Improving Genetic Programming Based Symbolic Regression Using Deterministic Machine Learning

Ilknur Icke and Joshua C. Bongard Department of Computer Science The University of Vermont

IEEE Congress on Evolutionary Computation
CFC 2013

What is wrong with Genetic Programming Based Symbolic Regression (GP-SR)?

- Easy to implement, but hard to analyze
- Works well on toy problems but struggles on high dimensional data

Vicious cycle of GP-SR:

- GP-SR effectively performs feature elimination only when sufficiently accurate models are evolved
- High dimensionality makes it difficult for GP-SR to evolve sufficiently accurate models!

What is wrong with Genetic Programming Based Symbolic Regression (GP-SR) ?

- Easy to implement, but hard to analyze
- Works well on toy problems but struggles on high dimensional data

Vicious cycle of GP-SR:

- GP-SR effectively performs feature elimination only when sufficiently accurate models are evolved
- High dimensionality makes it difficult for GP-SR to evolve sufficiently accurate models!

Our hypothesis: Hybridize and you shall win

A hybrid genetic programming (GP) and deterministic machine learning (ML) based symbolic regression algorithm out-performs the genetic programming based symbolic regression (GP-SR) algorithm alone

Method

- Perform feature extraction using a deterministic, fast machine learning algorithm
- Pass the extracted features to GP-SR for model building

Our hypothesis: Hybridize and you shall win

A hybrid genetic programming (GP) and deterministic machine learning (ML) based symbolic regression algorithm out-performs the genetic programming based symbolic regression (GP-SR) algorithm alone

Method:

- Perform feature extraction using a deterministic, fast machine learning algorithm
- Pass the extracted features to GP-SR for model building

Feature Extraction as a Sequential Process

Feature selection

- Naive way: consider one feature at a time
- Subset Selection
 - Filters-independent of the learning algorithm
 - Wrappers-assess informativeness based on the performance of the learning algorithm
 - Embedded Methods-built in the learning algorithm: decision trees, regularization approach

Regularization for Linear Regression

Given a multivariate dataset $X = \{x_1, x_2, ..., x_N\}$ of observations, the response variable Y is defined as:

$$Y = f(X) = \beta_0 + \sum_{j=1}^{N} \beta_j * x_j$$

$$RSS = min_{\beta} (\sum_{i=1}^{N} y_i - \beta_0 - \sum_{i=1}^{N} \beta_j * x_{ij})^2$$

Learning algorithm applied to the training data => overfitting. An additional constraint on the coefficients is imposed in order to tame the coefficients $(\sum_{j=1}^{N} ||\beta_j||_1 \le t)$.

Regularization for Linear Regression cont'd

- LASSO-least absolute shrinkage and selection operator (constraint l₁norm)
- Ridge Regression (constraint *l*₂ norm)
- Elastic Net (hybrid of the two above)

$$Y = f(X) = \beta_0 + \sum_{j=1}^{N} \beta_j * x_j + \lambda_2 ||\beta||_2^2 + \lambda_1 ||\beta||_1$$

 λ_1,λ_2 are balanced by a single *mixing* parameter ($0 \le \alpha \le 1$) At the extreme values of α , elastic net behaves like purely lasso or purely ridge regression.

Elastic Net

Adding Nonlinearity-Generalized Linear Models

$$Y = f(X) = \beta_0 + \sum_{j=1}^{N} \beta_j * b_j(X)$$

where $b_j(X)$ are nonlinear basis functions applied to the input variables in order to construct new features.

The Fast Function Extraction: FFX Algorithm

The FFX Idea from McConaghy, 2011

Stage 1: Feature Construction

Unary and Binary interactions

$$log(x_1)$$
, $sqrt(x_1)$...

Stage 2: Model Building

For a set of λ s

$$y = a1 * x_1 + b$$

$$y = a1 * x_1 + a2 * x_1 * x_3 + b$$

Stage 3: Model Selection

Improving GP-SR using Deterministic Machine Learning

Algorithm 3: The hybrid FFX/GP-SR algorithm

Input: $V = \{v_1, v_2, ..., v_N\}$

Output: One best model with respect to the validation data error and complexity

- 1 nonDominatedModels = ffx(trainingDataset)
- 2 bases = extractBasisFunctions (nonDominatedModels,
- 3 validationDataset)
- 4 newDataset=createNewDataset(bases)
- 5 bestModel = GP-SR(newDataset)

Synthetic Benchmark Data Suite Generation

Systemically generated benchmark data suite:

- number of variables: 1-3, 10, 25
- order of polynomial: 1 -4
- number of basis functions: 1 -4
- 2500 training, 1250 validation and 1250 test data points
- for each type of polynomial, 30 different datasets

Evaluation Procedure

Experiments

For each dataset:

- FFX runs 1 time
- 30 runs of GP-SR
- 30 runs of FFX/GP-SR

Evaluation Select the model with lowest prediction error on validation set and report:

- prediction error on test set
- similarity to the correct functional form

Algorithm parameters

Parameter	Value
Basis Function Expansion	Exponents : 1
	Interactions : Unary, Binary
	Operators : $\{\ \}$
Elastic Net	$\alpha: \{0, 0.05, 0.1,, 1\}$
	λ : 100 λ values calculated by glmfit
	based on α
	Maximum basis functions allowed :
	250
Model Selection	Non-dominated models with respect
	to validation data error versus number
	of bases

Default FFX-variant parameters

Algorithm Parameters

Parameter	Value
Representation	GPTIPS Multigene syntax tree
	Number of genes: 1
	Maximum tree depth: 7
Population Size	500
Runtime Budget	1 minute
Selection	Lexicographic tournament selection
Tournament Size	7
Crossover Operator	Sub-tree crossover
Crossover Probability	0.85
Mutation Operator	Sub-tree mutation
Mutation Probability	0.1
Reproduction Probability	0.05
Building Blocks	Operators: $\{+, -, *, protected/\}$
	Terminal Symbols: $\{x_1,, x_N\}$
Fitness	$\frac{1}{N}\sqrt{\sum(y-\hat{y})^2}$
Elitism	Keep 1 best individual

Default GP-SR parameters

Results on 1D data

Example polynomials:

order 1 polynomial:

(1) $y = 0.288 * x_1 + 0.8446$

order 2 polynomials:

(1)
$$y = 0.14 * x_1^2 + 0.629$$

(2)
$$y = 0.12 * x_1 + 0.03 * x_1^2 + 0.29$$

order 3 polynomials:

(1)
$$y = -0.31 * x_1^3 - 0.11$$

(2)
$$y = 1.35 * x_1^2 - 0.83 * x_1^3 + 0.139$$

(3)
$$y = 0.13 * x_1 + 0.44 * x_1^2 + 0.34 * x_1^3 + 0.39$$
 order 4 polynomials:

- (1) $y = 0.20 * x_1^4 + 0.13$
- (2) $y = 0.24 * x_1^3 + 0.23 * x_1^4 + 0.39$
- (3) $y = 0.75 * x_1^2 + 0.30 * x_1^3 + 0.35 * x_1^4 + 0.334$
- (4) $y = 0.02 * x_1 + 0.13 * x_1^2 + 0.301 * x_1^3 + 0.32 * x_1^4 + 0.91$

Number of times correct form is discovered:

FFX runs with unary (x_i) and binary interactions $(x_i * x_j)$ (average run time: 7 seconds)

FFX/GP-SR (1 minute GP run

on FFX-generated dataset)

		Bases			
		1	2	3	4
Order of the Polynomial	1	30	-	-	-
	2	30	27		-
	3	30	26	19	-
	4	30	28	16	17

Correctness of the polynomial form

Results on 1D data

Example polynomials:

order 1 polynomial:

(1) $y = 0.288 * x_1 + 0.8446$

order 2 polynomials:

(1)
$$y = 0.14 * x_1^2 + 0.629$$

(2)
$$y = 0.12 * x_1 + 0.03 * x_1^2 + 0.29$$

order 3 polynomials:

(1)
$$y = -0.31 * x_1^3 - 0.11$$

(2)
$$y = 1.35 * x_1^2 - 0.83 * x_1^3 + 0.139$$

(3)
$$y = 0.13 * x_1 + 0.44 * x_1^2 + 0.34 * x_1^3 + 0.39$$
 order 4 polynomials:

- (1) $y = 0.20 * x_1^4 + 0.13$
- (2) $y = 0.24 * x_1^3 + 0.23 * x_1^4 + 0.39$
- (3) $y = 0.75 * x_1^2 + 0.30 * x_1^3 + 0.35 * x_1^4 + 0.334$
 - (4) $y = 0.02 * x_1 + 0.13 * x_1^2 + 0.301 * x_1^3 + 0.32 * x_1^4 + 0.91$

Similarity to correct form & Prediction Accuracy

Wilcoxon Rank Sum Test

Similarity to Correct Form & Prediction accuracy

Results on 2D data

Example polynomials:

order 1 polynomial:

(1)
$$y = 0.62 * x_2 - 0.854$$

order 2 polynomials:

(1)
$$y = 0.22 * x_1^2 + 0.05$$

(2)
$$y = 0.12 * x_1 - 0.25 * x_1 * x_2 + 0.4$$

order 3 polynomials:

- (1) $y = 1.67 * x_1^2 * x_2 + 0.46$
- (2) $y = 0.17 * x_1 * x_2 + 0.369 * x_2^3 0.3$
- (3) $y = 0.03 * x_2 0.36 * x_1^2 + 0.22 * x_2^3 + 0.42$

order 4 polynomials:

- (1) $y = 2.88 * x_1^2 * x_2^2 + 0.15$
- (3) $y = 0.4978 * x_1 * x_2^3 0.08 * x_1^4 + 0.36$
- (3) $y = 2.19 * x_1 * x_2^2 0.87 * x_2^3 + 0.87 * x_1^2 * x_2^2 + 0.39$
- (4) $y = 0.13 * x_2 1.313 * x_1 * x_2 0.1 * x_1^3$ $0.4926 * x_1^2 * x_2^2 + 0.19$

Number of times correct form is discovered:

FFX runs on with unary (x_i) and binary interactions $(x_i * x_j)$ (average run time: 9 seconds)

			Bases			
			1	2	3	4
Order of the Polynomial	1	30	-	-	-	
	2	30	16	-	-	
	3	0	0	0	-	
		4	0	0	0	0

FFX/GP-SR runs (1 minute GP

run on FFX-generated dataset)

		Bases			
		1	2	3	4
Order of the Polynomial	1	30	-	-	-
	2	30	30	-	-
	3	30	19	14	-
	4	30	20	11	3

Correctness of the polynomial form

Results on 2D data

Example polynomials:

Similarity to correct form & Prediction Accuracy

order 1 polynomial:

(1)
$$y = 0.62 * x_2 - 0.854$$

order 2 polynomials:

(1)
$$y = 0.22 * x_1^2 + 0.05$$

(2)
$$y = 0.12 * x_1 - 0.25 * x_1 * x_2 + 0.4$$

order 3 polynomials:

- (1) $y = 1.67 * x_1^2 * x_2 + 0.46$
- (2) $y = 0.17 * x_1 * x_2 + 0.369 * x_2^3 0.3$
- (3) $y = 0.03 * x_2 0.36 * x_1^2 + 0.22 * x_2^3 + 0.42$

order 4 polynomials:

- (1) $y = 2.88 * x_1^2 * x_2^2 + 0.15$
- (3) $y = 0.4978 * x_1 * x_2^3 0.08 * x_1^4 + 0.36$
- (3) $y = 2.19 * x_1 * x_2^2 0.87 * x_2^3 + 0.87 * x_1^2 * x_2^2 + 0.39$
- (4) $y = 0.13 * x_2 1.313 * x_1 * x_2 0.1 * x_1^3$ $0.4926 * x_1^2 * x_2^2 + 0.19$

Wilcoxon Rank Sum Test

Similarity to Correct Form & Prediction accuracy

Results on 3D data

Example polynomials:

order 1 polynomial:

(1)
$$y = 0.746 * x_3 + 0.8268$$

order 2 polynomials:

(1)
$$y = 0.54 * x_3^2 + 0.4$$

(2)
$$y = 0.8651 * x_1 - 0.61 * x_2^2 - 0.30$$

order 3 polynomials:

- (1) $y = 0.84 * x_1 * x_2 * x_3 0.86$
- (2) $y = 0.93 * x_1 * x_2 0.46 * x_3^3 + 0.88$
- (3) $y = 0.04 * x_2 0.18 * x_2 * x_3 0.01 * x_1 * x_2^2 + 0.3$ order 4 polynomials:
 - (1) $y = 0.20 * x_1 * x_2^3 + 0.91$
 - (2) $y = 0.73 * x_1^2 * x_2 0.07 * x_1^2 * x_2 * x_3 + 0.39$
 - (3) $y = 1.2 * x_1 * x_2 + 0.68 * x_1^2 * x_2 + 0.48 * x_1^2 * x_2 * x_2 + 0.41$
 - (4) $y = 0.35 * x_3 0.32 * x_2 * x_3 0.35 * x_1 * x_2^2 0.39 * x_2^4 + 0.24$

Number of times correct form is discovered:

Standalone GP (1 minute)

Base

FFX runs with unary (x_i) and

binary interactions $(x_i * x_i)$ (average run time: 12 seconds)

FFX/GP-SR runs (1 minute GP

run on FFX-generated dataset)

Correctness of the polynomial form

Results on 3D data

Example polynomials:

order 1 polynomial:

(1) $y = 0.746 * x_3 + 0.8268$

order 2 polynomials:

(1) $y = 0.54 * x_3^2 + 0.4$

(2) $y = 0.8651 * x_1 - 0.61 * x_2^2 - 0.30$

order 3 polynomials:

- (1) $y = 0.84 * x_1 * x_2 * x_3 0.86$
- (2) $y = 0.93 * x_1 * x_2 0.46 * x_3^3 + 0.88$
- (3) $y = 0.04 * x_2 0.18 * x_2 * x_3 0.01 * x_1 * x_2^2 + 0.3$ order 4 polynomials:
 - (1) $y = 0.20 * x_1 * x_2^3 + 0.91$
 - (2) $y = 0.73 * x_1^2 * x_2 0.07 * x_1^2 * x_2 * x_3 + 0.39$
 - (3) $y = 1.2 * x_1 * x_2 + 0.68 * x_1^2 * x_2 + 0.48 * x_2^2 * x_2 * x_2 + 0.41$
 - (4) $y = 0.35 * x_3 0.32 * x_2 * x_3 0.35 * x_1 * x_2^2 0.39 * x_3^4 + 0.24$

Similarity to correct form & Prediction Accuracy

Wilcoxon Rank Sum Test

Similarity to Correct Form & Prediction accuracy

Results on 10D & 25D data (2nd order polynomials)

The hybrid: significantly more similar to the hidden true polynomials & significantly more predictive as dimensionality increases

Discussion

Results show:

- For low dimensional (1 -3) data, GP-SR is competitive with state-of-the-art deterministic ML on our benchmark data suite
- ullet As dimensionality increases (10/25), the hybrid approach wins because hybrid takes advantage of feature extraction provided by the deterministic ML

Therefore, we prove:

- GP-SR is competitive on toy problems, but when dimensionality increases it struggles,
- Hybridize and you shall win!

Discussion

Results show:

- For low dimensional (1 -3) data, GP-SR is competitive with state-of-the-art deterministic ML on our benchmark data suite
- As dimensionality increases (10/25), the hybrid approach wins because hybrid takes advantage of feature extraction provided by the deterministic ML

Therefore, we prove:

- GP-SR is competitive on toy problems, but when dimensionality increases it struggles,
- Hybridize and you shall win!

Current and Future Work

- Real-world problems: 52 dimensional fMRI dataset (presented at GPTP 2013)
- Other ways of hybridizing the deterministic and GP-based methods for Symbolic Regression
- Comparing all three approaches

Acknowledgments

This research was supported by a DARPA grant #FA8650-11-1-7155

The authors acknowledge the Vermont Advanced Computing Core which is supported by NASA (NNX 06AC88G), at the University of Vermont for providing High Performance Computing resources that have contributed to the research results reported within this paper

Questions?

