Comparative Analysis of Facial Landmark Detection Models

Dlib vs. MediaPipe

June 5, 2025

Introduction

Purpose of the Analysis:

- Compare performance of two facial landmark detection models
- Evaluate speed, accuracy, and usability

Models Evaluated:

- Dlib: 68-point facial landmark detector
- MediaPipe: Face mesh with 468-point landmarks

Testing Dataset:

• 1000 facial images with various conditions

Key Performance Metrics

	Metric	Dlib
on Time (s)	0.0095	0.0215
cond	105.69	46.56
etected	1045	1091
Faces	994	1000

Performance Comparison

Detection Time Analysis

Success Rate Analysis

Sample Visualizations: Dlib vs MediaPipe

Sample 1: 000_lsmail_Abu_Shanab_0001

Sample 2: 001_Grace_Kelly_0001

Sample 3: 002_Jennifer_Garner_0001

Key Findings

1. Speed vs. Detail Trade-off:

- Dlib is ~2.3x faster than MediaPipe
- MediaPipe provides ~6.9x more landmark points

2. Detection Accuracy:

- MediaPipe detected 4.4% more faces overall
- MediaPipe found faces in all test images

3. Use Case Recommendations:

- Dlib for speed-critical applications
- MediaPipe for precision-critical applications

Conclusion and Recommendations

Summary:

- Both models are effective for facial landmark detection
- Key trade-off is between speed and detail

Recommended Use Cases:

- Dlib: Mobile applications, real-time systems, resource-constrained environm
- MediaPipe: Detailed face analysis, AR filters, high-precision applications

Future Work:

- Evaluate on more diverse datasets (different lighting, poses, occlusions)
- Compare with newer facial landmark models as they become available