INTRO TO BINARY SYSTEMS

Previous Lecture Review

- Different numeral systems (decimal, binary, hexa).
- Converting Between Counting Systems
- importance of binary and hexa
- Main memory units (mem_content vs mem_address)
- Some important notes:
 - n bits \rightarrow 2ⁿ possibilities (n-bit address can refer to 2ⁿ diff mem. locations)

$$-2^{n+m} = 2^n \times 2^m$$

-
$$log_2(n \times m) = log_2 n + log_2 m$$

$$2^{num_add_bits} \rightarrow mem_siz$$

$$log \; (\texttt{mem_size}) \to \texttt{num_add_bits}$$

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

Ranges

IEEE 754 Format	Sign	Exponent	Mantissa	Exponent Bias
32 bit single precision	1 bit	8 bits	23 bits (+ 1 not stored)	$2^{(8-1)} - 1 = 127$
64 bit double precision	1 bit	11 bits	52 bits (+ 1 not stored)	2 ⁽¹¹⁻¹⁾ - 1 = 1023
128 bit quadruple precision	1 bit	15 bits	112 bits (+ 1 not stored)	2 ⁽¹⁵⁻¹⁾ - 1 = 16383

Reserved Exponent Values

Exponent Value	Mantissa	Represents	
11111111	All zeros	Infinity (∞)	
11111111	Not all zeros	Not a number (NAN)	
00000000	All zeros	Zero	
00000000	Not all zeros	Subnormal (very small)	

Representation of Images

Representation of Sounds

Representation of Videos

Bits store data for each video frame

video frame rate (fps)