Interpretable Machine Learning

Partial Dependence (PD) plot

Learning goals

- PD plots and relation to ICE plots
- Interpretation of PDP
- Extrapolation and Interactions in PDPs
- Centered ICE and PDP

PARTIAL DEPENDENCE (PD) • Friedman (2001)

Definition: PD function is expectation of $\hat{f}(\mathbf{x}_S, \mathbf{x}_{-S})$ w.r.t. marginal distribution of features \mathbf{x}_{-S} :

$$f_{S,PD}(\mathbf{x}_S) = \mathbb{E}_{\mathbf{x}_{-S}}\left(\hat{f}(\mathbf{x}_S,\mathbf{x}_{-S})\right) = \int_{-\infty}^{\infty} \hat{f}(\mathbf{x}_S,\mathbf{x}_{-S}) d\mathbb{P}(\mathbf{x}_{-S})$$

Estimation: For a grid value \mathbf{x}_{S}^{*} , average ICE curves point-wise at \mathbf{x}_{S}^{*} over all observed $\mathbf{x}_{-S}^{(l)}$:

$$\hat{f}_{S,PD}(\mathbf{x}_S^*) = \frac{1}{n} \sum_{i=1}^n \hat{f}(\mathbf{x}_S^*, \mathbf{x}_{-S}^{(i)})$$

EXAMPLE: PARTIAL DEPENDENCE FOR LINEAR MODEL

Assume a linear regression model with two features:

$$\hat{f}(\mathbf{x}) = \hat{f}(\mathbf{x}_1, \mathbf{x}_2) = \hat{\theta}_1 \mathbf{x}_1 + \hat{\theta}_2 \mathbf{x}_2 + \hat{\theta}_0$$

PD function for feature of interest $S = \{1\}$ (with $-S = \{2\}$) is:

$$f_{1,PD}(\mathbf{x}_1) = \mathbb{E}_{\mathbf{x}_2} \left(\hat{f}(\mathbf{x}_1, \mathbf{x}_2) \right) = \int_{-\infty}^{\infty} \left(\hat{\theta}_1 \mathbf{x}_1 + \hat{\theta}_2 \mathbf{x}_2 + \hat{\theta}_0 \right) d\mathbb{P}(\mathbf{x}_2)$$

$$= \hat{\theta}_1 \mathbf{x}_1 + \hat{\theta}_2 \cdot \int_{-\infty}^{\infty} \mathbf{x}_2 d\mathbb{P}(\mathbf{x}_2) + \hat{\theta}_0$$

$$= \hat{\theta}_1 \mathbf{x}_1 + \underbrace{\hat{\theta}_2 \cdot \mathbb{E}_{\mathbf{x}_2}(\mathbf{x}_2) + \hat{\theta}_0}_{:=const}$$

 \Rightarrow PD plot visualizes the function $f_{1,PD}(\mathbf{x}_1) = \hat{\theta}_1 \mathbf{x}_1 + const$ ($\hat{=}$ feature effect of \mathbf{x}_1).

PARTIAL DEPENDENCE

Estimate PD function by **point-wise** average of ICE curves at grid value $\mathbf{x}_{S}^{*} = x_{1}^{*} = 1$:

$$\hat{f}_{1,PD}(x_1^*) = \frac{1}{n} \sum_{i=1}^n \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)})$$

PARTIAL DEPENDENCE

Estimate PD function by **point-wise** average of ICE curves at grid value $\mathbf{x}_S^* = x_1^* = 2$:

$$\hat{f}_{1,PD}(x_1^*) = \frac{1}{n} \sum_{i=1}^n \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)})$$

PARTIAL DEPENDENCE

Estimate PD function by **point-wise** average of ICE curves at grid value $\mathbf{x}_{S}^{*} = x_{1}^{*} = 3$:

$$\hat{f}_{1,PD}(x_1^*) = \frac{1}{n} \sum_{i=1}^n \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)})$$

INTERPRETATION: PD AND ICE

If feature varies:

- ICE: How does prediction of individual observation change? ⇒ local interpretation
- PD: How does average effect / expected prediction change? ⇒ global interpretation

INTERPRETATION: PD AND ICE

If feature varies:

- ICE: How does prediction of individual observation change? ⇒ local interpretation
- PD: How does average effect / expected prediction change? ⇒ global interpretation

Insights from bike sharing data:

- Parallel ICE curves = homogeneous effect
- Warmer ⇒ more rented bikes
- Too hot ⇒ slightly less bikes

INTERPRETATION: CATEGORICAL FEATURES

- PDP with boxplots and ICE with parallel coordinates plots
- NB: Categories can be unordered, if so, rather compare pairwise

COMMENTS ON EXTRAPOLATION

Extrapolation can cause issues in regions with few observations or if features are correlated

- Example: Features x_1 and x_2 are strongly correlated
- Black points: Observed points of the original data
- Red: Grid points used to calculate the ICE and PD curves (several unrealistic values)
 - \Rightarrow PD plot at $x_1 = 0$ averages predictions over the whole marginal distribution of feature x_2
 - ⇒ May be problematic if model behaves strange outside training distribution

COMMENTS ON INTERACTIONS

- PD plots: averaging of ICE curves might **obfuscate** heterogeneous effects and interactions
 - \Rightarrow Ideally plot ICE curves and PD plots together to uncover this fact
 - \Rightarrow Different shapes of ICE curves suggest interaction (but does not tell with which feature)

COMMENTS ON INTERACTIONS - 2D PARTIAL DEPENDENCE

- Humidity and temperature interact with each other at high values (see shape difference)
 Shape of ICE curves at different horizontal and vertical slices varies (for high values)
- Low to medium humidity and high temperature ⇒ many rented bikes

CENTERED ICE PLOT (C-ICE)

Issue: Difficult to identify heterogenous ICE curves if curves have different intercepts (are stacked) **Solution:** Center ICE curves at fixed reference value $x' \sim \mathbb{P}(\mathbf{x}_S)$, often $x' = \min(\mathbf{x}_S)$

⇒ Easier to identify heterogenous shapes with c-ICE curves

$$\hat{f}_{S,clCE}^{(i)}(\mathbf{x}_S) = \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)}) - \hat{f}(x', \mathbf{x}_{-S}^{(i)}) \\
= \hat{f}_S^{(i)}(\mathbf{x}_S) - \hat{f}_S^{(i)}(x')$$

 \Rightarrow Visualize $\hat{f}_{S,cICE}^{(i)}(\mathbf{x}_S^*)$ vs. grid point \mathbf{x}_S^*

CENTERED ICE PLOT (C-ICE)

Issue: Difficult to identify heterogenous ICE curves if curves have different intercepts (are stacked) **Solution:** Center ICE curves at fixed reference value $x' \sim \mathbb{P}(\mathbf{x}_S)$, often $x' = \min(\mathbf{x}_S)$

 \Rightarrow Easier to identify heterogenous shapes with c-ICE curves

$$\begin{aligned} \hat{f}_{S,cICE}^{(i)}(\mathbf{x}_S) &= \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)}) - \hat{f}(x', \mathbf{x}_{-S}^{(i)}) \\ &= \hat{f}_S^{(i)}(\mathbf{x}_S) - \hat{f}_S^{(i)}(x') \end{aligned}$$

 \Rightarrow Visualize $\hat{\mathit{f}}_{S,clCE}^{(i)}(\mathbf{x}_{S}^{*})$ vs. grid point \mathbf{x}_{S}^{*}

Interpretation (yellow curve in c-ICE): On average, the number of bike rentals at \sim 97 % humidity decreased by 1000 bikes compared to a humidity of 0 %

CENTERED ICE PLOT (C-ICE)

For categorical features, c-ICE plots can be interpreted as in LMs due to reference value

Interpretation:

- The reference category is x' = SPRING
- Golden crosses: Average number of bike rentals if we jump from SPRING to any other season ⇒ Number of bike rentals drops by ~ 560 in WINTER and is slightly higher in SUMMER and FALL compared to SPRING