DIODE

•ISPRAVLJAČI I STABILIZATORI NAPONA

Referentni smerovi struje i napona diode

Statička karakteristika diode

Zener ili probojne diode

Usmeravanje naizmenične struje

- idealni usmerač

- idealni ispravljač

Jednofazno polutalasno usmeravanje

$$u(t) = U_m \cdot \sin(\omega \cdot t)$$

$$U_m \cdot \sin(\omega \cdot t) - u_d - R_p \cdot i_d = 0$$

$$u_d = U_T + R_d \cdot i_d$$
 - statička otpornost diode R_d

Dvofazno polutalasno usmeravanje

$$\overline{I} = \frac{2}{\pi} \cdot I_m = \frac{2}{\pi} \cdot \frac{U_m - U_T}{R_d + R_p}$$

Jednofazno punotalasno usmeravanje

$$\overline{I} = \frac{2}{T} \int_{0}^{T/2} i \cdot dt = \frac{2}{T} \cdot \frac{U_{m}}{2 \cdot R + R_{p}} \int_{0}^{T/2} \sin(\omega \cdot t) \cdot dt = \frac{2}{\pi} \cdot \frac{U_{m} - U_{T}}{2 \cdot R + R_{p}} = \frac{2 \cdot I_{dm}}{\pi}$$

- kapacitivni filter vezan na kraj jednofaznog polutalasnog usmerača

- kapacitivni filter vezan na kraj dvofaznog polutalasnog ispravljača

LC filter

Dioda kao ograničavač napona

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Repetitive peak reverse voltage		V _{RRM}	100	V
Reverse voltage		V_{R}	75	V
Peak forward surge current	t _p = 1 μs	I _{FSM}	2	Α
Repetitive peak forward current		I _{FRM}	500	mA
Forward continuous current		I _F	300	mA
Average forward current	V _R = 0	I _{F(AV)}	150	mA
Power dissipation	I = 4 mm, T _L = 45 °C	P _{tot}	440	mW
	I = 4 mm, T _L ≤ 25 °C	P _{tot}	500	mW
		+		

V1 = 75V → D2 nije u proboju

$$\bullet I_{D1} = \frac{V1 - V_{D1}}{R1 + R_{Ser}} pa je$$

•
$$P_{D1} = V_{D1} \cdot I_{D1} = 0.6 \cdot \frac{75V - 0.6V}{1010} = 56mW < P_{tot}$$

• V1 = $80V \rightarrow D2$ je u proboju

•
$$I_{V1} = I_{D1} = \frac{V_1 - V_{D1} - V_{D2}}{R_{ser}} = I_{D2} + I_{R1} = \frac{80V - 0.6V - 75V}{10} = 440mA$$

$$\bullet I_{D2} = I_{V1} - I_{R1} = 440mA - 75mA = 365mA$$

•
$$P_{D2} = V_{D2} \cdot I_{D2} = 75V \cdot 365mA = 27,375W \gg P_{tot}$$

•
$$P_{D1} = V_{D1} \cdot I_{D1} = 0.6 \cdot 440 mA = 264 mW < P_{tot}$$

Stabilizator napona sa Zener diodom

Stabilizator napona sa Zener diodom

$$\bullet I_1 = I_Z + I_2$$

$$\bullet V_{in} - I_1 \cdot R_1 - V_{out} = 0$$

$$\bullet V_{out} = V_{in} - (I_z + I_2) \cdot R_1$$

- Napon baterije 1,2 1,5V pa je 4,8 ≤ V_{in} ≤ 6V
- $V_{out} = 4V$ pa je $V_Z = 4V$ i $I_{Zmin} = 5mA$
- $40\Omega \le R_2 \le 200\Omega$

$$\bullet R_1 = \frac{V_{in_min} - V_{out}}{(I_{Z_min} + I_{2_max})}$$

$$\bullet R_1 = \frac{4,8V - 4V}{5mA + 100mA} = 7,6\Omega$$

$$\bullet I_Z = \frac{V_{in_max} - V_{out}}{R_1} - I_{2_min}$$

$$\bullet I_Z = \frac{6V - 4V}{7,6\Omega} - 20mA = 243mA$$

- $\bullet P_{z_max} = I_{z_max} \cdot V_z$
- $\bullet P_{z \; max} = 243 mA \cdot 4V = 0.97W$

$$\bullet P_{R1_max} = \frac{(V_{in_max} - V_{out})^2}{R_1}$$

$$\bullet P_{R1_max} = \frac{(6V - 4V)^2}{7.6\Omega} = 0.53W$$

- LTspice program za simulaciju elektronskih kola od Analog Devices
- Link: https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

Download-ovati, instalirati i naučiti!