

Lab Experiment #4:

Wheatstone Bridge

David McNeary

Partner: Glendy Lara

PHYS 200BL 10/4/2021

Data

Measurement of R_1

	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5
R_s	15Ω	50Ω	70Ω	85Ω	30Ω
x (cm)	68.1 cm	41.6 cm	$29.7~\mathrm{cm}$	35.8 cm	50.1 cm
R_1	32Ω	36Ω	30Ω	47Ω	30Ω

Direct multimeter measurement: 59.8Ω

Measurement of R_2

	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5
R_s	15Ω	30Ω	50Ω	70Ω	23Ω
$x(\mathrm{cm})$	63.9 cm	$45.6~\mathrm{cm}$	$33.5~\mathrm{cm}$	$26.6~\mathrm{cm}$	52.2 cm
R_2	27Ω	25Ω	25Ω	25Ω	25Ω

Direct multimeter measurement: 28.4Ω

Data Reduction

	x	R	Δx	ΔR
R_1	50.1 cm	30Ω	0.1 cm	0.1Ω
R_2	$52.2~\mathrm{cm}$	25Ω	$2.2~\mathrm{cm}$	2.3Ω

Lab Questions

- 1. Using formula 4.5 and "percent difference" formula to calculate percent uncertainty:
 - a. $x = 10 \pm 0.1$ cm:

$$100 \left[\frac{|40.1 \frac{100}{(100-9.9)^2} - 39.9 \frac{100}{(100-10.1)^2}|}{\frac{40.1 \frac{100}{(100-9.9)^2} + 39.9 \frac{100}{(100-10.1)^2}}{2}} \right] = 0.56\%$$

b.
$$x=50\pm0.1~\mathrm{cm}$$

$$100 \left[\frac{|0.1 \frac{100}{(100-49.9)^2} - 0.1 \frac{100}{(100-50.1)^2}|}{\frac{0.1 \frac{100}{(100-49.9)^2} + 0.1 \frac{100}{(100-50.1)^2}}{2}} \right] = 0.80\%$$

c.
$$x=95\pm0.1~\mathrm{cm}$$

$$100 \left[\frac{|45.1 \frac{100}{(100-94.9)^2} - 44.9 \frac{100}{(100-95.1)^2}|}{\frac{45.1 \frac{100}{(100-94.9)^2} + 44.9 \frac{100}{(100-95.1)^2}}{2}} \right] = 7.55\%$$

2. If the 2 volts from the power supply were to be increased to 6 volts, I would expect the galvanometer to be much more sensitive to minute movements in the position of the "split" of the wire of the potentiometer (x vs 100-x), since given the same amount of resistance from the components of the circuit, there would be more current flowing (following from Ohm's Law). Since the galvanometer reads in μ A,

- we would need to be careful in using the "K-key" to increase the accuracy of the reading. to avoid overloading the galvanometer. I might also expect the wire of the potentiometer to get quite hot.
- 3. Depressing the K-key of the galvanometer greatly increased the precision of the reading once we were in the "ballpark" of a good x—value for an accurate reading. However, this increased sensitivity provided some concern when the distance to a proper x was increased, as the instrument is apparently quite vulnerable to current in an "unbalanced" circuit.
- 4. Fluctuations in the voltage provided by the power supply will result in a fluctuating current reading from the galvanometer, and will make it harder to pinpoint a "balance" point for the x-position of the right and left sides of the split potentiometer resistance.
- 5. The contact point should be moved towards the right, decreasing the x distance.
- 6. The measured and observed values for R_2 are quite close, and the percent difference is quite small:

$$100 \left\lceil \frac{|25\Omega - 28.4\Omega|}{\frac{25\Omega + 28.4\Omega}{2}} \right\rceil = 8.7\%$$

However, the results from observed vs. direct measurements of R_1 are inconclusive, given the large percent of error:

$$100igg[rac{|30\Omega-59.8\Omega|}{rac{30\Omega+59.8\Omega}{2}}igg]=66\%$$

Data sheet + Quiz

4.7 Data sheet

Name: David McNeary	Date: 10/4/21	Instructor's initials:
Partner: Glendy Lara	Group No:	

Data

Measurement of the resistance R_1 .

Iterate as descri	terate as described in section 4.5						
	1	2	3	4	5		
Rs	152	50 r	70-1	85a	30-2		
x (cm)	68.1 cm	41.6 cm	29.7cm	35.8cm	50.1em		
R ₁ (eq 4.4)	32 n	36.5_2	30-r	47-2	30-1-		

Direct measurement of the resistance with the multi-meter:

Diffeet incus	dicincia or	uic	1 Colottal ICC	VVIIII LIIC	LIL
R ₁	F0 0	士		_	
	59.85	-			

Measurement of the resistance R_2

Iterate as described in section 4.5						
	1	2	3	4	5	
Rs	152	30.r	50-r	70~	23	
x (cm)	63.9cm	45.6cm	33.5cm	26.6 cm	52.2cm	
R ₂	27-1	25-1	25-2	25-2	251	

Direct measurement of the resistance with the multi-meter:

Direct life	asurchitetti or	tite reprotective	
D		1 +	
R ₂		1 +	
	1004		
	10.1		
	100.1		

Data Reduction

Use the resistance values that you found closest to the center of the slide wire, *i.e.* closest to x = 50 cm, record these below, and calculate the uncertainty in R, ΔR , using equation 4.5

	X	R	Δχ	ΔR
R ₁	50.1cm	30-2	0.1 cm	0.152
R ₂	52.2 cm	25-2	2.2 cm	2.30