

Discrete Structures and Theory (Spring 2023)

Discussion 10

Date: 05/04/2023

Exercise 1:

Prove that
$$1^2 + 3^2 + 5^2 + \dots + (2n+1)^2 = (n+1)(2n+1)(2n+3)/3$$
 whenever n is a nonnegative integer.

Exercise 2:

Prove that
$$3 + 3 \cdot 5 + 3 \cdot 5^2 + \dots + 3 \cdot 5^n = 3(5^{n+1} - 1)/4$$
 whenever n is a nonnegative integer.

Exercise 3:

Prove that
$$2-2\cdot 7+2\cdot 7^2-\cdots+2(-7)^n=(1-(-7)^{n+1})/4$$
 whenever n is a nonnegative integer.

Exercise 4:

a) Find a formula for

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$$

by examining the values of this expression for small values of n.

b) Prove the formula you conjectured in part (a).

Exercise 5:

Use mathematical induction to prove that $n^3 - n$ is divisible by 3, for every positive integer n.

Exercise 6:

Prove that whenever n is a positive integer,

21 divides
$$4^{n+1} + 5^{2n-1}$$

Exercise 7:

Let n be a positive integer. Show that every $2^n \times 2^n$ checkerboard with one square removed can be tiled using right triominoes, where these pieces cover three squares at a time, as shown in the picture below:

