Variants of Neural Networks

Convolutional Neural Network (CNN)

Recurrent Neural Network

(RNN)

Neural Network with Memory

Example Application

Slot Filling

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Taipei

1-of-N encoding

How to represent each word as a vector?

```
1-of-N Encodinglexicon = {apple, bag, cat, dog, elephant}The vector is lexicon size.apple = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}Each dimension correspondsbag = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}to a word in the lexiconcat = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}The dimension for the worddog = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}is 1, and others are 0elephant = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}
```

Beyond 1-of-N encoding

w = "Sauron"

Dimension for "Other"

apple 0 0 0 cat 0 0 dog 0 0 elephant 0 i 1

w = "Gandalf"

Word hashing

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Output:

Probability distribution that the input word belonging to the slots

Example Application time of dest departure y_1 y_2 arrive 2nd Taipei November on other dest other time time Problem? 2nd **November** leave Taipei on place of departure Neural network Taipei X_2

needs memory!

Three Steps for Deep Learning

Deep Learning is so simple

Recurrent Neural Network (RNN)

RNN

The same network is used again and again.

The values stored in the memory is different.

Of course it can be deep ...

Bidirectional RNN

Long Short-term Memory (LSTM)

LSTM

LSTM

LSTM

Extension: "peephole"

https://img.komicolle.org/2015-09-20/src/14426967627131.gif

Three Steps for Deep Learning

Deep Learning is so simple

Learning Target

Three Steps for Deep Learning

Deep Learning is so simple

Learning

RNN Learning is very difficult in practice.

Unfortunately

RNN-based network is not always easy to learn
 Real experiments on Language modeling

The error surface is rough.

Why?

$$w=1$$
 \Rightarrow $y^{1000}=1$ Large $\partial L/\partial w$ Learning rate?

 $w=0.99$ \Rightarrow $y^{1000}\approx 0$ small $\partial L/\partial w$ Large Learning rate?

 $w=0.01$ \Rightarrow $y^{1000}\approx 0$ \Rightarrow $y^{$

