Automi e Linguaggi Formali

Parte 2 – Automi a Stati Finiti Non Deterministici

Sommario

1 Operazioni su linguaggi

2 Automi a Stati Finiti Non Deterministici

3 Equivalenza tra DFA e NFA

Operazioni sui linguaggi

■ Intersezione:

$$L \cap M = \{w : w \in L \in w \in M\}$$

■ Unione:

$$L \cup M = \{w : w \in L \text{ oppure } w \in M\}$$

■ Complemento:

$$\overline{L} = \{w : w \notin L\}$$

■ Concatenazione:

$$L.M = \{uv : u \in L \text{ e } v \in M\}$$

■ Chiusura (o Star) di Kleene:

$$L^* = \{ w_1 w_2 \dots w_k : k \ge 0 \text{ e ogni } w_i \in L \}$$

Proprietà di chiusura

Se L e M sono linguaggi regolari, allora . . .

- Intersezione: $L \cap M$ è un linguaggio regolare?
- Unione: $L \cup M$ è un linguaggio regolare?
- Complemento: \overline{L} è un linguaggio regolare?
- Concatenazione: *L.M* è un linguaggio regolare?
- Chiusura di Kleene: L* è un linguaggio regolare?

Theorem

Se L e M sono regolari, allora anche $L \cap M$ è un linguaggio regolare.

Theorem

Se L e M sono regolari, allora anche $L \cap M$ è un linguaggio regolare.

Dimostrazione. Sia L il linguaggio di

$$A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$$

e M il linguaggio di

$$A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$$

Possiamo assumere che entrambi gli automi siano deterministici Costruiremo un automa che simula A_L e A_M in parallelo, e accetta se e solo se sia A_L che A_M accettano.

Dimostrazione (continua).

Se A_L va dallo stato p allo stato s leggendo a, e A_M va dallo stato q allo stato t leggendo a, allora $A_{L\cap M}$ andrà dallo stato (p,q) allo stato (s,t) leggendo a.

Dimostrazione (continua).

Se A_L va dallo stato p allo stato s leggendo a, e A_M va dallo stato q allo stato t leggendo a, allora $A_{L\cap M}$ andrà dallo stato (p,q) allo stato (s,t) leggendo a.

 $A_{L\cap M}$ accetta una parola solo quando sia A_L che A_M accettano

 $A_{L\cap M}$ accetta solo quando (p,q) è una coppia di stati finali

Dimostrazione (continua).

Se A_L va dallo stato p allo stato s leggendo a, e A_M va dallo stato q allo stato t leggendo a, allora $A_{L\cap M}$ andrà dallo stato (p,q) allo stato (s,t) leggendo a.

 $A_{L\cap M}$ accetta una parola solo quando sia A_L che A_M accettano

 \Leftrightarrow

 $A_{L\cap M}$ accetta solo quando (p,q) è una coppia di stati finali

Formalmente

$$A_{L\cap M}=(Q_L\times Q_M,\Sigma,\delta_{L\cap M},(q_L,q_M),F_L\times F_M),$$

dove

$$\delta_{L\cap M}((p,q),a)=(\delta_L(p,a),\delta_M(q,a))$$

Esempio

Costruiamo l'automa che rappresenta l'intersezione di (a) e (b)

E le altre operazioni?

Dati i DFA per L e M:

E le altre operazioni ?

Dati i DFA per L e M:

■ possiamo costruire un DFA per $L \cup M$? Se si, come?

E le altre operazioni?

Dati i DFA per L e M:

- possiamo costruire un DFA per $L \cup M$? Se si, come?
- **p** possiamo costruire un DFA per \overline{L} ? Se si, come?

E le altre operazioni?

Dati i DFA per L e M:

- **p** possiamo costruire un DFA per $L \cup M$? Se si, come?
- **p** possiamo costruire un DFA per \overline{L} ? Se si, come?
- possiamo costruire un DFA per *L.M*? Se si, come?
- **p** possiamo costruire un DFA per L^* ? Se si, come?

Sommario

1 Operazioni su linguaggi

2 Automi a Stati Finiti Non Deterministici

3 Equivalenza tra DFA e NFA

Automi a stati finiti non deterministici (NFA) DEGLI STUDI

■ Cosa fa questo automa?

Automi a stati finiti non deterministici (NFA

Cosa fa questo automa?

- È un esempio di automa a stati finiti non deterministico:
 - ci possono essere più transizioni con lo stesso simbolo
 - o simboli senza transizioni uscenti
 - \blacksquare ed ε -transizioni che non consumano simboli
- Data una parola, esistono più percorsi possibili
- Si accetta se esiste almeno un percorso accettante

Definizione formale di NFA

Un Automa a Stati Finiti Non Deterministico (NFA) è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q è un insieme finito di stati
- Σ è un alfabeto finito che non contiene ε . Definiamo $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$.
- $\delta: Q \times \Sigma_{\varepsilon} \mapsto 2^Q$ è una funzione di transizione che prende in input (q, a) e restituisce un sottoinsieme di Q
- $q_0 \in Q$ è lo stato iniziale
- ullet $F\subseteq Q$ è un insieme di stati finali

Computazione di un NFA

- Data una parola $w = w_1 w_2 \dots w_m$, dove $w_i \in \Sigma_{\varepsilon}$
- una computazione di un NFA A con input w è una sequenza di stati $r_0r_1 \dots r_m$ che rispetta due condizioni:
 - 1 $r_0 = q_0$ (inizia dallo stato iniziale)
 - 2 $r_{i+1} \in \delta(r_i, w_{i+1})$ per ogni i = 0, ..., m-1 (rispetta la funzione di transizione)
- Diciamo che una computazione accetta la parola w se:
 - 3 la computazione legge tutti i simboli della stringa)
 - 4 la computazione termina in uno stato finale)
- A causa del nondeterminismo, ci può essere più di una computazione per ogni parola!

Linguaggio accettato da un NFA

- Un NFA A accetta la parola w se esiste una computazione che accetta w
- Un NFA A rifiuta la parola w se tutte le computazioni la rifiutano
- Formalmente, il linguaggio accettato da A è

$$L(A) = \{ w \in \Sigma^* \mid A \text{ accetta } w \}$$

Esercizi

Definire degli automi a stati finiti non deterministici che accettino i seguenti linguaggi:

- \blacksquare L'insieme delle parole sull'alfabeto $\{0,1,\ldots,9\}$ tali che la cifra finale sia comparsa in precedenza
- L'insieme delle parole sull'alfabeto $\{0,1,\ldots,9\}$ tali che la cifra finale *non* sia comparsa in precedenza
- L'insieme delle parole di 0 e 1 tali che esistono due 0 separati da un numero di posizioni multiplo di 4 (0 è un multiplo di 4)

Esercizio

Consideriamo l'alfabeto $\Sigma = \{a, b, c, d\}$ e costruiamo un automa non deterministico che riconosce il linguaggio di tutte le parole tali che uno dei simboli dell'alfabeto non compare mai:

- tutte le parole che non contengono a
- \blacksquare + tutte le parole che non contengono b
- + tutte le parole che non contengono c
- \blacksquare + tutte le parole che non contengono d

Unione

Concatenazione

Star di Kleene

Sommario

1 Operazioni su linguaggi

2 Automi a Stati Finiti Non Deterministici

3 Equivalenza tra DFA e NFA

Equivalenza di DFA e NFA

- Sorprendentemente, NFA e DFA sono in grado di riconoscere gli stessi linugaggi
- Per ogni NFA N c'è un DFA D tale che L(D) = L(N), e viceversa

Esempio:

La costruzione a sottoinsiemi (1)

■ L'equivalenza di dimostra mediante una costruzione a sottoinsiemi:

La costruzione a sottoinsiemi (1)

L'equivalenza di dimostra mediante una costruzione a sottoinsiemi:

Dato un NFA

$$N = (Q_N, \Sigma, q_0, \delta_N, F_N)$$

costruiremo un DFA

$$D = (Q_D, \Sigma, S_0, \delta_D, F_D)$$

tale che

$$L(D) = L(N)$$

La costruzione a sottoinsiemi

Iniziamo dal caso più semplice in cui N non ha ε -transizioni

- $Q_D = \{S : S \subseteq Q_N\}$ Ogni stato del DFA corrisponde ad un insieme di stati dell'NFA
- $S_0 = \{q_0\}$ Lo stato iniziale del DFA è l'insieme che contiene solo q_0
- $F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale corrispondente nell'NFA
- lacksquare Per ogni $S\subseteq Q_N$ e per ogni $a\in \Sigma$

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

La funzione di transizione "percorre tutte le possibili strade"

Esempio di costruzione a sottoinsiemi

Costruiamo δ_D per l'NFA qui sopra:

Esempio di costruzione a sottoinsiemi

Costruiamo δ_D per l'NFA qui sopra:

	0	1
Ø	Ø	Ø
$ ightarrow \{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_2\}$
$*\{q_2\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$*\{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_0\}$
$*\{q_1, q_2\}$	Ø	$\{q_2\}$
$*\{q_0, q_1, q_2\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

Esempio di costruzione a sottoinsiemi

Costruiamo δ_D per l'NFA qui sopra:

	0	1
Ø	Ø	Ø
$ ightarrow \{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_2\}$
$*\{q_2\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$*\{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_0\}$
$*\{q_1, q_2\}$	Ø	$\{q_2\}$
$*\{q_0, q_1, q_2\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

Diagramma degli stati

La tabella di transizione per D ci permette di ottenere il diagramma di transizione

Nota: $|Q_D| = 2^{|Q_N|}$, anche se alcuni degli stati in Q_D possono essere "inutili", cioè non raggiungibili dallo stato iniziale. In questo caso solo tre stati sono raggiungibili, e gli altri possono essere omessi.

Epsilon chiusura: definizione

Per poter gestire le ε -transizioni introduciamo ε -chiusura degli stati:

 \blacksquare tutti gli stati raggiungibili da q con una sequenza $\varepsilon\varepsilon\ldots\varepsilon$

La definizione di ECLOSE(q) è per induzione:

Caso base:

$$q \in ECLOSE(q)$$

Caso induttivo:

se
$$p \in \text{ECLOSE}(q)$$
 e $r \in \delta(p, \varepsilon)$ allora $r \in \text{ECLOSE}(q)$

Epsilon chiusura: esempio

$$\mathrm{ECLOSE}(q_0) = \{$$

$$\mathrm{ECLOSE}(q_0) = \{q_0$$

$$ECLOSE(q_0) = \{q_0, q_1, q_4$$

$$\mathrm{ECLOSE}(q_0) = \{q_0, q_1, q_4, \textcolor{red}{q_2}$$

$$ECLOSE(q_0) = \{q_0, q_1, q_4, q_2, q_3\}$$

$$ECLOSE(q_0) = \{q_0, q_1, q_4, q_2, q_3\}$$

La costruzione a sottoinsiemi completa

- $Q_D = \{S \subseteq Q_N : S = \text{ECLOSE}(S)\}$ Ogni stato è un insieme di stati chiuso per ε -transizioni
- $S_0 = \text{ECLOSE}(q_0)$ Lo stato iniziale è la ε -chiusura dello stato iniziale di E
- $F_D = \{S \in Q_D : S \cap F_N \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale di N
- Per ogni $S \in Q_D$ e per ogni $a \in \Sigma$:

$$\delta_D(S, a) = \text{ECLOSE}\Big(\bigcup_{p \in S} \delta_N(p, a)\Big)$$

La funzione di transizione "percorre tutte le possibili strade" (comprese quelle con ε -transizioni)

La costruzione a sottoinsiemi completa

- $Q_D = \{S \subseteq Q_N : S = \text{ECLOSE}(S)\}$ Ogni stato è un insieme di stati chiuso per ε -transizioni
- $S_0 = \text{ECLOSE}(q_0)$ Lo stato iniziale è la ε -chiusura dello stato iniziale di E
- $F_D = \{S \in Q_D : S \cap F_N \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale di N
- Per ogni $S \in Q_D$ e per ogni $a \in \Sigma$:

$$\delta_D(S, a) = \text{ECLOSE}\Big(\bigcup_{p \in S} \delta_N(p, a)\Big)$$

La funzione di transizione "percorre tutte le possibili strade" (comprese quelle con ε -transizioni)

Nota: anche in questo caso $|Q_D| = 2^{|Q_N|}$

Teorema di equivalenza tra DFA e NFA

Theorem

Un linguaggio L è accettato da un DFA se e solo se è accettato da un NFA.

Dimostrazione:

- La parte "se" è data dalla costruzione per sottoinsiemi
- La parte "solo se" si dimostra osservando che ogni DFA può essere trasformato in un NFA modificando δ_D in δ_N con la seguente regola:

Se
$$\delta_D(q, a) = p$$
 allora $\delta_N(q, a) = \{p\}$

Determinare il DFA equivalente all'NFA con la seguente tabella di transizione:

$$\begin{array}{c|cc} & 0 & 1 \\ \hline \rightarrow q_0 & \{q_0\} & \{q_0, q_1\} \\ q_1 & \{q_1\} & \{q_0, q_2\} \\ *q_2 & \{q_1, q_2\} & \{q_0, q_1, q_2\} \\ \end{array}$$

2 Qual è il linguaggio accettato dall'automa?

Determinare il DFA equivalente all'NFA con la seguente tabella di transizione:

$$\begin{array}{c|cc} & 0 & 1 \\ \hline \rightarrow q_0 & \{q_0\} & \{q_0, q_1\} \\ q_1 & \{q_1\} & \{q_0, q_2\} \\ *q_2 & \{q_1, q_2\} & \{q_0, q_1, q_2\} \\ \end{array}$$

2 Qual è il linguaggio accettato dall'automa?

Trasformare il seguente NFA in DFA

Dato il seguente NFA

- 1 determinare il linguaggio riconosciuto dall'automa
- 2 costruire un DFA equivalente

Convertire il seguente NFA in DFA:

	0	1
$\rightarrow A$	{ <i>A</i> , <i>C</i> }	{ <i>B</i> }
*B	{ <i>C</i> }	{ <i>B</i> }
C	{ <i>B</i> }	{ <i>D</i> }
D	Ø	Ø

Convertire il seguente NFA in DFA:

- Costruiamo un NFA che riconosce le parole costituite da
 - zero o più *a*
 - seguite da zero o più *b*
 - seguite da zero o più *c*
- 2 Calcolare ECLOSE di ogni stato dell'automa
- 3 Convertire l'NFA in DFA

Costruiamo un NFA che riconosce le parole costituite da zero o più *a*, seguite da zero o più *b*, seguite da zero o più *c*

2 Calcolare la ε -chiusura di ogni stato

3 Convertire l'NFA in DFA

Costruiamo un NFA che riconosce le parole costituite da zero o più *a*, seguite da zero o più *b*, seguite da zero o più *c*

2 Calcolare la ε -chiusura di ogni stato

3 Convertire l'NFA in DFA

Costruiamo un NFA che riconosce le parole costituite da zero o più a, seguite da zero o più b, seguite da zero o più c

2 Calcolare la ε -chiusura di ogni stato

ECLOSE
$$(q_0) = \{q_0, q_1, q_2\}$$

ECLOSE $(q_1) = \{q_1, q_2\}$
ECLOSE $(q_2) = \{q_2\}$

3 Convertire l'NFA in DFA

Esercizio – continua

- Costruiamo un NFA che riconosce le parole costituite da zero o più *a*, seguite da zero o più *b*, seguite da zero o più *c*
- **2** Calcolare la ε -chiusura di ogni stato
- 3 Convertire l'NFA in DFA

