Bias-Variance and Cross Validation

Nipun Batra and teaching staff

IIT Gandhinagar

August 14, 2025

Table of Contents

1. Introduction to Bias-Variance

Introduction to Bias-Variance

What is the Bias-Variance Tradeoff?

Important: The Central Challenge in Machine Learning

Every ML model faces a fundamental tension:

- Make simple assumptions → Miss important patterns (High Bias)
- Make complex assumptions \rightarrow Overfit to noise (High Variance)

A Real-World Analogy: Weather Prediction

Example: Simple Model: "Tomorrow = Today"

High Bias: Ignores weather patterns

Low Variance: Always makes same type of prediction

Example: Complex Model: 1000+ Variables

Low Bias: Can capture complex patterns

High Variance: Small errors \rightarrow wildly different forecasts

Goal: Find the sweet spot between these extremes

A Question!

What would be the decision boundary of a decision tree classifier?

Decision Boundary for a tree with depth 1

Decision Boundary

Decision Tree

Decision Boundary for a tree with no depth limit

Decision Boundary

Decision Tree

Are deeper trees always better?

As we saw, deeper trees learn more complex decision boundaries.

Are deeper trees always better?

As we saw, deeper trees learn more complex decision boundaries.

But, sometimes this can lead to poor generalization

An example

Consider the dataset below

Train Set

Test Set

Underfitting

Underfitting is also known as high bias, since it has a very biased incorrect assumption.

Decision Boundary

Decision Tree

Overfitting

Overfitting is also known as high variance, since very small changes in data can lead to very different models. Decision tree learned has depth of 10.

Intuition for Variance

A small change in data can lead to very different models.

Intuition for Variance

A Good Fit

Accuracy vs Decision Tree Depth

Underfitting (High Bias) Region

Overfitting (High Variance) Region

Good Fit (Sweet Spot) Region

The Fundamental Question: Model Complexity

Important: What We Just Observed

- Depth 1: Simple boundary, might miss patterns (underfitting)
- · No depth limit: Complex boundary, might memorize noise (overfitting)

Key Points

This Leads to Three Key Concepts:

- 1. Bias: How much do our assumptions limit our model's ability to learn?
- 2. Variance: How much does our model change with different training data?
- 3. Irreducible Error: The noise we can never eliminate

The Bias-Variance Tradeoff: We can't minimize both bias and variance simultaneously!

Dartboard Analogy: Four Scenarios

Mathematical Foundation: Bias-Variance Decomposition

Definition: The Fundamental Equation

For any learning algorithm, the expected prediction error can be decomposed as:

Expected Error = $Bias^2 + Variance + Irreducible Error$

Where:

- Bias² = $(\mathbb{E}[\hat{f}(x)] f(x))^2$ Squared difference between average prediction and true function
- Variance = $\mathbb{E}[(\hat{f}(x) \mathbb{E}[\hat{f}(x)])^2]$ Expected squared deviation from average prediction
- Irreducible Error = σ^2 Noise in the data that no model can eliminate

Intuitive Understanding of Each Component

Example: Bias: "Are we systematically wrong?"

- · High Bias: Linear model fitting curved data
- Low Bias: Flexible model that can approximate true function
- Think: Average error if we could train on infinite datasets

Example: Variance: "Are we consistently wrong?"

- High Variance: Model predictions change drastically with new training data
- · Low Variance: Model predictions remain stable across different datasets
- Think: How much do predictions fluctuate between training runs?

Key Insight: Both contribute to total error, but reducing one often increases the other!

The big question!?

How to find the optimal depth for a decision tree?

The big question!?

How to find the optimal depth for a decision tree? Use cross-validation!

Our General Training Flow

Example: Training and Evaluation

Step-by-step:

Python Example: Decision Tree with fixed depth

Sample Output:

• Max Depth: 3

• Train Accuracy: 0.98

Test Accuracy: 0.96

Single Train-Test Split: Setup

Scenario: We trained with max_depth=3 and got good test accuracy.

Single Train-Test Split: Setup

Scenario: We trained with max_depth=3 and got good test accuracy.

Our Current Setup

- One fixed train/test split
- Train on training set, evaluate on test set
- Hyperparameter: max_depth=3 (chosen arbitrarily)

Single Train-Test Split: Setup

Scenario: We trained with max_depth=3 and got good test accuracy.

Our Current Setup

- One fixed train/test split
- Train on training set, evaluate on test set
- Hyperparameter: max_depth=3 (chosen arbitrarily)

Example Results

Max Depth	Train Acc	Test Acc
2	0.95	0.94
3	0.98	0.96
4	1.00	0.92

Limitations of a Single Train-Test Split

Why This Can Be Misleading

- · Test accuracy depends on how the split was made
- A lucky/unlucky split can overestimate or underestimate performance
- We might miss the true best hyperparameter

Limitations of a Single Train-Test Split

Why This Can Be Misleading

- · Test accuracy depends on how the split was made
- A lucky/unlucky split can overestimate or underestimate performance
- · We might miss the true best hyperparameter

Key Insight

Even though max_depth=3 looks best here, it might not be the best for another random split.

Limitations of a Single Train-Test Split

Why This Can Be Misleading

- · Test accuracy depends on how the split was made
- A lucky/unlucky split can overestimate or underestimate performance
- · We might miss the true best hyperparameter

Key Insight

Even though max_depth=3 looks best here, it might not be the best for another random split.

What We Need

- · Evaluate using all data for testing
- · Avoid overfitting to a single test set

K-Fold cross-validation: Utilise full dataset for testing

Example: K-Fold Cross-Validation (Fixed Depth)

Step-by-step:

Python Example: Decision Tree with fixed depth, using 5-Fold CV

```
kf = KFold(n_splits=5, shuffle=True, random_state=42)
acc_scores = []

for train_idx, test_idx in kf.split(X):
    X_train, X_test = X[train_idx], X[test_idx]
    y_train, y_test = y[train_idx], y[test_idx]

    clf = DecisionTreeClassifier(max_depth=3, random_state=42)
    clf.fit(X_train, y_train)
    acc_scores.append(accuracy_score(y_test, clf.predict(X_test)))

print(f"Max Depth: 3 | Mean Test Acc: {np.mean(acc_scores):.2f}")
```

Sample Output:

• Max Depth: 3 | Mean Test Acc: 0.95

K-Fold Cross-Validation: Insights & Next Steps

What improves here?

- We now test performance on multiple test sets (one per fold).
- This gives a more reliable estimate of generalization accuracy.

K-Fold Cross-Validation: Insights & Next Steps

What improves here?

- We now test performance on multiple test sets (one per fold).
- This gives a more reliable estimate of generalization accuracy.

But... what is the final model?

- In K-Fold CV, the model is re-trained for each fold no single final model exists yet.
- After estimating performance, we can:
 - Re-train on the entire dataset with the chosen hyperparameters.
 - Deploy this re-trained model.

The Validation Set

Train/Validation/Test: Hyperparameter Tuning

Idea: Split training set into smaller **train** and **validation** parts.

Python Example: Loop over depths

```
# Split: Train+Val and Test
X_temp, X_test, y_temp, y_test = train_test_split(X, y,
                                                  test size=0.3.
                                                  random state=42)
# Split: Train and Val
X train, X val, v train, v val = train test split(X temp, v temp,
                                                  test size=0.2.
                                                  random_state=42)
best_depth, best_val_acc = None, 0
for depth in [2, 3, 4, 5, 6]:
   clf = DecisionTreeClassifier(max_depth=depth, random_state=42)
   clf.fit(X train, v train)
   val_acc = accuracy_score(y_val, clf.predict(X_val))
   if val_acc > best_val_acc:
       best val acc, best depth = val acc, depth
# Retrain on Train+Val with best depth
final clf = DecisionTreeClassifier(max_depth=best_depth, random_state=42)
final clf.fit(X temp, v temp)
test_acc = accuracy_score(y_test, final_clf.predict(X_test))
print(f"Best depth: {best_depth}, Test Acc: {test_acc:.2f}")
```

Why Use a Validation Set?

Key Advantages:

- Allows testing multiple hyperparameters (e.g., decision tree depth)
- Prevents overfitting to the test set
- Gives a clear criterion for choosing the best model
- Final test accuracy is now a realistic estimate of generalization

Why Use a Validation Set?

Key Advantages:

- Allows testing multiple hyperparameters (e.g., decision tree depth)
- Prevents overfitting to the test set
- · Gives a clear criterion for choosing the best model
- Final test accuracy is now a realistic estimate of generalization

Limitations:

- · Validation set is only one split of the data
- May not represent all possible variations in the data

Why Use a Validation Set?

Key Advantages:

- Allows testing multiple hyperparameters (e.g., decision tree depth)
- Prevents overfitting to the test set
- · Gives a clear criterion for choosing the best model
- Final test accuracy is now a realistic estimate of generalization

Limitations:

- · Validation set is only one split of the data
- May not represent all possible variations in the data

Next: How to make use of **all possible validation splits** \rightarrow **Nested Cross-Validation**.

Nested Cross Validation

Divide your training set into k equal parts. Cyclically use 1 part as "validation set" and the rest for training. Here k=4

Nested Cross Validation

Average out the validation accuracy across all the folds Use the model with highest validation accuracy

Nested CV (Inner tuning, Outer testing)

```
outer_kf = KFold(n_splits=5, shuffle=True, random_state=42)
depths = [2, 3, 4, 5, 6]
outer scores, chosen depths = [], []
for ot_tr, ot_te in outer_kf.split(X):
    X tr. X te = X[ot tr], X[ot te]
    v_tr, v_te = v[ot_tr], v[ot_te]
    best_d, best_cv = None, -1
    # Inner CV to pick best depth
    for d in depths:
        scores = []
        for in tr. in val in KFold(3, shuffle=True, random state=42).split(X tr):
            clf = DecisionTreeClassifier(max_depth=d, random_state=42)
            clf.fit(X tr[in tr], v tr[in tr])
            scores.append(accuracy score(v tr[in val].
                                         clf.predict(X_tr[in_val])))
        if np.mean(scores) > best_cv:
            best cv. best d = np.mean(scores), d
    chosen_depths.append(best_d)
    clf = DecisionTreeClassifier(max_depth=best_d, random_state=42)
    clf.fit(X tr. v tr)
    outer_scores.append(accuracy_score(y_te, clf.predict(X_te)))
print(np.mean(outer scores), chosen depths)
```

Nested CV: What You Get

Per outer fold:

- A chosen hyperparameter (from inner CV)
- An unbiased test score (on the outer test split)

Overall:

- Report mean \pm std of outer test accuracy
- Final model: retrain on all data with a chosen hyperparameter (e.g., the most frequent/best-average depth from inner CV)

Nested CV: Inner-CV Matrix & Outer Scores

	Inner CV mean accuracy (by depth)						
Outer fold	d=2	d=3	d=4	d=5	d=6	Chosen d	Outer test acc
1	0.940	0.960	0.950	0.930	0.900	3	0.95
2	0.950	0.965	0.940	0.920	0.900	3	0.96
3	0.910	0.920	0.935	0.930	0.910	4	0.93
4	0.940	0.955	0.940	0.930	0.900	3	0.95
5	0.945	0.940	0.935	0.920	0.900	2	0.94
Mean across folds	0.937	0.948	0.940	0.926	0.902	-	0.95 ± 0.01

Interpretation: Best inner-CV per fold is highlighted; overall best hyperparameter by inner-CV mean is $\max_depth=3$. For reporting performance, use the outer scores: 0.95 ± 0.01 .

Next time: Ensemble Learning

- How to combine various models?
- · Why to combine multiple models?
- How can we reduce bias?
- How can we reduce variance?