Analisi matematica

Luca De Paulis

29 settembre 2019

Capitolo 1

Fondamentali

Definizione 1.0.1 (Intervallo di \mathbb{R}). Un sottoinsieme I contenuto in RR ($I \subset \mathbb{R}$) si dice intervallo se e solo se $\forall x, y \in I$ con x < y e per ogni z t.c. x < y < z, allora $z \in \mathbb{R}$.

1.1 Insiemi

Definizione 1.1.1 (Massimo). *Sia* $A \subset \mathbb{R}$, $A \neq \emptyset$, allora $m \in \mathbb{R}$ si dice massimo di A se $m \geq a \ \forall a \in A \land m \in A$.

Il massimo di un insieme A indica con $\max A$.

Definizione 1.1.2 (Minimo). Sia $A \subset \mathbb{R}$, $A \neq \emptyset$, allora $m \in \mathbb{R}$ si dice minimo di A se $m \leq a \ \forall a \in A \land m \in A$.

Il minimo di un insieme A indica con $\min A$.

Definizione 1.1.3 (Maggiorante). Sia $A \subset \mathbb{R}$, $A \neq \emptyset$, allora $m \in \mathbb{R}$ si dice maggiorante di A se $m \geq a \ \forall a \in A$.

Definizione 1.1.4 (Minorante). Sia $A \subset \mathbb{R}$, $A \neq \emptyset$, allora $m \in \mathbb{R}$ si dice minorante di A se $m \leq a \ \forall a \in A$.

Osservazione. Se esiste un maggiorante/minorante per A, allora ne esistono infiniti. Al contrario, esistono insiemi che non ammettono maggioranti o minoranti o entrambi.

Definizione 1.1.5 (Insieme limitato superiormente). Un insieme si dice limitato superiormente se l'insieme dei suoi maggioranti non e' vuoto.

Definizione 1.1.6 (Insieme limitato inferiormente). Un insieme si dice limitato inferiormente se l'insieme dei suoi minoranti non e' vuoto.

Definizione 1.1.7 (Insieme limitato). Un insieme si dice limitato se e' limitato sia superiormente che inferiormente.

Osservazione. $A \subset \mathbb{R}, A \neq \emptyset$ si dice limitato se e solo se $\exists n, k \in \mathbb{R}$ t.c. $n \leq$ $a \le k \ \forall a \in A.$

Teorema 1.1.1 (Esistenza dell'estremo). Se $A \subset \mathbb{R}$, $A \neq \emptyset$ e' superiormente limitato, allora l'insieme dei maggioranti di A ha minimo. Tale minimo si chiama estremo superiore di A e si indica con sup A.

Allo stesso modo, se $A \subset \mathbb{R}$, $A \neq \emptyset$ e' inferiormente limitato, allora l'insieme dei minoranti di A ha massimo. Tale massimo si chiama estremo inferiore di $A \ e \ si \ indica \ con \ inf A.$

Osservazione. Se sup $A \in A$, allora sup $A = \max A$. Se inf $A \in A$, allora inf $A = \min A$.

Definizione 1.1.8. Se A non e' superiormente limitato, allora per definizione $\sup A = +\infty.$

Se A non e' inferiormente limitato, allora per definizione inf $A = -\infty$.

Osservazione. Sia $A \subset \mathbb{R}$, $A \neq \emptyset$ e A superiormente limitato. Allora sup A =m se e solo se

$$m \ge a \qquad \forall a \in A$$
 (1.1)

$$\forall \varepsilon > 0 \; \exists a_0 \; t.c. \; a_0 > m - \varepsilon \tag{1.2}$$

1.2 Retta reale estesa

Definizione 1.2.1 (Retta reale estesa). Si definisce retta reale estesa l'insieme $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$ in modo che valgano le seguenti condizioni:

$$-\infty \le x \le +\infty \qquad \forall x \in \mathbb{R}$$

$$-\infty < x < +\infty \qquad \forall x \in \mathbb{R}$$

$$(1.3)$$

$$(1.4)$$

$$-\infty < x < +\infty \qquad \forall x \in \mathbb{R} \tag{1.4}$$

Osservazione. Per definizione, $\max \overline{\mathbb{R}} = +\infty$ e $\min \overline{\mathbb{R}} = -\infty$.

Osservazione. Sia $A \subset \mathbb{R}$, $A \neq \emptyset$. Se sup $A < +\infty$, allora A e' superiormente limitato. Se inf $A > -\infty$, allora A e' inferiormente limitato.

Definizione 1.2.2 (Operazioni in $\overline{\mathbb{R}}$). In $\overline{\mathbb{R}}$ valgono tutte le operazioni che valgono in \mathbb{R} , piu' alcune:

$$x + (-\infty) = -\infty \qquad \forall x \neq +\infty \tag{1.5}$$

$$x + (+\infty) = +\infty \qquad \forall x \neq -\infty \tag{1.6}$$

$$x \cdot (+\infty) = +\infty, \ x \cdot (-\infty) = -\infty \qquad \forall x > 0$$
 (1.7)

$$x \cdot (+\infty) = -\infty, \ x \cdot (+\infty) = +\infty \qquad \forall x < 0 \tag{1.8}$$

(1.9)

1.3 Funzioni particolari

Osservazione. $Se\ A\subset \mathbb{Z},\ A\neq \emptyset,\ allora$

- ullet se A e' superiormente limitato A ammette massimo;
- ullet se A e' inferiormente limitato A ammette minimo.

Definizione 1.3.1 (Parte intera). Dato $x \in \mathbb{R}$ si dice parte intera di x il numero

$$[x] = \max \{ m \in \mathbb{Z}, \ m \le x \}$$