

LECTURE 7

Win+w

Signal Processing on Databases

Jeremy Kepner

Lecture 3: Entity Analysis in Unstructured Data

This work is appropried by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

Outline

- Introduction
 - Webolution
 - As is, is OK
 - D4M
- Technologies
- Results
- Demo
- Summary

Primordial Web

- Browser GUI? HTTP for files? Perl for analysis? SQL for data?
- A lot of work just to view data.
- · Won't catch on.

Cambrian Web

- Browser GUI? HTTP for files? Perl for analysis? SQL for data?
- A lot of work to view a little data.
- Won't catch on.

Modern Web

- Game GUI! HTTP for files? Perl for analysis? Triples for data!
- A lot of work to view a lot of data.
- Great view. Massive data.

Future Web?

- Game GUI! Fileserver for files! D4M for analysis! Triples for data!
- A little work to view a lot of data. Securely.
- Great view. Massive data.

D4M: "Databases for Matlab"

 D4M binds Associative Arrays to Triple Store, enabling rapid prototyping of data-intensive cloud analytics and visualization

Outline

- Introduction
- \Rightarrow
- Technologies
 - Hardware
 - Cloud software
 - Associative Arrays
- Results
- Demo
- Summary

What is LL Grid?

- LLGrid is a ~500 user ~2000 processor system
- World's only desktop interactive supercomputer
 - Dramatically easier to use than any other supercomputer
 - Highest fraction of staff using (20%) supercomputing of any organization on the planet
- Foundation of Supercomputing in Massachusetts

Why is LLGrid easier to use?

Universal Parallel Matlab programming

```
Amap = map([Np 1],(),0:Np-1);

Bmap = map([1 Np],(),0:Np-1);

A = rand(M,N,Amap);

B = zeros(M,N,Bmap);

B(:,:) = fft(A);
```

- · pMatlab runs in all parallel Matlab environments
- · Only a few functions are needed
 - Np
 - Pid
 - map
 - local
 - put local
 - global index
 - agg
 - SendMsg/RecvMsg

- Distributed arrays have been recognized as the easiest way to program a parallel computers since the 1970s
 - Only a small number of distributed array functions are necessary to write nearly all parallel programs
- LLGrid is the first system to deploy interactive distributed arrays

siam

Cloud Computing Concepts

Data Intensive Computing

- Compute architecture for large scale data analysis
 - Billions of records/day, trillions of stored records, petabytes of storage
 - Google File System 2003
 - Google MapReduce 2004
 - Google BigTable 2006
- Design Parameters
 - Performance and scale
 - Optimized for ingest, query and analysis
 - Co-mingled data
 - Relaxed data model
 - Simplified programming
- · Community:

Utility Computing

- Compute services for outsourcing IT
 - Concurrent, independent users operating across millions of records and terabytes of data
 - IT as a Service
 - Infrastructure as a Service (laaS)
 - Platform as a Service (PaaS)
 - Software as a Service (SaaS)
- Design Parameters
 - Isolation of user data and computation
 - Portability of data with applications
 - Hosting traditional applications
 - Lower cost of ownership
 - Capacity on demand
- · Community:

The Big Four Cloud Ecosystems

- Each ecosystem is at the center of a multi-\$B market
- · Pros/cons of each are numerous; diverging hardware/software
- Some missions can exist wholly in one ecosystem; some can't

lasS: Software as a Service

The Big Four Cloud Ecosystems

Enterprise

laaS

- Interactive
- On-demand
- Elastic

LLGrid Supercomputing

PaaS

- High performance
- Parallel Languages
- Scientific computing

PaaS

- Java
- Map/Reduce
- Easy admin

SaaS

- Indexing
- Search
- Security

- LLGrid provides interactive, on-demand supercomputing
- Accumulo database provides high performance indexing, search, and authorizations within a Hadoop environment

The Big Four Cloud Ecosystems

Enterprise

LLGrid

Supercomputing

laaS

- Interactive
- On-demand
- Elastic

PaaS

- High performance
- Parallel Languages
- Scientific computing

MapReduce

PaaS

- Java
- Map/Reduce
- Easy admin

SaaS

- Indexing
- Search
- Security

- LLGrid MapReduce provides map/reduce interface to supercomputing
- D4M provides an interactive parallel scientific computing environment to databases

Big Compute + Big Data Stack

Novel Analytics for: Text, Cyber, Bio Weak Signatures, Noisy Data, Dynamics

High Level Composable API: D4M ("Databases for Matlab")

Distributed Database: Accumulo/HBase (triple store)

Distributed Database/ Distributed File System

High Performance Computing: LLGrid + Hadoop

Interactive Supercomputing

Combining Big Compute and Big Data enables entirely new domains

Hadoop Architecture Overview

Hadoop: Strengths and Weaknesses

- What works well
 - Distributed processing of large data Indexing log files
 Sorting data
 - Scale up from single servers to thousands of machines
 Local computation and storage
 - Detect and handle failures at the application layer
 Highly-available service on top of a cluster of computers
- Some difficulties are
 - Controlling compute resources for a given job
 Full blown, greedy scheduling
 - Multi-user environments
 Not easy to provide fair-share control on their use of Hadoop cluster
 - Non-Java programmers
 Takes time to learn the parallel programming API for Java

LLGrid_MapReduce Architecture

 LLGrid MapReduce provides a language agnostic and scheduler agnostic map/reduce interface in a supercomputing environment

Multi-Dimensional Associative Arrays

Extends associative arrays to 2D and mixed data types

```
A('alice ','bob ') = 'cited '

Or A('alice ','bob ') = 47.0
```

· Key innovation: 2D is 1-to-1 with triple store

```
('alice ', bob ', 'cited ')

or ('alice ', 'bob ', 47.0)
```


Composable Associative Arrays

- Key innovation: mathematical closure
 - all associative array operations return associative arrays
- Enables composable reathematical operations

Enables composable query operations via array indexing

```
A('alice bob ',:) A('alice ',:) A('al* ',:)
A('alice: bob ',:) A(1:2,:) A == 47.0
```

- Simple to implement in a library (~2000 lines) in programming environments with: 1st class support of 2D arrays, operator overloading, sparse linear algebra
- Complex queries with ~50x less effort than Java/SQL
- Naturally leads to high performance parallel implementation

Universal "Exploded" Schema

Triple Store Table: Ttranspose

Input Data

Time	src_ip	domain	dest_ip
2001-01-01	a		a
2001-01-02	b	b	
2001-01-03		С	с

-			
•			
•			•
•		•	
	•	,	
	•		

	src_ip/a	src_ip/b	domain/b	domain/c	dest_ip/a	dest_ip/c
2001-01-01	1				1	
2001-01-02		1	1			
2001-01-03				1		1

Triple Store Table: T

Key Innovations

- Handles all data into a single table representation
- Transpose pairs allows quick look up of either row or column

Outline

- Introduction
- Technologies

- Results
 - Benchmark performance
 - Facet search
 - Management and monitoring
- Demo
- Summary

Stats Diagram

iple S	Store Table: T	ś	Sec. 3	800	300	a de	d	No. of		and the same of th	part .	ý	30	30	ď,	ga S	4	and and	office of	acide da	ed as	do.
Row	Key (time)																					Γ.
1	2001-10-01 01 01 00															****						_
2	2001-10-01 01 02 00																					
3	2001-10-01 01 03 00				A:	550	oci	at	ve	Α	rra	v:	Α									
4	2001-10-01 01 04 00																					
5	2001-10-01 01 05 00																					
6	2001-10-01 01 06 00																					

- Copy a set of rows from T into associative array A
- Perform the following statistical calculations on A
 - Column count: how many times each column appears in A
 - Column type count: how many times each column type appears in A
 - Column covariance: how many times a each pair of columns in A appear in the same row together
 - Column covariance: how many times a each pair of column types in A appear in the same row together
 - . Good for identifying column types, gaps, clutter, and correlations

Stats Implementation

Define a set of rows

$$r = 2001-01-01$$
 01 02 00,2001-01-01 01 03 00, 2001-01-01 01 04 00,

Copy rows from table to associative array and convert '1' to 1

Find popular columns counts

Find popular pairs

$$A' * A > 200$$
 or $sqIn(A) > 200$

Find domains with many dest IPs

Count

Very easy to get elementary count info necessary for finding clutter and anomalies

Covariance

Facet Search

- Core analytic of SKS
- Give keyword distribution of a set of documents that share a common keyword(s)
 - Provides useful guide to what keyword to select next
- Currently implemented with several hundreds of lines of Java/SQL
- Associative array implementation has 1 line

Facet Search Algorithm

 Associative array relates documents to place, org and person entities

$$A(x,y): S^{NxM} \rightarrow R$$

- Facets y₁=UN, y₂=Carl
- Documents that contain both

$$\underline{A}(:,y_1) \& \underline{A}(:,y_2)$$

 Entity counts in the above set of documents obtained via matrix multiply

$$(\underline{A}(:,y_1) \& \underline{A}(:,y_2))^t A$$

Summary

- Web evolution has resulted in a new class of technologies for
 - Display (game interfaces)
 - Analysis (D4M)
 - Storage (triple stores)
- D4M is a novel technology that allows complex analytics to be implement with significantly less effort than traditional approaches
- D4M is built on composable associative arrays which admit linear algebraic manipulation

