Exercise 1

 H_1 and H_2 are max heaps. A max heap is a priority queue where the biggest key is in the root, and the definition of the heap order is that any node must have a key that is bigger than all its descendants'.

Draw H_1 after a *deleteMax* operation.

Draw H_2 after an *insert* operation with key 35.

Exercise 2

A priority queue can be implemented as a simple array of integers in which the first element is left unused for addressing purposes. Can the array below represent a priority queue? Please explain your answer.

{0,17,21,23,44,32,65,38,56,46,69,33,77,67,56,39,61,60,62,50,71}

Exercise 3

The figure below represents a priority queue implemented in a simple array.

Show the contents of the priority queue (draw it or show the array) after the following three operations have been performed: first you must add an element with the value of 7 (insert (7)), then an element with the value of 15 is added (insert (15)), and finally the smallest element is removed (deleteMin()).

inscr delete Min vi sletter roden

Exercise 4

 H_1 and H_2 are max heaps. A max heap is a priority queue where the biggest key is in the root, and the definition of the heap order is that any node must have a key that is bigger than all its descendants'.

Draw H_1 after an *insert* operation with key 12.

Draw H_2 after a *deleteMax* operation.

Exercise 5

Consider the following array:

 $\{0,4,17,12,20,25,15,38,22,30,24,45,67,18,40,42,36,56\}$

Can this array represent a *heap* (a priority queue)? Explain your answer.