Lec-22. 区间估计

主讲教师: 吴利苏 (wulisu@sdust.edu.cn)

主 页: wulisu.cn

本次课内容

- 1. 区间估计
- 2. 枢轴量(补充)
- 3. 单侧置信区间
- **4.** 单个正态总体参数的区间估计 σ^2 已知, μ 的置信区间 σ^2 表知 μ 的累信区间
 - σ^2 未知, μ 的置信区间
 - 其他总体 μ 的置信区间
 - μ 未知, σ^2 的置信区间

区间估计

- 根据具体样本观测值, 点估计对未知参数提供一个明确的数值.
- 但这种判断的把握有多大,点估计本身并没有告诉人们.为弥补这种不足,提出区间估计的概念

区间估计

设 X 是总体, $X_1, ..., X_n$ 是一样本. 区间估计的目的 是找到两个统计量:

$$\hat{\theta}_1 = \hat{\theta}_1(X_1, \dots, X_n), \quad \hat{\theta}_2 = \hat{\theta}_2(X_1, \dots, X_n),$$

使随机区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 以一定概率盖住 θ .

定义

设总体 X 的分布函数 $F(x;\theta)$, θ 未知. 对给定概率值 $\alpha(0 < \alpha < 1)$, 有两个统计量

$$\underline{\theta} = \underline{\theta}(X_1, \cdots, X_n), \quad \overline{\theta} = \overline{\theta}(X_1, \cdots, X_n),$$

使得

$$P\Big\{\underline{\theta}(X_1,\cdots,X_n)<\theta<\overline{\theta}(X_1,\cdots,X_n)\Big\}\geq 1-\alpha$$

则

- $(\underline{\theta}, \overline{\theta})$ 称为 θ 的置信水平为 $1-\alpha$ 的(双侧) 置信区间;
- $\underline{\theta}$ 和 $\overline{\theta}$ 分别称为置信下限和置信上限.

• 参数 θ 虽然未知, 但是一个确定的值.

- 参数 θ 虽然未知, 但是一个确定的值.
- $\underline{\theta}, \overline{\theta}$ 是统计量, 随机的, 依赖于样本.

- 参数 θ 虽然未知, 但是一个确定的值.
- $\underline{\theta}, \overline{\theta}$ 是统计量, 随机的, 依赖于样本.
- 置信区间 $(\underline{\theta}, \overline{\theta})$ 不唯一, 依赖于样本.

- 参数 θ 虽然未知, 但是一个确定的值.
- $\underline{\theta}$, $\overline{\theta}$ 是统计量, 随机的, 依赖于样本.
- 置信区间 $(\underline{\theta}, \overline{\theta})$ 不唯一, 依赖于样本.
- 对于有些样本观察值,区间可能覆盖 θ ,但对于 另一些样本观察值,区间也可能不覆盖 θ .

设总体 $X \sim N(\mu, 4), \mu$ 未知, $X_1, ..., X_4$ 是一样本. 则 $\overline{X} \sim N(\mu, 1)$.

$$P\{\overline{X} - 2 < \mu < \overline{X} + 2\} = P\{|\overline{X} - \mu| < 2\}$$

= $2\Phi(2) - 1 \approx 0.9544$

 $\Rightarrow (\overline{X}-2, \overline{X}+2)$ 是 μ 的置信水平为 0.95 的置信区间.

若 $\mu = 0.5$, 当 \bar{x} 分别为 3, 2, 1 时, 对应置信区间为:

$$(-1,3)$$
 $(1,5)$ $(0,4)$

对于一个具体的区间而言,或者包含真值,或者不包含真值,无概率可言.

 $(\overline{X}-2,\overline{X}+2)$ 是 μ 的置信水平为 0.95 的置信区间中"置信水平为 0.95"的意义是什么?

$$P\left\{\underline{\theta}(X_1,\ldots,X_n)<\theta<\overline{\theta}(X_1,\ldots,X_n)\right\}=1-\alpha,$$

则置信区间 $(\underline{\theta}, \overline{\theta})$ 的含义为:

• 反复抽样多次 (每次样本容量都为 n). 则每个样本值确定一个区间 ($\underline{\theta}$, $\overline{\theta}$), 这个区间要么包含 θ , 要么不包含 θ . 置信水平 $1-\alpha$ 是指: 这些区间中包含 θ 的比例约为 $1-\alpha$.

例如反复抽样 10000 次,

- 当 $\alpha = 0.05$, 即置信水平为 95% 时, 10000 个区间中包含 θ 真值的约为 9500 个;
- 当 $\alpha = 0.01$, 即置信水平为 99% 时, 10000 个区间中包含 θ 的真值的约为 9900 个.

求置信区间步骤

设 θ 是总体的未知参数, X_1,\dots,X_n 为样本,给定置信水平 $1-\alpha$.

1. 构造枢轴量(不依赖 θ 及未知参数的函数)

$$W = W(X_1, \cdots, X_n; \theta).$$

2. 确定常数 a, b 使得

$$P\{a < W(X_1, \dots, X_n; \theta) < b\} = 1 - \alpha$$

3. 解得 θ 的取值范围即为置信区间.

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, μ 未知, X_1, \dots, X_n 为样本, 求 μ 的置信水平为 $1-\alpha$ 的置信区间.

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, μ 未知, X_1, \dots, X_n 为样本, 求 μ 的置信水平为 $1-\alpha$ 的置信区间.

解: \overline{X} 是 μ 的无偏估计, 且

$$(\overline{X})^* = \frac{X - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

 $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ 所服从的分布 N(0,1) 不依赖于任何未知参数. 按标准 正态分布的上 α 分位数的定义,有

$$P\left\{\left|\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\right| < z_{\alpha/2}\right\} = 1 - \alpha,$$

 $P\left\{\overline{X} - \frac{\sigma}{\sqrt{n}}z_{\alpha/2} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right\} = 1 - \alpha.$

这样,我们就得到了 μ 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}}x_{\alpha/2}, \quad \overline{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right).$$

这样的置信区间常写成

$$\left(\overline{X}\pm\frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right)$$
.

这样,我们就得到了 μ 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}}x_{\alpha/2}, \quad \overline{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right).$$

这样的置信区间常写成

$$\left(\overline{X}\pm\frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right).$$

• 正态总体, σ^2 已知, 则未知参数 μ 的枢轴量为 $(\overline{X})^* = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$, 置信区间为 $(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2})$.

枢轴量(补充)

枢轴量和统计量的区别:

- (1) 枢轴量是样本和待估参数的函数, 其分布不依赖于任何未知参数;
- (2) 统计量只是样本的函数, 其分布常依赖于未知参数.
 - 枢轴量通常可由未知参数的点估计得到. 比如正态总体的区间估计.

单个正态总体 $N(\mu, \sigma^2)$ 的枢轴量

μ 的枢轴量:

$$\begin{cases} (\overline{X})^* = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1), & (\sigma^2 \ \text{巳知}) \\ \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n - 1), & (\sigma^2 \ \text{未知}) \end{cases}$$

• σ^2 的枢轴量: $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, μ 未知.

网介亚总总体
$$N(\mu_1, \sigma_1), N(\mu_2, \sigma_2)$$
 的福轴里

•
$$\mu_1 - \mu_2$$
 的枢轴量:

个止态总体
$$N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$$
 的枢轴重

 $\begin{cases} (\overline{X} - \overline{Y})^* = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1), & (\sigma_1^2, \sigma_2^2 \ \text{Lip}) \\ \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2), & (\sigma_1^2 = \sigma_2^2 \text{Lip}) \end{cases}$

其中 $S_w^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}, S_w = \sqrt{S_w^2}.$ • $\frac{\sigma_1^2}{\sigma_2^2}$ 的枢轴量: $\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1).$ ($\mu_1, \mu_2 \neq \infty$)

两个正态总体 $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ 的枢轴量

单侧置信区间

定义

若

$$P\{\theta > \underline{\theta}(X_1, ..., X_n)\} \ge 1 - \alpha,$$

则 $(\underline{\theta}, \infty)$ 称为参数 θ 的置信水平为 $1-\alpha$ 的单侧置信区间, $\underline{\theta}$ 称为单侧置信下限.

若

$$P\left\{\theta < \overline{\theta}(X_1,\ldots,X_n)\right\} \ge 1 - \alpha,$$

则 $(-\infty, \overline{\theta})$ 称为参数 θ 的置信水平为 $1-\alpha$ 的单侧置信区间. $\overline{\theta}$ 称为单侧置信上限.

15/35

单侧置信区间和双侧置信区间的关系

 $\frac{\theta}{\theta}$ 是 θ 的置信水平为 $1-\alpha_1$ 的单侧置信下限, $\overline{\theta}$ 是 θ 的置信水平为 $1-\alpha_2$ 的单侧置信上限, $\Longrightarrow (\underline{\theta}, \overline{\theta})$ 是 θ 的置信水平为 $1-\alpha_1-\alpha_2$ 的双侧置信区间

单侧置信区间和双侧置信区间的关系

 $\underline{\theta}$ 是 θ 的置信水平为 $1-\alpha_1$ 的单侧置信下限, $\overline{\theta}$ 是 θ 的置信水平为 $1-\alpha_2$ 的单侧置信上限, $\Longrightarrow (\underline{\theta}, \overline{\theta})$ 是 θ 的置信水平为 $1-\alpha_1-\alpha_2$ 的双侧置信区间.

证明: $P\{\underline{\theta} < \theta\} \ge 1 - \alpha_1$, $P\{\theta < \overline{\theta}\} \ge 1 - \alpha_2$ 由加法公式.

$$P\{\underline{\theta} < \theta < \overline{\theta}\} = P\{\underline{\theta} < \theta\} + P\{\theta < \overline{\theta}\} - 1$$

$$\geq 1 - \alpha_1 - \alpha_2.$$

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, μ 未知, X_1, \dots, X_n 为样本, 求 μ 的置信水平为 $1-\alpha$ 的单侧置信上限.

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, μ 未知, X_1, \dots, X_n 为样本, 求 μ 的置信水平为 $1-\alpha$ 的单侧置信上限.

解: 枢轴量为

$$(\overline{X})^* = \frac{X - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

$$P\left\{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} > z_{1-\alpha} = -z_{\alpha}\right\} = 1 - \alpha,$$

$$P\left\{\mu < \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha}\right\} = 1 - \alpha.$$

所以 μ 的置信水平为 $1-\alpha$ 的单侧置信上限为 $\overline{\mu}=X+\frac{\sigma}{\sqrt{n}}z_{\alpha}$.

17/35

正态总体均值 μ 的置信区间 (σ^2 已知时)

设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 为样本. \bar{X} 和 S^2 分别为样本均值和样本方差. 置信水平为 $1-\alpha$.

• σ^2 已知时, 取枢轴量 $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$, 则 μ 的一个置信水平为 $1-\alpha$ 的区间估计为

$$\left(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right).$$

 σ^2 已知时, \overline{X} 是 μ 的无偏估计, 枢轴量

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1),$$

设常数 a < b 满足:

$$\overline{X} - \mu$$

$$P\{a < \frac{X - \mu}{\sigma / \sqrt{n}} < b\} \ge 1 - \alpha$$

等价干

$$P\left\{\overline{X} - \frac{\sigma}{\sqrt{n}}b < \mu < \overline{X} - \frac{\sigma}{\sqrt{n}}a\right\} \ge 1 - \alpha$$

此时区间的长度为 $L = (b-a)\frac{\sigma}{\sqrt{n}}$.

由正态分布的对称性知, 当

$$-a = b = z_{\alpha/2}$$

时,区间的长度达到最短 $L=2z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$. 固定 n, L 变大, $z_{\alpha/2}$ 增大,则 $(1-\alpha)$ 增大,置信水平提高,精确度降低;反之亦然. 所以, μ 的

• 双侧置信区间为:

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right),$$

- 单侧置信下限为 $\overline{X} \frac{\sigma}{\sqrt{n}} z_{\alpha}$,
- 单侧置信上限为 $\overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha}$.

正态总体均值 μ 的置信区间 (σ^2 未知时)

设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 为样本. \bar{X} 和 S^2 分别为样本均值和样本方差.

• σ^2 未知时, 取枢轴量 $\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$, 则 μ 的 一个置信水平为 $1-\alpha$ 的区间估计为

$$\left(\overline{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)\right).$$

 σ^2 未知时, S^2 是 σ^2 的无偏估计, 用 S 替换 σ , 得枢 轴量

轴重
$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

由

$$-t_{\alpha/2}(n-1) < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{\alpha/2}(n-1)$$

解得,

$$\overline{X} - \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1) < \mu < \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)$$

所以μ的

• 置信区间为:

$$\left(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$$

- 单侧置信下限为 $\overline{X} \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$,
- 单侧置信上限为 $\overline{X} + \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$.

某袋装食品重量 (单位: 克) $X \sim N(\mu, \sigma^2)$. 现从一大批该产品中随机抽取 16 件, 称得重量为:

506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496

$$(\bar{x} = 503.75, s = 6.2022,)$$
 求在

- **(1)** $\sigma = 3$;
- (2) σ 未知

两种情况下 μ 的置信水平为 95% 的双侧置信区间.

解: $n = 16, n - 1 = 15, \alpha/2 = 0.025$. 计算得 $\overline{x} = 503.75, s = 6.2022$.

(1)
$$\sigma = 3$$
, 查表得 $z_{0.025} = 1.96$ 所以, μ 的置信水平为 95% 的置信区间为

$$(\overline{x} - \frac{3}{\sqrt{16}}z_{0.025}, \overline{x} + \frac{3}{\sqrt{16}}z_{0.025}) = (502.28, 505.22).$$
(2) $\sigma \neq \pi$ $\Rightarrow \xi \not\in t_{0.025}(15) - 2.1315 \text{ yr Bt. } \mu \not\in \xi$

(2) σ 未知, 查表得 $t_{0.025}(15) = 2.1315$ 此时, μ 置信水平为 95% 的置信区间为

$$(\overline{x} - \frac{S}{\sqrt{16}}t_{0.025}(15), \overline{x} + \frac{S}{\sqrt{10}}t_{0.025}(15)) = (500.4, 507.1)$$

实际中 σ^2 未知的情况更多.

25/35

设新生儿体重 (单位: 克) $X \sim N(\mu, \sigma^2)$, μ, σ^2 未知. 现从某妇产医院随机抽查 16 名新生儿, 称得重量为:

3200 3050 3840 4450 2900 4180 2600 3530 2270 2750 3450 3730 3620 2150 2650 2830

 $\bar{x} \mu$ 的置信水平为 95% 的双侧置信区间. $(\bar{x} = 3200, s = 665.48)$

解:
$$n = 16, \alpha = 0.05, \sigma$$
 未知.

计算得 $\bar{x} = 3200, s = 665.48$

查表得 $t_{0.025}(15) = 2.1315$

$$(\overline{x} - \frac{s}{\sqrt{16}}t_{0.025}(15), \overline{x} + \frac{s}{\sqrt{16}}t_{0.025}(15)) = (2845.4, 3554.6).$$

$$(\overline{x} - \frac{s}{\sqrt{16}}t_{0.025}(15), \overline{x} + \frac{s}{\sqrt{16}}t_{0.025}(15)) = (2845.4, 3554.6).$$

其他总体均值的区间估计

总体 X 的均值为 μ , 方差为 σ^2 , 非正态分布或不知分布形式. 样本为 X_1, \ldots, X_n . 当 n 充分大 (一般 n > 30) 时, 由中心极限定理知,

$$\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

设 \bar{X} 和 S^2 分别为样本均值和样本方差. μ 的置信水平为 $1-\alpha$ 的置信区间

- σ^2 已知时, 置信区间近似为 $(\overline{X} \pm z_{\alpha/2}\sigma/\sqrt{n})$.
- σ^2 未知时, 置信区间近似为 $(\overline{X} \pm z_{\alpha/2} S / \sqrt{n})$.

某市随机抽取 1500 个家庭, 调查知道其中有 375 家拥有私家车. 试根据此调查结果, 求该市拥有私家车比例 p 的置信水平为 95% 近似置信区间.

解: $\hat{p} = \bar{x} = \frac{375}{1500} = 0.25, s^2 \approx \hat{p}(1 - \hat{p}) = 0.1875$ 代入 近似置信区间

$$(\bar{X} - z_{0.025}S/\sqrt{n}, \quad \bar{X} + z_{0.025}S/\sqrt{n})$$

得近似置信区间为 (0.228, 0.272).

29/35

正态总体方差 σ^2 的置信区间 (μ 未知时)

设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 为样本. \bar{X} 和 S^2 分别为样本均值和样本方差.

• μ 未知, 取枢轴量 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, 则 σ^2 的 一个置信水平为 $1-\alpha$ 的区间估计为

$$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right).$$

 S^2 为 σ^2 的无偏估计, 故取枢轴量

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

$$P\left\{\chi_{1-\alpha/2}^2(n-1) < \frac{(n-1)S^2}{\sigma^2} < \chi_{\alpha/2}^2(n-1)\right\} = 1 - \alpha$$

等价的.

$$P\left\{\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)} < \sigma^2 < \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right\} = 1 - \alpha.$$

正态总体标准差 σ 的置信区间 (μ 未知时)

设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 为样本. \bar{X} 和 S^2 分别为样本均值和样本方差.

•
$$\mu$$
 未知, 取枢轴量 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, 则 σ 的 一个置信水平为 $1-\alpha$ 的区间估计为

$$\left(\frac{\sqrt{(n-1)}S}{\sqrt{\chi_{\alpha/2}^2(n-1)}}, \frac{\sqrt{(n-1)}S}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}}\right).$$

某袋装食品重量 (单位: 克) $X \sim N(\mu, \sigma^2)$, μ 未知. 现从一大批该产品中随机抽取 16 件, 称得重量为:

506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496

求标准差 σ 的置信度为95%置信区间.

一个园艺科学家正在培养一个新品种的苹果,这种苹果除了口感好和颜色鲜艳以外,另一个重要特征是单个重量差异不大.为了评估新苹果,她随机挑选了 25 个测试重量 (单位: 克), 其样本方差为 $s^2 = 4.25$. 试求 σ^2 的置信水平为 95% 置信区间.

解: n = 25, $s^2 = 4.25$, $\alpha = 0.05$ 查表得: $\chi^2_{0.025}(24) = 39.4$, $\chi^2_{0.975}(24) = 12.4$;

$$\chi_{0.025}(24) = 59.4, \quad \chi_{0.975}(24) = 12.4,$$

$$\chi_{0.95}^2(24) = 13.85,$$

$$\sigma^2$$
 的双侧置信区间为

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}(n-1)}\right) = (2.59, 8.23).$$

35/35