Arithmétique : Examen du 12 décembre 2019

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable : Gilles Zémor

Durée : 3h. Sans document. Les exercices sont indépendants.

- EXERCICE 1. On considère le polynôme $X^3 X^2 + 1$ dans $\mathbb{F}_3[X]$.
 - a) Donner une relation de récurrence linéaire dont $X^3 X^2 + 1$ est le polynôme de rétroaction.
 - b) Donner explicitement une suite ternaire engendrée par cette récurrence linéaire : quelle est sa période?
 - c) Que peut-on en déduire sur la nature du polynôme $X^3 X^2 + 1$?
 - d) Soit α une racine de $X^3 X^2 + 1$ dans \mathbb{F}_{27} . Donner la suite $(\operatorname{Tr}(\alpha^i))_{i \geq 0}$.
- EXERCICE 2. Soit α un élément d'ordre 33 dans une extension de \mathbb{F}_2 . Quel est le degré du polynôme minimal de α dans $\mathbb{F}_2[X]$?
- EXERCICE 3. Utilisez ce que vous savez sur les corps finis pour montrer que si p est premier alors $2^{p-1} 1$ est divisible par p.
- EXERCICE 4. Soit $f(X) = X^7 + X^3 + 1$ dans $\mathbb{F}_2[X]$.
 - a) Étudier les valeurs de X^{2^i} , $i=1,2,\ldots$, modulo Xf(X) et en déduire que f(X) est irréductible.
 - b) Montrer que l'ensemble des racines de f(X) dans \mathbb{F}_{128} augmenté de 0 forme un espace vectoriel sur \mathbb{F}_2 . Quel est sa dimension?
- EXERCICE 5.
 - a) Montrer que le polynôme $X^5 + X^2 + 1$ est irréductible dans $\mathbb{F}_2[X]$. Est-il primitif?
 - b) Soit α une racine de $X^5 + X^2 + 1$ dans \mathbb{F}_{32} . Trouver le polynôme minimal de α^3 .
- EXERCICE 6.
 - a) Combien le polynôme $X^{17}+1$ a-t-il de facteurs irréductibles dans $\mathbb{F}_2[X]$?
 - b) Montrer que si α est une racine d'un facteur irréductible de $\mathbb{F}_2[X]$ (dans une extension appropriée de \mathbb{F}_2), alors α^{-1} l'est aussi.
 - c) En déduire le degré du polynôme minimal de $\alpha + \alpha^{-1}$.

Master CSI t 2019-2020

d) En parcourant les polynômes minimaux possibles pour $\alpha + \alpha^{-1}$, en déduire explicitement les facteurs irréductibles de $X^{17} + 1$.

- e) Soit g(X) = (X+1)P(X) où P(X) est un facteur irréductible de $X^{17}+1$. On considère le code cyclique C de longueur 17 de polynôme générateur g(X). Quelle est la dimension de C?
- f) En exhibant 5 racines judicieusement choisies de g(X) montrer que la distance minimale de C est au moins 6.
- g) Caractériser les multiples de X+1. En déduire que tous les mots de C sont de poids pair.
- h) On représente le n-uple $u=(u_0,u_1,\ldots,u_{n-1})$ par le polynôme $u(X)=u_0+u_1X+\cdots+u_{n-1}X^{n-1}$. Soit α une racine de g(X) différente de 1. Supposons $u(\alpha)=a$ et $u(\alpha^{-1})=b$. Montrer que si $u=c+e_i+e_j$, où c est un mot du code C, c'est-à-dire si u est obtenu à partir d'un mot du code en modifiant les symboles de coordonnées i et j, alors α^i et α^j sont des racines du polynôme :

 $X^2 + aX + ab^{-1}$.

- i) Montrer que la distance minimale de C est exactement 6.
- j) Soit C' le code de polynôme générateur P(X) = g(X)/(X+1). Quelle est la dimension de C'? Montrer que sa distance minimale vaut 5.