

Perceptual impact of the loss function on deep-learning image coding performance

Shima Mohammadi, Joao Ascenso

Picture Coding Symposium, San Jose, California, USA, 7 December 2022

Outline

- I. Introduction
- 2. DL Image Codec Perceptual optimization
- 3. Subjective Quality Assessment
- 4. Experimental Results
- 5. Final Remarks

Introduction

Learning-based Image Compression

Objective: Learn a compact representation of images from a large amount of visual data efficiently

Learning-based vs Conventional codecs

Deep-learning image coding solutions have better compression efficiency than conventional solutions in terms of ratedistortion trade off

JPEG AI CfP Performance Evaluation

TEAMID	BD-rate vs VVC
TEAM14	-32.3%
TEAM24	-29.9%
TEAM16	-17.9%
TEAM12	-3.1%
TEAM22	7.2%
TEAM19	8.6%
TEAM13	10.6%
TEAM21	13.8%
TEAM17	32.0%
TEAM15	51.2%

Learning-based Architecture

Ballé J, Minnen D, Singh S, Hwang SJ, Johnston N. Variational image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436. 2018 Feb 1.

Challenges in Learning-based Image Coding

- Which encoder/decoder architecture is more promising?
- Which types of processing layers should be used?
- · Which types of the quality metrics should be used for optimization?
 - Idea: Freeze everything (e.g., the architecture) and only change the image quality metric used in the loss function

Objective and Contributions

Study the perceptual impact of several image quality metrics for deep learning-based image codec optimization

Subjective assessment campaign which evaluates several learning-based compression models which only differ on the loss function quality metric

DL Image Codec Perceptual Optimization

Rate-distortion Tradeoff

- Rate-distortion tradeoff is controlled by λ and expressed by
 - $L = \lambda \left(D(X \hat{X}) \right) + R(\hat{Y})$
- Quality metric D plays a very important role on the DL-image coding model creation

Metrics	Short Description
MSE	Measures pixel-wise squared differences
SSIM	Measures the degradation in structural information
MS-SSIM	SSIM extension that supports variations in image resolution and viewing conditions
FSIM	Exploits phase congruency and gradient information
GMSD	Measures pixel-wise gradient differences
LPIPS	Measures similarity using deep features
DISTS	Measures structural distortions with a tolerance for texture resampling
NLPD	Measures root mean square error differences in normalized Laplacian domain
VSI	Exploits saliency features for local distortion computation

Training Procedure

- Training on patches of JPEG AI training and validation dataset
- Compress Al library implementation of VAE-hyperprior was used
- All the models were pretrained with MSE
- Learning rate = Ie-5
- Image quality metrics in the loss function:
 - DISTS, LPIPS, MSE, MS-SSIM, NLPD, GMSD, FSIM, SSIM, VSI
- 200 epochs for training each model

Subjective Quality Assessment

Subjective Evaluation Methodology

- Pairwise comparison (PC) subjective assessment
- Advantages:
 - High accuracy
 - Robustness
 - No training for meaning of the quality scales
- Disadvantages:
 - Long duration
 - Number of pairs for one reference:

•
$$\frac{n(n-1)}{2}$$

Pairwise Sampling Method

- Objective:
 - Make a shorter and less expensive test
- Iterative approach:
 - One pair never compares twice
 - Only adjacent pairs are compared

Experimental Setup

- Web-based platform using JavaScript and MongoDB database
- Subjects recruited from Amazon Mechanical Turk (AMT)
- Requirements:
 - Minimum display resolution of 1920×1080
 - Display size must be above 13 inches
- Training phase for the subjects to be familiar with the interface and objective of the test.

Test Material

- Six images of JPEG AI test set
- Images were cropped to fitted side by side layout

Subjective Data Processing

- Outlier detection
 - Number of transitivity cycles
 - R = 1 d/h

- 2. Quality score computation
 - PC matrix for each subject is created
 - Group preference matrix is calculated
 - Winning frequencies are inferred
 - Number of votes each metric receives divided by the total number of comparison

Subjective Test Statistics

- 120 users distributed in three sessions
- Subjects age
 - Between 20 and 60 with average of 34
- Gender distribution
 - 70% male
- Display resolution
 - More common is 1920×1080
- Display size
 - More common is 15 inches
- Number of outliers
 - 2, 4, 6 in three sessions

Experimental Results

Quantitative Results (Low bitrate)

- Scores were normalized for each test image
- DISTS, MS-SSIM and MSE have the best performance with exception of Ponytail image

Quantitative Results (Medium bitrate)

- MS-SSIM has the best performance 5 out of six images.
- DISTS has the best performance in Woman image

Quantitative Results (High Bitrate)

- DISTS has the highest overall performance except for Rotunda of Most and Racing car where MS-SSIM and MSE provides better performance.
- MSE performs poorly in high bitrates compare to low and medium bitrate.

Qualitative Results

- MS-SSIM model failed to generate the natural skin of the face
- DISTS provides high quality

Qualitative Results

- MS-SSIM model generates more sharp images
- LPIPS and DISTS models generate images with ringing artifacts

Final Remarks

Final Remarks

- Contributions:
 - Study of the perceptual impact of several image quality metric in the loss function
 - Large scale crowdsourcing pairwise subjective test was performed
- Conclusions:
 - The choice of image quality metric matters!
 - MS-SSIM and DISTS offer the best rate-distortion tradeoff
 - Loss functions better selected for each bitrate could provide performance improvements

Thanks for your attention

For more information email us: shima.mohammadi@lx.it.pt, joao.ascenso@lx.it.pt

