Trash Management System Using Deep Learning

By, Team Invincibles

Srilalitha Veerubhotla Shailesha Maganahalli Atul Shah Shreyus Puthiyapurail

Significance To The Real World

The accumulation of solid waste in the urban area is becoming a great concern, and it would result in environmental pollution and may be hazardous to human health if it is not properly managed. It is important to have an advanced intelligent waste management system to manage a variety of waste materials. One of the most important steps of waste management is the separation of the waste into the different components and this process normally done manually by hand-picking.

Data Set

Kaggle dataset :Garbage classification

Link: https://www.kaggle.com/asdasdasasdas/garbageclassification

Related work and Alternatives Explored

Model Number	Model Type	#GPU/TPU	BATCH SIZE	LEARNING RATE	MAX EPOCHS	mem/GPU or TPU	METRIC TYPE	ACCURACY %	LOSS	LOSS TYPE	OPTIMIZER	MAX RUN TIME
	, ,	·			_	·						
							Accuracy,			categorical		
1	Simple CNN	TPU	Worker=4	0.001	10	17.69 GB	MSE	53.57	1.2041	crossentropy	ADAM	470 seconds
							Accuracy,			kullback leibler		
2	CNN FINE TUNED	TPU	Workers=10	0.001	10	22.12 GB	MSE	30.67	1.7208	divergence	NADAM	520 Seconds
	CNN FINE TUNED						Accuracy,			kullback leibler		
3	with opt	TPU	Workers=10	0.003	10	26.12 GB	MSE	22.5	1.7254	divergence	RMS PROP	510 Seconds
	VGG16 with											
	TRANSFER						Accuracy,			Categorical		
4	LEARNING	TPU	200	0.002	10	32.06 GB	MSE	57.95	1.1153	crossentropy	NADAM	190 Seconds
										categorical		
5	VGG16 scratch code	TPU	Worker=4	0.001	10	25.02 GB	Accuracy	47.05	1.8325	crossentropy	ADAM	450 Seconds
	Inception V3 with						Accuracy,			categorical		
6	Transfer Learning	TPU	300	0.0002	10	4.3 GB	MSE	71.7	1.0657	crossentropy	RMS PROP	100 Seconds
	RESNET 50 with						Accuracy,			categorical		
7	Transfer Learning	TPU	300	0.0003	10	4.79 GB	MSE	73.96	0.78	crossentropy	AdaGrad	160 seconds
	RESNET 50 with									Binary cross		
8	Scratch code	TPU	100	0.0001	5	5.02 GB	Accuracy	73.3	4.1	entropy	Adam	170 Seconds
	MobileNetV2 with									categorical		
9	Transfer Learning	TPU	32	0.0001	50	12.50 GB	Accuracy	98.48	0.048	crossentropy	RMS PROP	20 Minutes

Model Tuning

- 1. Attempted to tune multiple hyper parameter for the simple CNN,ResNet50 and VGG 16 models.
- 2. Utilized keras-Auto tuner for searching the best parameter for activation functions, loss and evaluation metrics.

Below are the critical parameters tried upon the code:

Activation functions: Softmax, Relu, Tanh, Sigmoid

Metrics: Accuracy, MSE

Loss: Sparse Categorical entropy, binary cross entropy, KL Divergence.

Model Metrics - Visualization Technique

- 1. Metrics used: Accuracy, Mean Square Error
- 2. Visualizations: Tensor Board, CV2

Model is deployed using Flask python web frame work in aws ec2 instance

Technical Challenges

- 1. Thought of expanding the data set by more labels which we faced as a trivial challenge.
- 2. System performance upon running the code. Which we overcome by trying on Colab Pro
- 3. Tried implementing Tensorflow extended and also able to show the stats and visualization. Faced challenges on modeling in tensorflow extended.s

Team Work

Shreyus Puthiyapurail: Data collection and processing.

Atul Shah : Feature analysis and engineering.

Srilalitha Veerubhotla: Developing and testing model accuracy.

Shailesh Prasad M : Apply and Review other model for accuracy

Q&A

Thank You