STA260 Summer 2024 Tutorial 10 (10.1, 10.2, 10.10)

Disclaimer: STA260 covers extensive material. Tutorials serve as additional aids, but they cannot cover every question type.

Relevant Review from Lecture: New Terminologies

Type I Error / False Negative: $\alpha = \mathbb{P}(\text{reject } H_0 | H_0 \text{ is true})$

Type II Error / False Positive: $\beta = \mathbb{P}(\text{accept } H_0 | H_0 \text{ is false})$

Power(θ) = 1 - β = \mathbb{P} (reject $H_0|H_0$ is false)

Note that we want to maximize power, which in plain language, is the probability of correctly rejecting the null hypothesis.

Simple: refers to "=" (i.e., $H_0: \theta_0 = 3$ is a simple hypothesis.)

Composite: refers to " \neq ", ">", "<" (i.e., $H_0: \theta_0 \neq 3$ is a composite hypothesis.)

Note: in STA260, H_0 should always be simple.

NP-Lemma

Suppose $y_1,...,y_n$ are randomly sampled, and let $\theta_0,\theta_a\in\mathbb{R}$. If you have a simple null hypothesis $(H_0:\theta=\theta_0)$ and either a simple $(H_a:\theta=\theta_a)$ or a composite (i.e., $H_a:\theta\neq\theta_a$) alternative hypothesis, then the **most powerful** test is determined by the Rejection Region (RR): $\frac{L(y_1,...,y_n|\theta_0)}{L(y_1,...,y_n|\theta_a)}< k$

Remark: if $H_a:\theta>\theta_a$ or $H_a:\theta<\theta_a$, then the $\frac{L(y_1,...,y_n|\theta_0)}{L(y_1,...,y_n|\theta_a)}< k$ rejection region provides the **uniformly most powerful test.**

Question 1

Let $Y_1, ..., Y_8$ be a random sample from the probability density function given by:

$$f(x|\beta) = \begin{cases} \frac{3}{\beta}e^{-y^3/\beta} & y > 0\\ 0 & \text{otherwise} \end{cases}$$

What is the Rejection Region (RR) for the Uniformly Most Powerful (UMP) test of:

$$H_0: \beta=2$$
 v.s. $H_a: \beta>2$

with significance level $\alpha = 0.05$?

Hint:

$$\sum_{i=1}^{8} Y_i^3 \sim Gamma(8,2)$$

Question 2

Let $X_1, X_2, ..., X_n$ be independent random variables such that each X_i has a $N(0, \sigma^2)$ where the variance σ^2 is unknown.

If n=15, find the most powerful level $\alpha=0.05$ test of $H_0:\sigma^2=9$ vs. $H_a:\sigma^2=25$. Explicitly provide the Rejection Region (RR).

Question 3

For some reason a lot of people like to assume measurement error is normally distributed with a mean value μ and a standard deviation 4. Consider testing $H_0: \mu=0$ versus $H_a: \mu \neq 0$ based on n=16 measurements.

Find the likelihood ratio test, λ , and its Rejection Region (RR) when $\alpha = 0.05$.

Continuous Distributions

Distribution	Probability Function	Mean	Variance	Moment- Generating Function
Uniform	$f(y) = \frac{1}{\theta_2 - \theta_1}; \theta_1 \le y \le \theta_2$	$\frac{\theta_1+\theta_2}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$	$\frac{e^{t\theta_2} - e^{t\theta_1}}{t(\theta_2 - \theta_1)}$
Normal	$f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\left(\frac{1}{2\sigma^2}\right)(y-\mu)^2\right]$ $-\infty < y < +\infty$	μ	σ^2	$\exp\left(\mu t + \frac{t^2\sigma^2}{2}\right)$
Exponential	$f(y) = \frac{1}{\beta} e^{-y/\beta}; \beta > 0$ $0 < y < \infty$	β	$oldsymbol{eta}^2$	$(1-\beta t)^{-1}$
Gamma	$f(y) = \left[\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right] y^{\alpha - 1} e^{-y/\beta};$ $0 < y < \infty$	αβ	$lphaeta^2$	$(1-\beta t)^{-\alpha}$
Chi-square	$f(y) = \frac{(y)^{(v/2)-1}e^{-y/2}}{2^{v/2}\Gamma(v/2)};$ $y^2 > 0$	v	2ν	$(1-2t)^{-\nu/2}$
Beta	$f(y) = \left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\right] y^{\alpha - 1} (1 - y)^{\beta - 1};$ $0 < y < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	does not exist in closed form

Discrete Distributions

Distribution	Probability Function	Mean	Variance	Moment- Generating Function
Binomial	$p(y) = \binom{n}{y} p^{y} (1-p)^{n-y};$ $y = 0, 1, \dots, n$	np	np(1-p)	$[pe^t + (1-p)]^n$
Geometric	$p(y) = p(1-p)^{y-1};$ y = 1, 2,	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
Hypergeometric	$p(y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}};$ $y = 0, 1, \dots, n \text{ if } n \le r,$ $y = 0, 1, \dots, r \text{ if } n > r$	$\frac{nr}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$	
Poisson	$p(y) = \frac{\lambda^{y} e^{-\lambda}}{y!};$ $y = 0, 1, 2, \dots$	λ	λ	$\exp[\lambda(e^t-1)]$
Negative binomial	$p(y) = {y-1 \choose r-1} p^r (1-p)^{y-r};$ y = r, r+1,	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$