What is Artificial Intelligence?

CMPUT 366: Intelligent Systems

P&M Chapter 1

DON'T COME TO CAMPUS

- All of Computing Science's courses are online-only this semester
- CSC and Athabasca Hall are closed
 - You can only come if you are explicitly required to by an instructor
 - Even in that case, the Chair and/or Dean need to sign off

Intelligent Systems

- This course is about constructing intelligent agents.
- But what does that mean?
 - Smarter than the smartest genius?
 - (wait, what does "smart" mean?)
 - Able to do things that computers are pretty bad at?
 - Able to trick a human into thinking it's another human?
- We'll try to define both intelligent and agent more formally

Lecture Outline

- 1. Course Logistics
- 2. What is Artificial Intelligence?
- 3. Al Seminar!

Course Essentials

Course information: https://eclass.srv.ualberta.ca/course/view.php?id=68187

- This is the main source for information about the class
- Slides, readings, assignments, deadlines

Lectures: Mondays, Wednesdays, and Fridays, 11:00-11:50am on Zoom

Lectures will be recorded and posted on eClass

eClass Discussion forum for public questions about assignments, lecture material, etc.

Email: james.wright@ualberta.ca for private questions

(health problems, inquiries about grades)

Office hours: After lectures on Mondays & Fridays, or by appointment

TA office hours will be announced on Friday

CMPUT 366 in One Slide

- Focus on intelligent agents
 - Intelligence
 - Agents
- Survey methods to construct such agents
 - classic
 - contemporary
- This is not a reinforcement learning class
 - Reinforcement learning class is CMPUT 397

Readings

We will draw from a lot of texts for this class. *BUT*, they are all available online for free:

[P&M] David Poole and Alan Mackworth,

Artificial Intelligence: Foundations of Computational Agents, 2nd edition.

[Bar] David Barber, Bayesian Reasoning and Machine Learning.

[GBC] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning.

[S&B] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, 2nd edition.

[S&LB] Yoav Shoham and Kevin Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations.

Readings for each lecture are listed on the schedule and on eClass.

Evaluation

Grade breakdown

• Assignments: 30%

• Midterm exam: 30%

• Final exam: 40%

Late assignments

20% deducted per day

Missed assignments or exams

- Provide a note from doctor, academic advisor, etc.
- Assignments score will be reweighted to exclude missed assignments
- If the midterm exam is missed, the mark from the final exam will be used in its place
 - i.e., grade will be 30% assignments, 70% final exam

Assignments

- There will be four assignments (roughly every 3 weeks)
- Types of questions:
 - Short answer: definitions, distinctions, etc. "What is a Nash equilibrium?"
 - Model construction: "Represent XYZ as a graph search problem"
 - Algorithmic considerations: "What would be an appropriate algorithm to answer XYZ? Why?"
 - Small implementation task
- Assignments are submitted electronically (via eClass)

Collaboration Policy

Detailed version on the syllabus

You are encouraged to discuss assignments with other students:

- 1. You must list everyone you talked with about the assignment.
- 2. You may not share or look at each other's written work or code.
- 3. You must write up your solutions individually

Individual work only on exams: No collaboration allowed

Academic Conduct

- Submitting someone else's work as your own is plagiarism.
- So is helping someone else to submit your work as their own.
- We report all cases of academic misconduct to the university.
- The university takes academic misconduct very seriously.
 Possible consequences:
 - Zero on the assignment or exam (virtually guaranteed)
 - Zero for the course
 - Permanent notation on transcript
 - Suspension or expulsion from the university

Spot checks

- I won't be using a proctoring service for exams
- Instead, we will use spot checks
 - After every exam, some students will be selected to verbally explain their answers to a TA
 - If you can't explain how you got your answer, you may not get credit for the question

Getting chosen for a spot check is not an accusation of cheating

Prerequisites

- Comfort with or interest in formal, mathematical/algorithmic reasoning
- Basic probability: random variables, expectations, conditional probability.
 (There will be a refresher lecture)
- Basic calculus: gradients, partial derivatives, vector norms
- Basic graph theory: Nodes, edges
- Ability to program in Python
 - Most assignments will have a programming component
 - TAs will run a refresher session

What is Artificial Intelligence?

1. Think like humans	2. Act like humans
3. Think rationally	4. Act rationally

Two dimensions:

- Reasoning vs. acting
- Mimicking humans vs. rationality

1. Thinking Humanly

Model the cognitive processes of humans

Benefits:

- We know humans are intelligent!
 Why not learn from that example?
- Understanding human cognition is scientifically valuable in itself.

Drawbacks:

- Cognitive science is really hard!
- Humans often think in ways that we wouldn't call "intelligent"

2. Acting Humanly

The Turing Test:

- Don't try to define exactly what makes a system intelligent
- If you can act intelligently enough that people can't tell you apart from other people, then you are effectively intelligent

Drawbacks:

- Is acting exactly like a person really what we want?
 (We already know how to make more people...)
- Don't people often behave pretty unintelligently?

3. Thinking Rationally

Rationality: An ideal of what intelligent cognition should do

Benefits:

- Leads to more effective agents
- Not just "whatever people do, even when that's terrible"
- Philosophically important! What is rational thinking?

Drawbacks:

Difficult to define formally! What is rational thinking?

4. Acting Rationally

Rational action: Doing what is most likely to best achieve our goals

Benefits:

- More clearly defined than human behaviour
- When human behaviour is irrational, we'd usually prefer the rational behaviour
 - Or would we? Counter-examples?
- Rational behaviour is also easier to define than rational thought

What is Artificial Intelligence?

	Reasoning	Acting
Like Humans	1. Think like humans	2. Act like humans
Rationally	3. Think rationally	4. Act rationally

Questions:

- 1. Which of these definitions do you find most convincing?
- 2. What is **missing** from these definitions?

Rational Agents

An agent is a system that acts in an environment to achieve goals or optimize preferences.

Course Topics

- Search
- Reasoning Under Uncertainty
- Causality
- Supervised Learning
- Deep Learning
- Reinforcement Learning
- Multiagent Systems

Summary

- Course details on eClass:
 https://eclass.srv.ualberta.ca/course/view.php?id=68187
- This course will focus on the construction of rational agents
 - Agent: System that acts in an environment to achieve goals
 - Rational action: Do what best achieves explicit goals

Al Seminar

What: Great talks on cutting-edge Al research External (e.g., DeepMind, IBM) and internal speakers

When: Fridays at noon

But come at 11:45 for free pizza / good seats

Where: CSC 3-33 Online Zoom meeting

Website: sites.google.com/ualberta.ca/ai-seminar/

Announcements: Sign up for mailing list (bottom of webpage)