1) Let
$$SL_2(\mathbb{R})$$
 act on $H^2 = \frac{3}{2} \neq \mathbb{C}$: $Im(z) > 03$

by Möbius transformations:

$$(ab)\cdot z = \frac{az+b}{cz+d}$$
.

Observe that the action extends continuously to $S^1 = \mathbb{R} \cup \mathbb{R} \times \mathbb{R}$ (use "calc student" rules to work with ∞ .)

if (a,b,c) is a triple in $\mathbb{R} \cup \{\infty\}$ s.t. a < b < c in the cyclic order on S_{1}^{1} Show that there exists $g \in SL_{2}(\mathbb{R})$ $w/g.(0,1,\infty)$ =(a,b,c).

- b) show that the element of is unique up to multiplication by Id.
- C) Show that if (a,b,c) belong to Q V 2003, then $g \in SL_2(Z)$.
- d) Conclude that $5L_2(Z)$ acts transitive by on the triangles of the Faresy diagram.
 - e) Compute the stabilizer of a triangle, and of an edge of the Forey diagram
 - e)ii. Why does each edge belong to exactly two triangles?

 F) Does GP, (Z) act on the Faren diagram?

 - of GIL2 (Z), and of

 PSL2(Z)
 - h) What is the minimum indet of a free subgroup of PSL2(Z)?

- i) What is the minimum rank of a finite-index free subgraup of PSL2(Z)?
- 2) Let S_2 be a genus 2 surface. Write down two one-edge splittings with 2 edge group. Write down a splitting with two edges.

 Compute presentations for $T_1(S_2)$ using your splittings.
- 3) Gersten's group is
 - $\langle a,b,c,t:tat^{-1}=a,tbt^{-1}=ba$ $tct^{-1}=ca^{2}\rangle$

Realize this group as the fundamental aroup of a graph of groups with one vertex w/vertex group.

Zer and two edge groups.

4) Describe the action of $BS(1,2) = \langle a, t : tat' = a^2 \rangle$ on its Bass - Serre tree.

Describe a graph of spaces with fundamental group. Chersten's group.
with fundamental arrays
Gersten's aroup.
6) Suppose Gracts on a tree T. Show that Yat Gr, either 1) of fixes a connected
Show that tax G, either
1) or fixes a connected
subtree of Tor
2) a acts freely.
If you know the terminology, in case 2), show that a
in case 2), show that a
has an axis in T.
* Duppose the fixed-point sets of
7) Suppose the fixed-point sets of and have disjoint. Show that on acts freely.
Thow that on airs freely.
D) Suppose Or is generated by
35, 5m 3 and suppose
that G acts on a tree T.
If each si and each sis;
fix points of T, prove that
8) Suppose G is generated by 751,, 5m3 and suppose that G acts on a tree T. If each 5i and each sis, fix points of T, prove that G fixes a point.

With all labels finite have property FA. 10) Show that finitely generated torsion groups have property FA. 11) Describe Splittings of Q and

ED C2. 12) In exercises 1) and 2) in Serie's book Trees on p.2. Find the mistake in 1) 13) Let A*c be an HNN extension. Write it as a semidiret product 14) Let (T,G) be a splitting of TI, (Sa) with all edge groups = Z. What is the maximum number of edges of 1? What is the euler characteristic of 1?

Suppose I is a graph with TI. (1) = Fn, and suppose 1 has no vertices of valence < 2. What is the maximum number of Repeat for (17,9) with frivial edge groups, C_2 or trivial vertex groups, $T_1 \cong W_n = \frac{1}{K}C_2$, such that vertices of Γ with valence