Домашка по теории групп

2 мая 2020 г.

Часть 1

$1 \mathcal{U}_{\mathsf{H}}$

Определение. Группой $\mathcal{U}_{\mathbf{H}}$ называется группа невырожденных комплексных матриц T, удовлетворяющих соотношению

$$\mathbf{H} = T^{\dagger} \cdot \mathbf{H} \cdot T,\tag{1}$$

где \mathbf{H} — некоторая эрмитова матрица.

$2 O(n, \mathbb{C})$

Определение. Ортогональной группой $O(n,\mathbb{C})$ называется группа комплексных ортогональных матриц

$$O^T \cdot O = I_n. \tag{2}$$

3 $SO(n, \mathbb{C})$

Определение. Специальной ортогональной группой $SO(n, \mathbb{C})$ называется подгруппа комплексных ортогональных матриц, удовлетворяющих (2), и таких, что $\det(O) = +1$.

4 $Sp(2r, \mathbb{R})$

Определение. Симплектической группой $Sp(2r, \mathbb{R})$ называется группа вещественных матриц T, удовлетворяющих условию симплектичности

$$T^{T} \cdot \begin{pmatrix} 0 & I_{r} \\ -I_{r} & 0 \end{pmatrix} \cdot T = \begin{pmatrix} 0 & I_{r} \\ -I_{r} & 0 \end{pmatrix}. \tag{3}$$

$5 \quad Sp(p,q)$

Определение. Группой Sp(p,q), где p+q=r, называется группа комплексных $2r \times 2r$ матриц T, удовлетворяющих одновременно условию псевдо-унитарности

$$T^{\dagger} \cdot \begin{pmatrix} I_{p,q} & 0 \\ 0 & I_{p,q} \end{pmatrix} \cdot T = \begin{pmatrix} I_{p,q} & 0 \\ 0 & I_{p,q} \end{pmatrix} \tag{4}$$

и нестандартному условию симплектичности

$$T^{T} \cdot \begin{pmatrix} 0 & I_{p,q} \\ -I_{p,q} & 0 \end{pmatrix} \cdot T = \begin{pmatrix} 0 & I_{p,q} \\ -I_{p,q} & 0 \end{pmatrix}. \tag{5}$$

6 USp(2r)

Определение. Унитарной симлектической группой USP(2r) называется группа комплексных $2r \times 2r$ матриц T, удовлетворяющих как условию симплектичности (3), так и условию унитарности $T^{\dagger} \cdot T = I_n$.

$7 \quad O(p,q)$

Определение. Вещественной псевдо-ортогонально группой O(p,q) называется группа вещественных $(n \times n)$ матриц O, где n = p + q, подчиняющихся условию

$$O^{T} \cdot \begin{pmatrix} I_{p} & 0 \\ 0 & -I_{q} \end{pmatrix} \cdot O = \begin{pmatrix} I_{p} & 0 \\ 0 & -I_{q} \end{pmatrix}. \tag{6}$$

8 PSO(p,q)

Определение. Специальной вещественной псевдо-ортогональной группой SO(p,q) называется группа вещественных $(n \times n)$ матриц O, где n = p + q, подчиняющихся одноврменно условию псевдоортогональности (6), а также условию $\det O = 1$.

Определение. Проективной псевдо-ортогональной группой PSO(p,q) называется фактор-группа $SO(p,q)/\mathbf{Z}_2$.

9 Группа Лоренца

Определение. Группой Лоренца n-мерного пространства называется группа O(1, n-1).

10 SU(p,q)

Определение. Специальной псевдо унитарной группой SU(p,q) называется группа комплексных $(n \times n)$ матриц U, удовлетворяющих одновременно условию (1), где в качестве **H** выбрана матрица $I_{p,q}$:

$$U^{\dagger} \cdot \begin{pmatrix} I_{p,q} & 0 \\ 0 & I_{p,q} \end{pmatrix} \cdot U = \begin{pmatrix} I_{p,q} & 0 \\ 0 & I_{p,q} \end{pmatrix} \tag{7}$$

и условию $\det U = 1$.

Центром группы является конечная инвариантная подгруппа матриц

$$U_k = \exp\left(i\frac{2\pi k}{n}\right)I_n \quad (k = 0, 1, \dots, n-1).$$
 (8)

11 $PSL(n, \mathbb{K})$

Определение. Проективной комплексной линейной группой $PSL(n,\mathbb{C})$ называется фактор-группа $SL(n,\mathbb{C})/\mathbf{Z}_n$.

Определение. Проективной вещественной линейной группой $PSL(2n, \mathbb{R})$ называется фактор-группа $SL(2n \mathbb{R})/\mathbb{Z}_2$.

$$\begin{aligned} \mathbf{12} \quad \mathcal{O}_{I_n} \\ \mathcal{O}_{I_n} &\equiv O(n,\mathbb{C}) \end{aligned}$$

13 Группа анти-де Ситтера

Определение. Группой анти-де Ситтера n-мерного пространства называется группа O(2, n-2).

14
$$PSU(p,q)$$

Определение. Проективной псевдо-унитарной группой PSU(p,q) называется факторгруппа $SU(p,q)/\mathbf{Z}_n$, где p+q=n.

15
$$\mathcal{O}_J$$

$$\mathcal{O}_J \equiv Sp(2r, \mathbb{C})$$

16 Группа Пуанкаре

Определение. *Группой Пункаре* называется группа симметрий четырёхмерного пространства Минковского, т.е. множество преобразований вида

$$x_k \to x_k' = O_{kj} x_j + a_k, \tag{9}$$

где вещественная матрица $||O_{ij}|| \in O(1,3)$ и произведение элементов задаётся следующим образом

$$g_1 \cdot g_2 = (O_1, \vec{a}_1) \cdot (O_2, \vec{a}_2) = (O_1 \cdot O_2, O_1 \cdot \vec{a}_2 + \vec{a}_1).$$
 (10)