Joe Watson

joemwatson.github.io joe@robot-learning.de

Room E226, Building S2 | 02 TU Darmstadt, FG IAS Hochschulstr. 10, 64289 Darmstadt

Education

Technische Universität Darmstadt

Darmstadt, Germany

2019 - present

Computer Science Ph.D., anticipated graduation date: 8/2023

Part of the Intelligent Autonomous Systems group researching Robot Learning, supervised by Prof. Jan Peters.

Peterhouse, University of Cambridge

Cambridge, UK

2012 - 2016

Information & Computer Engineering MEng, BA (Hons)

Distinction, First class

Thesis: Deep Learning for Robotic Grasping, vision-based grasping with a Baxter robot using Caffe and ROS, supervised by Dr. Fumiya Iida Modules include: Robotics, Computer Vision, Statistical Pattern Processing, Digital Filters & Spectrum Estimation, Nonlinear Systems & Control

Jack Weinstock Prize for Electrical and Information Sciences (2016, 2017) Peterhouse Engine

Peterhouse Engineering College Prize (2015, 2016, 2017)

nours Charles Babbage Senior Scholarship of Peterhouse (2015-2017)

2nd Year Integrated Design Project Prize (2014)

Engineering Professors' Council Essay Prize, Highly Commended (2013)

1st Year Computing Prize (2013)

Experience

Research Scientist Intern, DeepMind

London, UK

Winter, 2022 - 2023

• Worked on entropy-regularized deep imitation learning, hosted by Sandy Huang and Nicolas Heess in the robotics team

Software Engineer, CMR Surgical

Cambridge, UK

2016 - 2018

- · Worked on Verisus, a novel robotic system designed to revolutionize laparoscopic surgery, through to CE Mark accreditation
- Focused on the robot control and signal processing algorithms for the manipulators, through research, experimentation and software development using C and Python
- · Implemented software features for microcontroller subsystems of the product from requirements to tests
- Contributed towards the technical documentation of the microcontroller subsystem, included the technical specification, test specifications and risk analysis

Publications

PREPRINTS

Coherent Soft Imitation Learning

Watson, J., Huang, H. S., Heess, N., Under review (2023)

Efficient Stochastic Optimal Control through Approximate Bayesian Input Inference

Watson, J., Abdulsamad, H., Findeisen, R., Peters J. Under review (2021)

A Differentiable Newton-Euler Algorithm for Real-World Robotics

Lutter, M., Silberbauer, J., Watson, .J, Peters, J. Under review (2021)

Function-Space Variational Inference for Deep Bayesian Classification

Lin, J., Watson, J., Klink, P., Peters, J., Under review (2022)

JOURNAL PUBLICATIONS

$Benchmarking\ Structured\ Policies\ and\ Policy\ Optimization\ for\ Real-World\ Dexterous\ Object\ Manipulation,$

Funk, N. et al. IEEE Robotics and Automation Letters, Special Issue: Robotic Grasping and Manipulation Challenges and Progress (2021)

CONFERENCE ARTICLES

Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with Gaussian Processes, [ORAL PRESENTATION]

Watson, J., Peters, J., Conference on Robot Learning (CoRL) (2022)

Differentiable Physics Models for Real-world Offline Model-based Reinforcement Learning,

Lutter, M., Silberbauer, J., Watson, J, Peters, J. International Conference on Robotics and Automation (ICRA) (2021)

Latent Derivative Bayesian Last Layer Networks,

 $Watson, J.^{\star}, Lin, J.A.^{\star}, Klink, P., Pajarinen, J., Peters J. \textit{International Conference on Artificial Intelligence and Statistics (AISTATS)} \ (2021)$

Advancing Trajectory Optimization with Approximate Inference: Exploration, Covariance Control and Adaptive Risk,

Watson, J., Peters J. American Control Conference (ACC) (2021)

Stochastic Optimal Control as Approximate Input Inference,

Watson, J., Abdulsamad, H., Peters J. Conference on Robot Learning (CoRL) (2019)

$Real-World, Real-Time\ Robotic\ Grasping\ with\ Convolutional\ Neural\ Networks,$

Watson, J., Hughes, J., Iida F., 18th Towards Autonomous Robotic Systems (TAROS) (2017)

WORKSHOP PAPERS

Inference, Models and Priors for Control,

Watson, J. R:SS Pioneers Workshop (2022) [30% acceptance rate]

Differentiable Physics Models as Gaussian Processes,

 $Watson, J., Hahner, B., Peters, J., {\it R:SS~Workshop~on~Differentiable~Simulators~(2022)}$

Neural Linear Models with Gaussian Process Priors,

Watson, J.*, Lin, J.A.*, Kink, P., Peters, J. Advances in Approximate Bayesian Inference (AABI) (2021)

Active Inference or Control as Inference? A Unifying View,

Imohiosen, A*, Watson, J.*, Peters, J. International Workshop on Active Inference (2020)

A Differentiable Newton Euler Algorithm for Multi-body Model Learning,

Lutter, M., Silberbauer, J., Watson, J., Peters, J. R:SS Structured Approaches to Robot Learning Workshop (2020)

BOOK CHAPTERS

Control as Inference? Comparing Path Integral and Message Passing Methods for Optimal Control,

Watson, J. Reinforcement Learning Algorithms: Analysis and Applications, Springer International (2020)

Robot Learning: An Introduction,

Watson, J., Urain, J., Carvalho, J., Funk, N., Peters, J., Robotics Goes MOOC, Springer International In preparation.

Teaching

ROBOT LEARNING (2020-22) Lead teaching assistant for the TU Darmstadt course and MOOC, hosted on the KI Campus platform. Designed lectures on probabilistic graphical models, approximate optimal control, state estimation, model-based reinforcement learning, system identification and Bayesian reinforcement learning.

Academic Supervision

	ı				
SEMINAR	B. Hahner	Differential Dynamic Pro	ogramming for Humanoid Robotics		
MSC THESIS	T. Gossard	Approximate Bayesian Inference for Structured Model Learning (wi		h M. Lutter)	
MSC THESIS	Y. Eich	Distributionally Robust Optimization for Hybrid Systems		(with H. Abdulsamad)	
MSC THESIS	J. Lin	Functional Variational Inference for Bayesian Neural Networks		(with P. Klink)	
MSC THESIS	J. Silberbauer	Differentiable Newton Euler Algorithm for Multi-body Model Learning		(with M. Lutter)	
MSC THESIS	L. Williamson	Learning Nonlinear Dynamical Systems with the Koopman Operator			
BSC THESIS	D. Nikitina	Inference Methods for Markov Decision Processes			
BSC THESIS	M. Ali	An Educational Framework for Robot Learning			
BSC THESIS	F. Damken	Variational Autoenconders for Koopman Dynamical Systems			
INTERNSHIP.	A. Imohiosen	Variational Input Inference for Control			
HONORS THESIS	C. Voelcker	Sequential Monte Carlo	Input Inference for Control		
Invited Tall	ks				
Huawei R&D		London, UK	Inferring Smooth Control	202	23
University of Hertfordshire		Hertfordshire, UK	Inferring Smooth Control	202	22
KIT		Karlsruhe, Germany	Inferring Smooth Control	202	22
IOB		Basel, Switzerland	The Promise and Pitfalls of Control as Inference	202	21
IFAT, Universität Madgeburg		Madgeburg, Germany	Advancing Trajectory Optimization with Approximate Inf	ference 202	21
ATR Institute		Kyoto, Japan	Stochastic Optimal Control as Approximate Input Inferen	ce 201	9
RIKEN Institute		Tokyo, Japan	Stochastic Optimal Control as Approximate Input Inferen	ce 201	9
Preferred Networks		Tokyo, Japan	Stochastic Optimal Control as Approximate Input Inferen	ce 201	9
Academic S	Service		·		

 $Reviewed \ for \ NeurIPS \ (2020^{\star}, 2021^{\star}, 2022), \ ICML \ (2021, 2022), \ AISTATS \ (2021), \ CoRL \ (2021, 2022), \ ICLR \ (2022), \ IROS \ (2022), \ Neurocomputing, \ IEEE \ Robotics \ and \ Automation \ Letters \ ^*Reviewer \ award$

Competencies

Software engineering (Python, C, git), machine learning (PyTorch), robotics (ROS), design (TikZ, Lapx, Photoshop, Illustrator)

Academic Interests

Robotics, optimal control, approximate inference, system identification, reinforcement learning

References available on request