

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Cálculo de Várias Variáveis — Lista 5 Prof. Adriano Barbosa

- (1) Encontre os máximos e mínimos locais e os pontos de sela das funções.
 - (a) $f(x,y) = x^2 + xy + y^2 + y$
 - (b) f(x,y) = (x-y)(1-xy)
 - (c) $f(x,y) = e^x \cos y$
 - (d) $f(x,y) = (x^2 + y^2)e^{y^2 x^2}$
- (2) Encontre a menor distância entre o ponto (2,0,-3) e o plano x+y+z=1.
- (3) Encontre os três números a, b e c tais que a+b+c=100 e o produto abc seja o maior possível.
- (4) Deseja-se poduzir uma caixa sem tampa com volume de 32000cm³. Quais devem ser as dimenções da caixa de modo que a quantidade de papelão utilizada seja a menor possível?
- (5) Use o método dos multiplicadores de Lagrange para determinar os valores máximos e mínimos de cada função restrita a condição dada.
 - (a) $f(x,y) = x^2 + y^2$ tal que xy = 1
 - (b) $f(x,y) = y^2 x^2$ tal que $\frac{1}{4}x^2 + y^2 = 1$
 - (c) f(x, y, z) = 2x + 2y + z tal que $x^2 + y^2 + z^2 = 9$
 - (d) f(x, y, z) = xyz tal que $x^2 + 2y^2 + 3z^2 = 6$
- (6) Encontre os pontos do cone $z^2 = x^2 + y^2$ que estão mais próximos do ponto (4, 2, 0).
- (7) Encontre as dimensões de uma caixa retangular com volume $1000 \mathrm{cm}^3$ com menor área de superfície possível.
- (8) Encontre as dimensões de uma caixa retangular com volume máximo tal que a soma dos comprimentos de suas 12 arestas é uma constante c.