

FORMALNE METODE U OBLIKOVANJU SUSTAVA

1. DOMAĆA ZADAĆA

ZAGREB, 2009.

TRAFFIC LIGHT CONTROLLER (upoznavanje sa Vis sustavom)

Potrebno je proučiti dokumentaciju za VIS sustav (vis_user.pdf) i nakon toga napraviti slijedeće:

- 1. Proučiti datoteku tlc.v u kojoj se nalazi Verilog primjer Traffic Light Controller-a (TLC) opisanog u vis_user.pdf.
- 2. Proučiti prikaz konačnih automata na slici 2.2 (Figure 2.2 u vis_user.pdf) i prikazane automate presložiti kao Mealyjeve i Moorove konačne automate (Neki od modula su Mealyjevi, a neki Mooreovi automati što je potrebno prepoznati). Potrebno je analizirati verilog primjer TLC-a, i onda iznova izgraditi automate (treba ispraviti pogreške u automatima iz vis user.pdf).

3. Izgraditi tablicu u kojoj je opisano međudjelovanje modula. Potrebno je opisati koji moduli utječu na rad ostalih modula i kojim varijablama. Neka reci i stupci označavaju module, a element polja tablice neka budu varijable kojima moduli (iz redaka) utječu na druge module (iz stupaca) kao što je prikazano:

	Modul 1	Modul 2
Modul 1		Req
Modul 2	Ack	

{Modul 1 postavlja zahtjev pomoću varijable Req i upućuje ga na Modul 2. Modul 2 poduzima akciju obrade zahtjeva i varijablom Ack utječe na Modul 1}

	Timer	Sensor	Hwy_control	Farm_control
Timer				
Sensor				
Hwy_control				
Farm_control				

4. Pomoću programa vl2mv potrebno je pretvoriti Verilog opis TLC-a (tlc.v) u BLIF-MV opis (tlc.mv) i ukratko objasniti što je BLIF-MV i što se s takvim opisom može prikazati:

- 5. Pokrenuti VIS i upisati «help» te proučiti koje su komande dostupne te pročitati njihovo objašnjenje u vis user.pdf
- 6. Učitati BLIF-MV opis TLC-a u VIS pomoću naredbe «read_blif_mv» (ili alias-a «rlmv», popis svih alias-a može se dobiti pomoću komande «alias»)
- 7. Isprobati komande za šetanje kroz i prikaz hijerarhije modela («ls», «cd», «pwd»)
- 8. Isprobati komandu «print models» (alias «pm») i prikazati te komentirati rezultate:

9. Isprobati komandu «print_hierarchy_stats» (alias «phs») i prikazati te komentirati rezultate:

BUS ARBITER (provjera modela)

Cilj ovog dijela domaće zadaće je provjera modela arbitraže sabirnice (koji je objašnjen na predavanju) pomoću CTL formula. Sintaksa CTL logike koju prihvaća VIS sustav objašnjena je u vis_user.pdf i vis-ctl-pdf. Za provjeru svojstva sustava u CTL notaciji potrebno je nakon učitavanja primjera u sustav pokrenuti komandu init (koja obuhvaća sve radnje potrebne za izgradnju stroja s konačnim brojem stanja nad kojim se vrši provjera CTL formula) i nakon toga komandu model check uz koju se upiše ime datoteke u kojoj se nalaze CTL formule.

Potrebno je napraviti slijedeće:

1. Proučiti verilog opis iz datoteke ex1.v (u datoteci arbiter.pdf nalazi se hijerarhijski prikaz sustava modeliranog u ex1.v) i za sve module nacrtati FSM i tablicu u kojoj je prikazano međudjelovanje modula kao što je navedeno u prethodnoj vježbi.

	Arbiter	Controller	Client
Arbiter			
Controller			
Client			

- 2. Upiši primjer <u>ex1.v</u> u VIS sustav.
- 3. Specificiraj i napiši u CTL notaciji obilježje sigurnosti:

"Dva procesa ne mogu dobiti (upravljati) sabirnicom u isto vrijeme"

- 4. Provjeri i eventualno ispravi primjer ex1.v (iskoristi "debug trace") kako bi zadovoljio obilježje sigurnosti.
- 5. Specificiraj i napiši u CTL notaciji obilježje *stalnog zahtjeva*:

"Ako klijent A traži sabirnicu, on neće poništiti svoj zahtjev sve dok ne dobije potvrdu zahtjeva".

- 6. Provjeri i eventualno ispravi primjer ex1.v (iskoristi "debug trace") kako bi zadovoljio obilježje stalnog zahtjeva.
- 7. Specificiraj i napiši u CTL notaciji obilježje *jednakih šansi*:

"Ako A drži sabirnicu, a B ju zathtjeva, tada nije moguće da A otpusti sabirnicu i dobije ju natrag prije nego B upravlja sabirnicom".

- 8. Provjeri i eventualno ispravi primjer ex1.v (iskoristi "debug trace") kako bi zadovoljio obilježje jednakih šansi.
- 9. Specificiraj i napiši u CTL notaciji obilježje *životnosti* (engl. liveness):

"Uvijek vrijedi: ako klijent A zahtijeva sabirnicu, konačno će je i dobiti".

- 10. Provjeri ovo obilježje i komentiraj rezultat.
- 11. Ako ne zadovoljava, predloži u CTL notaciji ograničenja klijentima kako bi zadovoljili obilježje. Upiši ograničenja u datoteku ex3.fair, te provjeri obilježje životnosti. Navedi upisana ograničenja i komentiraj rezultate: