

Machine Learning

Predicting the numerical ratings for Animal Crossing reviews based on their text

How will we be feeling today?

- Predict the rating or grade of a review based on keywords.
- It is difficult to sort through and categorize
 thousands of user and critic reviews manually, so
 accurate machine learning is helpful in automating
 this tedious task.
- This has applications in analyzing data without numerical ratings, such as social media posts and comments that only use text to grade the game.
- Follow along with the Jupyter notebook!

100.000000

max

Patterns and Prediction					
	crit	ics.describe	users.describe(in		
		grade			grade
	count	107.000000		count	2999.000000
	unique	NaN		unique	NaN
	top	NaN		top	NaN
	freq	NaN		freq	NaN
	mean	90.635514		mean	4.217406
	std	6.114308		std	4.349486
	min	70.000000		min	0.000000
	25%	90.000000		25%	0.000000
	50%	90.000000		50%	2.000000
	75%	94.000000		75%	10.000000
	75%	94.000000		75%	10.000

max

Pocket Gamer UK Animal Crossing; New Horizons, much

Forbes Know that if you're overwhelmed with

VG247 Animal Crossing: New Horizons is eve

Telegraph With a game this broad and lengthy,

publication

grade 100

100

100

100

3

Patterns and Prediction

- Some type of standardization or normalization for user and critic grade columns will be needed, as the critics rate on a scale of 0-100 while the users rate on a scale of 0-10. This affects differences in the mean, standard deviation, and max grade value.
- As there is a lot of textual data, I will have challenges with finding tools and setting up the ML algorithm to parse words for identifying sentiment.

Reading A Crowded Room

- Not many emotional words show up in either critic or user review word clouds, so additional word sorting and identification may be needed.
- User reviews do include "fun", "love", "good",
 bad", and "ridiculous" among most used words.
 The critic reviews use "love", "fun", "fantastic",
 "improve", and "charm" a lot.
- What features of the game might users and critics be talking about the most?

Differences between Users and Critics

- The majority of critics give high scores in the 80s and 90s, whereas the majority of users give extremely low scores (0) or extremely high scores (10).
- I wonder if ML can give insight into why this is so through word detection and the mapping of words to positive or negative sentiment.
- What subjects do critics and users have differing feelings on, and therefore what do they prioritize differently in Animal Crossing?

Building the Model

- This can be seen as an unsupervised learning problem, since the reviews don't already have positive or negative labels.
- This can be worked with an ML model that can infer this based on the given scores.
- However, both unsupervised and supervised learning algorithms can be used for this project, either simultaneously or choosing to do one or the other.
- These include clustering, decision trees, k-fold cross validation...

Clustering

In clustering, we don't have the colors (labels).

Rather, the algorithm comes up with the color and shape of each point.

Supervised learning.

