

Data Science with Actuarial Applications

Week 7

Xintong Li

Department of Statistics and Actuarial Science

Last Week

- ► Y is a key ratio: claim frequency or claim severity
- ► X is a vector of rating factors, modeled as categorical variables
- ► Exponential Dispersion Models (EDM)
- ► Multiplicative models (logarithmic link function)
- ► Claim frequency: Poisson regression
- ► Claim severity: Gamma regression

Today

- ► Estimating the parameters of a GLM from:
- ► Writing the log-likelihood function
- ► Taking the derivative of the log-likelihood function
- ► Solving for the maximum likelihood estimators (MLE)

2.6 Parameter Estimation (MLE)

Evaluating each partial derivative

Remark: satured model

Corresponding GLM overfits. However, it is useful in the definition of deviance.

Multiplicative Poisson frequency model

Multiplicative gamma severity model

Summary of Theoretical Results

- ► Goal: estimate the parameters of a GLM using MLE
- ightharpoonup The (r+1) equations:

$$\sum_{i=1}^{n} w_{i} \frac{y_{i} - \mu_{i}}{v(\mu_{i}) g'(\mu_{i})} x_{ij} = 0.$$

► For multiplicative Poisson frequency model:

$$\sum_{i=1}^{n} w_i (y_i - \mu_i) x_{ij} = 0.$$

► For multiplicative gamma severity model:

$$\sum_{i=1}^{n} w_{i} \frac{y_{i} - \mu_{i}}{\mu_{i}} x_{ij} = 0.$$

Example: Moped dataset

► Goal: Use everything we learned to build a GLM for the moped dataset.

► Tasks:

- 1. Load the data
- 2. Explore the data
- 3. Set the base tariff cells
- 4. Fit the frequency model
- 5. Fit the severity model

Recap from Last Time

- ► Estimating the parameters of a GLM using MLE
- ► Example in R: Moped dataset

Today

- ► Hypothesis testing for GLMs
- ► Deviance statistic: likelihood ratio test
- ► Pearson's chi-squared test
- Estimating the dispersion parameter φ
- ► Testing hierarchical models
- Confidence intervals based on Fisher's information

2.7 GLM Model Building

Deviance Statistic from Likelihood Ratio Test

Deviance Statistic from Likelihood Ratio Test

Null hypothesis:

H₀: fitted GLM model

Test Statistic:

$$D^* = 2\{l(y_1, \ldots, y_n; , \theta, \phi) - l(\hat{\mu}_1, \ldots, \hat{\mu}_n; , \theta, \phi)\}.$$

Under general conditions, the deviance statistic D^* is approximately chi-squared distributed with n-p degrees of freedom, where

- \triangleright n is the number of observations,
- ightharpoonup and p = r + 1 is the number of parameters in the model.

Compare the deviance statistic with $c_{1-\alpha}$,

- $ightharpoonup c_{1-\alpha}$ is the $1-\alpha$ quantile of the chi-squared distribution with n-p degrees of freedom.
- ► Reject if $D^* > c_{1-\alpha}$, accept otherwise.

Using p-values, reject if p-value $< \alpha$, accept otherwise.

Pearson's Goodness-of-Fit Test

Null hypothesis: H₀: fitted GLM model

$$X^{2} = \sum_{i=1}^{n} \frac{(y_{i} - \hat{\mu}_{i})^{2}}{\mathsf{Var}(Y_{i})} = \frac{1}{\phi} \sum_{i=1}^{n} w_{i} \frac{(y_{i} - \hat{\mu}_{i})^{2}}{\nu(\hat{\mu}_{i})}.$$

 X^2 is approximately chi-squared distributed with n-(r+1) degrees of freedom. Compare the Pearson test statistic with $c_{1-\alpha}$,

- $c_{1-\alpha}$ is the $1-\alpha$ quantile of the chi-squared distribution with n-p degrees of freedom.
- ▶ Reject if $X^2 > c_{1-\alpha}$, accept otherwise.

Using p-values, reject if p-value $< \alpha$, accept otherwise.

Estimation of φ

Testing Hierarchical Models

Consider two models $M_s \subset M_t$:

 H_0 : data comes from M_s

 $H_{\alpha}:\,\mbox{data}$ comes from the more complicated M_t

Test statistic:

$$D^*(\mathbf{y}, \hat{\mu}^{(s)}) - D^*(\mathbf{y}, \hat{\mu}^{(t)}).$$

- $ightharpoonup M_s$ and M_t are required to be from the same EDM family.
- $\qquad \qquad D^*(\textbf{y}, \hat{\mu}^{(s)}) D^*(\textbf{y}, \hat{\mu}^{(t)}) \text{ is approximately chi-squared distributed with } p_t p_s \\ \text{degrees of freedom.}$
- Using p-values, reject if p-value $< \alpha$, accept otherwise.

Confidence intervals based on Fisher's information