오유진(2015325) 회귀분석론 과제2

6.3

6.3.1

헬스클럽자료 중 Y를 설명변수, X1,X2,X3,X4를 설명변수라고 두고 스튜던트화잔차와 적합값의 잔 차산점도는 아래와 같다.

이는 회귀모형이 적절하게 적합되었을 때 보여지는 잔차산점도라고 볼 수 있기 때문에 정규분포를 따른다는 귀무가설에 문제가 없다는 것을 알 수 있고 추가적인 변환이 필요없다. 비선형의 관계가 매우 약하다.

6.3.2

양의 상관관계가 있긴하지만 미약하다는 것을 알 수있고 두 잔차의 선형관계가 뚜렷이 나타나 있지않기 때문에 X1의 추가적인 설명력이 존재를 나타낸다. 그리고 맨 오른쪽 상단에 이상점으로 보이는 관측 값이 있다.

6.3.3

OBS	no	x1	x2	хЗ	×4	У	ei	ri	di	hi	ti
- 1	1	217	67	260	91	481	20.8626	0.83988	0.04688	0.24941	0.83477
2	2	141	52	190	66	292	-17.4516	-0.65115	0.01225	0.12622	-0.64348
3	3	152	58	203	68	338	16.5149	0.60394	0.00725	0.09037	0.59610
4	4	153	56	183	70	357	15.2904	0.55560	0.00527	0.07867	0.54777
5	5	180	66	170	77	396	-8.5700	-0.31339	0.00195	0.09034	-0.30767
6	6	193	71	178	82	429	-4.8981	-0.18113	0.00081	0.11043	-0.17759
7	7	162	65	160	74	345	-30.6190	-1.11601	0.02294	0.08432	-1.12176
8	8	180	80	170	84	469	44.4618	1.75652	0.17464	0.22059	1.83819
9	9	205	77	188	83	425	-19.8113	-0.74806	0.01926	0.14680	-0.74129
10	10	168	74	170	79	358	-34.9628	-1.30629	0.05035	0.12857	-1.32595
- 11	11	232	65	220	72	393	-33.2460	-1.30752	0.09283	0.21353	-1.32729
12	12	146	68	158	68	346	14.6468	0.53827	0.00639	0.09929	0.53048
13	13	173	51	243	56	279	-5.7448	-0.23907	0.00484	0.29756	-0.23450
14	14	155	64	198	59	311	21.4653	0.81764	0.02577	0.16160	0.81205
15	15	212	66	220	77	401	-18.8832	-0.68310	0.00707	0.07043	-0.67563
16	16	138	70	180	62	267	-18.6332	-0.74132	0.03310	0.23147	-0.73446
17	17	147	54	150	75	404	32.6650	1.31391	0.11396	0.24815	1.33426
18	18	197	76	228	88	442	7.4904	0.29708	0.00517	0.22665	0.29159
19	19	165	59	188	70	368	15.1795	0.54221	0.00287	0.04660	0.53441
20	20	125	58	160	66	295	-6.1689	-0.22858	0.00134	0.11399	-0.22420
21	21	161	52	190	69	391	44.4867	1.65338	0.07408	0.11933	1.71654
22	22	132	62	163	59	264	-15.1054	-0.56216	0.00876	0.12171	-0.55432
23	23	257	64	313	96	487	-18.1672	-0.90827	0.17402	0.51332	-0.90498
24	24	236	72	225	84	481	9.0489	0.34096	0.00389	0.14319	0.33485
25	25	149	57	173	68	374	40.6420	1.47158	0.03368	0.07215	1.50867
26	26	161	57	173	65	309	-27.8606	-1.01556	0.01903	0.08448	-1.01623
27	27	198	59	220	62	367	19.7324	0.75405	0.02279	0.16697	0.74736
28	28	245	70	218	69	469	39.5998	1.76478	0.39407	0.38750	1.84806
29	29	141	63	193	60	252	-26.7412	-1.01968	0.04061	0.16337	-1.02052
30	30	177	53	183	75	338	-55.2235	-2.14405	0.21987	0.19299	-2.32538

위 그림과 위 표를 보더라도 30번째 관측값에서 가장 큰 ti(외적 스튜던트화잔차)의 절댓값이 가장 크므로 30번째 관측값에 대해 이상점검정을 할 필요가 있다.

위 경우는 p'=5, n=30이므로 부록 [표 5B]에서 유의수준 0.01의 검정에 대한 기각값은 4.18이므로 |t30|<4.18 이기 때문에 30번째 관측값은 이상점으로 판단할 수 없다.

6.3.4

6.3.3의 표에 di가 cook의 D통계랑을 말한다. Cook의 D통계랑 같은 경우 28번째 관측값이 가장 큰 값으로 0.39407, 두번째로 30번째 관측값이 0.21987로 큰 값을 가진다.

Output Statistic s											
Hat Diag Cov DFBETAS											
0bs	Residual	RStudent	Н	Ratio	DFFITS	Intercept	x1	x2	хЗ	×4	
- 1	20,8626	0,8348	0,2494	1,4161	0,4812	-0,3106	-0,2006	-0,0011	0,2802	0,2785	
2	-17,4516	-0,6435	0,1262	1,2885	-0,2446	-0,1129	0,0953	0,1233	-0,0550	-0,0603	
3	16,5149	0,5961	0,0904	1,2528	0,1879	0,0110	-0,1197	-0,0084	0,1125	0,0201	
4	15,2904	0,5478	0,0787	1,2510	0,1601	0,0812	-0,0313	-0,0924	-0,0130	0,0603	
5	-8,5700	-0,3077	0,0903	1,3220	-0,0970	-0,0242	-0,0401	0,0210	0,0703	-0,0267	
6	-4,8981	-0,1776	0,1104	1,3697	-0,0626	0,0077	-0,0197	-0,0035	0,0354	-0,0207	
- 7	-30,6190	-1,1218	0,0843	1,0374	-0,3404	-0,1046	-0,0532	0,0427	0,2147	-0,0964	
8	44,4618	1,8382	0,2206	0,8144	0,9779	-0,5051	-0,1867	0,6034	-0,1233	0,2333	
9	-19,8113	-0,7413	0,1468	1,2836	-0,3075	0,1297	-0,0719	-0,1449	0,0966	-0,0204	
10	-34,9628	-1,3259	0,1286	0,9883	-0,5093	0,2015	0,1408	-0,2824	0,0557	-0,1291	
-11	-33,2460	-1,3273	0,2135	1,0943	-0,6916	-0,1541	-0,5859	0,0981	0,2627	0,3486	
12	14,6468	0,5305	0,0993	1,2845	0,1761	0,0096	-0,0432	0,0896	-0,0262	-0,0272	
13	-5,7448	-0,2345	0,2976	1,7261	-0,1526	-0,0363	0,0120	0,0146	-0,0826	0,0801	
14	21,4653	0,8120	0,1616	1,2774	0,3565	0,0014	-0,0963	0,2000	0,1675	-0,2468	
15	-18,8832	-0,6756	0,0704	1,2007	-0,1860	0,0235	-0,0936	0,0089	0,0148	0,0287	
16	-18,6332	-0,7345	0,2315	1,4280	-0,4031	0,0989	0,2166	-0,3167	-0,1892	0,1687	
17	32,6650	1,3343	0,2482	1,1406	0,7665	0,4306	0,0987	-0,5497	-0,4427	0,4381	
18	7,4904	0,2916	0,2267	1,5581	0,1579	-0,1335	-0,0915	0,0872	0,0885	0,0629	
19	15, 1795	0,5344	0,0466	1,2125	0,1182	0,0603	0,0013	-0,0533	-0,0177	0,0156	
20	-6, 1689	-0,2242	0,1140	1,3698	-0,0804	-0,0303	0.0417	0,0098	-0,0019	-0,0201	
21	44,4867	1,7165	0,1193	0,7805	0,6319	0,4123	0,0609	-0,5082	-0,1218	0,1707	
22	-15, 1054	-0,5543	0,1217	1,3103	-0,2064	-0,0672	0,0591	-0.0774	-0,0192	0,0992	
23	-18, 1672	-0,9050	0,5133	2,1308	-0,9294	0,5057	0,1988	0,1358	-0,5425	-0,3881	
24	9,0489	0,3349	0,1432	1,3984	0,1369	-0,0444	0,0771	0,0122	-0,0312	-0,0043	
25	40,6420	1,5087	0,0721	0,8403	0,4207	0,2643	-0,0382	-0,2064	-0,1050	0,0918	
26	-27,8606	-1,0162	0,0845	1,0852	-0,3087	-0,2540	-0,1318	0, 1545	0,1622	0,0671	
27	19,7324	0,7474	0,1670	1,3123	0,3346	0,1212	0,1713	-0,0261	0,0053	-0,2495	
28	39,5998	1,8481	0,3875	1,0295	1,4699	0,2151	1,2032	0,1444	-0,5380	-0,9746	
29	-26,7412	-1,0205	0,1634	1,1854	-0,4510	0,0221	0,2416	-0,2439	-0,2628	0,2117	
30	-55,2235	-2,3254	0,1930	0,5502	-1,1372	-0,6831	-0,4391	0,9938	0,6054	-0,4707	

DFFITS 값은 28번째, 30번째 순서대로 절댓값이 크고 기준값이 2√(p'/n)=2√(1/6)=0.8165 보다 크 므로 영향력이 크다고 할 수 있다. 그리고 28,30번째 관측값의 DFBETAS의 값들은 모두 매우 크 므로 28번째 관측값은 영향력이 크다고 볼 수 있다.

따라서 28번째, 30번째 관측값이 영향력이 크다.

6.5

6.5.1

잔차산점도는 위와 같은데 11번째 관측값이 가장 잔차가 크고, 32번째 관측값이 y의 적합값이 가장 크다.

OBS	no	×1	x2	хЗ	×4	у	ei	ri	di	hi	ti
- 1	1	38.4	6.1	220	235	6.9	-2.9372	-0.87605	0.02259	0.12828	-0.87215
2	2	40.3	4.8	231	307	14.4	-4.1384	-1.17330	0.01007	0.03527	-1.18189
3	3	40.0	6.1	217	212	7.4	0.1813	0.05451	0.00010	0.14229	0.05349
4	4	31.8	0.2	316	365	8.5	-1.6013	-0.49261	0.01070	0.18065	-0.48559
5	5	40.8	3.5	210	218	8.0	0.2777	0.09103	0.00064	0.27851	0.08934
6	6	41.3	1.8	267	235	2.8	1.7673	0.54699	0.01408	0.19047	0.53977
7	7	38.1	1.2	274	285	5.0	-1.3525	-0.40020	0.00414	0.11438	-0.39389
8	8	50.8	8.6	190	205	12.2	-1.8145	-0.59465	0.02723	0.27797	-0.58739
9	9	32.2	5.2	236	267	10.0	-0.3353	-0.10420	0.00053	0.19717	-0.10227
10	10	38.4	6.1	220	300	15.2	-4.2700	-1.23408	0.02350	0.07161	-1.24668
- 11	11	40.3	4.8	231	267	26.8	14.1895	4.06942	0.20093	0.05720	6.42205
12	12	32.2	2.4	284	351	14.0	-0.1040	-0.03072	0.00002	0.11054	-0.03015
13	13	31.8	0.2	316	379	14.7	2.5240	0.77389	0.02543	0.17514	0.76799
14	14	41.3	1.8	267	275	6.4	-0.5605	-0.16793	0.00089	0.13607	-0.16488
15	15	38.1	1.2	274	365	17.6	-0.6082	-0.17763	0.00063	0.09095	-0.17441
16	16	50.8	8.6	190	275	22.3	-2.0883	-0.65494	0.02303	0.21164	-0.64786
17	17	32.2	5.2	236	360	24.8	0.6825	0.20746	0.00165	0.16088	0.20375
18	18	38.4	6.1	220	365	26.0	-3.1028	-0.90313	0.01510	0.08470	-0.89994
19	19	40.3	4.8	231	395	34.9	3.3203	0.96398	0.01617	0.08002	0.96267
20	20	40.0	6.1	217	272	18.2	2.0895	0.60337	0.00548	0.07002	0.59612
21	21	32.2	2.4	284	424	23.2	-1.7224	-0.51312	0.00761	0.12628	-0.50601
22	22	31.8	0.2	316	428	18.0	-1.4376	-0.44247	0.00867	0.18136	-0.43578
23	23	40.8	3.5	210	273	13.1	-2.7731	-0.89268	0.05359	0.25164	-0.88921
24	24	41.3	1.8	267	358	16.1	-3.1608	-0.93167	0.02090	0.10745	-0.92932
25	25	38.1	1.2	274	444	32.1	2.1843	0.66826	0.01849	0.17151	0.66126
26	26	50.8	8.6	190	345	34.7	-0.0620	-0.01963	0.00002	0.22620	-0.01927
27	27	32.2	5.2	236	402	31.7	1.3582	0.42058	0.00837	0.19130	0.41408
28	28	38.4	6.1	220	410	33.6	-2.1716	-0.65007	0.01315	0.13463	-0.64297
29	29	40.0	6.1	217	340	30.4	4.2121	1.20978	0.01867	0.05996	1.22071
30	30	40.8	3.5	210	347	26.6	-0.2397	-0.07945	0.00053	0.29429	-0.07798
31	31	41.3	1.8	267	416	27.8	-0.0562	-0.01703	0.00001	0.15496	-0.01671
32	32	50.8	8.6	190	407	45.7	1.7498	0.58518	0.03029	0.30666	0.57792

11번째 관측값은 자료영역의 가운데에 놓여있어서 hii는 0.05720으로 매우 작지만 ri가 4.06942로 매우 크므로 cook의 D의 통계량(di)는 0.20093으로 크게 나와서 영향력을 크다는 것을 알 수 있다. 이는 6.2의 결과와 di값이 정확하게 같진 않지만, hi가 매우작고,ri가 매우 크고 di가 큰 값을 갖는 다는 것과 같다. 32번째 관측값은 di값이 0.03029로 작게 나와서 영향력이 크다고 볼 수는 없다.

6.5.2

X4가 잘못 기재될 가능성이 높다. 설명변수 x1, x2, x3이 같은 값을 갖는다면 x4값이 클수록 y값도 큰 값을 보여줘야한다. 하지만 11번째 관측값은 2번째,19번째 관측값에 비해 x4의 값은 작지만 y 값은 크므로, 설명변수x4가 잘못 기재될 가능성이 높다.