UNIVERSIDADE ESTADUAL DE MARINGÁ GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO DISCIPLINA LFA -ERE (10. avaliação/2021) - Profa. Linnyer

ALUNO(a): João Pedro Peres Bertooncelo	RA:112650	ASSINATURA:
`		

A prova contém 02 exercícios distribuídos em 01 página a serem respondidos nos lugares indicados usando caneta azul ou preta.. Faça uma cópia digital e envie pelo Google Classroom.

Não são permitidos quaisquer tipos de consultas (colegas, livros, materiais).

Questão 1 (2,0): Considere a Hierarquia de Chomsky e as linguagem T, X,Y,Z,W e P sobre o alfabeto {0,1}. Saiba que a linguagem L é finita.

Apresente a definição para as linguagens A, B, C, D, E, F, G, H de acordo com as operações sobre conjuntos colocadas nas linhas da tabela abaixo e também responda as outras questões propostas:

$$T = \{ 1^n 2^m 3^{3m+2n+1} \mid m, n \ge 0 \}, \quad X = 0^2 1^2 \; , \quad Y = \{ 0^n 1^n \mid n \ge 0 \}, \quad Z = \{ 0 \}^* \{ 1 \}^*, \quad W = \{ 0^n 1^m \mid m \ne n \}, \quad P = \{ \ \}^* \{ 1 \}^*, \quad W = \{ 0^n 1^m \mid m \ne n \}, \quad P = \{ \ \}^* \{ 1 \}^*, \quad W = \{ 0^n 1^m \mid m \ne n \}, \quad P = \{ \ \}^* \{ 1 \}^*, \quad W = \{ 0^n 1^m \mid m \ne n \}, \quad P = \{ \ \}^* \{ 1 \}^*, \quad W = \{ 0^n 1^m \mid m \ne n \}, \quad P = \{ \ \}^* \{ 1 \}^*, \quad W = \{ 0^n 1^m \mid m \ne n \}, \quad P = \{ \ \}^* \{ 1 \}^*, \quad W = \{ 0^n 1^m \mid m \ne n \}, \quad P = \{ \ \}^* \}$$

a)Linguagem A = Z ∩ Y	A = Y = {Lambda,01,0011,000111}	A é um Ling. Regular? (X) Sim () Não
b)Linguagem B = Y ∩ W	B = P = { }	B é um Ling. Regular? (X)Sim ()Não
c)Linguagem C = Z U Y	C = Z = {Lambda,1,11,,0,01,011,}	C é um Ling. Regular? (X)Sim ()Não
d)Linguagem D = Y U W	D = Z = {Lambda,1,11,,0,01,011,}	D é um Ling. Regular? (X)Sim ()Não
e) Linguagem E= X.X	E= {0000,0011,1100,1111}	E é um Ling. Regular? (X) Sim () Não
f)Linguagem F = Y.P	F= P = { }	Féum Ling. Regular? (X)Sim ()Não
g)Linguagem G = Z (complemento de Z)	G = P = { }	G é um Ling. Regular? (X) Sim () Não
h) Lingaugem H = T.P	H = P = { }	T é uma Linguagem Livre do Contexto? () sim (X) não

Questão 2 (3,0): Considere a Hierarquia de Chomsky e as linguagens dos anunciados a seguir. Para cada uma das alternativas, atribua V ou F.

V/F	Afirmativas
V	$L1 = \{0^n 0^n 0^n \mid n \ge 0\}$ também pode ser escrita como $L2 = \{0^{3n} \mid n \ge 0\}$
F	A palavra $w = xyz$ pertence à linguagem L3 = $(xx^* + yy^*)zz^*$ sendo $\Sigma = \{x,y,z\}$
V	A palavra $w = ab$ pertence à linguagem $L4 = \{a^k b^n k + n \ge 2\}$ sobre o alfabeto $\{a,b\}$.
V	A palavra w = bbbbb pertence à linguagem L4 = $\{a^k b^n k+n \ge 2\}$ sobre o alfabeto $\{a,b\}$.
F	Sendo a linguagem L5 = $\{0^n 1^n \mid n \ge 0\}$, então L5.L5 = $\{0^j 1^j 0^k 1^k \mid k \ge 0 \text{ e } j \ge 0\}$
V	Sendo a linguagem L6 = {a ⁿ² n ≥ 0}. Então λ pertence à linguagem L6
V	Sendo L7 = $\{0^n1^m \mid m \neq n\}$ e L8 = $\{0^n1^n \mid n > 0\}$, então L7 U L8 = $0*1*$
F	Sendo L9 = a*b* e L10 = {a ⁿ b ⁿ n ≥ 0}, então L9 = L10
V	Sendo a linguagem L 11 definida sobre o alfabeto Σ = {x,z} e a linguagem L11 = { }, o complemento de
	L11 será {x,z}*.
F	Sendo L 12 = $\{\lambda\}$, o fecho de Kleene de L12 = $\{\}$
V	Sendo L 12 = $\{\lambda\}$, o fecho positivo de L 12 é $\{\lambda\}$
V	As linguagens regulares são as mais simples que existem segundo a Hierarquia de Chomsky
V	Sendo L13 = $\{0\}^2\{1\}^2$ então 001100110011 é a palavra resultante para L13 ³
V	A palavra w = 11223333333333 pertence à linguagem L14 = $\{1^n 2^m 3^{3m+2n+1} \mid m, n \ge 0\}$
F	A palavra w = 0100 pertence à linguagem L15 = $\{0^n1^m \mid m \neq n\}$ onde o número de zeros tem que ser
	diferente do número de 1s