APP MTH 3001 Applied Probability III Class Exercise 5

Andrew Martin

May 31, 2018

1. In a random walk on the non-negative integers starting at the origin, the size X_n of the n^{th} step, $n \ge 1$ has distribution

$$P(X_n = j) = \frac{e^{-1}}{j!}, \quad j \ge 0.$$

Define

$$S_0 = 0,$$

$$S_n = \sum_{i=1}^n X_i, \quad n \ge 1,$$

$$Y_n = S_n - n, \quad n \ge 0.$$

Show that $\{Y_n : n \in \mathbb{N}\}$ is a martingale wrt $\{X_n : n \in \mathbb{N}\}$.

Solution Clearly the X_n s are independent. Martingale if $E[|Y_n|] < \infty$, and

$$E[Y_{n+1}|X_0,\ldots,X_n]=Y_n$$

Noting that $E(X) = \sum_{i=0}^{\infty} x_i p_i = \sum_{j=0}^{\infty} \frac{je^{-1}}{j!}$

Checking convergence of E(X) (using ratio test):

$$\lim_{j \to \infty} \left(\frac{\frac{(j+1)e^{-1}}{(j+1)!}}{\frac{je-1}{j!}} \right) = \lim_{j \to \infty} \left(\frac{(j+1)j!}{j(j+1)!} \right)$$
$$= \lim_{j \to \infty} \left(\frac{1}{j} \right)$$
$$= 0$$

So the series converges.

$$E[|Y_n|] = E\left[\left| S_n - n \right| \right]$$

$$= E\left[\left| \sum_{i=1}^n X_i - n \right| \right]$$

$$= \begin{cases} E\left[\sum_{i=1}^n X_i - n \right] & \sum_{i=1}^n X_i - n >= 0 \\ E\left[-\sum_{i=1}^n X_i + n \right] & \sum_{i=1}^n X_i - n < 0 \end{cases}$$

$$= \begin{cases} \sum_{i=1}^n E[X_i] - n & \sum_{i=1}^n X_i - n >= 0 \\ -\sum_{i=1}^n E[X_i] + n & \sum_{i=1}^n X_i - n < 0 \end{cases}$$

Since $E(X_i)$ is convergent, a finite sum of it must be finite. Therefore, $E(|Y_n|) < \infty$. Now the martingale property:

Aside: Recall, $\sum_{j=0}^{\infty} \frac{x^j}{j!} = e^x$ In this case, let $x_j = 1$, i.e.:

$$\sum_{j=0}^{\infty} \frac{e^{-1}}{j!} = e^{-1} \sum_{j=0}^{\infty} \frac{1}{j!} = e^{-1} e^{1} = 1$$

For the expectation, we have:

$$E(X) = \sum_{j=1}^{\infty} j \frac{e^{-1}}{j!} = \sum_{j=1}^{\infty} \frac{e^{-1}}{(j-1)!} = 1$$

End aside

$$E[Y_{n+1}|X_0, \dots, X_n] = E\left[\sum_{i=1}^{n+1} X_i - (n+1)|X_0, \dots, X_n\right]$$

$$= E\left[\sum_{i=1}^{n+1} X_i|X_0, \dots, X_n\right] - (n+1)$$

$$= \sum_{i=1}^{n+1} E[X_i|X_0, \dots, X_n] - (n+1)$$

$$= \sum_{i=1}^{n} X_i - n + E[X_{n+1}] - 1$$

$$= Y_n + 1 - 1$$

$$= Y_n$$

Therefore Y_n is a martingale.

As required.

2. If $\{X_n : n \in \mathbb{N}\}$ is a martingale wrt to itself, show that for any non-negative integers, $k \leq \ell < m$, the difference $X_m - X_\ell$ is uncorrelated with X_k . That is, show that

$$E\left[\left(X_m - X_\ell\right) X_k\right] = 0.$$

Solution Note that we are given, $k \leq \ell < m$. If X_n is a martingale w.r.t itself, then we know

$$E(X_{n+1}|X_0,\ldots,X_n)=X_n$$

Tower property:

$$E(X) = E(E(X|Y))$$

$$E\left[\left(X_{m}-X_{\ell}\right)X_{k}\right] = E\left[E\left[\left(X_{m}-X_{\ell}\right)X_{k} \mid X_{0},\ldots,X_{\ell}\right]\right] \quad \text{tower property}$$

$$= E\left[E\left[X_{m}X_{k} \mid X_{0},\ldots,X_{\ell}\right] - E\left[X_{\ell}X_{k} \mid X_{0},\ldots,X_{\ell}\right]\right]$$

$$= E\left[X_{k}E\left[X_{m} \mid X_{0},\ldots,X_{\ell}\right] - X_{\ell}X_{k}\right] \quad \text{since } k \leq \ell, \ X_{k} \text{ is given}$$

$$= E\left[X_{k}X_{\ell} - X_{\ell}X_{k}\right]$$

$$= E(0) = 0$$

Used the fact that:

$$E[X_{n+k}|Y_0,\ldots,Y_n] = X_n \quad a.s.$$

As required.

3. Let $\{X_n : n \in \mathbb{N}\}$ be a DTMC on the state space \mathcal{S} with one-step transition probability matrix $\mathbb{P} = (p_{ij})$ and let $f : \mathcal{S} \to \mathbb{R}$ be a bounded function. Then, define

$$M_n = \sum_{m=1}^{n} f(X_m) - \sum_{m=0}^{n-1} \sum_{i \in S} p_{X_m,i} f(i).$$

Show that $\{M_n : n \in \mathbb{N}\}$ is a martingale wrt $\{X_n : n \in \mathbb{N}\}$.

Solution Note that $p_{i,j} \geq 0$. Since f is a bounded function, $|f(x)| < \infty$, $\forall x \in \mathcal{S}$. Show the expectation is bounded:

$$E(|M_n|) = E\left(\left|\sum_{m=1}^n f(X_m) - \sum_{m=0}^{n-1} \sum_{i \in \mathcal{S}} p_{X_m,i} f(i)\right|\right)$$

$$\leq E\left(\sum_{m=1}^n |f(X_m)| - \sum_{m=0}^{n-1} \sum_{i \in \mathcal{S}} |p_{X_m,i} f(i)|\right)$$

$$\leq \sum_{m=1}^n E(|f(X_m)|) - \sum_{m=0}^{n-1} 1 \sum_{i \in \mathcal{S}} E(|f(i)|)$$

$$= \sum_{m=1}^n E(|f(X_m)|) - n \sum_{i \in \mathcal{S}} E(|f(i)|)$$

$$< \infty$$

As a finite sum of a bounded function is bounded.

$$E(M_{n+1}|X_0,\dots,X_n) = E\left(M_n + f(X_{N+1}) - \sum_{i \in \mathcal{S}} p_{X_n,i}f(i) \mid X_0,\dots,X_n\right)$$

$$= E\left(M_n \mid X_0,\dots,X_n\right) + E\left(f(X_{N+1}) - \sum_{i \in \mathcal{S}} p_{X_n,i}f(i) \mid X_0,\dots,X_n\right)$$

$$= M_n + E(f(X_{N+1})|X_n) - E\left(\sum_{i \in \mathcal{S}} p_{X_n,i}f(i) \mid X_0,\dots,X_n\right) \text{ memoryless}$$

$$= M_n + \sum_{i \in \mathcal{S}} p_{X_n,i}f(i) - \sum_{i \in \mathcal{S}} p_{X_n,i}f(i) \text{ markov}$$

$$= M_n$$

Therefore $\{M_n : n \in \mathbb{N}\}$ is a martingale wrt $\{X_n : n \in \mathbb{N}\}$.

As required.

4. If $\{X_n : n \in \mathbb{N}\}$ is a sub-martingale wrt $\{Y_n : n \in \mathbb{N}\}$ and $Z \geq 0$ is a (measurable) function of Y_0, \ldots, Y_n , show that

$$E\left[X_n Z\right] \le E\left[X_{n+1} Z\right]$$

Solution Pretty sure it should start from Y_1 given $0 \notin \mathbb{N}$... Sub-martingale means:

$$E(|X_n|) < \infty$$

$$E[X_{n+1}|Y_0, \dots, Y_n] \ge X_n$$

$$\begin{split} E[X_{n+1}Z] &= E[E[X_{n+1}Z|Y_0, \dots Y_n]] \text{ tower property} \\ &= E[E[X_{n+1}|Y_0, \dots, Y_n][E[Z|Y_0, \dots Y_n]] \text{ indep} \\ &= E[ZE[X_{n+1}|Y_0, \dots, Y_n]] \\ &= E[ZE[X_{n+1}|Y_0, \dots, Y_n]] \\ &\geq E[ZX_n] \end{split}$$

I.e.

$$E[X_n Z] \le E[X_{n+1} Z]$$

As required.