

FIG. 1

FIG. 2

FIG. 3

Page 3 of 15

3/15

FIG. 4

SIGNALS OF RLL(1,7)

ΔMARK	ASYMMETRY	HPF SIGNAL	DFB SIGNAL
-0.8Tw	-20%		
-0.4Tw	-10%		
±0Tw	0%		
+0.4Tw	+10%		
+0.8Tw	+20%		

SIMULATION CONDITION
WAVELENGTH = 405nm
NUMERICAL APERTURE = 0.85
Tw = 75nm
MODULATION CODE = RLL(1,7)
PRCLASS = PR(1,2,2,1)
EQ = 11TAP(OPTIMIZED BY LSE METHOD)

Page 5 of 15

5/15

FIG. 6

RULE OF ASYMMETRY FOR THE BLUE LD DISKS
(1) FOLLOWING FOUR LEVELS CAN BE REPRESENTED ALL
10 BIT ARRAYS

 $\Delta 4 = (\Delta (0000) + \Delta (1111))/2$

 $\Delta 3 = (\Delta (0001) + \Delta (1000) + \Delta (1110) + \Delta (0111))/4$

 $\Delta 2 = (\Delta (1001) + \Delta (0110))/2$

 $\Delta E = (\Delta (0011) + \Delta (1100))/2$

(2) FOLLOWING PROPORTIONAL RELATIONSHIP IS FOUND Δ 4: Δ 3: Δ 2: Δ E=1:0.05:-0.91:0.52

SUMMARY:

BY USING THE ENVELOPE LEVELS OF READOUT SIGNAL ($\Delta 4$) OR ASYMMETRY, THE OPTIMUM TARGET LEVELS FOR PRML DETECTION CAN BE DEFINED

Page 6 of 15

6/15

FIG. 7

SIGNALS OF RLL(2,10)

	ΔMARK	ASYMMETRY	HPF SIGNAL	DFB SIGNAL
· · · · ·	_0.8Tw	-14%		
	-0.4Tw	7%		
	±0Tw	0%		
	+0.4Tw	+7%		
	+0.8Tw	+14%		

SIMULATION CONDITION
WAVELENGTH = 650nm
NUMERICAL APERTURE = 0.60
Tw = 133nm
MODULATION CODE = RLL(2,7)
PRCLASS = PR(3,4,4,3)
EQ = 11TAP(OPTIMIZED BY LSE METHOD)

MINEMURA et al Page 8 of 15 HIRA.0142

FIG. 9

RULE OF ASYMMETRY FOR DVD

(1) FOLLOWING THREE LEVELS CAN BE REPRESENTED ALL 8 BIT ARRAYS

 $\Delta 4 = (\Delta (0000) + \Delta (1111))/2$

 $\Delta 3 = (\Delta (0001) + \Delta (1000) + \Delta (1110) + \Delta (0111))/4$

 $\Delta E = (\Delta (0011) + \Delta (1100))/2$

(2) FOLLOWING PROPORTIONAL RELATIONSHIP IS FOUND $\Delta 4$: $\Delta 3$: ΔE =1:-0.15:-0.31

Page 9 of 15

9/15

FIG. 10

MODULATION CODE	PR CLASS (*)	HPF ONLY (**)	DFB (DUTY FEEDBACK) (**) SLICE-CONTROL
RLL (1,7) BD	PR (1,2,2,1)	Δ 4: Δ 3: Δ 2: Δ E= 1:0.05:-0.91:0.52 Δ 4=0.009 α OR Δ 4=0.007 β	$\Delta 4: \Delta 3: \Delta 2: \Delta E=$ $1:0.36:-0.29:-0.04$ $\Delta 4=0.015 \alpha \text{ OR}$ $\Delta 4=0.011 \beta$
RLL (2,10) DVD	PR (3,4,4,3)	$\Delta 4: \Delta 3: \Delta E = 1:-0.15:-0.31$ $\Delta 4 = 0.0087 \alpha \text{ OR}$ $\Delta 4 = 0.0064 \beta$	$\Delta 4: \Delta 3: \Delta E = 1:0.11:-0.01$ $\Delta 4 = 0.010 \alpha \text{ OR}$ $\Delta 4 = 0.008 \beta$

(*) PR TARGET LEVEL NORMALIZATION
TARGET LEVELS ARE NORMALIZED FOR ±1
(TARGET LEVEL OF (0000) AND (1111) ARE ±1)

(**) LEVEL DEFINITIONS

 $\Delta 4 = (\Delta (0000) + \Delta (1111))/2$

 $\Delta 3 = (\Delta (0001) + \Delta (1000))$

 $+ \Delta (1110) + \Delta (0111))/4$

 $\Delta 2 = (\Delta (1001) + \Delta (0110))/2$

 $\Delta E = (\Delta (0011) + \Delta (1100))/2$

WHERE,

 $\Delta 4$ CAN BE MEASURED BY ENVELOPE DETECTION CIRCUIT, OR CAN BE CALCULATED FROM α (SIGNAL ASYMMETRY IN %) AND β (β VALUE IN %)

FIG. 11

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 12D

FIG. 13A

CASE OF NEXT GENERATION DVD λ =405nm, NA=0.85, RLL(1,7), Tw=75nm, 200Mbps

FIG. 13B

CASE OF DVD λ=655nm, NA=0.60, RLL(2,10), Tw=140nm, 22Mbps 1 10-1 --- BASIC PRML BIT ERROR RATE 10-2 ► METHOD-1 10⁻³ - METHOD-3 10-4 10⁻⁵ 10⁻⁶ 0.2 0.1 0.3 0.4 0.5 0.6 0 3T MARK EDGE WRITING SHIFT (Tw)

Page 13 of 15

13 / 15

FIG. 14

CONTENTS	BASIC PRML	ADAPTIVE PRML	OUR INVENTION
TARGET LEVELS	FIXED	ADAPTIVE TO READOUT SIGNAL	ADAPTIVE TO ASYMMETRY
ASYMMETRY COMPENSATION	×	0	
WRITE CONDITION ADJUSTMENT	\times	\bigvee	
MEDIA INTERCHANGEABILITY		×	

FIG. 15A

FIG. 15B

MODE	ASYMMETRY COMPENSATION TARGET	COMPENSATION TARGET (NO RESTRICTION)
ADJUST BEFORE SHIPMENT	0	×
FIELD STUDY	0	×
VERIFY	0	×
READ	0	0
READ RETRY	×	0

FIG. 16

