YSU ASDS, Statistics, Fall 2019 Lecture 22

Michael Poghosyan

11 Nov 2019

Contents

- ► Confidence Intervals (CI)
- Asymptotic CI

▶ Give the definition of the $(1 - \alpha)$ -level CI.

- ▶ Give the definition of the (1α) -level CI.
- Give the Chebyshev Inequality.

- ▶ Give the definition of the (1α) -level CI.
- Give the Chebyshev Inequality.
- ► What is the **R** command to generate 20 random numbers from the *Cauchy*(2) distribution?

- ▶ Give the definition of the (1α) -level CI.
- ► Give the Chebyshev Inequality.
- ► What is the **R** command to generate 20 random numbers from the *Cauchy*(2) distribution?
- Give a (1α) -level CI for p in Bernoulli(p) Model.

Again, we want to construct a CI of CL $1-\alpha$ for $\theta,$ using the Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}.$$

Again, we want to construct a CI of CL $1-\alpha$ for θ , using the Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}$$
.

Suppose we can construct a function of $X_1, X_2, ..., X_n$ and our unknown parameter θ ,

$$g(X_1,X_2,...,X_n,\theta)$$

such that

Again, we want to construct a CI of CL $1-\alpha$ for θ , using the Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}.$$

Suppose we can construct a function of $X_1, X_2, ..., X_n$ and our unknown parameter θ ,

$$g(X_1, X_2, ..., X_n, \theta)$$

such that

▶ the distribution of $g(X_1,...,X_n,\theta)$ is independent of θ ;

Again, we want to construct a CI of CL $1-\alpha$ for θ , using the Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}$$
.

Suppose we can construct a function of $X_1, X_2, ..., X_n$ and our unknown parameter θ ,

$$g(X_1, X_2, ..., X_n, \theta)$$

such that

- ▶ the distribution of $g(X_1,...,X_n,\theta)$ is independent of θ ;
- ightharpoonup g is invertible in terms of heta, say, is strictly monotonic in heta

Again, we want to construct a CI of CL $1-\alpha$ for θ , using the Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}$$
.

Suppose we can construct a function of $X_1, X_2, ..., X_n$ and our unknown parameter θ ,

$$g(X_1, X_2, ..., X_n, \theta)$$

such that

- ▶ the distribution of $g(X_1,...,X_n,\theta)$ is independent of θ ;
- ightharpoonup g is invertible in terms of heta, say, is strictly monotonic in heta

Then we call $g(X_1,...,X_n,\theta)$ to be a **Pivot** for our model.

How to use Pivots to construct CIs? The general idea is:

How to use Pivots to construct CIs? The general idea is:

Find a and b such that

$$\mathbb{P}(a < g(X_1, X_2, ..., X_n, \theta) < b) \ge 1 - \alpha;$$

How to use Pivots to construct CIs? The general idea is:

Find a and b such that

$$\mathbb{P}(a < g(X_1, X_2, ..., X_n, \theta) < b) \ge 1 - \alpha;$$

Because of the first condition, a and b will not depend on θ ;

How to use Pivots to construct CIs? The general idea is:

Find a and b such that

$$\mathbb{P}\left(a < g(X_1, X_2, ..., X_n, \theta) < b\right) \geq 1 - \alpha;$$

Because of the first condition, a and b will not depend on θ ;

now solve the inequality

$$a < g(X_1, ..., X_n, \theta) < b$$

for θ for the obtained a and b.

How to use Pivots to construct Cls? The general idea is:

Find a and b such that

$$\mathbb{P}(a < g(X_1, X_2, ..., X_n, \theta) < b) \ge 1 - \alpha;$$

Because of the first condition, a and b will not depend on θ ;

now solve the inequality

$$a < g(X_1, ..., X_n, \theta) < b$$

for θ for the obtained a and b.

This will give some inequality of the form $L < \theta < U$, and hence,

$$\mathbb{P}(L < \theta < U) \ge 1 - \alpha,$$

so we can take (L, U) as a CI.

How to use Pivots to construct CIs? The general idea is:

Find a and b such that

$$\mathbb{P}\big(a < g(X_1, X_2, ..., X_n, \theta) < b\big) \geq 1 - \alpha;$$

Because of the first condition, a and b will not depend on θ ;

now solve the inequality

$$a < g(X_1, ..., X_n, \theta) < b$$

for θ for the obtained a and b.

This will give some inequality of the form $L < \theta < U$, and hence,

$$\mathbb{P}(L < \theta < U) \ge 1 - \alpha,$$

so we can take (L, U) as a CI.

Note: Usually, we are solving

$$\mathbb{P}\Big(a < g(X_1, X_2, ..., X_n, \theta) < b\Big) = 1 - \alpha.$$

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is known. Given $\alpha \in (0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is known. Given $\alpha\in(0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Solution: We know that \overline{X} is a good Estimator for μ .

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is known. Given $\alpha \in (0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Solution: We know that \overline{X} is a good Estimator for μ . So we will use it to obtain a Pivot.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is known. Given $\alpha \in (0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Solution: We know that \overline{X} is a good Estimator for μ . So we will use it to obtain a Pivot.

We know that, since $X_k \sim \mathcal{N}(\mu, \sigma^2)$ are IID, then

$$\overline{X}$$
 ~

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is known. Given $\alpha \in (0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Solution: We know that \overline{X} is a good Estimator for μ . So we will use it to obtain a Pivot.

We know that, since $X_k \sim \mathcal{N}(\mu, \sigma^2)$ are IID, then

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is known. Given $\alpha \in (0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Solution: We know that \overline{X} is a good Estimator for μ . So we will use it to obtain a Pivot.

We know that, since $X_k \sim \mathcal{N}(\mu, \sigma^2)$ are IID, then

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
.

This shows that \overline{X} cannot serve as a Pivot, since its Distribution depends on the unknown μ .

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is known. Given $\alpha \in (0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Solution: We know that \overline{X} is a good Estimator for μ . So we will use it to obtain a Pivot.

We know that, since $X_k \sim \mathcal{N}(\mu, \sigma^2)$ are IID, then

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
.

This shows that \overline{X} cannot serve as a Pivot, since its Distribution depends on the unknown μ .

But let us consider $\overline{X} - \mu$.

Clearly,

$$\overline{X} - \mu \sim$$

Clearly,

$$\overline{X} - \mu \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right)$$
.

Clearly,

$$\overline{X} - \mu \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right).$$

So the Distribution of $\overline{X} - \mu$ is independent of μ !

Clearly,

$$\overline{X} - \mu \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right).$$

So the Distribution of $\overline{X} - \mu$ is independent of μ ! Uraaa! We found a Pivoooot.

Clearly,

$$\overline{X} - \mu \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right).$$

So the Distribution of $\overline{X} - \mu$ is independent of μ ! Uraaa! We found a Pivoooot. In fact, usually people take the following Pivot:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim$$

Clearly,

$$\overline{X} - \mu \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right).$$

So the Distribution of $\overline{X} - \mu$ is independent of μ ! Uraaa! We found a Pivoooot. In fact, usually people take the following Pivot:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

since working with $\mathcal{N}(0,1)$ is easier: we have Standard Tables for Standard Normal!

Clearly,

$$\overline{X} - \mu \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right).$$

So the Distribution of $\overline{X} - \mu$ is independent of μ ! Uraaa! We found a Pivoooot. In fact, usually people take the following Pivot:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

since working with $\mathcal{N}(0,1)$ is easier: we have Standard Tables for Standard Normal! So what??? Who cares for that in this digital era of the 4th Industrial Revolution? $\ddot{}$

Clearly,

$$\overline{X} - \mu \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right).$$

So the Distribution of $\overline{X} - \mu$ is independent of μ ! Uraaa! We found a Pivoooot. In fact, usually people take the following Pivot:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

since working with $\mathcal{N}(0,1)$ is easier: we have Standard Tables for Standard Normal! So what??? Who cares for that in this digital era of the 4th Industrial Revolution? $\ddot{}$

The name of the above ratio is Z-statistics, and we will meet this again in Hypotheses testing part.

Now, let us use this Pivot: we have $Z \sim \mathcal{N}(0,1)$.

Now, let us use this Pivot: we have $Z \sim \mathcal{N}(0,1)$. Let us find numbers a and b such that

$$\mathbb{P}(a < Z < b) = 1 - \alpha.$$

Now, let us use this Pivot: we have $Z \sim \mathcal{N}(0,1)$. Let us find numbers a and b such that

$$\mathbb{P}(a < Z < b) = 1 - \alpha.$$

This means that we want to select an interval, over which the area under the Standard Normal PDF is $1 - \alpha$.

Now, let us use this Pivot: we have $Z \sim \mathcal{N}(0,1)$. Let us find numbers a and b such that

$$\mathbb{P}(a < Z < b) = 1 - \alpha.$$

This means that we want to select an interval, over which the area under the Standard Normal PDF is $1-\alpha$. Clearly, there exist infinitely many this kind of intervals.

Now, let us use this Pivot: we have $Z \sim \mathcal{N}(0,1)$. Let us find numbers a and b such that

$$\mathbb{P}(a < Z < b) = 1 - \alpha.$$

This means that we want to select an interval, over which the area under the Standard Normal PDF is $1-\alpha$. Clearly, there exist infinitely many this kind of intervals. But let us choose the *minimum length* interval, which will be

Now, let us use this Pivot: we have $Z \sim \mathcal{N}(0,1)$. Let us find numbers a and b such that

$$\mathbb{P}(a < Z < b) = 1 - \alpha.$$

This means that we want to select an interval, over which the area under the Standard Normal PDF is $1-\alpha$. Clearly, there exist infinitely many this kind of intervals. But let us choose the *minimum length* interval, which will be a symmetric interval around 0 (prove!).

Now, let us use this Pivot: we have $Z \sim \mathcal{N}(0,1)$. Let us find numbers a and b such that

$$\mathbb{P}(a < Z < b) = 1 - \alpha.$$

This means that we want to select an interval, over which the area under the Standard Normal PDF is $1-\alpha$. Clearly, there exist infinitely many this kind of intervals. But let us choose the minimum length interval, which will be a symmetric interval around 0 (prove!). So we need to find an inteval of the form (-b, b) such that

$$\mathbb{P}(-b < Z < b) = 1 - \alpha.$$

Now, let us use this Pivot: we have $Z \sim \mathcal{N}(0,1)$. Let us find numbers a and b such that

$$\mathbb{P}(a < Z < b) = 1 - \alpha.$$

This means that we want to select an interval, over which the area under the Standard Normal PDF is $1-\alpha$. Clearly, there exist infinitely many this kind of intervals. But let us choose the *minimum length* interval, which will be a symmetric interval around 0 (prove!). So we need to find an inteval of the form (-b,b) such that

$$\mathbb{P}(-b < Z < b) = 1 - \alpha.$$

Because of the symmetry, we need to have that the area of both tails is $\alpha/2$:

$$\mathbb{P}(Z \leq -b) = \mathbb{P}(Z \geq b) = \frac{\alpha}{2},$$

hence,

Now, let us use this Pivot: we have $Z \sim \mathcal{N}(0,1)$. Let us find numbers a and b such that

$$\mathbb{P}(a < Z < b) = 1 - \alpha.$$

This means that we want to select an interval, over which the area under the Standard Normal PDF is $1-\alpha$. Clearly, there exist infinitely many this kind of intervals. But let us choose the *minimum length* interval, which will be a symmetric interval around 0 (prove!). So we need to find an inteval of the form (-b,b) such that

$$\mathbb{P}(-b < Z < b) = 1 - \alpha.$$

Because of the symmetry, we need to have that the area of both tails is $\alpha/2$:

$$\mathbb{P}(Z \leq -b) = \mathbb{P}(Z \geq b) = \frac{\alpha}{2},$$

hence,

$$b=z_{1-\frac{\alpha}{2}},$$

where $z_{1-\alpha/2}$ is the $1-\frac{\alpha}{2}$ quantile of the Standard Normal Distribution.

$$\mathbb{P}\left(-z_{1-\frac{\alpha}{2}} < Z < z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha.$$

So we obtained

$$\mathbb{P}\left(-z_{1-\frac{\alpha}{2}} < Z < z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha.$$

We plug here the value of Z:

$$\mathbb{P}\left(-z_{1-\frac{\alpha}{2}} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha,$$

So we obtained

$$\mathbb{P}\left(-z_{1-\frac{\alpha}{2}} < Z < z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha.$$

We plug here the value of Z:

$$\mathbb{P}\left(-z_{1-\frac{\alpha}{2}} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha,$$

and solve for μ :

$$\mathbb{P}\left(\overline{X}-z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}<\mu<\overline{X}+z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}\right)=1-\alpha.$$

$$\mathbb{P}\left(-z_{1-\frac{\alpha}{2}} < Z < z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha.$$

We plug here the value of Z:

$$\mathbb{P}\left(-\mathsf{z}_{1-\frac{\alpha}{2}} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \mathsf{z}_{1-\frac{\alpha}{2}}\right) = 1 - \alpha,$$

and solve for μ :

$$\mathbb{P}\left(\overline{X}-z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}<\mu<\overline{X}+z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}\right)=1-\alpha.$$

Hence, the following interval:

$$\left(\overline{X}-z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}, \ \overline{X}+z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}\right)$$

is a $(1 - \alpha)$ -level CI for μ .

Example: Assume we want to construct a 95% CI for μ in the $\mathcal{N}(\mu, \sigma^2)$ Model, when σ is given, known.

Example: Assume we want to construct a 95% CI for μ in the $\mathcal{N}(\mu,\sigma^2)$ Model, when σ is given, known. We construct it using a Random Sample

$$X_1,...,X_n \sim \mathcal{N}(\mu,\sigma^2).$$

Example: Assume we want to construct a 95% CI for μ in the $\mathcal{N}(\mu,\sigma^2)$ Model, when σ is given, known. We construct it using a Random Sample

$$X_1,...,X_n \sim \mathcal{N}(\mu,\sigma^2).$$

Since $1 - \alpha = 0.95$, then $\alpha = 0.05$.

Example: Assume we want to construct a 95% CI for μ in the $\mathcal{N}(\mu, \sigma^2)$ Model, when σ is given, known. We construct it using a Random Sample

$$X_1,...,X_n \sim \mathcal{N}(\mu,\sigma^2).$$

Since $1-\alpha=0.95$, then $\alpha=0.05$. By the above formula, we need to calculate the Standard Normal quantile $z_{1-\alpha/2}=$

Example: Assume we want to construct a 95% CI for μ in the $\mathcal{N}(\mu, \sigma^2)$ Model, when σ is given, known. We construct it using a Random Sample

$$X_1,...,X_n \sim \mathcal{N}(\mu,\sigma^2).$$

Since $1-\alpha=0.95$, then $\alpha=0.05$. By the above formula, we need to calculate the Standard Normal quantile $z_{1-\alpha/2}=z_{0.975}$.

Example: Assume we want to construct a 95% CI for μ in the $\mathcal{N}(\mu, \sigma^2)$ Model, when σ is given, known. We construct it using a Random Sample

$$X_1,...,X_n \sim \mathcal{N}(\mu,\sigma^2).$$

Since $1 - \alpha = 0.95$, then $\alpha = 0.05$. By the above formula, we need to calculate the Standard Normal quantile $z_{1-\alpha/2} = z_{0.975}$.

R gives:

[1] 1.959964

so our 95% CI will be

$$\left(\overline{X}-1.96\cdot\frac{\sigma}{\sqrt{n}},\ \overline{X}+1.96\cdot\frac{\sigma}{\sqrt{n}}\right).$$

Example with R: We generate random numbers from $\mathcal{N}(2.31,4)$ (so here we assume we know the true parameter value of μ).

```
sigma <- 2
n <- 20
smpl <- rnorm(n, mean = 2.31, sd = sigma)
smpl</pre>
```

```
## [1] -0.61517958  0.26141094 -0.47118696  3.42826333  1

## [6]  0.06724348  1.18915020  0.70609049  4.60922396  0

## [11]  3.92192237 -1.71053629  3.07221264  2.21058725  5

## [16]  4.43852249 -0.54471636  2.27825637  2.97237654 -1
```

##

sigma <- 2

Example with R: We generate random numbers from $\mathcal{N}(2.31,4)$ (so here we assume we know the true parameter value of μ).

```
n <- 20

smpl <- rnorm(n, mean = 2.31, sd = sigma)

smpl

## [1] -0.61517958  0.26141094 -0.47118696  3.42826333  1

## [6]  0.06724348  1.18915020  0.70609049  4.60922396  0

## [11]  3.92192237 -1.71053629  3.07221264  2.21058725  5
```

[16] 4.43852249 -0.54471636 2.27825637 2.97237654 -1

Now we construct the 95% CI by the above formula:

```
me <- 1.96* sigma/sqrt(n) #the Margin of Error c(mean(smpl) - me, mean(smpl) + me)
```

```
## [1] 0.680515 2.433592
```

Example, Simulation

Example. Simulation. Code mu <- 2.31; sigma <- 2 $conf.level \leftarrow 0.95$; a = 1 - conf.levelsample.size <- 20; no.of.intervals <- 100</pre> $z \leftarrow qnorm(1-a/2)$ ## our quantile ME <- z*sigma/sqrt(sample.size) #Marqin of Error plot.new() plot.window(xlim = c(0,no.of.intervals), ylim = c(mu-2,mu+2)) axis(1); axis(2)title("Normal Mean Model, CI by Pivots") for(i in 1:no.of.intervals){ x <- rnorm(sample.size, mean = mu, sd = sigma) lo \leftarrow mean(x) - ME; up \leftarrow mean(x) + ME if(lo > mu || up < mu){</pre> segments(c(i), c(lo), c(i), c(up), col = "red")} else{ segments(c(i), c(lo), c(i), c(up))abline(h = mu, lwd = 2, col = "blue")

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is **unknown**, which is more realistic.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is **unknown**, which is more realistic. Given $\alpha \in (0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is **unknown**, which is more realistic. Given $\alpha \in (0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Solution: Again we start from \overline{X} , having that it is a good Estimator for μ . Again, from the fact that $X_k \sim \mathcal{N}(\mu, \sigma^2)$ are IID, we will have

$$\overline{X}$$
 ~

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is **unknown**, which is more realistic. Given $\alpha \in (0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Solution: Again we start from \overline{X} , having that it is a good Estimator for μ . Again, from the fact that $X_k \sim \mathcal{N}(\mu, \sigma^2)$ are IID, we will have

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is **unknown**, which is more realistic. Given $\alpha \in (0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Solution: Again we start from \overline{X} , having that it is a good Estimator for μ . Again, from the fact that $X_k \sim \mathcal{N}(\mu, \sigma^2)$ are IID, we will have

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

In this case, again

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim$$

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is **unknown**, which is more realistic. Given $\alpha \in (0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Solution: Again we start from \overline{X} , having that it is a good Estimator for μ . Again, from the fact that $X_k \sim \mathcal{N}(\mu, \sigma^2)$ are IID, we will have

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

In this case, again

$$Z = rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1),$$

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is **unknown**, which is more realistic. Given $\alpha \in (0,1)$, we want to construct a Cl of CL $1-\alpha$ for μ , using a Pivot.

Solution: Again we start from \overline{X} , having that it is a good Estimator for μ . Again, from the fact that $X_k \sim \mathcal{N}(\mu, \sigma^2)$ are IID, we will have

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

In this case, again

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1),$$

but, unfortunately, we cannot use Z, since the result will contain σ , which is unknown to us.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2).$$

Assume σ^2 is **unknown**, which is more realistic. Given $\alpha \in (0,1)$, we want to construct a CI of CL $1-\alpha$ for μ , using a Pivot.

Solution: Again we start from \overline{X} , having that it is a good Estimator for μ . Again, from the fact that $X_k \sim \mathcal{N}(\mu, \sigma^2)$ are IID, we will have

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

In this case, again

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1),$$

but, unfortunately, we cannot use Z, since the result will contain σ , which is unknown to us. So we need to adjust Z.

We know some good Estimators for σ : let us take, in this case, the following version of Sample SD:

$$S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1},$$
 i.e., $S = \sqrt{\frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}}.$

We know some good Estimators for σ : let us take, in this case, the following version of Sample SD:

$$S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1},$$
 i.e., $S = \sqrt{\frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}}.$

Now, let us replace above σ with S:

$$t=\frac{X-\mu}{S/\sqrt{n}}.$$

We know some good Estimators for σ : let us take, in this case, the following version of Sample SD:

$$S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1},$$
 i.e., $S = \sqrt{\frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}}.$

Now, let us replace above σ with S:

$$t=\frac{\overline{X}-\mu}{S/\sqrt{n}}.$$

OK, what's next? Is it a Pivot? Is the Distribution of t independent of μ ?

We know some good Estimators for σ : let us take, in this case, the following version of Sample SD:

$$S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1},$$
 i.e., $S = \sqrt{\frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}}.$

Now, let us replace above σ with S:

$$t=\frac{\overline{X}-\mu}{S/\sqrt{n}}.$$

OK, what's next? Is it a Pivot? Is the Distribution of t independent of μ ? Or, in general, do we know the Distribution of t?

I know, not sure about you.

We know some good Estimators for σ : let us take, in this case, the following version of Sample SD:

$$S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1},$$
 i.e., $S = \sqrt{\frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}}.$

Now, let us replace above σ with S:

$$t=\frac{\overline{X}-\mu}{S/\sqrt{n}}.$$

OK, what's next? Is it a Pivot? Is the Distribution of t independent of μ ? Or, in general, do we know the Distribution of t?

I know, not sure about you. Yet!

t-Distribution

It turns out that the Distribution of above

$$t = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

is the famous t-Distribution with n-1 degrees of freedom:

¹See, e.g., https://en.wikipedia.org/wiki/Student's_t-distribution

t-Distribution

It turns out that the Distribution of above

$$t = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

is the famous *t*-Distribution with n-1 degrees of freedom:

Definition: If $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ are IID and

$$S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1},$$

then the Distribution of

$$t = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$

is called the **Student's** t-**Distribution with** n-1 **degrees of freedom**¹, and is denoted by t(n-1).

¹See, e.g., https://en.wikipedia.org/wiki/Student's_t-distribution

Have you ever heard the term Vechniy Student? Here is he:

Have you ever heard the term *Vechniy Student*? Here is he:

British statistician William Sealy Gosset, known as "Student"

Have you ever heard the term *Vechniy Student*? Here is he:

British statistician William Sealy Gosset, known as "Student" You can read about him at https://en.wikipedia.org/wiki/William_Sealy_Gosset.

Student's Paper

Student's Paper

Volume VI

MARCH, 1908

No. 1

BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.

BY STUDENT.

Introduction.

Any experiment may be regarded as forming an individual of a "population" of experiments which might be performed under the same conditions. A series of experiments is a sample drawn from this population.

t-Distribution

```
x <- seq(-3,3, 0.01)
y1 <- dnorm(x); y2 <- dt(x, df = 3); y3 <- dt(x, df = 15)
plot(x,y1, type = "l", col = "red", lwd = 2, ylim = c(0, 0.4))
par(new = T)
plot(x,y2, type = "l", col = "orange", lwd = 2, ylim = c(0, 0.4))
par(new = T)
plot(x,y3, type = "l", col = "blue", lwd = 2, ylim = c(0, 0.4))</pre>
```


Back to our Problem, we know that

$$t = \frac{X - \mu}{S / \sqrt{n}} \sim t(n - 1),$$

and the Distribution of t is independent of μ , so it is a Pivot for μ .

Back to our Problem, we know that

$$t = \frac{X - \mu}{S / \sqrt{n}} \sim t(n - 1),$$

and the Distribution of t is independent of μ , so it is a Pivot for μ . We call it a t-statistics.

Back to our Problem, we know that

$$t = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1),$$

and the Distribution of t is independent of μ , so it is a Pivot for μ . We call it a t-statistics.

Now, for $t \sim t(n-1)$, let us find numbers a and b such that

$$\mathbb{P}(a < t < b) = 1 - \alpha.$$

Back to our Problem, we know that

$$t = rac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1),$$

and the Distribution of t is independent of μ , so it is a Pivot for μ . We call it a t-statistics.

Now, for $t \sim t(n-1)$, let us find numbers a and b such that

$$\mathbb{P}(a < t < b) = 1 - \alpha.$$

Again, because of the symmetry of the PDF of t(n-1), the minimum length interval will be symmetric around 0.

Back to our Problem, we know that

$$t = rac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1),$$

and the Distribution of t is independent of μ , so it is a Pivot for μ . We call it a t-statistics.

Now, for $t \sim t(n-1)$, let us find numbers a and b such that

$$\mathbb{P}(a < t < b) = 1 - \alpha.$$

Again, because of the symmetry of the PDF of t(n-1), the minimum length interval will be symmetric around 0. So we need to find an inteval of the form (-b,b) such that

$$\mathbb{P}(-b < t < b) = 1 - \alpha.$$

Back to our Problem, we know that

$$t=rac{X-\mu}{S/\sqrt{n}}\sim t(n-1),$$

and the Distribution of t is independent of μ , so it is a Pivot for μ . We call it a t-statistics.

Now, for $t \sim t(n-1)$, let us find numbers a and b such that

$$\mathbb{P}(a < t < b) = 1 - \alpha.$$

Again, because of the symmetry of the PDF of t(n-1), the minimum length interval will be symmetric around 0. So we need to find an inteval of the form (-b,b) such that

$$\mathbb{P}(-b < t < b) = 1 - \alpha.$$

Again, because of the symmetry, we need to have that the area of both tails is $\alpha/2$:

$$\mathbb{P}(t \leq -b) = \mathbb{P}(t \geq b) = \frac{\alpha}{2}.$$

$$b = t_{1-\frac{\alpha}{2}}(n-1) = t_{n-1,1-\frac{\alpha}{2}},$$

where $t_{n-1,1-\alpha/2}$ is the $1-\frac{\alpha}{2}$ quantile of the t(n-1) Distribution.

Hence,

$$b = t_{1-\frac{\alpha}{2}}(n-1) = t_{n-1,1-\frac{\alpha}{2}},$$

where $t_{n-1,1-\alpha/2}$ is the $1-\frac{\alpha}{2}$ quantile of the t(n-1) Distribution.

So we obtained

$$\mathbb{P}\left(-t_{n-1,1-\alpha/2} < t < t_{n-1,1-\alpha/2}\right) = 1 - \alpha.$$

Hence,

$$b=t_{1-\frac{\alpha}{2}}(n-1)=t_{n-1,1-\frac{\alpha}{2}},$$

where $t_{n-1,1-\alpha/2}$ is the $1-\frac{\alpha}{2}$ quantile of the t(n-1) Distribution.

So we obtained

$$\mathbb{P}\left(-t_{n-1,1-\alpha/2} < t < t_{n-1,1-\alpha/2}\right) = 1 - \alpha.$$

We plug here the value of t:

$$\mathbb{P}\left(-t_{n-1,1-\alpha/2} < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{n-1,1-\alpha/2}\right) = 1 - \alpha,$$

Hence,

$$b = t_{1-\frac{\alpha}{2}}(n-1) = t_{n-1,1-\frac{\alpha}{2}},$$

where $t_{n-1,1-\alpha/2}$ is the $1-\frac{\alpha}{2}$ quantile of the t(n-1) Distribution.

So we obtained

$$\mathbb{P}\left(-t_{n-1,1-\alpha/2} < t < t_{n-1,1-\alpha/2}\right) = 1 - \alpha.$$

We plug here the value of t:

$$\mathbb{P}\left(-t_{n-1,1-\alpha/2} < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{n-1,1-\alpha/2}\right) = 1 - \alpha,$$

and solve for μ :

$$\mathbb{P}\left(\overline{X} - t_{n-1,1-\alpha/2} \cdot \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{n-1,1-\alpha/2} \cdot \frac{S}{\sqrt{n}}\right) = 1 - \alpha.$$

Hence,
$$b=t_{1-\frac{\alpha}{2}}(n-1)=t_{n-1,1-\frac{\alpha}{2}},$$

where $t_{n-1,1-\alpha/2}$ is the $1-\frac{\alpha}{2}$ quantile of the t(n-1) Distribution.

So we obtained

$$\mathbb{P}\left(-t_{n-1,1-\alpha/2} < t < t_{n-1,1-\alpha/2}\right) = 1 - \alpha.$$

We plug here the value of
$$t$$
:

$$\overline{X} = u$$

$$_{1,1-lpha/2}\Big)=$$

$$\mathbb{P}\left(-t_{n-1,1-\alpha/2}<\frac{\overline{X}-\mu}{S/\sqrt{n}}< t_{n-1,1-\alpha/2}\right)=1-\alpha,$$

$$\left(1-\alpha/2\right)=1$$

e for
$$\mu$$
:

and solve for μ :

$$\mathbb{P}\left(\overline{X}-t_{n-1,1-\alpha/2}\cdot\frac{S}{\sqrt{n}}<\mu<\overline{X}+t_{n-1,1-\alpha/2}\cdot\frac{S}{\sqrt{n}}\right)=1-\alpha.$$

 $\left(\overline{X}-t_{n-1,1-\alpha/2}\cdot\frac{S}{\sqrt{n}},\ \overline{X}+t_{n-1,1-\alpha/2}\cdot\frac{S}{\sqrt{n}}\right)$ is a $(1-\alpha)$ -level CI for μ .

CI for μ , Normal Model, Notes

Note: To compare:

▶ If σ is known, $(1 - \alpha)$ -level CI for μ is

$$\overline{X} \pm z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

▶ If σ is unknown, $(1 - \alpha)$ -level CI for μ is

$$\overline{X} \pm t_{n-1,1-\alpha/2} \cdot \frac{S}{\sqrt{n}}$$

CI for μ , Normal Model, Notes

Note: To compare:

▶ If σ is known, $(1 - \alpha)$ -level CI for μ is

$$\overline{X} \pm z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

▶ If σ is unknown, $(1 - \alpha)$ -level CI for μ is

$$\overline{X} \pm t_{n-1,1-\alpha/2} \cdot \frac{S}{\sqrt{n}}$$

Note: If we will compare the quantiles of the same level of $\mathcal{N}(0,1)$ with t(n-1), we will see that CIs for the case when σ is unknown are wider than for the case when σ is known. This is intuitive, of course - to compensate the uncertainty in σ , we need to take a wider interval:

```
c(qnorm(0.975), qt(0.975, df = 3), qt(0.975, df = 20))
```

[1] 1.959964 3.182446 2.085963

Example: Assume we want to estimate the average time μ our Stat students are spending for a homework. We collect information from 10 students for the last hw, and get the following responses (in hrs):

[1] 2.17 1.42 2.13 0.56 1.21 2.22 1.35 2.37 1.47 1.70

Example: Assume we want to estimate the average time μ our Stat students are spending for a homework. We collect information from 10 students for the last hw, and get the following responses (in hrs):

[1] 2.17 1.42 2.13 0.56 1.21 2.22 1.35 2.37 1.47 1.70

Now we assume that the time spent for solving a hw is Normally Distributed with the Mean μ and some variance σ^2 .

Example: Assume we want to estimate the average time μ our Stat students are spending for a homework. We collect information from 10 students for the last hw, and get the following responses (in hrs):

Now we assume that the time spent for solving a hw is Normally Distributed with the Mean μ and some variance σ^2 .

So
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 shows

Example: Assume we want to estimate the average time μ our Stat students are spending for a homework. We collect information from 10 students for the last hw, and get the following responses (in hrs):

Now we assume that the time spent for solving a hw is Normally Distributed with the Mean μ and some variance σ^2 .

So $X \sim \mathcal{N}(\mu, \sigma^2)$ shows the time spent solving a hw for a (randomly chosen) student.

Example: Assume we want to estimate the average time μ our Stat students are spending for a homework. We collect information from 10 students for the last hw, and get the following responses (in hrs):

Now we assume that the time spent for solving a hw is Normally Distributed with the Mean μ and some variance σ^2 .

So $X \sim \mathcal{N}(\mu, \sigma^2)$ shows the time spent solving a hw for a (randomly chosen) student. Our unknown, μ is

Example: Assume we want to estimate the average time μ our Stat students are spending for a homework. We collect information from 10 students for the last hw, and get the following responses (in hrs):

Now we assume that the time spent for solving a hw is Normally Distributed with the Mean μ and some variance σ^2 .

So $X \sim \mathcal{N}(\mu, \sigma^2)$ shows the time spent solving a hw for a (randomly chosen) student. Our unknown, μ is the average time to solve a hw.

Example: Assume we want to estimate the average time μ our Stat students are spending for a homework. We collect information from 10 students for the last hw, and get the following responses (in hrs):

Now we assume that the time spent for solving a hw is Normally Distributed with the Mean μ and some variance σ^2 .

So $X \sim \mathcal{N}(\mu, \sigma^2)$ shows the time spent solving a hw for a (randomly chosen) student. Our unknown, μ is the average time to solve a hw. And we have an observation from a Random Sample

$$X_1, X_2, ..., X_{10} \sim \mathcal{N}(\mu, \sigma^2).$$

Example: Assume we want to estimate the average time μ our Stat students are spending for a homework. We collect information from 10 students for the last hw, and get the following responses (in hrs):

Now we assume that the time spent for solving a hw is Normally Distributed with the Mean μ and some variance σ^2 .

So $X \sim \mathcal{N}(\mu, \sigma^2)$ shows the time spent solving a hw for a (randomly chosen) student. Our unknown, μ is the average time to solve a hw. And we have an observation from a Random Sample

$$X_1, X_2, ..., X_{10} \sim \mathcal{N}(\mu, \sigma^2).$$

We construct a 95% CI for μ , the average time to solve the hw, by the above formula:

```
n <- 10
cl <- 0.95; a = 1-cl
t <- qt(1-a/2, df = n-1)
smpl<-c(2.17,1.42,2.13,0.56,1.21,2.22,1.35,2.37,1.47,1.70)
s <- sd(smpl)
me <- t*s/sqrt(n) #the Margin of Error
c(mean(smpl) - me, mean(smpl) + me)
## [1] 1.253748 2.066252</pre>
```

```
n <- 10
cl <- 0.95; a = 1-cl
t <- qt(1-a/2, df = n-1)
smpl<-c(2.17,1.42,2.13,0.56,1.21,2.22,1.35,2.37,1.47,1.70)
s <- sd(smpl)
me <- t*s/sqrt(n) #the Margin of Error
c(mean(smpl) - me, mean(smpl) + me)</pre>
```

Veeery unsatisfactory result, of course! Please spend more time for your hw, read textbooks!

[1] 1.253748 2.066252

Example, cont'd

Later, we will talk about the t-**Test**, let me now just do a t-Test for the hw solving hours:

 $smpl \leftarrow c(2.17, 1.42, 2.13, 0.56, 1.21, 2.22, 1.35, 2.37, 1.47, 1.70)$

```
t.test(smpl)
##
##
   One Sample t-test
##
## data: smpl
## t = 9.2435, df = 9, p-value = 6.86e-06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 1.253748 2.066252
## sample estimates:
## mean of x
##
        1.66
```

Example, cont'd

We can separate here the CI:

```
 \begin{split} & \text{smpl} < -\text{c}(2.17, 1.42, 2.13, 0.56, 1.21, 2.22, 1.35, 2.37, 1.47, 1.70) \\ & \text{tst} < -\text{t.test}(\text{smpl}) \text{ \#Keeping the test result in tst} \\ & \text{tst$$conf.int} \end{split}
```

```
## [1] 1.253748 2.066252
## attr(,"conf.level")
## [1] 0.95
```

Let us summarize what we have obtained for this model.

Let us summarize what we have obtained for this model. The problem is: given a Random Sample

$$X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2),$$

and $\alpha \in (0,1)$, we want to construct an $1-\alpha$ -level CI for the unknown parameter μ .

Let us summarize what we have obtained for this model. The problem is: given a Random Sample

$$X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2),$$

and $\alpha \in (0,1)$, we want to construct an $1-\alpha$ -level CI for the unknown parameter μ .

We have considered 2 cases: when σ^2 was known and unknown. Here we give the summary:

 σ^2 is known	σ^2 is unknown

Pivot:

	σ^2 is known	σ^2 is unknown
Pivot:	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$t = rac{\overline{X} - \mu}{S / \sqrt{n}}$
D: (D:		

Distr. of Pivo:

	σ^2 is known	σ^2 is unknown
Pivot: Distr. of Pivo:	$Z=rac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ $Z\sim\mathcal{N}(0,1)$	$t=rac{\overline{X}-\mu}{S/\sqrt{n}}$ $t\sim t(n-1)$

 ${\rm Reg}\ {\rm w/prob}\ 1-\alpha$

	σ^2 is known	σ^2 is unknown
Pivot:	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$t = \frac{\overline{X} - \mu}{S / \sqrt{n}}$
Distr. of Pivo:	$Z \sim \mathcal{N}(0,1)$	$t \sim t(n-1)$
$Reg\ w/prob\ 1 - \alpha$	$-z_{1-\alpha/2} < Z < z_{1-\alpha/2}$	$-t_{n-1,1-\alpha/2} < t < t_{n-1,1-\alpha/2}$
2. 6		

CI for μ :

	σ^2 is known	σ^2 is unknown
Pivot:	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$t=rac{\overline{X}-\mu}{S/\sqrt{n}}$
Distr. of Pivo:	$Z \sim \mathcal{N}(0,1)$	$t \sim t(n-1)$
${\rm Reg~w/prob~1} - \alpha$	$-z_{1-\alpha/2} < Z < z_{1-\alpha/2}$	$-t_{n-1,1-\alpha/2} < t < t_{n-1,1-\alpha/2}$
CI for μ :	$\overline{X} \pm z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$\overline{X} \pm t_{n-1,1-\alpha/2} \cdot \frac{s}{\sqrt{n}}$

	σ^2 is known	σ^2 is unknown
Pivot:	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$t = rac{\overline{X} - \mu}{S/\sqrt{n}}$
Distr. of Pivo:	$Z \sim \mathcal{N}(0,1)$	$t \sim t(n-1)$
${\rm Reg~w/prob~1} - \alpha$	$-z_{1-\alpha/2} < Z < z_{1-\alpha/2}$	$-t_{n-1,1-\alpha/2} < t < t_{n-1,1-\alpha/2}$
CI for μ :	$\overline{X} \pm z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$\overline{X} \pm t_{n-1,1-\alpha/2} \cdot \frac{s}{\sqrt{n}}$

Here S is the Sample Standard Deviation given by

$$S^{2} = \frac{\sum_{k=1}^{n} (X_{k} - \overline{X})^{2}}{n-1}.$$

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **known**.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **known**. We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **known**. We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

We have
$$X_k \sim \mathcal{N}(\mu, \sigma^2)$$
, so

$$\frac{X_k - \mu}{\sigma} \sim$$

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **known**. We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

We have
$$X_k \sim \mathcal{N}(\mu, \sigma^2)$$
, so

$$\frac{X_k-\mu}{\sigma}\sim \mathcal{N}(0,1).$$

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **known**. We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

We have $X_k \sim \mathcal{N}(\mu, \sigma^2)$, so

$$\frac{X_k-\mu}{\sigma}\sim \mathcal{N}(0,1).$$

OK, the Distrib of the ratio is independent on the unknown Parameter, so this can serve as a Pivot.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **known**. We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

We have $X_k \sim \mathcal{N}(\mu, \sigma^2)$, so

$$rac{X_k - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

OK, the Distrib of the ratio is independent on the unknown Parameter, so this can serve as a Pivot. But please note that our Parameter was σ^2 , for σ .

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **known**. We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

We have $X_k \sim \mathcal{N}(\mu, \sigma^2)$, so

$$\frac{X_k-\mu}{\sigma}\sim \mathcal{N}(0,1).$$

OK, the Distrib of the ratio is independent on the unknown Parameter, so this can serve as a Pivot. But please note that our Parameter was σ^2 , for σ . We can take then the following:

$$\left(\frac{X_k-\mu}{\sigma}\right)^2$$
.

Is this a Pivot?

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **known**. We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

We have $X_k \sim \mathcal{N}(\mu, \sigma^2)$, so

$$\frac{X_k-\mu}{\sigma}\sim \mathcal{N}(0,1).$$

OK, the Distrib of the ratio is independent on the unknown Parameter, so this can serve as a Pivot. But please note that our Parameter was σ^2 , for σ . We can take then the following:

$$\left(\frac{X_k-\mu}{\sigma}\right)^2$$
.

Is this a Pivot? Yes, of course.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **known**. We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

We have $X_k \sim \mathcal{N}(\mu, \sigma^2)$, so

$$\frac{X_k-\mu}{\sigma}\sim \mathcal{N}(0,1).$$

OK, the Distrib of the ratio is independent on the unknown Parameter, so this can serve as a Pivot. But please note that our Parameter was σ^2 , for σ . We can take then the following:

$$\left(\frac{X_k-\mu}{\sigma}\right)^2$$
.

Is this a Pivot? Yes, of course. What is the Distirbution of this r.v.?

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **known**. We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

We have $X_k \sim \mathcal{N}(\mu, \sigma^2)$, so

$$\frac{X_k-\mu}{\sigma}\sim \mathcal{N}(0,1).$$

OK, the Distrib of the ratio is independent on the unknown Parameter, so this can serve as a Pivot. But please note that our Parameter was σ^2 , for σ . We can take then the following:

$$\left(\frac{X_k-\mu}{\sigma}\right)^2$$
.

Is this a Pivot? Yes, of course. What is the Distirbution of this r.v.? No, of course $\ddot{-}$.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **known**. We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

We have $X_k \sim \mathcal{N}(\mu, \sigma^2)$, so

$$\frac{X_k-\mu}{\sigma}\sim \mathcal{N}(0,1).$$

OK, the Distrib of the ratio is independent on the unknown Parameter, so this can serve as a Pivot. But please note that our Parameter was σ^2 , for σ . We can take then the following:

$$\left(\frac{X_k-\mu}{\sigma}\right)^2$$
.

Is this a Pivot? Yes, of course. What is the Distirbution of this r.v.? No, of course $\ddot{\ }$. Well, we can use our Prob knowledge, but let's keep this to you.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **known**. We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

We have $X_k \sim \mathcal{N}(\mu, \sigma^2)$, so

$$\frac{X_k-\mu}{\sigma}\sim \mathcal{N}(0,1).$$

OK, the Distrib of the ratio is independent on the unknown Parameter, so this can serve as a Pivot. But please note that our Parameter was σ^2 , for σ . We can take then the following:

$$\left(\frac{X_k-\mu}{\sigma}\right)^2$$
.

Is this a Pivot? Yes, of course. What is the Distirbution of this r.v.? No, of course $\ddot{\ }$. Well, we can use our Prob knowledge, but let's keep this to you. The fact is that this Pivot will not give a good result, as we are not using all the information we have.

So we will use the following as a Pivot:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2.$$

So we will use the following as a Pivot:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2.$$

To show that this can serve as a Pivot, and to use it, we need to find the Distribution of Y.

So we will use the following as a Pivot:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2.$$

To show that this can serve as a Pivot, and to use it, we need to find the Distribution of Y. Fortunately, someone already found the Distribution of this, and it is:

So we will use the following as a Pivot:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2.$$

To show that this can serve as a Pivot, and to use it, we need to find the Distribution of Y. Fortunately, someone already found the Distribution of this, and it is:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2 \sim \chi^2(n)$$

$\chi^2(n)$ Distribution

Definition: Assume

$$Z_1, Z_2, ..., Z_n \sim \mathcal{N}(0,1)$$

and Z_k -s are Independent (so they are IID). The Distribution of

$$Y = Z_1^2 + Z_2^2 + \dots + Z_n^2$$

is called the **Chi-Squared Distribution with** n **Degrees of Freedom**, and is denoted by $\chi^2(n)$:

$$Y = Z_1^2 + Z_2^2 + ... + Z_n^2 \sim \chi^2(n).$$

$\chi^2(n)$ Distribution

Definition: Assume

$$Z_1, Z_2, ..., Z_n \sim \mathcal{N}(0,1)$$

and Z_k -s are Independent (so they are IID). The Distribution of

$$Y = Z_1^2 + Z_2^2 + \dots + Z_n^2$$

is called the **Chi-Squared Distribution with** n **Degrees of Freedom**, and is denoted by $\chi^2(n)$:

$$Y = Z_1^2 + Z_2^2 + ... + Z_n^2 \sim \chi^2(n).$$

Say, if $Z \sim \mathcal{N}(0,1)$, then

$$Z^2 \sim$$

$\chi^2(n)$ Distribution

Definition: Assume

$$Z_1, Z_2, ..., Z_n \sim \mathcal{N}(0, 1)$$

and Z_k -s are Independent (so they are IID). The Distribution of

$$Y = Z_1^2 + Z_2^2 + \dots + Z_n^2$$

is called the **Chi-Squared Distribution with** n **Degrees of Freedom**, and is denoted by $\chi^2(n)$:

$$Y = Z_1^2 + Z_2^2 + ... + Z_n^2 \sim \chi^2(n).$$

Say, if $Z \sim \mathcal{N}(0,1)$, then

$$Z^2 \sim \chi^2(1)$$
.

$$\chi^2(n)$$
 Distribution

Definition: Assume

$$Z_1, Z_2, ..., Z_n \sim \mathcal{N}(0,1)$$

and Z_k -s are Independent (so they are IID). The Distribution of

$$Y = Z_1^2 + Z_2^2 + \dots + Z_n^2$$

is called the **Chi-Squared Distribution with** n **Degrees of Freedom**, and is denoted by $\chi^2(n)$:

$$Y = Z_1^2 + Z_2^2 + ... + Z_n^2 \sim \chi^2(n).$$

Say, if $Z \sim \mathcal{N}(0,1)$, then

$$Z^2 \sim \chi^2(1)$$
.

Exercise: What is $\mathbb{E}(Y)$?

x²(n) Distribution, PDF graphs x <- seq(from = 0, to = 15, by = 0.01) y1<-dchisq(x, df=2); y2<-dchisq(x, df=5); y3<-dchisq(x, df=10) plot(x,y1,type="l",lwd=2,col="red", ylim=c(0,0.5)); par(new=T) plot(x,y2,type="l",lwd=2,col="blue", ylim=c(0,0.5)); par(new=T) plot(x,y3,type="l",lwd=2,col="orange", ylim = c(0,0.5))</pre>

Back to our CI for σ^2 Problem: We wanted to use the following as a Pivot:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2,$$

Back to our CI for σ^2 Problem: We wanted to use the following as a Pivot:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2,$$

and we know now that

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2 \sim \chi^2(n).$$

Back to our CI for σ^2 Problem: We wanted to use the following as a Pivot:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2,$$

and we know now that

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2 \sim \chi^2(n).$$

Now, as the general idea of Pivot CI construction was suggesting, we want to find a, b such that

$$\mathbb{P}(a < Y < b) = 1 - \alpha.$$

Back to our CI for σ^2 Problem: We wanted to use the following as a Pivot:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2,$$

and we know now that

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2 \sim \chi^2(n).$$

Now, as the general idea of Pivot CI construction was suggesting, we want to find a, b such that

$$\mathbb{P}(a < Y < b) = 1 - \alpha.$$

The Distribution of Y, $\chi^2(n)$, is not symmetric, so it is not so easy to find the *minimum length CI*.

Back to our CI for σ^2 Problem: We wanted to use the following as a Pivot:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2,$$

and we know now that

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2 \sim \chi^2(n).$$

Now, as the general idea of Pivot CI construction was suggesting, we want to find a, b such that

$$\mathbb{P}(a < Y < b) = 1 - \alpha.$$

The Distribution of Y, $\chi^2(n)$, is not symmetric, so it is not so easy to find the *minimum length CI*. And usually statisticians take a and b with

$$\mathbb{P}(Y \leq a) = \mathbb{P}(Y \geq b) = \frac{\alpha}{2},$$

Back to our CI for σ^2 Problem: We wanted to use the following as a Pivot:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2,$$

and we know now that

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2 \sim \chi^2(n).$$

Now, as the general idea of Pivot CI construction was suggesting, we want to find a, b such that

$$\mathbb{P}(a < Y < b) = 1 - \alpha.$$

The Distribution of Y, $\chi^2(n)$, is not symmetric, so it is not so easy to find the *minimum length CI*. And usually statisticians take a and b with

$$\mathbb{P}(Y \leq a) = \mathbb{P}(Y \geq b) = \frac{\alpha}{2}$$
, i.e.

$$a =$$

$$a=\chi^2_{n,rac{lpha}{2}}$$
 and $b=$

$$a=\chi^2_{n,rac{lpha}{2}} \qquad ext{and} \qquad b=\chi^2_{n,1-rac{lpha}{2}}.$$

$$a = \chi_{n,\frac{\alpha}{2}}^2$$
 and $b = \chi_{n,1-\frac{\alpha}{2}}^2$.

Now, the rest is easy: we obtained

$$\mathbb{P}(\chi_{n,\frac{\alpha}{2}}^2 < Y < \chi_{n,1-\frac{\alpha}{2}}^2) = 1 - \alpha.$$

$$a=\chi^2_{n,rac{lpha}{2}}$$
 and $b=\chi^2_{n,1-rac{lpha}{2}}.$

Now, the rest is easy: we obtained

$$\mathbb{P}(\chi_{n,\frac{\alpha}{2}}^2 < Y < \chi_{n,1-\frac{\alpha}{2}}^2) = 1 - \alpha.$$

We plug the value of Y:

$$\mathbb{P}\left(\chi_{n,\frac{\alpha}{2}}^2 < \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma}\right)^2 < \chi_{n,1-\frac{\alpha}{2}}^2\right) = 1 - \alpha$$

$$a = \chi_{n,\frac{\alpha}{2}}^2$$
 and $b = \chi_{n,1-\frac{\alpha}{2}}^2$.

Now, the rest is easy: we obtained

$$\mathbb{P}(\chi_{n,\frac{\alpha}{2}}^2 < Y < \chi_{n,1-\frac{\alpha}{2}}^2) = 1 - \alpha.$$

We plug the value of Y:

$$\mathbb{P}\left(\chi_{n,\frac{\alpha}{2}}^2 < \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma}\right)^2 < \chi_{n,1-\frac{\alpha}{2}}^2\right) = 1 - \alpha$$

and solve for σ^2 :

$$\mathbb{P}\left(\frac{\sum_{k=1}^{n}(X_{k}-\mu)^{2}}{\chi_{n,1-\frac{\alpha}{2}}^{2}} < \sigma^{2} < \frac{\sum_{k=1}^{n}(X_{k}-\mu)^{2}}{\chi_{n,\frac{\alpha}{2}}^{2}}\right) = 1 - \alpha$$

$$a=\chi^2_{n,rac{lpha}{2}}$$
 and $b=\chi^2_{n,1-rac{lpha}{2}}.$

Now, the rest is easy: we obtained

$$\mathbb{P}(\chi_{n,\frac{\alpha}{2}}^2 < Y < \chi_{n,1-\frac{\alpha}{2}}^2) = 1 - \alpha.$$

We plug the value of Y:

$$\mathbb{P}\left(\chi_{n,\frac{\alpha}{2}}^2 < \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma}\right)^2 < \chi_{n,1-\frac{\alpha}{2}}^2\right) = 1 - \alpha$$

and solve for σ^2 :

$$\mathbb{P}\left(\frac{\sum_{k=1}^{n}(X_{k}-\mu)^{2}}{\chi_{n,1-\frac{\alpha}{2}}^{2}}<\sigma^{2}<\frac{\sum_{k=1}^{n}(X_{k}-\mu)^{2}}{\chi_{n,\frac{\alpha}{2}}^{2}}\right)=1-\alpha$$

This means that we found a $(1 - \alpha)$ -level CI for σ^2 :

$$\left(\frac{\sum_{k=1}^{n}(X_{k}-\mu)^{2}}{\chi_{n,1-\frac{\alpha}{2}}^{2}}, \frac{\sum_{k=1}^{n}(X_{k}-\mu)^{2}}{\chi_{n,\frac{\alpha}{2}}^{2}}\right).$$

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **unknown**, but we are not interested in μ .

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **unknown**, but we are not interested in μ . We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **unknown**, but we are not interested in μ . We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

Fortunately, the story almost repeats itself: the Pivot for the previous case was:

$$Y =$$

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **unknown**, but we are not interested in μ . We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

Fortunately, the story almost repeats itself: the Pivot for the previous case was:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2.$$

Well, we cannot use this now, since μ is unknown to us. So we will adjust Y a little bit.

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **unknown**, but we are not interested in μ . We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

Fortunately, the story almost repeats itself: the Pivot for the previous case was:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2.$$

Well, we cannot use this now, since μ is unknown to us. So we will adjust Y a little bit. Can you give some suggestion?

Problem: Assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2),$$

where μ is **unknown**, but we are not interested in μ . We take an α , and want to construct a CI of CL $1-\alpha$ for σ^2 , using a Pivotal Quantity.

Fortunately, the story almost repeats itself: the Pivot for the previous case was:

$$Y = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2.$$

Well, we cannot use this now, since μ is unknown to us. So we will adjust Y a little bit. Can you give some suggestion? Of course, thanks:

$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma} \right)^2.$$

Great thing is that this is a Pivot: the Distribution of

$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma} \right)^2$$

is independent of σ^2 , and is:

Great thing is that this is a Pivot: the Distribution of

$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma} \right)^2$$

is independent of σ^2 , and is: (ta-da-da-daaam)

$$\chi^2 \sim$$

Great thing is that this is a Pivot: the Distribution of

$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma} \right)^2$$

is independent of σ^2 , and is: (ta-da-da-da-aam)

$$\chi^2 \sim \chi^2(n-1).$$

Great thing is that this is a Pivot: the Distribution of

$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma} \right)^2$$

is independent of σ^2 , and is: (ta-da-da-da-aam)

$$\chi^2 \sim \chi^2(n-1).$$

Simple and beautiful —

Great thing is that this is a Pivot: the Distribution of

$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma} \right)^2$$

is independent of σ^2 , and is: (ta-da-da-daaam)

$$\chi^2 \sim \chi^2(n-1).$$

Simple and beautiful —

Now, doing the same calculations as above, we will arrive at the following $(1-\alpha)$ -level CI for σ^2 :

$$\left(\frac{\sum_{k=1}^{n}(X_{k}-\overline{X})^{2}}{\chi_{n-1,1-\frac{\alpha}{2}}^{2}}, \frac{\sum_{k=1}^{n}(X_{k}-\overline{X})^{2}}{\chi_{n-1,\frac{\alpha}{2}}^{2}}\right).$$

Again, we have obtained the following $(1 - \alpha)$ -level CI for σ^2 :

$$\left(\frac{\sum_{k=1}^{n}(X_k-\overline{X})^2}{\chi_{n-1,1-\frac{\alpha}{2}}^2}, \frac{\sum_{k=1}^{n}(X_k-\overline{X})^2}{\chi_{n-1,\frac{\alpha}{2}}^2}\right).$$

Again, we have obtained the following $(1-\alpha)$ -level CI for σ^2 :

$$\left(\frac{\sum_{k=1}^{n}(X_{k}-\overline{X})^{2}}{\chi_{n-1,1-\frac{\alpha}{2}}^{2}}, \frac{\sum_{k=1}^{n}(X_{k}-\overline{X})^{2}}{\chi_{n-1,\frac{\alpha}{2}}^{2}}\right).$$

Usually, you will see this in the following form:

$$\left(\frac{(n-1)\cdot S^2}{\chi_{n-1,1-\frac{\alpha}{2}}^2}, \frac{(n-1)\cdot S^2}{\chi_{n-1,\frac{\alpha}{2}}^2}\right),$$

Again, we have obtained the following (1-lpha)-level CI for σ^2 :

$$\left(\frac{\sum_{k=1}^{n}(X_{k}-\overline{X})^{2}}{\chi_{n-1,1-\frac{\alpha}{2}}^{2}}, \frac{\sum_{k=1}^{n}(X_{k}-\overline{X})^{2}}{\chi_{n-1,\frac{\alpha}{2}}^{2}}\right).$$

Usually, you will see this in the following form:

$$\left(\frac{(n-1)\cdot S^2}{\chi^2_{n-1,1-\frac{\alpha}{2}}}, \frac{(n-1)\cdot S^2}{\chi^2_{n-1,\frac{\alpha}{2}}}\right),$$

where S is the Sample Standard Deviation given by

$$S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}.$$

Example

Example: Assume we have scale of very high precision, and we want to measure the precision of our scale. Say, we weight a 50AMD coin, using that scale, 10 times, and we obtain the following measurements (in gramms):

[1] 3.449243 3.450802 3.453054 3.448778 3.452541 3.448835 3.448 [8] 3.454406 3.450314 3.449047

Our aim is to Estimate the Precision of the Scale.