Knowledge-Based Question Answering

Sudipto Ghosh

M.Sc. CS Semester I Department of Computer Science University of Delhi

December 25, 2022

Overview

- Problem Statement
 - Problem Definition
 - Motivation
- Modules
 - KB Construction
 - Question Understanding
 - Inferencing Engine
- System Overview
 - Use Case Diagram
 - System Architecture

Problem Definition

- Parse unstructured text from domain corpus, identify entities, extract relations, map relations to domain concepts and build knowledge base.
 Input: Corpus, domain ontology, and training examples consisting of entity boundaries, relationship dependencies, valid triples.
 Output: <s,p,o> triples to populate the knowledge graph.
- Model natural language question into a query, infer the facts about it required for the answer, assemble the facts into a natural language answer, and present it to the user.
 - **Input:** Question as a spoken utterance or text prompt. **Output:** Answer/fact as a spoken utterance or text response.
- Ensure system maximizes performance on giving correct answers to a set of competency questions.

Motivation

- Leveraging domain knowledge to improve virtual assistants.
- ullet Inferencing step \implies system can answer unanticipated questions.
- Level of detail can be controlled to suit the expertise of the user.
- Can we answer complex questions that contain multiple subjects, express compound relations, or require simulated thinking?

Example

Q: What is the capital of India?

A: The capital of India is New Delhi.

Q: What is the state of motor 2?

A: Motor 2 is currently turned off.

KB Construction

 Knowledge base construction (KBC) is the process of populating a knowledge base (KB) with facts (or assertions) extracted from data.

Sentence

Paracetamol, also known as acetaminophen, is usually prescribed for treating fever

Entity Recognition

Paracetamol, also known as acetaminophen, is usually prescribed for treating fever

Relation Extraction

Paracetamol, also known as acetaminophen, is usually prescribed for treating fever

Coreference Resolution

Paracetamol, also known as acetaminophen | Paracetamol is usually prescribed for treating fever

KB Construction (contd.)

prefix wikidata https://www.wikidata.org/wiki/Property

Triple Extraction

```
<Paracetamol, known as, acetaminophen> <Paracetamol, prescribed for, fever>
```

Entity Linking

```
<a href="https://en.wikipedia.org/wiki/Paracetamol">https://en.wikipedia.org/wiki/Acetaminophen></a><a href="https://en.wikipedia.org/wiki/Paracetamol">https://en.wikipedia.org/wiki/Paracetamol</a>, prescribed for, https://en.wikipedia.org/wiki/Fever>
```

Ontology Mapping

```
<a href="https://en.wikipedia.org/wiki/Paracetamol">https://en.wikipedia.org/wiki/Acetaminophen></a><a href="https://en.wikipedia.org/wiki/Paracetamol">https://en.wikipedia.org/wiki/Paracetamol</a>, wikidata:P2176, https://en.wikipedia.org/wiki/Fever>
```

• The resultant triples are stored to a triple or RDF store like Blazegraph through semantic queries, or a graph database like Neo4J.

Question Understanding

- Understanding natural language questions refers to the ability to break down a question into the requisite steps for computing its answer.
- Encode questions into low-dimensional vectors with contextual information?
- Calculate semantic similarity between questions and entities in KB?
- Detect and link entities in questions to those in KB and construct queries?

Question

What drug is prescribed for treating fever?

Parsed Query

<?, prescribed for, fever>

Semantic Query

<?, https://www.wikidata.org/wiki/Property:P2176, https://en.wikipedia.org/wiki/Fever>

Inferencing Engine

- KBQA Models learn Question Answering by using a QA corpus and a populated KB – uncertainty, incompleteness and noise are inevitable
- ullet Probabilistic Inferencing \Longrightarrow infer predicates from templates.
- Offline learn the mapping between templates and predicates.
- Online break questions down to simple questions, make use of probability distributions, calculate maximum likelihood.
- Entity distribution, template distribution, value (answer) distribution.
- Questions in actual interactions might be vague and unusual.
- Answer questions with entities/predicates matching the top confidence score.

Example

Template: what is treated by \$medicine?

Predicate: prescribed_for (maybe 90.5%), founder (maybe 0.01%)

Use Case Diagram

System Architecture

References

- [1] Vasudha Bhatnagar et al. "Similar Cases Recommendation using Legal Knowledge Graphs". In: *Proc. of KDD 2021*. DOI: 10.48550/ARXIV.2107.04771.
- [2] Sudipto Ghosh et al. "Constructing a Knowledge Graph from Indian Legal Domain Corpus". In: *Proc. of TEXT2KG 2022 and MK 2022 co-located with ESWC 2022*, pp. 80–93. URL: http://ceur-ws.org/Vol-3184/TEXT2KG_Paper_6.pdf.
- [3] Daniel Jurafsky and James H. Martin. "Question Answering". In: Speech and Language Processing. USA: Prentice-Hall, Inc., 2021. Chap. 23. ISBN: 0131873210.
- [4] Yunshi Lan et al. "Complex Knowledge Base Question Answering: A Survey". In: Proc. of IJCAI 2021. DOI: 10.48550/ARXIV.2108.06688.
- [5] Ce Zhang. "DeepDive: A Data Management System for Automatic Knowledge Base Construction". PhD thesis. 2015. URL: https://cs.stanford.edu/people/czhang/zhang.thesis.pdf.

Thank You