Electrical Engineering and Computer Science EECS 358 - INTRODUCTION TO PARALLEL COMPUTING

Lecture 15 Dense Matrix Algorithms

Outline

- Design of parallel algorithms
- Dense matrix representations
- Matrix transpose algorithms
- Matrix vector multiplication
- Matrix matrix multiplication
- Linear system of equation solvers
- READING: Chapter 5, V. Kumar, "Introduction to Parallel Computing"

Design of Parallel Algorithms

- Assume performance model of cost of communication
 - Startup time for messages (t_s)
 - Per-hop time (t_h)
 - Per-word transfer time (t_w)
- Assume performance model of computation
 - Cost of multiplication or addition or any operation (t_c)

Store and Forward vs Cut Through Routing

- Cost of store and forward routing of message of size m via l hops, $t_{comm} = t_s + (m.t_w + t_h)l$
- ullet In current parallel computers, t_h is small, hence approximate as $t_{comm}=t_s+m.t_w.l$
- Cost of cut through routing of message of size m via l hops, $t_{comm}=t_s+l.t_h+m.t_w$

Store and Forward vs Cut Through Routing

Dense Matrix Mappings

• Striped partitioning (one dimensional, row or column, block or cyclic)

(a) Columwise block striping

(b) Rowwise cyclic striping

Dense Matrix Mappings-Continued

• Checkerboard partitioning (two dimensional, blocked or cyclic)

(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
F	0]	P_1		P_2		P_3
(1,0)	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
(2,0)	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
F	O 4]	P ₅		P_6		P ₇
(3,0)	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
(4,0)	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
F	8]	P ₉		P ₁₀		P ₁₁
(5,0)	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
(6,0)	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
F	12]	P ₁₃		P ₁₄		P ₁₅
(7,0)	(7,1)	(7,2)	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(0,0)	(0,4)	(0,1)	(0,5)	(0,2)	(0,6)	(0,3)	(0,7)
Po)	P	ĺ	1	P_2	I	3
(4,0)	(4,4)	(4,1)	(4,5)	(4,2)	(4,6)	(4,3)	(4,7)
(1,0)	(1,4)	(1,1)	(1,5)	(1,2)	(1,6)	(1,3)	(1,7)
P	1	P	5	1	P 6	I)
(5,0)	(5,4)	(5,1)	(5,5)	(5,2)	(5,6)	(5,3)	(5,7)
(2,0)	(2,4)	(2,1)	(2,5)	(2,2)	(2,6)	(2,3)	(2,7)
P ₈	3	P ₉		1	P ₁₀	I) 111
(6,0)	(6,4)	(6,1)	(6,5)	(6,2)	(6,6)	(6,3)	(6,7)
(3,0)	(3,4)	(3,1)	(3,5)	(3,2)	(3,6)	(3,3)	(3,7)
P_1	12	P	13] 1	P ₁₄	I	15
(7,0)	(7,4)	(7,1)	(7,5)	(7,2)	(7,6)	(7,3)	(7,7)

(a) Block-checkerboard partitioning

(b) Cyclic-checkerboard partitioning

Matrix Transposition

- Need to perform A[i,j] = A[j,i] for all i,j
- Checkerboard partitioning on a Mesh of processors
- Case 1: number of processors equal to array elements

(0,0)	(0,1)	(0,2)	(0,3)
P ₀ ,	> P ₁	P ₂	> P ₃
1		:	:
(1,0)	(1,1) v	(1,2) 🕏	(1,3) 🕏
P ₄ ◄··	P ₅	> P ₆	> P ₇
٨	1,		:
(2,0)	(2,1)	(2,2) v	(2,3) v
P ₈ ◄ ··	···· P ₉ < ··	···· P ₁₀ ······	···> P ₁₁
٨	٨	1	:
(3,0)	(3,1)	(3,2)	(3,3) v
P ₁₂ ◄···	···· P ₁₃ < ···	···· P ₁₄ < ···	\cdots \mathbf{P}_{15}
			```

(0,0)	(1,0)	(2,0)	(3,0)
$\mathbf{P}_0$	$\mathbf{P}_{\!_{1}}$	$\mathbf{P}_{\!2}$	$\mathbf{P}_{3}$
(0,1)	(1,1)	(2,1)	(3,1)
$\mathbf{P}_{\!4}$	<b>P</b> ₅	$\mathbf{P}_{6}$	$\mathbf{P}_{7}$
(0,2)	(1,2)	(2,2)	(3,2)
$\mathbf{P}_{8}$	$\mathbf{P}_{9}$	$\mathbf{P}_{10}$	$\mathbf{P}_{11}$
(0,3)	(1,3)	(2,3)	(3,3)
<b>P</b> ₁₂	<b>P</b> ₁₃	$\mathbf{P}_{14}$	<b>P</b> ₁₅

(a) Communication steps

(b) Final configuration

#### Matrix Transposition on a Mesh

- Case 2: number of processors less than array elements
- First phase: communicate blocks, second phase, local transpose on blocks

• 
$$T_P = \frac{n^2}{2p} + 2t_s\sqrt{p} + 2t_w\frac{n^2}{\sqrt{p}}$$



(a) Communication steps



(b) Local rearrangement

#### Recursive Transposition Algorithm





- (a) Division of the matrix into four blocks and exchange of top-right and bottom-left blocks
- (b) Division of each block into four subblocks and exchange of top-right and bottom-left subblocks



- (c) Last subdivision and transposition
- (0,0)
   (1,0)
   (2,0)
   (3,0)
   (4,0)
   (5,0)
   (6,0)
   (7,0)

   (0,1)
   (1,1)
   (2,1)
   (3,1)
   (4,1)
   (5,1)
   (6,1)
   (7,1)

   (0,2)
   (1,2)
   (2,2)
   (3,2)
   (4,2)
   (5,2)
   (6,2)
   (7,2)

   (0,3)
   (1,3)
   (2,3)
   (3,3)
   (4,3)
   (5,3)
   (6,3)
   (7,3)

   (0,4)
   (1,4)
   (2,4)
   (3,4)
   (4,4)
   (5,4)
   (6,4)
   (7,4)

   (0,5)
   (1,5)
   (2,5)
   (3,5)
   (4,5)
   (5,5)
   (6,5)
   (7,5)

   (0,6)
   (1,6)
   (2,6)
   (3,6)
   (4,6)
   (5,6)
   (6,6)
   (7,6)

   (0,7)
   (1,7)
   (2,7)
   (3,7)
   (4,7)
   (5,7)
   (6,7)
   (7,7)
  - (d) Final configuration

#### Matrix Transpose on the Hypercube

• 
$$T_P = \frac{n^2}{2p} + (t_s + t_w \frac{n^2}{p}) log(p)$$



Division of the matrix into four blocks and exchange of top-right and bottom-left blocks



Division of each block into four subblocks and exchange of top-right and bottom-left subblocks

## Matrix Vector Multiplication (Ax = y)

• Assume row-wise striping, one row per processor





- (a) Initial partitioning of the matrix and the starting vector *x*
- (b) Distribution of the full vector among all the processors by all-to-all broadcast





- (c) Entire vector distributed to each processor after the broadcast
- (d) Final distribution of the matrix and the result vector *y*

#### **Runtime Analysis**

- Assume number of processors less than number of rows
- Runtime on hypercube  $T_P = \frac{n^2}{p} + t_s log(p) + t_w.(n \frac{n}{p})$
- Runtime on torus  $T_P = \frac{n^2}{p} + 2 * t_s(\sqrt{p} 1) + t_w(n \frac{n}{p})$

## Matrix Vector Using Checkerboard Partitioning







(b) One-to-all broadcast of portions of the vector along processor columns



(c) Single-node accumulation of partial results



(d) Final distribution of the result vector

#### **Matrix Vector Analysis**

- Runtime on a mesh with cut-through routing  $T_P = \frac{n^2}{p} + t_s log(p) + t_w \frac{n}{\sqrt{p}} log(p) + 2 * t_h(\sqrt{p} 1)$
- Based on the observation that the broadcast is performed on a ring
- Checkerboard (two-dim blocked) partitioning is faster than striped (one-dim blocked) for both mesh and hypercube architectures

#### Matrix Multiplication (C = A.B)

- Assume n X n matrices, serial algorithm takes time =  $n^3$ .
- Consider blocked matrix multiplication algorithm

```
procedure BLOCK_MAT_MULT (A, B, C)
1.
2.
 begin
3.
 for i := 0 to q - 1 do
4.
 for i := 0 to q - 1 do
5.
 begin
 Initialize all elements of C_{i,j} to zero;
 for k := 0 to q - 1 do
7.
 C_{i,j} := C_{i,j} + A_{i,k} \times B_{k,j};
8.
9.
 endfor:
 end BLOCK_MAT_MULT
```

**Program 5.3** The block matrix multiplication algorithm for  $n \times n$  matrices with a block size of  $(n/q) \times (n/q)$ .

Copyright (r) 1994 Benjamin/Cummings Publishing Co.

#### Simple Parallel Matrix Multiplication

- ullet Consider two nXn matrices A and B partitioned into p blocks arranged as  $\sqrt{p}X\sqrt{p}$  logical mesh of processors
- Processor  $P_{i,j}$  initially stores  $A_{i,j}$  and  $B_{i,j}$  computes block  $C_{i,j}$  of result matrix.
- In subsequent stages,  $C_{i,j}$  computation requires all submatrices  $A_{i,j}$  and  $B_{k,j}$  for all  $0 \le k \le \sqrt{p}$ .
- An all-to-all broadcast is performed of matrix A's blocks for each row of the processors, and an all-to-all broadcast of matrix B's blocks in each column.
- Parallel run time on hypercube  $T_P = \frac{n^3}{p} + t_s log(p) + 2 * t_w \frac{n^2}{p} (\sqrt{p} 1)$
- Parallel run time on torus  $T_P = \frac{n^3}{p} + 2 * t_s(\sqrt{p} 1) + 2 * t_w \frac{n^2}{p}(\sqrt{p} 1)$

#### Memory Efficient Matrix Multiplication

- Partition matrices A and B among p processors so each processor stores  $(n/\sqrt{p})$  by  $(n/\sqrt{p})$  blocks of each matrix.
- Algorithm performs  $\sqrt{p}$  iterations of the following steps:
- Broadcast the selected block of A among the  $\sqrt{p}$  processors of the row in which the block lies (initially start with block  $A_{i,i}$ ).
- Multiply the block of A received with the resident block of B.
- ullet Send the block of B to processor directly above it (with wraparound), and received new block of B from processor below it.
- Select the block of A for the next row broadcast.
- Parallel runtime of algorithm on the hypercube

$$T_P = \frac{n^3}{p} + t_s \sqrt{p} \log(\sqrt{p}) + t_w \frac{n^2}{\sqrt{p}} \log(\sqrt{p})$$

#### **Memory Efficient Matrix Multiplication**



#### **Solving System of Linear Equations**

- Given system of linear equations A.x = b, solve for vector x in two stages.
- Reduce system of equations to a upper triangular system of equations U.x = y
- Finally solve for x using back substitution
- When this needs to be solved multiple times, usually perform LU -factorization using similar ideas.
- $\bullet$  Serial runtime takes  $n^2/2$  divisions and  $(n^3/3)-(n^2/2)$  subtractions and multiplications, total approximately,  $W=\frac23n^3$

#### Serial Gaussian Elimination Algorithm

```
procedure GAUSSIAN_ELIMINATION (A, b, y)
1.
2.
 begin
 /* Outer loop */
3.
 for k := 0 to n - 1 do
4.
 begin
 for i := k + 1 to n - 1 do
5.
6.
 A[k,j] := A[k,j]/A[k,k]; /* Division step */
 y[k] := b[k]/A[k, k];
8.
 A[k, k] := 1;
9.
 for i := k + 1 to n - 1 do
10.
 begin
 for j := k + 1 to n - 1 do
11.
 A[i,j] := A[i,j] - A[i,k] \times A[k,j]; /* Elimination step */
12.
 b[i] := b[i] - A[i, k] \times y[k];
13.
 A[i, k] := 0;
14.
15.
 endfor:
 /* Line 9 */
16.
 /* Line 3 */
 endfor;
 end GAUSSIAN_ELIMINATION
```

**Program 5.4** A serial Gaussian elimination algorithm that converts the system of linear equations Ax = b to a unit upper-triangular system Ux = y. The matrix U occupies the upper-triangular locations of A. This algorithm assumes that  $A[k,k] \neq 0$  when it is used as a divisor on lines 6 and 7.

Copyright (r) 1994 Benjamin/Cummings Publishing Co.

## Serial Gaussian Elimination Algorithm-Figure



#### Parallel Gaussian Elimination Algorithm

• Can use either two-dimensional blocked or cyclic distribution of matrix

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

1	-	(0,4)	(0,1)	(0,5)	(0,2)	(0,6)	(0,3)	(0,7)
C	)	(4,4)	0	(4,5)	0	(4,6)	(4,3)	(4,7)
C	)	(1,4)	1	(1,5)	(1,2)	(1,6)	(1,3)	(1,7)
C	)	(5,4)	0	(5,5)	0	(5,6)	(5,3)	(5,7)
C	)	(2,4)	0	(2,5)	1	(2,6)	(2,3)	(2,7)
C	)	(6,4)	0	(6,5)	0	(6,6)	(6,3)	(6,7)
C	)	(3,4)	0	(3,5)	0	(3,6)	(3,3)	(3,7)
C	)	(7,4)	0	(7,5)	0	(7,6)	(7,3)	(7,7)

(a) Block-checkerboard mapping

(b) Cyclic-checkerboard mapping

#### Parallel Gaussian Elimination Algorithm

• Communication steps in step k=3 for 8X8 matrix on 16 processors.

	<del></del>		n>
	1	(0,1)	(0,2) (0,3) (0,4) (0,5) (0,6) (0,7)
	0	1	(1,2) (1,3) (1,4) (1,5) (1,6) (1,7)
	0	0	1 (2,3) (2,4) (2,5) (2,6) (2,7)
	0	0	0  (3,3) (3,4) (3,5) (3,6) (3,7)
n	0	0	0 (4,4) (4,5) (4,6) (4,7)
$\frac{n}{\sqrt{p}}$	0	0	0 (5,3) (5,4) (5,5) (5,6) (5,7)
	0	0	0 (6,3) (6,4) (6,5) (6,6) (6,7)
	0	0	0 (7,3) (7,4) (7,5) (7,6) (7,7)

(a) Rowwise broadcast of A[i,k] for i = k to (n - 1)

				$< \frac{n/\sqrt{p}}{<} >$	-	
1	(0,1)	(0,2)	(0,3)	(0,4) (0,5)	(0,6) (0,7)	1
0	1	(1,2)	(1,3)	(1,4) (1,5)	(1,6) (1,7)	
0	0	1	(2,3)	(2,4) (2,5)	(2,6) (2,7)	
0	0	0	1	(3,4) (3,5)	(3,6) (3,7)	n
0	0	0	(4,3)	(4,4) (4,5)	(4,6) (4,7)	n
0	0	0	(5,3)	(5,4) (5,5)	(5,6) (5,7)	
0	0	0	(6,3)	(6,4) (6,5)	(6,6) (6,7)	
0	0	0	(7,3)	(7,4) (7,5)	(7,6) (7,7)	V

(b) Columnwise broadcast of A[k,j] for j = (k + 1) to (n - 1)

#### **Optimizations on Parallel Algorithm**

- In previous algorithm, processors worked synchronously in each step.
- At any given time, all processors worked on the same iteration, i.e. the (k+1)st iteration started only after all the computation and communication of the kth iteration was complete.
- Can design an asynchronous, or pipelined algorithm, where some processors perform the computation of a given iteration ealier than other processors, and start working on subsequent iterations sooner.
- Can overlap computations with communication.

## Overview of Pipelined Parallel GE





#### Illustration of Pipelined Parallel GE

• Assume that processor can do only one of compute/send/receive at a time



#### **Summary**

- Design of parallel algorithms
- Dense matrix representations
- Matrix transpose algorithms
- Matrix vector multiplication
- Matrix matrix multiplication
- Linear system of equation solvers
- NEXT LECTURE: Sparse Matrix Algorithms