phi \cos\psi\cos\theta\sin\phi)\hat{\mathbf{x}} + (-\sin\psi\sin\phi + \cos\psi\cos\phi)\hat{\mathbf{y}} + \cos\psi\sin\theta\hat{\mathbf{z}}$

Vectores unitarios

- Más aún si $\hat{\mathbf{x}}_1 = \alpha \hat{\mathbf{x}} + \beta \hat{\mathbf{y}} + \gamma \hat{\mathbf{z}}$ y al proyectarla tendremos que $\hat{\mathbf{x}}_1 = (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_1)\hat{\mathbf{x}} + (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_1)\hat{\mathbf{y}} + (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_1)\hat{\mathbf{z}}$. Por lo tanto expresamos $\hat{\mathbf{x}}_1 = (\cos \psi \cos \phi \sin \psi \cos \theta \sin \phi)\hat{\mathbf{x}} + (\cos \psi \sin \phi + \sin \psi \cos \theta \cos \phi)\hat{\mathbf{y}} + (\sin \psi \sin \theta)\hat{\mathbf{z}}$
- Del mismo modo $\hat{\mathbf{x}}_2 = (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_2)\hat{\mathbf{x}} + (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_2)\hat{\mathbf{y}} + (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_2)\hat{\mathbf{z}}$. Con lo cual $\hat{\mathbf{x}}_2 = (-\sin\psi\cos\phi \cos\psi\cos\theta\sin\phi)\hat{\mathbf{x}} + (-\sin\psi\sin\phi + \cos\psi\cos\phi)\hat{\mathbf{y}} + \cos\psi\sin\theta\hat{\mathbf{z}}$
- Finalmente $\hat{\mathbf{x}}_3 = (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_3)\hat{\mathbf{x}} + (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_3)\hat{\mathbf{y}} + (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_3)\hat{\mathbf{z}}$. Finalmente, $\hat{\mathbf{x}}_3 = \operatorname{sen} \theta \operatorname{sen} \phi \hat{\mathbf{x}} \operatorname{sen} \theta \cos \phi \hat{\mathbf{y}} + \cos \theta \hat{\mathbf{z}}$

• Cuerpo rígido: sistema de partículas con distancias relativas fijas.

- Cuerpo rígido: sistema de partículas con distancias relativas fijas.
- El movimiento se descompone en: Traslación centro de masa;
 Rotación alrededor del centro de masa

- Cuerpo rígido: sistema de partículas con distancias relativas fijas.
- El movimiento se descompone en: Traslación centro de masa;
 Rotación alrededor del centro de masa
- Sistemas Laboratorio/Inercial (x, y, z); Sistema del centro de masa (x_1, x_2, x_3) .

- Cuerpo rígido: sistema de partículas con distancias relativas fijas.
- El movimiento se descompone en: Traslación centro de masa;
 Rotación alrededor del centro de masa
- Sistemas Laboratorio/Inercial (x, y, z); Sistema del centro de masa (x_1, x_2, x_3) .
- Descripción de la orientación respecto al CM: Se utilizan los ángulos de Euler (ϕ, θ, ψ) :
 - ullet ϕ (precesión): rotación alrededor del eje z del Sistema Laboratorio
 - θ (nutación): inclinación del eje z al eje x_3
 - ψ (rotación): giro alrededor del eje x_3

- Cuerpo rígido: sistema de partículas con distancias relativas fijas.
- El movimiento se descompone en: Traslación centro de masa;
 Rotación alrededor del centro de masa
- Sistemas Laboratorio/Inercial (x, y, z); Sistema del centro de masa (x_1, x_2, x_3) .
- Descripción de la orientación respecto al CM: Se utilizan los ángulos de Euler (ϕ, θ, ψ) :
 - ullet ϕ (precesión): rotación alrededor del eje z del Sistema Laboratorio
 - θ (nutación): inclinación del eje z al eje x_3
 - ψ (rotación): giro alrededor del eje x_3
- Velocidad angular $oldsymbol{\Omega}$: Velocidad de un punto: $oldsymbol{v}_P = oldsymbol{v}_{CM} + oldsymbol{\Omega} imes oldsymbol{r}$

- Cuerpo rígido: sistema de partículas con distancias relativas fijas.
- El movimiento se descompone en: Traslación centro de masa;
 Rotación alrededor del centro de masa
- Sistemas Laboratorio/Inercial (x, y, z); Sistema del centro de masa (x_1, x_2, x_3) .
- Descripción de la orientación respecto al CM: Se utilizan los ángulos de Euler (ϕ, θ, ψ) :
 - ullet ϕ (precesión): rotación alrededor del eje z del Sistema Laboratorio
 - θ (nutación): inclinación del eje z al eje x_3
 - ψ (rotación): giro alrededor del eje x_3
- ullet Velocidad angular $oldsymbol{\Omega}$: Velocidad de un punto: $oldsymbol{v}_P = oldsymbol{v}_{CM} + oldsymbol{\Omega} imes oldsymbol{r}$
- Ω en el sistema CM: $\begin{cases} \tilde{\Omega}_1 = \dot{\phi} \operatorname{sen} \theta \operatorname{sen} \psi + \dot{\theta} \cos \psi \\ \tilde{\Omega}_2 = \dot{\phi} \operatorname{sen} \theta \cos \psi \dot{\theta} \operatorname{sen} \psi \\ \tilde{\Omega}_3 = \dot{\psi} + \dot{\phi} \cos \theta \end{cases}$

Recapitulando 2/2

- Transformaciones entre sistemas de coordenadas:
 - Los operadores de rotación $\tilde{\mathbb{U}}_\phi, \tilde{\mathbb{U}}_\theta, \tilde{\mathbb{U}}_\psi$ conectan los sistemas
 - \bullet Transformación total: $\tilde{\mathbb{U}}_{\psi\theta\phi}=\tilde{\mathbb{U}}_{\psi}\tilde{\mathbb{U}}_{\theta}\tilde{\mathbb{U}}_{\phi}$
 - \bullet Los operadores son $\mathbf{ortogonales} \colon \tilde{\mathbb{U}}^{-1} = \tilde{\mathbb{U}}^T$

Recapitulando 2/2

Transformaciones entre sistemas de coordenadas:

- Los operadores de rotación $\tilde{\mathbb{U}}_\phi, \tilde{\mathbb{U}}_\theta, \tilde{\mathbb{U}}_\psi$ conectan los sistemas
- \bullet Transformación total: $\tilde{\mathbb{U}}_{\psi\theta\phi}=\tilde{\mathbb{U}}_{\psi}\tilde{\mathbb{U}}_{\theta}\tilde{\mathbb{U}}_{\phi}$
- Los operadores son **ortogonales**: $\tilde{\mathbb{U}}^{-1} = \tilde{\mathbb{U}}^T$

Interpretación física:

- Los ángulos de Euler describen la **orientación**
- ullet Las componentes de Ω gobiernan la dinámica rotacional
- ullet Las componentes de Ω son fundamentales para derivar las **ecuaciones** de Euler y analizar estabilidad y movimiento de trompos y giróscopos

Para la discusión

Un rotor simétrico (un trompo ideal) tiene momentos de inercia respecto a sus ejes principales dados por: $I_1=I_2=I\neq I_3$. El rotor gira libremente en el espacio, sin estar sometido a torques externos. Su orientación se describe mediante los ángulos de Euler (ϕ,θ,ψ) . Inicialmente, el cuerpo gira con una velocidad angular constante ψ_0 alrededor del eje de simetría x_3 , formando un ángulo fijo θ_0 con respecto al eje vertical z.

Escriba la expresión de las componentes de la velocidad angular Ω del rotor, en términos de los ángulos de Euler. 1) respecto al CM

2) Respecto al Sistema Laboratorio