

Table des matières

1	Espaces annelés et localement annelés	5
2	Variétés abstraites	7
	On s'en fout si c'est pas dans le bon ordre.	

TABLE DES MATIÈRES

Chapitre 1

Espaces annelés et localement annelés

Je viens de me rendre compte que les morphismes d'espaces localement annelés c'est clair mais pas tant que ça. Déjà

- 1. Annelés veut juste dire \mathcal{O}_X est un faisceau d'anneau.
- 2. Localement annelés faut rajouter que les $\mathcal{O}_{X,x}$ sont des anneaux locaux.
- 3. Le morphisme f^{\sharp} est entre $\mathcal{O}_Y \to f_*\mathcal{O}_X$, sinon $f^{\flat} \colon f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$.

Donc si

- 1. $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ sont des espaces annelés.
- 2. $(f, f^{\sharp}) \colon X \to Y$ un morphisme. Alors le f^{\sharp} est juste un morphisme de faisceaux.
- 3. Pour avoir l'intuition habituelle, on regarde localement annelé. C'est à dire si f(x) = y alors $f^{\sharp} \colon \mathcal{O}_{Y,y} \to (f_*\mathcal{O}_X)_y \to \mathcal{O}_{X,x}$ est local :

$$f^{\sharp}\mathfrak{m}_y\subset\mathfrak{m}_x.$$

Remarque 1. Et la ! En fait $(f_*\mathcal{O}_X)_y$ c'est la limite des $\mathcal{O}_{X,x}$ pour f(x) = y! J'avais jamais tilt mdr trop bizarre.

Remarque 2. Ducoup on a ces comparaisons,

et les colimites sont filtrantes donc existent et on peut relever. Est-ce que y'a des égalités ?

Chapitre 2

Variétés abstraites

Ducoup

- 1. Une variété abstraite affine c'est juste un ensemble algébrique affine X muni du faisceau $U\mapsto \operatorname{Hom}_A ff(U,k)$.
- 2. Une variété abstraite c'est une union