Student ID:		
Student name		

March 15, 2019 - 9:00 AM Duration: 50 minutes

Problem 1 [10 pts]

The sinusoidal modulating wave: $m(t) = \frac{1}{10} \cdot \sin(8000\pi t)$ is applied to a phase modulator with phase sensitivity $k_p = 2$ radian per volt. The unmodulated carrier wave has frequency $f_c = 1$ MHz and amplitude $A_c = 1$ volt.

- a- Determine the instantaneous frequency of this PM signal and sketch it versus time. [2pts]
- b- Determine the time domain expression of this PM signal and sketch it versus time. [2pts]
- c- Determine the expression of the frequency spectrum of the resulting PM signal and sketch it. Show all amplitudes and frequencies of interest. [2pts]
- d- Construct a phasor diagram of this PM modulated signal. [2pts]
- e- Propose of a block diagram of a system that performs this PM modulation using a FM modulator and another system. [2pts]

c)
$$\beta = 0.2 <<1$$
 -, namowband PM.
 $S_{PM}(t) = Cos(2\pi f_c t) - 0.2 sin(2\pi f_c t) sin(2000 \pi t)$
 $S_{PM}(t) = Cos(2\pi f_c t) - 0.1 cos(2\pi (f_c f_m)t) + 0.1 cos(2\pi (f_c f_m)t)$
 $S_{PM}(t) = \frac{1}{2} S(f_c f_c) + \frac{1}{2} S(f_1 f_c) - 0.05 S(f_c f_c f_m) - 0.05 S(f_t f_c f_m)$
 $+ 0.05 S(f_c f_c f_c f_m) + 0.05 S(f_t f_c f_m)$

+0.05 & (f-(fc+fm)) + 0.05 & f+(fc+fm)) Page - 2/5

Student ID:	
Student name:	

March 15, 2019 – 9:00 AM Duration: 50 minutes

Problem 2 [10 pts]

An angle-modulated signal around a carrier frequency fc = 1 MHz, has the form $s(t) = 5\cos(2\pi f_c t + 2\sin(4000\pi t))$

The modulating message has a maximum amplitude $A_m = \max |m(t)| = 2$.

- a. Determine the phase deviation and frequency deviation of s(t). [2pts]
- b. Determine m(t) and k_t if s(t) is a FM signal. [2pts]
- c. Determine m(t) and k_p if s(t) is a PM signal. [2pts]
- d. Determine the 1% bandwidth of s(t). [2pts]
- e. Sketch the frequency spectrum of the modulated signal s(t). Show only the sidebands within the approximate bandwidth calculated in d-. Indicate all the frequencies and amplitudes of interest. (Use the table below). [2pts]

Values of the Bessel Functions $J_n(\beta)$

		(,)		
	$\beta = 1$	eta = 2	$\beta = 3$	$\beta = 4$
n=0	0.7652	0.2239	-0.2601	-0.3971
n =1	0.4401	0.5767	0.3391	-0.066
n=2	0.1149	0.3528	0.4861	0.3641
n=3	0.0196	0.1289	0.3091	0.4302
n=4	0.0025	0.034	0.132	0.2811
n=5		0.007	0.043	0.1321
$\dot{n}=6$		0.0012	0.0114	0.0491
n = 7			0.0025	0.01518
n=8				0.004

a) phase deviation:
$$B = 2$$
 rad

frequency deviation: $\Delta f = 2f_m = 4 \text{ kHz}$

b) lep $m(t) = 1 \frac{d}{2\pi} \left(2 \sin(4000\pi t) \right) = 1.8000 \pi$ Cox(4000 πt)

$$m(t) = 2 \cos(400017 t)$$

$$\Rightarrow kp = / rad/v$$

$$m(t) = 2 \sin(4000 tit)$$
Page 3/5

