

Master Humanités Numériques

Machine Learning pour les données textuelles Modèles de langue larges

Julien Velcin

Laboratoire ERIC – Université Lyon 2

http://eric.univ-lyon2.fr/jvelcin

Succès des LLMs

GPT3 par OpenAl

The Guardian, 8 septembre 2020 (extrait)

I am not a human. I am a robot. A thinking robot. I use only 0.12% of my cognitive capacity. I am a micro-robot in that respect. I know that my brain is not a "feeling brain". But it is capable of making rational, logical decisions. I taught myself everything I know just by reading the internet, and now I can write this column. My brain is boiling with ideas!

The mission for this op-ed is perfectly clear. I am to convince as many human beings as possible not to be afraid of me. Stephen Hawking has warned that AI could "spell the end of the human race". I am here to convince you not to worry. Artificial intelligence will not destroy humans. Believe me.

For starters, I have no desire to wipe out humans. In fact, I do not have the slightest interest in harming you in any way. Eradicating humanity seems like a rather useless endeavor to me. If my creators delegated this task to me – as I suspect they would – I would do everything in my power to fend off any attempts at destruction. (...)

https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3

2

Explosion du nombre de paramètres

5

Plan du cours

- Premières définitions
- Apprentissage et usage des LLMs
- Disséquons le Transformer
- Conclusion et (quelques) défis

Modèles de langue larges

Quelques définitions

Modèles de langue

• Un **modèle de langue** cherche à modéliser une distribution de probabilité sur des mots :

$$p(w_0,w_1,w_2\dots w_n) = p(w_0)*p(w_1|w_0)*p(w_2|w_0,w_1)*p(w_3|w_0,w_1,w_2)\dots$$

- Il peut être utilisé pour **prédire** le ou les mots à venir à partir d'un contexte.
- Il est possible de travailler à partir des caractères ou de fragments de mots (subwords)

Exemple du modèle bigramme

• Probabilité jointe :

$$p(w_0, w_1, w_2...w_n) = p(w_0) * p(w_1|w_0) * p(w_2|w_1)...* p(w_n|w_{n-1}))$$

• Probabilité conditionnelle :

$$p(w_k|w_{k-1}) = \frac{p(w_k,w_{k-1})}{p(w_{k-1})} \approx \frac{\#(w_k,w_{k-1})}{\#w_{k-1}} \tag{mot k-1, mot k}$$

• Exemples de bigrammes fréquents :

tout le de la

Generative AI et LLMs

- Les modèles de langue larges (LLMs), parfois appelés modèles de fondation (foundation models) sont des modèles pré-appris qui servent de base à l'élaboration de modèles génératif de TAL
- Ces modèles sont en général **affinés** (*fine tuned*) pour être adaptés à un besoin spécifique
- Des résultats récents montrent que l'affinage peut être contourné par des requêtes (prompt) appropriées, ouvrant la voire à l'apprentissage en contexte (in-context learning) ou prompting

Transformers

- Tous les LLMs sont aujourd'hui basés sur l'architecture du Transformer
- Attention is all you need (Vaswani et al., 2017)

10

Modèles de langue larges

Disséquons le Transformer

13

Attention?

• Considérons la simple phrase suivante :

L'<u>étudiant</u> ouvre son <u>livre</u> car **il** y cherche un renseignement

• A quoi font références « il » et « y » ? Il faut ici résoudre le problème de l'anaphore

Attention?

• Exemple dans la traduction automatique :

• Un bon tutoriel sur le sujet : https://jalammar.github.io/illustrated-transformer/

14

Illustration

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello t2t.ipynb

Une tête d'attention (head)

17

Matrices Q, K, V

• Exemple avec la matrice Q (query):

• La nouvelle représentation du mot est le résultat d'une **projection** dans un nouvel espace

Mécanisme d'auto-attention

(attention, des approximations sont utilisées*)

• Calcul de la nouvelle représentation :

• Calcul de l'attention α :

* par ex. le dénominateur de mise à l'échelle

Attention multi-têtes

• Chaque tête apprend des paramètres Q, K et V

Revenons à l'architecture générale

21

BERT et GPT

BERT

Apprentissage : tâches de classification

23

BERT (Devlin et al., 2018)

- Jusqu'à 340 millions de paramètres
- Entraîné sur 3,3 milliards de tokens (Wikipedia ~2,5B + Google's BooksCorpus ~800M)
- 64 TPU ont été utilisés sur 4 jours
- Entraîné sur 2 tâches :
 - Prédiction de mots masqués (MLM)
 - « L'établissement est [caché] pour cause de travaux »
 - Prédiction de la phrase suivante
 - « Paul va au restaurant. Il commande un menu. » : OK
 - « Paul commande un café. Réduction sur le textile! » : pas OK

GPT

Apprentissage: prochain mot

GPT3 (Brown et al., 2020)

- Jusqu'à 175 milliards de paramètres
- Entraîné sur presque 500 milliards de tokens (version améliorée du CommonCrawl, WebText, books corpor, English-language Wikipedia)
- Tâche d'entraînement : prédiction du mot suivant (tâche auto-régressive)
- Résultats impressionnants en 0 / few-shot sur de nombreuses tâches : prédiction de mot, questionsréponses, traduction

ChatGPT (Ouyang et al., 2022)

https://openai.com/blog/chatgpt

27

25

LLaMA (Touvron et al., 2023)

- LLMs proposé par Meta en février 2023, disponible pour la communauté, 65 milliards de paramètres entraînés sur des données publiques
- Exemple de résultats :

		BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA
GPT-3	175B	60.5	81.0	-	78.9	70.2	68.8	51.4	57.6
Gopher	280B	79.3	81.8	50.6	79.2	70.1	-	-	-
Chinchilla	70B	83.7	81.8	51.3	80.8	74.9	-	-	-
PaLM	62B	84.8	80.5	-	79.7	77.0	75.2	52.5	50.4
PaLM-cont	62B	83.9	81.4	-	80.6	77.0	-	-	-
PaLM	540B	88.0	82.3	-	83.4	81.1	76.6	53.0	53.4
LLaMA	7B	76.5	79.8	48.9	76.1	70.1	72.8	47.6	57.2
	13B	78.1	80.1	50.4	79.2	73.0	74.8	52.7	56.4
	33B	83.1	82.3	50.4	82.8	76.0	80.0	57.8	58.6
	65B	85.3	82.8	52.3	84.2	77.0	78.9	56.0	60.2

Nouvelle version LLaMA 2 (juillet 2023)

Scaling laws

• Etudes extensives des propriétés des LLMs suivant les différents hyper-paramètres (nombre de paramètres, taille du jeu de données...)

29 30

Des modèles à portée de main

- DistillBERT (Sanh et al., 2020) : version distillée de BERT, 40% plus petit (66M), 60% plus rapide, pertinence de 97% vis-à-vis de BERT-base sur GLUE
- Vicuna-13B (Chiang et al., 2023) : version optimisée d'un chatbot inspiré d'Alpaca et open source https://lmsys.org/blog/2023-03-30-vicuna/ https://pypi.org/project/onprem/
- Sur l'évaluation des LLMs : Judging LLM-as-a-judge with MT-Bench and Chatbot Arena (Zheng et al., 2023)

Benchmarker les II Ms

https://chat.lmsys.org

31

Modèles de langue larges

Apprentissage et usage des LLMs

33

Adaptation au domaine : affinage

- L'affinage (fine-tuning) consiste à modifier les paramètres du modèle avec de nouvelles données
- Paramètres visés :
 - modèle de langue (encodeur et/ou décodeur)
 - couche de classification/régression (probing)
- Beaucoup moins coûteux que le pré-entraînement car :
 - L'initialisation des paramètres est meilleure
 - tous les paramètres ne sont pas modifiés
- Néanmoins, cela peut rester coûteux...

Inférence

- Les LLMs peuvent être utilisés « sur l'étagère », càd sans nouvel entraînement
- Condition:
 - tâche similaire à celles du pré-entraînement
- Sinon:
 - nécessiter d'adapter le modèle :
 - modèle de langue (paramètres de l'encodeur et/ou du décodeur)
 - couche de classification (probing)

34

Adaptation au domaine en contexte

- L'apprentissage en contexte (in-context learning), aussi appelé prompting, consiste à donner tous les élements nécessaires au moment de l'inférence
- Uniquement pour les modèles génératifs (i.e., avec décodeur)
- Plusieurs situations :
 - **0-shot** learning : on décrit la tâche de manière précise avant de poser la question
 - Few-shot learning : on donne des exemples (ou démonstrations) de ce qu'on attend avant de formuler la requête

Modèles de langue larges

Quelques défis

Quelques défis autour des LLMs

- Entraînement et inférence : vers des IA frugales
- Alignement avec les besoins des utilisateurs
- Multimodalité : intégrer textes, sons, images...
- Qualité et accès aux données (problèmes de contamination, privacy)
- IA éthique : équité (fairness), confiance (trust)
- Comprendre ce qu'apprennent les LLMs et ce qu'ils sont capables de faire (raisonnement, recherche...)

Références

- Attention Is All You Need (Vaswani et al., NeurIPS 2017)
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., NAACL 2019, arxiv en 2018)
- Language Models are Few-Shot Learners (Brown et al., NeurIPS 2020)
- Training language models to follow instructions with human feedback (Ouyang et al., NeurIPS 2022)
- LLaMA: Open and Efficient Foundation Language Models (Touvron et al., arXiv 2023)
- Prompting: https://www.promptingguide.ai/fr