Color Image Processing

Pengolahan Citra
Semester Gasal 2019 / 2020

Laksmita Rahadianti, Aniati Murni
Fakultas Ilmu Komputer Universitas Indonesia

Review

- Color Vision
- Additive Colors
- Color Theory
- Complementary Afterimage
- Color Order Systems / Color Models
 - Why?
 - Examples?

Pengolahan Citra Berwarna

Motivasi

- Warna merupakan deskriptor yang sangat berguna
- Warna dapat membantu proses identifikasi dan ekstraksi objek pada citra

Pengolahan Citra Berwarna

- Pengolahan citra berwarna:
 - Pengolahan pseudocolor
 - Citra diperoleh dengan cara *meng-assign* warna pada kisaran keabuan.
 - Pengolahan full-color
 - Citra diperoleh dengan sensor full-color (kamera TV berwarna atau scanner berwarna, dll)

Pengolahan Citra Pseudocolor

- Pseudocolor / false color : citra dibuat dengan cara mengassign suatu warna kepada suatu kisaran keabuan pada citra monokrom.
- Untuk apa?
 - Visualisasi
 - Interpretasi kejadian gray-scale dalam citra
- Mengapa pseudocolor lebih baik daripada citra grayscale?
 - Manusia mampu membedakan ribuan warna
 - Manusia mampu membedakan puluhan level keabuan

Intensity Slicing / Density Slicing / Color Coding

• If a grayscale image is represented as a 3D function

We can the intensity with planes parallel to the coordinate

Intensity Slicing / Density Slicing / Color Coding (2)

- We can then assign values to each side of the plane
- We can have as many planes as we need

Pseudocolor in Thermal Infrared

Intensity to Color Transformation

Process 1-channel into 3-channels via 3 transformations

Intensity to Color Transformation (2)

Use more than 1 grayscale image → Multispectral images

Brainstorming

Any other ideas?

Full-Color Image Processing

- Approaches:
 - Processing per channel

Processing 1 pixel [R G B] as a vector

$$I(x,y) = \begin{bmatrix} R(x,y) \\ G(x,y) \\ B(x,y) \end{bmatrix}$$

Full-Color Image Processing (2)

- Processing per channel and processing vectors: equivalency?
- 2 conditions:
 - The process / operation must be applicable to both vectors and scalars
 - The operation on 1 component must be independent of other components

Not all operations process this two approaches equivalently

Color Transformation / Color Mapping

- Color transformation yang di maksud di sini adalah transformasi dalam 1 buah color model saja.
 - (Bukan antar color model seperti RGB-HSV)

Color Transformation / Color Mapping

$$g(x,y) = T[f(x,y)]$$

Limited to

$$s_i = T_i(r_1, r_2, ... r_n)$$
, i = 1,2,3, ... n

- Where s_i and r_i denote the color components at position (x, y).
- $\{T_1, T_2, ... T_n\}$ is a set of transformations
- n is the number of dimensions needed to represent the color space, e.g. RGB: n=3, and $r_1=R$, $r_2=G$, and $r_3=B$

Color Transformation Example

Example: change the intensity of the full color image

$$g(x,y) = k.f(x,y)$$

- Depends on color model
 - Recall $s_i = T_i(r_1, r_2, ... r_n)$, i = 1, 2, 3, ... n

• HSI
$$I \rightarrow s_3 = kr_3$$

- RGB $R, G, B \rightarrow s_i = kr_i$, i = 1,2,3
- CMY $C, M, Y \rightarrow s_i = kr_i, +(1-k), i = 1,2,3$

Color Transformation Example (2)

• k = 0.7

Color Complements

 The hues directly opposite of one another on Newton's color circle

Color Complements (2)

Analogous to the gray-scale negatives

Pengolahan Citra Gasal 2019-2020

Color Slicing

Attempts to highlight a specific range of colors.

- Idea:
 - Display the colors of interest so that they stand out
 - Use the resulting image as a mask for further processing
- How?
 - Map the colors of interest to a eye-catching color
 - Map the colors outside of the range of interest to a neutral color

Color Slicing (2)

• Set a color of interest $(a_1, a_2, a_3 ... a_n)$ and allow a threshold of colors near it to remain, while cancelling out the rest

a = (0.6863, 0.1608, 0.1922) to detect edible objects

Reds with a radius of 0.2549 from a.

Reds with a radius of 0.1765 from a.

Color Correction

Color Correction (2)

- Most common usage:
 - Photo enhancement
 - Color reproduction (across devices)
- Subjective
 - Attempting to obtain the most visually pleasing color image.
- To create neutrality, use a device-independent color model
 - The model of choice is commonly CIELAB*

CIELAB

- The nonlinear relations for L^* , a^* , and b^* are intended to mimic the nonlinear response of the eye.
- Components L, a*, b*
 - L* for the lightness
 - a* and b* for the green-red and blue-yellow color components.

CIELAB (2)

CIELAB Conversion

$$L^* = 116. f\left(\frac{Y}{Y_W}\right) - 16$$

$$a^* = 500 \left[f\left(\frac{X}{X_W}\right) - f\left(\frac{Y}{Y_W}\right) \right]$$

$$b^* = 200 \left[f\left(\frac{Y}{Y_W}\right) - f\left(\frac{Z}{Z_W}\right) \right]$$

- Where *XYZ* are
- X_W, Y_W, Z_W are.....

•
$$f(q) = \begin{cases} \sqrt[3]{q}, & \text{if } q > 0.008856 \\ 7.787q + \frac{16}{116}, & \text{if } q \le 0.008856 \end{cases}$$

Color Balancing

- For a visually pleasing image for human vision, we desire a balance between color components
 - Depending on the color model used
- Very subjective
- Arbitrary corrections based on human visual judgement
 - Log transformations
 - Color transformations
 - Manual transformations

Color Balancing

Assume the CMYK color model

Original

Heavy in Cyan

Color Balancing in CMYK

Color Theory and Processing

Histogram Processing

- Recall: What is a histogram? What does it show?
- The histogram plots the distribution of intensity values throughout the image

Color Histogram Processing

• If we have various channels, create histograms for each

- For RGB space: R histogram, G histogram, B histogram
 - How to use this as a feature?
 - Plus / minuses?

Histogram Equalization

 For color images, HSI's intensity channel I is particularly suited for this process

Histogram of I before

Histogram of I after

Usually followed up with saturation correction

Recall

- Image Enhancement \rightarrow Color Enhancement?
 - Smoothing and Sharpening

Smoothing

• Why?

• Color Image Smoothing $\bar{c}(x,y) = \frac{1}{K} \sum_{(s,t) \in S_{xy}} c(s,t)$

$$\bar{\boldsymbol{c}}(x,y) = \begin{bmatrix} \frac{1}{K} \sum_{(s,t) \in S_{xy}} \boldsymbol{R}(s,t) \\ \frac{1}{K} \sum_{(s,t) \in S_{xy}} \boldsymbol{G}(s,t) \\ \frac{1}{K} \sum_{(s,t) \in S_{xy}} \boldsymbol{B}(s,t) \end{bmatrix}$$

Smoothing (2)

- 2 approaches based on RGB / HSI color spaces
- RGB
 - Smoothing on each channel
 - Join back into new R'G'B' image
- HSI
 - Smoothing on I channel only

What differences will happen?

Smoothing (3)

Sharpening

- Why?
- Color Image Sharpening

$$\nabla^{2}[\boldsymbol{c}(x,y)] = \begin{bmatrix} \nabla^{2}[R(x,y)] \\ \nabla^{2}[G(x,y)] \\ \nabla^{2}[B(x,y)] \end{bmatrix}$$

- Based on the Laplacian operator (recall grayscale operations)
- Processing methods
 - RGB
 - HSI

Sharpening (2)

Pengolahan Citra Gasal 2019-2020

Color Image Segmentation

• Ada "segmen" apa saja pada citra di bawah ini?

Color Image Segmentation

- Jika kita ingin mempartisi citra berdasarkan warnanya, maka kita dapat melakukannya pada setiap lapisan warna
- Dapat menggunakan metode thresholding and distance

Color Image Segmentation in RGB

RGB image with color of interest

Take the mean color value in ROI

 Resulting mask showing the colors "near" to color in ROI

Similar Colors

 What does it mean for 2 colors to be "near" or "similar"?

- For target color a and arbitrary color z
- a and z are similar if
 - The distance between them is less then threshold D_0
- How to measure it?

Euclidean Distance

Desired color a and arbitrary color z

$$D(z, a) = \|\mathbf{z} - \mathbf{a}\|$$

$$= \sqrt{\|(\mathbf{z} - \mathbf{a})^T (\mathbf{z} - \mathbf{a})\|}$$

$$= \sqrt{(z_R - a_R)^2 + (z_G - a_G)^2 + (z_B - a_B)^2}$$

Generalizations

Advantages / disadvantages of Euclidean Distance?

CIELAB Colour Difference

- Remember CIELAB?
 - The nonlinear relations for L^* , a^* , and b^* are intended to mimic the nonlinear response of the eye.
 - CIELAB describes color differences for the human visual system

$$\Delta E_{ab}^* = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}$$
where

$$\Delta L^* = L_2^* - L_1^*, \quad \Delta a^* = a_2^* - a_1^*, \quad \Delta b^* = b_2^* - b_1^*$$

Color Image Segmentation

Highly dependent on color space and distance measure

^{*)} Sobieranski, Mage, PCommungllo, E., & von Wangenheim, A. (2011). Learning a nonlinear distance in the for supervised region-merging image segmentation. Computer Vision and Image Understanding, 115(2), 127-139.

Variations of Color Difference Formulas

- CIELAB Color difference formula
- CIELUV Color difference formula
- CMC Color difference formula
- CIE94 Color difference formula

..and many more

Edge Detection

- We used gradients for grayscale images
 - Valid for a scalar function, not vector functions

Per channel

Color Image Processing R G

Edge Detection (2)

RGB color vector approach

Noise pada Citra Berwarna

- Noise pada setiap layer warna bisa sama, bisa tidak.
- Noise bisa terjadi jika piranti elektronik pada layer tersebut rusak.
- Salah satu cara menghilangkan noise bisa dengan melakukan average filtering atau median filtering

Noise in RGB vs HSI

Noise in RGB spreads to all channels of HSI

Corrupted G channel