### BCC202 – Estruturas de Dados I (2020-01)

Departamento de Computação - Universidade Federal de Ouro Preto - MG

Professora: Prof. Pedro Silva

| <b>Prova 02</b> - 10 pontos (Peso 3) (19/04/2021 às 10:10) | Nota:      |  |
|------------------------------------------------------------|------------|--|
| Nome:                                                      | Matrícula: |  |

#### Leia com atenção as instruções abaixo antes de iniciar a solução da prova:

- A interpretação das questões faz parte da avaliação, por isso faça as observações que achar necessário, por escrito;
- Esta prova é individual, sem consulta e tem duração de 1 hora e 40 minutos (das 10:10 às 11:50).
- O Moodle será fechado às 12:20 (30 min extras).
- As soluções para as questões devem ser especificadas em papel e posteriormente fotografadas para submissão via Moodle.
- As folhas de respostas devem ser organizadas de maneira razoavelmente clara e coerente num único arquivo em formado *pdf* a ser submetido no Moodle. Se sua matrícula é 15.1.1234. O formato entregue deve ser *PrimeiroNome\_*1511234.*pdf*.
- No caso de soluções idênticas, as pessoas envolvidas terão suas notas zeradas enquanto a situação não for devidamente esclarecidas.
- Respostas misteriosas não receberão crédito total. Uma resposta correta sem explicação, ou desenvolvimento não receberá crédito. Uma resposta incorreta apoiada por explicações substancialmente corretas pode receber crédito parcial.

#### - Boa Prova!

Utilize o valor de M como sendo a composição dos quatro últimos números da sua matrícula. Por exemplo, se sua matrícula tem o final 4381, você terá os números M[0] = 4, M[1] = 3, M[2] = 3 e M[3] = 1. Outro exemplo, se sua matrícula tem o final 1001, você terá os números M[0] = 1, M[1] = 0, M[2] = 0 e M[3] = 1.

Para as próximas questões, considere como sendo o vetor A, o vetor presente na tabela abaixo. Cada matrícula tem o seu respectivo vetor A. Preste atenção qual é o seu. **Utilizar um vetor que não é correspondente a sua matrícula implica em erro da questão.** 

| Matrícula | Vetor |   |   |   |   |   |   |   |   |   |
|-----------|-------|---|---|---|---|---|---|---|---|---|
| 14.2.4442 | 4     | 2 | 9 | 0 | 1 | 3 | 7 | 5 | 6 | 8 |
| 16.1.4323 | 4     | 3 | 2 | 9 | 0 | 1 | 7 | 5 | 6 | 8 |
| 17.2.4353 | 4     | 3 | 5 | 9 | 0 | 1 | 7 | 2 | 6 | 8 |
| 18.1.1062 | 1     | 0 | 6 | 2 | 9 | 3 | 7 | 5 | 4 | 8 |
| 18.1.4152 | 4     | 1 | 5 | 2 | 9 | 0 | 3 | 7 | 6 | 8 |
| 18.2.4048 | 4     | 0 | 8 | 9 | 1 | 3 | 7 | 5 | 2 | 6 |
| 18.2.4149 | 4     | 1 | 9 | 0 | 3 | 7 | 5 | 2 | 6 | 8 |
| 19.1.4015 | 4     | 0 | 1 | 5 | 9 | 3 | 7 | 2 | 6 | 8 |
| 19.1.4016 | 4     | 0 | 1 | 6 | 9 | 3 | 7 | 5 | 2 | 8 |
| 19.1.4110 | 4     | 1 | 0 | 9 | 3 | 7 | 5 | 2 | 6 | 8 |
| 19.1.4173 | 4     | 1 | 7 | 3 | 9 | 0 | 5 | 2 | 6 | 8 |
| 19.2.4001 | 4     | 0 | 1 | 9 | 3 | 7 | 5 | 2 | 6 | 8 |
| 19.2.4002 | 4     | 0 | 2 | 9 | 1 | 3 | 7 | 5 | 6 | 8 |
| 19.2.4005 | 4     | 0 | 5 | 9 | 1 | 3 | 7 | 2 | 6 | 8 |
| 19.2.4007 | 4     | 0 | 7 | 9 | 1 | 3 | 5 | 2 | 6 | 8 |
| 19.2.4008 | 4     | 0 | 8 | 9 | 1 | 3 | 7 | 5 | 2 | 6 |
| 19.2.4009 | 4     | 0 | 9 | 1 | 3 | 7 | 5 | 2 | 6 | 8 |

| Matrícula | Vetor |   |   |   |   |   |   |   |   |   |
|-----------|-------|---|---|---|---|---|---|---|---|---|
| 19.2.4029 | 4     | 0 | 2 | 9 | 1 | 3 | 7 | 5 | 6 | 8 |
| 19.2.4062 | 4     | 0 | 6 | 2 | 9 | 1 | 3 | 7 | 5 | 8 |
| 19.2.4068 | 4     | 0 | 6 | 8 | 9 | 1 | 3 | 7 | 5 | 2 |
| 19.2.4069 | 4     | 0 | 6 | 9 | 1 | 3 | 7 | 5 | 2 | 8 |
| 19.2.4073 | 4     | 0 | 7 | 3 | 9 | 1 | 5 | 2 | 6 | 8 |
| 19.2.4076 | 4     | 0 | 7 | 6 | 9 | 1 | 3 | 5 | 2 | 8 |
| 19.2.4085 | 4     | 0 | 8 | 5 | 9 | 1 | 3 | 7 | 2 | 6 |
| 19.2.4094 | 4     | 0 | 9 | 1 | 3 | 7 | 5 | 2 | 6 | 8 |
| 19.2.4099 | 4     | 0 | 9 | 1 | 3 | 7 | 5 | 2 | 6 | 8 |
| 19.2.4109 | 4     | 1 | 0 | 9 | 3 | 7 | 5 | 2 | 6 | 8 |
| 19.2.4117 | 4     | 1 | 7 | 9 | 0 | 3 | 5 | 2 | 6 | 8 |
| 19.2.4167 | 4     | 1 | 6 | 7 | 9 | 0 | 3 | 5 | 2 | 8 |
| 19.2.4201 | 4     | 2 | 0 | 1 | 9 | 3 | 7 | 5 | 6 | 8 |
| 19.2.4210 | 4     | 2 | 1 | 0 | 9 | 3 | 7 | 5 | 6 | 8 |
| 20.1.4171 | 4     | 1 | 7 | 9 | 0 | 3 | 5 | 2 | 6 | 8 |
| 20.1.4972 | 4     | 9 | 7 | 2 | 0 | 1 | 3 | 5 | 6 | 8 |
| 20.1.4991 | 4     | 9 | 1 | 0 | 3 | 7 | 5 | 2 | 6 | 8 |

### Questao 1 (4.0 pontos)

Apresente o passo a passo da ordenação do vetor A utilizando um algoritmo que utiliza o paradigma de divisão e conquista e outro quadrático. Explique detalhadamente as mudanças feitas em cada etapa. Evite que o pior caso ocorra.

Os algoritmo de ordenação aplicados são estáveis? Por que você escolheu cada um dos algoritmos?

# Questao 2 (2.0 pontos)

Apresente a ordem de inserção do vetor A em uma árvore binária de pesquisa. Após apresentar o passo a passo para inserção, faça a remoção de dois nós da árvore. O primeiro nó fica a sua escolha, e o outro nó é o elemento M[0] (vide instruções).

Abaixo há um exemplo de uma resposta esperada com a sequência de inserção de três números: 30, 10 e 50.



As caixas são usadas para representar NULL.

### Questao 3 (2.0 pontos)

Considere que a tabela *Hash* abaixo utiliza técnica de endereçamento aberto para tratar colisões. A função *Hash* **H** que determina o endereço **E** onde a chave **C** (e todo o registro) deve ser inserido é dada por:

$$E = H(C) = ((C \text{ div } 50) + 1) \text{ mod } 10$$

| End. | Chave | Nome    | Idade | Salário |
|------|-------|---------|-------|---------|
| 0    | 3360  | Túlio   | 25    | 4000    |
| 1    | 7530  | Janaína | 42    | 3500    |
| 2    | 20500 | Tatiana | 20    | 2000    |
| 3    |       |         |       |         |
| 4    |       |         |       |         |
| 5    |       |         |       |         |
| 6    |       |         |       |         |
| 7    | 300   | Flávia  | 39    | 9000    |
| 8    | 370   | Maria   | 25    | 8000    |
| 9    | 1880  | Diogo   | 23    | 3500    |

Faça a inserção do registro com Nome "João", Idade "26", Salário "8500"e chave igual aos quatro últimos dígitos da sua matrícula. Por exemplo, se sua matrícula é 20.1.4381, a sua chave é 4381. Deixe especificado qual é o resultado da função *Hash* **H**.

Explique como funciona a estratégia de endereçamento aberto. Qual o custo assintótico do pior caso da inserção de um novo registro na tabela *Hash* acima? Justifique sua resposta.

### Questao 4 (2.0 pontos)

```
typedef struct Celula {
      struct Celula *prox;
2
       int item;
  } TCelula;
  typedef struct {
      TCelula *cabeca, *fim;
      int tam;
9
  } TLista;
10
  void TLista_Limpar(TLista *1) {
11
      1 - > fim = 1 - > cabeca;
      1 \rightarrow tam = 0;
13
14 }
```

O procedimento TLista\_Limpar(TLista l\*) apresentado, gera uma situação problemática quando a estrutura não está vazia (ou seja, quando a estrutura possui dados alocados). Descreva esta situação e apresente a solução (o código correto).

# Questao 5 (Pontuação Extra - 2.0 pontos)

Mostre a construção passo a passo de um *Heap* utilizando o vetor A como entrada. Especifique cada passo da reconstrução do **Heap**. Especifique qual é a posição da esquerda como feito em sala.