Chapitre 1 - Nombres réels

les nombres : voir la vidéo à position 20 min 56 s

1 différents types de nombres

1.1 entier naturel et entier relatif

Définitions

- un nombre entier naturel est un nombre entier positif ou nul
- les nombres entiers naturels sont donc les nombres 0; 1; 2; 3; ...
- cet ensemble est noté $\mathbb N$
- un nombre $\underline{\text{entier relatif}}$ est un nombre entier positif ou négatif ou nul
- les nombres entiers relatifs sont donc les nombres \ldots ; -3; -2; -1; 0; 1; 2; 3; \ldots
- cet ensemble est noté $\mathbb Z$

Remarque et Exemples

- un entier naturel est un nombre relatif (son signe est +) : \mathbb{N} est inclus dans \mathbb{Z} , noté $\mathbb{N} \subset \mathbb{Z}$
- $12 \in \mathbb{N}$ et $12 \in \mathbb{Z}$; $0 \in \mathbb{N}$ et $0 \in \mathbb{Z}$; $-4 \notin \mathbb{N}$ et $-4 \in \mathbb{Z}$; $6,9 \notin \mathbb{N}$ et $6,9 \notin \mathbb{Z}$

1.2 décimaux et rationnels

Définitions

- un <u>nombre décimal</u> est à virgule qui s'arrête
- il peut s'écrire sous la forme $\frac{\ddot{a}}{10^k}$, où a est un nombre entier relatif et k est un entier naturel
- l'ensemble des nombres décimaux est noté $\mathbb D$
- un <u>nombre rationnel</u> est un nombre qui peut s'écrire sous la forme $\frac{p}{q}$, où $p,q \in \mathbb{Z}$ et $q \neq 0$
- l'ensemble des nombres rationnels est noté $\mathbb Q$

Remarque et Exemples

- $6,35 \in \mathbb{D} \text{ car } 6,35 = \frac{635}{10^2}; \ -0,089 \in \mathbb{D} \text{ car } -0,089 = \frac{-89}{10^3}; \ \frac{3}{4} \in \mathbb{Q}; \ \frac{1}{3} \notin \mathbb{D}; \ \sqrt{2} \notin \mathbb{Q}$
- tout nombre entier (naturel ou relatif) est un nombre décimal donc $\mathbb{Z} \subset \mathbb{D}$ et tout nombre décimal est un nombre rationnel donc $\mathbb{D} \subset \mathbb{Q}$. On a donc $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q}$
- on peut montrer qu'un rationnel est un nombre à virgule, dont les virgules ne s'arrêtent pas forcément mais se répètent

1.3 Nombres réels

Définition

- on considère une droite munie d'un repère (O; I)
- à chaque point de cette droite, on peut associer un nombre : son abscisse
- pour la droite, on parle de droite numérique
- pour le nombre, on parle de nombre réel
- cet ensemble de nombres est noté $\mathbb R$

Exemples et Remarques

- $\sqrt{2}$; $-\sqrt{5}$; π sont des nombres réels qui ne sont pas des nombres rationnels.
- tout nombre rationnel est un nombre réel. On a donc $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}\subset\mathbb{R}$

2 Intervalles - Valeur absolue d'un nombre réel

2.1 Intervalles

Sur la droite numérique, les <u>intervalles</u> sont des parties de \mathbb{R} représentées par un segment, une demi-droite ou la droite toute entière.

a et b sont deux réels tels que a < b.

Ensemble des réels x tels que	Signification	Notation	Représentation
$a \leqslant x \leqslant b$	x est compris entre a inclus et b inclus	$x \in [a;b]$	$a \longrightarrow b$
a < x < b	x est compris entre a exclu et b exclu	$x \in]a;b[$	a b
$a < x \leqslant b$	x est compris entre a exclu et b inclus	$x \in]a;b]$	a b
$a \leqslant x < b$	x est compris entre a inclus et b exclu	$x \in [a; b[$	a = b
$x \geqslant a \text{ (ou } a \leqslant x)$	x est supérieur ou égal à a	$x \in [a; +\infty[$	<u>a</u>
x > a (ou a < x)	x est strictement supérieur à a	$x \in]a; +\infty[$	
$x \leqslant a \text{ (ou } a \geqslant x)$	x est inférieur ou égal à a	$x \in]-\infty;a]$	$a \rightarrow a$
x < a (ou a > x)	x est strictement inférieur à a	$x \in]-\infty; a[$	$a \longrightarrow a$

Remarques et Exemples

- $\bullet \ -\infty$ et $+\infty$ se lisent respectivement « moins l'infini » et « plus l'infini »
- le crochet d'un intervalle est toujours vers l'extérieur en $-\infty$ et en $+\infty$
- $\mathbb{R} =]-\infty; +\infty[$
- l'amplitude ou longueur de l'intervalle ou [a;b] est b-a
- le <u>centre ou milieu</u> de l'intervalle [a;b] est $\frac{a+b}{2}$
- L'ensemble des nombres réels compris entre -2 inclus et 3,4 exclu se note [-2;3,4[
- L'ensemble des nombres réels inférieurs ou égaux à -3 se note] $-\infty$; -3]
- $0,8 \in [-2;3,4[$ $-1,25 \in [-2;3,4[$ $-2 \in [-2;3,4[$ $3,4 \notin [-2;3,4[$

2.2 Valeur absolue d'un réel - Distance de deux réels

Définition

• x un nombre réel ; la <u>valeur absolue de</u> x, et on note |x|, le nombre réel égal à $\begin{cases} x & \text{si } x \geqslant 0 \\ -x & \text{si } x < 0 \end{cases}$

Exemples

• |3, 6| = 3, 6 |-15| = 15 |0| = 0

Définition et Propriété

a, x et r des nombres réels avec $r \ge 0$

- on appelle distance entre les nombres a et x le nombre |x-a|
- cette distance est aussi égale à |a-x|
- $x \in [a-r; a+r]$ si et seulement si $|x-a| \le r$

Exemples

- la distance entre les nombres -3 et 4, 5 est égale à |-3-4, 5| = |-7, 5| = 7, 5 (ou à |4, 5-(-3)| = |7, 5| = 7, 5).
- $x \in [1, 5; 2, 5]$ si et seulement si $|x 2| \le 0, 5$

3 Écriture scientifique d'un nombre

Définition

- \bullet x un nombre décimal non nul
- son <u>écriture scientifique</u> est $a \times 10^n$ où n est un nombre entier relatif et a est un nombre décimal tel que $1 \le |a| < 10$

Exemples

- l'écriture scientifique de 0,00361 est $3,61 \times 10^{-3}$
- l'écriture scientifique de -159, 2 est $-1,592 \times 10^2$

4 Un peu de python

4.1 les nombres dans python

```
1  # entiers et floats
2  print(type(1))
3  print(type(-1))
4  print(type(1.0))
5
6  print(0.1+0.2)
7  print(0.3)
```

4.2 le problème du radar

```
1 # différences entre vitesse mesurée et vitesse retenue
2 def radarfixe(Vmes):
3 if Vmes < 100:
4    return(Vmes-5)
5 else:
6    return(Vmes*0.95)</pre>
```