ВОЕННО-КОСМИЧЕСКАЯ АКАДЕМИЯ ИМЕНИ А.Ф. МОЖАЙСКОГО

Кафедра Математического обеспечения

несекретно
Экз. № 1

УТВЕРЖДАЮ

Начальник 25 кафедры
полковник______С.Петренко

«___» ____ 2007 г.

Автор: профессор 25 кафедры доктор технических наук профессор А. Хомоненко

Тема: Представление знаний

по дисциплине: Системы искусственного интеллекта

Обсуждено и одобрено на заседании 25 кафедры
«___» ____ 2007 г.
протокол N_2 ___

Санкт-Петербург 2007

Содержание занятия и время

Введение7 мин.			
Учебные вопросы (основная часть)			
1. Проблемы представления знаний			
2. Классификация моделей представления знаний15 мин.			
3. Семантические сети			
Заключение			
Литература:			
Основная:			
1. Основы современных компьютерных технологий. /Учебник под ред.			
профессора А.Д. Хомоненко. – СПб.: Корона-принт, 2005, стр. 410-426.			
2. Конспект лекции.			
Дополнительная:			
1			
(наименование издания, страницы)			
2			
(наименование издания, страницы)			
3			
(наименование издания, страницы)			

Материально-техническое обеспечение:

- 1. Наглядные пособия (по данным учета кафедры): -
- 2. Технические средства обучения: проектор
- 3. Приложения (диафильмы, слайды): презентация «Модели и методы представления знаний»

Организационно-методические указания: Во введении сформулировать тему лекции, цель и название изучаемых вопросов. Задать вопросы обучаемым по материалам предыдущей лекции:

- 1. Какие стратегии используются при выводе решений?
- 2. В чем состоит существо вывода решения в обратном направлении.

При изложении первого вопроса обратить внимание обучаемых на важность вопросов правильного выбора модели представления знаний.

Привести примеры различных моделей представления знаний в прикладных экспертных системах, в том числе для Космических войск.

В заключительной части обобщить изложенный материал и сформулировать задание на самостоятельную подготовку.

<u>Цель лекции:</u> Охарактеризовать проблему представления знаний, дать классификацию моделей и рассмотреть семантические сети, их достоинства и недостатки.

Введение

Учебные вопросы:

1. Проблемы представления знаний

Представление знаний — это соглашение о том, как описывать реальный мир. В естественных и технических науках принят следующий традиционный способ представления знания. На естественном языке вводятся основные понятия и отношения между ними. При этом используются ранее определенные понятия и отношения, смысл которых уже известен. Далее устанавливается соответствие между характеристиками (чаще всего количественными) понятий знания и подходящей математической модели. Основная цель представления знания — строить математические модели реального мира и его частей, для которых соответствие между системой понятий проблемного знания может быть установлено на основе совпадения имен переменных модели и имен понятий без предварительных пояснений и установления дополнительных неформальных соответствий. Представление знаний обычно выполняется в рамках той или иной системы представления знаний.

При организации представления знаний в экспертных системах, прежде всего, требуется решить следующие проблемы:

- 1. Что представлять. Решение проблемы определения состава представляемых знаний обеспечивает адекватное отображение моделируемых сущностей в системе.
- 2. Как представлять знания. От решения этой проблемы существенно зависит эффективность и принципиальная возможность представления знаний.

Со второй проблемой можно связать две составляющие задачи: как организовать знания и как представить их в выбранном формализме.

На состав представляемых знаний влияют следующие факторы:

- проблемная среда;
- архитектура экспертной системы;
- потребности и цели пользователей;
- язык общения.

Проблемная среда определяет сущности, знания о которых должны храниться и обрабатываться в экспертной системе. Состав знаний в ЭС существенным образом зависит от проблемной среды.

Для функционирования *статической* экспертной системы [Попов, Фоминых] требуются следующие знания:

- управляющие знания о процессе решения задачи (используются решателем);
- о языке общения и способах организации диалога (используются диалоговым компонентом);
- о способах представления и модификации знаний (используются компонентом приобретения знаний);
- поддерживающие структурные и управляющие знания (используются объяснительным компонентом).

Для динамической ЭС дополнительно требуются знания о методах взаимодействия с внешним окружением и о модели внешнего мира.

Влияние потребностей пользователя на состав знаний проявляется через следующие факторы:

- решаемые задачи из общего набора и исходные данные;
- предпочтительные способы и методы решения;
- ограничения на число результатов и способы их получения;
- требования к языку общения и организации диалога;
- степень общности и конкретности знаний о проблемной области;
- цели пользователей.

Состав знаний о *языке общения* зависит от языка общения и от требуемого уровня понимания.

Знания можно разделить на интерпретируемые и неинтерпретируемые. К *интерпретируемым* относятся знания, которые может интепретировать интерпретатор. Остальные знания относятся к неинтепретируемым. Решатель не знает их структуры и содержания. Интерпретируемые знания можно разделить на знания о представлении, предметные и управляющие. Знания *о представлении* содержат информацию о том, в каких структурах представлены интерпретируемые знания.

Предметные знания содержат данные о предметной области и способах их преобразования при решении прикладных задач. В предметных знаниях можно выделить описатели и собственно предметные знания. Описатели содержат определенную информацию о предметных знаниях, такую как коэффициент определенности правил и данных, меры важности и сложности. Предметные знания включают факты и

исполняемые утверждения. Факты определяют возможные значения сущностей и характеристик предметной области. Исполняемые утверждения представляют собой знания, задающие процедуры обработки, и могут быть заданы в процедурной и в декларативной форме.

Управляющие знания можно разделить на фокусирующие и решающие. Фокусирующие знания описывают, какие знания следует использовать в определенной ситуации. Обычно они содержат сведения о перспективных объектах или правилах, которые нужно использовать при проверке соответствующих гипотез. Решающие знания содержат информацию, используемую для выбора способа интерпретации знаний применительно к данной ситуации. Их применяют для выбора стратегий или эвристик, наиболее эффективных для решения конкретной задачи.

Не интерпретируемые знания подразделяются на вспомогательные и поддерживающие. Вспомогательные знания хранят информацию о лексике и грамматике языка общения, о структуре диалога. Они обрабатываются естественно-языковым компонентом. Поддерживающие знания используются при создании системы и выполнении объяснений. Эти знания играют роль описаний интерпретируемых знаний и действий системы. Заметное улучшение количественных и качественных показателей экспертной системы можно добиться на основе использования метазнаний (знаний о знаниях). К числу возможных назначений метазнаний можно отнести следующие:

- стратегические метаправила, используемые для выбора необходимых (релевантных) правил;
- обоснование целесообразности применения правил из области экспертизы;
- обнаружение синтаксических и семантических ошибок в предметных правилах;
- адаптация к окружению путем перестройки предметных правил и функций;
- явное указание возможностей и ограничений системы.

2. Классификация моделей

Системой представления знаний (СПЗ) называют средства, позволяющие описывать знания о предметной области с помощью языка представления знаний, организовывать хранение знаний в системе (накопление, анализ, обобщение и организация структурированности знаний), вводить новые знания и объединять их с имеющимися, выводить новые знания из имеющихся, находить требуемые знания, устранять устаревшие знания, проверять непротиворечивость накопленных знаний, осуществлять интерфейс между пользователем и знаниями.

Центральное место в СПЗ занимает *язык представления знаний* (ЯПЗ). В свою очередь, выразительные возможности ЯПЗ определяются лежащей в основе ЯПЗ моделью представления знаний (иногда эти понятия отождествляют).

Модель представления знаний является формализмом, призванным отобразить статические и динамические свойства предметной области (ПО), т. е. отобразить объекты и отношения ПО, связи между ними, иерархию понятий ПО и изменение отношений между объектами.

Модель представления знаний может быть универсальной (применимой для большинства ПО) или специализированной (разработанной для конкретной ПО). В СИИ используются следующие *основные универсальные модели представления знаний*:

- семантические сети;
- фреймы;
- системы продукций;
- логические модели и другие.

Модели представления знаний делят также на логические (формальные) и эвристические (формализованные). В основе *погических* моделей представления знаний лежит понятие формальной системы (теории). Например, исчисление предикатов и любая конкретная система продукций. В логических моделях, как правило, используется исчисление предикатов первого порядка, дополненное эвристическими стратегиями.

Соответствующие экспертные системы являются системами дедуктивного типа — в них используется получение вывода из заданной системы посылок с помощью фиксированной системы правил вывода. Дальнейшим развитием предикатных систем являются системы индуктивного типа, в которых правила вывода порождаются системой на основе обработки конечного числа обучающих примеров.

В логических моделях представления знаний отношения между компонентами знаний выражаются с помощью ограниченного набора средств, предоставляемых синтаксическими правилами используемой формальной системы.

К эвристическим моделям представления знаний можно отнести семантические сети, фреймы, системы продукций и объектно-ориентированный подход. По сравнению с формальными моделями эвристические модели имеют разнообразный набор средств, учитывающих конкретные особенности предметной области. В связи с этим эвристические модели превосходят логические модели по возможности адекватного представления проблемной среды и по эффективности используемых правил вывода.

Во всех разработанных системах с базами знаний, кроме перечисленных моделей, взятых за основу, использовались специальные дополнительные средства. Но классификация моделей представления знаний остается неизменной.

3. Семантические сети

Семантические сети (СС) являются исторически первым классом моделей представления знаний. Здесь структура знаний предметной области формализуется в виде ориентированного графа с размеченными вершинами и дугами. Вершины обозначают сущности и понятия ПО, а дуги — отношения между ними. Под сущностью понимают объект произвольной природы. Вершины и дуги могут снабжаться метками, представляющими собой мнемонические имена. Основными связями для СС, с помощью которых формируются понятия, являются:

- класс, к которому принадлежит данное понятие;
- свойства, выделяющие понятие из всех прочих понятий этого класса;
- примеры данного понятия.

На самой СС принадлежность элемента к некоторому классу или части к целому передается с помощью связок "IS A" и "PART OF" соответственно. Свойства описываются связками "IS" и "HAS" ("является" и "имеет"). На Рис. 0.1 приведен пример описания понятия с помощью СС.

Рис. 0.1. Пример фрагмента семантической сети

С помощью СС можно описывать события и действия. Для этих целей используются специальные типы отношений, называемые падежами: агент — действующее лицо, вызывающее действие; объект — предмет, подвергающийся действию; адресат — лицо, пользующееся результатом действия или испытывающее этот результат. Возможны и другие падежи типа: время, место, инструмент, цель, качество, количество и т.д. Введение падежей позволяет от поверхностной структуры предложения перейти к его смысловому содержанию.

В СС понятийная структура и система зависимостей представлены однородно. Поэтому представление в них, например, математических соотношений графическими средствами неэффективно. СС не дают ясного представления о структуре ПО, они представляют собой пассивные структуры, для обработки которых необходима разработка аппарата формального вывода и планирования.

В чистом виде СС на практике почти не используются. При построении СИИ с использованием СС обычно либо накладывают ограничения на типы объектов и отношений (примером таких сетей являются функциональные СС), либо расширяют СС специальными средствами для более эффективной организации вычислений в СС (К-сети, пирамидальные сети и др.).

Заключение:

Обратить внимание обучаемых на актуальность вопросов, связанных с представлением знаний и выбором соответствующей модели.

На самостоятельной подготовке прочитать материалы из рекомендуемой литературы. Предложить вариант семантической сети, описывающей понятие мебель с использование объектов: стол, стул, кресло, табурет.

ДОКТОР ТЕХНИЧЕ	СКИХ НАУК ПРОФЕССОР
	А. ХОМОНЕНКО
«»	200_ г.