National University of Computer and Emerging Sciences, Lahore Campus

Course: **Applied Programming** Course Code: **CS 319** Program: **MS (Computer Science)** Semester: Fall 2017 **Duration: Total Marks: 60 Minutes** 45 Paper Date: 02-Nov-17 Weight 15 % Section: N/A Page(s): 4 Exam: Midterm 2 Reg. No.

Instruction/Notes:

- Please read the questions carefully before answering
- Multiple Choice Questions (MCQs) MUST be marked on the question paper. All
 other questions must be answered in an answer script
- You **MUST** return the question paper to the invigilator
- No marks will be given for an MCQ, if there is overwriting
- Write valid C++ code on programming problem(s)
- Example tree given in section B, question 1 is just one example. You are responsible for any generalization that you make from it

Section A - Multiple choice questions (Choose the most appropriate answer) [10marks]

1. The minimum number of nodes in a complete binary tree of height 3 is:

	a)	3
	b)	4
	c)	8
	d)	15
2.	The	e maximum number of internal nodes in a complete binary tree of height 3 is:
	a)	3
	b)	5
	c)	7
	d)	15
3.	The	e minimum height of a binary tree with 14 nodes is:
	a)	3
	b)	4
	c)	5
	d)	14
4.	The	e height of the left and right subtrees in an AVL Tree may differ by:
	a)	0
	b)	1
	c)	All of the above
	d)	None of the above
5.	A n	ode in a complete binary tree is stored in an array at A[i]. Its right child will be stored at:
	a)	A[i +1]
	b)	A[i + 2]
	c)	A[2 * i]
	d)	A[2 * i + 1]

- 6. The pre-order traversal for the given binary tree visits nodes in the order:
 - a) 1, 2, 3, 7, 10, 11, 14, 30, 40
 - b) 1, 2, 3, 14, 7, 10, 11, 40, 30
 - c) 1, 3, 2, 7, 10, 40, 30, 11, 14
 - d) 14, 2, 1, 3, 11, 10, 7, 30, 40
- 7. The post-order traversal for the given binary tree visits nodes in the order:

- b) 1, 2, 3, 14, 7, 10, 11, 40, 30
- c) 1, 3, 2, 7, 10, 40, 30, 11, 14
- d) 14, 2, 1, 3, 11, 10, 7, 30, 40
- 8. The in-order traversal for the given binary tree visits nodes in the order:
 - a) 1, 2, 3, 7, 10, 11, 14, 30, 40
 - b) 1, 2, 3, 14, 7, 10, 11, 40, 30
 - c) 1, 3, 2, 7, 10, 40, 30, 11, 14
 - d) 14, 2, 1, 3, 11, 10, 7, 30, 40
- 9. Given a binary search tree, which traversal will print the nodes in sorted order:
 - a) Pre order
 - b) Post order
 - c) In order
 - d) None of the above
- 10. How many times is the symbol "#" printed by the call foo(4)?
 - a) 3
 - b) 4
 - c) 7
 - d) 8

Section B

Q. 1: An m-ary tree is a tree in which each node can have as many as m children. For a node v in an m-ary tree, define f(v) as the sum of that node's key and its children's keys. We need to find the max of f(v) over all v belonging to the m-ary tree. For the example tree shown below, the node with maximum f(v) is the node with key equal to 4 and your function should return 4 + 7 + 8 + 9 = 28. Write a recursive C++ function for this problem, assuming that the node structure is defined as: [10 marks]

Q. 2: Solve the recurrence $a_n = 3 a_{n-1} + 10 a_{n-2}$ using any appropriate method with the initial conditions $a_0 = 4$ and $a_1 = 13$: [5 marks]

Start the next three questions using the following AVL tree.

Q. 3: Show the tree after the key 10 is inserted into it. Also show the intermediate steps. [5 marks]

Q. 5: Show the tree after the key 50 is deleted from it. Also show the intermediate steps. [5 marks]

Q. 6: Insert the keys 11, 9, 12, 14, 3, 15 and 7 (in that order) into an initially empty min heap. [10 marks]