Chapter4: Nonlinear Constrained Optimization (Equality Constrained Optimization)

Mr. OL Sela

Github: https://github.com/OLSela12

Mail: selaol168@gmail.com

March 14, 2025

Mr. OL Sela Optimization March 14, 2025 1/36

Outline

- Introduction
- 2 Equality Constrained Optimization
- 3 Lagrange Condition(First -Order Conditions)
- Some Example
- Second-Order Conditions
- 6 Reference

 Mr. OL Sela
 Optimization
 March 14, 2025
 2 / 36

Outline

- Introduction
- 2 Equality Constrained Optimization
- 3 Lagrange Condition (First -Order Conditions)
- 4 Some Example
- Second-Order Conditions
- 6 Reference

Mr. OL Sela Optimization March 14, 2025 3/36

Problem

In this part we discuss methods for solving a class of nonlinear constrained optimization problems that can be formulated as

Problem

minimize

subject to

$$h_i(x) = 0, \quad i = 1, 2, ..., m,$$

 $g_j(x) \le 0, \quad j = 1, 2, ..., p,$

where $x \in \mathbb{R}^n, f : \mathbb{R}^n \to \mathbb{R}, h_i : \mathbb{R}^n \to \mathbb{R}, g_j : \mathbb{R}^n \to \mathbb{R}$ and $m + p \le n$

4/36

Mr. OL Sela Optimization March 14, 2025

Problem

In vector notation, the problem above can be represented in the following standard form:

minimize

subject to

$$h(x) = 0,$$

$$g(x) \le 0,$$

where $x \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$, $h : \mathbb{R}^n \to \mathbb{R}^m$, $g : \mathbb{R}^n \to \mathbb{R}^p$ and $m + p \le n$

Mr. OL Sela Optimization March 14, 2025 5/36

Definition 1

Any point satisfying the constraints is called a feasible point. The set of all feasible points

$$\{x \in \mathbb{R}^n : h(x) = 0, g(x) \le 0\}$$

is called a feasible set

 Mr. OL Sela
 Optimization
 March 14, 2025
 6 / 36

Optimization problems of the above form are not new to us. Indeed, linear programming problems of the form

LPP

minimize

$$z = c^T x$$

subject to

$$Ax = b,$$

 $x > 0$

which we studied in chapter 2, 3.

 Mr. OL Sela
 Optimization
 March 14, 2025
 7 / 36

Noted

maximize
$$f(x) = minimize (-f(x))$$
.

Mr. OL Sela Optimization March 14, 2025 8 / 36

Example 2

Consider the following optimization problem:

minimize

$$(x_1-1)^2+x_2-2$$

subject to

$$x_2 - x_1 = 1,$$

 $x_1 + x_2 < 2.$

In this case, the minimizer lies on the level set with f = -1/4. The minimizer of the objective function is $x^* = [1/2, 3/2]^T$.

Mr. OL Sela Optimization March 14, 2025 9/36

Mr. OL Sela Optimization March 14, 2025 10 / 36

Outline

- Introduction
- 2 Equality Constrained Optimization
- 3 Lagrange Condition(First -Order Conditions)
- Some Example
- Second-Order Conditions
- 6 Reference

11/36

Mr. OL Sela Optimization March 14, 2025

Equality Constrained Optimization

Problem

minimize

subject to

$$h(x)=0,$$

where $x \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$, $h_i : \mathbb{R}^n \to \mathbb{R}^m$, $h = [h_1, h_2, ..., h_m]^T$, and $m \le n$

We assume that the function h is continuously differentiable, that is, $h \in C^1$.

 Mr. OL Sela
 Optimization
 March 14, 2025
 12 / 36

Example 3

minimize
$$2x_1^2 + x_2^2$$

subject to $x_1 + x_2 = 1$

- Let us first consider the unconstrained case.
- Differentiate with respect to x_1 and x_2 .

$$\frac{\partial f}{\partial x_1} = 4x_1$$

$$\frac{\partial f}{\partial x_2} = 2x_2$$

- These yield the solution $x_1 = x_2 = 0$
- Does not satisfy the constrain.

Definition 4

A point x^* satisfying the constraints

$$h_1(x^*) = 0, ..., h_m(x^*) = 0$$

is said to be a regular point of the constraints if the gradient vectors

$$\nabla h_1(x^*), ..., \nabla h_m(x^*)$$

are linearly independent.

 Mr. OL Sela
 Optimization
 March 14, 2025
 14 / 36

Let $Dh(x^*)$ be the Jacobian matrix of $h = [h_1, ...h_m]^T$ at x^* , given by

$$Dh(x^{*}) = \begin{bmatrix} Dh_{1}(x^{*}) \\ \vdots \\ Dh_{m}(x^{*}) \end{bmatrix} = \begin{bmatrix} \nabla h_{1}(x^{*})^{T} \\ \vdots \\ \nabla h_{m}(x^{*})^{T} \end{bmatrix}$$

Then, x^* is regular if and only if rank $Dh(x^*) = m$ (i.e., the Jacobian matrix is of full rank)

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Mr. OL Sela Optimization March 14, 2025 15 / 36

Example 5

For example, let

$$h_1(x) = x_1, h_2(x) = x_2 - x_3^2$$

In this case,

$$\nabla h_1(x) = [1, 0, 0]^T, \nabla h_2(x) = [0, 1, -2x_3]^T$$

Question , $\nabla h_1(x)$, $\nabla h_2(x)$ are linearly independent??

Mr. OL Sela Optimization March 14, 2025 16 / 36

Outline

- Introduction
- 2 Equality Constrained Optimization
- 3 Lagrange Condition(First -Order Conditions)
- Some Example
- Second-Order Conditions
- 6 Reference

Mr. OL Sela Optimization March 14, 2025 17 / 36

Lagrange Condition

We now generalize Lagrange's theorem.

Lagrange's Theorem.

Let x^* be a local minimizer (maximizer) of

$$f: \mathbb{R}^n \to \mathbb{R}$$

, subject to h(x) = 0, where $h : \mathbb{R}^n \to \mathbb{R}^m$, $m \le n$.

Assume that x^* is a regular point. Then, there exists $\lambda^* \in \mathbb{R}^m$ such that

$$Df(x^*) + \lambda^{*T} Dh(x^*) = 0^T$$
 (1)

Proof: see in book

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

18/36

Mr. OL Sela Optimization March 14, 2025

• It is convenient to introduce the Lagrangian function $L: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, given by,

$$L(x,\lambda) = f(x) + \lambda^{T} h(x)$$
 (2)

• The Lagrange condition for a local minimizer x^* can be represented using the Lagrangian function as

$$Dh(x^*, \lambda^*) = 0^T \tag{3}$$

for some λ^* , where the derivative operation D is with respect to the entire argument $[x^T, \lambda^T]^T$

◆□▶ ◆御▶ ◆巻▶ ◆巻▶ ○巻 - 夕久で

In other words, the necessary condition in Lagrange's theorem is equivalent to the first-order necessary condition for unconstrained optimization applied to the Lagrangian function

• To see the above, denote the derivative of L with respect to x as D_xL and the derivative of L with respect to λ as $D_\lambda L$. Then

$$DL(x, \lambda) = [D_x L(x, \lambda), D_\lambda L(x, \lambda)]$$

Note that $DL(x, \lambda) = Df(x) + \lambda^T Dh(x)$ and $D_{\lambda}L(x, \lambda) = h(x)^T$.

• Therefore, Lagrange's theorem for a local minimizer x^* can be stated as

$$D_{x}L(x^{\star},\lambda^{\star}) = 0^{T}, D_{\lambda}L(x^{\star},\lambda^{\star}) = 0^{T}$$

(□) (□) (□) (□) (□) (□)

• The Lagrange condition is used to find possible extremizers. This entails solving the equations

$$D_{x}L(x,\lambda) = 0^{T}, D_{\lambda}L(x,\lambda) = 0^{T}$$

 Mr. OL Sela
 Optimization
 March 14, 2025
 21 / 36

Outline

- Introduction
- 2 Equality Constrained Optimization
- 3 Lagrange Condition (First -Order Conditions)
- 4 Some Example
- Second-Order Conditions
- 6 Reference

 Mr. OL Sela
 Optimization
 March 14, 2025
 22 / 36

Example 6

Find the minimum value of

$$f(x, y, z) = 2x^2 + y^2 + z^2$$

subject to the constraint

$$2x - 3y - 4z = 49$$

4□ > 4□ > 4 = > 4 = > = 90

Mr. OL Sela Optimization Mar

Example 7

Find the maximum value of

$$f(x,y)=4xy$$

,where x > 0, y > 0 subject to the constraint

$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$

Mr. OL Sela Optimization March 14, 2025 24 / 36

Example 8

Given a fixed area of cardboard, we wish to construct a closed cardboard box with maximum volume. We can formulate and solve this problem using the Lagrange condition. Denote the dimensions of the box with maximum volume by x_1, x_2 , and x_3 , and let the given fixed area of cardboard be A. The problem can then be formulated as

 Mr. OL Sela
 Optimization
 March 14, 2025
 25 / 36

Example 9

Consider the problem of extremizing the objective function

$$f(x) = x_1^2 + x_2^2$$

on the ellipse

$$\{[x_1,x_2]^T: h(x)=x_1^2+2x_2^2-1=0\}$$

 Mr. OL Sela
 Optimization
 March 14, 2025
 26 / 36

A consumer's preferences are represented by the utility function

$$u(x_1, x_2) = 2\ln x_1 + \ln x_2 \tag{4}$$

If the budget constraint is $p_1x_1 + p_2x_2 = M$, Determine the demand functions, that is, the optimal values x_1^* and x_2^* ; in terms of p_1 , p_2 and M.

Mr. OL Sela Optimization March 14, 2025 27 / 36

Outline

- Introduction
- 2 Equality Constrained Optimization
- 3 Lagrange Condition (First -Order Conditions)
- 4 Some Example
- Second-Order Conditions
- 6 Reference

28 / 36

Mr. OL Sela Optimization March 14, 2025

Second-Order Conditions

We assume that $f: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}^m$ are twice continuously differentiable: $f, h \in \mathcal{C}^2$.

Let

$$L(x, \lambda) = f(x) + \lambda^{T} h(x) = f(x) + \lambda_{1} h_{1}(x) + ... + \lambda_{m} h_{m}(x).$$

be the Lagrangian function

Let

$$L'(x,\lambda) = F(x) + \lambda_1 H_1(x) + \dots + \lambda_m H_m(x),$$

where F(x) is the Hessian matrix of $L(x, \lambda)$ at x and $H_k(x)$ is the Hessian matrix of h_k at x, k = 1, 2, ..., m, given by

$$H_k(x) = \begin{bmatrix} \frac{\partial^2 h_k}{\partial x_1^2}(x) & \cdots & \frac{\partial^2 h_k}{\partial x_n \partial x_1}(x) \\ \vdots & & \\ \frac{\partial^2 h_k}{\partial x_1 \partial x_n}(x) & \cdots & \frac{\partial^2 h_k}{\partial x_n^2}(x) \end{bmatrix}$$

Mr. OL Sela Optimization March 14, 2025 29 / 36

We introduce the notation $[\lambda H(x)]$;

$$[\lambda H(x)] = \lambda_1 H_1(x) + \dots + \lambda_m H_m$$

Using the notation above, we can write

$$L'(x,\lambda) = F(x) + [\lambda H(x)]$$

Mr. OL Sela Optimization March 14, 2025 30 / 36

Second-Order Necessary Conditions.

Theorem 11

Let x^* be a local minimizer (maximizer) of

$$f: \mathbb{R}^n \to \mathbb{R}$$

,subject to h(x)=0, where $h:\mathbb{R}^n\to\mathbb{R}^m$, $m\leq n$ and $f,g\in\mathcal{C}^2$. Assume that x^* is a regular point. Then, there exists $\lambda^*\in\mathbb{R}^m$ such that

- $Df(x^*) + \lambda^{*T} Dh(x^*) = 0^T$
- For all $y \in T(x^*)$, we have $y^T L'(x^*, \lambda^*) y \ge 0$.

Noted: T(x) is a Tangent Space.

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□▶ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□</

31/36

Mr. OL Sela Optimization March 14, 2025

Second-Order Sufficient Conditions.

Theorem 12

Suppose that $f, h \in C^2$, and there exists a point $x^* \in \mathbb{R}^n$ and $\lambda^* \in \mathbb{R}^m$ such that

- $Df(x^*) + \lambda^{*T} Dh(x^*) = 0^T$
- For all $y \in T(x^*)$, $y \neq 0$, we have $y^T L'(x^*, \lambda^*)y > 0$.

Then, x^* is a strict local minimizer of f subject to h(x) = 0.

◆ロト ◆個ト ◆差ト ◆差ト 差 める(*)

Mr. OL Sela Optimization March 14, 2025 32 / 36

Example 13

Consider

min:

$$f(x) = \frac{1}{2}x^T A x$$

subject to:

$$Ax = b$$

where Q > 0 (Q is positive definite on \mathbb{R}^n)

33 / 36

Mr. OL Sela Optimization March 14, 2025

 Mr. OL Sela
 Optimization
 March 14, 2025
 34 / 36

Outline

- Introduction
- Equality Constrained Optimization
- 3 Lagrange Condition (First -Order Conditions)
- 4 Some Example
- Second-Order Conditions
- 6 Reference

Mr. OL Sela Optimization March 14, 2025 35 / 36

Thank for your attention.

Mr. OL Sela Optimization March 14, 2025 36 / 36