EE2302 Foundations of Information Engineering

Assignment 7 **Due: 6 pm, Nov 3**

Full Mark: 22 points

1. (4 points) Determine whether each of the following scalar-valued functions n-vectors is linear. If it is linear, give its inner product representation, i.e., an n-vector α for which $f(x) = \alpha^T x$ for all x. If it is not linear, give specific x, y, α, β for which superposition fails, i.e.,

$$f(\alpha x + \beta y) \neq \alpha f(x) + \beta f(y).$$

- a) $f(x) = \max_{k} x_k$
- b) $f(x) = x_n x_1$
- 2. (4 points) What 3 by 3 matrices represent the transformations that
 - a) reflect every vector through the *x-y* plane?
 - b) rotate the x-y plane through 90^o , leaving the z-axis alone?
- 3. (4 points) Consider the 2-dimensional space and the projection of b on the line passing through the origin and a, where a = (10, 10).
 - a) Determine the corresponding projection matrix P.
 - b) Suppose b = (3, 5). Determine the result after the projection.
- 4. (6 points) Let x be a real n-vector and define y as the real, non-negative vector (i.e., the vector with non-negative real entries) closest to x.
 - a) Give an expression for each element of y.
 - b) Show that z = y x is also a non-negative vector.
 - c) Show that $z^T y = 0$.
- 5. (4 points) By choosing the right vector b in the Cauchy-Schwarz inequality, prove that

$$(a_1 + a_2 + \dots + a_n)^2 \le n(a_1^2 + a_2^2 + \dots + a_n^2).$$