Introduction to Financial Models Lecture 02: Surprises & Paradoxes II

Coin Rotation Paradox

2 Braess Paradox

3 The Social Cost of Traffic at Equilibrium

Coin Rotation Paradox

The 1982 SAT Question Everyone Got Wrong

The radius of circle A is $\frac{1}{3}$ of the radius of circle B. Circle A rolls around circle B one trip back to its starting point. How many times will circle A revolve in total?

- (a) $\frac{3}{2}$ (b) 3 (c) 6 (d) $\frac{9}{2}$ (e) 9

Braess Paradox

ullet A highway network, with each edge labeled by its travel time (in minutes) when there are x cars using it

- A highway network, with each edge labeled by its travel time (in minutes) when there are x cars using it
- Suppose there are 4000 cars need to get from A to B

- A highway network, with each edge labeled by its travel time (in minutes) when there are x cars using it
- Suppose there are 4000 cars need to get from A to B
- They divide evenly over the two routes at equilibrium; the travel time is 45 + 2000/100 = 65 mins

• Now a very fast edge is added from C to D to the previous highway network

- Now a very fast edge is added from C to D to the previous highway network
- At equilibrium, every user uses the route through C and D

- Now a very fast edge is added from C to D to the previous highway network
- At equilibrium, every user uses the route through C and D
- As a result, the travel time is 4000/10 + 0 + 4000/100 = 80 mins!

[Braess et al., 2005] Example

[Braess et al., 2005] Example

• Assume a flow of 6 units (e.g., 6000 vehicles) must travel from 1 to 4

[Braess et al., 2005] Example

- Assume a flow of 6 units (e.g., 6000 vehicles) must travel from 1 to 4
- Three paths exist: $B_1 = 124$, $B_2 = 1324$, $B_3 = 134$

• Case 1: All Paths Open. Split the flow equally (2 units each):

• Case 1: All Paths Open. Split the flow equally (2 units each):

$$b_{12} = 2$$
, $b_{24} = 4$, $b_{34} = 2$, $b_{13} = 4$, $b_{32} = 2$
 $d_{12} = 52$, $d_{24} = 40$, $d_{34} = 52$, $d_{13} = 40$, $d_{32} = 12$
 $L(B_1) = L(B_2) = L(B_3) = 92$

Case 1: All Paths Open. Split the flow equally (2 units each):

$$b_{12} = 2$$
, $b_{24} = 4$, $b_{34} = 2$, $b_{13} = 4$, $b_{32} = 2$
 $d_{12} = 52$, $d_{24} = 40$, $d_{34} = 52$, $d_{13} = 40$, $d_{32} = 12$
 $L(B_1) = L(B_2) = L(B_3) = 92$

All paths are critical (maximal length). This distribution is stable: Switching paths increases load and travel time beyond 92.

• Case 1: All Paths Open. Split the flow equally (2 units each):

$$b_{12} = 2$$
, $b_{24} = 4$, $b_{34} = 2$, $b_{13} = 4$, $b_{32} = 2$
 $d_{12} = 52$, $d_{24} = 40$, $d_{34} = 52$, $d_{13} = 40$, $d_{32} = 12$
 $L(B_1) = L(B_2) = L(B_3) = 92$

All paths are critical (maximal length). This distribution is stable: Switching paths increases load and travel time beyond 92.

• Case 2: Ban Edge k_{32} . Split flow equally between B_1 and B_3 (3 units each):

Case 1: All Paths Open. Split the flow equally (2 units each):

$$b_{12} = 2$$
, $b_{24} = 4$, $b_{34} = 2$, $b_{13} = 4$, $b_{32} = 2$
 $d_{12} = 52$, $d_{24} = 40$, $d_{34} = 52$, $d_{13} = 40$, $d_{32} = 12$
 $L(B_1) = L(B_2) = L(B_3) = 92$

All paths are critical (maximal length). This distribution is stable: Switching paths increases load and travel time beyond 92.

• Case 2: Ban Edge k_{32} . Split flow equally between B_1 and B_3 (3 units each):

$$b_{12} = b_{24} = b_{13} = b_{34} = 3$$

 $d_{12} = 53, \ d_{24} = 30, \ d_{13} = 30, \ d_{34} = 53$
 $L(B_1) = L(B_3) = 83$

Case 1: All Paths Open. Split the flow equally (2 units each):

$$b_{12} = 2$$
, $b_{24} = 4$, $b_{34} = 2$, $b_{13} = 4$, $b_{32} = 2$
 $d_{12} = 52$, $d_{24} = 40$, $d_{34} = 52$, $d_{13} = 40$, $d_{32} = 12$
 $L(B_1) = L(B_2) = L(B_3) = 92$

All paths are critical (maximal length). This distribution is stable: Switching paths increases load and travel time beyond 92.

• Case 2: Ban Edge k_{32} . Split flow equally between B_1 and B_3 (3 units each):

$$b_{12} = b_{24} = b_{13} = b_{34} = 3$$

 $d_{12} = 53, d_{24} = 30, d_{13} = 30, d_{34} = 53$
 $L(B_1) = L(B_3) = 83$

Despite losing a connection, all paths are shorter!

ullet Recall that $B_1=124$, $B_2=1324$, $B_3=134$

- Recall that $B_1 = 124$, $B_2 = 1324$, $B_3 = 134$
- A single vehicle ignoring the ban on k_{32} (where $d_{32}=10$) takes B_2 with $L(B_2)=70$, gaining an advantage.

- Recall that $B_1 = 124$, $B_2 = 1324$, $B_3 = 134$
- A single vehicle ignoring the ban on k_{32} (where $d_{32} = 10$) takes B_2 with $L(B_2) = 70$, gaining an advantage.
- If the ban is lifted, many use B_2 , reverting to the original state.

- Recall that $B_1 = 124$, $B_2 = 1324$, $B_3 = 134$
- A single vehicle ignoring the ban on k_{32} (where $d_{32} = 10$) takes B_2 with $L(B_2) = 70$, gaining an advantage.
- If the ban is lifted, many use B_2 , reverting to the original state.
- Consider an intermediate step: 5 units on B_1 and B_3 , 1 on B_2 , then $L(B_1) = L(B_3) = 87.5$, $L(B_2) = 82.5$.

[Braess et al., 2005] Example: Selfish Deviation

- Recall that $B_1 = 124$, $B_2 = 1324$, $B_3 = 134$
- A single vehicle ignoring the ban on k_{32} (where $d_{32} = 10$) takes B_2 with $L(B_2) = 70$, gaining an advantage.
- If the ban is lifted, many use B_2 , reverting to the original state.
- Consider an intermediate step: 5 units on B_1 and B_3 , 1 on B_2 , then $L(B_1) = L(B_3) = 87.5$, $L(B_2) = 82.5$.
- B_2 users clog k_{13} and k_{24} (factor 10 in load-time relation), worsening times for B_1 and B_3 beyond 83; Yet B_2 remains shortest, attracting more traffic and degrading the system for all.

• The mechanical analogy: the spring paradox

- The mechanical analogy: the spring paradox
- Road closure in NY: Times and Herald Squares pedestrian plaza (2009 —)

- The mechanical analogy: the spring paradox
- Road closure in NY: Times and Herald Squares pedestrian plaza (2009 —)

• Cheonggyecheon restoration project (2003 —)

- The mechanical analogy: the spring paradox
- Road closure in NY: Times and Herald Squares pedestrian plaza (2009 —)

- Cheonggyecheon restoration project (2003 —)
 - Replaced a six lane highway with a five mile long park, traffic flow improved

The Social Cost of Traffic at Equilibrium

A traffic network is a directed graph with

• Nodes: Start and destination points for drivers.

- Nodes: Start and destination points for drivers.
- **Edges**: Roads with travel-time functions $T_e(x) = a_e x + b_e$, where x is the number of drivers.

- Nodes: Start and destination points for drivers.
- **Edges**: Roads with travel-time functions $T_e(x) = a_e x + b_e$, where x is the number of drivers.
- (Traffic) Pattern: Path choices for all drivers.

- Nodes: Start and destination points for drivers.
- **Edges**: Roads with travel-time functions $T_e(x) = a_e x + b_e$, where x is the number of drivers.
- (Traffic) Pattern: Path choices for all drivers.
- **Social Cost**: Social-Cost(Z) = \sum_{drivers} (travel time), summed over all drivers in pattern Z.

- Nodes: Start and destination points for drivers.
- **Edges**: Roads with travel-time functions $T_e(x) = a_e x + b_e$, where x is the number of drivers.
- (Traffic) Pattern: Path choices for all drivers.
- **Social Cost**: Social-Cost(Z) = \sum_{drivers} (travel time), summed over all drivers in pattern Z.
- Social Optimum: Pattern minimizing social cost.

- Nodes: Start and destination points for drivers.
- **Edges**: Roads with travel-time functions $T_e(x) = a_e x + b_e$, where x is the number of drivers.
- (Traffic) Pattern: Path choices for all drivers.
- Social Cost: Social-Cost(Z) = \sum_{drivers} (travel time), summed over all drivers in pattern Z.
- Social Optimum: Pattern minimizing social cost.
- Nash Equilibrium: No driver can reduce their travel time by switching paths, given others' choices.

(a) The social optimum.

(a) The social optimum.

(b) The Nash equilibrium.

Figure: A version of Braess's Paradox: In the socially optimal traffic pattern, the social cost is 28, while in the unique Nash equilibrium, the social cost is 32.

To find an equilibrium:

To find an equilibrium:

Start with any traffic pattern.

To find an equilibrium:

- Start with any traffic pattern.
- ② If not an equilibrium, some driver can switch to a path with less travel time.

To find an equilibrium:

- Start with any traffic pattern.
- If not an equilibrium, some driver can switch to a path with less travel time.
- Update the pattern and repeat until no driver wants to switch.

To find an equilibrium:

- Start with any traffic pattern.
- If not an equilibrium, some driver can switch to a path with less travel time.
- Update the pattern and repeat until no driver wants to switch.

Does the best-response dynamics process always converge?

To find an equilibrium:

- Start with any traffic pattern.
- If not an equilibrium, some driver can switch to a path with less travel time.
- Update the pattern and repeat until no driver wants to switch.

Does the best-response dynamics process always converge?

• Define *potential energy* for an edge *e* with *x* drivers:

$$\mathsf{Energy}(e) = \mathit{T}_e(1) + \mathit{T}_e(2) + \cdots + \mathit{T}_e(x)$$

To find an equilibrium:

- Start with any traffic pattern.
- If not an equilibrium, some driver can switch to a path with less travel time.
- Update the pattern and repeat until no driver wants to switch.

Does the best-response dynamics process always converge?

• Define *potential energy* for an edge *e* with *x* drivers:

$$\mathsf{Energy}(e) = \mathit{T}_e(1) + \mathit{T}_e(2) + \cdots + \mathit{T}_e(x)$$

ullet Total potential energy of a pattern Z is

$$Energy(Z) = \sum_{e} Energy(e)$$

To find an equilibrium:

- Start with any traffic pattern.
- If not an equilibrium, some driver can switch to a path with less travel time.
- Update the pattern and repeat until no driver wants to switch.

Does the best-response dynamics process always converge?

• Define *potential energy* for an edge *e* with *x* drivers:

$$\mathsf{Energy}(e) = T_e(1) + T_e(2) + \cdots + T_e(x)$$

ullet Total potential energy of a pattern Z is

$$Energy(Z) = \sum_{e} Energy(e)$$

• If no drivers use e, Energy(e) = 0

To find an equilibrium:

- Start with any traffic pattern.
- If not an equilibrium, some driver can switch to a path with less travel time.
- Update the pattern and repeat until no driver wants to switch.

Does the best-response dynamics process always converge?

• Define potential energy for an edge e with x drivers:

$$\mathsf{Energy}(e) = T_e(1) + T_e(2) + \cdots + T_e(x)$$

ullet Total potential energy of a pattern Z is

$$Energy(Z) = \sum_{e} Energy(e)$$

- If no drivers use e, Energy(e) = 0
- Social cost can increase or decrease with best-response steps (e.g., from 28 to 32 in the Braess example), but potential energy strictly decreases, serving as a progress measure. $\frac{16}{21}$

Figure: Steps of best-response dynamics with potential energy changes.

For any edge e,

• Driver leaves: Energy(e) drops by $T_e(x)$, their old travel time.

- Driver leaves: Energy(e) drops by $T_e(x)$, their old travel time.
- Driver joins: Energy(e) rises by $T_e(x+1)$, their new travel time.

- Driver leaves: Energy(e) drops by $T_e(x)$, their old travel time.
- Driver joins: Energy(e) rises by $T_e(x+1)$, their new travel time.
- Net change in Energy(Z) = new time old time.

- Driver leaves: Energy(e) drops by $T_e(x)$, their old travel time.
- Driver joins: Energy(e) rises by $T_e(x+1)$, their new travel time.
- Net change in Energy(Z) = new time old time.
- Since drivers switch only to improve (new < old), Energy(Z) decreases.

- Driver leaves: Energy(e) drops by $T_e(x)$, their old travel time.
- Driver joins: Energy(e) rises by $T_e(x+1)$, their new travel time.
- Net change in Energy(Z) = new time old time.
- Since drivers switch only to improve (new < old), Energy(Z) decreases.
- With finite patterns, dynamics must stop at an equilibrium.

• For edge *e* with *x* drivers,

- For edge e with x drivers,
 - Total Travel Time: $xT_e(x)$.

- For edge e with x drivers,
 - Total Travel Time: $xT_e(x)$.
 - Potential Energy: $T_e(1) + \cdots + T_e(x)$.

- For edge e with x drivers,
 - Total Travel Time: $xT_e(x)$.
 - Potential Energy: $T_e(1) + \cdots + T_e(x)$.
- Since $T_e(x) = a_e x + b_e$,

- For edge e with x drivers,
 - Total Travel Time: $xT_e(x)$.
 - Potential Energy: $T_e(1) + \cdots + T_e(x)$.
- Since $T_e(x) = a_e x + b_e$,

Energy(e) =
$$a_e(1 + 2 + \dots + x) + b_e x = \frac{a_e x(x+1)}{2} + b_e x$$

 $xT_e(x) = x(a_e x + b_e) = a_e x^2 + b_e x$

- For edge e with x drivers,
 - Total Travel Time: $xT_e(x)$.
 - Potential Energy: $T_e(1) + \cdots + T_e(x)$.
- Since $T_e(x) = a_e x + b_e$,

Energy(e) =
$$a_e(1 + 2 + \dots + x) + b_e x = \frac{a_e x(x+1)}{2} + b_e x$$

 $xT_e(x) = x(a_e x + b_e) = a_e x^2 + b_e x$

Compare:

$$\frac{1}{2}xT_e(x) \leqslant \text{Energy}(e) \leqslant xT_e(x)$$

- For edge e with x drivers,
 - Total Travel Time: $xT_e(x)$.
 - Potential Energy: $T_e(1) + \cdots + T_e(x)$.
- Since $T_e(x) = a_e x + b_e$,

Energy(e) =
$$a_e(1 + 2 + \dots + x) + b_e x = \frac{a_e x(x+1)}{2} + b_e x$$

 $xT_e(x) = x(a_e x + b_e) = a_e x^2 + b_e x$

Compare:

$$\frac{1}{2}xT_e(x) \leqslant \mathsf{Energy}(e) \leqslant xT_e(x)$$

Proof:

$$\frac{a_e x(x+1)}{2} + b_e x \geqslant \frac{1}{2} (a_e x^2 + b_e x)$$
 and $\leqslant a_e x^2 + b_e x$

• For a pattern Z,

$$\frac{1}{2}$$
 · Social-Cost(Z) \leq Energy(Z) \leq Social-Cost(Z)

• For a pattern Z,

$$\frac{1}{2} \cdot \mathsf{Social\text{-}Cost}(\mathit{Z}) \leqslant \mathsf{Energy}(\mathit{Z}) \leqslant \mathsf{Social\text{-}Cost}(\mathit{Z})$$

• From social optimum Z to equilibrium Z':

• For a pattern Z,

$$\frac{1}{2} \cdot \mathsf{Social\text{-}Cost}(\mathit{Z}) \leqslant \mathsf{Energy}(\mathit{Z}) \leqslant \mathsf{Social\text{-}Cost}(\mathit{Z})$$

- From social optimum Z to equilibrium Z':
 - Energy(Z') \leq Energy(Z) (decreases in dynamics).

• For a pattern Z,

$$\frac{1}{2} \cdot \mathsf{Social\text{-}Cost}(\mathit{Z}) \leqslant \mathsf{Energy}(\mathit{Z}) \leqslant \mathsf{Social\text{-}Cost}(\mathit{Z})$$

- From social optimum Z to equilibrium Z':
 - Energy(Z') \leq Energy(Z) (decreases in dynamics).
 - Social-Cost(Z') $\leq 2 \cdot \text{Energy}(Z') \leq 2 \cdot \text{Energy}(Z) \leq 2 \cdot \text{Social-Cost}(Z)$.

• For a pattern Z,

$$\frac{1}{2} \cdot \mathsf{Social\text{-}Cost}(\mathit{Z}) \leqslant \mathsf{Energy}(\mathit{Z}) \leqslant \mathsf{Social\text{-}Cost}(\mathit{Z})$$

- From social optimum Z to equilibrium Z':
 - Energy(Z') \leq Energy(Z) (decreases in dynamics).
 - Social-Cost(Z') $\leq 2 \cdot \text{Energy}(Z') \leq 2 \cdot \text{Energy}(Z) \leq 2 \cdot \text{Social-Cost}(Z)$.

Thus some equilibrium has social cost at most twice the optimum.

• For a pattern Z,

$$\frac{1}{2} \cdot \mathsf{Social\text{-}Cost}(\mathit{Z}) \leqslant \mathsf{Energy}(\mathit{Z}) \leqslant \mathsf{Social\text{-}Cost}(\mathit{Z})$$

- From social optimum Z to equilibrium Z':
 - Energy(Z') \leq Energy(Z) (decreases in dynamics).
 - Social-Cost(Z') $\leq 2 \cdot \mathsf{Energy}(Z') \leq 2 \cdot \mathsf{Energy}(Z) \leq 2 \cdot \mathsf{Social-Cost}(Z)$.

Thus some equilibrium has social cost at most twice the optimum.

 \bullet [Roughgarden and Tardos, 2002, Roughgarden, 2005] show that 4/3 is the tight bound.

• For a pattern Z,

$$\frac{1}{2} \cdot \mathsf{Social\text{-}Cost}(\mathit{Z}) \leqslant \mathsf{Energy}(\mathit{Z}) \leqslant \mathsf{Social\text{-}Cost}(\mathit{Z})$$

- From social optimum Z to equilibrium Z':
 - Energy(Z') \leq Energy(Z) (decreases in dynamics).
 - Social-Cost(Z') $\leq 2 \cdot \text{Energy}(Z') \leq 2 \cdot \text{Energy}(Z) \leq 2 \cdot \text{Social-Cost}(Z)$.

Thus some equilibrium has social cost at most twice the optimum.

- ullet [Roughgarden and Tardos, 2002, Roughgarden, 2005] show that 4/3 is the tight bound.
- Implications: Network design and tolls can mitigate inefficiencies.

References

- Braess, D., Nagurney, A., and Wakolbinger, T. (2005). On a paradox of traffic planning. *Transportation Science*, 39(4):446–450. Paper.
 - Easley, D. and Kleinberg, J. (2010). *Networks, Crowds, and Markets:* Reasoning about a Highly Connected World. Cambridge University Press, Cambridge. Preprint.
- Roughgarden, T. (2005). Selfish Routing and the Price of Anarchy. The MIT Press, Cambridge, MA. Extension of the PhD thesis.
- Roughgarden, T. and Tardos, E. (2002). How bad is selfish routing? *Journal of the ACM*, 49(2):236–259. Preprint.
- Steinberg, R. and Zangwill, W. I. (1983). The prevalence of Braess' paradox. *Transportation Science*, 17(3):301–318.