Clase 01 - Representaciones numéricas - Números Enteros

IIC2343 - Arquitectura de Computadores

Profesor:

- Felipe Valenzuela González

Correo:

frvalenzuela@alumni.uc.cl

Resumen de la clase pasada

Introducción: ¿Qué es un computador?

Introducción: ¿Qué es un computador?

- En el contexto de este curso, nos centraremos en una definición concreta: máquina programable que ejecuta programas.

Introducción:

- Un computador lo definimos como una máquina programable que ejecuta programas.
- Para programar necesitamos:
 - Datos: números (enteros, reales), texto, imágenes, etc
 - Operaciones: suma, resta, multiplicación, división, etc
 - Variables: simples, arreglos
 - Control de flujo: comparaciones, manejo de ciclos-
- La clase de hoy veremos con lo básico que sería los datos, específicamente cómo **¡representar datos en un computador!**

¿Dudas?

Objetivos de la clase

- Conocer distintas representaciones de números naturales y enteros
- Conocer los distintos esquemas de representación de datos basados en codificación numérica binaria
- Conocer cómo representar datos en un computador

¿Cómo representamos números?

Conteo

- Un forma simple
- Fácil de operar
- No escala bien

Números Romanos

- Un forma más sofisticada
- Escala bien
- Es dificil de operar

Sistema de Numeración indo-arábigo

- Un forma aún más sofisticada
- Escala bien
- Es fácil de operar
- También llamado sistema posicional

Sistema posicional

Sistema posicional decimal

- Es el sistema de representación númerica que usamos
- Se llama posicional por la importancia del índice o posición del número
- Decimal viene de la **base** utilizada, que en este caso es diez

Para base-10 no se muestra. Se muestra aqui como ejemplo.

Sistema posicional de base genérica

- s: símbolo
- k: = Posición del símbolo en la secuencia, siendo 0 la posición del extremo derecho.
- b: base
- n: cantidad de símbolos en la secuencia
- Notación típica: ()b

$$\sum_{k=0}^{n-1} s_k \times b^k$$

Distintas bases númericas

Base octal

- También conocida como sistema posicional de base ocho
- Tiene un total de 8 símbolos
- Sus símbolos son

[0, 1, 2, 3, 4, 5, 6, 7]

Base hexadecimal

- También conocida como sistema posicional de base 16
- Tiene un total de 16 símbolos
- Sus símbolos son

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F]

```
#660099 #6600CC #6600FF
#6633FF #666600 #666633
#669933 #669966 #669999 #669
#66CC99 #00FF00 #66CCCC #669
 #66FFCC #66FFFF #990000 #9°
 #993300 #993333 #993366
   4096666 #996699 #9966CC
            #9999FF #99CC00
```

Base binaria

- También conocida como sistema posicional de base dos
- Tiene un total de 2 símbolos
- Sus símbolos son

[0, 1]

There are only 10 types
of people in the world:
Those who understand binary
and those who don't.

¿Dudas?

Método de conversión entre bases

- Existen diversos métodos de conversión entre bases.
- Para este curso se requerirá como mínimo saber convertir desde una de las cuatro bases mencionadas hacia otra

Método de conversión: binaria hacia octal

- Ocuparemos un método aprovechando concatenación
- Agrupamos los términos numéricos para obtener el resultado

OCTAL	BINARY
0	000
1 2	001 010
3	011
2 3 4 5 6	100 101
6 7	110 111

Método de conversión: binaria hacia hexa

- Ocuparemos un método aprovechando concatenación
- Agrupamos los términos numéricos para obtener el resultado

Converting Hex to Binary

3AB2₁₆ = 11101010110010₂

Método de conversión: decimal hacia binario

- Se obtiene el resto entre el número en base decimal y el divisor 2.
- Se obtiene el resto entre el número en base decimal y el divisor 2.
- Para obtener el siguiente símbolo de la secuencia, realizar la misma operación con el resultado de la división entera del número

¿Dudas?

Números negativos

- Existen diversas formas de representar números negativos:
 - 1.- Agregar un símbolo (-)
 - 2.-Usar un símbolo

Números negativos en binario

- Existen diversas formas de representar números negativos:
 - 1.- Agregar un símbolo (-)
 - 2.-Usar un símbolo
 - 3.- Complemento 1
 - 4.- Complemento 2

Complemento 1 (C1)

- Reemplazar todos los bits por su inverso
- El símbolo que representa cada uno de los valores sale natural
- Esta representación el cero queda asociadas a una concatenación de símbolos 1 (poco intuitivo)

Complemento 2 (C2)

- Sumar una unidad al complemento al C1
- Ahora el cero es intuitivo
- Contra: Tenemos una representación desbalanceada
- Overflow: Si una operación aritmética resulta en un valor no representable, nos dará un valor erróneo

Ejemplo de overflow

¿Dudas?

Máquina programable

- Si quisiéramos hacer una máquina programable tiene que ser:
 - Finita
 - Escalable
 - Simple
- Tomando todo esto en cuenta usar la escala binaria ayuda a soportar con la menor cantidad de estados.
- Consideraremos un solo símbolo en nuestra máquina un Bit
- Y llamaremos a la agrupación de Bits en en grupos de a 8, un Byte:

```
[0, 1, 0, 1, 1, 0, 1, 1]
```

Representación de datos

- Ahora con una forma de representar números podemos almacenar y codificar de distintas formas
- Un ejemplo es la interpretación que da la tabla ASCII

b ₇ b ₆ b ₅					-	° ° °	001	0 1 0	0 1 1	1 _{0 0}	0 1	۱ ۱ 0	1 1
Bits	b ₄ →	b₃ ↓	b ₂ ↓	b₁ ↓	Column	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	Р	`	Р
	0	0	0	1	1	SOH	DCI	ļ.	ı	Α	Q	a	q
	0	0	ı	0	2	STX	DC2	11	2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	s
	0	_	0	0	4	EOT	DC4	\$	4	D	Т	d	t
	0	_	0	1	5	ENQ	NAK	%	5	Ε	U	е	u
	0	-	1	0	6	ACK	SYN	8.	6	F	V	f	٧
	0	-	1	1	7	BEL	ETB	,	7	G	W	g	w
	1	0	0	0	8	BS	CAN	(8	Н	×	h	x
	1	0	0	1	9	HT	EM)	9	I	Y	i	У
	-	0	-	0	10	LF	SUB	*	:	J	Z	j	z
	1	0	ı	ı	11	VT	ESC	+	;	K	[k	{
	1	-	0	0	12	FF	FS	,	<	L	\	ı	-
	1	1	0	1	13	CR	GS	_	=	М]	m	}
	ı	1	١	0	14	SO	RS	•	>	N	^	n	~
	1	1	1	1	15	SI	US	/	?	0		0	DEL

Representación de datos

- Ahora con una forma de representar números podemos almacenar y codificar de distintas formas
- Otro ejemplo es el manejo de imágenes usando 3 Bytes

R	G	В	Hex Code	Color
0	0	0	#000000	Black
255	0	0	#FF0000	Red
0	255	0	#00FF00	Green
255	255	0	#FFFF00	Yellow
128	128	128	#808080	Grey
86	180	233	#56B4E9	Sky blue
230	159	0	#E69F00	Orange
255	255	255	#FFFFFF	White

Representación de datos

¿Dudas?

Ejercicio tipo prueba I1 - 2024-1

 Escriba la representación en decimal del número OxCAFE, si este se interpreta como binario en complemento de dos.

Clase 01 - Representaciones numéricas - Números Enteros

IIC2343 - Arquitectura de Computadores

Profesor:

- Felipe Valenzuela González

Correo:

frvalenzuela@alumni.uc.cl