

April 21, 2017

Subspace Projection Methods for Large Scale Image Data Analysis

Ashish Gupta

Alper Yilmaz

Outline

- Introduction
- Big Data & Sub-space analysis
- Visual data
- Semantic analysis & attributes
- Intrinsic dimensionality estimation
- Information theoretic measure of projection
- Sub-space projection methods
- Analysis and Conclusions

Big Data

Visual Data

PASCAL Visual Object Classification challenge dataset

Caltech101 Dataset

OHIO STATE UNIVERSITY

Intra-category appearance variation

Visual Feature & Category parts STATE

OHIC STATE UNIVERSITY

Project semantically equivalent parts

Co-clustering feature descriptors

feature vectors

Group semantically equivalent feature space regions

original data space

Project onto multiple subspaces

Intrinsic Dimensionality

Intrinsic dimensionality was much lower than typically assumed in literature

Intrinsic dimensionality of different visual categories

Measure information in embedded space

Global Methods

- Principal Components
- Multi-Dimensional Scaling
- Stochastic Proximity
 Embedding
- Isomap
- Diffusion Maps

Local Methods

- Locally Linear Embedding
- Locality Preserving Projection
- Neighbourhood Preserving Projection
- Landmark Isomap
- t-Stochastic Neighbourhood Embedding

Renyi entropy based comparison

Classification performance based comparison

Processing time based

com

Summary

- Estimated intrinsic dimensionality was in the neighborhood of 14 of the 128-dimensional descriptor.
- The performance of Locality Preserving Projection in comparison to other embedding methods accentuates the importance of modelling structure in local distributions.

Future Work

- Extend work on images to multi-media data
- Implement sub-space projection on Map-Reduce