



# Teoría de conjuntos

Dr. José Lázaro Martínez Rodríguez

### Introducción

• La teoría de conjuntos es una rama de la lógica matemática encargada de estudiar las propiedades y relaciones de los conjuntos



- Un conjunto es cualquier colección de objetos que pueda tratarse como una entidad.
- A cada objeto de la colección lo llamaremos elemento o miembro del conjunto.
- Se dice que un conjunto contiene a sus elementos

- Hay varias formas de describir un conjunto.
- Una es enumerar todos los miembros del conjunto cuando esto sea posible.
- Para esto se utiliza la notación en la que todos los elementos se enumeran entre llaves.
- El conjunto de las vocales del alfabeto se puede escribir como:
   V={a,e,i,o,u}

- Un conjunto es un grupo de "objetos"
  - Personas de una clase: { Alice, Bob, Chris }
  - Clases ofrecidas por un departamento: { Álgebra, Programación, ... }
  - Colores del arco iris: { rojo, naranja, amarillo, verde, azul, morado }
  - Estados de la materia { sólido, líquido, gas, plasma }
  - Estados de EE.UU: { Alabama, Alaska, Virginia, ... }
  - Los conjuntos pueden contener elementos no relacionados: { 3, a, rojo, Virginia }
- Aunque un conjunto puede contener (casi) cualquier cosa, la mayoría de las veces utilizaremos conjuntos de números
- Todos los números positivos menores o iguales que 5: {1, 2, 3, 4, 5}
- Algunos números reales seleccionados:  $\{2.1, \pi, 0, -6.32, e\}$

- El orden no importa
- A menudo los escribimos en orden porque así es más fácil de entender para los humanos
- {1, 2, 3, 4, 5} es equivalente a {3, 5, 2, 4, 1}
- Los conjuntos se escriben entre llaves

## Conjuntos - duplicados

- Los conjuntos no tienen elementos duplicados
  - Consideremos el conjunto de vocales del alfabeto.
    - No tiene sentido enumerarlas como {a, a, a, e, i, o, o, o, o, u}.
    - Lo que realmente queremos es {a, e, i, o, u}.
  - Consideremos la lista de alumnos de esta clase
    - De nuevo, no tiene sentido enumerar a alguien dos veces
  - Observa que una lista es como un conjunto, pero el orden importa y se permiten elementos duplicados.
    - No estudiaremos mucho las listas en esta clase.

## Conjuntos - nomenclatura

- Los conjuntos suelen representarse con una letra mayúscula (A, B, S, etc.)
- Los elementos suelen representarse con una letra minúscula cursiva (a, x, y, etc.)
- La forma más sencilla de especificar un conjunto es enumerar todos sus elementos: A = {1, 2, 3, 4, 5}
  - No siempre es posible para conjuntos grandes o infinitos.

## Conjuntos - especificación

- Puede utilizar una elipsis (...): B = {0, 1, 2, 3, ...}
- Puede causar confusión. Consideremos el conjunto C = {3, 5, 7, ...}. ¿Qué viene después?
  - Si el conjunto son todos los números enteros impares mayores que 2, es 9
  - Si el conjunto son todos los números primos mayores que 2, es 11
- Se puede utilizar la notación de construcción de conjuntos
  - D =  $\{x \mid x \text{ es primo } y \mid x > 2\}$
  - $E = \{x \mid x \text{ es impar } y \mid x > 2\}$
  - La barra vertical significa "tal que"
  - Así, el conjunto D se lee (en inglés) como: "todos los elementos x tales que x es primo y x es mayor que 2"

## Conjuntos - pertenencia

- Se dice que un conjunto "contiene" los distintos "miembros" o "elementos" que lo componen.
- Si un elemento a es miembro (o elemento) de un conjunto S, se utiliza la notación a ∈ S
- $4 \in \{1, 2, 3, 4\}$
- Si un elemento a no es miembro (o elemento) de un conjunto S, se utiliza la notación a ∉ S
- $7 \notin \{1, 2, 3, 4\}$
- Virginia  $\notin \{1, 2, 3, 4\}$

### Conjuntos comunes

- $\mathbb{N} = \{0, 1, 2, 3, ...\}$  es el conjunto de los números naturales
- $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$  es el conjunto de los números enteros
- $\mathbb{Z}^+ = \{1, 2, 3, ...\}$  es el conjunto de los números enteros positivos.
  - Tenga en cuenta que no hay acuerdo sobre las definiciones exactas de los números enteros y los números naturales.
- $\mathbb{Q} = \{ p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \}$  es el conjunto de los números racionales.
  - Cualquier número que pueda expresarse como fracción de dos enteros (donde el de abajo no sea cero)
- R es el conjunto de los números reales

## Conjunto universal

- *U* es el conjunto universal: el conjunto de todos los elementos (o el "universo") del que se extrae un conjunto cualquiera.
- Para el conjunto {-2, 0, 4, 2}, *U* serían los números reales.
- Para el conjunto {0, 1, 2}, *U* podría ser los números naturales (cero en adelante), los números enteros, los números racionales o los números reales, dependiendo del contexto.

- Los conjuntos pueden contener otros conjuntos
- $S = \{ \{1\}, \{2\}, \{3\} \}$
- T = { {1}, {{2}}, {{{3}}} }
- V = { {{1}, {{2}}}, {{{3}}}}, { {1}, {{2}}} } }
  - ¡V tiene sólo 3 elementos!
- Tenga en cuenta que  $1 \neq \{1\} \neq \{\{1\}\} \neq \{\{\{1\}\}\}\}$
- Todos ellos son diferentes

## Conjunto vacío

- Si un conjunto tiene cero elementos, se denomina conjunto vacío (o nulo).
- Escrito con el símbolo Ø

  - Si en un problema te confundes con el conjunto vacío, prueba a sustituir  $\varnothing$  por  $\{\,\}$
- Como el conjunto vacío es un conjunto, puede ser un elemento de otros conjuntos
  - $\{\emptyset, 1, 2, 3, x\}$  es un conjunto válido

## Conjunto vacío

- Obsérvese que  $\emptyset \neq \{\emptyset\}$ 
  - El primero es un conjunto de cero elementos
  - El segundo es un conjunto de 1 elemento (siendo ese único elemento el conjunto vacío)
- Sustituye Ø por { }, y obtendrás: { } ≠ { { } }
  - Es más fácil ver que no son iguales de esa manera

## Igualdad de conjuntos

- Dos conjuntos son iguales si tienen los mismos elementos
  - $\{1, 2, 3, 4, 5\} = \{5, 4, 3, 2, 1\}$
- Recuerda que el orden no importa
  - $\{1, 2, 3, 2, 4, 3, 2, 1\} = \{4, 3, 2, 1\}$
- Recuerda que los elementos duplicados no importan.
- Dos conjuntos no son iguales si no tienen los mismos elementos
  - $\{1, 2, 3, 4, 5\} \neq \{1, 2, 3, 4\}$

## Diagramas de Venn

- Los conjuntos también se pueden representar gráficamente mediante diagramas de Venn (John Venn).
- En los diagramas de Venn, el conjunto universal U, el cual contiene todos los objetos bajo consideración, se representa por un rectángulo. Dentro del rectángulo se utilizan círculos u otras figuras geométricas para representar conjuntos.
- En ocasiones se utilizan puntos para representar elementos particulares del conjunto.

## Diagramas de Venn

- Representan conjuntos gráficamente
  - La caja representa el conjunto universal
  - Los círculos representan los conjuntos
- Consideremos el conjunto S, que es el conjunto de todas las vocales del alfabeto.
- Los elementos individuales no suelen escribirse en un diagrama de Venn



## Subconjunto

- Si todos los elementos de un conjunto S son también elementos de un conjunto T, entonces S es un subconjunto de T
  - Por ejemplo, si S = {2, 4, 6} y T = {1, 2, 3, 4, 5, 6, 7}, S es un subconjunto de T
  - Esto se especifica mediante S ⊆ T
    - O por  $\{2, 4, 6\} \subseteq \{1, 2, 3, 4, 5, 6, 7\}$
- Si S no es un subconjunto de T, se escribe así S ⊈ T
- Por ejemplo,  $\{1, 2, 8\} \nsubseteq \{1, 2, 3, 4, 5, 6, 7\}$
- Cuando queremos enfatizar que A es un subconjunto de B, pero que A ≠ B, escribimos A ⊂ B y decimos que A es un subconjunto propio de B.

## Subconjunto propio

- Si S es un subconjunto de T, y S no es igual a T, entonces S es un subconjunto propio de T
  - Sea T =  $\{0, 1, 2, 3, 4, 5\}$
  - Si S = {1, 2, 3}, S no es igual a T, y S es un subconjunto de T
- Un subconjunto propio se escribe como S ⊂ T
  - Sea R = {0, 1, 2, 3, 4, 5}. R es igual a T, y por lo tanto es un subconjunto (pero no un subconjunto propio) de T
  - Puede escribirse como:  $R \subseteq T$  y  $R \not\subset T$  (o simplemente R = T)
  - Sea Q = {4, 5, 6}. Q no es ni un subconjunto de T ni un subconjunto propio de T

## Subconjunto propio- diagrama de Venn



## Ejemplo

Indique si los siguientes son subconjuntos propios de A
 A={a | a es vocal}

- {a}
- {b}
- {a,e}
- {a,e,i}
- {z}
- {a,e,i,o,u}

## Ejemplo

- Indique los subconjuntos de B
- B =  $\{x \in \mathbb{Z} \mid 0 < x^2 < 10\}$

$$B=\{-3,-2,-1,0,1,2,3\}$$

- {a}
- **{1**}
- 2
- {1,2}
- {1,2,3,4}
- {1,2,3}

### Cardinalidad

- La cardinalidad de un conjunto es el número de elementos de un conjunto
- Se escribe como |A|
- Ejemplos
  - Sea  $R = \{1, 2, 3, 4, 5\}$ . Entonces |R| = 5
  - |∅| = 0
  - Sea  $S = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ . Entonces |S| = 4
- Es la misma notación que se utiliza en geometría para la longitud de los vectores.
- Un conjunto con un solo elemento se denomina a veces conjunto único.

## Conjunto potencia

- Dado el conjunto S = {0, 1}. ¿Cuáles son todos los subconjuntos posibles de S?
  - Son:  $\emptyset$  (ya que es un subconjunto de todos los conjuntos),  $\{0\}$ ,  $\{1\}$  y  $\{0, 1\}$ .
- El conjunto potencia de S (escrito como P(S)) es el conjunto de todos los subconjuntos de S
  - $P(S) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$
- Nótese que |S| = 2 y |P(S)| = 4

## Conjunto potencia

- Sea  $T = \{0, 1, 2\}.$ 
  - $P(T) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$
- Observe que |T| = 3 y |P(T)| = 8
- $P(\varnothing) = \{\varnothing\}$ 
  - Obsérvese que  $|\emptyset| = 0$  y  $|P(\emptyset)| = 1$
- Si un conjunto tiene n elementos, entonces el conjunto potencia tendrá 2<sup>n</sup> elementos

## $\in$ y $\subseteq$ son diferentes

Por ejemplo:

```
1 \in \{1\} es verdadero 1 \subseteq \{1\} es falso \{1\} \subseteq \{1\} es verdadero
```

Cuales de las siguientes declaraciones es verdad?

```
S \subseteq P(S)
S \in P(S)
```

## Tuplas

- Como los elementos de un conjunto están desordenados, se requiere una estructura diferente para representar colecciones ordenadas.
- La n-tupla ordenada  $(a_1, a_2, \ldots, a_n)$  es la colección ordenada en la que  $a_1$  es su primer elemento,  $a_2$  el segundo, ... y  $a_n$  el elemento n-ésimo.
- Dos n-tuplas ordenadas son iguales si, y sólo si, cada par correspondiente de sus elementos es igual. En otras palabras,  $(a_1,a_2,...,a_n) = (b_1,b_2,...,b_n)$  si, y sólo si,  $a_i = b_i$ , para i = 1,2,...,n.
- Las 2-tuplas se llaman pares ordenados. Los pares ordenados (a,b) y (c,d) son iguales si, y sólo si, a=c y b=d. Observa que (a,b) y (b,a) no son iguales, a no ser que a = b.

## Tuplas

- En el espacio de 2 dimensiones, es un (x, y) par de números para especificar una ubicación
- En el espacio tridimensional (1,2,3) no es lo mismo que (3,2,1), es una tripleta de números (x, y, z).
  - En un espacio de n dimensiones, es una n-tupla de números.
  - En el espacio bidimensional se utilizan pares o 2tuplas.
  - El espacio tridimensional utiliza tripletas, o 3 tuplas.
- Obsérvese que estas tuplas están ordenadas, a diferencia de los conjuntos.
  - el valor x tiene que ser el primero



- Un producto cartesiano es un conjunto de todas las 2-tuplas ordenadas donde cada "parte" es de un conjunto dado
  - Se denota por A x B, y utiliza paréntesis (no corchetes).
  - Por ejemplo, las coordenadas cartesianas bidimensionales son el conjunto de todos los pares ordenados Z x Z
    - Recordemos que Z es el conjunto de todos los números enteros.
    - Se trata de todas las coordenadas posibles en el espacio bidimensional.
- Ejemplo: Dados A = { a, b } y B = { 0, 1 }, ¿cuál es su producto cartesiano?
  - $C = A \times B = \{ (a,0), (a,1), (b,0), (b,1) \}$

- Nótese que los productos cartesianos sólo tienen 2 partes en estos ejemplos (los ejemplos posteriores tienen más partes)
- Definición formal de un producto cartesiano:
- $A \times B = \{ (a,b) \mid a \in A \vee b \in B \}$

- Todas las posibles calificaciones de esta clase serán un producto cartesiano del conjunto S de todos los alumnos de esta clase y el conjunto G de todas las posibles calificaciones
- Sea S = { Alice, Bob, Chris } y G = { A, B, C }
- D = { (Alice, A), (Alice, B), (Alice, C), (Bob, A), (Bob, B), (Bob, C), (Chris, A), (Chris, B), (Chris, C) }
- Las calificaciones finales serán un subconjunto de esto: { (Alice, C), (Bob, B), (Chris, A) }
  - Este subconjunto de un producto cartesiano se denomina relación (más adelante en el curso se tratará este tema).

- Puede haber productos cartesianos en más de dos conjuntos
- Una coordenada 3D es un elemento del producto cartesiano de Z x Z x
   Z
- El producto cartesiano de los conjuntos  $A_1$ ,  $A_2$ , . . . ,  $A_n$ , denotado por  $A_1 \times A_2 \times . . . \times A_n$ , es el conjunto de n-tuplas  $(a_1, a_2, ..., a_n)$ , donde  $a_i$  pertenece a  $A_i$  para i = 1, 2, ..., n.
- En otras palabras:

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \ para \ i = 1, 2, \dots, n\}$$

- Ejemplo, cual es el producto cartesiano de A × B × C , donde
- $A=\{0,1\}$  y  $B=\{1,2\}$  y  $C=\{0,1,2\}$ .
- $A \times B \times C = \{(0,1,0),(0,1,1),(0,1,2),(0,2,0),(0,2,1),(0,2,2),(1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2)\}$

- Obtenga el producto cartesiano de los conjuntos AxB
- $A = \{a,b,d\}$
- B =  $\{x \in \mathbb{Z} \mid 0 < x^2 < 17\}$

Enumera los miembros de los siguientes conjuntos

- 1.  $\{x \mid x \text{ es un número real positivo tal que } x^2 = 1\}$
- 2. {x | x es un número entero positivo menor que 12}
- 3.  $\{x \mid x \text{ es el cuadrado de un entero y } x < 100\}$
- 4.  $\{x \mid x \text{ es un número entero tal que } x^2 = 2\}$

- Supongamos que A = {2,4,6}, B = {2,6}, C = {4,6} y D = {4, 6, 8}.
   Determine cuáles de estos conjuntos son subconjuntos de cuáles.
- Cuál es el cardinal de estos conjuntos:
  - 1. {a}
  - 2. {{a}}
  - 3. {a, {a}}
- Obtenga el conjunto potencia de estos conjuntos:
  - 1.  $A=\{2,4,6\}$
  - 2.  $B=\{a,b,c,d\}$
  - 3.  $C=\{a,0,b\}$

- Sean A = {a,b,c,d} y B = {y,z}. Obtén:
  - 1.  $A \times B$
  - $2. B \times A$
- Sean A =  $\{a,b,c\}$ , B =  $\{x,y\}$  y C =  $\{0,1\}$ . Obtén:
  - 1.  $A \times B \times C$
  - $2. C \times B \times A$
  - $3. C \times A \times B$
  - 4.  $B \times B \times B$
- ¿Cuántos elementos distintos tiene A × B si A tiene m elementos y B tiene n?