# Introduction to Soldering

ENGR 1101 – Introduction to Engineering ECE Department – Fall 2012

Dr. John J. Helferty







# Basic Tools, Materials and Procedure of Hand Soldering

- Basic Elements of Hand Soldering:
  - Temperature controlled Soldering Iron with stand and sponge
  - Solder Material (will be provided by TAs)





- Turn on the Soldering Iron and wait for the iron to heat up (Medium setting will be fine)
- Make sure your sponge is wet!



#### What is Soldering?

- The process of making an electrical connection by melting low-temperature metal alloys around component leads
- Soldering is just as much an "Art" as it is a "Science"
- We will:
  - Go over some soldering vocabulary
  - Illustrate graphically soldering techniques
  - Show how to create a "perfect" solder joint
  - Begin the Hovercraft Construction (ECE section)



#### Basic Procedures for Soldering:

- Clean the surfaces to be soldered (dirt free, grease free and oxide-free)
- Put two target objects (to be soldered) together
- Wet the joint area with flux, if needed
- Pre-heat the joint area with soldering iron
- Apply solder at the joint and remove when sufficient solder has flowed down to the joint
- Remove solder wire and then soldering iron, and allow the joint to cool down







#### Basic Procedures for Soldering:

- Touch the tip to the component lead
   AND the pad
- Apply just enough heat
  - TLAR (<u>T</u>hat <u>L</u>ooks
     <u>A</u>bout <u>R</u>ight)







Your join should look something like this one.
You should only need a small amount of solder for each joint.

#### Good and Bad Attempts:





The join is complete and will hold in place.



**BAD**:

Not enough solder applied. No join.



### The PCB (Printed Circuit Board)

- A PCB (Printed Circuit Board) is used to mechanically support and electrically connect <u>electronic components</u> using <u>conductive</u> pathways, tracks or signal traces <u>etched</u> from <u>copper</u> sheets <u>laminated</u> onto a non-conductive <u>substrate</u>.
- Think of it as a breadboard, in which the traces are already mapped out.







#### Here's our PCB:







## Components for Soldering





#### **PCB Schematic**





# Safety Concerns:

- Don't solder while circuit is powered
- Use well ventilated and lighted work space
- Don't touch the solder tip it's hot (dahhh)
- Watch for flying leads when clipping excess







# Any Questions?

