SMARTSURV:

A 3D CNN that recognizes actions in video surveillance

Godfred S. Gyimah

PROJECT MOTIVATION

- CCTV operators typically monitor 16 to 64 cameras concurrently on the same screen.
- ♣ Humans lose ~95% of their attention after focusing on a screen for 20+ mins (Green, 1999).

- Some CCTVs are not monitored.
- **Solution ??:** A system which recognizes certain actions and flags them.

BENCHMARKS FOR ACTION RECOGNITION

MODEL	METHOD	ACCURACY	RECALL	PRECISION
Schindler et al. 2008	3D CNN (10 frames: 0.5s)	92	88	89
Jhuang et al. 2007	Multi-class SVM (frame-by-frame)	91	_	_
Niebles et al. 2008	LDA & pLSA	83	83	84
Dollar et al. 2005	kNN & SVM	81	81	83
Schludt et al. 2005	SVM + Conv. Kernel	71	72	77
Smartsurv	3D CNN (50 frames: 5s)	??	??	??

So, how do we teach a machine to understand actions in videos?

MODEL PIPELINE

MODEL INPUTS: KTH DATASET

- ♦ 4 action classes
- ♦ 400 videos
 - O Boxing / Fighting
 - Running
 - Walking
 - Waving
- **♦** Train: 80%
- **♦** Validation: 10%
- **Test: 10%**

MODEL INPUTS: Train Parameters

- Optimizer: RMSprop (lr: 0.001)
- Loss function: Cross Entropy
- Training Time: 1000 epochs
- ❖ 1 hour on a 16GB P5000 GPU

MODEL RESULTS

RESULTS: 3D CONVOLUTIONS

5/51 Feature map samples from 1/32 filters for video 5 (boxing)

RESULTS: 3D MAXPOOLING STAGEFeature maps from 5 seconds of a 'walking' class action

RESULTS: 3D MAXPOOLING STAGE

Feature maps for sample 3-D Maxpool filters

RESULTS: 128-node DENSE LAYER

Running

Walking

Waving

RESULTS: 4-node DENSE LAYER

MODEL RESULTS: LOSSES

MODEL RESULTS:

MODEL RESULTS ON UNSEEN DATA

COMPARING MODELS ON SAME DATASET

MODEL	METHOD	ACCURACY	RECALL	PRECISION
Schindler et al. 2008	3D CNN (10 frames: 0.5s)	92	88	89
Jhuang et al. 2007	Multi-class SVM (frame-by-frame)	91	_	-
Smartsurv	3D CNN (50 frames: 5s)	88	89	90
Niebles et al. 2008	LDA & pLSA	83	83	84
Dollar et al. 2005	kNN & SVM	81	81	83
Schludt et al. 2005	SVM + Conv. Kernel	71	72	77

THE MODELING METHOD: OTHER BUSINESS CASES

Self-driving Vehicles

Autonomous Excavation

Content-based video search engines

- Youtube : 20 hours of new videos per minute.

- Generally, for many problems involving:
 - video data
 - images (in a sequence)

ABOUT GODFRED...

Civil Engineer

♦ Geological Scientist

Engineering Analytics(3 years)

PhD Research (Autonomous Excavation using Computer Vision & Machine Learning)