# 1.2 Espaces de Hilbert

#### **Motivation et Définition**

Dans un espace euclidien (ou hermitien si on est dans  $\mathbb C$ ) on peut décomposer un vecteur sur une base orthonormée. Tout vecteur de  $\mathbb R^3$  s'écrit  $\vec u = x \vec i + y \vec j + z \vec k = \sum_{i=1}^3 x_i \vec e_i$ 

Dans un espace de dimension infinie, il n'y a pas de base de dimension finie  $^1$  donc le mieux que l'on puisse avoir est

$$\vec{u} = \sum_{i=1}^{+\infty} x_i \vec{e}_i$$

Cette "somme" est infinie : c'est une série, il faut qu'elle converge. Il est intéressant que l'espace soit complet. Cela motive la définition suivante

Définition On appelle espace hilbertien un espace qui est :

i Pré-Hilbertien

ii Complet (pour la norme induite par le produit scalaire)

## **Exemples**

**Premier exemple** L'espace  $\mathcal{C}^0([0,1])$  est préhilbertien mais pas Hilbertien. Pour s'en convaincre il suffit de considérer la suite  $(f_n)$  pour  $n \ge 3$  suivante  $^2$ :

cette suite est de Cauchy mais ne converge pas dans  $\mathcal{C}^0([0,1])$ .

**Deuxième exemple** L'espace  $l_0(\mathbb{C})$  est également préhilbertien mais pas hilbertien.

$$< u, v> = \sum_{n=0}^{+\infty} u_n \overline{v_n} \Rightarrow \|u\| = \sqrt{\sum_{n=0}^{+\infty} |u_n|^2}$$

Pour s'en convaincre, il suffit de considérer  $(u_n)_{n\in\mathbb{N}}^N=\left\{\begin{array}{l} \frac{1}{n}\,\sin\,n\leq N\\ 0\,\sin n\end{array}\right.$ . C'est une suite de  $l_0(\mathbb{C})$ .  $\left((u_n)_{n\in\mathbb{N}}^N\right)$  est de Cauchy mais sa limite est  $\left(\frac{1}{n}\right)_{n\in\mathbb{N}^*}\notin l_0(\mathbb{C})$ .

#### Troisième exemple

 $l_2(\mathbb{C})$  est un espace de Hilbert. Cela peut se démontrer "à la main" et sera également la conséquence de l'un des résultats qui viendra plus tard dans le cours.

<sup>1.</sup> Rappellons que si Jacques II de Chabannes, seigneur de La Palice, n'était pas mort il serait encore vivant.

<sup>2.</sup> Graphe: http://cagnol.link/vc0h

#### **Base Hilbertienne**

**Définition** Une base Hilbertienne de  $\mathcal{E}$  est une famille  $\{e_i\}_{i\in I}$  d'éléments de  $\mathcal{E}$  t.q. :

—  $\overline{Vect\{e_i, i \in I\}}$  = E, l'ensemble I pouvant être infini (y compris non dénombrable)

Une base hilbertienne est donc une famille de vecteurs deux-à-deux orthogonaux, de norme 1 et dont les combinaisons linéaires permettent de s'approcher autant que l'on veut de n'importe quel élément de  $\mathcal{E}$  (puisque l'adhérence de l'espace vectoriel engendré par la famille est  $\mathcal{E}$ ).

Notre motivation initiale était de pouvoir écrire les éléments de  $\mathcal E$  sous forme d'une série  $\sum_{n=1}^{+\infty} c_n e_n$ . Pour pouvoir écrire la série, il ne doit pas y avoir plus de  $e_n$  que d'éléments dans  $\mathbb N$ , c'est–a-dire que l'on aimerait que I soit dénombrable I. Le théorème suivant permet de se placer dans ce cadre.

**Théorème** Si  $\mathcal{E}$  est un espace de Hilbert séparable, alors une telle base existe toujours avec  $I = \mathbb{N}$ 

Démonstration:

Voir Brézis, Théorème V.10. ■

Théorème (Parseval)

Soit  $\mathcal{E}$  un espace de Hilbert et  $(e_n)$  une base de Hilbert de H. Alors :

$$\forall x \in \mathcal{E}, x = \lim_{N \to +\infty} \sum_{n=0}^{N} \langle x, e_n \rangle e_n$$

ce que l'on écrit sous forme d'une série :

$$\forall x \in \mathcal{E}, x = \sum_{n=0}^{+\infty} \langle x, e_n \rangle e_n$$

On a

$$\forall (x,y) \in \mathcal{E}^2, \langle x,y \rangle = \sum_{n=0}^{+\infty} \langle x,e_n \rangle \overline{\langle y,e_n \rangle}$$

et

$$\forall x \in \mathcal{E}, ||x||^2 = \sum_{n=0}^{+\infty} |\langle x, e_n \rangle|^2$$

Cette dernière égalité est le théorème de Pythagore en dimension infinie. Démonstration :

Rudin 4.18 ou Ramis, Tome 4, Section 3.6.3. ■

<sup>3.</sup> Si vous n'êtes pas familier avec ce concept, vous êtes invité à regarder les deux séquences suivantes extraites de cours du MIT : cagnol.link/cnt1 et cagnol.link/cnt2, dénombrable se dit "countable" en anglais). Il est indispensable d'avoir compris le concept avant le prochain cours sur la théorie de la mesure.

# **Exemple**

A venir dans la section suivante.

### **Projection orthogonale**

**Théorème** Soit  $\mathcal{E}$  un espace de Hilbert. Soit  $\mathcal{F} \subset \mathcal{E}$  un sous ensemble fermé, convexe et non vide, et  $x \in \mathcal{E}$ . Alors

$$\exists ! x^* \in \mathcal{F} t.q.d(x, \mathcal{F}) = d(x, x_0)$$

 $x^*$  est la projection de x sur  $\mathcal{F}$ . On note  $x^* = p(x)$ .



**Corollaire** Si  $\mathcal{F}$  est un espace vectoriel alors p est linéaire et continue <sup>4</sup>, on a

$$\forall x \in \mathcal{E}, \forall y \in \mathcal{F}, \langle x - p(x), y \rangle = 0$$

**Théorème** Soit  $\mathcal{E}$  un espace de Hilbert et  $\mathcal{F}$  un sous espace vectoriel de  $\mathcal{E}$ . Alors : Tout  $x \in \mathcal{E}$  se décompose en x = y + z avec  $y \in \mathcal{F}$  et  $z \in \mathcal{F}^{\perp}$  (y est le point de  $\mathcal{F}$  le plus près de x) (z est le point de  $\mathcal{F}^{\perp}$  le plus près de x) On écrit

$$\mathcal{E} = \mathcal{F} \oplus \mathcal{F}^{\perp}$$

Démonstration :

Rudin 4.11 ■

### Théorème de représentation de Riesz

Le dual topologique d'une espace vectoriel  $\mathcal E$  est l'ensemble de ses formes linéaires continues. Lorsque  $\mathcal E$  est un espace de Hilbert, il y a une situation remarquable : toute forme linéaire

$$u: E \to \mathbb{R}$$

<sup>4.</sup> Il est rappelé que la continuité d'une application linéaire n'est pas automatique en dimension infinie.

s'écrit comme le produit scalaire avec un élément  $z_u$ 

$$u(x) = \langle x, z_u \rangle$$

Cela signifie que toute forme linéaire continue u de  $\mathcal{E}$  peut être représentée par un élément  $z_u$ . Le théorème s'énonce de la manière suivante :

**Théorème (Riesz)** Soit  $\mathcal{E}$  un espace de Hilbert. Soit  $u \in \mathcal{E}'$  alors  $\exists ! z_u \in \mathcal{E}$  s.t.  $u(x) = \langle x, z_u \rangle$ 

On peut ainsi "identifier" un espace de Hilbert avec son dual. Démonstration : Brezis, Théorème V.5 ■