Ad Soyad: Öğrenci No:

MEKATRONİK BÖLÜMÜ BİLGİSAYARLI KONTROL SİSTEMLERİ

Ders Kodu:	MKT2002	Tarih:	10.05.2025
Sınav Türü:	Genel Sınav	Saat:	10:00
Dönemi:	2024-2025	Süre:	90dk

Soru:	1	2	3	4	5	Toplam
Puan:	20	20	20	20	20	100
Not:	20	20	20	20	20	100

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.
- Yuvarlamalar 2 hane yapılacaktır. $1.99456 \approx 1.99$ olarak alınacaktır.
- S1. (20p) Bir transfer fonksiyonu

$$G(s) = \frac{1}{s^2 + 4s + 3} \tag{1}$$

olarak verilmiştir. Aşım kriteri ile

$$\zeta = -\frac{\log(os)}{\sqrt{\pi^2 + \log(os)^2}}
= -\frac{\log(0.163)}{\sqrt{\pi^2 + \log(0.163)^2}}
= \frac{1.814}{\sqrt{3.14^2 + 1.814^2}}
= \frac{1.814}{\sqrt{9.8696 + 3.2906}}
= \frac{1.814}{3.6277}
= 0.5$$
(2)

S2. (20p) $t_s = 2$ isterinden ise

$$\omega_n = \frac{4}{t_s \zeta}
= \frac{4}{2 \cdot 0.5}
= 4$$
(3)

S3. (20p)

$$p(s) = s^2 + 2\zeta\omega_n s + \omega_n^2$$

= $s^2 + 4s + 16$ (4)

elde edilir.

S4. (20p) Bir transfer fonksiyonu

$$G(s) = \frac{1}{s + 0.2} \tag{5}$$

Ad Soyad: Öğrenci No:

olarak verilmiştir. Aşımı %16.3 ve yerleşme zamanını $t_s=2\,s$ yapan PI kontrolör tasarlayınız. Kapalı çevrim transfer fonksiyonu

$$T(s) = \frac{F(s)G(s)}{1 + F(s)G(s)}$$

$$= \frac{\frac{k_p s + k_i}{s} \frac{1}{s + 0.2}}{1 + \frac{k_p s + k_i}{s} \frac{1}{s + 0.2}}$$

$$= \frac{k_p s + k_i}{s^2 + 0.2s + k_p s + k_i}$$

$$= \frac{k_p s + k_i}{s^2 + (0.2 + k_p)s + k_i}$$
(6)

olarak hesaplanır.

S5. (20p) Tasarım problemi

$$0.2 + k_p = 4 k_i = 16$$
 (7)

ve çözümü

$$k_p = 3.8$$

$$k_i = 16$$
(8)

şeklindedir. Kapalı çevrim transfer fonksiyonu

$$T(s) = \frac{4s + 16}{s^2 + 4s + 16} \tag{9}$$

olarak elde edilir.