Zadanie: PIN Przemek i napis

Warsztaty ILO, grupa olimpijska, dzień 15. Dostępna pamięć: 128 MB.

Przemek bardzo lubi napisy długości n składające się z małych liter alfabetu angielskiego. Tak się składa, że aktualnie posiada taki napis s. Dla każdego napisu t długości n Przemek definiuje jego piękność jako liczbę par indeksów i, j ($1 \le i \le j \le n$) takich, że podciąg $t[i \dots j]$ jest leksykograficznie większy niż podciąg $s[i \dots j]$.

Teraz chłopiec zastanawia się ile istnieje napisów t takich, że ich piękność wynosi dokładnie k. Przemek poprosił Ciebie o pomoc w rozwiązaniu tego problemu. Jako, że liczba takich napisów może być dosyć duża, to Przemka interesuje wynik modulo $10^9 + 7$.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite $n, k \ (1 \le n \le 2000, \ 0 \le k \le 2000)$. W drugim wierszu wejścia znajduje się napis s składający się z n małych liter alfabetu angielskiego.

Wyjście

Na wyjściu powinna znaleźć się jedna liczba całkowita - liczba napisów t takich, że ich piękność jest równa dokładnie k modulo 10^9+7 .

Przykład

Dla danych wejściowych: poprawnym wynikiem jest:

2 3 2

yх

Dla danych wejściowych: poprawnym wynikiem jest:

4 7 21962

abcd

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n \le 5$	13
2	$n, k \le 100$	21
3	brak dodatkowych założeń	66