

Γράφοι

- Ένας γράφος είναι ένα ζεύγος (V, E), όπου
 - V είναι ένα σύνολο από κόμβους, που ονομάζονται κορυφές
 - Ε είναι μια συλλογή από ζεύγη κορυφών, που ονομάζονται ακμές
 - Οι κορυφές και οι ακμές είναι θέσεις και αποθηκεύουν στοιχεία
- Παράδειγμα:
 - Μια κορυφή παριστάνει ένα αεροδρόμιο και αποθηκεύει τον κωδικό του που αποτελείται από τρία γράμματα
 - Μια ακμή παριστάνει μια διαδρομή μεταξύ δυο αεροδρομίων και αποθηκεύει το μήκος της διαδρομής σε μίλια

Τύποι Ακμών

- _ Κατευθυνόμενη ακμή
 - διατεταγμένο ζεύγος κορυφών (u,v)
 - η πρώτη κορυφή u είναι η αρχή
 - η δεύτερη κορυφή ν είναι το τέλος
 - π.χ., μια πτήση
 - Μη κατευθυνόμενη ακμή
 - μη διατεταγμένο ζεύγος κορυφών (u,v)
 - π.χ., μια διαδρομή πτήσης
 - Κατευθυνόμενος γράφος
 - όλες οι ακμές είναι κατευθυνόμενες
 - π.χ, δίκτυο διαδρομών
 - Μη κατευθυνόμενος γράφος
 - όλες οι ακμές είναι μη κατευθυνόμενες
 - π.χ., ένα δίκτυο διαδρομών

Βαθμός Κορυφής

- Σε μη κατευθυνόμενο γράφο ο βαθμός μιας κορυφής
 ν (που συμβολίζεται με deg(ν)) είναι το πλήθος των ακμών που προσπίπτουν σε αυτήν
- □ Σε ένα κατευθυνόμενο γράφο κάθε κορυφή ν έχει:
 - Έσω-βαθμός: το πλήθος των ακμών που προσπίπτουν στην κορυφή indeg(v)
 - Έξω-βαθμός: το πλήθος των ακμών που ξεκινούν από την κορυφή outdeg(v)

Εφαρμογές

- Ηλεκτρονικά κυκλώματα
 - Ηλεκτρονική Πλακέτα
 - Ολοκληρωμένο κύκλωμα
- Δίκτυα μεταφορών
 - Δίκτυο αυτοκινητόδρομων
 - Δίκτυο πτήσεων
- □ Δίκτυα Υπολογιστών
 - Τοπικά δίκτυα
 - Διαδίκτυο
 - Web
- Βάσεις δεδομένων
 - Διαγράμματα οντοτήτων συσχετίσεων

Ορολογία

- Άκρα μιας ακμής
 - τα U και V είναι τα άκρα μιας ακμής
 - Ακμές προσκείμενες σε μια κορυφή
 - a, d, και b είναι προσκείμενες στη V
- Γειτονικές κορυφές
 - οι U και V είναι γειτονικές
- Βαθμός μιας κορυφής
 - ο βαθμός της Χ είναι 5
- Παράλληλες ακμές
 - οι ακμές h και i είναι παράλληλες
- Αυτό-ακμή (βρόχος)
 - η j είναι βρόχος

Ορολογία (συν.)

- Моуопаті
 - ακολουθία από εναλλασσόμενες κορυφές και ακμές
 - αρχίζει με κορυφή
 - τελειώνει με μια κορυφή
 - κάθε ακμή ξεκινάει και τελειώνει με τα άκρα της
- Απλό μονοπάτι
 - ένα μονοπάτι που όλες οι κορυφές και οι ακμές του είναι διαφορετικές
- Παραδείγματα
 - P₁=(V,b,X,h,Z) είναι ένα απλό μονοπάτι
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V)
 είναι ένα μονοπάτι που δεν
 είναι απλό

Ορολογία (συν.)

- υ Κύκλος
 - κυκλική ακολουθία εναλλασσόμενων κορυφών και ακμών
 - Τουλάχιστον μια ακμή αρχή και τέλος την ίδια κορυφή
 - Απλός κύκλος
 - κύκλος που όλες οι κορυφές και οι ακμές του είναι διαφορετικές
 - Παραδείγματα
 - C₁=(V,b,X,g,Y,f,W,c,U,a, →) είναι ένας απλός κύκλος
 - C_2 =(U,c,W,e,X,g,Y,f,W,d,V,a,△) είναι ένας κύκλος που δεν είναι απλός

Ιδιότητες

Ιδιότητα 1

 $\sum_{v} \deg(v) = 2m$

Απόδειξη: κάθε πλευρά μετριέται δύο φορές

Ιδιότητα 2

Σε ένα μη κατευθυνόμενο γράφο χωρίς βρόχους και πολλαπλές πλευρές

 $m \le n (n-1)/2$

Απόδειξη: κάθε κόμβος έχει βαθμό το πολύ (n - 1)

Ποιό είναι το όριο για κατευθυνόμενο γράφο;

Συμβολισμός

π πλήθος κορυφών

m πλήθος ακμών

deg(v) βαθμός της κορυφής v

Παράδειγμα

$$= m = 6$$

$$\bullet \deg(v) = 3$$

Βασικές Μέθοδοι του ΑΤΔ Γράφου

- Κορυφές και ακμές
 - είναι θέσεις
 - αποθηκεύουν στοιχεία
 - Μέθοδοι προσπέλασης
 - endVertices(e): επιστρέφει ένα πίνακα με δυο κορυφές άκρα
 - opposite(v, e): η γειτονική κορυφή από την ν στην ακμή e
 - areAdjacent(v, w): true αν και μόνον αν οι ν και w είναι διαδοχικές
 - replace(v, x): αντικατάσταση του στοιχείου στην κορυφή v με το x
 - replace(e, x): αντικατάσταση του στοιχείου στην ακμή e με το x

- ι Μέθοδοι ενημέρωσης
 - insertVertex(o): εισάγει μια κορυφή που αποθηκεύει το στοιχείο ο
 - insertEdge(v, w, o): εισάγει μια ακμή (v,w) που αποθηκεύει το στοιχείο ο
 - removeVertex(v): διαγράφει την κορυφή ν (και τις προσκείμενες ακμές της)
 - removeEdge(e): διαγράφει την ακμή e
- Μέθοδοι επαναλήψιμης συλλογής
 - incidentEdges(v): οι προσκείμενες ακμές στη ν
 - vertices(): όλες οι κορυφές του γράφου
 - edges(): όλες οι ακμές του γράφου

Δομή Λίστας Ακμών

- Αντικείμενο Κορυφή
 - στοιχείο
 - αναφορά σε μια θέση στην ακολουθία κορυφών
- Αντικείμενο Ακμή
 - στοιχείο
 - αντικείμενο κορυφή αρχής
 - αντικείμενο κορυφή τέλους
 - αναφορά σε μια θέση στην ακολουθία των ακμών
- Ακολουθία Κορυφών
 - ακολουθία αντικειμένων κορυφών
- Ακολουθία Ακμών
 - ακολουθία αντικειμένων ακμών

Γράφοι

Δομή Λίστας Γειτνίασης

- Δομή λίστας Ακμών
- Ακολουθίαπροσκείμενων γιακάθε κορυφή
 - Ακολουθία
 αναφορών σε
 αντικείμενα ακμές
 για προσκείμενες
 ακμές
- Επαυξημένα αντικείμενα ακμές
 - αναφορές σε αντίστοιχες θέσεις σε ακολουθίες προσκείμενων κορυφών άκρων

Δομή Πίνακα Γειτνίασης

- ____ Δομή λίστας ακμών
 - Επαυξημένα αντικείμενα κορυφές
 - Κλειδί ακέραιος (ευρετήριο) συνδυάζεται με την κορυφή
 - Πίνακας γειτνίασης δύο διαστάσεων
 - Αναφορά σε αντικείμενο πλευρά για γειτονικές κορυφές
 - Null για μη γειτονικές κορυφές
 - Η παραδοσιακή εκδοχή έχει 0 αν δεν υπάρχει ακμή και 1 αν έχει ακμή

Απόδοση

 n κορυφές, m πλευρές χωρίς παράλληλες ακμές χωρίς βρόχους 	Λίστα Ακμώ ν	Λίστα Γειτνίασης	Πίνακας Γειτνίασης
Χώρος	n+m	n+m	n^2
incidentEdges(v)	m	$\deg(v)$	n
areAdjacent (v, w)	m	$\min(\deg(v), \deg(w))$	
insertVertex(o)			n^2
insertEdge(v, w, o)		1	1
removeVertex(v)		deg(v)	<u>n</u> 2
removeEdge(e)			