

Appendix H

Title:
Macro Specification
TB data sheet

1 Introduction

1.1 Overview

The Transmit Buffer (TB) provides channelwise buffering of raw data/status words between a Data Management Unit Transmit (DMUT) and a Protocol Machine Transmit (PMT). This data is stored in form of (internal) linked lists for all logical channels. These linked lists are pre-allocated according to bandwidth requirements of the respective channels: a channelwise buffersize is allocated via a channelwise programmable parameter ITBS (Individual Transmit Buffer Size). ITBS has a granularity of 1 dword. In order to avoid transmit underrun conditions each channel buffer has two control parameters for smoothing the filling/emptying process (Transmit Threshold, Request Threshold)

The transmit enable threshold value TTC has following impact:

- Transmission of channel data is started if more than the transmit threshold number of words are stored in the internal transmit buffer or if at least one word with a complete indication (CI bit, see interface description TB-DMUT) is stored in channel buffer. Otherwise an empty indication (TB_PTEEMPTY) will be delivered to PMT. This feature is always active. Typically after a configuration command or after 'TB empty' condition, but also while frame oriented data transfer this feature reduces the probability of data underrun. Applications without CI-feature leads to a single activation of transmit threshold feature after a 'transmit init' command. After first transmit enable transmission of data will never be interrupted through a fill level below threshold.

The burst threshold value TBTC has following impact:

- As soon as the amount of empty channel buffer locations gets above the threshold value the TB will request data from the transmit DMU (DMUT).

TB works mode and frame independent. TB transfers data (even the status bit) absolutely transparent and fulfills a channelwise buffering and an efficient data burst request generating.

1.2 Features incl. performance, number of gates

- Number of gates: depends strongly on TB dimensions (see dimensions in M256F implementation in chapter 5)
- Performance: The overall limitation of data throughput is the PMT interface: each 5th cycle a read access to TB is allowed.
- SMIF register interface or alternatively Target FPI interface for configuration of TB (transmit init, off and idle commands), system test (read of programmable parameter 'burst threshold', 'transmit threshold' and 'channel buffer size' via channel debug command) and testmode (read/write of all internal rams via indirect test register access)

- Interface to DMUT and PMT is FPI like
- interrupt controller (IC) interface with channelwise interrupt generation (configuration fail interrupt, not maskable)
- Programmable FIFO size for each channel (ITBS)
- Programmable burst threshold for DMUT request generation (TBTC) and transmit enable threshold (TTC)
- implementation specific number of supported channels, complete buffer size and burst and transmit threshold codes (number of codes and codes itself). Burst and transmit thresholds are independent.

Figure 1
Threshold Feature

- t0: 'transmit init' command, TB sent request to DMUT (ITBS data words); at t0 DMUT starts data transfer to TB
- t0 - t1: DMUT writes (some) data to TB; NW (number of words) is still below TTC; transmit not yet enabled
- t1: NW=TTTC, TB is enabled to transfer data to PMT
- t1 - t2: DMUT is still writing data to TB, PMT reads data from TB; fill rate is slowed down
- t2: all initial (=ITBS) requests served, DMUT stops writing data to TB
- t2 - t3: PMT reads data
- t3: after $NW < (ITBS - TBTC)$ a data request has been sent to DMUT; at $t=t3$ DMUT starts data transfer back to DMUT
- t3 - t4: PMT reads more data than DMUT can deliver; NW decreases;

- t4 - t5 (dotted line): at t4 a new frame would start being transmitted to PMT, but NW<TTC; therefore transmit is again disabled until NW=TTC; at t5 NW=TTC and data are transferred to PMT. DMUT fills TB (DMUT write is faster than PMT read)
- after t4 (line): in case of no complete indication (no frame end) data will be still transferred to PMT, the data fill up rate is smaller than in "dotted" case.

1.3 System IntegrationSystem Integration and Application

Figure 2
System Integration

The TB has four interfaces:

- SMIF / FPI Slave Interface for programming and system test
- DMUT interface for burst capable data transfer from external memory
- PMT interface for protocol interface
- DMUI interrupt interface

1.4 Known Restrictions and Problems

The maximum data throughput depends on data bus width, system clock frequency and the programmed configuration of TB.

PMT limitation: The maximum speed of PMT interface is 1 data transfer per 5 cycles. This is a short term maximum throughput. TB is able to handle an average throughput of 1 data per 20 clock cycles.

With higher burst thresholds and less number of activated channels this average increases.

A further limitation is the behaviour of TB-DMUT-interface: DMUT allows no interleaving of burst request and data transfer, i.e. first a read of request register is done, then either

the data are served or the request is stored in DMUT (e.g. HOLD condition in DMUT, see DMUT specification). Afterwards the read of request register is done.

2 Functional and Test Description

2.1 Block Diagram

Figure 3
TB Block Diagram

As described in the Figure 3, the Transmit Buffer consists of

- Central Data Buffer and link list (TB_CDB)
- Central Parameter Table (TB_CPT) and configuration FIFO (TB_CFG)
- Central Action Queue (TB_CAQ)
- Controller (TB_CON).

Those blocks build the core functionality. Additionally TB has a FPI like DMUT (TB_DMUT) and a FPI like PMT (TB_PMT) interface. TB macro has an internal SMIF interface (TB_SMIF). Therefore TB offers both

- SMIF and
- TFPI interface (TB_BPI implementation is an optional part of TB Macro).

2.2 Normal Operation Description

After reset all rams are initialized: each ram address is written with idle values and a global link list is set. If initialisation is ready, TB asserts TB_IIP inactive (Duration of initialisation depends on size of largest ram, typically data buffer is ram with highest depth: number of words is equal duration in cycles).

Afterwards TB could be configured via TFPI/SMIF interface: a channel command consists of 2 write accesses (TB point of view): first the channel specification buffer register (CSPEC_BUFFER) has to be written with the buffer parameters, then a write of the channel specification command register (CSPEC_CMD) specifies the channel number and the desired command (init, off).

All commands are written into a configuration fifo. This fifo can't be read before GC_STOP is deasserted. Therfore TB won't generate a data request and can't transfer data to PMT during this 'stop' phase.

When GC_STOP becomes inactiv, the configuration fifo is read.

A transmit init command leads to an allocation of the requested buffer size (ITBS) and writes the according channel number into action queue. When this action queue is read a data request to DMUT is asserted. After an init command, TB always requests a number of ITBS data from DMUT. Later, the number of requested data will be a function of TBTC, i.e. TB will always request equal or more then TBTC data. When 'transmit threshold' condition is fullfilled, TB delivers data according to a PMT read access. Otherwise TB sets an empty indication (TB_EMPTY).

A transmit off command deactivates the channel and discards all stored channel data. The previous allocated buffer locations become available. The next request to DMUT indicates with DEL=1, that this channel is switched off and all stored requests in DMUT have to be cancelled. RTL has to be ignored and no further requests are generated. All further PMT reads will be acknowledged by TB_EMPTY.

As long as no or less then TTC data are stored in TB, each PMT request is answered with an TB_EMPTY indication.

Incoming data from DMUT will be stored in TB data buffer (TB_DB) by using the first element from a free pool list. A read request from the PMUT causes the TB to read next data in the channel data buffer (link list) and to add the read and therefore emptied location to the free pool list.

Table 1

Request Register for data request from TB to DMUT

Bit	P1			P2	P3			P4	P5
Function	DEL	Reserved		RTL (requested transfer length)	Reserved			CHN (Channel number)	

Table 2
Request Register for data transfer acknowledge from DMUT to TB

Bit	P6			P2	P3			P4	P5
Function	CI	Reserved		STL (served transfer length)	Reserved			CHN (Channel number)	

Bitpositions, defined in tb_package:

P1:tb_dt_crcl_pb_c
P2:tb_dt_crbl_lb_c
P3:tb_dt_crbl_rb_c
P4:tb_dt_crchn_lb_c
P5:tb_dt_crchn_rb_c
P6:tb_dt_crcl_pb_c

The status of each logical channel is stored in the Parameter Table TB_PT. As soon as the amount of data stored in the TB gets below the programmable threshold (buffer size minus burst size) for a specific channel, an entry to the action queue (TB_AQ) is made. TB_AQ is a FIFO which is dimensioned according to the number of channels (depth = number of channels). For each channel only one entry is possible. Only the channel number is stored. When the next entry of TB_AQ is read, a request TB_DTREQ from TB to DMUT is generated with the number of actual empty buffer locations of corresponding channel. Both channel number (CHN) and the number of words (RTL) are written to the request register (read access, refer to Table 1). After TB_DTREQ the DMUT has to read the request register and then read the corresponding number of data via external bus interface (PCI) and write them back to TB: before data transfer DMUT writes channel number (CHN) and the number of served length (STL) into request register (write access, refer to Table 2). If the last word of the data transfer will be a word that allows data transfer to PMT independent of number of data stored in TB, CI is activated. In some application a frame end (FE) or abort (TAB) indication could force DMUT to set CI. CI=1 enables transmission of all data stored in TB.

Unserved or uncompletely served TB requests are stored in DMUT. In HOLD condition TB will continue to request data from DMUT if the request condition is valid. The unserved requests are stored in DMUT. After transfer of the remaining data to PMT TB will become empty. Afterwards TB sets the TB_EMPTY line to PMT. PMT will decide if

it is an abort condition or not (in the first case generate an underrun interrupt and in the second case send the idle character). This channel remains inactive as long as the host CPU does not request an activation of DMUT. After activation of DMUT (e.g. 'hold reset' command) all stored requests have to be served to TB. In case of no activation a 'transmit off' switches this channel to 'idle' condition and gives all reserved buffer locations free.

Status bits and flags have no impact to TB behaviour. E.g. FE (frame end), TAB (transmit abort) and BE (byte enables) bits are transferred transparently from DMUT through TB to PMT as all other data.

Transfers to the PMT are performed as single word for each channel. The TB provides a control flag (TB_PTSTAT) indicating the word type.

2.2.1 TB Controller (TB_CON)

The central controller is devided into 3 parts:

- serial controller
- data transfer controller
- configuration controller

The *serial controller* reacts on PT_RD requests: all channel parameters are read, data buffer location is read (inclusive link list, i.e. next pointer). Data are delivered to PMT interface and next pointer is written back to parameter table. The number of empty locations is increased and the free cell is added to free pool. TB_EMPTY is asserted if no/not enough data are stored. If burst condition is fulfilled, an action queue entry is written to AQ ram. Only one entry per channel is possible in AQ ram.

The *data transfer controller* is started by a not empty AQ ram. The channel number of AQ entry is used to read all parameters for this channel: the number of actually free channel locations is transferred to DMUT via request register entry. The channel parameters are updated, i.e. number of free cells is set to 0 and written back to parameter table ram.

A DMUT write has to be initiated by a write of request register: served transfer length has to be specified, channel number and CI bit (CI=1 shows, that data transfer ends with a status word). These informations are used when updating channel parameters after writing data to data buffer. With each write of data buffer at first cell of free pool, the free pool pointer has to be updated with next pointer. In case of a burst write, the next pointer has to be read and therefore at least 1 wait state has to be inserted.

The *configuration controller* creates/discards channel buffer (transmit init, off, debug) and controls IIP phase. Also testmodi are controlled via this FSM.

2.2.2 TB Parameter Table (TB_PT)

The TB_PT RAM provides a control word per channel for buffer management:

- Channel burst and transmit enable threshold, buffer size
- Count of empty words in channel's buffer chain not already sent to DMUT
- Count of stored words in channel's buffer chain
- Pointers to start and end of buffer chain (DB read and write addresses)
- Complete channel buffer status and complete indication pointer

RAM size:

NumChan (NC) words X (6N + TBTB + TTC + 4) bit RAM .

Table 3: All channel parameters:

ITBS (N)	TBTC (TBTB)	TTC (TTC)	FIRST (1)	AQE (1)	WAIT (1)	CIPV	CIP (N)	FCTR (N)	ECTR (N)	WP (N)	RP (N)
-------------	----------------	--------------	--------------	------------	-------------	------	------------	-------------	-------------	-----------	-----------

ITBS: individual transmit buffer size

total buffer size reserved for channel. Max size is $(2^N - 1)$ entries, min. size is 1 entry.
Summary of all buffers is DBS entries.

TBTC/TTC: transmit burst threshold code/transmit enable code

FIRST: wait for first data after configuration

The first data entry after configuration has special conditions

AQE: action queue entry

action queue entry (only one entry per channel allowed);

WAIT: transmission wait until transmit enabled

Channel start of transmit disabled until threshold reached or one complete frame is stored in channel buffer.

CIPV: pointer to last data with a complete indication flag (CI) is valid.

CIP: pointer to last data with a complete indication flag (CI).

FCTR: full counter

number of filled locations in channel buffer. If FCTR = 0 an TB_EMPTY indication is set.

ECTR: empty counter

number of empty locations in channel buffer. If ECTR is bigger than threshold, an action queue entry has to be made

RP: read pointer

Pointer for PMT data requests; RP shows next location to be read.

WP: write pointer

Pointer for DMUT data transfers; WP shows to last written location.

TB_PT block also includes a free pool pointer (FPP) and a free pool counter (FPC).

note: N is dependent on number of words DBS in the DB RAM.

$$2^{N-1} < DBS \leq 2^N$$

2.2.3 TB Data Buffer and link list (TB_DB)

The TB_DB size (DBS) is influenced by:

- number of channels supported
- sum of channel bit rates
- thresholds
- maximum bus latency

The data buffer locations are connected to a logical buffer by a pointer link list. The link list has the width N and the depth DBS. Each entry specifies the next data buffer element.

2.2.4 TB Action Queue (TB_AQ)

FIFO to buffer requests from TB to the DMU Transmit. An entry specifies only the channel number:

Size: number of channels x channel bus width

2.2.5 TB Configuration (TB_CFG)

FIFO to buffer the configuration requests from TFPI/SMIF,

Table 4: All locations:

ITBS (N)	TBTC (TBTB)	TTC (TTB)	CHN (CHN)
-------------	----------------	--------------	--------------

A buffer create command forces an entry with ITBS>0, a buffer delete command forces an entry with ITBS=0.

Size: number of channels x (N + TBTB + TTB + CHN)

ITBS: individual transmit buffer size

total buffer size reserved for channel. Max size is (2^N-1) entries, min. size is 1 entry.
Summary of all buffers is DBS entries.

TBTC/TTC: burst threshold code/transmit enable code

CHN: channel number

2.3 Reset Behavior

The TB is reset with the line RESET_N.

All internal registers are reset while reset condition; after reset all rams are initialized to known states (RESET state), while TB_IIP is active. The initialisation time depends on the complete data buffer size, because an initial link list in the link list ram has to be generated. During this time it is not possible to write via TFPI to TB registers. It is only allowed to write to non TB implemented TFPI registers.

After initialisation TB_IIP becomes inactive and transmit buffer TB is ready for configuration and data transfer.

After reset/initialisation all interfaces (PMT, DMUT, IC) are inactive and the registers are accessible via the TFPI bus / SMIF for configuration.

For a fast configuration the line GCSTOP can be activated to suppress all other interface communication. If GCSTOP is asserted only TFPI interface is active and TB creates no TB_DTREQ and delivers no data in case of a PMT_RD_N (TB delivers TB_EMPTY).

Figure 4
Reset Concept

3 Interfaces and Signal Description

The target of the TB macro are devices that use FPI bus for internal interfaces.

All signals are active high until otherwise specified. Active low signals are designated by “_N” (FPI mode) appended to their names. To make the design as re-usable as possible, a bus signal whose width is application dependent is specified with one of the following parameters:

Parameter name	Bus Type
CNB	Channel Number Bus
DBB	Data/Status Bus
TTC	Threshold Transmit Code
TBTC	Threshold Burst Code
ITBS	Buffer Size Bus
RTL/STL	Request/Served Burst Length Bus
N	Link List Pointer Bus/ Data Buffer Address Bus
TFPIAB	TFPI address bus (MSB)

3.1 Signal Description

In the following sections, “Flexible Peripheral Interconnect (FPI) Bus compliant” means that the specified bus uses a subset of the FPI features and satisfies the basic address and data cycle. Not all FPI signals are implemented because default values are sufficient for the application i.e. they can be coded as constants in the hardware. Refer to the FPI bus specification for details of the complete bus.

The following tables lists the FPI-Bus signals and two additional out-band signals:

- TB_STAT to indicate to PMT if transferred word is status instead of pure data. Captured by PMT during data phase.
- TB_EMPTY to indicate to PMT when the TB has no data stored for requested channel.
- TB_REQ_N to indicate that at least for one channel the number of empty cells has reached the programmed burst threshold size.
- DTSTAT while data phase of DMUT to indicate if transferred word is status instead of pure data. Status bit is transferred transparently through TB to PMT.

Table 5
Macro Interfaces and Signal Description

Symbol name	I/O	Function
-------------	-----	----------

Clock and Reset

SYSCLK	I	Internal system clock (66 MHz)
RESET_N	I	General reset of TB. All registers and RAM reset or initialization.
GCSTOP	I	Stop all non configuration process in TB (fast programm mode)
TB_IIP	O	Initialization of TB rams in progress

Protocol Machine Receive (PMT) Interface

PTRD_N	I	PMT read. Only single word write transfer is supported.
PTA [CNB-1:0]	I	Address bus. Specifies channel number for transfer.
TB_PTD [DBB-1:0]	O	TB Data/Status word being transferred to PMT.
TB_PTRDY	O	Ready. End of data transfer indication. 0 => TB inserts wait state. 1 => TB will finish transfer during next clock cycle.
TB_PTSTAT	O	additional status bit
TB_PTEEMPTY	O	Asserted for one cycle while PMT read if TB has no data stored for the channel specified by the address bus.

DMU Transmit (DMUT) Interface

DTA	I	Address bus (1 bit) 0 => Request register. 1 => Data register.
DTRD_N	I	DMUT Read (of request register)
DTWR_N	I	DMUT Write (of request register or data register)
DTD[DBB-1:0]	I	Input for request register of data register

Table 5
Macro Interfaces and Signal Description (cont'd)

Symbol name	I/O	Function
DTSTAT	I	Status indication from DMUT
TB_DTREQ_N	O	Service request from TB to DMUT controller. Asserted as long as TBAQ is not empty.
TB_DTD[DBB-1:0]	O	Data out. Request register from TB to DMUT
TB_DTRDY	O	Ready. End of data or command transfer indication. 0 => TB inserts wait state. 1 => TB will finish transfer during this clock cycle.

SMIF interface

BPI_DATA[DBB-1:0]	I	BPI data input
BPI_RD_SFR_N[3:0]	I	BPI read signals
BPI_WR_SFR_N[3:0]	I	BPI write signals
BPI_REQ_N	I	BPI request (asserted with read or write)
TB_BPI_DATA[DBB-1:0]	O	BPI data output
TB_BPI_RDY_N	O	BPI ready (asserted in data cycle of read/write access)

FPI Slave Interface (alternatively to SMIF interface)

TFPI_SEL_N	I	Slave select.
TFPI_A[TFPIAB-1:2]	I	Address bus.
TFPI_D[DBB-1:0]	I	Input Data. Active during data phase of write cycle.
TFPI_WR_N	I	TFPI write to TB
TFPI_RD_N	I	TFPI read TB
TFPI_RDY	I	TFPI ready input
TB_TFPI_RDY	O	Ready. End of transfer indicator: 0 => Master should insert wait states 1 => TB will complete transfer in this cycle
TB_TFPI_RDY_EN	O	RDY output enable
TB_TFPI_D[DBB-1:0]	O	Output Data. Active during data phase of write cycle.

Table 5
Macro Interfaces and Signal Description (cont'd)

Symbol name	I/O	Function
TB_TFP1_D_EN	O	D output enable

Interrupt Controller (IC) Interface

ICTBGNT_N	I	Grant Line
TB_ICREQ_N	O	Request Line
TB_ICD[DBB-1:0]	O	TB interrupt vector data
TB_ICD_EN	O	TB interrupt vector data enable

3.2 Data Flow and Functional Timing

3.2.1 TB Interface to the Protocol Machine Transmit (PMT)

The PMT initiates an address cycle by asserting the read signal PTRD_N. TB captures the channel number from the address bus PTA during this cycle. During the data phase, PMT captures the data as soon as possible. TB asserts TB_PMTRDY during the clock cycle in which it can complete the data transfer.

Two out-of-band signals are required

1.TB_STAT to indicate if transferred word is status instead of pure data. Captured by PMT during TB_PTRDY.

2.TB_EMPTY to show PMT when the TB has no channel data stored. Also captured by PMT during TB_PTRDY (TB_PTD and TB_PTSTAT are not valid).

TB inserts 1 upto 4 waitstates after PTRD_N. Therefore TB can handle a PTRD_N each fifth cycle.

Figure 5
Read Access from PMT to TB

3.2.2 TB Interface to DMU Controller Receive (DMUT)

The TB interface to the DMUT is based on a bidirectional FPI slave bus. TB initiates a request register access from DMUT by activating TB_REQ_N. The read select signal SEL_N is implicitly active and not physically present. Also OPC is physically not present. DMUT sees TB as a request register at address 0 and a FIFO data port at address 1. Only 1 address bit is defined on the bus.

Two out-of-band signals are required:

- 1.TB_REQ to indicate that Action Queue FIFO is not empty.
- 2.DTSTAT to indicate if word in the burst is status instead of pure data. This signal is only valid for current data in DMU transfer.

Data request fromTB: After asserting TB_DTREQ_N DMUT initiates an address cycle (address 0). During the data cycle, TB returns the request register value (channel number and number of requested data) and asserts TB_DTRDY (possible wait states).

After preparing transmit data/status DMUT initiates an address cycle (address 0). During the data cycle DMUT writes channel information and transferlength back to request register. If last word contains frame end or abort indication CI bit is active. DMUT then transfers BL words with overlapped cycles. TB will insert wait states. In best case, a burst cycle can occur with 2 wait states but internally, the PMT and configuration interfaces have higher priority. In the following figures, a burst request from TB to DMUT (Figure5) and a data transfer from DMUT to TB is shown. TB may provide several burst requests for different and even the same channel (compare chapter , HOLD condition). DMUT (Figure 6) inserts several wait states after writing served burst length and channel number to request register at address 0. An ideal transfer with no collision with a PMT request (2 wait states) an one access with a collision is shown (3 wait states). TB inserts wait states by delaying TB_DTRDY.

The efficiency of the DMU transfers improves with burst length. The peak throughput (not sustainable) can approach 1 word/3 clock with long bursts. However it is ultimately limited by the PMT interface access of the internal buffer RAM. Each word transferred during a TB-DMUT data cycle inserts up to 2 wait states by TB_DTRDY.

Note that DMUT must always read and write the request register for a burst data transfer.

After setting up a new buffer, TB will request data from DMUT by its own. This request could be used as a 'command acknowledge' indication to generate a command complete interrupt (e.g. done by DMUT). In case of a 'buffer delete' ('transmit off') command, TB discards all stored data and sends a DEL command to DMUT (RTL is not valid). This request could also be used as a 'command acknowledge' indication to generate a command complete interrupt (e.g. done by DMUT).

Figure 6
Burst request from TB to DMUT

Figure 7
DMUT to TB: 2 data word transfer with wait states

3.2.3 TB Interface to FPI Configuration and Control Bus (FPI Slave) or SMIF interface

The FPI slave interface provides read and write access to all internal data and RAM. It also provides the programming interface for channelwise buffer size (ITBS) and threshold values (TBTC, TTC). To change a channel configuration (buffer size and threshold) a configuration command has to be written to command register. According to the programmed values TB controller deletes or sets up a buffer. Only in case of an error condition (not enough free buffer locations for new ITBS) an interrupt is requested to DMUI. Several configuration commands can be written very fast and stored in a configuration fifo if GCSTOP is asserted. In this case, all other interfaces are deactivated. All configuration commands are executed according to the fifo entries.

FPI Slave interface also provides system test capabilities. Each ram location can be read and written for test purposes. For reading (and writing) rams an autoincrement function is implemented: TYPE in command register (**chapter 4**) specifies the ram and the autoincrement feature interprets all data register read (write) as a read (write) data at next ram address.

The command address is implementation dependent. Figure 7 shows an implementation with command address '0' for channel number, address '1' for channel parameter ITBS, TTC and TBTC.

Figure 8
Configuration of a new channel

Note: TFPI interface is an 'add on'. TB macro offers a SMIF register interface with read/write signals for all readable/writeable register. As via TFPI, a transmit init/off command is executed with a write of the channel specification command register/address, a

transmit debug command is excuted with a read of channel specification buffer register after a previous write of the debug command.

3.2.4 Interrupt Controller Interface (IC)

In case of not allowed combinations ITBS/TTC/TBTC a command failed (CMDF) interrupt is generated. TB delivers also a macro interrupt ID and channel number for which the 'transmit init' command failed. Another cause for CMDF is the situation, when ITBS is higher than the amount of remaining global free pool locations (i.e. all currently activated channels plus new command need buffer locations smaller than ITBS).

TB activates TB_IC_REQ_N to indicate an interrupt vector on TB_IC_D. Data are valid in cycle after IC_DTGNT

Table 6
Interrupt Vector

Bit	P1	P2		P3		P4	P5
Function	IID	reserved	CDMF	reserved	CHN		

IID: interrupt ID (parameter)

CMDF: command fail interrupt (bit position is parameter)

CHN: channel number

Bitpositions defined in tb_package:

P1: tb_ic_did_lb_c

P2: tb_ic_did_rb_c

P3: tb_ic_derr_c

P4: tb_ic_dchn_lb_c

P5: tb_icd_dchn_rb_c

Figure 9
Interrupt Controller Interface

4 Register Description

4.1 Register Overview

Registers have to be provided to configure the channels (FIFO size, threshold value and channel number) and to read and write the internal RAMs (indirect access). and channel parameters.

4.2 Detailed Register Description

Configuration registers can be gathered together (TTC, TBTC, ITBS, CHN in one single register) or divided in several registers implementation dependent. Bit positions are also implementation dependent.

Following solution shows 5 register solution; with each write of the channel command register, a new configuration command is written to a configuration FIFO in TB.

Note 1: A new configuration is started with write of channel command register. To programm all channels in the same manner, only for one channel the TTC, TBTC, ... registers have to be written!

Note 2: After a successfull 'buffer create' command (i.e. buffer exists) first a 'buffer delete' command has to be given, before the next 'buffer create' can be programmed. For details see chapter 2.

Note 3: 'P' indicates that this bit position/bus width is a parameter.

4.2.1 Channel Command Register

Access	: write/read
Address	: tb_vcs_cmd_adn_c
Reset Value	: 00000000 _H

P1	P2	P3	P4
Reserved	command	Reserved	CHN

CHN (number of bits and position are parameters):

channel number

CMD (number of bits and position are parameters):

channel command: TB provides 3 commands

- buffer create ('transmit init'),
- buffer delete ('transmit off'),
- buffer parameter debug ('transmit debug') command.

Bitpositions defined in tb_package:

P1: *tb_vcs_bxcom_lb_c*
P2: *tb_vcs_bxcom_rb_c*
P4: *tb_vcs_chn_lb_c*
P5: *tb_vcs_chn_rb_c*

4.2.2 Buffer Parameter Register

Access : write/read
Address : *tb_cvbs_adn_c*
Reset Value : 00000000H

P1	P2	P3	P4	P5	P	P6
reserved	TTC	reserved	TBTC	reserved		ITBS

TBTC (number of bits and position are parameters):

Burst Threshold Code.

0: burst threshold = 1 word

others: burst threshold = $2^{(TBTc+1)}$ words (as an example, coding is also a parameter)

TTC (number of bits and position are parameters):

Transmit Threshold Code.

0: burst threshold = 1 word

others: burst threshold = $2^{(TTC+1)}$ words (as an example, coding is also a parameter)

ITBS (number of bits and position are parameters):

Individual Transmit channel Buffer Size = ITBS words

Bitpositions defined in tb_package:

P1: *tb_tb_vcs_ttc_lb_c*
P2: *tb_tb_vcs_ttc_rb_c*
P3: *tb_tb_vcs_btc_lb_c*
P4: *tb_tb_vcs_btc_rb_c*
P5: *tb_tb_vcs_itbs_lb_c*
P6: *tb_tb_vcs_itbs_rb_c*

4.2.3 Indirect Access Register: Address

All rams and some register can be read/written by writing 'indirect access register address'. If autoincrement function is selected, with each read/ write access to 'indirect access register data' the next ram address is read/written. Only a startaddress has to be

defined. Autoincrement may be stopped (no read/write) or interrupted (by new TYPE definition).

Access : read/write
Address : *tb_tac_adn_c*
Reset Value : 00000000_H

P1	P2	P3	P4	P5
MID	reserved	AINC	reserved	COMMAND

P6 P7

Channel#/Address

MID:

Macro Identification Number; access defined by TYPE etc. is only performed if MID matches the (implementation specific) ID.

AINC:

Automatic Incrementation

AINC=1 : The address will be automatically incremented with each read or write access

AINC=0 : The address won't be incremented (default value).

Bitpositions defined in tb_package:

P1: *tb_vg_mid_lb_c*
P2: *tb_vg_mid_rb_c*
P3: *tb_vg_ai_c*
P4: *tb_vg_cmd_lb_c*
P5: *tb_vg_cmd_rb_c*
P6: *tb_vg_addr_lb_c*
P7: *tb_vg_addr_rb_c*

COMMAND:

Bitcodings defined in tb_package:

tb_vg_cmd_fpc_c: read free pool counter with next TD read (actual value of free pool counter FPC is only readable)

tb_vg_cmd_fpp_c: read free pool pointer with next TD read (actual value of free pool pointer FPP is only readable)

tb_vg_cmd_gfpc_c: read global free pool counter with next TD read (actual value of GFPC is only readable)

tb_vg_cmd_aqctr_c: read action queue counter with next TD read (actual value of AQ read and write pointer is only readable)

DRAFT - DO NOT DISTRIBUTE

tb_vg_cmd_cqctr_c: read configuration queue counter with next TD read (actual value of CQ read and write pointer is only readable)
tb_vg_cmd_pmt_on_c: switch TFPI-pmt interface on (a read of TB data is also possible via a TD read access)
tb_vg_cmd_pmt_off_c: switch TFPI-pmt interface off
tb_vg_cmd_pmt_c: in case of active TFPI-pmt interface mode the channel number is specified via Channel/Address field). Note: In following read data via TD-read bit[31] is used as status bit, bit[30] is used to indicate TB_EMPTY condition. Therefore only a 30 bit transfer is possible for test purposes.
tb_vg_cmd_dmut_on_c: switch TFPI-dmut interface on (following read/write access to TD is a read/write of TB-DMUT-request register; note that only the CHN field is valid, i.e. only a single data word transfer is possible)
tb_vg_cmd_dmut_off_c: switch TFPI-dmut interface off
tb_vg_cmd_dmut_req_c: select dmut request register (read and write of TD is necessary: TD read delivers channel number CHN and requested transfer length RTL, write of TD specifies only channel number, STL is ignored)
tb_vg_cmd_dmut_dat_c: select dmut data register (in this case only write of TD is possible)
tb_vg_cmd_aq_c: read/write action queue ram; Address specifies address of ram and is incremented with each read/write access of TD when AI=1 (this autoincrement feature is also active for following ram accesses)
tb_vg_cmd_cq_c: read/write configuration queue ram
tb_vg_cmd_pt0_c: read/write parameter table ram (lower 32 bits)
tb_vg_cmd_pt1_c: read/write parameter table ram (higher bits)
tb_vg_cmd_pt2_c: read/write parameter table ram (even higher bits)
*tb_vg_cmd_pt3_c: read/write parameter table ram (highest bits); Note: The coincidence of those tb_vg_cmds_pt*_c commands depends on implementation parameters: ITBS, number of TBTC, TTC and number of channels)*
tb_vg_cmd_ll_c: read/write link list ram
tb_vg_cmd_db_c: read/write data buffer ram
tb_vg_cmd_stat_c: read/write status bit ram

Channel#/Address:

Channel number or Address field

4.2.4 Indirect Access Register: Data

Access	: read/write
Address	: <i>tb_td_adn_c</i>
Reset Value	: <i>00000000H</i>

31

16

Test Data

15

0

Test Data

Test Data:

5 Appendix: M256F tb_shell

For M256F application a special naming convention is used. Additional 'daisy chain' signals are added.

5.1 Register Description

5.1.1 Register Overview

Table 7 PCI Slave Register Set (Direct Addressing)

Register Name	Read/ Write	Offset to PCI BAR1
Virtual Global Registers		
TAC	R/W	058 _H
TD	R/W	05C _H
Macro Specific Registers		
Virtual Channel Specification Registers		
CSPEC_CMD	R/W	000 _H
CSPEC_BUFFER	R/W	020 _H

5.1.2 Detailed Register Description

5.1.2.1 (Virtual) Channel Specification Command (CSPEC_CMD)

Access : write/read
 Address : 000_H
 Reset Value : 00000000_H

31

16

CMD_XMIT(7:0)	CMD_REC(8:0)
---------------	--------------

15

8 7

0

00	CHAN(7:0)
----	-----------

Note: The Virtual Channel Spec (VCS) Command Register has to be programmed after all other required VCS registers, in order to initiate the programming of all macros. In case of a debug command, first the command register has to be written, then a broadcast read of the virtual channelspec is possible by read of all VCS data registers. Only the macro which has implemented the corresponding bit has to drive the register bit, otherwise drives '0' to provide broadcast read feature.

CHAN(7:0): selected channel number to be programmed

CMD_XMIT(7:0): for details refer to table "Command Description"

Note: Transmit Init for a channel must be programmed only after reset or after a Transmit Off command, i.e. two Transmit Init commands for the same channel are not allowed

Command Table Transmit:

31	30	29	28	27	26	25	24	function
Rsvd	Rsvd	Idle	Debug	HOLD RESET	ABORT	OFF	INIT	transmit init
0	0	0	0	0	0	0	1	transmit off
0	0	0	0	0	0	1	0	transmit debug
0	0	0	1	0	0	0	0	transmit nop
other vectors								

5.1.2.2 (Virtual) Channel Specification Buffer (CSPEC_BUFFER)

Access : read/write
 Address : 020_H
 Reset Value : 00200000_H

31	29	28	16
TQUEUE(2:0)	ITBS(12:0)		

15	12	10	8	6	4	2	0
TTC(3:0)	0	TBTC(2:0)	0	RQUEUE(2:0)	0	RBTC(2:0)	

TBTC: transmit burst threshold code

ITBS: individual transmit buffer size

TTC: Transmit Threshold Code

(for coding see chapter 5.4)

5.1.3 Test Command Register (TAC)

Access : read/write

Offset Address : H

Reset Value : 00000000H

31	28	24	23	16
MID	0	0	0	AI

15	12	0
0	0	0

MID: Macro ID Code

AI: Auto Increment Function

Address: internal address

CMD: Command (select of ram and register)

CMD:

23	22	21	20	19	18	17	16	function
0	0	0	0	0	0	0	0	tb_vg_cmd_fpc_c
0	0	0	0	0	0	0	1	tb_vg_cmd_fpp_c
0	0	0	0	0	0	1	0	tb_vg_cmd_gfpc_c
0	0	0	0	0	0	1	1	tb_vg_cmd_aqctr_c
0	0	0	0	0	1	0	0	tb_vg_cmd_cqctr_c
1	0	1	0	1	1	1	0	tb_vg_cmd_pmt_on_c
1	0	1	0	1	0	1	0	tb_vg_cmd_pmt_off_c
1	0	1	0	0	0	0	0	tb_vg_cmd_pmt_c

	23	22	21	20	19	18	17	16	
1	0	1	1	1	1	1	1	0	tb_vg_cmd_dmut_on_c
1	0	1	1	1	0	1	1	0	tb_vg_cmd_dmut_off_c
1	0	1	1	0	0	0	0	1	tb_vg_cmd_dmut_req_c
1	0	1	1	0	0	0	0	0	tb_vg_cmd_dmut_dat_c
1	1	1	1	0	0	0	0	0	tb_vg_cmd_aq_c
1	1	1	1	0	0	0	0	1	tb_vg_cmd_cq_c
1	1	1	1	0	0	1	0	0	tb_vg_cmd_pt0_c
1	1	1	1	0	0	0	1	1	tb_vg_cmd_pt1_off_c
1	1	1	1	1	0	0	0	0	tb_vg_cmd_pt2_c
1	1	1	1	0	1	0	0	0	tb_vg_cmd_pt3_c
1	1	1	1	0	1	0	0	1	tb_vg_cmd_ll_c
1	1	1	1	0	1	1	1	0	tb_vg_cmd_db_c
1	1	1	1	0	1	1	1	1	tb_vg_cmd_stat_c

Macro ID Code:

31	30	29	28	macro
0	1	0	0	TB (tb_vg_mid_tb_c)

General

- the test access provides read/write access of important internal rams and registers
- test registers are virtuals global registers (SEL signal: pb_vg_tfpi_sel_n / implemented as a daisy chain).
- the single macros are selected by the MID code of the test command register
- CMD specifies/selects one of the macro rams/registers
- the address field is used to access a ram address
- AI: autoincrement : address given in the address field is incremented automatically for each access
- All macros which are not selected by MID drive data output "00000000" and <macro>_TPFI_RDY = '1'. Driving "00000000" would mean not disable the enable line for data out, but to set the output data to "00000000".

Test write access:

1. Write TAC
2. Write TAD

Test read access:

1. Write TAC
2. Read TAD

Typically the macro selected via MID delays the RDY signal until the selected ram/register has been read and the data can be provided at the TFPI interface. No prefetch of testdata is required.

Note: CMD/Address have to be defined for each macro; there is no read/write selection in the CMD field; rd/wr's are handled with the TFPI read & write signals

5.1.4 Test Data Register (TD)

Access	: read/write
Address	: 5C _H
Reset Value	: 00000000 _H

31

TEST DATA

15

0

TEST DATA

TEST DATA: ram/register test data (read or write)

5.2 DMUT interface

Table 8
Request Register for data request from TB to DMUT

Bit	31			28	16		7	0
Function	DEL	Reserved		RTL (requested transfer length)	Reserved		CHN (Channel number)	

Table 9
Request Register for data transfer acknowledge from DMUT to TB

Bit	31			28	16		7	0
Function	CI	Reserved		STL (served transfer length)	Reserved		CHN (Channel number)	

5.3 Interrupt Controller Interface (IC)

Table 10
Interrupt Vector

Bit	31	28		17		7	0
Function	1001		0	CDMF	0		CHN

5.4 Ram sizes

5.4.1 TB_PTR (TB_PTR1)

Parameter Table: 256 x 90

Table 11: All channel parameters:

ITBS (13)	BTC (4)	TTC (4)	FIRST (1)	AQE (1)	WAIT (1)	CIPV (1)	CIP (13)	FCTR (13)	ECTR (13)	WP (13)	RP (13)
--------------	------------	------------	--------------	------------	-------------	-------------	-------------	--------------	--------------	------------	------------

5.4.2 TB_DBR and TB_LLRL

Data Buffer: 8K x 33

Link List: 8K x 13

5.4.3 TB_AQR

Action Queue: 256 x 8

5.4.4 TB_CFGR (TB_PTR2)

Configuration Queue: 256 x 29

Table 12: All locations:

ITBS (13)	TBTC (4)	TTC (4)	CHN (8)
--------------	-------------	------------	------------

5.5 Gate count

M256F implementation needs 21.3k gates (1360 flipflops).

5.6 Shell Interface and Signal Description

M256F Symbol name	I/O	Macro Symbol Name	Function
-------------------	-----	-------------------	----------

Clock and Reset

SYCLK	I	SYCLK	Internal system clock (33 MHz)
HW_RESET_N	I	(RESET_N)	General hardware reset of TB. All registers and RAM reset or initialization.
SW_RESET_N	I	-	General software reset of TB. All registers and RAM reset or initialization.
SCANMODE	I	-	Scanmode
GC_STOP	I	GCSTOP	Stop all non configuration process in TB (fast programm mode)
TB_IIP	O	TB_IIP	Initialization of TB rams in progress

Protocol Machine Receive (PMT) Interface

PT_TB_RD_N	I	PTRD	PMT read. Only single word write transfer is supported.
PT_TB_A [CNB-1:0]	I	PTA	Address bus. Specifies channel number for transfer.
TB_PT_D [DBB-1:0]	O	TB_PTD	TB Data/Status word being transferred to PMT.
TB_PT_RDY	O	TB_PTRDY	Ready. End of data transfer indication. 0 => TB inserts wait state. 1 => TB will finish transfer during next clock cycle.
TB_PT_STAT	O	TB_PTSTAT	Mode of data word to be transferred. 0 => protocol data 1 => status + protocol data

M256F Symbol name	I/O	Macro Symbol Name	Function
TB_PT_EMPTY	O	TB_PTEEMPTY	Asserted for one cycle while PMT read if TB has no data stored for the channel specified by the address bus.

DMU Transmit (DMUT) Interface

DT_TB_RD_N	I	DTRD	Read. DMUT Read Control (for request register)
DT_TB_WR_N	I	DTWR	Write. DMUT Write Control (for request register or data register)
DT_TB_A	I	DTA	Address bus (1 bit) 0 => Request register. 1 => Data register.
DT_TB_D[DBB-1:0]	I	DTD	Data in. Input command from DMUT (channel number e. g.) or data/status input
DT_TB_STAT	I	DTSTAT	Status indication from DMUT
TB_DT_REQ_N	O	TB_DTREQ	Service request from TB to DMUT controller. Asserted as long as TBAQ is not empty.
TB_DT_D[DBB-1:0]	O	TB_DTD	Data out. Request register from TB to DMUT controller
TB_DT_RDY	O	TB_DTRDY	Ready. End of data or command transfer indication. 0 => TB inserts wait state. 1 => TB will finish transfer during this clock cycle.

Interrupt Controller (IC) Interface

M256F Symbol name	I/O	Macro Symbol Name	Function
TB_IC_REQ_N	O	TB_ICREQ	Request Line
IC_TB_GNT_N	I	ICTBGNT	Grant Line
TB_IC_D[31:0]	O	TB_ICD	TB interrupt vector data
IC_D	I	-	daisy chain data input

FPI Slave Interface

PB_TFP1_RD_N	I	TFPI_RD_N	TFPI read TB
PB_TFP1_WR_N	I	TFPI_WR_N	TFPI write to TB
PB_TFP1_A[8:2]	I	TFPI_A[TFPIAB-1:2]	Address bus.
PB_TFP1_D[31:0]	I	TFPI_D	Input Data. Active during data phase of read cycle.
PB_TFP1_RDY	I	TFPI_RDY	TFPI ready input
PB_VC_TFP1_SEL_N	I	TFPI_VC_SEL_N	Slave select.
PB_VG_TFP1_SEL_N	I	TFPI_VG_SEL_N	Slave select.
TFPI_D[31:0]	O	-	Daisy chain input.
TB_TFP1_RDY	O	TB_TFP1_RDY	End of transfer indicator: 0 => Master should insert wait states 1 => TB will complete transfer in this cycle
TB_TFP1_D[31:0]	O	TB_TFP1_D	Output Data. Active during data phase of write cycle.

5.7 Dimension of M256F application and Package definitions:

Name	Description	M256F value
tb_chn_nw_c	number of supported channels	256
tb_chn_nb_c	channel bus bits	8
tb_db_nw_c	depth of data buffer	8192
tb_dba_nb_c	data buffer address bus bits	13
tb_btc_nb_c	number of TBTC bits	4

0000 0000 0000 0000 0000 0000 0000 0000

tb_ttc_nb_c	number of TTC bits	4
tb_btc2btl	coding of TTC values	0: 1 1: 4 2: 8 3: 12 4: 16 5: 24 6: 32 7: 40 8: 48 others: 64
tb_ttc2ttl	coding of TTC values	0: 1 1: 4 2: 8 3: 12 4: 16 5: 24 6: 32 7: 40 8: 48 9: 64 A: 96 B: 128 C: 192 D: 256 E: 384 F: 512
tb_data_nb_c	data bus width	32
Initialisation of rams		
tb_iip_pt1_en_c	to reduce power consumption during initialisation (TB_IIP = '1'), this parameter shifts PT1 ram initialisation to later times. E.g. Time of M256F init time is defined by data buffer size of 8192 dwords. IIP phase of PT1 ram starts at cycle bin:11101000000000 (hex: 1D00) when tb_iip_pt1_en_c is set to '11101'	11101
tb_iip_aq_en_c	Shift of AQ ram init phase (start init at hex:1E00)	11110

Digital Signature

tb_iip_cq_en_c	Shift of CQ (configuration queue) init phase (start init at hex:1F00)	11111
PMT interface		
tb_pt_rd_act_c	active level of PMT read signal	0
DMUT interface		
tb_dt_wr_act_c	active level of DT_WR write signal	0
tb_dt_rdy_act_c	active level of TB_DTRDY ready signal	1
tb_dt_req_act_c	active level of TB_DTREQ request signal	0
tb_dt_a_command_c	address of command/request register	0
tb_dt_crbl_rb_c	bit position of RTL in request register	16
tb_dt_crci_pb_c	bit position of CI (complete indication) in command register	31
tb_dt_crdel_pb_c	bit position of DEL (delete) in command register	31
tb_dt_crchn_rb_c	bit position of CHN (channel number) in command register	0
TFPI interface		
tb_sfr_addr_c	number of via TFPI addressable registers	4
tb_fpi_rd_act_c	active level of TFPI read	0
tb_tpi_wr_act_c	active level of TFPI write	0
tb_fpi_rdy_act_c	active level of TFPI ready	1
tb_fpi_sel_act_c	active level of TFPI selects (vg/vc)	0
tb_fpi_en_act_c	active level of TFPI output enable	1
tb_fpi_a_rb_c	TFPI address bus (LSB)	2
tb_fpi_a_lb_c	TFPI address bus (MSB)	8
tb_vcs_cmd_adn_c	channel command address	00(hex)
tb_vcs_txcom_rb_c	bitposition of command in channel command	24
tb_vcs_txcom_lb_c		31
tb_ycs_tx_initv_c	transmit init command vector	01
tb_vcs_tx_offv_c	transmit off command vector	02
tb_vcs_tx_debugv_c	transmit debug command vector	10
tb_vcs_chn_rb_c	bitposition of channel number in channel command	0

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

tb_vcs_bufs_adn_c	buffer register address	20
tb_vcs_itbs_rb_c	bitposition of ITBS in buffer register (LSB)	16
tb_vcs_btc_rb_c	bitposition of TBTC in buffer register (LSB)	4
tb_vcs_ttc_rb_c	bitposition of TTC in buffer register (LSB)	8
tb_tac_adn_c	test access command register address	58
tb_vg_mid_rb_c	bitposition of MID (macro ID) in TAC register (LSB)	28
tb_vg_mid_lb_c	bitposition of MID (macro ID) in TAC register (MSB)	31
tb_vg_mid_tb_c	MID of TB	4
tb_vg_ai_c	bitposition of AI (auto increment bit) in TAC	24
tb_vg_cmd_rb_c	bitposition of CMD in TAC register (LSB)	16
tb_vg_cmd_lb_c	bitposition of CMD in TAC register (MSB)	23
tb_vg_adr_lb_c	bitposition of ADR/CHN in TAC (LSB)	0
tb_vg_adr_rb_c	bitposition of ADR/CHN in TAC (MSB)	12
tb_td_adn_c	test data register address	5C
tb_vg_cmd_fpc_c	test command for internal register	00
tb_vg_cmd_fpp_c		01
tb_vg_cmd_gfpc_c		02
tb_vg_cmd_aqctr_c		03
tb_vg_cmd_cqctr_c		04
tb_vg_cmd_pmt_on_c	test command for PMT interface mode	AE
tb_vg_cmd_pmt_off_c		AA
tb_vg_cmd_pmt_c		A0
tb_vg_cmd_dmut_on_c	test command for DMUT interface mode	BE
tb_vg_cmd_dmut_off_c		BA
tb_vg_cmd_dmut_req_c		B0
tb_vg_cmd_dmut_dat_c		B1
Test dump/write feature of rams and register		
tb_test_slice_nb_c	number of testslices for broad rams	4
tb_vg_cmd_aq_c	test command for rams	F0
tb_vg_cmd_pt0_c		
tb_vg_cmd_pt1_c		

tb_vg_cmd_pt2_c		
tb_vg_cmd_pt3_c		
tb_vg_cmd_ll_c		
tb_vg_cmd_db_c		
tb_vg_cmd_stat_c		
tb_test_pt*_*_c (*: 1,2,3 and **: rb,lb)	selected slices for testmode access of parameter table ram	1: lb=63/rb=32 2: lb=89/rb=64 3: lb=89/rb=64 (3 not used)
IC interface		
tb_ic_req_act_c	active level for TB_ICREQ	0
tb_ic_gnt_act_c	active level for IC_GNT	0
tb_ic_dchn_rb_c	bitposition of channel number in interrupt vector (LSB)	0
tb_ic_did_nb_c	bitposition of interrupt ID in interrupt vector (number of bits)	4
tb_ic_did_rb_c	(LSB)	28
tb_ic_did_code_c	ID code	1001
RAM interface		
tb_wnram_act_c	active level of ram write signal	0
tb_bsnram_act_c	active level of ram select	0
Global interface		
tb_iip_act_c	active level of IIP (initialisation in progress) signal	1
tb_reset_act_c	active level of reset signal	0
tb_stop_act_c	active level of GC_STOP signal	1