Review of Basic Probability Concepts (Chapters 1-4)

The goal of this course is to learn about statistical inference. Why do we need probability? Statistical inference: learn about a population based on the information provided by a sample.

Population:

- Characterized by the probability distribution of a random variable X. Think of X as the value associated with a randomly selected individual from the population.
- The distribution of X depends on some unknown parameter θ .
- Goal: learn about θ .

variable and the parameter of interest.

Poulatin: American foresters opinion regarding frendent Toung X = 5 1 individual thinks that the president will do 183. = P (this is was we wanted) property American votus into think that the provident will do a good Associate an indirector variable (X) with each member of Population: E. 1.0, 1. - - 3 propostion of 15 in the population of Trump will do a good job? Describe the population random Ex: What proportion of American voters think President 1085/810 values: 0,1 PEX=17 = P PEX=07 = 1-1. O, otherwise farding so wher on individual from this population - X is ansocialed with this. the population.

A general framework for inference

(Xi, Xz, -, Xm, (n= sample size) prosubility oust of X transform varfubles P = unlisten parameter 10 Populatim: X ~ fo(x)

D ROLD X; has the Adistr. as X: - X, XL; - Xm are identically Det: Dasse KII - Kn form a ronolom sample if

(1) X, X2, -- Xm has independent

with replacement sampling: By dy down of give identically without replacement sampling: By dy down of the XIII- XIII with replacement sampling: By def gives a random sample Random Sample: XII-IXM and (1)

Enthant rylacement is with replacement sampling It size by the population (N) is only habe compared to Statistical Influence: Course from two data XIIII XII about (Otherwise some tinte population adjustment is wealed) i prostically the round Ote Rule of thembi, Or it is 20.05 Not of internet to this course the size of the sample (in) the parameter B.

Two basic types of random variables

Discrete random variable: A rv X is discrete if the set ?all the possible values is countrate.

*: X = # WH on the UD website in a day; possible value :20,1-5

· X = # days it salus in the month of Tuly

infinite but

Countable 3et

X = binary fossible values: {0,1,2,-132}
ordery possible values = {0,13} formfable 14

Continuous random variable: A rv X is continuous if

五 X X

\d \d \q