```
import numpy as Sidharth\_np
import matplotlib.pyplot as Sidharth_plt
import pandas as Sidharth_pd
```

	User ID	Gender	Age	EstimatedSalary	Purchased	П
0	15624510	Male	19	19000	0	ılı
1	15810944	Male	35	20000	0	
2	15668575	Female	26	43000	0	
3	15603246	Female	27	57000	0	
4	15804002	Male	19	76000	0	
5	15728773	Male	27	58000	0	
6	15598044	Female	27	84000	0	
7	15694829	Female	32	150000	1	
8	15600575	Male	25	33000	0	
9	15727311	Female	35	65000	0	

Importing dataset

```
ds = Sidharth_pd.read_csv("/content/sample_data/KNN_Data1.csv")
```

	User ID	Gender	Age	EstimatedSalary	Purchased	
0	15624510	Male	19	19000	0	
1	15810944	Male	35	20000	0	
2	15668575	Female	26	43000	0	
3	15603246	Female	27	57000	0	
4	15804002	Male	19	76000	0	
5	15728773	Male	27	58000	0	
6	15598044	Female	27	84000	0	
7	15694829	Female	32	150000	1	
8	15600575	Male	25	33000	0	
9	15727311	Female	35	65000	0	

Extracting Independent anddependent Variables

```
x = ds.iloc[:,[2,3]].values
y = ds.iloc[:,4].values
```

Splitting datasetinto training and test set

```
from sklearn.model_selection import train_test_split
 x\_train, \ x\_test, \ y\_train, \ y\_test = train\_test\_split(x,y,test\_size=0.25, \ random\_state=0)
```

Feature scaling

```
from sklearn.preprocessing import StandardScaler
st_x=StandardScaler()
{\tt x\_train=st\_x.fit\_transform(x\_train)}
x_test=st_x.transform(x_test)
```

FittingK-NN classifier to the training set

```
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5, metric='minkowski',p=2)
classifier.fit(x_train, y_train)
KNeighborsClassifier()
     ▼ KNeighborsClassifier
     KNeighborsClassifier()
Predicting the test set result
y pred = classifier.predict(x test)
y_pred
     0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
           1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,
           0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1,
           1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1])
Creating confusionmatrix
from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test, y_pred)
     array([[64, 4],
           [ 3, 29]])
Visualising the trianing set result
from matplotlib.colors import ListedColormap
x_{set}, y_{set} = x_{train}, y_{train}
x1, x2 =Sidharth_np.meshgrid(Sidharth_np.arange(start = x_set[:,
0].min() - 1, stop = x_set[:, 0].max() + 1, step = 0.01),
Sidharth_np.arange(start = x_set[:, 1].min() - 1, stop = x_set[:,
1].max() + 1, step = 0.01))
Sidharth_plt.contourf(x1, x2,
classifier.predict(Sidharth_np.array([x1.ravel(),
x2.ravel()]).T).reshape(x1. shape), alpha = 0.75, cmap =
ListedColormap(('black','black')))
Sidharth_plt.xlim(x1.min(), x1.max())
Sidharth_plt.ylim(x2.min(), x2.max())
for i, j in enumerate(Sidharth_np.unique(y_set)):
 Sidharth\_plt.scatter(x\_set[y\_set == j, 0], x\_set[y\_set == j, 1], c= ListedColormap(('orange', 'white'))(i), label = j)
  Sidharth_plt.title('K-NN Algorithm (Training set)')
  Sidharth_plt.xlabel('Age')
 Sidharth_plt.ylabel('Estimated Salary')
Sidharth_plt.legend()
Sidharth_plt.show()
```

<ipython-input-22-d120a03be4b5>:14: UserWarning: *c* argument looks like a single nur Sidharth_plt.scatter($x_set[y_set == j, 0], x_set[y_set == j, 1], c= ListedColormap$

K-NN Algorithm (Training set)

```
3 -
```

Visualising the test result

Sidharth_plt.show()

```
from matplotlib.colors import ListedColormap
x_set, y_set = x_test, y_test
x1, x2 = Sidharth_np.meshgrid(Sidharth_np.arange(start = x_set[:,
0].min() - 1, stop = x_set[:, 0].max() + 1, step=0.01),
Sidharth\_np.arange(start = x\_set[:, 1].min() - 1, stop = x\_set[:
1].max() + 1, step = 0.01))
Sidharth_plt.contourf(x1, x2,
{\tt classifier.predict(Sidharth\_np.array([x1.ravel(),
x2.ravel()]).T).reshape(x1. shape), alpha = 0.75, cmap =
ListedColormap(('black', 'black')))
Sidharth_plt.xlim(x1.min(), x1.max())
Sidharth_plt.ylim(x2.min(), x2.max())
for i, j in enumerate(Sidharth_np.unique(y_set)):
      Sidharth\_plt.scatter(x\_set[y\_set == j, 0], x\_set[y\_set == j, 1], c= ListedColormap(('orange', 'white'))(i), label = j)
      Sidharth_plt.title('K-NN algorithm(Test set)')
      Sidharth_plt.xlabel('Age')
      Sidharth_plt.ylabel('Estimated Salary')
Sidharth_plt.legend()
```

<ipython-input-24-41d0e11a7d88>:14: UserWarning: *c* argument looks like a single nur Sidharth_plt.scatter($x_set[y_set == j, 0], x_set[y_set == j, 1], c= ListedColormap$

