	ad pencil.	_\	1/// 1	1111	مالي	- U	(,	1
Fi	Il the relevant bubble against each qu	estic	n:			دپر کریں۔	در مت دائره ا	ل کے مامنے دیے گئے
1.	If a,b,c are real numbers such that $a < c < 0$, $a \ne 0$, $b \ne 0$, then which of t following inequalities holds:	-) ac>bc	0 4	$ac^2 > bc^2$	$\bigcirc \frac{c}{a} > \frac{c}{b}$	С) ac < bc
2.	What is the converse of $p \rightarrow q$?	C) ~ <i>p</i> →~ <i>q</i>	0 9	$q \rightarrow p$	~q → p	С) <i>p</i> ↔ <i>q</i>
3.	The set of non-zero rational numbers is group under the operation of:	a C) Addition	O 8	Subtraction	Multiplication	on C) Division
4.	For what value of λ is the matrix $\begin{bmatrix} 1 & 0 \\ 2 & \lambda \\ 1 & 2 \end{bmatrix}$ singular?) 1	0 ()	O 3	C) -4
5.	If A is a skew-symmetric matrix then:	C) A = A'	0	A = -A'	$\bigcap A = (\overline{A})^t$	C) A=-(\(\bar{A}\)'
6.	If the polynomial $f(x)$ is divided by $x+$ the quotient is $x-2$ and the remainder 2, then $f(x)$ will be:) x ² -4	0;	r²+4	913	C.	D+FFN
7.	If w is a cube root of unity, then which of t following equations is true	he	V+v=0		+102 = 0	$w + w^2 = 0$	0) 1+w+w ² =
8.	What is the partial fractions of $\frac{x^2 + 2x - 1}{x^2 - 1}$; C	$1 + \frac{1}{x+1} - \frac{1}{x}$	1 0 1	$+\frac{1}{x-1}-\frac{1}{x+1}$	$0 1 - \frac{1}{x+1} - \frac{1}{x}$	1 0	$1 + \frac{1}{x-1} + \frac{1}{x}$
	Find the second term of the sequence who	se _		0.		0.	_	
9.	general term is $a_n = 2n^2 - 3$) -1	() 1	3	O 5	-) 11
9.	general term is $a_n = 2n^2 - 3$) -1	<u> </u>	3) 11
9.	general term is $a_n = 2n^2 - 3$) -1	01	3	O 5	. ;) 11
0.	general term is $a_n = 2n^2 - 3$ If $s_\infty = \frac{2}{3}$ and $a = \frac{2}{7}$ in an infinite geometric progression, then the common ratio is:			$O^{\frac{4}{7}}$	3	$\bigcirc 3$ $\bigcirc \frac{2}{7}$		
0.	If $s_{\infty} = \frac{2}{3}$ and $a = \frac{2}{7}$ in an infinite geometric progression, then the common ratio is:	;0	<u>4</u> 7	$\bigcirc \frac{4}{7}$ $\bigcirc x $		$\bigcirc \frac{2}{7}$ $\bigcirc x < 2$	0	-2 7 x<1
0.	If $s_{\infty} = \frac{2}{3}$ and $a = \frac{2}{7}$ in an infinite geometric progression, then the common ratio is:	0	$-\frac{4}{7}$ $x>2$	$O^{\frac{4}{7}}$		$O = \frac{2}{7}$ $O x < 2$		<u>2</u> 7
0.	If $s_{\infty} = \frac{2}{3}$ and $a = \frac{2}{7}$ in an infinite geometric progression, then the common ratio is: For what values of x , the binomial expansion of $\left(1 - \frac{x}{2}\right)^{-1}$ is convergent (valid)? What is radius of the circle whose part of arcollength of measure 4 is with central angles.		$-\frac{4}{7}$ $x>2$	$\bigcirc \frac{4}{7}$ $\bigcirc x $		2	C	<u>2</u> 7
0.	If $s_{\infty} = \frac{2}{3}$ and $a = \frac{2}{7}$ in an infinite geometric progression, then the common ratio is: For what values of x , the binomial expansion of $\left(1-\frac{x}{2}\right)^{-1}$ is convergent (valid)? What is radius of the circle whose part of arc length of measure 4 is with central angle $\frac{\pi}{2}$? If $D(-5,5\sqrt{2})$ lies on the terminal side of θ then find the value of $\tan\theta$		$\frac{4}{7}$ $x>2$ $\frac{8}{\pi}$	$\bigcirc \frac{4}{7}$ $\bigcirc x $	>2		0	2 7 x<1
o. 1. 3.	If $s_{\infty} = \frac{2}{3}$ and $a = \frac{2}{7}$ in an infinite geometric progression, then the common ratio is: For what values of x , the binomial expansion of $\left(1-\frac{x}{2}\right)^{-1}$ is convergent (valid)? What is radius of the circle whose part of arc length of measure 4 is with central angle $\frac{\pi}{2}$? If $D(-5,5\sqrt{2})$ lies on the terminal side of θ then find the value of $\tan\theta$		$\frac{4}{7}$ $x>2$ $\frac{8}{\pi}$ 4	$O = \frac{4}{7}$ $O x $ $O = \frac{4}{\pi}$	>2	Q 2/π Q √2	0	$\frac{2}{7}$ $x<1$ $-\sqrt{2}$
). 1. 2. 4.	If $s_{\infty} = \frac{2}{3}$ and $a = \frac{2}{7}$ in an infinite geometric progression, then the common ratio is: For what values of x , the binomial expansion of $\left(1 - \frac{x}{2}\right)^{-1}$ is convergent (valid)? What is radius of the circle whose part of arc length of measure 4 is with central angle $\frac{\pi}{2}$? If $D(-5,5\sqrt{2})$ lies on the terminal side of θ then find the value of $\tan\theta$ How many distinct three-digit numbers car be formed from the integers 1,2,3,4,5,6 in		$\frac{4}{7}$ $x>2$ $\frac{8}{\pi}$ 4	$O = \frac{4}{7}$ $O x $ $O = \frac{4}{\pi}$ $O = \frac{10}{10}$	>2	$0 \frac{2}{\pi}$ $0 \sqrt{2}$ $0 14$		$\frac{2}{7}$ $x<1$ $-\sqrt{2}$ 6
). 1. 2. 4.	If $s_{\infty} = \frac{2}{3}$ and $a = \frac{2}{7}$ in an infinite geometric progression, then the common ratio is: For what values of x , the binomial expansion of $\left(1-\frac{x}{2}\right)^{-1}$ is convergent (valid)? What is radius of the circle whose part of arc length of measure 4 is with central angle $\frac{\pi}{2}$? If $D(-5,5\sqrt{2})$ lies on the terminal side of θ then find the value of $\tan\theta$ If $C = C_1$ then $n = 1$. How many distinct three-digit numbers can be formed from the integers $1,2,3,4,5,6$ if each digit is used at most once?		$\frac{4}{7}$ $x>2$ $\frac{8}{\pi}$ 4 360	$O(\frac{4}{7})$ $O(x)$ $O(\frac{4}{\pi})$ $O(10)$ $O(120)$	>2	$ \begin{array}{c c} \hline 0 & \frac{2}{\pi} \\ \hline 0 & \sqrt{2} \end{array} $ $ \begin{array}{c} 14 \\ \hline 0 & 20 \end{array} $		$\frac{2}{7}$ $x<1$ $-\sqrt{2}$ 6 10

20. What is the value of $\sin^{-1}\left(-\frac{1}{2}\right)$

 $\bigcirc \frac{\pi}{3}$