Hong Kong Mathematics Olympiad 2009-2010 Heat Event (Individual)

除非特別聲明,答案須用數字表達,並化至最簡。

時限:40分鐘

Unless otherwise stated, all answers should be expressed in numerals in their simplest form.

每題正確答案得一分。Each correct answer will be awarded 1 mark. Time allowed: 40 minutes

1. 把 8 個完全相同的球放入三個不同的盒中,使得每個盒內至少有球一個, 問共有多少個不同的分配方法?

In how many possible ways can 8 identical balls be distributed to 3 distinct boxes so that every box contains at least one ball?

- 2. 若 α 及 β 為二次方程 $x^2 x 1 = 0$ 的兩個實根,求 $\alpha^6 + 8\beta$ 的值。 If α and β are the two real roots of the quadratic equation $x^2 x 1 = 0$, find the value of $\alpha^6 + 8\beta$.
- 4. 已知 x+y+z=3 及 $x^3+y^3+z^3=3$,且 x,y,z 為整數。若 x<0,求 y 的值。 Given that x+y+z=3 and $x^3+y^3+z^3=3$, where x,y,z are integers. If x<0, find the value of y.
- 5. 已知 a,b,c,d 為正整數,且滿足 $\log_a b = \frac{1}{2}$ 及 $\log_c d = \frac{3}{4}$ 。若 a-c=9,求 b-d 的值。 Given that a,b,c,d are positive integers satisfying $\log_a b = \frac{1}{2}$ and $\log_c d = \frac{3}{4}$. If a-c=9, find the value of b-d.
- 6. 若 $x\sqrt{1-y^2} + y\sqrt{1-x^2} = 1$,其中 $0 \le x, y \le 1$,求 $x^2 + y^2$ 的值。 If $x\sqrt{1-y^2} + y\sqrt{1-x^2} = 1$, where $0 \le x, y \le 1$, find the value of $x^2 + y^2$.
- 7. 在圖一中,ABCD 是一梯形。AD、BC 和 DC 的長分別為 12、 7 和 12。若 DC 分別垂直於 AD 及 BC,求 $\frac{\sin\alpha}{\sin\beta}$ 的值。 In figure 1, ABCD is a trapezium. The lengths of segments AD, BC 12

In figure 1, ABCD is a trapezium. The lengths of segments AD, BC^{-1} and DC are 12, 7 and 12 respectively. If segments AD and BC are

both perpendicular to DC, find the value of $\frac{\sin \alpha}{\sin \beta}$.

8. 在圖二中, $\triangle ABC$ 满足: $x \ge y \ge z$ 及 4x = 7z。若 x 的最大值是 m,x 的最小值是 n,求 m+n 的值。
In Figure 2, ABC is a triangle satisfying $x \ge y \ge z$ and 4x = 7z. If the maximum value of x is m and the minimum value of x is n, find the value of m+n.

B

7

9. 把 $1, 2, ..., n (n \ge 3)$ 作環形排列,使得每兩個相鄰的數字相差為 1 或 2。求有多少個此類的環形排列。

Arrange the numbers 1, 2, ..., n ($n \ge 3$) in a circle so that adjacent numbers always differ by 1 or 2. Find the number of possible such circular arrangements.

10. 若 [x] 為最大的整數小於或等於 x,求以下 2010 個數中共有多少個不同的值:

$$\left| \frac{1^2}{2010} \right|, \left| \frac{2^2}{2010} \right|, \dots, \left| \frac{2010^2}{2010} \right|$$

If $\lfloor x \rfloor$ is the largest integer less than or equal to x, find the number of distinct values in the following 2010 numbers: $\left\lfloor \frac{1^2}{2010} \right\rfloor$, $\left\lfloor \frac{2^2}{2010} \right\rfloor$,..., $\left\lfloor \frac{2010^2}{2010} \right\rfloor$.

Hong Kong Mathematics Olympiad 2009-2010 Heat Event (Individual) — Spare

除非特別聲明,答案須用數字表達,並化至最簡。

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 每題正確答案得一分。Each correct answer will be awarded 1 mark.

1. 在圖三中,ABC 為一等腰三角形及 P 為 BC 上的一點。若 $BP^2 + CP^2 : AP^2 = k : 1$,求 k 的值。 In Figure 3, ABC is an isosceles triangle and P is a point on BC. If $BP^2 + CP^2 : AP^2 = k : 1$, find the value of k.

Figure 3

Hong Kong Mathematics Olympiad 2009-2010 Heat Event (Group)

除非特別聲明,答案須用數字表達,並化至最簡。

時限:20分鐘

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 每題正確答案得一分。Each correct answer will be awarded 1 mark. Time allowed: 20 minutes

- 1. 已知六位數 503xyz 可以被 7,9,11 整除。求三位數 xyz 的最小值。 Given that the six-digit number 503xyz is divisible by 7,9,11. Find the minimum value of the three-digit number xyz.
- 2. 求最小的正整數 n 使得 $\underbrace{20092009\cdots2009}_{n(0)2009}$ 能被 11 整除。

Find the smallest positive integer n so that $20092009 \cdots 2009$ is divisible by 11.

n copies of 2009

- 3. 在圖一中,ABC 是一三角形。D 是 AC 上的一點,使得 AB = AD。若 $\angle ABC \angle ACB = 40^\circ$,求 x 的值。 In figure 1, ABC is a triangle. D is a point on AC such that AB = AD. If $\angle ABC \angle ACB = 40^\circ$, find the value of x.
- 4. 在圖二中,已知陰影部分的面積是 $35 \, \mathrm{cm}^2$ 。 若梯形 ABCD 的面積是 $z \, \mathrm{cm}^2$,求 z 的值。 In figure 2, given that the area of the shaded region is $35 \, \mathrm{cm}^2$. If the area of the trapezium ABCD is $z \, \mathrm{cm}^2$, find the value of z.

圖二 Figure 2

- 5. 從 1, 2, 3, 4, 5, 6 中抽取三個號碼。求抽得的號碼中包含最少兩個連續數的概率。 Three numbers are drawn from 1, 2, 3, 4, 5, 6. Find the probability that the numbers drawn contain at least two consecutive numbers.
- 6. 求以下函數的最小值: f(x) = |x-1| + |x-2| + ... + |x-1000|,其中 x 是一實數。 Find the minimum value of the following function: f(x) = |x-1| + |x-2| + ... + |x-1000|, where x is a real number.
- 7. 設 m, n 為正整數使得 $\frac{1}{2010} < \frac{m}{n} < \frac{1}{2009}$ 。求 n 的最小值。

Let m, n be positive integers such that $\frac{1}{2010} < \frac{m}{n} < \frac{1}{2009}$. Find the minimum value of n.

8. 如果正整數 a 的各數位之和等於 7,則 a 稱為「幸運數」。例如 7, 61, 12310 都是「幸運數」。將所有「幸運數」從小到大排成一列 a_1, a_2, a_3, \ldots 。若 $a_n = 1600$,求 a_{2n} 的值。 Let a be a positive integer. If the sum of all digits of a is equal to a0, then a0 is called a "lucky number". For example, a0, a1, a2, a3, a4, a5, a6, a6, a6, a6, a7, a8, a9, a9,

List all lucky numbers in ascending order a_1, a_2, a_3, \dots If $a_n = 1600$, find the value of a_{2n} .

- 9. 若 $\log_4(x+2y) + \log_4(x-2y) = 1$, 求 |x| |y| 的最小值。 If $\log_4(x+2y) + \log_4(x-2y) = 1$, find the minimum value of |x| - |y|.
- 10. 在圖三中, $\triangle ABC$ 滿足 AB = AC 且 $x \le 45$ 。 若 P 和 Q 分別是 AC 及 AB 上的兩點, 且 $AP = PQ = QB = BC \le AQ$,求 x 的值。 In Figure 3, in $\triangle ABC$, AB = AC, $x \le 45$. If P and Q are two points on AC and AB respectively, and $A = AP = PQ = QB = BC \le AQ$, find the value of x.

Hong Kong Mathematics Olympiad 2009-2010 Heat Event (Group) — Spare

除非特別聲明,答案須用數字表達,並化至最簡。

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 每題正確答案得一分。Each correct answer will be awarded 1 mark.

1. 在圖四中,ABCD 為一矩形。設 E 及 F 分別為 DC 及 AB A 上的點,並使得 AFCE 為一菱形。若 AB=16 及 BC=12, 求 EF 的值。

In Figure 4, ABCD is a rectangle. Let E and F be two points on DC and AB respectively, so that AFCE is a rhombus.

If AB = 16 and BC = 12, find the value of EF.

Hong Kong Mathematics Olympiad 2009 – 2010 Heat Event (Geometric Construction) 香港數學競賽 2009 – 2010

初賽(幾何作圖)

每隊必須列出詳細所有步驟(包括作圖步驟)。	時限:15 分鐘
All working (including geometric drawing) must be clearly shown.	
此部份不計分。This part does not carries any marks.	Time allowed: 15 minutes
School Code:	
School Name:	
第一題 Question No. 1	
圖一所示為長度 1 單位的綫段 AB 。試構作一長度為 $\sqrt{7}$ 單位的綫段	0

Figure 1 shows a line segment AB of length 1 unit. Construct a line segment of length $\sqrt{7}$ units.

Hong Kong Mathematics Olympiad 2009 – 2010 Heat Event (Geometric Construction) 香港數學競賽 2009 – 2010

初賽(幾何作圖)

每隊必須列出詳細所有步驟(包括作圖步驟)。	時限:15 分鐘
All working (including geometric drawing) must be clearly shown.	
此部份不計分。This part does not carries any marks.	Time allowed: 15 minutes
School Code:	
School Name:	

第二題 Question No. 2

已知 ΔABC 是等邊三角形。 $P \cdot Q$ 及 R 為分別位於綫段 $AB \cdot BC$ 及 CA 上的相異點,且 $OP \perp AB$, $OQ \perp BC$, $OR \perp CA$ 及 OP = OQ = OR。圖二展示綫段 OP。試構作 ΔABC 。 Given that ΔABC is equilateral. P, Q and R are distinct points lying on the lines AB, BC and CA such that $OP \perp AB$, $OQ \perp BC$, $OR \perp CA$ and OP = OQ = OR. Figure 2 shows the line segment OP. Construct ΔABC .

Hong Kong Mathematics Olympiad 2009 – 2010 Heat Event (Geometric Construction) 香港數學競賽 2009 – 2010

初賽(幾何作圖)

每隊必須列出詳細所有步驟(包括作圖步驟)。	時限:15 分鐘
All working (including geometric drawing) must be clearly shown.	
此部份不計分。This part does not carries any marks.	Time allowed: 15 minutes
School Code:	
School Name:	
第三題 Question No. 3	
圖三所示為一綫段 AB 。試構作三角形 ABC 使 $AC:BC=3:2$ 及	$\angle ACB = 60^{\circ} \circ$

Figure 3 shows a line segment AB. Construct a triangle ABC such that AC:BC=3:2 and $\angle ACB=60^{\circ}$

