Labor Embedded-Software

Prof. Dr. Dirk W. Hoffmann

Versuch 3 (Satellitentechnik)

In der Vorlesung haben Sie gelernt, dass GPS-Satelliten ihre Navigationsdaten CDMA-codiert abstrahlen. Zur Berechnung der Chipsequenzen kommen spezielle Gold-Code-Geneneratoren zum Einsatz, die im Falle der GPS-Satelliten 1 und 2 beispielsweise so aussehen:

Die folgende Tabelle zeigt, wie der Gold-Code-Generator für die anderen Satelliten modifiziert werden muss:

ID	t	Register- summe	Chip-Sequenz	ID	t	Register- summe	Chip-Sequenz
1	5	2⊕6	110010000011	13	255	6⊕7	111111010010
2	6	$3 \oplus 7$	111001000011	14	256	$7 \oplus 8$	1111111101011
3	7	$4 \oplus 8$	111100100011	15	257	$8 \oplus 9$	1111111110111
4	8	5⊕9	111110010011	16	258	9 ⊕ 10	111111111001
5	17	1 ⊕ 9	100101101100	17	469	1 ⊕ 4	100110111000
6	18	$2 \oplus 10$	110010110100	18	470	$2 \oplus 5$	110011011110
7	139	$1 \oplus 8$	100101100111	19	471	3 ⊕ 6	111001101101
8	140	$2 \oplus 9$	110010110001	20	472	4⊕7	111100110100
9	141	3 ⊕ 10	111001011010	21	473	5 ⊕ 8	111110011000
10	251	$2 \oplus 3$	110100010010	22	474	$6 \oplus 9$	111111001110
11	252	$3 \oplus 4$	111010001011	23	509	$1 \oplus 3$	100011001111
12	254	5 ⊕ 6	111110100001	24	512	4⊕6	111100011010

Auf der Labor-Webseite steht für Ihre Arbeitsgruppe eine Textdatei zum Herunterladen bereit, die 1023 Zahleneinträge enthält. Die Zahlenfolge ist ein Summensignal, das durch die Überlagerung der CDMA-Chipsequenzen mehrerer GPS-Satelliten entstanden ist.

Labor Embedded-Software

Ihre Aufgabe ist es, einen Software-Decoder in der **Programmiersprache C oder C++** zu implementieren, der die folgenden Informationen aus dem Summensignal extrahiert:

- Von welchen GPS-Satelliten stammt das gesendete Signal?
- Welche Bits haben die beteiligten Satelliten gesendet?

Hinweise: Eine GPS-Chipsequenz setzt sich aus 1023 Chips zusammen. Jeder Satellit hat in dem aufgezeichneten Zeitraum also genau 1 Bit gesendet.

Beachten Sie bei der Bearbeitung der Aufgabe, dass die gesendeten Signale der GPS-Satellit zeitversetzt den Empfänger erreichen (asynchrones CDMA). Im allgemeinen beginnen die Chipsequenzen also nicht am Anfang, sondern irgendwo in der Mitte des empfangenen Summensignals. Sie dürfen davon ausgehen, dass die GPS-Satelliten vor und nach dem aufgezeichneten Segment mehrfach das gleiche Bit gesendet haben. Das bedeutet, dass Sie eine Chipsequenz, die in der Mitte beginnt, vervollständigen können, indem Sie das Anfangsstück hinten anhängen.

Konkret soll Ihr Programm die folgenden Schritte ausführen:

- **Schritt 1:** Das Summensignal wird aus einer Textdatei eingelesen. Der Dateiname soll als Kommandozeilenparameter übergeben werden können.
- **Schritt 2:** Das Summensignal wird nacheinander mit den Chipsequenzen aller GPS-Satelliten kreuzkorreliert und nach Übereinstimmungen (Peeks) gesucht.
- **Schritt 3:** Es wird eine Ausgabe produziert, die **exakt so** aussieht:

```
Satellite 8 has sent bit 0 (delta = 72)
Satellite 9 has sent bit 1 (delta = 449)
Satellite 18 has sent bit 0 (delta = 345)
Satellite 22 has sent bit 1 (delta = 157)
```

Die Delta-Werte sind die Position im Summensignal, an denen die Chipsequenz des betreffenden Satelliten beginnt.

Viel Erfolg!