Honors (alculus, another sample final - solution.

(1) See the solution of sample I and sample 2.

(2) $\frac{N^{\frac{3}{2}}+7}{(a)^{\frac{3}{2}}+2n+3}$ $\frac{N^{\frac{3}{2}}+7}{(a)^{\frac{3}{2}}+2n+3}$ $\frac{N^{\frac{3}{2}}}{(a)^{\frac{3}{2}}+2n+3}$ $\frac{N^{\frac{3}{2}}}{(a)^{\frac{3}{2}}+2n+3}$ where I < 00 and I >0. Then, by L.C.T., N=3 N2+2Ntz Converges.

(let u=ln(x)) (b) = 2 (lhun) Let $f(x) = \frac{2}{X(2n(x))}$. Then $\int_{-\infty}^{\infty} \frac{dx}{X(2n(x))} = 2\int_{2}^{\infty} \frac{1}{2} \frac{dx}{2} = 2\ln(2n(x)) \Big|_{2}^{\infty}$ By Integral text, $\sum_{n=2}^{\infty} \frac{2}{n(\ln n)}$ diverges

(c) \(\frac{\fin}}}}}}}{\frac{\fin}}}}}}{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{ Let $a_n = \frac{2^n}{n!}$, $\frac{|a_{n+1}|}{|a_n|} = \frac{2^{n+1}}{|a_n|} = \frac{2}{|a_n|} > 0 < 1$ as $n > \infty$ By Ratio Test, 52n converges

(d) \$\frac{1}{10} \frac{(-1)^n}{10} Let bn= 1 , SThe (1) bn>bn+1 = 0 &n (2) bn>0 as n>10, Then, by A.S.T., 1 cowerges.

(A) Given $\frac{\aleph}{N-1} \frac{(\chi-1)^n}{N^2 z^n}$, let $Q_N = \frac{(\chi-1)^n}{N^2 z^n}$, we have $\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(x-1)^{n+1}}{(n+1)^2 z^{n+1}} \cdot \frac{n^2 z^n}{(x-1)^n}\right| = \left|\frac{x-1}{z} \cdot \left(\frac{n}{n+1}\right)^2\right| \Rightarrow \frac{x-1}{z}$ as $n \neq \infty$ By Ratio Test, | x / < | > | X-1/<2 > -2 < X-1<2 $\Rightarrow - | < x < 3$ Check x=-1, we have $\sum \frac{(-2)^n}{n^2 \cdot z^n} = \sum \frac{(-1)^n}{n^2}$ converges by A, S, T. Check X=3 We have $\sum \frac{2^n}{2^{n} \cdot n^2} = \sum \frac{1}{n^2}$ converges by p-series Text. Thus, the radius of convergence is 2 Interval of convergence is $-1 \le x \le 3$ (b) Given for= in nxn-1. (i) let $a_n = n \times^{n-1} \frac{|a_{n+1}|}{|a_n|} = \frac{|a_{n+1}|}{|a_n|} = |x| \frac{|a_n|}{|a_n|} = |x|$ By Ratio Test, $as_{|X|<1}$. $\sum_{n=1}^{\infty} n \times^{n-1}$ converges, (or 4 < x < 1) n > 1 of diverges by Divergence Test. Check X=1. We have \(\frac{10}{2} (H)^n \) diverges by A. S.T. >-(<XC). such that Inxn-1 converges. (II) $f(x) = \sum_{n=2}^{\infty} N(n-1) \times \sum_{n=2}^{\infty} 1 p_n$ $\int (x) = 2 n(N-1) x$ $\int \int \frac{h}{h} = \frac{2 n(N-1) x^{n-2}}{h} \frac{|h|}{h} = \frac{|h|}{h} \frac{|h|}$ Check X=1, $\sum_{n=2}^{\infty} n(n+1)$ diverges by Divergence Text, converges check X=1, $\sum_{n=2}^{\infty} (+1)^n n(n+1)$ diverges by A.S.T.

(hus fix) is differentiable as IXICI.

Z

(a)
$$cos(x) = \frac{M}{N} \frac{(-1)^{N} cos(x)}{(2n)!}$$

Then $cos(2x) = \frac{M}{N} \frac{(-1)^{N} (2x)^{2N}}{(2n)!}$

(b) $cos(2x) = 1 - \frac{(2x)^{2}}{2!} + \frac{(2x)^{4}}{4!}$ and $cos(2x) = \frac{M \cdot |x|^{5}}{5!}$

(formula, $cos(2x) = \frac{M \cdot |x|^{5}}{5!}$

(a) $cos(2x) = \frac{M \cdot |x|^{5}}{4!}$

(b) $cos(2x) = \frac{M \cdot |x|^{5}}{4!}$

(c) By the remainder formula. for fixed $cos(2x) = \frac{M \cdot |x|^{5}}{(2n)!}$

(c) By the remainder formula. for $cos(2x) = \frac{M \cdot |x|^{5}}{(2n)!}$

(c) $cos(2x) = \frac{M \cdot |x|^{5}}{(2n)!}$

5). Let
$$f(x) = \frac{1}{1-2x^3}$$
. We have $\frac{1}{1-2x^3} = \frac{1}{1-(2x)^5} = \frac{1}{N-2} (2x^5)^N$. By Root Test, we have $\frac{1}{\sqrt{12}} = \frac{1}{\sqrt{12}} (2x^5)^N$. By Root Test, we have $\frac{1}{\sqrt{12}} = \frac{1}{\sqrt{12}} (2x^5)^N = \frac{1}{\sqrt{12}} (2x$