

MIPS Reference Data

CORE INSTRUCTI	ON SE				OPCODE
NAME, MNEMO	NIC	FOR- MAT			/ FUNCT (Hex)
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]	. ,	0 / 21 _{hex}
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	
Branch On Equal	beq	Ι	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{hex}
Jump Register	jr	R	PC=R[rs]		$0/08_{hex}$
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	$30_{ m hex}$
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		$0/27_{hex}$
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		$0/25_{hex}$
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		$0/2a_{hex}$
Set Less Than Imm.	slti	I	$R[rt] = (R[rs] \le SignExtImm)? \ 1$: 0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	Ι	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		$0 / 00_{hex}$
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		$0 / 02_{hex}$
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	$28_{ m hex}$
Store Conditional	sc	Ι	$\begin{aligned} M[R[rs] + SignExtImm] &= R[rt]; \\ R[rt] &= (atomic) ? 1 : 0 \end{aligned}$	(2,7)	$38_{ m hex}$
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		$0/23_{hex}$

(1) May cause overnow exce	puon	
(2	?) SignExtImm = { 16{imm	ediate[15]}, immediate	}
(3	3) $ZeroExtImm = \{ 16\{1b'0\} \}$)}, immediate }	

(a) Exceeding = { 10{10 v}, infinediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

R	opcode		rs			rt	rd	shamt	funct
	31	26	25	21	20	16	15 11	10 6	5 (
I	opcode		rs			rt		immediate	9
	31	26	25	21	20	16	15		(
J	opcode						address		
	31	26	25						
a 20	1.4.1 E1		T	A 11	-1-4		F D . 44	1 11	

ARITHMETIC CO	RE INS	TRU	CTION SET	2	OPCODE
\ \		FOR		Ū	/ FMT / T
NA CE A OUTAGE		FOR-		N.T.	/ FUNCT
NAME, MNEMO Branch On FP True		MAT FI			(Hex) 4) 11/8/1/
Branch On FP False		FI	if(FPcond)PC=PC+4+B		., ,
Divide	div	R	if(!FPcond)PC=PC+4+E	,	11/8/0/ 0///1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs		/
FP Add Single	add.s	FR	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (11/10//0
FP Add Single	add.s		F[fd] = F[fs] + F[ft]	LEGG (1D)	11/10//0
Double	add.d	FR	${F[fd],F[fd+1]} = {F[fs]}$],F[ft+1];	11/11//0
FP Compare Single	a v a*	FR	FPcond = (F[fs] op F[ft]		11/10//v
FP Compare Single	\		$FPcond = (\{F[fs], F[fs+1]\})$		11/10//y
Double	c.v.d*	FR	{F[ft],F[ft+1		11/11//y
	or led (d	n is	==, <, or <=) (y is 32, 3c		
FP Divide Single	div.		F[fd] = F[fs] / F[ft]	/	11/10//3
FP Divide	•	FR	${F[fd],F[fd+1]} = {F[f]}$.F[fs+1]} /	11/11/ /2
Double	div.d	FR],F[ft+1]}	11/11//3
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]		11/10//2
FP Multiply	mul.d	FR	$\{F[fd],F[fd+1]\} = \{F[fs]$,F[fs+1]} *	11/11//2
Double	muı.a	ГK	{F[ft],F[ft+1]}	11/11//2
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]		11/10//1
FP Subtract	sub.d	FR	${F[ft],F[fd+f]} = {F[fs]}$,F[fs+1]} -	11/11//1
Double	sub.u],F[ft+1]}	
Load FP Single	lwc1	I	F[rt]=M[rs]+SignExtI		2) 31//
Load FP	ldc1	ī	F[rt]=M[R[rs]+SignExtI		2) 35//
Double		_	F[rt+1]=MR[rs]+SignE	xtImm+4]	
Move From Hi	mfhi	R	R[rd] = Hi		0 ///10
Move From Lo	mflo	R	R[xi] = Lo		0 ///12
Move From Control		R	R[rd] = CR[rs]		10 /0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$		0//-18
Multiply Unsigned	multu	R/	$\{Hi,Lo\} = R[rs] * R[rt]$	(0	5) 0///19
Shift Right Arith.	sra	K	R[rd] = R[rt] >> shart		0//-3
Store FP Single	swc1	/ I	M[R[rs]+SignExtImm]		2) 39//
Store FP	sdc1	I	M[R[rs]+SignExtImm]		2) 3d//
Double		-	M[R[rs]+SignExtImm+4	1] = F[rt+1]	/ /
FLOATING-POINT	T INSTE	RUC'	TION FORMATS	\	
FR opcode	fi	mt	ft fs	N	funct

FR	opcode	/	fmt		ft	fs	N	funct	
	31	26 2	25 2	1 20	16	15 11	10	5 5	0
FI	opcode		fmt		ft		immedia	e	
	31	26	25 2	21 20	16	15			0

PSEUDOINSTRUCTION SET

	NAME	MNEMONIC	OPERATION
	Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
	Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
	Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
	Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
/	Load Immediate	li	R[rd] = immediate
_	Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS
NAME	NUMBER	USE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

© 2014 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 5th ed.

OPCOL	DES, BASI	E CONVER	SION.	SCII	SYMB	OLS		3	
	(1) MIPS					ASCII	D	Hexa-	ASCI
pcode	funct	funct	Binary		deci-	Char-	Deci-	deci-	Char-
31:26)	(5:0)	(5:0)	1	mal	mal	acter	mal	mal	acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
. /		$\mathrm{sub}f$	00 0001	1	1	SOH	65	41	Ă
j	srl	mul.f	00 0010	2	2	STX	66	42	В
jal	sra	div.f	00 0011	3	3	ETX	67	43	C
beq	sllv	sqrt.f	00 0100	4	4	EOT	68	44	D
bne		abs f	00 0101	5	5	ENQ	69	45	E
blez	srlv	mov.f	00 0110	6	6	ACK	70	46	F
bgtz	srav	$\operatorname{neg} f$	00 0111	7	7	BEL	71	47	G
addi	jr		00 1000	8	8	BS	72	48	Н
addiu	jalr		00 1001	9	9	HT	73	49	I
slti	movz		00 1010	10	a	LF	74	4a	J
sltiu	movn		00 1011	11	b	VT	75	4b	K
andi	syscall	round.w.f	00 1100	12	С	FF	76	4c	L
ori	break	trunc.w.f	00 1101	13	d	CR	77	4d	M
xori		ceil.w.f	00 1110	14	e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	O
	mfhi		01 0000	16	10	DLE	80	50	P
(2)	mthi		01 0001	17	11	DC1	81	51	Q
	mflo	movz.f	01 0010	18	12	DC2	82	52	R
	mtlo	movn.f	01 0011	19	13	DC3	83	53	S
			01 0100	20	14	DC4	84	54	T
			01 0101	21	15	NAK	85	55	U
			01 0110	22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	W
	mult		01 1000	24	18	CAN	88	58	X
	multu		01 1001	25	19	EM	89	59	Y
	div		01 1010	26	1a	SUB	90	5a	Z
	divu		01 1011	27	1b	ESC	91	5b]
			01 1100	28	1c	FS	92	5c	Ī
			01 1101	29	1d	GS	93	5d]
			01 1110	30	1e	RS	94	5e	Ā
			01 1111	31	1f	US	95	5f	_
lb	add	cvt.s.f	10 0000	32	20	Space	96	60	
lh	addu	cvt.d.f	10 0001	33	21	1	97	61	a
lwl	sub		10 0010	34	22	"	98	62	b
lw	subu		10 0011	35	23	#	99	63	С
lbu	and	cvt.w.f	10 0100	36	24	\$	100	64	d
lhu	or		10 0101	37	25	%	101	65	e
lwr	xor		10 0110	38	26	&	102	66	f
	nor		10 0111	39	27	,	103	67	g
sb			10 1000	40	28	(104	68	h
sh			10 1001	41	29)	105	69	i
swl	slt		10 1010	42	2a	*	106	6a	j
SW	sltu		10 1011	43	2b	+	107	6b	k
			10 1100	44	2c	,	108	6c	1
			10 1101	45	2d	-	109	6d	m
swr			10 1110	46	2e		110	6e	n
cache			10 1111	47	2f	/	111	6f	o
11	tge	c.f.f	11 0000	48	30	0	112	70	p
lwc1	tgeu	c.un.f	11 0001	49	31	1	113	71	q
lwc2	tlt	c.eq.f	11 0010	50	32	2	114	72	r
pref	tltu	c.ueq.f	11 0011	51	33	3	115	73	S
	teq	c.olt.f	11 0100	52	34	4	116	74	t
ldc1		c.ult.f	11 0101	53	35	5	117	75	u
ldc2	tne	c.ole.f	11 0110	54	36	6	118	76	V
		c.ule.f	11 0111	55	37	7	119	77	W
sc		c.sf.f	11 1000	56	38	8	120	78	X
swc1		c.ngle.f	11 1001	57	39	9	121	79	y
		c.seq.f	11 1010	58	3a	:	122	7a	Z
swc2				59	3b		123	7b	- {
			111 1011						
		c.ngl f	11 1011 11 1100	60	3c		124	7c	
swc2		c.ngl.f	11 1100	60	3с	, < =	124	7c	
		c.ngl f							} ~

IEEE 754 FLOATING-POINT STANDARD

(-1)^S × (1 + Fraction) × 2^(Exponent - Bias) where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

4 IEEE 754 Symbols Exponent Object 0 0 ± 0 0 ≠0 ± Denorm 1 to MAX - 1 anything ± Fl. Pt. Num. MAX 0 ±∞ MAX **≠**0 NaN S.P. MAX = 255, D.P. MAX = 2047

 S
 Exponent
 Fraction

 31 30 23 22
 0

 S
 Exponent
 Fraction

MEMORY ALLOCATION STACK FRAME Higher \$sp → 7fff fffc_{hex} Memory Addresses Argument 6 Argument 5 Saved Registers Stack Dynamic Data \$gp →1000 8000_{hex} Static Data Local Variables 1000 0000_{hex} \$sp_ Text Lower pc →0040 0000_{hex} Memory Addresses Reserved

DATA ALIGNMENT

Double Word									
	Wo	rd		Word					
Halfv	Halfword Halfword			Hal	fword	Halfword			
Byte	Byte Byte Byte Byte Byte Byte Byte Byte					Byte			
0 Volu	1 o of thro	2 2 loogt si	3 onificant	4 bits of l	5	6	7 dian)		

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

$BD = Branch\ Delay,\ UM = User\ Mode,\ EL = Exception\ Level,\ IE = Interrupt\ Enable\ \textbf{EXCEPTION}\ \textbf{CODES}$

,,o, ,,,	011 00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Number	Name		Number	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
4	AdEL	Address Error Exception	10	RI	Reserved Instruction
4	AULL	(load or instruction fetch)	10 KI		Exception
5	AdES	Address Error Exception	11	CpU	Coprocessor
,		(store)		СрС	Unimplemented
6	IBE	Bus Error on	12	Ov	Arithmetic Overflow
0	IDL	Instruction Fetch	12	OV	Exception
7	DBE	Bus Error on	13	Tr	Trap
'	DBE	Load or Store	13	11	
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES

	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
10	Kilo-	К	210	Kibi-	Ki	1015	Peta-	P	250	Pebi-	Pi
10	Mega-	М	220	Mebi-	Mi	1018	Exa-	Е	260	Exbi-	Ei
10	Giga-	G	230	Gibi-	Gi	1021	Zetta-	z	270	Zebi-	Zi
101	Tera-	т	240	Tebi-	Ti	1024	Yotta-	Y	280	Yobi-	Yi

© 2014 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 5th ed.

1. Pull along perforation to separate card

MIPS Reference Data Card ("Green Card")