

CONTENTS.

01. CNN

- CNN
- CV task
- MLP와 CNN
- CNN Input

02. CNN 구조

- CNN 구조
- Convolution Layer
- Pooling Layer
- Fully Connected Layer

03. 이미지 전처리

- 정규화
- Data Augmentation 기법

1. CNN CNN

CNN (Convoutional Neural Network)

Convolution 연산을 통해 이미지의 지역 정보를 학습하는 Neural Network

1. CNN CNN

DNN의 문제점

- 1. 고차원 input 데이터
- 2. Flexibility of Topology
 - : Flattening 과정에서 이미지의 공간적/지역적 정보 손실 문제 발생
- → 이를 해결하는 모델이 CNN

이미지의 공간 정보를 유지한 상태로 학습이 가능한 모델

1. CNN

CV task

CV (Computer Vision)

컴퓨터가 이미지를 잘 이해할 수 있도록 하는 과제

What we see

What a computer sees

이미지가 달라지면 (ex. 색, 위치 등) 이미지 인식에 어려움을 느낌

1. CNN

CV task

CV (Computer Vision)

컴퓨터가 이미지를 잘 이해할 수 있도록 하는 과제

What we see

What a computer sees

🕸 2024 빅데이터 분석 학회 D&A

1. CNN MLP와 CNN

Perceptron

MLP

1. CNN MLP와 CNN

MLP와 CNN

MLP

- input image의 3차원 형상을 고려 X
- FC Layer이 input image의 3차원 형상을
 1차원으로 flatten

CNN

- input image의 3차원 형상을 고려 O
- 이미지의 지역 정보를 Input으로 사용
- Convolution 연산은 flatten X
- Image 안의 pixel끼리의 관계를 그대로 고려함

데이터의 형상 정보를 유지하는 CNN

1. CNN CNN input

CNN input

입력 데이터가 이미지로 이루어졌다는 가정을 바탕으로 이루어진 모델

→ (Height, Width, Channel) 형태의 이미지

이미지 데이터

- 이미지가 어떤 색 공간에 저장되는지에 따라 이미지의 depth가 달라진다
- 이미지를 하나의 depth 별로 쪼개어 나타냈을 때 각 한 장의 이미지를 채널이라고 함
 - 컬러 이미지: RGB 공간에 저장, image depth = 3
 - 흑백 이미지: Gray Scale 공간에 저장, image depth = 1
- Pixel 값은 흰색의 강도를 나타낸다 -> 작을수록 검은색에 가깝고 클수록 흰색에 가깝다

2. CNN 구조 CNN 구조

CNN 구조

Convolution Layer

- Region Feature를 뽑아내기 위한 계층

Pooling Layer

- Feature Dimension을 줄이기 위한 계층

Fully Connected Layer

- 최종적인 분류를 위한 계층

2. CNN 구조 CNN 구조

CNN 구조

Convolution Layer

- Region Feature를 뽑아내기 위한 계층

Pooling Layer

- Feature Dimension을 줄이기 위한 계층

Fully Connected Layer

- 최종적인 분류를 위한 계층

2. CNN 구조 CNN 구조

CNN 구조

Convolution Layer

- Region Feature를 뽑아내기 위한 계층

Pooling Layer

- Feature Dimension을 줄이기 위한 계층

Fully Connected Layer

- 최종적인 분류를 위한 계층

Convolution Layer

Convolution Layer

입력 이미지와 필터 간의 convolution 연산을 통해 새로운 특성 맵(feature map)을 생성

Convolution Layer

channel

- 흑백 이미지는 2차원 형상의 데이터로, 3차원 형상으로 표현하면 1개의 채널로 구성 ex. (5, 5, 1)
- 컬러 이미지는 각 픽셀을 RGB 3개의 실수로 표현한 3차원 형상의 데이터로, 3개의 채널로 구성 ex. (5, 5, 3)

Convolution Layer

filter(=kernel)

- 이미지의 region별 feature를 찾아내기 위한 파라미터
 - → 커널 행렬의 원소들은 Neural Network에서의 가중치
- 필터 크기만큼 이미지를 확대해서 해당하는 부분만 확인
- 일반적으로 3x3 또는 5x5 사용

Convolution Layer

parameter sharing

- 특정한 공간 위치(x,y)에서 유용한 feature라면 다른 위치(x2,y2)에서도 유용할 것이라는 가정에서 나온 개념
- 이미지 모든 위치에 걸쳐서 동일한 필터(가중치와 편향) 적용한다고 가정
- Specific centered structure의 경우 적합하지 않음 ex. 얼굴 사진 인식

Convolution Layer

Convolution 연산

filter가 일정 간격만큼 이동하여 Input과 대응하는 위치의 원소끼리 곱한 후 그 총합을 구하는 연산

ex. 5x5 input에 3x3 사이즈의 커널로 합성곱 연산 수행

Input

1	2	3	4	5
2	1	0	1	2
3	0	1	1	0
1	4	1	1	2
2	1	1	0	0

X

Output

6	9	11
10	4	4
7	7	4

(1X1) + (2X0) + (3X1) + (2X1) + (1X0) + (0X1) + (3X0) + (0X1) + (1X0) = 6

Convolution Layer

Convolution 연산

filter가 일정 간격만큼 이동하여 Input과 대응하는 위치의 원소끼리 곱한 후 그 총합을 구하는 연산

ex. 5x5 input에 3x3 사이즈의 커널로 합성곱 연산 수행

Input

1	2	3	4	5
2	1	0	1	2
3	0	1	1	0
1	4	1	1	2
2	1	1	0	0

X

Output

6	9	11
10	4	4
7	7	4

(2X1) + (3X0) + (4X1) + (1X1) + (0X0) + (1X1) + (0X0) + (1X1) + (1X0) = 9

Convolution Layer

MLP의 가중치

Convolution Layer

CNN의 가중치

Convolution Layer

CNN의 편향

- 커널을 적용한 뒤에 편향을 더한다.
- 편향은 하나의 값만 존재하며,
 커널이 적용된 결과의 모든 원소에 더해진다.

Convolution Layer

Hyper Parameter

- filter size: filter의 크기
- depth: 사용하는 filter의 개수
- stride: filter가 입력 데이터에서 convolution 연산을 수행하는 간격

Convolution Layer

Hyper Parameter

- padding: Convolution 연산을 수행하기 전에 데이터 주변을 특정 값 (ex.0)으로 채우는 것
 - → 출력 크기 조절을 위해 사용하는 기법

Zero Padding: Padding에 들어가는 값을 0으로 하는 것

Full Padding: 모든 요소들이 같은 비율로 연사에 참여하도록 하는 것

Same Padding: Output의 크기를 Input의 크기와 동일하도록 하는 것

Valid Padding: Padding을 안 하는 것

0	0	0	0	0
0				0
0				0
0				0
0	0	0	0	0

Padding Size = 1

Convolution Layer

Output size

즉, feature map 크기 계산

Input에 대해 설정한 Filter(=Kernel) size, Stride, Padding에 따라 Convolution 연산을 수행

$$O_h = floor(\frac{I_h - K_h + 2P}{S} + 1)$$

$$O_w = floor(\frac{I_w - K_w + 2P}{S} + 1)$$

소수점 발생 시 소수점 이하를 버리는 역할

- 입력 크기 (H, W) padding size P
 - 커널 크기 (Kh, Kw)
 - 출력 크기 (Oh, Ow)
- Stride S

Convolution Layer

다수의 채널을 가질 경우의 Conv 연산

가진 입력

(3, 3, 3)

1	2	0
0	0	1
1	0	5

1	2	ന
2	1	0
3	0	1

3개의 채널을 가진 커널

1	0	_	1	3
0	1	_	0	5

1	1		6	6
1	0	-	4	2

8	9
4	8

Feature Map

(2, 2, 1)

*

*

*

Convolution Layer

다수의 채널을 가질 경우의 Conv 연산

[3차원 텐서의 Conv 연산]

입력 이미지의 채널 수 = 커널의 채널 수

[Conv 연산에서 다수의 커널을 사용한 경우] 사용한 커널 수 = feature map의 채널 수

Convolution Layer

Activation Map

Feature Map의 각 pixel에 대해 활성화 함수를 적용한 결과 즉, Conv Layer의 최종 출력 결과

활성화 함수는 일반적으로 ReLU 함수 사용

- → Feature map의 fixel값을 비선형 값으로 바꿔주기 위함
- → 중요한 feature는 그 값이 유지되면서 다음 층으로 전달되고, 중요하지 않은 feature(0에 가까운 값)은 0으로 변환되어 사실상 무시됨
- → 이미지에서 중요한 특징들만을 강조하면서도 비선형적인 문제를 효과적으로 학습함

Pooling Layer

Pooling Layer

Convolution Layer의 출력인 Activation Map의 크기를 줄이는 연산을 수행하는 Layer Activation Map의 인접한 부분에서 일정한 기준에 따라 픽셀 하나의 값을 뽑는다

- Max Pooling
- Average Pooling
- Min Pooling

Convolution Output

Pooling Layer

특징

학습해야 할 parameter가 없음

- 영역에서 최댓값이나 평균을 취하는 연산만 수행하기 때문

channel 수는 변하지 않음

- 채널마다 독립적으로 계산하기 때문

feature downsampling

- 데이터의 크기를 감소시키면서도 모델의 중요한 특징을 유지

입력의 변화에 영향을 적게 받음

- 입력 데이터의 차이를 Pooling이 흡수해 사라지기 때문

최근에는 사용하지 않으려는 경향이 있음

- 많은 정보를 활용하고 학습 속도를 높일 수 있는 알고리즘이 많이 개발되었기 때문

Fully Connected Layer

Fully Connected Layer

이미지를 정의된 라벨(클래스)로 분류하기 위한 Layer

Convolution Layer, Pooling Layer를 거쳐서 나온 결과를 flattening하여 1차원 벡터로 FC Layer에 전달

→ 여기서부터는 일반적인 MLP 구조와 동일

2. CNN 구조 CNN

2. CNN 구조 CNN

CNN의 특징

- 장점
- 1. locally connectivity와 parameter sharing을 통해고차원의 데이터를 오버피팅 되지 않고 다룰 수 있다.
- 2. 위치마다 동일한 feature를 추출하기 때문에 translation invariant 문제를 해결할 수 있다.
- 3. local relationship을 추출할 수 있다.

- 단점
- 1. 연산량이 많다.
- 2. 전체 데이터를 보고 특성을 추출할 수 없다.
- 3. 여러 Pooling층을 거치면서 작은 local 정보를 잃을 수 있다.

3. 이미지 전처리 CNN의 이미지 전처리

정규화

- 이미지 픽셀 값: 일반적으로 0부터 255 사이의 값
- 이 값을 0과 1 사이로 정규화하거나, 평균을 0으로 하고 표준편차를 1로 조정

Data Augmentation

- 데이터를 임의로 변형해 데이터의 수를 늘려 다양한 Feature를 뽑는 방법
- 학습 시 마다 개별 원본 이미지를 변형해서 학습하는 것으로 실질적인 학습 데이터셋의 규모를 키울 수 있는 방법

3. 이미지 전처리

Data Augmentation 기법

Data Augmentation 종류

Random Flip

- 랜덤으로 좌우/상하 반전

Rotation

- 회전

Scaling

- 확대/축소

Crop

- 일정 부분을 자름

Cutout

- 이미지의 일부를 검은색 사각형 모양으로 칠하는 방법
- 0을 채워 넣는 것

강아지: 1

Cutmix

- 여러 이미지를 일정 비율로 합치고, 이미지의 Label을 그 비율로 설정

강아지: 0.7 고양이: 0.3

3. 이미지 전처리

Data Augmentation 기법

Data Augmentation 종류

Cutout

- PCA를 사용하여 RGB 채널의 색상강도를 조절하는 방법
- 원래의 라벨을 해치지 않으면서 색상의 변형을 일으키는 것이 가능

Deep Session 4차시

과제

1. 실습자료의 'CNN 모델 설계'에서 각 Layer를 거친 후의 shape 주석 달아보고, 코드 속 #값_채우기에 들어갈 값 채워보기

2. Pooling 방법 변경 및 Data Augmentation 기법 적용해보며 모델 성능 비교해보기

REFERENCE

https://hyen4110.tistory.com/9

https://velog.io/@cha-suyeon/Data-augmentationhttps://lcyking.tistory.com/entry/데이터-증강Data-Augmentation

https://hyen4110.tistory.com/9

https://seungbeomdo.tistory.com/40

https://rubber-tree.tistory.com/116

