Traffic Sign Classification

-Implementare-

Temă: clasificarea semnelor de circulație (trecere de pietoni, cedează trecerea, stop).

Dataset:

View dataset

- Creat prin combinarea imaginilor dintr-un set de date cu mai multe semne de circulație și imagini descărcate de pe google.
- Etichetarea s-a făcut manual
- Alcătuit din 3 foldere: crosswalk(117 imagini), give-way(108 imagini), stop(110 imagini)
- Preprocesare:
 - o Toate imaginile au extensia .png
 - o Imaginile sunt modificate pentru a avea rezoluția 200x200
 - Imaginile sunt convertite într-un format ușor de procesat de un algoritm de machine learning: .flatten()
- Impărțirea în seturile de antrenare, validare și testare se face cu ajutorul funcției *train_test_split()*, 80% din dataset fiind păstrat pentru antrenare, 10% pentru validare și 10% pentru testare; împărțirea se face prin apelarea de 2 ori a funcției *train_test_split()* pentru a evita pierderea de date

Algoritm:

- Pentru antrenare am utilizat algoritmul SVC (Support Vector Classification) a supervised learning algorithm.
- *SVM*-urile sunt una dintre cele mai robuste metode de predicție, fiind bazate pe cadrele de învățare statistică sau teoria VC propusă de Vapnik și Chervonenkis
- Scopul acestui algoritm este de a găsi un hiperplan într-un spațiu N-dimensional (N numărul de caracteristici) care clasifică punctele de date în diferite clase.
- <u>Vectori suport</u> punctele care sunt cele mai aproapiate de hiperplan și marginea maximă.
- <u>Margine</u> distanța dintre hiperplan și cel mai apropiat punct de date din oricare dintre clase.
- Marginea ar trebui să fie cât mai mare pentru a obține un model mai robust și mai generalizabil.
- Avantaje:
 - o Eficient în spații cu dimensiuni mari
 - O Versatil cu diferite funcții ale nucleului
- Dezavantaje
 - Sensibil la alegerea nucleului și a parametrilor
 - Ocupă memorie pentru seturi mari de date
- SVC(kernel, c, gamma)
 - Kernel rbf, linear, poly
 - C parametru de regularizare
 - o Gamma coeficient kernel

Ion Bianca-Andreea 333AA

Librării:

- openCV
- cv2
- numpy
- sklearn
 - o model selection → train test split
 - o svm → SVC
 - o metrics → accuracy score, classfication report, confusion matrix
- matplotlib

Acuratețe:

Pentru parametrii aleși, SVC(kernel = 'linear', C = 1.0) am obținut un procent de acuratețe de:

Validare: 75.76%Testare: 70.59%

Raport de clasificare pentru setul de testare:

- <u>Precision</u> capacitatea clasificatorului de a nu eticheta un eșantion negativ ca fiind pozitiv. $\frac{T_p}{T_p + F_p}$
- Recall capacitatea clasificatorului de a găsi toate probele pozitive. $\frac{T_p}{T_{p+F_n}}$
- <u>F1-Score</u> o medie armonică ponderată a preciziei și a sensibilității, unde un scor F-beta atinge cea mai bună valoare la 1 și cel mai slab scor la 0.
- <u>Support -</u> numărul de apariții ale fiecărei clase în *y_true*.
- Crosswalk
 - **Actual** 12
 - \circ **Predicted** -8
 - \circ Give-way 1
 - \circ Stop -3
- Give-way
 - o **Actual** − 11
 - \circ **Predicted** -7
 - Crosswalk 2
 - o Stop 2
- Stop
 - **Actual** 11
 - \circ **Predicted** -9
 - o Crosswalk 2

Classification	Report for	Test Set:		
	precision	recall	f1-score	support
crosswalk	0.67	0.67	0.67	12
give-way	0.88	0.64	0.74	11
stop	0.64	0.82	0.72	11
accuracy			0.71	34
macro avg	0.73	0.71	0.71	34
weighted avg	0.73	0.71	0.71	34

Matrice de confuzie:

```
Confusion Matrix for Test Set:
[[8 1 3]
[2 7 2]
[2 0 9]]
```


Afișare rezultate:

View results

Concluzii & Observatii:

- Pentru kernel = 'rbf', C = 0.1 (un nivel scăzut de regularizare, permitem clasificarea greșită a mai multor puncte de antrenament) și gamma = 'scale' am obținut o acuratețe a testelor de 50.00%
- Pentru kernel = 'rbf', C = 1.0 (un nivel moderat de regularizare) și gamma = 'scale' am obținut o acuratețe a testelor de 61.76%
- Pentru *kernel* = 'rbf', C = 1000 (un nivel ridicat de regularizare, impunem o marjă strictă pentru a preveni clasificările greșite) și gamma = 'scale' am obținut o acuratețe a testelor de 67.65%
- Pentru kernel = 'rbf', C = 1000, gamma = 0.1 am obținut o acuratețe a testelor de 32.35%
- Pentru kernel = 'linear', C = 1.0 am obtinut o acuratete a testelor de **70.59%**
- Pentru kernel = 'poly', C = 1000 am obținut o acuratețe a testelor de **61.76%**
- Prin modificarea parametrilor funcției *SVC()* rezultă că setul de date poate fi separat de o linie dreaptă pentru a obține o performanță cât mai bună.
- În alte aplicații de detectare a semnelor de circulație a fost folosit algoritmul *Support Vector Machine*, deoarece prezintă un grad mare de flexibilitate în manipularea sarcinilor de clasificare de complexități variate.
- Modelele *SVM* funcționează similar cu rețelele neuronale clasice, dar, în comparație cu abordările tradiționale are rețelelor neuronale, teoria generalizării *SVM* permite modelelor să evite *overfitting*-ul datelor.
- Am ales să folosesc algoritmul SVC, deoarece este printre primele exemple din lista de algoritmi de învățare supervizată din curs, iar nivelul de robustețe este destul de ridicat.
- Am adaptat exemple găsite pe internet și exemplele din laborator pentru setul meu de date și pentru scopul temei alese. Am modificat parametrii funcției SVC pentru a obține cea mai bună acuratețe.

Referințe:

- SVM Exemple
- <u>sklearn.svm.SVC</u>
- Support vector machine
- Support Vector Machine YouTube
- Road sign
- Confusion matrix
- Classification report
- <u>SVM</u>