2° TESTE DE ÁLGEBRA LINEAR LEE, LEGI, LEIC-T, LERC 16 de novembro de 2012

Teste 201

Nome: Número: Curso:

O Teste que vai realizar tem a duração total de **45 minutos** e consiste de sete problemas. Os cinco primeiros são perguntas de escolha múltipla, pelo que deve assinalar a sua opção no primeiro quadro abaixo. As resposta erradas descontam 1/10 da cotação indicada. Os restantes problemas têm as cotações indicadas na segunda tabela abaixo.

Perg 1	2 Val	b
Perg 2	2 Val	c
Perg 3	3 Val	a
Perg 4	3 Val	a
Perg 5	3 Val	c

O quadro abaixo destina-se à correção da prova. Por favor não escreva nada.

Prob 6	4 Val	
Prob 7	3 Val	

NOTA FINAL:

Para que valores de k é que os vetores $\begin{bmatrix} 1 \\ -6 \\ 1 \end{bmatrix}$ e $\begin{bmatrix} -4 \\ 24 \\ k \end{bmatrix}$ são linearmente independentes?

- (a) os vetores são linearmente independentes para todo o k
- (b) os vetores são linearmente independentes para $k \neq -4$
- (c) os vetores são linearmente independentes para k=-4
- (d) os vetores são linearmente dependentes para todo o k

Assinale a sua opção no quadro da página 1!

Problema 2

Identifique a matriz 3×3 que descreve a seguinte composição de transformações 2D, usando coordenadas homogéneas. Rodar pontos em $\pi/4$ e depois diminuir a escala da coordenada x em 0.2 e da coordenada y em 0.4.

2

(a)
$$\begin{bmatrix} 0 & -0.2 & 0 \\ 0.4 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0.1\sqrt{2} & 0.1\sqrt{2} & 0 \\ -0.2\sqrt{2} & 0.2\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 0.1\sqrt{2} & -0.1\sqrt{2} & 0\\ 0.2\sqrt{2} & 0.2\sqrt{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 0.1\sqrt{2} & -0.2\sqrt{2} & 0\\ 0.1\sqrt{2} & 0.2 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Assinale a sua opção no quadro da página 1!

Seja T uma transformação linear, cuja matriz canónica é dada por

$$\begin{bmatrix} 1 & -2 & 3 \\ -1 & 3 & -4 \\ 2 & -2 & -9 \end{bmatrix}.$$

Verifique se a transformação linear T é injetiva, e se T é sobrejetiva. Indique a única afirmação verdadeira.

- (a) T é injetiva e sobrejetiva
- (b) T é injetiva, mas não é sobrejetiva
- (c) T não é injetiva, mas é sobrejetiva
- (d) T não é injetiva e não é sobrejetiva

Assinale a sua opção no quadro da página 1!

Problema 4

Sejam as matrizes por blocos $A = \begin{bmatrix} 0 & I \\ I & F \end{bmatrix}$ e $B = \begin{bmatrix} W & X \\ Y & Z \end{bmatrix}$. Determine o produto matricial AB.

3

(a)
$$\begin{bmatrix} Y & Z \\ W + FY & X + FZ \end{bmatrix}$$

(b)
$$\begin{bmatrix} X & W + XF \\ Z & Y + ZF \end{bmatrix}$$

(c)
$$\begin{bmatrix} 0 & Z \\ FY & FZ \end{bmatrix}$$

(d)
$$\begin{bmatrix} Y & Z \\ W + YF & X + ZF \end{bmatrix}$$

Assinale a sua opção no quadro da página 1!

Determine os valores do parâmetro s para os quais a solução do seguinte sistema é única, e descreva a solução.

$$2sx_1 + 4x_2 = -3
2x_1 + sx_2 = 4.$$

(a)
$$s \neq \pm 2$$
; $x_1 = \frac{-3s-16}{2(s-2)(s+2)}$, $x_2 = \frac{4s+3}{2(s-2)(s+2)}$

(b)
$$s \neq 2$$
; $x_1 = \frac{-3s+16}{2(s-2)(s+2)}$, $x_2 = \frac{4s-3}{(s-2)(s+2)}$

(c)
$$s \neq \pm 2$$
; $x_1 = \frac{-3s - 16}{2(s - 2)(s + 2)}$, $x_2 = \frac{4s + 3}{(s - 2)(s + 2)}$

(d)
$$s \neq \pm 4$$
; $x_1 = -3s - 16$, $x_2 = 4s + 3$

Assinale a sua opção no quadro da página 1!

Em 2012, a população da cidade CC ronda os cerca de 600000 habitantes, enquanto que a população dos arredores é de 900000 habitantes.

Sabendo que os estudos demográficos indicam que cerca de 5% da população de CC se desloca anualmente para os arredores , enquanto que 2% da população dos arredores se desloca para CC. Indique a distribuição da população em CC e arredores em 2013, ignorando outros fatores externos, como mortes, nascimentos, etc.

Apresente e justifique todos os cálculos que tiver de efectuar!

Seja H um subconjunto de polinómios de grau menor ou igual a 2 com coeficientes racionais. Verifique se se trata dum subespaço vetorial de polinómios com a soma e multiplicação por escalares usuais nos polinómios.

Se não for um subespaço vetorial indique qual (quais) dos três axiomas é que falha(m).

Justifique cuidadosamente todas as afirmações que fizer!