Assignment 1

(Deadline: Sep. 30. Late submission will be considered as 0 point.)

1. (30 points)

Consider a trajectory $\theta = \{x, y, z\}$ is given by $x = \cos 2\pi s$, $y = \sin 2\pi s$, z = 2s, $s \in [0,1]$, and its time scaling is $s(t) = \frac{1}{4}t + \frac{1}{8}t^2$, $t \in [0,2]$. Calculate $\ddot{\theta}$.

2. (30 points)

Via points with specified positions, velocities, and accelerations can be interpolated using fifth-order polynomials of time. For a fifth-order polynomial segment between via points j and j+1, of duration ΔT_j , with β_j , β_{j+1} , $\dot{\beta}_j$, $\dot{\beta}_{j+1}$, $\ddot{\beta}_j$, $\ddot{\beta}_{j+1}$ specified, solve for the coefficients of the fifth-order polynomial.

3. (40 points)

Consider a robot executing a motion of duration T=2 s. Initially the robot follows a cubic time scaling. At t=1 s, however, it switches to a fifth-order time scaling. This fifth-order time scaling, beginning at t=1 s, should match the position, velocity, and acceleration of the cubic time scaling which is ending at that time, i.e., $s(1)=\frac{1}{2}$, $\dot{s}(1)=\frac{3}{4}$, $\ddot{s}(1)=0$. Solve for the complete time scaling $s(t):[0,2]\to[0,1]$.