### NOTES SUR LA DISPERSION SPECTRALE

### Ariane LE CARDINAL, 30 mars 2021

### 1 Notations

| Symbole                                                          | Description                                         |  |
|------------------------------------------------------------------|-----------------------------------------------------|--|
| ρ                                                                | fonction de pénalisation (Cauchy ou moindre carrés) |  |
| f                                                                | gaussienne                                          |  |
| δ                                                                | carte des bad pixels (BP)                           |  |
| s <sup>cal</sup>                                                 | facteur d'échelle                                   |  |
| A                                                                | amplitude $\propto \frac{1}{2\pi\sigma^2}$          |  |
| $c_h^k$                                                          | coefficients de la loi polynomiale (pixel)          |  |
| $c_h^{\lambda}$                                                  | coefficients de la loi polynomiale (spectres)       |  |
| x, y                                                             | position de la microlentille                        |  |
| xtrue, ytrue                                                     | paramètres vrais donnes a l'image simulée           |  |
| xopt, yopt                                                       | paramètres optimisés                                |  |
| xinit, yinit                                                     | paramètres a l'initialisation                       |  |
| F(X)                                                             | valeur de la fonction de vraisemblance              |  |
| G(X)                                                             | norme du gradient de la fonction de vraisemblance   |  |
| $\lambda_{laser} = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$ | tableau des longueurs d'onde de calibration         |  |
| $\lambda_0$                                                      | moyenne de $\lambda_{laser}$                        |  |

TABLE 1 – Notations

Le facteur d'échelle  $s^{cal}$  sert à ce que les interspectres ne soient pas détectés comme "outsiders" en diminuant la valeur d'ensemble des résidus. La fonction de pénalisation est ainsi robuste, car les pixels détectés comme défectueux sont très éloignés de la loi.

Le nombre d'acquisitions lasers n dépend du mode de calibration des bandes :

• YJ-mode:  $n_{\lambda}^{cal} = 3$ 

• YH-mode:  $n_{\lambda}^{cal} = 4$ 

Longueurs d'onde de calibration laser utilisées :

•  $\lambda_1 = 987:72nm$ 

•  $\lambda_2 = 1123:71nm$ 

•  $\lambda_3 = 1309:37nm$ 

•  $\lambda_4 = 1545 : 10 nm$ 

# 2 Equations

On cherche à minimiser le terme de fidélité aux données  $f(c_h^k, c_h^\lambda, \gamma_h, \Lambda)$  pour avoir une différence entre le modèle et les données la plus petite possible. Pour cela, on cherche les paramètres x, y,  $\sigma$  et  $\Lambda$  qui minimisent la fonction par ajustement.

Fonction de pénalisation : plusieurs choix sont possibles

- fonction de Cauchy:  $\rho(r) = \frac{\gamma}{2} log(1 + \frac{r^2}{\gamma^2})$
- fonction des moindres carrés :

Modèle utilisé:

Gaussienne:

$$f(k_1, k_2, \sigma) = Aexp(\frac{(x_0 - x)^2 + (y_0 - y)^2}{2\sigma^2})$$

Calibration:

Data fidelity term:

$$L(c_h^k, c_h^{\lambda}, \gamma_h, \Lambda) = \sum_{k=1}^b \rho \delta_k^{cal}(s^{cal} - 1(d_p - \sum_{n=1}^b \xi_k(k_1, k_2, \sigma)))$$

Position selon  $n \in [1, 4]$ :

$$\mathbf{x}(\lambda_n) = c_0 + c_1(\lambda_1 - \lambda_0) + c_2(\lambda_n - \lambda_0)^2$$
  
$$\mathbf{y}(\lambda_n) = c_0' + c_1'(\lambda_1 - \lambda_0) + c_2'(\lambda_n - \lambda_0)^2$$

Normalisation par  $\lambda_0$ :

normalisation par  $\lambda_0$  pour que l'optimsateur mette moins de temps. Mieux conditionne.

A l'origine : problème dans les unités ( $\lambda_0$  en micron, donc coefficients en micron<sup>-1</sup>).

Pas d'optimisation :  $c_0$  sans unité,  $c_1$  en  $10^{-6}$ ,  $c_2$  en  $10^{-12}$ .

$$c_0 + c_1(\lambda_1 - \lambda_0) + c_2(\lambda_n - \lambda_0)^2$$

Désormais : 
$$c_0$$
 en pixel  $c_0 + c_1(\frac{\lambda_1 - \lambda_0}{\lambda_0}) + c_2(\frac{\lambda_n - \lambda_0}{\lambda_0})^2$ 

## Simulation d'une gaussienne

Packages utilisés:

TwoDimensional, Zygote, StatsBase, Plots, OptimPackNextGen, FITSIO

Fonctions et structures utilisées :

- Likelihood : renvoie  $\sum$  (données modèle)<sup>2</sup>
- Gradient : Dcrivée de likelihood, soit la dérivée de l'écart entre données et modèle.

 $\nabla \cos t = 0$  au centre

 $\nabla \cos t > 0$  pour fwhm + 2

• BoundingBox : délimite un cadre autour de la microlentille.

# 3.1 Simulation pour une microlentille

Méthode de simulation:

Comparaison d'une image générée avec les paramètres vrais (xtrue, ytrue, atrue, fwhmtrue) et une image finale data de paramètres optimises (xopt, yopt, aopt, fwhmopt). Si les images sont identiques, alors la simulation est correcte.

| Input          | Jeu de données                                                                   |  |  |  |  |  |  |
|----------------|----------------------------------------------------------------------------------|--|--|--|--|--|--|
| Simulation     | a0 = 1 0.2 .* randn(Float64,length(laser)); fwhm0= 5 2*                          |  |  |  |  |  |  |
|                | rand(Float64,length(laser)); C0[1:2,1:2] = [[6.2 10]; [25 80]]                   |  |  |  |  |  |  |
| Initialisation | ainit = a0 .+ (rand(Float64,laser.n) 0.5); fwhminit = fwhm0 .+                   |  |  |  |  |  |  |
|                | (rand(Float64,laser.n) 0.5); cinit[1 :2,1 :2] = [[ 6.2 0]; [25 60]]; xinit =     |  |  |  |  |  |  |
|                | vcat([ainit[:],fwhminit[:],cinit[:]])                                            |  |  |  |  |  |  |
| Optimisation   | aopt = xopt[1 :(laser.n)]; fwhmopt = xopt[(laser.n+1) :(2*laser.n)]; copt = re-  |  |  |  |  |  |  |
|                | shape(xopt[(2*laser.n+1) :(4*laser.n)]; xopt = vmlmb(likelihood, xinit; verb=50, |  |  |  |  |  |  |
|                | ftol=(0.0,0),gtol = (0.0,0))                                                     |  |  |  |  |  |  |

TABLE 2 – Valeurs des coefficients en input

Résultats : On compare les trois paramètres initiaux a0, fwhm0 et Cinit aux paramètres optimisés aopt, fwhmopt.

| Input          | a                    |   | fwhm                 |   | С                                 |
|----------------|----------------------|---|----------------------|---|-----------------------------------|
| Simulation     | a0                   | = | fwhm0                | = | $C0 = [6.2 \ 10.0 \ 0.0; \ 25.0]$ |
|                | [1.0561309045643972, |   | [3.043278514085292,  |   | 80.0 0.0]                         |
|                | 1.152710401417176,   |   | 3.068569383978945,   |   |                                   |
|                | 1.151099317026695]   |   | 3.4963421255308016]  |   |                                   |
| Initialisation | ainit                | = | fwhminit             | = | cinit = [6.2 0.0 0.0; 25.0        |
|                | [0.6850303529100545, |   | [3.2273763932294592, |   | 60.0 0.0]                         |
|                | 0.6912655294445416,  |   | 2.6525969218837857,  |   |                                   |
|                | 0.9109697035079583]  |   | 3.0415089372656503]  |   |                                   |
| Optimisation   | aopt                 | = | fwhmopt              | = | copt =                            |
|                | [1.0297542706492195, |   | [3.178884102908544,  |   | [6.167308613116124                |
|                | 1.1341262000186536,  |   | 3.076286963233277,   |   | 9.801094424382724 -               |
|                | 1.1894202502639288]  |   | 3.460936020233228]   |   | 0.45938260019189386;              |
|                |                      |   |                      |   | 24.958919474842904                |
|                |                      |   |                      |   | 79.85987547044294                 |
|                |                      |   |                      |   | 1.9442835603817556]               |

TABLE 3 – Résultats de la simulation



FIGURE 1 – Simulation d'une microlentille. Dans cette simulation d'une microlentille dans le mode YJ, on cherche a ajuster la loi de dispersion au trois spots gaussiens.



FIGURE 2 – Simulation de la microlentille avec ajout de bruit. On ajoute du bruit a la simulation pour chercher a retrouver les coefficients initiaux après optimisation.



FIGURE 3 – Résidus



FIGURE 4 – Optimisation

# 3.2 Extraction d'une microlentille des fichiers de calibration HR4796-HD95086 Lire fichiers txt des coefficients c0 en x et en y : choisir une ligne dans les fichiers txt correspondant a une microlentille. Prendre la première ligne car pas de pixels défectueux. Afficher la boundingbox associe au fichiers fits (IFS\_sim\_spec.fits).