

SEQUENCE LISTING

<110> Jessberger, et al.

<120> METHODS FOR IDENTIFYING, TREATING, AND INDUCING INFERTILITY USING SMC1 BETA

<130> 29636/39363A

<150> US 60/499,317

<151> 2003-08-29

<160> 13

<170> PatentIn version 3.2

<210> 1

<211> 4056

<212> DNA

<213> Mus musculus

<400> 1
ctgaggcacg gcgccgcagcc atggggcacc ttgagctgct gctcggtgg aatttcaagt 60
cgtggcgagg ccgcgcaggc atcggccctt tcaagaggtt cacctgcac attggcccc 120
acggctccgg aaaatcta at gtaatggatg cacttagttt tgtaatggaa gaaaagacaa 180
ctaatttaag agtaaaaaac attcaagaac ttattcatgg agcacatact ggaaaacctg 240
tttcttccttc tgcaagtgtg acaatttat acatagagga cagtggagaa gagaaaacat 300
tcacaaggat tatccgaggg gggtgctcag aatatcattt tggggataaa cccgtgagtc 360
gttctgtgtt tgtagccag ttggaaaaca taggcataat agtcaaagca cagaactgtc 420
tagttttca gggaaactgtt gagtcaatat ccatgaaaaa gcccaaagag agaaccctgt 480
ttttgaaga aatcagtact tcaggagaat ttataggaga atatgaggca aagaaaaaga 540
aattacaaaa agctgaagaa gatgcacaat ttcattttaa tgtaaaaaaa aatgttagctg 600
cagaacggaa gcatgcaaaa atagagaaag aagaggcaga acattacca aatctcctt 660
aagaattgaa aataaacaag atacaactga tgctttcca actatattat aatgaggaaa 720
aaatcaatgt tttaaacact gaatttagagc aaatggacgg gaatttaagt gtgtaaaag 780
acactcttc tcaccatgaa aacatattt aagctaagaa aaaggattat ggaatgtt 840
ctagacaact acagcaaaca gcaaaagaac tggaaatctgt tgaagcaatt ttaaatcaga 900
agaggcctca gtacattaag gctaaagaaa acacttctca tcatactaaaa aaatttagatt 960
tgtctaaagaa attgataaca gacaatgaaa aacaatgttc taagcaggaa gatggcatac 1020
gagccttagt ggcagaactg gctgatttgg atagagcatg gaaaagttt gaaaagcaga 1080
tggaaagagaa aatcttacaa aaagggcgag atattgaatt ggaaaatagc cagctggatc 1140
gttacaaact gcttaaggag caagtcagac ggaagggttgg tataatgaca caacaactgg 1200
aaaaactgca gtgggaacag aaggcagaaa aagaaagact tgcatttgaa aagaggagc 1260

atggagacac tcagggaaat ctaaaacaga taaaagaaca aatagaagag cataaaaaac 1320
 gaatagagaa gttggaggaa tatacaaaga cgtgcattga ttgcttggaa gataaaaaac 1380
 agcaagaaga ggccctgaaa aaagaaattt gaaaatcgaa atcaagaatg tctgaagtta 1440
 atgaagaatt gagtcatttatt agaaatgaat tgcagaatgc tggaaatttat aaccatgagg 1500
 gaaaacgtca gcagaaaaaga gcagaagttc tggAACACCT taaaagactt tacccagatt 1560
 ctgtgttgg aagactgctt gatctgtgtc atcctattca taagaagtac cagctggctg 1620
 tgactaagct ttttggccgg tacatggttt ccattgttgt agcctcagaa aagatagcga 1680
 aagattgtat tcgatttctg aaggcagaaa gagctgaacc tgagacattc cttgtcttag 1740
 attaccttga tatcaagcca atcaatgaac gactaaggaa aattaaaggc tgtaagatga 1800
 tgatcgatgt tataaagacc cagtttcctc agctgaagaa agtgattcag tttgtttgtg 1860
 gaaaatggcct tgtctgtgag actgtggaaag aagcaagaca tattgcattc ggtggacctg 1920
 aaagacggaa ggcagtagca cttgtatggaa cactgtttt gaaatctgga gtgatttctg 1980
 gagggtcaag tgacttaaag cacaaagctc tgtgtggaa tgagaaagag ttacacaatc 2040
 taagagacaa aagaagccaa ctagtccaag agctaaagga gttaatgaag acactccgca 2100
 aggaaacaga tctgaagcaa atacagactt tagtacaagg aaccaataca cgactcaa 2160
 attcacaaaa tgaacttagag atgattaaaa agaagcacct tgctacattt taccggaaac 2220
 aatctcagct acaaagtgaa ttactgaata ttgattctca atgtactatg ttgagtgaag 2280
 gaatcaacaa acagcaacaa aaaattgaag aatttcaaga taagatagat gaggtagaag 2340
 atgacatatt ccaagacttc tgtgaagaaa ttgggtgtgaa aaatatccgt gaatttgaga 2400
 ataaacatgt taaacagcag caagaaaaatg atcaaaaaaag attagagttt gaaaaacaaa 2460
 aaactcggt taatattcag ctcgaatata gtcgaaatca gcttaagaag aaactgaata 2520
 atatcgacac attaaaaacc acaatccaga agggcaaaga agatattgat aacctaaaaa 2580
 agaccgaaga agaatgtctg aaaattgttg aggaactcat ggtgaagcaa gagcaaatta 2640
 aggaagtgt tgccacacag agttccaaca ttgaaaaat tcacatacaa attgaagagg 2700
 aacgcaagaa ggtttggct gttgataggg aagttggaaa attacagaag gaagttgtaa 2760
 tcattcaggg ttctttggaa cagaaaactgc tagagaaaca taacttgctg ctagattgca 2820
 aagttcaaga cattgacata agtcttggtc tgggttcatt ggaggacatc attgaaatgg 2880
 agctaactga aacagaaagc acccaggcaa cagctgatcat ctatgagaaa gaagcatcca 2940
 tccaaataga ctacagccct ctaagggagg atttaaaggc tctacaatca gataaggagg 3000
 tggaggccca ctttacactc cttctacagc aagtagcatc ccaagaaaaac actctactga 3060
 agactacagc tccaaacttg cgagcacagg agaacttaaa gactgtcaga gacaagttc 3120
 aagaatctgc agatgtttt gaggccagca gaaaggaagc cagaatatgt aggcaagagt 3180

ttgaacagg	gaaaagacgg	aggtacgatg	cttcagtca	atgtttgaa	cacatctcag	3240							
tctcaattga	tcaaattcac	aagaagctct	gcaggaacaa	cagtgccag	gcatttctta	3300							
gcccagagaa	ccctgaagaa	ccttacttag	atggaattag	ctacaactgt	gtggctccag	3360							
gcaaacgg	catgccc	gacaacctgt	cagggggaga	aaagtgtgt	gctgctctgg	3420							
ctcttctgtt	tgctgtacac	agtttccggc	ctgctccatt	ctttgtatta	gatgaagtag	3480							
atgcagccct	ggacaatact	aacattggca	aagtctcaag	ttacatcaa	gagcagagtc	3540							
aggaacagtt	tca	gatgata	atcattccc	tgaaagagga	gttctactcc	aaagctgtat	3600						
cactgatagg	cgtctaccca	gagcacaatg	agtgc	atgtt	cagccatgtg	ttgactctgg	3660						
acctttccaa	gtatccagac	accgaagacc	aagaaggcag	caggagccac	cggaagccc	3720							
gagtaccacg	agtatcaatg	tctccaaagt	ctccc	agtc	tcgttagaaaa	tgagtatact	3780						
cttgaacagc	caccagctat	agaagcttta	ccctgaccct	gtggagg	tca	ggccagtctc	3840						
tgttagacc	catgtgtcat	agaagaaaaaa	tctcttacca	ttttagt	aga	aaaaaaacta	3900						
tagcccactc	agctaaggag	tgctc	agtgt	cattccaaatg	gagg	ttcccta	tgccatcaat	3960					
aatgaggta	tatg	ttt	tc	tttgc	ttt	aagg	ttt gaaac	aaattgg	taa	ttt	g	ttt	4020
aaaaatttg	aattctg	caa	aaaaaaa	aaaaaa	aaaaaa	aaaaaa	aaaaaa	4056					

<210> 2

<211> 1248

<212> PRT

<213> Mus musculus

<400> 2

Met	Gly	His	Leu	Glu	Leu	Leu	Leu	Val	Glu	Asn	Phe	Lys	Ser	Trp	Arg
1									10						15

Gly	Arg	Gln	Val	Ile	Gly	Pro	Phe	Lys	Arg	Phe	Thr	Cys	Ile	Ile	Gly
20								25							30

Pro	Asn	Gly	Ser	Gly	Lys	Ser	Asn	Val	Met	Asp	Ala	Leu	Ser	Phe	Val
35							40						45		

Met	Gly	Glu	Lys	Thr	Thr	Asn	Leu	Arg	Val	Lys	Asn	Ile	Gln	Glu	Leu
50							55					60			

Ile	His	Gly	Ala	His	Thr	Gly	Lys	Pro	Val	Ser	Ser	Ser	Ala	Ser	Val
65								70				75			80

Thr	Ile	Ile	Tyr	Ile	Glu	Asp	Ser	Gly	Glu	Glu	Lys	Thr	Phe	Thr	Arg
85									90					95	

Ile	Ile	Arg	Gly	Gly	Cys	Ser	Glu	Tyr	His	Phe	Gly	Asp	Lys	Pro	Val
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

100 105 110

Ser Arg Ser Val Tyr Val Ala Gln Leu Glu Asn Ile Gly Ile Ile Val
115 120 125

Lys Ala Gln Asn Cys Leu Val Phe Gln Gly Thr Val Glu Ser Ile Ser
130 135 140

Met Lys Lys Pro Lys Glu Arg Thr Gln Phe Phe Glu Glu Ile Ser Thr
145 150 155 160

Ser Gly Glu Phe Ile Gly Glu Tyr Glu Ala Lys Lys Lys Lys Leu Gln
165 170 175

Lys Ala Glu Glu Asp Ala Gln Phe His Phe Asn Val Lys Lys Asn Val
180 185 190

Ala Ala Glu Arg Lys His Ala Lys Ile Glu Lys Glu Glu Ala Glu His
195 200 205

Tyr Gln Asn Leu Leu Glu Glu Leu Lys Ile Asn Lys Ile Gln Leu Met
210 215 220

Leu Phe Gln Leu Tyr Tyr Asn Glu Glu Lys Ile Asn Val Leu Asn Thr
225 230 235 240

Glu Leu Glu Gln Met Asp Gly Asn Leu Ser Val Val Lys Asp Thr Leu
245 250 255

Ser His His Glu Asn Ile Phe Lys Ala Lys Lys Lys Asp Tyr Gly Met
260 265 270

Leu Thr Arg Gln Leu Gln Gln Thr Ala Lys Glu Leu Lys Ser Val Glu
275 280 285

Ala Ile Leu Asn Gln Lys Arg Pro Gln Tyr Ile Lys Ala Lys Glu Asn
290 295 300

Thr Ser His His Leu Lys Lys Leu Asp Leu Ser Lys Lys Leu Ile Thr
305 310 315 320

Asp Asn Glu Lys Gln Cys Ser Lys Gln Glu Asp Gly Ile Arg Ala Leu
325 330 335

Val Ala Glu Leu Ala Asp Leu Asp Arg Ala Trp Lys Ser Phe Glu Lys
340 345 350

Gln Met Glu Glu Lys Ile Leu Gln Lys Gly Arg Asp Ile Glu Leu Glu
355 360 365

Asn Ser Gln Leu Asp Arg Tyr Lys Leu Leu Lys Glu Gln Val Arg Arg
370 375 380

Lys Val Gly Ile Met Thr Gln Gln Leu Glu Lys Leu Gln Trp Glu Gln
385 390 395 400

Lys Ala Glu Lys Glu Arg Leu Ala Phe Glu Lys Arg Arg His Gly Asp
405 410 415

Thr Gln Gly Asn Leu Lys Gln Ile Lys Glu Gln Ile Glu Glu His Lys
420 425 430

Lys Arg Ile Glu Lys Leu Glu Glu Tyr Thr Lys Thr Cys Met Asp Cys
435 440 445

Leu Glu Asp Lys Lys Gln Gln Glu Glu Ala Leu Lys Lys Glu Ile Glu
450 455 460

Asn Thr Lys Ser Arg Met Ser Glu Val Asn Glu Glu Leu Ser Leu Ile
465 470 475 480

Arg Asn Glu Leu Gln Asn Ala Gly Ile Asp Asn His Glu Gly Lys Arg
485 490 495

Gln Gln Lys Arg Ala Glu Val Leu Glu His Leu Lys Arg Leu Tyr Pro
500 505 510

Asp Ser Val Phe Gly Arg Leu Leu Asp Leu Cys His Pro Ile His Lys
515 520 525

Lys Tyr Gln Leu Ala Val Thr Lys Leu Phe Gly Arg Tyr Met Val Ala
530 535 540

Ile Val Val Ala Ser Glu Lys Ile Ala Lys Asp Cys Ile Arg Phe Leu
545 550 555 560

Lys Ala Glu Arg Ala Glu Pro Glu Thr Phe Leu Ala Leu Asp Tyr Leu
565 570 575

Asp Ile Lys Pro Ile Asn Glu Arg Leu Arg Glu Ile Lys Gly Cys Lys
580 585 590

Met Met Ile Asp Val Ile Lys Thr Gln Phe Pro Gln Leu Lys Lys Val
595 600 605

Ile Gln Phe Val Cys Gly Asn Gly Leu Val Cys Glu Thr Val Glu Glu
610 615 620

Ala Arg His Ile Ala Phe Gly Gly Pro Glu Arg Arg Lys Ala Val Ala
625 630 635 640

Leu Asp Gly Thr Leu Phe Leu Lys Ser Gly Val Ile Ser Gly Gly Ser
645 650 655

Ser Asp Leu Lys His Lys Ala Leu Cys Trp Asp Glu Lys Glu Leu His
660 665 670

Asn Leu Arg Asp Lys Arg Ser Gln Leu Val Gln Glu Leu Lys Glu Leu
675 680 685

Met Lys Thr Leu Arg Lys Glu Thr Asp Leu Lys Gln Ile Gln Thr Leu
690 695 700

Val Gln Gly Thr Asn Thr Arg Leu Lys Tyr Ser Gln Asn Glu Leu Glu
705 710 715 720

Met Ile Lys Lys His Leu Ala Thr Phe Tyr Arg Glu Gln Ser Gln
725 730 735

Leu Gln Ser Glu Leu Leu Asn Ile Asp Ser Gln Cys Thr Met Leu Ser
740 745 750

Glu Gly Ile Asn Lys Gln Gln Lys Ile Glu Glu Phe Gln Asp Lys
755 760 765

Ile Asp Glu Val Glu Asp Asp Ile Phe Gln Asp Phe Cys Glu Glu Ile
770 775 780

Gly Val Glu Asn Ile Arg Glu Phe Glu Asn Lys His Val Lys Gln Gln
785 790 795 800

Gln Glu Asn Asp Gln Lys Arg Leu Glu Phe Glu Lys Gln Lys Thr Arg
805 810 815

Leu Asn Ile Gln Leu Glu Tyr Ser Arg Asn Gln Leu Lys Lys Lys Leu
820 825 830

Asn Asn Ile Asp Thr Leu Lys Thr Thr Ile Gln Lys Gly Lys Glu Asp
835 840 845

Ile Asp Asn Leu Lys Lys Thr Glu Glu Glu Cys Leu Lys Ile Val Glu
850 855 860

Glu Leu Met Val Lys Gln Glu Gln Ile Lys Glu Val Leu Ala Thr Gln
865 870 875 880

Ser Ser Asn Ile Glu Lys Ile His Ile Gln Ile Glu Glu Glu Arg Lys
885 890 895

Lys Val Leu Ala Val Asp Arg Glu Val Gly Lys Leu Gln Lys Glu Val
900 905 910

Val Ile Ile Gln Gly Ser Leu Glu Gln Lys Leu Leu Glu Lys His Asn
915 920 925

Leu Leu Leu Asp Cys Lys Val Gln Asp Ile Asp Ile Ser Leu Val Leu
930 935 940

Gly Ser Leu Glu Asp Ile Ile Glu Met Glu Leu Thr Glu Thr Glu Ser
945 950 955 960

Thr Gln Ala Thr Ala Asp Ile Tyr Glu Lys Glu Ala Ser Ile Gln Ile
965 970 975

Asp Tyr Ser Pro Leu Arg Glu Asp Leu Lys Ala Leu Gln Ser Asp Lys
980 985 990

Glu Val Glu Ala His Leu Thr Leu Leu Leu Gln Gln Val Ala Ser Gln
995 1000 1005

Glu Asn Thr Leu Leu Lys Thr Thr Ala Pro Asn Leu Arg Ala Gln
1010 1015 1020

Glu Asn Leu Lys Thr Val Arg Asp Lys Phe Gln Glu Ser Ala Asp
1025 1030 1035

Val Phe Glu Ala Ser Arg Lys Glu Ala Arg Ile Cys Arg Gln Glu
1040 1045 1050

Phe Glu Gln Val Lys Arg Arg Arg Tyr Asp Ala Phe Ser Gln Cys
1055 1060 1065

Phe Glu His Ile Ser Val Ser Ile Asp Gln Ile Tyr Lys Lys Leu
1070 1075 1080

Cys Arg Asn Asn Ser Ala Gln Ala Phe Leu Ser Pro Glu Asn Pro
1085 1090 1095

Glu Glu Pro Tyr Leu Asp Gly Ile Ser Tyr Asn Cys Val Ala Pro
1100 1105 1110

Gly Lys Arg Phe Met Pro Met Asp Asn Leu Ser Gly Gly Glu Lys
 1115 1120 1125

Cys Val Ala Ala Leu Ala Leu Leu Phe Ala Val His Ser Phe Arg
 1130 1135 1140

Pro Ala Pro Phe Phe Val Leu Asp Glu Val Asp Ala Ala Leu Asp
 1145 1150 1155

Asn Thr Asn Ile Gly Lys Val Ser Ser Tyr Ile Lys Glu Gln Ser
 1160 1165 1170

Gln Glu Gln Phe Gln Met Ile Ile Ile Ser Leu Lys Glu Glu Phe
 1175 1180 1185

Tyr Ser Lys Ala Asp Ala Leu Ile Gly Val Tyr Pro Glu His Asn
 1190 1195 1200

Glu Cys Met Phe Ser His Val Leu Thr Leu Asp Leu Ser Lys Tyr
 1205 1210 1215

Pro Asp Thr Glu Asp Gln Glu Gly Ser Arg Ser His Arg Lys Pro
 1220 1225 1230

Arg Val Pro Arg Val Ser Met Ser Pro Lys Ser Pro Gln Ser Arg
 1235 1240 1245

<210> 3
<211> 3839
<212> DNA
<213> Homo sapiens

<400> 3	
cgcttttcc gcgggcgtt gataacgcgg gtgaggcgtg gagggcggcg ccatggccca	60
cctggagctg ctgcttgtgg aaaatttcaa gtcgtggcg ggccgccagg tcattggccc	120
cttccggagg ttcacctgca tcatcgcccc caacggctct ggaaaatcta atgtaatgga	180
tgcacttagt tttgtaatgg gagagaaaa agctaattta agagtggaaaa atattcaaga	240
actcattcat ggagcacata ttggaaaaacc tatttcttct tctgcaagtg taaaaattat	300
atatgtggag gaaagtggcg aagagaaaa ac ttgcagg attattttag gggatgctc	360
agaatttcgc tttaatgata atcttgtgag tcgttctgtt tacattgcag agttggaaaa	420
gataggcata atagtcaaag cacaaaaattg tttgttttt cagggactg tagagtcaat	480
ttcagtgaag aaacccaaag aaaggaccca gtttttgag gaaatcagca cttcaggaga	540
gcttatagga gaatatgaag aaaagaaaaag aaagttacaa aaagccgaag aggatgcaca	600
gtttaacttt aataagaaaa aaaatatagc ggcagagcgc agacaagcaa aatttagagaa	660

ggaagaggca	gaacgttacc	agagtctcct	tgaagaactg	aaaatgaaca	agataacaact	720
gcagctttt	caactatacc	ataatgagaa	aaagattcat	ctcctgaaca	ccaagttaga	780
gcatgtgaat	agggatttga	gtgtcaaaag	agagtcttg	tctcatcatg	aaaacatagt	840
taaagccagg	aaaaaggaac	atggaatgct	aactagacaa	ctacaacaaa	cagaaaaaga	900
attaaaatcg	gttcaaacc	ttttaaatca	gaagaggcct	cagtacatta	aagccaaaga	960
aaacacttct	caccaccta	agaaaattaga	tgtggctaag	aaatcaataa	aggacagcga	1020
aaaacaatgt	tctaaacagg	aagatgatat	aaaagccctg	gagacagagc	tggctgattt	1080
agatgctgca	tggagaagtt	ttgaaaagca	gattgaggaa	gaaattttac	ataaaaagcg	1140
agacattgaa	ctggaagcca	gtcagctgga	tcgttataaa	gaacttaagg	aacaagtaag	1200
aaagaaaagta	gttacaatga	ctcaacaact	ggaaaaactg	cagtggaaac	agaagacaga	1260
tgaagaaaaga	ctggcattt	aaaagaggag	gcatggagaa	gttcaggaa	atctaaaaca	1320
aataaaaagaa	caaatagaag	atcataaaaa	acgaatagag	aagtttagagg	agtatacaaa	1380
gacatgcatt	gattgcttga	aagagaaaaa	acagcaagag	gaaaccctag	tggatgaaat	1440
tgaaaaaaaca	aaatcaagaa	tgtctgaatt	taatgaagaa	ttgaatctt	ttagaagtga	1500
attgcagaat	gctgggattt	ataccatga	gggaaaacgt	cagcaaaaga	gaggcagaggt	1560
tctggAACAC	cttaaaagac	tgtacccaga	ttctgtgtt	ggaagactat	ttgacctgtg	1620
tcatcctatt	cataagaaat	accagctggc	tgttactaag	gttttgccc	ggtcacatcac	1680
tgcattgtt	gtagcctctg	aaaaggttagc	aaaagattgt	attcgatttc	tgaaggagga	1740
aagagctgaa	cctgagacat	tcctcgctct	agattacctt	gatatcaagc	caatcaatga	1800
aagactaagg	gagcttaaag	gctgtaaaat	ggtgattgat	gtcataaaga	ctcagttcc	1860
tcagctgaag	aaagtgattt	agtttgtgt	tggaaaatggt	cttgggtgt	agactatgga	1920
agaagcaagg	catattgcac	tcagtggacc	tgaaagacag	aaaacagtat	ctcttgatgg	1980
aacattattt	ttaaaatctg	gagtgatctc	tggagggtca	agtgacttaa	aatacaaggc	2040
tagatgctgg	gatgagaaag	agttaaagaa	tctaagagac	agacgaagcc	agaaaatcca	2100
agagctaaag	ggttaatga	agacactccg	caaagaaaca	gatttggaaac	aaatacagac	2160
cctgatacag	ggaactcaaa	cacgactcaa	atattcacaa	aatgaactat	agatgattaa	2220
gaagaagcac	cttggcctt	tttaccagga	acaatctcag	ttacaaagtg	aactactaaa	2280
tattgagtct	caatgttatta	tgttgagtga	aggaatcaag	gaacgacaac	gaagaattaa	2340
agaatttcaa	gaaaagatag	ataaggtaga	agacgatatc	ttccaacact	tctgtgaaga	2400
aattggcgtg	gaaaatattc	gtgaatttga	gaacaaacat	gttaaacggc	aacaagaaat	2460
tgtatcaaaaa	aggtatTTT	ataaaaagat	gttgactcgg	cttaatgttc	aacttgagta	2520
tagtcgcagt	cacccttAAGA	agaaactgaa	taagatcaac	acattaaaag	aaactatcca	2580

gaaaggtagt gaagatattg atcacctaaa gaaggctgaa gaaaactgtc tgcagacagt	2640
gaatgaactc atggcaaagc agcagcaact taaggacata cgtgtcactc agaactccag	2700
tgccgagaaa gttcaaactc aaattgaaga ggaacggaag aagtttctgg ctgttgatag	2760
ggaagtgggg aaattgcaaa aagaagtgt aagtattcaa acttctctgg aacagaaacg	2820
attagagaag cataacttgc tgcttgattt caaagtgcaa gacattgaga taatccttt	2880
gtcggggtca ctggatgaca tcattgaagt ggagatgggactgaagcag aaagtaccca	2940
ggcaacaatt gatatctatg aaaaagaaga agccttgaa atagactaca gctctctaaa	3000
agaggattt aaggctctac agtctgatca agaaatcgag gcccacctta ggctcttatt	3060
gcagcaagta gcattcccagg aagatatctt actgaaaaca gcagccccaa acctacgagc	3120
actggagaac ttaaagactg tcagagacaa gttcaagag tccacagatg ctttgaggc	3180
cagcagaaag gaagccagac tgtgttaggca agagttcgag caagtaaaaaa aaaggagata	3240
cgatcttttc acccagtgtt ttgagcatgt ctcaatctca attgatcaaa tctacaagaa	3300
gctctgcaga aacaacagcg cccaaggcatt tcttagccca gagaaccctg aagaacctta	3360
cttggaggga attagctata actgtgtggc cccaggcaaa cggttatgc caatggacaa	3420
tttgtcaggg ggagaaaaagt gtgtggcagc cttggctctc ctgtttgctg tgcacagttt	3480
tcgtcctgcc ccattctttg ttttagatga agtggatgca gccctagaca atactaacat	3540
aggcaaagtg tcaagttaca tcaaagagca aactcaagac cagttcaga tgatagtcata	3600
ctccctaaaaa gaagagttct attccagagc cgacgcgctg atcggcatct atcctgagta	3660
cgatgactgc atgttcagcc gagtttgac cctagatctt tctcagtatc cagacactga	3720
aggccaagaa agcagcaaga gacacggaga gtcccgctag gggcagtcct gcagcagtca	3780
cctgatcact gttcagttcc cactctaata ctcacacagc tcctccacag gagacttct	3839

<210> 4
 <211> 1235
 <212> PRT
 <213> Homo sapiens

<400> 4

Met Ala His Leu Glu Leu Leu Leu Val Glu Asn Phe Lys Ser Trp Arg
 1 5 10 15

Gly Arg Gln Val Ile Gly Pro Phe Arg Arg Phe Thr Cys Ile Ile Gly
 20 25 30

Pro Asn Gly Ser Gly Lys Ser Asn Val Met Asp Ala Leu Ser Phe Val
 35 40 45

Met Gly Glu Lys Ile Ala Asn Leu Arg Val Lys Asn Ile Gln Glu Leu

50

55

60

Ile His Gly Ala His Ile Gly Lys Pro Ile Ser Ser Ser Ala Ser Val
65 70 75 80

Lys Ile Ile Tyr Val Glu Glu Ser Gly Glu Glu Lys Thr Phe Ala Arg
85 90 95

Ile Ile Leu Gly Gly Cys Ser Glu Phe Arg Phe Asn Asp Asn Leu Val
100 105 110

Ser Arg Ser Val Tyr Ile Ala Glu Leu Glu Lys Ile Gly Ile Ile Val
115 120 125

Lys Ala Gln Asn Cys Leu Val Phe Gln Gly Thr Val Glu Ser Ile Ser
130 135 140

Val Lys Lys Pro Lys Glu Arg Thr Gln Phe Phe Glu Glu Ile Ser Thr
145 150 155 160

Ser Gly Glu Leu Ile Gly Glu Tyr Glu Glu Lys Lys Arg Lys Leu Gln
165 170 175

Lys Ala Glu Glu Asp Ala Gln Phe Asn Phe Asn Lys Lys Lys Asn Ile
180 185 190

Ala Ala Glu Arg Arg Gln Ala Lys Leu Glu Lys Glu Ala Glu Arg
195 200 205

Tyr Gln Ser Leu Leu Glu Leu Lys Met Asn Lys Ile Gln Leu Gln
210 215 220

Leu Phe Gln Leu Tyr His Asn Glu Lys Lys Ile His Leu Leu Asn Thr
225 230 235 240

Lys Leu Glu His Val Asn Arg Asp Leu Ser Val Lys Arg Glu Ser Leu
245 250 255

Ser His His Glu Asn Ile Val Lys Ala Arg Lys Lys Glu His Gly Met
260 265 270

Leu Thr Arg Gln Leu Gln Gln Thr Glu Lys Glu Leu Lys Ser Val Glu
275 280 285

Thr Leu Leu Asn Gln Lys Arg Pro Gln Tyr Ile Lys Ala Lys Glu Asn
290 295 300

Thr Ser His His Leu Lys Lys Leu Asp Val Ala Lys Lys Ser Ile Lys
305 310 315 320

Asp Ser Glu Lys Gln Cys Ser Lys Gln Glu Asp Asp Ile Lys Ala Leu
325 330 335

Glu Thr Glu Leu Ala Asp Leu Asp Ala Ala Trp Arg Ser Phe Glu Lys
340 345 350

Gln Ile Glu Glu Glu Ile Leu His Lys Lys Arg Asp Ile Glu Leu Glu
355 360 365

Ala Ser Gln Leu Asp Arg Tyr Lys Glu Leu Lys Glu Gln Val Arg Lys
370 375 380

Lys Val Ala Thr Met Thr Gln Gln Leu Glu Lys Leu Gln Trp Glu Gln
385 390 395 400

Lys Thr Asp Glu Glu Arg Leu Ala Phe Glu Lys Arg Arg His Gly Glu
405 410 415

Val Gln Gly Asn Leu Lys Gln Ile Lys Glu Gln Ile Glu Asp His Lys
420 425 430

Lys Arg Ile Glu Lys Leu Glu Glu Tyr Thr Lys Thr Cys Met Asp Cys
435 440 445

Leu Lys Glu Lys Lys Gln Gln Glu Glu Thr Leu Val Asp Glu Ile Glu
450 455 460

Lys Thr Lys Ser Arg Met Ser Glu Phe Asn Glu Glu Leu Asn Leu Ile
465 470 475 480

Arg Ser Glu Leu Gln Asn Ala Gly Ile Asp Thr His Glu Gly Lys Arg
485 490 495

Gln Gln Lys Arg Ala Glu Val Leu Glu His Leu Lys Arg Leu Tyr Pro
500 505 510

Asp Ser Val Phe Gly Arg Leu Phe Asp Leu Cys His Pro Ile His Lys
515 520 525

Lys Tyr Gln Leu Ala Val Thr Lys Val Phe Gly Arg Phe Ile Thr Ala
530 535 540

Ile Val Val Ala Ser Glu Lys Val Ala Lys Asp Cys Ile Arg Phe Leu
545 550 555 560

Lys Glu Glu Arg Ala Glu Pro Glu Thr Phe Leu Ala Leu Asp Tyr Leu
565 570 575

Asp Ile Lys Pro Ile Asn Glu Arg Leu Arg Glu Leu Lys Gly Cys Lys
580 585 590

Met Val Ile Asp Val Ile Lys Thr Gln Phe Pro Gln Leu Lys Lys Val
595 600 605

Ile Gln Phe Val Cys Gly Asn Gly Leu Val Cys Glu Thr Met Glu Glu
610 615 620

Ala Arg His Ile Ala Leu Ser Gly Pro Glu Arg Gln Lys Thr Val Ala
625 630 635 640

Leu Asp Gly Thr Leu Phe Leu Lys Ser Gly Val Ile Ser Gly Gly Ser
645 650 655

Ser Asp Leu Lys Tyr Lys Ala Arg Cys Trp Asp Glu Lys Glu Leu Lys
660 665 670

Asn Leu Arg Asp Arg Arg Ser Gln Lys Ile Gln Glu Leu Lys Gly Leu
675 680 685

Met Lys Thr Leu Arg Lys Glu Thr Asp Leu Lys Gln Ile Gln Thr Leu
690 695 700

Ile Gln Gly Thr Gln Thr Arg Leu Lys Tyr Ser Gln Asn Glu Leu Glu
705 710 715 720

Met Ile Lys Lys His Leu Val Ala Phe Tyr Gln Glu Gln Ser Gln
725 730 735

Leu Gln Ser Glu Leu Leu Asn Ile Glu Ser Gln Cys Ile Met Leu Ser
740 745 750

Glu Gly Ile Lys Glu Arg Gln Arg Arg Ile Lys Glu Phe Gln Glu Lys
755 760 765

Ile Asp Lys Val Glu Asp Asp Ile Phe Gln His Phe Cys Glu Glu Ile
770 775 780

Gly Val Glu Asn Ile Arg Glu Phe Glu Asn Lys His Val Lys Arg Gln
785 790 795 800

Gln Glu Ile Asp Gln Lys Arg Tyr Phe Tyr Lys Lys Met Leu Thr Arg
805 810 815

Leu Asn Val Gln Leu Glu Tyr Ser Arg Ser His Leu Lys Lys Lys Leu
820 825 830

Asn Lys Ile Asn Thr Leu Lys Glu Thr Ile Gln Lys Gly Ser Glu Asp
835 840 845

Ile Asp His Leu Lys Lys Ala Glu Glu Asn Cys Leu Gln Thr Val Asn
850 855 860

Glu Leu Met Ala Lys Gln Gln Leu Lys Asp Ile Arg Val Thr Gln
865 870 875 880

Asn Ser Ser Ala Glu Lys Val Gln Thr Gln Ile Glu Glu Glu Arg Lys
885 890 895

Lys Phe Leu Ala Val Asp Arg Glu Val Gly Lys Leu Gln Lys Glu Val
900 905 910

Val Ser Ile Gln Thr Ser Leu Glu Gln Lys Arg Leu Glu Lys His Asn
915 920 925

Leu Leu Leu Asp Cys Lys Val Gln Asp Ile Glu Ile Ile Leu Leu Ser
930 935 940

Gly Ser Leu Asp Asp Ile Ile Glu Val Glu Met Gly Thr Glu Ala Glu
945 950 955 960

Ser Thr Gln Ala Thr Ile Asp Ile Tyr Glu Lys Glu Glu Ala Phe Glu
965 970 975

Ile Asp Tyr Ser Ser Leu Lys Glu Asp Leu Lys Ala Leu Gln Ser Asp
980 985 990

Gln Glu Ile Glu Ala His Leu Arg Leu Leu Leu Gln Gln Val Ala Ser
995 1000 1005

Gln Glu Asp Ile Leu Leu Lys Thr Ala Ala Pro Asn Leu Arg Ala
1010 1015 1020

Leu Glu Asn Leu Lys Thr Val Arg Asp Lys Phe Gln Glu Ser Thr
1025 1030 1035

Asp Ala Phe Glu Ala Ser Arg Lys Glu Ala Arg Leu Cys Arg Gln
1040 1045 1050

Glu Phe Glu Gln Val Lys Lys Arg Arg Tyr Asp Leu Phe Thr Gln
1055 1060 1065

Cys Phe Glu His Val Ser Ile Ser Ile Asp Gln Ile Tyr Lys Lys
 1070 1075 1080

Leu Cys Arg Asn Asn Ser Ala Gln Ala Phe Leu Ser Pro Glu Asn
 1085 1090 1095

Pro Glu Glu Pro Tyr Leu Glu Gly Ile Ser Tyr Asn Cys Val Ala
 1100 1105 1110

Pro Gly Lys Arg Phe Met Pro Met Asp Asn Leu Ser Gly Gly Glu
 1115 1120 1125

Lys Cys Val Ala Ala Leu Ala Leu Leu Phe Ala Val His Ser Phe
 1130 1135 1140

Arg Pro Ala Pro Phe Phe Val Leu Asp Glu Val Asp Ala Ala Leu
 1145 1150 1155

Asp Asn Thr Asn Ile Gly Lys Val Ser Ser Tyr Ile Lys Glu Gln
 1160 1165 1170

Thr Gln Asp Gln Phe Gln Met Ile Val Ile Ser Leu Lys Glu Glu
 1175 1180 1185

Phe Tyr Ser Arg Ala Asp Ala Leu Ile Gly Ile Tyr Pro Glu Tyr
 1190 1195 1200

Asp Asp Cys Met Phe Ser Arg Val Leu Thr Leu Asp Leu Ser Gln
 1205 1210 1215

Tyr Pro Asp Thr Glu Gly Gln Glu Ser Ser Lys Arg His Gly Glu
 1220 1225 1230

Ser Arg
 1235

<210> 5
 <211> 1406
 <212> DNA
 <213> Homo sapiens

<400> 5		
cctctgcggc gtcactggga gccccacgga aaactgcgtt aaaggcttgt ctttcccttg	60	
cccgaccgaa ggagccgacc ttgcctgcgc tacagttcc ttatttcgt cgccgtttct	120	
cctgatcctg cgtgttctaa aaacccctta ggcttccat gggttcccag accatggcgg	180	
tggcgctgcc cagggacttg cggcaggacg ccaacctggc aaagaggagg cacgcggagc	240	
tgtgcaggca gaagcgggtc ttcaacgcca gaaacaggat aattggggga gacactgaag	300	

cctggatgt tcaagttcat gaccagaaga taaaagaagc tactgaaaaa gctagacatg 360
 aaaccttgc tgctgaaatg aggcaaaatg acaaaatcat gtgcatttg gaaaaccgga 420
 aaaagaggga taggaaaaat ctctgttaggg ctatcaatga cttccaacag agcttcaga 480
 agccagaaac tcgcccgtgaa tttgatctgt ccgacccttgc agcccttaag aaagatctc 540
 cagccccggca gtcagataat gatgttcgga atacgatatc aggaatgcag aaattcatgg 600
 gagaggattt aaacttccat gagaggaaga aattccaaga ggaacaaaac agagaatgg 660
 ctgtcagca gcaaaggaa tggaagaacg cccgtgctga acaaaaatgc gcagaggccc 720
 tctacacaga gacaaggctg cagttgacg agacagccaa gcacccctcag aagctggaaa 780
 gcaccaccag aaaggcagtt tgtcatctg tgaaagactt caacaagagc caggccatcg 840
 agtcagtgga aagaaaaaag caagagaaaa agcaagaaca agaggacaac ttggccgaga 900
 tcaccaacct cctgcgtggg gacctgctct ccgagaaccc gcagcaggca gccagctcct 960
 tcggggccca ccgcgtggc cctgaccgct ggaaggcat gacccaggag cagctggagc 1020
 agatccgcct agtccagaag cagcaaattc aggagaagct gaggctccag gaagaaaaagc 1080
 gccagcgaga cctggactgg gaccggcgga ggattcaggg ggctcgccacc accctgctgt 1140
 ttgagcggca gcagtggcg cgccagcgac acctgcgcag agctctggac agcagcaacc 1200
 tcagcctggc caaggagcag catttgcaga aaaaatatat gaatgaagtc tatacaaattc 1260
 aacccacggg agactatttc acacaattt aatcaggaag tcgataatga ggaacacacc 1320
 cttgttcccg tcattcacgt ataaagagtg gctaccttaa aaaaaaaaaa aaaaaaaaaa 1380
 aaaaaaaaaa aaaaaaaaaa aaaaaa 1406

<210> 6
<211> 309
<212> PRT
<213> Homo sapiens
<400> 6

Met Arg Gln Asn Asp Lys Ile Met Cys Ile Leu Glu Asn Arg Lys Lys
 1 5 10 15

Arg Asp Arg Lys Asn Leu Cys Arg Ala Ile Asn Asp Phe Gln Gln Ser
 20 25 30

Phe Gln Lys Pro Glu Thr Arg Arg Glu Phe Asp Leu Ser Asp Pro Leu
 35 40 45

Ala Leu Lys Lys Asp Leu Pro Ala Arg Gln Ser Asp Asn Asp Val Arg
 50 55 60

Asn Thr Ile Ser Gly Met Gln Lys Phe Met Gly Glu Asp Leu Asn Phe

65

70

75

80

His Glu Arg Lys Lys Phe Gln Glu Glu Gln Asn Arg Glu Trp Ser Leu
85 90 95

Gln Gln Gln Arg Glu Trp Lys Asn Ala Arg Ala Glu Gln Lys Cys Ala
100 105 110

Glu Ala Leu Tyr Thr Glu Thr Arg Leu Gln Phe Asp Glu Thr Ala Lys
115 120 125

His Leu Gln Lys Leu Glu Ser Thr Thr Arg Lys Ala Val Cys Ala Ser
130 135 140

Val Lys Asp Phe Asn Lys Ser Gln Ala Ile Glu Ser Val Glu Arg Lys
145 150 155 160

Lys Gln Glu Lys Lys Gln Glu Gln Glu Asp Asn Leu Ala Glu Ile Thr
165 170 175

Asn Leu Leu Arg Gly Asp Leu Leu Ser Glu Asn Pro Gln Gln Ala Ala
180 185 190

Ser Ser Phe Gly Pro His Arg Val Val Pro Asp Arg Trp Lys Gly Met
195 200 205

Thr Gln Glu Gln Leu Glu Gln Ile Arg Leu Val Gln Lys Gln Gln Ile
210 215 220

Gln Glu Lys Leu Arg Leu Gln Glu Glu Lys Arg Gln Arg Asp Leu Asp
225 230 235 240

Trp Asp Arg Arg Arg Ile Gln Gly Ala Arg Ala Thr Leu Leu Phe Glu
245 250 255

Arg Gln Gln Trp Arg Arg Gln Arg Asp Leu Arg Arg Ala Leu Asp Ser
260 265 270

Ser Asn Leu Ser Leu Ala Lys Glu Gln His Leu Gln Lys Lys Tyr Met
275 280 285

Asn Glu Val Tyr Thr Asn Gln Pro Thr Gly Asp Tyr Phe Thr Gln Phe
290 295 300

Asn Thr Gly Ser Arg
305

<210> 7
<211> 1654
<212> DNA
<213> Mus musculus

<400> 7
taattggatc cctgctccgc cgcgaaagc ggaccgccgg gacagacttg ctctcaaact 60
tttgtggcg ctgcttctcg gcgcgttagc tttgcttatt tctgtggct tttcttgcgg 120
tgtttttttt ttccggatag ctccctgaagc ccagccgagt cccagagcca tggaggttagc 180
gatgtctaag gacctacaac aggaggccaa cctagccaag aagcggtaca ttgacctgtg 240
caggcaggga cgatcttcg acgccaggaa caggatcatt gggggagaca cacaagcctg 300
ggatttcaa gtccgtgacc agaagataaa agaaataact gacaaagcta ggcattgaagg 360
ctttgctgct gaaatgaagc acaatgacaa agtcatgtgc atggcgcatt accgggaaca 420
gaggcacagg aaacagctgt gttagagctat caatgacttc cagcagaact ttcagaagcc 480
agaaaactcga cgtgagtttgc atctttctga ccccctggcc ctccagaaag agcttccagc 540
ccgcatttca gacaatgaca tgccggAACAC catatcagga atgcagaagt tcattggaga 600
ggatttaaac ttccaagaga ggaggaggaa cccaaaggaa cagagcagag aatggttct 660
gcagcagcat gggAACCGGG agaaagccccgg ggctgaccac ctactggcag aacacctcca 720
cactcagacg agactcaagt ttgatgaaac agccagagag ttgatgaagc tggaggctc 780
caccaggaag gaagtctgcg cagccgtgaa agcggtcaac aagaatcagg ttgtggagtt 840
gacagaaaga aagaggcaag agaagcaaca agaacaagaa gacaacatga ccgagatcac 900
caacctgctg catggagacc tgctttctga gaaccctcga ccgggtggccca gtcctttgg 960
gtctcaccgt gtggtccttg accgctggaa gggcatgaac cgagagcagc tggaggagat 1020
ctggttcacg cagaagcggc aaatccagga gaagctgagg cttcaggagg aagagcggcca 1080
gcacagcatg gactgggatt tgccgcaggat ccggaaaggct catgccagcc tgctgcatga 1140
gcggcagcag cagcgcttgc ttccggagca ggcgcaggcc ctggactgca gcaacctcaa 1200
cctggccagg cagcagact tacagaaaaa acaaataat acagcccttcaagtcagcc 1260
cacagaagac tatttctcac agtttaatac aaggagccgc tgagagaacc gactgctttc 1320
cttgttata gtagttcctc taggagtcac gcttatttca aagtgaatct gtccttgg 1380
ctgaacaccc cgtatggca tgtgcacatg cggtcaggct ctgctctggg aagagctcta 1440
acatggcttt gggtgctgtg gacataggac acagtgaacc attccagaga ggctacactg 1500
aggcctgtgt gctgctcaag ctccaaagctg gctgctcagc cattctctga ctcagtgact 1560
gaccatcata ggtgttgctt cgtgtcccccc atgaagcaact tcttcctcag cttctcaccc 1620
accataaaaga ggcaccaacc tgcttaccac tccc 1654

<210> 8
<211> 309
<212> PRT
<213> Mus musculus

<400> 8

Met Lys His Asn Asp Lys Val Met Cys Met Ala His Asp Arg Glu Gln
1 5 10 15

Arg His Arg Lys Gln Leu Cys Arg Ala Ile Asn Asp Phe Gln Gln Asn
20 25 30

Phe Gln Lys Pro Glu Thr Arg Arg Glu Phe Asp Leu Ser Asp Pro Leu
35 40 45

Ala Leu Gln Lys Glu Leu Pro Ala Arg Ile Ser Asp Asn Asp Met Arg
50 55 60

Asn Thr Ile Ser Gly Met Gln Lys Phe Met Gly Glu Asp Leu Asn Phe
65 70 75 80

Gln Glu Arg Arg Phe Gln Lys Glu Gln Ser Arg Glu Trp Phe Leu
85 90 95

Gln Gln His Gly Glu Arg Glu Lys Ala Arg Ala Asp His Leu Leu Ala
100 105 110

Glu His Leu His Thr Gln Thr Arg Leu Lys Phe Asp Glu Thr Ala Arg
115 120 125

Glu Leu Met Lys Leu Glu Gly Ser Thr Arg Lys Glu Val Cys Ala Ala
130 135 140

Val Lys Ala Phe Asn Lys Asn Gln Val Val Glu Leu Thr Glu Arg Lys
145 150 155 160

Arg Gln Glu Lys Gln Gln Glu Asp Asn Met Thr Glu Ile Thr
165 170 175

Asn Leu Leu His Gly Asp Leu Leu Ser Glu Asn Pro Arg Pro Val Ala
180 185 190

Ser Ser Phe Gly Ser His Arg Val Val Leu Asp Arg Trp Lys Gly Met
195 200 205

Asn Arg Glu Gln Leu Glu Glu Ile Trp Phe Thr Gln Lys Arg Gln Ile
210 215 220

Gln Glu Lys Leu Arg Leu Gln Glu Glu Glu Arg Gln His Ser Met Asp
225 230 235 240

Trp Asp Leu Arg Arg Ile Arg Lys Ala His Ala Ser Leu Leu His Glu
245 250 255

Arg Gln Gln Gln Arg Leu Leu Arg Glu Gln Arg Arg Ala Leu Asp Cys
260 265 270

Ser Asn Leu Asn Leu Ala Arg Gln Gln Tyr Leu Gln Lys Lys Gln Met
275 280 285

Asn	Thr	Ala	Ser	Ser	Ser	Gln	Pro	Thr	Glu	Asp	Tyr	Phe	Ser	Gln	Phe
290						295						300			

Asn Thr Arg Ser Arg
305

<210> 9
<211> 336
<212> DNA
<213> Mus musculus

```
<220>
<221> misc_feature
<222> (108)..(108)
<223> n is a, c, q, or t
```

```
<220>
<221> misc_feature
<222> (159)..(159)
<223> n is a, c, g, or t
```

<220>
<221> misc_feature

```
<223> n is a, c, g, or t  
  
<220>  
<221> misc_feature  
<222> (295)..(295)  
<223> n is a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (333)..(333)
<223> n is a, c, g, or t
```

```
<400> 9
gacatttgta tgtcacagtc tccatcctcc ctggctgtgt cagcaggaga gaaggtaact 60
atgagctgca aatccagtca gagtctgctc aacagttagaa cccgaaaanaa ctacttgtct 120
tggtaccagc agaaaccagg tcagttctcct aaactgctna tctactgggc atccactngg 180
gaatctgggg tccctgatcg cttcacagggc agtggatctg ggacagattt cactctcacc 240
```

atcagcagtg tgcagactga agacctggca gtttattact gcaagcaatc ttatnatctc	300
ttcacgttcg gctccccac aaagttggaa atnaaa	336
<210> 10	
<211> 29	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic primer	
<400> 10	
ttttattaat cacggcaaga aaagcccac	29
<210> 11	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic primer	
<400> 11	
ttttaccggc gcctcagccg cttcc	25
<210> 12	
<211> 278	
<212> DNA	
<213> Mus musculus	
<400> 12	
agaaaaggcc acagaaataa gcaaagctac agcgccgaga agcagcgccc acaaaaagttt	60
gagagcaagt ctgtccggc ggtccgcctt ccgcagcgga gcagggatcc aattccccgg	120
gcaacgccaa cctccgttgt aagcaacggc gcctcgctcg ctctccctcc cccgcgccag	180
tctcgcgaga cttcgaaaag aatttcttcc cgcgctttt tttttttttt tcctcacggg	240
agcacgagga agcggctgag gcacggcgcg cagccatg	278
<210> 13	
<211> 267	
<212> DNA	
<213> Homo sapiens	
<400> 13	
agaacaggcg acgaaaataa ggaagctgta gcgcaggcaa ggtcggctcc ttccggtcggg	60
caggggaaag acaaggcttt agcgcagttt tccgtcgggc tcccagtgac gccgcagagg	120
tacagacgct cccgtctct cggaaatgtc aacaactcgt tgctaaggaa cggctcccg	180
cttgccgcgt ctgcgtctct tctcgcgaca cttggcgaat cccttccgc gctttttccg	240
cgggcgcgttataacgcggg tgaggcg	267