

Implementasi Metode Weighted Product Dan Fuzzy C-Means Dalam Pemilihan Peminatan Jurusan Pada SMA Perguruan Rakyat 2

Eri Riana

Fakultas Teknologi Informasi, Universitas Bina Sarana Informatika, Jakarta, Indonesia

Abstrak

Sesuai peraturan kurikulum yang berlaku di Indonesia, siswa kelas X SMA yang naik ke kelas XI akan mengalami pemilihan penjurusan. Penjurusan yang tersedia di SMA meliputi bidang minat Ilmu Pengetahuan Alam, Ilmu Pengetahuan Sosial, dan Ilmu Bahasa. Penjurusan akan disesuaikan dengan kemampuan siswa pada bidang minat yang ada, tujuannya agar kelak di kemudian hari, pelajaran yang diberikan kepada siswa menjadi lebih terarah karena telah sesuai dengan kemampuan pada bidang minatnya. Salah satu pertimbangan untuk menyeleksi siswa dalam menentukan penjurusan adalah prestasi siswa pada semester satu dan dua (kelas X) dalam bentuk skor nilai. Kurang akuratnya proses pemilihan penjurusan dengan sistem manual pada Sekolah Menengah Atas menyebabkan perlunya suatu penggunaan metode komputasi untuk mengelompokkan siswa dalam proses pemilihan jurusan. Metode Weighted Product dan Fuzzy C-Means merupakan suatu metode yang mudah dan sering digunakan di dalam teknik pengelompokan data karena membuat suatu perkiraan yang efisien dan tidak memerlukan banyak parameter. Beberapa penelitian telah menghasilkan kesimpulan bahwa metode Weighted Product dan Fuzzy C-Means untuk mengelompokkan data berdasarkan atribut-atribut tertentu. Pada penelitian ini akan digunakan metode Weighted Product dan Fuzzy C-Means untuk mengelompokkan data siswa Sekolah Menengah Atas berdasarkan Nilai mata pelajaran inti untuk proses penjurusan. Penelitian ini juga menguji tingkat akurasi metode Weighted Product dan Fuzzy C-Means dalam penentuan jurusan pada Sekolah Menengah Atas.

Kata Kunci: Klastering, Penjurusan Siswa, Fuzzy C-Means, Weighted Product

Abstract

As per the rules applicable curriculum in Indonesia, high school students of class X to class XI up to experience election majors. Majors are available in the high school fields of interest include Natural Sciences, Social Sciences, and Linguistics. Majors will be tailored to students' abilities in areas of interest that exist, the goal for later in life, lessons are given to students to be more focused because it was in accordance with the ability of the field of interest. One of the considerations for selecting students are majors in determining student achievement in semester one and two (class X) in the form of scores. Lack of accuracy of the electoral process in the majors with the manual system of high school led to the need for the use of computational methods for grouping students majoring in the electoral process. Weighted Product Method and Fuzzy C-Means is a method that is easy and often used in the data grouping technique for making an estimate that is efficient and does not require a lot of parameters. Several studies have concluded that the method of Weighted Product and Fuzzy C-Means can be used to classify data based on certain attributes. This research will be used Weighted Product method and Fuzzy C-Means to cluster the data based on high school students value the core subjects for the majors. This study also tested the accuracy of the method and the Product Weighted Fuzzy C-Means in determining the majors in high school.

Keyword: Clustering, Majors Student, Fuzzy C-Means, Weighted Product

1. PENDAHULUAN

Dalam proses pendidikan di sekolah, perbedaan masing-masing siswa harus diperhatikan karena dapat menentukan baik buruknya prestasi belajar siswa. Tujuan sekolah yang mendasar adalah mengembangkan semua bakat dan kemampuan siswa selama proses pendidikan. Perbedaan individual antara siswa di sekolah di antaranya meliputi perbedaan kemampuan kognitif, motivasi berprestasi, minat dan kreativitas. Dengan adanya perbedaan individu tersebut, maka fungsi pendidikan tidak hanya dalam proses belajar mengajar, tetapi juga meliputi bimbingan dan konseling, pemilihan dan penempatan siswa sesuai dengan kapasitas individual yang dimiliki, rancangan sistem pengajaran yang sesuai dan strategi mengajar yang disesuaikan dengan karakteristik individu siswa. Kemungkinan yang akan terjadi jika siswa mengalami kesalahan dalam penempatan yang tidak sesuai dengan kapasitas individual yang dimiliki adalah rendahnya prestasi belajar siswa. Oleh karena itu, manajemen sekolah memegang peranan penting untuk dapat mengembangkan potensi diri yang dimiliki oleh siswa.

Penempatan siswa yang sesuai dengan kapasitas kemampuannya atau sering disebut dengan penjurusan siswa di sekolah menengah ditentukan oleh kemampuan akademik yang didukung oleh faktor minat, karena karakteristik suatu ilmu menuntut karakteristik yang sama dari yang mempelajarinya. Dengan demikian, siswa yang mempelajari suatu ilmu yang sesuai dengan karakteristik kepribadiannya akan merasa senang ketika mempelajari ilmu tersebut. Minat dapat mempengaruhi kualitas pencapaian hasil belajar siswa dalam bidang studi tertentu. Seorang siswa yang berminat pada matematika misalnya, akan memusatkan perhatiannya lebih banyak ke bidang matematika dari pada siswa lain. Karena pemusatan perhatian intensif terhadap materi, siswa akan belajar lebih giat dan mencapai prestasi yang diinginkan.

Sesuai peraturan kurikulum yang berlaku di Indonesia, siswa kelas X SMA yang naik ke kelas XI akan mengalami pemilihan jurusan (penjurusan). Penjurusan yang tersedia di SMA meliputi Ilmu Pengetahuan Alam (IPA), Ilmu Pengetahuan Sosial (IPS), dan Ilmu Bahasa. Penjurusan akan disesuaikan dengan kemampuan dan

minat siswa. Tujuannya adalah agar kelak di kemudian hari, pelajaran yang akan diberikan kepada siswa menjadi lebih terarah karena telah sesuai dengan kemampuan dan minatnya. Salah satu pertimbangan untuk menyeleksi siswa dalam menentukan jurusan adalah prestasi siswa pada semester satu dan dua (kelas X) dalam bentuk nilai mata pelajaran. Selain itu penentuan ini dipertimbangkan juga dari hasil psikotes. Kedua hal tersebut saling berkaitan dalam penentuan penjurusan siswa masuk jurusan IPA, masuk jurusan IPS atau masuk jurusan Bahasa

Penelitian ini akan menganalisis penerapan metode *Weighted Product* dan *Fuzzy C-Means* untuk pengelompokan siswa Sekolah Menengah Atas (SMA) dalam penentuan jurusan berdasarkan prestasi siswa. Dengan adanya metode ini diharapkan dapat menentukan pilihan jurusan berdasarkan apa yang diminati dari potensi akademiknya dalam penentuan jurusan.

2. TEORITIS

2.1 Data Mining

Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam *database*. Data mining adalah proses yang menggunakan statistic, matematika, kecerdasan buatan, dan machine learning untuk mengekstraksi dan mengidentifikasikan informasi yang bermanfaat dan pengetahuan yang terkait dari berbagai database besar (Turban,2005). Menurut Gatner Group, data mining adalah suatu proses menemukan hubungan yang berarti, pola, dan kecendrungan dengan memeriksa dalam sekumpulan besar data yang tersimpan dalam penyimpanan dengan menggunakan teknik pengenalan pola seperti tabel statistic dan matematika (Larose,2005). Selain dari beberapa definisi diatas diberikan juga definisi seperti yang tertera berikut ini.

"Data mining adalah serangkaian proses untuk menggali nilai tambah dari suatu kumpulan data berupa pengetahuan yang selama ini tidak diketahui secara manual." (Pramudiono, 2006).

2.2 Logika Fuzzy

Fuzzy secara bahasa diartikan sebagai kabur atau samar-samar. Suatu nilai dapat bernilai benar atau salah secara bersamaan. Dalam *fuzzy* dikenal derajat keanggotaan yang memiliki rentang nilai 0 (nol) hingga 1 (satu). Berbeda dengan himpunan yang memiliki nilai 1 atau 0 (ya atau tidak).

Logika *fuzzy* merupakan suatu logika yang memiliki nilai kekaburan kesamaran (*fuzzyness*) antara benar atau salah. Dalam teori logika *fuzzy* suatu nilai bisa bernilai benar atau salah secara bersama. Namun berapa besar keberadaan dan kesalahan sesuatunya tergantung pada bobot keanggotaan yang dimilikinya. Logika *fuzzy* memiliki derajat keanggotaan dalam rentang 0 hingga 1. Berbeda dengan logika digital yang hanya memiliki dua nilai 1 atau 0. Logika *fuzzy* digunakan untuk menterjemahkan suatu besaran yang diekspresikan menggunakan bahasa (*linguistic*), misalkan besaran kecepatan laju kendaraan yang diekspresikan dengan pelan, agak cepat, cepat, dan sangat cepat. Dan logika *fuzzy* menunjukkan sejauh mana suatu nilai itu benar atau sejauh mana suatu nilai itu salah. Tidak seperti logika klasik (*scrisp*)/tegas, suatu nilai hanya mempunyai dua kemungkinan yaitu merupakan suatu anggota himpunan atau tidak. Derajat keanggotaan 0 (nol) artinya nilai bukan merupakan anggota himpunan dan 1 (satu) berarti nilai tersebut adalah anggota himpunan (Kusumadewi, 2004).

Logika *fuzzy* adalah suatu cara yang tepat untuk memetakan suatu ruang input kedalam suatu ruang output, mempunyai nilai kontinyu. *Fuzzy* dinyatakan dalam derajat dari suatu keanggotaan dan derajat dari kebenaran. Oleh sebab itu sesuatu dapat dikatakan sebagian benar dan sebagian salah pada waktu yang sama. Logika *fuzzy* adalah suatu cara yang tepat untuk memetakan suatu ruang input kedalam suatu ruang output

Logika *fuzzy* merupakan salah satu komponen pembentuk soft computing. Logika *fuzzy* pertama kali diperkenalkan oleh Prof. Lotfi A. Zadeh pada tahun 1965. Dasar logika *fuzzy* adalah teori himpunan *fuzzy*. Pada teori himpunan *fuzzy*, peranan derajat keanggotaan sebagai penentu keberadaan elemen dalam suatu himpunan sangatlah penting. Nilai keanggotaan atau derajat keanggotaan atau *membership function* menjadi cirri utama dari penalaran dengan logika *fuzzy* tersebut (Sri Hari, 2010).

2.3 Fuzzy Clustering

Fuzzy clustering adalah salah satu teknik untuk menentukan cluster optimal dalam suatu ruang vector yang didasarkan pada bentuk normal Euclidian untuk jarak antar vector. Fuzzy clustering sangat berguna bagi pemodelan fuzzy terutama dalam mengidentifikasi aturan-aturan fuzzy. Ada beberapa algoritma clustering data, salah satu diantaranya adalah fuzzy c-means (FCM) adalah suatu teknik pengclusteran data yang mana keberadaan tiap-tiap titik data dalam suatu cluster ditentukan oleh derajat keanggotaan. Teknik ini pertama kali diperkenalkan oleh Jim Bezdek pada tahun 1965. Konsep dasar FCM, pertama kali adalah menentukan pusat cluster, yang akan menandai lokasi rata-rata untuk tiap-tiap cluster. Pada kondisi awal, pusat cluster ini masih belum akurat. Tiap-tiap titik data memiliki derajat keanggotaan untuk tiap-tiap cluster. Dengan cara memperbaiki pusat cluster dan derajat keanggotaan tiap-tiap titik data secara berulang, maka akan dapat dilihat bahwa pusat cluster akan bergerak menuju lokasi yang tepat. Perulangan ini didasarkan pada minimisasi fungsi objektif yang menggambarkan jarak dari titik data yang diberikan ke pusat cluster yang berbobot oleh derajat keanggotaan titik data tersebut. Output

dari FCM bukan merupakan *fuzzy inference system*, namun merupakan deretan pusat *cluster* dan beberapa derajat keanggotaan untuk tiap-tiap titik data. Informasi ini dapat digunakan untuk membangun suatu *fuzzy inference system* (Sri Hari, 2010).

2.4 Metode Weighted Product

Metode Weighted Product (WP) menggunakan perkalian untuk menghubungkan rating atribut, dimana rating setiap atribut harus dipangkatkan dulu dengan bobot atribut yang bersangkutan. Proses tersebut sama halnya dengan normalisasi. Metode Weighted Product dapat membantu dalam mengambil keputusan untuk menentukan penentuan jurusan, akan tetapi perhitungan dengan menggunakan metode weighted product ini hanya menghasilkan nilai terbesar yang akan terpilih sebagai alternatif yang terbaik. Perhitungan akan sesuai dengan metode ini apabila alternatif yang terpilih memenuhi criteria yang telah ditentukan. Metode weighted product ini lebih efisien karena waktu yang dibutuhkan dalam perhitungan lebih singkat.

3. ANALISA DAN PEMBAHASAN

Penelitian ini menggunakan metode análisis kuantitatif. Untuk mendapatkan gambar yang lebih mendalam dan lengkap dan objek yang akan diteliti dengan melakukan pengambilan data pada database SMA Perguruan Rakyat 2 tahun 2017. Data yang digunakan dalam penelitian ini berupa data primer yang berupa data siswa dan nilai yang diperoleh penulis secara langsung pada database di SMA Perguruan Rakyat 2 tahun 2017.

Populasi pada penelitian ini adalah pada siswa SMA Perguruan Rakyat 2 kelas X. Penarikan sampel pada penelitian ini digunakan teknik sampling jenuh atau sensus, yaitu keseluruhan populasi dijadikan sampel. Penelitian pendahuluan dilakukan untuk memperoleh kriteria-kriteria dalam penelitian, kriteria untuk pemilihan jurusan SMA kemudian dibuat data input berupa nilai rata-rata siswa SMA. Setelah memperoleh kriteria-kriteria dari penelitian pendahuluan selanjutnya akan dibuat data nilai rata-rata. Data yang diperoleh dari data nilai rata-rata akan diolah menggunakan pendekatan *Weighted Product* dan *Fuzzy C-Means* dengan software matlab.

3.1 Instrumentasi Penelitian

- 1. Penelitian ini menggunakan data primer berupa nilai siswa yang digunakan sebagai instrumentasi guna memperoleh data dalam proses penentuan jurusan.
- 2. Pemetaan korelasi antara bidang peminatan yang diminati dengan mata pelajaran peminatan.

Gambar 1. Diagram Korelasi Peminatan Jurusan dengan Mata Pelajaran

3.2 Teknis Analisis Data

Teknik análisis data menggunakan data kuantitatif berupa suatu kaidah-kaidah matematika. Analisa dilakukan melalui nilai rata-rata hasil raport semester 1 dan semester 2 menggunakan metode *Weighted Product* dan *Fuzzy C-Means* dengan bantuan software matlab. Menurut (Irfan,2010), jika data model dan data validasi diatas 65 % maka dapat dinyatakan akurat.

3.3 Kerangka Pemikiran Penelitian

Penelitian ini dilakukan untuk mengamati dan menganalisis pemilihan jurusan SMA Perguruan Rakyat 2. Berikut adalah kerangka pemikiran dalam bentuk gambar.

Gambar 2. Kerangka Pemikiran Pemilihan Jurusan

Kerangka pemikiran penelitian yang tergambar diatas dapat dijelaskan sebagai berikut :

- 1. Data Historis meliputi nilai rata-rata raport semester 1 dan semester 2.
- 2. Data Training dilakukan dengan menguji data historis dengan metode *Weighted Product* dan *Fuzzy C-Means* dan kemudian diuji dengan aplikasi matlab hingga menghasilkan suatu model rule.
- 3. Data Testing dilakukan dengan menguji validasi data historis yang nantinya dapat menghasilkan suatu asumsi kevaliddan suatu keputusan dalam bentuk rule yang dihasilkan dari data training.
- 4. Uji Validasi dilakukan dengan menguji hasil dari penggunaan aplikasi matlab dan data validasi yang telah diuji dalam data testing.
- 5. Validasi merupakan hasil uji data dari penerapan metode *Weighted Product* dan *Fuzzy C-Means* dalam penggunaan aplikasi matlab.
- 6. Rule yang digunakan merupakan model penentuan jurusan SMA yang akurat berdasarkan nilai rata-rata raport semester 1 dan semester 2.
- 7. Penerapan merupakan penggunaan rule yang dilakukan dalam penentuan jurusan pada SMA.
- 8. Data baru merupakan data yang dihasilkan setelah data historis diuji kevaliddannya.menggunakan metode *Weighted Product* dan *Fuzzy C-Means* dalam aplikasi matlab serta menghasilkan rule untuk penentuan jurusan pada SMA.
- 9. Evaluasi merupakan upaya memperbaiki penerapan metode *Weighted Product* dan *Fuzzy C-Means* dalam aplikasi matlab dalam mengelola data secara efektif untuk penentuan jurusan SMA.

Penggunaan rule dalam penerapan metode Weighted Product dan Fuzzy C-Means yang dibangun dengan penggunaan aplikasi matlab yang diharapkan mengolah data secara efektif dalam penentuan penjurusan di SMA.

3.4 Analisa Hasil

Secara umum tujuan dari penelitian ini adalah untuk mengetahui adanya tingkat akurasi pemilihan jurusan di Sekolah Menengah Atas dengan menggunakan metode *Weighted Product* dan *Fuzzy C-Means*. Data yang dianalisis berdasarkan nilai rata-rata mata pelajaran bidang peminatan.

Pada tahapan awal dilakukan suatu pemetaan korelasi antara peminatan dengan mata pelajaran peminatan, yang hasilnya ditunjukkan dalam Gambar 3.1. Selanjutnya menentukan nilai dari suatu bidang minat tertentu, yang diambil dari nilai rata-rata mata pelajaran bidang peminatan yang berada dalam kelompok bidang peminatan sebelum dilakukan peminatan. Data ini akan digunakan sebagai suatu parameter uji coba peminatan menggunakan metode *Weighted Product* dan *Fuzzy C-Means*. Berikut tabel 3.1 yang menunjukkan data nilai rata-rata mata pelajaran peminatan.

Tabel 1. Data Nilai Rata-Rata Siswa Pada Bidang Minat Tertentu Sebelum Peminatan

Siswa	Nilai Rat	a-Rata Pe	minatan	Siswa	Nilai Rat	ta-Rata Per	minatan
	IPA	IPS	Bahasa		IPA	IPS	Bahasa
1	72,2	74,8	76,5	42	70,3	74,2	68,5
2	74,9	76,5	67,3	43	78,5	65,0	82,5
3	77,5	70,6	74,6	44	68,5	77,5	72,5
4	68,1	77,1	77,8	45	81,7	70,5	72,5

Siswa	Nilai Rat	a-Rata Pe	minatan	Siswa	Nilai Rat	ta-Rata Per	ninatan
	IPA	IPS	Bahasa		IPA	IPS	Bahasa
5	76,6	71,3	76,1	46	77,5	75,0	75,8
6	78,2	76,4	64,6	47	87,5	70,5	77,0
7	70,4	74,5	72,9	48	75,9	78,0	86,5
8	75,3	75,2	68,7	49	70,5	70,0	75,5
9	77,1	73,7	80,5	50	79,0	72,0	65,0
10	71,5	77,6	77,8	51	65,0	80,0	70,5
11	74,0	69,8	80,3	52	78,0	75,0	89,5
12	72,8	78,4	69,8	53	72,5	75,0	82,5
13	73,7	73,9	71,4	54	81,0	65,7	75,5
14	73,1	73,9	72,5	55	89,7	76,5	68,0
15	71,9	73,2	74,9	56	78,5	67,5	85,7
16	74,3	73,2	70,3	57	65,0	89,5	70,5
17	78,3	79,2	79,0	58	70,7	92,0	78,5
18	71,8	74,3	77,9	59	75,5	70,0	79,5
19	74,1	75,3	80,3	60	85,0	75,5	80,2
20	74,7	72,4	72,1	61	68,5	65,0	78,5
21	74,0	71,3	71,9	62	82,5	69,5	72,1
22	70,6	78,5	76,6	63	74,5	90,2	70,5
23	76,8	78,6	73,5	64	69,5	72,5	79,0
24	75,3	71,2	77,6	65	70,9	74,5	91,5
25	76,1	72,4	72,4	66	82,5	72,5	70,6
26	70,7	78,9	69,0	67	75,8	82,1	70,8
27	83,4	76,1	78,8	68	80,2	74,5	72,5
28	70,8	76,6	79,0	69	74,5	91,5	69,5
29	78,3	75,5	80,2	70	60,5	68,7	77,8
30	76,7	76,4	73,8	71	74,5	77,8	69,8
31	74,4	79,4	86,1	72	79,0	72,5	73,8
32	80,4	76,7	78,8	73	87,5	75,2	71,8
33	66,5	71,0	71,4	74	65,0	76,8	67,5
34	69,2	76,4	69,0	75	76,0	94,8	74,0
35	82,7	86,1	80,0	76	65,0	77,8	81,5
36	75,3	73,5	71,5	77	65,5	68,0	75,8
37	82,5	79,3	70,8	78	80,4	75,5	74,2
38	69,3	70,8	73,8	79	90,1	78,7	74,3
39	77,5	80,6	77,9	80	75,7	74,0	87,5
40	67,6	75,5	73,0	81	74,9	77,3	65,0
41	80,3	75,7	74,8				

Tabel 2. Data Nilai Rata-Rata Siswa pada Bidang Minat Tertentu Setelah Peminatan

Siswa	Jurusan	Nilai Rata-Rata Mata		Siswa	Jurusan	Nilai Rata-I	Rata Mata
	Yang Dipilih	Pelajaran P	Pelajaran Peminatan		Yang Dipilih	Pelajaran P	eminatan
		Setelah P	eminatan			Setelah P	eminatan
		Penju	rusan			Penjurusan	
		Kelas XI	Kelas XI			Kelas XI	Kelas XI
1	Bahasa	75,50	75,50	42	IPS	75,80	75,80
2	IPS	77,00	77,00	43	Bahasa	80,50	80,50
3	IPA	75,50	75,50	44	IPS	78,50	78,50
4	Bahasa	72,00	72,00	45	IPA	74,50	74,50
5	IPA	72,80	72,80	46	IPA	74,00	74,00
6	IPA	71,50	71,50	47	IPA	73,60	73,60
7	IPS	69,00	69,00	48	Bahasa	73,80	73,80
8	IPA	70,50	70,50	49	Bahasa	78,50	78,50
9	Bahasa	76,25	76,25	50	IPA	80,50	80,50
10	Bahasa	74,50	74,50	51	IPS	77,50	77,50
11	Bahasa	78,00	78,00	52	Bahasa	85,00	85,00
12	IPS	73,00	73,00	53	Bahasa	73,80	73,80
13	IPS	71,50	71,50	54	IPA	75,50	75,50
14	IPS	67,50	67,50	55	IPA	83,60	83,60

Siswa	Jurusan	Nilai Rata-F	Rata Mata	Siswa	Jurusan	Nilai Rata-F	Rata Mata
	Yang Dipilih	Pelajaran P	eminatan		Yang Dipilih	Pelajaran P	eminatan
		Setelah P	eminatan			Setelah P	eminatan
		Penju	rusan			Penju	rusan
		Kelas XI	Kelas XI			Kelas XI	Kelas XI
15	Bahasa	75,50	75,50	56	Bahasa	78,50	78,50
16	IPA	84,30	84,30	57	IPS	79,60	79,60
17	IPS	80,70	80,70	58	IPS	74,20	74,20
18	Bahasa	76,00	76,00	59	Bahasa	75,80	75,80
19	Bahasa	81,50	81,50	60	IPA	70,50	70,50
20	IPA	74,00	74,00	61	Bahasa	75,00	75,00
21	IPA	69,50	69,50	62	IPA	78,10	78,10
22	IPS	82,50	82,50	63	IPS	77,50	77,50
23	IPS	72,50	72,50	64	Bahasa	66,90	66,90
24	Bahasa	65,50	65,50	65	Bahasa	74,50	74,50
25	IPA	66,00	66,00	66	IPA	77,60	77,60
26	IPS	78,00	78,00	67	IPS	79,00	79,00
27	IPA	72,50	72,50	68	IPA	77,50	77,50
28	Bahasa	71,00	71,00	69	IPS	80,20	80,20
29	Bahasa	82,00	82,00	70	Bahasa	76,40	76,40
30	IPA	72,50	72,50	71	IPS	74,00	74,00
31	Bahasa	71,90	71,90	72	IPA	70,80	70,80
32	IPA	80,70	80,70	73	IPA	84,20	84,20
33	Bahasa	80,50	80,50	74	IPS	75,80	75,80
34	IPS	82,75	82,75	75	IPS	87,60	87,60
35	IPS	83,50	83,50	76	Bahasa	74,50	74,50
36	IPA	78,20	78,20	77	Bahasa	75,80	75,80
37	IPA	74,50	74,50	78	IPA	72,40	72,40
38	Bahasa	79,00	79,00	79	IPA	78,60	78,60
39	IPS	70,70	70,70	80	Bahasa	80,20	80,20
40	IPS	69,50	69,50	81	IPS	67,80	67,80
41	IPA	79,50	79,50				

Sumber: Data Akademik SMA

3.4.1 Penerapan Metode Fuzzy C-Means

Akurasi penerapan metode Fuzzy C-Means (FCM) dalam peminatan penjurusan di SMA diuji dengan cara:

- 1. Data nilai rata-rata mata pelajaran peminatan sebelum peminatan dikelompokkan dengan metode *Fuzzy C-Means* untuk membagi siswa ke dalam bidang minat tertentu (Kelompok IPA, IPS dan Bahasa) sesuai dengan kesamaan perolehan nilai rata-rata bidang peminatan tersebut.
- 2. Hasil peminatan *Fuzzy C-Means* dibandingkan dengan hasil peminatan yang telah dilaksanakan di tempat penelitian (terhadap data sampel nilai rata-rata mata pelajaran pada peminatan yang telah dijalani oleh siswa).
- 3. Jika minat yang dipilih oleh siswa sama dengan peminatan FCM dan nilai rata-rata mata pelajaran peminatan yang diperoleh setelah peminatan >= Nilai Rata-Rata Mata Pelajaran Peminatan yang ideal (>=75), maka FCM dinyatakan AKURAT.
- 4. Jika minat yang dipilih oleh siswa sama dengan peminatan FCM dan nilai rata-rata mata pelajaran peminatan yang diperoleh setelah peminatan < Nilai Rata-Rata Mata Pelajaran Peminatan yang ideal, maka FCM dinyatakan TIDAK AKURAT.
- 5. Jika minat yang dipilih oleh siswa tidak sama dengan peminatan FCM dan nilai rata-rata mata pelajaran peminatan yang diperoleh setelah peminatan >= Nilai Rata-Rata Mata Pelajaran Peminatan yang ideal, maka FCM dinyatakan TIDAK AKURAT.
- Jika minat yang dipilih oleh siswa tidak sama dengan peminatan FCM dan nilai rata-rata mata pelajaran peminatan yang diperoleh setelah peminatan < Nilai Rata-Rata Mata Pelajaran Peminatan yang ideal, maka FCM dinyatakan AKURAT.
- 7. Selanjutnya dihitung persen tingkat akurasi FCM dengan: % Akurasi = (Jumlah Data Akurat / Total Sampel) * 100

Selanjutnya ditentukan nilai bidang minat tertentu, yang diperoleh dari hasil rata-rata mata pelajaran peminatan yang berada dalam kelompok bidang minat tersebut sebelum dilakukan peminatan. Data ini akan digunakan sebagai data parameter ujicoba peminatan menggunakan FCM (tabel 3.1.) Setelah parameter nilai rata-rata bidang minat diketahui, selanjutnya dilakukan pemetaan/klastering data mengikuti metode FCM:

- 1. Menetapkan matriks partisi awal U berupa matriks berukuran n x m (n adalah jumlah sampel data, yaitu=81, dan m adalah parameter/atribut setiap data, yaitu=3). Xij = data sampel ke-i (i=1,2,...,n), atribut ke-j (j=1,2,...,m). Data untuk matriks partisi awal yang digunakan adalah data pada tabel 3.3.
- 2. Menentukan Nilai Parameter Awal:
 - Jumlah cluster (c) = 3
 - Pangkat (w) = 2
 - Maksimum interasi (MaxIter) = 100
 - Error terkecil yang diharapkan (ξ) = 10^{-5}
 - Fungsi objektif awal (P0) = 0
 - Interasi awal (t) = 1
- 3. Membangkitkan bilangan random μik, i=1,2,...,n; k=1,2,...c; sebagai elemen-elemen matriks partisi awal (U).

Berdasarkan persamaan matematis, matrik partisi awal (u0) secara random yang terbentuk dengan menggunakan Matlab adalah:

>> rand('state',0)

>>

X = [rand(27,3); rand(27,3); rand(27,3)]

0.9501	0.6038	0.1509	0.2844	0.0150	0.4514
0.2311	0.2722	0.6979	0.4692	0.7680	0.0439
0.6068	0.1988	0.3784	0.0648	0.9708	0.0272
0.4860	0.0153	0.8600	0.6614	0.8744	0.5751
0.8913	0.7468	0.8537	0.9883	0.9901	0.3127
0.7621	0.4451	0.5936	0.5828	0.7889	0.0129
0.4565	0.9318	0.4966	0.4235	0.4387	0.3840
0.0185	0.4660	0.8998	0.5155	0.4983	0.6831
0.8214	0.4186	0.8216	0.3340	0.2140	0.0928
0.4447	0.8462	0.6449	0.4329	0.6435	0.0353
0.6154	0.5252	0.8180	0.2259	0.3200	0.6124
0.7919	0.2026	0.6602	0.5798	0.9601	0.6085
0.9218	0.6721	0.3420	0.7604	0.7266	0.0158
0.7382	0.8381	0.2897	0.0164	0.9084	0.9669
0.1763	0.0196	0.3412	0.1901	0.2319	0.6649
0.4057	0.6813	0.5341	0.5869	0.2393	0.8704
0.9355	0.3795	0.7271	0.0576	0.0498	0.0099
0.9169	0.8318	0.3093	0.3676	0.0784	0.1370
0.4103	0.5028	0.8385	0.6315	0.6408	0.8188
0.8936	0.7095	0.5681	0.7176	0.1909	0.4302
0.0579	0.4289	0.3704	0.6927	0.8439	0.8903
0.3529	0.3046	0.7027	0.0841	0.1739	0.7349
0.8132	0.1897	0.5466	0.4544	0.1708	0.6873
0.0099	0.1934	0.4449	0.4418	0.9943	0.3461
0.1389	0.6822	0.6946	0.3533	0.4398	0.1660
0.2028	0.3028	0.6213	0.1536	0.3400	0.1556
0.1987	0.5417	0.7948	0.6756	0.3142	0.1911
0.9568	0.5298	0.4120	0.6992	0.3651	0.4225
0.5226	0.6405	0.7446	0.7275	0.3932	0.8560
0.8801	0.2091	0.2679	0.4784	0.5915	0.4902
0.1730	0.3798	0.4399	0.5548	0.1197	0.8159
0.9797	0.7833	0.9334	0.1210	0.0381	0.4608
0.2714	0.6808	0.6833	0.4508	0.4586	0.4574
0.2523	0.4611	0.2126	0.7159	0.8699	0.4507
0.8757	0.5678	0.8392	0.8928	0.9342	0.4122
0.7373	0.7942	0.6288	0.2731	0.2644	0.9016
0.1365	0.0592	0.1338	0.2548	0.1603	0.0056
0.0118	0.6029	0.2071	0.8656	0.8729	0.2974
0.8939	0.0503	0.6072	0.2324	0.2379	0.0492
0.1991	0.4154	0.6299	0.8049	0.6458	0.6932
0.2987	0.3050	0.3705			

4. Menentukan Pusat Klaster (V)

Pada iterasi pertama, dengan menggunakan persamaan:

$$V_{ij} = \sum_{i=1}^{\delta_i} \frac{((\mu_{ik})^2 * X_{ij})}{\sum_{i=1}^{\delta_i} (\mu_{ik})^2}$$

$$1 \le i \le m; 1 \le j \le m.$$

dan dapat dihitung 3 pusat klaster Vkj dengan k=1,2,3 dan j=1,2,3 sebagai berikut:

Siswa	Derajat Keanggotaan Pada Klaster Ke-1	Data \	Yang Di	klaster	$(\mu_i 1)^2$	$(\mu_i 1)^2 x$ $X_i 1$	$(\mu_i 1)^2 x$ $X_i 2$	$(\mu_i 1)^2 x$ $X_i 3$
	μ _i 1	X _i 1	X _i 2	X _i 3	-			
1	0,9501	72,2	74,8	76,5	0,9027	65,2	67,5	69,1
2	0,2311	74,9	76,5	67,3	0,0534	4,0	4,1	3,6
3	0,6068	77,5	70,6	74,6	0,3682	28,5	26,0	27,5
4	0,4860	68,1	77,1	77,8	0,2362	16,1	18,2	18,4
5 6	0,8913 0,7621	76,6 78,2	71,3 76,4	76,1 64,6	0,7944 0,5808	60,9 45,4	56,6 44,4	60,5 37,5
7	0,4565	70,4	76,4 74,5	72,9	0,3808	43,4 14,7	15,5	15,2
8	0,0185	75,3	75,2	68,7	0,0003	0,0	0,0	0,0
9	0,8214	77,1	73,7	80,5	0,6747	52,0	49,7	54,3
10	0,4447	71,5	77,6	77,8	0,1978	14,1	15,3	15,4
11	0,6154	74,0	69,8	80,3	0,3787	28,0	26,4	30,4
12	0,7919	72,8	78,4	69,8	0,6271	45,7	49,2	43,8
13	0,9218	73,7	73,9	71,4	0,8497	62,6	62,8	60,7
14	0,7382	73,1	73,9	72,5	0,5449	39,8	40,3	39,5
15	0,1763	71,9	73,2	74,9	0,0311	2,2	2,3	2,3
16	0,4057	74,3	73,2	70,3	0,1646	12,2	12,0	11,6
17	0,9355	78,3	79,2	79,0	0,8752	68,5	69,3	69,1
18 19	0,9169 0,4103	71,8 74,1	74,3 75,3	77,9 80,3	0,8407 0,1683	60,4 12,5	62,5 12,7	65,5 13,5
20	0,8936	74,1	72,4	72,1	0,7985	59,6	57,8	57,6
21	0,0579	74,0	71,3	71,9	0,0034	0,2	0,2	0,2
22	0,3529	70,6	78,5	76,6	0,1245	8,8	9,8	9,5
23	0,8132	76,8	78,6	73,5	0,6613	50,8	52,0	48,6
24	0,0099	75,3	71,2	77,6	0,0001	0,0	0,0	0,0
25	0,1389	76,1	72,4	72,4	0,0193	1,5	1,4	1,4
26	0,2028	70,7	78,9	69,0	0,0411	2,9	3,2	2,8
27	0,1987	83,4	76,1	78,8	0,0395	3,3	3,0	3,1
28	0,9568	70,8	76,6	79,0	0,9155	64,8	70,1	72,3
29	0,5226	78,3	75,5	80,2	0,2731	21,4	20,6	21,9
30 31	0,8801	76,7	76,4 79,4	73,8	0,7746	59,4	59,2	57,2
32	0,1730 0,9797	74,4 80,4	79,4 76,7	86,1 78,8	0,0299 0,9598	2,2 77,2	2,4 73,6	2,6 75,6
33	0,2714	66,5	71,0	71,4	0,0737	4,9	5,2	5,3
34	0,2523	69,2	76,4	69,0	0,0637	4,4	4,9	4,4
35	0,8757	82,7	86,1	80,0	0,7669	63,4	66,0	61,3
36	0,7373	75,3	73,5	71,5	0,5436	40,9	40,0	38,9
37	0,1365	82,5	79,3	70,8	0,0186	1,5	1,5	1,3
38	0,0118	69,3	70,8	73,8	0,0001	0,0	0,0	0,0
39	0,8939	77,5	80,6	77,9	0,7991	61,9	64,4	62,2
40	0,1991	67,6	75,5	73,0	0,0396	2,7	3,0	2,9
41	0,2987	80,3	75,7	74,8	0,0892	7,2	6,8	6,7
42 43	0,6614 0,2844	70,3 78,5	74,2 65,0	68,5 82,5	0,4374	30,8 6,3	32,5 5,3	30,0 6,7
44	0,4692	68,5	77,5	72,5	0,0809 0,2201	15,1	3,3 17,1	16,0
45	0,0648	81,7	70,5	72,5	0,0042	0,3	0,3	0,3
46	0,9883	77,5	75,0	75,8	0,9767	75,7	73,3	74,0
47	0,5828	87,5	70,5	77,0	0,3397	29,7	23,9	26,2
48	0,4235	75,9	78,0	86,5	0,1794	13,6	14,0	15,5
49	0,5155	70,5	70,0	75,5	0,2657	18,7	18,6	20,1
50	0,3340	79,0	72,0	65,0	0,1116	8,8	8,0	7,3
51	0,4329	65,0	80,0	70,5	0,1874	12,2	15,0	13,2
52	0,2259	78,0	75,0	89,5	0,0510	4,0	3,8	4,6
53	0,5798	72,5	75,0	82,5	0,3362	24,4	25,2	27,7
54 55	0,7604	81,0	65,7	75,5 68,0	0,5782	46,8	38,0	43,7
55 56	0,0164 0,1901	89,7 78,5	76,5 67,5	85,7	0,0003 0,0361	0,0 2,8	0,0 2,4	0,0 3,1
50 57	0,5869	65,0	89,5	70,5	0,0361	2,8 22,4	30,8	24,3
58	0,0576	70,7	92,0	78,5	0,0033	0,2	0,3	0,3
59	0,3676	75,5	70,0	79,5	0,1351	10,2	9,5	10,7
60	0,6315	85,0	75,5	80,2	0,3988	33,9	30,1	32,0
61	0,7176	68,5	65,0	78,5	0,5149	35,3	33,5	40,4
62	0,6927	82,5	69,5	72,1	0,4798	39,6	33,3	34,6
63	0,0841	74,5	90,2	70,5	0,0071	0,5	0,6	0,5

Siswa	Derajat Keanggotaan Pada Klaster Ke-1	Data \	Yang Di	klaster	$(\mu_i 1)^2$	$(\mu_i 1)^2 x \ X_i 1$	$\begin{array}{c} (\mu_i 1)^2 x \\ X_i 2 \end{array}$	$(\mu_i 1)^2 x$ $X_i 3$
	μ _i 1	X _i 1	X _i 2	X _i 3	_			
64	0,4544	69,5	72,5	79,0	0,2065	14,4	15,0	16,3
65	0,4418	70,9	74,5	91,5	0,1952	13,8	14,5	17,9
66	0,3533	82,5	72,5	70,6	0,1248	10,3	9,0	8,8
67	0,1536	75,8	82,1	70,8	0,0236	1,8	1,9	1,7
68	0,6756	80,2	74,5	72,5	0,4564	36,6	34,0	33,1
69	0,6992	74,5	91,5	69,5	0,4889	36,4	44,7	34,0
70	0,7275	60,5	68,7	77,8	0,5293	32,0	36,4	41,2
71	0,4784	74,5	77,8	69,8	0,2289	17,1	17,8	16,0
72	0,5548	79,0	72,5	73,8	0,3078	24,3	22,3	22,7
73	0,1210	87,5	75,2	71,8	0,0146	1,3	1,1	1,1
74	0,4508	65,0	76,8	67,5	0,2032	13,2	15,6	13,7
75	0,7159	76,0	94,8	74,0	0,5125	39,0	48,6	37,9
76	0,8928	65,0	77,8	81,5	0,7971	51,8	62,0	65,0
77	0,2731	65,5	68,0	75,8	0,0746	4,9	5,1	5,7
78	0,2548	80,4	75,5	74,2	0,0649	5,2	4,9	4,8
79	0,8656	90,1	78,7	74,3	0,7493	67,5	59,0	55,7
80	0,2324	75,7	74,0	87,5	0,0540	4,1	4,0	4,7
81	0,8049	74,9	77,3	65,0	0,6479	48,5	50,1	42,1
					26,9003	2.025,6	2.041,6	2.026,9
1	$V_{kl} = \frac{\sum_{i=1}^{Rl} ((\mu_k)^{i})^{kl}}{\sum_{i=1}^{Rl} (\mu_i)^{i}}$	$\frac{(k)^2}{(k)^2} * \frac{\mathbf{X}_{(i)}}{(k)^2}$)			75,30	75,89	75,35

Tabel 4 Hasil Perhitungan Pusat Klaster pada Iterasi Pertama Klaster ke-2

	Derajat							
	Keanggotaan	Data '	Yang Di	klaster		$(\mu_i 2)^2 x$	$(\mu_i 2)^2 x$	$(\mu_i 2)^2 x$
Siswa	Pada Klaster	Data	I alig Di	Kiasici	$(\mu_i 2)^2$	$(\mu_1 z) X$ $X_i 1$	$(\mu_1 z) X$ $X_i 2$	X_{i3}
	Ke-2				_	Λ ₁ 1	/ A 12	$\Lambda_{\rm l}$
	$\mu_i 2$	X_i1	X_i2	X_i3				
1	0,6038	72,2	74,8	76,5	0,3646	26,3	27,3	27,9
2	0,2722	74,9	76,5	67,3	0,0741	5,5	5,7	5,0
3	0,1988	77,5	70,6	74,6	0,0395	3,1	2,8	2,9
4	0,0153	68,1	77,1	77,8	0,0002	0,0	0,0	0,0
5	0,7468	76,6	71,3	76,1	0,5577	42,7	39,8	42,4
6	0,4451	78,2	76,4	64,6	0,1981	15,5	15,1	12,8
7	0,9318	70,4	74,5	72,9	0,8683	61,1	64,7	63,3
8	0,4660	75,3	75,2	68,7	0,2172	16,4	16,3	14,9
9	0,4186	77,1	73,7	80,5	0,1752	13,5	12,9	14,1
10	0,8462	71,5	77,6	77,8	0,7161	51,2	55,6	55,7
11	0,5252	74,0	69,8	80,3	0,2758	20,4	19,3	22,1
12	0,2026	72,8	78,4	69,8	0,0410	3,0	3,2	2,9
13	0,6721	73,7	73,9	71,4	0,4517	33,3	33,4	32,3
14	0,8381	73,1	73,9	72,5	0,7024	51,3	51,9	50,9
15	0,0196	71,9	73,2	74,9	0,0004	0,0	0,0	0,0
16	0,6813	74,3	73,2	70,3	0,4642	34,5	34,0	32,6
17	0,3795	78,3	79,2	79,0	0,1440	11,3	11,4	11,4
18	0,8318	71,8	74,3	77,9	0,6919	49,7	51,4	53,9
19	0,5028	74,1	75,3	80,3	0,2528	18,7	19,0	20,3
20	0,7095	74,7	72,4	72,1	0,5034	37,6	36,4	36,3
21	0,4289	74,0	71,3	71,9	0,1840	13,6	13,1	13,2
22	0,3046	70,6	78,5	76,6	0,0928	6,6	7,3	7,1
23	0,1897	76,8	78,6	73,5	0,0360	2,8	2,8	2,6
24	0,1934	75,3	71,2	77,6	0,0374	2,8	2,7	2,9
25	0,6822	76,1	72,4	72,4	0,4654	35,4	33,7	33,7
26	0,3028	70,7	78,9	69,0	0,0917	6,5	7,2	6,3
27	0,5417	83,4	76,1	78,8	0,2934	24,5	22,3	23,1
28	0,5298	70,8	76,6	79,0	0,2807	19,9	21,5	22,2
29	0,6405	78,3	75,5	80,2	0,4102	32,1	31,0	32,9
30	0,2091	76,7	76,4	73,8	0,0437	3,4	3,3	3,2
31	0,3798	74,4	79,4	86,1	0,1442	10,7	11,5	12,4
32	0,7833	80,4	76,7	78,8	0,6136	49,3	47,1	48,3
33	0,6808	66,5	71,0	71,4	0,4635	30,8	32,9	33,1

Siswa	Derajat Keanggotaan Pada Klaster Ke-2	Data Y	Yang Di	klaster	$(\mu_i 2)^2$	$\begin{array}{c} (\mu_i 2)^2 x \\ X_i 1 \end{array}$	$\begin{array}{c} (\mu_i 2)^2 x \\ X_i 2 \end{array}$	$(\mu_i 2)^2 x$ $X_i 3$
	μ _i 2	X _i 1	X _i 2	X _i 3	-	_		
34	0,4611	69,2	76,4	69,0	0,2126	14,7	16,2	14,7
35	0,5678	82,7	86,1	80,0	0,3224	26,7	27,8	25,8
36	0,7942	75,3	73,5	71,5	0,6308	47,5	46,4	45,1
37	0,0592	82,5	79,3	70,8	0,0035	0,3	0,3	0,2
38	0,6029	69,3	70,8	73,8	0,3635	25,2	25,7	26,8
39	0,0503	77,5	80,6	77,9	0,0025	0,2	0,2	0,2
40	0,4154	67,6	75,5	73,0	0,1726	11,7	13,0	12,6
41	0,3050	80,3	75,7	74,8	0,0930	7,5	7,0	7,0
42	0,8744	70,3	74,2	68,5	0,7646	53,7	56,7	52,4
43	0,0150	78,5	65,0	82,5	0,0002	0,0	0,0	0,0
44	0,7680	68,5	77,5	72,5	0,5898	40,4	45,7	42,8
45	0,9708	81,7	70,5	72,5	0,9425	77,0	66,4	68,3
46	0,9901	77,5	75,0	75,8	0,9803	76,0	73,5	74,3
47	0,7889	87,5	70,5	77,0	0,6224	54,5	43,9	47,9
48	0,4387	75,9	78,0	86,5	0,1925	14,6	15,0	16,6
49	0,4983	70,5	70,0	75,5	0,2483	17,5	17,4	18,7
50	0,2140	79,0	72,0	65,0	0,0458	3,6	3,3	3,0
51	0,6435	65,0	80,0	70,5	0,4141	26,9	33,1	29,2
52	0,3200	78,0	75,0	89,5	0,1024	8,0	7,7	9,2
53	0,9601	72,5	75,0	82,5	0,9218	66,8	69,1	76,0
54	0,7266	81,0	65,7	75,5	0,5279	42,8	34,7	39,9
55	0,9084	89,7	76,5	68,0	0,8252	74,0	63,1	56,1
56	0,2319	78,5	67,5	85,7	0,0538	4,2	3,6	4,6
57	0,2393	65,0	89,5	70,5	0,0573	3,7	5,1	4,0
58	0,0498	70,7	92,0	78,5	0,0025	0,2	0,2	0,2
59	0,0784	75,5	70,0	79,5	0,0061	0,5	0,4	0,5
60	0,6408	85,0	75,5	80,2	0,4106	34,9	31,0	32,9
61	0,1909	68,5 82,5	65,0	78,5	0,0364	2,5	2,4	2,9
62 63	0,8439		69,5 90,2	72,1 70,5	0,7122 0,0302	58,8	49,5	51,3
64	0,1739	74,5				2,3	2,7	2,1
65	0,1708 0,9943	69,5 70,9	72,5 74,5	79,0 91,5	0,0292 0,9886	2,0 70,1	2,1 73,7	2,3 90,5
66	0,4398	82,5	74,5	70,6	0,9880	16,0	14,0	13,7
67	0,3400	75,8	82,1	70,8	0,1934	8,8	9,5	8,2
68	0,3400	80,2	74,5	70,8	0,1130	0,0 7,9	9,5 7,4	7,2
69	0,3651	74,5	91,5	69,5	0,0387	9,9	12,2	9,3
70	0,3932	60,5	68,7	77,8	0,1535	9,4	10,6	12,0
71	0,5915	74,5	77,8	69,8	0,1340	26,1	27,2	24,4
72	0,1197	79,0	72,5	73,8	0,0143	1,1	1,0	1,1
73	0,0381	87,5	75,2	71,8	0,00145	0,1	0,1	0,1
74	0,4586	65,0	76,8	67,5	0,2103	13,7	16,2	14,2
75	0,8699	76,0	94,8	74,0	0,7567	57,5	71,7	56,0
76	0,9342	65,0	77,8	81,5	0,8727	56,7	67,9	71,1
77	0,2644	65,5	68,0	75,8	0,0699	4,6	4,8	5,3
78	0,1603	80,4	75,5	74,2	0,0257	2,1	1,9	1,9
79	0,8729	90,1	78,7	74,3	0,7620	68,7	60,0	56,6
80	0,2379	75,7	74,0	87,5	0,0566	4,3	4,2	5,0
81	0,6458	74,9	77,3	65,0	0,4171	31,2	32,2	27,1
	,	7-	,-	, -	25,4330	1.920,2	1.914,7	1.914,3
	$v = \sum_{i=1}^{M} \frac{((\mu w)^2}{(i + \mu w)^2}$,	- 1	7.	,-
	— 2 .= , ((μπ) ²	~ X ₂)						

Tabel 5. Hasil Perhitungan Pusat Klaster pada Iterasi Pertama Klaster ke-3

1	abel 5. Hasii Fe	minituile	gan rusai	Kiaste	i pada nera	asi Pertama	i Klastel K	.6-3
Siswa	Derajat Keanggotaan Pada Klaster Ke-3	Data	Yang Dil	klaster	$(\mu_i 3)^2$	$(\mu_i 3)^2 x$ $X_i 1$	$(\mu_i 3)^2 x$ $X_i 2$	$(\mu_i 3)^2 x$ $X_i 3$
	μ _i 3	X_i1	X_i2	X_i3				
1	0,1509	72,2	74,8	76,5	0,0228	1,6	1,7	1,7
2	0,6979	74,9	76,5	67,3	0,4871	36,5	37,3	32,8
3	0,3784	77,5	70,6	74,6	0,1432	11,1	10,1	10,7

Siswa	Derajat Keanggotaan Pada Klaster Ke-3	Data	Yang Di	klaster	$(\mu_{i}3)^{2}$	(μ _i 3) ² x X _i 1	(μ _i 3) ² x Χ _i 2	(μ _i 3) ² x X _i 3
	μ _i 3	X _i 1	X _i 2	X _i 3				
4	0,8600	68,1	77,1	77,8	0,7396	50,4	57,0	57,5
5	0,8537	76,6	71,3	76,1	0,7288	55,8	52,0	55,5
6	0,5936	78,2	76,4	64,6	0,3524	27,6	26,9	22,8
7	0,4966	70,4	74,5	72,9	0,2466	17,4	18,4	18,0
8	0,8998	75,3	75,2	68,7	0,8096	61,0	60,9	55,6
9	0,8216	77,1	73,7	80,5	0,6750	52,0	49,7	54,3
10	0,6449	71,5	77,6	77,8	0,4159	29,7	32,3	32,4
11	0,8180	74,0	69,8	80,3	0,6691	49,5	46,7	53,7
12	0,6602	72,8	78,4	69,8	0,4359	31,7	34,2	30,4
13	0,3420	73,7	73,9	71,4	0,1170	8,6	8,6	8,4
14	0,2897	73,1	73,9	72,5	0,0839	6,1	6,2	6,1
15 16	0,3412 0,5341	71,9 74,3	73,2 73,2	74,9 70,3	0,1164 0,2853	8,4 21,2	8,5 20,9	8,7 20,1
17	0,7271	78,3	79,2 79,2	79,0	0,2833	41,4	41,9	41,8
18	0,3093	71,8	74,3	77,9	0,0957	6,9	7,1	7,5
19	0,8385	74,1	75,3	80,3	0,7031	52,1	52,9	56,5
20	0,5681	74,7	72,4	72,1	0,3227	24,1	23,4	23,3
21	0,3704	74,0	71,3	71,9	0,1372	10,2	9,8	9,9
22	0,7027	70,6	78,5	76,6	0,4938	34,9	38,8	37,8
23	0,5466	76,8	78,6	73,5	0,2988	22,9	23,5	22,0
24	0,4449	75,3	71,2	77,6	0,1979	14,9	14,1	15,4
25	0,6946	76,1	72,4	72,4	0,4825	36,7	34,9	34,9
26	0,6213	70,7	78,9	69,0	0,3860	27,3	30,5	26,6
27	0,7948	83,4	76,1	78,8	0,6317	52,7	48,1	49,8
28	0,4120	70,8	76,6	79,0	0,1697	12,0	13,0	13,4
29	0,7446	78,3	75,5	80,2	0,5544	43,4	41,9	44,5
30	0,2679	76,7	76,4	73,8	0,0718	5,5	5,5	5,3
31	0,4399	74,4	79,4	86,1	0,1935	14,4	15,4	16,7
32	0,9334	80,4	76,7	78,8	0,8712	70,0	66,8	68,7
33	0,6833	66,5	71,0	71,4	0,4669	31,0	33,1	33,3
34	0,2126	69,2	76,4	69,0	0,0452 0,7043	3,1	3,5 60,6	3,1 56,3
35 36	0,8392 0,6288	82,7 75,3	86,1 73,5	80,0 71,5	0,7043	58,2 29,8	29,1	28,3
37	0,0288	82,5	73,3 79,3	70,8	0,3934	1,5	1,4	1,3
38	0,2071	69,3	70,8	73,8	0,0179	3,0	3,0	3,2
39	0,6072	77,5	80,6	77,9	0,3687	28,6	29,7	28,7
40	0,6299	67,6	75,5	73,0	0,3968	26,8	30,0	29,0
41	0,3705	80,3	75,7	74,8	0,1373	11,0	10,4	10,3
42	0,5751	70,3	74,2	68,5	0,3307	23,3	24,5	22,7
43	0,4514	78,5	65,0	82,5	0,2038	16,0	13,2	16,8
44	0,0439	68,5	77,5	72,5	0,0019	0,1	0,1	0,1
45	0,0272	81,7	70,5	72,5	0,0007	0,1	0,1	0,1
46	0,3127	77,5	75,0	75,8	0,0978	7,6	7,3	7,4
47	0,0129	87,5	70,5	77,0	0,0002	0,0	0,0	0,0
48	0,3840	75,9	7 8,0	86,5	0,1475	11,2	11,5	12,8
49	0,6831	70,5	70,0	75,5	0,4666	32,9	32,7	35,2
50	0,0928	79,0	72,0	65,0	0,0086	0,7	0,6	0,6
51	0,0353	65,0	80,0	70,5	0,0012	0,1	0,1	0,1
52 53	0,6124 0,6085	78,0 72,5	75,0 75,0	89,5 82,5	0,3750 0,3703	29,3 26,8	28,1 27,8	33,6 30,5
55 54	0,0083	81,0	65,7	75,5	0,0002	0,0	0,0	0,0
55	0,9669	89,7	76,5	68,0	0,9349	83,9	71,5	63,6
56	0,6649	78,5	67,5	85,7	0,4421	34,7	29,8	37,9
57	0,8704	65,0	89,5	70,5	0,7576	49,2	67,8	53,4
58	0,0099	70,7	92,0	78,5	0,0001	0,0	0,0	0,0
59	0,1370	75,5	70,0	79,5	0,0188	1,4	1,3	1,5
60	0,8188	85,0	75,5	80,2	0,6704	57,0	50,6	53,8
61	0,4302	68,5	65,0	78,5	0,1851	12,7	12,0	14,5
62	0,8903	82,5	69,5	72,1	0,7926	65,4	55,1	57,1
63	0,7349	74,5	90,2	70,5	0,5401	40,2	48,7	38,1
64	0,6873	69,5	72,5	79,0	0,4724	32,8	34,2	37,3
65	0,3461	70,9	74,5	91,5	0,1198	8,5	8,9	11,0
66	0,1660	82,5	72,5	70,6	0,0276	2,3	2,0	1,9

Siswa	Derajat Keanggotaan Pada Klaster	Data	Yang Dil	klaster	$(\mu_i 3)^2$	$(\mu_i 3)^2 x$ $X_i 1$	$(\mu_i 3)^2 x$ $X_i 2$	(μ _i 3) ² x Χ _i 3
	Ke-3							
	μ _i 3	X _i 1	X _i 2	X _i 3				
67	0,1556	75,8	82,1	70,8	0,0242	1,8	2,0	1,7
68	0,1911	80,2	74,5	72,5	0,0365	2,9	2,7	2,6
69	0,4225	74,5	91,5	69,5	0,1785	13,3	16,3	12,4
70	0,8560	60,5	68,7	77,8	0,7327	44,3	50,3	57,0
71	0,4902	74,5	77,8	69,8	0,2403	17,9	18,7	16,8
72	0,8159	79,0	72,5	73,8	0,6657	52,6	48,3	49,1
73	0,4608	87,5	75,2	71,8	0,2123	18,6	16,0	15,2
74	0,4574	65,0	76,8	67,5	0,2092	13,6	16,1	14,1
75	0,4507	76,0	94,8	74,0	0,2031	15,4	19,3	15,0
76	0,4122	65,0	77,8	81,5	0,1699	11,0	13,2	13,8
77	0,9016	65,5	68,0	75,8	0,8129	53,2	55,3	61,6
78	0,0056	80,4	75,5	74,2	0,0000	0,0	0,0	0,0
79	0,2974	90,1	78,7	74,3	0,0884	8,0	7,0	6,6
80	0,0492	75,7	74,0	87,5	0,0024	0,2	0,2	0,2
81	0,6932	74,9	77,3	65,0	0,4805	36,0	37,1	31,2
					26,0654	1.956,2	1.970,3	1.963,4
	$\Sigma = \sum_{i=1}^{M} (0)a_i$) = X _P)						
	$V_{kp} = rac{\sum_{i=r}^{M_r} \langle \langle \mu_{ik} \rangle \rangle}{\sum_{i=r}^{M_r} \langle \langle \mu_{ik} \rangle \rangle}$	3°				75,05	75,59	75,33

Pusat klaster (V) yang terbentuk pada iterasi pertama adalah:

$$\mathbf{V}_1 = \begin{pmatrix} 75,30 & 75,89 & 75,35 \\ 75,50 & 75,28 & 75,27 \\ 75,05 & 75,59 & 75,33 \end{pmatrix}$$

5. Menghitung Fungsi Objektif (P) Fungsi objektif pada iterasi pertama (p1) dihitung dengan menggunakan persamaan :

$$P_1 = \sum_{i=1}^{|S|} \sum_{k=1}^{|S|} ([\sum_{j=1}^{|S|} (X_{ij} - V_{kj})^2](\mu_{ik})^2) = 7.311,7384$$

Hasil perhitungan secara rinci dapat dilihat pada tabel 6 berikut:

Tabel 6. Hasil Perhitungan Fungsi Obiektif pada Iterasi Pertama

	Kuadrat Derajat Keanggotaan										
C:	Kuadrai	Derajat Kea Data ke i	nggotaan	T 1	τ 2	т 2	IT 11.12.12				
Siswa	μi1²	ui2 ²	μi3²	_ L1	L2	L3	LT=L1+L2+L3				
				10.0411	4 (050	0. 2202	15 7772				
1	0,9027	0,3646	0,0228	10,9411	4,6058	0 ,2303	15,7773				
2	0,0534	0,0741	0,4871	3,4893	4 ,8434	31,8206	40,1534				
3	0,3682	0,0395	0,1432	12,2932	1,0414	4 ,5011	17,8357				
4	0,2362	0,0002	0,7396	14,0080	0,0151	41,9231	55,9462				
5	0,7944	0,5577	0,7288	18,5263	9 ,8934	15,5960	44,0157				
6	0,5808	0,1981	0,3524	72,1538	24,2478	44,2958	140,6975				
7	0,2084	0,8683	0,2466	6,6570	27,9883	7,0816	41,7269				
8	0,0003	0,2172	0,8096	0,0153	9,3836	35,7630	45,1619				
9	0,6747	0,1752	0,6750	23,3166	5 ,6790	23,2908	52,2863				
10	0,1978	0,7161	0,4159	4,6209	19,8944	9,4589	33,9742				
11	0,3787	0,2758	0,6691	23,9654	15,8829	39,6975	79,5458				
12	0,6271	0,0410	0,4359	27,1867	1,9270	18,9773	48,0909				
13	0,8497	0,4517	0,1170	18,7979	9,0892	2,3537	30,2408				
14	0,5449	0,7024	0,0839	9,2218	10,7731	1,2310	21,2259				
15	0,0311	0,0004	0,1164	0,5905	0,0067	1,8417	2,4389				
16	0,1646	0,4642	0,2853	5,5531	14,1420	19,0073	28,7024				
17	0,8752	0,1440	0,5287	29,1241	5 ,3459	19,5945	54,0646				
18	0,8407	0,6919	0,0957	17,8907	14,9222	1,8015	34,6145				
19	0.1683	0,2528	0,7031	4,4259	6,8919	18,0604	29,3782				
20	0,7985	0,5034	0,3227	18,4479	9,5560	6,6908	34,6948				
21	0,0034	0,1840	0,1372	0,1162	5,4170	4,2903	9,8235				
22	0,1245	0,0928	0,4938	3,7940	3,3538	14,7561	21,9039				
23	0,6613	0,0360	0,2988	8,6078	0,5702	4,6224	13,8005				
24	0,0001	0,0374	0,1979	0,0027	0,8272	4,8470	5,6768				
25	0,0193	0,4654	0,4825	0,4152	7,8612	9,5835	17,8599				
26	0,0411	0,0917	0,3860	2,9013	6,9185	27,0007	36,8205				

-	Kuadrai	t Derajat Kea	naaotaan				
Siswa	Kuadra	Derajat Kea Data ke i	nggotaan	L1	L2	L3	LT=L1+L2+L3
Siswa	μi1²	μi2 ²	μi3²	_ L1	LZ	LS	L1-L1+L2+L3
27	0,0395	0,2934	0,6317	3,0621	22,1673	51,8148	77,0442
28	0,0393	0,2934	0,0317	31,1960	10,5947	5,5254	47,3161
	0,9133		0,1697				
29	,	0,4102	,	8,9238	13,2070	19,0100	41,1408
30	0,7746	0,0437	0,0718	3,5806	0,2123	0,4105	4,2033
31	0,0299	0,1442	0,1935	3,8516	19,5418	25,3368	48,7302
32	0,9598	0,6136	0,8712	37,0186	23,6142	36,5008	97,1337
33	0,0737	0,4635	0,4669	8,6146	52,9746	51,1794	112,7686
34	0,0637	0,2126	0,0452	4,9519	17,0638	3,3875	25,4032
35	0,7669	0,3224	0,7043	138,5136	61,6698	134,3662	334,5496
36	0,5436	0,6308	0,3954	11,1628	10,9885	7,5517	29,7031
37	0,0186	0,0035	0,0179	1,5683	0,2984	1,6074	3,4741
38	0,0001	0,3635	0,0429	0,0090	22,0533	2,5025	24,5648
39	0,7991	0,0025	0,3687	26,7897	0,0992	13,9024	40,7913
40	0,0396	0,1726	0,3968	2,5752 1	1,6668	24,1792	38,4213
41	0,0892	0,0930	0,1373	2,2608	2,1803	3,8237	8,2647
42	0,4374	0,7646	0,3307	32,7119	56,6086	23,5300	112,8505
43	0,0809	0,0002	0,2038	14,5553	0,0376	35,7520	50,3449
44	0,2201	0,5898	0,0019	12,5385	36,3339	0,1051	48,9776
45	0,0042	0,9425	0,0007	0,3281	64,9928	0,0578	65,3787
46	0,9767	0,9803	0,0978	5,6989	4,2734	0,6426	10,6149
47	0,3397	0,6224	0,0002	61,3468	105,7030	0,0306	167,0803
48	0,1794	0,1925	0,1475	23,1606	25,7261	19,3609	68,2475
49	0,2657	0,2483	0,4666	15,3477	13,1430	24,2550	52,7457
50	0,1116	0,0458	0,0086	15,1654	5 ,8839	1,1643	22,2137
51	0,1874	0,4141	0,0012	27,4553	64,3008	0,1792	91,9353
52	0,0510	0,1024	0,3750	10,6300	21,3833	78,6969	110,7102
53	0,3362	0,9218	0,3703	20,0876	56,5531	21,5719	98,2126
54	0,5782	0,5279	0,0002	78,8379	64,4515	0,0333	143,3226
55	0,0003	0,8252	0,9349	0,0704	211,2334	251,6547	462,9585
56	0,0361	0,0538	0,4421	6,7851	9,5893	81,7373	98,1116
57	0,3445	0,0573	0,7576	108,4487	19,1957	240,7788	368,4233
58	0,0033	0,0025	0,0001	0,9642	0,7763	0,0292	1,7698
59	0,1351	0,0061	0,0188	7,0206	0,2813	0,9167	8,2186
60	0,3988	0,4106	0,6704	46,9636	47,0589	82,2806	176,3032
61	0,5149	0,0364	0,1851	89,9898	6,0171	30,5553	126,5623
62	0,4798	0,7122	0,7926	49,5354	65,8451	81,6599	197,0404
63	0,0071	0,0302	0,5401	1,6192	7,4502	128,0436	137,1130
64	0,2065	0,0292	0,4724	12,0697	1,6815	25,4233	39,1745
65	0,1952	0,9886	0,1198	55,0652	281,9395	33,5254	370,5301
66	0,1248	0,1934	0,0276	10,7214	15,1910	2,4090	28,3215
67	0,0236	0,1156	0,0242	1,4042	7,6970	1,5365	10,6377
68	0,4564	0,0987	0,0365	15,5483	2,9983	1,3044	19,8510
69	0,4889	0,1333	0,1785	136,1702	39,6403	51,3062	227,1167
70	0,5293	0,1546	0,7327	146,4656	42,4699	194,3769	383,3125
71	0,2289	0,3499	0,2403	8,0311	13,0402	8,5948	29,6660
72	0,3078	0,0143	0,6657	8,4906	0,3172	18,3009	27,1087
73	0,0146	0,0015	0,2123	2,3707	0,2265	35,5909	38,1881
74	0,2032	0,2103	0,2092	34,2509	36,3703	3 4,2643	104,8855
75	0,5125	0,7567	0,2031	184,4537	289,7453	75,5027	549,7017
76	0,7971	0,8727	0,1699	117,6194	135,6338	24,4593	277,7125
77	0,0746	0,0699	0,8129	11,8211	10,7154	121,1451	143,6816
78	0,0649	0,0257	0,0000	1,7844	0,6476	0,0009	2,4329
79	0,7493	0,7620	0,0884	170,8610	172,0472	20,9827	363,8909
80	0,0540	0,7620	0,0024	8,1746	8,5603	0,3657	17,1006
81	0,6479	0,4171	0,4805	70,7925	45,8402	52,6923	169,3250
01	0,017	0,11/1	0,1005	10,1723		Objektive = Σ	7.311,7384
					1 411531	o o jointire 2	7.511,7504

Dengan

$$LI = \left[\sum_{j=1}^{3} (X_{ij} - V_{2j})^{2} \right] (\mu_{i1})^{2}$$

$$L2 = \left[\sum_{j=1}^{3} (X_{ij} - V_{2j})^{2} \right] (\mu_{i2})^{2}$$

$$L3 = \left[\sum_{j=1}^{3} (X_{ij} - V_{2j})^{2} \right] (\mu_{i3})^{2}$$

6. Menghitung Perubahan Matriks Partisi (U) Perubahan matriks partisi (U) dihitung menggunakan persamaan :

$$\mu_{jk} = \frac{\left[\sum_{j=1}^{J} (X_{y} - V_{ij})^{2}\right]^{\frac{1}{2J}}}{\sum_{k=1}^{c} \left[\sum_{j=1}^{J} (X_{y} - V_{ij})^{2}\right]^{\frac{2J}{2J}}}$$

Hasil perhitungan secara rinci dapat dilihat pada tabel 7 berikut:

	Tabel 7. Hasil Perhitungan Derajat Keanggotaan Baru (Matriks Partisi Baru)										
Siswa	L1	L2	L3	LT	μi1	μi2	μi3				
Siswa	LI	L2	L3	LI	L1/LT	L2/LT	L3/LT				
1	10,9411	4 ,6058	0,2303	15,7773	0,6935	0,2919	0,0146				
2	3,4893	4 ,8434	31,8206	40,1534	0,0869	0,1206	0,7925				
3	12,2932	1,0414	4,5011	17,8357	0,6892	0,0584	0,2524				
4	14,0080	0,0151	4 1,9231	55,9462	0,2504	0,0003	0,7493				
5	18,5263	9,8934	15,5960	44,0157	0,4209	0,2248	0,3543				
6	72,1538	24,2478	44,2958	140,6975	0,5128	0,1723	0,3148				
7	6,6570	27,9883	7,0816	41,7269	0,1595	0,6708	0,1697				
8	0,0153	9,3836	35,7630	45,1619	0,0003	0,2078	0,7919				
9	23,3166	5,6790	23,2908	52,2863	0,4459	0,1086	0,4454				
10	4,6209	19,8944	9,4589	33,9742	0,1360	0,5856	0,2784				
11	23,9654	15,8829	39,6975	79,5458	0,3013	0,1997	0,4991				
12	27,1867	1,9270	18,9773	48,0909	0,5653	0,0401	0,3946				
13	18,7979	9,0892	2,3537	30,2408	0,6216	0,3006	0,0778				
14	9,2218	10,7731	1,2310	21,2259	0,4345	0,5075	0,0580				
15	0,5905	0,0067	1,8417	2,4389	0,2421	0,0027	0,7551				
16	5,5531	14,1420	9,0073	28,7024	0,1935	0,4927	0,3138				
17	29,1241	5,3459	19,5945	54,0646	0,5387	0,0989	0,3624				
18	17,8907	14,9222	1,8015	34,6145	0,5169	0,4311	0,0520				
19	4,4259	6,8919	18,0604	29,3782	0,1507	0,2346	0,6148				
20	18,4479	9,5560	6,6908	34,6948	0,5317	0,2754	0,1928				
21	0,1162	5,4170	4,2903	9,8235	0,0118	0,5514	0,4367				
22	3,7940	3,3538	14,7561	21,9039	0,1732	0,1531	0,6737				
23	8,6078	0,5702	4,6224	13,8005	0,6237	0,0413	0,3349				
24	0,0027	0,8272	4,8470	5,6768	0,0005	0,1457	0,8538				
25	0,4152	7,8612	9,5835	17,8599	0,0232	0,4402	0,5366				
26	2,9013	6,9185	27,0007	36,8205	0,0788	0,1879	0,7333				
27	3,0621	22,1673	51,8148	77,0442	0,0397	0,2877	0,6725				
28	31,1960	10,5947	5,5254	47,3161	0,6593	0,2239	0,1168				
29	8,9238	13,2070	19,0100	41,1408	0,2169	0,3210	0,4621				
30	3,5806	0,2123	0,4105	4,2033	0,8518	0,0505	0,0977				
31	3,8516	19,5418	25,3368	48,7302	0,0790	0,4010	0,5199				
32	37,0186	23,6142	36,5008	97,1337	0,3811	0,2431	0,3758				
33	8,6146	52,9746	51,1794	112,7686	0,0764	0,4698	0,4538				
34	4,9519	17,0638	3,3875	25,4032	0,1949	0,6717	0,1334				
35	138,5136	61,6698	134,3662	334,5496	0,4140	0,1843	0,4016				
36	11,1628	10,9885	7,5517	29,7031	0,3758	0,3699	0,2542				
37	1,5683	0,2984	1,6074	3,4741	0,4514	0,0859	0,4627				
38	0,0090	22,0533	2,5025	24,5648	0,0004	0,8978	0,1019				
39	26,7897	0,0992	13,9024	40,7913	0,6567	0,0024	0,3408				
40	2,5752	11,6668	24,1792	38,4213	0,0670	0,3037	0,6293				
41	2,2608	2,1803	3,8237	8,2647	0,2735	0,2638	0,4627				
42	32,7119	56,6086	23,5300	112,8505	0,2899	0,5016	0,2085				
43	14,5553	0,0376	35,7520	50,3449	0,2891	0,0007	0,7101				
44	12,5385	36,3339	0,1051	48,9776	0,2560	0,7418	0,0021				
45	0,3281	64,9928	0,0578	65,3787	0,0050	0,9941	0,0009				
	0,5201	01,7720	0,0070	00,0101	0,0000	0,7711	0,0007				

Siswa	L1	L2	L3	LT	μi1 L1/LT	μi2 L2/LT	μi3 L3/LT
46	5,6989	4,2734	0,6426	10,6149	0,5369	0,4026	0,0605
47	61,3468	105,7030	0,0306	167,0803	0,3672	0,6326	0,0002
48	23,1606	25,7261	19,3609	68,2475	0,3394	0,3770	0,2837
49	15,3477	13,1430	24,2550	52,7457	0,2910	0,2492	0,4598
50	15,1654	5,8839	1,1643	22,2137	0,6827	0,2649	0,0524
51	27,4553	64,3008	0,1792	91,9353	0,2986	0,6994	0,0019
52	10,6300	21,3833	78,6969	110,7102	0,0960	0,1931	0,7108
53	20,0876	56,5531	21,5719	98,2126	0,2045	0,5758	0,2196
54	78,8379	64,4515	0,0333	143,3226	0,5501	0,4497	0,0002
55	0,0704	211,2334	251,6547	462,9585	0,0002	0,4563	0,5436
56	6,7851	9,5893	81,7373	98,1116	0,0692	0,0977	0,8331
57	108,4487	19,1957	240,7788	368,4233	0,2944	0,0521	0,6535
58	0,9642	0,7763	0,0292	1,7698	0,5448	0,4387	0,0165
59	7,0206	0,2813	0,9167	8,2186	0,8542	0,0342	0,1115
60	46,9636	47,0589	82,2806	176,3032	0,2664	0,2669	0,4667
61	89,9898	6,0171	30,5553	126,5623	0,7110	0,0475	0,2414
62	49,5354	65,8451	81,6599	197,0404	0,2514	0,3342	0,4144
63	1,6192	7,4502	128,0436	137,1130	0,0118	0,0543	0,9339
64	12,0697	1,6815	25,4233	39,1745	0,3081	0,0429	0,6490
65	55,0652	281,9395	33,5254	370,5301	0,1486	0,7609	0,0905
66	10,7214	15,1910	2,4090	28,3215	0,3786	0,5364	0,0851
67	1,4042	7,6970	1,5365	10,6377	0,1320	0,7236	0,1444
68	15,5483	2,9983	1,3044	19,8510	0,7832	0,1510	0,0657
69	136,1702	39,6403	51,3062	227,1167	0,5996	0,1745	0,2259
70	146,4656	42,4699	194,3769	383,3125	0,3821	0,1108	0,5071
71	8,0311	13,0402	8,5948	29,6660	0,2707	0,4396	0,2897
72	8,4906	0,3172	18,3009	27,1087	0,3132	0,0117	0,6751
73	2,3707	0,2265	35,5909	38,1881	0,0621	0,0059	0,9320
74	34,2509	36,3703	34,2643	104,8855	0,3266	0,3468	0,3267
75	184,4537	289,7453	75,5027	549,7017	0,3356	0,5271	0,1374
76	117,6194	135,6338	24,4593	277,7125	0,4235	0,4884	0,0881
77	11,8211	10,7154	121,1451	143,6816	0,0823	0,0746	0,8432
78	1,7844	0,6476	0,0009	2,4329	0,7334	0,2662	0,0004
79	170,8610	172,0472	20,9827	363,8909	0,4695	0,4728	0,0577
80	8,1746	8,5603	0,3657	17,1006	0,4780	0,5006	0,0214
81	70,7925	45,8402	52,6923	169,3250	0,4181	0,2707	0,3112

matrik partisi baru (U) untuk iterasi pertama adalah: $U_1 =$

0,6935	0,2919	0,0146	0,2899	0,5016	0,2085
0,0869	0,1206	0,7925	0,2891	0,0007	0,7101
0,6892	0,0584	0,2524	0,2560	0,7418	0,0021
0,2504	0,0003	0,7493	0,0050	0,9941	0,0009
0,4209	0,2248	0,3543	0,5369	0,4026	0,0605
0,5128	0,1723	0,3148	0,3672	0,6326	0,0002
0,1595	0,6708	0,1697	0,3394	0,3770	0,2837
0,0003	0,2078	0,7919	0,2910	0,2492	0,4598
0,4459	0,1086	0,4454	0,6827	0,2649	0,0524
0,1360	0,5856	0,2784	0,2986	0,6994	0,0019
0,3013	0,1997	0,4991	0,0960	0,1931	0,7108
0,5653	0,0401	0,3946	0,2045	0,5758	0,2196
0,6216	0,3006	0,0778	0,5501	0,4497	0,0002
0,4345	0,5075	0,0580	0,0002	0,4563	0,5436
0,2421	0,0027	0,7551	0,0692	0,0977	0,8331
0,1935	0,4927	0,3138	0,2944	0,0521	0,6535
0,5387	0,0989	0,3624	0,5448	0,4387	0,0165
0,5169	0,4311	0,0520	0,8542	0,0342	0,1115
0,1507	0,2346	0,6148	0,2664	0,2669	0,4667
0,5317	0,2754	0,1928	0,7110	0,0475	0,2414
0,0118	0,5514	0,4367	0,2514	0,3342	0,4144
0,1732	0,1531	0,6737	0,0118	0,0543	0,9339
0,6237	0,0413	0,3349	0,3081	0,0429	0,6490
0,0005	0,1457	0,8538	0,1486	0,7609	0,0905
0,0232	0,4402	0,5366	0,3786	0,5364	0,0851
0,0788	0,1879	0,7333	0,1320	0,7236	0,1444

0,0397	0,2877	0,6725	0,7832	0,1510	0,0657
0,6593	0,2239	0,1168	0,5996	0,1745	0,2259
0,2169	0,3210	0,4621	0,3821	0,1108	0,5071
0,8518	0,0505	0,0977	0,2707	0,4396	0,2897
0,0790	0,4010	0,5199	0,3132	0,0117	0,6751
0,3811	0,2431	0,3758	0,0621	0,0059	0,9320
0,0764	0,4698	0,4538	0,3266	0,3468	0,3267
0,1949	0,6717	0,1334	0,3356	0,5271	0,1374
0,4140	0,1843	0,4016	0,4235	0,4884	0,0881
0,3758	0,3699	0,2542	0,0823	0,0746	0,8432
0,4514	0,0859	0,4627	0,7334	0,2662	0,0004
0,0004	0,8978	0,1019	0,4695	0,4728	0,0577
0,6567	0,0024	0,3408	0,4780	0,5006	0,0214
					0,3112
0,0670	0,3037	0,6293	0,4181	0,2707	
0.2735	0.2638	0.4627			

7. Mengecek Kondisi Berhenti

Karena | Pi - Po | = | 7.311,7384 - 0| = $7.311,7384 >> \xi$ (10^{Sm}), dan interasi = 1 < MaxIter (=100), maka proses dilanjutkan ke iterasi kedua (t=2)

Pada iterasi kedua ditentukan kembali 3 pusat klaster V_{kj} (seperti langkah perhitungan pada iterasi pertama) dengan k=1,2,3 dan j=1,2,3. Hasilnya seperti berikut:

Fungsi objektif pada iterasi kedua (P2) juga dihitung seperti cara perhitungan fungsi objektif pada iterasi pertama. Hasilnya adalah:

$$P_2 = \sum_{j=1}^{d_1} \sum_{k=1}^{d_2} ([\sum_{j=1}^{d_2} (X_{ij} - V_{kj})^2](\mu_{ik})^2) = 3.979,3756$$

Karena | $P_2 - P_1$ | = | 7.311,7384 - 3.979,3756 | = $3.332,3628 >> \epsilon$ (10Sm), dan interasi = 2 < MaxIter (=100), maka proses dilanjutkan ke iterasi ketiga (t=3).

Demikian seterusnya, hingga $|P_t - P_{t-1}| < \xi$, atau t> MaxIter. Dalam penelitian ini, proses berhenti setelah iterasi ke-72.

>> X=load('e:\siswa.dat');

>> [center,U,ObjFcn] = fcm(X,3, [2,100,10^-5])

```
Iteration count = 1, obj. fcn = 3942.376703
                                                               Iteration count = 28, obj. fcn = 2428.973271
                                                               Iteration count = 29, obj. fcn = 2428.846858
Iteration count = 2, obj. fcn = 3295.862096
Iteration count = 3, obj. fcn = 2546.108203
                                                                Iteration count = 30, obj. fcn = 2428.745065
Iteration count = 4, obj. fcn = 2530.106430
                                                                Iteration count = 31, obj. fcn = 2428.663153
Iteration count = 5, obj. fcn = 2512.474976
                                                                Iteration count = 32, obj. fcn = 2428.597275
Iteration count = 6, obj. fcn = 2493.115613
                                                                Iteration count = 33, obj. fcn = 2428.544318
Iteration count = 7, obj. fcn = 2475.079402
                                                                Iteration count = 34, obj. fcn = 2428.501764
Iteration count = 8, obj. fcn = 2462.425069
                                                                Iteration count = 35, obj. fcn = 2428.467583
Iteration count = 9, obj. fcn = 2455.091763
                                                                Iteration count = 36, obj. fcn = 2428.440135
Iteration count = 10, obj. fcn = 2450.629864
                                                                Iteration count = 37, obj. fcn = 2428.418099
Iteration count = 11, obj. fcn = 2447.344143
                                                                Iteration count = 38, obj. fcn = 2428.400413
Iteration count = 12, obj. fcn = 2444.570059
                                                                Iteration count = 39, obj. fcn = 2428.386221
Iteration count = 13, obj. fcn = 2442.113530
                                                                Iteration count = 40, obj. fcn = 2428.374834
Iteration count = 14, obj. fcn = 2439.930548
                                                                Iteration count = 41, obj. fcn = 2428.365700
Iteration count = 15, obj. fcn = 2438.012479
                                                                Iteration count = 42, obj. fcn = 2428.358373
Iteration count = 16, obj. fcn = 2436.351811
                                                                Iteration count = 43, obj. fcn = 2428.352497
Iteration count = 17, obj. fcn = 2434.934267
                                                                Iteration count = 44, obj. fcn = 2428.347786
Iteration count = 18, obj. fcn = 2433.739142
                                                                Iteration count = 45, obj. fcn = 2428.344008
Iteration count = 19, obj. fcn = 2432.741841
                                                                Iteration count = 46, obj. fcn = 2428.340979
Iteration count = 20, obj. fcn = 2431.916480
                                                                Iteration count = 47, obj. fcn = 2428.338550
                                                               Iteration count = 48, obj. fcn = 2428.336604
Iteration count = 21, obj. fcn = 2431.237870
Iteration count = 22, obj. fcn = 2430.682760
                                                               Iteration count = 49, obj. fcn = 2428.335043
teration count = 23, obj. fcn = 2430.230472
                                                               Iteration count = 50, obj. fcn = 2428.333792
Iteration count = 24, obj. fcn = 2429.863089
                                                               Iteration count = 51, obj. fcn = 2428.332790
Iteration count = 25, obj. fcn = 2429.565387
                                                                Iteration count = 52, obj. fcn = 2428.331986
Iteration count = 26, obj. fcn = 2429.324600
                                                                Iteration count = 53, obj. fcn = 2428.331342
Iteration count = 27, obj. fcn = 2429.130136
                                                                Iteration count = 54, obj. fcn = 2428.330826
```



```
Iteration count = 55, obj. fcn = 2428.330412
                                                                Iteration count = 64, obj. fcn = 2428.328971
Iteration count = 56, obj. fcn = 2428.330081
                                                                Iteration count = 65, obj. fcn = 2428.328926
Iteration count = 57, obj. fcn = 2428.329815
                                                                Iteration count = 66, obj. fcn = 2428.328890
Iteration count = 58, obj. fcn = 2428.329602
                                                                Iteration count = 67, obj. fcn = 2428.328861
Iteration count = 59, obj. fcn = 2428.329432
                                                                Iteration count = 68, obj. fcn = 2428.328837
Iteration count = 60, obj. fcn = 2428.329295
                                                                Iteration count = 69, obj. fcn = 2428.328819
Iteration count = 61, obj. fcn = 2428.329185
                                                                Iteration count = 70, obj. fcn = 2428.328804
Iteration count = 62, obj. fcn = 2428.329098
                                                                Iteration count = 71, obj. fcn = 2428.328792
Iteration count = 63, obj. fcn = 2428.329027
                                                                Iteration count = 72, obj. fcn = 2428.328782
```

79.7301 80.0742

Pada iterasi terakhir (iterasi ke-72) ini, pusat kelaster vki yang dihasilkan (Software Matlab) dengan k=1,2,3; dan j=1,2,3 adalah:

Penyebaran masing-masing anggota klaster pada iterasi terakhir dapat dilihat pada cluster interface gambar 3, 4 dan 5:

```
79.7301
80.0742
         75.0224
                     74.4123
```

75.0224

Gambar 3. Posisi Klaster Untuk Data Pertama (Peminatan IPA)

Berdasarkan matriks V iterasi terakhir dan gambar 3 dapat diperoleh informasi bahwa pada mata pelajaran peminatan pertama (IPA) siswa dapat dikelompokkan/diklaster dalam tiga kelompok berdasarkan nilai rata-rata mata pelajaran peminatan, yaitu:

- Kelompok pertama (klaster pertama), terdiri atas siswa yang memiliki nilai rata- rata mata pelajaran peminatan sekitar 72.0635.
- 2. Kelompok kedua (klaster kedua), terdiri atas siswa yang memiliki nilai rata-rata mata pelajaran peminatan sekitar 73.5371.
- 3. Kelompok ketiga (klaster ketiga), terdiri atas siswa yang memiliki nilai rata-rata mata pelajaran peminatan sekitar 80.0742

Gambar 4. Posisi Klaster Untuk Data kedua (Peminatan IPS)

Berdasarkan matriks V iterasi terakhir dan gambar 4 dapat diperoleh informasi bahwa pada mata pelajaran peminatan kedua (IPS) siswa dapat dikelompokkan/diklaster dalam tiga kelompok berdasarkan nilai rata-rata mata pelajaran peminatan, yaitu:

1. Kelompok pertama (klaster pertama), terdiri atas siswa yang memiliki nilai rata- rata mata pelajaran

peminatan sekitar 76,3067.

- 2. Kelompok kedua (klaster kedua), terdiri atas siswa yang memiliki nilai rata-rata mata pelajaran peminatan sekitar 74,7951.
- 3. Kelompok ketiga (klaster ketiga), terdiri atas siswa yang memiliki nilai rata-rata mata pelajaran peminatan sekitar 75,0224.

Gambar 5. Posisi Klaster Untuk Data ketiga (Peminatan Bahasa)

Berdasarkan matriks V iterasi terakhir dan gambar 5 dapat diperoleh informasi bahwa pada mata pelajaran peminatan ketiga (Bahasa) siswa dapat dikelompokkan/diklaster dalam tiga kelompok berdasarkan nilai rata-rata mata pelajaran peminatan, yaitu:

- 1. Kelompok pertama (klaster pertama), terdiri atas siswa yang memiliki nilai rata- rata mata pelajaran peminatan sekitar 71,5032.
- 2. Kelompok kedua (klaster kedua), terdiri atas siswa yang memiliki nilai rata-rata mata pelajaran peminatan sekitar 79.7301
- 3. Kelompok ketiga (klaster ketiga), terdiri atas siswa yang memiliki nilai rata-rata mata pelajaran peminatan sekitar 74,4 123.

Secara keseluruhan siswa dapat dikelompokkan/diklaster dalam tiga kelompok berdasarkan nilai rata-rata mata pelajaran peminatan, yaitu:

- 1. Kelompok pertama, terdiri atas siswa yang memiliki nilai rata-rata mata pelajaran peminatan IPA sekitar 72,0635; nilai rata-rata mata pelajaran peminatan IPS sekitar 76,3067; dan nilai rata-rata mata pelajaran peminatan Bahasa sekitar 71,5032.
- 2. Kelompok kedua, terdiri atas siswa yang memiliki nilai rata-rata mata pelajaran peminatan IPA sekitar 73,5371; nilai rata-rata mata pelajaran peminatan IPS sekitar 74,7951; dan nilai rmata-rata mata pelajaran peminatan Bahasa sekitar 79,7301.
- 3. Kelompok ketiga, terdiri atas siswa yang memiliki nilai rata-rata mata pelajaran peminatan IPA sekitar 80,0742; nilai rata-rata mata pelajaran peminatan IPS sekitar 75,0224; dan nilai rata-rata mata pelajaran peminatan Bahasa sekitar 74,4123.

Tabel 8. Derajat Keanggotaan Tiap Data Pada Setiap Klaster Dengan FCM (Pada Iterasi Terakhir)

Siswa	Nilai Rata-rata Peminatan				Derajat Keanggotaan (μ) pada Iterasi Terakhir			Kecenderungan data Siswa masuk pada klaster		
Siswa	P1 IPA	P2 IPS	P3 BHS	(μ1) IPS	(μ2) BHS	(μ3) IPA		C1 IPS	C2 BHS	C3 IPA
1	72,2	74,8	76,5	0,2747	0,6126	0,1127			*	
2	74,9	76,5	67,3	0,6732	0,1088	0,2179	*			
3	77,5	70,6	74,6	0,2025	0,2436	0,5539				*
4	68,1	77,1	77,8	0,5176	0,3569	0,1255	*			
5	76,6	71,3	76,1	0,1908	0,4428	0,3664			*	
6	78,2	76,4	64,6	0,3856	0,1548	0,4596				*
7	70,4	74,5	72,9	0,8169	0,1153	0,0678	*			
8	75,3	75,2	68,7	0,2337	0,1037	0,6626				*
9	77,1	73,7	80,5	0,0894	0,8123	0,0983			*	
10	71,5	77,6	77,8	0,6452	0,2439	0,1108	*			
11	74,0	69,8	80,3	0,0829	0,7761	0,1410			*	
12	72,8	78,4	69,8	0,0787	0,0601	0,8612				*
13	73,7	73,9	71,4	0,1293	0,0938	0,7769				*
14	73,1	73,9	72,5	0,1134	0,1140	0,7726				*
15	71,9	73,2	74,9	0,3634	0,5475	0,0891			*	
16	74,3	73,2	70,3	0,2037	0,1185	0,6778				*
17	78,3	79,2	79,0	0,4106	0,4202	0,1692			*	
18	71,8	74,3	77,9	0,1196	0,8141	0,0663			*	

	Nilai F	Rata-rata Pe	minatan		Keanggotaan Iterasi Terakhi				derungan dat asuk pada kla	
Siswa	P1	P2	P3	(µ1)	(µ2)	(µ3)		C1	C2	C3
	IPA	IPS	BHS	IPS	BHS	IPA		IPS	BHS	IPA
19	74,1	75,3	80,3	0,0124	0,9770	0,0106			*	
20	74,7	72,4	72,1	0,2898	0,1824	0,5278				*
21	74,0	71,3	71,9	0,2067	0,2671	0,5261				*
22	70,6	78,5	76,6	0,4390	0,4286	0,1324	*			
23	76,8	78,6	73,5	0,4652	0,1772	0,3576	*			
24	75,3	71,2	77,6	0,1630	0,2527	0,5843				*
25	76,1	72,4	72,4	0,1814	0,4484	0,3702			*	
26	70,7	78,9	69,0	0,8208	0,0970	0,0922	*			
27	83,4	76,1	78,8	0,1163	0,6719	0,2118			*	
28	70,8	76,6	79,0	0,7705	0,1502	0,0794	*			
29	78,3	75,5	80,2	0,1106	0,5441	0,3453			*	
30	76,7	76,4	73,8	0,5568	0,1593	0,2839	*			
31	74,4	79,4	86,1	0,6224	0,2070	0,1706	*			
32	80,4	76,7	78,8	0,1120	0,6210	0,2669			*	
33	66,5	71,0	71,4	0,2570	0,5795	0,1635			*	
34	69,2	76,4	69,0	0,8313	0,0881	0,0805	*			
35	82,7	86,1	80,0	0,4290	0,2453	0,3257	*			
36	75,3	73,5	71,5	0,3036	0,1406	0,5557				*
37	82,5	79,3	70,8	0,2068	0,1357	0,6575				*
38	69,3	70,8	73,8	0,3213	0,5174	0,1653			*	
39	77,5	80,6	77,9	0,3773	0,3988	0,2239			*	
40	67,6	75,5	73,0	0,7012	0,1974	0,1014	*			
41	80,3	75,7	74,8	0,0092	0,0082	0,9826				*
42	70,3	74,2	68,5	0,1013	0,0970	0,8017				*
43	78,5	65,0	82,5	0,2005	0,4538	0,3457			*	
44	68,5	77,5	72,5	0,7794	0,1387	0,0820	*			
45	81,7	70,5	72,5	0,1387	0,7120	0,1493			*	
46	77,5	75,0	75,8	0,1189	0,6915	0,1896			*	
47	87,5	70,5	77,0	0,1655	0,6079	0,2265			*	
48	75,9	78,0	86,5	0,6203	0,2219	0,1578	*			
49	70,5	70,0	75,5	0,1857	0,4375	0,3768			*	
50	79,0	72,0	65,0	0,3953	0,1691	0,4356				*
51	65,0	80,0	70,5	0,6289	0,2192	0,1518	*			
52	78,0	75,0	89,5	0,1760	0,5502	0,2738			*	
53	72,5	75,0	82,5	0,8748	0,0626	0,0626	*			
54	81,0	65,7	75,5	0,2139	0,5010	0,2851			*	
55	89,7	76,5	68,0	0,2390	0,1924	0,5685			d.	*
56	78,5	67,5	85,7	0,1804	0,5095	0,3101			*	
57	65,0	89,5	70,5	0,4765	0,4765	0,2371	*			
58	70,7	92,0	78,5	0,3665	0,3563	0,2772	*			
59	75,5	70,0	79,5	0,6629	0,2093	0,1279	*		*	
60	85,0	75,5	80,2	0,2617	0,5963	0,1419				
61	68,5	65,0	78,5	0,2289	0,4679	0,3033			*	*
62	82,5	69,5	72,1	0,1649	0,1766	0,6585				*
63	74,5	90,2	70,5	0,3087	0,2641	0,4272	J.			ጥ
64	69,5	72,5	79,0	0,6922	0,1980	0,1099	*			
65	70,9	74,5	91,5	0,5725	0,2214	0,2061	ጥ			*
66 67	82,5	72,5	70,6	0,1569	0,1154	0,7278				*
67	75,8	82,1	70,8	0,1793	0,3045	0,5162				*
68 60	80,2	74,5	72,5	0,0372	0,0511	0,9118	*			*1*
69 70	74,5	91,5	69,5	0,4232	0,2649	0,3119	ጥ		*	
70 71	60,5	68,7	77,8	0,3804	0,4172	0,2024 0,7775			77	*
71	74,5	77,8	69,8	0,1433 0,0914	0,0793	0,7775			*	**
72 73	79,0	72,5 75.2	73,8		0,8140				77	*
73	87,5	75,2	71,8	0,1726	0,1603	0,6671	*			**
74	65,0	76,8	67,5	0,6536	0,1909	0,1555	*			
75 76	76,0	94,8	74,0	0,3676	0,3045	0,3278	*			
76	65,0	77,8	81,5	0,5384	0,3011	0,1605	ጥ		*	
77 79	65,5	68,0	75,8	0,3953	0,4089	0,1958			77	*
78 70	80,4	75,5	74,2	0,0049	0,0048	0,9903				*
79 80	90,1 75.7	74,3	78,7	0,2110	0,1987	0,5903			*	**
80	75,7	74,0	87,5	0,1512	0,6320	0,2168			77	*
81	74,9	77,3	77,3	0,2574	0,1379	0,6047				71*

Dari tabel 8 dapat disimpulkan:

- 1. Kelompok IPS/klaster Pertama berisi siswa nomor 2, 4, 7, 10, 22, 23, 26, 28, 30, 31, 34, 35, 40, 44, 48, 51, 53, 57, 58, 59, 64, 65, 69, 74, 75 dan 76.
- 2. Kelompok BAHASA/klaster Kedua berisi siswa nomor 1, 5, 9, 11, 15, 17, 18, 19, 25, 27, 29, 32, 33, 38,

- 39, 43, 45, 46, 47, 49, 52, 54, 56, 60, 61, 70, 72, 77 dan 80.
- 3. Kelompok IPA/klaster Ketiga berisi siswa nomor 3, 6, 8, 12, 13, 14, 16, 20, 21, 24, 36, 37, 41, 42, 50, 55, 62, 63, 66, 67, 68, 71, 73, 78, 79 dan 81.

3.4.2 Hasil Penerapan Metode Fuzzy C-Means

Dari hasil informasi pusat klaster V yang dihasilkan software (Matlab) pada iterasi terakhir, dapat ditentukan kelompok peminatan.

Misalkan nilai tertinggi pada rata-rata kelompok mata pelajaran peminatan yang dijadikan dasar untuk menentukan peminatan, maka:

- 1. Pada klaster pertama (baris pertama), nilai tertinggi berada pada kolom kedua (peminatan IPS), sehingga klaster pertama diidentifikasi sebagai kelompok peminatan IPS.
- 2. Pada klaster kedua (baris kedua), nilai tertinggi berada pada kolom ketiga (peminatan Bahasa), sehingga klaster kedua diidentifikasi sebagai kelompok peminatan Bahasa.
- 3. Pada klaster ketiga (baris ketiga), nilai tertinggi berada pada kolom pertama (peminatan IPA), sehingga klaster ketiga dididentifikasi sebagai kelompok peminatan IPA.

Ketetapan hasil akurasi didasarkan pada ketentuan bahwa jika nilai peminatan yang dipilih lebih besar dari nilai rata-rata mata pelajaran peminatan yaitu lebih besar atau sama dengan 75 maka peminatan yang dilakukan oleh metode FCM dianggap TIDAK AKURAT, sedangkan jika nilai peminatan yang dipilih lebih kecil dari nilai rata-rata mata pelajaran peminatan maka peminatan yang dilakukan oleh metode FCM dianggap AKURAT. Akurasi hasil peminatan yang dilakukan oleh metode FCM disajikan pada tabel 9 berikut:

			Tabel 9. Aku	ırasi Hasil Pemir	natan Metode FCM		
				-rata Mata			
		astering/	Pelajaran		Hasil		
Siswa	Pemi	natan		eminatan/ irusan			
Siswa		Fuzzy	5				
	Yang	C-	Kelas	Kelas	Kelas	Kelas	
	Dipilih	Means	XI	XII	XI	XII	
1	Bahasa	Bahasa	75,50	74,20	Akurat	Tidak Akurat	
2	IPS	IPS	77,00	75,50	Akurat	Akurat	
3	IPA	IPA	75,50	78,00	Akurat	Akurat	
4	Bahasa	IPS	72,00	74,50	Akurat	Akurat	
5	IPA	Bahasa	72,80	71,50	Akurat	Akurat	
6	IPA	IPA	71,50	74,50	Tidak Akurat	Tidak Akurat	
7	IPS	IPS	69,00	65,50	Tidak Akurat	Tidak Akurat	
8	IPA	IPA	70,50	72,50	Tidak Akurat	Tidak Akurat	
9	Bahasa	Bahasa	76,25	75,50	Akurat	Akurat	
10	Bahasa	IPS	74,50	72,50	Akurat	Akurat	
11	Bahasa	Bahasa	78,00	76,50	Akurat	Akurat	
12	IPS	IPA	73,00	74,80	Akurat	Akurat	
13	IPS	IPA	71,50	74,00	Akurat	Akurat	
14	IPS	IPA	67,50	65,00	Akurat	Akurat	
15	Bahasa	Bahasa	75,50	69,50	Akurat	Tidak Akurat	
16	IPA	IPA	84,30	81,30	Akurat	Akurat	
17	IPS	Bahasa	80,70	82,50	Tidak Akurat	Tidak Akurat	
18	Bahasa	Bahasa	76,00	80,50	Akurat	Akurat	
19	Bahasa	Bahasa	81,50	82,50	Akurat	Akurat	
20	IPA	IPA	74,00	71,00	Tidak Akurat	Tidak Akurat	
21	IPA	IPA	69,50	73,50	Tidak Akurat	Tidak Akurat	
22	IPS	IPS	82,50	79,50	Akurat	Akurat	
23	IPS	IPS	72,50	70,75	Tidak Akurat	Tidak Akurat	
24	Bahasa	IPA	65,50	70,50	Akurat	Akurat	
25	IPA	Bahasa	66,00	68,30	Akurat	Akurat	
26	IPS	IPS	78,00	76,50	Akurat	Akurat	
27	IPA	Bahasa	72,50	71,00	Akurat	Akurat	
28	Bahasa	IPS	71,00	67,50	Akurat	Akurat	
29	Bahasa	Bahasa	82,00	80,00	Akurat	Akurat	
30	IPA	IPS	72,50	67,80	Akurat	Akurat	

Siswa		astering/ natan	Pelajaran Setelah F	a-rata Mata Pemilihan Peminatan/ urusan	Hasil	
	Yang Dipilih	Fuzzy C- Means	Kelas XI	Kelas XII	Kelas XI	Kelas XII
31	Bahasa	IPS	71,90	73,50	Akurat	Akurat
32	IPA	Bahasa	80,70	75,50	Tidak Akurat	Tidak Akurat
33	Bahasa	Bahasa	80,50	88,50	Akurat	Akurat
34	IPS	IPS	82,75	80,50	Akurat	Akurat
35	IPS	IPS	83,50	81,50	Akurat	Akurat
36	IPA	IPA	78,20	75,50	Akurat	Akurat
37	IPA	IPA	74,50	72,00	Tidak Akurat	Tidak Akurat
38	Bahasa	Bahasa	79,00	81,30	Akurat	Akurat
39	IPS	Bahasa	70,70	72,00	Akurat	Akurat
40	IPS	IPS	69,50	77,50	Tidak Akurat	Akurat
41	IPA	IPA	79,50	70,30	Akurat	Tidak Akurat
42	IPS	IPA	75,80	72,30	Tidak Akurat	Akurat
43 44	Bahasa IPS	Bahasa IPS	80,50	82,50	Akurat	Akurat
45	IPS IPA	Bahasa	78,50 74,50	75,80 72,80	Akurat Akurat	Akurat Akurat
45 46	IPA IPA	Bahasa	74,00	72,70	Akurat	Akurat
40 47	IPA IPA	Bahasa	73,60	72,70	Akurat	Akurat
48	Bahasa	IPS	73,80	74,50	Akurat	Akurat
49	Bahasa	Bahasa	78,50	82,00	Akurat	Akurat
50	IPA	IPA	80,50	79,40	Akurat	Akurat
51	IPS	IPS	77,50	80,00	Akurat	Akurat
52	Bahasa	Bahasa	85,00	81,70	Akurat	Akurat
53	Bahasa	IPS	73,80	69,80	Akurat	Akurat
54	IPA	Bahasa	75,50	80,60	Tidak Akurat	Tidak Akurat
55	IPA	IPA	83,60	84,50	Akurat	Akurat
56	Bahasa	Bahasa	78,50	82,60	Akurat	Akurat
57	IPS	IPS	79,60	75,50	Akurat	Akurat
58	IPS	IPS	74,20	72,50	Tidak Akurat	Tidak Akurat
59	Bahasa	IPS	75,80	77,00	Tidak Akurat	Tidak Akurat
60	IPA	Bahasa	70,50	74,30	Akurat	Akurat
61	Bahasa	Bahasa	75,00	75,20	Akurat	Akurat
62	IPA	IPA	78,10	75,80	Akurat	Akurat
63	IPS	IPA	77,50	81,20	Tidak Akurat	Tidak Akurat
64	Bahasa	IPS	66,90	68,20	Akurat	Akurat
65	Bahasa	IPS	74,50	74,00	Akurat	Akurat
66	IPA	IPA	77,60	78,00	Akurat	Akurat
67	IPS	IPA	79,00	80,60	Tidak Akurat	Tidak Akurat
68	IPA	IPA	77,50	78,00	Akurat	Akurat
69 70	IPS	IPS	80,20	82,80	Akurat	Akurat
70	Bahasa	Bahasa	76,40	78,10	Akurat	Akurat
71 72	IPS	IPA Bahasa	74,00 70.80	74,50 69.50	Akurat	Akurat
72 73	IPA IPA	Bahasa IPA	70,80	69,50 82,50	Akurat	Akurat
73 74	IPA IPS	IPA IPS	84,20 75,80	82,50 75,00	Akurat Akurat	Akurat Akurat
74 75	IPS IPS	IPS IPS	75,80 87,60	75,00 82,80		Akurat Akurat
75 76	Bahasa	IPS IPS	74,50	72,10	Akurat Akurat	Akurat
70 77	Bahasa	Bahasa	75,80	72,10	Akurat	Akurat
78	IPA	IPA	72,40	74,00	Tidak Akurat	Tidak Akurat
78 79	IPA	IPA	72,40 78,60	82,10	Akurat	Akurat
80	Bahasa	Bahasa	80,20	79,60	Akurat	Akurat
81	IPS	IPA	67,80	74,00	Akurat	Akurat

Pada tabel 9 hasil peminatan yang dilakukan oleh algoritma *Fuzzy C-Means* (FCM) dapat dijelaskan bahwa pada tahun pertama pelaksanaan peminatan (kelas XI), sebanyak 64 dari 81 data sampel siswa atau 79,01% yang tepat dalam memilih peminatan. Pada tahun kedua pelaksanaan peminatan (kelas XII), sebanyak 63 dari 81 data sampel siswa atau 77,77% yang tepat dalam memilih peminatan.

3.4.3 Hasil Penerapan Metode Weighted Product

Berikut perhitungan salah satu siswa dalam penentuan jurusan IPA, IPS dan Bahasa dengan menggunakan Weighted Product (WP):

Tabel 10 Rating Kecocokan Dari Setiap Alternatif Kriteria

	ria					
Siswa	Alternatif	Nilai Rata-rata Pelajaran C1	Psikotes C2	Praktek C3	Wawancara C4	Kepribadian C5
	IPA	72,2	70,2	71,4	72,5	73,7
1	IPS	74,8	70,1	72,5	71,3	72,2
	Bahasa	76,5	75,2	76,3	78,3	78,7

C1 = Nilai pelajaran siswa yang terdiri dari nilai rata-rata IPA, IPS dan Bahasa

C2 = Nilai psikotes siswa

C3 = Nilai praktek siswa

C4 = Nilai wawancara siswa

C5 = Nilai kepribadian IPA, IPS dan Bahasa

Sebelumnya akan dilakukan perbaikan bobot terlebih dahulu. Nilai bobot awal

W = Nilai kriteria yang telah ditentukan pihak sekolah. Bobot awal W = (5, 3, 4, 4, 2), akan diperbaiki sehingga total bobot $\Sigma W_j = 1$, dengan cara :

Kemudian vektor S dihitung

$$S_{IPA} = (72, 2^{0.2778}) (70, 2^{0.1667}) (71, 4^{0.2222}) (72, 5^{0.2222}) (73, 7^{0.1111}) = 71,91$$

 $S_{IPS} = (74, 8^{0.2778}) (70, 1^{0.1667}) (72, 5^{0.2222}) (71, 3^{0.2222}) (72, 2^{0.1111}) = 72,41$
 $S_{BAHASA} = (76, 5^{0.2778}) (75, 2^{0.1667}) (76, 3^{0.2222}) (78, 3^{0.2222}) (78, 7^{0.1111}) = 76,87$

Langkah terakhir adalah menentukan nilai vektor V yang akan digunakan untuk perangkingan, dapat dihitung

$$V_{IPA} = 71,91 = 71,91 = 0,3251$$

$$V_{IPS} = \frac{72,41}{71,91+72,41+76,87} = \frac{72,41}{221,19} = 0,3273$$

$$V_{BAHASA} = \frac{76,87}{71,91+72,41+76,87} = \frac{76,87}{221,19} = 0,3475$$

Berdasarkan hasil V diatas dapat ditentukan bahwa nilai terbesar ada pada *VBAHASA* sehingga alternatif yang terbaik untuk siswa 1 adalah jurusan Bahasa.

4. KESIMPULAN

Dari hasil pengujian metode *Fuzzy C-Means* (FCM) dalam penentuan jurusan di Sekolah Menengah Atas pada 81 sampel data siswa yang diuji dalam penelitian ini, menunjukkan bahwa metode FCM memiliki tingkat akurasi

yang lebih tinggi (yaitu 78,39%), jika dibandingkan dengan metode penentuan jurusan secara manual yang selama ini dilakukan (tingkat akurasi rata-rata 56,17 %).

Penerapan Metode Weighted Product di dalam sistem penjurusan siswa ini dapat digunakan untuk mempermudah pihak sekolah khususnya guru BK di dalam proses memberikan rekomendasi alternatif untuk penentuan jurusan yang tepat dan terarah sesuai dengan kemampuan yang dimiliki oleh siswa. Dengan adanya sistem penjurusan dengan menggunakan metode weighted product ini dapat meningkatkan efektifitas dan efisiensi kerja bagi pihak sekolah khususnya guru BK dalam menentukan penjurusan siswa

REFERENCES

- Kusrini, 2006. "Algoritma Data Mining", Yogyakarta: Andi
- Kusumadewi, S, 2004. "Aplikasi Logika Fuzzy Untuk Pendukung Keputusan", Yogyakarta: Graha Ilmu. Larose, Daniel T. 2005, "Discovering Knowledge in Data: An Introduction to Data Mining". John Willey & Sons, Inc
- Mangkoesapoetra, Arief. 2004 "Statistika: Analisa Multivariat, Seri Metode Kuantitatif". Jakarta: STMIK Nusa Mandiri [4]
- Maman, 2006. "Sistem Pendukung Keputusan: Model Penentuan Siswa Teladan Pada SMK YP-Karya I Tangerang dengan Pendekatan Logika Fuzzy". Jakarta: Universitas Budi Luhur [5]
- Marimin, Nurul. 2010. "Aplikasi Teknik Pengambilan Keputusan Dalam Rantai Pasok". Bogor: Cetakan 1 IPB Press
- Pramudiono, I. 2006. Apa Itu Data Mining? http://datamining.japati.net/bin/indodm.cgi Diakses tanggal 28 Oktober 2013
- Sri, Hari. 2010. "Aplikasi Logika Fuzzy Untuk Pendukung Keputusan". Yogyakarta : Edisi 2 Graha Ilmu
- Sri Kusuma Dewi, Hartati, "Neuro Fuzzy, Integrasi Sistem Fuzzy Dan Jaringan Syaraf". Yogyakarta: Graha Ilmu
- [10] Eko Sudaryanto, 2009, "Pengaruh Minat Belajar dan Penjurusan Terhadap Prestasi Belajar Siswa di SMK Katolik ST Lois Randublatung", Skripsi, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Surakarta, Surakarta
- [11] Irfan, Nasrulloh. 2011, "Model Pemilihan Jurusan SMK Teknologi Informasi Dengan Pendekatan Logika Fuzzy" Jakarta: Universitas Budi Luhur
- [12] Ernawati, Susanto (2009), "Pembagian Kelas Peserta Kuliah Berdasarkan Fuzzy Clustering dan Partition Coefficient and Exponential Separation Index", Program Studi Teknik Informatika, Universitas Atma Jaya, Yogyakarta.
- [13] Arwan Ahmad Khoiruddin, 2007, "Menentukan Nilai Akhir Kuliah Dengan Fuzzy C-Means", Proceeding pada Seminar Nasional Sistem dan Informatika di Bali, Jurusan Teknik Informatika, Universitas Islam Indonesia, Yogyakarta
- [14] Dunham, Margaret, H. (2003), "Data Mining Introuctory and Advanced Topics", New Jersey, Prentice Hall.
- [15] Kusumadewi, S., Hartati, S., 2006, Fuzzy Multi Atribute Decision Making, Graha Ilmu, Yogyakarta