Test 6 (Week 16)

Operating System

1. [I/O管理]I/O方式中,简述轮询、中断、DMA方式的机制和各自优缺点,并给出一个外部空闲空间分配和回收的方案。(10分)[2022]

2. [I/O管理]非阻塞和阻塞I/O是什么,主要有什么不同,分别用在哪里.

3. [文件管理]l 数据结构。	设计高效的空闲块分配、	回收算法,	给出设计思想,	操作方法,

- 4. [进程管理]在一个仓库中可以存放A和B两种产品,要求:
 - ①每次只能存入一种产品。
 - ②A产品数量-B产品数量 <M。
 - ③B产品数量-A产品数量<N。

其中,M,N是正整数,试用P操作、V操作描述产品A与产品B的入库过程。

Database System

	得分	阅卷人	二、简答(20分) 1. 举例说明参照完整性对数据有什么要求。
	-, 1.	名词解释 (12 分) 事务	
	2.	正则覆盖	2. 你是如何理解空值(NULL)的?
1.			3. 简述数据库系统三级模式结构及其同数据独立性之间的关系。
	3.	弱实体集	4. 简述函数依赖与多值依赖的联系与区别。
	4.	DBMS	

三、设R和S是下图表示的关系,计算下列关系代数表达式和元组表达式的值。(8分)

Α	В	С		A	D	E
1	2	3		1	2	3
4	5	6		1	4	6
7	8	9		4	6	9
R]		S		

1. R⊠S

2.

2. $\sigma_{B=D}(R \times S)$

 $3. \hspace{0.5cm} \{\,t\mid \exists v\!\in\! S(\exists u\!\in\! R(u[C]\!>\!v[D]\wedge t[A]\!=\!u[B]\wedge t[B]\!=\!v[E]\wedge t[C]\!=\!u[A]))\}$

 $4. \qquad \{\; t \mid t \!\in\! R \land \forall u \!\in\! S(t[C] \!\geq\! u[A]) \}$

四、 一个工厂有若干仓库,每一仓库有若干职工作为仓库管理员,职工之间有领导与被领导的关系。仓库中保存工厂生产的多种字件,用 E-R 图表示上述内容,关注仓库面积、仓库中保存零件的种类、每种零件的入库时间及入库数量,职工的姓名、职称、职务及工资待遇,零件的颜色、成本及出厂价。并将 E-R 图转换成相应的关系模型 (10

得分	阅卷人

- 五、試解決下列问题(10分)
 1. 假设有关系 R(B,O,S,Q,I,D), 其函数依赖集为{S→D, I→B, I S→Q, B→O} (6分)
 1) 找出的关系模式 R 的候选码。
 2) 将关系模式 R 规范化为 BCNF。

3.

2. 证明如果一个关系模式是 BCNF 则一定是 3NF。(4 分)

得分	阅卷人

六、下图所示的调度是冲突可串行化的吗?如果是冲突可串行化的。请给出等价的串行调度序列:如果不是。请说明原因。(5分)

T1	T2	T3
	Write(Q)	
		Read(Q)
Read(Q)		
Write(Q)		
		Write(Q)

得分	阅卷人

七、 有关系 S(SNO,SNAME,DEPT), C(CNO,CNAME), SC(SNO,CNO,SCORE)。 关系 S、 C 和 SC 分別表示学生信息、课程信息和学生选课情况。请按要求表达下列查询。(35

- 号及成绩。 2. 分别使用 SQL 语句和关系代数,求计算机系所有学生的成绩,包括 SNO,SNAME,

- 2. 分前使用 SQL 语句和关系代数,来计算机系所有学生的级领,包括 SNQ,SNAME,CNO,CNAME,SCORE。
 3. 使用— SQL 语句,来数据库课程的平均成绩。
 4. 分别使用关系代数和 SQL 语句,求没有学习 C1 课程的学生姓名。
 5. 使用一 SQL 语句,求出有 2 门以上成绩为优(>=90)的学生学号。
 6. 分别使用 SQL 语句、关系代数和元组关系演算,求选修了学生 s3 所选全部课程的
- 使用—SQL 语句,将所有课程的分数加5分。
 使用—SQL 语句,对计算机系学生的成绩,如低于本门课程平均成绩的一半,则提 高 5%。

Design and Analysis of Algorithms

1. 如图m*n方格矩阵a[m][n]中摆放着价值不等的宝贝(价值可正可负),从左上角a[0][0]出发到达右下角a[m-1][n-1],可以向右或向下走到相邻格子,并捡起当前格子的宝贝(无论价值的正负),每个格子只能走一遍,求能捡到宝贝价值之和的最大值。

2	-1	6	-2	6
-3	2	5	-5	1
4	8	3	-2	4
5	2	8	-4	7

- (1) 按动态规划算法的解题过程,写出递推关系式。(6分)
- (2) 根据递推关系式,写出递归型的动态规划函数。(6分)

2. 解释"归约"的概念并证明顶点覆盖归约到集合覆盖	

```
3. int BSearch(elemtype a[], elemtype x, int low, int high)
    if (low > high) return -1;
    int mid = (low + high) / 2;
    if (x == a[mid])
        return mid;
    if (x < a[mid])
        return BSearch(a, x, low, mid - 1);
    else
        return BSearch(a, x, mid + 1, high);</pre>
```

分析算法时间复杂性,列出递归方程

4. 设有n项独立的作业,由m台相同的机器加工处理。作业i所需要的处理时间为 t_i 。约定:任何一项作业可在任何一台机器上处理,但未完工前不准中断处理;任何作业不能拆分更小的子作业。为多机调度问题设计一种调度算法,使所给的n个作业在尽可能短的时间内由m台机器处理完。(10分)