

Al Bowers & Dan Banks
NASA Dryden Flight Research Center
Jim Randolph
NASA Jet Propulsion Laboratory

Cal Poly Pomona 31 Oct 2006

Gravity Assist

Al Bowers & Dan Banks

Mission

- NASA's Mission
 To understand our home planet
 To explore the Universe & search for life
 To inspire the next generation of explorers
- Dryden's Mission
 To fly what others can only imagine

Gravity Assist & Aero Gravity Assist

- The Past: Gravity Assist
 - the idea
 - Grand Tour of the Planets: Pioneer 10/11 & Voyager 1/2
- The Future: Aero Gravity Assist
 - large v small planets for gravity assist
 - AGA trajectories
 - launch opportunities
 - planetary waverider performance

Gravity Assist - The Idea

- Planet-centric speed doesn't change, only direction
- Heliocentric radial speed does change, boost to a higher orbit

Pioneer 10/11 & Voyager 1/2

- Pioneer 10/11
 - Pioneer 10 to Jupiter launched 02 Mar 72 Jupiter 03 Dec 73
 - Pioneer 11 to Jupiter & Saturn launched 05 Apr 73
 Jupiter 02 Dec 74
 Saturn 01 Sep 79

 Vo

- Voyager 1/2
 - Voyager 1 to Jupiter & Saturn launched 05 Sep 77Jupiter 05 Mar 79Saturn 12 Nov 80
 - Voyager 2 to Jupiter, Saturn, Uranus & Neptune launched 20 Aug 77
 Jupiter 09 Jul 79
 Saturn 25 Aug 81
 Uranus 24 Jan 86 & Neptune 25 Aug 89

TYPICAL PLANETARY GRAVITY-ASSIST TRAJECTORIES

USING LARGE OUTER PLANETS

LARGE G, LARGE BENDING ANGLES, LARGE ΔV

HIGH LAUNCH ENERGY ($C_3 = 80 - 120 \text{ km}^2/\text{sec}^2$)

LONG DURATION TO THE CLOSEST PLANET (e.g. JUPITER)

RADIATION DANGER IN THE MAGNETOSPHERES OF GAS GIANTS

USING SMALL TERRESTRIAL PLANETS

SMALL G, SMALL BENDING ANGLES, SMALL AV

LOW LAUNCH ENERGY ($C_3 = 10 - 30 \text{ km}^2/\text{sec}^2$)

LOW INTERPLANETARY VELOCITIES (<10 km/sec)

LONG DURATION: MULTIPLE FLYBYS TO GET REASONABLE VELOCITIES

AERO-GRAVITY ASSIST (AGA) TRAJECTORIES

TERRESTRIAL PLANETS FOR AGA MANEUVERS

USING ATMOSPHERE TO INCREASE BENDING ANGLE AND AV

SMALL LAUNCH ENERGY (C₃ ~ 10 - 30 km²/sec²)

AGA RESULTS IN HIGH INTERPLANETARY VELOCITIES (>> 10 km/sec)

SHORTENED MISSION DURATIONS TO DISTANT TARGETS

WAVERIDER APPLICATION

AEROASSIST VEHICLE WITH HIGH LIFT/DRAG AT HIGH MACH NUMBERS

MINIMUM DRAG LOSS DURING THE ATMOSPHERIC PASS

LARGE AERODYNAMIC CONTROL AUTHORITY FOR PRECISE NAVIGATION

Dryden Flight Research Center ED97 43968-01

HYPER-X AT MACH 7: This computational fluid dynamic (CFD) image is of the Hyper-X vehicle at the Mach 7 test condition with the engine operating.

NASA Dryden Flight Research Center Photo Collection http://www.dfrc.nasa.gov/Gallery/Photo/index.html NASA Photo: ED04–0082–2

Mach 7 wind tunnel test of the full–scale X–43A model with spare flight engine in Langley's 8–Foot High Temperature Tunnel.

NASA

NASA Dryden Flight Research Center Photo Collection http://www.dfrc.nasa.gov/gallery/photo/index.html NASA Photo: EC99-45265-23 Date: December 1999 Photo by: Tom Tschida

X-43A Vehicle During Ground Testing

NASA Dryden Flight Research Center Photo Collection http://www.dfrc.nasa.gov/Gallery/Photo/index.html NASA Photo: EC04–0091–39 Date: March 26, 2004 Photo By: Tony Landis

NASA's B-52B launch aircraft at sunset with the second X-43A hypersonic research vehicle attached to a modified Pegasus rocket under its right wing.

NASA Dryden Flight Research Center Photo Collection
http://www.dfrc.nasa.gov/Gallery/Photo/index.html
NASA Photo: EC04–0325–32 Date: November 16, 2004 Photo By: Carla Thomas

NASA Dryden Flight Research Center Photo Collection http://www.dfrc.nasa.gov/Gallery/Photo/index.html NASA Photo: EC04–0092–39 Date: March 27, 2004 Photo By: Jim Ross

The second X–43A and its modified Pegasus booster rocket accelerate after launch from NASA's B–52B launch aircraft over the Pacific Ocean.

PLANET CENTERED TRAJECTORY COMPARISON

AGA Velocity Triangles

$$V_{S/C} = V_{PLANET} + V_{\infty}$$

a. DECREASE VELOCITY (e.g. SOLAR PROBE)

b. INCREASE VELOCITY (e.g. OUTER PLANETS MISSION)

VENUS AGA Maneuver

VENUS - MARS AGA TRAJECTORY TO THE SUN

VAGAMAGA Trajectory to Pluto

VAGAMAGA Trajectory to Saturn

TITAN AGA OPTIONS

Terrestrial Planets Trajectories and OP Launch opportunities from 2005 to 2020

= Viable Opportunity to the Outer Planet Shown Below Box

Time of Flight for Pluto opportunities 2006 to 2020

(using Venus and Mars AGA maneuvers)

University of Maryland Waverider Concept

Waverider shape for a turbulent (CO2) boundary layer (From the CVD design code at the U of Maryland)

Aerothermal Performance Constraint (APC) Regimes*

SOME WAVERIDER AGA ISSUES

ACTUAL L/D PERFORMANCE

HEATING

NAVIGATION ERRORS

GUIDANCE AND CONTROL

SCIENCE ACCOMMODATION

References

- 1. Nonweiler, T.R.F., "Aerodynamic Problems of Space Vehicles," *Journal of Royal Aeronautical Society*, Vol. 63, September 1959, pp. 521-528.
- 2. Lunan, D., "Applications for Nonweiler Waverider Spacecraft," *Journal of the British Interplanetary Society*, Vol. 35, January 1982, pp. 45-47.
- 3. Randolph, J., "Aero-Gravity Assist (AGA) Trajectory Analysis for Starprobe," Jet Propulsion Laboratory, Pasadena, CA, JPL Internal Memorandum 31282-5-981, August 1982.
- 4. Longuski, J., "Can AGA through the Venusian Atmosphere Permit a Near Radial Trajectory into the Sun?", JPL Engineering Memorandum 312/82-133, December, 1982.
- 5. Bowcutt, K. G., Anderson, J.D., and Capriotti, D., "Viscous Optimized Hypersonic Waveriders," AIAA Paper 87-0272, January 1987.
- 6. Randolph, J. E., and McRonald, A. D., "Solar Probe Mission Status," *American Astronautical Society*, Paper 89-212, April 1989.
- 7. Lewis, M. J., "The Use of Hypersonic Waveriders for Aero-Assisted Orbital Maneuvering," *Proceedings of the 30th Interntional Conference on Aviation and Space*, Tel Aviv, Israel, February 1990.
- 8. Lewis, M. J., and McRonald, A. D., "The Design of Hypersonic Waveriders for Aero-Assisted Interplanetary Trajectories," AIAA Paper 91-0053, January 1991.
- 9. McRonald, A. D., Randolph, J. E., "Hypersonic Maneuvering for Augmenting Planetary Gravity Assist," *AIAA Journal of Spacecraft and Rockets*, Vol. 29, No. 2, 1992.
- 10. Randolph, J. E., McRonald, A. D., "Solar System Fast Mission Trajectories Using Aerogravity Assist," *AIAA Journal of Spacecraft and Rockets*, Vol. 29, No. 2, 1992
- 11. Gillum, M., Kammeyer, M., Burnett, D., "Wind Tunnel Results for a Mach 14 Waverider," AIAA Paper 94-0384, January 1994.