Fraud Detection

How to Detect Fraudulent Transactions:
"Save money and provide better service to customers"

DETECTING FRAUD:

Content

Introduction
Data Set EDA
Cleaning Pre-processing
Initial Modeling
Tuning/ Optimization
Conclusion & Recommendations

GLOBAL FRAUD IS INCREASING RAPIDLY!

"THE WORLDWIDE FRAUD LOSS BY 2023 IS
EXPECTED TO REACH \$33 BILLION AND IN 2027 IT IS PREDICTED
TO

REACH \$38.5 BILLION" (NILSON REPORT, ISSUE-1146, PG.8)

Card Payments Up

Cash Payments Down

Fraud steadily increasing

Introduction

PROBLEM:

FRAUD TRANSACTIONS INCREASING IN SHEER NUMBER AND SOPHISTICATION.

CREDIT CARD FRAUD HAS BEEN A GROWING PROBLEM IN THE DIGITAL AGE. IN 2020, COVID-19 ACCELERATED THIS TREND AND WE ARE SEEING RECORD NUMBERS OF CARD TRANSACTIONS. ALONG WITH THESE TRENDS, FRAUDULENT TRANSACTIONS HAVE BEEN INCREASING AS WELL. THE COST OF FRAUD INCLUDES THE GROSS AMOUNT BUT ALSO THE ASSOCIATED SERVICING WHICH TAKES TIME AND RESOURCES. HAVING AN EFFICIENT MODEL TO HELP DETERMINE FRAUD CAN GREATLY IMPROVE EFFICIENCY AND CUSTOMER SATISFACTION.

SOLUTION:

DEPLOY CONTEMPORARY MACHINE LEARNING MODEL USING PREVIOUS TRANSACTION DATA TO HELP US PREDICT FRAUD.

Data Set EDA

fraud cases: 12417

valid cases : 773946

fraud case %: 0.016043754990658264

We have a very imbalanced dataset. Only a small amount of fraud cases we can use to train on.

This is a common scenario in the world of fraud detection, where most transactions are legitimate.

We can see the total amount of Fraud transactions is about \$2.8 million on 12,417 cases.

The average legitimate transaction amounts are \$135.57.

While the average fraud transaction amounts are \$225.21.

Explore the Numeric and Categorical variables.

We can see that we have 5000 unique customerIds and they have 10 different creditlimit categories. The most common merchant is Uber.

	customerId	merchantName	acqCountry	merchantCountryCode	posEntryMode	cardPresent	expirationDateKeyInMatch	isFraud	creditLimit	posConditionCode	transactionType
count	786363	786363	786363	786363	786363	786363	786363	786363	786363	786363	786363
unique	5000	2490	5	5	6	2	2	2	10	4	4
top	380680241	Uber	US	US	05	False	False	False	5000	01	PURCHASE
freq	32850	25613	774709	778511	315035	433495	785320	773946	201863	628787	745193

We will begin exploring the numeric features of the dataset.

We don't have too many columns to work with but lets take a took.

We can see extreme skew in the data visually indicating the imbalanced nature of the transactions. Fraud vs Non Fraud transactions show a similar level of skewness.

We can see the mean availableMoney and currentBalance columns for Fraud vs no-Fraud are very similar. The largest difference is the transaction amount.

135 no-Fraud vs 225 Fraud

The mean/std transaction size is larger for fraud vs no fraud...

All Transactions:

availableMoney transactionAmount | currentBalance count | 12417.000000 12417.000000 12417.000000 mean | 6142.894186 225.215905 4902.064338 8703.131117 7074.701649 189.551393 std -614.390000 0.000000 0.000000 min **25**% 1078.020000 86.000000 822.210000 **50%** 3120.950000 176.980000 2747.390000 7502.820000 **75%** 311.460000 5644.350000 50000.000000 47473.940000 1608.350000 max

Fraud transactions:

	availableMoney	transactionAmount	currentBalance
count	773946.000000	773946.000000	773946.000000
mean	6252.455386	135.570249	4502.428675
std	8883.600096	146.525305	6446.866656
min	-1005.630000	0.00000	0.000000
25%	1077.420000	33.190000	688.032500
50%	3186.145000	86.760000	2446.940000
75%	7500.000000	189.390000	5286.100000
max	50000.000000	2011.540000	47498.810000

What are the spending habits / patterns of the transactions?

What features stand out between fraud and nofraud transactions.

Compare Distributions on merchants between fraud/no-fraud.

Fraud Transactions

Lyft760ebay.com639Fresh Flowers553Uber512walmart.com446

Most popular merchants by # of transactions

The Fraud vs no-Fraud vendor count is similar, however one vendor Fresh Flowers seems to stand out as it is #3 in fraud but #22 in overall transactions by count.

All Transactions

 Uber
 25101

 Lyft
 24763

 oldnavy.com
 16591

 staples.com
 16581

 alibaba.com
 16576

Fraud transactions

False 0.721752

True 0.278248

Name: cardPresent

All Transactions

False 0.551266

True 0.448734

Name: cardPresent

(cardPresent = False) during Fraud transactions was 72% of time vs only 55% for all transactions.

Vast majority of fraud transactions go through POS code O1 and POS entry Mode O9

A very even amount of fraud transactions per day of the week save for the last of the month.

Count of Fraud transactions by hour of the day doesn't seem to show any big spikes. a slight increase around the middle of the day

Run a heatmap to see if any features are correlated

Not too much information here but we see slight correlations to fraud in the currentBalance and transactionAmount columns

Modeling - Comparisons

First we clean up the data (select relevant columns). We have little null data and everything else is relatively clean. We include a few manual datetime and ratio features.

Modern techniques include using models like XGBoost which have been shown to outperform almost every other model in regards to binary classification.

https://ieeexplore.ieee.org/abstract/document/9214206

https://www.e3s-conferences.org/articles/e3sconf/abs/2020/74/e3sconf ebldm2020 02042/e3sconf ebldm2020 02042.html

We do a comparison of all the available classification models in PyCaret.

```
0 creditLimit
                             786363 non-null category
                             786363 non-null float32
   availableMoney
                             786363 non-null datetime64[
   transactionDateTime
                             786363 non-null float32
   transactionAmount
    merchantName
                             786363 non-null category
    posEntryMode
                             786363 non-null category
                             786363 non-null category
    posConditionCode
                             786363 non-null category
    merchantCategoryCode
                             786363 non-null category
   currentExpDate
9 accountOpenDate
                             786363 non-null datetime64[
                             786363 non-null datetime64[
 10 dateOfLastAddressChange
11 transactionType
                             786363 non-null category
12 currentBalance
                             786363 non-null float32
                             786363 non-null bool
13 cardPresent
 14 expirationDateKeyInMatch 786363 non-null bool
15 isFraud
                             786363 non-null bool
                             786363 non-null category
16 month
                             786363 non-null category
17 day
                             786363 non-null category
 18 hour
19 CVVMatch
                             786363 non-null bool
 20 accountDiff
                             786363 non-null float32
21 acqCountry_merchant_match 786363 non-null bool
22 creditRatio
                             786363 non-null float32
23 transactionRatio
                             786363 non-null float32
24 balanceRatio
                             786363 non-null float32
25 balanceCreditRatio
                             786363 non-null float32
dtypes: bool(5), category(10), datetime64[ns](3), float32(8)
nemory usage: 54.9 MB
```

PyCaret setup parameters

		feature_ra n_jobs=7)	ati	o=True,	
0	session_id	6173	29	Normalize	False
1	Target	isFraud	30	Normalize Method	None
2	Target Type	Binary	31	Transformation	False
3	Label Encoded	False: 0, True: 1	32	Transformation Method	None
4	Original Data	(786363, 26)	33	PCA	False
5	Missing Values	False	34	PCA Method	None
6	Numeric Features	8	35	PCA Components	None
7	Categorical Features	14	36	Ignore Low Variance	True
8	Ordinal Features	False	37	Combine Rare Levels	True
9	High Cardinality Features	False	38	Rare Level Threshold	0.100000
10	High Cardinality Method	None	39	Numeric Binning	False
11	Transformed Train Set	(550454, 707)	40	Remove Outliers	False
12	Transformed Test Set	(235909, 707)	41	Outliers Threshold	None
13	Shuffle Train-Test	True	42	Remove Multicollinearity	True
14	Stratify Train-Test	False	43	Multicollinearity Threshold	0.950000
15	Fold Generator	StratifiedKFold	44	Clustering	False
16	Fold Number	5	45	Clustering Iteration	None
17	CPU Jobs	7	46	Polynomial Features	False
18	Use GPU	True	47	Polynomial Degree	None
19	Log Experiment	False	48	Trignometry Features	False
20	Experiment Name	clf-default-name	49	Polynomial Threshold	None
21	USI	5226	50	Group Features	False
22	Imputation Type	simple	51	Feature Selection	False
23	Iterative Imputation Iteration	None	52	Features Selection Threshold	None
24	Numeric Imputer	mean	53	Feature Interaction	False
25	Iterative Imputation Numeric Model	None	54	Feature Ratio	True
26	Categorical Imputer	constant	55	Interaction Threshold	0.010000
27	Iterative Imputation Categorical Model	None	56	Fix Imbalance	False
28	Unknown Categoricals Handling	least_frequent	57	Fix Imbalance Method	SMOTE

Modeling Results

We can see that the gradient boosting models overall have the best AUC along with some of the best compute times.

We will take a closer look at the top 3 models performance and features.

	: = compare_models(sort =		xclude	=['gbc'])				
executed in	1h 34m 24s, finished 06:38:58 2020-12	2-29							
	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
lightgbm	Light Gradient Boosting Machine	0.9850	0.8232	0.0577	0.7599	0.1072	0.1052	0.2066	9.3820
xgboost	Extreme Gradient Boosting	0.9851	0.8185	0.0562	0.8890	0.1056	0.1040	0.2209	23.4380
catboost	CatBoost Classifier	0.9852	0.8094	0.0559	0.9904	0.1058	0.1043	0.2332	21.4400
et	Extra Trees Classifier	0.9853	0.7759	0.0651	0.9869	0.1221	0.1204	0.2514	198.3500
rf	Random Forest Classifier	0.9847	0.7747	0.0223	1.0000	0.0436	0.0430	0.1474	106.5780
ada	Ada Boost Classifier	0.9843	0.7624	0.0001	0.1000	0.0003	0.0003	0.0037	145.0700
lda	Linear Discriminant Analysis	0.9811	0.7548	0.0380	0.1363	0.0593	0.0528	0.0642	64.4220
nb	Naive Bayes	0.6816	0.7189	0.5913	0.0356	0.0629	0.0351	0.0811	7.7880
lr	Logistic Regression	0.9843	0.7001	0.0004	0.3500	0.0009	0.0008	0.0115	69.9860
dt	Decision Tree Classifier	0.9726	0.5531	0.1200	0.1215	0.1207	0.1068	0.1069	137.7320
knn	K Neighbors Classifier	0.9843	0.5163	0.0001	0.0400	0.0003	0.0001	0.0014	214.6640
qda	Quadratic Discriminant Analysis	0.9824	0.5000	0.0020	0.0084	0.0028	0.0001	-0.0001	41.8720
svm	SVM - Linear Kernel	0.9796	0.0000	0.0103	0.0519	0.0135	0.0076	0.0117	74.0800
ridge	Ridge Classifier	0.9843	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0001	7.3160

Top3

These are the scores of the top3 models on the unseen/holdout dataset.

	Model			Accu	racy	AUC	Re	ecall	Prec.	F1	I	Ka	рра	MCC	
0	Light Gradient Boos	ting Mad	hine	0.984	7	0.8355	0.	0648	0.7105	0.	1187	0.1	164	0.21	16
	Model		Acci	uracy	AUC	Red	all	Prec.	F1		Карр	a I	мсс	7	
0	Extreme Gradient B	oosting	0.98	50	0.836	7 0.06	358	0.869	7 0.12	24	0.120	4 (0.236	89	
	Model	Accura	асу	AUC	Reca	all Pro	ec.	F1	Kap	ра	мсс	:			
0	CatBoost Classifier	0.9850	(0.8242	0.060	00 0.9	825	0 113	30 0 11	14	0.240	08			

12

Exploring Feature Importances:

What's interesting is that these models top 10 features are mostly different yet arrive at a similar evaluation score. PosEntryMode_05 is the only feature in the top 10 between all 3 models.

XGboost features indicate there are times of the day and certain merchants to look into more closely. We have Amazon, Apple, but also EZ-Putt which seems peculiar, would warrant further investigation. The feature merchantCategoryCode_entertainment also shows up in 2 models again warranting further scrutiny.

LGBM is also interesting in that it was the only model that utilized our manual engineered numeric ratios. We also ran feature_ratios=True in our PyCaret setup environment so we see our manual ratios put against other ratios.

Catboost and LGBM had transactionAmount as the top feature and it makes sense. During our initial EDA, we saw the average amount per fraud transaction is almost 33% above "normal" so you definitely want to watch out for the amounts. Catboost also has merchantCategoryCode_fuel as its 3rd most important feature, again signaling us to be more alert around these types of transactions.(gas cards are a well known fraud vehicle)

executed in 2.85s, finished 11:09:15 2020-12-29

plot_model(catboost, plot = 'feature')

Model Blending:

PyCaret has a feature that allows us to blend models to try and improve performance. So we take the top 4 models and blend them together. This actually gives us our best AUC (.84) so far.

However, the caveat with this model is we cannot view the feature importances so the results are a bit of a blackbox.

	Mo	del				Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
atboo	ost Ca	tBoost C	lassifi	er		0.9850	0.8105	0.0555	0.9838	0.1050	0.1035	0.2316	20.6560
gboo	st Ex	treme Gr	adient	t Boosting	g	0.9849	0.8231	0.0597	0.8658	0.1117	0.1099	0.2248	19.9840
ightgt	bm Lig	ht Gradie	ent Bo	osting M	achine	0.9848	0.8254	0.0521	0.7998	0.0978	0.0960	0.2014	8.1560
f	Ra	ndom Fo	rest C	lassifier		0.9848	0.7820	0.0397	0.9964	0.0764	0.0752	0.1971	96.4500
- III	7	1.7							0011	M 7 7 0			
	d in 27m		_ hed 16	3:34:48 20)20-12-19		_		e, opti	.m12e= /	AUC)		
recuter	d in 27m	28s, finisl	hed 16	8:34:48 20 Recall	020-12-19 Prec.	F1	Карра	MCC	e, opti	mize= /	AUC)		
	Accui	28s, finisl acy <i>A</i> 849 0.8	AUC 3419	Recall 0.0466	Prec. 0.9683		Kappa 0.0876	MCC 0.2107	e, opti	mize= /	AUC)		
cecuted 0	Accur 0.9	28s, finisl acy <i>A</i> 849 0.8 848 0.8	AUC 3419	Recall 0.0466 0.0390	Prec. 0.9683 1.0000	F1 0.0889	Kappa 0.0876 0.0739	MCC 0.2107 0.1959	e, opti	mize= /	AUC)		
0	Accur 0.9 0.9	28s, finisl acy # 849 0.8 848 0.8 850 0.8	AUC 3419 3495 3377	Recall 0.0466 0.0390 0.0527	Prec. 0.9683 1.0000 0.9718	F1 0.0889 0.0750	Kappa 0.0876 0.0739 0.0985	MCC 0.2107 0.1959 0.2245	e, opti	mize=	AUC)		
0 1 2	Accur 0.9 0.9 0.9	28s, finisl acy # 849 0.8 848 0.8 850 0.8	AUC 3419 3495 3377 3424	Recall 0.0466 0.0390 0.0527 0.0550	Prec. 0.9683 1.0000 0.9718 0.9863	F1 0.0889 0.0750 0.1000	Kappa 0.0876 0.0739 0.0985 0.1027	MCC 0.2107 0.1959 0.2245 0.2311	e, opti	mize=	AUC)		
0 1 2	Accur 0.9 0.9 0.9 0.9	28s, finisi acy A 849 0.8 848 0.8 850 0.8 850 0.8	AUC 3419 3495 3377 3424 3320	Recall 0.0466 0.0390 0.0527 0.0550 0.0466	Prec. 0.9683 1.0000 0.9718 0.9863 0.8841	F1 0.0889 0.0750 0.1000 0.1042	Kappa 0.0876 0.0739 0.0985 0.1027 0.0871	MCC 0.2107 0.1959 0.2245 0.2311 0.2010	e, opti	mize=	AUC)		

SD 0.0001 0.0058 0.0056 0.0406 0.0102 0.0101 0.0134

Blended Scores:

Conclusion:

Overall the gradient boosting models have shown to be superior when it comes to binary classification of rare/infrequent events often with highly skewed distributions. We found that we can eke out a little bit of performance by blending these models together in PyCaret.

The most effective way to improve our prediction power is by analyzing the features utilized by the models to help inform our next direction of analysis or inquiry. This in turn will help us create better features and further refine the model.

It's true what they say, model optimization is more often than not a form of feature engineering. We have a model that is strong to start and ready to be deployed, while we also have a few new lines of inquiry to explore further.