Arquitetura de Computadores

Relembrando

Arquitetura de Von Neuman

Acesso por palavra

- Custo da memória
 - Aumenta de acordo com a quantidade
 - Aumenta muito mais de acordo com a velocidade
- É melhor ter um computador:
 - Com uma memória pequena e muito rápida
 - Com uma memória grande e lenta

- Solução híbrida
- O computador tem vários tipos de memórias
- Cada tipo tem características especiais a serem aplicadas a cada caso

- Registradores
 - Junto do processador
 - Rápido
- Cache
 - Dentro ou fora do chip
 - L1 L2 L3
- Principal
 - RAM
- Secundária
 - Discos

- Dados que são usados mais frequentemente precisam estar em memórias rápidas
- Dados que são usados menos frequentemente podem estar em memórias mais lentas

Hierarquia de memória

Registradores

- A memória mais próxima do processador
- Mínima capacidade de armazenamento
- Conjuntos de dezenas de palavras
 - Banco de registradores
- Dividido em tipos:
 - Registradores de propósito geral
 - Registradores de controle

Memória Principal

- Todos os programas em execução são carregados na memória principal
- Comumente conhecida como memória RAM (Random Access Memory)

Memória Principal

- Tipos de Memória
 - RAM (Random Access Memory)
 - ROM (Read Only Memory)
 - PROM (Programable ROM)
 - EPROM (Eraseable PROM)
 - EEPROM (Eletricaly Eraseable PROM)
 - Flash

Memória Principal

Memória de Acesso Aleatório

Tipos de RAM

- Dinâmica
 - Capacitores
 - Exige Refresh
 - Volátil
- Estática
 - Flip Flops
 - Sem Refresh
 - Volátil

Memória Flash

- Conhecida pelos pen drivers
- SSD (Solid State Disk)
 - Custos de Leituras e Escritas
 - 1.000.000 ciclos de L/E
- Cartões de memória
- 1 Transistor por bit
- Alta densidade
- Rápida na leitura e gravaçã

Células de Memória

- Códigos de correção de erros
 - ECC (Error Correcting Code)
- O valor lido é testado
 - No Error
 - Erro corrigível
 - Erro não corrigível
- Aumento no tamanho da palavra

DDR DDR2 e DDR3

- Double Data Rate
 - Até 1 GB por pente
 - Taxas de Transferência de até 3200 MB/s
- DDR2
 - Até 4GB por pente
 - Menor Consumo
 - Taxas de transferência de até 10400 MB/s
- DDR3
 - Até 8GB por pente
 - Comunicação direta com o Processador Core i7
 - Taxas de transferência de até 12800 MB/s

DDR/DDR2/DDR3

Velocidade de Transmissão

```
VELOCIDADE DO BARRAMENTO em MHz
```

```
x 2 => DUAL RATE
x 64 => NÚMERO DE BITS TRANSFERIDOS POR CICLO
/ 8 => CONVERSÃO DE BITS PARA BYTES
```

 $100 \times 2 \times 64 / 8 = 1600 MB / s$

Hierarquia de memórias

Memória cache

- Cache é um conceito usado em várias áreas da computação
 - Cache de disco
 - Cache do browser
 - Cache de memória
- A ideia é: Mantenha os dados que mais são utilizados mais próximos do processador/usuário

Memória Cache

- Características
 - Alta velocidade de acesso
 - Proximidade do processador
 - Alto custo
 - Baixa capacidade de armazenamento

Cache dos processadores

- Todo acesso a memória passa por um controlador
- Se o dado já está na cache (hit) ele é lido desta
- Se o dado não está na cache (miss) ele é lido da memória para a cache e daí para o processador
- O objetivo da cache é aumentar a taxa de acertos (hit)
 - Na média essa taxa é de 98% a 99%

Acesso a dados

Mapeamento Cache <=> MP

Memória Cache e MP

- A cache tem muito menos espaço que a memória RAM
- Como usar esse espaço menor da melhor maneira possível?
- É preciso então mapear os blocos da memória na cache à medida que eles são necessários

Função de Mapeamento

- Especifica como a memória principal será mapeada na cache
- A memória principal é maior que a cache
- Como colocar os dados na cache de modo que sejam de fácil localização?

Mapeamento direto

Mapeamento direto

- Bloco 0 na Linha 0
- Bloco 1 na Linha 1
- Bloco 2 na Linha 2
- Bloco 3 na Linha 3
- Bloco 4 na Linha 0
- Bloco 5 na Linha 1
- Bloco 6 na Linha 2

• • •

Substitução de dados

- LRU
 - Menos Recentemente Usado
- LFU
 - Menos Frequentemente Usado
- FIFO
 - First In First Out
- Aleatório
 - Qualquer um

Política de escrita na cache

- Write Through
 - Escreve em ambas
- Write Back
 - Escreve apenas quando o dado volta para a RAM
- Write Once
 - Escreve na cache e bloqueia outras caches de escrita
 - Escreve na RAM quando o dado volta

Caches L1 L2 e L3

- Cache L1
 - Menor (poucos KB em média 64KB)
 - Dentro do chip do processador
- Cache L2
 - Hierarquia de cache
 - Em processadores antigos fora do chip
 - Em processadores atuais dentro do chip
- Cache L3
 - Externa ao processador ligada na placa-mãe

Tamanhos de cache

Marca e Modelo	L2 Cache
Mobile Core 2 Duo U7xxx	2 MB
Mobile Core 2 Duo T5xxx	2 MB
Mobile Core 2 Duo T7xxx	2-4 MB
Mobile Core 2 Extreme X7xxx	4 MB
Core 2 Duo E6xxx	2-4 MB
Core 2 Extreme X6xxx	4MB
Core 2 Quad Q6xxx	2x4 MB
Core i7-6xxLM	4 MB
Core i7-9xx	8 MB
Core i7-980X Extreme Edition	12 MB

A cache do processador

Atividade

- Buscar padrões de memória RAM
- Tempos de acesso
 - DDR4
 - RAMBUS
 - QDR
 - GDDR3 e GDDR4
- Tamanho máximo suportado
- Tipo de memória do seu computador